(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-106543 (P2000-106543A)

(43)公開日 平成12年4月11日(2000.4.11)

(51) Int.Cl. ⁷		酸別記号		FΙ					テーマコード(参考)
H04B	10/152			H0	4 B	9/00	-	L	
	10/142			G 0	2 F	1/01		В	
	10/04			H 0	4 L	25/493			
	10/06				-				
G 0 2 F	1/01								
			審査請求	有	花 簡	で項の数7	OL	(全 18 頁)	最終頁に続く
(21)出願番号		特願平11-212153		(71)出願人 0000			4226		,
						日本質	信電話	株式会社	
(22)出願日		平成11年7月27日(1999.7.27))			東京者	B千代田	区大手町二丁	目3番1号
		·		(72)	発明和	皆 宮本.	裕		
(31)優先権主張番号		特願平10-214209				東京都	B新宿区	西新宿三丁目	19番2号 日本
(32)優先日		平成10年7月29日(1998.7.29))			電信電	話株式	会社内	-
(33)優先権主張国		日本(JP)		(72)発明	針 米永	一茂			
						東京都	肾 新宿区	西新宿三丁目	19番2号 日本
		-				電信電	話株式	会社内	
				(72)発明者 桑原 昭一郎					
						東京都	B新宿区	西新宿三丁目	19番2号 日本
						電信電	話株式	会社内	
				(74)代理人 1			4930		
			.			弁理士	: 山本	惠一	

(54) 【発明の名称】 光伝送装置

(57)【要約】

【課題】 R Z (Return-to-Zero) 光信号の光信号スペクトル帯域を従来の半分とし、光キャリア成分を抑圧したR Z 光信号を提供する。

【解決手段】 2値NR Z (Non-Return-to-Zero)電気信号を符号化して、NR Z信号の一方の論理レベルの値毎に反転する2値プリコードNR Z信号を生成したのち、プリコードNR Z信号を微分してプリコードNR Z信号のパルスエッジごとに極性が反転する微分電気信号を生成する。本信号を用いて光強度変調器を駆動して、発光ビットごとに光位相がπ反転する光R Z信号を発生する。

【特許請求の範囲】

【請求項1】 NRZ (Non-Return-to-Zero) 電気信号を 入力する入力端子と、この入力端子から入力された前記 NRZ電気信号をRZ(Return-to-Zero)光信号に変換す る手段とを備えた光伝送装置において、

前記変換する手段は、NRZ差動電気信号を入力し当該 NRZ差動電気信号の値と当該NRZ差動電気信号の符 号値を1ビット遅延させた信号との排他的論理和の値を 出力するプリコード手段と、この排他的論理和の値の立 ち上がり点および立ち下がり点でそれぞれ極性の異なる 微分電気信号パルスを生成する微分符号化手段と、この 微分電気信号パルスにしたがって 3 値微分電気信号の第 2のレベルを中心に微分電気パルス波形を折り返し、か つ微分信号の第1と第3のレベルに対応する光変調信号 位相が π 異なるように連続光を強度変調する光強度変調 手段とを備えたことを特徴とする光伝送装置。

【請求項2】 NRZ (Non-Return-to-Zero) 電気信号を 入力する端子と、この入力端子から入力された前記NR Z電気信号をR Z (Return-to-Zero) 光信号に変換する手 段を備えた光伝送装置において、

前記変換する手段は、シングルエンドNRZ電気入力信 号を入力し、当該NRZ電気信号の値と当該NRZ電気 信号の符号値を1ビット遅延させた信号との排他的論理 和の値を差動出力するプリコード手段と、この排他的論 理和の値の立ち上がり点および、たち下がり点で、それ ぞれ極性の異なる微分電気パルスを生成する微分符号化 手段と、この微分電気パルスにしたがって、3値の微分 電気信号の第2のレベルを中心に微分電気パルス波形を 折り返し、微分信号の第1と第3のレベルに対応する光 変調位相がπ異なるように連続光を強度変調する光強度 30 変調手段とを備えたことを特徴とする光伝送装置。

【請求項3】 NRZ (Non-Return-to-Zero) 電気信号を 入力する端子と、この入力端子から入力された前記NR Z電気信号をRZ(Return-to-Zero)光信号に変換する手 段を備えた光伝送装置において、

前記変換する手段は、当該NRZ電気信号が同期するク ロック電気信号を発生する手段と、当該クロック電気信 号を入力として、当該クロック電気信号に同期した光ク ロックパルス信号を発生するクロックパルス光源と、シ ングルエンドNRZ電気入力信号を入力し、当該NRZ 電気信号の値と当該NRZ電気信号の符号値を1ビット 遅延させた信号との排他的論理和の値を差動出力するプ リコード手段と、NRZ電気入力信号とプリコードされ た差動NRZ信号を入力として、NRZ電気入力信号と プリコードされた差動NRZ信号の論理積の値を差動出 力する2つの差動論理積符号手段と、前記光クロック光 信号を入力として、前記差動論理積符号にしたがって、 各アームの変調部が電気的に絶縁され直列に配置された 2つ変調部を変調するより、当該光クロック光入力信号 の強度と位相を独立に変調し出力光信号のマークビット 50 の位相が交互に π 異なるように強度変調する光強度変調 手段とを備えたことを特徴とする光伝送装置。

【請求項4】 請求項1、2、3記載の光強度変調手段 は、動作点バイアス電圧が、当該差動論理積符号と電気 的に分離された端子に印加されることを特徴とする光伝 送装置。

【請求項5】 NRZ (Non-Return-to-Zero) 電気信号を 入力する端子と、この入力端子から入力された前記NR Z電気信号をRZ(Return-to-Zero)光信号に変換する手 段を備えた光伝送装置において、

