О ВЗАИМОСВЯЗЯХ ПОВЕДЕНЧЕСКИХ ЭКВИВАЛЕНТНОСТЕЙ ВРЕМЕННЫХ СЕТЕЙ ПЕТРИ

Д. И. Бушин, И. Б. Вирбицкайте

Институт систем информатики им. А. П. Ершова, 630090, Новосибирск, Россия

УДК 519.7

Для временных сетей Петри определяется и исследуется семейство поведенческих эквивалентностей в семантиках интерливинг — частичный порядок и линейное время — ветвистое время. Изучаемые эквивалентности основаны на понятии временного процесса, т. е. временного расширения причинной сети за счет глобальных моментов времени, поставленных в соответствие срабатываниям переходов. Устанавливаются взаимосвязи эквивалентностей и строится иерархия классов эквивалентных временных сетей Петри.

Ключевые слова: временные сети Петри, временные процессы, поведенческие эквивалентности, семантики интерливинга, шага и частичного порядка, трассовая и бисимуляционная эквивалентности.

The intention of the paper is to introduce and investigate a family of behavioral equivalences of "interleaving/partial order" and "linear time/branching time" spectra, in the context of time Petri nets. The definitions of the equivalences under consideration heavily rely on the notion of processes of time Petri nets — timed extensions of causal nets by adding global time moments to transition firings. We establish the interrelations between the equivalences and construct a hierarchy of equivalent time Petri nets.

Key words: time Petri nets, time processes, behavioral equivalences, interleaving, step and partial order semantics, trace and bisimulation equivalences.

Введение. Поведенческие эквивалентности обычно используются при спецификации и верификации систем с целью сравнения их поведения, а также упрощения их структуры. В теории параллельных систем и процессов известно большое разнообразие поведенческих эквивалентностей, взаимосвязи между которыми хорошо изучены (см., например, [1, 2]). Можно выделить два критерия классификации семантик, относительно которых определяются и исследуются модели и эквивалентности параллельных недетерминированных систем. Первый критерий — степень точности, с которой учитываются точки недетерминированного выбора альтернативных действий системы. На основе этого критерия был сформирован так называемый спектр семантик линейное время — ветвистое время. Типичным представителем семантики линейного времени является трассовая эквивалентность. При трассовом подходе сравниваются поведения систем, представленные в виде множеств последовательностей действий, выполняемых системами, — языков систем. При таком подходе не учитывается

Работа выполнена при финансовой поддержке DFG-РФФИ (грант № 436 RUS 113/1002/01, код проекта 09-01-91334).

информация о недетерминированном выборе. Представителем семантики ветвистого времени является бисимуляционная эквивалентность, строго учитывающая точки выбора дальнейших альтернативных выполнений системы. Две системы считаются бисимуляционноэквивалентными, если внешний наблюдатель не может обнаружить различий в поведении систем с учетом точек недетерминированного выбора. На основе второго критерия классификации семантик построен так называемый спектр интерливинг — частичный порядок. Семантики различаются по степени, с которой учитывается отношение причинной зависимости между действиями системы, представленное частичным порядком, причем отсутствие частичного порядка означает, что действия параллельны. В интерливинговой семантике выполнение системы моделируется в виде последовательности выполняемых действий, не отражающей явно их причинную зависимость. В литературе было предпринято много попыток выйти за рамки интерливингового подхода, чтобы позволить внешнему наблюдателю с помощью эквивалентностей различать системы, учитывая параллелизм, используемый при их вычислениях. В результате появилось большое количество эквивалентностей, основанных на моделировании причинной зависимости с помощью частичных порядков (см., например, |3|).

Известно, что анализ поведения параллельных систем реального времени (коммуникационных протоколов, систем управления производством, распределенных операционных систем и т. д.) — сложная задача, которую невозможно решить без использования формальных методов и средств. С этой целью в последнее десятилетие разработаны различные модели, учитывающие временные характеристики функционирования систем: временные автоматы, временные сети Петри, временные структуры событий и т. д. Понятие времени было введено также в поведенческие эквивалентности. Иерархия взаимосвязей временных эквивалентностей в семантиках интерливинг — частичный порядок и линейное время — ветвистое время в контексте локальных структур событий с непрерывным временем построена в работе [4]. В [5] получены теоретико-категорийные бисимуляции, которые совпадают с временными расширениями эквивалентностей с частичным порядком в контексте временных первичных структур событий. Заметим, что временные сети Петри являются обобщением временных структур событий.

В данной работе определяется и исследуется семейство поведенческих эквивалентностей в семантиках интерливинг — частичный порядок и линейное время — ветвистое время в контексте временных сетей Петри. Изучаемые эквивалентности основаны на понятии временного процесса [6], т. е. временного расширения причинной сети (семантической модели, включающей переходы, связанные отношениями причинной зависимости и параллелизма) за счет глобальных моментов времени, поставленных в соответствие срабатываниям переходов. При этом рассматриваются только корректные по времени процессы, т. е. процессы, временная функция которых удовлетворяет специально разработанным свойствам корректности. Устанавливаются взаимосвязи эквивалентностей и строится иерархия классов эквивалентных временных сетей Петри.

1. Временные сети Петри. В данном пункте рассматриваются базовые определения, связанные со структурой и поведением временной сети Петри [7–9].

