[논리적 추론과 증명] 연습문제 풀이

작성자: 김진규

풀이기간: 23.07 ~ 23.12

Α	В	~B	A & ~B	A → ~B
Т	Т	F	F	F
Т	F	Т	Т	Т
F	Т	F	F	Т
F	F	Т	F	Т

А	В	~A	~A ∨ B	$A \rightarrow B$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

X	Υ	$X \rightarrow Y$
Т	T	Т
Т	F	F
F	Т	Т
F	F	Т

~X	~Y	~X → ~Y
F	F	T
F	Т	T
Т	F	F
Т	Т	T

~X	~Y	~X → ~Y
F	F	Т

F	Т	Т
T	F	F
Т	T	Т

만일 내 차가 잘 달리면, 내 차에는 연료가 있다

A: 내 차가 잘 달린다

B: 내 차에는 연료가 있다

A는 B의 충분조건이다, ~A는 ~B의 필요조건이다 = 만일 A가 참이면, B는 항상 참이다 B가 참이 아니면 A는 참이 아니다 = B는 A의 필요조건이다, ~B는 ~A의 충분조건이다

B는 A의 충분조건이다 = 만일 B가 참이면, A는 항상 참이다 A가 참이 아니면 B는 참이 아니다

A는 B의 필요조건이다 = 만일 A가 참이 아니라면, B도 항상 참이 아니다 B가 참이면 A는 참이다

B는 A의 필요조건이다 = 만일 B가 참이 아니라면, A도 항상 참이 아니다 A가 참이면 B는 참이다

부정: ~

연언: &

선언: ∨

$$\sim$$
 (A \vee B) \rightarrow \sim C, C \rightarrow (A \vee B) \sim A & \sim B \rightarrow \sim C

 $C \rightarrow (A \lor B)$

A: 검찰 측의 증인이 법정에서 증언을 한다

B: 피고는 유죄판결을 받는다

A는 B의 필요조건

B는 A의 충분조건

- (1) 둘다아님
- (2) 산소가 있으면 인간이 생존할 수 있다
- (1) 날씨가 추워지면 그리고 오직 그런 경우에만 비가 온다
- A: 날씨가 추워진다
- B: 비가 온다

 $A \leftrightarrow B$

- (2) 추워지면 그리고 오직 그럴 때만 비가 온다는 것은 사실이 아니다
- A: 추워진다
- B: 비가 온다

 \sim (A \leftrightarrow B)

- (3) 만일 비가 오면, 수은주가 떨어지고 또 오직 그런 때에만 날씨가 추워진다
- A: 비가 온다
- B: 수은주가 떨어진다

C: 날씨가 주워신다
$A \to (B \leftrightarrow C)$
(4) 그 계약은 사기가 없고 그리고 오직 그런 한에 있어서 구속력을 지닌다
A; 그 계약은 사기가 있다
B: 구속력을 지닌다
~A ↔ B
(5) 이브가 푸른 눈을 갖고 있다는 것은 아담이 이브를 사랑하기 위한 필요충분조건이다
A: 이브가 푸른 눈을 갖고 있다
B: 아담이 이브를 사랑한다
$A \leftrightarrow B$
(6) 이브가 부유하고 아름다우며 그리고 오직 그런 한에 있어서 아담은 이브와 결혼한다
A: 이브가 부유하다
B: 이브가 아름답다
C: 아담은 이브를 결혼한다
$(A \& B) \leftrightarrow C$
(7) 만일 남중이가 상점에 갔다면, 우리는 무언가 먹게 되지만, 만일 남중이가 상점에 가지 않았다면, 우리는 아무것도 먹지 못한다
A: 남중이가 상점에 갔다
B; 우리는 무언가 먹게 된다
$(A \rightarrow B) & (\sim A \rightarrow \sim B), A \leftrightarrow B$
(8) 영수는 순이가 똑똑하고 부지런하지 않는 한 그녀에게 청혼하지 않을 것이다.

A: 순이는 똑똑하다
B: 순이는 부지런하다
C: 영수는 순이에게 청혼한다
\sim (A & B) \rightarrow \sim C
(9) 만일 내가 그 일을 수행한다면, 출세는 하겠지만 너의 사랑을 잃을 것이고, 만일 내가 이곳에 머문 다면, 너의 사랑은 잃지 않겠지만 나의 꿈을 실현하지 못할 것이다
A: 내가 그 일을 수행한다
B: 출세를 한다
C: 내가 이곳에 머문다
D: 너의 사랑을 잃는다
E: 나의 꿈을 실현한다
$(A \rightarrow (B \& D)) \& (C \rightarrow (\sim D \& \sim E))$
A: 내가 그 일을 수행한다
B: 출세를 한다
C: 너의 사랑을 잃는다
$A \rightarrow (B \& C)$
$\sim A \rightarrow (\sim C \& \sim B)$
A: 내가 그 일을 수행한다
B: 출세를 한다
C: 내가 이곳에 머문다
D: 너의 사랑을 잃는다
$A \rightarrow (B \& D)$
$C \rightarrow ($

(1) 만일 김 씨가 시장으로 당선된다면, 시청의 부정부패는 일소될 것이다. 김 씨는 당선되지 않을 것이다. 그러므로 시청의 부정부패는 일소되지 않을 것이다.

A: 김 씨가 시장으로 당선된다

B: 시청의 부정부패는 일소된다

전제1: A → B

전제2: ~A

결론: ~B

		전제1	전제2	결론
Α	В	$A \rightarrow B$	~A	~B
Т	Т	T	F	F
Т	F	F	F	Т
F	Т	T	Т	F
F	F	T	Т	Т

부당한 논증

(2) 박 씨는 자격 정지가 되지 않은 한에 있어서 변호사 업무를 수행할 수 있다. 박 씨가 자격 정지 상태에 있지 않다는 것은 사실이 아니다. 그러므로 박 씨는 변호사 업무를 수행할 수 있다.

A: 박 씨는 자격 정지가 되지 않는다

B: 변호사 업무를 수행할 수 있다

전제1: ~A → B

전제2: ~~A

결론: B

			전제1	전제2	결론
Α	В	~A	~A → B	~~A	В
Т	Т	F	T	Т	Т
Т	F	F	T	T	F
F	Т	Т	T	F	Т
F	F	T	F	F	F

부당한 논증

A: 박 씨는 자격 정지 상태에 있다

B: 변호사 업무를 수행할 수 있다

전제1:

전제2: ~~A

결론: B

			전제1	전제2	결론
Α	В	~A	B → ~A	~~A	В
Т	Т	F	F	Т	Т
Т	F	F	T	Т	F
F	Т	Т	T	F	T
F	F	Т	T	F	F

(3) 남주는 여행 가이드나 또는 스튜어디스가 될 것이다. 만일 남주가 여행 가이드가 된다면, 그녀는 여행을 자주 하게 될 것이다. 그리고 그녀가 스튜어디스가 된다 하더라도, 그녀는 여행을 자주 하게 될

것이다. 그러므로 남주는 여행을 자주 하게 될 것이다.

A: 남주는 여행 가이드가 될 것이다

B: 남주는 스튜어디스가 될 것이다

C: 남주는 여행을 자주 하게 될 것이다

전제1: A ∨ B

전제:2: $(A \rightarrow C)$ & $(B \rightarrow C)$

결론: C

					전제1	전제2	결론
Α	В	С	$A \rightarrow C$	$B \rightarrow C$	A v B	$(A \rightarrow C) & (B \rightarrow C)$	С
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	F
Т	F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F
F	F	Т	Т	Т	F	Т	Т
F	F	F	Т	Т	F	Т	F

타당한 논증

전제1: A ∨ B

전제2: A → C

전제3: B → C

결론: C

전제1	전제2	전제3	결론	전제1	전제2	결론
A v B	A → C	$B \rightarrow C$	С	A v B	$(A \rightarrow C) & (B \rightarrow C)$	С

Т	Т	Т	Т	T	Т	T
T	F	F	F	T	F	F
Т	Т	Т	Т	T	Т	Т
T	F	Т	F	T	F	F
Т	Т	Т	Т	T	Т	Т
T	Т	F	F	T	F	F
F	Т	Т	Т	F	T	Т
F	Т	Т	F	F	Т	F

(4) 만일 영준이 외무고시에 합격한다면, 그는 직업 외교관이 될 것이다. 영준은 직업 외교관이 되지 않는 한 대사가 되지 못할 것이다. 영준은 외무고시에 합격하지 못하거나 또는 대사가 되지 못할 것이다. 그러므로 영준은 직업 외교관이 되지 못할 것이다.

A: 영준은 외무고시에 합격한다

B: 영준은 직업 외교관이 될 것이다

C: 영준은 대사가 된다

전제1: A → B

전제2: C → B

전제3: ~A v ~C

결론: ~B

					전제1	전제2	전제3	결론
Α	В	С	~A	~C	$A \rightarrow B$	$C \rightarrow B$	~A v ~C	~B
Т	Т	Т	F	F	Т	Т	F	F
Т	Т	F	F	Т	Т	Т	Т	F
Т	F	Т	F	F	F	F	F	T
Т	F	F	F	Т	Т	Т	T	T
F	Т	Т	Т	F	Т	Т	T	F
F	Т	F	Т	Т	Т	Т	Т	F
F	F	Т	Т	F	Т	Т	Т	T
F	F	F	Т	T	T	Т	Т	Т

부당한 논증

(5) 길수는 소설가가 아니거나 또는 시인이 아니다. 길수는 시인이거나 또는 출판인이다. 길수는 출판 인이 아니거나 또는 시인이다. 그러므로 길수는 소설가가 아니다

A: 길수는 소설가이다

B: 길수는 시인이다

C: 길수는 출판인이다

전제1: ~A v ~B

전제2: B v C

전제3: ~C v B

결론: ~A

						전제1	전제2	전제3	결론
Α	В	С	~A	~B	~C	~A v ~B	B v C	~C ∨ B	~A
Т	Т	Т	F	F	F	F	Т	Т	F
Т	Т	F	F	F	T	F	Т	Т	F
Т	F	Т	F	Т	F	T	Т	F	F
Т	F	F	F	Т	T	T	F	Т	F
F	Т	Т	Т	F	F	Т	Т	Т	Т
F	Т	F	Т	F	T	T	Т	Т	T
F	F	Т	T	Т	F	T	Т	F	Т
F	F	F	T	Т	T	Т	F	Т	T

타당한 논증

(6) 만일 줄리우스 카이사르가 정당하게 자신의 것인 아닌 권력을 찬탈했다면, 그는 비난을 받아 마땅하다. 카이사르는 합법적인 황제였거나 또는 정당하게 자신의 것이 아닌 권력을 찬탈했다. 카이사르는

합법적인 황제였다. 따라서 그는 비난 받아 마땅하다는 것은 옳지 않다.

A: 줄리우스 카이사르는 정당하게 자신의 것이 아닌 권력을 찬탈했다

B: 카이사르는 비난을 받아 마땅하다

C: 카이사르는 합법적인 황제였다

전제1: A → B

전제2: C v A

전제3; C

결론: ~B

			전제1	전제2	전제3	결론
Α	В	С	$A \rightarrow B$	C v A	С	~B
Т	Т	Т	Т	Т	Т	F
Т	Т	F	Т	Т	F	F
Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	F	Т
F	Т	Т	Т	Т	Т	F
F	Т	F	Т	F	F	F
F	F	Т	Т	Т	Т	Т
F	F	F	Т	F	F	T

부당한 논증

(7)

전제1: A ∨ ~B

전제2: B

전제3: A \rightarrow (C \vee ~B)

결론: C

					전제1	전제2	전제3	결론
Α	В	С	~B	C v ~B	A v ~B	В	$A \rightarrow (C \lor \sim B)$	С
Т	Т	Т	F	Т	Т	Т	Т	T
Т	Т	F	F	F	T	Т	F	F
Т	F	Т	T	T	T	F	T	T
Т	F	F	T	T	T	F	Т	F
F	Т	Т	F	Т	F	Т	Т	T
F	Т	F	F	F	F	Т	Т	F
F	F	Т	Т	Т	T	F	Т	T
F	F	F	Т	Т	T	F	Т	F

(8)

전제1: ~A ↔ B

전제2: A ∨ C

전제3: ~C

결론: ~B

				전제1	전제2	전제3	결론
Α	В	C	~A	~A ↔ B	A v C	~C	~B
T	Т	Т	F	F	T	F	F
T	Т	F	F	F	Т	T	F
Т	F	Т	F	T	T	F	T

Т	F	F	F	T	T	T	T
F	Т	Т	Т	T	T	F	F
F	Т	F	Т	Т	F	Т	F
F	F	Т	Т	F	T	F	Т
F	F	F	Т	F	F	T	Т

부당한 논증

(9)

전제1: A & (C → ~A)

전제2: ~C → ~B

결론: B

							전제1	전제2	결론
Α	В	С	~A	~B	~C	C → ~A	A & (C → ~A)	~C → ~B	В
Т	Т	Т	F	F	F	F	F	Т	T
Т	Т	F	F	F	Т	T	Т	F	Т
Т	F	Т	F	T	F	F	F	Т	F
Т	F	F	F	Т	T	T	T	T	F
F	Т	Т	Т	F	F	T	F	Т	Т
F	Т	F	Т	F	Т	T	F	F	Т
F	F	Т	T	Т	F	T	F	T	F
F	F	F	Т	Т	T	T	F	T	F

부당한 논증

연습문제E >> 다음 논증들의 타당성을 약식 진리표 방법에 의해 판별하시오.

