FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER FP--ETC F/G 4/2 ANNUAL TYPHOON REPORT 1977. (U) AD-A055 512 D R MORFORD, J K LAVIN 1977 NL UNCLASSIFIED 1 OF 2 ADA 055512 3

AU NO. DO FILE COPY

Indian Ocean Area (Malay Peninsula to Africa)

Pacific Area (Dateline to Malay Peninsula)

AREA OF RESPONSIBILITY - JOINT TYPHOON WARNING CENTER, GUAM

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

U. S. FLEET WEATHER CENTRAL JOINT TYPHOON WARNING CENTER

COMNAVMARIANAS BOX 17 FPO SAN FRANCISCO 96630

DEAN R. MORFORD Captain, United States Navy

COMMANDING

JAMES K. LAVIN
Lieutenant Colonel, United States Air Force
DIRECTOR, JOINT TYPHOON WARNING CENTER

STAFF

LCDR David Sokol, USN LCDR Carl B. Ihli, Jr., USN LT Gary R. Willms, USN *LT George T. McKaige, USN *CAPT Frederick P. Milwer, USAF CAPT Alan W. Hassebrock, USAF CAPT Charles P. Guard, USAF CAPT John D. Shewchuk, USAF ENS Edward M. Fukada, USNR RULLIE MSGT Hans J. Hass1, USAF JUN 21 1978 *SSGT Ellis D. Spencer, USAF SSGT Bobby L. Setliff, USAF *AG2 Greg P. Metzger, USN *AG2 Robert L. Hern, Jr., USN *AG2 Susan J. Funk, USN AG2 Andree S. Webster, USN SGT Paul D. Edwards, USAF *AG3 Deirdre A. Wexler, USN *SRA Craig A. Anderson, USAF SRA Vandora A. Barnes, USAF AGAN Kenneth A. Kellogg, USN AGAN John A. Kilburn, USN AGAN Karen F. Moorefield, USN Ms. Marcelina L. G. Aguon, Secretary

CONTRIBUTOR

Det 1, 1WW - USAF

1977 ANNUAL TYPHOON REPORT

*Departed dun 78197706 on 19 005

FRUNT COVER:

Infrared photograph of a two-storm situation with a third during its early stages of development, 19 September 1977. Typhoon Dinah (lower left) at 65 kt (33 m/sec) is meandering in the South China Sea. Details of Dinah can be found on page 30. Tropical Storm Emma (upper right) with 45 kt (23 m/sec) winds is undergoing recurvature southeast of Japan. A yet unnumbered tropical disturbance (which will eventually become Tropical Storm Freda) is slowly developing in the Philippine Sea (lower right). (Direct readout NOAA-5 VHRR IR imagery as received by Det 1, 1000 Nimitz Hill, Guam.)

FOREWORD

CCESSION for	White Section
DC	Bull Sacrem
NANNOUNCED USTI ICATION	
ISH ICA IO.	
BA	WAY ADD ITY COTES
DISTRIBUTION	AVAI ABI ITY COTES
DISTRIBUTION Dist.	AVAI ABILITY CODES
Control State of the Control of the	AVAI ABILITY COSES
DISTRIBUTION	1 NATI ABILITY COPES

Tropical cyclones have always been a menace to both military and civilian activities in tropical and subtropical oceanic regions. During recent times, much effort has been funneled toward more accurate tropical cyclone forecasts and toward more efficient operational responses to those forecasts. A large portion of this effort is based on studies which, if meaningful, must be based on accurately documented data. The Annual Typhoon Report represents such documentation. The body of this report is a summary of the tropical cyclones that occurred during 1977 in the western North Pacific, central North Pacific and North Indian Oceans.

The Annual Typhoon Report is prepared by the staff of the Joint Typhoon Warning Center (JTWC). JTWC is a combined USAF/USN entity operating under the command of Fleet Weather Central, Guam. The senior Air Force officer assigned is designated as Director, JTWC and is responsible to the Commanding Officer, Fleet Weather Central, Guam for the operation of the JTWC. The senior Naval officer of the JTWC is designated as the Deputy Director/Operations Officer. JTWC was established by CINCPACFLT message 280208Z April 1959 when directed by CINCPAC message 250233Z April 1959. Its operation is guided by the CINCPAC INST 3140.1 (series).

The Fleet Weather Central/Joint Typhoon Warning Center, Guam has the responsibility to:

- 1. Provide continuous meteorological watch of all tropical activity north of the equator, west of the Date Line, and east of the African coast (JTWC area of responsibility) for potential tropical cyclone development:
- Provide warnings for all tropical cyclones in the assigned area of responsibility:
- Determine tropical cyclone reconnaissance requirements and assign priorities;

- 4. Conduct an annual post analysis of all tropical cyclones occurring within the area north of the equator from 140W west to the coast of Africa and prepare an Annual Typhoon Report for issuance to interested agencies; and
- 5. Conduct tropical cyclone forecasting and detection research as practicable.

In the event of incapacitation of the JTWC, the alternate (AJTWC) assumes the responsibility for the issuance of warnings. In early November, 1977, Fleet Weather Central, Pearl Harbor, Hawaii was designated as the AJTWC. Assistance in determining tropical cyclone reconnaissance requirements and in obtaining reconnaissance data is provided by Detachment 4, 1st Weather Wing, Hickam AFB, Hawaii. Previously, the AJTWC designate was Detachment 17, 30WS, Yokota AB, Japan, with assistance from the Naval Weather Service Facility, Yokosuka, Japan.

The Central Pacific Hurricane Center, (CPHC) Honolulu, Hawaii is manned by members of the U. S. National Weather Service who are responsible for the issuance of tropical cyclone warnings for the area north of the equator from the Date Line east to 140W. Warnings are issued in coordination with the Fleet Weather Central, Pearl Harbor and Detachment 4, 1WW, Hickam AFB, Hawaii. Post analysis information is forwarded to the JTWC for inclusion in the Annual Typhoon Report.

The meteorological services of the United States are planning to implement the metric system of measurement over the next few years. Some civilian and military agencies have started the education program by showing the metric equivalents to current units of measure. This Annual Typhoon Report includes metric equivalents to most measures.

Unless otherwise stated all satellite data used in this ATR is Air Force Weather Service DMSP Data as acquired by OL-C, 27CS personnel and analyzed by Det 1, 1WW personnel colocated with JTWC at Nimitz Hill, Guam.

TABLE OF CONTENTS

CHAPTER I	OPERATIONAL PROCEDURES 1. General	page 1 1 1 1 2 2 2 3 3
CHAPTER II	RECONNAISSANCE AND COMMUNICATIONS 1. General	4 4 4 5 5 6 7
CHAPTER III	RESEARCH SUMMARY 1. General 2. Operational Application of a Tropical Cyclone Recurvature/Non-Recurvature Study Based on 200 MB Wind Fields 3. Tropical Cyclone Center Fix Data for the 1976 Storm Season 4. Evaluation of the Dvorak IR Technique for Use With DMSP Data 5. A Climatology of Tropical Cyclones for the Period 1971-1976 6. Relationships Between the Temporal Variation of Equivalent Potential Temperature and Tropical Cyclone Intensity 7. Transitioning of Tropical Cyclones to Extratropical Cyclones 8. Future Aircraft Reconnaissance Storm Tracks 9. Tropical Chart Series for September 1975 10. Tropical Weather Study Guide	8 8 8 8 8 8 8 9
CHAPTER IV	SUMMARY OF TROPICAL CYCLONES 1. Western North Pacific Tropical Cyclones Individual Typhoons	10
	Individual Cyclone page TC 22-77 53	55
CHAPTER V	SUMMARY OF FORECAST VERIFICATION DATA 1. Annual Forecast Verification	56 59 62 64 69 77

CHAPTER VI	TROPICAL CYCLONE CENTER FIX DATA	page
	1. Introduction	page
	2. Format	80
	3. Western North Pacific Fix Data	82
	4. North Indian Ocean Fix Data	115
APPENDIX	CONTRACTIONS AND DEFINITIONS	
	1. Contractions	121
	2. Definitions	122
DISTRIBUTION		123

CHAPTER I - OPERATIONAL PROCEDURES

1. GENERAL

Routine services provided by the Joint Typhoon Warning Center (JTWC) include the following: (1) Significant Tropical Weather Advisories issued daily describing all tropical disturbances and their potential for further development; (2) Tropical Cyclone Formation Alerts issued whenever interpretation of satellite and synoptic data indicates likely formation of a significant tropical cyclone; (3) Tropical Cyclone Warnings issued four times daily whenever a significant tropical cyclone exists in the Pacific area; (4) Tropical Cyclone Warnings issued twice daily whenever a significant tropical cyclone exists in the Indian Ocean area; and (5) Prognostic Reasoning messages issued twice daily for tropical storms and typhoons in the Pacific area.

JTWC responds to changing requirements of activities serviced. Therefore, contents of routine services are subject to change from year to year usually as a result of the Annual Tropical Cyclone Conference deliberations.

2. DATA SOURCES

a. COMPUTER PRODUCTS:

FLEWEACEN Guam provides computerized meteorological/oceanographic products for JTWC. In addition, the standard array of synoptic-scale computer analyses and prognostic charts are available from the Fleet Numerical Weather Central (FNWC) at Monterey, California via FLEWEACEN Guam.

b. CONVENTIONAL DATA:

Conventional meteorological data are defined as surface and upper air observations from island, ship and land stations plus weather observations from commercial and military aircraft (AIREPS). Computer plotted charts of 0000Z and 1200Z conventional data are produced daily for the surface, 850 mb, 700 mb, and 500 mb levels. A chart of upper air data is produced which utilizes 200 mb rawinsonde data and AIREPS above 29,000 ft within 6 hours of the 0000Z and 1200Z synoptic times. The surface/gradient, 500 mb and 200 mb level charts are hand plotted over important tropical/subtropical regions during the tropical cyclone season to complement computer aids and insure all available data are used.

c. AIRCRAFT RECONNAISSANCE:

Aircraft weather reconnaissance data are invaluable in the positioning of centers of developing systems and essential for the accurate determination of the eye/center, maximum intensity, minimum sea-level pressure, and radius of significant winds exhibited by tropical cyclones. These data are plotted on large-scale sectional charts for each mission flown. A comprehensive discussion of aircraft weather reconnaissance is presented in Chapter II.

d. SATELLITE RECONNAISSANCE:

Meteorological satellite data from the Defense Meteorological Satellite Program (DMSP) and the National Oceanic and Atmospheric Administration played a major role in the early detection and tracking of tropical cyclones in 1977. A discussion of this role, as well as applications of satellite data to tropical cyclone analysis and forecasting, is presented in Chapter II.

e. RADAR RECONNAISSANCE:

During 1977, as in recent years, land radar coverage was utilized extensively when available. Once a storm moved within the range of a land radar site, reports were usually received hourly. Use of radar during 1977 is discussed in Chapter II.

3 ANALYSIS

A composite surface/gradient level (3000 ft) manual analysis is accomplished on the 00002 and 1200Z conventional data. Analysis of the wind field using streamlines is stressed for tropical and subtropical regions. Analysis of the pressure field is stressed for higher latitudes and vicinity of intense tropical systems.

Manual analysis of the 500 mb level is accomplished on the 00007 and 12002 data when significant tropical cyclones exist. Although the analysis of the 500 mb height field is stressed, analysis of the wind field to more clearly delineate steering currents is equally important.

A composite upper-tropospheric, manual analysis, utilizing rawinsonde data from 300 mb through 100 mb, wind directions extracted from satellite data by Det 1, 1WW and AIREPS (plus or minus 6 hours) at or above 29,000 feet is accomplished on 0000Z and 1200Z data daily. Wind and height data are used to arrive at a representative analysis of tropical cyclone outflow patterns, of steering currents, and of areas that may indicate tropical cyclone intensity change.

Additional sectional charts at intermediate synoptic times and auxiliary charts such as checkerboard diagrams and pressure change charts are also analyzed during periods of significant tropical cyclone activity.

4. FORECAST AIDS

a. CLIMATOLOGY:

Climatological publications utilized during the 1977 typhoon season include previous JTWC Annual Typhoon Reports and climatic publications from Fleet Weather Central, Guam, Director Naval Oceanography and Meteorology, Naval Weather Research Facility, Naval Environmental Prediction Research Facility, Naval Postgraduate School, Air Weather Service, First Weather Wing and Chanute Technical

Training Center, plus publications from other Air Force and Navy activities, various universities and foreign countries.

b. OBJECTIVE TECHNIQUES:

The following objective techniques were employed in tropical cyclone forecasting during 1977. A description and an evaluation of these techniques is presented in Chapter V:

- (1) TYFN75
- (2) MOHATT 700/500
- (3) FCSTINT
- (4) 12-HR EXTRAPOLATION
- (5) HPAC
- (6) TROPICAL CYCLONE MODEL
- (7) INJAH74

5. FORECASTING PROCEDURES

a. INITIALIZATION:

In the preparation of each warning, the actual surface location (fix) of the tropical cyclone eye/center just prior to (within three hours of) warning time is of prime importance. JTWC uses the Selective Reconnaissance Program (SRP) to levy an optimum mix of aircraft, satellite and radar resources to obtain fix information. When tropical cyclones are either poorly defined or the actual surface location can not be determined but an upper level position is available, or when conflicting fix information is received, the "best estimate" of the surface location is subjectively determined from the analysis of all available data. If fix data is not available due to reconnaissance platform malfunctions or communication problems, synoptic data or extrapolation from previous fixes is used. The initial forecast (warning time) position is then obtained by extrapolation using the current fix and a "best track" of the cyclone movement to date.

b. TRACK FORECASTING:

An initial forecast track is developed based on persistence, climatology and objective techniques. This initial track is subjectively modified based on the following:

- (1) The prospects for recurvature are evaluated for all westward and northward moving storms. This evaluation is based primarily on present and forecast position and amplitude of middle tropospheric mid-latitude troughs from the latest 500 mb analysis and numerical prognoses.
- (2) Determination of steering level is partly influenced by maturity and vertical extent of the system. For mature storms located south of the 500 mb subtropical ridge, forecast changes in speed of movement are closely correlated with forecast changes in the intensity of the ridge. When steering currents are very weak, the tendency for storms to move northward due to their internal forces is an important consideration.
- (3) Over the 12- to 72-hr forecast spectrum, speed of movement during the early time frame is biased toward persistence (12 hr extrapolation) while that near the end of the time frame is biased towards objective techniques and climatology.

(4) A final check is made against climatology to ascertain the likelihood of the forecast track. If the forecast deviates greatly from climatology, the forecast rationale is reappraised and the track adjusted as necessary.

c. INTENSITY FORECASTING:

In forecasting intensity, heavy reliance is placed on aircraft reconnaissance reports, the Dvorak satellite interpretation model, and the objective techniques. Additional considerations are the position and intensity of the tropical upper-tropospheric trough, extent and intensity of upper-level outflow, sea surface temperature, terrain influences, speed of movement, and proximity to an extratropical environment.

6. WARNINGS

Tropical cyclone warnings are numbered sequentially. If warnings are discontinued and the storm reintensifies, warnings are numbered consecutively from the last warning issued. Amended or corrected warnings are given the same number as the warnings they modify plus a sequential alphabetical designator. Each warning includes the initial warning time eye/center position, intensity, and the radial extent of 30, 50 and 100 kt surface winds (when applicable); the latest fix position used; the 12 hr forecast direction and speed of movement; and, forecast information. Warnings within the JTWC Pacific Area are issued within two hours of 00007, 06007, 12007 and 18007 with the constraint that two consecutive warnings may not be more than seven hours apart. This variable warning time allows for maximum use of all available reconnaissance platforms and spreads the workload in multiple storm situations. The forecast intervals for all tropical cyclones, regardless of intensity, are 12-, 24-, 48- and 72-hr.

Warnings in the JTWC Indian Ocean area are issued within two hours of 0800Z and 2000Z with the constraint that two consecutive warnings may not be more than fourteen hours apart. Warnings for this area are issued only after a tropical cyclone has attained an intensity of 34 kt or greater. Forecast intervals are 24 and 48 hours.

Warning forecast positions are verified against the corresponding post analysis "best track" positions. A summary of the verification results for 1977 is presented in Chapter V.

7. PROGNOSTIC REASONING MESSAGE

In the Pacific Area, prognostic reasoning messages are transmitted based on the 00002 and 12002 warnings or whenever the previous reasoning is no longer valid. This plain language message is intended to provide field meteorologists with the reasoning behind the latest JTWC forecast. Prognostic reasoning messages are not prepared for tropical depressions nor for the Indian Ocean area.

This season JTWC began including confidence statements for the 24 hr forecasts. A summary of the verification results is presented in Chapter V.

Prognostic reasoning information applicable to all customers is provided in the remarks section of warnings when significant changes are made or when deemed appropriate by the typhoon duty officer.

8. SIGNIFICANT TROPICAL WEATHER ADVISORY

This plain language message, summarizing significant weather in the entire JTWC area of responsibility, is issued by 0600Z daily. It contains a detailed, non-technical description of all significant tropical disturbances and

the JTWC evaluation of potential for significant tropical cyclone development within the 24 hr forecast period.

9. TROPICAL CYCLONE FORMATION ALERT

Alerts are issued whenever interpretation of satellite and other meteorological data indicates significant tropical cyclone formation is likely. These alerts will specify a valid period not to exceed 24 hours and must either be cancelled, reissued or superseded by a warning prior to expiration of the valid period.

CHAPTER II - RECONNAISSANCE & COMMUNICATIONS

1. GENERAL

The Joint Typhoon Warning Center depends on reconnaissance to provide necessary, accurate and timely meteorological information in support of each warning. The JTWC relies primarily on three sources of reconnaissance: aircraft, satellite and radar. Optimum utilization of all available reconnaissance assets is obtained through use of the Selective Reconnaissance Program (SRP) whereby various factors are considered in selecting a specific reconnaissance platform for each warning. Factors include: the cyclone's location and intensity, reconnaissance platform availability, current operations, limitation of reconnaissance assets, and the cyclone's threat to life/property. A listing of reconnaissance fixes used this season can be found in Chapter VI. Timely receipt of reconnaissance data is extremely important to the typhoon warning service. Similarly, a warning is useless unless it can be received by customers in a timely fashion. Therefore, efficient communications into and out of JTWC is invaluable.

2. RECONNAISSANCE

a. AIRCRAFT:

Aircraft weather reconnaissance is performed in the JTWC area of responsibility by the 54th Weather Reconnaissance Squadron (54 WRS). The squadron, presently equipped with six WC-130 aircraft, is located at Andersen Air Force Base, Guam. From July through October, augmentation by the 53rd Weather Reconnaissance Squadron at Keesler Air Force Base, Mississippi brings the total number of available aircraft to nine. The JTWC reconnaissance requirements are provided daily throughout the year to the Tropical Cyclone Aircraft Reconnaissance Coordinator (TCARC). These requirements include area(s) to be investigated, tropical cyclone(s) to be fixed, fix times, and forecast position of fix. In accordance with CINCPACINST 3140.1M, "Usage of reconnaissance assets in acquiring meteorological data from aircraft, satellites and land-based radar shall be at the discretion of FLEWEACEN/JTWC Guam based on the following priorities:

- (1) Alert flights and vortex or center fixes as required for issuance of tropical cyclone warnings in the Pacific area of responsibility;
- (2) Center or vortex fixes as required for issuance of tropical cyclone warnings in the Indian Ocean area of responsibility;
 - (3) Supplementary fixes; and
 - (4) Synoptic data acquisition".

As in previous years, aircraft reconnaissance provided direct measurements of height, temperature, flight level winds, sea level pressure, estimated surface winds (when observable) and numerous additional parameters.

The meteorological data is gathered by the Aerial Weather Reconnaissance Officers and dropsonde operators of Detachment 4, Hq AWS who crew with the 54th. These data provide the Typhoon Duty Officer indications of changing cyclone characteristics, radius of cyclone associated winds and position and intensity determinations. Another important aspect of this data is its availability for research in tropical cyclone analysis and forecasting. Aircraft reconnaissance will become even more important in years to come when high-resolution tropical cyclone dynamic steering programs will require a dense input of wind and temperature data.

b. SATELLITE

Satellite fixes from USAF ground sites and USN ships provide day and night coverage in the JTWC area of responsibility. Interpretation of this satellite imagery provides cyclone positions, and for daytime passes estimates of storm intensities are also made through the Dvorak technique.

Detachment 1, 1st Weather Wing on Guam is the primary fix site for the western North Pacific. Both DMSP and NOAA data are received and processed. DMSP fix positions received at JTWC from the Air Force Global Weather Central (AFGWC), Offutt Air Force Base, Nebraska were the major source of satellite data for the Indian Ocean. NOAA satellite fixes were also received from Fleet Weather Facility (FLEWEAFAC), Suitland, Maryland for the western Pacific and Indian Ocean areas. GOES fixes were also provided by the National Environmental Satellite Service, Honolulu, Hawaii for the storms near the dateline.

c. RADAR

Land radar also provides very useful positioning data on well developed cyclones when in proximity (usually within 175 nm of the radar site) of the Republic of the Philippines, the Republic of China, Hong Kong, Japan (including the Ryukyu Islands), the Republic of Korea, and Guam.

3. AIRCRAFT RECONNAISSANCE EVALUATION CRITERIA

The following criteria are used to evaluate reconnaissance support to ${\tt JTWC}$.

- a. Six-hour fixes To be counted as made on time, a fix must satisfy the following criteria:
- (1) Fix must be made not earlier than 1 hr before, nor later than 1/2 hr after scheduled fix time.
- (2) Aircraft in area requested by scheduled fix time, but unable to locate center due to:
 - (a) Cyclone dissipation; or

- (b) Rapid acceleration of the cyclone away from the forecast position.
- (3) If penetration not possible due to geographic or other flight restrictions, aircraft radar fixes are acceptable.
- b. Levied 6-hr fixes made outside the above limits are evaluated as follows:
- (1) Early-fix is made within the interval from 3 hr to 1 hr prior to scheduled fix times. However, no credit will be given for early fixes made within 3 hr of the previous fix.
- (2) Late-fix is made within the interval from $1/2\ hr$ to $3\ hr$ after scheduled fix time.
- c. When 3 hr fixes are levied, they must satisfy the same time criteria discussed above in order to be classified as made on time. Three-hour fixes made that do not meet the above criteria are classified as follows:
- (1) Early-fix is made within the interval from 1 1/2 hr to 1 hr prior to schedule fix time.
- (2) Late-fix is made within the interval from 1/2 hr to 1 1/2 hr after schedule fix time.
- $\ensuremath{\text{d.}}$ Fixes not meeting the above criteria are scored as missed.
- e. Fixes levied as "resources permitting" are not evaluated.
- f. Investigatives to be counted as made on time, investigatives must satisfy the following criteria:
- $\ensuremath{\text{(1)}}$ The aircraft must be within 250 nm of the specified point by the scheduled time.
- (2) The specified flight level and track must be flown.
- (3) Reconnaissance observations are required every half-hour in accordance with AWSM 105-1. Turn and mid-point winds shall be reported on each full observation within 250 nm of the levied point.
- (4) Observations are required in all quadrants unless a concentrated investigation in one or more quadrants has been specified.
- (5) Aircraft must contact JTWC before leaving area of concern.
- g. Investigatives not meeting the time criteria of paragraph f, will be classified as follows:
- (1) Late-aircraft is within 250 nm of the specified point after the scheduled time, but prior to the scheduled time plus 2 hr.
- (2) Missed-aircraft fails to be within 250 nm of the specified point by the scheduled time plus $2\ hr$.

4. AIRCRAFT RECONNAISSANCE SUMMARY

During the 1977 tropical cyclone season, 199 six-hourly vortex fixes and 4 supplementary vortex fixes were levied (Table 2-1). This was 114 less than during 1976. There were fewer tropical cyclones (4) and 169 fewer warnings issued. Increased reliance on satellite data as a fix platform and utilization of aircraft for synoptic data accounted for the lower percentage of aircraft fixes. For example in 1976, 310 aircraft fixes were levied for 661 warnings (46.9%) while in 1977 only 203 fixes were levied for 494 warnings (41.1%). In addition to vortex fixes, 42 investigative missions were levied during 1977 compared with 34 in 1976. Various factors accounted for the increase. In 1977 only 3 storms had no investigatives because of distances involved while 11 storms had 2 or more and 7 investigatives were levied on systems that did not develop. In 1976 7 storms had no investigatives with only 2 storms having 2 investigatives each.

Reconnaissance effectiveness is summarized in Table 2-1. The missed fix rate of 1.5% is the best in recent years.

EFFECTIVENESS		NUMBER OF FIXES	PERCENT
COMPLETED ON TIME		189	93.1
EARLY		0	0.0
LATE		11	5.4
MISSED		3	1.5
	TOTAL	203	100.0
LEVIED	VS. MISSED	FIXES	
LEVIED	VS. MISSED		PERCENT
			PERCENT
AVERAGE 1965-1970 1971	LEVIED 507 802	MISSED	
AVERAGE 1965-1970 1971 1972	LEVIED 507 802 624	MISSED	2.0
AVERAGE 1965-1970 1971 1972 1973	507 802 624 227	10 61 126 13	2.0 7.6 20.2 5.7
AVERAGE 1965-1970 1971 1972 1973 1974	507 802 624 227 358	10 61 126 13 30	2.0 7.6 20.2 5.7 8.4
AVERAGE 1965-1970 1971 1972 1973	507 802 624 227	10 61 126 13	2.0 7.6 20.2 5.7

5. SATELLITE RECONNAISSANCE SUMMARY

The Air Force provides satellite reconnaissance support to JTWC using meteorological data from polar orbiting meteorological satellites of the Defense Meteorological Satellite Program (DMSP).

A network of tactical DMSP sites at Nimitz Hill, Guam; Clark AB, Philippines; Kadena AB, Japan; Osan AB, Korea; and Hickam AFB, Hawaii provides direct readout coverage north of the equator from the dateline west

into the South China Sea. In February 1977, the Guam site was modified to acquire very high resolution data from the National Oceanic and Atmospheric Administration (NOAA) satellites. The Hawaii site was modified soon after.

The Air Force Global Weather Central (AFGWC) at Offutt AFB, Nebraska using stored data readout provides satellite reconnaissance over the Indian Ocean and backup for the tactical sites in WESTPAC. Det 1, 1WW at Guam, colocated with JTWC, operates the network, tasking appropriate sites for tropical cyclone position reports.

Prior to October 1977, both the technicians who maintain and operate the DMSP ground station equipment and the analysts who interpret the data were members of Air Weather Service (AWS). In October 1977, the technicians became members of the Air Force Communications Service (AFCS) as part of an overall AWS/AFCS maintenance consolidation.

Satellite positions are assigned Position Code Numbers (PCN's) depending on the availability of geography for precise gridding and the state of the tropical cyclone's circulation. These are shown in Table 2-2. Estimates of tropical cyclone intensity are obtained from visual data using the Dvorak technique (NOAA Technical Memorandum NESS 45 and later refinements).

TABLE 2-2. POSITION CODE NUMBERS

METHOD	0F	CENTER	DETERMINATION/GRIDDING
	METHOD	METHOD OF	METHOD OF CENTER

- 1 EYE/GEOGRAPHY
- 2 EYE/EPHEMERIS
- 3 WELL DEFINED CC/GEOGRAPHY
- WELL DEFINED CC/EPHEMERIS
 POORLY DEFINED CC/GEOGRAPHY
- 6 POORLY DEFINED CC/EPHEMERIS

CC=Circulation Center

Increased satellite availability provided the opportunity to more effectively use satellite reconnaissance through the Selective Reconnaissance Program (SRP). For the first time more than half of JTWC's warnings in WESTPAC (51%) were based on satellite positions of tropical cyclones. In the Indian Ocean, where aircraft and radar were not available, 95.5% of JTWC's warnings were based on satellite fixes.

Use of a dual-site tasking concept which requires at least two DMSP sites to make each JTWC levied tropical cyclone fix has in the past resulted in a 99% reliability in meeting JTWC's satellite fix requirements. However in 1977, this reliability dropped to 94.9% due to an unreliable early afternoon and early morning DMSP satellite.

The loss of data from this satellite was random. Therefore, aircraft reconnaissance was levied to support the 06002 and 18002 warnings when appropriate. Radar and NOAA 5 satellite data was also used as primary or backup reconnaissance at these times limiting

the need to revert to extrapolation as a warning base.

A comparison of satellite derived positions and the JTWC Best Track positions is shown in Table 2-3. The relative accuracies of satellite positions can be obtained from this table. However, the values are also a function of the Best Track smoothing process.

Satellite derived fixes were also obtained from: USN ships equipped for DMSP direct readout; the National Environmental Satellite Service using NOAA and GOES data; Fleet Weather Facility (FLEWEAFAC), Suitland, Maryland using stored NOAA data; and, from the Naval Weather Service Environmental Detachment at Diego Garcia using NOAA APT data. This information was invaluable to the warning service. Since these were secondary sources, they were not put through the end of the year evaluation.

Pos	itions f		est Track	Positions,		ropical Cyc 7 (all site		
PCN	(ALL	1974 SITES)	(ALL	1975 SITES)	(ALL	1976 SITES)	(A).1	1977 SITES)
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	31122
1	13.6	(224)	11.8	(214)	12.4	(131)	15.7	(134)
2	17.4	(37)	20.4	(35)	20.1	(124)		(47)
3	20.1	(422)	21.2	(271)		(161)		(141)
4		(70)		(50)		(152)		(75)
5	35.4	(342)	34.2	(323)		(247)		(357)
6	49.4	(108)		(71)		(153)		(247)
162		(261)		(249)	16.1	(255)	16.6	(181)
364		(492)	21.4	(321)	25.4	(313)		(216)
566	38.8	(450)	36.1	(394)	43.7	(400)		(604)

6. RADAR RECONNAISSANCE SUMMARY

The 1977 Typhoon season produced a total of 385 radar center fixes accounting for 16.3% of all tropical cyclone fixes in the western Pacific. One radar fix was taken by a WC-130 aircraft of the 54th Weather Reconnaissance Squadron during Tropical Storm Ruth. All other radar fixes were taken by land or ship. The number of storms that were within radar acquisition range this year was 11 compared to 12 last year, but the total number of radar fixes this year was only one half of last year's number. This apparent contradiction is explained by a smaller number of well organized storms especially of the Super Typhoon classification, one versus four last year.

The WMO radar code defines three categories of accuracy for the various national meteorological agencies' radar reports. These categories are: good [within 10 km (5.4 nm)], fair [within 10-30 km (5.4-16.2 nm)] and poor [within 30-50 km (16.2-27 nm)]. This year 287 radar fixes were coded in this manner of which 62% were good, 27% fair and 11% poor. Compared to the JTWC best track, the mean vector deviation for land radar sites was 18.3 nm (34 km) compared to 11.6 nm (21 km) last year and for the one aircraft fix the deviation was 32.4 nm (60 km) compared to 16.0 nm (30 km) last year. This decrease in accuracy is attributable to the smaller number of well organized storms.

Of the total 385 radar fixes this year,

the national meteorological agencies of various countries accounted for 75%; U. S. Air Force, Air Weather Service, Sites 19%; and 5% from aircraft control and warning (AC&W) sites. This year the land radar sites in Taiwan provided a much greater percentage of radar fixes (31%) as compared to previous years due to five storms (Ruth, Thelma, Vera, Amy and Dinah) passing through their area of acquisition. The extensive radar network of the Japan-Ryuku area provided 37% of the total with 13% from Guam and 3% from the Royal Observatory in Hong Kong. The Republic of the Philippines also noticeably increased their coverage, up to 12%, as five storms (Thelma, Sarah, Freda, Kim and Mary) moved through their area. As in previous years, there were no radar fixes taken within the Indian Ocean area.

Of the eleven storms making up this year's number of radar fixes, three typhoons (Babe, Kim and Vera) accounted for 58% of the total. Typhoons Babe and Vera were tracked by the Japanese Meteorological Agency and Taiwan radar sites to account for 40% of the total. All three of these storms were fixed simultaneously by three radar sites on more than one occasion during their tracks.

7. COMMUNICATIONS

A new piece of communication equipment, the Naval Environmental Display Station (NEDS) was installed at FWC/JTWC in 1977. The NEDS is an addition to the existing variety of JTWC's communication systems which include the Automatic Voice Switching Network (AUTOVON), the Automatic Digital Network (AUTODIN), the Naval Environmental Data Network (NEDN), and the Air Force Automated Weather Network (AWN). The NEDS has been available, although not yet fully operational, since mid-1977 and promises to add significantly to the efficiency of data receipt and warning preparation. It will eventually replace the current FWC computer which is now providing the graphical display of much of the basic meteorological intelligence received via the NEDN.

The AUTOVON serves as a vital communication link and is a back-up for primary communication systems. AUTODIN is used for dissemination of warnings and other related bulletins which are concurrently transmitted via the AWN. These messages are also relayed for further transmission over US Navy Fleet Broadcasts and to all ships and island stations via US Coast Guard CW (Continuous Wave Morse Code) and voice communications. Inbound message traffic for JTWC is received via AUTODIN addressed to FLEWEACEN GUAM.

Actual message tape preparation and entering of messages into the AUTODIN and AWN circuits is performed by the Nimitz Hill Naval Telecommunications Center (NTCC) of the Naval Communications Area Master Station Western Pacific.

The main data source for JTWC analyses is a dedicated AWN circuit linking JTWC directly to the Automated Digital Weather Switch (ADWS) at Clark AB, RP. The ADWS selects and routes the large volume of meteorological reports necessary to satisfy JTWC requirements for the right data at the right time. At times of primary circuit outage, JTWC has other, though limited and less efficient, teletype data sources. One of these provides data to and from the U. S. Trust Territory, Guam, and the Northern Marianas.

High frequency single sideband (HF/SSB) and phone patch through the USAF aeronautical station at Andersen AFB (Andersen Airways) is the normal means of communication between weather reconnaissance aircraft and JTWC. Depending on storm location or propagation difficulties, the same direct voice contact can be established via AUTOVON through other USAF aeronautical stations, such as Clark, Yokota or Hickam Airways. USAF weather stations, colocated with the aeronautical stations, are designated weather reconnaissance monitors who are charged with acquiring, checking and transmitting reconnaissance reports into the AWN. As does JTWC, these monitor stations receive the data via HF/SSB and phone patch and often copy reports simultaneously with JTWC for efficiency and accuracy.

Reconnaissance aircraft provide vortex data in two stages. The preliminary data, requiring minimum onboard computations, contain enough information to permit JTWC forecasters to begin preparation of warnings. The average delay between the time the preliminary fix data messages were obtained and the time they were copied at JTWC was 19 minutes in 1977 as compared to 15 minutes in 1976, and 21 minutes in 1975. Similar delay times for the second stage, or complete eye/center fix data were 53 minutes in 1977, 30 minutes in 1976 and 49 minutes in 1975. The large difference between the 1976 and 1977 averages is in part due to cases when extremely poor propagation conditions caused exceptionally long delays. Further statistics relating to the efficiency of air/ground aircraft reconnaissance communications are given in Table 2-4

FOR AIRCRAFT RECONNAISSAI	NCE				
	1973	1974	1975	1976	197
%Complete fix messages delayed over one hour	20	19	20	21	
%Complete fix messages received after warning time	10.1	4.9	3.7	4.7	

CHAPTER III - RESEARCH & DEVELOPMENT SUMMARY

1. GENERAL

One of the tasks of the Joint Typhoon Warning Center is to conduct applied tropical cyclone research, as time and resources permit. The objective of this research is to improve operational forecasts. This research primarily involves the development of forecasting and analysis techniques from published studies and preparing reports requested by outside agencies. Meteorologists from agencies such as the Naval Environmental Prediction Research Facility, the Naval Postgraduate School, Det 4, HQ Air Weather Service, Det 1, 1st Weather Wing and the 54th Weather Reconnaissance Squadron often collaborate on these projects. The following abstracts summarize the year's research and development projects completed or still in progress.

2. OPERATIONAL APPLICATION OF A TROPICAL CYCLONE RECURVATURE/NON-RECURVATURE STUDY BASED ON 200MB WIND FIELDS

(Guard, C. P., FLEWEACEN/JTWC TECH NOTE 77-1)

In his paper, Tropical Cyclone Motion and Surrounding Parameter Relationships, John E. George demonstrated the relationship between various 200 mb wind fields and recurvature/non-recurvature. Evaluation of the wind fields with data independent of George's study indicated that significant modification of his study was required to produce an operationally applicable recurvature/non-recurvature study. Synoptic analysis revealed two distinct environments affecting tropical cyclones, a Winter Regime and a Summer Regime. All tropical cyclones were stratified accordingly. By integrating the results of the evaluation with results from rigorous synoptic and statistical analyses, operationally applicable recurvature/non-recurvature techniques were developed for, both, Winter Regime and the Summer Regime tropical cyclones.

3. TROPICAL CYCLONE CENTER FIX DATA FOR THE 1976 STORM SEASON

(Staff, FLEWEACEN/JTWC TECH NOTE 77-2)

This publication is a listing of all center fix data for each tropical cyclone occurring in the western North Pacific, Bay of Bengal, and Arabian Sea during 1976. (Note: The 1977 center fix data is included in Chapter VI herein, and will not be published as a separate report.)

4. EVALUATION OF THE DVORAK IR TECHNIQUE FOR USE WITH DMSP DATA

(Corey, T. D., DET 1, 1ST WEATHER WING)

An evaluation was made of the Dvorak IR technique (1975) using nighttime DMSP IR data. The data included all tropical storms and typhoons occurring during the period 1 June through 31 December 1976. A comparison was made between the Dvorak IR intensity estimate

and the corresponding best track intensity. The results showed that the Dvorak IR technique is useful in describing intensity trends but not in making independent intensity estimates.

5. A CLIMATOLOGY OF TROPICAL CYCLONES FOR THE PERIOD 1971-1976

(Willms, G. R., FLEWEACEN/JTWC)

An analysis was made of all tropical cyclones occurring in the JTWC area of responsibility during 1971-1976. The analysis determined: the average speed of tropical cyclones, by month, traversing each 50 latitude/longitude square in the western North Pacific; and the average annual number of occurrences of tropical cyclones by 50 latitude/longitude square in the western North Pacific, Bay of Bengal and Arabian Sea. This study updated previous work.

6. RELATIONSHIPS BETWEEN THE TEMPORAL VARIATION OF EQUIVALENT POTENTIAL TEMPERATURE AND TROPICAL CYCLONE INTENSITY

(Hassebrock, A. W., FLEWEACEN/JTWC)

The use of equivalent potential temperature as a predictor of tropical cyclone intensity has been studied previously by Sikora (ATR, 1975) and Milwer (ATR, 1976). These studies examined the equivalent potential temperature (magnitude) in relation to tropical cyclone intensity and found inconclusive results. In this study, aircraft center fix data for 1976-1977 tropical cyclones were analyzed to determine if temporal variations, versus magnitude, of equivalent potential temperature had any relationship with tropical cyclone intensification. Two types of variations were found which show potential as intensity forecasting aids. These two techniques will be evaluated during the 1978 storm season.

7. THE TRANSITIONING OF TROPICAL CYCLONES TO EXTRATROPICAL CYCLONES

(Guard, C. P., FLEWEACEN/JTWC and Brand, Samson, NEPRF)

An examination was made of the postrecurvature transition of tropical cyclones to extratropical cyclones. Particular emphasis is placed on the short-lived intensification that tropical cyclones sometimes undergo after recurvature, as cold air is initially advected into the region of the wall cloud.

8. FUTURE AIRCRAFT RECONNAISSANCE STORM TRACKS

(Staff, FLEWEACEN/JTWC, DET 4, HQ AWS AND 54 WRS)

An examination was made of storm tracks needed to satisfy future data requirements. New tracks were developed to provide increased peripheral data for the 1978 season. Additional tracks were discussed which may be

required to provide the necessary input data for the FNWC Tropical Cyclone Model.

9. TROPICAL CHART SERIES FOR SEPTEMBER 1975

(Sokol, D., Willms, G. R. and Guard, C. P., FLEWEACEN/JTWC)

A series of surface/gradient and 200 mb charts were prepared for the Naval Postgraduate School. These charts depicted a period of high storm activity during September 1975 and are now an integral part of the laboratory instruction at the school.

10. TROPICAL WEATHER STUDY GUIDE

(Fukada, E. M., FLEWEACEN/JTWC)

A study guide on tropical weather was prepared for the Navy Forecasters School. The study guide, which was in a programmed text format, discusses the climatology, synoptics and dynamics of tropical weather.

Note: Anyone desiring additional information on any of the above subjects should contact the Director, JTWC.

CHAPTER IV - SUMMARY OF TROPICAL CYCLONES

1. WESTERN NORTH PACIFIC TROPICAL CYCLONES

During 1977, the western North Pacific experienced the smallest number of typhoons since JTWC's formation in 1959. Of the 21 numbered tropical cyclones occurring during 1977 (Table 4-1), only eleven developed to mature typhoons, eight peaked out as tropical storms, and two did not develop beyond depression stages. Tables 4-2 and 4-3 show that both the number of tropical storms and typhoons were well below the quantity normally observed. During the season, only Babe reached the 130 kt (67 m/sec) intensity necessary to be classified as a "super" typhoon. The months, January through June, were completely void of typhoons and had only a total of two tropical storms, Patsy in March and Ruth in June. This early season lull in

activity was similar to that observed during 1973 and 1975. Tropical cyclone occurrences were near normal during July, but fell to a record low for August when no typhoons and only a single tropical storm was observed. During late July the southwest monsoon of India and Southeast Asia became very deep and intense, extended anomalously into the western North Pacific, and persisted for weeks. The monsoon trough was oriented in an eastnortheast to west-southwest direction from Hainan Island to the Bonin Islands. Several cyclonic eddies formed within the trough as Monsoon Depressions, i.e., systems characterized by broad surface circulation centers, highly asymmetric wind fields, surface winds less than 34 kt (18 m/sec), greatest intensity at 5,000 to 10,000 ft (1470-2940 m), and strong vertical shear.

				CALENDAR DAYS OF	MAX SFC	MIN	NO. OF	WARNINGS	DISTANCE
CYCLONE	TYPE	NAME	PRD OF WRNG	WARNING	WIND	SLP	TOTAL	AS TY	TRAVELLED
01	TS	PATSY	23 MAR-31 MAR	9	50	981	25		1190
02	TD	TD 02	26 MAY-27 MAY	2	30	1001	6		313
03	TS	RUTH	14 JUN-17 JUN	4	60	980	14		874
04	TD	TD 04	05 JUL-06 JUL	2	30	995	6		396
05	TY	SARAH	16 JUL-21 JUL	6	75	970	21	3	1548
06	TY	THELMA	21 JUL-26 JUL	6	85	957	21	11	1092
07	TY	VERA	28 JUL-01 AUG	5	110	926	18	13	814
08	TS	WANDA	31 JUL-04 AUG	5	45	986	17		936
09	TS	AMY	20 AUG-23 AUG	4	40	990	16		936
10	STY	BABE	02 SEF-10 SEP	9	130	906	36	20	2436
11	TS	CARLA	03 SEP-05 SEP	3	35	994	9		614
12	TY	DINAH	14 SEP-23 SEP	10	75	964	38	10	1998
13	TS	EMMA	15 SEP-20 SEP	6	60	966	21		1680
14	TS	FREDA	23 SEP-25 SEP	3	55	997	9		859
15	TY	GILDA	03 OCT-10 OCT	8	70	968	30	8	2332
16	TS	HARRIET	16 OCT-20 OCT	5	55	984	19		1544
17	TY	IVY	21 OCT-27 OCT	7	90	945	24	12	1877
18	TY	JEAN	*	6	65	972	20	3	1015
19	TY	KIM	06 NOV-17 NOV	12	125	916	44	25	1338
20	TY	LUCY	28 NOV-07 DEC	10	115	919	39	16	3922
21	TY	MARY	20 DEC-03 JAN	15	100	947	59	15	4002
			1977 TOTALS	124**			492	136	
			IND	IAN OCEAN A	REA				
	TC	17-77	11 MAY-13 MAY	3	60	980	4		374
	TC	18-77	10 JUN-13 JUN	4	60	985	6		510
	TC	19-77	29 OCT-31 OCT	3	40	994	5		691
	TC	21-77	*	11	70	979	19	4	1387
	TC	22-77	15 NOV-19 NOV	5	115	930	10	8	875
			1977 TOTALS	21**			44	12	
21-77	10 NOV-						44	12	

	TABLE	4-2 FR	EQUENCY	0F	TROPICAL	STORMS	S AND	TYPHO	ONS BY	MONTH	AND Y	EAR	
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTA
AVERAGE (1945-58)	0.4	0.1	0.4	0.5	0.8	1.3	3.0	3.9	4.1	3.3	2.7	1.1	22.0
1959	0	1	1	1	0	0 3 2 0 3 2	3 5 6 4	6	6 3 6 3 5 7	4	2	2	26 27 31 30 25
1960	0	0	0	1	1	3	3	10	3	4	1		27
1961	1	1	1	1	3	2	5	4	0	5	1	1	31
1962 1963	0	0	0	1	2	0	0	3	3	5	0	2	30
1964	0	0	0	1	2	2	7	9	7	4 5 5 5	6	1 2 3 1	40
1904	U	U	U	u	-	-	,	,	,	0	0		40
1965	2	2	1	1	2	3	5	6	7	2	2 2	1	34
1966	0	0	0	1	2 2	1	5	8	7	3	2	1	30
1967	1	0	0 2 0	1	1	1	6	8	7	4	3	1	35
1968	0	0	0	1	1	1	3	8	3	6	4	0	27
1969	1	0	1	1	0	0 2	5 6 3 3	4	3 3 4	6 3 5	2	0 1 0	30 35 27 19 24
1970	0	1	0	0	0	2	2	6	4	5	4	0	24
1971	1	0	1	3	4	2	8	4	6	Δ	2	0	35
1972	i	ŏ	Ô	ŏ	i	3	8 6 7	5	4	5	2	0	30
1973	Ō	Ö	0	Ō	ō	2 3 0	7	5	2	4	3	Ö	21
1974	1	0	1	1	1	4	4	5	5	4	4	0 2 0	21 32
1975	1	0	0	0	0	0	2	4	5	5	3	0	20
1976	1	1	0	2	2	0 2	4	4	6 4 2 5 5 5 5	1	1	2	20 25
1977	0	0	1	0	0	1	4	1	5	4	2_	_1_	19
AVERAGE													
(1959-77)	0.5	0.4	0.4	0.8	1.2	1.6	4.6	5.6	4.9	4.2	2.5	1.2	27.

		T	ABLE 4	-3 FRE	QUENCY	OF TY	PHOONS	BY MOI	NTH ANI	YEAR			
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTA
AVERAGE													
(1945-58)	0.4	0.1	0.3	0.4	0.7	1.1	2.0	2.9	3.2	2.4	2.0	0.9	16.
1959	0	0	0	1	0	0	1	5	3	3	2	1	20
1960	0	0	0	1	0	0	2	8		4	1	ī	19
1961	0	0	1	0	2	1	1 2 3 5 3 6	3	0 5 2 3 5	3	1	1	19 20 24 19 26
1962	0	0	0	1	2	0	5	7	2	4	3	ō	24
1963	0	0	0	1	1	0 2 2	3	3	3	4	0	2	19
1964	0	0	0	0	2	2	6	3	5	3	4	1	26
1965	1	0	0	1	2	2	4	3	5	2	1	0	21
1966	0	0	0 0 1	1	2	1	3 3	6	4	2 2 3	0	1	20
1967	0	0	1	1	0	1	3	4	4	3	3	0	20
1968	0	0	0	1	1	1	1	4	3	5	4	0	20
1969	1	0	0	1	0	0	2	3	2 2	5 3 3	1	0	13
1970	0	1	0	0	0	1	0	4	2	3	1	0	21 20 20 20 13 12
1971	0	0	0	3	1	2	6	3	5	3	1	0	24
1972	1	0	0	0	1	1	4	4	5	4	2	2	22
1973	0	0	0	0	0	0	4	2	2	4	0	0	12
1974	0	0	0 0 0	0	1	2	1	2	3	4	2	0	15
1975	1	0	0	0	0	0	1	3	4	3	2	0	14
1976	1	0	0	1	2	2	2	1	4	1	1	0	15
1977	0	_ 0	0	0	0	0	3	0	2	3	2	1	24 22 12 15 14 15
AVERAGE													

Upon relaxation of the deep, southwest monsoon flow, Tropical Storm Wilda developed, but did not exceed 45 kt (23 m/sec) intensity in the environment of strong vertical shear. As Wilda moved east of Japan, she caused the monsoonal flow over the western Pacific to move toward the north, rather than toward the climatologically favored regions where tropical cyclones normally develop. This northward flow toward low pressure continued as several extratropical systems developed near the sea of Japan, south of the normal regions for extratropical cyclogenesis in August. About the middle of August, the deep, southwest monsoon flow again intensified, and again several Monsoon Depressions formed. When the monsoon finally weakened, Tropical Storm Amy developed, but barely to 40 kt (21 m/sec). Amy again drew the western Pacific region of low pressure far north of its normal position, preventing establishment of a significant near-equatorial trough (NET). In fact, during much of August, pressures were much above normal in the tropics and easterly winds dominated the equatorial regions, helping to prevent cyclogenesis. By early September, pressures had fallen in the tropics, flow was back to normal, and Super Typhoon Babe developed in the NET, south of Guam. The remainder of the 1977 season for both tropical storms and typhoons was near normal.

During 1977, 26 Tropical Cyclone Formation Alerts were issued. Of these, 20 or 77%

ABLE 4-4.				DAC	IFIC A	00'4							
		19091	CAL CY		FORMAT		RT SU	MARY					
	NUMBI		ALERT :	SYSTEM	5		TOTAL						
	DF			WHICH	BECAME		3	NUMBER	ED				
	ALER	1		NUM	BERED			TROPIC	AL.		DEVELO	PMENT	
YEAR	SYSTEM	MS		TROPIC	AL CYC	LONES	-	CYCLONES			RATE		
1972	41				29			32			715		
1973	76			22				23		85%			
1974	35			30				36			86	1	
1975	34			25				25			74%		
1976	34				25			25			741		
1977	26				20			21			777		
				ONTHLY	DISTR	BUTTON							
		1	F	м	A		1	J	A	5	0	N	1
FORMATION A	LERTS	0	0	t	0	1	1	6	5	6	3	2	

developed into significant tropical cyclones (Table 4-4). No formation alert was issued for Typhoon Jean. Instead, a warning was issued in order to provide more information to a U. S. Navy ship approaching the system. The average lead time between issuance of a Tropical Cyclone Formation Alert and the first warning was 21 hours, with a minimum of 4 hours with Tropical Storm Wanda and a maximum of 48 hours with Typhoon Kim.

Only 12 multiple-storm days occurred in 1977 (Table 4-5). This is the lowest number of multiple-storm days observed since JTWC began keeping records in 1959. Like 1970 and 1975, there were no days in 1977 in which three or more western North Pacific tropical cyclones occurred simultaneously.

The 1977 tropical cyclone season was characterized by an abundance of poorly defined cyclones of relatively small radial extent of which many exhibited numerous erratic movements. The weaker cyclones were often inhibited from development by an unusually large and intense subtropical ridge and shear of the horizontal winds with height. In contrast, periods of weak steering currents resulted in five storms executing one or more loops each. Overall losses of life and property were thankfully small. Taiwan, however, survived a three-month drought, then experienced two of the worst typhoons in 80 years, Vera and Thelma.

		PACIFIC		N DCEAN		PACIFI
	1977	AVERAGE 1959-76	1977	AVERAGE 1971-76*	1977	AVERAGE 1971-7
TOTAL NUMBER						
OF WARNINGS	492	679	44	26	0	35
CALENDAR DAYS OF WARNINGS	124	142	21	16	0	10
NUMBER OF WARNING DAYS						
WITH TWO CYCLONES	12	48	5	1	0	1
NUMBER OF WARNING DAYS						
WITH THREE OR MORE CYCLONES	0	9	0	0	0	0
TROPICAL DEPRESSIONS	2	5			0	1
TROPICAL STORMS	8	11			0	1
TYPHOONS/HURRICANES	11	19	-		0	1
1.0. TROPICAL CYCLONES			5	4		
TOTAL TROPICAL CYCLONES	21	34	5		0	3

The first typhoon of the 1977 season did not occur until mid-July. Meteorological satellite data on the morning of July 13th showed an area of convection some 225 nm (417 km) east of Koror (WMO 91408) in the Palau Islands. This tropical disturbance meandered on a 10 kt (19 km/hr), westward track and crossed Koror at 12002 on the 14th. On the morning of the 15th, the system exhibited increased organization and a Tropical Cyclone Formation Alert was issued at 00002. Simultaneously, the disturbance took a more climatological, west-northwestward track and showed evidence of possessing multiple circulation centers.

During the 16th, satellite data hinted that the western-most circulation center was becoming the dominant one. Reconnaissance aircraft refuted this however, and fixed the primary center approximately 200 nm (370 km) east of the satellite positions. At 09432 aircraft observed 38 kt (20 m/sec) winds at 700 mb and estimated surface winds at 25 kt (13 m/sec). Satellite data an hour later showed that convection in the area had, in fact, consolidated around the aircraft-fixed circulation center, and the first warning on Tropical Depression (TD) number 05 was issued at 12002.

By the evening of the 16th, TD 05 had accelerated to 17 kt (31 km/hr), and satellite data illustrated increased organization. At 1800Z the depression was upgraded to Tropical Storm Sarah, while located 30 nm (56 km) east of the Philippine island of Samar. During the subsequent 24 hours, Sarah, possessing 40 kt (21 m/sec) intensity, moved toward Manila at 13 kt (24 km/hr) on a westnorthwest to northwest heading (Fig. 4-1). At 2355Z on the 17th, Clark AB observed a minimum sea level pressure of 997.3 mb; winds were from the northwest at 12 kt (6 m/sec). Within two hours winds at the Air Base had become southerly. Synoptic reports were of great value during this period. The mountainous terrain prevented aircraft reconnaissance of the low level circulation center, while frictional effects weakened and disorganized Sarah making satellite positioning very difficult.

