UNCLASSIFIED

AD 270 428

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NORTHROP AIRCRAFT, INC.

NORTHROP DIVISION

REPORT NO. NAI-58-569 (TWO 18601 - ESO 5543)

PROPERTIES OF 17-7PH AND PH 15-7Mo STEELS IN CONDITIONS TH 1050 AND RH 950

31 JULY 1958 (62-2-1)

PREPAREL BY

W. G. Boyd

W. H. McCarthy

APPROVED BY

H. D. Childers

L. F. Bernbach, General Supervisor 'Materials Research Laboratory

REVISIONS

CHG. NO.	DATE	ENGR.	PAGES AFFECTED	REMARKS
Α	0 5361	CMM	1,2-18 incl., 26	
		<u></u>		
				
	 	 		
		 		
		 		
	 	 		
	 	 		

20.7A	
1-57)	

ENGINEER		PAGE
Boyd/McCarthy		1
CHECKER	NORTHROP AIRCRAFT, INC.	REPORT NO.
ļ	NORTHROP DIVISION	NAI-58-569
DATE		MODEL
31 July 1958		

Rev. 23 October 1961

TABLE OF CONTENTS

•	-
Section	<u>Page</u>
1	Introduction
2	Object
3	Conclusions
3 4	Test Procedure
5	Results 3
<u>Table</u>	•
I	Chemical Composition and Mechanical Properties Reported by Armco Steel Corporation
II	Tensile Properties of 17-7PH Steel, Summary 6
III	Tensile Properties of PH 15-7Mo Steel, Summary
IV	Compression Properties of 17-7PH Steel, Summary 10
Λ	Compression Properties of PH 15-7Mo Steel, Summary 11
VI	Tensile Properties of 17-7PH and PH 15-7Mo Steel after Thermal
	Exposure, Condition TH 1050
VII	Tensile Properties of 17-7PH and PH 15-7Mo Steel after Thermal
	Exposure, Condition RH 950
VIII	Tensile Properties of 17-7PH Steel, Sheet No. 1 21
IX	Tensile Properties of 17-7PH Steel, Sheet No. 2
Х	Tensile Properties of 17-7PH Steel, Sheet No. 3 23
XI	Tensile Properties of PH 15-7Mo Steel, Sheet No. 4 24
XII	Tensile Properties of PH 15-7Mo Steel, Sheet No. 6 25
XIII	Tensile Properties of PH 15-7Mo Steel, Sheet No. 8 26
XIV	Compression Properties of 17-7PH Steel, Sheet No. 1 27
XV	Compression Properties of 17-7PH Steel, Sheet No. 2 28
XVI	Compression Properties of 17-7PH Steel, Sheet No. 3 29
XVII	Compression Properties of PH 15-7Mo Steel, Sheet No. 4 30
IIIVX	Compression Properties of PH 15-7Mo Steel, Sheet No. 6 31
XIX	Compression Properties of PH 15-7Mo Steel, Sheet No. 8 32
Figure	
ı	Tensile Properties vs. Temperature for Condition TH 1050 8
2	Tensile Properties vs. Temperature for Condition RH 950 9
3	Compressive Yield Strength 90.2% Offset) vs. Temperature 12
4	Tensile Elastic Modulus vs. Temperature
5	Compressive Elastic Modulus and Ramberg-Osgood Stress-Strain
	Shape Parameter vs. Temperature
6	Tensile Properties after 100 Hours Thermal Exposure 19
7	Tensile Properties after 500 Hours Thermal Exposure 20
•	The second secon

M 20-7A

engineer Boyd/McCarthy	, <u>'</u> '1	PAGE	
CHECKER	NORTHROP AIRCRAFT, INC. NORTHROP DIVISION	REPORT NO. NAI-58-569	
DATE		MODEL	
31 July 1958			

1. INTRODUCTION

17-7PH steel in condition TH 1050 is currently the most attractive precipitation—hardenable sheet steel for use in aircraft structure. This is due to good fabricability, reliability, and uniformity, as well as to the high strength obtainable. PH 15-7Mo is a recent modification of 17-7PH which contains molybdenum and is designed to extend the useful temperature range of 17-7PH by 100F° to 200F°. It has been reported that the properties of these materials can be substantially improved by using refrigeration heat treatment, condition RH 950, with a proportional decrease in airframe weight. The work described in this report was undertaken to verify the reported increases in properties, provide data for the establishment of design allowables, and determine the extent of embrittlement caused by long exposure in the 700F to 900F temperature range.

2. OBJECT

To determine short-time tensile and compressive properties of 17-7PH and PH 15-7Mo steels, conditions TH 1050 and RH 950, at room temperature, 600F, 800F, 900F, and 1000F; and to determine the effect of long exposure at 700F, 800F, and 900F upon room-temperature tensile properties.

3. CONCLUSIONS

- 3.1 The test results obtained for both 17-7PH and PH 15-7Mo during this program indicate that the RH 950 treatment produces substantially stronger material (by more than 10,000 psi) than does the conventional TH 1050 treatment. This improvement persists at elevated temperatures to about 800F. At the 900F testing temperature, condition RH 950 material is about equal to TH 1050 steel; but at 1000F, TH 1050 is slightly superior.
- 3.2 The data show that PH 15-7Mo is substantially stronger than 17-7PH, especially at the higher test temperatures. The improvement at 1000F is about 15,000 psi for condition TH 1050 and about 25,000 psi for condition RH 950.
- 3.3 Elevated-temperature compressive yield strength of both steels was found to be roughly equivalent to tensile yield strength, although anomalous effects were observed.
- 3.4 The thermal stability of 17-7PH and PH 15-7Mo steels was found to be better than was initially supposed. Except for 17-7PH in condition RH 950, all materials had average tensile elongation in excess of 4.5% after exposure at 700F, 800F, or 900F for 100 and 500 hours. The most severely embrittling exposure temperature was found to be 800F. 17-7PH in condition RH 950 was almost completely embrittled (0.3% elongation) after 500 hours at 800F, and it had only about 3% elongation after 100 hours at this temperature.

	2	0		7	Α	
1		5	9)		

ENGINEER		PAGE
Boyd/McCarthy	NORTHROP CORPORATION	2
CHECKER	NORAIR DIVISION	REPORT NO.
		NAI-58-569
DATE 31 July 1958		MODEL
Rev. 23 October 1961		

4. TEST PROCEDURE

- 4.1 Materials Three sheets of 17-7PH and three sheets of PH 15-7Mo steel were procured from Armco Steel Corporation for the present work. Each sheet, nominally 0.040 inch thick by 36 inches wide and 120 inches long, was taken from a separate production heat. The 17-7PH material conforms to MIL-S-25043 and the PH 15-7Mo meets the manufacturer's guaranteed properties, as attested to by the mill reports shipped with the material. Table I gives the physical and chemical data supplied by Armco Steel Corporation for each sheet. All sheets were received in the annealed condition with a number 2D finish. The sheets are the same as those used for the heat treatment study reported in NAI-58-619. Mechanical properties of the test material in the hardened condition were verified by the testing reported herein and in NAI-58-619.
- 4.2 <u>Heat Treatment</u> The heat treatment processes specified for the 17-7PH and PH 15-7Mo material used in this program were as follows:

Condition TH 1050 - Heat to 1400F for 90 minutes; air cool to 50F to 60F, hold 30 to 60 minutes; heat to 1050F for 90 minutes, air cool.

Condition RH 950 - Heat to 1750F for 10 minutes, air cool; liquid cool to -100F to -110F for 8 hours; heat to 950F for 60 minutes, air cool.

The 1400F and 1750F annealing temperatures were held to within a ± 5F tolerance, and the 950F and 1050F aging temperatures were held to ± 2F. Commercial tolerances are ± 25F and ± 10F, respectively. All high-temperature treatments were performed in air. The subzero treatment was performed in a mixture of dry ice and isopropyl alcohol. Specimens were mechanically descaled after heat treatment so that deleterious effects of acid pickling were avoided.

