FORMULAE FOR THE RESOLUTION OF FLUID DYNAMICS AND HEAT AND MASS TRANSFER PROBLEMS

CONTENTS:

- Section A: Basic mathematical relations for the resolution of heat and mass transfer problems. It includes mathematical formulation for convection (in both integral and differential form), analytical solutions for conduction heat transfer (steady and transient), and useful formulae for radiation heat transfer.
- Section B: Charts of convection heat transfer correlations in: i) natural convection; ii) forced convection in ducts; iii) forced convection in flat plates for incompressible flow; iv) forced convection in flat plates for compressible flow; v) forced convection around tubes and bundles of tubes; vi) forced convection on rotating surfaces; vii) friction factors inside ducts (single-phase); viii) fiction factors and heat transfer coefficients in condensation and evaporation phenomena.
- Section C: Alternative correlations for the computation of convection heat transfer correlations in: i) flat plates; ii) interior of cylindrical tubes; iii) generalization of the previous formulation for flows inside noncircular cross-sections; iv) cavities with differentially heated vertical walls.
- Section D: Thermophysical properties for: metals, non-metal materials, insulating materials, gases (air and steam), liquids (water, glycerine, oil and Hg), and radiative properties.
- Section E: Nomenclature.

A. BASIC MATHEMATICAL RELATIONS

A1. Mass, momentum and energy transport equations in integral form. Moving control volumes:

$$\frac{d}{dt} \int_{V_a(t)} \rho dV + \int_{S_a(t)} \rho(\vec{v} - \vec{v}_b) \cdot \vec{n} dS = 0$$

$$\tag{1.1}$$

$$\frac{d}{dt} \int_{V_q(t)} \vec{v} \rho dV + \int_{S_q(t)} \vec{v} \rho(\vec{v} - \vec{v}_b) \cdot \vec{n} dS = \int_{S_q(t)} \vec{f}_{(\vec{n})} dS + \int_{V_q(t)} \vec{g} \rho dV$$
(1.2)

$$\frac{d}{dt} \int_{V_a(t)} (u + e_k) \rho dV + \int_{S_a(t)} (u + e_k) \rho (\vec{v} - \vec{v}_b) \cdot \vec{n} dS = -\int_{S_a(t)} \vec{q} \cdot \vec{n} dS + \int_{S_a(t)} \vec{v} \cdot \vec{f}_{(\vec{n})} dS + \int_{V_a(t)} \vec{v} \cdot \vec{g} \rho dV$$
 (1.3)

Assuming static control volumes ($\vec{v}_h = 0$):

$$\frac{\partial}{\partial t} \int_{V_{a}} \rho dV + \int_{S_{a}} \rho \vec{v} \cdot \vec{n} dS = 0 \tag{1.4}$$

$$\frac{\partial}{\partial t} \int_{V_{q}} \vec{v} \rho dV + \int_{S_{q}} \vec{v} \rho \vec{v} \cdot \vec{n} dS = \int_{S_{q}} \vec{f}_{(\vec{n})} dS + \int_{V_{q}} \vec{g} \rho dV$$
(1.5)

$$\frac{\partial}{\partial t} \int\limits_{V_a} (u + e_k) \rho dV + \int\limits_{S_a} (u + e_k) \rho \vec{v} \cdot \vec{n} dS = -\int\limits_{S_a} \vec{q}^{C+R} \cdot \vec{n} dS + \int\limits_{S_a} \vec{v} \cdot \vec{f}_{(\vec{n})} dS + \int\limits_{V_a} \vec{v} \cdot \vec{g} \rho dV \qquad (1.6)$$

The energy equation (1.6) can also be rewritten as:

$$\frac{\partial}{\partial t} \int\limits_{V_a} \left(h - \frac{p}{\rho} + e_k + e_p \right) \rho dV + \int\limits_{S_a} \left(h + e_k + e_p \right) \rho \vec{v} \cdot \vec{n} dS = - \int\limits_{S_a} \vec{q}^{C+R} \cdot \vec{n} dS + \int\limits_{S_a} \vec{v} \cdot \vec{f}_{(\vec{n})}^{\tau} dS \qquad (1.7)$$
 where $\vec{f}_{(\vec{n})}^{\tau}$ accounts only for the viscous force vector (per unit surface).

Other important transport equations:

Entropy transport equation:
$$\frac{\partial}{\partial t} \int_{V_a} s \rho dV + \int_{S_a} s \rho \vec{v} \cdot \vec{n} dS = -\int_{S_a} \frac{\vec{q}}{T} \cdot \vec{n} dS + \int_{V_a} \dot{s}_{gen} dV \quad (\dot{s}_{gen} \ge 0)$$
 (1.8)

Transport equation of species
$$k$$
: $\frac{\partial}{\partial t} \int_{V_a} Y_k \rho dV + \int_{S_a} Y_k \rho \vec{v} \cdot \vec{n} dS = -\int_{S_a} \vec{J}_k \cdot \vec{n} dS + \int_{V_a} \dot{\omega}_k dV$ (1.9)

A2. Basic transport equations in differential form (Navier-Stokes equations)

In case of <u>forced convection</u>, assuming Newtonian fluid, constant density and viscosity, non-participating radiative medium and negligible viscous dissipation:

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0 \tag{2.1}$$

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial x} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) + g_x \tag{2.2}$$

$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial y} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right) + g_y \tag{2.3}$$

$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial z} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + g_z$$
 (2.4)

$$\rho_{o}c_{p}\left(\frac{\partial T}{\partial t} + v_{x}\frac{\partial T}{\partial x} + v_{y}\frac{\partial T}{\partial y} + v_{z}\frac{\partial T}{\partial z}\right) = \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(\lambda\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(\lambda\frac{\partial T}{\partial z}\right) \tag{2.5}$$

For <u>natural or mixed convection</u>, assuming the aforementioned hypothesis, except for the influence of the temperature on density variations in the buoyancy terms of the momentum equations (Boussinesq approach):

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0 \tag{2.6}$$

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial x} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) + g_x - \beta_o (T - T_o) g_x \tag{2.7}$$

$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial y} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right) + g_y - \beta_o (T - T_o) g_y \tag{2.8}$$

$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial z} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + g_z - \beta_o (T - T_o) g_z$$
(2.9)

$$\rho_{o}c_{p}\left(\frac{\partial T}{\partial t} + v_{x}\frac{\partial T}{\partial x} + v_{y}\frac{\partial T}{\partial y} + v_{z}\frac{\partial T}{\partial z}\right) = \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(\lambda\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(\lambda\frac{\partial T}{\partial z}\right) \tag{2.10}$$

In this case, it is usual to merge the gravity term \vec{g} with the pressure gradient term. Consequently, the dynamic pressure p_d appears instead of the thermodynamic pressure p. Hence, equation (2.7) now reads as:

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p_d}{\partial x} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) - \beta_o (T - T_o) g_x \tag{2.11}$$

In the same way, equations (2.8) and (2.9) can be rewritten.

For gases at high velocity, the Navier-Stokes equations, assuming semi-perfect gas behaviour, can be expressed in vectorial notation as:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \tag{2.12}$$

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v}\right) = -\nabla p + \nabla \cdot \vec{\tau} + \rho \vec{g} \tag{2.13}$$

$$\rho c_v \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right) = \nabla \cdot (\lambda \nabla T) - \nabla \cdot \vec{q}^R - p \nabla \cdot \vec{v} + \vec{\tau} : \nabla \vec{v}$$
(2.14)

$$p = \rho RT \tag{2.15}$$

where, $\vec{\tau} = \mu(\nabla \vec{v} + \nabla \vec{v}^T) - \frac{2}{3}\mu(\nabla \cdot \vec{v})\vec{\delta}$.

The kinetic energy equation can be written as:
$$\rho\left(\frac{\partial e_k}{\partial t} + \vec{v} \cdot \nabla e_k\right) = -\vec{v} \cdot \nabla p + \vec{v} \cdot \nabla \cdot \vec{\tau} + \rho \vec{v} \cdot \vec{g}$$
 (2.16)

For solids, the energy equation is simply:
$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \dot{q}_v$$
 (2.17)

A3. Analytical solutions for conduction heat transfer in walls and extended surfaces (fins)

In this section, one-dimensional steady-state temperature profiles, and constant thermophysical properties and \dot{q}_v are considered. For the case of extended surfaces, it is assumed constant external temperature and convective heat transfer coefficient (T_a and α_a) in the fin. The temperature profiles and heat fluxes are presented as follows:

3.1 Plane walls:
$$T = -\frac{\dot{q}_v}{2\lambda}x^2 + C_1x + C_2$$
; $\dot{q}_x = \dot{q}_v x - \lambda C_1$ (3.1)

3.2 Cylindrical walls:
$$T=-\frac{\dot{q}_v}{4\lambda}r^2+C_1ln(r)+C_2; \quad \dot{q}_r=\frac{1}{2}\dot{q}_vr-\lambda\frac{c_1}{r}$$
 (3.2)

3.3 Spherical walls:
$$T = -\frac{\dot{q}_v}{6\lambda}r^2 + \frac{c_1}{r} + C_2$$
; $\dot{q}_r = \frac{1}{3}\dot{q}_v r + \lambda \frac{c_1}{r^2}$ (3.3)

3.4 Fins with constant cross-section:
$$T - T_{ext} = C_1 e^{mx} + C_2 e^{-mx}$$
; $\dot{q}_x = -\lambda_f m (C_1 e^{mx} - C_2 e^{-mx})$ (3.4)

where $m = \sqrt{\alpha_{ext}P_f/(\lambda_fS_f)}$; P_f is the perimeter of the fin; S_f is the cross-section of the fin, α_{ext} is the external heat transfer coefficient.

Heat flux delivered by the fin:
$$\dot{Q}_f = \eta_f \alpha_{ext} (T_w - T_{ext}) A_f$$
 (3.5)

where the efficiency of the fin is evaluated from: $\eta_f = \frac{th[mL_f]}{mL_f}$ (assuming adiabatic fin end), L_f is the length of the fin, A_f is the heat transfer surface ($A_f = P_f L_f$), T_w is the temperature of the fin at its base, and T_{ext} is the external temperature.

3.5 Circular fins:
$$T - T_{ext} = C_1 I_o(mr) + C_2 K_o(mr); \quad \dot{q}_r = -\lambda_f \frac{dT}{dr} = -\lambda_f m [C_1 I_1(mr) - C_2 K_1(mr)]$$
 (3.6)

where I_o and K_o are the modified zero order Bessel functions of first and second class, respectively. See Table B on page 6.

Heat flux delivered by the fin:
$$\dot{Q}_f = \eta_f \alpha_{ext} (T_w - T_{ext}) A_f$$
 (3.7)

where
$$\eta_f \approx \frac{th[mR_i\phi]}{mR_i\phi}$$
 (assuming adiabatic fin end), $\phi = \left(\frac{R_e}{R_i} - 1\right)\left[1 + 0.35ln\left(\frac{R_e}{R_i}\right)\right]$, $A_f = 2\pi(R_e^2 - R_i^2)$,

 $m=\sqrt{2\alpha_{ext}/(\lambda_f e_f)}$, being R_i , R_e and e_f the inner fin radius, outer fin radius and fin thickness, respectively.

A4. Analytical solutions for conduction heat transfer in transient problems

4.1 **Plate of thickness** 2e. Unsteady-state (heating/cooling) of a flat plate with initial uniform temperature T_o . The plate is suddenly submerged into an atmosphere at temperature T_{ext} (which is considered constant throughout the process). The convective heat transfer coefficient α_{ext} is constant. Thermophysical properties of the material are considered constant as well $(\rho, c_p, \lambda, \alpha = \lambda/\rho c_p)$. The temperature follows:

$$\Phi = \sum_{k=1}^{\infty} \frac{2\sin(u_k)}{u_k + \sin(u_k)\cos(u_k)} \cos(u_k X) e^{-u_k^2 Fo}$$

$$\tag{4.1}$$

where, $\Phi = \frac{\mathrm{T-T_{ext}}}{\mathrm{T_0-T_{ext}}}$, $X = \frac{x}{e}$, $Fo = \frac{at}{e^2}$. The variables u_k are the solutions to equation cot(u) = u/Bi, with $Bi = \alpha_{ext}e/\lambda$.

4.2 **Cylinder of radius** r_o . The analysis of the problem is the same as the previous case. The temperature profile is obtained from:

$$\Phi = \sum_{k=1}^{\infty} \frac{2I_1(u_k)}{u_k [I_0^2(u_k) + I_1^2(u_k)]} I_0^2(u_k R) e^{-u_k^2 F o}$$
(4.2)

where, I_o is a first-class zero-order Bessel function, and I_1 is a first-class first-order; $\Phi = \frac{\mathrm{T-T_{ext}}}{\mathrm{T_o-T_{ext}}}$, $R = \frac{r}{r_o}$, $R = \frac{at}{r_o^2}$, and u_k are the solutions to the equation $I_o(u)/I_1(u) = u/Bi$, with $Bi = \alpha_{ext}r_o/\lambda$.

4.3 **Sphere of radius** r_o . For this case, the following temperature profile is obtained:

$$\Phi = \sum_{k=1}^{\infty} \frac{2\sin(u_k R)[sen(u_k) - u_k cos(u_k)]}{u_k R[u_k - sen(u_k)cos(u_k)]} e^{-u_k^2 Fo}$$
(4.3)

where, $\Phi = \frac{\mathrm{T-T_{ext}}}{\mathrm{T_o-T_{ext}}}$, $R = \frac{r}{r_o}$, $Fo = \frac{at}{r_o^2}$, and u_k are solutions of tan(u) = -u/(Bi-1); $Bi = \alpha_{ext}r_o/\lambda$.

A5. Radiation and atmosphere conditions

5.1 Snell's law:
$$n_{A,V} sin \beta_A = n_{B,V} sin \beta_B$$
 (5.1)

where β_A and β_B are the angles of incidence and refraction, respectively, and $n_{A,\nu}$ and $n_{B,\nu}$ are the refracted indices of medium A and B, at frequency ν .

5.2 Stefan-Boltzmann's constant:
$$\sigma = \frac{2\pi^5 k^4}{15h^3 c_0^2} = 5.67 \cdot 10^{-8} \frac{W}{m^2 K^4}$$
 (5.2)

5.3 Wien's law for black body radiation:
$$(\lambda T)_{max.nower} = 2897.8 \,\mu\text{mK}$$
 (5.3)

5.4 **Solid angle differential**:
$$d\omega = sin\theta d\theta d\phi$$
 (5.4) where θ and ϕ are the polar and azimuthal angles, respectively.

5.5 Generalized expression of the **view factor** between surface A_i and surface A_k :

$$F_{ik} = \frac{1}{\pi A_i} \int_{A_i} \int_{A_k} \frac{\cos \theta_i \cos \theta_k}{d_{ik}^2} dA_i dA_k$$
 (5.5)

Hottel's crossed string rule. View factor F_{ij} in 2D cases: $F_{ij} = \frac{SUM\ crossed\ strings-SUM\ uncrossed\ strings}{twice\ surface\ A_i\ per\ unit\ depth}$ (5.6)

5.6 **Sky temperature**:
$$T_{sky} \approx 0.0552T_{air}^{1.5}$$
 (simplified correlation) (5.7)

where T_{sky} and T_{air} correspond to the sky and ambient temperatures (both in K).

More accurate correlation:
$$T_{sky} \approx T_{air} \left[0.711 + 0.0056 T_{dp} + 7.3 \cdot 10^{-5} T_{dp}^2 + 0.013 cos \left(\frac{2\pi t}{24} \right) \right]^{\frac{1}{4}}$$
 (5.8)

where T_{dp} is the dew-point temperature, and t the time counted from midnight (t = 0, 1, 2, ..., 24). In this second expression, proposed by Verdal and Martin, all the temperatures are expressed in °C.