From the evening of the 16th until the morning of the 20th upper level patterns in Sarah's environment were favorable for enhancement of her upper level outflow, which would normally result in intensification. The Tropical Upper Tropospheric Trough (TUTT) was oriented east-west, north of her and was enhancing outflow in the north semicircle; strongly divergent winds south of the tropical storm increased outflow to the south. While over land, however, Sarah could not intensify since the latent and sensible heat required to maintain sufficient thermal and related pressure gradients were not available. The tropical storm entered the South China Sea on the afternoon of the 18th and immediately began to intensify.

On the evening of the 19th, a mid-tropospheric low over south central China deepened and weakened the subtropical ridge north of Sarah; she responded and turned to the northwest; toward Hainan Island, still intensi-

fying. Sarah was upgraded to a typhoon at 18002 and six hours later reached its maximum intensity of 75 kt (39 m/sec). At 21002 Hsi-Sha-Tao (WMO 59981) reported sustained winds (10 minute average) of 60 kt (31 m/sec) from the west-southwest and a sea level pressure of 977.5 mb.

Sarah went ashore on Hainan Island on the evening of the 20th. At 12002 Ch'iung-Hai (19.3N-110.5E) reported 10 kt (5 m/sec) winds from the west and a sea level pressure of 978.5 mb. At this time Sarah's intensity was estimated to be 70 kt (36 m/sec). Meanwhile, the mid-level low over China had receded toward the north and the subtropical ridge began to build westward, north of Sarah. During the subsequent six hours, the typhoon slowed to 8 kt (15 km/hr) and took a westward course, passing north of the central mountain range of Hainan. At 18002 Tan-Hsien (19.5N-109.6E) was near the center when it reported 15 kt (8 m/sec) winds from the east-northeast and a sea level pressure of 969.5 mb.

Typhoon Sarah entered the Gulf of Tonkin on the morning of the 21st with an estimated 65 kt (33 m/sec) intensity. The typhoon accelerated to 15 kt (28 km/hr) and went ashore near Haiphong. At 06002 on the 21st, kien-an Phulien (20.8N-106.6E), a Haiphong suburb, reported north-northwesterly winds of 30 kt (15 m/sec) and a sea level pressure of 986.9 mb. Six hours later these values had changed to 30 kt (15 m/sec) from the south and 988.5 mb with pressure rising rapidly.

The final warning on Sarah was issued at 1200Z on the 21st as she was dissipating over the Red River Valley, northwest of Hanoi. Very little damage occurred during Sarah's existence. Only Hanoi Radio reported cases of destruction with no casualties.

FIGURE 4-1. Sarah at 40 kt (21 m/sec) intensity crossing northeastern Samar, RP, 17 July 1977, 00572. (NOAA-5 imagery)

Thelma, the second typhoon of the 1977 season, wrought more destruction on Taiwan than any event since World War II. While Typhoon Sarah was still crossing the South China Sea, Thelma was detected by satellite on the morning of July 20th as a tropical disturbance in the central Philippine Sea. The disturbance continued to organize during the subsequent 24 hours, and the first warning was issued on TD 06 at 0000Z on the 21st.

Reconnaissance aircraft at 09182 on the 21st found flight level winds of 55 kt (28 m/sec), a central pressure of 993 mb, and surface winds estimated at 50 kt (26 m/sec). Based on the aircraft data and corroborating satellite data, TD 06 was upgraded to Tropical Storm Thelma at 12002. During the following 30 hours, Thelma continued to intensify at a rate of 5 kt (2.6 m/sec) per 6 hours. At 2050Z on the 22nd, aircraft fixed the tropical storm 255 nm (472 km) northeast of Manila, and observed 60 kt (31 m/sec) winds at its 700 mb flight level. The aircraft further indicated that the central pressure had fallen to 965 mb. As a result of those observations, the system was upgraded to Typhoon Thelma at 0000Z on the 23rd.

The trigger for Thelma's intensification was nearly identical to that of Sarah's a week earlier. Highly efficient outflow channels were provided Thelma by intense cyclonic cells in the TUTT, to the north, and by strongly divergent upper level northeasterlies over Indonesia and the South China Sea, to the south. This situation lasted from the 21st to the 24th when the TUTT receded northward, and Thelma ceased her intensification.

The typhoon continued to move northwestward at 9 kt (17 km/hr) toward the southern periphery of the mid-tropospheric subtropical ridge. On the evening of the 23rd, the storm entered the Bashi Channel, passing 10 nm (19 km) northeast of Escarpada Point on northeastern Luzon. At this time the Kakuho Maru reported 80 kt (41 m/sec) winds and 20 ft (6 m) seas just northwest of the center.

Since the time of Thelma's development, the mid-tropospheric subtropical ridge had been intense over the western Pacific and extended well into China. By 12002 on the 23rd, geopotential heights at the 500 mb level began to fall over northern China as a low developed over eastern Monogolia and deepened rapidly. On the morning of the 24th, the subtropical ridge north of the tropical system showed signs of weakening.

During the evening of the 24th, reconnaissance aircraft positioned Thelma 145 nm (269 km) south-southwest of Kao-hsiung, which indicated that the storm was beginning to move northward. At this time the typhoon attained its maximum intensity of 85 kt (44 m/sec) with a minimum pressure of 957 mb, and slowed to 6 kt (11 km/hr). At 18002 the passenger liner, President McKinley, reported 45 kt (23 m/sec) winds and 20 ft (6 m) seas while some 70 nm (130 km) northeast of the eye.

On the morning of the 25th, radar data

showed that Thelma had turned toward the north-northeast and had accelerated to 10 kt (19 km/hr). When satellite confirmed the radar movement, the 2418002 warning was amended to reflect the system's impending threat to southern Taiwan. During early afternoon of the 25th, Thelma crashed into Kao-hsiung harbor (Fig. 4-2). The Chinese Weather Central reported that Kao-hsiung (WMO 46744) observed 86 kt (44 m/sec) peak winds accompanied by a 991.5 mb pressure minimum at 250939 local. Satellite, aircraft, radar, and synoptic data all indicated that the typhoon was small, but very intense. Most damage was confined to the direct path of Typhoon Thelma as the central mountain range of Taiwan drastically weakened the peripheral winds east of the typhoon's track.

After moving across southwestern-Taiwan, Thelma began to weaken, and move on a track slightly west of north. On the evening of the 25th, Thelma entered the Taiwan Straits, and on the following morning went ashore on mainland China, 30 nm (56 km) north of Fu-Chou with 50 kt (26 m/sec) winds.

During her rampage over Taiwan, Thelma claimed more than 30 lives, injured thousands, and rendered an estimated 5,000 homeless. The typhoon ripped down 53 steel towers supporting high-tension power lines. The loss of power shut down more than one-half of the island's 45,000 factories. Taiwan's largest harbor at Kao-hsiung was virtually destroyed. All eight giant cranes used to load and unload cargo were badly damaged or destroyed. At least 17 ships capsized in the harbor. In her few short hours over southern Taiwan, Thelma left destruction amounting to several millions of dollars (U.S.). According to the Central Weather Bureau of Taiwan, Typhoon Thelma was the most destructive tropical cyclone to hit Taiwan in more than 80 years.

FIGURE 4-2. Typhoon Thelma entering southwestern Taiwan with an 80 kt (41 m/sec) intensity, 25 July 1977, 02432. (DMSP imagery)

A tropical disturbance, north of the climatologically favored area, was first evident on satellite imagery and JTWC's synoptic gradient level analysis at 260000Z July 77 with a cyclonic surface circulation center near 25.5N-133.6E. Exhibiting westward movement over the next 24 hour period, the disturbance gained organization and potential for significant development. At 270500Z, a formation alert was issued. By 271800Z the surface circulation reflected 30 kt (15 m/sec) of wind at the surface and JTWC's initial warning on the system as Tropical Depression 07 (TD 07) was issued at 280000Z. Subsequent post-storm analysis revealed that TD 07 had reached 35 kt (18 m/sec) intensity (minimum tropical storm intensity) by initial warning time.

Beginning as far back as 2200002, a low cell imbedded in a tropical upper tropospheric trough (TUTT) had formed to the northeast of TD 07's initial warning position. Tracking west-southwest, this upper cell was centered near 30.5N-131.0E at 2600002. The TUTT, now nearly east-west oriented, continued to dig toward the west and at the same time an upper level anticyclone over Korea/Japan north of this TUTT built eastward. The 200 mb winds at stations along the east coast of Japan reflected 60-75 kt (31-39 m/sec) out of the north-northeast. By 2712002 the TUTT cell was centered near 27.8N 133.5E with strong difluence southeast of the cell located over the surface disturbance (Fig. 4-3). The vertical coupling had thus been effected and the necessary conditions for tropical cyclone development fulfilled.

FIGURE 4-3. Vera at barely 40 kt (21 m/sec) intensity showing strong difluence aloft to the southeast of a TUTT low, 28 July 1977, 0039Z. (NOAA-5 imagery)

By 280000Z, then, TD 07 was upgraded to a tropical storm and named Vera. A generally westward track (260°) at 3 kt (5.6 km/hr) was observed. Steering at this point seemed to be governed by the easterly flow on the southern periphery of the major anticyclone over Korea/Japan. The TUTT low also moved westward. By 291200Z the anticyclone over Korea/Japan began to build toward the southwest in advance of Vera. Therefore, steering influences were reflected in the observed west-southwest (becoming southwest) track that Vera assumed. As she proceeded southwestward, Vera continued to intensify attaining 65 kt (34 m/sec) by 291200Z. From 291200Z to 291800Z Vera intensified from 65 to 90 kt (34 to 46 m/sec) proceeding to the southwest at 9 kt (17 km/hr). Beyond 291800Z a marked decrease in forward speed was noted (from 9 to 4 kt [17 to 7.4 km/hr]) as the northeasterly steering at upper levels appeared to relax. Simultaneously, an increase in intensity occurred. By 3006002 Vera had attained winds of 100 kt (52 m/sec) and satellite imagery revealed a well-defined eye (Fig. 4-4) while reconnaissance aircraft reported 100 kt (52 m/sec) at the 700 mb flight level. By 301200Z satellite data showed improved outflow channels aloft to the west and north and fix positions from radar, satellite, and aircraft supported a more west-northwestward track.

FIGURE 4-4. Typhoon Vera 200 nm (370 km) east of Taiwan and accelerating northwestward.

Upon making her turn to the west-northwest, it became evident that Vera would likely pass directly over Iriomote-Jima and just to the south of Ishigaki-Jima. Figure 4-5 shows the one-hourly surface reports from Ishigaki-Jima (WMO 47978) and indicates eye passage south of the island between 302100Z and 302200Z. Maximum winds reported were from the southeast at 103 kt (53 m/sec) at 302200Z (Fig. 4-6). Minimum pressure reported was 935.6 mb at 302100Z. As Vera

passed south of Ishigaki-Jima, her speed had increased to 10 kt (19 km/hr). Post-analysis revealed that Vera attained her maximum intensity of 110 kt (57 m/sec) by 310000Z (Fig. 4-7) and decreased in intensity slowly thereafter as she approached Taiwan at a speed of 11 kt (20 km/hr) (Fig. 4-8). Aircraft reconnaissance at 310850Z verified a slight intensity decrease as low level inflow channels were restricted by the island of Taiwan.

TIME		FWC/JTWC GUAM									0.ATE 30-31 JULY 1977		
STATION	30/17	30/18	30/19	30/20	30/21	30/22	30/23	31/00	31/01	31/02	31/03	31/04	
47918 ROIG ISHIGAKIJIMA	♦ 1777	♥ 4 mm	♦ 668	V 571	\$ 356 ▼ ¶¶¶	⁴⁸³ √ 3 4	7 206	▼ 770	817	853	\$92 \$ 9 8	914	
	0	0	Q	0	0	0	0	0	0	0	0	0	

FIGURE 4-5. Hourly surface synoptic observations from Ishigaki-Jima during passage of Typhoon Vera.

FIGURE 4-6. Hua-Lien radar presentation of Typhoon Vera when Ishigaki-Jima was receiving maximum sustained winds of 103 kt (53 m/sec), 30 July 1977, 2200Z. (Photograph courtesy of the Central Weather Bureau, Taipei, Taiwan, Republic of China.)

FIGURE 4-7. Typhoon Vera at maximum 110 kt (57 m/sec) intensity and just 19 minutes after the radar imagery in Figure 4-6, 30 July 1977, 2219Z. (DMSP imagery)

Landfall on the island of Taiwan occurred at Keelung (Chi-Lung) at the mouth of the Chi-Lung Ho River basin. Moving at 11 kt (20 km/hr) Vera followed the river basin to the west-southwest toward Taipei. Keelung recorded a minimum low pressure of 939.9 mb at 3109302 and a total rainfall of 7.95 in (202 mm). Maximum winds recorded at the Chinese Weather Bureau office in downtown Keelung were 66.6 kt (34 m/sec) with gusts to 113 kt (58 m/sec) at 3110302. In Taipei, a minimum pressure of 951.5 mb was recorded at 3110282 with total rainfall recorded as 8.0 in (203 mm). Taipei International Airport reported maximum winds of 64 kt (33 m/sec) with gusts to 96 kt (49 m/sec). Both Keelung and Taipei established new records in observed maximum wind reports with Vera's passage. After passing over the northeastern part of Taipei

city, Vera continued on a nearly westward track and emerged in the Taiwan Straits just north of Hsin Chu at 311500Z. Vera continued on a westward track at 11 kt (20 km/hr) and made landfall on the China mainland near Ch'uan-Chou at 010100Z August with an intensity of 80 kt (41 m/sec).

Following so closely after Typhoon Thelma, which had wreaked havoc on the southern portion of Taiwan, Typhoon Vera left at least 25 dead in her wake and vast amounts of property and crop damage. Two ships sank, 10 went aground, 3 were washed away, and 22 were damaged. However, with timely warnings and the occurrence of Thelma two weeks prior, most ships diverted and rode out the storm in the safety of the open sea.

FIGURE 4-8. Typhocn Vera approaching northern Taiwan, 30 July 1977, 23522. The next cyclone, Tropical Storm Wanda, is shown at development stage with 30 kt (15 m/sec) winds 100 nm (185 km) south of Iwo-Jima. (NOAA-5 imagery from FLEWEAFAC Suitland, MD)

During August 1977, no typhoons were observed. The JTWC significant Tropical Weather Advisory of 31 August stated, "the probability is that the remainder of 1977 should see an increase in typhoon activity". The next day, 1 September, the seedling of the year's 10th tropical cyclone and the only super typhoon was first observed. Babe was a very challenging storm in that during her lifetime she threatened virtually every major DoD facility in the western North Pacific.

Satellite data on the 1st at 0143Z and 0000Z synoptic data indicated a weak surface circulation with associated convection near 7N-150E. Based on this data, a Tropical Cyclone Formation Alert was issued. At this time, there was a tropical upper tropospheric trough (TUTT) present at 200 mb to the North of the alert area. The TUTT maintained its position through the 3rd at 0000Z and the divergence on the southern side of the TUTT aided in the development of the seedling into Tropical Depression 10 (TD 10).

The first warning on TD 10 was issued on the 2nd at 0000Z. An aircraft fix on the 2nd at 0052Z estimated the maximum surface wind to be 40 kt (21 m/sec). On the following warning (0600Z), TD 10 was upgraded to Tropical Storm Babe. With the TUTT circulation providing fair outflow conditions aloft, Babe slowly intensified as she moved westward across the warm Philippine Sea. Babe was being steered at this time by a well developed mid-tropospheric subtropical ridge which extended from the dateline into central China. With this westward movement expected to continue, Babe was forecast to cross the Republic of the Philippines and pose a threat to Subic Bay and Clark AB. The westward movement continued until the 5th at 0000Z when signs of a change in direction of movement first appeared. Between the 2nd and the 4th, Babe had an average speed of 14 kt (25 km/hr). By the 4th at 1200Z, the speed had dropped to 8 kt (14 km/hr), further dropping to 5 kt (9 km/hr) in the following 12 hours.

On the 5th at 0000Z, an upper air trough in the mid-latitude westerlies appeared over northeastern Asia. A weakness in the subtropical ridge between the trough and Babe became evident and increased the probability of a more northerly storm track. A change in Babe's direction of movement was first noted by satellite data at 052155Z (Fig. 4-9) and confirmed by aircraft reconnaissance at 052243Z.

Taiwan, which was still recovering from the effects of earlier typhoons, Thelma and Vera, was now threatened again. Aircraft data between the 5th at 0832Z and the 7th at 2204Z showed Babe to have undergone rapid deepening with the central pressure dropping from 988 mb to 907 mb, a rate of 1.3 mb/hr. This rapid deepening was in response to the divergent southwesterly flow ahead of the strong upper air trough now stretching from east of Japan into central Taiwan, which provided a strong outflow channel aloft. Babe was upgraded to a typhoon on the 6th at 0000Z and a super typhoon on the 8th at 0000Z (Fig. 4-10).

FIGURE 4-9. Babe at minimal typhoon strength and heading northward, 5 September 1977, 21552. (DMSP imagery)

FIGURE 4-10. Super Typhoon Babe at 130 kt [67 m/sec] intensity 250 nm (463 km) southeast of Ishigaki Jima, 8 September 1977, 03032. (DMSP imagery)

Up until the 0800002 warning, Babe was still forecast to cross Taiwan and then dissipate in mainland China prior to full recurvature. On the 7th at 12002, however, another upper air trough moved into northern China. This short wave additionally weakened the mid-tropospheric ridge over southeastern China. A low soon developed in this trough over Korea indicating the trough would move slowly and possibly deepen. This increased the probability that Babe would recurve much earlier than expected. This came to pass and as Taiwan was relieved, Okinawa and Japan now faced the fury of Babe. Aircraft and radar data showed Babe began recurvature to the northeast after the 8th at 06002 and while weakening at a rate of 5 kt/6 hr (2.5 m/sec). Conditions of readiness were set for southern Japan and aircraft evacuated Kadena AB for appropriate "safe haven" locations (Fig. 4-11).

FIGURE 4-11. Typhoon Babe at 120 kt (62 m/sec) intensity, slowly weakening and accelerating northward, 9 September 1977, 02452. (DMSP imagery)

During Babe's north-northeastward transit, the upper air low which had formed over Korea moved south-southwestward, deepened and cut-off from the main upper air trough. This allowed ridging to the east and northeast of

Babe to build east-west to the north of Babe and the cut-off low steering Babe toward Korea, and eventually Shanghai. Evidence of a Fujiwhara type effect between Babe's circulation and the cut-off low also appeared. Babe finally steered around the northern periphery of the cut-off low and hit the People's Republic of China just north of Shanghai on the 11th at 0000Z with surface winds of 65 kt (33 m/sec) (Fig. 4-12).

The greatest damage from super typhoon Babe occurred after she recurved and headed for Japan. Newspaper reports described Babe as "the worst typhoon to threaten Japan in 18 years". Babe struck the Japanese island of Okino-Erabu with winds of 135 kts (69 m/sec) injuring 45 people and destroying 1600 homes. Kadena AB recorded maximum sustained winds of 36 kt (19 m/sec) on the 9th and a peak gust of 60 kt (31 m/sec) at 091328Z. Babe also disrupted maritime activities sinking a Panamanian freighter with 16 reported dead or missing and damaging approximately 100 Japanese fishing vessels which sought safety in the East China Sea.

The overall forecast accuracy for super typhoon Babe was below average. However, the DoD operational impact was decreased by the use of forecast confidence probabilities appended to JTWC prognostic discussion bulletins and the many telephone conversations between JTWC and WESTPAC staff meteorologists. This was confirmed by operations staff personnel at the 1978 Tropical Cyclone Conference.

FIGURE 4-12. Typhoon Babe during landfall 60 nm (111 km) north of Shanghai, People's Republic of China, 11 September 1977, 01092. The monsoon trough extending from the Philippine to the Mariana Islands would soon spawn the next typhoon, Dinah. (NOAA-5 imagery from FLEWEAFAC Suitland, MD)

Dinah, the 5th typhoon of 1977, displayed the most unusual behavior. While over the South China Sea, the storm executed two hairpin turns and one loop before meandering over South East Asia during dissipation. Dinah's development, however, was a more normal sequence of events.

"Super" Typhoon Babe's extensive circulation system aided the monsoon trough to move north of its normal location. After Babe dissipated over eastern China, the monsoon trough extended from South East Asia to the Mariana Islands along 20 degrees north latitude. South of the trough, deep southwesterly flow produced localized gale force winds and extensive areas of thundershower activity. North of the trough, steady easterlies prevailed. Although the opposing currents produced considerable cyclonic shear and relative vorticity within the trough, the counter productive northeasterlies in the upper troposphere produced enough vertical shear to prevent significant tropical cyclone development. Meteorological satellite data during this 2nd week of September period showed several loosely organized areas of convection within the monsoon trough. On the 12th, synoptic data located a low level circulation center 400 nm (741 km) north of Guam. Maximum intensity near the center was estimated to be 20 kt (10 m/sec) while localized gale force winds continued within the southwest monsoon current to the southern and eastern periphery of the monsoon trough. (Islanders in the southwest flow could not believe there was not a tropical storm or typhoon nearby.)

The circulation center initially moved northwestward at an average speed of 16 kt (30 km/hr). Synoptic reports and satellite imagery revealed a tropical upper-tropospheric trough (TUTT) oriented east-west and just north of the position of the low to midlevel monsoon trough. By 12002 on the 12th, a westward moving cyclone within the TUTT became positioned northeast of the surface disturbance. This orientation relieved much of the previously inhibiting vertical shear and provided an area of divergence aloft. This new flow pattern permitted the surface disturbance greater vertical growth and intensification. Satellite data soon identified a distinct vortex which separated from the areas of southwest monsoon cloudiness (Fig. 4-13). At 01002 on the 14th, a formation alert was issued. The disturbance now moved westward as it entered the steering influence of an anticyclone over the East China Sea. Satellite pictures soon showed larger and better developed banding features. Since corresponding surface reports also indicated intensification, the first warning was issued for TD 12. Post analysis, however, found that the disturbance had achieved tropical depression intensity by 1318002 and tropical storm stage by 1400002 (Fig. 4-14). This was the period of maximum TUTT interaction. Because of the favorable conditions present during this time, another disturbance about 300 nm (556 km) north of Guam developed into Tropical Storm Emma.

FIGURE 4-13. Tropical Depression 12 (Dinah) 225 nm (417 km) southwest of Iwo Jima while breaking away from its place of origin, the monsoon trough, 12 September 1977, 23102. (NOAA-5 imagery)

FIGURE 4-14. Dinah at tropical storm stage intensifying in an interesting split configuration, 14 September 1977, 00232. Dinah appears to be composed of two, comma-shaped convective systems rotating cyclonically with a narrow zone of relative subsidence between them. (NOAA-5 imagery)

As TD 12 grew and became Tropical Storm Dinah, the pressure gradient between the storm and the subtropical ridge increased. The associated easterly steering currents correspondingly increased and accelerated Dinah to a maximum speed of 19 kt (35 km/hr). An intensifying, mid-tropospheric high over eastern China was now the primary source of these easterlies. As this high pressure cell continued to build, Dinah was steered in a southwesterly direction towards the Republic of the Philippines. Forward speed decreased as the gradient slackened. Steady intensification continued as upper level outflow was well established in all quadrants. This trend persisted until Dinah reached minimum typhoon strength at 1506002 just 100 nm (185 km) off northern Luzon. With a maximum intensity of 55 kt (28 m/sec), the storm entered Luzon 35 nm (65 km) south of Escarpada Point at 1515002. That evening Dinah passed near Tuguegarao, a station in northeastern Luzon which experienced 96 kt (49 m/sec) peak winds and a mean sea-level pressure of 977.0 mb.

Upon entering the South China Sea after 7 hours over land, Dinah weakened to 40 kt (21 m/sec), but quickly reintensified to 50 kt (26 m/sec) winds within 14 hours. Headed west-southwestward, Dinah entered an area of weaker steering currents. The dominating anticyclone over China was beginning to weaken and mid-latitude westerlies began extending southward. By the 17th, the continued weakening of steering currents caused the storm to slow to 9 kt (17 km/hr) movement.

For the next 4 days, Dinah exhibited unusual behavior. The weakening subtropical ridge over China broke down into a series of smaller high cells while the southwest monsoon deepened. Caught between these oscillating and opposing steering sources, Dinah abruptly turned northeast and then executed a loop during the 17th. As the southwest monsoon strengthened and became the dominant steering flow, the storm was directed northeastward toward Taiwan.

Intensification resumed as a result of the enhanced monsoon. The weakening subtropical ridge and increasing outflow aloft also contributed to Dinah's growth. By 1818002, typhoon strength was again achieved. After being displaced north nearly 150 nm (218 km), movement slowed to 5 kt (9 km/hr) as Dinah's steering flow became less effective. By the 19th an advancing mid-latitude trough over China aided in steering Dinah eastward. Sustained winds of 65 kt (33 m/sec) persisted as satellite imagery at 1912012 revealed an eye. At 2000002, Dinah reached a short-lived maximum intensity of 75 kt (39 m/sec) (Fig. 4-15). Ever since Dinah's origin, the southwest monsoon was the major feeding current. By 2006002, this flow was being diverted into the beginnings of Tropical Storm Freda in the Philippine Sea and Dinah began to weaken.

As the mid-latitude trough advanced over China, it did not dig south as forecast and a large high pressure area built in behind it. In response, Dinah did not continue eastward in advance of the trough; it slowed to 2 kt (3.7 km/hr), turned westward, then southwest-

ward being influenced by the intensifying high over China. Dinah was the first storm to be directly affected by an early autumn surge in the northeast monsoon.

The northeasterlies from the strong high over China controlled Dinah's movement for the next 2 days. Diminishing moist southwesterlies and increasing dry northeasterlies steadily weakened the storm. Dinah accelerated southwestward and reached south Vietnam as a weak tropical depression at 2317002. JTWC's last warning was issued one hour later.

After landfall, Dinah, in its dissipating stage, persisted for 4 days. Tropical Storm Freda and the weakening of the northeast monsoon were the controlling agents in the last days of Dinah's unusual track. After crossing the South China Sea, Freda entered southern China drawing the southwest monsoon northward. Once again embedded in a southwest steering current, TD 12 (Dinah) journeyed northward through Cambodia, northeastward over the Gulf of Tonkin then northward into southern China and finally dissipated.

Dinah's sweep across northern Luzon caused loss of lives and property. Floods and landslides alone caused 15 deaths and 11 missing. Although Dinah remained a safe distance from mainland China while jogging unpredictably over the South China Sea, Hong Kong displayed the Stand By Signal No. 1 for a record 124 hours and 40 minutes.

FIGURE 4-15. Infrared, threshold photograph of Typhoon Dinah at maximum intensity of 75 kt (39 m/sec), 19 September 1977, 23102. This special product consolidates the thermal range into four slices (gray shades) with white being coldest and black warmest.

Black: greater than 253°K; dark gray: 253° to 233°K; light gray: 233° to 213°K; white: less than 213°K. (DMSP imagery from Det 5, 1WW, Clark AB, RP)

On the 1st of October, a large area of heavy convection, 300 nm (556 km) in diameter, was detected by satellite approximately 325 nm (600 km) north of Ponape. Synoptic data indicated a weak surface circulation in the vicinity. The system, which would later become Typhoon Gilda, was observed to be moving northward toward a weakness in the midtropospheric subtropical ridge.

On the 2nd of October, a Tropical Cyclone Formation Alert was issued as satellite data indicated increased organization and upper level outflow. Further intensification was expected due to the existence of an upper level trough to the northwest.

Aircraft reconnaissance on the morning of the 3rd reported 38 kt (20 m/sec) winds at the 1500 foot (441 m) flight level. Based on this data and the assessed good potential for further intensification, the first warning was issued on TD 15 at 00002 on the 3rd.

For the next 18 hours the tropical depression moved erratically toward the north at a speed of 5 kt (9.3 km/hr). During the 3rd, the mid-tropospheric subtropical ridge northeast of TD 15 began to build toward the west. Late on the 3rd, TD 15 responded and began to move toward the northwest. Simultaneously, the tropical depression began to interact with a cyclonic cell in the Tropical Upper Tropospheric Trough (TUTT) located to the depression's northwest. Divergent southwesterlies aloft, on the southeast periphery of the upper level cyclonic cell, enhanced the outflow of TD 15 and by 18002 on the 3rd the system had intensified to tropical storm intensity.

During the 4th, Tropical Storm Gilda continued to intensify as it accelerated to 12 kt (22 km/hr) on its northwestward track. Reconnaissance aircraft on the afternoon of the 5th indicated 80 kt (41 m/sec) winds at its 700 mb flight level, and observed that the central pressure of Gilda had fallen to 974 mb, a 15 mb drop in 11.5 hours. Using this information, Gilda was upgraded to typhoon at 06002.

During the past 36 hours, a mid-tropospheric, short wave trough moved eastward from eastern China toward Japan, and began to deepen. By the 5th this trough had moved east of northern Japan, and had dug sufficiently equatorward to sever the subtropical ridge north of Gilda. By the afternoon of the 6th, the typhoon had acquired a north-northwestward track toward the weakness in the ridge. At 0622Z, aircraft reconnaissance showed that the central pressure had risen to 986 mb. Consequently, the 0600Z warning was amended and Gilda was downgraded to a Tropical Storm. The weakening, however, was short lived; 24 hours later she had again attained typhoon intensity. At 1500Z on the 7th Gilda passed through the weakness in the subtropical ridge and shortly thereafter began recurving toward the north-northeast. As frequently observed with October tropical cyclones, Typhoon Gilda continued to intensify after recurvature. She attained her peak intensity of 70 kt (36 m/sec) on the 8th when aircraft at 0325Z reported the typhoon's minimum sea level pressure of 968 mb(Fig. 4-16).

By the night of the 8th, Gilda had again weakened to tropical storm strength, and had taken a northeast heading around the northwestern periphery of the mid-tropospheric high cell. During the subsequent 36 hours, the tropical storm accelerated rapidly toward the east-northeast and weakened at a rate of 5 kt (2.6 m/sec) per 6 hours. On the morning of the 10th, Gilda became extratropical, moving toward the east-northeast at more than 30 kt (55 km/hr).

During her eight day span, the closest point of approach to land was 220 nm (407 km) when she passed southwest of Marcus Island on the evening of October 5th. On the ocean, ships stayed well away from Gilda's strong winds. As a result, Gilda claimed no loss of life or damage to property.

FIGURE 4-16. Typhoon Gilda at maximum intensity of 70 kt (36 m/sec) during recurvature, 7 October 1977, 23432. (NOAA-5 imagery from FLEWEAFAC Suitland, MD)

Ivy, the 7th typhoon of 1977, originated from an easterly wave. It was first detected by synoptic data moving westward over the Marshall Islands on the 14th of October. Within 24 hours it entered an area of increased low level convergence associated with the near equatorial trough (NET), intensified, and developed a surface circulation. For the next 8 days it remained within the NET before breaking loose.

The development of Ivy was also aided by the movement of Tropical Storm Harriet, which was also embedded in the NET. TS Harriet moved northward through the Philippine Sea displacing the NET northward. This northward shift allowed for an increase in favorable conditions for intensification. By the 19th the developing cyclone (Ivy) was receiving most of the low level, southwesterly flow that was previously supplied to the now weakening Harriet (Fig. 4-17). The next day satellite data indicated that the disturbance's convective activity and organization had increased while surface reports indicated that the central pressures were steadily falling. JTWC, therefore, issued a formation alert at 2001262.

FIGURE 4-17. Infrared photograph of Ivy in the formative stage near Guam with Tropical Storm Harriet at maximum intensity of 55 kt (28 m/sec), 19 October 1977, 10142. (DMSP imagery)

Upper tropospheric, synoptic data from the morning of the 21st indicated that the outflow pattern above the alert area was continuing to strengthen. An aerial reconnaissance investigation on the afternoon of the 21st detected an organized surface cyclonic circulation with a 996 mb central pressure. Reconnaissance data further indicated that the disturbance was moving northward just east of the Mariana Islands. Along with supportive satellite data, the first warning on TD 17 was issued at 2106002.

On the morning of the 20th, TD 17 began moving through a break in the subtropical ridge previously opened by Harriet. This was also an area of weak and variable steering currents. From the morning of the 21st to the evening of the 22nd. there was a lack of any definitive, middle tropospheric steering flow which resulted in the erratic movement of the storm. For 36 hours TD 17 meandered and then looped before heading northeastward (Fig. 4-18).

During the formative stages of TD 17, upper tropospheric, synoptic and satellite data indicated the presence of a weak tropical upper tropospheric trough (TUTT) to the northeast. As the disturbance reached tropical depression intensity, data indicated that a low in the TUTT had developed. The establishment of the TUTT low in this region allowed for an increase in the advection of mass away from the storm. This allowed for further intensification and the depression to reach tropical storm intensity during the course of its loop. Aircraft reconnaissance

FIGURE 4-18. Infrared photograph of Ivy with 40 kt (21 m/sec) winds executing a cyclonic loop, 22 October 1977, 0923Z. (DMSP imagery)

on the 21st at 15452 observed a maximum flight level, 700 mb, wind of 38 kt (20 m/sec) associated with the storm. Based on this data TD 17 was upgraded to Tropical Storm Ivy at 2118002.

From the evening of the 22nd, the storm began to accelerate and move northeastward in response to an eastward moving short-wave trough in the mid-latitude westerlies. During this period the TUTT began to intensify. This created an upper air regime which was favorable for further intensification. On the morning of the 24th Ivy reached typhoon intensity. Reconnaissance aircraft at 03412 recorded a central pressure of 967 mb and observed sustained, 700 mb winds of 75 kt (39 m/sec) about an eye 30 nm (56 km) in diameter.

After reaching typhoon intensity, Ivy continued to the northeast. This movement caused the storm to pass 20 nm northwest of Marcus Island (WMO 47991) at 241930Z. Marcus reported a sustained 70 kt (36 m/sec) at 1800Z and 111 kt (57 m/sec) gusts at 2100Z. As Ivy continued northeastward, further intensification took place. After establishment of other TUTT lows to the north and south of the storm, a maximum strength of 90 kt (46 m/sec) was reached on the 25th (Fig. 4-19). New aircraft data reported a well defined eye with a 945 mb central pressure.

Typhoon Ivy maintained maximum intensity for 12 hours. The continued northward displacement was due to the increasing influence of a quasi-stationary upper-level trough east of Japan. This also caused the storm to enter a cooler environment which began to degrade Ivy into an extratropical system. As a result, the last warning was issued at 2618002. Ivy quickly weakened and became extratropical along a cold front.

FIGURE 4-19. Typhoon Ivy displaying a well defined eye at its maximum intensity of 90 kt [46 m/sec], 25 October 1977, 01062. [DMSP imagery]

Jean, the 18th tropical cyclone of 1977, established two season records; first, as the shortest-lived typhoon of the season and second, as the only tropical cyclone of 1977 for which a formation alert was not issued prior to the initial warning. Jean was first observed on satellite imagery as a weak disturbance located some 200 nm (371 km) southeast of Kwajalein Atoll at 2128Z on the 24th of October. While moving northwestward at 14 kt (26 km/hr), the disturbance was included on JTWC's Significant Tropical Weather Advisory (ABEH PGTW) for the next several days. Located downstream of an upper tropospheric trough axis in a difluent area aloft, the disturbance was in a favored position for development. By 1200Z on the 27th, an upper tropospheric outflow center (200 mb) was analyzed over the surface position further supporting development.

Due to the presence of a ship in close proximity to the cyclone, the initial warning on Tropical Depression 18 was issued at 12002 on the 28th with an intensity of 30 kt (15 m/sec) and a northwest movement at 14 kt (26 km/hr). Satellite data over the next 6 to 12 hours indicated an intensity increase and at 18002 on the 28th the depression was upgraded to tropical storm status. At this same time, Jean was beginning to show a more northward trend and had slowed appreciably to a speed of 6 kt (11 km/hr). The more northward thence north-northeastward track was attributed to upper- and mid-tropospheric level steering influences which were dominant above the easterly steering flow near the surface and in the lower troposphere. Because the steering currents at various levels were not acting in conjunction, a slowing trend in forward movement was noted.

At 0513Z on the 29th, reconnaissance aircraft penetrated the storm and observed surface winds near 60 kt (31 m/sec) and also reported that an eye was beginning to form. Satellite imagery at 0905Z on the 29th (Fig. 4-20) further supported the aircraft's observed intensification; consequently, at 1800Z on the 29th, Jean was upgraded to a typhoon. Satellite positioning also dictated a more north-northeastward track. Jean maintained minimum typhoon intensity for the next 6 hours through the 300000Z warning thereby establishing the aforementioned record as the shortest-lived typhoon of the season.

Post analysis revealed that beyond the 300000Z position Jean began to react to the effects of very strong vertical shear. At the surface and at low-tropospheric levels, steering flow was strong easterly around the southern periphery of the subtropical ridge. Steering flow at mid- and upper-tropospheric levels was strong west-southwesterly. Under this hostile regime, Jean began to weaken and had made her furthest northeastward incursion by 1200 on the 30th with 55 kt (28 m/sec) intensity. Satellite data on the 30th showed an exposed low-level circulation center to the west of the area of major convective activity. Jean began to weaken rapidly and move west and then west-northwest in response to the east/east-southeasterly steering at low tropospheric levels. Figure 4-21 depicts

FIGURE 4-20. Infrared photograph of Jean at 55 kt (28 m/sec) intensity tracking north-northeastward, 29 October 1977, 09052. (DMSP imagery)

FIGURE 4-21. Exposed low level circulation of Tropical Storm Jean at 40 kt (21 m/sec) intensity during westward acceleration, 31 October 1977, 01022. [DMSP imagery]

the low level circulation center with the major convection sheared off to the east. Figure 4-22 is a graphic depiction of Jean's passage north of Marcus Island through three-hourly synoptic reports.

JTWC issued its expected final warning on TD 18 (formerly Tropical Storm Jean) at 12002 on the 31st with a forecast dissipation within 12 hours. The low level circulation was closely monitored via satellite for signs of reintensification for the next 24-36 hours. By 2323Z on the 1st of November, the disturbance began to show an improved satellite signature with an increase in convective activity. TD 18 was reactivated and a warning was issued at 0000Z on the 2nd of November. AT this time, TD 18 began meandering northward at 3 to 4 kt (5.5 to 7.5 km/hr)

and showed an intensity of 30 kt (15 m/sec). For the next 12 to 24 hours, the system executed a looping movement and by 1450Z on the 2nd satellite data again showed the effects of strong vertical shear with an exposed low level circulation again visible to the west of the main convection. Once sheared off, the low level circulation responded to low tropospheric, northeasterly flow around the southeastern periphery of a large anticyclone centered over the Sea of Japan. The final warning was issued at 031200Z with dissipation forecast by 031800Z. The low level circulation center continued tracking to the southwest and then west-southwest remaining weak and visible on satellite imagery until 0019Z on the 6th of November.

TIME					FWC	/JTW	C G	UAM		DATESO	ОСТ	1977
STATION	30/21	31/00	31/03	31/06	31/09	31/12	31/15	31/18	31/21	01/00		
	0	C	0	0	0	0	0	0	0	0	0	0
47991 RJAM MARCUS	F099	082	6F •049	2 \$ 970	8 949	9038	9071	9096	•m7	•132 3	0	0

FIGURE 4-22. Three-hourly synoptic surface observations at Marcus Island during the passage of Jean.

A STATE OF THE STA

Kim, the 9th typhoon of the season, originated in an active near-equatorial trough (NET), which extended through the western Marshall Islands. Weak surface circulations existed within this trough near Ponape and Kwajalein. During the 2nd of November, this activity had consolidated into a single surface circulation 100 nm (185 km) southwest of Ponape with a central pressure of 1007 mb. The disturbance began moving northwestward within the NET at approximately 6 kt (11 km/hr).

At 21552 on the 3rd, satellite first fixed the disturbance and estimated the winds to be 20 kt (10 m/sec). A circulation center was located 150 nm (270 km) northwest of Ponape. With the weekend approaching, a formation alert was issued on the 4th as satellite and synoptic data indicated a strengthening surface circulation. Aircraft reconnaissance the next day found a central pressure of 1007 mb and estimated a maximum surface wind of 20 kt (10 m/sec). As the disturbance continued northwestward toward a broad, relative weakness in the strong mid-tropospheric subtropical ridge, synoptic and satellite data still indicated no significant development. Potential for development remained fair to good and the formation alert was therefore extended for 24 hours. A second aircraft investigation on the 6th fixed the system with a 1004 mb central pressure and maximum surface winds of about 25 kt (13 m/sec). Kim's first warning as TD 19 was issued at 06002 on the 6th. The system was upgraded to Tropical Storm Kim just 12 hours later.

Kim next turned toward Guam at a speed of approximately 10 kt (19 km/hr). Slow intensification occurred during the next 48 hours due to the dominating presence of the strong subtropical ridge to the north. A short wave trough in the upper tropospheric westerlies also hampered rapid development by restricting outflow to the north of Kim. However, after the trough passed by, outflow aloft steadily strengthened. A deepening long wave trough over eastern Asia was now beginning to weaken the subtropical ridge which was previously suppressing Kim's low level development. Satellite data at 0802042 indicated increased organization (Fig. 4-23). Kim began intensifying at the rate of 30 kt (15 m/sec) in 24 hours and the central pressure dropped 22 mb in a 24 hour period.

Kim passed directly over Guam on 8
November between 10207 and 12357 approaching
Guam from the east-southeast, moving westward
over the island, and exiting toward the westnorthwest. The eye entered with a circular
configuration and exited with an elliptical
configuration. Figure 4-24 depicts eye passage as seen by radar while Figure 4-25 displays the barograph trace recorded at Andersen
AFB, Guam. The duration of the eye passage over
the island lasted up to 1 hour and 10 minutes
near the center of the storm track. The peak
gust recorded was 77 kt (40 m/sec) on Nimitz
Hill. The greatest damage was in the southern end of the island where 22 homes were
damaged or destroyed (Figs. 4-26 and 4-27).
Fortunately, no lives were lost on Guam.

FIGURF 4-23. Kim at 50 kt (16 m/sec) intensity, rapidly intensifying, and heading for Guam, 8 November 1977, 02042. (DMSP imagery)

FIGURE 4-24. Air Weather Service radar presentation of Kim at 60 kt [31 m/sec] intensity with the eye over Guam, 8 November 1977, approximately 11302. [Photograph courtesy of Det 2, 1WWg, Andersen AFB, Guam.]

FIGURE 4-25. Reproduction of the barograph trace from Andersen AFB, Guam during eye passage of Kim. The center passed approximately 8 nm (15 km) south of Andersen AFB.

FIGURE 4-26. Kim's nearly typhoon strength winds battered the exposed, coastal village of Umatac. (Photograph courtesy of P. J. Ryan of the Pacific Vaily News.)

FIGURE 4-27. Although damage was slight on most of the island, Umatac Village on the southwest coast did not fare so well. [Photograph courtesy of P. J. Ryan of the Pacific Daily News.]

Kim was upgraded to typhoon strength at 2200 local on the 8th just after exiting Guam. For the next 48 hours the storm continued to intensify. The subtropical ridge continued to slowly weaken throughout this period, but it maintained sufficient strength to steer kim in a west-northwestward direction. Moving at approximately 15 kt (28 km/hr), Kim advanced toward another weakness in the ridge located between two subtropical high pressure cells. As the tropospheric steering flow weakened, forward speed decreased and intensification increased. When Kim was nearest this weakness within the ridge, she attained a speed minimum, 5 kt (9 km/hr), and an intensity maximum of 125 kt (64 m/sec) (Fig. 4-28).

Kim now took on a more westward track as she came under the influence of the next subtropical high cell. Kim was also gradually approaching a deep, quasi-stationary, upper tropospheric trough over Asia. This trough produced strong southwesterly flow which began to restrict outflow ahead of Kim resulting in decreasing intensity. At the same time, a deepening low cell in the Tropical Upper Tropospheric Trough (TUTT) was slowly approaching Kim from the east. This low cell eventually came in position to enhance upper level outflow. A secondary maximum intensity, 120 kt (62 m/sec), was achieved from this interaction.

Kim was soon headed straight for central Luzon (Fig. 4-29). Landfall occurred on the 13th causing extensive damage on the coastline with winds of 115 kt (59 m/sec). The storm passed about 35 nm (65 km) north of Manila and 5 nm (9 km) south of Clark AB.

The typhoon exited into the South China Sea 7 hours after landfall with an intensity of 65 kt (33 m/sec). This amount of weakening is in good agreement with the latest climatological studies of intense typhoons crossing Luzon. Even though the South China Sea still had warm sea surface temperatures, Kim never reintensified due to strong, cool northeast monsoon flow entraining into the storm environment. By this time the midlatitude westerlies had sufficiently weakened the subtropical ridge which separated Kim from the westerlies. Rapidly decelerating, Kim turned northward in response to the steady southwesterly steering flow being produced by an approaching upper tropospheric trough. Increased upper level shearing began the storm's extratropical transformation. Turning northward, Kim entered deeper westerly flow and was accelerated northeastward through the Bashi Channel. Kim became an extratropical system by 0000Z on the 17th and merged with a weak frontal system east of Taiwan.

Kim was a long-lived storm with 44 warnings issued during a 12 day period. Guam sustained moderate property damage when Kim crossed the island as a strong tropical storm. Luzon, however, reported 55 drownings due to widespread flooding. In Manila, a fire in a hotel, caused by a lighted candle, during the height of the storm resulted in 47 deaths. Minor damage occurred at Clark AB with a roof blown from a school building and falling trees causing other damage. One ship was reported sunk while another went aground as Kim exited into the South China Sea.

FIGURE 4-28. Infrared photograph of Typhoon Kim at peak intensity of 125 kt (64 m/sec), 10 November 1977, 21452. (DMSP imagery)

FIGURE 4-29. Infrared photograph of Typhoon Kim with 110 kt (57 m/sec) winds about 20 hours before landfall on the Philippine Islands, 12 November 1977, 22552. (DMSP imagery)

Lucy, the 10th typhoon, was in most respects a typical winter season storm. Development was difficult and near the equator while recurvature occurred at a low latitude. An unusual event happened during the development stage when the system divided into two disturbances and then recombined 2 days later.

As with the previous typicon (Kim), Lucy's birth was a "double vortice" development pattern discussed by many authors. The earliest accounts of tropical storms occurring simultaneously on both sides of the equator are described in a book "The Law of Storms" by Reid (1849). In this particular case the tropical cyclone in the Southern Hemisphere near equatorial trough (NET) developed first and was well on its way to maturity before Lucy formed in the Northern Hemisphere NET. The expanding circulation about the Southern Hemisphere TC 24-77 (Steve) strengthened the westerly flow along the equator increasing the horizontal shear along the Northern Hemisphere NET aiding the development of Lucy (Fig. 4-30). On the 26th, 33 kt (17 m/sec) gradient level winds were observed at Tarawa (WMO 91610), an island about 75 nm (139 km) north of the equator. Westerlies extended above 500 mb and created an extensive horizontal wind shear trough north of the equator. Enough cyclonic spin was imparted over the Marshall Island area that the nearby preexisting disturbance began to develop. All factors for further development were present therefore, at 270600Z a Tropical Cyclone Formation Alert was issued.

A large mid-tropospheric anticyclone dominated the subtropical western Pacific and concentrated strong trade winds north of the depression. The system soon began accelerating westward as it neared the anticyclone's southern domain. Synoptic data indicated an increase in circulation size and satellite imagery showed better organization. Weather

FIGURE 4-30. "Double Vortices". Lucy is seen in her formative stage in the Northern Hemisphere NET between Kwajalein and Majuro while TC 24-77 (Steve) is near maturity in the Southern Hemisphere NET, 25 November 1977, 21182. (NOAA-5 imagery)

reconnaissance aircraft were sent in to investigate further. Early on the 28th aircraft found a 997 mb surface pressure center with 30 kt (15 m/sec) surface winds and 45 kt (23 m/sec) flight level winds at 1500 ft (457 m). JTWC thus issued their first warning on TD 20 at 280600Z. Six hours later the depression crossed the southern coast of Ponape (WMO 91348) with only 10 kt (5 m/sec) sustained and 25 kt (13 m/sec) gusts reported. These unexpectedly weak surface winds supported prior aircraft reports which observed maximum winds at flight level, not surface.

On the 29th TD 20 split into two disturbances. One went northwestward and the other west-southwest around the Truk Islands (Fig. 4-31). This split occurred when increasing amplitudes in the mid-latitude long wave patterns strengthened the subtropical, mid-tropospheric anticyclone which was positioned north of TD 20. The pressure gradient between TD 20 and the high pressure cell generated 45 kt (23 m/sec) easterly flow at 500 mb. The resulting intense, horizontal shear produced enough vorticity to induce a secondary circulation system just north of TD 20. As they separated, both systems weakened as their energy sources also became divided.

Because the northern system was generated in the mid-troposphere, it was reflected on the surface only as a weak depression. Infrared satellite imagery identified the northern split as having more activity at higher levels. Aircraft and synoptic data indicated better organization in the southern split. The northern system reached a maximum forward speed of 20 kt (37 km/hr) as the pressure gradient peaked. This rapid movement

FIGURE 4-31. Lucy during an unusual split configuration while over the Caroline Islands, 29 November 1977, 21252. (DMSP imagery)

placed the secondary disturbance well ahead of TD 20's primary circulation. As the dual system moved westward away from the dominating influence of the subtropical high, horizontal shear and induced vorticity diminished. This resulted in the northern system's deceleration and dissipation. The southern, primary, system soon caught up to and absorbed the remnants of the northern system 100 nm (185 km) northwest of Woleai Atoll. By 00002 on the 1st of December, TD 20 was again a single system with the same intensity as it was before the split.

TD 20 now began heading northwestward around the southwestern periphery of the steering anticyclone toward a break in the subtropical ridge. Deceleration and intensification progressed for the next 2 days. TD 20 became Tropical Storm Lucy at 0106002. Aircraft data, however, still indicated that the storm was best developed in the middle layers. This was again evidenced when Lucy passed 25 nm (46 km) northwest of Yap (WMO 91413) which only experienced 15 kt (8 m/sec) sustained surface winds and a sea-level pressure minimum of 1001 mb.

Continuing northwestward, Lucy appeared to be heading for a recurvature path. An intense, short-wave trough was passing north of Lucy, with an apparent weakening in the subtropical ridge. But the trough quickly passed, trailing a migratory anticyclone behind and Lucy again took a more westward track. Now headed for the Republic of the Philippines, Lucy attained typhoon intensity at 0206002 and continued to deepen. Synoptic and satellite data showed excellent upper

level divergence in all quadrants. Aircraft reconnaissance began reporting maximum winds nearer the surface, indicating better vertical development. By this time Lucy attained a maximum intensification rate of 20 kt (10 m/sec) per 6 hours and satellite data revealed a large, well defined eye (Fig. 4-32).

By the 3rd of December, Lucy was again heading northwestward as a strong westerly trough began creating another weakness in the subtropical ridge. In 24 hours the ridge west of Lucy had completely dissipated. Lucy's easterly steering currents rapidly weakened under increasing pressure from the advancing trough. At 1800Z on the 3rd, a 115 kt (59 m/sec) maximum intensity was reached with a minimum forward speed of 8 kt (15 km/hr). Within the next 12 hours, Lucy recurved ahead of the approaching trough.

The storm soon became completely embedded in mid-latitude westerly flow and accelerated northeastward. Lucy was downgraded to tropical storm stage 48 hours after recurvature. Upper level vertical shear and low level cool, dry entrainment became the significant factors for weakening. Lucy was eventually steered into a frontal zone and became an extratropical wave within the boundary.

The last warning was issued at 0718002. Lucy's extratropical transformation extended over several days since both polar and tropical air flows converged into the system. Lucy traveled eastward as a weak cyclone along the front and was eventually absorbed into a large, winter storm system over the central Pacific.

FIGURE 4-32. Typhoon Lucy with 85 kt (44 m/sec) winds and undergoing rapid deepening, 2 December 1977, 2215Z. (DMSP imagery)

MARY

Mary, the 11th and final typhoon of the year moved across the western Pacific for 15 days and covered 4002 nm (7445 km), the second longest storm on record for distance traveled. On the 19th of December satellite data detected a tropical disturbance moving slowly east-northeastward near 9N-177E where weak steering currents existed. Steering was primarily influenced by the winter season westerlies, which extended far into the subtropics. During the next few hours, satellite data indicated slow intensification while a well defined comma shaped cloud was becoming evident (Fig. 4-33). At 00002 on the 20th a formation alert was issued. Upper air data at 500 mb indicated that a strong mid-tropospheric subtropical ridge had formed to the west of the disturbance. At the same time an intense mid-latitude 500 mb trough was approaching. The combined effects of this trough and a strong anticyclone above the storm produced steady upper level diver-gence and created a well defined outflow channel to the north. Further intensification appeared likely and the first warning was issued on TD 21 at 06002 on the 20th. However, for the next 24 hours, the system became quasi-stationary near 10N-179E as the westerlies gradually receded northward. During this period the system grew to tropical storm strength as GOES imagery indicated increased outflow to the north.

Shortly after 12002 on the 21st, the storm began to accelerate westward. The 500 mb trough to the north had moved eastward with a ridge now developing north of Mary. This formation imparted westerly steering flow south of the ridge axis. Mary responded and quickly accelerated to 12 kt (22 km/hr). On the 22nd Mary turned toward the westnorthwest in response to a shallow mid-latitude trough which weakened the subtropical

ridge northwest of the storm. By 00002 on the 23rd Mary reached typhoon intensity as satellite data indicated continued increase in outflow and formation of an eye. Mary slowed to 8 kt (15 km/hr) and continued moving west-northwest for the next 30 hours while intensifying further.