(1) \sim A \vee B / \sim A \rightarrow C / C \rightarrow A // B

~A ∨ B		~A → C		C → A		В
Т		Т		Т		
T F		Т	T	T F		F

타당한 논증

(2) A \rightarrow ~B/ B & C // ~A & ~B

A → ~B		B & C		~A & ~B		
Т		Т		F		
T F		ТТ				

부당한 논증

(3) A \rightarrow (B & C)/ (B \vee C) \rightarrow ~D/ D \vee ~A // A \leftrightarrow ~D

$A \rightarrow (B \& C)$		$(B \lor C) \rightarrow C$	~D	D v ~A		A ↔ ~D	
Т		Т		Т		F	
Т	Т	Т	F	T	F	T	F
F	F/T	T/F	Т	F	Т	F	Т

부당한 논증

(4) A \rightarrow ~B/ C \leftrightarrow A/ B \vee A // C \leftrightarrow ~B

A → ~B		C ↔ A		B v A		C ↔ ~B	
Т		Т		Т		F	
Т	F	Т	Т			Т	F
	T	F	F	F	F	F	T

타당한 논증

(5) A \rightarrow B/ \sim A \rightarrow \sim B/ B \rightarrow C/ C \rightarrow B // A \leftrightarrow C

A → B		~A → ~E	3	$B \rightarrow C$		$C \rightarrow B$	A ↔ C	
Т		T		Т		T	F	
T	T	F	F	Т	F	F	Т	F
F	F	T	T	F	T	T	F	T

(6) A \rightarrow (B \rightarrow C)/ B \rightarrow (A \rightarrow C) // (A \vee B) \rightarrow C

A ((B → C)	$B \rightarrow (A \rightarrow C)$			$(A \lor B) \to C$		
Т			T			F		
Т	Т	F	Т	Т	F	T	F	
Т	F	F	F	Т	F	Т	F	
F	Т	F	Т	F	F	T	F	

X O O

부당한 논증

(7) A & B/ B \rightarrow C/ A \rightarrow ~(C & ~D) // ~D

A & B		B → C		A →	~(C &	~D)	~D
Т		Т		Т			F
					Т	F	F
Т	Т	T	Т	Т	Т		F

부당한 논증

(8) (A \vee (B \vee C)) \rightarrow (D \rightarrow C)/ E \rightarrow (B \vee (C \vee A)) // \sim C \rightarrow \sim (E & D)

(A v	(B v C)) → (D	→ C)		E → (B	$E \to (B \vee (C \vee A))$			~C → ~(E & D)		
Т					Т			F			
F			F		Т	Т			T	F	
F	T	F	Т	F	Т	T	F	F	Т	Т	Т

타당한 논증

(9) A \vee (C & \sim D)/ B \rightarrow (C & \sim A) / \sim D \rightarrow \sim B // A \leftrightarrow B

A v (C	& ~D)	$B \rightarrow (C \& \sim A)$			~D → ~B		A ↔ B	
Т		Т			T		F	
Т		F		F		T	Т	F

부당한 논증

(10) A \vee (B & \sim C)/ (A \vee B) \rightarrow (D \vee \sim C) // \sim C \vee D

A v (B & ~C)			$(A \lor B) \to (D \lor \sim C)$				~C v D	
Т			Т		F			
Т		F	Т		F	F	F	F
Т	T F			T F			F	

타당한 논증

연습문제 F >> 선비와 사기꾼 알아맞히기. 3장 연습 문제 C에서 가정한 것처럼, 단지 선비들과 사기꾼들만이 사는 한 섬이 있다고 가정하자. 선비들은 항상 진실만을 말하고, 사기꾼들은 항상 거짓만을 말한다, 각 사람의 진술을 분석하여, 그가 선비인지 아니면 사기꾼인지를 결정하시오

(1)

- A: 정확히 우리들 중 두 사람만이 선비이다
- B: 만일 A가 선비라면, 적어도 우리들 중 한 사람은 사기꾼이다.
- C: A는 사기꾼이다.
- C: 사기꾼, A: 선비, B: 선비
- X: A는 선비이다
- Y: B는 선비이다
- Z: C는 선비이다

Α	В	С
(X & Y) v (Y & Z) v (X & Z)	$X \rightarrow (\sim Y \vee \sim Z)$	~X

(2)

- A: 만일 내가 사기꾼이 아니라면, 적어도 우리들 중 한 사람은 선비이다.
- B: 만일 A가 선비라면, C는 사기꾼이다.
- C: A는 선비이다.

A: 선비, B: 사기꾼, C: 선비

A: 사기꾼 > B: 사기꾼, C: 사기꾼

B: 사기꾼 >

C: 사기꾼

A가 사기꾼 >

A는 선비이면서 선비인 경우가 없다

B는 A가 선비이면서 C는 선비이다

(3)

A: 만일 선비가 아닌 사람이 있다면. B는 사기꾼이다

B: 나는 사기꾼이거나 또는 C는 선비이다.

C: 선비가 아닌 사람이 있다.

A: 사기꾼, C: 선비 B: 선비

연습문제 G >> 선비, 사기꾼 그리고 보통 사람 알아맞히기. 이번에는 선비, 사기꾼, 그리고 보통 사람이 각각 한 명씩 사는 섬이 있고, 이 섬에서 보통 사람은 선비와 사기꾼과 달리, 진실을 말할 때도 있고, 거짓을 말할 때도 있다고 가정하자. 그리고 선비는 사기꾼과 결혼했고, 보통사람은 총각이라고 가정하자. 또한 선비의 신분이 제일 높고, 보통 사람이 중간이고, 사기꾼이 제일 낮다고 가정하자, 이러한 가정 아래에서 각 사람의 진술을 분석하여, 각 사람의 신분을 결정하시오.

선비: 진실만을 말한다, 사기꾼과 결혼했다, 신분이 제일 높다

사기꾼: 거짓만을 말한다, 신분이 중간이다

보통사람: 진실 혹은 거짓을 말한다. 총각이다, 신분이 제일 낮다

(1)

A: 나는 B보다 신분이 높거나 또는 높지 않다. X v ~X ~X & X
B: 만일 내가 A와 결혼했다면, 나는 총각이다.
C: 나는 A보다 신분이 높지 않다.
A: 선비
B: 사기꾼
C: 보통사람
(2)
A: 나는 총각이다
B: 나는 A와 결혼했거나 또는 C와 결혼했다.
C: 나는 A와 결혼하지 않았다.
A: 사기꾼
B: 선비
B: 선비 C: 보통사람
C: 보통사람
C: 보통사람 (3)
C: 보통사람 (3) A: 만일 내가 B보다 신분이 낮지 않다면, 나는 C보다 신분이 낮다.
C: 보통사람 (3) A: 만일 내가 B보다 신분이 낮지 않다면, 나는 C보다 신분이 낮다. B: 나는 A와 결혼했지 C와 결혼하지 않았다.
C: 보통사람 (3) A: 만일 내가 B보다 신분이 낮지 않다면, 나는 C보다 신분이 낮다. B: 나는 A와 결혼했지 C와 결혼하지 않았다.
C: 보통사람 (3) A: 만일 내가 B보다 신분이 낮지 않다면, 나는 C보다 신분이 낮다. B: 나는 A와 결혼했지 C와 결혼하지 않았다. C: 나는 A보다 신분이 높다.

머리 풀기 문제 >> 다음 사실이 지방 소도시 X에서 성립한다고 가정하자. 철수가 X시에 살고 있는 왼 손잡이라고 가정할 때, 반드시 참인 것은?

- ㄱ. 이 도시에서 남구와 북구, 두 개의 구가 있다.
- ㄴ. 아파트에 사는 사람들은 모두 오른손잡이다.
- ㄷ. 남구에서 아파트에 사는 사람들은 모두 의심이 많다.
- ㄹ. 남구에서 아파트에 살고 있지 않은 사람들은 모두 가난하다.
- ㅁ. 북구에서 아파트에 살지 않는 사람들은 의심이 많지 않다.

철구는 아파트에 살고 있지 않다

철구가 남구에 살고 있다면 가난하다

철구가 가난하지 않다면 남구에 살고 있지 않다.

- (1) 철수는 가난하지 않다.
- (2) 철수는 의심이 많은 사람이 아니다.
- (3) 만일 철수가 가난하지 않다면, 철수는 의심이 많지 않다. (참)
- (4) 만일 철수가 북구에 산다면, 철수는 의심이 많다. (거짓)
- (5) 만일 철수가 남구에 산다면, 철수는 의심이 많다.

연습 문제 A >> 다음 논증들을 기호화하고 자연 연역 방법에 의해 타당성을 증명하시오

(1) 만일 아담이 백만장자라면, 가난은 이브가 그의 청혼을 거절한 이유가 아니다. 그런데 이브가 그의 청혼을 거절한 이유는 아담이 가난하다는 것 또는 그가 매력이 없다는 것 둘 중의 하나이다. 아담은 백만장자이다. 그러므로 매력이 없다는 것이 아담이 청혼을 거절당한 이유임에 틀림없다.

A: 아담은 백만장자이다.

B: 이브가 그의 청혼을 거절한 이유는 아담이 가난하다는 것이다

C: 이브가 그의 청혼을 거절한 이유는 그가 매력이 없다는 것이다.

전제1: A → ~B

전제2: (B v C) & ~(B & C)

전제3: A

결론: C

1.	A → ~B	
2.	B v C	
3.	Α	//C
4.	~B	1, 3, → 제거
5.	С	2, 4, ∨ 제거

타당

(2) 만일 길수가 윤주를 사랑했다면, 그는 윤주에게 청혼을 하고 싶어 했을 것이다. 만일 길수가 윤주에게 청혼을 하고 싶어 했다면, 그는 윤주가 다른 남자에게 시집가기 전에 청혼을 했을 것이다. 그러나 길수는 윤주가 다른 남자에게 시집가기 전에 청혼을 하지 않았다. 그러므로 길수는 윤주를 사랑하지 않았음에 틀림없다.

A: 길수는 윤주를 사랑한다.

B: 길수는 윤주에게 청혼을 하고 싶어 했을 것이다.

C: 길수는 윤주가 다른 남자에게 시집가기 전에 청혼을 했을 것이다.

전제1: A → B

전제2: B → C

전제3: ~C

1.	$A \rightarrow B$	
2.	$B \rightarrow C$	
3.	~C	~A
4.	Α	가정
5.	В	1, 4 → 제거
6	С	2, 5 → 제거
7.	~C	3, 반복
8.	~A	4-7, ~ 도입

(3) 만약 이브이든 아담이든 충분히 조심을 했더라면, 그 사고는 나지 않았을 것이다. 그 사고가 나지 않았다면, 그들은 부자가 되었을 것이다. 그러나 그들은 부자가 되지 않았다. 그러므로 아담은 충분히 조심을 하지 않았다.

A: 이브는 충분히 조심을 했다.

B: 아담은 충분히 조심을 했다.

C: 그 사고는 났을 것이다.

D: 아담과 이브는 부자가 되었을 것이다.

전제1: $(A \lor B) \rightarrow \sim C$

전제2: ~C → D

전제3: ~D

결론: ~B

1	$(A \lor B) \rightarrow \sim C$	
2	\sim C \rightarrow D	
3	~D	~B
4	В	가정

5	A v B	
6	~C	
7	D	
8	~D	
9	~B	

(4) 우리는 우리 자신의 인생을 스스로 결정하거나 또는 부모의 조언을 따라야 한다. 만일 우리가 부모의 조언을 따른다면, 우리는 부모 자신의 꿈을 실현하는 데 이용될 위험이 있다. 우리는 그러한 위험을 피해야 한다. 그러므로 우리는 우리 자신의 인생을 스스로 결정해야 한다.

A: 우리는 우리 자신의 인생을 스스로 결정해야 한다.

B: 우리는 부모의 조언을 따라야 한다.

C: 우리는 부모 자신의 꿈을 실현하는 데 이용될 위험이 있다

전제1: A ∨ B

전제2: B → C

전제3: ~C

결론: A

1	A v B	
2	$B \rightarrow C$	
	~C	A`
3	~A	가정
4	В	
5	С	
6	~C	
7	A	

타당한 논증

(5) 동물들은 단순히 기계들에 불과하거나 또는 동물들은 아픔을 느낀다. 만일 동물들이 아픔을 느끼거나 또는 영혼을 갖고 있다면, 동물들은 불필요한 아픔을 겪지 않을 권리를 지니며 인간들은 동물들에게 불필요한 아픔을 가하지 말아야 할 의무를 지닌다. 동물들이 단순히 기계들에 불과하다는 것은 사실이 아니다. 그러므로 동물들은 불필요한 아픔을 겪지 않을 권리를 지닌다

A: 동물들은 단순히 기계들에 불과하다

B: 동물들은 아픔을 느낀다.

C: 동물들은 영혼을 갖고 있다.

D: 동물들은 불필요한 아픔을 겪지 않을 권리를 지닌다.

E: 인간들은 동물들에게 불필요한 아픔을 가하지 말아야 할 의무를 지닌다.

전제1: A ∨ B

전제2: (B \vee C) \rightarrow (D & E)

전제3: ~A

결론: D

1	A v B	
2	$(B \lor C) \rightarrow (D \& E)$	
3	~A	D
4	В	가정
5	~A	
6	D & E	
7	D	

타당한 논증

(6) 만일 경찰이 당신을 구금하고 당신이 묵비권을 행사할 권리가 있음을 통보한다면, 당신의 진술은 당신에게 불리하게 사용될 수 있다. 만일 경찰이 당신이 묵비권을 행사할 권리가 있음을 통보하고 또

한 당신의 진술이 당신에게 불리하게 사용될 수 있다면, 당신은 아무 말도 하지 않은 것이 좋을 것이다. 그러므로 만일 경찰이 당신을 구금하고 당신이 묵비권을 행사할 권리가 있음을 통보한다면, 당신은 아무 말도 하지 않는 것이 좋을 것이다.

A: 경찰이 당신을 구금한다.

B: 경찰이 당신을 묵비권을 행사할 권리가 있음을 통보한다.

C: 당신의 진술은 당신에게 불리하게 사용될 수 있다.

D: 당신은 아무 말도 하지 않은 것이 좋을 것이다.

전제1: (A & B) → C

전제2: (B & C) \rightarrow D

결론: (A & B) → D

1.	(A & B) → C	
2.	$(B \& C) \rightarrow D$	(A & B) → D
3.	A & B	가정
4.	В	
5.	С	
6.	В & С	
7.	D	
8.	(A & B) → D	

타당한 논증

(7) 만일 두뇌 현상이 심적 현상과 동일하다면, 두뇌 현상이 공간적 위치를 가져야 함은 심적 현상이 공간적 위치를 가져야 함의 필요충분조건이다. 두뇌 현상은 공간적 위치를 갖는다. 만일 심적 현상이 공간적 위치를 갖는다면, 생각에 공간적 위치를 부여하는 것이 유의미해야 한다. 그러나 생각에 공간적 위치를 부여하는 것은 유의미해야 한다. 그러나 생각에 공간적 위치를 부여하는 것은 유의미하지 않다. 그러므로 두뇌 현상과 심적 현상은 동일하지 않다.

A: 두뇌 현상이 심적 현상과 동일하다.

B: 두뇌 현상은 공간적 위치를 가져야 한다.

C: 심적 현상은 공간적 위치를 가져야 한다.

D: 생각에 공간적 위치를 부여하는 것이 유의미해야 한다.

전제1: A \rightarrow (B \leftrightarrow C)

전제2: B

전제3: C → D

전제4: ~D

결론: ~A

1.	$A \rightarrow (B \leftrightarrow C)$	
2.	В	
3.	$C \rightarrow D$	
4.	~D	~A
5.	Α	가정
6.	B ↔ C	
7.	$B \rightarrow C$	
8.	С	
9.	D	
10.	~D	
11.	~A	

타당한 논증

(8) 만일 혜영이 수업에 충실하고 또한 지나친 사교활동을 줄인다면, 혜영의 성적은 오를 것이다. 만일 혜영의 성적이 오르면, 혜영은 장학금을 받게 될 것이다. 혜영은 사교활동은 줄이겠지만, 장학금은 받지 못할 것이다. 따라서 혜영은 수업에 충실하지 않은 것이다.

A: 혜영은 수업에 충실하다

B: 혜영은 지나친 사교활동을 줄인다

C: 혜영의 성적은 오를 것이다

D: 혜영은 장학금을 받게 될 것이다.

