

Université de Montréal

FICHE RÉCAPITULATIVE

Calcul II

Julien Hébert-Doutreloux

Contents

1	Les	dérivées et les intégrales des fonctions vectorielles	3
	1.1	Les règles de dérivations	3
	1.2	La longueur d'arc et la courbure	3
	1.3	L'abscisse curviligne	3
	1.4	La courbure	3
	1.5	Les vecteurs normal et binormal	4
2	Les	intégrales curvilignes et l'analyse vectorielle dans le plan	5
	2.1	Les champs vectoriels	5
	2.2	Les intégrales curvilignes	5
	2.3	Les intégrales curvilignes de champs vectoriels	5
	2.4	Le théorème fondamental des intégrales curvilignes	5
	2.5	L'indépendance du chemin	6
	2.6	Le théorème de Green	6
3	3 Les intégrales de surface et l'analyse vectorielle dans l'espace		
	3.1	Les surfaces paramétrées et leurs aires	7
		3.1.1 Les plans tangents	7
		3.1.2 L'aire d'une surface paramétrée	7
		3.1.3 L'aire des graphes de fonctions de deux variables	7
	3.2	Les intégrales de surface	7
	·-	3.2.1 Les surfaces paramétrées	7
		3.2.2 Les graphes de fonctions de deux variables	8
		3.2.3 Les surfaces orientées	8
		3.2.4 Les intégrales de surface de champs vectoriels	8
	3.3	Le rotationnel et la divergence	8
	0.0	3.3.1 Le rotationnel	8
		3.3.2 La divergence	9
		3.3.3 Le laplacien	9
		3.3.4 Les formes vectorielles du théorème de Green	9
	3.4		
	$\frac{3.4}{3.5}$	Le théorème de flux divergence	9
	ა.ა	Le théorème de flux-divergence	9
In	\mathbf{dex}		10

1 Les dérivées et les intégrales des fonctions vectorielles

1.1 Les règles de dérivations

Théorème 1. Si \vec{u} et \vec{v} sont des fonctions dérivables, c est un scalaire et f est une fonction réelle, alors,

$$\frac{d}{dt}[\vec{u}(t) + \vec{v}(t)] = \vec{u}'(t) + \vec{v}'(t) \tag{1}$$

$$\frac{d}{dt}[c\vec{u}(t)] = c\vec{u}'(t) \tag{2}$$

$$\frac{d}{dt}[f(t)\vec{u}(t)] = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$$
(3)

$$\frac{d}{dt}[\vec{u}(t) \bullet \vec{v}(t)] = \vec{u}'(t) \bullet \vec{v}(t) + \vec{u}(t) \bullet \vec{v}'(t)$$
(4)

$$\frac{d}{dt}[\vec{u}(t) \times \vec{v}(t)] = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)$$
(5)

$$\frac{d}{dt} \left[\vec{u}(f(t)) \right] = f'(t) \vec{u}'(f(t)) \tag{6}$$

1.2 La longueur d'arc et la courbure

Théorème 2. Soit C une courbe paramétrée par x = f(t), y = g(t), $a \le t \le b$, où f et g ont des dérivées continues sur [a,b], et C est parcourue une seule fois lorsque t varie de a à b. Alors, la longueur de C est

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

$$L = \int_{a}^{b} ||\vec{r}'(t)||^{2} dt$$

1.3 L'abscisse curviligne

Définition 1. L'abcisse curviligne s de C est définie par

$$s(t) = \int_a^t ||\vec{r}'(u)||^2 du = \int_a^t \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2 + \left(\frac{dz}{du}\right)^2} du$$
$$\frac{ds}{dt} = ||\vec{r}'(t)||$$

1.4 La courbure

Définition 2. Si C est une courbe lisse définie par la fonction vectorielle \vec{r} , son vecteur tangent unitaire $\vec{T}(t)$ est donné par

$$\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$$

et $\vec{T}(t)$ indique la direction de la courbe.

Définition 3. La courbure d'une courbe est

$$\kappa = \left| \left| \frac{d\vec{T}}{ds} \right| \right|, \quad \kappa(t) = \frac{\left| |\vec{T}'(t)| \right|}{\left| |\vec{r}'(t)| \right|},$$

où \vec{T} est le vecteur tangent unitaire. La courbure est la norme du taux de variation du vecteur tangent unitaire par rapport à l'abcisse curvilique.

