การประยุกต์ใช้ "ซิกส์ ซิกม่า" กับเครื่องมือบริหารคุณภาพแบบอื่นๆ

(Six Sigma and Other Management Initiatives)

"ซิกส์ ซิกม่า" (Six Sigma) เป็นเครื่องมือหนึ่งในการบริหารองค์กรที่มีแนวทางในการปรับปรุงคุณภาพอย่างต่อเนื่อง 5 ขั้นตอนด้วยกันคือ1.Define: D - การกำหนด 2.Measure: M – การวัด / การประเมิน 3.Analysis: A - การวิเคราะห์/ ตรวจสอบข้อมูล 4.Improve: I - การหาทางปรับปรุงแก้ไข และ 5.Control: C - การควบคุม

โดยการดำเนินการทั้ง 5 ขั้นตอนนี้ นำไปสู่เป้าหมายในการป้องกันความผิดพลาดและลดความผิดพลาดที่จะเกิดขึ้น อย่างต่อเนื่อง ด้วยการค้นหาต้นเหตุของความผิดพลาด และหาทางปรับปรุงแก้ไขอย่างถาวรและต่อเนื่อง รวมทั้งต้องมีข้อมูล ในการกำหนดแผนและวิธีการวัดผลที่สามารถบ่งชี้ผลลัพธ์ได้อย่างชัดเจน

ด้วยประสิทธิภาพของแนวทางการบริหารองค์กรในแบบ "ซิกส์ ซิกม่า" เมื่อนำมาประยุกต์ใช้ร่วมกับเครื่องมือบริหาร คุณภาพในรูปแบบอื่นๆ ก็จะยิ่งช่วยให้การบริหารองค์กรเป็นไปอย่างมีประสิทธิภาพและสามารถบรรลุเป้าหมายได้อย่าง รวดเร็วและต่อเนื่อง โดย "ซิกส์ ซิกม่า" สามารถลดจุดอ่อนหรือช่องโหว่ของเครื่องมือบริหารคุณภาพบางอย่างได้เป็นอย่างดี และยังสามารถเป็นตัวเสริมสำหรับเครื่องมือบริหารคุณภาพบางอย่างเพื่อช่วยให้การบริหารองค์กรมีประสิทธิผลมากยิ่งขึ้น

การประยุกต์ใช้ "ซิกส์ ซิกม่า" กับเครื่องมือบริหารคุณภาพแบบอื่นๆ ที่สำคัญ ได้แก่

- I. ต้นทุนคุณภาพกับซิกส์ ซิกม่า (Quality Cost and Six Sigma)
- II. การจัดการคุณภาพโดยรวมกับซิกส์ ซิกม่า (TQM and Six Sigma)
- III. มาตรฐานชุด ISO 9000 และซิกส์ ซิกม่า
- IV. การผลิตแบบลีนและซิกส์ ซิกม่า (Lean Manufacturing and Six Sigma)
- V. รางวัลคุณภาพแห่งชาติและซิกส์ ซิกม่า

I. ต้นทุนคุณภาพกับซิกส์ ซิกม่า (Quality Cost and Six Sigma)

(1) คำจำกัดความของต้นทุนคุณภาพ (Definition of quality cost)

ต้นทุนคุณภาพเป็นค่าใช้จ่ายที่เกิดขึ้นจากกิจกรรมการบริหารจัดการคุณภาพ สามารถแบ่งออกได้เป็น 3 ประเภท ด้วยกันคือ **ต้นทุนในการป้องกันไม่ให้เกิดความบกพร่องด้านคุณภาพ (prevention) ต้นทุนในการวัด ตรวจสอบและ ประเมินคุณภาพ (appraisal)** และ**ต้นทุนของความล้มเหลวด้านคุณภาพ (failure)** โดย*ต้นทุนความล้มเหลว*นี้สามารถ แบ่งย่อยออกเป็น 2 ประเภทคือ ต้นทุนความล้มเหลวด้านคุณภาพที่เกิดขึ้นภายใน (internal failure) และต้นทุนความล้มเหลว ด้านคุณภาพที่เกิดขึ้นภายนอก (external failure)

ต้นทุนในการป้องกันเป็นค่าใช้จ่ายที่เกิดขึ้นเพื่อป้องกันไม่ให้เกิดข้อบกพร่องหรือของเสียจากการผลิต ประกอบด้วย การฝึกอบรมในเรื่องคุณภาพ การวางแผนเกี่ยวกับคุณภาพและการสำรวจผู้ขาย ต้นทุนวัด ตรวจสอบและประเมินค่า เป็นค่าใช้จ่ายที่จ่ายไปกับกิจกรรมการตรวจสอบบัญชีคุณภาพ การทดสอบและตรวจสอบให้เป็นไปตามระดับคุณภาพโดยการ ตรวจติดตามระบบคุณภาพอย่างเป็นทางการ ส่วนต้นทุนความล้มเหลว เป็นค่าใช้จ่ายที่เกิดขึ้นหลังจากผลิตภัณฑ์หรือการ บริการไม่เป็นไปตามข้อกำหนดหรือไม่สามารถตอบสนองความต้องการของลูกค้าได้

