Mn	10 ⁵		
Cr	$2x10^{4}$		
Al	$1,5x10^4$	Al	10 ⁵
Ti	$6x10^3$		
P	$2x10^3$	P	$2x10^3$
Cl	$2x10^3$	Cl	104
Со	$2x10^3$		
F	$6x10^2$	F	104
V	$2x10^2$		
Se	3,4x10		
Zn	2x10		
Ga	10		
Br	10		
В	4		
Sc	4		
As	3		

А теперь можно и спросить, как это Солнце умудрилось захватить газо-пылевое облако, откуда взялось такое облако, в котором оказалось вещества достаточно для планетной системы. В том числе и урана с торием.

Теперь, как же шёл процесс слипания. Надо понимать, что газ и пыль были основательно перемешаны. Поэтому во всём его объёме очень медленно, миллиард лет, формировались очень рыхлые пушинки одинакового состава. Часть из них до сих пор бы оставалась в космосе. Но таких пушинок-пылинок нет, а есть метеориты и огромные астероиды, имеющие кристаллическую структуру из разных материалов, которые могут возникнуть только в огромных телах и при большой температуре. Так где же тот механизм, который из рыхлых пушинок однородного вещества создавал всё разнообразие метеоритов, комет и астероидов, а, в конечном счёте, и планет? Такого механизма нет, и не было.