

GCE
Edexcel GCE
Statistics S1 (6683)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6683 Statistics S1 Mark Scheme

Question Number	Scheme			
1.	Diagram A: y & x: r = -0.79; As x increases, y decreases or most points lie in the 2 nd and 4 th quadrant. Diagram B: v & u: r = 0.08; No real pattern. Several values of v for one value of u or points lie in all four quadrants, randomly scattered.			
	Diagram C: $t \& s$: $r = 0.68$; As s increases, t increases or most points lie in the 1 st and 3 rd quadrants			
2. (a)	Distance is a continuous.	continuous	B1	
(b)	F.D = freq/class width \Rightarrow 0.8, 3.8, 5.3, 3.7, 0.75, 0.1	or the same multiple of	M1 A1 (2)	
(c)	$Q_2 = 50.5 + \frac{(67 - 23)}{53} \times 10 = 58.8$	awrt 58.8/58.9	M1 A1	
	$Q_1 = 52.48; Q_3 = 67.12$	awrt 52.5/52.6 67.1/67.3	A1 A1 (4)	
	Special case : no working B1 B1 B1 (≡ A's on the epen)		
(d)	$\overline{x} = \frac{8379.5}{134} = 62.5335$	awrt 62.5	B1	
	$\bar{x} = \frac{8379.5}{134} = 62.5335$ $s = \sqrt{\frac{557489.75}{134} - \left(\frac{8379.5}{134}\right)^2}$		M1 A1√	
	$s = 15.8089 (S_{n-1} = 15.86825)$	awrt 15.8 (15.9)	A1 (4)	
	Special case: answer only B1 B1 (\equiv A's on the epen)			
(e)	$\frac{Q_3 - 2Q_2 + Q_1}{Q_3 - Q_1} = \frac{67.12 - 2 \times 58.8 + 52.48}{67.12 - 52.48}$	subst their $Q_1, Q_2 \& Q_3$ need to show working for $A1 \lor$ and have reasonable values for quartiles	M1 A1√	
(0)	$Q_3 - Q_1$ 67.12 – 52.48 = 0.1366 \Rightarrow ; +ve skew	awrt 0.14	A1; B1	
(f)	For +ve skew Mean > Median & $62.53 > 58.80$ or $Q_3 - Q_2(8.32) > Q_2 - Q_1(6.32)$ Therefore +ve skew		B1 (1)	

Question Number	Scheme			Marks	
3. (a)	$S_{xy} = 8880 - \frac{130 \times 48}{8} = (8100)$	may be implied	B1		
	$S_{xx} = 20487.5$				
	$b = \frac{s_{xy}}{s_{xx}} = \frac{8100}{20487.5} = 0.395363$	allow use of their S_{xy} for M awrt 0.395	M1 A1		
	$a = \frac{48}{8} - (0.395363) \frac{130}{8} = -0.424649$	allow use of their b for M awrt -0.425	M1 A1		
	y = -0.425 + 0.395x	3s.f.	B1 √	(6)	
	pecial case answer only B0 M0 B1 M0 B1 B1(fully correct 3sf)			(0)	
	(\equiv to B0 M0 A1 M0 A1 B1 on the epen)				
(b)	f - 100 = -0.424649 + 0.395(m - 250)	subst f - 100 & m - 250	M1 A1√		
	f = 0.735 + 0.395m	3 s.f.	A1	(3)	
(c)	$m = 235 \Rightarrow f = 93.64489$	awrt 93.6/93.7	B1	(1)	

4(a)	$1.5 (Q_3 - Q_1) = 1.5 (28 - 12) = 24$ may	be implied	B1	
	$Q_3 + 24 = 52 \implies 63$ is an outlier att 0 52 and -12or <0 or evidence of	Q3 + or Q1, of no lower outliers	M1, A1	
	$Q_1 - 24 < 0 \implies$ no outliers	63 is an outlier	A1	
			M1 A1 A1	
				(7)
(b)	Distribution is +ve skew; $Q_2 - Q_1(5) < Q_3 - Q_2(11)$;		B1; B1	(2)
(c)	Many delays are small so passengers should find these acceptable or scomment in the context of the question.	sensible	B1	(1)
				(-)

