DCC008 - Cálculo Numérico Resolução de Sistemas de Equações Lineares

Bernardo Martins Rocha

Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br

Conteúdo

- ▶ Introdução
- ► Conceitos fundamentais
- Métodos diretos
 - Sistemas triangulares
 - ► Eliminação de Gauss
 - ► Estratégias de Pivoteamento
 - Decomposição LU
 - ightharpoonup Decomposição Cholesky e LDL^T
 - Usos da decomposição
- Métodos iterativos
 - ► Introdução
 - Métodos Iterativos Estacionários
 - ► Método de Jacobi
 - ► Método de Gauss-Seidel
 - ► Análise de Convergência
 - ► Método SOR

Iremos estudar agora métodos computacionais para resolver um sistema de equações lineares da forma:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

onde

$$a_{ij} \in \mathbb{R}, \quad b_i \in \mathbb{R}, \quad x_j \in \mathbb{R}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Chamamos a_{ij} de coeficientes, b_i são constantes dadas e x_j são as variáveis ou incógnitas do problema.

Exemplos de aplicações

Em uma vasta gama de problemas de ciências e engenharias a solução de um sistema de equações lineares é necessária. Podemos enumerar diversas áreas e problemas típicos, tais como:

- Solução de equações diferenciais
 - Solução de EDPs através do método dos elementos finitos, diferenças finitas ou volumes finitos.
 - Solução de EDOs
- Programação linear
- Análise de estruturas
- Sistemas de equações não-lineares
- Outros métodos numéricos
 - ► Interpolação, mínimos quadrados, etc.
- Circuitos elétricos.

Tensões em circuito elétrico

Calcular as tensões dos nós do circuito elétrico da figura abaixo:

Modelagem do problema:

- ► Lei de Kirchhoff: a soma das correntes que passam em cada nó do circuito é nula.
- Lei de Ohm: a corrente do nó j para o nó k é dada pela equação

$$I_{jk} = \frac{V_j - V_k}{R_{jk}}$$

Tensões em circuito elétrico

$$\begin{bmatrix} -6 & 2 & 1 & 1 \\ 3 & -4 & 1 & 0 \\ 3 & 2 & -13 & 6 \\ 1 & 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} \quad \begin{bmatrix} 3V_1 + 2V_2 - 13V_2 + 6V_4 = -254 \\ \text{No 4} : \\ V_2 + 2V_2 - 3V_4 = 0 \end{bmatrix}$$

Nó 1:
$$I_{A1} + I_{21} + I_{31} + I_{41} = 0$$

$$\frac{0 - V_1}{1} + \frac{V_2 - V_1}{1} + \frac{V_3 - V_1}{2} + \frac{V_4 - V_1}{2} = 0$$

$$-2V_1 + V_2 - V_1 + \frac{V_3}{2} - \frac{V_1}{2} + \frac{V_4}{2} - \frac{V_1}{2} = 0$$

$$-4V_1 + 2V_2 + V_3 - 2V_1 + 2V_4 = 0$$

$$\boxed{-6V_1 + 2V_2 + V_3 + V_4 = 0}$$

Nó 2:

$$3V_1 - 4V_2 + V_3 = 0$$

Nó 3:

$$3V_1 + 2V_2 - 13V_2 + 6V_4 = -254$$

$$V_1 + 2V_3 - 3V_4 = 0$$

Tensões em circuito elétrico

$$\begin{bmatrix} -6 & 2 & 1 & 1 \\ 3 & -4 & 1 & 0 \\ 3 & 2 & -13 & 6 \\ 1 & 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -254 \\ 0 \end{bmatrix}$$

Usando algum método que iremos estudar, encontramos a solução deste sistema

$$V^* = \begin{bmatrix} 25.7 \\ 31.75 \\ 49.6 \\ 41.6 \end{bmatrix}$$

ou seja $V_1 = 25.7V$, $V_2 = 31.75V$, $V_3 = 49.6V$ e $V_4 = 41.6V$.

Estruturas

Exemplo 1, Capítulo 3, Página, 105, Livro da Ruggiero. Determinar as forças que atuam nesta treliça.

Junção 2:

$$\sum F_x = -\alpha f_1 + f_4 + \alpha f_5 = 0$$
$$\sum F_y = -\alpha f_1 - f_3 - \alpha f_5 = 0$$

Procedendo de forma análoga para todas as junções obtem-se um sistema linear de 17 equações e 17 variáveis (f_1, \ldots, f_{17}) .

Antes de estudar os métodos para solução deste tipo de problema, vamos rever alguns conceitos fundamentais de Álgebra Linear necessários para o desenvolvimento e análise dos métodos.

Matrizes

Uma matriz é um conjunto de elementos (números reais ou complexos) dispostos de forma retangular. O tamanho ou dimensão é definido pelo seu número de linhas e colunas. Uma matriz com mlinhas e n colunas é dita ser $m \times n$ (m por n) e se m = n, então dizemos que a matriz é guadrada.

$$\mathbf{A} = \left[\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array} \right] \qquad \begin{array}{c} \text{Um elemento } a_{ij} \text{ da matriz \'e} \\ \text{referenciado por 2 \'indices: o} \\ \text{primeiro indica a linha e o} \\ \text{segundo a coluna.} \end{array}$$

Um elemento a_{ij} da matriz é

Matrizes especiais

Matriz coluna e matriz linha

Matriz coluna: $n \times 1$

Matriz linha: $1 \times n$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}$$

 $\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}$

▶ Matriz nula:

$$a_{ij} = 0, \quad \forall i, j$$

► Matriz diagonal:

$$d_{ij} = 0, \quad \forall i \neq j$$

Matriz identidade:

$$e_{ij} = 1, \quad \forall i = j$$

 $e_{ij} = 0, \quad \forall i \neq j$

Matrizes especiais

Matriz triangular inferior: acima da diagonal principal é nula

$$b_{ij} = 0, \quad \forall \, i < j, \qquad \mathsf{Exemplo:} \; \mathbf{B} = \left[egin{array}{ccc} b_{11} & 0 & 0 \ b_{21} & b_{22} & 0 \ b_{31} & b_{32} & b_{33} \end{array}
ight]$$

Matriz triangular superior: abaixo da diagonal principal é nula

$$c_{ij} = 0, \quad \forall i > j,$$
 Exemplo: $\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ 0 & c_{22} & c_{23} \\ 0 & 0 & c_{33} \end{bmatrix}$

Matriz simétrica:

$$m_{ij} = m_{ji}, \quad \forall i, j$$

Operações matriciais

Transposição

A transposta de uma matriz A, denotada por A^T , é uma matriz obtida trocando-se as suas linhas pelas colunas.

Exemplo:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}, \qquad \mathbf{A}^T = \begin{bmatrix} 1 & 5 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix}$$

Adição e Subtração

Sejam ${\bf A}$ e ${\bf B}$ matrizes $m \times n$. Então a matriz ${\bf C}$ é $m \times n$ e seus elementos são dados por

$$c_{ij} = a_{ij} + b_{ij}, \quad \forall i, j$$

Operações matriciais

Multiplicação por escalar

Seja ${f A}$ uma matriz m imes n e seja $k \in {\Bbb R}$ um escalar qualquer. Então ${f B} = k {f A}$ é tal que

$$b_{ij} = k \, a_{ij}, \quad \forall \, i, j$$

Multiplicação matriz-vetor

Seja ${\bf A}$ uma matriz $m \times n$ e ${\bf x}$ um vetor $n \times 1$, então a multiplicação de ${\bf A}$ por ${\bf x}$ é

$$\mathbf{v} = \mathbf{A}\mathbf{x} \quad \Rightarrow \quad v_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, 2, \dots, m$$

Exemplo

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array}\right] \left[\begin{array}{c} 1 \\ 2 \end{array}\right] = \left[\begin{array}{c} 5 \\ 11 \\ 17 \end{array}\right]$$

Operações matriciais

Multiplicação matriz-matriz

Seja ${\bf A}$ uma matriz $m \times p$ e ${\bf B}$ uma matriz $p \times n$. O resultado da multiplicação ${\bf AB}$ é uma matriz ${\bf C}$ de tamanho $m \times n$.

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Exemplo:

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 6 & 4 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} -3 & 2 \\ 4 & 9 \\ 8 & -1 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{AB} = \left[\begin{array}{cc} -5 & 15 \\ 59 & 48 \end{array} \right]$$

Operações matriciais

Produto Interno e Produto Externo

O produto interno ou escalar entre dois vetores \mathbf{x} e \mathbf{y} , ambos de tamanho n resulta em um valor escalar k dado por

$$k = \mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$

O produto externo entre $\mathbf{x}(m \times 1)$ e $\mathbf{y}(n \times 1)$ resulta em uma matriz \mathbf{M} de tamanho $m \times n$ dada por

$$m_{ij} = x_i y_i, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Exemplo:

$$\mathbf{x} = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \quad \mathbf{x}^T \mathbf{y} = 10, \quad \mathbf{x} \mathbf{y}^T = \mathbf{M} = \begin{bmatrix} 5 & 15 & 20 \\ -1 & -3 & -4 \\ 2 & 6 & 8 \end{bmatrix}$$

Operações matriciais

Determinante

Seja $\bf A$ uma matriz quadrada de ordem n. Então $\bf A$ possui um número associado chamado de determinante, o qual pode ser calculado pela seguinte fórmula:

$$det(\mathbf{A}) = a_{11}det(\mathbf{M_{11}}) - a_{12}det(\mathbf{M_{12}}) + \dots + (-1)^{n+1}a_{1n}det(\mathbf{M_{1n}})$$

onde $\mathbf{M_{ij}}$ é a matriz resultante da remoção da linha i e da coluna j da matriz \mathbf{A} . Em particular

$$\mathbf{A} = [a_{11}] \Rightarrow det(\mathbf{A}) = a_{11}, \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \begin{aligned} \det(\mathbf{A}) &= a_{11}(a_{22}a_{33} - a_{32}a_{23}) \\ &- a_{12}(a_{21}a_{33} - a_{31}a_{23}) \\ &+ a_{13}(a_{21}a_{32} - a_{31}a_{22}) \end{aligned}$$

Operações matriciais

Definição (Matriz singular)

Uma matriz com $det(\mathbf{A}) = 0$ é dita **singular**. Por outro lado quando $det(\mathbf{A}) \neq 0$ dizemos que a matriz é **não-singular**.

Definição (Vetores Linearmente Independentes)

Um conjunto de vetores $\mathbf{x_1},\mathbf{x_2},\ldots,\mathbf{x_k}$ é dito ser linearmente independente (LI) se

$$c_1\mathbf{x_1} + c_2\mathbf{x_2} + \ldots + c_k\mathbf{x_k} = 0$$

somente se $c_1=c_2=\ldots=c_k=0$. Caso contrário, isto é, quando c_1,c_2,\ldots,c_k não são todos nulos, dizemos que o conjunto de vetores é linearmente dependente (LD).

Operações matriciais

Definição (Posto)

O posto (ou rank) de uma matriz ${\bf A}$ de tamanho $m \times n$ é definido como o número máximo de vetores linhas (ou de vetores colunas) linearmente independentes de ${\bf A}$. Escrevemos posto $({\bf A})=r$ e temos que $r \le \min{(m,n)}$.

Definição (Inversa)

A inversa de uma matriz ${\bf A}$ quadrada $n \times n$ é representada por ${\bf A^{-1}}$ e definida de tal forma que

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

onde I é a matriz identidade de ordem n.

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{bmatrix}$$

Sistemas Lineares

Um sistema de equações lineares consiste em um conjunto de m equações polinomiais com n variáveis x_i de grau um, isto é

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

o qual pode ser escrito da seguinte forma matricial $\mathbf{A}\mathbf{x}=\mathbf{b}$ onde

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

onde ${\bf A}$ é a matriz dos coeficientes, ${\bf b}$ é o vetor dos termos independentes e ${\bf x}$ é o vetor solução procurado.

Número de Soluções

Vamos considerar apenas sistemas cujas matrizes dos coeficientes são quadradas, isto é, onde $\mathbf{A} \in \mathbb{R}^{n \times n}$.

lremos tratar do caso onde ${\bf A}$ não é uma matriz quadrada e m>n mais adiante, quando estudarmos mínimos quadrados.

Para o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, temos as seguintes possibilidades quanto ao número de soluções:

- (a) uma única solução
- (b) infinitas soluções
- (c) sem solução

Vamos analisar cada caso em mais detalhes através de alguns exemplos de sistemas de equações lineares 2×2 .

Caso (a) Única solução

$$x_1 + x_2 = 3 x_1 - x_2 = -1$$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \quad \Rightarrow \quad \mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Caso (b) Infinitas Soluções

$$x_1 + x_2 = 1$$
$$2x_1 + 2x_2 = 2$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \Rightarrow \quad \mathbf{x} = \begin{bmatrix} 1 - \theta \\ \theta \end{bmatrix}$$

Caso (c) Sem Solução

$$x_1 + x_2 = 1$$
$$x_1 + x_2 = 4$$

$$\Rightarrow$$
 $ot \exists \mathbf{x} \text{ tal que } \mathbf{A}\mathbf{x} = \mathbf{b}$

Existência e unicidade da solução

A equação $\mathbf{A}\mathbf{x} = \mathbf{b}$ possui uma única solução se e somente se a matriz \mathbf{A} for não-singular. O Teorema a seguir, caracteriza a não-singularidade da matriz \mathbf{A} .

Teorema

Seja ${\bf A}$ uma matriz quadrada $n \times n$. As seguintes afirmações são equivalentes:

- a) A^{-1} existe
- b) Não existe y não-zero tal que $\mathbf{A}\mathbf{y}=\mathbf{0}$. Ou seja, a única solução do sistema homogêneo é $\mathbf{y}=\mathbf{0}$.
- c) $posto(\mathbf{A}) = n$
- d) $det(\mathbf{A}) \neq 0$
- e) Dado qualquer vetor \mathbf{b} , existe exatamente um vetor \mathbf{x} tal que $\mathbf{A}\mathbf{x} = \mathbf{b}$ (ou $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$).

Prova

Livro texto de Álgebra Linear.