ตัวอย่างองค์ประกอบของต้นทุนแต่ละประเภท

ตารางที่ 1 ประเภทของต้นทุนคุณภาพและรายละเอียดของต้นทุนแต่ละประเภท

ประเภท	รายละเอียด		
ต้นทุนในการป้องกัน (P-cost)	1. การฝึกอบรมคุณภาพ		
	2. การศึกษาความสามารถของกระบวนการ		
	3. การสำรวจผู้ขายสินค้า		
	4. การวางแผนคุณภาพและการออกแบบ		
	5. ค่าใช้จ่ายด้านอื่นๆ เพื่อการป้องกัน		
ต้นทุนในการวัด ตรวจสอบและประเมินค่า (A-cost)	1. การทดสอบและตรวจสอบทุกประเภท		
	2. อุปกรณ์ทดสอบ		
	3. การตรวจติดตามคุณภาพและการตรวจทบทวน		
	4. ค่าใช้จ่ายในห้องทดลอง		
	5. ค่าใช้จ่ายด้านอื่นๆ เพื่อการวัด ตรวจสอบและประเมินค่า		
ต้นทุนของความล้มเหลวภายใน (F-cost : Internal failure cost)	1. การแก้ไขงานที่บกพร่องหรืองานที่ถูกคัดทิ้ง		
	2. การแก้ไขเปลี่ยนแปลงการออกแบบ		
	3. ค่าใช้จ่ายจากการจัดเก็บสินค้าคงคลังที่มากเกินไป		
	4. ค่าใช้จ่ายที่เกิดจากการจัดซื้อจัดหาวัสดุ		
	5. ค่าใช้จ่ายของความล้มเหลวภายในอื่นๆ		
ต้นทุนของความล้มเหลวภายนอก (F-cost : External failure cost)	1. ค่าใช้จ่ายจากการบริการหลังการขายและการรับประกันสินค้า		
	2. การไปพบลูกค้าเนื่องจากถูกบ่นร้องเรียน		
	3. สินค้าถูกส่งกลับและเรียกกลับคืน		
	4. ต้นทุนจากคดีความเพื่อเรียกร้องการรับผิดต่อสินค้า		
	5. ค่าใช้จ่ายของความล้มเหลวภายนอกอื่นๆ		

(2) สัดส่วนของต้นทุนคุณภาพ (Proportion of quality costs)

เราจำเป็นต้องมีการระบุต้นทุนคุณภาพของฝ่าย สายการผลิต หรือพื้นที่งานตามสายกระบวนการผลิตที่สำคัญออกเป็น ประเภทต่างๆ เพื่อให้สามารถจัดลำดับความสำคัญในการกำหนดความสามารถในการควบคุมคุณภาพได้อย่างชัดเจน หาก ฝ่ายกำหนดให้มีต้นทุนความล้มเหลวภายนอก ต้นทุนความล้มเหลวภายใน ต้นทุนการวัด ต้นทุนการตรวจสอบและประเมิน ค่าและต้นทุนในการป้องกัน ในสัดส่วนที่เท่ากัน ก็จะทำให้สามารถลดต้นทุนคุณภาพได้

เมื่อมีการกำหนดสัดส่วนให้มากขึ้นในการป้องกัน การวัด ตรวจสอบและประเมินค่า จะสามารถใช้เป็นค่าใช้จ่ายใน การลดต้นทุนที่เกิดจากความล้มเหลวได้ ซึ่งในที่สุดกลยุทธ์นี้ก็จะเป็นตัวช่วยในการลดต้นทุนคุณภาพโดยรวมได้ ทั้งนี้ สัดส่วนต้นทุนคุณภาพที่เหมาะสมที่สุดขึ้นอยู่กับประเภทธุรกิจ แต่จากผลการรายงานพบว่าต้นทุนคุณภาพสามารถปรับลด ได้มากถึงระดับ 10 % ของมูลค่าการขายรวมได้

