NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome											
	gnome											
Mat	tricola											
Co	Compito		0									
-	Eserci	izio	1	2	3	4	5	6	7	8		
	Rispos	sta										

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = B_1/B_2$
- C) $K = \sqrt{B_1/B_2}$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale ed instabile
- C) Se il sistema è non causale, allora è instabile
- **D)** Il sistema può essere causale e stabile

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

1

- **A)** vale 2
- B) vale zero
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 2/T
- E) Nessuna delle altre risposte è corretta

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- C) x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- D) nessuna delle altre risposte

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 1
- **C**) 0
- **D**) $\frac{1}{3}$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}, n = 0, 1, 2, \dots, 127$, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) causale
- C) reale e pari
- D) puramente immaginaria

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) causale
- B) reale e pari
- C) reale e causale
- D) puramente immaginaria

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale ed instabile

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{3}$
- **C**) 0
- **D**) $\frac{1}{2}$

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

A)
$$x[n] = u[n]$$

- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- C) nessuna delle altre risposte
- **D)** $x[n] = n^2 + 1$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 20\cos(8\pi t)$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-2z^{-2}}$

Esercizio 7. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B)** y(t) non è un segnale a potenza media finita
- **C**) vale 1
- **D)** vale 1/T
- E) Nessuna delle altre risposte è corretta

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = B_1/B_2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Compito						2	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 2/T
- **B)** vale 2
- C) Nessuna delle altre risposte è corretta
- **D)** y(t) non è un segnale a potenza media finita
- E) vale zero

Esercizio 3. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

A)
$$x[n] = 2u[n-1] + \delta[n]$$

- B) nessuna delle altre risposte
- C) x[n] = 2u[n-1]
- **D)** x[n] = 2u[n]

Esercizio 4. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) puramente immaginaria
- B) reale e causale
- C) causale
- D) reale e pari

Esercizio 5. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- B) $\frac{1}{2}$
- **C**) 0
- **D**) $\frac{1}{3}$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = \sqrt{3B_1/B_2}$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = B_2/B_1$

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere anticausale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale ed instabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										-
Mat	tricola										-
Co	Compito					3	3				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se} \quad k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-4z^{-2}}$

Esercizio 2. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- B) nessuna delle altre risposte
- C) $x[n] = n^2 + 1$
- **D)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

1

- A) y(t) non è un segnale a potenza media finita
- B) Nessuna delle altre risposte è corretta

- C) vale 1/T
- **D)** vale zero
- **E**) vale 1

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Il sistema può essere anticausale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale e stabile

Esercizio 5. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) $\frac{1}{3}$
- **C**) 1
- **D**) $\frac{1}{2}$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = 3B_1/B_2$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = B_2/B_1$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) causale
- B) reale e causale
- C) reale e pari
- D) puramente immaginaria

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	Compito					4	Ŀ				
-	D			2		1	۲.	C	7	0	
	Esercizio		1	2	3	4	О	О	1	8	
	D:										

Risposta Control Contr

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale ed instabile
- D) Il sistema può essere anticausale e stabile

Esercizio 2. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) con modulo pari
- B) reale
- C) causale

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = B_2/B_1$
- C) $K = 3B_1/B_2$
- **D)** $K = \sqrt{3B_1/B_2}$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) Nessuna delle altre risposte

- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- B) Nessuna delle altre risposte è corretta
- **C**) vale 1
- **D)** vale 1/T
- E) vale zero

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- C) nessuna delle altre risposte
- **D)** $x[n] = n^2 + 1$

Esercizio 8. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 0
- **D**) 1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5
Eserc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere causale ed instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale e stabile

Esercizio 2. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) reale
- C) con modulo pari

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E) Nessuna delle altre risposte

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- **B)** vale 2/T
- C) vale zero
- D) Nessuna delle altre risposte è corretta
- **E**) vale 2

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 2u[n]
- **B)** $x[n] = 2u[n-1] + \delta[n]$
- C) nessuna delle altre risposte
- **D)** x[n] = 2u[n-1]

Esercizio 8. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) può avere parte reale nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 2. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** x[n] = u[n]

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 0
- **D**) 1

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è non causale, allora è instabile

- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con K0 costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = B_1/B_2$
- **C)** $K = \sqrt{B_2/B_1}$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 4z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 8. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 1/T
- **B)** vale 1
- C) vale zero
- **D)** y(t) non è un segnale a potenza media finita
- E) Nessuna delle altre risposte è corretta

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-2z}$$

D)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è anticausale, allora è instabile
- C) Il sistema è sempre instabile anche nel caso di sistema non causale.
- **D)** Il sistema è sempre stabile

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- A) $\frac{1}{2}$
- **B**) 1
- C) $\frac{1}{3}$
- **D**) 0

Esercizio 4. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla

C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_2/B_1$
- **D)** $K = B_1/B_2$

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- B) vale zero
- C) Nessuna delle altre risposte è corretta
- **D)** vale 1/T
- **E**) vale 1

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n]$
- B) nessuna delle altre risposte
- **C)** $x[n] = \delta[n-1]$
- **D)** x[n] = u[n]

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- C) $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale ed instabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale e stabile

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- B) $\frac{1}{2}$
- \mathbf{C}) 0
- **D**) 1

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) causale
- C) puramente immaginaria
- D) reale e pari

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$

- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- E) Nessuna delle altre risposte

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 2u[n-1]
- **C)** $x[n] = 2u[n-1] + \delta[n]$
- **D)** x[n] = 2u[n]

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = B_2/B_1$
- C) $K = 3B_1/B_2$
- **D)** $K = \sqrt{3B_1/B_2}$

Esercizio 8. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- **B)** vale 2/T
- **C**) vale 2
- D) Nessuna delle altre risposte è corretta
- E) vale zero

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9
Eserc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) puramente immaginaria
- B) reale e pari
- C) reale e causale
- D) causale

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Il sistema può essere causale e stabile
- C) Il sistema può essere anticausale e stabile
- **D)** Se il sistema è *non causale*, allora è instabile

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

1

A)
$$K = \sqrt{B_1/B_2}$$

- **B)** $K = B_1/B_2$
- **C)** $K = \sqrt{B_2/B_1}$
- **D)** $K = B_2/B_1$

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T, T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 2/T
- B) y(t) non è un segnale a potenza media finita
- C) vale zero
- **D**) vale 2
- E) Nessuna delle altre risposte è corretta

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = n^2 + 1$
- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- C) nessuna delle altre risposte
- **D)** x[n] = u[n]

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 0
- B) $\frac{1}{3}$
- **C**) 1
- **D**) $\frac{1}{2}$

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- C) $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 2. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) con modulo pari
- B) causale
- C) reale

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(8\pi t)$

Esercizio 4. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

A) $\frac{1}{3}$

- **B**) 1
- C) $\frac{1}{2}$
- **D**) 0

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- **B)** vale 2
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 2/T
- E) vale zero