Théorème 3. La courbure de la courbe paramétrée par la fonction vectorielle \vec{r} est

$$\kappa(t) = \frac{||\vec{r}'(t) \times \vec{r}''(t)||}{||\vec{r}'(t)||^3}$$

1.5 Les vecteurs normal et binormal

Définition 4. Si \vec{r}' est lisse, on définit le vecteur normal unitaire principal $\vec{N}(t)$ (ou la normal unitaire) par

$$\vec{N} = \frac{\vec{T}'(t)}{||\vec{T}'(t)||}$$

Définition 5. Le vecteur binormal $\vec{B}(t)$ est définit par

$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) : \vec{B} \perp \vec{T} \perp \vec{N}$$

Définition 6. Le plan normal de C en P est la plan déterminé apr le vecteur normal \vec{N} et le vecteur binormal \vec{B} en un point P d'une courbe C

Définition 7. Le plan osculateur dee C en P est la plan déterminé apr le vecteur tangent unitaire \vec{T} et le vecteur normal \vec{N} en un point P d'une courbe C

2 Les intégrales curvilignes et l'analyse vectorielle dans le plan

2.1 Les champs vectoriels

Définition 8. Soit D un sous-ensemble de \mathbb{R}^2 (resp. \mathbb{R}^3)). Un champ vectoriel dans \mathbb{R}^2 (resp. \mathbb{R}^3)) est une fonction \vec{F} qui, à chaque point $(x,y) \in D$ (resp. $(x,y,z) \in D$)), associe un vecteur à deux (resp. trois) dimensions $\vec{F}(x,y)$ (resp. $\vec{F}(x,y,z)$).

Définition 9. Un champ de gradients, noté ∇f est un champ vectoriel dans \mathbb{R}^n qui associe un vecteur en chaque point où les dérivées partielles sont définies.

$$\nabla f(\vec{x}) = (\partial f/\partial x_1, \partial f/\partial x_2, ..., \partial f/\partial x_n)$$

2.2 Les intégrales curvilignes

Définition 10. Si f est définie sur une courbe lisse et paramétré C, alors l'intégrale curviligne de f le long de C est

$$\int_C f(\vec{x}) ds = \int_a^b f(\vec{x}(t)) \sqrt{\sum_{i=1}^n \left(\frac{dx_i}{dt}\right)^2} dt = \int_a^b f(\vec{r}(t)) ||\vec{r}'(t)|| dt$$

 $o\dot{u} \ \vec{x}(t) = \vec{r}(t)$

Définition 11. L'intégrale curviligne par rapport à l'abcisse curviligne est définit

$$\int_{C} \sum_{i=1}^{n} f(\vec{x}) dx_{i} = \int_{a}^{b} \sum_{i=1}^{n} f(\vec{x}(t)) x'_{i} dt$$

2.3 Les intégrales curvilignes de champs vectoriels

Définition 12. Soit \vec{F} un champ vectoriel continue défini sur une courbe lisse C paramétrée par une fonction vectorielle $\vec{r}(t)$, $a \le t \le b$. Alors l'intégrale curviligne de \vec{F} le long de C est

$$\int_{C} \vec{F} \bullet d\vec{r} = \int_{a}^{b} \vec{F} (\vec{r}(t)) \bullet \vec{r}'(t) dt = \int_{C} \vec{F} \bullet \vec{T} ds$$

$$\int_{C} \vec{F} \bullet d\vec{r} = \int_{C} P dx + Q dy + R dz \quad \text{où } \vec{F} = (P, Q, R)$$

2.4 Le théorème fondamental des intégrales curvilignes

Théorème 4. Le théorème fondamental du calcul différentiel et intégral affirme que

$$\int_{a}^{b} F'(x) dx = F(a) - F(b)$$

où F est continue sur [a, b].

