Tutorial 3: Relations

Defining Binary Relations

Concept(s)

For sets A and B, a binary relation R from A to B is a subset of $A \times B$. We write

$$a R b$$
 or $R(a, b)$ to denote $(a, b) \in R$.

We can also represent a binary relation as a

- Graph: We draw dots for each $a \in A$ and $b \in B$. For each $(a, b) \in R$, we can draw $a \to b$.
- Matrix: We have a grid with rows labelled by elements of S and columns by elements of T. We fill in a cell with row a and column b if $(a, b) \in R$.

Exercise 1. Let $A = \{1, 2, 3, 4\}$, $B = \{1, 3, 5\}$ and $R \subseteq A \times B$ where aRb means that gcd(a, b) = 1.

- a) Write the relation R as a set.
- b) Draw the relation R as a graph.
- c) Write the relation R as a matrix.

Concept(s)

A relation on A is a binary relation R from A to A. For the graphical representation, we only draw dots for each $a \in A$ once. When $(a_1, a_2) \in R$, we can draw $a_1 \to a_2$.

Exercise 2. Let $A = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}$ and $R \subseteq A \times A$ where aRb means that $a \subset b$.

- a) Write the relation R as a set.
- b) Draw the relation R as a graph.
- c) Write the relation R as a matrix.

Operations on Relations

Concept(s)

Let R be a relation from A to B and S be a relation from B to C. We define the

- Converse of $R: R^{\leftarrow} = \{(b, a) \in B \times A : aRb\}.$
- Composition of R and S: R; $S = \{(a, c) \in A \times C : \text{there exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$

Exercise 3. Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Consider the relation from A to B,

$$R = \{(1, x), (2, y), (3, z), (1, y)\}.$$

Compute $R; R^{\leftarrow}$. What is $R; R^{\leftarrow}$ a subset of?

Properties of Relations $R \subseteq A \times A$

Concept(s) (R) Reflexive For all $a \in A$, we have $(a, a) \in R$ (AR) Antireflexive For all $a \in A$, we have $(a, a) \notin R$ Symmetric For all $a, b \in A$, if $(a, b) \in R$ then $(b, a) \in R$ (S) (AS) Antisymmetric For all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$ then a = bTransitive For all $a, b, c \in A$, if $(x, y), (y, z) \in R$ then $(x, z) \in R$ (T)

Exercise 4. Which of the properties (R), (AR), (S), (AS), (T) does R satisfy? Explain why.

```
a) R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a > b\}
```

b)
$$R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \leq b\}$$

c)
$$R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : |a - b| \le 2\}$$

Exercise 5. Let R be a relation on a set A. Prove or disprove the following:

- a) If R is symmetric and transitive, then R is reflexive.
- b) If R is antireflexive and transitive, then R is antisymmetric.

Equivalence Relations

Concept(s)

An equivalence relation R is a relation on A that is (R), (S) and (T).

The equivalence class of $a \in A$ is $[a] = \{b \in A : aRb\}$.

Exercise 6. Let $\Sigma = \{a, b\}$. We define the relation \sim on Σ^* , where $w_1 \sim w_2$ means that w_1 and w_2 have the same number of letters. Explain why \sim is an equivalence relation.

Exercise 7. Consider the relation F on $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ where (a,b)F(c,d) means that ad = bc.

- a) Prove that F is an equivalence relation.
- b) Describe the equivalence class [(1,2)].

Partial Orders

Concept(s)

A partial order \leq is a relation on A that is (R), (AS) and (T). We call (A, \leq) a poset.

A Hasse diagram is a graph if $a \leq b$ and $a \neq b$, then there is an edge drawn upward from a to b.

Minimal $a \in A$ such that there is no $a \neq b$ where $b \leq a$

Minimum $a \in A$ such that $a \leq b$ for all $b \in A$

Maximal $a \in A$ such that there is no $a \neq b$ where $a \leq b$

Maximum $a \in A$ such that $b \leq a$ for all $b \in A$

Exercise 8. For the poset $(\{2, 4, 6, 9, 12, 36, 72\}, |)$:

- a) Draw a Hasse diagram.
- b) Find the maximal/minimal elements.
- c) Is there a minimum element? Is there a maximum element?

Exercise 9. Let (A, \preceq) be a poset. Prove that if A has a maximum then it is unique.

Concept(s)

Let (A, \preceq) be a poset.

