

Name:			MatNr:	
O Miesbauer	O Mayr	O Groher	Abgabe: 20	.3.2013, 10:00
O Milesbauei	Viviayi	O Gloriei	TutorID:	Punkte:

1. Übungsblatt

Aufgabe 1: Schleifenarten

(2+2+2 Punkte)

Gesucht ist ein Algorithmus (Jana oder Java) int $f(\downarrow n)$, der für ein ganzzahliges n > 0 die Fakultät n! berechnet. Geben Sie eine Lösungsidee an und formulieren Sie drei Algorithmen mit den folgenden Schleifen:

- (a) for
- (b) while
- (c) repeat

Aufgabe 2: Darstellungsarten

(3+3 Punkte)

Stellen Sie alle in Aufgabe 1 entworfenen Algorithmen jeweils als Ablaufdiagramm und Struktogramm dar.

Aufgabe 3: Hohe Potenzen

(3 + 3 + 2 Punkte)

Gesucht ist ein Algorithmus int power($\downarrow p$, $\downarrow q$), welcher für ganzzahlige p>0 und q>0 die Funktion p^q berechnet.

- (a) Formulieren Sie einen möglichst einfachen Algorithmus (z.B. durch wiederholte Multiplikation) in Jana.
- (b) Formulieren Sie in stilisierter Prosa einen möglichst effizienten Algorithmus nach der Idee "Square&Multiply".
- (c) Vergleichen Sie die Anzahl der Multiplikationen die zur Berechnung von 2¹⁰ und 2¹⁰⁰ nach (a) und (b) jeweils erforderlich sind.

Aufgabe 4: Schaltjahr-Berechnung

(4 Punkte)

Gesucht ist ein Algorithmus (Jana oder Java) int daysInMonth($\downarrow m$, $\downarrow y$), welcher für ganzzahlige 1<=m<=12 und 1000<y<3000 die Zahl der Tage im Monat m im Jahr y berechnet.