DESCOMPLICANDO O DATA SCIENCE

Dados em resultados com Machine Learning

Rodrigo Alves de Souza

O primeiro grande passo de todo projeto

O ponto de partida de qualquer projeto de Data Science é compreender claramente o problema a ser resolvido. Antes de pensar em algoritmos, dados ou modelos de IA, é necessário entender a motivação do projeto: Qual dor do negócio queremos resolver? Qual decisão será tomada a partir do modelo?

Sem clareza sobre essas questões, o projeto corre o risco de gerar resultados tecnicamente corretos, mas sem qualquer impacto real.

O que significa entender o problema?

Nesta etapa, buscamos traduzir o contexto do negócio para perguntas que possam ser respondidas com dados. Para isso, é comum conduzir entrevistas com especialistas da área, gestores e futuros usuários da solução.

O cientista de dados assume aqui o papel de investigador: coleta informações, busca evidências e tenta transformar necessidades subjetivas em requisitos objetivos.

Exemplos de definição de problema

- Problema de churn (cancelamento de clientes):
 "Como podemos prever quais clientes têm maior probabilidade de cancelar nossos serviços no próximo mês?"
- Problema de inadimplência: "Quais clientes têm maior risco de atrasar o pagamento de uma fatura?"
- Problema de manutenção preditiva: "Qual máquina da nossa linha de produção tem risco de falhar nos próximos 7 dias?"

Perceba que cada pergunta tem um foco claro e pode ser alinhada a uma ação prática. Isso é importante porque Data Science não deve ser apenas análise, mas uma ferramenta de tomada de decisão.

Delimitação do Escopo

O escopo define *o que será feito* e *o que ficará de fora* do projeto. Um escopo bem definido evita desperdício de esforço e mantém o time alinhado.

Por exemplo, no caso do churn, é comum cair na tentação de tentar resolver tudo ao mesmo tempo: prever cancelamento, entender motivos do churn, fazer segmentação de clientes e ainda propor estratégias de retenção. Tudo isso pode ser feito, mas **não ao mesmo tempo**. Um bom escopo delimita uma entrega clara, como:

"Criar um modelo preditivo de churn com precisão mínima de 85% que será usado pelo time de marketing para campanhas de retenção."

Checklist desta etapa

- Qual problema queremos resolver?
- Por que ele é importante?
- Como será utilizada a solução?
- Quais são as restrições do projeto (tempo, custo, recursos)?
- Quais serão as entregas finais?

- Escreva o problema como uma pergunta clara e objetiva.
- Conecte sempre o problema com um objetivo de negócio.
- Evite escopo amplo. Projetos menores entregam valor mais rápido.
- Faça reuniões de alinhamento com as partes interessadas e registre **todas as decisões**.
- Ao final desta etapa, valide o entendimento com a pergunta: "Se resolvermos este problema, isso realmente gera valor?"

Como medir o sucesso

Para saber se um projeto de Data Science está no caminho certo, precisamos medir resultados. Por isso, nesta etapa definimos quais métricas irão dizer se o modelo é bom ou não. Métricas são fundamentais porque orientam as decisões técnicas e garantem alinhamento com o objetivo do negócio.

Sem métricas claras, podemos criar modelos complexos que parecem funcionar, mas que falham no dia a dia. Por exemplo: um modelo de detecção de doenças que acerta 95% das vezes pode parecer ótimo. Mas se apenas 5% dos pacientes realmente têm a doença, um modelo que "sempre diz que ninguém está doente" também terá 95% de acurácia. **E isso seria desastroso na prática!**

Tipos de Métricas

Classificação

Utilizada quando a saída é uma categoria (sim/não, positivo/negativo, aprovado/reprovado). Exemplos de métricas:

- Accuracy (Acurácia): % de acertos totais.
- Precision (Precisão): entre as previsões positivas, quantas estavam corretas.
- Recall (Sensibilidade): entre os casos realmente positivos, quantos foram detectados.
- F1-Score: equilíbrio entre precisão e recall.