4.3 Testing

4.3.1 Test temperatures used were room temperature (72F), 600F, 800F, and 1000F. The following properties were obtained at each test temperature: tensile and compressive yield strength (0.2% offset), tensile ultimate strength and ultimate elongation in 2 inches, Young's modulus in tension and in compression, and the Ramberg-Osgood compressive stress-strain shape parameter, 'n'. (Descriptions of the 'n' parameter, together with the method of calculation, are given in NACA Tech note 902, July 1943.) The elevated testing temperatures were held to within ± 5F, and soaking time before testing was 30 minutes ± 5. Cycling of specimens was used so that a specimen was tested every 10 minutes. All the above tests were conducted in triplicate for each sheet. Room-temperature tensile data were also determined on specimens exposed at 700F, 800F, and 900F for 100 to 500 hours. One specimen from each sheet was tested for each exposure condition.

чч 20-7A

ENGINEER		PAGE
Boyd/McCarthy	NORTHROP CORPORATION NORAIR DIVISION	Ì 3
CHECKER		REPORT NO.
		NAI-58-569
DATE 31 July 1958		MODEL
Re. 23 October 1961		

Testing was performed according to requirements set forth in Federal Test Method Standard No. 151, using standard Northrop procedures on a Baldwin-Lima-Hamilton 10,000 pound capacity testing machine, and a Pacific Scientific elevated temperature test chamber. Test equipment and fixtures are described and illustrated in report NAI-57-246. Standard tensile specimens 8 inches long with a uniform 2 inch long reduced section were pulled by means of a pin inserted through a 1/2 inch hole in the grip section. Standard 1 inch by 3 inch compression coupons were tested in an NAA-type compression test fixture. Horizontal steel leaves 1/16 by 7/8 by 3 inches, under screw-applied pressure, supported the specimen in a vertical position. After the specimen was loaded in the compression fixture, a compressometer was attached, recording strain produced in the central 2 inch section of the specimen when load was applied. The strain rate for all tests was maintained between 0.003 and 0.007 inch per inch per minute until yield loading was achieved. Autographically recorded load-strain curves were used for determination of yield strengths, elastic moduli, and 'n' parameters.

5. RESULTS

5.1 Room and Elevated Temperature Tensile and Compression Properties

- 5.1.1 Tensile properties for three sheets of 17-7PH steel in conditions TH 1050 and RH 950 are summarized in Table II; equivalent data for PH 15-7Mo steel are given in Table III. The values entered in Tables II and III for each sheet of steel are the averages of the data from three tests. The tensile data for individual specimens are presented in Tables VIII through XII. Compression properties for each sheet and each condition appear in Table IV for 17-7PH and in Table V for PH 15-7Mo. Individual test results for compression specimens are given in Tables XIV through XIX.
- 5.1.2 The tensile properties (with the exception of elastic modulus) are presented graphically as functions of testing temperature in Figure 1 for 17-7PH and PH 15-7Mo in condition TH 1050; Figure 2 gives the equivalent information for condition RH 950. Compressive yield strength versus temperature for each material and condition is plotted in Figure 3. Note that the large differences between the PH 15-7Mo sheets in condition TH 1050 necessitated separate curves for each sheet instead of a mean curve representing all three sheets. Tensile modulus of elasticity is given graphically in Figure 4; compressive modulus and compressive 'n' parameter are presented in Figure 5. The modulus and 'n' values are considered approximate, since thermal expansion of linkage and remoteness of the microformer strainmeasuring device limits the precision with which stress-strain curves can be obtained.

184 20-7A (R.1-59)

ENGINEER Boyd/McCarthy CHECKER	NORTHROP CORPORATION	PAGE 4	
CHECKER	NORAIR DIVISION	NAI-58-569	
DATE 31 July 1.958 Rev. 23 October 1961		MODEL	

Room Temperature Tensile Properties after Elevated Temperature

Exposure - Tensile properties after 100 hours and after 500 hours

exposure at 700F, 800F, and 900F are presented in Table VI for
both steels in condition TH 1050. Similar information for condition
RH 950 is given in Table VII. The tensile data for 100 hours exposure
are presented as functions of exposure temperature in Figure 6. Similar
curves, showing the embrittlement produced by 500 hours exposure,
appear in Figure 7.

4 20-7A 11-87)

ENGINEER				PAGE
Boyd/McCarthy			NORTHROP AIRCRAFT, INC.	5 REPORT NO. NAI-58-569
DATE 31 July Sev. 23 Octo				MODEL
		8 57798	0.076 0.052 0.025 0.025 0.026 15.26 7.34 1.18 1.27 221.5 127.5 231.0 47.5 6.5 0K	
	Q	968 <i>L</i> 5	0.072 0.070 0.070 0.070 0.011 15.30 7.21 1.15 1.15 2.14.2 49.5 8.5 8.5 8.5 6.45 0K	e vy make kuund i veeta ely um <u>et ele maga ellisti tiinin e</u> ni e di e hekkuuri jei esi gialii elli e llisti k äitek
	PH 15-7%	71814 7	0.072 0.58 0.018 0.018 0.034 14.54 17.27 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09	
AND VECHANICAL PROPERTIES STEEL CORPORATION			0.09 max 1.00 max 0.04 max 1.00 max 1.00 max 1.00 max 1.00 max 1.00 max 1.00 max 2.00-3.00 0.75-1.50 6.50-7.75 2.00-3.00 0.75-1.50 6.50-3.00 0.75-1.50 1.00 max 1.00 max	
SCHANICAL PR CORPORATION		03899	0.072 0.72 0.024 0.024 17.12 7.22 1.21 1.21 1.21 1.25.4 213.0 32.5 7.0 B80 0.45	
		66922	0.076 0.61 0.024 0.029 17.20 17.20 17.20 17.20 127.2 159.5 38.0 88.0 88.5 0K	
SPOSITION BY ARLOO	17-7PH	57391	0.068 0.59 0.059 0.010 0.025 17.08 17.08 17.08 17.08 17.08 17.08 17.00 190.0 190.0 10.0 10.0 10.0 10.0 10.0	
CHELICAL COLPOSITION REPORTED BY ARICO		II.—S—25043	0.09 max 0.04 max 0.04 max 1.00 max 16.0 -18.0 6.50- 7.75 0.75-1.50 55 max 150 min 150 min 20 min 20 min 892 max 38 min B92 max	·
TABLE I.	Alloy	Number Number fication	i. .05(

20 - 7A • 57)

ENGINEER			·				PAGE			
Boyd/McCa CHECKER	ar'thy		NOI	RTHROP A		INC.	1	6 REPORT NO.		
DATE 31 July 1958				NORTHRO	P DIVISION		NAI-	58-569		
Rev. 23.00	toben									
		E ***	27.	26.4 26.1 27.5 26.7	25.5 22.4 23.3	23.2 22.1 22.5 22.5	21.3 23.0 20.8 21.7			
	гн 950	Elong.** % in 2 in.	10.9	7.2 4.8 6.3	. 15.8 12.5 13.1	16.5 14.5 15.3	29.8 27.5 31.3			
STEEL	Condition	Ftu** ksi	224.8 222.8 228.2 228.2	188.1 191.3 194.6 191.3	164.6 167.9 166.2 166.2	143.9 143.3 143.7 143.6	100.4 99.5 97.4 99.1	<i>.</i>		
ES OF 17-7PH SHEETS		Fty ** ksi	212.9 210:4 213.1 212.1	172.0 175.5 177.6 175.0	7. LLU 14.8 148.0 148.0	121.0	79.7 75.1 75.7 76.8			
HE PROPERTIES OF 17-7PH RY OF THREE SHEETS		E*** psi x 10 ⁶	1277	25.3	, 53.2 54.8 54.8 54.8	24.1 23.9 23.5	20.5 20.6 19.6 20.2			
TABLE II. TENSI SUMMAI	TH 1050	Elong.* % in 2 in.	7.8 10.7 9.2 9.2	44.77.50	9.8 12.0 12.7 11.5	16.7 16.2 18.5 17.1	31.7 29.8 31.2 30.9			
TABL	Condition	Condition	Condition	Ftu* ksi	182.4 177.8 185.7 182.0	171.5 165.1 174.0 170.2	150.2 145.3 153.5 149.7	129.0 125.7 128.5 127.7	99.2 96.3 97.2 97.6	. নেঅব
		Fty* Ksi	170.9 165.1 172.5 169.5	161.4 155.3 164.8 160.5	139.9 134.0 141.3 138.4	116.2 112.8 114.2 114.4	82.8 78.6 80.6 80.7	ed on Figure ed on Figure ed on Figure		
		Sheet No.	1 2 3 Avg.	AVE.	AV.	AVB.	AVB.	* Plotted ** Plotted *** Plotted		
		Test	Room	£009	800F	900F	1000F	, ,		

