Abstract Algebra I - Exercises

1. Sets

- 1) Use three different expressions to express the set of multiplies of 3
- 2) Show that the power set of \mathbb{N} and \mathbb{R} have the same cardinality.
- 3) Show that \mathbb{R} and \mathbb{C} have the same cardinality.

2. Equivalence relations

1) In $\mathbb{Z}_5 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$, consider a relation \mathcal{R} so that for $\bar{a}, \bar{b} \in \mathbb{Z}_5$,

$$\bar{a}\mathcal{R}\bar{b}$$
 if $\overline{a^k-b}=\bar{0}$

for some integer k.

- a) Write down \mathcal{R} as a set.
- b) Determine if \mathcal{R} is an equivalence relation.
- 2) Let $v_1 = (3, 1)$ and $v_2 = (1, 3)$. For $x, y \in \mathbb{R}^2$, define

$$x \sim y$$
 if $x - y = k_1v_1 + k_2v_2$ for some $k_1, k_2 \in \mathbb{Z}$.

- a) Show that "~" defines an equivalence relation.
- b) Sketch all points in the equivalence class $\overline{(1,1)}$ on \mathbb{R}^2 .
- c) Find a fundamental domain (which is a set of representatives of all equivalence classes).
- 3) Let S be the collection of all subspaces in \mathbb{R}^3 . For two subspaces V and W in \mathbb{R}^3 , define

$$V \sim W$$
 if there exists some linear isomorphism $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(V) = W$.

- a) Show that " \sim " defines an equivalence relation on S.
- b) Find the number of equivalence classes.
- 4) For $A, B \in M_n(\mathbb{R})$, define

$$A \sim B$$
 if there exists an invertible matrix P such that $B = PAP^{-1}$.

Show that " \sim " defines an equivalence relation on $M_n(\mathbb{R})$. In this case, an equivalence class is called an conjugacy class.

3. Roots of unity and \mathbb{Z}_n

- 1) Let ρ be an injective map from \mathbb{Z}_4 to $U_4=\{1,-1,i,-i\}$ so that $\rho(a+b)=\rho(a)\rho(b)$ for all $a,b\in\mathbb{Z}_4$.
 - a) Show that $\rho(\bar{0}) = 1$.
 - b) Show that $\rho(\bar{2}) = -1$.
 - c) Find all possibilities of ρ .
- 2) Let >, m be two positive integer. Let $\rho: \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\rho(\bar{a}) = \bar{a}$. Show that ρ is well-defined if and only if m|n.
- 3) For $\bar{a}, \bar{b} \in \mathbb{Z}_n$, define

$$\bar{a} \cdot \bar{b} := \overline{a \cdot b}$$

Show that the above binary operator is well-defined.

4) Let S be the set of conjugacy classes of $M_n(\mathbb{R})$. Show that the trace and the determinant function are well-defined on S.

4. Binary operations

- 1) a) Show that the $\mathbb{Z}_6 \setminus \{\bar{0}\}$ under multiplication is not closed.
 - b) Show that the multiplication on $\mathbb{Z}_n \setminus \{\bar{0}\}$ is a not binary operator if n is not a prime number.
- 2) Determine if the following binary operators are commutative and associated.
 - a) Average on \mathbb{R} : $a * b := \frac{1}{2}(a + b)$.
 - b) Matrix addition
 - c) Subspace addition $V + W := \{\vec{v} + \vec{w} | \vec{v} \in V, \vec{w} \in W\}.$
 - d) Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with $f(a, b) = a^b$.

5. Isomorphic binary structures

1) Consider the following four binary operators on $S = \{a, b\}$.

- a) Which of them are commute?
- b) Find the identity of each binary operator, if the identity exists.
- c) Is any of them isomorphic to $(\mathbb{Z}_2, +)$? If so, write down the map.
- d) Is any of them isomorphic to $(\mathbb{Z}_2, *)$? If so, write down the map.
- 2) Let

$$S = \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) : a,b,d \in \mathbb{R}, ad \neq 0 \right\} \quad \text{ and } \quad S' = \left\{ \left(\begin{array}{cc} a & 0 \\ c & d \end{array} \right) : a,c,d \in \mathbb{R}, ad \neq 0 \right\}$$

Then

- a) Show that matrix multiplication defines a binary operator on S.
- b) Consider $f: S \to S'$ given by $f(A) = A^T$. Verify whether f is an isomorphism or not. (You have to check three conditions of isomorphisms.)
- c) Construct an isomorphism from S to S'.

