Gibbs Sampling

Subeen Cha

Machine Learning Laboratory
Department of Statistics
EWHA Womans University

- Sometimes, exact inference is intractable. → can use approximation
 - ex. Numerical sampling methods(Monte Carlo, etc)
- Sampling
 - General Idea: Obtain a set of samples $\mathbf{z}^{(l)}$ ($l=1,\cdots,L$) drawn independently from the distribution $p(\mathbf{z})$.
 - Then, the expectation can be approximated by a finite sum.

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z} = \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})$$

- Some problems
 - The samples $\{z^{(l)}\}$ might not be independent.
 - The expectation may be dominated by regions of small probability.
 - f(z): small vs p(z): large

1) Standard distributions

• Suppose that z is uniformly distributed over the interval (0, 1), and that we transform the values of z using some function $f(\cdot)$. $\Rightarrow y = f(z)$

$$Z \sim V(0,1)$$
, $J = f(z) \rightarrow z = f'(z)$

Jacobi transformation

$$h(y) = F_{Y}(y) = P(Y \le y) = \int_{-\infty}^{y} P(\hat{y}) \cdot d\hat{y} = P(f(z) \le y) = P(Z \le f'(y)) = F_{Z}(f'(y)) = h(z) = Z \quad (11.6)$$

$$P(y) = f_{Y}(y) = \frac{d}{dy} f_{Y}(y) = \frac{d}{dy} f_{Z}(f'(y)) = f_{Z}(\underline{f'(y)}) \cdot \frac{d}{dy} \underline{f'(y)} = f_{Z}(z) \frac{dz}{dy} = P(z) \left| \frac{dz}{dy} \right|$$
(11.5)

 \rightarrow transform z using the inverse of the indefinite integral of the desired distribution p(y) $y = h^{-1}(z)$

1) Standard distributions

- Ex 1. exponential distribution
 - pdf: $p(y) = \lambda \exp(-\lambda y)$, $0 \le y < \infty$
 - cdf: $z = h(y) = \int_0^y p(\hat{y})d\hat{y}$ $= 1 - \exp(-\lambda y)$ $\to \exp(-\lambda y) = 1 - z$ $\to -\lambda y = \ln(1 - z) \quad (\because 0 < z \le 1)$ $\to y = -\lambda^{-1} \ln(1 - z) \sim \exp(\lambda)$

• Ex 2. Cauchy distribution

$$P(y) = \frac{1}{\pi} \cdot \frac{1}{1+y^2}$$

$$h(y) = \int_{-\infty}^{y} \frac{1}{\pi} \cdot \frac{1}{1+\hat{y}^2} d\hat{y} = \int_{-\frac{\pi}{2}}^{tan^{-1}(y)} \frac{1}{\pi} \cdot \frac{1}{1+tan^2\theta} \cdot \sec^2\theta d\theta$$

$$= \left[\frac{1}{\pi} \cdot \theta\right]_{-\frac{\pi}{2}}^{tan^{-1}(y)} = \frac{1}{\pi} \cdot \left[tan^{-1}(y) + \frac{\pi}{2}\right] = 2$$

$$\rightarrow tan^{-1}(y) = \pi z - \frac{\pi}{2}$$

$$\rightarrow y = tan[\pi(z - \frac{1}{2})]$$

multiple variables → Use Jacobian

$$p(y_1, \dots, y_M) = p(z_1, \dots, z_M) \left| \frac{\partial(z_1, \dots, z_M)}{\partial(y_1, \dots, y_M)} \right|$$

- Generally, calculating and then inverting the indefinite integral of the required distribution is intractable.
 - More general strategy is required: rejection sampling and importance sampling

2) Rejection sampling

- Suppose that sampling directly from p(z) is difficult, but easily able to evaluate p(z) for any given value of z: $p(z) = \frac{1}{Z_p} \tilde{p}(z)$, Z_p : unknown
- proposal distribution(q(z))
 - simpler distribution that we can readily draw samples
 - Choose a constant k s.t $kq(z) \ge \tilde{p}(z)$ for all values of z.
 - kq(z): comparison function
- Each step of the rejection sampler involves generating two random numbers.
 - $z_0 \sim q(z)$
 - $u_0 \sim U[0, kq(z_0)]$
 - If $u_0 > \tilde{p}(z_0)$
 - reject z₀ and resample(grey shaded region)
 - Else
 - Accept z₀
 - Samples are accepted with probability $\tilde{p}(z)/kq(z)$.

$$p(\text{accept}) = \int {\{\tilde{p}(z)/kq(z)\}q(z)dz} = \frac{1}{k} \int \tilde{p}(z)dz$$

 \Rightarrow choose k as small as possible

2- α) Adaptive Rejection sampling

- Construction of an envelope function (kq(z)) is particularly easy if p(z) is log-concave.
 - Choose some initial set of grid points: z₁, z₂, z₃
 - Calculate $\ln p(z_i)$ and gradient(λ_i).
 - Construct an envelope function(q(z)).
 - set of piecewise exponential distributions

$$q(z) = k_i \lambda_i \exp\{-\lambda_i (z - z_i)\}, \quad \widehat{z_{i-1,i}} < z \le \widehat{z_{i,i+1}}, \quad k_i$$
: gradient of the tangent line at z_i

- Once a sample has been drawn, apply the usual rejection criterion.
 - If $u_0 \leq \tilde{p}(z_0)$
 - Accept z₀
 - Else
 - Reject z_0 . \rightarrow Incorporate into the set of grid points.
 - - \Rightarrow Envelope function becomes a better approximation of the desired distribution p(z).

