Distributed Function Computation over Networks

Derya Malak

Advanced topics in wireless communications (AtWireless)

October 25, 2024

Lecture Outline

Part I. Distributed computation

- Motivation and challenges
- Objectives

Part II. Techniques for distributed computing

- Information-theoretic (Distributed communication)
- Algebraic (Körner-Marton, Krithivasan-Pradhan)
- Graph-theoretic (Alon, Orlitsky, Roche, Médard)
- Coding-theoretic
- Communication-computation tradeoffs (Gradient coding, distributed matrix multiplication)

Part III. Exploiting structural properties

- Source (joint distribution, common information)
- Function (separability, decomposability)
- Network (topological structures)

Distributed Computing

(Wikipedia) a Federated Learning protocol with smartphones

Distributed Computing

Distributed computing plays a key role in accelerating the execution of computationally challenging tasks via

 distributing workload across multiple servers, (reduces workload!)

 leveraging collective computational capabilities, (saves resources!)

&

 harnessing parallel processing to fulfill tasks (saves time!)

(Wikipedia)

Applications of Distributed Computing

Telecommunications (cellular networks, wireless sensor networks, routing algorithms)

Networking (distributed databases, distributed caching systems, smart grid, Internet of Things)

Real-time process control (Industrial control systems, medical applications [Lushbough, Brendel, 2010], autonomous vehicles)

Parallel computation (scientific computing, cluster computing, cloud computing [Shamsi *et al.*, 2013], computer graphics [Gao, Wang, Zhou, 2019])

Peer-to-peer (blockchain [Bagaria et al., 2019])

Applications of Distributed Computing

Cloud Computing

Edge/Wireless IoT

Content-Centric Networking

Applications of Distributed Computing

Distributed computing can address a wide array of complex computational challenges and data-intensive analyses.

Large-Scale Distributed Computing

MapReduce, Spark, federated learning algorithms, or distributed deep networks, parallelize the execution of computations [Dikaiakos et al., 2009]

Large-Scale Distributed Computing

MapReduce, Spark, federated learning algorithms, or distributed deep networks, parallelize the execution of computations [Dikaiakos et al., 2009]

The shift from centralized computation to distributed computing is inevitable because of the flourishing demands for scalability, efficiency, and performance.

Distributed computation models face severe challenges.

Accuracy [Jahani-Nezhad, Maddah-Ali, 2021], [Wang, Jia, Jafar, 2021], **Concurrency** of components,

Privacy and **security** [Sun, Jafar, 2019], [Soleymani, Mahdavifar, 2021],

Scalability of computing [Soleymani, Mahdavifar, Avestimehr, 2021], Latency and **stragglers** [Li et al., 2021], **failure of components**,

Astronomical communication cost, often required by the distributed implementation of large-scale tasks,

A struggle between computation and communication complexity lies at the heart of distributed computing.

Distributed computing: How to populate content in caches?

Any ideas?

How to allocate content?

 Caching and content allocation problems are ubiquitous

Cloud

Computing

Content-Centric Networking

 Placement problems are combinatorial [Shanmugam et al., 2013]

CDNs

Edge/Wireless InT

- Coded caching [Maddah-Ali-Niesen, 2014]
 - Relaxes combinatorial structure
 - Eases design/weakens constraints
 - Improves efficiency through cross-coding

Video is the Primary Bandwidth Hog in Wireless Systems

Video consumes most of wireless bandwidth

serve most of it!

Caching helps offload traffic from congested networks

Well-Known Caching Models

Fundamental limits [MAN14]

Caching strategy for M=2 files, K=2 users, cache size N = 1

Pro: multicasting

Con: strong assumptions

Femtocaching [SG13]

Distributed caching example: users with conflicting interests

Pro: 1-1/e factor

Con: computationally

demanding

Geographic caching [BG15]

A realization of probabilistic placement

Pro: probabilistic

Con: does not exploit

diversity

4

Well-Known Caching Models

Pro: mul

Con: strc

Goal: low complexity algorithms with performance guarantees

Distributed computing: How to mitigate stragglers?

Any ideas?

Distributed Function Computation

N=3 distributed workers, 1 user node, datasets

Distributed Function Computation

N=3 distributed workers, 1 user node, datasets

How to place the datasets so that the user can recover them from the remaining $N_r = 2$ workers?