Пусть \mathbb{N} — множество натуральных чисел, \mathbb{R} — множество действительных чисел. Определим множество Interv = $\{[d_1,d_2\subset\mathbb{R}\mid d_1\leq d_2\ \&\ d_1,d_2\in\mathbb{N}\}$. Пусть Act — множество действий.

Определение 1. Временная сеть Петри (ВСП) — это набор $TN = (N = (P, T, F, M_0, L), D)$, где $N = (P, T, F, M_0, L)$ — (помеченная) базовая сеть Петри (СП) с конечным множе-

ством P мест, конечным множеством T переходов ($P \cap T = \emptyset$), отношением инцидентности $F\subseteq (P\times T)\cup (T\times P)$, начальной разметкой $M_0\subseteq P$, помечающей функцией $L:T\to Act$, ставящий в соответствие каждому переходу $t \in T$ действие $L(t) \in Act$, и $D: T \longrightarrow \mathbf{Interv}$ статическая временная функция, ставящая в соответствие каждому переходу $t \in T$ временной интервал $D(t) \in \mathbf{Interv}$.

Для элемента $x \in P \cup T$ определим множество $x = \{y \mid y \mid F \mid x\}$ его входных элементов и множество $x^{\bullet} = \{y \mid x \ F \ y\}$ его выходных элементов. Будем считать, что для каждого перехода $t \in T$ выполнены неравенства $| \bullet t | > 0$ и $| t \bullet | > 0$. Если $D(t) = [d_1, d_2]$, то через $Eft(t)=d_1$ и $Lft(t)=d_2$ будем обозначать соответственно раннее и позднее времена срабатывания перехода t.

Разметка M ВСП TN определяется как произвольное подмножество $M\subseteq P$ мест. Переход $t \in T$ готов сработать при разметке M (обозначается $M \xrightarrow{t}$), если ${}^{\bullet}t \subseteq M$. Пусть En(M) — множество всех переходов, готовых сработать при разметке M.

Состояние ВСП TN — это пара S=(M,I), где M — разметка; I:En(M) — \mathbb{R} динамическая временная функция переходов из En(M). Начальное состояние — это пара $S_0 = (M_0, I_0)$, где $I_0(t) = 0$ для всех t из $E_n(M_0)$. Переход t готов сработать в состоянии S = (M, I) в относительный момент времени θ , если выполнены следующие условия:

- 1) $t \in En(M)$;
- 2) $(M \setminus^{\bullet} t) \cap t^{\bullet} = \emptyset;$
- 3) $Eft(t) \leq I(t) + \theta$;
- 4) $\forall t' \in En(M) \circ I(t') + \theta \leq Lft(t')$.

Будем считать, что переход t находится в контакте в состоянии S, если для него выполнены условия 1, 3, 4, но не выполнено условие 2. Пусть Contact(S) обозначает множество всех переходов, находящихся в контакте в состоянии S.

Если переход t готов сработать в состоянии S = (M, I) в относительный момент времени θ , то его срабатывание меняет состояние S на новое состояние S'=(M',I') (обозначается $S \stackrel{(t,\theta)}{\to} S'$) по следующему правилу:

- $-\widehat{M} = M \backslash {}^{\bullet}t;$

$$-M' = \widehat{M} \cup t^{\bullet};$$

$$-M' = \widehat{M} \cup t^{\bullet};$$

$$-\forall t' \in T \circ I'(t') = \begin{cases} I(t) + \theta, & t \in En(\widehat{M}), \\ 0, & t' \in En(M') \backslash En(\widehat{M}), \\ \text{не определено, иначе.} \end{cases}$$

Последовательность $S_0 \overset{(t_1,\theta_1)}{\to} S_1, \dots, S_{n-1} \overset{(t_1,\theta_n)}{\to} S_n \ (n \geq 0)$ называется последовательностью срабатываний ВСП TN. Состояние S ВСП TN называется достижимым, если существует последовательность срабатываний, приводящая в состояние S. Пусть RS(TN) обозначает множество достижимых состояний $BC\Pi TN$.

Будем говорить, что ВСП TN является:

- свободной от контактов, если для каждого $S \in RS(TN)$ верно равенство $Contact(S) = \emptyset$;
- прогрессирующей по времени, если для любого множества переходов $\{t_1, t_2, \dots, t_n\}$, таких что $t_i^{\bullet} \cap^{\bullet} t_{i+1} \neq \emptyset$ и $t_n^{\bullet} \cap^{\bullet} t_1 \neq \emptyset$ для каждого $1 \leq i < n$, верно неравенство $\sum_{1 \leq i \leq n} Eft(t_i) > 0$.

В дальнейшем будем рассматривать только свободные от контактов и прогрессирующие по времени ВСП.

2. Временные процессы ВСП. Введем понятие сети. Тройка (B, E, G) называется сетью, если $B \neq \emptyset$ — множество условий, $E \neq \emptyset$ — множество событий ($E \cap B = \emptyset$), $G \subseteq (B \cup B)$ $E) \times (E \cup B)$ — отношение инцидентности, такое что $\{x \mid (x,y) \in G\} \cup \{y \mid (x,y) \in G\} = E \cup B$. Для произвольного элемента $x \in B \cup E$ через ${}^{\bullet}x = \{y \mid (y,x) \in G\}$ и $x^{\bullet} = \{y \mid (x,y) \in G\}$ будем обозначать множества его входных и выходных элементов соответственно.