2) Rejection sampling_limitation

- For high-dimensional problems, the acceptance rate decreases exponentially as the number of dimensions increases.
- Ex> multivariate Gaussian distribution
 - proposal distribution(kq(z)): $N(0, \sigma_p^2 I)$
 - In *D*-dimensions the optimum value of k is given by $k = (\sigma_q/\sigma_p)^D$.
 - If the proposal distribution's variance is only slightly larger than the target distribution's, the acceptance ratio can become extremely low.
 - about 1/20,000 for D = 1,000 dimensions
- Finding a good proposal distribution in high-dimensional problem is difficult.
 - Alternatives) importance sampling, etc

3) Importance sampling(= weighted sampling)

- Main goal of sampling
 - Generate the exact pdf. (X)
 - Calculating the expectation of pdf or calculating a certain probability (O)

- But the number of terms in the summation grows exponentially with the dimensionality of z.
- In addition, most probability distributions have most masses inside relatively small regions in z space in high-dimensional problems.
 - Only a very small proportion of the samples will make a significant contribution to the sum.
- ⇒ importance sampling

3) Importance sampling

- Again, use proposal distribution q(z) from which we can easy draw samples.
 - Sampling from q(z): $\{z^{(l)}\}$
 - Then, calculate the expectation.

$$\mathbb{E}[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z} = \int f(\mathbf{z})\frac{p(\mathbf{z})}{q(\mathbf{z})}q(\mathbf{z})d\mathbf{z} \simeq \frac{1}{L}\sum_{l=1}^{L}\frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}f(\mathbf{z}^{(l)})$$

- L: # of samples, z^(l): sample of Z
- Importance weight: $r_l = p(z^{(l)})/q(z^{(l)})$
 - kind of weighted average
 - used to correct the bias introduced by sampling from the wrong distribution(q(z))

3) Importance sampling

- Normalization
 - case that the distribution p(z) can only be evaluated up to a normalization constant
 - i.e., $p(\mathbf{z}) = \tilde{p}(\mathbf{z})/Z_p$ where $\tilde{p}(\mathbf{z})$ can be evaluated easily, whereas Z_p is unknown
 - can use $q(\mathbf{z}) = \tilde{q}(\mathbf{z})/Z_q$

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

$$= \int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d\mathbf{z} = \int f(\mathbf{z}) \frac{\tilde{p}(\mathbf{z})/Z_p}{\tilde{q}(\mathbf{z})/Z_q} q(\mathbf{z}) d\mathbf{z}$$

$$= \frac{Z_q}{Z_p} \int f(\mathbf{z}) \frac{\tilde{p}(\mathbf{z})}{\tilde{q}(\mathbf{z})} q(\mathbf{z}) d\mathbf{z}$$

$$\simeq \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_{l} f(\mathbf{z}^{(l)}).$$

•
$$\tilde{r}_l = \frac{\tilde{p}(z^{(l)})}{\tilde{q}(z^{(l)})}$$

• $\frac{Z_p}{Z_q} = \frac{1}{Z_q} \int \tilde{p}(z) dz = \int \frac{\tilde{p}(z)}{\tilde{q}(z)} \tilde{q}(z) dz \simeq \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_l$

$$egin{aligned} \mathbb{E}[f] &\simeq \sum_{l=1}^L w_l f(\mathbf{z}^{(l)}) \ & ext{where} \quad w_l = rac{ ilde{r}_l}{\sum_m ilde{r}_m} = rac{ ilde{p}(z^{(l)})/q(z^{(l)})}{\sum_m ilde{p}(z^{(m)})/q(z^{(m)})} \end{aligned}$$

3) Importance sampling_likelihood weighted sampling

- Significant difference from p(z) and q(z) can reduce the efficiency of sampling.
 - improvement → likelihood weighted sampling
- Likelihood weighted sampling
 - based on ancestral sampling of the variables
 - make one pass through the set of variables in the order z_1, \dots, z_M sampling from the conditional distributions $p(\mathbf{z}_i|pa_i)$.
 - Check each variable in turn.
 - If that variable is in the evidence set(= observed variables), then it is just set to its instantiated value.
 - Else, sampling from the conditional distribution $p(\mathbf{z}_i|pa_i)$
 - Weights

$$r(\mathbf{z}) = \prod_{\mathbf{z}_i \notin \mathbf{e}} \frac{p(\mathbf{z}_i | \mathbf{pa}_i)}{p(\mathbf{z}_i | \mathbf{pa}_i)} \prod_{\mathbf{z}_i \in \mathbf{e}} \frac{p(\mathbf{z}_i | \mathbf{pa}_i)}{1} = \prod_{\mathbf{z}_i \in \mathbf{e}} p(\mathbf{z}_i | \mathbf{pa}_i)$$

3- α) Sampling Importance Resampling

Improves weight balance problem in importance sampling

- Process
 - 1. Sampling: draw L samples $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(L)}$ from $q(\mathbf{z})$.
 - 2. Weight construction: $w_l = \frac{\widetilde{r_l}}{\sum_m \widetilde{r_m}} = \frac{\widetilde{p}(z^{(l)})/q(z^{(l)})}{\sum_m \widetilde{p}(z^{(m)})/q(z^{(m)})}$
 - 3. Resampling: resample # L samples from the sample sets $(\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(L)})$.
 - Sampling probabilities are given by the weights (w_1, \dots, w_L) .
- The approximation improves as the sampling distribution q(z) gets closer to the desired distribution p(z).
 - If $L \to \infty$, the distribution becomes correct.
 - When q(z) = p(z), the samples $sets(\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(L)})$ have the desired distribution(p(z)), and the weights become uniformly $w_n = 1/L$.
 - So, the resampled values also have the desired distribution.

