Modelo de Huff para la Ubicación de un Nuevo CAP

Marzo del 2025

1. Introducción

El **Modelo de Huff** es un método probabilístico utilizado para analizar la elección de ubicaciones en función de la atracción relativa de los sitios y la distancia a los consumidores. En este caso, se utiliza para determinar la ubicación óptima de un nuevo Centro de Atención Personalizada (CAP) basándose en los CAPs existentes en un estado.

2. Cálculo de la Distancia Geodésica

La distancia entre dos puntos geográficos (lat_1, lon_1) y (lat_2, lon_2) se calcula mediante la distancia geodésica:

$$d_i = \operatorname{geodesic}((\operatorname{lat}_1, \operatorname{lon}_1), (\operatorname{lat}_2, \operatorname{lon}_2))$$

donde la función geodesic() utiliza la fórmula de Haversine para calcular la distancia en kilómetros.

3. Estimación del Centro Geográfico del Estado

Para obtener la ubicación inicial del nuevo CAP, se calcula el **centro geográfico** del estado como el promedio de las coordenadas de los CAPs existentes:

$$lat_{nuevo} = \frac{1}{N} \sum_{i=1}^{N} lat_i$$

$$lon_{nuevo} = \frac{1}{N} \sum_{i=1}^{N} lon_i$$

donde N es el número de CAPs en el estado seleccionado.

4. Modelo de Huff

El **Modelo de Huff** establece que la probabilidad de que un usuario seleccione un CAP en función de su atractivo y su distancia se calcula como:

$$P_i = \frac{A_i}{d_i^b}$$

donde:

- P_i es la probabilidad de que un usuario seleccione el CAP i, - A_i es un coeficiente de **atracción** del CAP i, - d_i es la **distancia** entre el CAP i y el nuevo CAP, - b es un parámetro que controla la sensibilidad a la distancia.

Interpretación: - Un valor alto de A_i implica que el CAP es más atractivo y tiene mayor probabilidad de ser seleccionado. - Un valor alto de d_i reduce la probabilidad de selección, ya que los usuarios prefieren ubicaciones más cercanas. - El parámetro b ajusta el impacto de la distancia en la probabilidad. Un valor alto de b hace que la probabilidad caiga más rápido con la distancia.

5. Normalización de Probabilidades

Para asegurar que las probabilidades sumen 1, se realiza una normalización:

$$P_i^{\text{norm}} = \frac{P_i}{\sum_{j=1}^N P_j}$$

6. Selección del Nuevo CAP

Finalmente, el nuevo CAP se selecciona de manera aleatoria ponderada de acuerdo con las probabilidades normalizadas:

$${\rm CAP_{nuevo}} \sim {\rm Distribuci\acute{o}n}(P_1^{\rm norm}, P_2^{\rm norm}, \dots, P_N^{\rm norm})$$

El resultado final es la ubicación del nuevo CAP con coordenadas:

$$(lat_{nuevo}, lon_{nuevo})$$