Lecture 4 Chaos

Chaos and the butterfly effect.

Credit: University of Michigan

Phase-space (position-velocity) diagram of

a pendulum. Credit: Wikipedia

Lecture 3: Harmonic motion The non-linear pendulum

▶ Non-linear pendulum without dissipation or driving force

$$\ddot{\theta} = -\frac{g}{I}\sin\theta$$

non-linear: do **not** make the small angle approximation, $\sin \theta \approx \theta$

- ► No dissipation, no driving : energy conservation

 and hence amplitude is constant as well
- Motion is periodic, but not simple harmonic meaning: is not described by linear combination of sin(Ωt) and cos(Ωt)
- Frequency depends on amplitude unlike the case of simple harmonic oscillation, for which frequency $\Omega=\sqrt{\frac{g}{g}}$, is independent of θ_0 and ω_0

Simple non-linear pendulum

Driven, non-linear pendulum, with dissipation

Add driving force and dissipation

$$\ddot{\theta} = -\frac{g}{I}\sin\theta + F_D\sin(\Omega_D t) - q\dot{\theta}$$

- Numerical solution: Euler-Cromer method
- θ coordinate has 'periodic boundary' conditions

 meaning $\theta = \pi$ is same position of pendulum as $\theta = -\pi$, for example

```
may lead to 'jumps' in a plot of 	heta(t) vs time t
```

- ▶ When $F_D = 0$ but q > 0: amplitude decreases with time
- ▶ When $F_D > 0$: Different regimes:
 - pendulum in resonance with driving force frequency is Ω_D, amplitude may increase
 - θ(t) plot may appear chaotic
 subject of this lecture

Driven, non-linear pendulum, with dissipation

damped oscillation, driven: $\Omega = \Omega_d$, no apparent periodicity

 $\theta \to -\pi \to \pi$: pendulum rotates rather than oscillates

Driven, non-linear pendulum, with dissipation

- $\theta(t)$ for $F_D=0.5$ is periodic but $F_D=1.2$ is chaotic no apparent periodicity, even at much later times: we call this chaos
- In what sense is this 'chaotic'?
 - ullet $\theta(t)$ appears to be 'unpredictable' no obvious pattern emerges
 - Yet solution is determined uniquely by the DE and its initial condition
- Example of **deterministic chaos** seems like a contradiction in terms Small differences in initial conditions get amplified $|\theta_1(t=0) \theta_2(t=0)| < \epsilon \rightarrow |\theta_1(t) \theta_2(t)| \gg \epsilon$ Generic outcome of non-linear DEs.

Arguably this also implies we cannot really obtain the numerical answer, since small errors build-up catastrophically

More careful analysis subject of this lecture.

Chaos: dependence on initial conditions

► Compare evolution for small change in initial value $\theta_0 = 0.2 \pm \Delta \theta_0$

 $F_D=0.5$: small differences in ICs stay small in fact become smaller $F_D=1.2$: small differences in ICs amplify rapidly saturate at $\Delta \theta=\pi$ - no

Chaos: dependence on initial conditions Lyapunov exponents

- Vary start condition (initial displacement $\theta_0 = 0.2$)
- ightharpoonup Compute evolution of two identical pendulums, differing by $\Delta heta_0 = \mathcal{O}(0.0001)$
- ▶ Plot difference $\Delta \theta = |\theta^{(1)} \theta^{(2)}|$ as function of time.
- Findings:
 - ▶ For $F_D = 0.5$ dampening dominates and $|\Delta \theta|$ decreases.
 - ▶ For $F_D = 1.2 |\Delta \theta|$ increases (up to max= π)

In both cases for t small: $|\Delta \theta| \sim e^{\lambda t}$ $_{\lambda < 0}$ not chaotic, $_{\lambda} > 0$: chaotic

 $\triangleright \lambda$ is called Lyapunov exponent

Simple test: $\lambda > 0 \Longrightarrow$ chaotic, $\lambda < 0 \Longrightarrow$ not chaotic

Definition of deterministic chaos:
 System shows deterministic chaos, if its evolution depends sensitively on the initial conditions

Visualising chaos: Phase space

phase space is position-velocity space. For pendulum: $(\theta, \omega = \dot{\theta})$ space

▶ Plot trajectories in θ - ω space.

Non-chaotic case (left) looks strikingly different from chaotic case (right). Yet there is still some structure in the right panel. Question: how would a periodic pendulum look like in this plot?

