Classification

Training

Preprocess SpamHam

Use Hyperparameters

 $\approx 350,000$ unique words

Vectorize Spam/Ham Emails

Preprocess SpamHam

Fetch Compress Files

Predict Safe = 0

Predict Safe = 1

Safe = 0

Target (i.e. labels)

Safe = 1

True Negative	False Negative
False Positive	True Positive

Predict Safe = 0

Predict Safe = 1

Safe = 0

Target (i.e. labels)

Safe = 1

True Negative False Positive

False Negative

True Positive

Precision (i.e. accuracy)

 $Precision_{ClassSafe=1}$ TP TP+FP

Ratio of positive predictions(class PredictSafe=1) that are correct

Predict Safe = 0

Predict Safe = 1

Safe = 0

Target (i.e. labels)

Safe = 1

False Positive True Negative False Negative True Positive

Precision (i.e. accuracy)

 $Recall_{ClassSafe=1}$ TP+FN

Ratio of positive instances(class Safe=1) that are detected

Use to measure both recall and precision

F1 is high if both precision and recall are high

Precision or Recall

- class=0(bad) videos are rarely predicted as class=1(good)
 Bad videos are likely to be flagged as bad (class =0)
 - "don't concern yourself about the other video classes, they are handled correctly, only concern yourself about handling of class=1(safe) videos"
- Accepts damn near all safe videos well, check with precision on how well the actual safe videos are classified

The models devils don't steal other videos (predict their class as the safe video)

Model predicts safe videos incorrectly most of the time, but mostly all safe videos are detected

Model predicts safe video correctly most of the time., but detects low percentage of safe videos

This method should be used if building a free kid safe video streaming service

Model predicts safe video correctly most of the time., but detects low percentage of safe videos

	Great predictor	Great predictor	Bad predictor
	Tall	Medium	Short
Bad Detector	Iall	Mediam	SHOLL
Tall	123	2	111
Good Detector Medium	2	111	2
Good Detector Short	1	1	210

Bad Devil - steals many tall humans

Perfect Class 5 predictor

	Predict !5	Predict 5
!5	873926	
5	5555	555

Increasing threshold increases precision, decreases recall

True Negative	False Positive
False Negative	True Positive

	Great predictor	Great predictor	Bad predictor
Bad Detector	Tall	Medium	Short
Tall	123	2	111
Good Detector Medium	2	111	2
Good Detector Short	1	1	210

one-versus-all

perfect for large training sets

Single Winner

one-versus-one

perfect for small-medium sized training sets

Multiple Winners

1. Measure F1 score for each label

2. Compute average F1 score

Image

Image

Image

Labels

101

Human and machine found in imag

Image

Image

Image

Image

-

Image

Image

Image

Multi-values — (rgb)

Multiple Outputs (pixels) Multi-Label

Multi-class(i.e. strength) — (low mid high)