ENGINEER PAGE Boyd/McCarthy REPORT NO. NORTHROP AIRCRAFT, INC. NORTHROP DIVISION DATE 31 July 1958 Rev. 23 October 1961 Elong.** E *** in 2 in. psi x 10 26.4 25.5 25.5 26.0 23.0 23.8 23.4 23.4 27.5 27.6 27.5 27.5 27.5 25.0 24.7 25.9 25.9 22.0 20.6 22.9 21.8 80.00 9.5 11.3 8.8 9.9 5.3 4.3 4.9 122.5 25.55 950 Condition RH ЬE 217.9 223.3 227.8 223.0 198.5 205.0 210.1 204.5 178.0 181.7 185.0 181.6 160.1 162.0 168.2 163.4 TENSILE PROPERTIES OF PH 15-7Mo Steel 130.7 Ftu ksi 199.8 205:7 208.6 204.7 170.4 178.3 180.7 176.5 147.7 152.3 150.5 150.2 127.4 129.4 132.4 129.7 SULMARY OF THREE SHEETS E *** 25.8 25.0 26.2 25.7 888.37.8 535°3 5757 5757 5757 28.5.2 Elong.* 7.8 10.0 10.5 9.4 4.4 9 8 9 9 9 8 8 7 12.0 Condition TH 1050 19.0 19.2 19.0 トラマ TABLE III. Figure Figure Figure 185.0 187.3 191.6 188.0 161.8 158.2 164.0 161.3 177.4 175.2 180.6 177.7 142.6 143.6 143.2 114.6 Ft.t. ksi on on ** Plotted c ** Plotted c *** Plotted 165.5 161.7 163.6 163.6 148.3 142.5 145.1 145.3 126.5 125.1 126.4 126.0 Fty* Ksi * * Sheet No. TOOOL Test Room 600F 800F 900F

20 - 7A - 87) 4 20-11A 11-57)

ENGINEER		Taker
Boyd/McCarthy CHECKER	NORTHROP AIRCRAFT INC.	PAGE 8
CHECKER	NORTHROP DIVISION	REPORT NO.
DATE		NAI-58-569
31 July 1958		MODEL
Rev. 23 October 196		
FIGURE 1		
	ENSILE PROPERTIES Vs. TEMPERATURE	
	OR CONDITION TH 1050	
111111111111111111111111111111111111111		
	######################################	
	U РИ 5-7Me Ф Ф Ф РН 15-7	Mo
	4-17-70H	
0 F4	E PUSING	
170 L	17-7 PH 100	
150		
		1-12-135-1-11
一 130		
130 ::		30
1 120 T		
120		25 0
Z.) V &
B iio		25 8
100		
100		15. 88
in 90 - &		
90	4.0	
***		10 8
00 (FE)	e T PH	
	* E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
70		A CONGRETION (
70	600 800	
		900 1000
	TEST TEMPERATURE - F	

RM 20-11A ENGINEER i. 11-57) Boyd/McCarthy PAGE NORTHROP AIRCRAFT INC. CHECKER NORTHROP DIVISION REPORT NO. DATE NAI-58-569 MODEL <u>31 July 1958</u> Rev. 23 00 toper 1961 FIGURE 2. TENSILE PROPERTIES VS TEMPERATURE FOR CONDITION RH 950 190 90 0 ŏ: 80 70 800 900. 1,000

20-7A |-87)

ENGINEER Royd McCant	ineer yd/McCarthy cker						PAGE	10
CHECKER	·			THROP All		-58-569		
	ATE 31 July 1958 ev. 23 October 1961						MODEL	
		** *u,	24.8 31.0 17.5 23.1	14.7 32.0 10.9 15.5	12.5 13.0 23.1 14.9	10.6 10.4 14.9 11.5	8.3 11.1 10.0	
PH STEEL	Condition RH 950	E ** psi x 10 ⁶	31.8 32.9 32.0	29.1 27.5 28.7 28.4	27.0 28.1 27.7 27.6	24.8	18.0 19.2 17.0 18.1	
TIES OF 17-7PH SHEETS	3	Fcy ksi	237.0 239.4 244.5 240.3	184.2 182.9 188.6 185.2	161.4 167.3 168.6 165.8	135.9 136.1 139.6 137.2	85.2 86.3 86.7	
PROPER THREE	050	***************************************	26.1 26.8 20.3 24.2	14.3 10.3 12.3	11.3 13.9 18.2 13.9	12.7 17.6 9.1 1.21	15.8 12.4 14.1 13.9	<u>.</u>
TABLE IV. COMPRESSION SUMMARY OF	Condition TH 10	E ** psi x 106	2 2 2 2 2	26.3 26.5 29.7 27.5	0.4.4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	7.42 7.42 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	19.0 18.5 19.6 19.0	on Figure 3 [†] on Figure 5
TABL	පි	Fcy* ksi	198.6 200.8 205.8 . 201.7	166.5 166.4 171.0 168.0	137.1 140.9 146.8 141.6	14.1 113.7 110.5	95.5 93.3 99.2 96.0	* Plotted ** Plotted
		Sheet No.	1 2 3 Avg .	12 3 Avg	L 2 Avg	L 3 Avg	1 2 3 Avg	
		Test Temp	Room	600F	800F	900F	1000F	

Boyd/McCar CHECKER DATE 31 July Rev. 23 Oct			NO	REPORT NO NAI-58				
		*** tut	26.1 24.2 22.1 23.6	11.1 11.6 10.9 10.8	13.6 17.6 14.3	10.4 12.5 8.2 10.1	7.6 7.0 7.5	
15-7Mo STEEL	Condition RH 950	E *** psi x 10 ⁶	32.0 33.8 31.3 32.4	27.9 27.5 27.2 27.5	28.4 27.6 28.6 28.2	24.8 26.1 25.7 25.6	21.6 23.0 22.0	
	30 (2)	Fcy ksi **	237.7 239.1 249.6 242.1	192.6 196.1 200.2 196.3	169.3 170.9 180.9 173.7	143.9 148.9 139.1 144.0	116.2 113.4 120.6 116.7	Figure 3
COMPRESSION PROPERTIES OF PH SUMMARY OF THREE SHEETS	950	*** ***	20.3 15.5 7.6 11.9	9.0 12.3 5.7 8.0	14.1 12.8 6.1 9.4	10.6 12.7 8.9 10.4	13.9 10.6 11.4 11.8	tted on igure 3 igure 5
	Condition TH 10	E *** psi x 10 ⁶	30.9 32.1 29.3 30.8	27.2 23.4 21.9 21.9	22.8 23.2 21.9 22.6	24.0 21.2 20.3	20.8 20.2 18.9 19.9	l value plotted
TABLE V.	ပိ	Fcy ksi*	201.3 178.8 143.5 174.5	171.8 157.2 125.4 151.5	148.2 140.7 123.4 137.4	125.2 123.9 114.7 121.3	109.3 108.4 103.8 107.2	* Individus ** Averages *** Averages
		Sheet No.	4 6 8 Avg	4 6 8 8 Avg	4 6 6 8 Avg	4 6 8 AVE	4 6 8 Avg	
		Test	Воош	600F	800F	900F	1000F	

ENGINEER PAGE Boyd/McCarthy NORTHROP AIRCRAFT INC. CHECKER REPORT NO. NORTHROP DIVISION NAT-58-569 Rev.10-23-61 COMPRESSIVE YIELD STRENGTH (0-2% Offset) Ve. TEMPERATURE Condition 74 1050 Condition RH 950 200 TOO 80

