
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2010; month=11; day=22; hr=15; min=16; sec=43; ms=212;
]

Validated By CRFValidator v 1.0.3

Application No: 10581228 Version No: 2.0

Input Set:

Output Set:

Started: 2010-11-15 17:44:05.832 **Finished:** 2010-11-15 17:44:07.942

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 110 ms

Total Warnings: 25
Total Errors: 0

No. of SeqIDs Defined: 25

Actual SeqID Count: 25

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)

Input Set:

Output Set:

Started: 2010-11-15 17:44:05.832 **Finished:** 2010-11-15 17:44:07.942

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 110 ms

Total Warnings: 25

Total Errors: 0

No. of SeqIDs Defined: 25

Actual SeqID Count: 25

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	The United Star Secretary, Depo Chiorini, John Schmidt, Michae Bossis, Ioanni Di Pasquale, G	artment of P A. el s	_	_		
<120>	BOVINE ADENO-A	SSOCIATED V	IRAL (BAAV)	VECTOR AND	USES THEREOF	
<130>	6137NIDCR-7-PU	S				
<140>	10581228					
	2006-10-26					
	2000 20 20					
<150>	PCT/US04/40825					
<151>	2004-12-06					
<150>	60/526,786					
	2003-12-04					
<160>	25					
<170>	PatentIn versi	on 3.5				
<210>	1					
<211>	4694					
<212>	DNA					
<213>	Artificial Sequ	uence				
<220>						
<223>	synthetic cons	truct				
<400>	1					
gtggcac	tee eeecetgte	gcgttcgctc	gttegetgge	tcgattgggg	gggtggcagc	60
tcaaaga	aget gecagaegae	ggccctctgg	gccgtcgccc	ccccaatcga	gccagcgaac	120
gagcgaa	ıcgc gacagggggg	ggagtgccac	actctctagc	aagggggttt	tgtaggtggt	180
gatgtca	ittg ttgatgtcat	tatagttgtc	acgcgatagt	taatgattaa	cagtcatgtg	240
atgtgtç	ıtta tccaatagga	tgaaagcgcg	cgaatgagat	ctcgcgagac	ttccggggta	300
taaaagg	ggt gagtgaacga	gcccgccgcc	attctctgct	ctggactgct	agaggaccct	360
cgctgcc	atg gctaccttct	atgaagtcat	tgttcgcgtt	ccatttgatg	tggaagagca	420
cctgcct	gga atttctgaca	actttgtaga	ctgggtaact	ggtcaaattt	gggagctgcc	480
tcccgaç	stca gatttgaatt	tgactctgat	tgagcagcct	cagctgacgg	tggctgacag	540
aattcgc	ege gtgtteetgt	acgagtggaa	caaattttcc	aagcaggaga	gcaaattctt	600

