# Network Flows and Bipartite Matching

Rangaballav Pradhan ITER, SOADU

## Flow Network

- A Flow Network is a special type of transportation network where some materials (traffic) flows across the nodes and through the edges.
- For example:
  - ➤ a road transportation system in which the edges are road segments and the nodes are junctions;
  - ➤ a computer network in which the edges are links that can carry data packets and the nodes are switches;
  - ➤ a fluid network in which edges are pipes that carry liquid, and the nodes are junctures where pipes are plugged together.

Intuition. Material flowing through a transportation network; material originates at source (s) and is sent to sink (t).



## Flow Network

- A Flow Network is a special type of transportation network where some materials (traffic) flows across the nodes and through the edges.
- A flow network is associated with several ingredients:
  - > capacities on the edges, indicating how much they can carry;
  - > source nodes in the graph, which generate traffic;
  - > sink or destination nodes in the graph, which can "absorb" traffic as it arrives;
  - > the traffic (flow) itself, which is transmitted across the edges.

#### Assumptions.

- A single source node (s) with no indegree and single sink (t) node with no out-degree.
- > At least one edge incident to each node;
- > All capacities are integers.



## Flow Network: Definition

A Flow Network is a tuple G = (V, E, s, t, c).

- Digraph (V, E) with source  $s \in V$  and sink  $t \in V$ .
- Capacity  $c(e) \ge 0$  for each  $e \in E$ .

assume all nodes are reachable from s



## Flow: Definition

Def. An *st*-flow (flow)  $f: E \rightarrow R$  is a function that satisfies:

• For each  $e \in E$ :

 $0 \le f(e) \le c(e)$ 

[capacity constraint]

flow

For each  $v \in V - \{s, t\}$ :  $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ 

Inflow (v) Outflow (v)

[flow conservation constraint]

capacity

- the value f(e) represents the amount of flow carried by edge e.
- Inflow (v): the total flow value f(e)over all edges entering node v.
- Outflow (v): the total flow value f(e)over all edges leaving node v.

5 /9 0 /15

inflow at v = 5 + 5 + 0 = 10outflow at v = 10 + 0 = 10

## Value of Flow

Def. An st-flow (flow) f is a function that satisfies:

- For each  $e \in E$ :
- $0 \le f(e) \le c(e)$

[capacity]

For each 
$$v \in V - \{s, t\}$$
: 
$$\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

Def. The value of a flow f is: 
$$val(f) = \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ in to } s} f(e)$$



## Maximum-Flow Problem

Def. An st-flow (flow) f is a function that satisfies:

- For each  $e \in E$ :
- $0 \le f(e) \le c(e)$

[capacity]

- For each  $v \in V \{s, t\}$ :  $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

[flow conservation]

The value of a flow f is:  $val(f) = \sum_{e} f(e) - \sum_{e} f(e)$ Def. e out of s

Max-flow problem. Given a Flow network G = (V, E, s, t, c),

Find a flow of maximum value.



- Start with f(e) = 0 for each edge  $e \in E$ .
- Find an  $s \sim t$  path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.



- Start with f(e) = 0 for each edge  $e \in E$ .
- Find an  $s \sim t$  path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



- Start with f(e) = 0 for each edge  $e \in E$ .
- Find an  $s \sim t$  path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



- Start with f(e) = 0 for each edge  $e \in E$ .
- Find an  $s \sim t$  path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.



- Start with f(e) = 0 for each edge  $e \in E$ .
- Find an  $s \sim t$  path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



#### Greedy algorithm.

- Start with f(e) = 0 for each edge  $e \in E$ .
- Find an  $s \sim t$  path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.

#### Ending Flow value = 16



#### Greedy algorithm.

- Start with f(e) = 0 for each edge  $e \in E$ .
- Find an  $s \sim t$  path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.

#### But maximum flow value = 19



# Why the greedy algorithm fails?

- Q. Why does the greedy algorithm fail?
- A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.

• Greedy algorithm could choose  $s \rightarrow v \rightarrow t$  as first path.



