

NOSITEL
VYZNAMENÁNÍ
ZA BRANNOU
VÝCHOVU
I. a II. STUPNĚ

ČASOPIS PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ
ROČNÍK XXXIV (LXIII) 1985 • ČÍSLO 9

V TOMTO SEŠITĚ

Náš interview	321
Dopis měsíce	322
Čtenáři nám piší	323
„Napište to do novin“	323
AR svazarmovský ZO	324
AR mládež	326
R15 (Soutěž o zadáný radiotechnický výrobek)	327
AR seznámuje (Minipřehráváč TESLA KM 340)	330
Jak na to?	331
FM transceiver PS83	332
Mikroelektronika (Mikro-AR; Porty k mikropočítací; Ze světa mikropočítaců)	337
Klávesnice pro Miniton	345
ČB televizní generátor linek, mříží, jasových pruhů a šachovnice (dokončení)	346
Generátor přesného kmitočtu s výstupem tvarových kmití (pokračování)	351
AR branné výchové	355
Inzerce	357
Cetlijisme	359

NÁŠ INTERVIEW

se středoškolským profesorem ing. Vladimírem Makovcem, vyučujícím automatizace a výpočetní techniky, o výuce a zájmovém svazarmovském kroužku elektroniky na Střední průmyslové škole strojnické v Mostě.

Na fotografii na vedlejší straně je moderní budova vaši školy. Rekněte nám úvodem několik slov o ní.

Naše SPŠ byla uvedena do provozu v roce 1981. Stará průmyslová škola v Mostě byla zrušena a v jejích prostorách je nyní okresní muzeum. V nové škole nyní studuje asi 450 studentů (z toho 20 % děvčat) denního studia a dalších několik desítek absolvouje školu večerně a dálkově. Většina studentů je ze západní části Severočeského kraje, z oblasti Chomutova, Kadaně, Louň a samozřejmě Mostu. Jsou rozděleni do čtyř ročníků po čtyřech třídách, které jsou specializovány na tři různé směry: strojírenskou konstrukci, strojírenskou technologií i na provozní stránku strojírenství (přesný název třeti specializace je „provozuschopnost výrobních zařízení“). Je s podivem, že o poslední jmenovanou specializaci je mezi uchazeči o studium u nás nejenjméně zájem, přestože já osobně ji považuji za nejatraktivnější. Zahrnuje totiž hodně strojírenské praxe, hodně elektroniky, údržbu strojů, technickou diagnostiku, psychologii práce, bezpečnost práce atd. Z cizích jazyků se u nás vyučuje ruština, angličtina a němčina. O výuce elektroniky u nás povídovíme podrobně za chvíli.

Přespolení studenti bydlí v moderním internátu a mají k dispozici nový sportovní areál, který si svépomocí vybudovali. Za pomoc při výstavbě a zvelebování města byla naše škola letos již podruhé vyznamenána „Putovní standartou města Most“.

Jakým způsobem a v jakém rozsahu se tedy na SPŠ v Mostě vyučují elektronické obory?

Nová koncepce čs. výchovně vzdělávací soustavy klade důraz na výuku elektroniky. Proto nám vychází vstříc s odbornou podporou i komise elektrotechniky Krajského pedagogického ústavu a s materiální pomocí odbor školství KNV v Ústí nad Labem. Na milión korun přišlo vybavení našich čtyř laboratoří, v nichž vyučujeme praktickou část elektrotechnických předmětů: laboratoř výpočetní techniky, elektrotechnických obvodů, základů měření a laboratoř automatizace.

Nejprve k předmětům, které vyučují. V rozsahu 2 až 4 hodiny týdně (podle ročníku) je u nás zaveden předmět automatizace, zahrnující ovládací a řídící techniku, regulační techniku, aplikace automatizovaného řízení ve strojírenství, výpočetní techniku atd. Kromě toho vyučují nepovinný předmět výpočetní technika a zpracování informací, zaměřený hlavně na softwarové vybavení mikropočítaců, na programovatelné kalkulátory a analogové počítače. Třetím předmětem (na jehož výuce se nepodílí), je elektrotechnika. Jak sám jeho název napovídá, je zaměřen dosti široce, a proto také výuka v něm je

Ing. Vladimír Makovec

hodně zhuštěná a nemůže jít příliš do hloubky.

Od letošního školního roku zahajujeme výuku čtvrtého a zatím posledního předmětu, orientovaného i na elektroniku, který se nazývá Užitá elektrotechnika. Studenti se v něm budou seznamovat převážně s mikropočítačovou technikou, aplikovanou elektrotechnikou, s elektrickými pohony strojů a s využitím světelne a teplene energie.

Vedení SPŠ tento trend podporuje, a proto máme v našich laboratorních velmi pěkné a drahé vybavení: kalkulátory TI59, několik mikropočítačů PMI-80, jeden IQ151 (další brzy dostaneme), analogový počítač MEDA, stavebnice DS200, moderní digitální měřicí techniku, máme objednáno několik tiskáren k mikropočítačům IQ151 atd. Ve školní knihovně mají studenti k dispozici dobrý výběr odborné literatury a samořejmě časopisy jako Amatérské radio, Sdělovací technika, Mechanizace a automatizace administrativy nebo Věda a technika mládeži. Díky dobré spolupráci naší školy s organizací Svazarm máme k dispozici i většinu svazarmovské radiotechnické a elektrotechnické literatury.

Tim jsme se dostali ke spolupráci vaší školy se Svazarem. V čem spočívá a jak ji hodnotíte jako vedoucí jednoho ze svazarmovských zájmových kroužků?

Svazarmovská činnost má v Mostě i na naší škole dlouholetou tradici a vždy měla konkrétní a hmatatelné výsledky. Při SPŠ je viceúčelová základní organizace Svazarmu, čítající přes sto členů. Jejím předsedou je pedagog ing. Stanislav Olt. Spojení školy se Svazarem považují za výhodné pro obě strany. Naše škola je sice velmi dobře vybavena měřicí, automatizační i výpočetní technikou, ale nesmíme zapomínat, jak nákladné jsou tyto pomůcky. Proto jsme velmi uvítali pomoc KV Svazarmu a jeho komise elektroniky v podobě dotace stavebnic DS200 a mikropočítače PMD-85. Okresní výbor Svazarmu nám zase zaplatil účast v dálkovém interaktivním kursu číslicové techniky, který pořádá pražská 602. ZO Svazarmu a který byl vyhlášen prostřednictvím časopisu AR. Je to vynikající a promyšlený kurz a materiály z něho jsou využívány mnoha zájemci.

Uplynulý školní rok byl pro naši svazarmovskou organizaci ve známení Česko-

AMATÉRSKÉ RÁDIO ŘADA A

Vydává ÚV Svazarmu, Opletalova 29, 116 31 Praha 1, tel. 22 25 49, ve Vydavatelství NAŠE VOJSKO, Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-7. Šéfredaktor ing. Jan Klábal, zástupce Luboš Kalousek, OKIFAC. Redakční rada: Šéf: J. T. Hyanc, členové: RNDr. V. Brunner, OK1HAQ, V. Brázk, OK1DDK, K. Donáti, OK1DY, ing. O. Filippi, V. Gazda, A. Glanc, OK1GW, M. Háša, ing. J. Hodík, P. Horák, Z. Hradík, J. Hudec, OK1RE, ing. J. Jaros, ing. F. Králik, RNDr. L. Kryška, J. Kroupa, V. Němcov, ing. O. Petráček, OK1NB, ing. Z. Prošek, ing. F. Smolík, OK1ASF, ing. E. Šmútrý, ppk. ing. F. Šimek, OK1FSI, ing. M. Šredi, OK1NL, doc. ing. J. Vackář, CSC, laureát st. ceny KG, J. Voráček. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, ing. Klábal I. 354, Kalousek, OKIFAC, ing. Engel, Hofhans I. 353, ing. Myslk, OK1AMY, Havlíček, OK1PFM, I. 348, sekretariat I. 355. Roční výdej 12 čísel. Cena výtisku 5 Kčs, pololetní předplatné - 30 Kčs. Rozšířuje PNS. Informace o předplatném podá a objednávky přijímá každá administrace PNS, poštá a doručovatel. Objednávky do zahraničí využíte PNS - užitná expedice a dovoz tisku Praha, závod 01, administrace vývozu tisku, Kafkova 9, 160 00 Praha 6. V jednotkách ozbrojených sil Vydavatelství NAŠE VOJSKO, administrace, Vladislavova 26, 113 66 Praha 1. Tiskne NAŠE VOJSKO, n. p., závod 8, 162 00 Praha 6-Ruzyně, Vlastina 889/23. Inzerci přijímá Vydavatelství NAŠE VOJSKO, Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-7, I. 294. Za původnost a správnost příspěvku ručí autor. Redakce rukopis vrátí, bude-li vyzádán a bude-li připojená frankovaná obálka se zpětnou adresou. Navštěvy v redakci a telefonické dotazy po 14. hodině. C. indexu 46 043. Rukopisy čísla odevzdány tiskárna 8. 7. 1985. 26. 8. 1985. © Vydavatelství NAŠE VOJSKO, Praha

slovenské spartakiády 1985, neboť 66 našich studentů, členů naší ZO, nacvičovalo na vystoupení společné skladby Svázarmu a středních škol. To ovšem neznamená, že by se zastavila nebo zpomalila činnost našeho nejpočetnějšího svazarmovského kroužku – kroužku elektroniky a výpočetní techniky, jehož jsem vedoucím.

Jaký je zájem o mimoškolní výuku elektroniky mezi studenty SPŠS? Co všechno v kroužku děláte a jaké jsou vaše zkušenosti, o něž se chce podělit se čtenář?

Nás kroužek vznikl před dvaceti lety, kdy se začínalo s výukou automatizace v oboru strojírenství. Investice do tehdy nově budované laboratoře byly velké, a tak, aby byly lépe využity, jsme založili zájmový kroužek při SOZ Svatarmu. Později jsme dostali starší počítač Cellatron a nový MEDA, pak přišly logické obvody, a to jak elektrické, tak i pneumatické.

Zájemců o práci v kroužku je vždy na začátku školního roku hodně. Nemusíme ani dělat zvláštní nábor; pouze pedagogové seznámí nové příchozí studenty s možností práce v kroužku a předvedou jim naše laboratoře. Po nějakém čase většina zájemců odpadne a zůstane tzv. „zdravé jádro“. Počet členů našeho kroužku se tak pohybuje stále kolem patnácti, ale zpravidla jen sedm až osm studentů chodí do kroužku během celé doby studia.

Kroužek nemá pravidelné schůzky, protože při rozdílné vyučovací době jeho členů to ani není možné. Začínáme každý den v 7.00 před první vyučovací hodinou a pak za mnou chodí členové kroužku podle toho, jak mají volný čas. Půjčím jim klíč od laboratoře a studenti pracují na tom, co je zajímá. Jestliže nejsme přítomen, vyzvednou si studenti klíč na ředitelství školy. Při kontrolách nebylo zjištěno žádné zneužívání, ničení nebo krádež. Záci si naši důvěry velice váží. Navíc do kroužku chodí jenom ti studenti, kteří mají o elektronice skutečný zájem, i když to nemusí být ti s nejlepším prospěchem. Osobně si těchto nadšenců velmi cením, protože absolvují během studia pozitivně nás kroužek, to známená strávit v laboratořích stovky hodin volného času. Jedním z největších nadšenců, které pamatuji, byl Libor Mašek, dnes již inženýr elektrotechniky. Nyní pracuje v ZPA Nový Bor na konstrukci mikropočítače IQ151, se kterým v našem kroužku pracují a bude pracovat Liborovi nástupci.

V souvislosti s příchodem právě mikropočítačů IQ151 a PMD-85 jsme museli pro velký počet zájemců udělat rozvrh hodin, kdy který student nebo skupina bude počítač využívat. Většinou sestavujeme programy orientované na strojírenství a technologii, ale studenti si zkouší a upravují samozřejmě i mnoho jiných programů, s nimiž se setkají mezi kamarády nebo v odborné literatuře.

Nikomu nenařizuju, co má v kroužku dělat. Chci, aby se každý sám rozhodl pro to, co ho baví. Vždy však dbám, aby měli studenti přehled o tom, co mohou dělat. Záci tak pracují samostatně, já jenom kontrolojuji, případně poradím, řeknu svůj názor, zhodnotím výsledek.

V současné době se soustředíme zájem většiny členů našeho kroužku na programování v jazyce BASIC. Výsledky jsou rychlé a okamžitě použitelné. Jsem rád, že

jé to baví, ale chci také, aby se naučili pracovat s PMD-80 a ovládat jeho výstupy a vstupy. S tím se totiž budou setkávat ve svém zaměstnání při práci s roboty i jinými zařízeními. Zatím ale nevím, jak na to.

Vedu naše studenty k tomu, aby uměli svoje nápady popsat, dokumentovat a připadně i prosadit. Proto se aktivně zúčastňujeme různých technických soutěží. Tam totiž student teprve pozná, jak je to umění svůj nápad obhájit a prosadit, naučí se vystupovat na veřejnosti, seznámí se se zájemci o svůj obor, uvidí, co znají ostatní, i to, že je mnoho lepších než on sám. Ze svazarmovských soutěží se pravidelně zúčastňujeme konference mladých elektroniků, jejíž krajské kolo jsme již dvakrát organizovali při naší škole. Pravidelně se také účastníme soutěží Hifi-Ama a AMA (nyní ERA) a soutěžní přehlídky ZENIT.

Největších úspěchů však dosahujeme v SOČ (středoškolská odborná činnost), jejíž soutěžní kol se zúčastňujeme od jejího založení. Nás kroužek přihlašuje každoročně dvě práce. Jednou jsme celostátní kolo vyhráli, jednou jsme byli druži a čtvrtí, jedna z našich prací byla vyznamenána cenou ČSVTS. Jinak většina našich prací se umisťuje kolem čtvrtého místa v krajských kolech SOČ, ale dominujíme se, že je to tak v pořadku, neboť není našim úkolem vědecký výzkum, nýbrž získávat mladé lidi pro práci s moderní technikou.

Občas spolupracujeme na menších úkolech s některým ze zdejších podniků. Dokonce byl přijat jeden z našich zlepšovacích návrhů v Dopravním podniku města Most.

Zmiňoval jste se o tom, že při práci v kroužku využíváte některé výrobky podniku ÚV Svatarmu. Jak jste s nimi spokojeni?

Pokud se týče kompletních výrobků, máme v používání zatím tři stavebnice DS200 a napájecí zdroj k mikropočítači PMD-85, výrobky podniku Elektronika. Ani jedna ze stavebnic DS200 nebyla provozuschopná. Závady však byly jednoduché, takže jsme si je v rámci činnosti kroužku snadno odstranili. Nejvíce jsme se natrápili se zdrojem k PMD-85, který nepravidelně a často vysazoval. Nakonec jsme však také „studeny“ spoj na výstupu transformátoru identifikovali. Myslím, že každý, kdo si umí poradit s drobnými opravami při uvádění do provozu, může být s témito výrobky spokojen. Nám nyní slouží velice dobře, stavebnice DS200 jsou v provozu téměř stále, v době vyučování i mimo ni.

Dále využíváme služeb svazarmovské radioamatérské prodejny v Praze v Buděčské ulici, kde nakupujeme desky plošných spojů pro naši konstrukční činnost. Sady součástek nakupujeme od podniku TESLA-ELTOS. Tímto způsobem jsme např. stavěli měriče kondenzátorů a číslícový multimeter (podle AR). I se službami této organizaci jsme spokojeni.

Takže jediným a největším problémem zůstává možnost nákupu součástek na volném trhu. Finanční prostředky bychom měli, vedení školy svazarm nám vychází všechno vstřík, ale součástky prostě nejsou a v Mostě navíc není ani specializovaná prodejna ...

Aby tedy náš závěr nevyzněl pessimisticky: věřme, že se situace i v tomto směru brzy zlepší. Přejeme vašemu kroužku hodně zdaru do další práce a děkujeme za rozhovor.

DOPIS MĚSÍCE

Poradí někdo našemu čtenáři?

Vážená redakce,

jsem dlouholetým čtenářem AR, dlouholetým členem Svatarmu, občas i funkcionářem ZO Svatarmu a také instruktorem oddílu mládeže v našem radioklubu v Novém Jičíně (OK2 KNU). Nenechávají mne lhostové různé nešvary které se v našem životě občas vyskytují a které zapříčinuje většinou lidská hloupost, lhostovnost či špatně odvedená práce, která je mnohdy velmi dobré placena. V poslední době mne obzvláště vrátila událost, o níž jsem se vám růzehně napsal už proto, že se může týkat mnoha radioamatérů v ČSSR a speciálně pak třeba i mládeže zapálené pro elektroniku, jejíž finanční problémy s tímto koníčkem spojené důvěrně znám. Domnívám se, že by bylo vhodné čtenáře AR informovat vhodným způsobem o předmětu dále popsaným příhodě, neboť někteří, zvláště mladí, nemusí ani vědět, že se stali obětí cenového přehmatu, o němž Vám piš. O co tedy ide.

Protože se mi nepodařilo v prodejnách TESLA ELTOS SM kraje sehnat IO A244D, dotázel jsem se telefonicky i v prodejně DOSS ve Valašském Meziříčí, kde mi prodavačka dala taktéž zápornou odpověď. Ovšem do hovoru se vrnísl vedoucí této prodejny nebo snad někdo jiný (mužský hlas), který mne informoval, že požadovaný IO je na skladě. 28. 2. 1985 jsem tedy tu to prodejnu navštívil a zakoupil 2 ks IO A244D po 48 Kč za kus, tedy celkem za 96 Kčs. Cena se mi nezdála být správnou, požádal jsem tedy ještě před uzavřením kupě prodavačku, aby laskavě nahlédla do platného ceníku a cenu zkонтrolovala. Vyhověla mi, ovšem potvrdila výše zmíněný údaj na krabičce. Nezbýlo než požadovanou částku zaplatit. Zde bych jen rád poznamenal, že kterýkoli z našich mládežníků v radioklubu by se zřejmě k tomuto dotazu a požadavku neodhodlal a v dobré víře požadovanou sumu zaplatil, snad by si jen posteskl, jak jsou ty IO drahé ...

V jiné obchodní organizaci v místě svého bydliště jsem si ověřil, že již před rokem, asi v březnu či dubnu 1984 byly přeceněny mikroelektronické součástky, přesně mikroelektronické sdružené obvody – 373 ceníkem OC a MOC 4/34 z roku 1984 OPZ GR Praha a že na jeho straně 68 je zmíněný IO uveden na cenu 24 Kčs, s tím, že původní cena byla skutečně 48 Kčs. Evidentně někdo tedy „zaspal“.

Telefonicky jsem tedy učinil dotaz na ředitelství DOSS ve Valašském Meziříčí, kde nebyla přítomna cenová referenčka a ekonomický náměstek nebyl schopen kvalifikovaně odpovědět. Po několika dnech jsem cenovou referenčku telefonicky zastíhl a informoval. O přecenění počátkem roku 1984 ji nebylo nic známo. Teprve když jsem uvedl přesně výše uvedené údaje o ceníku OPZ, přislíbil učinit dotaz u nadřízené složky. Asi po týdnu jsem se dověděl, že mé údaje byly ověřeny, uznány jako správné a v prodejnách DOSS v republice zastaven další prodej předmětu zboží až do přecenění, které bude možno provést po obdržení zmíněného ceníku. Jak cenová referenčka, tak ekonomický náměstek mne utvrdili v mém názoru, že mi bude muset být rozdil mezi starou a novou cenou v prodejně vrácen – ovšem po přecenění. Trvalo asi měsíc než k přecenění došlo, což jsem sledoval příležitostními návštěvami v prodejně ve Valašském Meziříčí.

Opět odbočím s úvahou nad skutečností, že jak jsem byl informován pracovník ředitelství DOSS, jejich přecenění se týkalo jen 16 položek zmíněného zboží. Zaráží mne to, neboť přecenění se týkalo asi 1500 položek. Snad je to dán omezeným sortimentem DOSS, nevím. Tuto záležitost jsem již dále nezkoumal.

Při jedné takové návštěvě prodejny jsem se konečně dověděl, že se již radiosoučástky prodávají za nové ceny. Požádal jsem tedy o vyrovnaní zmíněného rozdílu. Byl jsem však informován, že prodejna nemůže cenu vyrov-

nat, a že tudiž mám smíš. Nemusím snad barvitě líčit mé rozhořčení, které vedlo až k řediteli zmíněné organizace, kterého jsem si dovolil vyuřít z porady vedení. Teprve ten uvedl věc na správnou míru, povolal zástupkyňi vedoucího prodejny a o všem ji informoval (i o způsobu vyúctování v prodejně atd.). Peníze jsem tedy konečně 25. 4. 85 obdržel zpět. Tak to je asi vše. Co Vý na to?

Já jen ūvážu nad tím, jak je toto možné v našem státě, kdo a jak bude za tento pracovní výsledek „odměněn“ a kolik asi lidí či organizaci bylo podobně postiženo a zda dostanou někdy své peníze zpět.

S pozdravem

Ing. Ladislav Mazanec
Nový Jičín

ČTENÁŘI NÁM PÍSÍ

Jsme velice rádi, když zástupci výroby reagují na hodnocení svých výrobků, uveřejněná v naší rubrice „AR seznámuje“. Rádi proto vyhovujeme prání zástupce ZPA Košice, ing. Z. Bílého a uveřejňujeme v plném znění jeho dopis redakci.

Ke kritickým připomínkám v článku Minivrtáčka 24/1,5, uveřejněném v AR 26/85 zaujímám po přešetření toto stanovisko:

1. Doproručený napájecí zdroj XN 05108 byl převzatý z technické dokumentace pro pájecí soupravu PS 24-XN 05109, ke které byla minivrtáčka na požadavek odberatele TESLA Eltos Praha řešena jako doplnkové příslušenství. V dobové tisku průvodní dokumentace byla výrobcem pájecí soustavy TESLA Pardubice. Nyní prevzal výrobu k. p. TESLA Kolín pod označením PS 24-XN 05113, označení napájecího zdroje zůstalo nezměněné. Pokud navržený zdroj není k dispozici, lze použít k napájení minivrtáčky libovolný zdroj stejnosměrného nebo střídavého napětí 24 V s výkonem přibližně 10 W, přičemž pro správnou funkci nezáleží na polaritě připojení. Pro jednoznačnost, bude údaj o možnosti použití stejnosměrného i střídavého napětí doplněn na štítek výrobku a do průvodní dokumentace.

2. Hodnota 2 W, která je uvedena v průvodní dokumentaci jako jmenovitý výkon motoru, je v článku mylně uváděna jako příkon. Ten je samozřejmě podstatně vyšší (max. cca 8 W).

3. Pro stávající upravení motorku v pláštích jsme se rozhodli na základě dlouhodobých provozních zkoušek prototypů vrtáček. V žádém případě nedošlo k uvolnění šroubků, který není prakticky vůbec namáhán. V případě uváděném v článku jde zřejmě o kusovou závadu, kdy byl použit krátký šroubek, než je předepsáno v dokumentaci. Tento nedostatek byl okamžitě řešen zpřísněnou kontrolou ORJ. Pro informaci uvádíme, že odbytové organizaci TESLA Eltos bylo k dnešnímu dni dodáno celkem 3300 ks těchto minivrtáček, dosud bez reklamací či připomínek.

4. Cena minivrtáčky je zpracována podle platného kalkulačního vzorce a odpovídá stávajícím předpisům (Vyhlaška 137/73). Málodochodní cena byla schválena výměrem FCÚ č. 4949/08.1/84. Tato cena je podstatně ovlivněna cenou použitého motorku. Závěrem uvádíme, že naším cílem je plná spokojenosť uživatelů a podle průzkumu připravujeme další provedení minivrtáčky s motorem o výkonu 8 W s napájecím stejnosměrným i střídavým napětím 12 V a s upraveným sklicidlem pro typizované stopkové brusky a frézky. Použitelnost minivrtáčky se tak rozšíří i do oblasti modelářů a dalších zájmových činností.

Ing. Zdeněk Bílý
ved. techn. úseku

21. září – Den tisku, rozhlasu a televize „Napište to do novin“

Výsledky V. ročníku a vyhlášení VI. ročníku soutěže dopisovatelů

Naše pravidelná soutěž, pořádaná na počest Dne tisku, rozhlasu a televize, jejímž posláním je propagovat radioamatérství a elektroniku mezi širokou veřejností, vstupuje tímto dnem již do VI. ročníku.

Jejího V. ročníku se zúčastnilo poněkud méně dopisovatelů, než tomu bylo v předchozích letech. Svoje příspěvky do periodického tisku (čs. novin a časopisů) nám zaslalo pět autorů. Z celkem třiceti novinových výstrížků portala, složená z členů redakce AR a RR UV Sazarmu, vybrala a odměnila cenami v hodnotě 100 Kčs těchto šest článků:

„Mládež a elektronika“ – autor Jaroslav Hajn, OK1ARD; námět: okresní technická soutěž mládeže v elektronice a radiotechnice (doplňeno fotografiemi); zveřejněno: 4. 7. 1984 v týdeníku OV KSC a ONV v Sokolově „Sokolovská jiskra“.

„Radioamatéři od západní hraničce“ – autor Jaroslav Hajn, OK1ARD; námět: současná situace v odbornosti radioamatérství v okrese Sokolov; zveřejněno: 26. 2. 1985 v čtrnáctideníku ČUV Sazarmu „Sazarmovec“.

„Na jedničku – o práci výzvazarmcov – rádioamatérů“ – autor František Lorko, OK3CKC; námět: radioamatérská spojovací služba při III. ročníku Běhu Hornádkou dolinou; zveřejněno: 24. 4. 1985 v týdeníku OV KSS a ONV Košice-vidiek „Zora východu“.

„Okresní přebor v telegrafii“ – autor František Lupač, OK2BFL; námět: okresní soutěž v telegrafii a stručný přehled plánovaných radioamatérských akcí v roce 1985; zveřejněno: 18. 1. 1985 v týdeníku OV KSC a ONV v Opavě „Nové Opavsko“.

„Životnost – dveře rok“ – autor Ing. Ján Pallag; námět: robotizace pracoviště v Jihoslovenských celulózách a papírnách; zveřejněno: 12. 10. 1984 v týdeníku ZO KSS a GR VHJ Slovcepa v Banské Bystrici „Slovcepa“.

„Na vlnách družby“ – autor Ing. Jiří Peček, OK2QX; námět: družba radio-

amatérů Severomoravského kraje s radioamatéry volgogradské oblasti; zveřejněno: 29. 6. 1984 v týdeníku železničářů v Přerově „Trat druhý“.

Stejně jako v minulých ročnících je stále naprostá většina příspěvků věnována radioamatérskému sportu, což je důkazem nepřetržité činorodé práce našich svazarmovských radioamatérů. Opět tedy vyzýváme i všechny ostatní – členy i nečleny Sazarmu – aby napsali o práci svého kroužku zájmové elektroniky, o zkušenostech z vašeho klubu, z pracovišti a přispěli tak k popularizaci radioamatérství a zájmové elektroniky mezi veřejností.

Redakce AR děkuje všem dopisovatelům za účast v soutěži, za jejich záslužnou práci a těší se na VI. ročník.

Podmínky účasti v VI. ročníku soutěže „Napište to do novin“

Zúčastnit se může každý čtenář AR nebo příznivec radioamatérství a elektroniky, který zašle nejpozději do 1. 6. 1986 do redakce AR alespoň jeden výstrížek vlastního článku, fotografie, informace atd. s radioamatérskou nebo elektrotechnickou tematikou z libovolného místního, okresního, krajského nebo celostátního tisku (z deníků, týdeníků, časopisů) s výjimkou časopisů AR, Informace rady elektroniky a Radioamatérský zpravodaj. Cílem soutěže je propagovat naše užitečné hobby mezi laickou veřejností a získat tak nové členy do našich organizací Sazarmu, zabývajících se amatérskou elektronikou. Na obálku s výstrížkou vyznačte: „Napište to do novin“. Vyhdacení: Porota přihlíží ke kvalitě i množství publikovaných článků, počet i výše cen budou stanoveny podle počtu účastníků a kvality příspěvků. Výsledky VI. ročníku soutěže „Napište to do novin“ budou zveřejněny v AR A9/1986, při příležitosti Dne tisku, rozhlasu a televize.

Nevyžádané příspěvky postupuje redakce AR politickovýchovné komisi RR ČUV Sazarmu pro její archív.

V poslední době dostáváme do redakce mnoho dopisů, v nichž si čtenáři stěžují, že nemohou sehnat keramické filtry ani některé kondenzátory pro stavbu přijímače podle AR A12/1984. Všechny zájemce o tyto součástky upozorňujeme, že

mf filtry FCM 10,7 MHz–250 kHz
mají na skladě od poloviny tohoto roku prodejny TESLA ELTOS, Pardubice, Paříček 580 a Hradec Králové, Dukelská 663 (cena je 73 Kčs). V obou prodejních lze zakoupit i kompletnou sadu keramických kondenzátorů a filtrů pro zmíněný přijímač za 185 Kčs. V pardubické prodejně si můžete zakoupit součástky osobně (organizacím zasílá prodejna součástky poštou proti objednávce); z prodejny v Hradci mohou zájemci obdržet kompletnou sadu součástek i na dobirku.

Máte zájem o amatérské vysílání?

Pro zájemce z Prahy i okolí je i letos připraven další běh kroužku radiofyziků a radioamatérů v radioklubu OK1KZD. Kurs bude probíhat od konce června 1985 do začátku června 1986 každou středu od 17.30 do 20.30 v klubovně radioklubu v Českém Mlýně ul. 27 v Praze 6-Děvčicích.

Informace a přihlášky každou středu a čtvrtku mezi 17. a 20. hodinou na uvedené adresu, případně na pražském telefonním čísle 32 55 53.

Pozvánka na setkání

Rada radioamatérství OV Sazarmu v Českých Budějovicích a radioklub OK1KRP pořádají dne 14.9. 1985 v Kulturním domě ve Zlivě 16. jihočeské setkání radioamatérů. Odborný program je zaměřen na techniku a provoz v pasmech KV. Srdcečné budou uvítání i radioamatérů z ostatních krajů.

VO OK1KRP

A/9

Amatérská RADI

323

AMATÉRSKÉ RÁDIO SVAZARMOVSKÝM ZO

Elevační úhel: 250°
Pocateční rychlosť: 913°/s
Číslo fokusu: 2 MIMO

Elevační výška: 255
Pocateční rychlosť: 214
Číslo pokusu: 3 ZASAH

PROBLEMS FOR CLASS TESTS

Nejlepší programy

**2. celostátní soutěže
v programování v jazyce BASIC**

ing. Petr Kratochvíl

V čísle 2/85 jste se měli možnost seznámit s průběhem celostátní soutěže v programování v jazyce BASIC, pořádanou ÚV Svatarmu. Nyní uveřejňujeme nejzajímavější řešení zadánych úloh. V prvním kole byly všem účastníkům zadány dvě úlohy; a to jednak z svazarmovskou tematikou a jednak z oblasti peněžnictví. Druhá oblast byla zvolena nejen z důvodu toho, že většina členů poroty pracuje ve Státní bance československé, ale je svým obsahem zajímavá pro každého občana.