Existência e unicidade da solução

De fato, para os exemplos anteriores, temos

Caso (a)

$$\det \left(egin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
ight) = -1 - 1 = -2
eq 0 \Rightarrow \ \mathsf{OK}$$
, solução única

Caso (b)

$$\det\left(\begin{bmatrix}1 & 1\\ 2 & 2\end{bmatrix}\right) = 2 - 2 = 0$$

Caso (c)

$$\det\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right) = 1 - 1 = 0$$

Métodos para solução de sistemas lineares

lremos estudar agora diversos métodos numéricos para a solução de sistemas de equações lineares. Vamos considerar que ${\bf A}$ é quadrada e não-singular.

Os métodos de solução de sistemas lineares geralmente envolvem a conversão de um sistema quadrado em um sistema triangular que possui a mesma solução que o original.

Inicialmente, vamos estudar como resolver sistemas lineares triangulares inferiores e superiores.

Sistema triangular inferior

Considere um sistema triangular inferior de ordem n dado por

$$\begin{bmatrix} l_{11} & 0 & 0 & \dots & 0 \\ l_{21} & l_{22} & 0 & \dots & 0 \\ \vdots & & & \ddots & \\ l_{n1} & l_{n2} & l_{n3} & \dots & l_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

A solução deste sistema é feita através de um procedimento chamado de **substituição** (ou substituições sucessivas):

$$l_{11}x_1 = b_1 \qquad \Rightarrow \quad x_1 = \frac{b_1}{l_{11}}$$

$$l_{21}x_1 + l_{22}x_2 = b_2 \qquad \Rightarrow \quad x_2 = \frac{b_2 - l_{21}x_1}{l_{22}}$$

$$\vdots$$

$$l_{n1}x_1 + l_{n2}x_2 + \dots + l_{nn}x_n = b_n \quad \Rightarrow \quad x_n = \frac{b_n - l_{n1}x_1 - l_{n2}x_2 - \dots - l_{nn-1}x_{n-1}}{l_{n2}x_n}$$

Sistema triangular inferior

De forma geral para Lx = b temos

$$x_i = \left(b_i - \sum_{j=1}^{i-1} l_{ij} x_j\right) / l_{ii}$$
 $i = 1, \dots, n$

Exemplo

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 1 & -6 & 8 & 0 \\ -1 & 4 & -3 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 48 \\ 0 \end{bmatrix}$$

Solução

$$2x_{1} = 4 \qquad \Rightarrow x_{1} = 2$$

$$3x_{1} + 5x_{2} = 1 \qquad \Rightarrow x_{2} = \frac{1-6}{5} = -1$$

$$x_{1} - 6x_{2} + 8x_{3} = 48 \qquad \Rightarrow x_{3} = \frac{48-2-6}{8} = 5$$

$$-x_{1} + 4x_{2} - 3x_{3} + 9x_{4} = 0 \Rightarrow x_{4} = \frac{2+4+15}{9} = \frac{21}{9}$$

Sistema triangular inferior Algoritmo

```
entrada: \mathbf{L} \in \mathbb{R}^{n \times n}, \mathbf{b} \in \mathbb{R}^n
saída: \mathbf{x} \in \mathbb{R}^n
x(1) = b(1) / L(1,1);
para i=2, ..., n faça
    s = b(i);
    para j=1, ..., i-1 faça
        s = s - L(i,j) * x(j);
     fim-para
    x(i) = s/L(i,i);
fim-para
```

Sistema triangular superior

O algoritmo análogo para o caso de um sistema triangular superior $\mathbf{U}\mathbf{x}=\mathbf{b}$ é chamado de **retro-substituição** (ou substituições retroativas).

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ \vdots & & & \ddots & \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

e assim temos

$$u_{nn}x_n = b_n \qquad \Rightarrow \quad x_n = \frac{b_n}{u_{nn}}$$

$$u_{n-1n-1}x_{n-1} + u_{n-1n}x_n = b_{n-1} \qquad \Rightarrow \quad x_{n-1} = \frac{b_{n-1} - u_{n-1n}x_n}{u_{n-1n-1}}$$

$$\vdots$$

$$u_{11}x_1 + u_{12}x_2 + \dots + u_{1n}x_n = b_1 \qquad \Rightarrow \quad x_1 = \frac{b_n - u_{12}x_1 - u_{13}x_3 - \dots - u_{1n}x_n}{u_{n-1n-1}}$$

Sistema triangular superior

De forma geral para $\mathbf{U}\mathbf{x} = \mathbf{b}$ temos

$$x_i = \left(b_i - \sum_{j=i+1}^n u_{ij} x_j\right) / u_{ii} \quad i = n, \dots, 1$$

Exemplo

$$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

Solução

$$4x_3 = 8$$
 $\Rightarrow x_3 = 2$
 $x_2 + x_3 = 4$ $\Rightarrow x_2 = 2$
 $2x_1 + 4x_2 - 2x_3 = 2$ $\Rightarrow x_1 = \frac{2-8+4}{2} = -\frac{2}{2} = -1$

Sistema triangular superior

```
entrada: \mathbf{U} \in \mathbb{R}^{n \times n}, \mathbf{b} \in \mathbb{R}^n
saída: \mathbf{x} \in \mathbb{R}^n
x(n) = b(n)/U(n,n);
para i=n-1, ..., 1 faça
    s = b(i);
     para j=i+1, ..., n faça
         s = s - U(i,j) * x(j);
     fim-para
    x(i) = s/U(i,i);
fim-para
```

Complexidade Computacional

Muitas vezes precisamos medir o custo de execução de um algoritmo. Para isso usualmente definimos uma função de complexidade que pode ser uma medida do tempo para o algoritmo resolver um problema cuja instância de entrada tem tamanho n (ou medir por exemplo o quanto de memória seria necessário para execução).

A complexidade de um algoritmo para solução de um sistema linear de ordem n é medida através do número de operações aritméticas como adição, multiplicação e divisão.

Lembrando que

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Complexidade Computacional

Substituição:

Divisão: n

Adição:
$$\sum_{i=2}^{n} (i-1) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

$$\mathsf{Multiplica} \ccite{salpha} \text{Multiplica} \ccite{salpha} \ccite{salpha} : \sum_{i=2}^n (i-1) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

No total o algoritmo de substituição para sistemas triangulares inferiores realiza

$$n + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} = n + n^2 - n = n^2$$

operações de ponto flutuante.

Complexidade Computacional

Retro-substituição:

Divisão: n

Adição:
$$\sum_{i=1}^{n-1} (n-i) = n(n-1) - \frac{n(n-1)}{2} = \frac{n(n-1)}{2}$$

Multiplicação:
$$\sum_{i=1}^{n-1} (n-i) = n(n-1) - \frac{n(n-1)}{2} = \frac{n(n-1)}{2}$$

No total o algoritmo de retro-substituição para sistemas triangulares superiores realiza

$$n + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} = n + n^2 - n = n^2$$

operações de ponto flutuante.

Métodos para solução de sistemas lineares

Existem dois tipos de métodos para a solução de sistemas de equações lineares:

- Métodos diretos
 - Os métodos diretos são aqueles que conduzem à solução exata após um número finito de passos a menos de erros de arredondamento introduzidos pela máquina.
- Métodos iterativos
 - São aqueles que se baseiam na construção de sequências de aproximações. Em um método iterativo, a cada passo, os valores calculados anteriormente são usados para melhorar a aproximação. É claro que o método só será útil se a sequência de aproximações construídas convergir para uma solução aproximada do sistema.

O primeiro método direto que iremos estudar é o método da eliminação de Gauss. A idéia fundamental do método é transformar a matriz ${\bf A}$ em uma matriz triangular superior introduzindo zeros abaixo da diagonal principal, primeiro na coluna 1, depois na coluna 2 e assim por diante.

Por fim, usa-se a **retro-substituição** para obter a solução do sistema triangular superior obtido ao final dessa etapa de eliminação.

Na eliminação de Gauss, as operações efetuadas para se obter a matriz triangular superior são tais que a matriz triangular obtida possui a mesma solução que o sistema original.

Definição (Sistema equivalente)

Dois sistemas de equações lineares são equivalentes quando possuem o mesmo vetor solução.

Um sistema pode ser transformado em um outro sistema equivalente utilizando as seguintes operações elementares:

- trocar a ordem de duas equações
- multiplicar uma equação por uma constante não-nula
- ▶ somar um múltiplo de uma equação à outra

Exemplo

$$3x_1 + 5x_2 = 9$$
$$6x_1 + 7x_2 = 4$$

Podemos subtrair da linha 2 um múltiplo da linha 1, isto é

$$L_2' = L_2 - 2L_1$$

Efetuando esta operação obtemos o sistema equivalente

$$3x_1 + 5x_2 = 9$$
$$-3x_2 = -14$$

Vamos primeiro estudar um exemplo simples para posteriormente generalizar a idéia.

Exemplo

Seja o sistema

$$x_1 + x_3 = 0$$
$$x_1 + x_2 = 1$$
$$2x_1 + 3x_2 + x_3 = 1$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Solução

Como podemos eliminar os coeficientes abaixo da diagonal principal na primeira coluna?

$$L_2' = L_2 - L_1$$

 $L_3' = L_3 - 2L_1$

$$\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 3 & -1 & 1
\end{array}\right]$$

Exemplo - (cont.)

Precisamos agora de eliminar os coeficientes abaixo da diagonal na segunda coluna (a_{32}) . Como?

$$L_3'' = L_3' - 3L_2' \qquad \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & \mathbf{0} & \mathbf{2} & -\mathbf{2} \end{bmatrix}$$

Agora podemos usar a retro-substituição para encontrar facilmente a solução deste sistema:

$$2x_3 = -2 \Rightarrow x_3 = -1$$

 $x_2 - x_3 = 1 \Rightarrow x_2 = 1 + x_3 = 1 - 1 = 0$
 $x_1 + x_3 = 0 \Rightarrow x_1 = -x_3 = 1$

Encontramos assim a solução: $x^T = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$

Conteúdo

- Aula passada
 - Conceitos fundamentais
 - ► Sistemas triangulares
 - ► Eliminação de Gauss
- ► Aula de hoje
 - ► Eliminação de Gauss
 - Estratégias de Pivoteamento
 - Decomposição LU

Revisitando a Eliminação de Gauss

Resolver o seguinte sistema

$$\begin{bmatrix} \mathbf{2} & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$$

Passo 1

$$m_{21} = \frac{a_{21}}{a_{11}} = 4/2 = 2$$
 \Rightarrow $L'_2 = L_2 - 2L_1$
 $m_{31} = \frac{a_{31}}{a_{11}} = -2/2 = -1$ \Rightarrow $L'_3 = L_3 + L_1$

$$\left[\begin{array}{ccc|c}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]$$

Revisitando a Eliminação de Gauss

Passo 2

$$\left[\begin{array}{ccc|c}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]$$

$$m_{32} = \frac{a_{32}}{a_{22}} = 8/-8 = -1 \quad \Rightarrow \quad L_3'' = L_3' + L_2'$$

$$\left[\begin{array}{ccc|c}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 0 & 1 & 2
\end{array}\right]$$

Próxima etapa: resolver o sistema triangular superior obtido usando o algoritmo de **retro-substituição**.

De forma geral

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} & b_n \end{bmatrix}$$

Passo 1 (k=1): eliminamos os elementos abaixo da diagonal principal na primeira coluna. Suponha que $a_{11} \neq 0$. Então:

$$m_{21} = a_{21}/a_{11}$$

 $m_{31} = a_{31}/a_{11}$
 \vdots
 $m_{n1} = a_{n1}/a_{11}$

ou seja

$$m_{i1} = a_{i1}/a_{11}, \quad i = 2:n$$

Notação: $i=2:n \Leftrightarrow i=2,3,\ldots,n$

Agora, multiplicamos a $\mathbf{1}^a$ equação por m_{i1} e subtraimos da i-ésima equação, isto é

Para
$$i=2:n$$

$$a_{ij}^{(1)}=a_{ij}^{(0)}-m_{i1}\;a_{1j}^{(0)}$$

$$b_i^{(1)}=b_i^{(0)}-m_{i1}\;b_1^{(0)},\quad j=1:n$$

Observe que não alteramos a primeira linha, pois i=2:n, logo esta permanece inalterada:

$$a_{1j}^{(1)} = a_{1j}^{(0)} = a_{1j}, \quad b_1^{(1)} = b_1^{(0)} = b_1$$

Após essa etapa zeramos todos os elementos abaixo da diagonal principal na 1^a coluna.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ \mathbf{0} & \mathbf{a}_{22}^1 & \mathbf{a}_{23}^1 & \dots & \mathbf{a}_{2n}^1 & \mathbf{b}_{2}^1 \\ \mathbf{0} & \mathbf{a}_{32}^1 & \mathbf{a}_{33}^1 & \dots & \mathbf{a}_{3n}^1 & \mathbf{b}_{3}^1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{a}_{n2}^1 & \mathbf{a}_{n3}^1 & \dots & \mathbf{a}_{nn}^1 & \mathbf{b}_{n}^1 \end{bmatrix}$$

Passo 2 (k=2): consiste em introduzir zeros abaixo da diagonal principal na 2^a coluna. Suponha $a_{22} \neq 0$. Definimos

$$m_{i2} = a_{i2}/a_{22}, \quad i = 3:n$$

e assim

para
$$i=3:n$$

$$a_{ij}^{(2)}=a_{ij}^{(1)}-m_{i2}\;a_{2j}^{(1)}$$

$$b_i^{(2)}=b_i^{(1)}-m_{i2}\;b_1^{(2)},\quad j=2:n$$

o que resulta em

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ 0 & a_{22}^1 & a_{23}^1 & \dots & a_{2n}^1 & b_2^1 \\ 0 & \mathbf{0} & \mathbf{a_{33}^2} & \dots & \mathbf{a_{3n}^2} & \mathbf{b_{3}^2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \mathbf{0} & \mathbf{a_{n3}^2} & \dots & \mathbf{a_{nn}^2} & \mathbf{b_{n}^2} \end{bmatrix}$$

Passo 3, Passo 4, ...

Passo k: Considerando $a_{kk} \neq 0$, temos

$$m_{ik} = a_{ik}/a_{kk}, \quad i = k+1:n$$

e assim fazemos

para
$$i=k+1:n$$

$$a_{ij}^{(k)}=a_{ij}^{(k-1)}-m_{ik}\;a_{kj}^{(k-1)}$$

$$b_i^{(k)}=b_i^{(k-1)}-m_{ik}\;b_k^{(k-1)},\quad j=k:n$$

Observe novamente que não alteramos as linhas de 1 a k.