(3) ต้นทุนของคุณภาพที่เลว (Cost of poor quality : COPQ) เป็นต้นทุนรวมที่เกิดจากต้นทุนคุณภาพที่สูงและการบริหาร จัดการที่ไม่ดี หากองค์กร (ทั้งภาครัฐและเอกชน) สามารถกำจัดต้นทุน COPQ นี้ได้ก็จะทำให้กลายมาเป็นผู้นำในอนาคตได้ ไม่ยาก ทั้งนี้ โดยปกติแล้วองค์กรส่วนใหญ่จะสูญเสียความพยายามโดยรวม (total effort) ทั้งจากในส่วนที่เป็นแรงงานมนุษย์ และเครื่องจักรไปประมาณ 40 % แต่ถ้าหากสามารถกำจัดความสูญเสียหรือลดในส่วนที่สำคัญได้แล้วก็จะทำให้ราคาต่อ หน่วยของสินค้าและการบริการลดลงไปด้วย ซึ่งทำให้สามารถกำหนดราคาสินค้าแข่งขันกับที่อื่นๆ ได้ทั่วโลก ดังนั้นจึงได้มี การนำซิกส์ ซิกม่ามาใช้เพื่อช่วยลดต้นทุน COPQ และเพื่อปรับปรุงให้ได้ประโยชน์และความพึงพอใจจากลูกค้า

ทั้งนี้ ต้นทุนที่เกี่ยวข้องกับคุณภาพจะมีประมาณ 20 – 40% ของยอดขายรวม และต้นทุนเหล่านี้ส่วนหนึ่งเป็นต้นทุนที่ "ถูกซ่อนหรือแฝง" (ไม่สามารถจับต้องได้) ไว้ในงบบัญชีรายได้หรือบัญชีงบดุล ต้นทุนคุณภาพแฝงอยู่นี้ได้แสดงไว้ใต้เส้นปะใน ภาพที่ 2

ทางเลือกหนึ่งที่เราทำได้คือการขอความช่วยเหลือจากผู้เชี่ยวชาญเฉพาะทางด้านคุณภาพจากฝ่ายที่ทำหน้าที่บริหาร จัดการคุณภาพให้ทำการระบุบอกขอบเขตที่ชัดเจนและมุ่งให้ความสนใจกับต้นทุนคุณภาพแฝงเหล่านี้ หากมีต้นทุน COPQ ที่ ใหญ่มากก็เป็นเครื่องแสดงให้เห็นถึงผลิตภัณฑ์และวิธีปฏิบัติที่ไม่ก่อให้เกิดความพึงพอใจ ซึ่งหากเราลดต้นทุนส่วนนี้ได้ก็จะเป็น การปรับปรุงเพื่อให้เกิดผลกำไรแก่องค์กรได้ ในช่วงหลายทศวรรษที่ผ่านมานี้เกิดข้อเท็จจริงที่เกี่ยวกับ COPQ ดังนี้

- ควรจะมีการระบุต้นทุนที่กี่ยวข้องกับคุณภาพให้มีมูลค่าสูงขึ้นในรายงานผลการเงินให้ชัดเจน
- ต้นทุนคุณภาพที่เกิดขึ้นนั้นไม่ใช่เพียงแค่เกิดจากการผลิตเท่านั้นแต่ยังรวมไปถึงส่วนการสนับสนุนอื่นๆ ด้วย
- ขณะที่เราต่างหลีกเลี่ยงต้นทุนต่างๆ เหล่านี้ก็พึงตระหนักว่าไม่มีใครหรือองค์กรใดที่จะสามารถรับผิดชอบ
 โดยตรงต่อการลดต้นทุนต่างๆ เหล่านี้ได้

ดังนั้นเราจึงควรมีการใช้กลยุทธ์ซิกส์ ซิกม่าที่เป็นเลิศมาจัดการกับ COPQ โดยตรงในส่วนที่ส่งผลต่อธุรกิจ การ ประยุกต์ใช้เทคนิคซิกส์ ซิกม่าได้อย่างชาญฉลาดสามารถช่วยกำจัดหรือลดส่วนที่ส่งผลต่อ COPQ รวมได้

II. การจัดการคุณภาพโดยรวมกับซิกส์ ซิกม่า (TQM and Six Sigma)

Ronald Snee (1999) ชี้ให้เห็นว่าแม้ว่าผู้คนจะเชื่อว่าไม่มีสิ่งใหม่เกิดขึ้นกับซิกส์ ซิกม่าแต่ซิกส์ ซิกม่าก็มีแนวทางและ วิธีการนำไปปฏิบัติที่เป็นเอกลักษณ์ของมันเอง เขาได้กำหนดให้ซิกส์ ซิกม่าเป็นแนวทางในการปรับปรุงธุรกิจเชิงกลยุทธ์ซึ่งช่วย ในการเพิ่มทั้งความพึงพอใจของลูกค้าและฐานะทางการเงินขององค์กร นอกจากนั้น Snee ยังได้อ้างถึงลักษณะทั้ง 8 ประการ ที่อธิบายได้ว่าซิกส์ ซิกม่าส่งผลให้เกิดความสำเร็จและความนิยมใช้ในการจัดการเพื่อให้เกิดรายได้และผลกำไรสุทธิต่อองค์กร ดังนี้

