Lecture 19: Lumpy Investment

Juan Herreño UCSD

June 3, 2025

Fixing terms - (S,s) models

- The origin of the S,s terminology dates to models of inventory management
- A firm receives stochastic demand that decreases their inventories
- Every time the stock goes below s, firms would reorder inventories to stock back to a level S
- The problem is to find out the optimal s and S thresholds
- Today, we use the terms S, s models to where there is lumpy adjustment
 - Periods of inaction, followed by large adjustments
 - Usually, we rationalize economic decisions that are lumpy with the presence of fixed costs of adjustment
 - Applications: Investment theory, price setting, supply chain formation, exporting decisions, occupational choices, technology choices, energy transition, ...

(S,s) models - a picture

Figure 1
Operation of an (S, s) Policy with Upper and Lower Barriers

ixing terms - L	umpy	Investment
-----------------	------	------------

change (spikes)

• Lumpy adjustment: Periods of no change (inaction), followed by periods of substantial

Fixing terms - Lumpy Investment

- Lumpy adjustment: Periods of no change (inaction), followed by periods of substantial change (spikes)
- Intuitive that some investment expenditures are lumpy
 - Example: A firm usually does not build a new factory, but sometimes it doubles the number of factories it has
 - Some may not be: maintenance
- If too lumpy, models that imply smooth micro investment might be off

Fixing terms - Lumpy Investment

- Lumpy adjustment: Periods of no change (inaction), followed by periods of substantial change (spikes)
- Intuitive that some investment expenditures are lumpy
 - Example: A firm usually does not build a new factory, but sometimes it doubles the number of factories it has
 - Some may not be: maintenance
- If too lumpy, models that imply smooth micro investment might be off
- May reflect increasing returns in the adjustment technology

Fixing terms - Lumpy Investment

- Lumpy adjustment: Periods of no change (inaction), followed by periods of substantial change (spikes)
- Intuitive that some investment expenditures are lumpy
 - Example: A firm usually does not build a new factory, but sometimes it doubles the number of factories it has
 - Some may not be: maintenance
- If too lumpy, models that imply smooth micro investment might be off
- May reflect increasing returns in the adjustment technology
- It may be better to invest a lot at once, rather than smooth it out

Good example of a "facts" paper that reshaped a field

- Fundamental Question: How Lumpy is investment after all?
- Subsequent question: What does lumpiness depend on?

Good example of a "facts" paper that reshaped a field

- Fundamental Question: How Lumpy is investment after all?
- Subsequent question: What does lumpiness depend on?

Data

- U.S. data 1972-1988
- LRD from the Census Bureau
- Small sample: 13,702 establishments (of 350,000)
- Large establishments: account for 50% of manufacturing output

Significant inaction

- In a given year, 80% of plants change their capital stock by < 10%
- ... 51.9% of plants ... by less than 2.5%

Distribution of Investment Rates

From Cooper and Haltwanger (2006). Same data. I/K. Skewed, large mass at 0, with fat tails

Distribution of Investment Rates

From Cooper and Haltwanger (2006). Same data. 1972 - 1988

TABLE 1
Summary statistics

Variable	LRD
Average investment rate	12.2% (0.10)
Inaction rate: investment	8.1% (0.08)
Fraction of observations with negative investment	10.4% (0.09)
Spike rate: positive investment	18.6% (0.12)
Spike rate: negative investment	1.8% (0.04)
Serial correlation of investment rates	0.058 (0.003)
Correlation of profit shocks and investment	0.143 (0.003)

LRD, Longitudinal Research Database.

Very low autocorrelation. Puzzling if you think that shocks (demand, productivity) are persistent

Distribution of Investment Rates

From Zwick and Mahon (2017). Stratified sample of tax returns. 1993 - 2010

(b) Summary Statistics			
Variable	Unbalanced	Balanced	
Average investment rate	11.9% (0.20, 3.23, 12.7)	10.4% (0.16, 3.60, 17.6)	
Inaction rate	30.2%	23.7%	
Spike rate	17.4%	14.4%	
Serial correlation of investment rates	0.38	0.40	
Aggregate investment rate	7.7%	6.9%	
Spike share of aggregate investment	25.1%	24.4%	

Higher autocorrelation (Does not include structures). Higher inaction (includes smaller firms)

Define two objects

• Growth rate of capital GK (why that formula?)

$$GK_{i,t} = \frac{I_{i,t} - \delta K_{i,t-1}}{0.5(K_{i,t} + K_{i,t-1})}$$

Define two objects

• Growth rate of capital GK (why that formula?)

$$GK_{i,t} = \frac{I_{i,t} - \delta K_{i,t-1}}{0.5(K_{i,t} + K_{i,t-1})}$$

And the (within-firm) share of investment in a given year

Investment Share_{i,t} =
$$\frac{I_{i,t}}{\sum_{\tau}I_{i,\tau}}$$

Rank is the year in which GK was the n - th highest at the establishment level

Rank is the year in which IS was the n - th highest at the establishment level

Of course the previous two figures have decreasing patterns, duh

• The good question is: How fast are capital growth rates decreasing?