前記変換する手段は、当該NRZ電気信号が同期するク ロック電気信号を発生する手段と、当該クロック電気信 号を入力として、当該クロック電気信号に同期した光ク ロックパルス信号を発生するクロックパルス光源と、シ ングルエンドNRZ電気入力信号を入力し、当該NRZ 電気信号の値と当該NRZ電気信号の符号値を1ビット 遅延させた信号との排他的論理和の値を差動出力するプ リコード手段と、NRZ電気入力信号とプリコードされ た差動NR2信号を入力として、NR2電気入力信号と プリコードされた差動NRZ信号の論理積の値を差動出 20 力する2つの差動論理積符号手段と、2つの当該差動論 理積手段からの論理の異なる2つの論理積符号化NRZ 信号のパワ加算を行うパワ加算符号を出力するパワ加算 手段と、当該光クロック光信号を入力として、当該パワ 加算符号にしたがって、3値のパワ加算符号の第2のレ ベルを中心にパワ加算符号を折り返し、パワ加算符号の 第1と第3のレベルに対応する光変調位相がπ異なるよ うに当該光クロック光信号を強度変調する光強度変調手 段とを備えたことを特徴とする光伝送装置。

【請求項6】 前記光強度変調手段は、マッハツェンダ 強度変調器を含む請求項1、2、3、4、5のひとつに 記載の光伝送装置。

【請求項7】 NRZ (Non-Return-to-Zero) 電気信号を 入力する入力端子と、この入力端子から入力された前記 NRZ電気信号をRZ(Return-to-Zero)光信号に変換す る手段とを備えた光伝送装置において、

前記変換する手段は、クロック信号にしたがって連続光 を光強度変調を行う第1の光強度変調手段と、この第1 の光強度変調手段の出力光信号をNRZ電気信号にした がって光強度変調を行う第2の光強度変調手段と、当該 NRZ電気信号を入力し当該NRZ電気信号の値と当該 NRZ電気信号の符号値を1ビット遅延させた信号との 排他的論理和の値を出力するプリコード手段と、この排 他的論理和の値にしたがって前記第2の光強度変調手段 の出力光信号の1パルス毎にπずつの位相変化を与える 位相変調手段とを備えたことを特徴とする光伝送装置。

【発明の詳細な説明】

【発明の属する技術分野】本発明は光通信の伝送装置お よび送受信装置に関する。本発明は特にRZ光信号帯域

40

および送信部のベースバンド電気信号帯域を縮小させる技術に関する。

[0002]

【従来の技術】近年の光ファイバ伝送方式では、高出力かつ広い増幅帯域特性をもつ光ファイバ増幅器が広く用いられるようになり、光ファイバ伝送路内でのファイバ内入力光パワは、10dBmを容易に超えるようになってきた。その結果、光ファイバ中の屈折率が入力光信号強度によって変調されるKerr効果により、光信号自身が位相変調をうけ、光変調スペクトルが広がり、光ファイバの分散との相互作用により波形歪が生じる。また波長多重システムにおいて、チャネル同士の非線形クロストークによる波形歪、S/N劣化が生じる。

【0003】この影響は、信号フォーマットに強く依存することが知られており、例えば、RZ(Return-to-Zero)信号は、NRZ(Non-Return-to-Zero)信号に比べてそのパルス幅がビットごとにそろっているため、長距離伝送した場合の非線形効果による波形歪の劣化が容易であるなどの利点があることが報告されている。

【0004】例えば文献: D. Breuer et al., Compariso n of NRZ and RZ-Modulation Format for 40-Gbit/s TD M Standard-Fiber Systems, IEEE Photon. Technol. Le tt. vol. 9 No. 3 pp. 398-400, 1997"では、1. 3 u m零 分散ファイバ伝送路を中継区間ごとに分散補償した線形 中継系において、RZ信号はNRZ信号に比べて40G bit/sにおいて再生中継距離を約3倍程度拡大でき ることが、シュミレーションで予測されている。また、 文献:R.M. Jopson et al., Evaluation of return-to-z ero modulation for wavelength-division-multiplexed transmissionover convention single-mode-fiber. R. M. Jopson et al, in Tech. Digest ofOptical Fiber Co mm. Conf. '98 FE1, p. 406-407, 1998"では、10-Gb i t/s 8波長WDM伝送系において、RZ信号はNR 2信号に比べて1チャネルあたりのパワが増大できるこ とが実験的に示されている。また文献: A. Sano et al. I EE Electronics Letters Vol. 30, p. 1694-1695 1994 C は、データに同期した位相変調を施すことにより、SB S散乱レベルが改善でき、ファイバ内入射パワを増加す ることができる。

【0005】従って、高速光伝送システムでは、RZ信 40号の形で伝送することが好ましい。

【0006】信号のフォーマットがRZ(Return-to-Zero)である光信号を伝送する従来の光伝送装置の構成を図28および29に示す。図28は、入力されたNRZ電気信号がNRZ/RZ変換回路51においてRZ電気信号に変換され、RZ光強度変調器駆動回路52により増幅されたRZ電気信号によりRZ光強度変調器50を直接駆動し、光源5からの連続(CW)光を変調してRZ光信号を生成する構成である。

【0007】図29は、まず、入力されたNRZ電気信 50

号が、NRZ光強度変調器駆動回路62により増幅され、1段目のNRZ光強度変調器60で光源5からの連続(CW)光を変調してNRZ光信号を生成する。次に、入力されたNRZ電気信号(伝送速度:B(bit/s))に同期した入力クロック信号(周波数:B(Hz))を用いてクロック光強度変調器駆動回路63により、2段目のクロック光強度変調器を1をサイン波で駆動することにより、1段目のNRZ光強度変調器60で生成されたNRZ光信号から、RZ光信号を生成している(例えば、A. Sanoet al. IEEE Electronics Letters vol. 30, P. 1694-1695 1994)。

【0008】また、特開平8-254673(:ゼロ復帰フォーマットにおけるデータ符号化されたパルスを発生するための方法と装置)(対応USP 5,625,722)(Method and apparatus for generating data encoded pulses in return-to-zero format)においては、光のマッハツェンダ型変調器の透過率の周期性を全波整流特性として利用し、2値NRZ電気信号を、RZ光信号に変換する構成が示されている。2値NRZ電気信号を入力とし、エンコーダとよばれるプリコード回路でプリコーディングされた符号化NRZ電気信号に変換し、分岐したのち一方の論理を反転させる。マッハツェンダ型変調器を差動構成の符号化NRZ電気信号で変調することにより、RZ信号を発生させている。

【0009】また、クロック電気信号から、光クロックパルス信号を発生できる発生変調する構成が、以下の3つの文献にしめされている。文献(K. Iwatsuki et al.

