Ribosome profiling pipeline (Add command examples)

- 1. Import data to working directory on Monty (manually)
 - .gz files
 - 4 files per sample (if ran on NextSeq500, has 4 lanes/chip)
 - File name structure: <SampleName>_<indexID>_L00<1, 2, 3 or 4>_R1_001.fastq.gz
 - e.g: D_S6_L003_R1_001.fastq.gz
 - "L003" stands for "lane 3" on sequencing chip
 - "indexID" is the same for all 4 files in a sample
 - Import to directory named "rawfastqgz" (see "Resulting file system" below)

Actual pipeline starts here (output files used in downstream steps are marked in bold):

- 2. Make one fastq.gz file per sample
 - Output directory: "rawfastqgz"
 - Concatenate the 4 fastq.gz files mentioned above
 - Store as "<ExperimentName>.<SampleName>.fastq.gz" in directory "rawfastqgz"
- 3. Assess read quality
 - Software: FastQC
 - Output directory: "qualityCheck"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.fastq.gz" (from step 2)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.fastQC.xml"
 - Settings:
 - -t <number of files processed> (number of threads)
 - -o <path to directory "qualityCheck"> (output directory)
 - Example command:
 - o fastqc -t 3 -o <path to directory "qualityCheck">
 inputFile1 inputFile2 inputFile3
- 4. Trim away adapter sequences (if possible, run all files in parallel)
 - Software: Cutadapt
 - Output directory: "cutadapt"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.fastq.gz" (from step 2)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.cutadapt.fastq.gz"
 - "<ExperimentName>.<SampleName>.tooShort.fastq.gz"
 - "<ExperimentName>.<SampleName>.untrimmed.fastq.gz"

- "<ExperimentName>.<SampleName>.cutadapt.report.txt"
- Settings:
 - -a <adapter sequence> (sequence to be aligned to reads)
 - O 6 (do trim read if alignment overlap between read and adaptor is less than 6)
 - -m 6 (discard reads shorter than 6 bases after trimming)
 - -n 3 (remove up to 3 adapter sequences per read)
 - -e 0.15 (maximum allowed error rate)
 - --too-short-output=<ExperimentName>.<SampleName>.tooShort.fastq.gz
 - --untrimmed-output=<ExperimentName>.<SampleName>.noAdapter.fastq.gz
 - -o <ExperimentName>.<SampleName>.cutadapt.fastq.gz
 - > <ExperimentName>.<SampleName>.cutadapt.report.txt"
- Example command:

```
o cutadapt -a AGATCGGAAGAGCACACGTCT -0 6 -m 6 -n 3 -e 0.15
--too-short-output=PPE5.B.tooShort.fastq.gz --untrimmed-
output=PPE5.B.noAdapter.fastq.gz -o
PPE5.B.cutadapt.fastq.gz PPE5.B.fastq.gz >
PPE5.B.cutadapt.report.txt
```

- 5. Assess footprint-length distribution
 - Software: FastQC
 - Output directory: "lengthDistr"
 - Input files(s):
 - "<ExperimentName>.<SampleName>.cutadapt.fastq.gz" (from step 4)
 - Outputfile(s):
 - "<ExperimentName>.<SampleName>.cutadapt.fastQC.xml"
 - Settings:
 - -t <*number of files processed*> (number of threads)
 - -o <path to directory "quality"> (output directory)
 - Example command:
 - o fastqc -t 3 -o <path to directory "lengthDistr"> inputFile1 inputFile2 inputFile3
- 6. Trim ends with low-quality base calls (if possible, run all files in parallel)
 - Software: Sickle
 - Output directory: "highQuality"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.cutadapt.fastq.gz" (from step 4)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.quality.fastq"
 - "<ExperimentName>.<SampleName>.quality.report.txt"
 - Settings:

- se (single-end-sequenced reads)
- -f <ExperimentName>.<SampleName>.cutadapt.fastq.gz (input file)
- -t *sanger* (quality score type)
- -q 20 (quality score threshold)
- -I 6 (discard reads shorter than 6 bases after trimming)
- -o **<ExperimentName>.<SampleName>.quality.fastq** (output file)
- > <ExperimentName>.<SampleName>.quality.report.txt (save report in text file)
- Example command:
 - sickle se -f PPE5.B.cutadapt.fastq.gz -t sanger -q 20 -l 6
 -o PPE5.B.quality.fastq > PPE5.B.quality.report.txt

7. Remove rRNA and tRNA sequences

- Software: Bowtie1
- Output directory: "tANDrRNAremoval"
- Input file(s):
 - /ssd/common/tools/bowtie1-1.1.2/indexes/rRNAtRNA.syn6803.NC000911 (reference sequence)
 - "<ExperimentName>.<SampleName>.quality.fastq" (from step 6)
- Output file(s):
 - "<ExperimentName>.<SampleName>.tANDrRNAdeplete.fastq"
 - "<ExperimentName>.<SampleName>.tANDrRNA.sam"
 - "<ExperimentName>.<SampleName>.tANDrRNAdeplete.report.txt"
- Settings:
 - -a (report all alignments for a read)
 - --best (report alignment for a read in best-to-worst order)
 - --strata (report only the best alignment, i.e. least mismatches)
 - -t (print searching times)
 - -n 2 (maximum amount of mismatches in seed alignment)
 - -I 28 (seed length)
 - -S (report alignments in SAM format)
 - -p 10 (number of threads)
 - --un <ExperimentName>.<SampleName>.tANDrRNAdeplete.fastq (nonaligned reads)
 - 2> <ExperimentName>.<SampleName>.tANDrRNAdeplete.report.txt
- Example command:
 - o bowtie -a --best --strata -t -n 2 -l 28 -S -p 10 --un
 PPE5.B.tANDrRNAdeplete.fastq /ssd/common/tools/bowtie11.1.2/indexes/rRNAtRNA.syn6803.NC000911
 PPE5.B.quality.fastq PPE5.B.tANDrRNA.sam 2>
 PPE5.B.tANDrRNAdeplete.report.txt