Of course the previous two figures have decreasing patterns, duh

• The good question is: How fast are capital growth rates decreasing?

They propose a statistical model, which will make a come-back

Of course the previous two figures have decreasing patterns, duh

- The good question is: How fast are capital growth rates decreasing?
- They propose a statistical model, which will make a come-back
- Define $k_{i,t}^*$ as the (log) desired level of capital at the firm

$$k_{i,t}^* = k_{i,t-1}^* + \epsilon_{i,t}$$

• for ϵ distributed $N(\mu, \sigma)$

Of course the previous two figures have decreasing patterns, duh

- The good question is: How fast are capital growth rates decreasing?
- They propose a statistical model, which will make a come-back
- Define $k_{i,t}^*$ as the (log) desired level of capital at the firm

$$k_{i,t}^* = k_{i,t-1}^* + \epsilon_{i,t}$$

- for ϵ distributed $N(\mu, \sigma)$
- And define $z_{i,t}$ as the gap between desired and actual capital stocks

$$z_{i,t} = k_{i,t} - k_{i,t}^*$$

Imagine there are no frictions to adjust your capital stock

Imagine there are no frictions to adjust your capital stock

```
• z_{i,t} = 0
```

Imagine there are no frictions to adjust your capital stock

- $z_{i,t} = 0$
- $k_{i,t} = k_{i,t}^*$ by definition

Imagine there are no frictions to adjust your capital stock

- $z_{i,t} = 0$
- $k_{i,t} = k_{i,t}^*$ by definition

Imagine a world in which adjusting capital is "difficult"

• if z is too low, then adjust upwards

Imagine there are no frictions to adjust your capital stock

- $z_{i,t} = 0$
- $k_{i,t} = k_{i,t}^*$ by definition

Imagine a world in which adjusting capital is "difficult"

• if z is too low, then adjust upwards

if $z_{i,t} < L$, then set $k_{i,t}$ such that $z_{i,t} = l$

Imagine there are no frictions to adjust your capital stock

- $z_{i,t} = 0$
- $k_{i,t} = k_{i,t}^*$ by definition

Imagine a world in which adjusting capital is "difficult"
• if z is too low, then adjust upwards

if $z_{i,t} < L$, then set $k_{i,t}$ such that $z_{i,t} = l$

• if z is too large, then adjust downwards

if $z_{i,t} > U$, then set $k_{i,t}$ such that $z_{i,t} = u$

Imagine there are no frictions to adjust your capital stock

Imagine a world in which adjusting capital is "difficult"

- $z_{i,t} = 0$
- $k_{i,t} = k_{i,t}^*$ by definition
- if z is too low, then adjust upwards

if
$$z_{i,t} < L$$
, then set $k_{i,t}$ such that $z_{i,t} = l$

• if z is too large, then adjust downwards

if
$$z_{i,t} > U$$
, then set $k_{i,t}$ such that $z_{i,t} = u$

for L < l < u < U

FIG. 3. Mean capital growth rates (GK) by rank, sample means, and simulated values.

Very simple example of "moment matching"

- Decompose investment rates I_t/K_t into
- I20/K, with investment of firms with spikes $(I_{it}/K_{it-1} > 0.2)$

- Decompose investment rates I_t/K_t into
- I20/K, with investment of firms with spikes $(I_{it}/K_{it-1} > 0.2)$
- I(0-20)/K, with investment of firms without spikes $(0 < I_{it}/K_{it-1} < 0.2)$

- Decompose investment rates I_t/K_t into
- I20/K, with investment of firms with spikes $(I_{it}/K_{it-1} > 0.2)$
- I(0-20)/K, with investment of firms without spikes $(0 < I_{it}/K_{it-1} < 0.2)$
- Data from manufacturing surveys from Chile and U.S.

Gourio and Kashyap (2007). Can lumpiness explain aggregate investment at business cycle frequencies?

- Decompose investment rates I_t/K_t into
- I20/K, with investment of firms with spikes $(I_{it}/K_{it-1} > 0.2)$
- I(0-20)/K, with investment of firms without spikes $(0 < I_{it}/K_{it-1} < 0.2)$
- Data from manufacturing surveys from Chile and U.S.

Arbitrary number of decompositions you can make, some are insightful!

Investment spikes appear to be important

Investment rates comove with the investment rate of firms with spikes. Point at the large share.

Investment spikes appear to be important

Investment rates comove with the investment rate of firms with spikes. Point at the large share. Gourio and Kashyap (2007).