5.7 Black body radiation. Planck's law:
$$I_{b,\lambda\omega}^{(e)} = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{exp(\frac{hc}{\lambda kT}) - 1}$$
 (5.9)

where,
$$c = c_o/n$$
, $c = \lambda v$; $h = 6.6261 \cdot 10^{-34}$ Js ; $k = 1.3807 \cdot 10^{-23}$ J/K ; $c_o = 2.9979 \cdot 10^8$ m/s .

Integrating Planck's law in all directions at a given wave length λ of a body at temperature T, the spectral emissive power is obtained:

$$\dot{q}_{b,\lambda}^{(e)} = \int_{2\pi} I_{b,\lambda\omega}^{(e)} \cos\theta d\omega = \pi I_{b,\lambda\omega}^{(e)}$$
 (5.10)

Integrating Planck's law in all directions and wave lengths ($\lambda=0~a~\infty$) of a body at temperature T:

$$\dot{q}_b^{(e)} = \int_{\lambda=0}^{\infty} \pi I_{b,\lambda\omega}^{(e)} d\lambda = \sigma T^4$$
 (5.11)

With the attached Table A (see page 6), the following integral can be evaluated from $\lambda = 0$ to λ :

$$\dot{q}_{b,(\lambda=0\to\lambda)}^{(e)} = \int_{\lambda=0}^{\lambda} \pi I_{b,\lambda\omega}^{(e)} d\lambda = f_{\lambda T} \sigma T^4$$
(5.12)

where the fraction $f_{\lambda T}$ only depends on λT ($\mu m K$).

5.9 Radiation in an absorbing medium. The Lambert-Beer law

From the radiative transport equation (RTE), assuming a purely absorbing medium characterized by a spectral extinction coefficient $\beta_{\nu}=\kappa_{\nu}+\sigma_{s,\nu}$ (being κ_{ν} and $\sigma_{s,\nu}$ the absorption and scattering coefficients, respectively), the specific radiant intensity in a given direction x is given by: $dI_{\nu\omega}/dx=-\beta_{\nu}I_{\nu\omega}$. Integrating from x=0 to x (assuming constant β_{ν}): $I_{\nu\omega}=I_{o\nu}e^{-\beta_{\nu}x}$ (5.13)

where I_{ov} is the value of the specific intensity at x=0.

5.10 Reference values for temperature and pressure distribution in the atmosphere according to ISA (International Standard Atmosphere). The main parameters are included in the next table. The rest of values can be computed with the attached expressions (which allows us to evaluate T and p at any altitude z).

Zone	Zone	Layer k	$z_k(m)$	$\beta_k(K/m)$	$T_k(K)$ en z_k	$p_k(Pa)$	$\rho_k (kg/m^3)$
Troposphere		0	0	$-6,50 \times 10^{-3}$	288.15	101325	1.2252
		1 (tropopause)	11000	0,00	216.65	22649	0.3643
	Stratosphere	2	20000	$+1,00 \times 10^{-3}$	216.65	5482.8	0.0882
		3	32000	$+2,80 \times 10^{-3}$	228.65	870.06	0.0133
		4 (stratopause)	47000	0,00	270.65	111.28	0.0014
Mesosphere		5	51000	$-2,80 \times 10^{-3}$	270.65	67.181	0.0009
		6	71000	$-2,00 \times 10^{-3}$	214.65	3.9763	0.0001
		7 (mesopause)	84852	-	186.95	0.3757	0.0000

In this table: z_k is the geopotential height; β_{kj} is the variation of temperature per unit of height between layer k and k+1; T_k is the temperature at height z_k ; p_k is the pressure at position z_k .

Assuming linear temperature changes between layers:
$$T(z) = T_k + \beta_k(z - z_k)$$
 (5.14)

From a momentum balance
$$(dp/dz = -\rho g)$$
, pressure is obtained: $p(z) = p_k [T_k/T(z)]^{\frac{g}{R\beta_{kj}}}$ (5.15)

where $\rho_k = p_k/RT_k$, $g = 9.8 \, m/s^2$ and $R = 287 \, J/kgK$ are used. In these equations, k is the reference value on the base of the layer. Calculated p(z) and T(z) are in the layer k and k+1.

A6. Numerical methods

6.1 Thermal conductivity at a CV face (harmonic mean):
$$\lambda_f = d_{PF} / \left[\frac{d_{Pf}}{\lambda_P} + \frac{d_{fF}}{\lambda_F} \right]$$
 (6.1)

6.2 Over-relaxation and under-relaxation factors:
$$\phi^{*(new)} = \phi^{*(old)} + f_r[\phi^{equation} - \phi^{*(old)}]$$
 (6.2)

6.3 TDMA (Tri-Diagonal Matrix Algorithm) for solving linear discretized equations of this type:

$$a_P[i]T[i] = a_E[i]T[i+1] + a_W[i]T[i-1] + b_P[i]$$
(6.3)

Two steps:

1) Evaluation from
$$i = 1$$
 to N of: $P[i] = \frac{a_E[i]}{a_P[i] - a_W[i]P[i-1]}$ and $R[i] = \frac{b_P[i] + a_W[i]R[i-1]}{a_P[i] - a_W[i]P[i-1]}$ (6.4)

2) Temperatures are obtained from
$$i = N$$
 to 1: $T[i] = P[i]T[i+1] + R[i]$ (6.5)

A7. Momentum, mass and heat transfer analogy

7.1 Colburn-Chilton analogy is based on similarities between momentum, mass and heat transport mechanisms $(Re > 10^4, 0.7 < Pr < 160, \text{ in case of tubes } L/D > 60)$:

$$f_{smooth}/2 = j_M = j_H \tag{7.1}$$

where j_M and j_H are the Colburn-Chilton j-factor for mass and heat (see Nomenclature) defined as:

$$j_M = St_M Sc^{2/3}; j_H = St_H Pr^{2/3}$$
 (7.2)

Table A. Black body radiation to evaluate energy emitted from $\lambda=0$ to λ

Table B. Modified Bessel Functions of the first and second kinds

 $e^x K_1(x)$

0.4399

0.4295

0.4198

0.4108

0.4168

0.4079

0.3995

0.3916

 ∞ 5.8334 3.2587 2.3739 1.9179 1.6361 1.4429 1.3010 1.1919 1.1048 1.0335 0.9738 0.9229 0.8790 0.8405 0.8066 0.7763 0.7491 0.7245 0.7021 0.6816 0.6627 0.6453 0.6292 0.6142 0.6003 0.5872 0.5749 0.5633 0.5525 0.5422 0.5232 0.5060 0.4905 0.4762 0.4631 0.4511

$\lambda T (\mu m K)$	$f_{\lambda T}$	$\lambda T (\mu m K)$	$f_{\lambda T}$	x	$e^{-x}I_o(x)$	$e^{-x}I_1(x)$	$e^x K_o(x)$
200	0.000000	6200	0.754140	0.0	1.0000	0.0000	∞
400	0.000000	6400	0.769234	0.2	0.8269	0.0823	2.1407
600	0.000000	6600	0.783199	0.4	0.6974	0.1368	1.6627
800	0.000016	6800	0.796129	0.6	0.5993	0.1722	1.4167
1000	0.000321	7000	0.808109	0.8	0.5241	0.1945	1.2582
1200				1.0	0.4657	0.2079	1.1445
	0.002134	7200	0.819217	1.2	0.4198	0.2152	1.0575
1400	0.007790	7400	0.829527	1.4	0.3831 0.3533	0.2185 0.2190	0.9881
1600	0.019718	7600	0.839102	1.8	0.3289	0.2177	0.8828
1800	0.039341	7800	0.848005	2.0	0.3085	0.2177	0.8416
2000	0.066728	8000	0.856288	2.2	0.2913	0.2121	0.8056
2200	0.100888	8500	0.874608	2.4	0.2766	0.2085	0.7740
2400	0.140256	9000	0.890029	2.6	0.2639	0.2046	0.7459
2600	0.183120	9500	0.903085	2.8	0.2528	0.2007	0.7206
2800	0.227897	10,000	0.914199	3.0	0.2430	0.1968	0.6978
3000	0.273232	10,500	0.923710	3.2	0.2343	0.1930	0.6770
3200	0.318102	11,000	0.931890	3.4	0.2264	0.1892	0.6579
3400	0.361735	11,500	0.931890	3.6	0.2193	0.1856	0.6404
				3.8	0.2129	0.1821	0.6243
3600	0.403607	12,000	0.945098	4.0	0.2070	0.1787	0.6093
3800	0.443382	13,000	0.955139	4.2	0.2016	0.1755	0.5953
4000	0.480877	14,000	0.962898	4.4	0.1966	0.1724	0.5823
4200	0.516014	15,000	0.969981	4.6 4.8	0.1919	0.1695	0.5701 0.5586
4400	0.548796	16,000	0.973814	5.0	0.1876 0.1835	0.1667 0.1640	0.5386
4600	0.579280	18,000	0.980860	5.2	0.1797	0.1614	0.5376
4800	0.607559	20,000	0.985602	5.4	0.1762	0.1589	0.5279
5000	0.633747	25,000	0.992215	5.6	0.1728	0.1565	0.5188
5200	0.658970	30,000	0.995340	5.8	0.1696	0.1542	0.5101
5400	0.680360	40,000	0.997967	6.0	0.1666	0.1520	0.5019
5600	0.701046	50,000	0.998953	6.4	0.1611	0.1479	0.4865
5800	0.720158			6.8	0.1561	0.1441	0.4724
		75,000	0.999713	7.2	0.1515	0.1405	0.4595
6000	0.737818	100,000	0.999905	7.6	0.1473	0.1372	0.4476
(Table A: Y	A.Cengel, Heat Transfer,	A Practical Approach, Mo	Graw-Hill, Boston, 1998)	8.0	0.1434	0.1341	0.4366
`	,	11 /	· · · · · · · · · · · · · · · · · · ·	8.4	0.1398	0.1312	0.4264

(Table B: Incropera et al, Fundamental of Heat and Mass Transfer, John Whiley&Sons, 2007)

 $I_{n+1}(x) = I_{n-1}(x) - (2n/x)I_n(x)$

0.1365

0.1334

0.1305

0.1278

0.1285

0.1260

0.1235

0.1213

8.8

9.2

9.6

10.0

B. CONVECTION HEAT TRANSFER COEFFICIENTS

This section presents more correlations of both natural and forced convection in different situations, considering single phase (subsections B1 to B7; from H.Y.Wong, Handbook of Essential Formulae and Data on Heat Transfer for Engineers, Longman, London, 1977) and two-phase flows (subsection B8).

The attached correlations are:

- Section B1: Heat transfer coefficients in natural (or free) convection
- Section B2: Heat transfer coefficients in forced convection in ducts
- Section B3: Heat transfer coefficients in forced convection in flat plates (liquids and gases at low Mach)
- Section B4: Heat transfer coefficients in forced convection in flat plates (gases at high Mach number)
- Section B5: Heat transfer coefficients in forced convection around tubes and pipe bundles
- Section B6: Heat transfer coefficients in forced convection on rotating surfaces
- Section B7: Friction factors for flows inside ducts (single-phase)
- Section B8: Pressure drop and heat transfer coefficients in two-phase flow.

B1. Natural/free convection (1/3)

Formulae: $\overline{Nu} = CRa^nK$ (laminar: $10^3 < Ra < 10^9$; turbulent: $Ra \ge 10^9$) (property values at T_m)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

C Constant in Nusselt equation

 c_p Specific heat at constant pressure (J/kgK)

g Gravitational acceleration, $g = 9.81 \, m/s^2$

Gr Grashof number, $Gr = g\beta \rho^2 | T_w - T_f | X^3 / \mu^2$

K Dimensionless correction function in Nusselt eq.

n Constant in Nusselt equation

 \overline{Nu} Mean Nusselt number, $\overline{Nu} = \tilde{\alpha}X/\lambda$

 \dot{q}_w Heat transfer rate (W/m^2)

Pr Prandtl number, $Pr = \mu c_n / \lambda$

Ra Rayleigh number, Ra = GrPr

 T_f Fluid bulk temperature (°C or K)

 T_m Film temperature (°C or K), $T_m = (T_w + T_f)/2$

 T_w Temperature of the wall (°C or K)

X Characteristic length (m)

 $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)

 β Volumetric thermal expansion coefficient (K^{-1})

 λ Thermal conductivity (W/mK)

μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

No	System S	Schematic presentation	С	ħ	K	Operating Refer- conditions ences
	Exposed su	rfaces				
1	Horizontal cylinder		0.47 0.1	1/4 1/3		Laminar flow 3.9 Turbulent flow 3.9
,		X = D				
2	Vertical plate		8.0	1/4	$\left[1 + \left(1 + \frac{1}{\sqrt{Pr}}\right)^2\right]^{-1/4}$	Laminar flow; 3.8 to obtain local Nu, use $C = 0.6, X = x$: formula applic-
		X = L	-		2.45	able to vertical cylinder when $\frac{D}{L} \ge 38 \text{ (Gr)}^{-1/4}$
	vertical cylinder of large diamete		0.024	46 2/5	$\left[\frac{Pr^{1/6}}{1 + 0.494Pr^{2/3}}\right]^{2/5}$	Turbulent flow; 3.10 to obtain local $\frac{Nu}{C}$, use $C = 0.0296$ and $X = x$
		X = L				

B1. Natural/free convection (2/3)

No,	System	Schematic presentation	С	n	K	Operating Refer- conditions ences
3	Vertical cylinder with small diameter	X = L	0.686	1/4	[Pr/(1 + 1.05 Pr)] 1/4	Laminar flow; 3.13 $\vec{N}u_{total} = \vec{N}u$ $+ 0.52 \frac{L}{D}$ $\frac{D}{L} < 38Gr^{-1/4}$
4	Heated horizontal plate facing upward		0.54	1/4	1	Laminar flow; 3.9 for circular disc of diameter D, use
		X = L	0.14	1/3	1	X = 0.9D Turbulent flow #3.9
5	Heated horizontal plate facing downward		0.27	1/4		Laminar flow 3,20 only
6	Moderately	X = L				and the second
3	inclined plate		0.8	1/4	$\left[\frac{\cos\phi}{1+\left(1+\frac{1}{\sqrt{P_{\rm T}}}\right)^2}\right]^{1/4}$	Laminar flow (multiply Gr. by cos φ in the formula for vertical plate)
7	Sphere	1_\	0.49	1/4	1	Laminar flow 3.13 (air)
			Correlat	ion by	Churchill (2002) for Gr_DPr	•
		X = D			$Nu_D = 2 + \frac{0.589(0.589)}{[1 + (0.46)]}$	$(Gr_DPr)^{1/4}$
		D			$10 u_D - 2 + \frac{1}{1 + (0.46)}$	$9/Pr)^{9/16}]^{4/9}$

Semi-closed and closed systems:

B1. Natural/free convection (3/3)