6. Structure properties

1) Prove that

"There exists a non-identity element $x \in S$ such that x * x is the identity."

is a structural property of a binary structure.

- 2) Show that $(\mathbb{Z}, +)$ and (\mathbb{Q}, \cdot) are not isomorphic.
- 3) Find a structure property to show that $(\mathbb{R}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic.
- 4) Find a structure property to show that $(M_2(\mathbb{R}), +)$ and $(M_2(\mathbb{R}), *)$ are not isomorphic.
- 5) Find a structure property to show that $(\mathbb{Z}^2, +)$ and $(\mathbb{Z}, +)$ are not isomorphic.

7. Groups

- 1) a) Show that $\mathbb{Z}_9^* = \{\bar{1}, \bar{2}, \bar{4}, \bar{5}, \bar{7}, \bar{8}\}$ under multiplication is a group.
 - b) Show that (\mathbb{Z}_9^*, \cdot) is isomorphic to $(\mathbb{Z}_6, +)$.
- 2) Show that the cross product on \mathbb{R}^3 is a binary operator, but (\mathbb{R}^3, \times) is not a group.
- 3) Show that the bijection from $\{1, \dots, n\}$ forms a group under composition, denoted by S_n . How many elements does this group have?
- 4) List of all symmetries of an equilateral triangle. Suppose we have known these symmetries forms a group. Show that it is isomorphic to S_3 .

8. Elementary properties of groups

- 1) Let G be a finite group. For all $g \in G$, show that there exists some positive integer n such that $g^n = e$.
- 2) If G is an infinite group, does 1) still hold?

9. Group of small cardinalities

- 1) Let $G = \{e, a_1, a_2, a_3, a_4\}$ be a group of order 5.
 - a) Show that $(a_1)^2 \neq e$.
 - b) Show that $(a_1)^3 \neq e$.
 - c) Show that $(a_1)^4 \neq e$.
 - d) Show that $G \cong \mathbb{Z}_5$.
- 2) Show that the additive groups \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, $(\mathbb{Z}_2)^3$ are not isomorphic.

10. Multiplicative group \mathbb{Z}_n^{\times}

- 1) Let (S, *) be an associative binary structure with identity e. Let S' be the subset of S consisting of all elements with inverse. Show that * induces a binary operator on S' and S' is a group under the induced operator.
- 2) Find multiplicative inverses of elements in $\mathbb{Z}_{15}^{\times} = \{\bar{x} \in \mathbb{Z}_{15} : \gcd(x, 15) = 1\};$
- 3) Find a structure property to show that $(\mathbb{Z}/12\mathbb{Z})^{\times} \not\cong \mathbb{Z}/4\mathbb{Z}$ (You do not have to prove the property is structural.)
- 4) Find a group isomorphism from $(\mathbb{Z}/12\mathbb{Z})^{\times}$ to $(\mathbb{Z}/8\mathbb{Z})^{\times}$. (You have to verify the map you defined is indeed a group isomorphism.)

11. Subgroups

1) Let G be a group. Show that the center

$$Z_G = \{g \in G | xg = gx, \text{ for all } \mathbf{x} \in G\}$$

is a subgroup of G.

2) Let x be an element in a group G, show that the centralizer

$$C_G(x) = \{ g \in G | xg = gx \}$$

is a subgroup of G.

12. Subgroups

1) Let x be an element in a group G, show that the centralizer

$$C_G(x) = \{ g \in G, xg = gx \}.$$

is a subgroup of G.

- 2) Draw the tree of subgroups of the additive group \mathbb{Z}_6 .
- 3) Draw the tree of subgroups of \mathbb{Z}_{40} .
- 4) Given two subgroups H_1 and H_2 of a group G. Suppose $H_1 \not\subseteq H_2$ and $H_2 \not\subseteq H_1$. Show that $H_1 \cup H_2$ is not a subgroup.

(Hint : Show that $H_1 \cup H_2$ is not closed under the group operation.)

