A successful attack on the McEliece cryptosystem with original parameters

Christiane Peters joint work with Dan Bernstein and Tanja Lange

Technische Universiteit Eindhoven

S³CM 2009

July 17, 2009

2. Review of the McEliece cryptosystem

3. Stern's attack

4. Attack optimization and comparison

Post-quantum cryptography

 Quantum computers will break the most popular public-key cryptosystems (PKCs).

- Post-quantum cryptography—a very recent field of cryptography—deals with cryptosystems that run on conventional computers and are secure against attacks by quantum computers.
- The McEliece cryptosystem—introduced by R.J. McEliece in 1978—is one of the public-key systems without known vulnerabilities to attacks by quantum computers.

2. Review of the McEliece cryptosystem

3. Stern's attack

4. Attack optimization and comparison

Linear codes

A binary [n, k] code is a binary linear code of length n and dimension k, i.e., a k-dimensional subspace of \mathbf{F}_2^n .

A generator matrix of an [n,k] code C is a $k \times n$ matrix G such that $C = \{ \mathbf{x} G : \mathbf{x} \in \mathbf{F}_2^k \}$.

The matrix G corresponds to a map $\mathbf{F}_2^k \to \mathbf{F}_2^n$ sending a message of length k to an n-bit string.

A parity-check matrix of an [n,k] code C is an $(n-k)\times n$ matrix H such that $C=\{\mathbf{c}\in\mathbf{F}_2^n:H\mathbf{c}^T=0\}.$

Decoding problem

We only consider binary codes, i.e., codes over \mathbf{F}_2 . In particular, we consider codes with no obvious structure.

Classical decoding problem: find the closest codeword $\mathbf{x} \in C$ to a given $\mathbf{y} \in \mathbf{F}_2^n$, assuming that there is a unique closest codeword.

Berlekamp, McEliece, van Tilborg (1978) showed that the general decoding problem for linear codes is NP-complete.

McEliece PKC from an attacker's point of view

Given a $k \times n$ generator matrix G of a public code, and an error weight w.

To encrypt a message $\mathbf{m} \in \mathbf{F}_2^k$, the sender computes $\mathbf{m}G$, adds a random weight-w error vector \mathbf{e} , and sends $\mathbf{y} = \mathbf{m}G + \mathbf{e}$.

McEliece proposed choosing a random degree-t classical binary Goppa codes as secret key; G generates a permutation-equivalent code.

The standard parameter choices are $k=n-t\lceil \lg n \rceil$ and w=t, typically with n a power of 2.

McEliece's original suggestion: $n=1024,\ k=524,\ {\rm and}\ w=50.$

Attacking the McEliece cryptosystem

Not knowing the secret code and its decoding algorithm the attacker is faced with the problem of decoding ${\bf y}$ in a random-looking code.

Two possible attacks:

- Find out the secret code.
- ullet Or decode ullet without knowing an efficient decoding algorithm for the public code given by G.

Attacks on the McEliece PKC

- Most effective attack against the McEliece PKC is information-set decoding; used for decoding a given number of errors in y without knowledge of a decoding algorithm.
- Many variants: McEliece (1978), Leon (1988), Lee and Brickell (1988), Stern (1989), van Tilburg (1990), Canteaut and Chabanne (1994), Canteaut and Chabaud (1998), and Canteaut and Sendrier (1998).
- Our complexity analysis showed that Stern's original attack beats Canteaut et al. when aiming for 128-bit security
- Our attack is most easily understood as a variant of Stern's attack.
- Our attack is faster by a factor of more than 150 than previous attacks; now within reach of a moderate cluster of computers.

2. Review of the McEliece cryptosystem

3. Stern's attack

4. Attack optimization and comparisor

Reduce decoding to minimum-weight-word finding

McEliece ciphertext $\mathbf{y} \in \mathbf{F}_2^n$ has distance t from a unique closest codeword $\mathbf{c} = \mathbf{m}G$ in a code C which has minimum distance at least 2t+1.

Find e of weight t such that c = y - e:

- append y to the list of generators
- ullet and form a generator matrix for $C+\{0,\mathbf{y}\}.$

Then

$$\mathbf{e} = (\mathbf{m}, 1) \left(\frac{G}{\mathbf{m}G + \mathbf{e}} \right)$$

is a codeword in $C + \{0, y\}$; and it is the only weight-t word.

Bottleneck in all of these attacks is finding the weight-t codeword in $C+\{0,\mathbf{y}\}$ which has slightly larger dimension, namely k+1.

Stern's attack

• Given $w \ge 0$ and an $(n-k) \times n$ parity check matrix H for a binary [n,k] code C. Find $\mathbf{c} \in C$ of weight w.

