APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA

Áreas de figuras planas (I)

Área de una figura plana

Áreas de figuras planas (II)

Longitud de un arco de curva

Volumen de un cuerpo en función del área de sus secciones planas

El volumen de la figura es $\int_a^b S(x) dx$, donde S(x) es el área de la sección perpendicular al eje en x

Volumen de un cuerpo de revolución

El volumen del cuerpo generado al girar la figura alrededor del eje x es $\int_a^b \pi f(x)^2 \, dx$

Área de una superficie de revolución

• El área de la superficie de revolución generada es:

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + [f'(x)]^2} dx$$