Note: curve is composed of many dots, since it is integrated numerically

Visualising chaos: Phase space

- Small driving force left panel
 - Transient time at beginning: eigen-frequency decays
 different frequency corresponds to different ω at a given θ
 - pendulum quickly settles into a regular orbit;
 - shape of $\omega(\theta)$ curve is independent of initial conditions (in agreement with $\lambda < 0$)
- ► Large driving force: right panel
 - Expectation of no structure in this panel is not true!
 Notice that there is no maximum θ: pendulum goes all the way around
 - Surprise: recognizable orbits, even though chaotic
 but a given orbit is traversed only a few times
 - Examine phase space by plotting its Poincaré section Plot ω vs θ but only when $\Omega t = 2n\pi$, with $n \in N$

meaning: plot position in phase space when the driving term is zero but increasing

Chaos: Poincaré section

value of $\omega(\theta)$ when driving force is zero: Poincaré section non-chaotic: just two points (shown as red dots) chaotic: a curve called **strange attractor**

Chaos: A section on Poincaré

Henri Poincaré.

Credit: Wikipedia

French mathematician, 1854-1912. Worked on many things, including the three-body problem.

Chaos: Strange attractors

- Poincaré section is very different for chaotic versus non-chaotic motion
 - non-chaotic: just a few points original motion at eigen frequency, the driven motion with $\Omega=\Omega_d$
 - ► chaotic: a fuzzy surface
 - ► 'Fuzziness' is **not** due to numerics property of the system
 - Shape of surface is largely independent of initial conditions
 - important: implies that the Poincaré section is a good way to examine deterministic chaos
 - ► A fractal structure (fractals discussed again in lecture 7)

Transition to chaos: Period doubling

- What happens to solution when $F_D=0.5
 ightarrow 1.2$ non-chaotic ightarrow chaotic?
- Answer: Not only one, but a chain of transitions: Hard to study
- Therefore: look for $F_D \in [1.3, 1.48]$ (fix $\Omega_D = 3\pi$).

 nature of the transition is clearer for this choice of F_D
- ▶ In this region, the period starts doubling! ⇒ periodic motion with frequencies $\Omega_D/2$, $\Omega_D/4$ etc...
- ► Typically the **opposite** happens in a harmonic oscillator when harmonics appear oscillations with period P/2, P/3, etc. e.g. in string instruments
- ► In the chaotic pendulum, periodicities with period 2*P*, 4*P* etc appear **sub- harmonics** *P* is the period of the driving force

Transition to chaos: Period doubling pendulum

Amplitude of the second maximum is smaller - true (almost periodic) cycle has a period twice that of the driving

force (for $F_D = 1.44$) - and 4P (for $F_D = 1.465$)

Transition to chaos: Bifurcations

way to visualise how period doubling leads to chaos

 $lackbox{ Plot } heta \ \,$ when $\Omega_D t = 2\pi \, n$ with $n \in \mathcal{N}$ i.e. at given phase in driving cycle

Interpreting the bifurcation diagram

- ▶ At low F_D left side of diagram At a given phase of the driving force, pendulum is at a single value of θ
- At $F_D \approx 1.43$: First period doubling two possible values for θ at a given phase of driving, small or large amplitude oscillation
- At $F_D \approx 1.46$: Second period doubling four possible values for θ at a given phase of driving - 4 different possible amplitudes
- \triangleright At larger F_D more and more period doublings appear
- Introduce $F_n = F_D$ for *n*th period doubling and

$$\delta_n = \frac{F_n - F_{n-1}}{F_{n+1} - F_n} \,.$$

In limit of $n \to \infty$, $\delta_n \to \delta_\infty \approx 4.669$

• Universal feature: δ_{∞} seemingly the same for all systems

for which where period doubling leads to chaos, see Feigenbaum's original 1987 paper

Summary

Concept of deterministic chaos

for example, non-linear, damped, driven pendulum

- Ways to quantify/describe chaos:
 - Lyapunov exponents exponential divergence of solutions with nearly ICs
 - Phase space diagrams and strange attractors
 way to visualise behaviour
 - ▶ Period doubling leading to chaos ⇒ bifurcations way to visualize period doubling
- Clearly very hard to do something like this analytically!
- ► Unexpected behaviour of 'simple' non-linear equations

 hot research topic when computers became readily available