tgtgcagttt gaaaagggat ctgaatattt tcatctgcac acgctcgtgg agacctccgg 660

catctcttct	atggtccttg	gccgctacgt	gagtcagatt	cgcgcccagc	tggtgaaggt	720	
ggtgttccag	aacattgagc	cgcggattaa	cgactgggtc	gccatcacca	aggtaaagaa	780	
gggcggagcc	aataaggtgg	tggattctgg	gtatattccc	gcctacctgc	tgccgaaggt	840	
ccaaccagag	cttcagtggg	cgtggactaa	cctcgaagag	tataaattgg	ccgccctcaa	900	
tctggaggag	cgcaaacggc	tcgtcgctca	gtttcagctt	gagteetege	agcgctcgca	960	
agaggcatct	tcccagaggg	acgtttcggc	tgacccggtc	atcaagagca	agacttccca	1020	
gaaatacatg	gcgctggtaa	gctggctggt	ggaacatggc	atcacttccg	agaagcagtg	1080	
gattcaggag	aatcaggaga	gctacctgtc	cttcaactcc	acgggaaact	ctcggagcca	1140	
gattaaagcc	gcgcttgaca	acgcgtcaaa	aattatgagt	ctgaccaaat	ctgcctcaga	1200	
ctatctcgtg	ggacagactg	ttccagagga	catttctgaa	aacagaatct	ggcagatttt	1260	
tgatctcaac	ggctacgacc	cggcatacgc	gggctctgtt	ctctacggct	ggtgcactcg	1320	
cgcctttgga	aagaggaaca	ccgtctggct	gtatggaccc	gcgaccaccg	gaaagaccaa	1380	
catcgcggaa	gccatctctc	acaccgtgcc	cttttatggc	tgtgtgaact	ggactaatga	1440	
gaactttccc	tttaatgact	gtgtggaaaa	aatgttgatc	tggtgggagg	agggaaagat	1500	
gaccagcaag	gtggtggaac	ccgccaaggc	catcttgggg	gggtctagag	tacgagtgga	1560	
tcaaaaatgt	aaatcctctg	tacaagtaga	ctctaccccg	gtgattatca	cctccaatac	1620	
taacatgtgt	gtggtggtgg	atgggaactc	cacgaccttt	gaacaccagc	agccgctgga	1680	
agaccgcatg	ttcagatttg	aactcatgcg	gcggctcccg	ccagattttg	gcaagattac	1740	
caagcaggaa	gtcaaagact	tttttgcttg	ggcaaaggtc	aaccaggtgc	cggtgactca	1800	
cgagtttatg	gttcccaaga	aagtggcggg	aactgagagg	gcggagactt	ctagaaaacg	1860	
cccactggat	gacgtcacca	ataccaacta	taaaagtccg	gagaagcggg	cccggctctc	1920	
agttgttcct	gagacgcctc	gcagttcaga	cgtgcctgta	gagecegete	ctctgcgacc	1980	
tctcaactgg	tcttccaggt	atgaatgcag	atgtgactat	catgctaaat	ttgactctgt	2040	
aacgggggaa	tgtgacgagt	gtgaatattt	gaatcggggc	aaaaatggct	gtatctttca	2100	
taatgctaca	cattgtcaaa	tttgtcacgc	tgttcctcca	tgggaaaagg	aaaatgtgtc	2160	
agattttaat	gattttgatg	actgtaataa	agagcagtaa	ataaagtgag	tagtcatgtc	2220	
ttttgttgac	caccctccag	attggttgga	atcgatcggc	gacggctttc	gtgaatttct	2280	
cggccttgag	gegggteece	cgaaacccaa	ggccaatcaa	cagaagcaag	ataacgctcg	2340	