No.	System	Schematic presentation	С	n	K	•	Refer- ences
10	Two hori- zontal parallel plates hot	$\frac{\theta_h}{\int \frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1-\frac{1-\frac{1}{1-1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac$	Note: $\theta_h = T_h$;	$\theta_c = T_c$		Pure conduction $q = \overline{\alpha}(T_h - T_c)$	 \$ %
	plate uppermost	$ \frac{\int \theta_{c}}{\Delta \theta = \theta_{h} - \theta_{c}} $ $ X = d $	0.27	1/4	1	Laminar (air) 3×10^{5} $< Gr \cdot Pr$ $< 3 \times 10^{10}$	3.20
11	Two hori- zontal parallel plates cold plate	$\frac{\operatorname{coid}}{\theta_c}$	0.195	1/4	Pr ^{-1/4}	Laminar (air 10 ⁴ < Gr < 4 x 10 ⁵	3.19
	uppermost	$\Delta \theta = \theta_{h} \theta_{c}$ $X = d$	0.068	1/3	Pr ^{-1/3}	Turbulent (air) $Gr > 4 \times 10^{5}$ $\dot{q} = \bar{\alpha}(T_h - T_c)$	3.19
12	Two vertical parallel plates at different	$a \mid a \mid$	0.18	1/4	$(L/d)^{-1/9} (Pr)^{-1/4}$	Laminar (air) $2 \times 10^4 < Gr$ $< 2 \times 10^5$	3.19
	temperatur (h for both	es	0.065		$(L/d)^{-1/9} (Pr)^{-1/3}$	Turbulent (air) $2 \times 10^5 < Gr$	3.19
	surfaces)	for $\frac{L}{d} > 3$ $X = d$	convect	ion in_	I in case of natural closed cavities with ferentially heated vertical	$ < 10^7 $ $ \dot{q} = \overline{\alpha} (T_h - T_c) $)
13	Two inclined parallel plates	$\Delta\theta = \theta_h - \theta_c$ $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} = \frac{\partial}{\partial x} =$	$\overline{Nu} = \frac{1}{2}$	[Nu _{ve}	$e_{rt}\cos\phi + \overline{Nu}_{horit}\sin\phi$		
14	Two con- centric cylinders	$X = d$ θ_{c} $X = \frac{1}{2}(d_{o} - d_{i})$ $A = 2\pi X L$	0.317	1/4	$\left[X^3 \left(\frac{1}{d_i^{3/5}} + \frac{1}{d_0^{3/5}}\right)^5\right]^{-1/4}$	Laminar flow 3. $q=\overline{\alpha}(T_h-T_c)$	48
15	Two concentric spheres	θ_c θ_c d_i d_o	0.61	1/4	$\frac{1}{2(d_0 + d_1)} \times \left[X^3 \left(\frac{1}{d_1^{7/5}} + \frac{1}{d_0^{7/5}} \right)^5 \right]^{-1}$	Laminar flow 3. $q=\overline{\alpha}(T_h-T_c)$	48
		$X = \frac{1}{2}(d_o - d_i)$ $A = 2\pi X(d_o + d_i)$					
16	Closed cavity	with vertical isothermal walls: s	see section C4	T_h	T_c		

B2. Forced convection inside ducts (liquids and gases at low Mach number)

Formulae: $\overline{Nu} = CRe^m Pr^n K$ (laminar: Re < 2000; turbulent: $Re \ge 2000$) (fluid properties at T_f , except μ_w which is calculated at T_w)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

- Constant in Nusselt equation С
- Specific heat at constant pressure (J/kgK) c_p
- Hydraulic diameter (m), D = 4S/P (see also Section C3)
- Graetz number, $Gz = RePrD/\ell$ Gz
- Dimensionless correction function in Nusselt equation Κ
- ℓ Length (m)
- nConstant in Nusselt equation
- \overline{Nu} Mean Nusselt number, $\overline{Nu} = \overline{\alpha}D/\lambda$
- Constant in Nusselt equation m
- ṁ Mass flow rate (kg/s)
- P Wet perimeter (m)

- Heat transfer rate at the wall (W/m^2)
- Reynolds number, $Re = \rho \bar{v} D/\mu$
- S Cross sectional area (m^2)
- T_f Fluid bulk temperature (°C or *K*)
- Temperature of the wall (${}^{\circ}$ C or K) T_w
- Mean fluid velocity, $\bar{v} = \dot{m} / (\rho S)$
- $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)
- Thermal conductivity (W/mK)λ
- Density (kg/m^3) ρ
- Dynamic viscosity (kg/ms) μ

0.	Cross-section	D	<i>C</i>	m	n	<i>K</i> ·	Operating conditions
	Circular tube	ď	1.86	1/3	1	$\left(\frac{d}{l}\right)^{1/3} \left(\frac{\mu}{\mu_{\mathbf{w}}}\right)^{0.14}$	Laminar flow short tube, Re < 2 000, Gz > 10
	T	d	3.66	0 .	.0	1	Laminar flow long tube, Re < 2 000, Gz < 10
		đ	0.023	0.8	0.4	1	Turbulent flow of gases, Re > 2 000
2	Rectangular tube	đ	0.027	0.8	0.33	$\left(\frac{\mu}{\mu_{\rm w}}\right)^{0.14}$	Turbulent flow of highly viscous liquids, Re > 2 0.6 < Pr < 100
	$\frac{b}{a} = 1$. a	2.98	0	0	1	Laminar flow, Re < 2 00
	1.4 2 3 4 8 8	1.17 a 1.33 a 1.5 a 1.6 a 1.78 a 2.0 a	3.08 3.39 3.96 4.44 5.95 7.54	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1	Laminar flow, Re < 2 00 Laminar flow, Re < 2 00
	Slit or parallel plates						
		2δ	1.85	1/3	13	$\left(\frac{2\delta}{l}\right)^{1/3}$	Laminar flow, Re < 2.00 $\left(\text{Re} \cdot \text{Pr} \frac{2\delta}{l} \right) > 70$
	- δ - · · · · · · · · · · · · · · · · · ·	2δ	7.54	0	0 0	1	$\left(\operatorname{Re}\cdot\operatorname{Pr}\frac{2\delta}{l}\right)$ < 70
	Equilateral triangle	0.58 a	1.3	1/3	1/3	$\left(\frac{0.58 \ a}{l}\right)^{1/3}$	Laminar flow, Re < 200 $\left(\text{Re} \cdot \text{Pr} \frac{0.58 a}{l} \right) > 7$
		0.58 a	2.47	0	0	1	$\left(\operatorname{Re}\cdot\operatorname{Pr}\frac{0.58\ a}{l}\right)<7$
	Two parallel plates						
	δ ////////////////////////////////////	4δ	4.86	0	0	1	Laminar flow

B3. Forced convection in isothermal flat plates (liquids and gases at low Mach number)

Formulae: $Nu_x = CRe_x^m Pr^n K$ (laminar: $Re_x < Re_{cr}$; turbulent: $Re_x \ge Re_{cr}$) (fluid properties at T_m)

Heat flux: $\dot{q}_w = \alpha_x (T_w - T_f)$;

Notation:

C Constant in Nusselt equation

 c_p Specific heat at constant pressure (J/kgK)

K Dimensionless correction function in Nusselt equation

l Length of the plate (m)

n Constant in Nusselt equation

 Nu_x Local Nusselt number at location x, $Nu_x = \alpha_x x/\lambda$

 \overline{Nu}_x Mean Nusselt number from x=0 to x ($\overline{Nu}_x = \overline{\alpha}x/\lambda$)

m Constant in Nusselt equation

Pr Prandtl number $(Pr = \mu c_p/\lambda)$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

 Re_x Local Reynolds number $(Re = \rho v_{\infty} x/\mu)$

 T_f Free stream temperature (°C or K)

 T_m Film temperature (°C or K) $(T_m = (T_w + T_f)/2)$

 T_w Temperature of the wall (°C or K)

 v_{∞} Free stream velocity (m/s)

W Width of the plate

x Distance measured from the leading edge (m)

 $\bar{\alpha}$ Overall heat transfer coefficient from x = 0 to x (W/m^2K)

 α_x Local heat transfer coefficient at $x (W/m^2K)$

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

No. Flow along a plane surface	Formulae	Operating conditions
Pure flow regime v, θ_f	$Nu_x = 0.332 \text{ Re}_x^{1/2} \text{ Pr}^{1/3}$ (local) $Nu_x = 0.664 \text{ Re}_x^{1/2} \text{ Pr}^{1/3}$ (mean)	Laminar flow, Re $< 5 \times 10^5$, $0 < x < 1$
	$Nu_x = 0.029 \text{ Re}_x^{4/5} \text{ Pr}^{1/3}$ (local) $\overline{N}u_x = 0.037 \text{ Re}_x^{4/5} \text{ Pr}^{1/3}$ (mean)	Turbulent flow, Re $> 5 \times 10^5$, $0 < x < l$
2 Mixed flow regime turbulent laminar	Mean $\widetilde{N}u_x$ over the distance $0 < x < l$ $\overline{N}u_x = 0.037 \text{ Pr}^{1/3} (\text{Re}_x^{4/5} - \text{C})$ where $C = 23500$ for $(\text{Re})_{cr} = 5 \times 10^5$ $C = 14200$ for $(\text{Re})_{cr} = 3 \times 10^5$ $C = 4300$ for $(\text{Re})_{cr} = 10^5$	Laminar flow up to distance s where the critical (Re) _{cr} occurs, and thereafter turbulent flow to $x > s$.
Partial wall heating v, θ_1 θ_1 θ_2 θ_3 θ_4	$Nu_{x} = 0.332 \text{ Re}_{x}^{1/2} \text{ Pr}^{1/3} \left[1 - (l_{1}/x)^{3/4} \right]^{-1/3} \qquad \text{(local)}$ $\bar{N}u_{x} = 0.664 \text{ Re}_{x}^{1/2} \text{ Pr}^{1/3} \left[1 - \left(\frac{l_{1}}{x} \right)^{3/4} \right]^{2/3} / \left(1 - \frac{l_{1}}{x} \right) \qquad \text{(mean)}$ $Nu_{x} = 0.029 \text{ Re}_{x}^{4/5} \text{ Pr}^{1/3} \left[1 - \left(\frac{l_{1}}{x} \right)^{9/10} \right]^{-1/9} \qquad \text{(local)}$ $\bar{N}u_{x} = 0.037 \text{ Re}_{x}^{4/5} \text{ Pr}^{1/3} \left[1 - \left(\frac{l_{1}}{x} \right)^{9/10} \right]^{8/9} / \left(1 - \frac{l_{1}}{x} \right) \qquad \text{(possion)}$	Laminar flow, $Re < 5 \times 10^5, l_1 < x < l_2$ Turbulent flow, $Re > 5 \times 10^5, l_1 < x < l_2$

B4. Forced convection in flat plates (compressible gas flow at high Mach number)

Formulae: $Nu_x = CRe_x^m Pr^n K$ (laminar: $Re_x < Re_{cr}$; turbulent: $Re_x \ge Re_{cr}$) (fluid properties at T_{ref})

Heat flux: $\dot{q}_w = \alpha_x (T_w - T_r)$ or $\dot{q}_w = \hat{\alpha}_x (h_w - h_r)$; note: $\alpha_x = c_{p,wr} \hat{\alpha}_x$, where $c_{p,wr} = \frac{1}{T_w - T_r} \int_{T_r}^{T_w} c_p dT$

Notation:

c Sound speed (m/s), $c = \sqrt{\gamma RT}$, T in K

 C_f Skin friction coefficient, $C_f = \tau_w/0.5\rho v_\infty^2$

 c_p Specific heat at constant pressure (J/kgK)

 c_{pr} Mean specific heat (see below) (J/kgK)

 c_v Specific heat at constant volume (J/kgK)

 h_x Specific enthalpy at x conditions ($x = \infty, o, r, w, ref$ means free stream, stagnation, recovery, wall and reference conditions respectively)

L Length of the plate (m)

M Mach number, M = v/c

 Nu_x Local Nusselt number at location x, $Nu_x = \alpha_x x/\lambda$

Pr Prandtl number, $Pr = \mu c_p / \lambda$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

r Recovery factor (see below)

R Specific gas constant (for air, R = 289 J/kgK)

 Re_x Local Reynolds number, $Re = \rho vx/\mu$

 Re_{cr} Critical Reynolds number (starting turbulent, $Re_{cr} = 0$) (starting laminar, $Re_{cr} \approx 5 \times 10^5$)

 T_f Free stream temperature (°C or K)

 T_{ref} Reference temperature (°C or K) (see below)

 T_w Temperature of the wall (°C or K)

v Free stream velocity (m/s)

x Distance measured from the leading edge (m)

 x_{cr} Critical distance for transition from laminar to turbulent flow, $Re_{cr} = \rho v_{\infty} x_{cr}/\mu$

 α_x Local heat transfer coefficient based on $T(W/m^2K)$

 $\hat{\alpha}_x$ Local heat transfer coefficient based on h (kg/m^2s)

 γ Specific heat ratio, $\gamma = c_p/c_v$

 λ Thermal conductivity (W/mK)

μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

Reference temperature: $T_{ref} = T(h_{ref})$, where $h_{ref} = \frac{h_w + h_f}{2} + 0.22(h_r - h_f)$. Note: for small variation of c_p , $T_{ref} \approx \frac{T_w + T_f}{2} + 0.22(T_r - T_f)$.

Recovery factor definition: $r = \frac{h_r - h_f}{h_o - h_f} = \frac{h_r - h_f}{v^2/2}$.

Recovery factor empirical expressions: $r = \sqrt{Pr}$ if laminar flow; $r = \sqrt[3]{Pr}$ if turbulent flow.

Recovery temperature (from the above recovery factor definition): $T_r = T_f + rv^2/2c_{p,rf}$, where $c_{p,rf} = \frac{1}{T_r - T_f} \int_{T_f}^{T_r} c_p dT$.

Local Nusselt number (same correlations that the ones used for low Mach number but using the new definition of α and evaluating the thermophysical properties at T_{ref}):

• $Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$ (Pohlhausen; laminar flow, $Re_x < Re_{cr}$)

• $Nu_x = 0.029Re_x^{4/5}Pr^{1/3}$ (Blasius; turbulent flow, $Re_{cr} < Re_x < 10^7$)

• $Nu_x = 0.144Re_x Pr^{1/3}/(\log_{10}Re_x)^{2.45}$ (Prandtl-Schlichting; turbulent flow, $Re_{cr} < Re_x < 10^9$)

Local friction factor. From the Reynolds analogy: $\frac{C_f}{2} = \frac{Nu}{RePr^{1/3}}$.

B5. Forced convection around tubes and pipe bundles (liquids and gases at low Mach number) (1/2)

Formulae: $\overline{Nu} = CRe^m$ for air and circular cylinder; $\overline{Nu} = 0.43 + CRe^m$ for air and cylinders of other cross-sections; $\overline{Nu} = 0.43 + CRe^m$ Pr^{0.31} for liquids (fluid properties at T_m)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

C Constant in Nusselt equation

 c_p Specific heat at constant pressure (J/kgK)

 \overline{Nu} Mean Nusselt number, $\overline{Nu} = \overline{\alpha}X/\lambda$

m Constant in Nusselt equation

Pr Prandtl number, $Pr = \mu c_p / \lambda$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

Re Reynolds number, $Re = \rho vX/\mu$

 T_f Fluid bulk temperature (°C or K)

 T_m Film temperature (°C or K), $T_m = (T_w + T_f)/2$)

 T_{w} Temperature of the wall (°C or K)

v Free flow velocity (m/s)

X Characteristic length (see below)

 $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

ross-section	С	m	Range of Re	Characteristic length X
	0.437	0.0895	$10^{-4} - 4 \times 10^{-3}$	đ
v	0.565	0.136	$4 \times 10^{-3} - 9 \times 10^{-2}$	d
امماساما	0.800	0.280	$9 \times 10^{-2} - 1$	đ
lindrical ction	0.795	0.384	1 - 35	$\cdot d$
	0.583	0.471	$35 - 5 \times 10^3$	d
	0.148	0.633	$5 \times 10^3 - 5 \times 10^4$	d
	0.0208	0.814	$5 \times 10^4 - 5 \times 10^5$	đ
v	0.178	0.699	$2.5 \times 10^3 - 8 \times 10^3$	$\frac{4a}{\pi}$
uare ction	0.102	0.675	$5 \times 10^3 - 10^5$	$\frac{4a}{\pi}$
v	0.290	0.624	$2.5 \times 10^3 - 7.5 \times 10^3$	$\frac{4a}{\pi}$
otated uare ction	0.246	0.588	$5 \times 10^3 - 10^5$	$\frac{4a}{\pi}$
v riangular ection	0.276	0.61	$3 \times 10^3 - 2 \times 10^4$	1.09 a
v	0.227 0		$4 \times 10^3 - 1.5 \times 10^4 \frac{24}{3}$	2

For flows around a **SPHERE**, Whitaker suggests (3.5 < Re_d < $7.6 \cdot 10^4$, 0.71 < Pr < 380, $1.0 < \mu/\mu_w < 3.20$):

$$\overline{Nu}_d = 2 + \left(0.4Re_d^{1/2} + 0.06Re_d^{2/3}\right) \Pr^{0.4}(\mu/\mu_w)^{1/4}$$

where the thermophysical properties are evaluated at the external temperature (T_f) , except the dynamic viscosity μ_w , which is evaluated at the temperature of the surface of the sphere.