Sampling and the EM Algorithm

- M-step
 - optimize Q(log-likelihood estimates) w.r.t θ (model parameters).
 - Update the model parameter θ given the value z.

$$Q(\theta, \theta^{old}) = \int p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{Z}, \mathbf{X}|\theta) d\mathbf{Z}$$

- E-step
 - Update z given the model parameter value θ .
 - can use sampling methods to approximate the integral by a finite sum over samples $\{Z^{(l)}\}$

$$Q(\theta, \theta^{old}) \simeq \frac{1}{L} \sum_{l=1}^{L} \ln p(\mathbf{Z}^{(l)}, \mathbf{X} | \theta)$$

- A Markov chain(or Markov process) is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. © Wikipedia
- A series of random variables $\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(M)}$ s.t the following conditional independence property holds
 - Conditional independence: $p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(1)},\cdots,\mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)}), \quad m \in \{1,\cdots,M-1\}$

- Terminologies & Properties
 - transition probabilities
 - We can specify the Markov chain by giving the probability distribution for the initial variable $p(\mathbf{z}^{(0)})$ together with the conditional probabilities for subsequent variables.

$$T_m(z^{(m)}, z^{(m+1)}) \equiv p(z^{(m+1)}|z^{(m)})$$

- A Markov chain is called **homogeneous** if the transition probabilities are the same for all m.
- invariant(= stationary)
 - A distribution is said to be invariant(or stationary) if each step in the chain leaves that distribution invariant.
 - For a homogeneous Markov chain with transition probabilities T(z',z), the distribution $p^*(z)$ is invariant if $p^*(z) = \sum_{z'} T(z',z) p^*(z')$.

- Terminologies & Properties
 - detailed balance condition $p^*(\mathbf{z})T(\mathbf{z},\mathbf{z}') = p^*(\mathbf{z}')T(\mathbf{z}',\mathbf{z})$
 - Transition probability that satisfies detailed balance w.r.t a particular distribution will leave that distribution invariant. $\sum_{\mathbf{z}'} p^{\star}(\mathbf{z}') T(\mathbf{z}', \mathbf{z}) = \sum_{\mathbf{z}'} p^{\star}(\mathbf{z}) T(\mathbf{z}, \mathbf{z}') = p^{\star}(\mathbf{z}) \sum_{\mathbf{z}'} p(\mathbf{z}'|\mathbf{z}) = p^{\star}(\mathbf{z}).$
 - A Markov chain that respects detailed balance is said to be reversible.
 - Ergodicity
 - For $m \to \infty$, the distribution $p(\mathbf{z}^{(m)})$ converges to the required invariant distribution $p^*(\mathbf{z})$, irrespective of the choice of initial distribution $p(\mathbf{z}^{(0)})$.
 - $p^*(\mathbf{z})$: equilibrium distribution

- Markov Chain for Sampling
 - In previous, we do not use the past records.
 - Every sampling is independent.
 - MCMC generates continuous samples.
 - $\{z^{(1)}, z^{(2)}, \dots\}$: forms a Markov Chain
 - Also, maintain a record of the current state $z^{(\tau)}$ and the proposal distribution $q(z|z^{(\tau)})$.
 - At each cycle of the algorithm, we generate a candidate sample **z*** from the proposal distribution and then accept the sample according to an appropriate criterion.

2. Markov Chain Monte Carlo(MCMC)

2-2. The Metropolis-Hastings Algorithm

Metropolis Algorithm

General algorithm of MCMC

- Assumption) The proposal distribution is symmetric: $q(\mathbf{z}_A|\mathbf{z}_B) = q(\mathbf{z}_B|\mathbf{z}_A)$
- Process
 - Current value: $z^{(\tau)}$
 - Propose a candidate $z^* \sim q(z^*|z^{(\tau)})$. q(): proposal distribution
 - With an acceptance probability $A(\mathbf{z}^*, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^*)}{\tilde{p}(\mathbf{z}^{(\tau)})}\right)$,
 - Choose a random number u with uniform distribution over the unit interval (0,1).
 - If $A(\mathbf{z}^*, \mathbf{z}^{(\tau)}) > u$: accept, $\mathbf{z}^{(\tau+1)} \to \mathbf{z}^*$
 - Else: reject, $\mathbf{z}^{(\tau+1)} \rightarrow \mathbf{z}^{(\tau)}$
 - The candidate point z^* is discarded. + The previous sample is included instead in the final list of samples.
 - Another candidate sample is drawn from the distribution.