The first aircraft reconnaissance entered the storm at 01152 on the 24th and reported 90 kt (46 m/sec) maximum surface winds and 75 kt (39 m/sec) winds at 700 mb. Satellite data also estimated the storm intensity to be 75 kt (39 m/sec). About five hours later, Mary began to decelerate while nearing a weakness in the subtropical ridge. Then the storm turned northward and appeared as though recurvature was beginning. However, analysis of 500 mb synoptic data indicated the mid-latitude westerlies were again receding. The subtropical ridge again restablished itself and Mary responded by looping clockwise and was subsequently influenced by the northerly flow around the eastern edge of a strong, eastward migrating anticyclone. The storm now moved southsouthwestward at 5 kt (9 km/hr). Satellite data (Fig. 4-34) indicated Mary had continued to intensify and at 03142 on the 25th aircraft reconnaissance indicated a central pressure of 947 mb with maximum sustained surface winds of 100 kt (51 m/sec). Just three hours later, Utirik Atoll 55 nm (102 km) southeast of Mary, recorded winds of 40 kt (21 m/sec).

Mary soon began to accelerate to 12 kt (22 km/hr) towards the west-southwest along the southeastern periphery of the strengthening subtropical high cell. The resulting steering flow at mid-levels plus rapid movement of the typhoon were expected to weaken Mary. By the 26th satellite data indicated

FIGURE 4-33. Mary during initial development near the dateline, 19 December 1977, 2110Z. (NOAA-5 imagery)

ENIWET

FIGURE 4-34. Typhoon Mary during execution of a loop 6 hours before attaining a maximum 100 kt [51 m/sec] intensity, 24 December 1977, 2049Z. (GOES imagery from SFSS, Honolulu, HI)

Mary had indeed weakened and Mary was downgraded to a tropical storm. Aircraft reconnaissance at 03572 on the 26th confirmed corresponding satellite data when 60 kt (31 m/sec) surface winds were observed.

As Mary turned westward along the southern boundary of the subtropical high cell, the storm accelerated to 19 kt (35 km/hr). By the 28th Mary began moving west-northwestward in response to another trough induced weakness in the subtropical ridge. Mary again slowed due to the weaker steering currents. Satellite data once again indicated intensification (Fig. 4-35). As the trough moved rapidly eastward, the subtropical ridge again strengthened north of the storm and Mary turned west-southwestward and began to weaken for the second time. Accelerating steadily Mary attained a 15 kt (28 km/hr) forward movement and continued to weaken as development became restricted by the expanding ridge.

Mary continued her westward movement for the next several days. Weakening slowly, the storm was downgraded to a tropical depression at 00002 on the 1st of January. The system maintained 30 kt (15 m/sec) winds until moving over the central Philippines near Leyte Gulf. Satellite data indicated rapid dissipation over land with the final warning issued at 18002 on the 3rd. Mary turned sharply southward over the Philippines when the strong northeast monsoon was encountered, which aided rapid dissipation.

Although Mary was not the longest lived storm on record, the 4002 nm (7445 km) distance traveled was the second longest. What is also noteworthy is that no injuries or major damage resulted during its long journey across the western Pacific. Mary was indeed a fitting end to a most unusual tropical cyclone year.

FIGURE 4-35. Mary at 50 kt (26 m/sec) intensity and slowly deepening between Guam and Truk, 28 December 1977, 21362. (DMSP imagery)

2. NORTH INDIAM OCEAN TROPICAL CYCLONES

During 1977, there were five tropical cyclones in the North Indian Ocean (Table 4-6). These occurrences were climatologically consistent; two in the spring and three in the autumn. However, these cyclones persisted much longer and were more intense than normal. TC 21-77, for example, developed in the Bay

of Bengal, traversed southern India, regenerated in the Arabian Sea, looped while reaching typhoon strength, then finally dissipated over southwestern India after traveling a total of 1387 nm (2570 km). TC 22-77 was the next and largest cyclone this season. It became the third and most destructive storm to hit India. Because of its strength and devastating impact, TC 22-77 is further discussed in the following individual summary.

TABLE 4-6. FREQUENCY OF NORTH INDIAN OCEAN CYCLONES BY MONTH AND YEAR.

YEAR*	3	F	М	A	М	J	J	A	S	0	N	D	TOTAL
1971	0	0	0	0	0	0	0	0	0	1	1	0	2
1972	0	0	0	1	0	0	0	0	2	0	1	0	4
1973	0	0	0	0	0	0	0	0	0	1	2	1	4
1974	0	0	0	0	0	0	0	0	0	0	1	0	1
1975	1	0	0	0	2	0	0	0	0	1	2	Q	6
1976	0	0	0	1	0	1	0	0	1	1	0	1	5
1977	0	0	0	0	1	1	0	0	0	1	2	0	5
AVG	0.1	0	0	0.3	0.4	0.3	0	0	0.4	0.7	1.3	0.3	3.9

^{*1971-1974} REPRESENT BAY OF BENGAL CYCLONES ONLY

TC 22-77 was the most devastating storm in the Indian Ocean since 1971. It developed 115 kt (59 m/sec) winds and inundated Southeastern India with heavy rains and high seas TC 22-77 occurred during the autumn monsoon transition period, when cyclone development is most favorable, and became the only storm to attain typhoon strength this season in the Bay of Bengal.

Meteorological satellite first located TC 22-77 during the morning of the 14th of November as a weak disturbance, approximately 150 nm (278 km) southwest of the Nicobar Islands. Five hours later new satellite data revealed better defined banding which indicated increased organization. This prompted the issuance of a formation alert the same day at 1310Z. Heading due west along the southern periphery of the mid-tropospheric subtropical ridge, the disturbance quickly accelerated to 13 kt (24 km/hr), while steadily intensifying. Later satellite and synoptic data supported a well developed cyclone of about 40 kt (21 m/sec). At 0800Z on the 15th the first warning was issued. A post analysis showed that TC 22-77 was rapidly developing during this period.

Ever since TC 22-77 was first detected, an upper tropospheric trough was forming over northern India. By the 15th this trough was firmly established and extended over central India, creating a break in the subtropical ridge. As the cyclone neared India, it began moving northwestward toward the trough induced break. This break also weakened the mid-tropospheric anticyclone and consequently reduced the storm's steering flow, and as a result, TC 22-77 steadily slowed to a 4 kt

(7 km/hr) movement. It was now intensifying at the rate of 30 kt (15 m/sec) per 24 hours, primarily in response to the divergent southwesterly flow produced by the upper level trough above the approaching cyclone. TC 22-77 attained typhoon strength by the afternoon of the 15th, and by 06292 on the 16th satellite data revealed an eye.

For the next 2 days, TC 22-77 tracked north-northwestward at an average speed of 9 kt (17 km/hr) while continuing to strengthen. By the 18th, it began to decelerate and was intensifying 10 kt (5 m/sec) each day. Successive satellite pictures showed tighter banding features while the eye became more distinct (Fig. 4-36). Approximately 75 nm (140 km) from the Indian coast, TC 22-77 reached a maximum intensity of 115 kt (59 m/sec). Just prior to landfall, TC 22-77 accelerated to 9 kt (17 km/hr) toward the north-northwest. At 11002 on the 19th, the storm struck with sustained winds of 105 kt (54 m/sec) and an 18 ft (5.5 m) tidal wave along the coast of Andhra Pradesh about 40 nm (75 km) south of Vijayawada (WMO 43181). TC 22-77 then turned northward over flat farm lands while weakening slowly, and the final warning was issued at 20002 on the 19th.

The combined winds, seas and rains generated by TC 22-77 killed nearly 10,000 people, left hundreds of thousands homeless and devastated lands that produce roughly 40 per cent of India's food grains. The tidal wave was probably the single most destructive force accompanying the storm. It penetrated 10 nm (19 km) inland and washed away more than 21 villages.

FIGURE 4-36. Infrared photograph of TC 22-77 at maximum intensity of 115 kt (59 m/sec), 18 November 1977, 16182. In the Arabian Sea TC 21-77 with 65 kt (33 m/sec) winds completing a loop before striking southwestern India. (NOAA-5 imagery from FLEWEAFAC Suitland, MD)

The state of the s

3. CENTRAL NORTH PACIFIC TROPICAL CYCLONES

No tropical cyclones developed over the central North Pacific during 1977 (Table 4-7).

TABLE 4-7. FREQUENCY OF CENTRAL PACIFIC STORMS BY MONTH AND YEAR. (NUMBER IN PARENTHESIS INDICATE STORMS REACHING HURRICANE INTENSITY)

	JAN- JUN	JUL	AUG	SEP	ост	NOV- DEC
1967	0	0	0	0	1	0
1968	0	0	2	0	0	0
1969	0	0	0	0	0	0
1970	0	0	1	0	0	0
1971	0	1 (1)	1	0	0	0
1972	0	0	3 (1)	1	0	0
1973	0	1 (1)	0	0	0	0
1974	0	0	2 (1)	0	0	0
1975	0	0	0	0	0	0
1976	0	0	0	1 (1)	0	0
1977	0	0	0	0	0	0
AVERAGE	0	.2(.2)	.8(.2)	.2(.1)	.1	0

CHAPTER V - SUMMARY OF FORECAST VERIFICATION DATA

1. ANNUAL FORECAST VERIFICATION

a. POSITION FORECAST VERIFICATION

Forecast positions at initial warning times and those at 24-, 48-, and 72-hour times are verified against the best track. Positions for dissipated or extrapolated storms are not verified. In addition to the overall verifications depicted in Table 5-1, a separate verification for only Pacific Area typhoons is computed. This information is listed in Table 5-2, for comparison with

previous years. This same information is depicted graphically in Figure 5-1. A computation of closest distance to the best track (right angle error) is also calculated. Right angle error, graphically depicted in Figure 5-2, is a measure of ability to forecast the path of motion without regard to speed. In the Indian Ocean Area, no 72-hour forecasts are available for verification, and no attempt is made to segregate storms by intensity. Error statistics for this area are summarized in Tables 5-2 and 5-3 and Figure 5-3.

	ERROR FO	OR TROI	PICAL CYCLON	ES	
	WESTERN	NORTH	PACIFIC**	INDIAN	OCEAN**
	24-HR	48-HR	72-HR	24-HR	48-HR
1950-58	170				
1959	*117	*267			
1960	177	354			
1961	136	274			
1962	144	287	476		
1963	127	246	374		
1964	133	284	429		
1965	151	303	418		
1966	136	280	432		
1967	125	276	414		
1968	105	229	337		
1969	111	237	349		
1970	98	181	272		
1971	99	203	308	220	410
1972	116	245	382	193	233
1973	102	193	245	203	305
1974	114	218	351	137	238
1975	129	279	442	145	228
1976	117	232	336	138	204
1977	140	266	390	122	292

2. TD 0 3. TS R 4. TD 0 5. TY S 6. TY T 7. TY V 8. TS K 9. TS K 10. STY 11. TS 0 12. TY D	PATSY 55 02 20 RUTH 19 04 46 SARAH 22 THELMA 16 VERA 14 WANDA 27 AMY 38 BABE 17		# WRNGS 25 6 14 6 21 21 18 17	FCST ERROR 108 167 92 211 119 97 121 129	24 HOUR RT ANGLE ERROR 77 13 72 70 70 58 72 84	WRNGS 17 2 10 2 17 17 17 14 13	FCST ERROR 84 298 121 200 174	48 HOUR RT ANGLE ERROR 54 177 83 134 123	# WRNGS 9 6 13 13 10	FCST ERROR 163 884 129 255	72 HOUR RT ANGLE ERROR 127 447 94 157	# WRNGS 9 2 8 9
2. TD 0 3. TS R 4. TD 0 5. TY S 6. TY T 7. TY V 8. TS K 9. TS K 10. STY 11. TS 0 12. TY D	02 20 RUTH 19 04 46 SARAH 22 THELMA 16 VERA 14 WANDA 27 AMY 38 BABE 17	10 16 31 12 9 8 17	6 14 6 21 21 18 17	167 92 211 119 97 121 129	13 72 70 70 58 72 84	2 10 2 17 17 17	298 121 200 174	177 83 134	6 13 13	884 129 255	94 157	2 8 9
3. TS R 4. TD 0 5. TY S 6. TY T 7. TY V 8. TS W 9. TS W 10. STY 11. TS C 12. TY D	RUTH 19 04 46 SARAH 22 THELMA 16 VERA 14 WANDA 27 AMY 38 BABE 17	16 31 12 9 8 17	14 6 21 21 18 17	92 211 119 97 121 129	72 70 70 58 72 84	10 2 17 17 14	121 200 174	83 134	13 13	129 255	94 157	8 9
4. TD 0 5. TY S 6. TY T 7. TY V 8. TS W 9. TS A 10. STY 11. TS 0 12. TY D	04 46 SARAH 22 THELMA 16 VERA 14 WANDA 27 AMY 38 BABE 17	31 12 9 8 17 19	6 21 21 18 17	211 119 97 121 129	70 70 58 72 84	2 17 17 14	121 200 174	83 134	13 13	129 255	94 157	8 9
5. TY S 6. TY T 7. TY V 8. TS W 9. TS A 10. STY 11. TS C 12. TY D	SARAH 22 THELMA 16 VERA 14 WANDA 27 AMY 38 BABE 17	12 9 8 17 19	21 21 18 17	119 97 121 129	70 58 72 84	17 17 14	200 174	134	13	255	157	9
6. TY T 7. TY V 8. TS W 9. TS A 10. STY 11. TS C	THELMA 16 VERA 14 WANDA 27 AMY 38 BABE 17	9 8 17 19	21 18 17	97 121 129	58 72 84	17 14	200 174	134	13	255	157	9
7. TY V 8. TS W 9. TS A 10. STY 11. TS C	VERA 14 WANDA 27 AMY 38 BABE 17	8 17 19	18 17	121 129	72 84	14	174					
8. TS W 9. TS A 10. STY 11. TS C	WANDA 27 AMY 38 BABE 17	17 19	17	129	84			123	10			
9. TS A 10. STY 11. TS C 12. TY D	AMY 38 BABE 17	19				13			10	180	162	6
10. STY 11. TS C	BABE 17		16				278	163	9	446	235	5
11. TS C				201	51	12	446	145	8	755	285	3
12. TY D		11	36	144	95	32	279	192	28	458	324	23
	CARLA 53	26	9	112	46	5	274	33	1			
13 TC F	DINAH 19	13	38	159	106	34	396	254	30	613	398	25
	EMMA 32	16	21	200	105	17	365	146	13	431	185	8
14. TS F	FREDA 26	14	9	220	82	5	454	146	1			
15. TY 0	GILDA 39	22	30	130	58	26	198	86	22	295	139	18
	HARRIET 26	13	19	198	121	15	376	197	11	757	375	7
17. TY I	IVY 40	22	24	186	77	20	330	167	16	408	241	12
18. TY J	JEAN 27	14	20	239	144	14	489	288	8	1007	775	1
19. TY K		10	44	111	57	40	239	129	36	327	186	32
20. TY I	LUCY 33	18	39	178	97	34	330	172	30	543	255	27
21. TY M	MARY 34	23	59	135	86	55	256	140	47	299	132	33
LL FORECAST		17	492	148	83	401	283	157	311	407	228	228

FIGURE 5-1. Mean vector error for the Pacific Area.

FIGURE 5-2. Mean right angle error for the Pacific Area.

FIGURE 5-3. Mean vector error for the Indian Ocean Area; number of storms ().

	1977 JTWC								
		WARNINGS			24 HOUR			48 HOUR	
	POSIT ERROR	RT ANGLE ERROR	# WRNGS	FCST ERROR	RT ANGLE ERROR	# WRNGS	FCST ERROR	RT ANGLE ERROR	# WRNGS
TC 17-77	31	31	4	127	122	2			
TC 18-77	31 21	21	6	92	85	4	270	250	2
TC 19-77	45	44	5	77	73	3	122	68	1
TC 21-77	41	29	19	153	108	15	371	250	11
TC 22-77	30	29	10	96	74	8	182	161	6
ALL	35	30	44	122	94	32	292	214	20

b. INTENSITY FORECAST VERIFICATION

Intensity verification statistics for tropical cyclones attaining typhoon intensity are depicted in Table 5-4. Adherence to a standardized pressure-height versus wind speed relationship and improved satel-

lite analysis techniques have resulted in a low initial position intensity error (4.8 kt) over the past four seasons. This in turn has contributed to smaller 24-, 48-, and 72-hour intensity forecast deviations from the JTWC best track.

	WESTER WARNING	NORTH	PACIFI	INDIAN WARNING			
	POSITION	24-HR	48-HR	72-HR	POSITION	24-HR	48-HF
1971	7	16	21	24			
1972	9	14	20	24	13	15	12
1973	7	16	20	28	8	15	20
1974	4	11	15	20	0	8	18
1975	4	13	18	20	7	14	18
1976	5	12	19	22	5	10	15
1977	6	13	20	23	5	8	23
AVERAGE	6	14	19	23	6	12	18

2. COMPARISON OF OBJECTIVE TECHNIQUES

a. GENERAL

Objective techniques have been verified annually since 1967, however, year-to-year modifications and improvements prevent any long term comparisons of the various techniques. The analog technique provides three movement forecasts, one for straight moving storms, one for recurving storms and one combining the tracks of straight, recurving and other storms that do not meet the criteria as straight or recurving analogs. However, only the combined is listed for verification. The analog technique also provides an intensity forecast for each warning position. The dynamic objective technique employs the steering concept of a point vortex in a smoothed large-scale flow field. A new technique, the tropical cyclone model executes basic equations of motion, computes streamfunctions and displays the location of minimum streamfunction center every six hours to 72 hours. An intensity forecast scheme is based on statistical regression equations of analog storms.

b. DESCRIPTION OF OBJECTIVE TECHNIQUES

- (1) TYFN75-Analog program which scans history tapes for storms similar (within a specified acceptance envelope) to the instant storm. Three 24-, 48-, and 72-hour forecasts are provided. In addition, 24-, 48-, and 72-hour intensity forecasts are provided.
- which advects a point vortex on a preselected analysis or smoothed prognostic fields at the designated upper-levels in 6-hour time steps through 72 hours. Utilizing the previous 12-hour history position, MOHATT computes the 12-hour forecast error and applies a bias correction to the forecast position.
- (3) TCM-Tropical Cyclone Forecast Model is coarse mesh (220 km), with the digitized storm warning position bogused at 850 mb level of FNWC Global Band Analysis utilizing wind and temperature fields. Boundary conditions permit no mass transfer across north or south walls, and east/west boundaries are cyclical.
- (4) FCSTINT-Intensity forecast program which utilizes statistical regression equations to provide 24-, 48-, and 72-hour forecast intensities.
- (5) 12-HR EXTRAPOLATION-A track through current warning position and 12-hour old preliminary best track position is linearly extrapolated to 24 and 48 hours.
- (6) HPAC-Mean 24 and 48 hour forecast positions are derived by averaging the 24 and 48 hour positions from the 12-HR EXTRAPOLATION track and a track based on climatology.
- (7) INJAH74-Analog program for North Indian Ocean. Similar to TYFN75, except tracks are not segregated.

c. TESTING AND RESULTS

It is of interest to compare the performance of the objective techniques to each other and to the official forecast as well. This information is listed in Table 5-5 for Pacific typhoons only and in Table 5-6 for all Pacific forecasts.

In these tables "X-AXIS" refers to the techniques listed horizontally across the top, while "Y-AXIS refers to those listed vertically. As a matter of explanation, the example shown in Table 5-5 compares TYFC to TCM. In the 75 cases available for comparison, the average 24 hour vector error for TYFC was 136 nm, while that for TCM was 128 nm. The difference of 8 nm is shown in the lower right.

Figure 5-4 compares JTWC intensity forecast errors with the objective technique forecast errors. Only TYFC (TYFN75 combined analog) and FCSTINT intensity forecasts were verified this season. All forecasts were verified against JTWC best track intensities. The number of cases verified were:

FORECAST	24HR	48HR	72HR
JTWC	401	311	228
FCSTINT	312	246	182
TYFC	293	234	172

Statistics are only available for the Pacific area.

FIGURE 5-4. Comparison of intensity forecast errors for the Pacific area.

TABLE 5-5. 1977 OBJECTIVE TECHNIQUES FOR WESTERN NORTH PACIFIC TYPHOONS (ALL FORECASTS)

				24-HOUR			
	JTWC	XTRP	НРАС	TCM	TYFC	<u>мн70</u> <u>мн</u>	50
JTWC	303 144 144 0						
XTRP	289 143 149 6	289 149 149 0				NUMBER OF CASES	X-AXIS TECHNIQUE ERROR
HPAC	278 142 141 -0	278 147 141 -6	278 141 141 0			Y-AXIS	ERROR
TCM	88 138 132 -6	86 137 132 -5	83 132 129 -3	38 132 132 0		TECHNIQUE ERROR	DIFFERENCE Y-X
TYPC	246 145 147 2	244 152 147 -5	240 143 147 4	75 128 136 8	246 147 147 0		
MH70	222 141 162 21	220 144 161 17	214 136 160 25	72 127 146 19	197 141 160 19	222 162 162 0	
MH50	189 142 154 12	187 146 154 8	182 136 154 18	67 127 144 17	168 142 158 16	189 159 189 154 -5 159	9 154 4 0

		. 4	18-HOUR
	JTWC	XTRP HPAC	TCM TYFC MH70 MH50
JTWC	253 275 275 0		JT.J-OFFICIAL JTWC SUBJECTIVE FORECAST XTRP-12-HOUR EXTRAPOLATION
XTRP	242 274 306 33	242 306 306 0	HPAC-MEAN OF XTRP AND CLIMATOLOGY TYFC-TYFN75 (WEIGHTED CLIMO) COMBINED MH70-MOHATT 700-MB PROG
HPAC	234 270	234 302 234 265	MH50-MOHATT 500-MB PROG
	265 -6	265 -38 265 0	TCM-TROPICAL CYCLONE MODEL
TCM	64 304	63 317 62 280	64 255
	255 -49	257 -60 256 -25	255 0
TYFC	207 277	206 316 204 264	56 245 207 261
	261 -16	261 -55 258 -6	278 33 261 0
MH70	188 274	187 297 182 253	52 236 168 246 188 337
	337 63	337 40 335 82	321 86 329 82 337 0
MH50	158 276	151 300 152 253	49 235 142 245 158 333 158 322
	322 46	322 22 321 68	335 100 324 79 322 -11 322 0

			72	-H0	UR					
	JTWC		TCM		TYFO	TYFC)	MH50	
JTWC	194	393								
	393	0								
TCM	38	509	38	454						
	454	-56	454	0						
TYFC	161	395	36	462	162	362				
		32	445	-16	362	0				
MH70	137	402	31	429	128	364	142	564		
		160	557	128	561	197	564	0		
MH50	121	407	29	443	111	364	124	543	126	520
rinso		119		151		163		-24	520	

TABLE 5-6. 1977 OBJECTIVE TECHNIQUES FOR ALL WESTERN NORTH PACIFIC FORECASTS

	24-HOUR													
	JTW	C	XTR	P	НРА	<u>c</u>	TCM		TYF	<u>c</u>	мн7	0	MH50	0
JTWC	401 148	148 0												
XTRP	381 155	148 8	381 155	155										
HPAC	366 149	146	366 149	154 5	366 149	149								
тсм	99 138	135	97 139	136 3	93 137	134	99 138	138						
TYFC	317 157	152 5	315 157	160 2	310 157	151 6	32 138	134	317 157	157				
MH70		145 22		152 15		146 20	78 148	138 11	252 168	152 16	287 167	167		
MH50		146 17	241 162	154		146 17		134 10		152 15		167 -3	245 163	163 0

							48-H	OUR	1								
	JTW	2	XTRI	2	НРА	<u>c</u>	TCM		TYF	<u>c</u>	мн7	0	MH5	0			
JTWC	311 283												SUBJ		E FOI	RECAS	T I
XTRP	297 318		297 318						TYF	C-TYF	N-TYF	N75 (AND C WEIGH PROG				BINED
HPAC	288 276	278 -2	288 276	314 -38	288 276	276 0			MH5	о-мон	ATT 5	00-MB	PROG NE MO	DEL			
тсм	70 262	290 -27		307 -43		275 -12	70 262	262 0									
TYFC	251 280		250 280	326 -46	248 278	277		251 23	251 280	280 0							
мн70	231 352		229 352	318 34		276 76		249 77		275 73		352 0					
MH50	196 341	290 51		323 17	7000	277 63	58 336	247 89		276 66		353 -10	196 341	341 0			

				72-H	OUR					
	JTWO	2	TCM		TYF	<u>c</u>	мн7	0	MH5	0
JTWC	228 407	407 0								
TCM	39 450	505 -56	39 450	450 0						
TYFC	184 392	412 -20	1000	457 -9	185 391	391 0				
MH70	156 580			425 123		394 181	162 583	583		
MH50	138 555			439 151		397 156		569 -18	144 551	551

3. EVALUATION OF THE TROPICAL CYCLONE MODEL (TCM)

a. BACKGROUND

A primitive equation tropical cyclone forecast model based on original work by Harrison and Elsberry and developed by the Naval Environmental Prediction Research Facility and Fleet Numerical Weather Central (FNWC) was introduced for testing during the 1976 tropical cyclone season. The model is a four level, coarse mesh (horizontal grid increment nominally 200 km), limited area (28 grid points east-west, 20 grid points north-south), five parameter model with cyclical boundary conditions on the longitudinal boundaries and no-flux conditions on the latitudinal boundaries. Initial conditions are provided by the FNWC Global Band NVA model. No interaction with large scale models occurs during the forecast period. In August 1977, a "bias input vector" based on JTWC's 12 hour direction and speed of movement forecast was incorporated in an effort to improve initial movement accuracy.

During 1977, the TCM was operable using the 0000Z or 1200Z data bases when tropical cyclone intensity was 50 kts or greater. The official 0000Z and 1200Z JTWC warning positions were used in the initialization of the TCM. Final TCM output was received at JTWC approximately 10 1/2 hours after data base time.

b. COMPARISON OF TCM TO BEST TRACK

Table 5-7 summarizes the mean vector errors of the TCM 24, 48 and 72 hour forecast positions as compared to corresponding best track positions. Sample size was limited by several factors including:

- 1. TCM was run no more than twice daily and only when tropical cyclone intensity was greater than or equal to $50\ kt$.
- 2. A low number of storms occurred in WESTPAC during 1977.

3. TCM was often unable to track a storm to 72 hours, therefore output was not complete. Reasons included model boundary limitations and loss of clear definition of center location with time.

c. TCM VERSUS JTWC

Analysis of the mean vector errors of the 1977 tropical cyclone forecasts revealed that the TCM forecasts beyond 24 hours significantly improved upon the official JTWC forecast used in the model initialization. This is depicted in Figure 5-5 (TCM vs. JTWC, same warning time).

The TCM had an advantage over the JTWC forecast for the same warning time. It used the JTWC forecast for initialization, then added the synoptic data (0000Z or 1200Z) analysis which was unavailable to JTWC forecasters prior to warning issuance.

A similar comparison was made between the TCM forecasts and the official JTWC warning produced after receipt of the TCM output at JTWC. Both forecasts had access to the same data base. JTWC also had the TCM output, recent fix data and other aids. Figure 5-5 portrays the JTWC forecast significantly improving on the TCM (same data base).

In the latter comparison, a JTWC 00002 + 24 hour forecast was matched against the corresponding TCM 1200Z + 36 hour forecast; a JTWC 0000Z + 48 hour forecast was matched against the corresponding TCM 1200Z + 60 hour forecast. A match was not possible for the JTWC 72 hour forecast since the TCM did not provide output beyond 72 hours.

The sample size was insufficient to determine how well the TCM forecast erratic movement or recurvature versus nonrecurvature.

d. CONCLUSION

It appears that use of the TCM as an aid to the official JTWC forecast will improve the forecast. More stringent testing is planned for the 1978 tropical cyclone season.

TABLE 5-7. 1977 VECT	TCM 24, 48, A OR ERRORS	AND 72 HOUR FO	DRECAST MEA
	24_HR	48 HR	72 HR
ALL TROPICAL CYCLONES	138 NM	262 NM	450 NM
NO. OF CASES	99	70	39
TYPHOONS ONLY	132 NM	255 NM	454 NM
NO. OF CASES	88	64	38

The state of the s

FIGURE 5-5. Comparison of position forecast errors between the TCM and JTWC. The TCM is compared relative to JTWC which is represented by the zero nautical mile line. Comparisons are shown for typhoons (TV) and all tropical cyclones (ALL). (Positive Y-axis values indicate TCM improves JTWC forecasts.)

A CONTRACTOR AND A SECOND

4. PACIFIC AREA TROPICAL STORM AND DEPRESSION DATA

TROPICAL STORM PATSY 0600Z 23 MAR TO 0000Z 31 MAR

	HEST THA	CK		**	RNING				24 HOUR	FURE	CASI				FUHE	CAST			1 HUU	FUNE	CASI	
						ER	HORS				ER	HUHS				EH	KUHS				LR	RURS
	POST!	INU	PUS	116	WIND	UST	WIND	PO!	511	MIND	051	WINU	PO!	112	WIND	USI	-IND	PO	110			
2306002	3.3N 164.2E	30	2.AN	164 . 86	25	47	-5	3.5N	los.vE	15	132	15								••		
2312007	4.1N 164.2E	30	3.2N	163.76	25	61	-5	4. IN	160.76	10	245	15										
231800Z	4.0N 165.0E	30	3.64	162.96	25	121	-5	5.1N	159.18	30	351	15										
2400002	3.54 165.2E	25	3.8N	165.26	25	18	0	5.2N	104.46	. 45	144	10						6.4N	160.26	35	184	0
2400002	3.2N 165.2E	20	3.9N	164 . 86	31	48	10							****					162.86		283	
2412002	3.1N 165.2E	15	3.44	164 - 98	30	51	15												162.91			
2418002	3.0N 165.2E	15	4.00	164.96	3.)	65	15												102.96			
2500002	2.9H 105.1E	15	4.2N	164-98	25	19	10											,-				
2700002	3.4N 161.2E	35	3.5N	161-56	30	19	-5	5.1N	154.46	+0	н1	-10	0.2N	157.9	E 45	115	15	7.2N	155.98	50	122	30
2106002	3.9N 160.6E	40	3.9N	160-58	30		-10	5.1N	158.56	•0	74	-5	6.2N	150.5	45	90	20	7.1N	154.46	50	104	30
2712007	4.4N 160.0E	45	4.2N	159.88	30	17	-15	5.7N	157.36	40	61	0	7.1N	154.4	45	78	25		151.8		67	40
2118007	5.2N 159.4E	50	4.6N	159.38	30	36	-50	6.1N	156. /E	+0	54	5	1.4N	153.9	50	16	30	8.4N	151.36	60	77	45
280000Z	5.9N 15H.BE		5.3N	158-96	50	36	0	7.3N	156.4E	05		35		153.7	70	30	50	9.2N	151.0	70	54	55
2000002	6.4N 15H.3E	45	6.1N	158 - 36	51	18	5	7.8N	155.56	05	17		8.9N	152.46	70	78	50	,-				
2915005	6.7N 157.5E	40	6.6N	158 - 16	50	36	10	8.6N	155.0€	05	38	45	10.1N	152.8	75	80	60	,-				
2818005	7.0N 156.8E	35	1.2N	157-16	. 45	51	10	9.1N	154.UE	>0	67	30	10.4N	151.10	65	122	50			••		••
2900002	7.3N 156.3E						20		153.56		51	35	10.0N	151.0	65	80	50					
290600Z	7.6N 155.7E	25		155 . 76			10	9.1N	152.08	35	58	15		****								
5915007	8.2N 155.1E	20		154 . 36			15	9.9N	151.JE	35	125	20										
5418005	8.3N 154.8E	20	4.5N	153 - 36	35	104	15	10.9N	150.56	35	168	50										
3000002	8.54 154.3E								150./6													
3000002			9.4N																			
3012002	8.8N 153.1L	15		151 . 96																		
3018005	8.9N 152.5E	15	9.6N	151 - 56	30	15	15															
310000Z	9.0% 151.9E	15	10.0N	149-6	25	148	10															

AVEHAGE FORECAST ENHOR AVEHAGE RIGHT ANGLE ERRUR AVEHAGE MAGNITUDE OF WIND ENHUM AVEHAGE BIAS OF WIND ENHOR NUMBER OF FORECASTS #ARNING 24-HK 48-HR 72-HK 55NH 108NH 88-HR 163MH 36NH 17NH 54NH 127MH 11NT5 20KT3 39KT5 24KT5 5KTS 14KT3 39KT5 21KT5 25 17 9 9

TROPICAL DEPRESSION 02 0000Z 26 MAY TO 0600Z 27 MAY

	BESI	TRACK		WARNING	,		24 HUL	H FURE	CAST		48	HOUR	FORE	CASI			12 HOU	H FUHE	CASI	
					ER	HUHS			EH	ROPS				ER	HUNS				ER	KUHS
	POSIT	#INI	PUSIT	WIND	UST	WIND	POSIT	#IND	OST	WIND	PUSIT		WIND	UST	WIND	PC	116	WINU	USI	#INO
260000Z	19.8N 129	. 3E 30	19.7N 128.	9E 30	23	0	21.4N 129.	SE 35	206	5										
2606002	21.1N 129.	.1E 30	20.4N 129.	0E 30	42	0	23.7N 130.	E 35	128	10										
			21.8N 129.																	
			53.2N 129.																	
2700002	24.6N 130	. 7E 30	24.5N 130	6E 30	8	0														
2706002	25.6N 131	. BE 25	25.6N 131	9E 25	5															

AVEHAGE FORECAST ERROR AVEHAGE RIGHT ANGLE ERROR AVEHAGE MAGNITUDE OF WIND ERROR AVEHAGE BIAS OF WIND EMROR NUMBER OF FORECASTS ALL FORECASTS
WARNING 24-MM 48-MR 72-M
20NM 107NM 0NM 0NM
10NM 13NM 0NM 0NM
0RTS RRTS 0KTS 0KT
0RTS RRTS 0KTS 0KT

TROPICAL STORM RUTH 0600Z 14 JUN TO 1200Z 17 JUN

	BES	1 16	MACK			ARNING				24 HOUR	FURE	CAST			-	FORE	CAST			12 HOUR	FORE	CASI	
							ER	ROHS				ER	TOHS				EN	HUHS				ER	RURS
	POSII		WIND		SIT	WIND	UST	MIND	PO	SIT	MIND	DST	WIND	PUS	541	# IND	USI	# IND	PO	116	#IND	051	- [N
40600Z	16.0N 11	5.9E	40	15.7N	116.4	E 30	34	-10	17.9N	113./	45	189	-15							108.26			
	16.8N 11						13	-15		114.26										109.16			
41800Z	17.7N 11	6.46	55	17.3N	116-1	E 35								20.4N	111.0E	50	552	15					30
500002	18.6N 11		60	10	114.4	F 40	13																
										117.76													
	19.3N 11						26			119.26													
215005	20.1N 11	7.06	22	20.5W	117.0	€ 60	6	5	23.TN	118.0	55	36	15	20.9N	122.46	45	94	25					
1518002	21.0N 11	7.36	50	21.0	117.4	E 60	6	10	24.5N	119.8	50												
60000Z	22.2v 11	7.76	45	22.1N	117.6	E 55	8	10	25.7N	120.1	45	42	15										
	23.3N 11									122.26													
	24.3N 11									123.16													
													23										
010002	25,3N 11	4.70	. 35	24.HN	114.2	E 50	30	15															
	26.44 12						24	10															
700002	27.6N 12	1.76	25	27.4N	121.8	E 35																	
	28.3N 12																						

AVENAGE FORECAST ERROR AVENAGE RIGHT ANGLE ERROR AVENAGE MAGNITUDE OF WIND ERROR AVENAGE BIAS OF WIND ERROR NUMBER OF FORECASTS ALL FOMECASTS
JARNING 24-MM 48-MR 72-MR
10NM 92NM 298NM 88ANM
16NM 72NM 177NM 447NM
10NTS 14KT5 17KT5 23KTS
4KT5 17KT5 23KTS
14 10 6 2

TROPICAL DEPRESSION 04 0000Z 05 JUL TO 0600Z 06 JUL

	BEST	TRACK		ARNING				24 HOU	R FURE	CAST			40 HOU	R FORE	CASI			12 HOU	H FORE	CASI	
					ER	HORS				ER	ROPS				ER	RUHS				ER	RORS
	POSIT	WINE		#1ND		WIND	PU	SIT	DAIM	DST	WIND	P	TIZE	WIND	USI	WIND	P	1160	WIND	OSI	HIN
050000Z 1	7.7N 113.	6E 30	17.9N 114.	E 25	31	-5	19.7N	112.2	E 45	181	25										
050600Z 1	8.7N 112	SE 30	17.7N 112.	BE 30	62	0	18.3N	109.6	E 40	242	20										
051200Z 1	9.AN 111	BE 30	19.3N 111.5	SE 30	- 34																
051800Z S	0.4N 110	SE 25	19.5N 110.5	E 25	58	Q		,-													
0600002 2	1.2N 109	4E 20	21.IN 109.	E 25	28	5															
			21.6N 109.9																		

AVERAGE FORECAST ERROR
AVERAGE RIGHT ANGLE ERROR
AVERAGE MAGNITUDE OF WIND ERROR
AVERAGE BIAS OF WIND ERROR
NUMBER OF FORECASTS

ALL FORECASTS
WARNING ZG-MK 48-MK 72-M
46MM ZINM ONM ONM
31MM JONM ONM ONM
31MM JONM ONM ONM
31MS Z3KTS OKTS
1KTS Z3KTS OKTS OKT

TROPICAL STORM WANDA

0600Z 31 JUL TO 0600Z 04 AUG

	HEST	THACK				AHNING				24 HUU	H FURE	CAST				H FORE	CASI			12 HOUR	FORE	CASI	
							EH	HUHS				ER	HURS				ER	RUHS		14 HOUR		ER	RUKS
	POSTI	WIN	U	POS	11	WIND	UST	MIND	PO	SII	ONIE	UST	WIND	PU	SII	WIND	USI	-INU	PU	116	WINU	US1	.IND
3106002	23.5N 140	. 4E 3	0 23	.2N	140.8	30	19	0	23.HN	141.3	E 40	126	5	24.9N	141.9	E 50	164	15	20.UN	142.UE	60	267	15
3115001	24.0N 140	. 9E 3	0 23	. 8N	140.5	30	25	0	24.8N	140.4	E 40	103	5	40.2N	138.7	E 50	245	15	27.2N	135.86	60	250	20
311800Z	24.5N 140	.8E 3	0 25	. ON	141.2	E 30	31	0	26.6N	140./	E 40	30	5							136.46			
0100002	25.1" 140	.6E 3	5 24	.5N	140-3	40	39	5	20.4N	139.6	55	H4	20	28.7N	134.3	65	232	20	31.4N	138.76	. 75	388	45
0100002	25.7N 140	. 3E 3	5 26	. 3N	140-1	45														130.26			
	26.5N 140																						
	27.2N 140																						
0200002	27.7N 140	.4E 3	5 28	. ON	140.3	E 40	19	5	31.1N	139.5	20	216	5	33. IN	140.0	E +5	351	15					
1009020	27.7N 141	.4t 3	5 27	.5N	140.5	30	49	-5	24.0N	140.7	15	200	-10	31.2N	142.2	F 40	235	10					
2002120	28.4N 142	.6E 3	5 28	.5N	142.6	30																	
0218002	29.1N 143	1.2F	0 28	.8N	142.9	30																	
030000Z	30.0N 143	.5E 4	5 30	.3N	143.8	35	24	-10	34.6N	140.0	E +0	205	10										
030600Z	30.4N 144	.2t 4	5 31	.ON	144.2	25	36	-10	34.9N	146.4	E 40	203	10										
0312002	30.5N 145	.OE 4	0 30	.6N	143.9	35	57	-5															
0316002	30.8N 145	.7E 3	5 30	. IN	146.0	35																	
0400002	31.2N 146	. JE 3	0 31	. 3N	146.3	E 30	6	0															
040600Z	31.5N 146	AF .	0 31	-6N	146.8	10		0															

AVENAGE FORECAST ERROR AVENAGE RIGHT ANGLE ERROR AVENAGE MAGNITUDE OF WIND EHROH AVENAGE BIAS OF WIND ENROM NUMBER OF FORECASTS

TROPICAL STORM AMY 0000Z 20 AUG TO 1800Z 23 AUG

	HEST	RACK		WA	RNING			1	24 HOU	FURE	CAST		4	HOUR	FORE	CAST			15 HOUR	FUNE	CAST	
						ER	KOHS				ER	ROHS				ER	RUHS				ER	RORS
	POSIT	WIND	POS																110			
Z00000Z	20.6N 120.	SE 25	20.7N	120.68	30	6	5	20.8N	117.3	0	28	10	21.4N	114.26	45	339	15	22.6N	111.76	40	854	10
	20.9N 119.					30	0												113.26			
	21.0N 119.																		117.86			
	20.4N 118.																					
210000Z	20.84 117.	AE 30	20.4N	118.3E	30	37	0	21.3N	117.6	30	183	0	22.5N	110-46	35	65H						
	21.7N 118.							23.1N											,-			
	22.3N 118.					17		24.4N														
	22.8N 119.							23.0N														
2110002	22.04 1176	, ,	-2.3"	117.00	. 30	٠.		23.04	.10.3	,	230	,	-40111		,		-13					
2200002	23.5N 119.	9E 30	23.3N	119.2E	30	40	0	25.2N	118.5	0 t	464	0										••
220600Z	24.2N 120.	E 30	24.2N	119.8E	30	33	0	26.9N	120.3	35	+04	-5										
	24.9N 120.					25																
	25.7N 121.					17																
23000CZ	30.1N 125.	3E 30	29.0N	124.5E	30	78	0															
	30.7N 126.																					
	31.7N 127.																					
	31.7N 128.																					

AVENAGE FORECAST ENROR AVENAGE RIGHT ANGLE ERHOR AVENAGE MAGNITUDE OF WIND ERROR AVENAGE BIAS OF WIND ENROH NUMBER OF FORECASIS ALL FORECASTS
WARNING Z4-MM 48-MR 72-MR
38MM 201NM 440MM 755NM
19NM 51NM 145NM 285NM
3KIS 6KID 9KIS 8KIS
-1KIS 3KIS 2KIS -2KIS
16 12 8 3

TROPICAL STORM CARLA 0000Z 03 SEP TO 0000Z 05 SEP

	BEST T	HACK		WA	RNING	,			24 HOUR	FURE	CAST				FORE	CAST			12 HOUR	FORE	CASI	
						ER	ROHS				ER	RORS		-		ER	NURS				ER	HORS
	POS11	WIND	PUSI	1	IND	DST	WIND	PO	SIT	MIND	DST	WINU	PO	SIT	WIND	UST	MIND	P	541	WIND	051	.IND
0300002	18.5N 114.3	E 30	17.7N 1	14 . 7E	30	53	0	18.1N	111.25	0	74	5	18.0N	108.76	50	274	30					
	18.4N 113.3						0	18.1N	110.ZE	40	111	5		·								
	18.2N 112.3						0	18.3N	108.2E	40	108	10						,-				
0318002	17.8N 111.2	E 35	18.0N 1	11.5E	35	12	0	18.7N	107.3E	•0	152	50			••							
040000Z	17.6N 110.0	E 35	17.8H 1	10.1E	35	13	0	17.8N	105.8E	30	113	10										
0406002	17.4N 108.4	£ 35	17.8N 1	09.6E	35	72	0							***.								
Z0021+0	17.2N 106.7	£ 30	17.9N 1	08 - 3E	35	100	5															
0418002	17.0N 105.3	E 20	18.0N 1	07.3E	35	129	15								••			••••				
0500002	17.0N 104.0	E 20	17.0N	05.08	25	57	5															

AVEMAGE FORECAST ERROR AVEMAGE RIGHT ANGLE ERROR AVEMAGE MAGNITUDE OF WIND ERROR AVEMAGE BIAS OF WIND ERROR NUMBER OF FORECASTS ALL FOMECASTS
WARNING 24-MF 48-MR 72-MR
53MM 112NM 274MM 0MM
26NM 46NM 133M 0MM
3NTS 10NT9 30NTS 0NTS
3NTS 10NT9 30NTS 0NTS
9 5 1 0

TROPICAL STORM EMMA 0600Z 15 SEP TO 0600Z 20 SEP

	HES	I THA	CK			ARNING				24 HOUR SII	FURE	CAST				FORE	CAST			12 HOUR	FORE	CAST	
							ER	ROHS				EH	ROPS				ER	RURS				ERF	RORS
	POSII		IND	PU	SIT	HIND	DST	WIND	PO	SII	MIND	UST	WIND	POS	SII	WIND	UST	WIND	PO	110	WIND	USI	. IND
1506002	21.ZN 14	3.4E	40	21.1N	142.7	E 30	39	-10	22.4N	140.9E	45	275	-5	24.2N	139.26	60	367	0	25.3N	136.46	75	369	25
1915007	22.4N 14.	38.E	40	22.2N	143.8	E 40	12	0	26.IN	143.4E	55	51	0	28.4N	140.06	65	554	10		135.96			
1518002	23.6N 14	.1E	40	23.3N	144.3	E 40	21	0	26.9N	145.16	55	43	U	29.2N	145.56	65	68	15		137.76			
1600002	24.8N 144	. 3E	45	24.8N	144.9	E 40	33	-5	29.7N	145.46	50	164	-10	34.8N	147.26	55	410	5	34.JN	150.06	. 55	628	10
1000002	25.8N 14	. 3E	50	25.6N	144.0	E 45	20	-5	30.9N	144.4E	55	161	-5	35.9N	147.16	50	479			151.0E		614	
1612002	26.4N 14	. 3E	55	27.0N	144.4	E 50	36	-5	32.3N	145.86	50	212	-5	36.9N	149.26	50	588	0	19. BN	154.86	45	654	5
1018002	26.9N 144	. 3E	55	27.7N	144.9	E 50				140.4E													
	27.3N 14									143.98				31.4N	143.96	45	197	0	34.0N	143.26	40	355	0
	28.2N 144							-10	30.4N	143.66	50	118	U	33.5N	143.08	45	154	0	37. UN	143.86	40	416	5
	29.0N 144									143.46				34.4N	143.08	45	67	5	,-				
1718002	29.3N 14	3.5E	50	29.5N	143.9	E 50	- 24	0	32.8N	143.16	50	178	U	10.5W	143.46	45	60	5					••
	29.1N 14						32			139.76		146	5	31.3N	136.36								
	29.3N 14						12			138.YE		243			135.56								
	29.9N 140						24	0	30.6N	138.18	50	348	10		·								
181800Z	31.0N 140	1.3E	50	30.1N	140.4	E 50	54	0	33.0N	137.8E	50	394	10										
	32.4N 14						0			141.56													
	34.1N 140						56	0	38.3N	142.56	0	398	5										
1915002	35.3N 14	35.5	40	35.2N	141.4	E 45	39	5	,-														
191800Z	36.9N 144	. 3E	+0	36.3N	143.6	E 45	49	5															
	39.54 146																						
20000Z	42.6N 149	35.E	35	41.0N	148-0	E 40	109	5															

AVERAGE FORECAST ERROR AVERAGE RIGHT ANGLE ENHUR AVERAGE MAGNITUDE OF WIND ENRUR AVERAGE BIAS OF WIND ENROR NUMBER OF FORECASTS ALL FOMECASTS
WARNING 24-HR 48-HR 72-HR
32NM 200NM 365NM 431NM
16NM 105NM 146NM 185NM
4NIS 4KIS 6KIS 13KIS
-2KIS 1RIS 4KIS 13KIS
21 17 13 8

TROPICAL STORM FREDA

0000Z 23 SEP TO 0000Z 25 SEP

	BF	SI TE	RACK			ARNING	,			24 HUUR	FURE	CAST				FORE	CASI			12 HOU	H FUHE	CASI	
							ER	RORS				ER	HOPS				ER	RURS				ER	HORS
	POSI	11	HIND	PO	SIT	WIND	UST	IND	PO	SII	-IND	DST	WIND	PO	511	. IND	051	-IND	P	1160	WIND	USI	# IN
230000Z	18.2N 1	24.36	E 30	18.0N	124.0	E 30	21	0	20.4N	120.06	40	239	-5	21.9N	118.08	50	454	15					
2306002	18.8N I	22.46	30	18.7N	122.8	E 30	23	0	20.7N	119.3E	0	254	-10		****								
2312002	19.2N 1	20.56	30	19.7N	120.5	E 30	30	0	21.9N	116. YE	40	220	-15										
5319005	19.3N 1	18.5	40	19.3N	119.0	E 50	28	ÍO	21.1N	115.cE	00	219	15									••	
2400002	19.7N	16.6	E 45	19.6N	117-1	E 55	29	10	20.3N	112.08	60	167	25										
2406002							57																
2412002	20.9N 1	13.10	E 55	21.2N	113.5	E 55	29	0															
241800Z	21.6N	11.3	E 45	21.7N	111.5	E 50	13	5															
250000Z	22.2N	09.8	E 35	22.IN	109.9	F 35	8	0															

AVERAGE FORECASI ERROR AVENAGE RIGHT ANGLE ERROR AVENAGE MAGNITUUE OF WIND ERROR AVENAGE BIAS OF WIND ERROR NUMBER OF FORECASTS ALL FOMECASTS
WARNING Z4-MM 48-MM 72-MM
Z5NM 220NM 55NM 0NM
1NN 52NM 146NM 0NM
3KIS 14KT3 15KTS 0KTS
3KIS 2KT5 15KTS 0KTS
9 5 1 0

TROPICAL STORM HARRIET

0600Z 16 OCT TO 1800Z 20 OCT

	REST	TRACK	•	ARNING			2	4 HOUR	FURE	CAST			-	R FORE	CASI			/ HOUR	FUR	ECASI	
					ER	RORS				FR	HORS				EH	HURS				ER	RORS
	POSIT	WIND	PUSIT	WIND	OST	WIND	POS	II	WIND	UST	WIND	PO	112	WIND	USI	WIND	PU	110	.INU	USI	.IN
1606002	15.8N 135	.1E 35	15.7N 135.0	E 30	8	-5	16.9N	124.ZE	50	156	5	11.9N	124.76	60	402	10	18.7N	120.6t	65	985	15
1612002	16.3N 134	.OE 35	16.3N 134.2	30	11	-5	17.4N	128. /E	40	172	-5	11.4N	124.0F	50	538	0	17-5N	120.3E	55	1154	0
161800Z	17.0N 133	. 3E +0	16.3N 133.1	E 30	43	-10	16.8N	128.UE	•0	260	-10	11.3N	123.06	50	654	0	17.4N	114.46	50	1268	U
			17.4N 132.5		6	-5	20.2N	129.6E	45	179	-5	23.5N	128.98	55	342	5	27. ON	132.0E	60	42H	15
1706002	17.7N 131	. BE 45	17.9N 131.7	E 45	13	0	20.7N	129.1E	60	202	10	24.2N	129.31	65	403	15	24. ON	437.4Ł	65	.19	25
			18.3N 131.3		18	0	20.7N	129.16	60	202	10	24.2N	129.36	65	514	10	24. IN	132.5t	65	580	25
1718002	18.5N 132	.ZE 50	18.1N 132.2	E 45	24	-5	21.7N	132.56	60	100	10	24.8N	134.96	65	320	15	27. BN	134.UE	60	401	25
			19.0N 132.4		16	0	22.5N	132.86	65	198	15	25.4N	135.7E	65	321	20					
180600Z	19.9N 132	.6E 50	20.4N 132.6	55	30		24.5N														
1812002	21.1N 132	. 7E 50	21.2N 132.8	55	8		24.8N														
1818002	23.1N 133	.SE 50	23.2N 133.5	50	6		27.IN														
190000Z	25.2N 134	9E 50	24.4N 134.2	E 50	61	0	27.8N	138.0E	+0	119	-5										
1906002	26.8N 136	. ZE 50	26.4N 136.1	E 50	5	0	31.5N	145.4E	40	231											
1912002	28.2N 137	. BE 55	28.6N 138.71	E 50	53		33.4N														
141800Z	29.0N 138	. BE 50	24.3N 138.7	E 50	19		33.8N														
			30.4N 140-4		62	5															
			30.0N 140.9		22	10															
7007102	30.04 143	.4E 40	30.14 142.81	45	32	5															
5018005	30.2N 146	. 3E 35	30.6N 145.21	45	61	10															

AVEMAGE FORECAS! ENROR
AVEMAGE RIGHT ANGLE ERROR
AVEMAGE MAGNITUDE OF WIND ERRUH
AVEMAGE HIAS OF WIND ENROR
NUMBER UF FORECASIS

ALL FORECASTS
WARNING Z4-MM 48-MM 72-MM
Z6NM 19RNM 376NM 757NM
13NM 12[NM 197NM 375NM
4N15 7KT2 10KTS 15KTS
0N1S 3KT2 10KTS 15KTS
19 15 11 7

