HW2-1 Report Laplace Mechanism

1. Task (a) & (b) for $\varepsilon = 0.5$

S = sensitivity of the dataset

$$b = \frac{s}{\epsilon}$$

error =
$$2b^2 = 2 * (\frac{s}{\epsilon})^2$$

The global sensitivity for the first 4 groups with $\varepsilon = 0.5$ is 4.296

- Comparing the 1st group with 2nd group: $Pr[A(D) \in S] \leq e^{\epsilon} Pr[A(D') \in S] = 0.25 \leq 0.412$ Thus, we can validate that the 2 sets are 0.5-distinguishable
- Comparing the 1st group with 3rd group: $Pr[A(D) \in S] \le e^{\epsilon} Pr[A(D') \in S] = 0.25 \le 0.412$ Thus, we can validate that the 2 sets are 0.5-distinguishable
- Comparing the 1st group with 4th group: $Pr[A(D) \in S] \le e^{\epsilon} Pr[A(D') \in S] = 0.25 \le 0.401$ Thus, we can validate that the 2 sets are 0.5-distinguishable
- 1. Task(c) for $\varepsilon = 1$

```
For epsilon = 1.0 and query = 1 -> S = 3.8240916E-5 , b = 3.8240916E-5
                                                                             , Error = 2.924735341028249E-9
For epsilon = 1.0 and query = 2 -> S = 3.0732353E-5
                                                     , b = 3.0732353E-5
                                                                             , Error = 1.8889551008189636E-9
                                                   , b = 3.1451487E-5
For epsilon = 1.0 and query = 3 -> S = 3.1451487E-5
                                                                             , Error = 1.9783921070845907E-9
For epsilon = 1.0 and query = 4 -> S = 3.0899482E-5
                                                      . b = 3.0899482E-5
                                                                             , Error = 1.909556003698463E-9
GS = 4.2961617
Validating that each of the last 3 groups of results and the first group are 1.0-indistinguishable.
0.25 <= 0.67957044
0.25 <= 0.67957044
0.25 <= 0.67821133
```

The global sensitivity for the first 4 groups with $\varepsilon = 1$ is 4.296

- Comparing the 1st group with 2nd group: $Pr[A(D) \in S] \le e^{\epsilon} Pr[A(D') \in S] = 0.25 \le 0.679$ Thus, we can validate that the 2 sets are 0.5-distinguishable
- Comparing the 1st group with 3rd group: $Pr[A(D) \in S] \le e^{\epsilon} Pr[A(D') \in S] = 0.25 \le 0.679$ Thus, we can validate that the 2 sets are 0.5-distinguishable
- Comparing the 1st group with 4th group: $Pr[A(D) \in S] \leq e^{\epsilon} Pr[A(D') \in S] = 0.25 \leq 0.678$ Thus, we can validate that the 2 sets are 0.5-distinguishable

1. Task (d)

Comparing all the 8 groups we observe

- \circ Group = 1 , ε = 0.5
 - Sensitivity = 3.8240916E-5
 - b = 7.648183E-5
 - Error bound = 1.1698941364112996E-8
- \circ Group = 2, $\varepsilon = 0.5$
 - Sensitivity = 3.0732353E-5
 - b = 6.146471E-5
 - Error bound = 7.555820403275854E-9
- \circ Group = 3, $\varepsilon = 0.5$
 - Sensitivity = 3.1451487E-5
 - b = 6.2902975E-5
 - Error bound = 7.913568428338363E-9
- \circ Group = 4, $\varepsilon = 0.5$
 - Sensitivity = 3.0899482E-5
 - b = 6.1798964E-5
 - Error bound = 7.638224014793851E-9
- o Group = 1, $\varepsilon = 1$
 - Sensitivity = 3.8240916E-5
 - b = 3.8240916E-5
 - Error bound = 2.924735341028249E-9
- \circ Group = 2, $\varepsilon = 1$
 - Sensitivity = 3.0732353E-5
 - b = 3.0732353E-5
 - Error bound = 1.8889551008189636E-9
- \circ Group = 3, $\varepsilon = 1$
 - Sensitivity = 3.1451487E-5
 - b = 3.1451487E-5
 - Error bound = 1.9783921070845907E-9
- o Group = 4, $\varepsilon = 1$
 - Sensitivity = 3.0899482E-5
 - b = 3.0899482E-5
 - Error bound = 1.909556003698463E-9

- We can see that when $\varepsilon=0.5$ the variance is small, the difference between the actual and noisy result (error bound) is also minimum.
- When $\varepsilon=1$ the variance increases, therefore the difference between the actual and noisy result (error bound) also increases.
- Smaller value of ε gives higher privacy.
- Also, we can see from tasks (a), (b) & (c) that even after removing one tuple from the dataset, the result is still ε indistinguishable when compared to the original dataset.
- Looking at the sensitivity of each dataset, removing a tuple can change the sensitive of the dataset, therefore we consider sensitivity when adding noise to the result.