13. Cyclic Subgroup

- 1) Find all cyclic subgroups of multiplicative group $(\mathbb{Z}_9)^{\times}$.
- 2) Show that every subgroup of $(\mathbb{Z}_9)^{\times}$ is cyclic.
- 3) Fix an element a of order n in a group G. Define an equivalent relation on G as follows

$$x \sim y$$
 if $x = a^k y$ for some $k \in \mathbb{Z}$.

- a) Show that every equivalence class has n elements.
- b) When G is a finite group, show that n divides |G|.
- c) Show that when |G| is a prime $p, G \cong \mathbb{Z}_p$.
- 4) Let G be an abelian group. For $a, b \in G$, show that

$$\langle a, b \rangle = \{a^n b^m | n, m \in \mathbb{Z}\}.$$

14. Cyclic Group

- 1) Let $G = (\mathbb{Z}_{11}^{\times}, *)$.
 - a) Show that G is a cyclic group (by finding a generator of G).
 - b) Draw the subgroup diagram of G.
- 2) Let $G = (\mathbb{Z}_{15}^{\times}, *)$.
 - a) Show that G is not cyclic group.
 - b) Show that G can be generated by two elements.

15. Groups of Permutation

- 1) Suppose two sets A and B have the same cardinality. Show that the groups of permutations S_A and S_B are isomorphic.
- 2) Examine a deck of cards and separate them into subsets that have the same kinds of symmetry.

16. Cycle Notation

- 1) Write $g={12345678 \choose 43251876}\in S_8$ as in cycle notation.
- 2) Write $g = \binom{1234567}{4325176} \in S_7$ as in cycle notation.
- 3) Show that the order of any element in S_n divides n!.
- 4) Find the minimal number of n such that S_n contains an element of order 10.
- 5) 4 numbered players must find their own numbers in one of 4 drawers in order to win. The rules of the game is following: 1) Players can discuss their strategy before playing the game. 2) Each player may open only 2 drawers and only himself/herself can see the result. 3) Players cannot communicate with other players once the game has been started.
 - a) Show that for each player, the probability of finding his/her own numbers using any strategy is 1/2.
 - b) List all cycle structures of elements in S_4 .
 - c) Show that there exists a strategy for players that the probability of wining the game is at least 5/12.
- 6) Let sigma be the perfect in-shuffle of 2n cards. Show that the order of σ equals the multiplicative order of 2 in $\mathbb{Z}_{2n-1}^{\times}$.

17. Symmetry group of n-gons

1) Let G be the symmetric group of a regular pentagon as shown in the below figure.

Let σ be the counterclock-wise rotation of 72° and τ be the reflection in G which fixes vertex 1.

- a) Write down σ and τ using cycle notations.
- b) Show that $\sigma \tau = \tau \sigma^{-1}$.
- c) Show that G is not a cyclic group.
- d) Show that G contains exactly 10 elements.
- e) For a (linear) rotation σ' and a (linear) reflection τ' on \mathbb{R}^2 , show that we always have

$$\sigma'\tau' = \tau'(\sigma')^{-1}.$$

2) Let $G = D_6$ be the group of symmetries of a regular hexagon as shown in the below figure.

5

a) Describe all elements of G in terms of symmetries.

- b) Write all elements of G in cycle notations.
- c) Show that G is not commutative.
- d) Suppose the following figure is drawn in the hexagon.

Find the group of symmetries of the hexagon with the figure.

- 3) Let G be the group of rotational symmetries of a regular tetrahedron. Describes all elements in G.
- 4) Show that for $n \geq 3$, S_n can be generated by $(1 \cdots n)$ and (12).

18. Cayley Theorem

1) Let $G = S_3$, describe the group homomorphism from G to S_6 obtained in Cayley Theorem.

19. Transposition

- 1) Let G be a subgroup of S_n . Show that if G contains an odd permutation, then half of elements of G are odd and half of elements of G are even.
- 2) Identify D_6 as a subgroup of S_6 . Let H be a subgroup of D_6 consisting of all even permutations. Find the group structure of H.

20. Cosets

- 1) Let $G = A_4$ be the alternating subgroup on 4 letters.
 - a) List all element of G.
 - b) Let $H = \langle (123) \rangle$. Find all left cosets of H.
- 2) Let $G = \langle \sigma, \tau | \sigma^6 = \tau^2 = e, \sigma \tau = \tau \sigma^{-1} \rangle$.
 - a) List all element of G.
 - b) Let $H = \langle \sigma^3 \rangle$. Find all left cosets of H.
- 3) Let $G = \mathbb{Z}^2$ and $H = \langle (2,0), (0,3) \rangle$. Find all left cosets of H.
- 4) Let G be a group with subgroups H and K. Suppose $K \subset H$ and two indexes [G:H] and [H:K] are all finite. Show that [G:K] = [G:H][H:K].

