Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 02: Foundations

Version: April 8, 2014

vrije Universiteit amsterdam

1/20

Contents

Chapter	Description
01: Introduction	History, background
02: Foundations	Basic terminology and properties of graphs
03: Extensions	Directed & weighted graphs, colorings
04: Network traversal	Walking through graphs (cf. traveling)
05: Trees	Graphs without cycles; routing algorithms
06: Network analysis	Basic metrics for analyzing large graphs
07: Random networks	Introduction modeling real-world networks
08: Computer networks	The Internet & WWW seen as a huge graph
09: Social networks	Communities seen as graphs

 $N(v) = \{ w \in V(G) \mid v \neq w, \langle v, w \rangle \in E(G) \}$

2/32

Graph: definition 2.1 Formalities	Foundations 2.1 Formalities
Definition A graph G is a tuple (V, E) of vertices V and a collection of edges E . Each edge $e \in E$ is said to connect two vertices $u, v \in V$, and is denoted as $e = \langle u, v \rangle$. Notations: $V(G)$, $E(G)$.	
Definition	
The complement \overline{G} of a graph G , has the same vertex set as G , but $e \in E(\overline{G})$ if and only if $e \notin E(G)$.	
Definition	
For any graph G and vertex $v \in V(G)$, the neighbor set $N(v)$ of v is the set of vertices (other than v) adjacent to v :	

Graph: Example

$$\begin{split} V(G) &= \{v_1, \dots, v_8\} \\ E(G) &= \{e_1, \dots, e_{18}\} \\ e_1 &= \langle v_1, v_2 \rangle \quad e_{10} &= \langle v_6, v_7 \rangle \\ e_2 &= \langle v_1, v_5 \rangle \quad e_{11} &= \langle v_5, v_7 \rangle \\ e_3 &= \langle v_2, v_8 \rangle \quad e_{12} &= \langle v_6, v_8 \rangle \\ e_4 &= \langle v_3, v_5 \rangle \quad e_{13} &= \langle v_4, v_7 \rangle \\ e_5 &= \langle v_3, v_4 \rangle \quad e_{14} &= \langle v_7, v_8 \rangle \\ e_6 &= \langle v_4, v_5 \rangle \quad e_{15} &= \langle v_4, v_6 \rangle \\ e_7 &= \langle v_5, v_6 \rangle \quad e_{16} &= \langle v_2, v_3 \rangle \\ e_8 &= \langle v_2, v_5 \rangle \quad e_{17} &= \langle v_1, v_7 \rangle \\ e_9 &= \langle v_1, v_6 \rangle \quad e_{18} &= \langle v_5, v_8 \rangle \end{split}$$

What is the neighborset of v_6 ?

Vertex degree **Definition**

The number of edges incident with a vertex v is called the degree of v, denoted as $\delta(v)$. Loops, i.e., edges joining a vertex with itself, are counted twice.

Theorem

For all graphs G, $\sum_{v \in V(G)} \delta(v)$ is $2 \cdot |E(G)|$.

Proof

When we count the edges of a graph G by enumerating the edges incident with each vertex of G, we are counting each edge exactly twice.

Degree sequence

Definition

An (ordered) degree sequence is an (ordered) list of the degrees of the vertices of a graph. A degree sequence is graphic if there is a (simple) graph with that sequence.

Theorem (Havel-Hakimi)

An ordered degree sequence $\mathbf{s} = [k, d_1, d_2, \dots, d_{n-1}]$ is graphic, if and only if $\mathbf{s}^* = [d_1 - 1, d_2 - 1, \dots, d_k - 1, d_{k+1}, \dots, d_{n-1}]$ is also graphic. (We assume $k \ge d_i \ge d_{i+1}$.)

Length $\mathbf{s} = n$, but length $\mathbf{s}^* = n - 1$.

Onnect v to k vertices with highest degrees.

Consider the following graph with sequence [4,4,3,3,3,3,2,2]. Let $\delta(u)=4$ (in red) and consider $V=\{v_1,v_2,v_3,v_4\}$ as next highest degrees (in blue), and $W=\{w_1,w_2,w_3\}$ the rest (in black).

S \Rightarrow S*: Example Consider the following graph with sequence [4,4,3,3,3,3,2,2]. Let $\delta(u)=4$ (in red) and consider $V=\{v_1,v_2,v_3,v_4\}$ as next highest degrees (in blue), and $W=\{w_1,w_2,w_3\}$ the rest (in black). Starting condition Remove u. Because u is **not** connected only to vertices from V, we have a problem: $s^*=[3,3,3,2,2,2,1]$.

- **1** Problem: u is linked to a w but not to a v_j , with $\delta(w) < \delta(v_j)$. But because $\delta(w) < \delta(v_j)$, there exists x adjacent to v_j but not to w.
- 2 Remove $\langle u, w \rangle$ and $\langle v_j, x \rangle$.
- **3** Add $\langle x, w \rangle$ and $\langle u, v_j \rangle$

What should we do if u was linked to a w with $\delta(w) = \delta(v_i)$?