5.(a)	$k + 2k + 3k + 5k + 6k = 1$ use of $\sum P(X = x) = 1$	M1	
	$17k = 1$ $k = \frac{1}{17} = 0.0588$	A1	(2)
(b)	$E(X) = 1 \times \frac{1}{17} + 2 \times \frac{2}{17} + \dots + 5 \times \frac{6}{17} = \frac{64}{17}$ use of $\sum xP(X = x)$ and at least 2 prob correct	M1	
	$= 3\frac{13}{17}$ Do not ignore subsequent working	A1	
(c)	$E(X^{2}) = 1^{2} \times \frac{1}{17} + 2^{2} \times \frac{2}{17} + \dots + 5^{2} \times \frac{6}{17} = \left(\frac{266}{17} = 15.6\right)$ use of $\sum x^{2} P(X = x)$ and at least 2 prob correct	M1 A1	
	Var $(X) = \frac{266}{17} - \left(\frac{64}{17}\right)^2$ use of $\sum x^2 P(X = x)$ -	M1	
	$(E(X))^2$ = 1.4740 awrt 1.47	A1	(4)
(d)	Var $(4-3X) = 9$ Var $(X) = 9 \times 1.47 = 13.23 \Rightarrow 13.2$ cao 9 Var X or $9 \times 1.4740 = 13.266 \Rightarrow 13.3$	M1 A1	(2)

						1	
6(a)	<i>M</i> ~ N(155, 3.5	5 ²)					
	$P(M > 160) = P\left(z > \frac{160 - 155}{3.5}\right)$				standardising $\pm (160-155)$, σ , σ^2 , $\sqrt{\sigma}$	M1	
	= P(z > 1.43)					A1	
	=	0.0764				A1	(2)
							(3)
(b)	$P(150 \le M \le 13)$		$\leq z \leq 0.57$) - (1 - 0.9236)		awrt -1.43, 0.57 p>0.5	B1 B1 M1	
		= 0.6393	(1 00,200)		0.6393 - 0.6400 4dp	A1	(4)
	special case : ar	nswer only B0	B0 M1 A1				(4)
(c)	$P(M \le m) = 0.3$	$3 \Rightarrow \frac{m-155}{3.5} =$	= -0.5244		-0.5244 att stand = z value for A1 may use awrt to - 0.52.	B1 M1 A1	
		<i>m</i> =	= 153.2		cao	A1	(4)
7.	(Glasses	No Glasses	Totals			
	Science Arts Humanities	18 27 44	12 23 24	30 50 68	50 may be seen in (a) 23 may be seen in (b)	B1	
	Totals	89	59	148		B1	
(a)	$P(Arts) = \frac{50}{148} =$	$=\frac{25}{74}=0.338$			a number/148	M1 A1	(4)
(b)	P(No glasses / A	Arts) = $\frac{\frac{23}{148}}{\frac{50}{148}}$	$=\frac{23}{50}=0.46$		$\frac{\text{prob}}{\text{their(a)prob}} \text{ or } \frac{\text{number}}{\text{their}} = 50$	M1 A1	(2)
(c)	P(Right Handed	$1) = (\frac{30}{148} \times 0.8)$	$(\frac{50}{148} \times 0.7)$	$)+(\frac{68}{148}\times 0)$	0.75) attempt add three prob A1 $$ on their (a)	M1 A1 3	V
		$=\frac{55}{74}=0.74$			awrt 0.743	A1	(3)
(d)	P (Science /Rig	ght handed) =	$\frac{30}{148} \times 0.8$ = $\frac{1}{5}$	$\frac{2}{55} = 0.218$	$\sqrt{\text{ on their (c)}}$	M1 A1√	A1 (3)