Рассмотрим понятие (помеченной) С-сети. Пара C=(N,l) называется (помеченной) С-сетью, если N=(B,E,G) — сеть, такая что:

- 1) $\leq = G^*$ частичный порядок (антисимметричность исключает циклы);
- 2) $\forall x \in (B \cup E) \ \diamond \downarrow x = \{y \in (B \cup E) \mid y \leq x\}$ конечное множество;
- 3) $\forall b \in B \ \circ \ |^{\bullet}b| \le 1 \ \land \ |b^{\bullet}| \le 1$,

и $l: E \to Act$ — функция пометки, ставящая в соответствие каждому событию $e \in E$ действие $l(e) \in Act$. Множества входных и выходных условий С-сети C будем обозначать соответственно ${}^{\bullet}C = \{b \in B \mid {}^{\bullet}b = \emptyset\}$ и $C^{\bullet} = \{b \in B \mid b^{\bullet} = \emptyset\}$. Компоненты С-сети C будем записывать с нижним индексом C. Для произвольного левозамкнутого относительно \preceq_C подмножества событий $E' \subseteq E_C$ определим множество $Cut(E') = (E'^{\bullet} \bigcup {}^{\bullet}C) \setminus {}^{\bullet}E'$.

Пусть C = (B, E, G, l) и C' = (B', E', G', l') — С-сети. Отображение $\beta: B \cup E \to B' \cup E'$ — изоморфизм между C и C' (обозначается $\beta: C \simeq C'$), если выполнены следующие условия:

- 1) β биективное отображение, такое что $\beta(B) = B' \wedge \beta(E) = E'$;
- 2) $\forall x, y \in B \cup E \ \circ \ G(x, y) = G'(\beta(x), \beta(y));$
- 3) $\forall e \in E \ \diamond \ l(e) = l'(\beta(e)).$

С-сети C и C' изоморфны (обозначается $C \simeq C'$), если существует изоморфизм $\beta: C \simeq C'$. Введем понятие процесса ВСП TN.

Определение 2. Пусть $TN=(N=(P,T,F,M_0,L),D)$ — ВСП. Тогда $\rho=(C=(B,E,G,l),\varphi)$ — процесс ВСП TN, если $\varphi:B\cup E\to P\cup T$ — гомоморфизм, удовлетворяющий следующим свойствам:

- 1) $\varphi(B) \subseteq P$ и $\varphi(E) \subseteq T$;
- 2) $\forall e \in E \ \diamond \ \varphi(\bullet e) = \bullet \varphi(e) \ \land \ \varphi(e^{\bullet}) = \varphi(e)^{\bullet};$
- 3) $\forall e \in E \ \diamond \ l(e) = L(\varphi(e)).$

Пусть $\rho = (C, \varphi)$ и $\rho' = (C', \varphi')$ — процессы ВСП TN и TN' соответственно. Отображение $\beta: B_C \cup E_C \longrightarrow B_{C'} \cup E_{C'}$ — изоморфизм между ρ и ρ' (обозначается $\beta: \rho \simeq \rho'$), если $\beta: C \simeq C'$ и $\forall x \in B_C \cup E_C \ \diamond \ \varphi(x) = \varphi'(\beta(x))$. Процессы ρ и ρ' изоморфны (обозначается $\rho \simeq \rho'$), если существует изоморфизм $\beta: \rho \simeq \rho'$.

Процесс $\rho_0 = (C_0, \varphi_0)$ ВСП TN называется начальным, если $M_0 = \varphi_0({}^{\bullet}C_0)$ и $E_{C_0} = \emptyset$. Будем говорить, что в ВСП TN процесс $\rho = (C, \varphi)$ допустим после процесса $\rho' = (C', \varphi')$, если $\varphi({}^{\bullet}C) = \varphi(C'^{\bullet})$. Для ВСП TN множество всех ее процессов, допустимых после процесса ρ , обозначим через $\mathcal{P}(\mathfrak{TN}, \rho)$, а множество всех ее процессов, допустимых после начального процесса, — через $\mathcal{P}(\mathfrak{TN})$.

Пусть $\rho = (C, \varphi), \rho' = (C', \varphi') \in \mathcal{P}(\mathfrak{IN})$ и $\widehat{\rho} = (\widehat{C}, \widehat{\varphi}) \in \mathcal{P}(\mathfrak{IN}, \rho)$. Тогда процесс ρ — префикс процесса ρ' , если $E_C \subseteq E_{C'}$ — левозамкнутое множество относительно $\preceq_{C'}$ и $\varphi = \varphi'|_{E_C}$. Процесс $\widehat{\rho}$ — суффикс процесса ρ' , если $E_{\widehat{C}} = E_{C'} \backslash E_C$ и $\widehat{\varphi} = \varphi'|_{\widehat{E}}$. Тогда ρ' — расширение ρ на процесс $\widehat{\rho}$, а $\widehat{\rho}$ — расширяющий процесс для ρ (обозначается $\rho \xrightarrow{\widehat{\rho}} \rho'$). Будем записывать $\rho \longrightarrow \rho'$, если существует процесс $\widehat{\rho}$, такой что $\rho \xrightarrow{\widehat{\rho}} \rho'$.

