Tema 3 ESTRUCTURAS LINEALES

TEMA	SUBTEMA
	3.1 Pilas
3 ESTRUCTURAS	3.1.1 Representación en memoria
LINEALES	3.1.2 Operaciones básicas
	3.1.3 Aplicaciones
	3.2 Colas
	3.2.1 Representación en memoria
	3.2.2 Operaciones básicas
	3.2.3 Tipos de colas: simples,
	circulares y bicolas
	3.2.4 Aplicaciones
	3.3 Listas
	3.3.1 Operaciones básicas
	3.3.2 Tipos de listas: simplemente
\	enlazadas, doblemente enlazadas y
	circulares
	3.3.3 Aplicaciones

3.1Pilas estáticas y dinámicas

- Pilas.
- Representación en memoria estática y dinámica.
- Operaciones básicas con pilas.
- Aplicaciones.
- Notación infija y postfija.
- Recursividad con ayuda de pilas.

Definición de Pila

Una pila es una estructura de datos en la cual el acceso está limitado al elemento más recientemente insertado y solamente puede crecer y decrecer por uno de sus extremos.

Definición de pila

Es un conjunto ordenado de elementos en el cual se pueden agregar y eliminar elementos en un extremo, llamado **tope** de la pila.

E D C B

A diferencia del arreglo la definición de la pila considera la inserción y eliminación de elementos, por lo que una pila es un objeto dinámico en constante cambio.

Inserciones en una pila

eliminaciones en una pila

 Las pilas se denominan también estructuras LIFO (Last-In-First-Out), porque su característica principal es que el último elemento en llegar es el primero en salir. ■ En todo momento, el único elemento visible de la estructura es el último que se colocó.

Se define el **tope** de la pila como el punto donde se encuentra dicho elemento.

 Operaciones de acceso: Pila vacia(empty), Qué elemento está en el Entope(Top), Pila llena(Full), Cuántos elementos hay en la pila(Total)

Operaciones de transformación: poner un elemento en el tope(push), quitar un elemento del tope(pop)

Métodos

```
push(x) --> (apilar) Inserta x
pop() --> (desapilar) Elimina el último elemento insertado
info() --> Retorna el último elemento insertado, sin eliminarlo.
pilallena() --> Retorna true si no existen espacios para un nuevo
               elemento: en caso contrario.
pilavaçia() --> Retorna true si no existen elementos ; false en
               caso contrario
vaciar() --> Elimina todos los elementos.
ontarl () --> Regresa el numero. De elementos en la pila.
Top () --> Regresa posición del último elemento insertado.🛂
Imprime() --> Muestra contenido de la lista.
Invierte() --> Genera una nueva pila con el contenido en ordene
               inverso.
Busca(x) --> Retorna true si el elemento x esta en la pila,
```

false en caso contrario.

Algunas aplicaciones

Lenguajes de programación

Los compiladores comprueban los programas buscando errores sintácticos. Se puede utilizar una pila para comprobar si hay símbolos desequilibrados.

Estructura general de un analizador LR

Algunas aplicaciones

Lenguajes de programación

Implementación de llamadas a procedimientos. Las pilas son utilizadas en la mayoría de los lenguajes para implementar las llamadas a métodos. (JVM)

Pila de métodos en Java

Algunas aplicaciones

Lenguajes de programación

Evaluación de expresiones aritméticas en lenguajes de programación. Se utiliza una pila para la evaluación con precedencia entre operc '

Aplicaciones

- Historia de las páginas visitadas en un Web browser.
- ► Secuencia deshacer en un editor de texto.
- Llamadas a métodos en Java Virtual Machine.
- Estructura de datos auxiliar para algoritmos.
- Recursividad

Operaciones

Diseño de algoritmos

PILAVACIA()

{Este algoritmo verifica si la pila esta vacía, asignando a band el valor de verdad correspondiente}

PILALLENA()

{este algoritmo verifica se la pila esta llena, asignando a band el valor de verdad correspondiente}

- 1. Inicio
- 2. Si tope == max -1 entonces

hacer band= verdadero

sino

hacer band= falso

- 3. Fin del condicinal_1
- 4. Regresa band
- 5. Fin

Apilar(dato)

