CS532 Labs

Cross-Site Request Forgery (CSRF) Attack Lab

(Web Application: Elgg)

1 Overview

The objective of this lab is to help students understand the Cross-Site Request Forgery (CSRF) attack. A CSRF attack involves a victim user, a trusted site, and a malicious site. The victim user holds an active session with a trusted site while visiting a malicious site. The malicious site injects an HTTP request for the trusted site into the victim user session, causing damages.

In this lab, students will be attacking a social networking web application using the CSRF attack. The open-source social networking application called Elgg has countermeasures against CSRF, but we have turned them off for the purpose of this lab.

2 Lab Environment

You need to use our provided virtual machine image for this lab.

2.1 Environment Configuration

In this lab, we need three things, which are already installed in the provided VM image: (1) the Firefox web browser, (2) the Apache web server, and (3) the Elgg web application. For the browser, we need to use the LiveHTTPHeaders extension for Firefox to inspect the HTTP requests and responses. The prebuilt Ubuntu VM image provided to you has already installed the Firefox web browser with the required extensions.

Starting the Apache Server. The Apache web server is also included in the pre-built Ubuntu image. However, the web server is not started by default. You need to first start the web server using the following command:

% sudo service apache2 start

The Elgg Web Application. We use an open-source web application called Elgg in this lab. Elgg is a web-based social-networking application. It is already set up in the pre-built Ubuntu VM image. We have also created several user accounts on the Elgg server and the credentials are given below

User	UserName	Password
Admin	admin	seedelgg
Alice	alice	seedalice
Boby	boby	seedboby
Charlie	charlie	seedcharlie
Samy	samy	seedsamy

Configuring DNS. We have configured the following URLs needed for this lab. To access the URLs , the Apache server needs to be started first:

CS532 Labs

URL	Description	Directory
http://www.csrflabattacker.com	Attacker web site	/var/www/CSRF/Attacker/
http://www.csrflabelgg.com	Elgg web site	/var/www/CSRF/Elgg/

3 Background of CSRF Attacks

A CSRF attack involves three actors: a trusted site (Elgg), a victim user of the trusted site, and a malicious site. The victim user simultaneously visits the malicious site while holding an active session with the trusted site. The attack involves the following sequence of steps:

- 1. The victim user logs into the trusted site using his/her username and password, and thus creates a new session.
- 2. The trusted site stores the session identifier for the session in a cookie in the victim user's web browser.
- 3. The victim user visits a malicious site.
- 4. The malicious site's web page sends a request to the trusted site from the victim user's browser. This request is a cross-site request, because the site from where the request is initiated is different from the site where the request goes to.
- 5. By design, web browsers automatically attach the session cookie to to the request, even if it is a cross-site request.
- 6. The trusted site, if vulnerable to CSRF, may process the malicious request forged by the attacker web site, because it does not know whether the request is a forged cross-site request or a legitimate one.

The malicious site can forge both HTTP GET request for the trusted site. Some HTML tags such as img, iframe, frame, and form have no restrictions on the URL that can be used in their attribute. HTML img, iframe, and frame can be used for forging GET requests.

4 Lab Tasks

For the lab tasks, you will use two web sites that are locally setup in the virtual machine. The first web site is the vulnerable Elgg site accessible at www.csrflabelgg.com inside the virtual machine. The second web site is the attacker's malicious web site that is used for attacking Elgg. This web site is accessible via www.csrflabattacker.com inside the virtual machine.

4.1 Task: CSRF Attack using GET Request

In this task, we need two people in the Elgg social network: Alice and Boby. Boby wants to become a friend to Alice, but Alice refuses to add Boby to her Elgg friend list. Boby decides to use the CSRF attack to achieve his goal. He sends Alice an URL (via an email or a posting in Elgg); Alice, curious about it, clicks on the URL, which leads her to Boby's web site: www.csrflabattacker.com. Pretend that you are Boby, describe how you can construct the content of the web page, so as soon as Alice visits the web page, Boby is added to the friend list of Alice (assuming Alice has an active session with Elgg).

To add a friend to the victim, we need to identify the Add Friend HTTP request, which is a GET request. In this task, you are not allowed to write JavaScript code to launch the CSRF attack. Your job is to make the attack successful as soon as Alice visits the web page, without even making any click on the page (hint: you can use the img tag, which automatically triggers an HTTP GET request).

CS532 Labs

4.2 Task: Turn on countermeasure

To turn on the countermeasure, please go to the directory <code>elgg/engine/lib</code> and find the function <code>action_gatekeeper</code> in the <code>actions.php</code> file. In function <code>action_gatekeeper</code> please comment out the "return true;" statement as specified in the code comments.

```
function action_gatekeeper($action) {
    //SEED:Modified to enable CSRF.
    //Comment the below return true statement to enable countermeasure return true;
    ......
}
```

After turning on the countermeasure above, try the CSRF attack again, and describe your observation. Please point out the secret tokens in the HTTP request captured using LiveHTTPHeaders. Please explain why the attacker cannot send these secret tokens in the CSRF attack?

5 Submission

You need to submit a detailed lab report to describe what you have done and what you have observed. Please provide details using LiveHTTPHeaders and/or screen shots. You also need to provide explanation to the observations that are interesting or surprising.

References

- [1] Elgg documentation: http://docs.elgg.org/wiki/Main_Page.
- [2] JavaScript String Operations. http://www.hunlock.com/blogs/The_Complete_Javascript_Strings_Reference.
- [3] Session Security Elgq. http://docs.elgq.org/wiki/Session_security.
- [4] Forms + Actions Elgg http://learn.elgg.org/en/latest/guides/actions.html.
- [5] PHP:Session_id-Manual: http://www.php.net//manual/en/function.session-id.php.

Copyright

This lab is modified and developed by Seed-Labs for software security education.