Question 5:

- a) Solve the following questions from the Discrete Math zyBook:
 - 1. Exercise 1.12.2, sections b, e
 - i. Exercise 1.12.2, section b

1.	$p \rightarrow (q \wedge r)$	Hypothesis
2.	$\neg p \lor (q \land r)$	Conditional identity, 1
3.	$(\neg p \lor q) \land (\neg p \lor r)$	Distributive law, 2
4.	$(p \rightarrow q) \wedge (p \rightarrow r)$	Conditional identity, 3
5.	$(p \rightarrow q)$	Simplification, 4
6.	$\neg \mathbf{q}$	Hypothesis
7.	$\neg \mathbf{p}$	Modus tollens, 5, 6

ii. Exercise 1.12.2, section e

1.	p V q	Hypothesis
2.	¬p∨r	Hypothesis
3.	qVr	Resolution, 1, 2
4.	$\neg q$	Hypothesis
5.	$(q \lor r) \land \neg q$	Conjunction, 3, 4
6.	$\neg q \land (q \lor r)$	Commutative law, 5
7.	$(\neg q \land q) \lor (\neg q \land r)$	Distributive law, 6
8.	$(\mathbf{q} \wedge \neg \mathbf{q}) \vee (\neg \mathbf{q} \wedge \mathbf{r})$	Commutative law, 7
9.	$\mathbf{F} \vee (\neg \mathbf{q} \wedge \mathbf{r})$	Complement law, 8
10.	$(\neg q \land r) \lor F$	Commutative law, 9
11.	$(\neg q \land r)$	Identity law, 10
12.	(r ∧ ¬q)	Commutative law, 11
13.	r	Simplification, 12

- 2. Exercise 1.12.3, section c
 - i. Exercise 1.12.3, section c

1.	p V q	Hypothesis
2.	¬р	Hypothesis
3.	$(p \lor q) \land \neg p$	Conjunction, 1, 2
4.	$\neg p \land (p \lor q)$	Commutative law, 3
5.	$(\neg p \land p) \lor (\neg p \land q)$	Distributive law, 4
6.	$(p \land \neg p) \lor (\neg p \land q)$	Commutative law, 5
7.	$\mathbf{F} \vee (\neg \mathbf{p} \wedge \mathbf{q})$	Complement law, 6
8.	(¬p ∧ q) ∨ F	Commutative law, 7
9.	¬ p ∧ q	Identity law, 8
10.	q ∧ ¬ p	Commutative law, 9
11.	q	Simplification, 10

- 3. Exercise 1.12.5, sections c, d
 - i. Exercise 1.12.5, section c
 - 1. j: I will get a job

c: I will buy a new car

h: I will buy a new house

2. The form of the argument is:

a.
$$(c \land h) \rightarrow j$$

$$\frac{\neg j}{ \therefore \neg c}$$

- 3. The argument is not valid. When c = T, and h = j = F, the hypotheses are both true and the conclusion $\neg c$ is false.
- ii. Exercise 1.12.5, section d
 - 1. j: I will get a job

c: I will buy a new car

h: I will buy a new house

2. The form of the argument is:

a.
$$(c \land h) \rightarrow j$$

$$\neg j$$

$$h$$

$$\therefore \neg c$$

3. The argument is valid.

	The digament is value.		
1.	$(c \land h) \rightarrow j$	Hypothesis	
2.	٦j	Hypothesis	
3.	$\neg (c \land h)$	Modus tollens, 1, 2	
4.	$\neg c \lor \neg h$	De Morgan's law, 3	
5.	$\neg h \lor \neg c$	Commutative law, 4	
6.	h	Hypothesis	
7.	$\neg c$	Disjunctive Syllogism, 5, 6	

- b) Solve the following questions from the Discrete Math zyBook:
 - 1. Exercise 1.13.3, section b
 - i. Exercise 1.13.3, section b

	P	Q
a	F	T
b	F	F

ii.
$$(P(a) \lor \overline{Q(a)}) = \overline{T}$$

iii.
$$\neg Q(b) = T$$

- iv. However, the conclusion for both a and b is false
 - 1. P(a) = F
 - 2. P(b) = F
- 2. Exercise 1.13.5, sections d, e
 - i. Exercise 1.13.5, section d
 - 1. Defining the predicates
 - a. M(x): x missed class
 - b. D(x): x got a detention