• Take the share of investment happening at firms experiencing investment spikes

$$\frac{I_t^{20}}{K_t} \tag{1}$$

Take the share of investment happening at firms experiencing investment spikes

$$\frac{t^{20}}{K_t} \tag{1}$$

Multiply and divide by the capital of firms with spikes K²⁰.

$$\frac{I_t^{20}}{K_t} = \frac{I_t^{20}}{K_t} \frac{K_t^{20}}{K_t^{20}} = \frac{I_t^{20}}{K_t^{20}} \times \frac{K_t^{20}}{K_t}$$

Take the share of investment happening at firms experiencing investment spikes

$$\frac{k_t^{20}}{\kappa_t} \tag{1}$$

• Multiply and divide by the capital of firms with spikes K^{20} .

$$\frac{I_t^{20}}{K_t} = \frac{I_t^{20}}{K_t} \frac{K_t^{20}}{K_t^{20}} = \frac{I_t^{20}}{K_t^{20}} \times \frac{K_t^{20}}{K_t}$$

• $\frac{I_L^{20}}{K_L^{20}}$ is the avg. rate at firms with spikes. The intensive margin.

Take the share of investment happening at firms experiencing investment spikes

$$\frac{I_t^{20}}{\kappa_t} \tag{1}$$

• Multiply and divide by the capital of firms with spikes K^{20} .

$$\frac{I_t^{20}}{K_t} = \frac{I_t^{20}}{K_t} \frac{K_t^{20}}{K_t^{20}} = \frac{I_t^{20}}{K_t^{20}} \times \frac{K_t^{20}}{K_t}$$

- $\frac{I_{\ell}^{20}}{K_{+}^{20}}$ is the avg. rate at firms with spikes. The intensive margin.
- $\frac{K_t^{20}}{K_t}$ is the (capital weighted) share of firms with spikes. The extensive margin.

$$\frac{\sum_{i} K_{i,t} \mathbb{1}_{spike}}{\sum_{i} K_{i,t}} = \frac{\sum_{i \in spike} K_{i,t}}{K_{t}} = \frac{K_{t}^{20}}{K_{t}}$$

Importance of the extensive margin

Investment rates comove with the "extensive margin"

Importance of the extensive margin

Investment rates comove with the "extensive margin"

• We will start in Partial Equilibrium

- We will start in Partial Equilibrium
- Time is discrete

- We will start in Partial Equilibrium
- Time is discrete
- Firms have decreasing returns to scale (why?)

- We will start in Partial Equilibrium
- Time is discrete
- Firms have decreasing returns to scale (why?)
- They sell homogeneous goods

- We will start in Partial Equilibrium
- Time is discrete
- Firms have decreasing returns to scale (why?)
- They sell homogeneous goods
- They rent labor in a competitive market

- We will start in Partial Equilibrium
- Time is discrete
- Firms have decreasing returns to scale (why?)
- They sell homogeneous goods
- They rent labor in a competitive market
- They purchase capital

- We will start in Partial Equilibrium
- Time is discrete
- Firms have decreasing returns to scale (why?)
- They sell homogeneous goods
- They rent labor in a competitive market
- They purchase capital
- wages are exogenous

- We will start in Partial Equilibrium
- Time is discrete
- Firms have decreasing returns to scale (why?)
- They sell homogeneous goods
- They rent labor in a competitive market
- They purchase capital
- wages are exogenous
- Firms discount the future with $\beta\text{, not the SDF}$ of the household

- We will start in Partial Equilibrium
- Time is discrete
- Firms have decreasing returns to scale (why?)
- They sell homogeneous goods
- They rent labor in a competitive market
- They purchase capital
- · wages are exogenous
- Firms discount the future with β , not the SDF of the household
- Equivalent to the real interest rate being constant

• Firms face fixed (non-convex) adjustment costs

- Firms face fixed (non-convex) adjustment costs
- In order to invest $i_{jt} \neq 0$ firms need to pay a cost χ_{jt}
- They will also face quadratic (convex) adjustment costs

- Firms face fixed (non-convex) adjustment costs
- In order to invest $i_{jt} \neq 0$ firms need to pay a cost χ_{jt}
- They will also face quadratic (convex) adjustment costs
- When investing i_{jt} , firms pay $\frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}}\right)^2 k_{jt}$

- Firms face fixed (non-convex) adjustment costs
- In order to invest $i_{jt} \neq 0$ firms need to pay a cost χ_{jt}
- They will also face quadratic (convex) adjustment costs
- When investing i_{jt} , firms pay $\frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}}\right)^2 k_{jt}$
- We include both due to evidence in Cooper and Haltiwanger (2006)

- Firms face fixed (non-convex) adjustment costs
- In order to invest $i_{jt} \neq 0$ firms need to pay a cost χ_{jt}
- They will also face quadratic (convex) adjustment costs
- When investing i_{jt} , firms pay $\frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}}\right)^2 k_{jt}$
- We include both due to evidence in Cooper and Haltiwanger (2006)
- We covered some figures of that paper but we will take another look

$$\pi_{jt} = a_{jt} k_{jt}^{\theta} l_{jt}^{\gamma} - w_t l_{jt} - w_t \chi_{jt} \mathbb{1}_{l_{jt} \neq 0} - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{it}} \right)^2 k_{jt}$$

