Seasonal Adjustment with the X-11 Method

Book · J	· January 2001	
DOI: 10.1007/978-1-4613-0175-2		
CITATIONS		READS
90		2,544
2 autho	nors, including:	
	Dominique Ladiray	
	Institut National de la Statistique et des Études Économiques	
	34 PUBLICATIONS 365 CITATIONS	
	SEE PROFILE	

DÉSAISONNALISER AVEC LA MÉTHODE X-11

Dominique Ladiray, Benoît Quenneville

Préface de Allan Young

Préface

Dominique Ladiray et Benoît Quenneville, nous proposent dans ce livre une étude unique et complète de la méthode de désaisonnalisation X-11. Ils examinent en détail la méthode X-11 originale, mise au point au Bureau du Recensement des États-Unis au milieu des années 60, le coeur de la méthode X-11-ARIMA développée à Statistique Canada dans les années 1970 et le module X-11 de la méthode X-12-ARIMA diffusée plus récemment par le Bureau du Recensement des États-Unis. Cette étude sera très utile à toute personne qui, travaillant dans le domaine de la désaisonnalisation, veut comprendre la méthode X-11 et savoir comment elle se situe dans le domaine plus général des méthodes d'ajustement saisonnier.

Ce que les auteurs appellent la méthode X-11 fut originellement désignée sous le nom de "X-11 Variant of the Census Method II Seasonal Adjustment Program". C'était le résultat du travail de recherche mené par Julius Shiskin dans les années 1950 au Bureau du Recensement des États-Unis. Le programme de désaisonnalisation "Census Method I" fut présenté par Shiskin en 1954, bientôt suivi de la "Méthode II" en 1957.

Dans la Méthode I, les coefficients saisonniers étaient estimés par l'intermédiaire de moyennes mobiles appliquées aux valeurs de la composante saisonnier-irrégulier de chaque mois. Cette composante saisonnier-irrégulier était elle-même calculée comme rapport de la série originale et du résultat du lissage de cette série originale par une moyenne mobile centrée sur 12 termes, lissage sensé représenter la composante tendance-cycle. Une seconde série ajustée était calculée, en remplaçant cette estimation de la tendance-cycle par le lissage de la première estimation de la série corrigée des variations saisonnières par une moyenne mobile simple d'ordre 5.

Les améliorations les plus importantes apportées par la Méthode II étaient les suivantes :

- 1. Les moyennes mobiles symétriques étaient complétées, aux extrémités de la série, par un ensemble de moyennes mobiles asymétriques.
- 2. La moyenne mobile simple d'ordre 5 utilisée dans la seconde étape de la Méthode I était remplacée par une moyenne mobile pondérée sur 15 termes conduisant à une estimation de la tendance-cycle plus lisse et plus souple. Dans la Méthode I, les coefficients saisonniers obtenus lors de la seconde étape étaient considérés comme des alternatives pouvant se révéler utiles pour certaines séries. Dans la Méthode II, il n'y avait plus d'hésitation : les coefficients saisonniers obtenus à la seconde étape étaient meilleurs.
- 3. Les valeurs aberrantes de la composante saisonnier-irrégulier étaient identifiées et corrigées, pour chaque mois, avant le calcul des coefficients saisonniers.

La Méthode II fut l'une des premières utilisations de l'ordinateur pour traiter des données économiques sur une large échelle. Le programme tournait sur les deux ordinateurs Univac récemment installés au Bureau du Recensement. Le traitement d'une série mensuelle sur 8 ou 10 ans prenait environ sept minutes. Pour développer la Méthode II, Shiskin s'inspira de la méthode graphique d'ajustement saisonnier développée avant la seconde guerre mondiale à la Reserve Fédérale. Cette méthode commençait par lisser les données originales avec une moyenne mobile d'ordre 12 en modifiant si nécessaire la courbe lissée pour mieux traduire la composante tendance-cycle. Puis, pour estimer les coefficients saisonniers, on traçait à la main une courbe à travers les valeurs de la composante saisonnier-irrégulier de chaque mois. En traçant ces courbes, l'analyste corrigeait l'effet de valeurs considérées comme aberrantes en fonction de l'allure des données et de ses connaissances du secteur économique. La Méthode II peut être considérée comme une tentative de faire répliquer par l'ordinateur une procédure jusqu'ici utilisée par des professionnels expérimentés.

J'ai une fois demandé à un vieil employé de la division du revenu national du Bureau de l'Analyse Économique des États-Unis, comment la division réussissait avant l'apparition des ordinateurs, à mettre à jour et à réviser, chaque année, les coefficients saisonniers des données du PNB. Sa réponse fut : "nous faisons travailler les employés de la statistique toute la nuit". Et encore ces "travailleurs de la nuit" n'intervenaient-ils qu'à la fin d'une période de deux ou trois mois pendant laquelle on travaillait le soir et les fins de semaine. Les révisions annuelles des comptes nationaux pour le Bureau d'Analyse Économique sont toujours des exercices très importants mais il n'est plus nécessaire de faire travailler l'ensemble du personnel toute la nuit! De nos jours, les révisions sont calculées en quelques secondes avec des ordinateurs de bureau qui ne fonctionnent que rarement en dehors des heures habituelles d'ouverture.

Le succès de la Méthode II était en partie dû au fait que le programme était simple à utiliser. Il comprenait des sorties graphiques pour les différentes composantes de la série originale qui aidaient les utilisateurs à comprendre la procédure et à juger de la qualité des résultats. La méthode était assez robuste et son utilisation ne demandait pas une formation élevée en statistique mathématique.

Il y a deux justifications principales à la désaisonnalisation. La première est d'estimer la composante saisonnière dans le but de, par exemple, mieux planifier la production ou faciliter la gestion des stocks. La seconde est d'estimer cette composante saisonnière pour l'éliminer de la série brute et ainsi mieux mettre en évidence les autres causes des variations de la série, en particulier celles qui relèvent du cycle des affaires.

Shiskin voulait répondre aux demandes des responsables de la politique économique gouvernementale qui souhaitaient obtenir le plus vite possible, d'une part des éléments chiffrés décrivant la situation économique actuelle et, d'autre part, des prévisions à court terme. Dans ce but, il était assez naturel de séparer la composante saisonnière de la composante cyclique, tout du moins tant qu'elles semblaient indépendantes l'une de l'autre. La Méthode II donnait une prévision des coefficients saisonniers pour l'année à venir de telle sorte qu'il devenait très simple d'estimer et d'enlever la part due à la variation saisonnière dans toute nouvelle donnée mensuelle. Il faudra attendre de nombreuses années pour que la réestimation de la composante saisonnière à chaque nouvelle donnée disponible soit techniquement possible et pour démontrer que cette nouvelle stratégie était meilleure que celle basée sur des prévi-

sions annuelles des coefficients. Cependant, on s'aperçut très tôt que les révisions des coefficients saisonniers, faites lorsqu'une année complète de données nouvelles était disponible, étaient souvent très importantes et difficilement gérables.

Je rejoignis Shiskin au Bureau du Recensement en 1958 et John Musgrave arriva en 1959. Nous nous consacrâmes bientôt à l'amélioration de la Méthode II et assistions Shiskin dans la mise au point d'indicateurs du cycle des affaires. De nouvelles versions expérimentales du programme se succédèrent, désignées sous les noms de X-1, X-2 jusqu'à X-11. Cette appellation "X" nous fut inspirée par les essais d'avions propulsés par des moteurs de fusée. En 1947, Chuck Yeager franchissait le mur du son à bord du X-1, le premier d'une série de prototypes. Au milieu des années 60, le X-15, le dernier de ces avions à moteurs de fusée, volait à plusieurs fois la vitesse du son.

Deux de ces versions expérimentales, X-3 et X-9, remplacèrent successivement la Méthode II comme version officielle du programme au Bureau du Recensement et dans plusieurs autres agences gouvernementales. Elles contenaient de nouvelles moyennes mobiles asymétriques pour l'estimation des coefficients saisonniers et conduisaient à des révisions sensiblement plus petites.

La variante X-10 fut développée en collaboration avec Stephen Marris, de l'Organisation pour la Coopération et le Développement Économique, qui passa une année au Bureau du Recensement. X-10 contenait un ensemble de moyennes mobiles parmi lesquelles le programme choisissait la plus appropriée pour chaque mois. Cette approche permit de réduire à nouveau les révisions des coefficients pour de nombreuses séries. X-10 devint la méthode officielle de l'OCDE. Cette stratégie ne fut pas reprise par défaut dans X-11 mais figurait comme option. Une approche similaire fut mise au point pour l'estimation par défaut de la composante tendance-cycle.

Deux autres personnes méritent d'être citées. A la suite de la présentation de la Méthode II par Shiskin, Duane Evans développa une méthode de désaisonnalisation à base de moyennes mobiles pour le Bureau des Statistiques du Travail. L'une des innovations de ce nouveau programme peut être considérée comme le précurseur de la procédure de détection et de correction des points aberrants introduite dans la variante X-11. De plus, peu de temps après l'arrivée de la Méthode II, le Bureau du Recensement se lança, sous la direction de Harry M. Rosenblatt, dans le développement d'une méthode paramétrique d'ajustement saisonnier. Aucune de ces approches ne fut un concurrent sérieux à X-11, en partie parce que les révisions des coefficients saisonniers estimés par ces méthodes se sont avérées plus grandes.

En 1965, nous ne nous attendions certainement pas à ce que X-11 joue encore un rôle si important en désaisonnalisation 35 ans plus tard. Il nous semblait par contre souhaitable qu'un moyen pour mesurer la précision des estimations des coefficients saisonniers soit mis au point.

Les auteurs doivent être félicités pour cette étude complète et actualisée de la méthode X-11. Peut être ce travail servira-t-il non seulement à prolonger la vie de X-11 mais aussi aidera-t-il au développement et à la popularisation de nouvelles méthodes qui n'auront que peu de ressemblances avec celles du passé.

Allan H. Young Avril 2000

Heathsville, Virginia

(Traduction des auteurs)

Table des matières

Pr	Préface 3				
In	Introduction			11	
1	Brei	f histori	ique de la désaisonnalisation	15	
2	Prin	icipes d	e la méthode X-11	23	
	2.1	Comp	osantes et schémas de composition	23	
	2.2	Moyer	nnes mobiles	24	
	2.3	Un alg	gorithme simple de désaisonnalisation	24	
	2.4	L'algo	prithme de base de la méthode X-11	25	
	2.5	Points	atypiques et effets de calendrier	28	
	2.6	Le pri	ncipe itératif de X-11	28	
		2.6.1	Partie A : Ajustements préalables	29	
		2.6.2	Partie B : Première correction automatique de la série	29	
		2.6.3	Partie C : Seconde correction automatique de la série	29	
		2.6.4	Partie D : Désaisonnalisation	29	
		2.6.5	Parties E, F et G: Statistiques et graphiques	29	
	2.7	De Ce	ensus X-11 à X-11-ARIMA et X-12-ARIMA	31	
3	Moy	yennes 1	mobiles	33	
	3.1	Quelq	ues définitions et un peu de théorie	33	
		3.1.1	Définitions et exemple	34	
		3.1.2	Fonctions de gain et déphasage	35	
		3.1.3	Conservation de tendance	37	
		3.1.4	Élimination de saisonnalité	39	
		3.1.5	Réduction de la composante irrégulière	39	
		3.1.6	Un exemple de construction de moyenne mobile	39	
	3.2	Les m	oyennes mobiles symétriques utilisées dans X-11	40	
		3.2.1	Les moyennes mobiles simples composées	40	
		3.2.2	Moyennes mobiles de Henderson	45	
	3.3	•			
		3.3.1	Moyennes mobiles asymétriques de Musgrave associées aux		
			moyennes symétriques de Henderson	49	
		3.3.2	Remarque sur les movennes mobiles de Musgrave	49	

		3.3.3	Moyennes mobiles asymétriques associées aux moyennes mo-	
			biles composées	49
	3.4	Le filtre	e moyenne mobile X-11	50
4	Les		ts tableaux	59
	4.1		imation préliminaire des points atypiques et des effets de ca-	
			r	62
		4.1.1	B1 : Série brute ou série brute ajustée <i>a priori</i>	62
		4.1.2	B2 : Tendance-cycle	63
		4.1.3	B3 : Composante saisonnier-irrégulier non modifiée	64
		4.1.4	B4 : Valeurs de remplacement pour les points atypiques de la	
			composante saisonnier-irrégulier	66
		4.1.5	B5 : Composante saisonnière	75
		4.1.6	B6 : Série désaisonnalisée	78
		4.1.7	B7 : Tendance-cycle	79
		4.1.8	B8 : Composante saisonnier-irrégulier	83
		4.1.9	B9 : Valeurs de remplacement pour les valeurs atypiques de la	
			composante SI	84
		4.1.10	B10 : Composante saisonnière	90
		4.1.11	B11 : Série corrigée des variations saisonnières	93
		4.1.12	B13 : Composante irrégulière	93
			Composante pour jours ouvrables	94
		4.1.14	B14 : Valeurs de la composante irrégulière exclues de la ré-	
			gression pour jours ouvrables	97
		4.1.15	B15 : Régression préliminaire pour jours ouvrables	102
		4.1.16	B16 : Coefficients d'ajustement pour jours ouvrables issus de	
			la régression	104
		4.1.17	B17 : Poids préliminaires pour la correction de l'irrégulier	105
		4.1.18	B18 : Coefficients pour jours ouvrables combinés	108
		4.1.19	B19 : Série brute corrigée des effets de jours ouvrables	109
		4.1.20	B20 : Valeurs de correction des points atypiques de l'irrégulier	110
	4.2	C: Esti	imation finale des points atypiques et des effets de calendrier .	111
		4.2.1	C1 : Série brute ajustée	111
		4.2.2	C2 : Tendance-cycle	111
		4.2.3	C4 : Composante saisonnier-irrégulier modifiée	
		4.2.4	C5 : Composante saisonnière	113
		4.2.5	C6 : Série corrigée des variations saisonnières	115
		4.2.6	C7: Tendance-cycle	116
		4.2.7	C9 : Composante saisonnier-irrégulier	120
		4.2.8	C10 : Composante saisonnière	120
		4.2.9	C11 : Série corrigée des variations saisonnières	122
		4.2.10	C13 : Composante irrégulière	123
			C14 : Irréguliers exclus de la régression pour jours ouvrables .	124
			C15 : Régression finale pour jours ouvrables	126
		4.2.13	C16 : Coefficients d'ajustement pour jours ouvrables issus de	
			la régression	127
		4.2.14	C17 : Poids finaux pour l'irrégulier	128
				_

	4.2.15	C18 : Coefficients pour jours ouvrables combinés	131
			132
		C20 : Valeurs de correction des points atypiques de l'irrégulier	132
4.3	D:Est	imation finale des différentes composantes	133
	4.3.1	D1 : Série brute ajustée	133
	4.3.2		134
	4.3.3		135
	4.3.4	D5 : Composante saisonnière	135
	4.3.5		137
	4.3.6	D7 : Tendance-cycle	138
	4.3.7	D8 : Composante saisonnier-irrégulier non modifiée	142
	4.3.8	D9 : Valeurs de remplacement pour les points atypiques de la	
		1 &	146
	4.3.9		146
			151
		ϵ	155
	4.3.12	D11A : Série désaisonnalisée finale avec totaux annuels révisés	159
	4.3.13	•	166
			169
		D16 : Effets saisonnier et de calendrier	
		D18 : Effets de calendrier combinés	
4.4	E : Cor	mposantes corrigées des points les plus atypiques	171
	4.4.1	E1 : Composantes corrigées des points les plus atypiques	
	4.4.2	E2 : Série désaisonnalisée corrigée des points les plus atypiques	172
	4.4.3	E3 : Composante irrégulière finale corrigée des points les plus	
		V1 1	173
	4.4.4	E4 : Comparaison des totaux annuels entre série brute et série	
			173
	4.4.5	E5 : Évolutions de la série brute	
	4.4.6	E6 : Évolutions de la série désaisonnalisée finale	175
	4.4.6 4.4.7	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175
	4.4.6 4.4.7 4.4.8	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175 176
4.5	4.4.6 4.4.7 4.4.8 F : Mes	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175
4.5	4.4.6 4.4.7 4.4.8	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175 176 177
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175 176
4.5	4.4.6 4.4.7 4.4.8 F : Mes	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175 176 177 177
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175 176 177 177
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175 176 177 177
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2 4.5.3	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale	175 175 176 177 177
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2	E6: Évolutions de la série désaisonnalisée finale	175 176 177 177 177 178
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2 4.5.3 4.5.4	E6: Évolutions de la série désaisonnalisée finale E7: Évolutions de la tendance-cycle finale E11: Estimation robuste de la série désaisonnalisée finale sures de qualité de la désaisonnalisation F1: Lissage de la série désaisonnalisée par une moyenne mobile MCD F2A: Évolutions, en valeur absolue, des principales composantes F2B: Contributions relatives des composantes aux évolutions de la série brute F2C: Moyennes et écart-types des évolutions en fonction du délai	175 175 176 177 177 178 178 180
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale E11 : Estimation robuste de la série désaisonnalisée finale sures de qualité de la désaisonnalisation F1 : Lissage de la série désaisonnalisée par une moyenne mobile MCD F2A : Évolutions, en valeur absolue, des principales composantes F2B : Contributions relatives des composantes aux évolutions de la série brute F2C : Moyennes et écart-types des évolutions en fonction du délai F2D : Durées moyennes des phases de croissance et décroissance	175 175 176 177 177 178 178 180
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6	E6 : Évolutions de la série désaisonnalisée finale E7 : Évolutions de la tendance-cycle finale E11 : Estimation robuste de la série désaisonnalisée finale sures de qualité de la désaisonnalisation F1 : Lissage de la série désaisonnalisée par une moyenne mobile MCD F2A : Évolutions, en valeur absolue, des principales composantes F2B : Contributions relatives des composantes aux évolutions de la série brute F2C : Moyennes et écart-types des évolutions en fonction du délai F2D : Durées moyennes des phases de croissance et décroissance F2E : Calcul du ratio MCD	175 175 176 177 177 178 178 180
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5	E6: Évolutions de la série désaisonnalisée finale E7: Évolutions de la tendance-cycle finale E11: Estimation robuste de la série désaisonnalisée finale sures de qualité de la désaisonnalisation F1: Lissage de la série désaisonnalisée par une moyenne mobile MCD F2A: Évolutions, en valeur absolue, des principales composantes F2B: Contributions relatives des composantes aux évolutions de la série brute F2C: Moyennes et écart-types des évolutions en fonction du délai F2D: Durées moyennes des phases de croissance et décroissance F2E: Calcul du ratio MCD F2F: Contribution relative des composantes à la variance de	175 175 176 177 177 178 178 180 181 182
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7	E6: Évolutions de la série désaisonnalisée finale E7: Évolutions de la tendance-cycle finale E11: Estimation robuste de la série désaisonnalisée finale sures de qualité de la désaisonnalisation F1: Lissage de la série désaisonnalisée par une moyenne mobile MCD F2A: Évolutions, en valeur absolue, des principales composantes F2B: Contributions relatives des composantes aux évolutions de la série brute F2C: Moyennes et écart-types des évolutions en fonction du délai F2D: Durées moyennes des phases de croissance et décroissance F2E: Calcul du ratio MCD F2F: Contribution relative des composantes à la variance de la partie stationnaire de la série originale	175 175 176 177 177 178 178 180 181 182
4.5	4.4.6 4.4.7 4.4.8 F: Mes 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6	E6: Évolutions de la série désaisonnalisée finale E7: Évolutions de la tendance-cycle finale E11: Estimation robuste de la série désaisonnalisée finale sures de qualité de la désaisonnalisation F1: Lissage de la série désaisonnalisée par une moyenne mobile MCD F2A: Évolutions, en valeur absolue, des principales composantes F2B: Contributions relatives des composantes aux évolutions de la série brute F2C: Moyennes et écart-types des évolutions en fonction du délai F2D: Durées moyennes des phases de croissance et décroissance F2E: Calcul du ratio MCD F2F: Contribution relative des composantes à la variance de	175 175 176 177 177 178 178 180 181 182

			F2I : Tests d'existence de saisonnalité	
5	Mod	lélisatio	n de l'effet de Pâques	191
	5.1	La fête	de Pâques	191
		5.1.1	Un peu d'histoire	191
		5.1.2	Le calcul des dates de Pâques	191
		5.1.3	Pâques et la désaisonnalisation	193
	5.2	Les mo	odèles utilisés dans X-11-ARIMA	194
		5.2.1	Le modèle à effet ponctuel	194
		5.2.2	Le modèle à effet ponctuel corrigé	197
		5.2.3	Le modèle à effet graduel	201
	5.3		odèles de X-12-ARIMA	
		5.3.1	Le modèle de Bateman-Mayes	206
			Le modèle Sceaster	
		533	I e modèle Faster	215

Introduction

En matière de désaisonnalisation, la méthode statistique la plus utilisée est sans aucun doute celle mise en œuvre dans le logiciel Census-X11. Développé dans les années 50-60 au Bureau du recensement américain (US Bureau of the Census), ce programme a fait l'objet de nombreuses modifications et améliorations, en particulier les logiciels X-11-ARIMA en 1975 et 1988 (Dagum [19, 20]), et X-12-ARIMA dont une première version de test a été diffusée en 1998 (Findley et al. [23]). Si ces logiciels incorporent, à des degrés divers, des méthodes d'analyse paramétrique et en particulier les modèles ARIMA popularisés par Box et Jenkins[8], ils restent sur le fond très proches de la méthode initiale X-11 et c'est à ce "noyau" que nous nous intéressons dans la suite.

Les détracteurs de Census-X11 ont souvent mis en avant le côté "boîte noire" de ce logiciel. L'absence de modèle explicite, la multiplicité des options et des tableaux en sortie sont sans doute pour beaucoup dans cette appréciation. Census-X11 est pourtant un outil statistique moderne : c'est une méthode non paramétrique reposant sur des estimations itératives, une des premières utilisations intensives de l'ordinateur. Son principe de base est simple et assez facile à expliquer. Il est vrai cependant qu'il était difficile, pour ne pas dire impossible, à un utilisateur même très averti, de reconstruire et d'expliquer chaque tableau en sortie de Census-X11 : des erreurs mineures de programmation et des imprécisions dans la documentation rendaient cette tâche insurmontable. Ces petites erreurs de programmation ont, pour la plupart, disparu des nouvelles versions du logiciel et nous avons décidé de faire ce travail jamais achevé jusqu'à présent : traiter à fond un exemple de désaisonnalisation par la méthode X-11.

Pour ce faire, nous avons programmé la méthode X-11 en Mathematica et en langage SAS, vérifiant ainsi chaque étape de la désaisonnalisation et validant pas à pas les résultats de X-11-ARIMA et X-12-ARIMA. Après quelques corrections d'erreurs repérées dans chacun des logiciels, ces programmes convergent 1 .

Ce livre est aussi une documentation de la technique de désaisonnalisation mise en œuvre par les logiciels reposant sur la méthode X-11. Il pourra ainsi servir d'ouvrage de référence aux instituts de statistique, aux macro-économistes où à tout autre analyste de données économiques temporelles. Toute personne travaillant dans le domaine de l'ajustement saisonnier devrait ainsi tirer profit de ce livre. Après un bref historique de la désaisonnalisation, vous trouverez une présentation générale de la méthode X-11. Le chapitre suivant sera consacré à l'étude des moyennes mobiles, l'accent étant mis sur les moyennes mobiles utilisées par X-11. Un exemple complet de désaisonnalisation est ensuite présenté et vous pourrez suivre, dans le détail, l'en-

¹X-11-ARIMA version 2000 et X-12-ARIMA version 0.2.7.

semble des calculs faits. Les modèles de régression linéaires utilisés pour les effets de jours ouvrables et le procédé de détection et de correction des valeurs atypiques sont étudiés dans l'exemple. L'estimation de l'effet de Pâques fera l'objet d'un chapitre séparé dans la mesure où les modèles utilisés dans X-11-ARIMA et X-12-ARIMA sont sensiblement différents.

On se concentre ici sur la partie X-11 des logiciels actuels, c'est-à-dire sans référence à une modélisation ARIMA *a priori* de la série à désaisonnaliser. Les différences, en général minimes, entre X-11-ARIMA et X-12-ARIMA sur le fonctionnement de ce "noyau central" seront précisées le cas échéant.

Lorsque par la suite nous ferons référence à X-11, c'est à la méthode de désaisonnalisation et non au logiciel Census-X11 que nous ferons allusion.

Remerciements

La plus grande partie de ce travail a été réalisée pendant le séjour de Dominique Ladiray à Statistique Canada, au Centre de recherche et d'analyse des séries temporelles, de janvier 1998 à septembre 1999, dans le cadre du programme d'échange entre Statistique Canada et l'Institut National de la Statistique et des Études Économiques (INSEE). Nous sommes très reconnaissants aux deux instituts de nous avoir donné l'occasion et les moyens de travailler sur ce projet.

Pour ce travail, il a fallu plonger dans le code Fortran de X-11. Merci à Paul Wong, de Statistique Canada et à Brian Monsell, du US Bureau of the Census, pour avoir répondu à nos nombreuses questions et avoir corrigé les quelques erreurs de programmation que nous avons repérées.

Nous remercions Ketty Attal, de l'INSEE, pour sa contribution aux chapitres 1 et 3.

De nombreuses personnes nous ont aidés en commentant les diverses versions de ce livre. Nous remercions Guy Huot, Bernard Lefrançois et Manchi Luc de Statistique Canada pour leur précieuse relecture de la version française. Merci aussi au traducteur anonyme de Statistique Canada pour la version anglaise. Nous sommes très reconnaissants à Marietta Morry, Norma Chab, Helen Fung et John Higginson pour leurs commentaires de la version anglaise préliminaire.

Nous remercions tout particulièrement David Findley et Brian Monsell, du US Bureau of Census, Michael Baxter du UK Central Statistical Office et Andrew Sutcliffe du Australian Bureau of Statistics pour toutes ces discussions passionantes et pour leur relecture attentive de la version anglaise.

Nous sommes vraiment très reconnaissants à Allan Young d'avoir accepté de préfacer ce livre. Qu'il sache notre profonde admiration pour l'ensemble de ses travaux.

Merci enfin à John Kimmel de Springer-Verlag pour avoir accepté l'idée de publier ce travail et à Bernard Lefrançois de Statistique Canada, Marius Ooms de l'Université Libre d'Amsterdam et Stuart Scott du US Bureau of Labor Statistics pour avoir relu et commenté le manuscript remis à Springer-Verlag.

Les points de vue exprimés dans ce livre sont ceux des auteurs et pas nécessairement ceux de Statistique Canada et de l'INSEE. Nous restons responsables de toute erreur qui aurait survécu au travail de relecture.

D.Ladiray ² B. Quenneville ³ Juillet 2000

Paris Ottawa

² Dominique Ladiray est Administrateur de l'INSEE (France), actuellement en poste à EUROSTAT, Bâtiment Jean Monnet, Rue Alcide de Gasperi, L-2920 Luxembourg. Tel : +352-4301-33339, E-mail : dladiray@hotmail.com

³ Benoît Quenneville est méthodologue au Centre de recherche et d'analyse des séries temporelles, 3G-RHC-BSMD, Statistique Canada, Ottawa, Ontario, Canada, K1A 0T6. Tel: +1-613-951-1605, Fax: +1-613-951-5711, E-mail: quenne@statcan.ca.

Chapitre 1

Bref historique de la désaisonnalisation

Il est aujourd'hui usuel de décomposer une série X_t observée, en plusieurs composantes elles-mêmes non observées, selon un modèle du genre :

$$X_t = T_t + C_t + S_t + I_t,$$

où T_t, C_t, S_t et I_t désignent respectivement la **tendance**, le **cycle**, la **saisonnalité** et l'**irrégulier**. Cette idée est ancienne et c'est sans doute en astronomie qu'il faut en rechercher l'origine 1 .

Au 17ème siècle, les mesures plus précises faites sur les mouvements des planètes semblèrent infirmer les lois de Kepler, et l'idée qu'elles donnaient une approximation de la position de la planète plutôt que sa position exacte fut peu à peu acceptée (Nerlove, Grether et Carvalho [57]). La position observée était alors considérée comme la somme de la position "théorique" et d'une fluctuation irrégulière. Plus tard, on s'aperçut que les orbites des planètes se modifiaient insensiblement et la distinction fut faite entre mouvements séculaires et périodiques. Le modèle à composantes inobservables était né. L'explication de ces mouvements périodiques ou irréguliers a passionné nombre de mathématiciens en cette fin du 18ème siècle et début du 19ème siècle, parmi lesquels Euler, Lagrange et Laplace.

Cette idée de décomposition d'une série temporelle est apparue dès lors dans les travaux des économistes et certains d'entre eux n'hésitaient pas à reconnaître qu'elle leur venait directement de l'astronomie ² ou de la météorologie ³. Parallèlement, le développement des connaissances mathématiques va donner aux chercheurs les moyens de dépasser la simple visualisation graphique dans l'analyse des séries temporelles. Parmi les travaux importants en la matière, il faut citer évidemment ceux de Jean-Baptiste Joseph Fourier [25] sur la décomposition d'une série en somme de fonctions trigonométriques, travaux qui donneront naissance à l'analyse harmonique et, plus

¹Cette partie s'inspire largement de : Armatte [2], Bell et Hillmer [6], Hylleberg [38], Nerlove, Grether et Carvalho [57].

²Nerlove, Grether, Carvalho [57] citent plusieurs exemples dont ceux de Cournot [17] et Jevons [39]. En 1801, l'astronome britannique William Herschel [33] publie un travail mettant en relation les périodicités observées entre les taches solaires et celles du prix du blé.

³Difficile de ne pas citer les travaux du météorologue Buys-Ballot [10] qui, en 1847, étudiait les variations périodiques de température en modélisant la "tendance" par un polynôme, la saisonnalité par des indicatrices et faisait implicitement appel à des techniques de régression linéaire pour estimer les paramètres.

tard, lorsque la notion de processus stochastique sera définie, à l'analyse spectrale. Car, à cette époque, en économie comme dans les autres sciences, l'heure est au déterminisme et à la recherche de lois exactes expliquant tous les phénomènes physiques, économiques, démographiques, biologiques etc.

L'objet de nombreuses études est alors la mise en évidence de "cycles" dont l'étude et l'analyse pourraient permettre d'expliquer et de prévoir les crises économiques (Armatte [2]). Dans ces conditions, les composantes périodiques de court terme sont de peu d'intérêt et il convient de les éliminer :

Toute fluctuation périodique, qu'elle soit journalière, hebdomadaire, trimestrielle ou annuelle, doit être détectée et mise en évidence, non seulement pour l'étudier, mais aussi parce que de telles variations périodiques doivent être évaluées et éliminées pour mieux faire ressortir celles qui, irrégulières ou non périodiques, sont probablement plus importantes et intéressantes. (Jevons [39]) ⁴

La fin du 19^{ème} et le début du 20^{ème} siècles abondent de publications sur la décomposition de séries économiques, de techniques d'estimation des composantes, d'éléments de définition des composantes ⁵. Mais c'est sans doute à W.M. Persons [59], en 1919, que revient le mérite de proposer dans un même travail une méthode "complète" de décomposition incluant une tentative de "définition" et de formalisation des composantes inobservables, un schéma de composition et une méthode d'estimation. Pour ce statisticien, une série temporelle se décompose en quatre types de fluctuations aujourd'hui encore familières :

- 1. Une tendance de long terme, ou tendance séculaire; pour de nombreuses séries comme les compensations bancaires ou la production de marchandises, on peut l'appeler l'élément de croissance;
- 2. Un mouvement ondulatoire ou cyclique qui se superpose à la tendance séculaire; ces courbes semblent atteindre leurs pics pendant les périodes de prospérité industrielle et leurs creux pendant les périodes de dépression, leurs montées et descentes constituant le cycle des affaires;
- 3. Un mouvement saisonnier infra-annuel, d'allure caractéristique pour chaque série ;
- 4. Une variation résiduelle due à des événements affectant une série particulière ou des à des faits exceptionnels, comme des guerres ou des catastrophes nationales, qui affectent simultanément un grand nombre de séries. (Persons, [59])⁶

⁴Every kind of periodic fluctuations, whether daily, weekly, quarterly, or yearly, must be detected and exhibited not only as a subject of study in itself, but because we must ascertain and eliminate such periodic variations before we can correctly exhibit those which are irregular or non-periodic and probably of more interest and importance.

⁵Par exemple, en 1905, Lucien March [52] distingue "des changements annuels, des changements polyannuels (décennaux par exemple), des changements séculaires, sans parler des périodes plus courtes qu'une année" (cité par Yule [68] et Bell et Hillmer [6]). On peut aussi citer les travaux précurseurs des soeurs Maballée [50] cherchant à isoler les points de retournement d'une série à l'aide du corrélogramme.

⁽a) A long-time tendency or secular trend; in many series such as bank clearings or production commodities, this may be termed the growth element;

⁽b) A wavelike or cyclical movement superimposed upon the secular trend; these curves appear to reach their crests during the periods of industrial prosperity and their troughs during periods of industrial

Ces composantes sont ensuite combinées selon les schémas de composition, additif ou multiplicatif , bien connus :

Schéma additif: $X_t = T_t + C_t + S_t + I_t,$ Schéma multiplicatif: $X_t = T_t \times C_t \times S_t \times I_t,$ ou encore: $X_t = T_t \times (1 + C_t) \times (1 + S_t) \times (1 + I_t).$

La plupart des publications de l'époque acceptent ces modèles et "définitions" sans beaucoup de discussion, l'accent étant plutôt mis sur les techniques proprement dites d'ajustement saisonnier ou d'extraction de cycle. De même, d'autres concepts furent acceptés : l'idée que la saisonnalité varie dans le temps; la nécessité de prendre en compte simultanément toutes les composantes lorsqu'on estime la partie saisonnière; l'impossibilité de décrire les tendances et les cycles par des formules mathématiques simples et explicites; la nécessité de traiter les points atypiques - toutes ces idées donnant naissance à des méthodes d'estimation différentes (Menderhausen [53]).

Les travaux de l'époque étaient cependant essentiellement inspirés par deux grandes méthodes, dont on donnera une brève description pour le cas d'un modèle multiplicatif (Armatte [2]).

- Dans les années 1910, c'est la méthode des **"liens relatifs"** (relative links), mise au point par Persons [59], qui a la faveur des économistes statisticiens. Son principe consiste à calculer pour chaque valeur mensuelle de la série le rapport X_t/X_{t-1} de cette valeur à celle du mois précédent; à faire un tableau des valeurs de ces rapports pour les 12 mois; puis à déterminer les médianes, $\{M_i, i=1,\ldots,12\}$, de ces douze séries. Ces médianes sont ensuite chaînées par multiplication en prenant une base 100 pour janvier : $S_1=100, S_i=M_iS_{i-1}$. Enfin, ces coefficients saisonniers sont corrigés par un facteur $(S_{13}/S_1)^{1/12}$ pour que $S_1=S_{13}=100$.
- La seconde façon de déterminer les coefficients saisonniers est la méthode des moyennes mobiles ⁷, appliquée dès 1922 par la Federal Reserve ⁸ et popularisée plus tard par Macaulay [51]. Elle s'appuie sur le calcul d'une moyenne mobile centrée d'ordre 12 pour obtenir une estimation de la tendance. Le rapport entre les données originales et cette estimation fournit une première estimation de la composante saisonnière. Pour éliminer l'irrégulier, on calcule ensuite les médianes (ou moyennes) de la composante pour chaque mois. Puis on ajuste ces nouveaux indices pour que leur somme fasse 1 et obtenir ainsi les coefficients saisonniers définitifs.

Bien que très populaires, ces méthodes ont fait l'objet de nombreuses critiques sur le plan théorique. Ainsi, Slutsky [64] et Yule [69] montrèrent que l'utilisation de moyennes mobiles pouvait introduire des cycles artificiels dans les données. Fisher [24] déplorait que l'on applique des méthodes "empiriques" *ad hoc* alors qu'il existait

depression, their rise and fall constituting the business cycle;

⁽c) A seasonal movement within the year with a characteristic shape for each series;

⁽d) A residual variation due to developments which affect individual series, or to momentous occurrences such as wars or national catastrophes, which affect a number of series simultaneously.

⁷Une présentation complète des moyennes mobiles sera faite au chapitre 3.

⁸C'est au physicien anglais Poynting [60] qu'on attribue souvent la première utilisation en 1884 d'une moyenne mobile pour éliminer la tendance et isoler les fluctuations de la série qu'il peut ainsi traiter par l'analyse harmonique.

des outils mathématiques adéquats. L'événement le plus important de cette période est sans aucun doute l'apparition, à la fin des années 20, des modèles autorégressifs (Yule [69]) et moyennes mobiles (Slutsky [64]) pour l'analyse des séries temporelles, soit en d'autres termes, le moyen pour les économistes statisticiens de sortir du cadre déterministe traditionnel en utilisant les premiers processus stochastiques. Mais il faudra attendre de nombreuses années pour que ces méthodes connaissent un certain succès en désaisonnalisation.

Dans les années 30, les méthodes de désaisonnalisation basées sur des techniques de régression ont connu des fortunes diverses. Elles s'appuyaient en général sur une décomposition additive de la série initiale ou d'une transformation simple de cette série, sur une modélisation de la série initiale et de chacune des composantes par des fonctions paramétriques simples et sur l'estimation des paramètres par des méthodes de type "moindres carrés ordinaires". La difficulté de trouver une bonne spécification du modèle, et en particulier les fortes hypothèses nécessaires sur les composantes inobservables, expliquent sans aucun doute le rejet, momentané, de ces méthodes (Bell et Hillmer [6]).

Le développement de l'informatique, après la seconde guerre mondiale, a fortement contribué à la diffusion et à l'amélioration des méthodes de désaisonnalisation. Ainsi, en 1954, Julius Shiskin met au point la **Census Method I** au bureau du recensement des Etats-Unis. Cette méthode de désaisonnalisation sera suivie, en 1957, par la **Census Method II** et 11 versions eXpérimentales (X-1, X-2, etc.) pour finalement aboutir, en 1965, au logiciel de désaisonnalisation X-11 (**X-11 Variant of the Census Method II Seasonal Adjustment Program**; Shiskin, Young and Musgrave [63]). Inspirées directement des lissages par moyennes mobiles et des travaux de Macaulay [51], ces diverses versions constituaient les premières méthodes automatiques d'ajustement saisonnier et **Census X-11** devint rapidement un standard utilisé dans le monde entier. Ces nouvelles possibilités de calcul facilitèrent l'utilisation des techniques paramétriques de régression pour l'estimation et la correction des effets de calendriers (jours ouvrables, jours fériés, vacances, etc.). Un traitement automatique de ces effets, basé sur les travaux de Young [67], fut d'ailleurs intégré dans le logiciel Census X-11.

Parallèlement, la modélisation paramétrique des séries temporelles et l'analyse spectrale ont fait des progrès importants, essentiellement grâce au développement de la théorie des processus stochastiques, progrès dont les outils de désaisonnalisation ont bénéficié peu à peu.

L'analyse harmonique, employée très tôt pour résoudre des problèmes de décomposition de série, se plaçait dans un cadre résolument déterministe et était utilisée pour mettre en évidence des périodicités exactes alors qu'on était bien conscient que les cycles pouvaient n'être pas rigoureusement périodiques ou que les saisonnalités pouvaient évoluer. Là encore, il fallut attendre les ordinateurs des années 60 pour profiter des progrès de la théorie et mieux utiliser l'analyse spectrale : estimations améliorées de la densité spectrale (Bartlett [3], Tukey [66]), étude des processus non stationnaires (Priestley [61]), transformée de Fourier rapide (Cooley et Tukey [16]), etc.

La popularisation des modèles ARIMA par Box et Jenkins en 1970 [8] a permis de faire progresser les outils de désaisonnalisation dans deux directions. D'une part, elle a constitué un développement important de Census X-11 qui a évolué vers **X-11-ARIMA** en 1975 (Dagum [18, 19]). Dans cette nouvelle version, les modèles ARIMA

sont utilisés pour prolonger la série initiale avant de la désaisonnaliser avec la méthode X-11, ce qui permet de limiter les révisions des estimations en fin de série, lorsque l'on dispose d'une observation supplémentaire. D'autre part, la modélisation ARIMA a aussi été introduite dans les méthodes de désaisonnalisation fondées sur la théorie de l'extraction du signal. Les exemples de travaux utilisant la modélisation ARIMA et l'analyse spectrale à des fins de désaisonnalisation sont nombreux (voir Bell et Hillmer [6]). Toutes ces avancées, techniques et théoriques, font qu'aujourd'hui les méthodes de décomposition fondées sur des modèles se développent et se popularisent.

Aujourd'hui, les deux grandes tendances de la désaisonnalisation, l'**approche empirique** et l'**approche par modélisation**, inspirent diverses méthodes, dont certaines mêlent les deux philosophies. Les principales critiques que l'on peut faire à chacune des deux approches sont difficiles à éviter. Ainsi, reproche-t-on aux méthodes empiriques de ne pas être optimales et de ne pas s'appuyer sur des modèles explicites, ce qui rend particulièrement difficile, voire impossible, la connaissance des propriétés statistiques des estimateurs utilisés. Les méthodes fondées sur les modèles sont satisfaisantes sur ce plan mais on s'interroge sur la pertinence de la modélisation surtout lorsque des modèles univariés sont utilisés sur des séries économiques qui, par nature dépendent de nombreux facteurs externes - et sur la robustesse des méthodes d'estimation dans le cas de séries très perturbées. On invoque aussi les difficultés de modéliser *a priori* des composantes sur lesquelles on sait peu de choses et la relative faiblesse de la théorie statistique pour les séries non stationnaires.

C'est pourquoi les améliorations récemment apportées ne concernent pas le principe même des méthodes existantes mais visent plutôt à corriger certains de leurs défauts. Les principales préoccupations sont tournées d'une part vers les problèmes liés à l'estimation des composantes en début et fin de série, et d'autre part vers l'élimination des divers effets perturbateurs qui influencent les résultats de la désaisonnalisation (points atypiques, changements de régime, effets de calendrier, etc.).

Schématiquement, comme le résume la figure 1.1, les méthodes de désaisonnalisation peuvent être classées en deux grandes catégories : les méthodes **non paramétriques** et les méthodes **paramétriques**.

Les méthodes non paramétriques, dites empiriques, permettent de décomposer la série en composantes inobservables par une procédure, souvent **itérative**, basée sur des lissages successifs. On peut regrouper l'ensemble des lisseurs utilisés dans ces méthodes sous le terme de **régressions locales**. Les régressions locales consistent à ajuster des polynômes, en général par les moindres carrés, pondérés ou non, sur des intervalles glissants (se décalant d'un point à chaque fois). Au centre de l'intervalle, la donnée lissée est la valeur, à cette date, du polynôme ajusté (la donnée lissée à la date suivante est obtenue par ajustement d'un polynôme sur l'intervalle suivant). On peut montrer que les régressions locales reviennent à appliquer des moyennes mobiles particulières lorsque les observations sont régulièrement espacées. Les méthodes se distinguent essentiellement par leur degré de robustesse : dans un premier groupe, on trouve **STL** (Cleveland et al. [15]), méthode fondée sur le "LOWESS", une technique de lissage robuste par régressions locales (Cleveland [14]) et **SABL** où la robustesse est obtenue grâce à l'emploi de médianes mobiles ; dans un second groupe, figurent la célèbre méthode de désaisonnalisation **X-11** (US Bureau of the Census), **X-11**-

FIG. 1.1 – Méthodes et logiciels de désaisonnalisation.

ARIMA (Statistics Canada, Dagum [20]) et **X-12-ARIMA** (US Bureau of the Census, Findley et al. [23]).⁹

Les méthodes paramétriques peuvent elles aussi se diviser en deux grands ensembles : les méthodes par régression et les méthodes fondées sur des modèles stochastiques.

Les méthodes par régression (inspirées de Buys-Ballot ([10]) posent pour chaque composante, excepté l'irrégulier, une fonction déterministe du temps. Parmi elles, on peut citer **BV4** (Technische Universität Berlin, Deutsche Institut für Wirtschaftsforschüng) et **DAINTIES**, méthode utilisée dans les années 80 à la Commission Européenne (Hylleberg [37]).

Les méthodes fondées sur des modèles stochastiques (non déterministes) utilisent des modèles ARIMA pour modéliser les composantes inobservables. Parmi celles-ci on distingue encore deux groupes : celles qui estiment les modèles des composantes à partir du modèle ARIMA de la série initiale (Burman [9], Hillmer et Tiao [35]), parmi lesquelles **SEATS** (Gomez et Maravall [27]) est la plus récente, et celles qui les modélisent et les estiment directement (Akaike [1], Kitagawa et Gersch [41]), comme **STAMP** (Koopman et al. [42]), **BAYSEA** et **DECOMP** (Institute of Statistical Mathematics, Japan).

⁹Il existe d'autres variantes de la méthode Census X-11 parmi lesquelles on peut citer la méthode utilisée au bureau australien de statistique, celle de la banque centrale allemande ou encore celle de l'institut britannique de statistique.

Logiciel	URL
BAYSEA	http://www.ism.ac.jp/software/products-e.html
BV4	http://www.statistik-bund.de/mve/e/bv4.htm
Web DECOMP	http://ssnt.ism.ac.jp/inets2/title.html
STL et SABL dans S-PLUS	http://www.splus.mathsoft.com/splus/splsprod/default.htm
STAMP	http://stamp-software.com
TRAMO/SEATS	http://www.bde.es/servicio/software/softwaree.htm
X-11-ARIMA	http://www.statcan.ca/english/IPS/Data/10F0003XDE.htm
X-12-ARIMA	http://ftp.census.gov/pub/ts/x12a/final/pc/

TAB. 1.1 – Adresses internet pour les principaux logiciels de désaisonnalisation.

Le tableau 1.1 indique des adresses internet pour la plupart des méthodes citées ¹⁰.

¹⁰ Voir aussi "The Econometric Journal online", section "Softwares", pour la mise à jour de ces liens (http://www.econometriclinks.com).

Chapitre 2

Principes de la méthode X-11

La méthode X-11, qui permet d'analyser des séries mensuelles et trimestrielles, repose sur un principe itératif d'estimation des différentes composantes, cette estimation étant faite à chaque étape grâce à des moyennes mobiles adéquates.

2.1 Composantes et schémas de composition

Les composantes qui peuvent apparaître à un moment ou à un autre de la décomposition sont :

- 1. La **tendance** qui représente l'évolution de long terme de la série ;
- 2. Le **cycle**, mouvement lisse, quasi périodique, autour de la tendance qui met en évidence une succession de phases de croissance et de récession.
 - X-11 ne sépare pas ces deux composantes : les séries étudiées sont en général trop courtes pour que l'estimation des deux composantes puisse se faire aisément. On parlera donc dans la suite de composante **tendance-cycle**, notée C_t pour suivre les notations usuelles de X-11.
- 3. La composante **saisonnière**, notée S_t , représentant des fluctuations infra-annuelles, mensuelles ou trimestrielles, qui se répètent plus ou moins régulièrement d'année en année;
- 4. Une composante dite de **jours ouvrables**, notée D_t , qui mesure l'impact sur la série de la composition journalière du mois ou du trimestre;
- 5. Une composante mesurant l'effet de la **fête de Pâques** , notée E_t ;
- 6. Et enfin, la composante **irrégulière**, notée I_t , regroupant toutes les autres fluctuations plus ou moins erratiques non prises en compte dans les composantes précédentes.

Remarquons que ces définitions sont de fait qualitatives et peu précises. Elles restent d'ailleurs aujourd'hui l'objet de controverses et d'interprétations diverses. A titre d'exemple, voici deux citations d'éminents statisticiens qui, à l'évidence, n'ont ni le même objectif ni la même définition :

 Sir Kendall [40, page 29] : "La caractéristique essentielle d'une tendance est d'être lisse". ¹

¹"The essential idea of trend is that it shall be smooth".

Andrew Harvey [30, page 284]: "Il n'y a cependant aucune raison fondamentale pour qu'une tendance soit lisse".

Dans la méthode X-11, les composantes sont en fait définies de façon implicite par les outils qui servent à les estimer.

La méthode X-11 considère 2 modèles de décomposition ³ :

- Le modèle additif : $X_t = C_t + S_t + D_t + E_t + I_t$;
- Le modèle multiplicatif : $X_t = C_t \times S_t \times D_t \times E_t \times I_t$;

En plus, X-11-ARIMA propose :

- Le modèle **log-additif** : $log X_t = log C_t + log S_t + log D_t + log E_t + log I_t$; X-12-ARIMA rajoute à ces 3 modèles :
- Le modèle **pseudo-additif** : $X_t = C_t \times (S_t + D_t + E_t + I_t 1)$.

2.2 Moyennes mobiles

Les moyennes mobiles, qui constituent l'outil de base de la méthode de désaisonnalisation X-11, sont utilisées pour estimer les principales composantes de la série, tendance et saisonnalité. Ce sont avant tout des outils de **lissage** conçus pour éliminer une composante indésirable de la série. Prenons l'exemple simple d'une série constituée d'une tendance et d'une composante irrégulière : si la tendance est lisse, alors les valeurs de la série autour de la date t doivent contenir de l'information sur la valeur de cette tendance à l'instant t et il doit être possible d'utiliser une moyenne de ces valeurs comme estimation.

Une **moyenne mobile** de coefficients $\{\theta_i\}$ se définit donc comme suit⁴:

$$M(X_t) = \hat{C}_t = \sum_{i=-p}^{+f} \theta_i X_{t+i},$$

tout le problème est alors de trouver le "bon" ensemble de coefficients $\{\theta_i\}$. Les possibilités de calcul très limitées à la fin du $19^{\rm ème}$ siècle ont conduit les statisticiens à chercher des coefficients de pondération indépendants des valeurs de la série selon des méthodes qui seront étudiées en détail dans le chapitre 3.

2.3 Un algorithme simple de désaisonnalisation

Soit une série brute mensuelle X_t que nous supposerons ici décomposée en tendancecycle, saisonnalité et partie irrégulière selon un schéma additif : $X_t = C_t + S_t + I_t$. On peut imaginer un algorithme simple de désaisonnalisation en quatre étapes :

1. Estimation de la tendance-cycle par moyenne mobile :

$$C_t^{(1)} = M_0(X_t).$$

² "There is no fundamental reason, though, why a trend should be smooth."

³Le logiciel Census X-11 ne permet pas d'estimer l'effet de Pâques.

 $^{^4}$ La valeur à l'instant t de la série brute est donc remplacée par une moyenne pondérée de p valeurs "passées" de la série, de la valeur actuelle, et de f valeurs "futures" de la série. Les moyennes mobiles sont aussi appelées des filtres linéaires, filtres qui permettent d'éliminer ou d'atténuer les oscillations associées à certaines fréquences. Voir le chapitre 3

La moyenne mobile utilisée ici devra reproduire au mieux la composante tendancecycle tout en éliminant la composante saisonnière et en réduisant la composante irrégulière au maximum.

2. Estimation de la composante saisonnier-irrégulier :

$$(S_t + I_t)^{(1)} = X_t - C_t^{(1)}.$$

3. Estimation de la composante saisonnière par moyenne mobile sur chaque mois :

$$S_t^{(1)} = M_1 \left[(S_t + I_t)^{(1)} \right]$$

et donc aussi

$$I_t^{(1)} = (S_t + I_t)^{(1)} - S_t^{(1)}.$$

Il s'agit donc ici de lisser les valeurs de la composante saisonnier-irrégulier de chaque mois pour extraire l'évolution du coefficient saisonnier du mois concerné. La moyenne mobile utilisée ici devra reproduire au mieux la composante saisonnière de chaque mois en réduisant au maximum la composante irrégulière.

On peut imposer ici une contrainte de normalisation des coefficients qui leur imposera par exemple d'être de somme nulle.

4. Estimation de la série corrigée des variations saisonnières :

$$A_t^{(1)} = (C_t + I_t)^{(1)} = X_t - S_t^{(1)}.$$

Toute la difficulté réside donc dans le choix des moyennes mobiles utilisées aux étapes 1 et 3.

2.4 L'algorithme de base de la méthode X-11

C'est cet algorithme simple que la méthode X-11 met finalement en œuvre, en utilisant des moyennes mobiles judicieusement choisies et en affinant peu à peu, par itération de l'algorithme, les estimations des composantes.

On peut ainsi définir l'algorithme de base de la méthode X-11 qui correspond en fait à utiliser deux fois de suite l'algorithme précédent en changeant à chaque fois les moyennes mobiles.

1. Estimation de la tendance-cycle par une moyenne mobile 2×12 :

$$C_t^{(1)} = M_{2 \times 12}(X_t).$$

La moyenne mobile utilisée ici est une moyenne mobile sur 13 termes, dite 2×12 , de coefficients $\frac{1}{24} \{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1\}$, qui conserve les tendances linéaires, élimine les saisonnalités constantes d'ordre 12 et minimise la variance de la partie irrégulière.

2. Estimation de la composante saisonnier-irrégulier :

$$(S_t + I_t)^{(1)} = X_t - C_t^{(1)}.$$

3. Estimation de la composante saisonnière par une moyenne mobile 3×3 sur chaque mois :

$$S_t^{(1)} = M_{3\times3} \left[\left(S_t + I_t \right)^{(1)} \right].$$

La moyenne mobile utilisée ici est une moyenne mobile sur 5 termes, dite 3×3 , de coefficients $\frac{1}{9}\{1,2,3,2,1\}$, qui préserve les tendances linéaires. Les coefficients sont ensuite normalisés de telle sorte que leur somme sur toute période de 12 mois soit approximativement nulle.

$$\tilde{S}_{t}^{(1)} = S_{t}^{(1)} - M_{2 \times 12} \left(S_{t}^{(1)} \right).$$

4. Estimation de la série corrigée des variations saisonnières :

$$A_t^{(1)} = (C_t + I_t)^{(1)} = X_t - \tilde{S}_t^{(1)}.$$

Cette première estimation de la série corrigée des variations saisonnières doit, par construction, contenir moins de saisonnalité. La méthode X-11 remet en œuvre notre algorithme simple en changeant les moyennes mobiles pour tenir compte de cette propriété.

5. Estimation de la tendance-cycle par moyenne mobile de Henderson sur 13 termes :

$$C_t^{(2)} = H_{13} \left(A_t^{(1)} \right)$$
.

Les moyennes mobiles de Henderson, si elles n'ont pas de propriétés spéciales en terme d'élimination de la saisonnalité (il n'y en a pas ou peu à ce stade), ont un très bon pouvoir de lissage et conservent les tendances localement polynomiales de degré 2.⁵

6. Estimation de la composante saisonnier-irrégulier :

$$(S_t + I_t)^{(2)} = X_t - C_t^{(2)}.$$

7. Estimation de la composante saisonnière par moyenne mobile 3×5 sur chaque mois :

$$S_t^{(2)} = M_{3 \times 5} \left[(S_t + I_t)^{(2)} \right].$$

La moyenne mobile utilisée ici est une moyenne mobile sur 7 termes, dite 3×5 , de coefficients $\frac{1}{15}\{1,2,3,3,3,2,1\}$, qui conserve les tendances linéaires. Les coefficients sont ensuite normalisés de telle sorte que leur somme sur toute période de 12 mois soit approximativement nulle.

$$\tilde{S}_t^{(2)} = S_t^{(2)} - M_{2 \times 12} \left(S_t^{(2)} \right).$$

8. Estimation de la série corrigée des variations saisonnières :

$$A_t^{(2)} = (C_t + I_t)^{(2)} = X_t - \tilde{S}_t^{(2)}.$$

Cet algorithme de base est résumé dans le tableau 2.2.

⁵Comme cette moyenne mobile de Henderson est symétrique, elle conserve aussi les tendances localement polynomiales de degré 3 (voir chapitre 3).

Série brute mensuelle : $X_t = C_t + S_t + I_t$

- 1. Estimation de la tendance-cycle par une moyenne mobile 2×12 : $C_t^{(1)} = M_{2 \times 12}(X_t)$
- 2. Estimation de la composante saisonnier-irrégulier : $(S_t + I_t)^{(1)} = X_t - C_t^{(1)}$
- 3. Estimation de la composante saisonnière par une moyenne 3×3 sur chaque mois:

$$S_t^{(1)} = M_{3\times3} \left[(S_t + I_t)^{(1)} \right]$$

et normalisation
$$\tilde{S}_t^{(1)} = S_t^{(1)} - M_{2\times 12} \left(S_t^{(1)}\right)$$

4. Estimation de la série corrigée des variations saisonnières :

$$A_t^{(1)} = (C_t + I_t)^{(1)} = X_t - \tilde{S}_t^{(1)}$$

5. Estimation de la tendance-cycle par une moyenne mobile de Henderson sur 13 termes:

$$C_t^{(2)} = H_{13} \left(A_t^{(1)} \right)$$

6. Estimation de la composante saisonnier-irrégulier :

$$(S_t + I_t)^{(2)} = X_t - C_t^{(2)}$$

7. Estimation de la composante saisonnière par une moyenne mobile 3×5 sur chaque mois:

$$S_t^{(2)} = M_{3 \times 5} \left[(S_t + I_t)^{(2)} \right]$$
 et normalisation $\tilde{S}_t^{(2)} = S_t^{(2)} - M_{2 \times 12} \left(S_t^{(2)} \right)$

$$\tilde{S}_t^{(2)} = S_t^{(2)} - M_{2 \times 12} \left(S_t^{(2)} \right)$$

8. Estimation de la série corrigée des variations saisonnières :

$$A_t^{(2)} = (C_t + I_t)^{(2)} = X_t - \tilde{S}_t^{(2)}$$

TAB. 2.2 – L'algorithme de base de X-11.

2.5 Points atypiques et effets de calendrier

Comme tout opérateur linéaire, les moyennes mobiles réagissent mal à la présence de valeurs atypiques. La méthode X-11 incorpore donc un **outil de détection et de correction des points atypiques** utilisé pour nettoyer la série préalablement à la désaisonnalisation.

Par ailleurs, d'autres effets que la saisonnalité peuvent expliquer des variations constatées dans la série; les plus usuels sont des effets liés au calendrier : effet de jours ouvrables, effet de Pâques, etc. Ces composantes sont estimées par des modèles de régression linéaire, à partir de la composante irrégulière ⁶.

L'algorithme de base de X-11, voir tableau 2.2, nous permet d'obtenir 3 estimations différentes de la composante irrégulière :

À l'étape 3, en enlevant l'estimation de la composante saisonnière de l'estimation de la composante saisonnier-irrégulier obtenue à l'étape 2 :

$$I_t^{(1)} = (S_t + I_t)^{(1)} - \tilde{S}_t^{(1)}.$$

X-11 va utiliser cette estimation pour détecter et corriger les points atypiques et obtenir une meilleure estimation de la composante saisonnière.

À l'étape 7, en enlevant l'estimation de la composante saisonnière de l'estimation de la composante saisonnier-irrégulier obtenue à l'étape 6 :

$$I_t^{(2)} = (S_t + I_t)^{(2)} - \tilde{S}_t^{(2)}.$$

X-11 va utiliser cette estimation à nouveau pour détecter et corriger les points atypiques et obtenir une estimation plus fiable de la composante saisonnière.

 À l'étape 8, en enlevant à l'estimation de la série corrigée des variations saisonnières l'estimation de la composante tendance-cycle obtenue à l'étape 5 :

$$I_t^{(3)} = A_t^{(2)} - C_t^{(2)}.$$

X-11 va utiliser cette estimation pour évaluer, par régression linéaire, la composante pour jours ouvrables et détecter et corriger les points atypiques ⁷.

2.6 Le principe itératif de X-11

Pour évaluer les différentes composantes de la série, en tenant compte de la présence éventuelle de points atypiques, X-11 va procéder de façon itérative : estimation des composantes, recherche des effets gênants dans la composante irrégulière, estimation des composantes sur une série corrigée, recherche des effets gênants dans la composante irrégulière etc.

Le programme Census X-11 présente 4 étapes de traitement notées A, B, C, D plus 3 étapes notées E, F, G qui proposent des statistiques et des graphiques et qui ne font pas partie de la décomposition à proprement parler.

⁶X-12-ARIMA possède un module dit "Reg Arima" qui permet d'estimer directement ces effets sur la série brute, avant de procéder à la désaisonnalisation. Ce module ne sera pas étudié ici.

⁷Ces diverses méthodes seront présentées au chapitre 4.

2.6.1 Partie A : Ajustements préalables

Cette étape, qui n'est pas obligatoire, permet à l'utilisateur d'effectuer une correction *a priori* de la série en introduisant des coefficients d'ajustement. Il peut ainsi :

- introduire des coefficients mensuels (ou trimestriels) d'ajustement qui lui permettront de corriger l'effet de certains jours fériés, de modifier le niveau de la série (effet d'une grève par exemple), etc.;
- dans le cas mensuel seulement, introduire 7 coefficients de pondération, à raison d'un par jour pour prendre en compte les variations de la série imputables à la composition des mois en jours ouvrables.

A partir de ces données, le programme calcule des coefficients de correction qui sont appliqués à la série brute. La série ainsi corrigée, tableau B1 des sorties imprimées, passe alors à l'étape B.

2.6.2 Partie B : Première correction automatique de la série

Cette étape consiste fondamentalement en une première estimation et correction des points atypiques et, si on le demande, des effets liés aux jours ouvrables. Cette estimation se fait par application de l'algorithme de base détaillé au paragraphe 2.4.

Ces traitements aboutissent aux tableaux B19, évaluation des effets de jours ouvrables, et B20, valeurs de correction des points jugés atypiques, qui servent à corriger la série brute et qui conduisent à la série du tableau C1.

2.6.3 Partie C : Seconde correction automatique de la série

Cette étape, en appliquant toujours notre algorithme de base, aboutit à une estimation plus précise des effets de jours ouvrables (tableau C19) et des valeurs de correction des points atypiques (tableau C20).

La série, enfin "nettoyée", figure dans le tableau D1 des sorties imprimées.

2.6.4 Partie D: Désaisonnalisation

Cette étape, qui applique pour la dernière fois notre algorithme de base, est celle de la désaisonnalisation proprement dite et elle aboutit aux estimations finales :

- de la composante saisonnière (tableau D10),
- de la série corrigée des variations saisonnières (tableau D11),
- de la composante tendance-cycle (tableau D12),
- de la composante irrégulière (tableau D13).

2.6.5 Parties E, F et G: Statistiques et graphiques

Les étapes E et F proposent des statistiques qui permettent de juger de la qualité de la désaisonnalisation.

La partie G propose des graphiques en mode caractère. Elle peut être oubliée dans la mesure où elle est aujourd'hui avantageusement remplacée par les logiciels graphiques usuels de bureautique.

Un résumé des différentes étapes de la méthode X-11 est présenté au tableau 2.3.

Partie A: Ajustements préalables

- pour aléas connus et importants
- pour jours ouvrables

Partie B : Première correction automatique de la série

- Estimation de la composante irrégulière
- Détection et correction automatique des points atypiques
- Correction des effets de jours ouvrables

Partie C : Seconde correction automatique de la série

- Estimation de la composante irrégulière
- Détection et correction automatique des points atypiques
- Correction des effets de jours ouvrables

Partie D: Désaisonnalisation

- 1 Calcul de la série désaisonnalisée provisoire (tableaux D1 à D6)
- 2 Lissage de la série désaisonnalisée par une moyenne mobile de Henderson et nouvelle estimation des coefficients saisonniers (tableaux D7 to D10)
- 3 Calcul de la série désaisonnalisée définitive (tableau D11), extraction de la composante tendance-cycle (tableau D12) et de la composante irrégulière (tableau D13)

Partie E : Composantes corrigées des valeurs très atypiques

Partie F : Mesures de qualité de la désaisonnalisation

Partie G: Graphiques

TAB. 2.3 – Schéma simplifié du fonctionnement de X-11.

2.7 De Census X-11 à X-11-ARIMA et X-12-ARIMA

L'utilisation de moyennes mobiles, comme nous le verrons au chapitre 3, pose des problèmes en début et fin de série, notamment en ce qui concerne la stabilité des estimations. Ainsi, lorsque l'on dispose d'un point supplémentaire et que l'on désaisonnalise à nouveau la série avec le logiciel Census-X11, il n'est pas rare de constater des variations sensibles des estimations pour les dates les plus récentes.

Dès 1975, Estella B. Dagum [18] a proposé de remédier en grande partie à ces problèmes en utilisant les modèles ARIMA popularisés quelques années plus tôt par les travaux de Box et Jenkins [8]. Elle a ainsi montré qu'on diminuait sensiblement les révisions en ajustant un modèle ARIMA à la série, en prévoyant les valeurs futures de la série grâce à ce modèle et en appliquant la procédure de désaisonnalisation X-11 à cette série ainsi prolongée. C'est cette idée qui est à la base du logiciel X-11-ARIMA (Dagum [20]) ⁸.

Malheureusement, l'estimation de modèles ARIMA est rendue délicate par la présence de points atypiques, de rupture de niveau, d'effets de calendrier etc. X-11-ARIMA repose alors sur le schéma suivant :

1. Première désaisonnalisation par la méthode X-11:

Cette étape permet d'estimer les valeurs atypiques, les effets de jours ouvrables comme nous l'avons vu mais aussi les effets de Pâques en utilisant l'estimation de la composante irrégulière du tableau D13.

- 2. Modélisation ARIMA et prévision de la série corrigée de tous ces effets.
- 3. Désaisonnalisation de la série prolongée par la méthode X-11.

X-12-ARIMA repose sur le même principe mais propose en outre un module très complet, appelé Reg-ARIMA, permettant de corriger la série initiale de toute sorte d'effets indésirables. L'estimation de ces effets se fait grâce à l'utilisation de modèles de régression à erreurs ARIMA (Findley et al. [23]).

Cependant, le lissage des derniers points de presque toutes les séries est nécessairement très hypothétique, sauf à utiliser des informations sur la période non couverte par la série. Bien que mathématiquement inélégant, la procédure la plus souhaitable consiste, dans la majorité des cas, à prédire, même grossièrement, les valeurs futures de la série et à lisser la série ainsi extrapolée [Traduction].

However, graduation of the ends of almost any series is necessarily extremely hypothetical unless facts outside the range covered by the graduation are used in obtaining the graduation Though mathematically inelegant, the most desirable procedure in a majority of the cases of graduation is to graduate not only the actual data, but extrapolated data which sometimes may be extremely crude estimates.

Rendons hommage à Estella B. Dagum pour avoir réussi à la mettre en œuvre et à l'imposer.

 $^{^8\}mathrm{Cette}$ idée avait déjà été implicitement exprimée par Frederick Macaulay [51] en 1931 :

Chapitre 3

Moyennes mobiles

La méthode de désaisonnalisation X-11 utilise des moyennes mobiles pour estimer les principales composantes de la série, tendance-cycle et saisonnalité. Ces outils, qui n'impliquent pas *a priori* l'utilisation de concepts ou de modèles sophistiqués, sont très simples de principe et se révèlent d'application particulièrement souple : il est possible de construire une moyenne mobile possédant de bonnes propriétés en termes de conservation de tendance, d'élimination de la saisonnalité, de réduction du bruit, etc.

Dans ce chapitre nous allons étudier leurs propriétés et les principes qui ont guidé la construction des moyennes utilisées dans X-11.

3.1 Quelques définitions et un peu de théorie

Une série temporelle peut être considérée de deux points de vue : celui des temps et celui des fréquences.

- Dans le domaine des temps, on regarde la série $\{X_t\}$ comme une succession de T valeurs observées aux instants t, t variant de 1 à T. C'est de cette façon que l'on aborde généralement une série temporelle et il est facile de représenter graphiquement, comme dans la figure 3.1, son évolution au cours du temps. On note que cette série est caractérisée par une forte saisonnalité traduisant la chute de l'activité industrielle au mois d'août.
 - Les modélisations de la série, ou de ses composantes, mettant en relation la valeur à l'instant t et celles des instants passés sont particulièrement aisées à formaliser. C'est le cas par exemple de la modélisation de la série par un modèle ARIMA saisonnier, de l'expression d'une tendance linéaire, exponentielle ou encore localement polynomiale, ou de la modélisation de la composante irrégulière par un bruit blanc.
- Dans le *domaine des fréquences*, au contraire, on part de l'expression de la série $\{X_t\}$ comme somme de fonctions sinusoïdales ¹. On mesure alors pour chaque fréquence, l'importance qu'elle a dans la composition de la série : le graphique

¹Dans sa *Théorie Analytique de la Chaleur*, présentée le 21 décembre 1807 et publiée en 1822, Jean-Baptiste Fourier [25] a établi que toute fonction mathématique pouvait être décomposée en une somme de fonctions sinus et cosinus. Ce théorème a donné naissance tout d'abord à l'analyse harmonique puis, lorsqu'il a été généralisé, à l'analyse spectrale.

FIG. 3.1 – Indice mensuel de la production industrielle en France, d'octobre 1985 à mars 1995.

qui associe à chaque fréquence son importance dans la série s'appelle le spectre de la série. Ainsi, le spectre de l'indice de la production industrielle française est représenté dans la figure 3.2.

Comme on peut le voir, ce spectre laisse apparaître une forte contribution (on dit un pic spectral) de la fréquence $\pi/6=30^\circ$, et de ses multiples $2\pi/6=60^\circ$, $3\pi/6=90^\circ$, ..., $6\pi/6=180^\circ$. La période associée à cette fréquence est $\omega=2\pi/f=2\pi/\left(\pi/6\right)=12$ et nous retrouvons la saisonnalité mensuelle observée sur le graphique précédent.

Les basses fréquences correspondent par nature à des composantes évoluant lentement, tendance et cycle par exemple, et les hautes fréquences à des composantes évoluant plus vite comme la composante irrégulière.

Ces deux approches s'avèrent souvent complémentaires et par la suite, nous utiliserons soit l'une, soit l'autre pour montrer les qualités et les défauts des filtres moyennes mobiles.

3.1.1 Définitions et exemple

On appelle moyenne mobile de coefficients $\{\theta_k\}$ l'opérateur noté $M\{\theta_k\}$, ou plus simplement M, défini par :

$$M(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

La valeur à l'instant t de la série brute est donc remplacée par une moyenne pondérée de p valeurs "passées" de la série, de la valeur actuelle, et de f valeurs "futures" de la série.

- La quantité p + f + 1 est appelée **ordre de la moyenne mobile**.

FIG. 3.2 – Spectre de l'indice de la production industrielle française.

- Lorsque p est égal à f, c'est à dire qu'on utilise autant de points dans le passé et dans le futur, la moyenne mobile est dite centrée.
- Si, en outre, $\theta_{-k} = \theta_k$ pour tout k, la moyenne mobile M est dite **symétrique**. Dans ce cas, lorsqu'il s'agira de lister les coefficients de la moyenne mobile, il suffira de préciser l'ordre de la moyenne mobile et les k+1 premiers coefficients (Kendall [40]). Ainsi :

$$\frac{1}{24}\{1,2,2,2,2,2,2,2,2,2,2,2,1\}$$

s'écrit plus simplement

$$[13]; \frac{1}{24}\{1,2,2,2,2,2,2\}.$$

De façon générale, avec une moyenne mobile d'ordre p+f+1, calculée pour un instant t avec p points dans le passé et f points dans le futur, il sera impossible de lisser les p premières valeurs et les f dernières valeurs de la série.

Dans la méthode X-11, les moyennes mobiles symétriques jouent un grand rôle; pour éviter la perte d'information aux extrémités de la série, elles sont complétées par des moyennes mobiles asymétriques *ad hoc*.

3.1.2 Fonctions de gain et déphasage

Considérons la série $X_t = \sin{(\pi t/3)}$ et transformons la par la moyenne mobile asymétrique définie par $M\left(X_t\right) = \left(X_{t-2} + X_{t-1} + X_t\right)/3$ qui remplace la valeur à l'instant t par la moyenne simple des valeurs de l'instant présent et des deux instants précédents.

La figure 3.3 traduit le résultat du lissage et met en évidence deux phénomènes :

 Tout d'abord une réduction de l'amplitude de la série, qui répond bien à notre objectif de lissage;

FIG. 3.3 – Lissage de la série $X_t = \sin(\pi t/3)$ par la moyenne mobile $(X_{t-2} + X_{t-1} + X_t)/3$. La série brute est en trait plein, la série lissée est en pointillés.

 Mais aussi un décalage dans le temps, on dit un déphasage : les deux séries ne présentent pas des points de retournement aux mêmes dates.

Ce phénomène de déphasage est désagréable dans la mesure où il transforme les évolutions même de la série. On peut néanmoins démontrer que les moyennes mobiles symétriques n'induisent pas de déphasage (voir par exemple, Koopmans [43]).

De façon plus générale, soit une série $X_t=R\sin{(\omega t+\phi)}$ de fréquence ω (ou de période $2\pi/\omega$), d'amplitude R et de phase ϕ . La transformée de $\{X_t\}$ par une moyenne mobile quelconque sera aussi une sinusoïde d'amplitude modifiée et présentant un déphasage par rapport à la série originale :

$$M(X_t) = M[R \sin(\omega t + \phi)] = G(\omega)R \sin[\omega t + \phi + \Gamma(\omega)].$$

- La fonction $|G(\omega)|$ s'appelle la **fonction de gain** de la moyenne mobile.
- La fonction $\Gamma(\omega)$ s'appelle la **fonction de déphasage** de la moyenne mobile. On représente parfois $\Gamma(\omega)/\omega$ ce qui permet de mesurer le déphasage en nombre de périodes.

Dans le cas de la moyenne mobile asymétrique sur 3 termes ci-dessus on a :

$$M(X_t) = \frac{1}{3}(X_{t-2} + X_{t-1} + X_t)$$

$$= \frac{1}{3}R\{\sin[\omega(t-2) + \phi] + \sin[\omega(t-1) + \phi] + \sin(\omega t + \phi)\}$$

$$= \frac{1}{3}R(1 + 2\cos\omega)\sin(\omega t + \phi - \omega)$$

et donc:

$$\begin{split} G(\omega) &=& \frac{1+2\cos\omega}{3}, \\ \Gamma(\omega) &=& -\omega, \quad \text{soit} \quad \Gamma(\omega)/\omega = -1. \end{split}$$

FIG. 3.4 – Fonction de gain de la moyenne mobile $(X_{t-2} + X_{t-1} + X_t)/3$.