Regressão

Utilizada quando a saída é numérica (preço, tempo, quantidade). Métricas comuns:

- MAE (Erro Médio Absoluto): erro médio das previsões.
- RMSE: dá mais peso a grandes erros.
- R²: mede a qualidade geral do ajuste.

Tipos de Métricas

Clusterização

Usada para agrupar dados sem rótulo. Métodos mais comuns:

- Silhouette Score: mede separação entre clusters.
- Davies-Bouldin Index: avalia coesão dos grupos.

Métricas de Negócio

Além das métricas técnicas, sempre defina **métricas de impacto real**:

- Redução de custo
- Aumento de conversão
- Retenção de clientes
- Economia de tempo operacional

- Nunca escolha apenas acurácia para problemas com dados desbalanceados.
- Prefira **F1-Score** quando o custo de erro for alto.
- Alinhe a escolha das métricas com o time de negócio.
- Defina uma métrica de sucesso antes de modelar.

O que precisamos para resolver

Depois de entender claramente o problema e definir as métricas de sucesso, precisamos pensar em quais dados serão necessários para construir a solução. Nesta fase, ainda não precisamos ter os dados em mãos — o objetivo é mapear todas as fontes possíveis de informação que podem contribuir.

O maior erro aqui é pensar apenas nos dados que já temos disponíveis. Em ciência de dados, o que importa é resolver o problema, e muitas vezes isso exige buscar dados externos, coletar novos dados ou integrar diferentes bases.

O que significa definir dados necessários?

É listar quais informações podem ajudar o modelo a aprender padrões relevantes. Esses dados podem ser:

- Obrigatórios essenciais para treinar o modelo
- Importantes úteis para aumentar desempenho
- Opcionais podem ser incluídos depois

Exemplo: Doenças Cardíacas

Vamos manter consistência ao longo do eBook e usar exemplos reais do conjunto de dados de diagnóstico cardíaco. Para prever se um paciente tem risco de doença cardíaca, podemos precisar das seguintes variáveis:

Categoria	Exemplos de Dados
Perfil	idade, gênero
Saúde geral	pressão arterial, colesterol
Hábitos	tabagismo, consumo de álcool
Exames clínicos	ECG, frequência cardíaca máxima
Histórico médico	diabetes, histórico familiar

Fontes de dados possíveis

- Banco de dados médico interno
- Planilhas hospitalares (CSV/Excel)
- APIs de saúde pública
- Dados coletados via formulários

- Não limite seu pensamento apenas aos dados disponíveis.
- Priorize dados que tenham relação com o problema.
- Registre tudo em um dicionário de dados.
- Avalie a qualidade e origem de cada dado.

Onde captar os dados

Nesta etapa colocamos em prática o planejamento feito no capítulo anterior. Agora é hora de buscar e reunir os dados necessários para o projeto. A aquisição pode envolver diferentes formatos, fontes e métodos, dependendo do contexto e da disponibilidade das informações.

Onde os dados podem estar?

Os dados podem vir de:

- Arquivos locais (CSV, Excel, JSON)
- Bancos de dados (MySQL, PostgreSQL, SQL Server)
- APIs públicas (dados governamentais ou de plataformas)
- Coleta manual (planilhas preenchidas por especialistas)
- Data lakes ou data warehouses corporativos

Cuidados importantes ao adquirir dados

Atenção	O que fazer
Privacidade (LGPD)	Remover dados pessoais sensíveis
Integridade	Verificar se a coleta foi completa
Segurança	Usar conexões seguras (HTTPS/SSL)
Versões dos dados	Registrar data de extração

Organização pós-coleta

Após adquirir os dados, organize:

- Nome das fontes
- Caminho de armazenamento
- Data da extração
- Descrição dos campos

- Sempre salve uma cópia de backup dos dados originais.
- Documente como e de onde os dados foram obtidos.
- Evite alterar os dados originais nesta etapa.
- Verifique permissões e direitos de uso para os dados.

Pré-Processamento de Dados

Pré-processamento de Dados

Tratando os dados coletados

O pré-processamento é uma etapa essencial em projetos de Data Science. Antes de treinar qualquer modelo de Machine Learning, é necessário garantir que os dados estejam limpos, organizados e padronizados.

