全国青少年信息学奥林匹克竞赛

CCF NOI 2023

第二试

时间: 2023 年 7 月 26 日 08:00 ~ 13:00

题目名称	贸易	字符串	合并书本
题目类型	传统型	传统型	传统型
目录	trade	string	book
可执行文件名	trade	string	book
输入文件名	trade.in	string.in	book.in
输出文件名	trade.out	string.out	book.out
每个测试点时限	1.5 秒	1.0 秒	1.5 秒
内存限制	512 MiB	512 MiB	512 MiB
测试点数目	20	25	20
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	trade.cpp	string.cpp	book.cpp
-----------	-----------	------------	----------

编译选项

对于 C++ 语言 -02 -std=c++14 -static

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 因违反以上两点而出现的错误或问题, 申诉时一律不予受理。
- 4. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于 100KB。
- 6. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 7. 只提供 Linux 格式附加样例文件。
- 8. 禁止在源代码中改变编译器参数(如使用 #pragma 命令),禁止使用系统结构相 关指令(如内联汇编)和其他可能造成不公平的方法。
- 9. 选手可使用快捷启动页面中的工具 selfEval 进行自测。在将答案文件(不必是全部题目)放到指定目录下后,即可选择全部或部分题目进行自测。注意:自测有次数限制,且自测结果仅用于选手调试,并不做为最终正式成绩。

贸易 (trade)

【题目描述】

近年来, A 国的商贸发展迅猛, 但国内的道路建设却跟不上步伐, 明显成为了人们 贸易往来的限制, 管理者为此费尽了心思。

具体而言,A 国共有 $2^n - 1$ 个城市,其中 1 号城市为首都。对于所有的非首都城市 i,都有一条**单向**道路从城市 i 出发,到达城市 $\lfloor \frac{i}{2} \rfloor$ 。为方便起见,称这样的道路为"第一类道路",称城市 $\lfloor \frac{i}{8} \rfloor$ 为城市 i 的"上级城市"。

除此之外,还有 m 条**单向**道路,设其中第 i 条道路从城市 u_i 出发,到达城市 v_i ,这样的道路都有一个特殊性质:从城市 v_i 出发,沿着第一类道路不断向"上级城市"走去,最终总能走到城市 u_i 。称这样的道路为"第二类道路"。

每一条道路都有相应的长度值。由此,对于 A 国的任意两个城市 x 和 y,都可以计算出从城市 x 出发,沿道路走到城市 y,所经过的道路的长度之和的最小值,将这一数值记为 dist(x,y)。但由于 A 国的道路建设存在严重缺陷,从城市 x 出发可能根本到达不了城市 y,方便起见,此时定义 dist(x,y)=0。同时一个城市出发到自己是不需要经过任何道路的,因此定义 dist(x,x)=0。

现在,管理者希望计算出这些 dist(x,y) 的值,以便合理衡量人们贸易往来的便捷程度。但由于 A 国的城市数量太多,将这些值一一列出的工作量太大,因此管理者只希望求出所有 dist(x,y) 值之和,也就是 $\sum_{x=1}^{2^n-1} \sum_{y=1}^{2^n-1} dist(x,y)$,并希望请你来帮忙。

【输入格式】

从文件 trade.in 中读入数据。

输入的第一行包含两个正整数 n 和 m。

输入的第二行包含 $2^n - 2$ 个正整数,第 i 个数 a_i 表示从城市 i + 1 出发,到达城市 $|\frac{i+1}{2}|$ 的 "第一类道路"的长度。

接下来的 m 行,每行包含三个正整数 u,v,w ,描述了一条从城市 u 到城市 v 的 "第二类道路",其长度为 w。

【输出格式】

输出到文件 trade.out 中。

输出一行一个正整数,表示对应的答案。由于答案可能很大,你只需要输出模 998244353 意义下的答案即可。

【样例1输入】

1 2 1

2 **2 1**

3 **1 2 2**

【样例1输出】

1 8

【样例 2】

见选手目录下的 trade/trade2.in 与 trade/trade2.ans。

【样例 3】

见选手目录下的 trade/trade3.in 与 trade/trade3.ans。

【样例 4】

见选手目录下的 trade/trade4.in 与 trade/trade4.ans。

【数据范围】

对于所有测试数据保证: $2 \le n \le 18$, $1 \le m \le 2^n$, $1 \le u, v \le 2^n - 1$, $1 \le a_i, w \le 10^9$.

