Exercise 11.1

Determine the irreducible representations of \mathscr{T}_d to which f-orbitals belong.

Solution 11.1

Firstly, the information of seven (un-normalized) f-orbitals is listed below and they are marked in my symbols.

angular function	f-orbital symfol	my symbol
$\sin\theta\cos\phi(5\sin^2\theta\cos^2\phi - 3)$	$f_{x(5x^2-3r^2)}$ or f_{x^3}	f_1
$\sin\theta\sin\phi(5\sin^2\theta\sin^2\phi-3)$	$f_{y(5y^2-3r^2)}$ or f_{y^3}	f_2
$5\cos^3\theta - 3\cos\theta$	$f_{z(5z^2-3r^2)}$ or f_{z^3}	f_3
$\sin\theta\cos\phi(\cos^2\theta-\sin^2\theta\sin^2\phi)$	$f_{x(z^2-y^2)}$	f_4
$\sin\theta\sin\phi(\cos^2\theta-\sin^2\theta\cos^2\phi)$	$f_{y(z^2-x^2)}$	f_5
$\sin^2 \theta \cos \phi \cos 2\phi$	$f_{z(x^2-y^2)}$	f_6
$\sin^2\theta\cos\phi\sin2\phi$	\mathbf{f}_{xyz}	f_7

Then, the definition of all operation R is demonstrated below, and they are classified according to their classes. Note that R(x', y', z') means that x, y, z are converted to x', y', z', respectively.

• class EThere is only one element, i.e. identical operation E, which is E(x,y,z).

• class C_3

There are 8 elements, whose information is listed below.

$C_{3xyz}(y,z,x)$	rotate $\frac{2\pi}{3}$ clockwise around $i+j+k$
$C_{3\bar{x}\bar{y}z}^{-1}(z,x,y)$	rotate $\frac{4\pi}{3}$ clockwise around $i+j+k$
$C_{3\bar{x}\bar{y}z}(y,\bar{z},\bar{x})$	rotate $rac{2\pi}{3}$ clockwise around $-i-j+k$
$C^{-1}_{3\bar{x}\bar{y}z}(\bar{z},x,\bar{y})$	rotate $\frac{4\pi}{3}$ clockwise around $-i-j+k$
$C_{3\bar{x}y\bar{z}}(\bar{y},\bar{z},x)$	rotate $\frac{2\pi}{3}$ clockwise around $-i+j-k$
$C^{-1}_{3\bar{x}y\bar{z}}(z,\bar{x},\bar{y})$	rotate $\frac{4\pi}{3}$ clockwise around $-i+j-k$
$C_{3xar{y}ar{z}}(ar{y},z,ar{x})$	rotate $\frac{2\pi}{3}$ clockwise around $i-j-k$
$C_{3x\bar{y}\bar{z}}^{-1}(\bar{z},\bar{x},y)$	rotate $\frac{4\pi}{3}$ clockwise around $i-j-k$

• class C_2

There are 3 elements, whose information is listed below.

$C_{2x}(x,\bar{y},\bar{z})$	rotate π clockwise around x -axis
$C_{2y}(\bar{x},y,\bar{z})$	rotate π clockwise around y -axis
$C_{2z}(\bar{x},\bar{y},z)$	rotate π clockwise around z -axis

• class S_4

There are 6 elements, whose information is listed below.

$S_{4x}(\bar{x},\bar{z},y)$	rotate $\frac{\pi}{2}$ clockwise around x-axis and then perform horizontal mirror reflection
$S^3_{4x}(\bar x,z,\bar y)$	rotate $\frac{3\pi}{2}$ clockwise around x-axis and then perform horizontal mirror reflection
$S_{4y}(z,\bar{y},\bar{x})$	rotate $\frac{\pi}{2}$ clockwise around y-axis and then perform horizontal mirror reflection
$S^3_{4y}(\bar{z},\bar{y},x)$	rotate $\frac{3\pi}{2}$ clockwise around y-axis and then perform horizontal mirror reflection
$S_{4z}(\bar{y},x,\bar{z})$	rotate $\frac{\pi}{2}$ clockwise around z-axis and then perform horizontal mirror reflection
$S^3_{4z}(y,\bar x,\bar z)$	rotate $\frac{3\pi}{2}$ clockwise around z-axis and then perform horizontal mirror reflection

• class $\sigma_{\rm d}$

There are 6 elements, whose information is listed below.