Bottom line. Need some mechanism to "undo" a bad decision.

## Residual network

Original edge.  $e = (u, v) \in E$ .

- Flow f(e).
- Capacity c(e).

Reverse edge.  $e^{\text{reverse}} = (v, u)$ .

• "Undo" flow sent.

Residual capacity.

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^{\text{reverse}} \in E \end{cases}$$

Original Flow Network G



Residual Flow Network  $G_f$ 



Residual network.  $G_f = (V, E_f, s, t, c_f)$ .

•  $E_f = \{e : f(e) < c(e)\} \cup \{e^{\text{reverse}} : f(e) > 0\}.$ 

# Augmenting path

Def. An augmenting path is a simple  $s \sim t$  path in the residual network  $G_f$ . Def. The bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in  $G_f$ . Then, after calling  $f' \leftarrow \mathsf{AUGMENT}(f, c, P)$ , the resulting f' is a flow and  $val(f') = val(f) + bottleneck(G_f, P)$ .

```
AUGMENT(f, c, P)

Let b = \text{bottleneck}(P, f)

For each edge (u, v) \in P

If e = (u, v) is a forward edge then increase f(e) in G by b

Else ((u, v) is a backward edge, and let e = (v, u)) decrease f(e) in G by b

Endif
Endfor
Return(f)
```

# Ford–Fulkerson algorithm

#### Ford-Fulkerson augmenting path algorithm.

- Start with f(e) = 0 for each edge  $e \in E$ .
- Find a simple  $s \sim t$  path P in the residual network  $G_f$ .
- Augment flow along path P.
- Repeat until you get stuck.

```
FORD—FULKERSON(G)

FOREACH edge e \in E:

f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s \sim t path P in G_f)

f \leftarrow \text{AUGMENT}(f, c, P).

Update G_f.

RETURN f.
```

# Example



# Ford–Fulkerson algorithm: Analysis

- Let m = |E| and n = |V|
- The *for* loop runs for O(m) times.
- The algorithm terminates in at most C iterations of the While loop in the worst case, where  $C = \sum_{e \ out \ of \ s} c(e)$ .
- The residual graph  $G_f$  has at most 2m edges. Given the new flow f, we can build the new residual graph in O(m + n) time

```
FORD—FULKERSON(G)

FOREACH edge e \in E:

f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s \sim t path P in G_f)

f \leftarrow \text{AUGMENT}(f, c, P).

Update G_f.

RETURN f.
```

- We can maintain  $G_f$  using an adjacency list representation in O(m+n) time.
- To find an s-t path in  $G_f$ , we can use BFS or DFS, which run in O(m+n) time;
- By our earlier assumption that each vertex is incident with at least one edge, i.e.,  $m \ge n/2$ . So, O(m+n) is the same as O(m).
- The procedure AUGMENT(f, c, P) takes time O(n), as the path P has at most n-1 edges.
- So, the total time complexity in worst case:  $O(E^*f)$  or  $O(m^*C)$

## Cut in a Flow Network

Def. An *st*-cut (cut) is a partition (A, B) of the nodes with  $s \in A$  and  $t \in B$ .

Def. Its capacity is the sum of the capacities of the edges from A to B.

$$cap(A,B) = \sum_{e \text{ out of } A} c(e)$$



## Cut in a Flow Network

Def. An *st*-cut (cut) is a partition (A, B) of the nodes with  $s \in A$  and  $t \in B$ .

Def. Its capacity is the sum of the capacities of the edges from A to B.

$$cap(A,B) = \sum_{e \text{ out of } A} c(e)$$



# Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with  $s \in A$  and  $t \in B$ .

Def. Its capacity is the sum of the capacities of the edges from A to B.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

Min-cut problem. Find a cut of minimum capacity.