5. PACIFIC AREA TYPHOON DATA

TYPHOON SARAH 1200Z 16 JUL TO 1200Z 21 JUL

		EST II	HACK		w/	HUING	,			24 HOUR	HURE	CAST			AUOH BA	FORE	CASI			14 HOUH	FURE	CASI	
							ER	HUKS				ER	ROPS				EN	HUHS		12 HOUR		ER	HORS
	F()	111	# I NU	PU	211	MIND.	USI	MIND)	PU	511	M I NO	OST	WIND	PO	SII	= IND	DSI	DIAL	20	×11	- I MIT	TIST	
1612002	10.5N	158.16	30	10.4N	128.46	25	19	-5	12.4N	123.66	35	69	-5	14.3N	119.26	45	100		14.2N	114.61	-	100	
1018002	11.2N	126.4	35	11.0N	127 - 36	30	54	-5	12.88	155.16	35	93	-5	14.7N	118.0E	45	130	-5	16.0N	413.3E	55	74	-15
170000Z	12.2N	125.26		12.0N	125.56	35	21	-5	14.9N	119.06	35	62	-5	18.2N	115.26	45	64		21.4N	111.6E		223	- 34
1706002	13.1N	124.46	40	12.8N	124 . 48	35		-5	15.AN	119.16	35	34	-10	18.7N	114.66	50	100	-6	22 AN	110.7E	30	241	-35
1/12007								0	15.AN	117.76	50	35		IN-ON	113.36	55	51	-5	20 5N	110.2E	30	241	-45
1718002								0	10.5N	118.26	50	78	ō	18.3N	114.36	60	126	-10	20.BN	111.2E	45	123	-25
1800002	15.3N	120.8	40	15.4N	121.56	40	41	0	17.5N	117.46	50	133		14.0N	113.76	60	144	-10	21 24	109.86			
1806002	15.8N	119.7	45	16.0N	120.56	40		-5	IH. SN	114 0	55	155		20.44	113 46	- 56	137	-15	51.34	104.8E	. 55	48	-10
181500Z	15.9N	118.36	50	16.4N	118.46	45	30	-5	IN.ON	113 46	25	103		21 00	104 36	. 25	137	-20	21.04	108.36	40		-50
1918007	16.6N	116.96	50	16.5N	116.86	45	8	-5	18.8N	111.28	50	104	-50	20.7N	106.66	40	178	-30	:-	:-			::
190002	17-1N	115.56	50	17.3N	115.76	50																	
1906002	17.1N	114.16	55	17.1N	112.76	50	2.	-	19.14	111.76		120	-30	51. W	104.56	•0	98	-25					
1912002	17.2N	113.06	60	17.2N	112.56	60	20	2	10.34	108.00	. 50	102	-25	C1.0N	105.06	35	152	-25					
1918007	17.4N	112.36	70	17.3N	112.46	60	8	-10	17.5N	107.36	>5	122	-15	21.0N	104.06	25	46	-10		:			
2000007	17 74		. ,.																				
2009007 2000005	10.14	111.90	13	11.14	115.16	15																	
2012002	19.3N	110.50	70	19.14	110.00	/0	-25	. 0	24.3N	109.66	25	580	-10										
201800Z	14.34	104.50	. 10	19.40	104.16	. 60	13	-10															
2100002							11	-5															
210600Z							18	0															
211500Z	21.3N	105.76	35	51.IN	105.98	50	16	15															

AVENAGE FORECAST ERROR
AVENAGE RIGHT ANGLE ERROR
AVENAGE MAGNITUDE OF WIND ERROR
AVENAGE BLAS OF WIND ERROR
NUMBER UF FORECASTS

WARNIA
22N

WARNIA
MARIA
WARNIA
MARIA
M

TYPHOONS WHILE WIND OVER 35KTS
WARNING 20-MR 68-MR 72-MR
22NN 119NN 121NN 129NN
12NN 70NN 83NN 94NN
4 4KTS 10KTS 15KTS 23KTS
-2KTS -9KTS -15KTS 23KTS
20 17 13 8

ALL FOMECASTS
WARNING 24-MM 48-MR 72-MR
22MM LIGHM 12NMM 129MM
12MM 70MM 83MM 94MM
4KIS 10KTS 15KTS 23KTS
-2KTS -9KTS -15KTS -2KTS
21 17 13 8

TYPHOON THELMA

0000Z 21 JUL TO 0000Z 26 JUL

		REST	TRA	CK			ARNING				24 HOUR	FORE	CAST			-	FORE	CAST			12 HOUR	FOH	CAST	
								ER	ROHS				ER	ROPS		-		ER	HURS				ER	RORS
	PO	112		IND	PO	SIT	WIND				SII			WIND	POS	112	WIND	UST	WIND	PO:	116	WIND	UST	WIND
2100002								8	0	16.6N	127.6E	45	37	-5	18.4N	124.86	50	78	-20	20.1N	155-16	60	84	-25
2100002								26	-5	17.4N	126.3E	40	48	-10	19.3N	123.26	50	78	-30	21.0N	120.01	60	66	-25
2002115								12			124.26		87	0	14.9N	151.56	70	103	-10	22.3N	118.96	75	155	-10
2118007								6			124.5E		8	-5	18.4N	121.76	70	38	-10	20.1N	119.00	80	84	0
2200002	16.24	121	.1E	50	16.0N	127.6	E 50	31	0	16.4N	126.68	00	173	-10	17.5N	154.06	70	225	-15	19.3N	120.2	E 75	173	
Z20600Z	16.6N	126	. 3E	50	16.5N	126.5	E 50	13	0	17.3N	124.UE	60	66	-50	18.2N	120.46	65	103	-20	18.4N	116.1	70	367	0
Z21200Z	16.9N	125	. 4E	60	17.2N	125.4	E 55	18	-5	18.7N	121.9E	05	29	-15	14.4N	118.6	70	86	-15	19.6N	115.0	£ 70	394	5
5518007	17.2N	124	.6E	65	17.3N	124.5	E 60	8	-5	18.3N	121.0E	/0	50	-10	18.8N	117.36	75	205	-5	19.5N	113.6	E 80	491	50
230000Z	17.5N	123	38.	70	17.5N	123-8	E 65	0			120.86		66	-15	14.5M	117.00	75	231	-5	19.6N	113.9	E 80		
2306C0Z	18.0N	123	.1E	80	18.3N	123.2	E 75	19	-5	19.7N	119.8E	85	21	0	19.9N	116.00	90	305	50					
2312002	18.6N	122	.4E	80	18.7N	122.21	80	13	0	19.8N	118.JE	90	86	5	50.5W	114.76	95	382	30			••		
231800Z				80	19.2N	121.2	E 80	21	0	20.0N	117.36	90	160	10	50.5W	113.86	95	454	35					
240000Z	19.6N	120	. 7E	85	19.7N	120.5	E 80	13			117.08					115.20	E 80	306	30					
240600Z	19.9N	120	.1E	85	20.1N	119.8	E 80	51			117.06			15										
241200Z	20.4N	119	. 7E	85	20.7N	119.6	E 85	19	0	22.7N	117.26	85	182	20										
2418002	21.3N	119	. BE	80	21.4N	119.8	E 85	6	5	20.5N	120.56	85	282	25										
2500002	22.2N	120	.ZE	80	22.3N	120.3	E 85				119.86													
250600Z	23.2N	120	.2E	70	23.5N	120.2	E 80																	
251200Z	24.2N	120	. IE	65	24.2N	120-1	E 65	0	0															
2518002	25.2N	120	. OE	60	25.4N	120.0	E 45	12	-12															
260000Z	26.3N	119	. 7E	50	27.5N	119.4	E 30	73	-20															

AVENAGE FURECAST ERROR AVENAGE RIGHT ANGLE ERROR AVENAGE MAGNITUDE OF WIND ERROR AVENAGE BIAS OF WIND ERROR NUMBER OF FORECASTS

TYPHOONS WHILE WIND OVER 35KTS
WARNING 24-HR 48-HR 72-HR
17NH 97NH 200NH 255NH
9NN 50NN 134NH 157NH
5KTS 11KT5 19KTS 13KTS
-2KTS 1KT5 -1KTS -1KTS
20 17 13 9

ALL FOMECASTS
WARNING 24-HK 48-HR 72-HR
16NM 97NM 200NH 255NM
9NM 58NM 134NM 157NM
5815 1;KT9 19KTS 13KTS
-2KTS 1;KT9 -1KTS -1KTS
21 17 13 9

TYPHOON VERA
0000Z 28 JUL TO 0600Z 01 AUG

		EST T	HACK		WA	RNING				24 HOUR	FURE	CAST			HUUH B	FORE	CASI			12 HOUR	FORE	CASI	
							ER	KUHS				ER	RORS				ER	RUHS				ER	RORS
		11			112					511													
200002	25.5N	130.2	£ 35	25.4N	130 · 3Ł	30	8	-5	25.7N	128.0E	45	55	-5	20.6N	126.2E	55	200	-40	28.5N	123.96	65	239	-45
200002	25.4N	129.8	E 40	25.4N	129.9€	40	5	0	25.8N	128.18	50	84	-10	20.9N	125.78	60	210	-40	28.5N	123.86	. 70	219	- 35
2002	25.3N	129.4	E 40	25.2N	129.3E	45	В	5	25.6N	127.56	55	115	-10	26.6N	125.26	65	186	-35	27.8N	122.96	75	191	-25
818005	25.2N	128.8	£ 45	25.2N	128.8E	45	0	0	25.7N	126.56	50	140	-40	20.4N	124.0E	60	145	-45	27.3N	121.56	70	165	-20
900002	24.914	128-1	E 50	24.8N	128.2E	55	8	5	24.8N	125.08	65	96	-30	25.3N	123.0E	70	58	-40	26.2N	120.76	. 75	116	-5
200002	24.6N	127.3	E 60	24.HN	127.6E	65	50	5	25.2N	124.46	15	116	-25	20.1N	121.86	80	79	-25	27.JN	119.16	45	150	-20
100216	23.9N	126.5	E 65	24.2N	126.4E	80	19	15	23.6N	122.26	90	148	-10	24.7N	119.16	65	125	-35		••••			
918002	23.4N	126.0	E 90	23.3N	125.5E	95	58	5	55.5W	121.08	110	188	5	22.1N	110.1E	95							
1000002	45.ES	125.6	£ 45	23.0N	125.6E	95	15	0	21.88	123.08	100	162	-10	21-2N	120.88	90	240	10					
1006002	23.34	125.3	E 100	23.3N	125.5E	100	11	0	22.9N	124.06	115	174	10	21.8N	121.96	115	287	50		,-			
100210	23.5N	124.9	E 100	23.6N	125 . OE	100	8			122.76													
1018007	24.0N	124.4	£ 105	24.0N	124.2E	100	11	-5	25.2N	121.46	90	69	0			••							
					123.8E		16			121.26													
106002	25.0N	125.6	£ 105	25.0N	122.8E	110	11	5	26.9N	118.66	60	114	-5										
112002	24.94	121.4	E 100	25.3N	121 - 3E	105	54	5															
118002	24.8N	150.5	E 90	25.3N	119.8E	95	37	5															
					119.2E																		
100002	25.0N	118.0	E 65	24.9N	118.3E	05	17	0															

	WARN
AVERAGE FORECAST ERROR	14
AVERAGE RIGHT ANGLE ERHOR	8
AVERAGE MAGNITUDE OF WIND ERROR	4
AVERAGE BIAS OF WIND ERROR	3
NUMBER OF FORECASTS	18

PHOONS	WHILE .	IND OVER	35K15
MARNING	C4-HH	48-HH	72-HR
14NM	121NM	174NM	HONH
BNM	72NM	123NM	MNSOI
4KTS	19KTS	33K1S	25K15
3KTS	-9KTS	-ZOKTS	-25KIS
18	14	10	6

	ALL FOR	CASTS		
ARNING	24-HM	48-HR	72-HR	
14NM	121NM	174NM	180NM	
BNM	72NM	123NM	162NM	
AKTS	LAKTS	33K1S	25KTS	
3KTS	-9KT5	-20KIS	-25KTS	
18	14	10	6	

TYPHOON BABE

0000Z 02 SEP TO 1800Z 10 SEP

		SEST TO	HACK		WA	RNING				24 HOUR	FURE				HOUR	FORE				Z HOUR	FORE		
	The same of the sa			14000		- Energy		HOHS					CORS					RURS				ER	RORS
		511	MIND	PO	118	# IND	UST	MIND	POS	511	-IND	DST	MIND	PO:	511	MIND	UST	DAID	PO:	110	WIND	DST	WIND
020000Z	8.3N	144.6	£ 30	8.0N	144.5E	30	19	0	10.3N	139.JE	40	46	U	13.1N	134.0E	45	143	-15	16.5N	128.76	50	366	-10
020600Z	8.5N	143.0	E 35	8.7N	143.0E	40	12	5		137.7E		48	5		132.6E		195	ő		127.76			10
021200Z	8. 9N	141.5	E 35		141.8E		25			136./E		88	0		132.2E		209	ő		127.76		400	
2008120					140.5E		24			135. FE		83			131.0E					126.18			10
		1.0.1		4. 3.	144.20				11.44	133.16	-0	03	-3	. 4. 314	:21.00		-10	v	10.04	ico. 10	. ,,	321	10
0300002	9. BN	138.7		10.00	1 20 - 45	40	21	0		122 -5	-		-10		. 20 40	4.	224						-
030600Z										133.0E			-10		128.6E					124.36			
							13			132.cE		110	-5	14.4W	127.2E	05				155.96			
0312002	10./N	136.0	2 50	10.8M	136.3F	. 45	19			131.4E					126.5E		321			151.86		457	
0318002	10.7N	135.0	5 55	11.3N	135.26	45	38	-10	13.4N	130.4E	55	173	-5	10.1M	125.4E	65	358	5	18.9N	120.56	75	506	-5
040000Z	10 74	124.1	F 60	11 74	134.45		42	-10						16 -4	124 30			-					
040600Z										130.3E					126.3E					155.66			-5
0400002	10.AN	133.3	0	10./N	134.0E	- 00	42			131.16					127.5E	100	183	30		123.36			
041200Z							15			158.AE					125.7E					155.46			
0418002	10.4N	131.9	E 60	10.8N	131 - 86	60	8	0	11.0N	128.cE	80	124	50	11.5N	125.4E	90	329	10	13.1N	155.16	85	492	-30
050000Z	11.0N	131.5	E 60	10-QN	131.65	60		0	11.24	128.JE	10	159		11.0N	125.0E	45	364	-20	1 2 2N	121 25	55		-75
050600Z	10.0M	131.0	F 60	10.04	130.75	- 00	18			127.5E					124.26								
0512002	11 14	131.0		10.94	130.16	00	6																-80
0512002	11.14	130.3		11.0M	130.36	00				127.6E					124.1E								
051800Z	12. IN	130.0		11.14	129.96	. 60	60	0	11.6N	127.JE	10	271	-10	15.4M	124.2E	60	464	-55	13.7N	150.86	50	650	-75
060000Z	13.2N	130.1	E 65	12.2N	130-16	70	0	5	16. 2N	128./E	-	20	-5	18.78	125.2E	85	160	-45	20 ZN	121.08		. 36	-30
969600Z										127.JE					123.76								
061500Z	16 30	120 1	. 75	16.14	154.86	15														119.86			-25
061800Z	13.2N	124.1		15.04	154.36	75				126.7E			-30	50.6M	123.3E	90	210	-40	22.3N	119.56	90		-50
0010005	15. 9N	159.9		15.98	158.86	. 15	0	-5	14.0M	120.4E	15	69	-40	21.8N	153.9E	80	216	-45	23.9N	150.36	65	515	-40
0700002	16.7N	128.6	E 85	16.4N	128 - 75	80	19	-5	19.2N	126.4E	90	93	-40	21.QN	123.4E	100	271	-20	24 - IN	120.05	90		-15
0706002										125.8E					123.4E								-10
0712002	10 EM	127.4	6 115	10 54	127.76	100				125.UE			-15		121.8E					119.66			-10
071800Z										125. ₹													
0110002	14.34	151.03		17.41	121.46	105		-10	22.14	123.66	110	121	-10	£3.34	121.5E	110	412	,					
Q80000Z	20.5N	127.3	E 130	20.5N	127-15	130	11	0	24.0N	125.4E	130	144	10	21.2N	124.BE	125	211	20					
080600Z							6			125.4E			10		125.0E								
081200Z							16			125.2E		205			125.2E								
081800Z	22.6N	127.4	E 125	22.5N	127.0E	130	23								127.8E								
								-					••	2021			500	43	•••	•			
0900002	23.6N	128.0	E 120	23.7N	128 · 0E	130	6	10	27.3N	129.9E	120	315	15										
090600Z	25.0N	128.6	E 115	25.0N	128 . 4E	125	11	10		129.6E			20										
091200Z	26.9N	128.7	£ 110	26.AN	128.9E	125		15		130.5€		368											
091800Z	29.2N	127.9	E 105	29.1N	127.96	125	6			122.CE													
		1 20												-									
100000Z																							
100000Z															,-								
1012002																							
101800Z	31.5N	155.3	E 70	31.5N	122.0E	85	15	15															

		1
AVERAGE	FORECAST ERROR	
AVERAGE	RIGHT ANGLE ERHO	R
	MAGNITUDE OF WIN	
AVERAGE	BIAS OF WIND EN	OR
NUMBER	OF FORECASTS	

HOONS	WHILE WI	IND OVER	35KIS
ARNING	24-HH	48-HR	72-HR
17NH	144NM	279NM	458NM
11NM	95NM	192NM	324NM
OKTS	IJKTS	ZIKTS	26K15
ZKTS	-IKTS	-6KTS	-21KTS
35	32	28	23

ALL FOMECASTS

ARNING Z4-HM 40-HR 7Z-HR
17NM 144NM 279NM 458NM
11NM 95NM 192NM 324NM
6615 13KT5 21KTS 26KTS
2KTS -1KTS -6KTS -21KTS
36 32 28 23

TYPHOON DINAH

1200Z 14 SEP TO 1800Z 23 SEP

		HES1	TRAC	K			ARNING				24 HOUR	FURE	CAST			-	FURE	CASI			/ HOUH	FURE	CASI	
								ER	RUKS					RORS					RUHS					HUKS
	PO	112	w1	ND	PU:	110	MIND	DST	MIND	PU	SII	HIND	UST	WIND	P05	112	WIND	UST	-IND	PO:	110	UNI	DSI	#INO
1412002	21.46	127	. BE	50	21.5N	127.0	E 30	8	-20	22.3N	122.4€	45	245	-15	23.3N	119.1E	35	116	-15	24.4N	116.4L	30	450	-20
1418007	20.51	1 126	. SE	55	20.7N	126.	E 30		-25	20.3N	121.4E	45	150	-10	21.3N	118.2F	50	271	0	22.5N	415.3E	50	316	-5
										71.07.71							7.7					-		
1500002	19.4	1 124	. 6Ł	60	19.3N	124.4	£ 50	13	-10	19.4N	118.4E	60	140	20	21.1N	115.2E	60	263	10	23.0N	411.5E	35	433	-25
1500002	18.7	1 123	.6E	65	18.8N	123.6	E 60	6	-5	19.1N	119.4E	65												
1512002	18.2	122	.6E	00	18.3N	122.0	E 70	6	10	18.1N	118.66	10	62	20	19.1N	114.1E	80	157	30	21.UN	110.2E	80	443	20
1518002	17.8	121	.1E	55	17.8N	121.	E 05				111.46										109.8E			
														-	20.2800			21.000						
1000002	17.3	120	.OE	40	17.3N	120 -	E 60	0	20	17.4N	114.0E	80	98	30	18.1N	109.7F	75	420	15	18.6N	104.8E	60	770	-5
1000002	17.2	119	. OE	45	17.4N	119.	E 55	21	10	17.5N	114.1E	65									104.6E			
1612002								18			113.0E					109.4F					105.4E			
1010002								24	5	17.5N	112.88	65									104.8E			
								-	-					• •									004	
1/00002	16.8F	116	. 2E	50	16.8N	115.8	BE 60	23	10	16.7N	111.0E	05	323	5	17.0N	107.96	60	015	-5	14.2N	104. JE	30	854	-45
1700002					17.2N						113. JE										106.9E			
1712002	16.9	115			17.3N						112. YE													
1718002	17.3	116						63			112.4E													
							,					-												
1800002	18.0	117	. 1E	60	17.2N	117.	E 55	49	-5	19.1N	115.0€	60	150	-5	20.7N	114-16	55	293	-20	22.6N	111-HF	40	140	-25
1806002											110.46													
1915007											118.UE										117.4t			
1818007											118.4										117.8E			
													•••					-,-	.,	2000				
190000Z	14.6	118	. 4E	65	19.8N	118.	8E 60	13	-5	21.6N	119.JE	00	90	-15	24.0N	119.56	50	247	-15	26.5N	119.2E	45	521	-5
1906002											119.0E										118.8E			
1912002											119.8E										119.6E			
191800Z											119.0E		78								119.5E			
								-						-						c		••	031	• •
2000002	20.1	119	. 3E	15	20.0N	119.	E 65	13	-10	21.3N	119.8E	10	110	5	23.2N	120.06	65	374	15	25.0N	119.4E	60	693	20
2006002	20.21	119	. 3E	75	20.2N	119.	E 70	6	-5		120.JE		169								118.0E			
2012002											120.1E										120.0E			
2018002								0			119.8E													
													0											
2100002	20.0	V 118	.4E	65	19.9N	118-	BE 70	23	5	20. 3N	119.9E	60	262	10	22.0N	121.15	55	631	15					
2100002								21			117.9E					118.46								
2112007								0			114.0E													
2118002								43			113.vE													
									-															
2200002	18.4	V 115	. 7E	50	18.2N	115.0	SE 55	13	5	16.0N	113.4E	45	70	5										
220600Z											111.9E													
Z21200Z											110.9E													
2218002	16.3	¥ 113	.1E	45	16.5N	113.	IE 60	12			109.EE													
							-		-	33					-						-			
230000Z	15.5	112	. 3E	40	15.7N	112.	E 50	13	10															
230600Z																								
231200Z																								
231800Z																								
	100000000000000000000000000000000000000								2.0															

| TYPHOONS WHILE WIND OVER 35KIS WARNING 24-H4 8-H4 72-H4 18H4 19H4 39H4 592H4 18H4 19H4 39H4 592H4 18H4 19H4 39H4 592H4 18H4 19H4 39H4 592H4 18H5 11KTS 12KTS 18KTS 12KTS 36H 32 28 28 23

ALL FOMECASTS
WARNING 24-MT 48-MT 72-MT
10 MM 159 MM 396 MM 613 MM
13 MM 10 FM 254 MM 398 MM
9 RIS 12KT2 15KTS 20KTS
3KTS 6KT2 3KTS -6KTS
3B 34 30 25

TYPHOON GILDA 0000Z 03 0CT TO 0600Z 10 0CT

	HEST	TRACK		WA	RNING				24 HOUR	FURE	200			40 HOUH	FORE				12 HOUR	FORE	CASI	
						ER	HUHS				ER	CHOP				EH	HURS				ER	CHOS
	POSII	WIN			(INI	UST	WIND	PO	SII	MIND	DST	WIND	PU	SIT	.IND	USI	-IND	PO	110	#INU	USI	# IN
0300002 1	16.5N 155.	8E 30	16.7N	155.7E	30	13	0	20.2N	152.2E	35	228	-5	22. IN	148.81					146.0E			
	16.8N 156.			155.5E		66	0		153.YE		122			151.6F		73			149.1E			
	17.5N 156.			155.8E		•7			155.UE			-5										-15
	17.84 156													153.6E					125.56		145	
0310002 1	11.84 126	SE 3:	18.5W	120.15	30	25	-5	20.2N	155.8E	•0	118	-15	55.5W	155.0E	45	260	-50	24.3N	154.46	50	367	-10
	18.0N 155.					17	-10	19.6N	155.4E	40	179	*25	21.6N	155.3E	45	321	-15	23.5N	154.9t	50	422	-10
0406002 1	18.6N 155	1E 4	18.1N	155.5E	40	37	0	19.0N	155.4€	>0	232	-15	20.5N	154.6F	55	358	-5	22.3N	153.9t	60	466	-5
0412007	19.3N 154	SE 45	18.2N	155.4E	.0	83			155.18					154.5E					153.86			
	20.0N 153								151.16					148.9E		42			147.88			
				133.00						-0		.13			33	42	- 5	21.11	:41.00	. 00	122	-3
050000Z 2	20.6N 152.	9E 6	20.84	152.4E	45	30	-20	21.QN	148.85	-	72	-10	21.64	147.26		02			147 46			
	21.2N 151			151.4E		23			148.08										147.66			-15
														148.5E		63			151.36			
	21.8N 151.					50								140.1E		67			148.6E		37	
0518002 2	22.4N 150.	3E 6:	22.5N	149.7E	65	34	0	50.IN	140.06	60	93	U	30.0N	147.0E	55	24	-10	32.6N	150.Bt	50	114	-10
0600002 2	23.0N 149.	7E 6	23.3N	150 . OE	65	24	5	26.7N	149.5E	60	101	0	30.7N	151.8F	50	122	-50	33.9N	157.0t	- 40	295	-15
060600Z 2	23.8N 149.	2E 6	24.0N	150 . OE	55	45	-5	27.3N	151.UE	45	191	-20	31.0N	154.3F	35	320	- 10	34 - 7N	159.6t	30	350	-20
0612002 2	24.4N 148.	7E 6	24.9N	149.1E	55	37			144.18					152.3t					156.96		303	
0618002 2	25.24 148.	2E 60	25.0N	148.0F	55	16								149.9					154.86			
		-	-30.0.0	140.00		••	-		. 40. 7			-20	30.11		40		20	33.54	: 34.00	. 33	1	-5
070000/ 2	26.2N 147.	75 60	26.4N	148-1E	40	42	0	3H TH						149.1E		220	-10				F 30	
																					538	
	27.4N 147.			147.3E		36								149.7E							614	
	28.5N 147.		28.7N	147.2E	60	13			148. /E					154.5E								
0/18007 5	29.7N 147.	3E 6:	29.6N	140.8E	65	27	0	35.0N	148.08	60	156	U	40.3N	154.36	45	188	5					
	30.9N 14/		30.8N	147.6E	05	8			150.ZE		65	-10	41.0N	157.6E	35	217	-5					
08u600Z 3	32.3N 148.	ZE 65	31.9N	147.7E	65	35	0	36.8N	151.UE	45	104	-5	41.3N	158.9F	35	354	5					
0815005 3	33.44 144.	3E 6	33.5N	148.9E	65	21	0	39.3N	154.5E	45	52	u										
	34.5N 150.					27			159.46													
						-		33				•	-						•		-	
0400007 3	35.9N 151.	56 50	35 AM	151.9E	40	36	5	30 44	158.5E	45	226						10000				Same.	
	37.3N 153			153.3E			5															
						60			160.JE		320											
	38.7N 155																					
0419005 4	40.0N 158.		+0.5W	157.0E	45	65	5															
					12.23	000																
	40.9N 162																					
1000002	41.6N 166	BE 36	42.8N	164 · 3E	40	132	10															
				TYPHOO	NS WH	ILE .	IND	OVER 3	5K15				ALL F	OMECASI	s							
				WARN	ING	24-H	48	-HR 7	2-HR			ARNIN	6 44-	HH 48-	HH 7	2-HH						
AVERAGE F	FORECAST E	HOR		35	NM 1	MAES	191	NM 27	ZNM					M 1986		-NM						
	RIGHT ANGL		JR .	19		SUNM		NM 14				ZZNM				MAP						
	MAGNI TUDE							KTS 1				AKI		15 124		OKIS						
	BIAS OF #1							KIS -1						TS -11H								
	FONECASI			26		25			7			-5KI										
HOUSEN OF	FUNECAS	3		20		63	51					30	26	55	1	8						

TYPHOON IVY

0600Z 21 OCT TO 0000Z 27 OCT

		REST I	RACK			ARNING				4 HOUR	FURE	CAST			NUUN DA	FURE	CASI			14 HOU	H FUNE	CASI	
				-																			
		511			511			WIND			MIND				116					110	MIND		
106002							51			147.66				55.HN									
115007							26			148.ZE				23.3N									
119005	17.5N	146.7	E 35	17.2N	147.3	30	39	-5	19.3N	141.28	45	138	0	21.7N	147.4E	55	118	-10	24.6N	148.8	55	256	-30
200002							69		20.2N	147.UE	45	138	-5	23.3N	147.6E	55	187	-15	27.UN	149.10	55	297	-35
200007							11	-5	18.7N	143.75	45	216	-10	20.3N	142.6E	55	511	-20	22.3N	142.21	55	736	-35
700712	17.0N	145.4	E 40	17.5N	144.6	E 40	55	0	17.9N	143.66	50	295	-10	14.6N	142.0E	55	617	-20	22.3N	141.7	55	805	-35
21800Z	17.2N	146.2	€ 45	17.3N	146-1	E 45	8	0	18.3N	145.26	55	248	-10	14.4M	143.9E	60	595	-25	22.6N	143.6	60	740	-25
300002	17.9N	146.7	E 50	17.8N	146.7	E 50	6	0	19.7N	185.4E	>5	233	-15	22.2N	140.46	60	470	-30	25.0N	146.8	60	554	-20
306002	18.4N	147.5	E 55	17.AN	147.1	55	42	0	19.8N	147.86	65	249	-10	22.2N	147.5E	70	476	-20	25. ON	147.9	15	285	
10007	19.3N	148.2	E 60	18.8N	147.9	E 60	34	0	23.1N	149.28	15	176	U	28.4N	151.9E	75	105	-15	34.2N	158.31	60	114	
1800Z	20.4N	144.0	E 65	50.5W	148-4	60	36	-5	25.1N	150.UE	15	196	-10	30.9N	154.1E	75	192	-10	35. BN	161.7	60	91	1
100002	21.3N	150.2	E 70	21.8N	150-3	E 65	30	-5	27.3N	153.06	15	155	-15	32.4N	159.0E	75	250	-10	36. IN	167.4	60	240	2
06002	22.0N	151.6	t 75	21.6N	151 .8	E 70	26	-5	25.IN	156./E	15	110	-15	30.6N	161.4E	70	218	U					
12007	23.2N	152.4	£ 15	23.2N	152.5	E 70	5	-5	24.0N	155.5€	70	102	-20	34.3N	102.16	65	212	10					
1800Z	24.34	153.5	E 85	25.0N	154.4	E 80	64	-5	32.2N	159.26	95	298	10	31.0N	169.0E	85	441	40					-
50000Z	25.34	154.3	E 90	25.4N	154.5	E 80				156.26		36	0	34.2N	158.8E								-
5000Z	26.3N	155.0	E 90	26.4N	154.4	E 90	33	0	30.7N	155.0€	85	88	15										-
12007	27.3N	155.5	E 90	27.2N	155.2	E 90	17	0	30.8N	156.08	80	128	25										
51800Z	28.1N	155.9	E 85	27.BN	156+4	E 90	32	5	41.5M	159.76	80	217	35										-
	28.84			29.4N																			
200909				30.0N			16	15															
Z00216	32.3N	158.6	€ 55	31.3N	158+3	E 15	62	20															
18002	34.84	160.3	€ 45	32.6N	159.4	E 70	139	25															-
U000Z	37.7N	162.8	E 35	39.34	164.9	E 50	137	15												,-			

TYPHOONS WHILE WIND OVER 35KIS
WARNING 24-MH 48-MH 72-MH
AVEHAGE FORECASI ERHOR 23MH 77MH 167MH 24-MH
AVEHAGE FORECASI ERHOR 23MH 77MH 167MH 24-MH
AVEHAGE HAGRITUDE OF WIND ERHOR 6KIS 13KIS 17KIS 23KIS
NUMBER OF FORECASIS 22 20 16 12

#ARNING 24-MK 48-MK 72-MK
40N4 106NM 330NM 408MM
22NM 77NM 10FNM 241MM
6KIS 13KTS 17KIS 23KIS
1KTS 1KTS -6KIS -15KIS
24 20 16 12

	TYPHOONS WARNING			
AVERAGE FORECAST ERROR	24NM		289NM	
AVERAGE RIGHT ANGLE ERHOR	16NM	141NM		
AVERAGE MAGNITUDE OF WIND ERRUR	SKTS			
AVERAGE BIAS OF WIND EHROR	-2KTS	3KTS		
NUMBER OF FORECESTS	12	9	5	1

	ALL FOR	CASTS	
WARNING	24-HR	48-HR	72-HR
SPWW	MAYES	489NM 1	007NM
LAMM	LAONM	288NM	775NM
3KTS	13KTS	IBKTS	SKIS
-IKTS	AKTS	LOKTS	-SKTS
20	14	8	1

24 HOUR FURECAST 40 HOUR FORECAST 12 HOUR FUNECAST HEST TRACK WANNING Z4 HOWF FURELAST 49 HOUR FORECASI 72 HOUR FURELAST 49 HOUR FORECASI 72 HOUR FURELAST ERRORS

FRRORS

POSIT WIND POSIT WIND UST WIND POSIT WIND POSIT WIND UST WIND U 2900007 20.4N 156.2E 50 20.3N 156.4E 50 20.4N 156.4E 50 20.4N 156.1E 2918007 22.1N 157.0E 65 21.9N 157.2E 13 13 41 16 5 24.0N 156.4E 60 0 22.3N 155.3E 80 0 24.6N 158.6E 80 68 -20 92 U 220 25 62 30 40 50 70 65 312 398 200 579 -5 10 35 35 0 26.7N 160.JE 50 5 27.0N 159.UE 55 5 27.7N 162.UE 45 5 25.2N 160.YE 35 262 263 488 508 28.3N 166.9E 45 45 942 950 15 ==: 31u000Z 24.2N 156.3E 45 24.0N 156.3E 31u000Z 24.6N 154.9E 40 24.2N 155.2E 311200Z 25.0N 153.4E 35 25.0N 153.5E 311800Z 25.5N 151.5E 30 ----12 -15 29 -10 5 -5 23.0N 152.5E 45 --237 ==== ::: 01u000/ 25.8N 149.4E 30 --- ---01u0007 26.0N 147.8E 30 --- ---0112007 26.2N 146.8E 30 --- ----= = :: :: =:: == 30 26.6N 146.1E 30 27.2N 145.8E 30 27.0N 147.0E 30 27.0N 146.8E 0200002 26.5N 146.0E 0206001 20.9N 146.2E 0212002 27.1N 146.4E 0218002 27.4N 146.4E 8 28 32 32 40 35 30 10 030000Z 27.1N 146.7E 30 27.7N 146.1E 30 030000Z 26.4N 146.3E 25 27.2N 146.6E 30 031200Z 25.8N 145.6E 25 26.0N 146.0E 25

TYPHOON JEAN 1200Z 28 OCT TO 1200 03 NOV

TYPHOON KIM 0600Z 06 NOV TO 0000Z 17 NOV

		BFST	TH,	ACK		WA	HNING		HUHS		24 HOUR	FORE		HORS		e HOUR	FORE		RUHS		12 HOUR	FUNE		HORS
	Dr	SII		IND	PO	SIT	MIND		MIND	201	511	IND		WIND	p01	SIT	IND		- INU	Pos	110	UNI		WIND
0606002								51			144.1E					145.4E			-10		140.0L			-50
7002190								30	0		150.VE		80	0		145.9E			-15	14.3N	141.4E	60	181	-50
0618002	11.6	151	.5E	35	11.8N	151 • 5E	35	12	0	13.3N	148. ME	45	39	0	14.3N	144.9E	55	114	-25	14.3N	140.3E	65	201	-50
0700002	12.15	150	. 7E	40	11.9N	151 · 1E	40	26	0	12.9N	148.8E	50	83	0	14.2N	144.5F	60	186	- 15	14.5N	139.5E	10	234	-50
07u600Z						150 · 0E		13			140.0E					142.7F					137.8E		202	
071200Z						149.1E		13			145.0E					141.5E					130.0L		505	
0718002						148.6E		24			145.3E													
0710002	13.0	1 1 4 15	.26	43	13.1N	148.00	+0	24	-5	14.2N	145.36	50	135	-30	14.0M	1+1-1E	60	644	-55	14.6N	136.2E	70	231	-55
080000Z						147.2E		13			143.cE		110			138.2E							103	-35
0806002	13.3	1 146	. 1E			146 . OE		6	5	14.4N	141.1E	10	75	-35	15.1N	135.9E	75	92	-45	15.6N	130.BE	85	54	-30
2002180	13.65	1144	.6Ł	65	13.6N	144.6E	65	0	0	14.5N	139. ZE	15	53	-35	15.5N	133.7E					128.0E		1/4	-20
0818007	13.8	143	. OE			143.25		13	-10	15.0N	137.1E	60				132.3E					127.2E		245	
0900002	14 04		36	95	14 24			12	-15	15 74	00	ue				. 20 55		22.						
0906002											134.4E					129.5E							527	
											134.UE					154.1E		263			130.3E			10
0912002											132.4E			-15		158.8E		348			130.5E			10
0418007	15.0	1 136	. 9E	115	15.0N	137.0E	105	6	-10	17.5N	131.ZE	115	154	-10	20.AN	158.8F	115	367	5	25.0N	131.0E	115	613	5
1000002	15.10	1 135	.5£	120	15.3N	135.66	110	13	-10	17.9N	130.cE	140	200	0	21.9N	128.9E	120	436	10	25.5N	131.5E	110	733	0
1006002									-5		128.UE			10		123.1E					119.4E			-15
1012002											127. YE													
1018002													127			122.9E		258			119.1E			-10
1010002	14.0	132	.26	163	14.71	132.20	120		-5	14.8N	127.4E	130	121	20	13.4N	155. AE	130	208	20	17.UN	114.0F	105	556	0
1100002	14.8	131	. SE	120	14.7N	131 - 3E	120	13	0	14.8N	121.4E	130	87	20	15.3N	123.1E	130	132	20	16.8N	119.3E	45	130	5
1106002								6	5	14.8N	127.JE	1.50	53	25		123.1E		10			119.3E		96	30
1112002								0			126. /E					122.3E		60			118.8L		85	
111800Z								0			126.4E			-10		122.4E		43			119.0E		66	
		1.07				127.00	. 110	٠	٠	14.04	120.46	100	12	-10	13.24		100	*3	-5	17.00	*17.UL	,,	00	33
120000Z								13	-5	14.8N	126.4E	45	64	-15	15.3N	123.1E	95	139	5	15.6N	119.3E	70	91	35
1200002	14.6	128	.ZE	105	14.6N	128-16	105	6	0	14.4N	124.6E	45	29	-20	14.2N	120.4E	70	84	5	13.4N	116.8L	70	235	35
1212002	14.6	127	. 3Ł	105	14.6N	127.48	105	6	0	14.5N	124.UE	95	53	-50	14.5N	119.BE	70	108			110.0E		115	30
121800Z								12			142.06			-10		118.6E		81			115.0E			52
1300002								51			155.56		96			118.6F		111			115.3L			
1306007								6			120.3E		55			117.0F					113.8E			30
1312002								6			119.4E		84			115.7E		559			112.4E			40
1318002	14.8	155	·SF	105	14.7N	155-16	115	8	10	14.8N	118.5E	60	85	45	14.BN	112.1E	75	310	35	14.8N	111.8t	70	789	40
1400002	15.10	1 120	. 7F	90	15.20	120 - 78	96	6	5	15.7N	117.cE	HA	75	45	15.7N	114.0E	74	405	36	1 . IN	110 46	70	4113	40
1406002						119.68		19			115./E		166			112.3E		570						
1412002						118-16					110.1E													
								34						10		110.9E								
1418002	10.2	118	. 26	35	15.91	117.76	. 55	34	50	10.1N	114.15	50	311	10	10.1W	110.8F	•0	803	10					
1500002	16.6	118	.16	35	16.4N	118-06	45	13	10	17.5N	110.06	40	212	U	10.4N	114.3E	35	104	5					
150600Z	17.11	1114	.2E			118 · 0E		38			IIn. DE													
1512002						118-16		17			117.06		277											
1518002						118.66					121.3E		161											
	- 1000	-										1												
1600002						119.36			-5		122.5E		193											
1606002						121 - 26																		
1612002	20.8	1125	.4E	30	21.0N	122.08	30	25																
1018002	21.3	1 123	. 9E	30	21.4N	123.26	30	39	0															
170000Z	21.8	V 125	. 4E	30	21.50	125+68	25	21	-5															
						2000			4											-	-			

ALL FOMECASIS
WANNING Z4-HM 48-HM 72-HM
16NM 111NM 239NM 322NM
10N- 57NM 12VNM 16KNM
6KIS 16KTS 24KIS 20KIS
0KIS -0KTS 0TTS -1KIS
44 90 36 32

TYPHOON LUCY 0600Z 28 NOV TO 1800Z 07 DEC

		BEST TH	ACK		WA	RNING				24 HOUR	FURE	CAST			HOUR	FORE	CASI		1	14 HOUR	FUN	ECASI	
							ER	HORS					ORS				ER	RURS				ER	ZHURS
	PO	511	WIND	PO:	SIT	WIND	USI	WIND	POS	511	MIND	DST	WIND	PU	118	WIND	DSI	MIND	PO:	11	WIND	USI	
2806002	6.8N	160.0E	30	6.7N	160.4E	30	24	0	7.5N	155./E	45	113	15	8.6N	151.0F	50	127	25	9.9N	146.56	55	376	20
2812002	6.8N	158.3E	30	6.8N	158.4E	30	6	0	7.7N	152.1E	35	48	10	8.7N	146.2E	40	97			140.76		130	
281800	7.0N	156.6E	30	6.9N	156 · 8E	30	13	0	7.5N	150. /E	+0	86	20		144.9E		57	20		139.56			
290000	7.4N	155.26	30	7.0N	154 · 3E	30	58	0	7.9N	148.3E	40	163	20	9.20	143.6E	45	86	15	10.74	139.08	E 50	192	5
2906002		153.8E			153.5E		19			147.2E		168			141.5E		165			136.16			-10
2912007		152.8E			152 · 0E		67			145. /E		157			139.9E		135		13.6N				
291800		152.16			150.5E		122			144.4E		145			138.7E		113			133.56			
			-	0.4	. 30 - 32	30						143	13		. 30 . 15	43	.13	,	14.34	133.30	- 50	144	-23
3000007		150.9E			151 .4E		42			147.0E		284	5	8.9N	142.8E	40	438	-5	9.9N	138.10	45	434	-50
3006002		149.36			150 . 0€		45			145.0€	15	313	U		141.2E		441			136.6		438	-65
301200		147.3E			147 . 7E		54			1+3.4€		298	0		139.3E		375			135.0			-60
301800	7.7N	145.26	25	7.6N	146 . OE	30	48	5	B.4N	141.15	15	271	-5	4.6N	137.0E	40	322	-35	11.5N	133.3	E 50	296	-65
010000	2 8.0N	142.88	30	7.7N	144 - 7E	30	114	0	8. gN	134.€	35	251	-10	10.3N	134.0E	40	217	-55	11.7N	130.0	E 50	167	-65
010600	4 8.4N	140.3E	35	8.2N	140.BE	+0	32	5	4.5N	134.4€	0.0	116	5	11.4N	130.1E	70	103	-40	13.0N	126.4	75	193	-35
011200					138 . 7E		38		14.28	133.4€	60	149	-5	10.7N	129.2E	70	200	-40	17.7N	124.9	E 75	551	-30
011800	Z 10.8N	137.26	40	11.IN	136.66	50	34	10	15.0%	131.0€	65	173	-10	11.4N	126.7E	70	246	-45	18.7N	122.8	75	362	-25
020000	2 11.4N	135.88	45	11.5N	135.66	50	11	5	11.40	128.06	05	166	- 30	12.0N	122.8E	45	151	-50	13.9N	116.6	E 45	916	-55
020600	11.4N	134.5E	55	11.5N	134-06	56	30			127.46		209			121.6E					115.5			-45
021200	11.7N	133.46	65	11.5N	132.9F	25		-10		127.76			*45		122.8E		392			117.6			-35
021800	12.4N	132.3E	75	11.5N	132 - 3E	00				Len. M		139			124.4E				13.5N			910	
030000	. 12 00	121 26	95																				
					131 .4E			-10		120.45			-5		155.4E		497		15.8N			1027	
					131 - 2E		41			120.66					155.0E		586			118.36		1161	
0312007					129.4E		6			126.16		171			123.2E		658			120.6		1162	
031000	14.0N	129.16	113	13.HN	154.16	120	12	5	14.44	125.0€	150	252	50	10.4N	123.4E	110	085	40	18. /N	123.70	95	1075	40
					128 . 7E		18	5	17.4N	121.4€	140	175	20	19.7N	126.9E	105	524	40	22.4N	129.86	85	827	30
					128 · 2E		25	0	17.7N	121.UE	Lug	271	10	20.0N	127.2E	90	617	30	22.BN	130.56	80	910	30
041200	16.6N	128.6E	105	16.3N	128 . 7E	110	19			130.4€		163	20	22.8N	134.2E	90	332	35	25.0N	140.06	75	561	35
041800	17.7N	129.16	100	18.0N	129.2E	105	19	5	22.04	132.18	40	72	50	24.BN	138.3E	70	265	15	27.8N	146.5	60	521	20
050000	18.8N	129.98	100	18.6N	129.5E	100	26		22.3N	133.∠€	85	149	20	25-1N	139.4E	65	331	10					
050600	20.2N	131.0E	. 90	19.8N	130-6E	100	33			135.3€		170			142.BE		306						
051200	Z 21.6N	132.58	80	21.6N	132 · 1E	95	22			138.7€		247			149.6E								
051800	22.0N	134.08	70	22.4N	133.7E	90	29			140.48		249											
060000	Z 22.2N	135.9F	65	22 04	136 · 3E		47	0	76 64	146.5E	35		- 20				-						
060600					137 - 9E		8			147.18			-20		:								
061200					140.5E		6			149.4E		138											
061800					142.5E		12			144.76				:-									
							••							-				-					-
070000					144 . BE																		
	22.4N				146.8E																		
	22.0N				149.7E		30																
0/1800	21.3N	152.96	•0	55.5N	152 . OE	35	73	-5															

AVERAGE FORECAST ERROR
AVERAGE RIGHT ANGLE ERROR
AVERAGE MAGNITUDE OF WIND ERROR
AVERAGE BIAS OF WIND ERROR
NUMBER OF FORECASTS

TYPHOONS WHILE WIND OVER 35KTS
WARNING 24-HM 48-HM 72-HM
26NM 18HMM 367NM 543HM
15NM 107NM 187NM 255NM
7KTS 16KTS 26KTS 31KTS
3KTS -2KT5 -7KK5 -16KTS
27 26 26 27

ALL FORECASTS
WARNING Z4-HM 48-HR 72-HR
33MM 178NM 330NM 543NM
18NM 97NM 172NA 255NM
6KTS 15KTS 25KTS 31KTS
3KTS ZKTS -3KTS +14KTS
39 34 30 27

TYPHOON MARY 0600Z 20 DEC TO 1800Z 03 JAN

BEST TRACK	WARNING	24 HOUR FURECAST	40 HOUR FORECAST	12 HOUR FUNECAST
	ERHORS	ERRORS	ERHURS	ERROHS
2000002 9.7N 179.4E 30 10	POSIT WIND DST WIND	POSI; WIND DST WINE	POSTI WIND UST WIND	POSIT WIND UST WIND
2012002 10.2N 179.7E 30 10	0.0N 179.0E 30 43 0	10.9N 179.5E 40 73 U	13.0N 175.7E 25 174 -20 12.3N 177.0E 25 178 -25	
201800Z 10.4N 179.6E 35 9	0.0N 179.0E 30 43 0	10.7N 179.5E 40 116 0		
210000Z 10.3N 179.4E 40 9	.7N 179.0E +0 +3 0	9.7N 179.UE 40 141 U	10.5N 179.0E 25 361 -45	
2112002 9.9N 178.8E 40 10	0.6N 178.8E 40 43 0	9.6N 178.8E 40 196 -5		
2118002 9.7N 177.8E +0	9.8N 177.5E 40 19 0	9.8N 175.UE 50 105 -10	7.HN 171.7E 40 157 -30	9.8N 108.6E 30 179 -00
				7101 1001115 30 117 -00
2200002 9.8N 176.6E 40 9		10.0N 173.0E 50 88 -20	10.0N 170.4E 40 152 -35	10.0N 107.2E 30 181 -00
2206002 10.14 175.5t 45 10 2212002 10.6N 174.5E 50 10	0.1N 175.2E 45 18 0 0.1N 174.3E 50 32 0	10.1N 171.1E 55 107 -15 9.8N 170.5E 60 132 -10	10.1N 167.1E 50 200 -30	10.1N 163.1E 40 368 -45
	0.8N 173.4E 60 21 0	11.8N 170.8E /5 27 5	12.2N 167.5E 85 115 -5	12.4N 103.4L 90 295 25
	1.3N 173.0E 65 6 -5	13.4N 169.8E 85 54 10	15.7N 167.1E 85 237 -5	19.3N 110.3E 60 561 0
	1.8N 171.7E 70 26 0	14.1N 168.2E 90 101 10 15.0N 168.3E 85 130 U	17.0N 166.7E 85 335 0	20.6N 169.8E 55 672 -5 21.5N 171.8E 50 824 -5
231800Z 12.2N 170.6E 10 1	2.9N 170.0E 70 55 0	10.5N 167.9E 10 243 -20	18.4N 168.5E 80 412 -15 20.5N 170.4E 50 587 -15	21.54 111.65 50 624 -5
		14.6N 108.3E 00 147 -30	1/.7N 168.1E 50 +39 -10	,,
	3.0N 169.4E 70 13 -10 3.2N 168.9E 70 30 -15	15.2N 167.6E 05 215 -20 15.4N 167.3E /0 249 -25	18.3N 168.SE 55 519 -5	
	3.1N 169.1E /0 30 -20	15.2N 167.JE 10 262 5	18.1N 168.2F 55 616 5	
			100111 100165 23 210 3	
250000Z 12.3N 169.2E 90 1	2.4N 169.0E 75 13 -15	13.6N 166.4E 80 197 20	10.2N 165.7E 70 511 20	14.5N 168.0E 60 1023 20
250600Z 11.9N 169.1E 85 11	1.6N 169.3E 95 21 10	10.7N 167.2E 95 76 35		10.0N 157.UE 90 306 50
	1.6N 168.8E 95 6 0 1.0N 168.3E 90 8 25	11.3N 165./E 100 123 45 10.5N 165.JE 100 153 50	11.3N 161.0E 100 247 60	11.3N 156.8E 90 388 50
Estate 10134 leater of 1	1100 100135 70 0 23	100311 103132 100 133 30	1014W 100.3E 100 531 00	10.44 130.45 40 453 43
	0.5N 167.4E 75 13 15	9.5N 163./E 65 148 15	7.6N 159.8E 55 360 15	10.UN 155.7E 50 441 0
	9.9N 166.2E 65 0 5	9.6N 101.4E 55 127 10	9.6N 157.0E 45 301 5	9.9N 152.5E 45 339 -5
261200Z 9.4N 164.9E 55 6	9.7N 164.4E 65 34 10	9.6N 158.4E 55 64 15 9.1N 157.cE 50 95 10	9.7N 152.7E 45 163 5 9.1N 151.5E 45 184 0	9.9N 147.5E 45 138 -10 9.6N 146.4E 45 153 -10
201-101 101 11512- 20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** ****** 30 43 10	70 IN 131.3E 43 104 0	4.04 140.45 42 122 -10
	8.9N 161.7E 60 24 10	8.8N 155.9E 50 135 10	4.2N 150.1E 45 104 -5	9.8N 144.9E 40 124 -15
	8.9N 159.6E 50 13 5	9.0N 153.2E 45 102 5	9.5N 147.6E 40 115 -10	9.8N 142.3E 40 56 -10
	9.0N 157.5E 50 0 10 8.8N 155.4E 45 27 5	9.5N 150.6E 40 87 0 8.9N 148.UE 35 154 -10	10.0N 144.7E 35 81 -20 9.2N 141.7E 30 170 -25	10.4N 139.5E 35 43 -10 9.7N 136.0E 20 172 -20
	153142 47 21 5	33 134 -10	30 110 -52	4.14 i20.0C 50 115 -50
280000Z 9.4N 153.7E 40	8.9N 153.2E 45 42 5	9.1N 146.JE J5 176 -15		11.8N 134.5t 30 204 -10
2812007 10.0N 151.8E 40 1	9.9N 152.0E 40 13 0	11.4N 146.1E 30 47 -20		12.5N 136.4E 25 182 -15
2818002 11.2N 149.2E 45 1	1.8N 148.7E 45 46 0	12.0N 1+3+ZE 30 145 -25 14.6N 142,ZE 55 253 U		14.2N 132.7E 25 336 -10 16.5N 130.9E 65 485 30
			10104 130135 00 303 50	10.54 :50.16 03 403 30
	1.3N 148.4E 50 6 0	12.1N 144.1E 60 127 5	12.7N 139.7E 70 215 30	11.8N 135.3E 70 246 35
290600Z 11.3N 146.9E 50 1	1.3N 147.1E 55 12 5	11.0N 144.5E 60 181 10	11.1N 137.6E 75 138 35	12.1N 134.0E 85 237 55
	1.1N 144.1E 55 1B 0	11.7N 139.9E 45 91 0	11.0N 134.7E 40 126 5	10.8N 129.0E 35 42 5
			10 in istant 40 15. 3	10.00 127435 33 115 3
	0.4N 142.7E 55 6 0	9.8N 138.4E 45 59 5	10.1N 134.0E 40 130 5	10.5N 129.9E 35 237 5
300600Z 10.3N 141.5E 50 10 301200Z 10.2N 140.2E 45 10		9.5N 137.4E 50 88 10	9.8N 132.9E 40 142 10	
301800Z 10.1N 138.9L 40 10		9.7N 135.7E 45 81 10 9.9N 133.9E 45 83 10	9.9N 131.1E 40 130 10 10.1N 130.0E 40 153 10	
310000Z 9.9N 137.4E 40 1		10.2N 133.3E 40 95 5	10.4N 129.2E 30 195 0	10.8N 125.0L 20 134 0
	9.9N 136.1E 45 27 5	9.7N 130.4E 35 25 5	10.50 152.5E 50 54 -10	
3112002 8.9N 134.6E 35	9.1N 134.5E 45 13 10	9.1N 128.8E 35 60 5	4.9N 124.5E 30 38 0	,,
311800Z 8.7N 133.2E 35	H.IN 133.5E 35 40 U	1.9N 128.UE 25 125 -5		
0100002 9.4N 131.9E 35	8.1n 131.6E 35 80 0	8.1N 125.4E 45 117 -5	,,	,,
	0.0N 130.5E 40 6 10	10.8N 125.4E 25 117 -5		
011200Z 10.1N 128.9E 30 1	0.0N 128-8E 45 8 15	11.3N 123.3E 45 71 15	12.2N 118.2F 40 446 20	,,
011800Z 9.9N 127.4E 30	9.9N 127.2E 45 12 15	11.2N 121.0E 40 138 15	11.5N 117.0E 40 458 20	
020000Z 10.0N 125.9E 30	9.9N 125.8E 45 8 15	11.2N 120./E 35 220 15	,,	
	0.4N 125.6E 40 37 10	11.1N 122.2E 30 196 10		
0212002 10.4N 124.1E 30 1	0.7N 124.2E 35 19 5	11.8N 119.0E 35 361 15	,,	
0218002 10.0N 153.8E 25 1	0.9N 123.0E 35 71 10	11.9N 118.6E 40 406 20		,,
030000Z 9.3N 123.9E 20 1	1.0N 124.0E 30 102 10		,,	,,
	1.3N 123.4E 30 178 10			
031200Z 7.4N 124.0E 20 1	0.0N 124.0E 25 155 5	,,		
031800Z 6.3N 122.7E 20 1				

