Ökonometria

3. házi feladat

Granát Marcell

2020. december 22.

Tartalomjegyzék

1.	fel	ac	da	ιt																								-	L
	a)					 							 						 										1
	b)					 													 				 						1
	c)					 													 				 						1
	d)					 													 				 					:	2
	e)					 													 				 					:	2
	f)					 													 				 					:	2
	g)					 													 				 					:	2
	h)					 													 				 					:	2
	i)																											,	2
2.	fel																											;	3
	a)					 													 				 					;	3
	b)					 							 						 				 					,	3

A mellékelt bptempm.csv fájl tartalmazza a budapesti havi átlaghőmérsékletet 1901 januárja és 2000 decembere között. (A read.csv függvény használható az adatok beolvasására.) A hallgatóknak különböző, 60 éves idősorokat kell elemezniük, a Neptun-kódjuk első karaktere alapján: 1901-1960 (A-C), 1911-1970 (D-F), 1921-1980 (G-I), 1931-1990 (J-P), 1940-1999 (Q-Z vagy szám).

1. feladat

a)

Ábrázoljuk az idősor autokorreláció-függvényét! Mire utal a függvény alakja?

b)

Illesszünk lineáris trendet és hónap-dummykat tartalmazó modellt az idősorra!

c)

Értelmezzük a modell paramétereit!

Változó	Koefficiens
Konstans	-0,92
Trend	0,00
Február	1,62

1. FELADAT Marcell Granát

Változó	Koefficiens
Március	6,63
Április	11,89
Május	17,06
Június	20,23
Július	$22,\!29$
Augusztus	21,41
Szeptermber	$17,\!25$
Október	11,65
November	6,00
December	2,16

d)

Teszteljük, hogy a modell reziduálisai autokorreláltak-e!

[1] "0,00%"

e)

Illesszünk lineáris trendet, hónap-dummykat és elsőrendű autoregresszív tagot tartalmazó modellt az idősorra!

f)

Teszteljük, hogy a reziduálisok autokorreláltak-e!

 $\mathbf{g})$

 $V\'{e}g\"{u}l\ illessz\"{u}nk\ line\'{a}ris\ trendet,\ h\'{o}nap-dummykat\ \acute{e}s\ AR(2)\ tagokat\ tartalmaz\'{o}\ modellt\ az\ id\H{o}sorra!$

h)

 $A\ fenti\ h\'arom\ modell\ k\"oz\"ul\ melyikkel\ vagyunk\ a\ legel\'egedettebbek?$

i) Összességében van bizonyítékunk a klímaváltozásra ezen az időtávon Budapesten?

Változó	Koefficiens	Standard hiba	T-statisztika	P-érték
konstans	-1,14	0,28	-4,11	0,00%
trend	0,00	0,00	1,48	$14,\!02\%$
február	2,08	$0,\!35$	5,88	$0,\!00\%$
március	6,69	$0,\!35$	19,38	0,00%
április	10,71	0,38	28,05	$0,\!00\%$
május	$14,\!58$	0,50	29,43	$0,\!00\%$
június	16,49	0,64	$25,\!59$	$0,\!00\%$
július	17,76	0,74	23,85	0,00%
augusztus	16,38	0,81	20,17	0,00%
szeptermber	12,43	0,78	15,87	0,00%
október	7,86	0,65	12,08	0,00%
november	3,59	0,49	$7,\!33$	0,00%
december	1,14	0,37	3,06	$0,\!23\%$
AR	0,25	0,04	6,76	0,00%

2. FELADAT Marcell Granát

1. ábra. A budapesti havi átlaghőmérséklet autokorreláció függvényei

2. feladat

A wooldridge package-ben szereplő earns adatbázist használjuk, amely a versenyszféra mezőgazdaságon kívüli ágazataira tartalmazza az éves egy munkaórára jutó kibocsátást (azaz a termelékenységet) (outphr) és az órabért (hrwage), valamint ezek növekedési ütemét (logaritmusának éves változását) (goutphr és ghrwage). Az A-L kezdetű vezetéknévvel rendelkező hallgatóknak az 1947-1979 éveket , az M-Zs kezdetű vezetéknévvel rendelkező hallgatóknak az 1957-1987 éveket kell vizsgálniuk.

a)

Modellezzük először az órabér növekedési ütemét (ghrwage) a termelékenység növekedési üteme (goutphr) függvényében!

b)

Változó	Koefficiens	Standard hiba	T-statisztika	P-érték
konstans	0,00	0,00	0,53	59,74%
goutphr	0,66	0,18	3,62	$0,\!11\%$

[1] "67,31%"

Teszteljük, hogy goutphr becsült paramétere különbözik-e egytől! Hogyan használtuk fel a teszt elvégzése során a c. feladatrész eredményét?

Elemezzük ezután az órabér növekedési ütemét a termelékenység növekedési ütemének elsőrendű osztott késleltetésű modelljével!

Változó	Koefficiens	Standard hiba	T-statisztika	P-érték
konstans goutphr	0,00 0,66	0,00 0,18	$0,53 \\ 3,62$	59,74% $0,11%$

2. FELADAT Marcell Granát

■ 1. modellből származó becslés ■ 2. modellből származó becslés ■ Valós érték

 $2.~{\rm ábra}.~{\rm A}$ budapesti hőmérséklet előrejelzése az első $2~{\rm modellel}$