aggtettgtg etteetgggt	acaagtatct	tggtcctggg	aacggccttg	ataagggcga	2400
tcctgtcaat tttgctgacg	aggttgcccg	agagcacgac	ctctcctacc	agaaacagct	2460
tgaggcgggc gataaccctt	acctcaagta	caaccacgcg	gacgcagagt	ttcaggagaa	2520
actegettet gacacttett	ttgggggaaa	ccttgggaag	gctgttttcc	aggctaaaaa	2580
gaggattete gaacetettg	gcctggttga	gacgccggat	aaaacggcgc	ctgcggcaaa	2640
aaagaggcct ctagagcaga	gtcctcaaga	gccagactcc	tcgagcggag	ttggcaagaa	2700
aggcaaacag cctgccagaa	agagactcaa	ctttgacgac	gaacctggag	ccggagacgg	2760
gcctccccca gaaggaccat	cttccggagc	tatgtctact	gagactgaaa	tgcgtgcagc	2820
agctggcgga aatggtggcg	atgcgggaca	aggtgccgag	ggagtgggta	atgcctccgg	2880
tgattggcat tgcgattcca	cttggtcaga	gagccacgtc	accaccacct	caacccgcac	2940
ctgggtcctg ccgacctaca	acaaccacct	gtacctgcgg	ctcggctcga	gcaacgccag	3000
cgacaccttc aacggattct	ccaccccctg	gggatacttt	gactttaacc	gcttccactg	3060
ccacttctcg ccaagagact	ggcaaaggct	catcaacaac	cactggggac	tgcgccccaa	3120
aagcatgcaa gtccgcatct	tcaacatcca	agttaaggag	gtcacgacgt	ctaacgggga	3180
gacgaccgta tccaacaacc	tcaccagcac	ggtccagatc	tttgcggaca	gcacgtacga	3240
gctcccgtac gtgatggatg	caggtcagga	gggcagcttg	cctcctttcc	ccaacgacgt	3300
gttcatggtg cctcagtacg	ggtactgcgg	actggtaacc	ggaggcagct	ctcaaaacca	3360
gacagacaga aatgccttct	actgtctgga	gtactttccc	agccagatgc	tgagaaccgg	3420
aaacaacttt gagatggtgt	acaagtttga	aaacgtgccc	ttccactcca	tgtacgctca	3480
cagccagagc ctggataggc	tgatgaaccc	gctgctggac	cagtacctgt	gggagctcca	3540
gtctaccacc tctggaggaa	ctctcaacca	gggcaattca	gccaccaact	ttgccaagct	3600
gaccaaaaca aacttttctg	gctaccgcaa	aaactggctc	ccggggccca	tgatgaagca	3660
gcagagattc tccaagactg	ccagtcaaaa	ctacaagatt	ccccagggaa	gaaacaacag	3720
tctgctccat tatgagacca	gaactaccct	cgacggaaga	tggagcaatt	ttgccccggg	3780
aacggccatg gcaaccgcag	ccaacgacgc	caccgacttc	tctcaggccc	agctcatctt	3840
tgcggggccc aacatcaccg	gcaacaccac	cacagatgcc	aataacctga	tgttcacttc	3900
agaagatgaa cttagggcca	ccaacccccg	ggacactgac	ctgtttggcc	acctggcaac	3960
caaccagcaa aacgccacca	ccgttcctac	cgtagacgac	gtggacggag	tcggcgtgta	4020
cccgggaatg gtgtggcagg	acagagacat	ttactaccaa	gggcccattt	gggccaaaat	4080

tccacacacg	gatggacact	ttcacccgtc	tcctctcatt	ggcggatttg	gactgaaaag	4140
cccgcctcca	caaatattca	tcaaaaacac	tcctgtaccc	gccaatcccg	caacgacctt	4200
ctctccggcc	agaatcaaca	gcttcatcac	ccagtacagc	accggacagg	tggctgtcaa	4260
aatagaatgg	gaaatccaga	aggagcggtc	caagagatgg	aacccagagg	tccagttcac	4320
gtccaactac	ggagcacagg	actcgcttct	ctgggctccc	gacaacgccg	gagcctacaa	4380
agagcccagg	gccattggat	cccgatacct	caccaaccac	ctctagccca	attctgttgc	4440
	taaaccgtgt					4500
	ttacaacaac					4560
	gctcgttcgc					4620
	ctgggccgtc	gecececcaa	regagecage	gaacgagcga	acgcgacagg	4680
ggggggagtg	ccac					4094

<210> 2

<211> 1833

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 2

atggctacct tctatgaagt cattgttcgc gttccatttg atgtggaaga gcacctgcct 60 120 ggaatttetg acaactttgt agactgggta actggtcaaa tttgggaget geeteecgag 180 tcagatttga atttgactct gattgagcag cctcagctga cggtggctga cagaattcgc cgcgtgttcc tgtacgagtg gaacaaattt tccaagcagg agagcaaatt ctttgtgcag 240 tttgaaaagg gatctgaata ttttcatctg cacacgctcg tggagacctc cggcatctct 300 tetatggtee ttggeegeta egtgagteag attegegeee agetggtgaa ggtggtgtte 360 420 cagaacattg agccgcggat taacgactgg gtcgccatca ccaaggtaaa gaagggcgga gccaataagg tggtggattc tgggtatatt cccgcctacc tgctgccgaa ggtccaacca 480 540 gagetteagt gggegtggae taacetegaa gagtataaat tggeegeeet eaatetggag 600 gagegeaaac ggetegtege teagttteag ettgagteet egeagegete geaagaggea 660 tetteecaga gggacgttte ggetgaceeg gteateaaga geaagaette eeagaaatae 720 atggcgctgg taagctggct ggtggaacat ggcatcactt ccgagaagca gtggattcag