Example. K = 3 datasets $\{W_1, W_2, W_3\}$ N = 3 workers $N_r = 2$ recovery threshold

M = 2 cache capacity

Worker 1

 W_1

Worker 2

Worker 3

 W_1

```
Example. K = 3 datasets \{W_1, W_2, W_3\} N = 3 workers
```

 N_r = 2 recovery threshold

M = 2 cache capacity

Worker 1

 W_1 W_2

Worker 2

Worker 3


```
Example. K = 3 datasets \{W_1, W_2, W_3\}
```

N = 3 workers

 N_r = 2 recovery threshold

M = 2 cache capacity

Worker 1

 W_1 W_2

Worker 2

 W_2 W_3

Worker 3

 W_3 W_1

Example.
$$K = 3$$
 datasets $\{W_1, W_2, W_3\}$

N = 3 workers

 N_r = 2 recovery threshold

M = 2 cache capacity

Worker 1

Worker 2

Worker 3

 $X_1 = \{W_1, W_2\}$ $X_2 = \{W_2, W_3\}$ $X_3 = \{W_1, W_3\}$

Example.
$$K=3$$
 datasets $\{W_1,W_2,W_3\}$

N=3 workers

 N_r = 2 recovery threshold

M=2 cache capacity

Worker 1

$$X_1 = \{W_1, W_2\}$$

Worker 2

$$X_2 = \{W_2, W_3\}$$

Worker 3

$$X_1 = \{W_1, W_2\}$$
 $X_2 = \{W_2, W_3\}$ $X_3 = \{W_1, W_3\}$

We can recover W_1, W_2, W_3 from any 2 workers.

Cyclic Dataset Placement Model

Cyclic symmetry: the set of datasets assigned to worker $i \in [N]$ is

$$\mathcal{Z}_{i} = \bigcup_{r \in \left[0: \frac{K}{N} - 1\right]} \{ \mod\{i, N\} + rN, \mod\{i + 1, N\} + rN, \dots, \\ \mod\{i + N - N_{r}, N\} + rN \}$$

and
$$X_i = W_{\mathcal{Z}_i}$$

Can we do better than this placement model?

