Section 5: Conditional expectations and convergence

ARE 210

September 26, 2017

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section5" folder.

1 Definitions

- Conditional expectation: Let (Ω, \mathbf{F}, P) be a probability space, $Y : \Omega \to \mathbf{R}$ a random variable, and $\mathbf{G} \subset \mathbf{F}$ a σ -algebra.¹ Then $\mathbf{E}[Y|\mathbf{G}]$ is 1) \mathbf{G} -measurable, and 2) solves $\int Y(\omega)\mathbf{1}_B(\omega)P[d\omega] = \int \mathbf{E}[Y|\mathbf{G}](\omega)\mathbf{1}_B(\omega)P[d\omega]$ for all $B \in \mathbf{G}$.
 - $-\mathbf{E}[Y|\mathbf{G}]$ is \mathbf{G} -measurable $\Leftrightarrow \mathbf{E}[Y|\mathbf{G}]^{-1}(B) \in \mathbf{G}$ for all $B \in \mathbf{B}$
 - * More intuitively, this will mean that $\mathbf{E}[Y|\mathbf{G}]$ will be constant over the smallest non-empty sets in \mathbf{G} .
 - * For example, $\mathbf{E}[Y] = \mathbf{E}[Y|\{\emptyset,\Omega\}]$, and $Y = \mathbf{E}[Y|\mathbf{F}]$
 - Let $\sigma(X) = \{A \in \mathbf{F} : \exists B \in \mathbf{B} \text{ such that } A = X^{-1}(B)\}$ for some random variable X, then $\mathbf{E}[Y|X] \equiv \mathbf{E}[Y|\sigma(X)]$.
 - * More intuitively, $\mathbf{E}[Y|X]$ is taking the average of Y over the set of ω that correspond to any one value of X
 - If W is **G**-measurable, $\mathbf{E}[YW|\mathbf{G}] = W\mathbf{E}[Y|\mathbf{G}]$
 - * More intuitively and equivalently, $\mathbf{E}[Yf(X)|X] = f(X)\mathbf{E}[Y|X]$
 - Law of iterated expectations: E[E[Y|G]] = E[Y] = E[E[Y]|G]
 - $-X \perp Y|Z \Leftrightarrow \mathbf{E}[f(Y)|X,Z] = \mathbf{E}[f(Y)|Z] \text{ and } \mathbf{E}[f(X)|Y,Z] = \mathbf{E}[f(X)|Z].$
 - Define the **potential outcomes framework** to be 1) potential outcomes (Y_1, Y_0) , 2) treatment status D, 3) observed outcome $Y = Y_1D + Y_0(1 D)$, where (Y_1, Y_0, D, Y) is a random variable
 - * $(Y_1, Y_0) \perp D$ is random assignment of D
 - * Let X be another random variable, then $(Y_1, Y_0) \perp D|X$ is the selection on observables assumption
 - * P[D=1|X] is the propensity score
 - · Selection on observables \Rightarrow $(Y_1, Y_0) \perp D|P[D = 1|X]$

We also make the technical assumption that $\mathbf{E}[|Y|] < \infty$.