Principais etapas do pré-processamento:

- Remoção de duplicidades
- Tratamento de dados faltantes (nulos)
- Conversão de tipos de dados
- Transformação de variáveis categóricas
- Normalização ou padronização

Pré-processamento de Dados

- Guarde sempre uma cópia dos dados originais
- Documente cada transformação aplicada
- Use pipelines para organizar o préprocessamento

Brincando de detetive

A Análise Exploratória de Dados (EDA – Exploratory Data Analysis) é uma etapa essencial para entender profundamente o conjunto de dados antes da modelagem.

Seu objetivo é revelar padrões, correlações, distribuições e possíveis problemas que impactam o desempenho dos modelos de Machine Learning.

Durante a EDA buscamos responder perguntas como:

- Como os dados estão distribuídos?
- Existem outliers (valores extremos)?
- Como as variáveis se relacionam entre si?
- Qual variável mais impacta o resultado?

Exemplo: Doenças Cardíacas

- O que podemos descobrir na EDA?
- Variáveis mais relacionadas ao risco cardíaco
- Comportamento das variáveis numéricas
- Distribuição e variação de valores
- Indícios de necessidade de transformar variáveis

- Visualize sempre os dados antes de modelar
- Use gráficos simples: histograma, boxplot, scatter
- Procure por padrões escondidos ou tendências
- Documente os principais insights da análise

A etapa de Feature Engineering é uma das mais importantes em um projeto de Data Science. Muitas vezes, um bom modelo não depende só do algoritmo escolhido, mas da qualidade das features (variáveis explicativas) utilizadas.

Nesta fase, transformamos os dados brutos em informações úteis para que o modelo aprenda melhor.

Isso envolve:

- Criar novas variáveis a partir de dados existentes
- Transformar variáveis numéricas ou categóricas
- Reduzir dimensionalidade
- Selecionar apenas as features mais importantes

Tipos de Transformações Comuns

Codificação de Variáveis Categóricas

Modelos não entendem texto. Então precisamos converter categorias em números:

Método	Quando usar	Exemplo
Label Encoding	Ordens naturais	Baixo < Médio < Alto
One-Hot Encoding	Categorias sem ordem	Cidades, produtos

Normalização e Padronização

Alguns algoritmos funcionam melhor quando os dados têm a mesma escala.

Tratamento de Datas e Tempo

Datas têm muita informação escondida:

- Mês
- Dia da semana
- Sazonalidade

Interações Entre Features

Criar novas features combinando outras colunas.

Seleção de Features

Selecionar boas features é tão importante quanto criá-las. Features ruins só adicionam ruído.

Método	Como funciona
Correlação	Remove variáveis redundantes
Árvores de decisão	Mede importância
Testes estatísticos	Usa ANOVA, Chi ²

Redução de Dimensionalidade

Quando há muitas variáveis, podemos reduzir mantendo a informação essencial usando **PCA** (**Principal Component Analysis**).

- Entenda o problema antes de criar features
- Use conhecimento de negócio para criar variáveis relevantes
- Teste impacto das novas features com validação
- Evite vazamento de dados (data leakage)
- Documente cada transformação aplicada

Colocando modelos em ação

Depois de preparar e entender os dados, chega a hora de construir modelos de Machine Learning. Essa é uma das etapas mais empolgantes do CRISP-DM, pois é aqui que colocamos a inteligência do projeto em ação.

O objetivo desta etapa é:

- Selecionar algoritmos adequados ao problema;
- Treinar modelos;
- Ajustar hiperparâmetros;
- Avaliar o desempenho usando métricas;
- Comparar modelos e escolher o melhor.