전제1: (A & B) → C

전제2: C → D

전제3: B & ~D

결론: ~A

1.	$(A \& B) \rightarrow C$	
2.	$C \rightarrow D$	
3.	B & ~D	~A
4.	A	가정
5.	В	
6.	A & B	
7.	С	
8.	D	
9.	~D	
10.	~A	

타당한 논증

(9) 만일 혜영이 법조계로 나간다면, 그녀는 성공할 것이다. 만일 그녀가 금융계로 나간다면, 그녀는 성공할 것이다. 그녀가 법조계 및 금융계 어느 쪽으로도 나가지 않는다는 것은 사실이 아니다. 따라서 그녀는 성공할 것이다.

A: 헤영은 법조계로 나간다.

B: 혜영은 성공할 것이다.

C: 혜영은 금융계로 나간다.

전제1: A → B

전제2: C → B

전제3: ~(~A & ~C)

결론: B

1	$A \rightarrow B$	
2	$C \rightarrow B$	
3	~(~A & ~C)	В
4	~B	가정
5	A	가정
6	В	
7	~B	
8	~A	
9	С	가정
10	В	
11	~B	
12	~C	
13	~A & ~C	
14	~(~A & ~C)	
15	~~B	
16	В	

타당한 논증

(12) 만일 온실효과를 감소시켜야 한다면, 우리는 원자력 발전을 선택해야 한다. 그러나 우리가 원자력 사고의 위험을 줄여야 한다면, 우리는 재래식 발전을 선택해야 한다. 우리는 원자력 발전을 선택하지 않거나 또는 재래식 발전을 선택하지 않을 것이다. 그러므로 우리는 온실효과를 감소시키지 않거나 또 는 원자력 사고의 위험을 줄이지 않을 것이다.

A: 온실효과를 감소시켜야 한다.

B: 우리는 원자력 발전을 선택해야 한다.

C: 우리는 원자력 사고의 위험을 줄여야 한다.

D: 우리는 재래식 발전을 선택해야 한다.

전제1: A → B

전제2: C → D

전제3: ~B v ~D

결론: ~A v ~C

1	$A \rightarrow B$	
2	$C \rightarrow D$	
3	~B ∨ ~D	~A v ~C
4	~(~A v ~C)	가정
5	A & C	
6	Α	
7	С	
8	В	
9	D	
10	B & D	
11	~A v ~C	

타당한 논증

A: 온실효과를 감소시켜야 한다.

B: 우리는 원자력 발전을 선택해야 한다.

C: 우리는 재래식 발전을 선택해야 한다.

D: 우리는 원자력 사고의 위험을 줄여야 한다.

1

2	$D \rightarrow C$	
3	~B v ~C	~A v ~D
4	~(~A ∨ ~D)	가정
5	Α	가정
6	В	
7	~C	
8	D	
9	С	
10	~C	
11	~D	
12	~A ∨ ~D	
13	~(~A ∨ ~D)	
14	~A	
15	~A ∨ ~D	
16	~~(~A v ~D	
17	~A ∨ ~D	

연습문제 B >> 다음 논증들의 타당성을 자연 연역 방법에 의해 증명하시오.

(1)

 $A \rightarrow B$

A & C

 $(B \& C) \rightarrow D$

∴ D

1	$A \rightarrow B$	
2	A & C	
3	$(B \& C) \rightarrow D$	D
4	A	
5	С	
6	В	
7	B & C	
8	D	

(2) ~A ∨ B

~B

 $A \lor C$

∴ ~B & C

1	~A ∨ B	
2	~B	
3	A v C	~B & C
4	~B	가정
5	~A	
6	С	
7	~B & C	

타당한 논증

(3) D

 $(\mathsf{D}\,\vee\,\mathsf{A})\,\to\,(\mathsf{B}\,\vee\,\mathsf{C})$

~B

 $(\mathsf{C} \ \lor \ \mathsf{\sim} \mathsf{F}) \ \to \ (\mathsf{G} \ \& \ \mathsf{H})$

∴ G

1	D	
2	$(D\veeA)\to(B\veeC)$	
3	~B	
4	$(C \lor \sim F) \rightarrow (G \& H)$	G
5	D v A	
6	B v C	
7	С	

8	C v ~F	
9	G & H	
10	G	

(4) ~(A & G) v C

~C

(A & G) v (~D v F)

 $\mathsf{E}\,\to\,\mathsf{B}$

 $E \vee D$

~F

∴В

1	~(A & G) ∨ C	
2	~C	
3	(A & G) v (~D v F)	
4	$E \rightarrow B$	
5	E v D	
6	~F	В
7	~(A & G)	
8	~D v F	
9	~D	
10	E	
11	В	

(5) B & D

 $(\mathsf{B}\,\vee\,\mathsf{F})\,\to\,(\mathsf{A}\,\,\&\,\,\mathsf{G})$

 $(G \rightarrow E) \& \sim C$

∴ ~C & E

1	B & D	
2	$(B \lor F) \rightarrow (A \& G)$	
3	(G → E) & ~C	~C & E
4	В	가정
	B v F	
	A & G	
	G	
	$G \rightarrow E$	
	Е	
	~C	
	~C & E	

(6) (B
$$\rightarrow$$
 D) & (C \rightarrow E)

B v C

$$(\mathsf{D}\,\vee\,\mathsf{E})\,\to\,(\mathsf{A}\,\vee\,\mathsf{F})$$

~A & ~C

∴ F & B

1	$(B \rightarrow D) \& (C \rightarrow E)$	
2	B v C	
3	$(D\veeE)\to(A\veeF)$	
4	~A & ~C	F & B
	~C	
	В	
	$B \rightarrow D$	
	D	
	D v E	
	A∨F	
	~A	
	F	
	F & B	

$$(7)~(\sim A~\vee~B)~\rightarrow~(C~\rightarrow~D)$$

$$(\sim F \ \lor \ B) \ \to \ (D \ \to \ E)$$

$$\therefore \mathsf{C} \to \mathsf{E}$$

1	$(\sim A \vee B) \rightarrow (C \rightarrow D)$	
2	$(\sim F \vee B) \rightarrow (D \rightarrow E)$	
3	~A & ~F	C → E
4	~A	
	~A ∨ B	
	$C \rightarrow D$	
	~F	
	~F ∨ B	
	$D \rightarrow E$	
	С	가정
	D	
	Е	
	$C \rightarrow E$	

(8)
$$\sim$$
(A \rightarrow \sim C)

$$(D \rightarrow E) \lor (A \rightarrow \sim C)$$

$$E \rightarrow \sim B$$

1	~(A → ~C)	
2	$(D \rightarrow E) \lor (A \rightarrow \sim C)$	
3	E → ~B	D → ~B
	D	가정
	E	
	~B	
	D → ~B	

$$\mathsf{A} \, \vee \, (\mathsf{C} \, \to \, \sim \! \mathsf{D})$$

~~B

 \sim D \rightarrow E

 $\cdot \cdot \cdot \mathsf{C} \to \mathsf{E}$

1	~A ∨ ~B	
2	$A \lor (C \rightarrow \sim D)$	
3	~~B	
4	~D → E	$C \rightarrow E$
5	В	
	~A	
	C → ~D	
	С	가정
	~D	
	E	
	$C \rightarrow E$	

(10) $A \rightarrow \sim B$

 $C \vee A$

В

∴ C

1	A → ~B	
2	C v A	
3	В	С
	~C	가정
	A	
	~B	
	В	
	~~C	
	С	

(11) A v (B & C)

 $B \rightarrow D$

~D

∴ A

1	A v (B & C)	
2	$B \rightarrow D$	
3	~D	Α
	~A	가정
	B & C	
	В	
	D	
	~D	
	~~A	
	А	

(12) A v ~(D v C)

~(A ∨ ~D) ∨ B

∴В

1	A v ~(D v C)	
2	~(A ∨ ~D) ∨ B	В
3	~B	
	~(A ∨ ~D)	
	~C	가정
	A v ~D	
	~(A ∨ ~D)	
	С	
	DvC	
	A	
	A v ~D	
	~(A ∨ ~D)	
	~~B	

В	

1	A v ~(D v C)	
2	~(A ∨ ~D) ∨ B	В
3	~B	가정
4	~(A ∨ ~D)	
5	Α	가정
6	A v ~D	
7	~(A ∨ ~D)	
8	~A	
9	~(D ∨ C)	
10	D	가정
11	D v C	
12	~(D ∨ C)	
13	~D	
14	A v ~D	
15	~~B	
16	В	

머리 풀기 문제 >> 다음 <보기>의 내용이 모두 사실이라고 하자. 경수가 농민이 아닌 경우에 다음 중 반드시 참인 것은?

<보기>

- ¬. A, B, C, D, 네 개의 구역이 있으며, A 구역에는 군인이, B 구역에는 농민 또는 노동자가, C 구역에는 행정 관료가, 그리고 D 구역에는 기업가가 산다.
- L.A 구역 사람들은 모두 B 구역 사람만을 좋아하고, D 구역 사람을 존경하는 사람들은 모두 A 구역 사람들뿐이다.
- C. 아파트에 거주하는 모든 사람들은 D구역 사람을 좋아하고, 자가용으로 출퇴근하는 모든 사람들은 부자이다.
- a. C 구역 사람들이나 D 구역 사람들은 모두 부자이다.

ㅁ. C 구역 사람들은 모두 아파트에 거주한다.

행정 관료는 모두 아파트에 거주한다.

행정 관료 또는 기업가는 부자이다.

행정 관료는 기업가를 좋아한다.

자가용으로 출퇴근하는 모든 사람들은 부자이다

군인은 농민 또는 노동자를 좋아하고 기업가를 존경한다.

연습 문제 A (1) >> 유도 규칙을 사용하지 않고 경우에 의한 논증을 증명하시오.

 $X \vee Y$

 $\mathsf{X} \to \mathsf{Z}$

 $Y \rightarrow Z$

∴ Z

1	X v Y	
2	$X \rightarrow Z$	
3	$Y \rightarrow Z$	Z
4	~Z	가정
5	X	가정
6	Z	
7	~Z	
8	~X	
9	Υ	
10	Z	
11	~~Z	
12	Z	

연습문제 A (2) >> 결합 규칙을 증명하시오.

 $X \vee (Y \vee Z)$

1	X v (Y v Z)	(X × Y) × Z
2	~X	가정
3	Y v Z	
4	~Z	가정
	Υ	
	X v Y	
	(X ∨ Y) ∨ Z	

1	X v (Y v Z)	(X ∨ Y) ∨ Z
2	X	가정
3	X v Y	
4	(X ∨ Y) ∨ Z	
5	Y v Z	가정
6	Υ	가정
7	X v Y	
8	(X ∨ Y) ∨ Z	
	Z	
	(X ∨ Y) ∨ Z	
	(X ∨ Y) ∨ Z	
	(X ∨ Y) ∨ Z	

연습문제 A (3) >> 반대 방향을 증명하시오

 $(X \& Y) \lor (X \& Z) \equiv X \& (Y \lor Z)$

1	(X & Y) v (X & Z)	X & (Y ∨ Z)
2	X & Y	가정
3	X	
4	Υ	
	Y v Z	
	X & (Y v Z)	
	X & Z	가정

Χ	
Z	
Y v Z	
X & (Y v Z)	
X & (Y v Z)	

연습 문제 A (4) >> 반대 방향을 증명하시오.

 $(X \vee Y) & (X \vee Z) \equiv X \vee (Y \& Z)$

1	(X ∨ Y) & (X ∨ Z)	X v (Y & Z)
2	X v Y	
3	X v Z	
	X	가정
	X v (Y & Z)	
	Υ	가정
	X	가정
	X v (Y & Z)	
	Z	가정
	Y & Z	
	X v (Y & Z)	
	X v (Y & Z)	
	X v (Y & Z)	

연습 문제 A (5) >> 반대 방향 증명하시오.

 \sim (X \vee Y) \equiv \sim X & \sim Y

1	~(X ∨ Y)	~X & ~Y
2	X	가정
	X v Y	
	~(X ∨ Y)	
	~X	
	Υ	
	X v Y	
	~(X ∨ Y)	
	~Y	

~X & ~Y	
	1

연습 문제 A (6) >> 반대 방향을 증명하시오.

 \sim (X & Y) \equiv \sim X \vee \sim Y

1	~(X & Y)	~X v ~Y
	~(~X ∨ ~Y)	가정
	~X	가정
	~X ∨ ~Y	
	~(~X ∨ ~Y)	
	~~X	
	Х	
	~Y	가정
	~X ∨ ~Y	
	~(~X ∨ ~Y)	
	~~Y	
	Υ	
	X & Y	
	~(X & Y)	
	~~(~X ∨ ~Y) ~X ∨ ~Y	
	~X v ~Y	

연습 문제 A (7) >> 반대 방향을 증명하시오.

 $X \rightarrow Y \equiv \sim X \vee Y$

1	$X \rightarrow Y$	~X ∨ Y
	~Y	가정
	~X	
	~X ∨ Y	

1	$X \rightarrow Y$	~X v Y
2	~(~X ∨ Y)	가정
	~X	가정
	~X ∨ Y	
	~(~X ∨ Y)	

~~X	
Χ	
Υ	
~X v Y	
~(~X ∨ Y)	
~~(~X ∨ Y)	
~X v Y	

1	$X \rightarrow Y$	~X ∨ Y
2	~(~X ∨ Y)	가정
3	~~X & ~Y	
	~~X	
	X	
	Υ	
	~Y	
	~~(~X ∨ Y)	
	~X ∨ Y	

연습 문제 A (8) >> 반대 방향을 증명하시오.

 $X \& \sim Y \equiv \sim (X \rightarrow Y)$

1	X & ~Y	\sim (X \rightarrow Y)
	$X \rightarrow Y$	가정
	X	
	Υ	
	~Y	
	~(X → Y)	

연습 문제 B >> 다음 논증들을 기호화하고, 자연 연역 방법에 의해 타당성을 증명하시오. (기본 규칙들과 파생 규칙들 중 어떤 것을 사용해도 무방함.)

(1) 만일 섬유 수입에 쿼터가 적용되면 일자리는 줄지 않는다는 주장은 거짓이거나, 또는 국내 섬유산업이 첨단화되면 국내 섬유산업이 붕괴되지 않을 것이다. 만일 섬유 수입에 쿼터가 적용되면, 국내 섬유산업은 첨단화될 것이다. 만일 섬유산업이 첨단화되면, 일자리는 줄지 않을 것이다. 그러므로 만일

섬유 수입에 쿼터가 적용되면 국내 섬유산업은 붕괴되지 않을 것이다.

A: 섬유 수입에 쿼터가 적용된다.

B: 일자리는 준다

C: 국내 섬유산업은 첨단화된다.

D: 국내 섬유산업은 붕괴된다.

전제1: $(A \rightarrow \sim \sim B) \lor (C \rightarrow \sim D)$

전제2: A → C

전제3: C → ~B

결론: A → ~D

1	$(A \rightarrow \sim \sim B) \lor (C \rightarrow \sim D)$	
2	$A \rightarrow C$	
3	C → ~B	A → ~D
4	A → ~~B	가정
	А	가정
	~B	
	A → ~B	
	A → ~~B	
	~A	
	~A v D	
	$A \to \sim D$ $C \to \sim D$	
	C → ~D	가정

1	$(A \rightarrow \sim \sim B) \lor (C \rightarrow \sim D)$	
2	$A \rightarrow C$	

3	C → ~B	$A \rightarrow \sim D$
	~(A → ~D)	가정
	~(~A ∨ ~D)	
	A & D	
	A	
	~B	
	A → ~B	
	A → ~~B	
	~A	
	~A v ~D	
	$A \rightarrow \sim D$	
	~~(A → ~D)	
	$A \rightarrow \sim D$	

A: 섬유 수입에 쿼터가 적용된다.