,	
$\sigma_{\mathrm{d},yz}(x,z,y)$	perform mirror reflection about the $y-z=0$ plane
$\sigma_{\mathrm{d},-yz}(x,\bar{z},\bar{y})$	perform mirror reflection about the $y + z = 0$ plane
$\sigma_{\mathrm{d},xz}(z,y,x)$	perform mirror reflection about the $x-z=0$ plane
$\sigma_{\mathrm{d},-xz}(\bar{z},y,\bar{x})$	perform mirror reflection about the $x + z = 0$ plane
$\sigma_{\mathrm{d},xy}(y,x,z)$	perform mirror reflection about the $x - y = 0$ plane
$\sigma_{\mathrm{d},-xy}(\bar{y},\bar{x},z)$	perform mirror reflection about the $x + y = 0$ plane
$\sigma_{\mathrm{d},xz}(z,y,x)$ $\sigma_{\mathrm{d},-xz}(\bar{z},y,\bar{x})$ $\sigma_{\mathrm{d},xy}(y,x,z)$	perform mirror reflection about the $x-z=0$ plane perform mirror reflection about the $x+z=0$ plane perform mirror reflection about the $x-y=0$ plane

Next, the result of the transformation of these orbitals under O_R is listed below.

element	E	C_{3xyz}	C_{3xyz}^{-1}	$C_{3\bar{x}\bar{y}z}$	$C_{3\bar{x}\bar{y}z}^{-1}$	$C_{3\bar{x}y\bar{z}}$	$C_{3\bar{x}y\bar{z}}^{-1}$	$C_{3x\bar{y}\bar{z}}$	$C_{3x\bar{y}\bar{z}}^{-1}$	C_{2x}	C_{2y}	C_{2z}
f_1	f_1	f_2	f_3	f_2	$-f_3$	$-f_3$	$-f_2$	f_3	$-f_2$	f_1	$-f_1$	$-f_1$
f_4	f_4	$-f_5$	$-f_6$	$-f_5$	f_6	f_5	$-f_6$	f_5	f_6	f_4	$-f_4$	$-f_4$
f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7
element	S_{4x}	S_{4x}^{3}	S_{4y}	S_{4y}^3	S_{4z}	S_{4z}^{3}	$\sigma_{\mathrm{d},yz}$	$\sigma_{\mathrm{d},-yz}$	$\sigma_{\mathrm{d},xz}$	$\sigma_{\mathrm{d},-xz}$	$\sigma_{\mathrm{d},xy}$	$\sigma_{\mathrm{d},-xy}$
f_1	$-f_1$	$-f_1$	f_3	$-f_3$	$-f_2$	f_2	f_1	f_1	f_3	$-f_3$	f_2	$-f_2$
f_4	f_4	f_4	f_6	$-f_6$	$-f_5$	f_5	$-f_4$	$-f_4$	f_6	$-f_6$	f_5	$-f_5$
f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7

Here, we check the character table of the point group \mathcal{I}_{d} ,

$\mathcal{T}_{ m d}$	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_{ m d}$		
$\overline{A_1}$	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

and we find the character below for Γ^{rmhyb} for the \mathcal{T}_d point group.

$$\frac{\mathcal{J}_{d}}{\chi^{\text{hyb}}(C_{i})} \frac{E}{7} \frac{8C_{3}}{1} \frac{3C_{2}}{-1} \frac{6S_{4}}{1} \frac{6\sigma_{d}}{1}$$

We can calculate the reduction of representation Γ^{hyb}

$$\begin{aligned} a_1 &= \frac{1}{24}[1 \times 7 \times 1 + 8 \times 1 \times 1 + 3 \times (-1) \times 1 + 6 \times 1 \times 1 + 6 \times 1 \times 1] = 1, \\ a_2 &= \frac{1}{24}[1 \times 7 \times 1 + 8 \times 1 \times 1 + 3 \times (-1) \times 1 + 6 \times 1 \times (-1) + 6 \times 1 \times (-1)] = 0, \\ e &= \frac{1}{24}[1 \times 7 \times 2 + 8 \times 1 \times (-1) + 3 \times (-1) \times 2 + 6 \times 1 \times 0 + 6 \times 1 \times 0] = 0, \\ t_1 &= \frac{1}{24}[1 \times 7 \times 3 + 8 \times 1 \times 0 + 3 \times (-1) \times (-1) + 6 \times 1 \times 1 + 6 \times 1 \times (-1)] = 1, \\ t_2 &= \frac{1}{24}[1 \times 7 \times 3 + 8 \times 1 \times 0 + 3 \times (-1) \times (-1) + 6 \times 1 \times (-1) + 6 \times 1 \times 1] = 1, \end{aligned}$$

and we obtain

$$\Gamma^{\text{hyb}} = \Gamma^{A_1} \oplus \Gamma^{T_1} \oplus \Gamma^{T_2}. \tag{11.1}$$

For simplification, we summarize the operations of the same classes.