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = B_1/B_2$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale e stabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **C)** x[n] = u[n]
- **D)** $x[n] = n^2 + 1$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 0
- **B**) $\frac{1}{2}$
- C) $\frac{1}{3}$
- **D**) 1

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- **B)** y(t) non è un segnale a potenza media finita
- C) vale zero
- D) Nessuna delle altre risposte è corretta
- **E)** vale 1/T

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- **B)** causale
- C) reale e pari
- **D)** puramente immaginaria

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = B_2/B_1$

D)
$$K = 3B_1/B_2$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- D) nessuna delle altre risposte

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre instabile anche nel caso di sistema non causale.
- B) Il sistema è sempre stabile
- C) Se il sistema è anticausale, allora è instabile
- **D)** Il sistema può essere causale e stabile

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- ${f B}$) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z-2} + \frac{z}{z-1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale ed instabile
- D) Il sistema può essere causale e stabile

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 4. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) con modulo pari
- B) reale
- C) causale

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **B)** $x[n] = n^2 + 1$
- C) nessuna delle altre risposte
- **D)** x[n] = u[n]

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 2
- B) Nessuna delle altre risposte è corretta
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 2/T
- E) vale zero

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- \mathbf{C}) 0
- **D**) 1

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = 3B_1/B_2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 2/T
- **B)** y(t) non è un segnale a potenza media finita
- C) vale zero
- **D**) vale 2
- E) Nessuna delle altre risposte è corretta

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) 0
- C) $\frac{1}{2}$
- **D**) $\frac{1}{3}$

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_1/B_2$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = B_2/B_1$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$

Esercizio 6. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) reale
- B) con modulo pari
- C) causale

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale e stabile
- C) Il sistema può essere causale ed instabile
- **D)** Se il sistema è non causale, allora è instabile

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** $x[n] = 2u[n-1] + \delta[n]$
- **C)** x[n] = 2u[n]
- **D)** x[n] = 2u[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 0
- **D**) 1

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con K0 costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_2/B_1$
- **D)** $K = B_1/B_2$

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere anticausale e stabile
- C) Il sistema può essere causale e stabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- E) Nessuna delle altre risposte

Esercizio 5. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) deve avere parte reale non nulla e parte immaginaria non nulla
- C) può avere parte reale nulla

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** $x[n] = \delta[n-1]$
- **C)** x[n] = u[n]
- **D)** $x[n] = \delta[n]$

Esercizio 8. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1/T
- B) vale zero
- **C**) vale 1
- D) Nessuna delle altre risposte è corretta
- **E)** y(t) non è un segnale a potenza media finita

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) 1
- C) $\frac{1}{3}$
- **D**) $\frac{1}{2}$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = \sqrt{3B_1/B_2}$
- **D)** $K = 3B_1/B_2$

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

1

- A) vale zero
- **B)** y(t) non è un segnale a potenza media finita
- C) Nessuna delle altre risposte è corretta
- **D)** vale 1/T
- **E)** vale 1

Esercizio 5. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) causale
- C) puramente immaginaria
- D) reale e pari

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- B) nessuna delle altre risposte
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre stabile
- B) Il sistema è sempre instabile anche nel caso di sistema non causale.
- C) Se il sistema è anticausale, allora è instabile
- D) Il sistema può essere causale e stabile

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

C)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-2z}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 20\cos(6\pi t)$$

B)
$$x(t) = 20\sin(2\pi t)$$

C)
$$x(t) = 10\cos(6\pi t)$$

D)
$$x(t) = 5\cos(4\pi t)$$

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

A)
$$\frac{1}{3}$$

B)
$$\frac{1}{2}$$

$$\mathbf{C}$$
) 0

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{3B_1/B_2}$
- **C**) $K = \sqrt{B_2/3B_1}$
- **D)** $K = 3B_1/B_2$

Esercizio 5. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) causale
- B) puramente immaginaria
- C) reale e causale
- D) reale e pari

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B)** vale 2
- C) y(t) non è un segnale a potenza media finita
- D) Nessuna delle altre risposte è corretta
- **E)** vale 2/T

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **B)** x[n] = u[n]
- **C)** $x[n] = n^2 + 1$
- D) nessuna delle altre risposte

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è anticausale, allora è instabile
- C) Il sistema è sempre stabile
- D) Il sistema è sempre instabile anche nel caso di sistema non causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) può avere parte reale nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 1
- **D**) 0

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_1/B_2$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere causale ed instabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere anticausale e stabile

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- B) vale zero
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 2/T
- **E**) vale 2

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = n^2 + 1$
- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **C)** x[n] = u[n]
- D) nessuna delle altre risposte

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** $x[n] = \delta[n]$
- C) nessuna delle altre risposte
- **D)** $x[n] = \delta[n-1]$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- B) $\frac{1}{2}$
- \mathbf{C}) 0
- **D**) $\frac{1}{3}$

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_1/B_2$
- **B)** $K = B_2/B_1$
- **C)** $K = \sqrt{B_1/B_2}$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\pi(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- **B)** vale 1/T
- C) Nessuna delle altre risposte è corretta
- D) vale zero
- \mathbf{E}) y(t) non è un segnale a potenza media finita

Esercizio 6. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) può avere parte reale nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- **D)** Il sistema può essere causale e stabile

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-2z^{-2}}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = \sqrt{3B_1/B_2}$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = B_2/B_1$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 2
- **B)** vale 2/T
- C) y(t) non è un segnale a potenza media finita
- **D)** vale zero
- E) Nessuna delle altre risposte è corretta

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre instabile anche nel caso di sistema non causale.
- B) Il sistema è sempre stabile
- C) Se il sistema è anticausale, allora è instabile
- D) Il sistema può essere causale e stabile

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- C) $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **C)** x[n] = u[n]
- **D)** $x[n] = n^2 + 1$

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 1
- **B**) 0
- C) $\frac{1}{2}$
- **D**) $\frac{1}{3}$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e pari
- B) puramente immaginaria
- C) causale
- D) reale e causale

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	$_{ m mpito}$					2	0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Il sistema può essere anticausale e stabile
- C) Il sistema può essere causale e stabile
- D) Se il sistema è non causale, allora è instabile

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** y(t) non è un segnale a potenza media finita
- **B**) vale 1
- C) vale zero
- **D)** vale 1/T
- E) Nessuna delle altre risposte è corretta

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 1
- **D**) 0

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = u[n]
- C) $x[n] = n^2 + 1$
- **D)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$

Esercizio 7. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte reale nulla
- C) può avere parte immaginaria nulla

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

2

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_1/B_2}$
- **C)** $K = \sqrt{B_2/B_1}$
- **D)** $K = B_1/B_2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) con modulo pari
- C) reale

Esercizio 2. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = u[n]
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- B) $\frac{1}{3}$
- **C**) 1
- **D**) 0

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{1-2z}$$

- **B)** $Y(z) = \frac{1}{1-2z^{-2}}$
- C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})^2}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B)** vale 1/T
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 1
- E) Nessuna delle altre risposte è corretta