B: 일자리는 준다

C: 국내 섬유산업은 첨단화된다.

D: 국내 섬유산업은 붕괴된다.

전제1: \sim (A \rightarrow \sim B) \vee (C \rightarrow \sim D)

전제2: A → C

전제3: C → ~B

결론: A → ~D

1	\sim (A \rightarrow \sim B) \vee (C \rightarrow \sim D)	
	$A \rightarrow C$	
	C → ~B	$A \rightarrow \sim D$
	А	가정
	~B	
	A → ~B	
	C → ~D	
	~D	

A → ~D	

(2) 한 인간의 심장은 한 시간 안에 그의 몸무게보다 많은 피를 배출한다. 만일 한 인간의 심장이 한 시간 안에 그의 몸무게보다 많은 피를 배출하고 피가 단지 심장으로부터만 배출된다면, 심장은 한 시간 안에 한 인간의 몸무게보다 많은 피를 생산한다. 그러나 심장은 한 시간 안에 한 인간의 몸무게보다 많은 피를 생산할 수 없다. 피가 단지 심장으로부터 배출되는 것이 아니라면, 피는 몸을 순환하고 심장에 다시 진입해야 한다. 그러므로 심장은 한 시간 안에 몸무게보다 많은 피를 생산할 수 없으며, 또한 피는 몸을 순환하고 심장에 다시 진입한다.

A: 한 인간의 심장은 한 시간 안에 그의 몸무게보다 많은 피를 배출한다.

B: 피가 단지 심장으로부터만 배출된다

C: 심장은 한 시간 안에 한 인간의 몸무게보다 많은 피를 생산한다

D: 피는 몸을 순환한다

E: 심장에 다시 진입해야 한다

전제1: A

전제2: A & B → C

전제3: ~C

전제4: ~B → (D & E)

결론: ~C & (D & E)

1	A	
	A & B → C	
	~C	
	~B → (D & E)	~C & (D & E)
	~(A & B)	
	~A ∨ ~B	
	~B	
	D & E	
	~C & D & E	

(3) 만일 사형 제도가 잔인한 형벌이 아니고 사회가 이 제도를 시행하는 것이 정당화된다면, 이 제도는 범죄발생률을 줄여야 한다. 만일 사형 제도가 잔인한 형벌이라면, 이 제도의 시행이 사회의 품위를 떨어뜨리는 것은 아니다. 사형 제도가 잔인하고 또한 동시에 사회의 품위를 떨어뜨리는 것은 아니다. 또한 이 제도는 범죄발생률을 줄이지 않는다. 그러므로 사회가 사형 제도를 시행하는 것은 정당화되지 않는다.

 $(\sim A \& B) \rightarrow C / A \rightarrow \sim D/ A \& \sim D/ \sim C // \sim B$

1	(~A & B) → C	
	$A \rightarrow D$	
	~(A & D)	
	~C	~B
	~(~A & B)	
	A v ~B	
	A	가정
	D	
	A & D	
	~(A & D)	
	~ A	
	~ B	

(4) 신은 그보다 더 큰 것이 생각될 수 없는 존재이다. 우리는 '신'이라는 용어를 이해한다. 만일 우리가 '신'이라는 용어를 이해한다면, 신은 우리의 이해 속에 존재한다. 만일 신이 우리의 이해 속에 존재하고 또한 신이 실재 속에 존재하지 않는다면, 신은 그보다 더 큰 것이 생각될 수 없는 존재가 아니다. 그러므로 신은 실재 속에 존재한다.

1	А	
	В	
	$B \rightarrow C$	
	(C & ~D) → ~A	D
	~D	가정
	С	
	C & ~D	

~A	
A	
D	

(5) 만일 길수가 그 동아리에 가입하면, 그 동아리의 위상은 크게 올라갈 것이다. 만일 윤주가 가입하면, 그 동아리의 재정이 매우 튼튼해질 것이다. 길수 또는 윤주가 가입할 것이다. 만일 그 동아리의 위상이 크게 올라가면, 윤주는 가입할 것이다. 만일 그 동아리의 재정이 매우 튼튼해지면, 남중이 가입할 것이다. 그러므로 윤주 또는 남중이 가입할 것이다.

1	$A \rightarrow B$	
	$C \rightarrow D$	
	A∨C	
	$B \rightarrow C$	
	$D \rightarrow E$	C v E
	~(C ∨ E)	가정
	~C & ~E	
	~C	
	A	
	В	
	С	
	C v E	
	~~(C ∨ E)	
	C v E	

(6) 만일 사랑이 눈물의 씨앗이 아니거나 또는 사랑이 환상이라면, 사랑은 눈물의 씨앗이고 인생은 무의미하다. 만일 사랑이 환상이 아니라면, 사랑은 눈물의 씨앗이 아니다. 그러므로 인생은 무의미하다.

1	(~A ∨ B) → A & C	
	~B → ~A	С
	~C	가정
	~A v ~C	
	~(A & C)	
	~(~A ∨ B)	
	A & ~B	
	А	

$A \rightarrow B$	
В	
~B	
~~C	
С	

(7) 만일 신이 악을 막을 수는 있지만 그렇게 하길 원치 않는다면, 신은 전선하지 않다. 만일 신이 존재한다면, 신은 전능하고 전선하다. 만일 악이 존재한다면, 신은 악을 막고자 원치 않거나 또는 악을 막을 능력이 없다. 악은 존재한다. 그러므로 만일 신이 존재한다면, 신은 악을 막을 능력이 없다.

1	(A & ~B) → ~C	
	D → E & C	
	F → (~B ∨ ~A)	
	F	D → ~A
	~B ∨ ~A	
	D	가정
	E & C	
	С	
	~(A & ~B)	
	~A v ~~B	
	A	가정
	~B	
	~~B	
	В	
	~A	
	D → ~A	

(8) 강도가 문을 통해 들어왔거나, 또는 그 범죄는 내부자 소행이고 하인들 중 한 명이 연루되어 있다. 강도는 빗장이 내부에서 열려진 한에서 문을 통해 들어올 수 있다. 그러나 만일 빗장이 내부에서 열려 졌다면 하인들 중 한 명이 연루되어 있다. 그러므로 하인들 중 한 명이 연루되어 있다.

1	A v (B & C)	
	$A \rightarrow D$	
	$D \rightarrow C$	С
	~C	가정
	~D	

~A	
B & C	
С	
~~C	
С	

(9) 만일 내가 정장을 구입한다면, 나는 돈이 없게 된다. 난 돈이 있는 한에서 달을 오페라 공연에 데려갈 수 있다. 만일 내가 내 딸을 오페라 공연에 데려갈 수 없다면, 내 딸은 매우 서운해 할 것이다. 그러나 만일 내가 정장을 구입하지 못하면, 나는 입을 정장이 전혀 없게 된다. 나는 입을 정장이 없다면, 나는 내 딸을 오페라 공연에 데려갈 수 없다. 그러므로 내 딸은 매우 서운해 할 것이다.

1	A → ~B	
	$C \rightarrow B$	
	~C → D	C v D
	~A → ~E	
	~E → ~C	D
	~D	가정
	~~C	
	С	
	В	
	~A	
	~E	
	~C	
	D	

연습문제 C >> 다음 논증들을 자연 연역 방법에 의해 증명하시오.

(1)

1	~A → B	
	B → ~C	$C \rightarrow A$
	С	가정
	~B	
	~~A	
	А	
	$C \rightarrow A$	

1	A ↔ ~B	
	A ↔ C	~B ↔ C
	~B	가정
	~B → A	
	$A \rightarrow C$	
	~B → C	
	$C \rightarrow A$	
	A → ~B	
	C → ~B	
	~B ↔ C	

(3)

1	$\sim A \rightarrow ((B \rightarrow D) \rightarrow (A \lor \sim C))$	
2	$(B \rightarrow C) \rightarrow \sim A$	
3	$B \rightarrow D$	
4	$D \rightarrow C$	~D
5	D	가정
6	С	
	B → C	약화
	~A	
	$(B \rightarrow D) \rightarrow (A \lor \sim C)$	
	A v ~C	
	~C	
	~D	

(4)

1	~A → (C & B)	
	~D → (B & E)	
	~A v ~D	В
	~B	가정
	~C v ~B	
	~(C & B)	
	~~A	
	~D	
	B & E	
	В	
	~~B	

В	
=	

(5)

1	$(B \rightarrow A) & (A \rightarrow (D \rightarrow \sim C))$	
	$(D \vee E) \leftrightarrow (A \vee B)$	
	$((E \rightarrow \sim C) \vee \sim A) \& B$	~C
	В	
	$B \rightarrow A$	
	A	
	A v B	
	D∨E	
	$A \rightarrow (D \rightarrow \sim C)$	
	D → ~C	
	(E → ~C) ∨ ~A	
	E → ~C	
	~C	

(6)

1	(A ∨ D) ∨ C	
	$(A \lor C) \rightarrow \sim B$	
	~D	~(D ∨ B)
	(D v B)	가정
	В	
	~(A ∨ C)	
	~A & ~C	
	~C	
	A v D	
	A	
	~A	
	~(D ∨ B)	

(7)

1	$B \rightarrow (C \rightarrow A)$	
	$C \rightarrow (A \rightarrow \sim C)$	~B v ~C
	~(~B v ~C)	가정

~~B & ~~C	
~~B	
В	
$C \rightarrow A$	
~~C	
С	
A → ~C	
A	
~C	
~~(~B v ~C) ~B v ~C	
~B v ~C	

(8)

1	C v D	
	~D v ~(A & B)	$\sim C \rightarrow (A \rightarrow \sim B)$
	~C	가정
	A	가정
	D	
	~(A & B)	
	~A ∨ ~B	
	~B	
	A → ~B	
	\sim C \rightarrow (A \rightarrow \sim B)	

(9)

1	(C & B) → D	
2	$(B \rightarrow D) \rightarrow \sim A$	
3	~(E ∨ ~C)	~A
4	A	가정
5	~(B → D)	
6	~(~B ∨ D)	
7	~~B & ~D	
8	~D	
9	~(C & B)	
10	~C v ~B	
11	~E & ~~C	

12	~~C	
13	С	
14	~B	
15	~~B	
16	~A	

1	(C & B) → D	
2	$(B \rightarrow D) \rightarrow \sim A$	
3	~(E ∨ ~C)	~A
	А	가정
	~(B → D)	
	B & ~D	
	~E & ~~C	
	~~C	
	С	
	C & B	
	D	
	$B \rightarrow D$	
	~A	
	~A	

(10)

1	A → ~B	
	\sim (A & B) \rightarrow (\sim C \vee (D & E))	~C v E
	~A ∨ ~B	
	~(A & B)	
	~C v (D & E)	
	~C	가정
	~C v E	
	D & E	가정
	E	
	~C	
	~C v E	
	~C v E	

1	\sim C \rightarrow (C \vee (A \rightarrow D))	
	C → (C & B)	
	~C v ~B	
	~D	~A
	~(C & B)	
	~C	
	$C \vee (A \rightarrow D)$	
	$A \rightarrow D$	
	~A	

(12)

1	$C \rightarrow (B \rightarrow \sim A)$	
	$C \to (B \to \sim A)$ $B \to (\sim A \to \sim D)$	$C \rightarrow (D \rightarrow \sim B)$
	С	가정
	D	가정
	В	가정
	B → ~A	
	~A	
	~A → ~D	
	~D	
	D	
	~B	
	D → ~B	
	$D \to \sim B$ $C \to (D \to \sim B)$	

(13)

1	$A \rightarrow (B \rightarrow C)$	
	$B \to (C \to \sim D)$	$A \rightarrow (\sim D \vee \sim B)$
	А	가정
	~(~D ∨ ~B)	가정
	~~D & ~~B	
	~~D	
	~~B	
	В	
	C → ~D	
	~C	
	$B \rightarrow C$	

С	
~D v ~B	
$A \rightarrow (\sim D \vee \sim B)$	

(14)

1	$(A \lor (B \lor C)) \rightarrow \sim (D \& \sim C)$	
	$E \to (B \vee (C \vee A))$	(E & D) → C
	E & D	가정
	~C	가정
	E	
	B v (C v A)	
	D	
	D & ~C	
	~(A ∨ (B ∨ C))	
	~A & ~(B ∨ C)	
	~A	
	~(B ∨ C)	
	~B & ~C	
	~B	
	C v A	
	~C	
	A	
	С	
	(E & D) → C	

연습문제 D >> 다음의 논리적 참들을 증명하시오.