• Construct ${\bf c}$ by looking for exactly w columns of H which add up to 0.

• Stern: Choose three disjoint subsets X,Y,Z among the columns of H.

Search for words having exactly p,p,0 ones in those column sets and exactly w-2p nonzero in the remaining columns.

One iteration of Stern's algorithm

Let
$$p \in \{0, 1, \dots, w\}$$
 and $\ell \in \{0, 1, \dots, n-k\}$; $\ell \approx \lg \binom{k/2}{p}$.

- ullet Select n-k linearly independent columns; apply elementary row ops to get the identity matrix
- Divide remaining k columns into two subsets X and Y.
- ullet Form a set Z of ℓ rows

- For every size-p subset A of X compute the ℓ -bit vector $\pi(A) = \sum_{i \in Z, j \in A} H_{i,j}$. Similarly, compute $\pi(B)$.
- For each collision $\pi(A)=\pi(B)$ compute the sum of the 2p columns in $A\cup B$. This sum is an (n-k)-bit vector.
- If the sum has weight w-2p, we obtain 0 by adding the corresponding w-2p columns in the $(n-k)\times (n-k)$ submatrix. Else select n-k new columns.

2. Review of the McEliece cryptosystem

Stern's attack

4. Attack optimization and comparison

Bernstein, Lange, P. at PQCrypto 2008:

Step 1

- Starting linear algebra part by using column selection from previous iteration.
- Forcing more existing pivots: reuse exactly n-k-c column selections (Canteaut et al.: c=1)

- Faster pivoting
- Multiple choices of Z: allow m disjoint sets Z_1, \ldots, Z_m s.t. the word we're looking for has weight $p, p, 0 \ldots, 0$ on the sets X, Y, Z_1, \ldots, Z_m

Step 2

- ullet Reusing additions of the ℓ -bit vectors for p-element subsets A of X
- Faster additions after collisions: consider at most w instead of n-k cols

Iterations

- Stern: iterations are independent (in each step n-k linearly independent columns are randomly chosen);
- Our attack reuses existing pivots: Number of errors in the selected n-k columns is correlated with the number of errors in the columns selected in the next iteration.
- ullet Extreme case c=1 considered by Canteaut et al.: swapping one selected column for one deselected column is quite likely to preserve the number of errors in the selected columns.
- We analyzed the impact of selecting c new columns on the number of iterations with a Markov chain computation (generalizing from Canteaut et al.)
 - www.win.tue.nl/~cpeters/mceliece.html
- Program can be used to optimize our attack parameters.

Complexity

- Canteaut, Chabaud, and Sendrier: an attacker can decode 50 errors in a [1024,524] code over ${\bf F}_2$ in $2^{64.1}$ bit operations.
- Choosing parameters p=2, m=2, $\ell=20$, c=7, and r=7 in our new attack shows that the same computation can be done in only $2^{60.55}$ bit operations, almost a $12\times$ improvement over Canteaut et al.
- The number of iterations drops from $9.85 \cdot 10^{11}$ to $4.21 \cdot 10^{11}$, and the number of bit operations per iteration drops from $20 \cdot 10^6$ to $4 \cdot 10^6$.

Running time in practice

- ullet Our attack software extracts a plaintext from a ciphertext by decoding 50 errors in a [1024, 524] binary code.
- Attack on a single computer with a 2.4GHz Intel Core 2 Quad Q6600 CPU would need, on average, approximately 1400 days (2^{58} CPU cycles) to complete the attack.
- Running the software on 200 such computers would reduce the average time to one week.
- Canteaut, Chabaud, and Sendrier: implementation on a 433MHz DEC Alpha CPU; one such computer would need approximately 7400000 days (2⁶⁸ CPU cycles).
- Note: Hardware improvements only reduce 7400000 days to 220000 days.
- The remaining speedup factor of 150 comes from our improvements of the attack itself.

First successful attack

We were able to extract a plaintext from a ciphertext by decoding 50 errors in a $\left[1024,524\right]$ binary code.

- There were about 200 computers involved, with about 300 cores
- Computation finished in under 90 days (most of the cores put in far fewer than 90 days of work; some of which were considerably slower than a Core 2)
- Used about 8000 core-days
- Error vector found by Walton cluster at SFI/HEA Irish Centre of High-End Computing (ICHEC)
- Improved attack such that only 5000 core-days would be needed on average

Conclusions

 Our attack demonstrated that the parameters were chosen too small.

- It should not be interpreted as destroying the McEliece cryptosystem.
- In fact, the best known attacks are exponential in the main parameter and thus larger parameters lead to secure systems.

Thank you for your attention!