"Generation of transform limited gain-swiched DFB -LD pulses < 6 ps with linear fiber compression an d spectral window", Electronics Letters vol. 27, pp 1981-1982, 1991) には当該発生素子として利得スイッチ 半導体レーザを用いる方法、文献(M. Suzuki, et al. "N ew application of sinusoidal driven InGaAsP electr oabsorption modulator to in-line optical gate with ASE noise resuction effect", J. Lighitwave Techno I., 1992, vol. 10 pp. 1912-1918")にはCW発振してい る半導体レーザ光信号を電界吸収型半導体変調器で変調 する方法、文献(K. Sato et al. "Frequency Range Exte nsion of actively mode-locked lasers integrated wi th electroabsorpstion modulators using chirped gra ting" J. of selected topics in quantum electronics vol. 3 No. 2, 1997, pp. 250-255) には集積化されたモー ド同期半導体レーザを用いる方法が示されている。但 し、上記には変調手段は述べられていない。

[0010]

【発明が解決しようとする課題】上記従来技術では、いずれの方法を用いても、生成されるRZ光信号の光変調帯域が4B以上(伝送速度:B(bit/s))になり、NRZ光信号帯域の2倍以上となる。このため、NRZ光信号に比較して伝送路の波長分散により波形歪が生じ

30

やすい問題がある。図30は従来例の光伝送装置によるNRZ光信号スペクトルを示す図であり、図31は従来例の光伝送装置によるRZ光信号スペクトルを示す図である。図30および図31からわかるように、従来例技術によるとRZ光信号の光変調帯域がNRZ光信号帯域の2倍以上となる。

【0011】また、図28に示す従来例技術では、電気段でNRZ電気信号からRZ電気信号に変換するためのNRZ/RZ変換回路51と、RZ電気信号を増幅するRZ光強度変調器駆動回路52と、RZ光強度変調器50とに関し、NRZ電気信号で必要な帯域の2倍(DCから2B(Hz)まで)の広帯域特性が必要であり、伝送速度が上がるにしたがって現実的な回路の設計が困難になる問題がある。

【0012】図29に示す従来例技術では、光強度変調器がNRZ光強度変調器60およびクロック光強度変調器61の二段構成となるから、最終段で出力されるRZ光信号のS/N比をNRZ光信号と同程度に維持するには、光強度変調器の一段分の損失と変調損を補うために、光源5の出力を6~9dB程度増大する必要があり、光源5の高出力化の実現が課題となる。またNRZ光信号と同期クロック信号の変調位相を制御するための位相制御回路64が必要となる繁雑さがある。

【0013】また、従来技術では、いずれの装置を用いても、生成されるRZ光信号の変調スペクトルに連続光のキャリア周波数を中心に±n・B(Hz)で線スペクトルを持つ。このため伝送ファイバに入力される信号パワが約7dBmを超えると、分散シフトファイバ伝送路では、誘導ブリルアン散乱(SBS)により閾値的にファイバ内光入力パワが制限を受ける。このため連続光源の光周波数線幅を拡大してSBSによる光入力パワ制限を緩和することが必要となり、このためのSBS抑圧用線幅変調回路53などの外部回路が必要となる繁雑さがある。

【0014】また、RZ光信号には、図31に示すように、光のキャリア周波数成分(fc)があるために、RZ光信号スペクトル密度が高く、RZ光信号スペクトル密度の最大値が誘導ブリルアン散乱(SBS)による閾値密度と等しくなるRZ光信号パワより高い送信パワをファイバ内に入力すると、SBSによりこれらの高密度スペクトル成分が後方散乱を受け、波形歪を生じる(例えば、H. Kawakami et al. "Overmodulation of intensity modulated signal due to Stimulated Brillouin Scattering Electron. Lett. vol.30, No.18 pp.1507-1508, 1994)。また、これらのRZ光信号を波長多重(WDM)した場合には、光信号スペクトル密度の高い部分が4光波混合(FWM)を起こし易く、ポンプテプリッションによるクロストーク等が発生し易い。

【0015】さらに、従来のRZ電気信号をそのまま増幅する方式では、容量結合型の駆動回路を用いると信号 50

のマーク率変動により駆動波形のDCレベル変動が生 じ、駆動回路の出力ダイナミックレンジを約2倍以上と る必要があり、また、マーク率によって変動する光強度 変調器のバイアス点をマーク率によって補償する制御回 路が必要である。

【0016】以上述べたように、従来構成では、RZ光信号発生に必要な光スペクトル帯域がNRZ光信号に比較して2倍以上となり、光ファイバ伝送路の波長分散による信号劣化の影響を受け易いこと、RZ電気信号を扱う電気回路に要求される帯域がNRZ電気信号伝送時に比べ2倍となり高速化が難しいこと、SBSによるファイバ内光入力パワ制限を受け易く、外部回路による光周波数線幅の拡大が必要となること、4光波混合(FWM)によるクロストークが発生し易いこと、信号のマーク率変動により駆動波形のDCレベル変動が生じること、が問題点である。

【0017】本発明は、このような背景に行われたもの であって、RZ光信号発生に必要な光スペクトル帯域を 従来の半分以下で実現し、光ファイバ伝送路の波長分散 による信号劣化の影響をうけにくくすることができる光 伝送装置を提供することを目的とする。本発明は、電気 回路、光強度変調器に要求される電気信号帯域を伝送速 度B程度で発生することができる光伝送装置を提供する ことを目的とする。本発明は、SBSによるファイバ内 光入力パワ制限を本質的に除くことができる光伝送装置 を提供することを目的とする。本発明は、光源の出力パ ワを低減させることができる光伝送装置を提供すること を目的とする。本発明は、4光波混合(FWM)による クロストークの影響を低減することができる光伝送装置 を提供することを目的とする。本発明は、信号のマーク 率変化によるDCレベル変動のない光伝送装置を提供す ることを目的とする。本発明は、光ファイバ伝送路およ び光送受信部で生じる符号間干渉を引き起こし難い光伝 送装置を提供することを目的とする。

[0018]

【課題を解決するための手段】本発明は、NRZ電気信号を入力する入力端子と、この入力端子から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。本発明の特徴とするところは、前記変換する手段は、NRZ差動電気信号を入力し当該NRZ差動電気信号を入力し当該NRZ差動電気信号を入力し当該NRZ差動電気信号をの値と当該NRZ差動電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を出力するプリコード手段と、この排他的論理和の値の立ち上がり点および立ち下がり点でそれぞれ極性の異なる協分電気信号パルスを生成する微分符号化手段と、この微分電気信号パルスにしたがって3値の微分電気信号の第2のレベルを中心に、微分電気パルス波形を折り返し、かつ、微分信号の第1と第3のレベルに対応する光変調信号位相がπ異なるように連続光を光RZ強度変調する光強度変調手段とを備えるところにある。なお、前

