RGPVONLINE.COM

MCA-404(O)

M. C. A. (Fourth Semester) EXAMINATION, Nov.-Dec., 2007

(Oid Course)

THEORY OF COMPUTATION

[MCA-404(O)]

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 40

Note: Attempt any five questions. All questions carry equa marks.

- (a) Consider the Language S* where S = {aa aba baa}
 Show that the words aabaa, baaabaaa and baaaaababaaaa are all in this language. Can any word in this language be interpreted as a string of elements from S in two different ways? Can any word in this language have an odd total number of a's?
 - (b) Construct Dfa's for the following questions: 16
 - (i) Machine that accepts all strings that have an ever length that is not divisible by 6.
 - (ii) Machine that accepts only those words that begir or end with a double letter.

P. T. D.

2. (a) Consider the following generalized transition graph:

Answer the following questions:

- (i) Minimize the states in the DFA.
- (ii) What is the language accepted by this graph?
- (b) Construct a Moore machine equivalent to the Mealy machine M given in table:

Present State	Next State			
	a = 0		a = 1	
	State	Output	State	Output
→ ·q ₁	q_3	0	q_2	0
q_2	q_1	1	q_4	0
q_3	q_2	. 1	q_1	1
q_4	q_4	1	q_3	0

- 3. (a) Find a Regular grammar that generates the language: 5 $L = \{w \in \{a, b\}^*; n_a(w) + 3n_b(w) \text{ is even } \}$
 - (b) Prove or disprove the following statement:
 If L₁ and L₂ are non-regular language, then L₁ U L₂ is also non-regular.

7

5

- (c) State and prove pumping lemma for Context-free language. RGPVONLINE.COM 10
- 4. (a) Construct an *npda* that accepts the language generated by the grammar:

(b) What language is accepted by the npda?

$$\mathbf{M} = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, z\}, \delta, q_0, z \{q_2\})$$
 with transitions :

$$\delta(q_0, a, z) = \{(q_1, a), (q_2, \lambda)\},\$$

$$\delta(q_1, b, a) = \{(q_1, b)\},\$$

$$\delta(q_1, b, b) = \{(q_1, b)\},\$$

$$\delta(q_1, a, b) = \{(q_2, \lambda)\}$$

- (c) Prove that family of Context-free language is not closed under Intersection and Complementation. 6
- 5. (a) Suppose L is accepted by a TMT. Describe how you could construct a non-deterministic TM to accept each of the following languages?
 - (i) The set of all prefixes of element of L.
 - (ii) The set of all suffixes of elements of L.
 - (iii) The set of all substrings of elements of L.
 - (b) We do not define λ-transition for a TM, why not?
 What feature of a TM make it unnecessary or inappropriate to talk about λ-transitions?
- 6. (a) Convert the grammar:

$$S \rightarrow AB b \mid a$$

 $A \rightarrow aa A \mid B$
 $B \rightarrow b A b$

into Greibach normal form.

- (b) Show that the following two Grammars are equivalent: 5

 Grammar 1 Grammar 2 $S \rightarrow ab AB \mid ba$ $S \rightarrow ab A a A \mid ab Abb \mid ba$ $A \rightarrow aaa$ $A \rightarrow aaa$ $B \rightarrow a A \mid bb$
- (c) Prove that there exists a recursively enumerable language whose complement is not recursively enumerable.
- 7. (a) Model the following problem through petrinets: 12
 - (i) Semaphore for synchronization
 - (ii) Simplex communication protocol
 - (b) What do you understand by the halting problem? Explain with the help of an example the blank-tape halting problem.
- 8. Write short notes on any three of the following: 20
 - i) Linear Bounded Automata
 - (ii) Russell's Paradox
 - (iii) Chomskian Hierarchy
 - (iv) CNF
 - (v) Post's correspondence problems

RGPVONLINE.COM