.

包含关系

幂算

集合论基础

集合间关系

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016

集合论基础

Lijie W.

空集

全!

相等天

包含关:

幂集

Definition

不含任何元素的集合叫做空集 $(empty \ set)$,记作 \varnothing .

集合论基础

Lijie W.

空集

相等学3

包含关系

幂集

Definition

不含任何元素的集合叫做空集 $(empty \ set)$, 记作 \varnothing .

空集可以符号化为 $\emptyset = \{x | x \neq x\}.$

Example

集合论基础

Lijie W.

空集

扣竿子

包含关系

幂集

Definition

不含任何元素的集合叫做空集(empty set), 记作 \varnothing .

空集可以符号化为 $\emptyset = \{x | x \neq x\}.$

Example

集合论基础

Lijie W.

空集

相等关系

包含关系

幂集

Definition

不含任何元素的集合叫做空集 $(empty \ set)$,记作 \varnothing .

空集可以符号化为 $\emptyset = \{x | x \neq x\}.$

Example

- $|\emptyset| = 0, |\{\emptyset\}| = 1$

集合论基础

Lijie W.

空集

相等关系

包含关系

幂集

Definition

不含任何元素的集合叫做空集 $(empty \ set)$,记作 \varnothing .

空集可以符号化为 $\emptyset = \{x | x \neq x\}.$

Example

- $|\emptyset| = 0, |\{\emptyset\}| = 1$

不含任何元素的集合叫做空集 $(empty \ set)$,记作 \varnothing .

空集可以符号化为 $\emptyset = \{x | x \neq x\}.$

Example

- $|\emptyset| = 0, |\{\emptyset\}| = 1$

空集是绝对唯一的。

集合论基础

Lijie W.

空第

全集

相等关3

包含关系

Definition

针对一个具体范围,我们考虑的所有对象的集合叫做全集(universal set),记作 U 或 E. 在文氏图一般使用方形表示全集。

集合论基础

Liiie W.

空集

全集

包含关系

Definition

针对一个具体范围,我们考虑的所有对象的集合叫做全集(universal set),记作 U 或 E. 在文氏图一般使用方形表示全集。

Example

集合论基础

Liiie W.

全集

相等关系

包含关系

幂集

Definition

针对一个具体范围,我们考虑的所有对象的集合叫做全集(universal set),记作 U 或 E. 在文氏图一般使用方形表示全集。

Example

• 在立体几何中,全集是由空间的全体点组成的;

集合论基础

Liiie W.

空集

全集 相等关系

包含关系

幂集

Definition

针对一个具体范围,我们考虑的所有对象的集合叫做全集(universal set),记作 U 或 E. 在文氏图一般使用方形表示全集。

Example

- 在立体几何中,全集是由空间的全体点组成的;
- 在我国的人口普查中,全集是由我国所有人组成的。

集合论基础

Lijie W.

空集

全集 相等关系

包含关系

Definition

针对一个具体范围,我们考虑的所有对象的集合叫做全集(universal set),记作 U 或 E. 在文氏图一般使用方形表示全集。

Example

- 在立体几何中,全集是由空间的全体点组成的;
- 在我国的人口普查中,全集是由我国所有人组成的。

全集是相对唯一的。

集合论基础

Lijie W.

空第

土朱

仙寺大:

包含关系

冥生

元素的基本特性

• 集合中的元素是无序的。 {1,2,3,4} 与 {2,3,1,4} 相同。

集合论基础

Lijie W.

全)

подух

包含天新

幂集

元素的基本特性

- 集合中的元素是无序的。 {1,2,3,4} 与 {2,3,1,4} 相同。
- 集合中的元素是不同的。{1,2,2,3,4,3,4,2} 与 {1,2,3,4} 相同。

集合论基础

Lijie W.

Y;

相等关系

包含关系

幂集

元素的基本特性

- 集合中的元素是无序的。 {1,2,3,4} 与 {2,3,1,4} 相同。
- 集合中的元素是不同的。{1,2,2,3,4,3,4,2} 与 {1,2,3,4} 相同。

citing example

设 $E = \{x | (x-1)(x-2)(x-3) = 0, x \in R\}, F = \{x | x \in Z^+, x^2 < 12\},$ 可见 E和 F 具有相同的元素 $\{1, 2, 3\}$,此时称两个集合相等。

集合论基础

Lijie W.

空算

相等关系

....