测试点编号	n	m	是否有特殊性质
$1 \sim 2$	= 8	≤ 256	
$3 \sim 4$	= 9	≤ 512	
$5 \sim 8$	= 12	$\leq 4,096$	· 否
9		≤ 10	
10		≤ 50	
11	= 16	≤ 100	
12		< 65, 536	是
$13 \sim 15$		≥ 00,000	否
$16 \sim 17$	= 18	$\leq 262,144$	是
$18 \sim 20$	= 18		否

特殊性质:保证每一条"第二类道路"都是从首都(城市1)出发。

字符串 (string)

【题目描述】

小 Y 是一名大学生, 最近正在研究字符串方向的问题。

小 Y 了解到关于字符串的如下定义:

- 给定一个长度为 n 的字符串 s[1:n], 我们定义其子串 s[l:r]($1 \le l \le r \le n$ 为选择 $s[l], s[l+1], \dots, s[r]$, 将其顺次拼接得到的新字符串。
- 给定一个长度为 n 的字符串 s[1:n], 我们定义其翻转后的结果 R(s) 为将 $s[n], s[n-1], \cdots, s[1]$ 顺次拼接,也就是将字符串反序拼接得到的字符串。
- 给定两个长度均为 n 的字符串 a[1:n], b[1:n], 我们定义 a 的字典序小于 b 当且 仅当存在 $1 \le i \le n$,使得对于任意 $1 \le j < i$, a[j] = b[j], 且 a[i] < b[i]。

在了解了上述定义后, 小 Y 想到了这样的问题:

给定一个长度为 n 的字符串 s[1:n]。有 q 次询问,每次询问给定两个参数 i,r。你需要求出有多少 l,满足如下条件:

- $1 \le l \le r$ °
- s[i:i+l-1] 字典序小于 R(s[i+l:i+2l-1])。

小Y想求助你帮忙解决这一问题。

【输入格式】

从文件 string.in 中读入数据。

本题有多组测试数据。

输入的第一行包含两个整数 c, t,分别表示测试点编号和测试数据组数。c = 0 表示该测试点为样例。

接下来依次输入每组测试数据,对于每组测试数据:

输入的第一行包含两个正整数 n,q,表示字符串长度和询问次数。

输入的第二行包含一个长度为 n 的仅包含小写字母的字符串 s。

输入的接下来 q 行,每行包含两个正整数 i,r。表示一次询问,保证 i+2r-1 < n。

【输出格式】

输出到文件 string.out 中。

对于每一组测试数据的每一次询问,输出一行一个整数,表示满足条件的 l 的个数。

【样例1输入】

0 2

2 9 3

```
3 abacababa
4 1 4
5 2 4
6 3 3
7 9 3
8 abaabaaba
9 1 4
10 2 4
11 3 3
```

【样例1输出】

```
1 4
2 0
3 3
4 2
5 0
6 2
```

【样例1解释】

对于第一组数据的第一组询问:

- l=1 时,s[i:i+l-1]=a,R(s[i+l:i+l+l-1])=b。
- l=2 时, $s[i:i+l-1]=\mathsf{ab},\ R(s[i+l:i+l+l-1])=\mathsf{ca}$ 。
- l=3 时, $s[i:i+l-1]=\mathsf{aba},\ R(s[i+l:i+l+l-1])=\mathsf{bac}$ 。
- l=4 时, $s[i:i+l-1]={\sf abac},\ R(s[i+l:i+l+l-1])={\sf baba}.$

这四种情况中,s[i:i+l-1] 的字典序均小于 R(s[i+l:i+2l-1]),因此答案为 4。

【样例 2】

见选手目录下的 *string/string2.in* 与 *string/string2.ans*。 该样例数据范围满足测试点 5。

【样例 3】

见选手目录下的 *string/string3.in* 与 *string/string3.ans*。

【样例 4】

见选手目录下的 string/string4.in 与 string/string4.ans。 该样例数据范围满足测试点 $24\sim25$ 。

【数据范围】

对于所有测试数据保证: $1 \le t \le 5$, $1 \le n \le 10^5$, $1 \le q \le 10^5$, $1 \le i + 2r - 1 \le n$, 字符串 s 仅包含小写字母。