2. Markov Chain Monte Carlo(MCMC)

2-2. The Metropolis-Hastings Algorithm

- Metropolis-Hastings Algorithm
 - Remove the symmetric assumption. → more general case
 - Now, acceptance probability becomes $A(\mathbf{z}^*, \mathbf{z}^{(\tau)}) = \min \left(1, \frac{\tilde{p}(\mathbf{z}^*) q_k(\mathbf{z}^{(\tau)} | \mathbf{z}^*)}{\tilde{p}(\mathbf{z}^{(\tau)}) q_k(\mathbf{z}^* | \mathbf{z}^{(\tau)})} \right)$.
 - p(z) is an invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm.
 - Pf> Show that detailed balance condition holds.
 - Detailed balance condition: $p^*(\mathbf{z})T(\mathbf{z},\mathbf{z}') = p^*(\mathbf{z}')T(\mathbf{z}',\mathbf{z})$

$$p(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z})A_k(\mathbf{z}',\mathbf{z}) = \min(p(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z}), p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}))$$

$$= \min(p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}'), p(\mathbf{z})q_k(\mathbf{z}'|\mathbf{z}))$$

$$= p(\mathbf{z}')q_k(\mathbf{z}|\mathbf{z}')A_k(\mathbf{z},\mathbf{z}')$$

2. Markov Chain Monte Carlo(MCMC)

2-2. The Metropolis-Hastings Algorithm

- Metropolis-Hastings Algorithm
 - The specific choice of proposal distribution can have a marked effect on the performance of the algorithm.
 - continuous state spaces: Gaussian centered on the current state
 - There is an important trade-off in determining the variance parameter.
 - Small variance: high transition approval rate, but slow progress through the state space
 - Large variance: high rejection rate
 - The size of the proposed distribution(ρ) should be of the same order as the smallest length scale(σ_{\min}).
 - explores the distribution along the more extended direction by means of a random walk
 - can have very slow convergence if the distributions vary are very different in different directions

3. Gibbs Sampling

Intro

- Gibbs Sampling: special case of the Metropolis-Hastings algorithm
- Consider a Metropolis-Hastings sampling step involving the variable z_k .
 - $z^{(\tau)} = \left(z_k^{(\tau)}, z_{\backslash k}^{(\tau)}\right) \rightarrow z^* = \left(z_k^*, z_{\backslash k}^*\right)$
 - the remaining variables $\mathbf{z}_{\backslash k}$ remain fixed: $z_{\backslash k}^* = \mathbf{z}_{\backslash k}$
 - transition probability: $q_k(\mathbf{z}^*|\mathbf{z}) = p(z^*|\mathbf{z}_{\setminus k})$
 - Then, the acceptance probability becomes 1. → always accepted

•
$$p(\mathbf{z}) = p(z_k | \mathbf{z}_{\backslash k}) p(\mathbf{z}_{\backslash k}) \rightarrow A(\mathbf{z}^{\star}, \mathbf{z}) = \frac{p(\mathbf{z}^{\star}) q_k(\mathbf{z} | \mathbf{z}^{\star})}{p(\mathbf{z}) q_k(\mathbf{z}^{\star} | \mathbf{z})} = \frac{p(z_k^{\star} | \mathbf{z}_{\backslash k}^{\star}) p(\mathbf{z}_{\backslash k}^{\star}) p(z_k | \mathbf{z}_{\backslash k}^{\star})}{p(z_k | \mathbf{z}_{\backslash k}) p(z_k^{\star} | \mathbf{z}_{\backslash k})} = 1$$

- Applicability
 - depends on the ease with which samples can be drawn from the conditional distributions $p(z_k|\mathbf{z}_{\setminus k})$
 - Can simplify using the Markov blanket

3. Gibbs Sampling

Concept of Gibbs Sampling

- Each step involves replacing the value of one of the variables by a value drawn from the distribution of that variable conditioned on the values of the remaining variables.
- Repeated either by cycling through the variables in some particular order or by choosing the variable to be updated at each step at random from some distribution
- Process

```
1. Initialize \{z_i : i = 1, ..., M\}

2. For \tau = 1, ..., T:

- Sample z_1^{(\tau+1)} \sim p(z_1|z_2^{(\tau)}, z_3^{(\tau)}, ..., z_M^{(\tau)}).

- Sample z_2^{(\tau+1)} \sim p(z_2|z_1^{(\tau+1)}, z_3^{(\tau)}, ..., z_M^{(\tau)}).

\vdots

- Sample z_j^{(\tau+1)} \sim p(z_j|z_1^{(\tau+1)}, ..., z_{j-1}^{(\tau+1)}, z_{j+1}^{(\tau)}, ..., z_M^{(\tau)}).

\vdots

- Sample z_M^{(\tau+1)} \sim p(z_M|z_1^{(\tau+1)}, z_2^{(\tau+1)}, ..., z_{M-1}^{(\tau+1)}).
```

4. Slice Sampling

Intro

- Metropolis algorithm is sensitive to the step size.
 - too small: slow decorrelation due to random walk behavior
 - too large: inefficiency due to a high rejection rate
 - ⇒ Slice Sampling provides an adaptive step size that is automatically adjusted to match the characteristics of the distribution.
- Univariate case
 - Introduce an auxiliary variable u and draw samples from the joint (z,u) space.
 - Goal: sample uniformly from the area under the distribution
 - joint distribution: $\widehat{p}(z,u) = \begin{cases} 1/Z_p & \text{if } 0 \leqslant u \leqslant \widetilde{p}(z) \\ 0 & \text{otherwise} \end{cases}$
 - marginal distribution over z: $p(z) = \int ilde{p}(z,u) \, du = ilde{p}(z)/Z_p$

4. Slice Sampling

Methology

- Procedure
 - Alternately sample z and u.
 - Given the current value $z^{(\tau)}$, select u uniformly in the range $0 \le u \le \tilde{p}(z)$
 - creates a "slice" through the distribution
 - Then, fix u and sample z from the 'slice' through the distribution defined by $\{z: \tilde{p}(z) > u\}$
 - Adjust the region based on the characteristic length scales of the distribution
 - Repeat until a valid z is found.