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z-2} + \frac{z}{z-1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere causale ed instabile
- C) Il sistema può essere anticausale e stabile
- **D)** Se il sistema è non causale, allora è instabile

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = 3B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{3B_1/B_2}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 2. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = 3B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{3B_1/B_2}$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

1

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1 2z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- **B)** vale 1/T
- C) y(t) non è un segnale a potenza media finita
- **D**) vale 1
- E) vale zero

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere causale e stabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- B) $\frac{1}{2}$
- **C**) 0
- **D**) 1

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- B) x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** x[n] = u[n]

Esercizio 8. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) con modulo pari
- B) causale
- C) reale

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	Compito					2	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Diame	-t-a									1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = \sqrt{3B_1/B_2}$
- **D)** $K = B_2/B_1$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- **B)** y(t) non è un segnale a potenza media finita
- **C**) vale 2
- D) vale zero
- **E)** vale 2/T

Esercizio 3. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n-1]$
- **B)** x[n] = u[n]
- C) $x[n] = \delta[n]$
- **D)** nessuna delle altre risposte

Esercizio 4. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) può avere parte reale nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) 1
- C) $\frac{1}{2}$
- **D**) 0

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere causale ed instabile
- C) Il sistema può essere anticausale e stabile
- **D)** Se il sistema è non causale, allora è instabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome											
Cog	gnome											
Mat	tricola											
Co	Compito		24									
	Eserci	izio	1	2	3	4	5	6	7	8		
	Rispos	sta										

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{3B_1/B_2}$
- **D)** $K = \sqrt{B_2/3B_1}$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 2
- B) vale 2/T
- C) y(t) non è un segnale a potenza media finita
- D) vale zero
- E) Nessuna delle altre risposte è corretta

Esercizio 3. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- B) x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- D) nessuna delle altre risposte

Esercizio 4. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D**) 1

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 7. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) reale e pari
- C) puramente immaginaria
- **D**) causale

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- B) y(t) non è un segnale a potenza media finita
- C) vale zero
- **D)** vale 2
- E) vale 2/T

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) puramente immaginaria
- C) causale
- D) reale e pari

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = 3B_1/B_2$
- C) $K = \sqrt{3B_1/B_2}$
- **D)** $K = B_2/B_1$

Esercizio 5. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 1
- **D**) 0

Esercizio 6. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è anticausale, allora è instabile
- B) Il sistema è sempre instabile anche nel caso di sistema non causale.
- C) Il sistema è sempre stabile
- D) Il sistema può essere causale e stabile

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 2u[n]
- B) nessuna delle altre risposte
- C) x[n] = 2u[n-1]
- **D)** $x[n] = 2u[n-1] + \delta[n]$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **C)** $Y(z) = \frac{1}{1-2z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 0
- **D**) 1

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- B) vale zero
- C) vale 2/T
- **D)** vale 2
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 5. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n]$
- **B)** $x[n] = \delta[n-1]$
- **C)** x[n] = u[n]
- **D)** nessuna delle altre risposte

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Il sistema può essere anticausale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale e stabile

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

2

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = B_2/B_1$
- C) $K = 3B_1/B_2$
- **D)** $K = \sqrt{3B_1/B_2}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27
Eserc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B)** vale 1/T
- C) Nessuna delle altre risposte è corretta
- **D**) vale 1
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = \sqrt{3B_1/B_2}$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_2/3B_1}$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/2] & \text{se} \quad k = 2n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale e stabile

Esercizio 6. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte reale nulla
- C) può avere parte immaginaria nulla

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) nessuna delle altre risposte
- $\mathbf{D)} \ x[n] = u[n]$

Esercizio 8. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- B) $\frac{1}{3}$
- **C**) 0
- **D**) 1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) con modulo pari
- C) reale

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 2
- **B)** y(t) non è un segnale a potenza media finita
- C) Nessuna delle altre risposte è corretta
- **D)** vale 2/T
- E) vale zero

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = \sqrt{3B_1/B_2}$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = B_2/B_1$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 5. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 0
- **D**) 1

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z-7} + \frac{z}{z-1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema è sempre instabile anche nel caso di sistema non causale.
- C) Il sistema è sempre stabile
- D) Se il sistema è anticausale, allora è instabile

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 2u[n]
- B) nessuna delle altre risposte
- C) x[n] = 2u[n-1]
- **D)** $x[n] = 2u[n-1] + \delta[n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- **B)** vale 1/T
- C) Nessuna delle altre risposte è corretta
- **D)** y(t) non è un segnale a potenza media finita
- E) vale zero

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- **D)** Il sistema può essere causale e stabile

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) può avere parte reale nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

A)
$$K = \sqrt{3B_1/B_2}$$

B)
$$K = B_2/B_1$$

Figura 1:

C)
$$K = 3B_1/B_2$$

D)
$$K = \sqrt{B_2/3B_1}$$

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

A)
$$x[n] = 2u[n]$$

B)
$$x[n] = 2u[n-1] + \delta[n]$$

C) nessuna delle altre risposte

D)
$$x[n] = 2u[n-1]$$

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 0
- **D**) 1

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito	30									
	Eserci	zio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T, T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** y(t) non è un segnale a potenza media finita
- B) Nessuna delle altre risposte è corretta
- C) vale 2/T
- **D)** vale 2
- E) vale zero

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale e stabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D**) 0

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **B)** x[n] = u[n]

Figura 1:

- C) x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- D) nessuna delle altre risposte

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

A)
$$K = \sqrt{B_1/B_2}$$

B)
$$K = B_1/B_2$$

C)
$$K = \sqrt{B_2/B_1}$$

D)
$$K = B_2/B_1$$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 10\sin(6\pi t)$$

B)
$$x(t) = 20\cos(8\pi t)$$

C)
$$x(t) = 20\sin(2\pi t)$$

D)
$$x(t) = 5\cos(8\pi t)$$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) reale e pari
- C) puramente immaginaria
- D) causale

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	1				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- C) $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- B) $\frac{1}{2}$
- **C**) 1
- D) $\frac{1}{2}$

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- B) nessuna delle altre risposte

Figura 1:

- **C)** x[n] = u[n]
- **D)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_2/B_1$
- **D)** $K = B_1/B_2$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B**) vale 1
- C) vale 1/T
- D) Nessuna delle altre risposte è corretta
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) puramente immaginaria
- B) causale
- C) reale e causale
- D) reale e pari

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) $\frac{1}{3}$
- **C**) 1
- **D**) $\frac{1}{2}$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = \sqrt{3B_1/B_2}$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = B_2/B_1$

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre instabile anche nel caso di sistema non causale.
- B) Se il sistema è anticausale, allora è instabile
- C) Il sistema può essere causale e stabile
- **D)** Il sistema è sempre stabile

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = n^2 + 1$
- **B)** x[n] = u[n]
- C) nessuna delle altre risposte
- **D)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 8. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- B) Nessuna delle altre risposte è corretta
- C) vale zero
- **D)** vale 2
- **E)** vale 2/T