- ผลลัพธ์ที่สำคัญตามคาดหมายและตามการส่งมอบ
- ภาวะผู้นำของผู้บริหารระดับสูง
- การปฏิบัติตามแนวทาง DMAIC อย่างเคร่งครัด
- ดำเนินโครงการกลุ่มให้เสร็จสิ้นโดยเร็ว (3-6 เดือน)
- มีการกำหนดตัววัดความสำเร็จที่ชัดเจน
- การกำหนดบทบาทโครงสร้างสำหรับผู้ที่ทำโครงการซิกส์ ซิกม่าอย่างชัดเจน
- มุ่งให้ความสนใจในตัวลูกค้าและกระบวนการ
- ใช้เครื่องมือทางสถิติในการปรับปรุงให้ดีขึ้น

ซิกซ์ ซิกม่าได้รับการยกย่องว่าเป็นต้นกำเนิดแห่งแนวคิดและวิธีการทางด้านคุณภาพ เป็นเครื่องมือที่ทำให้เห็นถึง สมรรถภาพที่ก่อให้เกิดความสำเร็จอย่างต่อเนื่องเกินกว่าเป็นแค่การปรับปรุงคุณภาพโดยใช้แรงผลักดันของ TQM เท่านั้น แต่ หากเราไม่ระมัดระวังในการนำแรงผลักดันของ TQM มาใช้แล้วข้อผิดพลาดต่างๆ ที่เคยเกิดขึ้นมาก่อนอาจจะเกิดขึ้นช้ำอีกใน การนำซิกส์ ซิกม่ามาใช้ได้

เพื่อให้ซิกส์ ซิกม่าเป็นตัวเก็บรักษาแรงผลักดันเหล่านี้ไม่ให้หยุดชะงัดไปจึงควรมีการตรวจทานหลุมพรางที่สำคัญของ TQM บางประการดังนี้คือ

1. การเชื่อมโยงไปยังธุรกิจและความสำเร็จที่สำคัญ

ในการจัดการคุณภาพแบบ TQM นั้นคุณภาพมักจะเป็นเพียงกิจกรรม "sidebar" ที่แยกออกมาจากประเด็นสำคัญของ
กลยุทธ์และผลการดำเนินงานทางธุรกิจ แต่ไม่ได้มีการเชื่อมโยงไปยังธุรกิจและความสำเร็จที่แท้จริง เนื่องจากข้อจำกัด
เกี่ยวกับผลิตภัณฑ์และหน้าที่ทางด้านการผลิต ซิกส์ ซิกม่า ซึ่งเน้นในเรื่องการลดต้นทุนจึงทำให้เกิดความสำเร็จได้ไม่ยาก
รวมถึงมีส่วนในงานสำคัญสามงานด้วยกันคือการผลิต การวิจัยและพัฒนา และส่วนการบริการ

2. ภาวะผู้นำของผู้บริหารระดับสูง

ในการสนับสนุนงานของ TQM ผู้บริหารสูงสุดจะมีส่วนน้อยนิดในการขับเคลื่อนแนวคิดทางด้านคุณภาพ หากผู้บริหาร ชื่นชมและเชื่อในการใช้แนวคิดซิกส์ ซิกม่าในธุรกิจแล้วก็จะไม่เกิดข้อข้องใจใดๆ ทั้งสิ้น อย่างเช่นการสนับสนุนจากผู้บริหาร ของบริษัท Motorola GE Allied Signal (ปัจจุบันคือ Honeywell) LG และ Samsung ซึ่งจริงๆ แล้วการมีส่วนร่วมของ ผู้บริหารระดับสูงขององค์กรจะทำให้เกิดการเริ่มต้นที่ดีในการใช้แนวคิดซิกส์ ซิกม่าได้ไม่ยาก

3. ข้อความข่าวสารที่ง่ายและชัดเจน

ในเรื่องเกี่ยวกับคุณภาพสำหรับหลายบริษัท ได้จัดตั้งเป็นฝ่ายคุณภาพที่มีหน้าที่รับผิดชอบทางด้าน "การควบคุม
คุณภาพและการประกันคุณภาพ" ซึ่งเน้นการทำให้คุณภาพที่มีอยู่เกิดความมั่นคงมากกว่าที่จะทำการปรับปรุงกระบวนการ
และ TQM ก็เป็นสิ่งที่ไม่ได้มีกำหนดเป้าหมายที่ชัดเจนให้สามารถมุ่งไปถึงได้ แต่แนวคิดชิกส์ ซิกม่าเป็นแนวคิดที่ชัดเจนและ
ไม่ซับซ้อน เป็นระบบธุรกิจที่มุ่งความสำเร็จและรักษาความสำเร็จนั้นไว้โดยการมุ่งเน้นที่ลูกค้า การบริหารจัดการกระบวนการ
และการปรับปรุงกระบวนการ อีกทั้งยังมีการใช้ข้อมูลและข้อเท็จจริงประกอบด้วย โดยซิกส์ซิกม่าเน้นจุดสำคัญคือการมี
เป้าหมายที่ชัดเจนเป็นหลัก

