

Inteligência Artificial ao alcance de todos

www.escolalivre-ia.com.br

Algoritmos de Classificação: Visão Geral + KNN

O que vamos aprender hoje?

- 1. O que são algoritmos de classificação?
- 2. Quais as diferenças entre modelos de classificação e regressão?
- 3. Quais são os principais tipos de modelos de classificação?
- 4. Quais métricas usamos para avaliar modelos de classificação?
- 5. Como funciona o modelo KNN K Nearest Neighbors

Modelos Classificação

Classificação x Regressão

Classificação x Regressão

Classificação

Regressão

Exemplos Classificação

Exemplos Classificação

Exemplos Classificação

 $\underline{\text{https://towardsdatascience.com/machine-learning-with-the-titanic-dataset-7f6909e58280}}$

Tipos Modelos Classificação

- 1. Aprendizado por minimização dos erros (error-based learning)
 - Regressão Logística*
 - Suport Vector Machines (SVM)
- 2. Aprendizado por probabilidades (*probability-based learning*)
 - Naive Bayes
- 3. Aprendizado por ganho de informação (information-based learning)
 - Árvores de Decisão (Decision Trees)
- 4. Aprendizado por similaridade (similarity-based learning)
 - K-Nearest Neighbors (KNN)

Regressão Logística*

^{*}a rigor não é um classificador, mas pode ser utilizado para classificação se utilizando de um limiar *(threshold)* para determinar a qual classe pertence.

SVM - Support Vector Machines

SVM - Support Vector Machines

Classificador Naive Bayes

Probabilidade

Probabilidade original da Classe

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

Probabilidade posterior

Preditor da probabilidade posterior

Thomas Bayes 1702 - 1761

$$P(c|X) = P(x_1|c)xP(x_2|c)x...xP(x_n|c)xP(c)$$

Árvores de Decisão

Thomas Bayes 1702 - 1761

Árvores de Decisão

Thomas Bayes 1702 - 1761

K-Nearest Neighbors

- 1. Aprendizado por minimização dos erros (error-based learning)
 - Regressão Logística*
 - Suport Vector Machines (SVM)
- 2. Aprendizado por probabilidades (*probability-based learning*)
 - Naive Bayes
- 3. Aprendizado por ganho de informação (information-based learning)
 - Árvores de Decisão (Decision Trees)
- 4. Aprendizado por similaridade (similarity-based learning)
 - K-Nearest Neighbors (KNN)

Métricas Modelos Classificação

Matriz de Confusão

PREDITO

V

Ш

Matriz de Confusão

		Classe esperada	
		Gato	Não é gato
Classe prevista	Gato	25 Verdadeiro Positivo	10 Falso Positivo
	Não é gato	25 Falso Negativo	40 Verdadeiro Negativo

Matriz de Confusão

KNN – K-Nearest Neighbors

K-Nearest Neighbors

DIGA-ME COM QUEM ANDAS, QUE EU TE Direi quem tu es.

Diga me com quem tu andas...

Diga me com quem tu andas...

Algoritmo K-Vizinhos Mais Próximos

Número K – Quantos vizinhos?

Algoritmo KNN

PARA TODAS NOVAS OBSERVAÇÕES

- PASSO 1: Dado uma nova observação: escolha o número K de vizinhos
- PASSO 2: Selecione os K vizinhos mais próximos, de acordo com a métrica escolhida
- PASSO 3: Destes K vizinhos, conte a quantidade de cada categoria (target)
- PASSO 4: Atribua à nova observação a categoria com maior quantidade no ponto anterior

Algoritmo KNN

Como calculamos a distância?

Como calculamos a distância?

Distância Euclidiana

Euclidean
$$(A, B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$a^2 = b^2 + c^2$$