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 2. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- C) nessuna delle altre risposte
- **D)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte immaginaria nulla
- C) può avere parte reale nulla

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

1

- **A)** vale 2/T
- B) vale zero
- **C**) vale 2
- **D)** y(t) non è un segnale a potenza media finita
- E) Nessuna delle altre risposte è corretta

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_1/B_2}$
- C) $K = B_1/B_2$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{2}$
- C) $\frac{1}{3}$
- **D**) 0

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere causale ed instabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere anticausale e stabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere anticausale ed instabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere anticausale e stabile

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) 1
- C) $\frac{1}{2}$
- **D**) 0

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B**) vale 1
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 1/T
- E) Nessuna delle altre risposte è corretta

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- \mathbf{D}) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/B_1}$
- **B)** $K = \sqrt{B_1/B_2}$
- C) $K = B_1/B_2$
- **D)** $K = B_2/B_1$

Esercizio 6. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte reale nulla
- C) può avere parte immaginaria nulla

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- C) $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n]$
- B) nessuna delle altre risposte
- **C)** x[n] = u[n]
- **D)** $x[n] = \delta[n-1]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** $x[n] = \delta[n]$
- C) nessuna delle altre risposte
- **D)** $x[n] = \delta[n-1]$

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 20\cos(6\pi t)$$

- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 4. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) reale
- B) causale
- C) con modulo pari

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale ed instabile
- C) Il sistema può essere causale e stabile
- D) Se il sistema è non causale, allora è instabile

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- B) vale zero
- C) vale 1/T
- **D)** y(t) non è un segnale a potenza media finita
- **E**) vale 1

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con K0 costante positiva, sono uguali?

- **A)** $K = B_1/B_2$
- **B)** $K = \sqrt{B_1/B_2}$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = B_2/B_1$

Esercizio 8. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{2}$
- C) $\frac{1}{3}$
- **D**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Con	mpito					3	6				
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- B) nessuna delle altre risposte
- C) $x[n] = n^2 + 1$
- **D)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 1
- C) $\frac{1}{3}$
- **D**) 0

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 2/T
- B) y(t) non è un segnale a potenza media finita
- C) Nessuna delle altre risposte è corretta
- D) vale zero
- **E)** vale 2

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre stabile
- B) Il sistema può essere causale e stabile
- C) Se il sistema è anticausale, allora è instabile
- D) Il sistema è sempre instabile anche nel caso di sistema non causale.

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_1/B_2$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_1/B_2}$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e pari
- B) causale
- C) reale e causale
- D) puramente immaginaria

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					3	7				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 2u[n]
- **B)** $x[n] = 2u[n-1] + \delta[n]$
- C) nessuna delle altre risposte
- **D)** x[n] = 2u[n-1]

Esercizio 2. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) causale
- B) reale e causale
- C) puramente immaginaria
- D) reale e pari

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale ed instabile
- D) Il sistema può essere causale e stabile

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

1

- **A)** vale 2/T
- B) vale zero
- C) Nessuna delle altre risposte è corretta
- **D)** y(t) non è un segnale a potenza media finita
- **E**) vale 2

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) $Y(z) = \frac{1}{1-4z^{-4}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- E) Nessuna delle altre risposte

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 1
- **D**) 0

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					3	8				
	Eserci	izio	1	2	3	4	5	6	7	8	j
	Risposta										

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale ed instabile
- D) Il sistema può essere causale e stabile

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E) Nessuna delle altre risposte

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = 3B_1/B_2$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = \sqrt{3B_1/B_2}$

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

1

- A) vale zero
- B) Nessuna delle altre risposte è corretta
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 2/T
- **E**) vale 2

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 2u[n]
- B) nessuna delle altre risposte
- C) x[n] = 2u[n-1]
- **D)** $x[n] = 2u[n-1] + \delta[n]$

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 1
- **D**) 0

Esercizio 7. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) reale
- C) con modulo pari

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 2/T
- **B)** vale 2
- C) y(t) non è un segnale a potenza media finita
- D) Nessuna delle altre risposte è corretta
- E) vale zero

Esercizio 2. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) può avere parte reale nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = 3B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{3B_1/B_2}$

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile

- C) Il sistema può essere causale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

A)
$$x(t) = 20\sin(2\pi t)$$

B)
$$x(t) = 10\sin(6\pi t)$$

C)
$$x(t) = 5\cos(8\pi t)$$

D)
$$x(t) = 20\cos(8\pi t)$$

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

A)
$$x[n] = 2u[n]$$

B)
$$x[n] = 2u[n-1]$$

C) nessuna delle altre risposte

D)
$$x[n] = 2u[n-1] + \delta[n]$$

Esercizio 8. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 0
- C) $\frac{1}{3}$
- **D**) 1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) reale
- B) causale
- C) con modulo pari

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale ed instabile
- C) Il sistema può essere causale e stabile
- D) Se il sistema è non causale, allora è instabile

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 1
- C) $\frac{1}{3}$
- **D**) 0

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = 3B_1/B_2$

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- **B)** vale 1/T
- C) vale zero
- **D)** y(t) non è un segnale a potenza media finita
- E) Nessuna delle altre risposte è corretta

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n]$
- B) nessuna delle altre risposte
- **C)** x[n] = u[n]
- **D)** $x[n] = \delta[n-1]$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	1				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\pi(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1/T
- B) y(t) non è un segnale a potenza media finita
- C) vale zero
- **D)** vale 1
- E) Nessuna delle altre risposte è corretta

Esercizio 2. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- B) x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** nessuna delle altre risposte

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 0
- **D**) 1

Esercizio 4. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte immaginaria nulla
- C) può avere parte reale nulla

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = 3B_1/B_2$
- **D)** $K = \sqrt{B_2/3B_1}$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre instabile anche nel caso di sistema non causale.
- B) Il sistema è sempre stabile
- C) Il sistema può essere causale e stabile
- **D)** Se il sistema è anticausale, allora è instabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 0
- **B**) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D**) 1

Esercizio 2. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1-4z^{-4}}$
- E) Nessuna delle altre risposte

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

A)
$$x(t) = 10\cos(6\pi t)$$

- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = \sqrt{3B_1/B_2}$
- C) $K = B_2/B_1$
- **D)** $K = 3B_1/B_2$

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\pi(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- B) Nessuna delle altre risposte è corretta
- C) vale 1/T
- **D)** y(t) non è un segnale a potenza media finita
- E) vale zero

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale ed instabile
- B) Il sistema può essere causale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere anticausale e stabile

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** x[n] = u[n]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Compito						4	3				
	Esercizio		1	2	3	4	5	6	7	8	

Esercizio 1 2 3 4 5 6 7 8

Risposta

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) 1
- C) $\frac{1}{2}$
- **D**) $\frac{1}{3}$

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) deve avere parte reale non nulla e parte immaginaria non nulla
- C) può avere parte reale nulla

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere causale e stabile
- C) Il sistema può essere anticausale e stabile

D) Il sistema può essere anticausale ed instabile

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- B) Nessuna delle altre risposte è corretta
- C) vale 2/T
- **D**) vale 2
- E) y(t) non è un segnale a potenza media finita

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 2u[n-1]
- **B)** x[n] = 2u[n]
- **C)** $x[n] = 2u[n-1] + \delta[n]$
- **D)** nessuna delle altre risposte

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\cos(8\pi t)$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/3B_1}$
- **D)** $K = 3B_1/B_2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	4				
	Eserci	izio	1	2	3	4	5	6	7	8]
	Risposta										

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è anticausale, allora è instabile
- C) Il sistema è sempre stabile
- D) Il sistema è sempre instabile anche nel caso di sistema non causale.

