

In this lab, your task is to build a character-level language model with LSTM layer.

Reference: Let's build GPT: from scratch, in code, spelled out (by Andrej Karpathy)

→ Load the dataset

```
Saved successfully!

1 with open('./input.txt', 'r', encoding='utf-8') as f:
2    raw_data = f.read()
3
4 # print the length of the datasets
5 print('length of dataset in characterse:', len(raw_data))
6
7 # look at the first 1000 characters
8 print(raw_data[:100])
```

```
length of dataset in characterse: 1115394
First Citizen:
Before we proceed any further, hear me speak.
All:
Speak, speak.
First Citizen:
You
```

Create the vocabulary

Get the the vocabulary vocab from the raw data. vocab contains all unique characters in the raw data.

```
1 vocab = sorted(list(set(raw_data)))
2 vocab_size=len(vocab)
3 print('vocab:', vocab)
4 print('vocab_size:', vocab_size)

vocab: ['\n', '', '!', '$', '&', "'", ',', '-', '.', '3', ':', '?', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', vocab_size: 65
```

Create the vocabulary mapping functions. stoi performs the mapping from the character token to its index, and itos, vice versa.

```
1 stoi = {ch:i for i, ch in enumerate(vocab)}
2 itos = {i:ch for i, ch in enumerate(vocab)}
```

Create the function to encode and decode the text. encode_text encodes a string into its one-hot integer representation while decode_text decodes an integer representation back to its text.

```
Saved successfully!

2 encoded = encode_text('Hello now do you do?')

3 print(encoded)

[20, 43, 50, 50, 53, 1, 46, 53, 61, 1, 42, 53, 1, 63, 53, 59, 1, 42, 53, 12]

1 decode_text = lambda 1 : ''.join([itos[i] for i in l])

2 decoded = decode_text(encoded)

3 print(decoded)

Hello how do you do?
```

Now, we encode the raw data and then convert it into a 1-D integer tensor data.

```
1 data = torch.tensor(encode_text(raw_data), dtype=torch.long)
2 print('Shape of data:', data.shape)
3 print('Type of data: ', data.dtype)
4 print('\nFirst 100 characters of data:\n', data[:100])

Shape of data: torch.Size([1115394])
Type of data: torch.int64

First 100 characters of data:
  tensor([18, 47, 56, 57, 58, 1, 15, 47, 58, 47, 64, 43, 52, 10, 0, 14, 43, 44, 53, 56, 43, 1, 61, 43, 1, 54, 56, 53, 41, 43, 43, 42, 1, 39, 52, 63, 1, 44, 59, 56, 58, 46, 43, 56, 6, 1, 46, 43, 39, 56, 1, 51, 43, 1, 57, 54, 43, 39, 49, 8, 0, 0, 13, 50, 50, 10, 0, 31, 54, 43, 39, 49, 6, 1, 57, 54, 43, 39, 49, 8, 0, 0, 18, 47, 56, 57, 58, 1, 15, 47, 58, 47, 64, 43, 52, 10, 0, 37, 53, 59])
```

To train the language model, the samples will be trained with a block of text with $block_size$ characters. The function get_batch randomly sample a block of text as input x. The label y is the block of text shifted by 1 position of x.

```
1 torch.manual seed(1234)
2
3 def get_batch(batch_size, block_size):
     ix = torch.randint(len(data) - block size, (batch size,))
5
     x = torch.stack([data[i:i+block size] for i in ix])
     y = torch.stack([data[i+1:i+block size+1] for i in ix])
7
      x, y = x.to(device), y.to(device)
     return x, y
1 batch size=4
2 block_size=8
                                  k size)
Saved successfully!
   torch.Size([4, 8])
    torch.Size([4, 8])
```

