Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Pearson Edexcel International GCSE	Centre Number	Candidate Number	
Time 2 hours	Paper reference	4PM1/01	
Further Pure Mare 1	athema	atics	
Calculators may be used.		Total Marks	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P66026RA
©2021 Pearson Education Ltd.
1/1/1/1/1/1/1

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Series

Arithmetic series

Sum to *n* terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The roots of the equation $4x^2 - 3x - 8 = 0$ are α and β

Without solving this equation, form a quadratic equation, with integer coefficients, which has roots $\frac{1}{a}$ and $\frac{1}{B}$

has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$	(7)
(Total for Question 1 is 7 ma	rke)
(Total for Question 1 is / ma	I NS)

DO NOT WRITE IN THIS AREA

2	$f(x) = 2x^2 + (p-1)x - 2p$ where p is a constant.	
	Find the set of values of p for which the equation $f(x) = 0$ has two distinct real roots.	(5)
		(5)

Question 2 continued	
	(Total for Question 2 is 5 marks)

3

Diagram **NOT** accurately drawn

(8)

Figure 1

Figure 1 shows the sector AOB of a circle with centre O and radius r cm, where r is an integer. The size of angle AOB is θ radians.

The sector has an area of $16.8\,\mathrm{cm^2}$ and a perimeter of $16.4\,\mathrm{cm}$.

Calculate

- (i) the value of r
- (ii) the value of θ

Question 3 continued

$X \mid$		(Total for Question 3 is 8 marks)
\sim		

DO NOT WRITE IN THIS AREA

4	$y = \frac{\sin 2x}{\sqrt{x^2 - 9}} \qquad x > 3$	
	Show that $\frac{dy}{dx} = \frac{2(x^2 - 9)\cos 2x - x\sin 2x}{\sqrt{(x^2 - 9)^3}}$	
	V(x, y)	(5)

DO NOT WRITE IN THIS AREA

Question 4 continued
(Total for Question 4 is 5 marks)
(Total for Question 4 is 2 marks)

DO NOT WRITE IN THIS AREA

5 Solve the equation	
$\log_3 \sqrt{x - 5} + \log_9 (x + 3) - 1 = 0$	
Show clear algebraic working.	(7)
	(7)

DO NOT WRITE IN THIS AREA

Question 5 continued			
(T-4-16-10-10-11-11-11-11-11-11-11-11-11-11-11-			
(Total for Question 5 is 7 marks)			

DO NOT WRITE IN THIS AREA

6	The volume of a sphere with radius r cm is increasing at a constant rate of $3 \text{ cm}^3/\text{s}$.				
	Find the rate, in cm ² /s, at which the surface area of the sphere is increasing when $r = 10$				
		(6)			

DO NOT WRITE IN THIS AREA

(Total for Question 6 is 6 marks)

7

Figure 2

Figure 2 shows triangle ABC

$$AB = 6 \text{ cm}$$
 $BC = 8 \text{ cm}$ $AC = k \text{ cm}$ $\angle ABC = \theta^{\circ}$

(a) Show that
$$\cos \theta^{\circ} = \frac{100 - k^2}{96}$$

(2)

The area of triangle ABC is $\sqrt{455}$ cm²

(b) Find the two possible values of k

DO NOT WRITE IN THIS AREA

Question 7 continued	

DO NOT WRITE IN THIS AREA

Question 7 continued

Question 7 continued	
	(Total for Question 7 is 9 marks)

8

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows the regular hexagon \overrightarrow{OABCDE} with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{AB} = \mathbf{b}$

(a) Find \overrightarrow{OB} in terms of **a** and **b**

(1)

(b) Find \overrightarrow{BC} as a simplified expression in terms of **a** and **b**

(3)

The point M divides BC in the ratio 2:1

(c) Find \overrightarrow{OM} as a simplified expression in terms of **a** and **b**

(2)

The point Y is such that OMY and ABY are straight lines.