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- **B)** vale 1/T
- C) vale zero
- **D)** vale 1
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D**) 1

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza $T_c x_n$ viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = B_1/B_2$
- **D)** $K = \sqrt{B_2/B_1}$

Esercizio 6. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) con modulo pari
- B) reale
- C) causale

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) nessuna delle altre risposte
- **D)** x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **C)** $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{2}z^{-1})^2}$
- E) Nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Ma	tricola										
Co	mpito					4.	5				
	Eserci	izio	1	2	3	4	5	6	7	8	
	D:										

Risposta

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** x[n] = u[n]

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}, n = 0, 1, 2, \dots, 127,$ ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = B_1/B_2$

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 2/T
- **B)** vale 2
- C) vale zero
- **D)** y(t) non è un segnale a potenza media finita
- E) Nessuna delle altre risposte è corretta

Esercizio 5. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 0
- **D**) 1

Esercizio 6. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) causale
- C) reale e pari
- **D)** puramente immaginaria

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è anticausale, allora è instabile
- B) Il sistema è sempre instabile anche nel caso di sistema non causale.
- C) Il sistema può essere causale e stabile
- **D)** Il sistema è sempre stabile

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

2

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/B_1}$
- **B)** $K = B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale e stabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 4. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

A) puramente immaginaria

- B) causale
- C) reale e pari
- D) reale e causale

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 6. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- B) vale zero
- C) y(t) non è un segnale a potenza media finita
- D) Nessuna delle altre risposte è corretta
- **E)** vale 1/T

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{2}$
- \mathbf{C}) 0
- **D**) $\frac{1}{3}$

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = u[n]
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **D)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					4	7				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 0
- **C**) 1
- **D**) $\frac{1}{3}$

Esercizio 2. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **C)** x[n] = u[n]
- **D)** $x[n] = n^2 + 1$

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** y(t) non è un segnale a potenza media finita
- B) vale zero
- **C**) vale 2
- D) Nessuna delle altre risposte è corretta
- **E)** vale 2/T

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre instabile anche nel caso di sistema non causale.
- B) Se il sistema è anticausale, allora è instabile
- C) Il sistema può essere causale e stabile
- D) Il sistema è sempre stabile

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_2/B_1$
- **D)** $K = B_1/B_2$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 7. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte immaginaria nulla
- C) può avere parte reale nulla

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	$_{ m mpito}$					4	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n]$
- **B)** $x[n] = \delta[n-1]$
- **C)** x[n] = u[n]
- D) nessuna delle altre risposte

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere anticausale e stabile
- C) Il sistema può essere causale ed instabile
- D) Il sistema può essere causale e stabile

Esercizio 3. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 1
- **C**) 0
- **D**) $\frac{1}{3}$

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

1

- **A)** vale 1
- B) y(t) non è un segnale a potenza media finita
- C) Nessuna delle altre risposte è corretta
- **D)** vale 1/T
- E) vale zero

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = 3B_1/B_2$
- C) $K = \sqrt{3B_1/B_2}$
- **D)** $K = B_2/B_1$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte immaginaria nulla
- C) può avere parte reale nulla

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Ma	tricola										
Co	mpito					4	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T, T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- B) Nessuna delle altre risposte è corretta
- C) vale 2/T

- **D)** vale 2
- E) y(t) non è un segnale a potenza media finita

Esercizio 4. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) con modulo pari
- C) reale

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere anticausale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A)** 0
- **B**) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D**) 1

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = \sqrt{B_1/B_2}$
- **D)** $K = B_1/B_2$

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **B)** x[n] = u[n]
- C) nessuna delle altre risposte
- **D)** $x[n] = n^2 + 1$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = \sqrt{3B_1/B_2}$
- **D)** $K = 3B_1/B_2$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 2
- B) y(t) non è un segnale a potenza media finita
- C) Nessuna delle altre risposte è corretta
- **D)** vale 2/T
- E) vale zero

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) causale
- B) reale e causale
- C) reale e pari
- D) puramente immaginaria

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

A) Il sistema può essere causale e stabile

- B) Il sistema può essere anticausale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale ed instabile

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1-4z^{-4}}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- B) nessuna delle altre risposte
- C) $x[n] = \delta[n]$
- **D)** $x[n] = \delta[n-1]$

Esercizio 8. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 0
- C) $\frac{1}{3}$
- **D**) 1

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

1

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale ed instabile
- C) Il sistema può essere causale e stabile
- D) Se il sistema è non causale, allora è instabile

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

A)
$$x[n] = 2u[n-1] + \delta[n]$$

B)
$$x[n] = 2u[n-1]$$

C)
$$x[n] = 2u[n]$$

D) nessuna delle altre risposte

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

A)
$$K = \sqrt{B_2/3B_1}$$

B)
$$K = 3B_1/B_2$$

C)
$$K = \sqrt{3B_1/B_2}$$

D)
$$K = B_2/B_1$$

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) 0
- **C**) 1
- **D**) $\frac{1}{2}$

Esercizio 8. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** y(t) non è un segnale a potenza media finita
- **B)** vale 2/T
- C) vale zero
- D) Nessuna delle altre risposte è corretta
- **E**) vale 2

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					5:	2				
	Eserci	zio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-2z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema è sempre stabile
- C) Se il sistema è anticausale, allora è instabile
- D) Il sistema è sempre instabile anche nel caso di sistema non causale.

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale 2/T
- **B)** vale 2
- C) Nessuna delle altre risposte è corretta
- D) vale zero
- **E)** y(t) non è un segnale a potenza media finita

Figura 1:

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** $x[n] = n^2 + 1$
- C) x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- D) nessuna delle altre risposte

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con K0 costante positiva, sono uguali?

