Effect of spin motion perturbation on the EDM statistic

Alexander Aksentev

November 22, 2018

Problem statement

▶ The spin precession axis (SPA) of a particle involved in betatron motion moves about the invariant spin axis defined on the CO:

$$\boldsymbol{\Omega} = \boldsymbol{\Omega}_0(\boldsymbol{\Theta}) + \boldsymbol{\omega}(\boldsymbol{\Theta}, \Delta \boldsymbol{r}).$$

Simultaneously, it was claimed that: for two beams, $\gamma_{\text{eff}}^1(\frac{\Delta L}{L}, \frac{\Delta p}{p}) = \gamma_{\text{eff}}^2(\frac{\Delta L}{L}, \frac{\Delta p}{p}) \rightarrow$ $(\Omega_x^1, \Omega_y^1, \Omega_z^1) = (\Omega_x^2, \Omega_y^2, \Omega_z^2),$ regardless of the particulars of their orbital motion.

The last statement makes sense so long as by "frequency" we mean $|\Omega|$. Couldn't see how γ_{eff} alone can guarantee the equality of the \bar{n} orientations. Must be an implicit assumption.

Single particle ν_s , \bar{n} , and Ω_x

Implicit assumption (sic!): All spin vectors in the beam precess about the same \bar{n}_{CO} . (More carefuly: $\bar{n}_i - \bar{n}_{CO} \ll 1$.)

Below: 270 MeV (FS@270.0092 MeV), FS lattice w/E+B elements tilted about the optic axis by $\theta \sim N(4 \cdot 10^{-3}, 5 \cdot 10^{-4})$ rad. Observe a significant $\sigma[\Omega_X]$.

Question: How does this affect the net beam polarization?

Simulation: Uniform beam

▶ Same lattice; beam represented by 4,000 rays; $x_0, y_0 \in [-1mm, +1mm]$,

$$d_0 := \Delta K / K_{ref} \in [-1 \cdot 10^{-4}, +1 \cdot 10^{-4}].$$

$$\blacktriangleright \ \mathbf{P} = \frac{\sum_{i \in E} \mathbf{s}_i}{||\sum_{i \in E} \mathbf{s}_i||}.$$

Fit P_y by model $g(t) = \sin(2\pi f \cdot t)$.

Table 1: Frequency estimates for the Uniform CW & CCW beams, reference ray and full beam, in Hz

Data		Polarization		Reference ray	
Frequency	Offset	CW	CCW	CW	CCW
Estimate	360.90365	$1.58 \cdot 10^{-7}$	$1.57 \cdot 10^{-7}$	$3.42902 \cdot 10^{-6}$	$3.42902 \cdot 10^{-6}$
SE	_	$1 \cdot 10^{-9}$	$2 \cdot 10^{-9}$	$5 \cdot 10^{-10}$	$5 \cdot 10^{-10}$

- ▶ Residuals exhibit a systematic pattern (model error); also $\hat{f}_{P_y} < \hat{f}_{s_y}^{CO}$.
- ▶ However, $\hat{f}_{P_v}^{CW} \hat{f}_{P_v}^{CCW}$ is below statistical precision.
- ▶ But what if the CW & CCW beams are **not** identical?

Simulation: Gaussian beams

Table 2: Frequency estimates for the Gaussian CW & CCW beams, reference ray and full beam, in Hz

Data		Polarization		Reference ray	
Frequency	Offset	CW	CCW	CW	CCW
Estimate	352.99403	$9.0405 \cdot 10^{-6}$	$7.792 \cdot 10^{-6}$	$4.149017 \cdot 10^{-5}$	$4.149017 \cdot 10^{-5}$
SE	_	$7 \cdot 10^{-10}$	$9 \cdot 10^{-9}$	$2 \cdot 10^{-11}$	$2 \cdot 10^{-11}$

Error:
$$\varepsilon := \hat{f}^{CW} - \hat{f}^{CCW} = 1.249 \cdot 10^{-6} \; (\text{model}) \pm 9 \cdot 10^{-9} \; (\text{fit}) \; \text{Hz}.$$

Multiple runs

Hypothesis: the systematic error component likely depends on the beam centroid difference. Define the centroid by $\mathbf{c} = (\langle x_0 \rangle, \langle y_0 \rangle, \langle d_0 \rangle)$. Then do linear regression of $\hat{f}^{CW} - \hat{f}^{CCW}$ on $\mathbf{c}^{CW} - \mathbf{c}^{CCW}$

Effect size dependence on the beam size

- ho $\varepsilon = a_0 + a_1 \Delta \mathbf{c}_y$;
- all beams in the simulation had the same CO; c_y deviated from 0 only b/c of a finite sample size;
- $\sigma_{\langle y \rangle} \equiv \sigma_{4k} = \sigma/\sqrt{n}$, hence if $n=4\cdot 10^3 \to n=4\cdot 10^9$, then $\sigma_{4b} = \sigma_{4k}\cdot 10^{-3}$;
- ▶ then the model part of ε would also drop 3 orders of magnitude, and would be comparable with fit error.

Extra