Note that when training on (x, y), the model is learning multiple conditional probabilities p(target|context) simultaneously.

```
1 x = data[:block_size]
2 y = data[1:block_size+1]
3
```

```
4 print('x:', x.tolist())
5 print('v:', v.tolist(), '\n')
7 for t in range(block size):
      context = x[:t+1]
      target = y[t]
      print(f'when input is: {context}, the target is: {target}')
10
    x: [18, 47, 56, 57, 58, 1, 15, 47]
    y: [47, 56, 57, 58, 1, 15, 47, 58]
    when input is: tensor([18]), the target is: 47
    when input is: tensor([18, 47]), the target is: 56
    when input is: tensor([18, 47, 56]), the target is: 57
    when input is: tensor([18, 47, 56, 57]), the target is: 58
    when input is: tensor([18, 47, 56, 57, 58]), the target is: 1
    when input is: tensor([18, 47, 56, 57, 58, 1]), the target is: 15
    when input is: tensor([18, 47, 56, 57, 58, 1, 15]), the target is: 47
    when input is: tensor([18, 47, 56, 57, 58, 1, 15, 47]), the target is: 58
```

Create the character-level language model with LSTM

Network structure

Now, let's build the character-level language model with LSTM. The network LMNet has the following layers:

Layer	Configuration	Shape
Input	-	(B, T)
Embedding	num_embedding = vocab_size, embedding_dim = n_embd	(B, T, n_embd)
LSTM	input_size = n_embd, hidden_size = n_embd num_layers = 1, batch_first = true	(B, T, n_embd)
fc	in_features = n_embd, out_features = vocab_size	(B, T, vocab_size)

Saved successfully!

he method generate. Since the network is trained on a sequence of length $\, T = block_size$, when

generating the text, we feed the most recent <code>block_size</code> characters into the network to generate the next character. Here are the steps:

- 1. Crop the most recent block_size characters in the generated text
- 2. The cropped text is fed to the generative model to generate the next character. The network output the logit value.
- 3. Convert the logit of the network to $\ensuremath{\mathsf{probit}}$ value by performing $\ensuremath{\mathsf{softmax}}$ operation.
- 4. Sample a character from the probit by using torch.multinorm
- 5. Append the sampled character to the end of the generated text.
- 6. Repeat steps 1-5 for text_len times


```
1 class LMNet(nn.Module):
      def __init__(self, vocab_size, n_embd):
 3
           super(). init ()
 4
          self.token embedding = nn.Embedding(vocab size, n embd)
 5
          self.lstm
                               = nn.LSTM(input size=n embd, hidden size=n embd, num layers=1, batch first=True)
          self.fc
                               = nn.Linear(n_embd, vocab_size)
 6
 7
 8
      def forward(self, x):
                                         # (B,T)
 9
          x = self.token\_embedding(x) # (B,T,n\_embd)
10
          x, _ = self.lstm(x)
                                        # (B,T,n embd)
          x = self.fc(x)
11
                                        # (B,T,vocab_size)
12
13
          return x
14
15
      def generate(self, text_len, block_size):
16
17
          text = torch.zeros((1,1), dtype=torch.long).to(device) # text token
18
           # repeat until the length of text = "text_len"
19
20
           for _ in range(text_len):
21
22
               # crop text to the last block-size tokens
23
              text_cond = text[:, -block_size:]
 Saved successfully!
                                    d) # logits: (B, T, C)
27
28
              # focus oly on the last time step
29
              yhat = yhat[:, -1, :] # becomes (B, C)
30
31
               # apply soft max to get probabilities
32
              probs = F.softmax(yhat, dim=-1) # (B, C)
33
               # sample from distribution
34
35
              next_token = torch.multinomial(probs, num_samples=1) # (B, 1)
36
37
               # append sampled index to the running sequence
```

```
text = torch.cat((text, next token), dim=1) # (B, T+1)
38
39
40
               # print the sample
41
               print(itos[next_token.item()], end='')
42
               time.sleep(0.1)
43
Create the model for testing
1 model = LMNet(vocab_size=len(vocab), n_embd=32).to(device)
1 x, y = get_batch(batch_size=4, block_size=8, split='train')
 2 x, y = x.to(device), y.to(device)
3
 4 \text{ yhat = model}(x)
6 print(x.shape)
7 print(yhat.shape)
     torch.Size([4, 8])
    torch.Size([4, 8, 65])
```

