SPE-206426-MS

Calculation of Graded Viscosity Banks Profile on the Rear End of The Polymer Slug

S. Tikhomirov, F. Bakharev, A. Enin, K. Kalinin, Yu. Petrova, N. Rastegaev

Saint-Petersburg State University, Faculty of Mathematics and Computer Science

A. Groman

Gazpromneft -Technological Partnerships

A.Kalyuzhnyuk

Saint-Petersburg Polytechnic University

Breakthrough of polymer slug

- Chemical EOR:
 - Polymer flooding
 - Surfactant flooding
 - ASP-flooding

- Homogeneous porous media
- Instability occur due to different viscosities (viscous fingering effect)
- After the breakthrough of the polymer slug the positive effect decreases

Questions:

What size of polymer slug?

How to reduce amount of polymer?

SPE Russian Petroleum Technology Conference

Velocities of the mixing zone

How to determine the velocity of the mixing zone?

- Development and implementation of an oil-field experiment
- Laboratory tests
- Numerical simulation
- Analytical expressions

 q_0 – Velocity of the stable front. Take $q_0=1$

 v^f – Velocity of the front end of the mixing zone is constant [1]

 v^b – Velocity of the rear end of the mixing zone is constant [1]

 c_1 — concentration of injected polymer

 c_2 — decreased concentration of injected polymer (for one slug $c_2=0$ — injection of water)

- v^f is a function of $M = \frac{\mu(c_1)}{\mu(c_2)}$ or the curve $\mu(c)$
- [1] Nijjer, J.S., Hewitt, D.R. and Neufeld, J.A., 2018.

 The dynamics of miscible viscous fingering from onset to shutdown

Velocities of the mixing zone

- Averaging "effective viscosity" M_e:
 - Koval (1963)
 - Todd-Longstaff (1972)
- Transverse Flow Equilibrium (TFE)
 Otto-Menon, Yortsos-Salin (2006)
 - p(x,y) = p(x) $M = \frac{\mu(c_1)}{\mu(c_2)} > 1$ - viscosity ratio

 q_0 – Velocity of the stable front. Take $q_0=1$

 v^f – Velocity of the front end of the mixing zone is constant [1]

 v^b – Velocity of the rear end of the mixing zone is constant [1]

Empirical models of velocities

Koval	$v^f = M_e \qquad v^b = \frac{1}{M_e} M_e = \left(\alpha \cdot M^{\frac{1}{4}} + (1 - \alpha)\right)^4$					
Todd- Longstaff	$v^f = M_e \qquad v^b = \frac{1}{M_e} M_e = M^\omega$					
TFE	$v^f \le \frac{\overline{m}(c_1, c_2)}{m(c_2)}, \qquad v^b \ge \frac{v^f}{M}, \qquad m(c) = \frac{1}{\mu(c)}, \overline{m}(c_1, c_2) = \frac{\int_{c_1}^{c_2} m(c)}{c_2 - c_1}$					

206426 • Calculation of Graded Viscosity Banks Profile on the Rear End of The Polymer Slug • Sergey Tikhomirov

Main idea

Injecting two slugs may give gain in polymer mass (Claridge, 1978)

Add concentration c_2

Problem Statement

- Goal: reduce amount of polymer
- Strategy: graded viscosity banks (GVB, tapering)
 Claridge (1978)
- We want no breakthrough in any slug
- Given concentrations c_n and v^b , v^f we can find sizes of slugs t_n without breakthrough
- Choose concentrations c_n to minimize amount of polymer

$$V_{n} = \sum_{i=1}^{n} c_{i} t_{i} \to \min$$

- Questions:
 - n finite (n = 2, 3, 5)
 - $n \rightarrow \infty$

Problem Statement

- Goal: reduce amount of polymer
- Strategy: graded viscosity banks (GVB, tapering)
 Claridge (1978)
- We want no breakthrough in any slug
- Given concentrations c_n and v^b , v^f we can find sizes of slugs t_n without breakthrough
- Choose concentrations c_n to minimize amount of polymer

$$V_{n} = \sum_{i=1}^{n} c_{i} t_{i} \to \min$$

- Questions:
 - n finite (n = 2, 3, 5)
 - $n \rightarrow \infty$

Simulation of GVB in DuMuX

Design for concrete polymer

Polymer viscosity: $\mu(c) = 0.3 \exp(\alpha c)$, M = 10

	Optimal concentrations	Optimal injection times (PV)
n = 1	c = 1	t = 0.74
n = 2	c = 1, 0.6	t = 0.39, 0.42
n = 3	c = 1, 0.75, 0.43	t = 0.27, 0.36, 0.22
n = 4	c = 1, 0.81, 0.6, 0.33	t = 0.2, 0.3, 0.21, 0.14
n = 5	c = 1, 0.85, 0.69, 0.5, 0.27	t = 0.16, 0.26, 0.2, 0.15, 0,1