(1)

1	$(A \rightarrow B) \rightarrow (\sim B \rightarrow \sim (A \& C))$	
	$A \rightarrow B$	가정
	~(~B → ~(A & C))	가정
	~(B ∨ ~(A & C))	
	~B & ~~(A & C)	
	~B & (A & C)	
	~B	
	~A	

A & C	
A	
$\sim \sim (\sim B \rightarrow \sim (A \& C))$	
(~B → ~(A & C))	
$(A \rightarrow B) \rightarrow (\sim B \rightarrow \sim (A \& C))$	

(2)

	(A 0 B) ((B 0 C) (C 0 A))	
1	(A & ~B) v ((B & C) v ~(C & A))	
$A \rightarrow B$	~((A & ~B) v ((B & C) v ~(C & A)))	
~A ∨ B	~(A & ~B) & ~((B & C) ∨ ~(C & A))	
A & ~B	~(A & ~B)	
	~((B & C) v ~(C & A))	
	(~B v ~C) & ~~(C & A)	
	C & A	
	~A v ~~B	
	Α	
	~~B	
	~B v ~C	
	~C	
	С	
	~~((A & ~B) \(\text{(B & C)} \(\text{~~(C & A)))}	
	(A & ~B) ∨ ((B & C) ∨ ~(C & A))	

(3)

1	$((A \rightarrow B) \& (A \rightarrow \sim B)) \rightarrow \sim A$	
	$((A \rightarrow B) \& (A \rightarrow \sim B))$	가정
	$A \rightarrow B$	
	~B → ~A	
	A → ~B	
	B → ~A	
	~B v B	
	~A	
	$((A \rightarrow B) \& (A \rightarrow \sim B)) \rightarrow \sim A$	

(4)

1	$((A \rightarrow C) \& (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C)$	
	$(A \rightarrow C) & (B \rightarrow C)$	가정
	\sim ((A \vee B) \rightarrow C)	가정
	~(~(A ∨ B) ∨ C)	
	(A v B) & ~C	
	A v B	
	С	
	~C	
	$\sim \sim ((A \lor B) \to C)$	
	$((A \lor B) \to C)$	
	$((A \rightarrow C) \& (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C)$	

(5)

1	$A \leftrightarrow ((A \& B) \lor (A \& \sim B))$	
	A	가정
	~((A & B) ∨ (A & ~B))	가정
A → ~B	~(A & B) & ~(A & ~B)	
$A \rightarrow B$	~(A & B)	
	~A v ~B	
	~A v ~~B	
	~B	
	~~B	
	(A & B) v (A & ~B)	
	$A \rightarrow ((A \& B) \lor (A \& \sim B))$	
	(A & B) v (A & ~B)	가정
	A & B	가정
	А	
	A & ~B	가정
	А	
	A	
	$(A \& B) \lor (A \& \sim B) \rightarrow A$	
	A ↔ ((A & B) ∨ (A & ~B))	

1	$((A \lor B) \& (\sim B \lor \sim (C \& D))) \to (\sim A \to (C \to \sim D))$	
2	((A × B) & (~B × ~(C & D)))	가정
3	$\sim (\sim A \rightarrow (C \rightarrow \sim D))$	가정
4	~A	가정
5	A v B	
6	В	
7	(~B v ~(C & D)	
8	~(C & D)	
9	C → ~D	
10	$\sim\sim(\sim A \rightarrow (C \rightarrow \sim D))$	
11	$\sim A \rightarrow (C \rightarrow \sim D)$	
12	$((A \lor B) \& (\sim B \lor \sim (C \& D))) \rightarrow (\sim A \rightarrow (C \rightarrow \sim D))$	

(7)

1	\sim (A & \sim B) \vee (C \rightarrow (\sim A \vee (C \vee B)))	
	$\sim (\sim (A \& \sim B) \lor (C \rightarrow (\sim A \lor (C \lor B))))$	가정
	$\sim\sim$ (A & \sim B) & \sim (C \rightarrow (\sim A \lor (C \lor B)))	
	A & ~B	
	\sim (C \rightarrow (\sim A \vee (C \vee B)))	
	C & ~(~A v (C v B))	
	С	
	~(~A ∨ (C ∨ B))	
	~~A & ~(C ∨ B)	
	~(C ∨ B)	
	~C & ~B	
	~C	
	\sim (A & \sim B) \vee (C \rightarrow (\sim A \vee (C \vee B)))	

머리 풀기 문제 >> 빅토리하 호텔은 5층으로 이루어진 작은 호텔이다. 각 층은 일인용 객실 하나와 이인용 객실 하나로 이루어져 있다. 일인용 객실은 단지 혼자 온 손님만이 이용할 수 있으며, 이인용 객실은 두 명이 이용하는 것이 원칙이나 손님이 원할 경우 혼자 이용할 수 있다. 현재 이 호텔엔 아홉 며의 손님들 - A, B, C, D, E, F, G, H, I -이 묵고 있으며, 다음과 같은 사실이 알려졌다고 하자.

¬. B, E, G, H는 일인용 객실에 투숙하고 있다.

- ㄴ. 2층 이인용 객실과 3층 일인용 객실은 현재 투숙객이 없다.
- C. A와 C는 부부로 같은 객실에 묵고 있다. 또한 이들은 E보다 두 층 아래에 투숙하고 있다.
- a. G와 I는 같은 층에 묵고 있다. 그리고 이들은 H보다 한 층 아래에 투숙하고 있다.

5층	일인용 객실 하나	Е	이인용 객실 하나
4층	일인용 객실 하나	В	이인용 객실 하나
3층			이인용 객실 하나 A, C
2층	일인용 객실 하나	Н	
1층	일인용 객실 하나	G	이인용 객실 하나 I

- (1) O
- (2) O
- (3) X
- (4) O
- (5) O

연습문제 A >> 다음 문장들을 술어 논리의 문장으로 번역하시오.

(1) 이브는 아담을 사랑하거나 또는 금발이 아니다.

Lea ∨ ~Be

(2) 아담은 스스로를 사랑한다. 그리고 만일 이브가 금발이라면, 아담은 이브도 사랑한다.

Laa & (Be \rightarrow Lae)

(3) 길수는 윤주와 혜영 둘 다 사랑한다.

Lgy & Lgh

(4) 길수는 윤주 또는 혜영을 사랑한다.

Lgy v Lgh

자유변항: y	자유변항: y							
$(4) (\exists x)(Bx \& (\forall y)(Lyx \rightarrow Lxy))$								
문장								
						요일부터 토요일까 고 할 때, 그의 직원		
A, B, C, D, E, F					8 = 이 ᆻ니그	∸ 돨 떼, ᆜ의 국권		
월	화	수	목	금	토			
				F				
	¬. 매일 다른 사람을 보내야 한다. L. A는 D를 파견한 바로 전날 또는 바로 다음날 보내야 한다. D A							
c. F는 금요일	D 에 파견해야 한	· Ch.						
	<u> </u>	· 		F	:			
				i .				
ㄹ. E는 D 이후에 파견되어야 한다.								
	E E F E							
ロ. C는 A와 E보다는 앞서서 그리고 B보다는 나중에 파견할 수 있다.								
С								
	С							

ㅂ. B는 A보다 이틀 전에 보내야 한다.

_		
I D		
l D		

D D	
I K	
-	

ㅁ, ㅂ

В	С			
В	С		F	Е

(3)

연습문제 A >> 언어 PL에 오직 두 이름을 'a'와 'e'만이 존재한다고 가정하자.

(1) '(∃x)Lxe'의 대체예들은 무엇인가?

Lae, Lee

(2) '(∀x)(Lxe ∨ Bx)'의 대체예들은 무엇인가?

Lae v Ba, Lee v Be

연습문제 B >> 다음의 모형세계가 주어졌다고 가정하고, 다음 문장들의 진리값을 결정하시오/

D = {아담, 이브}. I(a) = 아담. I(e) = 이브. I(B) = {아담}. I(L) = {<아담, 이브>, <이브, 이브>}

(1) $(\forall x)(Bx \rightarrow Lxe)$

 $(Ba \rightarrow Lae) \& (Be \rightarrow Lee)$

참

(2) $(\forall x)(Bx \rightarrow Lxa)$

(Ba
$$\rightarrow$$
 Laa) & (Be \rightarrow Lea)

거짓

(3) $(\exists x)(Lxa \& Lex)$

(Laa & Lea) v (Lea & Lee)

거짓

(4) $(\forall x)(Bx \rightarrow (Lxx \rightarrow Lxa))$

$$(Ba \rightarrow (Laa \rightarrow Laa)) \& (Be \rightarrow (Lee \rightarrow Lea))$$

참

(5) $(\exists x)((Lax \& Lxa) \leftrightarrow (Bx \lor Lxe))$

((Laa & Laa) \leftrightarrow (Ba \lor Lae)) & ((Lae & Lea) \leftrightarrow (Be \lor Lee))

(Laa & Laa): 거짓

(Ba v Lae): 참

거짓

연습 문제 C >> 다음의 모형세계를 가정하고, 다음 문장들의 진리값을 결정하시오.

 $D = \{a, b, c\}. \ I(a) = a. \ I(b) = b. \ I(c) = c. \ I(L) = \{<a, b>\}. \ I(T) = \{c\}. \ I(F) = \{a, b\}. \ I(G) = \{c\}. \ I(R) = \{<b, c>\}. \ I(K) = \{b\}. \ I(M) = (c).$

(1) Lab

참

(2) Lab \rightarrow Ta

거짓

(1) $(\forall x)(Hx \rightarrow Rx)$

모든 x가 행복하다면, x는 20억 원 이상의 재산을 가진 부자이다. 거짓 (2) $(\exists x)(Rx \& Hx) \& (\exists y)(Ry \& \sim Hy)$ 부유하고 행복한 사람이 있고 부유하면서 행복하지 않은 사람도 있다. 참 연습 문제 E >> 다음 논증들이 타당하면 타당성을 증명하고, 부당하면 반례를 들어 부당성을 증명하 시오. (1) $(\forall x)$ Lxe ∴ (∃x) Lxe 타당한 논증 (2) (∃x)Lxe ∴ Lae D = {아담, 이브}. I(L) = {<이브, 이브>}. I(a) = 아담. I(e) = 이브. 부당한 논증 (3) $(\exists x)Bx & (\exists x)Lxa$ ∴ (∃x)(Bx & Lxa) D = {아담, 이브}. I(B) = {아담}. I(L) = {<이브, 아담>}. I(a) = 아담. I(e) = 이브. 부당한 논증

(4) $(\forall x)(Bx \rightarrow Lxe) & (\forall x)(\sim Bx \rightarrow Lxa)$

 \therefore ($\forall x$)(($Bx \rightarrow Lxe$) & ($\forall x$)($\sim Bx \rightarrow Lxa$))

D = {아담, 이브}. I(B) = {아담}. I(L) = {<아담, 이브>, <이브, 아담>}. I(a) = 아담. I(e) = 이브. 타당한 논증

연습 문제 F >> 다음의 두 문장들이 논리적으로 동치가 아님을 증명하시오. 좀 더 구체적으로 말해서, (2)는 논리적으로 (1)을 함축하지만, (1)은 (2)를 함축하지 않는다는 것을 증명하시오.

(1) 모든 사람은 아담 또는 이브에게 사랑 받는다.

 $(\forall x)(Lax \lor Lex)$

(2) 모든 사람은 아담에게 사랑 받거나 또는 이브에게 사랑 받는다.

 $(\forall x)$ Lax \lor $(\forall x)$ Lex

 $(2) \to (1)$

D = {아담, 이브}. I(L) = {<아담, 이브>, <이브, 아담>}. I(a) = 아담. I(e) = 이브.

 $(1) \to (2)$

D = {아담, 이브}. I(L) = {<아담, 아담>, <이브, 이브>}. I(a) = 아담. I(e) = 이브.

머리 풀기 문제 >> 먼 은하계에 X, 알파, 베타, 감마, 델타, 다섯 행성이 있다. X 행성은 매우 호전적이 어서 기회만 있으면 다른 행성을 식민지화하고자 한다. 다음 진술들이 참이라고 할 때, X 행성이 침공할 행성을 모두 고르시오.

D = {X, 알파, 베타, 감마, 델타}. I(I) = {<X, 알파>, <X, 베타>}

ㄱ. X 행성은 델타 행성을 침공하지 않는다. 알파, 베타, 감마 L. X 행성은 베타 행성을 침공하거나 델타 행성을 침공한다. 베타, 감마. 알파 C. X 행성이 감마 행성을 침공하지 않는다면 알파 행성을 침공한다. 베타, 알파 리. X 행성이 베타 행성을 침공한다면 감마 행성을 침공하지 않는다. (3) 연습 문제 A >> 나머지 문장들의 진리값을 결정하시오. D = {아담, 이브, 카인}. I(L) = {<아담, 아담>, <아담, 이브>, <아담, 카인>}. (3) $(\exists x)(\forall y)Lxy$ 참 (4) $(\exists x)(\forall y)$ Lyx 거짓 (5) $(\forall x)(\exists y)Lxy$ 거짓 (6) $(\forall x)(\exists y)$ Lyx 참 연습 문제 B >> 이제 다음의 모형세계가 주어졌다고 가정해 보자.

D = {아담, 이브, 카인}
I(L) = {<아담, 이브>, <이브, 이브>, <카인, 이브>}.
이 모형세계를 이용하여 다음 문장들의 진리값을 결정하시오.
(1) $(\forall x)(\forall y)Lxy$
거짓
(2) $(\exists x)(\exists y)Lxy$
참
(3) $(\exists x)(\forall y)Lxy$
거짓
(4) $(\exists x)(\forall y)$ Lyx
참
(5) $(\forall x)(\exists y)Lxy$
참
(6) (∀x)(∃y)Lyx
거짓
연습 문제 C >> 다음의 문장 (1)은 문장 (2)를 함축하지만, (2)는 (1)을 함축하지 않는다는 것을 증명하라.
니.
(1) 모든 사람은 이브를 사랑하지 않는다: (∀x)~Lxe.
(1) 모든 사람이 이브를 사랑한다는 것은 사실이 아니다: ~(∀x)Lxe.
(A) 쓰는 기급의 의근리 이승리의 사는 의급의 의기의, ~(VA)LAC.

 $(2) \rightarrow (1)$

D = {아담, 이브}. I(L) = {<아담, 이브>}

연습 문제 D >> 다음 문장들을 술어 논리의 언어로 기호화하시오.

[Cx: x는 고양이다. Bx: x는 검다. Sxy: x는 y의 아들이다. Lxy: x는 y를 사랑한다. Px: x는 사람이다. Ax: x는 동물이다. Dx: x는 개이다. Gx: x는 신을 믿는다. lx: x는 영생한다. Hx: x는 선천적이다. Fx: x는 원리이다. Jxy: x는 y에 동의하다. Kx: x는 지식인이다. Mx: x는 도덕적이다. Ex: x는 부패할 것이다. a: 아담, e: 이브. K: 우리나라. g: 신.]

(1) 모든 고양이가 검지는 않다.

 $\sim (\forall x)(Cx \rightarrow Bx)$

(2) 아담을 사랑하는 모든 고양이는 또한 이브를 사랑한다.

 $(\forall x)((Cx \& Lxa) \rightarrow Lxe)$

(3) 오직 아담을 사랑하는 사람들만이 이브를 사랑한다.

 $(\forall x)((Px \& Lxe) \rightarrow Lxa)$

(4) 아담은 아들이 있고, 모든 사람은 그 아들을 사랑한다.

 $(\exists x)(Sxa \& (\forall y)(Py \rightarrow Lyx))$

(5) 만일 모든 지식인들이 도덕적이라면, 우리나라는 부패하지 않을 것이다.

 $(\forall x)((Kx \rightarrow Mx) \rightarrow \sim Ek)$

(6) 동물이 아닌 것은 개일 수 없다.

 $(\forall x)(\sim Ax \rightarrow \sim Dx)$

(7) 만일 오직 신을 믿는 사람만이 사후에 영생한다면, 그리고 아담이 사후에 영생한다면, 아담은 신을 믿는다.

 $((\forall x)(Ix \rightarrow Gxg) \& Ia) \rightarrow Gag$

(8) 모든 사람이 동의하는 원리가 아닌 것은 선천적 원리가 아니다.

모든 사람이 동의하지 않는 원리는 선천적 원리가 아니다

사람이 동의하지 않는 모든 원리는 선천적 원리가 아니다

 $(\forall x)((Fx \& (\exists y)(Py \& \sim Jyx)) \rightarrow \sim Hx)$

(9) 이브가 사랑하는 모든 것을 사랑하는 어떤 사람은 이브를 사랑하는 어떤 사람에 의해 사랑받는다.

 $(\exists x)((Px \& (\forall y)(Ley \rightarrow Lxy)) \& (\exists z)(Pz \& Lze \& Lzx))$

머리 풀기 문제 >> 보건복지부 장관은 새로 신설된 공공복지위원회에서 새 위원들을 다음 여섯 명 - A, B, C, D, E 그리고 F- 중에서 임명해야 하는데, 다음과 같은 제약 조건이 있다고 가정하자. 만일 B를 위원으로 임명하면, C를 같이 임명할 수 없다. 그리고 E는 F가 임명되고 그리고 오직 그런 한에서 임명할 수 있다. 만일 A를 임명하면, B를 같이 임명해야 한다. 또한 E는 C가 위원으로 임명되는 한에서 위원으로 임명될 수 있다. 이와 같은 조건이 성립한다고 할 때, 반드시 참이어야 하는 것은 무엇인가?