Example. K = 3, N = 3, $N_r = 2$, M = 2

Worker 1

 $W_{1,\{1,2\}}$ $W_{1,\{1,2\}}$

$$X_1 = \left\{ W_{k,\{1,2\}}, W_{k,\{1,3\}} \right\}_{k \in [3]}$$

Worker 2

$$X_2 = \left\{ W_{k,\{1,2\}}, W_{k,\{2,3\}} \right\}_{k \in [3]}$$

Worker 3

 $X_3 = \left\{ W_{k,\{1,3\}}, W_{k,\{2,3\}} \right\}_{k \in [3]}$

Example. K = 3, N = 3, $N_r = 2$, M = 2

Worker 1

$W_{1,\{1,2\}}$	$W_{2,\{1,2\}}$
$W_{1,\{1,3\}}$	$W_{2,\{1,3\}}$

$$X_1 = \left\{ W_{k,\{1,2\}}, W_{k,\{1,3\}} \right\}_{k \in [3]}$$

Worker 2

$$X_2 = \left\{ W_{k,\{1,2\}}, W_{k,\{2,3\}} \right\}_{k \in [3]}$$

Worker 3

$$X_3 = \left\{ W_{k,\{1,3\}}, W_{k,\{2,3\}} \right\}_{k \in [3]}$$

Example.
$$K = 3$$
, $N = 3$, $N_r = 2$, $M = 2$

Worker 1

$W_{1,\{1,2\}}$	$W_{2,\{1,2\}}$	$W_{3,\{1,2\}}$ $W_{3,\{1,3\}}$
$W_{1,\{1,3\}}$	$W_{2,\{1,3\}}$	$W_{3,\{1,3\}}$

$$X_1 = \left\{ W_{k,\{1,2\}}, W_{k,\{1,3\}} \right\}_{k \in [3]}$$

Worker 2

$$X_2 = \left\{ W_{k,\{1,2\}}, W_{k,\{2,3\}} \right\}_{k \in [3]}$$

Worker 3

$$X_3 = \{W_{k,\{1,3\}}, W_{k,\{2,3\}}\}_{k \in [3]}$$

Example.
$$K = 3$$
, $N = 3$, $N_r = 2$, $M = 2$

Example.
$$K = 3$$
, $N = 3$, $N_r = 2$, $M = 2$

Worker 1

$$W_{1,\{1,2\}}$$
 $W_{2,\{1,2\}}$ $W_{3,\{1,2\}}$ $W_{1,\{1,3\}}$ $W_{2,\{1,3\}}$ $W_{3,\{1,3\}}$

$$X_1 = \left\{ W_{k,\{1,2\}}, W_{k,\{1,3\}} \right\}_{k \in [3]}$$

Worker 2

$$W_{1,\{1,2\}}$$
 $W_{2,\{1,2\}}$ $W_{3,\{1,2\}}$ $W_{1,\{2,3\}}$ $W_{2,\{2,3\}}$ $W_{3,\{2,3\}}$

$$X_2 = \left\{ W_{k,\{1,2\}}, W_{k,\{2,3\}} \right\}_{k \in [3]}$$

Worker 3

$$W_{1,\{1,3\}}$$
 $W_{2,\{1,3\}}$ $W_{3,\{1,3\}}$ $W_{1,\{2,3\}}$ $W_{2,\{2,3\}}$ $W_{3,\{2,3\}}$

$$X_3 = \{W_{k,\{1,3\}}, W_{k,\{2,3\}}\}_{k \in [3]}$$

Placement in a cyclic manner

Example.
$$K = 3$$
, $N = 3$, $N_r = 2$, $M = 2$

Worker 1 $W_{1,\{1,2\}} \quad W_{2,\{1,2\}} \quad W_{3,\{1,2\}}$ $W_{1,\{1,3\}} \quad W_{2,\{1,3\}} \quad W_{3,\{1,3\}}$

$$X_1 = \left\{ W_{k,\{1,2\}}, W_{k,\{1,3\}} \right\}_{k \in [3]}$$

$$X_2 = \left\{ W_{k,\{1,2\}}, W_{k,\{2,3\}} \right\}_{k \in [3]}$$

Placement in a cyclic manner

We recover $W_1 = (W_{1,\{1,2\}}, W_{1,\{1,3\}}, W_{1,\{2,3\}})$ from any 2 workers.

Symmetry at finer granularity [Maddah-Ali-Niesen, 2014]: each $W_k, k \in [K]$ is split into $\binom{N}{|\tau|}$ disjoint subitems of equal size:

$$W_k = (W_{k,\tau}: \tau \subset [N], |\tau| = N\gamma)$$

(e.g.,
$$W_1 = (W_{1,\{1,2\}}, W_{1,\{1,3\}}, W_{1,\{2,3\}})$$

The worker assignments X_i , $i \in [N]$ are as follows

$$X_i = \{W_{k,\tau} : \tau \ni i, \qquad \tau \subset [N], \qquad |\tau| = \gamma N, \qquad k \in [K]\}$$

Each cache memory unit is split into smaller chunks to ensure symmetry at a finer granularity.

Distributed computing: How to compute $f(X_1, X_2) = (X_1, X_2)$?

Any ideas?

Distributed source coding (distributed communication)

Some Definitions

Entropy (in bits)

$$H(X) = E[-\log_2(X)] = -\sum_i p_i \log_2 p_i$$

Binary entropy (in bits)

$$h(p) = -p \log_2(p) - (1-p) \log_2(1-p)$$

Some Definitions

Entropy (in bits)

$$H(X) = E[-\log_2(X)] = -\sum_i p_i \log_2 p_i$$

Binary entropy (in bits)

$$h(p) = -p \log_2(p) - (1-p) \log_2(1-p)$$

Joint entropy

$$H(X_1, X_2) = H(X_1) + H(X_2 \mid X_1)$$

Some Definitions

Entropy (in bits)

$$H(X) = E[-\log_2(X)] = -\sum_{i} p_i \log_2 p_i$$

Binary entropy (in bits)

$$h(p) = -p \log_2(p) - (1-p) \log_2(1-p)$$

Joint entropy

$$H(X_1, X_2) = H(X_1) + H(X_2 \mid X_1)$$

Mutual information

$$I(X_1; X_2) = H(X_1) - H(X_1 \mid X_2)$$

Doubly Symmetric Binary Source (DSBS)

A relationship between jointly distributed binary sources

P_{X_1,X_2}		
	$P_{X_1,X_2}(0,0) = \frac{1-p}{2}$	$P_{X_1,X_2}(0,1) = \frac{p}{2}$
	$P_{X_1,X_2}(1,0) = \frac{p}{2}$	$P_{X_1,X_2}(1,1) = \frac{1-p}{2}$

 P_{X_1,X_2} : joint distribution

DSBS

A relationship between jointly distributed binary sources

P_{X_1,X_2}	$P_{X_2}\left(0\right) = \frac{1}{2}$	$P_{X_2}\left(1\right) = \frac{1}{2}$
$P_{X_1}\left(0\right) = \frac{1}{2}$	$P_{X_1,X_2}(0,0) = \frac{1-p}{2}$	$P_{X_1,X_2}(0,1) = \frac{p}{2}$
$P_{X_1}\left(1\right) = \frac{1}{2}$	$P_{X_1,X_2}(1,0) = \frac{p}{2}$	$P_{X_1,X_2}(1,1) = \frac{1-p}{2}$

