Boundaries

Notation

Let (X, \mathcal{T}) be a topological space and let $A \subset X$:

$$\mathcal{U}_A = \{ U \in \mathscr{T} \mid U \subset A \}$$

Definition: Interior

Let (X, \mathscr{T}) be a topological space and let $A \subset X$. The *interior* of A, denoted by $\mathrm{Int}(A)$, is given by:

$$\operatorname{Int}(A) = \bigcup \mathcal{U}_A$$

To say that a $p \in X$ is an *interior point* of A means that $p \in Int(A)$.

Theorem

Let (X, \mathscr{T}) be a topological space, $A \subset X$, and $p \in X$. p is an interior point of A iff there exists $U \in \mathscr{T}$ such that $p \in U \subset A$.

Proof.
$$p \in Int(A) \iff p \in \bigcup \mathcal{U}_A \iff \exists U \in \mathcal{U}_A, p \in U \subset A$$

Theorem

Let (X, \mathscr{T}) be a topological space and $U \subset \mathscr{T}$:

$$U \in \mathscr{T} \iff \forall \, p \in U, p \in \mathrm{Int}(U)$$

Proof.
$$U \in T \iff \forall p \in U, \exists U_p \in \mathscr{T}, p \in U_p \subset U \iff \forall p \in U, p \in \operatorname{Int}(U)$$

Definition: Boundary

Let (X, \mathscr{T}) be a topological space and let $A \subset X$. The *boundary* or A, denoted by $\mathrm{Bd}(A)$, is given by:

$$Bd(A) = \bar{A} \cap \overline{X - A}$$

Theorem

Let (X, \mathscr{T}) be a topological space and let $A \subset X$. Int(A), Bd(A), and Int(X - A) are disjoint sets whose union is X.

Proof. Assume that $p \in \operatorname{Int}(A)$. This means that there exists $U \in \mathcal{U}_A$ such that $p \in U \subset A$. Now ABC that $p \in \operatorname{Bd}(A)$. This means that $p \in \overline{X - A}$ and so for all $U \in \mathcal{U}_p$, $U \cap (X - A) \neq \emptyset$. This contradicts the fact that there exists a $U \in \mathcal{U}_p$ that is a subset of A.

Therefore $\operatorname{Int}(A) \cap \operatorname{Bd}(A) = \emptyset$.

Similarly, assume that $p \in \operatorname{Int}(X-A)$. This means that there exists $U \in \mathcal{U}_{X-A}$ such that $p \in U \subset (X-A)$. Now ABC that $p \in \operatorname{Bd}(A)$. This means that $p \in \bar{A}$ and so for all $U \in \mathcal{U}_p, U \cap A \neq \emptyset$. This contradicts the fact that there exists a $U \in \mathcal{U}_p$ that is a subset of X - A.

Therefore $\operatorname{Int}(X - A) \cap \operatorname{Bd}(A) = \emptyset$.

Finally, note that for all $U \in \mathcal{U}_p$, U cannot be a subset of both A and X - A.

Therefore $Int(A) \cap Int(X - A) = \emptyset$.

Clearly, $\operatorname{Int}(A) \cup \operatorname{Int}(X-A) \cup \operatorname{Bd}(A) \subset X$. Assume that $p \in X$. If $p \in \operatorname{Int}(A)$ or $p \in \operatorname{Int}(X-A)$ then done, so assume that X is in neither. This means that for all $U \in \mathcal{U}_p$, $U \cap A \neq \emptyset$ and $U \cap (X-A) \neq \emptyset$, and thus $p \in \overline{A}$ and $p \in \overline{X-A}$.

Therefore,
$$p \in Bd(A)$$
.

Example

Pick several different subsets A of \mathbb{R} and for each one find its interior and boundary using:

1. The discrete topology.

Since
$$A = \overline{A}$$
 and $\mathbb{R} - A = \overline{\mathbb{R} - A}$, $\operatorname{Bd}(A) = A \cap (\mathbb{R} - A) = \emptyset$. Therefore $\operatorname{Int}(A) = A$.