Théorème 5. Soit une courbe lisse C paramétrée par la fonction vectorielle $\vec{r}(t)$, $a \le t \le b$. Soit une fonction différentiable de deux ou trois variables dont le vecteur gradient ∇f est continue sur C. Alors,

$$\int_{C} \nabla f \bullet d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

Définition 13. Un champ vectoriel est dite consess vatif si $\vec{F} = \nabla f$

2.5 L'indépendance du chemin

Définition 14. L'intégrale curviligne $\int_C \vec{F} \bullet d\vec{r}$ est indépendant du chemin si

$$\forall C_1, C_2 \subset D : \int_{C_1} \vec{F} \bullet d\vec{r} = \int_{C_2} \vec{F} \bullet d\vec{r}$$

où \vec{F} est un champ vectoriel continue sur un domaine D. L'intégrale curviligne d'un champ vectoriel conservatif est indépendante du chemin. Sur une courbe fermée telle que $\forall C_1, C_2, C_1 \cup C_2$ fermé $\iff \vec{r}(a) = \vec{r}(b)$, l'intégrale curviligne sur un champ vectoriel conservatif est nulle.

Théorème 6.

$$\int_{C} \vec{F} \bullet d\vec{r} \text{ est ind\'ependante du chemin dans } D \Longleftrightarrow \forall C_{ferm\'e} \subset D, \int_{C} \vec{F} \bullet d\vec{r} = 0$$

Définition 15. Une région ouverte sont telle que

$$\forall p \in D, \exists \delta > 0 : Disque(p, \delta) \subset D$$

Définition 16.

$$\forall p,q \in D, \exists C \subset D \implies p,q \in C$$

Théorème 7. Soit un champ vectoriel \vec{F} continu sur un domaine ouvert et connexe D. Si $\int_C \vec{F} \cdot d\vec{r}$ est indépendante du chemin dans D, alors \vec{F} est un champ vectoriel conservatif sur D, c'est-à-dire qu'il existe une fonction f telle que $\nabla f = \vec{F}$.

Théorème 8. Si $\vec{F} = (P(x,y), Q(x,y))$, un champ vectoriel conservatif tel que PetQ ont des dérivées partielle premières continues sur un domaine D, alors en tout point de D on a

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

La réciproque n'est vrai que pour sur une courbe simple (qui ne se coupe pas).

Théorème 9. Soit un champ vectoriel $\vec{F} = (P,Q)$ défini sur un domnain simplement connexe D. Supposant que PetQ ont des dérivées partielles premières continues et que

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Alors, \vec{F} est conservatif.

2.6 Le théorème de Green

Définition 17. Soit une région D dont la frontière est une courbe C fermée. L'orientation positive est défini comme le parcours en fait dans le sens antihoraire (généralement). L'intérieur de la région D se trouve à gauche lorsque C est parcourue.

Théorème 10. Soit C une courbe plane fermée simple, lisse par morceaux et orientée dans le sens positif, et soit D la région délimitée par C. Si P et Q ont des dérivées partielle premières continues sur un domaine qui contient D, alors

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Le théorème de Green donne alors les formules suivantes pour l'aire de D

$$A = \oint_C x \, dy = \oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx$$

3 Les intégrales de surface et l'analyse vectorielle dans l'espace

3.1 Les surfaces paramétrées et leurs aires

Définition 18. Une surface paramétrée, noté S est l'ensemble de tous les points $(x, y, z) \in \mathbb{R}^3$, tels que

$$x = x(u, v)$$
 $y = y(u, v)$ $z = z(u, v)$ $(u, v) \in D$

où $\vec{r}(u,v) = (x(u,v),y(u,v),z(u,v))$ est une fonction vectorielle aux équations paramétriques de S définie sur la région D.

3.1.1 Les plans tangents

Définition 19. L'équation paramétrique du plan est

$$\vec{r}(u,v) = \vec{r}_0 + u\vec{r}_u' + v\vec{r}_v'$$

ou

$$(\vec{r}'_u \times \vec{r}'_v) \bullet (\overrightarrow{r_p - r_0}) \quad avec \begin{cases} P_0 = \vec{r}(u_0, v_0) \\ \vec{n} = \vec{r}'_u \times \vec{r}'_v \\ r_p - r_0 = (x - x_0, y - y_0, z - z_0) \end{cases}$$

ou \vec{r}'_u et \vec{r}'_v sont les fonctions vectorielles dont les composantes sont respectivement dérivée par rapport à u et v

