Chapitre 7 L'ensemble $\mathbb{Z}/_{n\mathbb{Z}}$ des entiers modulo n

1 Classes d'équivalences modulo n

Rappel : la relation de congruence modulo n est une relation d'équivalence dans \mathbb{Z} .

Définition 1.1 *Soient* $n \in \mathbb{N}^*$ *et* $a \in \mathbb{Z}$. *On appelle* classe d'équivalence de a modulo n, *que l'on note* a, *l'ensemble de tous les entiers congrus* a a *modulo* a. *Ainsi*,

$$\dot{a} = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\} = \{b \in \mathbb{Z} \mid \exists k \in \mathbb{Z} \mid b = a + kn\} = \{a + kn \mid k \in \mathbb{Z}\}.$$

Exemples

1. Soit $a \in \mathbb{Z}$ et prenons n = 2. Alors soit a est pair, soit a est impair.

Si a est pair, alors $a \equiv 0 \pmod{2}$, donc $a \in \dot{0}$ puis $\dot{a} = \dot{0}$.

Si a est impair, alors $a \equiv 1 \pmod{2}$, donc $a \in \dot{1}$ puis $\dot{a} = \dot{1}$.

Remarquons de plus que $\dot{0} \neq \dot{1}$ car par exemple $0 \in \dot{0}$ mais $0 \notin \dot{1}$. En fait, $\dot{0}$ et $\dot{1}$ sont des parties *disjointes* de \mathbb{Z} , cf. chapitre 4 sur les relations binaires.

2. Soit
$$n = 3$$
. Alors $\dot{0} = \{$ }, $\dot{1} = \{$ }, $\dot{2} = \{$ }, $\dot{2} = \{$ }, $\dot{2} = \{$ }, $\dot{3} = \{$ }, $\dot{4} = \{$ }, $\dot{4}$

Proposition 1.2 *Soit* $n \in \mathbb{N}^*$. *Deux classes d'équivalence* \dot{a} *et* \dot{b} *modulo* n *sont égales si et seulement si* $a \equiv b \pmod{n}$.

Définition 1.3 Étant donné un $n \in \mathbb{N}^*$, on appelle ensemble des entiers modulo n, que l'on note $\mathbb{Z}/n\mathbb{Z}$, l'ensemble de toutes les classes d'équivalence d'entiers modulo n.

Proposition 1.4 Étant donné un $n \in \mathbb{N}^*$, l'ensemble $\mathbb{Z}/n\mathbb{Z}$ possède exactement n éléments. Plus précisément,

$$\mathbb{Z}/_{n\mathbb{Z}} = \left\{\dot{0}, \dot{1}, \dots, \widehat{n-1}\right\}.$$

Démonstration : Soit $a \in \mathbb{Z}$. $\dot{a} = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$. Ainsi \dot{a} est l'ensemble de tous les entiers qui ont même reste que a dans la division euclidienne par n.

Il y a donc autant de classes d'équivalence modulo n distinctes que de restes possibles dans cette division euclidienne, soit n (puisque le reste peut prendre toutes valeurs entières de 0 à n-1).

Remarque : pour désigner les éléments de $\mathbb{Z}/n\mathbb{Z}$ on utilise les résidus possibles modulo n. Les entiers modulo n sont aussi appelés classes résiduelles modulo n.

Exemples

- 1. Soit n = 2. Alors $\mathbb{Z}/2\mathbb{Z} = \{\dot{0}, \dot{1}\}$, comme on l'a d'ailleurs montré dans l'exemple 1. précédent.
- 2. Soit n = 3. Alors $\mathbb{Z}/_{3\mathbb{Z}} = \{\dot{0}, \dot{1}, \dot{2}\}$, avec $\dot{0} = \{3k \mid k \in \mathbb{Z}\}$, $\dot{1} = \{1 + 3k \mid k \in \mathbb{Z}\}$ et $\dot{2} = \{2 + 3k \mid k \in \mathbb{Z}\}$.

2 Opérations dans l'ensemble des entiers modulo n

Soit dans toute la suite $n \in \mathbb{N}^*$.