Firm profits are given by:

$$\pi_{jt} = a_{jt} k_{jt}^{\theta} l_{jt}^{\gamma} - w_t l_{jt} - w_t \chi_{jt} \mathbb{1}_{l_{jt} \neq 0} - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{it}} \right)^2 k_{jt}$$

Decreasing returns to scale give a well-defined firm distribution

$$\pi_{jt} = a_{jt}k_{jt}^{\theta}l_{jt}^{\gamma} - w_tl_{jt} - w_t\chi_{jt}\mathbb{1}_{l_{jt}\neq 0} - \frac{\psi}{2}\left(\frac{i_{jt}}{k_{jt}}\right)^2k_{jt}$$

- Decreasing returns to scale give a well-defined firm distribution
- We could have done CRS in production and downward sloping demand curves

$$\pi_{jt} = a_{jt}k_{jt}^{\theta}l_{jt}^{\gamma} - w_t l_{jt} - w_t \chi_{jt} \mathbb{1}_{l_{jt} \neq 0} - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{it}}\right)^2 k_{jt}$$

- Decreasing returns to scale give a well-defined firm distribution
- We could have done CRS in production and downward sloping demand curves
- Note that we are denoting the fixed costs in units of labor. You need to devote χ_{jt} workers in order to come-up with an investment plan

$$\pi_{jt} = a_{jt} k_{jt}^{\theta} l_{jt}^{V} - w_{t} l_{jt} - w_{t} \chi_{jt} \mathbb{1}_{l_{jt} \neq 0} - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{jt}$$

- Decreasing returns to scale give a well-defined firm distribution
- We could have done CRS in production and downward sloping demand curves
- Note that we are denoting the fixed costs in units of labor. You need to devote χ_{jt} workers in order to come-up with an investment plan
- χ_{jt} are fixed costs of adjustment. Constant conditional on adjustment, and zero in the case of inaction

$$\pi_{jt} = a_{jt} k_{jt}^{\theta} l_{jt}^{V} - w_{t} l_{jt} - w_{t} \chi_{jt} \mathbb{1}_{i_{jt} \neq 0} - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{jt}$$

- Decreasing returns to scale give a well-defined firm distribution
- We could have done CRS in production and downward sloping demand curves
- Note that we are denoting the fixed costs in units of labor. You need to devote χ_{jt} workers in order to come-up with an investment plan
- χ_{jt} are fixed costs of adjustment. Constant conditional on adjustment, and zero in the case of inaction
- Including χ and ψ is without loss. We could plausibly set them to zero
- Similar to the Golosov Lucas model but for capital

$$V(k_{j}, a_{j}) = \max_{l_{i}} \left\{ a_{jt} k_{j}^{\theta} l_{j}^{v} - w_{t} l_{j} \right\} + \max \left\{ V^{n}(k_{j}, a_{j}), V^{a}(k_{j}, a_{j}) - \chi_{j} w \right\}$$

Firms maximize firm value

$$V(k_{j}, a_{j}) = \max_{l_{j}} \left\{ a_{jt} k_{j}^{\theta} l_{j}^{v} - w_{t} l_{j} \right\} + \max \left\{ V^{n}(k_{j}, a_{j}), V^{a}(k_{j}, a_{j}) - \chi_{j} w \right\}$$

The non-convexity introduces a discrete choice. Invest or not.

$$V(k_j, a_j) = \max_{l_j} \left\{ a_{jt} k_j^{\theta} l_j^{v} - w_t l_j \right\} + \max \left\{ V^n(k_j, a_j), V^a(k_j, a_j) - \chi_j w \right\}$$

- The non-convexity introduces a discrete choice. Invest or not.
- These are captured in the value functions V^n (n for no), and V^a (a for adjustment).

$$V(k_{j}, a_{j}) = \max_{l_{j}} \left\{ a_{jt} k_{j}^{\theta} l_{j}^{v} - w_{t} l_{j} \right\} + \max \left\{ V^{n}(k_{j}, a_{j}), V^{a}(k_{j}, a_{j}) - \chi_{j} w \right\}$$

- The non-convexity introduces a discrete choice. Invest or not.
- These are captured in the value functions V^n (n for no), and V^a (a for adjustment).
- Note that labor demand is a static choice, so labor is not a state variable

$$V(k_{j}, a_{j}) = \max_{l_{i}} \left\{ a_{jt} k_{j}^{\theta} l_{j}^{v} - w_{t} l_{j} \right\} + \max \left\{ V^{n}(k_{j}, a_{j}), V^{a}(k_{j}, a_{j}) - \chi_{j} w \right\}$$

- The non-convexity introduces a discrete choice. Invest or not.
- These are captured in the value functions V^n (n for no), and V^a (a for adjustment).
- Note that labor demand is a static choice, so labor is not a state variable
- We now need to specify what V^n and V^a look like

