Programación Dinámica ¹

- El método de programación dinámica sirve para resolver problemas combinando las soluciones de subproblemas.
- Normalmente es usada para resolver problemas de optimización.
- Al construir un algoritmo usando la estrategia de programación dinámica es necesario:
- 1. Caracterizar la estructura de una solución optima.
- 2. Definir recursivamente $el\ valor$ de una solución óptima.
- 3. Computar $el\ valor$ de una solución en forma bottom-up.
- 4. [Opcional] Construir una solución óptima a partir de la información computada.

 $^{^{1}}$ Basado en el libro Algorithms de Cormen, Leiserson y Rivest

¿Cuándo usar Programación Dinámica?

Hay dos condiciones que se deben cumplir antes de comenzar a pensar en una solución a un problema de optimización usando programación dinámica.

- **Sub-estructura óptima**. Un problema tiene sub-estructura óptima cuando la solución óptima a un problema se puede componer a partir de soluciones óptimas de sus sub-problemas.
- Superposición de Problemas. El cálculo de la solución óptima implica resolver muchas veces un mismo sub-problemas. La cantidad de sub-problema es "pequeña".

Resolviendo un Problema con Programación Dinámica

■ Sopongamos el siguiente problema: dada una cadena de n matrices $\langle A_1,\ldots,A_n\rangle$, donde para cada i $(1 \le i \le n)$ la matriz A_i tiene dimensión $p_{i-1} \times p_i$, encuentre una forma de multiplicar las matrices que minimice el número de multiplicaciones escalares a realizar. $Observación\ 1$: La forma óptima de multiplicar una cadena de matrices está determinado por el número de multiplicaciones a realizar. Para multiplicar una matriz de $p \times q$ por una de $q \times r$ son necesarias pqr operaciones escalares de multiplicación.

Observación 2: Si multiplicamos tres matrices de 10×100 , 100×5 y 5×50 , podemos hacerlo con 7500 $((A_1A_2)A_3)$ o 75000 $(A_1(A_2A_3))$ operaciones.

Sin programación dinámica

- Resolver este problema sin programación dinámica implica calcular el número de operaciones para cada posible orden de multiplicación de matrices.
- ¿Cuántos posibles ordenes hay?

Respuesta: Muchos.

Sea P(n) el número de órdenes posibles en una cadena de n matrices. Es sencillo ver que:

$$P(n) = \begin{cases} 1 & \text{si } n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{si } n \ge 2 \end{cases}$$

La solución a esta ecuación es

$$P(n) = \frac{1}{n} {2n-2 \choose n-1} = \Omega(4^n/n^{3/2})$$

Con programación dinámica

- Supongamos que tenemos la forma óptima de multiplicar las matrices $\langle A_1, \ldots, A_n \rangle$. Al nivel más alto, la solución se verá como la multiplicación de dos matrices que resultan de calcular los productos $A_1 \cdots A_k$ y $A_{k+1} \cdots A_n$, ambos **en forma óptima**, para algún k $(1 \le k \le n)$.
- Lo anterior implica que el problema tiene sub-estructura óptima.
- Supongamos que llamamos m[i,j] al número óptimo de multiplicaciones escalares a realizar al multiplicar $\langle A_i, A_{i+1}, \dots, A_j \rangle$.

m[i,j] se puede escribir recursivamente por:

$$m[i,j] = \begin{cases} 0 & \text{si } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{si } i < j \end{cases}$$

■ Supongamos que s[i,j] es la forma en que, al nivel más alto, se divide el producto de $\langle A_i, A_{i+1}, \ldots, A_j \rangle$, de manera óptima. Entonces,

$$m[i,j] = \begin{cases} i & \text{si } i = j \\ \operatorname{argmin}_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{si } i < j \end{cases}$$

 Si se observan cuidadosamente estas expresiones, nos daremos cuenta que es posible resolver el problema de forma recursiva tradicional, pero muchos cálculos se deberán rehacer. Esto significa que existe superposición de problemas.

Bottom-Up: Lo más fácil

■ La estrategia bottom-up consiste en resolver primero los subproblemas más pequeños, almacenar su solución, y luego resolver los problemas más complejos, usando los resultados almacenados.

■ Es claro que calcular m[i,i] es muy sencillo... ¿cuál tipo de problema es el que le sigue en complejidad?

Resp: calcular m[i, i+1], con $1 \le i < n$.