3.1.2 L'aire d'une surface paramétrée

Définition 20. Si une surface lisse S est paramétrée par la fonction vectorielle

$$\vec{r}(u,v) = (x(u,v), y(u,v), z(u,v))$$

et si S est parcourue une seule fois lorsque (u, v) balaie le domaine D des paramètres, alors l'aire de la surface S est,

$$A(S) = \iint\limits_{\Omega} ||\vec{r}_u \times \vec{r}_v|| \, dA,$$

où

$$\vec{r}_u = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial y}{\partial u}\right) \quad \vec{r}_v = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial y}{\partial v}\right)$$

3.1.3 L'aire des graphes de fonctions de deux variables

Définition 21. La formulaire de l'aire d'une surface d'équation z = f(x, y) est

$$A(S) = \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dA$$

3.2 Les intégrales de surface

3.2.1 Les surfaces paramétrées

Définition 22. Soit S une surface paramétrée par

$$\vec{r}(u,v) = (x(u,v), y(u,v), z(u,v)) \quad (u,v) \in D$$

Si les composantes sont continues et si \vec{r}_u et \vec{r}_v sont non nuls et non parallèles en tout point de D, alors l'intégrale de surface de f sur S est

$$\iint\limits_{S} f(x, y, z) dS = \iint\limits_{D} f(\vec{r}(u, v)) ||\vec{r}_{u} \times \vec{r}_{v}|| dA$$

3.2.2 Les graphes de fonctions de deux variables

Définition 23. Soit une surface S d'équation z = g(x, y) comme une surface d'équations paramétriques

$$x = x$$
 $y = y$ $z = g(x, y)$

Alors l'intégrale de surface est

$$\iint\limits_{S} f(x,y,z) dS = \iint\limits_{D} f(x,y,g(x,y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA$$

3.2.3 Les surfaces orientées

Définition 24. Une surface S qui possède en chaque point (sauf peut-être sur sa frontière) un plan tangent. (Il existe donc deux vecteurs unitaires $n_1 = -n_2$) Une surface S est orientable si on peut choisir un vecteur normal en chaque points (x, y, z) de sorte de façon que \vec{n} varie continûment sur S. Par convention \vec{n} pointe vers les z > 0. (cote positive) La direction normal à une surface de niveau est la direction du gradient.

3.2.4 Les intégrales de surface de champs vectoriels

Définition 25. Soit \vec{F} un champs vectoriel continu défini sur une surface S orientée par un vecteur normal unitaire \vec{n} , alors l'intégrale de surface \vec{F} sur S (flux de \vec{F} à travers S) est

$$\iint\limits_{S} \vec{F} \bullet d\vec{S} = \iint\limits_{S} \vec{F} \bullet \vec{n} \, dS$$

 $O\dot{u} dS = ||\vec{r}_u \times \vec{r}_v|| dA.$

$$\iint\limits_{S} \vec{F} \bullet d\vec{S} = \iint\limits_{D} \vec{F} \bullet (\vec{r}_{u} \times \vec{r}_{v}) \, dA$$

Si la surface S est un graphe z=g(x,y), on peut considérer x et y comme des paramètres. Si $\vec{F}=(P,Q,R)$, alors

$$\iint\limits_{S} \vec{F} \bullet d\vec{S} = \iint\limits_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

3.3 Le rotationnel et la divergence

3.3.1 Le rotationnel

Définition 26. Si $\vec{F} = (P, Q, R)$ est un champ vectoriel sur \mathbb{R}^3 et si toutes dérivées partielles de P, de Q et de R existent, alors le rotationnel de \vec{F} , noté rot \vec{F} , est le champ vectoriel sur \mathbb{R}^3 défini par

$$\operatorname{rot} \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

Autrement,

$$abla imes ec{F} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ P & Q & R \ \end{bmatrix} = \mathrm{rot} \ ec{F}$$

Théorème 11. Soit une fonction f de trois variables possède des dérivées secondes partielles continues, alors

$$rot (\nabla f) = \vec{0}$$

Théorème 12. Si \vec{F} est conservatif, alors rot $\vec{F} = \vec{0}$.

Théorème 13. Si \vec{F} est un champ vectoriel défini sur tout \mathbb{R}^3 dont les fonctions composantes ont des dérivées partielles continues, et si rot $\vec{F} = \vec{0}$, alors \vec{F} est un champ vectoriel conservatif.