B5. Forced convection around tubes and pipe bundles (liquids and gases at low Mach number) (2/2)

Formulae: $\overline{Nu} = CRe^{0.6} Pr^{0.3} (\mu/\mu_w)^{0.14}$ (correlation valid for 2000 < Re < 40000) (fluid properties at T_f , except μ_w which is calculated at T_w)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

- C Constant in Nusselt equation
- c_p Specific heat at constant pressure (J/kgK)
- d Tube diameter (m)
- e_1, e_2 Horizontal and vertical distances between tubes (m)
- \overline{Nu} Mean Nusselt number, $\overline{Nu} = \bar{\alpha}d/\lambda$
- Pr Prandtl number, $Pr = \mu c_p / \lambda$
- \dot{q}_w Heat transfer rate at the wall (W/m^2)
- *Re* Reynolds number, $Re = \rho v d/\mu$
- T_f Fluid bulk temperature (°C or K)
- T_w Temperature of the wall (°C or K)

- v Free flow velocity (m/s)
- $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)
- λ Thermal conductivity (W/mK)
- μ Dynamic viscosity (kg/ms)
- ρ Density (kg/m^3)

$\begin{array}{c} \bullet^{e_i} \\ \hline - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ \end{array}$	Values of C				
	e_1/d	1.25	2	3	4
	1.25 2 3	0.888 0.613 0.427	0.890 0.613 0.427	0.880 0.638 0.500	0.835 0.632 0.504
\bigcirc	4	0.356	0.356	0.421	0.42

in-line pipe bank

staggered pipe bank

B6. Mixed convection on rotating surfaces (liquids and gases at low Mach number)

Formulae: $\overline{Nu} = f(Re, Pr, K)$ (see below) (fluid properties at T_m)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

 C_D Surface drag coefficient

 c_p Specific heat at constant pressure (J/kgK)

D Diameter (m)

g gravitational acceleration, $g = 9.81 \, m/s^2$

Gr Grashof number, $Gr = \beta g \rho^2 | T_w - T_f | X^3 / \mu^2$

 \overline{Nu} Mean Nusselt number, $\overline{Nu} = \overline{\alpha}X/\lambda$

Pr Prandtl number, $Pr = \mu c_p/\lambda$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

R Radius (m)

Re Reynolds number, $Re = \rho \omega X^2 / \mu$

 T_f Fluid bulk temperature (°C or K)

 T_m Film temperature (°C or K), $T_m = (T_w + T_f)/2$

 T_w Temperature of the wall (°C or K)

X Characteristic length (m)

 v_{∞} Fluid crossflow velocity (m/s)

 $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)

 α Half vertex angle cone

 β Volumetric thermal expansion coefficient (K^{-1})

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ν Kinematic viscosity (m^2/s) , $\nu = \mu/\rho$

 ρ Density (kg/m^3)

 ω Angular velocity of rotation (rad/s)

lo.	System	Schematic presentation	Formulae	Conditions	Reference
	Rotating disc	$\theta_{\rm f}$ $\longrightarrow \omega$	$\widetilde{N}u = (0.277 + 0.105 \text{ Pr}) \text{ Re}^{C}$	Laminar flow, Re $\leq 2.5 \times 10^5$, 0.7 \leq Pr ≤ 5.0	3.33, 3.31
		θ_{w} r R	$\overline{N}u = 1.1 \text{ Re}^{0.5}$	Laminar flow, Re $\leq 2.5 \times 10^5$, Pr = 10	3.33
		turbulent	$\bar{N}u = 0.015 \text{ Re}^{0.8}$	Turbulent flow, Re $> 2.5 \times 10^5$, Pr = 0.72	3.33
		laminar disc	$\tilde{N}u = 0.015 \text{ Re}^{0.8} - 100 \left(\frac{r_c}{R}\right)$	Laminar flow between $r = 0$ and $r = r_c$, turbulent flow between $r = r_c$ and $r = R$ where $r_c = (2.5 \times 10^5 \ \nu/\omega)^{1/2}$, Pr = 0.72	3.31
	X	=R			
		$\frac{\omega}{R}$	$\bar{N}u = 0.4 (Re^2 + Gr)^{0.25}$ where $\bar{N}u = \frac{hR}{k}, Re = \frac{\omega R^2}{\nu},$	Combined effects of free convection and rotation in laminar flow (axis horizontal)	3.32
			$Gr = \frac{\beta g R^3 \pi^{3/2} \Delta \theta}{V^2}$	Note : in items 2, 3 and4, h refers to t	he heat
	X	=R	V	transfer coefficient, i.e. $h\equiv lpha$, and $\Delta heta$ $T_w-T_fig $	9 =
	Rotating cone	-1	$\vec{N}u = 0.515 (Gr)^{0.25}$	Laminar free convection, $Pr = 0.72$, $Gr/Re^2 > 2.0$	3.38
		$\frac{\omega}{\sqrt{2\alpha}}$	$\tilde{N}u = 0.33 \text{ Re}^{0.5}$	Forced convection, $Pr = 0.72$, $Gr/Re^2 < 0.05$	3.32, 3.4
		θ_{N}	$\overline{N}u = Re^{0.5} [0.331 + 0.412(Gr/Re^2) + \cdots]$	Combined free and forced convection, Pr = 0.72, 0.2 < Gr/Re ² < 1.0	3.32
	X	=L	where $ \bar{N}u = \frac{hL}{L}, Re = \frac{\omega L^2 \sin \alpha}{R}, $		
	Note: in	all these figures $\theta =$	$Gr = \frac{\beta g L^3 \cos \alpha \Delta \theta}{v^2}$		
	$ \ \ _T$	S	u-	v	

No.	System	Schematic presentation	 Formulae .	Conditions	Reference
3	Rotating cylinder	θ_w	$\vec{N}u = 0.456 (Gr \cdot Pr)^{0.25}$ $\vec{N}u = 0.18 [(0.5 Re^2 + Gr)Pr]^{0.315}$	Free convection, Re < (Gr/Pr) ^{0.5} Combined free and forced convection, Re ≤ 5 x 10 ⁴	3.34 3.32
		X = D	$\bar{N}u = \frac{\text{Re} \cdot \text{Pr} \sqrt{C_{\text{D}}/2}}{5 \text{ Pr} + 5 \ln{(3 \text{ Pr} + 1)}} + \sqrt{2/C_{\text{D}}} - 12$ $C_{\text{D}} \text{ from:}$ Re	Forced convection, Re > 10 ⁵	3.39
			$\frac{\text{Re}}{\text{B}} = -1.828 + 1.77 \ln B$ $\text{for B} > 950$ $\frac{\text{Re}}{\text{P}} = -3.68 + 2.04 \ln B$		
			B for B < 950 where B = $\text{Re}\sqrt{C_D}$		
			$\bar{N}u = 0.135[(0.5 \text{ Re}^2 + \text{Re}_1^2) + \text{Gr}] \text{ Pr}]^{0.33}$ where $\bar{N}u = \frac{hD}{k}, \text{Re} = \frac{\omega D^2}{\nu},$	Combined effects of rotation, free convection and crossflow, Ref $\leq 1.5 \times 10^4$, $0.6 \leq Pr \leq 15$ $10^3 \leq Re \leq 5 \times 10^4$, value in square bracket [] $\leq 10^9$	
			$\operatorname{Re}_{\mathbf{f}} = \frac{v \cdot \omega D}{\nu}, \operatorname{Gr} = \frac{\beta g D^3 \Delta \theta}{\nu^2}$	· ·	. :
4	Rotating sphere	ω	$\overline{N}u = 0.43 \text{ Re}^{0.5} \text{ Pr}^{0.4}$	Laminar flow, $Gr/Re^2 < 0.1$, $Re < 5 \times 10^4$, $0.7 < Pr < 217$	3.36
		$O_{\mathbf{w}}$ $O_{\mathbf{r}}$	$\overline{N}u = 0.066 \text{ Re}^{0.67} \text{ Pr}^{0.4}$	Turbulent flow, $Gr/Re^2 < 0.1$, $5 \times 10^4 < Re < 7 \times 10^5$, $0.7 < Pr < 7$	3.36
		X = D	$\overline{N}u = 2 (Re^2 + Gr)^{0.164}$ where $\overline{N}u = \frac{hD}{k}$, $Re = \frac{\omega D^2}{\nu}$,	Combined free and forced convection, $Gr/Re^2 > 0.1$, $10^3 < Re < 2 \times 10^4$, $4 \times 10^6 < Gr < 2 \times 10^7$	3.32
	Note: in	all these figures $\theta = T$	$Gr = \frac{\beta g D^3 \Delta \theta}{\nu^2}$		

B7. Friction factors for flows inside ducts

In this section, the skin friction coefficient is defined as: $f = \frac{\tau_W}{\sigma \bar{\nu}^2/2}$

Notation: \bar{v} is the average velocity of the fluid (m/s); ρ the density (kg/m^3) ; D the hydraulic diameter (see Section B2 or C3) (m); τ_w the viscous shear stresses at the wall (N/m²); Re the Reynolds number (Re = $\rho \bar{v} D/\mu$); μ the dynamic viscosity (kg/ms); ε the absolute roughness (m); and $\varepsilon_r = \varepsilon/D$ the relative roughness.

Duct	Cross-sectional shape	Hydraulic Diameter <i>D</i>	Friction factor f	Operating conditions
Circular tube	Ţ ()	D = a	16 Re ⁻¹ 0.079 Re ^{-0.25}	$\frac{\text{Re} < 2.000}{5 \times 10^{3}} < \text{Re} < 3 \times 10^{4}$
			0.096 Re ^{-0.25}	for $\frac{\epsilon}{D}$ < 0.0001 5 x 10 ³ < Re < 3 x 10 ⁴ for $\frac{\epsilon}{D}$ \simeq 0.004
			0.046 Re ^{-0.2}	$\frac{6D}{D} = 0.004$ $3 \times 10^4 < \text{Re} < 3 \times 10^6$ $\text{for } \frac{\epsilon}{D} < 0.0001$
			0.078 Re ^{-0.2}	$3 \times 10^4 < \text{Re} < 3 \times 10^6$ $\text{for } \frac{\epsilon}{D} \simeq 0.004$
	Duct Circular tube	· · · · · · · · · · · · · · · · · · ·	Diameter D	Circular tube $D = a = a = 0.079 \text{ Re}^{-0.25}$ $0.096 \text{ Re}^{-0.25}$ $0.046 \text{ Re}^{-0.2}$

Instead of the previous four correlations for turbulent flow, the more general Churchill expression (1997) can be employed for a wide range of Re and relative roughness, $\varepsilon_r = \varepsilon/D$:

$$f = 2\left[\left(\frac{8}{Re} \right)^{12} + \frac{1}{(A+B)^{3/2}} \right]^{1/12}$$

where
$$A = \left\{ 2.457 ln \left[\frac{1}{(7/Re)^{0.9} + 0.27\varepsilon_r} \right] \right\}^{16} y B = (37530/Re)^{16}.$$

 $\frac{0.0625}{\left[\log_{10}\left(\frac{\varepsilon_{r}}{3.7} + \frac{5.74}{Re^{0.9}}\right)\right]^{2}}$ Alternatively, a simpler correlation by **Swamee-Jain** (1976) can be used: f =(Re > 4000)2 Ellipse 16.25 Re⁻¹ Laminar flow 0.5 1.3 a 0.3 1.44 a 0.2 1.5 a Re-1 Laminar flow 18.25 Re⁻¹ Laminar flow 19 Re⁻¹ 19.5 Re⁻¹ Laminar flow Laminar flow 14.25 Re⁻¹ Laminar flow 3 Rectangle 14.4 Re⁻¹ Laminar flow 15.0 Re -1 Laminar flow 1.67 15.5 Re-1 1.33 a Laminar flow 2.0 17.25 Re-1 Laminar flow 3.0 18.25 Re⁻¹ Laminar flow 4.0 19.0 Re⁻¹ 20.75 Re⁻¹ 1.67 a Laminar flow 5.0 Laminar flow 8.0 1.78 a21.25 Re-1 10.0 Laminar flow 4 Equilateral D triangle 0.58 a 13.25 Re⁻¹ Laminar flow Laminar flow, $d_i/d_0 = 0.1$ 5 Circular annulus 24 Re⁻¹ Laminar flow, $d_i/d_o > 0.5$ 0.085 Re^{-0.25} $6 \times 10^3 < \text{Re} < 5 \times 10^5$, $d_{\rm i}/d_{\rm o} < 0.56$ 6 Two parallel plates

Laminar flow

B8. Two-phase flow. Condensation and evaporation

Notation:

Boiling number, $Bo = \frac{\dot{q}_W}{\dot{G}\Delta h_{fg}}$

Convective number, $Co = \left(\frac{1-x_g}{x_g}\right)^{0.8} \left(\frac{\rho_g}{\rho_l}\right)^{0.5}$

 c_p Specific heat at constant pressure [J/kgK]

Inside diameter [*m*]

Fr Froude number, $Fr = \dot{G}^2/(gD\rho_H^2)$, $Fr_{lo} = \dot{G}^2/(gD\rho_l^2)$

Friction factor (single-phase flow) f

Gravity acceleration [m/s²]

Ġ Mass flow rate per unit area, $\dot{G} = \rho v \ [kg/m^s s]$

Ga Galileo number, $Ga = \frac{\rho_l(\rho_l - \rho_g)D^3g}{\mu_l^2}$ $Ja_l \text{ Jacob number for liquid, } Ja_l = \frac{c_{pl}(T_{sat} - T_w)}{\Delta h_{fg}}$

Nu Nusselt number, $Nu = \alpha D/\lambda$

Pr Prandtl number, $Pr = \frac{\mu c_p}{\lambda}$; $Pr_l = \frac{\mu_l c_{pl}}{\lambda_l}$, $Pr_g = \frac{\mu_g c_{pg}}{\lambda_g}$

Heat flux at the wall $[W/m^2]$

Reynolds number, $Re = \frac{\dot{G}D}{\mu}$, $Re_{lo} = \frac{\dot{G}D}{\mu_l}$, $Re_l = \frac{(1-x_g)\dot{G}D}{\mu_l}$,

 $Re_{go} = \frac{\dot{g}D}{\mu_g}, Re_g = \frac{x_g \dot{g}D}{\mu_l}$

Velocity [m/s]

We Weber number, $We = \dot{G}^2 D/(\rho_H \sigma)$

Vapour mass fraction (vapour quality)

 X_{tt} Martinelli parameter, $X_{tt} = \left(\frac{1-x_g}{x_o}\right)^{0.9} \left(\frac{\rho_g}{\rho_o}\right)^{0.5} \left(\frac{\mu_l}{u}\right)^{0.1}$

Local heat transfer coefficient [W/m²K]

 Δh_{fg} Latent heat of vaporization [J/kg]

Vapour volumetric fraction (void fraction)

Thermal conductivity [W/mK]

Dynamic viscosity [Pa s] μ

Density $[kg/m^3]$ ρ

 ρ_H Homogeneous density, $\rho_H = \left[\frac{x_g}{\rho_g} + \frac{1-x_g}{\rho_I}\right]^{-1}$

Two-phase flow viscous shear stresses at the wall, $\tau_{\rm w} = \phi_{\rm lo}^2 \tau_{\rm w,lo} \ [\rm N/m^2]$

 $\tau_{w,lo}$ Viscous shear stresses at the wall (all liquid),

 $\tau_{w,lo} = f_l \frac{\dot{g}^2}{2\rho_l} \ [N/m^2]$

Two-phase pressure drop factor

Surface tension [N/m]

Subscripts:

Gas phase (vapour)

It is considered all flow as gas

1 Liquid phase

lo It is considered all flow as liquid

Saturation conditions

TF Two-phase

Wall w

Friction pressure drop correlation for horizontal and vertical two-phase pipe flow¹

$$\phi_{lo}^2 = \frac{\tau_{w,TF}}{\tau_{w,lo}} = E + \frac{3.23FH}{Fr^{0.045}We^{0.035}}$$

where:

$$E = \left(1 - x_g\right)^2 + \frac{\rho_l f_{go}}{\rho_g f_{lo}} x_g^2; \quad F = x_g^{0.78} \left(1 - x_g\right)^{0.224}; \quad H = \left(\frac{\rho_l}{\rho_g}\right)^{0.91} \left(\frac{\mu_g}{\mu_l}\right)^{0.19} \left(1 - \frac{\mu_g}{\mu_l}\right)^{0.78}$$

The term $\tau_{w,lo}$ is calculated considering that all the flow (liquid and vapour) circulates as liquid (table B-7 can be used with $Re = Re_{lo} = \dot{G}D/\mu_l$).

