Timeseries Clustering using Contrastive Learning

About me

- Research Engineer and Marie Curie Alumni
- Finishing my PhD at TU Graz on "Methodologies for Testing and Validation of Automated Driving Functions"
- Interests: Deep Learning, Computer Vision, Programming, Open-source software

Agenda

- Clustering using Deep Learning
- Contrastive Learning
- Timeseries Clustering using Contrastive Learning

Clustering using Deep Learning

NT-Xent - The normalized temperature-scaled cross entropy loss

$$\mathcal{L}_{i} = -log \frac{exp(sim(z_{i}, z_{j})/\tau)}{\sum_{k=1, k \neq i}^{2N} exp(sim(z_{i}, z_{k})/\tau)}$$

$$\mathcal{L} = \sum_{i=1}^{2N} \mathcal{L}_i$$

Timeseries Clustering using Contrastive Learning

NT-Xent - The normalized temperature-scaled cross entropy loss

$$\mathcal{L}_i = -log \frac{exp(sim(z_i, z_j)/\tau)}{\sum_{k=1, k \neq i}^{2N} exp(sim(z_i, z_k)/\tau)}$$

$$\mathcal{L} = \sum_{i=1}^{2N} \mathcal{L}_i$$

- Not using normalization
- 2D latent space directly

Timeseries Clustering using Contrastive Learning

References

- [1] A Simple Framework for Contrastive Learning of Visual Representations arxiv.org/pdf/2002.05709.pdf
- [2] Supervised Contrastive Learning arxiv.org/pdf/2004.11362.pdf