1. soutěžní úloha 1. kola měla toto znění:

Vytvořte didaktický program pro lektora střelecké přípravy, který použije při výkladu tématu: „Ballistická dráha střely“

Základní požadavky: Obrazovka počítače odpovídá prvnímu kvadrantu souřadnicového systému. Vodorovná osa má délku XM (např. 60); svislá YM (např. 40). V levém a dolním okraji obrazovky ($X = 0$, $Y = 0$) je umístěna hlaveň, znázorněná např. symbolem "/". Program nejprve vygeneruje pomocí funkce RND souřadnice cíle XC, YC a cíl zobrazí. Následuje dotaz na elevační úhel A (0° až 90°) a počáteční rychlosť střelby V (0 až 50). Oba tyto údaje jsou zobrazeny v nejvyšším řádku obrazovky. Pro každý bod osy X následuje výpočet souřadnic Y střelby podle vztahu:

$$Y = X \cdot \operatorname{tg} A - \frac{g}{2 \cdot V_2} \cdot (1 + \operatorname{tg}^2 A) \cdot X_2 - k \cdot V_2,$$

$\text{kde } g=1 \text{ a } k=0,01.$

Dráha střelby je průběžně zobrazována na obrazovce. Pokud střela opustí plochu obrazovky, následuje vstup nových údajů. A V a pokračuje zobrazování další dráhy letu. Po zásahu cíle pokračuje střelba na nový cíl.

V zadání byl použit zjednodušený vztah pro výpočet souřadnice Y a tím dána

soutěžícím možnost vztah rozvést, popř. zpřesnit. Zdrojem určitých rozpaků byla tisková chyba, kdy konstanta k měla být správně 0,0001. S touto drobnou chybou se však všechni účastníci vypořádali.

Nejlépe hodnocený program vypracovaný Petrem Havlíčkem (15 let) z Brna, řešený na mikropočítači HP-85:

2. soutěžní úloha 1. kola měla následující zadání: Jdete-li do Státní spořitelny uzavřít jakoukoliv půjčku, jistě Vás bude zajímat, za jakých podmínek a v jakých termínech ji splatíte. Vytvořte proto program, jehož výsledkem bude tabulka, která bude vyjadřovat postup splácení po měsících. První sloupec bude obsahovat pořadové číslo měsíce od počátku splácení. Druhý sloupec částku, kterou je nutné ještě splatit.

Základní údaje a vztahy úrokového počtu:

C – výše půjčky,

A – měsíční splátka,

P = úroková sazba,

N – počet období (měsíců).

$$A_{\min} = \frac{C \cdot P}{12 \cdot 100} \left(1 + \frac{P}{12 \cdot 100} \right)^N$$

$$\left(1 + \frac{P}{12 \cdot 100} \right)^N - 1$$

kde $1 + \frac{P}{12 \cdot 100} = R$ = úročiteln.

$$\text{úrok} = C(I) \cdot (R-1),$$

$$\text{úmor} = A - \text{úrok} = A - C(I) \cdot (R-1),$$

$$\text{zůstatek} = \text{předešlý zůstatek} - \text{úmor} =$$

$$= C(I+1) = C(I) + C(I) \cdot (R-1)$$

$$= 6(I) \cdot R - A.$$

ZE ZADANÝCH HODNOT UVÝSE PŮJČKY, ÚROKOVÁ SAZBA A POČET OBDOBÍ, PROGRAM VYPOČTE POSTUP SPLACENÍ A VYTISKNE ČASOVOU TABULKU HODNOT ZŮSTATKU.

ZADEJTE HODNOTY:
UVÝSE PŮJČKY EK03=?

10000

ÚROKOVÁ SAZBA EK3=?

8

POČET OBDOBÍ [MĚSÍCE]=?

36

NOVÉ ZADÁNÍ (A/N)?

N

PÓSTUP SPLACENÍ PŮJČKY

UVÝSE PŮJČKY : 10000,00 KCS

ÚROKOVÁ SAZBA : 8,00 %

POČET OBDOBÍ : 36 : MĚS

SPLATKA : 250,00 KCS

PÓSTUP SPLACENÍ
MESÍCE : KCS

0	10000,00
1	9716,57
2	9431,44
3	9144,32
4	8855,20
5	8564,08
6	8271,44
7	7976,56
8	7679,73
9	7380,90
10	7080,07
11	6777,34
12	6472,61
13	6165,87
14	5859,13
15	5543,39
16	5228,79
17	4917,08
18	4600,45
19	4281,13
20	3959,07
21	3638,01
22	3317,34
23	2992,67
24	2662,00
25	2313,34
26	1965,41
27	1648,66
28	1339,94
29	1028,37
30	684,62
31	278,99

10 : PROGRAM "TŘEBOUJĘ"
20 : AUTOR: T. HOSTÍNSKÝ 9/84
30 : HP-85

```
40 : PROGRAM TREBUJE POSTUP
50 : SPLACENI PUJCKY
60 : VYSTUP -UVÝSE PUJCKY
70 : -UROKOVA SAZBA
80 : -POČET OBDOBÍ MĚSIC
90 : VYSTUP -MIN. SPLATKA (ZROB-
100 : / KRUHLENA NA 50 KCS)
110 : -PÓST. ČISLO MĚSICE
120 : -DO POČTKU SPLACENI
130 : -ČASŤAKA, JIC JE INUTNO
140 : JESTE SPLATIT
150 : PROGRAM JE "SAMOHAVRDEC"
160 :
170 : REAL A1,I,P,R,R1,R2,U,Z
180 : INTEGER I,N
190 : DIM P$[113],U[133],M[123],R[2]
200 : P$="UVÝSE PUJCKY"
210 : U$="UROKOVA SAZBA"
220 : M$="POČET OBDOBÍ"
230 : IMAGE "NESFRVNNA HOCHNOTA ZH-
OUVU!"
```

```
240 : IMAGE "UVÝSE PUJCKY",PO,DD,"
250 : KOS,"UROKOVA SAZBA",PO,DD,
260 : "ZD,"POČET OBDOBÍ","/80"
270 : MES,"
```

```
280 : IMAGE "SPLATKA",LBB,DD," KCS
290 : IMAGE "P" "PÓST. ČISLO ZEVRA ISF
300 : LATITUD",MESICE,"/1"
310 : IMAGE "90,130 DD"
320 : IMAGE "54"
330 : CLEAR
340 : DISP "VÝPOČET POSTUPU SPLACE-
NI PUJCKY"
350 : DISP
360 : DISP "ZE ZADANYCH HODNOT"
370 : P$=""/"U$=""/"M$=""/"MESICE"
380 : INPUT C
390 : IF C<0 THEN 520
400 : DISP USING 230
410 : GOTO 410
420 : DISP U$,"/EX3="
430 : INPUT P
440 : IF P>0 THEN 470
450 : DISP USING 230
460 : GOTO 420
470 : DISP M$,"/EMESICE"=
480 : INPUT R
490 : IF R>0 THEN 520
500 : DISP USING 230
510 : GOTO 470
520 : N=IP(R)
530 : VÝPOČET A TISK TABULKY
```

```
540 : R=P/1200
550 : R=R+1-
560 : R2=R^N
570 : U=C*I
580 : A=IP(U$*P/(R2-1)/50+99)*50
590 : PRINT "POSTUP SPLACENI PUJCK
Y"
600 : PRINT
610 : PRINT USING 240 ; C,P,N
620 : PRINT USING 250 ; R
630 : PRINT USING 260
640 : PRINT
650 : I=0
660 : Z=0
670 : PRINT USING 270 ; I,Z
680 : Z=Z+R-A
690 : IF Z<0 THEN 720
700 : I=I+1
710 : GOTO 670
720 : PRINT USING 280
730 : BEEP 100,100
740 : DISP "NOVÉ ZADÁNÍ (A/N)?"
750 : INPUT R$
760 : IF R$="R" THEN 350
770 : STOP
780 : END
```

DELKA PROGRAMU JE 1807 BYTES

Ze vztahů je zřejmé, že C, I, A a N jsou navzájem vázány, a tak stačí zadat pouze tři veličiny. Za neznámou volte A. Vypočtenou A_{\min} (minimální) zaokrouhlete pro další výpočet nahoru na celé paděsátko.

Nejvíce bodů obdržel při hodnocení program ing. Tomáše Hostinského (42 let) z Brna, řešený také na mikropočítači HP-85, který byl druhým nejčastěji použitým mikropočítačem. Nejvíce mikropočítačů bylo typu Sinclair ZX-81.

(Pokračování)

MINI PORTRÉT

Ing. Otakar Petráček, OK1NB (QTH Chocerady, okres Benešov), je členem redakční rady našeho časopisu od roku 1955. Kromě třiceti let v redakční radě AR oslavil letoš ještě další výročí – své 65. narozeniny. Ač povoláním chemik (15 let pracoval ve výzkumu luminiscenčních láték pro stínítka TV obrazovek), svůj volný čas zasvětil radioamatérství, o které se začal zajímat už před věkou. Jak býlo u příslušníků Otovy generace samozřejmě, začínal svoje radioamatérské pokusy od krystalky: kurs telegrafie, vysílání brněnským rozhlasem, absolvoval v roce 1938. Druhá světová válka znemožnila radioamatérskou činnost, a tak se Ota o to intenzivněji zaměřil na své druhé hobby – meteorologii a astronomii. V té době se věnoval pozorování slunečních skvrn, konstrukci přístrojů pro výzkum elektromagnetických vln, vyzábovaných Sluncem, i zkoumání ionosféry. Na petřínské a ondřejovské hvězdárni se seznámil s profesionálním rádiovým provozem, který si velmi oblíbil a z něhož některé zvyky a pravidla později převedl do své radioamatérské praxe.

O Otovi se říká, že je to „ham, meteorolog a fanatik písněho času“. K tomu dodejme tuto jedovatou historku: Když jednou Ota, sedě u svého zařízení, sahal pro tužku, loktem nechtě, zavadil o pádro vibroplexu, který vysílal jednu tečku. Ota prý ihned zažnamenal do slavného deníku: „24. červen 1970. 06 hod., 30 min., 25 sek. GMT, kmitočet 3522 kHz – nedopatřením vyslána jedna tečka“.

Faktorem zůstává, že Otův radioamatérský provoz je svým způsobem trochu netradiční, jak se o tom můžeme přesvědčit poslechem v pásmu 80 metrů. Svoji volaci znacku OK1NB má Ota od roku 1947 a za ta léta si postupně výpravoval přesný provozní styl, spočívající zejména v pravidelných skezech na stálém kmitočtu 3522 kHz, který mu zaručuje krystalem řízený oscilátor vysílače. Další krystal (3500,4 kHz) používá Ota ve svém vysílání každou neděli mezi 12.30 až 14.00 hod. k vysílání kmitočtového normálu pro všechny radioamatérky, které si potřebují na svém zařízení v domácích podmínkách ověřit začátek radioamatérského pásmá.

Meteorologie a astronomie jsou pro Otu od radioamatérství neoddělitelné (šíření vln, družicový provoz atd.). Proto si také vybudoval kromě stanice vysílající i také stanici meteorologickou (v zahrádkách). Už od roku 1948 spolupracoval s Jiřím Mrázkem, OK1GM, při sledování sluneční aktivity a dodával informace pro vysílání OK1CAV a později pro OK1CRA. V létě 1956 začal Ota vysílat pravidelné rozbory povětrnostní situace v uplynulém týdnu a prognózu na týden následující. Svøje relace postupně zjednodušoval až do té podoby, jak je můžeme slyšet dnes. Podle Otových zážitků je dlouhodobý průměr správnosti jeho předpovědi 75 %. Je pravda, že tyto prognózy jsou sestavovány pro amatéry a amatérské prostředky, ovšem oprávňuje o pečlivě evidované záznamy vlastních pozorování od r. 1939, o synoptické mapy, nashromázděné za několik desetiletí, o studiu odborné literatury i o bohaté vlastní zkušenosti. Ota říká: „Je pro mě zadostiučiněním, když vidím večer v televizi na mapě to, co jsem již včera ráno předpovídal.“

Takže – než přijedete vyrazit na dovolenou, vyzkoušejte naladit svůj přijímač v neděli ráno v 8 hodin našeho času na kmitočet 3522 kHz. – dva

AMATÉRSKÉ RADIO MLÁDEŽI

Soutěž mládeže na počest 40. výročí osvobození

Soutěž mládeže, kterou na návrh komise mládeže vyhlásila rada radioamatérství UV Svazarmu ČSSR na počest 40. výročí osvobození naší vlasti, probíhala po celý měsíc březen až květen letošního roku ve všech pásmech KV i VKV. Soutěže se zúčastnilo v kategoriích kolektivních stanic, posluchačů a OL celkem 232 účastníků a řada dalších mladých operátorů v kolektivních stanicích.

Slavnostní vyhodnocení této soutěže, které se uskutečnilo na UV Svazarmu v Praze, se zúčastnili nejúspěšnější závodníci ze všech kategorií. Učastníci vyhodnocení soutěže mládeže absolvovali exkurzi do budovy České televize na Kavčích horách a během třídního pobytu v Praze navštívili také některé kulturní a historické památky.

10 nejlepších účastníků jednotlivých kategorií:

Kategorie kolektivních stanic

1. OK1KKT 885 b. – radioklub Tanvald
2. OK1KDW 724 – radioklub Brandýs nad Labem
3. OK3KHO 564 – radioklub Prievidza
4. OK1KZD 560 – radioklub Praha 6-Bubeneč
5. OK2KZC 531 – radioklub Vranovice
6. OK1KKI 412 – radioklub Jindřichův Hradec
7. OK2OAJ 363 – radioklub Velká Polom
8. OK2KMB 362 – radioklub Moravské Budějovice
9. OK1OVP 359 – radioklub Pardubice
10. OK2KFJ 337 – radioklub Mikulov

Celkem bylo hodnoceno 27 kolektivních stanic.

Kategorie OL

1. OL1BKO 1280 b. – Robert Thomas, Brandýs nad Labem
2. OL6BNB 1117 – Radek Ševčík, Hustopeče u Brna
3. OL9CRF 1095 – Jozef Dúček, Dubnica nad Váhom
4. OL8COJ 1016 – Jozef Čížmárik, Topoľčany
5. OL2BHZ 975 – Pavel Mařík, Jindřichův Hradec
6. OL1BLR 725 – Otakar Pekař, Praha 6
7. OL4BHI 653 – Radek Štolfa, Polevsko
8. OL1BIC 585 – Jiří Náděje, Praha 6
9. OL4BMP 570 – Jan Vaniček, Tanvald
10. OL9WAA 560 – Robert Čaniga, Prievidza

V kategorii OL bylo hodnoceno 27 stanic.

Jiří Sekereš z radioklubu Svazarmu OK2KFJ v Mikulově seznamuje děti se základy rádiového zaměřování

Kategorie posluchačů do 19 let

1. OK2-30828 5794 b. – Radek Ševčík, Hustopeče u Brna
2. OK1-30571 4598 – Romana Brožovská, Příbram
3. OK1-30823 4301 – Karel Krtička, Pardubice
4. OK3-27707 3648 – Ladislav Végh, Dunajská Streda
5. OK1-22309 3255 – Miroslav Picha, Bílina
6. OK1-31444 2348 – František Mrázek, Praha 4
7. OK2-31623 2340 – Magda Zapletalová, Gottwaldov
8. OK1-31335 1510 – Pavel Stráhlík, Teplice
9. OK1-30295 1462 – Milan Opat, Pardubice
10. OK1-30557 1280 – Robert Thomas, Brandýs n/L

Celkem bylo hodnoceno 178 posluchačů.

Nový školní rok

Koncem prázdnin se vrací mládež domů z letních pionýrských táborů a z prázdninového pobytu na venkově. Mnozí se během pobytu v pionýrském táboře seznámili s činností radioamatérů během ukázky činnosti některého z radioklubů v táboře.

Využijte zájem mládeže o radiotechniku a radioamatérskou činnost. Zajděte do škol, domů pionýrů a mládeže i učňovských středisek ve svém okolí. Při krátké besedě, kterou vám učitelé a mistři SOU jistě umožní, přiblížte mládeži činnost radioamatérů. Pozvěte mládež do vašich rádioklubů a kolektivních stanic, kde budete mít více času i prostředků, ukažte jim QSL lístky, navažte nějaké spojení a seznamate zájemce s celkovou vaší činností.

Uspořádejte pro mládež zájmové kroužky radiotechniky, ROB a radioamatérského provozu. Jistě se vám podaří získat alespoň některé chlapce a dívčata, které si postupně vychováte v dobré technice a operátory, kteří vám za několik roků

budou vydatně pomáhat ve vaší činnosti v radioklubu, v kolektivních stanicích i při výchově dalších zájemců.

Vím a z vlastní praxe z výchovy mládeže mám potvrzeno, že práce s mládeží není vůbec snadná, není dosud ani dostatečně společensky doceněna. Je podmíněna velikou obětavostí, sebezapření a také množstvím volného času, který jste ochotni výchově mládeže věnovat. V každém kolektivu se však snad najde alespoň jeden nebo několik ochotných členů, kteří si vezmou na starost výchovu nových členů radioklubu a operátorů kolektivní stanice.

Příkladem jistě může být Jiří Sekereš z Mikulova, který se již řadu let obětavě stará o výchovu mládeže a nových operátorů kolektivní stanice OK2KFJ, navzdory těžkým a nevyhovujícím podmínkám pro činnost radioklubu v Mikulově.

Všeobecné podmínky krátkovlnných závodů a soutěží

(Pokračování)

9. U mezinárodních závodů je třeba psát čestné prohlášení v angličtině, obvykle v tomto znění: „I hereby certify on my honour, that in this contest I have operated my transmitter within the limitation of my license and observed fully the rules and regulations of the contest.“

Pokud použijete pro mezinárodní závod vlastní deník ze závodu nebo deníku, ve kterém čestné prohlášení není natištěno v angličtině, musíte čestné prohlášení napsat anglicky. Dejte však pozor při opisování čestného prohlášení, abyste je napsali správně a bez chyb. Raději si text čestného prohlášení v angličtině napište také na desky vašeho staničního deníku.

Posluchači, kteří se zúčastní závodu mezinárodního, mohou podepsat čestné prohlášení, natištěné v angličtině pro radioamatéry vysílače.

10. V žádném závodě není povoleno pracovat pod jednou volací značkou s více než jedním signálem současně, pokud stanice nepracuje v kategorii více vysílačů – více operátorů. Ve vnitrostátních závodech je možný přechod z jednoho pásmu na druhé nejdříve po deseti minutách na jednom pásmu. Toto ustanovení platí i pro posluchače!

Některé zahraniční pořadatelé KV závodů vyhlašují také kategorie více vysílačů – více operátorů. Pokud chcete být v této kategorii hodnoceni a máte zařízení, které vám umožnuje práci současně ve více pásmech, nezapomeňte zavážit odeslat žádost o povolení výjimky komisi KV při ÚV Svazarmu. V odůvodněném případě může povolovací orgán tuto výjimku povolit, všechny vysílače však musí pracovat z jednoho společného QTH, které je uvedeno v povolovací listině kolektivní stanice.

V našich vnitrostátních závodech tato kategorie samostatně hodnocena není, a proto může každý současně pracovat pouze s jedním vysílačem a pouze v jednom pásmu. Aby se zamezilo různým spekulacím a různému výkladu tohoto bodu Všeobecných podmínek krátkovlných závodů a soutěží, je ve vnitrostátních závodech možný přechod z jednoho pásmo na druhé nejdříve po deseti minutách provozu na jednom-pásmu. Na tuto skutečnost by také upozorněni všichni vyhodnocovatelé KV závodů a přechod z jednoho pásmu na druhé v deníku ze závodu každé stanice pečlivě hledají.

Toto ustanovení platí v plné míře i pro posluchače. Před časem totiž řešila KV komise případ jednoho posluchače z Českomoravské vysočiny, jehož bodový výsledek, dosažený v závodě, též měř dvojnásobně převyšoval bodový zisk ostatních posluchačů. Na první pohled bylo zřejmé, že tento posluchač v závodě použil cizí pomoc. Zmíněný posluchač se však hájil tím, že poslouchal na dvou přijímačích, nalaďených na dvě různá pásmá, a signál z těchto různých pásem přijímal tím způsobem, že do každého ucha měl přiveden signál z jednoho pásmu. Současně tak přijímal signál z obou pásem najednou a stačil bezchybně zapisovat všechna spojení.

Výkon to byl jistě obdivuhodný. Ze však jde dosahnut vynikajících úspěchů v domácích a mezinárodních závodech i bez porušení pravidel Všeobecných podmínek krátkovlných závodů a soutěží včetně povolovacích podmínek, o tom svědčí výsledky některých našich úspěšných kolektivních stanic, jednotlivců OK a OL i posluchačů.

(Pokračování)

Nabídka pomoci

Dostal jsem dopis od Ladislava Šimy, OK1-12313, ve kterém mi sděluje, že má nejnovější vydání obou dílů Call-Booku a nabízí pomoc všem, kdo potřebují adresy některých zahraničních radioamatérů. Potřebujete-li adresu zahraniční stanice, napište Láďovi na adresu: Ladislav Šimá, 5. května 113, 286 01 Čáslav. Bylo by vhodné k žádosti přiložit frankovanou obálku nebo alespoň známku na odpověď, i když o to Láda v dopisu výslově nežádá.

Přejí vám hodně úspěchů v náboru mládeže pro vaše zájmové kroužky v radioklubech a domech pionýrů a mládeže a ve školách. Těším se na zprávy, jak se vám podařilo podchytit zájem mládeže o radioamatérský sport.

73! Josef, OK2-4857

PRO NEJMLADŠÍ ČTENÁŘE

XVII. ROČNÍK SOUTĚŽE O ZADANÝ RADIOTECHNICKÝ VÝROBEK

Vyhlašovatel: Ministerstvo školství ČSR, Česká ústřední rada PO SSM.

Organizátor: Ustřední dům pionýrů a mládeže Julia Fučíka.

1. Soutěž o zadany radiotechnický výrobek je vyhlašována pro jednotlivce – žáky základních škol. Soutěžící si vybere výrobek ze dvou zadaných konstrukcí:

- a) kapesní přijímač pro VKV,
- b) metronom.

Návody ke zhodovení výrobku najde soutěžící v rubrice R15, ale může si je také vyzádat (pražší soutěžící osobně) na oddělení techniky UDMP JF.

2. Dokončený a fungující výrobek musí soutěžící odevzdát v době od 1. října 1985 do 15. května 1986 na oddělení techniky UDPM JF, Havlíčkova sady 58, 120 28 Praha 2. Vývody výrobků musí mít správnou barvu izolace (+ červená, záporný pól modrá atd.).

3. Spolu s výrobkem zašle každý soutěžící přihlášku do soutěže, na níž musí být uvedeno plné jméno autora, den, měsíc a rok narození; navštěvovaný ročník základní školy, přesná adresa bydliště včetně PSC a potvrzení organizace, za kterou soutěží (razitko, podpis). Nebudu přijímat společné přihlášky (soupisy) několika soutěžících.

4. Soutěž je vypsána ve dvou věkových kategoriích:

- a) mladší pionýři (3. až 5. ročník ZŠ),
- b) starší pionýři (6. až 8. ročník ZŠ).

5. Výrobky budou ohodnoceny v červnu 1986 a vráceny soutěžícím na uvedenou adresu poštou (pražší soutěžící si je odeberou osobně) do konce listopadu 1986.

6. Zvlášť dobré zhotovené konstrukce odmění pořadatel věcnými cenami a upomínkovými předměty. Reportáz ze soutěže spolu se seznamem nejlepších bude uveřejněna v Amatérském rádiu.

KAPESNÍ PŘIJÍMAČ PRO VKV

Vlastní návrh i toho nejjednoduššího přijímače v pásmu velmi krátkých vln (VKV) vyžaduje značné zkušenosti. Při jeho stavbě vás mohou potkat těžkosti: často nejsou ke koupě součástky použité v prototypu a nahraditelné nelze použít k osazení desky s plošnými spoji atd. Většina problémů však odpadne při práci na daleko popsaném přístroji – zpětnovazebním přijímači.

Zapojení přijímače

Zpětnovazební přijímač s nízkofrekvenčním zesilovačem na obr. 1 dodává z výstupu dostatečný signál pro sluchátko. Místo sluchátek lze ovšem k výstupu připojit jakýkoli nf zesilovač – důležité

však je, aby měl vlastní baterii nebo síťový zdroj. Při společné baterii je vlivem velkého odběru proudu zesilovačem ladící napětí nestabilní – nestabilní je tedy i vyláděný signál.

Na přijímaný signál se v tomto jednoduchém přijímači ladí jen jeden rezonanční obvod (cívka L1, varikap D a kondenzátor D2); obvod se ladí napětím, přivedeným na varikap (kapacitní diodu). Citlivost a selektivita závisí především na jakosti rezonančního obvodu – můžete si vyzkoušet, do jaké míry uvedené vlastnosti přijímače lze vylepšit změnou součástek. Při návrhu rezonančního obvodu musíte vzít v úvahu tyto jevy: ztrátový odpor použité cívky, ztráty v kondenzátoru rezonančního obvodu, malý vstupní odpor tranzistoru (který zatlumuje obvod) atd. Nevhodné volenými součástkami můžete značnou část signálu, získaného z antény přes vazební vinutí L2, zbytečně ztratit – přijímač pak není dostatečně citlivý ani selektivní.

Již dlouho je však znám jednoduchý prostředek, který ztráty vyrovnává: zpětná vazba. Působí tak, že se z výstupu zesilovače, který navazuje na rezonanční obvod, odebírá část zesíleného vf signálu a vrací se zpět na rezonanční obvod v souhlasné amplitudě a fázi. Tento zpětnovazební signál vyrovnává ztráty na rezonančním obvodu, „ztlumuje“ rezonanční obvod.

Obsluha zpětnovazebního přijímače vyžaduje ovšem trochu zručnosti, neboť nejlepších výsledků se dosahuje při zpětné vazbě určité velikosti. Je-li zpětná vazba větší, než je zapotřebí k vyrovnaní ztrát, je obvod „přesycen“ a chová se jako vysílač (oscilátor). Užitečný signál se mění v písot a takto nastavený přijímač (vlastně vysílač) ruší přijímače v sousedství.

V zapojení podle obr. 1 je proto navíc pomocný obvod, který pracuje v oblasti nad slyšitelným pásmem. Posouvá pracovní bod v tranzistoru tak, že je zpětná vazba vždy jen tak velká, aby se vyrovnaly ztráty na rezonančním obvodu přijímače. Toto zapojení zajišťuje bez zvláštního nastavování zpětné vazby dobrou citlivost a přijímač nepíská a neruší.

Signál z antény se přivádí z vazebního vinutí L2 na rezonanční obvod indukční vazby. K ladění slouží kapacitní dioda D, jejíž kapacita se rídí změnou napětí z napájecího zdroje přes rezistor R7 a odpory trimr R4. Různé stanice lze tedy vyládat změnou odporu odpornového trimru R4.

K demodulaci signálu VKV slouží polem řízený tranzistor T1. Zpětná vazba a pomocný signál (zhruba o kmotučtu 50 kHz) se získávají na kondenzátoru C6, jímž se část vf signálu vrací z výstupu tranzistoru T1 na rezonanční obvod.

Signál po demodulaci prochází obvodem z rezistoru R2 a kondenzátorem C7 (potlačují nosnou vlnu a signál 50 kHz) a je zesílen nízkofrekvenčním zesilovačem. Použitý tranzistor T2 zaručuje asi desetiásobné zesílení. Kondenzátory C3 a C4 slouží k dodatečnému vyhlazení výstupního signálu. Rezistor R5 je pracovním odporem tranzistoru T2, jehož pracovní bod je pevně nastaven rezistorem R8. Rezistor R1 a kondenzátory C5, C9 odvádějí z nízkofrekvenčního signálu zbytky vf.

Sluchátko zapojte do označených bodů (výstup, kladný pól zdroje). Musí mít impedanci alespoň 1 k Ω , raději větší.

Stavba a uvedení do chodu

Zapojení součástek na desce s plošnými spoji je na obr. 2. Desku před pájením překontrolujte, vyplati se i změřit použité součástky. S osazováním desky budete mít sotva hodinku práce. Po zapájení součástek připojte k desce napájecí na-

Obr. 2. Deska s plošnými spoji T66

pěti 9 až 18 V a sluchátka. K anténnímu vstupu připojte libovolný drát délky asi 850 mm. Otáčením běžeče odporového trimru R4 zkuste zachytit signál vysílače. Na místech s dobrými přijmovými podmínkami lze přijímat stanice několik.

Přijímač chráňte před nepříznivými vlivy umístěním do uzavřené plechové krabičky, pro ovládání trimru vyrtejte ve víčku krabičky díru. Tak bude přístroj chráněn před mechanickými nárazy a znečištěním.

Při ladění uslyšte mezi stanicemi silný šum, který zmizí při naladění silné stanice. Stanici je nevhodnější naladit přesně při přestavce ve vysílání a to na nejslabší šum.

Cívky L1 a L2, vyleptané na desce s plošnými spoji (obr. 3), mají takové rozměry, aby při použití kapacitní diody KB105G pracoval přijímač zhruba od 70 MHz do 104 MHz. Před stavbou proto dobré prohledněte (překontrolujte), není-li cívka poškozena, přerušena nebo zkraťována nevyleptanými měděnými můstky. Jakékoli změny cívky proti originálu posouvají kmitočtový rozsah přijímače mimo pásmo VKV. Závity cívky ani ostatní spoje nepokrývejte vrstvou cínové pásky, pozor také na zkarty mezi závity cívky, vzniklé „zatoulanou“ kapičkou cínu.

Seznam součástek

R1, R7, R8	rezistor 10 k Ω
R2	rezistor 0,22 M Ω
R3	odporový trimr 4,7 k Ω
R4	rezistor 47 k Ω
R5, R10	rezistor 1,8 k Ω
R6	rezistor 5,6 k Ω
R9	rezistor 3,3 k Ω
R11	rezistor 1,5 k Ω
R12	rezistor 390 Ω
R13	rezistor 56 Ω
R14	rezistor 39 Ω , 0,5 W
C1	kondenzátor 6,8 nF
C2	svitkový kondenzátor
TC	TC 180, 1 μ F
C3	kondenzátor 68 nF
C4	elektrolytický kondenzátor
T1	TE 003 až 5, 10 μ F až 20 μ F
T2	tranzistor TUN (KC147)
IO	tranzistor OC30
D	integrovaný obvod MH7410 (MH7410S); Zenerova dioda KZ260/5V1
	reprodukтор Z = 8 Ω
	deská s plošnými spoji

Technické údaje přijímače

Kmitočtové pásmo: 65 až 104 MHz.
Nf výstupní napětí: 25 mV.
Provozní napětí: 9 až 18 V.
Odběr proudu: 2 mA při 12 V (max. 4 až 5 mA!).

Rozměr desky: 63 x 43 mm.

Konstrukci kapesního přijímače prověřilo prakticky mnoho čtenářů rubriky R15. Asi třetí přístrojů dostali členové radio-klubu UDPM JF jako „naprostě správně sestavené“ ale chyba bude jistě v konstrukci, což dosvědčilo několik odborníků ... Ukázalo se, že všechny tyto přijímače pracovaly – kromě jednoho: u něho autor přehlídky utřízené vývody kondenzátoru, zaměnil asi polovinu součástek za jiné a nanesl zhruba půlmilimetrovou vrstvu cínové pásky na plošné spoje.

Zkušky ukázaly potřebu věnovat pozornost nastavení přijímače do pásmo VKV. Proto nejprve kondenzátor C10, který je na schématu zakreslen přerušovanou čarou, nezapojujte. Nepodaří-li se vám naladit při jinak správné funkci přístroje žádnou stanici, je rezonanční obvod přijímače pravděpodobně mimo pásmo VKV. Vyhledejte správnou kapacitu kondenzátoru C10 zkusemo je však zdlouhavé – požádejte raději svého vedoucího, aby vám pomohl rozsah přijímaného pásmo změřit a určit tak kapacitu C10 –

Obr. 4. Prototyp přijímače (zhotovený na tábore AR).

nejčastěji to byla u „tvrdosíjných“ přístrojů kapacita kolem 13 pF.