Condensation inside smooth horizontal tubes²

Two distinct regimes are identified: annular and wavy condensation. Nusselt numbers are obtained from:

$$Nu_{annular} = 0.023Re_l^{0.8}Pr_l^{0.4} \left[1 + \frac{2.22}{X_{tt}^{0.889}} \right]$$

$$Nu_{wavy} = \frac{0.023Re_{go}^{0.12}}{1 + 1.11X_{o.58}^{0.58}} \left[\frac{GaPr_l}{Ia_l} \right] + \left(1 - \frac{\phi_1}{\pi} \right) Nu_{forced}$$

Correlation by F. Friedel, Improved Friction Pressure Drop Correlation for Horizontal and vertical Two-phase Pipe Flow, European Two-phase Flow Group Meeting, Ispra, Italy, Paper E2, 1979. Correlation recommended when $\mu_l/\mu_a < 1000$.

Correlation by M.K.Dobson and J.C.Chato, Condensation in Smooth Horizontal Tubes, Journal of Heat Transfer, vol.120, pp.193-213, 1998.

where:
$$1 - \frac{\phi_1}{\pi} \approx \frac{\cos^{-1}(2\varepsilon_g - 1)}{\pi} \text{ (from Jaster and Kosky, 1976)}$$

$$\varepsilon_g = \left[1 + \frac{1 - x_g}{x_g} \left(\frac{\rho_g}{\rho_l}\right)^{2/3}\right]^{-1} \text{ (from Zivi, 1964)}$$

$$Nu_{forced} = 0.0195 Re_l^{0.8} Pr_l^{0.4} \Phi(X_{tt}), \text{ where:} \begin{cases} \Phi(X_{tt}), = \sqrt{1.376 + \frac{c_1}{X_{tt}^{c_2}}} \\ 0 < Fr_l < 0.7 : c_1 = 4.172 + 5.48 Fr_l - 1.564 Fr_l^2, \\ c_2 = 1.773 - 0.169 Fr_l \\ Fr_l > 0.7 : c_r = 1.7242, c_2 = 1.655 \end{cases}$$

Selection criteria:

- If $\dot{G} \geq 500 \ kg/m^2 s \rightarrow Nu_{TF} = Nu_{annular}$, where $Nu_{TF} = \alpha_{TH} D/\lambda_l$
- If $\dot{G} < 500kg/m^2s \rightarrow Nu_{TF} = Nu_{annular}$ (if $Fr_{so} < 20$) or $Nu_{TF} = Nu_{wavy}$ (if $Fr_{so} \ge 20$)

where:
$$Fr_{so} = C \frac{Re_l^m}{\sqrt{Ga}} \left(\frac{1+1.09X_{tt}^{0.039}}{X_{tt}} \right)^{1.5}$$
 (if $Re_l \le 1250 \rightarrow C = 0.025$, $m = 1.59$) (if $Re_l \le 1250 \rightarrow C = 1.26$, $m = 1.04$).

In case of zeotropic mixtures:
$$Nu_{annular}^{zeotr} = 0.7 \left(\frac{\dot{G}}{300}\right)^{0.3} Nu_{annular}$$
, and $Nu_{wavy}^{zeotr} = \left(\frac{\dot{G}}{300}\right)^{0.3} Nu_{wavy}$.

B8.3 Evaporation inside horizontal and vertical tubes³

Two distinct regimes are identified, the nucleated boiling (α_{nb}) and the convective boiling (α_{cb}) . Their evaluation is indicated below. The two-phase heat transfer coefficient is the maximum among them.

$$\alpha_{nb} = \left[0.6683Co^{-0.2}(25Fr_{lo})^m + 1058Bo^{0.7}F_{fl}\right] (1 - x_g)^{0.8}\alpha_{lo}$$

$$\alpha_{cb} = \left[1.136Co^{-0.9}(25Fr_{lo})^m + 667.2Bo^{0.7}F_{fl}\right] (1 - x_g)^{0.8}\alpha_{lo}$$

$$\alpha_{TF} = \max(\alpha_{nb}, \alpha_{cb})$$

where:

- Liquid-only heat transfer coefficient: i) $5 \times 10^6 \ge Re_{lo} \ge 10^4$: $\alpha_{lo} = \frac{\lambda_l}{D} \cdot \frac{2fRe_{lo}\Pr_l}{1+12.7\left(\Pr_l^{2/3}-1\right)(2f)^{0.5}}$; ii) $10^4 > Re_{lo} \ge 3000$: $\alpha_{lo} = \frac{\lambda_l}{D} \cdot \frac{2f(Re_{lo}-1000)\Pr_l}{1+12.7\left(\Pr_l^{2/3}-1\right)(2f)^{0.5}}$; iii) $3000 > Re_{lo} > 1600$: α_{lo} from linear interpolation between ii and iv sections; iv) $1600 \ge Re_{lo} \ge 410$: $\alpha_{lo} = \lambda_l Nu_{lo}/D$, where $Nu_{lo} = 4.36$ ($\dot{q}_w = constant$) or $Nu_{lo} = 3.66$ ($T_w = constant$); v) $Re_{lo} < 410$: see paper by Peters & Kandlikar). Note: friction factor in i and ii from correlations in Table B7 using Re_{lo} .
- Froude number dependence: i) horizontal tube and $Fr_l \le 0.04$: m = 0.3; ii) vertical tube or $Fr_l > 0.04$: m = 0.
- Fluid/surface interaction parameter: i) Copper and brass surfaces: $F_{fl} = 1.0$ (water); 1.30 (R11); 1.50 (R12); 1.31 (R13B1); 2.20 (R22); 1.30 (R113); 1.24 (R-114); 1.63 (R134a); 1.10 (R152a); 3.30 (R32/R132); 1.80 (R141b); 1.00 (R124); 0.616 (R-123); 4.70 (N_2), 3.50 (N_2); 0.488 (kerosene); ii) stainless steel surfaces: $F_{fl} = 1.0$ (all fluids).

As a first approximation, subcooled region can be solved as pure liquid and the post dryout region as pure gas. For a more precise analysis of the <u>subcooled region</u> see: S.G.Kandlikar, Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling, J.Heat Transfer, Vol. 120, pp. 395-401. 1998.. Similarly, for the <u>post-dryout region</u> see: D.C. Groeneveld, J.Q.Shan, A.Z.Vasić, L.K.H.Leung, A.Durmayaz, J.Yang, S.C.Cheng, A.Tanase, The 2006 CHF look-up table, Nuclear Engineering and Design 237, 1909–1922, 2007.

Correlation by S.G.Kandlikar, A General Correlation for Predicting the Two-Phase Flow Boiling Heat Transfer Coefficient Inside Horizontal and Vertical Tubes, ASME, Journal of Heat Transfer, vol.112, pp 219-228, 1990. See also Peters & Kandlikar, ICNMM2007-30027, 2007.

C. ALTERNATIVE CONVECTION HEAT TRANSFER CORRELATIONS

The correlations from Sections C1 to C3 have been extracted from the book by V.Isachenko, V.Osipova and A.Sukomel, "Heat transfer", Ed. Marcombo, 1979. In Section C4, the correlations have been extracted from N.Seki, S.Fukusako, S. and H.Inaba, "Heat Transfer of Natural Convection in a Rectangular Cavity", Bulletin of the JSME, Vol. 21, No. 152, 1978.

Index for the attached correlations for liquids and gases at low Mach number: Section C1: Convective heat transfer coefficient in flat plates; Section C2: Convective heat transfer coefficient in circular-section ducts; Section C3: Convective heat transfer coefficient in arbitrary cross-sections; Section C4: Convective heat transfer coefficient in cavities with differentially heated vertical walls.

C1. Convective heat transfer coefficient for flat plates

Alternative correlations can also be seen in section B3. Critical Reynolds number: $Re_{cr,x} \approx 3.3 \cdot 10^5$ (it is assumed that the boundary layer starts as laminar flow).

Subindices:

x: distance from the origin along the x-direction

l: overall flat plate length

f: properties at temperature T_g of the fluid far from the wall

w: properties at temperature T_w of the fluid in contact with the wall

C1a. Laminar regime

Assumed hypothesis: 1) Laminar regimen with constant thermophysical properties; 2) steady-state; 3) twodimensional flow; 4) negligible body forces; 5) constant wall temperature and external fluid velocity, Tw and v_g ; 6) negligible viscous dissipation.

$$Nu_{x} = 0.500\sqrt{Re_{x}Pr} \qquad \text{if } Pr < 0.1 \tag{1}$$

$$Nu_x = 0.500\sqrt{Re_x Pr} \qquad \text{if } Pr < 0.1$$

$$Nu_x = 0.332\sqrt{Re_x} \sqrt[3]{Pr} \qquad \text{if } Pr > 0.1$$
(2)

In case of variable thermophysical properties (but accepting the rest of hypothesis, from 2 to 6):

$$Nu_{fx} = 0.33Re_{fx}^{0.5}Pr_f^{0.33}(Pr_f/Pr_w)^{0.25}$$
(3)

In case of **non-constant wall temperature** (the following temperature distribution is assumed, T_w – T_g = Kx^m):

$$Nu_{fx} = 0.33Re_{fx}^{0.5}Pr_f^{0.33}(Pr_f/Pr_w)^{0.25}\varepsilon$$
(4)

where ε is obtained from this table:

_	m	-0.25	0*	0.1	0.2	0.3	0.4	0.5**	0.8	1.0	2.0
	3	0.655	1.00	1.09	1.17	1.25	1.30	1.36	1.52	1.60	1.98

(*) $T_w = constant$; (**) $\dot{q}_w = constant$.

In case of an **initial adiabatic wall segment** of length from x=0 to $x=x_o$ (being $x_1=x-x_o$):

$$Nu_{fx_1} = 0.33Re_{fx_1}^{0.5}Pr_f^{0.33}(x_1/x)^{0.2}(Pr_f/Pr_w)^{0.25}\varepsilon x > x_o (5)$$

C1b. Turbulent regime

$$Nu_{fx} = 0.0296Re_{fx}^{0.8}Pr_f^{0.43}(Pr_f/Pr_w)^{0.25}$$
(6)

$$\overline{Nu}_{fl} = 0.037 Re_{fl}^{0.8} Pr_f^{0.43} (Pr_f / Pr_w)^{0.25}$$
(7)

Expression (6) gives the local Nusselt number, while equation (7) gives an averaged value assuming full turbulent boundary layer along the flat plate. Both expressions can be applied for isothermal walls ($T_w = constant$), or in cases where $T_w - T_g = Kx^m$. In case of $x_o \neq 0$, the variable x starts at x_o .

C2. Convection heat transfer correlations in circular-section ducts

Alternative correlations can also be seen in section B2. Critical Reynolds: $Re_{D,cr} \approx 2500$.

Subscripts:

D: internal pipe diameter

x: distance in the x-direction (from the beginning of the tube)

f: refers to the average temperature of the flow that circulates inside the pipe

w: refers to the wall temperature

f(x): refers to the average temperature of the flow that circulates inside the pipe at section x

w(x): refers to the temperature of the wall at section x

C2a. Laminar regime

Assumed hypothesis: 1) Laminar regime and constant fluid thermophysical properties; 2) negligible body forces; 3) steady-state; 4) axial-symmetric flow; 5) negligible viscous dissipation; 6) **constant heat flux** at the wall $(\dot{q}_w = constant)$:

$$Nu_D = 4.36 \tag{8}$$

Under the above mentioned hypothesis, a parabolic velocity profile is obtained.

In case of **isothermal ducts** ($T_w = constant$):

$$Nu_D = 3.66 \tag{9}$$

In case of short tubes (l/D < 216) with non-constant thermophysical properties:

$$Nu_{f(x)x} = 0.33Re_{f(x)x}^{0.5} Pr_{f(x)}^{0.43} \left(Pr_{f(x)} / Pr_{w(x)} \right)^{0.25} (x/D)^{0.1}$$
(10)

If l/D > 216:

$$\overline{Nu}_{fD} = 0.15 Re_{fD}^{0.33} Pr_f^{0.43} \left(Pr_{f(x)} / Pr_{w(x)} \right)^{0.25}$$
(11)

In case of **non-negligible body forces** (mixed convection):

$$\overline{Nu}_{fD} = 0.15 Re_{fD}^{0.33} Pr_f^{0.33} (Gr_{fD} Pr_f)^{0.1} (Pr_{f(x)} / Pr_{w(x)})^{0.25} \bar{\varepsilon}_l$$
(12)

where the expression for the non-dimensional Grashof number Gr is defined in Section B1, and $\bar{\varepsilon}_l$ is obtained in the following table:

l/d	1	2	5	10	15	20	30	40	≥50
$ar{arepsilon}_l$	1.90	1.70	1.44	1.28	1.18	1.13	1.05	1.02	1

C2b. Turbulent regime

$$Nu_{f(x)D} = 0.022Re_{f(x)D}^{0.8}Pr_{f(x)}^{0.43}\varepsilon_l$$
(13)

where $\varepsilon_l = 1$ if l/D > 15. Otherwise, the following expression is applied: $\varepsilon_l = 1.38(x/D)^{-0.12}$.

Average convective heat transfer coefficient can be calculated from:

$$\overline{Nu}_{fD} = 0.021 Re_{fD}^{0.8} Pr_f^{0.43} (Pr_f/Pr_w)^{0.25} \bar{\varepsilon}_l$$
(14)

where $\bar{\varepsilon}_l$ is obtained from the following table:

Re					l/D				
	1	2	5	10	15	20	30	40	≥50
1.104	1.65	1.50	1.34	1.23	1.17	1.13	1.07	1.03	1
2.104	1.51	1.40	1.27	1.18	1.13	1.10	1.05	1.02	1
5.104	1.34	1.27	1.18	1.13	1.10	1.08	1.04	1.02	1
1.10^{5}	1.28	1.22	1.15	1.10	1.08	1.06	1.03	1.02	1
1.106	1.14	1.11	1.08	1.05	1.04	1.03	1.02	1.01	1

C3. Convective heat transfer coefficients inside ducts of arbitrary cross-sections

For turbulent flows in non-circular tubes, and in absence of specific correlations, it is advisable to use the correlations obtained for circular pipes (see Section B2 or Section C2), replacing in both the Nusselt number and the Reynolds number the diameter D by the hydraulic diameter D_h , which is defined as: $D_h = 4S/P$ (S is the flow cross-section and P the "wet" perimeter).

