

Medical Image Analysis with Deep Learning

CMPUT 617

Nilanjan Ray

Associate Professor

Computing Science

University of Alberta

Canada

Agenda

- Deep learning (DL)
- Some applications of DL in medical image analysis (MIA)
- DL for MIA tasks: segmentation, detection, etc.
- Challenges and future directions

What is deep learning?

How does computer vision work?

Let's consider object recognition tasks.

- How do we describe a cat or a dog or a ...?
- It is impossible to write "explicit rules" to recognize visual objects/scenes.
- Much easier to learn from examples!

Machine learning is indispensable for computer vision!

Computer vision with deep learning

Deep learning

=

Convolutional neural network with many layers

Convolution revolution!

Source: http://cs231n.github.io/convolutional-networks/

Hierarchical representation by deep learning

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Hubel & Weisel, '62

How do you teach a deep learner?

Step 1: Create training image set (example set):

Repeat steps 2, 3 and 4

- Step 2: Show these examples to the deep learner
- Step 3: Measure mistakes made by the deep learner
- Step 4: Tune (millions of) parameters of the deep learner to minimize its mistakes

Traditional vs. deep learning...

Success stories of deep learning

classification error

Image classification results

ImageNet-Large scale visual recognition challenge: 1000 categories, 1,000,000 images

Computer vision has surpassed human level performance on this benchmark!

Picture courtesy: http://cs231n.stanford.edu/index.html

Large scale video classification

Figure 4: Predictions on Sports-1M test data. Blue (first row) indicates ground truth label and the bars below show model predictions sorted in decreasing confidence. Green and red distinguish correct and incorrect predictions, respectively.

http://cs.stanford.edu/people/karpathy/deepvideo/

Style Transfer

Figure 1. Example of using the Neural Style Transfer algorithm of Gatys *et al.* to transfer the style of Chinese painting (b) onto The Great Wall photograph (a). The painting that served as style is named "Dwelling in the Fuchun Mountains" by Gongwang Huang.

Photorealistic image generation

From NVIDIA research: https://arxiv.org/pdf/1710.10196v1.pdf

Deep reinforcement learning

Picture source: https://deepmind.com/blog/deep-reinforcement-learning/

Impressive robotics with deep learning

https://www.youtube.com/watch?v=B7ZT5oSnRys

Applications of deep learning in medical image analysis

Diabetic retinopathy using deep learning

https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html

Skin cancer detection

- Expert level classification accuracy
- Uses deep CNN (inception net)
- Recent studies show DL outperformed most dermatologists (see:

https://www.ejcancer.com/article/S0959-8049(19)30221-7/fulltext)

Predicting breast cancer grade

- RNA-based genomic tests are expensive
- H&E image analysis with DL can target right group of patients for genetic tests

https://www.nature.com/articles/s41523-018-0079-1

Mammogram analysis with DL

Detecting and classifying lesions in mammogram

https://www.nature.com/articles/s41598-018-22437-z

MIA tasks with DL

Classification/categorization

Example: Chest radiograph categorization

(source: Deep learning for medical image analysis by Zhou, Greenspan, Shen)

Chest X-rays categories examples: (A) healthy, (B) left or right pleural effusion, (C) enlarged heart (cardiomegaly), (D) enlarged mediastinum, (E) left or right consolidation.

Source: Diagnostic Imaging Department, Sheba Medical Center, Tel Hashomer, Israel

Segmentation

Example: Femur segmentation using CNN (https://www.nature.com/articles/s41598-018-34817-6)

Registration

Example: brain image registration

(https://arxiv.org/ftp/arxiv/papers/1802/1802.04692.pdf)

Detection

Example: Mitosis detection

(source: Deep learning for medical image analysis by Zhou, Greenspan, Shen)

Synthesis

Example: CT to PET synthesis

https://arxiv.org/pdf/1802.07846.pdf

Challenges and future directions

"Big picture" challenges

- Read https://www.nature.com/articles/s41746-019-0155-4
 - Various issues in data including training set bias
 - Political and policy-based challenges in healthcare
- DL is data and computation hungry
 - Power is shifting towards large corporations

DL often requires lots of labeled data

- Read: New York Times article: https://www.nytimes.com/2019/08/16/technology/ai-humans.html?utm_s
- Labeling data in MIA applications is expensive
- Transfer learning from natural images does not always work well

Lack of interpretability

- Interpretability = explaining decision making to humans
- Deep learning systems have poor interpretability
- European Union drafted the General Data Protection Regulation, which will require some interpretability of Al algorithms (https://www.eugdpr.org/, https://arxiv.org/abs/1606.08813)

DL is quite sensitive for intensity changes

- Staining variations in histopathology images cause significant roadblock for deep learning methods (https://www.frontiersin.org/articles/10.3389/fbioe.2019.00198/full)
- Also, read https://arxiv.org/pdf/1902.06543.pdf

Future directions

- Weak supervision and reinforcement learning
- Domain adaptation for intensity variations, so forth
- Object shape modeling
- Unsupervised learning (e.g., for anomaly detection)
- Towards interpretable DL for MIA
- **...**