POLARIZATION PLATE AND LIQUID CRYSTAL DISPLAY DEVICE

Patent number:

JP4371903

Publication date:

1992-12-24

Inventor:

UMEMOTO SEIJI; YAMAMOTO SUGURU; NAKANO

SHUSAKU; FUJIMURA YASUO

Applicant:

NITTO DENKO CORP

Classification:

- international:

G02B5/30; G02F1/1335; G02B5/30; G02F1/13; (IPC1-

7): G02B5/30; G02F1/1335

- european:

Application number: JP19910174616 19910619
Priority number(s): JP19910174616 19910619

Report a data error here

Abstract of JP4371903

PURPOSE: To obtain the polarization plate which is hardly changed in polarization performance with inclination and to obtain a wide visual field angle by using a sealing film having the double refractiveness of a specific phase difference. CONSTITUTION: The sealing film 1 exhibiting 200 to 300nm double refractiveness of the phase difference is adhered to a polarizer 3. The phase advance axis of the sealing film 1 is disposed in parallel with the absorption axis of the polarizer 3. The phase difference is based on the product of the difference in the refractive index between the phase delay axis direction and phase advance axis direction of the sealing film 1 and the thickness of the sealing film 1. The sealing film 1 having the phase difference is obtd. as a double refractive film subjected to a uniaxial, biaxial or other axial stretch treatment. Namely, the phenomenon that the phase advance axis of even the sealing film 1 having the double refractiveness is changed by the angle of inclination is utilized and a combination that this change offsets the change in the transmission axis of the polarizer 3 is adopted to compensate the deviation in the transmission axis of the polarizer 3 by the angle of inclination.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平4-371903

(43)公開日 平成4年(1992)12月24日

(51	M	nt	CI	5
1UI	/ 1	114	u	

識別記号

庁内整理番号

技術表示箇所

G 0 2 B 5/30

7724-2K

G02F 1/1335

510

7724-2K

審査請求 未請求 請求項の数3(全 4 頁)

(21)出顧番号	特願平3-174616	-2	(71)出願人 000003964
			日東電工株式会社
(22) 出顧日	平成3年(1991)6月19日		大阪府茨木市下穂積1丁目1番2号
			(72)発明者 梅本 清司
			大阪府茨木市下穂積1丁目1番2号 日東
			電工株式会社内
			(72)発明者 山本 英
			大阪府茨木市下穂積1丁目1番2号 日東
			電工株式会社内
			(72) 発明者 中野 秀作
			大阪府茨木市下穂積1丁目1番2号 日東
			電工株式会社内
			(74)代理人 弁理士 藤本 勉
•			最終頁に続く
			郑林.其心能 、

(54) 【発明の名称】 偏光板及び液晶表示装置

(57)【要約】

【目的】方位角による偏光子の透過軸のズレが補償されて、傾斜により偏向性能が変化しにくい偏光板、及び視野角の広い液晶表示装置を得ること。

【構成】偏光子(3)に位相差が200~320mの複 屈折性を示す封止フィルム(1)を接着してなり、その 封止フィルムの進相軸が偏光子の吸収軸に対して平行に 配置されてなる偏光板(4)、及びその偏光板を液晶セルの少なくとも片側に配置してなる液晶表示装置。

I

【特許請求の範囲】

偏光子に、位相差が200~320nmの 【請求項1】 復屈折性を示す封止フィルムを接着してなり、その封止 フィルムの進相軸が偏光子の吸収軸に対して平行に配置 されていることを特徴とする偏光板。

【請求項2】 封止フィルムが、その複屈折性における 遅相軸方向、進相軸方向、及び厚さ方向の屈折率をそれ ぞれni、ny、niとした場合に、式:Q=(ni n_1) / $(n_1 - n_2)$ で算出されるQ値が $0.1 \sim 0.9$ のものである請求項1に記載の偏光板。

【請求項3】 請求項1に配載の偏光板を、液晶セルの 少なくとも片側に配置してなることを特徴とする液晶表 示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、方位角による透過軸の ズレを補償した偏光板、及びそれを用いた視野角の広さ に優れる液晶表示装置に関する。

[0002]

【従来の技術】画面の大型化や表示の高密度化など性能 20 アップが著しい液晶ディスプレイにあって、視野角の狭 さが依然として懸案のままであり、視野角の広い液晶表 示装置を実現する偏光板が求められて久しい。従来、偏 光板としては、二軸延伸トリアセチルセルロースフィル ム等からなる等方性の、すなわち複屈折性を殆ど示さな い封止フィルムを偏光子に接着したものが知られてい た。封止フィルムは、水分の侵入等を防止して偏光子の 耐久性を向上させるためのものである。しかしながら前 記したとおり、得られる液晶表示装置の視野角が狭い間 題点があつた。

[0003]

