Chapter 6: Information channel

Presented notions

- Physical medium to send information from transmitter to receiver
- Channel has additive noise which changes the propagated signal
- Channel has different types:
 - · Discrete channel
 - · Memoryless channel
 - · Memory channel
 - · Binary channel
 - · Continuous channel
- Input source, noise source, output are considered random variables
 - Output = Input + Noise

6.1. Channel model

- Discrete channel: discrete input signal and discrete output signal
 - · Channel model:
 - Random variable represents discrete source
 - $X = \{x1, x2,...xn\}$
 - $P(X) = \{P(x1), P(x2),...,P(xn)\}$
 - · Alphabet of output
 - Y = {y1,y2,...,yn}
 - [y ±, y 2,..., y 11]
 - Yi = xj (alphabet of output is identical to alphabet of input)
 - Generally, number of inputs (r) is different with number of outputs (s).
 - This course only focuses: r = s = n

Discrete channel:

- This course only focus on memoryless channel
- Matrix channel for memoryless channel: consists of all transfer probabilities
 - P(Y|X) = {P(yj|xi)}

$$\begin{bmatrix} P(y_1|x_1) & P(y_2|x_1) & \dots & P(y_n|x_1) \\ P(y_1|x_2) & P(y_2|x_2) & \dots & P(y_n|x_2) \\ \dots & \dots & \dots & \dots \\ P(y_1|x_n) & P(y_2|x_n) & \dots & P(y_n|x_n) \end{bmatrix}$$

- · Elements in main diagonal is correct probability
- Elements outside off main diagonal is wrong probability
- If all correct probabilities are equal, all wrong probabilities are equal: uniform channel
- Sum of all elements in one row = 1
- · Identity matrix (unit matrix): transmission in channel not wrong
- · If all elements are equal, the channel wrong: output independents with input
- Elements of the matrix are symmetric across the main diagonal (symmetric matrix): symmetric channel

- · Transition diagram of the discrete channel:
 - r input points. Each point represents a input signal
 - s output points. Each point represents a output signal
 - Connection line between a input point and a output point represent transfer probability

- Discrete Binary Symmetric Channel (BSC)
 - Binary channel: input signal and output signal are binary
 - For example: 0 and 1
 - Symmetric channel: The channel matrix is symmetric across the main diagonal
 - Channel matrix: contain transmission probability P(y/x)
 - P(y|x): conditional probability of receiving output signal y when input signal x is sent
- Binary symmetric channel = binary channel + symmetric channel
 - · Example: channel matrix of one BSC

$$P(Y|X) = \begin{vmatrix} 3/4 & 1/4 & x1 \\ 1/4 & 3/4 & x2 \end{vmatrix}$$

$$y1 \quad y2$$

Binary symmetric channel (BSC) model

$$P[Y = 0|X = 1] = P[Y = 1|X = 0] = p$$

 $P[Y = 1|X = 1] = P[Y = 0|X = 0] = 1 - p$

7

- Continuous channel: continuous input signal and continuous output signal
 - · Channel model:
 - Random variable represents continuous source
 - $X = \{x\}$ $xmin \le x \le xmax$
 - $P_X(x)$ probability density function of source X
 - Output:
 - $Y = \{y\}$ $ymin \le y \le ymax$
 - P(y|x) conditional probability density function of output Y when input X has determined values

 According chapter 2: mutual information between two random variables X, Y:

$$I(X; Y) = \sum \sum P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

= H(X) + H(Y) - H(X,Y)

• Because: $\frac{P(x,y)}{P(y)} = P(x/y)$

So :
$$I(X; Y) = \sum \sum P(x,y) \log \frac{P(x|y)}{P(x)}$$

= $H(X) - H(X|Y)$

- Corollary:
 - Mutual information is a average information (entropy) that a symbol may transmit through channel
 - Mutual information equals average input information (H(X)) minus average loss information (H(X|Y)).
 - Average loss information is generated by noise: H(X|Y) =H(N)_X with noise source N
 and source X are inputs

• Because:
$$\frac{P(x,y)}{P(x)} = P(y|x)$$
So : $I(X;Y) = \sum \sum P(x,y) \log \frac{P(y|x)}{P(y)}$

$$= H(Y) - H(Y|X)$$

- · Corollary:
 - Mutual information is a average information (entropy) that a symbol may transmit through channel
 - Mutual information equals average input information (H(Y)) minus average loss information (H(Y|X)).
 - Average loss information is generated by noise: H(Y|X) =H(N)_Y with noise source N and source Y are inputs

- Information transmitted through channel always equals input information minus loss information
- Loss information: noise information generated by noise
- Information transmitted though channel in both ways are equals
- $0 \le I(X;Y) \le H(X)$ when no noise, X = Y

- H(A), H(A|B)?
- Mutual information?

