VIÊN TOÁN ỨNG DỤNG VÀ TIN HỌC

VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC ĐÈ 2 ĐÈ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20201

ĐỀ 1 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20201

Khóa: K65. Mã HP: M1111. Nhóm ngành 1. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1. Tìm tập xác định của hàm số $y = \sqrt{6x-1} + \arcsin \frac{5x}{1+x}$.

Câu 2. Tính $\lim_{x\to 2} \frac{\sin(x-2)}{2^x - x^2}$.

Câu 3. Phân loại điểm gián đoạn x = 1 của hàm số $y = \arctan \left(2^{\frac{x}{1-x}} \right)$.

Câu 4. Tính f'(0) với $f(x) = \begin{cases} \sin 2x & \text{khi } 0 \le x \le \frac{\pi}{2}, \\ x^5 + 2x & \text{khi } x < 0. \end{cases}$

Câu 5. Tính $f^{(100)}(0)$ của hàm số $f(x) = x^2 e^{3x}$.

Câu 6. Tính: $a) \int \frac{x-2}{x^2-2x+2} dx$ $b) \int x \ln \left(\sqrt{\frac{1+x}{1-x}} \right) dx$.

Câu 7. Tìm tiệm cận xiên của đồ thị hàm số $y = \frac{|4+x|^2}{\sqrt{2}}$.

Câu 8. Tìm khai triển Taylor của $y = \sin 2x + 2\cos x$ tại lân cận của điểm $x = \frac{-\pi}{2}$ đến $\left(x + \frac{\pi}{2}\right)^3$.

Câu 9. Cho đa thức bậc bốn f(x) có bốn nghiệm dương phân biệt. Tìm số điểm cực trị của hàm số $g(x) = x^4 [f(x-2)]^2$.

Thang điểm: Câu 6: 2 điểm, các câu còn lại mỗi câu 1 điểm.

Khóa: K65. Mã HP: MI1111. Nhóm ngành 1. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1. Tìm tập xác định của hàm số $y = \sqrt{5x-1} + \arccos \frac{4x}{1+x}$.

Câu 2. Tính $\lim_{x\to 3} \frac{\tan(x-3)}{3^x - x^3}$.

Câu 3. Phân loại điểm gián đoạn x = 2 của hàm số $y = \arctan \left(2^{\frac{x}{x-2}} \right)$.

Câu 4. Tính f'(0) với $f(x) = \begin{cases} \tan 3x & \text{khi } 0 \le x < \frac{\pi}{6}, \\ x^5 + 3x & \text{khi } x < 0. \end{cases}$

Câu 5. Tính $f^{(100)}(0)$ của hàm số $f(x) = x^2 e^{4x}$.

Câu 6. Tính: a) $\int \frac{x-1}{x^2+4x+5} dx$ b) $\int x \ln \left(\sqrt[3]{\frac{1-x}{1+x}} \right) dx$.

Câu 7. Tìm tiệm cận xiên của đồ thị hàm số $y = \frac{|x+2|^{\frac{3}{2}}}{\sqrt{2}}$.

Câu 8. Tìm khai triển Taylor của $y = \sin 2x - 2\cos x$ tại lân cận của điểm $x = \frac{\pi}{2}$ đến $\left(x - \frac{\pi}{2}\right)^3$.

Câu 9. Cho đa thức bậc bốn f(x) có bốn nghiệm dương phân biệt. Tìm số điểm cực trị của hàm số $g(x) = x^4 [f(x-3)]^2$.

Thang điểm: Câu 6: 2 điểm, các câu còn lại mỗi câu 1 điểm.

ĐÈ 3 ĐÈ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20201

Khóa: K65. Mã HP: MI1111. Nhóm ngành 1. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu 1. Tìm tập xác định của hàm số $y = \arcsin \sqrt{5 - x^2}$.

Câu 2. Tính $\lim_{x\to 0} \frac{\sqrt[3]{1-6x}-1}{\arctan(2x)}$.

Câu 3. Phân loại các điểm gián đoạn $x = 0; x = \frac{\pi}{2}$ của hàm số

$$y = \frac{\tan 5x}{|x|}.$$

Câu 4. Xét tính khả vi tại x = 2 của hàm số y = |x-2|(x+2).

Câu 5. Tìm a để $f(x) = \begin{cases} x^{-2} \ln(x^2 + 2) & \text{khi } x \neq 0 \\ a & \text{khi } x = 0 \end{cases}$ liên tục tại x = 0.