A: A를 임명한다.

B: B를 임명한다.

C: C를 임명한다

D: D를 임명한다

E: E를 임명한다

F: F를 임명한다

 $B \rightarrow \sim C$

 $\mathsf{E} \leftrightarrow \mathsf{F}$

 $A \rightarrow B$

 $E \rightarrow C$

연습 문제 A >> 다음 논증들을 자연 연역에 의해 증명하시오.

(1)

1	(∀x)(Bx & Cx)	Ba & Ce
	Ba & Ca	
	Ва	
	Ca & Ce	
	Се	
	Ba & Ce	

(2)

1	$(\forall x)(Mx \lor Sx)$	
	$(\forall x)(Mx \rightarrow Hx)$	
	$(\forall x)(Sx \rightarrow Hx)$	Ha & He
	Ma v Sa	
	Ma → Ha	
	Sa → Ha	
	На	
	Me v Se	
	Me → He	
	Se → He	
	На	
	На & На	

(3)

1	$(\forall x)(Txx \lor \sim Txg)$	
	(∀y)(Tyg)	Tee & Tbb
	Tee v ~Teg	
	Teg	
	Tee	
	Tbb ∨ Tbg	

Tbg	
Tbb	
Tee & Tbb	

(4)

1	$(\forall x)((Px \& Lxx) \rightarrow Lxa)$	
	~Lea	
	Pe	$\sim (\forall x)(Px \rightarrow Lxx)$
	$(\forall x)(Px \rightarrow Lxx)$	가정
	Pe → Lee	
	Lee	
	(Pe & Lee) → Lea	
	Pe & Lee	
	Lea	
	~Lea	
	$\sim (\forall x)(Px \rightarrow Lxx)$	

(5)

1	$(\forall x)((Px \rightarrow Lxx) \rightarrow Laa)$	
	Laa → Lae	
	~Lae	$\sim (\forall x)(Px \rightarrow Lxx)$
	$(\forall x)(Px \rightarrow Lxx)$	가정
	Pa → Laa	
	(Pa → Laa) → Laa	
	Laa	
	Lae	
	~Lae	
	$\sim (\forall x)(Px \rightarrow Lxx)$	

연습 문제 B >> 다음 논증들을 자연 연역에 의해 증명하시오.

(1)

1	Та	$(\exists x)(Gx \lor Tx)$
	Ga ∨ Ta	
	$(\exists x)(Gx \lor Tx)$	

(2)

1	(∀x)(Nx & Qx)	(XE) (XE)
	Na & Qa	
	Na	
	(XE)	

(3)

1	(∃x)Fx → Ga	
	(∀x)Fx	(∃x)Gx
	Fa	
	(∃x)Fx	
	Ga	
	(∃x)Gx	

(4)

1	$(\forall x)Gx \rightarrow (\forall x)Hxa$	
	(∀x)Gx	(∃x)(Gx & Hxx)
	(∀x)Hxa	
	Ga	
	Наа	
	Ga & Haa	
	(∃x)(Gx & Hxx)	

(5)

1	Pa v Qe	$(\exists x)Px \lor (\exists x)Qx$
	Pa	가정
	(XE)	
	$xQ(xE) \lor xQ(xE)$	
	Qe	가정
	(Jx)Qx	
	$(\exists x)Px \lor (\exists x)Qx$	
	xQ(xE) ∨ xq(xE)	

1	$(\forall x)(Hxg \rightarrow Dx)$	
	(∀x)(~Dx ∨ ~Cxe)	$(\forall x)$ Hxg \rightarrow $(\exists x)$ ~Cxe
	(∀x)Hxg	가정
	Hag	
	Hag → Da	
	~Da v ~Cae	
	Da	
	~Cae	
	(∃x)~Cxe	
	$(\forall x)$ Hxg \rightarrow $(\exists x)$ ~Cxe	

연습 문제 C >> 다음 논증들을 기호화하고, 자연 연역에 의해 그 타당성을 증명하시오.

(1) 모든 것은 정신적인 것이면서 파괴되지 않는 것이거나 또는 물리적인 것이면서 분해되는 것이다. 그러므로 분해되지 않는 모든 것은 파괴되지 않는다. [Mx: x는 정신적인 것이다. Dx: x는 파괴되는 것 이다. Cx: x는 분해되는 것이다. Px: x는 물리적인 것이다.]

1		$(\forall x)((Mx \& \sim Dx) \lor (Px \& Cx))$	$(\forall x)(\sim Cx \rightarrow \sim Dx)$
	u	~Cu	가정
		~Pu v ~Cu	
		~(Pu & Cu)	
		(Mu & ~Du) v (Pu & Cu)	
		Mu & ~Du	
		~Du	
		~Cu → ~Du	
		$(\forall x)(\sim Cx \rightarrow \sim Dx)$	

(2) 모든 것은 물리적이고 파괴 가능하다. 그러므로 모든 것은 물리적이고 또한 모든 것은 파괴 가능하다.

1		(∀x)(Px & Dx)	(∀x)(Px) & (∀x)(Dx)
	u	Pu & Du	
		Pu	
		(∀x)(Px)	

u	Pu & Du	
	Du	
	(∀x)(Dx)	
	$(\forall x)(Px) & (\forall x)(Dx)$	

(3) 모든 강도행위는 범죄이다. 모든 범죄 또는 경범죄는 처벌 가능하다. 그러므로 모든 강도행위는 처벌 가능하다. [Rx: x는 강도행위이다. Cx: x는 범죄이다. Mx: x는 경범죄이다. Px: x는 처벌 가능하다.]

1		$(\forall x)(Rx \rightarrow Cx)$	
		$(\forall x)((Cx \lor Mx) \to Px)$	$(\forall x)(Rx \rightarrow Px)$
	u	Ru	가정
		Ru → Cu	
		Cu	
		(Cu ∨ Mu) → Pu	
		Cu ∨ Mu	
		Pu	
		Ru → Pu	
		$(\forall x)(Rx \rightarrow Px)$	

12-4. 존재 양화사 제거(3 제거)

연습문제 D >> 다음 논증들의 타당성을 자연 연역에 의해 증명하시오.

(1)

1	(∃x)(Px & Lex)	
	$(\forall x)((Px \rightarrow (\sim Lex \lor Dxa))$	(∃x)(Px & Dxa)
	Pd & Led	
	Pd → (~Led ∨ Dda)	
	Pd	
	~Led v Dda	
	Led	
	Dda	
	Pd & Dda	
	(∃x)(Px & Dxa)	

(2) 만일 아담이 누군가의 선배라면, 그 사람은 아담의 선배가 아니다. 그러므로 만일 아담의 선배가 있

다면, 아담이 선배가 아닌 어떤 사람이 있다. [Sxy: x는 y의 선배이다.]

1	$(\forall x)(Sax \rightarrow \sim Sxa)$	$(\exists x)(Sxa) \rightarrow (\exists x) \sim Sax$
	(∃x)(Sxa)	가정
	Sda	
	Sad → ~Sda	
	~Sad	
	(∃x)~Sax	
	$(\exists x)(Sxa) \rightarrow (\exists x) \sim Sax$	

(3) 총명하거나 또는 미모인 사람이 있다. 모든 총명한 사람은 인기가 있다. 모든 미모인 사람은 인기가 있다. 그러므로 인기 있는 사람이 있다. [Sx: x는 총명하다. Bx: x는 미모이다. Px: x는 인기가 있다

1	$(\exists x)(Sx \lor Bx)$	
	$(\forall x)(Sx \rightarrow Px)$	
	$(\forall x)(Bx \rightarrow Px)$	$(\exists x)(Px)$
	Su v Bu	
	Su → Pu	
	Bu → Pu	
	Pu	경우에 의한 논증
	(∃x)(Px)	

(4)

1	(3x)Hxg v (3x)Nxf	
	$(\forall x)(Hxg \rightarrow Cx)$	
	$(\forall x)(Nxf \rightarrow Cx)$	xO(xE)
	(∃x)Hxg	가정
	Hug	
	Hug → Cu	
	Cu	
	xO(xE)	
	(∃x)Nxf	가정
	Nwf	
	Nwf → Cw	
	Cw	
	xO(xE)	

1	$(\forall x)((Fx \vee Gx) \rightarrow Lxx)$	
	(∃x)~Lxx	(∃x)~Fx & (∃x)~Gx
	~Luu	
	(Fu ∨ Gu) → Luu	
	~(Fu ∨ Gu)	
	~Fu & ~Gu	
	~Fu	
	(∃x)~Fx	
	~Gu	
	(∃x)~Gx	
	(∃x)~Fx & (∃x)~Gx	

(6)

1	$(\forall x)(Fx \rightarrow (Rxa \lor Rax))$	
	(∃x)~Rxa	$(\forall x) \sim Rax \rightarrow (\exists x) \sim Fx$
	(∀x)~Rax	가정
	~Rua	
	Fu → (Rua ∨ Rau)	
	~Rau	
	~Rua & ~Rau	
	`~(Rua v Rau)	
	~Fu	
	(∃x)~Fx	
	$(\forall x) \sim Rax \rightarrow (\exists x) \sim Fx$	

연습 문제 E >>

(1) 위의 문제 (1)을 ~3 규칙을 사용하지 않고 증명하시오.

1		~(∃x)(Px & Nx & Sx)	$(\forall x)((Px \& Nx) \rightarrow \sim Sx)$
	u	Pu & Nu	가정
		Su	가정
		Pu & Nu & Su	
		(∃x)(Px & Nx & Sx)	
		~(∃x)(Px & Nx & Sx)	
		~Su	
		(Pu & Nu) → ~Su	

	$(\forall x)((Px \& Nx) \rightarrow \sim Sx)$	
	, , , ,	

(2) 위의 문제 (2)를 ~∀ 규칙을 사용하지 않고 증명하시오.

1		$\sim (\forall x)(Px \rightarrow (Nx \& Gx))$	(∃x)(Px & (~Nx ∨ ~Gx))
		~(∃x)(Px & (~Nx ∨ ~Gx))	가정
	u	Pu	가정
		~(Nu & Gu)	가정
		~Nu v ~Gu	
		Pu & (~Nu ∨ ~Gu)	
		(∃x)(Px & (~Nx ∨ ~Gx))	
		~(∃x)(Px & (~Nx ∨ ~Gx))	
		Nu & Gu	
		Pu → (Nu & Gu)	
		$(\forall x)(Px \rightarrow (Nx \& Gx))$	
		$\sim (\forall x)(Px \rightarrow (Nx \& Gx))$	
		(3x)(Px & (~Nx ∨ ~Gx))	

(3) 위의 문제 (3)을 ~∀ 규칙을 사용하지 않고 증명하시오.

1		$\sim (\forall x)(Px \rightarrow (Nx \& Gx))$	(3x)(Px & ~Nx) v (3x)(Px & ~Gx)
		\sim (($\exists x$)($Px \& \sim Nx$) \lor ($\exists x$)($Px \& \sim Gx$))	가정
		~(3x)(Px & ~Nx) & ~(3x)(Px & ~Gx)	
	u	Pu	가정
		~Nu	가정
		Pu & ~Nu	
		(∃x)(Px & ~Nx)	
		~(∃x)(Px & ~Nx)	
		Nu	
		~Gu	가정
		Pu & ~Gu	
		(∃x)(Px & ~Gx)	
		~(∃x)(Px & ~Gx)	
		Gu	
		Nu & Gu	
		Pu → (Nu & Gu)	
		$(\forall x)(Px \rightarrow (Nx \& Gx))$	
		$\sim (\forall x)(Px \rightarrow (Nx \& Gx))$	

$(\exists x)(Px \& \sim Nx) \lor (\exists x)(Px \& \sim Gx)$	
(∃x)(Px & ~Nx) ∨ (∃x)(Px & ~Gx)	

연습 문제 F >> 다음 논증들을 자연 연역에 의해 증명하시오.

(1)

1		$\sim (\exists x)(Px \lor Qx)$	(∀x)~Px & (∀x)~Qx
		$(\forall x) \sim (Px \lor Qx)$	
	u	~(Pu ∨ Qu)	
		~Pu & ~Qu	
		~Pu	
		(∀x)~Px	
	u	~(Pu v Qu)	
		~Pu & ~Qu	
		~Qu	
		(∀x)~Qx	
		(∀x)~Px & (∀x)~Qx	

(2)

1	~(∀x)(Px & Qx)	$(\exists x) \sim Px \lor (\exists x) \sim Qx$
	(∃x)~(Px & Qx)	
	~(Pd & Qd)	
	~Pd v ~Qd	
	~Pd	가정
	(3x)~Px	
	(∃x)~Px ∨ (∃x)~Qx	
	~Qd	가정
	(∃x)~Qx	
	(∃x)~Px ∨ (∃x)~Qx	
	(∃x)~Px ∨ (∃x)~Qx	

(3)

1	(∀x)Px	~(∃x)~Px
	(∃x)~Px	가정
	~Pa	
	Pa	

	~(3x)~Px	

(4)

1		~(∃x)~Px	$(\forall x)(Px)$
	u	~Pu	가정
		(∃x)(~Px)	
		~(∃x)~Px	
		Pu	
		(∀x)(Px)	

연습 문제 G >> 다음 논증들을 기호화하고 그 타당성을 증명하시오

(1) 의사라면 누구나 치료할 수 있는 어떤 질병이 있다. 그러므로 모든 의사는 치료할 수 있는 질병이 있다.

1		$(\exists x)(Dx \& (\forall y)(Py \rightarrow Cyx))$	$(\forall x)(Px \rightarrow (\exists y)(Dy \& Cxy))$
	u	Pu	가정
		Da & (∀y)(Py → Cya)	
		(∀y)(Py → Cya)	
		Pu → Cua	
		Cua	
		Da	
		Da & Cua	
		(∃y)(Dy & Cuy)	
		$Pu \rightarrow (\exists y)(Dy \& Cuy)$	
		$(\forall x)(Px \rightarrow (\exists y)(Dy \& Cxy))$	

(2) 모든 현대차는 한국차이다. 그러므로 현대차를 소유한 사람은 누구나 한국차를 소유한다.

1		$(\forall x)(Hx \rightarrow Kx)$	$(\forall x)((Mx \& (\exists y)(Hy \& Pxy)) \rightarrow (\exists z)(Kz \& Pxz))$
	u	Mu & (∃y)(Hy & Puy)	
		(∃y)(Hy & Puy)	
		Ha & Pua	

	На	
	Ha → Ka	
	Ka	
	Pua	
	Ka & Pua	
	(∃z)(Kz & Puz)	
	Mu & $(\exists y)(Hy \& Puy) \rightarrow (\exists z)(Kz \& Puz)$	
	$(\forall x)((Mx \& (\exists y)(Hy \& Pxy)) \rightarrow (\exists z)(Kz \& $	
	Pxz))	

(3) 각 사람은 누군가에게 의해서 미움을 받는다. 그러므로 누구에 의해서도 미움을 받지 않는 사람은 없다.