The value of non-adjusting

Firms maximize firm value

$$V(k_j, a_j) = \max_{l_i} \left\{ a_{jt} k_j^{\theta} l_j^{\gamma} - w_t l_j \right\} + \max \left\{ V^n(k_j, a_j), V^a(k_j, a_j) - \chi_j w \right\}$$

• The value function in case of not-adjusting is

$$V^{n}(k_{j}, a_{j}) = \beta \mathbb{E}\left[V(k'_{j}, a'_{j})|a_{j}\right]$$

subject to

$$k_j' = (1 - \delta)k_j$$

The value of adjusting

Firms maximize firm value

$$V(k_j, a_j) = \max_{l_i} \left\{ a_{jt} k_j^{\theta} l_j^{\gamma} - w_t l_j \right\} + \max \left\{ V^n(k_j, a_j), V^a(k_j, a_j) - \chi_j w \right\}$$

• The value function in case of adjusting is

$$V^{a}(k_{j}, a_{j}) = \max_{i_{j}} \left\{ -i - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{j} + \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right] \right\}$$

subject to

$$k_j' = (1 - \delta)k_j + i_j$$

The value of adjusting

Firms maximize firm value

$$V(k_j, a_j) = \max_{l_i} \left\{ a_{jt} k_j^{\theta} l_j^{\gamma} - w_t l_j \right\} + \max \left\{ V^n(k_j, a_j), V^a(k_j, a_j) - \chi_j w \right\}$$

• The value function in case of adjusting is

$$V^{a}(k_{j}, a_{j}) = \max_{i_{j}} \left\{ -i - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{j} + \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right] \right\}$$

subject to

$$k'_j = (1 - \delta)k_j + i_j$$

• We will assume that χ_i is iid across firms, and

$$\chi_j \sim U[\underline{\chi}, \bar{\chi}]$$

Firms maximize firm value

$$V(k_j, a_j) = \max_{l_i} \left\{ a_{jt} k_j^{\theta} l_j^{\gamma} - w_t l_j \right\} + \max \left\{ V^n(k_j, a_j), V^a(k_j, a_j) - \chi_j w \right\}$$

• The value function in case of not-adjusting is

$$V^{n}(k_{j}, a_{j}) = \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right]$$
$$k'_{j} = (1 - \delta)k_{j}$$

• The value function in case of adjusting is

$$V^{a}(k_{j}, a_{j}) = \max_{i_{j}} \left\{ -i - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{j} + \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right] \right\}$$
$$k'_{j} = (1 - \delta)k_{j} + i_{j}$$

The easy part -	labor demand

• Labor demand is almost trivial in this model

The easy part - labor demand

- Labor demand is almost trivial in this model
- Capital is fixed within the period

The easy part - labor demand

- Labor demand is almost trivial in this model
- Capital is fixed within the period
- The first order condition is just

$$l(k_j, a_j) = \left(\frac{v a_j k_j^{\theta}}{w}\right)^{\frac{1}{1-v}}$$

The decision of adjusting

• Simple: you adjust if it is worth it

adjust iff
$$V^a(k_i, a_i) - \chi w > V^n(k_i, a_i)$$

• Which implies an upper threshold for adjustment

$$\hat{\chi}(k_j, a_j) = \frac{V^a(k_j, a_j) - V^n(k_j, a_j)}{w}$$

The decision of adjusting

• Simple: you adjust if it is worth it

adjust iff
$$V^a(k_i, a_i) - \chi w > V^n(k_i, a_i)$$

• Which implies an upper threshold for adjustment

$$\hat{\chi}(k_j, a_j) = \frac{V^a(k_j, a_j) - V^n(k_j, a_j)}{w}$$

- Adjustment iff $\chi_j < \hat{\chi}(k_j, a_j)$
- So we can compute a probability of adjustment: The probability that a firm with state k, a
 adjusts it's capital stock

The decision of adjusting

• Simple: you adjust if it is worth it

adjust iff
$$V^a(k_i, a_i) - \chi w > V^n(k_i, a_i)$$

Which implies an upper threshold for adjustment

$$\hat{\chi}(k_j, a_j) = \frac{V^a(k_j, a_j) - V^n(k_j, a_j)}{w}$$

- Adjustment iff $\chi_i < \hat{\chi}(k_i, a_i)$
- So we can compute a probability of adjustment: The probability that a firm with state k, a
 adjusts it's capital stock

$$P(\chi_j < \hat{\chi}(k_j, a_j)) = \frac{\hat{\chi}(k_j, a_j) - \underline{\chi}}{\bar{\chi} - \chi}$$

ndividual level adjustment decision					

At the individual level adjustment is random

- At the individual level adjustment is random
- And we can compute probabilities of adjustment in the state-space

- At the individual level adjustment is random
- And we can compute probabilities of adjustment in the state-space
- Why did we pick this assumptions?
- We want to have a simple model that allows for periods of inaction

- At the individual level adjustment is random
- And we can compute probabilities of adjustment in the state-space
- Why did we pick this assumptions?
 - We want to have a simple model that allows for periods of inaction
 - Recognize that similar firms sometimes adjust and sometimes do not