- 2. Expressing the hypotheses and conclusion using the predicates
 - a. $\forall x M(x) \rightarrow D(x)$

Penelope is a student in the class

 \neg M(Penelope)

- ∴ ¬D(Penelope)
- 3. **The argument is not valid**. If M(Penelope) = F and D(Penelope) = T, then the hypotheses are all true and the conclusion is false. In other words, Penelope didn't miss class, and got a detention.
- ii. Exercise 1.13.5, section e
 - 1. Defining the predicates
 - a. M(x): x missed class
 - b. D(x) x got a detention
 - c. A(x): x received an A
 - 2. Expressing the hypotheses and conclusion using the predicates
 - a. $\forall x (M(x) \lor D(x)) \rightarrow \neg A(x)$

Penelope is a student in the class

A(Penelope)

- $\therefore \neg D(Penelope)$
- 3. The argument is valid.

1.	$\forall x (M(x) \lor D(x)) \rightarrow \neg A(x)$	Hypothesis
2.	Penelope is a student in the class	Hypothesis
3.	$(M(Pen) \lor D(Pen)) \rightarrow \neg A(Pen)$	Universal instantiation, 1, 2
4.	$\neg (M(Pen) \lor D(Pen)) \lor \neg A(Pen)$	Conditional identity, 3
5.	$(\neg M(Pen) \land \neg D(Pen)) \lor \neg A(Pen)$	De Morgan's law, 4
6.	$\neg A(Pen) \lor (\neg M(Pen) \land \neg D(Pen))$	Commutative law, 5
7.	$\neg A(Pen) \lor (\neg D(Pen) \land \neg M(Pen))$	Commutative law, 6
8.	$(\neg A(Pen) \lor \neg D(Pen)) \land (\neg A(Pen) \lor \neg M(Pen))$	Distributive law, 7
9.	$\neg A(Pen) \lor \neg D(Pen)$	Simplification, 8
10.	A(Penelope)	Hypothesis
11.	¬D(Penelope)	Disjunctive syllogism, 9, 10

^{*}Penelope is abbreviated to Pen where necessary

Question 6:

- a) Solve exercise 2.2.1, sections d, c from the Discrete Math zyBook:
 - 1. exercise 2.2.1, section d
 - i. Proof.
 - ii. Direct proof. Assume that x and y are odd integers. We will show that the product of $x \cdot y$ is an odd integer.
 - iii. Since x and y are odd, x = 2k + 1, and y = 2m + 1 for some integers k and m. Plug the expression for x and y into x·y:
 - iv. $x \cdot y = (2k + 1)(2m + 1) = 4km + 2k + 2m + 1 = 2(2km + k + m) + 1$
 - v. Since k and m are integers, then (2km + k + m) is also an integer
 - vi. Since $x \cdot y = 2c + 1$, where c = (2km + k + m) is an integer, then $x \cdot y$ is odd.

- 2. exercise 2.2.1, section c
 - i. Proof.
 - ii. Direct proof. Assume that x is a real number and $x \le 3$. We will show that $12 7x + x^2 \ge 0$.
 - iii. Subtract 3 from both sides of the inequality for $x \le 3$ to get $x 3 \le 0$
 - iv. Since $x 3 \le 0$, then $x 4 \le -1$
 - v. $12 7x + x^2$ can be simplified to be expressed as (x 3)(x 4)
 - vi. This results in two potential outcomes for (x 3)(x 4): either 0 * some negative number = 0, or some negative number multiplied by another negative number, resulting in a positive number which is greater than 0
 - vii. Therefore, $12 7x + x^2$ equals either 0 or a positive number
 - viii. $12 7x + x^2 > 0$.