Figure 11.13 Illustration of slice sampling. (a) For a given value $z^{(\tau)}$, a value of u is chosen uniformly in the region $0 \leqslant u \leqslant \widetilde{p}(z^{(\tau)})$, which then defines a 'slice' through the distribution, shown by the solid horizontal lines. (b) Because it is infeasible to sample directly from a slice, a new sample of z is drawn from a region $z_{\min} \leqslant z \leqslant z_{\max}$, which contains the previous value $z^{(\tau)}$.

LATENT DIRICHLET ALLOCATION

Review

- Graphical model
 - M: # of documents corpus
 - N: # of words in a given document(document i has Ni words)
 - α : parameter of the Dirichlet prior on the per-document topic distributions(θ)
 - β : parameter of the Dirichlet prior on the per-topic word distribution(φ)
 - θ_i : topic distribution for document i
 - φ_k : word distribution for topic k
 - z_{ij} : topic for the *j*-th word in document *i*
 - w_{ij}: specific word

Review

- Generative process
 - $\theta_i \sim \text{Dir}(\alpha), i \in \{1, \dots, M\}$
 - $\varphi_k \sim \text{Dir}(\beta), k \in \{1, \dots, K\}$
 - $z_{ij} \sim \text{Multinomial}(\theta_i), i \in \{1, \dots, M\}, j \in \{1, \dots, N\}$
 - $w_{ij} \sim \text{Multinomial}(\varphi_{z_{ij}}), i \in \{1, \dots, M\}, j \in \{1, \dots, N\}$
 - A word w is generated from the distribution of φ_z word-topic distribution.
 - z topic is generated from the distribution of θ document-topic distribution.
 - θ document topic distribution is generated from the distribution of α .
 - φ word-topic distribution is generated from the distribution of β .
- We want to find the most likely allocation of Z.
 - If we have **Z** distribution, we can find the most likely θ and φ .

α θ Z W N N M document Corpus

Collapsed Gibbs Sampling

Find the most likely assignment on Z.

- Start with the factorization. $P(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\theta}, \boldsymbol{\varphi}; \alpha, \beta) = \prod_{i=1}^K P(\varphi_i; \beta) \prod_{j=1}^M P(\theta_j; \alpha) \prod_{t=1}^N P(Z_{j,t} \mid \theta_j) P(W_{j,t} \mid \varphi_{Z_{j,t}}),$
- Collapse θ and φ .
 - Leave only W(data point), Z(sampling target), α , β (priors)
 - Marginalize out!

$$P(\boldsymbol{Z}, \boldsymbol{W}; \alpha, \beta) \stackrel{\text{\tiny MOMS incluse}}{=} \int_{\boldsymbol{\theta}} \int_{\boldsymbol{\varphi}} P(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\theta}, \boldsymbol{\varphi}; \alpha, \beta) \, d\boldsymbol{\varphi} \, d\boldsymbol{\theta}$$

$$\stackrel{\text{\tiny T}}{=} \int_{\boldsymbol{\varphi}} \prod_{i=1}^K P(\varphi_i; \beta) \prod_{j=1}^M \prod_{t=1}^N P(W_{j,t} \mid \varphi_{Z_{j,t}}) \, d\boldsymbol{\varphi} \int_{\boldsymbol{\theta}} \prod_{j=1}^M P(\theta_j; \alpha) \prod_{t=1}^N P(Z_{j,t} \mid \theta_j) \, d\boldsymbol{\theta}.$$
one independent

Collapsed Gibbs Sampling

Find the most likely assignment on Z.

• Collapse
$$\theta$$
 and φ .
$$\int_{\varphi} \prod_{i=1}^{K} \underbrace{P(\varphi_i; \beta)} \prod_{j=1}^{M} \prod_{t=1}^{N} \underbrace{P(W_{j,t} \mid \varphi_{Z_{j,t}})} d\varphi \int_{\theta} \prod_{j=1}^{M} \underbrace{P(\theta_j; \alpha)} \prod_{t=1}^{N} \underbrace{P(Z_{j,t} \mid \theta_j)} d\theta.$$

$$\int_{\boldsymbol{\theta}} \prod_{j=1}^{M} P(\theta_{j}; \alpha) \prod_{t=1}^{N} P(Z_{j,t} \mid \theta_{j}) \, d\boldsymbol{\theta} = \prod_{j=1}^{M} \int_{\theta_{j}} P(\theta_{j}; \alpha) \prod_{t=1}^{N} P(Z_{j,t} \mid \theta_{j}) \, d\theta_{j}.$$

$$\int_{\theta_{j}} \underbrace{P(\theta_{j}; \alpha)}_{\text{t=1}} \prod_{t=1}^{N} P(Z_{j,t} \mid \theta_{j}) \, d\theta_{j} = \int_{\theta_{j}} \underbrace{\frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \prod_{i=1}^{N} P(Z_{j,t} \mid \theta_{j}) \, d\theta_{j}.$$

