Aufgabe 1. Mengengrundlagen

a. Gib die mit gelb gekennzeichnete Menge mit nur zwei Mengenoperationen an:

$$M = (A \setminus B) \triangle C$$

b. Berechne: $((\{1,3\} \times \{1\})) \cup \{1,3,1\} \setminus \{(1,3),1,2\}$

$$\begin{split} M &= ((\{1,3\} \times \{1\})) \cup \{1,3,1\} \setminus \{(1,3),1,2\} \\ &\stackrel{\mathrm{Def.} \times}{=} (\{(1,1),(3,1)\} \cup \{1,3,1\} \setminus \{(1,3),1,2\}) \\ &\stackrel{\mathrm{Def.} \cup}{=} (\{(1,1),(3,1),1,3\} \setminus \{(1,3),1,2\}) \\ &\stackrel{\mathrm{Def.} \setminus}{=} \{(1,1),(3,1),3\} \end{split}$$

c. Berechne: $(\{\emptyset,2\} \cup \{\{\emptyset\}\}) \cap \mathcal{P}(\{\{\emptyset\},2\})$

$$\begin{split} M &= (\{\emptyset,2\} \cup \{\{\emptyset\}\}) \cap \mathcal{P}(\{\{\emptyset\},2\}) \\ &\stackrel{\mathrm{Def.}\cup}{=} \{\emptyset,\{\emptyset\},2\} \cap \mathcal{P}(\{\{\emptyset\},2\}) \\ &\stackrel{\mathrm{Def.}\mathcal{P}}{=} \{\emptyset,\{\emptyset\},2\} \cap \{\emptyset,\{\{\emptyset\}\},\{2\},\{\{\emptyset\},2\}\} \\ &\stackrel{\mathrm{Def.}\cap}{=} \{\emptyset\} \end{split}$$

Aufgabe 2. Mengenbeweise

a. Beweise oder widerlege: Für alle Mengen A und B gilt: $(A \cap B) \cap A = B \cap A$

Wir beweisen die Aussage. Seien A, B beliebige Mengen.

$$(A \cap B) \cap A = B \cap A$$

$$\stackrel{\text{Def.} \cap}{=} \qquad \{x \mid x \in \{y \mid y \in A \land y \in B\} \land x \in A\}$$

$$\text{Komm.} \qquad \{x \mid x \in \{y \mid y \in B \land y \in A\} \land x \in A\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad \{x \mid (x \in B \land x \in A) \land x \in A\}$$

$$\stackrel{\text{Assoz.}}{=} \qquad \{x \mid x \in B \land (x \in A \land x \in A)\}$$

$$\stackrel{\text{Idem.}}{=} \qquad \{x \mid x \in B \land x \in A\}$$

$$\stackrel{\text{Def.} \cap}{=} \qquad B \cap A$$

Somit gilt die Aussage.

b. Beweise oder widerlege: Für alle Mengen A und B gilt: $A \cup (A \setminus B) = A$ Wir beweisen die Aussage. Seien A, B beliebige Mengen.

$$A \cup (A \setminus B) = A$$

$$\stackrel{\text{Def.} \cup}{=} \qquad \{x \mid x \in A \lor x \in (A \setminus B)\}$$

$$\stackrel{\text{Def.} \wedge}{=} \qquad \{x \mid x \in A \lor x \in \{y \mid y \in A \land y \notin B\}\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad \{x \mid x \in A \lor (x \in A \land x \notin B)\}$$

$$\stackrel{\text{Distri.}}{=} \qquad \{x \mid (x \in A \lor x \in B) \land (x \in A \land x \in A)\}$$

$$\stackrel{\text{Idem.oder}}{=} \qquad \{x \mid (x \in A \lor x \in B) \land x \in A\}$$

$$\stackrel{\text{Absorp.}}{=} \qquad \{x \mid x \in A\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad A$$

Somit gilt die Aussage.

c. Beweise oder widerlege: Für alle Mengen A und B gilt: $(B \cup A) \cap B = A \cap B$ Wir widerlegen die Aussage durch Angabe eines geeigneten Gegenbeispiels. Wir wählen $A \triangleq \{1,2\}, B \triangleq \{2,3\}.$

$$(B \cup A) \cap B$$

$$= (\{2,3\} \cup \{1,2\}) \cap \{2,3\}$$

$$\stackrel{\text{Def.} \cup}{=} \{1,2,3\} \cap \{2,3\}$$

$$\neq \{2\}$$

$$\stackrel{\text{Def.} \cap}{=} \{1,2\} \cap \{2,3\}$$

$$= A \cap B$$

Somit gilt die Aussage nicht.