Podmínkou dobré činnosti přijímače je i anténa vhodné délky. Při pokusech hrál přístroj často lépe bez antény, než s příliš dlouhou anténou. Optimální délku antény jsme zjistili tak, že jsme odvíjeli drát z „klubka“, až se dosáhlo nejlepšího příjmu.

-zh-

METRONOM

Zapojení přístroje

Metronom má dvě hlavní části: zdroj impulsů (hradio IOa, tranzistor T1) a klíčovaný oscilátor (hradla IOb, IOc) s výstupním signálem, zesíleným pro reproduktor tranzistorem T2. Celkové zapojení je na obr. 1.

Zdroj impulsů pracuje jako astabilní multivibrátor. Jeho rozkmitání zajišťují dvě zpětné vazby. Kladná vazba je zavedena kondenzátorem C2 a rezistorem R6, záporná rezistorem R5. Výsledné impulsy jsou značně nesymetrické. Trvání úrovne H (logické 1) na výstupu zdroje (vývod 6 integrovaného obvodu IO) je určeno časovou konstantou C2R6, doba trvání úrovne L (logická nula) konstantou C2 (P+R4). Odporovým trimrem R3 se nastavuje napěťová kompenzace kmitočtu, o které se ještě zmínime. K ovládání zdroje impulsů slouží vstupy ST a CN. Spojením vstupu ST se zemí (úrovni L) je vyvolán krátký záporný impuls na vývodu 4 IO, který okamžitě „vybudi“ úroveň H na výstupu 6. Vstupem ST lze tedy synchronizovat impulsy ze zdroje. Vstup CN je spojen s vývodem 3 a jeho uzemněním je vynucen úroveň H na výstupu 6 trvale – oscilátor je tedy zaklínován a jeho tón trvalý.

Klíčovaný oscilátor pracuje na obdobném principu. V základním stavu je na výstupu (vývod 12 integrovaného obvodu) úroveň H. Tím je tranzistor uzavřen a do reproduktoru neteče proud. Přivedením úrovne H na vývod 2 přejde výstup na úroveň L a tranzistor T2 se otevře. Tento stav trvá až do vybití kondenzátoru C3, kdy převládne na vývodu 13 úroveň L, přiváděná na rezistor R10. Hradlo přejde opět do základního stavu (na výstupu úroveň H). Tepřve po nabití kondenzátoru C3 (pokud tedy klíčování pokračuje) se může úroveň výstupu změnit a celý cyklus se opakuje. Rezistory R9 a R11 upravují úrovňu signálu na výstupu a výstupu hradla IOb a tím zamezují napěťovému přetěžování výstupů hradla IOc.

Klíčování oscilátoru zamezí signál úrovni L, přivedený na výstup ZV. Zdroj impulsů nadále kmitá, ale impulsy se nedostanou přes zablokováný oscilátor.

Obr. 3. Umístění součástek přijímače VKV na desce s plošnými spoji

Obr. 1. Schéma zapojení metronomu

Obr. 2. Připojení vnějších součástek k desce metronomu

dó reproduktoru. Rezistor R14 a dioda D slouží ke stabilizaci napájecího napětí integrovaného obvodu.

Stavba a uvedení do chodu

Součástky metronomu jsou na desce s plošnými spoji. Většina dér v desce má průměr 1 mm, pouze díry pro tranzistor T1, rezistor R3, R14 a kondenzátor C2 mají průměr 1,3 mm, stejně jako výstupní pájecí body. Díry pro vývody emitoru a báze T2 mají průměr 1,8 mm, pro kolektor T2 a upevnění desky 3,3 mm.

Tranzistor T2 připevněte ze strany součástek nad rezistory R12 a R13 jedním šroubem M3 × 20 s distančním válečkem 8 mm. Pokud jsou dodány rozteče dér na desce s plošnými spoji, lze tranzistor T2 přišroubovat jen správným způsobem. Potenciometr P je mimo desku a je připojen na vývody BA a PT (obr. 3).

V zapojení je nutno dodržet jmenovité odpory rezistorů R5 a R9, nemáte-li je, lze rezistory složit (např. 1,8 kΩ = 1,5 kΩ + 330 Ω apod.). Ostatní

rezistory a kondenzátory lze nahradit oběma sousedními v řadě (např. místo rezistoru 5,6 kΩ rezistor 4,7 kΩ nebo 6,8 kΩ). Rezistory R1, R7 a R8 mohou být v rozmezí 3,3 kΩ do 15 kΩ. Obdobně rezistor R2 může být v rozmezí 100 kΩ až 820 kΩ. Nevhodnější typ kondenzátoru C2 je TC 180. Po osazení všemi součástkami by měl metronom pracovat při napájecím napětí 4,5 až 6 V (připojuje se na vývody NP a GN). Nekmitá-li oscilátor, což vyzkoušte uzemněním vývodu CN, změňte odpor rezistoru R9.

Napětí na běžci trimru R3 nastavte na 1,5 V. Vyhovuje-li vám přesnost ±10 %, je tím metronom nastaven. K nejpřesnejšímu nastavení budete potřebovat stabilizovaný zdroj napětí, voltmetr a hodiny. Postupujte takto:

1. Nastavte běžec potenciometru P' do střední polohy.
2. Nastavte napájecí napětí 4,5 V (kladný pól na vývodu NP) a spočítejte impulsy za minutu (asi 110 až 140).
3. Nastavte napájecí napětí 6 V a opět zjistěte počet impulsů za minutu.

4. Jestliže je počet impulsů při 6 V větší, pootočte odporovým trimrem doleva. Zkontrolujte, kmitá-li při tomto napětí zdroj impulsů i při minimálním odporu potenciometru P.

5. Je-li počet impulsů při 6 V naopak menší, pootočte běžcem trimru R3 mírně doprava a zkontrolujte, kmitá-li zdroj impulsů při maximálním odporu potenciometru P a napájecím napětí 4,5 V.

Opakováním tohoto postupu můžete dosáhnout přesnosti až 1 %. Po nastavení raději zakápněte běžec trimru malou kapkou acetonového laku. Metronom vestavte do vhodné krabičky. Jako napájecí zdroj se hodí nejlépe dvě baterie 3 V (typ 22 L).

Přístroj můžete také použít jako tristavové signální zařízení. Platí pro něj následující tabulka:

ZV	CN	funkce
L	X	míčí
H	H	pípá
H	L	stálý tón

X... na úrovni nezáleží

Obr. 3. Deska s plošnými spoji T67.

Obr. 4. Umístění součástek metronomu na desce s plošnými spoji

Obr. 5. Prototyp metronomu

Seznam součástek

R1	rezistor 100 Ω
R2	rezistor 1,5 kΩ
R3	rezistor 3,9 kΩ
R4	odporový trimr TP 040, 4,7 kΩ
R5, R6, R9	rezistor 10 kΩ
R7	rezistor 56 kΩ
R8	rezistor 1 MΩ
C1 až C5	keramický kondenzátor 2,2 nF
C6, C7	keramický kondenzátor 10 nF
C8, C9	keramický kondenzátor 100 nF (0,1 μF)
C10	keramický kondenzátor asi 13 pF (viz text)
T1	tranzistor KF521 (E300)
T2	tranzistor KC508 (TUN)
D	kapacitní dioda KB105G
	deská s plošnými spoji

Petr Boček

MINIPŘEHŘÁVÁČ TESLA KM 340

Celkový popis

Minipřehrávač (walkman) KM 340 vyrábí k. p. TESLA Přelouč a je to první přístroj tohoto druhu vyráběný u nás. Prozatím je dodáván pouze ve stříbritém vnějším provedení, jsou však uvažovány i jiné barvy skříňky. Jak již název naznačuje, je minipřehrávač určen pouze k reprodukci nahrávaných kazet a je samozřejmě ve stereofonním provedení. K reprodukci slouží sluchátka typu ARF220, která jsou rovněž tuzemským výrobkem a vyrábí je k. p. TESLA Valašské Meziříčí. Pro celou se stavu minipřehrávače se sluchátka byla stanovena prodejní cena 1650 Kčs.

Přístroj se ovládá tlačítkovou soupravou, obsahující čtyři tlačítka. Ta umožňuje převíjení vpřed i vzad, reprodukci; poslední tlačítko ruší zvolenou funkci a při druhém stisknutí otevře držák kazety. Ačkoli jsou obě tlačítka ovládající převíjení vpřed a vzad aretovaná, není v tomto případě zajištěno automatické koncové vypínání. To pracuje pouze při ukončení reprodukce pomocí palce v páskové dráze, který uvolní aretaci tlačítkové soupravy a tlačítka reprodukce se tedy vrátí do klidové polohy.

Jestliže při zařazené reprodukci stiskneme navíc tlačítko převíjení vpřed nebo vzad, pásek se převíjí požadovaným směrem při současném příposlechu (cueing). V tomto případě však tlačítka převíjení nejsou aretovaná.

K řízení hlasitosti slouží dva posuvné regulátory umístěné v prolisu přední stěny. K připojení sluchátek jsou na boční stěně dvě konektorové zásuvky typu JACK; k přístroji jsou jako standardní příslušenství dodávána pouze jedna sluchátka. Minipřehrávač lze napájet buď ze čtyř tužkových článků, nebo z vnějšího napáječe. Napáječ však není součástí standardního vybavení. Ve výbavě je pouze poutko a plochý řemínek k přenášení.

Technické parametry podle výrobce

<i>Kmit. rozsah:</i>	63 až 10 000 Hz.
<i>Druh pásku:</i>	Fe nebo Cr.
<i>Odstup cizích nap.:</i>	48 dB
<i>Kolísání rychlosti:</i>	±0,5 %.
<i>Napájení:</i>	6 V (4 články 155, nebo vnější zdroj).
<i>Spotřeba:</i>	asi 120 mA.
<i>Výstupní výkon:</i>	2 × 20 mW/32 Ω.

Rozměry: 17 × 10 × 3,5 cm.
Hmotnost: asi 0,5 kg. (bez zdrojů).

Funkce přístroje

Mechanika přístroje pracuje celkem spolehlivě. Jak již bylo řečeno, tlačítka sloužící k zastavení posuvu pásku je (na druhé stisknutí) kombinováno s otevřením prostoru kazety. V této druhé funkci je však nutno stisknout tlačítko větší silou především proto, že plochá pružina přidržující držák kazety v zavřené poloze dře o výčnělek držáku. Jestliže tuto část námazně vložíme vhodnou vazelinou, nebo navíc zmenšíme sílu pružiny, značně zmenšíme i sílu, potřebnou k otevření prostoru kazety. Pak ovšem vzniká nebezpečí, že se držák s kazetou v době, kdy není zařazena reprodukce, může při prudším pohybu s přístrojem samovolně otevřít a kazeta vypadnout. Škoda, že výrobce opomínil západku, která by držák kazety zajišťovala v zavřené poloze.

Málo obvyklé je, že výrobce u mechanické části přístroje vůbec nepoužil brzdy. Není to sice přímo na závadu, ale je obecně známo, že záznamový materiál, který se při reprodukci zcela volně odvíjí z trnu, bývá (a to zvláště u starších a zvláštních pásků) náchylný k pojíždění po hlavách ve směru kolmém k posuvu. U zkoušených vzorků se však tento nedostatek neprojevil. Zůstal jen optický jev, že po zastavení pásu z funkce převíjení a zapnutí reprodukce to chvíli trvalo než se „uvolněný“ pásek naplnil a odvíděná cívka se dala také do pohybu.

Elektrické zapojení minipřehrávače je celkem jednoduché. Jako „koncové“ zesilovače jsou zde použity nové integrované obvody MBA915A, které bez problémů poskytují požadovaný výkon a mají velmi malou klidovou spotřebu. První série motorové regulace je vybavena obvodem regulace s diskrétními prvky, další série již počítají s integrovaným obvodem.

Zde musím upozornit na drobný nedostatek který se objevuje právě u sérií s regulátorem osazeným diskrétními prvky. Jestliže přístroj vypneme a ihned poté znovu zapne, například při přechodu z reprodukce na převíjení přes tlačítko zastavení, pak většinou motorek zůstane stát a již se nerozběhne. Musíme přístroj znovu vypnout, počkat jednu až dvě sekundy a pak znovu zařadit požadovanou funkci. Upozorňuji na to, že tuto závadu nemají přístroje s integrovaným obvodem v regulaci motorku.

V této souvislosti upozorňuji, že v tomto čísle AR je na vedlejší stránce uveřejněn návod, jak tento nedostatek nadmíru jednoduchým způsobem odstranit. Pokud tedy bude někomu popsaný nedostatek vadit, může návodu využít.

Elektricky nelze mít jinak k tomuto přístroji žádné námitky. Udávanou kmitočtovou charakteristikou i odstup zkoušené vzorky splňovaly, i když kolisáním rychlosti posuvu lze tento minipřehrávač steži zařadit mezi lepší průměr podobných přístrojů. Použitá mechanika má v tomto směru zřejmě určité nedostatky. Výrobce by měl namísto nejrůznějších variant, které dosud spatřily světlo světa, vyvinout urychleně moderní mechaniku část, kde by ovládací prvky byly mechanicky podpořeny (soft-touch) a která by splňovala všechny požadavky včetně zrušení aretace tlačítkové soupravy při ukončení všech funkcí i při poruše v navíjení pásku. Byl by skutečně nejvyšší čas!

Není také zcela jasné, proč je na zadní stěně přístroje udávána (dokonce výškem) spotřeba 450 mA, když v TP je 120 mA?

Ještě několik slov k použitým sluchátkám. Ty patří rozhodně k lepšemu průměru obdobných zahraničních výrobků. Jedinou (napravitelnou) vadou je to, že nesedí dobré na uších a v dolní části poněkud odstávají; tím se zhoršuje reprodukční vjem v hloubkách. Napravíme to však snadno tak, že kovový pásek sluchátek přihneme směrem dovnitř těsně nad koncem plastické hmoty sluchátek, tedy v místě, kde jsou na pásku kovové dorazy.

Vnější provedení

Protože již nepatřím k mladé generaci, poptal jsem se těch, pro které je tento výrobek určen především, na praktičnost jeho provedení. Byly vzneseny pouze dvě námitky: jedná se že je tento přístroj poněkud velký i těžký (to je bohužel dánou výrobními i dodavatelskými možnostmi našich podniků), jednak že mu chybí základní důležité vybavení, kterým je spojna nebo závěs na opasek kalhot. Ověřil jsem si, že tato druhá námitka je plně

opravněná a že by se tedy výrobce měl touto otázkou zabývat.

Velice nešikvovně je vyřešen prostor pro napájecí články, které se zde vkládají bočně a přes kuželovité pružiny to navíc vyžaduje značnou praxi – vyjímání je ještě horší! Skoda že se konstruktér nepoučil například z běžně prodávaných elektronických blesků, u nichž se čtyři články v naprosté většině provedení zasouvají ve směru jejich osy, což je úkon podstatně jednodušší. Výrobce nyní připravuje nahradu kuželovitých pružin za ploché; to by mělo tyto problémy zlepšit.

Vzhledovou připomínce mám ještě k přepínači druhu pásku Fe-Cr, který byl použit z jakéhosi výrobku a kterému zůstalo označení 0 a I (zřejmě ve funkci zapnuto-vypnuto). Toto označení nemá s funkcí v přístroji nic společného a je bohužel výrezem ve skříni vidět. Protože je použit zdvojený přepínač je zde podivuhodné označení 00-II. Snad to mohlo být před montáží nadmíru jednoduše začerněno?

Vnitřní provedení a opravitelnost

Povolením: čtyř šroubků v zadní stěně lze zadní víko sejmout. Deska s plošnými spoji, nesoucí celou elektronickou část a kryjící část mechanickou, je upevněna jedním šroubkem. K jejímu odejmoutí či odklopení je však třeba odpájet přívody hlavy, případně přívod napájení a vysunout přepínač druhu pásku opatrně z držáku. Není to sice řešení nejideálnější, ale mnohé zahraniční přístroje obdobného provedení jsou daleko nepřistupnější.

Závěr

Přes některé drobné nedostatky, o nichž jsem se zmínil a kterými jsou nově zaváděné typy přístrojů většinou poznamenány, považuji minipřehrávač KM 340 za zdatný výrobek, který může plně uspokojit příslušný okruh zájemců. Tomu dopomůže i relativně přijatelná cena. Domnívám se proto, že tento přístroj může mít dobrý prodejný úspěch.

-Hs-

ÚPRAVA REGULACE MOTORKU KM 340

Jak bylo vysvětleno v rubrice „AR se znamuje“, má série minipřehrávačů, používající v obvodu regulace motorku diskrétní prvky, drobnou závadu. Ta se projeví tak, že když znovu zapneme přístroj krátce po jeho předešlém vypnutí, motorek se nerozběhne. Je nutno přístroj znova vypnout, okamžik počkat a pak je již vše v pořádku. Připomínám, že deska s plošnými spoji diskrétní verze má označení končící znakem A-2, deska integrované verze má označení končící znakem A-3. Jak již bylo v citovaném článku řečeno, integrovaná verze regulátoru uvedenou závadu nemá.

Důvod popsané závady diskrétní verze plyne z obr. 1. V použitém zapojení, které je celkem běžné, musí být tranzistor T2 ihned po zapnutí ve vodivém stavu, aby se motorek vůbec mohl rozběhnout. To konstruktér KM 340 realizoval obvodem C8 a R4. Vycházel přitom z toho, že se C8 začne ihned po zapnutí napájení nabíjet a proto se na jeho záporném vývodu na okamžik objeví kladné napětí. Toto napětí se pak přes diodu D1 přenese na bázi

Obr. 1.

tranzistoru T1, ten se otevře, a svým kolektorovým obvodem otevře i T2.

Toto zdánlivě vtipné řešení má však zásadní nedostatek. Jestliže vypneme napájení, zůstane krátkou dobu na kondenzátoru C8 ještě náboj a ten brání opětnému otevření tranzistoru T1 (uzavírá tedy i T2). Pokud se motorek mezikádem zastaví, a to v důsledku mechanických odporek pohonné části nastane velmi rychle, a my zapneme znova napájení ještě dříve než je C8 zcela vybit, zůstane T1 uzavřen, uzavřen je tedy i T2 a motorek setrvává v klidovém stavu.

Zcela obdobný stav by nastal také v případě, že by se motorek z jakéhokoli důvodu (přibrzděním) zastavil. Ani v tomto případě se sám od sebe nerozběhne. V obou případech je nutno přístroj znova vypnout, okamžik počkat až se C8 vybit, a pak je již opět vše v pořádku.

Na obr. 1 je schéma diskrétní regulace a je zde také naznačeno to nejjednodušší řešení, kterým uvedený nedostatek odstraníme. Nemusíme ani nic odpojovat, ani nemusíme desku s plošnými spoji

Dům techniky ČSVTS Praha pořádá ve IV. čtvrtletí 1985

Korespondenční kurs

Monolitické mikropocitace rady 48.

V kursu se ve 14 lekcích probírají technické prostředky monolitických mikropocitací rady 48, jazyk symbolických adres ASM 48, přístup k knávrhu programu, příklady programu a aplikací. Závěrem jsou popsány prostředky pro vývoj a diagnostiku tohoto mikropocitace.

Kurs je určen pro pracovníky s vysokoškolským, popř. středoškolským vzděláním se základními znalostmi mikropocitacové techniky.

Informace a přihlášky přijímá:

Cena kurzu cca 400 Kčs

Dům techniky ČSVTS Praha

s. Holíková

Gorkého nám. 23 112 82 Praha 1

tel. 26 67 53

z přístroje vyjímat. Postačí, když vyšroubujeme čtyři šrouby zadní stěny, zadní stěnu odejmeme a podle obr. 2 připájíme příslušné součástky: rezistor 1,2 kΩ a tři křemíkové diody zapojené v sérii. Mohou to být libovolné miniaturní diody. Rezistor zapojime paralelně k C8, diody paralelně k R4.

Tři křemíkové diody zapojené v sérii představují v tomto případě napěťový stabilizátor. Je na nich napětí asi 2 V, které ihned po zapnutí zajistí spolehlivý rozbeh motorku. Na funkci regulace za provozu nemá vliv, neboť je menší než napětí báze T1 a je tudíž diodou D1 odděleno.

-Hs-

FM transceiver PS83

Petr Matuška, OK2PCH

VYBRALI JSME NA OBÁLKU

Transceiver PS83 vznikl z potřeby nahradit dosud hojně rozšířená zařízení s mf kmitočtem 600 kHz, která při stálém vzrůstajícím počtu naprostě nevyhovují selektivitou i citlivostí. Konstrukce je určena převážně pro provoz ve stálém QTH. Při pečlivém provedení (vykompenzování oscilátorů LC) není ani provoz „mobil“ vyloučen. Přijímač je odvozen od mých dřívějších konstrukcí s IO A244D. V nich byly použity poměrně finančně nákladné krytalové nebo bilítkové filtry v mezifrekvenci a jiné v ČSSR dosud nedostupné součástky.

Účelem konstrukce PS83 bylo dosáhnout velmi dobrých parametrů přijímače i vysílače s ohledem na maximální jednoduchost zapojení, dostupnost součástek a nízkou cenu (obr. 1 a 2). Přijímač je

srovnatelný se zařízeními značné ceny, profesionálně vyráběnými. Tím rozhodně nemám na mysli TRX Boubín. Dle OK2BUH: „Za málo peněz hodně muziky.“ Další podstatnou výhodou tohoto zařízení

je použití pouze jednoho X-talu a možnost pracovat na všech převáděčových i mobilních kanálech (145,450 až 145,800 MHz).

Upozorňuji, že jednoduchost zařízení je pouze zdánlivá. Vyžaduje jisté zkušenosti se stavbou zařízení pro VKV. Dobrou průpravou k zvládnutí PS83 je i neúspěšná stavba např. TRP2. K nastavení zařízení nestačí jen cejchovaný šroubovák, ale je třeba použít také některé měřicí přístroje, byť i amatérské. Vf voltmetr, GDO, vlnoměr, vf generátor, čítač, rozmitá a další, podle možnosti. V poměrně stěsnané konstrukci je důležitá velmi pečlivá práce, protože každá součástka má svou funkci, rozměry i místo.

Autorem transceiveru PS83 je Petr Matuška, OK2PCH (35 let), člen ZO Svazarmu při Zetoru Brno a radio klubu OK2KLI. Začínal v roce 1965 v radio klubu Městského domu pionýrů a mládeže v Brně OK2KUB. Vlastní volací značku má od roku 1968. Jeho radioamatérský zájem je soustředěn především na konstrukční činnost: je autorem několika transceiverů na KV i VKV i k jejich konstrukci potřebné měřicí techniky.

O svoje zkušenosti se dělí s ostatními radioamatéry jako svazarmovský lektor, zpravidla při přednáškách na téma radioamatérské transceivery pro VKV (např. při radioamatérském semináři tří okresů – Třebíč, Břeclav, Hodonín v roce 1983 nebo při semináři UHF ČUV Svazarmu v červnu 1984 v Novém Městě na Moravě). Kromě toho působí jako instruktor při školení spojovacích jednotek brněnské CO a ve výcvikovém středisku branců při mateřské ZO Svazarmu. Za svoji prospěšnou činnost získal několik vyznamenání a ocenění.

Pokud se týče radioamatérského provozu, v současné době se Petr Matuška věnuje hlavně práci na VKV, mimo jiné také proto, že v centru Brna má – stejně jako mnoho jiných – stálé problémy s BCI a TVL. Používá zařízení PS83, které popisujeme, a antény HB9CV a „slim Jim“ ve svém stálém QTH v Brně (270 m n. m.), přiležitostně se věnuje také provozu „mobile“. Transceiver PS83 je syntézou dobrých zkušeností z konstrukcí i z provozu s ostatními předcházejícími zařízeními Petra Matušky.

Původním povoláním je konstruktér transceiveru PS83 soustružníkem, nyní pracuje jako mechanik u zařízení ministerstva spojů. Na snímku vlevo je Petr, OK2PCH, ve svém ham-shacku; vpravo pohled na jeho výrobky: nahore čítač do 300 MHz, digitální multimeter, vf voltmetr a reflektometr; dole čítač do 30 MHz, vlnoměr, griddipmetr a transceiver SSB pro pásmo 3,5 MHz.

Technické údaje

Přijímač:

Citlivost: 0,1 až 0,15 μ V pro poměr signál–šum 10 dB.

Sumové číslo: 2 kT₀ a lepší (s AF 239S na vf).

Nf výkon: asi 50 mW.

Plynulé ladění: 145,450 až 145,800 MHz umožňuje pracovat na všech mobilních i převáděčových kanálech.

Vysílač:

Výkon: 0,15/1 W, přepínatelný.

Napájení: 12 V/8 ks baterií R14 nebo síťový zdroj.

Spotřeba: RX 35 až 40 mA, TX až 250 mA.

Rozměry: 53 x 120 x 142 mm.

Hmotnost: 1 kg s bateriemi.

Obr. 2a. Schéma přijímače PS83

Přijímač

Signál z antény je veden přes relé na výstup z antény (T1 AF239S) v mezikapojení. S použitým tranzistorem AF239S lze v daném zapojení dosáhnout šumového čísla 2 KTo a lepší. V kolektoru výstupního zesilovače (T1) je zapojena pásmová propust L₂ + L₃ laděná na 145 MHz. L₃ je vázána

přes C₆ do báze směšovače T₂, na nízké impedanci. Směšovač T₂ je v zapojení se společným emitorem, s injekcí oscilátorového napětí (VXO) do báze. V kolektoru T₂ směšovače je zapojena pásmová propust L₄ + L₅ laděná na 1. mf kmitočet. Ten se mění podle použitého X-talu ve VXO. Vazebním vinutím L₅' se signál přivádí na první mf zesilovač v IO1 (A244D). Funkce

IO A244D s vnitřním zapojením je velmi dobrě popsána v AR B6/84 str. 174 až 181. Doporučuj prostudovat.

Signál první mezifrekvence se v IO směšuje s místním oscilátorem LC na druhý mezifrekvenční kmitočet 455 kHz. Oscilátor je laděn výše nebo níže o 455 kHz než je první mf kmitočet. K výstupnímu obvodu směšovače L₇ + L₇' je

Obr. 2b. Schéma vysílače PS83

přizpůsoben filtr SPF455A6 (modrý). Přes filtr pokračuje signál na vstup druhého mf zesilovače (vývod 12). Poněvadž se jedná o signál FM, je zesílen nastaveno na maximum. Omezený signál FM na výstupu 7 zpracovává jednoduchý detektor FM se dvěma pároványmi diodami. Účinnost detektorů je vyhovující a oproti zapojení s IO neodebírá téměř žádný proud.

Umlíčovač šumu je opět velmi jednoduchý: tranzistor T₃ zapojen jako zesilovač a T₄ jako spínač nf signálu. Potenciometr P₁ nastavíme tak, aby bez signálu byl přechod kolektor - emitor tranzistoru vodivý. Nf signál je uzemněn. Naladěním převáděče se změní napětí na bázi T₄

k zápornějším hodnotám. T4 se skokově stává nevodivým. Na kolektoru T4 je napětí asi 8 V, nf signál prochází k nf zesilovači. Umlíčovač reaguje i na téměř nečitelné signály.

Nf zesilovač byl původně navržen s IO A211D (vyrábí se v NDR). Vzhledem k nedostupnosti tohoto IO v naší malopohodlné síti jsem použil nf zesilovač s OZ MAA741, který postačuje pro pokojový poslech s reproduktorem $75\ \Omega$ (ARZ084).

Vysílač

Jednou v noci se mi zdálo o využití A244D pro vysílač. Vzbuďil jsem se a udělal nákres. Asi po měsíci mi zvědavost nedala a zapojení jsem vyzkoušel na prkénku. K mému překvapení pracovalo velmi dobře. Abych si ověřil, jestli nejdé o náhodu, vyzkoušel jsem ještě několik A244D a dosáhl stejných výsledků, i když jejich použití v daném zapojení odporuje katalogovým údajům. Zmínil jsem se o tom některým amatérům na převáděči a ti díky situaci, při které nápad vznikl, dali zařízení název PS83 - Petrův sen 83 (méně úspěšní realizátoři ho upravili na Problém sám 83x). Protože se TRX osvědčil a začal být hojně realizován, dosatal v Čechách další název: DŠ 84 - Davové šílenství 84.

Kompletní signál FM se získává v IO A244D pouze příyedením výstupního napětí z VVO. V IO se směšuje VVO s oscilátorem LC, kmitočtově modulovaným, který je součástí A244D. Jako modulátor je použita

mezifrekvenční část IO, která je řízena AVC, obdoba jednoduchého nf kompresoru. Přeladění o 600 kHz níže (provoz přes převáděče) obstarává T1, který spíná k L2 paralelně kapacity C4 + C6. Výstup směšovače tvoří pásmová propust L3 + L4, laděná na 145 MHz. Tranzistor T3 je zesilovač ve třídě A. Vazebním vinutím L5' přivádíme signál do budiče T4 - (ve třídě C). Zesílený signál z T4 bude stupně PA opět ve třídě C. Výstupní obvod stupně PA tvoří dvojitý π -článek pro potlačení vyšších harmonických. S tranzistory uvedenými v rozpisce (T5), lze dosáhnout výkonu až 1 W při 12 V_U. Snížení výkonu na 0,15 W se ziskává zařazením odporu R14 do napájení budiče. Při výkonu 1 W je

R14 zkratován tlačítkem Isostat na předním panelu. Ke spouštění převáděče slouží oscilátor RC 1750 Hz, ovládaný opět tlačítkem Isostat z panelu. Součástí desky vysílání je relé 15N599-13, které přepíná napájení RX-TX a současně anténu.

Stabilizátor je součástí desky přijímače (obr. 3), je z něj napájeno VXO a další obvody vysílače. Stabilizované napětí se nesmí při přechodu na vysílání a při zapnutí tónu měnit. Změna napětí o 2 až 5 mV již vyvolá odladění vysílače z kanálu převáděče. Vlastní stabilizátor tvoří Zenerova dioda napájená zdrojem proudu T7 + T8. Proud Zenerovou diodou nastavíme změnou R28. Pozor: Některé Zenerovy diody produkují značný širokopásmový šum (zvláště diody sovětské výroby).

Základem celého zařízení je stabilní oscilátor. Je použit V XO ve velmi jednoduchém zapojení. Celá konstrukce transceiveru umožňuje použít krystaly v širokém rozsahu kmitočtů. Mám vyzkoušeny krystaly z radiostanice RO21 L2700 až 3300 (14,7 až 15,3 MHz). Kmitočet krystalu se násobí devětkrát. V kolektoru T5 tříkrát a na T6 opět tříkrát. Při použití jiného kmitočtu krystalu je možno použít násobení pětkrát a dvakrát. V PS83 jsem tuto variantu nezkoušel.

Stavba, použité součástky a nastavení

Začneme stavbou přijímače. Nejdříve osadíme stabilizátor napětí a všechny součástky VXO. Je vhodné všechny laděné obvody VXO předladit s použitím GDO. Použití GDO TESLA BM342 je téměř vyloučeno pro nevhodné rozmezí. Použití vazební linky značně zkreslí naměřené hodnoty. Vyvarujeme se použití blokových kondenzátorů ze supermitu. Při kmitočtech větších než 3 MHz ztrácejí kapacitu a chovají se jako parazitní indukčnosti.