- At the individual level adjustment is random
- And we can compute probabilities of adjustment in the state-space
- Why did we pick this assumptions?
 - We want to have a simple model that allows for periods of inaction
 - Recognize that similar firms sometimes adjust and sometimes do not
 - In this sense, variation in χ is a reduced form way of capturing our ignorance

- At the individual level adjustment is random
- And we can compute probabilities of adjustment in the state-space
- Why did we pick this assumptions?
 - We want to have a simple model that allows for periods of inaction
 - Recognize that similar firms sometimes adjust and sometimes do not
 - In this sense, variation in χ is a reduced form way of capturing our ignorance
- Stuff we do not understand that drives the decision to adjust at one time or another

• The value function in case of adjusting is

$$V^{a}(k_{j}, a_{j}) = \max_{i_{j}} \left\{ -i - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{j} + \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right] \right\}$$
$$k'_{j} = (1 - \delta)k_{j} + i_{j}$$

• The value function in case of adjusting is

$$V^{a}(k_{j}, a_{j}) = \max_{i_{j}} \left\{ -i - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{j} + \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right] \right\}$$
$$k'_{j} = (1 - \delta)k_{j} + i_{j}$$

With first order condition

$$\frac{i_j}{k_i} = \frac{\beta \mathbb{E}\left[V_k(k_j', a_j')|a_j\right] - 1}{\psi}$$

• The value function in case of adjusting is

$$V^{a}(k_{j}, a_{j}) = \max_{i_{j}} \left\{ -i - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{j} + \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right] \right\}$$
$$k'_{j} = (1 - \delta)k_{j} + i_{j}$$

With first order condition

$$\frac{i_j}{k_i} = \frac{\beta \mathbb{E}\left[V_k(k_j', a_j')|a_j\right] - 1}{\psi}$$

Notice that conditional on adjustment investment has a q flavor

• The value function in case of adjusting is

$$V^{a}(k_{j}, a_{j}) = \max_{i_{j}} \left\{ -i - \frac{\psi}{2} \left(\frac{i_{jt}}{k_{jt}} \right)^{2} k_{j} + \beta \mathbb{E} \left[V(k'_{j}, a'_{j}) | a_{j} \right] \right\}$$
$$k'_{j} = (1 - \delta)k_{j} + i_{j}$$

With first order condition

$$\frac{i_j}{k_j} = \frac{\beta \mathbb{E}\left[V_k(k_j', a_j') | a_j\right] - 1}{\psi}$$

- Notice that conditional on adjustment investment has a q flavor
- Not a coincidence, we extended the framework to:
- Heterogeneous firms
 - Idiosyncratic shocks
 - non-convex costs

• Let's turn to a simplified problem of a firm with profit function

$$\Pi(k,a) = ak^{\beta} - (\delta + r)k$$

• Let's turn to a simplified problem of a firm with profit function

$$\Pi(k,a) = ak^{\beta} - (\delta + r)k$$

- And only random fixed costs of adjustment
- Without convex costs ($\psi = 0$)

• Let's turn to a simplified problem of a firm with profit function

$$\Pi(k,a) = ak^{\beta} - (\delta + r)k$$

- And only random fixed costs of adjustment
- Without convex costs ($\psi = 0$)
- This is the framework of Caballero and Engel (1999) in your required readings

Adjustment for high χ

Adjustment for mid $\boldsymbol{\chi}$

Adjustment for low $\boldsymbol{\chi}$

Variation in χ

Once we account for variation in $\chi,$ the adjustment region is probabilistic.

$$\Omega(k,a) = \text{Prob}(V^a(k,a) - \chi w > V^n(k,a))$$

Adjustment Hazard Function

Back to the more general problem

• I simulated for you the solution to the more general problem we considered before

Back to the more general problem

- I simulated for you the solution to the more general problem we considered before
- I chose standard values for the parameters

Value of Adjustment

Adjustment Probability

Cooper and Haltiwanger (2006)

• That in a panel of firms ψ and χ move different cross-sectional moments in different directions offers hope for a *model-based* identification of this parameters

Cooper and Haltiwanger (2006)

- That in a panel of firms ψ and χ move different cross-sectional moments in different directions offers hope for a *model-based* identification of this parameters
 - Indirect evidence on the value of a parameter, given the predictions of a model about a moment,
 rather than direct evidence on an elasticity driven by a natural experiment

Cooper and Haltiwanger (2006)

- That in a panel of firms ψ and χ move different cross-sectional moments in different directions offers hope for a *model-based* identification of this parameters
 - Indirect evidence on the value of a parameter, given the predictions of a model about a moment,
 rather than direct evidence on an elasticity driven by a natural experiment
- Use census data in order to estimate these cost of adjustment parameters

Cooper and Haltiwanger 2006

TABLE 3

Moments from illustrative models

Moment	LRD	No AC	CON	NC-F	NC-λ	TRAN
Fraction of inaction	0.081	0.0	0.038	0.616	0.588	0.69
Fraction with positive investment bursts	0.18	0.298	0.075	0.212	0.213	0.120
Fraction with negative investment bursts	0.018	0.203	0.0	0.172	0.198	0.024
$\operatorname{Corr}\left(i_{it},i_{it-1}\right)$	0.058	-0.053	0.732	-0.057	-0.06	0.110
$Corr(i_{it}, a_{it})$	0.143	0.202	0.692	0.184	0.196	0.346

LRD, Longitudinal Research Database.

