

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15100080404

FCC REPORT (WIFI)

Applicant: XTR S.A.C.

Address of Applicant: Av. Camino Real 1225 Of 201-A San Isidro LIMA/ PERU

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: X4.5

FCC ID: 2AGAK-X45

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Oct., 2015

Date of Test: 21 Oct., to 06 Nov., 2015

Date of report issued: 09 Nov., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	09 Nov., 2015	Original

Viki zhul Test Engineer Tested by: Date: 09 Nov., 2015

Reviewed by: Date: 09 Nov., 2015

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7 6.7.	G. C. (1000 Elimodicity)	
	6.7.		
	• • • • • • • • • • • • • • • • • • • •		
7	TES	ST SETUP PHOTO	67
8	EU1	CONSTRUCTIONAL DETAILS	68

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	±3.28dB	Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	XTR S.A.C.	
Address of Applicant:	Av. Camino Real 1225 Of 201-A San Isidro LIMA/ PERU	
Manufacturer:	Shenzhen Richpad Communication Technology Co.,LTD.	
Address of Manufacturer:	Room 315, HKUST SZ IER Building, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, P.R.C	

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	X4.5
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.9 dBi
AC adapter:	Model: X4.5 Input:100-240V AC,50/60Hz 300mA Output:5V DC MAX 1A
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz			
5 2432MHz 8 2447MHz		2447MHz						
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15100080404

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 68

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016		
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.9 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2009	ANSI C63.4: 2009			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:		Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm1. The E.U.T and simulators				
	a line impedance stabiliza 500hm/50uH coupling im 2. The peripheral devices as through a LISN that provi with 500hm termination. (test setup and photograp 3. Both sides of A.C. line are interference. In order to fi positions of equipment ar changed according to AN measurement.	pedance for the measure also connected to the ides a 500hm/50uH con (Please refer to the blows). The checked for maximum ind the maximum emiser all of the interface controls.	uring equipment. The main power The main power The power The main power T		
Test setup:	Refere	ence Plane			
	AUX Equipment Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power		
Test Instruments:	Refer to section 5.6 for details	3			
Test mode:	Refer to section 5.3 for details	3			
Test results:	Passed				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL

EUT : Smartphone
Model : X4.5
Test Mode : WIFI TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark :

Kemark	:							
	_	Read		Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu₹	₫₿	
1	0.202	33.46	0.25	10.76	44.47	63.54	-19.07	QP
2	0.211	18.29	0.25	10.76	29.30	53.18	-23.88	Average
3	0.277	30.75	0.26	10.74	41.75	60.90	-19.15	QP
4	0.277	17.15	0.26	10.74	28.15	50.90	-22.75	Average
5	0.337	16.32	0.26	10.73	27.31	49.27	-21.96	Average
6	0.350	29.07	0.25	10.73	40.05	58.96	-18.91	QP
1 2 3 4 5 6 7 8 9	0.759	13.64	0.19	10.80	24.63	46.00	-21.37	Average
8	0.848	25.21	0.20	10.82	36.23	56.00	-19.77	QP
9	2.334	25.69	0.29	10.94	36.92	56.00	-19.08	QP
10	9.809	11.75	0.25	10.93	22.93	50.00	-27.07	Average
11	10.342	26.12	0.25	10.94	37.31	60.00	-22.69	QP
12	19.122	16.09	0.26	10.92	27.27	50.00	-22.73	Average

Line:

Trace: 7

CCIS Shielding Room FCC PART15 B QP LISN LINE Condition

EUT Smartphone Model X4.5

Test Mode : WIFI TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Site

nemark								
	123	Read				Limit		-20
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu₹	dBu₹	₫B	
1	0.206	33.07	0.28	10.76	44.11	63.36	-19.25	QP
2	0.206	14.64	0.28	10.76	25.68	53.36	-27.68	Average
3	0.270	31.77	0.27	10.75	42.79	61.12	-18.33	QP
4	0.277	16.89	0.26	10.74	27.89	50.90	-23.01	Average
1 2 3 4 5 6 7 8 9	0.343	16.52	0.27	10.73	27.52	49.13	-21.61	Average
6	0.354	28.10	0.27	10.73	39.10	58.87	-19.77	QP
7	0.759	14.64	0.23	10.80	25.67	46.00	-20.33	Average
8	1.289	25.63	0.25	10.90	36.78	56.00	-19.22	QP
9	2.110	26.50	0.26	10.95	37.71	56.00	-18.29	QP
10	3.759	26.00	0.28	10.90	37.18	56.00	-18.82	QP
11	10.397	10.64	0.31	10.94	21.89	50.00	-28.11	Average
12	19.122	13.92	0.34	10.92	25.18	50.00	-24.82	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T . O	Ma	ximum Conduct	L' '(/ ID)	5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	16.83	13.85	13.93	12.24		
Middle	16.70	15.42	15.48	15.56	30.00	Pass
Highest	16.81	14.03	14.01	12.30		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

