

Graf ten jest hamiltonowski, jego cykl Hamiltona:

0->2->1->10->4->3->8->7->6->9->5->11->0

Graf nie jest eulerowski ani pół-eulerowski, nie posiada ścieżki ani cyklu Eulera.

Liczba chromatyczna grafu – 4, indeks chromatyczny – 8

Macierz incydencji:

	0	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
											0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
7	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0
8	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0
9	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1
0																																								
1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0
1																																								

Ze wzoru Eulera wynika, że dla grafów planarnych spełniona jest nierówność 3*V - E >= 6, gdzie V to liczba węzłów a E liczba krawędzi. Dla mojego grafu V = 12, E = 40, 3*V - E = -4 nierówność nie jest więc spełniona co oznacza, że na pewno nie jest on planarny.

Minimalne drzewo rozpinające:

Macierz sąsiedztwa z wagami:

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	15	13	0	11	9	7	5	3	0	1
1	0	0	14	12	0	10	0	8	6	4	2	0
2	15	14	0	6	5	0	4	0	3	0	2	1
3	13	12	6	0	9	0	0	0	8	0	0	7
4	0	0	5	9	0	9	7	5	3	0	1	0
5	11	10	0	0	9	0	0	1	5	5	0	5
6	9	0	4	0	7	0	0	11	0	5	4	3
7	7	8	0	0	5	1	11	0	13	0	0	0
8	5	6	3	8	თ	5	0	13	0	0	0	0
9	3	4	0	0	0	5	5	0	0	0	3	7
10	0	2	2	0	1	0	4	0	0	3	0	0
11	1	0	1	7	0	5	3	0	0	7	0	0

Na niebiesko zaznaczone minimalne drzewo rozpinające o wadze 28.

Algorytm Dijkstry bada najkrótszą ścieżkę od danego węzła początkowego do wszystkich pozostałych. Najpierw oznaczamy dystans do węzła początkowego jako 0, a do pozostałych jako nieskończoność. Następnie rozpoczynamy pętlę trwającą do momentu, gdy zbadamy wszystkie krawędzie wychodzące od każdego węzła. Przy każdym wykonaniu pętli wybieramy wierzchołek, który jeszcze nie został przeanalizowany o minimalnym dystansie od węzła początkowego, sprawdzamy wszystkie krawędzie z niego wychodzące i jeżeli

ścieżka używająca danej krawędzi jest krótsza niż aktualny dystans zapisany dla węzła, do którego ta krawędź prowadzi, aktualizujemy go jako sumę dystansu do wybranego węzła i wagi tej krawędzi. Węzeł ten oznaczamy jako przeanalizowany i kontynuujemy pętlę. Oprócz dystansu zapisywane są również węzły poprzedzające, aby wiedzieć, których krawędzi powinniśmy użyć.

Algorytm Dijkstry może być wykorzystany przez serwisy mapowe do znajdowania najkrótszej trasy między dwoma punktami, w serwisach społecznościowych do wyszukiwania potencjalnych znajomych, korzystając np. z liczby wspólnych znajomych. Użyteczny jest również w przypadku szukania najkorzystniejszego lotu porównując czas lotu poszczególnych linii. Często używany jest w sieciach komputerowych czy telefonicznych. Do niektórych problemów wykorzystuje się odpowiednio zmodyfikowany algorytm Dijkstry. Dla grafów z negatywnymi wagami korzysta się z algorytmu Bellmana-Forda.