Network System Capstone @cs.nycu

2025.03.13 Lab2 Beamforming with NS3

Instructor: Kate Ching-Ju Lin (林靖茹)

Deadline: 2025.04.10 23:59

Agenda

- Lab Overview
- Tasks Overview
- Tasks
- Report & Result
- Submission

 In this lab, we are going to write an NS3 program to simulate LEO communications

Limitation of the LEO module:

 Constant link data rate without considering path loss and Tx Gain

Goal of this lab:

- Leverage lab 1 to find the beamforming steering vector and the corresponding Tx gain
- Read this Tx Gain and calculate the Rx power in NS3
- Calculate the resulting SNR and data rate
- Set the link data rate accordingly

Tasks (Week 1):

- Install Virtual Box
- Install Ubuntu
- Install NS3
- Install LEO module
- Configure and test NS3/LEO module
- Execute the example code (calculate_delay.cc)
- Modify the link data rate

Tasks (Week 2-4):

- Output node coordinate
- Execute lab1 (bf.m) to find Tx Gain in MATLAB
- Read pathloss and calculate the Rx power in NS3
- Calculate SNR and data rate in NS3
- Modify the link data rate

Tasks Overview

- 1. Setup topology
- 2. Calculate elevation angle θ
- 3. Find the optimal beam θ^* for θ
- 4. Find the Tx gain based on elevation angle θ and the identified optimal beam θ^*
- 5. Find the pathloss based on Tx gain and output it to the .txt file
- 6. Calculate the sending rate based on the receiving power
- 7. Calculate end-to-end latency

Task Input and Output

- Scenario: 1 ground station (GS) and 1 satellite (SAT)
 - The entire system includes multiple satellites
- Input: GS/SAT positions (latitude, longitude)
 - (20, 0)
 - (6.06692, 73.0213)
 - (-16.0634, 142.29)
- Output
 - Euclidean distance between GS and SAT
 - Path loss between GS and SAT
 - Rx power w/ and w/o beamforming
 - SNR & data rate w/ and w/o beamforming
 - End-to-end delay w/ and w/o beamforming

Task1: Topology Configuration

- TODO: Modify calculate_delay.cc
- 1. Set up node positions (latitude, longitude)
 - Source (GS): (6.06692, 73.0213)
 - Destination (GS): (<u>6</u>.06692, <u>73</u>.0213)
 - SAT: (6.06692, 73.0213)
- 2. Convert (latitude, longitude) to (x, y, z) coordinates
 - Use <u>GetObject<MobilityModel>()</u>
- 3. Output (x, y, z) to .txt file
 - The .txt file will be read and processed by MATLAB
 - Run after initial_position() to avoid offset

Task2: Calculate Tx Gain

- TODO: Modify bf.m
- 1. Load .txt file to read node coordinates
 - Set Tx coordinate as GS coordinate (x₁, y₁, z₁)
 - Set Rx coordinate as SAT coordinate (x_2, y_2, z_2)
- 2. Use the GS/SAT coordinates to find the elevation angle θ
 - Assume GS = (x_1, y_1, z_1) , SAT = (x_2, y_2, z_2)
 - Compute Horizontal Distance

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Compute Elevation Angle

$$heta = an^{-1}\left(rac{d}{z_2-z_1}
ight)$$

Task2: Calculate Tx Gain

- TODO: Modify bf.m
- 3. Find the optimal beam θ^* based on the elevation angle θ from codebook [0:5:90]

- 4. Update antenna phase offset
 - psi = 2 * pi * d * <u>sin</u>(theta)

- 5. Find the Tx gain based on elevation angle θ and the identified optimal beam θ^*
 - Use the beam pattern of θ^* (lab1)
- 6. Use Tx gain to calculate pathloss and output it to .txt file

Note!