TYPH

WA

AVENAGE FORECAST ERROR

AVENAGE HIGHT ANGLE ERROR

AVENAGE MAGNITUDE OF WIND ERROR

AVENAGE BIAS OF WIND ERROR

NUMBER UF FORECASTS

TYPHOONS WHILE WIND OVER 35KTS
WARNING 24-HH 48-HH 72-HH
24NH 124NH 467NH 341NH
16NH 1-4NH 16NH 154NH
5 5KTS 13KTS 20KTS 24KTS
2KTS 1KTS -4KTS -3KTS
46 44 39 25

6. INDIAN OCEAN AREA CYCLONE DATA

TROPICAL CYCLONE 17-77

2000Z 11 MAY TO 0800Z 13 MAY

	H	EST T	HACK			AHNING				24 HOU	H FUHE	CAST			40 HUU	H FORE	CASI			12 HOU	H FUHE	CASI	
							EN	HUKS				FR	HURS				EK	HUHS				t H	HORS
	POS	11	WIND	PUS	IT	#INO	UST	HIND	PO	SII	WIND	051	WIND	PU	511	4 IND	USI	.IND	P	110	. INU	USI	WIND
1120002	17.6N	88.9	E 55	17.14	89.5	t 15	45	-20	19.7N	91.4	E >0	137	10										••
1208002	20.24	5.68	E 60	20.19	89.2	6 05	6	5	24.IN	49.4	35	117	10										
1220002	21.8N	40.4	E 40	21.74	89.3	£ 70	61	30															
1308002	24.AN	91.9	25	25.0N	92.0	35	13	10															

AVENAGE FORECAST EHRON AVENAGE RIGHT ANGLE ERHUR AVENAGE MAGNITUDE OF WIND EHRUH AVENAGE BIAS OF WIND ENHOH NUMBER OF FORECASTS ALL FUNECASTS

#ARNING ZE-MK 68-MR 72-MK

31NM 12/NM UNM 0NM
31NM 12/NM UNM 0MM
16RIS 10RIS 0KIS 0RIS
6RIS 10RIS UKIS 0RIS
4 2 0 0

TROPICAL CYCLONE 18-77

2000Z 10 JUN TO 0800 13 JUN

	н	EST 1	HACK			ARNING	,			24 HOUR	FURE	CAST			48 HOUR	FORE	CASI			12 HOU	H FUNE	CAST	
							ER	KUKS				ER	HOP5				ER	HUHS				ER	HORS
	Pos	11	WIN) P(110	WIN)	UST	WIND	PO	511	WIND	051	WINU	PO	SIT	WIND	UST	WIND	P	Ileu	MINU	051	WIND
1020002	19.04	66.8	E 3	19.00	66.8	E 40	0	5	21.0N	04.5E	45	41	-10	23.4N	62.26	50	414	-5					
1108007	19.7N	65.2	E 5	20.4	65.0	E 55	43	5	23.1N	67.9E	05	182	5	25.7N	59.76	65	320	25					
1120002																							
1208002	20.2N	61.4	t 6	20.10	61.2	E 61	13	0	20.4N	57.0E	45	28	5										
1220002																							
1 144007	20.4N	54.3	F 4	20.9	54.3	F 45	10																

AVEHAGE FORECAST ERMOR AVEHAGE RIGHT ANGLE ERMOR AVEHAGE MAGNITUDE OF WIND ERMOR AVEHAGE HIAS OF WIND ERMOR NUMBER OF FORECASIS

TROPICAL CYCLONE 19-77

2000Z 29 OCT TO 2000Z 31 OCT

	4	FSI	THA	CK			RNING				24 HOUR	FURE	CASI			-	FORE	CASI			12 400	-	CASI	
								ER	HOKS				ER	HOHS				EH	NUHS				ER	HUHS
	POS	11		IND	PUS	IT	WIND	UST	HIND	PO!	SII	. IND	UST	WIND	PU	511	WIND	UST	- IND	P	1150	WIND	051	#1NI
2920002	13.0N	85	35	35	13.2N	85-11	35	13	0	13.8N	82.56	45	56	10	14.5N	80.06	55	155	25					
3008002	13.94	83.	4t	35	14.74	84+3	35	71	0	17.3N	82.at	45	162	5										
302000Z	14.7N	82	HE	35	15.0N	82.01	40	50	5	10.5N	79.08	30	12	U										
310800Z	15.64	80	36	40	15.2N	80-4	. +0	25	0															
315000Z	16.3N	19	30.	30	15.AN	78 - 01	30	05	0															

AVEHAGE FORECAS! EHRON AVEHAGE RIGHT ANGLE ERHUR AVEHAGE MAGNITUDE OF WIND ERHUH AVEMAGE BIAS OF WIND EHROR NUMBER OF FORECASTS #ARNING Z4-HK 48-HR 72-HR
45-H 77-HH 122-HH 0-MH
45-H 73-HH 68-HH 0-MH
1-15 5-13 25-K15 0-K15
1-15 3 1 0

TROPICAL CYCLONE 21-77 2000Z 10 NOV TO 2000Z 21 NOV

	В	EST TH	ACK		WA	RNING			- 2	PHOUH	FURE	CAST			O HOUF	FORE	CASI			16 HOU	H FUKE	LASI	
							ER	ROHS				FRI	KORS					RUHS					RURS
				PUS						116	ONIO	OST	WINU	PUS	511	WIND	USI	WIND	P	1160	WIND	UST	.IN
1020002	11.4N	83.9E	•0	11.44	84 · 3E	35	53	-5	12.0N	80.1E	•0	67	-5										
10800Z							6	5	11.20	78.0E	40	33	U										
1150005	11.0N	80.2E	45	11.0N	80 - 16	55	6	10															
Z0800Z	10.84	78.4E	+0	11.0N	78 • 2E	30	17	-10															
1420002	13.64	68.26	45	12.7N	68 • 5E	35	51	-10	13.20	04.56	>0	116	U	14.HN	61.26	50	354	-15					
50800Z	14.5N	66.6E	50	14.4N	60.4E	45	13	-5	15.5N	95.36	>0	292	-10	10.1N	58.56	55	555	-15					
152000Z	13.8N	66.4E	50	14.14	66.4E	60	18	10	14.3N	04.cE	60	184	-5	14.7N	61.26	50	400	-50					
500800Z	13.3N	66.8E	60	14.2N	66.28	0.0	64	0	14.3N	65.1E	00	175	-10	14.6N	62.31	50	344	-20					
1020002	12.7N	66.9E	65	14.0N	67.26	65	80	0	15.5N	00.25	05	212	-5	10.8N	04.76	60	456	-5				•-	
708002	12.2	67.2E	10	13.0N	67.26	70	48	0	13.9N	67.66	65	171	15	14.4N	05.56	95	401	40					
120002	11.AN	67.4E	70	12.1N	66 • 8E	70	39	0	15.90	06.46	60	227	15	15.14	65.36	90	412	40					
80800Z								-5	11.1N	68. UE	60	148	5	13.3N	65.76	70	488	25					
1820002	10.64	64. 3E	65	10.5N	69.58	60	13	-5	15.5N	/1.1t	>5	144	5	14.3N	69.46	65	322	20					
40800Z	10.14	70 . 3E	55	10.14	71 - 06	50	+1	-5	11.4N	73.UE	>0	93	5										
142000Z	9.8W	/1.3E	50	9.44	70-46	50	53	0	11.2N	/1.06	>0	134	5	13.4N	64.26	60	275	25					
2008002																							-
202000Z	10.44	73.2E	+5	11.5N	73.76	45	12	0	14.0N	15.46	30	125	-5			•-					••		
2008012																							
212000Z	14.5N	73.8E	35	15.34	74.26	40	53	5															

AVENAGE FORECASI ERROR AVENAGE RIGHT ANGLE ERROR AVENAGE MAGNITUDE OF WIND ERROR AVENAGE WIAS OF WIND ENROR NUMBER OF FORECASIS ALL FORECASIS
WARNING Z4-MR 40-MR 72-MR
41MH 153MM 371MM 0NM
29MM 108MM 250MM 0NM
4KIS 7KIS 2ZKIS 0KIS
-1KIS 1KIS 0KIS
19 15 11 0

TROPICAL CYCLONE 22-77 0800Z 15 NOV TO 2000Z 19 NOV

		ESI TH	ACK		-	RNING				24 HOUR	FURE	CAST			B HOUH	FORE	CASI			12 HOUR	HUME	CASI	
								HOHS									EN	HURS				tw	HUHS
	Pos	11	HIND	PUS	11	ONID	UST	WIND	POS	SII	-IND	UST	. IND	PU!	511	WIND	USI	MINU	P	1111	# INU	USI	a Lwn
150800Z				6.1N				0	6.6N	84.0t	65	107	-15										
1520002				6.2N				-5	7.7N	41.3E	10	200	-20	8.HN	78.46	55	324	-45					••
1008002	7.21	85. 36	80	7.0N	85+0E	70	21	-10	7.9N	83.1E	80	162	-15	0.AN	81.26	90	664	-15					
1020002							19	-5	10.0N	63.VE	100	108	0	11.5N	81.36	100	157	-10					
1708002	10.5N	83.96	. 95	10.4N	83.9E	45	6	0	13.0N	82.4E	100	12	-5	15. JN	81.56	90	26	-20					
1/20002										81.4E		85	-20	18. JN	81.8	•0	80	-50				••	
1000002	13.0%	82.26	105	13.34	82 - 1E	110	19	5	15.9N	80.YE	100	27	-10										
1820002	14.1N	81.75	110	14.24	81 . 4E	105	18	-5	10.6N	BU.CE	90	58	-10										**
1908002	15.5N	81.16	110	15.54	81 - 6E	105	29	-5														••	
192000Z	17.2N	81.06	90	16.34	74.7E	40	45	0							****								

AVENAGE FURECAST ERROR AVENAGE HIGHT ANGLE ERROR AVENAGE MAGNITUUE OF WIND ERROR AVENAGE BIAS OF WIND EMMOR NUMBER OF FORECASTS

CHAPTER VI - TROPICAL CYCLONE CENTER FIX DATA

1. INTRODUCTION

During the 1977 storm season, 2373 fixes on the 21 northwest Pacific area tropical cyclones and 180 fixes on the North Indian Ocean area tropical cyclones were collected at Fleet Weather Central/Joint Typhoon Warning Center, Guam. Table 6-1, Fix Platform Summary, delineates the number of fixes by platform for each tropical cyclone as well as season

totals. A discussion of the various reconnaissance platforms is presented in Chapter II.

Fix totals as listed in Table 6-1 include all fixes received from primary and secondary sources whether real-time or afterthe-fact of which all were used for poststorm analyses. Therefore, totals are in some instances, larger than those listed and evaluated in previous chapters of this report.

				FIX PLAT	FORM			
	AIRCRAFT	DMSP	NOAA	SMS	LRDR	SHIP RADAR	ACR	TOTAL NO
WESTERN PACIFIC								
TS PATSY	7	18	39	5	_	-	-	69
TD 02	4	22	5	-	_	-	-	31
TS RUTH	2	38	21	-	8	-	1	70
TD 04	2	21	6	2	-	-	-	31
TY SARAH	13	52	24	-	1	-	-	90
TY THELMA	10	74	22	-	20	-	-	126
TY VERA	13	54	26	-	67	-	-	160
TS WANDA	8	39	26	-	-	-	-	73
TS AMY	3	50	18	-	39	-	-	110
TY BABE	19	141	39[3]	-	88	-	-	287
TS CARLA	1	44	10[1]	-	-	-	-	55
TY DINAH	14	123	43[4]	-	41	4	-	225
TS EMMA	8	71	25[1]	-	14	-	-	118
TS FREDA	2	32	8[1]	-	11	1	-	54
TY GILDA	12	47	36[5]	_	-	-	-	95
TS HARRIET	11	36	21[4]	-	-	-	-	68
TY IVY	9	57	13[1]	-	-	-	_	79
TY JEAN	3	59	12[1]	-	-	-	-	74
TY KIM	31	71	51[3]	-	70	-	-	223
TY LUCY	19	64	43[1]	_	-	-	-	126
TY MARY	20	86	54[7]	23	_26	=	-	209
TOTAL	211	1199	542[32]	30	385	5	1	2373
% OF TOTAL	8.9%	50.5%	22.8%	1.26%	16.2%	.2%	.04%	100%
NO. OF FIXES TROPICAL CYCLONE								
17-77		13	8					21
18-77		13	8					21
		27	8					35
19-77		46	20[3]					66
21-77					χ.			37
22-77		26	11[2]					
TOTAL		125	55[5]					180
7 OF TOTAL		69 42	30.62					100%

2. FORMAT

The fix data are divided into two groups by geographical area and sequentially ordered within each group. For all types of fixes, the first four columns tabulate information in the following format:

FIX NO. - Fixes are numbered sequentially.

TIME - Day, hour and minutes (GMT) of fix.

POSIT - Position of storm center in degrees and tenths.

FIXCAT - Type of fix used (SAT - satellite, P - aircraft penetration, LRDR - land radar, ACR - aircraft radar, SRDR - ship radar).

The format of the remainder of the print-out varies with the type of fix.

a. SATELLITE - Intensity estimates and trends from visual data (when available) are listed as derived from the Dvorak technique (NOAA TM; NESS - 45). Fix data from NOAA-4 and NOAA-5 satellites are appropriately labeled and indicate confidence numbers (CONF) if the U. S. Navy Fleet Weather Facility, Suitland, MD provided the data (see Table 6-2), or Position Code Number (PCN) if USAF DMSP sites provided the data. Fixes based on IR data are appropriately annotated with IR DATA. Geosynchronous Meteorological Satellite (SMS-2) data are noted as such and may contain occasional narrative comments and accuracy estimates.

b. RADAR - The latitude and longitude of the radar sites are given in the POSIT OF RADAR column. If available, plain language remarks regarding the size, accuracy, and echo characteristics of the fix appear as received. Radar data sites using the standard World Meteorological Organization (WMO)

Code include a five-digit code group for reporting tropical cyclone characteristics of size, appearance and accuracy of location of the center or eye.

c. AIRCRAFT PENETRATION - Complete eye/center fix reports are obtained at levied fix times. Supplemental fixes are sometimes made during peripheral data gathering legs between scheduled fixes. These normally provide date, time and location only.

The categories of aircraft reconnaissance information are as follows:

(1) ACCRY (Accuracy): The estimated navigation (first number) and meteorological (second number) accuracies are expressed in nautical miles.

(2) FIX LVL (Fix level): A constant-pressure-surface flight level (listed in mb) is normally maintained during a tropical cyclone fix mission. Low-level missions are usually flown at 1500 feet (457 m). This altitude, however, is not normally constant due to maneuvers to avoid turbulence and to maintain visual contact of the ocean surface.

(3) MAX OBS FLT LVL WIND: Wind speed (knots) at flight level is measured by the AN/APN 147 doppler radar system aboard the WC-130 aircraft. Values entered in this category represent the maximum wind measured prior to obtaining a scheduled fix. This measurement may not represent the maximum flight level wind associated with the tropical cyclone because the aircraft only samples those portions of the tropical cyclone along the flight path. In many instances the flight path may be through the weak sector of the cyclone. In areas of heavy rainfall, the doppler radar may track energy reflected from precipitation rather than from the sea surface; thus preventing accurate wind speed measurement. In obvious cases such erroneous wind data will not be reported. In addition, the doppler radar system on the WC-130 re-

TABLE 6-2. CONFIDENCE (CONF) NUMBERS AS A FUNCTION OF DVORAK T NUMBER AND RADIUS OF 90% PROBABILITY AREA (NM).

INTENSITY	CONF (1)	CONF (2)	CONF (3)
T1.5	60	120	170
T2.0	60	120	170
T2.5	60	120	170
T3.0	50	100	150
T3.5	45	90	140
T4.0	45	90	140
T4.5	45	90	140
T5.0	40	90	130
T5.5	40	80	130
T6.0	40	80	130
T6.5	30	70	120
T7.0	30	70	120
T7.5	30	60	100
T8.0	30	60	100

stricts wind measurements to drift angles less than or equal to 27 degrees if the wind is normal to the aircraft heading.

- (4) MAX OBS SFC WIND: The maximum surface wind (knots) is an estimate made by the Airborne Weather Reconnaissance Officer (ARWO) based on sea state. This observation is limited to the region of the flight path, and may not be representative of the entire storm. Availability of data is also dependent upon the absence of undercast conditions and the presence of adequate illumination. The positions of the maximum flight level wind and the maximum observed surface wind do not necessarily coincide.
- (5) OBS MIN SLP: The minimum observed sea level pressure on a 700 mb fix mission is obtained by applying the minimum 700 mb height to the following regression equation:

SLP (MB) = .115 (700 mb HGT [M]) + 645

This relationship is accurate within +3 mb in most cases. However, if the 700 mb center and the surface center are not vertically alligned, the minimum sea level pressure will be erroneously high. If the surface center can be visually detected (e.g.

in the eye), the minimum sea level pressure is obtained by a dropsonde released above the surface vortex center.

- (6) MIN 700 MB HGT: The minimum height of the 700 mb surface in the vortex center is recorded in decameters.
- (7) FLT LVL TI/TO: This category denotes the maximum temperature measured in the center (TI) and the ambient temperature outside the center (TO). The outside temperature is measured just prior to entering the wall cloud. Both temperature observations are in degrees Celsius and are made at flight level. Reconnaissance aircraft seldom penetrate on the same azimuth from one fix to another; thus, the position of TO normally varies both in bearing and range from the center.
- (8) EYE FORM/ORIENTATION/DIA: The shape and diameter (nm) of the eye is determined by visual observation or by radar presentation analysis. This is reported only if the center is 50% or more surrounded by wall cloud. For elliptical eyes, the size of both major and minor axes are given in nm.

3. WESTERN NORTH PACIFIC FIX DATA

INUPICAL SIONM FAIST

FIA POSTITIONS FOR CYCLURE NO. I

UBOUZ 23 MAR TO UGOUZ 31 MAR
MAR OHS
MAR UGS
MAR UGS
FIA ACCHY FIA FIT LY BIND

CAI NAY-MET LYL UIK YEL BHG HNG YEL BHG IN AFT RHE SUR STE PLC MIND WIN WWX CRZ CRZ MIN ELI EYE UHIEN- EYE PUSIT FIA MSN ILME POSIT RADAR 21212-17
21210-27
22100-27
22100-27
22100-27
22100-27
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2310-22-17
2 (T2.0/2.0 / / HMS) 1.14 160.4E NOAA-5 (CONF 01) SAI (II.u/I.u / MKS)
SAI (II.u/I.u / MKS)
SAI (II UAIA)
SAI (II UAIA)
SAI (II UAIA)
SAI (II UAIA)
SAI (IR U 1.5% 100-3E
1.6% 100-3E
1.6% 100-1E
2.4% 100-1E
2.4% 100-1E
2.4% 100-1E
2.4% 100-1E
3.5% 103-1E
2.5% 103-1E
2.5% 103-1E
2.5% 103-1E
2.5% 103-1E
2.5% 103-1E
3.5% 103-1E
2.5% 103-1E
2.5% 103-1E
3.5% 103-1E
2.5% 103-1E
2.5% 103-1E
3.5% 1 PCM 5 NOAA-5 NOAA-5 NOAA-5 (CONF 02) NOAA-5 NOAA-5 NOAA-5 30 35 230 PCN 6 NOAA-5 PCN 6 NOAA-5 NOAA-5 SMS-2 (CONF 02) 10 11 12 13 14 15 10 17 (CONF 02) PCH 6 UMSP PCH 6 UMSP NOAA-5 PCN 3 NOAA-5 PCN 6 NOAA-5 (CONF 01) NOAA-5 PCN 6 NOAA-5 35 4U 2YU PCN 6 UMSP PCN 6 NOAA-5 PCN 6 UMSP PCN 6 UMSP PCN 6 UMSP PCN 6 NOAA-5 10 (CONF 01) PCN 6 PCN 6 PCN 6 PCN 6 PCN 6 PCN 6 NOAA-5 (CONF 02) PCN 5 NOAA-5 PCN 5 NOAA-5 SMS-2 PCN 6 UMSP PCN 6 NOAA-5 SMS-2 NOAA-5 PCN 5 NOAA-5 (CONF 01) PCN 5 PCN 6 NOAA-5 SMS-2 UMS-9 PCN 6 PCN 6 PCN 5 PCN 6 UMSP PCN 6 NOAA-5 SNG-2 NOAA-5 PCN 6 NOAA-5 5 05 120 10 55 250 PCN 6 UMSP PCN 6 NOA-5 10 - -(CONF 02) 300 11 9 CINC 54 54 55 56 57 58 59 61 UMSP NOAA-5 NOAA-5 - 999 300 15 11 PCN 5 (CONF 01) PCN 5 NO 80 20 PCN 6 U UMSP NOAA-5 NOAA-5 30 1005 (CONF 02) PCN 6 15 -PCN 6 PCN 5 - 1003 UMSP NOAA-5 NOAA-5 NOAA-5 NOAA-5 (CONF 01) PCN 5 (CONF-02) PCH 6 NOAA-5

The state of the s

							L DEPRE											
									UNE NO.									
					00				UZ 21 MA									
-							MAX OBS		MAX O		OBS	HIN	FLT				POSIT	
FIX				ACCRY	FIX		TAT MI		SFC #I		WIN	700MB		EYE	URIEN-		OF	MSN
NO.	TIME	POSIT	CAI	NAV-MET	LAL	DIH	VEL BRG	RNG	VEL BRG	RNG	SLP	HG	11/10	FORM	TATION	DIA	RADAR	NMBR
1	23234A7	18.3N 124.8E	SAI	(1 0	0 /	, ,	HRS)	PCN	5 NOAA-5									
5	2402062	18.3N 125.0E	SAI	LIR DA	TA)	PCN	5 DMSP									
3	242322/	15.2N 128.2E	SAI	(11.0/	1.0	' '	HRSI	PCN	5 DMSP									
	250054Z		SAT	(11.0/	1.0/	, ,	HRS)		NOAA-5	(CON	F 01)							
5	250100Z	16.5N 128.4E	SAI	(11.0/	1.0	101.0/	25HRS)	PCN	5 DMSP									
6	2510252	16.6N 128.3E	SAI	(IR DA)	PCN										
7	251025Z	15.9N 127.7E	SAT	(IR DA	TA)	PCN	5 UMSP									
8	25114nZ	16.3N 128.2E	SAI	(IR DA	TA)	PCN	6 UMSP									
9	2511452		SAT						NOAA-5	(CON	F 02)							
10	251440Z	17.0N 128.3E	SAT	(IR DA	TA)	PCN	6 DMSP									
11	2523092	18.7N 127.4E	SAI	(12.0/	2.0-/	101.0/	24HRS)	PCN	5 UMSP									
12	25231 nZ	18.5N 127.4E	SAI	(IR DA	TA)	PCN	5 DMSP									
13	260010Z	18.1N 127.5E	SAI						NOAA-5	(CON	F 02)							
14	2600172	19.8N 129.2E	SAT	(12.0/	2.0-/	D1.0/	23HKS)	PCN	3 UMSP									
15	260030Z	19.84 128.7E	P	6 5	1500	180	30 100	40	35 130	60	1001		23 24					
16	2603202	20. AN 129.0E	P	5 5	700	•		-	10 270	20	1001	310	13 13					i
17	2603227	20.6N 129.0E	SAT	(IR DA	TA)	PCN	3 UMSP									
18	2603222	20.8N 129.1E	SAT	(IR DA	TA)	PCN	3 UMSP									
19	2610562	21.8N 129.5E	SAT	(IR DA	TA)	PCN	5 UMSP									
20	2611557	21.2N 129.4E	SAT	IR DA	TA		1	PCN	5 UMSP									
21	2611552		SAT	LIR DA	TA)	PCN										
22	2612597	20.0N 126.9E	SAT	(IR DA	TA)		NOAA-5	(CON	F 02)							
23	2616047	21.8N 129.4E	SAT	LIR DA	TA)	PCN	5 UMSP									
24	2616042	38.951 NB.55	SAI	LIR DA	TA)	PCN	5 UMSP									
25	2618117	23.3N 130.2L	P	5 15	700	210	28 110	30			1003	314	11 11					2
26	26225A7	23.8N 130.5E	SAI	(IR DA	TA	4.5)	PCN	5 UMSP									
21	26225A7	21.5N 130.3E	SAT	112.0/	2.0 /	'S /	24HHS)	PCN	5 UMSP									
28	2623337	24.54 130.6E	SAT				24HH5)	PCN										
24	2703047	24.4N 131.0E	SAI	(11.0/			HRSI	PCN										
30	270305/	24.7N 130.8E	SAT	(IR DA			,	PCN										
31		25.34 131.6E	P	5 2		50	25 290		25 300	25	1003		23 23					

INUPICAL STORM HUIN
FIX POSTITIONS FOR CYCLUNE NO. 3
00002 14 JUN 10 12002 17 JUN

					0002 L4 JUN												
					MAX OH			MAX OHS		082	MIN	FLI				PUSIT	
FIX	114E	POST		ACCHY FIX	UIH VEL HR			L BRG RE		MIN	700MB		FORM	IALIUN		UF KAUAR	MSN
															•••		*****
1	100051/	5.3N 124.0E	SAT	(T1.0/1.0					(CONF	01)							
4	1011357	1.04 128.2E	SAI	CIR DATA	, , una)			NOAA-5 NOAA-5									
	1011347	4.54 129.nE	SAI	LIR DATA	i		٠	NOAA-5	(CONF	01)							
5	1100097	1.5N 121.5E	SAI	(11.0/1.0					(CONF	02)							
0	1100117	1.24 120.HE	SAI		/D1.0/24MHS)			NOAA-5									
1	1102047	1.4N 127.2E 8.8N 125.7E	SAI	IR DATA	;		5	NOAA-5									
y	111446/	9.6N 124.JE	SAI	IN DATA	;	PCI	6	UMSP									
10	12011 42	12.5N 123.5E	SAT	(12.0/2.0	/D1.0/25HKS)			NOAA-5	(CONF	01)							
11	1201237	13.1N 123.1E	SAI	(1 0/1.0	/#1.U/25HRS)		5	NOAA-5									
13	12032-7	11.3N 122.5E	SAI	(11.0/1.)	/ / HHS)	PCN			/ cour	001							
14	1300347	13.14 118.5E	SAI		WO.5 / 24 HRS)				(CONF								
15	1300392	12.44 114.0E	SAT	(1 0/ 0	15 /23HRS)	PCN	5	NOAA-5	(CON	02)							
10	1303107	12.9N 114.3E	SAI	115.015.0	/D1.U/24HH5)	PCI	5	UMSP									
17	1311397	14.0N 117.9E	SAI			PCV											
18	13114 1/	14.7N 118.1E	SAI	(IR DATA	/ / HHS)	PCN		UMSP								****	
20	1322427	14.8N 117.6E	SAT	(12.5/2.5		PCN		UMSP									
21	1322427	14.9N 111.3E	SAI	(13.0/3.0	/D1.0/20HRS)	PCN											
55	1401462	15.94 117.0E	SAT		/U1 . 5/25HHS)				(CONF	02)							
23	141128/	16.6N 116.8E	SAI	CIR DATA	!	PCN		UMSP	/ 00mF								
25	1412397	17.04 116.5E	SAI	(IR DATA	;	PCN		NOAA-5 NOAA-5	(CONF	01)							
26	1415347	17.7 × 110.5E	SAT	LIR DATA	;			UMSP									
27	141535/	18.04 118.5E	SAT	ITH DATA)	PCN	6	UMSP									
58	14223-7	18.24 116.6E	SAI		/D1.5/24HKS)			UMSP									
30	142231/	17.2N 115.9E	SAI	(IR DATA	/D1.0/24HHS)			UMSP									
31	1500127	18.54 119.5E	SAT	IN DATA	;			UMSP									
30	150055/	18.74 116.8E	۲		250 15 27			5 330	7	980	241	19 15	CINC		20		1
33	1501012	18.34 110.6E	SAI		/S /23 HHS1			NOAA-5	(CONF	01)							
34	1501072	18.6N 116.9E	SAF	(IR DATA	100 (7.1)	PCN		NOAA-5									
35	1504022	19.24 117.9E	SAI	(14.0/4.0	190 52 14 / / HKS)			UMSP	10	980	541	55 15	-	• •	•		5
31	1506207	19.64 116.HE	LHUR	- 20800	, , , ,,,,,,,		3	UMSI					-		-	35.3N 114.2E	
36	1511157	19.4N 116.AE	SAI	LIR DATA)			UMSP									
39	1511157	19.84 116.9E	SAI	CIR DATA)			UMSP									
40	1511157	19.5N 116.5E	SAI	IR DATA	3			UMSP									
**	1515097	21.0N 117.7E	LHUH	- 5////		PCN	,	UMSP								22.34 114.2E	
43	1515172	20.5N 117.1E	SAI	-///		PCN	5	UMSP								22.34 114.22	
44	1515172	20.4N 117.4E	SAI	CIR DATA)			UMSP									
45	1515172	20.8N 117.3E	SAI	CIR DATA	;			UMSP									
40	1516547	21.1N 117.2E	AC R	IIR DATA	,	PCI.	5	UMSP					_			20.3N 175.0E	
46	16000nZ	21.3N 117.1E	SAI	IR DATA	,	PCN	3	UMSP								20.34 115.0E	•
44	1600002	21.1N 117.5E	LHUR	- 65///									-		-	22.3N 114.2E	
50	1600172	22.0N 116.9E	SAT		/#1.U/23HRS1			NOAA-5	(CONF	01)							
51	1600247	22.2N 117.7E	SAT	(14.0/4.0	/ / HKS)	PCM		NUAA-5									
53	1603592	35.81 118.2E	SAI	(13.0/3.5-	/wu.5/30HKS)	PCN		UMSP									
54	1603592	25.2N 11H. 3E	SAI	(13.5/4.0	/WU.5/24HH5)	PCN											
55	1605002	35.4N 118.0F	LAUR	- 259///									-		-	22.3N 114.2E	-
56	1611037	53.94 119.5F	SAI	IN DATA	,		6	UMSP									
5/	1611032	23.5N 118.7E	SAI					UMSP									
59	1611092	23.7N 118.3E	LHUH	- /////			0	JMJF					-			22.00 120.3E	
60	1612082	23.9N 118.5E	LHUR	- /////											-	22.00 120.3E	
61	1613072	23.0N 118.0E	SAI	CIP DATA)			NOAA-5	(CONF	01)							
63	1613097 1614UAZ	24.3N 118.9E	LRUR	- /////									-		-	22.0N 120.3E	
64	1616412	24.7N 119.4E	SAI	IR DATA	,	PCA	5	UMSP					-		-	22.0N 12U.3E	•
65	1616412	23.7N 118.9E	SAI	LIH DATA	i	PCM		UMSP									
66	1623487	25.3N 119.2E	SAI		/#1.U/24HHS)	PCN	5										
67	1623482	25.2N 12U.2E	SAI	CIR DATA	(=1 0 (25)	PCN											
68	1701347	26.7N 120.6E	SAI	112.0/3.U-	(SHH25/U.1#/		5	NOAA-5									
70		20.8N 121.5E	SAI		/#1.5/24HKS)			UMSP									
							100	100									

					1 4	OPICAL U	EPRES	SSION										
						051 1 1UNS			UNE NO.									
					00	0 VZ 05 J	WL 16	0 060	u/ un .IL									
					•••		OHS		MAX (083	MIN	FLT				PUSIT	
FIX			FIX	ACCRY	FIX	FLT LY		MO	SPL #1		MIN	700MB		EYE	URIEN-	E	UF	
NO.	TIME	POSIT		NAV-MET	LAC	DIH VEL			VEL BHE		SLP		11/10		IATIUN		RAUAH	MARH
1	0212542	15.3N 120.6E	SAI	(IR UA	TA		- 1	PCN	6 NOAA-S	,								
5	0223572	13.8N 116.5E	SAI	(11.0/	1.0/	/ "		PCN										
3	0301312	11.9N 116.0E	SAI	(11.0	1.01	/ +	INS!	PEN	S NOAA-S	5								
4	0304052	11.84 116.1E	SAI	(IN DA	ATA		1	PCN										
5	0312102	12.7N 115.9E	SAI	IIR DA	ATA		,	PCN	5 NOAA-S	5								
6	0316472	11.7N 114.1E	SAI	IIR DA	ATA		1	PCN										
1	0323452	15.0N 113.0E	SAI	(IR DA	ATA		1	PCN	6 UMSF									
8	0323452	13.4N 113.5E	SAI	(11.0/	1.0 /	5 /248	HS)	PCN										
9	0400472	16.5N 116.4E	SAI					PCN		5								
10	0403472	16.9N 115.7E	SAI															
11	0403472	15.2N 113.2E	SAI	IN DA)	PCN										
12	0411272	17.7N 116.0E	SAI	LIR DA			,		6 NOAA-5									
13	0412307	18.3N 116.2E	SAT	(IR DA	TA		,	PCN										
14	0412302	14.6N 114.5E	SAI	(IR DA			,	PCN										
15	0416297	18.4N 110.1E	SAI				,	PCN										
16	0416297	17.6N 114.8E	SAT				,	PCN										
17	0422227	17.84 114.2E	P	10 30		150 28	90	100	25 40		991		25 25					
18	0423337	18.14 114.0E	SAT					PCH					., .,		-			
19	0423337	18.44 112.7E	SAI					PCN										
20	0503307	18.1N 113.0E	SAT			D1.0/28H		PCN										
21	0503307	18.5N 113.1E	SAI					PCN										
22	0503487	17.54 133.1E	P			170 30	70	150	30 10		995	304	11 -					
23	0512197	20.1N 111.9E	SAT				,		5 UMSP		***	304						•
24	0512197	20.0N 110.5E	SAI	CIR DA				PCN										
25	0512397	20.3N 111.3E	SAI	(IR DA					5 NOAA-5									
26	0512467	19.0N 111.5E	SAT					-	SMS-2		(10							
21	0516127	20.4N 111.5E	SAT				,	PCM			01/							
28	0516127	19.5N 110.5E	SAI					PCI										
29	0523217	35.04 110.5E	SAI			w1.0/24H	we'.	PCN										
30	0601152	22.5N 110.2E	SAI		1.0/		KS)	PCN										
31		20.9N 109.4E					HS)	PCN	SMS-2		011							

TYPHOUN SAMAH
FIX POSITIONS FOR CYCLUNE NO. 5
12002 16 JUL TO 12002 21 JUL

				1500	Z 16 JUL TO	1200	Z ZI JUL	5	UBS	MIN	FLI				POSTL	
FLA NO.	11ME	POSIT	FIA ACC		TH VEL BRG		SEL AIN		MIN	700MB	LVL	EYE FURM	UNIEN-		UF HAUAR	MSN
								MNO	36	no.	11/1	FUNH	initod	D14	navan	NWRK
1	1300007	6.7N 137.5E 7.7N 138.2E	SAI II	R DATA	/ HKS)	PCN	5 NOAA-5 5 NOAA-5									
3	1323167	8.0N 136.9E	SAI IT	0/ 0/5	123HKS)	PCN	5 NOAA-5									
5	1402332	7.8N 136.8E 7.2N 134.1E		R DATA	;	PCN	5 NOAA-5									
6	1421472	7.54 132.7E	SAT (I	R DATA	, , ,	PCN	5 UMSP	/ cour	001							
6	1500262	6.74 130.0E		2.0/2.0 /	/ HKS) /25HKS)	PCN	NOAA-5 5 NOAA-5	(CONF	02)							
4	1502157	7.0N 132.6E	SAT II	ATAO H	1	PCN	5 UMSP									
10	1502152	6.2N 132.UE 9.2N 130.5E		1.0/1.5 /	/ HKS)	PCN										
12	1510292	1.6N 124.HE	SAL (I	R DATA	i	PCN	5 UMSP									
13	15111AZ 15111AZ	7.5N 124.6E 7.3N 132.0E		H DATA	,	PCN	5 NOAA-5 NOAA-5	(CONF	021							
15	1514577	7.8N 128.6E	SAT II	A DATA	;	PCN		(CON	ULI							
16	151457Z 152130Z	8.0N 128.6E		R DATA	;	PCN	5 UMSP									
18	1521302	8.4N 127.1E	SAT IT	10/ 0.5/0.5	.U/19HHS)	PCN	4 UMSP									
19	1523012	9.14 126.7E	SAT II	R UATA)	PCN		(CONF	01)							
51	1523427	8.3N 126.4E		3.0/3.0 /01		PCN	5 NOAA-5	(CONT	017							
22	160042/	9.3N 130.4E	P 5	5 1500	10 30 350	100	JU 350	70	1005	-	55 5	3 -		-		1
23	1601542	9.4N 130.5E 9.9N 129.4E		12 700 I	20 SS 60	PCN 35	5 UMSP	30	1001		23 2			-		,
25	1609432	10.2N 128.8E	P 5		8v 38 100	105	25 100		1005	307	13 1			-		3
27	1610127	10.44 127.8E	SAT			PCN	5 UMSP									
58	1612212	10.6N 127.5E	SAI (I	R DATA	,	PCN	5 NOAA-5									
30	1622497	12.2N 124.9E		2.5/2.5 /	/ HHS)	PCN	5 UMSP									
31	1622542	11.6N 125.5E		3.0/3.0 /01	. U/25HKS)	PCN	4 UMSP									
32	170045Z	12.1N 125.3E		3.5/3.5 /00	10 30 150	50	NOAA-5	CONF	02)	-	13 1	1 -		-		4
34	1700572	12.3N 125.0E		3.0/3.0 /DI		PCN	5 NOAA-5	(CONT	UL)							
35	170415Z 17093AZ	12.7N 125.2E	P 2	7 700 2	50 42 190	35	30 150	30	989	594	11 1			-		5
37	1709552	12.8N 123.4E	SAT (I	10 500 2	32 110	PCN 20	6 UMSP	•	•	•	-3 -	-	• •	•		5
38	1709552	12.9N 123.2E	SAT (I	R DATA)	PCN	4 UMSP									
39	171133Z 171133Z	13.4N 123.7E 13.3N 123.3E		R DATA	1	PCN										
41	1711372	13.44 123.3E	SAT (I	R DATA)	PCN	6 NOAA-5									
42	1711472	14.0N 123.7E		R DATA	;	PEN	NOAA-5	(CONF	02)							
44	1716042	14.1N 123.3E	SAT (I	R DATA	į į	PCN	3 UMSP									
45	1716322	13.6N 122.7E	P 2	12 500 1		180	: :	:	:	- :	-3 -		::	:		•
47	1722342	15.0N 121.1E	SAT (T	3.0/3.0+/ 5	/22 HKS)	PCN					-3 -	•				•
48	1722377	14.6N 121.4E	SAT IT	(3.0/3.0 /DI	.U/24HRS)	PCN										
50	1800132	15.4N 120.9E	SAI (I	IR DATA)		5 NOAA-5									
51	1804222	15.6N 121.2E	P 5	10 700	80 40 330	40		•	•	-	+3 +	5 -		•		7
53	1810307	16.2N 118.7E	P 5	5 700 6	200 33 170	80	50 90	20		303	12 1	1 -	::	-	15.2N 120.6E	-,
54	181119Z 181119Z	15.8N 118.1E		IR DATA	:		5 UMSP			-						
56	1811217	16.3N 118.0E		R DATA	;	PCN										
57 58	1812492	16.14 117.6E	SAI (I	IR DATA)	PCN	5 NOAA-5 5 UMSP									
59	1815442	16.3N 117.2E	SAT (1	R DATA	;	PCN										
60	1815467	16.0N 116.1E		R DATA			6 UMSP									
62	181623Z 182130Z	16.3N 117.3E 17.0N 116.3E	P 2	5 700 1	30 55 30	50	50 70	30	991	301	15 1		::	:		H
6.3	1855501	16.94 115.76		3.5/3.5 /00	(SHH45)	PCN	5 UMSP									
65	1900062	17.1N 116.0E		R DATA	/ HRS)	PCN	NOAA-5	(CONF	02)							
66	1901252	17.04 115.4E	SAT (1	R DATA)		5 NOAA-5									
67	190428Z 190432Z	17.0N 114.9E	SAT IT	6 700 1	/30HRS)	PCN 55	10 360	55	984	293	13 1					-
69	1911022	17.24 113.9E	SAT (I	IR DATA)	PCN	4 UMSP	22	767	243	13 1					9
70	1911027	16.9N 112.3E	SAT (1	IR DATA	;	PCN	2 UMSP									
72	1912052	17.1N 112.9E	SAI				3 NOAA-5									
73 74	191359Z 19152AZ	17.6N 112.0E		IR DATA	;	PCN	NOAA-5	(CON	01)							
15	19152AZ	17.7N 112.4E	SAI			PCN	5 UMSP									
76	192345/	17.6N 112.2E		5.0/5.0-/01		PCN	3 UMSP	1000								
78	2000107	17.7N 112.0E	SAT (1	14.5/4.5 /01	/ HHS)	PCN		(CON	01)							
79	2004112	18.4N 111.HE	SAT (T	4.0/4.0-/	/ HHS)	PCN	2 UMSP									
80	2004117	18.1N 111.7E	SAT (1	R DATA	;	PCN										
82	201652/	19.1N 108.7E	SAI (1	R DATA	!	PCN	1 UMSP									
84	2016522 20232FZ	19.14 109.7E 20.34 108.8E		3.0/4.0-/WI	.U/19HKS)	PCN										
45	20232AZ	20.2N 108.8E	SAT (4.5/5.0-/WU	.5/24HH51	PCN	1 UMSP									
86	210154Z 210352Z	20.5% 108.0E 20.4% 107.6E	SAT IT	13.5/4.5 /WL	(SMHES)	PCN	1 NOAA-5									
88	210352/	20.4N 107.8E	SAT (I	R DATA	,	PCN	1 UMSP									
90	2112102	21.2N 105.6E 20.8N 105.4E	SAT (I	R DATA	;	PCN										
			13 6 5 1 1													

IYPHOUN THELMA

FIX PUSITIONS FOR CYCLUME NO. 6

0000Z^21 JUL 10 0000Z 26 JUL

					0007 51 JOL 1	0 0000	2 6 JUL									
FIA			FIA	ACCRY FIX	FLT LVL WI	NU	SFC WIN	0	WIW OR2	MIN 700MB	FLT	EYE	UHIEN-	EYL	OE FOSTI	MSN
NO.	IIME	POSIT	CAL	AV-MET LVL	DIN VEL BRO	RNG	VEL BRG	RNG	SLP				IATION		RADAH	NWRH
1	1422037	13.0% 124.5E	SAI	(T 0/ 0/		PCN !	5 UMSP									
4	1922037	13.7N 124.5E 13.6N 133.7E	SAT	(11.0/1.0		PCN P										
	2001452	13.8N 130.1E	SAI	LIR DATA	, 442)	PCN !										
5	ZAZSOOS	13.5N 133.9E	SAT	CIR DATA)		UMSP									
7	2010407	13.2N 132.1E	SAT	(IR DATA	;	PCN	5 NOAA-5									
8	2011257	15.0N 131.5E	SAI	(IH DATA)		NOAA-5 NOAA-5	(CONF	01)							
10	2021447	14.4N 130.9E	SAI		/D2.U/24HHS) /D2.U/24HHS)		5 UMSP									
11	2021441	14.9N 130.0E	SAI	(15.0/5.0)	(SHH45)	PCN !	UMSP									
13	2023572	14.6N 13U.ZE	SAI	(IR DATA	,		NOAA-5									
14	2102117	15.4N 129.9E	SAI	IR DATA	i		UMSP									
15	2102112	15.3N 129.8E	SAI	(IR DATA	170 50 130	PCN !	55 130	30								
17	2110277	15.5N 128.2E	SAT	LIR DATA)		5 UMSP	30	443	303	14 10		• •	•		1
19	211027Z	15.6N 128.6E	SAI	CIR DATA)		5 UMSP									
20	211054/	15.64 128.2E	, P	3 10 700	:				991	300	15 -					1
21	2112347	15.5N 127.9E	SAT	IR DATA	!	PCN	NOAA-5	/ CONT								•
23	211453/	15.2N 12/.3E	SAI	(IR DATA	;	PCN (NOAA-5	(CONF	01)							
25	2114532	15.3N 121.7E	SAT	CIR DATA	100 22 210	PCN (5 UMSP									
20	1021212	15.5N 128.0E	SAI		290 33 210 /D1.5/24HKS)		UMSP	•	985	290	13 13	•		•		>
21	7621212	15.9N 128.0E	SAT	(13.0/3.0 /	101.0/24HR5)		UMSP									
54	2121247	16.0N 121.7E	SAI	(IR DATA	(SHH45\0.10\		NOAA-5									
30	2203317	10.4N 126.7E	P	5 5 700	190 40 150	220	50 180	20	981	290	17 12	CIHC		60		3
31	2203357	17.2N 127.1E	SAI	IN DATA	;		5 UMSP									
33	2210117	11.04 125.7E	SAI	LIR DATA	i	PCN S	UMSP									
34	2210117	17.5% 125.9E	SAI	CIR DATA	,	PCN PCN										
36	22115 /	17.3N 125.1E	SAT	LIR DATA	,	PCN S	NOAA-5									
31	2214357	17.00 125.0E	SAI	TIR DATA	;		UMSP									
34	221546/	11.04 124. HE	P	3 5 700	200 55 110	50		-	973		16 13			20		4
41	2222532	17.34 124.3E	SAI	3 3 700	40 60 360 (D1.0/25HKS)	8	UMSP	-	965	214	14 11	FLIP	N-5	15110		4
40	2222541	11.54 124.2E	SAI	114.0/4.0 /	/D1.U/25HH5)		UMSP									
4.5	2222541 22231AZ	17.5N 124.2E	SAI	ITA.U/4.U /	/ / HKS)		UMSP									
+>	2300242	17.7N 123.8E	SAI	114.5/4.5 /	/ / HHS)		NOAA-5									
47	2302167	17.6N 122.5E	LADR	(14.5/4.5 /	/ / HHS)		NOAA-5	(CONF	02)							
48	2303142	18.1N 123.5E	SAT	- 3260/	,	PCN I	UMSP					-		•		
50	2303147	18.2N 123.4E	SAT	(T4.0/4.0 /		PCM I										
51	2303147	18.24 123.5E	SAT	TH DATA	;	PCN I										
53	2303197	18.14 123.4E	SAI	TIR DATA	120 84 50	PCN 1	UMSP									
54	2304007	17.7N 123.3E	LHUR	- 20610	120 04 50	15 1	00 50	15	960	274	15 14	CIHC		-		-
55	2305007	17.84 123.2E	LHUR	- 21640								•		-		-
21	2307007	18.04 123.1E	LHUR	- 21610 - 20611								:	::	:		-
58	230800/	18.64 122.5E	LHUR	- 20451	,	9CH 7	NOAA F							-		-
60	2311352	18.8N 122.2E	SAI	(IH DATA	;		NOAA-5									
61	2311352	18.8N 122.5E	SAT	IR DATA	!	PCN 4	UMSP									
03	2315055	18.8N 122.5E	SAI	IR DATA	;	PCN 3	UMSP									
04	2313022	18.7N 122.1E	SAT	LIR DATA	1		NOAA-5									
66	231559Z 231559Z	19.04 121.AL	5	CIR DATA	180 60 140	30	UMSP	-	963	270	15 16	ELLP	'N-S	5x 3		
67	2316007	19.0N 121.5E	SAI	LIR DATA)	PCN I	UMSP			-						
69	2321357	19.24 121.HE	SAI	1 3 700	340 55 270	PCN 3	15 27U	10	964	271	16 13	F1 10	N-5	35X25		
70	2322341	19.5N 121.0E	SAI	IIH DATA	,	PCr 3	UMSP	• •	,,,		10 13		.,-3	35465		,
71	23223-7	19.34 120.7E	SAI	(15.0/5.0 /	(SHH / HRS)	PCN I	UMSP									
13	2323047	14.44 121.1F	SAT	(15.0/5.0 /	(D1.0/24HKS)		UMSP									
15	240100/	14.64 120.7E	LHUR	- 5////								:	::		22.6N 120.3E 18.1N 120.5E	-
16	240131/	14.6N 120.2E	SAI	(15.0/5.0 /	100.5/2 3HKS)	1	NOAA-5	(CONF	01)						10.14 120.52	
71	2402007	19.74 120.7E	LHUR	CIR DATA	,	PCN 1	NOAA-5									
19	2403017	14.8N 120.3E	SAI	IN DATA	,	PCM 2	UMSP							100		
80	2403002	19.94 120.3E	SAT	(15.0/5.0 /	D1.0/24HHS)	PCN 1	UMSP									
84	2405007	19.84 120.2E	LHUR	- 5////			UMSF					-			36.001 NO.3E	-
83	2405007	19.94 120.2E	LAUR	- 5//// - 5////								:	::	:	22.6N 120.3E	:
85	2409002	20.34 119.4E	LHUH	- 5////								-		-	55.04 150.3F	
86	2409427	20.54 119.4E 20.58 119.7E	FHOH	- 5////	270 80 190	15	80 310	4	456	216	50 10	:	::	:	22.04 1c0.3t	,
88	2411192	20.14 114.5E	SAT	(IN DATA	,	PCF 6									15.04 150.35	
89		20.14 119.4E	SAI	LIR DATA	;	PCA 6	UMSP									
- 1							- 131									