Définition 2.1 On définit dans $\mathbb{Z}/n\mathbb{Z}$

- une addition, notée +, via $\dot{a} + \dot{b} = \widehat{a+b}$,
- une multiplication, notée × ou plus simplement ·, via $\dot{a} \times \dot{b} = \hat{ab}$ pour tous $\dot{a}, \dot{b} \in \mathbb{Z}/n\mathbb{Z}$.

Exemples dans $\mathbb{Z}/8\mathbb{Z}$:

$$3 + 4 = \cancel{7}, \quad 3 + 7 = \cancel{10} = 2 \text{ car } 10 \equiv 2 \pmod{8}$$

 $3 \times 2 = \cancel{6}, \quad 3 \times 4 = \cancel{12} = \cancel{4}$

Proposition 2.2

- 1. L'addition dans $\mathbb{Z}|_{n\mathbb{Z}}$ possède les propriétés suivantes :
 - + est commutative : $\dot{a} + \dot{b} = \dot{b} + \dot{a}$,
 - + est associative: $(\dot{a} + \dot{b}) + \dot{c} = \dot{a} + (\dot{b} + \dot{c})$,
 - il existe un élément neutre, $\dot{0}$: $\dot{a} + \dot{0} = \dot{0} + \dot{a} = \dot{a}$,

en effet :
$$\dot{a} + \dot{0} = \hat{a+0} = \dot{a}$$

• tout élément à possède un opposé noté $-\dot{a}$ défini par $-\dot{a}=\widehat{-a}$ en effet : $\dot{a}+\widehat{-a}=\widehat{a+(-a)}=\dot{0}$ pour tous $\dot{a}, \dot{b}, \dot{c} \in \mathbb{Z}/n\mathbb{Z}$.

en effet :
$$\dot{a} + \frac{\dot{a}}{a} = a + (-a) = \dot{0}$$

- 2. La multiplication dans $\mathbb{Z}/n\mathbb{Z}$ possède les propriétés suivantes :
 - \times est commutative : $\dot{a} \times \dot{b} = \dot{b} \times \dot{a}$,
 - \times est associative : $(\dot{a} \times \dot{b}) \times \dot{c} = \dot{a} \times (\dot{b} \times \dot{c})$,
 - il existe un élément neutre, $\dot{1} : \dot{a} \times \dot{1} = \dot{1} \times \dot{a} = \dot{a}$, pour tous $\dot{a}, \dot{b}, \dot{c} \in \mathbb{Z}/n\mathbb{Z}$.

en effet :
$$\dot{a} \times \dot{1} = \hat{a \times 1} = \dot{a}$$

3. La multiplication est distributive par rapport à l'addition : $\dot{a} \times (\dot{b} + \dot{c}) = (\dot{a} \times \dot{b}) + (\dot{a} \times \dot{c})$, pour tous $\dot{a}, \dot{b}, \dot{c} \in \mathbb{Z}/n\mathbb{Z}$.

Comme pour les nombres réels, on convient que la multiplication est prioritaire par rapport à l'addition et on renote toute expression du type $(\dot{a} \times \dot{b}) + \dot{c}$ plus simplement $\dot{a} \cdot \dot{b} + \dot{c}$, ou encore $\dot{a}\dot{b} + \dot{c}$.

Tables d'addition dans $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ **et** $\mathbb{Z}/4\mathbb{Z}$. On notera à côté de chacune d'elles les opposés des éléments de $\mathbb{Z}/n\mathbb{Z}$.

Soit
$$n = 2$$
.
$$\begin{array}{c|cccc}
+ & \dot{0} & \dot{1} \\
\hline
\dot{0} & \dot{0} & \dot{1} \\
\hline
\dot{1} & \dot{1} & \dot{0}
\end{array}$$

Soit
$$n = 3$$

$$\begin{array}{c|c|c|c|c}
+ & \dot{0} & \dot{1} & \dot{2} \\
\hline
\dot{0} & \dot{0} & \dot{1} & \dot{2} \\
\hline
\dot{1} & \dot{1} & \dot{2} & \dot{0} \\
\dot{2} & \dot{2} & \dot{0} & \dot{1}
\end{array}$$

On se pose la question suivante : les éléments non nuls de $\mathbb{Z}/_{n\mathbb{Z}}$ admettent-ils tous un inverse?

