Lecture 1 - Part 1: Generalized (Non)-Linear Models

GIANCARLO CAMARDA

Institut national d'études démographiques

Ugofilippo Basellini

Max Planck Institute for Demographic Research

IDEM 117 Advances in Mortality Forecasting

International Advanced Studies in Demography 17 - 21 January, 2022

A simple example: e_0 and HDI

Recap Linear Models

•00000000

Life expectancy (both sexes) vs. Human Development Index in 2012. Source: World Bank and World Health Organization.

A (linear) model for the example

- It seems reasonable to assume that the more "developed" a country is, the higher life expectancy would be
- For each country *i* we have:

 y_i : Life expectancy

 x_i : Human Development Index

A possible model:

Recap Linear Models

00000000

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Or in matrix notation:

$$y = X \beta + \varepsilon$$
 where $X = [1:x]$

Estimating the model

Recap Linear Models

00000000

• To estimate β we maximise the log-likelihood which is equivalent to minimizing the residual sum of squares:

$$RSS(\beta) = \sum_{i} [y_i - X \beta]^2 = (y - X\beta)' (y - X\beta)$$

• Taking the derivatives of $RSS(\beta)$ with respect to β and setting equal to zero, we obtain

$$X'X\beta = X'y \quad \Rightarrow \quad \hat{\beta} = (X'X)^{-1}X'y$$

Recap Linear Models

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

$$\boldsymbol{\beta}' = \begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix}$$

$$\mu = X\beta$$

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

Recap Linear Models

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

$$\beta' = \begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix}$$

$$\mu = X\beta$$

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

$$\hat{\boldsymbol{\beta}}' = [46.61 \ 42.36]$$

Recap Linear Models

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix}$$
$$\beta' = \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 \end{bmatrix}$$

$$\mu = X\beta$$

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

$$\hat{\boldsymbol{\beta}}' = [33.22 \quad 96.47 \quad -48.38]$$

Recap Linear Models

000000000

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}$$

$$\beta' = \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 & \beta_3 \end{bmatrix}$$

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

 $\mu = X\beta$

$$\hat{\boldsymbol{\beta}}' = \begin{bmatrix} 15.86 & 205.37 & -257.15 & 124.39 \end{bmatrix}$$

Recap Linear Models

000000000

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 & x_1^4 \\ 1 & x_2 & x_2^2 & x_2^3 & x_2^4 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & x_n^4 \end{bmatrix}$$

$$\beta' = \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 & \beta_3 & \beta_4 \end{bmatrix}$$

$$\mu = X\beta$$

$$\hat{\boldsymbol{\beta}}' = \begin{bmatrix} 64.08 & -210.69 & 1003.47 & -1475.64 & 723.46 \end{bmatrix}$$

 $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$

Can we do better?

Recap Linear Models

- Simple basis is good for simple example
- Basis function (powers of x) are global
- Moving one end moves the other end too
- Unexpected wiggles
- The higher the degree the more is sensitive
- We seek for local basis
- Useful for more complex data
- No assumptions on the trend (let the data speak by themselves!)
- Smooth outcomes

Introducing B-splines

Recap Linear Models

Create a suitable basis ⇒ (equidistant) B-splines:

$$\boldsymbol{B} = \left[\begin{array}{ccccc} B_1(x_1) & B_2(x_1) & \dots & B_r(x_1) & \dots & B_k(x_1) \\ B_1(x_2) & B_2(x_2) & \dots & B_r(x_2) & \dots & B_k(x_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ B_1(x_n) & B_2(x_n) & \dots & B_r(x_n) & \dots & B_k(x_n) \end{array} \right]$$

$$\bullet$$
 $E(y) = \mu = B\beta \quad \Rightarrow \quad \hat{\beta} = (B'B)^{-1}B'y$

Fitting with k = 20 B-splines

 Recap Linear Models
 P-splines do it better
 Recap GLMs
 Smoothing mortality data

