Aufgabe 1. Wegen $0 \le a_k$ ist $\sum_{k=1}^{\infty} a_k$ monoton wachsend. Nach Annahme divergiert $\sum_{k=1}^{\infty} a_k$, somit ist sie unbeschränkt. Wegen $a_k \le b_k$ gilt $\sum_{k=1}^{\infty} a_k \le \sum_{k=1}^{\infty} b_k$, damit muss auch b_k unbeschränkt und somit divergent sein.

Aufgabe 2. Nach Annahme ist $\sum_{k=1}^{\infty} |a_k|$ konvergent. Demnach muss auch $\sum_{k=1}^{\infty} 2|a_k|$ konvergent sein. Wegen $0 \le a_k + |a_k| \le 2|a_k|$ ist gemäß des Majorantenkriteriums $\sum_{k=1}^{\infty} (a_k + |a_k|)$ konvergent. Dann ist auch $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k + |a_k|) - \sum_{k=1}^{\infty} |a_k|$ konvergent, weil es die Differenz zweier konvergenter Reihen ist.

Aufgabe 3.

- a) Wegen $\lim_{k\to\infty} \frac{2k^2+1}{3k(k+1)} = \frac{2}{3} \neq 0$ ist die Reihe divergent.
- b)
- c)
- d) (Harmonische Reihe¹.) Angenommen die Reihe konvergiert mit

$$H = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots$$

Dann ist mit

$$H \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{6} + \frac{1}{6} + \frac{1}{8} + \frac{1}{8} + \cdots$$
$$\ge 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$
$$\ge \frac{1}{2} + H$$

ein Widerspruch gegeben.

¹https://web.williams.edu/Mathematics/lg5/harmonic.pdf