Experiment #1-Clock and Periodic Signal Generation

Narges gholami, 810198447

1.2 LM555 timer

1.1

1.10 ns

2. $2*N*delay_{inverter} = 20ns$

N = 5

Delay_{inverter} = 2 ns

Fig. 1 delay of 5 inverter

Fig. 2 ring oscillator in LTspice

1-Fig. 3 LM555

Fig. 4 waveform of the output

1-Clock frequency is: $0.693 * (R1 + 2R2) * C = 0.693*(101*10^3) *10*(10^ (-9)) = 0.69ms$ Duty cycle is:

(R1+R2)/(R1+2R2) = 51/101 = 50.4%

2-

If $R_2 = 1k\Omega$:

Clock frequency is: $0.693 * (R1 + 2R2) * C = 0.693*(3*10^3) *10*(10 ^ (-9)) = 0.02079$ ms Duty cycle is:

(R1+R2)/(R1+2R2) = 2/3 = 66%

Fig. 5 When $R_2 = 1k\Omega$

If $R_2 = 10k\Omega$:

Clock frequency is: $0.693 * (R1 + 2R2) * C = 0.693*(21*10^3) *10*(10^ (-9)) = 0.14553 ms$ Duty cycle is:

(R1+R2)/(R1+2R2) = 11/21 = 52%

Fig. 6 When $R_2 = 10k\Omega$

If $R_2 = 100k\Omega$:

Clock frequency is: $0.693 * (R1 + 2R2) * C = 0.693*(201*10^3) *10*(10 ^ (-9)) = <math>\underline{1.39293ms}$ Duty cycle is:

(R1+R2)/(R1+2R2) = 51/201 = 25%

Fig. 7 When $R_2 = 100k\Omega$

Fig. 8 When $R = 470\Omega$

When $R = 470\Omega$, T become 20/3 and f equal to 3/20, So a = $705*10^{\circ}-9$

Fig. 9 When $R = 1000 \Omega$

When $R = 1000\Omega$, T become 60/8 and f equal to 2/15, So a = 2/15*10 ^ -5

Fig. 10 When $R = 2200 \Omega$ When $R = 2200\Omega$, T become 16us and f equal to 1/16, So $a = 1.375 * 10^{\circ}(-6)$

2. FPGA DESIGN

2.1.

Fig. 11 waveform of 5 inverters

ring oscillator frequency = delay of inverter*2*N = 2*5*delay = 20ns

2.2

Fig. 12 frequency divider

Fig. 13 output waveform.

Delay input of ring oscillator was 250ps so every 250ps the output is summed with one and frequency is 113*250 = 28.25ns

Fig. 14 circuit with T flip flop

Fig. 15 schematic symbol for ABRCKT