(d) Use a vector method to find AB:BY

(5)

The area of hexagon *OABCDE* is 60 cm²

(e) Find the area of triangle *OAY*

(4)

18

DO NOT WRITE IN THIS AREA

Question 8 continued	

DO NOT WRITE IN THIS AREA

Question 8 continued

DO NOT WRITE IN THIS AREA

Question 8 continued	
	(Total for Question 8 is 15 marks)

(5)

- 9 (a) Show that $\sum_{r=1}^{n} (5r 1) = \frac{n}{2} (3 + 5n)$ (3)
 - (b) Hence, or otherwise, evaluate $\sum_{r=10}^{20} (5r-1)$ (3)

The sum of the first *n* terms of an arithmetic series is S_n where $S_n = \sum_{r=1}^n (5r-1)$

The rth term of this series is u_r

Given that $S_n = 12u_{n+1} + 52$

(c) find the value of n

DO NOT WRITE IN THIS AREA

Question 9 continued	

DO NOT WRITE IN THIS AREA

Question 9 continued

DO NOT WRITE IN THIS AREA

Question 9 continued
(Total for Question 9 is 11 marks)

10

Figure 4

Figure 4 shows the curve C with equation $y = \frac{1}{2} + \sin 3x$ where $0 \le x < \frac{2\pi}{3}$

The curve C crosses the x-axis at the points M and N

(a) Show that the coordinates of M are $\left(\frac{7\pi}{18}, 0\right)$ and find the coordinates of N

The curve C has a maximum at the point A

(b) Find the coordinates of A

(4)

(3)

(c) Find an equation of the tangent to C at M

Give your answer in the form $ay + b\sqrt{3}x - c\sqrt{3}\pi = 0$ where a, b and c are integers to be found.

(4)

The finite region, shown shaded in Figure 4, is bounded by the curve C, the y-axis and the part of the x-axis from O to N

(d) Use algebraic integration to find, to 3 significant figures, the total area of the shaded region.

(4)

×					
-	К				
×					2
-					
\wedge	р		7		
\sim	5				1
-	ø				
SZ.					
	目				
	2				
4	۹	2			
ú	×		?		
30		/			1
P4	p				
×	à				
	ď				
		≺			
-		2			ς
	ø		2		
_	ú	1			
46					
*	×				
$\langle \cdot \rangle$	C				
×	a				
7	₹	2			C
~	۲				
€.	é				
×	3				
< >	۷				
×					
-					
	9				
	á				
JK.	7				
180	'n				
7	7				
72	2			1	
10	٩				
Ø)					0
		⋖			
\subseteq					
K	2				
É					8
Š		5			>
Š	2	<	3	8	5
		5	3	5	2
		>	3	5	3
			3	3	3
			?	3	3
			?	3	3
			?	3	
			?		
			?	3	\ \ \
			?	\ \ \	\ \ \
			?		\ \ \
			?		
			\ \ \		
			\ \ \ \		
			> > > >		

Question 10 continued

DO NOT WRITE IN THIS AREA

Question 10 continued

DO NOT WRITE IN THIS AREA

Question 10 continued	
	(Total for Question 10 is 15 marks)

DO NOT WRITE IN THIS AREA

11	$f'(x) = ax^2 - 14x - 10 \text{where} a \in \mathbb{Z}$	
	Given that $(x - 4)$ is a factor of $f(x)$ and that when $f(x)$ is divided by $(x + 1)$ the remainder is 25	
	(a) show that $a = 6$	(6)
	(b) Hence use algebra to solve the equation $f(x) = 0$	(6)
	(b) Hence use argeora to solve the equation $I(x) = 0$	(6)

×					
×. 2					
᠕					
X X					
	۲				
2	н				
ЫĐ	∠				
_	'n				
7.5	7				/
- 69	٩.		1		
	a				ĸ.
-X		⋖			
	K				
五大十二	2				
×	۵				
917	넴			0	
ø.	ρ				
<u>^Z</u>	7				
98					
٦V					
\sim				5	
	ú				
la d	ø		Κ	2	
-/	2				
\sim	\				
⇗	2				
×					
X)			⋖		
X.					
				2	
	1				

Question 11 continued

uestion 11 continued		
	(Total for Question 11 is 12 marks)	