Africa Soil Property Prediction – Kaggle Challenge

Graduate Project ECE/CS 498 DSG

Background

- Soil functional properties
 - Give information about primary productivity, nutrient and water retention, and resistance to soil erosion
 - Ecological planning
- Conventional reference tests to extract soil properties
 - Require much effort and time, slow, expensive, use chemicals
- Infrared Spectroscopy Approach
 - Have shown potential to provide a highly repeatable, rapid and low cost measurement of many soil functional properties
- Kaggle Challenge
 - Hosted a challenge to develop an accurate prediction model from spectroscopy data

Problem Statement

- 5 soil functional properties
 - Ca, P, pH, SOC, Sand

 Predict 5 target soil functional properties from infrared spectroscopy measurements

Data

- Data Source: Kaggle competition
- Number of samples: 1157 (train data), 728 (test data)
- Number of features: 3594
 - 3578 Spectral Features from spectroscopy Numerical
 - 15 Spatial Features from remote sensing data Numerical
 - 1 Depth of Soil Categorical (topsoil & subsoil)
- Target Variables
 - SOC, pH, Ca, P, Sand are 5 target variables
 - Continuous/numerical in nature (Regression Problem)

Challenges

- High Dimensional Data
- Finding the relevant features
- Overfitting (Small number of samples)
- Low correlations with target variables

Solution approach

- Broad solution approach
 - Dimensionality Reduction
 - PCA
 - Feature Selection
 - Train Regression models
 - Linear, non-linear, ensemble
 - k-fold Cross validation
 - Model Selection
 - Hyperparameter tuning
 - Final Prediction
 - Comparison with existing solutions
 - Clustering

Solution approach

- Non-linear models performed better
- Feature Selection methods didn't work.
 Slightly improved results in case of linear models.
- PCA already reduced 3578 features to 9 PCs
- Decided to go with 25 features

Relative Feature Importance from Random Forest Regressor

Solution approach

Baseline approach – existing methods

- Kaggle top solutions mentioned overfitting as a problem
- There is no signal model that provided best results.
- Some sort of ensemble was created from best performing models.
- Mean column wise RMSE was the scoring criteria

MCRMSE =
$$\frac{1}{5} \sum_{j=1}^{5} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{ij} - \hat{y}_{ij})^2}$$

Regression Results

Kaggle Test Data:

Top MCRMSE Score = **0.46892**,

Our MCRMSE Score = **0.5605**

Relationships among Target Variables

Clustering Results:

- There seemed to be 8 optimal clusters
- Grouped data by clusters and calculated means
- Gave interpretable Description for each cluster

Ca	P	pH	SOC	Sand	Cluster	Description
-0.377770	-0.219385	-0.449092	-0.388017	-0.074105	0	Low-Ca Low-P Neg-pH Low-SOC Mid-Sand
-0.040148	-0.124162	-0.574790	2.896514	-0.928389	1	Low-Ca Low-P Neg-pH High-SOC Low-Sand
0.747014	0.068563	1.537137	-0.304553	-0.389595	2	Mid-Ca Mid-P Pos-pH Low-SOC Mid-Sand
0.258263	3.141500	0.430292	0.317031	-0.174210	3	Mid-Ca Mid-P Pos-pH Mid-SOC Mid-Sand
4.859856	-0.190742	1.900154	2.483493	-0.967938	4	High-Ca Low-P Pos-pH High-SOC Low-Sand
-0.404145	-0.172640	-0.130470	-0.609670	1.282962	5	Low-Ca Low-P Neg-pH Low-SOC High-Sand
-0.137051	-0.209962	-0.449387	0.459577	-0.983348	6	Low-Ca Low-P Neg-pH Mid-SOC Low-Sand
1.040350	9.840077	0.638322	2.813268	-0.654799	7	Mid-Ca High-P Pos-pH High-SOC Low-Sand