Приведем определение временного процесса ВСП TN.

Определение 3. Временной процесс ВСП TN — это пара $\pi = (\rho, \tau)$, где $\rho = (C, \varphi)$ — процесс ВСП TN и $\tau : E \to \mathbb{R}$ — временная функция, ставящая в соответствие каждому событию $e \in E$ глобальное время $\tau(e) \in \mathbb{R}$ его выполнения. Длительность временного процесса π равна $time(\pi) = \max\{\tau_{\pi}(e) \mid e \in E_{\pi}\}$.

Пусть $\pi = (\rho = (C, \varphi), \tau)$ и $\pi' = (\rho' = (C', \varphi'), \tau')$ — временные процессы ВСП TN и TN' соответственно. Отображение $\beta: B_C \cup E_C \to B_{C'} \cup E_{C'}$ — изоморфизм между π и π' (обозначается $\beta: \pi \simeq \pi'$), если $\beta: \rho \simeq \rho'$ и $\forall x \in E_C \ \diamond \ \tau(x) = \tau'(\beta(x))$. Временные процессы π и π' изоморфны (обозначается $\pi \simeq \pi'$), если существует изоморфизм $\beta: \pi \simeq \pi'$.

Следствие 1. Для любых π и π' , таких что $\pi \simeq \pi'$, верно $time(\pi) = time(\pi')$.

Каждому временному процессу $\pi = (C = (B, E, G, l), \varphi, \tau)$ ВСП TN поставим в соответствие временное помеченное частично упорядоченное мультимножество (ВПЧУММ) $\eta_{\pi} = (E, \prec^E = (\leq \cap (E \times E)), l, \tau)$. Пусть $\eta = (E, \prec^E, l, \tau)$ и $\eta' = (E', \prec^{E'}, l', \tau')$ — ВПЧУММ для временных процессов π и π' соответственно. Отображение $\beta : E \to E'$ — гомоморфизм между η и η' (обозначается $\beta : \eta \sqsubseteq \eta'$), если:

- 1) β биективное отображение;
- 2) $\forall e \in E \Leftrightarrow l(e) = l(\beta(e));$
- 3) $\forall e, \widetilde{e} \in E \circ e \prec \widetilde{e} \Rightarrow \beta(e) \prec \beta(\widetilde{e});$
- 4) $\forall e \in E \diamond \tau(e) = \tau'(\beta(e)).$

Отображение $\beta: E \to E'$ — изоморфизм между η и η' (обозначается $\beta: \eta \simeq \eta'$), если $\beta: \eta \sqsubseteq \eta'$ и $\beta^{-1}: \eta' \sqsubseteq \eta$. ВПЧУММ η и η' изоморфны (обозначается $\eta \simeq \eta'$), если существует изоморфизм $\beta: \eta \simeq \eta'$.

Утверждение 1. ВПЧУММ изоморфных временных процессов ВСП TN изоморфны.

Начальный временной процесс ВСП TN — это пара $\pi_0 = (\rho_0, \emptyset)$, где ρ_0 — начальный процесс ВСП TN. Будем говорить, что в ВСП TN временной процесс $\pi = (\rho, \tau)$ допустим после временного процесса $\pi' = (\rho', \tau')$, если процесс ρ допустим после ρ' и $\tau(e) \geq time(\pi')$ для всех $e \in E_C$. Для ВСП TN множество всех ее временных процессов, допустимых после временного процесса π , обозначим через $\mathfrak{TP}(\mathfrak{TN}, \pi)$, а множество всех ее временных процессов, допустимых после начального временного процесса, — через $\mathfrak{TP}(\mathfrak{TN})$.

Пусть $\pi = (\rho, \tau) \in \mathfrak{TP}(TN, \pi')$. Если $B' \subseteq B_C$ и $t \in En(\varphi(B'))$, то глобальный момент времени, когда во всех входных местах перехода t появляются фишки, определяется следующим образом:

$$\mathbf{TOE}(B', t, \pi') = \max(\{\tau(^{\bullet}b) \mid b \in B' \setminus^{\bullet} C \land \varphi(b) \in^{\bullet} t\} \cup \{time(\pi')\}).$$

Для $\pi = (\rho, \tau) \in \mathfrak{TP}(TN, \pi')$ функция τ называется корректным таймированием, если для каждого $e \in E_C$ выполнены следующие условия:

- $-\tau(e) \geq \mathbf{TOE}(^{\bullet}e, \varphi(e), \pi') + Eft(\varphi(e));$
- $-\forall t\in En(\varphi(C_e)) \circ \tau(e) \leq \mathbf{TOE}(C_e,t,\pi') + Lft(t)$, где $C_e = Cut(Earlier(e))$ и $Earlier(e) = \{e' \in E_C \mid \tau(e') < \tau(e)\}.$

Временной процесс $\pi = (\rho, \tau) \in \mathfrak{TP}(TN, \pi')$ называется корректным, если τ — корректное таймирование. В дальнейшем будем рассматривать только корректные временные процессы.