Page 17 of 68

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

٠.	oacaromont Be						
	T (01)		6dB Emission		D 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
	Lowest	9.28	15.28	15.28	36.64		
	Middle	9.28	15.28	15.24	35.52	>500	Pass
	Highest	9.76	15.24	15.52	36.64		

		99% Occupy				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.72	16.48	17.60	36.16		
Middle	12.72	16.48	17.60	36.00	N/A	N/A
Highest	12.72	16.48	17.60	36.00		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 21.0CT.2015 21:52:13

Lowest channel

Date: 21.0CT.2015 21:53:14

Middle channel

Date: 21.0CT.2015 21:54:22

Highest channel

Test mode: 802.11g

Date: 21.0CT.2015 21:48:42

Lowest channel

Date: 21.0CT.2015 21:49:58

Middle channel

Date: 21.0CT.2015 21:51:04

Highest channel

Test mode: 802.11n(H20)

Date: 21.OCT.2015 21:45:16

Lowest channel

Date: 21.0CT.2015 21:46:14

Middle channel

Date: 21.0CT.2015 21:47:26

Highest channel

Test mode: 802.11n(H40)

Date: 27.OCT.2015 16:48:51

Lowest channel

Date: 27.0CT.2015 16:45:17

Middle channel

Date: 27.0CT.2015 16:47:41

Highest channel

99% OBW

Test mode: 802.11b

Date: 21.OCT.2015 21:39:27

Lowest channel

Date: 21.0CT.2015 21:40:03

Middle channel

Date: 21.OCT.2015 21:40:54

Highest channel

Test mode: 802.11g

Date: 21.OCT.2015 21:37:45

Lowest channel

Date: 21.0CT.2015 21:38:12

Middle channel

Date: 21.0CT.2015 21:38:40

Highest channel

Test mode: 802.11n(H20)

Date: 21.OCT.2015 21:36:46

Lowest channel

Date: 21.0CT.2015 21:36:22

Middle channel

Date: 21.0CT.2015 21:35:54

Highest channel

Test mode: 802.11n(H40)

Date: 27.OCT.2015 16:42:02

Lowest channel

Date: 27.0CT.2015 16:43:08

Middle channel

Date: 27.0CT.2015 16:41:38

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		Power Spec				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	7.64	2.07	2.34	-3.59		
Middle	7.12	3.52	3.85	0.33	8.00	Pass
Highest	7.39	1.55	1.95	-3.79		

Test plot as follows:

Test mode: 802.11b

Date: 21.OCT.2015 21:31:51

Lowest channel

Date: 21.OCT.2015 21:42:17

Middle channel

Date: 21.0CT.2015 21:32:30

Highest channel

Test mode: 802.11g

Date: 21.OCT.2015 21:31:23

Lowest channel

Date: 21.0CT.2015 21:42:55

Middle channel

Date: 21.0CT.2015 21:33:48

Highest channel

Test mode: 802.11n(H20)

Date: 21.OCT.2015 21:30:29

Lowest channel

Date: 21.0CT.2015 21:43:44

Middle channel

Date: 21.0CT.2015 21:34:26

Highest channel

Test mode: 802.11n(H40)

Date: 27.0CT.2015 16:40:32

Lowest channel

Date: 27.0CT.2015 16:43:51

Middle channel

Date: 27.0CT.2015 16:41:01

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

802.11b

Date: 21.OCT.2015 21:13:28

Lowest channel

Highest channel

Date: 21.OCT.2015 21:11:51

Date: 21.0CT.2015 21:10:28

Date: 21.OCT.2015 21:14:42

Lowest channel

Highest channel

802.11n(H20)

Date: 21.OCT.2015 22:08:47

Lowest channel

Date: 21.0CT.2015 21:08:38

Highest channel

802.11n(H40)

Date: 27.OCT.2015 16:39:21

Lowest channel

Date: 27.OCT.2015 16:38:05

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Model of the Distance. Of the							
receiver detap.	Frequency	Detector	RBW VBW		Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	710070 10112	RMS	1MHz 3MHz		Average Value			
Limit:	Frequency		Limit (dBuV/	/m @3m)	Remark			
			54.0		Average Value			
	Above 1	GHz	74.00		Peak Value			
	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 							
Test setup:	AE SOCIM (E	_	Horn Ante	Antenna Tor	wer			
Toot Instruments:	Refer to section 5.6 for details							
Test Instruments:	Refer to section 5.3 for details							
Test mode:	Refer to section	5.3 for details						

