Nanyang Technological University SPMS/Division of Mathematical Sciences

2021/22 Semester 1

MH1810 Mathematics 1

Tutorial 2

Relevant sections for further reading

- [S] Calculus by James Stewart Chapter 12 (Sections 12.1 -12.5) or
- [T] Thomas' Calculus: Chapter 11 (Sections 11.1 -11.5).
- 1. Let $\mathbf{u} = \mathbf{i} + \mathbf{j} 5\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$. Find $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, $\mathbf{u} \cdot \mathbf{v}$, $\mathbf{u} \times \mathbf{v}$, $\mathbf{v} \times \mathbf{u}$, and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 2. For which values of k are $\mathbf{x}=(k,k,1)$ and $\mathbf{y}=(k,5,6)$ in \mathbb{R}^3 perpendicular to each other (i.e., orthogonal)?
- 3. Consider the parallelogram ABPC with adjacent sides AB and AC and vertices A(1,0,0), B(0,1,0) and C(0,0,1).
 - (a) Find the area of the parallelogram.
 - (b) Find the coordinates of the vertex P.
 - (c) Find the angle between the diagonals of the parallelogram.
- 4. Find the work done by a force $\mathbf{F} = 5\mathbf{i}$ (magnitude 5 N) along the line from the origin to the point (1,1). (Distance measured in metres).
- 5. A water main is to be constructed with at 20% grade (i.e., slope = $\frac{\text{height}}{\text{horizontal distance}} = 0.2$) in the north direction and a 10% grade in the east direction. Determine the angle θ required in the water main for the turn from north to east (i.e., the angle θ you need to bend the water main).

- 6. Let **u** and **v** be vectors in \mathbb{R}^3 .
 - (a) Using $\|\mathbf{w}\|^2 = \mathbf{w} \cdot \mathbf{w}$ and some properties of dot products, prove that

$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \pm 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^2.$$

Hence prove that

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4} \|\mathbf{u} - \mathbf{v}\|^2.$$

(b) Use part (a) to prove that two vectors \mathbf{u} and \mathbf{v} are perpendicular if and only if $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u} - \mathbf{v}\|$. Also, interpret this geometrically in \mathbf{R}^2 .

- 7. (a) Find the vector equation of the line through A(1,0,1) and B(1,-1,1).
 - (b) Find the parametric equation of the line through P(1,2,-1) and Q(-1,0,1).
 - (c) Find the parametric equation of the line through the point R(2,4,5) and perpendicular to the plane 3x + 7y 5z = 21.
- 8. Consider vectors $\mathbf{u} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$.
 - (a) Find a unit vector that is perpendicular to vectors \mathbf{u} and \mathbf{v} .
 - (b) Determine the scalar equation of the plane Π which passes through the point (1,1,0) and is parallel to \mathbf{u} and \mathbf{v} . What is the distance between planes Π and the plane containing the origin and parallel to \mathbf{u} and \mathbf{v} ?
- 9. (a) Find the vector equation and scalar equation of the plane through the point P(1, -1, 3) parallel to the plane 3x + y + z = 7.
 - (b) Find the vector equation of the plane through A(1, -2, 1) perpendicular to OA.
- 10. (a) Find the distance from S(3, -1, 4) to the line $\ell : x = 4 t, y = 3 + 2t, z = -5 + 3t$.
 - (b) Find the distance from S(2, -3, 4) to the plane x + 2y + 2z = 13.
 - (c) Find the distance between the two planes x + 2y + 6z = 1 and x + 2y + 6z = 10.
- 11. Consider four distinct points A(0,0,0), B(1,2,0), C(0,-3,2) and D(3,-4,5) where AB, AC and AD are three edges of a parallelepiped.
 - (a) Find the volume of the parallelepiped via scalar triple product.
 - (b) If A, B and C are three vertices on the base of the parallelepiped, compute the height of the parallelepiped.
 - (c) \bigstar Let ℓ_1 be the line through A and B and ℓ_2 the line through D and parallel to AC. What is the distance between the skew lines ℓ_1 and ℓ_2 ?

Challenging Questions(will not be discussed)

- 1. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ be three non zero, non coplanar vectors.
 - (a) Let $\mathbf{v}_1 = \mathbf{x}_1$ and $\mathbf{v}_2 = \mathbf{x}_2 \left(\frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1$. Show that \mathbf{v}_1 is perpendicular to \mathbf{v}_2 .
 - (b) Find a vector \mathbf{v}_3 such that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are perpendicular to each other.
- 2. Given any three non collinear points A, B, C. Let O be the circumcenter of $\triangle ABC$ (i.e., A, B, C are point on the circle with center O and radius = $||\overrightarrow{OA}|| = ||\overrightarrow{OB}|| = ||\overrightarrow{OC}||$). Let $\overrightarrow{OT} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. Show that T is the orthocenter of $\triangle ABC$. (The orthocenter of a triangle $\triangle ABC$ is a point H such that $AH \perp BC, BH \perp AC$, and $CH \perp AB$.)

Answers

1.
$$\sqrt{27}$$
; $\sqrt{6}$; 8; 4**i** - 9**j** - **k**; -4**i** + 9**j** + **k**; $\frac{8}{6}$ (2**i** + **j** - **k**) = $\frac{8}{3}$ **i** + $\frac{4}{3}$ **j** - $\frac{4}{3}$ **k**

2.
$$k = -2$$
 or $k = -3$

- (a) The area is $\sqrt{3}$.
- (b) (-1,1,1)
- (c) $\pi/2$
- 3. 5J.

4.
$$\theta = \arccos(\frac{2}{\sqrt{104}\sqrt{101}})$$
 or $\theta \approx 1.55$ rad, or 88.88° .

7. (a)
$$\mathbf{r} = (1,0,1) + t(0,-1,0), t \in \mathbb{R}$$
.

(b)
$$x = 1 - 2t, y = 2 - 2t, z = -1 + 2t$$

(c)
$$x = 2 + 3t, y = 4 + 7t, z = 5 - 5t, t \in \mathbb{R}$$
.

8. (a)
$$\frac{1}{\sqrt{53}}(-4,6,-1)$$

(b)
$$-4x + 6y - z = 2$$
, and the distance is $\frac{2}{\sqrt{53}}$.

- 9. (a) Vector equation: $\mathbf{r} \cdot (3, 1, 1) = 5$, Scalar equation: 3x + y + z = 5
 - (b) Vector equation: $\mathbf{r} \cdot (1, -2, 1) = 6$.

10. (a)
$$\frac{9\sqrt{42}}{7}$$
, (b) 3, (c) $\frac{9}{\sqrt{41}}$

11. (a) 5, (b), Height of the parallelepiped =
$$\frac{5}{\sqrt{29}}$$
, (c) $\frac{5}{\sqrt{29}}$.