El algoritmo

```
MATRIX-CHAIN-ORDER(p)

1 n \leftarrow length[p] - 1

2 for i \leftarrow 0 to n

3 do m[i,i] \leftarrow 0

4 for l \leftarrow 2 to n

5 do for i \leftarrow 1 to n - l + 1

6 do j \leftarrow i + l - 1
```

 $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i$

 $k = s[i, j] = \operatorname{argmin}_{i < k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1}p_k p_j \}$

9 return m, s

7

8

Es sencillo verificar que el tiempo de ejecución de este algoritmo es $O(n^3)$.

Otro Problema: La mayor subsecuencia común (PMSC)

- Una **subsecuencia** de una secuencia dada $S = \langle s_1, s_2, \dots, s_n \rangle$ es S con algunos (posiblemente ningún) elementos removidos.
- Si X e Y son secuencias entonces Z es una **subsecuencia común** de X e Y si Z es subsecuencia de X e Y.
- Si X e Y son secuencias entonces Z es una mayor subsecuencia común (MSC)
 de X e Y si Z es subsecuencia común de X e Y y no hay otra más larga.
- Entonces, ¿cómo es posible encontrar la mayor subsecuencia de dos secuencias dadas $X = \langle x_1, \dots, x_m \rangle$ e $Y = \langle y_1, \dots, y_n \rangle$?
- \blacksquare La solución de fuerza bruta debe probar $2^{\min\{m,n\}}$ subsecuencias...

Sub-estructura óptima en el MSC

- Sean $X=\langle x_1,\ldots,x_m\rangle, Y=\langle y_1,\ldots,y_n\rangle$ y sea $Z=\langle z_1,\ldots,z_k\rangle$ una MSC de ellas.
- Para simplificar la notación decimos que si $X = \langle x_1, \ldots, x_n \rangle$, entonces $X_j = \langle x_1, \ldots, x_j \rangle$ $(0 \le j \le n)$.
- El MSC tiene sub-estructura óptima. De hecho,
- 1. Si $x_m=y_n$, entonces $z_k=x_m=y_n$ y además Z_{k-1} es una MSC de X_{m-1} y Y_{n-1} .
- 2. Si $x_m \neq y_n$, entonces Z la más grande entre las MSC's de X_{m-1} y Y_n y de X_m y Y_{n-1} .

Una expresión recursiva para el MSC

- ullet Supongamos que llamamos c[i,j] al largo de la MSC entre X_i e Y_k .
- La expresión recursiva para c[i, j] es la siguiente:

$$c[i,j] = \begin{cases} 0 & \text{si } i = 0 \text{ o } j = 0 \\ c[i-1,j-1] + 1 & \text{si } i,j > 0 \text{ y } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{si } i,j > 0 \text{ y } x_i \neq y_j \end{cases}$$

- ullet Para encontrar la subsecuencia podemos definir b[i,j] con el siguiente significado:
 - b[i,j] tiene valor 1 si la MSC de X_i y X_j contiene a x_i $(x_i = x_j)$.
 - b[i,j] tiene valor \uparrow si el último elemento de la MSC de X_i y X_j es igual al último elemento de la MSC de X_{i-1} y Y_j .
 - b[i,j] tiene valor \downarrow si el último elemento de la MSC de X_i y X_j es igual al último elemento de la MSC de X_i y Y_{j-1} .
- A partir de b[i,j] es muy sencillo construir una MSC.

Algoritmo para la MSC

```
MSC(X,Y)
  1 m \leftarrow largo[X]
  2 n \leftarrow largo[Y]
  3 for i \leftarrow 1 to m
  4 do c[i, 0] \leftarrow 0
  5 for j \leftarrow 1 to n
  6 do c[0,j] \leftarrow 0
  7 for i \leftarrow 1 to m
  8 do for i \leftarrow 1 to n
  9
          do if x_i = y_i
                 then c[i, j] \leftarrow c[i-1, j-1] + 1
 10
                        b[i,j] \leftarrow 1
 11
                 else if c[i-1, j] \ge c[i, j-1]
 12
13
                          then c[i,j] \leftarrow c[i-1,j]
                                  b[i,j] \leftarrow' \uparrow'
14
                           else c[i,j] \leftarrow c[i,j-1]
15
                                  b[i,j] \leftarrow' \rfloor'
16
      return c, b
17
```

Su tiempo de ejecución de es O(mn).