Кафедра МОЭВМ

ОТЧЕТ по дисциплине «Методы оптимизации» Лабораторная работа №3 «РЕШЕНИЕ ПРЯМОЙ И ДВОЙСТВЕННОЙ ЗАДАЧ»

Выполнил: Сучков А.И.

 Группа:
 3381

 Факультет:
 КТИ

 Вариант:
 2

Преподаватель: Мальцева Н.В.

1. Цель работы

Постановка задачи линейного программирования и её решение с помощью стандартной программы; исследование прямой и двойственной задачи.

2. Содержательная постановка задачи

Рассмотрим задачу оптимального использования материалов при условии, что заданный план изготовления может быть выполнен или перевыполнен: при изготовлении обуви используют, в частности, жесткую кожу — черпак, ворот и др. Каждый из видов в свою очередь делится на несколько категорий по средней толщине. ГОСТом предусмотрено изготовление деталей из определенного вида кожи. Одна и та же деталь может быть изготовлена из разных видов кожи, причем из этих же кож изготовляют и другие детали. Исходные данные приведены в таблице 1.

В наличии имеется 0.9 тыс. кв. м. чепрака толщиной 4.01-4.5 мм по цене 14.4 р. за 1 кв. м.; 0.8 тыс. кв. м. черпака толщиной 4.51-5.0 мм по цене 16 р. за 1 кв. м.; 5.0 тыс. кв. м. ворота толщиной 3.5-4.0 мм по цене 12.8 р. за 1 кв. м.; 7.0 тыс. кв. м. ворота толщиной 4.51-5.0 мм по цене 10.5 р. за 1 кв. м.

Таолица 1 – Исходные данные задачи							
	Количество	Количество деталей, которые можно изготовить из					
Толщина	деталей по	1000 кв. м. кожи, тыс. шт., при толщине					
детали, мм	плану,	чепрака, мм		ворота, мм			
	тыс. шт.	4,01-4,5	4,51-5,0	3,5-4,0	4,51-5,0		
3,9	21	26,5	7,8	-	-		
3,0	30	51,0	26	45,7	-		
2,5	500	1	-	5,0	72,5		

Таблица 1 – Исходные данные задачи

3. Формальная постановка задачи

Пусть x_i — количество приобретенной кожи каждого вида. Целевая функция есть функция стоимости выполнения плана:

$$\varphi(x) = 14,4x_1 + 16x_2 + 12,8x_3 + 10,5x_4 \rightarrow \min$$

Система ограничений для данной задачи имеет вид:

$$\begin{cases} 26.5x_1 + 7.8x_2 \ge 21, \\ 51x_1 + 26x_2 + 45.7x_3 \ge 30, \\ 5x_3 + 72.5x_4 \ge 500, \\ -x_1 \ge -0.9, \\ -x_2 \ge -0.8, \\ -x_3 \ge -5, \\ -x_4 \ge -7, \\ x_i \ge 0, i \in 1...4; \end{cases}$$

В матричном виде:

$$\begin{pmatrix} 26,5 & 7,8 & 0 & 0 \\ 51 & 26 & 45,7 & 0 \\ 0 & 0 & 5 & 72,5 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 21 \\ 30 \\ 500 \\ -0,9 \\ -0,8 \\ -5 \\ -7 \end{pmatrix};$$

4. Результаты решения исходной задачи линейного программирования

Листинг 1 – Решение прямой задачи

Оптимальная точка $x^* = (0.792; 0; 0; 6.897)^T$, значение в оптимальной точке $\varphi(x) = 83.825$. Это означает, что для достижения минимальных затрат необходимо выделить 0.792 тыс. m^2 чепрака толщиной 4.01 - 4.5 мм и 6.897 тыс. m^2 ворота толщиной 4.51 - 5.0 мм. А на черпак толщиной 4.51 - 5.0 мм и ворота толщиной 3.5 - 4.0 мм для достижения минимальных затрат лучше не выделять вообще.