→ Train the model

```
1 max_iters
                = 5000
 2 batch_size
                = 128
 3 block_size
                = 256
 4 1r
                = 3e-4
5 max_iters
                = 10000
 6 eval interval = 500
 7 eval_iters
               = 200
 Saved successfully!
Create the model
1 model = LMNet(vocab_size=len(vocab), n_embd=n_embd).to(device)
Create the optimizer
1 optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
```

Train the model

To train the model, we use **teacher forcing** where the predicted output is simply the 1-shifted sequence of the input sequence. We shall train the network with sentence sequence of length <code>block_size</code>. Since the network is trained on sequences of length <code>block_size</code>, during inference, the generative model should use input sequence of similar length to get good results.

During training, the network is based on the many-to-many architecture. However, during inference (Figure at generating novel text), the network is based on many-to-one architecture.

```
1 for steps in range(max iters):
 2
 3
       # sample a batch of data
 4
      x, y = get_batch(batch_size, block_size, 'train')
 5
      # forward propagation
 6
7
      yhat = model(x)
9
      # compute loss
10
      B, T, C = yhat.shape
11
      yhat = yhat.view(B*T, C)
 Saved successfully!
      # backpropagation
15
16
      loss.backward()
17
      optimizer.step()
18
19
      # reset the optimizer
      optimizer.zero_grad()
20
21
22
      # print the training loss
23
      if steps % eval_interval == 0:
          print(f"Iter {steps}: train loss {loss:.4f}")
24
```

```
Iter 0: train loss 4.1738
    Iter 500: train loss 1.8172
    Iter 1000: train loss 1.6056
    Iter 1500: train loss 1.4905
    Iter 2000: train loss 1.4199
    Iter 2500: train loss 1.3855
    Iter 3000: train loss 1.3280
    Iter 3500: train loss 1.3207
    Iter 4000: train loss 1.3075
    Iter 4500: train loss 1.2774
    Iter 5000: train loss 1.2612
    Iter 5500: train loss 1.2214
    Iter 6000: train loss 1.2395
    Iter 6500: train loss 1.2026
    Iter 7000: train loss 1.1993
    Iter 7500: train loss 1.1891
    Iter 8000: train loss 1.1983
    Iter 8500: train loss 1.1793
    Iter 9000: train loss 1.1513
    Iter 9500: train loss 1.1721
Generate text
1 model.generate(text len=1000, block size=block size)
    I would have not hear.
    VOLUMNIA:
    O, speak with!
    FRIAR LAURENCE:
    That rules are us, it.
    AUTOLYCUS:
    Now the arms of course and pierch and there;
    One for him and the grace or Petant.
    Come, dear, sir, he borne his tender peeds,
                                    cozning one
 Saved successfully!
                                ins; wed patien.
    QUEEN MARGARET:
    Even wingest you aburth, doing me that last,
    Will to me to happy have I within.
    ANGELO:
    He, sign lay instruct you.
    Alack when he sweet in this learn'st, gring
    His pale prirold in this world behord of
    Your revenge and leave makery aught whose news,
    Like dially not followed us.
```

ANGELO:

Call John. Hark you you agan.

BENVOLIO:

She shall be speak; for best dead with your lovick Hath writting me no with want for me.

QUEEN MARGARET:

For my forceed take her. John in good, 'tis door.

DUCHESS OF YORK:

Which hath sing me foolicries?

LEONTES:

Prother:

Let's have I thank you.

MENENIUS:

I will play the book, and upon thee at his country You shall be my father was