IDR Only Analysis

Input (IDR only/Input Data):

- DISORDER_R3_human_proteome_2019_10_clean_no comma shephard domains.tsv
- human_proteome_2019_10_clean_no_comma.fasta
- tails_shephard_metadata.tsv

Run idr_sequence_characteristics.ipynb

Output:

- csv files where each csv file contains data for a relevant statistic (e.g NCPR)
 - Each row in the csv file corresponds to the value of a statistic for a given IDR

Run plot_generation.R

Generates plots seen in Fig. 1

Structural Bioinformatics Analysis (Step 1)

Input:

- uniprot_human_proteome_reviewed_2020_05_clean.fasta (IDR_FD/Raw_Data)
- PDB_Level_Info_iter0_6828.csv (IDR_FD/Processed_Data)
 - Contains relevant information for proteins in the reviewed human proteome (RHP) with a PDB entry (information is at the PDB ID level)
- DISORDER_R3_human_proteome_2019_10_clean_no_comma_shephard_do mains.tsv (IDR_FD/Raw_Data)
- uniprot_human_proteome_folded_domain_mutally_exclusive_residues.csv (IDR FD/Processed Data)
 - Provides the range of residues covered for each protein in the reviewed human proteome with at least 1 PDB entry (information is at the Uniprot ID level)
 - A given Uniprot ID can have multiple entries because there can be mutually exclusive regions of residues with structural information

 $Run\ idr_metadata_sequence_characteristics_reviewed_hp.R$

Output

- idr metadata.csv
 - Contains relevant information for each disordered region associated with a proteins in the RHP (information is at the Uniprot ID level)
- idr_charge_distribution_stats_all.csv
 - Contains relevant sequence characteristics for each disordered region associated with a protein in the RHP (information is at the Uniprot ID level)
- fd_charge_distribution_stats_all.csv
 - Contains relevant sequence characteristics for each FD associated with a protein in the RHP (information is at the Uniprot ID level)

Structural Bioinformatics Analysis (Step 2)

Input: PDB_Level_Info_iter0_6828.csv (IDR FD/Processed Data) idr_metadata.csv (IDR_FD/Processed_Data) Run fd_candidate_generation.R Output: fd candidate.csv Run download_pdb_structures.py Contains relevant (Note the PDB structures used in information (about the FD the analysis are already there, and IDR) for proteins but if you choose to modify where N or C terminal tail fd candidate generation.R, this begins within 10 residues script can be used to of where structural automatically download PDB information is available structures)

Structural Bioinformatics Analysis (Step 3)

Structural Bioinformatics Analysis (Step 4)

Output:

- FD Surface Charge Characteristics
 - For each PDB
 - Patchiness as a function of radius and surface distance
 - Mean electrostatic potential as a function of radius and surface distance
 - Location and size of positive/negative patches
 - Distance from a given residue and randomly sampled points from each patch
 - This is done at the FD:IDR junction and random residues

Run fd_surface_charge_characteristics_analysis_v2.R

generates plots in Fig. 3 and associated Supp.
Figures