Electricity and Magnetism

- •Physics 259 L02
 - •Lecture 3

Section 21.1

What we know

- There are positive and negative charges
- Like charges repel each other
- Opposite charges attract each other
- The force between charged objects varies with distance
- The force between charged objects depends on the amount of charge

HOW CAN WE QUANTIFY THIS?

Coulomb's Law

Electric field decreases with distance

The force that describes this behavior is known as
 Coulomb's law

Coulomb's Law

Describes the forces that charged **particles** exert on each other:

point charges

The forces always act along the line joining the charges.

Two Ways of Writing Coulomb's Law

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = K \frac{|q_1||q_2|}{r^2}$$

$$K = 8.99 \times 10^9 \frac{N \cdot m^2}{C^2}$$

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{1}{4\pi\varepsilon_0} \frac{|q_1||q_2|}{r^2}$$

$$\varepsilon_0 = \frac{1}{4\pi K} = 8.85 \times 10^{12} \, \frac{C^2}{N \cdot m^2}$$

K = electrostatic
constant

 ε_0 = permittivity of free space

Coulomb's Law

How to compute the magnitude and direction properly?

F has both magnitude and direction

$$\left| \vec{F}_{21} \right| = K \frac{|q_1||q_2|}{r_{21}^2}$$
Constant

- 1) Find the distance between the charges.
- 2) Draw a line passing through the two charges.
- 3) The force on q_1 due to q_2 has its tail at location 1 and points either towards q_2 or away from q_2 .
- 4) Pick the direction according to basic rule of charges:
 Like charges repel, Opposite charges attract

SI unit of charge: the coulomb (C)

Fundamental charge:

the smallest possible amount of free charge

= charge of one proton:

$$e = 1.60 \times 10^{-19} C$$

Then 1 C is approximately 6.25 x 10¹⁸ protons.

1
$$\mu C = 1$$
 microcoulomb = $10^{-6} C$
1 $nC = 1$ nanocoulomb = $10^{-9} C$

1 Coulomb is a great deal of charge

An average bolt of lightning

charge = 5 Coulombs current = 50,000 Amperes power = 500,000,000 Joules

so all the electrons in a copper penny have a total charge equivalent to 30,000 lightning bolts.

A single electron has 1.6E-19 Coulombs of charge.

Capacitors in circuits typically hold charges on the order of 10E-9 to 10E-3 Coulombs.

All materials contain very large numbers of charges, but they are usually in nearly perfect balance (N = N).

Scalars vs. Vectors

A **scalar** is any physical quantity that can be described by a **single number**.

> The temperature in the room is 20°C.

A **vector** is a physical quantity that has both a magnitude and a direction.

➤ Edmonton is 300 km north of Calgary.

Vector Addition

Adding vectors requires taking not only their magnitudes into account, but also their directions.

To find the sum of two vectors:

- Draw the first vector.
- Draw the second vector with the tail starting where the tip of the first vector ended.
- Draw a final vector from the tail of the first vector to the tip of the second vector.

Vector Components

Scalars are usually easier to use than vectors. So let's replace our vectors with scalar quantities called vector components.

$$\vec{a} = a_x \hat{i} + a_y \hat{j}$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2}$$

magnitude is always positive

Unit vectors

The unit vectors point along axes.

Unit→ No unit
Size→ I Size→ Direction→ has direction

Finding Components of Vectors

$$A^2 = A_x^2 + A_y^2$$

$$\theta = \tan^{-1} \left| \frac{A_y}{A_x} \right|$$

$$|\vec{A}| = \int A_{\infty}^{2} + A_{y}^{2} = A$$

$$\overrightarrow{A} = A_{n} i + Ay j = \overrightarrow{Acose} i + \overrightarrow{AsinB} j$$

Vector Addition using Components

$$\vec{r}_3 = \vec{r}_1 + \vec{r}_2$$

$$= (r_{1n}i + r_{1y}i) + (r_{2n}i + r_{2y}i)$$

$$= (r_{1n} + r_{2n})i + (r_{1y} + r_{2y})i$$

$$Y = Y_{3x}$$
: + Y_{3y} :

 $Y = Y_{3x}$: + Y_{3y} :

 $Y_{3x} + Y_{3y}$

Dot Product of Two Vectors

Scalar
$$\vec{A} \cdot \vec{B} = AB \cos \alpha$$

$$\vec{A} \cdot \vec{B} = AB \cos \alpha$$

$$\vec{A} \cdot \vec{B} = AB$$

$$\vec{A} \cdot \vec{B} = AB$$

$$\vec{A} \cdot \vec{B} = 0$$

$$\vec{A} \cdot \vec{B} = 0$$

î.i.-111111 (cs(0)= î. 5 = 11113 (5490) = 0

Dot Product of Two Vectors

$$\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j}) \cdot (B_x \hat{i} + B_y \hat{j})$$

$$= A_x B_x \hat{i} \cdot \hat{i} + A_x B_y \hat{i} \cdot \hat{j} + A_y B_x \hat{j} \cdot \hat{i} + A_y B_y \hat{j} \cdot \hat{j}$$

$$\vec{A} = A_x B_x \hat{i} \cdot \hat{i} + A_x B_y \hat{i} \cdot \hat{j} + A_y B_x \hat{j} \cdot \hat{i} + A_y B_y \hat{j} \cdot \hat{j}$$

$$\vec{A} = A_x B_x \hat{i} \cdot \hat{i} + A_x B_y \hat{i} \cdot \hat{j} + A_y B_x \hat{j} \cdot \hat{j}$$

$$\vec{A} = A_x B_x \hat{i} \cdot \hat{i} + A_x B_y \hat{i} \cdot \hat{j} + A_y B_y \hat{j} \cdot \hat{j}$$

$$\vec{A} = A_x B_x \hat{i} \cdot \hat{i} + A_y B_y \hat{j} \cdot \hat{j}$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y$$

Superposition Principle

The total force on q_3 is the vector sum of the individual forces:

$$\vec{F}_{on 3} = \vec{F}_{1 on 3} + \vec{F}_{2 on 3}$$

TOPHAT QUESTION

Which is the direction of the net force on the charge at the top?

E. None of these.

This section we talked about:

Chapter 21.1

See you on Friday