DSBS

A relationship between jointly distributed binary sources

P_{X_1,X_2}	$P_{X_2}\left(0\right) = \frac{1}{2}$	$P_{X_2}\left(1\right) = \frac{1}{2}$
$P_{X_1}\left(0\right) = \frac{1}{2}$	$P_{X_1,X_2}(0,0) = \frac{1-p}{2}$	$P_{X_1,X_2}(0,1) = \frac{p}{2}$
$P_{X_1}\left(1\right) = \frac{1}{2}$	$P_{X_1,X_2}(1,0) = \frac{p}{2}$	$P_{X_1,X_2}(1,1) = \frac{1-p}{2}$

$$H(X_1) = 1$$

 $H(X_2 \mid X_1) = H(X_1 \mid X_2) = h(p)$
 $H(X_1, X_2) = H(X_1) + H(X_2 \mid X_1) = 1 + h(p)$
 $I(X_1; X_2) = H(X_1) - H(X_1 \mid X_2) = 1 - h(p)$

DSBS

A relationship between jointly distributed binary sources

P_{X_1,X_2}	$P_{X_2}\left(0\right) = \frac{1}{2}$	$P_{X_2}\left(1\right) = \frac{1}{2}$
$P_{X_1}\left(0\right) = \frac{1}{2}$	$P_{X_1,X_2}(0,0) = \frac{1-p}{2}$	$P_{X_1,X_2}(0,1) = \frac{p}{2}$
$P_{X_1}\left(1\right) = \frac{1}{2}$	$P_{X_1,X_2}(1,0) = \frac{p}{2}$	$P_{X_1,X_2}(1,1) = \frac{1-p}{2}$

$$H(X_1, X_2) = H(X_1) + H(X_2 | X_1) = 1 + h(p)$$

 $\leq H(X_1) + H(X_2) = 1 + 1 = 2$

 $H(X_1, X_2)$ is the minimum rate at which the sources can be jointly compressed.

Achievable Rate in Point to Point Communication

Key idea: consider long sequences

$$X^n = X_1, X_2, \dots, X_n$$
 (as n goes to infinity)

Practical techniques: Huffman coding, Lempel-Ziv coding.

Rate-Distortion Function

Communications with a fidelity constraint [Shannon, 1948]

High Resolution

 D^* is the maximum average distortion

Low Resolution

[Shannon, 1948] C. E. Shannon, "A mathematical theory of communication", Bell System Technical Journal, 1948.

Rate-Distortion Function

Communications with a fidelity constraint [Shannon, 1948]

[Shannon, 1948] C. E. Shannon, "A mathematical theory of communication", Bell System Technical Journal, 1948.

Rate-Distortion Function

Communications with a fidelity constraint [Shannon, 1948]

[Shannon, 1948] C. E. Shannon, "A mathematical theory of communication", Bell System Technical Journal, 1948.

Computing
$$f(X_1, X_2) = (X_1, X_2)$$

Distributed source compression [Slepian-Wolf, 1973]

Consider source sequences

$$X_j^n = X_{j1}, X_{j2}, \dots X_{jn}$$
 (as $n \to \text{infinity}$)

Slepian-Wolf showed that the sum rate for compression is

$$R_1 + R_2 \ge H(X_1, X_2)$$

Computing $f(X_1, X_2) = (X_1, X_2)$

Side information (full knowledge of X_2) [Wyner-Ziv, 1976]

Computing $f(X_1, X_2) = (X_1, X_2)$

Side information (full knowledge of X_2) [Wyner-Ziv, 1976]

where θ and β satisfy

i)
$$0 \le \theta \le 1$$
, $0 \le \beta < p_0$

ii)
$$D^* = \theta \beta + (1 - \theta)p_0$$
 where $p_0 = \min(p, 1 - p)$

[Wyner-Ziv, 1976] A. Wyner and J. Ziv, "The rate-distortion function for source coding with side information at the decoder," *IEEE Trans. Inf. Theory*, Jan. 1976.

Computing
$$f(X_1, X_2) = (X_1, X_2)$$

Side information (full knowledge of X_2) [Wyner-Ziv, 1976]

The rate region has a closed-form expression, which can be found by solving an optimization problem

Computing $f(X_1, X_2) = (X_1, X_2)$

[Slepian-Wolf, 1973] D. Slepian and J. K. Wolf, "Noiseless coding of correlated information sources," *IEEE Trans. Inf. Theory*, Jul. 1973.

[Wyner-Ziv, 1976] A. Wyner and J. Ziv, "The rate-distortion function for source coding with side information at the decoder," *IEEE Trans. Inf. Theory*, Jan. 1976.