 Even if GS and SAT have the same location (lat/lon), this location will correspond to different 3D coordinates since their heights are different

Task3: Calculate Rx Power (1/2)

- TODO: Modify leo-propagation-loss-model.h in /ns-3.35/contrib/leo/model
- 1. Change DoCalcRxPower() inheritance from private to public
- TODO: Modify leo-propagation-loss-model.cc
- 1. In DoCalcRxPower(), read .txt file to get the pathloss
- 2. Compute Rx power based on the pathloss logged in .txt file
 - Hint: Replace m_freeSpacePathLoss

Task3: Calculate Rx Power (2/2)

- TODO: Modify propagation-loss-model.h in /ns-3.35/src/propagation/model
- 1. Change DoCalcRxPower() inheritance from private to public
- TODO: Modify mock-channel.cc in /ns-3.35/contrib/leo/model
- 1. Change code line 187 rxPower < -120.0

Task4: Transmission Configuration

- TODO: Modify calculate_delay.cc
- 1. Set up transmission configuration
 - Bandwidth = 2MHz
 - Noise = -110dBm
 - Tx power = 105.9dBm
- 2. Call DoCalcRxPower() to get Rx power
- 3. Calculate SNR_{dB}
 - Hint: Convert SNR_{dB} to SNR ratio (S_{watt} / N_{watt}) (<u>Reference</u>)
- 4. Calculate data rate based on Shannon capacity

Task5: Compute E2E Delay

- TODO: Modify calculate_delay.cc
- 1. Change link data rate settings

```
utCh.SetGndDeviceAttribute("DataRate", StringValue("8kbps"));

Update DataRate with the calculated value

utNet.Get(25)->GetObject<MockNetDevice>()->SetDataRate(DataRate(oss.str()));

utNet.Get(0)->GetObject<MockNetDevice>()->SetDataRate(DataRate("1Gbps"));
```

- 2. Output end-to-end delay
 - Hint: Same steps as Task1 last week
 - Last received time first transmitted time for the same sequence number
 - Output format:

Packet average end-to-end delay is 2.5s

Report and Result Format

Report (50%)

- In PDF format
- Explain how you implement your lab step by step for each commit version
- Briefly explain how each answer was obtained
- Maximum of 4 pages

Result (30%)

- In PDF format
- Numerical results, figures and your observations
- Maximum of 3 pages

Notice: The example outputs and figures are for reference only

Result

- Given different user positions (latitude, longitude), answer the following questions:
 - User positions:
 - (20, 0)
 - (6.06692, 73.0213)
 - (-16.0634, 142.29)
 - Questions:
 - Q1: Calculate the Euclidean distance between the user and the satellite
 - Q2: Compute the path loss
 - Q3: Compare Rx power w/ and w/o beamforming
 - Q4: Evaluate the SNR & data rate
 - Q5: Estimate the end-to-end delay

Result

- Given different user positions (latitude, longitude), answer the following questions:
 - User positions:
 - (20, 0)
 - (6.06692, 73.0213)
 - (-16.0634, 142.29)
 - Questions:
 - Compare the end-to-end delay with beamforming and without beamforming
 - Link data rate setting without beamforming:

```
utCh.SetGndDeviceAttribute("DataRate", StringValue("8kbps"));
```

Link data rate setting with beamforming:

```
utNet.Get(25)->GetObject<MockNetDevice>()->SetDataRate(DataRate(oss.str()));
utNet.Get(0)->GetObject<MockNetDevice>()->SetDataRate(DataRate("1Gbps"));
```

Submission

- Add studentID.txt
- Add your own studentID to the file (as in lab1)
- File structure: 100

```
.gitignore
bf.m

LICENSE
README.rst
report.pdf
result.pdf
studentID.txt
wscript

data
orbits
starlink.csv
telesat.csv
```

 Notice: You will get penalty with wrong file structure and naming

Commit to GitHub

Add all modified and new files to the staging area

```
# git add <FILENAME>
$ git add .
```

Record changes to the repository

```
# git commit -m "<COMMIT_MESSAGE>"
$ git commit -m "Initial commit"
```

Upload to GitHub

```
$ git push
```

Due

- Apr. 10 (Thu.) 23:59, 2025
- Don't need to submit to E3
- Commit your files to your GitHub repository
 - Should have at least 3 commits (Initial, work in progress, final)
 - One version should be at least 1 day after another
- Notice: You will get penalty with wrong file structure and naming

Grading Policy

- Grade
 - Code correctness 20%
 - Report 50%
 - Result 30%
- Late Policy
 - (Your score) * 0.8^D, where D is the number of days overdue
- Cheating Policy
 - Academic integrity: Homework must be your own cheaters share the score
 - Both the cheaters and the students who aided the cheater equally share the score