Colle 0

Réglage d'un correcteur P et d'un correcteur à avance de phase – Corrigé

Équipe PT - La Martinière Monplaisir.

On considère un système de fonction de transfert en boucle ouverte G(p) que l'on souhaite réguler à l'aide d'une boucle à retour unitaire : $G(p) = \frac{K}{(10p+1)^2(p+1)}$

C1-02

On souhaite que la boucle de régulation fonctionne selon le cahier des charges suivant :

C2-04

- ▶ marge de phase : $\Delta \varphi \ge 45^{\circ}$;
- ▶ dépassement D% < 10%;
- écart statique ε_S < 0,08;
- ▶ temps de montée t_m < 8 s.

Question 1 Quelle est la condition sur K pour obtenir $\varepsilon_S < 0.08$?

Question 2 Exprimer l'erreur de trainage.

On note t_m le temps de montée du système en BF et $t_m \simeq \frac{3}{\omega_{co}}$ et ω_{co} est la pulsation de coupure à 0 dB du système en BO.

Question 3 Quelle est la condition sur K pour obtenir $t_m < 8$ s?

Question 4 Quel choix faire pour la valeur de *K*?

Question 5 Calculer la valeur de la marge de phase obtenue dans ces conditions.

Expérimentalement, on constate que $z_{\rm BF} \simeq \frac{\Delta \varphi^o}{100}$ et on rappelle que $D\% = e^{\frac{\hbar Z_{\rm BF}}{\sqrt{1-z_{\rm BF}^2}}}$.

Question 6 Que vaut alors le dépassement D%?

Question 7 À partir de la relation précédente, déterminer la marge de phase qui correspond à un dépassement de 10%.

Avec la valeur de K=16,1, on introduit, en amont de G(p), dans la chaîne directe, un correcteur $C(p)=K_a\frac{1+aTp}{1+Tp}$ à avance de phase destiné à corriger le dépassement et la marge de phase, sans altérer ni la rapidité, ni la précision qui correspondent au cahier des charges.

Question 8 Déterminer alors la fonction de transfert de ce correcteur à avance de phase permettant d'obtenir une marge de phase de 60°.

CORRECTION

Q1- Quelle est la condition sur K pour obtenir ε_{S} < 0,08 ?

 $\label{eq:comme} \text{Comme la FTBO est: } G(p) = \frac{K}{(10\;p+1)^2\;(p+1)}, \text{ et que le retour est unitaire, la FTBF s'écrit:} \\ H(p) = \frac{G(p)}{1+G(p)} = \frac{K}{(10\;p+1)^2\;(p+1)+K}$

Par définition l'écart statique s'écrit : $\varepsilon_s = \lim_{p \to 0^+} \left\{ 1 - H(p) \right\} = 1 - \frac{K}{1+K} = \frac{1}{1+K}$

Pour avoir $\,\epsilon_{\text{S}}\!<\!\text{0,08}\,\,$ il faut avoir : $\frac{1}{1+K}\!<\!0,08$

Soit K > 11,5

Q2- Quelle est la condition sur K pour obtenir tm < 8s ?

Pour avoir tm < 8 s et en considérant la relation approchée $t_{\rm m} = \frac{3}{\omega_{\rm CO}}$ < 8 s soit $\omega_{\rm CO}$ > 0,375 s

Le gain K qui correspond à cette pulsation de coupure à 0 dB est tel que : $G(j\,\omega_{c0}) = \frac{K}{(1+100\,\,\omega_{c0}^{\,2})\,\sqrt{1+\omega_{c0}^{\,2}}} = 1$ Soit $|\mathbf{K}=\mathbf{16},\mathbf{1}|$

Q3- Déterminer la plus petite valeur de K, permettant d'obtenir à la fois $\varepsilon S < 0.08$ et

D'après Q1, pour avoir $\epsilon_{\rm S}$ <0,08 il faut $\,$ K > 11,5 D'après Q2, pour avoir obtenir tm < 8s il faut $\,$ K > 16,1

La plus petite valeur qui permet de satisfaire aux deux conditions ci-dessus est K > 16,1

Q4- Calculer la valeur de la marge de phase obtenue dans ces conditions. Que vaut alors le dépassement?

La marge de phase obtenue pour cette valeur de K est : $\Delta \varphi = \pi - 2 \arctan 10 \omega_{\rm CO} - \arctan 10 \omega_{\rm CO} = 0.16 \ {\rm rad} = 9^\circ$

La valeur du dépassement en boucle fermée se détermine par les relations :

$$\Delta\varphi^{\circ} \rightarrow z_{\mathit{BF}} \approx \frac{\Delta\varphi^{\circ}}{100} \rightarrow D^{0}\% = \exp(-\pi \frac{z_{\mathit{BF}}}{\sqrt{1-z^{2}}})$$
Soit $\Delta\varphi^{\circ} = 9^{\circ} \rightarrow z_{\mathit{BF}} \approx \frac{\Delta\varphi^{\circ}}{100} = 0.09 \rightarrow D^{0}\% = \exp(-\pi \frac{0.09}{\sqrt{1-0.09^{2}}}) = 73\%$

$$\Delta\varphi^{\circ} = 9^{\circ} \text{ et } D^{0}\% = 74$$

Ces deux valeurs ne sont pas conformes au cahier des charges

Q5- Déterminer la marge de phase qui correspond à un dépassement de 10%.

D% = exp(
$$-\pi \frac{z}{\sqrt{1-z^2}}$$
) = 0,1
 $-\pi \frac{z}{\sqrt{1-z^2}}$ = ln 0,1 = -2.3 $\pi^2 \frac{z^2}{1-z^2}$ = 5.3 $z^2 = \frac{5,3}{5,3+\pi^2}$

Soit ZBE = 0,6 Ainsi :
$$\Delta \varphi^{\circ} \approx 100 \; z_{BF} = 60^{\circ}$$

Par ailleurs la marge de phase $\Delta \varphi \ge 45^{\circ}$

Ces deux conditions imposent $\Delta \varphi \ge 60^{\circ}$

Il faut donc obtenir une remontée de phase de 60- 9 = 51° à la pulsation ω_{c0} = 0,375 rad/s

On
$$\omega_{\rm c0}=\omega_{\rm max}=\frac{1}{T\sqrt{a}}$$
 = 0,375 rad/s et $\varphi_{\rm max}=\arcsin\frac{a-1}{{\rm a}+1}$ = 51° Cette dernière condition conduit à : a = 8 La première à T = 0,94 s

$$Ka = \frac{1}{\sqrt{a}}$$