6.3. Mutual information of continuous channel

- As presented in chapter 2, entropy of continuous source are calculated using integral and probability density function
 - So, mutual information is also calculated using integral

$$I(X; Y) = \iint_{x,y} P_{x,y}(x,y) \log \frac{P_{x,y}(x,y)}{P_{x}(x)P_{y}(y)} d_{x} d_{y}$$

$$= H(X) + H(Y) - H(X,Y)$$

$$= \iint_{x,y} P_{x,y}(x,y) \log \frac{P_{x|y}(x|y)}{P_{x}(x)} d_{x} d_{y}$$

$$= H(X) - H(X|Y)$$

$$= \iint_{x,y} P_{x,y}(x,y) \log \frac{P_{y|x}(y|x)}{P_{y}(y)} d_{x} d_{y}$$

$$= H(Y) - H(Y|X)$$

 Properties of mutual information in continuous channel are similar to the properties of mutual information in discrete channel

6.4. Channel capacity

- Maximum average amount of information that channel may transmit in a unit of time without error
- · Denoted by C
- Calculated by number of transmitted symbols n_o multiply maximum average amount of information that a symbol can transmit through channel (mutual information)
 - $C = n_o \times I(X;Y) \max$
- Remark: in information theory, n_o is physical parameter so that n_o is considered as an unit
 - \rightarrow C = I(X;Y)max

6.4. Channel capacity (Cont.)

• Discrete channel:

- Number of transmitted symbols (n_o) is bandwidth of channel (Δf)
 - So, $C = \Delta f \times I(X;Y)$ max
- $C = \Delta f \times (H(X) H(X|Y)) \max = \Delta f \times (H(X) H(N)_X) \max$
- Without noise: $H(N)_X = 0$
 - So: $C = \Delta f \times H(X) \max = \Delta f \times \log |X| = \Delta f \times \log L$ (L is number of different symbols of source X)

6.4. Channel capacity (Cont.)

Continuous channel:

- ullet n_o is calculated as the number of samples of the discrete source equivalent to the continuous source
- · According to sampling theorem:
 - $n_o = 2$ Fmax (Fmax is maximum frequency of source connected to channel)
 - Fmax = Δf (bandwidth of channel)
- $C = 2 \Delta f \times I(X;Y) max$
 - = $2 \Delta f \times (H(Y)-H(Y|X))max$

6.4. Channel capacity (Cont.)

Continuous channel:

- Normally, source has Gaussian distribution and noise has also Gaussian distribution:
 - $H(Y|X) = H(N)_V = \log \sqrt{2\Pi e P_N}$
 - P_N: average power (variance) of the noise source
 - $H(Y) = \log \sqrt{2\Pi e P_Y}$
 - P_Y: average power (variance) of the output
 - $P_Y = P_X + P_N$
 - P_r: average power (variance) of input source
 - The variance of the sum of the Gaussian random variables is equal to the sum of the variances of each variable

•
$$C = 2 \Delta f \times (\log \sqrt{2\Pi e P_Y} - \log \sqrt{2\Pi e P_N})$$

= $2\Delta f \times \log \frac{P_Y}{P_N}$
= $\Delta f \times \log \frac{P_Y}{P_N} = \Delta f \times \log \frac{P_X + P_N}{P_N} = \Delta f \times \log(1 + \frac{P_X}{P_N})$
 $\Rightarrow C = \Delta f \times \log(1 + \frac{S}{N})$

 $\frac{s}{s}$: signal/noise rate: calculated by the ratio of the average power of the input signal with the average of the noise measured at the output of the channel