Câu 6. Tính: a) $\int (x+1)f'(x)dx$ với $f(x) = \frac{x}{\sqrt{3x^2+2}}$

$$b)\int \frac{(x^7+x^3)dx}{x^8+2}.$$

Câu 7. Tìm tiệm cận xiên của đồ thị hàm số $y = 2x + \arctan x$.

Câu 8. Tîm $a,b,c \in \mathbb{R}$ sao cho $\lim_{x\to 0} \frac{e^x - \cos x + ax + bx^2}{x^3} = c$.

Câu 9. Tìm tất cả các hàm số f(x) xác định trên (-1,1) và thỏa mãn $xf'(x) + 2f(x) = 0, \forall x \in (-1, 1).$

Thang điểm: Câu 6: 2 điểm, các câu còn lại mỗi câu 1 điểm.

ĐÈ 4 ĐÈ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20201 Khóa: K65. Mã HP: MI1111. Nhóm ngành 1. Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu 1. Tìm tập xác định của hàm số $y = \arccos \sqrt{x^2 - 15}$.

Câu 2. Tính $\lim_{x\to 0} \frac{\sqrt[4]{1-8x}-1}{\arcsin(2x)}$.

Câu 3. Phân loại các điểm gián đoạn $x = 0; x = \frac{\pi}{2}$ của hàm số

$$y = \frac{\tan 3x}{|x|}.$$

Câu 4. Xét tính khả vi tại x = 2 của hàm số y = |x-2|(x-2).

Câu 5. Tim a để $f(x) = \begin{cases} x^{-2} \ln(x^2 + 1) & \text{khi } x \neq 0 \\ a & \text{khi } x = 0 \end{cases}$ liên tục tại x = 0.

Câu 6. Tính: a) $\int (x+2) f'(x) dx$ với $f(x) = \frac{x}{\sqrt{2x^2+2}}$

$$b) \int \frac{(x^9 + x^4) dx}{x^{10} + 3}.$$

Câu 7. Tìm tiệm cận xiên của đồ thị hàm số $y = 2x + \operatorname{arccot} x$.

Câu 8. Tim $a,b,c \in \mathbb{R}$ sao cho $\lim_{x \to 0} \frac{\ln(1+x) - \sin x + \alpha x + bx^2}{x^3} = c$.

Câu 9. Tìm tất cả các hàm số f(x) xác định trên (-1,1) và thỏa mãn $xf'(x) + 3f(x) = 0, \forall x \in (-1,1).$

Thang điểm: Câu 6: 2 điểm, các câu còn lại mỗi câu 1 điểm.

ĐÈ 5 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20201

Khóa: K65. Mã HP: MI1111. Nhóm ngành 1. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu 1. Tìm tập xác định của hàm số $y = \sqrt[3]{1-x} + \arccos \frac{x-2}{2}$.

Câu 2. Tính
$$\lim_{x\to 0^+} \frac{\cos x - 1}{\arcsin(x^2 + \sqrt{x})}$$
.

Câu 3. Phân loại các điểm gián đoạn $x = 0; x = \frac{\pi}{2}$ của hàm số

$$y = \left(1 - e^{\tan^2 x}\right)^{-1}.$$

Câu 4. Tìm tiệm cận xiên của đồ thị hàm số $y = \frac{x^2 + 1}{\sqrt{x^2 - 1}}$.

Câu 5. Tìm cực trị của hàm số $y = (x+8) \sqrt[3]{(x-2)^2}$

Câu 6. Tính: a)
$$\int \frac{\ln(2x+1)dx}{x\sqrt{x}}$$
 b) $\int \frac{(2x^3+3x)dx}{\sqrt{4-5x^4}}$.

Câu 7. Tìm một hàm số f(x) khả vi trên $\mathbb R$ thỏa mãn: f(x) = 0 nếu $x \le 0$, f(x) = 1 nếu $x \ge 1$, $f(x) \in (0,1)$ nếu $x \in (0,1)$.

Câu 8. Tìm khai triển Maclaurin của hàm số $y = (x^2 + 1)^x$ đến x^7 .

Câu 9. Trong mặt phẳng xOy cho A(2;0), B(8;0). Tìm điểm C thuộc tia Oy sao cho góc ACB lớn nhất.

Thang điểm: Câu 6: 2 điểm, các câu còn lại mỗi câu 1 điểm.

ĐẾ 6 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20201

Khóa: K65. Mã HP: MI1111. Nhóm ngành 1. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1. Tìm tập xác định của hàm số $y = \sqrt[3]{x-1} + \arcsin \frac{x-3}{2}$.