No processo de eliminação os elementos $a_{11},\ a_{22}^{(1)},\ a_{33}^{(2)},\ \ldots,\ a_{kk}^{(k-1)}$ que aparecem na diagonal da matriz ${\bf A}$ são chamados de **pivôs**.

Se os pivôs não se anulam, isto é, se $a_{kk} \neq 0, k=1:n$, durante o processo, então a eliminação procede com sucesso e por fim chegamos ao seguinte sistema triangular superior

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n-1} & a_{1n} & b_1 \\ 0 & a_{22}^1 & a_{23}^1 & \dots & a_{2n-1}^1 & a_{2n}^1 & b_2^1 \\ 0 & 0 & a_{33}^2 & \dots & a_{3n-1}^2 & a_{3n}^2 & b_3^2 \\ \vdots & \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & \mathbf{0} & \mathbf{a_{nn}^{n-1}} & \mathbf{b_n^{n-1}} \end{bmatrix}$$

Em seguida resolvemos esse sistema usando retro substituição.

Algoritmo

```
entrada: matriz \mathbf{A} \in \mathbb{R}^{n \times n} vetor \mathbf{b} \in \mathbb{R}^n
saída: vetor solução \mathbf{x} \in \mathbb{R}^n
para k=1:n-1 faça
    para i = k + 1 : n faça
       m = A(i,k) / A(k,k);
    para j = k + 1 : n faça
        A(i,j) = A(i,j) - m * A(k,j);
        fim-para
        b(i) = b(i) - m * b(k);
    fim-para
fim-para
x = retroSubstituicao(A,b);
retorna x;
```

Complexidade Computacional

Novamente vamos contabilizar o número de operações aritméticas de ponto flutuante que são realizadas pelo algoritmo.

Para contar o número de operações realizadas na eliminação de Gauss, vamos dividir o processo nas seguintes etapas:

- (1) ${f A} o {f U}$: o processo de transformar a matriz ${f A}$ em uma matriz triangular superior ${f U}$
- (2) $\mathbf{b} \to \mathbf{g}$: modificações no vetor \mathbf{b}
- (3) Resolver $\mathbf{U}\mathbf{x} = \mathbf{g}$ usando retro-substituição
 - lacktriangle Já vimos que o número de operações deste algoritmo é n^2

No que segue iremos usar

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Complexidade Computacional

- (1) $\mathbf{A} \to \mathbf{U}$
 - Divisões

$$\sum_{k=1}^{n-1} \left(\sum_{i=k+1}^{n} 1 \right) = \sum_{k=1}^{n-1} (n-k)$$

$$= n(n-1) - \sum_{k=1}^{n-1} k$$

$$= n(n-1) - \frac{n(n-1)}{2}$$

$$= \frac{n(n-1)}{2}$$

Complexidade Computacional

(1) $\mathbf{A} \to \mathbf{U}$

Adicões

$$\sum_{k=1}^{n-1} \sum_{i=k+1}^{n} \left(\sum_{j=k+1}^{n} 1 \right) = \sum_{k=1}^{n-1} \left(\sum_{i=k+1}^{n} (n-k) \right)$$

$$= \sum_{k=1}^{n-1} (n-k)(n-k)$$

$$= \sum_{k=1}^{n-1} (n^2 - 2kn + k^2)$$

$$= n^2 (n-1) - 2n \frac{n(n-1)}{2} + \frac{(n-1)(n-1+1)(2n-2+1)}{6}$$

$$= \frac{n(n-1)(2n-1)}{6}$$

Multiplicações

$$\frac{n(n-1)(2n-1)}{6}$$

Complexidade Computacional

- (2) $\mathbf{b} \to \mathbf{g}$
 - Adições

$$\sum_{k=1}^{n-1} \left(\sum_{i=k+1}^{n} 1 \right) = \sum_{k=1}^{n-1} (n-k)$$

$$= n(n-1) - \sum_{k=1}^{n-1} k$$

$$= n(n-1) - \frac{n(n-1)}{2}$$

$$= \frac{n(n-1)}{2}$$

Multiplicações

$$\frac{n(n-1)}{2}$$

Complexidade Computacional

(Total)

Em cada etapa temos

(1)
$$\frac{2}{3}n^3 - \frac{n^2}{2} - \frac{n}{6}$$

(2)
$$n^2 - n$$

Assim nas etapas (1) e (2) temos um total de $\frac{2}{3}n^3 + \frac{n^2}{2} - \frac{7}{6}n$. Considerando que na etapa de retro-substituição (3) temos n^2 operações, no total o algoritmo de eliminação de Gauss realiza um total de

$$\underbrace{\frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6}}_{\text{eliminação}} + \underbrace{n^2}_{\text{retro-substituição}} = \frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6}$$

Para um valor de n muito grande, o algoritmo realiza aproximadamente $\frac{2}{3}n^3$ operações de ponto flutuante.

Exemplo

Se um sistema linear tem tamanho n=100, então:

- resolver o sistema triangular: $100^2 = 10~000$ operações
- eliminação de gauss: 681 550 operações

Ou seja, nesse exemplo, a eliminação de Gauss é $68\times$ mais lenta que a solução de um sistema triangular !!!

Mas, e se na etapa k da eliminação de Gauss, o pivô for zero? Isso significa que $a_{kk}=0$, e assim, teríamos

$$m_{ik} = rac{a_{ik}}{a_{kk}} \Rightarrow ext{divisão por zero!}$$

Nesse caso, se um pivô for zero, o processo de eliminação tem que parar, ou temporariamente ou permanentemente.

O sistema pode ou não ser singular.

Se o sistema for singular, i.e, $det(\mathbf{A}) = 0$, e portanto como vimos o sistema não possui uma única solução.

Veremos agora um caso que a matriz não é singular e podemos resolver esse problema.

Estratégia de Pivoteamento

Vamos ilustrar a idéia do pivoteamento através de um exemplo. Considere a seguinte matriz.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 5 \\ 4 & 6 & 8 \end{bmatrix}$$

Vamos proceder com a eliminação de Gauss.

$$m_{21} = 2$$
, $a_{2j}^1 = a_{2j}^0 - 2 \ a_{1j}^0$
 $m_{31} = 4$, $a_{3j}^1 = a_{3j}^0 - 4 \ a_{1j}^0$, $j = 1:3$

Então obtemos

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 3 \\
0 & 2 & 4
\end{bmatrix}$$

Estratégia de Pivoteamento

No próximo passo, o pivô é a_{22} e usamos ele para calcular $m_{32}.$ Entretanto

$$m_{32} = \frac{a_{32}}{a_{22}} = \frac{2}{0}$$

Divisão por zero! E agora, o que podemos fazer?

Podemos realizar uma operação elementar de troca de linhas. Como vimos este tipo de operação quando realizado em um sistema, não altera a solução. Sendo assim, vamos trocar as linhas 2 e 3.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 3 \\ 0 & 2 & 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

E assim chegamos a um sistema triangular superior, cuja solução pode ser obtida usando a retro-substituição.

Estratégia de Pivoteamento

A estratégia de pivoteamento é importante pois:

- evita a propagação de erros numéricos
- ▶ nos fornece meios de evitar problemas durante a eliminação de Gauss quando o **pivô** a_{kk} no passo k é **igual a zero** e precisamos calcular o multiplicador

$$m_{ik} = \frac{a_{ik}}{a_{kk}}$$

Assim, através da troca de linhas, podemos encontrar uma linha de tal forma que o novo pivô é não-zero, permitindo que a eliminação de Gauss continue até obter uma matriz triangular superior.

Temos duas possibilidades:

- pivoteamento parcial
- pivoteamento total

No pivoteamento parcial, em cada passo k, o pivô é escolhido como o maior elemento em módulo abaixo de a_{kk} (inclusive), isto é

Encontrar
$$r$$
 tal que: $|a_{rk}| = \max |a_{ik}|, k \leq i \leq n$

Feita a escolha do pivô, trocamos as linhas r e k e o algoritmo procede.

Isso evita a propagação de erros numéricos, pois:

▶ O pivoteamento parcial garante que

$$|m_{ik}| \leq 1$$

- ightharpoonup Se a_{kk} for muito pequeno, consequentemente m_{ik} será muito grande. Dessa forma, após a multiplicação por m_{ik} podemos ampliar erros de arredondamento envolvidos no processo.
- ► Também evitamos o erro que pode ser causado quando somamos um número pequeno com um número grande.

Exemplo

Aplique a eliminação de Gauss com pivoteamento parcial no seguinte sistema:

$$\left[\begin{array}{ccc|c}
2 & 4 & -2 & 2 \\
4 & 9 & -3 & 8 \\
-2 & -3 & 7 & 10
\end{array}\right]$$

A cada passo k:

- ightharpoonup encontrar o pivô do passo k
- se necessário, trocar as linhas
- ightharpoonup calcular multiplicador m_{ik}
- ightharpoonup para i=k+1:n, calcular

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - m_{ik} \ a_{kj}^{(k-1)}$$

$$b_i^{(k)} = b_i^{(k-1)} - m_{ik} \ b_k^{(k-1)}, \quad j = k : n$$

Exemplo - (cont.)

Passo 1

Escolha do pivô: $\max\{2,4,2\}=4$. Trocar as linhas 1 e 2.

$$\begin{bmatrix} 2 & 4 & -2 & 2 \\ 4 & 9 & -3 & 8 \\ -2 & -3 & 7 & 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & 9 & -3 & 8 \\ 2 & 4 & -2 & 2 \\ -2 & -3 & 7 & 10 \end{bmatrix}$$

$$\begin{array}{lll} m_{21}=2/4=1/2 & \Rightarrow & a_{2j}^1=a_{2j}^0-\frac{1}{2}a_{1j}^0 \\ m_{31}=-2/4=-1/2 & \Rightarrow & a_{3j}^1=a_{3j}^0+\frac{1}{2}a_{1j}^0, & j=1:3 \end{array}$$

$$\begin{bmatrix}
4 & 9 & -3 & 8 \\
0 & -\frac{1}{2} & -\frac{1}{2} & -2 \\
0 & \frac{3}{2} & \frac{11}{2} & 14
\end{bmatrix}$$

Exemplo - (cont.)

Passo 2

Escolha do pivô: $\max\{\frac{1}{2},\frac{3}{2}\}=\frac{3}{2}$. Trocar as linhas 2 e 3.

$$\begin{bmatrix} 4 & 9 & -3 & 8 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & -2 \\ 0 & \frac{3}{2} & \frac{11}{2} & 14 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 4 & 9 & -3 & 8 \\ 0 & \frac{3}{2} & \frac{11}{2} & 14 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & -2 \end{bmatrix}$$

$$m_{32} = -\frac{1}{2}\frac{2}{3} = -\frac{1}{3} \quad \Rightarrow \quad a_{3j}^2 = a_{3j}^1 + \frac{1}{3}a_{2j}^1, \quad j = 2:3$$

$$\begin{bmatrix}
4 & 9 & -3 & 8 \\
0 & \frac{3}{2} & \frac{11}{2} & 14 \\
0 & 0 & \frac{4}{3} & \frac{8}{3}
\end{bmatrix}$$

Exemplo - (cont.)

Retro-substituição

$$\left[\begin{array}{cc|cc|c}
4 & 9 & -3 & 8 \\
0 & \frac{3}{2} & \frac{11}{2} & 14 \\
0 & 0 & \frac{4}{3} & \frac{8}{3}
\end{array}\right]$$

$$\frac{4}{3}x_3 = \frac{8}{3} \implies \boxed{x_3 = 2}$$

$$\frac{3}{2}x_2 + 2\frac{11}{2} = 14 \implies \boxed{x_2 = 2}$$

$$4x_1 + 9(2) - 3(2) = 8 \implies \boxed{x_1 = -1}$$

Portanto a solução é $\mathbf{x^T} = [-1, 2, 2]$.

Exemplo (efeitos numéricos)

Considere o seguinte sistema:

$$\left[\begin{array}{cc} 0.0001 & 1\\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1\\ x_2 \end{array}\right] = \left[\begin{array}{c} 1\\ 2 \end{array}\right]$$

Usando um sistema de ponto flutuante F(10,3,-10,10) (sistema decimal com 3 dígitos na mantissa), com arredondamento, encontre a solução do sistema usando eliminação de Gauss sem pivoteamento.

Solução

Temos que

$$m_{21} = \frac{1}{0.0001} = 10000 \implies L_{2}' = L_{2} - 10000L_{1}$$

Solução (efeitos numéricos) - Cont.

$$\left[\begin{array}{c|c} 0.0001 & 1 & 1 \\ 0 & -10000^* & -10000^{**} \end{array}\right]$$

Note que (*) foi obtido como

$$\begin{aligned} 1 - 10000 \times 1 &= 0.00001 \times 10^5 - 0.10000 \times 10^5 \\ &= 0.09999 \times 10^5 \\ &= \text{(arredondando)} = 0.100 \times 10^5 \end{aligned}$$

e de forma análoga para (**), temos

$$\begin{array}{l} 2-10000\times 1=0.00001\times 10^5-0.10000\times 10^5\\ \\ =0.09998\times 10^5\\ \\ =\text{ (arredondando) }=0.100\times 10^5 \end{array}$$

Solução (efeitos numéricos) - Cont.

Por fim, aplicando a retrosubstituição obtemos uma solução errada, devido aos erros de aritmética em ponto flutuante cometidos em (*) e (**) durante a soma/subtração de números muito pequenos com números muito grandes.

