Guillaume T.

Représentation géométrique et plan de Gauss

MAT3

3 - Représentation géométrique et plan de Gauss

Résumé du document

Definition

Table des matières

1. Représentation dans le plan	
1.1. Conjugé complexe dans le plan	
2. Forme trigonométrqiue	3
2.1. Module	
2.2. Argument principal	3
3. Determination d'un nombre complexe par la forme trigonométrique	4
4. Multiplication avec la forme trigonométrique	5
5. Division avec la forme trigonométrique	6
6. Puissance avec la forme trigonométrique	7
7. Rappel	8

1. Représentation dans le plan

Dans un repère orthonormé du plan \mathbb{R}^2 , un nombre complexe $z=a+\mathrm{bj}$ est représenté par le point M(a,b), où a est la partie réelle et b la partie imaginaire. Cette représentation visuelle se fait dans le plan complexe, également appelé plan de Gauss.

1.1. Conjugé complexe dans le plan

Dans le plan complexe, le conjugé complexe de z, z^* représente la sysmétrie par rapport à l'axe des réels.

2. Forme trigonométrqiue

Tout nombre complexe peut-être défini par deux valeur nommées module et argument principal.

2.1. Module

Le module correspond à la norme du vecteur nombre complexe $z=a+b=\overrightarrow{\mathrm{OM}}$ et on le note:

$$|z| = r = \left\| \left(\frac{a}{b} \right) \right\| = \sqrt{a^2 + b^2}$$

2.2. Argument principal

L'argument principal d'un nombre imaginaire dit z correspond à l'angle orienté θ , mesuré en radian et exprimé dans l'intervale $]-\pi,\pi]$ que forme le vecteur \overrightarrow{OM} avec l'axe des nombres réels positifs. Pour calculer l'angle nous devrons toujours prendre la partie la plus petite de celui-ci soit en passant par le cadran 1 et 2 ou par 4 et 3 en ajoutant le signe — avant.

Pour le calculer l'angle θ nous pouvons utiliser le tableau suivant:

$$\operatorname{Arg}(z) = \begin{cases} \operatorname{Arctan}\left(\frac{b}{a}\right) - \pi & \text{si } a < 0 \text{ et } b < 0 \\ \frac{-\pi}{2} & \text{si } a = 0 \text{ et } b < 0 \end{cases}$$
$$\operatorname{Arg}(z) = \begin{cases} \operatorname{Arctan}\left(\frac{b}{a}\right) & \text{si } a > 0 \\ \frac{\pi}{2} & \text{si } a = 0 \text{ et } b > 0 \\ \operatorname{Arctan}\left(\frac{b}{a}\right) + \pi & \text{si } a < 0 \text{ et } b \ge 0 \end{cases}$$

3. Determination d'un nombre complexe par la forme trigonométrique

4. Multiplication avec la forme trigonométrique

Prenons deux nombres complexes sous forme trigonométrique:

$$z_1 = r_1(\cos(\Theta_1) + j * \sin(\Theta_1)) \ \text{ et } z_2 = r_2(\cos(\Theta_2) + j * \sin(\Theta_2))$$

Pour multiplier deux nombres complexes sous forme trigonométrique nous devons:

- 1. Multiplier les modules de z_1 et z_2 ,
- 2. Additionner les arguments de z_1 et z_2 .

Donc nous aurons:

$$z_1*z_2=r_1*r_2(\cos(\Theta_1+\Theta_2)+j*\sin(\Theta_1+\Theta_2))$$

5. Division avec la forme trigonométrique

Prenons deux nombres complexes sous forme trigonométrique:

$$z_1 = r_1(\cos(\Theta_1) + j * \sin(\Theta_1)) \ \text{ et } z_2 = r_2(\cos(\Theta_2) + j * \sin(\Theta_2))$$

 ${\rm avec}\; z_2\; {\rm non\; nul!}$

- 1. Diviser le module de z_1 par celui de z_2 ,
- 2. Soustraire l'argument de z_2 à celui de z_1 .

Nous aurons la formule suivante:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\Theta_1-\Theta_2) + j*\sin(\Theta_1-\Theta_2))$$

6. Puissance avec la forme trigonométrique

La formule générale de z^n pour $n \in \mathbb{Z}$:

$$z^n = r^n * (\cos(n * \Theta) + j * \sin(n * \Theta))$$

Donc il suffit de:

- 1. D'élever le module de z à la puissance n,
- 2. Multiplier l'argument de z par n.

7. Rappel

À noter que si $\operatorname{Arg}(z) = \alpha$ alors,

$$\operatorname{Arg}(z*j) = \text{on fait une rotation de } \frac{\pi}{2}$$

$$\operatorname{Arg}\left(\frac{z}{j}\right) = \text{on fait une rotation de } \frac{-\pi}{2}$$