3.3.2 La divergence

Définition 27. Si $\vec{F} = (P, Q, R)$ est un champ vectoriel sur \mathbb{R}^3 et si $\partial P/\partial x, \partial Q/\partial y, \partial R/\partial z$ existent, alors la divergence de \vec{F} est la fonction de trois variables définie par

$$\operatorname{div} \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Autrement,

$$\operatorname{div}\,\vec{F} = \nabla \bullet \vec{F}$$

Théorème 14. Si $\vec{F} = (P, Q, R)$ est un champ vectoriel sur \mathbb{R}^3 et si P, Q, R ont des dérivées partielles secondes continues, alors

div rot
$$\vec{F} = 0$$

3.3.3 Le laplacien

Définition 28. Si f est une fonction de trois variable, le laplacien de f est

$$\operatorname{div} (\nabla f) = \nabla \bullet (\nabla f) = \nabla^2 = \nabla \bullet \nabla = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

L'équation de Laplace est

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

 $Si \vec{F} = (P, Q, R)$ est un champ vectoriel, alors le laplacien de \vec{F}

$$\nabla^2 \vec{F} = (\nabla^2 P, \nabla^2 Q, \nabla^2 R)$$

3.3.4 Les formes vectorielles du théorème de Green

Théorème 15. En considèrant $\vec{F} = (P, Q, 0)$, alors la formule du théorème d Green s'exprime sous forme vectorielle

$$\oint_C \vec{F} \bullet d\vec{r} = \iint_D (\text{rot } \vec{F}) \bullet \vec{k} \, dA$$

Aussi,

$$\oint_C \vec{F} \bullet d\vec{r} = \iint_D \operatorname{div} F(x, y) \, dA$$

3.4 Le théorème de Stoke

Théorème 16 (Stokes). Soit S, une surface lisse par morceaux orientée et bornée par un courbe frontière C lisse par morceaux, fermée et simple, et orientée positivement par rapport à S. Soit un champ vectoriel \vec{F} dont les composantes ont des dérivées partielles continues sur une région ouverte dans \mathbb{R}^3 qui contient S. Alors,

$$\oint_C \vec{F} \bullet d\vec{r} = \iint_S \mathrm{rot} \ \vec{F} \bullet d\vec{S}$$

La courbe frontière est aussi noté ∂S , alors,

$$\iint\limits_{S} \operatorname{rot} \vec{F} \bullet d\vec{S} \oint_{\partial S} \vec{F} \bullet d\vec{r}$$

3.5 Le théorème de flux-divergence

Théorème 17 (Flux-divergence). Soit une région solide simple E et S la surface frontière de E, orientés positivement (vers l'extérieur). Soit un champ vectoriel \vec{F} dont les fonctions composantes ont des dérivées partielles continues sur une région ouverte qui contient E. Alors,

$$\iint\limits_{S} \vec{F} \bullet d\vec{S} = \iiint\limits_{E} \text{div } \vec{F} \, dV$$

Index

A	L
Abscisse curviligne	Laplacien
Aire	Longueur d'une courbe paramétrée 3
С	N
Champ conservatif	Normal unitaire
Champ de gradients 5	TOTHER direction
Champ vectoriel	0
Champs conservatif6	Orientation positive
Chemin6	Officiation positive, 9
Courbe fermée6	P
Courbe simple	Plan normal4
Courbure	Plan osculateur
D	
Divergence	R
Domain simplement connexe6	Rotationnel
_	Règles de dérivations
E	Région connexe6
Equation de Laplace9	Région ouverte 6
Equations paramétrique du plan	
Equations paramétriques 7	S
F	Surface orientable 8
Flux de \vec{F} à travers S	Surface orientée
Flux-divergence	Surface paramétrée
_	т
G	Théorème fondamental du calcul différentiel et
Gradient	intégral5
1	Théorème de Green
Indépendance du chemin6	Théorème de Stoke9
Intégrale curviligne	
Intégrale curviligne de champs vectoriels le long d'une	V
courbe5	Vecteur binormal4
Intégrale curviligne par rapport aux composantes 5	Vecteur normal8
Intégrale curviligne par rapport à l'abcisse curviligne	Vecteur normal unitaire principal4
5	Vecteur tangent unitaire
Intégrale de surface	Vecteur unitaire 8