Batch Reinforcement Learning

Tobias Weber

07.07.2020

Department of Statistics
Master Seminar "Reinforcement Learning" - SS 20

Agenda i

- 1. Introduction
- 2. Offline Reinforcement Learning
- 3. Challenges
- 4. Offline Policy Evaluation
- 5. Algorithms

Agenda ii

- 6. Tools
- 7. The Data
- 8. Offline Training Setup
- 9. Experiments
- 10. Conclusion

Introduction

Online & Offline Policy Reinforcement Learning

Figure 1: Architectures for Online & Offline Policy Reinforcement Learning.

Credits: LEVINE et al. 2020

1

Problems with interactive RL (Fu et al. 2020, LEVINE et al. 2020)

- Interaction with environment is necessary in frequent intervals.
- → Runtime issues & computational effort

Problems with interactive RL (Fu et al. 2020, LEVINE et al. 2020)

- o Interaction with environment is necessary in frequent intervals.
- → Runtime issues & computational effort
- Interaction with environment is not possible or accelerable.
- → Need for simulators or slow data collection
- ightarrow Additional problem of simulator-to-world transfer

Problems with interactive RL (Fu et al. 2020, LEVINE et al. 2020)

- o Interaction with environment is necessary in frequent intervals.
- → Runtime issues & computational effort
 - Interaction with environment is not possible or accelerable.
- → Need for simulators or slow data collection
- → Additional problem of simulator-to-world transfer
- A lot of Data is already existing but RL needs to collect samples on each training run.
- → Low sample efficiency & redundancy

More examples...

- Decision making in healthcare & autonomous driving
 - → Agent cannot interact with environment
- Recommender systems → Insane amount of data available
- \circ Learning dialogues \rightarrow Interaction with humans would be needed
- \circ Learning multi-tasking \to Blending environments and collected data

Offline Reinforcement Learning

Offline Reinforcement Learning

Figure 2: Offline Reinforcement Learning. *Credits: Levine et al. 2020*

Taxonomy

LANGE, GABEL, and RIEDMILLER 2012

- \circ Batch Reinforcement Learning \to Learning policy from $\mathcal D$
- \circ Growing Batch Reinforcement Learning \to Learning policy from $\mathcal D$ but allow environment interaction after Batches

Taxonomy

LANGE, GABEL, and RIEDMILLER 2012

- \circ Batch Reinforcement Learning \to Learning policy from $\mathcal D$
- \circ Growing Batch Reinforcement Learning \to Learning policy from $\mathcal D$ but allow environment interaction after Batches

Current papers, e.g. AGARWAL, SCHUURMANS, and NOROUZI 2019, LEVINE et al. 2020, Fu et al. 2020:

- \circ Offline Reinforcement Learning \to Learning policy from $\mathcal D$
- \circ Offline Policy Reinforcement Learning \to Learning policy from $\mathcal D$ but allow environment interaction after Batches

Notation

```
Trajectory: (s_1, a_1, r_1, ..., s_H, a_H, r_H)

H Length of Trajectory = Number of state, action, reward pairs

G Accumulated rewards / Return of a trajectory

D Dataset with transitions (s, a, r, s')

\pi Offline policy that is being learned

\pi_{\beta} Behavioral policy where \mathcal{D} is sampled from

\pi(a|s) Probability of taking action a when being in state s

d^{\pi}(s) State visitation frequency of s when following \pi
```

Objective & Goal

Maximize value of offline policy π :

$$V^{\pi} = \mathbb{E}[\sum_{t=1}^{H} \gamma^{t} r_{t} | \pi]$$

Objective & Goal

Maximize value of offline policy π :

$$V^{\pi} = \mathbb{E}\left[\sum_{t=1}^{H} \gamma^{t} r_{t} | \pi\right]$$

or:

Maximize probability that value of $\mathcal{A}(\mathcal{D})$ is better or equal to π_{β} , where $\mathcal{A}(\mathcal{D})$ is an algorithm that produces π under \mathcal{D} :

$$\max P(V^{\mathcal{A}(\mathcal{D})} \geq V^{\pi_{\beta}})$$

Challenges

Exploration Problem

- \circ Training algorithm ${\mathcal A}$ has to rely entirely on static ${\mathcal D}$
- No means for exploration
- ightarrow If π_{eta} does not contain areas of high-reward regions then they may remain undiscovered
- \rightarrow Structure of \mathcal{D} is critical!

