Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models Barry Honig, et al. Presented by Maruti Sharma AMS 691 Professor Rizzo

Outline

- Introduction to Electrostatics
- Poisson Boltzmann Equation (PBE)
- Applications of PBE
- PBE and Solvation of Free Energies
- Results
- Discussion

Classic Electrostatics

- Electrostatic interactions play key role in biological processes
- Interactions of molecules in aqueous solution
- Solute and Solvent molecules described as Force Fields
- van der Waals Forces and electrostatic terms account for most of the intermolecular interactions
- Important in Drug Design and Protein Folding
- PBE is key

Poisson Boltzmann Equation k is Boltzmann constant T is temperature φ is the electrostatic potential φ is the fixed charge density ε is dielectric constant ε , ε , ε , ε , ε , are all functions of position vector ε

Applications of PBE

- Description of Electric Potentials
- Diffusion Limited Processes
- pH dependent properties of proteins
- Ionic strength-dependent phenomena
- Solvation free energies of organic molecules

Calculating Electric Potentials

- Molecular Surface
- Interior regions ε ~(2-4)
- Exterior regions ε of water~80
- Charge distribution represented as point charges of nuclei
- PBE is used to describe molecular surfaces

Patterns of $\varphi(r)$ in Proteins

- Applications used in visual representation of φ(r) for proteins
- φ(r) is dependent on specific location of charged and polar groups in proteins
- Proteins generate unique patterns
- Boundary of high ε regions and low ε regions
- Dielectric discontinuity produces distinctive shape

Space Model of a Protein

- ■Red spheres → Oxygen of negatively charged carboxylic acids
- ■Blue spheres → Nitrogen of basic groups
- ■Represents charges on active site

Calculation pK_a's: pH Effects on Binding and Stability

- pK_a is the proton affinity of acids and bases
- Shifts between naïve and denatured → differences in pH
- Macromolecular stability effected
- Denaturation of proteins →pK_a shifts of amino acids
- Hydrogen bonding interactions determine pK_a
- PB calculations account for both the desolvation and the hydrogen bonding effects

Solvation Free Energies

- Differences in the reaction field energy of a charge distribution
- Transferred from one dielectric medium to another
- Energetics of microscopic hydrogen bonding interactions of polar molecules in the aqueous phase
- Nonpolar and electrostatic contributions included for calculating solvation free energies
- PB calculations used on solute to obtain free energy values

Calculation of Free Energies: Introduction

- Fast and accurate calculations of hydration free energies of small molecules
- Uses FDPB/γ method, PARSE parameters
- Examination of force field or ab initio parameters
- Experimental solvation energies obtained for small polar molecules
- Includes those representing amino acid side chains and polypeptide backbone

Theory and Methods: Solvation Energy Calculations

 $\Delta G_4^{\text{sol}} = \Delta G_1^{\text{v,elect}} + \Delta G_2^{\text{c/vdw}} + \Delta G_3^{\text{w,elect}}$

■Thermodynamic cycle showing into electrostatic and van der Waals contributions to solvation energy

■ ΔG₁v, elect

■ ∆G₂c/vdw

■ ΔG₃w, elect

■ ∆G₄sol

Theory and Methods: Nonpolar Energy Contributions Energy transferring small straight chain alkanes into water is linearly dependent on the alkane surface area Shown by this equation			
- Showin by this equation			
$\Delta G = \gamma A + b$			
 A → solvent accessible surface area y, b → constants 			
, u > constants			

Theory and Methods: Nonpolar Energy Contributions			
 Experimental values of vacuum to water energies for alkanes used to obtain values γ, b Computation of free energies from equilibrium concentrations of solute in two phases given by 			
$\Delta G = -RT \ln(C_1/C_2)$			
■ C_1/C_2 ratio expressed in units of molarity			

Theory and Methods: Nonpolar Energy Contribution

- Curvature of solute-solvent is believed to affect the solute
- Given by following equation

$$\gamma(R)/\gamma(\infty) = 1/(1 \pm a/R)$$

- a → radius solvent, R → radius of solute-solvent surface
- Differences between curvatures of solvent and alkanes taken into account

Theory and Methods: PARSE

- Solvation energies for small molecules calculated reproduced
- Parameterize group constituents
- Total free energy is sum of constituent groups
- Nonpolar contributions calculated independently, subtracted later
- Gives 'experimental' electrostatic energy

Theory and Methods: PARSE

- Calculated electrostatic contribution best matched 'experimental' energies of functional group
- Fewest moments needed for alcohols, since O, H molecules known
- Complicated functional groups, i.e → amide = ketone + amine
- Some not matched, i.e → -COOH group

