## Мультимоделирование SVM

#### Сергей Иванычев, Александр Адуенко

Московский физико-технический институт Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

### Цель исследования

Отобрать оптимальный набор ядер и построить на них композицию SVM. Описать отличия множеств опорных объектов, генерируемые разными ядрами.

#### Проблемы

Существующие методы комбинирования алгоритмов плохо работают с малым количеством сильных классификаторов Различные ядра могут в реальности быть "похожими" и давать схожие результаты, их нецелесообразно использовать в композиции.

#### Предположение

Можно использовать вектора отступов как новые объекты и построить классификатор над ними. Схожесть ядер можно описать с помощью новой метрики, основанной на множествах опорных объектов.

#### Литература

- Rauf Izmailov, Vladimir Vapnik and Akshay Vashist. Multidimensional Splines with Infinite Number of Knots as SVM Kernels. 2013
- 2 Alex J Smola et al. A Tutorial on Support Vector Regression. 2004
- 3 Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. 1995

### Постановка задачи

 $X^I = (\mathbf{x}_i, y_i)_{i=1}^I$  — обучающая выборка,  $\mathcal{K} = \{K_i\}_{j=1}^m$  — множество ядер.

#### Определение

**Модель** с порядковым номером  $s-\mathsf{SVM}$  с ядром  $\mathcal{K}_s \in \mathcal{K}$ 

Совокупность моделей генерирует для обучающей выборки матрицу  $M \in \mathbb{R}^{I \times m}$ , где (i,j)-й элемент — отступ i-го объекта на j-й модели. M — новая матрица "объект-признак" Пусть  $\mathcal{A}$  — множество алгоритмов вида

$$\mathcal{A} = \{a(\vec{x}) = g(\vec{x}, \theta) | \theta \in \Theta\} \ g : \mathbb{R}^m \to Y$$

#### Постановка задачи

#### Определение

Мультимодель — пара  $(g,\mathcal{K}')$ , где  $\mathcal{K}'\subset\mathcal{K}$ 

Тогда перед нами стоит задача отбора ядер из  $\mathcal{K}$  (то есть задача отбора признаков из M) и а также выбор оптимального алгоритма для аггрегации множества моделей в мультимодель с лучшим качеством классификации и регрессии.

$$L(y, g(M, \theta)) \to \min_{\mathcal{A}, \Theta}$$

# Цели эксперимента

Необходимо найти способ определять схожие модели, то есть дающие схожие результаты, чтобы не включать таковые в мультимодель.

#### Гипотеза

Если множества опорных объектов пары классификаторов похожи, то и векторы отступов похожи.

#### Цель эксперимента

Сформулировать понятие "похожести" веторов отступов и различных моделей и проверить гипотезу.

## Эксперимент. Ядра и данные.

В качестве исходных данных взяты датасеты German Credits, Wine и Heart disease из UCI. Ядра:

- Линейное
- Полиномиальное (степени 3, 4, 5)
- RBF-ядро ( $\gamma \in \{0.0001, 0.001, 0.01, 0.1, 1\}$ )
- INK-spline ядро

## Эксперимент. Метрики

Расстояние между ядрами представим в виде нормализованной симметрической разности:

$$\rho_{X'}(K_i, K_j) = \frac{\# [SV_i \triangle SV_j]}{\# [SV_i \cup SV_j]}$$

В качестве меры сходства классификаторов возьмем отнормированную корреляцию Пирсона векторов отступов.

$$\rho_{X^I}(M_i,M_j) = 1 - \operatorname{corr}(M_i,M_j)$$

Проанализируем эволюцию распределения пар расстояний в зависимости от параметра регуляризации.

## Эксперимент. German credit



Рис.: German credit

# Эксперимент. German credit

Таблица: German info

|            | $\langle \#SV \rangle$ | $\langle  ho(M_i, M_j) \rangle$ | $\langle \rho(K_i, K_j) \rangle$ | Correlation |
|------------|------------------------|---------------------------------|----------------------------------|-------------|
| C = 1.0    | 603.4                  | 0.184                           | 0.094                            | 0.376       |
| C = 10.0   | 603.6                  | 0.187                           | 0.097                            | 0.537       |
| C = 100.0  | 594.7                  | 0.134                           | 0.131                            | 0.556       |
| C = 500.0  | 584.3                  | 0.133                           | 0.161                            | 0.717       |
| C = 1000.0 | 581.6                  | 0.120                           | 0.172                            | 0.870       |
| C = 2500.0 | 577.9                  | 0.126                           | 0.189                            | 0.918       |

### Эксперимент. Wine



Рис.: Wine

# Эксперимент. Wine

Таблица: Wine info

|            | $\langle \#SV \rangle$ | $\langle \rho(M_i, M_j) \rangle$ | $\langle \rho(K_i,K_j) \rangle$ | Correlation |
|------------|------------------------|----------------------------------|---------------------------------|-------------|
| C = 1.0    | 3284.1                 | 0.220                            | 0.144                           | 0.600       |
| C = 10.0   | 3284.9                 | 0.130                            | 0.121                           | 0.687       |
| C = 100.0  | 3275.0                 | 0.091                            | 0.091                           | 0.270       |
| C = 500.0  | 3252.6                 | 0.110                            | 0.105                           | 0.591       |
| C = 1000.0 | 3235.2                 | 0.124                            | 0.118                           | 0.694       |
| C = 2500.0 | 3208.6                 | 0.127                            | 0.133                           | 0.795       |

# Эксперимент. Heart disease



Рис.: Heart disease

# Эксперимент. Heart disease

Таблица: Heart info

|            | $\langle \#SV \rangle$ | $\langle \rho(M_i, M_j) \rangle$ | $\langle \rho(K_i,K_j) \rangle$ | Correlation |
|------------|------------------------|----------------------------------|---------------------------------|-------------|
| C = 1.0    | 272.0                  | 0.003                            | 0.027                           | 0.608       |
| C = 10.0   | 260.8                  | 0.020                            | 0.088                           | 0.929       |
| C = 100.0  | 249.1                  | 0.063                            | 0.152                           | 0.927       |
| C = 500.0  | 231.9                  | 0.135                            | 0.238                           | 0.940       |
| C = 1000.0 | 223.1                  | 0.157                            | 0.268                           | 0.953       |
| C = 2500.0 | 211.4                  | 0.166                            | 0.297                           | 0.962       |

## Результаты

- С ростом константы регуляризации расстояние между ядрами и расстояние между их отступами лучше коррелируют между собой.
- При высоких параметре регуляризации коэффициент корреляции Пирсона достигает более 0.8, то есть расстояния практически линейно зависят друг от друга.
- Вектора средних ядерных и отступных расстояний кореллируют по-разному на различных датасетах (на Wine и Heart корелляции Пирсона 0.85 и 0.99 соответственно, на German -0.92).

#### Вывод

Мы показали, что на примере довольно разных задач выполняется поставленная гипотеза.

#### Результат

Если множества опорных объектов пары классификаторов похожи, то и векторы отступов похожи