記光強度変調手段は、マッハツェンダ強度変調器を含む 構成とすることが望ましい。

【0019】また入力NRZ電気信号がシングルエンド 入力の場合においても、プリコード手段の出力が差動出 力になっていれば、等しい機能を実現する。

【0020】このように、NRZ電気信号をプリコーディングしたのち微分信号に変換することにより、入力信号が直流成分を含まない直流平衡符号でありかつ3値信号となっているため、電気回路、光強度変調器は、直流からのベースバンド増幅・変調特性が必要なくなり、要10求される帯域を伝送速度B程度で発生することができる。さらに、微分信号は直流成分を含まないため、マーク率によるDCレベル変動がない。また、一段構成の光強度変調器で変調できるため、連続光源に要求される出力パワを低減させることができる。

【0021】さらに、微分信号を用いているため生成されたRZ光信号は、マーク率によらず光のキャリア周波数成分はなくなり、RZ光信号スペクトル密度が従来構成のRZ光信号スペクトル密度に比べ低くなる。このため、本発明のRZ光信号のスペクトル密度の最大値が誘20導ブリルアン散乱(SBS)によるしきい値密度と等しくなるRZ光信号パワが、従来構成のRZ光信号より高くできる。また、スペクトル密度が低いことにより、伝送路の零分散波長付近で波長多重伝送した場合でも、従来のRZ、NRZ伝送で問題となる4光波混合(FWM)によるクロストークの影響を低減できる。

【0022】さらに、パルスbyパルスの位相が反転しているため、伝送路における偏波分散等によるマルチパスによりフェージングがおきても、パルスエッジの重なり部分において位相が反転しているため、強度変調され 30 た信号は、パルスエッジの重なり部分の強度は干渉により相殺され、符号間干渉を引き起こし難い。

【0023】本発明のもう一つの構成として、前記変換 する手段は、当該NRZ電気信号が同期するクロック電 気信号を発生する手段と、当該クロック電気信号を入力 として、当該クロック電気信号に同期した光クロックパ ルス信号を発生するクロックパルス光源と、シングルエ ンドNRZ電気入力信号を入力し、当該NRZ電気信号 の値と当該NR Z電気信号の符号値を1ビット遅延させ た信号との排他的論理和の値を差動出力するプリコード 手段と、NRZ電気入力信号とプリコードされた差動N RZ信号を入力として、NRZ電気入力信号とプリコー ドされた差動NRZ信号の論理積の値を差動出力する2 つの差動論理積符号手段と、当該光クロック光信号を入 力として、当該差動論理積符号にしたがって、各アーム の変調部が電気的に絶縁され直列に配置された2つ変調 部を変調するより、当該光クロック光入力信号の強度と 位相を独立に変調し出力光信号のマークビットの位相が 交互に π 異なるように強度変調する光強度変調手段とを 備える構成とすることもできる。

【0024】本発明のまたもう一つの構成として、前記変換する手段は、当該NRZ電気信号が同期するクロック電気信号を発生する手段と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源と、シングルエンドNRZ電気入力信号を入力し、当該NRZ電気

ルエンドNRZ電気人力信号を人力し、当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段と、当該NRZ電気入力信号と当該プリコードされた差動NRZ信号を入力として、当該NRZ電気入力信号と当該プリコードされた差動NRZ信号の論理積の値を差動出力する2つの差動論理積符号手段と、2つの当該差動論理積手段からの論理の異なる2つの論理積符号化NRZ信号のパワ加算を行うパワ加算符号を出力するパワ加算手段と、当該光クロック光信号を入力として、当該パワ加算符号にしたがって、3値のパワ加算符

号の第2のレベルを中心にパワ加算符号を折り返し、パワ加算符号の第1と第3のレベルに対応する光変調位相がπ異なるように当該光クロック光信号を強度変調手段とを備える構成とすることもできる。

【0025】本発明の別の構成として、前記変換する手段は、クロック信号にしたがって連続光を光強度変調を行う第1の光強度変調手段と、この第1の光強度変調手段の出力光信号をNRZ電気信号にしたがって光強度変調を行う第2の光強度変調手段と、当該NRZ電気信号を入力し当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を出力するプリコード手段と、この排他的論理和の値にしたがって前記第2の光強度変調手段の出力光信号の1パルス毎にπずつの位相変化を与える位相変調手段とを備える構成とすることもできる。

[0026]

【発明の実施の形態】発明の実施の形態を図1、図1 0、図12、図20および図26を参照して説明する。 図1は本発明第1実施例の光伝送装置の要部プロック構 成図である。図10は本発明の第2実施例の光伝送装置 の要部プロック構成図である。

【0027】図12は、本発明の第3実施例の光伝送装置の要部プロック図である。図20は本発明の第4実施例の光伝送装置の要部プロック図である。図26は、本発明の第5の光伝送装置の要部プロック図である。

【0028】本発明の第1実施例は、図1に示すように、NRZ電気信号を入力する入力端子14および14'と、この入力端子14および14'から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0029】ここで、本発明の特徴とするところは、前 記変換する手段は、入力端子14および14'から入力 されたNRZ差動電気信号を当該NRZ差動電気信号の 50 値と当該NRZ差動電気信号の符号値を1ビット遅延さ せた信号との排他的論理和の値を出力するプリコード手段であるプリコード回路1および1'と、この排他的論理和の値の立ち上がり点および立ち下がり点でそれぞれ極性の異なる微分電気信号パルスを生成する微分符号化手段であるパンドパスフィルタ2および2'と、この微分電気信号パルスにしたがって3値微分電気信号の第2のレベルを中心に微分電気パルス波形を折り返し、かつ、微分信号の第1と第3のレベルに対応する光変調信号位相がπ異なるように連続光を強度変調する光強度変調手段である光強度変調器4とを備えるところにある。なお、光強度変調器4は、マッハツェンダ強度変調器を含む。