 00000000
 000000
 00000
 00000

Fitting with k = 20 B-splines

In the pursuit of smoothness

- Outcomes are not smooth, we could:
 - take less B-splines
 - ullet place each B-splines in specific positions
 - set a double goal:
 - **1** good fit to the data, i.e. low least-squares: $S = |y B\beta|^2$
- ullet How to measure roughness? By summing up squared differences of eta
- Simplest case: first differences (k=4)

$$R = (\beta_2 - \beta_1)^2 + (\beta_3 - \beta_2)^2 + (\beta_4 - \beta_3)^2$$

• In matrix notation:

$$R = |\mathbf{D}_1 \boldsymbol{\beta}|^2$$
 with $\mathbf{D}_1 = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$

Second order differences:

$$R = |\mathbf{D}_2 \boldsymbol{\beta}|^2$$
 with $\mathbf{D}_2 = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$

Penalizing the coefficients: P-splines

- In general D_d is a $(k-d) \times k$ matrix with d order of difference
- We balance the two object-functions:

$$S^* = S + \lambda R = |\boldsymbol{y} - \boldsymbol{B}\boldsymbol{\beta}|^2 + \lambda |\boldsymbol{D}\boldsymbol{\beta}|^2$$

• Given a λ , this is again a linear system of equation with explicit solution:

$$\hat{\boldsymbol{\beta}} = (B'B + \lambda D'D)^{-1}B'y$$
$$= (B'B + P)^{-1}B'y$$

- Higher $\lambda \Rightarrow R$ more important than $S \Rightarrow$ smoother $\beta \Rightarrow$ smoother μ
- $\lambda = 0 \Rightarrow$ simple least-squares with B-splines
- $\lambda \to \infty \Rightarrow \mu$ a polynomial of degree d

Fitting with *P*-splines

 Recap Linear Models
 P-splines do it better
 Recap GLMs
 Smoothing mortality data

 00000000
 000000
 00000
 0000

More about P-splines

- We won't see that:
 - number of B-splines is immaterial
 - the degree of B-splines is irrelevant
 - there are objective criteria for selecting λ
- In the following (lectures), we will see how
 - to interpolate/extrapolate
 - the order of difference is crucial for forecasting
 - to generalize P-splines for non-Normal data
 - to integrate prior knowledge
 - higher-dimensional generalization is straightforward
- If you want to know more:
- Eilers & Marx (2021). Practical Smoothing. The Joy of P-splines Cambridge University Press.

A simple non-normal example: mortality

Death rates (in log scale) over age. England & Wales, females, 1960, ages 30-100. Source: Human Mortality Database.

Recap Linear Models

A simple non-normal example: mortality

- Death rates are by product of death counts and exposures
- Real random variables are deaths ⇒ model deaths.
- Data:

 $\mathbf{y} = (y_i)$: death counts over age x_i

 $e = (e_i)$: exposure population over age x_i

Deaths and exposures over age. England & Wales, females, 1960, ages 30-100. Source: Human Mortality Database.

Assumptions in mortality setting

Observed deaths are realization of a Poisson distribution:

$$y_i \sim \mathcal{P}(e_i \, \mu_i)$$

- The expected values are the product of
 - some given measure of exposure (e_i) . Commonly called offset
 - force of mortality (μ_i)
- In a regression setting, μ_i depends on a vector of explanatory variables
- Here, we have no external covariates $\Rightarrow \mu_i$ depends on age and/or time
- In a Poisson regression, we model the logarithm of the force of mortality

$$\ln \mu_i = \eta_i$$

In a Generalized Linear Model (GLM):

$$\eta = X\beta$$

commonly called *linear predictor*

A simple example: our friend Gompertz

- For demographers: $\mu(x) = ae^{bx}$
- Equivalent to a Poisson GLM model:

$$d_i \sim \mathcal{P}(e_i \, \mu_i) \qquad \ln \boldsymbol{\mu} = \boldsymbol{\eta} = \boldsymbol{X} \boldsymbol{\beta}$$

with

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \qquad \boldsymbol{\beta}' = \begin{bmatrix} \ln(a) & b \end{bmatrix}$$