Rozladění nastavíme cívkou L9 přibližně na 300 kHz na výstupu VXO. Při větším rozladění dochází ke zhoršení stability. V transceiveru je použit ladící kondenzátor z tranzistorových přijímačů Zuzana (nebo podobných) C_L 15 až 75 pF - oscilátorová sekce duálu. Pokud nám nezáleží na rozměrech, použijeme C_L vzduchový. U polystyrenových a polyetylénových kondenzátorů se mění kapacita v malých mezích nejen s teplotou, ale také se změnou vlhkosti ovzduší. Teplotní změny lze kompenzovat zařazením sériového kondenzátoru s ladicím. Vyzkoušel jsem kondenzátor 470 pF/N1500 (není zakreslen na schématu). Podle informací OK2BMF je možné k ladění VXO použít varikapu s dodatečnou teplotní kompenzací C45 + C46. Ladící napětí je 5 až 8 V, D = KB105G, změna kmitočtu 300 kHz, tranzistory T5 + T6 SF245 (BF173) s odstraněným stínicím vývodem). Jiné nedoporučuj, mají velké kapacity a VXO se nastavuje velmi obtížně. Pokud VXO ne-

Obr. 3a. Deska plošných spojů T68 přijímače a rozložení součástek

bude kmitat rovnoměrně v celém rozsahu přeladění, upravíme pracovní bod T5 odporem R30, popřípadě změnou kapacit C45 a C46. Kryt krystalu musí být uzemněn. Při výrobě cívky VXO (obr. 4), použijeme doladovací jádro červené, ferokartové (má vliv na teplotní stabilitu). Pásmovou propust kolektoru T5 a bázi T6 ladíme na třetí harmonickou krystalu (obr. 5). Vybuzení T6 nastavíme rezistorem R32 a 560 Ω až 1,8 k Ω . Kolektorový obvod s vazebními vinutími znázorňuje obr. 6. Obvod L12 + C48 je naříděn na devátou harmonickou krystalu. Pokud se parazitně rozkmitá násobič T6, posunejme odbočku cívky L11 o jeden závit ke „studenému“

Obr. 3b. Deska plošných spojů T69 vysílače PS83 a rozložení součástek

Cívky přijímače PS83

Obr. 4. Cívka VXO
L9, 40 závitů

Obr. 5. Pásmová propust VXO (45 MHz)

Obr. 6. Cívka
L12 + L12' + L12''
L12 = 5 z \varnothing 0,4

Obr. 7. Cívky oscilátoru (v přijímači
a vysílači stejné)

Tab. 1. Cívky přijímače

LX	Počet závitů	\varnothing drátu	\varnothing kostry, poznámka	Obr.
L1	7	0,4 Cu1	4,3 HOPT, jádro na L1	10
L1'	2	0,3 PVC		10
L2	5	0,4 Cu1	4,3 HOPT, jádro	11
L3	5,5	0,4 CuL	4,3 HOPT, jádro	11
L4	11	0,2 CuLH	mf hrnček 10,7, odb. 5,5. záv.	8
L5	11	0,2 CuLH	mf hrnček 10,7	8
L5'	3,5	0,15 CuLH	na L5	8
L6	30	0,15 CuL	5,5. odb. na 10. závitu	7
L6'	5	0,15 CuLH	na L6 ve středu cívky	7
L7	80	0,08 CuL	mf hrnček 455 kHz	8
L7'	15	0,1 CuLH	na L7	8
L8	105	0,08 CuL	mf hrnček 455 kHz	8
L9	35 až 45	0,1 CuL	5,5. válcově - lepeno epoxy	4
L10	12	0,3 CuL	4,3 HOPT, válcově	5
L11	12	0,3 CuL	4,3 HOPT, odbočka na 6 záv.	5
L12	5	0,4 CuL	4,3 HOPT, válcové	6
L12'	1	0,3 CuL	na L12	6
T11	8	0,2 CuLH	toroid H20, \varnothing 4	-
T12	30	0,1 CuLH	feritová tyčka Ø 2 - H22	-
T13	30	0,1 CuLH	feritová tyčka Ø 2 - H22	-

Obr. 8. Zapojení vývodu mf transformátoru

Obr. 9. Vinutí mf
transformátoru

Obr. 10. Cívka
L1 + L1' přijímače

Obr. 11. Pásmová propust přijímače 145 MHz

Obr. 12. Rozložení vývodů filtru

konci. Vf napětí pro RX i TX lze v malých mezech měnit polohou vazebních vinutí na L12. Naladění všech obvodů LC kontrolujeme vlnoměrem. Je-li VXO v provozu, osadíme ostatní obvody přijímače. Nejlépe je začít cívkami (k tému se ještě během popisu vrátíme). Tranzistor T1 AF239S je použit z kanálových voličů televizorů VIDEOTON (k dostání v bazarech za 55 Kčs za kus). Připojen je do desky s plošnými spoji způsobem známým z TV techniky. Vývody se prostrčí otvorem, zahnou a připájejí k desce plošných spojů. Klobouček T1 leží až na desce plošných spojů. T2 AF139 je rovněž z uvedeného voliče. IO pájíme přímo do desky s plošnými spoji bez použití objímky. Na vývody filtru nasuneme bužírky 3 až 5 mm dlouhé. Pájíme velmi rychle! Delší pájením se může filtr lehce zničit, nesnáší teploty nad 50 °C. Tranzistory T3 a T4 použijeme s h_{21E} alespoň 500.

IO2 MAA741 je nutno použít čs. výroby. Obdobné zahraniční typy mají vestavěnou pojistku a nedávají dostatečný nf výkon.

Připojíme reproduktor, potenciometr P1, P2 a napájecí napětí přes ampérmetr. Pokud jsme při osazování neudělali chybou, bude odběr proudu kolem 35 mA. V případě, že nemáme potřebné měřicí přístroje, bude lepší přijímač nastavovat v radio klubu. S nastaveným VXO se lze do oživení přijímače pustit, pokud máme silný signál převaděče, i bez měřicích přístrojů.

Nastavíme všechny obvody na maximální signál. S použitím i amatérsky zhotovených měřicích přístrojů dosáhneme určité lepších výsledků, než laděním na maximální signál převaděče.

Nízkofrekvenční zesilovač bude jistě pracovat bez problémů. Vyzkoušime jej nf generátorem nebo dotykem prstu na vývod 3 OZ (ozve se brum). Vyřadíme z činnosti SQ (umíchovací šumu) odpojením báze T4. Naladění detektoru generátorem je jednoduché. Signál z generátoru naladěného na 455 kHz přivedeme na vývod 12 IO1. K rezistoru R13 (a k zemi) připojíme voltmetr se vstupním odporem alespoň 1 MΩ/1 V. Voltmetrem indikujeme stejnosměrné napětí na výstupu detektoru (křivka S). Při kmitočtu 455 kHz nastavíme cívku L8 nulové napětí. Přeladěním generátoru od středního kmitočtu ± 10 kHz se musí stejnosměrné napětí měnit ke kladným i záporným hodnotám stejně, viz obr. 21. Toho dosáhneme nastavením rezistoru R12. Pro nastavení je nejlépe místo R12 použít trimr 0,15 MΩ. Kapacitou kondenzátoru C29 se nastavuje vzdálenost vrcholu detektoru křivky S.

Po nastavení detektoru naladíme obvod filtru 455 kHz nejlépe rozmitačem.

Cívky vysílače PS83

Obr. 13. Cívka L1 + L1'

Obr. 14. Cívka L5 + L5'

Obr. 16. Cívka L6, 8 z, Ø 0,5

Obr. 17. Cívka L7, 4 z, Ø 0,8

Tab. 2. Cívky vysílače

LX	Počet závitů	Ø drátu	Ø kostry, poznámka	Obr.
L1	6,5	0,4 CuL	4,3 HOPT, odb. na 1. záv.	13
L1'	2	0,2 CuLH	na L1 ve středu cívky	13
L2	30	0,15 CuL	5,5, odb. na 10 záv.	7
L2'	5	0,15 CuL	na L2 ve středu L2	7
L3	7	0,6 CuL	5, samonosně, odb. v polovině	15
L4	7	0,6 CuL	5, samonosně	15
L4'	1	0,3 PVC	6 (na „studenném“ konci L4)	15
L5	5	0,4 CuL	4,3 HOPT, válcově	14
L5'	1,5	0,3 PVC	na L5	14
L6	8	0,5 CuL	3,2 samonosně	16
L7	4	0,8 CuAg	5,5 samonosně	17
L8	5	0,8 CuAg	4,2 samonosně	18
L9	4	0,8 CuAg	6,2 samonosně	19
L10 až 11	5	0,6 CuL	4,5 samonosně	20
T11	8	0,2 CuLH	toroid H20 Ø 4	
T12	6	0,2 CuLH	toroid H22 Ø 4	
T13	8	0,2 CuLH	toroid H20 Ø 4	
T14	8	0,2 CuLH	toroid H20 Ø 4	
T15	30	0,1 CuL	na R16	
T16	8	0,2 CuL	toroid H20 Ø 4	
T17	10	0,15 CuLH	toroid H22 Ø 4	

Obr. 20. Cívky L10 + L11, 5 z Ø 0,5

Obr. 15. Pásmová propust 145 MHz L3 + L4

Obr. 16. Cívka L6, 6 z, Ø 0,5

Obr. 17. Cívka L7, 7 z, Ø 0,8

Obr. 18. Cívka L8, 5 z, Ø 0,8

Obr. 21. Nastavení FM detektoru

Lze použít i generátor a milivoltmetr, který je schopen pracovat do 500 kHz. Generátor připojíme na vývod 15 IO přes kapacitu 3,3 pF, na vývodu 12 sledujeme křivku filtru. Doladíme L7. Oscilátor nastavíme na žádaný kmitočet čítačem, případně komunikačním KV přijímačem. Nedoporučuji měřit v obvodu oscilátoru s A244D stejnosměrnými přístroji s malým vstup-

ním odporem (PU120 a podobnými), IO tim stoprocentně zničíme. Odpojíme napětí z VXO, na bázi T2 připojíme přes C10 generátor přeladitelný kolem kmitočtu první mezifrekvence. Na vazební vinuti L5 připojíme vf voltmetr. Nastavíme pásmovou propust L4 + L5, tvar případně upravíme kondenzátorem C13.

(Příště dokončení)

mikroelektronika

Strana součástek				Strana spojů			
Číslo	Provedení	Název	Funkce	Číslo	Provedení	Název	Funkce
1	-	+5 V		2	-	+5 V	
3	-	GND	Napájení pomocné napájení	4	-	GND	Napájení
5	-			6	-	-5 V	
7	TS	D3		8	TS	D7	
9	TS	D2		10	TS	D6	
11	TS	D1	Data	12	TS	D5	
13	TS	D0		14	TS	D4	
15	TS	A7		16	TS	A15	
17	TS	A6		18	TS	A14	
19	TS	A5		20	TS	A13	
21	TS	A4		22	TS	A12	
23	TS	A3	Adresy	24	TS	A11	
25	TS	A2		26	TS	A10	
27	TS	A1		28	TS	A9	
29	TS	A0		30	TS	A8	
31	TS	WR	Zápis	32	TS	RD	Čtení
33	TS	IORQ	Adresa periferie platná	34	TS	MEMRQ	Adresy paměti platná
35	TS	IOEXP	Rozšířená adresa	36	MEMEX	Rozšířená adresa	
37	TS	REFRESH	Refresher	38	TS	MCSYNC	Synchronizace
39	TS	STATUS1	Stav procesoru	40	TS	STATUS0	Stav procesoru
41	TP	BUSAK	Potvrzení předání sběrnice	42	OC	BUSRQ	Žádost o sběrnici
43	TS	INTAK	Potvrzení přerušení	44		INTRQ	Žádost o přerušení
45	OC	WAITRQ	Žádost o čekání	46	OC	NMIRQ	Žádost o nemaskované přerušení
47	OC	SYSRES	Nulování systému	48		PBRESET	Tlačítko nulování
49	TP	CLOCK	Systémové hodiny	50		CNTRL	Pomocné hodiny
51	OT	PCO	Výstup priorit.	52		PCI	Vstup priorit.
53		AUXGND	řetězce	54		AUXGND	řetězce
55	-	+12 V	Analogová zem	56	-	-12 V	Analogová zem
57	OT	BAO	Napájení	58	IN	BAI	Napájení
59	TS	A17	Výstup řetězce	60	TS	A19	Vstup řetězce
61	TS	A16	zapužení sběrnice	62	TS	A18	zapužení sběrnice
			Rozšíření adresy				Rozšíření adresy

Provedení: TS – třístavové budiče, OC – budiče s otevřeným kolektorem, TP – standardní TTL, IN – standardní, pouze vstup, OT – standardní, pouze výstup.

select, či zpřeházeli signály dle vlastní potřeby. Popisovaná sběrnice @STD zahrnuje větší část této modifikaci. Prvních 56 vývodů je zcela kompatibilní se sběrnici STD fy Prolog, další dva ovládají řízení priority DMA a zbyvající 4 rozšiřují adresní pole o adresy A16 až A19.

Sběrnice @STD používá konektor FRB s 62 vývody, nebo přímý konektor s roztečí 2,5 mm, upravený na 62 vývodů. Těchto 62 vývodů je rozděleno na 4 části: napájecí, datovou, adresovou a řidicí.

Napájecí část sběrnice

Zajišťuje napájení jednotlivých desek μP. Sběrnice používá stabilizované napájení o těchto parametrech:

Napětí	Tolerance	Průměrný proud (odběr) na 1 desce
+5 V	±0,1 V	1 A
-5 V	±0,1 V	0,05 A
+12 V	±1 V	0,3 A
-12 V	±1 V	0,05 A

Celkový proud, který musí dodat zdroje na sběrnici, získáme vynásobením proudu jedné desky počtem konektorů, určených pro zásuvné desky. Tento proud není samozřejmě nutno dodržet, je-li znám dopředu přesný odběr všech desek použitých v μP, ale i v tomto případě doporučujeme počítat s rezervou k možnému dalšímu rozšíření.

Datová část sběrnice

Zajišťuje přenos dat mezi jednotlivými deskami systému. Sběrnice @STD používá osmibitovou datovou sběrnici. Je vhodné ji dimenzovat na proud minimálně 10 mA, ale i v případě, že je tato zatížitelnost splněna, není vhodné datovou sběrnici zatěžovat běžnými hradly TTL. Doporučujeme jako vstupní hradla používat obvody LS TTL (3216, 8286, 74LS...) nebo MOS pro zajištění kompatibility se systémy se sběrnicí buzenou přímo procesorem. Je vhodné v zatížitelnosti sběrnice ponechat rezervu, částečně kompenzující kapacitu spojů. (Výkonější budiče mají menší vstupní odpor a tím i strmější přechod mezi log. úrovněmi při kapacitní zátěži).

Adresová část sběrnice

Slouží pro přenos adres mezi jednotlivými deskami systému ... Pro její provedení a zatížitelnost platí stejná pravidla jako u datové sběrnice. Sběrnice @STD používá 16 až 20-tibitovou adresovou sběrnici.

Síťka adresové sběrnice při spolupráci s pamětí je určována signálem MEMEX. Je-li signál MEMEX v úrovni log. 0 je používána (a dekódována) adresa A0 až A15. Adresy A16 až A19 nejsou v tomto módru použity (tj. nejsou ani dekódovány). ➤

MIKRO - AR

SBĚRNICE @ STD * KONSTRUKČNÍ NORMA

Popis slíbeného mikropočítačového systému MIKRO-AR začínáme záležitostí velmi obecnou, ale klíčově důležitou. Je to popis sběrnice – umístění a funkce jednotlivých vývodů každé desky se součástkami, která bude v tomto systému použita. Jenom důsledně dodržování takovéto normy umožní, aby všechny funkční celky a doplňky našeho společného počítače byly použitelné pro nás všechny, ať je vyvine a zkonztruje kdokoli z nás. Věříme, že se ji přizpůsobí co nejvíce mikropočítačových amatérských a možná i poloprofesionálních konstruktérů, aby i výsledky jejich práce byly použitelné pro všechny ostatní. Popis sběrnice a konstrukční normy zpracovali R. Starosta a R. Benedikt.

Proč právě sběrnici STD? Je pro to více důvodů: je to sběrnice s šírkou dat 8 bitů, je navržena pro více druhů procesorů (u nás případají v úvahu 8080, Z80, 8085 a snad i 8088), je vhodná pro menší systémy. Desky mají standardní rozměr, běžně používaný v ČSSR, pro který je možno použít díly konstrukčních stavebnic TESLA. Navíc je STD BUS v různých modifikacích u nás nejvíce poloprofesionálně rozšířená systémová sběrnice. Různé modifikace jsou však jejím největším nedostatkem, protože desky různých modifikací jsou spolu většinou neslučitelné.

Původní norma fy PROLOG STD BUS je navržena na přímý konektor s 56 vývody. Většina uživatelů ji aplikovala na konektory FRB, které jsou dostatečně spolehlivé. Protože rozměrově nejbližší konektor FRB má 62 vývodů, bylo by škoda přebývajících 6 vývodů nevyužít. Ke škodě unifikace však téměř každý uživatel využívá těchto vývodů jinak – k posílení napájení, k připojení a odpojení ROM, zákazu zápisu, řízení priority řadičů kanálů DMA apod. Našli se i takoví, kteří přidávali „nesběrnicové“ signály (vedou pouze z jedné desky na druhou) např. videoram-

► V případě, že je signál MEMEX v log. 1 je používán rozšířený adresní mód a dekóduje se celá adresa A0 až A19. Adresy A16 až A19 jsou pro většinu procesorů generovány obvody mimo procesor.

Šířka adresové sběrnice při práci s obvody vstupu/výstupu je určována signálem **IOEXP**. Má obdobnou funkci jako signál MEMEX. Je-li v log. 0 soužoužný pouze adresy A0 až A7. V případě, že je log. 1, jsou k tému základním adresám přidány adresy A16 až A19 a adresa periferie je tím rozšířena na 12 bitů.

Využití signálů MEMEX a IOEXP je velmi rozmanité. Nejčastěji je signálem MEMEX blokována pevná paměť, sloužící k zavedení operačního systému (monitory...) do paměti RWM po zapnutí napájení, nebo přepínání operační paměti/paměti displeje, nejsou-li tyto adresní prostory různé. Není-li MEMEX generován, lze pracovat jen s pamětí 64 kB. IOEXP lze využít k odpojení periferních desek nutnému při spolupráci s emulátorem.

Rídící část sběrnice

Rídí veškerou komunikaci po sběrnici. Časování je plně určeno použitým procesorem. Vzhledem k použitým signálům doporučujeme používat obvody typu Z80 (U880D), není však vyloučeno použití jiných obvodů (8080, 8085, 8088).

Spolupráci procesoru s pamětí a obvody vstupu/výstupu řídí na sběrnici STD základní čtveřice signálů:

RD – Signál **RD** (Read – čtení). Jeho aktivní úroveň log. 0 určuje, že procesor hodlá číst data z periferie nebo z paměti. Uvolňuje přenos dat z adresovaného zařízení na sběrnici.

WR – Signál **WR** (Write – zápis). Jeho aktivní úroveň log. 0 indikuje, že na datové sběrnici jsou data určená pro zápis do paměti či obvodu I/O. Slouží jako zápisový puls do adresovaného zařízení.

MEMRQ – (Memory Request – požadavek na práci s pamětí). Aktivní úroveň log. 0 indikuje, že na adresové sběrnici je platná adresa pro práci s pamětí.

IORQ – (Input/Output Request – požadavek na práci s obvody vstupu/výstupu). Aktivní úroveň log. 0 indikuje, že na adresové sběrnici je platná adresa pro práci s periferiemi.

Další dva vývody **IOEXP** a **MEMEX** (Input/Output Expansion – rozšíření vstupu/výstupu a Memory Expansion – rozšíření paměti) určuje rozsah adresy, která musí být dekódována periferiemi a pamětími. Jejich použití a význam byl uveden v části o adresové sběrnici. Dekódování MEMEX je povinné, jeho generování je doporučené. Není-li generován, je na desce procesoru vývod uzemněn. Dekódování a generování IOEXP je doporučené. Není-li generován, je na desce procesoru vývod uzemněn.

Následující 4 signály určují stav, ve kterém se nachází procesor:

REFRESH – Aktivní úroveň log. 0 znamená, že na nejnižších sedmi bitech adresové sběrnice je adresa řádku dynamické paměti, který se má obnovit. Spolu se signálem **MEMRQ** může být **REFRESH** použit pro ovládání všech nejběžnějších dynamických pamětí.

STATUS0, STATUS1 – Jsou to stavové

signály procesoru a jejich význam je dán použitým procesorem.

MCSYNC – Slouží k synchronizaci podpůrných obvodů s procesorem.

Procesor	MCSYNC	STATUS0	STATUS1
Z80	(RD + WR + INTAK)	HALT	M1
8080	SYNC	HALT	M1
8085	ALE (Adres Latch Enable)	S0	S1

Poznámka: Generování signálu v závorce je pouze doporučené. Signál **HALT** svoji aktivní úrovni log. 0 udává, že procesor právě zpracoval instrukci HALT a očekává buď přerušení nebo RESET.

Signál **M1** (Machine Cycle One – první strojový cyklus) indikuje aktivní úrovni log. 0, že probíhající strojový cyklus zavádí operační kód instrukce.

Další 4 signály řídí spolupráci procesoru s dalšími procesory nebo obvody DMA.

BUSRQ – (Bus Request – požadavek na práci se sběrnici) Aktivní úroveň se sběrnici znamená pro procesor požadavek na uvolnění adresové, datové a řídící sběrnice, tj. jejich převedení do třetího stavu.

BUSACK – (Bus Acknowledge). Aktivní úroveň log. 0 potvrzuje, že adresová, datová a řídící sběrnice přešly do třetího stavu.

BAI – (Bus Acknowledge Input). Aktivní úroveň log. 0 udává, že deska může převzít řízení sběrnice.

BAO – (Bus Acknowledge Output). Aktivní úroveň log. 0 udává, že je povoleno převzetí sběrnice následující deskou.

Vývody **BAI**, **BAO** odpovídají signálu obvodu Z80DMA a slouží k určení priority převzetí sběrnice. Vývod **BAI** je nejlevějším na konektoru sběrnice (při pohledu od zadních panelů desek) a je spojen se signálem **BUSACK**. Vývody **BAI** ostatních konektorů sběrnice jsou spojeny s vývodem **BAO** předchozího konektoru (levnějšího). Priorita převzetí sběrnice tedy ubývá ve směru zleva do prava, protože vždy může levnější deska zakázat uvedením vývodu **BAO** do log. 1 činnost všech desek následujících. V případě, že daná deska signály **BAI**, **BAO** nevyužívá, jsou na ní tyto vývody propojeny. Následující pětice signálů slouží k řízení přerušení:

INTRQ – (Interrupt Request – požadavek na přerušení). Aktivní úroveň log. 0 indikuje požadavek přerušení.

INTAK – (Interrupt Acknowledge – potvrzení přerušení). Aktivní úroveň log. 0 slouží pro potvrzení přerušení; udává, že procesor vykonává strojní cyklus obsluhy přerušení, ve kterém očekává od periferie např. vektor přerušení, nebo instrukci pro identifikaci zdroje přerušení (podle použitého procesoru).

PCI – (Priority Chain Input – vstup prioritního řetězce). Aktivní úroveň log. 1 udává, že je povolené přerušení danou deskou.

PCO – (Priority Chain Output – výstup prioritního řetězce). Udává, že je povoleno přerušení následující desku.

Vývody PCI, PCO odpovídají signálu IEI, IEO obvodů Z80. Vývod PCI je na nejlevějším konektoru sběrnice (opět při pohledu od zadního panelu desky) spojen přes odpor 10 kΩ na +5 V. Vývody PCI ostatních desek jsou připojeny vždy na vývody PCO předchozích desek. Priorita povolení přerušení tedy ubývá zleva do prava. Nejsou-li PCI a PCO na desce použity, jsou vývody propojeny.

NMTRQ – (Non Maskable Interrupt Request – nemaskovatelné přerušení). Aktivní úroveň log. 0 udává procesoru, že je po něm zádáno nemaskovatelné přerušení.

Zbývající pětice signálů slouží k řízení časování a počátečnímu nastavení celého mikropočítače:

WAITRQ – (Wait Request – žádost o čekání). Aktivní úroveň log. 0 udává procesoru, že je požadováno čekání, tj. prodloužení řídících signálů pro práci s pamětí nebo periferiemi o jeden nebo více hodinových taktů.

SYSRES – (System Reset – vynulování systému). Aktivní úroveň log. 0 způsobí inicializaci procesoru a celého μP do stavu po zapnutí napájení. Doporučujeme tento signál generovat hradlem s otevřeným kolektorem a dostatečnou výkonovou zážitelností.

PBRESET – (Push Bottom Reset – nulovací tlačítko). Aktivní úroveň log. 0 slouží k připojení tlačítka pro vygenerování signálu **SYSRES** procesorovou deskou.

CLOCK – Vývod **CLOCK** (hodiny) odpovídá signálu φ procesoru. Je nutné jej generovat hradlem TTL s dostatečným výkonovým zatížením, vzhledem k tomu, že jsou požadovány velmi strmé hrany (zkreslení hrany může způsobit nespolehlivou čin-

Výkonová zatížitelnost sběrnice

Typ budiče	Signál	Výkon vysílače (mA)	Max. proud přijímače (mA)
Třistavový IS	Adresy Data RD, WR, MEMRQ, IORQ MEMEX, IOEXP REFRESH MCSYNC, STATUS0, STATUS1, INTAK	10	0,36
Otevřený kolektor OC	BUSRQ, INTRQ, WAITRQ, NMTRQ SYSRES PBRESET BUSAK	1,8 8	1,6 1,6 (doporučujeme 0,72) 16 (článek RC)
Standardní TTL TP, OT, ITT	CLOCK, CNTRC PCO, BAO PCI, BAI	8 1,8 –	1,6 (doporučujeme 0,72) – 1,6

NEPŘÍMÝ KONEKTOR (FRB)

Obr. 2. Příklady umístění a upevnění desky sběrnice s konektory k vodicím lištám ve skřínce.

Obr. 3. Umístění vývodů na zadní straně desky

nost celého μ P). Doporučujeme používat kmitočet 2,5 MHz a 4 MHz. **CNTRL** – (Control – řízení) slouží k rozvozu pomocných hodin. Doporučujeme na něj připojit nejvyšší používáný kmitočet v systému, tj. obvykle 4 Φ (tj. 10 MHz, nebo 16 MHz). Pro budiče platí stejně podmínky jako u signálu CLOCK.

Výkonová zatížitelnost sběrnice

Doporučujeme, vzhledem k dynamickým požadavkům, používat sběrnice do délky 8 pozic (počtu zasunutých desek). Při návrhu výkonu budičů je vhodné stoupat dležkou počítat a je pro ni vypočtena i doporučovaná proudová zatížitelnost.

Uvedené hodnoty doporučujeme dodržet, zejména však spotřebu přijimačů. (Tj. pro přijímače používat pouze obvody MOS, 74LS . . . 32 . . . 82 . . .). Nedodržení spotřeby můžezpůsobit destrukci zařízení s neposílenou sběrnici, tj. se zatížitelností pouze 1,8 mA. Nedoporučujeme sběrnici přetěžovat připojením více než jednoho vstupu na desku, doporučujeme proto používat na deskách oddělovačů sběrnice.

Je-li zaručeno, že v celém systému je sběrnice buzena budiči s dostatečným výkonem, je vhodné ji pro zvýšení spolehlivosti na druhém konci než je umístěn procesor impedančně přizpůsobit (popř. na obou koncích) odporovým děličem 1,8 k Ω proti +5 V a 1,8 k Ω proti zemi.

Mechanické rozměry desky plošného spoje

Mechanické rozměry vycházejí z mezinárodního standardu tzv. matě eurokarty o rozmeru 100 × 160 mm a jsou ovlivněny běžně používanými skřínkami ALMES. I když popis rozměrů vypadá složitě, odpovídá mu většina vyráběných desek tohoto formátu (mimo doporučení pro přímý konektor).

Deska je navržena pro použití nepřímého 62 polového konektoru např. FRB (typ TY 517 62 11) nebo přímého konektoru s roztečí 2,5 mm s 62 kontakty a výrezem pro klíč (pro použití TX 715 32 13 nebo TX 715 32 15). Doporučený rozměr desky je 165 × 100 mm (eurokarta s přesahem 5 mm pro ochranu kontaktů konektoru FRB), který lze prodloužit až na 183 × 100 mm, především při použití skřínek ALMES.

Výkres mechanických rozměrů desky je na obr. 1, celá deska je až na zárez (G) osově symetrická. Plocha desky je rozdělena na několik částí. V přední části je sběrnicový konektor. V případě použití konektoru FRB se vrtají díry (1), které slouží k jeho upevnění a nedělá se zárez

(G). Použije-li se přímý konektor, odpadají díry (1) a je nutno dodělat zárez (G) pro klíč (M) (obr. 3). Tento klíč slouží především k vystředění desky do přímého konektoru, a proto i klíč (M) a zárez (G) musí být vyrobeny co nejpřesněji. Navíc je vhodné v případě častější manipulace s deskami, nebo v agresivnějším prostředí, pokovit kontakty pro přímý konektor (nejlépe pozlatit), využovuje i niklování např. Niklikem. Všechna mechanická připojovací místa musí být od ostatních částí desky izolována, nejlépe izolovanými měděnými ploškami o rozměrech větších než jsou spojovací prvky (šrouby, matičky . . .), ve výjimečných případech lze i tuto plochu využít, ale pak je třeba použít izolační podložky. Propojení ploch (F) a pájecích plošek pro konektor FRB zůstává na návrháři, protože ne vždy se využívají všechny signály a vzniklá volná místa umožňují optimalizovat rozložení spojů. Samozřejmě se propojují odpovídající si plochy (F) a pájecí plošky pro FRB (jsou na obr. 1 očíslovány). Liché plochy (F) jsou ze strany součástek, sudé ze strany spojů, zárez (G) je u kontaktu 61 a 62.

Hlavní část desky zabírá prostor pro součástky (A), který je výškově omezen na 15 mm (J). Výšku lze však zvětšit použitím dvojnásobného či vícenásobného modulu, na 35 mm, 55 mm atd. Tento prostor je vpředu omezen těleskem a pájecími ploškami FRB, vzadu koncem desky na okrajích prostorem pro vodicí lištu (E) a pro uchycení zadního panelu (D). Navíc lze desku prodloužit o plochu (B) pro součástky a zároveň plochu (C) pro uchycení zadního panelu. Pro plochy (E), (D), (C) platí tyto zásady:

- na ploše (E) nesmí být žádné součástky a nedoporučujeme ani úzké vodiče, protože by mohly být strhnuty vodicí lištu (která samozřejmě musí být nevodivá). Plochy (E) doporučujeme proto využívat pro rozvod napájení;
- na ploše (D) ze strany součástek doporučujeme nevést žádné spoje, jinak

se musí izolovat od zadního panelu podložkou o velikosti a tvaru plochy **D**. Na ploše **D** je díra **H** pro šroub, v případě použití další desky platí pro plochu **C** totéž co pro plochu **D**, navíc v krajním případě připojujeme tuto plochu využít pro zadní konektor, avšak jen do 1/2 výšky prostoru pro součástky. S tímto ústupkem se ale pojí pracné vybroušení zabraného prostoru do zadního panelu (viz obr. 4). Plocha **B** může být použita pro součástky. Ze strany spojů je výška omezena na 3 mm **K**. Rozmístění vývodů pro zadní konektor předpokládá typ FRB, jehož velikost a umístění není standardizováno. V případě použití jiných konektorů by mělo rozmístění a počet pájecích plošek odpovídat u nás vyráběným konektorem FRB. Doporučované kontaktní pole je na obr. 3 a umožňuje přímo osadit konektory FRB, AMP, ... Lze použít i přímý konektor s roztečí 2,5 mm s klíčovým zárezem, který by měl umožňovat rozlišení a orientaci konektoru. Jinou možností je použít konektor objímkou pro integrované obvody, upevnit je na zadní panel.