Results for small n

 V_n - polymer mass for n slugs $\eta = \frac{V_1 - V_n}{V_1}$ - percentage of gain in polymer mass for polymer viscosity: $\mu(c) = 0.3(1 + \alpha c)^2$, M = 10

	n = 2	n = 3	n = 4	n = 5	n = 10	Limit
Koval	23,4%	28, 1%	29,9%	30,9%	32,4%	33,5 %
Todd-Longstaff	17,0 %	20,1%	21, 2 %	21,7 %	22,4%	22,6%
TFE	17, 1%	20,3%	21,4%	21,9%	22,6%	22,8%

Conclusion: in practice it is enough to use 2-3 slugs

SPE Russian Petroleum Technology Conference

206426 • Calculation of Graded Viscosity Banks Profile on the Rear End of The Polymer Slug • Sergey Tikhomirov

Graded viscosity banks: $n \rightarrow \infty$

Theorem [Bakharev, Enin, Kalinin, Petrova., Rastegaev, Tikhomirov, 2021: arxiv:2012.03114]

As $n \to \infty$ the optimal limiting injection profile

$$T^{\infty}(c) = 1 - \left(\frac{\mu(c)}{\mu(c_1)}\right)^{\beta}$$

Koval: $\beta = 2\alpha$

Todd-Longstaff: $\beta = 2\omega$

TFE: $\beta = 1$

206426 • Calculation of Graded Viscosity Banks Profile on the Rear End of The Polymer Slug • Sergey Tikhomirov

Numerical validation of graded viscosity banks

- Simulations in DuMuX, 2 slugs
 Instabilities are initiated by small inhomogeneity
- Velocities are taken from simulations

Theoretical assumptions that need to be validated:

- the velocities of the mixing zones edges remain constant even in the case of the presence of several slugs;
- the velocities of the mixing zones edges do not depend on the presence of additional slugs, on the sizes of the slugs and on the size of the modeling area;

206426 • Calculation of Graded Viscosity Banks Profile on the Rear End of The Polymer Slug • Sergey Tikhomirov

TFE model. Taking into account adsorption

For TFE model one can include adsorption into the model

$$v^{f} \leq q_{0} \cdot \frac{\int_{c_{2}}^{c_{1}} m(c) dc}{m(c_{1})} \cdot \frac{1}{1 + a'(c_{1})}$$

$$v^{b} \geq q_{0} \cdot \frac{\int_{c_{2}}^{c_{1}} m(c) dc}{m(c_{2})} \cdot \frac{1}{1 + a'(c_{2})}$$

$$a(c) - \text{adsorption function: } a(c) = \frac{(1-\varphi)}{\varphi} \cdot \frac{\rho_S}{\rho_W} \cdot \Gamma(c)$$

$$\varphi - \text{porosity,}$$

$$\rho_W - \text{water density, } \rho_S - \text{soil density,}$$

$$\Gamma(c) - \text{adsorption isotherm (e.g. Langmuir)}$$

 V_n - polymer mass for n slugs

 $\eta = rac{V_1 - V_n}{V_1}$ - percentage of gain in polymer mass

	n = 2	n = 3	n = 4	n = 5	n = 10
$\mu_1(c)$	7,5%	8,8%	9,3%	9,5%	9,8%
$\mu_2(c)$	6, 9%	8, 2%	8,7%	8, 9%	9, 1%
$\mu_3(c)$	5, 7%	6,8%	7,2%	7, 4%	7,7%

TFE model – always pessimistic?

- Numerical validation of TFE model: for different viscosity curves: always gives a pessimistic estimate
- Koval model not always gives a pessimistic estimate

SPE Russian Petroleum Technology Conference

Examples when TFE model is exact:
 Exponential viscosity – at the rear end
 Concave viscosity – at the front end

206426 • Calculation of Graded Viscosity Banks Profile on the Rear End of The Polymer Slug • Sergey Tikhomirov

Conclusions

- 1. Graded viscosity banks helps to reduce polymer mass with the same efficiency
- 2. In practice it is enough to inject 2-3 slugs
- 3. The choice of model for "finger velocities" is an open problem no rigorous results TFE model looks promising
- 4. Advantages of suggested method
 - Limiting profile is determined by formula
 - No complex computations are needed
 - TFE model allows to take into account viscosity curve and adsorption

Thank you very much for your attention!