La fonction de gain, représentée à la figure 3.4, montre que la moyenne mobile annule les fréquences $120^\circ=2\pi/3=4\times2\pi/12$. Elle serait bien adaptée à des enquêtes ayant lieu tous les 4 mois (donc de période 3) puisqu'elle en éliminerait ainsi la saisonnalité tout en conservant les évolutions de fond correspondant à des basses fréquences. Par contre, cette moyenne introduit un déphasage systématique d'une période qui conduirait à prendre trop tard conscience de possibles retournements de tendance.

La fonction de gain permet donc de voir essentiellement les fréquences éliminées et préservées par la moyenne mobile.

La fonction de déphasage montre les décalages introduits par l'utilisation de moyennes mobiles asymétriques. Dans la mesure où la méthode X-11 met l'accent sur des moyennes mobiles symétriques, nous délaisserons cette fonction dans la suite de ce document.

En matière de lissage, le filtre "idéal" serait celui qui laisserait inchangées les basses fréquences, par exemple les fonctions périodiques de période supérieure à l'année (tendance et cycle), et éliminerait au contraire toutes les hautes fréquences correspondant à des périodicités inférieures ou égales à l'année (saisonnalité et irrégulier). La fonction de gain "idéale" de ce filtre, dit filtre **passe-bas**, serait donc de la forme :

$$G(\omega) = \begin{cases} 1 & \text{for } \omega \le \omega_0, \\ 0 & \text{for } \omega > \omega_0. \end{cases}$$

3.1.3 Conservation de tendance

Le déphasage introduit par la moyenne mobile $(X_{t-2}+X_{t-1}+X_t)/3$ peut aussi se voir en appliquant cette moyenne asymétrique à une simple droite $X_t=at+b$. En effet, on a :

$$M(X_t) = \frac{1}{3}(X_{t-2} + X_{t-1} + X_t)$$

$$= \frac{1}{3} [a(t-2) + b + a(t-1) + b + at + b]$$

$$= a(t-1) + b$$

$$= X_{t-1}.$$

Il serait pourtant souhaitable qu'une moyenne mobile respecte certaines tendances simples, en particulier polynomiales.

– Or, pour qu'une moyenne mobile quelconque respecte les séries constantes $X_t=a$, il faut que :

$$M(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k} = \sum_{k=-p}^{+f} \theta_k a = a \sum_{k=-p}^{+f} \theta_k = a,$$

et donc, que la somme des coefficients de la moyenne mobile $\sum_{k=-p}^{+f} \theta_k$ soit égale à 1.

 $\,-\,$ pour qu'une moyenne mobile quelconque conserve les droites, il faut que, pour tout t :

$$M(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k} = \sum_{k=-p}^{+f} \theta_k \left[a(t+k) + b \right]$$
$$= at \sum_{k=-p}^{+f} \theta_k + a \sum_{k=-p}^{+f} k \theta_k + b \sum_{k=-p}^{+f} \theta_k = at + b,$$

ce qui entraı̂ne que : $\sum_{k=-p}^{+f} \theta_k = 1$ et $\sum_{k=-p}^{+f} k\theta_k = 0$. De façon générale, on démontrerait de même que pour qu'une moyenne mobile

 De façon générale, on démontrerait de même que pour qu'une moyenne mobile conserve un polynôme de degré d, il faut et il suffit que ses coefficients vérifient :

$$\sum_{k=-p}^{+f} \theta_k = 1$$

et

$$\sum_{k=-p}^{+f} k^{j} \theta_{k} = 0, \ j = 1, \dots, d.$$

Ainsi, pour la moyenne mobile asymétrique sur 3 termes définie ci-dessus, on a :

$$\sum_{k=-2}^{0} \theta_k = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

et

$$\sum_{k=-2}^{0} k\theta_k = -2 \times \frac{1}{3} - 1 \times \frac{1}{3} + 0 \times \frac{1}{3} = -1$$

et cette moyenne, si elle conserve les constantes, ne conserve pas les droites.

Par contre, il est facile de vérifier que les moyennes mobiles symétriques suivantes conservent les droites :

$$M_1(X_t) = \frac{1}{3}(X_{t-1} + X_t + X_{t+1})$$

$$M_2(X_t) = \frac{1}{8}(X_{t-2} + 2X_{t-1} + 2X_t + 2X_{t+1} + X_{t+2}).$$

3.1.4 Élimination de saisonnalité

Comme nous l'avons vu lors de la définition de la fonction de gain au paragraphe 3.1.2, les moyennes mobiles peuvent éliminer certaines fréquences et donc certaines composantes saisonnières. C'est d'ailleurs cet outil qui permet le plus facilement de repérer les fréquences éliminées par une moyenne mobile quelconque.

De façon générale, une moyenne mobile simple d'ordre k (dont les coefficients sont tous égaux à 1/k) élimine les saisonnalités fixes de période k et sa fonction de gain s'annule donc à la fréquence $2\pi/k$.

Par ailleurs, il est possible de traiter le cas de saisonnalités variant linéairement, ou même de façon polynomiale, avec le temps (Grun-Rehomme et Ladiray [29]) : là encore, l'élimination de ces saisonnalités se traduit par des contraintes linéaires sur les coefficients..

3.1.5 Réduction de la composante irrégulière

Après la tendance et la saisonnalité, il nous reste à voir l'effet d'une moyenne mobile sur la composante irrégulière. Le résidu, dans la décomposition de la série brute, est souvent modélisé sous la forme d'un **bruit blanc**, suite de variables aléatoires ϵ_t , d'espérance nulle, non corrélées, et de même variance σ^2 . Ce bruit blanc est transformé par la moyenne mobile en une suite de variables aléatoires ϵ_t^* , de même variance égale à : $\sigma^2 \sum_{k=-p}^{+f} \theta_k^2$. Diminuer la composante irrégulière, et donc sa variance, revient à diminuer la quantité : $\sum_{k=-p}^{+f} \theta_k^2$.

3.1.6 Un exemple de construction de moyenne mobile

Cherchons par exemple une moyenne mobile centrée sur trois termes, de coefficients $\{\theta_{-1}, \theta_0, \theta_1\}$, qui réduit au maximum la composante irrégulière et qui conserve les droites. D'après ce qui précède, cela revient à résoudre le problème :

les droites. D'après ce qui précède, cela revient à résoudre le problème : Minimiser
$$\sum_{k=-1}^{+1} \theta_k^2$$
 sous les contraintes $\sum_{k=-1}^{+1} \theta_k = 1$ et $\sum_{k=-1}^{+1} k\theta_k = 0$.

La dernière contrainte entraîne que $\theta_{-1}=\theta_1$. En remplacant alors dans la première contrainte, on obtient $\theta_0=1-2\theta_1$, et le problème de minimisation devient $\min_{\theta_1}\left[2\theta_1^2+(1-2\theta_1)^2\right]$. La dérivée, par rapport à θ_1 , de la fonction à minimiser est $12\theta_1-4$, valeur qui s'annule pour $\theta_1=1/3$. Nous trouvons donc la moyenne mobile simple sur 3 termes de coefficients tous égaux à 1/3, moyenne qui, comme nous l'avons déjà vu, élimine les saisonnalités d'ordre 3.

3.2 Les moyennes mobiles symétriques utilisées dans X-11

3.2.1 Les moyennes mobiles simples composées

Une moyenne mobile dite $P \times Q$ s'obtient en composant une moyenne mobile simple d'ordre P, de coefficients tous égaux à 1/P, et une moyenne mobile simple d'ordre Q, de coefficients tous égaux à 1/Q. Concrètement, cela revient à appliquer successivement à la série les deux moyennes mobiles simples.

Ainsi, la moyenne mobile 3×3 qui résulte de la double application de la moyenne mobile arithmétique simple sur 3 termes est une moyenne mobile de coefficients $\{1,2,3,2,1\}/9$. De façon générale, une moyenne mobile $P\times Q$ est une moyenne mobile symétrique d'ordre $P+Q-1^2$.

Lorsque Q est pair, par exemple égal à 2q, on a une petite ambiguïté de définition dans la mesure où on peut choisir soit q points dans le passé et q-1 points dans le futur, soit q-1 points dans le passé et q points dans le futur. Le plus souvent, on résout le problème en utilisant une moyenne composée symétrique $2\times Q$ qui correspond à la moyenne des deux moyennes mobiles candidates.

Estimation de la tendance-cycle : moyennes 2×4 et 2×12

Lorsque X-11 fait une première estimation de la tendance-cycle (tableaux B2, C2 et D2), il utilise des moyennes mobiles 2×4 dans le cas trimestriel et 2×12 dans le cas mensuel. A ce moment, la série qui doit être lissée est composée d'une tendance-cycle, d'une saisonnalité et d'une composante irrégulière. Dans le cas d'un schéma de composition additif, elle peut s'écrire : $X_t = C_t + S_t + I_t$.

La moyenne 2×4

C'est une moyenne mobile d'ordre 5, de coefficients $\{1, 2, 2, 2, 1\}/8$. La courbe des coefficients et la fonction de gain, présentées à la figure 3.5, permettent de mettre en évidence les propriétés de cette moyenne mobile :

- Elle élimine la fréquence $90^\circ = 2\pi/4 = \pi/2$ correspondant à la période 4 et de ce fait, convient bien aux séries trimestrielles ayant une saisonnalité constante.
- La somme de ses coefficients est égale à 1 et elle est symétrique : elle conserve donc les tendances linéaires.
- La somme des carrés de ses coefficients est égale à 0.250 et elle réduit donc de 75% la variance d'un bruit blanc.

Utiliser cette moyenne mobile revient à supposer que la tendance-cycle de notre série est linéaire, ou linéaire par morceaux, que la saisonnalité est constante, ou varie peu dans le temps, et que la composante irrégulière ne possède aucune structure et est de faible amplitude. Dans ce cas, on aura :

$$M_{2\times 4}(X_t) = M_{2\times 4}(C_t + S_t + I_t)$$

= $M_{2\times 4}(C_t) + M_{2\times 4}(S_t) + M_{2\times 4}(I_t)$

²Les moyennes mobiles simples composées sont en fait des moyennes mobiles pondérées. Avant l'ère des ordinateurs, elles étaient plus faciles à calculer que les moyennes pondérées tout en présentant de bonnes propriétés.

FIG. 3.5 – Courbes des coefficients (à gauche) et fonctions de gain (à droite) des moyennes mobiles composées utilisées dans X-11 pour l'estimation de la tendance-cycle. La 2×4 est représentée dans le haut du graphique, la 2×12 en bas.

$$\approx C_t + 0 + \epsilon_t$$
$$\approx C_t$$

Par contre, cette moyenne mobile restitue assez mal les basses fréquences associées aux périodes supérieures à l'année. Ainsi, les fonctions périodiques de 3 ans, qui correspondent dans le cas trimestriel à des fréquences de $30^\circ=2\pi/12=\pi/6$, ne sont restituées qu'à 80% environ .

La moyenne 2×12

Cette moyenne repose sur les mêmes idées que celles exposées pour la moyenne 2×4 et est utilisée dans le cas mensuel. Ses coefficients sont :

$$\{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1\}/24.$$

Cette moyenne est aussi appelée moyenne mobile centrée sur 12 termes. Elle conserve donc les droites et, comme le montre sa fonction de gain, elle élimine les saisonnalités mensuelles (qui correspondent à une fréquence de $30^\circ = 2\pi/12 = \pi/6$). De plus, la somme des carrés de ses coefficients étant égale à 23/288, elle réduit de plus de 90% la variance d'un bruit blanc.

Mais là encore, les séries périodiques de période inférieure à l'année ne sont pas toutes très bien restituées. Ainsi, une fonction périodique de période 3 ans, ce qui correspond ici à une fréquence de $10^{\circ} = 2\pi/36 = \pi/18$, ne sera restituée qu'à 80%.

Remarques

- Les moyennes mobiles 2 x 4 et 2 x 12 sont aussi utilisées dans la méthode X-11 pour normaliser les coefficients saisonniers.
- X-11-ARIMA et X-12-ARIMA proposent aussi en option des moyennes mobiles centrées sur 8 et 24 termes dues à Pierre Cholette [12]. Ces moyennes ont été construites sur des critères assez différents de ceux présentés ici, et aussi plus complexes. Elles ne seront pas étudiées ici.

Estimation de la saisonnalité : moyennes 3×3 , 3×5 et 3×9

Ces moyennes ³ sont utilisées par X-11 pour extraire la composante saisonnière à partir d'une estimation de la composante saisonnier-irrégulier. Elles apparaissent donc dans la construction des tableaux B4, B5, B9, B10, C5, C10, D5 et D10.

A ce moment, la série qui doit être lissée est composée d'une saisonnalité et d'une composante irrégulière. Dans le cas d'un schéma de composition additif, elle peut s'écrire : $SI_t = S_t + I_t$ et, contrairement au cas précédent, nous sommes en présence d'un strict problème de lissage.

Les coefficients des moyennes 3×3 , 3×5 and 3×9 sont les suivants :

 $\begin{array}{lcl} M_{3\times3} & : & \{1,2,3,2,1\}/9 \\ M_{3\times5} & : & \{1,2,3,3,3,2,1\}/15 \\ M_{3\times9} & : & \{1,2,3,3,3,3,3,3,3,2,1\}/27. \end{array}$

Comme on peut le vérifier simplement, chacune de ces moyennes mobiles symétriques conserve les droites. Mais les fonctions de gain, présentées à la figure 3.6, sont assez différentes de la forme idéale associée à un filtre passe-bas. Ici, ce n'est pas gênant dans la mesure où la composante saisonnier-irrégulier n'est pas sensée présenter de composante cyclique de périodicité de l'ordre de 3 à 6 ans.

En fait, appliquer par exemple le filtre 3×3 à chaque mois d'une estimation de la composante saisonnier-irrégulier revient à appliquer sur cette composante elle-même une moyenne mobile sur 49 termes de coefficients :

Il en est de même pour les filtres 3×5 et 3×9 auxquels sont associées des moyennes mobiles sur, respectivement, 73 et 121 termes! Les fonctions de gain de ces nouvelles moyennes mobiles sont présentées à la figure 3.7. Comme on peut le constater, ces moyennes mobiles conservent la saisonnalité mensuelle puisqu'elles restituent exactement les fréquences multiples de $30^\circ = 2\pi/12 = \pi/6$.

 $^{^3}$ X-11-ARIMA permet aussi d'utiliser une moyenne mobile simple sur 3 termes (une 3×1). X-12-ARIMA ajoute une moyenne mobile 3×15 .

Fig. 3.6 – Courbes des coefficients (à gauche) et fonctions de gain (à droite) des moyennes mobiles composées utilisées dans X-11 pour l'estimation des coefficients saisonniers. La 3×3 est représentée dans le haut du graphique, la 3×5 dans le milieu et la 3×9 en bas.

FIG. 3.7 – Fonctions de gain des moyennes 3×3 , 3×5 et 3×9 . La 3×3 est représentée dans le haut du graphique, la 3×5 dans la partie centrale et la 3×9 dans le bas. Les fonctions de gain du filtre appliqué à chaque mois sont sur la gauche, celles des filtres appliqués à toute la série sont sur la droite.

i	2×4	2×12	3×3	3×5	3 × 9
-6		1/24			
-5		1/12			1/27
-4		1/12			2/27
-3		1/12		1/15	3/27
-2	1/8	1/12	1/9	2/15	3/27
-1	1/4	1/12	2/9	3/15	3/27
0	1/4	1/12	3/9	3/15	3/27
1	1/4	1/12	2/9	3/15	3/27
2	1/8	1/12	1/9	2/15	3/27
3		1/12		1/15	3/27
4		1/12			2/27
5		1/12			1/27
6		1/24			
$\sum \theta_i^2$	0.2188	0.0799	0.2346	0.1644	0.1001
$\sum \left(\nabla^3 \theta_i \right)^2$	0.1250	0.0139	0.1481	0.0356	0.0110

TAB. 3.4 – Coefficients des moyennes mobiles composées utilisées dans X-11, pouvoir de réduction de variance, $\sum \theta_i^2$, et critère de Henderson, $\sum (\nabla^3 \theta_i)^2$.

3.2.2 Moyennes mobiles de Henderson

Les moyennes mobiles de Henderson sont utilisées dans X-11 pour extraire la tendance d'une estimation de la série corrigée des variations saisonnières (tableaux B7, C7, D7, D12). Dans le cas additif, on a donc un modèle du type : $A_t = C_t + I_t$. Quel critère peut-on construire qui assurera une estimation lisse de la tendance-cycle? Considérons la série

$$X_t = \begin{cases} 1 & \text{if} \quad t = 0\\ 0 & \text{if} \quad t \neq 0. \end{cases}$$

Sa transformée par une moyenne mobile M centrée, d'ordre 2p+1 et de coefficients $\{\theta_i\}$, est donnée par :

$$M(X_t) = \begin{cases} 0 & \text{if} \quad t < -p. \\ \theta_i & \text{if} \quad -p \le t \le p \\ 0 & \text{if} \quad t > p. \end{cases}$$

Cette transformée sera donc lisse si la courbe des coefficients de la moyenne mobile est lisse. Comme on peut le constater sur les figures 3.5 et 3.6, les courbes des coefficients des moyennes mobiles simples composées ne sont pas "lisses". Henderson [31, 32] a proposé d'utiliser la quantité $H = \sum \left(\nabla^3 \theta_i \right)^2$, où ∇ représente l'opérateur différence première 4 , pour mesurer la "souplesse" de la courbe des coefficients. Cette quantité est nulle lorsque les coefficients $\{\theta_i\}$ se trouvent sur une parabole et, dans le cas général, elle mesure l'écart entre la forme parabolique et la forme de la courbe des coefficients. Henderson a alors cherché des moyennes centrées, d'ordre 2p+1, qui conservent les polynômes d'ordre 2 et minimisent la quantité H.

Avec les notations du paragraphe 3.1.6, la moyenne mobile de Henderson d'ordre 2p+1 sera solution du programme de minimisation :

$$^4\nabla X_t = X_t - X_{t-1}$$

i	5 termes	7 termes	9 termes	13 termes	23 termes
-11					-0.00428
-10					-0.01092
-9					-0.01569
-8					-0.01453
-7					-0.00495
-6				-0.01935	0.01343
-5				-0.02786	0.03893
-4			-0.04072	0.00000	0.06830
-3		-0.05874	-0.00987	0.06549	0.09740
-2	-0.07343	0.05874	0.11847	0.14736	0.12195
-1	0.29371	0.29371	0.26656	0.21434	0.13832
0	0.55944	0.41259	0.33114	0.24006	0.14406
1	0.29371	0.29371	0.26656	0.21434	0.13832
2	-0.07343	0.05874	0.11847	0.14736	0.12195
3		-0.05874	-0.00987	0.06549	0.09740
4			-0.04072	0.00000	0.06830
5				-0.02786	0.03893
6				-0.01935	0.01343
7					-0.00495
8					-0.01453
9					-0.01569
10					-0.01092
11	•	•	•		-0.00428
$\sum_{i} \theta_{i}^{2}$	0.4963	0.3566	0.2833	0.2038	0.1217
$\sum \left(\nabla^{\overline{3}}\theta_i\right)^2$	1.4965	0.2629	0.0675	0.0083	0.0003

TAB. 3.5 – Coefficients des moyennes mobiles de Henderson utilisées dans X-11, pouvoir de réduction de variance, $\sum \theta_i^2$, et critère de Henderson, $\sum (\nabla^3 \theta_i)^2$.

Minimiser, en fonction des $\theta_i, \sum_{i=-p}^p \left(\nabla^3 \theta_i\right)^2$ sous les contraintes :

$$\sum_{i=-p}^{p} \theta_i = 1, \ \sum_{i=-p}^{p} i\theta_i = 0, \ \sum_{i=-p}^{p} i^2 \theta_i = 0.$$

Les coefficients de ces moyennes mobiles peuvent se calculer explicitement et on a, pour une moyenne d'ordre 2p + 1, en posant n = p + 2:

$$\theta_i = \frac{315 \left[(n-1)^2 - i^2 \right] \left[n^2 - i^2 \right] \left[(n+1)^2 - i^2 \right] \left[3n^2 - 16 - 11i^2 \right]}{8n(n^2 - 1)(4n^2 - 1)(4n^2 - 9)(4n^2 - 25)}.$$

Cette formule donne, sous forme rationnelle, les coefficients des moyennes mobiles de Henderson utilisées dans X-11. On a donc, en ne présentant, pour cause de symétrie, que les coefficients nécessaires :

5 termes : $[5]; \frac{1}{286}\{-21, 84, 160\},$

 $7 \ \text{termes}: \qquad [7]; \frac{1}{715}\{-42, 42, 210, 295\}, \\$

 $9 \ \text{termes}: \qquad [9]; \frac{1}{2431}\{-99, -24, 288, 648, 805\},$

 $\begin{array}{ll} \text{13 termes:} & [13]; \frac{1}{16796} \{-325, -468, 0, 1100, 2475, 3600, 4032\}, \\ \text{23 termes:} & [23]; \frac{1}{4032015} \{-17250, -44022, -63250, -58575, -19950, \\ & 54150, 156978, 275400, 392700, 491700, 557700, 580853\}. \end{array}$

Le tableau 3.5 donne, sous forme décimale, les coefficients des moyennes mobiles de Henderson utilisées dans X-11 ⁵ ainsi que les valeurs des critères de réduction de variance et de lissage. Les courbes des coefficients, présentées dans la figure 3.8, sont lisses et les fonctions de gain de ces moyennes plus proches de la forme idéale passe-bas que celles des moyennes mobiles composées vues précédemment.

3.3 Les moyennes mobiles asymétriques de Musgrave

L'application d'une moyenne mobile centrée d'ordre 2p+1 ne permet pas, par construction, d'avoir des estimations de la série lissée pour les p premiers et les p derniers instants de la série, ce qui est pour le moins gênant. On est donc amené dans la pratique à utiliser des moyennes mobiles non-centrées pour effectuer ces estimations.

Musgrave [55, 56] a étudié ce problème dans le cadre de la méthode X-11 et a proposé un ensemble de moyennes asymétriques qui complètent les moyennes mobiles de Henderson.

Supposons que la série à lisser se termine en juillet 1999. Si nous utilisons une moyenne mobile symétrique d'ordre 13, le dernier point lissé grâce à cette moyenne sera celui de janvier 1999, les six derniers mois devant être estimés par des moyennes mobiles asymétriques. Six mois plus tard, donc en janvier 2000, la valeur lissée pour juillet 1999 pourra enfin être calculée avec la moyenne mobile symétrique d'ordre 13. Nous aurons donc sept estimations différentes de cette valeur de juillet 1999, chacune calculée avec une moyenne mobile différente, et il serait souhaitable qu'elles ne soient pas trop différentes de la valeur finale obtenue avec la moyenne symétrique.

L'idée de Musgrave est justement de construire des moyennes mobiles asymétriques qui minimisent les révisions des estimations. Pour cela, il pose les hypothèses suivantes :

- La série à lisser peut se modéliser linéairement sous la forme : $X_t = a + bt + \epsilon_t$ où a et b sont des constantes, et les ϵ_t sont des variables aléatoires non corrélées, de moyenne nulle et de variance σ^2 .
- On dispose d'une série de poids $\{w_1, \ldots, w_N\}$ de somme égale à 1 (par exemple une moyenne mobile centrée de Henderson) et on cherche une série de poids $\{v_1, \ldots, v_M\}$, avec M < N, de somme aussi égale à 1.
- Cette nouvelle moyenne mobile doit en outre minimiser les révisions des estimations, c'est-à-dire, par exemple, minimiser le critère :

$$\mathbb{E}\left(\sum_{i=1}^{M} v_i X_i - \sum_{i=1}^{N} w_i X_i\right)^2.$$

⁵X-12-ARIMA permet d'utiliser n'importe quelle moyenne mobile de Henderson d'ordre impair inférieur à 101.

FIG. 3.8 – Courbes des coefficients et fonctions de gain, de haut en bas, des moyennes mobiles symétriques de Henderson sur 5, 7, 9, 13 et 23 termes utilisées dans X-11. Les courbes des coefficients sont sur la gauche, les fonctions de gain sur la droite.

Sous ces hypothèses, on montre (Doherty [22], Findley et al. [23]) que les poids peuvent être calculés explicitement en fonction du rapport $D=b^2/\sigma^2$:

$$v_{j} = w_{j} + \frac{1}{M} \sum_{i=M+1}^{N} w_{i} + \frac{\left(j - \frac{M+1}{2}\right)D}{1 + \frac{M(M-1)(M+1)}{12}D} \sum_{i=M+1}^{N} \left(i - \frac{M+1}{2}\right) w_{i}. \quad (3.1)$$

3.3.1 Moyennes mobiles asymétriques de Musgrave associées aux moyennes symétriques de Henderson

La valeur de D dans l'équation (3.1), est inconnue mais Musgrave fait remarquer que le choix de l'ordre des moyennes mobiles de Henderson dans X-11 se fait à partir de la valeur du rapport $R=\bar{I}/\bar{C}$ où \bar{I} désigne la moyenne des variations absolues mensuelles dans la partie irrégulière de la série et \bar{C} désigne la moyenne des variations absolues mensuelles de la tendance de la série 6. En supposant la normalité des ϵ_t , on montre alors que $D=4/(\pi R^2)$, ce qui permet de calculer numériquement les moyennes mobiles asymétriques.

Les tableaux 3.8 à 3.12 présentent les coefficients de ces moyennes mobiles calculés en fonction des valeurs du ratio $R=\bar{I}/\bar{C}$ données dans le tableau 3.6. Ce sont ces moyennes mobiles asymétriques qui sont utilisées dans X-12-ARIMA. X-11-ARIMA utilise les mêmes moyennes mobiles asymétriques sauf pour la moyenne de Henderson sur 5 termes : les coefficients de la moyenne utilisée sont donnés dans le tableau 3.7. Pour les calculer, les observations manquantes sont prévues par la moyenne des deux dernières observations et la moyenne mobile symétrique de Henderson sur 5 termes est appliquée sur la série ainsi prolongée.

3.3.2 Remarque sur les moyennes mobiles de Musgrave

Bien que la série à lisser soit supposée suivre un modèle linéaire en fin de période, les moyennes mobiles de Musgrave ne conservent pas les droites mais seulement les constantes. En effet, pour que cela soit le cas, il aurait en outre fallu imposer sur les coefficients la contrainte supplémentaire $\sum_{i=-p}^{+f} iv_i = 0$.

Comme le montre la figure 3.9, les moyennes asymétriques de Musgrave fournissent des estimations "prudentes" de la série lissée en atténuant l'évolution observée dans les premiers ou derniers points de la série.

3.3.3 Moyennes mobiles asymétriques associées aux moyennes mobiles composées

Curieusement, bien que le premier travail de Musgrave ait porté sur la génération des filtres asymétriques associés aux moyennes mobiles composées servant à estimer les coefficients saisonniers, ses recommandations n'ont pas été appliquées dans la méthode X-11.

Les filtres asymétriques associés aux moyennes 3×3 , 3×5 et 3×9 figurent dans les tableaux 3.13 à 3.15. Nous ne savons pas comment ces filtres asymétriques ont été calculés et nous ne connaissons aucune publication qui explique précisément le choix

⁶Se reporter à l'explication du tableau B7, paragraphe 4.1.7, pour plus de détail.

FIG. 3.9 – Lissage d'une droite par une moyenne mobile de Henderson sur 13 termes complétée par des moyennes mobiles asymétriques de Musgrave. La ligne droite est représentée par des triangles vides; la série lissée est représentée par des triangles pleins joints par une ligne.

Moyenne de Henderson sur 5 termes	R = .001
Moyenne de Henderson sur 7 termes	R = 4.5
Moyenne de Henderson sur 9 termes	R = 1
Moyenne de Henderson sur 13 termes	R = 3.5
Moyenne de Henderson sur 23 termes	R = 4.5

TAB. 3.6 – Valeurs par défaut du ratio $R = \bar{I}/\bar{C}$ utilisées dans X-12-ARIMA pour le calcul des moyennes mobiles asymétriques de Musgrave.

de ces coefficients. Les filtres 2×4 et 2×12 ne sont pas complétés par des moyennes asymétriques.

3.4 Le filtre moyenne mobile X-11

Si on ne tient pas compte de la procédure de détection et de correction des points atypiques et de la procédure d'estimation des effets de calendrier, la méthode X-11 peut être vue comme l'application successive de plusieurs moyennes mobiles. L'opérateur qui permet de passer de la série brute à la série corrigée des variations saisonnières est donc lui-même une moyenne mobile.

Ainsi, dans le cas d'une série mensuelle, l'algorithme de base décrit au tableau 2.2 peut se résumer à l'application d'une seule moyenne mobile que l'on peut calculer matriciellement (Gouriéroux et Monfort [28]).

1. Estimation de la tendance-cycle par une moyenne mobile 2×12 :

$$C^{(1)} = M_{2\times 12} X \text{ avec } M_{2\times 12} \ : [13]; \frac{1}{24} \{1,2,2,2,2,2,2\}.$$

i	$H2_2$	$H2_1$	$H2_0$
-2	-0.07343	-0.073	-0.073
-1	0.29371	0.294	0.403
0	0.55944	0.522	0.670
1	0.29371	0.257	0
2	-0.07343	0	0

TAB. 3.7 — Coefficients des moyennes mobiles asymétriques associées dans X-11-ARIMA à la moyenne de Henderson sur 5 termes. La notation Hp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	$H2_2$	$H2_1$	$H2_0$
-2	-0.07343	-0.03671	-0.18357
-1	0.29371	0.29371	0.36713
0	0.55944	0.52273	0.81643
1	0.29371	0.22028	0
2	-0.07343	0	0

TAB. 3.8 — Coefficients des moyennes mobiles asymétriques de Musgrave associées dans X-12-ARIMA à la moyenne de Henderson sur 5 termes, R=0.001. La notation Hp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	$H3_3$	$H3_2$	$H3_1$	$H3_0$
-3	-0.05874	-0.05314	-0.05421	-0.03379
-2	0.05874	0.05818	0.06101	0.11601
-1	0.29371	0.28699	0.29371	0.38329
0	0.41259	0.39972	0.41032	0.53449
1	0.29371	0.27468	0.28917	0
2	0.05874	0.03356	0	0
3	-0.05874	0	0	0

TAB. 3.9 — Coefficients des moyennes mobiles asymétriques de Musgrave associées dans X-12-ARIMA à la moyenne de Henderson sur 7 termes, R=4.5. La notation Hp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	$H4_4$	$H4_3$	$H4_2$	$H4_1$	$H4_0$
-4	-0.04072	-0.03082	-0.02262	-0.04941	-0.15554
-3	-0.00987	-0.00426	-0.00021	-0.01056	-0.03384
-2	0.11847	0.11980	0.11969	0.12578	0.18536
-1	0.26656	0.26361	0.25933	0.28187	0.42429
0	0.33114	0.32391	0.31547	0.35445	0.57972
1	0.26656	0.25504	0.24244	0.29786	0
2	0.11847	0.10267	0.08590	0	0
3	-0.00987	-0.02995	0	0	0
4	-0.04072	0	0	0	0

TAB. 3.10 – Coefficients des moyennes mobiles asymétriques de Musgrave associées dans X-12-ARIMA à la moyenne de Henderson sur 9 termes, R=1. La notation Hp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	$H6_6$	$H6_5$	$H6_4$	$H6_3$	$H6_2$	$H6_1$	$H6_0$
-6	-0.01935	-0.01643	-0.01099	-0.00813	-0.01603	-0.04271	-0.09186
-5	-0.02786	-0.02577	-0.02204	-0.02019	-0.02487	-0.03863	-0.05811
-4	0	0.00127	0.00330	0.00413	0.00267	0.00182	0.01202
-3	0.06549	0.06594	0.06626	0.06608	0.06784	0.07990	0.11977
-2	0.14736	0.14698	0.14559	0.14441	0.14939	0.17436	0.24390
-1	0.21434	0.21314	0.21004	0.20784	0.21605	0.25392	0.35315
0	0.24006	0.23803	0.23324	0.23002	0.24144	0.29223	0.42113
1	0.21434	0.21149	0.20498	0.20076	0.21540	0.27910	0
2	0.14736	0.14368	0.13547	0.13024	0.14810	0	0
3	0.06549	0.06099	0.05108	0.04483	0	0	0
4	0	-0.00532	-0.01694	0	0	0	0
5	-0.02786	-0.03401	0	0	0	0	0
6	-0.01935	0	0	0	0	0	0

TAB. 3.11 – Coefficients des moyennes mobiles asymétriques de Musgrave associées dans X-12-ARIMA à la moyenne de Henderson sur 13 termes, R=3.5. La notation Hp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	H11_11	H11_10	H11_9	H11_8	H11_7	H11_6	H11_5	H11_4	H11_3	H11_2	H11_1	H11_0
-11	-0.00428	-0.00390	-0.00282	-0.00103	0.00108	0.00268	0.00258	-0.00065	-0.00861	-0.02293	-0.04520	-0.07689
-10	-0.01092	-0.01059	-0.00968	-0.00817	-0.00642	-0.00511	-0.00519	-0.00776	-0.01396	-0.02486	-0.04130	-0.06385
-9	-0.01569	-0.01542	-0.01467	-0.01344	-0.01205	-0.01103	-0.01109	-0.01300	-0.01744	-0.02491	-0.03554	-0.04893
-8	-0.01453	-0.01431	-0.01372	-0.01279	-0.01175	-0.01101	-0.01106	-0.01230	-0.01500	-0.01904	-0.02385	-0.02808
-7	-0.00495	-0.00479	-0.00436	-0.00372	-0.00303	-0.00258	-0.00261	-0.00319	-0.00413	-0.00475	-0.00373	0.00119
-6	0.01343	0.01354	0.01380	0.01416	0.01448	0.01465	0.01464	0.01472	0.01554	0.01834	0.02518	0.03925
-5	0.03893	0.03898	0.03908	0.03916	0.03913	0.03900	0.03902	0.03976	0.04233	0.04856	0.06121	0.08444
-4	0.06830	0.06830	0.06823	0.06802	0.06764	0.06723	0.06726	0.06866	0.07299	0.08264	0.10112	0.13350
-3	0.09740	0.09734	0.09711	0.09661	0.09587	0.09517	0.09522	0.09729	0.10337	0.11644	0.14074	0.18228
-2	0.12195	0.12184	0.12144	0.12066	0.11956	0.11858	0.11865	0.12137	0.12921	0.14571	0.17583	0.22652
-1			0.13759									
0	0.14406	0.14384	0.14312	0.14176	0.13995	0.13839	0.13850	0.14255	0.15390	0.17724	0.21901	0.28801
1	0.13832	0.13804	0.13716	0.13551	0.13334	0.13150	0.13163	0.13634	0.14945	0.17622	0.22380	0
2	0.12195	0.12162	0.12057	0.11864	0.11611	0.11399	0.11413	0.11951	0.13437	0.16456	0	0
3			0.09580						0.11111	0	0	0
4	0.06830	0.06786	0.06649	0.06398	0.06075	0.05805	0.05823	0.06493	0	0	0	0
5			0.03690					0		•	0	0
6			0.01118			0.00088	0	0	-		-	0
7	-0.00495				-0.01509	0	0	0	-	0	0	0
8	-0.01453				0	0	0	0	0	0	0	0
9	-0.01569				-	0	0	0	-	-	0	0
10	0.010,2	-0.01169	0	0	0	0	0	0	0	0	0	0
11	-0.00428	0	0	0	0	0	0	0	0	0	0	0

TAB. 3.12 – Coefficients des moyennes mobiles asymétriques de Musgrave associées dans X-12-ARIMA à la moyenne de Henderson sur 23 termes, R=4.5. La notation Hp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	$S2_2$	$S2_1$	$S2_0$
-2	1/9	3/27	5/27
-1	2/9	7/27	11/27
0	3/9	10/27	11/27
1	2/9	7/27	0
2	1/9	0	0

TAB. 3.13 – Coefficients des moyennes mobiles asymétriques associées à la moyenne mobile symétrique 3×3 . La notation Sp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	$S3_3$	$S3_2$	$S3_1$	$S3_0$
-3	1/15	4/60	4/60	9/60
-2	2/15	8/60	11/60	17/60
-1	3/15	13/60	15/60	17/60
0	3/15	13/60	15/60	17/60
1	3/15	13/60	15/60	0
2	2/15	9/60	0	0
3	1/15	0	0	0

TAB. 3.14 – Coefficients des moyennes mobiles asymétriques associées à la moyenne mobile symétrique 3×5 . La notation Sp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur.

i	$S5_5$	$S5_4$	$S5_3$	$S5_2$	$S5_1$	$S5_0$
-5	1/27	35/1026	35/1026	33/1026	29/1026	52/1026
-4	2/27	75/1026	77/1026	81/1026	94/1026	115/1026
-3	3/27	114/1026	116/1026	136/1026	148/1026	177/1026
-2	3/27	116/1026	120/1026	136/1026	164/1026	202/1026
-1	3/27	117/1026	126/1026	147/1026	181/1026	227/1026
0	3/27	119/1026	131/1026	158/1026	197/1026	252/1026
1	3/27	120/1026	135/1026	167/1026	213/1026	0
2	3/27	121/1026	141/1026	177/1026	0	0
3	3/27	123/1026	145/1026	0	0	0
4	2/27	86/1026	0	0	0	0
5	1/27	0	0	0	0	0

TAB. 3.15 – Coefficients des moyennes mobiles asymétriques associées à la moyenne mobile symétrique 3×9 . La notation Sp_f signifie que la moyenne mobile est d'ordre p+f+1 avec p points dans le passé et f points dans le futur. Dans X-11-ARIMA et X-12-ARIMA, les moyennes mobiles asymétriques liées à la 3x9 sont codées sous forme décimale avec 3 chiffres seulement après la virgule. La forme fractionnaire donnée ici est celle qui se rapproche le plus de cette expression décimale. Une bonne approximation de ces moyennes mobiles peut être obtenue en appliquant la formule de Musgrave avec D=9.8.

2. Estimation de la composante saisonnier-irrégulier :

$$(S+I)^{(1)} = X - C^{(1)} = [I_d - M_{2 \times 12}] X$$

où I_d désigne l'opérateur identité qui transforme la série en elle-même. Ici, I_d serait la moyenne mobile [13]; $\{0,0,0,0,0,0,1\}$.

3. Estimation de la composante saisonnière par une moyenne mobile 3×3 sur chaque mois :

Appliquer la moyenne mobile 3×3 sur les valeurs d'un mois donné revient à appliquer sur la série des coefficients saisonniers la moyenne M_3 , sur 49 mois, définie par :

En conséquence,

$$S^{(1)} = M_{3\times3} (S+I)^{(1)}$$

= $M_3 [I_d - M_{2\times12}] X$.

Les coefficients sont ensuite normalisés de telle sorte que leur somme sur toute période de 12 mois consécutifs soit approximativement nulle :

$$\begin{split} \tilde{S}^{(1)} &= S^{(1)} - M_{2 \times 12} S^{(1)} \\ &= \left[I_d - M_{2 \times 12} \right] M_3 \left[I_d - M_{2 \times 12} \right] X \\ &= M_3 \left[I_d - M_{2 \times 12} \right]^2 X. \end{split}$$

4. Estimation de la série corrigée des variations saisonnières :

$$A^{(1)} = X - \tilde{S}^{(1)}$$

$$= X - M_3 [I_d - M_{2 \times 12}]^2 X$$

$$= (I_d - M_3 [I_d - M_{2 \times 12}]^2) X.$$

5. Estimation de la tendance-cycle par une moyenne mobile de Henderson sur 13 termes :

$$C^{(2)} = H_{13}A^{(1)}$$

= $H_{13} \left(I_d - M_3 \left[I_d - M_{2 \times 12} \right]^2 \right) X.$

6. Estimation de la composante saisonnier-irrégulier :

$$(S+I)^{(2)} = X - C^{(2)}$$

= $\left[I_d - H_{13} \left(I_d - M_3 \left[I_d - M_{2\times 12}\right]^2\right)\right] X.$

7. Estimation de la composante saisonnière par une moyenne mobile 3×5 sur chaque mois :

Appliquer la moyenne mobile 3×5 sur les valeurs d'un mois donné revient à appliquer sur la série des coefficients saisonniers la moyenne M_5 , sur 73 mois, définie par :

En conséquence,

$$S^{(2)} = M_5 (S+I)^{(2)}$$

= $M_5 \left[I_d - H_{13} \left(I_d - M_3 \left[I_d - M_{2\times 12} \right]^2 \right) \right] X.$

Les coefficients sont ensuite normalisés de telle sorte que leur somme sur toute période de 12 mois soit approximativement nulle.

$$\begin{split} \tilde{S}^{(2)} &= S^{(2)} - M_{2 \times 12} S^{(2)} \\ &= \left(I_d - M_{2 \times 12} \right) M_5 \left[I_d - H_{13} \left(I_d - M_3 \left[I_d - M_{2 \times 12} \right]^2 \right) \right] X. \end{split}$$

8. Estimation de la série corrigée des variations saisonnières :

$$A = X - \tilde{S}^{(2)}$$

$$= \{I_d - (I_d - M_{2 \times 12}) M_5 [I_d - H_{13} (I_d - M_3 [I_d - M_{2 \times 12}]^2)]\} X.$$

FIG. 3.10 – Courbe des coefficients et fonction de gain du filtre mensuel symétrique de X-11. La courbe des coefficients est sur la gauche, la fonction de gain sur la droite.

FIG. 3.11 – Courbe des coefficients et fonction de gain du filtre trimestriel symétrique de X-11. La courbe des coefficients est sur la gauche, la fonction de gain sur la droite.

L'ordre de cette moyenne mobile peut se calculer de proche en proche :

$$\begin{aligned} &\text{Ordre } \left[I_d - M_{2\times 12}\right]^2 = 2\times \text{ Ordre } \left[I_d - M_{2\times 12}\right] - 1 = 2\times 13 - 1 = 25,\\ &\text{Ordre } \left(I_d - M_3\left[I_d - M_{2\times 12}\right]^2\right) = \text{Ordre } M_3 + 25 - 1 = 49 + 25 - 1 = 73,\\ &\text{Ordre } H_{13}\left(I_d - M_3\left[I_d - M_{2\times 12}\right]^2\right) = \text{Ordre } H_{13} + 73 - 1 = 13 + 73 - 1 = 85,\\ &\text{Ordre } M_5\left[I_d - H_{13}\left(I_d - M_3\left[I_d - M_{2\times 12}\right]^2\right)\right] = \text{Ordre } M_5 + 85 - 1 \\ &= 73 + 85 - 1 = 157,\\ &\text{Ordre } \left\{I_d - \left(I_d - M_{2\times 12}\right)M_5\left[I_d - H_{13}\left(I_d - M_3\left[I_d - M_{2\times 12}\right]^2\right)\right]\right\} \\ &= \text{Ordre } \left(I_d - M_{2\times 12}\right) + 157 - 1 = 169. \end{aligned}$$

C'est donc une moyenne mobile d'ordre 169 dont les coefficients et la fonction de gain sont présentés à la figure 3.10. En toute rigueur, il faut disposer de 84 observations, soit 7 ans, de part et d'autre d'un point pour pouvoir utiliser ce filtre. 84 moyennes mobiles asymétriques doivent donc le compléter.

La figure 3.11 présente les coefficients et la fonction de gain du filtre central X-11 utilisé dans le cas trimestriel. Ce filtre est d'ordre 57 et nécessite aussi 7 ans de part et d'autre d'un point pour être utilisé.

Remarque

Les moyennes mobiles centrales de X-11 peuvent être obtenues en désaisonnalisant des variables indicatrices $ad\ hoc$ avec les logiciels X-11-ARIMA ou X-12-ARIMA. Ainsi, dans le cas mensuel où le filtre central de X-11 est une moyenne mobile d'ordre 169 (lorsqu'une moyenne de Henderson sur 13 termes, une 3×3 et une 3×5 sont utilisées), les coefficients du filtre sont obtenus en désaisonnalisant une série de $193\ (=169+24)$ observations, toutes égales à zéro à l'exception de celle du milieu, la $97^{\rm ème}$, égale à 1. La désaisonnalisation doit se faire avec un modèle de décomposition additif, en spécifiant les moyennes mobiles à utiliser pour la tendance, par exemple une Henderson sur 13 termes, et la composante saisonnière, une 3x3 et une 3x5, et en désactivant la procédure de correction automatique des points atypiques (la valeur des deux limites utilisées peut être fixée à 9.9). La série désaisonnalisée du tableau D11 est alors la série des coefficients correspondant au filtre central de X11. Les $12\ z$ éros rajoutés au début et à la fin de la série sont nécessaire pour tenir compte de la manière dont X-11 applique la moyenne 2×12 dans différents tableaux.

Un autre algorithme doit être utilisé pour obtenir l'ensemble des coefficients des filtres symétrique et asymétriques utilisés par X-11 pour ajuster une série de T observations. Si on reprend l'exemple précédent, il faut en premier lieu désaisonnaliser chaque colonne de la matrice identité d'ordre 169 avec les options d'ajustement appropriées. On remplace alors chaque colonne de la matrice identité par la série désaisonnalisée correspondante. Les lignes de la matrice résultante contiennent les 169 moyennes mobiles recherchées, la moyenne mobile symétrique centrale figurant à la $85^{\rm ème}$ ligne. Les lignes qui suivent précisent cet algorithme.

Soient $X=(x_1,\ldots,x_T)$ la série brute à désaisonnaliser, $A=(a_1,\ldots,a_T)$ la série corrigée des variations saisonnières, et W la matrice de poids telle que A=WX. Le but est de calculer W.

A la date t, la valeur de la série désaisonnalisée est $a_t = \sum_{j=1}^T w_{t,j} x_j$. Donc, si on désaisonnalise la série $X = (1,0,\ldots,0)$ alors $a_t = w_{t,1}$ et $(w_{1,1},w_{2,1},\ldots,w_{T,1})$ est la première colonne de W. De même, si on utilise la série $X = (0,1,0,\ldots,0)$ alors $a_t = w_{t,2}$ et $(w_{1,2},w_{2,2},\ldots,w_{T,2})$ est la seconde colonne de W. Et ainsi de suite jusqu'à ce que l'utilisation de $X = (0,0,\ldots,0,1)$ nous conduise à $a_t = w_{t,T}$ et à la dernière colonne de W, $(w_{1,T},w_{2,T},\ldots,w_{T,T})$.

Chapitre 4

Les différents tableaux

Ce chapitre présente un exemple complet, et très détaillé, de désaisonnalisation par la méthode X-11. La série qui sera décomposée est mensuelle : c'est dans ce cas que les options de traitement proposées par les logiciels sont les plus nombreuses et les plus complexes. La série traitée X_t est l'indice mensuel de la production industrielle en France d'octobre 1985 à mars 1995 1 . La figure 4.1 représente la série et ses différentes composantes, telles qu'elles seront obtenues à la fin du traitement. Le graphique du haut représente la série brute X_t et la série corrigée des variations saisonnières A_t (tableau D11). Le second graphique montre de nouveau la série désaisonnalisée et la tendance C_t (tableau D12). Le troisième graphique représente les coefficients saisonniers S_t (tableau D10). Le dernier graphique représente les effets de jours ouvrables D_t (tableau C18). Enfin, la composante irrégulière I_t (tableau D13) est représentée dans le graphique du bas. Dans cet exemple, le schéma de décomposition utilisé est multiplicatif et on peut donc écrire :

$$X_t = C_t \times S_t \times D_t \times I_t,$$

 $A_t = C_t \times I_t.$

Avertissements

- Dans la suite, nous nous concentrerons sur la partie X-11 des logiciels actuels, c'est-à-dire sans référence à une modélisation ARIMA a priori de la série à désaisonnaliser².
- 2. Dans la suite, nous nous référerons presque exclusivement au schéma de composition multiplicatif pour décrire le contenu des tableaux. Cependant, dans la traduction en formules mathématiques de ces explications, nous utiliserons un langage symbolique qui permettra de traiter les deux schémas. Ainsi, on aura les correspondances suivantes :

¹Les données sont présentées dans le tableau B1 (voir tableau 4.16).

²Dans le cas où la série est modélisée *a priori*, le fonctionnement des logiciels est légèrement différent (voir paragraphe 2.7) et la plupart des calculs que nous allons détailler sont effectués sur une série complétée par des prévisions et parfois par des rétropolations.

FIG. 4.1 – Décomposition de l'indice mensuel de la production industrielle française. Le graphique du haut représente la **série brute** (trait en pointillés) et la **série désaisonnalisée** (trait plein). Le second graphique représente la **série désaisonnalisée** (trait en pointillés) et la **tendance-cycle** (trait plein). Le troisième graphique représente la **composante saisonnière**. Le quatrième graphique représente les **effets de jours ouvrables**. Enfin, le graphique du bas représente l'**irrégulier**. Notez les échelles différentes, selon les graphiques, sur les axes des ordonnées.

Symbole		Modèle Multiplicatif	Signification
op	_	/	
invop	+	×	Ces deux premières lignes traduisent les opérations de base de chacun des deux schémas.
xbar	0	1	Certains estimateurs, les coefficients saisonniers par exemple, sont supposés de moyenne nulle dans le cas additif et de moyenne égale à 1 dans le cas multiplicatif. Ces valeurs moyennes interviennent à de nombreux endroits dans l'algorithme de calcul de la méthode X-11.
mult		100×	Dans certains tableaux, et pour le cas multi- plicatif seulement, les estimations sont mul- tipliées par 100 et s'interprètent en termes de pourcentages.

- 3. La série X est supposée avoir n observations. Une observation pourra, selon le cas, être notée :
 - $-X_t$ où t varie de 1 à n;
 - $-X_{ij}$ où $i=1,\ldots,n_j$ et $j=1,\ldots,k$. L'indice i représente l'année et varie de 1 à n_j , nombre d'observations du mois (ou trimestre) j. L'indice j se rapporte à la période (mois ou trimestre) et varie donc de 1 à k. Le nombre de périodes est k=4 dans le cas trimestriel ou k=12 dans le cas mensuel. Le nombre total d'observations est donc $n=\sum_{j=1}^k n_j$. Dans le cas où nous n'avons que des années complètes d'observations, N désigne ce nombre d'années. Dans ce cas N est aussi le nombre commun d'observations de chaque mois (ou trimestre) et $n_j=N, j=1,\ldots,k$.
- 4. Dans sa version actuelle, ce chapitre présente les parties B, C, D, E et F. La partie G (graphiques) est avantageusement remplacée par les logiciels graphiques actuels ³. La partie A (ajustements préalables de la série) diffère sensiblement entre X-11-ARIMA et X-12-ARIMA.
- 5. Certains traitements relativement complexes se répètent dans la méthode X-11. Ils sont détaillés au premier tableau où ils sont mis en œuvre. Il s'agit notamment de :

Traitement	Tableaux
Repérage et correction des valeurs atypiques	B4, B9, B17, C17
Régression pour correction des effets de jours ou-	B15, C15
vrables	
Extraction de la tendance-cycle	B7, C7, D7, D12

³Le programme X-12-Graph, utilisant SAS/GRAPH[©] (SAS Institute [62]), permet de produire des graphiques à partir des résultats de X-12-ARIMA. Il peut être obtenu gratuitement avec X-12-ARIMA (Hood [36]).

6. Les sorties commentées dans ce document peuvent s'obtenir en soumettant aux logiciels X-11-ARIMA et X-12-ARIMA les instructions suivantes ⁴:

X-12-ARIMA:

```
series{data=(115.7 109.8 ... 130.2)
       start= 1985.10
       period= 12
       print=none
       decimals=3}
X11{mode=mult
    print=(all) }
X11regression{variables=td
              print=(all)}
X-11-ARIMA:
DATA ipi
            12 85 10 ;
... (les données) ...
TITLE ipi;
RANGE 12 85 10 95 3;
SA (ipi, 0 ,1) TDR 2 00 00 CHART 1 PRTDEC 3 PRINT 5;
```

Ces deux programmes ne donnent cependant pas tout à fait les mêmes diagnostics; les différences sont expliquées à chaque étape concernée. Les données sont celles du tableau B1 (voir tableau 4.16).

4.1 PARTIE B : Estimation préliminaire des points atypiques et des effets de calendrier

4.1.1 Tableau B1 : Série brute ou série brute ajustée a priori

Description et mode de calcul

Ce tableau présente la série brute ou la série préalablement ajustée *a priori* par les éléments de la partie A. Ces coefficients correctifs, fournis par l'utilisateur, sont les coefficients d'ajustements permanents ou temporaires ⁵ et les pondérations associées à chaque jour de la semaine.

Remarques

 Les coefficients d'ajustement *a priori* de la partie A figurent dans des tableaux différents selon le logiciel utilisé.

⁴X-11-ARIMA version 2000 et X-12-ARIMA version 0.2.7.

⁵Avec un ajustement temporaire, la série une fois modifiée est décomposée par la méthode X-11. Les modifications sont ensuite réintroduites dans la série désaisonnalisée et ajustée des jours ouvrables et/ou de l'effet de Pâques. Dans le cas d'un ajustement permanent, la série brute est définitivement modifiée avant d'être désaisonnalisée.

Facteurs d'ajustement	X-11-ARIMA	X-12-ARIMA
Ajustements mensuels permanents	A2	A2p
Ajustements mensuels temporaires	A4	A2t
Effets mensuels dus aux poids journa- liers fournis par l'utilisateur	A6	A4

 X-11-ARIMA et X-12-ARIMA proposent, à la suite de ce tableau B1, un test statistique sur l'existence d'une saisonnalité. Ce test ne peut être calculé qu'à partir de la première estimation de la composante saisonnier-irrégulier du tableau B3 (voir paragraphe 4.1.3).

Exemple

La série brute figure dans le tableau B1 (tableau 4.16), et le test de saisonnalité stable dans le tableau 4.17.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										115.700	109.800	100.600
1986	106.600	98.700	103.900	109.500	97.700	103.700	99.700	65.700	105.200	117.100	108.300	104.400
1987	100.500	103.200	112.900	107.100	100.000	108.300	101.800	68.700	108.700	116.900	114.700	110.000
1988	107.700	110.200	118.700	108.100	107.400	114.700	101.200	76.000	114.600	117.900	121.300	114.700
1989	117.900	112.200	120.200	114.700	110.500	120.300	105.600	79.400	114.200	126.700	126.800	112.700
1990	121.100	112.500	123.600	116.100	115.600	116.800	111.800	83.300	114.600	132.000	127.100	110.800
1991	123.300	112.800	119.300	119.400	113.300	116.700	115.300	81.600	116.400	132.400	124.800	115.800
1992	123.500	116.900	124.000	120.000	109.800	118.700	112.100	80.000	119.300	129.000	122.100	113.800
1993	113.700	113.100	122.700	114.200	107.900	117.100	108.100	79.700	114.800	121.000	121.700	114.800
1994	116.300	111.500	124.000	115.400	114.000	121.000	109.500	85.400	120.600	126.400	127.700	120.000
1995	124.100	116.300	130.200									

TAB. 4.16 – B1 : Série brute.

	Somme des Carrés	d.d.l	Moyenne des Carrés	F	PROB>F
Entre les mois	10897.091	11	990.645	183.698	0.000
Résidu	485.351	90	5.393		
Total	11382.442	101			

TAB. 4.17 – Test de la présence d'une saisonnalité stable.

4.1.2 Tableau B2 : Estimation préliminaire de la tendance-cycle

Description et mode de calcul

La première estimation de la composante tendance-cycle est obtenue en appliquant aux données du tableau B1 une moyenne mobile centrée simple d'ordre 12. Cette moyenne mobile, qui par construction élimine les saisonnalités mensuelles constantes dans un modèle de composition additif, est la composée d'une moyenne mobile simple

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				101.458	101.454	101.550	101.454	101.388	101.950	102.225	102.221	102.508
1987	102.788	103.000	103.271	103.408	103.667	104.167	104.700	105.292	105.825	106.108	106.458	107.033
1988	107.275	107.554	108.104	108.392	108.708	109.179	109.800	110.308	110.454	110.792	111.196	111.558
1989	111.975	112.300	112.425	112.775	113.371	113.517	113.567	113.713	113.867	114.067	114.338	114.404
1990	114.517	114.938	115.117	115.354	115.588	115.521	115.533	115.638	115.471	115.429	115.471	115.371
1991	115.513	115.588	115.592	115.683	115.604	115.717	115.933	116.113	116.479	116.700	116.579	116.517
1992	116.467	116.267	116.321	116.300	116.046	115.850	115.358	114.792	114.579	114.283	113.963	113.817
1993	113.583	113.404	113.204	112.683	112.333	112.358	112.508	112.550	112.538	112.642	112.946	113.363
1994	113.583	113.879	114.358	114.825	115.300	115.767	116.308	116.833	117.292			
1995												

TAB. 4.18 – B2 : Tendance-cycle, moyenne mobile centrée sur 12 termes.

sur 12 termes (et donc de coefficients 1/12) et d'une moyenne mobile simple sur 2 termes qui permet de "recentrer" le résultat. La moyenne mobile utilisée est donc une 2×12 , sur 13 termes, et de coefficients $\{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1\}/24$.

Remarques

- X-11-ARIMA et X-12-ARIMA proposent aussi une moyenne mobile centrée sur 24 termes mise au point par Cholette [12].
- Les 6 premiers et les 6 derniers points de la série, pour lesquels on ne peut obtenir d'estimation de la tendance-cycle à cause de la symétrie de la moyenne mobile, ne sont pas imputés à ce stade du calcul.

Exemple

La valeur de la tendance-cycle d'avril 1986, la première calculable, s'obtient à partir des valeurs du tableau B1 d'octobre 1985 à octobre 1986 (6 mois avant et 6 mois après) :

$$APR86 = \frac{115.7}{24} + \frac{109.8 + 100.6 + 106.6 + 98.7 + 103.9 + 109.5}{12} + \frac{97.7 + 103.7 + 99.7 + 65.7 + 105.2}{12} + \frac{117.1}{24}$$

$$= 101.458.$$

4.1.3 Tableau B3 : Estimation préliminaire de la composante saisonnier-irrégulier non modifiée

Description et mode de calcul

La composante tendance-cycle est enlevée de la série analysée, par soustraction ou division selon le schéma de composition adopté, pour obtenir une première estimation de la composante saisonnier-irrégulier (SI). On a donc : B3 = B1 op B2.

Ce tableau sert de base au *test de saisonnalité stable* édité à la suite du tableau B1. Ce test est un test d'analyse de la variance à un facteur : on dispose de k échantillons (ici les estimations saisonnier-irrégulier pour chacun de nos k=12 mois ou

de nos k=4 trimestres) de tailles respectives n_1,n_2,\ldots,n_k . Ces échantillons correspondent chacun à un niveau différent d'un facteur A^6 , ici la saisonnalité. On suppose que ce facteur influe uniquement sur les moyennes des distributions et non sur leur variance. Il s'agit donc d'un test d'égalité des k moyennes $\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_k$. Si on considère chaque échantillon comme issu d'une variable aléatoire X_j suivant une loi de moyenne m_j et d'écart-type σ , le problème est de tester :

 H_0 : $m_1 = m_2 = \ldots = m_k$

 H_1 : $m_p \neq m_q$ pour au moins un couple (p,q).

L'équation dite d'analyse de la variance s'écrit :

$$\sum_{i=1}^{n_j} \sum_{j=1}^k (x_{ij} - \bar{x})^2 = \sum_{j=1}^k n_j (\bar{x}_{.j} - \bar{x}_{..})^2 + \sum_{i=1}^{n_j} \sum_{j=1}^k (x_{ij} - \bar{x}_{.j})^2$$

soit

$$S^2 = S_A^2 + S_R^2.$$

La variance totale se décompose donc en variance des moyennes, variance due au facteur saisonnalité, et en une variance résiduelle. Si l'hypothèse H_0 est vraie, on montre que la quantité

$$F_S = \frac{S_A^2/(k-1)}{S_R^2/(n-k)}$$

suit une loi de Fisher F(k-1;n-k) à k-1 et n-k degrés de liberté. D'où le test : si la quantité F_S calculée à partir des données du tableau B3 est supérieure à la valeur critique d'une loi de Fisher, on conclut à une influence significative du facteur saisonnalité (i.e. les moyennes mensuelles ou trimestrielles ne sont pas toutes égales).

Remarques

- Là encore, pas d'estimation pour les 6 valeurs de début et les 6 valeurs de fin de la série.
- Certaines hypothèses du modèle d'analyse de la variance utilisé pour tester l'existence d'une saisonnalité sont sans doute violées. Ainsi, la composante irrégulière peut être autocorrélée à ce niveau de l'analyse. Il est donc usuel de choisir des valeurs critiques élevées et de ne rejeter l'hypothèse nulle que si la probabilité associée à la valeur de la statistique F_S est inférieure à 1/1000 = 0.001.
- Le rejet de l'hypothèse nulle tend à prouver l'existence d'une saisonnalité. Accepter l'hypothèse nulle ne signifie pas pour autant qu'il n'y a pas de saisonnalité. Ainsi, une forte évolution des coefficients saisonniers se traduirait par une variance telle qu'il serait impossible de distinguer statistiquement les moyennes.
- Ce test est proposé en option dans X-12-ARIMA.

Exemple

La valeur d'avril 1986 du tableau B3 s'obtient donc simplement :

$$APR86 = 100 \times 109.500/101.458 = 107.926.$$

⁶Attention : les lettres "X" et "A" ont déjà été utilisées pour désigner la série brute et la série désaisonnalisée. Ne confondez pas !

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				107.926	96.300	102.117	98.271	64.801	103.188	114.551	105.947	101.845
1987	97.775	100.194	109.324	103.570	96.463	103.968	97.230	65.247	102.717	110.170	107.742	102.772
1988	100.396	102.460	109.802	99.731	98.796	105.057	92.168	68.898	103.753	106.416	109.087	102.816
1989	105.291	99.911	106.916	101.707	97.468	105.976	92.985	69.825	100.293	111.075	110.900	98.510
1990	105.749	97.879	107.369	100.647	100.011	101.107	96.769	72.035	99.246	114.356	110.071	96.038
1991	106.742	97.588	103.208	103.213	98.007	100.850	99.454	70.277	99.932	113.453	107.052	99.385
1992	106.039	100.545	106.602	103.181	94.618	102.460	97.175	69.691	104.120	112.877	107.141	99.985
1993	100.103	99.732	108.388	101.346	96.053	104.220	96.082	70.813	102.010	107.420	107.751	101.268
1994	102.392	97.911	108.431	100.501	98.873	104.521	94.146	73.096	102.821			
1995												

TAB. 4.19 – B3: Rapports saisonnier-irrégulier non modifiés.

La valeur de la statistique F_S , du tableau 4.17, étant très élevée, l'hypothèse d'égalité de la moyenne des coefficients saisonniers est rejetée. Comme la figure 4.2 le montre, cela est essentiellement dû au mois d'août qui présente un coefficient saisonnier très différent de celui des autres mois.

4.1.4 Tableau B4 : Valeurs de remplacement pour les points atypiques de la composante saisonnier-irrégulier.

Description et mode de calcul

Ce tableau présente les résultats de la procédure automatique de détection et de correction des points "atypiques" de la composante saisonnier-irrégulier présente dans la méthode X-11. Y figurent les valeurs de remplacement proposées pour les points atypiques détectés ainsi que, en marge du tableau, les écart-types mobiles ayant servi à les déterminer. C'est sans aucun doute le tableau le plus difficile à reconstituer dans la mesure où il résulte d'un algorithme assez complexe comportant six étapes.

Étape 1 : estimation de la composante saisonnière.

Cette composante saisonnière est estimée par lissage de la composante saisonnierirrégulier mais en s'intéressant aux valeurs de chaque mois : on lisse les valeurs correspondant au mois de janvier, puis celles du mois de février et ainsi de suite, en employant une moyenne mobile 3×3 de coefficients $\{1,2,3,2,1\}/9$. Cette moyenne mobile, symétrique, porte sur 5 termes et ne permet donc pas d'estimer les valeurs des coefficients saisonniers des 2 premières et dernières années. Celles-ci sont alors calculées grâce à des moyennes mobiles asymétriques *ad hoc* (voir tableau 3.13). On obtient alors une série de coefficients provisoires *fspro*.

Étape 2 : normalisation des coefficients saisonniers.

Ces coefficients saisonniers provisoires sont alors normalisés de telle sorte que, sur une année d'observations, leur moyenne soit approximativement égale à 0 (pour un schéma additif) ou à 1 (pour un schéma multiplicatif). Pour cela, on calcule une moyenne mobile centrée sur 12 termes, $M_{2\times12}(fspro)$; les six valeurs qui manquent au début (à la fin) de cette série sont prises égales à la première (dernière) valeur calculée par cette moyenne mobile. La série fsnorm des coefficients normalisés est

FIG. 4.2 – Composantes saisonnier-irrégulier (SI) de chaque mois. Ce graphique représente les 12 colonnes du tableau B3 : la première courbe montre la composante saisonnier-irrégulier du mois de janvier pour les années 1987 à 1994 ; la droite représente la valeur moyenne de ces 8 valeurs ; les autres courbes correspondent aux autres mois.

alors définie par : $fsnorm = fspro \ op \ M_{2 \times 12}(fspro)$.

Étape 3 : estimation de la composante irrégulière.

L'estimation initiale des coefficients saisonniers est enlevée de la composante saisonnier-irrégulier pour obtenir une estimation de la composante irrégulière :

Irreg = SI op fsnorm.

Étape 4 : calcul d'un écart-type mobile.

Un écart-type mobile de la composante irrégulière est calculé sur des intervalles de cinq ans. Chaque écart-type est associé à l'année centrale qui a permis de le calculer. Les valeurs de cette année centrale qui s'éloignent, en valeur absolue, de leur écart à la moyenne xbar, de plus de 2.5 fois cet écart-type sont considérées comme atypiques et affectées d'un poids nul. L'écart-type mobile est alors recalculé sans tenir compte de ces valeurs ce qui conduit à une estimation plus robuste de cet écart-type. Pour les deux premières années, c'est l'écart-type associé à la troisième année qui est utilisé dans les comparaisons. De même, pour les deux dernières années, c'est l'écart-type associé à l'antépénultième année qui est considéré.

Étape 5 : détection des valeurs atypiques et pondération de l'irrégulier.

On affecte à chaque valeur de la composante irrégulière un poids, fonction de l'écart-type qui lui est associé, calculé de la façon suivante (voir figure 4.3) :

- Les valeurs qui sont, en valeur absolue de leur écart à la moyenne xbar, plus grandes que 2.5σ sont affectées d'un poids nul.
- Les valeurs qui sont, en valeur absolue de leur écart à la moyenne xbar, plus petites que 1.5σ sont affectées d'un poids égal à 1.

FIG. 4.3 – Fonction de poids utilisée par X-11 pour le remplacement des valeurs atypiques.

– Les valeurs qui sont, en valeur absolue de leur écart à la moyenne xbar, comprises entre 1.5σ et 2.5σ reçoivent un poids variant linéairement entre 0 et 1, en fonction de leur position.

Étape 6 : correction des valeurs atypiques de la composante saisonnier-irrégulier.

Une valeur de la composante saisonnier-irrégulier dont l'irrégulier ne reçoit pas une pondération intégrale, et qui a donc été considérée comme atypique, est corrigée et remplacée par une moyenne pondérée de cinq valeurs :

- la valeur elle-même affectée de son poids,
- les deux valeurs précédentes, pour le même mois, ayant une pondération intégrale,
- et les deux valeurs suivantes, pour le même mois, ayant une pondération intégrale.

Pour les deux premières et deux dernières années, les valeurs de remplacement sont calculées comme la moyenne pondérée de la valeur considérée et des quatre valeurs les plus proches, du même mois, ayant reçu une pondération 1⁷.

Remarques

Sur les moyennes mobiles :

- Il est toujours possible de fixer soi-même la moyenne mobile à utiliser. Dans ce cas, X-11-ARIMA permet de choisir entre une moyenne mobile simple sur 3 termes, une 3×3 , une 3×5 , une 3×9 et une saisonnalité stable (une moyenne simple). X-12-ARIMA propose en plus une 3×15 .
- Les moyennes mobiles asymétriques utilisées pour compléter la moyenne mobile utilisée diffèrent très légèrement, pour des problèmes d'arrondis, selon le logiciel. Les coefficients de ces moyennes mobiles sont donnés au chapitre 3.

Sur le calcul des poids et la correction des valeurs atypiques :

– Le caractère atypique d'une valeur I_t de l'irrégulier est déterminé en comparant la valeur de $|I_t-xbar|$ aux bornes $\lambda_L \times \sigma_t$ et $\lambda^U \times \sigma_t$ où σ_t est l'écart-type de

⁷En début et en fin de série, c'est-à-dire dans les deux premières et deux dernières années, Census X-11 utilise les 3 plus proches valeurs de pondération intégrale pour corriger un point atypique (et non les 4 plus proches comme dans X-11-ARIMA ou X-12-ARIMA). De plus, il y a ici des erreurs de calcul dans le logiciel Census X-11.

- l'année de l'observation I_t et λ_L et λ^U sont des paramètres fixés par l'utilisateur (par défaut 1.5 and 2.5).
- S'il n'existe pas quatre points du même mois ayant reçu une pondération intégrale, la valeur atypique est remplacée par la moyenne des valeurs du mois.

Sur le calcul des écart-types mobiles :

- L'écart-type est calculé⁸ en supposant connue la moyenne de l'irrégulier xbar, c'est-à-dire 0 pour un schéma additif et 1 pour un schéma multiplicatif. Dans ce cas, un estimateur sans biais de la variance est donné par :
 - $\sigma^2 = \sum_{t=1}^n \left(I_t xbar\right)^2/n$, où n est le nombre d'observations utilisées (voir ci-après).
 - N'oublions pas que nous cherchons à repérer des valeurs atypiques. En utilisant une estimation de la moyenne, on risquerait de voir cette estimation fortement influencée par ces mêmes valeurs atypiques.
- Lors du calcul du second écart-type correspondant à une année, on exclut les valeurs I_t de l'irrégulier de l'année vérifiant la condition $|I_t xbar| > \lambda^U \times \sigma_t$ où σ_t est la première estimation de l'écart-type pour l'année de l'observation I_t .
- L'écart-type est en principe calculé sur 5 années complètes d'observations. En début et en fin de série, en particulier à cause des valeurs manquantes générées par l'utilisation de moyennes mobiles symétriques, on fait une petite exception. Ainsi, si votre série brute commence en janvier 1970, la première estimation de la composante saisonnier-irrégulier du tableau B3 commencera en juillet 1970. Pour X-11-ARIMA et X-12-ARIMA, l'écart-type de 1972 sera calculé à partir des observations de 1970 et des cinq premières années complètes (de 1971 à 1975), donc sur 66 observations. C'est cet écart-type qui sera alors attribué aux années 1970 et 1971. L'écart-type de 1973 sera lui calculé sur moins d'observations, les 60 correspondants aux années 1971 à 1975.

Exemple

Le résultat du calcul est présenté dans le tableau B4. Nous allons, pour mieux le comprendre, détailler les étapes de son calcul à partir de tableaux malheureusement non récupérables dans les versions usuelles des logiciels de la famille X-11 (tableaux numérotés ici de B4a à B4f).

Étape 1 : estimation de la composante saisonnière.

Les données du tableau B3 sont lissées colonne par colonne (mois par mois), avec une moyenne mobile 3×3 de coefficients $\{1,2,3,2,1\}/9$ pour constituer le tableau B4a. Les valeurs de la composante saisonnier-irrégulier disponibles pour les mois d'avril (1986 à 1994) sont les suivantes (voir tableau B3) :

107.926, 103.570, 99.731, 101.707, 100.647, 103.213, 103.181, 101.346, 100.501.

⁸L'écart-type est calculé à partir des valeurs de l'irrégulier comprenant les valeurs atypiques. Dans l'ancien logiciel Census X-11, l'écart-type mobile était calculé après correction, pour les années précédentes, des valeurs atypiques.

⁹Notons que pour le logiciel Census X-11, le premier écart-type sur cinq ans calculable sera celui de 1973 et sa valeur sera aussi affectée aux années 1970, 1971 et 1972. Les six premières observations ne seront donc pas intégrées dans ce calcul.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Écart-type
1985													1.427
1986				102.584						112.451			1.427
1987	103.375												1.427
1988				101.798			95.684			112.038			1.427
1989						103.387							1.371
1990								70.119				99.580	1.396
1991			106.783				96.339						1.294
1992					97.354				101.594				1.285
1993	104.841									112.788			1.285
1994					98.075			70.649					1.285
1995													1.285

 $\textsc{Tab.}\ 4.20-\textsc{B4}$: Valeurs de remplacement pour les points atypiques de la composante saisonnier-irrégulier.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				104.634	96.829	103.416	96.717	65.741	103.101	111.260	107.260	102.403
1987	100.235	101.065	109.073	103.497	97.137	103.993	95.716	66.587	102.838	110.433	107.976	102.070
1988	101.580	100.703	108.659	102.035	97.840	104.254	94.664	68.186	102.190	110.072	108.951	100.988
1989	103.631	99.799	107.513	101.407	98.276	103.897	94.835	69.652	101.058	110.933	109.534	99.488
1990	105.305	99.071	106.529	101.632	98.266	102.721	96.058	70.544	100.673	112.380	109.149	98.523
1991	105.466	98.806	105.874	102.261	97.422	102.209	97.257	70.547	100.981	112.591	108.248	98.887
1992	104.438	99.118	106.533	102.201	96.762	102.572	97.057	70.709	102.035	111.776	107.601	99.724
1993	102.973	99.232	107.361	101.810	96.629	103.467	96.238	71.054	102.537	110.761	107.373	100.397
1994	102.135	99.140	108.075	101.342	96.936	104.017	95.496	71.535	102.731			
1995												

TAB. 4.21 – B4a: Facteurs saisonniers provisoires (moyenne mobile 3x3).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.097	100.097	100.097	100.097	100.097	100.097	100.097	100.062	100.099
1987	100.082	100.075	100.099	100.054	100.050	100.066	100.108	100.149	100.116	100.038	100.007	100.047
1988	100.014	100.037	100.076	100.034	100.060	100.055	100.096	100.144	100.058	99.984	99.976	99.979
1989	99.972	100.040	100.054	100.043	100.103	100.064	100.072	100.111	100.040	100.008	100.017	99.968
1990	99.970	100.058	100.079	100.123	100.168	100.111	100.078	100.073	100.035	100.034	100.025	99.969
1991	99.997	100.047	100.060	100.082	100.053	100.031	100.003	99.973	100.014	100.039	100.009	99.996
1992	100.003	100.001	100.052	100.062	100.001	100.009	99.983	99.927	99.966	99.984	99.962	99.994
1993	99.997	99.977	100.013	99.991	99.939	99.958	99.951	99.912	99.938	99.948	99.942	99.977
1994	99.969	99.958	99.987	99.987	99.987	99.987	99.987	99.987	99.987			
1995												

TAB. 4.22 – B4b : Moyenne mobile centrée sur 12 mois.