Je-li nutné umístit do jednoho konstrukčního celku více součástek, než umožňuje plocha desky, je možné použít konstrukce se dvěma deskami spojenými společným panelem, tzv. sendvič (viz obr. 5). Pro sendvič je použita standardní deska se sběrnicovým konektorem. Nad ní se mechanicky připevní pomocí zadního panelu a rozpěrných sloupků druhá, horní deska. Na horní desce není sběrnicový konektor. Tato deska se nezasouvá

Obr. 4.

Obr. 5.

do vodicích lišť a proto jsou její rozměry omezeny na 90 × 173 mm. Pouze na konci desky zůstává plocha pro uchycení na zadní panel (obdobná plochám **D** a **C**, široká 100 mm). Elektricky jsou desky propojeny buď řádovými nepřímými konektory kdekoliv na desce, nebo řadou krátkých vodičů na jednom horním okraji desky.

Doporučujeme vzhledem k chlazení používat svislou polohu desek. Při tomto umístění musí být strana součástek při pohledu od zadního panelu vpravo (vývod č. 1 sběrnice je dole).

Přímé konektory jsou upevněny pouze připájením do desky sběrnice (bez mezery mezi deskou a sběrnicí). Jednotlivé vodicí lišty musí být upevněny tak, aby se nemohly vůči konektorem pohybovat, nejlépe přišroubováním přímo ke sběrnici.

Při použití konektorů FRB doporučujeme používat vodicí lišty z umělé hmoty ze skříně ALMES, které umožňují mechanické připevnění konektorů. V případě použití jiných lišť je nutno mechanicky spojit příslušnou vodicí lištu s daným konektorem pro zajistění přesného navenutí desky do konektoru.

Literatura:

- [1] Firemní literatura Prolog – STD BUS, Serie 7000.
- [2] S100 and the other microbuses, E. C. Poe and J. C. Goodwin II.
- [3] Firemní literatura TESLA – Konstrukční součástky, Katalog elektronických součástek, konstrukčních dílů, bloků a přístrojů díl I, II (1983–84).
- [4] Konstrukční dokumentace systémů SCS80, VD ČSAV, RCG.
- [5] Interní materiály Studentského poradenského a konzultačního střediska.
- [6] Centrální jednotka mikropočítače s rozšířenou možností práce s pamětí, R. Benedikt, práce SVOČ 1984.
- [7] Mikro EVM SM-1800, Moskva 1984.

PORTY K MIKROPOČÍTAČI

Martin Šály

(Dokončení)

Styková deska ZXSD

Jeden vstupní a jeden výstupní port nestačí. Pokud nesezeneme obvody 8255 nebo Z80-PIO, musíme použít obvod s klasickými prvky. Zapojení na obr. 15 umožňuje až 4 vstupní a 4 výstupní osmibitové porty podle obr. 1 a 2. Úsporně provedená dekódovací logika umožňuje zbylá čtyři hradla jako invertory pro vytvoření signálů VÝSTUPX aktivního v log. 1. Pro registry, obvody latch a další výstupní obvody se nám totiž hodí vzestupná hraná, popř. log 1 pro zápis informace. Dekódovací logika umožňuje pomocí přepínače Př 1 naadresovat oblast B s kopii v F nebo samostatně podle našich požadavků. Adresování pak provádíme podle obr. 16. Vidíme, že například porty, ovládané signály VSTUP1 a VÝSTUP1 mají stejnou adresu. To je způsobeno připojením RD na vstup C obvodu 3205. Hloubavější čtenáře možná napadlo, že v poloze „F“ přepínače Př 1 je naadresována i oblast E, ale pozor na to, že v tomto případě by tranzistor T1 nevyplnil ROM.

Kondenzátor C* (do 1 nF) zapojíme tehdy, pokud by docházelo při generování signálů VSTUPX k zakmitnutí VÝSTUPX. U postaveného vzorku nebylo třeba C* použít a není pro něj ani místo na desce s plošnými spoji. Zapojení zajišťuje dostatečný předstih i přesah dat, oproti hradlovacímu signálu, pozor však na to, že signálům o délce několik stovek ns nesvědčí větší kapacity, delší vodiče apod.

⇒ uvádíme na obr. 17 výkres s plošnými spoji a na obr. 18 rozmístění součástek. Rozměry chladiče jsou na obr. 19.

Postup je následující: pečlivě zkонтrolujeme, zda deska s plošnými spoji nemá mechanické závady. Pokud nemáme desku s prokovenými děrami, která v tomto případě je velmi vhodná, ale nezbytná, zapájíme drátové propojky P1 a P2. Dále pečlivě pájíme pasivní a aktivní součástky. Z konektoru K1 před zapojením vyjmeme dutinky č. 3, 4, 7, 8, 17, 18, 27 a 28. Pod stabilizátor umístíme chladič. Přepínač Př1 je realizován ze tří dutinek FRB. Ke kontaktům na spodní straně desky připájíme tenké asi 7 cm dlouhé izolované vodiče. Pomocí testeru TTL nebo alespoň pomocí několika tlačítek, logické sondy a voltmetru statickou funkci sondy zkontrolujeme. Zejména se přesvědčíme, že na vodičích, které později napojíme na ZX81 jsou právě ta napětí, která tam mají být. Vzorek s klasickými obvody TTL měl spotřebu 250 mA.

Z krytu přídavné paměti vyšroubujeme 4 spojující šroubky. V zadní části krytu

aktivní signál	příklad obsluhy	Př1 v poloze „B“*		Př1 v poloze „F“	
		X dekad.	NN hex	X dekad.	NN hex
VSTUP1	PRINT PEEK X Id a, (NN)	8192-10239	2000-27FF	40960-43007	A000-A7FF
VSTUP2		10240-12287	2800-2FFF	43008-45055	A800-AFFF
VSTUP3		12288-14335	3000-37FF	45056-47103	B000-B7FF
VSTUP4		14336-16383	3000-3FFF	47104-49151	B800-BFFF
VÝSTUP1	POKE X,17 Id (NN), a	8192-10239	2000-27FF	40960-43007	A000-A7FF
VÝSTUP2		10240-12287	2800-2FFF	43008-45055	A800-AFFF
VÝSTUP3		12288-14335	3000-37FF	45056-47103	B000-B7FF
VÝSTUP4		14336-16383	3800-3FFF	47104-49151	B800-BFFF

*Můžeme adresovat i „kopii“ v oblasti F

Obr. 16. Adresování ZXSD

Obr. 18. Rozmístění součástek na desce s plošnými spoji T79

Obr. 17. Obrazec plošných spojů obou stran desky ZXSD T79

Obr. 20. Mechanická úprava zadního krytu paměti RWM

vyvrtáme čtyři otvory (horní dvě dírky pouze zvětšíme) a plochým pilníkem pro-pilujeme otvor na prostrčení drátků (viz obr. 20). Otvory v rozích zevnitř zahloubíme, prostrčíme jimi 4 vhodně dlouhé šrouby M3 se zápustnou hlavou a jejich hlavičky zlepíme izolující páskou. Přímo na přislušné pájecí body, kde je originální ZX konektor zapájený do desky 16 kB RWM, připájíme připravené vodiče a celek smontujeme. Aby deska ZXSD byla namontována kolmo, použijeme distanční trubičky s různou délkou. Paměť je nyní sešroubována dvěma šroubkami, to ale vzhledem k jejich masivnosti stačí. Nakonec zbyvá jen celek napojit na ZX81 a vyzkoušet.

Protože se proudový odběr zvýší, musíme použít jiný zdroj, schopný dodat napětí asi 8 V při zatížení 2 A. Pak budeme mít proudovou rezervu pro obvody připojené k ZXSD.

K fungující ZXSD pomocí konektoru FRB (např. TY 5143011) připojíme univerzální desku s plošnými spoji, na které se můžeme patřičně „vyžít“ bez toho, že bychom při naší chybě nebo náhodném zkratu ohrožovali sběrnici ZX81.

Literatura:

- [1] -mb-: Elegantní řešení obousměrné sběrnice mikropočítače. Sdělovací technika 8/1980.
- [2] *Bungard*: Interfacing the ZX81. Radio-Electronics-July 1984.
- [3] *Hunter*: Expand Your TIMEX/SINCLAIR Operating System. Radio-Electronics, July, August 1983.
- [4] *Bit*, květen 1983.

Seznam součástek desky ZXSD:

Pasivní součástky:

R1	100 Ω, miniaturní
C1, C2	20 μF/15 V
C3, C4, C5	33 nF, keramické

Aktivní součástky:

T1	TR 12
IO1	7805
IO2	3205
IO3, IO4	3216
IO5	7400 (74LS00, 74ALS00)
IO6	7402 (74LS02, 74ALS02)

Obr. 21. Styková deska ZXSD

Ostatní:

K1	konektor FRB TX 5143012
TL1	mikrospínač WN 559 00

ZE SVĚTA MIKROPOČÍTAČŮ

OLIVETTI M-24 a M-21

Když se před téměř 4 lety objevil počítač Olivetti M-20, představoval ve své kategorii absolutní špičku. I v současnosti je tento model konkurenčeschopný a v mnoha ohledech lepší než např. některé modely IBM PC, o čemž svědčí i roční produkce 400 000 ks, která se bez problémů prodala.

Vývoj jde však nezadržitelně dál, a proto firma Olivetti uvedla na trh nový model M-24. Někdo může namítat – zase varianta na téma IBM PC. To ovšem asi nebude to pravé, jelikož porovnání si může na základě uvedených faktů udělat každý sám.

Základem je šestnáctibitový mikroprocesor 8086 s šestnáctibitovou sběrnici, koprocesorem 8087 pro zrychlení matematických operací a čip pro podporu I/O

operací. Kmitočet mikroprocesoru je 8 MHz. RAM má standardně 128 kB, je rozšiřitelná až na 640 kB. Součástí je jeden nebo dva miniflopy po 360 nebo 720 kB, nebo miniflopy a 10 MB Winchester. Barevný displej 12' - 640 × 400 bodů. Interfejs Centronics, IEEE a RS232C. Samozřejmostí je oddělitelná klávesnice. Je možno též použít alternativní mikroprocesor řady Z8000.

Co se týče software, je též bohatý – jsou k dispozici operační systémy MS-DOS, UCSD-P a Concurrent CP/M 86. U poslední jmenovaného bych se rád zastavil. Je navržen speciálně pro podporu činnosti mikroprocesoru 8086 a využívá jeho architektury. Umožní současnou práci až 4 virtuálních pracovišť. Pod výše uvedenými systémy jsou k dispozici jazyky BASIC, Pascal, Fortran 77, Assembler, Cobol a C. MS-DOS umožňuje softwarovou kompatibilitu s IBM PC. Dále je k dispozici množství software, připraveného předními softwarovými firmami. To vše při tradičně nízké ceně dává této novince předpoklady pro dobré uplatnění na světovém trhu. Letos se počítá s produkcí 600 000 ks!

M-21 je přenosná varianta, má velikost většího kufríku.

Richard Havlík

Kolik je mikroprocesorů?

Odpověď na tuto otázku je složitá, ne všechny jsou vůbec známy, některé zůstávají firemním tajemstvím. Přehled mikroprocesorů západoněmeckého vydavatelství Franzis od T. D. Towerse uvádí data více než 7000 mikroprocesorů a periferických obvodů, známých na západních trzích. Uvedeny jsou jedno až šestnáctibitové mikroprocesory, nejnovější třiceti-dvoubitové nejsou ještě do přehledu po-jaty.

JOM

Olivetti M-24

Podle CHIP 1983 č. 3, str. 69.

Mikropočítače pro děti předškolního věku

Podle nejnovějších studií provedených americkou firmou pro výzkum trhu Talmis Inc. z Chicaga a zveřejněných v časopise Wall Street Journal je v USA vydávána třetina peněz za programy pro děti do sedmi let. Tím se stává tato skupina obyvatelstva zajímavou nejen pro výrobce tříkolek a medvídků, nýbrž i pro firmy, zabývající se programováním.

Zejména v předškolním věku, přibližně od tří let, jsou děti zblízka u mikropočítačů, jestliže se s nimi třeba jen jednou dostaly do styku. Jak zjišťují výrobci a prodejci, je největší poptávka po programech pro tuto věkovou skupinu.

Učení hrou stojí v popředí. Malí panáčci a rozmilá zvířátka jako např. zajíčci a želvičky se dostala z dětských knížek na obrazovku, kde se plazí, hopsají a pobíhají. Talíře a hrnčíky, včeličky a květiny se pohybují podle pokynů dávaných senzorovými tlačítka a tvoří tak nový obraz světa v myslích tříletých. Jsou-li rozpoznány správné tvary nebo barvy, dostanou děti od počítače odměnu. V nejnovějších programech vystupují dokonce populární postavičky z televizních vysílání.

Vliv nové počítačové éry na děti je studován mnohými vědci, psychology a pedagogy, kteří docházejí právě tak jako Mary A. White, profesorka pedagogiky na newyorské univerzitě, k názoru, že chování dětí není mikropočítači narušováno. Také rodiče jsou rádi, když děti nezlobí a sedí tisíce před obrazovkou.

Jak se zdá, po televizní horečce, která zachvátila Spojené státy před dvěma desetiletími přichází nyní počítačová horečka.

Společné mají obě to sezení před obrazovkou, zatímco se však u televize jednalo ➤

» o pasivní konsumaci vysílaných programů, musí být děti při hře s mikropočítačem aktivní, což je jistě žádoucí.

Nové pole působnosti pro programátory je ztiženo tím, že děti předškolního věku neumí ani číst, ani psát a programy musí být psány tak, aby jim děti rozuměly. Právě tak musí být mikropočítače vybaveny pro obsluhu, vhodnými pro děti, které se na klávesnici obvyklého počítače nedovedou orientovat.

JOM

Literatura: Vorschul-Erziehung: Bits Für die Kleinsten. CHIP 1984 č. 12, str. 284.

Počítač AMSTRAD CPC 464

Počítač AMSTRAD/SCHNEIDER CPC 464

V polovině roku 1984 se na trhu v Anglii objevil osobní počítač AMSTRAD CPC 464, později v NSR pod označením SCHNEIDER CPC 464. Tento osobní počítač obsahuje vestavěný kazetový magnetofon a oddělitelný monitor. Lze zakoupit dvě varianty, a to s monochromním (černobílým) monitorem za 230 £ nebo s monitorem barevným za 340 £. Systém SCHNEIDER 464 v NSR s černobílým monitorem stojí asi 900 DM. Monitor je součástí systému, neboť obsahuje zdroj napětí pro vlastní počítač.

Systém je realizován s mikroprocesorem Z80A s kmitočtem hodin 4 MHz. Paměť RAM má kapacitu 64 kB a je tvořena osmi dynamickými paměti 64k × 1, které jsou obnovovány při zobrazování. Paměť ROM má kapacitu 32 kB a obsahuje operační systém, BASIC a podpůrné funkce. Systém pak dále obsahuje základní obvod, který zajišťuje časování, generování barev (27) a DMA přístup do paměti. Monitor je řízen obvodem 6845. Pro účely počítačových her byl systém vybaven tříkanálovým zvukovým generátorem AY-3-8912, který obsahne 8 oktav. Paralelní I/O pro periferní zařízení jsou řízena obvodem 8255, který obhospodařuje kazetový magnetofon, tiskárnu a „joystick“. Paměť je rozdělena takto:

Z obrázku je zřejmé, že paměť RAM je „zdvojená“ pomocí ROM paměti, a to tak, že přístup k paměti ROM je v běžném režimu zamezen a uživatel má k dispozici 64 kB (pro program v BASICu 43 kB). Základní obvod, který zajišťuje přepínání mezi ROM a RAM, navíc umožňuje připojení až 240 stránek externí paměti, což umožňuje připojení dalšího firmware, tj. snadného připojení např. her a překladů (řídící část se musí adresovat jako stránka 0).

Nedílnou součástí systému je kazetový magnetofon, který používá běžné kazety. Systém umožňuje záznam s volitelnou rychlostí, a to 1000 nebo 2000 Baudů, přičemž systém sám při čtení pozná, o jakou rychlosť záznamu se jedná.

Klávesnice s tlačítkovými přepinači není sice tak pohodlná jako u IBM PC, ale je podstatně lepší než u IBM PC Junior nebo u Spectra. Kromě běžných kláves obsahuje speciální numerickou klávesnici a tlačítka pro ovládání kurzoru. Současně stisknutí jakéhokoliv tlačítka, CONTROL a SHIFT je dekódovatelné. Celý systém je inicializován pouze pomocí současného stisknutí tlačítka ESCAPE, SHIFT a CONTROL, čímž je omylem takřka vyloučen.

Text je zobrazován v 80 sloupcích při 25 řádcích v rastrovi 8×8 bodů. Lze používat 255 znaků definovatelných uživatelem. Uživatel si může vybrat až 16 barev (nebo úrovní šedi) z 27 možných, a to podle režimu, ve kterém pracuje. Lze změnit nezávisle barvu písma, pozadí nebo okolí. Zobrazovaný text se vyznačuje velkou ostrostí (jas i kontrast lze regulovat). V případě použití speciálního modulátoru se zdrojem napětí lze použít běžný televizní přijímač, avšak obraz je méně ostrý.

Maximální rozlišovací schopnost pro kreslení čar apod. je 640 × 400 bodů. Pro grafický režim jsou k dispozici příkazy DRAW, PLOT, ORIGIN, TEST, TAG a TAGOFF pro snadný popis obrázků.

Jediný softwareový produkt, který jsem měl možnost testovat, byl BASIC, výrobek Locomotive Software Ltd. Pozoruhodným rysem je možnost použití „streamů“, které umožňují vyřešit mnohé problémy s formátováním obrazovky. Stream #0 až #7 je použit pro obrazovku, #8 pro tiskárnu a #9 pro kazetu. Vzhledem k existenci příkazu WINDOW, který umožňuje specifikaci rozměrů okna pro každý stream, je možné obrazovku překrýt až osmi okny, která nemusí být disjunktní. Pak příkaz WINDOW # 4, 5, 19, 20, 22 definuje okno pro pozice 5 až 19 v ose x a 20 až 22 v ose y. Příkaz PRINT# 4,,TO JE ONO“ pak vepíše řetězec do tohoto okna.

Počítač má čtyři nezávislé interní čítače, které mohou být použity pro spouštění až tří nezávislých procesů. Při použití příkazu AFTER x, po GOSUB ... se nastaví hodnota čítače odpovídající p-té úrovni na hodnotu x po vynulování se spustí specifikovaný podprogram. Při použití příkazu EVERY x, po GOSUB ... se nastaví příslušný čítač na hodnotu x, po vynulování se spustí specifikovaný podprogram a čítač se opět nastaví. Jde tedy o příkaz k opětovnému spouštění. Tyto příkazy umožňují uživateli řešit problémy pomocí „real-time“ algoritmů.

Program lze opravovat buď pomocí příkazu EDIT anebo kopírováním pomocí COPY kurzoru. Příkazy TRON a TROFF umožňují trasování programu během výpočtu a lze je s výhodou využít zejména při odlaďování programu.

Programy zapsané v jazyce BASIC jsou ukládány do paměti předzpracované, což činí výpočet rychlým, a to i ve srovnání s šestnáctibitovými počítači.

Ing. V. Skala

Mládež a mikropočítače na západě

Počítačová horečka se rozšířila z USA do západní Evropy s příchodem levných domácích mikropočítačů. Zatímco starší generace mají z počítačů spíše strach, „nakazila“ se především mládež. Nejprve se mladí seznámili s novými elektronickými „hračkami“ na výstavách, kde zřídili prodejci „počítačové louky“, umožňující návštěvníkům poznat obsluhu mikropočítače a zahrát si několik zajímavých her. Tím podporily firmy zájem o nové přístroje a zbavily mnohých strachu z „neznaměho“, což zvýšilo prodej stálé se zlepšujících a výkonnějších domácích počítačů. Mnozí dostali počítač k vánočnímu a pro ty, kteří nemají tak bohaté rodiče jsou výhodiskem předváděcí koutky obchodních domů, kde jsou vystaveny a k volné obsluze určeny různé druhy domácích počítačů.

Počítačovou horečkou zachvácení chlapci (děvčata jsou zřejmě imunní) jdou hned po škole do obchodních domů, kde stráví tři až čtyři hodiny denně. Nejprve hrají jen připravené hry, čímž se naučí s přístrojem zacházet, to však po jisté době omrzí a pak přichází vyšší stadium „nemoci“, kdy se začne učit programovat. Tepřive pak „to skutečně baví“, jak se vyjádřil jeden z mladých fanoušků, „když počítač rozumí co mu přikážu a dělá to, co já chci.“

Výrobci a prodejci domácích počítačů, příslušenství a programů se snaží proniknout i do škol a za pomocí průmyslu a rodičů, kteří mají strach z budoucnosti svých dětí, kdyby se opozdily za vývojem, prosazují počítačovou výuku i v základních školách. Nejprve se tvoří zájmové kroužky kolem většinou darovaných počítačů (buď od spořitelny, banky nebo některého místního průmyslového podniku), které se později přemění na pravidelnou výuku. Ve vyšších typech škol je informatika většinou předmětem.

Zájem mládeže o mikropočítače je podporován množstvím zajímavé literatury s obsáhlými popisy, návody a programy, ať se již jedná o nesčetné knihy mnoha nakladatelství, nebo o magazíny a odborné časopisy, kterých vychází jen ve Spolkové republice přes čtyřicet. Také televize vysílá populární kurzy o mikropočítačích a např. do počítačového klubu WDR (Westdeutsche Rundfunk – třetí televizní program místního charakteru) se po úspěšném vysílání přihlásilo 11 500 fanoušků. Mimoto existuje velké množství soukromých klubů, orientovaných převážně na mikropočítače jednotlivých firem. Jsou vydávány klubové časopisy, vyměňovány programy a zkušenosti.

Statisíce mladých lidí sedí denně doma před osobním počítačem a buď hrají různé hry včetně šachu nebo se snaží sami podobné hry programovat či se pokouší řídit mikropočítačem různé modely a vymýšlejí si nejrozmanitější úlohy pro svůj počítač a konstruují pro to potřebné doplňky. Hrou se nejlépe učí, z her se stanou vážné úkoly, horečka nakažení se většinou nadále věnují počítačové technice, často ji studují i na vyšších školách a co se v mládí naučili, použijí pak v praxi, pomáhajíce tak širokému rozšíření elektronických pomocníků do všech odvětví lidského života.

JOM

Volně podle článku: Marquard, R.: Computer-Faszination. Input-Output, Kaputt? z magazinu pro mládež „ran“ 1984 č. 9, str. 13-15.

KONSTRUKTÉŘI SVAZARNU

Klávesnice pro Minifon

Podle AR č. 10/77 jsem zhotovil Minifon, který je úpravou původního otestovaného z AR č. 1/75. I přes jednoduché zapojení lze s tímto nástrojem provádět „kouzla“. Protože se mi nelíbilo provedení s ovládacívláčkem (navíc se tyto klávesnice těžko shánějí) a ani prohlídku starších ročníků AR jsem nenalezl návod na vhodné provedení kláves, rozhodl jsem se

Obr. 4. Sestava klávesnice

vyrobit z dostupných materiálů odpovídající klávesnici pro využití v Minifonu.

Ke zhotovení potřebujeme desku z novoduru o tloušťce 2 mm s rozměry 300 × 120 mm. Podle obr. 1 si nakreslíme čáry pro prořezy (pilkou na kov k půltónům a pak lupenkou pilkou mezi půltóny). Prořezy by mely míti šířku asi 2 mm. Na půltóny nalepíme lepidlem Kanagom dřevěné načerněné špalíky např. podle nákresu v obr. 1. Vrtákem o Ø 3 mm vyvrtáme otvory. Ke klávesnici můžeme

zhotovit desku s ploškami pro uchycení lidacích trimrů (pásek 300 × 30 mm - 27 políček), který uchytíme na její horní zadní stranu podle obr. 4.

Dále z organického skla o tloušťce 5 mm zhotovíme „mezíkus“ - střední díl podle obr. 2. Na spodní straně uděláme zářezy (pilkou na kov) pro vedení propojuvacích vodičů (šířka i hloubka asi 2 mm). Podle otvorů v desce kláves vyvrtáme otvory 2,5 mm; prořízneme závity M3. Desku se spoji, desku kláves a střední díl sešroubujeme třemi šroubkami se zapuštěnou hlavou (zadní tři otvory). Na spodní část jednotlivých kláves si upevníme kontakty z mědičného drátu o Ø 0,8 mm. Jednou stranou je zatavíme do novoduru a na druhý konec připájíme lanko s izolací z PVC; pro bílé klávesy volíme délku asi 15 cm, pro černé 13 cm. Protáhneme je do zářezů ve spodní části dílu v obr. 2 a připájíme je na plošky na desce pro uchycení „lidacích“ trimrů. Tím jsme získali kompaktní celek budoucích kláves.

Základní desku, která může tvorit i základ pro uchycení dalších dílů Minifonu, vyrábíme podle obr. 3. Kdo použije hliníkový plech o tloušťce asi 2 mm, vyhne se polepování desky Alballem. Je však třeba izolovat plošky u třech uchycovacích šroubů. Do základní desky vyvrtáme tři otvory o Ø 2,5 mm a vyřízneme závity. Pak spojíme třemi šrouby celou sestavu podle obr. 4.

Popis snad vypadá složitě, ale klávesniči jsem vyrobil za jeden den. Profesionální hudebník, který testoval a ladil Minifon, prohlásil, že je nástroj lehce ovladatelný a i vzhledově působí dojmem továrního výrobku.

Zdvih je určen tloušťkou materiálu, použitého na díl podle obr. 2, a kontakty vyrobenými z drátu, které se dají v případě potřeby přihnut. Celá sestava je dobré rozebiratelná a tudíž i opravitelná.

Svatoslav Skřipec

Obr. 1. Klávesy. Vrchní část (šířka prořezů je asi 2 mm)

Obr. 2. Střední díl klávesnice (materiál: organické sklo tl. 5 mm, otvor pro M3 vrtat v sestavě s díly na obr. 1 a 3)

Obr. 3. Základní deska

Zvonek pro 16 melodií

televizní generátor LINEK, MŘÍŽÍ, JASOVÝCH PRUHŮ A ŠACHOVNICE

Zdeněk Šoupal

(Pokračování)

Desku s plošnými spoji osadíme součástkami. Ze strany spojů zapojíme dve propojky. Jako poslední se připájí rezistory R2 (u osc. 1), R8 (u osc. 2) a R17 (u osc. 3) tak, že se použije potenciometr 10 kΩ (TP012) s krátkou vývody, kterými se

zapojí postupně místo R2, R8 a R17. Připojí se napájecí a ladící napětí a nastaví se pracovní bod; přitom se na výstupu souosého kabelu indikuje vf napětí a současně se kontroluje i „jednovlnné“ kmitání a plynulé ladění oscilátoru v daném rozsahu. Po

zjištění optima postupně nahrazujeme potenciometr příslušnými rezistory. U oscilátoru 2 se nastavuje pracovní bod při vyšším kmitočtu, s napětím na obou vývodech pro napájení. K zakrytí slouží spodní (obr. 11b) a vrchní (obr. 11c) kryt. Nasunuté kryty zajistíme pootočením „praporů“ – přečnívajících konců připájených pásků.

Napájecí místa A, B, C, D, E označíme samolepicími štítky.

Kontrola činnosti bloku oscilátorů

Ladicí napětí 1 V až 29 V přivedené na bod E kontrolujeme nejlépe digitálním voltmetrem ($R_i = 10 \text{ M}\Omega/\text{V}$), na výstup souosého kabelu připojíme vf voltmetr s měřičem kmitočtu (přijímač, vlnoměr).

Napájecí napětí +12 až +14 V postupně přepínáme na jednotlivé rozsahy a měříme kmitočet při nejnižším

Obr. 13. Deska s plošnými spoji T53 a rozmístěním součástek bloku oscilátorů. V desce je třeba vyříznout otvor 15 x 1,5 mm pro kuprexitkovou destičku (dil 1), pomocí níž je připevněna kostra L1, L2

Seznam součástek na desce bloku oscilátorů

Rezistory:

R1	1 kΩ, 5 %, TR 191
R2	3,6 až 10 kΩ, 10 %, TR 191
R3	8,2 kΩ, 5 %, TR 191
R4	47 kΩ, 5 %, TR 191
R6	1,2 kΩ, 5 %, TR 191
R7	2,7 kΩ, 5 %, TR 191
R8	2,2 až 10 kΩ, 10 %, TR 191
R9	5,1 kΩ, 5 %, TR 191
R10	3,3 kΩ, 5 %, TR 191
R11	10 kΩ, 5 %, TR 191
R12	47 kΩ, 5 %, TR 191
R13	100 Ω, 5 %, TR 191
R15	1,2 kΩ, 5 %, TR 191
R16	2,4 kΩ, 5 %, TR 191
R17	2,2 až 10 kΩ, 10 %, TR 191
R18	5,6 kΩ, 5 %, TR 191
R19	100 Ω, 5 %, TR 191
R20	47 kΩ, 5 %, TR 191
R21	10 kΩ, 5 %, TR 191

Kondenzátory:

C1	2,7 pF, TK 650 (656)
C2	2,2 nF, TK 744
C3	4,7 nF, TK 586 (průchodkový)
C4	22 pF, TK 692
C6, C7	2,2 nF, TK 744
C9	1 nF, TK 541 (průchodkový)
C10	15 pF, TK 204 (754)
C11	500 pF, TK 754 (774, 754)
C12	2,2 pF, TK 650
C13	1 pF, TK 650
C14	4,7 pF, TK 754 (670)
C15	500 pF, TK 754 (774, 794)
C16	6,8 pF, TK 754 (670)
C17	1 nF, TK 541 (průchodkový)
C18	820 pF, TK 754 (774, 794)
C19	500 pF, TK 754 (774, 794)
C20	82 pF, TK 754 (755, 774, 775)
C21	12 pF, TK 204 (754)
C23	1 nF, TK 541 (průchodkový)
C24	15 pF, TK 204 (754)
C25, C26	500 pF, TK 754 (774, 794)

Cívky:

C27	6,8 pF, TK 754 (670)
C28	2,2 pF, TK 650
C29	1 pF, TK 650
C30	2,2 pF, TK 650
C31	12 pF, TK 204 (754)
C32	820 pF, TK 754 (774, 794)
C33	500 pF, TK 754 (774, 794)
C34	82 pF, TK 754 (775, 774, 775)
C35	1 nF, TK 541 (průchodkový)
C36	2,2 nF, TK 744
C37	6,8 pF, TK 754 (670)

Polovodičové součástky:

T1	GT328 (346, AF139)
T2, T3	GT346 (328, AF139)
D1	BB109
D2	BA136
D3	BB109
D4	BB139 (109)

Cívky:

L1	38 z drátu CuL o Ø 0,35 mm, $L = 2,8 \mu\text{H} \pm 15 \%$, bez jádra, na kostce o Ø 5 mm (zkrácené tělísko 45A 260 16), viz obr.
----	---

L2 12 z stejného drátu jako L1, navinuto na společné kostce s L1 (viz obr. XX), doplnit feritový jádrem M4 × 5 × 8 – bílé

L3 70 z drátu CuL o Ø 0,1 mm, těsně na feritové tyčce NO1 o Ø 2,5 × 12 mm, zalepeno Epoxy 1200, $L = 3 \mu\text{H} \pm 20 \%$

L4 5 z drátu Cu o Ø 0,5 mm, vinuto na Ø 5 mm těsně, samonosná, lepeno Epoxy 1200

L5 23 z drátu Cu o Ø 0,35 mm, vinuto na Ø 3 mm, samonosná, lepeno Epoxy 1200

L6 doladovací smyčka osc. 2, Ø 8 mm, drát Cu o Ø 0,5 mm, cinovaný

L7 jako L7

L8 4 z drátu Cu o Ø 0,5 mm na Ø 3 mm, samonosná

L9 9 z drátu Cu o Ø 0,5 mm na Ø 3 mm, samonosná

L10 doladovací smyčka osc. 3, Ø 8 mm, drát Cu o Ø 0,5 mm, cinovaný

Obr. 14: Dílčí sestavy přístroje: shora - a); pohled na přední panel bez štítku - b); pohled na zadní panel. - c)

a nejvyšším ladícím napětí v bodě E a v ř. napětí v průběhu ladění:

	f	U_{lad}	$U_{\text{vř}}$
A - rozsah 1	29,9 MHz při 1,22 V 40,1 MHz při 27,79 V*)	38 mV 44 mV	
B - rozsah 2	47 MHz při 2,85 V 67 MHz při 18,9 V	32 mV 37 mV	
C - rozsah 3	76 MHz při 5,1 V 100 MHz při 16,9 V	42 mV 34 mV	
B, D - rozsah 4	174 MHz při 1,5 V 232 MHz při 21,9 V	32 mV 28 mV	

*) V obou krajích musí být ještě malá rezerva kmitočtu.