包含关系

幂集

元素的基本特性

- 集合中的元素是无序的。 {1,2,3,4} 与 {2,3,1,4} 相同。
- 集合中的元素是不同的。{1,2,2,3,4,3,4,2} 与 {1,2,3,4} 相同。

citing example

设 $E = \{x | (x-1)(x-2)(x-3) = 0, x \in R\}, F = \{x | x \in Z^+, x^2 < 12\},$ 可见 E和 F 具有相同的元素 $\{1, 2, 3\}$,此时称两个集合相等。

Theorem (外延性原理)

两个集合 A 和 B 相等,当且仅当它们的元素完全相同,记为 A=B, 否则 A 和 B 不相等,记为 $A \neq B$.

集合论基础

Lijie W.

空

全!

相等关

包含关系

幂集

citing example

设 $A = \{BASIC, PASCAL, ADA\}, B = \{ADA, PASCAL\},$ 此时 A 中含有 B 中所有的元素,这种情况称为A 包含 B.

集合论基础

Lijie W.

空!

包含关系

幂集

citing example

设 $A = \{BASIC, PASCAL, ADA\}, B = \{ADA, PASCAL\},$ 此时 A 中含有 B 中所有的元素,这种情况称为A 包含 B.

Definition

设 A, B 是任意两个集合,

集合论基础

Lijie W.

全界

相等关

包含关系

幂集

citing example

设 $A = \{BASIC, PASCAL, ADA\}, B = \{ADA, PASCAL\},$ 此时 A 中含有 B 中所有的元素,这种情况称为A 包含 B.

Definition

设 A, B 是任意两个集合,

• 如果 B 的每个元素都是 A 中的元素,则称 B 是 A 的子集,也称做 B 被 A 包含或 A 包含 B,记作 $B \subseteq A$,否则记作 $B \nsubseteq A$.

集合论基础

Lijie W.

全集

相等关系

包含关系

幂集

citing example

设 $A = \{BASIC, PASCAL, ADA\}, B = \{ADA, PASCAL\},$ 此时 A 中含有 B 中所有的元素,这种情况称为A 包含 B.

Definition

设 A, B 是任意两个集合,

- 如果 B 的每个元素都是 A 中的元素,则称 B 是 A 的子集,也称做 B 被 A 包含或 A 包含 B,记作 $B \subseteq A$,否则记作 $B \nsubseteq A$.
- 如果 $B \subseteq A$ 并且 $A \neq B$, 则称 $B \neq A$ 的真子集, 也称做B 被 A 真包含或A 真包含 B, 记作 $B \subset A$, 否则记作 $B \not\subset A$.

集合论基础

Lijie W.

全界

相等关系

包含关系

幂集

citing example

设 $A = \{BASIC, PASCAL, ADA\}, B = \{ADA, PASCAL\},$ 此时 A 中含有 B 中所有的元素,这种情况称为A 包含 B.

Definition

设 A, B 是任意两个集合,

- 如果 B 的每个元素都是 A 中的元素,则称 B 是 A 的子集,也称做 B 被 A 包含或 A 包含 B,记作 $B \subseteq A$,否则记作 $B \nsubseteq A$.
- 如果 $B \subseteq A$ 并且 $A \neq B$, 则称 $B \neq A$ 的真子集, 也称做B 被 A 真包含或A 真包含 B, 记作 $B \subset A$, 否则记作 $B \not\subset A$.

" \subseteq " 关系的数学语言描述为: $B \subseteq A \Leftrightarrow$ 对 $\forall x$, 如果 $x \in B$, 则 $x \in A$.

合论基础

Lijie W.

空生

全组

相等关

句今关系

幂集

合论基础

Lijie W.

空生

全组

相等关

句今关系

幂集

合论基础

Lijie W.

空集

全集

坦美大3

包含关系

幂集

合论基础

Lijie W.

空集

全集

相等半3

包含关系

幂集

由子集定义可有

合论基础

Lijie W.

空集

全集

相等关系

包含关系

冥生

由子集定义可有

合论基础

Lijie W.

空集

全集

相等关系

包含关系

幂集

由子集定义可有

- arrow $A \subseteq A$

文氏图: $B \subseteq A$

合论基础

Lijie W.

空集

王杲

相等关系

包含关系

企集

A B

由子集定义可有

- \bigcirc $\varnothing \subseteq A$
- arrow $A \subseteq A$

Example

已知 $A = \{1, 2, 3, 4\}, B = \{1, 2, 4\}, C = \{2, 3\}, D = \{3, 2\}$,可见

合论基础

Liiie W.