【0030】本発明の第2の実施例は、図10に示すように、NRZ電気信号を入力する入力端子71とこの入力端子71から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0031】ここで、本発明の特徴とするところは、前記変換する手段は、入力端子71から入力されたシングルエンドNRZ電気信号を当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段である差動出力プリコード手段72と、この排他的論理和の値の立ち上がり点および、たち下がり点で、それぞれ極性の異なる微分電気パルスを生成する微分符号化手段であるバンドパスフィルタ2および21と、この微分電気パルスにしたがって、3値の微分電気信号の第2のレベルを中心に微分電気パルス波形を折り返し、微分信号の第1と第3のレベルに対応する光変調位相が π 異なるように連続光を強度変調する光強度変調手段である光強度変調器4とを備えるところにある。なお光強度変調器4はマッハツェンダ強度変調器を含む。

【0032】本発明の第3の実施例は、図12に示すように、NRZ電気信号を入力する入力端子81とこの入力端子81から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0033】ここで、本発明の特徴とするところは、前記変換する手段は、当該NRZ電気信号が同期するクロック電気信号を発生する手段である電気クロック発生回路86と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生40するクロックパルス光源83と、シングルエンドNRZ電気入力信号を入力し、当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段72と、NRZ電気入力信号とプリコードされた差動NRZ信号を入力として、NRZ電気入力信号とプリコードされた差動NRZ信号の論理積の値を差動出力する2つの差動論理積符号手段73、73′、82,82′と、当該光クロック光信号を入力として、当該差動論理積符号にしたがって、各アームの変調部が電気的に絶縁され直50

列に配置された2つ変調部を変調するより、当該光クロック光入力信号の強度と位相を独立に変調し出力光信号のマークビットの位相が交互にπ異なるように強度変調する光強度変調手段84とを備えるところにある。

【0034】本発明の第4の実施例は、図20に示すように、NRZ電気信号を入力する入力端子91と、この入力端子91から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0035】ここで、本発明の特徴とするところは、前 記変換する手段は、当該NRZ電気信号が同期するクロ ック電気信号を発生する手段である電気クロック発生回 路86と、当該クロック電気信号を入力として、当該ク ロック電気信号に同期した光クロックパルス信号を発生 するクロックパルス光源83と、シングルエンドNRZ 電気入力信号を入力し、当該NRZ電気信号の値と当該 NRZ電気信号の符号値を1ビット遅延させた信号との 排他的論理和の値を差動出力するプリコード手段72 と、NRZ電気入力信号とプリコードされた差動NRZ 信号を入力として、NRZ電気入力信号とプリコードさ れた差動NRZ信号の論理積の値を差動出力する2つの 差動論理積符号手段82,82'と、2つの当該差動論 理積手段からの論理の異なる2つの論理積符号化NRZ 信号のパワ加算を行うパワ加算符号を出力するパワ加算 手段100, 101と、当該光クロック光信号を入力と して、当該パワ加算符号にしたがって、3値のパワ加算 符号の第2のレベルを中心にパワ加算符号を折り返し、 パワ加算符号の第1と第3のレベルに対応する光変調位 相がπ異なるように当該光クロック光信号を強度変調す る光強度変調手段102とを備えるところにある。

【0036】本発明の第5実施例は、図26に示すように、NRZ電気信号を入力する入力端子18と、この入力端子18から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0037】ここで、本発明の特徴とするところは、前記変換する手段は、入力端子19から入力されたクロック信号にしたがって連続光を光強度変調を行う第1の光強度変調手段である光強度変調器31と、この光強度変調器31の出力光信号をNRZ電気信号にしたがって光強度変調を行う第2の光強度変調手段である光強度変調器32と、当該NRZ電気信号を入力し当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を出力するプリコード手段であるプリコード回路1と、この排他的論理和の値にしたがって光強度変調器32の出力光信号のマークパルス毎にπずつの位相変化を与える位相変調手段である位相変調器40とを備えるところにある。

[0038]

【実施例】 (第1実施例) 本発明第1実施例を図1~図9を参照して説明する。図1に示すように、多重化されたNRZ差動電気信号を入力端子14および14'から

30

12

入力し、各々プリコーディングされた符号化NRZ電気 信号を出力するプリコーディング回路1および1'と、 符号化NRZ電気信号を入力とし、グランドレベルを中 心に振幅が等しく極性の異なる微分信号パルスを生成す る微分回路としてのバンドパスフィルタ2および2' と、微分信号を光強度変調器4の駆動電圧まで増幅する 容量結合型の駆動回路3および3'と、駆動回路3およ び3'により増幅された差動微分信号を入力として、R Z光信号を生成するpush-pullタイプのMac h-Zehnder型の光強度変調器4と、光強度変調 器4の出力を増幅する光増幅器6から構成されている。 プリコード回路1および1'とバンドパスフィルタ2お よび2'は、相補的な出力をもつバイポーラ符号変換器 として構成されてもよい。また、図2にプリコード回路 2および2'の構成を示す。本発明のプリコード回路2 および2'は、排他的論理和回路7および1ビット遅延 回路8により構成される。本発明の第1実施例の光伝送 装置の各部の波形を図3に示す。

【0039】ここで、本発明の利点を説明する。本発明 の利点は、以下の4点である。1) NR Z電気信号をプ 20 リコーディングしたのち受動マイクロ波部品等により微 分信号に変換することにより、入力信号が直流成分を含 まない直流平衡符号でありかつ3値信号となっているた め、駆動回路3および3'は、直流からのベースバンド 増幅特性が必要なくなり、3 d B 帯域も従来の半分のB (Hz)で増幅が可能となる。2)従来のRZ電気信号 をそのまま増幅する方式では、容量結合型の駆動回路を 用いると信号のマーク率変動により駆動波形のDCレベ ル変動が生じ、駆動回路の出力ダイナミックレンジを約 2倍以上とる必要があり、また、マーク率によって変動 30 する光強度変調器4のバイアス点をマーク率によって補 償する制御回路が必要であった。本発明を用いれば、微 分信号は直流成分を含まないため、マーク率によるDC レベル変動がなく上記の問題が解決される。3)また、 図4は本発明の光強度変調器4の動作を説明するための 図であり、横軸に駆動電圧をとり、縦軸に光強度をと る。push-pullタイプのMach-Zehnder型の光強度変調器 4の周期的な電気光応答特性を利用し、動作点として図 4のように選ぶことにより、微分信号の異なる特性を持 つパルスが、点Aの直流レベル(第2のレベル)を中心 に折り返され、結果として一段構成の光強度変調器4か らRZ光信号パルスが生成される。このとき、図4の点 B (第1のレベル) と点C (第3のレベル) の光の位相 はπだけ異なり、各々符号化NRZ電気信号の位相の立 . ち上がりエッジと立ち上がりエッジに対応しているた め、隣合うRZ光信号パルス位相は必ず反転している。 また、1/4波長ショートスタブ線路(伝送速度のクロ ック周波数B(Hz)における)を用いることによりほ ぼパルスduty cycleが1/2となる。これに

