	Exam Preperation Session
	Lecture 1:
	- Important: multivariate guassian - hnow difference normal & gradient descent
	to question: If I swap those paramotes can I Still
	b when can you not use normal equation. If
0	normal equations o good, why do we still look at Gradient Descent.
	- regularization cnot very important but know)
	- softmax regression and how you use it! Le when k-binary classifier, whats the difference
	- recommender systems (!) 1- recommender systems (!)
O	know whats going on lalgorithm and know the computations.
	e.g. apply the algorithm to classify you really need to know algorithm well.
	- NNS
1	La explainability
-	Lecture 2: Boltzmann + Deep Learning - KL-divergence and cost function
0	- Variational Autoencoders > Latent Space C!) - know the algorithm
()	- vanishing gradient problem for what happens? what causes this? know it very well
	- RNN is not important, but whow when to use this.
0	- check self-astention
•	- hopfield net not really in exam - how to calc bottemann, the energy is important,
	how you carculate the probabilities. Why is derivative simple?
1	- kurt is fan at hinton. Positive & Negative phase, understand this dooply. Slide 20 8 29
©	

		Previous	Exam	20	20-2021	
		Q.a. Ropreser	ntational I	Ssues		
		We want to				h properties
	0	ASSUMPTIONS	S: e.g. who	is traj. sn	apshot is r	epresented_
	0	T will was no			20224	
	0	I will use m	IMEKT TURKU		resent thus	problem:
	•	Particle	momentum		traj snapshot	Label
			5	3* 1 Ø 0.5	[%]	intersting
		l pu q	1 50	0.5	1)	not
	0	e ps y	0.01	50		pristeres and
	•	a learning e				
-	-0-	BYCAVC	MI C RR			
-	-0-	Why use mu	Uti- Instar	uci In r	nulti-insta	NO I
4	(0	can represent	nt muetiple	e objects	attached	40 OCC
	()	per particl	le chared intarion wh	in a colli	sion. If	ve move
1	()	-	the ability			in i
—	0	-	using RR		•	
	-0	but not r	vocassary +	TUN SOILL	JAWN COI	N.D. C.
2	0					, i
	()					

	F. 1	®	
7	OS: CUE,2	0	
The second		7	
	as Explain why how a shallower notwork		
	can perform bother in this learning setting.	<u> </u>	_6
	A shallower notwork moons there is		
	the latent space bigger, es so we have		
	this can perform better.	0	
	b) would you use this in the colorisation task	0-	
	No, as you want it to generalise over	-0-	
	features for colorization we don't want specific dotails of images I ar	0_	_62
		9	
	C) how can we increase the reconstruction/coloritation	H'm	E-
	C) 1100 Can Co 1100000 110 16(0124110401) (010) 140	0	==
	More channels, smaller kernels.	O	- 2-
	Q3: Kerner Design	0	
		0	
	So our main issue is categorical data? so we can represent male female like 0,2 and		
	the hair colors on a numerical scale with a black and max white and scale on clarkness.	0	
	We have to defens a distance metric	9	-
	1. transfor to numerical	9	
	2. transpose to uxy mourious as we have	9_	
	4 features. So it against its transpose	9	
		0	1

	0	
	9	Olive Salvana Casa
		QU: Softmax 8 SSD
		a) Do you think using an SSD loss for an NN with softmax final layer is possible?
3	0	Softmax outputs a probability for each
		class. SSD uses the & selected class. Without adaptations, this is not possible. So we compare
	0	a probability and a ground truth. We could argmax our softmax but then its not
		to be we can change really softmax anymore.
I-		c) Yes, you could but I'm not sure at all th
3	O	C) Yes, you could but I'm not sure at all the You measure the probability error. You could, but its weird But maybe not.
	0	
1		
3-		
7	-0-	
7	0	
1	(0	
-		
<u> </u>	-	
-		
	_1	
	0	
,	4	