インターネットの仕組み

情報科学の世界II 2017年度 只木 進一(工学系研究科)

インターネットデバイスの設定

- MACアドレス:ハードウェアのID
- **▶**IPアドレス
- ネットマスク
- ブロードキャストアドレス
- デフォルトルートアドレス
- 名前解決
- 実際を見てみる
 - ipconfig -all

MAC (Media Access Control) アドレス

- ■通信ハードウェアのアドレス
- -48ビット
- 製造元と個体特定のアドレスで構成
- ► Ethernetでは、同一ネットワーク内で の識別に利用

IPアドレスとネットワークアド レス

- ■通信デバイスにアドレスを付与
 - -32ビットアドレス
 - →通常は8ビット毎に分ち書き
 - 一例: 133.49.4.7
- ■IPアドレスはネットワーク部とホスト 部から構成される
 - どこで分かれる?

ネットマスク

- 24ビットネットマスクの例

	IPアドレス	アドレス 10進 133					49							51								2												
		2進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	1	0
/	Netmask	10進	255							255							255							0										
/	Netmask	2進	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	AND	2進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0
		10進	133					49						51								0												

ブロードキャストアドレス Broadcast address

- ■ブロードキャスト
 - ■同一ネットワーク内への一斉送信
- →同一ネットワーク内の機器のIPアドレスとMACアドレスの対応を調べる
 - −ルータを探す
- ネットワークアドレスの末尾のアドレスを使用

グローバルアドレスとプライ ベートアドレス

- ■グローバルアドレス
 - ─世界中で一意に設定しなければならない
 - ■使えるネットワークアドレスの割り当て 組織が存在
 - →JPNIC: 国内のアドレス割り当てを実施
 - ▶組織内のサブネット

IPアドレスのクラス

クラス	アドレス範囲	説明
A	0.0.0.0 – 127.255.255	8bitネットワークアドレス 先頭は0
В	128.0.0.0 - 191.255.255.255	16bit ネットワークアドレス 先頭は10
С	192.0.0.0 – 223.255.255.255	24bitネットワークアドレス 先頭は110

- プライベートアドレス
 - 組織内で自由に割り当てて良い
 - 外部に出してはいけない
- **-** 10.0.0.0/8
- **172.16.0.0/12**
- **-** 192.168.0.0/16

DNS: Domain Name System

- ■IPアドレスは覚えられない
- ■意味のある名前を付ける

DNSの階層構造

FQDN: Fully Qualified Domain Name

- DNSによって指定されたホスト名
- ドメイン名の重要性
 - →例えば、go.jpは日本の政府機関しか取得 できない

routing

→192.168.1.5/24から見て、133.49.51.2 は別ネットワーク

ルータの機能

- ネットワークアドレス毎に次の転送先 を保持
 - 知らないアドレスは、上位(デフォルト)へ転送
- パケット内の転送回数を一つ増やす
- ━転送回数を超えたパケットを破棄

デフォルトルートアドレス Default Route Address

- 次の転送先が分からない場合の転送先
 - クライアントの場合には、最近接のルータのアドレス
 - ルータの場合には、上位最近接のルータ のアドレス

DHCP (Dynamic Host Configuration Protocol)

- コンピュータへのIPアドレス等の設定
 - ▶ある程度知識が必要
 - →間違えると通信できない
- エンドユーザが使うクライアントでは 無理
- 自動的に設定するプロトコル
 - ▶サーバが居る

WAN ŁLAN LAN: Local Area Network

- 組織内部のネットワーク
- 組織が自律的に管理運営している
 - 一端末設置規則
 - アドレス割り当て規則
- ► LANの自律的管理がインターネットの 拡張を支えている

LANの階層構造

- 組織全体→部署
- 佐賀大学の場合
 - 佐賀大学全体→学部等
- ■組織毎に管理ポリシーがあることに注意
- ▶佐賀大学ネットワーク

WAN Ł LAN WAN: Wide Area Network

- ►LANを結ぶネットワーク
- ━運営団体は存在する
 - SINET : Science Information network
 - ■大学等を結ぶ基幹ネットワーク
- ■運営方針がある
 - ▶接続規則など

TCP/IP階層モデル

TCP: Transmission Control Protocol

IP: Internet Protocol

ネットワークの物理実装になるべく依存せず、各コンピュータ・通信装置が 稼働するように設計

アプリケーション層 トランスポート層 インターネット層 ネットワークIF層 アプリケーション層 トランスポート層 インターネット層 ネットワークIF層

インターネット層

- IPプロトコル:ルーティング
 - ■ルーティングテーブル
 - −配送先の一覧表
 - -静的登録
 - -動的登録

トランスポート層 TCP/UDPプロトコル

- −通信をパケット化
 - パケットには、送信元、送信先、サービス、番号が付いている
- アプリケーションと通信の橋渡し
- パケットの再送要求

- TCP: Transmission Control Protocol
 - パケットが全て揃わなければならない サービスに対応
 - 欠落パケットの再送要求
- UDP : User Datagram Protocol
 - ストリーミングなどに対応

IPv4/IPv6

- 従来のプロトコル
 - ▶IPアドレスは32ビット
 - $-2^{32} \simeq 4.3 \times 10^9$
 - アドレスの枯渇
- →新しいプロトコル
 - -128ビット
 - $-2^{128} \simeq 3.4 \times 10^{38}$

- IPv6の利点
 - →全てのデバイスにIPアドレスを
 - ■IPアドレス設定の自動化
- IPv6の課題
 - IPv4からの移行の困難
 - ─共存できるか?
 - 名前を付けきれない