Generalized functions Exercise sheet 3

Exercise 1. Given a compact subset $K \subseteq \mathbb{R}$, $k \in \mathbb{Z}_{>0}$ and $\epsilon > 0$, put

$$B^K_{\epsilon,k} := \left\{ f \in C^\infty_c(\mathbb{R}) : \operatorname{Supp}(f) \subseteq K, \, \sup_{x \in \mathbb{R}} \left| f^{(k)}(x) \right| < \epsilon \right\}.$$

- (1) Let I denote the set of sequences $(\epsilon_n, k_n)_{n=1}^{\infty}$, with $\epsilon_n > 0$ and $k_n \in \mathbb{Z}_{\geq 0}$. Show that the following collections generate the same topology on $C_c^{\infty}(\mathbb{R})$:
 - $\mathfrak{T}_1 = \{U_{(\epsilon_n, k_n)}\}_{(\epsilon_n, k_n) \in I}$ where $U_{(\epsilon_n, k_n)} := \sum_{n \in \mathbb{N}} B_{\epsilon_n, k_n}^{[-n, n]}$; and

• $\mathfrak{T}_2 := \left\{ V_{(\epsilon_n, k_n)} \right\}_{(\epsilon_n, k_n) \in I}$ where $V_{(\epsilon_n, k_n)} := \operatorname{conv} \left(\bigcup_{n \in \mathbb{N}} B_{\epsilon_n, k_n}^{[-n, n]} \right)$. Recall that $\sum_{n \in \mathbb{N}} X_n := \left\{ \sum_{n \in \mathbb{N}} x_n : x_n \in X_n \text{ and } x_n = 0 \text{ for } n \gg 0 \right\}$, for X_1, X_2, \ldots subsets of a vector space.

(2) Show that a sequence $(f_n)_{n=1}^{\infty}$ in $C_c^{\infty}(\mathbb{R})$ converges to f in the sense defined in the first lecture if and only if it converges to f with respect to the topology generated by the collections defined in the previous exercise.

Exercise 2. Recall that, given a topological vector space V, we write V^* and V^{\sharp} to denote the continuous and full dual spaces of V, respectively.

- (1) Let V be a Frèchet space. Show that given a finite linearly independent set $\{v_1, \ldots, v_n\}$ and values $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, there exists $\xi \in V^*$ such that $\langle \xi, v_i \rangle = \lambda_i$ for all $i = 1, \ldots, n$.
- (2) Show that $(C_c^{\infty}(\mathbb{R}))^*$ is dense in $(C_c^{\infty}(\mathbb{R}))^{\sharp}$ with respect to the weak topology.

Remark. The weak topology on V^{\sharp} is defined similarly to V^{*} ; describe a neighbourhood system for this topology at 0 as part of the exercise.

- (3) Conclude that $(C_c^{\infty}(\mathbb{R}))^*$ is not complete with respect to weak topology.
- (4) * Show that $(C_c^{\infty}(\mathbb{R}))^{\sharp}$ is complete with respect to weak topology. Conclude that it is the weak completion of $(C_c^{\infty}(\mathbb{R}))^*$

Exercise 3. Recall that given a subspace W of \mathbb{R}^n and $m \in \mathbb{Z}_{\geq 0}$ we defined

$$V_m(C_c^{\infty}(\mathbb{R}^n), W) = \left\{ f \in C_c^{\infty}(\mathbb{R}^n) : \frac{\partial^{\alpha}}{(\partial x)^{\alpha}} f \mid_{W} \equiv 0 \text{ for any } \alpha \text{ with } |\alpha| \leq m \right\},$$

and

$$F_m((C_c^{\infty}(\mathbb{R}^n))^*, W) = \{ \xi \in (C_c^{\infty}(\mathbb{R}^n))^* : \xi \mid_{V_m} \equiv 0 \}.$$

- (1) Show that, $\overline{C_c^{\infty}(\mathbb{R}^n \setminus W)} = \bigcap_{m=0}^{\infty} V_m$.
- (2) Compute $\overline{C_c^{\infty}(\mathbb{R}^n \setminus \{0\})}$.
- (3) Show that $\bigcup_{m=0}^{\infty} F_m \neq (C_W^{\infty}(\mathbb{R}^n))^*$. (4) Let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism such that $\varphi(W) \subseteq W$. Prove that F_m is invariant under the
- map $\xi \mapsto \varphi^*(\xi)$, where $\langle \varphi^*(\xi), f \rangle = \langle \xi, f \circ \varphi \rangle$. (5) Define $G_m = \bigoplus_{|\alpha| \le m} \frac{\partial^{\alpha}}{(\partial x)^{\alpha}} C^{-\infty}(W)$. Show that $F_m = F_{m-1} \oplus G_m$, and that G_m is *not* invariant with respect to smooth coordinate change.

Exercise 4.

(1) Prove that the map $\varphi: C_c^{\infty}(\mathbb{R}^n) \times C_c^{\infty}(\mathbb{R}^k) \to C_c^{\infty}(\mathbb{R}^n \times \mathbb{R}^k)$, defined by

$$\varphi(f,g)(x,y) = f(x)g(y)$$

is bilinear and continuous.

- (2) Prove that the map $\bar{\varphi}: C_c^{\infty}(\mathbb{R}^n) \otimes C_c^{\infty}(\mathbb{R}^k) \to C_c^{\infty}(\mathbb{R}^n \times \mathbb{R}^k)$, determined on generators by φ , is injective and has dense image.
- (3) * Is $\bar{\varphi}$ surjective? Prove this or find a counterexample.