4. การฝึกอบรมที่มีประสิทธิผล

การฝึกอบรมเกี่ยวกับ TQM อาจจะไม่เกิดประสิทธิผลเท่าใดนักเนื่องจากหลักสูตรการอบรมยังไม่เป็นระบบดีพอ ซึ่ง ซิกส์ ซิกม่าจะเข้ามาช่วยแบ่งพนักงานออกเป็น 5 กลุ่มด้วยกันคือ WB GB BB MBB และ Champion และกำหนดให้แต่ละ กลุ่มมีการเรียนรู้ที่เป็นมาตรฐาน และให้การสนับสนุนทางด้านเวลาและการเงินเพื่อให้เกิดการเรียนรู้ที่เป็นมาตรฐานแก่ พนักงาน

5. อุปสรรคภายใน

ส่วนใหญ่ TQM ถือเป็นกิจกรรมประเภท "departmentalized" ภายในบริษัทเท่านั้น และ TQM ก็เหมือนจะไม่สามารถ กำจัดอุปสรรคภายในของฝ่ายนั้นๆ ได้เลย การนำซิกส์ ซิกม่ามาใช้ร่วมด้วยก็ทำให้สามารถจัดลำดับความสำคัญเพื่อการ จัดการกระบวนการแบบข้ามสายงานได้และยังทำให้เกิดทีมงานโครงการเพื่อการทำงานแบบข้ามสายงานซึ่งจะเป็นผู้ที่ทำให้ อุปสรรคภายในต่างๆ หมดไปได้ไม่ยาก

6. กิจกรรมทีมงานโครงการ

TQM เอื้อประโยชน์ทางด้าน "วงจรคุณภาพ" อันมากมายแก่บุคลากรและพนักงานผู้ใช้แรงงานและบางครั้งผู้ที่ทำหน้าที่ ควบคุมดูแลผู้ใช้แรงงานอย่างเช่นวิศวกรก็มีความต้องการที่จะใช้เช่นกัน ซิกส์ ซิกม่าเป็นส่วนที่ต้องการให้เกิดทีมงานโครงการ อันประกอบด้วยกลุ่มที่เป็น BBs และ GBs หลายกลุ่มและการสร้างกิจกรรมกลุ่มขึ้นมาก็เป็นแหล่งความสำเร็จที่สำคัญและมุ่ง สู่ความสำเร็จสูงสุดได้ไม่ยาก

III. มาตรฐานชุด ISO 9000 และซิกส์ ซิกม่า

การพัฒนา ISO 9000 และซิกส์ ซิกม่าจากแรกเริ่มและที่ผ่านมามีความแตกต่างกันเป็นอย่างมาก หากย้อนกลับไปถึง แหล่งกำเนิดของ ISO 9000 เกิดจากการพัฒนาระหว่าง British aviation industry และ U.S. Air Force ในช่วงปี 1920s เพื่อ ลดความต้องการในการตรวจสอบผ่านการยอมรับเกี่ยวกับคุณภาพผลิตภัณฑ์จากซัพพลายเออร์ มาตรฐานนี้จึงได้รับการ พัฒนาเป็นข้อกำหนดเพื่อเป็นระบบการประกันคุณภาพของชัพพลายเออร์ในประเทศแถบตะวันตกช่วงปี 1970 ในปี 1987 จึง มีการรวบมาตรฐานเหล่านี้เป็นชุดมาตรฐาน ISO 9000

ส่วนปีเดียวกันกับการกำเนิด ISO 9000 ก็เกิดแนวคิดชิกส์ ซิกม่าขึ้นมาเช่นกัน โดยบริษัทที่มีการใช้ชิกส์ ชิกม่าคือ Motorola และยังมีการเริ่มใช้ระบบการประเมินตนเองเพื่อมุ่งสู่รางวัลคุณภาพแห่งชาติ MBNQA ในประเทศสหรัฐอเมริกาด้วย เช่นกัน ซึ่งแนวทางของ ซิกส์ ซิกม่าจะใช้ในองค์กรที่อาศัยหลักการใช้เหตุผลเพื่อมุ่งสู่ความสำเร็จ ส่วนวัตถุประสงค์เบื้องต้น ของการใช้ระบบมาตรฐาน ISO 9000 คือเพื่อแสดงให้เห็นถึงสมรรถนะของบริษัทในการจัดหาผลิตภัณฑ์และการบริการที่ สอดคล้องต่อความต้องการของลูกค้าได้ ดังนั้นชิกส์ ซิกม่าจึงเป็นสิ่งจำเป็นต่อองค์กรไม่ว่าองค์กรจะมีการทำ ISO 9000 หรือไม่ก็ตาม