# What is the capacity of the cut?



Flow value lemma. Let f be any st-flow and let (A, B) be any st-cut. Then, the value of the st-flow f equals the net flow across the cut (A, B).

$$val(f) \; = \sum_{e \text{ out of } A} f(e) \; \; - \sum_{e \text{ in to } A} f(e)$$

Proof. We know,  $val(f) = \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ in to } s} f(e)$ 

Every node v in A is internal except s, and we know that for all such nodes,  $f^{out}(v) = f^{in}(v)$ So,

$$val(f) = \sum_{v \in A} (f^{\text{out}}(v) - f^{\text{in}}(v))$$

$$\sum_{v \in A} f^{\text{out}}(v) - f^{\text{in}}(v) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = f^{\text{out}}(A) - f^{\text{in}}(A)$$

net flow across cut = 5 + 10 + 10 = 25



Flow value lemma. Let f be any st-flow and let (A, B) be any st-cut. Then, the value of the flow f equals the net flow across the cut (A, B).

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

net flow across cut = 10 + 5 + 10 = 25



value of flow = 25

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the value of the flow f equals the net flow across the st-cut (A, B).

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

net flow across cut = (10 + 10 + 5 + 10 + 0 + 0) - (5 + 5 + 0 + 0) = 25



What is the net flow across the given cut?



Weak duality. Let f be any st-flow and (A, B) be any st-cut. Then,  $val(f) \le cap(A, B)$ .



value of flow = 27

capacity of cut = 30

Theorem 1. If f is an st-flow such that there is no s-t path in the residual graph  $G_f$ , then there is an st-cut  $(A^*, B^*)$  in G for which v(f) = c  $(A^*, B^*)$ . Consequently, f has the maximum value of any flow in G, and  $(A^*, B^*)$  has the minimum capacity of any st-cut in G.

Pf. The statement claims the existence of the cut  $(A^*, B^*)$  satisfying a certain desirable property;

- To prove, we must identify such a cut.
- Let  $A^*$  denote the set of all nodes v in G for which there is an s-v path in the final  $G_f$ . Let  $B^*$  denote the set of all other nodes:  $B^* = V A^*$ .
- First we establish that  $(A^*, B^*)$  is an s-t cut.
- It is clearly a partition of V. The source s belongs to  $A^*$  since there is always a path from s to s.
- Moreover,  $t \notin A^*$  by the assumption that there is no s-t path in  $G_f$ ; hence  $t \in B^*$  as desired.

Theorem 1. If f is an st-flow such that there is no s-t path in the residual graph  $G_f$ , then there is an st-cut  $(A^*, B^*)$  in G for which v(f) = c  $(A^*, B^*)$ . Consequently, f has the maximum value of any flow in G, and  $(A^*, B^*)$  has the minimum capacity of any st-cut in G.

Pf. Suppose that e = (u, v) is an edge in G for which  $u \in A^*$  and  $v \in B^*$ . We claim that f(e) = c(e).

- For if not, e would be a forward edge in the residual graph  $G_f$ , and there will be a path s-u-v in  $G_f$  contradicting our assumption that  $v \in B^*$ .
- So all edges out of  $A^*$  are completely saturated with flow.



Theorem 1. If f is an st-flow such that there is no s-t path in the residual graph  $G_f$ , then there is an st-cut  $(A^*, B^*)$  in G for which v(f) = c  $(A^*, B^*)$ . Consequently, f has the maximum value of any flow in G, and  $(A^*, B^*)$  has the minimum capacity of any st-cut in G.

Pf. Suppose that e' = (u', v') is an edge in G for which  $v' \in A^*$  and  $u' \in B^*$ . We claim that f(e') = 0.

- For if not, e' would produce a backward edge e'' = (v', u') in the residual graph  $G_f$ , and there will be a path s-v'-u' in  $G_f$  contradicting our assumption that u'  $\in B^*$ .
- All edges into  $A^*$  are completely unused.