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smartphone : X4.5 EUT Model

Test mode : B-L Mode Power Rating : AC 120V/60Hz IZUV/60Hz
ITemp:25.5°C Huni:55%
Test Engineer: Viki
REMARK

mic			Antenna Factor						Remark	
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000 2390.000			6.63 6.63		52.32 44.94				

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smartphone : X4.5 EUT Model Test mode : B-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

REMA

WKI	:								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
2	MHz	dBu₹		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>	
	2390.000	20.28	27.58	6.63	0.00	54.49	74.00	-19.51	Peak
13	2300 000	11 46	27 58	6 63	0.00	45 67	54 00	-8 33	Amerage

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smartphone Model X4.5 Test mode : B-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki REMARK :

m_{ℓ}	α .								
	Freq		Antenna Factor						
	MHz	—dBu∜	<u>dB</u> /m	āĒ	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	 -
	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smartphone : X4.5 EUT Model Test mode : B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

44									
	Freq		Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
ı.	2483,500 2483,500								

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smartphone Model : X4.5 Test mode : G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki REMARK :

ur . Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u> /m		<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smartphone Model : X4.5

Test mode : G-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK

Linux			Antenna Factor				Limit Line		Remark
	MHz	dBu₹	— <u>d</u> B/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
1	2390.000			1877 374 70 20 20 100		54.05			
2	2390.000	11.14	27.58	6.63	0.00	45.35	54.00	-8.65	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smartphone : X4.5 Model Test mode : G-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

Л.	ALC.										
			Read	Antenna	Cable	Preamp		Limit	Over		
	Fr	eq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	<u></u>	Ηz	—dBu₹	— <u>dB</u> /m		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
		700.00		27.52 27.52		1) /Z(G)(F)(F)				Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smartphone

Model : X4.5 Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki REMARK :

IIICIL	н .	Road	Antenna	Coblo	Drooms		Timi+	Over	
	Freq		Factor						
	MHz	dBu∇	$\overline{-dB/m}$	dB	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smartphone EUT Model : X4.5

Test mode : N20-L Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki REMARK :

IIIOTA	n .								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	24.91	27.58	6.63	0.00	59.12	74.00	-14.88	Peak
2	2300 000	11 46	27 58	6 63	0.00	45 67	54 00	-8.33	Amerage

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone : X4.5 EUT Model Test mode : N20-L

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	 -
2390.000 2390.000			E-5307.070	0.00 0.00				

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smartphone Model : X4.5 : N20-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki REMARK :

м	AL :									
	2000 SAN		Antenna				Limit			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀	dB/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B		
	2483.500	21.94	27.52	6.85	0.00	56.31	74.00	-17.69	Peak	
	2483, 500	9.64	27.52	6.85	0.00	44.01	54,00	-9.99	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT

: Smartphone : X4.5 Model : N20-H Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK

IRTO										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∇		d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	2483.500	19.52	27.52	6.85	0.00	53.89	74.00	-20.11	Peak	
2	2483 500	10 99	27 52	6 85	0.00	45 36	54 00	-8.64	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone Model : X4.5 Test mode : N40-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki REMARK :

UT.	un :									
			Antenna				Limit			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	——dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB		
	2390.000 2390.000									

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT

: Smartphone : X4.5 Model : N40-L Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

-	Read	Ant enna	Cable	Preamp		Limit	Over	
Freq		Factor						
MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390, 000 2390, 000								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smartphone EUT Model : X4.5

: N40-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

REMARK

PHEH			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smartphone Model X4.5

Test mode : N40-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

Freq	Antenna Factor		Limit Line		
MHz	 <u>d</u> B/m	 <u>d</u> B	 	 	_
2483,500 2483,500	(2004 (E) 7 (E) (E) (E) (E)		74.00 54.00		

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	addica mededicine						
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Coronal Defense on Disease						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 23.0CT.2015 23:30:20