Пусть $\pi = (\rho, \tau)$, $\pi' = (\rho', \tau') \in \mathfrak{TP}(TN)$ и $\widehat{\pi} = (\widehat{\rho}, \widehat{\tau}) \in \mathfrak{TP}(TN, \pi)$. Тогда временной процесс π' — расширение временного процесса π на временной процесс $\widehat{\pi}$, а $\widehat{\pi}$ — расширяющий временной процесс для π (обозначается $\pi \xrightarrow{\widehat{\pi}} \pi'$), если $\rho \xrightarrow{\widehat{\rho}} \rho'$ и $\tau = \tau'|_{E_C}$, $\widehat{\tau} = \tau'|_{\widehat{E}_{\widehat{\rho}}}$.

Следствие 2. Для любого временного процесса $\pi \in \mathfrak{TP}(TN)$ верно, что $\pi_0 \stackrel{\pi}{\longrightarrow} \pi$.

Пусть $\pi \in \mathfrak{TP}(TN)$ и $\pi' \in \mathfrak{TP}(TN')$ — временные процессы, такие что $\gamma: \pi \simeq \pi'$. Для временного процесса $\widetilde{\pi} = \{B, E, G, l, \varphi, \tau\}$, такого что $\widetilde{\pi} \longrightarrow \pi$ или $\pi^* \stackrel{\widetilde{\pi}}{\longrightarrow} \pi$, определим структуру $\gamma(\widetilde{\pi}) = (B^{\gamma}, E^{\gamma}, G^{\gamma}, l^{\gamma}, \varphi^{\gamma}, \tau^{\gamma})$ следующим образом:

- 1) $B^{\gamma} = \gamma(B)$;
- $2) E^{\gamma} = \gamma(E);$

- 3) $G^{\gamma} = \{ (\gamma(x), \gamma(y)) \mid (x, y) \in G \};$
- 4) $\forall e \in E^{\gamma} \circ l^{\gamma}(e) = l(\gamma^{-1}(e));$
- 5) $\forall b \in B^{\gamma} \cup E^{\gamma} \diamond \varphi^{\gamma}(b) = \varphi(\gamma^{-1}(b));$
- 6) $\forall e \in E^{\gamma} \diamond \tau^{\gamma}(e) = \tau(\gamma^{-1}(e)).$

Утверждение 2. Пусть $\pi \in \mathfrak{TP}(TN)$ и $\pi' \in \mathfrak{TP}(TN')$ — временные процессы, такие что $\gamma: \pi \simeq \pi'$ и $\widetilde{\pi} \stackrel{\widehat{\pi}}{\longrightarrow} \pi$. Тогда $\gamma(\widetilde{\pi}) \in \mathfrak{TP}(TN')$ и $\gamma(\widehat{\pi}) \in \mathfrak{TP}(TN', \gamma(\widetilde{\pi}))$. Кроме того, временной процесс $\gamma(\pi)$ является временным процессом π' и временные процессы $\widetilde{\pi}$ и $\widehat{\pi}$ изоморфны временным процессам $\gamma(\widetilde{\pi})$ и $\gamma(\widehat{\pi})$.

Доказательство следует из построения $\gamma(\cdot)$ и определения изоморфизма между временными процессами.

Пусть $\pi = (\rho, \tau), \pi' = (\rho', \tau') \in \mathfrak{TP}(TN)$. Временной процесс π' называется расширением временного процесса π на:

- действие, произошедшее в относительный момент времени θ (обозначается $\pi \xrightarrow{(a,\theta)} \pi'$), если существует расширяющий временной процесс $\widehat{\pi}$ для π , такой что $\widehat{E} = \{e\}$, $\widehat{\tau}(e) = time(\pi) + \theta$ и $\widehat{l}(e) = a$;
- мультимножество A действий, произошедших в относительный момент времени θ (обозначается $\pi \xrightarrow{(A,\theta)} \pi'$), если существует расширяющий временной процесс $\widehat{\pi}$ для π , такой что $\widehat{\preceq} \cap (\widehat{E} \times \widehat{E}) = \emptyset$, $\widehat{l}(\widehat{E}) = A$ и $\widehat{\tau}(e) = time(\pi) + \theta$ для всех $e \in \widehat{E}$.

Утверждение 3. Пусть $\pi \in \mathfrak{TP}(TN)$ и $\pi' \in \mathfrak{TP}(TN')$ — временные процессы, такие что $\gamma: \pi \simeq \pi'$. Если $\pi_0 \xrightarrow{(A_1,\theta_1)} \pi_1 \cdots \pi_{n-1} \xrightarrow{(A_n,\theta_n)} \pi_n = \pi$ в TN, то $\gamma(\pi_0) \xrightarrow{(A_1,\theta_1)} \gamma(\pi_1) \cdots \gamma(\pi_{n-1}) \xrightarrow{(A_n,\theta_n)} \gamma(\pi_n) = \pi'$ в TN'.