• $n_{i,r}^i$: the number of word tokens in the jth document with the same word symbol (the rth word in the (total) vocabulary) assigned to the ith topic

$$P(Z_{j,t} = i \mid \theta_j) = \theta_{j,i} \rightarrow \prod_{t=1}^N P(Z_{j,t} \mid \theta_j) = \prod_{i=1}^K \theta_{j,i}^{n_{j,(\cdot)}^i}.$$

$$\int_{\theta_j} \frac{\Gamma\left(\sum_{i=1}^K \alpha_i\right)}{\prod_{i=1}^K \Gamma(\alpha_i)} \prod_{i=1}^K \theta_{j,i}^{\alpha_i-1} \prod_{i=1}^K \theta_{j,i}^{n^i_{j,(\cdot)}} \ d\theta_j = \int_{\theta_j} \frac{\Gamma\left(\sum_{i=1}^K \alpha_i\right)}{\prod_{i=1}^K \Gamma(\alpha_i)} \prod_{i=1}^K \theta_{j,i}^{n^i_{j,(\cdot)} + \alpha_i - 1} \ d\theta_j.$$

Collapsed Gibbs Sampling

Find the most likely assignment on Z.

- Collapse θ and φ .
 - θ part

$$\int_{\theta_j} \frac{\Gamma\left(\sum_{i=1}^K \alpha_i\right)}{\prod_{i=1}^K \Gamma(\alpha_i)} \prod_{i=1}^K \theta_{j,i}^{\alpha_i-1} \prod_{i=1}^K \theta_{j,i}^{n_{j,(\cdot)}^i} \ d\theta_j = \int_{\theta_j} \frac{\Gamma\left(\sum_{i=1}^K \alpha_i\right)}{\prod_{i=1}^K \Gamma(\alpha_i)} \prod_{i=1}^K \theta_{j,i}^{n_{j,(\cdot)}^i + \alpha_i - 1} \ d\theta_j.$$

• Use pdf property: $\int_{\theta_i} \frac{\Gamma\left(\sum_{i=1}^K n^i_{j,(\cdot)} + \alpha_i\right)}{\prod_{i=1}^K \Gamma(n^i_{i+1} + \alpha_i)} \prod_{i=1}^K \theta^{n^i_{j,(\cdot)} + \alpha_i - 1}_{j,i} d\theta_j = 1.$ $p(P = \{p_i\} \mid \underline{\alpha_i}) = \frac{\prod_i \Gamma(\alpha_i)}{\Gamma(\sum_i \alpha_i)} \prod_i p^{\underline{\alpha_i} - 1}_{i}$

$$p(P = \{p_i\} \mid \underline{\alpha_i}) = \frac{\prod_i \Gamma(\alpha_i)}{\Gamma(\sum_i \alpha_i)} \prod_i p_i^{\underline{\alpha_i} - 1}$$

Make Dirichlet Distribution form:

$$\begin{split} &\int_{\theta_{j}} \underline{P(\theta_{j};\alpha)} \prod_{\underline{t}=1}^{N} P(Z_{j,t} \mid \theta_{j}) \, d\theta_{j} = \int_{\theta_{j}} \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \prod_{i=1}^{K} \theta_{j,i}^{n_{j,(\cdot)}^{i} + \alpha_{i} - 1} \, d\theta_{j} \\ &= \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \frac{\prod_{i=1}^{K} \Gamma(n_{j,(\cdot)}^{i} + \alpha_{i})}{\Gamma\left(\sum_{i=1}^{K} n_{j,(\cdot)}^{i} + \alpha_{i}\right)} \int_{\theta_{j}} \frac{\Gamma\left(\sum_{i=1}^{K} n_{j,(\cdot)}^{i} + \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(n_{j,(\cdot)}^{i} + \alpha_{i})} \prod_{i=1}^{K} \theta_{j,i}^{n_{j,(\cdot)}^{i} + \alpha_{i} - 1} \, d\theta_{j} \\ &= \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \frac{\prod_{i=1}^{K} \Gamma(n_{j,(\cdot)}^{i} + \alpha_{i})}{\Gamma\left(\sum_{i=1}^{K} n_{j,(\cdot)}^{i} + \alpha_{i}\right)}. \end{split}$$

Collapsed Gibbs Sampling

Find the most likely assignment on Z.

