

Transport Layer

Hoofdstuk 11

Inleiding

Transport Layer Protocols

TCP

UDP

Inleiding

- Op deze laag wordt data gesegmenteerd (= encapsuleren in segmenten)
 - ✓ Bepalen hoe data wordt opgedeeld
- Verificatie dat de pakketten aankomen op de bestemming
 - ✓ Zorgen dat pakketten niet verloren gaan

Inleiding

- Denk aan het spel waarbij je in een grote groep een zin doorfluistert
 - √ Hoe hard verandert de boodschap onderweg?
 - → Data kan corrupt geraken in transit
 - ✓ Denk ook aan tijdsverschil als je de data wel accuraat doorfluistert

- Deze laag neemt de data en gaat die segmenteren
- Houdt geen rekening met
 - √ Host-type van bestemming

✓ Ondernomen path

✓ Congestie op de link

- √ Grootte van het netwerk
- Op de destination zorgt deze laag dat de segmenten terug in data worden omgezet

Segmenteren:

- ✓ Data moet geëncapsuleerd worden in segmenten omdat netwerken een bepaalde limiet hebben op een enkel pakket
 - Te grote pakketten zouden teveel bandbreedte in beslag nemen
- ✓ Er wordt een header toegevoegd
 - Nodig voor het terug samenvoegen bij de destination
 - Dient ook om datastroom te volgen

- Dankzij de header info kan worden bijgehouden welke segmenten bij welke data horen
 - → Transport Layer identificeert target application
 - ✓ Er worden hiervoor poortnummers gebruikt

Het is de taak van de Transport Layer om individuele conversaties te tracken

Multiplexing:

- Verschillende pakketten van verschillende applicaties kunnen samen verstuurd worden
 - Dit is mogelijk dankzij segmentering omdat niet de complete bandbreedte in beslag wordt genomen
 - → Verschillende netwerkgerelateerde applicaties kunnen tegelijkertijd werken over het netwerk

- Verschillende applicaties hebben verschillende 'reliability requirements'
 - ⇒ De transportprotocollen bepalen hoe de communicatie tussen hosts verloopt
- Er zijn 2 protocollen in de 'Transport Layer':
 - √ TCP (= Transmission Control Protocol)
 - ✓ UDP (= User Datagram Protocol)

- → TCP
 - ✓ Betrouwbaar
 - ✓ Met checks
- → UDP
 - ✓ Simpel
 - ✓ Minder checks

UDP werkt sneller dan TCP

Enkele protocollen die gebruikmaken van UDP zijn DHCP, DNS, NTP, RIP, SNMP