

Brief introduction to SysML

David MENTRÉ 2013-04-16

Work licensed under Creative Common Attribution-ShareAlike 3.0 Unported License

What is SysML?

- System Modeling Language
 - Derived from (aka profile of) UML 2.0
 - Like UML but system-wide, not only software
- OMG (Object Management Group) standard
 - v1.0: September 2007
 - v1.3: June 2012
- Supported by many tools
 - Rhapsody, Enterprise Architect, Magic Draw, Artisan
 Studio, Modelio, Papyrus, Topcased, ...

SysML diagrams

9 kinds of diagrams to model

Diagram kinds

- Structure diagrams
 - Static composition of the system
 - blocks, sub-blocks, ...
 - Static relationships between blocks
 - Information or physical flows
- Behavior diagrams
 - Dynamic behavior of the system
 - How the system evolves along time
 - Evolution and control of information or physical flows

Requirement diagram

- Express requirements and their relationships
 - Containment, Trace, Copy, Derive, Verify, Refine, Satisfy
 - Between two req. or req. and model elements
- Excerpt

The on-board shall establish a communication session

- a) At Start of Mission (only if level 2 or 3).
- b) If ordered from trackside.

STRUCTURE DIAGRAMS

Package diagram

- Group elements for readability and scalability
- Allow to define objects reused in other parts of the model

Block Definition diagram

- Static block content
- Relationships between blocks
- Definition of block parts

Internal Block diagram

- Flow of information between parts and their own blocks
- Input/output ports, types, ...

Parametric diagram

Mathematical equations and constraints

Activity diagram

- Flow of information controlled with a sequence of actions
- Describe
 - Block behavior
 - How block outputs are computed
- Very similar to Petri Nets

State-machine

- States and transition
 between states
- Hierarchy of state machines
- Excerpt
 - from Cecile's model

Use-case diagram

- Example of use of described system
- Describe which actors and system parts are interacting

Sequence diagram

- Interactions between different parts of the system
- Flow of exchanges along the time

Why use SysML... or not?

- To model a system
 - Including hardware, software, physical components, ...
 - Group all design artifacts into a single model
 - A single reference
- Well known notation
 - Really? Which semantics behind elements and connectors?
- Graphical notation
 - "A picture is worth a thousand words"... except when one has thousand pictures?
 - Is a picture with all information (types, names, ...) still readable?
- Questions?