成の光強度変調器4で変調できるため、光源5に要求さ れる出力パワもNR Z変調時と同等にできる。4) 図5 は本発明の光伝送装置によるRZ光信号の光スペクトル を示す図であるが、微分信号を用いているため、図4の 点Bと点Cの存在確率は必ず1/2となり、生成された RZ光信号は、図5に示すように、マーク率によらず光 のキャリア周波数成分はなくなり、RZ光信号スペクト ル密度が従来例のRZ光信号スペクトル密度に比べ低く なる。このため、本発明のRZ光信号のスペクトル密度 の最大値が誘導ブリルアン散乱 (SBS) による閾値密 度と等しくなるRZ光信号パワが、従来例のRZ光信号 より高くできる。また、スペクトル密度が低いことによ り、伝送路の零分散波長付近で波長多重伝送した場合で も、従来のRZ、NRZ伝送で問題となった4光波混合 (FWM) によるクロストークの影響を低減することが できる。

【0040】本発明の第1実施例の光伝送装置を用いた 光送受信装置を図6に示す。図6の例は、伝送速度10 Gbit/sにおける位相反転RZ信号伝送実験の構成 例である。データソース10から出力されたNR2差動 電気信号は、それぞれプリコード回路1および1'に入 力される。プリコード回路1および1'の出力は、バン ドパスフィルタ2および2'により前述した微分信号に 変換される。この微分信号は駆動回路3および3'によ り増幅され、光強度変調器4内で光源5からの連続光が 駆動回路3および3'の出力信号によって強度変調され る。光強度変調器4の出力は光増幅器6によって増幅さ れ、伝送路12により受信側に伝送される。受信側で は、まず、アッテネータ9により受信信号の利得が制限 され、受信装置13に入力される。受信装置13では、 NRZ電気信号およびクロック信号が再生されて受信端 末11に入力される。なお、受信側の構成および動作は 既知の技術であり、本発明とは直接関係がないので説明 は省略する。

【0041】 微分信号を生成するバンドパスフィルタ2 および2'は、1/4波長ショートスタブ線路(伝送速度のクロック周波数B(Hz)における)を用いて実現している。これは適当なバンドパスフィルタを用いても構成できる。本構成では、光強度変調器4の帯域は約8 GHzであり従来構成の約半分の帯域で10Gbit/s位相反転RZ光信号を発生させた。

【0042】図7は本発明の光伝送装置によるRZ光信号波形を示す図である。図7に示すように、信号のマーク率を1/2、1/4、1/8と変化させても、DCレベル変動制御回路を使わずに安定なRZ光信号が発生できている。

また、1/4波長ショートスタブ線路(伝送速度のクロ 【0043】図8は本発明の光伝送装置によるRZ光信 ック周波数B(Hz)における)を用いることによりほ 号の光スペクトルおよび従来例の光伝送装置によるRZ 光信号の光スペクトルを示す図である。 横軸に相対周波 より、生成されたRZ光信号帯域は2Bとなり、一段構 50 数をとり、縦軸に相対出力をとる。図8に示すように、

従来例に比べ、光信号帯域は約半分になっていることが分かる。さらに、図9は本発明と従来例との波長分散耐力を示す図であり、横軸に分散範囲をとり、縦軸に受信感度をとる。図9は、10Gbit/sにおける波長分散特性を従来例と本発明とで比較した。図9から受信感度が1dB劣化する分散範囲を比較すると、従来例のRZ光信号は1000ps/nmであるのに対して、本発明は1700ps/nmであり1.7倍となっている。以上から波長分散による劣化の耐力が拡大されていることが明らかである。

【0044】(第2実施例)本発明の第2実施例を図1 0および図11を用いて説明する。図10は本発明の第 2実施例の光伝送装置の要部ブロック構成図である。図 11は、本発明の第2の実施例の光伝送装置のプリコー ド手段を示す図である。本発明の第2の実施例では、図 10に示すようにシングルエンド入力のNRZ電気信号 から、差動のプリコード信号出力を出力する例である。

【0045】多重化されたシングルエンドNRZ電気信 号を入力端子71から入力し、プリコーディングされた 符号化NRZ電気信号を出力する差動プリコーディング 回路72と、符号化NRZ電気信号を入力とし、グラン ドレベルを中心に振幅が等しく極性の異なる微分電気パ ルスを生成する微分回路としてのバンドパスフィルタ2 および2'と微分信号を、光強度変調器4の駆動電圧ま で増幅する容量結合型の駆動回路3および3'により増 幅された差動微分信号を入力として、RZ光信号を生成 するpush-pullタイプのMach-Zehnder型の光強度変調器 4と、光強度変調器4の出力を増幅する光増幅器6より 構成されている。本発明の差動プリコード回路72は、 図11に示すように、排他的論理和7および1ビット遅 30 延回路8および、プリコーディングされた出力が相補的 な符号化NRZ信号を出力できるよう、出力段に差動変 換回路73により構成される。

【0046】(第3実施例)本発明の第3実施例を図12~19を用いて説明する。図12は本発明の第3実施例の光伝送装置の要部ブロック構成図である。図13は、本発明の第3の実施例の光伝送装置のプリコード手段を示す図である。図14は、本発明の第3の実施例の光伝送装置の各部の波形を示す図である。図15は、本発明の第3の実施例の光変調手段に印加する2値電気信号のバイアス状態を説明する図である。図16、17は本発明の第3の実施例の光伝送装置の光強度変調器のバイアス印加方法を説明する図である。