Tipos de Modelos de Machine Learning

Antes de construir o modelo, precisamos identificar qual tipo de problema estamos resolvendo:

Tipo de problema	Objetivo	Saída	Exemplos
Classificação	Prever categorias	Discreta	Aprovado/Reprov ado, Spam/Não Spam
Regressão	Prever números	Contínua	Preço de casas, previsão de vendas
Clusterização	Agrupar dados similares	Sem rótulos	Segmentação de clientes

Exemplos de Algoritmos

Classificação	Regressão	Clusterização
Logistic Regression	Linear Regression	K-Means
Random Forest Classifier	Random Forest Regressor	DBSCAN
Support Vector Machine (SVM)	Ridge Regression	Agglomerative Clustering

Fluxo Simples de Modelagem

- 1. Selecionar algoritmos base
- 2. Dividir dados em treino e teste
- 3. Treinar modelo
- 4. Avaliar desempenho
- 5. Ajustar hiperparâmetros (opcional nesta fase inicial)
- 6. Comparar resultados

Modelos possuem métricas de avaliação diferentes:

Tipo	Métricas comuns
Classificação	Acurácia, Precision, Recall, F1-Score
Regressão	MAE, MSE, RMSE, R ²
Clusterização	Silhouette Score, Inertia

- Sempre comece com modelos simples antes de usar redes neurais ou modelos complexos
- Use validação cruzada para evitar overfitting
- Normalize ou padronize os dados quando usar SVM, KNN ou redes neurais
- Avalie mais de um modelo antes de decidir qual seguir
- Documente os resultados de cada teste

Como apresentar os resultados

Construir um bom modelo não basta. Se os resultados não forem claros para quem toma as decisões, o projeto pode ser descartado — mesmo que tecnicamente esteja excelente.

Por isso, a comunicação é uma etapa essencial no ciclo CRISP-DM.

Aqui, o objetivo é transformar resultados técnicos em informações úteis para o negócio.

O Que Comunicar?

Nesta etapa, não falamos apenas de números. Precisamos conectar os resultados do modelo com os objetivos definidos no início do projeto.

O que deve ser comunicado:

Item	Descrição
Problema	Qual problema está sendo resolvido
Estratégia	Algoritmos usados e por quê
Qualidade	Métricas principais do modelo
Ganho de negócio	Benefícios práticos
Limitações	Pontos de atenção
Próximos passos	Melhorias e plano futuro

Para Quem Comunicar?

Públicos diferentes exigem abordagens diferentes:

Público	Linguagem recomendada	Foco
Diretoria / Stakeholders	Simples e objetiva	ROI, impacto
Gerentes	Semi técnica	Performance e riscos
Time técnico	Detalhada	Métricas, ajustes, comparações

Ferramentas para Comunicação

- Gráficos e dashboards (Power BI, Tableau, matplotlib)
- Relatórios executivos
- Apresentações (PowerPoint, Google Slides)
- Notebooks executáveis (Jupyter, Colab)

Estruturando uma Apresentação Simples

Um roteiro de 7 slides para uma apresentação executiva:

- Problema e contexto
- Objetivo do projeto
- Fonte e qualidade dos dados
- Estratégia de modelagem
- Resultados do modelo
- Benefícios e limitações
- Próximos passos e recomendações

Boas Práticas de Comunicação

- Explique em linguagem simples
- Use **exemplos reais** para ilustrar
- Mostre gráficos e resultados visuais
- Evite jargões como overfitting, bias, variance a menos que seu público seja técnico
- Destaque impacto no negócio, não apenas métricas

Dicas e Sugestões do Capítulo 9

- Conte uma história com dados: apresente antes o problema, depois os resultados
- Mostre clareza e objetividade: menos slides, mais foco
- Não esconda limitações: isso dá credibilidade ao trabalho
- Use visualizações limpas e bem rotuladas
- Prepare respostas para perguntas comuns, como:
 - "O modelo é confiável?"
 - "Como vamos usar isso no dia a dia?"
 - "Qual o retorno esperado?"

Aplicando em ambiente produtivo

Após construir, avaliar e comunicar os resultados do modelo, chega o momento de colocá-lo em produção. Implantar significa disponibilizar o modelo para ser usado por aplicações reais, processos de negócio ou sistemas automatizados.