LRD: Data. No AC: no adjustment costs. CON: convex costs. NC F: Fixed costs. NC λ : fixed drops in productivity during adjustment. *Tran* Model of irreversibility.

Cooper and Haltiwanger 2006

TABLE 4 Parameter estimates: $\lambda = 1$

Spec.	Structural parameter estimates (S.E.)			Moments				
	γ	F	p_s	Corr (i, i_{-1})	Corr (i, a)	Spike ⁺	Spike-	$\pounds(\hat{\Theta})$
LRD				0.058	0.143	0.186	0.018	
all	0.049	0.039	0.975	0.086	0.31	0.127	0.030	6399.9
	(0.002)	(0.001)	(0.004)					
γ only	0·455 (0·002)	0	1	0.605	0.540	0.23	0.028	53,182.6
p_s only	0	0	0·795 (0·002)	0.113	0.338	0.132	0.033	7673.68
F only	0	0·0695 (0·00046)	1	-0.004	0.213	0.105	0.0325	7390-84

LRD, Longitudinal Research Database.

 γ : convex cost. F: fixed cost. p_s transaction cost

Cooper and Haltiwanger 2006

- Structural estimation
- The model prefers a combination of costs

 Caballero and Engel (1999) in a stripped down model show that one can summarize our problem as a function of disequilibrium capital x

- Caballero and Engel (1999) in a stripped down model show that one can summarize our problem as a function of disequilibrium capital x
- In a setting a bit simpler than that of Caballero and Engel (1999)

$$x_{jt} = \log k_{jt} - \log k_{jt}^*$$

- Caballero and Engel (1999) in a stripped down model show that one can summarize our problem as a function of disequilibrium capital x
- In a setting a bit simpler than that of Caballero and Engel (1999)

$$x_{jt} = \log k_{jt} - \log k_{jt}^*$$

• where k^* is the desired level of capital of a firm

- Caballero and Engel (1999) in a stripped down model show that one can summarize our problem as a function of disequilibrium capital x
- In a setting a bit simpler than that of Caballero and Engel (1999)

$$x_{jt} = \log k_{jt} - \log k_{jt}^*$$

- where k^* is the desired level of capital of a firm
- Firms have adjustment probability $\Lambda(x)$

- Caballero and Engel (1999) in a stripped down model show that one can summarize our problem as a function of disequilibrium capital x
- In a setting a bit simpler than that of Caballero and Engel (1999)

$$x_{jt} = \log k_{jt} - \log k_{jt}^*$$

- where k^* is the desired level of capital of a firm
- Firms have adjustment probability $\Lambda(x)$
- And conditional on adjustment they invest: $k^* k = \left(\frac{k^* k}{k}\right)k = \left(\frac{k^*}{k} 1\right)k = (e^{-x} 1)k$

$$k^* - k = \left(\frac{k^* - k}{k}\right)k = \left(\frac{k^*}{k} - 1\right)k = (e^{-x} - 1)k$$

$$k^* - k = \left(\frac{k^* - k}{k}\right)k = \left(\frac{k^*}{k} - 1\right)k = (e^{-x} - 1)k$$

• Average investment of firms with desiguilibrium x is

$$\mathbb{E}_{\mathsf{Y}}\left[I_{it}(x)|x\right] = \Lambda(x)(e^{-x}-1)k(x)$$

$$k^* - k = \left(\frac{k^* - k}{k}\right)k = \left(\frac{k^*}{k} - 1\right)k = (e^{-x} - 1)k$$

• Average investment of firms with desiquilibrium x is

$$\mathbb{E}_{\mathbf{Y}}\left[I_{it}(\mathbf{X})|\mathbf{X}\right] = \Lambda(\mathbf{X})(e^{-\mathbf{X}} - 1)k(\mathbf{X})$$

Integrating over firms

$$\frac{I_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x, t) dx$$

$$k^* - k = \left(\frac{k^* - k}{k}\right)k = \left(\frac{k^*}{k} - 1\right)k = (e^{-x} - 1)k$$

Average investment of firms with desiquilibrium x is

$$\mathbb{E}_{\chi}\left[I_{jt}(x)|x\right] = \Lambda(x)(e^{-x} - 1)k(x)$$

Integrating over firms

$$\frac{I_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x, t) dx$$

where f is the cross-sectional distribution of firms' capital disequilibrium at time t

$$\frac{I_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x, t) dx$$

$$\frac{f_t^n}{\kappa^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x, t) dx$$