Le facteur saisonnier du mois d'avril 1988 sera donc estimé par :

$$AVR88 = \frac{107.926 + 2 \times 103.570 + 3 \times 99.731 + 2 \times 101.707 + 100.647}{9}$$

= 102.035.

Cette moyenne mobile symétrique peut s'appliquer pour estimer les valeurs des coefficients saisonniers des années 1988 à 1992. Pour le début de la série (années 1986 et 1987) et la fin de la série (années 1993 et 1994), on utilise des moyennes asymétriques prédéfinies (voir tableau 3.13) :

$$AVR86 = \frac{107.926 \times 11 + 103.570 \times 11 + 99.731 \times 5}{27} = 104.634$$

(le point courant et deux points dans le futur)

$$AVR87 = \frac{107.926 \times 7 + 103.570 \times 10 + 99.731 \times 7 + 101.707 \times 3}{27} = 103.497$$

(un point dans le passé, le point courant et deux points dans le futur)

$$AVR93 = \frac{100.501 \times 7 + 101.346 \times 10 + 103.181 \times 7 + 103.213 \times 3}{27} = 101.810$$

(un point dans le futur, le point courant et deux points dans le passé)

$$AVR94 = \frac{100.501 \times 11 + 101.346 \times 11 + 103.181 \times 5}{27} = 101.342$$

(le point courant et deux points dans le passé).

Étape 2 : normalisation des coefficients saisonniers.

Au tableau B4a, on applique une moyenne mobile centrée sur 12 mois pour obtenir le tableau B4b. Le premier terme calculable est donc celui d'octobre 1986 et le dernier, celui de mars 1994. Ainsi :

$$OCT86 = \frac{104.634}{24} + \frac{96.829 + 103.416 + 96.717 + 65.741 + 103.101}{12}$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				104.532	96.735	103.315	96.623	65.678	103.001	111.152	107.193	102.301
1987	100.153	100.989	108.964	103.441	97.089	103.925	95.613	66.488	102.719	110.391	107.969	102.022
1988	101.566	100.666	108.577	102.001	97.782	104.196	94.573	68.088	102.131	110.089	108.977	101.009
1989	103.660	99.759	107.456	101.363	98.176	103.830	94.767	69.574	101.018	110.924	109.515	99.521
1990	105.337	99.014	106.445	101.507	98.102	102.607	95.984	70.493	100.638	112.342	109.122	98.554
1991	105.469	98.760	105.811	102.177	97.370	102.178	97.254	70.566	100.967	112.548	108.238	98.890
1992	104.435	99.117	106.478	102.138	96.761	102.563	97.074	70.761	102.070	111.794	107.642	99.730
1993	102.976	99.255	107.347	101.819	96.688	103.511	96.285	71.117	102.600	110.818	107.435	100.419
1994	102.166	99.182	108.089	101.355	96.949	104.031	95.509	71.545	102.745			
1995												

TAB. 4.23 – B4c: Facteurs saisonniers normalisés.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				103.246	99.550	98.840	101.705	98.665	100.182	103.058	98.838	99.555
1987	97.625	99.213	100.330	100.125	99.355	100.041	101.692	98.134	99.998	99.800	99.790	100.735
1988	98.848	101.782	101.128	97.775	101.038	100.826	97.456	101.189	101.589	96.663	100.101	101.789
1989	101.573	100.152	99.498	100.339	99.279	102.066	98.120	100.360	99.282	100.137	101.264	98.985
1990	100.391	98.854	100.869	99.152	101.946	98.539	100.818	102.189	98.617	101.793	100.870	97.447
1991	101.207	98.814	97.540	101.014	100.654	98.701	102.261	99.590	98.974	100.804	98.904	100.500
1992	101.535	101.441	100.116	101.022	97.785	99.900	100.105	98.488	102.009	100.969	99.534	100.256
1993	97.210	100.481	100.970	99.535	99.344	100.685	99.789	99.573	99.425	96.934	100.294	100.845
1994	100.221	98.719	100.316	99.157	101.984	100.471	98.574	102.168	100.074			
1995												

TAB. 4.24 – B4d : Composante irrégulière provisoire.

$$+\frac{111.260+107.260+102.403+100.235+101.065+109.073}{12}\\+\frac{103.497}{24}\\100.097.$$

Les six premières valeurs, d'avril à septembre 1986, non calculables avec cette moyenne mobile symétrique, seront prises égales à la première valeur calculable, celle d'octobre 1986. On procède de même pour la fin de série : la valeur calculée pour mars 1994 (99.987) est répétée pour les six mois suivants. Les coefficients saisonniers normalisés sont alors obtenus en divisant le tableau B4a par le tableau B4b, pour obtenir le tableau B4c.

Ainsi : $AVR86 = 100 \times 104.634/100.097 = 104.532$.

Étape 3 : estimation de la composante irrégulière.

Il suffit de diviser la composante saisonnier-irrégulier du tableau B3 par les coefficients saisonniers normalisés du tableau B4c pour obtenir le tableau B4d.

Par exemple : $AVR86 = 100 \times 107.926/104.532 = 103.246$.

Étape 4 : calcul d'un écart-type mobile.

L'écart-type correspondant à l'année 1989 sera calculé à partir des données des

Année	Écart-type 1	Écart-type 2
1985		
1986	1.4265	1.4265
1987	1.4265	1.4265
1988	1.4265	1.4265
1989	1.3705	1.3705
1990	1.3958	1.3958
1991	1.2941	1.2941
1992	1.2847	1.2847
1993	1.2847	1.2847
1994	1.2847	1.2847
1995		

TAB. 4.25 - B4e: Écart-types mobiles sur 5 ans.

années 1987 à 1991 (deux années avant, deux années après) selon la formule 10 :

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Jan87}^{Dec91} (I_t - 100)^2\right]^{1/2} = 1.3705.$$

Ceux des années 1990 et 1991 sont calculés selon le même principe.

Pour X-11-ARIMA et X-12-ARIMA, l'écart-type pour 1988 est calculé à partir de toutes les informations disponibles de 1986 à 1991, soit 69 observations. C'est cet écart-type qui sera associé aux années 1986 et 1987. De même, l'écart-type de 1992 utilise toutes les données de 1989 à 1994; il sera aussi associé aux années 1993 et 1994. Ces premières estimations des écart-types sont présentées dans la colonne "Écart-type 1" du tableau B4e.

Ce premier calcul sert à repérer d'éventuels points atypiques. Pour une année donnée, une valeur sera considérée comme atypique si elle s'éloigne, en valeur absolue de son écart à la moyenne théorique (ici 1), de plus de 2.5 fois l'écart-type correspondant à cette année. La figure 4.4 représente l'écart de l'irrégulier à sa moyenne théorique et les deux "limites de confiance". Comme on peut le constater, aucune valeur n'est considérée comme très atypique. Dans le cas contraire, on aurait éliminé ces valeurs et refait le calcul de l'écart-type (voir par exemple le cas du tableau B17, paragraphe 4.1.17). Ce nouveau calcul conduit donc à la colonne Écart-type 2 du tableau B4e identique à la colonne 1.

Étape 5 : détection des valeurs atypiques et pondération de l'irrégulier.

La figure 4.4 permet de situer les valeurs de l'irrégulier par rapport aux limites de confiance supérieures et inférieures calculées à partir des écart-types estimés auparavant. Ici, aucune valeur n'est considérée comme très exceptionnelle mais toutes les valeurs situées entre les deux limites sont considérées comme atypiques et vont être corrigées; les poids (multipliés par 100) associés à chacune de ces valeurs figurent dans le tableau B4f.

On a par exemple, pour janvier 1987 : |Jan87-100|=|97.625-100|=2.375, et $1.5\times\sigma_{87}=1.5\times1.4265=2.13975<2.375<2.5\times\sigma_{87}=2.5\times1.4265=3.5663$.

¹⁰ Ici la moyenne théorique est considérée égale à 100 pour tenir compte du fait que les valeurs de l'irrégulier ont été elles-mêmes multipliées par 100.

FIG. 4.4 – B4d : Écart de l'irrégulier à sa moyenne théorique et "limites de confiance" associées à $\pm 1.5\sigma$ et $\pm 2.5\sigma$.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				22.419	100.000	100.000	100.000	100.000	100.000	35.633	100.000	100.000
1987	83.535	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	94.011	100.000	100.000	71.692	100.000	100.000	16.096	100.000	100.000
1989	100.000	100.000	100.000	100.000	100.000	99.217	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	93.192	100.000	100.000	100.000	67.113
1991	100.000	100.000	59.928	100.000	100.000	100.000	75.258	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	77.601	100.000	100.000	100.000	93.624	100.000	100.000	100.000
1993	32.820	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	11.350	100.000	100.000
1994	100.000	100.000	100.000	100.000	95.570	100.000	100.000	81.282	100.000			
1995												

TAB. 4.26 - B4f: Poids associés aux valeurs de l'irrégulier.

On va attribuer à cette valeur jugée moyennement atypique, un poids proportionnel à l'écart à la moyenne constaté de :

$$poids(Jan87) = \frac{3.5663 - 2.375}{3.5663 - 2.1398} = 0.835.$$

De même, pour la valeur de juin 1989, légèrement au-delà de la limite de confiance inférieure, on a : |JUIN89-100|=|102.066-100|=2.066, et $1.5\times\sigma_{89}=1.5\times1.3705=2.056<2.066<2.5\times\sigma_{87}=2.5\times1.3705=3.426$. Et donc,

$$poids(Juin89) = \frac{3.426 - 2.066}{3.426 - 2.056} = 0.992.$$

Étape 6 : correction des valeurs atypiques de la composante saisonnier-irrégulier.

La correction de la composante saisonnier-irrégulier (tableau B3) se fait enfin à partir de ces poids. Ainsi, la valeur de juin 1989 sera remplacée par la moyenne de cette valeur affectée de son poids et des deux valeurs antérieures et postérieures du même mois ayant reçu une pondération intégrale, donc non jugées atypiques. Il s'agit donc, comme le montre le tableau B4f, des valeurs des mois de juin 1987, 1988, 1990 et 1991. Ce qui conduit à :

$$SI(Juin89) = \frac{103.968 + 105.057 + 105.976 \times 0.992 + 101.107 + 100.850}{4 + 0.992}$$

= 103.387.

La valeur de janvier 1987 a été jugée elle aussi atypique. Mais, comme elle se trouve en début de série, elle est corrigée de façon légèrement différente et est remplacée par la moyenne de cette valeur affectée de son poids et des quatre valeurs les plus proches du même mois ayant reçu une pondération intégrale. Il s'agit donc dans ce cas, d'après le tableau B4f, des valeurs de janvier 1988, 1989, 1990 et 1991. On a donc, aux erreurs d'arrondis près :

$$SI(Jan87) = \frac{97.775 \times 0.835 + 100.396 + 105.291 + 105.749 + 106.742}{4 + 0.835}$$

= 103.375.

Ces valeurs de remplacement sont éditées dans le tableau B4 présenté au début de l'exemple.

4.1.5 Tableau B5 : Estimation de la composante saisonnière

Description et mode de calcul

Cette estimation est obtenue à partir des valeurs de la composante saisonnierirrégulier du tableau B3 corrigées par les valeurs du tableau B4. On procède en trois étapes dont les deux premières sont identiques à celles du tableau B4 :

Étape 1 : estimation de la composante saisonnière avec une 3×3 .

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				102.584	96.300	102.117	98.271	64.801	103.188	112.451	105.947	101.845
1987	103.375	100.194	109.324	103.570	96.463	103.968	97.230	65.247	102.717	110.170	107.742	102.772
1988	100.396	102.460	109.802	101.798	98.796	105.057	95.684	68.898	103.753	112.038	109.087	102.816
1989	105.291	99.911	106.916	101.707	97.468	103.387	92.985	69.825	100.293	111.075	110.900	98.510
1990	105.749	97.879	107.369	100.647	100.011	101.107	96.769	70.119	99.246	114.356	110.071	99.580
1991	106.742	97.588	106.783	103.213	98.007	100.850	96.339	70.277	99.932	113.453	107.052	99.385
1992	106.039	100.545	106.602	103.181	97.354	102.460	97.175	69.691	101.594	112.877	107.141	99.985
1993	104.841	99.732	108.388	101.346	96.053	104.220	96.082	70.813	102.010	112.788	107.751	101.268
1994	102.392	97.911	108.431	100.501	98.075	104.521	94.146	70.649	102.821			
1995												

TAB. 4.27 – B4g: Composante saisonnier-irrégulier corrigée.

Étape 2 : normalisation des coefficients saisonniers avec une 2×12 .

Et la troisième étape :

Étape 3 : estimation des coefficients saisonniers manquants.

Les coefficients saisonniers pour les 6 valeurs manquantes à chaque extrémité de la série, dues à l'utilisation d'une moyenne mobile centrée sur 12 termes dans le tableau B2, sont estimés en dupliquant la valeur la plus proche calculée pour le mois considéré.

Remarque

Il est toujours possible de fixer soi-même la moyenne mobile à utiliser. Dans ce cas, X-11-ARIMA permet de choisir entre une moyenne mobile simple sur 3 termes, une 3×3 , une 3×5 , une 3×9 et une saisonnalité stable (une moyenne simple). X-12-ARIMA propose en plus une 3×15 .

Exemple

L'estimation est faite à partir de la composante saisonnier-irrégulier corrigée du tableau B4g.

Étape 1 : estimation de la composante saisonnière.

Les données du tableau précédent sont lissées colonne par colonne (mois par mois), avec une moyenne mobile 3×3 de coefficients $\{1,2,3,2,1\}/9$, pour aboutir au tableau B5a.

Le facteur saisonnier du mois d'avril 1988 sera donc estimé par :

$$AVR88 = \frac{102.584 + 2 \times 103.570 + 3 \times 101.798 + 2 \times 101.707 + 100.647}{9}$$

= 102.131.

Cette moyenne mobile symétrique peut s'appliquer pour estimer les valeurs des coefficients saisonniers des années 1988 à 1992. Pour le début de la série (années 1986 et 1987) et la fin de la série (années 1993 et 1994), on utilise des moyennes asymétriques prédéfinies (voir tableau 3.13) :

$$AVR86 = \frac{102.584 \times 11 + 103.570 \times 11 + 101.798 \times 5}{27} = 102.840$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				102.840	96.829	103.416	97.368	65.741	103.101	111.445	107.260	102.403
1987	102.516	101.065	109.073	102.648	97.137	103.706	96.627	66.587	102.838	111.346	107.976	102.070
1988	103.032	100.703	108.659	102.131	97.840	103.678	95.836	67.973	102.190	111.712	108.951	101.382
1989	104.253	99.799	107.911	101.866	98.276	103.034	95.270	69.226	101.058	112.182	109.534	100.276
1990	105.305	99.071	107.323	101.862	98.570	102.146	95.757	69.906	100.393	113.004	109.149	99.704
1991	105.993	98.806	107.066	102.261	98.030	101.921	96.219	70.121	100.420	113.188	108.248	99.674
1992	105.492	99.118	107.328	102.201	97.585	102.572	96.365	70.225	101.192	113.168	107.601	100.117
1993	104.728	99.232	107.758	101.810	97.132	103.467	95.892	70.420	101.881	112.948	107.373	100.397
1994	104.065	99.140	108.075	101.342	97.118	104.017	95.496	70.538	102.263			
1995												

TAB. 4.28 - B5a: Facteurs saisonniers provisoires (moyenne mobile 3×3).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.247	100.247	100.247	100.247	100.247	100.247	100.247	100.251	100.276
1987	100.258	100.262	100.286	100.271	100.297	100.313	100.321	100.327	100.295	100.256	100.264	100.292
1988	100.258	100.282	100.313	100.301	100.357	100.369	100.392	100.405	100.336	100.294	100.301	100.292
1989	100.242	100.270	100.275	100.248	100.292	100.270	100.268	100.281	100.226	100.202	100.214	100.189
1990	100.172	100.221	100.221	100.228	100.246	100.206	100.211	100.229	100.207	100.213	100.207	100.175
1991	100.185	100.213	100.223	100.232	100.202	100.163	100.141	100.133	100.157	100.166	100.145	100.153
1992	100.186	100.197	100.233	100.265	100.237	100.229	100.215	100.188	100.211	100.212	100.177	100.196
1993	100.213	100.202	100.239	100.258	100.239	100.242	100.226	100.194	100.203	100.197	100.177	100.199
1994	100.206	100.194	100.215	100.215	100.215	100.215	100.215	100.215	100.215			
1995												<u>.</u>

TAB. 4.29 – B5b : Moyenne mobile centrée sur 12 termes.

(le point courant et deux points dans le futur)

$$AVR87 = \frac{102.584 \times 7 + 103.570 \times 10 + 101.798 \times 7 + 101.707 \times 3}{27} = 102.648$$

(un point dans le passé, le point courant et deux points dans le futur)

$$AVR93 = \frac{100.501 \times 7 + 101.346 \times 10 + 103.181 \times 7 + 103.213 \times 3}{27} = 101.810$$

(un point dans le futur, le point courant et deux points dans le passé)

$$AVR94 = \frac{100.501 \times 11 + 101.346 \times 11 + 103.181 \times 5}{27} = 101.342$$

(le point courant et deux points dans le passé).

Étape 2 : normalisation des coefficients saisonniers.

Au tableau B5a, on applique une moyenne mobile centrée sur 12 mois, ce qui conduit au tableau B5b. Le premier terme calculable est donc celui d'octobre 1986 et le dernier, celui de mars 1994. Ainsi :

$$OCT86 = \frac{102.840}{24}$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.171	106.991	102.120
1986	102.253	100.801	108.761	102.587	96.590	103.161	97.128	65.580	102.847	111.171	106.991	102.120
1987	102.253	100.801	108.761	102.370	96.850	103.382	96.319	66.370	102.536	111.062	107.692	101.773
1988	102.767	100.419	108.320	101.824	97.492	103.297	95.462	67.699	101.848	111.385	108.624	101.087
1989	104.002	99.530	107.614	101.614	97.991	102.757	95.016	69.032	100.830	111.956	109.301	100.086
1990	105.124	98.853	107.086	101.630	98.328	101.936	95.555	69.746	100.185	112.764	108.924	99.529
1991	105.797	98.596	106.828	102.024	97.832	101.755	96.083	70.028	100.262	113.000	108.091	99.521
1992	105.295	98.924	107.078	101.931	97.355	102.338	96.158	70.093	100.980	112.928	107.411	99.922
1993	104.505	99.033	107.501	101.548	96.900	103.218	95.676	70.284	101.675	112.725	107.183	100.197
1994	103.852	98.948	107.843	101.124	96.910	103.793	95.291	70.387	102.044	112.725	107.183	100.197
1995	103.852	98.948	107.843									

TAB. 4.30 – B5 : Coefficients saisonniers.

$$+\frac{96.829+103.416+97.368+65.741+103.101}{12}\\+\frac{111.445+107.260+102.403+102.516+101.065+109.073}{12}\\+\frac{102.648}{24}\\100.247.$$

Les six premières valeurs, d'avril à septembre 1986, non calculables avec cette moyenne mobile symétrique, seront prises égales à la première valeur calculable, celle d'octobre 1986. On procède de même pour la fin de série : la valeur calculée pour mars 1994 (100.215) est répétée pour les six mois suivants. Les coefficients saisonniers normalisés sont alors obtenus en divisant le tableau B5a par le tableau B5b.

Par exemple : $AVR86 = 100 \times 102.840/100.247 = 102.587$.

Étape 3 : estimation des coefficients saisonniers manquants.

Les valeurs manquantes d'octobre 1985 à mars 1986, due à l'usage de la moyenne mobile centrée d'ordre 12 dans le tableau B2, sont obtenues en dupliquant la première valeur calculée pour le mois considéré. De même, pour les valeurs d'octobre 1994 à mars 1995, on duplique la dernière valeur calculée pour le mois considéré pour aboutir au tableau B5.

4.1.6 Tableau B6 : Estimation de la série corrigée des variations saisonnières

Description et mode de calcul

Cette estimation s'obtient simplement en retirant à la série de départ, du tableau B1, l'estimation de la composante saisonnière du tableau B5 : B6 = B1 op B5.

Exemple

Par exemple, $AVR86 = 100 \times 109.500/102.587 = 106.739$.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										104.074	102.626	98.511
1986	104.251	97.916	95.530	106.739	101.149	100.522	102.648	100.183	102.288	105.333	101.224	102.232
1987	98.286	102.380	103.805	104.620	103.253	104.757	105.691	103.511	106.011	105.257	106.507	108.084
1988	104.800	109.740	109.583	106.164	110.163	111.039	106.011	112.261	112.520	105.849	111.669	113.467
1989	113.363	112.730	111.695	112.878	112.766	117.072	111.140	115.019	113.260	113.169	116.010	112.603
1990	115.197	113.805	115.421	114.238	117.566	114.582	117.000	119.433	114.388	117.058	116.687	111.324
1991	116.544	114.406	111.675	117.031	115.810	114.687	120.000	116.525	116.096	117.168	115.458	116.357
1992	117.289	118.172	115.804	117.727	112.784	115.988	116.579	114.134	118.143	114.232	113.676	113.889
1993	108.799	114.205	114.138	112.459	111.352	113.449	112.985	113.398	112.909	107.340	113.544	114.574
1994	111.987	112.685	114.982	114.117	117.635	116.578	114.911	121.329	118.184	112.131	119.142	119.764
1995	119.498	117.536	120.731									

TAB. 4.31 – B6 : Série corrigée des variations saisonnières.

4.1.7 Tableau B7: Estimation de la composante tendance-cycle

Description et mode de calcul

Ce tableau présente une estimation de la composante tendance-cycle réalisée à partir de la série désaisonnalisée du tableau précédent. Il s'agit donc ici d'un problème de lissage et pour le résoudre, le programme va utiliser une moyenne mobile de Henderson.

Étape 1 : choix de la moyenne mobile, calcul du ratio \bar{I}/\bar{C} .

Pour une série mensuelle, X-11 utilise, à cette étape et selon les cas, une moyenne mobile de Henderson sur 9 ou 13 termes. Le choix de l'ordre de la moyenne mobile est, sauf intervention de l'utilisateur, automatique et fondé sur la valeur d'un indicateur dit **ratio** \bar{I}/\bar{C} mesurant en quelque sorte l'importance de la composante irrégulière dans la série ; plus elle est importante, plus l'ordre de la moyenne mobile choisie sera grand.

Pour calculer ce ratio, on calcule une première décomposition de la série corrigée des variations saisonnières (SA) à l'aide d'une moyenne mobile de Henderson sur 13 termes. A cette étape du calcul, on ne se préoccupe pas des 6 points "perdus" en début et fin de série. On a donc : tendance-cycle = $C = H_{13}(SA)$ et irrégulier= I = SA op C. On calcule ensuite, pour chaque série C et I, la moyenne de la valeur absolue des taux de croissance mensuels (schéma multiplicatif) ou des croissances mensuelles (schéma additif), notés \bar{C} et \bar{I} . On a donc :

$$\bar{C} = \frac{1}{n-1} \sum_{t=2}^{n} |C_t \text{ op } C_{t-1} - xbar|$$

$$\bar{I} = \frac{1}{n-1} \sum_{t=2}^{n} |I_t \text{ op } I_{t-1} - xbar|.$$

On calcule ensuite le ratio \bar{I}/\bar{C} ratio et :

- Si le ratio est inférieur à 1, on choisira une moyenne mobile de Henderson à 9 termes.
- Sinon, on choisira une moyenne mobile de Henderson à 13 termes.

Étape 2 : lissage de la série désaisonnalisée par une moyenne mobile de Hender-

son.

La série désaisonnalisée SA du tableau B6 est alors lissée par la moyenne mobile de Henderson choisie. A ce stade, on estimera les points non calculables par la moyenne symétrique en début et fin de série (4 ou 6 selon le cas) grâce à des moyennes mobiles asymétriques $ad\ hoc$.

Remarques

- Notez que le calcul du ratio se fait sans se préoccuper des 6 premiers et 6 derniers mois pour lesquels la moyenne mobile de Henderson sur 13 termes ne permet pas d'obtenir d'estimation de la tendance-cycle.
- A cette étape, le programme ne choisit qu'entre une moyenne à 9 termes et une moyenne à 13 termes.
- Il est possible de spécifier soi-même la longueur de la moyenne mobile de Henderson à utiliser. Dans ce cas, X-11-ARIMA donne le choix entre une moyenne mobile sur 9, 13 ou 23 termes. X-12-ARIMA permet de choisir toute moyenne de Henderson d'ordre impair inférieur à 101.
- Les coefficients des moyennes mobiles utilisées (symétriques ou non) sont, aux arrondis près, les mêmes dans X-11-ARIMA and X-12-ARIMA. Les coefficients des moyennes mobiles symétriques sont calculés à partir de la formule exacte de Henderson. Pour les filtres asymétriques, X-11-ARIMA utilise des valeurs à 7 décimales dérivées d'une formule établie par Laniel [46], et X-12-ARIMA utilise directement une formule due à Doherty [22] et basée sur les travaux de Musgrave [55, 56]. Ces différents filtres sont présentés aux paragraphes 3.2.2 et 3.3.1 11.
- Notons enfin que le calcul de cette tendance-cycle se fait sans exclure les points jugés atypiques de la série désaisonnalisée. X-11-ARIMA propose une option de correction de la tendance-cycle pour "grèves". Dans ce cas, le programme recherchera et corrigera ces valeurs atypiques de la même façon qu'au tableau B4: estimation de la composante irrégulière en enlevant la tendance-cycle de la série désaisonnalisée, calcul d'un écart-type mobile sur 5 ans etc. X-12-ARIMA ne propose pas cette option.

Exemple

Étape 1 : choix de la moyenne mobile, calcul du ratio \bar{I}/\bar{C} .

On lisse tout d'abord le tableau B6 par une moyenne mobile de Henderson sur 13 termes dont les coefficients figurent dans le tableau 3.11 (colonne $H6_6$).

Le premier terme calculable avec le filtre symétrique de Henderson est donc celui d'avril 1986, et on a :

$$AVR86 = 104.074 \times (-0.0193) + 102.626 \times (-0.0279) + 98.511 \times (0.0000) + 104.251 \times (0.0655) + 97.916 \times (0.1474) + 95.530 \times (0.2143) +$$

¹¹Dans Census X-11, les coefficients des moyennes mobiles symétriques et asymétriques sont arrondis à la troisième décimale. On ne sait pas comment les filtres asymétriques ont été calculés.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.809	101.258	101.649	102.031	102.287	102.241	102.092	101.939	101.700
1987	101.671	102.029	102.691	103.528	104.218	104.567	104.799	104.992	105.302	105.774	106.319	106.848
1988	107.460	107.972	108.320	108.737	109.126	109.403	109.568	109.760	110.159	110.671	111.282	111.855
1989	112.343	112.722	113.066	113.268	113.389	113.645	113.835	113.913	113.901	113.920	113.989	114.155
1990	114.366	114.521	114.877	115.348	115.889	116.472	116.816	116.862	116.614	116.065	115.337	114.704
1991	114.232	114.160	114.487	115.084	115.871	116.538	116.921	117.008	116.831	116.619	116.632	116.735
1992	116.829	116.824	116.503	116.091	115.767	115.602	115.688	115.709	115.381	114.694	113.877	113.108
1993	112.640	112.448	112.498	112.798	112.965	112.853	112.539	112.212	112.024	111.941	111.996	112.314
1994	112.954	113.648	114.346	115.193	116.069	116.819	117.188	117.307	117.362			
1995												

TAB. 4.32 – B7a: Tendance-cycle (moyenne mobile de Henderson sur 13 termes).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				105.882	99.893	98.891	100.605	97.944	100.046	103.174	99.298	100.524
1987	96.670	100.344	101.085	101.055	99.074	100.182	100.851	98.590	100.674	99.510	100.178	101.157
1988	97.525	101.638	101.166	97.634	100.951	101.495	96.753	102.279	102.143	95.643	100.348	101.441
1989	100.908	100.007	98.787	99.656	99.451	103.016	97.632	100.971	99.437	99.341	101.773	98.640
1990	100.727	99.375	100.473	99.037	101.447	98.378	100.158	102.200	98.091	100.856	101.171	97.053
1991	102.024	100.216	97.544	101.692	99.947	98.412	102.634	99.587	99.371	100.471	98.994	99.676
1992	100.394	101.154	99.400	101.409	97.423	100.334	100.770	98.639	102.393	99.598	99.823	100.691
1993	96.590	101.563	101.458	99.700	98.573	100.528	100.396	101.057	100.790	95.890	101.382	102.012
1994	99.144	99.152	100.556	99.066	101.350	99.793	98.057	103.428	100.701			
1995												

TAB. 4.33 – B7b : Composante irrégulière.

$$106.739 \times (0.2401) + 101.149 \times (0.2143) +$$
 $100.522 \times (0.1474) + 102.648 \times (0.0655) +$
 $100.183 \times (0.0000) + 102.288 \times (-0.0279) +$
 $105.333 \times (-0.0193)$
 $100.809.$

A cette étape du calcul, on ne se préoccupe pas d'estimer les 6 points non calculables avec le filtre symétrique en début et en fin de série. On en déduit une estimation de la tendance-cycle (tableau B7a) et, par division avec le tableau B6, de la composante irrégulière (tableau B7b). Ainsi, la valeur de l'irrégulier pour avril 1986 est :

$$AVR86 = 100 \times 106.739/100.809 = 105.882.$$

Le schéma étant multiplicatif, on calcule :

$$\bar{C} = \frac{1}{n-1} \sum_{t=2}^{n} |C_t/C_{t-1} - 1|$$

$$\bar{I} = \frac{1}{n-1} \sum_{t=2}^{n} |I_t/I_{t-1} - 1|.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					0.445	0.387	0.375	0.251	0.044	0.146	0.150	0.235	2.033
1987	0.028	0.352	0.649	0.814	0.667	0.335	0.222	0.184	0.295	0.449	0.514	0.498	5.008
1988	0.573	0.477	0.322	0.385	0.358	0.255	0.151	0.175	0.364	0.465	0.552	0.514	4.589
1989	0.437	0.337	0.305	0.178	0.106	0.226	0.168	0.069	0.011	0.017	0.061	0.146	2.060
1990	0.184	0.136	0.311	0.410	0.469	0.503	0.295	0.040	0.212	0.471	0.627	0.549	4.207
1991	0.412	0.063	0.286	0.522	0.684	0.575	0.329	0.075	0.151	0.182	0.011	0.089	3.379
1992	0.081	0.005	0.274	0.354	0.279	0.143	0.075	0.018	0.284	0.596	0.712	0.675	3.496
1993	0.414	0.170	0.045	0.266	0.148	0.099	0.278	0.291	0.167	0.074	0.049	0.284	2.285
1994	0.570	0.615	0.614	0.741	0.760	0.647	0.316	0.102	0.047				4.410
1995													

 $TAB.\ 4.34-B7c: Taux\ de\ croissance\ (en\ \%\ et\ en\ valeur\ absolue)\ de\ la\ tendance-cycle.$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					5.657	1.002	1.733	2.645	2.146	3.128	3.757	1.234	21.302
1987	3.833	3.801	0.738	0.029	1.961	1.118	0.668	2.242	2.114	1.156	0.671	0.978	19.307
1988	3.591	4.217	0.464	3.492	3.397	0.539	4.672	5.711	0.133	6.364	4.920	1.090	38.591
1989	0.526	0.893	1.219	0.879	0.205	3.585	5.226	3.420	1.519	0.097	2.448	3.079	23.096
1990	2.116	1.342	1.105	1.429	2.433	3.025	1.810	2.039	4.020	2.818	0.312	4.070	26.519
1991	5.122	1.772	2.666	4.252	1.715	1.536	4.290	2.968	0.218	1.107	1.470	0.689	27.805
1992	0.720	0.758	1.735	2.022	3.931	2.988	0.434	2.115	3.806	2.730	0.227	0.869	22.334
1993	4.073	5.148	0.103	1.733	1.130	1.984	0.131	0.658	0.264	4.862	5.728	0.622	26.435
1994	2.812	0.009	1.416	1.482	2.305	1.536	1.740	5.478	2.637				19.415
1995													

TAB. 4.35 - B7d: Taux de croissance (en % et en valeur absolue) de l'irrégulier.

Soit, en utilisant les totaux par ligne des tableaux B7c et B7d :

$$\bar{C} = \frac{2.033 + 5.008 + 4.589 + 2.060 + 4.207}{101} + \frac{3.379 + 3.496 + 2.285 + 4.410}{101} = 0.312,$$

et

$$\bar{I} = \frac{21.302 + 19.307 + 38.591 + 23.096 + 26.519}{101} + \frac{27.805 + 22.334 + 26.435 + 19.415}{101}$$
= 2.226.

Et donc $\bar{I}/\bar{C} = 2.226/0.312 = 7.14$.

Étape 2 : lissage de la série désaisonnalisée par une moyenne mobile de Henderson.

Le ratio étant supérieur à 1, on choisit une moyenne mobile de Henderson sur 13 termes dont les coefficients, et ceux des moyennes mobiles asymétriques associées, figurent dans le tableau 3.11. L'estimation de la tendance pour octobre 1985 se fait, à partir de la série corrigée des variations saisonnières du tableau B6, en utilisant le point courant et six points dans le futur auxquels on applique les coefficients de la moyenne mobile $H6_0$ du tableau 3.11.

$$\begin{array}{ll} OCT85 & = & 104.074 \times (0.42113) + 102.626 \times (0.35315) + \\ & 98.511 \times (0.24390) + 104.251 \times (0.11977) + \\ & 97.916 \times (0.01202) + 95.530 \times (-0.05811) + \\ & 106.739 \times (-0.09186) \\ & = & 102.405. \end{array}$$

Ce qui conduit au tableau B7.

4.1.8 Tableau B8 : Composante saisonnier-irrégulier non modifiée.

Description et mode de calcul

Ce tableau est similaire au tableau B3 : la composante tendance-cycle est enlevée de la série analysée, par soustraction ou division selon le schéma de composition adopté, pour obtenir une estimation de la composante saisonnier-irrégulier. On a donc : $B8 = B1 \ op \ B7$.

Remarque

Contrairement au tableau B3, les points de début et de fin de série ayant été estimés par des moyennes mobiles de Henderson asymétriques pour la tendance-cycle, on dispose d'une estimation complète de la composante saisonnier-irrégulier.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										102.405	101.784	101.095
1986	100.543	100.309	100.463	100.809	101.258	101.649	102.031	102.287	102.241	102.092	101.939	101.700
1987	101.671	102.029	102.691	103.528	104.218	104.567	104.799	104.992	105.302	105.774	106.319	106.848
1988	107.460	107.972	108.320	108.737	109.126	109.403	109.568	109.760	110.159	110.671	111.282	111.855
1989	112.343	112.722	113.066	113.268	113.389	113.645	113.835	113.913	113.901	113.920	113.989	114.155
1990	114.366	114.521	114.877	115.348	115.889	116.472	116.816	116.862	116.614	116.065	115.337	114.704
1991	114.232	114.160	114.487	115.084	115.871	116.538	116.921	117.008	116.831	116.619	116.632	116.735
1992	116.829	116.824	116.503	116.091	115.767	115.602	115.688	115.709	115.381	114.694	113.877	113.108
1993	112.640	112.448	112.498	112.798	112.965	112.853	112.539	112.212	112.024	111.941	111.996	112.314
1994	112.954	113.648	114.346	115.193	116.069	116.819	117.188	117.307	117.362	117.495	117.801	118.258
1995	118.787	119.246	119.901									

TAB. 4.36 – B7 : Tendance-cycle, le ratio I/C est 7.14, une moyenne mobile de Henderson sur 13 termes a été choisie.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										112.983	107.876	99.511
1986	106.024	98.396	103.421	108.622	96.487	102.017	97.716	64.231	102.894	114.700	106.240	102.655
1987	98.848	101.148	109.941	103.451	95.953	103.570	97.138	65.434	103.227	110.518	107.883	102.950
1988	100.224	102.064	109.583	99.414	98.419	104.841	92.362	69.242	104.031	106.532	109.002	102.544
1989	104.946	99.537	106.309	101.264	97.453	105.856	92.766	69.702	100.263	111.218	111.239	98.725
1990	105.888	98.235	107.593	100.652	99.751	100.282	95.706	71.281	98.273	113.729	110.199	96.596
1991	107.938	98.809	104.204	103.750	97.781	100.139	98.614	69.739	99.631	113.533	107.003	99.199
1992	105.710	100.065	106.435	103.367	94.846	102.680	96.898	69.139	103.396	112.474	107.221	100.612
1993	100.941	100.580	109.069	101.243	95.517	103.763	96.055	71.026	102.478	108.092	108.664	102.213
1994	102.962	98.110	108.443	100.180	98.218	103.579	93.439	72.800	102.759	107.579	108.403	101.473
1995	104.473	97.530	108.590									

TAB. 4.37 – B8 : Composante saisonnier-irrégulier non modifiée.

Exemple

La valeur d'avril 1986 s'obtient donc simplement :

$$AVR86 = 100 \times 109.500/100.809 = 108.622.$$

4.1.9 Tableau B9 : Valeurs de remplacement pour les valeurs atypiques de la composante saisonnier-irrégulier

Description et mode de calcul

Pour la seconde fois dans l'étape B, le programme va détecter et corriger automatiquement les valeurs atypiques de la composante saisonnier-irrégulier. La stratégie suivie est similaire à celle utilisée pour le tableau B4 (voir paragraphe 4.1.4). La détection se fait à partir des données du tableau B8 et, contrairement à ce qui se passe pour le tableau B4, c'est une moyenne mobile 3×5 , de coefficients $\{1,2,3,3,3,2,1\}/15$, qui est utilisée pour la première estimation de la composante saisonnière.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Écart-type
1985													2.077
1986	104.457		107.611	101.329				68.245					2.077
1987	103.337												2.077
1988										111.877			2.104
1989													1.885
1990									101.123			99.679	1.808
1991	105.353		106.753				95.836						1.609
1992													1.625
1993	104.314												1.603
1994							95.015	70.697					1.603
1995													1.603

TAB. 4.38 – B9 : Valeurs de remplacement pour les points atypiques de la composante saisonnier-irrégulier.

Remarques

- La moyenne mobile symétrique 3 × 5, sur 7 termes, ne permet pas d'estimer les coefficients saisonniers des 3 premières et 3 dernières années. Ce sont des moyennes mobiles asymétriques *ad hoc* qui sont utilisées (voir tableau 3.14).
- Un problème se pose dans l'application de ces moyennes mobiles asymétriques si on n'a pas assez d'années d'observations. Supposons que nous n'ayons, pour un mois donné, que 5 années d'observations. Le point central ne peut être estimé puisqu'on ne dispose ni de 3 points dans le futur, ni de 3 points dans le passé, ce qui serait nécessaire pour pouvoir utiliser une moyenne mobile asymétrique. Dans ce cas, il sera estimé par la moyenne simple des 5 observations disponibles.
- Les autres remarques que l'on peut faire à ce stade sont les mêmes que celles concernant le tableau B4 (voir paragraphe 4.1.4).

Exemple

Le tableau édité par X-11 est le tableau B9. Nous allons, pour mieux le comprendre, détailler les étapes de son calcul à partir de tableaux malheureusement non récupérables dans les versions usuelles des logiciels de la famille X-11 (tableaux numérotés ici de B9a à B9f).

Étape 1 : estimation de la composante saisonnière.

Les données du tableau B8 sont lissées colonne par colonne (mois par mois), avec une moyenne mobile 3×5 dont les coefficients et ceux des moyennes asymétriques associées figurent dans le tableau 3.14. Ainsi, les valeurs de la composante saisonnier-irrégulier des mois d'avril 1986 à 1994 sont les suivants :

108.622, 103.451, 99.414, 101.264, 100.652, 103.750, 103.367, 101.243, 100.180.

Le facteur saisonnier du mois d'avril 1989 sera donc estimé par :

$$AVR89 = \frac{108.622 + 103.451 \times 2 + 99.414 \times 3 + 101.264 \times 3}{15} +$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.803	107.583	101.831
1986	102.186	100.386	107.447	103.444	97.028	103.833	95.293	66.812	102.916	111.496	107.899	101.660
1987	102.573	100.199	107.399	103.147	97.231	103.700	95.192	67.258	102.471	111.238	108.370	101.295
1988	103.089	100.040	107.403	102.525	97.520	103.441	95.150	68.070	101.809	111.212	108.809	100.658
1989	103.899	99.859	107.240	102.025	97.711	103.004	95.241	68.959	101.314	111.314	108.970	100.077
1990	104.532	99.715	107.024	101.817	97.530	102.747	95.532	69.692	101.004	111.471	108.955	99.669
1991	104.905	99.449	106.899	101.861	97.314	102.464	95.807	70.265	101.078	111.463	108.699	99.674
1992	104.726	99.208	107.073	102.010	96.961	102.391	96.134	70.550	101.394	111.103	108.329	100.121
1993	104.205	99.083	107.544	101.929	96.722	102.550	96.058	70.779	101.975	110.432	108.036	100.701
1994	103.670	98.987	107.985	101.920	96.432	102.861	95.937	70.801	102.391	110.004	107.932	101.098
1995	103.230	98.939	108.361									

TAB. 4.39 – B9a: Facteurs saisonniers provisoires (moyenne mobile 3x5).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.034	100.034	100.034
1986	100.034	100.034	100.034	100.034	100.034	100.041	100.050	100.058	100.048	100.034	100.030	100.033
1987	100.023	100.037	100.037	100.008	100.017	100.021	100.028	100.042	100.036	100.010	99.996	99.998
1988	99.985	100.017	100.023	99.995	100.012	100.004	100.011	100.037	100.023	99.995	99.982	99.972
1989	99.958	99.998	100.015	99.999	100.010	99.992	99.994	100.015	100.000	99.982	99.966	99.948
1990	99.949	99.992	100.009	100.003	100.009	99.991	99.990	99.994	99.978	99.974	99.967	99.946
1991	99.946	99.981	100.008	100.011	100.000	99.990	99.982	99.965	99.962	99.975	99.967	99.949
1992	99.960	99.985	100.010	100.009	99.978	99.981	99.978	99.951	99.966	99.982	99.969	99.965
1993	99.969	99.975	100.009	100.005	99.965	99.977	99.979	99.953	99.967	99.985	99.973	99.973
1994	99.981	99.977	99.995	99.995	99.973	99.985	99.983	99.963	99.976	99.976	99.976	99.976
1995	99.976	99.976	99.976									

TAB. 4.40 – B9b : Moyenne mobile centrée sur 12 mois.

$$\frac{100.652 \times 3 + 103.750 \times 2 + 103.367}{15}$$
= 102.025.

Cette moyenne mobile symétrique peut s'appliquer pour estimer les valeurs des coefficients saisonniers des années 1989 à 1991. Pour le début de la série (années 1986 à 1988) et la fin de la série (années 1992 à 1994), on utilise des moyennes asymétriques prédéfinies, par exemple :

$$AVR87 = \frac{108.622 \times 15 + 103.451 \times 15 + 99.414 \times 15}{60} + \frac{101.264 \times 11 + 100.652 \times 4}{60} = 103.147$$

(un point dans le passé, le point courant et trois points dans le futur)

Étape 2 : normalisation des coefficients saisonniers.

Au tableau B9a, on applique une moyenne mobile centrée sur 12 mois pour obtenir le tableau B9b. Le premier terme calculable est donc celui d'avril 1986 et le dernier,

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.765	107.547	101.796
1986	102.151	100.352	107.411	103.409	96.994	103.791	95.246	66.774	102.866	111.458	107.867	101.627
1987	102.550	100.162	107.359	103.139	97.215	103.678	95.165	67.229	102.434	111.226	108.374	101.298
1988	103.104	100.023	107.378	102.530	97.509	103.437	95.140	68.045	101.786	111.217	108.828	100.686
1989	103.943	99.860	107.224	102.027	97.702	103.012	95.247	68.949	101.314	111.334	109.008	100.130
1990	104.585	99.724	107.014	101.814	97.522	102.756	95.542	69.697	101.027	111.499	108.990	99.723
1991	104.961	99.468	106.890	101.850	97.314	102.475	95.824	70.290	101.117	111.490	108.735	99.725
1992	104.768	99.223	107.062	102.001	96.982	102.410	96.155	70.584	101.429	111.123	108.363	100.155
1993	104.237	99.108	107.534	101.923	96.756	102.574	96.078	70.812	102.009	110.449	108.066	100.728
1994	103.689	99.010	107.990	101.925	96.458	102.876	95.953	70.827	102.415	110.030	107.958	101.122
1995	103.254	98.962	108.386									

TAB. 4.41 – B9c: Facteurs saisonniers normalisés.

celui de septembre 1994. Ainsi :

$$AVR86 = \frac{111.803}{24} + \frac{107.583 + 101.831 + 102.186 + 100.386 + 107.447}{12} + \frac{103.444 + 97.028 + 103.833 + 95.293 + 66.812 + 102.916}{12} + \frac{111.496}{24} = 100.034.$$

Les six premières valeurs, d'octobre 1985 à mars 1986, non calculables avec cette moyenne mobile symétrique, seront prises égales à la première valeur calculable, celle d'avril 1986. On procède de même pour la fin de série : la valeur calculée pour septembre 1994 (99.976) est répétée pour les six mois suivants. Les coefficients saisonniers normalisés sont alors obtenus en divisant le tableau B9a par le tableau B9b pour obtenir le tableau B9c.

Ainsi : $AVR86 = 100 \times 103.444/100.034 = 103.409$.

Étape 3 : estimation de la composante irrégulière.

Il suffit de diviser la composante saisonnier-irrégulier du tableau B8 par les coefficients saisonniers normalisés du tableau B9c pour obtenir le tableau B9d.

Ainsi,
$$AVR86 = 100 \times 108.622/103.409 = 105.041$$
.

Étape 4 : calcul d'un écart-type mobile.

L'écart-type correspondant à l'année 1989 sera calculé à partir des données des années 1987 à 1991 (deux années avant, deux années après) selon la formule suivante 12 :

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Jan87}^{Dec91} (I_t - 100)^2\right]^{1/2} = 1.8846.$$

¹² Ici la moyenne théorique est considérée égale à 100 pour tenir compte du fait que les valeurs de l'irrégulier ont été elles-mêmes multipliées par 100.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.090	100.306	97.755
1986	103.792	98.051	96.285	105.041	99.477	98.291	102.593	96.192	100.027	102.909	98.491	101.011
1987	96.390	100.984	102.405	100.303	98.702	99.896	102.073	97.330	100.774	99.363	99.547	101.631
1988	97.206	102.040	102.054	96.961	100.933	101.358	97.081	101.760	102.206	95.787	100.160	101.845
1989	100.965	99.676	99.147	99.252	99.745	102.761	97.395	101.092	98.962	99.896	102.047	98.597
1990	101.246	98.507	100.541	98.859	102.286	97.592	100.173	102.273	97.275	102.000	101.109	96.865
1991	102.836	99.338	97.488	101.865	100.480	97.721	102.912	99.216	98.531	101.832	98.408	99.472
1992	100.899	100.849	99.414	101.340	97.798	100.264	100.773	97.952	101.940	101.215	98.946	100.456
1993	96.838	101.485	101.427	99.333	98.720	101.160	99.976	100.302	100.459	97.866	100.554	101.475
1994	99.299	99.091	100.419	98.288	101.824	100.683	97.380	102.785	100.336	97.772	100.413	100.347
1995	101.180	98.553	100.188									

TAB. 4.42 – B9d : Composante irréguliere provisoire.

Année	Écart-type 1	Écart-type 2
1985	2.0774	2.0774
1986	2.0774	2.0774
1987	2.0774	2.0774
1988	2.1038	2.1038
1989	1.8846	1.8846
1990	1.8082	1.8082
1991	1.6093	1.6093
1992	1.6246	1.6246
1993	1.6030	1.6030
1994	1.6030	1.6030
1995	1.6030	1.6030

TAB. 4.43 – B9e : Écart-types mobiles sur 5 ans.

Ceux des années 1988, 1990, 1991 et 1992 sont calculés selon le même principe.

Pour X-11-ARIMA et X-12-ARIMA, l'écart-type de 1987 est calculé à partir de l'ensemble des observations disponibles de 1985 à 1990, soit 63 observations. Ces premières estimations des écart-types mobiles sont présentées au tableau B9e, dans la colonne Écart-type 1.

Ce premier calcul sert à repérer d'éventuels points atypiques. Pour une année donnée, une valeur sera considérée comme atypique si elle s'éloigne, en valeur absolue de son écart à la moyenne théorique, de plus de 2.5 fois l'écart-type correspondant à cette année. Ici, d'après la figure 4.5, aucune valeur n'est détectée comme très atypique. Le nouveau calcul de l'écart-type conduit donc aux mêmes résultats (colonne Écart-type 2 du tableau 89e).

Étape 5 : détection des valeurs atypiques et pondération de l'irrégulier.

Les valeurs de l'irrégulier sont alors situées par rapport aux limites de confiance supérieures et inférieures calculées à partir des écart-types estimés auparavant. Toutes les valeurs situées au-delà des limites de confiance inférieures sont considérées comme atypiques et vont donc être corrigées, à des degrés divers, et les poids (multipliés par 100) associés à chacune de ces valeurs figurent dans le tableau B9f. Ainsi, pour octobre 1988, on a : |OCT88-100|=|95.787-100|=4.213, et $1.5\times\sigma_{88}=1.5\times2.1038=3.1557<4.213<2.5\times\sigma_{88}=2.5\times2.1038=5.2595$. On va attribuer à cette valeur

FIG. 4.5 – B9d : Écart de l'irrégulier à sa moyenne théorique et "limites de confiance" associées à $\pm 1.5\sigma$ et $\pm 2.5\sigma$.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.000	100.000	100.000
1986	67.475	100.000	71.178	7.340	100.000	100.000	100.000	66.711	100.000	100.000	100.000	100.000
1987	76.235	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	49.731	100.000	100.000
1989	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	99.273	100.000	100.000	76.630
1991	73.758	100.000	93.885	100.000	100.000	100.000	69.057	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1993	52.737	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1994	100.000	100.000	100.000	100.000	100.000	100.000	86.573	76.236	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

TAB. 4.44 - B9f: Poids associés aux valeurs de l'irrégulier.

jugée moyennement atypique, un poids proportionnel à l'écart à la moyenne constaté de :

$$poids(OCT88) = \frac{5.2595 - 4.213}{5.2595 - 3.1557} = 0.497.$$

Étape 6 : correction des valeurs atypiques de la composante saisonnier-irrégulier.

La correction de la composante saisonnier-irrégulier (tableau B8) se fait enfin à partir de ces poids. Ainsi, la valeur d'octobre 1988 sera remplacée par la moyenne de cette valeur affectée de son poids et des deux valeurs antérieures et postérieures du même mois ayant reçu une pondération intégrale, donc non jugées atypiques. Il s'agit, comme le montre le tableau B9f, des valeurs des mois d'octobre 1986, 1987, 1990 et 1991. Ce qui conduit à :

$$SI(OCT88) = \frac{114.700 + 110.518 + 106.532 \times 0.497 + 111.218 + 113.729}{4 + 0.497}$$

= 111.877.

La valeur de janvier 1986 est aussi jugée atypique. Mais, comme elle se trouve en début de série, elle est corrigée de façon différente : elle est remplacée par la moyenne de cette valeur affectée de son poids et des quatre valeurs les plus proches du même mois ayant reçu une pondération intégrale. Il s'agit dans ce cas, d'après le tableau B9f, des valeurs de janvier 1988, 1989, 1990 et 1992 et on a :

$$SI(JAN86) = \frac{106.024 \times 0.675 + 100.224 + 104.946 + 105.888 + 105.710}{4 + 0.675}$$

= 104.457.

Tous ces calculs conduisent au tableau B9 présenté au début de l'exemple.

4.1.10 Tableau B10 : Estimation de la composante saisonnière

Description et mode de calcul

Cette estimation est obtenue d'une façon similaire à celle conduisant au tableau B5 (voir paragraphe 4.1.5), à partir des valeurs de la composante saisonnier-irrégulier du tableau B8 corrigées par les valeurs du tableau B9. On procède là en deux étapes : estimation de la composante saisonnière, puis normalisation des coefficients saisonnières.

Comme au tableau B9, et à la différence du tableau B5, c'est une moyenne mobile 3×5 qui est utilisée pour l'estimation de la composante saisonnière.

Remarque

Il est toujours possible de fixer soi-même la moyenne mobile à utiliser. Dans ce cas, X-11-ARIMA permet de choisir entre une moyenne mobile simple sur 3 termes, une 3×3 , une 3×5 , une 3×9 et une saisonnalité stable. X-12-ARIMA propose en plus une 3x15.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										112.983	107.876	99.511
1986	104.457	98.396	107.611	101.329	96.487	102.017	97.716	68.245	102.894	114.700	106.240	102.655
1987	103.337	101.148	109.941	103.451	95.953	103.570	97.138	65.434	103.227	110.518	107.883	102.950
1988	100.224	102.064	109.583	99.414	98.419	104.841	92.362	69.242	104.031	111.877	109.002	102.544
1989	104.946	99.537	106.309	101.264	97.453	105.856	92.766	69.702	100.263	111.218	111.239	98.725
1990	105.888	98.235	107.593	100.652	99.751	100.282	95.706	71.281	101.123	113.729	110.199	99.679
1991	105.353	98.809	106.753	103.750	97.781	100.139	95.836	69.739	99.631	113.533	107.003	99.199
1992	105.710	100.065	106.435	103.367	94.846	102.680	96.898	69.139	103.396	112.474	107.221	100.612
1993	104.314	100.580	109.069	101.243	95.517	103.763	96.055	71.026	102.478	108.092	108.664	102.213
1994	102.962	98.110	108.443	100.180	98.218	103.579	95.015	70.697	102.759	107.579	108.403	101.473
1995	104.473	97.530	108.590									

TAB. 4.45 – B9g: Composante saisonnier-irrégulier corrigée.

Exemple

L'estimation est faite à partir de la composante saisonnier-irrégulier corrigée du tableau B9g.

Étape 1 : estimation de la composante saisonnière.

Les données du tableau précédent sont lissées colonne par colonne (mois par mois), avec une moyenne mobile 3×5 (voir tableau 3.14), pour aboutir au tableau B10a. Le facteur saisonnier du mois d'avril 1989 sera donc estimé par :

$$AVR89 = \frac{101.329 + 103.451 \times 2 + 99.414 \times 3 + 101.264 \times 3}{15} + \frac{100.652 \times 3 + 103.750 \times 2 + 103.367}{15}$$
= 101.539

Pour le début de la série (années 1986 à 1988) et la fin de la série (années 1992 à 1994), on utilise des moyennes asymétriques prédéfinies, par exemple :

$$AVR87 = \frac{101.329 \times 15 + 103.451 \times 15 + 99.414 \times 15}{60} +$$

$$= \frac{101.264 \times 11 + 100.652 \times 4}{60}$$

$$= 101.324$$

(un point dans le passé, le point courant et trois points dans le futur).

Étape 2: normalisation des coefficients saisonniers.

Au tableau B10a, on applique une moyenne mobile centrée sur 12 mois pour obtenir le tableau B10b. Le premier terme calculable est donc celui d'avril 1986 et le dernier, celui de septembre 1994. Ainsi :

$$\begin{array}{rcl} AVR86 & = & \dfrac{112.605}{24} + \\ & \dfrac{107.583 + 101.831 + 103.013 + 100.386 + 108.635}{12} + \end{array}$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										112.605	107.583	101.831
1986	103.013	100.386	108.635	101.378	97.028	103.833	95.293	67.950	102.916	112.476	107.899	101.660
1987	103.304	100.199	108.447	101.324	97.231	103.700	95.192	68.261	102.661	112.396	108.370	101.501
1988	103.654	100.040	108.201	101.431	97.520	103.441	94.965	68.672	102.189	112.281	108.809	101.069
1989	104.048	99.859	107.859	101.539	97.711	103.004	94.871	69.227	101.884	112.383	108.970	100.694
1990	104.539	99.715	107.534	101.817	97.530	102.747	94.976	69.692	101.574	112.184	108.955	100.286
1991	104.837	99.449	107.408	101.861	97.314	102.464	95.356	70.125	101.648	111.819	108.699	100.291
1992	104.883	99.208	107.583	102.010	96.961	102.391	95.769	70.235	101.774	111.103	108.329	100.532
1993	104.591	99.083	107.883	101.929	96.722	102.550	95.943	70.253	102.165	110.432	108.036	100.906
1994	104.341	98.987	108.155	101.920	96.432	102.861	95.967	70.205	102.391	110.004	107.932	101.098
1995	104.185	98.939	108.361									

TAB. 4.46-B10a: Composante saisonnière préliminaire (moyenne mobile 3×5).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.199	100.199	100.199
1986	100.199	100.199	100.199	100.199	100.207	100.213	100.218	100.222	100.206	100.196	100.202	100.205
1987	100.196	100.204	100.207	100.193	100.209	100.222	100.230	100.238	100.221	100.215	100.232	100.233
1988	100.213	100.221	100.218	100.194	100.207	100.207	100.206	100.215	100.193	100.183	100.196	100.185
1989	100.163	100.182	100.193	100.184	100.195	100.186	100.191	100.206	100.186	100.184	100.188	100.170
1990	100.164	100.187	100.194	100.173	100.164	100.146	100.141	100.143	100.126	100.123	100.116	100.095
1991	100.099	100.133	100.154	100.142	100.116	100.106	100.108	100.100	100.097	100.110	100.102	100.084
1992	100.098	100.120	100.130	100.105	100.060	100.055	100.053	100.035	100.042	100.052	100.038	100.035
1993	100.049	100.057	100.074	100.062	100.022	100.026	100.031	100.016	100.024	100.035	100.022	100.023
1994	100.037	100.036	100.043	100.035	100.013	100.016	100.018	100.009	100.016	100.016	100.016	100.016
1995	100.016	100.016	100.016									

TAB. 4.47 – B10b : Moyenne mobile centrée sur 12 termes.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										112.382	107.370	101.629
1986	102.809	100.187	108.419	101.177	96.828	103.613	95.086	67.799	102.704	112.255	107.681	101.452
1987	103.102	99.995	108.223	101.129	97.028	103.470	94.973	68.099	102.435	112.154	108.120	101.265
1988	103.433	99.820	107.966	101.235	97.319	103.227	94.770	68.525	101.992	112.076	108.596	100.882
1989	103.879	99.677	107.652	101.352	97.521	102.812	94.690	69.085	101.694	112.177	108.766	100.523
1990	104.368	99.529	107.326	101.641	97.371	102.597	94.842	69.593	101.446	112.046	108.828	100.190
1991	104.734	99.317	107.243	101.717	97.201	102.356	95.253	70.055	101.550	111.696	108.588	100.207
1992	104.780	99.089	107.443	101.902	96.902	102.335	95.718	70.210	101.731	111.046	108.287	100.497
1993	104.540	99.027	107.804	101.865	96.700	102.524	95.913	70.242	102.141	110.394	108.012	100.883
1994	104.302	98.952	108.108	101.884	96.419	102.844	95.950	70.199	102.374	109.987	107.915	101.082
1995	104.169	98.923	108.343									

TAB. 4.48 – B10 : Composante saisonnière.

$$\frac{101.378 + 97.028 + 103.833 + 95.293 + 67.950 + 102.916}{12} + \frac{112.476}{24}$$
= 100.199.

Les six premières valeurs, d'octobre 1985 à mars 1986, non calculables avec cette moyenne mobile symétrique, seront prises égales à la première valeur calculable, celle d'avril 1986. On procède de même pour la fin de série : la valeur calculée pour septembre 1994 (100.016) est répétée pour les six mois suivants. Les coefficients saisonniers normalisés sont alors obtenus en divisant le tableau B10a par le tableau B10b, ce qui conduit au tableau B10. Par exemple, on a :

$$AVR86 = 100 \times 101.378/100.199 = 101.177.$$

4.1.11 Tableau B11 : Estimation de la série corrigée des variations saisonnières Description et mode de calcul

Cette estimation s'obtient simplement en retirant à la série de départ, du tableau B1, l'estimation de la composante saisonnière du tableau B10 : B11 = B1 op B10.

Exemple

La valeur pour avril 1986 est, par exemple :

$$AVR86 = 100 \times 109.500/101.177 = 108.226.$$

4.1.12 Tableau B13 : Estimation de la composante irrégulière

Description et mode de calcul

Cette estimation s'obtient simplement en retirant à la série corrigée des variations saisonnières, du tableau B11, l'estimation de la composante tendance-cycle du tableau B7 : B13 = B11 op B7.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										102.953	102.263	98.988
1986	103.687	98.516	95.832	108.226	100.901	100.084	104.853	96.904	102.430	104.316	100.575	102.906
1987	97.476	103.205	104.322	105.905	103.063	104.668	107.188	100.882	106.117	104.231	106.086	108.626
1988	104.125	110.399	109.942	106.781	110.359	111.115	106.785	110.908	112.362	105.197	111.698	113.697
1989	113.498	112.563	111.656	113.169	113.309	117.010	111.522	114.931	112.297	112.947	116.581	112.114
1990	116.032	113.033	115.163	114.225	118.722	113.843	117.881	119.696	112.967	117.809	116.789	110.589
1991	117.727	113.576	111.243	117.385	116.563	114.014	121.046	116.480	114.624	118.536	114.930	115.561
1992	117.866	117.975	115.410	117.760	113.310	115.991	117.114	113.944	117.270	116.168	112.755	113.238
1993	108.762	114.211	113.818	112.109	111.582	114.217	112.706	113.466	112.393	109.607	112.672	113.795
1994	111.503	112.681	114.700	113.266	118.234	117.654	114.123	121.655	117.803	114.923	118.334	118.716
1995	119.134	117.566	120.173									

TAB. 4.49 – B11 : Série corrigée des variations saisonnières.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.535	100.471	97.916
1986	103.127	98.213	95.390	107.358	99.648	98.460	102.766	94.737	100.185	102.178	98.661	101.186
1987	95.874	101.153	101.588	102.296	98.892	100.097	102.280	96.086	100.774	98.541	99.781	101.664
1988	96.897	102.248	101.498	98.202	101.130	101.564	97.460	101.047	101.999	95.053	100.374	101.647
1989	101.028	99.859	98.753	99.913	99.930	102.961	97.968	100.893	98.592	99.146	102.274	98.212
1990	101.457	98.700	100.249	99.026	102.444	97.743	100.912	102.425	96.873	101.503	101.259	96.413
1991	103.060	99.489	97.167	101.999	100.597	97.834	103.528	99.549	98.111	101.645	98.541	98.994
1992	100.887	100.985	99.061	101.438	97.878	100.337	101.233	98.474	101.637	101.286	99.015	100.115
1993	96.558	101.568	101.173	99.389	98.776	101.209	100.148	101.117	100.329	97.915	100.604	101.319
1994	98.715	99.149	100.309	98.327	101.865	100.715	97.384	103.706	100.376	97.811	100.452	100.387
1995	100.292	98.592	100.227									

TAB. 4.50 – B13 : Composante irrégulière.

Exemple

La valeur pour avril 1986 est, par exemple :

 $AVR86 = 100 \times 108.226/100.809 = 107.358.$

4.1.13 Estimation de l'effet dû à la composition journalière du mois (Trading-Day)

Certaines séries économiques, comme le chiffre d'affaires mensuel d'un commerce de détail, sont fortement influencées par la composition journalière du mois : un samedi de plus ou de moins dans un mois peut faire varier le chiffre d'affaires mensuel de façon non négligeable. Ces **effets de jours ouvrables**, comme la saisonnalité, peuvent rendre délicates les comparaisons des valeurs de la série d'un mois à l'autre, ou celles d'un même mois d'une année à l'autre, et c'est pourquoi, si ces effets sont jugés statistiquement significatifs, ils sont généralement ôtés de la série lors du processus de désaisonnalisation.

La composante irrégulière, celle du tableau B13 par exemple, ne contient par construction ni tendance, ni saisonnalité; par conséquent, s'il y a des effets liés aux

jours ouvrables, c'est dans cette composante qu'ils peuvent être trouvés ¹³. Il est donc assez naturel d'utiliser un estimateur de la composante irrégulière pour identifier de possibles effets de jours ouvrables, en utilisant par exemple un modèle de régression linéaire.

Il est possible, à la demande de l'utilisateur, de faire une estimation et une correction automatique de ces effets. C'est l'objet des tableaux B14, B15, B16, B18 et B19 de la partie B et de leurs équivalents dans la partie C.

Quelques particularités de notre calendrier

Notre calendrier est basé sur le rythme solaire. La Terre réalise une révolution complète autour du soleil en 365 jours et 6 heures environ. Pour tenir compte de ces 6 heures supplémentaires, le calendrier admet 365 jours 3 années sur 4 et la quatrième année (dite **année bissextile**) compte un jour supplémentaire, le 29 février. La règle retenue étant que l'année bissextile correspond à toute année dont l'expression numérique est multiple de 4. Cette correction est cependant trop forte. C'est pourquoi, les années séculaires ne sont pas bissextiles, sauf si elles sont divisibles par 400 (1600, 2000, 2400, ...). Il subsiste néanmoins de la sorte une petite erreur estimée à un jour pour 4000 ans ... En termes de mois, notre calendrier est donc périodique de période 4, au moins entre 1901 et 2099.

Pour une date donnée, le jour correspondant subit un décalage temporel : si le premier janvier d'une année non bissextile est un samedi, il sera un dimanche l'année suivante et un lundi, si l'année de référence est bissextile. Il faut donc attendre 28 ans (4×7) pour retrouver la même structure annuelle en termes de dates et de jours.

Les effets de jours ouvrables

Nous supposerons par la suite, en reprenant les notations de Findley et al. [23], que le j-ième jour de la semaine a un effet α_j où j=1 désigne le lundi, j=2 le mardi , . . . , et j=7 le dimanche. Chaque α_j représente par exemple les ventes moyennes pour un jour j. Si D_{jt} représente le nombre de jours j dans le mois t, la longueur du mois sera $N_t = \sum_{j=1}^7 D_{jt}$ et l'effet cumulatif pour ce mois, les ventes totales du mois, sera $\sum_{j=1}^7 \alpha_j D_{jt}$. Notons par ailleurs $\bar{\alpha} = \sum_{j=1}^7 \alpha_j/7$, l'effet journalier moyen, les ventes d'un jour en moyenne. Comme par construction $\sum_{j=1}^7 (\alpha_j - \bar{\alpha}) = 0$, on peut écrire :

$$\sum_{j=1}^{7} \alpha_{j} D_{jt} = \bar{\alpha} N_{t} + \sum_{j=1}^{7} (\alpha_{j} - \bar{\alpha}) D_{jt}$$

$$= \bar{\alpha} N_{t} + \sum_{j=1}^{6} (\alpha_{j} - \bar{\alpha}) (D_{jt} - D_{7t}). \tag{4.1}$$

Ainsi, l'effet cumulatif du mois se décompose en un effet directement lié à la longueur du mois et un effet net de chaque jour de la semaine.

¹³La raison en est que les effets de jours ouvrables ont des caractéristiques spectrales telles qu'ils sont éliminés par les moyennes mobiles de Henderson (et donc ne peuvent être dans la composante tendance-cycle), et par les moyennes mobiles appliquées sur chaque mois pour extraire les coefficients saisonniers (et donc ne peuvent être dans la composante saisonnière).

On peut remarquer que la somme $\sum_{j=1}^7 (\alpha_j - \bar{\alpha}) D_{jt}$ ne fait en réalité intervenir que les jours de la semaine apparaissant 5 fois dans le mois : tout mois contient 4 semaines complètes, pour lesquelles par définition l'effet lié aux jours s'annule, plus 0, 1, 2 ou 3 jours qui participent à l'effet jours ouvrables du mois.

Le modèle de régression

Pour être homogène avec notre variable à expliquer, la composante irrégulière du tableau B13, qui ne contient ni saisonnalité ni tendance, l'équation (4.1) doit être corrigée de ces effets.

- La partie $\bar{\alpha}N_t$ de l'équation contient potentiellement de telles composantes parce que les mois sont de longueur différente et que, comme on l'a vu cidessus, la variable N_t est périodique de période 48 mois (4 ans). On peut résumer ces effets par la quantité $\bar{\alpha}N_t^*$ où N_t^* représente la moyenne, sur 4 ans, de la longueur du mois t. En d'autres termes, N_t^* est égal à 30 ou 31 si le mois considéré n'est pas un mois de février et à 28.25 dans le cas contraire. Ainsi, on a : $\bar{\alpha}N_t = \bar{\alpha}N_t^* + \bar{\alpha}\left(N_t N_t^*\right)$, équation dont la seconde partie est nulle sauf pour le mois de février.
- La seconde partie de l'équation fait intervenir les D_{jt} , nombre de fois où le jour j est présent dans le mois t. Ces variables sont périodiques de période 336 mois (28 ans) et de moyennes égales pour un mois donné¹⁴. Dans la seconde partie de l'équation, c'est la différence $D_{jt} D_{7t}$ qui intervient et, comme ces variables ont le même comportement, il n'y a dans cette différence ni saisonnalité, ni tendance.

La façon dont on corrige l'équation (4.1) de ces effets dépend du schéma de composition adopté.

– Pour un **schéma multiplicatif**, on élimine les effets saisonnier et tendanciel en divisant l'équation (4.1) par $\bar{\alpha}N_t^*$. En posant $\beta_j = \alpha_j/\bar{\alpha} - 1$, on obtient :

$$\frac{1}{N_t^*} \sum_{j=1}^{7} (\beta_j + 1) D_{jt} = \frac{N_t}{N_t^*} + \sum_{j=1}^{6} \beta_j \left(\frac{D_{jt} - D_{7t}}{N_t^*} \right)$$
(4.2)

Ainsi, si I_t est une estimation de la composante irrégulière, Census-X11 et ses descendants directs estiment les coefficients $\beta=(\beta_1,\ldots,\beta_6)$ (et $\beta_7=-\sum_{j=1}^6\beta_j$) en ajustant par les moindres carrés ordinaires le modèle :

$$N_t^* I_t - N_t = \sum_{j=1}^6 \beta_j \left(D_{jt} - D_{7t} \right) + e_t.$$
 (4.3)

Ce qui correspond au modèle proposé par Young [67].

– Pour un **schéma additif**, on doit soustraire logiquement $\bar{\alpha}N_t^*$ à l'équation (4.1). Ce qui conduit à :

$$I_{t} = \beta_{0} \left(N_{t} - N_{t}^{*} \right) + \sum_{j=1}^{6} \beta_{j} \left(D_{jt} - D_{7t} \right) + e_{t}$$
 (4.4)

 $^{^{-14}}$ Pour un mois de 31 jours, cette moyenne est de 4.428574; pour un mois de 30 jours de 4.285714, et pour un mois de février, de 4.035714.

où maintenant $\beta_0 = \bar{\alpha}$ et $\beta_j = \alpha_j - \bar{\alpha}$ pour $j = 1, \ldots, 6$. Dans Census X-11 et X-11-ARIMA, le premier régresseur $N_t - N_t^*$ est omis et on n'estime alors que 6 paramètres.

Estimation des paramètres

Dans le cas de Census X-11 et X-11-ARIMA le modèle peut donc s'écrire, que le schéma soit additif ou multiplicatif :

$$Y_{t} = \sum_{j=1}^{6} \beta_{j} (D_{jt} - D_{7t}) + e_{t}$$
$$= \sum_{j=1}^{6} \beta_{j} Z_{jt} + e_{t},$$

où $Y_t = N_t^* I_t - N_t$ dans le schéma multiplicatif, ou $Y_t = I_t$ dans le schéma additif. La résolution par moindres carrés ordinaires conduit aux résultats suivants, en notant $\hat{\sigma}^2 = \hat{e}' \hat{e}/(n-6)$ où les \hat{e} sont les résidus de la régression :

Paramètre	Variance
$\hat{\beta} = (Z'Z)^{-1} Z'Y$	(, 3)
$\hat{\beta}_7 = -\sum_{j=1}^6 \hat{\beta}_j$	$\hat{s}^2 \left(\hat{\beta}_7 \right) = \hat{\sigma}^2 \sum_{i=1}^6 \sum_{j=1}^6 (Z'Z)_{ij}^{-1}$

Les tests de Student (test T), pour tester la nullité d'un coefficient, et de Fisher (test F), pour tester l'existence d'un effet global dû aux jours ouvrables sont aussi disponibles :

Hypothèse	Statistique	Test et loi suivie
$\beta_j = k$	$t_j = rac{eta_j - k}{\hat{s}^2 \left(\hat{eta}_j ight)}$	test T, loi de Student à $n-6$ degrés de liberté.
$\beta_j = 0, j = 1, \dots, 6$	$F = \frac{\hat{\beta}' Z' Z \hat{\beta}}{6\hat{\sigma}^2}$	test F, loi de Fisher à 6 et $n-6$ degrés de liberté.

4.1.14 Tableau B14 : Valeurs de la composante irrégulière exclues de la régression pour jours ouvrables

Description et mode de calcul

Si l'utilisateur le demande, le programme peut estimer, dans la série, un effet dû à la composition journalière du mois. Cet effet de calendrier va être recherché dans la composante irrégulière et évalué par régression linéaire. Auparavant, X-11 va repérer les valeurs atypiques de la composante irrégulière et les exclure des calculs, rendant ainsi plus robustes les résultats de la régression. La recherche se fait en trois phases :

Étape 1 : calcul de la moyenne de l'irrégulier par type de mois.

On distingue ici 15 différents types de mois :

¹⁵L'utilisation des MCO et des tests associés repose sur l'hypothèse supplémentaire que la composante irrégulière que l'on cherche à expliquer, ne présente que peu ou pas d'autocorrélation.

- les mois de 31 jours commençant un lundi, un mardi, un mercredi, etc., soit donc 7 catégories;
- les mois de 30 jours commençant un lundi, un mardi, un mercredi, etc., soit 7 autres catégories;
- les mois de février de 28 jours (les mois de février de 29 jours ne sont ici pas pris en compte).

Les valeurs de la composante irrégulière sont ainsi regroupées en 15 classes pour lesquelles on calcule les moyennes m_i . On a donc n^* données qui se répartissent en 15 groupes d'effectifs n_i , $(i=1,\ldots,15)$ avec $n^*=\sum_{i=1}^{15}n_i$ et $m_i=\sum_{j=1}^{n_i}I_{ij}/n_i$.