22. Applications of Lagrange's Theorem

- 1) Suppose we have known that every group of order 6 is isomorphic \mathbb{Z}_6 or S_3 . Find all subgroups of D_6 .
- 2) Find all subgroups of A_4 .

23. Direct Product

- 1) Show that S_4 and $\mathbb{Z}_4 \times S_3$ are not isomorphic.
- 2) Show that for any two positive n and m, S_{n+m} contains a subgroup isomorphic to $S_n \times S_m$.

24. Finitely Generated Abelian Groups

- 1) Find all possible structure of abelian groups of size 500.
- 2) Find the number of abelian groups of order 32 upto isomorphism.
- 3) Show that \mathbb{Z}^n can not be generated by n-1 elements.

25. Structures of Finite Abelian Groups

- 1) Determine the group structure of $(\mathbb{Z}_{60})^{\times}$.
- 2) Determine the group structure of $(\mathbb{Z}_{32})^{\times}$.
- 3) Let G be an abelian group and p be a prime. Show that

$$G_p = \{a \in G | a^{p^k} = e, \text{ for some } k \in \mathbb{N}\}$$

is a subgroup.

4) Let $G \cong \mathbb{Z}_{p^{r_1}} \times \cdots \times \mathbb{Z}_{p^{r_k}}$ where p is a prime. Show that

$$\log_p \left(\frac{|G^{(p^{i-1})}|}{|G^{(p^i)}|} | \right) = |\{r_j | r_j \ge i\}|.$$

Use the above result to show that the structure of G can be determined by $|G^{(p)}|, |G^{(p^2)}|, \cdots$

26. Homomorphism

- 1) Let ρ be a homomorphisms from \mathbb{Z}_n to \mathbb{Z}_m .
 - a) Show that the order of $\rho(a)$ divides the greatest common divisor of the order of a and m.
 - b) Describe all homomorphisms from \mathbb{Z}_6 to \mathbb{Z}_8 .
 - c) Find the number of all possible homomorphisms from \mathbb{Z}_n to \mathbb{Z}_m
- 2) Let Φ be a group homomorphism from S_3 to \mathbb{Z}_n .
 - a) If n=2, construct a nontrivial Φ .
 - b) If n=3, show that Φ is always trivial. (Recall Φ is trivial if Φ maps the whole S_3 to the identity.)

27. Kernels of Homomorphism

- 1) Consider the map $\Phi: \mathbb{Z} \to \mathbb{Z}_4 \times \mathbb{Z}_6$ given by $\Phi(x) = (x \mod 4, x \mod 6)$.
 - a) Show that Φ is a group homomorphism.
 - b) Find the kernel of Φ
 - c) Is Φ surjective (onto)?
- 2) Let $G = D_6 = \langle \sigma, \tau | \sigma^6 = \tau^2 = e, \sigma\tau = \tau\sigma^{-1} \rangle$. Let $H_1 = \langle \sigma^2, \tau \rangle \cong D_3$. Find a group homomorphsim from G with kernel equal to H_1 .

28. Normal Subgroups

- 1) Let H and N be two subgroups of G. Suppose N is a normal subgroup of G. Show that $N \cap H$ is a normal subgroup of H.
- 2) Let $H = \{e, (12)(34), (14)(23), (13)(24)\}$ be a subgroup of S_4 . Show that H is a normal subgroup.
- 3) Let $G = \mathbb{Z} \times \mathbb{Z}$, $H = \langle (2,1), (1,2) \rangle$, and $N = \langle (3,0), (0,3) \rangle$.
 - a) Show that N < H.
 - b) Find [G:H]. (Hint: You may use that fact [G:N] = [G:H][H:N].)
- 4) Let $Q_8=\{\pm 1,\pm i,\pm j,\pm k\}$ be the quaternion group where $i^2=j^2=k^2=-1$ and ij=-ji=k. Let $H=\{\pm 1\}$, a subgroup of Q_8 . Then

$$Q_8 = H \sqcup iH \sqcup jH \sqcup kH$$
.

