

Background Information

Olive-backed Thrush

Russet-backed Thrush

Which traits contribute to survival of migration for hybrids?

Traits

Sex Binary

Ancestry

Heterozygosity

Tarsus Length

Weight

Tail length

Release day

Fall detect day 1

Fall bearing 1

Body condition

Traits

Wing Measurements

p7 p8

distal

р9

p10

kipps

carpal

Wing cord

Goal:

Create a machine learning model in which, when we input the traits of a specific bird, it predicts if that bird will survive the whole migration

Feature Reduction

Nulls

Carpal	37%	p10	13%	Tail length	1%
Fall detect day 1	28%	Body condition	3%	Wing cord	0%
Fall bearing 1	28%	Weight	2%	Sex binary	0%
Distal	13%	Tarsus length	1%	Release day	0%
p8	13%	Kipps	1%	Heterozygosity	0%
p7	13%	p9	1%	Ancestry	0%

Correlations

K-Nearest Neighbors (KNN) Imputation

By finding the "k" closest neighbors to a given missing data point and then imputing the missing value based on the average of the values of the "k" neighbors.

Example for k=2

Wing length	Tail length	Ancestry
NA	21.3	0.64
32.1	21.2	0.63
32.3	21.4	0.65

(32.1 + 32.3)/2 = 32.2

Imbalanced data: why it's a problem

80/(80+20) = 0.8 80% accuracy

SMOTE (Synthetic Minority Over-sampling Technique)

By finding the "k" closest neighbors to the minority class and then creating a new sample based on a random number between the values of the "k" neighbors.

Example for k=1

original

Closest neighbor

Wing length	Tail length	Ancestry	Survival
32.2	21.3	0.64	1
32.1	21.2	0.63	1

New synthetic sample

32.15	21.25	0.635	1
-------	-------	-------	---

Decision Tree

Performance

Random Forest

Accuracy: 0.85

Neural Network

Accuracy: 0.75

SHAP dependence plot (SHapley Additive exPlanations)

Kipps

Ancestry

Tail length

Fall bearing 1

Body condition

Tarsus length

Release day

Heterozygosity

Detect day

Distal

Wing cord

p10

Sex binary

References

- 1. Ruegg, K. C., & Smith, T. B. (2002). Not as the crow flies: a historical explanation for circuitous migration in Swainson's thrush (Catharus ustulatus). Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1498), 1375-1381.
- 2. Delmore, K. E., & Irwin, D. E. (2014). Hybrid songbirds employ intermediate routes in a migratory divide. Ecology Letters, 17(10), 1211-1218.
- 3. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
- 4. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.
- 5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.