Contradict: Exploration Problem

Figure 3: Trajectories in a maze.

Credits: Fu et al. 2020

- \circ FU et al. 2020 claims that theoretically π can outperform π_β by assembling different parts in the dataset
- $\Rightarrow \ \, \text{Create optimal strategy from different experiences}$

Counterfactual queries

- \circ Counterfactual queries \approx "What if?"-questions
- \circ To be better than π_{β} different τ s than in $\mathcal D$ need to be executed
- Learn a policy with different behavior
- Classic supervised Machine learning: data is independent and identically distributed (i.i.d.)
- Goal: Perform good on data of same distribution

Distribution Shift

(a) Distribution of state s under π_{β}

(b) Distribution of state s under π

Figure 4: Distributional shift between the behavioral and evaluation policy.

Distributional Shift Problems

- f may produce unexpected and erroneous actions in out-of-distribution states $s \sim d^{\pi_{\beta}}(s)$ (LEVINE et al. 2020)
- \Rightarrow Restrict deviation from behavioral policy, e.g. with Kullback-Leibler Divergence: $D_{KL}(\pi(a|s)||\pi_{\beta}(a|s)) \leq \epsilon$

Action Distribution Shift

- Mostly, target calculation relies on an estimate of $Q(s_{i+1}|a_{i+1})$.
- \circ Can contain actions that aren't in $\mathcal{D} \to \mathsf{can}$ produce high erroneous targets.
- \Rightarrow Greedy policy will further use actions that seem to give most reward.
- ⇒ No correctional feedback available!

Offline Policy Evaluation

Motivation

 General question: How to evaluate an agent or policy without contact to the environment?

 \circ Available: Behavioral policy π_eta

Motivation

- General question: How to evaluate an agent or policy without contact to the environment?
- \circ Available: Behavioral policy π_{eta}
- $\rightarrow \pi_{\beta}$ has a different distribution than π (Distribution shift)
- \rightarrow How to adapt given τ and G to π ?

Importance Sampling (PRECUP 2000, RUBINSTEIN and KROESE 2016)

- Estimate \mathbb{E} of a variable x under distribution q
- Given: samples of x generated under distribution p

$$\mathbb{E}_{x \sim q} = \int_{x} xq(x)dx = \int_{x} x \frac{q(x)}{p(x)} p(x)dx = \mathbb{E}_{x \frac{q(x)}{p(x)} \sim p}$$

Approximation through samples:

$$\approx \frac{1}{n} \sum_{i=1}^{n} x_i \frac{q(x)}{p(x)}$$

Adapting Importance Sampling to RL (PRECUP 2000)

The probability for a trajectory τ is defined as follows:

$$p(\tau|s = s_1) = p(a_1|s_1)p(r_1|s_1, a_1)p(s_2|s_1, a_1)$$

$$\cdot \dots \cdot p(a_{H-1}|s_{H-1})p(r_{H-1}|s_{H-1}, a_{H-1})p(s_H|s_{H-1}, a_{H-1})$$

$$= \prod_{t=1}^{H-1} p(a_t|s_t)p(r_t|s_t, a_t)p(s_{t+1}|s_t, a_t)$$

When given a policy π :

$$p(\tau|\pi, s = s_1) = \prod_{t=1}^{H-1} \pi(a_t|s_t) p(r_t|s_t, a_t) p(s_{t+1}|s_t, a_t)$$

Adapting Importance Sampling to RL (PRECUP 2000)

For Importance Sampling the fraction of two probabilities is needed:

$$\frac{p(\tau|\pi)}{p(\tau|\pi_{\beta})} = \prod_{t=1}^{H-1} \frac{\pi(a_t|s_t)}{\pi_{\beta}(a_t|s_t)} \frac{p(r_t|s_t, a_t)}{p(r_t|s_t, a_t)} \frac{p(s_{t+1}|s_t, a_t)}{p(s_{t+1}|s_t, a_t)}$$