Solução obtida
$$ightarrow \mathbf{x}^T = \left[egin{array}{ccc} 0 & 1 \end{array}
ight]$$

A solução exata é dada por

$$\mathsf{Solução}\;\mathsf{exata}\quad\rightarrow\quad\mathbf{x}^T=\left[\begin{array}{cc}1.00010001&0.99989999\end{array}\right]$$

Se durante o processo de eliminação com pivoteamento parcial no passo k não houver nenhuma entrada **não-zero** abaixo de a_{kk} na coluna k, como no exemplo abaixo (depois do passo 1):

$$\begin{bmatrix} x & x & x & x & x \\ 0 & \mathbf{0} & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & x & x & x \end{bmatrix}$$

então:

- > podemos seguir para o próximo passo e completar a eliminação
- entretanto a matriz triangular superior U resultante do processo possui um zero na diagonal principal, o que implica que

```
\mathsf{det} \; \mathbf{U} = 0 \quad \Rightarrow \quad \mathbf{U} \; \mathsf{\acute{e}} \; \mathsf{singular} \quad \Rightarrow \quad \mathbf{A} \; \mathsf{\acute{e}} \; \mathsf{singular}
```

Algoritmo

```
para k=1:n-1 faca
   w = |A(k,k)|;
   para j = k : n faça
      se |A(j,k)| > w então
       | w = |A(j,k)|;
      fim-se
   fim-para
   trocaLinhas(k,r);
   para i = k + 1 : n faça
      m = A(i,k) / A(k,k);
       para j = k + 1 : n faça
          A(i,j) = A(i,j) - m*A(k,j);
       fim-para
       b(i) = b(i) - m*b(k);
   fim-para
```

Pivoteamento Total

Na estratégia de pivoteamento total, o elemento escolhido como pivô é o maior elemento em módulo que ainda atua no processo de eliminação, isto é:

Encontrar
$$r$$
 e s tais que: $|a_{rs}| = \max |a_{ij}|, k \leq i, j \leq n$

Feita a escolha do pivô é preciso trocar as linhas $k \in r$ e as colunas $k \in s$.

Observe que a troca de colunas afeta a ordem das incógnitas do vetor \mathbf{x} .

Em geral o pivoteamento parcial é satisfatório, e o pivoteamento total não é muito usado devido ao alto esforço computacional requerido na busca pelo maior elemento em módulo no resto da matriz.

Estratégias de Pivoteamento

Pivoteamento Parcial

Pivoteamento Total

Uma matriz quadrada pode ser escrita como o produto de duas matrizes ${f L}$ e ${f U}$, onde

- L é uma matriz triangular inferior <u>unitária</u> (com elementos da diagonal principal igual a 1)
- ▶ U é uma matriz triangular superior

Ou seja, a matriz pode ser escrita como

$$\mathbf{A} = \mathbf{L}\mathbf{U}$$

Dessa forma para resolver o sistema linear $\mathbf{A}\mathbf{x}=\mathbf{b}$ usamos \mathbf{A} em sua forma decomposta, isto é

$$Ax = b \Rightarrow LUx = b$$

Então definimos

$$\mathbf{U}\mathbf{x} = \mathbf{y}$$

Assim para resolver

$$\mathbf{L}\underbrace{\mathbf{U}\mathbf{x}}_{\mathbf{y}} = \mathbf{b}$$

fazemos

$$Ly = b \Rightarrow Ux = y$$

isto é, temos os seguintes passos:

- 1. Como \mathbf{L} é triangular inferior podemos resolver $\mathbf{L}\mathbf{y} = \mathbf{b}$ facilmente usando o algoritmo de **substituição**. Assim encontramos o vetor \mathbf{y} .
- 2. Em seguida substituimos y no sistema Ux = y. Como U é uma matriz triangular superior, podemos resolver este sistema usando o algoritmo da **retro-substituição** para encontrar a solução x.

Vamos ver agora em que condições podemos decompor uma matriz ${f A}$ na forma ${f L}{f U}.$

Teorema (LU)

Sejam $\mathbf{A}=(a_{ij})$ uma matriz quadrada de ordem n e $\mathbf{A_k}$ o menor principal, constituído das k primeiras linhas e k primeiras colunas de \mathbf{A} .

Assumimos que $det(\mathbf{A_k}) \neq 0$ para $k = 1, 2, \dots, n-1$.

Então existe:

- lacktriangle uma única matriz triangular inferior ${f L}=(l_{ij})$ com $l_{ii}=1,\;i=1:n$
- lacktriang uma única matriz triangular superior ${f U}=(u_{ij})$

tal que $\mathbf{A} = \mathbf{L}\mathbf{U}$.

Além disso, $det(\mathbf{A}) = u_{11}u_{22} \dots u_{nn}$.

Prova (Neide, Página 123)

Usa indução matemática.

Prova

(i) Para n=1 temos

$$a_{11} = 1 \ a_{11} = 1 \ u_{11} \quad \Rightarrow \quad u_{11} = a_{11}, l_{11} = 1$$

e ainda $det(\mathbf{A}) = u_{11}$.

- (ii) Assumimos que o teorema é verdadeiro para n=k-1, ou seja, que toda matriz de ordem (k-1) é decomponível no produto \mathbf{LU} .
- (iii) Vamos mostrar que podemos decompor ${\bf A}$ para n=k. Seja ${\bf A}$ de ordem k. escrita da forma

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{\mathbf{k}-1} & \mathbf{r} \\ \mathbf{s} & a_{kk} \end{bmatrix} \tag{1}$$

Por hipótese de indução temos que

$$\mathbf{A}_{\mathbf{k}-\mathbf{1}} = \mathbf{L}_{\mathbf{k}-\mathbf{1}} \mathbf{U}_{\mathbf{k}-\mathbf{1}} \tag{2}$$

Prova (cont.)

Usando (2) temos

$$\mathbf{A} = \mathbf{L}\mathbf{U} \quad \Rightarrow \quad \mathbf{L} = \begin{bmatrix} \mathbf{L_{k-1}} & \mathbf{0} \\ \mathbf{m} & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} \mathbf{U_{k-1}} & \mathbf{p} \\ \mathbf{0} & u_{kk} \end{bmatrix}$$

onde \mathbf{m} , \mathbf{p} e u_{kk} são desconhecidos. Efetuando o produto temos

$$\mathbf{LU} = \begin{bmatrix} \mathbf{L_{k-1}U_{k-1}} & \mathbf{L_{k-1}p} \\ \mathbf{mU_{k-1}} & \mathbf{mp} + u_{kk} \end{bmatrix}$$
(3)

Comparando (1) e (3)

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{k-1} & \mathbf{r} \\ \mathbf{s} & a_{kk} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{k-1} \mathbf{U}_{k-1} & \mathbf{L}_{k-1} \mathbf{p} \\ \mathbf{m} \mathbf{U}_{k-1} & \mathbf{m} \mathbf{p} + u_{kk} \end{bmatrix}$$

Prova (cont.)

Assim

$$\mathbf{A_{k-1}} = \mathbf{L_{k-1}} \mathbf{U_{k-1}}$$
 $\mathbf{r} = \mathbf{L_{k-1}} \mathbf{p}$ $\mathbf{s} = \mathbf{m} \mathbf{U_{k-1}}$ $\mathbf{mp} + u_{kk} = a_{kk}$

Observe que

- ightharpoonup pela hip. de indução L_{k-1} e U_{k-1} são unicamente determinadas
- lacktriangle e ainda, L_{k-1} e U_{k-1} não são singulares, caso contrário A_{k-1} também seria, contrariando a hipótese

Prova (cont.)

Portanto

$$\mathbf{r} = \mathbf{L_{k-1}p} \quad \Rightarrow \quad \mathbf{p} = \mathbf{L_{k-1}^{-1}r}$$
 $\mathbf{s} = \mathbf{mU_{k-1}} \quad \Rightarrow \quad \mathbf{m} = \mathbf{sU_{k-1}^{-1}}$
 $\mathbf{mp} + u_{kk} = a_{kk} \quad \Rightarrow \quad u_{kk} = a_{kk} - \mathbf{mp}$

Ou seja, \mathbf{m} , \mathbf{p} e u_{kk} são determinados unicamente nesta ordem e, portanto, \mathbf{L} e \mathbf{U} são determinados unicamente. Finalmente

$$det(\mathbf{A}) = det(\mathbf{L})det(\mathbf{U}) = 1 \ det(\mathbf{U}) = u_{11}u_{22} \dots u_{nn}$$

Obtenção das matrizes ${f L}$ e ${f U}$

Podemos obter as matrizes ${\bf L}$ e ${\bf U}$ aplicando a definição de produto e igualdade de matrizes, ou seja, impondo que ${\bf A}$ seja igual a ${\bf L}{\bf U}$, onde ${\bf L}$ é triangular inferior unitária e ${\bf U}$ triangular superior. Então

$$\mathbf{LU} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 1 & 0 \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & u_{nn} \end{bmatrix}$$

Vamos obter os elementos de ${f L}$ e ${f U}$ da seguinte forma:

- $ightharpoonup 1^a$ linha de U
- $ightharpoonup 1^a$ coluna de ${f L}$
- \triangleright 2^a linha de U
- \triangleright 2^a coluna de L

Decomposição LU Obtenção das matrizes L e U

$oldsymbol{1}^a$ linha de $oldsymbol{\mathrm{U}}$

$$a_{11} = 1 \ u_{11} \quad \Rightarrow \quad u_{11} = a_{11}$$
 $a_{12} = 1 \ u_{12} \quad \Rightarrow \quad u_{12} = a_{12}$
 \dots
 $a_{1n} = 1 \ u_{1n} \quad \Rightarrow \quad u_{1n} = a_{1n}$

$\mathbf{1}^a$ coluna de L

$$a_{21} = l_{21} \ u_{11} \quad \Rightarrow \quad l_{21} = \frac{a_{21}}{u_{11}}$$

$$a_{31} = l_{31} \ u_{11} \quad \Rightarrow \quad l_{31} = \frac{a_{31}}{u_{11}}$$

$$\dots$$

$$a_{n1} = l_{n1} \ u_{11} \quad \Rightarrow \quad l_{n1} = \frac{a_{n1}}{u_{11}}$$

Obtenção das matrizes ${f L}$ e ${f U}$

2^a linha de U

$$a_{22} = l_{21}u_{12} + 1 \ u_{22} \quad \Rightarrow \quad u_{22} = a_{22} - l_{21}u_{12}$$
 $a_{23} = l_{21}u_{13} + 1 \ u_{23} \quad \Rightarrow \quad u_{23} = a_{23} - l_{21}u_{13}$
 \dots
 $a_{2n} = l_{21}u_{1n} + 1 \ u_{2n} \quad \Rightarrow \quad u_{2n} = a_{2n} - l_{21}u_{1n}$

$\mathbf{2}^a$ coluna de \mathbf{L}

$$a_{32} = l_{31}u_{12} + l_{32}u_{22} \quad \Rightarrow \quad l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}}$$

$$a_{42} = l_{41}u_{12} + l_{42}u_{22} \quad \Rightarrow \quad l_{42} = \frac{a_{42} - l_{41}u_{1}}{u_{22}}$$

$$\dots$$

$$a_{n2} = l_{n1}u_{12} + l_{n2}u_{22} \quad \Rightarrow \quad l_{n2} = \frac{a_{n2} - l_{n1}u_{12}}{u_{n2}}$$

Obtenção das matrizes L e U

De forma geral temos

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \ u_{kj}, \quad i \le j$$

$$l_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \ u_{kj}\right) / u_{jj}, \quad i > j$$

Decomposição LU Obtenção das matrizes L e U

```
\begin{array}{l} \mathbf{para}\ i=1:n\ \mathbf{faça} \\ & \mathbf{para}\ j=i:n\ \mathbf{faça} \\ & |\ u_{ij}=a_{ij}-\sum_{k=1}^{i-1}l_{ik}\ u_{kj}\ ; \\ \mathbf{fim-para} \\ & \mathbf{para}\ j=i+1:n\ \mathbf{faça} \\ & |\ l_{ij}=\left(a_{ij}-\sum_{k=1}^{j-1}l_{ik}\ u_{kj}\right)\bigg/u_{jj}\ ; \\ \mathbf{fim-para} \\ \mathbf{fim-para} \end{array}
```

Observação: na prática as matrizes ${f L}$ e ${f U}$ nunca são criadas e alocadas explicitamente. O que fazemos é sobrescrever as entradas da matriz original ${f A}$ com as entradas de ${f L}$ e ${f U}$.

Via eliminação de Gauss

O método da eliminação de Gauss pode ser interpretado como um método para obtenção das matrizes ${\bf L}$ e ${\bf U}$. No processo da EG no passo 1, eliminamos as entradas abaixo de a_{11} na coluna 1 da matriz fazendo

Para
$$i=2:n$$
 $m_{i1}=\frac{a_{i1}}{a_{11}}$
$$a_{ij}^1=a_{ij}^0-m_{i1}\ a_{1j}^0$$

$$b_i^1=b_i^0-m_{i1}\ b_1^0,\quad j=1:n$$

essa operação é equivalente a multiplicar $({\bf A}|{\bf b})^0$ por uma matriz ${\bf M_1}$, para obter $({\bf A}|{\bf b})^1$, onde

$$\mathbf{M_1} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ -m_{21} & 1 & 0 & \dots & 0 \\ -m_{31} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ -m_{n1} & 0 & \dots & 0 & 1 \end{bmatrix}$$

Assim

$$\mathbf{M_{1}}(\mathbf{A}|\mathbf{b})^{0} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ -m_{21} & 1 & 0 & \dots & 0 \\ -m_{31} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ -m_{n1} & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \dots & a_{2n} & b_{2} \\ a_{31} & a_{32} & \dots & a_{3n} & b_{3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_{n} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_{1} \\ 0 & a_{22}^{1} & \dots & a_{2n}^{1} & b_{2}^{1} \\ 0 & a_{32}^{1} & \dots & a_{3n}^{1} & b_{3}^{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n2}^{1} & \dots & a_{nn}^{1} & b_{n}^{1} \end{bmatrix} = (\mathbf{A}|\mathbf{b})^{1}$$

No passo seguinte temos

$$(\mathbf{A}|\mathbf{b})^2 = \mathbf{M_2}(\mathbf{A}|\mathbf{b})^1$$

$$\mathbf{M_2}(\mathbf{A}|\mathbf{b})^1 = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & -m_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & -m_{n2} & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ 0 & a_{22}^1 & \dots & a_{2n}^1 & b_2^1 \\ 0 & a_{32}^1 & \dots & a_{3n}^1 & b_3^1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n2}^1 & \dots & a_{nn}^1 & b_n^1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ 0 & a_{22}^1 & \dots & a_{2n}^1 & b_2^1 \\ 0 & 0 & \dots & a_{3n}^2 & b_3^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn}^2 & b_n^2 \end{bmatrix} = (\mathbf{A}|\mathbf{b})^2$$

Procedemos dessa forma, até que por fim temos

$$\begin{split} (\mathbf{A}|\mathbf{b})^{(n-1)} &= \mathbf{M_{n-1}}(\mathbf{A}|\mathbf{b})^{(n-2)} \\ &= \ldots = \underbrace{\mathbf{M_{n-1}}\mathbf{M_{n-2}}\ldots\mathbf{M_{2}}\mathbf{M_{1}}}_{\mathbf{M}}(\mathbf{A}|\mathbf{b})^{(0)} \end{split}$$

Deste modo temos

$$\mathbf{A^{(n-1)}} = \mathbf{MA} = \mathbf{U}$$

onde ${f U}$ é a matriz triangular superior da decomposição LU. Como ${f M}$ é um produto de matrizes não-singulares, ${f M}$ é inversível, isto é,

$$\begin{split} \mathbf{M} &= \mathbf{M_{n-1}M_{n-2} \dots M_2M_1} \\ \mathbf{M}^{-1} &= \mathbf{M_1^{-1}M_2^{-1} \dots M_{n-2}^{-1}M_{n-1}^{-1}} \end{split}$$

Portanto

$$\mathbf{M}\mathbf{A} = \mathbf{U} \quad \Rightarrow \quad \mathbf{A} = \underbrace{\mathbf{M}^{-1}}_{\mathbf{I}} \mathbf{U}$$

$$\mathbf{M}\mathbf{A} = \mathbf{U} \quad \Rightarrow \quad \mathbf{A} = \underbrace{\mathbf{M}^{-1}}_{\mathbf{L}} \mathbf{U}$$

onde

$$\mathbf{M}^{-1} = \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ m_{21} & 1 & 0 & \dots & 0 \\ m_{31} & m_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ m_{n1} & m_{n2} & m_{n3} & \dots & 1 \end{bmatrix}$$

é a matriz triangular inferior da decomposição LU.