Label the above cosets by 1,2,3, and 4 respectively and consider the map $\rho: Q_8 \to S_{Q_8/H} \cong S_4$ given by $\rho(g)(xH) = gxH$.

- a) Show that H is normal.
- b) Find the kernel of ϕ .
- c) Find $\phi(Q_8)$ as a subgroup of S_4 .
- d) Determine the group structure of $\phi(Q_8)$.
- e) Show that Q_8 is not isomorphic to any subgroup of S_4 .

29. Quotient Group Computation

1) Let

$$G = \left\{ \begin{pmatrix} a & b \\ \bar{0} & c \end{pmatrix}, a, c \in \mathbb{Z}_4^{\times}, b \in \mathbb{Z}_4 \right\}$$

be a multiplicative group and $H=\left\{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}, \begin{pmatrix} \bar{3} & \bar{0} \\ \bar{0} & \bar{3} \end{pmatrix}\right\}$ be its subgroup.

- a) List all left cosets of H in G.
- b) Show that H is a normal subgroup.
- c) Determine if G/H is abelian or not.
- d) Determine the structure G/H.
- e) Construct a group isomorphism from G/H to $\left\{ \begin{pmatrix} a & b \\ \bar{0} & \bar{1} \end{pmatrix}, a \in \mathbb{Z}_4^{\times}, b \in \mathbb{Z}_4 \right\}$
- 2) a) Consider a map $\rho: \mathbb{Z}^3 \to \mathbb{Z}^2$ given by $\rho(x,y,z) = (y-2x,z-3x)$. Using this map to show that $\mathbb{Z}^3/\langle (1,2,3)\rangle \cong \mathbb{Z}^2$.
 - b) Show that if gcd(a, b, c) = 1, then $\mathbb{Z}^3/\langle (a, b, c) \rangle \cong \mathbb{Z}^2$. (You may first try the case (a, b, c) = (6, 10, 15))
- 3) Let $G = \mathbb{Z}^2$ and $H = \langle (2,1), (-1,2) \rangle$.
 - a) Find the group structure of G/H.
 - b) Find a surjective group homomorphism from G with kernel equal to H.
- 4) (Extra homework) Let H be a subgroup of \mathbb{Z}^n . Show that H is generated by at most n elements. (Hint: Consider $p: \mathbb{Z}^n \to \mathbb{Z}^{n-1}$ given by $p((a_1, a_2, \cdots, a_n)) = (a_1, a_2, \cdots, a_{n-1})$. Find a subgroup H' in H such that the restriction of p on H' is an isomorphism from H' to p(H). Show that $H \cong H' \oplus (\ker(p) \cap H)$.

30. Normal Subgroups

31. Classification of Finite Groups

32. Cayley Graphs

- 1) Let $G = D_6 = \langle \sigma, \tau | \sigma^6 = \tau^2 = e, \sigma\tau = \tau\sigma^{-1} \rangle$ and $S = \{\sigma, \sigma^{-1}, \tau\}$. Draw the Cayley graph associated to (G, S).
- 2) Find a pair (G, S) such that the Cayley graph associated to (G, S) is the following graph.

33. Rings and Fields

- 1) Show that $R = \{a + bi | a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .
- 2) Let $R = M_2(\mathbb{Z}_2)$ be the ring consisting of all 2 by 2 matrices with entries in \mathbb{Z}_2
 - a) Find the number of units in R (which are elements with determinant not equal to zero).
 - b) Find the structure of the group of units R^{\times} (under matrix multiplication).
- 3) Let

$$R = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}_p \right\}$$

- a) Show that R is a subring of $M_2(\mathbb{Z}_p)$.
- b) Show that R is commutative.
- c) Show that if p = 2, R is a not field.
- d) Show that if p = 3, R is a field.
- e) Show that R is a field if and only if $x^2 \equiv -1 \mod p$ has no solution.
- 4) Let R be a ring with unity. Show that

$$\langle 1_R \rangle = \{ m 1_R | m \in \mathbb{Z} \}$$

forms a subring of R. Moreover, $\langle 1_R \rangle \cong \mathbb{Z}$ or \mathbb{Z}_n for some n as a ring.

