Francesca Nocentini

Tecniche di deep learning per la classificazione di immagini biomedicali

Relatore:

Prof. Gianluca Reali

Perugia, Anno Accademico 2020/2021 Università degli Studi di Perugia Corso di laurea triennale in Ingegneria Informatica ed Elettronica Dipartimento di Ingegneria

0. Indice

1	Intr	oduzion	ne		3			
2	Mac	lachine learning e le reti neurali						
	2.1	L'impo	ortanza dell'apprendimento		4			
	2.2	Deep L	Learning		4			
	2.3							
	2.4 Addestramento di una rete							
	2.5	Overfit	itting e underfitting		4			
	2.6	Classif	ficazione		4			
3	Reti	ti neurali convoluzionali						
	3.1	Funzio	onamento generale		5			
	3.2	Convo	oluzione e Convoluzione2D		5			
		3.2.1	Convoluzione		5			
		3.2.2	ReLU layer		5			
		3.2.3	Strati di subsampling		5			
4	Aml	oiente di lavoro						
4.1 I		Python	Python					
	4.2	Tensor	rflow e Keras		6			
5	Imp	Implementazione della rete e prove sperimentali						
	5.1	Obietti	ivo		7			
	5.2	Prepar	razione dell'ambiente		7			
	5.3	Una pr	rima forma di modello semplice		7			
6	Con	clusion	i		8			
7	Cod	ice			9			

1. Introduzione

2. Machine learning e le reti neurali

- 2.1 L'importanza dell'apprendimento
- 2.2 Deep Learning
- 2.3 Neuroni Artificiali
- 2.4 Addestramento di una rete
- 2.5 Overfitting e underfitting
- 2.6 Classificazione

3. Reti neurali convoluzionali

- 3.1 Funzionamento generale
- 3.2 Convoluzione e Convoluzione2D
- 3.2.1 Convoluzione
- 3.2.2 ReLU layer
- 3.2.3 Strati di subsampling

4. Ambiente di lavoro

- 4.1 Python
- 4.2 Tensorflow e Keras

5. Implementazione della rete e prove sperimentali

- 5.1 Obiettivo
- 5.2 Preparazione dell'ambiente
- 5.3 Una prima forma di modello semplice

6. Conclusioni

7. Codice