TEST TEMPERATURE + F

600

800

1,000

70

70

Boyd/McCarthy	N	ORTHRO	OP AIR	CRAFT	INC.	PAG		13		
CHECKER			RTHROP DI		- · · · · ·	RE	NAT-58-569			
DATE						мо				
31 July 1958			**************************************	***************************************				····		
Rev. 23 Octob	1961	1		i		. ,				
				•	·. · · · ,	, ,				
			. ; : !							
	FIGURE 4.		· · · · · · · · ·							
	TIGOTUS 4.	1 '	י זפר א נאמורי	i a. Machaman	10					
		TENSILE			15 . 1					
		Vs. TEM	PERATUR.	S						
			 .	×××	<. 17−7PH					
			O	0 0 0		· ,				
29				. 1	Condit	lon TH	1050	-,		
				· · · · · · · · · · · · · · · · · · ·	Condit	Lon RH	950			
28			- 11-11-1							
	K-17-7 PU			-0 -						
27	17-7PH	<u>्रश्चित्रस्थ्र</u>	0		S. Mo Cont Alt O					
		استسنن		7-4	1/2	•				
H 26		PH 15-7 Mo	CondTI	10500	10					
a 20	9	PRIM			130					
		7-7 PH . Co.	nd. THIO		1					
(1 25						190				
ns.										
Taggi						No. 1				
23]			<i>M</i> - <i>M</i> -			
23							1:1			
22						,		9		
							13	2		
21							16 []			
20.		.] .]					1 }	k		
- 20			,				-			
19 -										
18.			•			i i	!			
			• •			,	;			
17	1		<u> </u>		i					
	0		1	600	80	00 90	00 1	000		
		min	יי כמשהדות חון אור משהדות חון	יוור בניד נוח עי כני	177		i			
		, TES	TEMPE	MATURE +	- F	, ,	!			
			i i	,	1	1				
1 1 . 1 . 1	_1 '	1 : !		1						

M 20-11A . 11-57)

ENGINEER		
Boyd/McCarthy	NORTHROP AIRCRAFT INC.	PAGE 14
CHECKER	NORTHROP DIVISION	REPORT NO.
DATE		NAI-58-569
31 July 1958		MODEL
Rev. 23.0ctober 1961 FIGU		
- 15: 1 ' ' 83 ' 14: 14		
	COMPRESSIVE FLASTIC MODULUS AND RAMBERG-OSCOOD STRESS-STRAIN	
32	AND RAMBERG-OSGOOD STRESS-STRAIN SHAPE PARAMETER Vs. TEMPERATURE	
32	SUBJECT OF THE PROPERTY OF THE	
31		
6		17 - 7PH
30		17-7РН РН 15-7Мо
the transfer of the state of th		Condition TH 1050
29		Ondition RH 950
28	9	
90-		
× 27		
26		
25 i i i i i i i i i i i i i i i i i i i		
<u> </u>		
[` ' ' ' ' T ' ' T ' ' ' ' '		
23 23		
22		
		JH 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
		20 日
20	TO TOUR BUSSO	
	Page 10 Com	15 萬十
6-n		* 16
	0.50	8 10 g
18		RAMBERG-OSGOOD PARAMETER (n)
		
		RAM
70		
	600 800 9	00 1000
	TEST TEMPERATURE - F	

10·7A •87)

ENGINEER			·				PAGE	
	Boyd/McCarthy HECKER			RTHROP A	IRCRAFT, P DIVISION	INC.	REPORT N NAT-4	
Rev. 23 Oct							MODEL	
·	i	Elong.	10000	8.7.5 8.3.5	5.0 6.0 7.0	4.0 7.0 8.0 6.3	5.0 10.0 8.5 7.8	
FIER	15-7Mo	Ftu	215.7 209.7 218.1	224.7 222.1 226.0 226.0	229.8 227.7 228.3 228.6	248.3 239.8 241.4 243.2	225.1 219.0 219.8 221.3	
PH 15-7Mo STEEL AFTER 1050 *	PH	Fty ksi	206.4 195.6 205.8 202.6	214.8 208.7 211.1 211.5	224.5 217.2 214.7 218.8	240.6 228.1 226.4 231.7	217.5 206.6 204.7 209.6	•
		Specimen	4-1 6-1: 8-1 Avg	6. 4-20 6-2 8-2 Ave	4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	445 486 486 486	. 4-5 6-5 8-5 Ave	,
SILE PROPERTIES OF 17-7PH A		Elong. % in 2 in.	6.0 9.0 8.0	5.5 10.0 8.5 8.0	5.5 8.0 6.5	3.5	85.0 7.5 7.0	6 6 7 -
TENSILE PROPERTIES THERMAL EXPOSURE	Н	Ftu. ksi	205.6 199.9 209.4 205.0	217.5 210.9 217.2 215.2	222.1 218.7 223.0 221.3	239.0 231.8 240.0 236.9	220.0	re. d on Figure
TABLE VI. TENS	17-7PH	Fty ksi	1973 191.1 200.3 196.2	206.7 20935 - 209.5 206.6	212.3 208.4 213.1 211.3	232.0 224.3 232.3 229.5	210.3 206.3 210.7 209.1	om temperatur a are plotted a are plotted
TABL		Specimen	1-1 2-1 3-1 Avg	1-2 2-2 3-2 Avg	1-3 2-3 44 87	3775	1-5 2-5 Avg	*Tested at room temperature. 100 hour data are plotted o 500 hour data are plotted o
	Ð	Time	100 hr	500 hr	100 hr	500 hr	100 hr	·
	Exposure	Temp	700F		800F		900F	

Boyd/McCar CHECKER DATE31 July Rev. 23 Oct	1958	961	NOR		AIRCRAFT, INC.	PAGE -16 REPORT NO. NAI-58-569 MODEL
		Elong.	8 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.6		
AFTER	AFTER	Ftu	224.3 218.7 220.2 221.1	188.0		
PH 15-7Mo STEEL AFTER 1050*	Hd	Fty	213.9 203.4 203.7 207.0	176.8		
,	Specimen	4-5 6-5 8-6 Avg	Avg Table III			
TENSILE PROPERTIES OF 17-7PH AND THERMAL EXPOSURE CONDITION TH (Continued)		Elong. % in 2 in.	7.05.5	9.5	Figure 6. Figure 7.	
SILE PROPEF	Ho	Ftu	209.5 206.0 214.2 209.9	182.0	d d	
TABLE VI. TEN	17-7PH	Fty ksi	203.3 198.8 206.1 202.7	169.5		
TABI		Specimen	1-6 2-6 3-6 AVB	Avg Table II	* Tested at room 100 hour data 500 hour data	
,	re	Time	500 hr	sed		
	Exposure	Temp	900F	hexposed		

20·7A ·87)

ENGINEER Boyd/McCa	oyd/McCarthy		NC	PTHEOD /	AIRCRAFT.	. INC		17
	ATE 31 July 1958 ev. 23 October 1961			NORTHRO	NAI MODEL	o. 58 – 569		
		Elong.	5.00.00	6.0 6.5 7.7 7.7	6.0 6.0 6.0 5.3	6.0 6.0 7.4	, 66.00 	
TER	15-7Mo	Ftu ksi	247.7 256.6 255.3 253.2	255.8 263.6 270.5 263.3	257.1 261.0 266.1 261.4	258.3 266.5 267.5 264.1	251.2 255.3 256.5 254.3	-
7Mo STEEL AFTER)*	PH 1	Fty ksi	223.6 236.4 237.6 232.5	233.3 243.9 246.3 241.2	233.3 240.0 244.5 239.3	239.7 251.0 246.6 245.8	232.9 238.4 235.1 235.5	
AND PH 15-7Mo FIION RH 950*		Specimen	4-36 6-36 8-36 Avg	4-37 6-37 8-37 Avg	4-38 6-38 8-38 Avg	4-39 6-39 8-39 Ave	6-41 6-41 8-41 Avg	
TENSILE PROPERTIES OF 17-7PH AND PH THERMAL EXPOSURE CONDITION RH		Elong. % in 2 in.	5.0 6.0 4.0 5.0	3.5.0	2.5 5.0 1.0 2.8	0.5	3.50 3.55 5.00	Figure 6. Figure 7.
ILE PROPERT	7РН	Ftu ksi	240.4 241.2 247.0 247.0	246.7 249.1 256.2 250.7	254.3 256.7 255.0 255.3	241.0 240.4 187.7 223.0	239.3 235.7 242.8 239.3	ជដ
	17-7PH	Fty ksi	226.7 228.2 230.3 228.4	230.4 232.4 240.3 234.4	238.5 241.4 241.9 240.6	236.9 240.4 187.7 221.7	228.5 222.8 233.8 228.4	ten are are
TABLE VII.		Specimen	1-36 2-36 3-36 Avg	1-37 2-37 3-37 Ave	1-38 2-38 3-38 Avg	1-39 2-39 3-39 Avg	1-41 2-41 3-41 Avg	* Tested at room 100 hour data 500 hour data
	re	Time	1.00 hr	500 hr	100 hr	500 hr	100 hr	
	Exposure	Temp	700F		BOOF		900F	