Blok oscilátorů upevníme do šasi generátoru třemi rozpěrnými sloupky. Konec souosého kabelu připojíme do digitální desky II k modulátoru – (k diodě D19 a rezistoru R34 – obr. 2) a připojíme i ostatní vývody bloku.

Obr. 15. Umístění přístroje ve skřínce

Ladící potenciometr R9, rezistorový dělič napětí pro ladění I a přepínač rozsahu Př4

Na kvalitě a spolehlivosti „ladícího“ potenciometru R9 závisí stabilita a přesnost nastavení oscilátoru. Doporučuji proto jej pečlivě kontrolovat, popř. si zakreslit křivku jeho průběhu, i když použijeme doporučený typ TP 190. Potenciometr R9 je připevněn na předním panelu (obr. 13). Při pohledu ze zadu má potenciometr R9 vývody takto: střed (běžec) je vývod 2, vlevo od něho vývod 1, vpravo vývod 3; tak musí být potenciometr R9 v souladu se schématem na obr. 2 zapojen.

Potenciometr R9 je napojen z rezistorového děliče R1 až R8, k němuž je přivedeno napětí 30 V ze zdroje s osvědčeným integrovaným stabilizátorem MAA550 (IO11).

Rozsahy oscilátorů se volí otočným přepínačem Př4 v sekci „A“ (viz obr. 14a) tak, že se při prvním až třetím rozsahu přivádí napájecí napětí na body A až C, při čtvrtém rozsahu na body B a D.

V sekci „B“ Př4 jsou přepínány rezistory R1 až R4. Odpory těchto rezistorů určují „zahuštění“ kmitočtového pásmá na stupni podle našeho přání.

Deska děliče ladění je na obr. 16. Je připevněna k přednímu panelu rozpěrnými sloupky délky 10 mm. Průběh napětí na běžci potenciometru R9

změříme voltmetrem. U dobře nastaveného bloku oscilátorů bychom měli zjistit napětí:

Rozsah	běžec R9 vlevo	vpravo
1	0,6 V	až 28,2 V
2	2,9 V	až 19,2 V
3	5,1 V	až 16,7 V
4	1,55 V	až 21,2 V

Zdrojová napájecí část

Napájecí zdroj je jednoduchý. Schéma je na obr. 2 a uspořádání je zřejmé z obr. 13. Síťový transformátor je spojen se zdrojovou deskou čtyřmi rozpěrnými sloupky délky 12 mm. Na protějším boku Tr je uchycen pojistkový držák. Celá tato sestava transformátoru je uchycena čtyřmi zapuštěnými šrouby M3 × 5 na zadní panel, na němž je uchycen i integrovaný stabilizátor IO10 přes rozpěrné sloupky délky 6 mm. Jako vypínač sítě je použito tlačítko ISOSTAT v normálním provedení (skutečně „síťový“ vypínač ISOSTAT je příliš dlouhý). Můžeme je použít v tomto případě bez obav, neboť malý odebíraný proud a využití vzdálených kontaktů od panelu zajišťuje spolehlivou funkci.

U síťového transformátoru bylo zvoleno poměrně velké napětí 200 V hlavně proto, aby stejný transformátor mohl být použit pro elektronické

Obr. 16. Deska s plošnými spoji a rozložení součátek děliče napětí pro ladění T54

Seznam součástek na desce děliče ladění

Rezistory:	
R1	1,2 kΩ, 5 %, TR 191
R2	10 kΩ, 5 %, TR 191
R3	24 kΩ, 5 %, TR 191
R4, R5	4,4 kΩ, 5 %, TR 191
R6	39 kΩ, 5 %, TR 191
R7	68 kΩ, 5 %, TR 191
R8	27 kΩ, 5 %, TR 191
Přepínač	
Př4	2x 4 polohy, TESLA WK 533 38

Obr. 17. Deska s plošnými spoji a rozmištěním součástek zdrojové desky. T55

Obr. 18. Hlavní rozměry a sestava skřínky

hodiny s digitrony. V každém případě musí případně nižší napětí zajišťovat dostatečnou rezervu pro stabilizátor.

Síťový transformátor Tr

Síťový transformátor je na jádru EI 20×20 s cívkou navinutou podle tab. 4. Očíslované vývody zapojíme na stejně označené body v zdrojové desce.

Sestavená zdrojová deska III

Na obr. 17 je základní deska s plošnými spoji zdrojové části. Síťový transformátor připojujeme po osazení a konečné úpravě (ocíštění, nalakování) osazené desky. Před vestavěním zdrojové části do přístroje přezkoušíme celý zdroj. Napětí stabilizovaného zdroje se při změně síťového napětí $\pm 10\%$ smí měnit v rozmezí nejvýše $30\text{ V} \pm 2\%$. Napětí 14-V smí být při zdroji naprázdno $16\text{ V} \pm 10\%$. Po vestavění do šasi přezkoušíme ještě stabilizátor 5 V (IO10). Napětí musí být v rozmezí $5\text{ V} \pm 2\%$.

Seznam součástek zdrojové desky

Rezistory:	S
R1 27 kΩ, 10 %, MLT-2 (TR 154)	Pf1
R2 5k6, 10 %, TR 193	Pf2
C1 500 μF, TE 986	R9
C2 0,1 μF, TK 783	IO10
C4 10 μF, TE 993	D13, D21
C5 200 μF, TE 988	Po
C6 15 nF, TK 764 783	Trubičková pojistka
C7 1000 μF, TE 984	0,08 A/250 V

Półovodičové součástky:

D1 až D4	KY132/150
D5	KY132/900
IO11	MAA550

Seznam součástek mimo desky

spínač ISOSTAT	S
ISOSTAT,	Pf1
4 přepínací kontakty	Pf2
3x 12 poloh,	
TESLA WK 533 39	
potenciometr 50 kΩ,	
TP 190 32 E	
MA7805	
KA206 207	
trubičková pojistka	
0,08 A/250 V	
souosá zásuvka 75 Ω panelová,	
TESLA QK 461 04	
síťový transformátor,	Tr.
viz tab. 4	

kána světlešedým, hladkým vypalovacím lakem. Několik celkových pohledů na přístroj je na začátku tohoto článku a na III. straně obálky.

Šasi

Šasi je tvořeno předním a zadním panelem (obr. 19), které jsou vzájem-

Mechanická konstrukce generátoru

Skřínka

Pro generátor jsem použil „střední“ velikost velmi jednoduché „typizované“ skřínky podle obr. 18. Je povrchově upravená chromátováním a nastří-

Tab. 4. Vinutí síťového transformátoru Tr

Vývody Napětí	Počet závitů	\varnothing drátu CuL [mm]	Prokládání		
			počet vrstev	kondenzátor. papír 0,05 mm	lakováný papír 0,1 mm
					2
1 – 2 220 V	2250	0,14	195 z 12 vrstev	1 z okraje třepit	-
					2 z
3 – 4 200 V	2000	0,08	340 z 6 vrstev	1 z okraje třepit	-
					4 z
5 – 6 12 V	150	0,35	75 z 2 vrstvy	-	1 z okraje třepit
					2 z

Obr. 19. Rozměry a otvory panelů: přední - a); zadní - b); rozpěrné sloupy a úhelníky - c)

ně spojeny čtyřmi rozpěrnými sloupy a dvěma úhelníky, které slouží k uchycení přístroje ke skřínce. Mezi oběma panely je rozpěrnými sloupy délky 7 a 15,5 mm upevněna deska s plošnými spoji. Třemi rozpěrnými sloupy délky 7 mm je upevněn blok oscilátorů. Na přední panel jsou dále uchyceny: výstupový konektor (podním je uvnitř pájecí oko), potenciometr ladění R9, přepínače Př2 a Př4 s deskou děliče ladění (rozpěrnými sloupy délky 9 mm), přepínač Př1, vypínač „SÍŤ“ (S). Př1 a S jsou upevněny přes rozpěrné sloupy délky 9 mm. K panelu je připevněna (EPOXY 1200) svítivá dioda D20. Pod krycím štítkem z organického skla je panelový štítek s označením ovládacích prvků (viz obr. 20). Nejdokonaleji jej lze v amatérských podmínkách zhotovit fotograficky z předlohy nakreslené tuší, popř. s použitím obtisků Propisot. Podrobně byl postup výroby již dříve, popsán u jiných konstrukcí mých přístrojů (viz např. Příloha AR/1984). Na zadní panel, který je na vnější straně nastříkán vypalovacím lakem, je přichycena síťová přívodka, zevnitř integrovaný stabilizátor napětí přes rozpěrné sloupy délky 6 mm a síťový transformátor se zdrojovou deskou.

Po sestavení přístroje provedeme celkovou kontrolu jeho funkce. Sestavený, oživený, ocejchovaný a zkонтro-

lovaný TV generátor vložíme do skřínky a přes pryzové nožky skřínku k šasi přišroubujeme.

Uvedení do provozu, kontrola funkce

Přístroje, které byly užity k oživení:

- 1) Osciiloskop pro amatéry (SSSR - OML-2-76, šířka pásmo ss až 5 MHz).
- 2) Voltmetr nebo digitální voltmetr s $R_i = 10 \text{ M}\Omega/\text{V}$ (digitální).
- 3) Vf voltmetr (typ URU Rohde Schwarz, 10 Hz až 1,5 GHz).
- 4) VHF přijímač (Rohde Schwarz typ ESM 180, 30 až 180 MHz, a typ ESM 300, 85 až 300 MHz).
- 5) TV přijímač Kamelie s úpravou: vyvěden vstup obrazové mezifrekvence přes tlačítko na konektor TESLA 75 Ω .

Postup při oživování

Zkontrolujeme pojistku (0,08 A). Po stlačení tlačítka „SÍŤ“ se uprostřed panelu musí rozsvítit svítivá dioda D20. Jestliže je vše v pořádku a odebíraný proud přiměřený, měli bychom na napájecím zdroji naměřit: na C1, C2 +14 V; za stabilizátorem IO10 +4,95 V; na C4 +255 V; na C5 +69 V; na IO11 +30 V. Přepínačem Př4 nastavíme první rozsah (30 až 40 MHz), na přijímači připojeném na vf výstupu

postupně náladíme 30 a 40 MHz a na generátoru otáčením knoflíku s ukazatelem zkontrolujeme rozsah (kmitočty by měly být asi na úhlu stupnice 5° a 240°). Předběžně změříme i vf napětí na výstupu při 40 MHz (44 mV vyhovuje). Na výstup generátoru pak připojíme vstup obrazové mezifrekvence TV přijímače (upravená KAMELIE) a knoflík s ukazovatelem náladíme do okolí 110° ; při některé z poloh 2 až 12 funkčního přepínače Př2 bychom měli na obrazovce vidět příslušný obrazec. Při svislých linkách v poloze 2 ještě doladíme kmitočet knoflíkem s ukazovatelem a v této poloze náladění generátoru bychom měli ve všech polohách Př2 obdržet vyhovující funkci (obraz). V poloze 1 Př2 musí být obrazovka rozsvícena po celém stínítku zcela rovnoměrně, obraz musí být zasynchronizován, je to tzv. „úroveň bílé“. V dalších polohách Př2 už musí být na stínítku TVP odpovídající zobrazení. Postup opakujeme na

Obr. 20. Panelový štítek; skutečné rozměry jsou 221,5 x 80,5 mm

→ rozsahu 2, kde podle TVO zkusíme 1. a 2. kanál; v rozsahu 3, kde přezkoušíme 3., 4. a 5. kanál a konečně na rozsahu 4 (6. až 12. kanál), přičemž současně také kontrolujeme příslušné kmitočty rozsahů. Kontrolujeme i výstupní vf napětí plné a zeslabené o 20 dB (tj. 10x). Plné napětí nemá poklesnout pod 25 mV na všech rozsazích i během ladění. Po tomto oživení a kontrole funkce přístroj ocechujeme.

Cejchování stupnice

K cejchování přišroubujeme na panel generátoru úhlověrnou stupnicí 0° až 250°. Ukažovatel knoflíku se má krýt s nulou při levém dorazu potenciometru R9. Vf výstup generátoru připojíme na kontrolní přijímač ESM180, ESM300, u kterých si zkontrolujeme (případně opravíme) souhlas stupnice. K cejchování si připravíme tabulkou s požadovanými kmitočty a s rubrikkou pro zápis napětí a úhlu stupnice (příklad je v tab. 5); postupně přelaďujeme přijímač a generátorem dolaďujeme; zapisujeme napětí a úhel.

Cejchování skončíme posledními kmitočty 232 až 235 MHz. Poté demontujeme úhlověr a údaje, zapsané do tabulky, použijeme k nakreslení stupnice na panelový štítek (viz obr. 20).

K použitým součástkám

Všechny součástky jsou běžného provedení a dostupné na našem trhu. Jediná potíž může nastat při obstarávání keramických kondenzátorů malých kapacit (1 pF, 2,2 pF apod.) pro blok oscilátorů. V tomto případě doporučuji tyto kondenzátory demontovat z výprodejních tunerů KOMBI (maďarské výroby).

Výstupní panelový konektor 75 Ω TESLA QK 461 04 byl zvolen pro jeho výborné provedení i vlastnosti, především snadnou a spolehlivou montáž kabelových konektorů TESLA QK 411 03 na souosý kabel o Ø 6 mm.

Tab. 5. Cejchování stupnice

	Kmitočet [MHz]	Napětí [V]	Úhel [°]
Rozsah 1 30 až 40 MHz	30	1,2	5
	31	2,3	15
	32	4,2	29
	33	5,3	38
	34	6,7	50
	35	8,2	61
	36	9,3	71
	37	12,1	98
	38	14,9	122
	39	19,4	162
	40	27,8	240

Tyto konektory jsou poměrně drahé, ovšem jejich cenu vyváží spolehlivost. Je možné použít i konektory BNC, které jsou poměrně laciné u sousedů v NDR.

Dosažené výsledky

Úmysl realizovat malý, jednoduchý, ale funkčně plně spolehlivý TV generátor mříží, pruhů, šachů, plně osazený integrovanými obvody, pro rozsah MF a pro I. až III. TV pásmo se plně zdařil.

Pro tento účel konstruovaný blok oscilátorů může být samostatně využit i k jiným účelům, neboť tvoří samostatnou jednotku. Na obr. 4 jsou uvedeny snímky obrazců, fotografované z TVP KAMELIE („stařenky“ mezi televizory), které dokumentují funkčnost TV generátoru.

Pro názornost je na obr. 21 průběh úplného videosignálu černých mříží s bílým pozadím 22 – obr. 4f. Úroveň synchronizačních impulsů rádeček a obrazu je log. 1, úroveň černých linek rádkových a obrazových je rovněž log. 1, úroveň bílého pozadí má log. 0.

	Kmitočet [MHz]	Napětí [V]	Úhel [°]
Rozsah 2 47 až 67 MHz	47	2,9	0
K.	49,75	4,4	21
1.	53	6,4	47,5
	56,25	8,5	80
	59,25	10,7	111
2.	62,5	13,3	151
	65,75	16,7	200
	67	18,8	230
	76	5,2	0
	77,25	5,68	10
3.	80,5	6,94	35
	83,75	8,22	60
	85,25	8,81	72,5
4.	88,5	10,14	100
	91,75	11,6	131
	93,25	12,32	146
5.	96,5	14,17	185
	99,75	16,54	232
	100,00	16,8	237
	174	1,5	0
	175,25	1,9	5
6.	178,5	2,9	16
	181,75	3,9	27
	183,25	4,3	31
7.	186,5	4,9	40
	189,75	5,9	52
	191,25	6,4	57
8.	194,5	7,7	74
	197,75	8,8	87
	199,25	9,1	91
9.	202,5	9,8	100
	205,75	10,8	112
	207,25	11,2	117
10.	210,5	11,9	124
	213,75	13,1	140
	215,25	13,5	145
11.	218,5	14,3	155
	221,75	16,2	178
	223,25	16,8	184
12.	226,5	18,0	200
	230	21,3	241
	232	21,8	247

Obr. 21. Průběh úplného videosignálu černých mříží 22

GENERÁTOR přesného kmitočtu S výstupem tvarových kmitů

Tomáš Kubát

(Pokračování)

I. Fázový detektor 2 (obr. 9):

Je realizován integrovaným obvodem IO22. Před jeho vstupem IN B je třeba zařadit obvod, který bude pro fázový detektor zdrojem impulsů s dostatečnou strmostí náběžných hran a s předepsanými logickými úrovněmi. Na výstupu fázového detektora je podobně jako u FD1 také dolnofrekvenční propust v podobě proporcionalního článku. Protože při „hrubém“ přepínání kmitočtu přepínačem Př2 se mění vlastnosti analogového oscilátoru, je třeba současně přepínat i příslušnou časovou konstantu. IO21 a T2 jsou impedanční převodníky. R13 určuje mezní proud diodou oplotoru. Dioda D8 chrání přechod B-E tran-

istoru T2 a rovněž i diodu oplotoru před průrazem závěrným napětím v případě, že by se na výstupu IO21 objevilo záporné napětí (např. při zapnutí přístroje). Stav „zavěšeno“ se projeví úrovni log. 1 na výstupu LIN IO22. V této době tranzistor T4 nevede, bod O není uzemněn.

spojené do série. V zapojení jsou použity integrované stabilizátory IO25 a IO26. Nevýhodou tohoto zapojení je nutnost dvou samostatných sekundárních vinutí transformátoru. Předností zdroje je jednoduchost a spolehlivost.

Návrh parametrů smyčky fázového závěsu

Čtenář, který se s otázkou fázového závěsu setkává poprvé, by až při praktických zkouškách zjistil, že udržení oscilátoru „v zavěšení“ není tak jednoduché, jak by se zprvu zdálo a že už vůbec nelze volit korekční článek RC ve smyčce „od oka“, zejména ne při vyšších kmitočtech.

O návrhu smyčky se podroběně ho-voří v [1]. Stručný text, zpracovaný na základě zmíněného článku, seznámí čtenáře s nejdůležitějšími závěry, potřebnými pro výpočet.

Při výpočtu vycházíme z náhradního schématu fázové smyčky (obr. 12):

Obr. 12. Náhradní schéma smyčky fázového závěsu

Pro přenos uzavřené smyčky podle schématu platí:

$$H(p) = \frac{\varphi_V(p)}{\varphi_R(p)} = \frac{KK_o F(p)}{p + \frac{KK_o F(p)}{N}} \quad (1)$$

kde K_d [V/rad] je zisk fázového detektoru; K_o [rad/sV] je zisk oscilátoru a N je dělicí poměr proměnného děliče kmitočtu. Přenos korekčního filtru $F(p)$ lze psát:

$$F(p) = \frac{1 + pT_2}{1 + pT_1}, \text{ kde} \quad (2)$$

$$T_1 = C(R_1 + R_2), \quad (3)$$

$$T_2 = CR_2. \quad (4)$$

Po dosazení ze $F(p)$ do (1) a po úpravách dostaneme:

$$H(p) = \frac{KK_o}{T_1} \frac{1 + pT_2}{p^2 + \frac{1 + KK_o T_2 / N}{T_1} p + \frac{KK_o}{NT_1}} \quad (5)$$

Výraz (5) představuje přenosovou funkci 2. řádu, z jejíž jmenovatele lze na základě porovnání koeficientů s mnohočlenem $p^2 + 2\xi\omega_n p + \omega_n^2$ odvodit vztahy pro přirozený kmitočet

ω_n a činitel tlumení ξ . Pro ω_n lze přímo psát:

$$\omega_n = \sqrt{\frac{KK_o}{NT_1}}$$

a činitel tlumení ξ lze po úpravě vyjádřit ve tvaru:

$$\xi = \frac{1}{2} \omega_n (T_2 + \frac{N}{KK_o}). \quad (7)$$

Pro praktickou potřebu lze tedy vztahy (6) a (7) upravit do tvaru:

$$T_1 = \frac{KK_o}{N\omega_n^2}, \quad (8)$$

$$T_2 = \frac{2\xi}{\omega_n} - \frac{N}{KK_o}. \quad (9)$$

Po volbě kondenzátoru C v korekčním filtrovi lze ostatní součásti určit úpravou vztahů (3), (4):

$$R_1 = \frac{T_1 - T_2}{C}, \quad (10)$$

$$R_2 = \frac{T_2}{C}. \quad (11)$$

Volba parametrů ξ a ω_n není libovolná, protože součásti filtru musí být realizovatelné, tj. hodnoty R a C nezáporné. Aby toto bylo splněno, musí platit nerovnost:

$$\frac{2\xi}{\omega_n} \geq \frac{N}{KK_o}. \quad (12)$$

Tento vztah vychází ze vztahu (9). Na činiteli tlumení ξ závisí přechodová charakteristika smyčky; jeho optimální hodnota je asi 0,7.

Příklad výpočtu

U použitého obvodu MHB4046 byla změřena konstanta oscilátoru $K_o = 961\,000$ rad/sV. Konstanta detektora byla spočítána $K_d = 1,2$ V/rad. Dělicí poměr N se přepíná v mezích od $N_{\min} = 100$ do $N_{\max} = 1000$. Při tom se korekční filtr nemění.

Ze vztahu (12) vyplývá: $\omega_n \leq \frac{KK_o 2\xi}{N}$.

Dosazením získáme hodnoty úhlového kmitočtu ω_n a tomu odpovídajícího kmitočtu f_n :

$$\text{Pro } N = 100 : \quad \text{Pro } N = 1000 : \\ \omega_n \leq 16\,065 \frac{\text{rad}}{\text{s}} \quad \omega_n \leq 1\,606,5 \frac{\text{rad}}{\text{s}} \\ f_n \leq 2550 \text{ Hz} \quad f_n \leq 255 \text{ Hz}$$

Aby bylo dosaženo výhodných filtračních podmínek smyčky, je žádoucí, aby f_n byl alespoň o řád nižší než referenční kmitočet fázového detektoru – viz např. obr. 2 (blokové schéma), bod D. Zároveň je třeba brát v úvahu, že při menším f_n je smyčka „pomalejší“, takže se bude oscilátor déle zavěšovat. V našem případě např. volíme $f_n = 0,05 f_{ref}$, pro naše požadavky bude smyčka ještě dostatečně rychlá. Tomu pak odpovídá úhlový kmitočet $\omega_n = 314$ rad/s.

Nyní dosadíme do vztahu (8). Za N dosazujeme dolní mez – ($N = 100$), neboť při něm je časová konstanta T_1 maximální:

$$T_1 = 0,116 \text{ s.}$$

Činitel tlumení ξ volíme pro využívající průběh přechodové charakteristiky $\xi = 0,7$. Toho však lze dosáhnout jen při jediné hodnotě N , kterou označíme N' . Abychom se od zvoleného $\xi = 0,7$ odchylili co nejméně, musí být N' aritmetickým průměrem mezních hodnot N :

$$N' = \frac{N_{\min} + N_{\max}}{2} = \frac{100 + 1000}{2} = 550.$$

Nyní lze ze vztahu (9) určit hodnotu časové konstanty $T_2 = (\text{za } N \text{ dosazujeme } N'; \text{ za } \xi = 0,7)$:

$$T_2 = 3,98 \cdot 10^{-3} \text{ s.}$$

Dále sledujeme, jak se změní činitel tlumení ξ při mezních hodnotách N . Dosazujeme do vztahu (7):

Pro $N = 100$ Pro $N = 1000$

$$\xi = 0,64 \quad \xi = 0,76$$

S těmito hodnotami činitele tlumení se můžeme spokojit, neboť se od stanovené hodnoty 0,7 výrazně neodlišují a při skutečné realizaci vybíráme hodnoty součástek z řady E12, takže stejně nedodržíme vypočítané časové konstanty přesně.

Pak vypočítáme hodnoty součástek. C volíme $1,5 \mu\text{F}$ a tomu odpovídající odporu $R1$ a $R2$ vypočítáme ze vztahů (10), (11):

$$R_1 = 74\,547 \Omega, \quad R_2 = 2787 \Omega.$$

Korekční člen bychom tedy mohli realizovat ze součástek:

$C \dots 1,5 \mu\text{F}$,

$R1 \dots 82 \text{ k}\Omega$,

$R2 \dots 2,7 \text{ k}\Omega$.

Takto bylo postupováno při návrhu obou smyček fázového závěsu v přístroji.

Mechanické provedení, plošné spoje

Přístroj je řešen tak, že při jeho stavbě vystačíme pouze s běžným vybavením domácí dílny. Je instalován do přístrojové skříně, kterou pod označením UPS 2 vyrábí Závody umělecké kovovýroby a prodává TESLA ELTOS. Skříň se dodává s šedě stříkaným předním a zadním panelem. Víko a spodní část jsou tmavě sedé. Přední panel je popsán s použitím obtisků Propisot a proti poškození je chráněn tenkou vrstvou průhledného laku, který lze koupit jako „univerzální lak bezbarvý lesklý – spray“. Skříň je doplněna subpanelem z hliníkového plechu, na němž jsou upevněny přepínače P1 až P4 a potenciometr R29.

Po odstranění čtyř šroubů lze sejmout horní víko (viz obr. v titulku článku), mírným rozevřením lze odejmout i spodní část skříně a tím se uvolní kostra přístroje – přední a zadní panel, které jsou spojeny čtyřmi rozpěrnými sloupky, čímž je uvolněn přístup ke všem součástkám i spojům. Na obr. 13 je naznačeno umístění jednotlivých modulů v přístroji. Moduly jsou svisle (je-li přístroj v pracovní poloze) zasazeny do vodorovné spojnicové desky s plošnými spoji,

△ Obr. 13. Pohled do přístroje shora: a - zeslabovač; b - signalizace zavěšení, logickej impedančnej prevedník, prevedník CMOS/TTL; c - obvody voltmetu, analogový impedančnej prevedník; d - zdroj; e - promenný delič; f - analogový oscilátor; g - tvarovač, fázový detektor 2; h - referenční oscilátor, fázový detektor 1, napěťové řízený oscilátor 1; i - výstupní dekadický delič

△ Obr. 14. Pohled na spojnicovou desku po vyjmutí modulů

která jednotlivé moduly propojuje (obr. 14) pomocí běžných konektorů WK 465 40 a WK 462 05. Na spojnicové desce je pouze malá část některých obvodů: z obvodu přepínače výstupního děliče R101 až R107, z obvodu signalizace R27, R28, C61, C62, D37, D38, T8, dolní propust druhé smyčky

R17 až R20, R23, C15 až C17, z obvodu logického impedančního převodníku T9, R10. Na zadním panelu je připevněn transformátor spolu s pojistkovým pouzdem a zásuvkou pro připojení sítě. Transformátor je propojen s modulem zdroje „páskem“ vodičů, zakončených miniaturním modelář-

ským pětipolovým konektorem, z něhož je jeden kontakt odstraněn.

Modul proměnného děliče je spojen s palcovým přepínačem Př5 čtyřmi pásky vodičů zakončenými čtyřmi konektory TX 721 0611 (byly k dostání v prodejně TESLA, Praha 1, Martinská ul.), které se přímo nasunou na palcový přepínač. Odpor R85 až R100 jsou umístěny přímo na plošných spojích palcového přepínače.

Přepínač Př2a je spojen s modulem analogového oscilátoru páskem vodičů a opět modelářským miniaturním konektorem (osmipolovým), z něhož byly nepotřebné kontakty odebírány. Druhý paket přepínače, který by měl označení Př2b, je nevyužit a přispívá k lepšímu oddělení relativně citlivého místa – vstupu integrátoru IO18, spojeného s Př2a – od ostatních obvodů. Na místo stávajícího Př2 lze také použít pouze třípaketový přepínač. Přepínače jsou otočné běžného typu.

Přístroj je řešen tak, že po odejmutí horního víka je snadný přístup ke všem nastavovacím prvkům. Všechny moduly lze po sejmání horního víka snadno „vytáhnout“ z konektorů (viz obr. 14). Pevně jsou přišroubovány k subpanelu jen dvě menší desky s plošnými spoji, z nichž jedna je zeslabovač (R45 až R56) a druhá logický impedanční převodník R7 až R9, C6, C33, D1, D2 a IO17 spolu se svítivými diodami D39, D40, D41. Tyto desky jsou se spojnicovou vodorovnou deskou propojeny krátkými spojkami vodičů. Vzájemné spojení desek ukazuje propojovací schéma na obr. 15.

Obr. 15. Propojovací schéma

Všechny plošné spoje jsou navrženy tak, že není třeba v přístroji zbytečně „drátovat“, což mnohdy ubírá z elegance amatérským konstrukcím.

Jednotlivé moduly jsou proti vypadnutí z konektorů při hrubším zacházení s přístrojem zabezpečeny měkkým materiálem (např. molitanem), který je ve tvaru pásku širokého asi 2 cm nalepen na horním víku a při jeho připevnění přitlačuje moduly k spojnicové desce.

Desky s plošnými spoji napájecího zdroje, analogového impedančního převodníku a obvodu voltmetu a také zeslabovače jsou jednostranné. Všechny ostatní desky jsou oboustranné. Záměrně není uvedena propojovací deska, neboť tu je třeba přizpůsobit tvaru použité skříně a případně i změnám v koncepci přístroje. Tuto desku (v prototypu je rovněž oboustranná) lze navrhnut s pomocí propojovacího schématu (obr. 15).

Rovněž není uvedena deska analogového oscilátoru v provedení s hybridními OZ. Do desky tvarovače lze umístit i hybridní i monolitický OZ, přičemž u monolitického je třeba ještě zapojit C64, R84. Protože nelze předpokládat, že by čtenář měl možnost prokrovovat díry oboustranných spojů, je třeba desky vybavit drátovými spojkami, a to ve všech pájecích mísťech, kde nejsou součástky. Vzhledem k použití obvodů s tranzistory FET je lépe k pájení nepoužívat pistolevou páječku.

