Optimal Plans

Problem 1

Load(C2, P2, JFK) Load(C1, P1, SFO) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK)

Problem 2

Load(C2, P2, JFK) Load(C1, P1, SFO) Load(C3, P3, ATL) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Fly(P3, ATL, SFO) Unload(C3, P3, SFO)

Problem 3

Load (C2, P2, JFK)
Load (C1, P1, SFO)
Fly (P2, JFK, ORD)
Load (C4, P2, ORD)
Fly (P1, SFO, ATL)
Load (C3, P1, ATL)
Fly (P1, ATL, JFK)
Unload (C1, P1, JFK)
Unload (C3, P1, JFK)
Fly (P2, ORD, SFO)
Unload (C2, P2, SFO)
Unload (C4, P2, SFO)

Running Times of Algorithm/Problem Combinations

The following table contains cells for each problem/algorithm combination in terms of its optimality, running time, and the number of expansions.

	Problem 1	Problem 2	Problem 3
BFS	Optimal: yes	Optimal: yes	Optimal: yes
	Expansions: 43	Expansions: 3343	Expansions: 14663
	Runtime: 0.02 sec	Runtime: 10.9 sec	Runtime: 84.4 sec
BFS Tree Search	Optimal: yes	n/a	n/a
	Expansions: 1458	Runtime: > 10 min	Runtime: > 10 min
	Runtime: 0.76 sec		
DFS Graph Search	Optimal: no	Optimal: no	Optimal: no
	Expansions: 12	Expansions: 582	Expansions: 627
	Runtime: 0.007 sec	Runtime: 2.48 sec	Runtime: 2.6 sec
Depth Limited Search	Optimal: no	n/a	n/a

	Expansions: 101	Runtime: > 10 min	Runtime: > 10 min
	Runtime: 0.07		
Uniform Cost Search	Optimal: yes	Optimal: yes	Optimal: yes
	Expansions: 55	Expansions: 4823	Expansions: 18223
	Runtime: 0.02 sec	Runtime: 9.42 sec	Runtime: 41.4 sec
Recursive Best First	Optimal: yes	n/a	n/a
Search with h_1	Expansions: 4229	Runtime: > 10 min	Runtime: > 10 min
	Runtime: 2.16 sec		
Greedy Best First	Optimal: yes	Optimal: no	Optimal: no
Graph Search with h_1	Expansions: 7	Expansions: 385	Expansions: 5578
	Runtime: 0.0045 sec	Runtime: 0.75 sec	Runtime: 13.15 sec
A* Search w/h_1	Optimal: yes	Optimal: yes	Optimal: yes
	Expansions: 55	Expansions: 4823	Expansions: 18223
	Runtime: 0.03 sec	Runtime: 9.46 sec	Runtime: 42.4 sec
A* Search	Optimal: yes	Optimal: yes	Optimal: yes
w/h_ignore_precon	Expansions: 41	Expansions: 1421	Expansions: 5040
	Runtime: 0.03	Runtime: 3.3 sec	Runtime: 13.75 sec
A* Search	Optimal: yes	Optimal: yes	Optimal: yes
w/h_pg_levelsum	Expansions: 11	Expansions: 86	Expansions: 316
	Runtime: 0.44 sec	Runtime: 37.44 sec	Runtime: 184 sec

Analysis

DFS and depth limited search are very efficient in terms of runtime, but they have very non-optimal solutions. They come to conclusions quickly, but not very good solutions in any of the problems. In fact, depth limited search won't even complete on problem 2 or 3 because it takes > 10 min to run! I found this interesting because it was so efficient in problem 1, but the state space expands so much in problem 2 and 3 that it simply takes too long to run. BFS, on the other hand, always came to the optimal solution. For problem 1 it was also fairly efficient, whereas for problems 2 and 3 its running time starting ramping up pretty dramatically such that by problem 3 it was an unrealistic way of solving the problem because of how long it took (1.5 min).

In terms of A* heuristic searches, they all performed optimally on all three problems. An interesting dynamic played out for "ignore preconditions" and "levelsum", however. The levelsum heuristic had optimal results and very low number of expansions, but the heuristic is more complex so it takes quite a long time to run. By contrast, "ignore preconditions" had faster ramp-up in the number of expansions (though still quite reasonable) and its runtime was very fast. For this problem, the "ignore preconditions" heuristic is probably the best option. If, however, memory is an issue or expansions are very expensive for a problem, levelsum is likely to be a very strong candidate.

Ignore preconditions performed the best of all the non-heuristic and heuristic approaches across all problem sets when considering optimality and runtime, but not necessarily from the number of expansions. It did, however, do better than all other optimal non-heuristics in terms of expansions. This definitely seems like the best option in these three problem spaces.