Étape 2 : premier calcul d'un écart-type global et repérage des valeurs atypiques.

Dans chaque classe, on calcule les carrés des écarts à la moyenne de la classe, dont la moyenne fournit une estimation de l'écart-type global :

$$\sigma^{2} = \sum_{i=1}^{15} \sum_{j=1}^{n_{i}} (I_{ij} - m_{i})^{2} / n^{*}.$$

Une valeur de l'irrégulier est jugée atypique si elle s'éloigne trop de la moyenne m_i de la classe à laquelle elle appartient, en d'autres termes, si elle vérifie $|I_{ij}-m_i| \geq \lambda \times \sigma$ où σ est l'écart-type global calculé ci-dessus et λ un paramètre modifiable par l'utilisateur et fixé par défaut à 2.5.

Étape 3 : calcul final de l'écart-type global et repérage des valeurs atypiques.

Les deux étapes sont recommencées en excluant les valeurs atypiques repérées dans la première itération : calcul des moyennes par classes et estimation de l'écart-type. Les valeurs atypiques ainsi repérées et qui seront exclues de la régression pour jours ouvrables sont indiquées dans le tableau B14.

Remarques

- $-n^*$, le nombre d'observations rentrant dans le calcul de l'écart-type, est plus petit que n, le nombre total d'observations de la série, puisque les années bissextiles ne sont ici pas prises en compte.
- Du point de vue théorique, on se place ici dans le cadre d'un modèle d'analyse de la variance à un facteur et on cherche à évaluer l'effet des jours ouvrables de chacun des 15 types de mois distingués. On suppose donc que, dans chaque classe i, l'irrégulier du tableau B13 suit une loi normale de moyenne variable m_i et d'écart-type constant. Dans ce cas, l'estimation faite à l'étape 2 est une estimation biaisée de l'écart-type inconnu mais constant σ et il faudrait en fait diviser par n^*-15 pour obtenir un estimateur sans biais.
- Pour les mois de février d'années bissextiles, on ne calcule pas de moyenne de classe et celle-ci est prise égale à xbar (0 pour un schéma additif, 1 pour un schéma multiplicatif).
- Dans l'étape 3, les valeurs détectées comme atypiques lors de l'étape 2 sont comparées à la moyenne théorique xbar.
- Toutes les observations, hormis les valeurs détectées comme atypiques, sont utilisées pour la régression.

Longueur	$1^{\it er}$ du mois	Mois concernés	Moyenne
28		FÉV86 FÉV87 FÉV89 FÉV90 FÉV91 FÉV93 FÉV94 FÉV95	99.590
	Dimanche	JUIN86 NOV87 AVR90 SEP91 NOV92	98.879
	Lundi	SEP86 JUIN87 AVR91 JUIN92 NOV93	100.644
	Mardi	AVR86 SEP87 NOV88 SEP92 JUIN93 NOV94	101.967
30	Mercredi	AVR87 JUIN88 NOV89 AVR92 SEP93 JUIN94	101.436
	Jeudi	SEP88 JUIN89 NOV90 AVR93 SEP94	101.197
	Vendredi	NOV85 AVR88 SEP89 JUIN90 NOV91 AVR94	98.646
	Samedi	NOV86 AVR89 SEP90 JUIN91	98.320
	Dimanche	DÉC85 MAR87 MAI88 JAN89 OCT89 JUIL90 DÉC91 MAR92 AOÛT93 MAI94 JAN95	100.277
	Lundi	DÉC86 AOÛT88 MAI89 JAN90 OCT90 JUIL91 MAR93 AOÛT94	101.691
	Mardi	OCT85 JUIL86 DÉC87 MAR88 AOÛT89 MAI90 JAN91 OCT91 DÉC92 MAR94	101.493
31	Mercredi	JAN86 OCT86 JUIL87 MAR89 AOÛT90 MAI91 JAN92 JUIL92 DÉC93 MAR95	101.303
	Jeudi	MAI86 JAN87 OCT87 DÉC88 MAR90 AOÛT91 OCT92 JUIL93 DÉC94	99.703
	Vendredi	AOÛT86 MAI87 JAN88 JUIL88 DÉC89 MAR91 MAI92 JAN93 OCT93 JUIL94	97.310
	Samedi	MAR86 AOÛT87 OCT88 JUIL89 DÉC90 AOÛT92 MAI93 JAN94 OCT94	97.188

TAB. 4.51 – B14a: Répartition des mois par type.

Exemple

Étape 1 : calcul de la moyenne de l'irrégulier par type de mois.

On classe tout d'abord les mois selon leur nombre de jours et le jour correspondant au 1er du mois, en distinguant 15 classes, ce qui conduit au tableau B14a.

Pour chaque groupe, on calcule la moyenne des valeurs de l'irrégulier du tableau B13, moyennes figurant dans la dernière colonne du tableau B14a. Ainsi, pour les mois de février à 28 jours, on a :

$$\begin{array}{lcl} m_{F\acute{e}v} & = & \frac{98.213 + 101.153 + 99.859 + 98.700 + 99.489}{8} \\ & & + \frac{101.568 + 99.149 + 98.592}{8} = 99.590. \end{array}$$

Étape 2 : premier calcul d'un écart-type global et repérage des valeurs atypiques.

On calcule ensuite la valeur absolue de l'écart de chaque valeur de l'irrégulier à la moyenne de la classe à laquelle il appartient (voir tableau B14b). Ainsi, on a : JUIN86 = |98.460 - 98.879| = 0.419 et FÉV88 = |102.248 - 100| = 2.248.

La moyenne des carrés de ces valeurs, exceptées celles correspondant aux mois de février bissextiles (voir tableau B14c), fournit la première estimation de l'écart-type :

$$\sigma = \left(\frac{1}{n^*} \sum_{i=1}^{15} \sum_{j=1}^{n_i} (I_{ij} - m_i)^2\right)^{1/2} = 1.2499$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										0.958	1.825	2.361
1986	1.825	1.378	1.798	5.391	0.055	0.419	1.273	2.572	0.459	0.875	0.341	0.505
1987	3.829	1.563	1.310	0.860	1.582	0.547	0.977	1.101	1.194	1.162	0.903	0.171
1988	0.413	2.248	0.005	0.444	0.853	0.128	0.150	0.645	0.802	2.134	1.594	1.944
1989	0.751	0.269	2.550	1.593	1.761	1.764	0.781	0.599	0.054	1.131	0.838	0.902
1990	0.234	0.890	0.546	0.148	0.951	0.903	0.634	1.123	1.448	0.188	0.063	0.774
1991	1.567	0.102	0.143	1.355	0.706	0.486	1.837	0.154	0.768	0.152	0.105	1.283
1992	0.416	0.985	1.216	0.002	0.568	0.307	0.070	1.287	0.330	1.582	0.137	1.378
1993	0.752	1.978	0.518	1.808	1.589	0.759	0.445	0.840	1.107	0.605	0.041	0.016
1994	1.528	0.441	1.184	0.319	1.588	0.721	0.074	2.015	0.821	0.623	1.515	0.684
1995	0.015	0.999	1.075									

TAB. 4.52 – B14b : Écarts à la moyenne en valeur absolue.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										0.917	3.332	5.576
1986	3.330	1.898	3.231	29.061	0.003	0.175	1.620	6.617	0.211	0.766	0.116	0.255
1987	14.661	2.442	1.717	0.740	2.504	0.300	0.955	1.212	1.425	1.350	0.815	0.029
1988	0.171	5.052	0.000	0.197	0.727	0.016	0.022	0.415	0.644	4.555	2.540	3.779
1989	0.564	0.072	6.501	2.536	3.101	3.112	0.609	0.359	0.003	1.280	0.702	0.813
1990	0.055	0.792	0.298	0.022	0.905	0.815	0.403	1.260	2.095	0.035	0.004	0.600
1991	2.456	0.010	0.021	1.835	0.498	0.236	3.374	0.024	0.590	0.023	0.011	1.646
1992	0.173	0.971	1.478	0.000	0.323	0.094	0.005	1.656	0.109	2.504	0.019	1.899
1993	0.565	3.912	0.268	3.267	2.524	0.575	0.198	0.706	1.225	0.366	0.002	0.000
1994	2.334	0.195	1.401	0.102	2.522	0.520	0.005	4.060	0.675	0.389	2.296	0.468
1995	0.000	0.998	1.156									

TAB. 4.53 – B14c : Carrés des écarts à la moyenne.

où $n^* = 114 - 2 = 112$. Cet écart-type va servir à déterminer la borne à partir de laquelle un point de l'irrégulier sera considéré comme atypique. Cette borne est, par défaut égale à 2.5 fois la valeur de l'écart-type, soit 3.125.

Les deux seuls points qui s'éloignent, en valeur absolue, de plus de 3.125 (soit 2.5σ) sont les valeurs d'avril 1986 (mois de 30 jours commençant un mardi) et de janvier 1987 (mois de 31 jours commençant un jeudi). Ces deux points sont donc exclus et les calculs de ces deux premières étapes refaits.

Étape 3 : calcul final de l'écart-type global et repérage des valeurs atypiques

Seules les moyennes des types de mois concernés par les valeurs exclues sont affectées, voir tableau B14d, et le calcul des carrés des écarts à la moyenne conduit à la nouvelle estimation de l'écart-type :

$$\sigma = \left(\frac{1}{n^* - 2} \sum_{i=1}^{15} \sum_{j=1}^{n_i} (I_{ij} - m_i)^2\right)^{1/2} = 1.0600.$$

Ainsi, la nouvelle moyenne pour les mois de 30 jours commençant un mardi est 100.889 au lieu de 101.967 et le carré de l'écart à cette nouvelle moyenne pour septembre 1987 sera de $(100.774-100.889)^2=(0.115)^2=0.01323$ au lieu de $(100.774-101.967)^2=(-1.193)^2=1.423$.

Longueur	1 er du mois	Mois concernés	Moyenne
28		FÉV86 FÉV87 FÉV89 FÉV90 FÉV91 FÉV93 FÉV94 FÉV95	99.590
	Dimanche	JUIN86 NOV87 AVR90 SEP91 NOV92	98.879
	Lundi	SEP86 JUIN87 AVR91 JUIN92 NOV93	100.644
	Mardi	SEP87 NOV88 SEP92 JUIN93 NOV94	100.889
30	Mercredi	AVR87 JUIN88 NOV89 AVR92 SEP93 JUIN94	101.436
	Jeudi	SEP88 JUIN89 NOV90 AVR93 SEP94	101.197
	Vendredi	NOV85 AVR88 SEP89 JUIN90 NOV91 AVR94	98.646
	Samedi	NOV86 AVR89 SEP90 JUIN91	98.320
	Dimanche	DÉC85 MAR87 MAI88 JAN89 OCT89 JUIL90 DÉC91 MAR92 AOÛT93 MAI94 JAN95	100.277
	Lundi	DÉC86 AOÛT88 MAI89 JAN90 OCT90 JUIL91 MAR93 AOÛT94	101.691
	Mardi	OCT85 JUIL86 DÉC87 MAR88 AOÛT89 MAI90 JAN91 OCT91 DÉC92 MAR94	101.493
31	Mercredi	JAN86 OCT86 JUIL87 MAR89 AOÛT90 MAI91 JAN92 JUIL92 DÉC93 MAR95	101.303
	Jeudi	MAI86 OCT87 DÉC88 MAR90 AOÛT91 OCT92 JUIL93 DÉC94	100.182
	Vendredi	AOÛT86 MAI87 JAN88 JUIL88 DÉC89 MAR91 MAI92 JAN93 OCT93 JUIL94	97.310
	Samedi	MAR86 AOÛT87 OCT88 JUIL89 DÉC90 AOÛT92 MAI93 JAN94 OCT94	97.188

 $TAB.\ 4.54-B14d$: Répartition des mois, correspondants à des valeurs de l'irrégulier non exclues, par type de mois.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										0.958	1.825	2.361
1986	1.825	1.378	1.798	7.358	0.534	0.419	1.273	2.572	0.459	0.875	0.341	0.505
1987	4.126	1.563	1.310	0.860	1.582	0.547	0.977	1.101	0.115	1.641	0.903	0.171
1988	0.413	2.248	0.005	0.444	0.853	0.128	0.150	0.645	0.802	2.134	0.515	1.465
1989	0.751	0.269	2.550	1.593	1.761	1.764	0.781	0.599	0.054	1.131	0.838	0.902
1990	0.234	0.890	0.067	0.148	0.951	0.903	0.634	1.123	1.448	0.188	0.063	0.774
1991	1.567	0.102	0.143	1.355	0.706	0.486	1.837	0.633	0.768	0.152	0.105	1.283
1992	0.416	0.985	1.216	0.002	0.568	0.307	0.070	1.287	0.748	1.104	0.137	1.378
1993	0.752	1.978	0.518	1.808	1.589	0.320	0.033	0.840	1.107	0.605	0.041	0.016
1994	1.528	0.441	1.184	0.319	1.588	0.721	0.074	2.015	0.821	0.623	0.437	0.205
1995	0.015	0.999	1.075									

TAB. 4.55 – B14e : Écarts à la moyenne en valeur absolue.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										0.917	3.332	5.576
1986	3.330	1.898	3.231	54.144	0.285	0.175	1.620	6.617	0.211	0.766	0.116	0.255
1987	17.022	2.442	1.717	0.740	2.504	0.300	0.955	1.212	0.013	2.692	0.815	0.029
1988	0.171	5.052	0.000	0.197	0.727	0.016	0.022	0.415	0.644	4.555	0.266	2.147
1989	0.564	0.072	6.501	2.536	3.101	3.112	0.609	0.359	0.003	1.280	0.702	0.813
1990	0.055	0.792	0.004	0.022	0.905	0.815	0.403	1.260	2.095	0.035	0.004	0.600
1991	2.456	0.010	0.021	1.835	0.498	0.236	3.374	0.401	0.590	0.023	0.011	1.646
1992	0.173	0.971	1.478	0.000	0.323	0.094	0.005	1.656	0.560	1.218	0.019	1.899
1993	0.565	3.912	0.268	3.267	2.524	0.102	0.001	0.706	1.225	0.366	0.002	0.000
1994	2.334	0.195	1.401	0.102	2.522	0.520	0.005	4.060	0.675	0.389	0.191	0.042
1995	0.000	0.998	1.156									

TAB. 4.56 – B14f: Carrés des écarts à la moyenne.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				107.358								
1987	95.874											
1988												
1989												
1990												
1991												
1992												
1993												
1994												
1995												

TAB. 4.57 – B14 : Valeurs de la composante irrégulière exclues de la régression pour jours ouvrables.

Notez enfin que dans le tableau B14e, les points considérés comme atypiques dans l'étape précédente sont comparés à la moyenne théorique (ici 100 pour tenir compte du fait que l'irrégulier est multiplié par 100). Ainsi, l'écart absolu pour janvier 1987 est |95.874-100|=4.126.

La nouvelle borne pour juger du caractère atypique d'un point est : $2.5 \times 1.06 = 2.65$, et les seules valeurs de l'irrégulier s'éloignant suffisamment de leur moyenne sont celles d'avril 1986 et de janvier 1987. Ces valeurs sont consignées dans le tableau B14.

4.1.15 Tableau B15 : Régression préliminaire pour jours ouvrables

Description et mode de calcul

Des poids journaliers vont être à présent estimés grâce à une régression par moindres carrés ordinaires sur les données non jugées atypiques du tableau B13 selon la méthodologie exposée au paragraphe 4.1.13.

Écriture du modèle de régression.

On a, selon le schéma et avec les notations du paragraphe 4.1.13, le modèle suivant :

Pour un schéma multiplicatif : $N_t^*I_t - N_t = \sum_{j=1}^6 \beta_j (D_{jt} - D_{7t}) + e_t$ Pour un schéma additif : $I_t = \sum_{j=1}^6 \beta_j (D_{jt} - D_{7t}) + e_t$.

Dérivation des poids journaliers.

Dans le cas additif, les poids qui seront utilisés dans la suite de la désaisonnalisation sont les β_j calculés par le modèle ci-dessus.

Dans le cas multiplicatif, on ajoute 1 aux estimations ci-dessus ou bien les poids journaliers *a priori* si on en a précisés dans l'Étape A.

Remarques

 Dans le cas additif, le logiciel X-12-ARIMA introduit une variable explicative supplémentaire et le modèle estimé est alors :

$$I_t = \beta_0 (N_t - N_t^*) + \sum_{j=1}^{6} \beta_j (D_{jt} - D_{7t}) + e_t.$$

Le principe de l'estimation reste cependant le même.

- Dans le cas multiplicatif, si un ajustement journalier a priori est fait, alors N_t et N_t^* sont égaux à la somme mensuelle des poids journaliers a priori.
- X-12-ARIMA permet d'introduire dans la régression d'autres variables prédéfinies ou définies par l'utilisateur. Parmi les variables prédéfinies, on peut citer l'effet de Pâques (voir le chapitre 5), des variables indicatrices modélisant des points atypiques, des variables estimant les effets de fêtes particulières (Action de grâces, Fête du travail) etc.

Exemple

Il serait assez fastidieux de présenter ici l'ensemble des calculs intermédiaires de la régression aboutissant au tableau B15 et nous ne le ferons pas : les méthodes usuelles de régression par moindres carrés sont utilisées. Si nous nous fixons un risque de première espèce de 1% par exemple, les tests s'interprètent de la façon suivante :

- Le test F (de Fisher) rejette l'hypothèse nulle d'égalité des coefficients journaliers; on peut donc admettre l'existence d'un effet dû à la composition journalière du mois. En effet, la probabilité de trouver une valeur de la statistique de Fisher plus grande que celle trouvée (31.257) est quasiment nulle et donc inférieure à notre risque de première espèce. Nous sommes donc dans la région critique du test ce qui ne nous permet pas d'accepter l'hypothèse nulle d'égalité des coefficients journaliers
- On interprète de la même manière les tests T (de Student) mais en prenant garde à ce que la loi de Student est symétrique. Il faut donc comparer la valeur Prob (T>|t|) à la moitié du risque de première espèce soit 0.005. Tous les tests conduisant à une valeur plus petite que 0.005 ne permettent pas d'accepter l'hypothèse de nullité du coefficient journalier. Dans notre cas, les coefficients de mardi, jeudi, samedi et dimanche sont jugés significativement différents de 0.

	Poids Combinés	Poids a priori	Coefficients de la régression	Écart-type	T	Prob > T
Lundi	1.081	1.000	0.081	0.093	0.872	0.192
Mardi	1.273	1.000	0.273	0.091	2.990	0.002
Mercredi	1.047	1.000	0.047	0.095	0.494	0.311
Jeudi	1.319	1.000	0.319	0.095	3.362	0.001
Vendredi	1.066	1.000	0.066	0.092	0.717	0.237
Samedi	0.565	1.000	-0.435	0.091	-4.772	0.000
Dimanche	0.649	1.000	-0.351	0.093	-3.760	0.000

	Somme des Deg carrés lib		Moyenne des carrés	F	Prob > F
Régression	23.436	6	3.906	31.257	0.000
Erreur	13.246	106	0.125		
Total	36.682	112			

TAB. 4.58 – B15: Régression préliminaire pour jours ouvrables.

4.1.16 Tableau B16 : Coefficients d'ajustement pour jours ouvrables issus de la régression

Description et mode de calcul

Des estimations de la régression, on déduit des coefficients mensuels M_t d'ajustement pour jours ouvrables, directement en utilisant les équations (4.2) et (4.4) du paragraphe 4.1.13 :

Pour un schéma multiplicatif :
$$M_t = \frac{1}{N_t^*} \sum_{j=1}^7 (\beta_j + 1) D_{jt}$$

Pour un schéma additif : $M_t = \sum_{j=1}^7 \beta_j D_{jt}$

où N_t^* est égal au nombre de jours du mois si des coefficients d'ajustement *a priori* ont été fournis et, dans le cas contraire, à 31, 30 ou 28.25 selon que le mois a 31 ou 30 jours ou est un mois de février.

La composante irrégulière du tableau B13 est alors corrigée de ces effets de calendrier pour aboutir à un tableau B16bis, malheureusement non imprimable dans les logiciels usuels : B16bis = B13 op B16.

Exemple

Prenons comme exemple le mois d'avril 1986.

	Lundi	Mardi	Mercredi	Jeudi	Vendredi	Samedi	Dimanche	Nb. de jours
Poids	1.0809	1.2732	1.0469	1.3187	1.0663	0.5653	0.6487	
Nombre	4	5	5	4	4	4	4	30

On a donc:

$$AVR86 = 100 \times \frac{4 \times 1.08089 + 5 \times 1.27322 + 5 \times 1.04691}{30} + 100 \times \frac{4 \times 1.31870 + 4 \times 1.06625 + 4 \times 0.56534 + 4 \times 0.64868}{30}$$

$$= 101.067.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										102.061	98.772	100.009
1986	101.393	99.115	97.726	101.067	99.840	99.099	102.061	97.678	101.180	101.393	97.380	101.294
1987	99.840	99.115	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1988	97.678	102.941	102.061	98.772	100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1989	100.009	99.115	101.393	97.380	101.294	101.283	97.726	102.061	98.772	100.009	101.219	97.678
1990	101.294	99.115	99.840	99.099	102.061	98.772	100.009	101.393	97.380	101.294	101.283	97.726
1991	102.061	99.115	97.678	101.180	101.393	97.380	101.294	99.840	99.099	102.061	98.772	100.009
1992	101.393	101.116	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1993	97.678	99.115	101.294	101.283	97.726	101.067	99.840	100.009	101.219	97.678	101.180	101.393
1994	97.726	99.115	102.061	98.772	100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1995	100.009	99.115	101.393									

TAB. 4.59 - B16: Coefficients d'ajustement pour jours ouvrables issus de la régression.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										98.505	101.721	97.907
1986	101.710	99.090	97.610	106.225	99.808	99.356	100.691	96.989	99.016	100.774	101.316	99.894
1987	96.028	102.056	101.578	101.064	101.243	98.929	100.874	98.323	99.710	98.699	100.689	99.612
1988	99.200	99.326	99.448	99.423	101.121	100.341	99.776	99.756	100.707	97.265	99.314	101.810
1989	101.019	100.751	97.396	102.601	98.654	101.657	100.248	98.856	99.818	99.137	101.042	100.546
1990	100.161	99.582	100.410	99.927	100.376	98.958	100.902	101.018	99.479	100.207	99.977	98.657
1991	100.979	100.377	99.476	100.809	99.215	100.467	102.206	99.709	99.003	99.592	99.766	98.985
1992	99.501	99.870	99.053	100.216	100.204	99.167	99.842	100.766	100.564	101.448	99.916	98.093
1993	98.853	102.475	99.881	98.130	101.075	100.140	100.309	101.108	99.121	100.242	99.430	99.926
1994	101.013	100.034	98.284	99.550	101.856	99.502	99.699	102.382	99.104	100.087	99.392	100.548
1995	100.283	99.472	98.850									

TAB. 4.60 – B16bis : Composante irrégulière corrigée des effets de jours ouvrables issus de la régression.

Ou encore, comme les jours apparaissant 5 fois sont le Mardi et le Mercredi :

$$AVR86 = 100 \times \frac{28 + 1.27322 + 1.04691}{30} = 101.067.$$

On obtient ensuite une valeur corrigée de la composante irrégulière (tableau B16bis) :

$$AVR86 = 100 \times 107.358/101.067 = 106.225.$$

4.1.17 Tableau B17 : Poids préliminaires pour la correction de l'irrégulier

Description et mode de calcul

A partir de l'estimation de la composante irrégulière B16bis, ou du tableau B13 si aucune correction pour jours ouvrables n'est demandée, on cherche à identifier et à corriger les points atypiques. Pour cela, on utilise l'algorithme de détection des points atypiques et de calcul de poids correctifs détaillé aux tableaux B4 et B9 (voir respectivement les paragraphes 4.1.4 et 4.1.9). Comme on dispose déjà d'une estimation de l'irrégulier, seules les étapes 4 et 5 sont appliquées.

Année	Écart-type 1	Écart-type 2
1985	1.5282	1.2322
1986	1.5282	1.2322
1987	1.5282	1.2322
1988	1.5142	1.1965
1989	1.1979	1.0918
1990	1.0200	1.0200
1991	1.0173	0.9740
1992	0.9484	0.8527
1993	0.9399	0.8479
1994	0.9399	0.8479
1995	0.9399	0.8479

TAB. 4.61 – B17a: Écart-types mobiles sur 5 ans.

Remarques

Les remarques faites aux tableaux B4 et B9 concernant le calcul des écart-types mobiles et des poids correctifs sont aussi valables ici.

Exemple

Calcul d'un écart-type mobile.

L'écart-type correspondant à l'année 1989 sera calculé à partir des données des années 1987 à 1991 (deux années avant, deux années après) selon la formule ¹⁶ :

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Jan87}^{Dec91} (I_t - 100)^2\right]^{1/2} = 1.198.$$

Ceux des années 1988, 1990, 1991 et 1992 sont calculés selon le même principe.

Pour X-11-ARIMA et X-12-ARIMA, l'écart-type de 1987 est calculé à partir de l'ensemble des observations disponibles de 1985 à 1990, soit 63 observations. Les résultats du calcul figurent dans le tableau B17a, colonne Écart-type 1.

Ce premier calcul sert à repérer d'éventuels points atypiques. Comme le montre la figure 4.6, les valeurs d'avril 1986, janvier 1987, février 1993 et août 1994 sont détectées comme très atypiques. On a, en effet, par exemple : $|AVR86-100|=|106.225-100|=6.225>2.5\times\sigma_{86}=2.5\times1.5282=3.8205$, et $|AOUT94-100|=|102.382-100|=2.382>2.5\times\sigma_{94}=2.5\times0.94=2.35$. Ces points sont donc éliminés du second calcul de l'écart-type mobile qui conduit aux résultats de la colonne "Écart-type 2" du tableau B17a.

Détection et correction des valeurs atypiques.

Les valeurs de l'irrégulier sont alors situées par rapport aux limites de confiance supérieures et inférieures calculées à partir des nouvelles estimations des écart-types. Toutes les valeurs situées au-delà des limites de confiance inférieures (voir figure 4.7) sont considérées comme atypiques et vont donc être corrigées, à des degrés divers, et

¹⁶Ici, la moyenne théorique est considérée égale à 100 pour tenir compte du fait que les valeurs de l'irrégulier ont été elles-mêmes multipliées par 100.

FIG. 4.6 – B17 : Écart à la moyenne de l'irrégulier et "limites supérieures de confiance" $\pm 2.5\sigma$. Première estimation.

FIG. 4.7 – B17 : Écart à la moyenne de l'irrégulier et "limites de confiance" $(\pm 1.5\sigma$ and $\pm 2.5\sigma$). Seconde estimation.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.000	100.000	80.138
1986	100.000	100.000	56.025	0.000	100.000	100.000	100.000	5.658	100.000	100.000	100.000	100.000
1987	0.000	83.133	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	21.455	100.000	98.701
1989	100.000	100.000	11.498	11.770	100.000	98.258	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1991	100.000	100.000	100.000	100.000	100.000	100.000	23.528	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	80.157	100.000	26.391
1993	100.000	0.000	100.000	29.466	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1994	100.000	100.000	47.606	100.000	31.094	100.000	100.000	0.000	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

TAB. 4.62 - B17: Poids préliminaires pour la correction de l'irrégulier. Les bornes retenues sont de 1.5σ à 2.5σ .

les poids, multipliés par 100, associés à chacune de ces valeurs figurent dans le tableau B17.

Les valeurs jugées précédemment très atypiques le restent et sont affectées d'un poids nul. Ainsi, $|AVR86-100|=|106.225-100|=6.225>2.5\times\sigma_{86}=2.5\times1.2322=3.0805$. Pour octobre 1988, situé entre les deux limites de confiance et donc jugé moyennement atypique, on a : |OCT88-100|=|97.265-100|=2.735, et $1.5\times\sigma_{88}=1.5\times1.1965=1.79475<2.735<2.5\times\sigma_{88}=2.5\times1.1965=2.99125$. On va attribuer à cette valeur jugée moyennement atypique, un poids proportionnel à l'écart à la moyenne constaté de :

$$poids(OCT88) = \frac{2.99125 - 2.735}{2.99125 - 1.79475} = 0.214.$$

4.1.18 Tableau B18 : Coefficients pour jours ouvrables combinés (issus de l'ajustement *a priori* et de la régression pour jours ouvrables)

Description et mode de calcul

Si on a fourni au préalable des coefficients journaliers de correction *a priori* des effets de jours ouvrables (schéma multiplicatif seulement) et si on a aussi demandé une régression pour jours ouvrables, le tableau B18 présente le résultat combiné de ces deux corrections, simple addition des deux effets. Ces poids journaliers combinés vont permettre d'estimer des coefficients de correction pour chaque mois, de la même façon qu'au tableau B16.

Pour un **schéma additif**, ce tableau n'est pas édité puisqu'on ne peut utiliser dans ce cas de correction *a priori*.

Pour un **schéma multiplicatif**, on calcule $M_t = \sum_{j=1}^7 \alpha_j D_{jt}/N_t^*$, où D_{jt} est le nombre de jours j (lundi, mardi, mercredi, . . ., dimanche) contenus dans le mois $t, (\alpha_1, \ldots, \alpha_7)$ les poids combinés de chaque jour (colonne "poids combinés" du tableau B15), et N_t^* est égal au nombre de jours du mois si des coefficients d'ajustement a priori ont été fournis et, dans le cas contraire, à 31, 30 ou 28.25 selon que le mois a 31 ou 30 jours ou est un mois de février.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										102.061	98.772	100.009
1986	101.393	99.115	97.726	101.067	99.840	99.099	102.061	97.678	101.180	101.393	97.380	101.294
1987	99.840	99.115	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1988	97.678	102.941	102.061	98.772	100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1989	100.009	99.115	101.393	97.380	101.294	101.283	97.726	102.061	98.772	100.009	101.219	97.678
1990	101.294	99.115	99.840	99.099	102.061	98.772	100.009	101.393	97.380	101.294	101.283	97.726
1991	102.061	99.115	97.678	101.180	101.393	97.380	101.294	99.840	99.099	102.061	98.772	100.009
1992	101.393	101.116	100.009	101.219	97.678	101.180	101.393	97.726	101.067	99.840	99.099	102.061
1993	97.678	99.115	101.294	101.283	97.726	101.067	99.840	100.009	101.219	97.678	101.180	101.393
1994	97.726	99.115	102.061	98.772	100.009	101.219	97.678	101.294	101.283	97.726	101.067	99.840
1995	100.009	99.115	101.393									

TAB. 4.63 – B18: Coefficients pour jours ouvrables combinés.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										113.364	111.165	100.591
1986	105.135	99.581	106.318	108.344	97.857	104.643	97.687	67.262	103.973	115.491	111.214	103.067
1987	100.661	104.121	112.890	105.810	102.377	107.037	100.401	70.299	107.552	117.088	115.743	107.779
1988	110.260	107.051	116.303	109.444	107.390	113.319	103.605	75.029	113.148	120.644	120.019	114.884
1989	117.889	113.202	118.548	117.786	109.089	118.776	108.058	77.797	115.620	126.689	125.273	115.379
1990	119.553	113.504	123.799	117.156	113.266	118.252	111.790	82.155	117.683	130.314	125.490	113.379
1991	120.810	113.807	122.136	118.007	111.743	119.840	113.827	81.731	117.459	129.727	126.352	115.790
1992	121.803	115.610	123.989	118.555	112.410	117.315	110.560	81.862	118.040	129.207	123.211	111.502
1993	116.403	114.110	121.133	112.753	110.411	115.864	108.274	79.693	113.418	123.876	120.280	113.223
1994	119.007	112.496	121.496	116.835	113.990	119.543	112.103	84.309	119.072	129.342	126.352	120.193
1995	124.089	117.338	128.411									

TAB. 4.64 - B19: Série brute corrigée des effets de jours ouvrables.

Remarque

Dans X-12-ARIMA, d'autres effets peuvent être estimés au moment de la régression sur la composante irrégulière (Pâques, Fête du travail, Action de grâces, etc.). Dans ce cas, le tableau B18 prend en compte l'ensemble des effets.

Exemple

Dans notre cas, le tableau B18 est identique au tableau B16.

4.1.19 Tableau B19 : Série brute corrigée des effets de jours ouvrables

Description et mode de calcul

La série du tableau B1, ou celle du tableau A1 si aucun ajustement préalable n'est demandé, est corrigée par les effets de jours ouvrables estimés précédemment (tableau B18). On a donc : B19 = B1 op B18.

Exemple

On a par exemple : $AVR86 = 100 \times 109.500/1.011 = 108.344$.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.000	100.000	99.577
1986	100.000	100.000	98.935	106.225	100.000	100.000	100.000	97.155	100.000	100.000	100.000	100.000
1987	96.028	100.341	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	97.839	100.000	100.023
1989	100.000	100.000	97.689	102.288	100.000	100.028	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1991	100.000	100.000	100.000	100.000	100.000	100.000	101.678	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.284	100.000	98.589
1993	100.000	102.475	100.000	98.674	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1994	100.000	100.000	99.093	100.000	101.272	100.000	100.000	102.382	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

TAB. 4.65 – B20 : Valeurs de correction des points atypiques.

4.1.20 Tableau B20 : Valeurs de correction des points atypiques de l'irrégulier

Description et mode de calcul

Les valeurs de la composante irrégulière B16bis, ou B13 si on ne demande pas de régression pour jours ouvrables, détectées comme atypiques lors de la constitution du tableau B17 et pour lesquelles on a donc calculé un poids, sont corrigées de la façon suivante :

Schéma additif : $B20 = B16bis \times (1 - B17)$ Schéma multiplicatif : $B20 = B16bis/[1 + B17 \times (B16bis - 1)]$.

Ou, en notation symbolique:

$$B20 = B16bis\ op\ [xbar + B17 \times (B16bis - xbar)].$$

Remarque

Il s'agit bien des valeurs qui serviront à corriger la série initiale. Un point jugé très atypique recevra donc un poids de 0 et une valeur de correction égale à la valeur de l'irrégulier; en d'autres termes, dans ce cas, on enlèvera de la série initiale l'irrégulier correspondant à cette date (voir tableau C1, paragraphe 4.2.1).

Exemple

La valeur d'octobre 1988, détectée comme atypique et affectée d'un poids égal à 0.21455, sera donc corrigée de la façon suivante, puisque nous avons ici un schéma multiplicatif :

$$OCT88 = 100 \times \frac{0.97265}{1 + 0.21455 \times (0.97265 - 1)} = 97.839.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										113.364	111.165	101.018
1986	105.135	99.581	107.463	101.995	97.857	104.643	97.687	69.231	103.973	115.491	111.214	103.067
1987	104.825	103.768	112.890	105.810	102.377	107.037	100.401	70.299	107.552	117.088	115.743	107.779
1988	110.260	107.051	116.303	109.444	107.390	113.319	103.605	75.029	113.148	123.308	120.019	114.858
1989	117.889	113.202	121.354	115.151	109.089	118.742	108.058	77.797	115.620	126.689	125.273	115.379
1990	119.553	113.504	123.799	117.156	113.266	118.252	111.790	82.155	117.683	130.314	125.490	113.379
1991	120.810	113.807	122.136	118.007	111.743	119.840	111.949	81.731	117.459	129.727	126.352	115.790
1992	121.803	115.610	123.989	118.555	112.410	117.315	110.560	81.862	118.040	128.841	123.211	113.098
1993	116.403	111.354	121.133	114.269	110.411	115.864	108.274	79.693	113.418	123.876	120.280	113.223
1994	119.007	112.496	122.608	116.835	112.558	119.543	112.103	82.348	119.072	129.342	126.352	120.193
1995	124.089	117.338	128.411									

TAB. 4.66 – C1 : Série brute ajustée pour tenir compte des ajustements *a priori*, de ceux liés à la correction pour jours ouvrables et des points atypiques détectés.

4.2 PARTIE C : Estimation finale des points atypiques et des effets de calendrier

4.2.1 Tableau C1 : Série brute ajustée pour tenir compte des ajustements *a priori*, de ceux liés à la correction pour jours ouvrables et des points atypiques détectés

Description et mode de calcul

Ce tableau présente la série brute corrigée des divers effets mis en évidence lors de la partie B, points jugés atypiques et effets liés aux jours ouvrables, et ajustée *a priori* par les éléments de la partie A. Il est donc calculé à partir du tableau B19 qui prend en compte les effets dus aux jours ouvrables, ou du tableau B1 si la régression pour jours ouvrables n'est pas demandée, et du tableau B20 qui précise les corrections à apporter aux points jugés atypiques. On a donc : C1 = B19 op B20.

Exemple

Ainsi, la valeur du mois d'avril 1986, jugée atypique, devient :

$$AVR86 = 100 \times 108.344/106.225 = 101.995.$$

4.2.2 Tableau C2 : Estimation préliminaire de la tendance-cycle

Description et mode de calcul

Une nouvelle estimation de la composante tendance-cycle est obtenue en appliquant aux données du tableau C1 une moyenne mobile centrée simple d'ordre 12, tout comme au tableau B2 (paragraphe 4.1.2).

Remarques

 X-11-ARIMA et X-12-ARIMA proposent aussi une moyenne mobile centrée sur 24 termes due à Cholette [12].

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				101.181	101.272	101.359	101.432	101.593	101.994	102.379	102.726	103.014
1987	103.227	103.385	103.578	103.794	104.049	104.434	104.857	105.220	105.500	105.793	106.153	106.624
1988	107.019	107.350	107.780	108.273	108.710	109.183	109.796	110.370	110.837	111.285	111.594	111.890
1989	112.302	112.603	112.821	113.065	113.425	113.665	113.756	113.838	113.953	114.138	114.396	114.549
1990	114.684	115.021	115.289	115.526	115.686	115.612	115.581	115.646	115.589	115.555	115.527	115.530
1991	115.603	115.592	115.565	115.531	115.542	115.679	115.821	115.937	116.089	116.189	116.240	116.163
1992	115.999	115.947	115.977	115.964	115.796	115.553	115.216	114.814	114.517	114.220	113.958	113.814
1993	113.658	113.473	113.190	112.790	112.461	112.344	112.458	112.614	112.723	112.892	113.088	113.331
1994	113.644	113.914	114.260	114.723	115.204	115.748	116.250	116.663	117.107			
1995												

TAB. 4.67 – C2 : Tendance-cycle, moyenne mobile centrée sur 12 termes.

 Les 6 premiers et les 6 derniers points de la série ne sont pas imputés à ce stade du calcul.

Exemple

Ainsi, la valeur d'avril 1986 s'obtient à partir des valeurs du tableau C1 d'octobre 1985 à octobre 1986 (6 mois avant et 6 mois après) :

$$AVR86 = \frac{113.364}{24} + \frac{111.165 + 101.018 + 105.135 + 99.581 + 107.463 + 101.995}{12} + \frac{97.857 + 104.643 + 97.687 + 69.231 + 103.973}{12} + \frac{115.491}{24} = 101.181.$$

4.2.3 Tableau C4 : Estimation préliminaire de la composante saisonnier-irrégulier modifiée

Description et mode de calcul

La composante tendance-cycle est enlevée de la série analysée pour obtenir une estimation de la composante saisonnier-irrégulier. On a donc : C4 = C1 op C2.

Remarques

- Là encore, pas d'estimation pour les 6 valeurs de début et les 6 valeurs de fin de la série.
- Ce tableau équivaut au tableau B4g (paragraphe 4.1.4) : ici, le calcul des valeurs de remplacement pour les points atypiques de la composante saisonnier-irrégulier n'a pas lieu car ces valeurs ont déjà été repondérées par les poids du tableau B20.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.804	96.628	103.240	96.308	68.146	101.940	112.807	108.262	100.051
1987	101.548	100.370	108.990	101.943	98.393	102.492	95.751	66.811	101.946	110.676	109.034	101.083
1988	103.028	99.722	107.908	101.082	98.786	103.788	94.362	67.980	102.085	110.804	107.550	102.652
1989	104.976	100.532	107.563	101.846	96.177	104.467	94.991	68.340	101.463	110.996	109.509	100.724
1990	104.246	98.681	107.381	101.411	97.908	102.284	96.720	71.041	101.812	112.772	108.623	98.138
1991	104.505	98.456	105.686	102.143	96.712	103.597	96.657	70.496	101.180	111.651	108.699	99.679
1992	105.003	99.709	106.908	102.234	97.075	101.525	95.959	71.300	103.076	112.801	108.119	99.370
1993	102.414	98.132	107.018	101.311	98.177	103.132	96.279	70.766	100.616	109.730	106.360	99.905
1994	104.719	98.755	107.306	101.840	97.703	103.279	96.433	70.586	101.678			
1995												<u>.</u>

TAB. 4.68 – C4 : Composante saisonnier-irrégulier modifiée.

La valeur d'avril 1986 s'obtient donc simplement :

$$AVR86 = 100 \times 101.995/101.181 = 100.804.$$

4.2.4 Tableau C5 : Estimation de la composante saisonnière

Description et mode de calcul

Cette estimation est obtenue à partir des valeurs de la composante saisonnier-irrégulier du tableau C4. On procède en trois étapes, similaires à celles du tableau B5 (paragraphe 4.1.5) :

- Étape 1 : Estimation de la composante saisonnière par une moyenne mobile 3x3.
- Étape 2 : Normalisation des coefficients saisonniers par une moyenne mobile centrée sur 12 termes.
- Étape 3 : Estimation des coefficients saisonniers manquants.

Remarque

Il est toujours possible de fixer soi-même la moyenne mobile à utiliser. Dans ce cas, X-11-ARIMA permet de choisir entre une moyenne mobile simple sur 3 termes, une 3×3 , une 3×5 , une 3×9 et une saisonnalité constante (moyenne simple). X-12-ARIMA propose en plus une 3×15 .

Exemple

L'estimation est faite à partir de la composante saisonnier-irrégulier modifiée du tableau C4.

Étape 1 : estimation de la composante saisonnière.

Les données du tableau précédent sont lissées colonne par colonne (mois par mois), avec une moyenne mobile 3×3 de coefficients $\{1, 2, 3, 2, 1\}/9$, pour aboutir au tableau C5a.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				101.319	97.746	103.037	95.720	67.571	101.969	111.568	108.445	100.953
1987	102.786	100.136	108.285	101.414	97.791	103.241	95.451	67.630	101.927	111.297	108.502	101.182
1988	103.284	99.984	108.040	101.449	97.782	103.423	95.288	68.159	101.870	111.260	108.514	101.084
1989	103.947	99.692	107.549	101.623	97.447	103.515	95.505	68.930	101.701	111.385	108.734	100.502
1990	104.414	99.272	107.051	101.725	97.263	103.144	95.975	70.008	101.765	111.913	108.662	99.694
1991	104.378	98.979	106.691	101.875	97.162	102.890	96.289	70.586	101.710	111.870	108.383	99.409
1992	104.201	98.860	106.758	101.874	97.402	102.622	96.322	70.895	101.812	111.704	107.869	99.452
1993	103.915	98.739	106.916	101.780	97.606	102.805	96.278	70.828	101.592	111.337	107.510	99.645
1994	103.833	98.678	107.115	101.698	97.780	102.895	96.282	70.792	101.504			
1995												

TAB. 4.69 - C5a: Coefficients saisonniers provisoires (moyenne mobile 3×3).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				99.965	99.965	99.965	99.965	99.965	99.965	99.965	99.971	99.981
1987	99.979	99.970	99.971	99.958	99.949	99.961	99.991	100.005	99.989	99.980	99.981	99.988
1988	99.989	100.004	100.024	100.020	100.019	100.015	100.039	100.054	100.022	100.009	100.002	99.992
1989	100.005	100.046	100.071	100.069	100.084	100.068	100.064	100.066	100.027	100.011	100.007	99.984
1990	99.988	100.053	100.100	100.125	100.144	100.107	100.072	100.059	100.031	100.023	100.025	100.010
1991	100.012	100.049	100.071	100.067	100.054	100.030	100.011	99.999	99.997	99.999	100.009	100.008
1992	99.998	100.013	100.030	100.027	99.999	99.979	99.969	99.952	99.953	99.956	99.961	99.977
1993	99.983	99.978	99.966	99.942	99.911	99.905	99.909	99.903	99.909	99.914	99.918	99.929
1994	99.932	99.931	99.926	99.926	99.926	99.926	99.926	99.926	99.926			
1995												

TAB. 4.70 – C5b : Moyenne mobile centrée sur 12 termes.

Le coefficient saisonnier du mois d'avril 1988 sera donc estimé par :

$$AVR88 = \frac{100.804 + 2 \times 101.943 + 3 \times 101.082 + 2 \times 101.846 + 101.411}{9}$$

= 101.449.

Cette moyenne mobile symétrique peut s'appliquer pour estimer les valeurs des coefficients saisonniers des années 1988 à 1992. Pour le début de la série (années 1986 et 1987) et la fin de la série (années 1993 et 1994), on utilise des moyennes asymétriques prédéfinies (voir tableau 3.13). Ainsi, par exemple, en avril 1987, on utilise un point dans le passé, le point courant et deux points dans le futur :

$$AVR87 = \frac{100.804 \times 7 + 101.943 \times 10 + 101.082 \times 7 + 101.846 \times 3}{27}$$
$$= 101.414.$$

Étape 2 : normalisation des coefficients saisonniers.

Au tableau C5a, on applique une moyenne mobile centrée sur 12 mois, pour aboutir au tableau C5b. Le premier terme calculable est donc celui d'octobre 1986 et le dernier, celui de mars 1994. Ainsi :

$$AVR90 \ = \ \frac{111.385}{24} +$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.607	108.476	100.972
1986	102.808	100.166	108.317	101.355	97.780	103.072	95.754	67.595	102.005	111.607	108.476	100.972
1987	102.808	100.166	108.317	101.457	97.841	103.282	95.459	67.626	101.938	111.319	108.522	101.194
1988	103.296	99.980	108.014	101.428	97.763	103.407	95.251	68.122	101.847	111.250	108.512	101.093
1989	103.943	99.646	107.473	101.553	97.366	103.444	95.444	68.885	101.673	111.373	108.726	100.517
1990	104.426	99.220	106.943	101.598	97.123	103.033	95.906	69.967	101.733	111.888	108.635	99.684
1991	104.365	98.930	106.615	101.807	97.110	102.858	96.278	70.587	101.714	111.870	108.373	99.401
1992	104.203	98.848	106.726	101.846	97.403	102.643	96.352	70.929	101.860	111.752	107.912	99.475
1993	103.933	98.760	106.952	101.839	97.692	102.904	96.365	70.896	101.685	111.433	107.599	99.716
1994	103.903	98.746	107.194	101.773	97.853	102.971	96.354	70.844	101.580	111.433	107.599	99.716
1995	103.903	98.746	107.194									

TAB. 4.71 – C5 : Coefficients saisonniers.

$$\frac{108.734 + 100.502 + 104.414 + 99.272 + 107.051 + 101.725}{12} + \frac{97.263 + 103.144 + 95.975 + 70.008 + 101.765}{12} + \frac{111.913}{24}$$
= 100.125.

Les six premières valeurs, d'avril à septembre 1986, non calculables avec cette moyenne mobile symétrique, seront prises égales à la première valeur calculable, celle d'octobre 1986 (99.965). On procède de même pour la fin de série : la valeur calculée pour mars 1994 (99.926) est répétée pour les six mois suivants. Les coefficients saisonniers normalisés sont alors obtenus en divisant le tableau C5a par le tableau C5b, pour obtenir le tableau C5. Ainsi :

$$AVR86 = 100 \times 101.319/99.965 = 101.355.$$

Étape 3 : estimation des coefficients saisonniers manquants.

Les valeurs manquantes d'octobre 1985 à mars 1986, dues à l'utilisation de la moyenne mobile centrée sur 12 mois, sont estimées en dupliquant la première valeur calculée pour le mois considéré. De même, pour les valeurs d'octobre 1994 à mars 1995, on duplique la dernière valeur calculée pour le mois considéré.

4.2.5 Tableau C6 : Estimation de la série corrigée des variations saisonnières

Description et mode de calcul

Cette estimation s'obtient simplement en retirant à la série de départ, du tableau C1, l'estimation de la composante saisonnière du tableau C5 : C6 = C1 op C5.

Exemple

Ainsi : $AVR86 = 100 \times 101.995/101.355 = 100.632$.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.574	102.479	100.046
1986	102.264	99.416	99.212	100.632	100.078	101.524	102.019	102.421	101.929	103.480	102.524	102.075
1987	101.962	103.595	104.222	104.291	104.636	103.635	105.177	103.952	105.507	105.182	106.654	106.507
1988	106.742	107.073	107.674	107.903	109.848	109.586	108.771	110.140	111.096	110.839	110.605	113.616
1989	113.418	113.603	112.915	113.391	112.040	114.789	113.216	112.938	113.717	113.751	115.219	114.785
1990	114.486	114.397	115.761	115.313	116.621	114.771	116.562	117.420	115.679	116.469	115.515	113.738
1991	115.757	115.038	114.558	115.913	115.069	116.509	116.277	115.788	115.480	115.962	116.589	116.487
1992	116.890	116.957	116.175	116.406	115.407	114.294	114.745	115.415	115.885	115.292	114.177	113.695
1993	111.997	112.752	113.259	112.205	113.019	112.594	112.357	112.407	111.539	111.166	111.786	113.545
1994	114.536	113.924	114.379	114.800	115.029	116.094	116.345	116.238	117.220	116.071	117.429	120.535
1995	119.428	118.829	119.793									

TAB. 4.72 – C6 : Série corrigée des variations saisonnières provisoire.

4.2.6 Tableau C7: Estimation de la composante tendance-cycle

Description et mode de calcul

Ce tableau présente une estimation de la composante tendance-cycle réalisée à partir de la série désaisonnalisée du tableau C6. Tout comme au tableau B7 (paragraphe 4.1.7), le programme va utiliser une moyenne mobile de Henderson dont l'ordre dépendra de la valeur du ratio \bar{I}/\bar{C} .

Étape 1 : choix de la moyenne mobile, calcul du ratio \bar{I}/\bar{C} .

- Si le ratio est inférieur à 1, on choisira une moyenne mobile de Henderson à 9 termes
- Si le ratio est supérieur à 3.5, on choisira une moyenne mobile de Henderson à 23 termes.
- Sinon, on choisira une moyenne mobile de Henderson à 13 termes.

Étape 2 : lissage de la série corrigée des variations saisonnières par une moyenne mobile de Henderson.

Remarques

- A cette étape, contrairement à la partie B, le programme choisit entre une moyenne à 9 termes, une moyenne à 13 termes ou une moyenne à 23 termes.
- Il est possible de spécifier soi-même la longueur de la moyenne mobile de Henderson à utiliser. Dans ce cas, X-11-ARIMA donne le choix entre une moyenne mobile sur 9, 13 ou 23 termes. X-12-ARIMA permet de choisir toute moyenne de Henderson d'ordre impair inférieur à 101.
- La série du tableau C1 correspond à une série corrigée, au moins en partie, d'effets indésirables et en particulier de points atypiques. Cela se fera évidemment sentir sur le numérateur du ratio \bar{I}/\bar{C} qui, en principe, sera plus petit que celui calculé à la partie B.

Exemple

Étape 1 : choix de la moyenne mobile, calcul du ratio \bar{I}/\bar{C} .

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.198	100.587	101.166	101.772	102.244	102.449	102.498	102.511	102.620
1987	102.881	103.274	103.699	104.070	104.311	104.422	104.534	104.765	105.141	105.593	106.028	106.428
1988	106.850	107.321	107.802	108.319	108.846	109.307	109.680	110.054	110.537	111.161	111.891	112.540
1989	112.988	113.249	113.355	113.338	113.257	113.240	113.358	113.564	113.811	114.073	114.323	114.591
1990	114.852	115.028	115.234	115.503	115.820	116.153	116.348	116.353	116.189	115.874	115.489	115.137
1991	114.922	114.947	115.150	115.426	115.680	115.834	115.909	115.959	116.015	116.137	116.345	116.579
1992	116.732	116.654	116.328	115.875	115.474	115.233	115.181	115.203	115.108	114.803	114.281	113.645
1993	113.087	112.747	112.638	112.664	112.668	112.524	112.229	111.935	111.829	111.980	112.387	112.970
1994	113.584	114.142	114.586	114.967	115.342	115.681	116.010	116.382	116.837			
1995												

TAB. 4.73 – C7a: Tendance-cycle (moyenne mobile de Henderson sur 13 termes).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.433	99.494	100.354	100.243	100.173	99.493	100.958	100.013	99.469
1987	99.107	100.311	100.504	100.212	100.311	99.247	100.615	99.224	100.349	99.610	100.590	100.074
1988	99.899	99.768	99.881	99.616	100.921	100.255	99.170	100.079	100.505	99.710	98.851	100.956
1989	100.381	100.313	99.612	100.046	98.926	101.368	99.875	99.449	99.917	99.718	100.784	100.169
1990	99.681	99.451	100.458	99.836	100.692	98.810	100.184	100.917	99.561	100.513	100.023	98.785
1991	100.727	100.079	99.485	100.422	99.472	100.583	100.317	99.852	99.539	99.849	100.210	99.921
1992	100.135	100.260	99.869	100.458	99.942	99.185	99.621	100.184	100.675	100.426	99.909	100.044
1993	99.036	100.004	100.552	99.593	100.312	100.063	100.115	100.422	99.740	99.274	99.466	100.509
1994	100.839	99.809	99.819	99.855	99.729	100.357	100.289	99.876	100.329			
1995												

TAB. 4.74 – C7b : Composante irrégulière.

On lisse tout d'abord le tableau C6 par une moyenne mobile de Henderson sur 13 termes dont les coefficients figurent dans le tableau 3.11.

Le premier terme calculable est donc celui d'avril 1986, et on a :

```
AVR86 = 101.574 \times (-0.01935) + 102.479 \times (-0.02786) + 100.046 \times (0.00000) + 102.264 \times (0.06549) + 99.416 \times (0.14736) + 99.212 \times (0.21434) + 100.632 \times (0.24006) + 100.078 \times (0.21434) + 101.524 \times (0.14736) + 102.019 \times (0.06549) + 102.421 \times (0.00000) + 101.929 \times (-0.02786) + 103.480 \times (-0.01935)
= 100.198.
```

A cette étape du calcul, on ne se préoccupe pas d'estimer les 6 points non calculables en début et en fin de série. On en déduit une estimation de la tendance-cycle (tableau C7a) et, par rapport avec le tableau C6, de la composante irrégulière (tableau C7b). Le schéma étant multiplicatif, on calcule les taux de croissance (voir paragraphe 4.1.7).

En utilisant les totaux par ligne des tableaux C7c et C7d, on a :

$$\bar{C} = \frac{2.394 + 3.650 + 5.598 + 2.012 + 2.576}{101} +$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					0.389	0.575	0.600	0.464	0.200	0.048	0.012	0.106	2.394
1987	0.255	0.382	0.411	0.358	0.232	0.106	0.108	0.221	0.358	0.431	0.412	0.377	3.650
1988	0.397	0.441	0.448	0.479	0.486	0.424	0.342	0.340	0.439	0.564	0.657	0.580	5.598
1989	0.398	0.231	0.094	0.015	0.072	0.015	0.104	0.182	0.218	0.230	0.219	0.235	2.012
1990	0.228	0.153	0.178	0.233	0.274	0.288	0.167	0.004	0.141	0.271	0.333	0.305	2.576
1991	0.187	0.022	0.177	0.239	0.221	0.133	0.064	0.044	0.048	0.106	0.179	0.201	1.620
1992	0.132	0.067	0.280	0.389	0.346	0.209	0.045	0.019	0.083	0.265	0.454	0.557	2.845
1993	0.491	0.301	0.097	0.023	0.004	0.128	0.262	0.261	0.095	0.134	0.364	0.519	2.679
1994	0.543	0.491	0.389	0.332	0.326	0.294	0.285	0.321	0.390				3.372
1995													

Tab. 4.75 - C7c: Croissance, en valeur absolue et en %, de la tendance-cycle.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					0.935	0.865	0.111	0.069	0.679	1.473	0.937	0.544	5.614
1987	0.364	1.215	0.193	0.290	0.098	1.061	1.379	1.383	1.134	0.736	0.984	0.513	9.350
1988	0.176	0.130	0.113	0.265	1.309	0.660	1.082	0.916	0.426	0.791	0.862	2.130	8.859
1989	0.570	0.067	0.699	0.436	1.120	2.469	1.473	0.427	0.471	0.199	1.069	0.610	9.611
1990	0.487	0.230	1.012	0.619	0.858	1.869	1.391	0.732	1.344	0.956	0.488	1.237	11.223
1991	1.966	0.643	0.593	0.941	0.946	1.117	0.264	0.464	0.314	0.311	0.362	0.288	8.210
1992	0.214	0.124	0.390	0.591	0.515	0.757	0.440	0.564	0.491	0.248	0.514	0.135	4.983
1993	1.007	0.978	0.547	0.954	0.722	0.248	0.052	0.306	0.678	0.468	0.193	1.049	7.202
1994	0.328	1.021	0.010	0.035	0.126	0.630	0.068	0.411	0.453				3.083
1995													

Tab. 4.76-C7d : Croissance, en valeur absolue et en %, de l'irrégulier.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.801	101.494	101.102
1986	100.683	100.300	100.105	100.198	100.587	101.166	101.772	102.244	102.449	102.498	102.511	102.620
1987	102.881	103.274	103.699	104.070	104.311	104.422	104.534	104.765	105.141	105.593	106.028	106.428
1988	106.850	107.321	107.802	108.319	108.846	109.307	109.680	110.054	110.537	111.161	111.891	112.540
1989	112.988	113.249	113.355	113.338	113.257	113.240	113.358	113.564	113.811	114.073	114.323	114.591
1990	114.852	115.028	115.234	115.503	115.820	116.153	116.348	116.353	116.189	115.874	115.489	115.137
1991	114.922	114.947	115.150	115.426	115.680	115.834	115.909	115.959	116.015	116.137	116.345	116.579
1992	116.732	116.654	116.328	115.875	115.474	115.233	115.181	115.203	115.108	114.803	114.281	113.645
1993	113.087	112.747	112.638	112.664	112.668	112.524	112.229	111.935	111.829	111.980	112.387	112.970
1994	113.584	114.142	114.586	114.967	115.342	115.681	116.010	116.382	116.837	117.399	118.026	118.651
1995	119.188	119.603	119.876									

TAB. 4.77 – C7 : Tendance-cycle, le ratio I/C est de 2.548, une moyenne mobile de Henderson sur 13 termes a été choisie.

$$\frac{1.620 + 2.845 + 2.679 + 3.372}{101}$$
= 0.2648,

(en B7 cette quantité était égale à 0.312), et :

$$\bar{I} = \frac{5.614 + 9.350 + 8.859 + 9.611 + 11.223}{101} + \frac{8.210 + 4.983 + 7.202 + 3.083}{101}$$

$$= 0.6746$$

(en B7, cette quantité était égale à 2.226). Par conséquent, $\bar{I}/\bar{C}=0.6746/0.2648=2.547$ (en B7, cette quantité était égale à 7.14).

Étape 2 : lissage de la série corrigée des variations saisonnières par une moyenne mobile de Henderson.

Le ratio étant supérieur à 1 et inférieur à 3.5, on choisit une moyenne mobile de Henderson sur 13 termes dont les coefficients et ceux des moyennes mobiles asymétriques associées figurent dans le tableau 3.11. L'estimation de la tendance pour octobre 1985 se fait en utilisant le point courant et six points dans le futur auxquels on applique les coefficients de la moyenne mobile $H6_0$ du tableau 3.11.

$$\begin{array}{ll} OCT85 & = & 101.574 \times (0.42113) + 102.479 \times (0.35315) + \\ & & 100.046 \times (0.24390) + 102.264 \times (0.11977) + \\ & & 99.416 \times (0.01202) + 99.212 \times (-0.05811) + \\ & & 100.632 \times (-0.09186) \\ & = & 101.801. \end{array}$$

Ce qui conduit au tableau C7.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.358	109.528	99.917
1986	104.422	99.284	107.350	101.794	97.285	103.438	95.986	67.712	101.487	112.676	108.490	100.436
1987	101.889	100.478	108.863	101.672	98.145	102.504	96.046	67.101	102.294	110.886	109.163	101.269
1988	103.191	99.748	107.886	101.039	98.663	103.670	94.461	68.175	102.362	110.928	107.264	102.059
1989	104.338	99.959	107.056	101.600	96.320	104.859	95.325	68.505	101.589	111.060	109.579	100.687
1990	104.093	98.675	107.433	101.432	97.795	101.807	96.083	70.609	101.286	112.462	108.660	98.473
1991	105.124	99.008	106.066	102.236	96.597	103.458	96.584	70.483	101.245	111.701	108.601	99.323
1992	104.344	99.104	106.586	102.313	97.346	101.807	95.988	71.059	102.548	112.228	107.814	99.518
1993	102.932	98.764	107.542	101.425	97.997	102.968	96.476	71.195	101.420	110.624	107.024	100.224
1994	104.774	98.558	107.001	101.625	97.587	103.338	96.632	70.757	101.913	110.173	107.055	101.300
1995	104.112	98.106	107.120									

TAB. 4.78 – C9: Composante saisonnier-irrégulier modifiée.

4.2.7 Tableau C9 : Estimation de la composante saisonnier-irrégulier

Description et mode de calcul

Tableau similaire au tableau C4 : la composante tendance-cycle est enlevée de la série analysée, par soustraction ou division selon le schéma de composition adopté, pour obtenir une nouvelle estimation de la composante saisonnier-irrégulier. On a donc : C9 = C1 op C7.

Remarque

Contrairement au tableau C4, les points de début et de fin de série ayant été estimés par des moyennes mobiles de Henderson asymétriques pour la tendance-cycle, on dispose d'une estimation complète de la composante saisonnier-irrégulier.

Exemple

La valeur d'avril 1986 s'obtient donc simplement :

$$AVR86 = 100 \times 101.995/100.198 = 101.794.$$

4.2.8 Tableau C10 : Estimation de la composante saisonnière

Description et mode de calcul

Cette estimation est obtenue d'une façon similaire à celle conduisant au tableau B10, à partir des valeurs de la composante saisonnier-irrégulier du tableau C9. On procède en deux étapes : estimation de la composante saisonnière, à l'aide d'une moyenne mobile 3×5 , puis normalisation des coefficients saisonniers.

Remarque

Il est toujours possible de fixer soi-même la moyenne mobile à utiliser. Dans ce cas, X-11-ARIMA permet de choisir entre une moyenne mobile simple sur 3 termes, une 3×3 , une 3×5 , une 3×9 et une saisonnalité constante (moyenne simple). X-12-ARIMA propose en plus une 3×15 .

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.533	108.791	100.768
1986	103.343	99.855	107.886	101.516	97.775	103.452	95.472	67.789	101.979	111.471	108.766	100.829
1987	103.444	99.782	107.814	101.515	97.702	103.414	95.505	68.014	101.913	111.482	108.683	100.793
1988	103.591	99.690	107.656	101.543	97.583	103.378	95.578	68.423	101.831	111.464	108.696	100.607
1989	103.844	99.500	107.394	101.609	97.497	103.212	95.656	69.054	101.788	111.562	108.556	100.320
1990	104.037	99.325	107.134	101.707	97.353	103.120	95.826	69.704	101.726	111.566	108.457	100.007
1991	104.212	99.074	106.956	101.777	97.340	102.925	96.044	70.319	101.702	111.576	108.183	99.808
1992	104.226	98.877	106.908	101.836	97.352	102.850	96.288	70.688	101.694	111.411	107.930	99.835
1993	104.184	98.721	106.950	101.846	97.462	102.783	96.386	70.882	101.784	111.232	107.627	100.035
1994	104.092	98.627	107.027	101.855	97.486	102.818	96.398	70.925	101.853	111.112	107.493	100.194
1995	104.000	98.570	107.126									

TAB. 4.79 - C10a: Coefficients saisonniers provisoires (moyenne mobile 3×5).

Étape 1 : estimation de la composante saisonnière.

Les données du tableau C9 sont lissées colonne par colonne (mois par mois), avec une moyenne mobile 3×5 (voir tableau 3.14), pour aboutir au tableau C10a. Le facteur saisonnier du mois d'avril 1989 sera donc estimé par :

$$AVR89 = \frac{101.794 + 101.672 \times 2 + 101.039 \times 3 + 101.600 \times 3}{15} + \frac{101.432 \times 3 + 102.236 \times 2 + 102.313}{15}$$
= 101.609.

Pour le début de la série (années 1986 à 1988) et la fin de la série (années 1992 à 1994), on utilise des moyennes asymétriques prédéfinies, par exemple :

$$AVR87 = \frac{101.794 \times 15 + 101.672 \times 15 + 101.039 \times 15}{60} + \frac{101.600 \times 11 + 101.432 \times 4}{60}$$
= 101.515

(un point dans le passé, le point courant et trois points dans le futur).

Étape 2 : normalisation des coefficients saisonniers.

Au tableau C10a, on applique une moyenne mobile centrée sur 12 mois. Le premier terme calculable est donc celui d'avril 1986 et le dernier, celui de septembre 1994. Ainsi :

$$AVR86 = \frac{111.533}{24} + \frac{108.791 + 100.768 + 103.343 + 99.855 + 107.886}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 67.789 + 101.979}{12} + \frac{101.516 + 97.775 + 103.452 + 95.472 + 95.4$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.011	100.011	100.011
1986	100.011	100.011	100.011	100.011	100.007	100.009	100.015	100.016	100.010	100.007	100.004	99.999
1987	99.999	100.010	100.017	100.014	100.011	100.006	100.011	100.013	100.003	99.998	99.994	99.987
1988	99.989	100.009	100.023	100.018	100.018	100.011	100.014	100.016	99.998	99.990	99.989	99.978
1989	99.974	100.004	100.029	100.031	100.029	100.011	100.007	100.008	99.990	99.983	99.981	99.971
1990	99.975	100.009	100.033	100.031	100.027	100.010	100.004	100.001	99.983	99.979	99.981	99.972
1991	99.973	100.008	100.033	100.032	100.021	100.001	99.994	99.986	99.976	99.976	99.979	99.977
1992	99.984	100.009	100.024	100.017	100.000	99.990	99.989	99.981	99.976	99.979	99.984	99.985
1993	99.987	99.999	100.011	100.007	99.987	99.983	99.987	99.979	99.979	99.982	99.984	99.986
1994	99.988	99.990	99.995	99.993	99.982	99.983	99.986	99.980	99.982	99.982	99.982	99.982
1995	99.982	99.982	99.982									

TAB. 4.80 – C10b : Moyenne mobile centrée sur 12 termes.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.521	108.779	100.758
1986	103.332	99.844	107.875	101.505	97.768	103.444	95.457	67.778	101.968	111.463	108.761	100.829
1987	103.444	99.772	107.796	101.500	97.691	103.408	95.495	68.004	101.910	111.485	108.689	100.806
1988	103.603	99.681	107.631	101.524	97.565	103.366	95.565	68.412	101.833	111.475	108.709	100.629
1989	103.870	99.497	107.364	101.578	97.468	103.200	95.649	69.048	101.799	111.580	108.576	100.348
1990	104.063	99.316	107.098	101.675	97.327	103.110	95.822	69.703	101.743	111.590	108.478	100.034
1991	104.240	99.066	106.921	101.744	97.319	102.924	96.050	70.329	101.727	111.603	108.206	99.832
1992	104.243	98.868	106.882	101.818	97.353	102.860	96.298	70.701	101.718	111.435	107.947	99.849
1993	104.198	98.722	106.939	101.839	97.474	102.801	96.399	70.896	101.806	111.252	107.645	100.048
1994	104.105	98.636	107.033	101.862	97.504	102.835	96.411	70.940	101.872	111.133	107.512	100.212
1995	104.019	98.588	107.145									

TAB. 4.81 – C10: Coefficients saisonniers.

$$= \frac{111.471}{24}$$
$$= 100.011$$

Les six premières valeurs, d'octobre 1985 à mars 1986, non calculables avec cette moyenne mobile symétrique, seront prises égales à la première valeur calculable, celle d'avril 1986. On procède de même pour la fin de série : la valeur calculée pour septembre 1994 (99.982) est répétée pour les six mois suivants. Les coefficients saisonniers normalisés sont alors obtenus en divisant le tableau C10a par le tableau C10b, pour obtenir le tableau C10. Ainsi, par exemple :

$$AVR86 = 100 \times 101.516/100.011 = 101.505.$$

4.2.9 Tableau C11 : Estimation de la série corrigée des variations saisonnières Description et mode de calcul

Cette estimation s'obtient simplement en retirant à la série de départ, du tableau B1 (et non pas C1), l'estimation de la composante saisonnière du tableau C10 : $C11 = B1 \ op \ C10$.

Ainsi, puisque l'on part de la série B1, cette série corrigée des variations saisonnières comporte les valeurs atypiques détectées précédemment.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										103.747	100.938	99.844
1986	103.163	98.854	96.315	107.876	99.931	100.248	104.445	96.934	103.169	105.058	99.576	103.541
1987	97.154	103.436	104.735	105.517	102.364	104.731	106.603	101.023	106.663	104.858	105.530	109.121
1988	103.955	110.553	110.284	106.477	110.080	110.965	105.897	111.092	112.537	105.763	111.582	113.983
1989	113.507	112.768	111.956	112.919	113.370	116.569	110.404	114.992	112.182	113.550	116.784	112.309
1990	116.371	113.275	115.408	114.187	118.775	113.277	116.674	119.507	112.636	118.290	117.167	110.762
1991	118.284	113.863	111.578	117.353	116.421	113.385	120.042	116.026	114.424	118.635	115.336	115.995
1992	118.474	118.238	116.015	117.857	112.786	115.400	116.410	113.152	117.285	115.762	113.111	113.972
1993	109.120	114.564	114.739	112.138	110.696	113.910	112.138	112.418	112.764	108.762	113.057	114.745
1994	111.714	113.042	115.852	113.290	116.919	117.665	113.576	120.384	118.384	113.738	118.777	119.746
1995	119.305	117.965	121.517									

TAB. 4.82 – C11 : Série désaisonnalisée provisoire.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.911	99.452	98.755
1986	102.463	98.559	96.214	107.663	99.347	99.093	102.626	94.806	100.703	102.497	97.137	100.898
1987	94.433	100.157	100.999	101.390	98.133	100.296	101.979	96.428	101.448	99.303	99.531	102.530
1988	97.290	103.011	102.302	98.300	101.134	101.516	96.550	100.944	101.809	95.144	99.724	101.282
1989	100.459	99.576	98.765	99.630	100.100	102.940	97.394	101.258	98.569	99.542	102.153	98.008
1990	101.323	98.475	100.151	98.861	102.552	97.524	100.281	102.711	96.942	102.085	101.453	96.200
1991	102.926	99.057	96.898	101.670	100.640	97.885	103.566	100.058	98.629	102.151	99.133	99.499
1992	101.492	101.357	99.731	101.710	97.672	100.145	101.066	98.220	101.892	100.836	98.976	100.288
1993	96.492	101.612	101.865	99.533	98.250	101.232	99.920	100.431	100.835	97.127	100.597	101.571
1994	98.354	99.036	101.105	98.542	101.367	101.715	97.902	103.439	101.325	96.882	100.637	100.923
1995	100.098	98.631	101.369									

TAB. 4.83 – C13 : Composante irrégulière.

Ainsi, pour avril 1986, on a : $AVR86 = 100 \times 109.500/101.505 = 107.876$.

4.2.10 Tableau C13 : Estimation de la composante irrégulière

Description et mode de calcul

Cette estimation s'obtient simplement en retirant à la série corrigée des variations saisonnières, du tableau C11, l'estimation de la composante tendance-cycle du tableau C7 : C13 = C11 op C7.

Exemple

La valeur pour avril 1986 est donc :

$$AVR86 = 100 \times 107.876/100.198 = 107.663.$$

4.2.11 Tableau C14 : Valeurs de la composante irrégulière exclues de la régression pour jours ouvrables

Description et mode de calcul

Les tableaux C14, C15 et C16 portent sur l'estimation finale de l'effet de la composition journalière du mois. Au tableau C14, X-11 va repérer les valeurs atypiques de la composante irrégulière et les exclure des calculs. La recherche se fait en deux phases :

Étape 1 : calcul d'un écart-type global et repérage des valeurs atypiques.

L'étape B nous fournit une première estimation de l'effet jours ouvrables, effet résumé dans le tableau B16 (ou B18 si une correction *a priori* a été demandée par l'utilisateur); voir paragraphe 4.1.16. La composante irrégulière du tableau C13 est alors corrigée de cet effet pour obtenir un résidu¹⁷: R = C13 - B16.

On calcule ensuite une estimation de la variance de ce résidu, par la moyenne des carrés de ce résidu, ce qui revient à supposer que les résidus sont de moyenne nulle. On a donc :

$$\sigma^{2} = \frac{1}{n} \sum_{t=1}^{n} (C13_{t} - B16_{t})^{2}$$
$$= \frac{1}{n} \sum_{t=1}^{n} R_{t}^{2}.$$

Une valeur I_t de l'irrégulier est jugée atypique si le résidu associé R_t est trop grand et, plus précisément, si : $|R_t| \ge \lambda \sigma$ où σ est l'écart-type global calculé ci-dessus et λ , un paramètre modifiable par l'utilisateur et fixé par défaut à 2.5.

Étape 2 : calcul final de l'écart-type global et repérage des valeurs atypiques.

On refait les calculs ci-dessus en excluant les valeurs atypiques repérées. On obtient alors un nouvel écart-type et de nouvelles valeurs atypiques qui seront exclues de la régression pour jours ouvrables; ces valeurs figurent dans le tableau C14.

Remarques

- Le calcul fait ici est donc sensiblement différent de celui fait en B14. L'utilisation des coefficients correcteurs du tableau B16 permet, dans la mesure où ces coefficients ont été calculés à partir de la structure journalière de chaque mois, de distinguer tous les types de mois et non 15 types seulement comme à l'étape
- Toutes les observations, hormis les valeurs détectées comme atypiques, sont utilisées pour la régression. Dans X-11-ARIMA, lorsqu'une extrapolation ARIMA est demandée, les coefficients journaliers sont estimés sur l'ensemble des données disponibles jusqu'au dernier mois de décembre 18.

¹⁷II s'agit bien ici d'une soustraction dans la mesure où le modèle posé pour l'effet jours ouvrables est un modèle de régression linéaire.