IYPHOON VERA
FIX POSIÎIONS FOR CYCLUNE NO. 7
90002 28 JUL TO 06002 01 AUG
MAX 085 MAX 085

				100	1002 28 JUL TO		Z OL AUG									
FIA			FIA	ACCRY FIX	FLT LVL WIN	10	SFC WIN		ORS	MIN	FLT	EYE	ORIEN-	EYE	POSIT	MSN
NO.	114E	PUSIT			DIN VEL BRG	RNG	VEL BRG	RNG	SLP				IATIUN		RADAR	NMBR
1	2600102	20.5N 130.6E	SAI	11 0/ 0/	/ HRS)	PCN	5 NOAA-5									
4	2610507	24.9N 131.7E	SAT	ITR DATA	,	PCN	6 NOAA-5									
3	2621452	25.4N 131.7E 25.6N 131.6E	SAI	(IR DATA	D1.0/22 HHS)		5 NOAA-5									
5	2701237	25.5N 131.5E	SAT	ITR DATA	;	PCN	5 NOAA-5									
6	2710277	25.50 130.7E	SAI	LIR DATA	,	PCN	5 UMSP									
8	2712037	25.54 131.4E 25.44 131.1E	SAI	CIR DATA	:	PCN	S NOAA-5									
9	2714492	25.8N 130.8E	SAI	ITR DATA	i	PCN	5 UMSP									
10	2714497	25.64 131.1E	SAT	IR DATA	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PCN										
12	2721212 27212AZ	25.6N 129.6E	SAI	(12.0/2.0 /	/ HRS)	PCN										
13	1821212	25.5N 130.4E	SAT	113.0/3.0 /	/ HRS)	PCN	3 UMSP									
1.	2800322	25.2N 129.8E	SAT	(12.0/2.0 /			NOAA-5	(CONF	01)							
15	2802087	25.5N 129.6E 25.4N 130.3E	SAT	3 5 1500	!	PCN	5 NOAA-5	25	988		25 26					
1/	28031AZ	25.5N 130.ZE	P	5 5 700		•	40 330	35	981	298	13 13	-				i
18	2810102	25.4N 124.3E	SAI	CIR DATA	240 50 140	PCN 70	50 270	30	487	291	15 14					
20	2811012	25.44 124.6E	SAT	LIR DATA	30 .40	PCN	4 UMSP	30	,,,		19 14	1312		-		5
21	2811017	25.4N 129.5E	SAT	CIR DATA	,	PCN	3 UMSP									
53	2811187 2811192	25.3N 129.5E 26.0N 130.2E	SAT	LIR DATA	;		3 NOAA-5 4 NOAA-5									
24	2814322	25.5N 128.9E	SAT	IR DATA	i		3 UMSP									
25	2814322	25.3N 129.2E 25.3N 129.1E	SAT	CIR DATA	40 50 340	PCN	4 UMSP		986	200						
27	2816137	25.2N 129.1E	SAT	CIR DATA	40 30 340	PCN	3 UMSP	•	700	590	14 12	-				5
28	2816137	25.3N 128.9E	SAT	ITR DATA	,	PCN	5 UMSP									
30	2821117	24.9N 128.5E	SAT		D1.U/24HHS)	PCN	3 UMSP									
31	2821552	24.8N 128.4E	P.	2 3 700	110 55 100	55			971	284	15 11					3
32	2823557	24.8N 128.1E	SAT	IIR DATA)	PCN	3 NOAA-5	(cour								
33	282357Z 2903147	25.04 128.0E 24.8N 127.8E	SAT	IR DATA	D1.5/24HRS)	PCN	NOAA-5	(CONF	01)							
35	2903147	24.8N 127.8E	SAI	(14.5/4.5 /			1 UMSP									
36	290314Z 290315Z	24.9N 128.4E	SAI	2 3 700	/ HRS)		1 UMSP		013	20-						46
38	290341Z	24.8N 127.9E 24.8N 127.8E	SAI	IR DATA	10 65 300	10 PCN	00 300 1 UMSP	25	912	285	16 10	CINC		16		3
39	2909322	24.3N 126.8E	P	4 3 700	140 90 045	15	10 250	10	950	263	18 14	CIRC		8		
40	290953Z 290953Z	24.4N 126.7E 24.5N 126.8E	SAT	(IR DATA	:	PCN	1 UMSP									
•5	291035Z	24.4N 120.8E	SAI	LIR DATA	;	PCN	4 NOAA-5									
43	2912232	24.04 126.7E	SAT	IR DATA	,	PCN	4 NOAA-5									
44	2912312 2914312	23.5N 126.7E 23.6N 126.1E	SAT	IR DATA	360 100 280	PCN 18	1 NOAA-5	_	940	251	19 15	E. 10	E-#	7x 5		
46	291555Z	23.24 126.2E	SAT	LIR DATA	200 100 500		1 UMSP		740	53!	14 15	ELAP	6-4	iva		•
47	291555Z 292043Z	23.0N 126.1E	SAT	ITR DATA	1	PCN	4 UMSP									
49	292236%	23.3N 125.7E 23.4N 125.6E	SAT	2 5 700	D1.5/24HRS)	PCN	1 UMSP	•	932	24!	17 14	ELIP	SE-NM	12X15		5
50	2922362	23.5N 125.5E	SAT	(15.5/5.5 /	GT-0150HH2)	PEN	1 UMSP									
51	292331Z 300058Z	23.3N 125.9E	SAT	IT DATA	(0) 5 (25485)	PCN	NOAA-5	(CONF	(11)							
52	300107Z	23.8N 126.0E 23.3N 125.6E	SAT	(15.5/5.5 /	D2.0/28 HRS)	PCN	1 UMSP	(com	01)							
54	3002372	23.3N 125.5E	P	2 5 700		•		-	425	249	18 12	ELIP	SW-NE	15x12		5
55	300256Z	23.3N 125.6E 23.2N 125.5E	SAT	IR DATA	;	PCN	1 UMSP									
57	3008472	23.64 125.2E	P	2 4 700	240 100 170	12	05 160	32	933	250	17 13	CIRC		8		6
58	3010377	23.74 124.9E	SAI	(IR DATA	;	PCN										
60	3010372	23.7N 125.4E 23.8N 124.9E	SAT	IR DATA	;	PCN										
61	3011172	23.5N 124.8E	SAI	IR DATA	i	PCN	2 UMSP									
65	3011472	23.4N 124.9E 22.9N 125.1E	SAT	(IR DATA	;	PCN	1 NOAA-5 NOAA-5	(CONF	(02)							
64	3011542	23.7N 125.0E	LADR				HUM-5	(com	027			-			34.3N 124.2E	
65	3012192	23.6N 124.7E	SAI	IR DATA)		6 UMSP									
61	30121A7 301240Z	23.6N 124.6E 23.7N 124.8E	SAT	CIR DATA	1	PCN	4 UMSP									
68	3013007	23.8N 124.9E	LROR	- 10423		FCM	4 HORN					-		•	34.0N 121.6E	
69	3013002	23.7N 124.9E	LRUR									•		•	24.3N 124.2E	•
70	301400Z 301400Z	23.8N 124.8E	LRUR									:	::	:	24.0N 121.6E	:
15	3014002	23.8N 124.8E	LADA	- 11311								-		•	24.8N 125.3E	•
13	301500Z 301500Z	23.9N 124.6E	LRUR									:	::	:	24.0N 121.6E	•
75	3015002	23.9N 124.6E	LRUR	- 11411										-	24.8N 125.JE	
76	3015382	24.0N 124.2E	SAT	CIR DATA	:	PCM										
78	30153AZ 301600Z	24.1N 124.1E 24.0N 124.5E	LADA	- 10742		PCN	1 UMSP								24.0N 121.0E	
79	3016002	23.9N 124.5E	LADA	- 12411								-		•	24.3N 124.2E	-
80	3016007	23.9N 124.5E	LAUR									:	::	:	24.8N 125.3E 24.0N 121.6E	-
95	3017002	23.9N 124.3E	LHOR	- 22631								-			24.3N 124.2E	
83	3017007	23.9N 124.3E	LRUR	- 11563								•		-	24.8N 125.3E	-
85	301800Z	24.1N 124.2E 24.0N 124.3E	LRUR									:	::		24.0N 121.6E 24.3N 124.2E	:
86	3018007	24.04 124.3E	LADA	- 11733								-		-	24.8N 125.3E	
81	3019007 301900Z	24.1N 124.2E	LRUR									:	::	:	34.151 NO.45	•
89	3019002	24.04 124.1E	LAUR	- 11713								-			24.3N 124.2E	
90	3020007	24.2N 124.2E	LHUR									•		•	34.0N 151.0E	-

```
3020007 2*.1N 12*.1E LNUR - 11631
3021007 2*.N 12*.1E LNUR - 11613
3021007 2*.N 12*.1E LNUR - 10575
3021007 2*.N 12*.1E LNUR - 10511
3021007 2*.N 12*.1E LNUR - 10511
3021007 2*.N 12*.0E LNUR - 11613
3021007 2*.N 12*.0E LNUR - 10511
3021007 2*.N 12*.0E LNUR - 12511
3022007 2*.N 12*.0E LNUR - 12511
3022007 2*.N 12*.0E SAT (16.56.**, -701.0/21**MS) PCN 1 UMSP
3022007 2*.N 12*.0E SAT (16.56.**, -701.0/21**MS) PCN 1 UMSP
3022007 2*.N 12*.0E SAT (16.56.**, -701.0/21**MS) PCN 1 UMSP
3022107 2*.N 12*.0E SAT (16.56.**, -701.0/21**MS) PCN 1 UMSP
3022107 2*.N 12*.0E SAT (16.06.**, -701.0/21**MS) PCN 1 UMSP
3022107 2*.N 12*.0E SAT (16.06.**, -701.0/21**MS) PCN 1 UMSP
3022107 2*.N 12*.0E SAT (16.06.**, -701.0/23**MS) PCN 1 UMSP
3022107 2*.N 12*.0E SAT (16.06.**, -701.0/23**MS) PCN 1 UMSP
3022107 2*.N 12*.0E SAT (16.06.**, -701.0/23**MS) PCN 1 UMSP
3100007 2*.N 12*.0E SAT (16.06.**, -701.0/23**MS) PCN 1 UMSP
3100007 2*.N 12*.0E LNUR - 10512
3100107 2*.N 12*.0E LNUR - 10513
3102007 2*.N 12*.0E LNUR - 10513
3102007 2*.N 12*.0E LNUR - 10513
3102007 2*.N 12*.0E SAT (16.56.**, -701.0/28**MS) PCN 1 UMSP
3102307 2*.N 12*.0E SAT (16.06.**, -701.0/28**MS) PCN 1 UMSP
3102307 2*.N 12*.0E LNUR - 10513
3102007 2*.N 12*.0E LNUR - 10512
3100007 2*.N 12*.0E LNUR -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         24.3N 124.2E
24.8N 125.3E
24.8N 121.6E
24.3N 124.2E
24.8N 125.3E
    92
93
94
95
96
97
98
100
101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            24.0N 121.0E
24.3N 124.2E
24.8N 125.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            24.8N 125.3E
  105
106
107
108
109
110
111
112
113
114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         24.3N 124.2E
24.8N 125.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (CONF 01)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         24.3N 124.2E
24.8N 125.3E
24.0N 121.6E
24.0N 121.6E
24.3N 124.2E
24.8N 125.3E
    116
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    24.0N 121.6E

24.3N 126.2E

24.0N 121.6E

24.3N 126.2E

24.3N 126.2E
150 78 60 15 - - -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        931 247 20 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         24.3N 124.2E
22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (CONF 02)
151
```

INUPICAL STURM MANUA
FIX POSTITIONS FOR CYCLUME NO. 8
06002 31 JUL TO 06002 04 AUG

	06002 31 JUL TO 06002 04 AUG															
FIA			FIX	ACCRY FIX	FLT LVL WIN	0	SEC WIN		ORP	MIN TOOME	FLT	FVE	ORIEN-	FYE	POSIT	MSN
NO.	TIME	P0511		NAV-MET LVL	DIH VEL BRG	RNG	VEL BRG	RNG	SLP				IATIUN		RADAH	NMBR
1	201.1.7	10 00 140 35		4.0 04.			-									
2	2923117	19.9N 140.3E	SAT	IR DATA	/ HRS)	PCN	5 NOAA-5									
3	3009362	22.6N 139.5E	SAI	IR DATA	, 442)	PCN	6 UMSP									
	3100147	23.7N 141.0E	SAI	(11.5/1.5 /	/ HRSI		NOAA 5	(CONF	02)							
5	3100237	23.0 4 141.0E	SAI	(12.0/2.0 /	D2.0/25HRS)		5 NOAA-5									
0	3102392	23.2N 14U.3E	SAI	CIR DATA)		5 UMSP									
,	3109197 3109197	23.7N 140.5E 25.8N 140.3E	SAT	(IR DATA	,	PCN	6 UMSP									
9	311103/	24.1N 141.5E	SAI	LIR DATA	,	PCN	5 NOAA-5									
10	3111032	30.041 MO.ES	SAT	IIR DATA	i	PCN	6 NOAA-5									
11	3111112	23.6N 141.5E	SAT	(IR DATA)		NOAA-5	(CONF	02)							
13	3113392 3113392	25.0N 141.9E 26.3N 142.3E	SAT	(IR DATA	,	PCN	6 UMSP									
14	3120207	24.8N 141.0E	SAI	CIR DATA	;	PCN	6 UMSP									
15	3123267	24.5N 140.3E	P	5 15 700		-	45 40	90	946	30>	13 -	CIHC		15		- 1
10	31233-/	20.4N 141.4E	SAI	(12.5/2.5 /			NOAA-5	(CONF	01)					•		
17	3123392	25.2N 141.2E	SAT	(13.0/3.0 /			5 NOAA-5									
18	01000AZ 01030ZZ	25.8N 140.5E	P	10 10 700 5 10 700	80 43 360	65	45 50	40	994	303	13 13	CINC		10		1
20	0109017	25.14 141.0E	SAT	3 10 700	00 43 360	PCN	6 UMSP	••	***	305	13 13	CINC		12		1
21	0109027	36.141 NB. 25	SAT	IN DATA	,	PCN	6 UMSP									
55	0110132	25.9N 141.5E	SAT	CIR DATA)	PCN	6 UMSP									
23	0110197	26.1N 142.0E	SAI	LIR DATA)		6 NOAA-5									
25	011043Z 011503Z	26.5N 134.AE	SAI	CIR DATA	;	PCN										
26	0115034	26.74 140.4E	SAI	ITR DATA	,	PCN										
21	0116287	27.24 141.1E	P	8 10 700	210 40 120	12			443	303	13 13	-				,
28	0120037	27.4N 140.7E	SAI	(IR DATA)		5 UMSP		-							
30	0120432	27.6N 140.3E	P	2 5 700	160 20 60	25	30 60	25	945	301	14 13	-	• •			3
31	0121447	27.84 140.4E 27.84 140.5E	SAI	(T3.0/3.0 /	/ HHS) / HHS)	PCN	3 UMSP									
32	0122452	27.2N 140.4E	SAI	112.5/2.5 /			NOAA-5	(CONF	01)							
33	0122552	27.84 140.4E	SAI	IR DATA	,	PCN	3 NOAA-5									
34	0200527	27.74 140.4E	SAI	CIR DATA	,	PCN	3 NOAA-5									
35	0202032	27.5N 140.5E 27.6N 140.5E	SAI	CIR DATA	;		3 UMSP									
37	0209557	28.2N 142.4E	P	10 5 700	240 35 200	10	45 150	10	996	304	16 15	CINC		12		
38	2920120	28.24 142.5E	SAI	IR DATA)	PCN	5 UMSP	-						•-		
39	2920120	28.44 142.5E	SAT	CIR DATA)	PCN	3 UMSP									
40	0211322	27.84 142.2E 28.24 143.0E	SAT	CIR DATA	;		5 NOAA-5 6 NOAA-5									
42	0214452	28.6N 142.7E	SAI	IR DATA	;		5 UMSP									
43	0214452	28.3N 143.0E	SAT	ITR DATA)		4 UMSP									
**	0221207	30.0N 143.5E	P	2 2 700	290 30 190	10		-	986	29!	14 11	•		-		5
45	0221277	29.74 143.4E 29.3N 143.4E	SAT	(13.0/3.0 /		PCN	5 UMSP									
47	2002220	29.8N 143.7E	SAT	(12.5/2.5 /		PCN	NOAA-5	(CONF	01)							
48	03000AZ	30.0N 143.3E	SAT	IR DATA)	PCN	3 NOAA-5	(00	0.,							
49	0301442	30.2N 143.5E	SAT	CIR DATA	,	PCN	3 UMSP									
50	030146Z 031009Z	30.3N 143.5E 30.5N 143.9E	SAT	(T2.5/3.0 /	MO.5/58HRS)	PCN	3 UMSP									
52	031009Z	30.8N 144.3E	SAT	IR DATA	;	PCN	5 UMSP									
53	03104AZ	29.5N 143.4E	SAT	LIR DATA	i	PCN	5 NOAA-5									
54	0310562	29.4N 144.3E	SAT	IR DATA	,		NOAA-5	(CONF	02)							
55	031213Z 031428Z	30.6N 145.8E 29.9N 145.3E	SAT	GIR DATA	350 30 270	15		-	991	301	16 16	•		•		6
57	03142HZ	30.0N 145.4E	SAT	CIR DATA			5 UMSP									
58	0321102	31.0N 146.1E	SAT		W2.0/24HHS)	PCN	3 UMSP									
59	0321102	31.0N 146.1E	SAT	111.0/2.0 /	41.5/20HKS)	PCN	3 UMSP									
60	0323132		SAT		#1.5/25HRS)		NOAA-5	(CONF	01)							
65	032324Z 04012AZ	31.1N 146.2E	SAT	CIR DATA	:	PCN	3 NOAA-5									
63	0401242	31.0N 146.6E	SAT	CIR DATA	;	PCN	3 UMSP									
64	0409522	31.4N 146.9E	SAI	LIR DATA	i		6 UMSP									
65	0410142	32.0N 147.0E	SAT	LIR DATA)		NOAA-5	(CONF	02)							
67	042039Z 042053Z	32.1N 148.1E	SAT	(IR DATA	#1.0/24HRS)	PCN	3 UMSP									
68	0422392	32.2N 149.0E	SAI		WU.5/23HKS)	PCN	NOAA-5	(CONF	01)							
69	0422392	11.7N 148.5E	SAI	. (IR DATA)	PCN	3 NOAA-5	(004)	31/							
70	050034Z	31.6N 148.6E	SAT	IR DATA	1	PCH	3 NOAA-5									
71	050919Z 061032Z	31.44 148.8E 34.24 153.0E	SAT	CIR DATA	;		6 NOAA-5									
73					S / 27HHS)		6 NOAA-5 3 DMSP									
							- MINI									

FIX POSITIONS FOR CYCLUME NO. 9
FIX POSITIONS FOR CYCLUME NO. 9
0000 2 20 AUG TO 18002 23 AUG
MAX OBS
FIX ACCRY FIX FLT LYL WIND SFC WIND
CAT NAV-MET LYL DIR VEL BRG RNG VEL BRG RNG PUSIT OF RADAR OBS MIN SLP MIN FLT 700MB LVL MGI TI/TO EYE URIEN-FORM TATTUN NMER TIME POSIT NAV-MET LVL DIR VEL BRG

10 5 700 260 30 180 5 10 700 130 18 30 11.5/1.5 / MRS)
111.5/1.5 / 20 30 180 40 35 90 NOAA-5 PCN 5 UMSP PCN 6 UMSP PCN 6 UMSP PCN 5 NOAA-5 PCN 5 UMSP 20 996 60 1001 (CONF 01) 1723007 19.94 128.4E P PAIT TO REPORT OF THE PROPERTY OF THE PROPER - 27 25 307 13 14 20.2N 127.7E
21.0N 127.2N 127.2N
21.0N 122.1E
21.0N 120.4E
20.6N 120.4E
20.7N 120.4E
21.3N 120.5E
21.3N 120.6E
21.4N 120.5E
21.3N 120.6E
21.4N 120.7E
21.3N 120.7E
22.3N 120.7E
22.4N 120.7E
22.5N 120.7E 180050Z 190151Z | 1902502 | 1902502 | 1912392 | 1912392 | 1912392 | 1922302 | 1922302 | 2001002 | 2001002 | 2001002 | 2001002 | 2001002 | 2001002 | 2001002 | 2001002 | 2001002 | 2011002 | 201 22.0N 120.3E 22.0N 120.3E 22.0N 120.3E (CONF 02) PCN 5 NOAA-5 22.0N 120.3E PCN 6 UMSP :: 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E : PCN 6 UMSP PCN 6 UMSP 10 35 310 10 40 310 986 - 25 26 . 5 22.6N 120.3E PCN 5 UMSP PCN 5 NOAA-5 - 1/// - -22.6N 120.3E PCN 6 UMSP (CONF 01) LIR DATA :: 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E PCN 5 PCN 5 PCN 6 UMSP UMSP UMSP 22.6N 120.3E PCN 5 PCN 5 PCN 4 PCN 5 UMSP UMSP :: : PCN 3 PCN 3 PCN 4 PCN 5 PCN 3 22.6N 120.3E PCN 5 PCN 6 PCN 4 PCN 5 PCN 5 NOAA-5 UMSP UMSP UMSP UMSP 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E :: PCN 6 UMSP :: 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E PCN 5 PCN 4 PCN 5 PCN 5 UMSP UMSP UMSP UMSP 22.6N 120.3E NOAA-5 NOAA-5 (CONF 01) PCN . PCN 3 UMSP UMSP :: 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E 22.6N 120.3E DMSP UMSP UMSP UMSP PCN 5 PCN 6 PCN 6 PCN 5 - 1////
CIR DATA
CIR DATA
CIR DATA
CIR DATA 22.6N 120.3E NOAA-5 NOAA-5 PCN 5

The state of the s

UMSP

(CONF 01)

	2222047	28.6N 123.9E	CAI	CIR DATA		PCN	6 UMSP					
91												
45	2222317	24.54 125 OIE	SAI	(12.0/2.0-/5	124HH51	PCN						
93	2222371	28.5N 124.3E	SAI	ITR DATA)	PCN	6 UMSP					
44	2223007	26.3N 123.HE	LHUR	- 5////						 •	22.6N 120.3E	-
95	2300007	26.4N 124.0E	LHUR	- 20212					•	 •	22.04 120.3E	-
90	2300492			112.0/2.0 /5	123HHS)		NOAA-5	(CONF 01)				
97	2300597	10.4N 125.5E			/27HKS)	PCN	5 NOAA-5					
98	2302002			- 201/1						 •	22.0N 120.JE	
99				LIR DATA	,	PCN	6 UMSP					
100				(12.0/2.5 /#0.5	2/24HKS)	PCN						
		31.2N 121.7E		T3.0/3.0-/D1.0/1		PCN						
102				CIR DATA	,	PCN						
103				LIR DATA			6 UMSP					
							5 NOAA-5					
	231130Z			(IH DATA	,	PCM		(CONT 02)				
105	2311492	11.8N 121.5E	SAI	(IR DATA)		NOAA-5	(CONF 02)				
106	2315222	31.8N 128.2E	SAI	(IR DATA)	PCN	5 UMSP					
10/	2315222	33.6N 130.0E	SAT	C'R DATA	,	PCN	6 UMSP					
108	2315222	32.8N 121.5E	SAI	CIR DATA	,	PCN	4 UMSP					
109		31.1N 124.9E		(13.5/3.5 /01.5	1/23HRS)	PCN	3 NOAA-5					
	2411082			CIR DATA)		NCAA-5	(CONF 01)				

TYPHOUN BABE

FIA POSTITIONS FOR CYCLUNE NO. 10

00004 02 SEP TO 18002 10 SEP

MAX OBS

FIX ACCHY FIA FLT LYL BIND SF4 BIND

CAT NAV-MET LYL UIM VEL BRO RNG VEL BRG RNG MIN FLT 700MB LVL EYE MG! (1/10 FORM PUSIT UF RADAH MSN TIME CIR DATA
CIP DATA
CIP DATA
CIP DATA
CIP DATA
CIP DATA
CIR DATA
CIR DATA
CIR DATA
CIR DATA
CIR DATA 3.9N 158.0E
5.74 [54.1E
5.74 [54.1E
5.74 [55.1E
7.9N 153.0E
6.7N 153.0E
6.7N 152.4E
8.9N 152.0E
8.2N 149.0E
8.2N 149.0E
8.2N 149.0E
8.2N 147.5E
8.3N 147.5E
9.3N 140.6E
9.3N 140.6E
9.1N 145.1E
10.1N PCN 6 NOAA-5
PCN 6 UMSP
PCN 5 UMSP
PCN 6 UMSP
PCN 5 UMS 3010247 302015,7
3102015,7
3102015,7
3102015,7
3102015,7
3102016,7
3102016,7
0102017,7
0102017,7
0102017,7
011025,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237,7
0121237, /24HKS) (IR DATA)
(IR DATA)
(I2.0/2.0 / D1.0/26HKS)
(I2.0/2.0 / HKS)
(IR DATA)
(IR DATA)
(IR DATA)
5 2 1500 130 46 100
(IR DATA)
5 1 1500 190 48 110
(IR DATA)
(IR DATA) (CONF 02) 995 03223nZ 03223nZ 03223nZ (CONF 01)

	122		100												
21	0323567	10.7N 134.5E	SAI	(IR DATA)		5 NOAA-5									
52	0402327	10.94 134.0E	SAT	(IR DATA)	PCN	5 UMSP									
33	040232/	11.34 133.4E	SAI	(IR DATA	PCN	5 UMSP									
54	0402321	10.74 134.2E	SAI	6 2 700 120 61 360	PCN	3 UMSP									
56	0403092	10.64 132.8E	SAI	6 2 700 120 61 360	38	95 120 5 UMSP	50	987	590	17 13			•		5
57	0409317	10.84 132.8E	SAI	(IR DATA	PCN	6 UMSP									
58	0410067	10.7N 132.6E	SAI	(IR DATA	PCN	6 UMSP									
59	0410372	10.6N 132.5E	SAI	(IR DATA	PCN	6 NOAA-5									
60	0412332	10.5N 132.0E	SAI	(IR DATA	PCN	6 NOAA-5									
61	0415132	10.5N 132.2E	SAT	(IR DATA	PCN	5 UMSP									
66	0415142	10.4N 131.4E	SAT	(IR DATA	PCN	5 UMSP									
63	0415142	10.8N 131.8E	SAT	(IR DATA		6 UMSP									
64	0421507	11.1N 131.9E	P	5 5 700 20 55 290	18	80 60	12	985	291	19 16					
65	0422132	10.4N 131.4E	SAI	(15.0/5.0 /D1.0/24MMS)	PCN	5 UMSP									
00	0422137	10.4N 131.3E	SAT	(T5.0/5.0 /D1.0/24HRS)	PCN	6 UMSP									
67	0422132	10.5N 131.AE	SAI	(14.0/4.0 /DU.5/21HRS)	PCN	3 UMSP									
96	1155540	10.44 131.5E	SAT	(IR DATA)	PCN	5 UMSP									
64	0422512	10.4N 131-1E	SAI	(IR DATA)		6 UMSP									
70	0423137	10.2N 131.3E	SAT	(IR DATA)	PCN	6 NOAA-5									
/1	050038Z	10.5N 132.0E	SAT	(T4.0/4.0 /5 /25HHS)		NOAA-5	(CONF	01)							
13	0502142	10.3N 130.9E	SAT	(IR DATA		5 UMSP									
74	0502147	10.4N 130.7E	SAI	(IR DATA)		5 UMSP									
75	050832 <i>1</i> 0510552	11.14 130.9E	SAT	5 2 700 210 65 150	50	65 150 5 UMSP	50	988	540	1/ 13	•		•		7
76	0510557	10.4N 130.1E	SAI	(IR DATA	PCN	5 UMSP									
11	0511362	10.8N 130.6E	SAT	(IR DATA		5 UMSP									
78	0511492	11.1N 130.5E	SAT	(IR DATA	PCN	5 NOAA-5									
79	0511522	10.84 130.9E	SAI	(IR DATA		NOAA-5	(CONF	03)							
80	0514567	11.2N 130.3E	SAT	(IR DATA)	PCN	5 UMSP	(0011)	00/							
41	0514562	10.64 130.3E	SAT	(IR DATA)	PCN	6 UMSP									
82	0521557	12.1N 130.5E	SAT	114.5/4.5 / / HHS)	PCN	5 UMSP									
83	0521562	12.0N 129.6E	SAI	(15.0/5.0 /S /24HRS)		5 UMSP									
84	052239Z	13.0N 130.7E	SAI	(IR DATA)	PCN	5 UMSP									
85	0522392	12.3N 130.2E	SAI	(IR DATA	PCN	5 UMSP									
86	0522437	13.1N 130.2E	ρ.	2 5 700 340 45 240	50	10 240	30	485	543	17 13	•		•		4
88	060025Z 060157Z	13.3N 130.2E	SAI	(IR DATA)		5 NOAA-5									
84	0601572	13.2N 130.2E	SAF		PCN	5 UMSP									
90	0603352	13.7N 129.9E	P	115.0/5.0 /5 /27HHS) 2 5 700 230 55 1+0	40	du 150	80	480	291	16 11			_		
91	06103AZ	14.8N 129.4E	SAT	(IR DATA	PCN			700	541	10 11	-		-		4
92	061038Z	15.1N 129.9E	SAI	(IR DATA	PCN	5 UMSP									
93	0610382	14.0N 129.7E	SAT	(IR DATA	PCN	4 UMSP									
94	061105Z	14.9N 124.0E	SAT	(IR DATA)		6 NOAA-5									
95	0611242	15.0N 128.9E	SAI	(IR DATA)	PCN	5 UMSP									
46	2451100	15.0N 129.3E	SAI	(IR DATA)	PCN	6 UMSP									
97	0614392	15.6N 129.0E	SAI	(IR DATA)	PCN	5 UMSP									
98	0614392	15.4N 129.4E	SAI	(IR DATA)	PCN	2 UMSP									
99	062138Z	16.2N 128.6E	SAI	(15.0/5.0 / / HRS)	PCN	2 UMSP									
100	0621392	16.3N 128.6E	SAI	(IR DATA	PCN	1 UMSP									
101	0621392	16.34 128.7E	SAI	(15.5/5.5 /DU.5/24HHS)	PCN	1 UMSP									
103	0621392	16.3N 129.0E	SAT	(16.0/6.0 /DI.U/20HHS) 5 5 700 360 57 270	PCN	2 UMSP	_	960	274	18 11		N-S	20115		
104	062220Z 062227Z	16.24 128.8E	SAI	5 5 700 360 57 270	PCN	1 UMSP	•	760	51.	10 11	FLIP	4-2	SAVIS		4
105	0022272	16.4N 128.8E	SAI	(T5.5/5.5 /D1.0/24HHS)	0.00	3 UMSP									
106	0623362	16.8N 128.9E	SAI	(15.0/5.0 / / HHS)	PCN	NOAA-5	(CONF	011							
10/	0623412	16.5N 128.6E	SAT	(IR DATA	PCN	1 NOAA-5	COM	01)							
108	0703202	17.4N 128.5E	SAI	(IR DATA	PCN	1 UMSP									
109	0703212	17.5N 128.6E	SAI	(IR DATA	PCN										
110	0703212	17.1N 128.7E	SAI	(IR DATA)	PCN										
111	0703212	17.9N 128.5E	SAI	(IR DATA	PCN										
112	070344Z	17.3N 128.4E	P	3 1 700 80 95 350	30	80 350	10	441	266	21 15	CINC		15	10	0
113	071021Z	18.2N 127.8E	SAT	(IR DATA	PCN	1 UMSP									
114	0710212	18.5N 127.9E	SAT	(IR DATA)	PCN	2 UMSP									
115	0710212	18.5W 158.0E	SAI	(IR DATA)		2 UMSP									
116	0711122	18.3N 128.0E	SAT	(IR DATA	PCN										
117	0711127	18.14 128.5E	TAR	(IR DATA		1 UMSP									
118	07121AZ 071220Z	18.6N 128.0E	SAT	(IR DATA)	PCN	1 NOAA-5									
150	0716032	19.1N 127.5E	SAI	(IR DATA	PCN	NOAA-5	(CONF	01)							
151	0716032	18.8N 127.9E	SAI	(IR DATA	PCN										
122	1221210	19.9N 120.9E	SAI	(17.0/7.0 /D1.5/24HHS)	PCN										
123	0721227	19.9N 127.2E	SAI	(16.5/6.5 /DU.3/24HHS)		2 UMSP									
124	2405210	34.151 MI.05	P	5 5 700 70 100 360		130 150	10	901	228	17 14	CINC		10	1	
125	0722152	14.9N 120.9E	SAI	(IR DATA)		2 UMSP								THE PARTY OF THE	1
126	0722157	19.7N 127.4E	SAI	(16.0/6.0 /DU.5/24HRS)		2 UMSP									
127	0800232	20.54 127.0E	SAI	(16.0/6.0 /D1.0/25HRS)		NOAA-5	(CONF	01)							
128	0800542	20.64 127.2E	SAT	(IR DATA)	PCN	1 NOAA-5		1 1 1							
129	0803037	30-121 NO.12	SAI	(IR DATA		1 UMSP									
130	0803037	37.121 NO.12	SAI	(IR DATA)		3 UMSP									
131	0803032	30.84 121.3E	SAI	ITR DATA	PCN	1 UMSP									
132	0803037	21.1N 127.0E	SAT	(16.5/6.5 / / HKS)	PCN	1 UMSP									
133	0803492	21.0N 127.0E 21.7N 120.7E	SAT	3 5 700 J20 95 260	50	140 240	8	900	551	21 15	CINC		1.	1	1
134	081004Z	21.44 120.7E	SAT	(IR DATA	PCN	4 UMSP									
136	0810042	38.051 40.55	SAT	(IR DATA		2 UMSP									
13/	0811007	31.94 126.8E	SAI	(IR DATA	PCN	1 UMSP									
138	2001180	36.95 NA.22	SAT	IN DATA	PCN	4 UMSP									
139	0811002	39.04 154.6E	SAT	(IN DATA)	PCN										
140	0811347	36.0N 120.9E	SAF	(IR DATA)	PCN										

and the second second

```
2 21.9N 120.9E LRUR - 25//3
2 22.0N 127.0E LRUR - 6//3
2 21.19 127.0E LRUR - 6//3
2 22.19 127.0E LRUR - 6//3
2 22.20 127.0E LRUR - 6000 FIX 200 MOV 0410
2 22.20 127.2E LRUR - 6//4
2 22.20 127.2E LRUR - 6000 FIX 200 MOV 0410
2 22.20 127.2E LRUR - 6000 FIX 200 MOV 0410
2 22.20 127.2E LRUR - 6000 FIX 200 MOV 0420
2 22.20 127.2E LRUR - 6000 FIX 200 MOV 0420
2 22.20 127.2E LRUR - 6000 FIX 200 MOV 0420
2 22.20 127.2E LRUR - 10011
2 23.00 127.2E SAI - 117.07.0 / MS3 PCH 1 UMSP PCH 1 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      24.8N 125.3E
24.8N 125.3E
24.8N 124.2E
24.8N 124.2E
24.3N 124.2E
24.3N 124.2E
24.3N 124.2E
24.8N 125.3E
081 200 Z
081 300 Z
081 300 Z
081 300 Z
081 300 Z
081 500 Z
081 600 Z
081 700 Z
081 200 Z
082 200 Z
090 000 Z
090 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    24.3N 124.2E
24.8N 125.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          26.2N 127.8E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   14 916 530 18 15 CINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (CONF 01)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          24.8N 125.3E
26.2N 127.8E
26.2N 127.8E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        26.2N 127.8E
24.8N 125.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      24-84 125-3E

26-24 127-8E

26-24 127-8E

26-24 127-8E

26-24 127-8E

26-24 127-8E

26-24 127-8E

26-24 127-7E

24-84 125-3E

26-24 127-7E

26-24 127-8E

26-24 127-8E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      26-4N 127-7E
26-4N 127-8E
28-4N 124-5E
26-4N 127-8E
26-4N 127-8E
26-2N 127-7E
26-4N 127-8E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          26.4N 127.8L
28.4N 129.5E
26.2N 127.7E
26.4N 127.8E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         POOR FIX SPRL CUF MOD ALL QUAD T 440 MOY N

GOOD FIX 80 PCNT WALL CLD CIRC D20

(IR DATA ) PCN 1 UMSP

(IR DATA ) PCN 1 UMSP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                26.4N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             127.8E
127.8E
129.5E
127.8E
127.7E
127.8E
129.5E
127.8E
127.7E
127.8E
```

```
221 0914002 27.0N 128-4E LHUR - GOOD FIX DOS MALL CLD CIRC DZO - 20-4N 127-NE - 2
```

TRUPICAL STORM CAHLA
FIX POSITIONS FOR CYCLUME NO. 11
0000Z 03 SEP TO 0000Z 05 SEP
MAX 085
MAX 085
FIX FET LYL WIND SPC WIND
LYL DIR YEL BRG RNG YEL BRG RNG MIN FLT 700MB LVL MG! TI/TO PUSIT EYE FIX NO. TIME RAUAR POSIT (T1.0/1.0 / HRS)
(IR DATA | IR DATA 3021562 3100567 3102017 3110397 3111342 3111342 3111342 3111342 0110222 0110432 0112492 0112672 0112672 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0123042 0212472 0212472 0212472 0212472 0212472 0212472 02125492 13.6N 131.9E
13.7N 131.4E
14.6N 129.6E
14.6N 129.6E
15.0N 129.6E
15.1N 129.6E
15.1N 129.7E
14.2N 120.6E
15.1N 122.7E
16.5N 122.7E
16.5N 122.1E
16.5N 122.1E
16.5N 122.1E
17.5N 120.9E
17.5N 120.9E
17.5N 120.9E
18.3N 119.9E
18.3N 119.9E
18.7N 116.1E
17.9N 110.6E
18.7N 110.6E
17.7N 110.6E
17.7N 110.6E
17.7N 110.6E
17.8N 100.6E
17.8N 100.6E PCN 5 UMSP PCN 6 UMSP /DU-5/24HHS) / / HRS) U 10U 35 50 (CONF 01) (IR DATA

(12.5/2.5 /D0.5/24HRS)
(13.0/3.0 / HRS)
(13.0/3.0 / HRS)
(1R DATA
(1R DATA (CONF 01) (CONF 01)

IYPHOUN DINAH

FIX POSITIONS FOR CYCLUNE NO. 12

12007 14 SEP TO 18UUZ 23 SEP

MAX DBS

FIX ACCRY FIX FLITUN WIND SEC WIND

CAT NAV-MET LVL DIM VEL BRG RNG VEL BRG RNG MIN SLP MIN 700MB HG! FLT LVL EYE TI/TO FORM POSIT OF RADAR FIX URIEN-TIME POSIT (IR DATA
(IF 0/ 0 / MS)
(IR DATA
(IT 0/ 10 / MS)
(IR DATA
(IT 0/ 0 / S / 24MHS)
(IR DATA
(IR 1010112 18.3N 150.0E
15.5N 151.0E
15.5N 151.0E
15.5N 151.0E
15.2N 150.5E
19.4N 140.3E
19.4N 140.5E
21.5N 142.3E
21.5N 142.3E
21.5N 142.3E
21.5N 142.3E
21.5N 141.4E
21.8N 139.6E
22.5N 139.6E
22.6N 130.6E
22.6N 130.6E
22.6N 130.6E
22.1N 137.8E
23.1N 135.8E
23.1N 125.8E
23.1N 126.8E
23.1N SSASSAATIITISAATITI SAATITI SA (CONF 02) NOAA-5 UMSP NOAA-5 UMSP NOAA-5 UMSP UMSP UMSP NOAA-5 102030Z
102030Z
102030Z
102030Z
101124Z
110124Z
111124Z
112013Z
120103Z
130050Z
130050 PCN 5 (CONF 02) PCN 5 (CONF 02) PCN 5 PCN 5 PCN 5 PCN 5 (CONF 01) PCN 5 DMSP
PCN 6 DMSP
PCN 6 DMSP
PCN 6 DMSP
PCN 5 DMSP
PCN 6 DMSP
PCN 6 DMSP
PCN 7 DMSP
PCN 7 DMSP
PCN 8 DMSP (CONF 02) 180 65 100 120 76 40 15 (CONF 02) (CONF 01) 5 UMSP 5 UMSP 6 UMSP 6 UMSP 6 NOAA-4 NOAA-5 5 UMSP 5 UMSP 5 UMSP 6 UMSP 8 UMSP

30

(CONF 01)

(CONF 01) 60 983 70 983

15 15

```
1710532 17.0N 115-4E
1710542 16.9N 115-5E
1710542 16.9N 115-5E
1710542 17.0N 115-4E
1710542 17.0N 115-5E
1710542 17.0N 115-5E
1710542 17.0N 115-7E
1710542 17.0N 117-0E
1801302 18.0N 117-0E
18013042 18.9N 117-0E
18013042 18.9N 117-0E
18013042 18.9N 117-0E
18013042 18.9N 117-0E
1810502 18.0N 117-0E
1810502 19.5N 119-0E
1810502 19.5N 119-0E
1810502 19.5N 119-0E
1821142 19.5N 119-0E
1821142 19.5N 119-0E
1821142 19.5N 119-0E
1821002 19.3N 118-0E
190002 19.3N 118-0E
191002 20.0N 118-0E
191152 19.8N 118-0E
1912017 19.7N 119-0E
1913017 20.0N 118-0E
1920017 20.1N 119-0E
1920017 20.2N 119-0E
2010017 20.2N 119-0E
                                                                                                                                                                                                                                                                  102
105
106
107
108
109
110
111
112
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     USS OKLAHOMA CITY (CG-5)
USS OKLAHOMA CITY (CG-5)
    114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    972 284 15 13 ELIP N-S 40X30
    116
118
119
120
121
122
123
124
125
126
127
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     USS OKLAHOMA CITY (CG-5)
                                                                                                                                                                                                                                                                    SAT
SAT
LHUR
SRDR
LHUR
LRUR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LHUR SATURES CHAIR SATURES CHAIR SATURES CHAIR SATURES CHAIR SATURES CHAIR CHAIR SATURES CHAIR C
128
129
130
131
132
133
134
135
136
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              - -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            - -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 22.0N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ::
  138
140
141
142
143
144
145
146
147
148
149
150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             27! 16 13 CINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          279 16 14 CIHC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22.6N 120.3E
22.6N 120.3E
22.6N 120.3E
152
153
154
155
156
157
158
160
161
162
163
165
166
167
170
171
172
173
174
175
176
177
178
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              - -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22.6N 120.3E
22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                - 25///
(IR DATA
- 55///
- 55///
- 55///
- 55///
10 700
(I4-5/4.5 /
(IR DATA
(I4-0/4.0 /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 22.6N 120.3E
22.6N 120.3E
22.6N 120.3E
22.6N 120.3E
22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . .
                                                                                                                                                                                                                                                                    LRUR
LRUR
LRUR
LRUR
LRUR
P
SAI
SAI
SAI
SAI
SAI
SAI
CRUR
SAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PCN 5 UMSP
PCN 3 UMSP
PCN 5 UMSP
PCN 1 UMSP
PCN 1 UMSP
PCN 3 UMSP
                                                                                                                                                                                                                                                                                                                              (T6-0/0-0 / HRS)

(T6-0/0-0 /S /24HRS)

(IR DATA

(T3-5/4-5-/WI-U/24HRS)

- 5///

(T5-0/5-0 /S /23HRS)

- 45///

(IR DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NOAA-5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (CONF 01)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   22.6N 120.3E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PCN 3 NOAA-5
```

```
350 50 240 50 40 150 10
                                                                                                                                                                                   22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
22.0N 120.3E
22.6N 120.3E
                                                                                            PCN 3 UMSP
PCN 5 UMSP
PCN 3 NOAA-5
PCN 3 UMSP
PCN 1 UMSP
                                                                                                      NOAA-5 (CONF 01)
                                                                                                                                                                                    22.6N 120.3E
                                                                                            PCN 5 UMSP
PCN 3 UMSP
PCN 5 UMSP
PCN 5 UMSP
PCN 5 UMSP
PCN 6 UMSP
50 50 300
                                                                                            (CONF 01)
                                                                                           PCN 3 UMSP
PCN 3 UMSP
PCN 3 UMSP
NOAA-5
PCN 5 NOAA-5
                                                                                                                 (CONF 01)
                                                                                                                                   298 13 13
                                                                                                                                                                                                             10
                                                                                                                 (CONF 01)
                                                                                                                  (CONF 02)
```

IROPICAL STORM LMMA
FIX POSTITIONS FOR CYCLUME NO. 13
0600Z 15 SEP TO 0600Z 20 SEP

					06	002 15 SE		0600	Z ZU SE	p d									
FIX	11		FIX	ACCRY	FIX	FLT LVL	HIND		SEC WI	NO	MIN	MIN MIN		EYE	ORIEN-	EYE	PUSI I		MSN
NO.	TIME	POSIT				DIH VEL	BRG R	NG		RNG	SLP	HGI	11/10	FORM	IATION	DIA	RADAH	•	NWR
1	1208562	17.2N 145.5E	SAT	IIR DA				PCN !	5 UMSP										
3	1214352	17.6N 145.7E	SAT	(IR DA	TA)	PCN !	5 UMSP										
5	122114Z 122138Z	18.4N 145.3E	SAT	(IR DA	0 /	/ HR	5)	PCN PCN											
6	12231 1Z 130135Z	18.3N 145.7E 17.8N 146.6E	SAT	IR DA	TA			PCN !	NOAA-5										
8	1321202	18.3N 146.4E	SAT	(T 0/	0 /		5)	PCN !	5 UMSP										
10	1321217	18.1N 144.3E	SAT	(IR DA	1.0	D1.0/24HR	5)	PCN :											
11	1401172	18.2N 144.4E	SAI	(IR DA	TA)	PCN !	5 UMSP										
13	1409477	18.5N 142.2E	SAT	(IR DA	TA	/ HR		PCN (6 UMSP										
14	141003Z 141003Z	18.7N 141.9E 19.1N 141.7E	SAT	(IR DA				PCN !											
16	1410132	18.74 142.0E	SAT	(IR DA	TA)	PCN !	5 NOAA-4										
17	141103Z 141359Z	18.6N 141.7E	SAT	(IR DA				PCN !											
19	141359Z 142050Z	18.2N 141.7E 19.5N 142.3E	SAT	(IR DA	TA			PCN S	5 UMSP										
21	1421047	20.0N 142.7E	SAT	(12.0/	2.0 /	D1.0/24HH	5)	PCN S	UMSP										
23	142104Z 142104Z	20.1N 142.4E	SAT	(IR DA	TA 2.5	/ HR	5)	PCN :											
24 25	1423322	21.1N 146.1E 20.0N 142.8E	SAT	(TZ.O/	2.0 /	/ HR	SI	PCN :	NOAA-5	(CON	02)								
26	1501007	19.9N 143.3E	SAT	(IR DA	TA)		5 DMSP										
27	150300Z 150356Z	20.8N 142.9E 21.3N 143.0E	P	10 15	700	210 45 30 24	130	45 30	35 130 20 300	45	983 986	290	24 25	:	::	:			3
29	150934Z	21.8N 143.6E	SAT	IR DA	TA)	PCN (6 UMSP	30	,,,,	•,,							,
30 31	150946Z 150946Z	21.9N 143.5E 21.7N 143.8E	SAT	(IR DA	TA		,	PCN !	5 UMSP										
32	151010Z 151342Z	22.0N 143.2E 22.8N 144.0E	SAT	(IR DA	TA			PCN S	NOAA-5										
34	1513427	22.1N 143.7E	SAT	(IR DA	TA)	PCN (6 ÚMSP										
35 36	152046Z 152247Z	24.2N 144.7E 24.1N 144.9E	SAT	(13.0/	3.0 /	D1.0/24HR	S) (PCN !	NOAA-5	(CON	02)								
37 38	152255Z 160042Z	24.64 144.8E 25.44 143.8E	SAT	IR DA	TA)	PCN !	NOAA-5										
39	1602247	25.3N 143.6E	SAT	(13.0/	3.0 /	/ HR	S)	PCN :	3 UMSP										
*1	1603537	25.1N 144.0E 27.1N 144.3E	SAT	LIR DA	TA	560 60		45 PCN (55 190 5 UMSP	90	979	591	13 12	•	• •	•			5
42	1609292	27.14 144.4E 26.34 144.3E	SAT	IR DA				PCN S	S UMSP										
**	1609297	25.8N 143.7E	SAT	LIR DA	ATA)	PCN .	3 UMSP										
45	161008Z 161104Z	26.74 144.4E 27.18 144.7E	SAT	IR DA	TA				5 NOAA-4										
48	161104Z 161202Z	26.2N 144.4E 25.7N 143.0E	SAT	(IR DA			,	PCN :	NOAA-5	(CON	01)								
49	161506Z	27.2N 144.9E	SAT	IIR DA	TA			PCN !	NOAA-5	(0011	0.,								
50 51	161506Z 162029Z	25.9N 144.1E 27.5N 146.0E	SAT	(IR DA	3.0	W1.0/24HH	Sì	PCN !											
52	162145Z 162207Z	27.0N 144.5E 26.3N 144.4E	SAT	5 15 (T3.0/	700	270 50 S /21HR	200 1	PCN	35 200	120	966	•	13 14	-		•			
54	162358Z	27.1N 144.0E	SAT	(13.0/	3.0	S /25HR	S)		NOAA-5	(CON	01)								
55 56	170007Z 170206Z	26.9N 144.6E 27.3N 144.6E	SAT	(IR DA	TA.				3 NOAA-5 5 UMSP										
57 58	170206Z 170240Z	28.0N 145.3E 27.7N 144.4E	SAT	(13.0/	700	90 60	SI		50 ZO	120	972		14 14						
59	170911Z	28.8N 144.0E	SAT	(IR DA	TA	70 60)	PCN I	6 UMSP	10.000	116		14 14						
61	170912Z 171052Z	28.4N 144.1E 29.6N 144.0E	SAT	(IR DA	TA				5 ÚMSP 6 ÚMSP										
62	171104Z 171118Z	29.0N 144.3E 28.8N 143.5E	SAT	CIR DA			1	PCN	NOAA-4	(CON	. 01)								
64	171448Z	29.2N 144.0E	SAT	(IR DA	ATA				5 UMSP		01)								
65	171448Z 172012Z	29.1N 143.6E 29.1N 143.6E	SAT	(IR DA	3.0-	D1.0/24HR	5)	PCN PCN	3 ÚMSP 5 ÚMSP										
67	172012Z 172303Z	30.0N 144.5E 29.1N 143.6E	SAT	(T2.0/	2.0	/ / HR	S)	PCN											
69	180102Z	29.0N 141.8E 29.6N 142.7E	SAT	(T3.0/	3.0	/S /25HR	Sì		NOAA-5	(CONI	01)								
70 71	180108Z 180148Z	29.5N 142.6E	SAT	(IR DA	3.0-	W1.0/24HR	s)		3 ÚMSP										
72	180237Z 181003Z	28.8N 142.0E 29.3N 141.2E	SAT	S S	700	210 45	130	90	50 40 5 NOAA-5		981	594	14 13	•		•			7
74	1810122	29.5N 140.0E	SAT	(IR DA	ATA)		NOAA-5	(CON	01)								
75 76	181036Z 181036Z	29.3N 141.0E	SAT	CIR DA	TA			PCN !	5 OMSP 3 UMSP										
77 78	181040Z 181430Z	30.0N 141.0E 29.9N 141.4E 29.8N 141.0E	SAT	CIR DA	ATA)	PCN :	3 UMSP										
19	181430Z	30.8N 140.9E	SAT	IIR DA	TA)		5 UMSP			-							
80	181533Z 182000Z	30.6N 140.2E 31.7N 140.3E	LRO	2 5	700		180 1	00		•	977	58ú	14 14	:	::	:	35.3N	3A.7E	. 4
82	182100Z 182137Z	32.0N 140.2E 31.7N 140.4E	LRD	R .	6///3	D1.0/25HR		PCN !	5 UMSP					•		•	35.3N		•
84	182137Z	31.4N 139.8E	SAT	(13.5/	3.5	D1.5/25HA	5)	PCN	6 UMSP										
85	182137Z 182137Z	31.4N 139.8E	SAT	(13.5/	3.5	/D1.5/20HA	S)	PCN .	3 DMSP										
87	182200Z 182228Z	32.2N 140.3E 31.8N 140.5E	LRD	R -	5///3	· /21HR				(CON	. 011					•	35.JN 1	38.7E	•
89	182300Z	32.3N 140.2E	LRO	R -	5///5	, 21,111			NOAA-5	(CON	01)						35.JN 1	38.7E	
90	190000Z	32.5N 140.3E	LRD	H -	6///6									•		-	35.3N 1	38.7E	-

91	1900302	31.9N 140.7E	SAT	CIR DATA	,	PCN 5	NOAA-5							
92	190100Z	32.3N 140.3E	LRDR	- 6///6								 •	35.3N 138.7E	-
43	1901312	32.7N 140.6E	SAT	(IR DATA	,	PCN 5								
44	1901312	32.4N 140.2E	SAT	CIR DATA	,	PCN 3	UMSP							
95	190300Z	32.8N 140.2E	LADR	- 6///6							•	 -	35.3N 138.7E	
96	1903452	33.3N 140.6E	P	5 10 700 50	35 320	90		- 981	294	14 14		 •		10
97	190400Z	32.9N 140.0E	I.ROR	- 6///6									35.3N 138.7E	
98	190500Z	33.2N 140.0E	LAUR	- 6///5									35.3N 138.7E	
99	190700Z	33.7N 140.4E	LROR	- ////							-		35.3N 138.7E	
100	190800Z	34.2N 140.6E	LHOR	- 6////							-		35.3N 138.7E	
101	190900Z	34.5N 140.9E	LRUR	- 6////									35.3N 138.7E	
102	191000Z	34.6N 141.3E	LRUR	- 6////							-		35.3N 138.7E	
103	1910192	34.7N 141.1E	SAT	IR DATA	,	PCN 5	UMSP						22.2. 1201.5	_
104	1910192	34.7N 141.0E	SAT	LIR DATA	,	PCN 5								
105	1910192	35.9N 141.2E	SAT	LIR DATA		PCN 4								
106	1910192	34.8N 140.6E	SAT	IR DATA		PCN 5								
107	1911002	34.7N 142.1E	LRUR	- 6////		PCN 3	, OMSE					_		
108	1911152	34.9N 141.7E	SAI	LIR DATA			NOAA-5				•		35.3N 138.7E	•
109	1914132	35.7N 142.8E	SAT	CIR DATA										
110	1914132	35.9N 143.0E	SAT	LIR DATA		PCN 5								
iii	1914132	36.0N 142.2E	SAT	CIR DATA	:	PCN 6								
112	1921202	38.2N 145.2E	SAT		124406	PCN 3								
113	1921202	38.1N 145.4E		(12.0/3.0-/42.0		PCN S								
114	1921202		SAT	(12.0/3.0-/11.5		PCN 6								
		38.4N 145.5E	SAI	(12.5/2.5 /60.5		PCN 5								
115	1921202		SAT	(12.5/3.5-/41.0		PCN 5		/ noun						
110	1923372	39.0N 146.0E	SAT	172.5/3.0 /40.5	/25MHS)		NOAA-5	(CONF 01)						
117	1923522	39.0N 145.2E	SAT	CIR DATA)	PCN 5	NOAA-5							
118	2010355	43.5N 151.3E	SAT	(IR DATA)	PCN 6	NOAA-5							

					IRUPICAL ST	ORM I	FREDA									
					OSILIONS FOR	CYCL	UNE NO.									
				00	MAX ORS		WAX		085	MIN	FLT				nuc 1 *	
FIX			FIX ACC	RY FIX	FLT LVL WI		SEC		41N	700MB		EYE	URIEN-	EYE	PUSIT	MSN
	TIME	POSIT	CAT NAV-	HET LVL	DIH VEL BRG	HNG	VEL BR	G RNG	SLP	HGI	11/10	FORM	TATION	DIA	RADAR	NMRK
1	1821377	15.24 139.2E	SAT (T	0/ 0/	/ HRS)	PCN	5 UMS	P								
2	1910197	14.5N 137.5E		RDATA	, ,,,,,	PCN										
3	1921217	13.4N 136.1E	SAT IT		S /24HRS)	PCN										
•	2010051			DATA		PCN										
5	2021037	13.5N 134.2E 13.8N 133.1E		DATA	D1.0/24HHS)	PCN										
7	2110037	13.7N 133.0E		DATA		PCN										
8	2111437	14.1N 132.9E		DATA	,		5 NOAA-									
9	2115192			DATA	,	PCN										
10	2122277	17.14 130.3E		1.0/1.0 /	S /25HKS)	PCN										
11	21224A7 220204Z	17.04 130.2E		R DATA 25 700	190 35 120		5 UMS		1001		23 23					
13	2211102	17.04 124.5E		DATA	120 33 150	PCN			1001	-	23 23		• •	•		1
14	2211337	16.9N 128.5E		DATA	,	PCN										
15	2222172			DATA)	PCN										
16	2222342	18.5N 150.5E		.0/1.0 /	S /24HHS)		5 UMS									
17	2223367	19.4N 126.5E		.5/1.5 /	/ HRS)	PCM	5 NOAA-		WF 01)							
19	2302022	18.8N 122.9E		DATA	, 1113)	PCN			11 01)							
20	2303447	18.44 123.3E		1.0/1.0 /	/ HHS)	PCN										
21	2303442	17.9N 123.2E		1.0/1.0 /	/ HHS)	PCN		P								
22	2310527	19.5N 120.8E		DATA)	PCN										
23	2311212	19.7N 120.6E		DATA		PCN										
25	2314457	19.14 119.3E	P 5	5 700	230 60 120	15	5 UM3		988	298	15 12					
26	2316257	18.7N 118.3E	SAT (IF	DATA)	PCN	5 UMS	P								2
21	2316262	18.6N 119.4E		DATA	,	PCN										
58	232153Z 231940Z	19.5N 117.7E 19.2N 117.4E	SAT (IF	DATA	, ,	PCN	5 UMS	P							**** /cc **	
30	2321537	19.5N 117.5E		- STORM	CENTER	PCN	5 UMS	0					USS OKE	AHUMA	CITY (CG-7)	
31	2322242	19.4N 117.4E		DATA	,	PCN										
32	2323001	19.9N 117.4E	LHUR	- 7////											16.3N 120.68	
33	2323357	14.34 117.3E		DATA)	PCN	5 UMS	P								
34	2400007	19.8N 11/-1E	LRUR	- 1////			NOAA-		NF 01)					•	16.3N 120.6E	
36	2400472	19.6% 116.1E		0.0/4.0 /	D2.0/24HKS) / HKS)	900	3 NOAA-		MF (11)							
31	2406107	20.44 114.8E	LHUR	- 10912	, ,,,,,,,	PCM	3 110101	•							22.3N 114.2E	
38	2406407	20.3N 115.0E	LHUR	- 20912											22.3N 114.26	
39	2408007	20.6N 114.5E	LHUR	- 4//4/										•	22.3N 114.2E	
40	2412007	21.1N 113.AE 21.1N 113.AE	LRUR	- 5//4/								•	::	•	22.3N 114.2E	
42	2412177	20.44 113.9E		- 45/1/	,	PCN	5 UMS	P						-	22.3N 114.2E	
43	2412171	35.F11 NS.15		DATA	j	PCN										
**	2413002	21.0N 113.2E	LHUR	- 5//4/											22.3N 114.2E	
45	2414007	31.5N 115.4E	LHUR	- /////										•	22.3N 114.2t	
47	2415002	21.3N 112.5E	SAT (IF	DATA	,	PCN	5 UMS							•	22.3N 114.2E	
48	2416082	22.04 111.6E		DATA	;	PCN										
49	2417007	21.64 111.7E	LRUR	- /////				*							22.3N 114.2E	
50	2423147	36.401 NO.22		DATA	,	PCN										
51	24231AZ	30.01 N10.0E		DATA		PCN	5 UMS									
53	2501537	21.74 104.HE 23.04 107.5E		0.5/3.5 /	S /25HRS)		NOAA-		NF 02)							
54	2601177	25.34 105.8E		DATA	;		6 NOAA-									
							- 110101-									

