Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Филиал

«Минский радиотехнический колледж»

Учебная дисциплина «Основы алгоритмизации и программирования»

Отчет

по выполнению лабораторной работы «Разработка, отладка и испытание ветвящихся алгоритмов и программ»

Выполнил: Гуринович Роман Дмитриевич, гр. 1К9393

Проверил: Козел А. С.

Лабораторная работа № 2

Тема работы: «Разработка, отладка и испытание ветвящихся алгоритмов и программ»

Вариант 6

1. Цель работы

Формирование первичных умений в разработке разветвляющихся программ.

2. Задание

6. Напишите программу, печатающую корни квадратного уравнения ax2 + bx + c = 0. Если уравнение не имеет корней, то выведите соответствующее сообщение.

3. Ответы на контрольные вопросы

1. Основные структуры структурного программирования, их схемы:

Следование, ветвление и цикл называют базовыми конструкциями структурного программирования.

Рисунок 1- Базовые конструкции структурного программирования

цикл с

2. Дополнительные структуры структурного программирования, их схемы.

Рисунок 2 - Циклы

цикл с

3. Логические операции, их приоритет, таблицы истинности.

- 1. В С++ существует три логические операции:
- 2. Логическая операция И &&;

- 3. Логическая операция ИЛИ ||;
- 4. Логическая операция НЕ! или логическое отрицание.

Логические операции образуют сложное (составное) условие из нескольких простых (два или более) условий. Эти операции упрощают структуру программного кода в несколько раз.

грицание		ие Д	Дизъюнкция (совокупность)					Конъюнкция (система)					
A 1	\overline{A}	A	В	A∪B	A+B	[A B	или		А	В	$A \cap B$	$A \cdot B$	{A , B
0	1	1	1	1	1	1			1	1	1	1	1
0	1	1	0	1	1	1			1	0	0	0	0
		0	1	1	1	1			0	1	0	0	0
		0	0	0	0	0			0	0	0	0	0
		10	10	0	10	-			_	_	-		
Им	пли	1.0	1	едован		_	вива	лен	ITH	ость	(равн	осиль	ность
И м А		кация	(сл		ние)	_	вива	 лен А ¢		Λ	огдаи то		
		кация	(сл	едован	ние)	Эк	_			Ато	огдаи то		
Α		кация $A \Rightarrow B$	(сл	едован	ние)	А	В	$A \leftarrow$		А то	огдаи то		
A 1	B 1	кация А⇒В 1	(сл Ес:	едован	ние)	Эк і А	B 1	A < 1		А то когд	огдаи то		

Рисунок 3 - Таблицы истинности логических операций

4. Законы алгебры логики:

Выражение также называют логическим умножением. Его истинность сохраняется только в одном случае: при истинности простых выражений в его составе. В обратном случае выражение принимает значение ложного.

A	В	A & B
0	0	0
0	1	0
1	0	0
1	1	1

Рисунок 5 – Конъюнкция

Данное выражение также называют логическим сложением. Оно истинно почти всегда, за исключением ситуации, когда все подвыражения ложны.

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Рисунок 6 – Дизъюнкция

Инверсия (также называемая логическим отрицанием) заключается в добавлении частицы «не» к выражению. В случае, когда изначальное выражение истинно, его отрицание – ложь. Если изначальное выражение ложь, его отрицание является истиной.

A	неА
1	0
0	1

Рисунок 7 – Инверсия

5. Формат условного оператора, правила выполнения:

Одна их основных конструкций алгоритма — разветвляющий процесс. Он реализован в языке C++ условным оператором if .if (условие) оператор_1; else оператор_2; Здесь условие — это логическое выражение, переменная или константа.

Работает условный оператор следующем образом. Сначала вычисляется значения выражения, записанного в виде *условия*. Если оно имеет значение истина (true), выполняется *оператор_1*. В противном случае (значение ложное (false)) *оператор_2*.

6. Формат оператора выбора, правила выполнения.

Оператор выбора switch позволяет выбрать один вариант хода решения задачи из нескольких в зависимости от значения выражения. Таким образом, обеспечивается многонаправленное разветвление в программе. Оператор switch работает следующим образом: сначала вычисляется значение выражение. Потом это значение последовательно сравнивается с константами из заданного списка. Как только найдено совпадение для

одного из условий сравнения, выполняется последовательность инструкций,
которые связаны с этим сравнением.