- 1) Let $R = \mathbb{Q}[\sqrt{3}] = \{f(\sqrt{3})|f(x) \in \mathbb{Q}[x]\}.$
 - a) Construct an injective ring homomorphism from R to $M_2(\mathbb{Q})$.
 - b) Show that R is a field.
 - c) For a nonzero element $a + b\sqrt{3}$, find its multiplicative inverse.
- 2) In $\mathbb{Q}[x]$, define an equivalence relation \sim by

$$f(x) \sim g(x)$$
 if $(x^2 - 3) | (f(x) - g(x)).$

Let R be the set of equivalence classes which forms a ring under the following operations.

$$\overline{f(x)} + \overline{g(x)} := \overline{f(x) + g(x)}$$
 and $\overline{f(x)} \cdot \overline{g(x)} := \overline{f(x) \cdot g(x)}$.

- a) Show that every equivalence class can be represented by a unique element of the form ax + b.
- b) Show that R and $\mathbb{Q}[\sqrt{3}]$ are isomorphic.
- 3) Let $\phi: R \to R'$ be a ring homomorphism. Let $I = \ker(\phi)$. Show that (a+I)(b+I) := (ab) + I defines a multiplication on R/I.

9

34. Integer Domains

- 1) Show that every subring with unity of an integral domain is also an integral domain.
- 2) Let R be an integral domain. Show that R[x] is also an integral domain.

35. Fields and Integer Domains

36. Quotient Fields

1) Let D be an integral domain and $S = \{(a,b)|a,b \in D, b \neq 0\}$. Define an relation on S given by $(a,b) \sim (c,d)$ if ad = bc. Show that \sim is an equivalence relation.

37. Polynomial Rings

- 1) Let R be a ring with unity. What are the units of $\mathbb{R}[x]$?
- 2) For a ring R, show that \mathbb{R} has no-zero divisors if and only if for all non-zero $f(x), g(x) \in R[x], \deg f(x) + \deg g(x) = \deg(f(x)g(x))$.

38. Division Algorithm of Polynomials

- 1) Let $f(x) = x^3 + x + 1$ and $g(x) = x^2 + 2x + 3$ are elements in $\mathbb{Z}_5[x]$. Find q(x) and r(x) in $\mathbb{Z}_5[x]$ such that f(x) = q(x)g(x) + r(x) with $\deg r(x) < \deg g(x)$.
- 2) Let $f(x) = x^4 + 1$ and $g(x) = 2x^2 + 3$ are elements in $\mathbb{Z}_7[x]$. Find q(x) and r(x) in $\mathbb{Z}_7[x]$ such that f(x) = q(x)g(x) + r(x) with $\deg r(x) < \deg g(x)$.

39. Zeros of Polynomials

- 1) Find the zeros of $x^p x$ in \mathbb{Z}_p where p is a prime.
- 2) Use the previous problem to show that $(p-1)! \equiv -1 \mod p$.
- 3) Show that there exists a polynomial in \mathbb{Z}_p does not have any zeros.
- 4) Find all zeros of $x^{6664} + x^{362} + x^{21} + 3x + 1$ in \mathbb{Z}_7 .
- 5) Let F be a field. For $a \in F$ and $f(x) \in F[x]$, define the multiplicity of a as the zero of f(x) to be

$$m_{a,f} := \max \left\{ n \in \mathbb{Z}_{\geq 0} \middle| (x-a)^n | f(x) \right\}.$$

(Note that when a is not a zero of f(x), we set $m_{a,f} = 0$.) Prove that when f(x) is nonzero,

$$\deg f(x) \ge \sum_{a \in F} m_{a,f}.$$

40. Irreducible Polynomials

- 1) For $f(x) = x^4 + 1 \in F[x]$, factor f(x) as a product of irreducible polynomials for the following cases
 - a) $F = \mathbb{Q}$
 - b) $F = \mathbb{Z}_2$.
 - c) $F = \mathbb{Z}_3$.

- d) $F = \mathbb{Z}_5$.
- 2) Show that $x^4 x^2 + 1$ is irreducible over \mathbb{Q} .
- 3) Factor $x^4 x^2 + 1$ as a product of irreducible polynomials over \mathbb{Z}_3 .

