TDT4136 Logic And Reasoning Systems Exercise 4

 $\begin{array}{c} {\rm Stian~Hvatum~(hvatum)} \\ {\rm MTDT} \end{array}$

2. november 2011

Innhold

_	Task 1					
	1.1		1			
	1.2		1			
2]		Task 2				
		Kode				
	2.2	Teori	2			
		2.2.1 Deloppgave 2d)	2			

$1 \quad Task 1$

```
The following Prolog code defines a predicate p. p(X, [X|Y]). p(X, [Y|Z]) : -p(X, Z).
```

1.1

Show the proof trees of the queries ?-p(A,[1,2,3]). ?-p(2,[1,A,4]).

1.2

prepresenterer member(element, list), funksjonen sjekker om A er element i lista.

2 Task 2

2.1 Kode

Jeg har brukt insert fra forrige øving.

```
%a)
sorted([A,B|C]):-(A < B), sorted([B|C]).
sorted ([A,B]): - (A < B).
\%b)
perm(L,L).
\operatorname{perm}(L,M) :- L = [H | L1], \operatorname{perm}(L1,L2), \operatorname{insert}(H,L2,M).
% fra tidligere
                     ving
insert(X, List1, List2):-List2 = [X|List1]
                             [H|T] = List1,
                             List2 = [H|A].
                             insert (X,T,A).
%c)
slow_sort(L,M)
                             perm (L,M),
                             sorted (M).
%e)
insert_sort([],[]).
                             smallest(L,S), delete(S,L,L2),
insert sort (L,M)
                             insert sort (L2, M1), M=[S|M1].
smallest([S],S).
smallest ([A,B],S)
                             A = < B, S = A | B < A, S = B.
smallest([A,B|T],S):-
                             smallest ([A,B],S1),
                             smallest ([S1|T],S).
delete(X, L1, L2)
                             insert(X, L2, L1).
```

2.2 Teori

2.2.1 Deloppgave 2d)

Slow_sort finner alle permutasjoner av lista, og sjekker om de er sorterte. Å sjekke om en vilkårlig liste er sortert, tar O(N) tid. Å finne permutasjoner alle N! permutasjonene tar O(N!). Vi må for hver permutasjon sjekke om denne er sortert, til sammen gir dette en kompleksitet på $O(N \cdot N!)$.