แม้ว่ามาตรฐานชุด ISO 9000 เป็นสิ่งที่อุตสาหกรรมคำนึงถึงและนำมาปฏิบัติจนเป็นข้อกำหนดหนึ่งของการทำธุรกิจ ตั้งแต่แรกเริ่ม แต่ในมาตรฐาน ISO 9000: 2000 ชุดใหม่กลับไม่มีการนำเสนอถึงความเปลี่ยนแปลงที่สำคัญไปสู่แนวคิดนี้ แต่ซิกส์ ซิกม่าจะตรงข้ามกันเพราะซิกส์ ซิกม่าจะมุ่งสู่การมีสมรรถนะระดับโลกโดยมีพื้นฐานเชิงปฏิบัติในเรื่องการปรับปรุง อย่างต่อเนื่องนั่นเอง

(ผู้เขียน) ซิกส์ ซิกม่า จึงเป็นสิ่งที่มีความสำคัญเหนือกว่าทั้งในส่วนของอัตราการปรับปรุง ผลลัพธ์ทั้งในระดับพื้นฐาน และระดับลึก ความพึงพอใจของลูกค้าและความผิดชอบจากผู้บริหารระดับสูง แต่อย่างไรก็ตามซิกส์ ซิกม่ากับ ISO 9000 ก็ เป็นสิ่งที่สามารถประยุกต์ใช้ร่วมกันได้ในองค์กรหากแต่ต้องเป็นเรื่องที่มีจุดประสงค์แตกต่างกันเป็นอย่างมาก

IV. การผลิตแบบลีนและซิกส์ ซิกม่า (Lean Manufacturing and Six Sigma)

(1) ระบบการผลิตแบบลีนคืออะไร

ในปัจจุบันนี้มีแนวทางเพื่อการปรับปรุงผลการดำเนินงานด้านการผลิต 2 รูปแบบที่สำคัญ รูปแบบแรกคือการผลิตแบบ ลีน และอีกรูปแบบคือ ซิกส์ ซิกม่า

ลืนเป็นการประเมินการดำเนินงานของโรงงานโดยรวมและมุ่งปรับเปลี่ยนโครงสร้างวิธีการผลิตเพื่อลดกิจกรรมที่ ก่อให้เกิดความสูญเสียเช่นการคอย การขนส่ง การปรับเปลี่ยนอุปกรณ์ สินค้าคงคลังและการผลิตที่มากเกินความจำเป็น อีก ทั้งยังช่วยลดการผันแปรที่มาพร้อมกับเส้นทางการผลิต การจัดการกับวัสดุอุปกรณ์ การจัดเก็บ การขาดการติดต่อสื่อสาร การผลิตเป็นรุ่นและอื่นๆ แต่เครื่องมือชิกส์ ซิกม่าจะมุ่งให้ความสนใจเพียงจำนวนชิ้นส่วนหรือกระบวนการที่เฉพาะเพื่อลด การผันแปรที่เกิดขึ้น การใช้แนวทางทั้งสองอย่างร่วมกันจะทำให้เห็นถึงแนวทางการจัดการความผันแปรได้หลากหลายขึ้น รวมทั้งการปรับผังโครงสร้างของโรงงานและการมุ่งส่วนหนึ่งส่วนใดหรือกระบวนการใดเฉพาะด้วย

ลีนและซิกส์ ซิกม่าได้รับการสนับสนุนตามแนวทางและกระบวนการที่มีความแตกต่างกันหากแต่ทั้งสองส่วนกลับเป็น แนวทางที่สามารถจัดการกับเรื่องเดียวกันได้และประสานกันได้เหมือนห่วงโซ่ ซึ่งก็หมายความว่าแนวทางทั้งสองส่วนนี้ต้อง อาศัยซึ่งกันและกันจึงจะสามารถสร้างความสำเร็จให้เกิดขึ้นได้ การผสมผสานระหว่างลีนและซิกส์ ซิกม่าจะทำให้เกิดเทคนิค การจัดการปัญหาที่มีประสิทธิภาพมาก แนวคิดทั้งสองส่วนนี้ต่างก็เป็นสิ่งที่ต้องอาศัยการทำร่วมกันมากกว่าการเป็นเครื่องมือ ที่ให้เราเลือกใช้แทนอีกอันหนึ่งได้

ในทางปฏิบัติแล้วผู้ผลิตที่รับเอาแนวปฏิบัติแบบลีนมาใช้มักจะมีระเบียนตัววัดผลการปฏิบัติงานที่มีค่าสูงกว่าโรงงานที่ ไม่มีการใช้แนวปฏิบัติลีน แนวปฏิบัติแบบลีนตามการสำรวจทางอุตสาหกรรมประกอบด้วย

