

planetmath.org

Math for the people, by the people.

degree (map of spheres)

Canonical name DegreemapOfSpheres
Date of creation 2013-03-22 13:22:12
Last modified on 2013-03-22 13:22:12

Owner drini (3) Last modified by drini (3)

Numerical id 12

Author drini (3)
Entry type Definition
Classification msc 55M25
Defines degree

Given a non-negative integer n, let S^n denote the n-dimensional sphere. Suppose $f: S^n \to S^n$ is a continuous map. Applying the n^{th} reduced homology functor $\widetilde{H}_n(\)$, we obtain a homomorphism $f_*: \widetilde{H}_n(S^n) \to \widetilde{H}_n(S^n)$. Since $\widetilde{H}_n(S^n) \approx \mathbb{Z}$, it follows that f_* is a homomorphism $\mathbb{Z} \to \mathbb{Z}$. Such a map must be multiplication by an integer d. We define the degree of the map f, to be this d.

0.1 Basic Properties

- 1. If $f, g: S^n \to S^n$ are continuous, then $\deg(f \circ g) = \deg(f) \cdot \deg(g)$.
- 2. If $f, g: S^n \to S^n$ are homotopic, then $\deg(f) = \deg(g)$.
- 3. The degree of the identity map is +1.
- 4. The degree of the constant map is 0.
- 5. The degree of a reflection through an (n + 1)-dimensional hyperplane through the origin is -1.
- 6. The antipodal map, sending x to -x, has degree $(-1)^{n+1}$. This follows since the map f_i sending $(x_1, \ldots, x_i, \ldots, x_{n+1}) \mapsto (x_1, \ldots, -x_i, \ldots, x_{n+1})$ has degree -1 by (4), and the compositon $f_1 \circ \cdots \circ f_{n+1}$ yields the antipodal map.

0.2 Examples

If we identify $S^1 \subset \mathbb{C}$, then the map $f: S^1 \to S^1$ defined by $f(z) = z^k$ has degree k. It is also possible, for any positive integer n, and any integer k, to construct a map $f: S^n \to S^n$ of degree k.

Using degree, one can prove several theorems, including the so-called 'hairy ball theorem', which that there exists a continuous non-zero vector field on S^n if and only if n is odd.