Workshop

Maskinlæring

Innhold

Mål: Få grunnleggende forståelse for trening og bruk av maskinlæringsmodeller

Del 1: Sentrale konsepter

Del 2: Kaggle-konkurranse!

 Bruk det dere har lært til å konkurrere mot hverandre

kaggle

"Machine learning gives computers the ability to learn without being explicitly programmed"

- Arthur Samuel (1959)

Generate images

Generate AI Images for Marketing...

Step by Step:

1. Prompt

2. Enjoy

Create systems to solve some of the hardest math problems

Save lives

Predicting protein structure

MACHINE LEARNING

SUPERVISED

TASK DRIVEN (PREDICT NEXT VALUE)

UNSUPERVISED

DATA DRIVEN (IDENTIFY CLUSTERS)

REINFORCEMENT

LEARN FROM MISTAKES

Supervised Learning

X1	Х2	Х3	Xn	Υ

Target

In supervised learning we have
The data X consisting of different
features and the label y what we want
to predict

Machine learning models tries to learn the function to transform X into y

Two Paradigms of Machine Learning

Deep Neural Networks

Thierarchical representation of data

ImageNet classifiers with CNNs [Zeiler and Fergus, ECCV 2014]

Decision Trees

Thierarchical clustering of data

Two Paradigms of Machine Learning

Deep Neural Networks

Thierarchical representation of data

- + learn features of data
- + scalable learning with stochastic optimisation
- architectures are hand-designed
- heavy-weight inference, engaging every parameter of the model for each input

Decision Trees

Thierarchical clustering of data

- operate on hand-designed features
- limited expressivity with simple splitting functions
- + architectures are learned from data
- + lightweight inference, activating only a fraction of the model per input $\begin{tabular}{c} {\bf v} \\ {\bf v}$

TASK 1 - Define the problem (5 min)

TASK 2.1-2.4 - Explore the data (20 min)

Preprocessing

Feature engineering

Training, Validation, and Test split

TASK 3 - Train and tune your first Machine learning Model (15 min)

Understand the model

- Model can gain knowledge we humans do not possess
- The model might not have learned what we think it has

TASK 4 - Interpret a decision tree model (10 min)

- Create a hypothetical person, give them an Age, TicketClass, Sex, Fare and where they embarked from
- Go down the decision tree and see whether the model thinks they would survive or not

TASK 5 - Competition (final part of the workshop)

- Designate a team lead for each table and send them to the stage.
- The rest of the table try different machine learning algorithms, do some feature engineering and look at the tips for the competition at the bottom.