Some authors recommend the use of the hydraulic diameter D_h for the Reynolds number, and a thermal diameter, D_{th} , for the Nusselt number. The thermal diameter is defined as: $D_{th} = 4S/P_t$, where P_t refers to the perimeter in which the heat transfer takes place.

In any case, the best option is to employ specific correlations. For example, for the case of flow in annular cross-sections, of inner diameter d_i and outer diameter d_o , Monrad and Pelton (1942) suggest the following correlation:

$$Nu_{D_h} = 0.020 Re_{D_h}^{0.8} Pr^{1/3} \left(\frac{D_2}{D_1}\right)^{0.53}$$
 (15)

This correlation was obtained in experiments with water and oil, for $d_o/d_i=1.65$, 2.45, and 17, and within the range $Re_{D_h}=12.000 \div 220.000$. For annular sections, $D_h=d_o-d_i$. More correlations can be found in the technical literature.

A different approach is proposed by Petukov and Roizen introducing a correction factor Φ on Gnielinski's formula (turbulent flows in tubes, $3000 < Re < 10^6$) and using the hydraulic diameter:

$$Nu_{d_h} = \frac{(f/8)(Re_{D_h} - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}\Phi$$
(16)

where $\Phi = 0.86 (d_i/d_o)^{-0.16}$ for heat transfer through the inner wall with the outer wall insulated, and $\Phi = 1 - 0.14 (d_i/d_o)^{0.6}$ when the heat transfer is only through the outer wall.

C4. Convection heat transfer coefficients in cavities with isothermal vertical walls

The cavity has a height H and width L. The vertical walls are isothermal (left wall at T_1 and right wall at T_2). Horizontal top and bottom walls are adiabatic. The heat flux per unit surface that goes from wall 1 to wall 2 is expressed by: $\dot{q}_{12}=\bar{\alpha}~(T_1-T_2)$.:

$$\overline{Nu}_{L} = 0.18 \left(\frac{PrRa_{L}}{0.2 + Pr} \right)^{0.29} \quad wih \ 1 \lesssim \frac{H}{L} \lesssim 2; \ 10^{-3} \lesssim Pr \lesssim 10^{5}; \ 10^{3} \lesssim \frac{PrRa_{L}}{0.2 + Pr}$$

$$\overline{Nu}_{L} = 0.22 \left(\frac{PrRa_{L}}{0.2 + Pr} \right)^{0.28} \left(\frac{H}{L} \right)^{-1/4} \quad wih \ 2 \lesssim \frac{H}{L} \lesssim 10; \ Pr \lesssim 10^{5}; \ 10^{3} \lesssim Ra_{L} \lesssim 10^{10}$$

$$\overline{Nu}_{L} = 0.42Ra_{L}^{1/4}Pr^{0.012} \left(\frac{H}{L} \right)^{-0.3} \quad wih \ 10 \lesssim \frac{H}{L} \lesssim 40; \ 1 \lesssim Pr \lesssim 2 \times 10^{4}; \ 10^{4} \lesssim Ra_{L} \lesssim 10^{7}$$

$$\overline{Nu}_{L} = 0.046Ra_{L}^{1/3} \quad wih \ 1 \lesssim \frac{H}{L} \lesssim 40; \ 1 \lesssim Pr \lesssim 20; \ 10^{6} \lesssim Ra_{L} \lesssim 10^{9}$$

Rayleigh number, $Ra_L = Pr(g\beta\rho^2|T_1 - T_2|L^3/\mu^2)$. Thermophysical properties are evaluated at $T_m = (T_1 + T_2)/2$. Note: all these correlations are mentioned in Incropera and DeWitt book.

D. THERMOPHYSICAL PROPERTIES

In this Section the following information is given: i) **Table D0**: <u>Algebraic correlations</u> for the evaluation of thermophysical properties of dry air, humid air, mass diffusivities, water and two different thermal oils (Therminol 66 and Mobiltherm 605); ii) **Table D1**: <u>Metallic materials</u> $(\rho, c_p, k, a = \lambda/\rho c_p)$; iii) **Table D2**: <u>Liquids</u> (water at saturated conditions, oil, glycerine and mercury) $(\rho, c_p, \nu = \mu/\rho, \lambda, a, Pr, \beta)$; iv) **Table D3**: <u>Gases at atmosphere pressure conditions</u> (air, steam, hydrogen, oxygen and nitrogen) $(\rho, c_p, \mu, \nu, k, a, Pr)$; v) **Table D4**: <u>Non-metal materials</u> (ρ, c_p, λ, a) ; vi) **Table D5**: <u>Insulating materials</u> (λ) ; vii) **Table D6**: <u>Radiative properties</u> of different materials $(\varepsilon_n, \varepsilon)$.

Most of the tables have been extracted from the book by Eckert and Drake (Analysis of Heat and Mass Transfer, McGraw-Hill, 1972). Be careful, in some tables the values must be multiplied by the number 10^n showed at the top of the corresponding column.

D0. Thermophysical properties for dry air, humid air, water and thermal oils

Basic thermodynamic relations

Semiperfect liquid (
$$\rho = constant$$
; $c_v = c_p$; $\beta = \kappa = 0$)
$$du = c_p dT$$

$$dh = c_p dT + dp/\rho$$

$$ds = c_p dT/T$$

$$ds = c_p dT/T + Rdp/p$$

$$R = R/W; R = 8.31447 kJ/kmol$$

Dry air (range: $T = 100 \div 2500 \, K$, except λ) (T in K, p in Pa) (μ_1 for $T < 1500 \, K$; μ_2 for $T ≥ 1500 \, K$):

$$\rho = \frac{p}{287T}; \qquad \lambda \left(\frac{W}{mK}\right) = \frac{2.648 \cdot 10^{-3} \sqrt{T}}{1 + (245.4/T) \cdot 10^{-12/T}} \quad for T \le 1300 K$$

$$c_p \left(\frac{J}{kgK}\right) = 1034.09 - 2.849 \cdot 10^{-1}T + 7.817 \cdot 10^{-4}T^2 - 4.971 \cdot 10^{-7}T^3 + 1.077 \cdot 10^{-10}T^4$$

$$\mu_1 \left(\frac{kg}{ms}\right) = \frac{1.458 \cdot 10^{-6}T^{1.5}}{T + 110.40}; \qquad \mu_2 \left(\frac{kg}{ms}\right) = \frac{2.5393 \cdot 10^{-5} \sqrt{T/273.15}}{1 + (122/T)}$$

$$Pr = \frac{\mu c_p}{\lambda} \quad if T < 1100 K; \qquad Pr = 0.71 \quad if T \ge 1100 K; \qquad \beta(K^{-1}) = 1/T$$

Simplified expressions for dry air (range: $T = 200 \div 400 \text{ K}$) (T in K, p in Pa):

$$\rho = p/(287T); \quad c_p(J/kgK) = 1031.5 - 0.210T + 4.143 \cdot 10^{-4}T^2$$

$$\lambda(W/mK) = 2.728 \cdot 10^{-3} + 7.776 \cdot 10^{-5}T; \quad \mu(kg/ms) = \frac{2.5393 \cdot 10^{-5} \sqrt{T/273.15}}{1 + (122/T)}; \quad \beta(K^{-1}) = 1/T$$

Humid air (from ASHRAE Fundamentals):

- Saturation vapour pressure $(T \text{ in } K \text{ and } p_{vs} \text{ in } Pa): \ln p_{vs} = -5.8002206 \times 10^3/T + 1.3914993 4.8640239 \times 10^{-2}T + 4.1764768 \times 10^{-5}T^2 1.4452093 \times 10^{-8}T^3 + 6.5459673 \ln T$ if $273.15 \le T(K) \le 473.15$; $\ln p_{vs} = -5.6745359 \times \frac{10^3}{T} + 6.3925247 9.677843 \times 10^{-3}T + 6.2215701 \times 10^{-7}T^2 + 2.0747825 \times 10^{-9}T^3 9.484024 \times 10^{-13}T^4 + 4.1635019 \ln T$ if $173.15 \le T(K) < 273.15$.
- **Relative humidity:** $\varphi = \left(\frac{n_v}{n_{vs}}\right)_{p,T} \approx \frac{p_v}{p_{vs}}$, where n represents the moles of water vapour contained in the air and p_v is the water partial pressure in air (v: vapour; vs: saturated vapour).

- Moist air density: $\rho = \rho_{da} + \rho_v = \frac{p p_v}{R_{da}T} + \frac{p_v}{R_v T}$ $(R_{da} = 287.042 \, J/kgK; \ R_v = 461.524 \, J/kgK) \, (da: \, dry \, air)$
- Humidity ratio: $\phi = \frac{m_v}{m_{da}} = \frac{W_v n_v}{W_{da} n_{da}} \approx \frac{R_{da}}{R_v} \frac{p_v}{p p_v}$
- Vapour mass fraction (or specific humidity): $Y_v = \frac{m_v}{m_{da} + m_v} = \frac{\phi}{1 + \phi}$
- Dew-point temperature: $T_{dp} = 6.54 + 14.526\alpha + 0.7389\alpha^2 + 0.09486\alpha^3 + 0.4569(p_v)^{0.1984}$ if $\mathbf{0} \le T_{dp} \le \mathbf{93}$, and $T_{dp} = 6.09 + 12.608\alpha + 0.4959\alpha^2$ if $T_{dp} < \mathbf{0}$, where $T_{dp}(^{\circ}\mathbb{C})$, $\alpha = \ln(p_v)$ and $p_v(kPa)$
- Absolute specific humid air enthalpy: $h_{ha}(T, p, Y_v) = (1 Y_v)h_{da} + Y_vh_v$, where,

$$h_v(T,p) = h_{fv}^o + \int_{T^o}^T c_{pv} dT; \quad h_{fv}^o = -13423959 \frac{J}{kg}; \quad c_{pv} = 1860 \frac{J}{kgK}$$
 (1.3.8)

$$h_{da}(T,p) = h_{da}^{o} + \int_{T_{o}}^{T} c_{pda} dT; \quad h_{da}^{o} = 0; \quad c_{pda} \approx 1006 \frac{J}{kgK}$$
 (1.3.9)

Absolute enthalpy of liquid water: $h_l(T,p) = h_{fl}^o + \int_{T^o}^T c_{pl} dT + \frac{p-p^o}{\rho_l}; \quad h_{fl}^o = -15865987 \frac{J}{kg}; \quad c_{pl} \approx 4186 \frac{J}{kaK}.$ Note: $h_{fv}^o - h_{fl}^o = 2.4420 \times 10^6 \; kJ/kg$.

Note.
$$T^o = 298 \, K$$
, $p^o = 1 \, atm$.

- Wet-bub temperature (or adiabatic saturation temperature). Temperature when air is brought to saturation adiabatically (this is an isenthalpic process). Form an energy balance of humid air at given T, p and ϕ , the wet-bulb temperature T_{wb} can be obtained: $T_{wb} = T \frac{(\phi_{wb} \phi)[h_v(T_{wb}) h_l(T_{wb})]}{1006 + 1860 \phi}$. This equation must be iteratively solved.
- Mass diffusivity of water vapour in humid air (up to 1100° C; empirical expression by Sherwood and Pigford): $D_v = \frac{0.926}{p} \left(\frac{T^{2.5}}{T + 245}\right) (D_v \text{ in } mm^2/s, T \text{ in } K, p \text{ in } kPa).$
- Thermal conductivity of humid air: $\lambda = \left[1 + \frac{\chi_{da}(1-\chi_{da})}{2.75}\right](\chi_{da}\lambda_{da} + \chi_{v}\lambda_{v})$, where $\lambda_{v}(W/mK) = -7.145 \cdot 10^{-3} + 8.4 \cdot 10^{-5}T$ (T in K), $\chi_{da} = n_{da}/n$, $\chi_{v} = 1 \chi_{da}$.
- Psychrometric chart (see next page):

Diffusion coefficients of gases and vapours in air at 25°C and 1 bar

Substance	D, cm ² /s	$Sc = \frac{\nu}{D}$	Substance	D, cm ² /s	$Sc = \frac{\nu}{D}$
Ammonia	0.28	0.78	Formic acid	0.159	0.97
Carbon dioxide	0.164	0.94	Acetic acid	0.133	1.16
Hydrogen	0.410	0.22	Aniline	0.073	2.14
Oxygen	0.206	0.75	Benzene	0.088	1.76
Water	0.256	0.60	Toluene	0.084	1.84
Ethyl ether	0.093	1.66	Ethyl benzene	0.077	2.01
Methanol	0.159	0.97	Propyl benzene	0.059	2.62
Ethyl alcohol	0.119	1.30			

(J.H.Perry, Chemical Engineers Handbookm Mcgraw-Hill, 1963)

Water at saturation conditions (range: $T = 273 \div 573 \, K$) (μ_1 for $T < 353 \, K$; μ_2 for $T \ge 353 \, K$) ($T = 273 \div 573 \, K$) ($T = 273 \div 573 \, K$) ($T = 273 \div 573 \, K$)

$$\rho\left(\frac{kg}{m^3}\right) = 847.2 + 1.298T - 2.657 \cdot 10^{-3}T^2; \quad \beta = -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_p; \quad c_p\left(\frac{J}{kgK}\right) = 5648.8 - 9.140T + 14.21 \cdot 10^{-3}T^2$$

$$\lambda \left(\frac{w}{mK} \right) = -1.176 + 7.915 \cdot 10^{-3} \ T + 1.486 \cdot 10^{-5} \ T^2 - 1.317 \cdot 10^{-7} \ T^3 + 2.476 \cdot 10^{-10} \ T^4 - 1.556 \cdot 10^{-13} \ T^5 + 1.486 \cdot 10^{-10} \ T^4 - 1.556 \cdot 10^{-13} \ T^5 + 1.486 \cdot 10^{-10} \ T^4 - 1.556 \cdot 10^{-10} \ T^5 + 1.486 \cdot 10^{-10} \ T^$$

$$\mu_1\left(\frac{kg}{ms}\right) = 0.9149 - 1.2563 \cdot 10^{-2} \, T + 6.9182 \cdot 10^{-5} \, T^2 - 1.9067 \cdot 10^{-7} \, T^3 + 2.6275 \cdot 10^{-10} \, T^4 - 1.4474 \cdot 10^{-13} \, T^5 + 1.0007 \cdot 10^{-10} \, T^4 - 1.0007 \cdot 10^{-10} \, T^4 - 1.0007 \cdot 10^{-10} \, T^5 - 1.0007 \cdot 10^{-10} \,$$

$$\mu_2\left(\frac{kg}{ms}\right) = 3.7471 \cdot 10^{-2} - 3.5636 \cdot 10^{-4} \, T + 1.3725 \cdot 10^{-6} \, T^2 - 2.6566 \cdot 10^{-9} \, T^3 + 2.5766 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-15} \, T^5 + 1.3725 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-15} \, T^5 + 1.3725 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-12} \, T^5 - 1.000 \cdot 10^{-12} \, T^$$

Simplified expressions for water at saturation conditions (range: $T = 273 \div 400 \, \text{K}$) (**T in K**):

$$\rho\left(\frac{kg}{m^3}\right) = 847.2 + 1.298T - 2.657 \cdot 10^{-3}T^2; c_p\left(\frac{J}{kgK}\right) = 5648.79 - 9.140T + 14.21 \cdot 10^{-3}T^2;$$

$$\lambda\left(\frac{w}{mK}\right) = -0.722 + 7.168 \cdot 10^{-3}T - 9.137 \cdot 10^{-6}T^{2}; \qquad \mu\left(\frac{kg}{ms}\right) = e^{7.867 - 0.077T + 9.04 \cdot 10^{-5}T^{2}}; \qquad \beta = -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{n}$$