Boyd/McCarchecker DATE 31 Jul. Rev. 23 Oc.	y 19 ⁵	58 r 19	61	NO			AIRCRAFT, INC.	PAGE 18 REPORT NO. NAI-58-56 MODEL
			菌.	5.5 6.0 6.0	5.8	0.6		
FTER	-	15-7Mo	Ftu	244.8 244.6 253.8	247.7	223.0		
Mo STEEL A		PH	Fty	227.5	232.0	204.7		
(AND PH 15-7 ITION RH 95	AND PH 15-7M LTION RH 950	-		27-75 8-75 8-75	AVE	Avg Table III		
TENSILE PROPERTIES OF 17-7PH AND PH 15-7M6 STEEL AFTER THERMAL EXPOSURE CONDITION RH 950*			Elong.	7.0 5.5 5.5	t	5-6	Figure 7.	,
ILE PROPERT THERMAL		Ho	Ftu ksi	221.6 218.7 234.5 224.9		225.3] 😅	·
		17-7PH	Fty ksi	214.7 211.4 223.5 216.5		212.1	Tested at room temperature.	
TABLE VII.			Specimen	1-42 2-42 3-42 Avg		Avg Table II	* Tested a 500 hour	·
		ļ	Time	500 hr		pec		
	## ## ##	- Trocare	T. emp	900F	 -	Unexposed		

M 20-11A

RM 20-11A ENGINEER R. 11-57) PAGE Boyd/McCarthy NORTHROP AIRCRAFT INC. CHECKER REPORT NO. NORTHROP DIVISION NAI-58-569 DATE MODEL 31 July 1958 TENSILE PROPERTIES AFTER 500 HOURS THERMAL EXPOSURE 210 200 190 180 150 PHIS-7Mo -TH1050 140 130 120 110 70 7700 900

EXPOSURE

TEMPERATURE

1 20-7A 11-87)

ENGINEER Boyd/McCart	hy		NOF	RTHROP AI	RCRAFT, I	NC.	PAGE 21 REPORT NO. NAI-58-569 MODEL	
31 July 195	8	+	1					
		E E psi x106	27.8 28.2 27.2 27.7	7.7.7 7.7.2 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.9.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	25.52 27.45 25.52 25.53	44444 44444 444444 4444444444444444444	20.0 22.2 22.2 23.3	
	Condition RH 950	Elong. %in2in.	8.5 7.0 8.3	7677	18.0 14.0 15.5 15.8	14.5 18.0 17.0 16.5	27.0 31.0 31.5 8.8	
STEEL		Ftu ksf	224.8 224.8 224.8 224.8	187.2 188.1 189.1 188.1	161.5 165.3 167.0 164.6	14.3 143.6 143.9 143.9	98.4 101.1 101.6 100.4	
. 17-7P h st	Condi	Fty ksi	213.1 213.1 212.6 212.9	172.2 173.4 170.4 172.0	140.7 140.1 144.3 141.7	119.3 121.3 122.5 121.0	80.8 80.5 79.7	
TENSILE PROPERTIES OF 17-7PH ET No. 1., HEAT No. 57391		Specimen	1-55 1-56 1-57 Avg	1-35 1-43 1-44 Avg	1-45 1-47 1-48 Avg	1-49 1-50 1-51 Avg	1-52 1-53 1-54 Avg	
ENSILE PR No. 1., H		Epsixlo	%.0 %.2 %.1 %.1 %.1	25.2 26.3 26.1 25.9	6.43 8.43 8.53 8.53	8.53.8 83.8 83.8 84.1	20.7 21.1 19.6 20.5	
TABLE VIII. TEN SHEET N	50	Elong. % in 2 in.	7.5 8.0 8.0 7.8	2.6.4 0.80 0.6.4	10.0 10.0 9.5 9.8	17.5 17.0 15.5 16.7	35.0 26.0 31.7	
TAB	tion TH 109	Condition TH 1050	Ftu ksi	182.1 182.6 182.6 182.6	171.8 170.4 172.2 171.5	150.8 149.5 150.3 150.2	127.5 130.0 129.6 129.0	100.8 98.4 99.2
	Condi	Fty kai	170.7 170.7 171.4 170.9	162.5 159.5 162.1 161.4	142.1 139.1 138.6 139.9	114.4 115.8 116.5	\$ 88 88 88 6.0.86	
		Specimen	1-17 1-18 1-19 Avg	1-7 1-8 1-9 Avg	1-10 1-11 1-12 Avġ	1-13 1-14 1-15 Avg	1-31 1-32 1-33 Avg	
		Test	Room	600F	800F	900F	1000T	

| 20-7A |1-57)

ENGINEER		ı						
Boyd/McCa	rthy							PAGE 22
CHECKER			NC		AIRCRAFT, OP DIVISION	INC.	i	REPORT NO.
DATE	0.50			· · · · · · · · · · · · · · · · · · ·	·			NAI-58-569 MODEL
31 July 1				**************************************				
		E psi x 106	. ~ ~ ~ ~	26.0 25.6 26.1	22.3 22.7 22.7	22.1 22.3 22.9	27.2	20.8 23.0 23.0
	0	Elong.	10.5	~ 4 4 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	222 25.24 2.5.24	16.0 11.5 16.0 14.5	26.0	21.0
STEEL	Condition RH 950	Ftu ksi	221.2 223.6 223.7 222.8	191.2 191.3 191.3	167.1 165.7 170.9 167.9	142.4 143.8 143.6 143.5	7.66	100.1 98.9 99.5
17-7PH 122	Cond	Fty	208.8 209.7 212.7 210.4	174.8 174.6 177.0 175.5	143.6 144.5 146.4	122.1 122.6 122.1 122.3	76.5	75.55 1.
		Specimen	2-55 2-56 2-57 Avg	2-35 2-43 2-44 Ave	2-45 2-46 2-47 Avg	2-48 2-49 2-50 Avg	2-51	2-52 2-54 Ave
NSII.E No.		E psix106	25.7 25.5 27.3 26.2	25.3 25.0 24.3 24.9	22.0 23.4 24.1 23.2	8.4.8 73.72 73.72	20.3	20.0 21.6 20.6
TABLE IX. TE	050	Elong. %in 2 in.	10.5	~~~~ ~~~~	12.0 13.0 12.0	15.0	29.5	30.5 29.5 29.5 8
턴	Condition TH 1050	Ftuksi	177.8 177.3 178.2 177.8	165.9 166.0 163.4 165.1	14.2 145.4 146.4 145.3	126.0 125.7 125.5 125.7	96.2	97.1 95.7 96.3
	Condi	Fty ksi	165.7 165.5 164.1 165.1	155.4 156.8 153.7 155.3	133.8 133.1 135.0 134.0	112.9 112.6 112.8 112.8	39.6	76.6 78.6 78.6
		Specimen	2-18 2-19 2-20 Avg	2-7 2-8 2-9 Avg	2-10 2-11 2-12 Avg	2-13 2-14 2-15 Avg	2-32	2-34 2-34 Avg
		Test Temp	Room	600F	800F	900F	1000F	