Exemplo 1

Decomponha a matriz ${\bf A}$ dada abaixo nos fatores ${\bf L}$ e ${\bf U}$, usando a eliminação de Gauss.

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

Solução do Exemplo 1

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ 3 & 4 & 1 & 1 \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}}_{\mathbf{U}}$$

Exemplo 2

Resolva o seguinte sistema linear:

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

Solução do Exemplo 2

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{x}^* = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Veremos como utilizar a decomposição $\mathbf{A} = \mathbf{L}\mathbf{U}$ para calcular o determinante da matriz.

$$\mathsf{det}(\mathbf{A}) = \mathsf{det}(\mathbf{L})\mathsf{det}(\mathbf{U})$$

O determinante de uma matriz triangular é dado pelo produto dos elementos da diagonal principal, isto é

$$det(\mathbf{L}) = 1$$
$$det(\mathbf{U}) = u_{11}u_{22}u_{33}\dots u_{nn}$$

Portanto

$$det(\mathbf{A}) = det(\mathbf{L}) \ det(\mathbf{U})$$
$$= 1 \ det(\mathbf{U})$$
$$= u_{11}u_{22}u_{33}\dots u_{nn}$$

Cálculo do Determinante

Exemplo 2

Para o exemplo anterior, temos

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Portanto o determinante é

$$\det(\mathbf{A}) = 1 \ (-1) \ 2 = -2$$

Vamos estudar agora o uso de pivoteamento parcial para a decomposição LU.

Para definir o que significa, de forma matricial, a troca de duas linhas de uma matriz, iremos apresentar o conceito de matrizes de permutação.

Uma matriz de permutação é uma matriz obtida a partir da matriz identidade através de uma reordenação de suas linhas, isto é

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Portanto se ${f P}$ é uma matriz de permutação e ${f A}$ uma matriz qualquer, então

- ▶ PA é uma versão da matriz A com as linhas permutadas
- ▶ AP é uma versão da matriz A com as colunas permutadas

Na prática (implementação) uma matriz de permutação ${\bf P}$ de dimensão $n\times n$ nunca é armazenada explicitamente. É muito mais eficiente representar ${\bf P}$ por um vetor p de valores inteiros de tamanho n.

Uma forma de implementar isso é fazer com que p[k] seja o índice da coluna que tem apenas um "1"na k-ésima linah de ${\bf P}$. Para o exemplo anterior

$$p = [3 \ 2 \ 1]$$

Para aplicar a estratégia de pivoteamento parcial nos exercícios, basta trocar efetivamente as linhas da matriz. Vejamos um exemplo.

Para resolver Ax = b, segue-se o procedimento:

- ightharpoonup Calcular \mathbf{P} , \mathbf{L} e \mathbf{U} tal que $\mathbf{P}\mathbf{A} = \mathbf{L}\mathbf{U}$
- ightharpoonup Atualizar vetor $\mathbf{b} = \mathbf{P}\mathbf{b}$
- $\qquad \qquad \mathsf{Resolver} \; \mathbf{L}\mathbf{y} = \mathbf{b}$
- $\qquad \qquad \mathsf{Resolver} \ \mathbf{U}\mathbf{x} = \mathbf{y}$

Dicas para calcular ${f L}$ e ${f U}$ via eliminação de Gauss com pivoteamento:

- se trocar linhas, atualizar o vetor p;
- guardar os multiplicadores da eliminação de Gauss na posição que foi zerada, ao invés de colocar os zeros.

Exemplo 3

Resolver o sistema linear abaixo usando a decomposição LU com pivoteamento parcial.

$$\begin{bmatrix} 3 & -4 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \\ -2 \end{bmatrix}$$

Solução do Exemplo 3

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{4} & 1 & 0 \\ \frac{1}{4} & -\frac{1}{2} & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -4 & \frac{13}{4} \\ 0 & 0 & \frac{35}{8} \end{bmatrix}, \quad p = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$$

$$\mathbf{x^T} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$

Solução do Exemplo 3 - Passo a passo

Etapa 1

$$\begin{bmatrix} 3 & -4 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & -3 \end{bmatrix}, \quad p = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Troca as linhas 1 e 3 e atualiza vetor p

$$\begin{bmatrix} 4 & 0 & -3 \\ 1 & 2 & 2 \\ 3 & -4 & 1 \end{bmatrix}, \quad p = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$

Elimina e guarda os multiplicadores nas suas posições (em azul):

$$\begin{bmatrix} 4 & 0 & -3 \\ 1/4 & 2 & 11/4 \\ 3/4 & -4 & 13/4 \end{bmatrix}, \quad p = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$

Solução do Exemplo 3 - Passo a passo Etapa 2

$$\begin{bmatrix} 4 & 0 & -3 \\ 1/4 & 2 & 11/4 \\ 3/4 & -4 & 13/4 \end{bmatrix}, \quad p = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$

Troca as linhas 2 e 3 e atualiza vetor p

$$\begin{bmatrix} 4 & 0 & -3 \\ 3/4 & -4 & 13/4 \\ 1/4 & 2 & 11/4 \end{bmatrix}, \quad p = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$$

Elimina e guarda os multiplicadores nas suas posições (em azul):

$$\begin{vmatrix} 4 & 0 & -3 \\ 3/4 & -4 & 13/4 \\ 1/4 & -1/2 & 35/8 \end{vmatrix}, \quad p = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$$

Solução do Exemplo 3 - Passo a passo Resultado

$$\begin{bmatrix} 4 & 0 & -3 \\ 3/4 & -4 & 13/4 \\ 1/4 & -1/2 & 35/8 \end{bmatrix}, \quad p = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$$

Decomposição $\mathbf{PA} = \mathbf{LU}$:

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 3 & -4 & 1 \\ 1 & 2 & 2 \\ 4 & 0 & -3 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 3/4 & 1 & 0 \\ 1/4 & -1/2 & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -4 & 13/4 \\ 0 & 0 & 35/8 \end{bmatrix}$$

Solução do Exemplo 3

Para resolver PAx = Pb \Rightarrow LUx = Pb, define-se Ux = y e então:

- 1. Resolva Ly = Pb
- 2. Resolva Ux = y

Procedendo desta forma, chega-se em

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{4} & 1 & 0 \\ \frac{1}{4} & -\frac{1}{2} & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -4 & \frac{13}{4} \\ 0 & 0 & \frac{35}{8} \end{bmatrix}, \quad p = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$$

$$\mathbf{x}^{\mathbf{T}} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$

Conteúdo

- Aula passada
 - Eliminação de Gauss
 - Estratégias de Pivoteamento
 - Decomposição LU
- Aula de hoje
 - Decomposição de Cholesky
 - lacktriangle Decomposição $\mathbf{L}\mathbf{D}\mathbf{L}^{\mathbf{T}}$
 - ► Cálculo da Matriz Inversa
 - Sistema com Matriz Singular

Revisitando algumas definições

Definição (Matriz Simétrica)

Uma matriz real $\mathbf{A} \in \mathbb{R}^{n \times n}$ é simétrica se possui as mesmas entradas acima e abaixo da diagonal principal, isto é, se

$$a_{ij} = a_{ji}, \quad \forall i, j$$

Portanto $\mathbf{A} = \mathbf{A}^T$.

Tais matrizes satisfazem a seguinte relação

$$\mathbf{x}^T \mathbf{A} \mathbf{y} = \mathbf{y}^T \mathbf{A} \mathbf{x}, \quad \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

Definição (Matriz Positiva Definida)

Se a matriz ${f A}$ é simétrica, então é dita ser positiva definida se

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0, \quad \forall \mathbf{x} \neq 0$$

Revisitando algumas definições

Matriz Positiva Definida: de imediato verifica-se que se ${\bf A}$ é não singular, caso contrário haveria um ${\bf x}$ diferente de zero tal que ${\bf A}{\bf x}={\bf 0}$.

Além disso, escolhendo vetores escritos na forma

$$\mathbf{x}^{\mathbf{T}} = \begin{bmatrix} x_1 & x_2 & \dots & x_k & 0 & 0 & \dots & 0 \end{bmatrix}$$

podemos verificar que todas as matrizes menores principais $(\mathbf{A_k})$ são positivas definidas, portanto não singular $(\det(\mathbf{A_k}) \neq 0)$ e consequentemente podemos decompor \mathbf{A} na forma $\mathbf{A} = \mathbf{L}\mathbf{U}$.

Na prática muitas matrizes que surgem em aplicações de engenharias e ciências são simétricas e positiva definidas, devido a leis físicas que estão por trás da origem dessas matrizes.

Testes para matrizes positivas definidas

1. Critério de Sylvester: uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ é positiva definida, se e somente se

$$\det(\mathbf{A_k}) > 0, \quad k = 1, 2, \dots, n$$

onde ${\bf A_k}$ é a matriz menor principal de ordem k (a matriz $k \times k$ formada pelas k primeiras linhas e pelas k primeiras colunas).

2. Se realizarmos a eliminação de Gauss sem troca de linha ou coluna na matriz A, podemos dizer que A é positiva definida, se e somente se, todos os pivôs forem positivos.

Exemplo

Verifique se as seguintes matrizes são positivas definidas:

$$\mathbf{A} = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & 5 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 4 & 4 & 2 \\ 4 & 3 & 0 \\ 2 & 0 & 5 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Decomposição de Cholesky

Quando a matriz do sistema linear é simétrica, podemos simplificar os cálculos da decomposição LU levando em conta a simetria da matriz. Essa é a idéia do método de Cholesky.

Se ${f A}$ é simétrica positiva definida, pelo critério de Sylvester temos que

$$\det(\mathbf{A_k}) > 0$$

portanto, todos os menores principais são não singulares e consequentemente (Teorema LU), a matriz pode ser escrita como $\mathbf{A} = \mathbf{L}\mathbf{U}$.

Se ${f A}$ é simétrica, então ${f A}={f A}^T$. Logo

$$\mathbf{L}\mathbf{U} = \mathbf{A} = \mathbf{A}^T = (\mathbf{L}\mathbf{U})^T = \mathbf{U}^T \mathbf{L}^T$$

Decomposição de Cholesky

Assim

$$\begin{aligned} \mathbf{L}\mathbf{U} &= \mathbf{U}^T \mathbf{L}^T \\ \mathbf{L}^{-1} \mathbf{L} \mathbf{U} &= \mathbf{L}^{-1} \mathbf{U}^T \mathbf{L}^T \\ \mathbf{U} &= \mathbf{L}^{-1} \mathbf{U}^T \mathbf{L}^T \\ \mathbf{U} (\mathbf{L}^T)^{-1} &= \mathbf{L}^{-1} \mathbf{U}^T \mathbf{L}^T (\mathbf{L}^T)^{-1} \\ \mathbf{U} (\mathbf{L}^T)^{-1} &= \mathbf{L}^{-1} \mathbf{U}^T \end{aligned}$$

Temos que

$$\underbrace{\mathbf{U}(\mathbf{L}^T)^{-1}}_{\text{triangular superior}} = \underbrace{\mathbf{L}^{-1}\mathbf{U}^T}_{\text{triangular inferior}}$$

Portanto, essa igualdade só pode ser uma matriz diagonal! Seja

$$\mathbf{D} = \mathbf{U}(\mathbf{L}^T)^{-1} \quad (\text{ou } \mathbf{D} = \mathbf{L}^{-1}\mathbf{U}^T)$$

Decomposição de Cholesky

Seja

$$\mathbf{D} = \mathbf{U}(\mathbf{L}^T)^{-1}$$
 (ou $\mathbf{D} = \mathbf{L}^{-1}\mathbf{U}^T$)

então

$$\mathbf{D}\mathbf{L}^T = \mathbf{U} \quad (\mathsf{ou} \ \mathbf{U}^T = \mathbf{L}\mathbf{D})$$

Sendo assim temos que

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T = \mathbf{U}^T\mathbf{D}\mathbf{U} \tag{4}$$

E assim o determinante pode ser calculado como

$$det(\mathbf{A}) = det(\mathbf{L})det(\mathbf{D})det(\mathbf{L}^T) = 1 \cdot (d_{11}d_{22} \dots d_{nn}) \cdot 1$$
$$= d_{11}d_{22} \dots d_{nn}$$

Assim de (4), como todos $d_{ii} > 0$, podemos escrever

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T = \mathbf{L}(\mathbf{D})^{1/2}(\mathbf{D})^{1/2}\mathbf{L}^T = \mathbf{G}\mathbf{G}^T$$

onde

$$\mathbf{G} = \mathbf{L}(\mathbf{D})^{1/2}$$
$$\mathbf{G}^T = (\mathbf{D})^{1/2} \mathbf{L}^T$$

