The LNM Institute of Information Technology Jaipur, Rajsthan

Math-II (2014-15), Quiz-2: Section-B

Name: Roll No:

Time: 15 Minutes Maximum Marks: 10

Q1. If the vectors \mathbf{x} and \mathbf{y} are orthogonal, then by inner product theory show that the parallelogram spanned by vectors \mathbf{x} and \mathbf{y} is a rectangle. [5]

Sol. If the vectors \mathbf{x} and \mathbf{y} span a parallelogram then then the length of two diagonals of the parallelogram are given by $\|\mathbf{x} + \mathbf{y}\|$ and $\|\mathbf{x} - \mathbf{y}\|$.

Note that

$$\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

= $4 \langle \mathbf{x}, \mathbf{y} \rangle$.

Since \mathbf{x} and \mathbf{y} are orthogonal i.e. $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{0}$, both the diagonals of the parallelogram are equal and the parallelogram is a rectangle.

Q2. If an $n \times n$ matrix A has n distinct eigen values then prove that A is diagonalizable. (No mark for giving examples)

Sol. Since the matrix A has n distinct eigen values $\lambda_1, \lambda_2 \cdots, \lambda_n$, the correspoding eigen vectors x_1, x_2, \cdots, x_n are LI.

Form a matrix P such that the n LI eigen vectors x_1, x_2, \dots, x_n are column vectors of the matrix P. Since rank(P) is n, P is invertible.

Since,

$$AP = A[x_1 \ x_2 \ \cdots \ x_n] = [Ax_1 \ Ax_2 \ \cdots \ Ax_n] = [\lambda_1 x_1 \ \lambda_2 x_2 \ \cdots \ \lambda_n x_n]$$
$$= [x_1 \ x_2 \ \cdots \ x_n] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = PD,$$

the matrix A is invertible.