Boyd/Mc(CHECKER	Carthy		N	ORTHROP NORTHR	AIRCRAFT			PAGE 23 REPORT NO. NAI-58-569
31 July	1958							MODEL
		E E	28.2 28.0 26.8	26.4 28.4 27.8 27.5	22.4.8.4.8.4.8.3.3.3.3.3.3.3.3.3.3.3.3.3.3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	23.2	20°3 20°3 20°8 8
	05	Elong.	8.5 11.0 10.0	0 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	14.0	17.0	29.0	322.5
님	STEEL Condition RH 950	Ftu	227.9 227.9 228.8 228.2	196.7 194.3 192.7 194.6	167.6 166.7 164.2 166.2	143.5	97.0	99.0
17-7PH STEEL 5880	Cond	Fty	211.8 214.0 213.6 213.1	180.7 178.2 174.0 177.6	147.4 148.2 148.4 148.0	125.1 125.1 125.5 125.5	74.2	76.2 75.7
TENSILE PROPERTIES OF 17-7PH SHEET NO. 3, HEAT NO. 66880		Specimen	3-56 3-57 3-58 Avg	3-4-4 3-4-5 AVE AVE	3-45 3-47 445 AVE	3-50 3-51 3-52 Ave	3-53	3-54 3-55 Ave
TENSILE PROP SHEET No. 3,		E Dsi x 106	26.4 26.0 25.9 26.1	24.9 25.9 23.7 24.8	25.8 24.0 24.5 24.5	22.2 23.1 22.5	20.6	19.1
TABLE X. TE	1050	Elong. %in 2in.	9.0	5.0 5.0 4.7	13.5 13.5 11.0	19.0 15.5 21.0 18.5	28.0	33.5.5.5
Ţ	Condition TH 10	Ftu	185.0 185.4 186.7 185.7	173.8 174.6 173.5 174.0	153.1 153.5 153.8 153.8	128.4 128.2 128.9 128.5	97.3	97.8
	Condi	Fty ksi	171.7 172.9 173.0 172.5	164.2 165.5 164.6 164.8	140.8	115.4 113.4 113.9 114.2	79.2	80.6
		Spectmen	3-19 3-20 3-21 Avg	3-7 3-8 3-9 Avg	3-10 3-12 Avg	3-14 3-15 3-16 Avg	3-32	Ave Ave
		Test Temp	Коош	600F	800F	900F	1:000F	

4 20-7A 11-87)

engineer Boyd/McCart	ngineer Boyd/McCarthy Hecker						PAGE	24
CHECKER			NOR	NORTHROF	RCRAFT, II	NC.		58 – 569
31 July 195	8						MODEL	
		E x 106	26.9 26.8 25.6 26.4	28.5 26.8 27.3	25.0 25.0	22.0 24.3 23.0	22.5	
·	. 20	Elong. %in 2in.	9.0 8.8 8.8	0.44	8.5 10.5 9.5 9.5	122.0 12.1 1.5	14.0	
EEL.	Condition RH 950	Ftu ksi	218.2 218.3 217.1 217.9	199.0 197.0 199.4 198.5	177.4 177.4 179.2 178.0	160.1 160.3 159.8 160.1	130.0 129.5 132.6 130.7	
PH 15-7Mo STEEL 57814	Cond	Fty ksi	203.0 198.0 198.5 199.8	169.4 171.8 169.9 170.4	148.6 147.1 147.7	128.6 127.9 125.7 127.4	99.2 98.7 98.3	,
		Specimen	4-43 4-57 4-58 Avg	4-44 4-45 4-47 Ave	4-48 4-49 4-51 Avt	4-52 4-53 4-54 Avt	4-59 4-60 4-61 Avg	
LE PROPE No. 4,		E psix106	25.7 25.0 25.7 25.8	26.5 25.7 26.2	25.3 24.5 25.3	7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75	22.2 22.2 2.3 2.3	
TABLE XI. TENSI	50	Elong. %in2in.	7.5 8.0 7.8	₩₩7.44 \$.7.01.	9.5 10.5 9.8 9.9	15.0	18.0 20.0 19.0 19.0	
TABL	Condition TH 1050	Ftu ksi	185.8 184.0 185.1 185.0	177.8 176.3 178.0 177.4	161.8 162.8 160.8 161.8	141.6 138.3 141.3	115.0	
		Fty ksi	180.0 181.8 178.6 180.1	165.6 166.3 164.6 165.5	147.9 149.8 147.1 148.3	125.1 126.0 128.5 126.5	97.3 98.2 98.5 98.0	
		Specimen	4-10 4-14 4-19 Avg	4-7 4-11 4-12 Ave	4-16 4-17 4-18 Avg	4-13 4-21 4-31 Avt	4-32 4-33 4-34 Avg	
		Test	Room	600F	800F	900F	1000F	

20·7A 1•57)

ENGINEER Boyd/McCarthy CHECKER			NIO		PAGE 25			
	DATE			NORTHRO	P DIVISION	INC.	NAI-58-569	
31 July 19	958							
·		E psix16	25.6 26.3 26.2 26.0	27.8 26.5 28.5 27.6	25.0 4.4 24.4 24.4 24.4 24.4 24.4 24.4 24.	23.7 23.9 23.9 23.9	21.0 20.1 20.8 20.6	
		Flong.	10.0 9.0 8.5 9.2	77.00 0.00 0.00 0.00	11.01.55 20.01 1.03	10.0	13.0 16.0 16.5 15.2	
EEL	Condition RH 950	Ftu ksi	225.1 223.6 221.1 223.3	204.4 205.0 205.6 205.0	182.1 182.1 180.8 181.7	160.3 164.6 161.1 162.0	130.0 130.2 130.6 130.3	- ·
PH 15-7Mo STEEL 57896	Condi	Fty ksi	207.0 205.5 204.5 205.7	177.7 180.8 176.3 178.3	152.0 152.5 152.5 152.3	129.4 130.6 128.3	100.0 99.0 99.8 99.6	
E PROPERTIES OF PH No. 6, HEAT No. 57		Specimen	6-56 6-54 6-58 Avg	6-35 6-43 6-44 Avg	6-45 6-46 6-47 Avg	6-48 6-49 6-50 Avg	6-51 6-53 6-55 Avg	,
		E psix 10 ⁶	24.6 25.2 25.3 25.0	25.0 25.6 27.6 26.1	25.3 24.0 24.3	24.7 26.2 27.1 26.0	22.5 22.4 22.4 22.1	
TABLE XII. TENSII	0.	Elong. % in 2 in	10.0	6.7.4 8.7.04	8.0 10.5 8.8	13.5 10.0 12.5 12.0	18.0 19.5 20.0 19.2	
TABLE	Condition TH 1050	Ftu ksi	186.2 187.7 188.1 187.3	175.0 174.7 175.8 175.2	158.5 158.6 157.5 158.2	141.8 143.8 142.3 142.6	113.6	
	Condit	Fty ksi	175.0 176.4 175.7 175.7	162.1 161.4 161.7 161.7	142.9 142.9 141.6 142.5	124.8 127.4 123.1 125.1	95.6 96.9 97.8 96.8	
		Specimen	6-19 6-20 6-21 Avg	6-7 6-8 6-9 Avg	6-10 6-11 6-12 Avg	6-13 6-14 6-15 Avg	6-32 6-33 6-34 Avg	
		Test Temp	Room	600F	800F	900F	1000F	

20 · 7Å 1 • 57)