- Collapse θ and φ . $\int_{\varphi} \prod_{i=1}^{K} P(\varphi_i; \beta) \prod_{j=1}^{M} \prod_{t=1}^{N} P(W_{j,t} \mid \varphi_{Z_{j,t}}) d\varphi \int_{\theta} \prod_{j=1}^{M} P(\theta_j; \alpha) \prod_{t=1}^{N} P(Z_{j,t} \mid \theta_j) d\theta.$
 - φ part

$$\int_{oldsymbol{arphi}} \prod_{i=1}^K P(arphi_i;eta) \prod_{j=1}^M \prod_{t=1}^N P(W_{j,t} \mid arphi_{Z_{j,t}}) \, doldsymbol{arphi}$$

$$=\prod_{i=1}^K\int_{arphi_i} P(arphi_i;eta) \prod_{j=1}^M \prod_{t=1}^N P(W_{j,t}\midarphi_{Z_{j,t}})\,darphi_i$$

$$egin{aligned} &\prod_{i=1}^K \int_{arphi_i} rac{\Gamma\left(\sum_{r=1}^V eta_r
ight)}{\prod_{r=1}^V \Gamma(eta_r)} \prod_{r=1}^V arphi_{i,r}^{eta_r-1} \prod_{r=1}^V arphi_{i,r}^{n_{(\cdot),r}^i} \, darphi_i \end{aligned}$$

$$V = \prod_{i=1}^K \int_{arphi_i} rac{\Gamma\left(\sum_{r=1}^V eta_r
ight)}{\prod_{r=1}^V \Gamma(eta_r)} \prod_{r=1}^V arphi_{i,r}^{rac{oldsymbol{n_{(\cdot),r}^i + eta_r^i - 1}}{i}} \, darphi_i.$$

$$= \prod_{\substack{\uparrow \\ \mathsf{Pdf}}} \prod_{i=1}^{K} \frac{\Gamma\left(\sum_{r=1}^{V} \beta_r\right)}{\prod_{r=1}^{V} \Gamma(\beta_r)} \frac{\prod_{r=1}^{V} \Gamma(n_{(\cdot),r}^i + \beta_r)}{\Gamma\left(\sum_{r=1}^{V} n_{(\cdot),r}^i + \beta_r\right)}.$$

$$P(oldsymbol{Z}, oldsymbol{W}; lpha, eta) = \prod_{j=1}^{M} rac{\Gamma\left(\sum_{i=1}^{K} lpha_i
ight)}{\prod_{i=1}^{K} \Gamma(lpha_i)} rac{\prod_{i=1}^{K} \Gamma(n_{j,(\cdot)}^i + lpha_i)}{\Gamma\left(\sum_{i=1}^{K} n_{j,(\cdot)}^i + lpha_i
ight)} imes \prod_{i=1}^{K} rac{\Gamma\left(\sum_{r=1}^{V} eta_r
ight)}{\prod_{r=1}^{V} \Gamma(eta_r)} rac{\prod_{r=1}^{V} \Gamma(n_{(\cdot),r}^i + eta_r)}{\Gamma\left(\sum_{r=1}^{V} n_{(\cdot),r}^i + eta_r
ight)}.$$

β φ K α θ Z W N document M Corpus

Collapsed Gibbs Sampling

Find the most likely assignment on Z.

Gibbs sampling formula

$$P(\boldsymbol{Z}, \boldsymbol{W}; \alpha, \beta) = \prod_{j=1}^{M} \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \frac{\prod_{i=1}^{K} \Gamma(n_{j,(\cdot)}^{i} + \alpha_{i})}{\Gamma\left(\sum_{i=1}^{K} n_{j,(\cdot)}^{i} + \alpha_{i}\right)} \times \prod_{i=1}^{K} \frac{\Gamma\left(\sum_{r=1}^{V} \beta_{r}\right)}{\prod_{r=1}^{V} \Gamma(\beta_{r})} \frac{\prod_{r=1}^{V} \Gamma(n_{(\cdot),r}^{i} + \beta_{r})}{\Gamma\left(\sum_{r=1}^{V} n_{(\cdot),r}^{i} + \beta_{r}\right)}.$$

- W, α , and β are assumed or data points, and **Z** is the target of sampling.
 - In Gibbs Sampling, we sample Z one by one.
 - The key point is to derive the following conditional probability.

$$P(Z_{(m,n)} \mid oldsymbol{Z_{-(m,n)}}, oldsymbol{W}; lpha, eta) = rac{P(Z_{(m,n)}, oldsymbol{Z_{-(m,n)}}, oldsymbol{W}; lpha, eta)}{P(oldsymbol{Z_{-(m,n)}}, oldsymbol{W}; lpha, eta)}$$

- $Z_{(m,n)}$: Z hidden variable of the n-th word token in the m-th document
- The denominator term does not affect the likelihood: $\propto P(Z_{(m,n)} = v, \mathbf{Z}_{-(m,n)}, \mathbf{W}; \alpha, \beta)$

Collapsed Gibbs Sampling

Find the most likely assignment on Z.

• Gibbs sampling formula
$$P(\boldsymbol{Z}, \boldsymbol{W}; \alpha, \beta) = \prod_{j=1}^{M} \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \frac{\prod_{i=1}^{K} \Gamma(n_{j,(\cdot)}^{i} + \alpha_{i})}{\Gamma\left(\sum_{i=1}^{K} n_{j,(\cdot)}^{i} + \alpha_{i}\right)} \times \prod_{i=1}^{K} \frac{\Gamma\left(\sum_{r=1}^{V} \beta_{r}\right)}{\prod_{r=1}^{V} \Gamma(\beta_{r})} \frac{\prod_{r=1}^{V} \Gamma(n_{(\cdot),r}^{i} + \beta_{r})}{\Gamma\left(\sum_{r=1}^{V} n_{(\cdot),r}^{i} + \beta_{r}\right)}.$$