Question 7:

- a) Solve exercise 2.3.1, sections d, f, g, l from the Discrete Math zyBook:
 - 1. exercise 2.3.1, section d
 - i. Proof.
 - ii. Proof by contrapositive. We assume that n is an even integer and show that $n^2 2n + 7$ is an odd integer.
 - iii. If n is an even integer, then n = 2k for some integer k. Plugging in the expression 2k for n in $n^2 2n + 7$ gives
 - iv. $(2k)^2 2(2k) + 7$
 - v. $4k^2 4k + 7$
 - vi. $4k^2 4k + 6 + 1$
 - vii. $2(2k^2-2k+3)+1$
 - viii. Since k is an integer, then $(2k^2 2k + 3)$ is also an integer
 - ix. Since $n^2 2n + 7 = 2c + 1$, where $c = (2k^2 2k + 3)$ is an integer, then $n^2 2n + 7$ is odd.
 - 2. exercise 2.3.1, section f
 - i. Proof.
 - ii. Proof by contrapositive. We assume for every non-zero real number x that 1/x is not irrational and prove that x must be rational.
 - iii. Since x is a non-zero real number, 1/x is also a real number. Every real number is either rational or irrational. Therefore since 1/x is not irrational and x is a non-zero real number, 1/x must be rational. By the definition of a rational number, 1/x = 1/(a/b), where a and b are integers and $b \neq 0$.
 - iv. Therefore, x is equal to the ratio of two integers, a and b, such that the denominator $b\neq 0$. Therefore, x is rational.

- 3. exercise 2.3.1, section g
 - i. Proof.
 - ii. Proof by contrapositive. We assume for every pair of real numbers x and y that x > y and prove that $x^3+xy^2 > x^2y+y^3$.
 - iii. Multiplying both sides of the inequality x > y by (x^2+y^2) results in $x^3+xy^2 > x^2y+y^3$
 - iv. For the inequality to hold true, we must prove that $(x^2+y^2) \neq 0$
 - v. The square of any number results in either 0 or a positive number
 - vi. Since x > y we know that (x^2+y^2) can result in either 0 or a positive number, plus a positive number which will result in a positive number which isn't 0
 - vii. Therefore, $(x^2+y^2) \neq 0$
 - viii. Therefore, $x^3+xy^2 > x^2y+y^3$.
- 4. exercise 2.3.1, section 1

i. Proof.

- ii. Proof by contrapositive. We assume for every pair of real numbers x and y that $x \le 10$ and $y \le 10$ and prove that $x + y \le 20$.
- iii. Since x and y can be no larger than 10, assume that x and y = 10, then 10 + 10 = 20
- iv. $20 \le 20$ so the statement holds true
- v. For any combination of values for x and y such that either is less than 10, the result will be a number smaller than 20
- vi. Therefore, $x + y \le 20$.

Question 8:

- a) Solve exercise 2.4.1, sections c, e from the Discrete Math zyBook:
 - 1. exercise 2.4.1, section c
 - i. Proof.
 - ii. Proof by contradiction. Suppose the average of three real numbers x, y, and z is less than each of the three real numbers x, y, and z.
 - iii. Let the average be expressed as follows: a = (x + y + z)/3
 - iv. We therefore argue:
 - 1. a < x
 - a < y
 - 3. a < z
 - v. If we add up the three inequalities, the result is 3a < x + y + z
 - vi. Since a = (x + y + z)/3, then 3((x + y + z)/3) < x + y + z
 - vii. The inequality can be simplified to x + y + z < x + y + z
 - viii. This inequality contradicts itself as both sides of the expressions are equal and a number cannot be strictly smaller than itself
 - ix. Therefore, the average of three real numbers is greater than or equal to at least one of the numbers. ■
 - 2. exercise 2.4.1, section e
 - i. Proof.
 - ii. Proof by contradiction. Assume there is a smallest integer x.
 - iii. Subtracting one from x results in x 1
 - iv. However, we argue that x < x 1 which is equivalent to 0 < -1
 - v. This results in a contradiction, therefore there is no smallest integer.

Question 9:

- a) Solve exercise 2.5.1, section c from the Discrete Math zyBook:
 - 1. exercise 2.5.1, section c
 - i. Proof.
 - ii. We consider two cases: x and y are both even, and x and y are both odd
 - iii. Case 1: x and y are both even
 - 1. x = 2k for some integer k
 - 2. y = 2m for some integer m
 - 3. x + y = 2k + 2m = 2(k + m)
 - 4. x + y = 2c, where c = (k + m) is an integer
 - 5. Therefore, x + y is even
 - iv. Case 2: x and y are both odd
 - 1. x = 2k + 1 for some integer k
 - 2. y = 2m + 1 for some integer m
 - 3. x + y = 2k + 2m + 2 = 2(k + m + 1)
 - 4. x + y = 2c, where c = (k + m + 1) is an integer
 - 5. Therefore, x + y is even
 - V. ■