ENGINEER							PAGE				
Boyd/McCar	Boyd/McCarthy		NOF	THROP AL	26 REPORT NO.						
CHLORER	CHECKER			NORTHROP	NAI-58-569						
	PATE 31 July 1958 Rev. 23 October 1961						MODEL.				
kev. 23 Ucto	iner T		T								
		106									
	١,	ਸ H H H	25.5 25.0 25.5	27.2 28.2 27.2 27.5	25.55 25.95	23.0 24.1 23.1 23.1	23.7 22.0 22.0 22.0 22.0				
		E d	2222	~~~~	4444	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		i i			0 0 40	0005	10 O #1 -1				
,		Elong.	0.00	5.7 5.0 5.7 5.0 5.0	10.0 7.5 9.0 8.8	8.0 12.0 10.7	13.50 0.51 1.00 1.00 1.00 1.00 1.00 1.00 1				
	056	EE %		412012		птт	77 67 67 64				
	ì		 		······································		,				
	22	Ftu ksi	229.1 228.1 226.1 226.1	212.0 207.6 210.7 210.1	186.0 184.1 184.8 185.0	167.0 169.0 168.5 168.2	136.9 137.1 136.9 136.9				
	tia	Fr 1개	8888	สลสส	185	なななが	ងដូងដ				
OF PH 15-7MO STEEL 57798	Condition RH						, , , , , , , , , , , , , , , , , , ,				
-77Mo	8	—	0000	2000	2002	4404	o, α, α, α,				
3,15		Fty ksi	210.6 208.6 206.6 206.6	185.5 180.0 176.5 180.7	152.7 150.8 148.0 150.5	132.1 133.1 131.9 132.4	102.9 104.8 104.2				
)F PH] 57798											
			men								
No No		Specimen	8-55 8-58 8-61 Avg	8-35 8-43 8-44 Ave	8-45 8-46 8-47 Ave	4-48 8-49 8-50 Ave	8-53 8-56 8-57 AVE				
PERTIES HEAT NO.			0 0 0 4	₩ ₩ ₩ ₩	₩ ₩ ₩ ₩	4 m m 4	www4				
PRÓPERTIES 8, HEAT NO		106									
		E psi x	26.3	25.0	22.8 22.4 24.0 23.7	23.7 23.5 23.5	22.22 4.22 4.23 5.24				
a (7)			ते ते ते ते	<u> </u>	<u> </u>	<u> </u>	તે તે તે તે				
TEN		ä					0.10.00				
	05	000				Elong.	10.5	7.0.24 0.04 8.0	10.5	2222	20.0 19.5 17.5 19.0
Ħ			Elor % in			нн,	пппп	· ·			
TABLE XIII.	10,		 								
TAI	TH	Ftu ksi	191.2 191.5 192.2 191.6	178.1 182.3 181.3 160.6	164.9 162.3 161.9 164.0	146.2 145.0 145.7 145.7	120.2				
	Condition TH 1050	ion	F 73	5555	128.1	16.26	नेनेनेने	2212			
1		Cond	Cond	Son	Con		0000	ø দ <i>০</i> ০	היאשים	4044	⊣∞ ં ં
1				Fty	173.0 174.8 176.3 174.7	161.8 165.1 163.9 163.6	148.5 144.5 142.3 145.1	126.4 125.4 125.4 126.4	97.1 98.8 99.0 98.3		
	}	l si									
		Specimen	8-12 8-13 8-17 Avg	8-7 8-8 8-9 Avg	8-15 8-16 8-18 Avg	8-19 8-20 8-21 Avg	8-32 8-33 AV8 AV8				
		Spe	00004	∞ ∞ ∞ ∢	∞∞∞ 4	∞ ∞ ∞ ∢	\$ \$ \$ \$ \$ \$				
						المراجعة ال المراجعة المراجعة ال					
		Test	Room	600F	800F	900F	1000F				
		HH	R 28	9) ()	96	77				

1 20-7A 11-87)

ENGINEER BOYD/MCCa CHECKER DATE	Boyd/McCarthy CHECKER			THROP AI	PAGE 27 REPORT NO. NAI-58-569 MODEL										
31 July 19)58 -				····										
		n	29.2 33.1 22.6 24.8	4.5	15.4 13.6 10.0 12.5	16.0 19.5 10.6	9.0 6.5 10.7 8.3								
	Condition RH 950	題	RH	RH	E E psi x 10 ⁶	32.9 31.0 31.4 31.8	28.2 28.9 29.2	25.7 27.4 27.9 27.0	23.8 25.7 24.8	18.8 18.5 18.0					
17-7PH STEEL					Condition	Condition	Condition	Condition	Condition	Condition	Condition	Condition	Fcy ksi	233.0 240.3 237.8 237.0	185.1 191.0 176.4 184.2
OF 191		Specimen	1K18 1K33 1K20 Avg	1K21 .1K22 .1K23 Avg	1K24 1K25 1K26 Avg	1K27 1K28 1K29 Avg	1K30 1K31 1K32 Avg								
COMPRESSION PROPERTIES		fn.	22.6 28.3 28.3 26.1	18.2 15.1 14.3	1.51 1.62 6.61 6.61	13.0	11.9 19.5 18.2 15.8								
TABLE XIV. COMPRES		E psi x 106	30.6 31.1 32.3 31.3	26.3 26.3 26.3	\$5.5 \$5.5 \$5.5 \$5.5	22.3	17.2 21.4 18.4 19.0								
TA		Condition	Condition	Conditio	Fcy ksi	203.4 197.8 194.6 198.6	169.3 165.5 164.7 166.5	140.2 137.8 133.3 137.1	115.0	92.6 98.9 95.1 95.5					
		Specimen	JK7 JK2 JK3 Avg	1.K4 1.K5 1.K6 Avg	1K7 1K8 1K9 Avg	1K11 1K12 Avg	1K13 1K14 1K15 Avg								
·		Test Temp	Коош	600F	800F	900F	1000F,								

Boyd/McCarthy CHECKER							PAGE 28
CHECKER					IRCRAFT, I	INC.	REPORT NO. NAI-58-569
31 July 1	31 July 1958					A STATE OF THE STA	MODEL
		fnf	39.0 33.1 23.6 31.0	36.9 28.3 32.0	11.6 13.9 13.0	7.8 11.9 13.6 10.4	10.1 13.8 10.1 11.1
	тн 950	E 106	33.6	27.4 27.9 27.5 27.5	30.4 25.6 28.2 28.1	2.4.2 7.4.3 7.4.3 7.4.3	17.3 19.2 21.2 19.2
17-7PH STEEL	Condition D	Fcy	243.5 236.9 237.9 239.4	189.9 184.7 174.0 182.9	168.8 167.2 166.0 167.3	133.7 136.7 137.8 136.1	88.9 91.7 88.6 88.6
RESSION PROPERTIES OF 1 No. 2, HEAT No. 66922		Specimen	2K18 2K19 2K20 Avg	2K21 2K22 2K23 Avg	2K24 2K25 2K26 Avg	2K27 2K28 2K29 Avg	2K30 2K31 2K32 Avt
PRESSION PE	а ТН 1050	'n'	26.8 27.5 25.4 26.8	18.8 9.2 14.7 12.8	17.0 12.5 13.1 13.9	15.5 18.5 19.5 17.6	19.5 10.1 11.2 12.4
TABLE XV. COMP		E 106	4.000	27.3 26.6 25.8 26.5	2.1.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	21.3 22.6 23.2 22.4	18.1 18.6 18.9 18.5
	Condition TH	Foy	198.7 197.4 206.3 200.8	167.9 164.7 166.5 166.4	140.4	110.5 114.9 115.7 113.7	90.1 94.0 95.8 93.3
		Specimen	2K1 2K2 2K16 Avg	2K4, 2K5 2K6 Avg	2K7 2K8 2K9 Avg	2K10 2K11 2K12 Avg	2K13 2K14 2K15 Avg
		Test Temp	Коот	600F	SOOF	900F	1000F

4 20-7A 11-87)