【0047】NRZ電気信号が同期するクロック電気信号を発生する電気クロック発生回路86と、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源83と、シングルエンドNRZ電気信号を入力端子81から入力し、プリコーディングされた符号化NRZ電気信号を出力する差動プリコーディング回路72と、入力NRZ電気信号とプリコードNRZ 50

電気信号の論理積をおこなう差動論理積(AND)回路 82、82'と、当該論理積出力を差動出力する差動変 換回路73および、光強度変調器84より構成される。 【0048】本構成では、電気回路における信号が全て 2値NRZ信号ですみ、電気段における3値信号の処理 が不要である特徴がある。またパタンジッタのすくない 光パルス列を変調するため、変調された光RZ信号のパ タンジッタを低減することが可能である。入力NRZ電 気信号をプリコード回路72に入力し、入力NRZ電気 信号中のマークビットが入力されるごとに極性が反転す る差動プリコード符号化NRZ出力B1、B2をえる。 AND回路82、82'において、入力NRZ電気信号 Aとプリコード符号化NRZ電気信号B1、B2の論理 積(AND)を行うことにより、入力NRZ電気信号中 にマークビットが入力されるごとに当該論理積信号出力 ポートC2、C3に交互にマークビットとが出力する。 図12は、光強度変調器84としてMZ型強度変調器を 用いた場合をしめしており、第1の光変調部と第2の変 調部が直列に接続されたプッシュプル構成となってい る。2つの光変調部に印加される論理積信号C2、C3 は、差動変換回路によって差動出力D1/D2およびD 3/D4に変換され、図15に示すようにバイアスされ たのち2つの変調部にpush-pull構成で印加される。入 カNRZ電気信号中にマークビットが入力されるごと に、AND回路82、82°が交互に開き、第1の変調 部と第2の変調部が交互に変調され、結果として第1の 変調部で変調されたRZ光信号ビットの位相と第2の変 調部で変調されたRZ光信号ビットの位相はπずれてい るように変調される。

【0049】図16は、光強度変調器84の動作バイアスを設定する構成を示している。光電気変換手段でモニタした平均パワをもとに、第1および第2の変調部とは電気的に絶縁されたバイアスポート85を通して2つ光導波路の内どちらか一方にバイアスを印加する。

【0050】図17は、光強度変調器84の動作バイア スを設定する別の構成を示している。図18はバイアス 制御回路の具体的構成を示している。また図19はマー ク率変動を検出するローパスフィルタ回路(LPF)9 4を示している。図17では、第1の変調部及び第2の 変調部の駆動回路21'及び21"の振幅を、各々異な る周波数で微弱に変調したのち、強度変調器84を変調 する。強度変調器84を変調したRZ光変調信号は一部 分岐されたのち光電気変換手段で電気信号に変換され る。バンドパスフィルタBPF1およびBPF2におい て、各々のバイアス制御回路で変調した周波数成分をぬ きだした後、バイアス制御回路1、2(88、88)) にそれぞれ入力される。図18のバイアス制御回路で は、もとの変調周波数信号源90の変調位相と検出信号 91の位相の位相差とをミキサ92で検出することによ りバイアス信号の変化の向きを検出し、検出信号91の

振幅を最小にするように制御する。このときマーク率検 出回路では、マーク率を検出し、あらかじめ測定した d u t y c y c l e の値とを考慮して、図18における バイアス印加電圧に加算器93により補正を加え、出力 する。

【0051】(第4実施例)本発明の第4実施例を図20~25を用いて説明する。図20は本発明の第4実施例の光伝送装置の要部プロック構成図である。図21は、本発明の第4の実施例の光伝送装置のパワ加算手段の例を説明する図である。図22は、本発明の第4の実 10施例の光伝送装置のプリコード手段を示す図である。図23は、本発明の第4の実施例の光伝送装置の各部の波形を示す図である。図24は、本発明の第4の実施例の光変調手段に印加する3値パワ加算電気信号のバイアス状態を説明する図である。図25は、本発明の第4の実施例の光伝送装置の光強度変調器のバイアス印加方法を説明する図である。

【0052】本構成では、パタンジッタのすくない光パ ルス列を変調するため、変調された光RZ信号のパタン ジッタを低減することが可能である。入力NRZ電気信 20 号をプリコード回路72に入力し、入力NRZ電気信号 中のマークビットが入力されるごとに極性が反転する差 動プリコード符号化NRZ出力B1、B2をえる。AN D回路82、82°において、入力NRZ電気信号Aと プリコード符号化NRZ電気信号B1、B2の論理積 (AND)を行うことにより、入力NRZ電気信号中に マークビットが入力されるごとに当該論理積信号出力ポ ートC2、C3に交互に当該マークビットが出力され る。但し、C2出力信号は、当該NRZ電気信号入力に 対して、論理が反転している。図20は、光強度変調器 30 102としてMZ型強度変調器を用いた場合をしめして おり、プッシュプル構成となっている。論理積信号C C2、C3、C4は、パワ加算回路100、101 によって3値の差動パワ加算出力信号D1'D2'に変 換され、図24に示すようにバイアスされたのち変調部 にpush-pull構成で印加される。MZ型光強度変調器1 02では、差動パワ加算出力信号の第2のレベルを中心 に差動パワ加算出力信号電気パルス波形を折り返し、差 動パワ加算出力信号の第1と第3のレベルに対応する光 変調位相がπ異なるようにクロックパルス光源からのR Z光クロックパルスが変調される。

【0053】図21はパワ加算回路100、101を受動部品で構成した例である。50オーム系では、抵抗値Rを50オームに選ぶことにより6dBパワ加算ができる。図25は、光強度変調器102の動作バイアスをあたえる構成例である。変調部とは電気的に絶縁されたバイアスポート104を通して2つ光導波路の内どちらか一方にバイアスを印加する。

【0054】 (第5実施例) 本発明の第5実施例を図2 6および図27を参照して説明する。図26は本発明の 第5実施例の光伝送装置の要部プロック構成図である。 図27は本発明の第5実施例の光伝送装置の各部信号波 形を示す図である。本発明の第5実施例では、図26に