- เทคนิคการปรับเปลี่ยนเครื่องจักรอย่างรวดเร็วเพื่อลดเวลาในการติดตั้งเครื่อง
- การสร้างหน่วยผลิตขนาดเล็ก (manufacturing cell) เพื่อให้ความสะดวกในการผลิตล็อตเล็กๆ และการผลิตแบบ ไหลต่อเนื่อง
- การใช้ระบบการผลิตแบบทันเวลาพอดีหรือ JIT และเทคนิคการผลิตแบบไหลต่อเนื่องเพื่อลดขนาดล็อตการผลิต เวลาในการติดตั้งเครื่องและรอบเวลาในการผลิต
- การใช้ JIT กับซัพพลายเออร์ในการส่งมอบชิ้นส่วนและเครื่องมือสู่พื้นที่การผลิตได้ถี่ขึ้นและได้ทันความต้องการ

(2) ความแตกต่างระหว่างลืนและซิกส์ ซิกม่า

ข้อแตกต่างระหว่างลื่นและซิกส์ ซิกม่ามีดังต่อไปนี้

- ลีนมุ่งที่การปรับปรุงระบบการผลิตในด้านการผันแปร คุณภาพและการเพิ่มผลิตภาพ แต่ซิกส์ ซิกม่าไม่ได้มุ่ง
 เพียงแค่ระบบการผลิตเท่านั้น แต่ยังมุ่งให้ความสนใจในเรื่องของการวิจัยและพัฒนา (R&D) และการบริการด้วย
- แนวทางลีนสามารถจัดการกับปัญหาหรือสิ่งรบกวนกระบวนการผลิตได้โดยการจัดให้การทำงานในองค์กรเป็นไป ในทางเดียวกันและมีความสอดคล้องประสานงานกันมากกว่าที่จะส่งเสริมให้มีการแบ่งแยกเป็นหน่วยย่อย ลีนจะ เป็นตัวช่วยหาพื้นที่การผลิตร่วมในกรณีที่กระบวนการผลิตทั้งหมดต้องการผลิตสินค้าในเวลาเดียวกัน และแทนที่ ลีนจะมุ่งให้ความสนใจแค่ซึ้นส่วนงานแต่ลีนยังมุ่งให้ความสนใจในการไหลของสินค้าและพนักงานผลิตด้วย ตัววัดที่สำคัญตามแนวคิดสีนก็คือเวลาในการปรับตั้งเครื่องจักร การบำรุงรักษาเครื่องจักรและการกำหนด เส้นทางการผลิต แต่ ซิกส์ ซิกม่ามุ่งให้ความสนใจที่อัตราของเสียและต้นทุนคุณภาพที่เลวอันเกิดจากการ เปลี่ยนแปลงชิ้นงานและกระบวนการซึ่งต้องอาศัยข้อมูลที่ถูกวัดแล้ว
- แนวทางการแก้ปัญหาแบบซิกส์ ซิกม่าจะใช้ข้อมูลเป็นตัวขับเคลื่อนซึ่งเหมาะกับการที่แนวคิดลีนจะนำไปใช้ปรับให้
 เป็นมาตรฐานและการปรับผังโรงงานใหม่ ส่วนลีนก็เป็นรากฐานให้กับแนวทางแก้ปัญหาแบบซิกส์ ซิกม่าในส่วนที่
 ระบบได้รับการวัดว่าคลาดเคลื่อนไปจากมาตรฐานและได้รับการปรับปรุงให้เป็นไปตามมาตรฐานนั้นๆ
- ขณะที่ลีนเน้นการทำให้เป็นมาตรฐานและการเพิ่มผลิตภาพนั้น ซิกส์ ซิกม่าก็สามารถจัดการกับสิ่งรบกวน กระบวนการผลิตและต้นทุนคุณภาพที่เลวได้อย่างมีประสิทธิภาพ

(3) ผลจากการใช้ลืนและซิกซ์ ซิกม่าร่วมกัน

ลีนและซิกส์ ซิกม่าเป็นอาวุธสำคัญในการต่อสู้กับการผันแปรที่เกิดขึ้นในกระบวนการผลิต วิธีการของซิกส์ ซิกม่าเป็น การใช้เทคนิคการแก้ปัญหาเพื่อตรวจสอบการทำงานของระบบและกระบวนการผลิต รวมทั้งวิธีการลดความผันแปรใน กระบวนการผลิตด้วย ในระบบที่ใช้ทั้งสองแนวคิดนี้ ลีนจะเป็นตัวสร้างมาตรฐาน และซิกส์ ซิกม่า จะเป็นเครื่องช่วยสืบหาและ แก้ไขปัญหาเกี่ยวกับความผันแปรจากมาตรฐานนั้น นอกจากนั้นเทคนิค ซิกส์ ซิกม่า ยังสามารถประยุกต์ใช้ภายใน กระบวนการขององค์กรเพื่อปรับลดของเสีย ซึ่งเราอาจต้องให้ความสำคัญเป็นอย่างมากก่อนที่จะมุ่งทำโครงการลีนให้สำเร็จได้