5. Постановка двойственной задачи линейного программирования

Исходная задача — задача минимизации, двойственная задача - максимизации. Для этого транспонируем матрицу из исходной задачи:

$$A^{T} = \begin{pmatrix} 26,5 & 51 & 0 & -1 & 0 & 0 & 0 \\ 7,8 & 26 & 0 & 0 & -1 & 0 & 0 \\ 0 & 45,7 & 5 & 0 & 0 & -1 & 0 \\ 0 & 0 & 72,5 & 0 & 0 & 0 & -1 \end{pmatrix};$$

Целевая функция двойственной задачи:

$$\psi(\lambda) = 21\lambda_1 + 30\lambda_2 + 500\lambda_3 - 0.9\lambda_4 - 0.8\lambda_5 - 5\lambda_6 - 7\lambda_7 \longrightarrow \max$$

Система ограничений имеет вид:

$$\begin{cases} 26.5\lambda_{1} + 51\lambda_{2} - \lambda_{4} \leq 14.4, \\ 7.8\lambda_{1} + 26\lambda_{2} - \lambda_{5} \leq 16, \\ 45.7\lambda_{2} + 5\lambda_{3} - \lambda_{6} \leq 12.8, \\ 72.5\lambda_{3} - \lambda_{7} \leq 10.5, \\ \lambda_{j} \geq 0, \ j = 1...7; \end{cases}$$

6. Результаты решения двойственной задачи

Листинг 2 – Решение двойственной задачи

Решение задачи линейного программирования								
Целевая								
21	30	500	9	8	-5	-7	> max	
Огранич	ения:							
26.5	51	0	-1	0	0	0	<=14.4	
7.8	26	0	0	-1	0	0	<=16	
0	45.7	5	0	0	-1	0	<=12.8	
				0			<=10.5	
Решение	:							
x1 = 0.54	3							
x2 = 0.00								
x3 = 0.14								
x4 = 0.000								
$x^{4} = 0.000$ $x^{5} = 0.000$								
x6 = 0.000								
x7= 0.000								
Значение целевой функции f = 83.825								

Оптимальная точка $\lambda^* = (0,543; 0; 0,145; 0; 0; 0; 0)^T$

Из полученных результатов можно увидеть, что при малом приращении Δb_1 плана по деталям первого типа общая стоимость возрастет на $0,543\Delta b_1$. Аналогично, при малом приращении Δb_3 плана по деталям третьего типа общая стоимость возрастет на $0,145\Delta b_3$. Изменение параметров плана по второму типу деталей к изменению стоимости не приведет.

7. Определение коэффициентов чувствительности исходной задачи

Фиксируем $\varepsilon = 10^{-2}$. И имеем следующее оптимальное значение целевой функции $\varphi(0) = 83,825$ при $\varepsilon = 0$.

Составим таблицу вычисленных значений коэффициентов чувствительности. Результаты приведены в Таблице 2.

Таблица 2 — Значения коэффициентов чувствительности для b_i

1 40311	таолица 2 — эна тения коэффициентов туветвительности для от						
i	b_i	$b_i + arepsilon$	arphi(arepsilon)	$\widetilde{x}_i = \frac{\varphi_i(\varepsilon) - \varphi_i(0)}{\varepsilon}$			
1	21	21,01	83,831	0,6			
2	30	30,01	83,825	0			
3	500	500,01	83,827	0,2			
4	-0,9	-0,89	83,825	0			
5	-0,8	-0,79	83,825	0			
6	-5	-4,99	83,825	0			
7	-7	-6,99	83,825	0			

Получили вектор коэффициентов чувствительности $\tilde{x} = (0,6;0;0,2;0;0;0;0)^T$. Можно заметить, что полученный вектор соответствует вектору решения двойственной задачи.

8. Определение коэффициентов чувствительности двойственной задачи

Фиксируем $\varepsilon=10^{-2}$. И имеем следующее оптимальное значение целевой функции $\varphi(0)=83,825$ при $\varepsilon=0$.

Составим таблицу вычисленных значений коэффициентов чувствительности. Результаты приведены в Таблице 3.

Таблица 3 — Значения коэффициентов чувствительности для c_i

i	Ci	$c_i + \varepsilon$	arphi(arepsilon)	$\widetilde{\lambda}_i = rac{arphi_i(arepsilon) - arphi_i(0)}{arepsilon}$
1	14,4	14,41	83,833	0,8
2	16	16,01	83,825	0
3	12,8	12,81	83,825	0
4	10,5	10,51	83,894	6,9

Получили вектор коэффициентов чувствительности $\widetilde{\lambda} = (0.8~; 0~; 0~; 6.9)^T$. Можно заметить, что полученный вектор соответствует вектору решения исходной задачи.

9. Вывод

В результате выполнения работы было установлено соответствие между прямой и двойственной задачей. Была экспериментально подтверждена теорема о двойственности и проверено утверждение об оптимальной точке для соотношения $\lim_{\varepsilon \to 0} \frac{\varphi_i(\varepsilon) - \varphi_i(0)}{\varepsilon} \stackrel{def}{=} b_i$ в видоизмененной задаче. При этом установлено, что координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности результата в исходной задаче по коэффициентам вектора B.