Chlazení součástek je vhodné u T8, T5, IO25, IO26, popř. i u IO27 až IO29. Je provedeno tenkým měděným či mosazným plechem, který je snadno ohebný. Desky s plošnými spoji a rozmištěním součástek jednotlivých modulů jsou na obr. 16 až 24.

Obr. 16. Deska T70 s plošnými spoji a rozmištěním součástek zdroje referenčního kmitočtu, fázového detektora a napěťové řízeného oscilátoru

Seznam součástek

Odpory (TR 212, není-li uvedeno jinak)

R1, R2	0,15 MΩ	R23	0,39 MΩ
R3	0,1 MΩ	R24	3,9 kΩ
R4	1,8 kΩ	R25	56 kΩ
R5	10 kΩ	R26	3,9 kΩ
R6	56 kΩ	R27	33 Ω
R7	180 Ω	R28	4,7 kΩ
R8	56 kΩ	R29	5 kΩ, lin., TP 281
R9	15 kΩ	R30	330 Ω, TR 191
R10	68 kΩ	R31	680 Ω, TR 191
R11	56 kΩ	R32	39 kΩ
R12	10 kΩ, TR 191	R33	15 kΩ
R13	390 Ω	R34	8,2 kΩ
R14	56 kΩ	R35	100 Ω, TR 191
R15	3,9 kΩ, TR 191	R36	1,8 kΩ, TR 191
R16	8,2 kΩ, TR 191	R37	510 Ω
R17	470 Ω	R38, R39	2,2 kΩ
R18	5,6 kΩ	R40	330 Ω, TR 191
R19, R20	15 kΩ	R41	1,8 kΩ, TR 191
R21	1 kΩ	R42	680 kΩ, TP 011
R22	56 kΩ	R43, R44	470 Ω, TP 011

R45	619 Ω, TR 161	R58	3,3 kΩ, TR 191
R46	18 kΩ, TR 161	R59	470 Ω, TR 191
R47	1 MΩ, TR 161	R60	6,8 kΩ, TP 011
R48	6,04 kΩ, TR 161		
R49	898 Ω, TR 161		
R50	3,92 kΩ, TR 161		
R51	5,9 kΩ, TR 161		
R52	898 Ω, TR 161		
R53	3,92 kΩ, TR 161		
R54	5,9 kΩ, TR 161		
R55	681 Ω, TR 161		
R56	18 kΩ, TR 161		
R57	470 Ω, TR 191		

*V případě nedostupnosti přesných odporů s hodnotami mimo řadu (označeny hvězdičkou) se lze uvedené hodnoty přiblížit výběrem z vyráběné řady (a to podle nároků na přesnost zeslabovače) nebo příslušné rameno článku π přepočítat na jinou paralelní kombinaci dostupnější dvojice odporů.

AMATÉRSKÉ RADIO BRANNÉ VÝCHOVĚ

MVT

Přebor Jihomoravského kraje

10. května 1985 uspořádal radioklub OK2KQO v Novém Městě na Moravě jižní moravský přebor v MVT, kterého se zúčastnilo 40 závodníků. Hlavním rozhodčím byl ing. Vít Kotrba, OK2BWH. **Vítězové jednotlivých kategorií:** A: Vít Kunčar, OL6BES, Uherský Brod; B: Robert Fryba, OK2KAJ, Třebíč; C: Radek Svenda, OK2KRK, Uherský Brod; D: MS Jitka Hauerlandová, OK2DGG, Uherský Brod.

Po vítězství v kategorii juniorů při utkání ČSSR - NDR v dubnu 1985 v Novém Městě na Moravě si Vít Kunčar, OL6BES (na snímku), zopakoval roli vítěze o měsíc později při krajském přeboru

Přátelské utkání ČSSR - NDR

Z pověření ÚV Svazarmu ČSSR uspořádal radioklub OK2KQO v Novém Městě na Moravě ve dnech 15. až 21. dubna 1985 mezinárodní soustředění vícebojařů, zakončené přátelským mezistátním utkáním ČSSR - NDR. Soutěžilo se podle pravidel komplexních soutěží, čemuž odpovídalo složení oficiálních delegací: čtyři tříčlenná družstva na obou stranách. Z přítomných 19 čs. závodníků bylo po tréninku jmenováno 12 do oficiálních družstev. Zbývajících 7 se zúčastnilo mimo soutěž mezistátního utkání. Všech 19 Českoslováků však mezi sebou bojovalo o 9 letenek do Leningradu na trojutkání SSSR - Bulharsko - ČSSR.

V utkání byly použity transceivery M160, malorázky Ural, orientační běh připravili bývalí čs. reprezentanti ing. Hruška a ing. Lácha u Pílské vodní nádrže na mapách IOF. Hlavním rozhodčím byl ZMS Tomáš Mikeska, OK2BFN. Hosté vysoce ocenili dokonalou přípravu a zdárny průběh celé akce. Recipročně uspořádají přátelské utkání příští rok v NDR.

Výsledky utkání

Muži: ČSSR 2590 b. - NDR 2361 b.

Jednotlivci: 1. MS Jalový - OK2BWM, 2. Kopecký - OK3CQA, 3. Gordan - OK3KXC, 4. Schöder - Y31PC, 5. Madl - Y24XL, 6. Heusler - Y58YF.

Zeny: ČSSR 2584 b. - NDR 2416 b.

Jednotlivci: 1. Friedrichová - Y56PM, 2. MS Hauerlandová - OK2DGG, 3. Palacká - OL6BEL, 4. Reichelová - Y31ZL, 5. Gordanová - OK3KXC, 6. Auerbachová - Y46MO.

Junioři ČSSR 2534 b. - NDR 1852 b.

Jednotlivci: 1. Kunčar - OL6BES, 2. Prokop P. - OK2KLK, 3. Hájek - OK2KQO, 4. Strichirsch - Y56QM, 5. Jésorka - Y39WE, 6. Schmadt - Y55VH.

Dorostenci: NDR 2554 b. - ČSSR 2522 b.

Jednotlivci: 1. Káčerek - OL3BIQ, 2. Groth - Y75ML, 3. Kláschka - Y41NE, 4. Hrnko - OL9CPG, 5. Hildebrandt - Y57RH, 6. Bebják - OL8COS.

OK2BEW

VKV

Protože naše řady náhle opustily dobrý kamarád, nadšený radioamatér a obětavy funkcionář Svazarmu **Vašek Homolka, OK1GA**, prosíme všechny, kteří se zúčastňují Provozních VKV a UHF/SHF aktivů, aby napříště odesílali hlášení z těchto závodů na novou adresu: Radioklub Svazarmu OK1KKH, poštovní schránka 44, 284 80 Kutná Hora 1.

DX spojení na VKV přes vrstvu E₀

Od začátku června bylo možno téměř každý den do uzávěrky tohoto čísla navazovat dálková spojení v pásmu 145 MHz. 2. 6. 1985 bylo možné pracovat se stanicemi ze Španělska a jihozápadu Francie v čase od 16.00 do 16.30 UTC ze středních Čech do lokátorů IN61, 91 a JN03. Z Moravy se stanicem z Olomouce a okolí podařilo navazat mnoho spojení do lokátorů IN81, 82, 91, 92 a 94. Den na to, 3. 6. bylo možné v čase od 15.30 do 16.00 UTC pracovat se stanicemi v SSSR, ponejvíce do UA6, v lokátořech KN74, 84, 94 a LN04 a 05 na vzdálenosti i přes 2000 km. **OK1AGI** má nejdéle spojení přes 2000 km se stanicí UA6ALT. **OK1YA** navázal celkem 7 spojení a nejdéle do lokátoru LN04 se stanicí UW5AEK. Nejdéle otevření pásmo 2 m pro spojení přes vrstvu E₀ v prvních 14 dnech června nastalo ve středu 5. 6. v době od 11.00 do 14.00 UTC. Ze středních Čech bylo možné pracovat převážně směrem na jih do 9H, IT9, IS a 18. Naproti tomu stanicím z Moravy se spojení s Maltou navazovala mnohem hůře, ale oproti stanicím z Čech se jim lépe navazovala spojení se Španělskem, Baleárskými ostrovami a jihozápadní Francií. **OK1AGI** a **OK1IMG** pracovali asi desetkrát s 9H a IT9 a dosud neobvyklá byla spojení na relativně krátké

Účastníci přeboru Jihomoravského kraje 1985 v Novém Městě na Moravě

Reprezentantky NDR Silvia Friedrichová, Sylva Auerbachová a Claudia Reichelová byly nadšeny krásou Novoměstska

vzdálenosti do 18 v lokátorech JN70, 80 a JM88. Velká aktivita stanic byla zejména na Malte, kam se stanice OK1KKH podařilo navázat kolem 30 spojení s různými stanicemi. Signál stanic 9H byly tak silné, že OK1MG poslouchal stanici 9H1BT na proutek dlouhý 1/4 a S-metr ukazoval S9 plus 20 dB! Z těch dvou hodin otevření pásmo 145 MHz pro provoz DX zhruba po dobu jedné hodiny rádiula nad Kladnem a okolím silná bouře a tak OK1MG i OK1AGI musejí vytráhnout svody směrových antén ze záření, aby neriskovali jeho poničení vybojem blesku.

OK1YA z Prahy navazoval spojení do 9H už v 11.00 UTC, kdy po signálech jeho protistanic nebylo v nedalekém Kladně ani potuchy. Pracoval celkem 12x s 9H, 13x s IT9, 5x s 18 a nejkratší spojení přes E_s bylo se stanicí I6TCL v lokátoru JN72. OK1WF, který má stanoviště mírně na jih od Prahy, už mohl pracovat i se stanicemi v EA a i se vzácnou EA6. Navázal spojení 10x s 9H, 10x s IT9, 2x s EA a 1x s EA6. V neděli 9. 6. už od rána byly dobré tropo podmínky na jih do Itálie a od dopoledních hodin bylo rozhlasové pásmo 180 MHz plné stanic z Balkánu. Kolem 16.00 UTC ožilo i pásmo 145 MHz signály stanic 4X. Spojení se dělala hlavně stanicím z Moravy a ze Slovenska. Z českých stanic se podle dosažitelných informací podařilo spojení stanicí OK1MS se stanicí 4X4MH. Dále Standa slyšel stanice OD5AT a 5B4LP, avšak signály byly slabé, že i na jeho anténní superbeam 8 x 16EL to bylo RS 51 až 53. OK1MG po dobu asi jedné minuty silou 55 poslouchal stanici 4X6IF, ale spojení se navázat nepodařilo. OK1AGI v době kolem 16.30 UTC navázal zatím svoje nejdéle E_s spojení se stanicí UG6AD – známým to DX-manem. V 17.30 UTC se hlavně v části CW pásmo 2 m objevily silné signály stanic z Bulharska. OK1YA a OK1MG navázali během asi 15 minut otevření pásmo tímto směrem po čtyřech spojeních s LZ do lokátoru KN22, 23 a 32. OK1AGI navázal 2 spojení s LZ. V době kolem 18.15 UTC se otevřel směr do středního Švédska. Spojení se však navazovala velice obtížně, protože signály stanic SM2 a SM3 byly velice kolisavé a podle zákona schválnosti nejsilnější byly v době, kdy stanice SM volaly výzvu, a tak na vlastní spojení s nimi zbyl čas 10 až 20 sekund. A tak se stanicí OK1YA, OK1AGI, OK1DTL, OK1MG a další podařilo po jednom, maximálně 2 spojeních do čtvrtic JP83 a 94. Další dlouhé otevření pásmo 2 m nastalo opět ve středu 12. 6., od 11.09 do 12.30 UTC, kdy OK1YA navázal 9 spojení se stanicemi UA3 v lokátořech KOT3, 85, 88, 95, 97 a LO02. Od dalších našich stanic zprávy nemám. 13. 6. v době od 08.05 do 08.15 bylo možné pracovat se stanicí UT5JAX z loc. KN64. Zde, protože byl pracovní den, byl UT5JAX jedinou stanicí slyšitelnou v Čechách. Později mezi 13.30 až 15.45 téhož dne se opět otevřel směr na UB, UA4 a UA6, kdy OK1YA pracoval s šesti stanicemi v lokátořech KN76, 87 a 98.

V souvislosti s možnostmi navazovat spojení DX ve VKV pásmech se zejména na pásmu 145 MHz rozmláhají některé nešvary, na které je třeba poukázat a zavážas je odstranit. Je to tak zvané „utajování“ značek protistanic. Nejenže se to neslouží s našimi povolovacími podmínkami, ale značně to ztěžuje orientaci ostatním stanicím na pásmu, které pak neví, kterým směrem je pásmo otevřeno a kam točit směrové antény. Tuto nepěknou praxi používají obvykle stanicí s velkými výkony, volající všeobecnou výzvu, když jsou volány jednou DX stanicí a tato dá buď obě volací značky, anebo také jenom vlastní značku. Zajímavé je pak sledovat taková spojení, kdy vlastně nikdo neví, kdo s kým pracuje: mnohdy si tím nejsou jistí ani uživatelé tohoto „úsporného“ způsobu provozu. Tento nešvar by měl z pásm 2 m rychle vymizet, mimo jiné proto, že odporuje povolovacím podmínkám. Právě tak není snad nutné během podmínek E_s používat nadměrné výkony vysílače, rádiové stovky wattů, když k bezpečnému navázání spojení stačí výkony jednotek, nejvýše desítek wattů. Takový super-powerman při volání výzvy a dalších spojeních zabere nejen kmitočet, na kterém pracuje, ale značnou část pásmu kolem tohoto kmitočtu. Jedná-li se pak navíc o vyslovené

DX volací kmitočty 144,300 nebo 144,050 MHz, někdo další nemůže se stanicí DX pracovat. Dalším nešvarem, šířícím se v poslední době na pásmu 145 MHz, je volání všeobecné výzvy provozem CW na volacím DX kmitočtu SSB 144,300 MHz. Lze se domnítat, že VKV komise IARU volací kmitočty DX pro jednotlivé druhy provozu neurčovala zbytečně a všichni by je tedy měli respektovat.

OK1MG

Diplomy: Diplom obdrží vítězná stanice každé země v každé kategorii.

Poznámka: Za spojení v tomto závodě lze na základě samostatné žádosti přiložené k deníku získat diplomy S6S, 100 OK, OK-SSB, ZMT, ZMT-24, P-ZMT, P-ZMT-24 a Slovensko bez předkládání QSL listků, pokud uvedená spojení budou deničnic protistanic; případně spolu s potvrzeným seznamem doplňujících QSL listků. Výsledkovou listinu OK-DX contestu obdrží národní radioamatérské organizace každé ze zúčastněných zemí.

KV

Kalendář závodů na září a říjen 1985

1. 9.	LZ DX contest	00.00-24.00
7.-8. 9.	Region I. Field Day, fone	15.00-15.00
7.-8. 9.	IARU CHC contest, CW	00.00-24.00
7.-8. 9.	Four land QSO party	18.00-24.00
7. 9.	Corona 10 m, RTTY	11.00-17.00
14.-15. 9.	EU DX contest, fone (WAEDC)	00.00-24.00
21.-22. 9.	SAC contest, CW	15.00-18.00
21.-22. 9.	IARU CHC contest, fone	00.00-24.00
21.-22. 9.	Maine QSO party	00.00-23.00
28.-29. 9.	SAC contest, fone	15.00-18.00
5.-6. 10.	VK - ZL contest, fone	10.00-10.00
6. 10.	Hanácký pohár	05.00-06.30
12.-13. 10.	VK - ZL contest, CW	10.00-10.00
27.-28. 10.	CQ WW DX contest, fone	00.00-24.00

Podmínky závodu LZ DX contest byly zveřejněny v AR č. 8/83, IARU CHC contestu v AR č. 9/84, SAC contestu v AR č. 8/82 a konečně podmínky Hanáckého poháru v AR č. 9/84.

Podmínky závodu International OK-DX Contest

Doba konání: Vždy druhou sobotu a neděli v listopadu, od 12.00 do 12.00 UTC.

Kmitočty: Povolené radioamatérské úseky pásem 1,8 - 3,5 - 7 - 14 - 21 a 28 MHz, v pásmu 80 m a 20 m jen v kmitočtových rozmezích 3500 až 3560, 3600 až 3650, 3700 až 3800, 14 000 až 14 060 a 14 125 až 14 300 kHz.

Druh provozu: CW a SSB.

Kategorie: a) jeden operátor, všechna pásmá; b) jeden operátor, jedno pásmo; c) stanice s více operátory a klubové stanice, všechna pásmá; d) posluchači.

Další údaje: Jakákoliv pomoc během závodu (pomocný poslech na jiných pásmech, vypisování deníku, vedení přehledu o spojeních apod.) od další osoby znamená, že stanice se musí přihlásit do kategorie c). Neplatí spojení crossmode a crossband. Posluchači mohou hodnotit jednu stanici v každém pásmu jen jednou. Předání z jednoho pásmu na druhé je možné až po 10 minutách provozu v jednom pásmu.

Kód: RS nebo RST a dvě číslice, označující zónu ITU, odkud stanice vysílá (OK stanice např. 579 28).

Bodování: Každé spojení se hodnotí jedním bodem, včetně stanic OK4/mm. Spojení s vlastní zemí DXCC se bodově nehodnotí a lze je použít jen k získání násobičů. Zahraniční stanice si hodnotí spojení s OK a OL stanicemi třemi body.

Násobiče: Jednotlivé zóny ITU v každém pásmu zvlášť. Deníky: Z každého pásmu na zvláštní list, při zápočtu opakových spojení nebo násobičů se od konečného výsledku odečítá trojnásobek takto nesprávně získaných bodů. Při víc než 3 % opakových spojení bude stanice diskvalifikována. Deníky se vypisují v obvyklé formě a musí být doplněny čestným prohlášením v tomto znění: „I hereby certify of my honour, that in this contest I have operated my transmitter within the limitation of my license and observed fully the rules and regulations of the contest.“ Deníky musí být odeslány nejpozději do 15. prosince téhož roku na adresu: Ústřední radioklub, pošt. schr. 69, 113 27 Praha 1, Czechoslovakia.

Podle doporučení IARU bude každoročně 17. červen vyhlášen dnem radioamatérů, pracujících se zařízením QRP.

Sekce KV DARC provedla zajímavý průzkum mezi radioamatéry, jaký je zájem o jednotlivé druhy provozu. Zjistilo se, že zde v Evropě je největší zájem o telegrafní provoz - 53 %, 36 % SSB, 10 % RTTY a 1 % SSTV nebo FAX. Přitom rozdělení pásem je v poměru: 22,8 % CW, 68,6 % SSB, 5,7 % RTTY a 2,9 % SSTV. Respondenti z Afriky však naproti tomu téměř ve 100 % případu označili za hlavní druh provozu SSB.

Stanice PA0AA vysílá vždy v pátek v 18.45 UTC zprávy v angličtině; pro začátečníky kurs morseovky v 19.00, pro pokročilé v 19.30. Ve 20.00 UTC je dál-nopisným provozem vysílán DXCC bulletin. Zprávy jsou v angličtině opakovány ve 20.45. Každý poslední pátek v měsíci je dále vysílán zkušební text CW rychlosťmi 15 - 20 - 25 - 30 - 35 a 40 WPM se začátkem ve 21.00. Kmitočty 3603, 14 103 kHz.

Vzhledem k tomu, že v Norsku přesly všechny TV vysílače pracující v pásmu 50 MHz na vyšší pásmo, byly již během t. r. vydaný 25 radioamatérům licence k provozu v pásmu 50 MHz. K většemu rozšíření dojde pravděpodobně až při dalším maximu sluneční činnosti. Na 50,045 MHz pracuje nyní také s výkonem 20 W maják v Grónsku, v lokátoru IO06PS a s volacím znakem OX3VHF.

Jako novou, 316 zemí DXCC si již můžete započítat britské suverénní území

na Kypru; spojení se stanicemi z těchto území se počítají od 16. 8. 1960, na QSL však musí být název základny Akrotiri nebo Dhekalia. Platné jsou např. spojení se stanicemi ZC4AK, ASG, AVU, BP, CB, DA, API, GB, IK, LP, PC, RAF, RB, TJ, TK a TX.

W9KNI, který již před osmi lety získal potvrzeny všechny země DXCC smíšeným provozem, se nyní věnuje hlavně telegrafii a od začátku vydávání diplomu DXCC jen CW provozem mu chybí pouze 4 země z celkového počtu zemí DXCC.

Z našich stanic získal WAE I CW OK2PEX, WAE I FONE OK1MG, EU-DX-D 1000 OK1MP a diplom Evropa OK3KJF a OK8ACW.

OK2QX

Předpověď podmínek šíření KV na měsíc říjen 1985

K tomu, abychom mohli na tomto místě říci něco o letošním podzimu, potřebujeme analyzovat dosavadní vývoj, končící (vzhledem k výrobní lhůtě časopisu) járem. Začněme tedy přehledem z května t. r., kdy vzrůst sluneční aktivity vyústil v průměrný sluneční tok 80.5. Jednotlivé denní měření byla: 81, 75, 71, 70, 70, 74, 78, 80, 88, 90, 88, 90, 90, 90, 91, 93, 90, 91, 88, 85, 83, 82, 78, 76, 75, 74, 73, 71, 71, 70 a 68. Ozivení se týkalo i erupční aktivity: 2. 5. v 07.45 UTC a 13. 5. v 09.32 UTC byly registrovány jevy střední mohutnosti.

Geomagnetické pole bylo většinou klidné, jediná porucha se odehrála 2. 5., což je zřejmě ze staničních indexů A_k : 12, 23, 8, 10, 10, 14, 10, 12, 9, 7, 6, 16, 17, 12, 17, 15, 10, 12, 12, 8, 8, 5, 4, 7, 9, 14, 8, 7, 6, 4 a 8. Pocházejí ze stanice Wingst (N54, E09) a přednostně je uvádime pro jejich dobrou použitelnost, přesnost a spolehlivé a pravidelné zasílání.

Na průběhu kritických kmitočtů f_{OF2} byla již dobré znát dvé maxima okolo 10. a 20. hodiny UTC, dokumentující letní charakter vývoje. Příznivá kombinace magnetického klidu a vztahu sluneční radiace vyústila v celkově pěkné podmínky šíření, nejlepší 10.–12. 5., opakem byl den 2. 5.

Říjen pro nás znamená definitivní přechod k zimnímu typu podmínek šíření, takže v pásmech DX bude při šíření do oblasti Pacifiku převažovat dlouhá cesta. Proč tomu tak je, bylo vylíčeno na tomto místě právě před rokem. Příznivým faktorem by měla zůstat poněkud zvýšená sluneční aktivita – podle květnové předpovědi CCIR by měsíční průměry slunečního toku v září 1985 až květnu 1986 měly být: 84, 84, 85, 84, 81, 79, 77, 75 a 74, což je dobrým příslibem pro celou podzimní sezónu. Naproti tomu blízkost slunečního minima signalizuje předpověď R_{12} z SIDC – na září až listopad pouze 6, 4 a 2. Pro srovnání: poslední známé hodnoty z loňského října a listopadu jsou 28.2 a 24.0. Lze se tedy domnítat, že sluneční aktivita projde minimem již v přistém róce, jistotu ovšem nebudeme mít dříve, dokud se skupiny skvrn nepřestanou objevovat okolo slunečního rovníku a nezačnou ve vysokých heliografických šířkách.

Meteorická aktivita je zajímavá nejen pro šíření VKV, ale i pro svou souvislost s E_s . Maximum činnosti význačného roje Orionid nastává 21. 10., z ostatních mají v říjnu maxima Andromedidy 3. 10., Draconidy 9. 10., severní Piscidy 12. 10., ε-Geminidy 19. 10. a Leominridy 24. 10.

TOP band zpříjemní chvíle u zařízení při poklesu hladiny atmosfériků a pro exotičtější směry platí následující intervaly teoreticky možných otevření: JA 16 – 22,

YB 17 – 24, ZS 21 – 04, RY 23 – 06, OA o hodinu později, W2 22 – 07, W6 02 – 08 a KH6 06 – 07. V praxi, zejména amatérské, jde po většinu uvedených časů a většinu dnů v měsíci opravdu jen o teorii, vyzkoušené časy najdete na tomto místě v minutních ročnicích.

Osmdesátka je přece jen již pásmem často použitelným pro spojení DX a v předchozím odstavci zmíněné intervally označují lépe využitelné úseky, tj. doby, kdy je na trase minimální útlum.

Ctyřicítka již přestala být vhodná pro spojení na malé vzdálenosti díky minimálnímu pásmu ticha stovek km, před východem Slunce vrůstajícím až ke 2000 km, zato pro provoz DX jeho cena dále vzrostla. Právě zde lze nejlépe navažovat spojení do severní části Pacifiku, zatímco pro jeho východnější oblasti jsou "lepší" podmínky na tříticí, jež bude nejvýším stálé otevřeným pásmem s pásmem ticha mezi 1000 až 4000 km.

Dvacítka se bude zavírat již během první poloviny noci. Minimální pásmo ticha pro odraz nad střední Evropou okolo místního poledne bude asi 1500 km, optimum podmínek do většiny směrů včetně východního Pacifiku bude nastávat během odpoledne, poměrně dlouhé budou i ranní až dopoledne otevření do východních až severovýchodních směrů.

Patnáctka se bude po většinu dnů v měsíci otevírat ve vícehodinových intervalech do vzdálených oblastí jižní polo-koule až po tři skoky prostorové vlny do východnějších a čtyři skoky do západnějších směrů. Délka pásmu ticha se obvykle bude bližit délce skoku, takže s výjimkou řídkých výskytů E_s těžko najdeme stanice blíží než 3000 km.

Desítka se bude otevírat pouze při příznivé kombinaci řídících faktorů – po vzestupu sluneční aktivity, bude-li magnetosféra Země v klidu, anebo při kladné počáteční fázi poruchy s náhlým začátkem a ovšemž pouze na jih. O vlivu E_s lze říci totéž co u patnáctky, jen síla signálů je zde větší.

OK1HH

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce AR), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9, linka 294. Uzávěrka tohoto čísla byla dne 17. 4. 1985, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejnou cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám, vznikajícím z nečitelnosti předlohy.

PRODEJ

Quartz, gramo Dual CS 627Q (6500), 2x repro Grundig 80 W (à 2000). Vladimír Hruška, U nesypky 18, 150 00 Praha 5, tel. 54 73 10.

Kvalitní jednotka VKV podle AR 5/85 (800, bez deličky 700, MFZ + stereodek. + NFZ Zetawatt 1420 (700 + 200 + 900) aj. jednotliv. VKV Tuner CCIR – OIRT (AR 10, 11/84 – kompletní žládený pl. spoj (890), SO, BF, BFR, TCA, TDA, MC, NE, AY, zoznam za známkou. Štefan Juriček, Mladých budovatele 29/9, 971 01 Převidza.

TESLA Studio 100 – stereogramo v kompletu se zesil. (2000). Dále 2 hi-fi slopky (à 700). Gustav Houdek, Bubeníčkova 12, 162 00 Praha 6, tel. 35 38 836.

Spectrum 16 kB proclené + rozsáhlý software (9800), AY-8500 (300). V. Michek, Jiřáškova 611, 572 01 Polička.

Spectrum 48 kB kompletní, nový (13 500). Jaroslav Divíšek, Volkovova 757, 149 00 Praha 4-Chodov.

JKS AY-3-8610 jen v celku (1000), pro Spectrum dokumentaci, ULU (50, 1000), různé EPROM a RAM. Pisemně. M. Lániček, Moláková 9, 628 00 Lišeň.

Sinclair Spectrum 48 kB (10 500). Jen pisemně. Fr. Voith, Herčíkova 2, 602 00 Brno.

Revox B77, diaľkové ovládanie NAB adaptery, (26 000), 100 % stav. J. Uriča, Jaskový rad 169, 831 01 Bratislava, tel. 437 29.

Stereo zesilovač Transiwatt 30 a 2 reproduktory (2 x 15 W) a kompletní souč. na gramofon (1200), i jednotlivé. M. Veselá, Tomášká 1, 118 00 Praha 1, tel. 53 58 721.

Elektronky (10), obrazovky (200) a voliče UHF, VHF, trafa šasi st. televizoru (50) a 4 ks radiopř. z 50. let (200). VI. Novotný, Šindlerova 1398, 273 09 Kladno 7.

ZX81 – 17 kB, interface pro TTY, TTY-T100, TVP VL-100, kazety s progr. (14 000), jen v celku. I. Geisler, Ořešská 35, 522 22 Praha 5-Repyrie, tel. 52 83 07.

Cassette deck Aiwa AD-F660 (15 000), zesilovač Sony TAAX35 (7000); Tuner Sony ST-JX35 (6000) gramo Aiwa LX50 (7000), reproboxy JVC S66 (5000), osobní počítač Atari 600 XL (14 000). J. Hrudka, Na Petřinách 79, 162 00 Praha 6.

Akai GX635D – 9, 19 rychlost, 6 hlav, 3 motory, kolisání 0,08 %/19, 30 – 27 000 Hz; Pitch control, Ø cívek 27 cm (27 000), a 5 pásků Ø 27 cm. C. Kučerová, Květnového vítězství 774, 149 00 Praha 4.

Sinclair ZX81 + 16 kB, spěchá (6500). S. Kočíř, Zelený pruh 8, 147 00 Praha 4.

Š. zesilovač 2 x BFR91 + zdroj (550), zes: 28 k. zisk 20 dB (350), 7QR20 (50), čas. relé RTS61 6 s – 60 hod. (250). Koupím TC621 – 10K/2000 V – 3X, TC210 – 12 pF 1x, RC211 – 820 pF 1x. Zdeněk Sutner, Přílepy 12, 270 01 Přílepy.

MAA504, 723H, 725 (8, 10, 60), MH74192 (25), MZH165 (40), KFY34 (20), stab. přesné TR 161, 2 (3) hodnoty. R proti známce. A. Franc, SNB 79, 100 00 Praha 10.

Cívkový magnetofon Akai-6x-620, 100 % stav (19 500) a reproboxy Videoton Supermax (4000) i jednotlivé. L. Jurák, A. Zápotockého 64, 586 01 Jihlava, tel. 243 77.

Trovstupový anténní zos. osadený tranzistorami BFR91, vstupy I. a II., III., IV. a V. TV pásmo (500). J. Pramuka, Vajanského 20, 921 01 Piešťany.

Transiwatt TW40 (1500). Oldřich Hrabák, tr. A. Zápotockého 144, 261 02 Příbram VII.

Kotouč. tape-deck Unitra M 2403 SD Dama pik Hi-Fi (2900), stereo tuner, TESLA ST100 (2600), stereo radiopřijímač Stern Proxima, boxy, 2 x 10 W, DV, SV, KV, VKV, OIRT (2700), gramochassis NC420, 2 nahr. vložky (1900), sluchátka TESLA ARF 300 (600), sluchátka s mikrofonem ARF 260 (230), mikrofon Unitra MDO 23, dynam., velmi kvalitní, 40 – 20 000 Hz (450). Vše 100 % stav. L. Staszewski, nábreží Miru 83, 737 01 Český Těšín.

Kalkulačka TI-58C s příslušenstvím (4200) a rozestavený zesilovač TW-40 s korektorem a barevnou hudbou (1000). M. Boháč, Slezská 114, 130 00 Praha 3, tel. 73 77 852.

Kazet. mgf. jap. UNISEF 105 (900), MK27 (900), stereo. rád. mgf. Diamant K 205 (3500). Vše zálonovní. V. Lehký, Běrunický 25, 289 08 Běrunice.

Televizor Color Fatra v chodu slabá obrazovka (1500). K. Bohatý, Koperníkova 34, 301 25 Plzeň.