$$= \prod_{t=1}^{H-1} \frac{\pi(a_t|s_t)}{\pi_{\beta}(a_t|s_t)}$$

Value of π under Importance Sampling

$$V^{\pi} \approx \frac{1}{n} \sum_{n}^{j=1} \frac{p(\tau_{j}|\pi)}{p(\tau_{j}|\pi_{\beta})} G(\tau_{j})$$

$$= \frac{1}{n} \sum_{n}^{j=1} (\prod_{t=1}^{H-1} \frac{\pi(a_{j,t}|s_{j,t})}{\pi_{\beta}(a_{j,t}|s_{j,t})}) G(\tau_{j})$$

$$= \frac{1}{n} \sum_{n}^{j=1} (\prod_{t=1}^{H-1} \frac{\pi(a_{j,t}|s_{j,t})}{\pi_{\beta}(a_{j,t}|s_{j,t})}) (\sum_{t=0}^{H} \gamma^{t} r_{j,t})$$

- \rightarrow Trajectories & returns with higher probability in π will be upweighted
- ightarrow Trajectories & returns with lower probability in π will be downweighted

Algorithms

Linear Function Approximation

Preliminaries: Basis Functions

Idea: Transform states and action via basis functions:

$$\phi(\mathsf{s},a) = egin{pmatrix} \phi_1(\mathsf{s},a) \ \phi_2(\mathsf{s},a) \ \dots \ \phi_k(\mathsf{s},a) \end{pmatrix}$$

For a given set of state-action pairs:

$$\Phi(s,a) = egin{pmatrix} \phi(s_1,a_1) \ \phi(s_2,a_2) \ \dots \ \phi(s_n,a_n) \end{pmatrix}$$

Linear Value Function Approximation:

$$\hat{Q} = \Phi W$$

Bellman Residual Minimizing Approximation (LAGOUDAKIS and PARR 2003)

Q as solution for the Bellman equation:

$$Q = \mathcal{R} + \gamma P^{\pi} Q$$

Insert Linear approximation:

$$\Phi \mathbf{w} \approx \mathcal{R} + \gamma \mathbf{P}^{\pi} \Phi \mathbf{w} \implies (\Phi - \gamma \mathbf{P}^{\pi} \Phi) \mathbf{w} \approx \mathcal{R}$$

Solving the linear system via least-squares method:

$$W = ((\Phi - \gamma P^{\pi} \Phi)^{T} (\Phi - \gamma P^{\pi} \Phi))^{-1} (\Phi - \gamma P^{\pi} \Phi)^{T} \mathcal{R}$$

Least squares temporal difference Q-learning (LAGOUDAKIS, PARR, and LITTMAN 2002)

- Projected Fixed-Point iteration method
- Orthogonal least squares projection $\Pi = \Phi(\Phi^T \Phi)^{-1} \Phi^T$

$$Q_{i+1} = \Pi Q_i$$

$$\Phi W = \Pi (\mathcal{R} + \gamma P^{\pi} \Phi W)$$

$$\Phi W = \Phi (\Phi^{T} \Phi)^{-1} \Phi^{T} (\mathcal{R} + \gamma P^{\pi} \Phi W)$$

o Transform to linear system that can be solved

$$\implies \Phi^{\mathsf{T}}(\Phi - \gamma P^{\pi}\Phi)w = \Phi^{\mathsf{T}}\mathcal{R} \implies Aw = b$$

Least Squares Policy Iteration (LAGOUDAKIS and PARR 2003)

- \circ LSTDQ \rightarrow One step of optimization
- o LSPI:
 - \rightarrow Execute LSTDQ in a loop and update w
 - ightarrow Stopping criterium: Distance of $\textit{w}_{\textit{old}}$ to $\textit{w}_{\textit{new}}$ is smaller than given ϵ

Function Approximation via Deep Learning

Classic algorithms

Neural Fitted Q Iteration (RIEDMILLER 2005)

- o Using a Multilayer-Perceptron as Function Approximator
- Update using full gradient descent for generalization
- Cost approach: Minimize transition costs

Classic algorithms

Neural Fitted Q Iteration (RIEDMILLER 2005)

- Using a Multilayer-Perceptron as Function Approximator
- Update using full gradient descent for generalization
- Cost approach: Minimize transition costs

Deep Q Network (MNIH et al. 2015)

- Algorithm that allows playing Atari games from visual inputs
- Adds experience replay buffer
- Adds policy & target network
- o Lots of extensions, e.g. Rainbow (HESSEL et al. 2017)