 $\frac{I_t^A}{K_t^A} \approx \int (e^{-x}-1) \Lambda(x) f(x,t) dx$ • To know aggregate investment one must know the *cross-sectional distribution of* disequilibrium

$$\frac{f_t^n}{\kappa^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x, t) dx$$

- $\frac{I_t^A}{K_t^A} \approx \int (e^{-x}-1) \Lambda(x) f(x,t) dx$ To know aggregate investment one must know the *cross-sectional distribution of* disequilibrium
- It is *not* sufficient to know the *average disequilibrium* before adjustment.

$$\frac{f_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x, t) dx$$

- $\frac{I_t^A}{K_t^A} \approx \int (e^{-x}-1)\Lambda(x)f(x,t)dx$ To know aggregate investment one must know the *cross-sectional distribution of* disequilibrium
- It is not sufficient to know the average disequilibrium before adjustment.
- As an alternative consider a model where $\Lambda(x) = 1$, and the mass of f(x) is "close to zero"

$$\frac{f_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x, t) dx$$

- $\frac{I_t^A}{K_t^A} \approx \int (e^{-x}-1)\Lambda(x)f(x,t)dx$ To know aggregate investment one must know the *cross-sectional distribution of* disequilibrium
- It is not sufficient to know the average disequilibrium before adjustment.
- As an alternative consider a model where $\Lambda(x) = 1$, and the mass of f(x) is "close to zero"

$$-x \approx \log(1-x)$$
$$e^{-x} - 1 \approx -x$$

and our expression becomes

$$\frac{f_t^A}{K_t^A} \approx \int -xf(x,t)dx = -X^A$$

It **is** sufficient to know the average disequilibrium before adjustment.

You should be uncomfortable seeing the title of this slide

- You should be uncomfortable seeing the title of this slide
- This model is partial equilibrium. It does not have

- You should be uncomfortable seeing the title of this slide
- This model is partial equilibrium. It does not have
 - An endogenous wage rate

- You should be uncomfortable seeing the title of this slide
- This model is partial equilibrium. It does not have
 - An endogenous wage rate
 - An endogenous real interest rate

- You should be uncomfortable seeing the title of this slide
- This model is partial equilibrium. It does not have
 - An endogenous wage rate
 - An endogenous real interest rate
- An aggregate shock will move aggregate capital and labor demand

- You should be uncomfortable seeing the title of this slide
- This model is partial equilibrium. It does not have
 - An endogenous wage rate
 - An endogenous real interest rate
- An aggregate shock will move aggregate capital and labor demand
- And w and r should move to clear markets

- You should be uncomfortable seeing the title of this slide
- This model is partial equilibrium. It does not have
 - An endogenous wage rate
 - An endogenous real interest rate
- An aggregate shock will move aggregate capital and labor demand
- And w and r should move to clear markets
- We are going to abstract from that for now

- You should be uncomfortable seeing the title of this slide
- This model is partial equilibrium. It does not have
 - An endogenous wage rate
 - An endogenous real interest rate
- An aggregate shock will move aggregate capital and labor demand
- And w and r should move to clear markets
- We are going to abstract from that for now
- You can understand the results we will have as very short-run responses. Before prices adjust.

With aggregate shocks

$$\frac{I_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x + \delta + v_t, t - 1) dx$$

ullet where v_t is an aggregate shock

With aggregate shocks

$$\frac{I_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x + \delta + v_t, t - 1) dx$$

- where v_t is an aggregate shock
- Depreciation increases imbalances, as do positive aggregate shocks

With aggregate shocks

$$\frac{I_t^A}{K_t^A} \approx \int (e^{-x} - 1) \Lambda(x) f(x + \delta + v_t, t - 1) dx$$

- where v_t is an aggregate shock
- Depreciation increases imbalances, as do positive aggregate shocks
- Ignoring changes in w and r imply that $\Lambda(.)$ is an invariant function

State dependence

State dependence

State Dependence

State Dependence

State Dependence

• Aggregate investment depends on the mass of firms that are close-enough to adjustment

Pent-Up Demand

- Aggregate investment depends on the mass of firms that are close-enough to adjustment
- Therefore shocks of the same size may have differential effects on investment
- As a function of the distribution of capital imbalances
- Which means that the elasticity of investment to an aggregate shock is state dependent
- as in: it depends on the distribution of the state variables of the model
- Remember your RBC model from 210A. Model is linear in logs. The elasticity of investment to a shock is invariant. Not guaranteed with fixed costs.

Applications to Recessions and Recoveries

- During a recession firms have "excess capital"
- Imagine a tax subsidy that makes positive investment cheaper
- If no firm is near the threshold, then the reform is ineffective
- Imagine a tax subsidy during a recovery
- If the mass of firms that would have adjusted in the absence of the subsidy is large...
- The reform subsidizes inframarginal firms, making tax subsidies more expensive per unit of investment

The sensitivity of investment to additional shocks is time-varying