- **A)** $K = B_1/B_2$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{3}$
- \mathbf{C}) 0
- **D**) $\frac{1}{2}$

Esercizio 7. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\frac{\pi}{2}(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- B) Nessuna delle altre risposte è corretta
- **C**) vale 2
- **D)** y(t) non è un segnale a potenza media finita
- E) vale 2/T

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- B) $\frac{1}{3}$
- C) $\frac{1}{2}$
- **D**) 0

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 4. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere anticausale ed instabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale e stabile

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = u[n]
- C) x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- **D)** x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/B_1}$
- **B)** $K = B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) può avere parte reale nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54
Eserc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

Esercizio 2. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) reale
- C) con modulo pari

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- **B)** vale zero
- C) vale 1/T
- **D)** y(t) non è un segnale a potenza media finita
- E) Nessuna delle altre risposte è corretta

Esercizio 4. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

A) $\frac{1}{2}$

- **B**) 0
- C) $\frac{1}{3}$
- **D**) 1

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = 3B_1/B_2$
- **D)** $K = B_2/B_1$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 7. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z-2} + \frac{z}{z-1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere causale e stabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **B)** $x[n] = n^2 + 1$
- C) nessuna delle altre risposte
- **D)** x[n] = u[n]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Con	mpito					5.	5				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- E) Nessuna delle altre risposte

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte reale nulla
- C) può avere parte immaginaria nulla

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

1

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = 3B_1/B_2$
- **D)** $K = B_2/B_1$

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- **B)** vale 2/T
- C) vale zero
- **D**) vale 2
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{2}$
- \mathbf{C}) 0
- **D**) $\frac{1}{3}$

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n]$
- **B)** x[n] = u[n]
- **C)** $x[n] = \delta[n-1]$
- D) nessuna delle altre risposte

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale ed instabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{2}$
- **C**) 0
- **D**) $\frac{1}{3}$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1
- B) Nessuna delle altre risposte è corretta
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 1/T
- E) vale zero

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte immaginaria nulla
- C) può avere parte reale nulla

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = B_2/B_1$
- **D)** $K = 3B_1/B_2$

Figura 1:

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- **B)** $x[n] = n^2 + 1$
- C) nessuna delle altre risposte
- **D)** x[n] = u[n]

Esercizio 6. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre stabile
- B) Il sistema è sempre instabile anche nel caso di sistema non causale.
- C) Se il sistema è anticausale, allora è instabile
- D) Il sistema può essere causale e stabile

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$
- **C)** $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome									
Cognome									
Matricola									
Compito				5	7				
Egono	 1	2	9	1	Ľ	C	7	0	<u> </u>

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 1/T
- B) Nessuna delle altre risposte è corretta
- C) vale zero
- **D**) vale 1
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_2/B_1}$

Figura 1:

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = 2u[n-1] + \delta[n]$
- B) nessuna delle altre risposte
- **C)** x[n] = 2u[n-1]
- **D)** x[n] = 2u[n]

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è anticausale, allora è instabile
- B) Il sistema è sempre instabile anche nel caso di sistema non causale.
- C) Il sistema può essere causale e stabile
- **D)** Il sistema è sempre stabile

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/2] & \text{se} \quad k = 2n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **C)** $Y(z) = \frac{1}{1-2z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 1
- **D**) 0

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) causale
- B) puramente immaginaria
- C) reale e pari
- D) reale e causale

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					58	8				
<u> </u>	Eserci	izio	1	2	3	4	5	6	7	8	
											ĺ

Risposta

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale e stabile

Esercizio 2. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e causale
- B) reale e pari
- C) puramente immaginaria
- D) causale

Esercizio 3. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_1/B_2$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 20\sin(2\pi t)$$

- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 1
- **B**) 0
- C) $\frac{1}{3}$
- **D**) $\frac{1}{2}$

Esercizio 7. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\pi(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- **B**) vale 1
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 1/T
- E) vale zero

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 2u[n]
- C) x[n] = 2u[n-1]
- **D)** $x[n] = 2u[n-1] + \delta[n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					5	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	$_{ m sta}$									

Esercizio 1. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) reale
- C) con modulo pari

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\cos(8\pi t)$

Esercizio 3. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 0 per n < 0; x[n] = n + 1 per $n \ge 0$
- C) $x[n] = n^2 + 1$
- **D)** x[n] = u[n]

Esercizio 4. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- **B)** vale 1/T
- **C**) vale 1
- D) vale zero
- E) Nessuna delle altre risposte è corretta

Esercizio 5. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 0
- C) $\frac{1}{3}$
- **D**) 1

Esercizio 6. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere anticausale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = \sqrt{B_2/B_1}$
- C) $K = B_2/B_1$
- **D)** $K = B_1/B_2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B)** vale 1/T
- C) Nessuna delle altre risposte è corretta
- **D)** y(t) non è un segnale a potenza media finita
- **E)** vale 1

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 0
- B) $\frac{1}{2}$
- **C**) 1
- **D**) $\frac{1}{3}$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 5. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = B_2/B_1$
- **D)** $K = 3B_1/B_2$

Esercizio 6. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) deve avere parte reale non nulla e parte immaginaria non nulla
- C) può avere parte immaginaria nulla

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) nessuna delle altre risposte
- **D)** x[n] = u[n]

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale e stabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) $\frac{1}{3}$
- **C**) 1
- **D**) 0

Esercizio 2. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) con modulo pari
- C) reale

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

1

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{3B_1/B_2}$

D)
$$K = 3B_1/B_2$$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-4z^{-4}}$
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 6. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- C) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- D) nessuna delle altre risposte

Esercizio 7. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 2
- B) vale zero
- C) Nessuna delle altre risposte è corretta
- **D)** y(t) non è un segnale a potenza media finita
- **E)** vale 2/T

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere causale ed instabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere anticausale e stabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					6	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia

Figura 1:

y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) x[n] = 0 per n < 0 e per n pari; x[n] = 1 per n dispari.
- **B)** x[n] = u[n]
- C) x[n] = 0 per n < 0 e per n dispari; x[n] = 1 per n pari (zero incluso).
- **D)** nessuna delle altre risposte

Esercizio 2. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- B) y(t) non è un segnale a potenza media finita
- C) vale 1/T
- D) Nessuna delle altre risposte è corretta
- **E**) vale 1

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 20\sin(2\pi t)$$

- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- B) $\frac{1}{2}$
- C) $\frac{1}{3}$
- **D**) 0

Esercizio 7. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) puramente immaginaria
- B) reale e pari
- C) reale e causale
- D) causale

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = B_1/B_2$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = \sqrt{B_1/B_2}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					6	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rienos	eta									

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Il sistema può essere causale e stabile
- C) Se il sistema è non causale, allora è instabile
- D) Il sistema può essere causale ed instabile

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$
- **C)** $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) deve avere parte reale non nulla e parte immaginaria non nulla
- B) può avere parte reale nulla
- C) può avere parte immaginaria nulla

Esercizio 4. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) $\frac{1}{3}$
- C) $\frac{1}{2}$

Figura 1:

D) 0

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n-1]$
- **B)** x[n] = u[n]
- C) $x[n] = \delta[n]$
- D) nessuna delle altre risposte

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Esercizio 7. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T, T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B)** vale 2/T
- C) Nessuna delle altre risposte è corretta
- **D)** vale 2
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/B_1}$
- **B)** $K = \sqrt{B_1/B_2}$
- C) $K = B_2/B_1$
- **D)** $K = B_1/B_2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	4				
	Eserci	izio	1	2	3	4	5	6	7	8]
	Rispos	sta									

