第三章 微分中值定理及导数应用

本节内容要点

- 一. 考试内容概要
 - (一) 微分中值定理
 - (二) 导数的应用

二. 常考题型与典型例题

题型一 求极限

题型二 函数的极值和最值,曲线的凹向与拐点

题型三 曲线的渐近线

题型四 方程的根

题型五 不等式的证明

题型六 中值定理的证明题 🔾

第三章 微分中值定理与导数的应用

考试内容概要

(一) 微分中值定理

定理1(费马引理)

0 +

(2)

如果函数 f(x) 在 x_0 处可导, 且在 x_0 处取得极值, 那么

$$f'(x_0)=0.$$

定理2(罗尔定理)

$$\emptyset$$
 $m = M$

若 1) f(x) 在 [a,b]上连续; w + [4]

- 2) f(x) 在 (a,b) 内可导; \checkmark
- ? 3) f(a) = f(b); \checkmark

则 $\exists \xi \in (a,b)$, 使 $f'(\xi) = 0$.

定理3(拉格朗日中值定理)

若 1) f(x) 在 [a,b]上连续;

2) f(x) 在 (a,b) 内可导;

则 $\exists \xi \in (a,b)$, 使

$$\frac{f(b)-f(a)}{b-a}=f'(\xi).$$

定理4(柯西中值定理)

若 1) f(x), F(x) 在 [a,b] 上连续;

2)
$$f(x), F(x)$$
 在 (a,b) 内可导, 且 $F'(x) \neq 0$;

则
$$\exists \xi \in (a,b)$$
, 使

$$\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$$

定理5(皮亚诺型余项泰勒公式)

设f(x) 在 x_0 点 n 阶可导,那么

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中
$$R_n(x) = o(x - x_0)^n$$
, $(x \to x_0)$

若 $x_0 = 0$, 则得麦克劳林公式

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

定理6(拉格朗日型余项泰勒公式)

设 f(x) 在含 x_0 的区间 (a,b) 内 n+1 阶可导,那么对

 $\forall x \in (a,b), \, \text{至少存在一个} \, \overline{\xi}, \, \text{使}$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$$
, ξ 在 x_0 与 x 之间.

(1)
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

(2)
$$\sin x = x - \frac{x^3}{3!} + \dots + \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!} + o(x^{2n-1})$$

(3)
$$\cos x = 1 - \frac{x^2}{2!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$

(4)
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n)$$

(5)
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n)$$

The particular production of the particular p

(二) 导数应用

1.函数的单调性

定理7 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导。

- 1) 若在 (a,b)内 f'(x) > 0, 则 f(x)在 [a,b]上单调增;
- 2) 若在 (a,b)内 f'(x) < 0,则 f(x)在 [a,b]上单调减;

2.函数的极值

定义(极值) 若 $\exists \delta > 0$, 使得

 $\forall x \in U(x_0, \delta)$ 恒有 $f(x) \ge f(x_0)$, 则称 f(x) 在 x_0 取极小值.

 $\forall x \in U(x_0, \delta)$ 恒有 $f(x) \leq f(x_0)$, 则称 f(x)在 x_0 取极大值.

定理8(极值的必要条件)

若 f(x) 在 x_0 处可导,且在 x_0 处取得极值,则

$$f'(x_0) = 0$$

$$\leftarrow$$

$$\int_{\mathbb{R}} f(x_0) = 0$$

$$\int_{\mathbb{R}} f(x_0) dx_0 = 0$$

$$\int_{\mathbb{R}} f(x_0) dx_0 = 0$$

定理9(极值的第一充分条件)

设 f(x) 在 $U(x_0, \delta)$ 内可导, 且 $f'(x_0) = 0$ (或 f(x) 在 x_0 处连续)

- (1) 若 $x < x_0$ 时, $f'(x) \ge 0$; $x > x_0$ 时, $f'(x) \le 0$, 则 f 在 x_0 处取极大值.
- (2) 若 $x < x_0$ 时, $f'(x) \le 0$; $x > x_0$ 时, $f'(x) \ge 0$, 则 f 在 x_0 处取极小值.
- (3) 若 f'(x) 在 x_0 的两侧不变号,则 f 在 x_0 无极值.

定理10(极值的第二充分条件)设 $f'(x_0) = 0, f''(x_0) \neq 0$

- (1) 当 $f''(x_0) < 0$, f(x) 在 x_0 处取极大值.
- (2) 当 $f''(x_0) > 0$, f(x) 在 x_0 处取极小值.

(2)

3.函数的最大最小值

(1) 求连续函数 f(x) 在 [a,b] 上的最值

第一步: 求出 f(x) 在 (a,b) 内的驻点和不可导的点

$$x_1, x_2, \cdots x_n;$$

第二步: 求出函数值 $f(x_1), f(x_2), \cdots f(x_n), f(a), f(b)$;

第三步: 比较以上各点函数值.

【注】 若连续函数 f(x) 在 (a,b) 内仅有唯一极值点,

(2) 最大最小值的应用题

第二步:

4.曲线的凹凸性

定理 11 若在区间 $I \perp f''(x) > 0 (< 0)$,则曲线

$$y = f(x)$$
 在 I 上是凹(凸)的。 (x)

定义4(拐点)

判定(必要条件与充分条件)

5.曲线的渐近线

1) 若
$$\lim_{x \to \infty} f(x) = A \left(\lim_{x \to -\infty} f(x) = A, \text{ 或 } \lim_{x \to +\infty} f(x) = A \right)$$
 那么 $y = A$ 是曲线 $y = f(x)$ 的水平渐近线.

