ST 705 Linear models and variance components Lab practice problem set 4

January 27, 2020

- 1. In lecture, we proved a lemma that $(X'X)^gX'$ is a generalized inverse of X.
 - (a) Verify that $X(X'X)^g$ is a generalized inverse of X'.
 - (b) We proved that $P_X := X(X'X)^g X'$ is the unique projection onto column(X). Is $(X'X)^g X'$ the unique generalized inverse of X?
- 2. Show that $I_n P_X$ is the unique symmetric projection matrix onto null(X').
- 3. Let $x_i, y_i \in \mathbb{R}$ for $i \in \{1, ..., n\}$, and show that

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{j< i}(x_i-x_j)(y_i-y_j)=\sum_{i=1}^{n}(x_i-\bar{x}_n)y_i=\sum_{i=1}^{n}(x_i-\bar{x}_n)(y_i-\bar{y}_n).$$

Note the particular case when $x_i = y_i$ for every i.