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/2] & \text{se} \quad k = 2n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

C)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 1
- **B**) 0
- C) $\frac{1}{2}$
- **D**) $\frac{1}{3}$

Esercizio 3. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

A)
$$x[n] = 0$$
 per $n < 0$; $x[n] = n + 1$ per $n \ge 0$

B) nessuna delle altre risposte

C)
$$x[n] = n^2 + 1$$

D)
$$x[n] = u[n]$$

Esercizio 4. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e pari
- B) causale
- C) reale e causale
- D) puramente immaginaria

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 6. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere anticausale e stabile
- C) Il sistema può essere causale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{3B_1/B_2}$
- **B)** $K = B_2/B_1$
- C) $K = 3B_1/B_2$
- **D)** $K = \sqrt{B_2/3B_1}$

Esercizio 8. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- **B)** y(t) non è un segnale a potenza media finita
- C) vale zero
- **D)** vale 2
- **E)** vale 2/T

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	5				
	Eserc	izio	1	2	3	4	5	6	7	8	
	Rispo	sta									

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = 2u[n]
- B) nessuna delle altre risposte
- C) $x[n] = 2u[n-1] + \delta[n]$
- **D)** x[n] = 2u[n-1]

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- C) $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema può essere causale ed instabile
- C) Il sistema può essere anticausale e stabile

D) Se il sistema è non causale, allora è instabile

Esercizio 4. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) con modulo pari
- B) causale
- C) reale

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/B_1}$
- **B)** $K = B_1/B_2$
- C) $K = B_2/B_1$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) 0
- C) $\frac{1}{2}$
- **D**) 1

Esercizio 8. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** y(t) non è un segnale a potenza media finita
- **B)** vale 2/T
- **C**) vale 2
- D) vale zero
- E) Nessuna delle altre risposte è corretta

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					6	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
											i

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) 1
- **B**) 0
- C) $\frac{1}{2}$
- **D**) $\frac{1}{3}$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 3. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte immaginaria nulla
- B) deve avere parte reale non nulla e parte immaginaria non nulla
- C) può avere parte reale nulla

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** x[n] = 2u[n]
- C) x[n] = 2u[n-1]
- **D)** $x[n] = 2u[n-1] + \delta[n]$

Esercizio 5. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale e stabile

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** vale 2
- B) vale zero
- C) Nessuna delle altre risposte è corretta
- **D)** vale 2/T
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_1/B_2$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = B_2/B_1$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- \mathbf{C}) 0
- **D**) 1

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T, T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- B) Nessuna delle altre risposte è corretta
- **C**) vale 2
- **D)** y(t) non è un segnale a potenza media finita
- E) vale 2/T

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_1/B_2$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = \sqrt{B_1/B_2}$

Esercizio 5. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** x[n] = u[n]
- **B)** $x[n] = \delta[n]$
- C) nessuna delle altre risposte
- **D)** $x[n] = \delta[n-1]$

Esercizio 6. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1-2z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z-2} + \frac{z}{z-1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

2

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale ed instabile
- D) Il sistema può essere causale e stabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) puramente immaginaria
- B) reale e causale
- C) causale
- D) reale e pari

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A)** 0
- **B**) $\frac{1}{2}$
- **C**) 1
- **D**) $\frac{1}{3}$

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 4} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale ed instabile
- B) Il sistema può essere anticausale e stabile
- C) Il sistema può essere causale e stabile
- D) Se il sistema è non causale, allora è instabile

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$

- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- B) vale zero
- C) y(t) non è un segnale a potenza media finita
- **D)** vale 1/T
- **E**) vale 1

Esercizio 6. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/3B_1}$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{3B_1/B_2}$
- **D)** $K = 3B_1/B_2$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 8. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

2

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n-1]$
- **B)** x[n] = u[n]
- C) $x[n] = \delta[n]$
- D) nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Matricola											
Co	Compito					6	9				
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 2} + \frac{z}{z - 1/2}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale. Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere causale e stabile
- C) Il sistema può essere anticausale e stabile
- D) Il sistema può essere causale ed instabile

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \frac{2}{3}\sin^2(4\pi t) + 2\cos(2\pi t) + \sin(6\pi t)$ e $y(t) = 1 + \frac{2}{3}\cos(2\pi t) - 2\sin(4\pi t) + 6\cos(8\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) $\frac{1}{2}$
- **C**) 0
- **D**) 1

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B**) vale 1
- C) y(t) non è un segnale a potenza media finita
- D) Nessuna delle altre risposte è corretta
- **E)** vale 1/T

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- A) nessuna delle altre risposte
- **B)** $x[n] = n^2 + 1$

Figura 1:

C)
$$x[n] = u[n]$$

D)
$$x[n] = 0$$
 per $n < 0$; $x[n] = n + 1$ per $n \ge 0$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 10\cos(6\pi t)$$

B)
$$x(t) = 5\cos(4\pi t)$$

C)
$$x(t) = 20\cos(6\pi t)$$

D)
$$x(t) = 20\sin(2\pi t)$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

Esercizio 7. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

A)
$$K = \sqrt{B_1/B_2}$$

B)
$$K = B_2/B_1$$

C)
$$K = \sqrt{B_2/B_1}$$

D)
$$K = B_1/B_2$$

Esercizio 8. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) puramente immaginaria
- B) reale e causale
- C) causale
- D) reale e pari

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A)** 0
- **B**) 1
- C) $\frac{1}{2}$
- **D**) $\frac{1}{3}$

Esercizio 2. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Il sistema è sempre stabile
- C) Il sistema è sempre instabile anche nel caso di sistema non causale.
- D) Se il sistema è anticausale, allora è instabile

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T, T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- **B)** vale 2
- C) vale zero
- **D)** vale 2/T
- E) Nessuna delle altre risposte è corretta

Esercizio 4. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n]. Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n]$
- **B)** $x[n] = \delta[n-1]$

Figura 1:

- C) x[n] = u[n]
- D) nessuna delle altre risposte

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 7. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 [$H(f_0 - f) = H(f_0 + f)$] ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) con modulo pari
- B) reale
- C) causale

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_1/B_2$
- **B)** $K = B_2/B_1$
- C) $K = \sqrt{B_2/B_1}$
- **D)** $K = \sqrt{B_1/B_2}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome											
Cog	gnome											
Matricola												
Co	Compito		71									
	Eserci	izio	1	2	3	4	5	6	7	8		
	Rispos	sta										

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

A)
$$x[n] = 2u[n-1] + \delta[n]$$

B)
$$x[n] = 2u[n-1]$$

C)
$$x[n] = 2u[n]$$

D) nessuna delle altre risposte

Esercizio 2. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

- A) reale e pari
- B) reale e causale
- C) causale
- D) puramente immaginaria

Esercizio 3. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere anticausale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere causale e stabile
- D) Il sistema può essere anticausale ed instabile

