Ingeniería en Computadores Instituto Tecnológico de Costa Rica

CE-3102: Análisis Numéricos para Ingeniería

Juan Pablo Soto Quirós jusoto@tec.ac.cr

Definición (Serie)

Dada una sucesión $\{a_n\}_{n=0}^{\infty}$, se define la serie $\sum_{n=0}^{\infty} a_n$ como la suma de todos los términos de la sucesión $\{a_n\}_{n=0}^{\infty}$. Es decir

$$\sum_{n=0}^{\infty} a_k = a_0 + a_1 + a_2 + a_3 + \dots$$

Definición (Suma Parcial)

Dada una serie $\sum_{n=0}^{\infty} a_n$, se define su k-ésima suma parcial, y se denota S_k como:

$$S_k = \sum_{n=0}^k a_n = a_0 + a_1 + a_2 + a_3 + \dots + a_k$$

Definición (Serie Alternada)

Dada una serie $\sum_{n=0}^{\infty} a_n$, se dice que es una serie alternada, si y solo si,

$$a_n = (-1)^n b_n$$

donde $\{b_n\}_{n=0}^{\infty}$ es una sucesión que siempre tiene el mismo signo. Es decir, $b_n < 0$, $\forall n = \{0,1,2,3,...\}$ ó $b_n > 0$, $\forall n = \{0,1,2,3,...\}$.

Por lo tanto

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} (-1)^n b_n = b_0 - b_1 + b_2 - b_3 + \dots + (-1)^k b_k + \dots$$

Resultado (Cota para el error en una serie alternada)

Sea $\sum_{n=0}^{\infty} (-1)^n b_n$, una serie alternada convergente a S y sea $S_k = \sum_{n=0}^k (-1)^n b_n$ una aproximación de S utilizando k términos, entonces

$$|S - S_k| \leqslant b_{k+1}$$

Ejemplo

Considere la serie $\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n^3+1}$ alternada convergente a S. Determine una aproximación de S con un error absoluto menor que 10^{-3}

Sea $b_n = \frac{(-1)^n}{n^3+1}$. Del Teorema anterior se obtiene

$$|S - S_n| \le b_{n+1} = \frac{1}{(n+1)^3 + 1}$$

por lo que bastaría determinar un valor m, que cumpla $\frac{1}{(n+1)^3+1} \leqslant 10^{-3}$.

Por inspección se tiene que n=9 cumple la condición.

$$S_9 = \sum_{n=1}^{9} \frac{(-1)^n}{n^3 + 1} = -0.414874...$$

Definición (Serie de Taylor)

Dada una función $f:A\to B$, tal que f admite un desarrollo en series de potencias alrededor de $c\in A$ y f infinitamente derivable en c, entonces siempre es posible calcular la serie de Taylor para f alrededor de c, mediante la siguiente fórmula:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$$
$$= f(c) + f'(c)(x - c) + \frac{f''(c)}{2!} (x - c)^2 + \dots$$

ITCR

Ejemplo

Calcule la serie de Taylor para la función $f(x) = \sin(x)$ alrededor de $\frac{\pi}{2}$.

Primero calcular las derivadas de f

•
$$f(x) = \sin(x); f(\pi/2) = 1.$$

•
$$f'(x) = \cos(x); f'(\pi/2) = 0.$$

•
$$f''(x) = -\sin(x); f''(\pi/2) = -1.$$

•
$$f'''(x) = -\cos(x); f'''(\pi/2) = 0.$$

•
$$f'^{v}(x) = \sin(x); f^{(4)}(\pi/2) = 1.$$

• :

Segundo, se realiza el desarrollo del polinomio de Taylor

$$\sin(x) = \sum_{n=0}^{\infty} \frac{\sin^{(n)}(\pi/2)}{n!} (x - \pi/2)^n$$

$$= \sin(\pi/2) + \frac{\cos(\pi/2)}{1!} (x - \pi/2) + \frac{-\sin(\pi/2)}{2!} (x - \pi/2)^2 + \frac{-\cos(\pi/2)}{3!} (x - \pi/2)^3 + \frac{\sin(\pi/2)}{4!} (x - \pi/2)^4 + \dots$$

$$= 1 - \frac{(x - \pi/2)^2}{2} + \frac{(x - \pi/2)^4}{24} + \dots$$

11/25

Considere la suma parcial
$$S_2(x) = 1 - \frac{(x - \pi/2)^2}{2} + \frac{(x - \pi/2)^4}{24}$$
.

$$S_2(x) = 1 - \frac{(x - \pi/2)^2}{2} + \frac{(x - \pi/2)^4}{24}$$
 $f(x) = \sin(x)$

ITCR Presentación 0 12 / 25

Considere la suma parcial $S_2(x) = 1 - \frac{(x - \pi/2)^2}{2} + \frac{(x - \pi/2)^4}{24}$.

$$S_2(x) = 1 - \frac{(x - \pi/2)^2}{2} + \frac{(x - \pi/2)^4}{24}$$

 $f(x) = \sin(x)$

ITCR Presentación 0 13 / 25

Ejemplo

Calcule la serie de Taylor para la función $f(x) = \ln(x)$ alrededor de x = 1.