Sov. far. videomagnetofon (12 000). Spektr 203. Ladislav Straňák, Pionierská 415/5, 018 41 Dubnica nad Váhom.

Trojkombinaci Melodiá 106 stereo, VKV OIRT-CCIR s dokumentací, poškozená napájecí část (5000) bez reproduktorů. F. Hejl, Švermová 636, 264 01 Sedlčany.

ZX81 s vadným ULA a pošk. klávesnici (1000), kazetu s 10 vybranými programy pro ZX81 (250), programy pro ZX81 (20 až 40), seznam proti známce. R. Piováří, Hodžova 4, 036 01 Martin.

pro indikaci stejnosměrného napětí do 1 V.

jako indikátor modulace v magnetofonech a jiných zařízeních, jako indikátor vyládění v různých stacionárních i mobilních radiozařízeních.

Dodává obchodní oddělení 4 krajských závodů 1, 6 a 8:

Praha 1, Samcova 1

Brno, Trnitá 2a

Bratislava-Rača, Púchovská ul. 16

Radiopřijímač 816 A hi-fi (4500) ve velmi dobrém stavu, dvoupásmové hi-fi reprosoustavy, 30 litrů 40 W (à 900) provedení mahagon. F. Machač, Švermová 520, 784 01 Litovel.

TI-58C (3200) + příslušenství fotoaparát Minolta AF-S (7000), zcela automatický provoz, rok starý, R. Brázdil 768 52 Ludsavice 66.

Čas. spinač na 220 V - 1 až 65 min. (100), čas. spinač hodiny (250), trafa 220/2 x 18 V - 15 W (30), 220/6, 18, 24, 110, 115, 130-150 W (100), 380/100, 115, 130, 145, 160, 175 - 2000 W (300), reostat 240 Ω (15), různá relé na 24 - 220 V, mikrospinače a C - krabice se seznamem zařízení. Koupím IOAY-3-8500, AY-3-8710, CD4011. J. Mašterá, Slavičkova 22, 586 01 Jihlava.

MF-FM filtr SFE 10,7 (à 40), MF-AM 455 (à 8), A240D (à 18), MAS562 (à 20). Kupím A290D, 2 ks U1096B, 4 ks A277D, a všechny množstvá IQ1202, 1502, 1802. B. Gajdošák, Toplianska 18, 821 07 Bratislava.

Knihu J. Svobody: Příručka techniky hi-fi, nová (50), kupím 100 g šroubků pro montáž mech. části kazet MGF. Petr Turanský, PKH 2058, 436 01 Litvínov I.

Novy zesilovač JVC A-X2: equalizátor 40, 250, 1500 Hz, 15 kHz, 2 x 42 W, 8 Ω, 20 Hz až 20 kHz (6000). VI. Matiášek, Nezvalova 27, 412 01 Litoměřice.

Reprobox 10 W 2 ks (à 550), rozest. VKV přijímač - LED, digit. stup. hi-fi (asi 3000), digit. hodiny s MM5312 (900), bar. hudba 4 x 2000 W (500) ant. zes. 28 k. (450), vst. díl VKV hi-fi (530), VKV díl Selena (150), magnetof. B444LS (890), μA metr 60 μA (à 50), potenc. 2 x 25 k/G, žárovky 24 V/50 mA (à 2), 2G/150 V (40), 16/50 V (à 10), konvertor UHF (150), histor. elky 4654, nepouž. 4 ks (à 30), nové video Sony 30. (26 000); termostat do

akvár. (250), sluchátka 4 kΩ (50), pl. spoj Q13 - melod. zvonek (74), nebo vyměním za videokazety beta, BFR14C. A. Kronus, Dolnokralovická 1291, 258 01 Vlašim.

Tape deck B116 s odnímatelným krytem hlav; téměř nepoužívaný (4100). D. Tlustá, Čelakovského 1752, 508 01 Hořice v. P.

TI 58 (3000) s příslušenstvem a elektrotech. modul EE 11 (2000). P. Košánek, FV 454, 981 01 Hněštá.

ZX81 + 16 kB + originál PIO interface + zdroj + manuál něm., angl. + syst. progr. + hry (9000). R. Paseka, Těsnohlidková 1525, 286 01 Čáslav.

Civkový tape deck Philips N4512, 3 motory, 3 tvrzené hlavy, 3 rychlosti (11 500). J. Baloun, 331 41 Kralovice 666.

TI 57 s napáječem a něm. manuálem (1700), hi-fi přenoskové raménko vlastní konstrukce s mag. vložkou Tenorel a sensorovým ovládáním (1000), 4 ks ARV160 (à 35). Zdeněk Reháček, pošt. schránka 191, 739 61 Trinec 1.

Nový ZX Spectrum 16 kB + programy programování ve stroj. kódu (12 000). Koupím kaz. magnetofon, vhodný ke Spectru a ZX Mierodrive. M. Budin, Kamenná 1; 588 13 Polná.

Tuner ST100 (2000), mg B400 (600), reprosoustavy RS20 (à 450). Jindřich Karas, Floriánova 3, 612 00 Brno.

Reproboxy Videoton 4-8 Ω max 70 W (à 1200), gramofesil. NZC431 (4500) vše v záruce. F. Roubal, Nábřeží 1860/11, 031 01 Lipi. Mikuláš.

ZX81 nový (5400), ZX Spectrum 48 kB, nový (12 500), 4116 (130), ICL7107 (550), IO tranz. C, R seznam zašlu. A. Vojtík, Spartakiádny 264/11, 400 10 Ústí nad Labem.

Osc. obraz. DG7-123 (500). Nová. P. Konopka ul. SNP 431, 962 23 Očová.

Mag. B100 v dobrém stavu (1400), přijímač NDR stereo 5080, 2 reproboxy (2200), 7 zahr. pásků Ø 15 (800), bar. hudba 8 kanálů (1000), TV hry s AY-3-8500 (1000) amat. zes. Transwatt 2 x 50 W, ind. 2 x 4 LED, presens filtr (2300). P. Piskač, V Zahradkách 534, 530 03 Pardubice.

Hi-fi tuner Kleopatra TST-102 5 předvoleb (3000), hi-fi zesilovač Kleopatra 2 x 20 W, (3000) reproboxy. Tonsil 2 x 40 W 4 Ω (3000), hi-fi stereo gramoschassis MC 400, (3000) hi-fi sluchátka Tonsil 2 x 400 Ω (500), 40 ks zahraničních LP. (40-200). i jednotlivé. L. Slezáček, Rožmitál 2, 793 76 Zlaté Hory.

Osciloskop Křížik T531 (800), laboratorní mV metr typ DLL 0-0,06 V 10 Ω (500), thermotef Fe-Ko Pt Rh-Pt, NiCr-Ni (300), malý regul. stabil. zdroj s mA/V metrem 0-12 V do 500 mA (500), čas. relé RTS-610,3 s - 60 h. (450), tyr. regul. nabíječka 0-15 V/10 A Sa/V metrem a čas. spináčem (1300), nová osaz. deska mgf. TK-140 (100), regul. otáček vrtačky (300), náhr. díly TYP Dukla, Zobor, Kalina moduly, repra, kan. volič, předvolba. Vše prodám nebo vyměním za RLC most, měřicí tranzistorů, klešt. A metr ap. Jindřich Gazda, 341 81 Hartmanice 24.

Technics gramo SL-3300 direct drive automatic (6000), gramo SL-Q3-Quartz direct drive automatic (7000), cassette deck RS-M240X Dolby, DBX (11 500), osazené desky zesilovače T-74 (2x konc. zes., 2x RIAA, 2x Lin, 1x kor. zes. + zdroj) (1000). Milan Pokorný, Lesní 539, 431 51 Klášterec nad Ohří, tel. Kadai 5250 večer.

Můstek RLC Icomet (500), magnetofon B41 v prov. (600). J. Jilek, Revoluční 14 a, 787 01 Šumperk.

Novy Sinclair ZX Spectrum plus (12 000) a české manuály BASIC a stroják (à 100). Bohatý software. Též vyměním. R. Vaškovič, Letenská 4, 118 00 Praha 1.

Stereos Cassette Deck Technics RS-M226 Dolby B-C NR (6500) Eva Purnochová, Bolivarova 2077, 169 00 Praha 6, tel. 35 65 13 večer.

KUNZ-S-KNV

Družce pro výpočetní středisko

mladšího elektronika

Zajímavá a perspektivní práce

Pisemné nabídky na

KPC KUNZ Praha 2, U nemocnice 2

Informace na tel.: 29-13-78

KOUPĚ

ZX Spectrum 48, 64 nebo 80 kB, případně 16 kB s možností rozšíření. Uveďte cenu. Příjemně. Miroslav Lániček, Moláková 9, 628 00 Lišeň.

4 ks repro ARZ4604, cena nerozhoduje. J. Rak, Dolská 1450, 250 96 Praha 9.

MDA2020, MA1458, MAC156, A255D, A277, NSM3915, CD4093, CS20D, D147C, MHB4013, MHB4011, MH7472, LM3900, 74121, MH7485, MH7495, MH74195, TDA1029, TDA1028, MH7413, CD4093, MH74110, MH745, BF245C, BF458, BC179, KFW16A, KF520, KD337, 338, KD366B, KD367B, KF521, KYW31/100, KAY14, ploché LED (zl., čer., oranž., zel., modré) vícero množství. Můžu být i ekvivalenty. MC1016, MC10/31, MH2009, obrazovku B7S2 (DG-7-132), tand. pot. 25 + 25 kΩ/log. s odbočkou 4 ks, různé fantaly. Jaroslav Hudec, C II. B 10/38-99, 018 41 Dubnica nad Váhom.

10 - MHB4011 2 ks, TT906A 2 ks, KT8165, VN-trafo - TBC-55/15, súrne. Predám mikrospináče a rôzny radio mater. Zoznam proti známkam. M. Vataha, Leningradská A6/B, 071 01 Michalovce.

ARN6608, 6608, ARV3608 i poškoz., výb. IFK120 VM2101 (02), Shure M44. Doležal, Švermova 771, 535 01 Prievidouč.

2 ks el. mech. filtre WK85003. E. Kuruc, 941 42 Velké Lovce 145.

SO42P. L. Kadla, Šámalova 51, 615 00 Brno.

TV hru, udejte cenu, popis. Vladimír Klima, Zvěolen-ská 510, 383 01 Prachatic.

Koaxiální konektory BNC a větší. Petr Vybíca, 735 14 Olrová-Lutyně, Marxova 966, post. box 28.

Větší množství JFET BF 245B a SSB filtr TESLA PFK9 MHz 8Q s x-taly nosné. J. Jílek, Revoluční 14 a, 787 01 Šumperk.

PU120, DU10, Icomet výbornom stavě, výst. tr. 1PN67645, serv. dok. TYP: Bajkal, Capella, Neptun, Pluto, Color 110ST. Dokumentaci: Selga, Etjud 2; SFE(MLF)10,7. Š. Pitoňák, 059 55 Žďár 371.

Sinclair ZX Spectrum 48 kB. Popis, cena. Pouze vážné nabídky. Ing. Č. Lengál, Středová 4786, 760 05 Gottwaldov, tel. 410 04.

Různé LED, LQ40, D147, 555, 556, KSY71, KSY82. Ing. S. Hron, Janovice 17, 394 02 Dobrá Voda.

AR řady A1/B1 1981-1984 (včetně). Miroslav Dvořák, 288 02 Křižely 208.

Stereorád. mgf. JVC, AIWA atd. Nové nebo zánovní. V. Lehký, Běruničky 25, 289 08 Běrunice.

Soc. organizace koupí Sinclair Spectrum 48 kB a tiskárnu ZX, i jednotlivě. Prodám ZX 81 1KB (3500). Ing. V. Ošťádal, 789 69 Postřelmov 73.

Měřicí přístroje poškozené i výrazené Avomet, Icomet, DU10 a jiné. Popis, cena. P. Cervenka, Vrátno 66, 294 26 Skalsko.

2x AY-3-8610, trimr WK70424 - 25 pF, cuprexit. J. Kratochvíl, Březina 55, 679 05 p. Křtiny.

Knihy: M. Český: Antény pro příjem rozhlasu a televize 3. vydání. V. Vít - J. Kočí: Televizní příjem ve IV. a V. pásmu. F. Krbec, 394 51 Kaliště 40.

Tuner Technics ST-7 (ST4T), zes. Sony TA-AX35 (nebo podobný). Vladimír Pokorný, Lesní 538, 431 51 Kaliště n./Oříř, tel. Kadaň 5250 večer.

Ampérmetr stejnosměrný proud nejraději do 5 A (6 A až 8 A) max. Rudolf Čelechovský, Irkutská 4, 625 00 Brno.

Oscil. obrazovku B10S4 (B7S4, B10S1, B10S3) konektory BNC, krystal 31-35 MHz. M. Bilský, Spojová 256, 407 01 Jihlava v Děčíně.

Součástky do MGF MK125IC v dobrém stavu, stíněné i nestíněné vodíče různých barev. Napište nabídku. Petr Turanský, PKH 2058, 436 01 Litvínov 1.

Nepoužitý tranzistor BFX89, 2N918 2 ks, BFR96, BF479T, kapacitní trimr 0 až 3 pF, 0-2 pF, knihy: M. Č.: Stavba malé společné antény, Příjem II. TV pořadu, V. V., J. K. TV příjem ve IV. a V. pásmu, apod. M. Dávid, Hřibovní 27, 741 01 Nový Jičín.

Nabídnete: OZ, IO (TTL, C-MOS, MOS-LSI, IO pro měř. a mikropočítač. techniku), LED a displeje. ICM7038A, TMS3874NL, FCM7004, MMS314, displej TIL 370, kondenzátory, odpory. F. Kaláb, Sídliště svobody 5/15, 796 01 Prostějov.

2 ks repro ARZ4604. Igor Pánek, 592 62 Nedvědice 353.

Měnič z 12 V = na 220 V str. Min. výkon 0,5 A. M. Nemček, Sládkovičová 31, 920 01 Hlohovce.

TESLA – Vakuová technika k. p. Praha 9-Nademlejská 600

**hledá pro své provozovny v Praze 6, 9 a 10
tyto profese:**

- sam. tech. - IS
- sam. ref. TOR
- ved. normování
- mat. analytik-programátor
- sam. energetik
- mzdov. účetní
- tech. kontrolor
- zkušeb. technik
- sam. kontrolor
- ref. OTR
- plánovac. MTZ
- sam. ref. zásob.
- sam. účetní
- mistra
- technologa
- konstruktéra
- sam. výv. prac.
- prac. pro vak. napáj.
- ref. normování
- fyzik
- programátor NC strojů
- provozní elektromontér
- topič ve výměn. stanici
- dílenšký kontrolor
- prac. na příjem zboží a mat.
- ještěrkář-manipulátor
- manipulační dělník
- vrtář-lisáře
- vakuář. dělníky
- frézaře
- nástrojáře
- mech. vak. zar.
- prac. na pokovování keramiky
- obráběč kovů
- manipulač. dělníka
- prac. pro příjem zboží
- baliček elektronék
- tech. skláře
- brusíč skla-optik
- lisář-lisářka
- svářec v argonu

VŠ-stroj.	T 12
VŠ-staveb.	T 11
VŠ-stroj.	T 12
VŠ	T 11
ÚSO-el.	T 10
ÚSO	T 9
ÚSO	T 9-12
ÚSO-el.	T 10
ÚSO-stroj.	T 10
ÚSO-V-el.	T 9-11
ÚSO-V-el.	T 10-11
ÚSO	T 9-10
ÚSO-USV-el.	T 9
ÚSO-str.	T 10-11
ÚSO-str., el.	T 7-11
V-USO-str.	T 9-11
V-SO-el.	T 8-11
VŠ-vakuum	T 11-12
VŠ-USO-str.	T 10-11
VŠ-fyz.	T 11-12
vyuč.	D 6-8
vyuč.	D 5-8
zašk.	D 5
vyuč.	D 7
zašk.	D 5
zašk.	D 4-5
zauč.	D 3-5
zauč.	D 2-5
vyuč.	D 6-8
vyuč.	D 6-8
vyuč.	D 5-8
ÚSO-USV.	T 9
vyuč.	D 7-8
zauč.	D 3-4
zašk.	D 5
zašk.	D 3-5
vyuč.	D 6-8
vyuč.	D 4-6
zašk.	D 4-6
vyuč.	D 4-6

Obr. B7S2, D67-132, AR/A 1973-1977, AR/B 1977-1983, Přílohy AR 77-81. Milan Dudáš, ul. Svobody P/9, 093 00 Vranov n.s.

Dvojici filtrů SFE 10,7 MD. Ing. Bohuslav Nejérál, S. K. Neumannova 101, 530 00 Pardubice.

2 ks ARZ 4608. W. Groer, Kopeckého 514, 708 00 Poruba.

T, IO, LED, KF, KFY, KSY, KD, KU, GC, MH7493, 74S20, MAS562, reprá ARN 669, ARO 668, 814, ARZ 669, ARE 589, ART 481, 581. Počet, typ, cena. Nutné potřebujem. R. Baculík, Tulská 2461/21, 960 00 Zvolen.

IO TCA965. Ján Petřzala, 679 05 Křtiny 196.

Reproduktoří ARZ 369 a ARV 081. Nabídnete. Jan Reiner, VRSR 3947, 430 01 Chomutov.

Tlakové repro ART 981 a repro 100-200 W/15 - 18'. P. Valouch, tř. Miru 63, 772 00 Olomouc.

Směšovač GRA-1, SRA-1, TAK-5R áp., děličku deseti ECL. Vladimír Vlček, Česká 6, 040 01 Košice.

AR-B 1/82, roč. 76-77, 83-84 a AR A 1/85. V. Mařík, Jiráskova 143, 398 11 Protivín.

ARO 835, AR A 10/75, větší množství KD503, páry čtverice, prod. triak. reg. 220 V, 10 A. Jan Velinský. Pod vrchem 29 88, 276 01 Mělník.

BFT66, BFR90, 91,92, BF961, 900, 907, 910, 245, NE555, SFE 10,7, WK533 52 apod. K. Beran, Podhomolí 1540, 565 01 Choceň.

RŮZNÉ

Kdo prodá nebo zapůjčí čas. Elektor roč. 1976 nebo dokumentaci k synt. Formant. Jiří Horák, Hornická 1250, 696 03 Dubnany.

Kdo fotografií kvalitní napáječ 220 V pro digitální hodiny 50 Hz - spolehlivý. Bližší sdělím. Miroslav Dvořák, Nad plovárnu 6, 586 01 Jihlava.

VÝMĚNA

AR A 6, 10, 11, 12/83, 2, 10/84, 1, 4, 6/85, AR B 1, 2/85, Příloha AR 1984 za AR A 1, 2, 3, 5/83, 11/84, AR B 1, 2/83, 1, 2, 3, 4/84, event. Koupím a prodám (à 5). M. Žetek, V cibulkách 13/402, 150 00 Praha 5-Košíře. ZX Spectrum, 48 kB + překlad + 100 hier za video magnetofon. J. Cocher, Jesenského 74, 943 01 Střebov. ZX Spectrum nový za Olivety M10, Casio FP-200, Casio PB-700 neb prodám. J. Kotas, Havličkova 1093, 765 02 Otrokovice.

ČETLI JSME

Kleczek, J. **NAŠE SLUNCE.** Albatros:
Praha 1984. 304 stran, 80 obr. Cena váz.
26 Kčs.

Také knížky, určené našim nejmladším čtenářům, kterí se začínají hlouběji zajímat o svět, jenž je obklopuje, si zaslouží, aby na ně byla upozorněna širší veřejnost. Platí to zvláště o dobrých publikacích, které lehkou, poutavou a názornou formou vysvětlují podstatu přírodních a fyzikálních jevů, důležitých pro život člověka. Mezi ně se v poslední době úspěšně zařadila i knížka Naše Slunce, vydaná v nakladatelství Albatros jako 59. svazek edice Oko.

Na 304 stranách kapesního formátu je v pěti tématických celicích shrnuto velké množství základních poznatků z přírodních věd. Vyprávění o Slunci, základním zdroji energie a prvními činiteli, podmínějícími a ovlivňujícími existenci života na naší planetě, slouží jako rámcem pro vysvětlení nejrůznějších základních přírodních jevů světa, který je kolem nás z nichž začnou část zajímají jevy elektrické.

O postupu „výkladu“ i o celkovém obsahu dávají představu námy jednotlivých kapitol a jejich sled: Co je třeba znát, abychom porozuměli Slunci (1), Slunce (2), Sluneční záření (3), Slunce a Země (4), Slunce ve službách člověka (5), Teplota ze Slunce (5A), Slunce v práci a v mechanické energii (5B), Elektrina ze slunečního záření (5C), Chemická energie (5D), Uskladnění sluneční energie (5E). Stručný souhrn nejdůležitějších ziskaných poznatků uvádí autor ještě v kapitole Závěr. Za touto kapitolou je zařazeno pět dodatků, obsahujících některé důležité číselné údaje pro čtenáře se zájmem o hloubší poznání. Jsou to např. údaje přesných časů východu a západu Slunce, definice několika základních jednotek fyzikálních veličin, údaje o rozměrech Slunce, jeho hmotnosti, teplotě apod. Poslední z dodatků se nazývá děti s možností dalšího rozšiřování jejich znalostí. Před závěrečným obsahem jsou ještě zařazeny vysvětlivky odborných slov a věcný rejstřík.

Jako jiné publikace edice Oko je i tato knížka opatřena množstvím názorných barevných obrázků a je zřejmé, že ji byla věnována velká pozornost po všech stránkách - jak co do zpracování a uspořádání látky, i formy výkladu, tak po stránce výtvarného zpracování.

Publikaci můžeme doporučit především těm čtenářům AR, kteří chtějí u svých dětí vzbudit zájem o základní otázky přírodních věd a tedy i elektriny, ať iž z hlediska energetiky, nebo stavby hmoty. Kniha je vhodná pro děti od věku 12 let. Poskytne jim mnoho základních vědomostí z dané oblasti a navíc jim umožní pochopit význam elektriny a energie pro svět, v němž žijí. JB

Bálek, M.; Kuchta, Z.; Lazar, M.: ELEKTRICKÁ ZAŘÍZENÍ PRO VÝBUŠNÁ PROSTŘEDÍ. SNTL: Praha 1985. 288 stran, 122 obr. 67 tabulek. Cena váz. 37 Kčs.

Pro značné výhody snadného přenosu, rozvodu i přeměny je dnes elektrická energie nejrozšířenějším druhem a projektanti se snaží využívat elektrických zařízení v maximální míře i v nebezpečném prostředí, např. v prostorách, kde hrozí nebezpečí požáru nebo výbuchu, vzníceného elektrickou jiskrou. Použitelnost elektrických zařízení v takových prostorách je vymezována jednak závaznými předpisy, jednak konstrukcí těchto zařízení. Zámerem autorů i vydavatelů (SNTL ve spolupráci s Českou státní pojišťovnou) této knihy bylo seznámit technickou veřejnost s aplikací platných předpisů, vydá-

<p>Radio (SSSR), č. 5/1985</p> <p>Metodika výpočtu článku při pro vysílač – Ke stavbě zařízení pro nejkratší vlnové délky – Získání podkladů pro spojení s využitím amatérských druzic – Tepelně kompenzovaný regulátor napětí – Regulátor teploty pro skladovací ovoce – Hledání závad v TVP-Lel, rozhlasový přijímač se sluneční baterií – Schéma výkonových nf zesilovačů – Milivoltmetr – Číslicová technika pro záznam a reprodukci zvuku – Šumové vlastnosti IO K548UN1 – Pro mládež: Hrací automat; Duplexní hovorové zařízení; Základy číslicové techniky; Generátor proměnného kmitočtu; Symboly součástek v elektronice – Ze zahraničních časopisů – Krátce o nových výrobcích.</p>	<p>Radio-amater (Jug.), č. 9/1984</p> <p>Zařízení pro svítelné efekty – KV transceiver QRP-80 (2) – Transverzor 432/28 MHz (3) – Vysílač VKV/FM pro síť dopravního rozhlasu – Indikátor ze svítivých diod s IO-UAA180 – Jaké máte ČSV? – Obvod pro tvarování impulsů – Anténa pro všechna pásmá KV – Radioamatérské rubriky.</p>	<p>Radioelektronik (PLR), č. 4/1985</p> <p>Z domova a ze zahraničí – Mikroelektronika, revoluce technická i společenská – Elektronický metronom – Přehled magnetofonových kazet světových firem – Bulharská elektronika na mezinárodním veletrhu v Plovdivu 1984 – Časový spínač pro fotoamatéry – Jednoduchý přijímač pro osm amatérských pásem – Přenosný rozhlasový přijímač Aneta R-605 – Radiomagnetofon RB3200 – Integrované obvody CEMI (12), série UCY75... – Funkce integrovaného stereofonního dekódéru UL1621N – Teplohmér se svítivými diodami – Slovnické techniky hi-fi a video (12) – Převodníky A/D (4) – Zdroj s autotransformátorem, umožňující kompenzovat kolísání síťového napětí.</p>
<p>Rádiotechnika (MLR), č. 5/1985</p> <p>Speciální IO (29), dekodéry pro dopravní rozhlas – Doplňující obvody k ZX Spectrum – Programování hudby s PC-1500 – Část schématu zapojení BTVP Elektronika C-430 – SSTV (5) – Ze sovětského časopisu Radio – Amatérská zapojení: Výkonový zesilovač k transceiveru s FM pro pásmo 2 m; Nácvík Morseovy abecedy s využitím magnetofonu; Mikrofonní zesilovač, modulátor a generátor 800 Hz pro vysílač SSB/CW – Videotechnika (18) – UKV anténa typu Domino – Radioaktivní záření a jeho využití v praxi (8) – Digitální hodiny s kukačkou – Konvertor OIRT/CCIR – Poplašné zařízení s IO 555 – Časové základny k TMS 1122 µP – Automatické zalévání květin – Ohývání vody v akváriu – Subminiaturní přijímač – Údaje o rozhlasových a TV vysílačích v MLR – Radiotechnika pro pionýry – Katalog IO: dvojitě tranzistory FET Texas Instruments TL 060, TL 070, TL 080 a TL 087.</p>	<p>Radio-amater (Jug.), č. 10/1984</p> <p>KV transceiver QRP-80 (3) – Širokopásmový výkonový multivibrator – Přesný stabilizátor napětí – Měnič ss 12 V/st 220 V s výkonem 300 W – „Okénkový“ komparátor – Výběr gramofonové přenosky a rámenka – Norma ke zkoušení tuneru FM – Vysílač VKV/FM pro síť dopravního rozhlasu (2) – Blikáč pro síťové napětí – PMP-11, první jugoslávský šestnáctibitový mikropočítač – Zprávy z IARU.</p>	<p>ELO (NSR), č. 6/1985</p> <p>Vlak v roce 2000 – Elektronická siréna – Invervalový spínač ke stěračům – Koncový zesilovač 70 W hi-fi – Měření malých střídavých napětí – Jak je utvořen televizní signál – Měřicí technika pro začátečníky (7) – Připojení Centronics – Příjem z druhého – Integrovaný obvod TDA3810 – Doplňek k soupravě pro dálkové řízení modelů – Test sedmi videokamer – Trikové záběry v televizi – Dynamické zkreslení v zesilovačích hi-fi – Technické novinky a zajímavosti – Tipy pro posluchače rozhlasu.</p>
<p>Radio-amater (Jug.), č. 7-8/1984</p> <p>KV transceiver QRP-80 – Komprezor/expander dynamiky – Jakostní výkonové nf zesilovače – AEG zkouší induktivní vývratní – Transverzor 432/28 MHz (2) – Generátor funkci – Koncový stupeň CW QRP pro 7 MHz – Videotext, nový komunikační prostředek – Ss a st voltmetr s IO CA3140 – Varikapy v přijímačích KV – Vlastnosti antény Quad (2) – Kodér pro dálkové ovládání – Snímač ke kytare – Řízené polohy slunečních kolektorů – Několik užitečných zapojení.</p>	<p>Radio-amater (Jug.), č. 11/1984</p> <p>Ozvučovací zařízení s výkonem 150 W – Obvod pro automatické odpojování – Měnič ss 12 V/st 220 V s výkonem 100 W – KV transceiver QRP-80 (4) – Halív jev – Filtr pro potlačení rušivých složek v pásmu mF TVP ve spektru, vyzařovaném amatérskými vysílači – Modifikace zařízení pro VKV – Indikátor odporu se svítivou diodou – Směšovač UKV – Rozšíření směru otáčení s optickým čidlem – Indikátor logických stavů pro pouzdra DIL 16 – Nabíječ akumulátorů NiCd – Radioamatérské rubriky.</p>	<p>Elektronikschau (Rak.), č. 5/1985</p> <p>Aktuality z elektroniky – Rozmístění součástek na deskách s plošnými spoji pomocí počítače – Logické analýzátory – Elektronický řízený prájedka poslední generace – Z návštěvy v americkém „křemíkovém“ údolí – Dielektrika kondenzátorů – Měření amplitudy, fáze a impedance – Operační zesilovače typu DIFET – Digitální multimetr Keithley 193 – Analyzátor VS-3310A – Regulovatelný generátor impulsového proudu trojúhelníkového průběhu – Nové součástky a přístroje.</p>

ných v ČSSR a s obdobnými předpisy mezinárodními. V oblasti konstrukce zařízení pak poskytuje publikace přehled o nejhodnějších druzích elektrických zařízení pro jednotlivá prostředí, dostupných v ČSSR, at již z domácí produkce, či dovozech.

Obsah knihy je členěn tak, že např. údaje o přepisech nebo zase údaje o konstrukčním řešení nevybušných přístrojů apod. tvorí ucelené kapitoly tak, aby zájemci z různých zájmových skupin čtenářů měli k dispozici vhodně tématické celky. V první kapitole jsou shrnutы fyzikálně chemické základy

definovány pojmy, vysvětleny fyzikální zákony, které se uplatňují u výbušných systémů při jejich vzniku nebo výbuchu. Druhá kapitola se týká základních předpisů pro nevybušná elektrická zařízení (přehled předpisů a nařízení, volba pracovních podmínek, volba vhodného elektrického zařízení). Ve třetí kapitole jsou popisována základní provedení nevybušných elektrických zařízení, zejména různé druhy závěrů. Ve čtvrté kapitole vysvětlují autori princip jiskrové bezpečnostních zařízení, v páté popisují jejich provedení a konstrukci. Konkrétní příklady vyráběných a používaných jiskrové bezpečnostních zařízení obsahuje kapitola šestá. Základní aplikace nevybušných závěrů a zajištěného provedení jsou popsány v kapitolách sedmá a osmá. Především pracovníkům údržby je určena předposlední, devátá kapitola s názvem Použití a údržba nevybušných zařízení.

Desátá kapitola je věnována zkoušení a schvalování nevybušných elektrických zařízení. Závěrečný seznam literatury obsahuje 83 tituly různých publikací a 13 označení platných norm ČSN. Slovní výklad doplňuje řada tabulek s možností praktických údajů fyzikálních konstant různých látek, fotografie používaných elektrických zařízení a další obrázky. V úvodní části knihy autoři výslovně upozorňují, že i když je v knize uvedena řada požadavků příslušných ČSN a předpisů na elektrická nevybušná zařízení, kniha v žádném případě tyto normy a předpisy nenahrazuje.

Publikace je určena projektantům a technikům, zabývajícím se návrhy elektrických zařízení pro nebezpečné prostředí, investorům a uživatelům těchto zařízení. Mohou ji použít i revizní technici elektrických zařízení a kvalifikovaní montéři. – JB-