- 8. Map reads to the genome (if possible, run all files in parallel)
 - Software: Bowtie1
 - Output directory: "mapped"
 - Input file(s):
 - "/ssd/common/tools/bowtie1-1.1.2/indexes/syn6803.NC_000911 (reference sequence)
 - "<ExperimentName>.<SampleName>.tANDrRNAdeplete.fastg" (from step 7)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.mapped.bwt1"
 - "<ExperimentName>.<SampleName>.notmapped.fastq"
 - "<ExperimentName>.<SampleName>.moremapped.fastq"
 - "<ExperimentName>.<SampleName>.report.txt"
 - Settings:
 - -a (report all alignments for a read)
 - --best (report alignment for a read in best-to-worst order)
 - --strata (report only the best alignment, i.e. least mismatches)
 - -m 1 (discard non-unique alignments, maximum 1 alignment/read allowed)
 - -n 2 (maximum amount of mismatches in seed alignment)
 - -I 28 (seed length)
 - -t (print searching times)
 - o -p 10
 - --un <ExperimentName>.<SampleName>.notmapped.fastq
 - --max <ExperimentName>.<SampleName>.moremapped.fastq
 - Example command:

```
o bowtie -a --best --strata -m 1 -n 2 -l 28 -t -p 10 --un
PPE5.B.notMapped.fastq --max PPE5.B.moreMapped.fastq
/ssd/common/tools/bowtie1-1.1.2/indexes/syn6803.NC_000911
PPE5.B.tANDrRNAdeplete.fastq PPE5.B.mapped.bwt 2>
PPE5.B.report.txt
```

- 9. Count the number of reads on read-occupied positions in genome ("center-weighted") (if possible, run all files in parallel)
 - Script: "/ssd/jan/ribprof/seqdata/scripts/readCountScript.max48.sup2.py"
 - Output directory: "readcount"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.mapped.bwt" (from step 8)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.readCount.p"
 - "<ExperimentName>.<SampleName>.readCount.m"
 - Command:
 - $^{\circ}$ python readCountScript.max48.sup2.py

- 10. Calculate total number of mapped reads
 - Script: "/ssd/jan/ribprof/seqdata/scripts/totalNbrMappedReadsScript.sup3.py"
 - Output directory: "readcount"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.readCount.p" (from step 9)
 - "<ExperimentName>.<SampleName>.readCount.m" (from step 9)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.totalNbrMappedReads"
 - Command:
 - o python totalNbrMappedReadsScript.sup3.py
- 11. Calculate RPM (reads per Million mapped reads) on read-occupied positions in genome
 - Script: "/ssd/jan/ribprof/seqdata/scripts/RPMscript.sup6.py"
 - Output directory: "RPM"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.readCount.p" (from step 9)
 - "<ExperimentName>.<SampleName>.readCount.m" (from step 9)
 - "<ExperimentName>.<SampleName>.totalNbrMappedReads" (from step 10)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.RPM.p"
 - "<ExperimentName>.<SampleName>.RPM.m"
 - Command:
 - o python RPMscript.sup6.py
- 12. Complete RPM vs. genome-position list by assigning "0" to all unoccupied positions
 - Script: "/ssd/jan/ribprof/seqdata/scripts/RPMcompleteScript.NC000911.sup7.py"
 - Output directory: "RPM"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.RPM.p (from step 11)
 - "<ExperimentName>.<SampleName>.RPM.m (from step 11)
 - Output file(s):
 - "<ExperimentName>.<SampleName>.RPM0.p"
 - "<ExperimentName>.<SampleName>.RPM0.m"
 - · Command:
 - o python RPMcompleteScript.NC000911.sup7.py
- 13. Count the number of reads on every gene
 - Script: "/ssd/jan/ribprof/seqdata/scripts/readsPerGeneScript.sup4.edited.py"
 - Output directory: "readsPerGene"
 - Input file(s):
 - "<ExperimentName>.<SampleName>.readCount.p" (from step 9)

- "<ExperimentName>.<SampleName>.readCount.m" (from step 9)
- "/ssd/jan/ribprof/seqdata/genelists/syn6803.NC000911.genelist_p"
- "/ssd/jan/ribprof/seqdata/genelists/syn6803.NC000911.genelist_m"
- Output file(s):
 - "<ExperimentName>.<SampleName>.readsPerGene.p"
 - "<ExperimentName>.<SampleName>.readsPerGene.m"
- Command:
 - o python readsPerGeneScript.sup4.edited.py

Settings variables (= default)

- Step 2 (general):
 - < <ExperimentName> =
 - <SampleName> = <SampleName> in Illumina output file
- Step 4 (Cutadapt):
 - ∘ -a = AGATCGGAAGAGCACACGTCT
 - -O = 6
 - ∘ -m = 6
 - ∘ -n = 3
 - \circ -e = 0.15
- Step 6 (Sickle):
 - ∘ -q = 20
 - -I = 6
- Step 7 (Bowtie1):
 - ∘ -n = 2
 - -l =28
 - \circ -p = 10
- Step 8 (Bowtie1):
 - ∘ -m = 1
 - ∘ -n = 2
 - -l =28
 - \circ -p = 10

Resulting file system

"YYYY.MM.DD.<Experiment name>"

- "rawfastqgz"
- "qualityCheck"
- "cutadapt"
- "lenghtDistr"

- "highQuality"
- "tANDrRNAremoval
- "mapped"
- "readcount"
- "RPM"
- "readsPerGene"