[Total No. of Printed Pages—4

Seat	
No.	

[5459]-133

S.E. (E&TC)/(Electronics) (First Semester) EXAMINATION, 2018 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time: 2 Hours

Maximum Marks: 50

N.B. := (i) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.

- (ii) Neat diagram must be drawn wherever required.
- (iii) Figures to the right indicate full marks.
- (iv) Use of scientific calculator is allowed.
- (v) Assume suitable data, if necessary.
- 1. (a) What is thermal runaway? Explain, how can thermal runaway be prevented. [6]
 - (b) Determine I_B , I_C and V_{CE} for the circuit shown in Fig.(1):

Fig. (1)

- 2. (a) Differentiate among C.E, C.B. and C.C. BJT amplifier configurations. [6]
 - (b) For the circuit as shown in Fig. (2), determine voltage gain, input impedance and output impedance. Assume $h_{re}=h_{oe}=0$, $R_{B1}=10~k\Omega$, $R_{B2}=2~k\Omega$, $R_{C}=1~k\Omega$ and $R_{E}=0.2~k\Omega$, $V_{CC}=15V$, $h_{fe}=100$ and $h_{ie}=1.1~k\Omega$: [6]

- Fig. 2
- 3. (a) Draw and explain frequency response of RC-Coupled CE amplifier. [6]
 - (b) Draw and explain Hartley oscillator. [6]

[5459]-133

4.	(<i>a</i>)	Compare the effect of negative feedback on input impedance,
		output impedance and bandwidth with voltage series and current
		series feedback. [6]
	(<i>b</i>)	Draw filter equivalent circuit to explain high frequency and
		low frequency response of RC-coupled CE amplifier. [6]
5.	(a)	For a transformer coupled class-A amplifier O/P voltage of
		2.2 $V(p-p)$ is obtained for an input of 100 mV $(p-p)$
		with a Load of 15Ω . The transistor is biased with
		$V_{\rm CC}$ = 10V to allow 10 mA d.c. current. Then, determine Pin dc,
	X	Pout ac and efficiency. [7]
	(<i>b</i>)	Differentiate among Class-A, Class-B and Class-C amplifier based
		on any two points of differentiation. [6]
		Or
6.	(a)	Draw single power supply class-AB complimentary symmetry
		amplifier. Explain the use of diodes in the circuit. Also explain
		crossover distortion. [7]
	(<i>b</i>)	Explain harmonic distortions and total harmonic distortion and
		their importance in an amplifier. [6]
7.	(a)	Draw drain and transfer characteristics of E-MOSFET. Explain
		why E-MOSFET is called as enhancement type MOSFET. [5]

(*b*)

What are the various non-ideal characteristics exhibited by E-

[8]

- 8. (a) Explain the advantages of Bi-CMOS/Bi-MOS technology. Draw suitable diagram to explain Bi-CMOS/Bi-MOS. [7]
 - (b) For the given circuit, determine dc operating parameters. Given : $V_{Th} = 1.5V$, K = 0.8 mA/V². [6]

Fig. 3