Ensemble DQN (Anschel, Baram, and Shimkin 2016)

Figure 5: Architectures for DQN & Ensemble DQN. *Credits: AGARWAL, SCHUURMANS, and NOROUZI 2019*

Random Ensemble Mixture (AGARWAL, SCHUURMANS, and NOROUZI 2019)

- Q value estimate: Random convex combination of Q estimates of k heads
- $\rightarrow Q_{\theta}(s,a) = \sum_{k} \alpha_{k} Q_{\theta}^{k}(s,a)$
- ightarrow where $lpha \in \mathbb{R}^k$ given $\sum_k a_k = 1 \land \forall a_k : a_k \geq 0$
 - $\circ \ \alpha$ is only relevant for training!
 - \rightarrow Using average of heads for inference

Other approaches

- Quantile Regression: Learning a distribution of returns (DABNEY et al. 2017)
- QT-OP: Scaleable approach for vision based robotic manipulation (KALASHNIKOV et al. 2018)
- BEAR: Tackling distributional shift (KUMAR et al. 2019)
- o MOReL: Model-Based Offline Reinforcement Learning (KIDAMBI et al. 2020)

Practice Project

My Project & Project goals

Main goal: Explore different algorithms in the domain of Offline RL

Target: First Atari Games, then Lunar Lander

Subgoals

- o Handle & transform visual inputs
- o Efficient data collection & persistent storage
- Efficient computing on GPU
- Convenient logging capabilities

Tools

O PyTorch

Check out my GitHub repository!

https://github.com/saiboxx/offline-reinforcement-learning

The Data

What data do we need?

- \Rightarrow At least so much that τ can be recreated:
- → States of the game
- → Actions taken
- → Rewards
- → Done Booleans
- \rightarrow New state s' does not need to be saved explicitly!

First findings...

ULLJUST SAVE THE FRAMES AS ARRAYS AND UM DONE

DOZENSOF GBS OF FILES AND RAM OVER FLOW

imgflip.com

But why exactly?

- o 1 pixel = value from to 255
- Smallest fitting datatype = uint8
 - \Rightarrow Minimum of 8 bit \approx 1 byte
- \circ 1 Frame has 210 \times 160 \times 3 pixels = 100.800 pixels
- \Rightarrow 1 Frame needs atleast 100.800 bytes = 100 KB
 - o This doesn't scale well...
 - \Rightarrow 10 Frames = 1 MB
 - ⇒1.000 Frames = 100 MB
 - \Rightarrow 10.000 Frames = 1 GB
 - ⇒1.000.000 Frames = 100 GB

Image transformation & compression is necessary!

Preprocessing

- Cropping: Cut off unnecessary parts of the screen
- Grayscale: Reduce number of channels to one
- Black & White: Value of pixel is whether o or 255
- \circ Resizing: Downsampling to 80 \times 80 pixels
- \Rightarrow Result is of shape 80 \times 80 \times 1 pixels = 6400 pixels
- \Rightarrow Save as .png-file for better compression

Is this the perfect solution?

- ∮ 1 mio steps = 1 mio image files
- Literally killing the filesystem
- Extremely many I/O Operations

What to do next?

- o Use a Database, e.g. Spark
- o Train a Variational Autoencoder (KINGMA and WELLING 2013)

Autoencoder Training Progress

Change of project scope

Figure 8: Me waiting for training to finish (2020, colorized)

- AGARWAL, SCHUURMANS, and NOROUZI 2019 trained each Atari game on 200 mio frames
- Limited time & ressource constraints
- ⇒ Too big of a project for a proof of concept
- ⇒ Change to an easier domain: Lunar Lander!

Lunar Lander

Credits: Shiva Verma - Solving Lunar Lander

Offline Training Setup

DQN Multi-Head Neural Network

```
class DQNMultiHead(nn.Module):
 def __init__(self, *args, **kwargs):
    super(DQNMultiHead, self).__init__()
   Γ...1
    self.elu = nn.ELU()
    self.fc1 = nn.Linear(in_features=obs_space, out_features=128)
    self.bn1 = nn.BatchNorm1d(128)
    self.fc2 = nn.Linear(in_features=128, out_features=32)
    self.bn2 = nn.BatchNorm1d(32)
    self.heads = nn.Conv1d(in_channels=32 * num_heads,
                 out_channels=action_space * num_heads,
                 kernel_size=1,
                 groups=num_heads)
```

What's this Convolutional Layer about?