FIX POSITIONS FOR CYCLUME NO. 15

				00002	MAX OHS	0600	MAX OH		082	MIN	FLI				PUSIT	
FIX			FIA ACCRY	FIA F	LT LVL WIN	10	SEC aln	ID	uIN	700MB	LVL	EYE	UNIEN-		UF	MSN
NO.	ITHE	POSIT	CAT NAV-MET	LAT DI	H VEL BHG	RNG	VEL BRG	RNG	SLP	HGI	11/10	FORM	IATION	UIA	HAUAH	NHRH
1	0110132	12.64 158.3E	SAT TIR DE	ATA)		5 NOAA-5									
2	1045210	13.1 v 157.9E		11.0/	/ HHS)	PCN	5 NOAA-5									
3	0201052	14.00 156.9E	SAT TIR DE		;	PCN	6 UMSP 5 NOAA-5									
5	020931/	15.9N 155.4E	SAI LIR DE		;	PCN	6 UMSP									
0	0220002	16.54 155.6E	SAI (12 . 0.	12.01	/ HRS)		NOAA-5	(CONF	01)							
,	0222052	16.7N 156.7E	SAT TIR DE	12.0 /DI.	0./34445)	PCN	6 UMSP 5 NOAA-5									
9	0222342	16.5N 155.8E			U 38 130	150	40 130	150	1002		26 24					
10	0300072	17.4N 156.0E	SAI (12.0	12.0 /	/ HHS)	PCN	. UMSP									
11	030205Z 030H01Z	16.5N 156.3E	P 13 30		U 20 340		6 UMSP	160	999	301	15 15	•		•		1
13	0309197	17.2N 155.9E	SAT (IH D		;		5 UMSP									
14	0315557	17.9N 156.6E	P 2 5	700 6	U 27 330	30		-	994	304	16 13	•				2
15	0320432	18.64 156.7E		12.5 /00.		PCN	6 UMSP									
11	0323102	17.8N 155.6E		12.0 /5	5/27HKS)	PCN	6 NOAA-4 NOAA-5	(CONF	01)							
18	0323197	18.14 155.7E	SAT (IR DA	ATA)	PCN	6 NOAA-5	(00	0-7							
14	0400292	17.8N 155.7E	SAT (IR DE		" (0 170	PCN	40 170									
51	0409262	18.04 155.5E	SAT LIR DA		0 60 170	PCN	6 UMSP	25	988		27 23		• •			3
25	04095#7	18.94 155.0E	SAI (IR DA	ATA	1	PCN	5 NOAA-5									
23	0410037	18.04 155.0E	SAT (IR DA		;		NOAA-5	(CONF	02)							
25	0413117	20.44 154.9E			0 40 130	30	6 UMSP		989	299	19 16					
20	0420267	20.84 153.2E	SAT (13.5	/3.5 /01.	U/24HHS)	PCN	4 UMSP									
51	0421522	21.14 152.7E	SAT UT DE	/3.0 /01.	U/23HK51		6 NOAA-4									
54	0500127	20.5N 156.4E 21.0N 151.6E	SAI (IR U		;	PCA	6 NOAA-5									
30	050234/	20.74 152.5E	P 15 2	700 10	U 80 360	5	80 120	50	974	280	14 14	ELIP	N-S	10x 5		5
31	0504547	21.94 151.nE 21.94 151.5E	SAT LIR DE		!	PCN	4 UMSP									
33	0509142	21.9N 150.6E	SAI (IR DA		;		6 NOAA-5									
34	0511107	22.0N 150.7E	SAT LIN DA	ATA)	PCN	5 NOAA-5									
35	051116/	21.64 150.5E	SAI (IR DA		1		NOAA-5	(CONF	01)							
36	0512547	21.9N 150.9E	SAT (IR D		,	PCN	4 UMSP									
38	0515257	72.1N 150.4E	P 5 5		U 50 240	40			976	589	14 14			•		•
39	0520097	22.9N 150.3E	SAI (14.0)	4.0-/01.0		PCN										
41	0521392	22.74 150.1E 23.50 150.6E	SAT LIR DA	/3.5 /5	/24HRS)		6 UMSP									
42	0521347	22.84 156.3E	SAT LIR DA	ATA	i	PCN	6 UMSP									
43	0522477	23.0 V 150.1E	SAI (IR D)	PCN	6 NOAA-4									
44	0523467	23.24 150.1E 23.74 150.0E	SAT THE DE		;		5 NOAA-5 5 UMSP									
40	0606277	23.8N 144.1E	P 15 5	700 27	U 40 200	50	45 200	50	986	29!	17 15			•		
47	0608517 060852Z	25.2N 148.8E	SAI (IR D)	PCA	6 UMSP									
49	0610242	25.1N 148.9E	SAT CIR D		;	PCN	6 UMSP									
50	0610247	24.6N 149.0E	SAT TIR D	ATA	j	PCN	5 UMSP									
21	0610267	24.5N 148.6E	SAI LIN D		,	PCM	6 NOAA-5	(CONF	01)							
53	0610342	24.5N 144.2E	SAT CIR D		;	PCN		(COM	01)							
54	06141A7	25.3N 14H.BL	SAT LIN D	ATA	,	PCN										
55 56	0615152	24.64 148.0E	SAI LIR DE		U 57 130	45		•	919	590	14 13			•		4
5/	0619522	25.64 148.3E		/4.0-/DO.	5/25HKS)	PCN	6 UMSP									
58	0623027	25.6N 148.1E	SAI (13.5	14.0 /	/ HHS)	PCN	I NOAA-5									
59	0623427 0700182	25.3N 14h.2E	SAI (IR D		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PCN	5 NOAA-4									
61	0701192	20.4N 147.6E	SAT TTS.O	5.0- /D1.5) /2/ HKS)	PCN	2 UMSP									
62	0701197	26.84 147.6E	SAT (14.0.	14.0 /	/ HHS)		3 UMSP									
63	0703257	26.8N 147.5E			0 60 510	10	50 210 NOAA-5	15	476	580	10 15	•		17.5		10
65	0709422	28.14 147.4E 27.64 147.5E	SAT CIH DE		;	PCK	NOAA-5	(CONF	01)							
66	0710147	28.2N 147.5E	SAI (IR D	ATA	i	PCM	1 NOAA-4	100.11	,							
67	0710162	28.2N 14/.3E	SAI (IR DA		,		1 UMSP									
64	0714002	29.04 147.1E	SAI (IR DI		U 65 160	PLN	1 UMSP		473	280	17 14	CIHC		35		11
10	072117/	30.24 147.BE	SA1 (14.5	14.5-101.5		PCN	1 UMSP									
11	080015/	30.24 147.9E	SAT CIR DE	ATA	!		3 NOAA-5 1 NOAA-5									
13	0801002	30.74 147.6E		/5.u /	/ HHS)		2 UMSP									
1.	0801012	31.44 147.5E	SAT THE DE	ATA)	PCN	1 UMSP									
15	0801017	31.3N 147.3E		/5.0-/01.			3 UMSP		400	185	14 12	61.14	4-5	40 120		
11	0808592	32.9N 148.7E	SAT CIR DE	ATA ZE	0 65 210	PCN	5 NOAA-5		100		14 16	CE 14	4-2	40160		15
16	080910Z	33.0N 144.2E	SAT ITH DE	ATA	,		NOAA-5	(CONF	01)							
80	080914Z 080959Z	32.9N 14H.HE	SAT THE DE		!	PCN	6 NOAA-4									
81	0809597	33.14 149.3E	SAT CIR DE		,	PCA	5 UMSP									
82	0810542	13.2N 144.1E	SAI LIN DE	ATA	,	PCN	5 NOAA-5									
63	0813437 0821007	33.64 150.4E	SAI (18 0)	4.0 /WI.	U/24HUC)	PCN	6 UMSP									
85	7001280	35.0N 151.0E		15.0 /	/ HHS)	PLN	5 UMSP									
86	0823192	15.3N 150.4E	SAT 113.0	14.0 /	/ HHS)		NOAA-5	(CONF	01							
8/	0823317	15.54 151.AL	SAI LIN DE		,	PCN	5 NOAA-5									
88	0900432	36.34 151.5E	SAF CIR DE	ATA	,	PCN	5 UMSP									
+0	0910117	38.24 154.HE	SAT LIN U	ATA	1		5 NOAA-5									

91	0913252	41.3N 156.9E	SAI	LIR DATA	1	PCN S	UASP	
42	0420432	40.1N 160.1E	SAI	LIR DATA)	PCN S	UMSP	
43	0922332	41.2N 161.6E	SAT	(11.5/1.5	/w1.5/2 4HRS)		NOAA-5	(CGNF 01)
94	0922472	41.2N 161.0E	SAI	(12.0/3.0	/ / HKS)	PCN S	NOAA-5	
45	1009277	A1 - 7N 16H-6F	SAL	LIN DATA	,	PCN 6	NOAA-5	

					0		ICAL ST											
							ONS FOR											
					00		MAX OHS		MAX		085	MIN	FLT				PUSIT	
FIA				ACCRY	FIX	FLI	LVL WI		SEC .		MIN	700MB	LVL	EYE	URIEN-	EYE	UF	MSN
NU.	ITHE	POSIT	CAT	NAV-MET	LVL	DIH I	VEL BRG	RNG	AFT BE	RG HNG	SLP	HGI	11/1		IATIUN	01-	RAUAR	NMBH
1	1321162	10.4N 150.9E	SAT	(1 0/			HKS)	PCN	5 UMS	.0								
2	1400572	10.8N 149.2E	SAT	(IR DA		,	nnoi	PCN										
3	14060AZ	13.3N 137.1E	P	3 15		200	28 100	55		150	1001		26 2			-		
	14095AZ	10.2N 147.3E	SAT	IIR DA)		5 UMS	P								
5	1410232	10.4N 141.1E	SAT	IR DA)		5 NOAA-									
0	141339Z 142059Z	10.4N 144.AE	SAT	(IR DA		n	, , , ,	PCN										
	1423002	12.2N 141.9E	SAI	(IR DA		01.07	CAHRS	PCN	5 NOAA-									
4	1423222	12.2N 142.0E	SAI	IIR DA			,	PCN	6 NOAA-	4								
10	1502212	13.04 141.1E	SAT	IIR DA	TA		,		5 UMS									
11	1508232	11.8N 133.9E	P	3 30	1500	90	30 360	100		0 100	1003	•	25 25					2
13	1511367	14.4N 14U.4E	SAT	IIR DA			.)		5 NOAA-									
10	1515037 1520427	14.7N 139.6E	SAT	(IR DA			:	PCN	6 UMS									
15	1522232	15.4N 136.7E	SAT	112.0/		D1.0/2	254851	PCN										
16	1600127	15.5N 136.5E	SAI	IR DA)		5 NOAA-									
17	1602032	15.9N 136.2E	SAT	(IR DA			,	PCN	5 UMS									
19	1602452	15.7N 135.8E	P	2 30	1500	150	52 -	-	35 -		999	•	25 25			•		3
50	1610527 1610562	10.6N 134.6E	SAT	(IR DA			,	PCN	5 NOAA-		NF 01)							
21	1614452	16.8N 133.7E	SAT	(IR DA			,	PCN	5 UMS		NF 01)							
22	1615112	15.9N 133.7E	P	5 30		190	28 110	90				307	10 10					
23	1622067	17.4N 133.2E	SAI	(12.0/			ZAHHSI		5 UMS	P								•
24	1955095	17.84 132.6E	SAI	(13.5/				PCN	3 UMS									
25	1622067	17.2N 133.0E	SAI	(12.5/					5 UMS									
21	162326Z	17.2N 133.0E	SAT	(IR DA		/	HHS		5 NOAA-									
28	1701452	17.6N 132.1E	SAT	IR DA			;		5 DMS									
29	1701457	17.4N 132.3E	SAT	IR DA			i		5 UMS									
30	1703322	17.6N 132.1E	P	3 5	700	350	40 220	55	40 18		989	294	15 1					5
31	1710482	18.2N 131.5E	SAI	IIR DA)		5 UMS									
32	1710492	18.14 131.3E	SAT	(IR DA			,		5 NOAA-									
34	1712097	18.7N 131.2E	SAI	(IR DA			;	PLN	NOAA-		NF 02)							
35	1714272	18.2N 131.6E	SAT	(IR DA			i	PCN	5 UMS		02)							
36	1715072	17.4N 131.8E	P	5 5	700	180	45 90	10			990	300	16 15			-		
37	1720327	18.4N 132.6E	4		700		50 280	56	50 9		988	298	19 19			-		6
38	1721497	18.5N 132.1E	SAT	(13.5/					5 UMS									
40	1800407	19.3N 132.7E	SAT	(T4.5/	TA	01.47	Cours!	PCN	5 NOAA-	5								
41	1803092	19.5N 132.6E	SAI	IR DA			,	PCN										
42	1809147	20.6N 132.5E	SAT	(IR DA)	PCN	5 UMS									
43	1810317	20.7N 132.4E	SAI	(IR DA)		5 UMS									
•5	1811202	20.6N 132.9E	SAT	CIR DA			,	PCN	5 NOAA-									
46	1815227	22.8N 133.4E	9			310	45 210	50	- 043		994	304	11 1					
47	1821322	24.0N 134.2E	SAI	(14.0/	4.0-1	00.5 /2		PCN	5 UMS	P			•••					
48	1823482	24.0N 134.9E	SAT	(13.0/		/	HHS)		NOAA-		NF 02)							
50	1823562	24.8N 135.1E	SAI	(IR DA)		5 NOAA-									
51	1902527	26.1N 135.8E 26.3N 135.6E	SAT	10 15		230	50 190	PCN 30	6 UMS	0 70	985	295	12 1			-		
52	1909457	28.0N 138.3E	SAT	(IH DA		230	20 140		5 NOAA-		703	243	12 1					•
53	1910147	28.1N 138.2E	SAT	IIR DA			,		5 OMS									
54	1910367	28.2N 138.8E	SAT	IR DA	TA)	PCN	5 NOAA-									
55	1910457	29.0N 137.8E	SAI	CIR DA)		NOAA-		NF 01)							
56	1913527	28.5N 138.3E	SAT	(IR DA		100	72 80	PCN	5 UMS	P	004	20-						
57	191534Z 192115Z	28.6N 138.0E	SAT				72 80 24HRS)		5 UMS	P -	984	595	19 1					10
59	1921152	29.5N 139.5E	SAT	(12.5/	2.5 /		HHS)		5 UMS									
60	1923122	30.3N 140.5E	SAT	(IR DA	TA)		5 NOAA-	-5								
61	200059Z	30.2N 141.0E	SAI	(12.5/	2.5 /		25HRS)		NOAA-	-5 (CO	NF 02)							
62	2003132	29.5N 140.3E	P.			250	60 90	80	50 22	50 60	990	300	13 1			•		11
63	200952Z 200957Z	29.6N 142.3E	SAT	IR DA			!		5 NOAA-									
65	2009572	31.0N 143.7E	SAT	(IR DA			;	PCN										
66	2010402	30.04 142.4E	SAT	(IR DA			,		5 NOAA-									
67	2013342	30.6N 144.2E	SAT	IIR DA	TA		,	PCN	6 UMS	P								
68	2015162	30.5N 144.3E	SAT	(IR DA	TA		,	PCN	5 UMS	P								

FIX POSITIONS FOR CYCLUNE NO. 17 06002 21 OCT TO OUNUZ 21 OCT

				06	130 12 ZVO		02 21 OC									
FIX			-11	ACCRY FIX	FLT LVL	15	SPC #1		ORP	MIN	FLT				POSIT	
NO.	TIME	POSIT	CAI	NAV-MET LVL	DIH VEL HE	SO HNG	VEL BRG	RNG	SLP	700MB	11/10	FORM	INTIUN		RAUAH	NMBH
1	1910142	13.7N 146.1E	SAI	CIR DATA												
3	1910362	13.84 146.0E	SAI	ATAU 91)	/ HRSI	PCA	5 UMSP									
	192306?	16.14 148.0E	SAI	(11.5/1.5 /			NOAA-5	(CONF	01)							
>	1923127	15.1N 146.4E	SAI	(IR DATA	1	PCA	5 UMSP									
6	2000532	15.8N 146.6E	SAI	CIR DATA			5 UMSP									
	2009572	17.0N 147.5E	SAT	LIR DATA		PCN	NOAA-5	(CONF	01)							
4	2009577	17.7N 147.7E	SAT	(IR DATA		PCN		(000	0.,							
10	2013342	18.8N 146.8E	SAT	LIR DATA		PCN										
11	2013347 2020582	17.7N 146.2E 18.5N 14/.1E	SAI	(IR DATA	S /24HHS	PCA	6 UMSP									
13	7122202	17.1N 146.0E	SAI		DU.5/23HRS	PL	NOAA-5		01)							
1.	Z055585	18.5N 147.2E	SAI	(IR DATA		PCN	5 UMSP									
15	5103585 5103585	16.5N 147.2E	P	5 5 1500	110 35 3		25 30	90	988	-	25 25			•		1
17	2109402	16.24 147.4E	SAI	3 15 700 (IR DATA		PCN	5 UMSP	-	440	305	15 13	•		•		1
18	2109407	16.44 147.7E	SAT	(IR DATA		PCN	6 UMSP									
19	2111052	17.4N 147.5E	SAI	(IR DATA			5 UMSP									
50	2111102	16.74 147.6E	SAI	(IR DATA	100 20	0 55	NOAA-5	(CONF	03)	300						
22	2120417	17.8N 140.8E	SAI	3 20 700	S /24HRS)		5 UMSP	-	770	303	15 15		• •			5
23	2120417	17.64 146.8E	SAI	(12.0/2.0 /	/ HHS	PCN	6 UMSP									
24	2122077	17.94 146.9E	SAI	CIR DATA		PCN	6 UMSP	/ cour								
25	2123347	17.14 145.7E	SAI	(IR DATA	DU.5/25HRS		NOAA-5		01)							
21	2202507	17.34 145.5E	9	5 20 700	Sn 50 3		40 150		989	30v	11 12					3
58	2209227	16.6% 144.9E	SAF	(IR DATA		PCN	6 UMSP									,
30	2209237	17.24 144.8E	SAI	CIR DATA			5 UMSP	/ cour	011							
31	2210167	16.84 145.0E	SAT	CIR DATA			NOAA-5		01)							
32	2215572	17.04 146.1E	P	2 5 700	290 45 2	20 180			984	293	12 12					
33	2550537	17.24 146.3E	SAT	(13.5/3.5 /	D1.5/24HHS	PCN	6 UMSP									
34	2221247	17.7N 146.4E	SAI	5 5 100	D1.5/24HKS		6 UMSP		980	20.4	10 10					
36	2222487	17.94 147.6E	SAT		D1.5/23HRS		NOAA-5	(CONF		595	15 15		• •	-		•
37	2222572	17.8N 146.5E	SAI	(IR DATA	1	PCN	5 UMSP		,							
38	2309057	18.6N 147.8E	SAI	CIR DATA	1		4 UMSP									
39	2309042	18.64 147.9E	SAT	(IN DATA		PCA	6 UMSP									
41	2309422	18.64 148.5E	SAT	(IR DATA			NOAA-5	(CONF	01)							
42	2320047	31.1N 144.6E	SAI	(14.5/4.5 /	D1.0/24HHS		2 UMSP									
43	2322132	20.84 150.0E	SAT	CIR DATA												
45	2403417	21.5N 151.2E	P	10 20 700	J20 75 2	PCA	35 220	100	961	280	16 12	CIRC		30		7
46	24084RZ	22.9N 152.1E	SAI	LIR DATA	1	PCN	6 UMSP							-		
47	2408.92	22.6N 152.0E	SAI	ITR DATA												
48	2410562	23.04 152.4E 23.04 152.5E	SAT	CIR DATA	112 110	PCA	NOAA-5	(CONF	01)							
50	241508Z	24.2N 153.7E	P	5 2 700	280 93 20	00 00		-	962	270	20 12	CINC		50		
51	2419492	24.84 153.8E	SAT	(15.0/5.0 /	28HHS	PC	3 UMSP									
52	2419492	24.6N 153.6E	SAI	CIR DATA			2 UMSP									
54	2423152	25.4N 154.5E	SAI		/ / HRS	PCA	NOAA-5		01)							
55	2423257	25.1N 154.4E	SAT	ITR DATA		PC	1 UMSP	,								
56	250106Z 250106Z	26.0N 154.6E	SAT	CIR DATA	/ / HRS	PC	I UMSP									
58	250233/	25.8N 154.4E	SAI		290 90 11	90 1U			945	241	21 11	CINC		30		
59	2508317	27.5N 154.9E	SAI	LIR DATA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PC	2 UMSP			-0.		Cinc				,
60	2508322	26.7N 155.0E	SAI	CIR DATA		PC	2 UMSP									
61	251005Z 251013Z	27.0N 155.5E	SAI	CIR DATA		PCM	NOAA-5		01)							
63	2513272	27.4N 155.8E	SAT	CIR DATA		PCM			01/							
04	25134AZ	27.2N 155.AE	SAI	LIR DATA		PCN	2 UMSP	•								
65	251932Z 251932Z	28.6N 155.9E 28.0N 156.2E	SAI	CIR DATA		PCN										
67	2521572	28.7N 156.2E	SAI			PCA PCA										
68	2522311	28.7N 156.1E	SAI	175.0/5.0	/S /23HRS)	NOAA-5	(CONF	01)							
70	2522417	28.7N 156.4E	SAI	(14.5/5.0 /	/ / HHS	PCM		1								
71	260048Z	29.2N 156.5E	SAI	TA-0/4-5-	WU.5/24HRS	PCA PCA										
76	2608142	31.5N 157.4E	SAT	(IR DATA		PCN										
73	2608307	30.0N 157.2E	SAI	(IR DATA		PCM	6 UMSP	K								
75	2609217	31.04 156.2E	SAT	(IR DATA		PCA	NOAA-5		01)							
76	2609547	10.9N 158.1E	SAT	(IR DATA		PCN			01)							
11	261330Z	32.04 161.1E	SAT	LIR DATA		PCA	6 UMSP									
78	262157Z 262253Z	37.24 164.5E	SAI		M1.5/53HH2											
14	5055237	30 . LA 104 . 4E	SAT	(IR DATA		PCN	6 UMSP									

FLA POSTITONS FOR CYCLUME NO. 14

				FU		ZR UCT I											
					12002	MAX OBS		MAX (085	MIN	FLI				PUSLI	
FIX						T LVL WI	ND	SEL #	IND	MIN	70046		EYE	UHIEN-	LYE	UF	MSN
NU.	ITME	POSIT	CAT	NAV-MET L	IL DIN	VEL BRG	RNG	VEL BRO	HNG	SLP		11/10		IATIUN	DIA	HADAH	NMBH
1	2421242	7.3N 171.9E	SAI	(1 0/	,	/ HKS)		5 UMSI									
,	252157/	12.2N 105.9E	SAI			/24HKS)	PCH										
3	2621572	13.6N 163.7E	SAI			/24HHS)	PCN										
	270031Z	15.84 160.3E	SAI	LIR DATA)	PCN										
5	2723022	17.84 159.1E	SAT	(11.5/1.	1	/ HHS)		NOAA-5		01)							
6	2723172	17.5N 159.5E	SAI	(11.0/1.	101.4	/25HKS)	HCN		•								
	2126082	19.14 157.4E	SAF	IR DATA		,	PCN										
	2809212	20.04 150.3E	SAI	CIR DATA		,	PCN										
10	2809567	18.6N 157.0E	SAI	CIR DATA		;	PCN	NOAA-5		011							
11	2812542	14.6N 156.9E	SAI	TIR DATA		;	PCN			01)							
14	2820255	20.04 150.3E	SAI	(13.0/3.0	1	/ HHS)	PCN		,								
13	2820232	20.1N 150.6E	SAI	(13.0/3.0		/ HHS)	PCN										
14	28221AZ	20.1N 156.1E	SAI	(13.0/3.0	/01.5	153HK21		NOAA-5		01)							
15	2822262	20.0N 156.3E	SAI	CIR DATA		;	PCN	6 UMSF									
17	2905137	20.8N 156.1E	, P	2 5 150	U 300	70 210	25	65 30L		980		25 24	CIHC		30		
10	2909042	20.84 156.5E	SAI	LIR DATA		10 210	PCN						CINC		30		1
14	2909052	20.9N 150.3E	SAI	ITR DATA)	PCM	5 UMSF									
50	3406065	30.74 156.2E	SAF	11R DATA)	PCN										
51	2919122	20.7N 150.0E 21.5N 156.7E	SAI	CIR DATA		,		NOAA-5		01)							
23	2912377	21.4N 150.4E	SAI	CIR DATA		;	PCN										
24	2914517	21.7N 156.9E	4		0 240	72 150	15			416	284	16 13	CIRC		30		,
25	2920057	22.74 151.5E	SAI	(13.5/3.5	100.0	124HH51	PCN						-1				11 11 11
50	2450025	22.84 151.4E	SAI	(13.0/3.0	15	/24HHS)	PCN										
21	292142/ 2423242	22.9N 157.6E	SAI	CIR DATA	401 11	(75.445)	PCA	5 UMSF									
24	3001197	24.14 157.3E 23.24 154.2E	SAI	ITA.O/4.	, ,01.0	,52442)	PCN	NOAA-5		01)							
30	3003077	23.24 15/.3E	P	2 5 70	0 440	70 220	50	05 221		978	290	18 10					
31	3008477	24.54 158.4E	SAI	ITH DATA)	PCN	6 UMSH	,		-						
32	300H4A7	24.34 158.5E	SAI	TIR DATA		,	PCN		•								
33	3010147	24.24 156.4E	SAI	IR DATA		,	PCI.										
35	3014017	24.54 159.9E 23.54 157.8E	SAI	(IR DATA		;	PCN	NOAA-5		UNF)							
36	3014017	25.54 154.2E	SAI	ITH DATA		,	PCN										
31	30194AZ	24.0N 157.1E	SAI	(11.0/2.0			PCN	3 UMSF	•								
36	30194AZ	23.AN 157.2E	SAI	(12.0/3.0	-/11.0	/24HK5)	PCN										
40	3023457	24.04 156.5E 23.84 156.5E	SAT	(IR DATA		(3,486)	PCN			011							
+1	3101055	24.24 156.1E	SAI	LIR DATA	/#2.0	/24003)	PCN	NOAA-5		01)							
42	3101022	24.2N 155.9E	SAI	112.5/2.5	-/	/ HH5)	PCN										
+3	3108302	24.8N 154.3E	SAI	IR DATA		,	PCN										
44	3109307	24.8N 154.4E	SAT	CIR DATA		1	PCN										
40	3109432	26.3N 153.7E	SAI	LIR DATA		;	PCN	NOAA-5		021							
47	3113447	25.14 153.4E	SAT	IIR DATA		i	PCN			02,							
48	3151155	25.4N 149.8E	SAI	(12.5/2.	1	/ HK5)	PCN										
50	3121132	25.8N 150.4E	SAI	(1 0/1.	/#1.0		PCN										
51	3123572 0108592	26.14 144.3E	SAI	(12.0/2.1)	115	154H42)		NOAA-5		Children							
52	0110467	26.3N 140.3E	SAT	CIR DATA		,	PCN	NOAA-5		01)							
53	0120562	26.6N 145.9E	SAT	(13.5/3.	/01.0	/24HKS)	PCN										
54	0123232	26.54 146.1E	SAI	(12.0/2.		/ HHS)	PCN		,								
55	02020A7	26.9N 140.1E	SAI	CIR DATA		1	PCN										
56	0204377 0204382	27.3N 146.6E 26.9N 146.9E	SAI	ITR DATA		;	PCN										
58	0210022	27.0N 140.4E	SAI	ITR DATA			PCN										
59	021012/	26.0N 147.0E	SAT	LIR DATA		,		NOAA-5		021							
00	0214507	27.04 146.6E	SAI	TIR DATA)	PCN	6 UMSF	•	02,							
61	0214502	26.4N 146.9E	SAI	ITR DATA		,	PCI										
63	022039Z	27.54 146.2E 27.14 146.1E	SAI	(11.0/2.	/w1.0	1/21HH2)	PCN										
64	0555305	27.8N 140.4E	SAI	LIR DATA		;	PCN										
65	0223337	27.3N 140.6E	SAI	ITR DATA		,	PCN										
66	0300252	27.0N 14/.OE	SAT					NOAA-5	(CONF	01)							
67	0301512	26.9N 146.5E	SAI	ITR DATA)	PCN			1							
64	202450E	26.14 140.1E	SAT	IN DATA		,	PCN										
70	0309217	26.14 146.1E	SAI	LIR DATA		,	PCN										
71	0323517	24.04 143.5E	SAI	ITR DATA		j	PCN	3 UMSF	,								
12	0410312	24.1N 141.3E	SAT	LIR DATA		,	PCN										
73	0423072	23.6N 139.2E 23.2N 134.5E	SAT	IN DATA		!	PCN										
		5000. 10.000	,	.1" 0414			PCN	2 042									

FIX POSITIONS FOR CYCLUNE NO. 19
0600Z 06 NOV TO UDOUZ 1/ NOV

				06002	06 NUV TO	DOOUZ											
FIX			FIA ACCRY	FIX F	LT LVL WI	10	SEC WIN	5	MIN	MIN 700MH	FLI	EYE	URIEN-	FYE	POSI	ī	MSN
NU.	FIME	POSIT	CAT NAV-MET	LVL DI	H VEL BRG	RNG V	LL BRG	RNG	SLP		11/11		INTION		HADA	4	NMRH
1	0321557	7.24 156.1E	SAT IT O	/ 0 /	/ HNS)	or. 5	NOAA-5										
2	0409047	8.4N 154.5E	SAT LIR DE		,,	PCN 6	UMSP										
3	0410312	8.8N 153.9E	SAT CIR OF)		NOAA-5										
;	0414157	9.2N 153.2E	SAT LIR DA		/ HHS)	PCN 5											
6	0420047 0421332	10.14 152.1E	SAF CIR DA	/ U.S/	, 442)		NOAA-4										
1	0422507	9.44 153.1E	P 5 12	1500 30	0 38 230	25	20 240	20	100/	-	22 22						2
8	0423097	9.54 153.1E	SAI LIR DA)		NOAA-5										
10	050115Z 050846Z	9.9N 152.5E	SAT LIR DE	ATA	;	PCN 5	UMSP										
ii	0509472	11.0N 152.6E	SAT LIR DE		;		NOAA-5										
14	0513572	11.2N 152.4E	SAI LIR D)	PCN 5	UMSP										
13	0521297	10.5N 153.9E	SAI (12.0	12.0	/ HRS)	PCN 6	NOAA-5	(CONF	021								
15	0600412	11.7N 154.6E	SAT (11.0.	1500 46	25 180	50	<5 180	The state of the s	1004		24 2						
10	06005AZ	10.4N 153.3E	SAT CIR DE	ATA			UMSP	30									,
17	0603102	10.8× 153.1E			0 28 130		45 180	50	998	30 !	11 10	- (-			3
19	0608292	11.2N 153.1E	SAI LIR DE		;		UMSP										
50	0610392	11.3N 152.0E	SAT LIR U		;		NOAA-5										
51	0611027	11.94 152.0E	SAT LIR DE	ATA	i		NOAA-5	(CONF	02)								
55	0613397	11.84 151.5E	SAT CIR DA		, 50 50	PCN 5	UMSP										
23	06151n7 062036Z	11.4N 151.7E	P 10 5	700 12	U 50 50		35 360	10	994	304	18 1	ELIP	N-5	15x10			•
25	0621127	12.04 150.8E	SAI (13.0.	/3.0 /	/ HHS)		UMSP	2000000000		20-							•
56	0623307	12.04 150.5E			U/25HKS1		NOAA-5	(CONF	01)								
27	0623352	12.04 150.4E	SAT LIR DE		;		NOAA-5										
24	07025RZ	12.4N 150.4E			25 290		25 290	30	995	300	18 1	CINC		50			5
30	0709327	12.84 149.4E			35 30	25		-	92	304	17 1						5
31	0709547	12.84 144.6E	SAI CIR DE		,		UMSP										
33	0710152	12.84 144.2E	SAI (IR D		;		NOAA-S										
34	0715082	12.7N 148.9E			U 40 280	125		-	945	304	1. 1						•
35	0720557	13.14 147.6E	SAT (14.0.	/4.0 /DI.	U/24HKS)	PCN S	UMSP		-								
36	0721147	13.04 147.8E	P 14 13	700 1	/23HHS)	20	NOAA-5	(CONF	980	591	14 1.	•		•			,
38	0722517	13.24 147.5E	SAT LIR D		, , , , , ,	PCN 6	NOAA-5	(COM	01)								
39	2010080	13.24 146.9E	LRUR -	PSBL CENT	POOR FIX									•	13.6N	144.4E	
40	0800357	13.3N 147.0E	LRUR -	PSBL CENT	POOR FIX L OVERLAY EY	F FAID (700 U		CIRC	D25 MIM	T 270	12 UALL	1 D ODEN C	-	13.0N		•
41	0801107	13.3N 146.7E	LHUR -		PRL GOOD FIX				CIRC	UZS MYM	1 2/0/	13 WALE	LU APPN 3	-	13.6N		:
43	0802037	13.04 147.1E	SAT 114.0	14.0 /	/ HHS)		UMSP	0-0							13.00		
44	2402080	13.34 147.0E	SAT (IR D		, , ,	PCN 5											
45	080204Z 080210Z	13.3N 147.6E	SAI IT4.0	/4.0 /	/ HHS)		DASP	MAI) /	מני						13.6N	144.45	
•1	0802357	13.3N 146.4E	LHUR -		G SPRL FAIR										13.6N		
48	0802542	13.2N 146.5E	P 2 3	700 2	20 33 250	70	45 270	50	481	594	12 1	-					
50	080310Z 080335Z	13.3N 146.3E	LAUR -		G SPRL FAIR PRL FAIR FIX				LD			:		:	13.6N		
51	0804107	13.3N 140.1E	LHUR -	EYE 100 SF	PRL FAIR FIX	CIRC DI	5 70% WA	LL CLD							13.6N		-
52	0804352	13.34 146.0E	LRUR -	EYE 150 SI	PRL FAIR FIX	CIRC Da	20 60% WA	LL CLD							13.6N		
53	0805107	13.2N 146.0E	LHOR -		PRL GOOD FIX									-	13.0N	144.4E	-
54	0805352 0806107	13.2N 145.8E	LHUR -	EAE 100 21	PRL FAIR FIX	CIRC DI	10 70% WA	ALL CLD				:	::	-	13.6N		•
56	0806357	13.24 145.7E	LHOR -	EYE 100 SE	PRL GOOD FIX	CIRC DI	3 90% WA	LL CLD							13.0N		
51	0807102	13.2N 145.5E	LHUR -	EYE 100 SF	PRL FAIR FIX	CIRC DI	15 70% WA	LL CLD				•		•	13.6N	144.4E	•
58	0807352	13.2N 145.5E	LRUR -	EAE 100 2	PRL FAIR FIX	CIRC DI	15 70% WA	LL CLD				•	• •	•	13.6N		-
60	0808312	13.34 145.3E							971	284	14 1				13.64	144.45	-
61	0808352	13.4N 145.4E	LHUR -	EYE 100 SE	PRL GOOD FIX	CIRC DI	10		0.000						13.6N		-
62	0809107	13.4N 145.3E	LHUR -	EVE 100 SE	PRL GOOD FIX	CIRC DI	10					•	• •	•	13.0N	144.9t	-
64	080935Z 080937Z	13.5N 145.3E	SAT LIR DI)		UMSP								13.6N	144.45	
65	081035Z	13.5N 144.9E	LHUR -	EYE GOOD I	FIX CIRC DIS	80% WAL	LL CLD EY							•	13.6N		-
66	081109Z 081128Z	13.5N 144.8E	SAT LIR DE	EYE GOOD	FIX CIRC DIS	90% WAL	NOAA-5	E CENTE	R OVER	R GUAM		-		•	13.0N	144.48	
68	0811302	13.3N 144.9E	SAT LIR DE	ATA	;		NOAA-5	(CONF	01)								
69	0811352	13.5N 144.8E	LAUR -	EYE 100 SI	PRL OVRLAY F			,							13.6N	144.4E	
70	7805180	13.6N 144.8E	LHUR -	EYE GOOD I	FIX D22 80%	WALL CLE		CH				•		•	13.6N	144.4E	-
71	0812357 0813047	13.6N 144.6E		EYE GOOD	FIX CIRC D20 FIX ELIP AXI	60% WAL	L CLD OP	CLD OF	EN SE				::	:	13.6N		-
13	0813352	13.7N 144.3E	LRUR -		FIX CIRC D22				LH SC						13.6N	144.4E	
14	081410Z	13.74 144.0E	LHUR -	EYE GOOD I	FIX CIRC DI8	70% WAL	L CLD OP	EN E							13.0N		
75	0814467	13.6N 143.9E	SAT (IR D	EVE COOR	FIX ELIP 25/	PCN S	UMSP						The state of the s	-			
71	081535/ 081635/	13.7N 143.7E	LHUR -	EYE GOOD	FIX ELIP 25/	5 30/20	60% WALL	CLD					::	:	13.6N		•
78	0817357	13.7N 143.1E	LHOR -	EYE GOOD I	FIX ELIP AXI	\$ 25/15	70% WALL	CLD							13.6N		-
19	0819107	13.8N 142.AE	LHUH -	EYE GOOD !	FIX ELIP AXI	\$ 25/17	70% WALL	CLD				•		•	13.6N	144.9E	
80	0819357	13.8N 142.7E	LHUR -	EYE GOOD I	FIX ELIP AXI FIX D20 40%	3 25/15 WALL CL	70% WALL	CLD					::	:	13.0N		:
85	08203AZ	13.8N 142.5E	SAT (15.0.	/5.0 /DI.	U/24HHS)	PCN 1	UMSP								13.0N	144.45	
83	1012280	13.9N 142.2E	LHUR -	EYE FAIR	FIX CIRC D20	40% WAL	L CLD								13.6N		-
84	0822357	14.0N 142.0E			FIX CIRC D20							•		•	13.6N	144. YE	•
85	08231AZ	14.0N 141.8E	SAT CIA DE		3/25HKS1	PCN 1	NOAA-4	(CONF	01)								
87	0900042	14.0N 141.6E	SAT THE DE	ATA)		NOAA-5	, 20.11									
88	0901462	14.04 141.2E	SAT (15.0	/5.0 /	/ HKS)	PCN 1	UMSP										
90	090146Z	14.00 141.3E	SAT (15.0.	700 18	0/24HH5)	10 1	10 360	8	934	250	18 1	-		8			10
**				,			300			-34							1

```
14.20 | 130-00 | SAT | (1H DATA | 1 | PCC 6 | DHSP | 14.00 | 130-00 | SAT | (1H DATA | 1 | PCC 1 | DDASP | 14.00 | 130-00 | SAT | (1H DATA | 1 | PCC 1 | DDASP | 14.00 | 137-00 | SAT | (1H DATA | 1 | PCC 1 | DDASP | 14.00 | SAT | (1H DATA | 1 | PCC 1 | DDASP | 14.00 | SAT | (1H DATA | 1 | PCC 1 | DDASP | PCC 1 | DDASP | 15.00 | SAT | (1H DATA | 1 | PCC 1 | DDASP | 
0909192
0909202
0910447
0910487
0910487
0914287
0914282
0923202
0923202
1000132
1001102
1001202
1001202
1001302
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
1010442
102044
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
10204
102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              14.IN 123.0E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   14.14 123.0E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   14.1N 123.0E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        14.14 123.0E
16.34 120.6E
14.14 123.0E
16.34 120.6E
16.34 120.6E
15.24 120.6E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ::
                                 1315002
1315002
1315002
1315222
1316007
1316007
13183°2
1319007
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        14.1N 123.0E
16.3N 120.0E
15.2N 120.0E
16.3N 120.0E
```

the second second second

141	131931/	15.04 121.6E	LHUR	- EYE GOOD FIX 90% WALL CLD CIRC DG 1212 15.24 120.6E	
100	1320007	15.0N 121.7E	LAUR		
103	132100/	15.0N 121.5L	LHUR		
104	1321307	15.04 121.3E	LHUR		
165	132235/	15.14 121.1t	SAI	(T4.0/5.0-/#1.0/24MKS) PCN 5 UMSP	
100	132300/	15.0N 121.0E	LRUR	- PSBL CENT APPROX 120/29 FROM RPMK 16.0N 120.3E	
10/	1400117	15.14 120.6E	SAI	(15.0/5.5 /S /23HKS) NOAA-5 (CONF 01)	
100	140017/	15.34 124.7E	SAI	(IR DATA) NOAA-5	
184	140200/	15.2N 120.0E	LHUR	- 1060/	
190	1403007	15.24 114.7E	LRUR		
141	140430/	15.5N 119.9E	LHUH		
146	1405007	15.44 114.3E	LHUR		-
145	140600/	15.54 1140 IE	LHUR		•
194	100630/	15.8N 119.6E	LHUR		
145	140947/	15.5N 118.6L	P	5 5 700 120 51 30 20 25 20 120 994 303 14 11	19
140	1412537	15.8N 118.3E		(IR DATA) NOAA-5	
141	141257/	16.5N 11H.1E	SAI	(IR DATA) NOAA-5 (CONF 02)	
140	141534/	10.04 118.3E	4	2 5 700 140 64 40 120 1004 313 13 12	20
144	1416237	15.8N 118.2E	SAI	(IR DATA) PCM 5 UMSP	
200	142042/	10.54 114.5E	4	3 10 700 60 41 320 135 1004 314 13 12	20
501	142514/	16.34 114.1E	SAI	(IR DATA) PCN 5 UMSP	
202	1500547	10.5N 118.4E	SAI	(IR DATA) PCN 6 NOAA-4	
203	1501247	10.4N 11H.4E	SAI	(12.5/3.5 / / HHS) PCN 5 NOAA-5	
504	1509207	17.34 118.1E	P	5 5 700 190 55 60 120 40 280 20 - 307 13 11 ELIP SE-NE 15X 8	21
205	1511007	11.44 116. 3E	SAI	(IR DATA) PCN 5 UMSP	
500	1512097	17.74 11HOOE	SAI	(IR DATA) PCN 5 NOAA-5	
501	1512157	17.04 118.5F	SAT	(IR DATA) NOAA-5 (CONF C2)	
208	1516057	18.3N 150.1F	SAI	CIR DATA 1 PCN 5 UMSP	
204	1516057	17.8N 116.HE	SAI	(IR DATA) PCN 6 UMSP	
510	151605/	17.74 120.2E		(IR DATA) PCN 6 DMSP	
511	1521547	19.5N 119.2E	ρ.	2 15 700 220 25 90 130 998 30! 12 13	55
515	1522017	18.9N 120.7E		LIR DATA PCN 5 UMSP (CONT 02)	
513	10003HZ	19.84 121.5E		(TZ.0/2.0 / / HRS) NOAA-5 (CONF 02)	
510	160045/	14.54 120.3E		(T1.0/2.0 /W1.5/23HRS) PCN 5 NOAA-5	
512	160234/	30.3N 120.9E	ρ.	2 20 700 240 11 160 25 25 260 150 999 30/ 12 10	22
216	1603062	38.021 NO.02		(IR DATA) PCN 5 UMSP	
21/	1603062	14.8N 155.4F		(T1.0/1.0 / / HRS) PCN 5 UMSP	
518	1010437	30.6N 121.5E		(IR DATA) PON 5 UMSP	
514	1611257	32.221 NB.02		(IR DATA) PCN 5 NOAA-5	
220	1615497	21.0N 122.9E		(IR DATA) PCN 5 UMSP	
551	16154AZ	21.64 124.5E		(IR DATA) PCN 5 UMSP	
555	1621447	21.3N 124.9E		(IR DATA) PCN 5 UMSP	
557	1100015	21.54 125.7E	SAT	(11.0/1.0 /5 /25HRS) PCN 5 NOA-5	

FIX POSTIONS FOR CYCLUNE NO. 20 0600Z 28 NOV TO 1800Z 07 DEC

					000		NUV T		MAX DE		085	MIM	FLI				20511	
FIX NO.	TIME	POSIT		ACCRY NAV-MET		FLI	LVL WI	ND	SEC WIN	10	MIN	700MB	TI/TO	EYE	IATIUN		UF RADAR	MSN
1	2508427	6.7N 170.5E	SAT	CIR DAT			,		6 NOAA-5									
3	252118/	7.14 168.9E	SAT	(T1.0/1	A	'	HRS)		6 NOAA-5									
:	2609547	8.3N 167.3E 7.7N 165.9E	SAI	(IR DAT		12	SHRS)	PCN	6 NOAA-5									
6	2709107	6.94 165.0E	SAI	IIR DAT	A)	PCN	6 NOAA-5									
	2712347	6.74 163.8E 6.94 161.9E	SAT	(IR DAT	.0 /	,	HHS)	PCN	6 UMSP									
10	2721472	6.84 162.1E	SAI	CIR DAT			;		5 NOAA-5									
11	2806007	6.7N 154.9E	-	5 50	700	30	45 300	20	+0 310	20	991	•	26 26			-		1
13	2808597	7.44 157.7E	SAI	(IR DAT	A		;	PCN										
10	2813572	6.84 15H.2E	SAI	CIR DAT	A		;	PCN	2 NOAA-5									
16	2813587 2820007	7.14 157.4E 7.54 154.6E	SAT	(T2.0/2	A		4445)	PCN										
10	2820005	0.4N 156.6E	SAI	(12.0/2	.0 /		HRSI		6 UMSP									
19	2822542	7.04 154.5E 6.64 155.1E	SAI	(12.0/2	A	'	HRS)	PCN	NOAA-5 5 NOAA-5	(CONF	02)							
51	2900597 290327/	1.6N 150.7E	SAI	IR DAT		110	45 30	PCN 60	4 UMSP	10	993	300	10 9					2
23	2908417	8.6N 151 . RE	SAI	LIR DAT	A		1	PCN	6 UMSP		.,,	300						•
25	290939Z	8.34 151.7E 8.54 151.6E	SAI	IR DAT	A		;	PCN	6 NOAA-5									
27	2909427	7.0% 154.0E	SAT	IR DAT			;	PCN	NOAA-5	(CONF	03)							
58	2921257	8.7N 148.5E	SAI	(12.0/2	.0 /5		SHRS)		5 UMSP	/ 000								
30	2922127	7.54 150.9E	SAI	(12.5/2	A	10.372) leun c		NOAA-5 5 NOAA-5	(CON	01)							
31	3007257	8.6N 147.1E 7.3N 148.7E	SAI	5 15 1		360	27 280	PCN 90	5 NOAA-4	90	1004		25 25					
33	3010057	8.34 147.9E 7.7N 145.9E	SAI	CIR DAT	A		!	PCN	6 UMSP									
35	3010517	8.5N 14/.4E	SAI	IR DAT	A		,		6 NOAA-5									
36	3010547	7.44 145.6E	SAI	IR DAT			;	PCN	NOAA-5	(CONI	01)							
38	3013232	7.0N 145.5E	SAI	(IR DAT		1.0/2	AHRS		6 UMSP									
40	3021497	7.6N 145.2L	P	5 20	700	50	45 350	240	25 360	105	1000	•	25 26	•		•		5
41	3023247	9.84 143.3E 8.34 144.1E	SAI	(13.0/3	IA	0.5/2	(CMH2)	PCN	NOAA-5 6 NOAA-5	(CON	01)							
43	0102057	8.1N 141.4E 8.1N 141.5E	SAI	S S I		130	45 60	PCN	5 UMSP	95	1001		25 25					
45	0109497	10.64 134.8E	SAI	(IR DAT			1	PCN	5 UMSP	**			23 23					,
47	0109497 0112042	8.9N 138.6E	SAI	IR DAT	A		;		6 UMSP 5 NOAA-5									
49	0112047	10.04 138.5E	SAI	CIR DAT		160	50 100	100	NOAA-5	(CONF	992	304	15 13					
50	0114467	10.3N 137.3E 11.3N 136.4E	SAT	CIP DAT			1		5 UMSP		989							
52	0122321	11.5N 136.1E	SAI	(13.5/	3.5 /0	0.5/2	SHRS)	PCN	5 UMSP		707	59.A	16 11	CINC		40		•
54	012232Z 012319Z	11.4N 130.0E	SAI	IR DAT	A		;		6 NOAA-4									
55	020036Z 020040Z	11.7N 136.2E	SAT	(T4.0/4		1.0/2	SHRS		NOAA-5 6 NOAA-5	(CONF	01)							
51	0201472	11.24 135.0E	SAT	(IR DAT	TA .		, ,	PCN	5 UMSP									
58	020147Z 020243Z	11.2N 134.8E	SAI		700		75 60	28	BU 60	28	984	244	10 14	ELIP	N-S	20X25		,
60	021114Z 021114Z	11.7N 133.5E 11.6N 133.3E	SAT	(IR DAI			;		5 UMSP									
63	7621120	11.3N 133.4E 12.3N 133.4E	SAT	(IR DAT	TA .		!		5 NOAA-5	/ cour	- 021							
64	0214292	11.74 133.0E	SAT	IR DAT	A		i	PCN		(CONF	02)							
65	0214292	11.6N 133.1E 12.7N 131.8E	SAT	S 3	700	170 1	00 60		5 UMSP	7	940	264	18 12	CIHC		12		
67	0222152	12.84 131.9E	SAT	175.0/9	5.0 /0	1.5/2	OHRS)	PCN	1 UMSP									
69	0223512	13.04 131.5E	SAT	(15.5/5	5.5 /0				NOAA-5	(CONF	01)							
71	0223562	12.94 131.3E	SAT		700	140 1	05 50	30	1 NOAA-5		931	244	23 12	CIHC		12		
13	0303112	13.0N 130.9E	SAT	(IR DAT	A		;	PCN	1 UMSP									
14	0310572	13.34 130.1E	SAT	(IR DAT	TA		1	PCN	1 UMSP									
76	0312322	13.44 124.8E	SAT	IR DAT	TA		,		1 NOAA-5	/com								
77	0312352	13.3N 129.9E	SAT	IR DAT	TA		;	PCN		(CON	Fuij							
79	0314112	13.64 124.AE 13.74 129.5E	SAI	S 2	700	140 1	20 10	13	1 UMSP		914	230	26 12	CINC		18		•
61	0315532 0320382	13.5N 129.8E	SAI	IR DAT	TA .		90 300	PCN	1 UMSP		920		51 15			25		
83	0321582	14.4N 128.9E	SAF	(15.5/9	5.5-/0	1.0/2	4HRS)		1 UMSP			53.		CINC				•
85	0323042 04010AZ	14.5N 128.9E	SAT	(15.0/5	.0 /	/	HHS)	PCN	NOAA-5 1 NOAA-5	(CON	F 01)							
86	0402392 0402532	14.84 128.5E	SAT	IR DAT	700	340	90 250	58		8	931	240	17 11	ELIP	PE-NE	28X44		10
88	0402572	15.04 128.7E	SAT	(IR DA	TA	10	70 270	PCN	1 UMSP	120	933	250	16 11	CINC		20		
90		16.5N 128.4E		IT DAT			, ,		1 NOAA-5	150	,39	-30		ciúc		4.		10