4 4 4 -			
测试点编号	n	q	特殊性质
1	≤ 5	≤ 5	
2	≤ 10	≤ 10	
3	≤ 20	≤ 20	A
4	≤ 50	≤ 50	
5	$\leq 10^{2}$	$\leq 10^2$	
6	$\leq 10^{3}$	$\leq 10^{3}$	
7	$\leq 2,000$	$\leq 2,000$. 无
8	$\leq 3,000$	$\leq 3,000$	
9	$\leq 4,000$	$\leq 4,000$	
10	$\leq 23,333$	$\leq 23,333$	
11	$\leq 5 \times 10^4$	$\leq 5 \times 10^4$	
12	$\leq 75,000$	$\leq 75,000$	A
13	$\leq 9 \times 10^4$	$\leq 9 \times 10^4$	
14	$\leq 10^{5}$	$\leq 10^{5}$	
15	$\leq 23,333$	$\leq 23,333$	
16	$\leq 75,000$	$\leq 75,000$	В
17	$\leq 9 \times 10^4$	$\leq 9 \times 10^4$	Б
18	$\leq 10^{5}$	$\leq 10^{5}$	
19	$\leq 23,333$	$\leq 23,333$	
20	$\leq 5 \times 10^4$	$\leq 5 \times 10^4$	
21	$\leq 75,000$	$\leq 75,000$	
22	$\leq 9 \times 10^4$	$\leq 9 \times 10^4$	无
23	$\leq 95,000$	$\leq 95,000$	
24	$\leq 10^5$	$\leq 10^{5}$	
25			

- 特殊性质 A: 保证字符串中仅包含字符 a 和 b, 且每个字符独立等概率的在 a 和 b 中选择。
- 特殊性质 B: 保证字符串中的相邻字符互不相同。

合并书本(book)

【题目描述】

小 C 有 n 本书,每本书都有一个重量,他决定把它们合并成一摞。

每一次合并小 C 可以把一摞书放到另一摞书上面,使得它们合并到一摞。如果小 C 把第 i 摞书放到第 j 摞书上面,小 C 需要消耗的体力为第 i **摞书的重量**加上**两摞书的磨损值之和**。

初始时每本书自成一摞且磨损值均为 0。每当小 C 将两摞书合并后,形成的新的一摞书的磨损值为合并前的两摞书的磨损值的**较大值的两倍再加一**,重量为合并前的两摞书的**重量之和**。

你的任务是设计出合并的次序方案, 使小 C 耗费的体力最少, 并输出这个最小的体力耗费值。

【输入格式】

从文件 book.in 中读入数据。

本题有多组测试数据。

输入的第一行包含一个正整数 t,表示数据组数。

接下来依次输入每组测试数据,对于每组测试数据:

输入的第一行包含一个正整数 n,表示有 n 本书。

输入的第二行包含 n 个正整数, 第 i 个数 w_i 表示第 i 本书的重量。

【输出格式】

输出到文件 book.out 中。

对于每组测试数据输出一行一个整数,表示将 n 本书合并成一摞需要消耗的最少体力。

【样例1输入】

【样例1输出】

1 6

【样例1解释】

如果小 C 将 4 本书两两合并再将得到的两摞合并成一摞。

那么前两次需要消耗的体力各为 1,第三次将一摞重量为 2 的书放到另一摞上面,两摞书磨损值各为 1,需要消耗的体力为 2+1+1=4。

因此如果选择这个方案,小 C 耗费的体力只有 1+1+4=6。可以证明,在上述例子中,6 为最小的体力耗费值。

【样例 2】

见选手目录下的 book/book2.in 与 book/book2.ans。

【样例 3】

见选手目录下的 book/book3.in 与 book/book3.ans。

【样例 4】

见选手目录下的 book/book4.in 与 book/book4.ans。

【数据规模和约定】

对于所有测试数据保证: $1 \le t \le 10$, $1 \le n \le 100$, $1 \le w_i \le 10^9$.

测试点编号	$n \leq$	是否有特殊性质
$1 \sim 2$	7	
3	11	
4	13	
$5 \sim 6$	22	
$7 \sim 8$	28	否
$9 \sim 13$	50	
14	60	
15	70	
16	80	
$17 \sim 18$	100	是
$19 \sim 20$		否

特殊性质: 保证 $w_i = 1$ 。