Subgraphs

Definition

H is a subgraph of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ such that for all $e \in E(H)$ with $e = \langle u, v \rangle : u, v \in V(H)$.

Definition

The subgraph induced by $V^* \subseteq V(G)$ has vertex set V^* and edge set $\{\langle v,w\rangle\in E(G)|v,w\in V^*\}$. Denoted as $H=G[V^*]$. The subgraph induced by $E^* \subseteq E(G)$ has vertex set V(G) and edge set E^* . Denoted as $H = G[E^*]$.

2.2 Graph representations

Adjacency matrix

Observations

- Adjacency matrix is *symmetric*: $\mathbf{A}[i,j] = \mathbf{A}[j,i]$.
- G is simple $\Leftrightarrow \mathbf{A}[i,j] \leq 1$ and $\mathbf{A}[i,i] = 0$.
- $\bullet \ \forall v_i : \sum_{j=1}^n \mathbf{A}[i,j] = \delta(v_i).$

Foundations 2.2 Graph representations

Incidence matrix

Observations

- G is simple only if $\mathbf{M}[i,j] \leq 1$
- $\forall v_i : \sum_{j=1}^m \mathbf{M}[i,j] = \delta(v_i).$ $\forall e_j : \sum_{i=1}^n \mathbf{M}[i,j] = 2.$

Graph isomorphism **Definition** G_1 and G_2 are isomorphic if there exists a one-to-one mapping $\phi: V_1 \to V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Foundations 2.3 Connectivity	Foundations 2.3 Connectivity
Connectivity: definitions	
,	<u> </u>
Definition	
A $(\mathbf{v_0}, \mathbf{v_k})$ -walk is a sequence $[v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k]$ with	
$e_i = \langle v_{i-1}, v_i \rangle$. A trail is a walk with distinct edges; a path is a trail with	
distinct vertices. A cycle is a trail with distinct vertices except $v_0 = v_k$.	
	<u> </u>
Definition	
Vertices $u \neq v$ in G are connected if there is a (u, v) – path in G. G is	
connected if all pairs of distinct vertices are connected.	
Definition	
$H \subseteq G$ is a component of G if H is connected and not contained in a	
connected subgraph of G with more vertices or edges. The number of	
y .	
components of G is $\omega(G)$.	

Foundations 2.3 Connectivity	Foundations 2.3 Connectivity
Connectivity and robustness	
	•
Important	
Connectivity indicates whether all nodes in a network can be reached from any other node.	
Example	
Communication networks, like the Internet, require to be connected, and have been designed to stay connected, even when under attack.	
Definition	·
For a graph G let $V^* \subset V(G)$ and $E^* \subset E(G)$. If $\omega(G - V^*) > \omega(G)$ then V^* is called a vertex cut. If $\omega(G - E^*) > \omega(G)$ then E^* is called an edge cut.	
16/32	16/32

Foundations 2.3 Connectivity	Foundations	2.3 Connectivity
Minimal cuts		
Note		
For reasons of robustness, we're interested in finding the minimal		
number of vertices or edges to remove before a graph falls apart.		
Notations		
• $\kappa(G)$ is the size of a minimal vertex cut for G		
$\bullet \ \lambda(G)$ is the size of a minimal edge cut		
Theorem		
$\kappa(G) \le \lambda(G) \le \min_{v \in V(G)} \{\delta(v)\}$		
2 (1)		
17/32		17/32

Foundations 2.3 Connectivity	Foundations 2.3 Connectivity
$\kappa(G) \le \lambda(G) \le \min_{v \in V(G)} \{\delta(v)\}$	
() = () = (G)(())	
$\begin{split} &\lambda(G) \leq \min_{v \in V(G)} \{\delta(v)\} \text{ Let } u \text{ have minimal degree} \Rightarrow \text{remove the} \\ &\text{ edges incident with it and } u \text{ becomes isolated.} \\ &\kappa(G) \leq \lambda(G) \text{ Let } E^* = \{\langle u_1, v_1 \rangle, \langle u_2, v_2 \rangle, \ldots, \langle u_k, v_k \rangle\} \text{ be an edge cut,} \\ &\text{ with } k = \lambda(G) \Rightarrow G - E^* \text{ falls into exactly two components } G_1 \text{ and } G_2 \text{ (why?)}. \\ &\bullet \text{ Assume there exists } u \in V(G_1) \backslash \{u_1, \ldots, u_k\}. \text{ This means that} \\ &\{u_1, \ldots, u_k\} \text{ is a vertex cut } \Rightarrow \kappa(G) \leq k. \end{split}$	
10/20	10/20

2 3 Connectivity

2.3 Connectivity

$\kappa(G) \leq \lambda(G) \leq \min_{v \in V(G)} \{\delta(v)\}$ (cnt'd)

Otherwise, assume $V(G_1) = \{u_1, \dots, u_k\}$ and consider vertex u_1 .