Therminol 66 thermal oil (range: $T = 273 \div 653 K$) (*T in K*):

$$\rho\left(\frac{kg}{m^3}\right) = 1164.45 - 0.4389T - 3.21 \cdot 10^{-4}T^2; \qquad c_p\left(\frac{J}{kgK}\right) = 658 + 2.82T + 8.97 \cdot 10^{-4}T^2$$

$$\lambda\left(\frac{w}{mK}\right) = 0.116 + 4.9 \times 10^{-5}T - 1.5 \cdot 10^{-7}T^2; \qquad \nu\left(\frac{m^2}{s}\right) = \frac{\mu}{\rho} = e^{-16.096 + \frac{586.38}{T - 210.65}}; \qquad \beta = -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_n$$

Mobiltherm 605 thermal oil (range: $T = 300 \div 600 K$) (*T in K*):

$$\rho\left(\frac{kg}{m^3}\right) = 1059.6 - 0.65T;$$
 $c_p\left(\frac{J}{kgK}\right) = 829.2 + 3.61T$

$$\lambda\left(\frac{w}{{}_{mK}}\right) = 0.154 - 7.063 \cdot 10^{-5}T; \qquad \qquad \nu\left(\frac{{}_{m}^{2}}{s}\right) = \frac{\mu}{\rho} = e^{5.47 - 0.069T + 6.09 \cdot 10^{-5}T^{2}}; \qquad \beta = -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{p}$$

Solar molten salt $(NaNO_3 - KNO_3, 60 - 40\%wt)$ (range: $T = 260 \div 620$ °C) (T in °C):

$$\rho\left(\frac{kg}{m^3}\right) = 2090 - 0.636T;$$
 $c_p\left(\frac{J}{kgK}\right) = 1443 + 0.172T$

$$\lambda \left(\frac{\mathbf{w}}{\mathbf{m} \mathbf{K}} \right) = 0.443 + 1.93 \cdot 10^{-4} T; \qquad \qquad \beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{\mathrm{p}};$$

$$\mu\left(\frac{\text{kg}}{\text{ms}}\right) = 22.714 \cdot 10^{-3} - 0.120 \cdot 10^{-3}T + 2.281 \cdot 10^{-7}T^2 - 1.474 \cdot 10^{-10}T^3$$

Table D1. Thermophysical properties for metals

		Propert	ies at 20	C			T	hermal	condu	ctivity	l (W/1	nK)		
		_	λ		-100 C	0.0	100 C	200 C	300 C	400 C	600 C	800 C	1000 C	1200 0
Metal	ρ, kg/m³	c _p Ws/kg K	W/m K	$a_{ m m^2/s}$	-148 F						1112 F			
Aluminum:		_												
Pure	2,707	0.896 X; - 3	204	8.418 × 10 -	215	202	206	215	228	249				
Al-Cu (Duralumin) 94-96 Al, 3-5 Cu,	0 707	0.000	104	6.676	126	159	182	194	ļ					
trace Mg	2,787 2,611		164 112	4.764	93	109		142						ŀ
Al-Mg (Hydronalium) 91-95 Al, 5-9 Mg Al-Si (Silumin) 87 Al, 13 Si	2,611 $2,659$		164	7.099	149	163	175	185					}	
Al-Si (Silumin, copper bearing) 86.5 Al,	2,000													
1 Cu	2,659	0.867	137	5.933	119	137	144	152	161					İ
Al-Si (Alusil) 78-80 Al, 20-22 Si	2,627	0.854	161	7.172	144	157	168	175	178					
Al-Mg-Si 97 Al, 1 Mg, 1 Si, 1 Mn	2,707	0.892	177	7.311		175		204						
Lead	11,373	0.130	35	2.343	36.9	35.1	33.4	31.5	29.8					
Iron:												0.0	0.5	20
Pure		0.452	73	2.034	87	73	67	62	55	48	40	36	35 33	36
Wrought iron (C H 0.5 %)	7,849		59	1,626		59	57	52	48	45	36	33	33	33
Cast iron (C $\approx 4\%$)	7,272	0.42	52	1.703										
Steel (C max $\approx 1.5\%$)	7 000	0.465	54	1.474		55	52	48	45	42	35	31	29	31
Carbon steel C $\approx 0.5 \%$	1 '	$0.465 \\ 0.473$	43	1.172		43	43	42	40	36	33	29	28	29
1.0 % 1.5 %	1 '	0.486	36	0.970		36	36	36	35	33	31	28	28	29
Nickel steel Ni $\approx 0 \%$	1 '	0.452	73	2.026		"	0.5	00	00	"				
10 %	7,945		26	0.720							ĺ			
20 %	7,993		19	0.526						}				
30 %	8,073		12	0.325										
40 %	8,169	0.46	10	0.279										
50 %	8,266	0.46	14	0.361						ļ				
60 %	8,378		19	0.493				-						
70 %	8,506		26	0.666										
80 %	8,618		35	0.872					Ì				İ	1
90 %	8,762	1	47	1.156		1								
100 %	8,900	0.448	90	2.276	1	l	1	ı	l	ı	ı	1	1	1
Copper:	0.054	0.3831 × 10	3 206	11.234 × 10	5 407	386	379	374	369	363	353			
Pure Aluminum bronze 95 cu, 5 Al		0.410	83	2.330	401	300		017	500	303	300			1
Bronze 75 Cu, 25 Sn	•	0.343	26	0.859						ĺ				
Red Brass 85 Cu, 9 Sn, 6 Zn	1	0.385	61	1.804		59	71		1					
Brass 70 Cu, 30 Zn		0.385	111	3.412	88		128	144	147	147				
German silver 62 Cu, 15 Ni, 22 Zn	1 .	0.394	24.9	0.733	19.2		31	40	45	48				
Constantan 60 Cu, 40 Ni	8,922	0.410	22.7	0.612	21		22.2	26						
Magnesium:									1			-		
Pure		1.013	171	9.708	178	171	168	163	157	1				
Mg-Al (electrolytic) 6-8 % Al, 1-2 % Zn	1,810		66	3.605		52	62	74	83					l
Mg-Mn 2 % Mn	1,778	1	114	6.382	93	111	125 125	130 130				ĺ		
Mg-Mn 2 % Mn	1,778		114	6.382	93 138	$\frac{111}{125}$	118	114	111	100	106	102	99	02
Molybdenum	10,220	0.251	123	4.790	130	120	110	11.4	111	109	100	102	33	92
Nickel:	8 006	0.4459	90	2.266	104	93	83	73	64	59		-		l
Pure (99.9 %) Impure (99.2 %)		0.444	69	1.747	101	69	64	59	55	52	55	62	67	69
Ni-Cr 90 Ni, 10 Cr		0.444	17	0.444		17.1					1	1		
80 Ni, 20 Cr		0.444	12.6	0.343		12.3		15.6		1				
Silver:	-,521													
Purest	10,524	0.2340	419	17.004	419	417	415	412				İ		
Pure (99.9 %)		0.2340	407	16.563	419	410	415	374	362	360				
Tungsten		0.1344	163	6.271		166	151	142	133	126	112	76		1
Zinc, pure		0.3843	112.2	4.106	114	112	109	106	100	93				1
Tin, pure	7 204	0.2265	64	3.884	74	65.9	59	57	1	1	İ	1	1	1

Table D2. Thermophysica	I properties of fluids in a	saturated state
-------------------------	-----------------------------	-----------------

T, C ρ, kg/m ³	c _p , Ws/kg K	ν , m ² /s	λ W/m K	a ', m²/s	Pr	β, K ⁻¹
Water, H ₂ O						

			· · · · · · · · · · · · · · · · · · ·				
0	1.002.28	4.2178×10^{3}	1.788 × 10 ⁻¹	l 6 _{0.552}	1.308×10^{-7}	13.6	
20	1,000.52		1.006	0.597	1.430	7.02	0.18 × 10-
40	994.59		0.658	0.628	1.512	4.34	
60	985.46	4.1843	0.478	0.651	1.554	3.02	
80	974.08	4.1964	0.364	0.668	1.636	2.22	
100	960.63	4.2161	0.294	0.680	1.680	1.74	
120	945.25		0.247	0.685	1.708	1.446	
140	928.27		0.214	0.684	1.724	1.241	
160	909.69	4.342	0.190	0.680	1.729	1.099	
180	889.03	4.417	0.173	0.675	1.724	1.004	
200	866.76	4.505	0.160	0.665	1.706	0.937	
220	842.41		0.150	0.652	1.680	0.891	
240	815.66		0.143	0.635	1.639	0.871	
260	785.87		0.137	0.611	1.577	0.874	
280.6	752.55		0.135	0.580	1.481	0.910	
300	714.26	1	0.135	0.540	1.324	1.019	
	ł	i	1	I	1		1

Engine oil (unused)

		2	l		_		
0	899.12	1.796×10^{3}	0.00428	0.147	0.911×10^{-7}	47,100	
20	888.23		0.00090	0.145	0.872	10,400	0.70×10^{-3}
40	876.05	1.964	0.00024	0.144	0.834	2,870	
60	864.04	2.047	$0.839 \times 10^{-}$	$\frac{4}{1}$ 0,140	0.800	1,050	
80	852.02	2.131	0.375	0.138	0.769	490	
100	840.01	2.219	0.203	0.137	0.738	276	
120	828.96	2.307	0.124	0.135	0.710	175	
140	816.94	2.395	0.080	0.133	0.686	116	
160	805.89	2.483	0.056	0.132	0.663	84	

Glycerin, C₃H₅(OH)₃

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
--	---

Mercury, Hg

	1			1			
0	13,628.22	0.1403×10^{3}	$0.124 \times 10^{-}$	68.20	$ 42.99 \times 10^{-7} $	0.0288	
20	13,579.04	0.1394	0.114	8.69	46.06	0.0249	1.82×10^{-2}
5Ó	13,505.84	0.1386	0.104	9.40	50.22	0.0207	
100	13,384.58		0.0928	10.51	57.16	0.0162	
150	13,264.28		0.0853	11,49	63.54	0.0134	
200	13,144.94	0.1570	0.0802	12.34	69.08	0.0116	
250	13,025.60		0.0765	13.07	74.06	0.0103	
315.5	1 1	0.134	0.0673	14.02	81.5	0.0083	

Table D3 (1/2). Thermophysical properties of gases at atmospheric

т, к	ρ kg/m³	c _p , Ws/kg K	μ, kg/ms	ν, m²/s	$\frac{\lambda}{\mathrm{W/m}\ \mathrm{K}}$	a , m^2/s	P r
------	------------	--------------------------	----------	---------	--	---------------	------------

Air

100	3.6010	1.0266 ×1	0.6924×10^{-5}	1.923 ×1	0^{-6} 0.009246	0.02501×10^{-4}	0.770
150	2.3675	1.0099	1.0283	4.343	0.013735	0.05745	0.753
200	1.7684	1.0061	1.3289	7.490	0.01809	0.10165	0.739
250	1.4128	1.0053	1.600	9.49	0.02227	0.13161	0.722
300	1.1774	1.0057	1.847	15.68	0.02624	0.22160	0.708
350	0.9980	1.0090	2.075	20.76	0.03003	0.2983	0.697
400	0.8826	1.0140	2.286	25.90	0.03365	0.3760	0.689
450	0.7833	1.0207	2.484	28.86	0.03707	0.4222	0.683
500	0.7048	1.0295	2.671	37.90	0.04038	0.5564	0.680
550	0.6423	1.0392	2.848	44.34	0.04360	0.6532	0.680
600	0.5879	1.0551	3.018	51.34	0.04659	0.7512	0.680
650	0.5430	1.0635	3.177	58.51	0.04953	0.8578	0.682
700	0.5030	1.0752	3.332	66.25	0.05230	0.9672	0.684
750	0.4709	1.0856	3.481	73.91	0.05509	1,0774	0.686
800	0.4405	1.0978	3.625	82.29	0.05779	1.1951	0.689
850	0.4149	1.1095	3.765	90.75	0.06028	1.3097	0.692
900	0.3925	1.1212	3.899	99.3	0.06279	1.4271	0.696
950	0.3716	1.1321	4.023	108.2	0.06525	1.5510	0.699
1000	0.3524	1.1417	4.152	117.8	0.06752	1.6779	0.702
1100	0.3204	1.160	4.44	138.6	0.0732	1.969	0.704
1200	0.2947	1.179	4.69	159.1	0.0782	2.251	0.707
1300	0.2707	1.197	4.93	182.1	0.0837	2.583	0.705
1400	0.2515	1.214	5.17	205.5	0.0891	2.920	0.705
1500	0.2355	1.230	5.40	229.1	0.0946	3.262	[0.705]
1600	0.2211	1.248	5.63	254.5	0.100	3.609	0.705
1700	0.2082	1.267	5.85	280.5	0.105	3.977	0.705
1800	0.1970	1.287	6.07	308.1	0.111	4.379	0.704
1900	0.1858	1.309	6.29	338.5	0.117	4.811	0.704
2000	0.1762	1.338	6.50	369.0	0.124	5.260	0.702
2100	0.1682	1.372	6.72	399.6	0.131	5.715	0.700
2200	0.1602	1.419	6.93	432 6	0.139	6.120	0.707
2300	0.1538	1.482	7.14	464.0	0.149	6.540	0.710
2400	0.1458	1.574	7.35	504.0	0.161	7.020	0.718
2500	0.1394	1.688	7.57	543.5	0.175	7.441	0.730

Steam (H₂O vapor)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.44 15.25 17.04 18.84	2.16 ×10 2.42 3.11 3.86 4.70	-5 0.0246 0.0261 0.0299 0.0339 0.0379	0.2036×10^{-4} 0.2338 0.307 0.387 0.475	1.060 1.040 1.010 0.996 0.991
2 2.014 2 1.980 5 1.985 5 1.997	13.44 15.25 17.04 18.84	3.11 3.86 4.70	0.0299 0.0339	0.307 0.387	1.010 0.996
5 1.985 5 1.997	17.04 18.84	3.86 4.70	0.0339	0.387	0.996
5 1.997	18.84	4.70	i		
		1	0.0379	0.475	0.991
2 026	00.07	i			
	20.67	5.66	0.0422	0.573	0.986
2.056	22.47	6.64	0.0464	0.666	0.995
2.085	24.26	7.72	0.0505	0.772	1.000
2.119	26.0 4	8.88	0.0549	0.883	1.005
2.152	27.86	10.20	0.0592	1.001	1.010
1	29.69	11.52	0.0637	1.130	1.019
Ç	0 2.085 1 2.119 9 2.152	0 2.085 24.26 1 2.119 26.04 9 2.152 27.86	0 2.085 24.26 7.72 1 2.119 26.04 8.88 9 2.152 27.86 10.20	0 2.085 24.26 7.72 0.0505 1 2.119 26.04 8.88 0.0549 9 2.152 27.86 10.20 0.0592	0 2.085 24.26 7.72 0.0505 0.772 1 2.119 26.04 8.88 0.0549 0.883 9 2.152 27.86 10.20 0.0592 1.001

