Условные нижние оценки для задачи поиска путей с контекстно-свободными ограничениями

Истомина Александра

Научный руководитель: Григорьев Семён Вячеславович

Санкт-Петербургский государственный университет

16 июня 2023 г.

Определения

Kонтекстно-свободная грамматика — это четверка $G = (N, \Sigma, P, S)$, где:

- ullet N конечное множество нетерминалов
- \bullet Σ конечный алфавит
- P конечное множество правил вывода
- $S \in N$ стартовый нетерминал

 $extit{Шаг вывода} —$ это операция $\alpha A \beta \Rightarrow \alpha \gamma \beta$, где $\alpha, \gamma, \beta \in (\Sigma \cup N)^*$, а $A \to \gamma \in P$. $\mathcal{L}(G) = \{w \in \Sigma^* | S \Rightarrow \ldots \Rightarrow w\} —$ язык, задаваемый грамматикой.

Пример (Язык Дика на k типах скобок, Dyck-k)

- $N = \{S\}$
- $\Sigma = \{(i, j_i), \forall i = 1, ..., k\}$
- Правила вывода: $S \to \epsilon |SS|(_1S)_1| \dots |(_kS)_k$, где $\epsilon \mathfrak{I}$ это пустая строка.

Определения

Определение (Задача контекстно-свободной достижимости, CFL reachability)

Дано: ориентированный граф D = (V, E, L) с пометками на ребрах $L \subseteq \Sigma$, KC грамматика $G = (N, \Sigma, P, S)$.

Надо: понять, есть ли путь между вершинами, такой что пометки на ребрах образуют слово из $\mathcal{L}(G)$.

Bapuaнты: all-pairs/s-t

Грамматика обычно предполагается фиксированной. Сложность алгоритма считается от n=|V| — количества вершин в графе.

История

Известные алгоритмы:

[Melski, Reps 1997] $\mathcal{O}(n^3)$ [Chaudhuri 2008] $\mathcal{O}(n^3/\log n)$

Вопрос: Существует ли алгоритм со временем работы $\mathcal{O}(n^{3-\epsilon}), \epsilon > 0$?

Способы решения:

- Придумать более быстрый алгоритм
- Найти нижнюю оценку на сложность

Условные нижние оценки

Условная нижняя оценка— верна, если верна некоторая гипотеза

Получаются с помощью сведений от одной задаче к другой.

Сведение (A, t_A) \rightarrow (B, t_B):

Цель: найти задачу X с гипотезой об ее временной сложности и свести ее к задаче CFL reachability.

Популярные задачи и гипотезы

Гипотеза (ВММ)

Перемножить две булевы матрицы размера $n \times n$ нельзя комбинаторным алгоритмом за время $\mathcal{O}(n^{3-\epsilon}), \epsilon > 0$.

Гипотеза (SAT)

(N)SETH - определить выполнимость булевой формулы нельзя (ко-недетерминированно) за время $\mathcal{O}(2^{(1-\epsilon)n}), \epsilon > 0$.

Гипотеза (APSP)

Найти наименьшие расстояния между всеми парами вершин во взвешенном графе нельзя за время $\mathcal{O}(n^{3-\epsilon}), \epsilon > 0$.

Гипотеза (3SUM)

Определить, есть ли в массиве тройка чисел, суммирующаяся в θ , нельзя за время $\mathcal{O}(n^{2-\epsilon}), \epsilon > 0$.

Карта сведений

Результаты: Сведения

• (Triangle Detection, n^{ω}) \to (Dyck-1 reachability, n^{ω})

• (OV, n^2) \rightarrow (s-t CFL reachability, n^2)

$$X$$
 $(0, 1, 1, 1)$
 $(1, 1, 0, 0)$
 Y
 $(1, 0, 0, 1)$
 $(0, 0, 1, 0)$

Результаты: Сведения

• (Triangle Detection, n^3) \rightarrow (sparse PDS reachability with stack bound $\lceil \log n \rceil$, $n^{1.5}$)

• (AE-Mono Δ , $n^{2.5}$) \rightarrow (sparse PDS reachability with stack bound $4\lceil \log n \rceil$, $n^{1.25}$)

Результаты: Сведения

• (LED, n^c) \rightarrow (weighted s-t CFL reachability, n^c), c > 1

Следствие

Для задачи weighted s-t CFL reachability не существует алгоритма со временем работы $\mathcal{O}(n^{3-\epsilon}), \epsilon > 0$, если APSP гипотеза верна.

Результаты: Потенциальные сведения

Теорема

Если существует сведение (Collecting Triangles/ Δ Matching Triangles, n^3) \rightarrow (CFL reachability, n^c), c > 2, то опровергается хотя бы одно из следующих утверждений:

- \bullet $\omega = 2$
- NSETH
- Существует сведение (all-pairs CFL reachability, n^c) \rightarrow (s-t CFL reachability, $n^{c'}$), c'>2.

Результаты: Ограниченные пути

Teopeмa (Schepper, 2018)

Существует алгоритм для задачи s-t CFL reachability на ациклических графах со временем работы $\mathcal{O}(n^{\omega})$.

Следствие

Существует алгоритм для задачи all-pairs CFL reachability на ациклических графах со временем работы $\mathcal{O}(n^{\omega})$.

Следствие

Существует алгоритм для задачи all-pairs CFL reachability со временем работы $\tilde{\mathcal{O}}(n^c), c < 3$, находящий все \mathcal{L} -пути длины не более чем $k = \tilde{\mathcal{O}}(n^{c'})$, где $c' < \frac{3}{\omega} - 1$.

Результаты: Техника длинных ребер

Случай

Входной граф G это подразбиение графа G'. B задаче all-pairs CFL reachability нас интересуют только исходные вершины ргафа G'.

Хотим записать на ребре G', например, цвет, или номер вершины, или номер ребра, и т.д.

Результаты: Техника длинных ребер

Теорема

Пусть есть алгоритм для задачи all-pairs CFL reachability с временной сложностью $\mathcal{O}(n^c \cdot poly(|G|)) = \mathcal{O}(n^c)$. Тогда существует алгоритм для задачи all-pairs CFL reachability на графах с длинными ребрами длины $k = o(\log n)$ с временной сложностью $\mathcal{O}(n^{c+c'}), \forall c' > 0$.

Теорема

Если аналогичная теорема верна для графов с ребрами длины $k = \Omega(\log n)$, то верно хотя бы одно из следующих утверждений:

- В сведении используется граф, структура которого "сильно отличается" от входного графа
- Обе гипотезы APSP и 3SUM неверны.

Итог

- Получены новые сведения к задаче CFL reachability и близким к ней задачам.
- Доказана лучшая оценка на сложность задачи CFL reachability для случая путей ограниченной длины.
- Рассмотрена техника длинных ребер: ее возможности и ограничения.

Спасибо за внимание!