IFPR Campus Pinhais – Técnico em Informática Documento de Especificação de Casos de Uso	
Projeto: SIDEL	Versão: 0.0
Cliente: Operadores de drone para inspeção de torres de distribuição de energia elétrica.	Data: 29/09/2024

	4	
Allinae	narticinantoe	
Alulios	participantes	

Guilherme Luis Frandina e Ana Julia Ramalho de Castro

CSU01 - Iniciar a interface

DESCRIÇÃO SUCINTA

Operador inicia a interface

ATORES

1 - Operador

PRIORIDADE (EX: ESSENCIAL, IMPORTANTE, DESEJÁVEL)

Essencial

PRÉ-CONDIÇÕES

- 1 O operador deve ter iniciado o ROS (sistema operacional de robôs)
- 2 O operador deve ter iniciado o Gazebo (simulador 3D do drone).

PÓS-CONDIÇÕES

- 1 As imagens capturadas pela transmissão durante a operação serão salvas localmentes.
- 2 CSU04 "Finalizar inspeção" concluído

FLUXO BÁSICO

- 1. O operador inicia a interface
- 2. O ROS irá fazer a conexão entre a interface e o Gazebo.
- 3. O sistema irá iniciar o recebimento de imagens da câmera do drone.
- 4. O operador poderá realizar tanto o CSU02 quanto o CSU03.
- 5. Após a inspeção, o operador irá para o CSU04.

FLUXOS ALTERNATIVOS

FA1 - O operador decide usar um drone real ao invés de utilizar o simulador

Se, no Passo 2, do fluxo base o ROS realiza a conexão com o drone, então:

1. O sistema ainda irá funcionar normalmente, porém não irá se conectar com o Gazebo e sim com o drone.

PROTOTIPAÇÃO DA INTERFACE COM O USUÁRIO (OPCIONAL)

IFPR Campus Pinhais – Técnico em Informática Documento de Especificação de Casos de Uso	
Projeto: SIDEL	Versão: 0.0
Cliente: Operadores de drone para inspeção de torres de distribuição de energia elétrica.	Data : 29/09/2024

REQUISITOS RELACIONADOS (FUNCIONAIS E NÃO FUNCIONAIS)

FUNCIONAIS

REF01.O sistema deve ter comunicação entre os dados do drone e a estação de base.

REF02: O sistema deve ter botões para controlar a câmera do drone.

REF03: O sistema deve ter uma forma de localização em tempo real do drone.

NÃO FUNCIONAIS

Confiabilidade

- RNF 1. Caso o drone esteja fora de operação, terá um botão para solicitar seu retorno
- RNF 2. O drone não irá decolar caso esteja com um nível baixo de energia
- RNF 3. Caso o drone não vá para as coordenadas solicitadas o usuário poderá controlá-lo manualmente
- RNF 4. O sistema deve enviar sinais de segurança do drone.
- RNF 5. O sistema deve ter uma forma de telecontrole para situações de necessidade

Performance

RNF 6. O sistema deve enviar uma resposta imediata para o drone ao realizar alguma função

IFPR Campus Pinhais – Técnico em Informática Documento de Especificação de Casos de Uso	
Projeto: SIDEL	Versão : 0.0
Cliente: Operadores de drone para inspeção de torres de distribuição de energia elétrica.	Data: 29/09/2024

Portabilidade

- RNF 7. O sistema deve rodar no sistema operacional Ubuntu
- RNF 8. O sistema deve ter conexão com um raspberry que estará implementado no drone

Usabilidade

RNF 9. Design organizado, onde cada função terá seu espaço próprio

REGRAS DE NEGÓCIO

- RNE01 O operador deve ter o ROS (sistema operacional de robôs) instalado e configurado corretamente
- RNE02 O computador que será utilizado para o controle da inspeção deverá ter o sistema operacional Ubuntu 20.04.6 para conseguir rodar os componentes.

OBSERVAÇÕES

NA

CSU01 - Controlar movimento

DESCRIÇÃO SUCINTA

Operador pode controlar o movimento do drone

ATORES

1 - Operador

PRIORIDADE (EX: ESSENCIAL, IMPORTANTE, DESEJÁVEL)

Essencial

PRÉ-CONDIÇÕES

1 - O operador deve ter decolado o drone

PÓS-CONDIÇÕES

1 - Parar inspeção automatizada

FLUXO BÁSICO

- 6. O operador clica em um botão.
- 7. O ROS manda um comando de movimento para o drone.
- 8. O Drone executa o movimento.

FLUXOS ALTERNATIVOS

FA1 - drone automatizado

1. operador não precisa controlar o drone

REGRAS DE NEGÓCIO

RNE01 – O operador deve ter o ROS (sistema operacional de robôs) instalado e configurado corretamente

IFPR Campus Pinhais – Técnico em Informática Documento de Especificação de Casos de Uso	
Projeto: SIDEL	Versão : 0.0
Cliente: Operadores de drone para inspeção de torres de distribuição de energia elétrica.	Data : 29/09/2024

RNE02 - O computador que será utilizado para o controle da inspeção deverá ter o sistema operacional
Ubuntu 20.04.6
OBSERVAÇÕES
NA