Achievable Rate Region for Lossless Distributed Communication

The Slepian-Wolf Theorem. The optimal rate region for distributed coding of a 2-DMS $(X_1 \times X_2, P_{X_1, X_2})$ is the set of (R_1, R_2) pairs such that [Slepian-Wolf, 1973]

$$R_1 \ge H(X_1|X_2)$$

$$R_2 \ge H(X_2|X_1)$$

$$R_1 + R_2 \ge H(X_1, X_2)$$

Achievable Rate Region for Lossless Distributed Communication

The Slepian-Wolf Theorem. The optimal rate region for distributed

coding of a 2-DMS $(\mathcal{X}_1 \times \mathcal{X}_2, P_{X_1, X_2})$ is the set of (R_1, R_2) pairs such

that [Slepian-Wolf, 1973]

$$R_1 \ge H(X_1|X_2)$$
 $R_2 \ge H(X_2|X_1)$
 $R_1 + R_2 \ge H(X_1, X_2)$
 $H(X_2|X_1)$
 $H(X_2|X_1)$

 $H(X_1|X_2)$

 $H(X_1)$

[Slepian-Wolf, 1973] D. Slepian and J. K. Wolf, "Noiseless coding of correlated information sources," *IEEE Trans. Inf. Theory*, Jul. 1973.

Achievable Rate Region for Lossless **Distributed Communication**

The Slepian-Wolf Theorem. The optimal rate region for distributed

coding of a 2-DMS $(X_1 \times X_2, P_{X_1, X_2})$ is the set of (R_1, R_2) pairs such

that [Slepian-Wolf, 1973]

$$R_1 \ge H(X_1|X_2)$$

$$R_2 \geq H(X_2|X_1)$$

$$R_1 + R_2 \ge H(X_1, X_2)$$

SOU

[SIE The encoding scheme to achieve these rates relies on orthogonal binning of source sequences.

How to compute
$$f(X_1, X_2) \neq (X_1, X_2)$$
?

Any ideas?

Distributed functional compression

Distributed Function Computation

N=3 distributed workers, 1 user node, datasets

Demand: K_c functions $\{f_j(X_1, X_2, X_3), j \in [K_c]\}$

Motivation: Why Compress Massive Amount of Data?

Limited resources &

topological constraints

Privacy sensitive data

Redundancy

geographically dispersed sources correlation within & across sources destination only interested in a function of data

Motivation: Why Compress Massive Amount of Data?

Limited resources &

topological constraints

Privacy sensitive data

Redundancy

geographically dispersed sources correlation within & across sources destination only interested in

Goal. to achieve a task (abstracted by a function) rather than transmitting all raw data over a communication network

State of the Art

Distributed source compression [Slepian-Wolf, 1973], [Wyner-Ziv, 1976], practical implementations [Pradhan-Ramchandran, 2013], [Coleman et al, 2006]

Coding for computing, rate region and graph entropy [Körner, 1973], [Alon-Orlitsky, 1996], [Orlitsky-Roche, 2001], [Doshi et al, 2010], [Feizi-Médard, 14], [Feng et al., 2004], [Gallager, 1988], [Kamath-Manjunath, 2008], network flows for computation[Shah et al., 2013], over-the-air computing [Nazer-Gastpar, 2007], [Lim et al., 2019]

Network coding and linear functions [Ho et al., 2006], [Kowshik-Kumar, 2010, 2012], [Appuswamy-Franceschetti, 2014], [Koetter et al., 2004], [Koetter-Médard, 2003], [Huang et al., 2018], [Li et al., 2003]

Parameter estimation [Ozgur, 2018], information theory-based learning [Zheng, Wornell, 2017], principal component analysis [Salamatian et al., 18]

State of the Art

Distributed matrix multiplication [Jia-Jafar, 2021], precision in matrix multiplication [Wang-Jia-Jafar, 2021], secure matrix multiplication [Chang-Tandon, 2018], [Jia-Jafar, 2021], [Chen *et al.*, 2021], [D'Oliveira *et al.*, 2020], matrix multiplication with stragglers [Li *et al.*, 2021]

Coding & communication-computation complexity tradeoffs coded distributed computing [Maddah-Ali-Niesen, 2014], [Dutta et al., 2019], [Li et al, 2016, 2018], [Yu-Maddah-Ali-Avestimehr, 2018], gradient coding [Tandon et al., 2017], communication-computation complexity tradeoffs [Khalesi-Elia, 2022], private information retrieval [Vithana-Banawan-Ulukus, 2021]

Functions with structures [Shen et al., 2018], [Giridhar-Kumar, 2005], [Gorodilova, 2019], linearly separable functions [Wan et al., 2021], nomographic functions [Goldenbaum et al., 2013, 2014], structured codes [Pastore et al., 2023]

Related work aims to have a joint understanding of structures of networks, functions, and data

Computing $f(X_1, X_2) \neq (X_1, X_2)$

Example: content caching at wireless edge

The receiver is not interested in the entire movie catalog, but a specific function of the catalog.