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z^{-2}}$

Esercizio 5. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T, T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) y(t) non è un segnale a potenza media finita
- B) vale zero
- C) vale 2/T
- D) Nessuna delle altre risposte è corretta
- **E)** vale 2

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 7. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = 2\cos^2(2\pi t) + \cos(2\pi t) + \frac{1}{2}\sin(8\pi t)$ e $y(t) = \frac{1}{2} - \frac{2}{3}\cos(2\pi t) - \frac{2}{3}\sin(8\pi t)$ sull'intervallo $t \in [0, 1]$. Il risultato vale:

- **A**) $\frac{1}{3}$
- **B**) 1
- **C**) 0
- **D**) $\frac{1}{2}$

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_1/B_2}$
- **B)** $K = B_1/B_2$
- **C)** $K = \sqrt{B_2/B_1}$
- **D)** $K = B_2/B_1$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Matricola											
Compito						7:	2				
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 3} + \frac{z}{z - 1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema può essere causale e stabile
- B) Se il sistema è non causale, allora è instabile
- C) Il sistema può essere anticausale ed instabile
- D) Il sistema può essere anticausale e stabile

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) $\frac{1}{3}$
- **C**) 1
- **D**) $\frac{1}{2}$

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) triangolare, di supporto [-T,T] e valore massimo pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) Nessuna delle altre risposte è corretta
- B) vale zero
- **C**) vale 1
- **D)** y(t) non è un segnale a potenza media finita
- **E)** vale 1/T

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- C) $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 5. (1 punto) Un sistema lineare e tempo invariante, con risposta all'impulso h(t) nulla per t < T con T > 0, ha una funzione di trasferimento H(f) la quale

- A) può avere parte reale nulla
- B) può avere parte immaginaria nulla
- C) deve avere parte reale non nulla e parte immaginaria non nulla

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/2] & \text{se} \quad k = 2n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = \delta[n-1]$
- B) nessuna delle altre risposte
- C) $x[n] = \delta[n]$
- **D)** x[n] = u[n]

Esercizio 8. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale 1 per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = \sqrt{B_2/B_1}$
- **B)** $K = \sqrt{B_1/B_2}$
- C) $K = B_2/B_1$
- **D)** $K = B_1/B_2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Matricola											
Compito						7	3				
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

A)
$$x[n] = 2u[n-1] + \delta[n]$$

B)
$$x[n] = 2u[n]$$

C)
$$x[n] = 2u[n-1]$$

D) nessuna delle altre risposte

Esercizio 2. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) $\frac{1}{2}$
- **B**) 0
- C) $\frac{1}{3}$
- **D**) 1

Esercizio 3. (1 punto) Sia dato un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale, presenta una simmetria attorno alla frequenza f_0 $[H(f_0 - f) = H(f_0 + f)]$ ed è nulla per f < 0. Tale sistema ha una risposta all'impulso

- A) causale
- B) con modulo pari
- C) reale

Esercizio 4. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_1(t)$, uscita del sistema con banda B_1 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_2(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

A)
$$K = B_2/B_1$$

B)
$$K = \sqrt{B_2/3B_1}$$

- C) $K = 3B_1/B_2$
- **D)** $K = \sqrt{3B_1/B_2}$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se} \quad k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- C) $Y(z) = \frac{1}{1-4z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 7. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-\pi(t - nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- **A)** y(t) non è un segnale a potenza media finita
- **B**) vale 1
- C) Nessuna delle altre risposte è corretta
- **D)** vale 1/T
- E) vale zero

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z - 7} + \frac{z}{z - 1/5}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Il sistema è sempre stabile
- B) Il sistema è sempre instabile anche nel caso di sistema non causale.
- C) Il sistema può essere causale e stabile
- D) Se il sistema è anticausale, allora è instabile

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un rumore gaussiano bianco n(t) con spettro di potenza uguale a $N_0/2$ viene posto in ingresso a due sistemi lineari e tempo invarianti con funzioni di trasferimento $H_1(f)$ e $H_2(f)$. $H_1(f)$ vale 1 per $|f| < B_1$ e 0 altrove. $H_2(f)$ vale $1 - |f|/B_2$ per $|f| < B_2$ e 0 altrove. Siano $y_1(t)$ e $y_2(t)$ le due uscite. $y_2(t)$, uscita del sistema con banda B_2 , viene moltiplicata per una costante reale K per ottenere il processo $y_3(t)$. Per quale valore di K le probabilità $P\{y_1(t) > A\}$, e $P\{y_3(t) > A\}$, con A costante positiva, sono uguali?

- **A)** $K = B_2/B_1$
- **B)** $K = \sqrt{B_2/3B_1}$
- C) $K = 3B_1/B_2$
- **D)** $K = \sqrt{3B_1/B_2}$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-2z^{-2}}$

Esercizio 3. (1.5 punti) È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi}{2}(t-nT)^2}$$

Tale segnale passa attraverso un sistema lineare e tempo invariante con risposta all'impulso h(t) rettangolare, di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. La potenza media di y(t)

- A) vale zero
- **B)** vale 2
- C) Nessuna delle altre risposte è corretta
- **D)** vale 2/T
- **E)** y(t) non è un segnale a potenza media finita

Esercizio 4. (1 punto) Un sistema lineare e tempo invariante la cui funzione di trasferimento H(f) è reale e dispari ha una risposta all'impulso

1

- A) reale e pari
- B) puramente immaginaria
- C) reale e causale
- D) causale

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 6. (1 punto) Calcolare il prodotto scalare dei segnali $x(t) = \cos^2(2\pi t) + \sin(6\pi t)$ e $y(t) = \frac{1}{2} + \cos(2\pi t) - 2\cos(4\pi t) + \frac{1}{2}\sin(6\pi t)$ sull'intervallo $t \in [0,1]$. Il risultato vale:

- **A**) 0
- **B**) 1
- C) $\frac{1}{2}$
- **D**) $\frac{1}{3}$

Esercizio 7. (1.5 punti) Si desidera che il segnale all'uscita del sistema mostrato nella figura 1 sia y[n] = u[n].

Figura 1:

Quale deve essere l'ingresso x[n]?

- **A)** $x[n] = 2u[n-1] + \delta[n]$
- **B)** x[n] = 2u[n]
- C) nessuna delle altre risposte
- **D)** x[n] = 2u[n-1]

Esercizio 8. (1.5 punti) Sia dato un sistema LTI numerico con funzione di trasferimento

$$H(z) = \frac{z}{z-3} + \frac{z}{z-1/3}$$

di cui non sono noti ne' la regione di convergenza, ne' il supporto temporale (può trattarsi di un filtro causale, anticausale oppure non causale). Dire quali delle seguenti condizioni è possibile.

- A) Se il sistema è non causale, allora è instabile
- B) Il sistema può essere anticausale ed instabile
- C) Il sistema può essere causale e stabile
- D) Il sistema può essere anticausale e stabile