【発明が解決しようとする課題】本発明は、視野角の広 い液晶表示装置を得ることができる偏光板の開発を課題 とする。前記に鑑みて本発明者らは鋭意研究する中、偏 光板の透過軸が視野角、特にその方位角によって変化 し、これが液晶表示装置の視野角を狭くする原因である ことを究明し、かかる問題を克服すべく更に研究を重ね て本発明をなすに至った。

[0004]

【課題を解決するための手段】本発明は、偏光子に、位 40 相差が200~320㎜の複屈折性を示す封止フィルム を接着してなり、その封止フィルムの進相軸が偏光子の 吸収軸に対して平行に配置されていることを特徴とする 偏光板、及びその偏光板を、液晶セルの少なくとも片側 に配置してなることを特徴とする液晶表示装置を提供す るものである。

[0005]

【作用】上記の構成により、方位角(傾斜角度)による 偏光子の透過軸の変化を、封止フィルムによる位相差で 補償することができる。すなわち、複屈折性の封止フィ 50 においてはその透過軸が傾斜軸(垂直立面からの傾き角

ルムにおいてもその進相軸が方位角によって変化するこ とを利用して、その変化が偏光子の透過軸の変化を相殺 する組合せとし、方位角による偏光子の透過軸のズレを 補償する。

[0006]

【実施例】図1に本発明の偏光板を例示した。1が封止 フィルム、2が接着剤層、3が偏光子である。封止フィ ルム1には、200~320㎜の位相差を有する複屈折 性のものが用いられる。かかる位相差は、封止フィルム 10 の複屈折性における遅相軸方向と進相軸方向との屈折率 の差 (Δn) と、封止フィルムの厚さ (d) との積 $(\Delta$ n·d) に基づく。

【0007】位相差を有する封止フィルムは、例えば高 分子フィルムを一軸、ないし二軸等で延伸処理してなる 複屈折性フィルムなどとして得ることができる。また、 複屈折性フィルムの積層体などとしても得ることができ る。複屈折性フィルムを形成する高分子の種類について は特に限定はなく、透明性に優れるものが好ましい。一 般に用いられる高分子としては、例えばポリカーポネー ト、トリアセチルセルロース、ポリメチルメタクリレー ト、ポリエチレンテレフタレート、ポリアリレート、ポ リイミドなどがあげられる。封止フィルムを種々のフィ ルムの積層体として形成する場合、その積層数について 特に限定はないが、反射損の抑制等による透明性の点よ り少ないほど好ましい。

【0008】本発明において好ましく用いうる封止フィ ルムは、その復屈折性における遅相軸方向、進相軸方 向、及び厚さ方向の屈折率をそれぞれni、ni、niと した場合に、式: Q= (n₁-n₁) / (n₁-n₂) で算 30 出されるQ値(以下同じ)が、0.1~0.9、就中0. $1 \sim 0.5$ のものである。

【0009】かかるQ値を示す封止フィルム、就中、複 屈折性フィルムの形成は、例えばポリカーボネートの如 く正の複屈折性を示す高分子、すなわち分子の配向方向 に遅相軸が表れるものを厚さ方向に電界を印加して配向 を制御しつつ硬化させ、そのフィルムを延伸処理する方 法などにより行うことができる。

【0010】ちなみに前記において、正の復屈折性を示 す高分子からなるフィルムでは完全一軸配向の場合、n ,とn.が等しくなってQ値が1となり、二軸配向の場合 にはQ値が1より大きくなる。一方、ポリスチレンの如 く負の複屈折性を示す高分子からなるフィルム、すなわ ち分子の配向方向に進相軸が表れるものでは完全一軸配 向の場合、n.とn.が等しくなってQ値が0となり、二 軸配向の場合にはQ値が負(マイナス)となる。そのた め、いずれの場合にも単層のフィルムとしては、視認性 に優れる視野角の拡大に有効な補償効果を発現させにく

【0011】すなわち、クロスニコルに配置した偏光子

度)に対して垂直な方向に変化するが、前記した正の複 屈折系の完全一軸配向フィルムではその進相軸の変化が 偏光子の吸収軸の変化と逆方向となって複屈折による補 償効果が現れない。また、正の復屈折系の二軸配向フィ ルムではその復屈折が逆効果となり、やはり補償効果が 現れない。他方、負の複屈折系の完全一軸配向フィルム ではその進相軸の変化と偏光子の吸収軸の変化がほぼ一 致し、位相差による補償効果が発現しにくい。また負の 複屈折系の二軸配向フィルムでは、その進相軸の変化が **偏光子の吸収軸の変化より大きくなり、その複屈折が逆** 10

【0012】本発明においては適宜な偏光子を用いるこ とができ、特に限定はない。一般には、ポリビニルアル コールの如き親水性高分子からなるフィルムをヨウ素の 如き二色性染料で処理して延伸したものや、ポリ塩化ビ ニルの如きプラスチックフィルムを処理してポリエンを 配向させたものなどからなる偏光フィルムが用いられ