Aufgabe 3. Wahrheitstabellen

a. Beweise oder widerlege nur mit Hilfe einer Wahrheitstabelle oder eines (Gegen-) Beispiels, $\operatorname{dass} \neg q \wedge ((r \leftrightarrow (r \to \bot)) \vee q) \text{ kontradiktorisch ist.}$

q	r	¬	q	$\bigvee_{\uparrow}^{\bigvee}$	((r	\leftrightarrow	(r	\rightarrow	⊥))	\ \	q)
F	F	W	F	F	F	F	F	W	F	F	F
				F							
W	F	F	W	F	F	F	F	w	F	W	w
W	$ \mathbf{w} $	F	W	F	w	F	W	F	F	W	w

Der Hauptjunktor wird immer zu F ausgewertet. Also ist die Formel kontradiktorisch.

b. Beweise oder widerlege nur mit Hilfe einer Wahrheitstabelle oder eines (Gegen-) Beispiels, $((s \land \neg q) \to r) \lor r \equiv r \lor (s \to q).$

~			((a			۵)			<u></u>			$\bigg \stackrel{\downarrow}{\diamondsuit} \bigg $	(0		(2)
q	r	S	((s	\wedge		q)	\rightarrow	r)	,	r	r	V	(s	\rightarrow	q)
F	F	F	F	F	w	F	W	F	W	F	F	W	F	w	F
F	F	w	W	W	W	F	F	F	F	F	F	F	W	F	F
F	W	F	F	F	W	F	W	W	W	$ \mathbf{w} $	W	W	F	w	F
F	W	w	W	W	W	F	W	W	W	$ \mathbf{w} $	w	W	W	F	F
W	F	F	F	F	F	W	W	F	W	F	F	W	F	W	W
W	F	W	W	F	F	W	W	F	W	F	F	W	W	W	W
W	W	F	F	F	F	W	W	W	W	w	W	W	F	W	W
W	W	w	W	F	F	w	W	w	W	$ \mathbf{w} $	W	W	w	w	w

Die beiden Hauptjunktoren werden in jeder Zeile zum selben Wert ausgewertet. Also sind die beiden Formeln äquivalent.

Aufgabe 4. Logische Äquivalenz

a. Gib an: eine Formel, die logisch äquivalent zu \bot ist und nur \neg und \lor als Operatoren enthält. $\neg(q\lor\neg q)\equiv\bot$

b. Beweise nur mit Hilfe von Äquivalenzumformungen, dass $q \wedge (r \to s)$ und $\neg (r \vee \neg q) \vee (s \wedge q)$ logisch äquivalent sind.

$$\begin{array}{ccc} & q \wedge (r \rightarrow s) \\ & & q \wedge (\neg r \vee s) \\ & & & \\ \text{Distr.von} \wedge \ddot{\textbf{u}} \text{ber} \vee & (\neg r \wedge q) \vee (s \wedge q) \\ & & & \\ \text{DeMorganII} & & \\ & & & \\ \end{array}$$

Aufgabe 5. Variablenbelegungen

a. Beweise ausschließlich mit Hilfe von Argumenten über eine oder mehrere Variablenbelegungen, dass $q \to \neg (r \land s) \equiv \neg q \lor (r \to \neg s)$.

Damit wird $q \to \neg(r \land s)$ genau dann zu W ausgewertet, wenn $\neg q \lor (r \to \neg s)$ zu W ausgewertet wird. Also sind die beiden Formeln äquivalent.

b. Beweise oder widerlege ausschließlich mit Hilfe von Argumenten über eine oder mehrere Variablenbelegungen, dass $\neg(\neg q \lor (s \land r)) \lor (q \leftrightarrow (s \land r))$ allgemeingültig ist.