gagaatcagg agagctacct	gtccttcaac	tccacgggaa	actctcggag	ccagattaaa	780
gccgcgcttg acaacgcgtc	aaaaattatg	agtctgacca	aatctgcctc	agactatctc	840
gtgggacaga ctgttccaga	ggacatttct	gaaaacagaa	tctggcagat	ttttgatctc	900
aacggctacg acccggcata	cgcgggctct	gttctctacg	gctggtgcac	tegegeettt	960
ggaaagagga acaccgtctg	gctgtatgga	cccgcgacca	ccggaaagac	caacatcgcg	1020
gaagccatct ctcacaccgt	gcccttttat	ggctgtgtga	actggactaa	tgagaacttt	1080
ccctttaatg actgtgtgga	aaaaatgttg	atctggtggg	aggagggaaa	gatgaccagc	1140
aaggtggtgg aacccgccaa	ggccatcttg	ggggggtcta	gagtacgagt	ggatcaaaaa	1200
tgtaaatcct ctgtacaagt	agactctacc	ccggtgatta	tcacctccaa	tactaacatg	1260
tgtgtggtgg tggatgggaa	ctccacgacc	tttgaacacc	agcagccgct	ggaagaccgc	1320
atgttcagat ttgaactcat	gcggcggctc	ccgccagatt	ttggcaagat	taccaagcag	1380
gaagtcaaag actttttgc	ttgggcaaag	gtcaaccagg	tgccggtgac	tcacgagttt	1440
atggttccca agaaagtggc	gggaactgag	agggcggaga	cttctagaaa	acgcccactg	1500
gatgacgtca ccaataccaa	ctataaaagt	ccggagaagc	gggcccggct	ctcagttgtt	1560
cctgagacgc ctcgcagttc	agacgtgcct	gtagagcccg	ctcctctgcg	acctctcaac	1620
tggtcttcca ggtatgaatg	cagatgtgac	tatcatgcta	aatttgactc	tgtaacgggg	1680
gaatgtgacg agtgtgaata	tttgaatcgg	ggcaaaaatg	gctgtatctt	tcataatgct	1740
acacattgtc aaatttgtca	cgctgttcct	ccatgggaaa	aggaaaatgt	gtcagatttt	1800
aatgattttg atgactgtaa	taaagagcag	taa			1833