- u_1 is adjacent to d_1 vertices $N_1(u_1)$ from $V(G_1)$ and d_2 vertices $N_2(u_1)$ from $V(G_2)$.
- Each $u_i \in N_1(u_1)$ is adjacent to a vertex from $V(G_2)$.
- Let $E_1^* = \{\langle u, v \rangle \in E^* | u \in N_1(u_1), v \in V(G_2)\}$ $E_2^* = \{\langle u_1, v \rangle \in E^* | v \in N_2(u_1)\}$
- $d_1 + d_2 \le |E_1^*| + d_2 \le |E_1^*| + |E_2^*| \le |E^*| = \lambda(G)$.
- $N_1(u_1) \cup N_2(u_1)$ is a vertex cut with $d_1 + d_2$ vertices.

19/32

Foundations 2.3 Connectivity	Foundations 2.3 Connectivity
What does it take to be connected?	
	<u> </u>
Definition	
If $\kappa(G) \ge k$ for some k , then G is called k-connected.	
Note	
<i>G</i> is k-connected $\Rightarrow \forall v : \delta(v) \ge k$	
Issue	
Can we construct a k-connected graph $H_{k,n}$ with n vertices and a	
minimal number of edges?	

Foundations 2.3 Connectivity	Foundations 2.3 Connectivity
Harary graphs	
70 1	
k is even: Organize vertices $V = \{0, 1,, n-1\}$ into a "circle." Connect vertex i to its $k/2$ left-hand (clockwise) neighbors and to	
its $k/2$ right-hand (counter clockwise) neighbors.	
k is odd, n is even: Construct $H_{k-1,n}$ and add edges	
$\langle 0, \frac{n}{2} \rangle, \langle 1, 1 + \frac{n}{2} \rangle, \ldots, \langle \frac{n-2}{2}, n-1 \rangle$.	
0 0	
7 1 7	
6 6 2 6	
5 3 5 3	
H _{4.8} H _{5.8}	
114,8	

Harary graphs

k is odd, n is odd: Construct $H_{k-1,n}$ and add edges $\langle 0, \frac{n-1}{2} \rangle, \langle 1, 1 + \frac{n-1}{2} \rangle, \dots, \langle \frac{n-1}{2}, n-1 \rangle.$

Menger's theorem

Definition

Let $\mathcal{P}(u, v)$ be a collection of paths between vertices u and v. Vertex independent: $\forall P, Q \in \mathscr{P}(u, v)$: $V(P) \cap V(Q) = \{u, v\}$. Edge independent: $\forall P, Q \in \mathscr{P}(u, v) : E(P) \cap E(Q) = \emptyset$.

Theorem (Menger)

Let G be a graph with two nonadjacent vertices u and v. The minimum number of vertices in a vertex cut that disconnects u and v is equal to the maximum number of pairwise vertex-independent paths between u to v. The minimum number of edges in an edge cut that disconnects u and v, is equal to the maximum number of pairwise edge-independent paths betweeen u and v.

Menger's theorem

Mathematical language

Menger's theorem should be read carefully: it mentions pairwise independent paths. In this case, the adjective pairwise is used to make clear that we should always consider pairs of paths when considering independence. And indeed, this makes sense when you would consider trying to count the number of independent paths: being an independent path can only be relative to another path.

To complete the story, also note that the theorem is all about counting the number of (u, v)-paths, and not the number of pairs of such paths. In other words, pairwise is an adjective to independent, and not to paths.

Foundations 2.3 Connectivity	Foundations 2.3 Connectivity
Corollaries	
Corollary	
G is k-connected iff any two distinct vertices are connected by at	
least k vertex-independent paths.	
G is k-edge connected iff any two distinct vertices are connected	
by at least k edge-independent paths.	
Ormelland	
Corollary	
Each edge of a 2-edge-connected graph lies on a cycle.	
25/32	25/32

Foundations 2.4 Drawing graphs	Foundations	2.4 Drawing graphs
Ranked embedding		
- Tall the district of the dis		
Definition		
G is bipartite if $V(G) = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$ such that		
$E(G)\subseteq\{\langle u_1,u_2\rangle u_1\in V_1,u_2\in V_2\}.$		
• Consider bipartite graph G and vertex $v \in V(G)$		
② Let $N_0^*(v) = \{v\}$		
$ N_k(v) = N_k^*(v) - N_{k-1}^*(v) $		
5 Draw vertices from $N_k(v)$ on the same vertical line, and vertices		
from $N_{k-1}(v)$ below (or above) those of $N_k(v)$.		
28/32		28/32

vertices, m edges, and r regions: n-m+r=2.

Planar graphs: properties **Theorem** For any connected simple planar graph with $n \ge 3$ vertices and m edges: $m \le 3n - 6$ • Consider region f in a plane graph of G • \forall interior regions: B(f) denotes number of edges enclosing f. Note: $B(f) \ge 3$. • $n \ge 3 \Rightarrow$ exterior region bounded by at least 3 edges. • $r \text{ regions} \Rightarrow \sum B(f) \ge 3r$ • $\sum B(f)$ counts edges once or twice $\Rightarrow \sum B(f) \le 2m$ • $3r \le \sum B(f) \le 2m \Rightarrow m = n + r - 2 \le n + \frac{2}{3}m - 2 \Rightarrow$ $m \leq 3n - 6$