30MHz~25GHz

Middle channel

Date: 23.0CT.2015 23:30:58

30MHz~25GHz

Page 53 of 68

Highest channel

Date: 23.0CT.2015 23:31:29

30MHz~25GHz

Test mode: 802.11g

Date: 23.0CT.2015 23:32:23

30MHz~25GHz

Middle channel

Date: 23.OCT.2015 23:32:53

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 23:33:41

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 23.0CT.2015 23:34:44

30MHz~25GHz

Middle channel

Date: 23.0CT.2015 23:35:16

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 23:35:45

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 27.0CT.2015 12:38:59

30MHz~25GHz

Middle channel

Date: 27.OCT.2015 12:39:56

30MHz~25GHz

Highest channel

Date: 27.0CT.2015 12:40:32

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
·	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		RMS	1MHz	3MHz	Average Value				
Limit:	Francis		Lineit (alD: A)	/rs. @ O.rs.\	Damadi				
	Freque		Limit (dBuV		Remark				
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-		54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHZ	74.0)	Peak Value				
Test Procedure:	the ground degrees to 2. The EUT wantenna, wantenna, wantenna, wantenna degrees 3. The antenrathe ground Both horizon make the nate of the end of the EUT have 10dB	at a 3 meter c determine the vas set 3 meter which was mount ha height is van to determine to contal and vertice neasurement. uspected emisten the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported.	hamber. The position of the position of the saway from the don the the died from one he maximum al polarization, the EU a was turned was turned was set to Paximum He EUT in peasing could by the double re-tested	e table was the highest return the interfer op of a variate meter to for a value of the ons of the automose the meter to heights if from 0 degreak Detect old Mode. The was arranged and was the stopped a vise the emitone by one	adiation. rence-receiving able-height antenna our meters above e field strength. ntenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Smartphone : X4.5 Condition

EUT Model Test mode : WIFI Mode

Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Viki REMARK :

	Freq		Intenna Factor					Over Limit	Remark
_	MHz	dBu₹	dB/m	₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	60.069	48.25	12.69	0.69	29.77	31.86	40.00	-8.14	QP
2	102.360	47.04	12.92	0.98	29.51	31.43	43.50	-12.07	QP
2 3	197.200	46.48	10.57	1.38	28.85	29.58	43.50	-13.92	QP
4	277.094	31.52	12.59	1.70	28.49	17.32	46.00	-28.68	QP
5	394.855	29.60	14.97	2.10	28.76	17.91	46.00	-28.09	QP
6	651.942	28.77	18.65	2.80	28.77	21.45	46.00	-24.55	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: X4.5
Test mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK : EUT : Smartphone

Freq								Remark
MHz	dBu∀			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
60.704	52.86	12.43	0.70	29.77	36.22	40.00	-3.78	QP
102.719	47.66	12.92	0.98	29.51	32.05	43.50	-11.45	QP
139.851	51.10	8.19	1.26	29.27	31.28	43.50	-12.22	QP
198.588	49.05	10.57	1.38	28.84	32.16	43.50	-11.34	QP
400.432	33.83	15.10	2.12	28.78	22.27	46.00	-23.73	QP
599.321	32.27	18.45	2.62	28.94	24.40	46.00	-21.60	QP
	MHz 60. 704 102. 719 139. 851 198. 588 400. 432	Freq Level MHz dBuV 60.704 52.86 102.719 47.66 139.851 51.10 198.588 49.05 400.432 33.83	MHz dBuV dB/m 60.704 52.86 12.43 102.719 47.66 12.92 139.851 51.10 8.19 198.588 49.05 10.57 400.432 33.83 15.10	Freq Level Factor Loss MHz dBuV dB/m dB 60.704 52.86 12.43 0.70 102.719 47.66 12.92 0.98 139.851 51.10 8.19 1.26 198.588 49.05 10.57 1.38 400.432 33.83 15.10 2.12	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 60.704 52.86 12.43 0.70 29.77 102.719 47.66 12.92 0.98 29.51 139.851 51.10 8.19 1.26 29.27 198.588 49.05 10.57 1.38 28.84 400.432 33.83 15.10 2.12 28.78	MHz dBuV dB/m dB dB dBuV/m 60.704 52.86 12.43 0.70 29.77 36.22 102.719 47.66 12.92 0.98 29.51 32.05 139.851 51.10 8.19 1.26 29.27 31.28 198.588 49.05 10.57 1.38 28.84 32.16 400.432 33.83 15.10 2.12 28.78 22.27	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 60.704 52.86 12.43 0.70 29.77 36.22 40.00 102.719 47.66 12.92 0.98 29.51 32.05 43.50 139.851 51.10 8.19 1.26 29.27 31.28 43.50 198.588 49.05 10.57 1.38 28.84 32.16 43.50 400.432 33.83 15.10 2.12 28.78 22.27 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 60.704 52.86 12.43 0.70 29.77 36.22 40.00 -3.78 102.719 47.66 12.92 0.98 29.51 32.05 43.50 -11.45 139.851 51.10 8.19 1.26 29.27 31.28 43.50 -12.22 198.588 49.05 10.57 1.38 28.84 32.16 43.50 -11.34 400.432 33.83 15.10 2.12 28.78 22.27 46.00 -23.73