Example: binary XOR function [Feizi-Médard, 2014]

To send the sources in their entirety, we need 3 bits.

Sending colors instead of sending data

Example: binary XOR function [Feizi-Médard, 2014]

To compute the binary XOR function, we need 2 bits.

Communication Cost for Computing

Example: binary XOR function [Feizi-Médard, 2014]

IDEA: Exploit the structure of the function to decide how to distribute computation in networks

Example: Distributed encoding the modulo two sum of binary sources (DSBS) [Körner-Marton, 1979]

What is the lowest rate pair to reconstruct $f(X_1, X_2)$?

We can use Slepian-Wolf, which requires

$$H(X_1, X_2) = H(X_1) + H(X_2|X_1) = 1 + h(p)$$

Any other guesses?

[Körner, Marton, 1979] J. Körner, K. Marton, "How to encode the modulo two sum of binary sources", IEEE Trans. Inf. Theory, 1979.

Example: Distributed encoding the modulo two sum of binary sources (DSBS) [Körner-Marton, 1979]

(i) Choose a binary encoding matrix $A \in \mathbb{F}_2^{k \times n}$ such that

$$\frac{k}{n} \approx H(X_1 \oplus_2 X_2) = h(p)$$

(ii) Source j computes $AX_i^n \in \mathbb{F}_2^{1 \times k}$ and sends

$$AX_j^n$$

- (iii) Receiver computes $AX_1^n \oplus_2 AX_2^n = A(X_1^n \oplus_2 X_2^n)$,
- (iv) Receiver then recovers $X_1^n \oplus_2 X_2^n$

[Körner, Marton, 1979] J. Körner, K. Marton, "How to encode the modulo two sum of binary sources", IEEE Trans. Inf. Theory, 1979.

Example: Distributed encoding the modulo two sum of binary sources (DSBS) [Körner-Marton, 1979]

(i) Choose a binary encoding matrix $A \in \mathbb{F}_2^{k \times n}$ such that

$$\frac{k}{n} \approx H(X_1 \oplus_2 X_2) = h(p)$$

(ii) Source j computes $AX_j^n \in \mathbb{F}_2^{1 \times k}$ and sends

$$AX_j^n$$

- (iii) Receiver computes $AX_1^n \oplus_2 AX_2^n = A(X_1^n \oplus_2 X_2^n)$,
- (iv) Receiver then recovers $X_1^n \oplus_2 X_2^n$

This scheme is referred to as Structured Binning.

Sum rate of [Slepian-Wolf, 1973]:

$$H(X_1, X_2) = 1 + h(p)$$

Sum rate of [Körner-Marton, 1979] (OPTIMAL):

$$2H(X_1 \bigoplus_2 X_2) = 2h(p) \le 1 + h(p)$$

Körner-Marton approach is constructive, as it captures the structure of functions and sources, but is only valid for the binary XOR function

Computing $f(X_1, X_2) \neq (X_1, X_2)$

Example: Wyner-Ziv type communication system [Yamamoto, 1982]

where $\mathcal{P}(d)$ is the set of the random variables \widehat{X}_1 that satisfy

(i)
$$I(X_2; \hat{X}_1 | X_1) = 0$$
 (that is $X_2 - X_1 - \hat{X}_1$ forms a Markov chain)

(ii)
$$\mathbb{E}\left[D\left(f(X_1,X_2),\ g(\hat{X}_1,X_2)\right)\right] \leq d$$
 (average distortion constraint)

[Yamamoto, 1982] H. Yamamoto, "Wyner-Ziv Theory for a General Function of the Correlated Sources", IEEE Trans. Inf. Theory, 1982.

Computing $f(X_1, X_2) \neq (X_1, X_2)$

Example: Wyner-Ziv type communication system [Yamamoto, 1982]

whe Yamamoto does not give a constructive method

(i) I (to encode the source for the specific function.

(ii)
$$E |D(f(X_1, X_2), g(X_1, X_2))| \le d$$
 (average distortion constraint)

[Yamamoto, 1982] H. Yamamoto, "Wyner-Ziv Theory for a General Function of the Correlated Sources", IEEE Trans. Inf. Theory, 1982.

Characteristic Graphs for Computing

- Recall that **Yamamoto's** lower bound on R [Yamamoto, 1982] does not give a constructive method to encode the source for the specific computation task $f(X_1, X_2)$
- The first constructive approach to functional compression is devised in [Alon-Orlitsky, 1996].