空集

相等天系

包含关系

文氏图:*B* ⊆ *A*

由子集定义可有

- \bigcirc $\varnothing \subseteq A$
- $a \subseteq A$

Example

已知 $A = \{1, 2, 3, 4\}, B = \{1, 2, 4\}, C = \{2, 3\}, D = \{3, 2\}$,可见

 $\bullet A \subseteq A, B \subseteq A, C \subseteq A, D \subseteq A,$

合论基础

Liiie W.

空集

土朱

相等关系

包含关系

文氏图:*B* ⊆ *A*

由子集定义可有

- \bigcirc $\varnothing \subseteq A$
- $A \subseteq A$

Example

已知 $A = \{1, 2, 3, 4\}, B = \{1, 2, 4\}, C = \{2, 3\}, D = \{3, 2\}$,可见

- $\bullet A \subseteq A, B \subseteq A, C \subseteq A, D \subseteq A,$
- ② $C \subseteq D, D \subseteq C$,同时,C = D

证明集合相等

集合论基础

Lijie W.

空事

王杲

田寺大

包含关系

惡集

Theorem

设 A, B 为任意两个集合,则 $A = B \Leftrightarrow A \subseteq B$ 并且 $B \subseteq A$

证明集合相等

集合论基础

Liiie W

エя

相等大;

包含关系

Theorem.

设 A, B 为任意两个集合,则 $A = B \Leftrightarrow A \subseteq B$ 并且 $B \subseteq A$

★★★ 上面的定理非常重要,这是证明集合相等的一种非常有效的方式。

证明集合相等

集合论基础

Liiie W.

包含关系

也古大

幂集

Theorem

设 A, B 为任意两个集合,则 $A = B \Leftrightarrow A \subset B$ 并且 $B \subset A$

★★★ 上面的定理非常重要,这是证明集合相等的一种非常有效的方式。

证明框架

证明:

- **①** 首先证明 $A \subseteq B$: $\forall x \in A, \dots, x \in B$. $\therefore A \subseteq B$.
- ② 其次证明 $B \subseteq A$: $\forall x \in B, \dots, x \in A$. $\therefore B \subseteq A$.

由以上两点,可知 A=B。

集合论基础

Lijie W.

空

全類

.....

Example

设 $A = \{a, b, c\}$, 求出 A 的所有子集。

 \mathbf{m} :由于 |A|=3,因而 A的子集可能包含的元素个数 m=0,1,2,3

集合论基础

Lijie W.

相等关

包含关系

幂集

Example

设 $A = \{a, b, c\}$, 求出 A 的所有子集。

 \mathbf{m} :由于 |A|=3,因而 A的子集可能包含的元素个数 m=0,1,2,3

• m=0, 即没有任何元素 , 也就是空集 \varnothing

集合论基础

Liiie W.

全佳

相等关系

包含关系

Example

设 $A = \{a, b, c\}$, 求出 A 的所有子集。

 \mathbf{m} :由于 |A|=3,因而 A的子集可能包含的元素个数 m=0,1,2,3

- m = 0, 即没有任何元素,也就是空集 ∅
- m=1, 从 A 中任取 1 个元素,则有 $C_3^1=3$ 个: $\{a\},\{b\},\{c\}$

集合论基础

Liiie W.

全集

相等关系

包含关系

幂集

Example

设 $A = \{a, b, c\}$, 求出 A 的所有子集。

 \mathbf{m} :由于 |A|=3,因而 A的子集可能包含的元素个数 m=0,1,2,3

- m = 0, 即没有任何元素,也就是空集 ∅
- m = 1, 从 A 中任取 1 个元素 , 则有 $C_3^1 = 3$ 个: $\{a\}, \{b\}, \{c\}$
- m = 2, 从 A 中任取 2 个元素 , 则有 $C_3^2 = 3$ 个: $\{a,b\},\{b,c\},\{a,c\}$

包含关系

Example

设 $A = \{a, b, c\}$, 求出 A 的所有子集。

解:由于 |A|=3,因而 A的子集可能包含的元素个数 m=0,1,2,3

- m = 0. 即没有任何元素,也就是空集 ∅
- m = 1, 从 A 中任取 1 个元素,则有 $C_3^1 = 3$ 个: $\{a\}, \{b\}, \{c\}$
- m = 2, 从 A 中任取 2 个元素,则有 $C_3^2 = 3$ 个: $\{a, b\}, \{b, c\}, \{a, c\}$
- m = 3, 从 A 中任取 3 个元素 , 则有 $C_3^3 = 1$ 个 : $\{a, b, c\}$