Доказательство. Случай n=0 очевиден. Рассмотрим случай $\pi_{i-1} \stackrel{(A_i,\theta_i)}{\longrightarrow} \pi_i$ $(1 \leq i \leq n)$ в TN. Тогда $\pi_{i-1} \stackrel{\widehat{\pi}_i}{\longrightarrow} \pi_i$, где $\preceq_{\widehat{\pi}_i} \cap (E_{\widehat{\pi}_i} \times E_{\widehat{\pi}_i}) = \emptyset$; $l_{\widehat{\pi}_i}(E_{\widehat{\pi}_i}) = A_i$; $\forall e \in E_{\widehat{\pi}_i} \circ \tau_{\widehat{\pi}_i}(e) = time(\widehat{\pi}_{i-1}) + \theta_i$. Из утверждения 2 следует, что $\gamma(\pi_{i-1}), \gamma(\pi_i) \in \mathfrak{TP}(TN'), \gamma(\widehat{\pi}_i) \in \mathfrak{TP}(TN', \gamma(\widehat{\pi}_{i-1}))$ и $\pi_{i-1}, \pi_i, \widehat{\pi}_i$ изоморфны $\gamma(\pi_{i-1}), \gamma(\pi_i), \gamma(\widehat{\pi}_i)$ соответственно. Кроме того, в силу свойств изоморфизма $(C_{\gamma(\pi_{i-1})}, \varphi_{\gamma(\pi_{i-1})})$ является префиксом, а $(C_{\gamma(\widehat{\pi}_i)}, \varphi_{\gamma(\widehat{\pi}_i)})$ — суффиксом для $(C_{\gamma(\pi_i)}, \varphi_{\gamma(\pi_i)})$ и $\tau_{\gamma(\pi_{i-1})} = \tau_{\gamma(\pi_i)}|_{E_{\gamma(\pi_{i-1})}}, \tau_{\gamma(\widehat{\pi}_i)} = \tau_{\gamma(\pi_i)}|_{E_{\gamma(\widehat{\pi}_i)}}$. Таким образом, $\gamma(\pi_{i-1}) \stackrel{\gamma(\widehat{\pi}_i)}{\longrightarrow} \gamma(\pi_i)$. С использованием следствия 1 получаем $\gamma(\pi_{i-1}) \stackrel{(A_i,\theta_i)}{\longrightarrow} \gamma(\pi_i)$.

- **3.** Эквивалентности ВСП и их взаимосвязи. В данном пункте рассматриваются понятия поведенческих эквивалентностей ВСП и исследуются их взаимосвязи.
- 3.1. *Трассовые эквивалентности*. Введем вспомогательные понятия и обозначения для ВСП TN.

Слово $\omega = (a_1, \theta_1) \cdots (a_n, \theta_n)$ из алфавита $Act \times \mathbb{R}$ называется временным интерливинговым следом ВСП TN, если в ней существует последовательность вида $\pi_0 \stackrel{(a_1, \theta_1)}{\longrightarrow} \pi_1 \cdots \pi_{n-1} \stackrel{(a_n, \theta_n)}{\longrightarrow} \pi_n$. Множество всех временных интерливинговых следов ВСП TN обозначим через $L_i(TN)$.

Слово $\Omega = (A_1, \theta_1) \cdots (A_n, \theta_n)$ из алфавита $\mathbb{N}_f^{Act} \times \mathbb{R}$ называется временным шаговым следом ВСП TN, если в ней существует последовательность вида $\pi_0 \xrightarrow{(A_1, \theta_1)} \pi_1 \cdots \pi_{n-1} \xrightarrow{(A_n, \theta_n)} \pi_n$. Множество всех временных шаговых следов TN обозначим через $L_s(TN)$.

Класс изоморфизма временного процесса $\pi = (\rho, \tau) \in \mathfrak{TP}(TN)$ называется временным процессным следом ВСП TN. Множество всех временных процессных следов ВСП TN обозначим через $L_{pr}(TN)$.

Следствие 3. Для любой ВСП TN верно вложение $L_i(TN) \subseteq L_s(TN)$.

Определим трассовую эквивалентность на ВСП в интерливинговой, шаговой и частично упорядоченной семантиках.

Определение 4. Пусть $* \in \{i, s, pr\}$. Тогда ВСП TN и TN' называются *-трассовоэквивалентными (обозначается $TN \equiv_* TN'$), если $L_*(TN) = L_*(TN')$.

3.2. *Бисимуляционные эквивалентности*. Рассмотрим понятия интерливинговой, шаговой и частично упорядоченной бисимуляций на ВСП.

Определение 5. Пусть $* \in \{i, s, pr\}$ и π_0 , π'_0 — начальные временные процессы ВСП TN, TN' соответственно. Отношение $R \subseteq \mathfrak{TP}(TN) \times \mathfrak{TP}(TN')$ — *-бисимуляция между TN и TN' (обозначается $R: TN \hookrightarrow_* TN'$), если:

- 1) $(\pi_0, \pi'_0) \in R$;
- 2) $\forall (\pi, \pi') \in R \land \pi \xrightarrow{\widehat{\pi}} \widetilde{\pi}$:
 - $-|\widehat{E}|=1$, если *=i,
 - $-\preceq_{\widehat{C}} \cap (\widehat{E} \times \widehat{E}) = \emptyset$, если *=s,
- $\implies \exists \widetilde{\pi}' \diamond \pi' \xrightarrow{\widehat{\pi}'} \widetilde{\pi}', \ (\widetilde{\pi}, \widetilde{\pi}') \in R \text{ M}:$
 - $-\eta_{\widehat{\pi}} \simeq \eta_{\widehat{\pi}'}, \text{ если } * \in \{i, s\};$
 - $-\widehat{\pi} \simeq \widehat{\pi}'$, если * = pr;
- 3) определение аналогично п. 2, однако TN и TN' меняются местами.