$$P(Z_{(m,n)} = v \mid Z_{-(m,n)}, W; \alpha, \beta) = \prod_{j=1}^{K} \frac{\sum_{i=1}^{K} \Gamma(\alpha_i)}{\prod_{i=1}^{K} \Gamma(\alpha_i)} \frac{\sum_{i=1}^{K} \frac{\sum_{i=1}^{K} \Gamma(\beta_r)}{\prod_{r=1}^{K} \Gamma(\beta_r)} \frac{\sum_{i=1}^{K} \frac{\sum_{i=1}^{K} \Gamma(\beta_r)}{\prod_{r=1}^{K} \Gamma(\beta_r)} \frac{\sum_{i=1}^{K} \frac{\sum_{i=1}^{K} \Gamma(\beta_r)}{\prod_{i=1}^{K} \Gamma(\beta_r)} \frac{\sum_{i=1}^{K} \frac{\sum_{i=1}^{K} \Gamma(\beta_r)}{\prod_{i=1}^{K} \Gamma(\beta_r)} \frac{\sum_{i=1}^{K} \frac{\sum_{i=1}^{K} \Gamma(\beta_r)}{\prod_{i=1}^{K} \Gamma(\beta_r)} \frac{\sum_{i=1}^{K} \Gamma(\beta_r)}{\prod_{i=1}^{$$

$$\sum_{\substack{\text{J=m}\\\text{r=v}}}^{K} \frac{\prod_{i=1}^{K} \Gamma\left(n_{m,(\cdot)}^{i} + \alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{K} n_{m,(\cdot)}^{i} + \alpha_{i}\right)} \prod_{i=1}^{K} \frac{\Gamma\left(n_{(\cdot),v}^{i} + \beta_{v}\right)}{\Gamma\left(\sum_{r=1}^{V} n_{(\cdot),r}^{i} + \beta_{r}\right)} \\ \propto \prod_{i=1}^{K} \Gamma\left(n_{m,(\cdot)}^{i} + \alpha_{i}\right) \prod_{i=1}^{K} \frac{\Gamma\left(n_{(\cdot),v}^{i} + \beta_{v}\right)}{\Gamma\left(\sum_{r=1}^{V} n_{(\cdot),r}^{i} + \beta_{r}\right)}.$$

$$\propto \prod_{i=1}^{K} \Gamma\left(n_{m,(\cdot)}^{i} + \alpha_{i}\right) \prod_{i=1}^{K} \frac{\Gamma\left(n_{(\cdot),v}^{i} + \beta_{v}\right)}{\Gamma\left(\sum_{r=1}^{V} n_{(\cdot),r}^{i} + \beta_{r}\right)}.$$
 Constant term

Collapsed Gibbs Sampling

Find the most likely assignment on Z.

Gibbs sampling formula

EWHA

• $n_{j,r}^{i,-(m,n)}$: the number of word tokens in the jth document with the same word symbol

(the rth word in the (total) vocabulary) assigned to the ith topic

- But with $Z_{(m,n)}$ excluded
- Use property of gamma function: $\Gamma(x+1) = x \times \Gamma(x)$

$$\begin{split} \prod_{i=1}^{K} \Gamma \left(n_{m,(\cdot)}^{i} + \alpha_{i} \right) \prod_{i=1}^{K} \frac{\Gamma \left(n_{(\cdot),v}^{i} + \beta_{v} \right)}{\Gamma \left(\sum_{r=1}^{V} n_{(\cdot),r}^{i} + \beta_{r} \right)} \cdot & \propto \prod_{i \neq k} \Gamma \left(n_{m,(\cdot)}^{i,-(m,n)} + \alpha_{i} \right) \prod_{i \neq k} \frac{\Gamma \left(n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)}{\Gamma \left(\sum_{r=1}^{V} n_{(\cdot),r}^{i,-(m,n)} + \alpha_{k} + 1 \right)} \frac{\Gamma \left(n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v} + 1 \right)}{\Gamma \left(\sum_{r=1}^{V} n_{(\cdot),r}^{k,-(m,n)} + \beta_{r} + 1 \right)} \\ &= \prod_{i \neq k} \Gamma \left(n_{m,(\cdot)}^{i,-(m,n)} + \alpha_{i} \right) \prod_{i \neq k} \frac{\Gamma \left(n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)}{\Gamma \left(\sum_{r=1}^{V} n_{(\cdot),r}^{i,-(m,n)} + \alpha_{k} \right)} \frac{\Gamma \left(n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v} + 1 \right)}{\Gamma \left(\sum_{r=1}^{V} n_{(\cdot),r}^{k,-(m,n)} + \beta_{v} \right)} \\ &= \prod_{i \neq k} \Gamma \left(n_{m,(\cdot)}^{i,-(m,n)} + \alpha_{i} \right) \prod_{i \neq k} \frac{\Gamma \left(n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)}{\Gamma \left(\sum_{r=1}^{V} n_{(\cdot),r}^{i,-(m,n)} + \beta_{r} \right)} \frac{\Gamma \left(n_{m,(\cdot)}^{k,-(m,n)} + \alpha_{k} \right)}{\Gamma \left(\sum_{r=1}^{V} n_{(\cdot),r}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)} + \beta_{v}}{\Gamma \left(\sum_{v=1}^{V} n_{(\cdot),v}^{i,-(m,n)} + \beta_{v} \right)} \frac{n_{m,(\cdot)}^{k,-(m,n)$$

Suppose that current word w_i is allocated to $z_i = k$