פרויקט מבוא למדעי הנתונים

יובל גולדנשטיין - 311552368 ישי שפירא - 203016217 נדב שטרן - 203016100

Clustering

Link jupyter notebook for part 2:

https://colab.research.google.com/drive/1tuFFKBPyWnB-EXEyXntzggUJrgkPwjNO?usp=sharing

EDA

Dataset info:

RangeIndex: 2500 entries, 0 to 2499 Data columns (total 10 columns):

Data columns (total 10 columns):						
#	Column	Non-Null Coun	t Dtype			
			-			
0	feature 1	2500 non-null	float64			
1	feature 2	2500 non-null	float64			
2	feature 3	2500 non-null	float64			
3	feature 4	2500 non-null	float64			
4	feature 5	2500 non-null	float64			
5	feature 6	2500 non-null	float64			
6	feature 7	2500 non-null	float64			
7	feature 8	2500 non-null	float64			
8	feature 9	2500 non-null	float64			
9	feature 10	2500 non-null	float64			
dtypes: float64(10)						

We can see the data has correlations and there is a good base for clustering:

PCA on orig. dataset

Principal Component Analysis (PCA) is a linear dimensionality reduction technique that can be utilized for extracting information from a high-dimensional space by projecting it into a lower-dimensional sub-space. It tries to preserve the essential parts that have more variation of the data and remove the non-essential parts with fewer variation.

We will use the PCA's results to visualize the k means model and DBSCAN model's outputs on the <u>original dataset</u>.

K Means

K-Means is an unsupervised machine learning algorithm that groups data into K number of clusters.

Number of clusters

The number of clusters is user-defined and the algorithm will try to group the data even if this number is not optimal for the specific case. Therefore we have to come up with a technique that somehow will help us decide how many clusters we should use for the K-Means model.

Elbow Method

The Elbow method is a very popular technique and the idea is to run k-means clustering for a range of clusters k (let's say from 1 to 10) and for each value, we are calculating the sum of squared distances from each point to its assigned center (distortions).

We can observe that the "elbow" is the number 5 which is optimal for this case. Now we can run a K-Means using as n_clusters the number 5.

Running The K Means Model

We used scipy package and kmeans2. The algorithm attempts to minimize the Euclidean distance between observations and centroids. initialization methods are included.

Model Parameters:

- \bullet k = 5
 - The number of clusters to form as well as the number of centroids to generate
- Iter = 100
 Number of iterations of the k-means algorithm to run
- Minit = random

Method for initialization. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data

Silhouette Coefficient for k-means: 0.621

DBSCAN

DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density.

- Min_samples: The minimum number of neighbors a given point should have in order to be classified as a core point.
- eps: Two points are considered neighbors if the distance between the two points is below the threshold epsilon. we find a suitable value for epsilon by calculating the distance to the nearest n points for each point, sorting and plotting the results. Then we look to see where the change is most pronounced ('Elbow') and select that as epsilon.
- metric: The metric to use when calculating distance between instances in a feature array (i.e. euclidean distance).

We train our model, selecting 0.8 for eps and setting min_samples to 10

```
# Compute DBSCAN
db = DBSCAN(eps=0.7, min_samples=100).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labe;ls).count(-1)
```

The model classified the densely populated areas. As we can see, all the dark blue points were categorized as noise.

Estimated number of clusters: 5
Estimated number of noise points: 139

Analysis

The figure represents the surface of the 5 clusters in k-means model and for the DBSCAN model.

n_samples 2500, n_features 10

As can see in the plot, the K Means clusters have smaller volume compared to the dbscan's clusters due the noise points that were eliminated from the clusters.

Both of the models have similar centroids.

	time	Silhouette Coefficient	Clusters	Noise Points
K Means	0.06s	0.71	5	-
DBSCAN	0.23	0.62	5	139