Définition 2.3 *Un élément* $\dot{a} \in \mathbb{Z}/_{n\mathbb{Z}}$ *est dit* inversible *si et seulement si il existe* $\dot{b} \in \mathbb{Z}/_{n\mathbb{Z}}$ *tel que* $\dot{a} \cdot \dot{b} = \dot{1}$. Dans ce cas, on appelle \dot{b} l'inverse de \dot{a} et on note $\dot{b} = \dot{a}^{-1}$.

Exemples dans $\mathbb{Z}/_{5\mathbb{Z}}$:

$$1 \times 1 = 1$$
 donc $1^{-1} = 1$,

$$3 \times 2 = 6 = 1 \text{ donc } 3^{-1} = 2 \text{ et } 2^{-1} = 3,$$
 $4 \times 4 = 16 = 1 \text{ donc } 4^{-1} = 4$

$$\dot{4} \times \dot{4} = \dot{16} = \dot{1} \text{ donc } \dot{4}^{-1} = \dot{4}$$

Tables de multiplication dans $\mathbb{Z}/_{2\mathbb{Z}}$, $\mathbb{Z}/_{3\mathbb{Z}}$ **et** $\mathbb{Z}/_{4\mathbb{Z}}$. On notera à côté de chacune d'elles les inverses des éléments de $\mathbb{Z}/_{n\mathbb{Z}}$ s'ils existent.

Soit
$$n = 2$$
.
$$\begin{array}{c|ccc}
\times & \dot{0} & \dot{1} \\
\hline
\dot{0} & \dot{0} & \dot{0} \\
\hline
\dot{1} & \dot{0} & \dot{1}
\end{array}$$

Définition 2.4 *Un élément* $\dot{a} \in \mathbb{Z}/_{n\mathbb{Z}}$ *est dit un* diviseur de zéro *si et seulement si il existe* $\dot{b} \in \mathbb{Z}/_{n\mathbb{Z}} - \{\dot{0}\}$ *tel que* $\dot{a} \cdot \dot{b} = \dot{0}$.

Exemples

- 1. L'élément $\dot{0}$ est toujours diviseur de zéro puisque $\dot{0} \cdot \dot{1} = \dot{0}$.
- 2. Dans $\mathbb{Z}/3\mathbb{Z}$, il n'y a pas de diviseur de zéro autre que $\dot{0}$; les éléments $\dot{1}$ et $\dot{2}$ sont inversibles et chacun des deux coïncide avec son inverse.
- 3. Dans $\mathbb{Z}/_{4\mathbb{Z}}$, $\dot{0}$ et $\dot{2}$ sont les diviseurs de zéro, tandis que $\dot{1}$ et $\dot{3}$ sont inversibles, chacun des deux coïncidant avec son inverse.

Théorème 2.5 Soit $a \in \mathbb{Z}$. Alors $\dot{a} \in \mathbb{Z}/n\mathbb{Z}$ est inversible si et seulement si $\operatorname{pgcd}(|a|,n) = 1$. Autrement dit : $\dot{a} \in \mathbb{Z}/n\mathbb{Z}$ est inversible si et seulement si a et n sont premiers entre eux.

Une conséquence importante de ce théorème est le corollaire suivant :

Corollaire 2.6 Si n est premier alors tout élément $\dot{a} \neq \dot{0}$ de $\mathbb{Z}/_{n\mathbb{Z}}$ est inversible.

Notation : L'ensemble des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$ est noté $\left(\mathbb{Z}/n\mathbb{Z}\right)^*$.

Exemples:

- 1. Si n est premier alors $(\mathbb{Z}/n\mathbb{Z})^* = \mathbb{Z}/n\mathbb{Z} \{\dot{0}\}$
- $2. \left(\mathbb{Z}/_{4\mathbb{Z}}\right)^* = \{$
- $3. \left(\mathbb{Z}/_{15\mathbb{Z}}\right)^* = \{$

Exercice : Résoudre dans \mathbb{Z} la congruence $7x \equiv 5 \pmod{15}$.