3. Một dãy số nguyên dương a₁,a₂,... được gọi là tốt nếu:

a₁ là số chính phương

Với mọi số nguyên dương n, a_n là số nguyên dương nhỏ nhất sao cho $na_1+(n-1)a_2+(n-2)a_3+...+a_n$ là số chính phương.

Chứng minh rằng tồn tại số nguyên dương N sao cho a_n=N với mọi n đủ lớn

Đặt
$$na_1+(n-1)a_2+(n-2)a_3+...+a_n=u_n^2$$

Khi này
$$u_{n+1}^2 - u_n^2 = a_1 + a_2 + ... + a_{n+1}$$

Khi này $a_{n+1}=u_{n+1}^2-2u_n^2+u_{n-1}^2$, khi này theo định nghĩa của a_n thì u_{n+1} là số nguyên dương nhỏ nhất sao cho $u_{n+1}^2-2u_n^2+u_{n-1}^2>0$.

Ta để ý rằng chỉ cần cm là dãy u_n kể từ lúc nào đó sẽ là cấp số cộng là được.

Xét $u_{n+1}^2-u_n^2>u_{n-1}^2$ khi này ta sẽ nhìn vào $u_{n+1}-u_n$, ta thử cm dãy này bị chặn xem sao, sau đó cm nó là hằng. Tuy nhiên, ta sẽ để ý sau khi thử 1 vài giá trị thì dãy $u_{n+1}-u_n$ thậm chí là dãy giảm. Ta sẽ cm điều này.

Xét $(2u_n-u_{n-1})^2$ - $u_n^2=(u_n-u_{n-1})(2u_n)$ nên nó $>u_n^2-u_{n-1}^2$, mà theo định nghĩa của u_{n+1} thì nó là số nhỏ nhất để $u_{n+1}^2-u_n^2>u_{n-1}^2$ do đó nó sẽ ko quá $2u_n-u_{n-1}$

Vậy là ta đã cm đc dãy u_{n+1} - u_n là dãy giảm nên từ 1 lúc nào đó nó sẽ là dãy hằng hay tồn tại C,D để u_n =Cn+D với n đủ lớn, từ đó dễ thấy dãy a_n kể từ lúc nào đó sẽ là hằng số hay ta có Φ PCM.