<210> 3

<211> 610

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 3

Met Ala Thr Phe Tyr Glu Val Ile Val Arg Val Pro Phe Asp Val Glu $1 ag{5} ag{5}$

Glu His Leu Pro Gly Ile Ser Asp Asn Phe Val Asp Trp Val Thr Gly
20 25 30

Gln	Ile	Trp 35	Glu	Leu	Pro	Pro	Glu 40	Ser	Asp	Leu	Asn	Leu 45	Thr	Leu	Ile
Glu	Gln 50	Pro	Gln	Leu	Thr	Val 55	Ala	Asp	Arg	Ile	Arg 60	Arg	Val	Phe	Leu
Tyr 65	Glu	Trp	Asn	Lys	Phe 70	Ser	Lys	Gln	Glu	Ser 75	Lys	Phe	Phe	Val	Gln 80
Phe	Glu	Lys	Gly	Ser 85	Glu	Tyr	Phe	His	Leu 90	His	Thr	Leu	Val	Glu 95	Thr
Ser	Gly	Ile	Ser 100	Ser	Met	Val	Leu	Gly 105	Arg	Tyr	Val	Ser	Gln 110	Ile	Arg
Ala	Gln	Leu 115	Val	Lys	Val	Val	Phe 120	Gln	Asn	Ile	Glu	Pro 125	Arg	Ile	Asn
Asp	Trp 130	Val	Ala	Ile	Thr	Lys 135	Val	Lys	Lys	Gly	Gly 140	Ala	Asn	Lys	Val
Val 145	Asp	Ser	Gly	Tyr	Ile 150	Pro	Ala	Tyr	Leu	Leu 155	Pro	Lys	Val	Gln	Pro 160
Glu	Leu	Gln	Trp	Ala 165	Trp	Thr	Asn	Leu	Glu 170	Glu	Tyr	Lys	Leu	Ala 175	Ala
Leu	Asn	Leu	Glu 180	Glu	Arg	Lys	Arg	Leu 185	Val	Ala	Gln	Phe	Gln 190	Leu	Glu
Ser	Ser	Gln 195	Arg	Ser	Gln	Glu	Ala 200	Ser	Ser	Gln	Arg	Asp 205	Val	Ser	Ala
Asp	Pro 210	Val	Ile	Lys	Ser	Lys 215	Thr	Ser	Gln	Lys	Tyr 220	Met	Ala	Leu	Val
Ser 225	Trp	Leu	Val	Glu	His 230	Gly	Ile	Thr	Ser	Glu 235	Lys	Gln	Trp	Ile	Gln 240
Glu	Asn	Gln	Glu	Ser 245	Tyr	Leu	Ser	Phe	Asn 250	Ser	Thr	Gly	Asn	Ser 255	Arg

Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys Ile Met Ser Leu

260 265 270

Thr Lys Ser Ala Ser Asp Tyr Leu Val Gly Gln Thr Val Pro Glu Asp 275 280 285 Ile Ser Glu Asn Arg Ile Trp Gln Ile Phe Asp Leu Asn Gly Tyr Asp 295 300 Pro Ala Tyr Ala Gly Ser Val Leu Tyr Gly Trp Cys Thr Arg Ala Phe 310 315 320 305 Gly Lys Arg Asn Thr Val Trp Leu Tyr Gly Pro Ala Thr Thr Gly Lys 330 325 Thr Asn Ile Ala Glu Ala Ile Ser His Thr Val Pro Phe Tyr Gly Cys 340 345 350 Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp Cys Val Glu Lys 360 365 355 Met Leu Ile Trp Trp Glu Glu Gly Lys Met Thr Ser Lys Val Val Glu 370 375 Pro Ala Lys Ala Ile Leu Gly Gly Ser Arg Val Arg Val Asp Gln Lys 390 395 385 Cys Lys Ser Ser Val Gln Val Asp Ser Thr Pro Val Ile Ile Thr Ser 405 410 415 Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser Thr Thr Phe Glu 420 425 430 His Gln Gln Pro Leu Glu Asp Arg Met Phe Arg Phe Glu Leu Met Arg 440 445 435 Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln Glu Val Lys Asp 450 455 460 Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val Thr His Glu Phe 475 470 465