包含关系

Example

设 $A = \{a, b, c\}$, 求出 A 的所有子集。

解:由于 |A|=3,因而 A的子集可能包含的元素个数 m=0,1,2,3

- m = 0. 即没有任何元素,也就是空集 ∅
- m = 1, 从 A 中任取 1 个元素 , 则有 $C_3^1 = 3$ 个 : $\{a\}, \{b\}, \{c\}$
- m=2, 从 A 中任取 2 个元素 , 则有 $C_3^2=3$ 个 : $\{a,b\},\{b,c\},\{a,c\}$
- m = 3, 从 A 中任取 3 个元素 , 则有 $C_3^3 = 1$ 个 : $\{a, b, c\}$

以上 8 个集合就是 A 的所有子集。

集合论基础

Lijie W.

全集 相等关

包含关系

幕集

Example

设 $A = \{a, b, c\}$, 求出 A 的所有子集。

 \mathbf{M} :由于 |A|=3,因而 A的子集可能包含的元素个数 m=0,1,2,3

- m = 0, 即没有任何元素, 也就是空集 Ø
- m = 1, 从 A 中任取 1 个元素 , 则有 $C_3^1 = 3$ 个: $\{a\}, \{b\}, \{c\}$
- m = 2, 从 A 中任取 2 个元素 , 则有 $C_3^2 = 3$ 个: $\{a, b\}, \{b, c\}, \{a, c\}$
- m = 3, 从 A 中任取 3 个元素 , 则有 $C_3^3 = 1$ 个 : $\{a, b, c\}$

以上 8 个集合就是 A 的所有子集。

★ 推广: 对于任意 n 元集合 A , 它的 m 元 $(0 \le m \le n)$ 子集个数为 C_n^m 个, 所以不同的子集个数为: $C_n^0 + C_n^1 + \cdots + C_n^n = (1+1)^n = 2^n$.

集合论基础

Lijie W.

Ŧ;

王昇

怕寺大;

包含关

幂集

Definition

设 A 为任意集合,把 A 的所有不同子集构成的集合叫做 A 的幂集(power set), 记作 P(A),即,

$$P(A) = \{x | x \subseteq A\}$$

集合论基础

Lijie W

相等关系

包含关系

哀集

Definition

设 A 为任意集合,把 A 的所有不同子集构成的集合叫做 A 的幂集(power set), 记作 P(A),即,

$$P(A) = \{x | x \subseteq A\}$$

Example

设 $A = \{a, b, c\}$, $B = \{a, \{b, c\}\}$, 求他们的幂集 P(A) 和 P(B)。

$$\mathbf{M}: P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}\}$$

$$P(B) = \left\{ \varnothing, \{a\}, \{\{b,c\}\}, \{a, \{b,c\}\} \right\}$$

集合论基础

Lijie W

扣箅头3

包含关系

哀集

Definition

设 A 为任意集合,把 A 的所有不同子集构成的集合叫做 A 的幂集(power set), 记作 P(A),即,

$$P(A) = \{x | x \subseteq A\}$$

Example

设 $A = \{a, b, c\}$, $B = \{a, \{b, c\}\}$, 求他们的幂集 P(A) 和 P(B)。

解:
$$P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$$

$$P(B) = \left\{ \varnothing, \{a\}, \{\{b, c\}\}, \{a, \{b, c\}\} \right\}$$

说明

幂集也叫做集族或集合的集合,对集族的研究在数学方面、知识库和表处理语言以及人工智能等方面都有十分重要的意义。

集合论基础

Lijie W

相等关系

包含关系

哀集

Definition

设 A 为任意集合,把 A 的所有不同子集构成的集合叫做 A 的幂集(power set), 记作 P(A),即,

$$P(A) = \{x | x \subseteq A\}$$

$$x \in P(A) \Leftrightarrow x \subseteq A$$

Example

设 $A = \{a, b, c\}$, $B = \{a, \{b, c\}\}$, 求他们的幂集 P(A) 和 P(B)。

解:
$$P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$$

$$P(B) = \left\{ \varnothing, \{a\}, \{\{b,c\}\}, \{a, \{b,c\}\} \right\}$$

说明

幂集也叫做集族或集合的集合,对集族的研究在数学方面、知识库和表处理语言以及人工智能等方面都有十分重要的意义。

合论基础

Lijie W.

空集

也占大

惡集

THE END, THANKS!