- o Optimal: Processing independent heads in parallel
- o Problem: How to implement parallelization in PyTorch & GPU?
- → Idea: Utilize 1D-Convolutions!

Parallelizing Linear layers over Convolutions

- \circ Transform input (b imes state_dim) to (b imes state_dim * num_heads imes 1)
- \rightarrow Length of input sequence is 1 with a lot of channels.
- → Use kernel size 1: Collapse to Linear layer.

$$out_{conv_j} = \sum_{k=1}^{C_{in}} w_k C_{in_k} + b \Rightarrow x^T w + b = out_{lin_j}$$

- Use grouped convolutions: Channels will be divided into *n* partitions, where each partition has own weight set.
- → Output: (b × (action_dim * num_heads) × 1)
 ⇒ Reshape to preferred matrix layout

REM Walkthrough i

 \circ Create coefficient matrix α witch shape (num_heads \times batch). Sum of columns is 1

```
alpha = torch.rand(self.num_heads).to(self.device)
alpha = alpha / torch.sum(alpha)
alpha = alpha.unsqueeze(-1).expand(-1, len(action))
```

 \circ Actions shape = (batch) \rightarrow (num_heads \times batch \times 1)

```
actions = action.unsqueeze(-1).expand(self.num_heads, -1, -1)
```

REM Walkthrough ii

- Retrieve all Q-Values for all actions from policy and choose the taken actions via multi-index selection
- Output of network has shape (num_heads × batch × action_space)
- \circ Next, weigh the heads via α and sum up axis $o \rightarrow (batch)$

```
state_action_values = self.policy(state).gather(2, actions).squeeze()
state_action_values = torch.sum(alpha * state_action_values, dim=0)
```

REM Walkthrough iii

- Retrieve all Q-Values for all actions from target
- \circ Weigh the heads via α and sum up axis $o \to (batch \times action_space)$

- Choose actions that have the highest Q-Value → (batch)
- Use a mask to set all states to zero, that are the end of an episode

```
next_state_values, _ = torch.max(all_next_states, dim=1)
next_state_values[done] = 0
```

REM Walkthrough iv

- Calculate expected Q-values
- Use difference between expected Q-Values and Q-Values from policy network as loss

REM Walkthrough v

Do one step of gradient descent with clipping

```
self.optimizer.zero_grad()
loss.backward()
for param in self.policy.parameters():
   param.grad.data.clamp_(-1, 1)
self.optimizer.step()
```

Update target network on a fixed interval

```
if self.batches_done % self.target_update_steps == 0:
    self.target.load_state_dict(self.policy.state_dict())
```

Additional advice

- ! Skip rendering of environment!
- ! Limit stdout and logging!
- ! Limit I/O Ops
 - ightarrow load dataset to memory
 - \rightarrow if it is too big: load until memory is full!

PyTorch specific

- Utilize custom Dataset and Dataloader
- \circ Set num_workers \geq number of cpu cores
- \circ Set pin_memory to True
 - ightarrow workers will prepare data for faster loading into VRAM

Experiments

Mean Reward - 512 Batch - 200 Epochs - DQN Data

Mean Reward Smooth - 512 Batch - 200 Epochs - DQN Data

Q-Values - 512 Batch - 200 Epochs - DQN Data

Mean Reward - 256 Batch - 200 Epochs - DQN Data

Mean Reward Smooth - 256 Batch - 200 Epochs - DQN Data

Q-Values - 256 Batch - 200 Epochs - DQN Data

Mean Reward - 128 Batch - 200 Epochs - DQN Data

Mean Reward Smooth - 128 Batch - 200 pochs - DQN Data

Q-Values - 128 Batch - 200 Epochs - DQN Data

Mean Reward - 512 Batch - 200 Epochs - Random Data

Mean Reward Smooth - 512 Batch - 200 Epochs - Random Data

Q-Values - 512 Batch - 200 Epochs - Random Data

REM - Mean Reward - 256 Batch - 500 Epochs - DQN Data

REM - Q-Values - 256 Batch - 500 Epochs - DQN Data

REM Variants - Mean Reward - 256 Batch - 200 Epochs - DQN Data

REM Variants - Q-Values - 256 Batch - 200 Epochs - DQN Data

Try it on your own: Public Datasets

DQN Replay Dataset (AGARWAL, SCHUURMANS, and NOROUZI 2019)