Objetivo da Implantação

Transformar o modelo treinado em um serviço funcional que:

- Recebe dados reais
- Realiza previsões automaticamente
- Se integra ao fluxo de negócio

Formas de Implantação

Forma de uso	Descrição	Exemplo
Batch	Processamento em lote, agendado	Previsão diária de vendas
Online (API)	Resposta em tempo real	Recomendação em e- commerce
Embedded	Modelo dentro da aplicação	App que roda modelo no celular
Streaming	Processamento contínuo	Monitoramento de fraudes

Fluxo Básico de Deploy:

- 1. Salvar o modelo treinado
- 2. Criar uma API para receber dados e gerar previsões
- 3. Integrar com sistemas externos
- 4. Testar desempenho em produção
- 5. Monitorar funcionamento

Boas Práticas de Deploy

- Inclua tratamento de erros na API
- Valide os dados de entrada
- Logue todas as requisições
- Documente o endpoint da API
- Use ambientes virtuais (venv) e requirements.txt

Tecnologias de Deploy

Categoria	Ferramentas
APIs	Flask, FastAPI
Nuvem	AWS, Azure, Google Cloud
Contêineres	Docker, Kubernetes
Workflow	Airflow, MLflow
Monitoramento	Prometheus, Grafana

Dicas e Sugestões do Capítulo 10

- Comece com um deploy simples antes de ir para a nuvem
- Teste com dados reais antes de integrar no sistema
- Use logs e monitore erros desde o início
- Garanta segurança: nunca exponha APIs sem autenticação
- Automatize o máximo possível com pipelines

O trabalho é contínuo

Implantar um modelo de Machine Learning não significa que o trabalho acabou — na verdade, é aí que começa uma nova fase.

O mundo muda, os dados evoluem e o comportamento dos usuários muda com o tempo. Isso pode degradar a performance do modelo. Por isso, o monitoramento contínuo é essencial no CRISP-DM.

Por que monitorar?

Mesmo após o deploy, um modelo pode perder qualidade devido a:

Problema	Descrição
Drift de dados	Mudança no padrão dos dados de entrada
Drift de conceito	Mudança na relação entre entrada e saída
Overfitting tardio	Modelo começa a errar em novos cenários
Falhas técnicas	API cai, latência alta, erro de servidor

O que monitorar?

Categoria	Métricas recomendadas
Desempenho	Acurácia, F1, MAE, RMSE
Dados	Média, desvio padrão, valores fora do padrão
Sistema	Erros na API, tempo de resposta, uso de CPU/RAM
Negócio	KPIs como conversões, lucro, risco

Ferramentas para Monitoramento

Categoria	Ferramentas
Monitoramento	Prometheus, Grafana
CI/CD	GitHub Actions, Jenkins
ML Ops	MLflow, Kubeflow, SageMaker
Logs	Elastic Stack, CloudWatch

Boas práticas

- Defina alertas automáticos
- Compare métricas atuais com as de treinamento
- Monitore também o impacto no negócio
- Mantenha histórico de versões do modelo
- Automatize o pipeline de retreinamento quando possível

Retreinamento do Modelo

Quando os dados mudam, o modelo precisa ser atualizado. Temos algumas estratégias para retreinamento.

Estratégia	Quando usar
Retreinamento periódico	Dados estáveis
Retreinamento incremental	Dados chegam continuamente
Modelo substituto	Quando o desempenho cai muito

Checklist final do projeto

Antes de encerrar um ciclo CRISP-DM, verifique:

- Resultados comunicados
- Modelo implantado e documentado
- Métricas monitoradas
- Processo de retreinamento definido
- Feedback do negócio aplicado

Dicas e Sugestões do Capítulo 11

- Monitore desde o primeiro dia de produção
- Use logs e dashboards para ajustar decisões rapidamente
- Envolva o time de negócio no monitoramento
- Planeje o ciclo de vida do modelo
- Adote boas práticas de MLOps para sustentação

Agradecimentos

Obrigado por ler até aqui

Esse Ebook foi gerado por IA, e revisado e diagramado por humano.

Esse conteúdo foi gerado com fins didáticos de construção, não foi realizado uma validação cuidadosa humana no conteúdo e pode conter erros gerados por IA.

https://github.com/Digoas12/a-data-science-ebook-with-AI/