		- 4	G _e			30	ada, and	
aacid	molecule	OPLS	ab initio	SA	∆G _{e/v}	OPLS	ab initio	2 Gagan
arg	N-propylguanidine			307	2.46			-10.92
860	acetamide	-12.73	-13.09	217	1.99	-10.73	-11.10	-9.72
asp	acetic acid	-10.35		213	1.97	-8.38		-4.70
cys	methylthiol	-5.26	-3.99	194	1.87	-3.39	-2.12	-1.24
gla	propionamide	-12.58	-11.94	249	2.16	-10.42	-9.79	-9.42
glu	propionic acid	-9.82		246	2.14	-7.68		-6.47
his	methylimidazole	-11.90	-10.40	260	2.22	-9.58	-8.19	-10.25
lys	N-butylamine	-5.85		274	2.29	-3.56		-4.38
met	methyl ethyl sulfide	-3.23	-3.42	261	2.22	-1.01	-1.20	-1.49
phe	toluene	-2.20	-3.00	294	2.39	0.19	-0.60	-0.76
ser	methanol	-8.16	-7.57	171	1.76	-6.41	-5.81	-5.08
thr	ethanol	-7.77	-6.72	208	1.95	-5.82	-4.77	-4.90
tro	methylindole	-8.44	-8.80	334	2.60	-5.84	-6.21	-5.91
tyr	p-cresole N-methylacetamide	-8.79 -9.52	-9.39	305 255	2.45	-6.34 -7.33	-6.95	-6.13 -10.08
tyr bb	N-methylacetamide	-9.52	11/17	255	2.19	-7.33		-10.08
Calco E = 1 AG _{el} SA-2	N-methylacetamide	olar am ic Free Surface	ino acid Energy Area er Waal	side	chain a	and bad		-10.08

Results: Preoptimization

- Using OPLS and *ab-initio* parameters with ε = 1, results good
- Small errors
- ■1.09 and 2.75 kcal/mole for OPLS
- 0.71 and 2.06 kcal/mole for ab-initio
- Results for $\varepsilon = 2$, less favorable

Results: Optimization

- Optimization for ε=1, same magnitude of error for OPLS, *ab initio*
- Greatly improved error for $\varepsilon=2$

			ΔG	enter, see		
aacid	molecule	OPLS inc erg ^b	OPLS red rad*	ab initio inc erge	ab initio red rad*	$\Delta G_{mp,loc}$
arg	N-propyt- guanidine					-10.92
250	acetamide	-11.19	-9.89	-9.86	-11.11	-9.72
asp	acetic acid	-8.41	-7.17			-6.70
CYS	methylthiol	-3.33	-1.57	-2.90	-1.47	-1.24
æln.	propionamide	-10.85	-9.72	-9.01	-9.91	-9.42
glu	propionic acid	-7.84	-6.75			-6.47
his	methyl- imidazole	-9.81	-10.56	-7.69	-8.96	-10.25
lys	N-butylamine	-3.37	-3.56			-4.38
met	methyl ethyl sulfide	-1.11	-0.70	-2.48	-1.72	-1.49
phe	tolwene	0.32	-0.37	-2.06	-1.62	-0.76
ser	methanol	-6.19	-5.62	-5.35	-5.04	-5.08
thr	ethanol	-5.52	-5.12	-4.73	-4.49	-4.90
trp	methylindole	-5.39	-5.45	-6.15	-6.45	-5.91
tyr	p-cresole	-6.02	-5.91	-6.60	-7.09	-6.13
bb	N-methyl- acetamide	-7.53	-7.01			-10.08

				B. Ioni	zed Mole	cules						
									ΔG _{ast}		expt	
chemical group	atom	crg	aacid	molecule	$\Delta G_{\rm el}$	SA	$\Delta G_{v/v}$	cuic	exp	ΔG_{err}	$pK_{nj}t$	ΔG,*
NH.*	N' H, CH ₂ (N)	-0.32 0.33	lys+	ammonium N-butyl- ammonium	-70.71 -71.80	145 258	1.71 2.36	-81.51 -69.44	-81.53 -69.24	0.02	9.25 10.60	196.4 210.6
-c-s-	c s	-0.08 -0.92	cys-	methylthiol ion	-78.54	177	1.88	-76.66	-76.79	0.13	10.30	350.6
-coo-	C Ou	-0.55	asp-	acetate ion proprionate ion	-82.38 -81.32	188	2.11	-80.44 -79.21	-80.65 -79.12	0.21	4.80	341.5
aromatic ≥CO-	Criss Heise C(O)	-0.195 0.125 -0.07 -0.50	tyr-	p-cresole ion	-77.28	273	2.40	-74.88	-75.01	0.13	9.98	343.5
aromatic -NH-CH= N*H-CH=	N H(N) C H(C)	-0.35 0.45 0.1413 0.125	his+	methyl- imidazolium	-66.57	239	2.21	-64.36	-64.13	0.23	6.95	216.6
-C-N ₄ H-C- (N ₆ H ₂) ₂ *	C _{1,2} N _a H(N _a) N _b H(N _b)	0.35 -0.35 0.45 -0.70 0.40	arg+	N-p-guanidinium	-68.53	284	2.46	-66.07			13.65	
									total ΔG_{em} sacid ΔG_{em}	0.15	total µ err ascid µ err	0.36

Discussion

- Able to calculate solvation free energies with solute polarizability
- Developed parameters to observe transfer energy of small molecules
- Includes backbones of amino acids
- Done by using FDPB method and PARSE

Discussion

- Future experiments involve testing methods and parameters on proteins
- Intra/inter molecular interactions taken into consideration
- Accuracy of small molecules allows for further study of proteins
- Protein-Protein or Protein-ligand interactions

Thank You!!!

1	0