Introduction

Dr. Mamadou Camara⁽¹⁾

(1) ESP, Cheikh Anta Diop University, Dakar, Senegal mamadou.camara@ucad.edu.sn

Module d'intelligence artificielle

Ouvrages

- ► L'intelligence artificielle par la pratique. Boi Faltings et Michael Ignaz Schumacher. Presses polytechniques et universitaires romandes (PPUR). 2009.
- ► Intelligence artificielle. Stuart Russell, Peter Norvig. Pearson Education. 2010.
- Prolog : Programmation par l'exemple Broché. de Louis Gacôgn. Hermann. 2009.
- ▶ 512 problèmes corrigés Pascal, C++, Lisp, Prolog. Gacôgne Louis. Paris Ellipses cop. 1996.

Ouvrages

- Prolog Programming in Depth. Michael A. Covington, Donald Nute, Andre Vellino. Prentice Hall. 1996.
- ▶ Paradigms of Artificial Intelligence Programming : Case Studies in Common Lisp. Peter Norvig. Morgan Kaufmann. 1992.

Supports de cours

Propositional Resolution. Uwe Bubeck. University of Paderborn. 2012.

Définition intuitive de L'IA

- ▶ il s'agit de l'étude des programmes informatiques qui simulent la pensée (l'intelligence) humaine.
- Systèmes basés sur la connaissance : les programmes d'IA utilisent une quantité significative de connaissances humaines

Données structurées Vs Données non structurées

- L'informatique classique est adaptée au traitement des données structurées :
 - Chiffres, codes et autres contenus de BD

- ► Le comportement humain repose sur beaucoup de données non structurées :
 - Des règles, normes sociales, ou encore informations incertaines.
- La société exprime ces données non structurées en langage naturel.
- En IA, elles sont appelées connaissances.

La logique des prédicats

- Le formalisme développé pour représenter les données non structurées est la logique des prédicats.
- Les phrases : expressions construites sur la base de prédicats (qui peuvent être vrai ou faux) en utilisant des connecteurs tels que et ou ou.
- Avantage de ce formalisme, possibilité de définir des règles pour juger
 - is deux phrases sont consistantes entre elles,
 - ou si une phrase est la conséquence d'une autre.

Deux types de calculs de prédicats

Selon le type de quantification admis, on distingue le calcul de prédicats de

- Ordre 0 : aucune quantification possible.
- 1er ordre : quantification sur les individus.

La logique propositionnelle (Ordre 0)

La logique propositionnelle nous permet uniquement d'exprimer des connaissances relatives à des situations particulières.

Logique des prédicats d'ordre 1

- ▶ Il est possible d'utiliser des variables définies au moyen d'un quantificateur, comme substitut des instances.
 - ▶ ∀ : c'est le quantificateur universel.
 - ▶ ∃ : c'est le quantificateur existentiel.
- Cela permet de décrire des connaissances générales s'appliquant à plusieurs situations.

La règle d'istantiation universelle

La règle qu'on qualifie parfois d'instantiation universelle autorise à substituer à toute variable liée par un quantificateur universel le nom d'un individu quelconque, après suppression de ce quantificateur;

La règle d'istantiation universelle : exemple

 $\forall x \ \textit{King}(x) \land \textit{Greedy}(x) \Rightarrow \textit{Evil}(x) \ \text{peut entraîner}$:

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)