¹⁸Sauf si on demande aussi une correction de l'effet de Pâques ; dans ce cas, tous les points sont utilisés.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										0.149	0.680	1.254
1986	1.070	0.556	1.511	6.596	0.493	0.006	0.565	2.872	0.477	1.104	0.243	0.396
1987	5.407	1.042	0.990	0.171	0.455	0.884	0.586	1.298	0.381	0.536	0.432	0.469
1988	0.388	0.070	0.241	0.472	1.125	0.298	1.128	0.350	0.526	2.581	1.343	1.442
1989	0.450	0.460	2.628	2.250	1.193	1.657	0.331	0.803	0.203	0.467	0.935	0.330
1990	0.029	0.640	0.312	0.238	0.491	1.248	0.272	1.318	0.438	0.791	0.170	1.525
1991	0.865	0.058	0.781	0.489	0.753	0.505	2.272	0.218	0.469	0.090	0.361	0.510
1992	0.098	0.241	0.278	0.492	0.007	1.036	0.327	0.494	0.824	0.996	0.123	1.773
1993	1.187	2.497	0.572	1.750	0.524	0.165	0.080	0.422	0.383	0.552	0.584	0.178
1994	0.629	0.079	0.955	0.230	1.358	0.496	0.223	2.145	0.041	0.844	0.430	1.084
1995	0.089	0.485	0.024									

TAB. 4.84 - C14a: Écarts absolus à la moyenne.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				107.663				94.806				
1987	94.433											
1988										95.144		
1989			98.765									
1990												
1991												
1992												
1993		101.612										
1994												
1995												

 $\ensuremath{\mathsf{TAB}}.$ 4.85-C14 : Valeurs de la composante irrégulière exclues de la régression pour jours ouvrables.

Étape 1 : premier calcul d'un écart-type global et repérage des valeurs atypiques.

On corrige la composante irrégulière du tableau C13 par les coefficients pour jours ouvrables du tableau B16 pour obtenir les résidus en valeur absolue du tableau C14a. Ainsi on a, pour le mois d'avril 1986 : AVR86 = |107.663 - 101.067| = 6.596.

La moyenne des carrés des éléments du tableau C14a fournit une première estimation de l'écart-type :

$$\sigma = \left(\frac{1}{n} \sum_{t=1}^{n} R_t^2\right)^{1/2} = 1.2302.$$

Les deux seuls points qui s'éloignent, en valeur absolue, de plus de 3.076 (soit 2.5σ), sont les valeurs d'avril 1986 et janvier 1987. Ces deux points sont donc exclus.

Étape 2 : calcul final de l'écart-type global et repérage des valeurs atypiques.

Le nouvel écart-type se calcule simplement en enlevant les résidus concernés et on obtient $\sigma=0.9439$.

Ce nouveau calcul conduit à une borne égale à 2.360 (soit 2.5σ)) et donc à l'élimination de 6 points : AVR86, AOÛT86, JAN87, OCT88, MAR89 et FÉV93.

	Poids Combinés	Poids a priori	Coefficients de la régression	Écart-type	T	Prob > T
Lundi	1.092	1.000	0.092	0.067	1.373	0.086
Mardi	1.242	1.000	0.242	0.066	3.649	0.000
Mercredi	1.083	1.000	0.083	0.068	1.210	0.114
Jeudi	1.356	1.000	0.356	0.068	5.215	0.000
Vendredi	1.076	1.000	0.076	0.068	1.126	0.131
Samedi	0.518	1.000	-0.482	0.066	-7.281	0.000
Dimanche	0.632	1.000	-0.368	0.067	-5.458	0.000

	Somme des carrés	Degrés de liberté	Moyenne des carrés	F	Prob > F
Régression	26.115	6	4.352	68.245	0.000
Erreur	6.505	106	0.064		
Total	32.620	112			

TAB. 4.86 – C15: Régression finale pour jours ouvrables.

4.2.12 Tableau C15: Régression finale pour jours ouvrables

Description et mode de calcul

Des poids journaliers vont être à présent estimés grâce à une régression par moindres carrés ordinaires sur les données non jugées atypiques du tableau C13, selon une méthodologie identique à celle présentée au tableau B15 (paragraphe 4.1.15).

Exemple

Si nous nous fixons un risque de première espèce de 1% par exemple, les tests s'interprètent de la façon suivante :

- Le test F de Fisher rejette l'hypothèse nulle d'égalité des coefficients journaliers; on peut donc admettre l'existence d'un effet dû à la composition journalière du mois. En effet, la probabilité de trouver une valeur de la statistique de Fisher plus grande que celle trouvée (68.245) est quasiment nulle et donc inférieure à notre risque de première espèce. Nous sommes donc dans la région critique du test, ce qui ne nous permet pas d'accepter l'hypothèse nulle d'égalité des coefficients journaliers.
- On interprète de la même manière les tests T de Student mais en prenant garde à ce que la loi de Student est symétrique. Il faut donc comparer la valeur Prob (T>|t|) à la moitié du risque de première espèce, soit 0.005. Tous les tests conduisant à une valeur plus petite que 0.005 ne permettent pas d'accepter l'hypothèse de nullité du coefficient journalier. Dans notre cas, les coefficients de mardi, jeudi, samedi et dimanche sont jugés significativement différents de 0.

Enfin, on peut remarquer que par rapport aux résultats du tableau B15, la précision des estimations s'est accrue grâce à la correction des valeurs atypiques.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										102.198	98.646	99.895
1986	101.662	99.115	97.557	101.084	99.839	99.083	102.198	97.504	101.116	101.662	97.167	101.347
1987	99.839	99.115	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1988	97.504	102.982	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1989	99.895	99.115	101.662	97.167	101.347	101.441	97.557	102.198	98.646	99.895	101.463	97.504
1990	101.347	99.115	99.839	99.083	102.198	98.646	99.895	101.662	97.167	101.347	101.441	97.557
1991	102.198	99.115	97.504	101.116	101.662	97.167	101.347	99.839	99.083	102.198	98.646	99.895
1992	101.662	100.947	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1993	97.504	99.115	101.347	101.441	97.557	101.084	99.839	99.895	101.463	97.504	101.116	101.662
1994	97.557	99.115	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1995	99.895	99.115	101.662									

TAB. 4.87 – C16 : Coefficients d'ajustement pour jours ouvrables issus de la régression.

4.2.13 Tableau C16 : Coefficients d'ajustement pour jours ouvrables issus de la régression

Description et mode de calcul

Des estimations de la régression, on déduit le tableau C16, similaire au tableau B16, des coefficients mensuels M_t d'ajustement pour jours ouvrables.

La composante irrégulière du tableau C13 est alors corrigée de ces effets de calendrier pour aboutir à un tableau C16bis, malheureusement non imprimable dans les logiciels usuels : C16bis = C13 op C16.

Remarques

- X-11-ARIMA présente en plus un tableau C16A répétant les coefficients de chaque jour obtenus par la régression.
- X-12-ARIMA et X-11-ARIMA présentent aussi un tableau C16C estimant les coefficients de correction des douze prochains mois.

Exemple

Prenons comme exemple les mois d'avril 1986 et février 1989.

	Lundi	Mardi	Mercredi	Jeudi	Vendredi	Samedi	Dimanche	Nb. de jours
Poids	1.092	1.242	1.083	1.356	1.076	0.518	0.632	
Nombre								
AVR86	4	5	5	4	4	4	4	30
FÉV89	4	4	4	4	4	4	4	28

Les coefficients de correction pour ces mois seront donc :

$$AVR86 = 100 \times \frac{4 \times 1.09246 + 5 \times 1.24237 + 5 \times 1.08276}{30} + 100 \times \frac{4 \times 1.35622 + 4 \times 1.07609 + 4 \times 0.51763 + 4 \times 0.63247}{30}$$

$$= 101.084$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										99.720	100.817	98.860
1986	100.788	99.439	98.624	106.509	99.508	100.010	100.419	97.234	99.592	100.822	99.969	99.557
1987	94.585	101.051	101.106	99.928	100.645	99.189	100.312	98.843	100.360	99.464	100.452	100.325
1988	99.781	100.028	100.102	99.649	101.241	100.052	99.022	99.602	100.363	97.527	98.655	101.446
1989	100.565	100.465	97.151	102.535	98.770	101.478	99.834	99.080	99.922	99.647	100.680	100.517
1990	99.976	99.355	100.313	99.776	100.346	98.863	100.387	101.033	99.769	100.728	100.012	98.610
1991	100.712	99.941	99.378	100.547	98.995	100.739	102.189	100.220	99.542	99.954	100.494	99.604
1992	99.833	100.406	99.837	100.244	100.172	99.039	99.415	100.680	100.799	100.999	99.892	98.131
1993	98.962	102.519	100.511	98.119	100.710	100.147	100.081	100.537	99.381	99.613	99.486	99.911
1994	100.818	99.920	98.931	99.895	101.474	100.248	100.408	102.064	99.885	99.308	99.558	101.086
1995	100.204	99.511	99.712									

TAB. 4.88 – C16bis : Composante irrégulière corrigée des effets de jours ouvrables issus de la régression.

ou plus simplement, puisque mardi et mercredi sont les seuls jours intervenant 5 fois dans le mois :

$$AVR86 = 100 \times \frac{28 + 1.2424 + 1.0828}{30} = 101.084$$

et, pour un mois de février de 28 jours :

$$FEV89 = 100 \times \frac{28}{28.25} = 99.115.$$

On obtient ensuite une valeur corrigée de la composante irrégulière (tableau C16bis), par exemple :

$$AVR86 = 100 \times 107.663/101.084 = 106.509$$

et

$$FEV89 = 100 \times 99.576/99.115 = 100.465.$$

4.2.14 Tableau C17 : Poids finaux pour la correction de la composante irrégulière

Description et mode de calcul

A partir de l'estimation de la composante irrégulière C16bis, ou du tableau C13 si aucune correction pour jours ouvrables n'est demandée, on cherche à identifier et à corriger les points atypiques. Pour cela, on utilise l'algorithme de détection des points atypiques et de calcul de poids correctifs détaillé aux tableaux B4 et B9 (paragraphes 4.1.4 et 4.1.9). Comme on dispose déjà d'une estimation de l'irrégulier, seules les étapes 4 et 5 sont appliquées.

Remarques

Les remarques faites aux tableaux B4 et B9 concernant le calcul des écart-types mobiles et des poids correctifs sont aussi valables ici.

Année	Écart-type 1	Écart-type 2
1985	1.4389	0.9815
1986	1.4389	0.9815
1987	1.4389	0.9815
1988	1.4629	0.9889
1989	1.1712	0.9476
1990	0.9538	0.9538
1991	0.9526	0.9030
1992	0.8592	0.8021
1993	0.8420	0.7861
1994	0.8420	0.7861
1995	0.8420	0.7861

TAB. 4.89 – C17a: Écart-types mobiles sur 5 ans.

Calcul d'un écart-type mobile.

L'écart-type correspondant à l'année 1989 sera calculé à partir des données des années 1987 à 1991 (deux années avant, deux années après) selon la formule ¹⁹ :

$$\sigma_{89} = \left[\frac{1}{60} \sum_{t=Jan87}^{Dec91} (I_t - 100)^2 \right]^{1/2} = 1.4629.$$

Ceux des années 1988, 1990, 1991 et 1992 sont calculés selon le même principe. Pour X-11-ARIMA et X-12-ARIMA, l'écart-type de 1987 est calculé à partir de l'ensemble des observations disponibles de 1985 à 1990, soit 63 observations. Les résultats du calcul de X-11-ARIMA et X-12-ARIMA figurent dans le tableau C17a, colonne Écart-type 1.

Ce premier calcul sert à repérer d'éventuels points atypiques. Comme le montre la figure 4.8, les valeurs d'avril 1986, janvier 1987 et février 1993 sont détectées comme très atypiques. On a en effet : $|AVR86-100|=|106.509-100|=6.509>2.5\times\sigma_{86}=2.5\times1.4389=3.597, |JAN87-100|=|94.585-100|=5.415>2.5\times\sigma_{87}=2.5\times1.4389=3.597,$ et $|FEV93-100|=|102.519-100|=2.519>2.5\times\sigma_{93}=2.5\times0.8420=2.105.$ Ces points sont donc éliminés du second calcul de l'écart-type mobile qui conduit aux résultats de la colonne Écart-type 2 du tableau C17a.

Détection et correction des valeurs atypiques.

Les valeurs de l'irrégulier sont alors situées par rapport aux limites de confiance supérieures et inférieures calculées à partir des nouvelles estimations des écart-types. Toutes les valeurs situées au-delà des limites de confiance inférieures (voir figure 4.9) sont considérées comme atypiques et vont donc être corrigées, à des degrés divers, et les poids, multipliés par 100, associés à chacune de ces valeurs figurent dans le tableau C17.

¹⁹Ici, la moyenne théorique est considérée égale à 100 pour tenir compte du fait que les valeurs de l'irrégulier ont été elles-mêmes multipliées par 100.

Fig. 4.8 – C17 : Ecart à la moyenne de l'irrégulier et "limites supérieures de confiance" $(\pm 2.5\sigma)$. Première estimation.

FIG. 4.9 – C17 : Ecart à la moyenne de l'irrégulier et "limites de confiance" ($\pm 1.5\sigma$ et $\pm 2.5\sigma$). Seconde estimation.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.000	100.000	100.000
1986	100.000	100.000	100.000	0.000	100.000	100.000	100.000	0.000	100.000	100.000	100.000	100.000
1987	0.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	0.000	100.000	100.000
1989	100.000	100.000	0.000	0.000	100.000	94.034	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1991	100.000	100.000	100.000	100.000	100.000	100.000	7.552	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	16.963
1993	100.000	0.000	100.000	10.773	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1994	100.000	100.000	100.000	100.000	62.449	100.000	100.000	0.000	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

TAB. 4.90 - C17: Poids finaux pour la composante irrégulière. Les bornes utilisées sont 1.5σ et 2.5σ .

Les valeurs jugées précédemment très atypiques le restent et sont affectées d'un poids nul. Ainsi, $|AVR86-100|=|106.509-100|=6.509>2.5\times\sigma_{86}=2.5\times0.9815=2.454.$

Pour juillet 1991, situé entre les deux limites de confiance et donc jugé moyennement atypique on a : |JUIL91-100|=|102.189-100|=2.189, and $1.5\times\sigma_{91}=1.5\times0.9030=1.3545<2.189<2.5\times\sigma_{91}=2.5\times0.9030=2.2575$. On va attribuer à cette valeur jugée moyennement atypique, un poids proportionnel à l'écart à la moyenne constaté de :

$$poids(JUIL91) = \frac{2.2575 - 2.189}{2.2575 - 1.3545} = 0.075.$$

4.2.15 Tableau C18 : Coefficients pour jours ouvrables combinés (issus de l'ajustement *a priori* et de la régression pour jours ouvrables)

Description et mode de calcul

Comme au tableau B18, si on a fourni au préalable des coefficients journaliers de correction *a priori* des effets de jours ouvrables (schéma multiplicatif seulement) et si on a aussi demandé une régression pour jours ouvrables, le tableau C18 présente le résultat combiné de ces deux corrections, simple addition des deux effets, où les poids combinés proviennent du tableau C15.

Remarque

Dans X-12-ARIMA, d'autres effets peuvent être estimés au moment de la régression sur la composante irrégulière (Pâques, Fête du travail, Action de grâces etc.). Dans ce cas, le tableau C18 prend en compte l'ensemble des effets.

Exemple

Dans notre cas, le tableau C18 est identique au tableau C16.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										102.198	98.646	99.895
1986	101.662	99.115	97.557	101.084	99.839	99.083	102.198	97.504	101.116	101.662	97.167	101.347
1987	99.839	99.115	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1988	97.504	102.982	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1989	99.895	99.115	101.662	97.167	101.347	101.441	97.557	102.198	98.646	99.895	101.463	97.504
1990	101.347	99.115	99.839	99.083	102.198	98.646	99.895	101.662	97.167	101.347	101.441	97.557
1991	102.198	99.115	97.504	101.116	101.662	97.167	101.347	99.839	99.083	102.198	98.646	99.895
1992	101.662	100.947	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1993	97.504	99.115	101.347	101.441	97.557	101.084	99.839	99.895	101.463	97.504	101.116	101.662
1994	97.557	99.115	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1995	99.895	99.115	101.662									

TAB. 4.91 – C18 : Coefficients de correction combinés pour jours ouvrables.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										113.212	111.307	100.706
1986	104.858	99.581	106.502	108.326	97.858	104.660	97.556	67.382	104.039	115.186	111.458	103.012
1987	100.663	104.121	113.019	105.555	102.560	107.105	100.136	70.421	107.535	117.089	115.761	107.634
1988	110.457	107.009	116.147	109.584	107.513	113.046	103.791	74.990	112.972	120.853	119.999	114.886
1989	118.024	113.202	118.236	118.044	109.031	118.591	108.245	77.692	115.768	126.834	124.971	115.585
1990	119.490	113.504	123.800	117.174	113.114	118.404	111.918	81.939	117.941	130.246	125.294	113.575
1991	120.648	113.807	122.354	118.082	111.448	120.103	113.767	81.732	117.477	129.553	126.513	115.922
1992	121.482	115.803	124.131	118.269	112.611	117.390	110.268	82.004	118.021	129.209	123.230	111.353
1993	116.611	114.110	121.069	112.578	110.602	115.845	108.275	79.784	113.144	124.098	120.357	112.924
1994	119.213	112.496	121.333	116.984	114.120	119.255	112.303	84.265	118.887	129.566	126.331	120.194
1995	124.231	117.338	128.072									

TAB. 4.92 – C19 : Série originale corrigée des effets de jours ouvrables.

4.2.16 Tableau C19 : Série brute corrigée des effets de jours ouvrables

Description et mode de calcul

La série du tableau B1, ou du tableau A1 si aucun ajustement préalable n'est demandé, est corrigée par les effets de jours ouvrables estimés précédemment (tableau C18). On a donc : C19 = B1 op C18.

Exemple

Par exemple : $AVR86 = 100 \times 109.500/101.084 = 108.326$.

4.2.17 Tableau C20 : Valeurs de correction des points atypiques de l'irrégulier Description et mode de calcul

Les valeurs de la composante irrégulière C16bis, ou C13 si on ne demande pas de régression pour jours ouvrables, détectées comme atypiques lors de la constitution du tableau C17, et pour lesquelles on a donc calculé un poids, sont corrigées, comme au tableau B20, de la façon suivante :

$$C20 = C16bis\ op\ [xbar + C17 \times (C16bis - xbar)].$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.000	100.000	100.000
1986	100.000	100.000	100.000	106.509	100.000	100.000	100.000	97.234	100.000	100.000	100.000	100.000
1987	94.585	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1988	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	97.527	100.000	100.000
1989	100.000	100.000	97.151	102.535	100.000	100.087	100.000	100.000	100.000	100.000	100.000	100.000
1990	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1991	100.000	100.000	100.000	100.000	100.000	100.000	102.021	100.000	100.000	100.000	100.000	100.000
1992	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	98.443
1993	100.000	102.519	100.000	98.319	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
1994	100.000	100.000	100.000	100.000	100.549	100.000	100.000	102.064	100.000	100.000	100.000	100.000
1995	100.000	100.000	100.000									

TAB. 4.93 – C20 : Valeurs de correction des points atypiques de l'irrégulier.

La valeur de mai 1994, détectée comme atypique et affectée d'un poids égal à 0.62449, sera donc corrigée de la façon suivante, puisque nous avons ici un schéma multiplicatif :

$$MAI94 = 100 \times \frac{1.01474}{1 + 0.62449 \times (1.01474 - 1)} = 100.549.$$

4.3 PARTIE D : Estimation finale des différentes composantes

4.3.1 Tableau D1 : Série brute ajustée pour tenir compte des ajustements *a priori*, de ceux liés à la correction pour jours ouvrables et des points atypiques détectés

Description et mode de calcul

Ce tableau présente la série brute corrigée des divers effets mis en évidence lors de la partie C, points jugés atypiques et effets liés aux jours ouvrables, et ajustée *a priori* par les éléments de la partie A. Il est donc calculé à partir du tableau C19 qui prend en compte les effets dus aux jours ouvrables, ou du tableau B1 si la régression pour jours ouvrables n'est pas demandée, et du tableau C20 qui précise les corrections à apporter aux points jugés atypiques. On a donc : D1 = C19 op C20.

Exemple

Ainsi, la valeur du mois d'avril 1986, jugée atypique, devient :

$$AVR86 = 100 \times 108.326/106.509 = 101.706.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										113.212	111.307	100.706
1986	104.858	99.581	106.502	101.706	97.858	104.660	97.556	69.299	104.039	115.186	111.458	103.012
1987	106.425	104.121	113.019	105.555	102.560	107.105	100.136	70.421	107.535	117.089	115.761	107.634
1988	110.457	107.009	116.147	109.584	107.513	113.046	103.791	74.990	112.972	123.917	119.999	114.886
1989	118.024	113.202	121.703	115.126	109.031	118.488	108.245	77.692	115.768	126.834	124.971	115.585
1990	119.490	113.504	123.800	117.174	113.114	118.404	111.918	81.939	117.941	130.246	125.294	113.575
1991	120.648	113.807	122.354	118.082	111.448	120.103	111.514	81.732	117.477	129.553	126.513	115.922
1992	121.482	115.803	124.131	118.269	112.611	117.390	110.268	82.004	118.021	129.209	123.230	113.114
1993	116.611	111.306	121.069	114.503	110.602	115.845	108.275	79.784	113.144	124.098	120.357	112.924
1994	119.213	112.496	121.333	116.984	113.498	119.255	112.303	82.561	118.887	129.566	126.331	120.194
1995	124.231	117.338	128.072									

TAB. 4.94 – D1 : Série originale ajustée.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				101.023	101.111	101.213	101.375	101.629	102.090	102.522	102.878	103.176
1987	103.385	103.540	103.732	103.957	104.216	104.588	104.948	105.236	105.487	105.785	106.160	106.614
1988	107.013	107.356	107.773	108.284	108.745	109.224	109.841	110.415	110.904	111.366	111.661	111.951
1989	112.363	112.661	112.890	113.128	113.457	113.693	113.784	113.857	113.957	114.130	114.385	114.552
1990	114.702	115.032	115.299	115.532	115.687	115.617	115.582	115.642	115.595	115.572	115.541	115.542
1991	115.596	115.571	115.543	115.495	115.516	115.665	115.798	115.915	116.073	116.154	116.211	116.146
1992	115.981	115.941	115.975	115.983	115.832	115.578	115.258	114.868	114.553	114.268	114.028	113.879
1993	113.732	113.557	113.261	112.845	112.512	112.384	112.485	112.643	112.703	112.818	113.042	113.305
1994	113.615	113.898	114.253	114.720	115.197	115.749	116.261	116.672	117.154			
1995										-		

TAB. 4.95 – D2 : Tendance-cycle, moyenne mobile centrée sur 12 termes.

4.3.2 Tableau D2 : Estimation préliminaire de la tendance-cycle

Description et mode de calcul

Une nouvelle estimation de la composante tendance-cycle est obtenue, comme en B2 et C2, en appliquant aux données du tableau D1 une moyenne mobile centrée simple d'ordre 12.

Remarques

- X-11-ARIMA et X-12-ARIMA proposent aussi une moyenne mobile centrée sur 24 termes due à Cholette [12].
- Les 6 premiers et les 6 derniers points de la série ne sont pas imputés à ce stade du calcul.

Exemple

Ainsi, la valeur d'avril 1986 s'obtient à partir des valeurs du tableau D1 d'octobre 1985 à octobre 1986 (6 mois avant et 6 mois après) :

$$AVR86 \ = \ \frac{113.212}{24} +$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.677	96.783	103.405	96.233	68.188	101.909	112.353	108.339	99.841
1987	102.940	100.562	108.953	101.538	98.411	102.407	95.415	66.917	101.941	110.686	109.045	100.957
1988	103.218	99.677	107.770	101.201	98.867	103.499	94.492	67.917	101.865	111.269	107.468	102.622
1989	105.039	100.480	107.806	101.766	96.099	104.217	95.132	68.237	101.589	111.131	109.255	100.902
1990	104.175	98.672	107.373	101.422	97.776	102.410	96.830	70.855	102.030	112.696	108.442	98.297
1991	104.371	98.474	105.895	102.240	96.478	103.836	96.301	70.510	101.210	111.535	108.865	99.807
1992	104.743	99.881	107.033	101.971	97.219	101.568	95.671	71.390	103.028	113.075	108.070	99.328
1993	102.531	98.018	106.894	101.470	98.303	103.079	96.257	70.829	100.391	109.998	106.471	99.664
1994	104.927	98.769	106.197	101.974	98.525	103.029	96.596	70.764	101.479			
1995												

TAB. 4.96 – D4 : Composante saisonnier-irrégulier modifiée.

$$\frac{111.307 + 100.706 + 104.858 + 99.581 + 106.502 + 101.706}{12} + \frac{97.858 + 104.660 + 97.556 + 69.299 + 104.039}{12} + \frac{115.186}{24}$$
= 101.023.

4.3.3 Tableau D4 : Estimation préliminaire de la composante saisonnier-irrégulier modifiée

Description et mode de calcul

La composante tendance-cycle est enlevée de la série analysée pour obtenir une estimation de la composante saisonnier-irrégulier. On a donc : D4 = D1 op D2.

Remarque

Là encore, pas d'estimation pour les 6 valeurs de début et les 6 valeurs de fin de la série.

Exemple

La valeur d'avril 1986 s'obtient donc simplement :

$$AVR86 = 100 \times 101.706/101.023 = 100.677.$$

4.3.4 Tableau D5 : Estimation de la composante saisonnière

Description et mode de calcul

Cette estimation est obtenue à partir des valeurs de la composante saisonnier-irrégulier du tableau D4. Encore une fois, on procède en trois étapes, comme en B5 et C5 :

Étape 1 : estimation de la composante saisonnière avec une moyenne 3x3.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				101.124	97.832	103.016	95.577	67.620	101.914	111.473	108.465	100.811
1987	103.442	100.186	108.259	101.252	97.850	103.150	95.356	67.652	101.874	111.319	108.476	101.093
1988	103.724	100.003	108.042	101.367	97.798	103.284	95.292	68.122	101.844	111.388	108.420	101.080
1989	104.135	99.686	107.617	101.591	97.386	103.413	95.529	68.853	101.745	111.505	108.610	100.590
1990	104.367	99.276	107.147	101.717	97.174	103.156	95.947	69.929	101.842	111.974	108.567	99.807
1991	104.280	99.003	106.800	101.860	97.092	102.973	96.144	70.565	101.747	111.920	108.372	99.471
1992	104.126	98.897	106.694	101.859	97.502	102.664	96.173	70.941	101.755	111.836	107.903	99.425
1993	103.930	98.746	106.638	101.816	97.877	102.758	96.198	70.922	101.448	111.536	107.566	99.553
1994	103.917	98.669	106.636	101.768	98.193	102.779	96.287	70.906	101.323			
1995												

TAB. 4.97 - D5a: Coefficients saisonniers provisoires (moyenne mobile 3×3).

- Étape 2 : normalisation des coefficients saisonniers par une moyenne mobile centrée sur 12 termes.
- Étape 3 : estimation des coefficients saisonniers manquants.

Remarque

Il est toujours possible de fixer soi-même la moyenne mobile à utiliser. Dans ce cas, X-11-ARIMA permet de choisir entre une moyenne mobile simple sur 3 termes, une 3×3 , une 3×5 , une 3×9 et une saisonnalité constante (moyenne simple). X-12-ARIMA propose en plus une 3×15 .

Exemple

L'estimation est faite à partir de la composante saisonnier-irrégulier modifiée du tableau D4.

Étape 1 : estimation de la composante saisonnière.

Les données du tableau précédent sont lissées colonne par colonne (mois par mois), avec une moyenne mobile 3×3 , pour aboutir au tableau D5a.

Le coefficient saisonnier du mois d'avril 1988 sera donc estimé par :

$$\begin{array}{lll} AVR88 & = & \frac{100.677 + 2 \times 101.538 + 3 \times 101.201 + 2 \times 101.766 + 101.422}{9} \\ & = & 101.367. \end{array}$$

Cette moyenne mobile symétrique peut s'appliquer pour estimer les valeurs des coefficients saisonniers des années 1988 à 1992. Pour le début de la série (années 1986 et 1987) et la fin de la série (années 1993 et 1994), on utilise des moyennes asymétriques prédéfinies (voir tableau 3.13). Ainsi, par exemple, en avril 1987, on utilise un point dans le passé, le point courant et deux points dans le futur :

$$\begin{array}{rcl} AVR87 & = & \frac{100.677 \times 7 + 101.538 \times 10 + 101.201 \times 7 + 101.766 \times 3}{27} \\ & = & 101.252. \end{array}$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				99.982	99.982	99.982	99.982	99.982	99.982	99.982	99.988	99.994
1987	99.991	99.983	99.983	99.974	99.968	99.981	100.004	100.008	99.992	99.987	99.990	99.994
1988	99.996	100.013	100.032	100.033	100.034	100.031	100.048	100.051	100.021	100.012	100.004	99.993
1989	100.008	100.048	100.074	100.075	100.088	100.075	100.065	100.057	100.021	100.006	100.003	99.983
1990	99.990	100.052	100.101	100.125	100.142	100.108	100.072	100.057	100.031	100.022	100.025	100.014
1991	100.014	100.049	100.072	100.065	100.055	100.033	100.012	100.002	99.993	99.988	100.005	100.010
1992	99.998	100.015	100.031	100.028	100.005	99.983	99.973	99.959	99.950	99.946	99.960	99.979
1993	99.984	99.984	99.971	99.946	99.919	99.910	99.915	99.911	99.908	99.906	99.917	99.931
1994	99.936	99.939	99.933	99.933	99.933	99.933	99.933	99.933	99.933			
1995												

TAB. 4.98 – D5b : Moyenne mobile centrée sur 12 termes.

Étape 2 : normalisation des coefficients saisonniers.

Au tableau D5a, on applique une moyenne mobile centrée sur 12 mois, pour aboutir au tableau D5b. Le premier terme calculable est donc celui d'octobre 1986 et le dernier, celui de mars 1994. Ainsi :

$$AVR90 = \frac{\frac{111.505}{24} + \frac{108.610 + 100.590 + 104.367 + 99.276 + 107.147 + 101.717}{12} + \frac{97.174 + 103.156 + 95.947 + 69.929 + 101.842}{12} + \frac{111.974}{24}$$

$$= 100.125.$$

Les six premières valeurs, d'avril à septembre 1986, non calculables avec cette moyenne mobile symétrique, seront prises égales à la première valeur calculable, celle d'octobre 1986 (99.982). On procède de même pour la fin de série : la valeur calculée pour mars 1994 (99.933) est répétée pour les six mois suivants. Les coefficients saisonniers normalisés sont alors obtenus en divisant le tableau D5a par le tableau D5b, ce qui conduit au tableau D5. Ainsi par exemple :

$$AVR86 = 100 \times 101.124/99.982 = 101.143.$$

Étape 3 : estimation des coefficients saisonniers manquants.

Les valeurs manquantes d'octobre 1985 à mars 1986, dues à l'application d'une moyenne mobile centrée sur 12 termes au tableau D2, sont obtenues en dupliquant la première valeur calculée pour le mois considéré. De même, pour les valeurs d'octobre 1994 à mars 1995, on duplique la dernière valeur calculée pour le mois considéré.

4.3.5 Tableau D6 : Estimation de la série corrigée des variations saisonnières

Description et mode de calcul

Cette estimation s'obtient simplement en retirant à la série du tableau D1, l'estimation de la composante saisonnière du tableau D5 : D6 = D1 op D5.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.493	108.478	100.817
1986	103.452	100.203	108.278	101.143	97.850	103.034	95.594	67.632	101.932	111.493	108.478	100.817
1987	103.452	100.203	108.278	101.278	97.881	103.170	95.352	67.646	101.882	111.333	108.487	101.100
1988	103.728	99.989	108.008	101.334	97.765	103.252	95.247	68.087	101.823	111.374	108.416	101.088
1989	104.127	99.638	107.537	101.515	97.300	103.335	95.467	68.814	101.724	111.498	108.608	100.607
1990	104.378	99.224	107.039	101.590	97.036	103.045	95.878	69.890	101.811	111.949	108.540	99.793
1991	104.265	98.955	106.723	101.794	97.038	102.940	96.132	70.564	101.755	111.933	108.366	99.461
1992	104.128	98.882	106.661	101.831	97.498	102.681	96.199	70.970	101.806	111.896	107.947	99.445
1993	103.947	98.762	106.669	101.871	97.956	102.851	96.279	70.985	101.541	111.641	107.655	99.622
1994	103.984	98.729	106.707	101.836	98.259	102.848	96.351	70.954	101.391	111.641	107.655	99.622
1995	103.984	98.729	106.707									

TAB. 4.99 – D5: Coefficients saisonniers.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.542	102.608	99.890
1986	101.359	99.379	98.360	100.557	100.008	101.577	102.052	102.465	102.067	103.312	102.746	102.178
1987	102.874	103.910	104.379	104.223	104.780	103.814	105.017	104.101	105.548	105.171	106.705	106.463
1988	106.487	107.020	107.536	108.142	109.971	109.485	108.970	110.138	110.950	111.262	110.685	113.649
1989	113.347	113.613	113.173	113.408	112.056	114.664	113.385	112.902	113.806	113.754	115.067	114.888
1990	114.479	114.392	115.659	115.340	116.569	114.905	116.730	117.240	115.843	116.344	115.436	113.811
1991	115.714	115.010	114.646	116.001	114.850	116.673	116.001	115.827	115.451	115.742	116.746	116.550
1992	116.665	117.112	116.379	116.143	115.501	114.325	114.625	115.547	115.927	115.472	114.158	113.745
1993	112.183	112.702	113.499	112.400	112.910	112.634	112.459	112.396	111.427	111.158	111.798	113.352
1994	114.646	113.943	113.707	114.875	115.509	115.953	116.556	116.359	117.256	116.055	117.348	120.650
1995	119.472	118.848	120.022									

TAB. 4.100 – D6 : Série corrigée des variations saisonnières.

Avec par exemple : $AVR86 = 100 \times 101.706/101.143 = 100.557$.

4.3.6 Tableau D7: Estimation de la composante tendance-cycle

Description et mode de calcul

Ce tableau présente une estimation de la composante tendance-cycle réalisée à partir de la série désaisonnalisée du tableau précédent. La méthodologie est la même que celle suivie pour construire le tableau C7 (paragraphe 4.2.6).

Remarque

Il est possible de spécifier soi-même la longueur de la moyenne mobile de Henderson à utiliser. Dans ce cas, X-11-ARIMA donne le choix entre une moyenne mobile sur 9, 13 ou 23 termes. X-12-ARIMA permet de choisir toute moyenne de Henderson d'ordre impair inférieur à 101.

Exemple

Étape 1 : choix de la moyenne mobile, calcul du ratio \bar{I}/\bar{C} .

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				99.924	100.448	101.139	101.793	102.277	102.510	102.619	102.727	102.919
1987	103.227	103.605	103.961	104.237	104.392	104.458	104.568	104.811	105.176	105.595	105.986	106.358
1988	106.769	107.255	107.783	108.342	108.897	109.373	109.753	110.132	110.620	111.245	111.976	112.620
1989	113.055	113.305	113.399	113.377	113.299	113.273	113.379	113.577	113.823	114.082	114.322	114.577
1990	114.827	115.007	115.221	115.507	115.844	116.190	116.387	116.378	116.190	115.852	115.462	115.118
1991	114.922	114.960	115.161	115.427	115.657	115.784	115.845	115.893	115.954	116.098	116.330	116.583
1992	116.752	116.675	116.343	115.875	115.469	115.236	115.197	115.241	115.170	114.874	114.359	113.735
1993	113.185	112.848	112.740	112.756	112.737	112.564	112.240	111.920	111.807	111.956	112.336	112.886
1994	113.478	114.036	114.508	114.946	115.391	115.783	116.130	116.484	116.891			
1995												

TAB. 4.101 – D7a: Tendance-cycle (moyenne mobile de Henderson sur 13 termes).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.633	99.562	100.433	100.254	100.183	99.568	100.676	100.018	99.280
1987	99.659	100.295	100.402	99.987	100.372	99.383	100.430	99.323	100.354	99.598	100.678	100.099
1988	99.737	99.781	99.771	99.816	100.986	100.102	99.286	100.005	100.298	100.015	98.847	100.914
1989	100.258	100.272	99.800	100.027	98.903	101.228	100.005	99.406	99.985	99.713	100.652	100.271
1990	99.697	99.466	100.380	99.855	100.626	98.894	100.294	100.740	99.702	100.425	99.978	98.865
1991	100.689	100.043	99.553	100.497	99.301	100.767	100.135	99.943	99.567	99.693	100.358	99.972
1992	99.926	100.375	100.031	100.231	100.028	99.209	99.503	100.265	100.658	100.520	99.825	100.008
1993	99.115	99.871	100.673	99.684	100.153	100.062	100.195	100.426	99.660	99.286	99.521	100.413
1994	101.029	99.919	99.300	99.939	100.102	100.147	100.367	99.893	100.313			
1995												

TAB. 4.102 – D7b : Composante irrégulière.

On lisse tout d'abord le tableau D6 par une moyenne mobile de Henderson sur 13 termes dont les coefficients figurent dans le tableau 3.11. On a ainsi pour avril 1990 :

```
\begin{array}{lll} AVR90 & = & 113.754 \times (-0.01935) + 115.067 \times (-0.02786) + \\ & & 114.888 \times (0.00000) + 114.479 \times (0.06549) + \\ & & 114.392 \times (0.14736) + 115.659 \times (0.21434) + \\ & & 115.340 \times (0.24006) + 116.569 \times (0.21434) + \\ & & 114.905 \times (0.14736) + 116.730 \times (0.06549) + \\ & & 117.240 \times (0.00000) + 115.843 \times (-0.02786) + \\ & & 116.344 \times (-0.01935) \\ & = & 115.507. \end{array}
```

A cette étape du calcul, on ne se préoccupe pas d'estimer les 6 points non calculables en début et en fin de série. On en déduit une estimation de la tendance-cycle (tableau D7a) et, par rapport avec le tableau D6, de la composante irrégulière (tableau D7b).

Le schéma étant multiplicatif, on calcule les taux de croissance moyens (voir paragraphe 4.1.7).

A partir des totaux par ligne des tableaux D7c et D7d, on calcule :

$$\bar{C} \quad = \quad \frac{2.961 + 3.291 + 5.735 + 1.948 + 2.664}{101} + \\$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					0.524	0.688	0.646	0.476	0.227	0.106	0.106	0.187	2.961
1987	0.299	0.367	0.343	0.265	0.149	0.064	0.105	0.232	0.348	0.399	0.370	0.350	3.291
1988	0.386	0.456	0.492	0.518	0.513	0.437	0.347	0.345	0.443	0.566	0.657	0.575	5.735
1989	0.387	0.221	0.083	0.019	0.069	0.023	0.093	0.175	0.217	0.227	0.210	0.224	1.948
1990	0.218	0.156	0.186	0.249	0.291	0.299	0.169	0.008	0.161	0.291	0.337	0.298	2.664
1991	0.170	0.033	0.175	0.231	0.199	0.110	0.053	0.041	0.053	0.124	0.199	0.217	1.606
1992	0.146	0.066	0.285	0.401	0.351	0.201	0.034	0.038	0.062	0.257	0.449	0.545	2.835
1993	0.484	0.298	0.095	0.014	0.017	0.154	0.288	0.285	0.100	0.133	0.339	0.489	2.697
1994	0.525	0.491	0.414	0.382	0.388	0.340	0.299	0.305	0.350				3.494
1995													

 $\ensuremath{\text{TAB.}}\xspace$ $4.103-\ensuremath{\text{D7c}}\xspace$: Taux de croissance, en valeur absolue et en %, de la tendance-cycle.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					1.065	0.875	0.178	0.071	0.615	1.113	0.653	0.739	5.308
1987	0.382	0.638	0.107	0.414	0.385	0.985	1.053	1.102	1.038	0.754	1.085	0.575	8.518
1988	0.362	0.044	0.010	0.045	1.173	0.876	0.815	0.724	0.293	0.283	1.168	2.092	7.884
1989	0.650	0.014	0.471	0.227	1.124	2.351	1.208	0.599	0.582	0.272	0.942	0.378	8.817
1990	0.573	0.232	0.920	0.523	0.772	1.721	1.416	0.445	1.031	0.725	0.445	1.113	9.916
1991	1.845	0.641	0.490	0.948	1.190	1.476	0.628	0.191	0.377	0.127	0.668	0.385	8.965
1992	0.047	0.450	0.343	0.200	0.203	0.819	0.297	0.766	0.392	0.137	0.692	0.184	4.527
1993	0.893	0.762	0.804	0.983	0.471	0.091	0.133	0.230	0.762	0.375	0.236	0.896	6.637
1994	0.613	1.099	0.619	0.643	0.164	0.044	0.220	0.473	0.420				4.295
1995													

TAB.~4.104-D7d : Taux de croissance, en valeur absolue et en %, de la composante irrégulière.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.743	101.327	100.829
1986	100.322	99.896	99.730	99.924	100.448	101.139	101.793	102.277	102.510	102.619	102.727	102.919
1987	103.227	103.605	103.961	104.237	104.392	104.458	104.568	104.811	105.176	105.595	105.986	106.358
1988	106.769	107.255	107.783	108.342	108.897	109.373	109.753	110.132	110.620	111.245	111.976	112.620
1989	113.055	113.305	113.399	113.377	113.299	113.273	113.379	113.577	113.823	114.082	114.322	114.577
1990	114.827	115.007	115.221	115.507	115.844	116.190	116.387	116.378	116.190	115.852	115.462	115.118
1991	114.922	114.960	115.161	115.427	115.657	115.784	115.845	115.893	115.954	116.098	116.330	116.583
1992	116.752	116.675	116.343	115.875	115.469	115.236	115.197	115.241	115.170	114.874	114.359	113.735
1993	113.185	112.848	112.740	112.756	112.737	112.564	112.240	111.920	111.807	111.956	112.336	112.886
1994	113.478	114.036	114.508	114.946	115.391	115.783	116.130	116.484	116.891	117.414	118.042	118.680
1995	119.243	119.691	120.001									

TAB. 4.105 – D7 : Tendance-cycle, le ratio I/C est égal à 2.382, une moyenne mobile de Henderson sur 13 termes a été choisie.

$$\begin{array}{rcl} & \frac{1.606+2.835+2.697+3.494}{101} \\ & = & 0.2696, \\ & \bar{I} & = & \frac{5.308+8.518+7.884+8.817+9.916}{101} + \\ & & \frac{8.965+4.527+6.637+4.295}{101} \\ & = & 0.64224, \\ & \bar{I}/\bar{C} & = & \frac{0.64224}{0.2696} = 2.3822. \end{array}$$

Étape 2 : lissage de la série corrigée des variations saisonnières par une moyenne mobile de Henderson.

Le ratio étant supérieur à 1 et inférieur à 3.5, on choisit une moyenne mobile de Henderson sur 13 termes dont les coefficients et ceux des moyennes mobiles asymétriques associées figurent dans le tableau 3.11. L'estimation de la tendance pour octobre 1985 se fait, à partir de la série désaisonnalisée du tableau D6, en utilisant le point courant et six points dans le futur, auxquels on applique les coefficients de la moyenne mobile $H6_0$ du tableau 3.11.

$$\begin{array}{ll} OCT85 & = & 101.542 \times (0.42113) + 102.608 \times (0.35315) + \\ & & 99.890 \times (0.24390) + 101.359 \times (0.11977) + \\ & & 99.379 \times (0.01202) + 98.360 \times (-0.05811) + \\ & & 100.557 \times (-0.09186) \\ & = & 101.743. \end{array}$$

Ce qui conduit au tableau D7.

4.3.7 Tableau D8 : Estimation de la composante saisonnier-irrégulier non mo-

Description et mode de calcul

La composante tendance-cycle est enlevée de la série analysée, C19, ou B1 si l'option de correction pour jours ouvrables n'a pas été choisie, pour obtenir une estimation de la composante saisonnier-irrégulier. On a donc : D8 = C19 op D7 et les valeurs atypiques sont présentes dans cette série.

Plusieurs tests, paramétriques et non-paramétrique, sur la présence de saisonnalité sont édités. Les résultats de ces tests figurent aussi par ailleurs dans le tableau F2I.

1. Deux tests de saisonnalité stable sont proposés, l'un paramétrique et l'autre non-paramétrique, pour trancher entre les deux hypothèses :

> H_0 : $m_1 = m_2 = \ldots = m_k$ H_1 : $m_n \neq m_q$ pour au moins un couple (p,q)

où m_1, \ldots, m_k sont les coefficients saisonniers stables pour les 12 mois ou les

- Le premier, dit **test de saisonnalité stable**, est un test paramétrique basé sur un modèle d'analyse de la variance à un facteur en tout point similaire à celui édité après le tableau B1 (voir paragraphe 4.1.3).
- Le second est un test non-paramétrique de Kruskal-Wallis : les données du tableau D8 sont supposées provenir de k échantillons indépendants A_1, A_2, \ldots, A_k (k = 4 si la série est trimestrielle, k = 12 si elle est mensuelle) de tailles respectives n_1, n_2, \dots, n_k . Le test est fondé sur la statistique

$$W = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{S_j^2}{n_j} - 3(n+1)$$

où S_j est la somme des rangs des observations de l'échantillon A_j dans la série des $n = \sum_{i=1}^{k} n_i$ observations. Cette quantité, sous l'hypothèse nulle, suit une loi du Chi-deux à k-1 degrés de liberté.

2. Vient ensuite un test de saisonnalité évolutive, qui est un test basé sur un modèle d'analyse de la variance à deux facteurs (le mois ou le trimestre, et l'année) proposé par Higginson [34]. Ce test repose sur la modélisation des valeurs de la composante saisonnier-irrégulier du tableau D8, pour les années complètes seulement:

$$|SI_{ij} - xbar| = X_{ij} = b_i + m_j + e_{ij}$$

- m_j désigne l'effet du mois, ou trimestre j (j = 1, ..., k);
- $-b_i$ désigne l'effet de l'année i $(i=1,\ldots,N)$ où N est le nombre d'années
- e_{ij} représente l'effet résiduel, réalisation de lois indépendantes et identiquement distribuées de moyenne nulle.

Le test est basé sur la décomposition $S^2 = S_A^2 + S_B^2 + S_R^2$ où : $-S^2$ est la somme des carrés totale : $S^2 = \sum_{j=1}^k \sum_{i=1}^N \left(X_{ij} - \bar{X}_{..}\right)^2$ avec $\bar{X}_{..} = \sum_{j=1}^{k} \sum_{i=1}^{N} X_{ij}/(kN);$

- $-\ S_A^2$ est la somme des carrés "inter mois" : $S_A^2=N\sum_{j=1}^k \left(\bar{X}_{.j}-\bar{X}_{..}\right)^2$ avec $\bar{X}_{.j} = \sum_{i=1}^{N} X_{ij}/N;$
- $S_B = k \sum_{i=1}^N (\bar{X}_{i.} \bar{X}_{..})^2$ avec $\bar{X}_{i.} = \sum_{j=1}^{k} X_{ij}/k ;$ $-S_R^2 \text{ est la somme des carrés "résiduelle"} :$ $S_R^2 = \sum_{i=1}^{N} \sum_{j=1}^{k} \left(X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..} \right)^2.$ L'hypothèse nulle H_0^* : $b_1 = b_2 = \ldots = b_N$, c'est-à-dire que la saisonnalité

$$S_R^2 = \sum_{i=1}^N \sum_{j=1}^k (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^2$$

n'évolue pas au cours des années, peut être testée grâce à la statistique

$$F_M = \frac{S_B^2/(N-1)}{S_B^2/(N-1)(k-1)}$$

qui suit, sous H_0^* , une loi de Fisher à (N-1) et (k-1)(N-1) degrés de liberté.

3. Enfin, ces tests sont complétés par un test dit de présence d'une saisonnalité identifiable construit à partir des valeurs des statistiques de Fisher des tests paramétriques de saisonnalité stable (statistique F_S) et de saisonnalité évolutive (statistique F_M) évoqués ci-dessus. Ce test a été élaboré, à partir de considérations théoriques et pratiques, par Lothian et Morry [48]. La valeur de la statistique de test T est :

$$T = \left(\frac{T_1 + T_2}{2}\right)^{1/2}$$
 avec $T_1 = \frac{7}{F_S}$ et $T_2 = \frac{3F_M}{F_S}$

La version finale du test combiné s'interprète alors selon le diagramme de la figure 4.10.

Exemple

La valeur d'avril 1986 s'obtient donc simplement :

$$AVR86 = 100 \times 108.326/99.924 = 108.408.$$

Les valeurs de la composante saisonnier-irrégulier non modifiée sont aussi représentées, en triangles pleins, dans la figure 4.12 du paragraphe 4.3.10.

Nous ne détaillerons pas les calculs complexes conduisant aux valeurs des différentes statistiques de test. Par contre, explicitons le test combiné :

- 1. La statistique F_S (tableau 4.107) est suffisamment grande pour rejeter l'hypothèse d'égalité des coefficients saisonniers.
- 2. La statistique F_M (tableau 4.109) montre que la série ne comporte aucune composante saisonnière évolutive; le test accepte l'hypothèse H_0^* .
- 3. On a $T_1 = 7/F_S = 7/498.194 = 0.014$ et $T_2 = 3F_M/F_S = 3 \times 1.724/498.194 = 0.014$ 0.010 et donc ces deux statistiques sont plus petites que 1.
- 4. Le test non-paramétrique de Kruskal-Wallis (tableau 4.108) confirme l'existence d'une saisonnalité.

Le test combiné statuera donc sur la présence d'une saisonnalité identifiable.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.272	109.850	99.878
1986	104.521	99.685	106.791	108.408	97.421	103.481	95.838	65.882	101.491	112.247	108.498	100.090
1987	97.516	100.498	108.713	101.265	98.245	102.534	95.762	67.188	102.243	110.885	109.223	101.200
1988	103.455	99.770	107.760	101.147	98.729	103.358	94.567	68.091	102.126	108.636	107.165	102.012
1989	104.396	99.909	104.265	104.116	96.233	104.695	95.472	68.405	101.709	111.178	109.316	100.880
1990	104.061	98.694	107.446	101.443	97.643	101.905	96.160	70.407	101.507	112.424	108.516	98.660
1991	104.983	98.997	106.246	102.300	96.361	103.730	98.207	70.524	101.314	111.589	108.754	99.434
1992	104.051	99.253	106.694	102.066	97.525	101.869	95.721	71.158	102.476	112.478	107.757	97.905
1993	103.027	101.119	107.388	99.842	98.106	102.914	96.468	71.287	101.196	110.845	107.140	100.034
1994	105.054	98.649	105.960	101.774	98.899	102.998	96.705	72.340	101.708	110.349	107.022	101.276
1995	104.183	98.034	106.726									

TAB. 4.106 – D8 : Valeurs finales de la composante saisonnier-irrégulier non modifiée.

	Somme des Carrés	Degrés de liberté	Moyenne des Carrés	F	PROB>F
Entre les mois	11264.919	11	1024.084	498.194	0.000
Résidu	209.670	102	2.056		
Total	11474.589	113			

TAB. 4.107 – Test de la présence d'une saisonnalité stable.

Statistique W de Kruskal-Wallis	Degrés de liberté	PROB>W
104.780	11	0.000

TAB. 4.108 – Test non paramétrique de la présence d'une saisonnalité stable.

	Somme des Carrés	Degrés de liberté	Moyenne des Carrés	F	PROB>F
Entre les années	20.628	8	2.578	1.724	0.104
Résidu	131.614	88	1.496		

TAB. 4.109 – Test de la présence d'une saisonnalité évolutive.

FIG. 4.10 – Test pour la présence de saisonnalité identifiable

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.272	109.850	99.878
1986	104.521	99.685	106.791	101.783	97.421	103.481	95.838	67.756	101.491	112.247	108.498	100.090
1987	103.098	100.498	108.713	101.265	98.245	102.534	95.762	67.188	102.243	110.885	109.223	101.200
1988	103.455	99.770	107.760	101.147	98.729	103.358	94.567	68.091	102.126	111.390	107.165	102.012
1989	104.396	99.909	107.322	101.542	96.233	104.604	95.472	68.405	101.709	111.178	109.316	100.880
1990	104.061	98.694	107.446	101.443	97.643	101.905	96.160	70.407	101.507	112.424	108.516	98.660
1991	104.983	98.997	106.246	102.300	96.361	103.730	96.261	70.524	101.314	111.589	108.754	99.434
1992	104.051	99.253	106.694	102.066	97.525	101.869	95.721	71.158	102.476	112.478	107.757	99.453
1993	103.027	98.634	107.388	101.549	98.106	102.914	96.468	71.287	101.196	110.845	107.140	100.034
1994	105.054	98.649	105.960	101.774	98.359	102.998	96.705	70.878	101.708	110.349	107.022	101.276
1995	104.183	98.034	106.726									

TAB. 4.110 – D9bis : Composante saisonnier-irrégulier modifiée finale.

4.3.8 Tableau D9 : Valeurs de remplacement pour les points atypiques de la composante saisonnier-irrégulier

Description et mode de calcul

Le tableau D8 nous donne une estimation de la composante saisonnier-irrégulier non modifiée, comprenant les valeurs atypiques, puisqu'elle est issue de la série C19 corrigée des effets pour jours ouvrables (ou de la série B1 si aucune correction n'a été demandée), de laquelle on enlève la composante tendance-cycle du tableau D7.

La série D1, qui est la série brute D1 corrigée à la fois des valeurs atypiques et des effets de jours ouvrables, peut fournir une autre estimation de la composante saisonnier-irrégulier, toujours en enlevant la composante tendance-cycle du tableau D7. La comparaison de ces deux estimations de la composante saisonnier-irrégulier (corrigée ou non des valeurs atypiques) nous permet de repérer les valeurs de remplacement utilisées pour les points jugés atypiques. Ces valeurs sont alors consignées dans le tableau D9.

On compare donc les séries C19 op D7 et D1 op D7.

Exemple

On enlève à la série D1 l'estimation de la tendance du tableau D7 pour obtenir le tableau D9bis.

Avec par exemple : $AVR86 = 100 \times 101.706/99.924 = 101.783$.

Cette table est comparée au tableau D8; les valeurs qui ne coïncident pas correspondent aux valeurs de remplacement des points jugés atypiques et sont éditées dans le tableau D9. Ces valeurs de remplacement sont représentées avec des triangles vides dans la figure 4.12 du paragraphe 4.3.10.

4.3.9 Tableau D9A : Calcul des "ratios de saisonnalité mobile" (RSM)

Description et mode de calcul

A partir du tableau D9bis précédent, non édité dans les versions actuelles des logiciels, on va essayer de mesurer l'importance de la composante irrégulière par rapport à la composante saisonnière et ce, pour chaque mois. Nous allons avoir à lisser

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				101.783				67.756				
1987	103.098											
1988										111.390		
1989			107.322	101.542		104.604						
1990												
1991							96.261					
1992												99.453
1993		98.634		101.549								
1994					98.359			70.878				
1995												

TAB. 4.111 – D9 : Valeurs finales de remplacement des valeurs atypiques de la composante saisonnier-irrégulier.

cette composante pour estimer la composante saisonnière; selon l'importance de l'irrégulier dans la composante saisonnier-irrégulier, nous serons amenés à utiliser des moyennes mobiles plus ou moins longues. Nous avons déjà rencontré cette idée dans le programme d'extraction de la tendance-cycle où le ratio \bar{I}/\bar{C} servait à choisir la longueur de la moyenne mobile de Henderson. L'estimation des ratios de saisonnalité mobile (RSM) se fait en deux étapes.

Étape 1 : estimation des composantes irrégulière et saisonnière.

Une estimation de la composante saisonnière est obtenue en lissant, mois par mois, donc colonne par colonne, le tableau D9bis par une moyenne mobile simple sur 7 termes, donc de coefficients $\{1,1,1,1,1,1,1\}/7$. Pour ne pas perdre 3 points au début et à la fin de chaque colonne, chacune d'entre elle va être fictivement complétée. Supposons que la colonne correspondant au mois soit composée de N valeurs $\{x_1,\ldots,x_N\}$.

Elle va être transformée en une série $\{x_{-2}, x_{-1}, x_0, x_1, \dots, x_N, x_{N+1}, x_{N+2}, x_{N+3}\}$ avec $x_{-2} = x_{-1} = x_0 = (x_1 + x_2 + x_3)/3$ et $x_{N+1} = x_{N+2} = x_{N+3} = (x_N + x_{N-1} + x_{N-2})/3$. On a alors les estimations souhaitées $S = M_7(D9bis)$ et $I = D9bis\ op\ S$.

Étape 2 : calcul des ratios de saisonnalité mobile.

Pour chaque mois j on s'intéresse aux moyennes des évolutions annuelles de chaque composante en calculant :

$$\bar{S}_{j} = \frac{1}{n_{j} - 1} \sum_{i=2}^{n_{j}} |S_{i,j} \ op \ S_{i-1,j} - xbar|,$$
 (4.5)

$$\bar{I}_{j} = \frac{1}{n_{j}-1} \sum_{i=2}^{n_{j}} |I_{i,j} \ op \ I_{i-1,j} - xbar|,$$
 (4.6)

où n_j désigne le nombre de données dans le mois j. Le ratio de saisonnalité mobile du mois j est alors défini par $MSR_j=\bar{I}_j/\bar{S}_j$. Ces ratios sont publiés dans le tableau D9A.

nbans	CS	FIS
4	3	$\frac{90}{2\sqrt{842} + 21\sqrt{2}}$
5	$\frac{3\sqrt{2}}{1+\sqrt{3}}$	$\frac{60}{\sqrt{894} + 2\sqrt{211}}$
6	$\frac{5\sqrt{6}}{8+\sqrt{2}}$	$\frac{25\sqrt{3}}{2\sqrt{298} + \sqrt{67}}$
7+	$\frac{\sqrt{3} \times nbans}{6\sqrt{2} + (nbans - 6)\sqrt{3}}$	$\frac{5\sqrt{6}\times nbans}{6\sqrt{149}+5\sqrt{6}(nbans-6)}$

TAB. 4.112 – Valeurs des constantes CS_i et FSI_i .

Remarques

- Ces ratios servent à mesurer la part du "bruit" dans la composante saisonnier-irrégulier. L'idée de base est d'avoir, pour chaque mois, un indicateur permettant de choisir une moyenne mobile appropriée pour enlever le bruit et obtenir une bonne estimation du coefficient saisonnier. Plus le ratio est élevé, plus la série est chaotique et plus l'ordre de la moyenne mobile à utiliser doit être important. Pour la suite, le programme par défaut choisit la même moyenne mobile pour lisser chaque série mensuelle mais on a ici des éléments permettant de choisir une moyenne mobile pour chaque mois.
- Le calcul des RSM n'est pas aussi simple et une correction est apportée pour chaque mois au calcul des \bar{S}_j et \bar{I}_j . Ces quantités sont multipliées respectivement par des paramètres CS_j et FIS_j dont la valeur dépend du nombre d'années disponibles pour chaque mois : le calcul théorique et la justification de ces constantes se trouvent dans Lothian [47]. Les valeurs de ces constantes sont données dans le tableau 4.112 en fonction du nombre d'années nbans disponibles dans chaque colonne $(nbans = n_j)$ pour la colonne j).

Exemple

A partir du tableau D9bis, nous allons détailler le calcul pour le mois d'avril par exemple. La composante saisonnier-irrégulier pour ce mois est celle de la colonne 1 du tableau 4.113.

La moyenne des 3 premières années est (101.783+101.265+101.147)/3=101.398. Celle des 3 dernières années est (102.066+101.549+101.774)/3=101.796. La série à traiter est donc celle de la colonne 2 du tableau 4.113. En lissant par une moyenne mobile d'ordre 7, on a, par exemple pour avril 1986 :

$$AVR86 = (101.398 + 101.398 + 101.398 + 101.783 + 101.265 + 101.147 + 101.542)/7$$

= 101.419.

Ces calculs conduisent à l'estimation des coefficients saisonniers du tableau D9A1. En enlevant cette estimation du tableau D9bis, on obtient l'estimation de la composante

Année	Colonne 1	Colonne 2	MM7
		101.398	
		101.398	
1985		101.398	
1986	101.783	101.783	101.419
1987	101.265	101.265	101.425
1988	101.147	101.147	101.554
1989	101.542	101.542	101.650
1990	101.443	101.443	101.616
1991	102.300	102.300	101.689
1992	102.066	102.066	101.782
1993	101.549	101.549	101.818
1994	101.774	101.774	101.868
1995		101.796	
		101.796	
		101.796	

TAB. 4.113 – RSM : Composante saisonnier-irrégulier et coefficients saisonniers du mois d'avril.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.457	108.901	100.621
1986	103.792	99.974	107.693	101.419	97.861	103.335	95.401	67.782	101.919	111.415	108.919	100.691
1987	103.845	99.789	107.649	101.425	97.791	103.161	95.511	68.172	101.855	111.552	108.823	100.444
1988	104.029	99.648	107.433	101.554	97.538	103.248	95.636	68.579	101.763	111.569	108.760	100.308
1989	104.081	99.544	107.282	101.650	97.451	103.068	95.683	69.076	101.838	111.742	108.461	100.247
1990	103.867	99.394	107.367	101.616	97.549	102.988	95.773	69.580	101.796	111.541	108.267	100.239
1991	104.147	99.130	106.974	101.689	97.565	103.054	95.908	70.107	101.719	111.465	107.953	100.250
1992	104.251	98.882	106.826	101.782	97.461	102.945	96.155	70.538	101.672	111.441	107.973	99.999
1993	104.207	98.672	106.736	101.818	97.713	102.658	96.273	70.924	101.684	111.448	107.686	99.909
1994	104.210	98.635	106.628	101.868	97.763	102.756	96.293	71.024	101.724	111.276	107.513	100.137
1995	104.083	98.555	106.692									

TAB. 4.114 – D9A1 : Coefficients saisonniers.

irrégulière du tableau D9A2. Par exemple :

$$AVR86 = 100 \times 101.783/101.419 = 100.359.$$

Colonne par colonne, on calcule ensuite les variations annuelles moyennes de l'irrégulier et de la composante saisonnière selon les formules (4.5) et (4.6) correspondant au schéma multiplicatif. Les accroissements absolus annuels, en pourcentages, dans les composantes saisonnière et irrégulière sont dans les tableaux D9A3 et D9A4. Par exemple, la valeur pour avril 1988 du tableau D9A3 est :

$$AVR88 = 100 \times |101.554 - 101.425| / 101.425$$

= 0.127,

Et la valeur pour avril 1988 du tableau D9A4 est :

$$AVR88 = 100 \times |99.599 - 99.842|/99.842$$

= 0.243.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										99.834	100.871	99.261
1986	100.703	99.711	99.162	100.359	99.551	100.141	100.458	99.961	99.581	100.746	99.614	99.403
1987	99.281	100.711	100.989	99.842	100.465	99.391	100.263	98.557	100.381	99.402	100.368	100.753
1988	99.448	100.122	100.304	99.599	101.221	100.106	98.883	99.289	100.357	99.840	98.534	101.699
1989	100.303	100.367	100.038	99.895	98.750	101.490	99.779	99.029	99.873	99.496	100.788	100.631
1990	100.187	99.296	100.073	99.830	100.097	98.949	100.404	101.189	99.717	100.792	100.230	98.425
1991	100.803	99.867	99.320	100.601	98.765	100.656	100.369	100.594	99.601	100.111	100.742	99.186
1992	99.808	100.375	99.877	100.279	100.066	98.955	99.549	100.879	100.791	100.931	99.800	99.455
1993	98.868	99.962	100.611	99.736	100.403	100.250	100.202	100.511	99.520	99.459	99.493	100.125
1994	100.809	100.014	99.374	99.907	100.610	100.236	100.428	99.794	99.983	99.167	99.543	101.137
1995	100.097	99.471	100.032									

TAB. 4.115 – D9A2 : Irrégulier.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986										0.0371	0.0165	0.0696
1987	0.0509	0.1844	0.0410	0.0063	0.0713	0.1685	0.1155	0.5752	0.0625	0.1226	0.0884	0.2454
1988	0.1776	0.1413	0.2002	0.1270	0.2588	0.0839	0.1305	0.5963	0.0898	0.0155	0.0572	0.1360
1989	0.0493	0.1049	0.1410	0.0939	0.0889	0.1737	0.0496	0.7249	0.0733	0.1544	0.2748	0.0604
1990	0.2051	0.1508	0.0795	0.0329	0.1004	0.0785	0.0941	0.7302	0.0415	0.1792	0.1790	0.0081
1991	0.2689	0.2658	0.3663	0.0715	0.0167	0.0645	0.1407	0.7575	0.0751	0.0686	0.2904	0.0108
1992	0.0999	0.2502	0.1381	0.0912	0.1072	0.1059	0.2577	0.6148	0.0468	0.0213	0.0186	0.2505
1993	0.0422	0.2124	0.0844	0.0356	0.2585	0.2789	0.1227	0.5473	0.0119	0.0059	0.2659	0.0893
1994	0.0037	0.0369	0.1010	0.0495	0.0517	0.0959	0.0204	0.1411	0.0401	0.1538	0.1605	0.2280
1995	0.1226	0.0809	0.0596									

TAB. 4.116 - D9A3: Taux de croissance absolus annuels des coefficients saisonniers (en %).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986										0.9131	1.2463	0.1430
1987	1.4115	1.0026	1.8419	0.5154	0.9177	0.7482	0.1942	1.4050	0.8034	1.3343	0.7568	1.3578
1988	0.1679	0.5841	0.6776	0.2434	0.7531	0.7193	1.3761	0.7425	0.0241	0.4405	1.8274	0.9392
1989	0.8598	0.2446	0.2659	0.2969	2.4415	1.3817	0.9062	0.2614	0.4821	0.3446	2.2876	1.0502
1990	0.1157	1.0674	0.0357	0.0648	1.3638	2.5036	0.6266	2.1809	0.1564	1.3025	0.5536	2.1928
1991	0.6148	0.5749	0.7530	0.7724	1.3301	1.7250	0.0354	0.5876	0.1158	0.6751	0.5114	0.7735
1992	0.9865	0.5093	0.5606	0.3196	1.3171	1.6898	0.8170	0.2832	1.1944	0.8188	0.9352	0.2711
1993	0.9421	0.4118	0.7348	0.5417	0.3364	1.3088	0.6563	0.3646	1.2607	1.4584	0.3080	0.6735
1994	1.9633	0.0523	1.2294	0.1714	0.2061	0.0140	0.2256	0.7141	0.4654	0.2936	0.0508	1.0115
1995	0.7066	0.5430	0.6625									

TAB. 4.117-D9A4 : Taux de croissance absolus annuels de l'irrégulier (en %).

	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
I	0.865	0.556	0.753	0.367	1.086	1.264	0.606	0.819	0.564	0.844	0.944	0.937
S	0.129	0.181	0.153	0.074	0.138	0.152	0.135	0.679	0.064	0.096	0.171	0.139
RSM	6.697	3.075	4.911	4.979	7.858	8.310	4.491	1.206	8.826	8.790	5.518	6.739

TAB. 4.118 – D9A : Variations annuelles des composantes irrégulières et saisonnières et rapports de saisonnalité mobile.

Pour calculer le ratio de saisonnalité mobile du mois d'avril par exemple, on a, avec 8 années d'observations :

annees d'observations :
$$CS_{AVR} = \frac{8 \times 1.732051}{8.485281 + (8 - 6) \times 1.732051} = 1.1596$$

$$FSI_{AVR} = \frac{8 \times 12.247449}{73.239334 + (8 - 6) \times 12.247449} = 1.0025$$

$$\bar{I}_{AVR} = \left(\frac{0.5154 + 0.2434 + 0.2969 + 0.0648}{8} + \frac{0.7724 + 0.3196 + 0.5417 + 0.1714}{8}\right) \times FSI_{AVR}$$

$$= 0.3657 \times 1.0025 = 0.3666$$

$$\bar{S}_{AVR} = \left(\frac{0.0063 + 0.1270 + 0.0939 + 0.0329}{8} + \frac{0.0715 + 0.0912 + 0.0356 + 0.0495}{8}\right) \times CS_{AVR}$$

$$= 0.0635 \times 1.1596 = 0.0736$$

d'où finalement:

$$RSM_{AVR} = 0.3666/0.0736 = 4.98.$$

Les résultats de ces calculs figurent dans le tableau D9A.

4.3.10 Tableau D10: Estimation finale des coefficients saisonniers

Description et mode de calcul

Cette estimation finale se fait en quatre étapes.

Étape 1 : calcul du ratio de saisonnalité mobile global.

Pour calculer un ratio de saisonnalité mobile global, le programme utilise l'ensemble des données disponibles jusqu'à la dernière année complète, ceci pour éviter en cours d'année, de devoir changer le filtre utilisé. Il calcule, pour chaque mois, les valeurs moyennes des évolutions des composantes saisonnière et irrégulière selon la méthode décrite précédemment au tableau D9A. Le ratio global s'en déduit en pondé-

FIG. 4.11 – Critères de sélection de la moyenne mobile saisonnière.

rant ces quantités par le nombre de mois de chaque type :

$$RSM = \frac{\sum_{j} n_{j} \bar{I}_{j}}{\sum_{j} n_{j} \bar{S}_{j}}.$$

Étape 2 : choix d'une moyenne mobile et estimation de la composante saisonnière.

Selon la valeur du ratio, le programme va sélectionner automatiquement la moyenne mobile qui sera appliquée, colonne par colonne (i.e. mois par mois) à la composante saisonnier-irrégulier du tableau D8 modifiée, pour les points atypiques, par les valeurs du tableau D9.

Le choix de la moyenne mobile repose, dans X-11-ARIMA, sur la stratégie suivante (voir figure 4.11) :

- Si le ratio de saisonnalité mobile global tombe dans la zone A (RSM < 2.5), une moyenne mobile 3×3 est utilisée; s'il est dans la zone C (3.5 < RSM < 5.5), une moyenne mobile 3×5 est utilisée; s'il est dans la zone E (RSM > 6.5), une moyenne mobile 3×9 est utilisée.
- Si le ratio RSM tombe dans la zone B ou D, on enlève une année d'observations et on recalcule le RSM. S'il retombe dans les zones B ou D, on recommence et ainsi de suite, en enlevant au maximum 5 années d'observations. Si cela ne marche pas, c'est-à-dire que l'on tombe encore dans les zones B ou D, on choisit une 3 x 5

La moyenne mobile symétrique choisie porte selon le cas sur $5 (3 \times 3)$, $7 (3 \times 5)$ ou $11 (3 \times 9)$ termes et ne permet donc pas d'estimer les valeurs des coefficients saisonniers des 2 (ou 3 ou 5) premières et 2 (ou 3 ou 5) dernières années. Celles-ci sont alors calculées grâce à des moyennes mobiles asymétriques *ad hoc*. On obtient alors une série de coefficients provisoires *fspro*.

Étape 3 : normalisation des coefficients saisonniers.

Ces coefficients saisonniers provisoires sont normalisés à l'aide d'une moyenne mobile centrée sur 12 termes.

Étape 4 : prévision des coefficients saisonniers.

Une prévision sur un an des coefficients saisonniers est alors calculée par simple projection linéaire à partir des deux derniers coefficients saisonniers d'un mois donné.

	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
I	0.883	0.544	0.765	0.367	1.086	1.264	0.606	0.819	0.564	0.844	0.944	0.937
S	0.128	0.168	0.168	0.074	0.138	0.152	0.135	0.679	0.064	0.096	0.171	0.139
RSM	6.894	3.248	4.549	4.979	7.858	8.310	4.491	1.206	8.826	8.790	5.518	6.739

TAB. 4.119 – D10msr : Variations annuelles des composantes irrégulières et saisonnières et rapports de saisonnalité mobile.

Si n_j est la dernière année disponible pour un mois j donné, on a :

$$S_{n_j+1,j} = S_{n_j,j} + (S_{n_j,j} - S_{n_j-1,j})/2$$

= $(3S_{n_j,j} - S_{n_j-1,j})/2$.

Ces prévisions sont éditées dans le tableau D10A.

Remarques

- Un problème se pose dans l'application de ces moyennes mobiles asymétriques quand on ne dispose pas d'assez d'années d'observations. Supposons que nous n'ayons, pour un mois donné, que 5 années d'observations pour une moyenne mobile 3 × 5. Le point central ne peut être estimé puisqu'on ne dispose ni de 3 points dans le futur, ni de 3 points dans le passé, ce qui serait nécessaire pour pouvoir utiliser une moyenne mobile asymétrique. Dans ce cas, il sera estimé par la moyenne simple des 5 observations disponibles. A chaque fois qu'on rencontre un tel problème d'estimation, avec par exemple une 3 × 9 et moins de 11 années d'observations, les valeurs pour les points concernés sont estimées par la moyenne simple des observations disponibles.
- La procédure décrite ci-dessus est celle utilisée par défaut, mais il est toujours possible de fixer soi-même la moyenne mobile à utiliser pour chaque mois. Dans ce cas, X-11-ARIMA permet de choisir entre une moyenne mobile simple sur 3 termes, une 3 × 3, une 3 × 5, une 3 × 9 et une saisonnalité stable (une moyenne simple). X-12-ARIMA propose en plus une 3 × 15.

Exemple

L'analogue du tableau D9A calculé sur les données disponibles jusqu'en décembre 1994 (la dernière année complète disponible), est le tableau D10msr.