ВСП TN и TN' называются *-бисимуляционно-эквивалентными (обозначается $TN \hookrightarrow_* TN'$), если существует *-бисимуляция между ними.

3.3. *Взаимосвязи эквивалентностей*. В данном пункте приведен основной результат работы.

Теорема. Пусть \leftrightarrow , \rightleftharpoons \in $\{\equiv$, \rightleftharpoons $\}$ u *, ** \in $\{i, s, pr\}$. Для любых ВСП TN u TN' верно TN \leftrightarrow * TN' \Rightarrow TN \rightleftharpoons ** TN'

тогда и только тогда, когда в графе, представленном на рис. 1,а, существует дуга от \leftrightarrow_* к \rightleftharpoons_{**} .

Доказательство. (\Rightarrow) Проверим истинность импликаций на рис. 1, a.

Связь 1 $(\leftrightarrows_s \to \leftrightarrows_i)$ является следствием определения 5 и того факта, что изоморфизм ВПЧУММ с пустым отношением причинной зависимости обусловливает изоморфизм одноэлементных ВПЧУММ.

Связь 2 $(\Leftrightarrow_{pr} \to \Leftrightarrow_s)$ является следствием определения 5 и утверждения 1.

Связь 3 ($\equiv_s \to \equiv_i$) устанавливается с помощью следствия 3.

Связь $4 \ (\equiv_{pr} \to \equiv_s)$ устанавливается следующим образом. Пусть $W = (A_1, \theta_1) \cdots (A_n, \theta_n) \in L_s(TN)$, т. е. в TN существует последовательность $\pi_0 \stackrel{(A_1,\theta_1)}{\longrightarrow} \pi_1 \cdots \pi_{n-1} \stackrel{(A_n,\theta_n)}{\longrightarrow} \pi_n = \pi$. Согласно условию теоремы найдется временной процесс $\pi' \in \mathfrak{TP}(TN')$, такой что $\gamma : \pi \simeq \pi'$. Тогда из утверждения 3 получаем последовательность $\gamma(\pi_0) \stackrel{(A_1,\theta_1)}{\longrightarrow} \gamma(\pi_1) \cdots \gamma(\pi_{n-1}) \stackrel{(A_n,\theta_n)}{\longrightarrow} \gamma(\pi_n)$ в TN'. Значит, $W \in L_s(TN')$ и, следовательно, $L_s(TN) \subseteq L_s(TN')$. Обратное включение языков проверяется аналогично. Таким образом, $TN \equiv_s TN'$.

Связь 5 ($\Leftrightarrow_i \to \equiv_i$) устанавливается следующим образом. Пусть R-i-бисимуляция между TN и TN'. Также предположим, что $\pi_0 \stackrel{(a_1,\theta_1)}{\longrightarrow} \pi_1 \cdots \pi_{n-1} \stackrel{(a_n,\theta_n)}{\longrightarrow} \pi_n$ в TN. Тогда для всех i=0,...,n верно, что $(\pi_i,\pi_i') \in R$ для некоторых $\pi_i' \in \mathfrak{TP}(TN')$, таких что $\pi_i \stackrel{\widehat{\pi}_i}{\longrightarrow} \pi_{i+1}$ $(i \neq n)$ и $\eta_{\widehat{\pi}_i} \simeq \eta_{\widehat{\pi}_i'}$. Значит, в TN' существует последовательность $\pi_0' \stackrel{(a_1,\theta_1)}{\longrightarrow} \pi_1' \cdots \pi_{n-1}' \stackrel{(a_n,\theta_n)}{\longrightarrow} \pi_n'$. В силу симметричности i-бисимуляции $TN \equiv_i TN'$.

Рис. 1. Иерархия классов эквивалентных НВСП: a — связи между эквивалентностями; δ — взаимосвязи, возникшие вследствие связи эквивалентностей на рис. 1,a; ϵ — случай 4 доказательства теоремы; ϵ — случай δ доказательства теоремы; δ — случай δ доказательства теоремы

Связь 6 $(\Leftrightarrow_s \to \equiv_s)$ доказывается аналогично связи 5, но с использованием временных шаговых следов.

Связь 7 ($\Leftrightarrow_{pr} \to \equiv_{pr}$) следует из определений 4, 5 и следствия 2.

Заметим, что связи 8-12, показанные на рис. $1, \delta$, следуют из связей (1-7).

 (\Rightarrow) Докажем, что в графе на рис. 1,a от одной эквивалентности к другой нельзя провести дополнительную дугу, такую что в этом графе не существует пути от первой эквивалентности ко второй.

Cлучай 1. На рис. 2,a показаны ВСП TN_1 и TN_2 , которые являются i-бисимуляционноэквивалентными, но не s-трассово-эквивалентными, так как только в TN_2 действия a и b могут произойти параллельно в глобальный момент времени 0. Следовательно, связь 1^* (см. рис. 1, 6) отсутствует.