[Yamamoto, 1982] H. Yamamoto, "Wyner-Ziv Theory for a General Function of the Correlated Sources", IEEE Trans. Inf. Theory, 1982.
[Alon, Orlitsky, 1996] N. Alon and A. Orlitsky, "Source coding and graph entropies," IEEE Trans. Inf. Theory, Sep. 1996.

Characteristic Graphs for Computing

- Recall that **Yamamoto's** lower bound on R [Yamamoto, 1982] does not give a constructive method to encode the source for the specific computation task $f(X_1, X_2)$
- The first constructive approach to functional compression is devised in [Alon-Orlitsky, 1996].

[Yama Corre [Alon Trans Alon-Orlitsky gives a constructive graph coloringbased method to encode the source for the specific function.

Characteristic Graphs for Computing

How to build a characteristic graph

$$G_{X_1} = (X_1, \mathcal{E}_1)$$
 of source X_1 ?

- Vertices are different sample values
- For given vertices $x_1^1, x_1^2 \in \mathcal{X}_1$, it holds $(x_1^1, x_1^2) \in \mathcal{E}_1$ if and only if

i)
$$f(x_1^1, x_2) \neq f(x_1^2, x_2)$$

ii)
$$\mathbb{P}(x_1^1, x_2) \times \mathbb{P}(x_1^2, x_2) > 0$$

Characteristic graph

Two vertices are connected if they should be distinguished.

Example

Let $X_1 \sim \text{Unif}[0:4]$ and X_2 is a random variable such that

Characteristic graph

Example

Let $X_1 \sim \text{Unif}[0:4]$ and X_2 is a random variable such that

Assign the set of vertices valid colors:

$$c_{G_{X_1}} = \{c_1, c_2, c_3\}$$

$$P(c_1) = P(c_2) = 2/5, \quad P(c_3) = 1/5$$

Example

Let $X_1 \sim \text{Unif}[0:4]$ and X_2 is a random variable such that

Assign the set of vertices valid colors:

$$c_{G_{X_1}} = \{c_1, c_2, c_3\}$$

$$P(c_1) = P(c_2) = 2/5, \quad P(c_3) = 1/5$$

 $c_{1\overline{2}}$ $c_{1\overline{2}}$ $c_{1\overline{2}}$ $c_{3\overline{2}}$

The chromatic entropy of this graph is

$$H(c_{G_{X_1}}) \approx 1.52 < H(X_1) = 2.32$$

Example

Let $X_1 \sim \text{Unif}[0:4]$ and X_2 is a random variable such that

Assign the set of vertices valid colors:

$$c_{G_{X_1}} = \{c_1, c_2, c_3\}$$

$$P(c_1) = P(c_2) = 2/5, \quad P(c_3) = 1/5$$

The chromatic entropy of this graph is

$$H(c_{G_{X_1}}) \approx 1.52 < H(X_1) =$$

Characteristic graph

Adjacent vertices have distinct colors.

Example

Let $X_1 \sim \text{Unif}[0:4]$ and X_2 is a random variable such that

Assign the set of vertices valid colors:

$$c_{G_{X_1}} = \{c_1, c_2, c_3\}$$

$$P(c_1) = P(c_2) = 2/5, \quad P(c_3) = 1/5$$

The chromatic entropy of this graph is

$$H(c_{G_{X_1}}) \approx 1.52 < H(X_1) =$$

Adjacent vertices have

Exploit Körner's graph entropy [Körner, 1973] to compute the true rate region for distributed functional compression.

Coloring of Trees is not NP-hard.

Sources send their colorings.

Using received colors, the node selects corresponding color from G_{X_1,X_2}

Computations at intermediate nodes reduce the transmission rate!

Körner's Graph Entropy

Chromatic entropy of a graph [Alon-Orlitsky, 1996]

$$H_{G_{X_1}}^{\chi}(X_1) = \min_{c_{G_{X_1}} \text{ is a valid coloring of } G_{X_1}} H(c_{G_{X_1}}(X_1))$$

Körner's theorem for the relation between the chromatic entropy and the graph entropy [Körner, 1973]

$$\lim_{n\to\infty} \frac{1}{n} H_{G_{X_1}}^{\chi}(X_1) = H_{G_{X_1}}(X_1)$$

[Alon-Orlitsky, 1996] N. Alon and A. Orlitsky, "Source coding and graph entropies," IEEE Trans. Inf. Theory, Sep. 1996.

[Körner, 1973] J. Korner, "Coding of an information source having ambiguous alphabet and the entropy of graphs," in Proc., Prague Conf. Inf. Theory, 1973.

79

2nd OR power graph... n-th power graph

- $G_{X_1}^2$ is the second power graph of the characteristic graph G_{X_1}
- $G_{X_1}^2$ requires 8 colors (vs 9 colors)
- Two subsets of vertices are fully connected if each vertex of one set is connected to every vertex in the other set.