41. Gauss's Lemma

42. Polynomial Factorization Modulo a Prime

- 1) Show that $x^3 + 202x + 2020$ is irreducible in $\mathbb{Q}[x]$.
- 2) Write down a monic irreducible polynomial of degree 2020 over $\mathbb Q$ which is not irreducible over $\mathbb Z_2$ and $\mathbb Z_3$.
- 3) Does there exist an irreducible polynomial over \mathbb{Q} so that it is irreducible over \mathbb{Z}_p for all p? (Write down a reason to support your answer.)
- 4) Let $f(x) = x^4 x + 1$ and $g(x) = x^3 + 1$.
 - a) Factor f(x) into a product of irreducible polynomials over $\mathbb{Z}_3[x]$.
 - b) Factor g(x) into a product of irreducible polynomials over $\mathbb{Z}_3[x]$.
 - c) Find a GCD of f(x) and g(x) over $\mathbb{Z}_3[x]$.

43. Unique Factorization Theorem of $\mathbb{F}[x]$

- 1) Let f(x), g(x) be two non-constant polynomials in F[x]. Show the gcd of f(x) and g(x) is unique upto units.
- 2) Show that $h(x) = x^2 x$ has two different factorizations over $\mathbb{Z}_{15}[x]$ (as a product of two linear factors)
- 3) For an odd prime p, show that there exists some $a \in \mathbb{Z}_p$, such that $x^2 a$ is irreducible.
- 4) Find the number of irreducible polynomials of degree two over \mathbb{Z}_p . (Hint: Using unique factorization theorem to count the number of reducible polynomials.)

44. Fields Extensions

- 1) Let E be a field and K_1 and K_2 be two subfields of E. Show that $F := K_1 \cap K_2$ is also as a subfield of E.
- 2) Let f(x) be an irreducible polynomial over F[x] and α is a zero of f(x) in a larger field E. Let g(x) be another polynomial in F[x] with $g(\alpha) = 0$. Show that f(x)|g(x).
- 3) Let $F_1 \subset F_2 \subset F_3$ be three fields. Suppose $\alpha \in F_3$ is algebraic over F_1 . Show that $Irr(\alpha, F_2)|Irr(\alpha, F_1)$.
- 4) Suppose we have known that e is a transcendental number. Show that $\operatorname{Irr}(\sqrt{e},\mathbb{Q}(e))(x)=x^2-e$.

45. Elements of Extension Fields

- 1) Let α be a zero of $x^2 + 1$ over $\mathbb{Z}_3[x]$ in some field extension of \mathbb{Z}_3 .
 - a) Find the multiplicative inverse of $\alpha + 1$ of the form of $a_0 + a_1 \alpha$.
 - b) Find an element of the form $a_0 + a_1 \alpha$ which is a generator of $\mathbb{Z}_3[\alpha]^{\times}$
- 2) Let α be a zero of $x^3 + 1$ over $\mathbb{Q}[x]$ in \mathbb{C} .
 - a) Find the multiplicative inverse of $\alpha + 1$ of the form of $a_0 + a_1\alpha + a_2\alpha^2$.
 - b) Is $\mathbb{Q}[\alpha]^{\times}$ a cyclic group?

46. Algebraic Extension

- 1) Let f(x) be a polynomial of degree n over \mathbb{Q} with zeros $\alpha_1, \dots, \alpha_n$ in \mathbb{C} .
 - a) Show that $[\mathbb{Q}(\alpha_1, \dots, \alpha_n) : \mathbb{Q}] \leq n!$.
 - b) Show that $[\mathbb{Q}(\alpha_1, \dots, \alpha_n) : \mathbb{Q}] | n!$.

47. Example of Algebraic Extensions

- 1) Let α be a zero of $x^2 + x + 1$ and β be a zero of $x^3 x 2$. Find the degree $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$.
- 2) Let α be a zero of $x^2 + x + 1$ and β be a zero of $x^2 x 1$. Find the degree $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$.
- 3) In 2), show that $\mathbb{Q}(\alpha + \beta) = \mathbb{Q}(\alpha, \beta)$.
- 4) Find the irreducible polynomial of $\gamma = \sqrt{2} + 2\sqrt{3} 3\sqrt{6}$ over $\mathbb{Q}(\sqrt{2})$.
- 5) Let α be a zero of $x^4 + 1$ in \mathbb{C} and let $\gamma = \alpha + \alpha^2$.
 - (1) Show that $Irr(\alpha, \mathbb{Q})$ is equal to $x^4 + 1$ and find a basis of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
 - (2) Write $1/(\alpha + 1)$ as a linear combination of the basis in (1).
 - (3) Find $Irr(\gamma, \mathbb{Q})$.
 - (4) Find $Irr(\gamma, \mathbb{Q}(\alpha^2))$.
 - (5) Find all possible quadratic sub-extensions of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
- 6) Let F be a subfield of \mathbb{C} . For $a, b \in \mathbb{C}$, if $\sqrt{a}, \sqrt{b}, \sqrt{ab}$ are all not contained in F, show that $[F(\sqrt{a}, \sqrt{b}) : F] = 4$.
- 7) Use the result in the previous problem to show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} is equal to 8.
- 8) (**) Let p_1, \dots, p_k be distinct primes. Show that the degree of $\mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \dots, \sqrt{p_k})$ over \mathbb{Q} is 2^k .