Câu 2. Tính $\lim_{x\to 0} \frac{1-\cos x}{\arctan(x^2+x^3)}$.

Câu 3. Phân loại các điểm gián đoạn $x = 0; x = \frac{\pi}{2}$ của hàm số

$$y = \left(1 - e^{\cot^2 x}\right)^{-1}.$$

Câu 4. Tìm tiệm cận xiên của đồ thị hàm số $y = \frac{x^2 + 2}{\sqrt{x^2 + 1}}$.

Câu 5. Tìm cực trị của hàm số $y = (x-8)\sqrt[3]{(x+2)^2}$

Câu 6. Tính: a)
$$\int \frac{\ln(3x+1)dx}{x\sqrt{x}}$$
 b) $\int \frac{(5x^5+3x^2)dx}{\sqrt{9-7x^6}}$.

Câu 7. Tìm một hàm số f(x) khả vi trên $\mathbb R$ thỏa mãn: f(x) = 1 nếu $x \le 0$, f(x) = 0 nếu $x \ge 1$, $f(x) \in (0;1)$ nếu $x \in (0;1)$.

Câu 8. Tìm khai triển Maclaurin của hàm số $y = (1 - x^2)^x$ đến x^7 .

Câu 9. Trong mặt phẳng xOy cho A(0;1), B(0;16). Tìm điểm C thuộc tia Ox sao cho góc ACB lón nhất.

Thang điểm: Câu 6: 2 điểm, các câu còn lại mỗi câu 1 điểm.

ĐÈ 7 ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 – Học kì 20201

Nhóm 2. Mã học phần MI 1112 Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác

Câu 1: [1đ] Tìm tập xác định của hàm số
$$f(x) = \arcsin \frac{2x+3}{2x-3}$$
.

Câu 2: [1đ] So sánh hai vô cùng bé
$$\alpha(x) = \sin^2(2x)$$
, $\beta(x) = \ln(1+4x^2)$ khi $x \to 0$.

Câu 3: [1đ] Tìm
$$a$$
 để hàm số $f(x) = \begin{cases} \frac{x-1}{x^3-1} & khi \ x \neq 1, \\ a & khi \ x = 1 \end{cases}$ liên tục tại $x = 1$.

Câu 4: [1đ] Tìm và phân loại điểm gián đoạn của hàm số:
$$y = \arctan \frac{1}{x-1}$$
.

Câu 5: [1đ] Tính
$$f'(0)$$
 của hàm số: $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & khi \ x \neq 0, \\ 0 & khi \ x = 0. \end{cases}$

Câu 6: [1đ] Tìm khai triển Maclaurin của hàm số
$$f(x) = \frac{x}{1-x^2}$$
 đến x^5 .

Câu 7: [1đ] Tìm tiệm cận của đồ thị của hàm số
$$f(x) = \sqrt{1+4x^2}$$
.

Câu 8: [1đ] Tìm cực trị của hàm số
$$f(x) = \begin{cases} e^{-1/x^2} & khi \ x \neq 0, \\ 0 & khi \ x = 0. \end{cases}$$

Câu 9: [1đ] Chứng minh rằng
$$\ln x + \operatorname{arccot} x^2 > \frac{\pi}{4} \quad \forall x > 1$$
.

Câu 10: [1đ] Cho hàm số
$$f(x) = x(x-1)(x-2)...(x-100)$$
 và $g(x) = \ln(x + \sqrt{x^2 + 1})$. Tính đạo hàm của hàm họp $f \circ g$ tại $x = 0$.

ĐỀ 8 ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 – Học kì 20201

Nhóm 2. Mã học phần MI 1112 Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1: [1đ] Tìm tập xác định của hàm số
$$f(x) = \arcsin \frac{3x+2}{3x-2}$$
.

Câu 2: [1đ] So sánh hai vô cùng bé
$$\alpha(x) = \tan^2(3x)$$
, $\beta(x) = e^{9x^2} - 1$ khi $x \to 0$.

Câu 3: [1đ] Tìm
$$a$$
 để hàm số $f(x) = \begin{cases} \frac{x-2}{x^3-8} & khi \ x \neq 2, \\ a & khi \ x = 2 \end{cases}$ liên tục tại $x = 2$.

Câu 4: [1đ] Tìm và phân loại điểm gián đoạn của hàm số:
$$y = \arctan \frac{1}{x+1}$$
.

Câu 5: [1đ] Tính
$$f'(0)$$
 của hàm số: $f(x) = \begin{cases} x^2 \cos \frac{1}{x} & khi \ x \neq 0, \\ 0 & khi \ x = 0. \end{cases}$

Câu 6: [1đ] Tìm khai triển Maclaurin của hàm số
$$f(x) = \frac{x}{1+x^2}$$
 đến x^5 .