- a is an upper bound for B if $b \leq a$ for all $b \in A$
- The least upper bound of B, lub(B), is the minimum of $\{a: a \text{ is an upper bound of } B\}$
- a is a lower bound for B if $a \leq b$ for all $b \in A$
- The greatest lower bound of B, glb(B), is the maximum of $\{a: a \text{ is a lower bound of } B\}$

A lattice is a poset where each pair of elements has a lub and glb.

Exercise 10. For the poset $(\{2, 4, 6, 9, 12, 36, 72\}, |)$:

- a) Find $lub(\{6, 9\})$ and $glb(\{6, 9\})$
- b) Is this poset a lattice?

Exercise 11. For the poset $(Pow(\{a, b, c\}), \subseteq)$:

- a) Prove that \subseteq is a partial order.
- b) Draw a Hasse diagram.
- c) Find the maximal/minimal elements.
- d) Is there a minimum element? Is there a maximum element?
- e) Find $lub(\{\{a\}, \{b, c\}\})$ and $glb(\{\{a\}, \{b, c\}\})$, if they exist.
- f) Is this poset a lattice?

Concept(s)

A total order is a partial order that has Linearity: For all a, b, either $a \le b$ or $b \le a$.

A topological sort of (A, \preceq) is a total order \leq where if $a \preceq b$, then $a \leq b$.

Exercise 12. For the poset $(Pow(\{a,b,c\}),\subseteq)$, find a topological sort.

Extra Practice Problems

Note(s)

These practice questions are designed to help deepen your understanding. No answers will be provided, as the goal is to encourage independent problem-solving and reinforce key concepts.

- 1. Let $A = \{1, 2, 3, 4\}$. Define the relation R on A by aRb if and only if a + b is odd. Write R as a set of ordered pairs and draw its directed graph.
- 2. Draw graphs for relations on $\{1, 2, 3\}$ that have the following properties:
 - a) Symmetric and antisymmetric and reflexive.
 - b) Reflexive, but neither transitive nor symmetric.
 - c) Transitive and reflexive, but not symmetric.
- 3. Which of the properties (R), (AR), (S), (AS), (T) does R satisfy? Prove your answers.
 - a) Let $\Sigma = \{1, 2, 3\}$. Define R over Σ^* where $n_1 R n_2$ means that n_1 and n_2 have a common digit.
 - b) Consider the relation \sim on \mathbb{Z} where $a \sim b$ means that $3 \mid a$ and $3 \mid b$ OR $3 \nmid a$ and $3 \nmid b$.
 - c) The relation on \mathbb{Z} , $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a =_{(2)} b\}$.
- 4. How many reflexive relations on A are there if |A| = n?
- 5. Let $A = \{a, b, c, d\}$ and R be the relation $\{(a, b), (b, c), (c, d), (d, a)\}$. Compute R; R and $R \leftarrow R$; R.
- 6. If you take the converse of the relation <, what other familiar relation does it become? What if you take the converse of =?
- 7. A relation \sim on $\mathbb Z$ is defined by $a \sim b$ when a-b is either divisible by 3 or 5. Show that \sim is not an equivalence relation.
- 8. Let $V = \{u, v, w, x, y, z\}$. The following diagram shows direct flights between the 6 cities:

Define the relation \sim on V where $a \sim b$ means that it is possible to fly from a to b with an even number of flights (including 0 flights).

- a) Prove that \sim is an equivalence relation.
- b) Partition the set *V* into equivalence classes.
- 9. Let $\Sigma = \{a, b, c, d\}$. Define the relation A on Σ^* where $w_1 A w_2$ means that w_1 is an anagram of w_2 .
 - a) Prove that A is an equivalence relation.
 - b) List out all elements of [bad].
- 10. List all partitions of $\{a, b, c\}$.

- 11. With respect to the partial order \mid on the set $\mathbb{Z}_{>0},$ find
 - a) $lub({4,6})$
 - b) $lub({3,4,5,6})$
 - c) $glb(\{12, 16, 18, 24\})$
 - d) glb({737, 2345})
- 12. Consider the set $A = \{B \subseteq \{1, 2, 3, 4\} : |B| \neq 2\}$ with the partial order \subseteq .
- 13. Let $A = \{1, 2, 3, 4\}$ be a poset defined with \leq . Consider the lexicographic order \leq_{lex} (check the lectures) on $A \times A$.
 - Prove that \leq_{lex} is a partial order.
 - Draw a Hasse diagram.
 - Find the maximal/minimal elements.
 - Is there a maximum element? Is there a minimum element?
 - Is this poset a lattice?