- · Selection on observables $\Rightarrow \mathbf{E} \left[\frac{DY}{P[D=1|X]} \middle| X \right] = \mathbf{E}[Y_1|X]$
- Let $L^p(\mathbf{G}) \equiv \{X : \Omega \to \mathbf{R} \mid X \text{ is } \mathbf{G}\text{-measurable}, \int |X(\omega)|^p P[d\omega] < \infty\}$, and assume $Y \in L^2(\mathbf{F})$.
 - * $\widehat{Y} = \mathbf{E}[Y|\mathbf{G}]$ is the unique (almost everywhere) random variable satisfying $\mathbf{E}[(Y-\widehat{Y})^2] = \min_{X \in L^2(\mathbf{G})} \mathbf{E}[(Y-X)^2]$, or equivalently, $\mathbf{E}[(Y-\widehat{Y})X] = 0 \ \forall \ X \in L^2(\mathbf{G})$.
 - * More intuitively, the conditional expectation function "projects" Y onto X.
 - * $Y = \hat{Y} + (Y \hat{Y})$ is a useful decomposition of Y into two mean independent random variables
- Convergence: Let (Ω, \mathbf{F}, P) be a probability space, $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables
 - $-X_n \stackrel{\text{a.s.}}{\to} X \Leftrightarrow X_n(\omega) \to X(\omega)$ almost everywhere
 - Assume $X_n \in L^{p,2}$ $X_n \stackrel{L^p}{\to} X \Leftrightarrow \mathbf{E}[|X_n X|^p] \to 0$
 - $-X_n \xrightarrow{p} X \Leftrightarrow P[|X_n(\omega) X(\omega)| > \epsilon] \to 0$
 - * $X_n \to X$, $Y_n \to Y$ implies 1) $X_n + Y_n \stackrel{p}{\to} X + Y$, 2) $X_n Y_n \stackrel{p}{\to} XY$, 3) $f(X_n) \to f(X)$ for sufficiently nice f
 - * Weak law of large numbers: $\{X_n\}_{n=1}^{\infty}$ iid random variables, let $\overline{X}_n \equiv \frac{1}{n} \sum_{i=1}^{n} X_i$, and assume $X \in L^2$. Then $\overline{X}_n \stackrel{\mathrm{p}}{\to} \mathbf{E}[X_i]$. * $\stackrel{\mathrm{a.s.}}{\to} \Rightarrow \stackrel{L^p}{\to} \Rightarrow \stackrel{\mathrm{p}}{\to}$
 - Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of probability measures, and assume X_i has probability measure μ_i , and let μ be the probability measure of X. Then $X_n \stackrel{\mathrm{d}}{\to} X$ $\Leftrightarrow \mu_n \to \mu \Leftrightarrow \int f(x)\mu_n[dx] \to \int f(x)\mu[dx]$ for all bounded, continuous f
 - * Probability measures converging is equivalent to CDFs converging which is equivalent to characteristic functions converging (Levy's Theorem)
 - * $X_n \stackrel{\mathrm{d}}{\to} X \Leftrightarrow r'X_n \stackrel{\mathrm{d}}{\to} r'X$ for any matrix r (joint distributions being the same is equivalent to arbitrary linear combinations having the same distribution)
 - * Lindeberg-Levy CLT: $\{X_i\}_{i=1}^{\infty}$ iid random variables, $X_i \in L^2$, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $Y_n = \frac{\overline{X}_n \mathbf{E}[\overline{X}_n]}{\sqrt{V[\overline{X}_n]}}$, then $Y_n \stackrel{\mathrm{d}}{\to} N(0,1)$.

²Using the definition above, here $L^p \equiv L^p(\mathbf{F})$.

2 Some helpful tips

- The potential outcomes framework is one of the most important recent developments in econometrics, if not the most. Generally, think about *D* as a proxy for some policy, and *Y* as some outcome of interest, where we're interested in estimating the effect of the policy on that outcome.
- Try constructing an example that matters to anything we do of $\stackrel{P}{\to}$ but not $\stackrel{a.s.}{\to} \dots$
- Chebyshev's inequality $(P[|X \mathbf{E}[X]| > \epsilon] \leq \frac{V[X]}{\epsilon^2})$ got a lot of use here, almost always to show a sequence of random variables with variance going to 0 is converging in probability to the limit of their expectation

3 Practice questions

1) Sum of Bernoulli: Let X_{n1}, \ldots, X_{nn} be iid Bern $[p_n]$, and let $S_n = \sum_{j=1}^n X_{nj}$. Suppose $np_n \to \lambda$. Show that $S_n \stackrel{d}{\to} \operatorname{Pois}[\lambda]$.

Hint: the characteristic function of a Pois[λ] RV is $\Psi(t) = \exp(\lambda(\exp(it) - 1))$.

- 2) Law of iterated expectations: Show E[E[Y|X]] = E[Y].
- 3) **LATE**: Let (Y_1, Y_0, D_1, D_0, Z) be a vector of random variables, where D_1 , D_0 , and Z are binary. Assume $(Y_1, Y_0, D_1, D_0) \perp Z$ (independence), $\mathbf{E}[D_1] > \mathbf{E}[D_0]$ (first stage), and $D_1 \geq D_0$ almost everywhere (monotonicity). Assume $D = D_1 Z + D_0 (1 Z)$, $Y = Y_1 D + Y_0 (1 D)$, and Z are observed.
- a) What is $\mathbf{E}[Y|D=1] \mathbf{E}[Y|D=0]$? What are necessary and sufficient conditions for it to equal $\mathbf{E}[Y_1 Y_0|D=1]$?
 - b) Show that $\frac{\mathbf{E}[Y|Z=1] \mathbf{E}[Y|Z=0]}{\mathbf{E}[D|Z=1] \mathbf{E}[D|Z=0]} = \mathbf{E}[Y_1 Y_0|D_1 > D_0].$
 - c) Assume D = Z, what does this reduce to?
- 4) **Distribution of** Y_d : Assume the potential outcomes framework with selection on observables, and assume common support $(\mathbf{E}[D|X] \equiv p(X) \in (0,1))$.
- a) Temporarily consider the case where $(Y_1, Y_0) \perp D$. How can the marginal distributions of Y_1 and Y_0 be calculated using (Y, D)? Can the joint distribution be calculated? Intuitively, why not?
- b) Now return to the selection on observables assumption. How can the marginal distributions of Y_1 and Y_0 be calculated using (Y, D, X)?