$$\begin{split} P^{A_1}f_1 &= (1\times O_E + 1\times \sum_{k=1}^8 O_{C_{3k}} + 1\times \sum_{k=1}^3 O_{C_{2k}} + 1\times \sum_{k=1}^6 O_{S_{4k}} + 1\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^{A_2}f_1 &= (1\times O_E + 1\times \sum_{k=1}^8 O_{C_{3k}} + 1\times \sum_{k=1}^3 O_{C_{2k}} + (-1)\times \sum_{k=1}^6 O_{S_{4k}} + (-1)\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^Ef_1 &= (2\times O_E + (-1)\times \sum_{k=1}^8 O_{C_{3k}} + 2\times \sum_{k=1}^3 O_{C_{2k}} + 0\times \sum_{k=1}^6 O_{S_{4k}} + 0\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^{T_1}f_1 &= (3\times O_E + 0\times \sum_{k=1}^8 O_{C_{3k}} + (-1)\times \sum_{k=1}^3 O_{C_{2k}} + 1\times \sum_{k=1}^6 O_{S_{4k}} + (-1)\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^{T_2}f_1 &= (3\times O_E + 0\times \sum_{k=1}^8 O_{C_{3k}} + (-1)\times \sum_{k=1}^3 O_{C_{2k}} + (-1)\times \sum_{k=1}^6 O_{S_{4k}} + 1\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 8f_1. \end{split}$$

Thus, f_1 belongs to T_2 , which is a three-dimentional irreducible representation. With

$$C_{3xyz}f_1 = f_2, \quad C_{3xyz}^{-1}f_1 = f_3,$$

we conclude that f_1 , f_2 and f_3 belong to T_2 . Similarly, we note

$$P^{A_1}f_4 = 0$$
, $P^{A_2}f_4 = 0$, $P^Ef_4 = 0$, $P^{T_1}f_4 = 8f_4$, $P^{T_2}f_4 = 0$.

So f_4 belongs to T_1 . Besides, with

$$C_{3xyz}f_4 = -f_5, \quad C_{3xyz}^{-1}f_4 = -f_6,$$

we can also conclude that f_4 , f_5 and f_6 belong to the same three-dimentional irreducible representation T_1 .

$$P^{A_1}f_7 = 24f_7$$
, $P^{A_2}f_7 = 0$, $P^Ef_7 = 0$, $P^{T_1}f_7 = 0$, $P^{T_2}f_7 = 0$.

Thus, we conclude that f_7 belongs to the one-dimentional irreducible representation A_1 . In conclusion, we find

- $f_1 \equiv f_{x(5x^2-3r^2)}$, $f_2 \equiv f_{y(5y^2-3r^2)}$ and $f_3 \equiv f_{z(5z^2-3r^2)}$ belong to the three-dimentional irreducible representation T_2 ,
- $f_4 \equiv f_{x(z^2-y^2)}$, $f_5 \equiv f_{y(z^2-x^2)}$ and $f_6 \equiv f_{z(x^2-y^2)}$ belong to the three-dimentional irreducible representation T_1 ,
- $f_7 \equiv f_{xyz}$ belongs to the one-dimentional irreducible representation A_1 .

Exercise 11.2

Show that for a molecule of octahedral symmetry the σ -bonding hybrid orbitals on the central atom are composed of six atomic orbitals: s, p_x , p_y , p_z , d_{z^2} and $d_{x^2-y^2}$.

Solution 11.2

2222

$-\mathscr{O}_{\mathrm{h}}$	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$	i	$8S_6$	$3\sigma_h$	$6S_4$	$6\sigma_d$	
$\overline{A_{1g}}$	1	1	1	1	1	1	1	1	1	1	$x^2 + y^2 + z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	
E_g	2	-1	2	0	0	2	-1	2	0	0	$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1g}	3	0	-1	1	-1	3	0	-1	1	-1	(R_x, R_y, R_z)
T_{2g}	3	0	-1	-1	1	3	0	-1	-1	1	(xy,xz,yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	
$4 A_{2u}$	1	1	1	-1	-1	-1	-1	-1	1	1	
E_u	2	-1	2	0	0	-2	1	-2	0	0	
T_{1u}	3	0	-1	1	-1	-3	0	1	-1	1	(x,y,z)
T_{2u}	3	0	-1	-1	1	-3	0	1	1	-1	

Exercise 11 3

Determine what type of π -bonding hybrid orbitals can be formed for the square planar AB₄ molecule which belongs to the \mathcal{D}_{4h} point group.

Solution 11.3

33333

$\overline{\mathscr{D}_{4\mathrm{h}}}$	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
$\overline{A_{1g}}$	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2; z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R_z	
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1		$x^{2} - y^{2}$
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_g	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	z	
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_u	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

Exercise 11.4

Show that for the square planar AB₄ molecule a possible set of four σ -hybrid orbitals on A is composed of the atomic orbitals: s, $d_{x^2-y^2}$, p_x , and p_y . Find explicit expressions for the four hybrid orbitals.

Solution 11.4

44444