Comme on peut le constater, seules les valeurs des 3 premiers mois, ceux dont les dernières valeurs ont été exclues, sont modifiées. Le ratio global s'en déduit aisément :

$$\sum_{j} n_{j} \bar{I}_{j} = 8(0.883 + 0.544 + 0.765 + 0.367 + 1.086 + 1.264) + 8(0.606 + 0.819 + 0.564) + 9(0.844 + 0.944 + 0.937)$$

$$= 79.709,$$

$$\sum_{j} n_{j} \bar{S}_{i} = 8(0.128 + 0.168 + 0.168 + 0.074 + 0.138 + 0.152) + 8(0.135 + 0.679 + 0.064) + 9(0.096 + 0.171 + 0.139)$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.456	108.887	100.633
1986	103.797	99.973	107.690	101.420	97.847	103.346	95.401	67.787	101.917	111.434	108.827	100.720
1987	103.845	99.885	107.655	101.428	97.751	103.314	95.456	67.994	101.879	111.489	108.679	100.725
1988	103.924	99.750	107.584	101.470	97.585	103.299	95.538	68.384	101.829	111.504	108.650	100.606
1989	104.031	99.537	107.399	101.558	97.465	103.165	95.614	69.003	101.807	111.643	108.480	100.364
1990	104.097	99.332	107.204	101.673	97.305	103.108	95.766	69.666	101.749	111.669	108.398	100.072
1991	104.176	99.089	106.953	101.769	97.357	102.927	95.972	70.308	101.702	111.684	108.145	99.850
1992	104.199	98.886	106.790	101.843	97.453	102.855	96.189	70.723	101.651	111.518	107.934	99.838
1993	104.191	98.734	106.681	101.865	97.673	102.756	96.282	70.954	101.686	111.371	107.652	99.998
1994	104.141	98.626	106.662	101.872	97.751	102.764	96.292	71.020	101.721	111.279	107.524	100.131
1995	104.082	98.561	106.692									

TAB. 4.120 – D10bis: Coefficients saisonniers provisoires.

$$RSM = 17.302,$$

$$RSM = \frac{\sum_{j} n_{j} \bar{I}_{j}}{\sum_{j} n_{j} \bar{S}_{j}}$$

$$= \frac{79.709}{17.302}$$

$$= 4.607.$$

Le ratio de saisonnalité mobile global calculé est de 4.607. Il est donc dans la zone C et on va choisir une moyenne mobile 3×5 (voir tableau 3.14) pour lisser la composante saisonnier-irrégulier corrigée du tableau D9bis (paragraphe 4.3.8) et obtenir ainsi le tableau D10bis. Le facteur saisonnier du mois d'avril 1989 sera donc estimé par :

$$AVR89 = \frac{101.783 + 101.265 \times 2 + 101.147 \times 3 + 101.542 \times 3}{15} + \frac{101.443 \times 3 + 102.300 \times 2 + 102.066}{15} + \frac{101.558}{15}$$

Pour le début de la série (années 1986 à 1988) et la fin de la série (années 1992 à 1994), on utilise des moyennes asymétriques prédéfinies, par exemple :

$$AVR87 = \frac{101.783 \times 15 + 101.265 \times 15 + 101.147 \times 15}{60} + \frac{101.542 \times 11 + 101.443 \times 4}{60} = 101.428$$

(un point dans le passé, le point courant et trois points dans le futur).

Ces coefficients sont alors normalisés en appliquant une moyenne mobile centrée d'ordre 12 qui conduit au tableau D10ter. On a par exemple :

$$AVR86 = \frac{111.456}{24} + \frac{108.887 + 100.633 + 103.797 + 99.973 + 107.690}{120} + \frac{110.436}{120} +$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.012	100.012	100.012
1986	100.012	100.012	100.012	100.012	100.009	100.010	100.015	100.014	100.009	100.007	100.004	99.998
1987	99.999	100.010	100.017	100.018	100.014	100.008	100.012	100.009	100.001	100.000	99.994	99.987
1988	99.990	100.009	100.023	100.022	100.021	100.015	100.015	100.010	99.994	99.990	99.988	99.978
1989	99.975	100.004	100.029	100.034	100.033	100.016	100.008	100.003	99.986	99.983	99.981	99.972
1990	99.976	100.009	100.035	100.033	100.031	100.015	100.006	100.000	99.979	99.973	99.979	99.973
1991	99.974	100.010	100.035	100.033	100.023	100.004	99.995	99.988	99.973	99.969	99.976	99.977
1992	99.983	100.009	100.025	100.016	100.000	99.991	99.990	99.983	99.972	99.968	99.979	99.984
1993	99.983	99.997	100.008	100.003	99.985	99.980	99.985	99.978	99.973	99.972	99.976	99.980
1994	99.980	99.984	99.988	99.985	99.976	99.976	99.979	99.974	99.973	99.973	99.973	99.973
1995	99.973	99.973	99.973									

TAB. 4.121 – D10ter: moyenne mobile centrée sur 12 termes.

$$\frac{101.420 + 97.847 + 103.346 + 95.401 + 67.787 + 101.917}{12} + \frac{111.434}{24}$$
= 100.012.

Il reste maintenant à corriger le tableau D10bis par le tableau D10ter pour obtenir l'estimation finale des coefficients saisonniers du tableau D10.

Par exemple : $AVR86 = 100 \times 101.420/100.012 = 101.408$.

Les coefficients saisonniers finaux de chaque mois sont représentés dans la figure 4.12 par un trait plein passant au milieu des valeurs mensuelles de la composante saisonnier-irrégulier. Dans ces graphiques, les valeurs atypiques de la composante saisonnier-irrégulier sont représentées par des triangles vides. La composante saisonnière finale est représentée dans le troisème graphique de la figure 4.1 au début du chapitre 4. On peut enfin prévoir le facteur saisonnier du mois d'avril 1995 de la façon suivante :

$$AVR95 = AVR94 + \frac{AVR94 - AVR93}{2}$$
$$= \frac{3 \times 101.887 - 101.862}{2}$$
$$= 101.899.$$

Ce qui conduit au tableau D10A.

4.3.11 Tableau D11 : Série corrigée des variations saisonnières et des effets de jours ouvrables finale

Description et mode de calcul

La série de départ ou, si une correction pour jours ouvrables a été demandée, la série du tableau C19 est corrigée des coefficients saisonniers du tableau D10, pour obtenir la série désaisonnalisée finale (tableau D11) : D11 = C19 op D10.

FIG. 4.12 – Graphiques mensuels de la composante saisonnier-irrégulier non modifiée du tableau D8 (triangles pleins), des valeurs de remplacement du tableau D9 (triangles vides), et composante saisonnière finale du tableau D10 (trait plein), de janvier (en haut à gauche) à décembre (en bas à droite). Notez les variations de l'échelle des ordonnées pour les différents graphiques.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										111.443	108.874	100.621
1986	103.785	99.961	107.677	101.408	97.839	103.336	95.387	67.778	101.908	111.426	108.823	100.721
1987	103.846	99.874	107.636	101.410	97.738	103.306	95.445	67.987	101.878	111.490	108.686	100.739
1988	103.935	99.741	107.558	101.448	97.564	103.283	95.524	68.377	101.836	111.516	108.662	100.628
1989	104.057	99.532	107.368	101.524	97.433	103.149	95.606	69.001	101.821	111.663	108.501	100.393
1990	104.122	99.323	107.167	101.639	97.275	103.092	95.760	69.666	101.770	111.700	108.421	100.099
1991	104.202	99.080	106.916	101.735	97.334	102.923	95.976	70.317	101.730	111.719	108.171	99.873
1992	104.217	98.876	106.764	101.827	97.454	102.865	96.199	70.735	101.679	111.554	107.957	99.854
1993	104.208	98.737	106.672	101.862	97.688	102.776	96.297	70.969	101.714	111.402	107.678	100.018
1994	104.161	98.642	106.675	101.887	97.775	102.789	96.312	71.038	101.749	111.309	107.553	100.158
1995	104.111	98.588	106.721									

TAB. 4.122-D10: Coefficients saisonniers finaux. Une moyenne mobile 3×5 a été choisie ; le ratio I/S est égal à 4.949.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1995				101.899	97.818	102.795	96.320	71.073	101.766	111.262	107.490	100.229
1996	104.085	98.561	106.743									

TAB. 4.123 – D10A: Prévision des coefficients saisonniers sur 12 mois.

Un test F de Fisher, identique à ceux utilisés dans les tableaux B3 et D8, est effectué pour vérifier qu'il n'existe pas de saisonnalité résiduelle dans la série D11. Pour cela, la tendance est d'abord enlevée par différenciation : des différences premières $(X_t - X_{t-1})$ sont utilisées pour une série trimestrielle et des différences troisièmes $(X_t - X_{t-3})$ pour une série mensuelle. Le test est alors fait sur la série différenciée complète mais aussi sur les trois dernières années, soit sur les 36 dernières observations pour une série mensuelle et sur les 12 dernières pour une série trimestrielle.

Seuls les statistiques de Fisher et le résultat du test aux niveaux de 1% et 5% sont édités. Un message prévient aussi de la difficulté d'interpréter ce test lorsque la série évolue fortement dans les dernières années d'observation.

Exemple

La valeur pour avril 1986 est:

$$AVR86 = 100 \times 108.326/101.408 = 106.822.$$

La série désaisonnalisée finale est représentée, avec la série originale, sur le graphique du haut de la figure 4.1.

La série est alors différenciée sur 3 mois pour enlever la tendance avant d'effectuer le test de saisonnalité résiduelle. Ainsi, on a :

$$AVR86 = 106.822 - 101.034 = 5.788.$$

La série ainsi différenciée est dans le tableau 4.125.

Les résultats des tests de Fisher sont alors édités (tableau 4.126).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	106.822	100.020	101.281	102.274	99.415	102.091	103.374	102.421	102.275
1987	96.935	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	108.373	110.433	114.168
1989	113.423	113.734	110.122	116.272	111.904	114.971	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	118.537	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	111.515
1993	111.902	115.569	113.496	110.520	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.718	116.020	116.603	118.619	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

TAB. 4.124 – D11 : Série corrigée des variations saisonnières finale (et éventuellement des effets de Pâques et de jours ouvrables).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986	-0.553	-2.616	-1.176	5.788	0.400	2.372	-4.548	-0.604	0.810	1.100	3.005	0.184
1987	-6.440	1.832	2.726	7.154	0.682	-1.324	0.827	-1.355	1.875	0.107	2.931	1.293
1988	1.253	0.776	1.140	1.745	2.911	1.467	0.634	-0.527	1.483	-0.281	0.763	3.233
1989	5.050	3.300	-4.046	2.849	-1.830	4.849	-3.052	0.691	-1.274	0.366	2.585	1.436
1990	1.173	-0.901	0.388	0.525	2.004	-0.669	1.589	1.334	1.038	-0.271	-2.053	-2.427
1991	-0.820	-0.699	0.976	0.286	-0.364	2.252	2.468	1.733	-1.212	-2.574	0.722	0.590
1992	0.603	0.163	0.198	-0.419	-1.566	-2.147	-1.523	0.377	1.951	1.202	-1.784	-4.556
1993	-3.925	1.423	1.981	-1.381	-2.349	-0.781	1.919	-0.800	-1.477	-1.042	-0.646	1.665
1994	3.054	2.270	0.837	0.368	2.673	2.279	1.785	1.901	0.824	-0.201	-1.159	3.160
1995	2.924	1.559	0.003									

TAB. 4.125 – Série désaisonnalisée différenciée (sur 3 mois).

PAS DE SAISONNALITÉ RÉSIDUELLE DÉTECTÉE DANS LA SÉRIE COMPLÈTE AU $\,$ F=0.52 SEUIL DE 1%

PAS DE SAISONNALITÉ RÉSIDUELLE DÉTECTÉE DANS LES 3 DERNIÈRES ANNÉES $\,$ F=0.38 AU SEUIL DE 1%

PAS DE SAISONNALITÉ RÉSIDUELLE DÉTECTÉE DANS LES 3 DERNIÈRES ANNÉES AU SEUIL DE 5%

REMARQUE : LES RÉSULTATS DE CE TEST SUR LES 3 DERNIÈRES ANNÉES PEUVENT ÊTRE INVALIDÉS SI LA SÉRIE ÉVOLUE FORTEMENT.

TAB. 4.126 – Test sur la présence de saisonnalité résiduelle.

4.3.12 Tableau D11A : Série désaisonnalisée finale avec totaux annuels révisés

Description et mode de calcul

L'utilisateur peut demander d'ajuster la série désaisonnalisée du tableau D11, de façon à ce que les totaux annuels de la série brute (éventuellement ajustée *a priori*) et de la série ainsi ajustée D11A soient les mêmes. Dans ce cas, les différences annuelles observées entre D11 et A1 sont réparties sur les valeurs de la série désaisonnalisée de telle sorte que les évolutions mensuelles (ou trimestrielles) soient les plus semblables possibles sur les séries D11 et D11A.

On trouvera tous les détails théoriques de l'ajustement dans Cholette [11] ou dans Cholette et Dagum [13].

Supposons, pour simplifier, que nos séries - originale x_t , désaisonnalisée a_t , et ajustée sur les sommes annuelles \tilde{a}_t - comportent n=Nk points répartis sur N années complètes de k périodes (k=12 mois ou k=4 trimestres). La série inconnue \tilde{a}_t doit évoluer le plus parallèlement possible à la série connue a_t , sous la contrainte que ses sommes annuelles soient égales à celles de la série x_t .

Si ∇ désigne l'opérateur différence première²⁰, le problème est de minimiser, par rapport à \tilde{a} , la quantité $\sum_{t=2}^{n} \left[\nabla (\tilde{a}_t - a_t)\right]^2$ sous les contraintes $\sum_{j=1}^{k} \tilde{a}_{ij} = x_{i.}, i = 1, \ldots N$, où $\tilde{a}_{i1}, \ldots, \tilde{a}_{ik}$ sont les k valeurs inconnues ajustées dans l'année i, et x_i , est le total pour l'année i des observations originales. On définit les matrices suivantes :

$$\Delta_{(n-1)\times n} \ = \ egin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \ 0 & -1 & 1 & \dots & 0 & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & \dots & 1 & 0 \ 0 & 0 & 0 & \dots & -1 & 1 \ \end{bmatrix},$$
 $\Upsilon_{n \times k} \ = \ egin{bmatrix} 1_k & 0 & \dots & 0 & 0 \ 0 & 1_k & \dots & 0 & 0 \ 0 & \dots & \dots & \dots & \dots \ 0 & 0 & \dots & 1_k & 0 \ 0 & 0 & \dots & 0 & 1_k \ \end{pmatrix},$

où 1_k est un vecteur de 1, de taille $k \times 1$. Le problème est alors de minimiser, par rapport à \tilde{A} , la quantité $(\tilde{A}-A)'\Delta'\Delta(\tilde{A}-A)=(\tilde{A}-A)'\Gamma(\tilde{A}-A)$ sous les contraintes $X-\Upsilon'\tilde{A}=0$. En faisant intervenir un vecteur Λ de N multiplicateurs de Lagrange, la solution s'écrit :

$$\begin{bmatrix} \tilde{A} \\ \Lambda \end{bmatrix} = \begin{bmatrix} \Gamma & \Upsilon \\ \Upsilon' & 0 \end{bmatrix}^{-1} \begin{bmatrix} \Gamma & 0 \\ \Upsilon' & I_N \end{bmatrix} \begin{bmatrix} A \\ X - \Upsilon'A \end{bmatrix}$$
$$= W \begin{bmatrix} A \\ X - \Upsilon'A \end{bmatrix}$$

 $^{^{20}\}nabla x_t = x_t - x_{t-1}$

$$= W \begin{bmatrix} A \\ R \end{bmatrix}$$

où I_N désigne la matrice identité d'ordre N. Comme on peut le voir, la matrice W, de taille $(n+N)\times (n+N)$, ne dépend pas des données, X et A, et on peut montrer qu'elle a toujours la forme

$$W = \left[\begin{array}{cc} I_n & W_{\tilde{A}} \\ 0 & W_{\Lambda} \end{array} \right]$$

où $W_{\tilde{A}}$ est une matrice de taille $n \times N$.

On a donc finalement:

$$\tilde{a}_t = a_t + \sum_{i=1}^{N} w_{\tilde{A}_{(t,i)}} r_i, (t = 1, \dots, n).$$

En d'autres termes, le coefficient correcteur apporté à la série a_t (notre série D11) est une moyenne pondérée des différences entre les totaux annuels des séries x_t (notre série A1) et a_t sur les N années.

Remarques

- Le calcul ci-dessus est rendu un peu complexe par le fait que la matrice Γ = Δ'Δ n'est pas inversible. On trouve une solution, basée sur une régression par moindres carrés généralisés, dans Cholette et Dagum [13] et dans Bournay et Laroque [7].
- Les coefficients correcteurs dépendant de toutes les différences de totaux annuels observées, cela signifie que toute nouvelle année complète de données entraîne une révision de toute la série D11A. Cela n'est pas souhaitable et c'est pourquoi les programmes X-11-ARIMA et X-12-ARIMA utilisent une matrice de poids $W_{\tilde{A}}$ calculée dans le cas de 5 années d'observations : matrice de taille 60×5 dans le cas mensuel et 20×5 dans le cas trimestriel. C'est cette matrice qui est utilisée quelle que soit la longueur de la série pour calculer la série ajustée D11A. Dans ce cas (voir tableau 4.127), la première année complète de données est associée aux 12 (pour le cas mensuel) premières lignes de la matrice $W_{\tilde{A}}$, la seconde année est associée avec les 12 lignes suivantes. Les deux dernières années complètes sont associées de même aux 24 dernières lignes de la matrice. Toutes les autres années, de la troisième à l'antépénultième, sont associées aux 12 lignes centrales de la matrice $W_{\tilde{A}}$.
- Si la dernière année n'est pas complète, les estimations du tableau D11A pour les mois renseignés se font en appliquant le dernier facteur correctif calculé (c'est-à-dire celui du mois de décembre de la dernière année complète).
- X-12-ARIMA et X-11-ARIMA n'envisagent que le cas d'un ajustement additif pas nécessairement compatible avec un schéma de composition multiplicatif. Ainsi, pour ce type de schéma, il peut arriver que le tableau D11A présente des valeurs négatives. Cholette et Dagum [13] donnent la solution à appliquer dans le cas multiplicatif, solution non disponible dans les versions actuelles des logiciels.

Dan		1	2	3	4	5
Fév 0.10446930 -0.02672983 0.0076804 -0.00167783 0.00033277 Aur 0.09984099 -0.0287658 0.00552030 -0.00147622 0.00023237 Mai 0.09613833 -0.01619398 0.00428210 -0.00111408 0.00022096 Juii 0.09515002 -0.01034074 0.00273435 -0.000111408 0.00024150 Août 0.07947641 0.00487771 -0.00128979 0.00033557 -0.0006655 Sep 0.0707110 0.01424290 -0.00376618 0.0007985 -0.000133557 -0.0006655 Cet 0.06374014 0.02477874 -0.0065213 0.00174047 -0.0033618 Déc 0.04430122 0.04936238 -0.010676725 0.00436236 -0.003339593 -0.00067333 Jan 0.03319327 0.06341017 -0.0166725 0.00436236 -0.00078635 Mar 0.01448931 0.03648281 -0.01892111 0.00436236 -0.00087933 Mar 0.01448931 0.084282817 -0.01892111 0.00436236 -0.009979046						
Mar Var 0.10261797 -0.02438853 0.0061303 -0.00143622 0.00023205 Avr 0.099613833 -0.01619398 0.00428210 -0.00111408 0.0002208485 Maii 0.09613833 -0.01619398 0.00422810 -0.00111408 0.0002210 Juii 0.0855505 -0.00331684 0.00087706 -0.00022181 0.0004126 Août 0.07947641 0.00487771 -0.0012879 0.00033557 -0.00006655 Sep 0.072707110 0.01424290 -0.00376618 0.00097985 -0.00019418 Nov 0.05343151 0.03648524 -0.00655213 0.00079760 -0.000376618 Nov 0.04430122 0.04936238 -0.01305266 0.00339593 -0.0006753 Jan 0.03319327 0.06341017 -0.01676725 0.00339593 -0.00076353 Mar 0.01448931 0.08428817 -0.01892111 0.0046223 -0.0007704 -0.00100696 Avr 0.00689330 0.09111838 -0.01892111 0.0042250 -0.0005006						
Avr 0.09984099 -0.020876588 0.00525030 -0.00114062 0.00022096 Mai 0.09613833 -0.01619398 0.00428210 -0.00111408 0.00022096 Juin 0.09515002 -0.00134074 0.00273435 -0.00071140 0.00014110 Août 0.07947641 0.0048771 -0.00128799 -0.0033557 -0.0006655 Sep 0.07207110 0.01424290 -0.00376618 0.0007985 -0.00019434 Oct 0.06374014 0.02477874 -0.00655213 0.00170467 -0.0003810 Oct 0.04430122 0.04936238 -0.01305266 0.00330993 -0.00047983 Déc 0.04430122 0.04936238 -0.01305266 0.00339593 -0.00067353 Jan 0.03319327 0.06341017 -0.01676725 0.00436236 -0.00087635 Mar 0.01448931 0.08428817 -0.01951423 0.0057704 -0.00097704 Mar 0.01478676 0.09554273 -0.01185462 0.00485530 -0.00055453 Juin						
Mai 0.09613833 -0.01619398 0.00428210 -0.0071140 0.0002401 Juii 0.08595605 -0.00331684 -0.000273435 -0.000722818 0.00004526 Août 0.07947641 0.00487771 -0.00128979 0.00033557 -0.000064526 Sep 0.07207110 0.01424290 -0.00376618 0.00097885 -0.0019434 Oct 0.06374014 0.02477874 -0.00655213 0.00170467 -0.0003885 Oct 0.04430122 0.04936238 -0.019676725 0.00251003 -0.0004785 Fév 0.02325596 0.07505210 -0.01892111 0.00436236 -0.0006753 Mar 0.00689330 0.07505210 -0.0189211 0.0046749 -0.00097635 Mai 0.0046795 0.09556127 -0.01192919 0.00310363 -0.0006738 Mai 0.00478676 0.09756121 -0.01192919 0.00310363 -0.0006156 Juin -0.00887082 0.0911338 -0.01676749 -0.0024226 -0.00048605 Sep -0						
Juin 0.09151002 -0.01034074 0.000273435 -0.000022818 0.00004510 Août 0.07947641 0.0048771 -0.00128979 0.00035557 -0.0006655 Sep 0.07207110 0.01424290 -0.00376618 0.00097985 -0.00006655 Sep 0.07207110 0.01424290 -0.0035618 0.00097985 -0.00031810 Oct 0.06374014 0.02477874 -0.00964762 0.0021003 -0.0049783 Déc 0.04430122 0.04936238 -0.01305266 0.0033993 -0.00067353 Jan 0.03319327 0.06341017 -0.01676725 0.00436236 -0.00087353 Mar 0.01448931 0.08428817 -0.01892111 0.00492773 -0.0007635 Avr 0.00478876 0.09554273 -0.01852111 0.00416749 -0.00082763 Avr 0.00478676 0.09575217 -0.01892199 0.00310363 -0.00061556 Juil -0.00478676 0.0975247 -0.0182930 0.09113384 -0.00627938 -0.0016371 -0.0032402 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Juil 0.08595605 -0.00331684 0.00087706 -0.00023818 0.00004526 Août 0.07207110 0.01424290 -0.00376618 0.00079785 -0.00019434 Oct 0.06374014 0.02477874 -0.00655213 0.00170467 -0.00033810 Nov 0.04430122 0.04936238 -0.0103566 0.00339593 -0.00067353 Jan 0.03319327 0.06341017 -0.01676725 0.00436236 -0.0006753 Jan 0.03319327 0.06341017 -0.01676725 0.00436236 -0.00097635 Mar 0.004689330 0.07505210 -0.01892111 0.00492273 -0.00097635 Mar 0.01448931 0.08428817 -0.01951423 0.00507704 -0.00100690 Mar 0.00689330 0.0951273 -0.0161827 0.00416749 -0.00082656 Juin -0.0087856 0.095756121 -0.01192919 0.00310363 -0.00067033 Août -0.01178422 0.09438060 0.00093117 -0.00252426 0.00000000000000000000000000000000000						
Août 0.07947641 0.00487771 -0.00128979 0.00033557 -0.00016655 Sep 0.07207110 0.01424290 -0.00376618 0.0007985 -0.000193810 Oct 0.06374014 0.02477874 -0.00655213 0.00170467 -0.00033810 Déc 0.04430122 0.04936238 -0.01305266 0.00339593 -0.00067353 Jan 0.03319327 0.06341017 -0.01676725 0.00436236 -0.00097635 Mar 0.01448931 0.08428817 -0.0195111 0.00436236 -0.00097635 Mar 0.01448931 0.08428817 -0.01951423 0.0057704 -0.0010696 Avr 0.00478676 0.09554273 -0.01616727 0.0047674 -0.0002476 Juil -0.00478676 0.09756121 -0.01192919 -0.0013303 -0.00061556 Juil -0.00478676 0.09717384 -0.00627938 -0.0016371 -0.00024226 -0.00044226 -0.00044226 -0.00044226 -0.00044226 -0.00044226 -0.00044226 -0.0017303 -0.00163712						
Sep (0.07207110 (0.01424290 0.00375618) 0.00097985 (0.00031810) 0.000170467 (0.00033810) Oct (0.05448351 (0.03448351 0.03483524 0.00964762 (0.00251003 0.00049783) 0.00348102 (0.00436266 (0.00339593 0.00067353) Jan (0.03319327 (0.06341017 0.011676725 (0.00436236 0.00037553) 0.003319327 (0.06341017 0.01187111 (0.00492273 0.00097635) Mar (0.01448931 (0.08428817 0.01951423 (0.00507704 0.00100966 0.00489330 0.09111838 0.01854662 (0.00482530 0.00095703) 0.000889330 (0.09111838 0.0118462 (0.00482530 0.00095703) Mai (0.0046795 (0.09756121 0.01192919 (0.00310363 0.00061556 0.0097635) 0.001178422 (0.09473860 0.00093117 0.000416749 0.00082656 0.0014748676 (0.09756121 0.01192919 0.00310363 0.00061556 0.001325698 (0.09717384 0.00627938 0.00163371 0.00032402 0.001352698 (0.09818150 0.00970246 0.00252430 0.000032402 0.001352698 (0.09818150 0.00970246 0.00252430 0.0000366 0.00003117 0.000352402 0.001352698 (0.09818150 0.00970246 0.00252430 0.00005066 0.00004805 0.00003137 0.00316468 0.00003436 0.0000346 0.0000346 0.0000346 0.00003436 0.00003436 0.000						
Oct Nov 0.06374014 0.024787874 -0.00655213 0.00170467 -0.00033810 Nov 0.05448351 0.03648524 -0.00964762 0.00251003 -0.00067353 Jan 0.03319327 0.06341017 -0.01676725 0.00436236 -0.00086521 Fév 0.02325596 0.07505210 -0.01892111 0.0042273 -0.00097035 Mar 0.01448931 0.08428817 -0.01951423 0.00507704 -0.00100696 Avr 0.00046795 0.09554273 -0.01892117 -0.0042530 -0.00010696 Avr 0.004478676 0.0975121 -0.0118279 0.00310363 -0.00061556 Juin -0.00478676 0.0975134 -0.00627938 0.00163371 -0.00032402 Sep -0.01178422 0.0975121 -0.0129317 -0.0022426 0.00004805 Sep -0.01352698 0.08157654 0.0203448 -0.00254230 0.0005006 Cct -0.01173136 0.05914904 0.04538072 -0.01180675 0.001614748 Déc <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Nov Déc 0.05448351 0.03648524 -0.00964762 0.00251003 -0.0004783 Déc 0.04430122 0.04936238 -0.01305266 0.00339593 -0.00067353 Fév 0.03319327 0.06341017 -0.01676725 0.00436236 -0.00087635 Mar 0.01448931 0.08428817 -0.01951423 0.00507704 -0.00100696 Avr 0.004795 0.09554273 -0.0161827 0.00416749 -0.0082656 Juii -0.00478676 0.09756121 -0.0118242 0.00310363 -0.00061556 Juii -0.00887082 0.09717384 -0.00627938 0.00163371 -0.00032402 Août -0.01178422 0.09438060 0.00970246 -0.00252430 0.00050066 Cet -0.01409909 0.08157654 0.02003448 -0.00521239 0.00103380 Nov -0.0155055 0.07156572 0.03192723 -0.01805856 0.00234170 Jan -0.00879152 0.04432649 0.0639494 -0.01571303 0.00311645 Fév <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Déc 0.04430122 0.04936238 -0.01305266 0.00339593 -0.0067353 Jan 0.03319327 0.06341017 -0.01676725 0.00436236 -0.00086521 Fév 0.02325596 0.07505210 -0.01892111 0.00492273 -0.00097635 Mar 0.00689330 0.0911838 -0.01854662 0.00482530 -0.00095703 Mai 0.00478676 0.09554273 -0.0161827 0.00416749 -0.0082656 Juin -0.00887082 0.09717384 -0.0067393 0.0013033 -0.0001333 -0.0001333 -0.0001333 -0.0001333 -0.0001333 -0.00033371 -0.00032402 -0.0014805 -0.01178422 0.09438060 0.00097174 -0.000252430 0.00030340 -0.00133371 -0.00030340 -0.00133371 -0.000313371 -0.000252430 0.000050066 -0.01178029 -0.01803805 -0.01180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 -0.0180380 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Fév 0.003319327 0.06341017 0.01676725 0.00436236 0.0008521						
Fév Mar 0.02325596 0.07505210 -0.01892111 0.00492273 -0.00097635 Mar 0.01448931 0.08428817 -0.01951423 0.0050704 -0.00100696 Avr 0.00689330 0.099554273 -0.01601827 0.00416749 -0.0082656 Juin -0.00478676 0.09756121 -0.01192919 0.00130337 -0.00023402 Août -0.01178422 0.09438060 0.00093117 -0.0024226 0.00004805 Sep -0.01352698 0.08187654 0.02003448 -0.0052430 0.0005006 Oct -0.01350055 0.07156572 0.03192723 -0.001803655 0.0016378 Déc -0.01173136 0.05914904 0.04538072 -0.0180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00311645 Fév -0.00616123 0.0316648 0.07290679 -0.01805856 0.00338166 Mar -0.00182930 0.00922326 0.0942333 -0.01805856 0.003311997 Juin <	Всс	0.01130122	0.01730230	0.01303200	0.00337373	0.00007333
Mar 0.01448931 0.08428817 -0.01951423 0.00507704 -0.0100696 Avr 0.00689330 0.09111838 -0.01854662 0.00482530 -0.00095703 Mai 0.00046795 0.09554273 -0.01601827 0.00416749 -0.00082056 Juin -0.00887082 0.09756121 -0.01192919 0.00310363 -0.0061556 Juil -0.00887082 0.09717384 -0.00627938 0.00163371 -0.00032402 Août -0.011409909 0.08157654 0.00203448 -0.00521239 0.00103380 Oct -0.01409909 0.08157654 0.02003448 -0.00521239 0.00103380 Nov -0.01350055 0.07156572 0.03192723 -0.001830655 0.00164748 Déc -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00311645 Fév -0.0016123 0.03106468 0.07290679 -0.018884336 0.003311645 Mai						
Avr 0.00689330 0.09111838 -0.01854662 0.00482530 -0.00095703 Mai 0.004478676 0.09756121 -0.0101827 0.00416749 -0.00082656 Juil -0.00478676 0.0975121 -0.01012919 0.0031033 -0.00024226 Juil -0.00887082 0.09717384 -0.00627938 0.00163371 -0.00024026 Août -0.01148422 0.09438060 0.000970246 -0.00252430 0.00050066 Oct -0.01409909 0.08157654 0.02003448 -0.00521239 0.00103380 Nov -0.01350555 0.07156572 0.03192723 -0.00830655 0.00164748 Déc -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.0603944 -0.01571303 0.00311645 Fév -0.00616123 0.03106468 0.07290679 -0.01808356 0.00338166 Mar -0.00384049 0.01936360 0.08291627 -0.01888336 0.003311997 Juil						
Mai 0.000478676 0.09554273 -0.01601827 0.00416749 -0.0082656 Juin -0.00478676 0.09756121 -0.01192919 0.00310363 -0.00061556 Juin -0.00887082 0.09717384 -0.00627938 0.00163371 -0.0002402 Août -0.01352698 0.08918150 0.00970246 -0.00252430 0.00050066 Oct -0.01409909 0.08157654 0.02003448 -0.00521239 0.0013380 Nov -0.0135055 0.07156572 0.03192723 -0.00830655 0.00164748 Déc -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00311645 Fév -0.00184930 0.00922326 0.09042338 -0.01884336 0.00373731 Avr -0.00182930 0.00922326 0.09942338 -0.01886743 0.0034698 Juil 0.00126443 -0.00637522 0.09793049 -0.0183335 0.0024698 Juil <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Juin -0.00478676 0.09756121 -0.01192919 0.00310363 -0.00061556 Juil -0.00887082 0.09717384 -0.00627938 0.00163371 -0.00024206 0.00004805 Sep -0.01178422 0.09438060 0.00093117 -0.00022426 0.00004805 Sep -0.01352698 0.08918150 0.00970246 -0.00252430 0.00050066 Oct -0.01409909 0.08157654 0.02003448 -0.00521239 0.00103380 Nov -0.01350055 0.07156572 0.03192723 -0.00380555 0.00164748 Déc -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01573033 0.00311645 Fév -0.00616123 0.03106468 0.07290679 -0.01884336 0.003358166 Mar -0.00182930 0.00922326 0.09042338 -0.01805743 0.00331197 Juin 0.00126443 -0.00637522 0.09793049 -0.0183335 0.00931193						
Juil -0.00887082 0.09717384 -0.00627938 0.00163371 -0.00032402 Août -0.01178422 0.09438060 0.00097017 -0.00024226 0.00004805 Sep -0.01352698 0.08918150 0.00970246 -0.00252430 0.00050066 Oct -0.01409909 0.08157654 0.02003448 -0.00521239 0.0013380 Nov -0.01350055 0.07156572 0.03192723 -0.00830655 0.00164748 Déc -0.0173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00311645 Fév -0.00616123 0.03106468 0.07290679 -0.01884336 0.00358316 Mar -0.0084049 0.01936306 0.08291627 -0.01884336 0.00373731 Mai -0.0012766 0.00064366 0.09542812 -0.01573076 0.0358166 Mai -0.00234698 -0.01183335 0.09793049 -0.01183335 0.0073522 0.001637522 0.001637522<						
Août -0.01178422 0.09438060 0.00093117 -0.00024226 0.00000066 Oct -0.01352698 0.08918150 0.00970246 -0.00252430 0.00050066 Oct -0.01409909 0.08157654 0.02003448 -0.00521239 0.0010380 Nov -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00311645 Fév -0.00616123 0.03106468 0.07290679 -0.01805856 0.00358166 Mar -0.00384049 0.01936360 0.08291627 -0.01884336 0.00373731 Avr -0.00182930 0.0092326 0.09942318 -0.01573076 0.00311997 Juii 0.0012766 0.0064366 0.09542812 -0.01573076 0.0033333 -0.0126443 -0.003311997 Juii 0.00234698 -0.01183335 0.09793049 -0.0133335 0.00234698 -0.0131997 Sep 0.0358341 -0.0186743 0.09942182 0.0004366						
Sep Oct -0.01352698 0.08918150 0.00970246 -0.00252430 0.0005066 Oct -0.01409909 0.08157654 0.02003448 -0.0021239 0.00103380 Nov -0.01350055 0.07156572 0.03192723 -0.00830655 0.00164748 Déc -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.0031645 Fév -0.0018123 0.03106468 0.07290679 -0.01805856 0.00358166 Mar -0.00182930 0.0092326 0.0942338 -0.01805856 0.00358341 Juin 0.0012766 0.0064366 0.09542812 -0.01573076 0.00334698 Juil 0.00234698 -0.01183335 0.09793049 -0.016335 0.00234698 Juil 0.00234698 -0.01183335 0.09793049 -0.0043366 -0.004333 0.00232220 -0.0012766 Sep 0.00358341 -0.0186743 0.09942338 0.00922226 -0.00182930						
Oct Nov -0.01409909 0.08157654 0.02003448 -0.00521239 0.00103380 Nov -0.01350055 0.07156572 0.03192723 -0.00830655 0.00164748 Déc -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00358166 Mar -0.00384049 0.01936360 0.08291627 -0.01884336 0.00373731 Mai -0.0012766 0.00064366 0.09542812 -0.0180743 0.003384698 Juin 0.00124643 -0.00637522 0.09793049 -0.0183335 0.00234698 Juil 0.00234698 -0.01183335 0.09793049 -0.01637522 0.0012643 Août 0.00331197 -0.01873076 0.09542812 0.000637522 0.00126466 Sep 0.00358166 -0.01806743 0.0979049 -0.0163752 0.00126436 Nov 0.00358166 -0.01885856 0.07290679 0.03106468 -0.00112766 Sep <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Nov Déc -0.01350055 - 0.07156572 - 0.03192723 - 0.00830655 - 0.00164748 0.00173136 - 0.05914904 - 0.04538072 - 0.01180676 - 0.00234170 Jan Jan -0.00879152 - 0.04432649 - 0.06039494 - 0.01571303 - 0.00311645 Pév -0.00616123 - 0.03106468 - 0.07290679 - 0.01805856 - 0.00358166 0.00384049 - 0.01936360 - 0.08291627 - 0.01884336 - 0.00373731 0.00182930 - 0.00922326 - 0.09042338 - 0.01806743 - 0.00358341 0.00012766 - 0.00064366 - 0.09542812 - 0.01573076 - 0.0311997 0.00112766 - 0.00064366 - 0.09542812 - 0.01573076 - 0.00311997 0.0012766 - 0.00064366 - 0.09542812 - 0.01573076 - 0.00311997 0.0012766 - 0.01573076 - 0.09542812 - 0.00637522 - 0.00126443 0.00311997 - 0.01573076 - 0.09542812 - 0.00637522 - 0.00126443 0.00311997 - 0.01573076 - 0.09542812 - 0.006366 - 0.00012766 0.0031997 - 0.01573076 - 0.09542812 - 0.006366 - 0.0012766 0.00358341 - 0.01806743 - 0.09942338 - 0.00922326 - 0.00182930 0.00358341 - 0.01805856 - 0.07290679 - 0.03106468 - 0.00616123 0.00373731 - 0.01884336 - 0.08291627 - 0.01936361 - 0.00384049 0.00311645 - 0.01571303 - 0.06039494 - 0.04432649 - 0.00879152 0.00311645 - 0.01571303 - 0.06039494 - 0.04432649 - 0.00879152 0.00311645 - 0.01571303 - 0.06039494 - 0.04432649 - 0.00879152 0.0016371 - 0.00830655 - 0.03192723 - 0.07156572 - 0.01350055 - 0.03106468 - 0.00024226 - 0.0093117 - 0.09438060 - 0.01178422 0.0016370 - 0.009478676 - 0.00887082 - 0.0094805 - 0.00024226 - 0.0093117 - 0.09438060 - 0.01178422 0.0004805 - 0.00024226 - 0.0093117 - 0.09438060 - 0.01178422 0.0004565 - 0.00166371 - 0.00667293 - 0.09554273 - 0.004878676 - 0.00068521 - 0.0048653 - 0.0166782 - 0.0055210 -						
Déc -0.01173136 0.05914904 0.04538072 -0.01180676 0.00234170 Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00311645 Fév -0.00616123 0.03106468 0.07290679 -0.01805856 0.00358166 Mar -0.00182930 0.00922326 0.09042338 -0.01806743 0.00358341 Mai -0.0012766 0.00064366 0.09542812 -0.01573076 0.00311997 Juin 0.00234698 -0.01183335 0.09793049 -0.0163522 0.0012766 Juil 0.00234698 -0.01183335 0.09793049 -0.01637522 0.0012766 Sep 0.00358341 -0.01806743 0.09942338 0.00922326 -0.00182930 Oct 0.00358341 -0.0180743 0.0942338 0.00922326 -0.00182930 Oct 0.00311645 -0.01571303 0.06039494 0.04432649 -0.0087152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00						
Jan -0.00879152 0.04432649 0.06039494 -0.01571303 0.00311645 Fév -0.00616123 0.03106468 0.07290679 -0.01805856 0.00358166 Mar -0.00384049 0.01936360 0.08291627 -0.01884336 0.00373731 Avr -0.00182930 0.0092326 0.09042338 -0.01806743 0.00358341 Mai -0.000126443 -0.00637522 0.09793049 -0.01183335 0.00234698 Juil 0.00234698 -0.01183335 0.09793049 -0.00637522 0.00126443 Août 0.00311997 -0.01573076 0.09542812 0.0006366 -0.0012766 Sep 0.00358341 -0.01807373 0.09542812 0.00064366 -0.0012766 Sep 0.0037373 -0.01880748 0.08291627 0.01316468 -0.00182930 Oct 0.0037373 -0.01805856 0.07290679 0.03106468 -0.00182930 Vec 0.00311645 -0.01571303 0.06039494 0.04432649 -0.0087152 Jan 0.						
Fév -0.00616123 0.03106468 0.07290679 -0.01805856 0.00358166 Mar -0.00384049 0.01936360 0.08291627 -0.01884336 0.00373731 Avr -0.00182930 0.00922326 0.09042338 -0.01806743 0.00358341 Mai -0.00012766 0.00064366 0.09542812 -0.01573076 0.00311997 Juin 0.00234698 -0.01183335 0.09793049 -0.01637522 0.00064366 Août 0.00311997 -0.01573076 0.09542812 0.0064366 -0.00012766 Sep 0.00358341 -0.01807376 0.09542812 0.00064366 -0.0012766 Sep 0.00358166 -0.01884336 0.08291627 0.01936361 -0.00384049 Nov 0.00358166 -0.01808856 0.07290679 0.03106468 -0.0061123 Déc 0.00311645 -0.0180856 0.07290679 0.03106468 -0.0087152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.	Dec	-0.011/3130	0.03914904	0.04336072	-0.01180070	0.00234170
Mar -0.00384049 0.01936360 0.08291627 -0.01884336 0.00373731 Avr -0.00182930 0.09022326 0.09042338 -0.01806743 0.00358341 Mai -0.00012766 0.00064366 0.09542812 -0.01573076 0.00311997 Juin 0.00234698 -0.01183335 0.09793049 -0.0183355 0.00234698 Juil 0.00311997 -0.01573076 0.09542812 0.00064366 -0.00012766 Sep 0.0358341 -0.01806743 0.09042338 0.00922326 -0.00182930 Oct 0.00373731 -0.01884336 0.08291627 0.01936648 -0.00182930 Oct 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.0135005 Mar 0.0016378 -0.00522430 0.00970246 0.08918150 -0.0135065 Mai 0.	Jan	-0.00879152	0.04432649	0.06039494	-0.01571303	0.00311645
Avr -0.00182930 0.00922326 0.09042338 -0.01806743 0.00358341 Mai -0.00012766 0.00064366 0.09542812 -0.01573076 0.00311997 Juin 0.00126443 -0.00637522 0.09793049 -0.01183335 0.00234698 Juil 0.00234698 -0.01183335 0.09793049 -0.00637522 0.00126443 Août 0.00311997 -0.01573076 0.09542812 0.00064366 -0.00012766 Sep 0.00358341 -0.01806743 0.09042338 0.00922326 -0.00182930 Oct 0.0033731 -0.01805856 0.07290679 0.03106468 -0.00616123 Déc 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.0135005 Mar 0.0013380 -0.00521239 0.02003448 0.08157654 -0.01499999 Avr <th< td=""><td>Fév</td><td>-0.00616123</td><td>0.03106468</td><td>0.07290679</td><td>-0.01805856</td><td>0.00358166</td></th<>	Fév	-0.00616123	0.03106468	0.07290679	-0.01805856	0.00358166
Mai -0.00012766 0.00064366 0.09542812 -0.01573076 0.00311997 Juin 0.00126443 -0.00637522 0.09793049 -0.01183335 0.00234698 Juil 0.00234698 -0.01183335 0.09793049 -0.00637522 0.00126443 Août 0.00311997 -0.01573076 0.09542812 0.00064366 -0.00182930 Oct 0.00373731 -0.01808743 0.0922322 -0.00182930 Oct 0.00358166 -0.01805856 0.07290679 0.03106468 -0.00616123 Déc 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00103380 -0.00521239 0.02003448 0.08157654 -0.01499909 Avr 0.00050066 -0.00252430 0.0097317 0.09438060 -0.01178422 Juin -0.0004805 <	Mar	-0.00384049	0.01936360	0.08291627	-0.01884336	0.00373731
Juin 0.00126443 -0.00637522 0.00793049 -0.01183335 0.00234698 Juil 0.00234698 -0.01183335 0.00793049 -0.00637522 0.00126443 Août 0.00311997 -0.01573076 0.09542812 0.00064366 -0.00012766 Common 0.00358341 -0.01806743 0.09042338 0.00922326 -0.00182930 Oct 0.00358341 -0.01806743 0.09042338 0.00922326 -0.00182930 Oct 0.00373731 -0.01884336 0.08291627 0.01936361 -0.00384049 Nov 0.00358166 -0.01805856 0.07290679 0.03106468 -0.00616123 Occ 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.0003380 -0.00521239 0.02003448 0.08157654 -0.01409909 Avr 0.00050066 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.0004805 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.0004805 -0.00024226 0.00093117 0.09438060 -0.01178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.00887082 Juil -0.00061556 0.00310363 -0.01192919 0.09756121 -0.00478676 Août -0.00082655 0.00416749 -0.01601827 0.09554273 0.00046795 Sep -0.00095703 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.00100696 0.00507704 -0.01951423 0.08428817 0.01448931 Nov -0.00097635 0.00492273 -0.01892111 0.07505210 0.02325596 Occ -0.000066521 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.0039593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Juil 0.0006456 0.00022818 0.00057706 -0.00331684 0.08428771 0.07947641 Juin 0.0004526 0.00023818 0.0087706 -0.00331864 0.08595605 Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Occ 0.0033877 -0.00167783 0.00644894 -0.0248853 0.0064472 -0.00163889 0.00644894 -0.02467583 0.01646930 -0	Avr	-0.00182930	0.00922326	0.09042338	-0.01806743	0.00358341
Juil 0.00234698 -0.01183335 0.09793049 -0.00637522 0.00126443 Août 0.00311997 -0.01573076 0.09542812 0.00064366 -0.00012766 Sep 0.00358341 -0.01806743 0.09042338 0.00922326 -0.0182930 Oct 0.00373731 -0.01884336 0.08291627 0.01936361 -0.00344049 Nov 0.00358166 -0.01805856 0.07290679 0.03106468 -0.00616123 Déc 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00103380 -0.00521239 0.0200448 0.08157654 -0.01409909 Avr 0.0005066 -0.00252243 0.00970246 0.083918150 -0.01352698 Mai 0.00061556 0.00313033 -0.0192919 0.09756121 -0.00478676 Sep	Mai	-0.00012766	0.00064366			0.00311997
Août 0.00311997 -0.01573076 0.09542812 0.00064366 -0.00012766 Sep 0.00358341 -0.01806743 0.09042338 0.00923236 -0.00182930 Oct 0.00373731 -0.01884336 0.08291627 0.01936361 -0.00384049 Nov 0.00358166 -0.01808856 0.07290679 0.03106468 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00103380 -0.00521239 0.0203448 0.0818150 -0.01350055 Mai 0.00050066 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.0004805 -0.00024226 0.0093117 0.09438060 -0.01178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.00878676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.00447857 Sep <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
Sep Oct 0.00358341 -0.01806743 0.09042338 0.00922326 -0.0182930 Oct 0.00373731 -0.01884336 0.08291627 0.01936361 -0.00384049 Nov 0.00358166 -0.01805856 0.07290679 0.03106468 -0.00616123 Déc 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00103380 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00050066 -0.002521239 0.02003448 0.08157654 -0.01409909 Avr 0.00050066 -0.00252430 0.0097246 0.08918150 -0.01352698 Mai 0.000032402 0.00163371 -0.00627938 0.09717384 -0.00887082 Juin -0.00042656 0.003136363 -0.01192919 0.09756121 -0.00478676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.00478676 Sep						
Oct 0.00373731 -0.01884336 0.08291627 0.01936361 -0.00384049 Nov 0.00358166 -0.01805856 0.07290679 0.03106468 -0.00616123 Déc 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00050066 -0.00252430 0.00970246 0.088157654 -0.01409909 Avr 0.00052402 0.00163371 -0.00627938 0.09717384 -0.0087086 Juil -0.00032402 0.00163371 -0.00627938 0.09717384 -0.00478676 Sep -0.00082656 0.00416749 -0.01601827 0.09554273 0.000478676 Sep -0.00095703 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.00097635 0.00436236 -0.01676725 0.06341017 0.03319327 Jan <						
Nov Déc 0.00358166 -0.01805856 0.07290679 0.03106468 -0.00616123 Déc 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00103330 -0.00521239 0.02003448 0.08157654 -0.01409909 Avr 0.00050066 -0.00252430 0.00093117 0.09438060 -0.01178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.0087082 Juil -0.00082656 0.00416749 -0.01601827 0.09554273 0.00478676 Sep -0.0009703 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.0100696 0.00492273 -0.01854662 0.09111838 0.00489320 Déc -0.00086521 0.00436236 -0.01676725 0.06341017 0.0331932 Jan <						
Déc 0.00311645 -0.01571303 0.06039494 0.04432649 -0.00879152 Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00103380 -0.00521239 0.02003448 0.08157654 -0.01409909 Avr 0.00050066 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.00004805 -0.00024226 0.00093117 0.09438060 -0.0178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.0087676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.00447857 Sep -0.00100696 0.00507704 -0.01951423 0.08428817 0.01488931 Nov -0.0008551 0.00432233 -0.01892111 0.07505210 0.02325596 Déc -0.00067353 0.00339593 -0.01676725 0.06341017 0.03319327 Jan						
Jan 0.00234170 -0.01180676 0.04538072 0.05914904 -0.01173136 Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00103380 -0.00521239 0.02003448 0.08157654 -0.01409909 Avr 0.00050066 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.00004805 -0.00024226 0.00093117 0.09438060 -0.01178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.00887082 Août -0.00082656 0.00310363 -0.01192919 0.09756121 -0.00478676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.0048795 Sep -0.00097635 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.00097635 0.00492273 -0.01892111 0.07505210 0.02325596 Déc -0.00067353 0.00339593 -0.01676725 0.06341017 0.03319327 Jan						
Fév 0.00164748 -0.00830655 0.03192723 0.07156572 -0.01350055 Mar 0.00103380 -0.00521239 0.02003448 0.08157654 -0.01409909 Avr 0.00050066 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.00004805 -0.00042226 0.00093117 0.09438060 -0.01178422 Juil -0.00032402 0.00163371 -0.00627938 0.09717384 -0.0087656 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.0046875 Sep -0.00095703 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.0010696 0.00492273 -0.01892111 0.07505210 0.02325596 Déc -0.0008551 0.004936236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00647620 0.03648524 0.04430122 Fév	Dec	0.00311043	-0.01371303	0.00039494	0.04432049	-0.00679132
Mar 0.00103380 -0.00521239 0.02003448 0.08157654 -0.01409909 Avr 0.00050066 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.00004805 -0.00024226 0.00093117 0.09438060 -0.01178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.00878676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.0004795 Sep -0.00100696 0.0057704 -0.01951423 0.0942817 0.0148931 Nov -0.0008551 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.00049783 0.00251003 -0.0055213 0.02477874 0.053448351 Mar -0.00019434 0.00079855 -0.0033850 -0.00128979 0.00487771 0.0794761	Jan	0.00234170	-0.01180676	0.04538072	0.05914904	-0.01173136
Avr 0.00050066 -0.00252430 0.00970246 0.08918150 -0.01352698 Mai 0.00004805 -0.00024226 0.00093117 0.09438060 -0.01178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.00887082 Juil -0.00061556 0.00310363 -0.01192919 0.09756121 -0.00478676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.0004795 Sep -0.000976373 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.00097635 0.00492273 -0.01892111 0.07505210 0.02325596 Déc -0.00067353 0.00339593 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.0348524 0.05448351 Mar -0.00019434 0.00079785 -0.0033875 -0.003376618 0.01424290 0.07207110	Fév	0.00164748	-0.00830655	0.03192723	0.07156572	-0.01350055
Mai 0.00004805 -0.00024226 0.00093117 0.09438060 -0.01178422 Juin -0.00032402 0.00163371 -0.00627938 0.09717384 -0.00887082 Juil -0.00061556 0.00310363 -0.01192919 0.09756121 -0.00478676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.00046795 Sep -0.00100696 0.00507704 -0.01854662 0.09111838 0.00689330 Oct -0.00100696 0.00507704 -0.01892111 0.07505210 0.02325596 Déc -0.00086521 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.00033810 0.00170467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00376618 0.0142290 0.07207110 Mai	Mar			0.02003448	0.08157654	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Juil -0.00061556 0.00310363 -0.01192919 0.09756121 -0.00478676 Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.00046795 Sep -0.00095703 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.00100696 0.00507704 -0.01951423 0.08428817 0.01448931 Nov -0.00097635 0.00492273 -0.01892111 0.07505210 0.02325596 Déc -0.00085521 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.00019434 0.00170467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00128979 0.00487771 0.07947611 Mai -0.0006655 0.00033557 -0.00128979 0.00487771 0.0794761 Juil <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Août -0.00082656 0.00416749 -0.01601827 0.09554273 0.00046795 Sep -0.00095703 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.00100696 0.00507704 -0.01951423 0.08428817 0.01448931 Nov -0.0097635 0.00492273 -0.01892111 0.075505210 0.02325596 Déc -0.00086521 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.00019434 0.00077467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00128979 0.00487771 0.07947641 Juin 0.00006555 0.00033557 -0.00128979 0.00487771 0.07947641 Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août <						
Sep Oct -0.00095703 0.00482530 -0.01854662 0.09111838 0.00689330 Oct -0.00100696 0.00507704 -0.01951423 0.08428817 0.01448931 Nov -0.00097635 0.00492273 -0.01892111 0.07505210 0.02325596 Déc -0.00086521 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.00033810 0.00170467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00376618 0.01424290 0.07207110 Mai -0.00006655 0.00033157 -0.00128979 0.00487771 0.07947641 Juin 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.000228485 -0.0011408 0.00428210 -0.01619398 0.09613833 Sep						
Oct -0.00100696 0.00507704 -0.01951423 0.08428817 0.01448931 Nov -0.00097635 0.00492273 -0.01892111 0.07505210 0.02325596 Déc -0.00086521 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.00033810 0.00170467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00376618 0.01424290 0.07207110 Mai -0.00005655 0.00033557 -0.00128979 0.00487771 0.07947641 Juin 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.09613833 Sep 0.00028485 -0.00143622 0.00552030 -0.02287658 0.09984099 Oct <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Déc -0.00086521 0.00436236 -0.01676725 0.06341017 0.03319327 Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.0003810 0.00170467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00376618 0.01424290 0.07207110 Mai -0.00006655 0.00033557 -0.00128979 0.00487771 0.07947641 Juin 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.09613833 Sep 0.00028485 -0.00143622 0.00552030 -0.02087658 0.09984099 Oct 0.0003277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183899 0.00706804 -0.02672983 0.10446930						
Jan -0.00067353 0.00339593 -0.01305266 0.04936238 0.04430122 Fév -0.00049783 0.00251003 -0.00964762 0.03648524 0.05448351 Mar -0.00033810 0.00170467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00376618 0.01424290 0.07207110 Mai -0.00006655 0.00033557 -0.00128979 0.00487771 0.07947641 Juin 0.0001410 -0.0022818 0.0087706 -0.0031684 0.08595605 Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.000228485 -0.0011408 0.00428210 -0.01619398 0.09613833 Sep 0.00028485 -0.00143622 0.00552030 -0.0248853 0.10261797 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
Mar Avr -0.00033810 0.00170467 -0.00655213 0.02477874 0.06374014 Avr -0.00019434 0.00097985 -0.00376618 0.01424290 0.07207110 Mai -0.00006655 0.00033557 -0.00128979 0.00487771 0.07947641 Juin 0.00004526 -0.00022818 0.00087706 -0.00331684 0.08595605 Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.099613833 Sep 0.00028485 -0.00143622 0.00552030 -0.02438853 0.09984099 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
Avr -0.00019434 0.00097985 -0.00376618 0.01424290 0.07207110 Mai -0.00006655 0.00033557 -0.00128979 0.00487771 0.07947641 Juin 0.0004526 -0.00022818 0.00087706 -0.00331684 0.08595605 Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.09613833 Sep 0.00023845 -0.00143622 0.00552030 -0.02087658 0.09984099 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
Mai -0.00006655 0.00033557 -0.00128979 0.00487771 0.07947641 Juin 0.00004526 -0.00022818 0.00087706 -0.00331684 0.08595605 Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.09613833 Sep 0.00028485 -0.00143622 0.00552030 -0.02087658 0.09984099 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930		0.00010101	0.00005005	0.00075510	0.01.12.1200	
Juin 0.00004526 -0.00022818 0.00087706 -0.00331684 0.08595605 Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.09613833 Sep 0.00028485 -0.00143622 0.00552030 -0.02087658 0.09984099 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
Juil 0.00014110 -0.00071140 0.00273435 -0.01034074 0.09151002 Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.09613833 Sep 0.00028485 -0.00143622 0.00552030 -0.02087658 0.09984099 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
Août 0.00022096 -0.00111408 0.00428210 -0.01619398 0.09613833 Sep 0.00028485 -0.00143622 0.00552030 -0.02087658 0.09984099 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
Sep 0.00028485 -0.00143622 0.00552030 -0.02087658 0.09984099 Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
Oct 0.00033277 -0.00167783 0.00644894 -0.02438853 0.10261797 Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
Nov 0.00036472 -0.00183890 0.00706804 -0.02672983 0.10446930						
2.5 5.5555555 5.5557777. 5.50757757 5.52770510 0.10337470						
		3.00030007	3.001/1/17	5.00.51157	5.02,700 10	3.10037-170

Tab. 4.127 – Matrice des poids utilisés par X-11-ARIMA et X-12-ARIMA pour le tableau D11A, cas mensuel.

	1	2	3	4	5
Q1	0.31010142	-0.07454766	0.01790831	-0.00424890	0.00078683
Q2	0.28606085	-0.04472860	0.01074499	-0.00254934	0.00047210
Q3	0.23797972	0.01490953	-0.00358166	0.00084978	-0.00015737
Q4	0.16585801	0.10436673	-0.02507163	0.00594845	-0.00110156
Q1	0.06969574	0.22364300	-0.05372493	0.01274669	-0.00236050
Q2	0.00335254	0.28189630	-0.04369627	0.01036731	-0.00191987
Q3	-0.03317160	0.27912665	0.00501433	-0.00118969	0.00022031
Q4	-0.03987667	0.21533404	0.09240688	-0.02192430	0.00406006
Q1	-0.01676268	0.09051848	0.21848137	-0.05183653	0.00959936
Q2	-0.00081201	0.00438486	0.28151862	-0.04306681	0.00797533
Q3	0.00797533	-0.04306681	0.28151862	0.00438486	-0.00081201
Q4	0.00959936	-0.05183653	0.21848137	0.09051848	-0.01676268
Q1	0.00406006	-0.02192430	0.09240688	0.21533404	-0.03987667
Q2	0.00022031	-0.00118969	0.00501433	0.27912665	-0.03317160
Q3	-0.00191987	0.01036731	-0.04369627	0.28189630	0.00335254
Q4	-0.00236050	0.01274669	-0.05372493	0.22364300	0.06969574
Q1	-0.00110156	0.00594845	-0.02507163	0.10436673	0.16585801
Q2	-0.00015737	0.00084978	-0.00358166	0.01490953	0.23797972
Q3	0.00047210	-0.00254934	0.01074499	-0.04472860	0.28606085
Q4	0.00078683	-0.00424890	0.01790831	-0.07454766	0.31010142

 $\mbox{TAB.}\ 4.128$ – Matrice des poids utilisés par X-11-ARIMA et X-12-ARIMA pour le tableau D11A, cas trimestriel.

Année	B1	D11	R
1986	1220.5	1219.53575	0.96425
1987	1252.8	1251.31218	1.48782
1988	1312.5	1311.45328	1.04672
1989	1361.2	1363.83663	-2.63663
1990	1385.3	1386.98833	-1.68833
1991	1391.1	1391.58606	-0.48606
1992	1389.2	1383.88885	5.31115
1993	1348.8	1349.59492	-0.79492
1994	1391.8	1395.72244	-3.92244

TAB. 4.129 – B1 et D11: totaux annuels.

			Poids				
Mois	1	2	3	4	5	Résidus	Ajustements
Jan	0.10539496	-0.02790048	0.00737759	-0.00191944	0.00038069		0.0723
Fév	0.10446930	-0.02672983	0.00706804	-0.00183890	0.00036472	0.96425	0.0726
Mars	0.10261797	-0.02438853	0.00644894	-0.00167783	0.00033277	1.48782	0.0733
Avr	0.09984099	-0.02087658	0.00552030	-0.00143622	0.00028485	1.04672	0.0743
Mai	0.09613833	-0.01619398	0.00428210	-0.00111408	0.00022096	-2.63663	0.0757
Juin	0.09151002	-0.01034074	0.00273435	-0.00071140	0.00014110	-1.68833	0.0774
Juil	0.08595605	-0.00331684	0.00087706	-0.00022818	0.00004526		0.0794
Août	0.07947641	0.00487771	-0.00128979	0.00033557	-0.00006655		0.0818
Sept	0.07207110	0.01424290	-0.00376618	0.00097985	-0.00019434		0.0845
Oct	0.06374014	0.02477874	-0.00655213	0.00170467	-0.00033810		0.0875
Nov	0.05448351	0.03648524	-0.00964762	0.00251003	-0.00049783		0.0909
Déc	0.04430122	0.04936238	-0.01305266	0.00339593	-0.00067353		0.0947

TAB. 4.130 – Poids pour la première année, résidus et ajustements.

- X-12-ARIMA permet d'ajuster les données du tableau D11 sur toute période de 12 mois, d'avril à mars par exemple (année fiscale).
- Les poids pour le cas trimestriel sont dans le tableau 4.128.

Nous devons réconcilier les séries D11 et B1. Les valeurs des totaux annuels de ces deux séries et de leurs différences (résidus R) sont dans le tableau 4.129. Comme on peut le voir, les différences entre les totaux annuels sont assez faibles. Cela tient au fait que nous avons, régulièrement dans le processus de désaisonnalisation, normalisé²¹ les estimations des coefficients saisonniers.

Pour les données de la première année complète (1986), les matrices de poids et de résidus utilisées sont dans le tableau 4.130.

Les corrections apportées se calculent par le produit de ces deux matrices et on a, par exemple, pour février 1986 :

$$FEV86 = (0.10446930 \times 0.96425) + (-0.02672983 \times 1.48782) + (0.00706804 \times 1.04672) + (-0.00183890 \times -2.63663) +$$

²¹C'est à dire fait en sorte que leur somme soit à peu près égale à 0, ou à 12 selon le schéma, sur toute période d'un an.

			Poids				
Mois	1	2	3	4	5	Résidus	Ajustements
Jan	-0.00879152	0.04432649	0.06039494	-0.01571303	0.00311645		-0.1009
Fév	-0.00616123	0.03106468	0.07290679	-0.01805856	0.00358166		-0.1401
Mars	-0.00384049	0.01936360	0.08291627	-0.01884336	0.00373731	1.48782	-0.1741
Avr	-0.00182930	0.00922326	0.09042338	-0.01806743	0.00358341	1.04672	-0.2027
Mai	-0.00012766	0.00064366	0.09542812	-0.01573076	0.00311997	-2.63663	-0.2261
Juin	0.00126443	-0.00637522	0.09793049	-0.01183335	0.00234698	-1.68833	-0.2442
Juil	0.00234698	-0.01183335	0.09793049	-0.00637522	0.00126443	-0.48606	-0.2570
Août	0.00311997	-0.01573076	0.09542812	0.00064366	-0.00012766		-0.2645
Sept	0.00358341	-0.01806743	0.09042338	0.00922326	-0.00182930		-0.2667
Oct	0.00373731	-0.01884336	0.08291627	0.01936361	-0.00384049		-0.2636
Nov	0.00358166	-0.01805856	0.07290679	0.03106468	-0.00616123		-0.2553
Déc	0.00311645	-0.01571303	0.06039494	0.04432649	-0.00879152		-0.2416

TAB. 4.131 – Poids pour la quatrième année, résidus et ajustements.

$$\begin{array}{ll} (0.00036472 \times -1.68833) \\ = & 0.0726. \end{array}$$

Ce qui conduit à la valeur ajustée :

$$D11A(FEV86) = D11(FEV86) + 0.0726$$

= $99.620 + 0.0726$
= 99.693 .

Pour la quatrième année de données complètes (1989), les matrices de poids et de résidus utilisées sont dans le tableau 4.131.

On a, par exemple, pour août 1989:

$$AOUT89 = (0.00311997 \times 1.48782) + (-0.01573076 \times 1.04672) +$$

$$(0.09542812 \times -2.63663) + (0.00064366 \times -1.68833) +$$

$$(-0.00012766 \times -0.48606)$$

$$= -0.2645.$$

Ce qui conduit à la valeur ajustée suivante :

$$D11A(AOUT89) = D11(AOUT89) - 0.2645$$

= $112.595 - 0.2645$
= 112.331 .

Pour la dernière année de données complètes (1994), les matrices de poids et de résidus utilisées sont dans le tableau 4.132.

On a, par exemple, pour décembre 1994 :

```
DEC94 = (0.00038069 \times -1.68833) + (-0.00191944 \times -0.48606) +
(0.00737759 \times 5.31115) + (-0.02790048 \times -0.79492) +
(0.10539496 \times -3.92244)
= -0.3518.
```

			Poids				
Mois	1	2	3	4	5	Résidus	Ajustements
Jan	-0.00067353	0.00339593	-0.01305266	0.04936238	0.04430122		-0.2828
Fév	-0.00049783	0.00251003	-0.00964762	0.03648524	0.05448351		-0.2943
Mars	-0.00033810	0.00170467	-0.00655213	0.02477874	0.06374014	-1.68833	-0.3048
Avr	-0.00019434	0.00097985	-0.00376618	0.01424290	0.07207110	-0.48606	-0.3142
Mai	-0.00006655	0.00033557	-0.00128979	0.00487771	0.07947641	5.31115	-0.3225
Juin	0.00004526	-0.00022818	0.00087706	-0.00331684	0.08595605	-0.79492	-0.3298
Juil	0.00014110	-0.00071140	0.00273435	-0.01034074	0.09151002	-3.92244	-0.3361
Août	0.00022096	-0.00111408	0.00428210	-0.01619398	0.09613833		-0.3413
Sept	0.00028485	-0.00143622	0.00552030	-0.02087658	0.09984099		-0.3455
Oct	0.00033277	-0.00167783	0.00644894	-0.02438853	0.10261797		-0.3486
Nov	0.00036472	-0.00183890	0.00706804	-0.02672983	0.10446930		-0.3507
Déc	0.00038069	-0.00191944	0.00737759	-0.02790048	0.10539496		-0.3518

TAB. 4.132 – Poids pour la dernière année, résidus et ajustements.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986	101.106	99.693	98.982	106.896	100.095	101.358	102.353	99.497	102.175	103.462	102.512	102.369
1987	97.033	104.355	105.108	104.200	105.050	103.798	105.041	103.710	105.688	105.163	106.656	106.996
1988	106.432	107.445	108.141	108.168	110.335	109.574	108.756	109.749	110.986	108.391	110.415	114.109
1989	113.322	113.594	109.948	116.070	111.678	114.727	112.963	112.331	113.430	113.323	114.925	114.891
1990	114.556	114.095	115.355	115.133	116.144	114.723	116.752	117.499	115.774	116.487	115.444	113.337
1991	115.616	114.694	114.273	115.915	114.368	116.587	118.468	116.210	115.507	116.051	117.112	116.301
1992	116.880	117.502	116.705	116.626	116.060	114.642	115.146	116.440	116.554	116.270	114.536	111.838
1993	112.143	115.736	113.594	110.554	113.197	112.639	112.316	112.257	111.040	111.168	111.522	112.633
1994	114.167	113.750	113.436	114.504	116.395	115.690	116.267	118.278	116.498	116.053	117.109	119.652
1995	118.974	118.667	119.655									

TAB. 4.133 – D11A : Série désaisonnalisée finale ajustée sur les totaux annuels.

Ce qui conduit à la valeur ajustée suivante :

$$D11A(DEC94) = D11(DEC94) - 0.3518$$

= $120.004 - 0.3518$
= 119.652 .

Ce dernier facteur correctif va nous servir à estimer les valeurs de la dernière année incomplète 1995. Ainsi, on aura :

$$D11A(JAN95) = D11(JAN95) - 0.3518$$

= $119.326 - 0.3518$
= 118.974 .

Ce qui conduit au tableau final D11A.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	100.294	100.020	101.281	102.274	102.244	102.091	103.374	102.421	102.275
1987	102.484	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	111.120	110.433	114.168
1989	113.423	113.734	113.351	113.398	111.904	114.871	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	116.189	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	113.279
1993	111.902	112.730	113.496	112.410	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.081	116.020	116.603	116.220	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

TAB. 4.134 – D11bis : Série désaisonnalisée modifiée.

4.3.13 Tableau D12 : Estimation finale de la composante tendance-cycle

Description et mode de calcul

La série D1, où ont été enlevés les points atypiques et les effets de jours ouvrables, est corrigée par les coefficients saisonniers du tableau D10 pour obtenir une série désaisonnalisée modifiée (tableau D11bis). C'est celle-ci qui est lissée, avec une moyenne mobile de Henderson, pour obtenir une estimation finale de la tendance-cycle. La méthodologie est la même que celle suivie pour construire le tableau C7 (paragraphe 4.2.6). On a donc D11bis = D1 op D10.

- Étape 1 : choix de la moyenne mobile, calcul du ratio \bar{I}/\bar{C} .
- Étape 2 : lissage de la série corrigée des variations saisonnières par une moyenne mobile de Henderson.

Remarque

Il est possible de spécifier soi-même la longueur de la moyenne mobile de Henderson à utiliser. Dans ce cas, X-11-ARIMA donne le choix entre une moyenne mobile sur 9, 13 ou 23 termes. X-12-ARIMA permet de choisir toute moyenne de Henderson d'ordre impair inférieur à 101.

Exemple

On calcule d'abord une série désaisonnalisée modifiée présentée dans le tableau D11bis. Avec, par exemple :

$$AVR86 = 100 \times 101.706/101.408 = 100.294.$$

Étape 1 : choix de la moyenne mobile, calcul du ratio \bar{I}/\bar{C} .

On lisse tout d'abord le tableau D11bis par une moyenne mobile de Henderson sur 13 termes dont les coefficients figurent dans le tableau 3.11. Le premier terme calculable est donc celui d'avril 1986, et on a :

$$AVR86 = 101.587 \times (-0.01935) + 102.236 \times (-0.02786) + 100.085 \times (0.00000) + 101.034 \times (0.06549) +$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				99.974	100.452	101.097	101.732	102.206	102.428	102.530	102.646	102.889
1987	103.273	103.736	104.129	104.379	104.447	104.388	104.399	104.597	104.981	105.466	105.942	106.409
1988	106.900	107.438	107.964	108.469	108.927	109.284	109.565	109.900	110.422	111.138	111.983	112.724
1989	113.206	113.457	113.517	113.439	113.287	113.193	113.251	113.435	113.720	114.050	114.367	114.672
1990	114.915	115.024	115.159	115.400	115.752	116.179	116.475	116.536	116.363	115.983	115.517	115.089
1991	114.825	114.818	115.012	115.309	115.604	115.821	115.971	116.074	116.128	116.209	116.346	116.516
1992	116.647	116.562	116.246	115.807	115.447	115.279	115.308	115.399	115.318	114.956	114.338	113.620
1993	113.033	112.734	112.717	112.815	112.839	112.665	112.313	111.950	111.784	111.883	112.219	112.753
1994	113.367	113.993	114.565	115.078	115.541	115.902	116.190	116.476	116.818			
1995												

TAB. 4.135 – D12a: Tendance-cycle (moyenne mobile de Henderson sur 13 termes).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985												
1986				100.320	99.569	100.182	100.533	100.037	99.670	100.824	99.781	99.403
1987	99.235	100.497	100.837	99.721	100.466	99.319	100.495	99.027	100.544	99.579	100.536	100.410
1988	99.416	99.859	100.020	99.587	101.167	100.154	99.169	99.792	100.465	99.984	98.616	101.281
1989	100.192	100.244	99.854	99.964	98.779	101.483	99.973	99.260	99.980	99.593	100.711	100.402
1990	99.865	99.352	100.315	99.900	100.459	98.858	100.342	100.927	99.593	100.535	100.040	98.587
1991	100.834	100.041	99.502	100.659	99.046	100.752	100.188	100.138	99.441	99.789	100.525	99.617
1992	99.931	100.478	100.018	100.294	100.092	98.995	99.407	100.461	100.653	100.758	99.833	99.700
1993	98.999	99.996	100.691	99.641	100.338	100.045	100.112	100.420	99.512	99.565	99.603	100.134
1994	100.955	100.045	99.280	99.774	100.467	100.102	100.356	99.781	100.022			
1995												

TAB. 4.136 – D12b : Composante irrégulière.

```
99.620 \times (0.14736) + 98.909 \times (0.21434) + \\ 100.294 \times (0.24006) + 100.020 \times (0.21434) + \\ 101.281 \times (0.14736) + 102.274 \times (0.06549) + \\ 102.244 \times (0.00000) + 102.091 \times (-0.02786) + \\ 103.374 \times (-0.01935) \\ 99.974.
```

A cette étape du calcul, on ne se préoccupe pas d'estimer les 6 points non calculables en début et en fin de série. On en déduit une estimation de la tendance (tableau D12a) et, par rapport avec le tableau D11bis, de la composante irrégulière (tableau D12b).

