Deep Learning

Exercise 8: Open-Set Learning

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, April 30, 2020

- Open-Set Training
- Evaluation
- Autograd Implementation

- Open-Set Training
 - MNIST Split
 - Network Definition
 - Loss Functions

MNIST Split

MNIST Dataset

- MNIST total 10 classes
 - → 10 different digits
- Split into 3 categories:
 - \rightarrow 4 known classes, e.g.: 4,5,8,9
 - \rightarrow 4 known unknown classes, e.g.: 0,2,3,7
 - \rightarrow 2 unknown unknown classes, e.g.: 1,6
- Train known and known unknown
- Evaluate all three categories

Task 1: Target Vectors

- One-hot targets for knowns:
 - \rightarrow 4 \Rightarrow (1,0,0,0)
 - \rightarrow 5 \Rightarrow (0,1,0,0)
 - \rightarrow 8 \Rightarrow (0,0,1,0)
 - \rightarrow 9 \Rightarrow (0,0,0,1)
- Equal targets for unknowns:
 - \rightarrow 0 \Rightarrow (.25,.25,.25,.25)
 - \rightarrow 2 \Rightarrow (.25,.25,.25,.25)
 - \rightarrow 3 \Rightarrow (.25,.25,.25,.25)
 - \rightarrow 7 \Rightarrow (.25,.25,.25,.25)

Datasets Loaders

Example MNIST Dataset

```
# obtain datasets
transform = torchvision.transforms.ToTensor()
train set = torchvision.datasets.MNIST(
              root="/temp/MNIST",
              train=True, download=True,
              transform=transform
test set = torchvision.datasets.MNIST(
              root="/temp/MNIST",
              train=False, download=True.
              transform=transform
# loaders
train_loader = torch.utils.data.DataLoader(
   train set, shuffle=True, batch size=64
test loader = torch.utils.data.DataLoader(
   test set, shuffle=False, batch size=100
```

While Training

```
for inputs, targets in train loader():
    # remove unknown unknown inputs
    # convert targets to one-hot
    targets = convert target(targets)
    # forward inputs
    logits = network(inputs)
    # call loss function
    J = loss(logits, targets)
    . . .
```

Network Definition

Convolutional Network

- Adaptation from Exercise 6
- 2 convolutions with padding
 - \rightarrow 1 input, 32 outputs, 5×5 kernels
 - $\rightarrow~$ 32 input, 32 outputs, 5×5 kernels
 - ightarrow~2 imes 2 Maximum pooling after each
 - → Sigmoid activation after each
- Batch normalization (important)
- Linear layer with 50 outputs
- Sigmoid activation
- Linear layer with 4 outputs

Task 2: Network Implementation

```
class Network():
   def init (self):
       self.conv1 = torch.nn.Conv2d(...)
        self.conv2 = torch.nn.Conv2d(...)
        self.pooling = torch.nn.MaxPool2d(...)
        self.activation = torch.nn.Sigmoid()
        self.bn = torch.nn.BatchNorm2d(...)
        self.fc1 = torch.nn.Linear(7*7*32, 50)
        self.fc2 = torch.nn.Linear(50, 4)
   def forward(self, input):
       return logits
```

Loss Functions

Default Implementation

- torch.nn.CrossEntropyLoss
 requires target class t
- ightarrow We have target vector $ec{t}$

Easiest Implementation

$$\mathcal{J}^{\mathrm{CE}} = -\sum_{o=1}^{O} t_o \ln y_o$$

Other Implementation

$$\mathcal{J}^{\text{CE}} = -\sum_{o=1}^{O} t_o z_o + \frac{1}{O} \ln \sum_{o=1}^{O} e^{z_o}$$

Task 3: Loss Function via Autograd

- To implement: def loss(logits, targets):
- $\ln \vec{y}$ from logits
 - → torch.log softmax
- $\ln \sum_{o=1}^{O} e^{z_o}$
 - \rightarrow torch.logsumexp
- + Remember that you get a batch
 - → Check the dim parameter
- To return: a torch.tensor with one element (check torch.mean)

Evaluation

During Training

- Compute average confidence
 - $\rightarrow y_t$ for known samples
 - $\rightarrow 1 \max y_o + \frac{1}{O}$ for unknowns

After Training

- Evaluate confidences \vec{y}
 - → False Positive Rate for unknown
 - → Correct Classification Rate for known
- Use fixed threshold $\tau = 0.5$

False Positive Rate (FPR)

$$\frac{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} = 0 \land \max_{1 \le o \le O} y_o^{^{[n]}} \ge \tau\right\}\right|}{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} = 0\right\}\right|}$$

Correct Classification Rate (CCR)

$$\frac{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} > 0 \land \mathop{\arg\max}_{1 \le o \le O} y_o^{^{[n]}} = t^{^{[n]}} \land y_{t^{^{[n]}}} \ge \tau\right\}\right|}{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} > 0\right\}\right|}$$

Task 4

- Train network for 20 epochs
- Evaluate trained network

- Autograd Implementation
 - Autograd Extension in PyTorch

Autograd Extension in PyTorch

Loss and Derivative of $\mathcal{J}^{ ext{CE}}$

$$\mathcal{J} = -\sum_{o=1}^{O} t_o \ln y_o \quad \frac{\partial \mathcal{J}}{\partial z_o} = y_o - t_o$$

Implementation in PyTorch

- Implement a loss as pytorch.autograd.Function
- Online documentation
- Two static functions:
 - → forward(ctx, params)
 - → backward(ctx, result)
- Store elements in ctx

Optional Task: Autograd Function

```
class CELoss(torch.autograd.function):
    @staticmethod
    def forward(ctx, logits, targets):
        # save for backward
        ctx.save_for_backward(logits, targets)
        # implement loss function
        J = ...
        return J
```

def backward(ctx, J):

get stored values
logits, targets = ctx.saved_tensors
compute derivatives

gradient = ...
gradient for each input of forward
return gradient, None

assign loss function
loss = CELoss.apply

@staticmethod

11 / 1