{Este algoritmo pone el elemento dato en PILA. Actualiza el valor de tope. max el número máximo de elementos que puede almacenar PILA}

```
1. Inicio
2. Llamar a PILALLENA()
3. Si band == verdadero
 entonces
    Éscribe "desbordamiento"
  síno
      hace tope = tope++
      elem[tope]= dato
4. Fin del condicional_paso_2
5. Fin
```

```
Apilar(int dato){
   if (pilallena()) {
sout("desbordamiento");
   else {
       tope++;
       elem[tope]=dato;
```

Apilar(dato)

{Este algoritmo pone el elemento dato en PILA. Actualiza el valor de tope. max es el número máximo de elementos que puede almacenar PILA}

- 1. Inicio
- 2. Llamar a PILALLENA()
- 3. Si band == verdadero entonces

Escribe "desbordamiento"

sino

hace tope = tope++ elem[tope]= dato

- 4. Fin del condicional_paso_2
- 5. Fin

desapilar()

{Este algoritmo borra el elemento dato de PILA }

- 1. Inicio
- 2. Si (PILAVACIA())

entonces

escribe "subdesbordamiento"

sino

hace dato = elem[tope]

tope= tope -1

- 3. Fin del condicional_1
- 4. Regresa dato
- 5. Fin

Info()

{retorna el último elemento en la PILA, sin eliminarlo}

- 1. Inicio
- 2. Llamar a PILAVACIA()
- 3. Si band == verdadero entonces

Escribe"ERROR NO HAY DATOS"

sino

dato= elem[tope]

- 4. Fin del condicional_paso_2
- 5. Retorna dato
- 6. Fin

tope=5 ____

F

Ε

D

С

В

Α

Ejercicios en clase:

- Diseña un algoritmo para contar los elementos de una pila.
- 2) Diseña un algoritmo para imprimir el contenido de una pila.
- 3) Diseña un algoritmo para invertir una pila

Ejercicio 3 contar()

{retorna el número de elementos en la PILA, sin eliminarlos}

contar()

{retorna el número de elementos en la PILA, sin eliminarlos}

- 1. Inicio
- 2. cont=0
- 3. Llamar a PILAVACIA()
- 4. Si band == verdadero

entonces

Escribe"ERROR NO HAY DATOS"

sino

tope=5

repetir para i desde 0 hasta tope, i++

cont++

- 5. Fin del condicional_paso_2
- 6. Retorna cont
- 7. Fin

tope=-1

contar()

{retorna el número de elementos en la PILA, sin eliminarlos}

("versión mejorada")

- 1. Inicio
- 2. retorna tope+1
- 3. Fin

imprimepila()

{muestra los elementos en la PILA, sin eliminarlos}

- 1. Inicio
- 2. Llamar a PILAVACIA()
- 3. Si band == verdadero

Ejercicio Diseña un algoritmo para invertir una pila

inviertepila1()

{invierte el contenido de una pila}

Ejercicio Diseña un algoritmo para invertir una pila

inviertepila1() {invierte el contenido de una pila} Inicio Si pilavacia() Escribe "no hay datos" tope=5 tope=5 ____ F sino 5. crea una nueva pila (pila1), Ε repetir para i=0 hasta tope D d=pila.desapilar() В pila1.apilar(d) Α Fin_condicional_paso_2 10. Fin_algoritmo PILA

Ejercicio Diseña un algoritmo para buscar un elemento en una pila

Diagrama UML de la clase Pila

Pila max tope elem[]

```
Pilavacia ()
Pilallena()
apilar( )
desapilar( )
Imprimepila()
Vaciar()
Top()
Info()
Invertir( )
Total()
Buscar()
```

Declaración en Java de la clase Pila

```
public class Pila
  // atributos
  private int tope;
  private int max;
  private int[] elem;
  // constructor; crea una pila vacía
  public Pila(int n ) {
    this.max= n;
    elem= new int [max];
     tope=-1;
  // métodos
  public int top()
      return tope;
} // fin de la clase Pila
```

Ejercicio práctico

■ Implementa en Java la clase Pila y sus operaciones

FUENTES DE INFORMACION

- CairoGuardati. Estructura de datos. Mc Graw Hill
- https://estructura09110907.blogspot.com/2011/10/pilas.html