41	0411532	15.5N 128.5E	SAT	LIR DATA	NOAA-5	(CONF Q1)						
92	0414482	17.84 128.5E	P	2 5 700 260 125 180		- 943	260	16 16	FI IP	N-S	40X3U	11
43	0415352	17.1N 128.9E	SAI		PCN 1 UMSP		-0:				40.50	**
94	0421402	18.3N 129.6E	SAT	(IR DATA	PCN 3 UMSP							
95	0421407	18.4N 129.7E	SAI	(T4.5/4.5 / / HHS)	PCN 3 UMSP							
96	0421442	18.24 129.4E	P	5 5 700 90 60 350		8 942	258	17 14	CIRC		40	11
47	0500172	19.3N 129.9E	SAT		NOAA-5	(CONF 01)	-35		erne		**	**
98	0500242	18.8N 129.9E	SAT	(T4.5/5.0 /WO.5/23HRS)	PCN 3 NOAA-5	(0011 01/						
99	0502362	19.3N 130.3E	SAT	(IR DATA)	PCN 1 UMSP							
100	0502362	19.3N 130.3E	SAT	(IR DATA	PCN 3 UMSP							
101	0502452	19.4N 130.2E	P	10 5 700 240 135 140		30 945	261	17 14	CIRC		40	12
102	0510227	21.2N 131.9E	SAT	(IR DATA)	PCN 5 UMSP			-				-
103	0510222	21 . 7N 132 . 1E	SAI	(IR DATA)	PCN 5 UMSP							
104	0511042	21.4N 132.4E	SAT	IIR DATA	PCN 5 NOAA-5							
105	0511102	21.2N 132.3E	SAT	(IR DATA)	NOAA-5	(CONF 02)						
100	0515172	21.9N 133.0E	SAT	(IR DATA)	PCN 5 UMSP							
107	05151AZ	21.9N 133.1E	SAI	(IR DATA)	PCN 5 UMSP							
108	0521232	22.8N 135.5E	SAT	(T2.5/2.5 / / HRS)	PCN 5 UMSP							
109	0521232	22.8N 135.5E	SAI	(IR DATA)	PCN 6 DMSP							
110	052340Z	22.0N 135.6E	SAT	(IR DATA)	PCN 5 NOAA-5							
111	0602557	22.1N 136.8E	P	4 10 700 340 50 270	90 130 270	50 988	298	15 16	•		•	13
112	061005Z	22.2N 139.5E	SAT	(IR DATA)	PCN 5 UMSP							
113	0610057	21.8N 139.3E	SAT	(IR DATA)	PCN 5 UMSP							
114	0610202	22.4N 139.7E	SAT	(IR DATA)	PCN 5 NOAA-5							
115	0610272	23.0N 139.0E	SAT	(IR DATA)	NOAA-5	(CONF O1)						
110	0615007	22.6N 141.5E	SAT	(IR DATA)	PCN 6 UMSP							
117	0615002	22.6N 141.5E	SAT	(IR DATA)	PCN 5 UMSP							
118	0621062	22.7N 143.7E	SAT	(T1.0/ 2.0 /W1.5/24HRS)	PCN 5 UMSP							
119	0621062	22.7N 143.8E	SAI	(T2.0/2.0 / / HRS)	PCN 5 UMSP							
120	06224HZ	22.5N 144.0E	SAT	(T1.0/1.0 / / HKS)	NOAA-5	(CONF 01)						
121	1952500	23.14 144.4E	SAT	(IR DATA)	PCN 5 NOAA-5							
122	0704507	22.4N 146.4E	P	5 2 1500 10 70 270	10 50 280	25 997		24 19	•		•	14
123	0709497	22.0N 149.1E	SAI	(IR DATA)	PCN 6 UMSP							
124	0714427	21.9N 150.2E	SAT	(IR DATA)	PCN 5 UMSP							
125	0720497		SAT	(T 0/1.0 /W1.0/24HRS)	PCN 5 UMSP							
		20.9N 155.4E		(IR DATA)	PCN 5 NOAA-5							

FIN POST TONS FOR CYCLUNE NO. 21

				060	02 ZO	DEC TO	1800	MAX O		085	MIN	FLT				PUSII	
FIX NO.	TIME	POSIT		ACCRY FIA	FLT	LAT AIM		SEC #1		MIN	100MR		FORM	IATIUN		UF RADAR	MAN
1	1908347	8.94 177.0E	SAI	CIR DATA		,		6 NOAA-5						-			
3	19111-7	8.6N 177.8E 9.0N 177.5E	SAT	CIR DATA		;	PCN I	6 UMSP									
•	1915457	9.5N 179.8E	SAT	IR DATA		,		SMS-2	(CON	F 01)							
	192046/	9.0N 176.6E 9.6N 177.8E	SAT	(T1.0/1.0 /	,	HRS)	PCN (SMS-2 6 UMSP									
7	192106Z 192110Z	9.2N 178.5E 9.1N 178.3E	SAT	(12.5/2.5/	',	HHS)	PCN S	NOAA-5 NOAA-5	(CON	F 01)							
10	1923527	11.4N 180.4E 9.8N 178.9E	SAT	LIR DATA		,	PCN PCN	6 UMSP									
11	2004152	9.6N 179.0E	SAT	IIR DATA		,		SMS-2									
13	2007477 2007537	9.7N 178.9E 10.0N 179.0E	SAI	(IR DATA		;	PCN (NOAA-5	(CON	F 01)							
14	2010522	10.2N 179.6E 10.1N 179.1E	SAT	(IR DATA		;	PCN (
16	2011152	9.5N 179.1E	SAT	(IR DATA		i	PCN	SMS-2	(60	NM)							
18	201848Z 201949Z	9.5N 178.9E	SAT	CIR DATA		;	PCN	SMS-2	(60								
20	202022Z 210215Z	9.0N 180.0E	SAT	(13.0/3.0 /D	0.5/2	3HRS)		NOAA-5 SMS-2	(CON	F 01)							
51	210315Z 210729Z	9.74 178.7E 10.34 179.7E	SAT	(IR DATA	,	HRS)	DCN I	SMS-2	(60	NM)							
23	2107302	10.1N 179.2E	SAT	LIR DATA		,,,,,	PCN (6 UMSP									
25	2109027	10.0N 178.8E	SAT	(IR DATA		;	PCN (NOAA-5 6 NOAA-5									
26	211215Z 211216Z	10.04 178.2E 9.84 179.0E	SAT	(TR DATA (T2.0/ 3.0 /W1.	0/12 +	IRS)	PCN 4	SMS-2	(60	NM)							
28	211217Z 211515Z	10.5N 179.0E 9.8N 178.0E	SAT	CIR DATA		!	PCN (
30	2118312	10.4N 176.7E	SAT	(T3.0/3.0 /		HRS)	PCN (6 UMSP									
32	2121337 21213AZ	10.04 177.6E 9.64 177.1E	SAT	(T3.5/3.5 /D	/	HHS)	PCN !	NOAA-5 5 NOAA-5	(CON	F 02)							
33	212317Z 212317Z	10.2N 177.1E	SAT	(T3.0/3.0 /	1	HRS)	PCN PCN	4 UMSP									
35 36	220713Z 220745Z	10.2N 175.1E 9.9N 174.9E	SAT	CIR DATA)	PCN (
37	22081AZ	10.2N 174.9E	SAT	(IR DATA		;	PCN (6 NOAA-5									
38	221115Z 221159Z	10.54 174.2E 10.64 173.5E	SAT	(TR DATA (T3.0/3.0/	HRS	5)	PCN (SMS-2	(60	NM)							
40	2218452	11.0N 174.0E	SAT	(TA-5/4.5 /		HRS)	PCN I	SMS-2	(CON	F 2)							
42	221955Z 222015Z	11.1N 173.5E 11.1N 173.3E	SAT	(T4.5/4.5 /D	1.5/2	IHRS)	PCN 2	2 UMSP	100								
44	2220512	11.6N 173.3E	SAI	(15.0/5.0 /D				SMS-2 NOAA-5	(60 I	F 01)							
45	222054Z 222054Z	11.4N 173.3E	SAI	(IR DATA	1.0/2	2HRS)		2 NOAA-5 2 NOAA-5									
47	2222592	11.24 172.1E 11.54 172.0E	SAT	(15.0/5.0 /D	2.0/2	4HHS)	PCN	4 UMSP SMS-2	(30	NM)							
50	230837Z 230837Z	11.6N 171.7E 12.4N 171.6E	SAT	(IR DATA		,	PCN I	6 UMSP	(30	· ····							
51	2309312	12.14 171.4E	SAT	IR DATA		;	PCN PCN	6 NOAA-5									
52	2309342	11.6N 171.3E 12.6N 173.2E	SAT	CIR DATA		;	PCN	NOAA-5	(CEA	NF 01)							
54 55	231938Z 231945Z	12.3N 170.3E	SAT	114.0/4.5 /W			PCN		(40	NM)							
50	2322077	12.6N 170.5E	SAT	174.0/4.5 /		HHS)	PCN	5 NOAA-5	(40	11117							
57	2400237	12.94 170.2E	SAI	(IR DATA)		5 UMSP									
60	240115Z 240815Z	12.54 169.AE 13.04 169.1E	SAI	IR DATA	330	75 240	30	90 240 NOAA-5	35	972 NF 01)	584	18 13	CINC		30		1
61	240820Z 240820Z	12.9N 169.3E	SAT			,	PCN .	4 UMSP									
63	2408472	12.94 164.1E	SAI	IJR DATA		,	PCN	NOAA-5									
65	240847Z 241305Z	12.7N 169.2E 12.9N 169.4E	SAI	LIR DATA		;	PCN										
67	241305Z 241315Z	12.7N 169.4E	SAT	CIR DATA)	PCN	MSP SMS-2	(60	NM)							
68	2421202	12.6N 169.1E	SAT	(IR DATA	,	HHS)		SMS-2 NOAA-5	(30	NM)							
70 71	2421232	12.44 169.3E	SAT	(15.0/5.0 /0	1.0/2	3445)	PCN	1 NOAA-5	(CON	1 01/							
12	250006Z 250249Z	12.24 169.1E	SAT	TIR DATA		;		2 UMSP SMS-2	(60								
73	250314Z 250803Z	11.9N 169.4E	SAI	S 5 700	300 I	15 210		100 210 2 UMSP	25	441	597	17 10	CINC		15		>
75 76	250803Z 250803Z	11.9N 168.9E	SAT	CIR DATA		;	PCN .										
77	2509592	11.8N 168.7E	SAT	IR DATA			PCN	4 NOAA-5									
78	251002Z 251248Z	12.0N 169.0E	SAI	CIR DATA		;	PCN I			IF 01)							
81	251415 <i>Z</i> 251559 <i>Z</i>	11.34 168.5E	SAT	(IR DATA 2 4 700 R - 150 SPRI	340	82 260	45	SMS-2	(60	NM)	271	13 11	ELIP	E-W	35225		
82	251625Z 251725Z	11.1N 168.9E	LRU	R - 150 SPRI	OVRL	PSBL EY	POOR	FIX				534		::		8. TN 167.7E	
84	2518257	10.84 168.6E	LRU	R - 150 SPRI	OVRLY	Y PSBL EY	POOR	FIX						::	•	8.7N 107.7E	
85	2520257 2520397	10.4N 168.0E	SAT	(15.0/5.0 /	OVEL		PCN !	5 NOAA-5								8. 7N 107.7E	-
87	2520457 252045Z	10.4N 165.6E	SAT	(14.0/4.5 /	,	HRS)	PCN !	5 UMSP									
99	252050Z 252231Z	10.5% 167.3E 10.5% 168.0E	SAI	113.5/4.5 / 114.0/5.0 /W	1.4/2	HKS)		SMS-2 NOAA-5	(40	NM) F 01)							
	2002312		3-1			3.11.31		MOAN-3	(001	. 01)							

```
2522352
2523252
2523482
2600252
2601302
2602152
2602257
2604252
2605252
2605252
2605252
2605252
2605252
2605252
2605252
                                                                                                                                                                                                                                                                                                            (15.0/5.0 /5 /25HMS) PCN 6 NOAA-5
- 15° SPRL OVRLY PSBL EYE POOR FIX
18 OATA
- 15° SPRL OVRLY PSBL EYE POOR FIX
5 15 700 20 82 270 15 85 360
- 15° SPRL OVRLY PSBL EYE POOR FIX
                                                                                                                                                                                                                                                     SAT
LRDR
SAT
                                                                                                                       (60 NM)
100
101
102
103
                                                                                                                                                                                                                                                                                                                  LIR DATA
                                                                                                                                                                                                                                                                                                 CIR DATA
CIN DATA
CIR DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PCN 6 NOAA-5
                                        2014377
2612377
2620287
2620287
2620287
2620287
2621511
2701102
2709107
2709107
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
2710307
271030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (60 NM)
                                                                                                                                                                                                                                                                                                                                                                                                                           14 55 270
/ HKS)
/ HKS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (CONF 02)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    15 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NOAA-5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (CONF 01)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PCN 6
PCN 6
120
PCN 5
PCN 6
                                                                                                                                                                                                                                                                                                 (IR DATA )
(IR DATA )
5 5 700 70 57 330
(I3-0/3.5 /w0-5/24HMS)
(I3-0/3.5 /w1-0/24HMS)
(I3-5/3.5 /S /25HMS)
(IR DATA )
  119
120
121
122
123
                                                                                               124
125
126
127
128
129
130
131
132
133
134
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              14 12 CIHC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       13.0N 144.9E
13.0N 144.9E
13.0N 144.9E
13.0N 144.9E
  140
141
142
143
144
145
146
147
148
149
150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         13.6N 144.9E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         13.0N 144.4E
152
153
154
155
156
157
158
159
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         13.0N 144.9E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       12
```

181	3122267	9.7N 132.3E	SAT	(13.0/3.0 /S /24HRS)	PCN 5 UMSP								
182	3123597	8.14 131.2E	SAI	(IR DATA)	PCN 5 NOAA-5								
183	0104002	10.0N 131.0E		10 2 1500 270 40 180		35 994		27 25					16
184	0111082	10.3N 129.0E		(IR DATA)	PCN 6 UMSP								••
185	01110AZ	10.44 128.5E		(IR DATA)	PCN 6 UMSP								
186	0112372	9.6N 128.5E		(IR DATA	PCN 6 NOAA-5								
187	0112392	10.04 128.6E		(IR DATA)	NOAA-5	(CONF 02)							
188	0114557	9.04 128.3E	P	5 30 700 170 40 20	40	- 1003	314	14 13			-		17
189	0115497	10.3N 127.9E		LIR DATA	PCN 6 UMSP		**:						.,
190	0122097	9.9N 120.4E		(T3.0/3.0 /D1.0/24HRS)	PCN 5 UMSP								
191	0122097	9.9N 126.3E		(13.5/3.5 /DU.5/24HRS)	PCN 3 UMSP								
192	0201047	9.5N 126.5E		(12.0/2.0 / / HRS)	NOAA-5	(CONF 01)							
193	0201132	9.64 125.9E		(IR DATA	PCN 5 NOAA-5	(00111 01)							
194	2019020	10.4N 125.7E			ren 3 non-3				-			11.0N 125.7E	
195	0208007	10.6N 125.0E										11.0N 125.7E	_
196	0210002	10.4N 124.5E										11.0N 125.7E	
197	0210512			(IR DATA	PCN 5 UMSP					-		TION ILIONE	
198	0210512			(IR DATA	PCN 6 UMSP								
199	0211532			(IR DATA	PCN 6 NOAA-5								
200	0211552			(IR DATA									
				(IR DATA	PCN 5 UMSP								
501	0215317	10.7N 123.5E											
505	0215317	10.74 123.4E		(IR DATA)	PCN 6 UMSP								
203	0223337	10.4N 122.0E		(T2.0/3.0 /W1.5/25HHS)	PCN 5 UMSP								
204	0300297	9.94 121.7E		(T2.0/2.5 / / HRS)	PCN 6 NOAA-5								
205	0302327	9.94 121.3E		(IR DATA)	PCN 5 UMSP								
500	0305351	10.0N 121.6E		(12.0/2.0+/ / MRS)	PCN 5 UMSP								
207	0310347	10.3N 124.6E		(IR DATA)	PCN 3 UMSP								
509	0313057	10.54 154.5F		(IR DATA)	PCN 6 NOAA-5								
204	0315142	10.0N 124.2E	SAI	(IR DATA)	PCN 5 UMSP								

4. NORTH INDIAN OCEAN FIX DATA

					FIX P							LUNE 13 MA	NO. 17	-11							
									OHS			MAX U		085	MIN	FLT				PUSIT	
FIX				FIA	ACCRY	FIA	FL	T LI	/L w1	ND	5	FC #1	ND	MIN	700MB		EYE	URIEN-	EYE	UF	MSN
NO.	IIME	POS	11	CAI	NAV-MET	LAF	DIH	VEL	BRG	RNG	V.	L BRG	RNG	SLP	HGI	11/10	FORM	TATION	DIA	RADAR	NMBR
1	0805157	7.1%	82.2E	SAT	11 .5/	0.5	,	, ,	HS)	PCN	6	UMSP									
2	0806572	7.5%	71.6E	SAI	(IR DA	TA)	PCN	6	UMSP									
3	090302/	9.0N	77.5E	SAI	IR DA	TA)			NOAA-5									
	1004107	14.04	87.QE	SAI	(11.5/	1.5	,	1 +	HS)			NOAA-5		F 01)							
5	1004407	11.94	88.3E	SAT	(IR DA	TA)	PCN	6	UMSP									
6	1014597	14.5N	87.3E	SAI	IR DA	TA)			NOAA-5	(CON	F 02)							
1	1100262	14.8N	88.5E	SAI	173.0/	3.0	,	/ 1	HRS)	PCN	5	UMSP									
8	1103242	15.8N	88.1E	SAI	(12.5/	2.5	/D1.U	1231	HKS)			NOAA-5	(CON	F 01)							
4	111303/	17.0N	89.3E	SAT	(IR DA	TA)	PCN	5	UMSP									
10	1114152	16.7N	89.7E	SAT	LIR DA	TA)			NOAA-5		F 03)							
11	1117042	15.4N	88.5E	SAI	(IR DA	TA)	PCN		UMSP									
12	1117052	16.4N	89.5E	SAT	(IR DA	TA)	PCN	5	UMSP									
13	12001AZ	18.5N	89.0E	SAT	(14.0/	4.0	/01.0	1241	HRS)	PCN	4	UMSP									
14	1202007	18.4N	88.2E	SAT	(14.0/	4.0	/	/ 1	HKS)	PCN	6	UMSP									
15	1202402	18.8N	89.0E	SAT	(13.5/	3.5	/D1.U	1231	HSI			NOAA-5	(CON	F 01)							
16	1205472	20.3N	89.3E	SAT	(14.0/	4.0	,	/ +	HRS)			NOAA-5									
17	1213032	20.8N	89.2E	SAI	(IR DA	TA)	PCN	3	UMSP									
18	1213332	21.4N	89.4E	SAT	(IR DA	TA)			NOAA-5		F 02)							
19	12182AZ	22.2N	90.9E		(14.0/	4.0	15	1241	HRS)	PCN	5	UMSP									
20	1300062	23.8N	90.9E		(13.5/	4.0-	/WU.5	1241	HRS)	PCN	3	UMSP									
21	1301497	23.6N	91.7E	SAT	(14.0/	4.0	15	1241	IRS)	PCN		UMSP									

					FIX POS						CLONE N		-77							
						200		MAX OBS		02	MÁX OE		085	MIN	FLT				POSIT	
FIA				FIX	ACCRY F	X		LVL W			SFC WIN		MIN	700MB		EYE	URIEN-	644	OF	MSN
NO.	TIME	POS	11		NAV-MET L						EL BRG		SLP	HG!	11/10		IATION		RADAR	NMBR
1	0903297	16.04	69.0E	SAT	(11.0/1.	0 /	,	HRS)			NOAA-5	(CONF	01)							
2	0916177	16.94	69.4E	SAI	LIR DATA)			NOAA-5	(CONF	02)							
3	1004407		68.3E	SAT			1.5/	25HRS)			NOAA-5	(CONF	01)							
	1004482	18.7N	68.6E	SAT				HRS)	PCN		DMSP									
5	1015402	18.3N	66.8F		(IR DATA)	PCN											
6	1020082	19.2N	66.1E	SAT			/	HRS)	PCN											
1	1102427	19.5N	66.6E	SAT	(T4.5/3.	5 /0	1.0/	24HR5)	PCN											
8	1103577	19.7N	66.0E	SAT	(13.5/3.	10	1.0/	ZSHHSI		-	NOAA-5	(CONF	01)							
9	110404Z	20.2N	65.6E	SAT	LIR DATA)	PCN	4	UMSP	1.00								
10	1107092	19.6N	64. BE	SAT	IIR DATA)	PCN											
11	1115282	19.7N	65. 1E	SAT	IR DATA)	PCN											
12	1119517	19.6N	61.8E	SAI	IR DATA)	PCN	5	UMSP									
13	1202342	20.1N	62.6E	SAT	(13.5/3.	5 /5	1	24HHS)	PCN											
14	1202512	20.14	61.4E	SAT	(14.0/4.	10	0.5/	24HRS)	PCN											
15	1205092	20.24	62.3E	SAI	175.0/5.	10	1.5/	25HHS)	-		NOAA-5	(CONF	01)							
10	1215152	21.1N	60.5E	SAT	IIR DATA)	PCN	6	UMSP									
17	1216027	20.3N	59.8E	SAI	(IR DATA)			NOAA-5	(CONF	02)							
18	1219332	20.6N	59.9E	SAI	LIR DATA)	PCN	2										
19	1302192	20.8N	59.1E	SAT	(IR DATA)	PCN											
20	1304252	20.5N	58.5E	SAT	113.0/4 .	/W	2.0/	23HRS)	-		NOAA-5	(CONF	01)							
21	1405342	20.14	54.4E	SAT	(11.0/1.	0 /	2.0/	25HRS)			NOAA-5	(CONF	01)							

					FIX			FOR TROP					-77							
								MAX OHS		••	MAX OF		ORS	MIN	FLT				PUSIT	
FIX				FIX	ACCRY	FIX	FL	T LVL W	IND	5	of C ale	10	MIN	700MB	LVL	EYL	URIEN-	EYE	Uf	MSN
NU.	FIME	P05	11	CAT	NAV-MET	LVL		VEL BH			L BHG		SLP	HG!	11/10	FORM	INTIUN	DIA	RAUAH	NMBH
1	2700202	12.0N	91.0E	SAT	(IR D	ATA)	PCN	6	UMSP									
5	2700272	12.4N	92.4E	SAI	172.0	12.0	/	/ HHS)	PCN	5	UMSP									
3	2105357	11.44	92.16	SAT	(12.0	12.0	/	/ HHS)	PCN	6	UMSP									
•	2713022	11.4N	92.3E	SAI	(IR DA	ATA)	PCN		UMSP									
5	2714291	10.84	90.4E	SAI	IIR DA)			NOAA-5	(CONF	02)							
	2718177	11.8N	92.6E	SAI	(IN O)	PCN		UMSP									
- 1	280144/	11.5N	8H. 2E	SAI	(IR DA)	PCN		UMSP									
8	1852085	11.0N	90.0E	SAI	(12.0			/ HRSI			NOAA-5	(CONF	02)							
4	2805177	13.0N	89.18	SAT	112.0		15	/24HRS)	PCN	5	UMSP									
LU	2812452	12.14	89.2E	SAI	(IR D)	PCN		UMSP									
11	245185	12.2N	88.1E	SAT	IIR D)	PCN		UMSP									
15	2813452	13.0N	84.8E	SAI	(IN D)			NOAA-5	(CONF	02)							
13	2018007	11.34	88.0E	SAT	(IR D	ATA)	PCN	5	UMSP									
14	2901272	11.34	88.1E	SAF	(IR D)	PCN		UMSP									
15	2904092	11.8N	87.8E	SAI	(12.0			/25HRS)			NOAA-5	(CONF	01)							
16	2905002	13.5N	87.9F.	SAT	(12.0		15	/24HRS)			UMSP									
17	2914097	15.14	85.9E	SAT	(IR D))	PCN		UMSP									
18	291500Z	12.2N	85.1E	SAI	(IR D)			NOAA-5	(CONF	01)							
19	2917422	13.2N	85.4E	SAI	(IR DA)	PCN											
20	3001102	14.2N	85.0E	SA	(IR D)	PCN		UMSP									
51	3003262	14.3N	84.1E	SAI	(15.0)		15	/23HRS)			NOAA-5									
55	3006242	13.64	84.6E	SAT	(IR D)			UMSP									
23	3013522	14.6N	33.26	SAI	(IR D)	PCN		UMSP									
54	3014152	14.0N	83.0E	SAI	(IR D)			NOAA-5									
25	3017242	14.74	82.4E	SAI	(IR D)	PCN	6	UMSP									
56	3019042	14.94	85.5E	SAI	(IN D)	PCN		UMSP									
27	3100532	15.0N	85.1E	SAI	(IR D)	PCN		UMSP									
58	3105455	14.5N	81.5E	SAT				/23HHS)			NOAA-5									
54	3106042	15.0N	80.6E	SAT	(13.0)		1	/ HASI	PEN	5	UMSP									
30	3113357	15.8N	74.2E	SAI	(IR D)	PCN	6	UMSP									
31	0301432	16.5N	65.nE	SAT	(IR D)	PCN		UMSP									
32	0306552	16.3N	63.0E	SAT	(11.5		/	/ HHS)	PCN	6	UMSP									
33	0314252	16.6N	61.2E	SAI	(IR D)	PCN		UMSP									
34	04030AZ	16.74	58.2E	SAI	(IR DA)	PCN		UMSP									
35	0406372	15.74	58.4E	SAI	ITR O	ATA		,	PCN	6	UMSP									

FIX PUSITIONS FOR TROPICAL LYCLUME NO. 21-77 20002 10 NOV 10 20002 21 NOV

				•	MAX OBS	200			nav							
FIX			FIA ACC	RY FIX		MI	SEC UI		085	MIM	FLI				POSIT	
NO.	IIME	POSII		MET LVL					WIM	700MB	LVL	EYE	URIEN-	EYE	OF	MSN
			C-1 144-	HE! LAL	OTÉ ACT BAG	MAG	ACT BUG	MMG	SLP	HGI	11/10	FORM	INITION	DIA	RAUAR	NMBR
1	1242160	11.5N 90.0E	SAI (1	H DATA	,	PCN	6 UMSP									
2	0914392	11.3N 8H.3E		R DATA			NOAA-5	(CONF	021							
3	1003077	10.8N 80.3E		3.0/3.0	/ / HRS)		NOAA-5	CONF								
	1013567	11.6N 84.8E		R DATA			NOAA-5	CONF								
>	1014072	11.5N 85.2E		R DATA		PCN	6 UMSP	(00111	02,							
	1017332	11.7N 84.7E		R DATA			6 UMSP									
7	11010AZ	11.4N 82.7E		3.5/3.5	/ / HHS)		4 UMSP									
	1102244	10.5N 82.5E			/01.U/23HRS)		NOAA-5	(CONF	01)							
9	1106152	10.9N 82.3E		3.0/3.5		PCN	3 UMSP									
10	1113502	11.0N 81.1E		H DATA			2 UMSP									
11	1115072	11.0N 80.0E		R DATA			NOAA-5	(CONF	01)							
12	1118572	11.2N 80.7E	SAT (1	R DATA	i	PCN	2 UMSP									
13	1200512	11.0N 79.5E			/WU.5/24HHS)	PCN										
14	1203362	10.6N 80.0E			/DU.5/25HHS)		NOAA-5	(CONF	01)							
15	12055AZ	10.7N 78.8E			/5 /24HHS)	PCN		(00111	01,							
10	130215 2	10.5N 75.0E			/W1.5/25HH5)	PCN										
17	1314377	12.4N 74.0E		R DATA)	PCN										
18	1318222	12.0N 73.0E		R DATA			6 UMSP									
19	1401597	12.74 72.0E			/DU.5/24HHS)	PCN										
20	1404042	12.6N 71.4E		2.0/2.0			NOAA-5	(CONF	01)							
15	1-07042	12.7N 71.2E		3.0/3.0		PCN	6 UMSP	,								
22	1414417	12.7N 69.6E		R DATA)	PCN										
23	1414537	13.3N 67.8E		R DATA	j		NOAA-5	(CONF	01)							
24	1419467	13.2N 64.3E		R DATA	,	PCN	6 UMSP		,							
25	1501412	13.94 66.8E			/D1.5/24HRS)	PCN										
20	1503207	13.9N 67.8E			/D2.4/23HRS)		NOAA-5	(CONF	01)							
21	1506462	14.44 60.7E			/D1.0/24HHS)	PCN	4 UMSP									
28	1514237	14.3N 60.4E		R DATA	,		6 UMSP									
54	1516172	13.5N 65.6E	SAI (I	R DATA)		NOAA-5	(CONF	01)							
30	1519287	14.04 66.4E	SAT (1	R DATA)	PCN	6 UMSP									
31	1603052	13.7N 60.5E	SAT IT	4.0/4.0	/DU.5/25HHS)	PCN	6 UMSP									
35	1004312	13.04 66.8E			/DU.5/25HRS)		NOAA-5	(CONF	01)							
33	1006247	13.44 60.6E	SAT IT	4.0/4.0	/S /24HHS)	PCN	4 UMSP									
34	1615212	13.0N 64.5E	SAI II	R DATA)		NOAA-5	(CONF	01)							
35	1619112	13.5N 67.0E		R DATA)		6 UMSP									
36	1702482	12.24 61.2E	SAT (T	4.5/4.5	/DU.5/24HHS)	PCN										
37	1703492	13.14 66.9E	SAT (T	5.0/5.0	/DU.5/23HRS)		NOAA-5	(CONF	01)							
38	1706112	12.1N 60.AL		R DATA)	PCN										
39	1714327	12.5N 67.3E		R DATA)		NOAA-5	(CONF	01)							
40	1715302	12.0N 67.0E		R DATA)		6 UMSP									
41	1718537	12.44 60.6E		R DATA)	PCN										
42	1802317	11.7N 67.3E			/#1.U/24HRS)	PCN	6 UMSP									
43	1805027	10.44 67.4E		5.0/5.0			NOAA-5	(CONF	01)							
**	1807352	11.44 67.5E		R DATA	,		6 UMSP									
45	1815142	10.6N 69.4E		RUATA	,	PCN										
46	1815492	10.3N 69.0E		R DATA	,		NOAA-5	(CONF	01)							
41	1818362	10.34 70.2E		R DATA			6 UMSP									
48	1902142	10.34 70.2E		3.5/3.5		PCN	6 UMSP	/cour								
49	1904197	10.34 69.6E			ISHHESI (SHKE)		NOAA-5	(CONF	01)							
50	1907172 191456Z	10.0N 70.5E	SAT (I	R DATA		PCN	6 UMSP									
52	19181AZ			R DATA												
53	2001572	9.74 70.5E 10.34 71.4E		3.5/3.5	/5 /24HHS)		6 UMSP									
54	2003352					PLN	6 UMSP NOAA-5	(CONF	011							
55	200700Z	10.2N 72.9E		P DATA	/D0.5/23HKS)	PCN		(COMP	01)							
56	2014392	10.0N 74.0E		R DATA	;	PCN										
51	2018002	9.8N 73.2E		R DATA		PCN										
58	2101402	10.5N 73.6E		3.5/1.5	/S /24HHS)	PCN										
59	2106422	11.6N 73.4E		R DATA	/3 /24maj		5 UMSP									
60	2114221	13.24 73.5E		R DATA	;		6 UMSP									
61	2115542	14.9N 73.4E		R DATA	;	FCN	NOAA-5	(CONF	01)							
62	2119242	15.24 74.1E		R DATA		PCH	6 UMSP	(004)	3.,							
63	2201232	15.14 74.4E			/W1.U/24HHS)	PCN	6 UMSP									
64	2204017	15.9N 75.0E		1.0/1.5			NOAA-5	(CONF	01)							
65	1459025	16.7N 74.6E		R DATA	, , , , ,	PCN	6 UMSP	(00.41	,							
66	2214052	17.5N 74.6E		R DATA	;	PCN										
1000						10.000										

FIX	POSITIONS	FOR	TROPICAL	CYCLUNE	NO.	22-71
			70			

								MAX OBS		-	MAX O	BS	085	MIN	FLT				POSIT	
FIX				FIX	ACCRY	FIX	FLI	LVL WI		•	SFC #1		MIN	700MH		EYE	URIEN-	EYE	UF	MSN
NU.	TIME	POS	11	CAI	NAV-MET	LAF	DIH	VEL BRG	RNG	VE	LL BAG		SLP	HG!	11/10		IATION		RADAR	MMBH
1	1400147	6.14	91.6E	SAI	(11.5/	1.5	, ,	HHS)	PCN	6	UMSP									
	1402102	5.44	91 . 7E	SAT	(11.5/	11.5	, ,	HHS)			NOAA-5	(CONF	01)							
3	1405257	5.94	91 . DE	SAI	(12.5/	2.5	, ,	HHSI	PCN		UMSP									
•	1414517	6.5N	91.5E	SAI	(IN DA	ATA		,			NOAA-5	(CONF	01)							
5	1414047	6.0N	90.0E	SAI	(IH UA)	PCN		UMSP									
6	1501417	6.1N	84. 3E	SAI				25HH5)	PCA		UMSP									
7	1503232	6.7N	84.HE	SAT				25HHS)			NOAA-5	(CONF	01)							
8	1505057	6.0N	87.5E	SAI			101.5/	24HHS1			UMSP									
*	1512412	45.0	85. 9E	SAI	CIR OF			,	PCN		UMSP									
10	1514072	6.14	86.3F	SAI	(IH UA)			NOAA-5	(CONF	02)							
11	1517472	D.44	86 . nE	SAI	ITA DA			,			UMSP									
12	1601247	7.0N	85.6E	SAI				24HHS)	PCN		UMSP									
13	1605345	6.8N	85.5E	SAI				SHHE			NOAA-5	(CONF	01)							
1.	1606297	7.0N	85.4E	SAI			101.5/	25HHS)			UMSP									
15	1614062	8.5N	84.4E	SAI	(Ib ov)	PCN		UMSP									
10	1015217	R.04	84.5E	SAI	ITH DA			,			NOAA-5	(CONF	01)							
17	1617247	8.74	84.5E	SAI	(IN DA)			UMSP									
10	1701072	9.6N	84.5E	SAF				12HHAS	PCN		UMSP									
19	1/03502	9.14	83.7E	SAI			100.5/	25445)			NOAA-5	(CONF	01)							
50	1706117	10.54	83.9E	SAT	IR DA			,			UMSP									
51	1713297	11.44	83. 3E	SAI	(IH DA			1	PCN		UMSP									
55	1714377	11.44	83.7E	SAI	CIH DA			,			NOAA-5	(CONF	01)							
23	1718532	11.74	83. IE	SAI	(IR DA			,			UMSP									
5.	1800502	15.34	82.7E	SAF				24HRS)	PCN		UMSP									
25	1803352	12.5N	85.4E	SAI			101.5/	53HK2)			NOAA-5	(CONF	01)							
50	1805537	12.6N	82.5E	SAT	ITR DA			,	PCN	2	NOAA-5		411							
27	1815517	13.54	81.9F	SAI	(IR DA			,				(CONF	01)							
24	1818357	13.84	81 . 7E	SAI	(IH DA			,			UMSP									
	190032/	14.54	81.6E					, , , , ,			UMSP									
30	1902142	14.84	81.6E	SAI	(16.0/			25HKS)	PCN		UMSP	/ cour	011							
31	190416/	15.14	81.9E	SAT	117.07		,	25445)			NOAA-5	(CONF	01)							
32	1905362	15.24	81 . 3E	SAI	(IR DA			,	PCN											
34	19181AZ	16.94	80.0E	SAI	LIN DA				PCN											
35	2001572	18.24	81.5E	SAT			/ 11	24445)	PCN		UMSP									
16	2005197	19.24	81.9E	SAI	IR DA			Caus)	PCN		UMSP									
37			BU-AE		(IR DA				PCN		UMSP									
31	-01007	12.24	auene	341	(In U			,	PLN		UMSP									

LATE FIXES LISTED AS [] IN TABLE 6-1.

```
TYPHOON BABE - 00002 02 SEP TO 1800Z 10 SEP
01 060020Z 13.0N 130.0E SAT (T4.0/4.0 /S /24HRS)
02 061109Z 14.0N 129.2E SAT (IR DATA )
03 081141Z 22.0N 127.0E SAT (IR DATA )
                                                                                                            (CONF 01)
(CONF 03)
(CONF 01)
TROPICAL STORM CARLA - 0000Z 03 SEP TO 0000Z 05 SEP
01 020118Z 18.3N 118.0E SAT (T1.5/1.5 /D1.0/24HRS)
                                                                                               NOAA-5
                                                                                                            (CONF 02)
TYPHOJN DINAH - 1200Z 14 SEP TO 1800Z 23 SEP
01 122303Z (SEE COMMENT) SAT (T2.0/2.0 /S /24HRS) 02 131157Z 22.7N 134.3E SAT (IR DATA ) 03 140015Z 22.0N 131.5E SAT (T3.0/3.0 /D1.0/25HRS) 04 14110Z 21.6N 128.0E SAT (IR DATA
                                                                                                             (CONF 01) - 02 DEG EITHER SIDE OF A LINE FM 22N-135E (CONF 01) (CONF 01) (CONF 02)
TROPICAL STORM EMMA - 0600Z 15 SEP TO 0600Z 20 SEP
01 141108Z 19.0N 144.5E SAT (IR DATA )
                                                                                              NOAA-5 (CONF 02)
TROPICAL STORM FREDA - 0000Z 23 SEP TO 0000Z 25 SEP
01 241330Z 20.4N 111.0E SAT (IR DATA )
TYPHOON GILDA - 0000Z 03 OCT TO 0600Z 10 OCT
01 042227Z 19.2N 152.7E SAT
02 052315Z 23.5N 150.0E SAT
                                                 (T3.5/3.5 /D1.0/23HRS)
(T4.0/4.0 /D0.5/25HRS)
                                                                                               NOAA-5
NOAA-5
                                                                                                            (CONF 02)
(CONF 01)
                                                                                               NOAA-5
NOAA-5
NOAA-5
                                                                                                             (CONF 01)
TROPICAL STORM HARRIET - 0600Z 16 OCT TO 1800Z 20 OCT
01 160006Z 15.1N 136.1E SAT
02 170117Z 17.1N 131.9E SAT
03 180034Z 18.9N 132.5E SAT
04 181126Z 19.5N 133.3E SAT
                                                                                                             (CONF 01)
(CONF 01)
(CONF 02)
(CONF 02)
TYPHOON IVY - 0600Z 21 OCT TO 0000Z 27 OCT
01 240000Z 21.2N 151.1E SAT (T4.5/4.5 /D0.5/25HRS)
                                                                                              NOAA-5
                                                                                                           (CONF 01)
TYPHOON JEAN - 1200Z 28 OCT TO 12002 03 NOV
01 012313Z 26.7N 146.1E SAT (T3.0/3.0 /D1.0/23HRS)
                                                                                              NOAA-5
                                                                                                           (CONF 01)
TYPHOON KIM - 0600Z 06 NOV TO 0000Z 17 NOV
01 071018Z 12.3N 149.0E SAT
02 131145Z 14.3N 123.2E SAT
03 150122Z 16.9N 118.8E SAT
                                                                                                             (CONF 01)
(CONF 01)
(CONF 01)
                                              (IR DATA )
(IR DATA )
(T3.5/3.5 /W1.5/25HRS)
TYPHOON LUCY - 0600Z 28 NOV TO 1800Z 07 DEC
01 281025Z 06.9N 157.0E SAT (IR DATA
                                                                                               NOAA-5 (CONF 02)
TYPHOON MARY - 0600Z 20 DEC TO 1800Z 03 JAN
     232159Z 12.6N 170.5E SAT
260918Z 09.5N 165.0E SAT
290011Z 11.4N 149.5E SAT
291059Z 11.1N 145.5E SAT
292328Z 11.1N 143.0E SAT
311127Z 09.4N 134.6E SAT
030025Z 09.9N 122.3E SAT
                                                 (T3.5/4.5 /W1.0/25HRS)
(IR DATA
(T3.5/3.5 /S /25HRS)
(IR DATA
(VIS DATA
(IR DATA
(IR DATA
(T1.5/1.5 /W1.0/24HRS)
```

LATE FIXES LISTED AS [] IN TABLE 6-1.

TROPICAL CYCLONE NO. 21-77	- 2000Z 10 NOV TO 2000Z 21 NOV	
01 191505Z 09.4N 070.0E 02 201618Z 10.0N 072.9E 03 210445Z 11.2N 074.8E	SAT (IR DATA)	NOAA-5 (CONF 01) NOAA-5 (CONF 02) NOAA-5 (CONF 02)
TROPICAL CYCLONE NO. 22-77	- 0800Z 15 NOV TO 2000Z 19 NOV	
01 191507Z 15.9N 080.9E 02 200331Z 19.6N 082.2E		NOAA-5 (CONF 01) NOAA-5 (CONF 02)

APPENDIX

1. CONTRACTIONS

I. CONTRACT	IONS		
AC&W	Aircraft Control and Warn-	КМ	Kilometer(s)
ACCRY	ing System	KT	Knot(s)
	Accuracy	LRDR	Land Radar
ACFT	Aircraft	LVL	Level
ACR	Aircraft Radar	M/SEC	Meters per Second
AIREP	Aircraft Weather Report(s) (Commercial and Military)	MAX	Maximum
ANT	Antenna	МВ	Millibar(s)
ARWO	Airborne Weather Reconnais- sance Officer	MET	Meteorological
ATT	Attenuation	MH50	MOHATT 500 mb Prog
		MH70	MOHATT 700 mb Prog
AVG	Average Automated Weather Network	MIN	Minimum
AWN		MOHATT	Modified Hatrack
BRG	Bearing	MSN	Mission
CAT	Category	NAV	Navigational
CIRC	Circular	NEDN	Naval Environmental Data Network
CLD	Cloud Closed	NEDS	Naval Environmental Display Station
CNTR	Center	NET	Near Equatorial Trough
CONC	Concentric	NM	Nautical Mile(s)
CONF	Confidence (number)	OBS	Observation
DEG	Degree(s)	P	Penetration (by aircraft)
D/DIA	Diameter	PC	Percent (%)
DIR	Direction	PCN	Position Code Number
DMSP	Defense Meteorological	PSBL	Possible
FLEW	Satellite Program	PTLY	Partly
ELEV	Elevation	QUAD	Quadrant
ELIP	Elliptical	RECON	Reconnaissance
FLT	Flight	RNG	Range
GOES	Goestationary Operational Environmental Satellite	RPD	Rapid
HATRACK	Hurricane and Typhoon Track- ing (numerical forecast)	SAT	Satellite
HGT	Height	SFC	Surface
HPAC	Mean of XTRP and Climatology	SLP (MSLP)	Sea Level Pressure (Minimum Sea Level Pressure)
HUR	Hurricane	SMS	Synchronous Meteorological
HR(S)	Hour(s)	CDOL	Satellite
HVY	Heavy	SPOL	Spiral Overlay
IR	Infrared	SRDR	Ship Radar

SRP	Selective Reconnaissance Prog
STNRY	Stationary
STY	Super Typhoon
TC	Tropical Cyclone
TCARC	Tropical Cyclone Aircraft Reconnaissance Coordinator
TCM	Tropical Cyclone Model
TD	Tropical Depression
TI	Temperature Inside Eye
то	Temperature Outside Eye
TS	Tropical Storm
TY	Typhoon
TUTT	Tropical Upper Tropospheric Trough
VEL	Velocity
VIS	Visual
VSBL	Visible
WESTPAC	Western Pacific
WMO	World Meteorological Organization
WRS	Weather Reconnaissance Squadron
XTRP	Extrapolation
Z	Zulu Time (Greenwich mean time)

2. DEFINITIONS

BEST TRACK-A subjectively smoothed path, versus a precise and very erratic fix-to-fix path, used to represent tropical cyclone movement.

CYCLONE-A closed atmospheric circulation rotating about an area of low pressure (counterclockwise in the northern hemisphere).

EPHEMERIS-Position of a body (satellite) in space as a function of time. When no geographical reference is available for griding satellite imagery, then only ephemeris gridding is possible which is solely based on the theoretical satellite position and is susceptible to errors from satellite pitch, orbit eccentricity and the non-spherical earth.

EXTRATROPICAL-A term used in warnings and tropical summaries to indicate that a cyclone has lost its "tropical characteristics". The term implies both poleward displacement from the tropics and the conversion of the cyclone's primary energy sources from release of latent heat of condensation to baroclinic processes. The term carries no implications as to strength or size.

EYE/CENTER-Refers to the roughly circular central area of a well developed tropical

cyclone usually characterized by comparatively light winds and fair weather. If more than half surrounded by wall cloud, the word "eye" is used, otherwise the area is referred to as a center.

MAXIMUM SUSTAINED WIND-Maximum surface wind speed averaged over a 1-minute period of time. Peak gusts over water average 20 to 25 percent higher than sustained wind.

RECURVATURE-The turning of a tropical storm from an initial path toward the west or northwest to the north or northeast.

SIGNIFICANT TROPICAL CYCLONE-A tropical cyclone becomes "significant" with the issuance of the first numbered warning by the responsible warning agency.

SUPER TYPHOON/HURRICANE-A typhoon/hurricane in which the maximum sustained surface wind (1-minute mean) is 130 kt or greater.

TROPICAL CYCLONE-A nonfrontal low pressure system of synoptic scale developing over tropical or subtropical waters and having a definite organized circulation.

TROPICAL CYCLONE AIRCRAFT RECONNAISSANCE COORDINATOR-A CINCPACAF representative designated to levy tropical cyclone aircraft weather reconnaissance requirements on reconnaissance units within a designated area of the PACOM and to function as coordinator between CINCPACAF, aircraft weather reconnaissance units, and the appropriate typhoon/hurricane warning center.

TROPICAL DEPRESSION-A tropical cyclone in which the maximum sustained surface wind (1-minute mean) is 33 kt or less.

TROPICAL DISTURBANCE-A discrete system of apparently organized convection-generally 100 to 300 miles in diameter-originating in the tropics or subtropics, having a non-frontal migratory character, and having maintained its identity for 24 hours or more. It may or may not be associated with a detectable perturbation of the wind field. As such, it is the basic generic designation which, in successive stages of intensification, may be classified as a tropical depression, tropical storm or typhoon.

TROPICAL STORM-A tropical cyclone with maximum sustained surface winds (1-minute mean) in the range of 34 to 63 kt, inclusive.

TROPICAL UPPER TROPOSPHERIC TROUGH (TUTT)
"A dominant climatological system, and a
daily synoptic feature, of the summer season
over the tropical North Atlantic, North
Pacific and South Pacific Oceans," from
Sadler, James C., Feb. 1976: Tropical Cyclone
Initiation by the Tropical Upper Tropospheric
Trough. (NAVENVPREDRSCHFAC Technical Paper
No. 2-76)

TYPHOON/HURRICANE-A tropical cyclone in which the maximum sustained surface wind (1-minute mean) is 64 kt or greater.

WALL CLOUD-An organized band of cumuliform clouds immediately surrounding the central area of tropical cyclone. Wall clouds may entirely enclose the eye or only partially surround the center.

DISTRIBUTION

AFGWC (2)
AFGL/LYU (2)
AMER EMBASSY, BANGKOK (7) ANDREWS UNIV (1)
ANDREWS UNIV (1)
ARIZONA STATE UNIV (1)
ARRS/CC (4) AWS/DNT/DOR (5)
BUR OF MET, BRISBANE (2)
BUR OF MET, MELBOURNE (1)
BUR OF MET, MELBOURNE (1) BUR OF MET, PERTH (1)
CATH UNIV OF AMER (2)
CENWEABUR TAIWAN (3)
CHIEF, MAAG TAIWAN (1)
CHINESE AF WEACEN TAIWAN (3)
CINCPAC (2)
CINCPACAF/DOW (1)
CINCPACELT (5)
CIVIL DEFENSE (GUAM) (4) CNO (2)
COLORADO STATE UNIV (2)
COLORADO STATE UNIV (LIBR) (1)
COMATKCARSTKFORSEVENTHFLT (2)
COMFAIRECONRON ONE (VQ-1) (3)
COMLOGSUPFORSEVENTHELT (1)
COMNAVAIRSYSCOM (2)
COMNAVFACENGCOMPACDIV (1)
COMNAVFORJAPAN (1)
COMNAVMARIANAS (1) COMNAVSURFPAC (2)
COMPATRECONFORSEVENTHFLT (1)
COMPATWING (1)
COMPHIBGRU (1)
COMSC (1)
COMSEVENTHFLT (2)
COMSUBGRU SEVEN (2) COMSUBPAC (1)
COMSUBPAC (1)
COMTHIRDFLT (1)
COMUSNAVPIL (3)
COMUSTDC (1)
DDC (12) DEPT AIR FORCE (1)
DET 2 1WW (2)
DET 4. HO AWS (MAC) (5)
DET 5, 1WW (3)
DET 4, HQ AWS (MAC) (5) DET 5, 1WW (3) DET 8, 30WS (2) DET 10, 30WS (1)
DET 10, 30WS (1)
DEL 15. 30WS (1)
DET 17, 30WS (1) DET 18, 30WS (1)
DET 18, 30WS (1) DIRNAVOCEANMET (10)
DISTAD MARSHALLS (5)
DMA (1)
ENVSCISUPGRU (5)
ESCAP (2)
FAA (GUAM) (5)
FLENUMWEACEN (2)
FLEWEACEN NORFOLK (1)
FLEWEACEN PEARL HARBOR (2)
FLEWEACEN ROTA (1) FLEWEAFAC SUITLAND (2)
FLORIDA STATE UNIV (2)
FLORIDA STATE UNIV (2) GEN MET DEPT THAILAND (2)
GOVERNOR OF GUAM (2)
GUAM PUBLIC LIBRARY (1)
HEDSUPPACT (2)
ICY AWS/DOR (5)
INDIA MET DEPT (2)
JAPAN MET AGENCY (3)
LIBR OF CONGRESS (1) LIBR OF CONGRESS (EXCHANGE & GIFT DIV) (4)
LOS ANGELES PUBLIC LIBR (1)
MAC/HO (2)
MCAS FUTEMA (1)
MCAS IWAKUNI (2) MCAS KANEOHE BAY (1)
MCAS KANEOHE BAY (1)
MET DEPT BANGKOK (2)

```
MET RESEARCH INSTITUTE LIBR (3)
   NASA GREENBELT (3)
NASA WALLOPS ISLAND (1)
NAT CLIM CNTR (1)
NATWEASERV FOROFF HONOLULU (1)
NATWEASERV PACREG (2)
   NAVAL ACADEMY (1)
NAVWEASERVFAC ALAMEDA (1)
NAVWEASERFAC JACKSONVILLE (1)
NAVWEASERVFAC YOKOSUKA (1)
NAVENVPREDRESFAC (5)
   NAVENVERDRESFAC (5)
NESS/SFSS (2)
NHC, NOAA (1)
NOAA/EDS CORAL GABLES (4)
NOAA/EDS WASHINGTON, DC (2)
NOAA/ERL BOULDER (2)
   NOAA/ERL BOULDER (2)
NOAA/ERL MIAMI (1)
NOAA/HYDROLOGY BR (1)
NOAA/LIBRARY (1)
NOAA/NESS (2)
NOAA/PMEL (1)
NPGS DEPT OF MET (3)
NPGS LIBR (1)
NWESA (1)
NWSD ASHEVILLE (2)
NWSED AGANA (2)
  NWSD ASHEVILLE (2)
NWSED AGANA (2)
NWSED ATSUGI (1)
NWSED BARBERS POINT (1)
NWSED CUBI POINT (1)
NWSED KADENA (4)
NWSED MISAWA (1)
OGEANOGRAPHER OF THE NA
     OCEANOGRAPHER OF THE NAVY (3)
   ODDR & E (2)
OKINAWA MET OBS (1)
OLG/HQ AWS (1)
PAGASA (6)
OLG/HQ AWS (1)
PAGASA (6)
ROYAL OBSERVATORY HONG KONG (3)
TATWAN UNIV (3)
TEXAS A&M UNIV (1)
TTPI (8)
TYPHOON COMM SECR (1)
UNIV OF CHICAGO (1)
UNIV OF GUAM (2)
UNIV OF HAWAII DEPT OF MET (3)
UNIV OF HAWAII LIBR (1)
UNIV OF MEXICO (1)
UNIV OF WASHINGTON (1)
USAFSAAS/THWF (2)
USDOC/NOAA (1)
USS BLUE RIDGE (LCC 19) (1)
USS CONSTELLATION (CV 64) (2)
USS CONSTELLATION (CV 64) (2)
USS CORAL SEA (CV 43) (1)
USS ENTERPRISE (CVN 65) (1)
USS KITTY HAWK (CV 63) (1)
USS KITTY HAWK (CV 69) (2)
USS MIDWAY (CV 41) (2)
USS NEW ORLEANS (LPH 11) (2)
USS CANAWA (LPH 3) (1)
USS CANAWA (LPH 3) (1)
USS CANAWA (LPH 13) (1)
USS RANGER (CV 61) (2)
USS TARAWA (LHA 1) (1)
USS TRIPOLI (LPH 10) (1)
WEA SERV MET OBS (2)
1WW/DON (6)
3AD/DOX (1)
3WW/DNC (1)
   3WW/DNC (1)
5WW/DNC (1)
30WSQ (6)
41RWRW (2)
43SW/OI (2)
     53WRS (1)
54WRS (5)
3350TTW (1)
     3360TCHTG (1)
```

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Г	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1.	REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	Annual Typhoon Report 1977	
1	TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
	ANNUAL TYPHOON REPORT 1977	Annual (JAN-DEC 1977)
1		6. PERFORMING ORG. REPORT NUMBER
1		
7.	(10) Dean R. Morford 9	Rept. for Jan-Dec 7
9.	FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER (FLEWEACEN/JTWC), GUAM FPO SAN FRANCISCO 96630	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	CONTROLLING OFFICE NAME AND ADDRESS FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER (FLEWEACEN/JTWC), GUAM FPO SAN FRANCISCO 96630	1977 13. NUMBER OF PASES 123
	4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16	DISTRIBUTION STATEMENT (of this Report)	
	Approved for public release; distribution	
17	7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
18	. SUPPLEMENTARY NOTES	
19	KEY WORDS (Continue on reverse side if necessary and identify by block number) Tropical cyclones Tropica	al storms
		al depressions
	Tropical cyclone research Typhoon	ns
		ological satellite
20	Tropical cyclone fix data Aircraft reconnaissance 20. Abstract (Continue on reverse side If necessary and Identify by block number)	
	Annual publication summarizing the tropical cyclone season in the western North Pacific, Bay of Bengal, and the central North Pacific. A brief narrative is given on each typhoon in the western North Pacific including the best track. Pertinent recon-	
	naissance data used to construct the best tracks are provided. Forecast verification data and statistics for the JTWC are summarized. Research efforts at the JTWC is discussed briefly.	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

408282 Salar Salar

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Areas of Responsibility - Central and Eastern Pacific Hurricane Centers