Met Val Pro Lys Lys Val Ala Gly Thr Glu Arg Ala Glu Thr Ser Arg

490

485

Lys Arg Pro Leu Asp Asp Val Thr Asn Thr Asn Tyr Lys Ser Pro Glu 505 Lys Arg Ala Arg Leu Ser Val Val Pro Glu Thr Pro Arg Ser Ser Asp 520 Val Pro Val Glu Pro Ala Pro Leu Arg Pro Leu Asn Trp Ser Ser Arg 530 535 540 Tyr Glu Cys Arq Cys Asp Tyr His Ala Lys Phe Asp Ser Val Thr Gly 545 550 555 560 Glu Cys Asp Glu Cys Glu Tyr Leu Asn Arg Gly Lys Asn Gly Cys Ile 565 570 Phe His Asn Ala Thr His Cys Gln Ile Cys His Ala Val Pro Pro Trp 585 580 Glu Lys Glu Asn Val Ser Asp Phe Asn Asp Phe Asp Asp Cys Asn Lys 595 600 Glu Gln 610 <210> 4 <211> 1173 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 4 atggcgctgg taagctggct ggtggaacat ggcatcactt ccgagaagca gtggattcag 60 gagaatcagg agagctacct gtccttcaac tccacgggaa actctcggag ccagattaaa gccgcgcttg acaacgcgtc aaaaattatg agtctgacca aatctgcctc agactatctc 180 240 gtgggacaga ctgttccaga ggacatttct gaaaacagaa tctggcagat ttttgatctc aacggctacg acccggcata cgcgggctct gttctctacg gctggtgcac tcgcgccttt 300 ggaaagagga acaccgtctg gctgtatgga cccgcgacca ccggaaagac caacatcgcg 360

gaagccatct ctcacaccgt gcccttttat ggctgtgtga actggactaa tgagaacttt

420

ccctttaatg	actgtgtgga	aaaaatgttg	atctggtggg	aggagggaaa	gatgaccagc	480
aaggtggtgg	aacccgccaa	ggccatcttg	ggggggtcta	gagtacgagt	ggatcaaaaa	540
tgtaaatcct	ctgtacaagt	agactctacc	ccggtgatta	tcacctccaa	tactaacatg	600
tgtgtggtgg	tggatgggaa	ctccacgacc	tttgaacacc	agcagccgct	ggaagaccgc	660
atgttcagat	ttgaactcat	gcggcggctc	ccgccagatt	ttggcaagat	taccaagcag	720
gaagtcaaag	acttttttgc	ttgggcaaag	gtcaaccagg	tgccggtgac	tcacgagttt	780
atggttccca	agaaagtggc	gggaactgag	agggcggaga	cttctagaaa	acgcccactg	840
gatgacgtca	ccaataccaa	ctataaaagt	ccggagaagc	gggcccggct	ctcagttgtt	900
cctgagacgc	ctcgcagttc	agacgtgcct	gtagagcccg	ctcctctgcg	acctctcaac	960
tggtcttcca	ggtatgaatg	cagatgtgac	tatcatgcta	aatttgactc	tgtaacgggg	1020
gaatgtgacg	agtgtgaata	tttgaatcgg	ggcaaaaatg	gctgtatctt	tcataatgct	1080
acacattgtc	aaatttgtca	cgctgttcct	ccatgggaaa	aggaaaatgt	gtcagatttt	1140
aatgattttg	atgactgtaa	taaagagcag	taa			1173

<210> 5

<211> 390

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 5

Met Ala Leu Val Ser Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys

1 10 15

Gln Trp Ile Gln Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Gly Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Ser Lys $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ile Met Ser Leu Thr Lys Ser Ala Ser Asp Tyr Leu Val Gly Gln Thr 50 55 60

Val Pro Glu Asp Ile Ser Glu Asn Arg Ile Trp Gln Ile Phe Asp Leu 65 70 75 80

Ash Gly Tyr Asp Pro Ala Tyr Ala Gly Ser Val Leu Tyr Gly Trp Cys 95

Thr Arg Ala Phe 100 Lys Arg Ash 100 Tyr Gly Pro Ala 100

Thr Thr Gly Lys Thr Ash 11e Ala 120 Tyr Ala 12e Tyr Gly Pro Ala 12e Tyr Gly Pro 12e Tyr Gly Pro 12e Tyr Gly Pro 12e Tyr Gly Pro Ala 12e Tyr Gly Pro 12e Tyr Gly Pro Ala 12e Tyr Gly Pro 12e Tyr Gly Pro Ala 12e Tyr Gly Pro 12e T

Lys Val Val Glu Pro Ala Lys Ala Ile Leu Gly Gly Ser Arg Val Arg \$165\$ \$170\$ \$175\$

Val Asp Gln