Cлучай 2. На рис. 2,a приведены ВСП TN_2 и TN_3 , которые являются s-бисимуляционноэквивалентными, но не pr-трассово-эквивалентными, поскольку только в TN_3 действие a может причинно зависеть от действия b. Тогда связь 2^* (см. рис. 1,e) отсутствует.

Рис. 2. Примеры эквивалентностных ВСП:

a-i-бисимуляционно- и не s-трассово-эквивалентные ВСП, а также s-бисимуляционно- и не pr-трассово-эквивалентные ВСП; b- не b-бисимуляционно- и b-грассово-эквивалентные ВСП

Cлучай 3. На рис. 2,6 приведены ВСП TN_4 и TN_5 , которые являются pr-трассово-эквивалентными, но не i-бисимуляционно-эквивалентными, так как только в TN_4 может произойти действие a, например в глобальный момент времени 1, так что действие b не может произойти ни в какой глобальный момент времени. Следовательно, связь 3^* (см. рис. 1, 6) отсутствует.

Cлучай 4. Вновь рассмотрим ВСП TN_4 и TN_5 , показанные на рис. 2,6. Отсутствие дуг 4*-11* (см. рис. 1,z) следует из импликаций $TN_4 \not\models_i TN_5 \Rightarrow TN_4 \not\models_s TN_5 \Rightarrow TN_4 \not\models_{pr} TN_5$ и $TN_4 \equiv_{pr} TN_5 \Rightarrow TN_4 \equiv_s TN_5 \Rightarrow TN_4 \equiv_i TN_5$.

Cлучай 5. Рассмотрим ВСП TN_1 и TN_2 , приведенные на рис. 2,a. Отсутствие дуг 12*-16* (см. рис. $1,\partial$) следует из импликаций $TN_1\not\equiv_s TN_2\Rightarrow TN_1\not\equiv_s TN_2\Rightarrow TN_1\not\equiv_t TN_2$ и $TN_1\not\equiv_s TN_2\Rightarrow TN_1\not\equiv_t TN_2$ и $TN_1\not\equiv_s TN_2\Rightarrow TN_1\not\equiv_t TN_2$.

Cлучай 6. Рассмотрим ВСП TN_2 и TN_3 , представленные на рис. 2,a. Отсутствие дуг 17*-18* (см. рис. $1,\partial$) следует из импликаций $TN_2\not\equiv_{pr}TN_3\Rightarrow TN_2\not\equiv_{pr}TN_3$ и $TN_2\leftrightarrows_sTN_3\Rightarrow TN_2\equiv_sTN_3$.

Как известно, количество дуг полного направленного графа с N=6 вершинами равно $N\times (N-1)=30$. Таким образом, рассмотрены все возможные случаи.

Заключение. Для временных сетей Петри введены понятия трассовой и бисимуляционной эквивалентностей в интерливинговой, шаговой и частично-упорядоченных семантиках, а также показано, что трассовые эквивалентности слабее бисимуляционных, а использование частично-упорядоченной семантики позволяет с большой точностью сравнивать поведение временных сетей Петри с шаговой и интерливинговой семантиками. В дальнейшем предполагается определить и исследовать данные эквивалентности для временных сетей Петри, переходы которых помечены как "видимыми", так и "невидимыми" действиями. Последние позволяют абстрагироваться от несущественных деталей поведения изучаемой модели.

Список литературы

- 1. Pomello L., Rozenberg G., Simone C. A survey of equivalence notions for net based systems // Lecture Notes Comput. Sci. 1992. V. 609. P. 410–450.
- 2. ТАРАСЮК И. В. Эквивалентности для поведенческого анализа параллельных и распределенных вычислительных систем. Новосибирск: Гео, 2007. 224 с.
- 3. Van Glabbeek R. J., Goltz U. Refinement of actions and equivalence notions for concurrent systems // Acta Inform. 2001. V. 37. P. 229–327.
- 4. Andreeva M. V., Virbitskaite I. B. Observational equivalences for timed stable event structures // Fund. Inform. 2006. V. 72. P. 1–19.
- 5. VIRBITSKAITE I. B., GRIBOVSKAYA N. S. Open maps and observational equivalences for timed partial order models // Fund. Inform. 2004. V. 60. P. 383–399.
- 6. Aura T., Lilius J. Time processes for time Petri nets // Lecture Notes Comput. Sci. 1997. V. 1248. P. 136–155.
- 7. MERLIN P., FABER D. J. Recoverability of communication protocols // IEEE Trans. Comm. 1976. V. COM-24(9). P. 183–195.
- 8. Вирбицкайте И. Б. Сети Петри: модификации и расширения: Учеб. пособие. Новосибирск: Новосиб. гос. ун-т, 2005. 125 с.
- 9. ROSENBERG G., THIAGARAJAN P. S. Petri nets: basic notions, structure, behaviour // Lecture Notes Comput. Sci. 1986. V. 224. P. 585–668.

Бушин Дмитрий Игоревич — acn. Института систем информатики $CO\ PAH;$ e-mail: dima.bushin@gmail.com;

Вирбицкайте Ирина Бонавентуровна — ∂ -р физ.-мат. наук, проф., гл. науч. сотр. Института систем информатики СО РАН; e-mail: virb@iis.nsk.su

Дата поступления — 30.01.12 г.