King(Father(John)) \wedge Greedy(Father(John)) \Rightarrow Evil(Father(John))
```

- ► King = roi,
- Greedy = avide de pouvoir,
- Evil = mauvais,
- ▶ Father = père

Mécanismes de raisonnement

- Le mécanisme de base pour la manipulation de connaissances est le raisonnement utilisant des principes d'inférence logique.
- ▶ Il existe trois mécanismes de raisonnement :
 - Déduction
 - Abduction
 - Induction

Inférence : manipuler les connaissances

- Ces mécanismes manipulent trois types d'éléments :
 - des propositions initiales (les prémisses),
 - des règles
 - et des conclusions.

Deduction

Rule: All the beans in this bag are white. *Case*: These beans are from this bag.

Result: These beans are white.

Abduction

Rule: All the beans in this bag are white.

Result: These beans are white.

Case: These beans are from this bag.

Induction

Case: These beans are from this bag.

Result: These beans are white.

Rule: All the beans in this bag are white.

- reproduisent un raisonnement humain
 - Diagnostic médical,
 - Recherche de régularités dans une grande base de données,
 - Risque crédit bancaire
 - Réparation et maintenance
 - ▶ Planification et ordonnancement

Les programmes qui imitent les capacités cognitives

Type d'agent	Mesure de performance	Environnement	effecteurs	Capteurs
Système de diagnostic médical	Rétablissement des patients, minimisation des coûts	Patient, hôpital, personnel	Affichage des questions, tests, diagnostics, traitements, orientation	Entrée au clavier symptômes, recherche, réponses du patient
Répétiteur d'anglais interactif	Notes des étudiants aux contrôles	Ensemble des étudiants, organismes faisant passer les tests	Affichages d'exercices, de suggestions, de corrections	Entrée au clavier

Des programmes qui imitent des capacités sensomotrices

- Des programmes capables de reconnaître des formes ou des objets, ou bien de comprendre la parole en langue naturelle.
- Sont capables de réagir de façon autonome à leur environnement
- e.g. Robots ou agents autonomes

Raisons ne de pas utiliser les systèmes classiques

- 1. Quand les connaissances changent rapidement :
 - Systèmes simples
- Complexité : Quand des tâches dépassent une certaine complexité, elles impliquent une quantité importante de connaissances.
 - Système experts

Systèmes simples

- ► Applications dans les systèmes d'information
 - Les connaissances sont des règles, lois ou policies qui doivent être appliquées automatiquement (business rules)
 - ► Une compagnie d'assurance devant s'adapter à des règlements qui changent

Système experts : Définition

- un SE est un programme qui permet l'exploitation des connaissances dans un domaine précis et rigoureusement limité.
- ► Il est utilisé pour effectuer des tâches intellectuelles exigeant le savoir et l'expérience
- un système expert n'est concevable que pour les domaines dans lesquels il existe des experts humains.
- Exemple : diagnostic médical ou risques financiers

Cogniticien

- ► Le rôle du cogniticien est de soutirer leurs connaissances aux experts du domaine
- et de traduire ces connaissances dans un formalisme se prêtant à un traitement automatique, c'est-à-dire en règles.

- Le moteur d'inférence est indépendant du domaine ou du problème traité
- Avantage : le moteur sera totalement réutilisable pour des problèmes différents.


```
"Nous allons determiner le type de probleme que vous avez avec votre ordinateur
"1. probleme de dema<u>rrage"</u>
"2. probleme d'affichage"
'=>'' 1
"Le PC s'allume-t-il (T/NIL) ?" t
"Le probleme de demarrage a-t-il lieu avant ou apres le lancement de l'initialis
K'inîtialisation de Windows (avant=nil. apres=t)^?" nil
"Can you answer to the following guestion (T/NIL):"
"La ram est-elle detectee (T/NIL) ?" t
So. answer it :t
"Can you answer to the following question (T/NIL):"
"Quelle guantite de RAM est detectee ?" t
So. answer it :128
"===> SOLUTION :"
"Il y a au moins une barette de RAM defectueuse."
"Do you want to go on the diagnostic. althrough a solution has been found (T/NIL
Kic. althrough a solution has been found (T/NĬL) ?" nil
"La (Les) solution(s) proposee(s) est (sont) :"
("Il v a au moins une barette de RAM defectueuse.")
;; Loaded file C:\Lecture\AI\Lisp\Lisp\tp\case\gnu.lisp
Break 6 [7]> ■
```

Les conflits objet-classe : définition

- Contrainte à vérifier : les objets dont la classe spécifié est inexistante (i.e.)
- exemple : Le diagramme de séquence contient un objet dont la classe n'est pas définie dans le diagramme de classe.

Classless instances conflict

Les conflits objet-classe : code de vérification

```
(do-retrieve (?object ?class)
  (:and
  (Object ?object)
  (Instance-of-class ?object ?class)
  (has-classmodel ?class NIL))
  (format t "Classless instance conflict: ~S~%" (get-value ?object 'name)))
```

 Loom qui est langage formel de représentation de connaissances (i.e. Description logics - DL).

```
The alaa akkila inheretence Expert System for most FARD part
```

```
Is deceased male (yes/no)? y
single (yes/no)? y
Is father alive (yes/no)? n
Is Paternal Grand Father alive (yes/no)? y
Paternal-Grand-Father gets all

Is mother alive (yes/no)? y
mother gets 1/3

Paternal-Grand-Father gets the rest

CLIPS>
```

 $\mathrel{\sqsubseteq}_{\mathsf{Fin}}$

 $\mathrel{\sqsubseteq}_{\mathsf{Fin}}$

References I