

Grundlagen der Technischen Informatik 2 Sommersemester 25

Übungsblatt 3

Aufgabe 1: Binäre Entscheidungsdiagramme

Gegeben sei die Funktion f durch das folgende geordnete binäre Entscheidungsdiagramm (OBDD):

1. Reduzieren Sie den OBDD so weit wie möglich und zeichnen Sie den rOBDD. Geben Sie bei jedem Schritt die angewandte Regel an.

Regel 1: Eliminierung von Knoten mit gleichen Nachfolgern.

Regel 2: Gemeinsame Nutzung gleicher Teilbäume.

2. Leiten Sie aus dem rOBDD die Funktion f in disjunktiver Form ab.

3. Die minimierte Funktion von f lautet:

$$f_{min} = \overline{x_2} \, \overline{x_1} \vee \overline{x_3} \, \overline{x_1} \vee \overline{x_3} \, \overline{x_2}$$

Ist es somit möglich die Reduzierung des OBDDs als Minimierungsverfahren zu nutzen? Begründen Sie Ihre Entscheidung.

Aufgabe 2: Maschinenzahlen

1.	Wandeln	Sie die folgenden	Binärzahlen in l	Dezimalzahlen um.

- (a) 10001_2
- (b) 1010111₂
- 2. Wandeln Sie die folgenden Dezimalzahlen in Binärzahlen um.
 - (a) 144₁₀
- (b) 413₁₀
- 3. Gegeben sei die Hexadezimalzahl $18A32D_{16}$. Wandeln Sie diese in eine Binärzahl um.
- 4. Gegeben sei die Binärzahl 11010101001001001101111₂. Wandeln Sie diese in eine Hexadezimalzahl um.
- 5. Berechnen Sie das Zweierkomplement der folgenden 8-Bit Integer.
 - (a) 0x00001100
- (b) 0x11111100
- 6. Wandeln Sie die folgenden Dezimalzahlen in IEEE754 16-bit half-precision floating-point Zahlen um.
 - (a) 10000_{10}
- (b) 16.16₁₀
- 7. Wandeln Sie die folgende IEEE754 32-bit floating-point Zahlen in eine Dezimalzahl um.
 - (a) 0 10001000 111100111000000000000000

Aufgabe 3: Schaltnetze

- 1. Seien A = 0b00010101 und B = 0b001111011 als zwei signed 8-bit Integer gegeben.
 - (a) Berechnen Sie A + B. Führen Sie dafür binäre Addition durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)
 - (b) Berechnen Sie B-A. Führen Sie dafür binäre Subtraktion durch. (Das Ergebnis soll ebenfalls ein signed 8-bit Integer sein.)
- 2. Konstruieren Sie analog zum Adder (siehe Vorlesung) einen Subtracter. (Ein Schaltnetz, welches die binäre Subtraktion durchführen kann.)
 - (a) Entwerfen Sie einen Half-Subtracter. (Eine Schaltung, die zwei Bits subtrahieren kann.)
 - (b) Erweitern Sie diese Schaltung zu einem Full-Subtracter. (Eine Schaltung, die drei Bits subtrahieren kann.)
 - (c) Wie kann eine solche Schaltung auf 8 Bit erweitert werden? Beschreiben Sie das theoretische Vorgehen.
- 3. Entwerfen Sie analog zum Multiplexer (siehe Vorlesung) eine Schaltung, welche einen Input e, abhängig vom Steuersignal s_0 an Output o_0 oder Output o_1 weiterleitet.