Theorem 1. If f is an st-flow such that there is no s-t path in the residual graph  $G_f$ , then there is an st-cut  $(A^*, B^*)$  in G for which v(f) = c  $(A^*, B^*)$ . Consequently, f has the maximum value of any flow in G, and  $(A^*, B^*)$  has the minimum capacity of any st-cut in

Pf.

$$v(f) = f^{\text{out}}(A^*) - f^{\text{in}}(A^*)$$

$$= \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ into } A^*} f(e)$$

$$= \sum_{e \text{ out of } A^*} c_e - 0$$

$$= c(A^*, B^*). \quad \blacksquare$$



## Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max flow iff. no augmenting paths.

Max-flow min-cut theorem. In every flow network, the maximum value of an *st*-flow is equal to the minimum capacity of an *st*-cut.

Pf. The point is that f in Theorem 1 must be a maximum st-flow;

- If there were a flow f' > f, the value of f' would exceed the capacity of (A, B), and this would contradict the weak duality.
- Similarly, it follows that (A, B) in Theorem 1 is a minimum cut and no other cut can have smaller capacity.
- If there were a cut (A', B') of smaller capacity, it would be less than the value of f, and this again would contradict the weak duality.
- Due to these implications, the Max-Flow Min-Cut Theorem holds its claim.

### Computing a minimum cut from a maximum flow

Theorem. Given any max flow f, can compute a min cut (A, B) in O(m) time (m = no. of edges in the residual graph).

Pf. Let A = set of nodes reachable from s in residual network  $G_f$  using BFS/DFS.



# Example

Find the maximum flow and minimum cut capacity in the given graph, identify the cut.



# Choosing good augmenting path

- The worst case time complexity of Ford-Fulkerson:  $O(m^*C)$
- It is a reasonable bound for smaller C value;
- However, it is very weak when C is large.
- For example, if Ford-Fulkerson algorithm selects the augmenting paths in the following order:
  - *S-u-v-t*
  - *s-v-u-t*
  - *s-u-v-t*
  - *s-v-u-t*
  - •
- The running time will be significantly high.



# Choosing good augmenting path: History

| year | method                    | # augmentations | running time              |   |
|------|---------------------------|-----------------|---------------------------|---|
| 1955 | augmenting path           | n C             | O(m n C)                  |   |
| 1972 | fattest path              | $m \log (mC)$   | $O(m^2 \log n \log (mC))$ | Ī |
| 1972 | capacity scaling          | $m \log C$      | $O(m^2 \log C)$           | f |
| 1985 | improved capacity scaling | $m \log C$      | $O(m n \log C)$           | I |
| 1970 | shortest augmenting path  | m n             | $O(m^2 n)$                | Ī |
| 1970 | level graph               | m n             | $O(m n^2)$                | 5 |
| 1983 | dynamic trees             | m n             | $O(m n \log n)$           | 1 |

fat paths

shortest paths

# Max-flow algorithms: History

| year | method                    | worst case                       | discovered by        |
|------|---------------------------|----------------------------------|----------------------|
| 1951 | simplex                   | $O(m n^2 C)$                     | Dantzig              |
| 1955 | augmenting paths          | $O(m \ n \ C)$                   | Ford–Fulkerson       |
| 1970 | shortest augmenting paths | $O(m n^2)$                       | Edmonds-Karp, Dinitz |
| 1974 | blocking flows            | $O(n^3)$                         | Karzanov             |
| 1983 | dynamic trees             | $O(m \ n \log n)$                | Sleator–Tarjan       |
| 1985 | improved capacity scaling | $O(m \ n \log C)$                | Gabow                |
| 1988 | push-relabel              | $O(m n \log (n^2 / m))$          | Goldberg–Tarjan      |
| 1998 | binary blocking flows     | $O(m^{3/2}\log{(n^2/m)}\log{C})$ | Goldberg-Rao         |
| 2013 | compact networks          | O(m n)                           | Orlin                |
| 2014 | interior-point methods    | $\tilde{O}(m n^{1/2} \log C)$    | Lee-Sidford          |
| 2016 | electrical flows          | $\tilde{O}(m^{10/7} C^{1/7})$    | Mądry                |
| 20xx |                           | 333                              |                      |

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C

## Choosing good augmenting path

- A natural idea is to select the path with largest bottleneck capacity.
- However, to find such paths can slow down each individual iteration by quite a bit.
- We will avoid this slowdown by not worrying about selecting the path that has exactly the largest bottleneck capacity. Instead, we will maintain a scaling parameter  $\Delta$ , and we will look for paths that have bottleneck capacity of at least  $\Delta$ .
- Let  $G_f(\Delta)$  be the subgraph of the residual graph  $G_f$  consisting only of edges with residual capacity of at least  $\Delta$ .
- We will work with values of  $\Delta$  that are powers of 2 and not greater than C.