2) 若
$$\lim_{x \to x_0} f(x) = \infty$$
, 那么 $x = x_0$ 是 $y = f(x)$ 的垂直渐近线.

3) 若
$$\lim_{x \to \infty} \frac{f(x)}{x} = a$$
, $b = \lim_{x \to \infty} (f(x) - ax)$, 那么 $y = ax + b$ 是 $y = f(x)$ 的斜渐近线.

6.函数的作图

7.曲线的弧微分与曲率(数三不要求)

曲率
$$K = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$$

曲率半径
$$R = \frac{1}{K}$$

(直角)

8. 导数在经济学中的应用 (仅数三要求)

1.经济学中常见的函数

- 1) 需求函数: $x = \varphi(p)$
 - x 为某产品的需求量,其 p 为价格. 需求函数的反函数 $p = \varphi^{-1}(x)$ 称为价格函数.
- 2) 供给函数: $x = \psi(p)$
 - x 为某产品的供给量, p 为价格.
- 3) 成本函数: $C = C(x) = C_1 + C_2(x)$.
 - C_1 为固定成本, $C_2(x)$ 为可变成本, x 表示产量.

平均成本
$$AC = \overline{C} = \frac{C}{x} = \frac{C_1}{x} + \frac{C_2(x)}{x}$$

4) 收益函数 R = R(x) = px

销售量 x与销售单价 p 之积.

9 是产量

5) 利润函数 L = L(x) = R(x) - C(x)

(x:销售量)

2.边际函数与边际分析

1) 边际函数: 设 y = f(x) 可导,则称 f'(x) 为边际函数, $f'(x_0)$ 称为 f(x) 在 $x = x_0$ 处的边际值.

- (a) 边际成本 MC = C'(q)
- (b) 边际收益 MR = R'(q) q 是产量
- (c) 边际利润 ML = L'(q) 9 是销售量

3.弹性函数与弹性分析

①弹性函数: 设 y = f(x) 可导,

$$\eta = \lim_{\Delta x \to 0} \frac{\Delta y / y}{\Delta x / x} = f'(x) \frac{x}{y} = \frac{f'(x)}{f(x)} x$$

(a) 需求的价格弹性: $\eta_d = \frac{p}{\varphi(p)} \varphi'(p)$. $(\eta_d < 0)$

$$\eta_d = -\frac{p}{\varphi(p)}\varphi'(p) \qquad (\eta_d > 0)$$

(b) 供给的价格弹性:

$$\eta_s = \frac{p}{\psi(p)} \psi'(p)$$

【例1】(2014)设某商品的需求函数为 Q = 40 - 2p (p 为商品的

价格),则该商品的边际收益为 _________

【解】由题设知收益函数为

$$R = pQ = \frac{40 - Q}{2} \cdot Q$$

则边际收益为

$$\frac{dR}{dQ} = 20 - Q$$

【注】边际收益是"当商品的需求量在Q的基础上再增加一件所获得

的收益",所以选际收益为 $\frac{dR}{dQ}$. 部分考生错误的将 $\frac{dR}{dp}$ 当作边际收益.

【例2】(2017)设生产某产品的平均成本 $\overline{C}(Q)=1+e^{-Q}$,其中产

【解】成本
$$C(Q) = \overline{C}(Q)Q = Q(1 + e^{-Q})$$

边际成本为 $\frac{dC}{dQ} = (1 + e^{-Q}) - Qe^{-Q} = 1 + (1 - Q)e^{-Q}$

【例3】(2009)设某产品的需求函数为 Q = Q(p): 其对应

价格 p 的弹性 $\xi_p = 0.2$, 则当需求量为10000件时,价格

【解】由题设知
$$-\frac{p}{Q}\frac{\mathrm{d}\,Q}{\mathrm{d}\,p} = \varepsilon_p = 0.2$$

收益函数
$$R = Qp$$

收益微分为

$$dR = pdQ + Qdp = Q(1 + \frac{p}{Q}\frac{dQ}{dp})dp = Q(1 - \varepsilon_p)dp.$$

当 Q = 10000, dp = 1 时, 产品的收益增加

$$dR = 10000 \times (1 - 0.2) \times 1 = 8000$$
 (元)

【例4】(2010)设某商品的收益函数为 R(p), 收益弹性为

$$1+p^3$$
, 其中 p 为价格,且 $R(1)=1$, 则 $R(p)=$ _____.

1+ p^3 , 其中 p 为价格,且 R(1)=1, 则 R(p)=____. 【解】 由题意知 $\frac{p}{R} \cdot \frac{dR}{dp} = 1 + p^3$, 即

$$\frac{\mathrm{d}\,R}{R} = \left(\frac{1}{p} + p^2\right) \mathrm{d}\,p$$

$$\ln R = \ln p + \frac{1}{3}p^3 + C$$

$$R(p) = pe^{\frac{1}{3}p^3 + C}$$
, 由 $R(1) = 1$ 得 $C = -\frac{1}{3}$,故

$$R(p) = pe^{\frac{1}{3}(p^3-1)}$$