Estimating a Poisson GLM

- Unlike in Linear model, no an explict solution for β
- The iteratively reweighted least-squares is used (common for all GLMs)
- For Poisson data with offset, in mortality setting:
 - Start with trial estimate of $\eta_i^{(0)}$. Commonly $\eta_i^{(0)} = \ln(\frac{y_i+1}{e_i+1})$
 - 2 Evaluate the current force of mortality: $\mu_i = \exp(\eta_i)$
 - **3** Compute the so-called working response: $z_i = \eta_i + \frac{y_i e_i \mu_i}{e_i \mu_i}$
 - Compute the iterative weights: $w_i = e_i \mu_i$
 - **1** Update β by regressing the working response on the covariates in X using the weights w_i :

$$\tilde{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{W}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{W}\boldsymbol{z}$$

where W is the diagonal matrix with entries w_i

- **1** Update the linear predictor: $\eta = X\beta$
- Repeat 2 to 6 until convergence, e.g. small difference in subsequent η

A Gompertz fit as Poisson GLM

Recap Linear Models

Actual and estimated death rates (in log scale) using a Gompertz over age. England & Wales, females, 1960, ages 30-100.

Source: Human Mortality Database.

A slightly more complex example

Recap Linear Models

Death rates (in log scale) over years. England & Wales, females, age 50, years 1960-2018. Source: Human Mortality Database.

A slightly more complex example

- We are still in a Poisson framework
- We cannot assume linearity of the log-mortality ⇒ we assume smoothness
- Likewise in the linear model, we use *P*-splines
- Generalization is achieved straightforwardly:

	Underlying distribution		$oldsymbol{y} \sim \mathcal{N}(oldsymbol{\mu}, \sigma^2)$	$m{y} \sim \mathcal{P}(m{e}m{\mu})$
-	Linear	Model	$egin{aligned} oldsymbol{\mu} &= oldsymbol{X} oldsymbol{eta} \ \hat{oldsymbol{eta}} &= (oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{y} \end{aligned}$	$\ln oldsymbol{\mu} = oldsymbol{\eta} = oldsymbol{X}oldsymbol{eta}$
		Estimation	$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$	$\tilde{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{W}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{W}\boldsymbol{z}$
	Non-linear	Model	$oldsymbol{\mu} = oldsymbol{B}oldsymbol{eta}$	$\ln \mu = \eta = B oldsymbol{eta}$
		Estimation	$\hat{\boldsymbol{\beta}} = (\boldsymbol{B}'\boldsymbol{B} + \boldsymbol{P})^{-1}\boldsymbol{B}'\boldsymbol{y}$	$egin{aligned} \ln \mu &= oldsymbol{\eta} &= Boldsymbol{eta} \ ilde{oldsymbol{eta}} &= (B'WB + P)^{-1}B'Woldsymbol{z} \end{aligned}$

Recap Linear Models P-splines do it better Recap GLMs Smoothing mortality data 0000

A great advantage: P-splines = a penalized GLM

- What we know for GLMs can be used for P-splines
 - Deviance residuals

$$r_i = \operatorname{sign}(y_i - e_i\hat{\mu}_i)\sqrt{2\left[y_i \ln\left(\frac{y_i}{e_i\hat{\mu}_i}\right) - y_i + e_i\hat{\mu}_i\right]}$$

Model complexity from the hat-matrix, here called effective dimension

$$ED = \operatorname{tr}(\boldsymbol{H})$$
 with $\boldsymbol{H} = \boldsymbol{W}^{rac{1}{2}} \boldsymbol{B} (\boldsymbol{B}' \boldsymbol{W} \boldsymbol{B} + \boldsymbol{P})^{-1} \boldsymbol{B}' \boldsymbol{W}^{rac{1}{2}}$

Variance-covariance matrix:

$$V = (B'WB + P)^{-1}$$

from which we could compute standard errors:

$$se(\hat{\boldsymbol{\beta}}) = \sqrt{\text{diag}(\boldsymbol{V})}$$

 $se(\hat{\boldsymbol{\eta}}) = \sqrt{\text{diag}(\boldsymbol{B}\boldsymbol{V}\boldsymbol{B}')}$