NAME					SURNAME				
STUDEN	NT ID	S						A/1	
	B/English	□LIC-	-ZZZ/English	□0th	er: <u></u>	<u> </u>			
Question				Results:					
		umbers ex	pressed in bas	2's complement difference:					
■ 24 ■ 30				Overflow:					
		nbers in 2	2's complemen	nt (2C) usi	ing 6 bits, and	Overnow.			
			between the						
overflow.	•								
Steps									
QUESTIO									
		of the log	ic operator XO	R, and wr	ite the truth tab	le.			
Response									
QUESTIO	N 3								
		tion of an	iterative const	ruct in C la	anguage, highlig	thting the 4 el	ements that o	compose it.	
Response					0 0 / 0 0	<u> </u>		'	

QUESTION 4 (Programming)

Consider a coding system for black and white images, in which the shades of gray for each pixel is represented by an integer number between 0 (that means black) and 255 (that means white).

Write a C program able to recognize a determinate sequence of pixel (sub-img) of dimension MxM within of a larger image (IMG) of dimension NxN pixel.

Both the sequences of pixels, the one to be recognized (sub-img), and the image (IMG) are stored in two different text files, whose names is provided as arguments in the command line. Every pixel is represented inside the files as integer numbers and the numbers are separated with a space character.

Make the following assumptions:

- The image IMG has a standard resolution of NxN pixels, where N is a constant declared using #define directive.
- The dimension of image sub-img is known a priori, with M defined using a #define directive
- The content of the files is always correct.

The program must to verify the presence of sub-img in IMG and; in the case that sub-img is presented in IMG, print on the screen the coordinates $\{x, y\}$ of the pixel representing the starting point of the recognized sequence. It is possible that sub-img is presented more than one time within IMG; in this case, print on the screen the coordinates of all the occurrences.

Example N=9, M=3

gradient.txt									Pattern1.txt			Pa	Pattern2.txt			
86	88	90	120	80	75	70	121	255	93	125	85	10	15	;	20	
87	93	125	85	45	30	35	124	255	130	80	50	15	80)	50	
91	130	80	50	32	27	22	125	255	85	65	44	85	65	5	44	
135	85	65	44	15	12	10	12	255								
98	70	50	20	5	0	5	10	255								
86	88	90	120	80	75	70	12	255								
87	93	125	85	45	65	35	11	255								
91	130	80	50	32	27	22	13	255								
135	85	65	44	15	0	5	0	255								

Es. 1

C:\> recognition gradient.txt Pattern1.txt

Match starting from the position (2,2)Match starting from the position (7,2)

Es. 2

C:\> recognition gradient.txt Pattern2.txt

No Match

NAME					SURNAME		
STUDENT I	ID	S					A/2
□AAA-LIB/English		sh □LIC-	ZZZ/English	n □Altı	ro: <u></u>	 <u>.</u>	

QUESTION 1	Results
Perform the following transformations of base/coding on the	i.
following numbers:	
i. ABC _H = X ₈ (Hexadecimal → Octal)	ii.
ii. $10101010_{2C} = X_{SM}$ (Two's complement \rightarrow Sign and Magnitude)	
iii. $156_8 = X_{10} (Octal \rightarrow Decimal)$	iii.
Steps	

QUESTION 2	
Describe the De Morgan theorem, providing an example.	
Response	

QUESTION 3	
Describe the cast operator of the C language, providing an example.	
Response	
L	

QUESTION 4 (Programming)

A text file in ASCII format contains the thermal map of dimension NxN of a mother board of a computer. The map describes the temperature (in Celsius degree) of each single portion of the board. The possible values are integer values starting from 0 to 145 °C. The sensibility of the thermal sensors used for the measurements is equal to 1 °C. Within of the file, the values of the temperatures are separated by a space.

Write a C program able to verify the presence of a sub-region of dimension MxM (where M < N) inside the map containing the thermal conditions contained in a second text file. These thermal conditions are represented with the same coding used for the Thermal map (temperatures from 0 to 145 °C, sensibility of the measurements equal to 1°C).

Make the following assumptions:

- The name of the file containing the thermal map of dimension NxN is ThermalMap.txt
- N is a fixed constant known a priori, defined using a #define directive.
- The name of the file containing the thermal conditions that have to be searched is provided as a unique argument on the command line.
- M (dimension of the sub-region to be found) is known a priori and is defined using the #define directive.
- The content of the files is always correct.

The program has to print on the screen the coordinates {x,y} of the upper-left corner of the subregions containing the searched thermal condition (if present). It is possible that there are more than one occurrence; in this case, the program has to print on the screen all the starting positions.

Example N=9, M=3

	Example iv 5, ivi 5															
The	ThermalMap.txt							Temp1.txt				Temp2.txt				
40	41	42	41	39	38	32	40	20	42	41	40		80	65	33	
38	70	76	79	46	45	42	40	35	76	43	39		65	64	33	
37	75	80	65	33	32	27	22	20	80	34	33		54	59	33	
42	73	65	64	33	31	28	23	21								
40	65	54	59	33	31	22	20	18								
41	37	35	32	60	58	43	37	24								
37	75	80	65	33	32	26	24	22								
42	73	65	64	33	31	30	38	27								
40	65	54	59	33	31	31	30	27								

C:\> recognition Temp1.txt

No regions in the searched thermal condition

C:\> recognition Temp2.txt

Thermal condition occurred in position (3,3)Thermal condition occurred in position (7,3)