Primero calcular las derivadas de f

- $f(x) = \ln(x); f(1) = 0.$
- $f'(x) = \frac{1}{x}$; f'(1) = 1.
- $f''(x) = -\frac{1}{x^2}$; f''(1) = -1.
- $f'''(x) = \frac{2}{x^3}$; f'''(1) = 2.

- $f'^{v}(x) = -\frac{6}{x^4}$; $f'^{v}(1) = -6$.
- $f^v(x) = -\frac{24}{x^5}$; $f^v(1) = 24$.
- :
- $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n}$ $f^{(n)}(1) = (-1)^{n-1} (n-1)!$

Segundo, se realiza el desarrollo del polinomio de Taylor

$$\ln(x) = \sum_{n=0}^{\infty} \frac{\ln^{(n)}(1)}{n!} (x-1)^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n!} (x-1)^n$$

$$= 0 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n(n-1)!} (x-1)^n$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n$$

Definición (Serie de Maclaurin)

En el caso particular de que la serie esté centrada en cero (0), a esta se le conoce como la serie de Maclaurin de f. Es decir:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots$$

Ejemplo

- Calcule la serie de Maclaurin para la función $f(x) = e^x$.
- ② Utilice 4 términos de la serie de Maclaurin para la función $f(x)=e^x$, y aproxime
 - \bullet e^2

• \sqrt{e}

Justifique cuál de las dos aproximaciones es mejor.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

2

•
$$e^2 \approx 1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} \approx 6, \overline{33} = \overline{x_1}$$

$$r_{e^2} = \left| \frac{e^2 - 6, \overline{33}}{e^2} \right| \approx 0,1429 = 14,29\%$$

•
$$\sqrt{e} = e^{1/2} \approx 1 + 1/2 + \frac{(1/2)^2}{2!} + \frac{(1/2)^3}{3!} \approx 1,6458\overline{3} = \overline{x_2}$$

$$r_{\sqrt{e}} = \left| \frac{\sqrt{e} - 1,6458\overline{3}}{\sqrt{e}} \right| \approx 0,00175 = 0,175\%$$

Ejemplo

Calcule la serie de Maclaurin para $f(x) = \frac{1 - e^{-x^2}}{2}$.

Serie de Taylor: $f(x) = \frac{1 - e^{-x^2}}{2}$

$$e^{-x^2} = 1 + (-x^2) + \frac{(-x^2)^2}{2!} + \frac{(-x^2)^3}{3!} + \frac{(-x^2)^4}{4!} + \dots + \frac{(-x^2)^n}{n!} \dots$$
$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} + \dots + \frac{(-1)^n x^{2n}}{n!} \dots$$

Serie de Taylor:
$$f(x) = \frac{1 - e^{-x^2}}{2}$$

Por lo tanto

$$f(x) = \frac{1 - e^{-x^2}}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n}}{2 \cdot n!}$$

Ejercicios

Encuentre la serie de Maclaurin de:

- $g(x) = \cos(x).$
- $b(x) = \ln(\sqrt{x}).$
- $r(x) = \arctan(x).$
- **6** $n(x) = \frac{1}{1-x}$.
- $one of m(x) = \sinh(x), \text{ donde } \sinh(x) = \frac{e^x e^{-x}}{2}$

Teorema - Resto del Polinomio de Taylor

Sea $f \in C^{k+1}[a,b]$ tal que $f^{(k+1)}$ esté definido en [a,b]. Entonces $\forall x \in [a,b], \ \exists c_x$ entre c y x tal que

$$f(x) = S_k(x) + R_k(x)$$

donde

$$S_k(x) = \sum_{n=0}^k \frac{f^{(n)}(c)}{n!} (x-c)^n \text{ y } R_k(x) = \frac{f^{(k+1)}(c_x)}{(k+1)!} . (x-c)^{k+1}.$$

- $S_k(x)$ se conoce como el polinomio de Taylor de grado k y $R_k(x)$ se conoce como el resto del polinomio de Taylor fe grado k.
- El error de aproximación del $S_k(x)$ se define como

$$error = |f(x) - S_k(x)| = |R_k(x)|.$$

ITCR Presentación 0 23 / 25

Ejercicio

Calcule la cantidad de términos que se debe sumar en la serie de Maclaurin de $f(x)=e^x$ para garantizar que la aproximación de e^2 tiene un error absoluto menor a 10^{-5} .

Sugerencia: Determinar el valor de k, tal que $|R_k(x)| < 10^{-5}$.

- Sea $P_k(x)$ el polinomio de Taylor de grado k que aproxima a una función f(x).
- Si se desea evaluar un valor α en el polinomio P_k de tal manera que aproxime al valor $f(\alpha)$, se puede calcular un valor k que cumpla la siguiente condición de parada:

$$|P_k(\alpha) - P_{k-1}(\alpha)| < tol,$$

donde tol > 0 es una tolerancia definida.

Ejercicio

Implemente computacionalmente (en GNU Octave o Pyhton) una función que aproxime el valor de $\ln(\alpha)$ utilizando el polinomio de Taylor, donde $\alpha \in]0,2]$, con una tolerancia tol>0 definida por el usuario. Utilice el criterio de parada de la diapositiva anterior.