1	$(\forall x)(Px \rightarrow (\exists y)(Py \& Hyx))$	~(∃x)(Px & ~(∃y)(Py & Hyx))
	(∃x)(Px & ~(∃y)(Py & Hyx))	가정
	Pa & ~(∃y)(Py & Hya)	
	~(∀y)(Py & Hya)	
	Pa → (∃y)(Py & Hya)	
	Pa	
	(Зу)(Ру & Hya)	
	~(∃x)(Px & ~(∀y)(Py & Hyx))	

(4) 누구에 의해서도 미움을 받지 않는 사람은 없다. 그러므로 각 사람은 누군가에 의해 미움을 받는다.

1		~(∃x)(Px & ~(∃y)(Py & Hyx))	$(\forall x)(Px \rightarrow (\exists y)(Py \& Hyx))$
	u	Pu	가정
		(∀x)~(Px & ~(∃y)(Py & Hyx))	
		~(Pu & ~(∃y)(Py & Hyu)	
		~Pu ∨ ~~(∃y)(Py & Hyu)	
		~~(∃y)(Py & Hyu)	
		(∃y)(Py & Hyu)	
		$Pu \rightarrow (\exists y)(Py \& Hyu)$	
		$(\forall x)(Px \rightarrow (\exists y)(Py \& Hyx))$	

(5) 모든 포유류가 육식동물인 것은 아니다. 냉형동물인 포유류는 없다. 그러므로 어떤 포유류는 육식 동물이 아니고 냉혈동물도 아니다.

1	$\sim (\forall x)(Mx \rightarrow Fx)$	
	(() () () () () () () ()	

	$(\forall x)(Mx \rightarrow \sim Cx)$	(∃x)(Mx & ~Fx & ~Cx)
	$(\exists x) \sim (Mx \rightarrow Fx)$	
	~(Ma → Fa)	
	Ma & ~Fa	
	Ма	
	Ma → ~Ca	
	~Ca	
	Ma & ~Fa & ~Ca	
	(∃x)(Mx & ~Fx & ~Cx)	

(6) 영희는 여학생이다. 영희는 서울에 사는 어떤 학생보다 키가 크다. 영희는 그녀 자신보다 크지 않다. 따라서 영희는 서울에 살지 않는다.

1	So & Fo	
	$(\forall x)((Sx \& Lx) \rightarrow Tox)$	
	~Too	~Lo
	Lo	가정
	So	
	(So & Lo) → Too	
	So & Lo	
	Тоо	
	~Too	
	~Lo	

연습 문제 H >> 다음 논증들을 기호화하시오. 그리고 이 논증들이 타당하면 그 타당성을 증명하고, 부 당하면 부당성을 보여주는 모형세계를 제시하시오.

(1) 모든 사람이 이브를 사랑한다는 것은 사실이 아니다. 그러므로 모든 사람은 이브를 사랑하지 않는다.

$$\sim (\forall x)(Px \rightarrow Lxe)$$

$$(\forall x)(Px \rightarrow \sim Lxe)$$

 $D = \{a, e\}. I(P) = \{a, e\}. I(L) = \{\langle a, e \rangle\}.$

(2) 화가라면 누구든지 모두 그릴 수 있는 어떤 그림이 있다. 따라서 모든 화가는 그릴 수 있는 그림이 각자 적어도 하나는 있다.

1		$(\exists x)(Ax \& (\forall y)(Py \rightarrow Dyx))$	$(\forall x)(Px \rightarrow (\exists y)(Ay \& Dxy))$
		Aa & (∀y)(Py → Dya)	
		(∀y)(Py → Dya)	
	u	Pu	가정
		Pu → Dua	
		Dua	
		Aa	
		Aa & Dua	
		(Зу)(Ay & Duy)	
		Pu → (∃y)(Ay & Duy)	
		$(\forall x)(Px \rightarrow (\exists y)(Ay \& Dxy))$	

(3) 모든 화가는 그릴 수 있는 각자 적어도 하나 있다. 따라서 누구든지 모두 그릴 수 있는 어떤 그림이 있다.

 $(\forall x)(Px \rightarrow (\exists y)(Ay \& Dxy))$

 $(\exists x)(Ax \& (\forall y)(Py \rightarrow Dyx))$

 $D = \{a, b, c, d\}. \ I(P) = \{a, c\}. \ I(A) = \{b, d\}. \ I(D) = \{<a, b>, <c, d>\}$

(4) 금발인 사람이 있다. 흑발인 사람이 있다. 금발인 사람은 모두 누군가에 의해 사랑을 받는다. 그러므로 흑발이면서 누군가에게 사랑을 받는 사람이 있다.

 $(\exists x)(Px \& Bx)$

(3x)(Px & Ax)

 $(\forall x)((Px \& Bx) \rightarrow (\exists y)(Py \& Lyx))$

 $(\exists x)(Px \& Ax \& (\exists y)(Py \& Lyx))$

 $D = \{a, e\}. \ I(P) = \{a, e\}. \ I(B) = \{a\}. \ I(A) = \{e\}. \ I(L) = \{<a, e>\}.$

1	(∃x)(Px & Bx)	
	(∃x)(Px & Ax)	
	$(\forall x)((Px \& Bx) \rightarrow (\exists y)(Py \& Lyx))$	(∃x)(Px & Ax & (∃y)(Py & Lyx))
	Pa & Ba	
	$(Pa \& Ba) \rightarrow (\exists y)(Py \& Lya)$	

	(∃y)(Py & Lya)	
	Pa & Aa	
	Pa & Aa & (∃y)(Py & Lya)	
	(∃x)(Px & Ax & (∃y)(Py & Lyx))	

(5) 모든 고양이를 싫어하는 논리학자는 없다. 그러므로 모든 고양이마다 그 고양이를 싫어하지 않는 논리학자가 있다.

 $\sim (\exists x)(Lx \& (\forall y)(Cy \rightarrow Dxy))$

 $(\forall x)(Cx \rightarrow ((\exists y)(Ly \& \sim Dyx)))$

 $D = \{a, e, f, g\}. \ I(L) = \{a, e\}. \ I(C) = \{f, g\}. \ I(D) = \{<a, f>, <e, f>\}.$

머리 풀기 문제 >> 신입사원 채용지침과 지원자의 성적은 다음과 같다. 이에 따라 선발할 수 있는 사람들은 누구인가?

- ㄱ. 모든 조건에 우선하여 어학 성적이 90점 이상인 어학 우수자를 최소한 한 명은 선발해야 한다.
- ㄴ. 최대 3명까지만 선발할 수 있다.
- □. A를 선발할 경우 D를 같이 선발해야 한다.
- a. A를 선발할 수 없는 경우 C도 F도 선발할 수 없다.
- ロ. D를 선발할 경우 B를 선발해야 하지만 C는 선발할 수 없다.
- ㅂ. B를 선발하면 F를 선발해야 한다.
- ㅅ. 합격한 사람이 불합격한 사람보다 학업성적이 나쁘면 안된다.
- ㅇ. 어느 점수든 70점 미만이 있으면 선발할 수 없다.
- ¬: A ∨ E
- \sqsubseteq : A \rightarrow D
- **=**: ~A → ~C & ~F
- \Box : D \rightarrow B & \sim C

1	~E	가정
	A	
	D	
	B & ~C	
	В	
	~C	
	F	

	۸
L	7
•	٦.

D,

B, F

- ㄴ. 최대 3명까지만 선발할 수 있다.
- ㅅ. 합격한 사람이 불합격한 사람보다 학업성적이 나쁘면 안된다.
- ㅇ. 어느 점수든 70점 미만이 있으면 선발할 수 없다.

1	~A	가정
	E	
	~C & ~F	
	~C	
	~F	
	~B	
	~B ∨ C	
	~(B & ~C)	
	~D	

연습 문제 A >> 다음 문장들을 기호화하시오.

(1) 최소한 세 명의 배우가 있다.

 $(\exists x)(\exists y)(\exists z)(Ax \& Ay \& Az \& x \neq y \& y \neq z \& z \neq x)$

(2) 정확히 세 명의 배우가 있다.

 $(\exists x)(\exists y)(\exists z)(Ax \& Ay \& Az \& x \neq y \& y \neq z \& z \neq x \& (\forall u)(Au \rightarrow (u = x \lor u = y \lor u = z))$

(3) 기껏해야 세 명의 배우가 있다.

 $(\forall x)(\forall y)(\forall z)(\forall u)((Ax \& Ay \& Az \& Au) \rightarrow (x = y \lor y = z \lor z = u \lor u = x))$

(4) 세 사람 이상이 아담을 사랑한다.

 $(\exists x)(\exists y)(\exists z)(Px \& Py \& Pz \& Lxa \& Lya \& Lza \& x \neq y \& y \neq z \& z \neq x)$

(5) 혜영은 우리 반의 유일한 여학생이다.

Ch & Gh & $(\forall x)((Cx \& Gh) \rightarrow x = h)$

(6) 단지 이브만이 아담보다 똑똑하다.

Sea & $(\forall x)(Sxa \rightarrow x = e)$

(7) 길수의 유일한 개는 진돗개이다.

 $(\exists x)(Dx \& Ogx \& (\forall y)((Dy \& Ogy) \rightarrow x = y) \& Jx)$

(8) 모든 사람은 단지 한 명의 외할머니를 갖는다.

 $(\forall x)(Px \rightarrow (\exists y)(Gyx \& (\forall z)(Gzx \rightarrow y = z))$

(9) 어느 누구도 세 명 이상의 부모를 갖지 않는다.

 $(\forall x)(Hx \rightarrow \sim (\exists y)(\exists z)(\exists w)(Pyx \& Pzx \& Pwx \& y \neq z \& z \neq w \& w \neq y))$

(10) 점보는 가장 큰 코끼리이다.

Ej & $(\forall x)((Ex \& x \neq j) \rightarrow Ljx)$

연습 문제 B >> (4) → (3)을 증명하시오.

1		$(\exists x)(Gx & (\forall y)(Gy \rightarrow x = y))$	$(\exists x)Gx & (\forall x)(\forall y)((Gx & Gy) \rightarrow x = y)$
		Ga & $(\forall y)(Gy \rightarrow a = y)$	
		Ga	
		(3x)(Gx)	
u	W	Gu & Gw	가정
		$(\forall y)(Gy \rightarrow a = y)$	
		Gu → a = u	
		Gu	
		a = u	
		Gw → a = w	
		Gw	
		a = w	
		u = w	
		(Gu & Gw) → u = w	
		$(\forall y)((Gu \& Gy) \rightarrow u = y)$	
		$(\forall x)(\forall y)((Gx \& Gy) \rightarrow x = y)$	
		$(\exists x)(Gx) & (\forall x)(\forall y)((Gx & Gy) \rightarrow x = y)$	

연습 문제 C >> 다음 논증들을 증명하시오.

(1)

1		$(\forall x)(x \neq a \rightarrow Lxe) \& \sim Lae$	$(\forall x)(x \neq a \leftrightarrow Lxe)$
		~Lae	가정
		$(\forall x)(x \neq a \rightarrow Lxe)$	
		a ≠ a → Lae	
		~(a ≠ a)	
		a = a	
	u	u ≠ a	가정
		u ≠ a → Lue	
		Lue	
		Lue	가정
		u = a	가정
		Lae	
		~Lae	3
		u ≠ a	

	u ≠ a ↔ Lue	
	$(\forall x)(x \neq a \leftrightarrow Lxe)$	

(2)

1		$(\forall x)(x \neq a \leftrightarrow Lxe)$	$(\forall x)(x \neq a \rightarrow Lxe) \& \sim Lae$
		a ≠ a ↔ Lae	
		a = a	
		Lae → a ≠ a	
		~Lae	
	u	u ≠ a	가정
		u ≠ a → Lue	
		Lue	
		$(\forall x)(x \neq a \rightarrow Lxe)$	
		$(\forall x)(x \neq a \rightarrow Lxe) \& \sim Lae$	

(3)

1	$(\forall x)(\sim Gx \rightarrow x \neq c)$	Gc
	~Gc	가정
	~Gc → c ≠ c	
	C ≠ C	
	c = c	
	~~Gc	
	Gc	

(4)

1	Pe	$\sim (\exists x) \sim (x = e \rightarrow Px)$
	$(\exists x) \sim (x = e \rightarrow Px)$	
	\sim (d = e \rightarrow Pd)	
	$(d = e) & \sim Pd$	
	d = e	
	Pd	
	~Pd	
	$\sim (\exists x) \sim (x = e \rightarrow Px)$	

(5)

1	$\sim (\forall x)(\sim Px \lor x \neq g)$	Pg
	$(\exists x) \sim (\sim Px \lor x \neq g)$	
	$\sim (\sim Pd \lor d \neq g)$	
	$\sim\sim$ Pd & \sim (d \neq g))	
	Pd	
	d = g	
	Pg	

(6)

1	$(\forall x)(x = a \rightarrow Px)$	
	$(\forall x)(Px \rightarrow Pg)$	Pg
	a = a → Pa	
	a = a	
	Pa	
	~Pg	가정
	Pa → Pg	
	~Pa	
	Pa	
	Pg	

(7)

1		f = g	$(\forall x)(f = x \leftrightarrow g = x)$
	u	f = u	가정
		g = u	
		g = u	가정
		f = u	
		$f = u \leftrightarrow g = u$	
		$(\forall x)(f = x \leftrightarrow g = x)$	

(8)

1		$(\exists x)(\forall y)(x = y)$	$xH(xF) \rightarrow xH(xE)$
		xH(xE)	가정
	u	$(\forall y)(w = y)$	

	Hv	
	w = v	
	w = u	
	v = u	
	Hu	
	(∀x)Hx	

(9)

1	~(∃x)(∀y)~Rxy	
	~(∃x)Rxx	$\sim (\forall x)(\forall y)(x = y)$
	$(\forall x)(\forall y)(x = y)$	가정
	$(\forall x) \sim (\forall y) \sim Rxy$	
	(∀x)~Rxx	
	~(∀y)~Ray	
	(∃y)~~Ray	
	~~Rab	
	Rab	
	$(\forall y)(a = y)$	
	a = b	
	Raa	
	~Raa	
	$\sim (\forall x)(\forall y)(x = y)$	

(10)

1	(∃x)Kx	
	$\sim (\exists x)(\exists y)(Kx \& Ky \& x \neq y)$	$(\exists x)(Kx \& \sim (\exists y)(Ky \& x \neq y))$
	Ка	
	$(\forall x) \sim (\exists y)(Kx \& Ky \& x \neq y)$	
	~(∃y)(Ka & Ky & a ≠ y)	
	(∀y)~(Ka & Ky & a ≠ y)	
	(∃y)(Ky & a ≠ y)	가정
	Kb & a ≠ b	
	Kb	
	~(Ka & Kb & a ≠ b)	
	~Ka v ~(Kb v a = b)	
	~(Kb ∨ a = b)	