Boyd McCarthy CHECKER			NOF	PAGE 29 REPORT NO. NAI –58–569					
DATE	\$			NORTHROP			MODEL.		
31 July 195	18	fn.	16.2 18.2 17.9 17.5	11.11 10.6	32.0 16.7 26.1 23.1	17.7 11.6 11.6	14.7 10.1 9.7 11.1		
	. вн 950	E psi x 10 ⁶	31.8 30.3 32.0 31.3	28.1 28.6 29.3 28.7	27.9 28.3 26.9 27.7	25.2 25.9 26.0 25.7	20.7 14.1 16.3 17.0		
PH STEEL	Condition	Fcy ksi	239.5 245.6 247.6 244.5	187.9 182.5 195.3 188.6	167.6 169.9 168.4 168.6	139.2 141.1 138.5 139.6	89.8 83.0 87.1 86.3		
COMPRESSION PROPERTIES OF 17-7PH STEEL SHEET NO. 3, HEAT NO. 66880		Specimen	3K33 3K34 3K35 Avg	3K21 3K22 3K23 Avg	3K24 3K25 3K26 Avg	3K27 3K28 3K29 Avg	.3K30 3K31 3K32 Avg		
SSSION PROP	Condition TH 1050	*a*	22.6 20.7 18.2 20.3	9.2 9.1 14.3 10.3	13.6 22.6 21.2 18.2	9.2	13.6 14.9 14.1		
TABLE XVI. COMPRE		E 106	32.8 32.8 30.1 31.9	83.5. 4.88. 7.68.	25.9 24.3 24.2	19.1 29.9 23.9 24.6	20.3 17.7 20.8 19.6		
TABI		Condition	Condition	Condition	Fcy ksi	206.0 205.1 206.4 205.8	167.5 172.9 172.7 171.0	145.5 147.5 147.3 146.8	107.8 108.0 115.7
		Specimen	3K1 3K2 3K3 Avg	3K4 3K5 3K6 Avg	3K7 3K8 3K9 Avg	3K10 3K11 3K12 Avg	3K1.4 3K1.4 3K1.5 Avg		
		Test	Воош	600F	800F	9005	1000F		

(20-7A ||1-67|

DATE	Boyd/McCarthy CHECKER		NO	RTHROP A	IRCRAFT, P DIVISION	INC.	PAGE REPORT NO NAI-5 MODEL		
31 July 1	.958	 							
		fut	23.6 30.1 24.8 26.1	8.7 10.5 10.5	10.8 17.0 14.7 13.6	10.4 14.3 8.4 10.4	6.8 7.8 7.6 7.6		
	n RH 950	E E 106	32.0 32.2 32.0	29.4 26.7 27.6 27.9	29.0 28.1 28.0 28.4	24.2 25.3 25.0 24.8	24.6 20.5 19.6 21.6		
15-7Mo STEEL	Condition	Condition	Fcy	237.6 238.6 236.9 237.7	192.9 192.4 192.5 192.6	171.7 171.5 164.8 169.3	148.2	121.7 117.1 109.9 116.2	
OF PH 57814		Specimen	4K18 4K19 4K20 Avg	4K21 4K22 4K23 Avg	4,K24, 4,K25 4,K26 Avt	4K27 4K28 4K29 Avg	4K30 4K31 4K32 Avg		
4 P.		fut	17.0 22.6 23.1 20.3	9.2 11.6 7.5 9.0	13.8 28.3 9.9 14.1	10.9 9.2 12.1 10.6	14.1		
TABLE XVII. COMPRESSIO	on TH 1050	E 551 x 106	32.3 31.6 28.9 30.9	27.1 26.3 28.2 27.2	22.6 19.7 26.0 22.8	25.6 25.4 21.1 24.0	20.0 22.1 20.3 20.8		
TABLE	Condition TH	Fcy ksi	199.8 199.0 205.1 201.3	172.5 170.8 172.1 171.8	146.9 148.9 148.8 148.2	126.4 127.6 121.7 125.2	105.3 113.6 109.0 109.3		
		Specimen	4K1 4K2 4K16 4K16 Avg	4K4 4K5 4K6 Avg	4K7 4K8 4K9 Avg	4K10 4K11 4K12 Avg	4K13 4K14 4K15 Avg		
		Test Temp	Room	600F	800F	900F	1000F		

H 20-7A 11-87)

ENGINEER BOYD/McC CHECKER DATE	Boyd/McCarthy CHECKER			RTHROP A	PAGE REPORT NO. NAI-58-569 MODEL				
31 July 1	958								
		fn.	33.1 16.7 29.2 24.2	10.4 13.3 13.3	30.1 13.4 17.5 17.6	13.3 12.4 12.5	88.7.7. 88.60		
7.3	, nn RH 950	E 106	8588	27.2 27.2 28.0 27.5	28.2 27.3 27.2 27.6	28.0 26.2 24.1 26.1	20.0 22.1 22.2 21.4		
1 15-7Mo STEEL	T HU. 5/896 Condition	Condition	Conditio	Fcy ksi	236.3 240.55 240.3 239.1	195.3 196.3 196.7 196.1	162.7 175.9 174.1 170.9	148.0° 147.5 151.2	108.85 117.3 114.1 113.4
PROPERTIES OF PH HEAT No. 57896		Specimen	6K18 6K29 6K20 Avg	6K21 6K22 6K23 Avg	6K24 6K25 6K26 Avg	6K27 6K28 6K29 Avg	6K30 6K32 6K33 Avg		
RESSION No. 6,		au,	34.3 10.7 14.9 15.5	10.5 10.8 12.3	15.1 13.3 12.8	18.5 9.9 12.5 12.7	13.6 12.8 7.7 10.6		
TABLE XVIII. COMP	on TH 1050	E psi x 10 ⁶	32.3 31.9 32.1	24.1 23.1 22.8 23.3	23.3 23.4 22.7 23.2	20.7 22.0 20.9 21.2	20.1 20.7 19.9 20.2		
TABL	Condition	Fcy ksi	189.7 174.1 172.5 178.8	161.2 165.7 144.8 157.2	138.1 144.5 139.6 140.7	130.0 121.4 120.3 123.9	110.4 107.1 107.7 108.4		
		Specimen	6K1 6K2 6K3 Avg	6K4 6K5 6K6 Avg	6K7 6K8 6K9 Avg	6K10 6K11 6K12 Avg	6K13 6K14 6K15 Avg		
		Test Temp	Коош	600F	800F	900F	1000F		

20-7A 1-87)

ENGINEER		1					PAGE
	Boyd/McCarthy		Not	RTHROP A	32 REPORT NO.		
			NO		P DIVISION	IIVC.	NAI-58-569
DATE							MODEL
31. July 19	<u>58</u> T	1	<u> </u>				<u> </u>
		¹n¹	28.3 15.8 27.5 22.1	12.4 9.2 10.9	9.9 15.5 24.2 14.3	9.4 12.3 5.8 8.2	6.8 8.1 7.7 7.5
	on RH 950	E E 106	31.0 31.7 31.3 31.3	26.4 27.4 27.8 27.2	31.7 27.9 26.2 28.6	26.7 24.7 25.9 25.7	23.7 22.7 23.0
15-7% STEEL	Condition	Fcy ksi	251.1 245.4 252.3 249.6	204.1 198.8 197.7 200.2	180.1 180.1 182.7 180.9	149.7 - 138.1 129.6 139.1	118.5 119.9 123.4 120.6
OF PH 57798	at S. Water branches	Specimen	SKL8 SK19 SK20 Avg	8K21 8K22 8K23 Avg	8K27 8K25 8K26 Avg	8K27 8K28 8K29 Avg	8K30 8K31 8K32 Avg
COMPRESSION PROPERTIES SHEET NO. 8, HEAT NO.		fn!	7.9	2.50 8.4.4.5	66.68 6.11.	11.9 7.5 8.4 8.9	12.7 10.2 11.6 11.4
TABLE XIX. COMPRESSIO SHEET NO.	n TH 1050	E psi x 10 ⁶	28.6 29.4 30.0 29.3	22.3 23.4 20.1 21.9	22.8 22.4 22.0	19.1 20.4 22.0 20.5	16.6 18.9 21.2 18.9
TABLI	Condition TH	Fcy ksi	145.4 141.8 143.4 143.5	122.7 126.2 127.2 125.4	121.8 125.1 123.2 123.4	119.15 \ 110.7 114.2 114.7	103.2 101.6 106.5 103.8
		Specimen	SK1 SK2 SK3 Avg	8K4 8K5 8K6 . Avg	SK7 SK8 SK9 Avg	8K10 8K11 8K12 Avg	8K13 8K14 8K15 Avg
		Test Temp	Коош	600F	800F	900F	1000F