Le schéma étant multiplicatif, on calcule les taux de croissance (voir paragraphe 4.1.7).

$$\bar{C} = \frac{2.881 + 3.484 + 5.780 + 2.288 + 2.862}{101} + \frac{1.705 + 2.944 + 2.706 + 3.550}{101}$$

$$= 0.2792,$$

$$\bar{I} = \frac{5.144 + 10.998 + 11.453 + 10.293 + 10.882}{101} + \frac{1.01}{101}$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					0.479	0.642	0.628	0.466	0.217	0.099	0.113	0.236	2.881
1987	0.374	0.448	0.379	0.240	0.065	0.057	0.010	0.190	0.367	0.462	0.452	0.440	3.484
1988	0.461	0.504	0.489	0.467	0.423	0.327	0.257	0.306	0.475	0.648	0.760	0.662	5.780
1989	0.428	0.221	0.053	0.069	0.133	0.084	0.051	0.163	0.251	0.290	0.278	0.267	2.288
1990	0.211	0.095	0.117	0.210	0.304	0.369	0.255	0.052	0.148	0.327	0.401	0.371	2.862
1991	0.229	0.007	0.169	0.259	0.255	0.188	0.130	0.089	0.046	0.070	0.118	0.146	1.705
1992	0.112	0.073	0.271	0.378	0.311	0.146	0.025	0.079	0.070	0.315	0.538	0.627	2.944
1993	0.517	0.264	0.015	0.087	0.021	0.154	0.312	0.323	0.148	0.088	0.301	0.475	2.706
1994	0.545	0.552	0.502	0.447	0.403	0.312	0.249	0.246	0.294				3.550
1995													

 $TAB.\ 4.137-D12c$: Taux de croissance (en % et en valeur absolue) de la tendance-cycle.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc	Total
1985													
1986					0.749	0.615	0.350	0.493	0.366	1.157	1.035	0.378	5.144
1987	0.169	1.272	0.338	1.107	0.747	1.142	1.184	1.461	1.532	0.959	0.961	0.126	10.998
1988	0.990	0.446	0.161	0.433	1.587	1.001	0.984	0.628	0.675	0.478	1.368	2.702	11.453
1989	1.076	0.053	0.389	0.110	1.186	2.738	1.488	0.713	0.725	0.386	1.122	0.307	10.293
1990	0.535	0.514	0.969	0.414	0.560	1.594	1.502	0.583	1.322	0.945	0.492	1.452	10.882
1991	2.279	0.786	0.538	1.162	1.602	1.722	0.560	0.050	0.695	0.349	0.738	0.903	11.385
1992	0.315	0.547	0.458	0.276	0.201	1.096	0.416	1.060	0.192	0.104	0.918	0.134	5.716
1993	0.703	1.007	0.695	1.043	0.700	0.293	0.068	0.308	0.905	0.054	0.038	0.532	6.345
1994	0.821	0.902	0.764	0.498	0.694	0.364	0.254	0.573	0.241				5.110
1995													

TAB. 4.138 – D12d : Taux de croissance (en % et en valeur absolue) de l'irrégulier.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.634	101.254	100.809
1986	100.356	99.967	99.809	99.974	100.452	101.097	101.732	102.206	102.428	102.530	102.646	102.889
1987	103.273	103.736	104.129	104.379	104.447	104.388	104.399	104.597	104.981	105.466	105.942	106.409
1988	106.900	107.438	107.964	108.469	108.927	109.284	109.565	109.900	110.422	111.138	111.983	112.724
1989	113.206	113.457	113.517	113.439	113.287	113.193	113.251	113.435	113.720	114.050	114.367	114.672
1990	114.915	115.024	115.159	115.400	115.752	116.179	116.475	116.536	116.363	115.983	115.517	115.089
1991	114.825	114.818	115.012	115.309	115.604	115.821	115.971	116.074	116.128	116.209	116.346	116.516
1992	116.647	116.562	116.246	115.807	115.447	115.279	115.308	115.399	115.318	114.956	114.338	113.620
1993	113.033	112.734	112.717	112.815	112.839	112.665	112.313	111.950	111.784	111.883	112.219	112.753
1994	113.367	113.993	114.565	115.078	115.541	115.902	116.190	116.476	116.818	117.300	117.921	118.567
1995	119.144	119.619	119.961									

TAB. 4.139 – D12 : Tendance-cycle finale, le ratio I/C est de 2.7420, une moyenne mobile de Henderson sur 13 termes a été choisie.

Étape 2 : lissage de la série désaisonnalisée par une moyenne mobile de Henderson.

Le ratio étant supérieur à 1 et inférieur à 3.5, on choisit une moyenne mobile de Henderson sur 13 termes dont les coefficients et ceux des moyennes mobiles asymétriques associées figurent dans le tableau 3.11. L'estimation de la tendance-cycle pour octobre 1985 se fait en utilisant, à partir des données du tableau D11bis, le point courant et six points dans le futur auxquels on applique les coefficients de la moyenne mobile $H6_0$ du tableau 3.11.

$$\begin{array}{ll} OCT85 & = & 101.587 \times (0.42113) + 102.236 \times (0.35315) + \\ & & 100.085 \times (0.24390) + 101.034 \times (0.11977) + \\ & & 99.620 \times (0.01202) + 98.909 \times (-0.05811) + \\ & & 100.294 \times (-0.09186) \\ & = & 101.634. \end{array}$$

Cela conduit au tableau D12, dont les valeurs sont représentées dans le second graphique de la figure 4.1, avec les valeurs de la série désaisonnalisée du tableau D11.

4.3.14 Tableau D13 : Estimation finale de la composante irrégulière

Description et mode de calcul

Cette estimation finale de la composante irrégulière s'obtient en enlevant la composante tendancielle (tableau D12) de l'estimation de la série désaisonnalisée du tableau D11 : D13 = D11 op D12.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										99.954	100.970	99.281
1986	100.676	99.653	99.099	106.850	99.569	100.182	100.533	97.269	99.670	100.824	99.781	99.403
1987	93.862	100.497	100.837	99.721	100.466	99.319	100.495	99.027	100.544	99.579	100.536	100.410
1988	99.416	99.859	100.020	99.587	101.167	100.154	99.169	99.792	100.465	97.512	98.616	101.281
1989	100.192	100.244	97.009	102.498	98.779	101.571	99.973	99.260	99.980	99.593	100.711	100.402
1990	99.865	99.352	100.315	99.900	100.459	98.858	100.342	100.927	99.593	100.535	100.040	98.587
1991	100.834	100.041	99.502	100.659	99.046	100.752	102.212	100.138	99.441	99.789	100.525	99.617
1992	99.931	100.478	100.018	100.294	100.092	98.995	99.407	100.461	100.653	100.758	99.833	98.148
1993	98.999	102.515	100.691	97.966	100.338	100.045	100.112	100.420	99.512	99.565	99.603	100.134
1994	100.955	100.045	99.280	99.774	101.018	100.102	100.356	101.840	100.022	99.235	99.609	101.212
1995	100.153	99.499	100.038									

TAB. 4.140 – D13 : Composante irrégulière finale.

Avec, par exemple, la valeur d'avril 1986 :

$$AVR86 = 100 \times 106.822/99.974 = 106.850.$$

Les valeurs de la composante irrégulière finale sont représentées dans le graphique du bas de la figure 4.1.

$\textbf{4.3.15} \quad \textbf{Tableau D16: Estimation des différents effets saisonnier et de calendrier}$

Description et mode de calcul

Cette estimation finale de la composante saisonnière et des effets de calendrier s'obtient en enlevant la série désaisonnalisée (tableau D11) des données brutes (tableau A1 ou A3 si des ajustements permanents ont été demandés): D16 = A1 op D11.

Exemple

La valeur d'avril 1986 est donc :

$$AVR86 = 100 \times 109.500/106.822 = 102.507.$$

4.3.16 Tableau D18 : Effets de calendrier combinés

Description et mode de calcul

Le tableau D18 ne figure que dans les sorties de X-12-ARIMA. Ce logiciel propose un traitement des effets de calendrier beaucoup plus sophistiqué que celui de X-11-ARIMA. Ces effets peuvent être estimés soit à partir d'une estimation de la composante irrégulière (instruction *X11regression*), soit à partir de la série brute avant toute procédure de désaisonnalisation (instruction *Regression*).

Le tableau D18 présente les effets de calendrier combinés, effets de jours ouvrables et effets liés aux jours fériés, estimés par les instructions *X11 regression* ou *Regression*.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										113.892	107.399	100.515
1986	105.509	99.077	105.046	102.507	97.681	102.388	97.483	66.086	103.046	113.278	105.740	102.078
1987	103.678	98.991	107.523	102.894	95.298	104.459	97.030	66.326	102.982	111.310	107.689	102.953
1988	101.341	102.715	109.922	100.074	97.461	104.794	93.140	69.298	103.303	108.791	109.840	100.466
1989	103.947	98.651	109.152	98.648	98.746	104.635	93.270	70.518	100.443	111.545	110.089	97.887
1990	105.525	98.444	106.993	100.707	99.413	101.696	95.659	70.823	98.887	113.205	109.983	97.653
1991	106.493	98.203	104.248	102.870	98.951	100.007	97.269	70.203	100.797	114.174	106.706	99.768
1992	105.949	99.813	106.651	103.317	95.021	104.013	97.798	69.007	102.781	111.373	106.968	102.049
1993	101.607	97.863	108.109	103.330	95.301	103.890	96.141	70.895	103.202	108.621	108.880	101.680
1994	101.616	97.769	109.020	100.507	97.672	104.293	93.908	71.995	103.215	108.589	108.718	99.997
1995	104.001	97.715	108.494									

TAB. 4.141 – D16: Effets saisonnier et de calendrier combinés.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										102.198	98.646	99.895
1986	101.662	99.115	97.557	101.084	99.839	99.083	102.198	97.504	101.116	101.662	97.167	101.347
1987	99.839	99.115	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1988	97.504	102.982	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1989	99.895	99.115	101.662	97.167	101.347	101.441	97.557	102.198	98.646	99.895	101.463	97.504
1990	101.347	99.115	99.839	99.083	102.198	98.646	99.895	101.662	97.167	101.347	101.441	97.557
1991	102.198	99.115	97.504	101.116	101.662	97.167	101.347	99.839	99.083	102.198	98.646	99.895
1992	101.662	100.947	99.895	101.463	97.504	101.116	101.662	97.557	101.084	99.839	99.083	102.198
1993	97.504	99.115	101.347	101.441	97.557	101.084	99.839	99.895	101.463	97.504	101.116	101.662
1994	97.557	99.115	102.198	98.646	99.895	101.463	97.504	101.347	101.441	97.557	101.084	99.839
1995	99.895	99.115	101.662									

TAB. 4.142 – D18: Effets de calendrier combinés.

Dans notre exemple, ce tableau serait égal au tableau C18 (paragraphe 4.2.15). Les valeurs finales des effets de jours ouvrables sont représentées dans le quatrième graphique de la figure 4.1.

4.4 PARTIE E : Composantes corrigées des points les plus atypiques

4.4.1 Tableau E1 : Composantes corrigées des points les plus atypiques

Description et mode de calcul

Ce tableau présente la série brute corrigée des points atypiques ayant reçu un poids nul lors de l'étape C17. Lorsque, à une date donnée, un point a été jugé très atypique, la valeur de la série brute est remplacée par la composée de la valeur de la composante tendancielle (tableau D12), de la saisonnalité (tableau D10) et le cas échéant, des ajustements a priori et des corrections des effets de calendrier. On a donc : E1 = D12 invop D10 invop C16.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										115.700	109.800	100.600
1986	106.600	98.700	103.900	102.480	97.700	103.700	99.700	67.544	105.200	117.100	108.300	104.400
1987	107.072	103.200	112.900	107.100	100.000	108.300	101.800	68.700	108.700	116.900	114.700	110.000
1988	107.700	110.200	118.700	108.100	107.400	114.700	101.200	76.000	114.600	120.908	121.300	114.700
1989	117.900	112.200	123.906	111.905	110.500	120.300	105.600	79.400	114.200	126.700	126.800	112.700
1990	121.100	112.500	123.600	116.100	115.600	116.800	111.800	83.300	114.600	132.000	127.100	110.800
1991	123.300	112.800	119.300	119.400	113.300	116.700	115.300	81.600	116.400	132.400	124.800	115.800
1992	123.500	116.900	124.000	120.000	109.800	118.700	112.100	80.000	119.300	129.000	122.100	113.800
1993	113.700	110.326	122.700	114.200	107.900	117.100	108.100	79.700	114.800	121.000	121.700	114.800
1994	116.300	111.500	124.000	115.400	114.000	121.000	109.500	83.857	120.600	126.400	127.700	120.000
1995	124.100	116.300	130.200									

TAB. 4.143 – E1 : Série brute corrigée des points les plus atypiques.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	99.974	100.020	101.281	102.274	102.206	102.091	103.374	102.421	102.275
1987	103.273	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	111.138	110.433	114.168
1989	113.423	113.734	113.517	113.439	111.904	114.971	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	118.537	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	111.515
1993	111.902	112.734	113.496	110.520	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.718	116.020	116.603	116.476	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

TAB. 4.144 – E2 : Série désaisonnalisée finale corrigée des points les plus atypiques.

On a ainsi, pour le mois d'avril 1986 considéré comme très atypique :

$$AVR86 = 99.974 \times 1.014 \times 1.011 = 102.480.$$

4.4.2 Tableau E2 : Série désaisonnalisée corrigée des points les plus atypiques

Description et mode de calcul

Ce tableau présente la série désaisonnalisée du tableau D11 corrigée des points atypiques ayant reçu un poids nul lors de l'étape C17. Lorsque, à une date donnée, un point a été jugé très atypique, la valeur de la série désaisonnalisée est remplacée par la valeur de la composante tendancielle (tableau D12).

Exemple

En avril 1986, un point atypique a été détecté. La valeur pour cette date du tableau D11 (106.822) est remplacée par la valeur correspondante du tableau D12 (99.974).

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										99.954	100.970	99.281
1986	100.676	99.653	99.099	100.000	99.569	100.182	100.533	100.000	99.670	100.824	99.781	99.403
1987	100.000	100.497	100.837	99.721	100.466	99.319	100.495	99.027	100.544	99.579	100.536	100.410
1988	99.416	99.859	100.020	99.587	101.167	100.154	99.169	99.792	100.465	100.000	98.616	101.281
1989	100.192	100.244	100.000	100.000	98.779	101.571	99.973	99.260	99.980	99.593	100.711	100.402
1990	99.865	99.352	100.315	99.900	100.459	98.858	100.342	100.927	99.593	100.535	100.040	98.587
1991	100.834	100.041	99.502	100.659	99.046	100.752	102.212	100.138	99.441	99.789	100.525	99.617
1992	99.931	100.478	100.018	100.294	100.092	98.995	99.407	100.461	100.653	100.758	99.833	98.148
1993	98.999	100.000	100.691	97.966	100.338	100.045	100.112	100.420	99.512	99.565	99.603	100.134
1994	100.955	100.045	99.280	99.774	101.018	100.102	100.356	100.000	100.022	99.235	99.609	101.212
1995	100.153	99.499	100.038									

TAB. 4.145 – E3: Composante irrégulière finale corrigée des points les plus atypiques.

4.4.3 Tableau E3 : Composante irrégulière finale corrigée des points les plus atypiques

Description et mode de calcul

Ce tableau présente la composante irrégulière du tableau D13 corrigée des points atypiques ayant reçu un poids nul lors de l'étape C17. Lorsque, à une date donnée, un point a été jugé très atypique, la valeur de la composante est remplacée par la moyenne théorique (1 ou 0 selon le schéma).

Exemple

On a ainsi, pour le mois d'avril 1986 considéré comme très atypique :

$$AVR86 = 100.000$$
 (i.e. 100×1.0).

4.4.4 Tableau E4 : Comparaison des totaux annuels entre série brute et série désaisonnalisée

Description et mode de calcul

Ce tableau compare les totaux annuels des séries brute et désaisonnalisée, et ce pour deux couples de séries : la série brute A1 et la série désaisonnalisée finale D11 d'une part, et les séries correspondantes corrigées des points atypiques (E1 et E2). Pour chacun de ces couples et pour chaque année i, on calcule par exemple $A1_i$ op $D11_i$, où $A1_i$ représente le total de la série A1 pour l'année i.

Exemple

Ainsi, pour l'année 1987, on a : $A1_{1987}=1252.8,\ D11_{1987}=1251.312,\ E1_{1987}=1259.372,\ E2_{1987}=1257.651,$ et donc :

$$\begin{array}{ccc} \frac{A1_{1987}}{D11_{1987}} & = & 100 \times \frac{1252.8}{1251.312} \\ & = & 100.119, \end{array}$$

Year	A1 et D11	E1 et E2
1986	100.079	99.987
1987	100.119	100.137
1988	100.080	100.098
1989	99.807	99.832
1990	99.878	99.878
1991	99.965	99.965
1992	100.384	100.384
1993	99.941	99.945
1994	99.719	99.762

TAB. 4.146 – E4: Rapports des totaux annuels des séries originale et désaisonnalisée.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985											-5.099	-8.379
1986	5.964	-7.411	5.268	5.390	-10.776	6.141	-3.857	-34.102	60.122	11.312	-7.515	-3.601
1987	-3.736	2.687	9.399	-5.137	-6.629	8.300	-6.002	-32.515	58.224	7.544	-1.882	-4.098
1988	-2.091	2.321	7.713	-8.930	-0.648	6.797	-11.770	-24.901	50.789	2.880	2.884	-5.441
1989	2.790	-4.835	7.130	-4.576	-3.662	8.869	-12.219	-24.811	43.829	10.946	0.079	-11.120
1990	7.453	-7.102	9.867	-6.068	-0.431	1.038	-4.281	-25.492	37.575	15.183	-3.712	-12.825
1991	11.282	-8.516	5.762	0.084	-5.109	3.001	-1.200	-29.228	42.647	13.746	-5.740	-7.212
1992	6.649	-5.344	6.074	-3.226	-8.500	8.106	-5.560	-28.635	49.125	8.131	-5.349	-6.798
1993	-0.088	-0.528	8.488	-6.927	-5.517	8.526	-7.686	-26.272	44.040	5.401	0.579	-5.670
1994	1.307	-4.127	11.211	-6.935	-1.213	6.140	-9.504	-22.009	41.218	4.809	1.028	-6.030
1995	3.417	-6.285	11.952									

TAB. 4.147 – E5: Évolutions mensuelles de la série brute.

$$\begin{array}{ccc} \frac{E1_{1987}}{E2_{1987}} & = & 100 \times \frac{1259.378}{1257.651} \\ & = & 100.137. \end{array}$$

4.4.5 Tableau E5 : Évolutions de la série brute

Description et mode de calcul

Ce tableau présente l'évolution de la série brute. Pour une série mensuelle par exemple, il donne les accroissements mensuels lorsque le schéma de composition est additif ou le taux d'accroissement mensuel dans le cas d'un schéma multiplicatif. Pour une date t donnée, on a donc : $E5_t = A1_t$ op $A1_{t-1} - xbar$.

Exemple

Ainsi, le taux d'accroissement de mars 1986 à avril 1986 est :

$$AVR86 = 100 \times (109.5/103.9 - 1) = 5.390.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985											0.638	-2.104
1986	0.948	-1.400	-0.714	8.000	-6.368	1.261	0.980	-2.795	2.691	1.257	-0.923	-0.143
1987	-5.221	7.549	0.718	-0.869	0.813	-1.198	1.194	-1.274	1.905	-0.502	1.417	0.314
1988	-0.533	0.952	0.651	0.032	2.016	-0.677	-0.729	0.936	1.153	-2.310	1.901	3.382
1989	-0.653	0.274	-3.176	5.585	-3.757	2.741	-1.523	-0.552	0.978	-0.097	1.403	-0.041
1990	-0.324	-0.419	1.087	-0.205	0.866	-1.230	1.760	0.635	-1.468	0.615	-0.892	-1.818
1991	2.045	-0.793	-0.370	1.424	-1.351	1.913	1.581	-1.943	-0.649	0.419	0.857	-0.759
1992	0.428	0.474	-0.727	-0.103	-0.511	-1.240	0.442	1.140	0.122	-0.211	-1.450	-2.305
1993	0.346	3.278	-1.794	-2.622	2.443	-0.446	-0.245	-0.016	-1.052	0.142	0.339	1.010
1994	1.370	-0.355	-0.266	0.947	1.655	-0.598	0.503	1.728	-1.497	-0.378	0.909	2.166
1995	-0.565	-0.257	0.830									

TAB. 4.148 – E6 : Évolutions mensuelles de la série désaisonnalisée finale.

4.4.6 Tableau E6 : Évolutions de la série désaisonnalisée finale

Description et mode de calcul

Ce tableau présente l'évolution de la série désaisonnalisée finale (tableau D11) calculée de la même façon que ci-dessus. Pour une date t donnée, on a donc : $E6_t = D11_t$ op $D11_{t-1} - xbar$.

Exemple

Ainsi, le taux d'accroissement de mars 1986 à avril 1986 est :

$$AVR86 = 100 \times (106.822/98.909 - 1) = 8.000.$$

4.4.7 Tableau E7 : Évolutions de la tendance-cycle finale

Description et mode de calcul

Ce tableau présente l'évolution de la composante tendance-cycle (tableau D12) finale (tableau D12) calculée de la même façon que ci-dessus. Pour une date t donnée, on a : $E7_t = D12_t$ op $D12_{t-1} - xbar$.

Remarque

Ce tableau n'est édité que par X-12-ARIMA.

Exemple

Ainsi, le taux d'accroissement de mars 1986 à avril 1986 est :

$$AVR86 = 100 \times (99.974/99.809 - 1) = 0.166.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985											-0.375	-0.439
1986	-0.450	-0.388	-0.158	0.166	0.479	0.642	0.628	0.466	0.217	0.099	0.113	0.236
1987	0.374	0.448	0.379	0.240	0.065	-0.057	0.010	0.190	0.367	0.462	0.452	0.440
1988	0.461	0.504	0.489	0.467	0.423	0.327	0.257	0.306	0.475	0.648	0.760	0.662
1989	0.428	0.221	0.053	-0.069	-0.133	-0.084	0.051	0.163	0.251	0.290	0.278	0.267
1990	0.211	0.095	0.117	0.210	0.304	0.369	0.255	0.052	-0.148	-0.327	-0.401	-0.371
1991	-0.229	-0.007	0.169	0.259	0.255	0.188	0.130	0.089	0.046	0.070	0.118	0.146
1992	0.112	-0.073	-0.271	-0.378	-0.311	-0.146	0.025	0.079	-0.070	-0.315	-0.538	-0.627
1993	-0.517	-0.264	-0.015	0.087	0.021	-0.154	-0.312	-0.323	-0.148	0.088	0.301	0.475
1994	0.545	0.552	0.502	0.447	0.403	0.312	0.249	0.246	0.294	0.412	0.529	0.548
1995	0.487	0.398	0.286									

TAB. 4.149 – E7: Évolutions mensuelles de la tendance-cycle finale.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										101.587	102.236	100.085
1986	101.034	99.620	98.909	106.994	100.020	101.281	102.274	100.362	102.091	103.374	102.421	102.275
1987	96.701	104.252	105.001	104.088	104.934	103.677	104.916	103.579	105.552	105.022	106.510	106.845
1988	106.275	107.287	107.985	108.020	110.198	109.453	108.654	109.671	110.936	108.130	110.433	114.168
1989	113.423	113.734	109.811	116.234	111.904	114.971	113.220	112.595	113.697	113.586	115.180	115.133
1990	114.759	114.279	115.521	115.285	116.283	114.852	116.874	117.617	115.890	116.603	115.563	113.463
1991	115.783	114.864	114.439	116.068	114.501	116.692	118.537	116.234	115.479	115.963	116.956	116.069
1992	116.566	117.119	116.267	116.147	115.553	114.120	114.624	115.931	116.072	115.827	114.147	111.515
1993	111.902	115.509	113.496	110.520	113.221	112.715	112.439	112.420	111.238	111.397	111.774	112.903
1994	114.450	114.044	113.741	114.818	116.718	116.020	116.603	118.019	116.844	116.402	117.460	120.004
1995	119.326	119.019	120.007									

TAB. 4.150 – E11 : Estimation robuste de la série désaisonnalisée finale.

4.4.8 Tableau E11 : Estimation robuste de la série désaisonnalisée finale

Description et mode de calcul

Ce tableau présente une estimation robuste de la série désaisonnalisée finale. Il est équivalent au tableau E2 sauf pour les points jugés très atypiques, c'est-à-dire ceux qui ont reçu un poids égal à 0 au tableau C17. La valeur de E2 aux dates correspondantes est remplacée par D12 + (A1 - E1).

Remarques

- Ce tableau n'est édité que par X-12-ARIMA.
- Dans le cas d'un schéma de décomposition additif, le tableau E11 est toujours égal au tableau D11.

Exemple

Ainsi, pour avril 1986, on a:

$$AVR86 = 99.974 + (109.500 - 102.480) = 106.994.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										100.912	100.912	100.912
1986	100.377	101.294	101.281	101.330	101.861	101.962	101.016	101.687	101.915	101.915	101.419	101.851
1987	102.177	102.510	103.042	104.391	104.523	104.239	104.532	104.549	105.116	105.502	106.041	106.388
1988	106.981	107.283	107.953	108.589	108.862	109.199	109.782	109.417	109.613	110.716	111.467	112.026
1989	112.376	113.544	113.091	113.401	113.298	113.792	113.277	113.614	113.656	114.038	114.471	114.587
1990	114.974	114.995	115.225	115.244	115.763	116.182	116.303	116.367	116.509	115.827	115.460	115.255
1991	114.822	114.924	115.131	115.313	116.047	116.406	116.289	116.581	116.634	116.140	116.207	116.535
1992	116.596	116.434	116.331	115.841	115.343	115.275	115.260	115.315	115.320	114.698	113.892	113.792
1993	113.326	112.601	112.942	113.104	112.478	112.263	112.407	112.042	111.854	111.947	112.353	112.914
1994	113.383	113.991	114.754	115.068	115.580	116.556	116.961	116.898	117.186	117.866	118.007	118.442
1995	119.163	119.163	119.163									

TAB. 4.151 – F1 : Lissage de la série désaisonnalisée par une moyenne mobile MCD, MCD=5.

4.5 PARTIE F : Mesures de qualité de la désaisonnalisation

4.5.1 Tableau F1 : Lissage de la série désaisonnalisée par une moyenne mobile MCD

Description et mode de calcul

Ce tableau présente un lissage de la série désaisonnalisée finale (tableau D11) par une moyenne mobile simple dont le calcul de l'ordre (dit "MCD" : *Month for Cyclical Dominance*) est expliqué au tableau F2E.

Remarques

- Si le paramètre MCD calculé est pair, on utilise alors une moyenne mobile simple centrée, c'est-à-dire une 2 x MCD.
- Quelque soit l'ordre de la moyenne mobile, on ne se préoccupe pas de l'estimation des extrémités de la série.
- En fait, si la valeur du MCD calculé au tableau F2E est supérieure à 6, le MCD est ramené à 6. L'ordre de la moyenne mobile utilisée ne peut donc être supérieur à 7.

Exemple

Le paramètre "MCD" est ici égal à 5 (voir tableau F2E). Le tableau F1 s'obtient donc simplement, à partir du tableau D11, par une moyenne mobile simple d'ordre 5. Le premier terme calculable est celui de décembre 1985 et on a :

$$DEC85 = \frac{101.587 + 102.236 + 100.085 + 101.034 + 99.620}{5}$$

= 100.912.

4.5.2 Tableau F2A : Évolutions, en valeur absolue, des principales composantes

Description et mode de calcul

Ce tableau présente les évolutions moyennes, sur plusieurs périodes (de 1 à 12 mois pour une série mensuelle, de 1 à 4 trimestres pour une série trimestrielle), de quelques séries.

Prenons l'exemple de la série brute du tableau A1. Pour un délai d donné (de 1 à 12 mois par exemple), on calcule :

$$\bar{O}_d = \frac{1}{n-d} \sum_{t=d+1}^{n} |A1_t \ op \ A1_{t-d} - xbar|,$$

c'est-à-dire, pour un schéma multiplicatif, la moyenne des taux de croissance absolus sur *d* mois. Ce calcul est fait, pour chaque délai *d*, pour les 10 séries suivantes :

Tableau	Symbole	Série
A1 ou B1	$ar{O}_d$	La série originale
D11	\overline{A}_d	La série désaisonnalisée finale
D13	$ar{I}_d$	La composante irrégulière finale
D12	\bar{C}_d	La tendance-cycle finale
D10	\bar{S}_d	Les coefficients saisonniers finaux
A2	$ar{P}_d$	Les coefficients de l'ajustement préalable
C18	\overline{D}_d	Les coefficients finaux pour jours ouvrables
F1	\overline{MCD}_d	La série désaisonnalisée finale lissée par une moyenne mobile MCD
E1	\bar{O}_d^M	La série originale corrigée des valeurs aty- piques
E2	\overline{A}_d^M	La série désaisonnalisée finale corrigée des valeurs atypiques
E3	$ar{I}_d^M$	La composante irrégulière finale corrigée des valeurs atypiques

Exemple

Le schéma étant ici multiplicatif, ce sont les taux de croissance qui sont utilisés pour chaque délai. La valeur 11.03 obtenue pour la moyenne des taux de croissance mensuels absolus de la série originale peut se retrouver en prenant la moyenne des valeurs absolues des données du tableau E5.

4.5.3 Tableau F2B : Contributions relatives des composantes aux évolutions de la série brute

Description et mode de calcul

Ce tableau présente, pour un délai d donné, la contribution relative de chaque composante à l'évolution de la série brute. Les composantes étant indépendantes, on

Time Lag	A1 <i>O</i>	D11 A	D13 <i>I</i>	D12 C	D10 S	A2 P	C18 D	F1 MCD	E1 O^M	$E2$ A^M	E3 <i>I</i> ^M
1	11.03	1.34	1.29	0.29	10.73	0.00	2.46	0.34	11.02	0.90	0.86
2	11.84	1.43	1.26	0.57	11.25	0.00	2.16	0.58	11.76	1.06	0.83
3	11.54	1.55	1.21	0.83	11.47	0.00	1.26	0.78	11.46	1.23	0.79
4	11.95	1.70	1.19	1.07	11.37	0.00	2.45	1.00	11.99	1.43	0.78
5	11.22	1.72	1.08	1.30	10.69	0.00	1.93	1.23	11.37	1.57	0.74
6	12.04	1.91	1.14	1.50	12.03	0.00	1.51	1.44	12.34	1.71	0.66
7	11.74	2.07	1.12	1.70	10.91	0.00	2.35	1.64	11.93	1.90	0.75
8	12.05	2.21	1.22	1.89	11.39	0.00	1.86	1.85	12.00	2.06	0.82
9	11.85	2.44	1.17	2.07	10.68	0.00	1.17	2.03	11.81	2.22	0.74
10	12.09	2.52	1.14	2.26	10.92	0.00	2.53	2.22	12.08	2.40	0.75
11	11.04	2.65	1.10	2.44	10.32	0.00	1.84	2.40	11.24	2.60	0.75
12	3.35	2.96	1.25	2.60	0.14	0.00	1.50	2.58	3.23	2.85	0.88

TAB. 4.152 – F2A: Évolutions absolues moyennes, en %, des composantes selon le délai.

doit avoir, au moins approximativement :

$$\bar{O}_d^2 \approx \bar{C}_d^2 + \bar{S}_d^2 + \bar{P}_d^2 + \overline{D}_d^2 + \bar{I}_d^2.$$

Les deux membres de cette équation n'étant pas rigoureusement égaux, on va calculer en fait :

$$\overline{O'}_{d}^{2} = \bar{C}_{d}^{2} + \bar{S}_{d}^{2} + \bar{P}_{d}^{2} + \overline{D}_{d}^{2} + \bar{I}_{d}^{2}.$$

On calcule ensuite les rapports $100 \times \bar{C}_d^2/\overline{O'}_d^2,\ldots,100 \times \overline{I}_d^2/\overline{O'}_d^2$, afin d'obtenir la contribution relative de chaque composante. On calcule enfin le rapport $100 \times \overline{O'}_d^2/\bar{O}_d^2$ pour mesurer la qualité de l'approximation.

Remarques

- X-12-ARIMA utilise dans ce calcul la série E3, à la place de D13, comme estimation de la composante irrégulière.
- X-12-ARIMA calcule la quantité $\overline{O'}_d^2$ à partir de la série E1 et non de la série originale A1 comme X-11-ARIMA.

Exemple

Ainsi, pour le délai 1, on a :

$$\overline{O'}_d^2 = \bar{C}_d^2 + \bar{S}_d^2 + \bar{P}_d^2 + \overline{D}_d^2 + \bar{I}_d^2$$

$$= (0.29)^2 + (10.73)^2 + (0.00)^2 + (2.46)^2 + (1.29)^2$$

$$= 122.933.$$

Donc,

$$100 \times \frac{\overline{O'}_d^2}{\overline{O}_d^2} = 100 \times \frac{122.933}{(11.03)^2}$$
$$= 101.17$$

Délai	D13 <i>I</i>	D12 C	D10 S	A2 P	C18 D	Total	Ratio ×100
1	1.36	0.07	93.65	0.00	4.92	100.00	101.17
2	1.20	0.24	95.04	0.00	3.52	100.00	94.97
3	1.08	0.51	97.23	0.00	1.17	100.00	101.72
4	1.02	0.83	93.81	0.00	4.34	100.00	96.57
5	0.97	1.39	94.56	0.00	3.08	100.00	96.01
6	0.86	1.50	96.13	0.00	1.51	100.00	103.85
7	0.97	2.23	92.49	0.00	4.30	100.00	93.30
8	1.07	2.58	93.84	0.00	2.51	100.00	95.20
9	1.12	3.54	94.20	0.00	1.14	100.00	86.32
10	0.99	3.86	90.30	0.00	4.86	100.00	90.30
11	1.03	5.08	91.00	0.00	2.89	100.00	95.97
12	14.74	63.79	0.18	0.00	21.28	100.00	94.63

TAB. 4.153 – F2B : Contributions relatives des composantes aux évolutions de la série brute.

Délai	A1 <i>O</i>		D13 <i>I</i>			D12 C		D10 S		11 4	-	F1 CD
	Avg	STD	Avg	STD	Avg	STD	Avg	STD	Avg	STD	Avg	STD
1	1.38	16.84	0.02	1.90	0.15	0.31	1.15	16.20	0.17	1.92	0.15	0.40
2	1.96	20.42	0.01	1.90	0.30	0.60	1.61	20.04	0.30	2.00	0.31	0.62
3	1.94	19.26	0.01	1.77	0.45	0.86	1.45	18.95	0.47	1.96	0.46	0.82
4	1.95	17.71	0.02	1.85	0.61	1.09	1.25	16.95	0.63	2.14	0.61	1.04
5	2.31	18.40	0.01	1.59	0.77	1.28	1.52	18.23	0.79	1.99	0.75	1.25
6	2.27	17.14	0.02	1.79	0.93	1.45	1.28	16.60	0.95	2.22	0.90	1.42
7	2.75	19.93	-0.05	1.66	1.09	1.62	1.61	18.99	1.04	2.28	1.04	1.60
8	2.35	17.87	-0.02	1.73	1.25	1.78	1.04	17.07	1.22	2.46	1.20	1.79
9	2.45	17.28	-0.02	1.86	1.40	1.95	1.02	16.52	1.37	2.69	1.34	1.97
10	2.96	19.42	-0.03	1.64	1.54	2.13	1.32	18.20	1.51	2.69	1.48	2.15
11	2.88	15.66	0.01	1.60	1.68	2.31	1.12	14.89	1.69	2.81	1.62	2.32
12	1.86	3.62	0.01	1.71	1.82	2.49	0.02	0.22	1.82	3.03	1.76	2.49

TAB. 4.154 – F2C : Moyennes et écart-types des évolutions en fonction du délai.

et, par exemple, la contribution de la composante saisonnière est égale à : $100 \times (10.73)^2/122.933 = 93.65$.

4.5.4 Tableau F2C : Moyennes et écart-types des évolutions en fonction du délai Description et mode de calcul

Pour chaque délai, on calcule la moyenne et l'écart-type des évolutions, en tenant compte du signe cette fois-ci, de la série brute et des ses composantes, ainsi que de la série moyenne MCD du tableau F1.

Exemple

Ainsi, la moyenne des taux de croissance mensuels de la série brute (1.38) correspond à la moyenne du tableau E5.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985											-0.375	-0.439
1986	-0.450	-0.388	-0.158	0.166	0.479	0.642	0.628	0.466	0.217	0.099	0.113	0.236
1987	0.374	0.448	0.379	0.240	0.065	-0.057	0.010	0.190	0.367	0.462	0.452	0.440
1988	0.461	0.504	0.489	0.467	0.423	0.327	0.257	0.306	0.475	0.648	0.760	0.662
1989	0.428	0.221	0.053	-0.069	-0.133	-0.084	0.051	0.163	0.251	0.290	0.278	0.267
1990	0.211	0.095	0.117	0.210	0.304	0.369	0.255	0.052	-0.148	-0.327	-0.401	-0.371
1991	-0.229	-0.007	0.169	0.259	0.255	0.188	0.130	0.089	0.046	0.070	0.118	0.146
1992	0.112	-0.073	-0.271	-0.378	-0.311	-0.146	0.025	0.079	-0.070	-0.315	-0.538	-0.627
1993	-0.517	-0.264	-0.015	0.087	0.021	-0.154	-0.312	-0.323	-0.148	0.088	0.301	0.475
1994	0.545	0.552	0.502	0.447	0.403	0.312	0.249	0.246	0.294	0.412	0.529	0.548
1995	0.487	0.398	0.286									

TAB. 4.155 – F2D1: Taux de croissance mensuels de la tendance-cycle (tableau D12).

D11 (A)	D13 (I)	D12 (C)	F1 (MCD)
1.6377	1.5067	8.071	3.2059

TAB. 4.156 – F2D : Durées moyennes des phases de croissance et décroissance.

4.5.5 Tableau F2D : Durées moyennes des phases de croissance et décroissance

Description et mode de calcul

On calcule pour quelques séries la durée moyenne des phases de croissance et décroissance. Pour cela, on considère la série des évolutions (taux de croissance si le schéma est multiplicatif, accroissements s'il est additif). La durée d'une phase de croissance (décroissance) est le nombre de termes positifs (négatifs) qui se succèdent. Si un terme est nul, il est compté dans la phase en cours.

Les durées moyennes sont calculées pour les séries suivantes :

Tableau	Symbole	Série
D11	A	La série désaisonnalisée finale
D13	I	La composante irrégulière finale
D12	C	La tendance-cycle finale
F1	MCD	La série désaisonnalisée finale lissée par une moyenne mobile MCD

Exemple

A titre d'exemple, considérons la tendance-cycle du tableau D12. La série des taux de croissance mensuels est donnée dans le tableau F2D1. La série des durées des phases de croissance ou décroissance est : $\{5,14,1,21,3,14,6,11,5,2,7,2,4,18\}$ soit une durée moyenne de 113/14=8.071 mois. On obtient ainsi le tableau F2D.

1	2	3	4	5	6	7	8	9	10	11	12
4.46	2.22	1.45	1.11	0.84	0.76	0.66	0.65	0.56	0.51	0.45	0.48

TAB. 4.157 – F2E: Ratios I/C et MCD.

4.5.6 Tableau F2E: Calcul du ratio MCD ("Months for Cyclical Dominance").

Description et mode de calcul

A partir des données du tableau F2A, on calcule les rapports \bar{I}_d/\bar{C}_d pour chaque valeur du délai d. La valeur MCD, utilisée notamment pour le tableau F1, est celle du premier délai d à partir duquel tous les ratios, y compris celui du délai d, sont inférieurs à 1 (soit $\bar{I}_k/\bar{C}_k < 1$ pour tout $k \geq d$).

Exemple

Les différentes valeurs du ratio se calculent aisément à partir des colonnes D13 et D12 du tableau F2A. Ainsi, pour le délai 1, on a $\bar{I}_1/\bar{C}_1=1.29/0.29=4.46$. D'où le tableau F2E; la valeur du MCD est donc 5.

Remarque

Si dans notre exemple la valeur pour le délai 6 avait été supérieure à 1, la valeur du MCD aurait été 7.

4.5.7 Tableau F2F : Contribution relative des composantes à la variance de la partie stationnaire de la série originale

Description et mode de calcul

Pour rendre stationnaire la série originale, on extrait une tendance linéaire si le schéma est additif ou une tendance exponentielle si le schéma est multiplicatif. Cette tendance n'est pas estimée sur la série brute (tableau A1), mais sur la composante tendance-cycle du tableau D12. Cette dernière est d'ailleurs aussi rendue stationnaire en enlevant la même tendance. Enfin, la contribution relative de chaque composante - irrégulier D13, tendance-cycle stationnarisée, saisonnalité D10, coefficients d'ajustement *a priori*, coefficients pour jours ouvrables C18 - est évaluée.

Remarques

- Dans le calcul des variances des composantes, on utilise les moyennes théoriques (xbar) pour les composantes saisonnière, irrégulière, coefficients pour jours ouvrables et les moyennes empiriques pour la série brute, la composante tendance-cycle et les coefficients d'ajustement a priori.
- Comme estimation de la composante irrégulière, X-12-ARIMA utilise le tableau E3 et X-11-ARIMA, le tableau D13.

I	С	S	P	D	Total
1.09	5.36	91.50	0.00	1.91	99.86

TAB. 4.158 – F2F : Contribution relative des composantes à la variance de la partie stationnaire de la série originale.

Exemple

Il serait fastidieux de décrire chaque étape de ce calcul assez long. On se contentera de résumer chaque étape du calcul. Le schéma étant multiplicatif, on se trouve dans le cas où la méthode employée est la plus complexe.

- On ajuste une droite, notée ols, par les moindres carrés ordinaires, au logarithme de la composante tendance-cycle du tableau D12, ce qui revient à ajuster une tendance exponentielle à la série D12.
- La série originale A1 et la tendance-cycle D12 sont alors rendues stationnaires en leur enlevant cette tendance exponentielle : $A1bis = A1 op \exp(ols)$ et $D12bis = D12 op \exp(ols)$.
- On dispose donc maintenant d'une série A1bis décomposée ici en 4 composantes indépendantes : D12bis, D13, D10 et C18. On va transformer ces variables par logarithme afin de se ramener à la somme de variables aléatoires indépendantes, ce qui permet d'utiliser l'égalité approximative :

$$\begin{aligned} \operatorname{Var}\left[\log(A1bis)\right] &\approx & \operatorname{Var}\left[\log(D12bis)\right] + \operatorname{Var}\left[\log(D13)\right] + \\ & \operatorname{Var}\left[\log(D10)\right] + \operatorname{Var}\left[\log(C18)\right]. \end{aligned}$$

- Chacune de ces variances est alors calculée en utilisant les moyennes empiriques pour $\log(A1bis)$ et $\log(D12bis)$, et et la moyenne théorique (ici 0 à cause de la transformation logarithmique) pour $\log(D10)$, $\log(C18)$ et $\log(D13)$.
- Enfin, les contributions de la variance de chaque composante à la variance de la série originale stationnarisée sont éditées dans le tableau F2F.

4.5.8 Tableau F2G : Autocorrélogramme de la composante irrégulière

Description et mode de calcul

Ce tableau présente les autocorrélations de la composante irrégulière D13 calculées pour des retards allant de 1 au nombre de périodes +2 (soit 14 pour une série mensuelle et 6 pour une série trimestrielle). Variance et autocorrélations sont calculées avec la moyenne théorique xbar. On a donc, avec n observations dans la série I:

$$Corr_{k}(I) = \frac{\sum_{t=k+1}^{n} (I_{t} - xbar) (I_{t-k} - xbar)}{\sum_{t=1}^{n} (I_{t} - xbar)^{2}}$$

Exemple

Ici, la moyenne théorique est 1. Le calcul des autocorrélations jusqu'à l'ordre 14 conduit au tableau F2G.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
-0.15	-0.15	0.00	-0.10	0.21	0.00	0.00	-0.07	-0.26	0.05	0.08	-0.05	0.02	-0.08

TAB. 4.159 – F2G: Autocorrélogramme de la composante irrégulière.

Ratio \bar{I}/\bar{C} final pour D12	2.74
Ratio \bar{I}/\bar{S} final pour D10	4.60

TAB. 4.160 - F2H: Ratios finals \bar{I}/\bar{C} et \bar{I}/\bar{S} .

4.5.9 Tableau F2H : Ratios \bar{I}/\bar{C} et \bar{I}/\bar{S}

Description et mode de calcul

Ce tableau rappelle les valeurs des ratios \bar{I}/\bar{C} et \bar{I}/\bar{S} calculés respectivement aux tableaux D12 et D10.

4.5.10 Tableau F2I: Tests d'existence de saisonnalité

Description et mode de calcul

Ce tableau rappelle les valeurs des tests d'existence de la saisonnalité effectués aux tableaux B1 (test F de Fisher de saisonnalité stable) et D8 (test F de Fisher de saisonnalité, test de Kruskal-Wallis de saisonnalité, test F de Fisher de saisonnalité évolutive).

Remarque

X-11-ARIMA imprime aussi le résultat du test d'existence d'un effet lié aux jours ouvrables (tableau C15).

4.5.11 Tableau F3 : Statistiques de qualité de l'ajustement

Description et mode de calcul

Ce tableau présente onze statistiques permettant de juger la qualité de l'ajustement saisonnier. Leur calcul et leur justification sont détaillés dans Lothian et Morry [49]. Ces statistiques varient entre 0 et 3, mais seules les valeurs en dessous de 1 sont

	Statistique	PROB > Stat (%)
Test F de saisonnalité stable (B1)	183.698	0.000
Test F d'effet pour jours ouvrables (C15)	68.245	0.000
Test F de saisonnalité stable (D8)	498.194	0.000
Test de Kruskal-Wallis de saisonnalité stable (D8)	104.780	0.000
Test F de saisonnalité évolutive (D8)	1.724	10.386

TAB. 4.161 – F2I: Tests d'existence de saisonnalité.

jugées acceptables. Un indicateur synthétique de la qualité de la désaisonnalisation est construit comme combinaison linéaire de ces 11 statistiques²².

Statistique M1: Si, dans l'évolution de la série, la part de la composante irrégulière est trop forte, il sera difficile d'identifier et d'extraire une composante saisonnière. La statistique M1 mesure la contribution de l'irrégulier à la variance totale à partir des résultats du tableau F2B. Lothian et Morry [49] ont montré que, pour une série mensuelle, c'était le retard 3 qui permettait la meilleure comparaison des contributions respectives des composantes irrégulière et saisonnière. La statistique M1 se définit, en reprenant les notations du tableau F2B, par :

$$M1 = 10 \times \frac{\bar{I}_3^2 / \bar{O'}_3^2}{1 - \bar{P}_3^2 / \bar{O'}_3^2}.$$

Cette statistique, qui est donc associée à la case (3,1) du tableau F2B, est jugée acceptable si elle ne dépasse pas 10%. M1 est "normalisée" par un facteur 10 (ou en divisant le pourcentage du tableau F2B par 10).

Statistique M2: Cette statistique, similaire à la statistique M1, est calculée à partir de la contribution de la composante irrégulière à la variance de la série brute rendue stationnaire. Cette contribution figure, exprimée en pourcentage, dans la première colonne du tableau F2F. La statistique M2 se définit par :

$$M2 = 10 \times \frac{\text{Contribution}(I)}{1 - \text{Contribution}(P)}.$$

Elle est jugée acceptable si elle ne dépasse pas 10%. M2 est "normalisée" par un facteur 10 (ou en divisant le pourcentage du tableau F2F par 10).

Statistique M3 : Pour obtenir une désaisonnalisation correcte, X-11 estime successivement chacune des composantes. En particulier, dans l'extraction de la composante tendance-cycle, il est souhaitable que la contribution de l'irrégulier à l'évolution de l'estimation provisoire de la série désaisonnalisée ne soit pas trop importante. Dans le cas contraire, il sera difficile de séparer ces deux composantes. La statistique M3 mesure cette contribution à partir du ratio \bar{I}/\bar{C} du tableau D12, repris dans le tableau F2H. On a :

$$M3 = \frac{1}{2} \times \left(\frac{\bar{I}}{\bar{C}} - 1\right).$$

Statistique M4 : L'une des hypothèses de base conditionnant la validité des tests de Fisher fait au cours du traitement X-11 est la nature aléatoire de la composante irrégulière. La statistique M4 teste la présence d'autocorrélation à partir de la durée moyenne des séquences (ADR, "Average Duration of Runs") de l'irrégulier qui figure au tableau F2D, selon la formule :

$$M4 = \frac{\left| \frac{n-1}{ADR} - \frac{2(n-1)}{3} \right|}{2.577 \times \sqrt{\frac{16n-29}{90}}}$$

où n est le nombre total d'observations de la série.

²²Pour des conseils d'utilisation de ces statistiques, voir Baxter [5].

Statistique M5: La valeur MCD calculée au tableau F2E mesure le nombre de mois nécessaires pour que les variations absolues de la composante tendance-cycle l'emportent sur celles de la composante irrégulière. Cette mesure, comme M3, permet donc de comparer l'importance des évolutions des composantes tendancielle et irrégulière.

Le MCD est le nombre de mois k tel que : $\bar{I}_j/\bar{C}_j \leq 1$ pour tout $j \geq k$. La valeur utilisée ici utilise une interpolation linéaire :

$$MCD' = (k-1) + \frac{\frac{\bar{I}_{k-1}}{\bar{C}_{k-1}} - 1}{\frac{\bar{I}_{k-1}}{\bar{C}_{k-1}} - \frac{\bar{I}_{k}}{\bar{C}_{k}}}.$$

Il est généralement admis que, pour une série mensuelle, cette valeur ne doit pas dépasser 6, ce qui permet de définir la statistique M5 comme :

$$M5 = \frac{MCD' - 0.5}{5}.$$

Statistique M6 : Pour extraire la composante saisonnière, X-11 lisse une estimation de la composante saisonnier-irrégulier, par exemple à l'aide d'une moyenne mobile 3×5 . L'expérience a montré que si les évolutions annuelles de la composante irrégulière étaient trop faibles en regard des évolutions annuelles de la composante saisonnière (faible ratio I/S), la moyenne 3×5 n'était pas assez flexible pour suivre le mouvement saisonnier. Lothian [47] a montré que cette moyenne 3×5 fonctionne bien pour des valeurs du ratio \bar{I}/\bar{S} comprises entre 1.5 et 6.5. La statistique M6 est dérivée de ces valeurs et du ratio \bar{I}/\bar{S} du tableau D10, repris dans le tableau F2H. On a :

$$M6 = \frac{1}{2.5} \times \left| \frac{\bar{I}}{\bar{S}} - 4 \right|.$$

Statistique M7 : M7 est le test combiné pour la présence d'une saisonnalité identifiable présentée au paragraphe 4.3.7. Ce test compare, à partir des tests F de Fisher du tableau D8, la contribution relative des saisonnalités stable (statistique F_S) et mouvante (statistique F_M). La statistique M2 permet de voir si la saisonnalité est ou non identifiable par X-11. On a :

$$M7 = \sqrt{\frac{1}{2} \left(\frac{7}{F_S} + \frac{3F_M}{F_S} \right)}.$$

Statistiques M8 à M11: Les filtres saisonniers utilisés par X-11 fonctionnent de façon optimale pour des saisonnalités constantes. Si ce mouvement saisonnier évolue au cours des ans, les estimations des coefficients saisonniers peuvent être plus ou moins erronées. On considère deux types de mouvements : celui dû à des variations quasi aléatoires de court terme et un autre dû à des évolutions de plus long terme. L'importance du premier type de mouvement peut être mesurée par la moyenne des évolutions absolues annuelles (statistiques M8 et M10). La moyenne simple des évolutions annuelles donne au contraire une idée de l'importance d'un mouvement (linéaire) systématique (statistiques M9 et M11).

Ces 4 dernières statistiques sont calculées à partir de coefficients saisonniers normalisés. À la composante saisonnière du tableau D10, on applique la transformation $S_t = (S_t - \bar{S})/\sigma(S)$, où la moyenne utilisée est la moyenne théorique xbar.

En utilisant une notation similaire à celle de l'équation (4.5) du paragraphe 4.3.9, on note $S_{i,j}$, $i=1,\ldots,n_j$, $j=1,\ldots,k$, le coefficient saisonnier normalisé pour la $i^{\text{ème}}$ observation de la période j, où le nombre de périodes est k=4 dans le cas trimestriel et k=12 dans le cas mensuel.

 Statistique M8 : L'ampleur des variations de la composante saisonnière est mesurée par la variation absolue moyenne :

$$|\overline{\Delta S}| = \frac{1}{\sum_{j=1}^{k} (n_j - 1)} \sum_{j=1}^{k} \sum_{i=2}^{n_j} |S_{i,j} - S_{i-1,j}|.$$

On a alors, si la limite de tolérance est de 10% :

$$M8 = 100 \times \left| \overline{\Delta S} \right| \times \frac{1}{10}.$$

- Statistique M9 : On a, si la limite de tolérance est de 10% :

$$M9 = \frac{10}{\sum_{j=1}^{k} (n_j - 1)} \sum_{j=1}^{k} |S_{n_j,j} - S_{1,j}|.$$

Statistique M10 : C'est l'équivalent de la statistique M8 mesurée sur des années récentes :

$$|\overline{\Delta S}|_R = \frac{1}{3k} \sum_{j=1}^k \sum_{i=n_i-4}^{n_j-2} |S_{i,j} - S_{i-1,j}|.$$

et

$$M10 = 100 \times \left| \overline{\Delta S} \right|_R \times \frac{1}{10}.$$

Statistique M11 : C'est l'équivalent de la statistique M9 mesurée sur des années récentes :

$$M11 = \frac{10}{3k} \sum_{j=1}^{k} |S_{n_j-2,j} - S_{n_j-5,j}|.$$

Statistique Q : Enfin, une statistique globale de qualité, combinaison linéaire des statistiques M1 à M11, est calculée. On a :

$$Q = \frac{10 \times M1 + 11 \times M2 + 10 \times M3 + 8 \times M4 + 11 \times M5 + 10 \times M6}{100} + \frac{18 \times M7 + 7 \times M8 + 7 \times M9 + 4 \times M10 + 4 \times M11}{100}.$$

Remarques

- Dans le calcul des statistiques M1 et M2, X12-ARIMA utilise la série du tableau
 E3 comme estimation de la composante irrégulière, au lieu de D13 pour X-11-ARIMA.
- La statistique M6 n'a de sens que si une moyenne mobile 3×5 a été utilisée. Dans le cas contraire, son poids dans la statistique Q est nul.

Statistique	Value
M1	0.108
M2	0.109
M3	0.871
M4	0.029
M5	0.779
M6	0.241
M7	0.111
M8	0.126
M9	0.099
M10	0.163
M11	0.151
Q	0.270

TAB. 4.162 – F3 : Statistiques de qualité.

- Dans le calcul des statistiques M10 et M11, les valeurs des deux dernières années ne sont pas utilisées.
- Les statistiques M8 à M11 ne sont calculables que si la série couvre au moins 6 années. Dans le cas contraire, le vecteur de poids utilisé pour calculer la statistique Q est (14, 15, 10, 8, 11, 10, 32, 0, 0, 0, 0).
- X-12-ARIMA calcule aussi une statistique globale Q2 qui est calculée comme la statistique Q, mais sans prendre en compte M2.
- La valeur de certaines de ces statistiques M peut dépasser 3. Dans ce cas, le programme les prend égales à 3 pour éviter qu'elles n'aient un trop grand impact sur la statistique globale Q.

Exemple

Les statistiques de qualité pour notre exemple sont présentées dans le tableau 4.162, version adaptée du tableau F3 sorti par les logiciels étudiés.

On a:

$$M1 = \frac{1.08}{10} = 0.108,$$

$$M2 = \frac{1.09}{10} = 0.109,$$

$$M3 = \frac{1}{2}(2.742 - 1) = 0.871,$$

$$M4 = \frac{\left|\frac{114 - 1}{1.5067} - \frac{2(114 - 1)}{3}\right|}{2.577 \times \sqrt{\frac{16 \times 114 - 29}{90}}} = \frac{0.3350}{11.509} = 0.029,$$

$$M5 = \frac{1}{5}\left[4 + \frac{1.14 - 1}{1.14 - 0.81} - 0.5\right] = 0.779,$$

$$M6 = \frac{1}{2.5} \times |4.602 - 4| = 0.241,$$

$$M7 = \sqrt{\frac{1}{2}\left(\frac{7 + 3 \times 1.724}{498.194}\right)} = 0.111.$$

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1985										1.143	0.887	0.062
1986	0.378	-0.004	0.767	0.141	-0.216	0.333	-0.461	-3.219	0.191	1.142	0.882	0.072
1987	0.384	-0.012	0.763	0.141	-0.226	0.330	-0.455	-3.198	0.188	1.148	0.868	0.074
1988	0.393	-0.026	0.755	0.145	-0.243	0.328	-0.447	-3.160	0.183	1.151	0.866	0.063
1989	0.405	-0.047	0.736	0.152	-0.256	0.315	-0.439	-3.097	0.182	1.165	0.849	0.039
1990	0.412	-0.068	0.716	0.164	-0.272	0.309	-0.424	-3.031	0.177	1.169	0.841	0.010
1991	0.420	-0.092	0.691	0.173	-0.266	0.292	-0.402	-2.966	0.173	1.171	0.816	-0.013
1992	0.421	-0.112	0.676	0.182	-0.254	0.286	-0.380	-2.924	0.168	1.154	0.795	-0.015
1993	0.420	-0.126	0.667	0.186	-0.231	0.277	-0.370	-2.901	0.171	1.139	0.767	0.002
1994	0.416	-0.136	0.667	0.188	-0.222	0.279	-0.368	-2.894	0.175	1.130	0.755	0.016
1995	0.411	-0.141	0.671									

TAB. 4.163 – Coefficients saisonniers standardisés.

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
1986										-0.168	-0.501	1.003
1987	0.612	-0.867	-0.406	0.018	-1.011	-0.302	0.577	2.089	-0.299	0.636	-1.377	0.173
1988	0.890	-1.333	-0.779	0.380	-1.736	-0.227	0.794	3.897	-0.425	0.259	-0.232	-1.103
1989	1.218	-2.085	-1.902	0.761	-1.306	-1.341	0.815	6.237	-0.141	1.470	-1.611	-2.350
1990	0.655	-2.095	-2.013	1.153	-1.582	-0.568	1.539	6.638	-0.514	0.370	-0.803	-2.938
1991	0.799	-2.429	-2.500	0.955	0.594	-1.687	2.166	6.503	-0.400	0.188	-2.491	-2.254
1992	0.145	-2.031	-1.527	0.922	1.193	-0.581	2.228	4.180	-0.506	-1.651	-2.138	-0.194
1993	-0.085	-1.391	-0.912	0.347	2.338	-0.884	0.971	2.342	0.341	-1.518	-2.789	1.640
1994	-0.471	-0.951	0.030	0.249	0.870	0.121	0.155	0.688	0.350	-0.926	-1.255	1.402
1995	-0.506	-0.538	0.453									

TAB. 4.164 – Variations annuelles, en %, des coefficients saisonniers standardisés.

Le calcul des autres statistiques demande une standardisation des coefficients saisonniers du tableau D10. On calcule l'écart-type de ce tableau par la formule :

$$\sigma(S) = \left(\frac{1}{n} \sum_{t=1}^{n} (S_t - 1)^2\right)^{1/2} = 0.1001.$$

On standardise ensuite le tableau D10 par la formule $S_t = (S_t - 1)/\sigma(S)$. Ainsi, la valeur d'avril 1986 est :

$$AVR86 = (1.01408 - 1)/0.1001 = 0.1407.$$

Le résultat est le tableau 4.163 des coefficients saisonniers standardisés.

On en déduit les évolutions annuelles en retranchant à la ligne t la ligne t-1 dans le tableau 4.163. Ainsi, l'évolution de la saisonnalité entre les mois d'avril 1986 et avril 1987 est proche de 0. On obtient ainsi le tableau 4.164 des variations annuelles, en %, des coefficients saisonniers standardisés.

La statistique M8 se déduit à partir de la moyenne des valeurs absolues du tableau 4.164; c'est en fait 10 fois cette moyenne, soit 0.126.

De même, la statistique M10 se déduit à partir de la moyenne des valeurs absolues des données du tableau, d'avril 1990 à mars 1993. M10 est égale à 10 fois cette moyenne, soit 0.163.

Pour le calcul de M9, on peut par exemple faire la moyenne, multipliée par 10, des valeurs absolues des moyennes mensuelles de ce tableau. Ainsi, la moyenne de la

colonne du mois d'avril est :

$$\begin{array}{rcl} Avril & = & \frac{0.00018 + 0.00380 + 0.00761 + 0.01153}{8} + \\ & & \frac{+0.00955 + 0.00922 + 0.00347 + 0.00249}{8} \\ & = & 0.00598. \end{array}$$

De même, pour les autres mois, on aurait, en % :

_	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
	0.362	-1.525	-1.062	0.598	-0.080	-0.688	1.156	4.072	-0.199	-0.149	-1.466	-0.513

Et M9 est égale à 10 fois la moyenne des valeurs absolues de ces données :

$$M9 = 10 (0.00362 + 0.01525 + 0.01062 + 0.00598 + 0.00080 + 0.00688) + 10 (0.01156 + 0.04072 + 0.00199 + 0.00149 + 0.01466 + 0.00513)$$
$$= 0.099.$$

Pour M11, on ferait la même chose mais sur les données d'avril 1990 à mars 1993, ce qui conduit à la valeur 0.151. Enfin, on déduit la valeur de la statistique Q finale :

$$\begin{array}{rcl} Q & = & \frac{1.08 + 1.199 + 8.71 + 0.233 + 8.569 + 2.45}{100} + \\ & & \frac{1.998 + 0.882 + 0.693 + 0.652 + 0.604}{100} \\ & = & 0.270. \end{array}$$

Chapitre 5

Modélisation de l'effet de Pâques

X-11-ARIMA et X-12-ARIMA proposent différents modèles de correction de l'effet de Pâques à partir d'une estimation de la composante irrégulière. Les modèles proposés et la méthodologie utilisée sont parfois assez différents dans les deux logiciels et c'est pourquoi nous n'avons pas intégré cette estimation dans l'exemple du chapitre 4.

5.1 La fête de Pâques

5.1.1 Un peu d'histoire

Selon les Évangiles, la résurrection du Christ a eu lieu pendant la *Pâque juive*, fête judaïque annuelle célébrée après la première pleine lune de Printemps et au cours de laquelle un agneau est sacrifié ¹ pour commémorer l'exode d'Égypte. Les Chrétiens souhaitèrent conserver le lien symbolique entre ce sacrifice et le sacrifice de Jésus et c'est pourquoi il fut décidé, au concile de Nicée en 325, que la fête chrétienne de Pâques serait célébrée le premier dimanche après la première pleine lune suivant le solstice de Printemps. Malheureusement, l'ancien calendrier julien était basé sur une année un peu plus longue que celle en usage aujourd'hui et, peu à peu, le solstice de Printemps se "rapprochait" des mois d'hiver. Lorsqu'en 1582 le Pape Grégoire XIII introduisit le calendrier grégorien encore en usage de nos jours, le solstice de Printemps était presque en Février et l'un des principaux objectifs du changement de calendrier fut sans aucun doute de ramener la fête de Pâques au Printemps!

5.1.2 Le calcul des dates de Pâques

La détermination à l'avance des dates de Pâques a fait l'objet de travaux de mathématiciens célèbres et Gauss lui-même est l'auteur d'algorithmes savants mais hélas

^{1&}quot;Le Seigneur passera pendant la nuit et tuera tous les premiers nés égyptiens. Saura-t-il discerner les enfants d'Israël? Oui, car chaque famille aura, la veille au soir, immolé un agneau; prête au départ, en tenue de voyage, ayant renoncé au pain levé des villes, elle attendra. Sur la porte elle aura inscrit un signe avec le sang de cette victime qui, semblable au bélier d'Abraham, rachète la vie des enfants de Dieu (...) La Pâque est née, la fête du "passage"; Israël la commémorera d'année en année, au souvenir de la nuit où la puissance de mort "passa outre" et contraignit la force brutale à laisser agir Dieu". Daniel-Rops [21]

Année	Dates de Pâques
1985	7 avril
1986	30 mars
1987	19 avril
1988	3 avril
1989	26 mars
1990	15 mars
1991	31 mars
1992	19 avril
1993	11 avril
1994	3 avril
1995	16 avril

TAB. 5.165 – Dates de Pâques pour les années 1985 à 1995.

complexes. Gardner [26] cite un algorithme simple, dû à Thomas H. O'Beirne [58], valable de 1900 à 2099 inclus :

- Soit Y l'année. Soustraire 1900 de Y et soit N la différence.
- Diviser N par 19; soit A le reste de cette division.
- Diviser (7A+1) par 19 et soit B le quotient de la division dont on ignore le reste.
- Diviser (11A + 4 B) par 29; soit M le reste de cette division.
- Diviser N par 4 et soit Q le quotient de la division dont on ignore le reste.
- Diviser (N+Q+31-M) par 7; soit W le reste.
- La date de Pâques est alors 25 M W. Si le résultat est positif, le mois est avril, et mars dans le cas contraire (en interprétant 0 comme le 31 mars, -1 comme le 30 mars et ainsi de suite jusqu'à -9 pour le 22 mars).

Les dates de Pâques, pour les années 1985 à 1995, sont données dans le tableau 5.165. Pour 1989, l'algorithme se déroule ainsi :

```
\begin{array}{rcl} Y & = & 1989 \\ N & = & 1989 - 1900 = 89 \\ N/19 & = & 89/19 = 19 \times 4 + 13 \ \mathrm{et} \ \mathrm{donc} \ A = 13 \\ (7A+1)/19 & = & 92/19 = 19 \times 4 + 16 \ \mathrm{et} \ \mathrm{donc} \ B = 4 \\ (11A+4-B)/29 & = & 143/29 = 29 \times 4 + 27 \ \mathrm{et} \ \mathrm{donc} \ M = 27 \\ N/4 & = & 89/4 = 22 \times 4 + 1 \ \mathrm{et} \ \mathrm{donc} \ Q = 22 \\ (N+Q+31-M)/7 & = & 115/7 = 16 \times 7 + 3 \ \mathrm{et} \ \mathrm{donc} \ W = 3 \\ 25-M-W & = & -5 \end{array}
```

Comme le résultat est négatif, Pâques est en mars, le 26 (31 - 5).

D'autres algorithmes, certains plus généraux, peuvent être trouvés dans Montes [54] et Tøndering [65]. La succession des dates de Pâques se répète, dans le calendrier grégorien, tous les 5700000 ans et la distribution de ces dates sur un cycle complet est représentée à la figure 5.1. On note que le dimanche de Pâques tombe beaucoup plus souvent au mois d'avril (76.7%) qu'au mois de mars (23.3%).

Fig. 5.1 – Distribution des dates de Pâques, du 22 mars au 25 avril, sur le cycle complet de 5700000 ans.

5.1.3 Pâques et la désaisonnalisation

Pourquoi se préoccupe-t-on de la fête de Pâques en analyse des séries temporelles et en désaisonnalisation? Tout simplement parce que Pâques entraîne un changement du niveau de l'activité de nombreux secteurs : vendredi saint et lundi de Pâques fériés, modification des habitudes alimentaires (chocolat, viande d'agneau, ...), etc. De plus, le dimanche de Pâques peut être au plus tôt le 22 mars (la dernière fois remonte à 1818 et la prochaine fois sera en 2285) et au plus tard le 25 avril (la dernière fois en 1943 et la prochaine fois en 2038) soit au premier ou au second trimestre : les effets potentiels de cette fête ne sont donc pas complètement pris en compte dans la saisonnalité de la série

Les modèles élaborés pour la prise en compte de l'effet de Pâques dépendent de la nature même de la série.

- 1997 est la dernière année où le dimanche de Pâques est tombé en mars (le 30), ce qui ne s'était pas produit depuis 1991 où Pâques est tombé le 31 mars. Pour les ventes mensuelles d'automobiles par exemple, la variation observée entre mars et avril 1997 n'est pas comparable à celles observées entre les mêmes mois des années précédentes. La fermeture des magasins le vendredi saint a entraîné une baisse inhabituelle des ventes en mars 1997. Inversement, on a enregistré un relativement plus grand nombre de mariages en mars 1997. Pour ces séries, l'impact de Pâques, positif ou négatif, est immédiat dans le sens où il se concentre sur le mois dans lequel tombe Pâques.
- Pour d'autres séries, les variations liées à Pâques peuvent se faire sentir non seulement pendant la fête elle-même mais aussi pendant les jours où les semaines qui précèdent. Cet effet graduel s'observe par exemple dans les ventes de chocolat, de fleurs, etc. Dans ce cas, l'effet constaté dépend non seulement du fait que Pâques tombe en mars ou en avril, mais aussi de la date à laquelle il tombe en avril. Les chiffres de mars seront alors d'autant plus affectés que

Pâques tombe tôt en avril.

Les effets de Pâques peuvent enfin être estimés soit sur les données brutes, à l'aide de modèles de régression avec erreurs ARIMA, soit sur une estimation préalable de la composante irrégulière obtenue après élimination des autres effets présents dans la série (tendance, saisonnalité, effets de jours ouvrables, etc.). La première approche n'est proposée que par X-12-ARIMA, dans son module RegARIMA (Findley et al. [23]), et la seconde est disponible dans les deux logiciels X-11-ARIMA et X-12-ARIMA; c'est sur les modèles utilisés pour cette seconde approche que nous allons nous concentrer à présent. Nous en distinguerons six :

- Les 3 modèles proposés par X-11-ARIMA, qui estiment l'effet de Pâques à partir de la composante irrégulière du tableau D13 : le modèle à effet ponctuel, le modèle à effet ponctuel corrigé et le modèle à effet graduel.
- Les 3 modèles proposés par X-12-ARIMA: le modèle de Bateman-Mayes, qui estime l'effet de Pâques à partir du tableau D13, et deux modèles à effet graduel, ("Sceaster" et "Easter"), qui estiment l'effet de Pâques à partir des estimations de l'irrégulier des tableaux B13 et C13, le cas échéant, en même temps que les effets de jours ouvrables.

Les composantes irrégulières du tableau B13 (tableau 4.50, paragraphe 4.1.12) et tableau D13 (tableau 4.140, paragraphe 4.3.14) serviront à illustrer les différents modèles.

5.2 Les modèles utilisés dans X-11-ARIMA

Comme nous l'avons vu, il est plus fréquent que Pâques tombe en avril et, dans les modèles qui vont suivre, c'est cette situation qui est considérée comme "normale": si un "effet Pâques" est détecté, seules les données des années où Pâques affecte le mois de mars seront corrigées. Cette correction affectera les mois de mars et avril des années concernées et, comme il est souhaitable que le niveau de la série ne soit pas modifié, on va faire en sorte que la somme des coefficients correcteurs soit égale à 0 pour un schéma additif, ou à 2 pour un schéma multiplicatif.

Enfin, notons qu'en travaillant sur les estimations de la composante irrégulière du tableau D13, c'est un effet de Pâques *résiduel* qui est estimé.

5.2.1 Le modèle à effet ponctuel

Le modèle à *effet ponctuel* est une version simplifiée des modèles actuellement disponibles dans les logiciels et qui seront explicités par la suite.

Modèle et estimation des effets

- Soit I_{i,j} la valeur de la composante irrégulière du tableau D13 correspondant au mois j de l'année i.
- $-I_{i,4}$ et $I_{i,3}$, $(i=1,\ldots,N)$ sont ainsi les valeurs de la composante irrégulière des mois d'avril et de mars, pour les N années disponibles. On note 2 $Y_i = I_{i,4} I_{i,3}$, leurs différences.

²Dans ce chapitre, nous utiliserons les notations usuelles en régression linéaire.

– Soit Z_i le nombre de jours entre le dimanche de Pâques de l'année i et le 22 mars (la date la plus précoce pour cette fête) et soit $X_i = f(Z_i)$ la fonction définie par :

$$X_i = f(Z_i) = \begin{cases} 1 & \text{si } Z_i \leq 9 \text{ (Pâques tombe en mars)} \\ 0 & \text{si } Z_i > 9 \text{ (Pâques tombe en avril)} \end{cases}$$

Bien que n'intervenant pas toujours explicitement dans les calculs relatifs au modèle à effet ponctuel, la variable Z_i et la fonction $X_i = f(Z_i)$ permettent d'uniformiser la présentation des différents modèles et ainsi d'en faciliter leur comparaison.

L'effet de Pâques peut s'obtenir en expliquant les valeurs de l'irrégulier par la variable X_i , c'est-à-dire en mesurant l'impact sur l'irrégulier du fait que Pâques tombe en mars. On a donc les modèles suivants :

$$I_{i,3} = a_M + b_M X_i + \eta_i$$

$$I_{i,4} = a_A + b_A X_i + \xi_i$$

où b_M et b_A mesurent l'impact de Pâques sur les valeurs des mois de mars et avril et où η_i et ξ_i sont les termes d'erreurs des régressions. Pour préserver le niveau de la série, b_A et b_m doivent vérifier $b_A = -b_M = b/2$ et, en prenant la différence de ces modèles, on a :

$$Y_i = I_{i,4} - I_{i,3} = a + bX_i + \epsilon_i$$
.

- Le paramètre a s'interprète comme un effet moyen de la fête de Pâques sur la différence des irréguliers. Il traduit donc une différence structurelle entre les mois de mars et d'avril (ou les premier et second trimestres). Les données du tableau D13 ne présentant en principe ni tendance ni saisonnalité, le paramètre a doit être nul en théorie et son estimation proche de zéro
- Le paramètre b est l'effet supplémentaire dû au fait que Pâques tombe en mars.
 C'est donc bien cette quantité qui mesure l'effet propre à la fête de Pâques.

Soit \hat{b} l'estimateur du paramètre b; alors, sous l'hypothèse de conservation du niveau de la série, les coefficients correcteurs appliqués sont :

	Schéma additif	Schéma multiplicatif
Mois de mars	$-\hat{b} \times X_i/2$	$1 - \hat{b} \times X_i/2$
Mois d'avril	$\hat{b} \times X_i/2$	$1 + \hat{b} \times X_i/2$

Seules les données des années où Pâques tombe en mars, et pour lesquelles $X_i = f(Z_i)$ ne sera pas nul, seront donc corrigées.

L'estimateur \hat{b} de b, obtenu par les moindres carrés ordinaires, peut se calculer explicitement³.

- Soient N_M et N_A les nombres d'années où Pâques tombe en mars ou en avril. On a bien entendu $N=N_M+N_A$.
- Soient YM et YA les sommes des valeurs Y_i pour les années où Pâques tombe respectivement en mars et en avril.

Année	Date de Pâques	Z_i	$X_i = f(Z_i)$	$I_{i,3}$	$I_{i,4}$	Y_i
1986	30 mars	8	1	0.99099	1.06850	0.07751
1987	19 avril	28	0	1.00837	0.99721	-0.01116
1988	3 avril	12	0	1.00020	0.99587	-0.00433
1989	26 mars	4	1	0.97009	1.02498	0.05489
1990	15 avril	24	0	1.00315	0.99900	-0.00415
1991	31 mars	9	1	0.99502	1.00659	0.01156
1992	19 avril	28	0	1.00018	1.00294	0.00276
1993	11 avril	20	0	1.00691	0.97966	-0.02726
1994	3 avril	12	0	0.99280	0.99774	0.00494

TAB. 5.166 – Effet de Pâques, données du modèle à effet ponctuel.