48. Algebraic Closure

- 1) Suppose E/F and K/E are both algebraic extensions. Show that K/F is also an algebraic extension.
- 2) Show that every finite field can not be algebraic closed.

49. Matrix representations of field extensions

- 1) Let α be a zero of the irreducible polynomial $x^3 + 2x + 2$ over $\mathbb{Z}_3[x]$ in \mathbb{Z}_3 . Let $F = \mathbb{Z}_3(\alpha)$.
 - a) Find an injective ring homomorphism ρ from F to $M_3(\mathbb{Z}_3)$.
 - b) Find the inverse map of ρ , which is a map from $\rho(F)$ to F.
 - c) Using ρ and its inverse to rewrite $1/(1+\alpha+\alpha^2)$ into the form $a_0+a_1\alpha+a_2\alpha^2$.

50. Finite fields

- 1) Construct a field of 8 elements.
- 2) Let α be a zero of $x^2 + 2$ and β be zero of $x^2 + x + 2$ in $\overline{\mathbb{Z}}_5$.
 - a) Show that $x^2 + x + 2$ has a zero in $\mathbb{Z}_5(\alpha)$.
 - b) Construct a field isomorphism from $\mathbb{Z}_5(\alpha)$ to $\mathbb{Z}_5(\beta)$.

- c) Find all zeros of all monic irreducible polynomials of degree two over \mathbb{Z}_5 in terms of α .
- 3) Show that if α is a zero of $f(x) \in \mathbb{Z}_p[x]$ in $\overline{\mathbb{Z}}_p$, then α^p is also a zero of f(x).
- 4) For $\alpha \in \mathbb{F}_{p^6}$, show that $\mathbb{Z}_p(\alpha) = \mathbb{F}_{p^6}$ if $\alpha^{p^2-1} \neq 1$ and $\alpha^{p^3-1} \neq 1$.
- 5) Find the number of monic irreducible polynomials of degree 6 over \mathbb{Z}_p .
- 6) For $\alpha \in \mathbb{F}_{p^6}$, show that $\alpha \in \mathbb{Z}_p$ if and only if $\alpha^p = \alpha$.
- 7) Consider the map $\rho: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ given by $\rho(x) = x^p$. Show that ρ is an ring isomorphism.
- 8) Let α be a zero of $x^2 + x + 1$ in $\overline{\mathbb{Z}}_2$.
 - a) Show that $x^2 + \alpha$ is irreducible over $\mathbb{Z}_2(\alpha)$.
 - b) Let β be zero of $x^2 + x + \alpha$ in $\overline{\mathbb{Z}}_2$. Find the irreducible polynomial of β over \mathbb{Z}_2

51. Structure of Finite Fields

52. Cyclomotic Polynomials over Finite Fields

- 1) Find the number of monic irreducible polynomials of degree four over \mathbb{Z}_3 .
- 2) Find the product of monic irreducible polynomials of degree four over \mathbb{Z}_3 .
- 3) Show that $\Phi_{11}(x)$ is irreducible over \mathbb{Z}_2 .
- 4) Show that $\Phi_7(x)$ is irreducible over \mathbb{Z}_3 .
- 5) Find an irreducible polynomial of degree 6 over \mathbb{Z}_5 .
- 6) Find an irreducible polynomial of degree 12 over \mathbb{Z}_2 . Remark. In general, $\Phi_n(x)$ is irreducible over \mathbb{Z}_p if and only if p is a generator \mathbb{Z}_n^{\times} . The proof will be given in the next semester.