Algorytmy Metahuerystyczne Lista 2

Szymon Janiak

December 19, 2023

Opis problemu

Testujemy algorytm Tabu Search oraz algorytm symulowanego wyżarzania.

Porównanie wyników dla rozwiązań bazujących na MST oraz losowej permutacji

	MST	losowa permutacja
xqg237	1526	3048
pbl395	1883	4152
pbm436	2112	4870

Waga najlepszych uzyskanych rozwiązań dla algorytmu symulowanego wyżarzania.

Wnioski

Widzimy, że bazowanie na MST znacząco poprawia jakość rozwiązań już dla bardzo małych danych. Dysproporcja zwiększa się wraz ze zwiększaniem ilości wierzchołków.

Dobór parametrów

• N - liczba wierzchołków

Tabu Search

• Temperatura początkowa: initial $temp = N \cdot \alpha, \ \alpha = 0.85$

• Chłodzenie: $temp = temp \cdot \beta$, $\beta = 0.85$

• Długość epoki: $epoch_range = initial_temp \cdot \delta = 0.7$

• Liczba iteracji: max $it = N \cdot \delta$, $\gamma = 0.7$

• Typ otoczenia: SWAP

• Rozwiązanie początkowe: oparte o MST

Symulowane wyżarzanie

• Długość listy tabu: $t_size = N \cdot \alpha, \, \alpha = 0.1$

- Liczba iteracji: $max_it = N \cdot \beta, \, \beta = 0.2$

• Typ otoczenia: SWAP

• Wybór otoczenia: pełne

 $\bullet\,$ Rozwiązanie początkowe: oparte o MST

Przykład	local_search 1		$local_search~2$		$local_search~3$	
Fizykiad	średnia		średnia		średnia	
	liczba popraw	suma wag	liczba popraw	suma wag	liczba popraw	suma wag
xqf131	28.8	701.9	62.3	712.4	51.9	722.4
xqg237	37.0	1483.7	130.5	1415.8	112.2	1445.9
pma343	75.8	1650.3	201.9	1684.7	183.3	1717.1
pka379	78.9	1716.3	224.7	1745.9	204.9	1742.7
bcl380	62.7	1949.3	223.7	1917.5	189.2	1913.5
pbl395	80.0	1771.5	227.8	1829.0	193.4	1876.2
pbk411	81.6	1837.9	242.7	1888.5	203.6	2181.15
pbn423	72.3	1873.9	249.0	1921.6	219.8	2081.5
pbm436	97.85	2562.5	256.8	2312.0	217.4	2363.1
xql662	122.6	3690.4	405.4	3813.3	349.1	3917.5
xit1083	191.6	4312.2	693.7	4721.2	623.9	4826.1
icw1483	278.8	5034.6	973.4	5301.2	834.5	5718.2
djc1785	382.6	6733.8	1193.9	6872.1	1032.6	7764.5
dcb2086	390.9	7454.2	2392.6	7457.8	1222.2	8888.3
pds2566	457.3	8671.4	1742.9	8701.8	1526.0	10687.5