## Scaling-Max-Flow Algorithm

#### Scaling-Max-Flow(G, s, t, c)

```
FOREACH edge e \in E: f(e) \leftarrow 0.
\Delta \leftarrow largest power of 2 \leq C.
WHILE (\Delta \geq 1)
   G_f(\Delta) \leftarrow \Delta-residual network of G with respect to flow f.
   WHILE (there exists an s \sim t path P in G_f(\Delta))
      f \leftarrow AUGMENT(f, c, P).
       Update G_f(\Delta).
                                                                 \Delta-scaling phase
   \Delta \leftarrow \Delta / 2.
```

RETURN f.

- Assumption. All edge capacities are integers between 1 and *C*.
- Lemma 1. There are  $1 + \lfloor \log C \rfloor$  scaling phases.
- Pf. Initially  $C/2 < \Delta \le C$ ;  $\Delta$  decreases by a factor of 2 in each iteration. So, total iterations will be  $1 + \lfloor \log C \rfloor$ .
- **Lemma 2.** Let f be the flow at the end of a  $\Delta$ -scaling phase. Then, the max-flow value ≤ val(f) + m  $\Delta$ .
- Pf. At the end of a  $\Delta$ -scaling phase, lets identify a cut (A, B) where A denotes the set of all nodes v in G for which there is an s-v path in  $G_f(\Delta)$  and B denotes the set of all other nodes: B = V A.
- We can observe that (A, B) is indeed an st-cut as otherwise the phase would not have ended.

■ Lemma 2. Let f be the flow at the end of a  $\Delta$ -scaling phase. Then, the max-flow value  $\leq \text{val}(f) + \text{m} \Delta$ .

Pf. We can easily realize that all edges e out of A are almost saturated and they satisfy  $c_e < f(e) + \Delta$  and all edges into A are almost empty and they satisfy  $f(e) < \Delta$ .

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c_e - \Delta) - \sum_{e \text{ into } A} \Delta$$

$$= \sum_{e \text{ out of } A} c_e - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ into } A} \Delta$$

$$\geq c(A, B) - m\Delta.$$



So,  $c(A, B) \le v(f) + m\Delta \implies \max\text{-flow} \le v(f) + m\Delta$ 

• Lemma 3. The number of augmentations in a scaling phase is at most 2m.

Pf. The statement is clearly true in the first scaling phase: we can use each of the edges out of *s* only for at most one augmentation in that phase.

- Now consider a later scaling phase  $\Delta$ , and let  $f_p$  be the flow at the end of the previous scaling phase. In that phase, we used  $\Delta' = 2\Delta$  as our scaling parameter.
- By Lemma 2, the maximum flow  $f^*$  is at most  $v(f^*) \le v(f_p) + m \Delta'$ =  $v(f_p) + 2m\Delta$ .
- In the  $\Delta$ -scaling phase, each augmentation increases the flow by at least  $\Delta$ , and hence there can be at most 2m augmentations..

■ Lemma 4. The Scaling Max-Flow Algorithm in a graph with m edges and integer capacities finds a maximum flow in at most  $2m(1+\lfloor \log C \rfloor)$  augmentations. It can be implemented to run in at most  $O(m^2 \log C)$  time.

Pf. Lemma  $1 + \text{Lemma } 3 \Rightarrow O(m \log C)$  augmentations.