2. The indiscrete topology.

$$\operatorname{Int}(A) = \begin{cases} \emptyset, & A \neq \mathbb{R} \\ \mathbb{R}, & A = \mathbb{R} \end{cases}$$

$$\bar{A} = \begin{cases} \emptyset, & A = \emptyset \\ \mathbb{R}, & A \neq \emptyset \end{cases}$$

$$\overline{\mathbb{R} - A} = \begin{cases} \emptyset, & A = \mathbb{R} \\ \mathbb{R}, & A \neq \mathbb{R} \end{cases}$$

$$\operatorname{Bd}(A) = \begin{cases} \emptyset \cap \mathbb{R} = \emptyset, & A = \emptyset \\ \mathbb{R} \cap \mathbb{R} = \mathbb{R}, & A \neq \emptyset, \mathbb{R} \\ \mathbb{R} \cap \emptyset = \emptyset, & A = \mathbb{R} \end{cases}$$

3. The cofinite topology.

Assume that A is finite (closed):

$$\operatorname{Int}(A)=\emptyset$$

$$\bar{A} = A$$

$$\operatorname{Int}(\mathbb{R} - A) = \mathbb{R} - A$$

$$\overline{\mathbb{R} - A} = \mathbb{R}$$

$$Bd(A) = A \cap \mathbb{R} = A$$

Assume that $A = \mathbb{R} - F$ where F is finite (thus A is open and F is closed):

$$Int(A) = A$$

$$\bar{A} = \mathbb{R}$$

$$\operatorname{Int}(\mathbb{R} - A) = \emptyset$$

$$\overline{\mathbb{R} - A} = F$$

$$Bd(A) = \mathbb{R} \cap F = F$$

Assume that $A = \mathbb{Z}$:

$$\operatorname{Int}(\mathbb{Z}) = \emptyset$$

$$\bar{\mathbb{Z}} = \mathbb{R}$$

$$\operatorname{Int}(\mathbb{R} - \mathbb{Z}) = \emptyset$$

$$\overline{\mathbb{R} - \mathbb{Z}} = \mathbb{R}$$

$$Bd(Z) = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

4. The standard topology.

Assume that A = (a, b):

$$Int(A) = A$$

$$\bar{A} = [a, b]$$

$$\operatorname{Int}(\mathbb{R} - A) = (-\infty, a) \cup (b, \infty)$$

$$\overline{(}\mathbb{R} - A) = (-\infty, a] \cup [b, \infty)$$

$$Bd(A) = [a, b] \cap (-\infty, a] \cup [b, \infty) = \{a, b\}$$

Assume that A = [a, b]:

$$Int(A) = (a, b)$$

$$\bar{A} = A$$

$$\operatorname{Int}(\mathbb{R} - A) = (-\infty, a) \cup (b, \infty)$$

$$\overline{(}\mathbb{R} - A) = (-\infty, a] \cup [b, \infty)$$

$$\operatorname{Bd}(A) = [a, b] \cap (-\infty, a] \cup [b, \infty) = \{a, b\}$$

Assume that $A = \mathbb{Z}$:

$$\mathrm{Int}(\mathbb{Z})=\emptyset$$

$$\bar{\mathbb{Z}}=\mathbb{Z}$$

$$\mathrm{Int}(\mathbb{R}-\mathbb{Z})=\mathbb{R}-\mathbb{Z}$$

$$\overline{\mathbb{R} - \mathbb{Z}} = \mathbb{R}$$

$$\operatorname{Bd}(Z) = \mathbb{R} \cap \mathbb{Z} = \mathbb{Z}$$

Assume that $A=\mathbb{Q}$:

$$\operatorname{Int}(\mathbb{Q}) = \emptyset$$

$$\bar{\mathbb{Q}}=\mathbb{R}$$

$$\mathrm{Int}(\mathbb{R}-\mathbb{Q})=\mathbb{R}-\mathbb{Q}$$

$$\overline{\mathbb{R}-\mathbb{Q}}=\mathbb{R}$$

$$\mathrm{Bd}(\mathbb{Q})=\mathbb{R}\cap\mathbb{R}=\mathbb{R}$$