Communication-computation complexity tradeoffs

Distributed Function Computation

N distributed workers, 1 user node, datasets

Demand: K_c functions $\{f_j(X_1, X_2, ..., X_N), j \in [K_c]\}$

General Distributed Computation Setting

$$K$$
 datasets, W_k , $k \in [K] = \{1, ..., K\}$
 N distributed workers, $\Omega = [N] = \{1, ..., N\}$
Datasets assigned to worker $i \in [N]$
 $X_i = \{W_k\}_{k \in \mathbb{Z}_i}$, where $\mathbb{Z}_i \subseteq [K]$

User wants to recover $K_c \ge 1$ functions $\{f_j(X_1, ..., X_N), j \in [K_c]\}$

Number of workers user should wait to recover $\{f_j\}$:

$$N_r$$

Minimum computation capacity per worker:

$$M = \frac{K}{N}(N - N_r + 1)$$

Distributed Computation of General Functions

Identity function $f(X_1, ..., X_N) = (X_1, ..., X_N)$ Affine function $f(X_1, ..., X_N) = \sum_{i \in [N]} c_i X_i$ Bilinear functions $f(X_1, ..., X_N) = \prod_{i \in [N]} c_i X_i$ Matrix multiplication $f(X_1, ..., X_N) = \mathbf{A} \times \mathbf{B}$ Sparse polynomials

$$f(X_1, ..., X_N) = \sum_{j \in [t]: \sum_{k \in [K]} l_k \le D} a_{j, l_{[K]}} \prod_{k \in [K]} W_k^{l_k}$$

and general nonlinear functions (multi-shot and one-shot)

How much rate is needed for computation? minimum total communication cost of all workers

N distributed workers and 1 user that wants to recover

$$f(X_1, \dots, X_N) = \mathbf{A} \times \mathbf{B} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_N \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_N \end{bmatrix}$$
$$= \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2 + \dots + \mathbf{A}_N \mathbf{B}_N \in \mathbb{F}^{N \times N}$$

where

$$A_k = \begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{Nk} \end{bmatrix} \in \mathbb{F}^{N \times 1}, \text{ column } k \text{ of } A \in \mathbb{F}^{N \times N}$$

$$\boldsymbol{B}_k = [b_{k1} \quad b_{k2} \quad \dots \quad b_{kN}] \in \mathbb{F}^{1 \times N}$$
, row k of $\boldsymbol{B} \in \mathbb{F}^{N \times N}$

Placement of datasets (subsets of A_k and B_k) is cyclic:

$$X_1 = \{W_1, W_2\}, \quad X_2 = \{W_2, W_3\}, \dots, \quad X_N = \{W_N, W_1\}$$

where $W_k = \{A_k, B_k\}$, $k \in [N]$.

Number of demanded functions, $K_c = N^2$ (an $N \times N$ matrix) Recovery threshold, $N_r = N - 1$ Number of datasets, $K = 2N^2$

Cache (or computation) capacity, $M = \frac{K}{N}(N - N_r + 1) = 4N$

Number of demanded functions, $K_c = N^2$ (an $N \times N$ matrix) Recovery threshold, $N_r = N - 1$ Number of datasets, $K = 2N^2$

Cache (or computation) capacity, $M = \frac{K}{N}(N - N_r + 1) = 4N$

How much rate is needed for computation?

minimum total communication cost of all workers

Number of demanded functions, $K_c = 9$ (an 3×3 matrix) Recovery threshold, $N_r = 2$ Number of datasets, K = 18Cache (or computation) capacity, M = 12

$$f(X_1,...,X_3) = A \times B = A_1B_1 + A_2B_2 + A_3B_3$$

Number of demanded functions, $K_c = 9$ (an 3× 3 matrix) Recovery threshold, $N_r = 2$ Number of datasets, K = 18Cache (or computation) capacity, M=12

90

Number of demanded functions, $K_c = 9$ (an 3×3 matrix) Recovery threshold, $N_r = 2$ Number of datasets, K = 18Cache (or computation) capacity, M = 12

Number of demanded functions, $K_c = 9$ (an 3×3 matrix) Recovery threshold, $N_r = 2$ Number of datasets, K = 18Cache (or computation) capacity, M = 12

Summary of the Lecture

- Distributed computation motivation, challenges
- Distributed source compression for computation
- Existing results, examples for the asymptotic rates for special function classes (+, x, A×B,...)
- Distributed computation in broader topologies, functions of correlated data

Exploit structures in data, function, and topology

Thank You!

Questions?

derya.malak@eurecom.fr