	~Kb & ~(a ≠ b)	
	~(a ≠ b)	
	a ≠ b	
	~(∃y)(Ky & a ≠ y)	
	Ka & ~(∃y)(Ky & a ≠ y)	
	$(\exists x)(Kx \& \sim (\exists y)(Ky \& x \neq y))$	

(11)

1		$\sim (\forall x)(\exists y)(x \neq y)$	$(\exists x)Kx \to (\forall x)Kx$
		(∃x)Kx	가정
	u	$(\exists x) \sim (\exists y)(x \neq y)$	가정
		Ка	
		~(∃y)(b ≠ y)	
		$(\forall y) \sim (b \neq y)$	
		~(b ≠ a)	
		b = a	
		~(b ≠ u)	
		b = u	
		a = u	
		Ku	
		(∀x)Kx	
		$(\exists x)Kx \rightarrow (\forall x)Kx$	

(12)

1	$(\forall x)(Px \rightarrow (\exists y)(Py \& Lxy))$	
	$(\forall x)(Px \rightarrow \sim Lxx)$	
	(∃x)Px	$(\exists x)(\exists y)(Px \& Py \& x \neq y)$
	Pa	
	Pa → (∃y)(Py & Lay)	
	(∃y)(Py & Lay)	
	Pa → ~Laa	
	~Laa	
	Pb & Lab	
	Pb	
	Lab	
	a = b	가정

	Laa	
	~Laa	
	a ≠ b	
	Pa & Pb	
	Pa & Pb & a ≠ b	
	(∃y)(Pa & Py & a ≠ y)	
	$(\exists x)(\exists y)(Px \& Py \& x \neq y)$	

(13)

1		$(\exists y)(\forall x)(K x \leftrightarrow x = y)$	$(\forall X)(XX \rightarrow XX) \leftrightarrow (\exists X)(XX \otimes XX)$
		$(\forall x)(Kx \rightarrow Mx)$	가정
		$(\forall x)(Kx \leftrightarrow x = a)$	
		Ka ↔ a = a	
		a = a	
		Ka	
		Ka → Ma	
		Ма	
		Ka & Ma	
		(∃x)(Kx & Mx)	
		$\forall x)(Kx \rightarrow Mx) \rightarrow (\exists x)(Kx \& Mx)$	
		(∃x)(Kx & Mx)	가정
	u	Ku	가정
		Kb & Mb	
		$(\forall x)(Kx \leftrightarrow x = c)$	
		$Kb \leftrightarrow b = c$	
		Ku ↔ u = c	
		Kb	
		b = c	
		u = c	
		b = u	
		Mb	
		Mu	
		Ku → Mu	
		$(\forall x)(Kx \rightarrow Mx)$	
		$(\exists x)(Kx \& Mx) \rightarrow (\forall x)(Kx \rightarrow Mx)$	
		$(XM \& XX)(XE) \leftrightarrow (XM \leftarrow XX)(XE)$	

1	$(\forall x)(Kx \leftrightarrow (x = s \lor x = g))$	
	(XZ & XX)(XE)	Ss v Sg
	Ka & Sa	
	Ка	
	$Ka \leftrightarrow (a = s \lor a = g)$	
	$a = s \lor a = g$	
	a = s	가정
	Sa	
	Ss	
	Ss v Sg	
	a = g	가정
	Sa	
	Sg	
	Ss v Sg	
	Ss v Sg	

연습문제 D >> (6) → (3) & (4) & (5)를 증명하시오

1		$(\exists x)(Hx & (\forall y)(Hy \rightarrow x = y) & Ex)$	$(\exists x) Hx & (\forall x)(\forall y)((Hx & Hy) \rightarrow x = y) & (\forall x)(Hx \rightarrow y)$
			Ex)
		Ha & $(\forall y)(Hy \rightarrow a = y)$ & Ea	
		На	
		xH(xE)	
		$(\forall y)(Hy \rightarrow a = y)$	
		Ea	
u	V	Hu & Hv	가정
		Hu	
		Hu → a = u	
		a = u	
		Hv	
		$Hv \rightarrow a = v$	
		a = v	
		u = v	
		(Hu & Hv) → u = v	
		$(\forall y)((Hu \& Hy) \rightarrow u = y)$	
		$(\forall x)(\forall y)((Hx \& Hy) \rightarrow x = y)$	
	u	Hu	가정
		Hu → a = u	

	a = u	
	Eu	
	Hu → Eu	
	$(\forall x)(Hx \rightarrow Ex)$	
	$(\exists x) Hx & (\forall x)(\forall y)((Hx & Hy) \rightarrow x =$	
	y)	
	$(\exists x) Hx & (\forall x)(\forall y)((Hx & Hy) \rightarrow x =$	
	y) & $(\forall x)(Hx \rightarrow Ex)$	

연습 문제 E >>다음 문장들을 기호화하시오.

(1) 이브의 유일한 아들은 금발이다.

 $(\exists x)(Sxe \& (\forall y)(Sye \rightarrow x = y) \& Bx)$

(2) 길수는 복동의 유일한 아버지이다.

 $(\exists x)(\mathsf{Fxb} \ \& \ (\forall y)(\mathsf{Fyb} \ \to \ x = y) \ \& \ x = g)$

(3) 아담은 이브의 유일한 아들을 사랑한다.

 $(\exists x)(Sxe \& (\forall y)(Sye \rightarrow x = y) \& Lax)$

(4) 길수의 친할아버지는 논리학자이다.

 $(\exists x)(\exists y)(\mathsf{Fxy} \ \& \ \mathsf{Fyg} \ \& \ (\forall u)((\exists v)(\mathsf{Fvg} \ \& \ \mathsf{Fuv}) \ \to \ u = x) \ \& \ \mathsf{Lx})$

(5) 길수의 유일한 아들은 혜영의 유일한 아들이다.

 $(\exists x)(\mathsf{Sxg} \ \& \ (\forall y)(\mathsf{Syg} \ \rightarrow \ x = \ y) \ \& \ \mathsf{Sxh} \ \& \ (\forall z)(\mathsf{Szh} \ \rightarrow \ x = \ z))$

연습 문제 F >> 다음 논증들의 타당성을 증명하시오.₩

(1)

1	Pg & Ig & $(\forall x)((Px \& Ix) \to x = g)$	
	Pn & Ln	

(∃x)(Px & Ix & ~Lx)	n ≠ g
n = g	가정
Pa & la & ~La	
$(\forall x)((Px \& Ix) \to x = g)$	
Pa & la → a = g	
Pa & la	
a = g	
n = n	
g = n	
a = n	
Ln	
La	
~La	
n ≠ g	

(2)

1	$(\exists x)(Fx \& (\forall y)(Fy \rightarrow x = y) \& x = g)$	
	$(\forall x)(Fx \rightarrow Ix)$	lg
	Fa & $(\forall y)(Fy \rightarrow a = y)$ & $a = g$	
	Fa	
	Fa → Ia	
	la	
	a = g	
	lg	

머리 풀기 문제 >> 다음 글을 읽고 아래의 물음에 답하시오.

월 ~ 목(사흘), 매일 남녀 각 한 명씩 두사람,

남자사원(길, 철, 영, 치)

여자사원(영1, 옥, 지, 말)

매일 다른 사람

		치		철	명		길	철		길	철	영	
	지	말			지	말	ප	옥		영	옥		

철 – 길 – 영 > ? – 옥 – 영

영 – 철 – 길 > ? – 옥 – 영

		치		철	පැ		길	철			길		영	
	지	말		옥	지	말	හ		지	말	ප	옥		

철 – 길 – 영

영 – 철 – 길

		치			평		철		길		
	지			옥				말	명		

연습 문제 A >> 다음 논증들을 생략된 전제 또는 결론을 보충하여 재구성하시오

(1)

모든 양서류는 냉혈동물이다.

두꺼비는 양서류이다. (생략된 전제)

그러므로 두꺼비는 냉혈동물이다.

(2)

만일 길수가 결혼을 결심했다면, 그는 살림집을 구할 돈이 있을 것이다.

그리고 그럴 돈이 있다면 빚을 갚을 능력이 있을 것이다.

그러나 그는 빚을 갚을 능력이 없다.

그러므로 길수는 결혼을 결심하지 않았다. (생략된 결론)

(3)

나는 여자 친구에게 생일 선물을 사주거나 또는 논리학 교재를 구입해야 한다.

만일 부모님이 이 돈을 내 공부를 위해 주신 것이라면, 나는 여자 친구에게 생일 선물을 사줘서는 안 된다.

부모님이 이 돈을 내 공부를 위해 주셨다. (생략된 전제)

그러므로 나는 논리학 교재를 구입해야 한다.

(4)

김 과장은 매력적인 스카우트 제의를 받았다.

김 과장은 매력적인 스카우트 제의를 받았으면 김 과장은 다른 회사로 옮길 것이다

김 과장이 다른 회사로 옮기면 길수 또는 남중이 김 과정의 자리에 승진할 것이다.

남중은 김 과장의 자리에 승진하지 않을 것이다.

길수가 이번에 승진할 것 같다.

(5)

궁극적인 선(善)은 결코 단순한 우연에 의존해선 안 된다.

즉 궁극적인 선은 항구적인 것으로서 쉽게 변할 수 있는 것이어서는 결코 안 된다.

행복은 궁극적인 선이다. (생략된 전제)

따라서 행복은 사람들이 살면서 우연히 맞닥뜨리게 되는 우연한 사실에 의존해선 안 된다.

연습 문제 B >> 다음 논증들을 평가하시오. 재구성이 필요하면 재구성을 하고, 비판할 점이 있으면 비판하시오

(1)

성인영화는 사람들을 성적으로 자극하는 활동이다.

사람들을 성적으로 자극하는 모든 활동은 엄격히 규제되어야 한다.

성인 영화를 엄격하게 규제해야 한다.

(2)

만일 한국이 진정한 민주공화국이라면 국민 개개인의 의사가 국정에 동등하게 국정에 반영될 수 있어

야한다.

한국에서는 국민 개개인의 의사가 국정에 동등하게 국정에 반영되지 않는다. 한국은 진정한 민주공화국이 아니다.

(3)

쾌락은 바람직한 것이다.

어떤 대상이 가시적임을 보여 주는 확실한 증거는 사람들이 그것을 실제로 보는 것이다. 어떤 소리가 가청적임을 보여 주는 확실한 증거는 사람들이 실제로 그 소리를 듣는 것이다. 어떤 것이 바람직함을 보여 주는 확실한 증거는 사람들이 실제로 그것을 원한다는 것이다. 쾌락은 사람들이 실제로 그것을 원한다는 것이다

사람들은 어떤 것을 실제로 볼 수 있다. 따라서 그것은 가시적이다.

사람들은 어떤 것을 실제로 들을 수 있다. 따라서 그것은 가청적이다.

사람들은 쾌락을 실제로 원한다. 따라서 쾌락은 바람직하다.

(4)

만일 모든 것이 우연적이라면, 과거의 어떤 시점에 아무것도 존재하지 않았던 때가 있었을 것이다.

만일 과거의 어떤 시점에 아무것도 존재하지 않았던 때가 있었다면, 현재 아무것도 존재하지 말아야한다.

현재 존재하는 것들이 있다.

따라서 모든 것이 우연적인 것은 아니다.

그러므로 필연적인 것이 존재한다. 즉 신이 존재한다.

(5)

궁극적인 선은 단지 우연적인 것에 의존해서는 안된다.

행복은 궁극적인 선이다

행복은 단지 우연적인 것에 의존해서는 안된다.

(6)

우리는 도덕적이어야 한다.

만일 우리가 도덕적이어야 한다면, 행복과 도덕은 조화될 수 있어야 한다. 즉 착한 사람은 보답을 받고, 악한 사람은 처벌을 받아야 한다.

현세에서 착한 행동이 항상 보답을 받고, 악한 행동이 항상 처벌을 받는 것은 아니다.

만일 행복과 도덕이 현세에서 조화될 수 없다면, 이것은 내세에서 조화되어야 한다.

현세에서 행한 행위에 대해 정당한 도덕적 보답을 처벌을 해 주는 신이 내세에 있어야 한다.

연습 문제 A >> 다음 논증들이 오류를 범하는지 아닌지를 평가하고, 만일 오류를 범한다면 그 오류가 무엇인지 밝히시오.

- (1) 허수아비 공격의 오류
- (2) 선결문제 가정의 오류
- (3) 거짓 딜레마의 오류
- (4) 허수아비 공격의 오류
- (5) 거짓 딜레마의 오류
- (6) 미끄러운 경사면의 오류
- (7) 선결문제 가정의 오류
- (8) 주의를 딴 데로 돌리는 오류
- (9) 거짓 딜레마의 오류
- (10) 허수아비 공격의 오류
- (11) '천사'란 표현에 관한 애매어 사용의 오류
- (12) 거짓 딜레마의 오류
- (13) 허수아비 공격의 오류

- (14) 선결문제 가정의 오류
- (15) 허수아비 공격의 오류
- (16) 선결문제 가정의 오류
- (17) '좋은'이란 표현에 관한 애매어 사용의 오류
- (18) 선결문제 가정의 오류
- (19) 거짓 딜레마의 오류
- (20) 거짓 딜레마의 오류
- (21) '사랑한다'란 표현에 관한 애매어의 오류
- (22) 선결문제 가정의 오류
- (23) 허수아비 공격의 오류
- (24) 주의를 딴 데로 돌리는 오류
- (25) 선결문제 가정의 오류

연습 문제 B >> 다음 논증들이 오류를 범하는지 아닌지를 평가하고, 만일 오류를 범하고 있다면 그 오류가 무엇인지 밝히시오.

- (1) 연민에 호소하는 오류
- (2) 정황적 오류
- (3) 피장파장의 오류
- (4) 피장파장의 오류
- (5) 위협에 호소하는 오류
- (6) 피장파장의 오류
- (7) 연민에 호소하는 오류
- (8) 권위에 호소하는 오류
- (9) 인신공격의 오류
- (10) 정황적 오류
- (11) 연민에 호소하는 오류

(12) 피장파장의 오류 (13) 오류가 아님 (14) 피장파장의 오류 (15) 피장파장의 오류 (16) 잘못된 권위에 호소하는 오류 (17) 정황적 오류 연습 문제 C >> 다음 논증들이 오류를 범하는지 아닌지를 평가하고, 만일 오류를 범하고 있다면, 그 오류가 무엇인지 밝히시오 (1) 성급한 일반화의 오류 (2) 거짓 원인의 오류 (3) 오류가 아님 (4) 약한 유비의 오류 (5) 거짓 원인의 오류 (6) 오류가 아님 (7) 거짓 원인의 오류 (8) 성급한 일반화의 오류 (9) 거짓 원인의 오류 (10) 거짓 원인의 오류 (11) 약한 유비의 오류 (12) 성급한 일반화의 오류 (13) 거짓 원인의 오류 (14) 오류가 아님 (15) 성급한 일반화의 오류 (16) 성급한 일반화의 오류

(17) 편향된 통계의 오류

- (18) 성급한 일반화의 오류
- (19) 약한 유비의 오류