- o 60 Atari Games
- o 5 Datasets per Game with 200 mio. frames
- → 300 Datasets with 500GB each

D4RL: Datasets for Deep Data-Driven Reinforcement (Fu et al. 2020)

- o Goal: Objective Evaluation of offline RL algorithms
- Datasets with different challenges like multi-objectives or mix of high/low quality data

Conclusion

Conclusion

- Extremely active research area
 - ⇒ Lots of new papers and ideas
- o First practical success, e.g. in robotics (KALASHNIKOV et al. 2018)
- No "ultimate" or supreme offline-RL solution
- o Different approach styles:
 - Theoretical finesse for understanding and solving occurring issues, e.g. distribution shift, offline Policy Evaluation
 - Deep Learning as high-capacity function approximation to cope with challenges of offline-RL (Large Scale Computing)

References

References i

- AGARWAL, R., D. SCHUURMANS, and M. NOROUZI (2019). An Optimistic Perspective on Offline Reinforcement Learning. arXiv: 1907.04543 [cs.LG] (cit. on pp. 12, 13, 39, 40, 54, 83).
- ANSCHEL, O., N. BARAM, and N. SHIMKIN (2016). Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement Learning. arXiv: 1611.01929 [cs.AI] (cit. on p. 39).
- DABNEY, W. et al. (2017). Distributional Reinforcement Learning with Quantile Regression. arXiv: 1710.10044 [cs.AI] (cit. on p. 41).
- Fu, J. et al. (2020). D4RL: Datasets for Deep Data-Driven Reinforcement Learning. arXiv: 2004.07219 [cs.LG] (cit. on pp. 6–8, 12, 13, 19, 83).

References ii

- HESSEL, M. et al. (2017). Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv: 1710.02298 [cs.AI] (cit. on pp. 37, 38).
- KALASHNIKOV, D. et al. (2018). QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. arXiv: 1806.10293 [cs.LG] (cit. on pp. 41, 85).
- KIDAMBI, R. et al. (2020). MOReL: Model-Based Offline Reinforcement Learning. arXiv: 2005.05951 [cs.LG] (cit. on p. 41).
- KINGMA, D. P. and M. WELLING (2013). Auto-Encoding Variational Bayes. arXiv: 1312.6114 [stat.ML] (cit. on p. 52).
- KUMAR, A. et al. (2019). Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. arXiv: 1906.00949 [cs.LG] (cit. on p. 41).

References iii

- LAGOUDAKIS, M. G. and R. PARR (2003). "Least-squares policy iteration". In: Journal of machine learning research 4.Dec, pp. 1107–1149 (cit. on pp. 33, 35).
- LAGOUDAKIS, M. G., R. PARR, and M. L. LITTMAN (2002). "Least-squares methods in reinforcement learning for control". In: Hellenic conference on artificial intelligence. Springer, pp. 249–260 (cit. on p. 34).
- LANGE, S., T. GABEL, and M. RIEDMILLER (2012). "Batch reinforcement learning". In: Reinforcement learning. Springer, pp. 45–73 (cit. on pp. 12, 13).
- LEVINE, S. et al. (2020). Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. arXiv: 2005.01643 [cs.LG] (cit. on pp. 5–8, 11–13, 22).

References iv

- MNIH, V. et al. (2015). "Human-level control through deep reinforcement learning". In: *Nature* 518.7540, pp. 529–533 (cit. on pp. 37, 38).
- PRECUP, D. (2000). "Eligibility traces for off-policy policy evaluation". In: Computer Science Department Faculty Publication Series, p. 80 (cit. on pp. 26–28).
- RIEDMILLER, M. (2005). "Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method". In: European Conference on Machine Learning. Springer, pp. 317–328 (cit. on pp. 37, 38).
- RUBINSTEIN, R. Y. and D. P. KROESE (2016). Simulation and the Monte Carlo method. Vol. 10. John Wiley & Sons (cit. on p. 26).