Il est facile de vérifier que :

$$\hat{b} = \frac{YM}{N_M} - \frac{YA}{N_A} = \bar{Y}_M - \bar{Y}_A$$

et

$$\hat{a} = \frac{YA}{N_A} = \bar{Y}_A.$$

Clairement, \hat{a} devrait être proche zéro. En effet, le cas où Pâques tombe en avril correspondant à la situation "normale", l'effet de Pâques est pour ces années compris dans la saisonnalité et n'affecte donc pas les valeurs de l'irrégulier des mois de mars et avril pour ces années. Celles ci sont donc en théorie de moyenne égale à 0 ou à 1 selon le schéma de composition et leur différence est ainsi de moyenne nulle. En conséquence, on a aussi :

$$\hat{b} = \bar{Y}_M - \bar{Y}_A \approx \bar{Y}_M.$$

Enfin, il est possible de tester la présence d'un effet de Pâques en utilisant un test F de Fisher.

Exemple

Seules les données de 1986 à 1994 permettent de calculer la différence des irréguliers de mars et avril (tableau 5.166). De ces données, on déduit :

$$\hat{b} = \frac{0.07751 + 0.05489 + 0.01156}{3} - \frac{-0.01116 - 0.00433 - 0.00415 + 0.00276 - 0.02726 + 0.00494}{6}$$

$$= 0.04799 + 0.00653$$

$$= 0.05452,$$

$$\hat{a} = -0.00653.$$

Les résultats de l'analyse de la variance et le test F associés à cette régression sont présentés dans le tableau 5.167. L'effet de Pâques est donc jugé significatif au niveau de 1%.

Les coefficients de correction seront nuls pour les années où Pâques tombe en avril. Le modèle étant multiplicatif, pour les années où Pâques tombe en mars, ils seront :

	Somme des Carrés	Degrés de liberté	Moyenne des Carrés	F	PROB>F
Effet Pâques	0.0059	1	0.0059	14.2262	0.0070
Erreur	0.0029	7	0.0004		
Total	0.0089				

TAB. 5.167 – Effet de Pâques, Test F pour le du modèle à effet ponctuel.

Année	Mars	Avril
1985		
1986	97.274	102.726
1987	100.000	100.000
1988	100.000	100.000
1989	97.274	102.726
1990	100.000	100.000
1991	97.274	102.726
1992	100.000	100.000
1993	100.000	100.000
1994	100.000	100.000
1995	100.000	

TAB. 5.168 – A11 : Effet de Pâques, modèle à effet ponctuel, valeurs pour les mois de mars et avril (100 pour les autres mois).

- pour les données du mois d'avril : 1 + 0.05452/2 = 1.02726;
- pour les données du mois de mars : 1 0.05452/2 = 0.97274.

Ce qui conduit aux coefficients du tableau 5.168.

5.2.2 Le modèle à effet ponctuel corrigé

X-11-ARIMA incorpore un modèle à *effet ponctuel corrigé*, mis au point au Bureau Australien de Statistique (Laker [44, 45]), légèrement différent du modèle précédent et qui prend en compte les cas où le week-end pascal est à cheval sur mars et avril, c'est-à-dire lorsque le dimanche de Pâques tombe le 31 mars, le 1 ou le 2 avril. Dans ce cas, on suppose que les deux mois sont affectés par la fête de Pâques et on considère que cet effet est alors la moitié de l'effet observé lorsque le week-end pascal tombe entièrement en mars.

Modèle

Le modèle s'écrit $Y_i = a + bX_i + \epsilon_i$ avec :

- $-I_{i,j}$ $(i=1,\ldots,N)$ la valeur de la composante irrégulière du tableau D13 correspondant au mois j de l'année i, $I_{i,4}$ et $I_{i,3}$ les valeurs de la composante irrégulière des mois d'avril et de mars, pour les N années disponibles, et $Y_i = I_{i,4} I_{i,3}$, leurs différences.
- Soit Z_i le nombre de jours entre le dimanche de Pâques de l'année i et le 22 mars (la date la plus précoce pour cette fête) et soit $X_i = f(Z_i)$ la variable

définie par :

$$X_i = f(Z_i) = \begin{cases} 1 & \text{si} \quad Z_i \leq 8 \\ 0.5 & \text{si} \quad 9 \leq Z_i \leq 11 \\ 0 & \text{si} \quad Z_i \geq 12 \end{cases}$$
 (Pâques en mars) (Pâques à cheval sur mars-avril)

La valeur de \hat{b} peut se calculer explicitement.

- Soient N_M , N_{MA} et N_A les nombres d'années où Pâques tombe en mars, à cheval sur mars-avril et en avril. On a bien entendu $N=N_M+N_{MA}+N_A$.
- Soient YM, YMA et YA les sommes des valeurs Y_i pour les années où Pâques tombe respectivement en mars, à cheval sur mars-avril et en avril ; et soit YT = YM + YMA + YA.

On a alors:

$$\hat{b} = 2 \times \frac{YM + 0.5 \times YMA - r \times YT}{2 \times N \times r \times (1 - r) - 0.5 \times N_{MA}}$$

avec

$$r = \frac{N_M + 0.5 \times N_{MA}}{N}$$

Ici encore, et comme le fait le programme X-11-ARIMA, la présence d'un effet de Pâques peut être testée par un test F de Fisher.

Estimation des effets pour un schéma additif

L'estimation naturelle des corrections est la même que précédemment pour un schéma additif :

	Schéma additif
Mois de mars	$-\hat{b} \times X_i/2$
Mois d'avril	$\hat{b} \times X_i/2$

Ainsi, pour une année où Pâques tombe à cheval sur mars et avril, la correction sera moitié moindre que celle apportée aux années où Pâques tombe en mars.

Estimation des effets pour un schéma multiplicatif

Dans le cas d'un schéma de composition multiplicatif, le programme impose une correction supplémentaire.

Pour les années où Pâques tombe en avril, et uniquement pour elles, notons AIA la moyenne des irréguliers d'avril $(I_{i,4})$ et AIM la moyenne des irréguliers de mars $(I_{i,3})$. Alors les effets correcteurs appliqués sont définis par :

	Schéma multiplicatif
Mois de mars	$1 - \hat{b} \times X_i / (2 \times AIM)$
Mois d'avril	$1 + \hat{b} \times X_i / (2 \times AIA)$

Dans la présentation théorique du modèle, Laker [44, 45] estime l'effet de Pâques à partir d'une estimation de la composante saisonnier-irrégulier. Il pose donc, de façon similaire à ce que nous avons vu jusqu'à présent :

$$SI_{i,3} = \overline{SI}_{.3} - bX_i + \eta_i$$

 $SI_{i,4} = \overline{SI}_{.4} + bX_i + \xi_i$

soit, par différence,

$$(SI_{i,4} - SI_{i,3}) = (\overline{SI}_{.4} - \overline{SI}_{.3}) + 2bX_i + \epsilon_i$$

où:

- $-SI_{i,3}$ et $SI_{i,4}$ désignent les valeurs de la composante saisonnier-irrégulier pour les mois de mars et avril,
- b est l'effet de Pâques,
- $-\overline{SI}_{.3}$ est la moyenne théorique de la composante saisonnier-irrégulier pour un mois de mars "normal", c'est-à-dire non affecté d'un effet de Pâques,
- et $\overline{SI}_{.4}$ est la moyenne théorique de la composante saisonnier-irrégulier pour un mois d'avril "normal", c'est-à-dire affecté d'un effet de Pâques.

Dans ces conditions, si 2b est l'estimation issue du modèle aux différences, on aura dans le cas d'un schéma multiplicatif et par exemple pour le mois de mars :

$$SI_{i,3} \approx \overline{SI}_{.3} - \hat{b}X_i = \overline{SI}_{.3} \left(1 - \frac{\hat{b}X_i}{\overline{SI}_{.3}}\right)$$

soit

$$\overline{SI}_{.3} = \frac{SI_{i,3}}{\left(1 - \frac{\hat{b}X_i}{\overline{SI}_{.3}}\right)}$$

et donc le ratio

$$\left(1 - \frac{\hat{b}X_i}{\overline{SI}_{.3}}\right)$$

permet de passer d'une valeur de la composante saisonnier-irrégulier affectée par l'effet de Pâques à une valeur corrigée de cet effet. Malheureusement, la quantité $\overline{SI}_{.3}$ est inconnue et Laker propose de l'estimer par la moyenne des valeurs de la composante saisonnier-irrégulier des mois de mars des années où Pâques tombe en avril (donc des mois de mars "normaux").

Une correction de même philosophie est proposée pour les valeurs de la composante saisonnier-irrégulier du mois d'avril.

Dans notre cas, l'estimation de l'effet de Pâques se faisant sur les estimations de la composante irrégulière, Laker propose d'adopter le même principe de correction, ce qui conduit aux formules du paragraphe précédent.

En fait, cette correction paraît ici superflue dans la mesure où nous connaissons la moyenne théorique de l'irrégulier, ici égale à 1, et qu'il est inutile de l'estimer.

Exemple

Les résultats de cet exemple peuvent être obtenus en soumettant le code suivant à X-11-ARIMA :

DATA ipi 12 85 10 ;

Année	Date de Pâques	Z_i	$f(Z_i)$	$I_{i,3}$	$I_{i,4}$	Y_i
1986	30 mars	8	1	0.99099	1.06850	0.07751
1987	19 avril	28	0	1.00837	0.99721	-0.01116
1988	3 avril	12	0	1.00020	0.99587	-0.00433
1989	26 mars	4	1	0.97009	1.02498	0.05489
1990	15 avril	24	0	1.00315	0.99900	-0.00415
1991	31 mars	9	0.5	0.99502	1.00659	0.01156
1992	19 avril	28	0	1.00018	1.00294	0.00276
1993	11 avril	20	0	1.00691	0.97966	-0.02726
1994	3 avril	12	0	0.99280	0.99774	0.00494

TAB. 5.169 – Effet de Pâques, données du modèle à effet ponctuel corrigé.

	Somme des Carrés	Degrés de liberté	Moyenne des Carrés	F	PROB>F
Effet de Pâques	0.0076	1	0.0076	43.8393	0.0003
Error	0.0012	7	0.0002		
Total	0.0089				

TAB. 5.170 – Effet de Pâques, Test F pour le modèle à effet ponctuel corrigé.

```
...(les données)...
;
TITLE ipi;
RANGE 12 85 10 95 3 ;
SA (ipi, 0 ,1) TDR 2 EASTER 1 CHART 1 PRTDEC 3 PRINT 5;
END;
```

Les données sont les mêmes que celles de l'exemple du paragraphe 5.2.1 et seule la fonction $f(Z_i)$ change pour l'année 1991 où le dimanche de Pâques tombant le 31 mars, le week-end pascal est à cheval sur mars et avril (voir tableau 5.169).

On a donc:

$$r = \frac{N_M + 0.5 \times N_{MA}}{N}$$

$$= \frac{2 + 0.5 \times 1}{9}$$

$$= 0.27778$$

$$\hat{b} = 2 \times \frac{YM + 0.5 \times YMA - r \times YT}{2 \times N \times r \times (1 - r) - 0.5 \times N_{MA}}$$

$$= 2 \times \frac{0.13240 + 0.5 \times 0.01156 - 0.27778 \times 0.104762}{2 \times 9 \times 0.27778 \times (1 - 0.27778) - 0.5 \times 1}$$

$$= 0.07012$$

Les résultats de l'analyse de la variance et le test de Fisher associés à cette régression sont présentés au tableau 5.170. L'effet de Pâques est donc jugé très significatif.

Comme notre schéma est multiplicatif, le calcul des coefficients correcteurs nécessite de connaître les moyennes des irréguliers pour les années où Pâques tombe en avril. On a :

$$AIM = \frac{1.00837 + 1.00020 + 1.00315 + 1.00018 + 1.00691 + 0.99280}{6}$$

Année	Mars	Avril
1985		
1986	96.501	103.522
1987	100.000	100.000
1988	100.000	100.000
1989	96.501	103.522
1990	100.000	100.000
1991	98.250	101.761
1992	100.000	100.000
1993	100.000	100.000
1994	100.000	100.000
1995	100.000	

TAB. 5.171 – A11 : Effet de Pâques, modèle à effet ponctuel corrigé de X-11-ARIMA, valeurs pour les mois de mars et avril (100 pour les autres mois).

$$AIA = \frac{0.99721 + 0.99587 + 0.99900 + 1.00294 + 0.97966 + 0.99774}{6}$$

$$= 0.995403.$$

Et les effets correcteurs appliqués sont :

	Pâques en mars			
Mois de mars	$1 - \hat{b}/(2 \times AIM) = 0.9650$			
Mois d'avril	$1 + \hat{b}/(2 \times AIA) = 1.0352$			
	Pâques en mars-avril			
Mois de mars	$1 - 0.5 \times \hat{b}/(2 \times AIM) = 0.9825$			
Mois d'avril	$1 - 0.5 \times \hat{b}/(2 \times AIA) = 1.0176$			

Ce qui conduit, dans X-11-ARIMA, au tableau 5.171.

5.2.3 Le modèle à effet graduel

La fête de Pâques peut aussi avoir un effet sur les jours qui précèdent sa célébration : ainsi comme il est habituel d'offrir et de consommer du chocolat ou d'offrir des fleurs à cette période, les industries concernées vont adapter leur production pour pouvoir, le moment venu, répondre à la demande.

Modèle et estimation des effets

Dans le modèle à effet graduel, on suppose que l'effet varie linéairement pendant les k jours (k pouvant prendre les valeurs 1 à 9) qui précèdent le dimanche de Pâques.

– Soient $I_{i,3}$ et $I_{i,4}$, $(i=1,\ldots,N)$, les valeurs de la composante irrégulière des mois de mars et avril du tableau D13 pour les N années disponibles et $Y_i = I_{i,4} - I_{i,3}$, leurs différences.

– Soit Z_i le nombre de jours entre le dimanche de Pâques de l'année i et le 22 mars (la date la plus précoce pour cette fête) et soit $X_i = f(Z_i)$ la fonction définie par :

$$X_i = f(Z_i) = \begin{cases} 1 & \text{si} \quad Z_i \leq 9 \\ \frac{k+9-Z_i}{k} & \text{si} \quad 9 < Z_i < k+9 \\ 0 & \text{si} \quad Z_i \geq 9+k \end{cases}$$
 (Pâques en avril, avant le k) (Pâques en avril, le k ou après)

L'effet de Pâques est alors estimé, par les moindres carrés ordinaires, à partir du modèle $Y_i = a + bX_i + \epsilon_i$. Dans ce modèle, les données des années où Pâques tombe entre le 1 et le k avril ne sont pas utilisées.

La valeur de b peut encore se calculer explicitement, en utilisant les résultats du modèle à effet ponctuel estimé sur les années pour lesquelles $X_i = f(Z_i) = 0$ (ou $X_i = f(Z_i) = 1$). En notant :

- $-N_M$ et N_{LA} les nombres d'années où Pâques tombe respectivement en mars, et "fin" avril
- -YM et YLA les sommes des valeurs Y_i pour les années où Pâques tombe respectivement en mars, et "fin" avril,

on a alors immédiatement

$$\hat{b} = \frac{YM}{N_M} - \frac{YLA}{N_{LA}} = \bar{Y}_M - \bar{Y}_{LA},$$

et

$$\hat{a} = \bar{Y}_{LA}$$
.

Les coefficients correcteurs appliqués sont alors les suivants :

	Schéma additif	Schéma multiplicatif
Mois de mars	$-\hat{b} \times X_i/2$	$1 - \hat{b} \times X_i/2$
Mois d'avril	$+\hat{b} \times X_i/2$	$1 + \hat{b} \times X_i/2$

Remarques

- L'utilisateur peut demander au programme X-11-ARIMA de choisir automatiquement la valeur "optimale" de k parmi les valeurs possibles de 1 à 9. L'algorithme choisira alors la valeur de k qui conduit à la plus petite erreur quadratique moyenne.
- L'utilisateur peut demander au programme d'exclure les valeurs atypiques avant d'estimer le modèle. Seules les valeurs correspondant aux années où Pâques est en avril sont concernées : il y a en général trop peu d'années où Pâques tombe en mars pour identifier correctement les valeurs atypiques dans ce cas.
 - 1. On calcule l'écart-type des valeurs Y_i pour les années où Pâques tombe le k avril ou après :

$$\sigma_{LA} = \left(\frac{1}{N_{LA} - 1} \sum_{i \in LA} (Y_i - \bar{Y}_{LA})^2\right)^{1/2}$$
 (5.1)

Année	Date de Pâques	Z_i	$f(Z_i)$	$I_{i,3}$	$I_{i,4}$	Y_i
1986	30 mars	8	1	0.99099	1.06850	0.07751
1987	19 avril	28	0	1.00837	0.99721	-0.01116
1988	3 avril	12	0.4	1.00020	0.99587	-0.00433
1989	26 mars	4	1	0.97009	1.02498	0.05489
1990	15 avril	24	0	1.00315	0.99900	-0.00415
1991	31 mars	9	1	0.99502	1.00659	0.01156
1992	19 avril	28	0	1.00018	1.00294	0.00276
1993	11 avril	20	0	1.00691	0.97966	-0.02726
1994	3 avril	12	0.4	0.99280	0.99774	0.00494

TAB. 5.172 – Effet de Pâques, données du modèle à effet graduel (k = 5).

- 2. Et on exclut toutes les valeurs de ces années telles que : $\left|Y_i \bar{Y}_{LA}\right| > 2\sigma_{LA}$
- Ce modèle est très proche du modèle *Sceaster* utilisé dans X-12-ARIMA (voir paragraphe 5.3.2) à cela près que l'estimation est faite de façon différente.

Exemple

A titre d'exemple, nous allons supposer k=5. Les données figurent dans le tableau 5.172. Les résultats de cet exemple peuvent être obtenus en soumettant le code suivant :

```
DATA ipi 12 85 10 ;
... (les données) ...
;
TITLE ipi;
RANGE 12 85 10 95 3 ;
SA (ipi, 0 ,1) TDR 2 EASTER 4 BUILDUP 5 EASTXM 0 CHART 1 PRTDEC 3 PRINT 5;
END;
```

Les années où Pâques tombe le 1, 2, 3 ou 4 avril sont donc affectées d'un poids différent de 0 où 1. C'est le cas des années 1988 et 1994 où Pâques était le 3 avril $(Z_i = 12)$. La valeur de X_i est pour ces années :

$$X_i = f(Z_i) = \frac{k+9-Z_i}{k} = \frac{5+9-12}{5} = \frac{2}{5} = 0.4.$$

La régression est faite sur les données pour lesquelles $X_i=f(Z_i)=1$ (Pâques en mars) ou $X_i=f(Z_i)=0$ (Pâques après le 4 avril), soit 7 années. On a :

$$\hat{b} = \frac{0.07751 + 0.05489 + 0.01156}{3} - \frac{-0.01116 - 0.00415 + 0.00276 - 0.02726}{4}$$

$$= 0.05794,$$

	Somme des Carrés	Degrés de liberté	Moyenne des Carrés	F	PROB>F
Effet de Pâques	0.0058	1	0.0058	10.4940	0.0230
Erreur	0.0027	5	0.0005		
Total	0.0085				

TAB. 5.173 – Effet de Pâques, Test F pour le modèle à effet graduel; k=5.

Année	Mars	Avril
1985		
1986	97.103	102.897
1987	100.000	100.000
1988	98.841	101.159
1989	97.103	102.897
1990	100.000	100.000
1991	97.103	102.897
1992	100.000	100.000
1993	100.000	100.000
1994	98.841	101.159
1995	100.000	

TAB. 5.174 - A11: Effet de Pâques, modèle à effet graduel de X-11-ARIMA; k = 5; valeurs pour les mois de mars ou avril (100 pour les autres mois).

et \hat{a} est égal à la moyenne des différences pour les années où Pâques tombe après le 4 avril. Ainsi :

$$\hat{a} = \frac{-0.01116 - 0.00415 + 0.00276 - 0.02726}{4}$$
$$= -0.009953.$$

Les résultats de l'analyse de la variance et le test F de Fisher associés à cette régression sont présentées dans le tableau 5.173. L'effet de Pâques est donc jugé significatif.

Notre schéma étant multiplicatif, les coefficients correcteurs seront :

	Pâques en mars (86, 89, 91)
Mois de mars	$1 - \hat{b}/2 = 0.9710$
Mois d'avril	$1 + \hat{b}/2 = 1.0289$
	Pâques le 3 avril (88, 94)
Mois de mars	$1 - 0.4 \times \hat{b}/2 = 0.9884$
Mois d'avril	$1 + 0.4 \times \hat{b}/2 = 1.0116$

Pour une valeur de k égale à 5, on obtient le tableau 5.174.

Les valeurs estimées des différences \hat{Y}_i sont alors données par $\hat{Y}_i = \hat{a} + \hat{b} \times X_i$. On peut alors évaluer les erreurs de prévision pour les années où Pâques tombe en avril ; elles sont présentées dans le tableau 5.175. La moyenne des carrés de ces erreurs est alors égale, pour k=5, à 0.0001455.

Année	Y_i	$X_i = f(Z_i)$	$\hat{b}X_i$	$\hat{Y}_i = \hat{a} + \hat{b}X_i$	$Y_i - \hat{Y}_i$
1987	-0.01116	0	0	-0.00995	-0.001206
1988	-0.00433	0.4	0.02318	0.01322	-0.017553
1990	-0.00415	0	0	-0.00995	0.005800
1992	0.00276	0	0	-0.00995	0.012709
1993	-0.02726	0	0	-0.00995	-0.017303
1994	0.00494	0.4	0.02318	0.01322	-0.008284

TAB. 5.175 – Effet de Pâques, modèle à effet graduel, k = 5, erreurs de prévision.

k	1	2	3	4	5	6	7	8	9
Erreur	0.01132	0.01132	0.01132	0.00958	0.01455	0.02065	0.02639	0.03144	0.03581

TAB. 5.176 – Effet de Pâques, modèle à effet graduel, erreurs quadratiques pour diverses valeurs de k ($\times 100$).

Choix optimal de la durée k

Si on demandait au programme de choisir la valeur de k optimale, c'est cette erreur quadratique qui servirait de critère et il prendrait la valeur de k minimisant cette quantité. Sur notre exemple, on trouverait les valeurs du tableau 5.176. La valeur minimale est obtenue pour k=4.

Pour k égal à 1, 2 ou 3, les fonctions $X_i = f(Z_i)$ seront égales pour les années qui nous intéressent (1986 à 1994), et les résultats de la régression identiques, ce qui explique l'égalité des 3 premières erreurs quadratiques.

Prise en compte des valeurs atypiques

Comme on l'a vu précédemment, $\hat{a}=\bar{Y}_{LA}=-0.009953$ et l'écart-type des valeurs $\left|Y_i-\bar{Y}_{LA}\right|$, du tableau 5.177, pour les années où Pâques tombe le 5 avril où après (i.e. k=5) se calcule en utilisant la formule (5.1) :

$$\sigma_{LA} = \left(\frac{1}{4-1} \left[0.0008922 - 4 \times (-0.009953)^2\right]\right)^{1/2}$$

$$= 0.01286$$

Aucune valeur Y_i ne s'éloigne donc, en valeur absolue, de plus de 2 écart-types (soit 0.0257) de la moyenne et aucun point n'est donc exclu de la régression.

Y_i	$f(Z_i)$	Y_i^2	$Y_i - ar{Y}_{LA}$
-0.011159	0	0.0001245	0.0012063
-0.004152	0	0.0000172	0.0058004
0.002757	0	0.0000076	0.0127093
-0.027256	0	0.0007429	0.0173034
$\bar{Y}_{LA} = -0.00995$	3	$\sum Y_i^2 = 0.000892$	2

TAB. 5.177 – Effet de Pâques, modèle à effet graduel, détection des valeurs atypiques.

5.3 Les modèles de X-12-ARIMA

X12-ARIMA propose des modèles de correction de l'effet de Pâques différents de ceux de X-11-ARIMA. Les modèles *Sceaster* et *Easter* évaluent l'effet de Pâques à partir des estimations de la composante irrégulière des tables B13 et C13, seul le modèle de *Bateman-Mayes* [4] utilise les données du tableau D13.

Le modèle *Sceaster* est très proche du modèle *à effet graduel* proposé par X-11-ARIMA et discuté précédemment (voir paragraphe 5.2.3). Le modèle *Sceaster*, comme ceux de X-11-ARIMA, considère que la situation normale est celle où Pâques tombe en avril et ils ne corrigent donc que les données des années où Pâques affecte le mois de mars. Ce n'est pas le cas du modèle *Easter* et du modèle de *Bateman-Mayes* qui vont, comme on le verra dans les paragraphes suivants, corriger les données des mois de mars, avril et éventuellement février.

5.3.1 Le modèle de Bateman-Mayes

Le modèle de *Bateman-Mayes* n'est utilisé que dans le cas d'un schéma de composition multiplicatif.

Modèle et estimation

L'effet de Pâques est estimé, à partir des valeurs de la composante irrégulière du tableau D13 pour les mois de mars et avril, en plusieurs étapes :

- Soient $I_{i,3}$ et $I_{i,4}$, $(i=1,\ldots,N)$, les valeurs de la composante irrégulière du tableau D13 pour les N années disponibles. Les valeurs des mois d'avril sont transformées et ce sont les variables $2-I_{i,4}$ et $I_{i,3}$ qui seront utilisées dans la suite.
- Soit k le nombre de jours qui séparent le dimanche de Pâques pour une année donnée et le 22 mars.
- $-\,$ Les années sont réparties en 4 groupes définis en fonction de k :

```
G_1: 0 < k < 10 du 22 mars au 1<sup>er</sup> avril
```

 $G_2: 11 \leq k \leq 17 \;\; \mathrm{du} \; 2$ avril au 8 avril

 $G_3:18\leq k\leq 24\;\;\mathrm{du}$ 9 avril au 15 avril

 $G_4: 25 \le k \le 34 \; \text{ du 16 avril au 25 avril.}$

Dans chaque groupe, on va calculer maintenant des moyennes "tronquées" de l'ensemble des valeurs $2-I_{i,4}$ et $I_{i,3}$:

- La moyenne tronquée m_1 est la moyenne des valeurs du groupe G_1 calculée en éliminant les valeurs qui s'éloignent de plus de deux écart-types de la moyenne simple du groupe. La moyenne tronquée m_4 pour le groupe G_4 est calculée de la même façon.
- Les moyennes tronquées m_2 et m_3 sont calculées en plusieurs étapes :
 - 1. Soient \bar{m}_2 et \bar{m}_3 les moyennes simples des groupes G_2 et G_3 .
 - 2. Des coefficients préliminaires $E_t(k)$ de correction de l'effet de Pâques

pour le mois de mars, correspondant à l'observation t sont calculés ainsi :

$$E_t(k) = \begin{cases} m_1 + \frac{(\bar{m}_2 - m_1)(k - 10)}{4} & \text{si } 11 \le k \le 14\\ \bar{m}_2 + \frac{(\bar{m}_3 - \bar{m}_2)(k - 14)}{7} & \text{si } 15 \le k \le 20\\ \bar{m}_3 + \frac{(m_4 - \bar{m}_3)(k - 21)}{4} & \text{si } 21 \le k \le 24. \end{cases}$$

- 3. Le facteur préliminaire de correction pour le mois d'avril (observation t+1) s'en déduit par $E_{t+1}(k)=2-E_t(k)$.
- 4. On calcule les erreurs quadratiques moyennes des coefficients correcteurs préliminaires pour $11 \le k \le 17$ et $18 \le k \le 24$.
- 5. Les moyennes tronquées m_2 et m_3 sont les moyennes des valeurs des groupes G_2 et G_3 qui ne s'éloignent pas de plus de deux écart-types des valeurs des facteurs préliminaires qui leur sont affectées.
- L'effet de Pâques pour un mois de mars est alors calculé ainsi :

$$E_t(k) = \begin{cases} m_1 & \text{si } 0 \le k \le 10\\ m_1 + \frac{(m_2 - m_1)(k - 10)}{4} & \text{si } 11 \le k \le 14\\ m_2 + \frac{(m_3 - m_2)(k - 14)}{4} & \text{si } 15 \le k \le 20\\ m_3 + \frac{(m_4 - m_3)(k - 21)}{4} & \text{si } 21 \le k \le 24\\ m_4 & \text{si } 25 \le k \le 34 \end{cases}$$

Pour le mois d'avril t+1, on aura $E_{t+1}(k)=2-E_t(k)$, et pour tous les autres mois, le coefficient correcteur sera égal à 1.

La fonction qui, à k associe l'effet de Pâques pour un mois de mars est donc une fonction linéaire par morceaux.

 Ces coefficients correcteurs doivent être alors ajustés pour tenir compte de la saisonnalité de Pâques dans la mesure où certaines dates sont plus fréquentes que d'autres (voir la figure 5.1). Pour cela, on calcule la quantité :

$$\bar{E} = \sum_{k=0}^{34} w(k) E_t(k),$$

où w(k) est la proportion d'années où Pâques tombe le $k^{\rm ème}$ jour après le 22 mars. Les valeurs de w(k), calculées sur la période 1583-1982, et utilisées par X-12-ARIMA sont données dans le tableau 5.178.

Les estimations finales des coefficients correctifs de l'effet de Pâques sont alors :

$$\tilde{E}_t(k) = \left\{ \begin{array}{ll} E_t(k)/\bar{E} & \text{si t est un mois de mars} \\ E_t(k)/(2-\bar{E}) & \text{si t est un mois d'avril} \\ 1 & \text{sinon.} \end{array} \right.$$

Exemple

Les résultats de cet exemple peuvent être obtenus en soumettant le code suivant :

k	0	1	2	3	4	5	6
w(k)	0.0100	0.0150	0.0050	0.0175	0.0300	0.0325	0.0250
k	7	8	9	10	11	12	13
w(k)	0.0300	0.0300	0.0400	0.0375	0.0350	0.0250	0.0275
k	14	15	16	17	18	19	20
w(k)	0.0425	0.0425	0.0275	0.0300	0.0225	0.0400	0.0425
k	21	22	23	24	25	26	27
w(k)	0.0325	0.0300	0.0350	0.0300	0.0425	0.0375	0.0350
k	28	29	30	31	32	33	34
w(k)	0.0300	0.0250	0.0350	0.0300	0.0100	0.0100	0.0100

TAB. 5.178 – Effet de Pâques, proportion d'années où Pâques tombe le $k^{\rm \`eme}$ jour après le 22 mars ; calculées sur la période 1583-1982.

Г	Oonnées bru	tes	Données transformées			
Année	Mars	Avril	k	Mars	Avril	
1986	99.099	106.850	8 (G1)	0.99099	0.93150	
1987	100.837	99.721	28 (G4)	1.00837	1.00279	
1988	100.020	99.587	12 (G2)	1.00020	1.00413	
1989	97.009	102.498	4 (G1)	0.97009	0.97502	
1990	100.315	99.900	24 (G3)	1.00315	1.00100	
1991	99.502	100.659	9 (G1)	0.99502	0.99341	
1992	100.018	100.294	28 (G4)	1.00018	0.99706	
1993	100.691	97.966	20 (G3)	1.00691	1.02034	
1994	99.280	99.774	12 (G2)	0.99280	1.00226	
1995	100.038		25 (G4)	1.00038		

TAB. 5.179 – Effet de Pâques, données pour le modèle de Bateman-Mayes.

Les données brutes (tableau D13) et les données transformées sont dans le tableau 5.179. Ainsi par exemple, la donnée transformée pour avril 1987 est

$$AVR87 = 2 - 0.99721 = 1.00279.$$

Des valeurs de k, on déduit les sous-ensembles G_1,G_2,G_3 et G_4 :

```
G_1 = \{1986, 1989, 1991\},

G_2 = \{1988, 1994\},
```

$$\begin{array}{lcl} G_3 & = & \{1990, 1993\}, \\ G_4 & = & \{1987, 1992, 1995\}. \end{array}$$

Ces groupes sont aussi indiqués dans le tableau 5.179.

Calcul de m_1 .

Les données de G_1 sont :

k	mars	avril
8	0.99099	0.93150
4	0.97009	0.97502
9	0.99502	0.99341

La moyenne \bar{m}_1 et l'écart-type σ_1 de ces six valeurs sont : $\bar{m}_1=0.97601$ et $\sigma_1=0.02201$. La matrice des différences absolues à \bar{m}_1 est :

mars	avril
0.01498	0.04451
0.00591	0.00098
0.01902	0.01741

Et seule la première valeur d'avril (0.93150) est à plus de deux écart-types de la moyenne \bar{m}_1 (écart de 0.04451) et doit donc être éliminée du calcul final. On a donc :

$$m_1 = \frac{0.99099 + 0.97009 + 0.97502 + 0.99502 + 0.99341}{5}$$

= 0.98491.

Calcul de m_4 .

Les données pour G_4 sont :

k	mars	avril
28	1.00837	1.00279
28	1.00018	0.99706
25	1.00038	

La moyenne \bar{m}_4 et l'écart-type σ_4 de ces cinq valeurs sont : $\bar{m}_4=1.00176$ et $\sigma_4=0.003774$. La matrice des différences absolues à \bar{m}_4 est :

mars	avril
0.00661	0.00103
0.00158	0.00469
0.00136	

Et ici, aucun point n'étant jugé atypique, la valeur de m_4 est 1.00176.

Calcul de m_2 et m_3 .

Les données pour G_2 et G_3 sont :

G_2				G_3	
k	mars	2-avril	k	mars	2-avril
12	1.00020	1.00413	24	1.00315	1.00100
12	0.99280	1.00226	20	1.00691	1.02034

Les moyennes simples de ces deux groupes de 4 valeurs sont $\bar{m}_2=0.99985$ et $\bar{m}_3=1.00785$, et les estimations préliminaires des effets pour mars et avril sont :

	G_2			G_3			
	k	mars	avril	k	mars	avril	
1	2	0.99238	1.00762	24	1.00328	0.99672	
1	2	0.99238	1.00762	20	1.00671	0.99329	

Ainsi, pour k = 12 (données de G_2),

$$E_t(12) = m_1 + \frac{(\bar{m}_2 - m_1)(k - 10)}{4}$$

$$= 0.98491 + \frac{(0.99985 - 0.98491)(12 - 10)}{4}$$

$$= 0.99238$$

$$E_{t+1}(12) = 2 - 0.99238$$

$$= 1.00762.$$

Et, de même, pour les données de G3, nous avons :

$$E_t(20) = \bar{m}_2 + \frac{(\bar{m}_3 - \bar{m}_2)(k - 14)}{7}$$

$$= 0.99985 + \frac{(1.00785 - 0.99985)(20 - 14)}{7}$$

$$= 1.00671$$

$$E_{t+1}(20) = 2 - 1.00671$$

$$= 0.99329$$

et

$$E_{t}(24) = \bar{m}_{3} + \frac{(m_{4} - \bar{m}_{3})(k - 21)}{4}$$

$$= 1.00785 + \frac{(1.00176 - 1.00785)(24 - 21)}{4}$$

$$= 1.00328$$

$$E_{t+1}(24) = 2 - 1.00328$$

$$= 0.99672.$$

Les matrices des écarts absolus aux estimations préliminaires des effets sont :

G_2				G_3		
	k	mars	avril	k	mars	avril
	12	0.00782	0.00349	24	0.00013	0.00428
	12	0.00043	0.00537	20	0.00020	0.02705

Les erreurs quadratiques moyennes s'en déduisent. Pour $I_2 \ (11 \le k \le 17)$:

$$EQM_2 = \left(\frac{1}{4}\left[(0.00782)^2 + (0.00349)^2 + (0.00043)^2 + (0.00537)^2\right]\right)^{1/2}$$

= 0.00506.

Pour I_3 (18 $\leq k \leq$ 24):

$$EQM_3 = \left(\frac{1}{4}\left[(0.00013)^2 + (0.00428)^2 + (0.00020)^2 + (0.02705)^2\right]\right)^{1/2}$$

= 0.01369.

Aucun point n'est donc jugé atypique et les moyennes pour chaque sous-groupe sont les moyennes simples : $m_2=0.99985$ et $m_3=1.00785$.

Calcul des effets de Pâques.

Ces effets se calculent ainsi:

- 1. Pour les données de G_1 , les effets de mars sont égaux à m_1 (0.98491) et ceux d'avril à $2-m_1$.
- 2. Pour les données de G_4 , les effets de mars sont égaux à m_4 (1.00176) et ceux d'avril à $2-m_4$.
- 3. Pour les données de G_2 et G_3 , les effets sont égaux aux effets préliminaires calculés précédemment puisqu'aucun point atypique n'a été détecté.

Les effets de Pâques peuvent se calculer pour toute valeur de k à partir des moyennes m_1, m_2, m_3 et m_4 ; la courbe de ces effets est présentée dans la figure 5.2.

On peut alors calculer le coefficient d'ajustement lié à la distribution des dates de Pâques :

$$\bar{E} = \sum_{k=0}^{34} w(k) E_t(k) = 0.99717,$$

et les effets corrigés :

A (-	Effet de Pâques			iques ajusté
Annee	mars	avrii	mars	avril
1986	98.491	101.509	98.770	101.223
1987	100.176	99.824	100.460	99.543
1988	99.238	100.762	99.519	100.478
1989	98.491	101.509	98.770	101.223
1990	100.328	99.672	100.613	99.391
1991	98.491	101.509	98.770	101.223
1992	100.176	99.824	100.460	99.543
1993	100.671	99.329	100.957	99.049
1994	99.238	100.762	99.519	100.478
1995	100.176	99.824	100.460	99.543

Avec, par exemple:

$$MAR86 = 98.491/0.99717 = 98.770$$

et

$$AVR86 = 101.5091/(2 - 0.99717) = 101.223.$$

Ce qui conduit au résultat final présenté au tableau 5.180.

5.3.2 Le modèle Sceaster

Le modèle *Sceaster* entre dans le cadre plus général de l'estimation des effets de calendrier proposée par la méthode X-11 à la fin des étapes B et C et plus précisément à partir des estimations de la composante irrégulière des tableaux B13 et C13.

Année	Mars	Avril
1985		
1986	98.770	101.223
1987	100.460	99.543
1988	99.519	100.478
1989	98.770	101.223
1990	100.613	99.391
1991	98.770	101.223
1992	100.460	99.543
1993	100.957	99.049
1994	99.519	100.478
1995	100.460	

TAB. 5.180 - H1: Effet de Pâques, modèle de *Bateman-Mayes* de X-12-ARIMA, valeurs des mois de mars et avril (100 pour les autres mois).

FIG. 5.2 – Effet de Pâques de *Bateman-Mayes* selon la date de Pâques (du 22 mars au 25 avril).

Modèle et estimation

Comme dans le modèle à effet graduel de X-11-ARIMA, voir paragraphe 5.2.3, la fête de Pâques est supposée avoir un impact sur les w jours $(1 \le w \le 24)$ qui précèdent le dimanche pascal et on pose le modèle $I_{i,j} = a + bX_{i,j}(w) + \epsilon_{i,j}$ où :

- $-I_{i,j}$ est la valeur de l'irrégulier (du tableau B13 ou C13) correspondant à l'année i et à la période (mois ou trimestre) j.
- Soit, pour une année i donnée, w_i le nombre de jours, parmi les w jours avant Pâques (Pâques compris) qui tombent en mars (ou au premier trimestre). Alors :

$$X_{i,j}(w) = \begin{cases} w_i/w & \text{pour un mois de mars ou un } 1^{\text{er}} \text{ trimestre } (j=3 \text{ ou } j=1) \\ -w_i/w & \text{pour un mois d'avril ou un } 2^{\text{i\`eme}} \text{ trimestre } (j=4 \text{ ou } j=2) \\ 0 & \text{sinon.} \end{cases}$$

Les contraintes imposées à w ($1 \le w \le 24$) entraînent que seules les valeurs du régresseur pour mars et avril (ou du premier et second trimestre) ne sont pas nulles⁴. Les valeurs de a et b sont estimées par moindres carrés ordinaires.

À ce stade, il est possible de faire plusieurs remarques.

- Tout d'abord, si Pâques tombe en mars, la valeur associée $X_{i,3}(w)$ est égale à 1. De même, si Pâques tombe après le w avril, cette valeur $X_{i,3}(w)$ est égale à 0. De façon plus générale, si on considère les valeurs de la variable X pour les mois de mars, on a, en reprenant les notations associées aux modèles de X-11-ARIMA, $X_{i,3}(w) = f(Z_i)$.
- Compte tenu de la forme simple de la variable explicative, on peut donner une forme plus explicite de l'estimateur \hat{b} .

Les seules valeurs non nulles de la variable X sont celles des mois de mars et avril qui sont par ailleurs opposées. Si l'on suppose que la série des valeurs $X_{i,j}$ ne commence pas un mois d'avril ou ne se termine pas en mars, à tout mois de mars correspondra un mois d'avril et la somme des deux valeurs de la variable X de ces mois sera nulle. La moyenne \bar{X} est donc elle aussi nulle dans ce cas, et dans le cas général proche de 0.

Si la série étudiée a n observations, on peut écrire :

$$\hat{b} = \operatorname{Cov}(X, I) / \operatorname{Var}(X)$$

avec

$$Var(X) = \frac{1}{n} \sum_{i} \sum_{j} X_{i,j}^{2} - \bar{X}^{2} = \frac{1}{n} \sum_{i} \sum_{j} X_{i,j}^{2} = \frac{2}{n} \sum_{i} \left(\frac{w_{i}}{w}\right)^{2}$$

et

$$Cov(X, I) = \frac{1}{n} \sum_{i} \sum_{j} X_{i,j} I_{i,j} - \bar{X}\bar{I} = \frac{1}{n} \sum_{i} \frac{w_i}{w} (I_{i,3} - I_{i,4})$$

Et on voit donc apparaître les valeurs des différences, pour chaque année, des irréguliers de mars et avril.

⁴En fait, ce n'est pas tout à fait vrai puisque par exemple, en 2008 Pâques tombera un 23 mars et si w = 24, on aura alors un jour en février.

– Enfin, comme $\hat{a} = \bar{I} - \hat{b}\bar{X}$ et que la moyenne \bar{X} est proche de 0, \hat{a} est très proche de \bar{I} , moyenne de la composante irrégulière (soit proche de la moyenne théorique a égale à 0 pour un schéma additif et à 1 pour un schéma multiplicatif).

L'effet de Pâques s'en déduit par $\hat{E}_{i,j} = a + \hat{b}X_{i,j}(w)$, ce qui permet d'assurer que Pâques n'a pas d'effet en dehors des mois de mars et avril.

Le modèle proposé par X-12-ARIMA ressemble donc beaucoup au modèle à effet graduel de X-11-ARIMA⁵, et au modèle à effet ponctuel pour w=1, mais ici l'estimation du modèle de régression se fait en utilisant toutes les années disponibles et non pas seulement celles des années où Pâques tombe en mars ou après le w avril. Par ailleurs, l'estimation est faite, dans X-12-ARIMA, une première fois sur les données du tableau B13 et une seconde fois sur les données du tableau C13.

Rappelons enfin qu'à cette étape du traitement, X-12-ARIMA permet aussi de rechercher dans la composante irrégulière d'autres effets de calendrier.

Exemple

Si on utilise ce modèle dans X-12-ARIMA, l'estimation est faite une première fois sur les données du tableau B13 puis, une seconde fois, sur les données du tableau C13.

Les résultats de cet exemple peuvent être obtenus en soumettant le code suivant :

Les valeurs de la variable à expliquer *I* sont donc ici les 114 valeurs de B13 (divisées par 100). Les données se trouvent dans le tableau 4.50.

Si nous supposons par exemple w=5, on obtient les valeurs de la variable X (nulle partout sauf pour les mois de mars et avril) présentées dans le tableau 5.181.

Ainsi, en 1988, dans les 5 jours qui précédaient Pâques (Pâques compris), 2 étaient en mars (les 30 et 31). Par conséquent, la variable explicative X est égale à 2/5 = 0.4 en mars 1988, à -2/5 = -0.4 en avril 1988, et à 0 pour tous les autres mois de 1988.

On a $\bar{Y}=0.9999$ et $\bar{X}=0$, ce qui entraîne $\hat{a}=\bar{Y}-\hat{b}\bar{X}=0.9999$. De plus :

$$Var(X) = \frac{2}{n} \sum_{i} \left(\frac{w_{i}}{w}\right)^{2}$$

$$= \frac{2}{114} \left(1 + 0.4^{2} + 1 + 1 + 0.4^{2}\right)$$

$$= 2 \times 3.32/114,$$

$$Cov(X, I) = \frac{1}{n} \sum_{i} \frac{w_{i}}{w} \left(I_{i,3} - I_{i,4}\right)$$

⁵C'est d'ailleurs pour cela que cette modélisation est référencée dans X-12-ARIMA par le mot clef Sceaster, le SC signifiant Statistique Canada.

Année	Pâques	5 jours avant	Nombre de jours en mars (w_i)	$X_{i,3}$	$X_{i,4}$
1985	7 avril	3 avril	0	0	0
1986	30 mars	26 mars	5	1	-1
1987	19 avril	15 avril	0	0	0
1988	3 avril	30 mars	2	0.4	-0.4
1989	26 mars	22 mars	5	1	-1
1990	15 avril	11 avril	0	0	0
1991	31 mars	27 mars	5	1	-1
1992	19 avril	15 avril	0	0	0
1993	11 avril	7 avril	0	0	0
1994	3 avril	30 mars	2	0.4	-0.4
1995	16 avril	12 avril	0	0	0

TAB. 5.181 – Effet de Pâques, données du modèle Sceaster. $X_{i,j}=0$ si $j\neq 3$ ou 4.

	Coefficient	Écart-type	Student T	Prob > T	
Constante	0.99989	0.00183	547.89	0.000	
Sceaster[5]	-0.02387	0.00756	-3.16	0.001	
	Somme des Carrés	Degrés de liberté	Moyenne des Carrés	Fisher F	Prob > F
Effet de Pâques	0.0038	1	0.0038	9.9642	0.0021
Erreur	0.0425	112	0.0004		

TAB. 5.182 – Effet de Pâques, résultats de la régression pour le modèle *Sceaster* (k = 5).

$$= \frac{1}{114} \frac{1}{100} [(95.390 - 107.358) + 0.4 \times (101.498 - 98.202)] + \frac{1}{114} \frac{1}{100} [(98.753 - 99.913) + (97.167 - 101.999)] + \frac{1}{114} \frac{1}{100} [0.4 \times (100.309 - 98.327)]$$

$$= \frac{-0.15849}{114},$$

et donc $\hat{b}=-0.15849/6.64=-0.02387$. L'effet de Pâques est donc estimé par $\hat{E}_{i,j}=1+\hat{b}X_{i,j}(w)=1-0.02387\times X_{i,j}(w)$, ce qui conduit au tableau 5.183, avec, par exemple pour mars 1988 :

$$\hat{E}_{1988,3} = 1 - 0.02387 \times 0.4 = 0.99045.$$

Les résultats de l'analyse de la variance et du test F de Fisher associés à cette régression, résultats fournis seulement partiellement par X-12-ARIMA, sont présentés dans le tableau 5.182. L'effet de Pâques est donc jugé significatif au niveau de 1%.

5.3.3 Le modèle Easter

Le modèle *Easter*, comme le précédent, entre dans le cadre plus général de l'estimation des effets de calendrier proposée par la méthode X-11 à la fin des étapes B et C

Année	Mars	Avril
1985		
1986	97.613	102.387
1987	100.000	100.000
1988	99.045	100.955
1989	97.613	102.387
1990	100.000	100.000
1991	97.613	102.387
1992	100.000	100.000
1993	100.000	100.000
1994	99.045	100.955
1995	100.000	

TAB. 5.183 – B16H: Estimations provisoires de l'effet de Pâques avec le modèle *Sceaster* de X-12-ARIMA. Valeurs des mois de mars et avril (100 pour les autres mois).

et plus précisément à partir des estimations de la composante irrégulière des tableaux B13 et C13.

Modèle et estimation

La fête de Pâques est supposée ici encore avoir un impact sur les w jours $(1 \le w \le 25)$ qui précèdent le dimanche pascal et on pose le modèle $I_{i,j} = a + bX_{i,j}(w) + \epsilon_{i,j}$ où :

- $-I_{i,j}$ est la valeur de l'irrégulier (du tableau B13 ou C13) correspondant à l'année i et à la période (mois ou trimestre) j.
- Soit, pour une année i donnée, $w_{i,j}$ le nombre de jours, parmi les w jours avant Pâques (dimanche de Pâques exclu) qui tombent dans le mois (ou trimestre) j. Alors on définit d'abord la variable $Z_{i,j}(w) = w_{i,j}/w$. Compte tenu des contraintes sur w, cette variable est nulle sauf pour les mois de février, mars et avril. Par contre, elle possède une certaine saisonnalité : les valeurs concernant le mois de février seront par exemple structurellement plus faibles. La variable $X_{i,j}(w)$ s'obtient en enlevant à $Z_{i,j}(w)$ la moyenne $\bar{Z}_{.,j}(w)$ correspondant au mois j, et calculée sur les années disponibles. On a donc : $X_{i,j}(w) = w_{i,j}/w \bar{Z}_{.,j}(w)$. Ainsi, cela permet de conserver le niveau de la série en annulant l'effet de Pâques sur l'ensemble des mois concernés. La variable explicative est alors de moyenne nulle et sans saisonnalité.

Une moyenne de long terme, calculée sur la période 1583-1982 (voir paragraphe 5.3.1), peut être utilisée à la place de $\bar{Z}_{...j}(w)$.

Les contraintes sur la valeur de w $(1 \le w \le 25)$ entraînent que seuls les mois de février, mars et avril peuvent faire l'objet de corrections. Comme précédemment, les valeurs de a et b sont estimées par moindres carrés ordinaires et l'effet de Pâques s'en déduit par $\hat{E}_{i,j} = a + \hat{b}X_{i,j}(w)$.

Exemple

Si on utilise ce modèle dans X-12-ARIMA, l'estimation est faite une première fois sur les données du tableau B13 puis, une seconde fois, sur les données du tableau C13.

Année	Pâques	5 jours avant	# de jours en mars $(w_{i,3})$	# de jours en avril $(w_{i,4})$	$Z_{i,3}$	$Z_{i,4}$	$X_{i,3}$	$X_{i,4}$
1985	7 avril	2 avril	0	5	0	1		
1986	30 mars	25 mars	5	0	1	0	0.6182	-0.6182
1987	19 avril	14 avril	0	5	0	1	-0.3818	0.3818
1988	3 avril	29 mars	3	2	0.6	0.4	0.2182	-0.2182
1989	26 mars	21 mars	5	0	1	0	0.6182	-0.6182
1990	15 avril	10 avril	0	5	0	1	-0.3818	0.3818
1991	31 mars	26 mars	5	0	1	0	0.6182	-0.6182
1992	19 avril	14 avril	0	5	0	1	-0.3818	0.3818
1993	11 avril	6 avril	0	5	0	1	-0.3818	0.3818
1994	3 avril	29 mars	3	2	0.6	0.4	0.2182	-0.2182
1995	16 avril	11 avril	0	0	0	1	-0.3818	

TAB. 5.184 – Effet de Pâques, données du modèle *Easter*. $Z_{i,j}$ et $X_{i,j}$ sont nulles si $j \neq 3$ ou 4.

Les résultats de cet exemple peuvent être obtenus en soumettant le code suivant :

Les valeurs de la variable à expliquer *I* sont donc ici les 114 valeurs de B13 (divisées par 100). Les données se trouvent dans le tableau 4.50.

Si nous supposons par exemple w=5, on obtient les valeurs de la variable Z (nulle ici partout sauf pour les mois de mars et avril) consignées dans le tableau 5.184.

Ainsi, en 1988, dans la période de 5 jours avant Pâques, on en avait 3 en mars (les 29, 30 et 31) et 2 en avril (les 1 et 2).

Les moyennes de $Z_{i,3}$ et $Z_{i,4}$ sont :

$$\begin{split} \bar{Z}_{.,3} &= (1+0.6+1+1+0.6)/11 = 0.38182 \\ \bar{Z}_{.,4} &= (1+1+0.4+1+1+1+0.4+1)/11 = 0.61818. \end{split}$$

En corrigeant la variable Z de ces moyennes mensuelles, on obtient la variable explicative X (voir tableau 5.184).

Dans le cas le plus général, les valeurs du régresseur pour les mois de février, mars et avril peuvent ne pas être nulles et le calcul de l'estimation de b relativement complexe. Ici, comme dans le cas précédent, on devine que ce calcul ne fera intervenir que les différences entre les valeurs de l'irrégulier des mois de mars et avril. En utilisant les MCO, on obtient $\hat{a}=0.99980$ et $\hat{b}=-0.02639$.

L'effet de Pâques est donc estimé par $\hat{E}_{i,j}=1-0.02639\times X_{i,j}(w)$, ce qui conduit au tableau 5.186 avec, par exemple pour mars 1988 :

$$\tilde{E}_{1988,3} = 1 - 0.02639 \times 0.2182 = 0.99424.$$

	Coefficients	Écart-type	Student T	Prob > T	
Constante	0.99980	0.00185	540.55	0.000	
easter[5]	-0.02639	0.01014	-2.60	0.005	
	Somme des Carrés	Degrés de liberté	Moyenne des Carrés	Fisher F	Prob > F
	0.000		0.0025	6 7770	0.0105
Effet de Pâques	0.0026	1	0.0026	6.7772	0.0105
Effet de Pâques Error	0.0026 0.0437	1 112	0.0026 0.0004	6.7772	0.0105

TAB. 5.185 – Effet de Pâques, résultats de la régression pour le modèle Easter(k=5).

Année	Mars	Avril
1985		
1986	98.369	101.631
1987	101.008	98.992
1988	99.424	100.576
1989	98.369	101.631
1990	101.008	98.992
1991	98.369	101.631
1992	101.008	98.992
1993	101.008	98.992
1994	99.424	100.576
1995	101.008	

TAB. 5.186 – B16H : Estimations provisoires de l'effet de Pâques avec le modèle *Easter* de X-12-ARIMA. Valeurs des mois de mars et avril (100 pour les autres mois).

Les résultats de l'analyse de la variance et du test F de Fisher associés à cette régression, résultats fournis seulement partiellement par X-12-ARIMA, sont présentés dans le tableau 5.185. L'effet de Pâques est donc jugé significatif au niveau de 1%.

Bibliographie

- [1] Akaike, H. (1980), Seasonal Adjustment by a Bayesian Modeling, *Journal of Time Series Analysis*, 1, 1-13.
- [2] Armatte, M. (1992), Conjonctions, conjoncture et conjecture. Les baromètres économiques (1885-1930), *Histoire et Mesure*, 7, 99-149.
- [3] Bartlett, M. S. (1950), Periodogram Analysis and Continuous Spectra, *Biometrika*, 35, 1-16.
- [4] Bateman, D.V., Mayes, F. (1970), Holiday Adjustment of Retail Sales, Unpublished memorandum, *US Bureau of the Census*, US Department of Commerce.
- [5] Baxter, M. A. (1994), A Guide to Interpreting X-11-ARIMA/88 Diagnostics, Unpublished Memorandum, *Central Statistical Office*, United Kingdom.
- [6] Bell, W.R., Hillmer, S.C. (1984), Issues Involved With the Seasonal Adjustment of Economic Time Series, *Journal of Business and Economic Statistics*, 2, 291-394
- [7] Bournay, J., Laroque, G. (1979), Réflexions sur la méthode d'élaboration des comptes trimestriels, *Annales de l'INSEE*, *36*.
- [8] Box, G. E. P., Jenkins, G. M. (1970), *Time Series Analysis : Forecasting and Control*, San Francisco : Holden Day.
- [9] Burman, J. P. (1980), Seasonal Adjustment by Signal Extraction, *Journal of the Royal Statistical Society, Series A*, 143, 321-337.
- [10] Buys-Ballot, C. (1847), Les changements périodiques de température, Utrecht : Kemink et Fils.
- [11] Cholette, P. A. (1981), A Comparison and Assessment of Various Adjustment Methods of Sub-Annual Series to Yearly Benchmarks, Working paper, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [12] Cholette, P. A. (1981), A Comparison of Various Trend-cycle Estimators, *Time Series Analysis, O.D. Anderson & M.R. Perryman Editors*, Amsterdam: North-Holland.
- [13] Cholette, P. A., Dagum, E. B. (1994), Benchmarking Time Series with Auto-correlated Survey Errors, *International Statistical Review*, 62, 365-377.
- [14] Cleveland, W. S. (1979), Robust Locally Weighted Regression and Smoothing Scatterplots, *Journal of The American Statistical Association*, 74, 829-836.
- [15] Cleveland, R. B., Cleveland, W. S., McRae J.E., Terpenning, I. (1990), STL a Seasonal-Trend Decomposition Procedure Based on Loess, *Journal of Official Statistics*, 6, 3-73.

- [16] Cooley, J.W., Tukey, J.W. (1965), An Algorithm for the Machine Calculation of Complex Fourier Series, *Mathematics of Computation*, *19*, 297-301.
- [17] Cournot, A. (1838), Recherches sur les principes mathématiques de la théorie des richesses, Librairie philosophique J. Vrin, publié en 1980.
- [18] Dagum, E. B. (1975), Seasonal Factor Forecasts from ARIMA Models, *Proceedings of the International Institute of Statistics*, 40th Session, Contributed Papers, 3, Warsaw, 206-219.
- [19] Dagum, E. B. (1980), The X-11-ARIMA Seasonal Adjustment Method, *Statistique Canada*, Catalogue 12-564E.
- [20] Dagum, E. B. (1988), The X-11-ARIMA/88 Seasonal Adjustment Method, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [21] Daniel-Rops, H. (1947), Histoire sainte : Le Peuple de la Bible, Fayard, Paris.
- [22] Doherty, M. (1992), The Surrogate Henderson Filters in X-11, Technical Report, *Department of Statistics*, Wellington, New Zealand.
- [23] Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., Chen, B. (1998), New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program, *Journal of Business and Economic Statistics*, 16, 127-177.
- [24] Fisher, A. (1937), A Brief Note on Seasonal Variation, *Journal of Accountancy*, 64, 54-59.
- [25] Fourier, J.B. (1822), *Théorie analytique de la chaleur*, Jacques Gabay, Paris, publié en 1988.
- [26] Gardner, M. (1981), Mathematical Games, *Scientific American, February 1981*, 17-20.
- [27] Gomez, V., Maravall, A. (1996), Programs TRAMO and SEATS, *Banco de España*, Documento de Trabajo 9628.
- [28] Gouriéroux, C., Monfort, A. (1990), Séries Temporelles et Modèles Dynamiques, Economica, Paris.
- [29] Grun-Rehomme, M., Ladiray, D. (1994), Moyennes mobiles centrées et non centrées : construction et comparaison, *Revue de Statistique Appliquée*, *XLII*, 33-61.
- [30] Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.
- [31] Henderson, R. (1916), Note on Graduation by Adjusted Average, *Transactions of the Actuarial Society of America*, 17, 43-48.
- [32] Henderson, R. (1924), A New Method of Graduation, *Transactions of the Actuarial Society of America*, 25, 29-40.
- [33] Herschel, W. (1801), Observations Tending to Investigate the Nature of the Sun in Ordre to Find the Causes or Symptoms of its Variable Emission of Light and Heat with Remarks on the Use that May be Possibly be Drawn from Solar Observation, *Philosophical Transactions of the Royal Society of London*, 91, 265-318.

- [34] Higginson J. (1975), An F-test for the Presence of Moving Seasonality when Using Census Method II-X-11 Variant, Working Paper, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [35] Hillmer, S. C., Tiao, G. C. (1982), An ARIMA Model Based Approach to Seasonal Adjustment, *Journal of the American Statistical Association*, 77, 63-70.
- [36] Hood, C. C. (1998), X-12-Graph: A SAS/GRAPH Program for X-12-ARIMA Output, *US Bureau of the Census*, Washington, D.C.
- [37] Hylleberg, S. (1986), Seasonality in Regression, Orlando: Academic Press.
- [38] Hylleberg, S. (1992), The Historical Perspective, in *Modelling Seasonality*, London: Oxford University Press, 15-25.
- [39] Jevons, W.S. (1862), On the Study of Periodic Commercial Fluctuations, *Investigations in currency and finance*, London: Macmillan, 1884.
- [40] Kendall, M. (1973), Time Series, London: Charles Griffin & Co.
- [41] Kitagawa, G., Gersch, W. (1984), A Smoothness Priors State Space Modelling of Time Series with Trend and Seasonality, *Journal of the American Statistical Association*, 79, 378-389.
- [42] Koopman, S. J., Harvey, A. C., Doornik, J. A., Shepard, N. G. (2000), *STAMP, Structural Time Series Analyser, Modeller and Predictor*, London: Timberlake Consultants Press.
- [43] Koopmans, L. H. (1974), *The Spectral Analysis of Time Series*, New York : Academic Press.
- [44] Laker, L.G. (1976a), Mathematical Note on Easter Correction, Working Paper, *Australian Bureau of Statistics*.
- [45] Laker, L.G. (1976b), Slightly Less Mathematical Note on the Mathematical Note on Easter Correction, Working Paper, *Australian Bureau of Statistics*.
- [46] Laniel, N. (1985), Design Criteria for the 13-term Henderson End-Weights, Working Paper, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [47] Lothian, J. (1978), The Identification and Treatment of Moving Seasonality in the X-11 Seasonal Adjustment Method, Working paper 78-10-004, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [48] Lothian, J., Morry, M. (1978a), A Test for the Presence of Identifiable Seasonality when Using the X-11 Program, Working Paper, Time Series Research and Analysis Division, *Statistics Canada*, Ottawa ON, Canada.
- [49] Lothian, J., Morry, M. (1978b), A Set of Quality Control Statistics for the X-11-ARIMA Seasonal Adjustment Method, Working Paper 78-10-005, Methodology Branch, *Statistics Canada*, Ottawa ON, Canada.
- [50] Maballée, Colette et Berthe (1906), Peaks and Peaks and Correlograms, Zeit-schrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 3, 139-167.
- [51] Macaulay, F.R. (1931), The Smoothing of Time Series, *National Bureau of Economic Research*.
- [52] March, L. (1905), Comparaison numérique de courbes statistiques, *Journal de la Société Statistique de Paris*, 255-277.

- [53] Menderhausen, H. (1937), Annual Survey of Statistical Technique: Methods of Computing and Eliminating Changing Seasonal Fluctuations, *Econometrica*, 5, 234-262.
- [54] Montes, M.J. (1998-02-02), Calculation of the Ecclesiastical Calendar, Internet: http://www.smart.net/~mmontes/ec-cal.html.
- [55] Musgrave, J. (1964a), A Set of End Weights to End all End Weights, Working paper, *US Bureau of the Census*, Washington.
- [56] Musgrave, J. (1964b), Alternative Sets of Weights for Proposed X-11 Seasonal Factor Curve Moving Averages, Working paper, *US Bureau of the Census*, Washington.
- [57] Nerlove, M., Grether, D.M., Carvalho, J.L. (1979), *Analysis of Economic Time Series : a Synthesis*, New York : Academic Press.
- [58] O'Beirne, T. (1966), The Regularity of Easter, Bulletin of the Institute of Mathematics and Its applications, 2, 46-49.
- [59] Persons, W. M. (1919), Indices of Business Conditions, *Review of Economic Statistics*, 1, 5-107.
- [60] Poynting, J.H. (1884), A Comparison of the Fluctuations in the Price of Wheat and in the Cotton and Silk Imports into Great Britain, *Journal of the Royal Statistical Society*, 47, 34-64.
- [61] Priestley, M.B. (1965), Evolutionary Spectra and Nonstationary Processes, *Journal of the Royal Statistical Society, Series B*, 27, 204-237.
- [62] SAS Institute Inc. (1990), SAS/GRAPH Software Reference, version 6, First Edition, Volume 1, Carry, NC: SAS Institute.
- [63] Shiskin, J., Young A., Musgrave, J. C. (1967), The X-11 Variant of the Census Method II Seasonal Adjustment Program, Washington DC, Technical Paper no 15, *Bureau of the Census*, US Department of Commerce.
- [64] Slutsky, E. (1927), The Summation of Random Causes as the Source of Cyclical Processes, *Econometrica*, 84, 105-146 (1937), translation of a Russian paper (Conjoncture Institute, Moscow).
- [65] Tøndering, C. (2000), Frequently Asked Questions About Calendars, Internet: http://www.tondering.dk/claus/calendar.html.
- [66] Tukey, J. W. (1950), The Sampling Theory of Power Spectrum Estimates, Proceedings of the Symposium on Applications of Autocorrelation Analysis to Physical Problems, Washington DC, Department of the Navy, Office of Naval Research.
- [67] Young, A.H. (1965), Estimating Trading-Day Variations in Monthly Economic Series, Washington DC, Technical Paper no 12, *Bureau of Census*, US Department of Commerce.
- [68] Yule, G.U. (1921), On the Time Correlation Problem, With Especial Reference to the Variate-Difference Correlation Method, *Journal of The Royal Statistical Society*, 84, 497-526.
- [69] Yule, G.U. (1927), On a Method of Investigating Periodicities in Disturbed Series with Special Reference to Wolfer's Sunspot Numbers, *Philosophical Transactions of The Royal Society, Series A*, 226, 267-298.

Index

ajustement pour grèves, 80 Akaike, H., 20, 219 Analyse des séries temporelles dans le domaine des fréquences, 33 dans le domaine des temps, 33 année bissextile, 94 Armatte, M., 15–17, 219	dans la méthode des moyennes mo- biles, 17 Cooley, J.W., 18, 220 Cournot, A., 15, 220 cycle, 15, 16, 18, 23 et fonction de gain, 34 extraction, 17 cycle des affaires, 16
Bartlett, M.S., 18, 219 Bateman, D.V., 206, 219 Baxter, M. A., 184, 219 BAYSEA, 20 Bell, W. R., 15, 16, 18, 19, 219, 220 Bournay, J., 159, 219 Box, G.E.P., 11, 18, 31, 219 bruit blanc, 39 Burman, J.P., 20, 219	déphasage, 36 Dagum, E.B., 11, 18, 20, 31, 158, 159, 219, 220 DAINTIES, 20 Daniel-Rops, H., 220 DECOMP, 20 Doherty, M., 49, 80, 220 Doornik, J.A., 221
Buys-Ballot, C., 15, 20, 219 BV4, 20	écart-type mobile, 67 effets de calendrier, 18, 19, 28, 31, 50, 62, 96, 110, 169, 170, 211,
Carvalho, J.L., 15, 222	214
Census Method I, 18	E'- II. D.E. 11 20 21 40 04 104
Census Method II, 18	Findley, D.F., 11, 20, 31, 49, 94, 194,
Variante X-11, 11	220 Fisher A 17 102 220
Variante X-11, 18, 19 Chen, B., 220	Fisher, A., 17, 102, 220 fonction de gain, 35, 36
Cholette, P.A., 42, 64, 110, 133, 158,	et saisonnalité, 39
159, 219	filtre mensuel de X-11, 56
Cleveland, R. B., 19, 219	filtre passe-bas, 37
Cleveland, W.S., 19, 219	filtre trimestriel de X-11, 56
coefficients saisonniers, 59, 67, 75, 90,	moyenne mobile de Henderson, 47
112, 119, 135, 150, 185	$2 \times 12,41$
dans la méthode des moyennes mo-	$2 \times 4,40$
biles, 17	$3 \times 3,42$
prévision, 151	$3 \times 5,42$
composante saisonnière, 23, 25, 29, 39,	$3 \times 9,42$
42, 66, 75, 90, 112, 119, 134,	fonction de poids de X11, 68
151, 169, 184, 185	Fourier, J.B., 15, 18, 33, 220

Gardner, M., 192, 220	Macaulay, F.R., 17, 18, 31, 221
Gauss, 191	Maravall, A., 20, 220
Gersch, W., 20, 221	March, L., 16, 221
Gomez, V., 20, 221	Mayes, F., 219
	•
Gouriéroux, C., 50, 220	MCD (months for cyclical dominance)
Grether, D.M., 15, 222	176, 181, 185
Grun-Rehomme, M., 39, 220	McRae, J.R., 219
H A.C. 24 220 221	Menderhausen, H., 17, 222
Harvey, A.C., 24, 220, 221	modèles ARIMA, 18, 20, 31, 33, 59
Henderson, R., 45, 49, 78, 80, 220	Monfort, A., 50, 220
Herschel, W., 15, 220	Monsell, B.C., 220
Higginson, J., 141, 221	Montes, M.J., 192, 222
Hillmer, S.C., 15, 16, 18–20, 219, 221	Morry, M., 142, 183, 184, 221
Hood, C.C., 61, 221	moyenne mobile, 24, 33, 34, 39
Hylleberg, S., 15, 20, 221	asymétrique, 35, 37, 47, 49
ratio I/C , 49, 78, 115, 137, 165, 181,	centrée, 35
183–185	centrée sur 12 termes, 17, 41, 63
irrégulier, 15, 23, 28, 29, 39, 49, 59,	centrée sur 24 termes, 64
67, 87, 92, 96, 104, 109, 122,	centrée sur 3 termes, 39
123, 127, 131, 146, 168, 172,	composée, 40, 49
182, 184, 185	conservation de polynômes, 38
dans la méthode des moyennes mo-	conservation de tendance, 38
biles, 17	construction, 39
et fonction de gain, 34	et point atypique, 28
et foliction de gain, 54	filtre mensuel de X-11, 50
Jenkins, G.M., 11, 18, 31, 219	asymétrique, 56, 57
Jevons, W.S., 15, 16, 221	filtre trimestriel de X-11, 56
jours ouvrables, 12, 18, 23, 28, 29, 31,	
-	Henderson, 45, 49, 78
59, 61, 93, 94, 96, 107, 108,	sur 7 termes, 46
123, 130, 131, 154, 169	formule des coefficients, 46
coefficients d'ajustement, 103, 126	sur 13 termes, 46, 79
régression, 101, 125	sur 23 termes, 46, 79
test F, 96, 183	sur 5 termes, 46
test T, 96	sur 9 termes, 46, 79
	identité, 54
Kendall, M., 23, 35, 221	Musgrave, 47, 49
Kitagawa,G., 20, 221	formule des coefficients, 49
Koopman, S.J., 20, 221	non centrée, 47
Koopmans, L., 36, 221	notations de Kendall, 35
Ladiray, D., 13, 39, 220	ordre, 34
Laker, L.G., 197–199, 221	pondérée, 40
Laniel, N., 80, 221	simple, 40
Laroque, G., 159, 219	simple d'ordre k, 39
Lothian, J., 142, 147, 183–185, 221	simple sur 3 termes, 40, 42, 68
LOWESS, 19	simple sur 7 termes, 146
,	simple sur MCD termes, 176
Maballée, Colette et Berthe, 16, 221	symétrique, 35–37, 40
	* * * *

$2 \times 12, 40, 41, 49, 64$	Priestley, M.B., 18, 222
$2 \times 4, 40, 49$	
$3 \times 15, 42, 68$	qualité
$3 \times 3, 40, 42, 66, 68, 151$	mesures de X-11, 176
asymétrique, 49, 66	Statistique Q, 186
$3 \times 5, 42, 68, 84, 151, 185$	Statistique Q2, 187
asymétrique, 49, 84	statistiques, 183
$3 \times 9, 42, 68, 151$	Quenneville, B., 13
asymétrique, 49	, ,
$p \times q, 40$	ratio de saisonnalité mobile, 145, 150,
$p \wedge q$, 40 moyennes mobiles, 17	183
et cycle artificiel, 17	
et régressions locales, 19	SABL, 19
_	saisonnalité, 15, 34, 39, 145, 170
Musgrave, J., 18, 47, 49, 80, 222	et jours ouvrables, 93
Nerlove, M., 15, 222	F-test, 64
NCHOVC, WI., 13, 222	test de Kruskal-Wallis, 141
O'Beirne, T., 192, 222	test de saisonnalité évolutive, 141
Otto, M.C., 220	test de saisonnalité stable, 141
0110, 111.0., 220	test F de Fisher, 154
Pâques	test pour la présence d'une sai-
dates, 191	sonnalité identifiable, 142, 185
effet, 12, 23, 24, 28, 31, 102, 108,	tests, 141, 183
123, 130, 191	saisonnier-irrégulier, 25, 42, 64, 66, 83,
dans X-11-ARIMA, 194	84, 111, 119, 134, 141, 145,
dans X-12-ARIMA, 206	185
effet graduel, 193	
effet ponctuel, 193	SAS, 61, 222
effet résiduel, 194	schéma de composition, 16, 23
et la désaisonnalisation, 193	additif, 17, 24
	log-additif, 24
fête, 191	multiplicatif, 17, 24
modèle de Bateman-Mayes, 206	pseudo-additif, 24
modèle de régression, 194	tableau D11A, 159
à effet graduel, 201, 206, 213,	SEATS, 20
214	Shepard, N.G., 221
à effet ponctuel, 194, 214	Shiskin, J., 18, 222
à effet ponctuel corrigé, 197	Slutsky, E., 17, 18, 222
Easter, 206, 215	spectre, 34
Sceaster, 206, 211	STAMP, 20
Persons, 16	STL, 19
Persons, W.M., 16, 17, 222	
phase shift, 35, 37	tendance, 15, 16, 23, 25, 37
pic spectral, 34	dans la méthode des moyennes mo-
point atypique, 28, 29, 31, 50, 61, 62,	biles, 17
66, 68, 84, 88, 96, 104, 105,	et fonction de gain, 34
109–111, 123, 127, 131, 132,	tendance-cycle, 23–25, 29, 40, 49, 59,
141, 145, 165, 170–172	61, 63, 78, 110, 115, 133, 137,
Poynting, J. H., 17, 222	165, 170, 171, 174, 184

```
Terpenning, I., 219
Tiao, G.C., 20, 221
Tukey, J.W., 18, 220, 222
Tøndering, C., 192, 222
valeurs atypiques, 12
X-1, 18
X-11, 11, 18, 19, 23, 25, 28, 31, 40,
         50, 59, 68, 69
     Partie A, 29, 61, 62, 110, 132
    Partie B, 29, 61, 62, 110, 123, 211,
         215
     Partie C, 29, 61, 110, 132, 211,
         215
     Partie D, 29, 61, 132
     Partie E, 29, 61, 170
     Partie F, 29, 61, 176
    Partie G, 29, 61
X-11 tableaux, 59
X-11-ARIMA, 11, 18, 19, 31
X-12-ARIMA, 11, 20, 31
X-2, 18
Young, A., 18, 95, 222
```

Yule, G.U., 16-18, 222