г, к	ρ, kg/m³	cp, Ws/kg K	μ , kg/ms	ν , m ² /s	λ W/m K	a:, m²/s	Pr
ydrog	gen						
30	0 84722	10.840 × 10 ³	1.606 × 10-6	1.895 × 10-6	0.0228	0.02493 × 10 ⁻⁴	0.75
50	0.50955		2.516	4.880	0.0362	0.0676	0.72
100	0.24572		4.212	17.14	0.0665	0.2408	0.71
150	0.16371		5.595	34.18	0.0981	0.475	0.71
200	0.12270		6.813	55.53	0.1282	0.772	0.71
250	0.09819		7.919	80.64	0.1561	1.130	0.71
300	0.08185		8.963	109.5	0.182	1.554	0.70
350	0.07016		9.954	141.9	0.206	2.031	0.69
400	0.06135		10.864	177.1	0.228	2.568	0.69
450	0.05462	250.22	11.779	215.6	0.251	3.164	0.68
500	0.04918		12.636	257.0	0.272	3.817	0.67
550	0.04469		13.475	301.6	0.292	4.516	0.66
600	0.04085		14.285	349.7	0.315	5.306	0.66
700	0.03492	100 TO 10	15.89	455.1	0.351	6.903	0.65
800	0.03482		17.40	569	0.384	8.563	0.66
900	0.03723	Control of the contro	18.78	690	0.412	10.217	0.67
1000	0.02723			822	0.440	11.997	0.68
			20.16		0.464	13.726	0.70
1100	0.02227		21.46	965		15.484	0.71
1200	0.02050		22.75	1107	0.488		0.73
1300	0.01890		24.08	1273	0.512	17.394	
1333	0.01842	15.638	24.44	1328	0.519	18.013	0.73
100 150	3.9918 2.6190	0.9479 × 10 ³ 0.9178	7.768 × 10 ⁻⁶	1.946 × 10-6	0.00903 0.01367	0.023876 × 10-0	0.81
200	1.9559	0.9131	14.850	7.593	0.01824	0.10214	0.74
250	1.5618	0.9157	17.87	11.45	0.02259	0.15794	0.72
300	1.3007	0.9203	20.63	15.86	0.02676	0.22353	0.70
350	1.1133	0.9291	23.16	20.80	0.03070	0.2968	0.70
400	0.9755	0.9420	25.54	26.18	0.03461	0.3768	0.69
450	0.8682	0.9567	27.77	31.99	0.03828	0.4609	0.69
500	0.7801	0.9722	29.91	38.34	0.04173	0.5502	0.6
550	0.7096	0.9881	31.97	45.05	0.04517	0.6441	0.70
600	0.6504	1.0044	33.92	52.15	0.04832	0.7399	0.7
Nitrog	gen						
100	9 4000	1.0722 × 10	6 869 V 10-4	1.971 × 10-	0.000450	0.025319 × 10-	40.7
100					0.009450	0.10224	0.7
200 300		1.0429	12.947 17.84	7.568 15.63	0.01824	0.10224	0.7
400		1.0459	21.98	25.74	0.02020	0.3734	0.6
500			25.70	37.66	0.03984	0.5530	0.6
		1.0555					0.6
600		1.0756	29.11	51.19	0.04580	0.7486	
700		1.0969	32.13	65.13	0.05123	0.9466	0.6
800		1.1225	34.84	81.46	0.05609	1.1685	0.7
900		1.1464	37.49	91.06	0.06070	1.3946	0.7
1000		1.1677	40.00	117.2	0.06475	1.6250	0.7
						: 1 VSO1	101 7
1100 1200		1.1857	42.28 44.50	136.0 156.1	0.06850	1.8591	0.7

Table D4. Thermophysical properties for nonmetals

Material Aerogel, silica Asbestos	7, C 120 -200 0 0 100 200 400	576.7	$\frac{\text{Ws/kg K}}{\text{Ws/kg K}}$ 0.816×10^{3}	$ \begin{array}{c c} \lambda \\ W/m K \\ \hline 0.022 \\ 0.074 \\ 0.156 \end{array} $	a ', m²/s
	$ \begin{array}{r} -200 \\ 0 \\ 0 \\ 100 \\ 200 \end{array} $	469.3 469.3 576.7	0.816×10^{3}	$\begin{array}{c} 0.074 \\ 0.156 \end{array}$	
	$\begin{array}{c c} 0 \\ 0 \\ 100 \\ 200 \end{array}$	469.3 469.3 576.7	$0.816 imes 10^3$	0.156	
	$\begin{array}{c c} 0 \\ 0 \\ 100 \\ 200 \end{array}$	$469.3 \\ 576.7 \\ 576.7$	$0.816 imes 10^3$	0.156	
	100 200	576.7 576.7	0.816×10^{3}		
	200	576.7		0.151	
	200		0.816	0.192	
	400	576.7	·	0.208	
	1 .	576.7		0.223	
	-200	696.8	•	0.156	•
	0	696.8		0.234	
Brick, dry	20	1,762-1,810	0.84	0.38 - 0.52	$0.028 - 0.034 \times 10^{-}$
Bakelite	20	1,273.5	1.59	0.232	0.0114
Cardboard, corrugated		,		0.064	
Clay	20	1,457.7	0.88	1.279	0.101
Concrete	1 3	1,906-2,307		0.81-1.40	0.049 – 0.070
Coal, anthracite	1	1,201-1,506		0.26	0.013 - 0.015
Powdered	30	737	1.30	0.116	0.013
Cotton	20	80	1.30	0.059	0.194
Cork, board	30	1 .		0.043	
Expanded scrap	20		1.88	0.036	0.015 – 0.044
Ground	30			0.043	l
Diatomaceous earth	38	1		0.062	
	871	320.4		0.142	
Earth, coarse gravelly	20	2,050	1.84	0.52	0.0139
Felt, wood	30			0.05	
Fiber, insulating board	21	237.1		0.048	
Red	20	ľ		0.47	
Glass plate	20	2,707	0.8	0.76	0.034
Glass, borosilicate	30	2,227		1.09	
Wool	20	200.2	0.67	0.040	0.028
Granite				1.7-4.0	
Ice	0	913	1.93	2.22	0.124
Marble	20	2,499-2,707	0.808	2.8	0.139
Rubber, hard	0			0.151	
Sandstone	20	2,162-2,307	0.71	1.63 - 2.1	0.106-0.126
Silk	20	1 .	1.38	0.036	0.044
Wood, oak radial	20	609-801	2.39	0.17 - 0.21	0.0111-0.0121
Fir (20% moisture)					
radial	20	416.5-421.3	2.72	0.14	0.0124

Table D5. Thermophysical properties (termal conductivity) for insulating materials at high temperatures†

	Mean temperature								Limiting-use temperature			
Material	37.8 C 100 F	93.3 C 200 F	148.9 C 300 F	204.4 C 400 F	260 C 500 F	315.6 C 600 F	426.7 C 800 F	1	815.6 C 1500 F	1093.3 C 2000 F	C	F
Asbestos (577 kg/m³) laminated												
asbestos felt	0.168	0.190	0.202	0.209	0.213	0.216	0.225			i		
Approx, 146 laminations/m	0.057	0.064	0.069	0.076	0.083						371.1	700
Approx. 73 laminations/m	0.078	0.087	0.095	0.104	0.112		ļ				260	500
Corrugated asbestos (14.6 plies/m)	0.087	0.100	0.119				İ				148.9	300
85% magnesia (208 kg/m³)	0.059	0.062	0.066	0.069		į					315.6	600
Diatomaceous earth, asbestos and										-		
bonder	0.078	0.081	0.085	0.087	0.092	0.095	0.104	0.112			871.1	1600
Diatomaccous earth, brick	0.093	0.097	0.100	0.104	0.109	0.112	0.119	0.126	İ		871.1	1600
Diatomaceous earth, brick	0.220	0.225	0.230	0.237	0.242	0.247	0.260	0.273	0.305		1093.3	2000
Diatomaceous earth, brick	0.222	0.227	0.234	0.241	0.247	0.256	0.268	0.282	0.317	0.351	1371.1	2500
Diatomaceous earth, powder (den-												
sity, 288 kg/m³)	0.067	0.073	0.076	0.083	0.088	0.093	0.106	0.118				
Rock wool	0.052	0.059	0.067	0.076	0.087	0.099	i.					

[†] L. S. Marks, "Mechanical Engineers' Handbook," 5th ed. Copyright 1951. McGraw-Hill Book Company. Used by permission.

Table D6a. Solar absorptivity (α_s) and thermal emissivity (ϵ) for different materials at room temperatures

Surface	α_s	3
Aluminum		
Polished	0.09	0.03
Anodized	0.14	0.84
Foil	0.15	0.05
Copper		
Polished	0.18	0.03
Tarnished	0.65	0.75
Stainless steel		
Polished	0.37	0.60
Dull	0.50	0.21
Plated metals		
Black nickel oxide	0.92	0.08
Black chrome	0.87	0.09
Concrete	0.60	0.88
White marble	0.46	0.95
Red brick	0.63	0.93
Asphalt	0.90	0.90
Black paint	0.97	0.97
White paint	0.14	0.93
Snow	0.28	0.97
Human skin (caucasian)	0.62	0.97
	- Commission and Commission	11000

Table D6a: from Y.A.Cengel, "Heat Transfer. A Practical Approach", McGraw-Hill, 1998.

Table D6b: Ecker and Drake (see beginning Section D).

Table D6b. Emissivities ϵ_n of the radiation in the direction of the normal to the surface and ϵ of the total hemispherical radiation for various materials for the temperature t^{\dagger} , t^{\dagger}

Surface	T (°C)	ϵ_n	€
Gold, polished	130	0.018	
G:1	$\frac{400}{20}$	0.022	
Silver	$\begin{array}{c} 20 \\ 20 \end{array}$	$0.020 \\ 0.030$	
Copper, polished	$\frac{20}{20}$	0.037	
Lightly oxidized Scraped	20	0.070	
Black oxidized	20	0.78	
Oxidized	131	0.76	0.725
Aluminum, bright rolled	170	0.039	0.049
mummum, bright roned	500	0.050	0.010
Aluminum paint	100	0.20-0.40	
Silumin, cast polished	150	0.186	
Nickel, bright matte	100	0.041	0.046
Polished	100	0.045	0.053
Manganin, bright rolled	118	0.048	0.057
Chrome, polished	150	0.058	0.071
Iron, bright etched	150	0.128	0.158
Bright abrased	20	0.24	
Red rusted	20	0.61	٠
Hot rolled	20	0.77	
	130	0.60	-
Hot cast	100	0.80	
Heavily rusted	20	0.85	
Heat-resistant oxidized	80	0.613	
	200	0.639	
Zinc, gray oxidized	20	[0.23-0.28]	
Lead, gray oxidized	20	0.28	
Bismuth, bright	80	0.340	0.366
Corundum, emery rough	80	0.855	0.84
Clay, fired	70	0.91	0.86
Lacquer, white	100	0.925	
Red lead	100	0.93	
Enamel, lacquer	20	0.85 - 0.95	
Lacquer, black matte	80	0.970	
Bakelite lacquer	80	0.935	
Brick, mortar, plaster	20	0.93	
Porcelain	20	0.92 - 0.94	0.070
Glass	90	0.940	0.876
Ice, smooth, water	0	0.966	0.918
Rough crystals	0	0.985	
Waterglass	20	0.96	0.89
Paper Wand hand	95	$\begin{array}{c c} 0.92 \\ 0.935 \end{array}$	$0.89 \\ 0.91$
Wood, beech	70 20	$0.935 \\ 0.93$	0.91
Tarpaper	20	0.95	
			1

[†] From measurements by E. Schmidt and E. Eckert.

[‡] For metals, the emissivities rise with rising temperature, but for nonmetallic substances (metal oxides, organic substances) this rule is sometimes not correct. Where the exact measurements are not given, take for bright metal surfaces an average ratio $\epsilon/\epsilon_n = 1.2$ and for other substances with smooth surfaces $\epsilon/\epsilon_n = 0.95$; for rough surfaces use $\epsilon/\epsilon_n = 0.98$.

E. NOMENCLATURE⁴

- Thermal diffusivity (m^2/s) , $a = \lambda/\rho c_p$ а
- Speed of light; at vacuum, $c = c_0 = 3 \times 10^8 \, m/s$ С
- Specific heat at constant pressure (J/kgK) c_p
- Distance between surface dA_i and d_A_k (m^2) d_{ik}
- D, dDiameter (m)
- D_v Mass diffusion coefficient (m^2/s)
- Specific kinetic energy (I/kg) e_k
- Specific potential energy (J/kg) e_p
- Friction factor
- $\vec{f}_{(\vec{n})}$ Stress vector acting on surface of unit normal vector \vec{n} (N/m^2)
- ġ Gravity vector (m/s^2)
- h Specific enthalpy (J/kg)
- h_{da}^{o} Specific enthalpy of formation of dry air $(p^0 = 1 \text{ atm})$ $T^{o} = 25^{\circ}C$) (I/kg)
- Specific enthalpy of formation of water vapour ($p^o =$ h_{fv}^{o} 1 atm, $T^{o} = 25^{\circ}C$) (I/kg)
- Mass diffusion of species $k (kg/m^2s)$ \vec{J}_k
- j_H , j_M Colburn coefficients for heat and mass respectively
- Unit vector normal to CV surface and pointing outwards
- n_{da} , n_v Moles of dry air and vapour
- Nusselt number, $Nu = \alpha X/\lambda$
- Pr Prandtl number
- p Pressure (Pa)
- Dynamic pressure (Pa) (Section A2) p_d
- Water vapour pressure (Pa)
- Saturation vapour pressure (Pa) p_{vs}
- Heat transfer rate per unit surface (W/m^2)
- \vec{q}^{C+R} Conduction+radiation heat transfer rate per unit surface (W/m^2)
- \vec{q}^R Radiative heat transfer rate per unit surface (W/m^2)
- Internal heat generation per unit volume (W/m^3) ġν
- Radius (m)
- a) Radius (m); b) Gas constant (I/kgK), \mathcal{R}/W R
- \mathcal{R}/W Universal gas constant, $\mathcal{R} = 8.31447 \ kJ/kmol$
- Re Reynolds number, $Re = \rho v X / \mu$
- Specific entropy (J/kgK)S
- Entropy generated per unit volume (J/m^3K) , $\dot{s}_{gen} \geq 0$. Sgen
- S_a Surface associated to V_a (m^2)
- Sc Schmidt number, $Sc = \mu/\rho D_{\nu}$
- Sh
- Sherwood number, $Sh = \alpha_M X/D_v$ Stanton number for heat, $St_H = \frac{Nu}{RePr} = \frac{\alpha}{c_p \rho v}$ St_H
- Stanton number for mass, $St_M = \frac{Sh}{ReSC} = \frac{\alpha_M}{v}$ St_M
- Time (s)t
- T Temperature (K or $^{\circ}$ C)
- u Specific internal energy (J/kg)
- \vec{v} Fluid velocity (m/s), $\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$
- Velocity of surface S_a (m/s) \vec{v}_b
- Arbitrary control volume (m^3)

- W Molecular mass (kg/kmol)
- X Characteristic length (m)
- Y_k Mass fraction of species k, $Y_k = m_k/m$
- Heat transfer coefficient (W/m²K) α
- Mass transfer coefficient (m/s) α_{M}
- Solar absorptivity α_s
- Volumetric thermal expansion coefficient β $(K^{-1}), \beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{n}$
- δ Unit tensor
- ε **Emissivity**
- Isothermal compressibility coefficient (Pa^{-1}), κ $\kappa = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$
- a) Thermal conductivity (W/mK); b) λ Wavelength of radiation (m) (section A5)
- Dynamic viscosity (kg/ms), $\mu = \rho v$ μ
- Kinematic viscosity (m²/s), $\nu = \mu/\rho$ ν
- Density (kg/m³) ρ
- Stefan-Boltzmann's constant (W/m²K⁴) σ (Section A5)
- $\vec{\tau}$ Viscous-stress tensor (N/m^2)
- a) Angle; b) Relative humidity φ
- Generation (or destruction) of species k per $\dot{\omega}_k$ unit volume and time (kg/m³s)

⁴ In general, nomenclature is explicitly indicated in the different sections.