1.	Find	
	$\int \left(8x^3 - \frac{3}{2\sqrt{x}} + 5\right) \mathrm{d}x$	
	giving your answer in simplest form.	(4)

2.	Find $\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) dx$	
	giving your answer in its simplest form.	(4)

3.	Find	
	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x$	
	writing your answer in simplest form.	(4)

$\int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) \mathrm{d}x$	
giving your answer in the form $a + b\sqrt{3}$, where a and b are con-	nstants to be determined. (5)

5.	(a) Given that k is a constant, find $\int \left(\frac{4}{x^3} + kx\right) dx$	
	simplifying your answer.	(3)
	(b) Hence find the value of k such that	
	$\int_{0.5}^{2} \left(\frac{4}{x^3} + kx \right) \mathrm{d}x = 8$	(3)

6. Given that A is constant and	
$\int_{1}^{4} \left(3\sqrt{x} + A \right) \mathrm{d}x = 2A^{2}$	
show that there are exactly two possible values for A .	(5)

7.		
	The curve C has equation $y = f(x)$	
	The curve	
	• passes through the point $P(3, -10)$	
	• has a turning point at P	
	Given that	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 - 9x^2 + 5x + k$	
	where k is a constant,	
	(a) show that $k = 12$	
		(2)
	(b) Hence find the coordinates of the point where C crosses the y-axis.	(3)

Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$y = 3x - x^{\frac{3}{2}}, \qquad x \geqslant 0$$

The finite region S, bounded by the x-axis and the curve, is shown shaded in Figure 3.

(a) Find

$$\int \left(3x - x^{\frac{3}{2}}\right) \mathrm{d}x \tag{3}$$

(b) Hence find the area of *S*.

•	7	٦
- 1	•	-1
	~,	- 1

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = x(x+4)(x-2)$$

The curve C crosses the x-axis at the origin O and at the points A and B.

(a) Write down the x-coordinates of the points A and B.

(1)

The finite region, shown shaded in Figure 3, is bounded by the curve C and the x-axis.

(b) Use integration to find the total area of the finite region shown shaded in Figure 3. (7)

10. (a) Find

$$\int 10x(x^{\frac{1}{2}}-2)\mathrm{d}x$$

giving each term in its simplest form.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = 10x(x^{\frac{1}{2}} - 2), \qquad x \geqslant 0$$

The curve C starts at the origin and crosses the x-axis at the point (4, 0).

The area, shown shaded in Figure 2, consists of two finite regions and is bounded by the curve C, the x-axis and the line x = 9

(b) Use your answer from part (a) to find the total area of the shaded regions.

(5)

(4)

11. A curve *C* has equation y = f(x) where

$$f(x) = -3x^2 + 12x + 8$$

(a) Write f(x) in the form

$$a(x+b)^2+c$$

where a, b and c are constants to be found.

(3)

The curve C has a maximum turning point at M.

(b) Find the coordinates of *M*.

(2)

Figure 3

Figure 3 shows a sketch of the curve *C*.

The line l passes through M and is parallel to the x-axis.

The region R, shown shaded in Figure 3, is bounded by C, l and the y-axis.

(c) Using algebraic integration, find the area of R.

(5)

Figure 1

The line with equation y = 10 cuts the curve with equation $y = x^2 + 2x + 2$ at the points A and B as shown in Figure 1. The figure is not drawn to scale.

(a) Find by calculation the x-coordinate of A and the x-coordinate of B. (2)

The shaded region R is bounded by the line with equation y = 10 and the curve as shown in Figure 1.

(b) Use calculus to find the exact area of R .	(

13.	$g(x) = 2x^3 + x^2 - 41x - 70$	
	(a) Use the factor theorem to show that $g(x)$ is divisible by $(x - 5)$.	(2)
	(b) Hence, showing all your working, write $g(x)$ as a product of three linear factors.	(4)
	The finite region R is bounded by the curve with equation $y = g(x)$ and the x -axis, and lies below the x -axis.	
	(c) Find, using algebraic integration, the exact value of the area of R .	(4)

14. In this question you must show all stages of your working.Solutions relying on calculator technology are not acceptable.

Figure 3

Figure 3 shows a sketch of part of a curve with equation

$$y = \frac{(x-2)(x-4)}{4\sqrt{x}} \qquad x > 0$$

The region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

Find the exact area of R, writing your answer in the form $a\sqrt{2} + b$, where a and b are constants to be found.

Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$y = 2x^3 - 17x^2 + 40x$$

The curve has a minimum turning point at x = k.

The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line with equation x = k.

Show that the area of *R* is $\frac{256}{3}$

 $(Solutions\ based\ entirely\ on\ graphical\ or\ numerical\ methods\ are\ not\ acceptable.)$

Figure 2

In Figure 2 the curve C has equation $y = 6x - x^2$ and the line L has equation y = 2x.

(a) Show that the curve C intersects the x-axis at x = 0 and x = 6.

(1)

(b) Show that the line L intersects the curve C at the points (0, 0) and (4, 8).

(3)

The region R, bounded by the curve C and the line L, is shown shaded in Figure 2.

(c) Use calculus to find the area of R.

(6)

Figure 2

Figure 2 shows the line with equation y = 10 - x and the curve with equation $y = 10x - x^2 - 8$

The line and the curve intersect at the points A and B, and O is the origin.

(a) Calculate the coordinates of A and the coordinates of B.

(5)

The shaded area R is bounded by the line and the curve, as shown in Figure 2.

(b) Calculate the exact area of R.

(7)

Figure 2

The line with equation y = 3x + 20 cuts the curve with equation $y = x^2 + 6x + 10$ at the points A and B, as shown in Figure 2.

(a) Use algebra to find the coordinates of A and the coordinates of B.

(5)

The shaded region S is bounded by the line and the curve, as shown in Figure 2.

(b) Use calculus to find the exact area of S.

(7)

Figure 2

Figure 2 shows a sketch of part of the curve with equation

$$y = 4x^3 + 9x^2 - 30x - 8$$
, $-0.5 \le x \le 2.2$

The curve has a turning point at the point A.

(a) Using calculus, show that the x coordinate of A is 1

(3)

The curve crosses the *x*-axis at the points B(2, 0) and $C\left(-\frac{1}{4}, 0\right)$

The finite region R, shown shaded in Figure 2, is bounded by the curve, the line AB, and the x-axis.

(b) Use integration to find the area of the finite region *R*, giving your answer to 2 decimal places.

(7)

Figure 2

In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Figure 2 shows a sketch of part of the curve C with equation

$$y = \frac{1}{3}x^2 - 2\sqrt{x} + 3 \qquad x \geqslant 0$$

The point P lies on C and has x coordinate 4

The line l is the tangent to C at P.

(a) Show that l has equation

$$13x - 6y - 26 = 0 ag{5}$$

The region R, shown shaded in Figure 2, is bounded by the y-axis, the curve C, the line l and the x-axis.

(b) Find the exact area of R.

(5)

Figure 4

Figure 4 shows a sketch of part of the curve *C* with equation

$$y = \frac{32}{x^2} + 3x - 8, \qquad x > 0$$

The point P(4, 6) lies on C.

The line l is the normal to C at the point P.

The region R, shown shaded in Figure 4, is bounded by the line l, the curve C, the line with equation x = 2 and the x-axis.

Show that the area of R is 46

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(10)

22. In this question you should show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$v = x^3 - 10x^2 + 27x - 23$$

The point P(5, -13) lies on C

The line *l* is the tangent to *C* at *P*

(a) Use differentiation to find the equation of l, giving your answer in the form y = mx + c where m and c are integers to be found.

(4)

(b) Hence verify that l meets C again on the y-axis.

(1)

The finite region R, shown shaded in Figure 2, is bounded by the curve C and the line l.

(c) Use algebraic integration to find the exact area of R.

(4)

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = x(x + 2)(x - 4).

The region R_1 shown shaded in Figure 2 is bounded by the curve and the negative x-axis.

(a) Show that the exact area of
$$R_1$$
 is $\frac{20}{3}$

The region R_2 also shown shaded in Figure 2 is bounded by the curve, the positive x-axis and the line with equation x = b, where b is a positive constant and 0 < b < 4

Given that the area of R_1 is equal to the area of R_2

(b) verify that b satisfies the equation

$$(b+2)^2 (3b^2 - 20b + 20) = 0$$
(4)

The roots of the equation $3b^2 - 20b + 20 = 0$ are 1.225 and 5.442 to 3 decimal places. The value of b is therefore 1.225 to 3 decimal places.

(c) Explain, with the aid of a diagram, the significance of the root 5.442

(2)