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.85	31.54	10.58	40.22	52.75	74.00	-21.25	Vertical
4824.00	50.72	31.54	10.58	40.22	52.62	74.00	-21.38	Horizontal
Test mode: 8	02.11b		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.64	31.54	10.58	40.22	42.54	54.00	-11.46	Vertical
4824.00	40.08	31.54	10.58	40.22	41.98	54.00	-12.02	Horizontal

Test mode: 8	02.11b		Test char	Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	51.04	31.57	10.64	40.15	53.10	74.00	-20.90	Vertical		
4874.00	48.58	31.57	10.64	40.15	50.64	74.00	-23.36	Horizontal		
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	40.39	31.57	10.64	40.15	42.45	54.00	-11.55	Vertical		
4874.00	38.45	31.57	10.64	40.15	40.51	54.00	-13.49	Horizontal		

Test mode: 80	Test mode: 802.11b			nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.07	31.61	10.70	40.08	51.30	74.00	-22.70	Vertical
4924.00	48.93	31.61	10.70	40.08	51.16	74.00	-22.84	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.12	31.61	10.70	40.08	41.35	54.00	-12.65	Vertical
4924.00	39.39	31.61	10.70	40.08	41.62	54.00	-12.38	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.38	31.54	10.58	40.22	51.28	74.00	-22.72	Vertical	
4824.00	48.58	31.54	10.58	40.22	50.48	74.00	-23.52	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.49	31.54	10.58	40.22	41.39	54.00	-12.61	Vertical	
4824.00	38.57	31.54	10.58	40.22	40.47	54.00	-13.53	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.83	31.57	10.64	40.15	50.89	74.00	-23.11	Vertical	
4874.00	48.70	31.57	10.64	40.15	50.76	74.00	-23.24	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.57	31.57	10.64	40.15	40.63	54.00	-13.37	Vertical	
4874.00	38.38	31.57	10.64	40.15	40.44	54.00	-13.56	Horizontal	

Test mode: 80	Test mode: 802.11g		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	49.33	31.61	10.70	40.08	51.56	74.00	-22.44	Vertical	
4924.00	49.49	31.61	10.70	40.08	51.72	74.00	-22.28	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	39.34	31.61	10.70	40.08	41.57	54.00	-12.43	Vertical	
4924.00	39.65	31.61	10.70	40.08	41.88	54.00	-12.12	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.08	31.54	10.58	40.22	49.98	74.00	-24.02	Vertical	
4824.00	47.97	31.54	10.58	40.22	49.87	74.00	-24.13	Horizontal	
Test mode: 8	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	37.99	31.54	10.58	40.22	39.89	54.00	-14.11	Vertical	
4824.00	38.64	31.54	10.58	40.22	40.54	54.00	-13.46	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.95	31.57	10.64	40.15	50.01	74.00	-23.99	Vertical	
4874.00	48.05	31.57	10.64	40.15	50.11	74.00	-23.89	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.87	31.57	10.64	40.15	39.93	54.00	-14.07	Vertical	
4874.00	37.92	31.57	10.64	40.15	39.98	54.00	-14.02	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.06	31.61	10.70	40.08	50.29	74.00	-23.71	Vertical	
4924.00	47.93	31.61	10.70	40.08	50.16	74.00	-23.84	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	38.10	31.61	10.70	40.08	40.33	54.00	-13.67	Vertical	
4924.00	37.88	31.61	10.70	40.08	40.11	54.00	-13.89	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	49.09	31.55	10.61	40.19	51.06	74.00	-22.94	Vertical	
4844.00	48.60	31.55	10.61	40.19	50.57	74.00	-23.43	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	39.33	31.55	10.61	40.19	41.30	54.00	-12.70	Vertical	
4844.00	38.36	31.55	10.61	40.19	40.33	54.00	-13.67	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.95	31.57	10.64	40.15	50.01	74.00	-23.99	Vertical	
4874.00	46.05	31.57	10.64	40.15	48.11	74.00	-25.89	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.01	31.57	10.64	40.15	40.07	54.00	-13.93	Vertical	
4874.00	36.02	31.57	10.64	40.15	38.08	54.00	-15.92	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	48.01	31.59	10.67	40.10	50.17	74.00	-23.83	Vertical	
4904.00	48.32	31.59	10.67	40.10	50.48	74.00	-23.52	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	38.80	31.59	10.67	40.10	40.96	54.00	-13.04	Vertical	
4904.00	38.45	31.59	10.67	40.10	40.61	54.00	-13.39	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.