示すように、光強度変調と光位相変調とをそれぞれ光強度変調器31、32および位相変調器40により行う例

である。

【0055】光源5から出力された連続光は光強度変調器31で、伝送速度に同期したクロック信号により変調され、クロックパルス列信号光を発生し、このクロックパルス列信号光は、光強度変調器32により、データであるNRZ電気信号により強度変調され、通常のRZ光信号を生成する。データ信号は一部分岐され、プリコード回路1で、図27に示すように、符号変換(D点)され、この符号化NRZ電気信号にしたがって、図30のE点の光位相変化に示すように、位相変調器40により(0、 π)の位相変調がなされることにより個々のパルスは交互に位相が π 異なるRZ光信号が生成される。

[0056]

【発明の効果】以上説明したように、本発明によれば、 駆動回路/光強度変調器に必要とされる電気信号帯域を 従来装置の半分にできるので、光伝送装置の高速化が実 現できる。また光信号帯域を従来装置の半分にできるの で、光ファイバ伝送路の波長分散による伝送品質劣化を 低減することができる光伝送装置を実現できる。本発明 では、光キャリアが抑圧された変調方式であるから、光 信号スペクトルに線スペクトル周波数成分を含まない。 したがってSBSによるファイバ内入力パワ制限、4光 波混合による波形歪に対して有利である。またパルス b yパルスの位相が反転しているから、伝送路における偏 波分散等によるマルチパスによりフェージングが起きて も、パルスエッジの重なり部分において位相が反転して いるから、強度変調された信号は、パルスエッジの重な り部分の強度は干渉により相殺され、符号間干渉を引き 起こし難い。

【0057】すなわち、RZ光信号発生に必要な光スペクトル帯域を従来の半分以下で実現することができる。また、電気回路、光強度変調器に要求される帯域を伝送速度B程度で発生することができる。さらに、SBSによるファイバ内光入力パワ制限を本質的に除くことができる。また、光源の出力パワを低減させることができる。さらに、信号のマーク率変化によるDCレベル変動がない。また、4光波混合(FWM)によるクロストークの影響を低減することができる。さらに、符号間干渉を引き起こし難い。

【図面の簡単な説明】

【図1】本発明第1実施例の光伝送装置の要部プロック 構成図。

【図2】プリコード回路の構成を示す図。

【図3】本発明第1実施例の光伝送装置の各部の波形を 50 示す図。

- 【図4】本発明の光強度変調器の動作を説明するための 図.
- 【図5】本発明の光伝送装置によるRZ光信号の光スペクトルを示す図。
- 【図6】本発明第1実施例の光伝送装置を用いた光送受 信装置の構成を示す図。
- 【図7】本発明の光伝送装置によるRZ光信号波形を示す図。
- 【図8】本発明の光伝送装置によるRZ光信号の光スペクトルおよび従来例の光伝送装置によるRZ光信号の光 10 スペクトルを示す図。
- 【図9】本発明と従来例との波長分散耐力を示す図。
- 【図10】本発明の第2実施例の光伝送装置の要部プロック図。
- 【図11】本発明の第2実施例の差動プリコード回路の 構成を示す図。
- 【図12】本発明の第3実施例の光伝送装置の要部プロック図。
- 【図13】本発明の第3実施例の差動プリコード回路の 構成を示す図。
- 【図14】本発明の第3実施例の光伝送装置の各部の波形を示す図。
- 【図15】本発明の第3実施例の光強度変調器の動作を 説明するための図。
- 【図16】本発明の第3実施例の光強度変調器のバイアス制御の構成例を示す図。
- 【図17】本発明の第3実施例の光強度変調器の別のバイアス制御の構成例を示す図。
- 【図18】本発明の第3実施例の光強度変調器のバイア ス制御回路の実施例を示す図。
- 【図19】本発明の第3実施例のマーク率変動を検出回路の構成を示す図。
- 【図20】本発明の第4実施例の光伝送装置の要部プロック図。
- 【図21】本発明の第4実施例のパワ加算回路の構成を示す図。
- 【図22】本発明の第4実施例の差動プリコード回路の 構成を示す図。
- 【図23】本発明の第4実施例の光伝送装置の各部の波形を示す図。
- 【図24】本発明の第4実施例の光強度変調器の動作を 説明するための図。
- 【図25】本発明の第4実施例の光強度変調器のバイアス制御の構成例を示す図。
- 【図26】本発明第5実施例の光伝送装置の要部ブロック構成図。

- 【図27】本発明第5実施例の光伝送装置の各部信号波 形を示す図。
- 【図28】従来の光伝送装置の構成を示す図。
- 【図29】従来の光伝送装置の構成を示す図。
- 【図30】従来例の光伝送装置によるNRZ光信号スペクトルを示す図。
- 【図31】従来例の光伝送装置によるRZ光信号スペクトルを示す図。

【符号の説明】

-) 1、1' プリコード回路
 - 2、2' バンドパスフィルタ
 - 3、3'、21、22、23 駆動回路
 - 4、31、32 光強度変調器
 - 5 光源
 - 6 光增幅器
 - 7 排他的論理和回路
 - 8 1ビット遅延回路
 - 9 アッテネータ
- 10 データソース
- 20 11 受信端末
 - 12 伝送路
 - 13 受信装置
 - 14、14'、18、19 入力端子
 - 40 位相変調器
 - 50 RZ光強度変調器
 - 51 NRZ/RZ変換回路
 - 52 RZ光強度変調器駆動回路
 - 53 SBS抑圧用線幅変調回路
 - 60 NRZ光強度変調器
- 30 61 クロック光強度変調器
 - 62 NRZ光強度変調器駆動回路
 - 63 クロック光強度変調器駆動回路
 - 6 4 位相制御回路
 - 71、81 シングルエンドNR2入力端子
 - 72 差動プリコード回路
 - 82 論理積回路
 - 83 クロックパルス光源
 - 8 4 光強度変調器
 - 85 バイアスポート
- 40 90 変調周波数信号源
 - 92 位相比較器
 - 93 加算器
 - 94 低域通過フィルタ(Low Pass Filter:LPF)
 - 100、101 パワ加算器
 - 102 光強度変調器
 - 104 バイアス印加端子

-10 0 10 相対周波数 (GHz)

【図10】

-10 0 10 相対周波数 (GHz)

【図15】

【図12】

【図16】

【図17】

【図24】

【図20】

【図2·5】

[図26]

【図28】

【図29】

フロントページの続き

(51) Int. Cl. ⁷ H O 4 L 25/493 識別記号

FΙ

テーマコード(参考)