【0013】本発明の偏光板は、偏光子3に封止フィル ム1をその進相軸が偏光子の吸収軸に対して平行となる 20 よう接着したものである。封止フィルムは偏光子の両側 に設ける方式が一般的であるが、これに限定されない。 前記の進相軸と吸収軸の平行状態は、作業精度等の点よ り完全な平行状態を意味するものではないが、補償効果 の点よりは交差角度が少ないほど好ましい。なおその場 合の封止フィルムの進相軸、偏光子の吸収軸は正面(方 位角: 0) に基づく。

【0014】封止フィルム1と偏光子3の接着(2) は、例えば透明な接着剤、ないし粘着剤を用いて行うこ とができる。その接着剤等の種類については特に限定は 30 実施例、比較例で得た偏光板を傾斜軸に対して45度傾 ない。偏光子や封止フィルムの光学特性の変化防止の点 より、硬化や乾燥の際に高温のプロセスを要しないもの が好ましく、長時間の硬化処理や乾燥時間を要しないも のが望ましい。

【0015】本発明の液晶表示装置は、上記の偏光板を 液晶セルの片側、又は両側に配置したものである。かか る液晶表示装置を図2に例示した。4が偏光板、5が液 晶セルである。用いる液晶セルは任意である。例えば、 薄膜トランジスタ型に代表されるアクティブマトリクス 駆動型のもの、ツイストネマチック型やスーパーツイス 40

トネマチック型に代表される単純マトリクス駆動型のも のなどがあげられる。

【0016】 実施例1

15kvの電界を印加しながら硬化させた後、155℃で 10%延伸させた一軸延伸ポリカーポネートフィルム (厚さ約50 µm、n: 1.5869、n: 1.582 4、nx: 1.5858、Q値: 0.247) を、ポリビ ニルアルコールフィルムをヨウ素で染色したのち延伸処 理してなる偏光子の両側にアクリル系粘着剤を介し接着 して偏光板を得た。なお、一軸延伸ポリカーポネートフ ィルムはその進相軸(延伸軸に垂直な方向)が偏光子の 吸収軸と平行になるよう配置した。

[0017] 比較例1

封止フィルムを接着せずに実施例1の偏光子をそのまま 偏光板として用いた。

【0018】比較例2

一軸延伸ポリカーボネートフィルムに代えて、二軸延伸 トリアセチルセルロースフィルム (厚さ約80μπ、 n: 1.5303, n: 1.5302, n: 1.529 5、Q値: 8.000) を用いたほかは、実施例1に準 じて偏光板を得た。

【0019】比較例3

電界を印加せずに硬化させた後、155℃で15%延伸 させた一軸延伸ポリカーポネートフィルム(厚さ約50 μm , $n_1:1.5890$, $n_7:1:5834$, $n_1:1$. 5826、Q値:1.131) を用いたほかは、実施例 1に準じて偏光板を得た。

[0020] 評価試験

透過率の変化

けて置き、クロスニコルに配置した検光子に対する透過 率の測定において、偏光板を光軸に対し60度傾斜させ た場合における、傾斜させない場合に対する透過率の割 合を求め、これを偏光性能の変化として評価した。従っ て、値が小さいほど偏光板の透過軸の変化に対する補償 効果の大きいことを意味する。

【0021】前記の結果を表1に示した。なお、表1に は偏光板に使用した封止フィルムの位相差(フィルム厚 と屈折率差の積)を併記した。

【表1】

特開平4-371903

5

	位相差 (nm)	透過率の変化(%)
実施例1	226	0.102
比較例1	0	0.551
比較例 2	8	1.589
比較例3	281	2.692

【0022】視野角

ツイストネマチック型液晶セルの両側に、実施例1又は 比較例2で得た偏光板を接着して表示装置を形成し、左 右(水平)方向と上下(垂直)方向についてコントラス ト比が10:1以上である範囲を調べた。

【0023】前記の結果、実施例1の偏光板を用いた液晶表示装置にあっては左右方向で+65度から-60度の範囲、上下方向で+35度から-55度の範囲であった。これに対し、比較例2の偏光板を用いた液晶表示装 20 置にあっては左右方向で+55度から-50度の範囲、上下方向で+25度から-40度の範囲であった。

[0024]

【発明の効果】本発明によれば、封止フィルムに特定の 位相差を示す複屈折性を有するものを用いたので、方位 角による偏光子の透過軸の変化を補償でき、傾斜によっ て偏向性能が変化しにくい偏光板を得ることができる。 その結果、かかる偏光板を液晶セルに適用して良好なコ ントラストを示す視野角の広さに優れる液晶表示装置を 得ることができる。

【図面の簡単な説明】

【図1】 偏光板の実施例の断面図。

【図2】液晶表示装置の実施例の断面図。

【符号の説明】

1:封止フィルム

3: 偏光子

4:偏光板

5:液晶セル

【図1】

【図2】

フロントページの続き

(72) 発明者 藤村 保夫

大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内