V. รางวัลคุณภาพแห่งชาติและซิกส์ ซิกม่า

รางวัลคุณภาพแห่งชาติ เช่น Malcolm Baldrige National Quality Award (MBNQA), European Quality Award, the Deming Prize and the Korean National Quality Grand Prize เป็นรางวัลที่มีเกณฑ์เปรียบเทียบสู่ความเป็นเลิศที่ คล้ายกันโดยมีวัตถุประสงค์เพื่อให้บริษัทต่างๆ ได้เข้าใจถึงความเป็นเลิศในการปฏิบัติงานในทางปฏิบัติ ซึ่งเป็นแผนงานหนึ่งที่ ใช้ในการประเมินองค์กร

ตารางหลักเกณฑ์การประเมินตนเอง

Malcolm Baldrige	European Quality Award	Deming Prize	Korean National
National Quality Award	European Quality Award		Quality Grand Prize
1. Leadership	1. Leadership	1. Organization	1. Leadership
2. Strategic planning	2. Policy & strategy	2. Policies	2. Strategic planning
3. Customer & market share	3. People	3. Information	3. customer satisfaction
4. Information & analysis	4. Partnership & resources	4. Standardization	4. Information & analysis
5. Human resource focus	5. Processes	5. Human Resources	5. Human resource
6. Process management	6. Customer results	6. Quality assurance	management
7. Business results	7. People results	7. Maintenance	6. Process management
	8. Society results	8. Improvement	7. Business results
	9. Key performance results	9. Effects	
		10. Future plans	

มีหลักฐานบางอย่างระบุถึงความสัมพันธ์ระหว่างการประเมินองค์กรกับซิกส์ ซิกม่าไว้ ประการแรกคือตั้งแต่มีการ ประกาศใช้รางวัลคุณภาพ MBNQA ในปี 1987 มีบริษัทที่ได้รับรางวัลอันทรงเกียรตินี้อย่างน้อย 2 บริษัท ซึ่งเป็นบริษัทที่ ดำเนินงานด้วยการใช้โปรแกรมซิกส์ ซิกม่า นั่นก็คือบริษัท Motorola ได้รับรางวัลในปี 1998 และบริษัท Defence systems Electronics Group ในปี 1992 (ปัจจุบันชื่อ Raytheon TI Systems) ประการที่สองคือมีบริษัทจำนวนมากที่ให้การสนับสนุน การประเมินองค์กรที่ปัจจุบันเป็นส่วนที่ทำให้เกิดการดำเนินงานตามโปรแกรมซิกส์ ซิกม่า และบริษัทที่เป็นที่รู้จักมากที่สุดก็คือ Solection ซึ่งได้รับรางวัลคุณภาพ MBNQA ถึงสองครั้งในปี 1991 และปี 1997 และได้ประกาศใช้ซิกส์ ซิกม่าในปี 1999

ประการที่สามคือ ความสำเร็จในการมุ่งสู่ความเป็นเลิศจากการที่บริษัทที่ได้ประยุกต์ใช้ซิกส์ ซิกม่า นำไปสู่การปรับปรุง องค์กรถึง 70% ในการปฏิบัติงานตามกระบวนการต่อปี

ทั้งนี้ แนวคิดทั้งสองแบบเป็นสิ่งที่ช่วยส่งเสริมกันได้ดีและสามารถใช้ร่วมกันได้ไม่ยาก ในขณะที่การประเมินองค์กร สามารถระบุส่วนที่จำเป็นต้องได้รับการปรับปรุงที่สำคัญได้ก็สามารถใช้ชิกส์ ซิกม่าเป็นเครื่องมือนำทางเพื่อใช้ปฏิบัติในการ ปรับปรุงกระบวนการ เพราะทั้งสองส่วนนี้สามารถกำหนดวัตถุประสงค์แห่งความเป็นเลิศในการดำเนินงานร่วมกันได้ จึงเชื่อ ได้ว่าซิกส์ ซิกม่าเป็นสิ่งที่ก่อให้เกิดเส้นทางสู่การปฏิบัติงานที่เป็นเลิศโดยการเลือกวิธีการปฏิบัติที่ดีที่สุดด้วยนั่นเอง

Source:

Six Sigma and other management initiatives. In Park, Sung H. Six Sigma for Quality and Productivity Promotion. Tokyo: APO, 2003. Page 122 - 135. (*APO_00591*)