Regulating Highly Automated Robot Ecologies: Insights from Three User Studies

Wen Shen (UC, Irvine)
Alanoud Al Khemeiri (Masdar Institute)
Abdulla Almehrzi (Masdar Institute)
Wael Al Enezi (Masdar Institute)
Iyad Rahwan (MIT)
Jacob W. Crandall (BYU)

Human Societies

How do we achieve good human societies?

Strong central authority vs. strong individual rights

Societies of Robots?

Robotic buildings connected via a smart grid

Self-driving cars

Financial Markets

Strong central authority vs. strong individual rights

Highly Automated Robot Ecologies

- Society of robots or systems
 - Robots are independent owned by different stakeholders
 - Robots are autonomous (from the perspective of the regulator)

How can such systems be "designed" to produce good societal outcomes?

HARE are like what?

Supervisory control systems

Human Society

Mechanism casign problem

Challenge: Design efficient HARE

2 "design parameters"

- Regulatory power
- Robot autonomy (adaptability)

Example: Routing Game

 $V_{ij} \propto rac{V_{ij} = f(N_{ij}, C_{ij})}{1 + e^{0.25(N_{ij} - C_{ij})}} + 0.1$ # of vehicles capacity of on link i-j

Regulator's Goal:
Maximize throughput
through node D

Needs to remove traffic congestion

High Scores	
1. 005	14.93
2. Bill	14.71
3. 07	13.49
4. 08	13.37
5. 017	13.33
Your Score:	\$ 6.95 / sec

Robot Behaviors

$$u(i,g) = v(g) - c_t(i,g) - c_\$(i,g)$$
 Value of getting to node g Travel Cost Cost

Robot Autonomy (2 levels)

- Simple Estimate $c_t(i,g)$ assuming no congestion
- Adaptive Estimate $c_t(i,g)$ using reinforcement learning

Regulatory Power

Regulator's ability to change tolls

3 levels

- None Regulator can do nothing
- Limited Regulator can make limited toll changes
- Unlimited Regulator can make unlimited toll changes

Experimental Setup

Which one will be best?

Outcome

Why Simple-Unlimited?

Given Unlimited Power, Regulators used power they didn't need

Regulators had poorer models of robot behavior

Why Simple-Unlimited?

Simple automation was easier to model

Automated Help

- Predict when the congestion will occur
- Alert the regulator of predicted congestion

Outcome

Decision support made Simple-Limited worse!

Why? Regulators had a poorer model of the cars.

Toward a General Theory

3 "Forces":

- Adaptive robots -> Regulator must spend more time modeling
- Adaptive robots -> Regulators need more regulatory power
- More regulator power -> Decreased time modeling robots

Conclusions and Future Work

- Data points that suggest less is more
 - Limited regulator power with simple robots produced the best results
- Just outliers? Or part of a general trend?
- Can we find a way to do more with more?

Extras

Your Score: \$ 3.82 / sec