- Finding an augmenting path takes O(m) time.
- So, the running time of the Scaling Max-Flow Algorithm is  $O(m^2 \log C)$ .

```
Scaling-Max-Flow(G, s, t, c)
FOREACH edge e \in E: f(e) \leftarrow 0.
\Delta \leftarrow largest power of 2 \leq C.
WHILE (\Delta \geq 1)
   G_f(\Delta) \leftarrow \Delta-residual network of G with respect to flow f.
   WHILE (there exists an s \sim t path P in G_f(\Delta))
      f \leftarrow AUGMENT(f, c, P).
       Update G_f(\Delta).
                                                             \Delta-scaling phase
   \Delta \leftarrow \Delta / 2.
RETURN f.
```

### Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Markov random fields.
- Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.

### Matching

Def. Given an undirected graph G = (V, E), subset of edges  $M \subseteq E$  is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.



### Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph  $G = (L \cup R, E)$ , find a max-cardinality matching.



#### Bipartite matching: max-flow formulation

#### Formulation.

- Create digraph  $G' = (L \cup R \cup \{s, t\}, E')$  from the given bipartite graph  $G = (L \cup R, E)$ .
- Direct all edges from L to R, and assign the capacity as 1 for each.
- Add unit-capacity edges from s to each node in L.
- Add unit-capacity edges from each node in *R* to *t*.
- Now, run the Ford-Fulkerson Algorithm and find the max flow value which gives the maximum cardinality of bipartite matching.



- Suppose there is a matching in G consisting of k edges of the form (x, y) where  $x \in L$  and  $y \in R$ .
- Consider the flow f that sends one unit along each path of the form s-x-y-t, i.e., f(e)=1 for each edge on these paths. We can verify easily that the capacity and conservation conditions are indeed met and that f is an s-t flow of value k.
- Conversely, suppose there is a flow f in G of value k. We know there is an integer-valued flow f of value k; and since all capacities are 1, this means that f(e) is equal to either 0 or 1 for each edge e.
- Now, consider the set M' of edges of the form (x, y) on which the flow value is 1.

Observation 1. M' contains k edges where k is the max flow.

Pf. To prove this, consider the cut (A, B) in G' with  $A = \{s\} \cup L$ .

- The value of the flow is the total flow leaving A, minus the total flow entering A.
- The first of these terms is simply the cardinality of M' since these are the edges leaving A that carry flow, and each carries exactly one unit of flow.
- The second of these terms is 0, since there are no edges entering A.
- Thus, M' contains k edges.





Observation 2. Each node in L is the tail of at most one edge in M'.

Pf. To prove this, suppose  $x \in L$  were the tail of at least two edges in M'.

- Since our flow is integer-valued, this means that at least two units of flow leave from x.
- By conservation of flow, at least two units of flow would have to come into x—but this is not possible, since only a single edge of capacity 1 enters x.
- Thus x is the tail of at most one edge in M'.



Observation 3. Each node in R is the head of at most one edge in M'.

Pf. By the same reasoning as previous.

Conclusion. The size of the maximum matching in G is equal to the value of the maximum flow in G, and the edges in such a matching in G are the edges that carry flow from L to R in G.



# Network flow II: quiz

What is running time of Ford–Fulkerson algorithms to find a max-cardinality matching in a bipartite graph with |L| = |R| = n?

- A. O(m+n)
- B. O(mn)
- C.  $O(mn^2)$
- D.  $O(m^2n)$

#### Perfect matchings in bipartite graphs

Def. Given a graph G = (V, E), a subset of edges  $M \subseteq E$  is a perfect matching if each node of G appears in exactly one edge in M.

Condition for perfect matching: |L| = |R| = |M|

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings. Clearly, we must have |L| = |R|.



#### Perfect matchings in bipartite graphs

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph  $G = (L \cup R, E)$  has a perfect matching, then  $|N(S)| \ge |S|$  for all subsets  $S \subseteq L$ .

Pf. Each node in S has to be matched to a different node in N(S).

$$S = \{2, 4, 5\}$$
  
 $N(S) = \{2', 5'\}$ 



no perfect matching