A decomposição de Cholesky é um caso especial da fatoração LU aplicada para matrizes simétricas e positiva definida (SPD) e sua decomposição pode ser obtida a partir de

$$\mathbf{A} = \mathbf{G}\mathbf{G}^T$$

onde G é uma matriz triangular inferior tal que

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} g_{11} & 0 & \dots & 0 \\ g_{21} & g_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & \dots & g_{nn} \end{bmatrix} \begin{bmatrix} g_{11} & g_{21} & \dots & g_{n1} \\ 0 & g_{22} & \dots & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & g_{nn} \end{bmatrix}$$

Pelo produto e igualdade de matrizes podemos obter os elementos de G. Elementos da diagonal principal:

$$a_{11} = g_{11}^{2}$$

$$a_{22} = g_{21}^{2} + g_{22}^{2}$$

$$\vdots$$

$$a_{nn} = g_{n1}^{2} + g_{n2}^{2} + \dots + g_{nn}^{2}$$

de forma geral

$$g_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} g_{ik}^2}, \quad i = 1:n$$
 (5)

Para os elementos fora da diagonal principal, temos

$$a_{21} = g_{21}g_{11}$$

$$a_{31} = g_{31}g_{11}$$

$$\vdots$$

$$a_{n1} = g_{n1}g_{11}$$

$$a_{32} = g_{31}g_{21} + g_{32}g_{22}$$

$$a_{42} = g_{41}g_{21} + g_{42}g_{22}$$

$$\vdots$$

$$a_{n2} = g_{n1}g_{21} + g_{n2}g_{22}$$

de forma geral

$$g_{ij} = \frac{a_{ij} - \sum_{k=1}^{n} g_{ik}g_{jk}}{g_{jj}}, \quad i = j+1:n, \quad j = 1:n$$
 (6)

Algoritmo

Observando as equações (5) e (6), vemos que podemos calcular os elementos de G da seguinte forma:

- ▶ a cada passo j:
 - lacktriangle calcula-se termo da diagonal principal g_{jj}
 - ▶ calcula-se termos da coluna j abaixo da diagonal principal isto é g_{ij} com i = j + 1 : n

$$\begin{array}{c|c} \mathsf{para}\ j = 1: n\ \mathsf{faça} \\ & g_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} g_{jk}^2}\;; \\ & \mathsf{para}\ i = j+1: n\ \mathsf{faça} \\ & \left| \ g_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} g_{ik}g_{jk}\right) \middle/ g_{jj}\;; \\ & \mathsf{fim-para} \\ & \mathsf{fim-para} \end{array} \right.$$

Observações:

- Se A é SPD, então a aplicação do método de Cholesky requer menos operações de ponto flutuante do que a decomposição LU.
- ▶ Como **A** é positiva definida, isto garante que só teremos raízes quadradas de números positivos, isto é, os termos $a_{jj} \sum_{k=1}^{j-1} g_{jk}^2$ são sempre maiores do que zero.
 - Exemplo do caso 2×2
- Caso o algoritmo falhe, podemos concluir que A não é simétrica e positiva definida.
- Determinante

$$\det(\mathbf{A}) = \det(\mathbf{G})\det(\mathbf{G}^T) = \det(\mathbf{G})^2 = (g_{11}g_{22}\dots g_{nn})^2$$

Podemos usar a decomposição de Cholesky para encontrar a solução de $\mathbf{A}\mathbf{x}=\mathbf{b}$ da seguinte forma:

1. Determinar a decomposição

$$\mathbf{A} = \mathbf{G}\mathbf{G}^T$$

então

$$\mathbf{G}\underbrace{\mathbf{G}^T\mathbf{x}}_{\mathbf{v}} = \mathbf{b}$$

- 2. Resolver $\mathbf{G}\mathbf{y} = \mathbf{b}$, usando substituição
- 3. Resolver $\mathbf{G}^T\mathbf{x} = \mathbf{y}$, retro-substituição

Exemplo

Considere a matriz

$$\mathbf{A} = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 10 & -7 \\ 2 & -7 & 30 \end{bmatrix}$$

- a) Verificar se ${f A}$ satisfaz as condições da decomposição de Cholesky
- b) Decompor \mathbf{A} em $\mathbf{G}\mathbf{G}^T$
- c) Calcular o determinante

d) Resolver o sistema
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 com $\mathbf{b} = \begin{bmatrix} 8 \\ 11 \\ -31 \end{bmatrix}$

Solução do Exemplo

a) A é simétrica e positiva definida

$$det(\mathbf{A_1}) = 4, \quad det(\mathbf{A_2}) = 36, \quad det(\mathbf{A_3}) = 900$$

b) A decomposição é

$$\mathbf{A} = \underbrace{\begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -2 & 5 \end{bmatrix}}_{\mathbf{G}} \underbrace{\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -2 \\ 0 & 0 & 5 \end{bmatrix}}_{\mathbf{G}^T}$$

c)
$$det(\mathbf{A}) = (2 \cdot 3 \cdot 5)^2 = 30^2 = 900$$

$$\mathsf{d}) \ \mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

Podemos usar as fórmulas (5) e (6) para calcular os elementos da matriz G da decomposição, mas também podemos proceder de outra forma.

Idéia:

- ightharpoonup Decompor ${f A}={f L}{f U}$ via eliminação de Gauss
- ightharpoonup Como $\mathbf{U} = \mathbf{D}\mathbf{L}^T$, calcular \mathbf{D}
- ightharpoonup E assim calcular $\mathbf{G} = \mathbf{L}\mathbf{D}^{1/2}$

Exemplo

A partir da decomposição LU da matriz \mathbf{A} do exemplo anterior, obtenha \mathbf{G} .

$$\mathbf{A} = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 10 & -7 \\ 2 & -7 & 30 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ \frac{1}{2} & -\frac{2}{3} & 1 \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} 4 & -2 & 2 \\ 0 & 9 & -6 \\ 0 & 0 & 25 \end{bmatrix}}_{\mathbf{U}}$$

Exercício

Mostrar que, se o sistema linear Ax = b, onde A é não singular, é transformado no sistema linear equivalente

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

então esse último sistema linear pode sempre ser resolvido pelo método de Cholesky (isto é ${\bf B}={\bf A}^T{\bf A}$ satisfaz as condições para a aplicação do método).

Aplicar a técnica anterior para encontrar a solução do seguinte sistema linear:

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$$

Exercício

Dicas:

- Mostre que B satisfaz as condições da decomposição de Cholesky
- ► Irá precisar de usar

$$||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

 $||\mathbf{x}||^2 = x_1^2 + x_2^2 + \dots + x_n^2 = \mathbf{x}^T \mathbf{x}$

Como vimos anteriormente também podemos decompor ${\bf A}$ na forma ${\bf A}={\bf L}{\bf D}{\bf L}^T$, onde ${\bf L}$ é uma matriz triangular inferior unitária e ${\bf D}$ é uma matriz diagonal.

De forma análoga ao que fizemos para a decomposição de Cholesky, podemos determinar os elementos da decomposição da seguinte forma:

$$d_{jj} = a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2 d_{kk} , \quad j = 1:n$$

$$a_{ij} - \sum_{k=1}^{j-1} l_{ik} d_{kk} l_{jk}$$

$$l_{ij} = \frac{1:n-1, \quad i = j+1:n}{d_{ij}}$$

Solução de sistema linear

A solução do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é dada por

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 \Rightarrow $\mathbf{L}\mathbf{D}\underbrace{\mathbf{L}^T\mathbf{x}}_{\mathbf{y}} = \mathbf{b}$ \Rightarrow $\mathbf{L}\underbrace{\mathbf{D}\mathbf{y}}_{\mathbf{w}} = \mathbf{b}$

e assim temos os seguintes passos para a solução do sistema:

- $1. \ \mathbf{Lw} = \mathbf{b}$
- $\mathbf{2}$. $\mathbf{D}\mathbf{y} = \mathbf{w}$
- 3. $\mathbf{L}^T \mathbf{x} = \mathbf{y}$

Cálculo do determinante

$$det(\mathbf{A}) = det(\mathbf{L})det(\mathbf{D})det(\mathbf{L}^T)$$
$$= 1 \cdot det(\mathbf{D}) \cdot 1 = d_{11}d_{22} \dots d_{nn}$$

Algoritmo

para
$$j=1:n$$
 faça
$$d_{jj}=\sqrt{a_{jj}-\sum_{k=1}^{j-1}l_{jk}^2\ d_{kk}}\;;$$
 para $i=j+1:n$ faça
$$d_{ij}=\left(a_{ij}-\sum_{k=1}^{j-1}l_{ik}\ d_{kk}\ l_{jk}\right)\bigg/d_{jj}\;;$$
 fim-para fim-para

Algoritmo

```
det = 1:
para j=1:n faça
   soma = 0;
   para k = 1 : j - 1 faça
       soma = soma + A(j,k)*A(j,k)*A(k,k);
   fim-para
   A(i,i) = A(i,i) - soma;
   r = 1 / A(j,j);
   det = det * A(j,j) ;
   para i = j + 1 : n faça
       soma = 0;
       para k = 1 : j - 1 faça
           soma = soma + A(i,k)*A(k,k)*A(j,k) ;
       fim-para
       A(i,j) = (A(i,j) - soma) * r;
   fim-para
fim-para
```

Iremos descrever como calcular a matriz inversa através da decomposição LU. Sejam ${\bf A}$ uma matriz de dimensão n, não singular (det(${\bf A} \neq 0$) e ${\bf A}^{-1}$ a matriz inversa de ${\bf A}$. Vamos escrever a matriz inversa como:

$$\mathbf{A}^{-1} = \left[egin{array}{c|c} \mathbf{v_1} & \mathbf{v_2} & \dots & \mathbf{v_n} \end{array}
ight]$$

Seja ainda $\mathbf{e_j}$ a coluna j da matriz identidade. Por exemplo, $\mathbf{e_2} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \end{bmatrix}$, $\mathbf{e_n} = \begin{bmatrix} 0 & 0 & 0 & \dots & 1 \end{bmatrix}$. Resolvendo o seguinte sistema linear

$$\mathbf{A}\mathbf{v}_1 = \mathbf{e}_1$$

encontramos a primeira coluna $\mathbf{v_1}$ da matriz inversa de \mathbf{A} . Repetindo o procedimento para cada coluna temos

$$\mathbf{A}\mathbf{v_i} = \mathbf{e_i}, \quad j = 1:n \tag{7}$$

Agora basta usar algum dos métodos que vimos para resolver os sistemas lineares da equação (7).

1. Decomposição LU

$$\mathbf{LUv_j} = \mathbf{e_j}, \quad j = 1:n$$

Basta fatorar a matriz na forma LU uma única vez, e com os fatores resolver os seguintes sistemas

$$\mathbf{L}\mathbf{y_j} = \mathbf{e_j}$$

 $\mathbf{U}\mathbf{v_i} = \mathbf{y_i}$

2. Se a matriz for SPD, podemos usar decomposição de Cholesky

$$\mathbf{G}\mathbf{G}^T\mathbf{v_i} = \mathbf{e_i} \quad \Rightarrow \quad (1) \ \mathbf{G}\mathbf{y_i} = \mathbf{e_i}, \quad (2) \ \mathbf{G}^T\mathbf{v_i} = \mathbf{y_i}$$

 Eliminação de Gauss. Montar

e efetuar a eliminação de Gauss de uma vez só. Assim obtemos

$$[\begin{array}{c|c} \mathbf{U} & \mathbf{T} \end{array}]$$

onde ${f T}$ é uma matriz triangular inferior. Em seguida dado que temos ${f U}$ triangular superior, basta resolver a seguinte sequência de sistemas

$$\mathbf{U}\mathbf{v_j} = \mathbf{t_j}$$

onde $\mathbf{t_j}$ é a coluna j da matriz \mathbf{T} .

Exemplo

Calcular a inversa da seguinte matriz

$$\mathbf{A} = \begin{bmatrix} 4 & 1 & -6 \\ 3 & 2 & -6 \\ 3 & 1 & -5 \end{bmatrix}$$

Assim temos

$$\left[\begin{array}{ccc|cccc}
4 & 1 & -6 & 1 & 0 & 0 \\
3 & 2 & -6 & 0 & 1 & 0 \\
3 & 1 & -5 & 0 & 0 & 1
\end{array}\right]$$

Efetuando a eliminação de Gauss obtemos

$$\begin{bmatrix}
4 & 1 & -6 & 1 & 0 & 0 \\
0 & 5/4 & -3/2 & -3/4 & 1 & 0 \\
0 & 0 & -1/5 & -3/5 & -1/5 & 1
\end{bmatrix}$$

Exemplo

Agora basta resolver

$$\begin{bmatrix} 4 & 1 & -6 \\ 0 & 5/4 & -3/2 \\ 0 & 0 & -1/5 \end{bmatrix} \mathbf{v_1} = \begin{bmatrix} 1 \\ -3/4 \\ -3/5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 1 & -6 \\ 0 & 5/4 & -3/2 \\ 0 & 0 & -1/5 \end{bmatrix} \mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \\ -1/5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 1 & -6 \\ 0 & 5/4 & -3/2 \\ 0 & 0 & -1/5 \end{bmatrix} \mathbf{v_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Conteúdo

- Aula passada
 - Decomposição de Cholesky
 - Decomposição LDL^T
 - Cálculo da Matriz Inversa
- ► Aula de hoje
 - Métodos Iterativos
 - Método de Jacobi
 - ► Método de Gauss-Seidel
 - ► Método SOR

Métodos Iterativos

O sistema de equações lineares $\mathbf{A}\mathbf{x}=\mathbf{b}$ pode ser resolvido por um processo que gera a partir de um vetor inicial $\mathbf{x}^{(0)}$ uma sequência de vetores $\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, \ \mathbf{x}^{(3)}, \dots$ que deve convergir para a solução.

Existem muitos métodos iterativos para a solução de sistemas lineares, entretanto só iremos estudar os chamados **métodos** iterativos estacionários.

Algumas perguntas importantes são:

- ▶ Como construir a sequência $\{\mathbf{x^{(0)}},\mathbf{x^{(1)}},\mathbf{x^{(2)}},\ldots\}$?
- $\mathbf{x}^{(\mathbf{k})} \to \mathbf{x}^*$?
- Quais são as condições para convergência?
- ► Como saber se $\mathbf{x}^{(\mathbf{k})}$ está próximo de \mathbf{x}^* ?
- Critério de parada?

Métodos Iterativos

Um método iterativo escrito na forma

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c} \tag{8}$$

é dito *estacionário* quando a matriz ${f B}$ for fixa durante o processo iterativo.