Câu 7: [1đ] Tìm tiệm cận của đồ thị của hàm số
$$f(x) = \sqrt{1+9x^2}$$
.

Câu 8: [1đ] Tìm cực trị của hàm số
$$f(x) = \begin{cases} e^{-2/x^2} & \text{khi } x \neq 0, \\ 0 & \text{khi } x = 0. \end{cases}$$

Câu 9: [1đ] Chứng minh rằng
$$\ln x + \operatorname{arccot} x^2 > \frac{\pi}{4} \quad \forall x > 1$$
.

Câu 10: [1đ] Cho hàm số
$$f(x) = x(x-1)(x-2)...(x-100)$$
 và $g(x) = \ln(x + \sqrt{x^2 + 1})$. Tính đạo hàm của hàm hợp $f \circ g$ tại $x = 0$.

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20201 Mã HP: MI1113, Nhóm ngành 3. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu.

Câu 1 (1đ). Xét tính chẵn, lẻ của hàm số

$$y = \sqrt[5]{1+x} + \sqrt[5]{1-x}.$$

Câu 2 (1đ). Tìm m để hàm số $f(x) = \begin{cases} \frac{1-\cos 6x}{x^2} & \text{khi } x \neq 0, \\ m & \text{khi } x = 0. \end{cases}$ liên tục tai x = 0.

Câu 3 (1đ). Tìm giới hạn $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{3^x-1}$.

Câu 4 (1đ). Tìm cực trị của hàm số $f(x) = \ln(x-2) - x + 1$.

Câu 5 (2đ). Tính các tích phân sau

a)
$$\int \frac{e^{\cot x}}{\sin^2 x} dx$$
. b) $\int \frac{x dx}{(x^2 + 1)(x + 3)}$.

Câu 6 (1đ). Tìm khai triển Maclaurin của hàm số $f(x) = \frac{x}{\sqrt[3]{1+x}}$ đến x^3 .

Câu 7 (1đ). Tìm các tiệm cận của đồ thị hàm số $y = \frac{x^3}{x^2 - 1}$.

Câu 8 (1đ). Cho f(x) là hàm số khả vi trên [-7;0] thỏa mãn f(-7) = -3 và $f'(x) \le 2$ với mọi $x \in (-7;0)$. Giá trị lớn nhất có thể của f(0) là bao nhiêu?

Câu 9 (1đ). Cho hàm số f(x) thỏa mãn f(0) = 0 và

$$|f(a)| \le \sin^2 a \quad \forall a \in \mathbb{R}.$$

Tính f'(0).

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20201 Mã HP: MI1113, Nhóm ngành 3. Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu.

Câu 1 (1đ). Xét tính chẵn, lẻ của hàm số

ĐỀ 10

$$y = \sqrt[5]{1+x} - \sqrt[5]{1-x}.$$

Câu 2 (1đ). Tìm m để hàm số $f(x) = \begin{cases} \frac{1-\cos 4x}{x^2} & \text{khi } x \neq 0, \\ m & \text{khi } x = 0. \end{cases}$ liên tục tại x = 0.

Câu 3 (1đ). Tìm giới hạn $\lim_{x\to 0} \frac{4^x-1}{\sqrt{1+x}-1}$.

Câu 4 (1đ). Tìm cực trị của hàm số $f(x) = \ln(x+1) - x + 4$.

Câu 5 (2đ). Tính các tích phân sau

a)
$$\int \frac{e^{\tan x}}{\cos^2 x} dx$$
. b) $\int \frac{x dx}{(x^2 + 1)(x + 2)}$.

Câu 6 (1đ). Tìm khai triển Maclaurin của hàm số $f(x) = \frac{x}{\sqrt[4]{1+x}}$ đến x^3 .

Câu 7 (1đ). Tìm các tiệm cận của đồ thị hàm số $y = \frac{x^3}{x^2 - 4}$.

Câu 8 (1đ). Cho f(x) là hàm số khả vi trên [-6;0] thỏa mãn f(-6) = -4 và $f'(x) \le 2$ với mọi $x \in (-6;0)$. Giá trị lớn nhất có thể của f(0) là bao nhiêu?

Câu 9 (1đ). Cho hàm số f(x) thỏa mãn f(0) = 0 và

$$|f(a)| \le \sin^2 a \quad \forall a \in \mathbb{R}.$$

Tính f'(0).