Betrachte die Belegung β mit $\beta(q)=F$ und $\beta(r)=\beta(s)=W.$ Dann ist

$$\llbracket \neg (\neg q \lor (s \land r)) \lor (q \leftrightarrow (s \land r)) \rrbracket = F$$

Damit ist die Formel nicht allgemeingültig (da es eine Belegung gibt, unter der die Formel zu Fausgewertet wird).

Aufgabe 6. Prädikatenlogik

L. Beweise:
$$((\exists y.P_1(y) \rightarrow P_2(y)) \land (\forall x.P_1(x))) \rightarrow \exists z.P_2(z) \land P_1(z)$$
 Annahme (A1): $((\exists y.P_1(y) \rightarrow P_2(y)) \land (\forall x.P_1(x)))$ Zu Zeigen (Z1): $\exists z.P_2(z) \land P_1(z)$ Annahme (A2): $\exists y.P_1(y) \rightarrow P_2(y)$ Annahme (A3): $\forall x.P_1(x)$ Wähle $x \triangleq y$ in A3 Annahme (A4): $P_1(y)$ Sei x (beliebig aber fest) in A2 Annahme (A5): $P_1(y) \rightarrow P_2(y)$ Aus A4 und A5 folgt A6 Annahme (A6): $P_2(y)$ Wähle $z \triangleq y$ in Z1 Zu Zeigen (Z2): $P_2(y) \land P_1(y)$ Teil 1: Zu Zeigen (Z1.1): $P_2(y)$ Aus A6 folgt Z1.1 Teil 2: Zu Zeigen (Z2.1): $P_1(y)$ Aus A4 folgt Z2.1

Aufgabe 7. Widerspruch und Kontraposition

a. Ziehe, durch die schrittweise Anwendung logischer Äquivalenzen, alle Negationen inder folgenden Formel soweit wie möglich nach Innen. Begründe jeden Schritt.

b. Gib an: Den ersten Schritt, d.h. die erste Zeile, eines Beweises per Widerspruch für die Aussage $\neg(\exists x.P_1(x)) \rightarrow (\forall y.P_2(y) \land P_3(y))$.

Widerspruchs Annahme:

$$\neg(\exists x. P_1(x)) \to (\forall y. P_2(y) \land P_3(y)) \equiv \neg(\neg(\exists x. P_1(x)) \to (\forall y. P_2(y) \land P_3(y))) \to \bot$$

c. Gib an: Den ersten Schritt, d.h. die erste Zeile, eines Beweises per Kontraposition für die Aussage $\neg(\exists x.P_1(c)) \rightarrow (\forall y.P_2(y) \land P_3(y))$.

Zu Zeigen:
$$\neg(\forall y.P_2(y) \land P_3(y)) \rightarrow \neg\neg(\exists x.P_1(x))$$

Aufgabe 8. Induktion

L. Beweise per Induktion $\forall n \in \mathbb{N}_7.n \mod 2 = 1$.

Hinweis H1: $(n+m) \bmod r = ((n \bmod r)(m \bmod r)) \bmod r$ Sei

$$P(n) \triangleq (n \mod 2 = 1)$$

Wir verwenden das Induktionsschema:

$$(P(7) \land (\forall n \land \mathbb{N}_7.P(n) \rightarrow P(n+10))) \rightarrow (\forall x \in \mathbb{N}_7.P(x))$$

$$7\bmod 2=1$$

Sei $n \in \mathbb{N}_7$.

IV (*P*(*n*)):

$$n \bmod 2 = 1$$

IS (
$$P(n+10)$$
): Zu Zeigen: $(n+10) \bmod 2 = 1$

$$(n+10) \mod 2 \stackrel{\text{H1}}{=} ((n \mod 2) + (10 \mod 2)) \mod 2$$

$$= ((n \mod 2) + 0) \mod 2$$

$$\stackrel{\text{IV}}{=} (1+0) \mod 2$$

$$= 1 \mod 2$$

$$= 1$$

Nach unserem Induktionsschema gilt nun $\forall x \in \mathbb{N}_7.P(x)$ was äquivalent zur ursprünglichen Aussage ist. Damit ist die Aussage bewiesen.