Veremos como construir a matriz B para cada um dos métodos que iremos estudar: Jacobi, Gauss-Seidel e Sobre-relaxação (SOR).

Antes, é preciso rever alguns conceitos como norma de vetores e matrizes, os quais serão importantes no desenvolvimento do critério de parada e na análise de convergência dos métodos.

Normas de Vetores e Matrizes

Para discutir o erro envolvido nas aproximações é preciso associar a cada vetor e matriz um valor escalar não negativo que de alguma forma mede sua magnitude. As normas para vetores mais comuns são:

ightharpoonup Norma euclideana (ou norma L_2)

$$||\mathbf{x}||_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

Norma infinito (ou norma do máximo)

$$||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |x_i|$$

Normas vetoriais devem satisfazer às seguintes propriedades:

- 1. $||\mathbf{x}|| > 0$ se $\mathbf{x} \neq 0$, $||\mathbf{x}|| = 0$ se $\mathbf{x} = \mathbf{0}$
- 2. $||\alpha \mathbf{x}|| = \alpha ||\mathbf{x}||$, onde α é um escalar
- 3. $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$

Normas de Vetores e Matrizes

Normas de matrizes tem que satisfazer a propridades similares:

- 1. $||\mathbf{A}|| > 0$ se $\mathbf{A} \neq 0$, $||\mathbf{A}|| = 0$ se $\mathbf{A} = \mathbf{0}$
- 2. $||\alpha \mathbf{A}|| = \alpha ||\mathbf{A}||$, onde α é um escalar
- 3. $||\mathbf{A} + \mathbf{B}|| \le ||\mathbf{A}|| + ||\mathbf{B}||$
- 4. $||AB|| \le ||A|| ||B||$
- 5. $||Ax|| \le ||A|| ||x||$

Iremos fazer uso em diversos momentos da seguinte norma matricial

$$||\mathbf{A}||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Exemplo

$$\mathbf{A} = \begin{bmatrix} 4 & 6 \\ -3 & 4 \end{bmatrix} \quad \Rightarrow \quad ||\mathbf{A}||_{\infty} = \max\{10, 7\} = 10$$

Critério de Parada

A distância entre dois vetores ${f x}$ e ${f y}$ pode ser calculada como

$$||\mathbf{x} - \mathbf{y}||_2$$
 ou $||\mathbf{x} - \mathbf{y}||_{\infty}$

Iremos usar a norma infinito nos algoritmos que iremos descrever. Seja $\mathbf{x^{(k+1)}}$ e $\mathbf{x^{(k)}}$ duas aproximações para o vetor solução $\mathbf{x^*}$ de um sistema de equações lineares.

Critério de parada

$$\frac{||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||_{\infty}}{||\mathbf{x}^{(k+1)}||_{\infty}} = \frac{\max|x_i^{(k+1)} - x_i^{(k)}|}{\max|x_i^{(k+1)}|} < \varepsilon$$

onde ε é a precisão desejada (Ex: 10^{-3}).

Na prática também adotamos um número máximo de iterações para evitar que o programa execute indefinidamente, caso o método não convirja para um determinado problema.

$$k < k_{max}$$

Vamos ilustrar a idéia do método de Jacobi através de um exemplo. Seja o seguinte sistema:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

o qual pode ser escrito como

$$x_1 = (b_1 - a_{12}x_2 - a_{13}x_3)/a_{11}$$

$$x_2 = (b_2 - a_{21}x_1 - a_{23}x_3)/a_{22}$$

$$x_3 = (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33}$$

A partir de uma aproximação inicial

$$\mathbf{x}^{(0)} = \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ x_3^{(0)} \end{bmatrix}$$

Calculamos uma nova aproximação $\mathbf{x}^{(1)}$ através de

$$x_1^{(1)} = \left(b_1 - a_{12}x_2^{(0)} - a_{13}x_3^{(0)}\right) / a_{11}$$

$$x_2^{(1)} = \left(b_2 - a_{21}x_1^{(0)} - a_{23}x_3^{(0)}\right) / a_{22}$$

$$x_3^{(1)} = \left(b_3 - a_{31}x_1^{(0)} - a_{32}x_2^{(0)}\right) / a_{33}$$

Após obter $\mathbf{x}^{(1)}$, calculamos $\mathbf{x}^{(2)}$ substituindo $\mathbf{x}^{(1)}$ no lugar de $\mathbf{x}^{(0)}$ na expressão anterior e assim procedemos até que o critério de parada seja satisfeito.

Para um sistema de n equações e n incógnitas, a cada passo k, temos:

 $\mathsf{para}\ i=1:n\ \mathsf{faça}$

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}\right) / a_{ii};$$

fim-para

Algoritmo

```
entrada: A, b, \mathbf{x}^{(0)}, max, \varepsilon
saída: x
para k=1:max faça
      \mathsf{para}\ i=1:n\ \mathsf{faça}
x_i^{(k+1)} = \left(b_i - \sum_{i=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}\right) / a_{ii};
      fim-para
     se \max |x_i^{(k+1)} - x_i^{(k)}| < \varepsilon então \mid \text{ retorna } \mathbf{x}^{(k+1)} \; ;
      fim-se
fim-para
```

Exemplo

Resolver o seguinte sistema:

$$4x_1 + 0.24x_2 - 0.08x_3 = 8$$
$$0.09x_1 + 3x_2 - 0.15x_3 = 9$$
$$0.04x_1 - 0.08x_2 + 4x_3 = 20$$

usando o método de Jacobi com vetor inicial $\mathbf{x}^{(0)} = \mathbf{0}$.

Solução do Exemplo

k	0	1	2	3
x_1	0	2	1.92	1.91
x_2	0	3	3.19	3.1944
x_3	0	5	5.04	5.0446

Solução do Exemplo

Fórmula de iteração

$$\begin{split} x_1^{(k+1)} &= 2 - 0.06 x_2^{(k)} + 0.02 x_3^{(k)} \\ x_2^{(k+1)} &= 3 - 0.03 x_1^{(k)} + 0.05 x_3^{(k)} \\ x_3^{(k+1)} &= 5 - 0.01 x_1^{(k)} + 0.02 x_2^{(k)} \end{split}$$

Passo
$$\mathbf{1} o \mathbf{x}^{(0)} = \mathbf{0}$$

$$\begin{aligned} x_1^{(1)} &= 2 - 0.06 x_2^{(0)} + 0.02 x_3^{(0)} = 2 \\ x_2^{(1)} &= 3 - 0.03 x_1^{(0)} + 0.05 x_3^{(0)} = 3 \\ x_3^{(1)} &= 5 - 0.01 x_1^{(0)} + 0.02 x_2^{(0)} = 5 \end{aligned}$$

Solução do Exemplo

Passo
$$2 \to (\mathbf{x}^{(1)})^T = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix}$$

$$x_1^{(2)} = 2 - 0.06(3) + 0.02(5) = 2 - 0.08 = 1.92$$

$$x_2^{(2)} = 3 - 0.03(2) + 0.05(5) = 3 + 0.19 = 3.19$$

$$x_3^{(2)} = 5 - 0.01(2) + 0.02(3) = 5 + 0.04 = 5.04$$

Passo 3
$$\rightarrow$$
 $(\mathbf{x}^{(2)})^T = \begin{bmatrix} 1.92 & 3.19 & 5.04 \end{bmatrix}$

$$x_1^{(3)} = 2 - 0.06(3.19) + 0.02(5.04) = 1.91$$

 $x_2^{(3)} = 3 - 0.03(1.92) + 0.05(5.04) = 3.1944$
 $x_3^{(3)} = 5 - 0.01(1.92) + 0.02(3.19) = 5.0446$

Erro:
$$||\mathbf{x}^{(3)} - \mathbf{x}^{(2)}||_{\infty} = \max\{0.01, 0.0044, 0.0046\} = 0.01$$

140 / 165

Observe no exemplo anterior, que o método de Jacobi, não usa os valores atualizados de $\mathbf{x}^{(k)}$ até completar por inteiro a iteração do passo k.

O método de Gauss-Seidel pode ser visto como uma modificação do método de Jacobi. Nele usaremos a mesma forma de iterar que o método de Jacobi, entretanto vamos aproveitar os cálculos já atualizados, de outras componentes, para atualizar a componente que está sendo calculada.

Dessa forma o valor de $x_1^{(k+1)}$ será usado para calcular $x_2^{(k+1)}$, os valores de $x_1^{(k+1)}$ e $x_2^{(k+1)}$ serão usados para calcular $x_3^{(k+1)}$, e assim por diante.

Para um sistema 3×3 temos o seguinte esquema:

$$x_1^{(k+1)} = \left(b_1 - a_{12}x_2^{(k)} - a_{13}x_3^{(k)}\right) / a_{11}$$

$$x_2^{(k+1)} = \left(b_2 - a_{21}x_1^{(k+1)} - a_{23}x_3^{(k)}\right) / a_{22}$$

$$x_3^{(k+1)} = \left(b_3 - a_{31}x_1^{(k+1)} - a_{32}x_2^{(k+1)}\right) / a_{33}$$

No caso geral temos

para i=1:n faça

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right) / a_{ii};$$

fim-para

Obs: Note que no método de GS apenas 1 aproximação para x_i precisa ser armazenada. No método de Jacobi é preciso manter 2 vetores em memória, um para $\mathbf{x}^{(k+1)}$ e outro para $\mathbf{x}^{(k)}$.

Exemplo

Resolva o sistema de equações do exemplo anterior usando o método de Gauss-Seidel.

Solução do Exemplo

Fórmula de iteração (*)

$$x_1^{(k+1)} = 2 - 0.06x_2^{(k)} + 0.02x_3^{(k)}$$

$$x_2^{(k+1)} = 3 - 0.03x_1^{(k+1)} + 0.05x_3^{(k)}$$

$$x_3^{(k+1)} = 5 - 0.01x_1^{(k+1)} + 0.02x_2^{(k+1)}$$

Passo
$$1 \rightarrow \mathbf{x}^{(0)} = \mathbf{0}$$

$$x_1^{(1)} = 2 - 0.06(0) + 0.02(0) = 2$$

 $x_2^{(1)} = 3 - 0.03(2) + 0.05(0) = 3 - 0.06 = 2.94$
 $x_3^{(1)} = 5 - 0.01(2) + 0.02(2.94) = 5.0388$

Solução do Exemplo

Passo
$$2 \to (\mathbf{x}^{(1)})^T = \begin{bmatrix} 2 & 2.94 & 5.0388 \end{bmatrix}$$

$$x_1^{(2)} = 2 - 0.06(2.94) + 0.02(5.0388) = 1.924376$$

$$x_2^{(2)} = 3 - 0.03(1.924376) + 0.05(5.0388) = 3.194209$$

$$x_3^{(2)} = 5 - 0.01(1.924376) + 0.02(3.194209) = 5.044640$$
 Passo $3 \to (\mathbf{x}^{(2)})^T = \begin{bmatrix} 1.924376 & 3.194209 & 5.044640 \end{bmatrix}$
$$x_1^{(2)} = 2 - 0.06(1.924376) + 0.02(5.04464) = 1.909240$$

$$x_2^{(2)} = 3 - 0.03(1.909240) + 0.05(5.04464) = 3.194955$$

$$x_3^{(2)} = 5 - 0.01(1.909240) + 0.02(3.194955) = 5.044807$$

Para estudar a convergência dos métodos, vamos primeiros escrevê-los na seguinte forma:

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c}$$

Para isso, vamos dividir a matriz A como

$$\mathbf{A} = \underbrace{\mathbf{L}}_{ ext{triangular inferior}} + \underbrace{\mathbf{D}}_{ ext{diagonal}} + \underbrace{\mathbf{U}}_{ ext{triangular superior}}$$

isto é, para uma matriz 3×3 temos

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & a_{32} & 0 \end{bmatrix} + \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} + \begin{bmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{bmatrix}$$

Sendo assim o método de Jacobi pode ser escrito como:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 \Rightarrow $(\mathbf{L} + \mathbf{D} + \mathbf{U})\mathbf{x} = \mathbf{b}$
 \Rightarrow $\mathbf{D}\mathbf{x} = \mathbf{b} - (\mathbf{L} + \mathbf{U})\mathbf{x}$

e assim

$$\mathbf{D}\mathbf{x}^{(k+1)} = \mathbf{b} - (\mathbf{L} + \mathbf{U})\mathbf{x}^{(k)}$$
$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$
$$\mathbf{x}^{(k+1)} = \mathbf{B}_J\mathbf{x}^{(k)} + \mathbf{c}$$

onde para o método de Jacobi

$$\mathbf{B}_J = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$$
$$\mathbf{c} = \mathbf{D}^{-1}\mathbf{b}$$

Para o método de Gauss-Seidel temos

$$(\mathbf{L} + \mathbf{D})\mathbf{x}^{(k+1)} = -\mathbf{U}\mathbf{x}^{(k)} + \mathbf{b}$$

$$\mathbf{x}^{(k+1)} = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U}\mathbf{x}^{(k)} + (\mathbf{L} + \mathbf{D})^{-1}\mathbf{b}$$

$$\mathbf{x}^{(k+1)} = \mathbf{B}_{GS}\mathbf{x}^{(k)} + \mathbf{c}$$

onde para o método de Gauss-Seidel

$$\mathbf{B}_{GS} = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U}$$
$$\mathbf{c} = (\mathbf{L} + \mathbf{D})^{-1}\mathbf{b}$$

Ou seja, ambos os métodos podem ser escritos como

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c} \tag{9}$$

onde B é chamada de matriz de iteração

$$\mathbf{B}_J = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$$
$$\mathbf{B}_{GS} = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U}$$

Se o método de Jacobi ou Gauss-Seidel converge ou não, depende dos autovalores da matriz de iteração ${f B}$.

Dizemos que λ_i , i=1:n é um autovalor da matriz ${f B}$ se

$$\mathbf{B}\mathbf{u} = \lambda_i \mathbf{u}$$

para algum vetor $\mathbf{u} \neq \mathbf{0}$. O seguinte teorema caracteriza a condição para convergência desses métodos.

Teorema

A condição necessária e suficiente para que o método iterativo descrito por $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{c}$ convirja usando um vetor inicial $\mathbf{x}^{(0)}$ qualquer é

$$\rho(\mathbf{B}) = \max_{1 \le i \le n} |\lambda_i(\mathbf{B})| < 1$$

Na prática encontrar os autovalores de ${\bf B}$ é tão custoso quanto resolver um sistema de equações lineares e portanto o Teorema 1 é difícil de usar. Vamos estudar outra forma de analisar a convergência para esses métodos.

Seja ${f x}^*$ a solução exata. Então ${f x}^*={f B}{f x}^*+{f c}$. Subtraindo de (9) temos

$$\mathbf{x}^{(k+1)} - \mathbf{x}^* = \mathbf{B}\mathbf{x}^{(k)} - \mathbf{B}\mathbf{x}^* + \mathbf{c} - \mathbf{c}$$
$$= \mathbf{B}(\mathbf{x}^{(k)} - \mathbf{x}^*)$$

de forma análoga

$$\mathbf{x}^{(k)} - \mathbf{x}^* = \mathbf{B}(\mathbf{x}^{(k-1)} - \mathbf{x}^*)$$

e assim

$$\mathbf{x}^{(k+1)} - \mathbf{x}^* = \mathbf{B}^2(\mathbf{x}^{(k-1)} - \mathbf{x}^*) = \dots = \mathbf{B}^{k+1}(\mathbf{x}^{(0)} - \mathbf{x}^*)$$

$$\mathbf{x}^{(k+1)} - \mathbf{x}^* = \mathbf{B}^{k+1}(\mathbf{x}^{(0)} - \mathbf{x}^*)$$
 (10)

Aplicando a norma infinito em (10), obtemos

$$||\mathbf{x}^{(k+1)} - \mathbf{x}^*||_{\infty} = ||\mathbf{B}^{k+1}(\mathbf{x}^{(0)} - \mathbf{x}^*)||_{\infty}$$

$$\leq ||\mathbf{B}^{k+1}||_{\infty} ||(\mathbf{x}^{(0)} - \mathbf{x}^*)||_{\infty}$$

$$\leq ||\mathbf{B}||_{\infty}^{k+1} ||(\mathbf{x}^{(0)} - \mathbf{x}^*)||_{\infty}$$
(11)

Assim de (11) fica claro que só haverá convergência se

$$||\mathbf{B}||_{\infty} < 1 \tag{12}$$

Vamos analisar agora critérios específicos para atender ao critério geral dado por (12) para o método de Jacobi e Gauss-Seidel.

Para o método de Jacobi, a matriz de iteração

$$\mathbf{B}_J = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$$
 é da forma

$$\mathbf{D} = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & & a_{nn} \end{bmatrix} \quad \Rightarrow \quad \mathbf{D}^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & & & \\ & \frac{1}{a_{22}} & & \\ & & & \frac{1}{a_{nn}} \end{bmatrix}$$

portanto

$$\mathbf{B}_{J} = -\begin{bmatrix} 0 & \frac{a_{12}}{a_{11}} & \frac{a_{12}}{a_{11}} & \dots & \frac{a_{1n}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 0 & \frac{a_{23}}{a_{22}} & \dots & \frac{a_{2n}}{a_{22}} \\ \frac{a_{n1}}{a_{n2}} & \frac{a_{n2}}{a_{n2}} & \dots & \frac{a_{nn-1}}{a_{nn}} & 0 \end{bmatrix}$$

ou seja, seus elementos são

$$b_{ij} = -\frac{a_{ij}}{a_{ii}}$$

Para termos convergência, então precisamos que $||\mathbf{B}_J||_{\infty} < 1$

$$||\mathbf{B}_J||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |b_{ij}| = \max_{1 \le i \le n} \sum_{j=1, i \ne j}^n \left| \frac{a_{ij}}{a_{ii}} \right| < 1$$

Teorema (Critério das Linhas)

Seja
$$\mathbf{A}\mathbf{x}=\mathbf{b}$$
 e seja $\alpha_k=\sum_{j=1,i\neq j}^n\left|\frac{a_{ij}}{a_{ii}}\right|$, para $k=1:n.$ Se

 $\alpha = \max\{\alpha_k\} < 1$, então o método de Jacobi converge independentemente da aproximação inicial $\mathbf{x}^{(0)}$.

Exemplo

Verificar se as seguintes matrizes satisfazem o critério das linhas.

$$\begin{bmatrix} 4 & 0.24 & -0.08 \\ 0.09 & 3 & -0.15 \\ 0.04 & -0.08 & 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 3 & 1 \\ 5 & 2 & 2 \\ 0 & 6 & 8 \end{bmatrix}$$

Definição

Uma matriz A é estritamente diagonal dominante se

$$\sum_{j=1, j\neq i}^{n} |a_{ij}| < |a_{ii}|, \quad i = 1:n$$

Fica claro então que para matrizes estritamente diagonal dominante o critério das linhas é sempre satisfeito. Portanto, uma outra forma de verificar se o método de Jacobi converge para uma certa matriz é verificar se esta é estritamente diagonal dominante.

Exemplo

$$\begin{bmatrix}
10 & 2 & 1 \\
1 & 5 & 1 \\
2 & 3 & 10
\end{bmatrix}$$

$$|a_{12}| + |a_{13}| = |2| + |1| < |10| = |a_{11}|$$

 $|a_{21}| + |a_{23}| = |1| + |1| < |5| = |a_{22}|$
 $|a_{31}| + |a_{32}| = |2| + |3| < |10| = |a_{33}|$

Convergência dos métodos de Jacobi e Gauss-Seidel Gauss-Seidel

Para ter convergência é preciso satisfazer pelo menos um dos critérios:

critério das linhas, isto é

$$\boxed{\max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1}$$

critério de Sassenfeld

$$\max_{1 \le i \le n} \beta_i < 1$$
(13)

onde β_i são calculados como

$$\beta_i = \left(\sum_{j=1}^{i-1} |a_{ij}| \beta_j + \sum_{j=i+1}^n |a_{ij}|\right) / |a_{ii}|$$

Convergência dos métodos de Jacobi e Gauss-Seidel Gauss-Seidel

É possível mostrar que para \mathbf{B}_{GS} dado por

$$\mathbf{B}_{GS} = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U}$$

temos que

$$||\mathbf{B}_{GS}||_{\infty} \le \max_{1 \le i \le n} \beta_i$$

Sendo assim, para mostrar que o método converge, basta mostrar que o critério de Sassenfeld (13) é satisfeito.

* Para ver que o critério das linhas também é válido para o método de Gauss-Seidel, basta verificar que

$$\max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1 \quad \Rightarrow \quad \beta_i < 1, \quad i = 1 : n$$

Convergência dos métodos de Jacobi e Gauss-Seidel Gauss-Seidel

Prova: Considere que: $\max \sum_{j=1,\ j\neq i}^n \frac{|a_{ij}|}{|a_{ii}|} < 1 \ (\mathsf{CL} \to \mathsf{OK})$

$$\beta_1 = \sum_{j=2}^n \frac{|a_{1j}|}{|a_{11}|} \le \max_{1 \le i \le n} \sum_{j=1, j \ne i}^n \frac{|a_{ij}|}{|a_{ii}|} < 1$$

Suponha agora que $eta_j < 1$ para $i = 1, 2, \ldots, i-1$. Então

$$\beta_{i} = \sum_{j=1}^{i-1} \frac{|a_{ij}|}{|a_{ii}|} \beta_{j} + \sum_{j=i+1}^{n} \frac{|a_{ij}|}{|a_{ii}|} \le \sum_{j=1, j \neq i}^{n} \frac{|a_{ij}|}{|a_{ii}|}$$

$$\le \max_{1 \le i \le n} \sum_{j=1, j \neq i}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1$$

Fica claro que o critério de Sassenfeld pode ser menor que o das linhas. Logo, o critério de Sassenfeld pode ser satisfeito e o critério das linhas não, e portanto o processo iterativo converge.

Algumas observações:

- Para um certo sistema de equações lineares pode acontecer do método de Jacobi convergir, enquanto o Gauss-Seidel não, ou vice-versa.
- ▶ Quanto menor o valor de $||\mathbf{B}||_{\infty}$, mais rápida será a convergência do método.
- lacktriangle Permutação de linhas ou colunas pode reduzir $||\mathbf{B}||_{\infty}$
- A convergência dos métodos de Jacobi e Gauss-Seidel não depende do vetor inicial $\mathbf{x}^{(0)}$.

Exemplo

Resolva o sistema utilizando o método de Jacobi.

$$\begin{bmatrix} 10 & 2 & 1 \\ 1 & 5 & 1 \\ 2 & 3 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -8 \\ 6 \end{bmatrix}$$

Solução do Exemplo

Critério das linhas:

$$\alpha_1 = (|a_{12}| + |a_{13}|)/|10| = 0.2 + 0.1 = 0.3 < 1$$

 $\alpha_2 = (|a_{21}| + |a_{23}|)/|5| = 0.2 + 0.2 = 0.4 < 1$
 $\alpha_3 = (|a_{31}| + |a_{32}|)/|10| = 0.2 + 0.3 = 0.5 < 1$

Logo $\alpha=\alpha_3=0.5<1$ e portanto o método de Jacobi converge para essa matriz.

Solução do Exemplo

Ou então basta verificar que a matriz \mathbf{A} é estritamente diagonal dominante.

Fórmula de iteração:

$$\begin{aligned} x_1^{(k+1)} &= 0.7 - 0.2 x_2^{(k)} - 0.1 x_3^{(k)} \\ x_2^{(k+1)} &= -1.6 - 0.2 x_1^{(k)} - 0.2 x_3^{(k)} \\ x_3^{(k+1)} &= 0.6 - 0.2 x_1^{(k)} - 0.3 x_2^{(k)} \end{aligned}$$

Assim temos as seguintes iterações para o vetor inicial $\mathbf{x}^{(0)} = \mathbf{0}$

k	1	2	3	4	5
x_1	0.7	0.96	0.978	0.9994	0.9979
x_2	-1.6	-1.86	-1.98	-1.9888	-1.9996
x_3	0.6	0.94	0.966	0.966	0.9968

Exemplo

Resolva o sistema utilizando o método de Gauss-Seidel.

$$\begin{bmatrix} 5 & 1 & 1 \\ 3 & 4 & 1 \\ 3 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 0 \end{bmatrix}$$

Solução do Exemplo

- 1) A matriz não é estritamente diagonal dominante. Nada podemos afirmar sobre a convergência.
- 2) Critério das linhas:

$$\alpha_1 = (|a_{12}| + |a_{13}|)/|5| = 0.2 + 0.2 = 0.4 < 1$$

 $\alpha_2 = (|a_{21}| + |a_{23}|)/|4| = 0.75 + 0.25 = 1$
 $\alpha_3 = (|a_{31}| + |a_{32}|)/|6| = 0.5 + 0.5 = 1$

Não satisfaz o critério das linhas.

Solução do Exemplo

3) Critério de Sassenfeld:

$$\beta_1 = |0.2| + |0.2| = 0.4$$

 $\beta_2 = |0.75|(0.4) + |0.25| = 0.3 + 0.25 = 0.55$
 $\beta_3 = |0.5|(0.4) + |0.5|(0.55) = 0.2 + 0.275 = 0.475$

Assim

$$\max_{1 \le i \le n} \beta_i = \max\{0.4, 0.55, 0.475\} = 0.55 < 1$$

Portanto, como o critério de Sassenfeld é satisfeito, podemos garantir que o processo de Gauss-Seidel converge para essa matriz.

Solução do Exemplo

Fórmula de iteração:

$$x_1^{(k+1)} = 1 - 0.2x_2^{(k)} - 0.2x_3^{(k)}$$

$$x_2^{(k+1)} = 1.5 - 0.75x_1^{(k+1)} - 0.25x_3^{(k)}$$

$$x_3^{(k+1)} = 0 - 0.5x_1^{(k+1)} - 0.5x_2^{(k+1)}$$

Usando $\mathbf{x}^{(0)} = \mathbf{0}$ como aproximação inicial, temos

$$x_1^{(1)} = 1 - 0.2(0) - 0.2(0) = 1$$

 $x_2^{(1)} = 1.5 - 0.75(1) - 0.25(0) = 0.75$
 $x_3^{(1)} = 0 - 0.5(1) - 0.5(0.75)$

Solução do Exemplo

Iterando para $k = 1, 2, \dots$ temos

k	1	2	3	4
x_1	1.0	1.025	1.0075	1.0016
x_2	0.75	0.95	0.9913	0.9987
x_3	-0.875	-0.9875	-0.9994	-1.0002

Podemos verificar o erro

$$\begin{split} \frac{||\mathbf{x}^{(4)} - \mathbf{x}^{(3)}||_{\infty}}{||\mathbf{x}^{(4)}||_{\infty}} &= \frac{\max\{|1.0016 - 1.0075|, |0.9987 - 0.9913|, |-1.0002 + 0.9994|\}}{\max\{|1.0016|, |0.9987|, |-1.0002|\}} \\ &= \frac{0.0074}{1.0016} = 0.0074 < 10^{-2} \end{split}$$

Método SOR

É possível acelerar a convergência dos métodos iterativos visto até então através do método da sobre-relaxação sucessiva, ou do inglês SOR (sucessive over relaxation).

Nesse método definimos a aproximação na iteração (k+1) como uma média entre o valor de $\mathbf{x}^{(k)}$ obtido na iteração (k) e o valor de $\mathbf{x}^{(k+1)}$, que seria obtido pelo método de Gauss-Seidel.

As iterações associadas ao parâmetro ω do método SOR são definidas por:

$$\mathbf{x_{SOR}}^{(k+1)} = (1 - \omega)\mathbf{x_{SOR}}^{(k)} + \omega\mathbf{x_{GS}}^{(k+1)}$$
(14)

onde $\mathbf{x_{SOR}}^{(k)}$ é a aproximação do passo anterior obtida pelo método SOR e $\mathbf{x_{GS}}^{(k+1)}$ é a aproximação atual obtida pelo método de Gauss-Seidel.

Método SOR

Lembrando que para o método de Gauss-Seidel temos

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right) / a_{ii}$$

chegamos ao seguinte esquema para o método SOR:

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$

- lacksquare Quando $\omega=1$ temos o método de Gauss-Seidel.
- ▶ O método só converge se $0 < \omega < 2$.
- ▶ $1 < \omega < 2$: sobre-relaxação.
- ▶ $0 < \omega < 1$: sub-relaxação.
- ightharpoonup Em alguns casos particulares é possível encontrar um valor ótimo para ω , de forma que o método apresenta uma boa convergência com relação a outras escolhas de ω