

Elektromagnetische Verträglichkeit

1. Einführung

1.1. Frequenzanalyse

Zeitbereich Frequenzbereich Harmonische Schwingung Schmalbandig(Impuls) Breitbandig schmalbandig(Impuls) Eckig, kantig Hohe Frequenzen Rauschen Rauschen

1.2. Frequenztabelle

 $50\,\mathrm{Hz}$ Stromnetz $1\,\mathrm{PHz}$ UV-Strahlung 2.45 GHz Mikrowelle, WLAN 1 EHz Röntgenstrahlung 600 THz Sicht, Licht 30 EHz Radioaktiv

2. Normen und Standards

Arten: Gesetzliche. Militärische und Medizinische Standards. Geregelt werden Grenzwerte sowie Mess- und Prüfmethoden

Ratgeber: ANSI/IEEE Dauer bis gültige Norm: ≈ 5 Jahre Zertifikate: TÜV GS: Geprüfte Sicherheit; CE: Kein Gütesiegel Frequenznutzungsplan von 9 kHz bis 275 GHz: Bundesnetzagentur ISO: International Organization for Standardization

IEC: International Electrical Commission

ITU: International Telecommunication Union

DKE: Deutsche Kommission Elektrotechnik

2.1. Spezifische Absorptionsrate SAR

$$\mathrm{SAR} = rac{j^2}{
ho\sigma} = \mathrm{[SAR]} = rac{\mathrm{W}}{\mathrm{kg}}$$
 Europa: 2 USA: 1.6 China: < 1

3. Quellen der EMB

3.1. Störguellen

Systeme: Mobilfunk, Radar, GPS, RFID, Hochspannungsleitungen Schaltungen: Autozündung, Schalter, Motoren, Lautsprecher Natürlich: Blitze, Hintergrundstrahlung, Sonnenwinde Nichtlineare Bauteile erzeugen Oberschwingungen.

3.2. Blitze

Ein Blitz ist ein Plasma, welches aus Ionen, Elektronen und Neutralteilchen besteht. 90% der Entladungen finden zwischen den Wolken statt. Stromfluss 200 kA El. Feld: $1 - 10 \frac{kV}{r}$

Donner: Luft erwärmt sich so schnell, dass sie sich mit Überschall aus-

4. Kopplung

4.1. Objekt ≪ Wellenlägen

4.1.1 Galvanische Kopplung

Transferimpedanz Z_T

4.1.2 Kapazitive Kopplung

Verringerung des Leiterabstandes im System Vergrößerung des Abstandes zwischen den Systemen Einseitige Erdung bei niedrigen Frequenzen, beidseitig bei Hohen

4.1.3 Induktive Kopplung

Verringerung des Leiterabstandes im System Vergrößerung des Abstandes zwischen den Systemen Schirmung, Verdrillen, Senkrechte Anordnung

4.2. Objekt ≈ Wellenlänge

4.2.1 Elektromagnetische Kopplung

4.2.2 Leitungskopplung

Reflexionskoeffizient
$$\Gamma = \frac{\left\| \underline{E}_{\text{Ref}}^- \right\|}{\left\| \underline{E}_{\text{L}}^+ \right\|} = \frac{Z_{\text{new}} - Z_0}{Z_{\text{new}} + Z_0}$$

Hin- und Rücklaufende Welle: $U(z) = U^+e^{-\Gamma z} + U^-e^{\Gamma z} =$ $\frac{1}{2}(U_0 + ZI_0)e^{-\Gamma z} + \frac{1}{2}(U_0 - ZI_0)e^{\Gamma z}$ Öffene Leitung: Reflexionsfrei, konstanter Widerstand Abgeschlossene Leitung: Reflexionen, veränderlicher Widerstand Stehwellenverhältnis (VSWR): $s = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}}$

4.2.3 Strahlungskopplung

Fernfeld: $\underline{kr} = \frac{2\pi r}{\lambda} \gg 1$ Nahfeld: $\underline{kr} = \frac{2\pi r}{\lambda} \ll 1$

Elektrischer Dipol: Stab Magnetischer Dipol: Ring

	$\frac{1}{r}$	$\frac{1}{r^2}$	$\frac{1}{r^3}$		$\frac{1}{r}$	$\frac{1}{r^2}$	$\frac{1}{r^3}$	
E_r	_	✓	✓	E_r	_	_	_	
E_{φ}	\checkmark	\checkmark	✓	E_{φ}	\checkmark	\checkmark	_	
H_r	_	_	_	H_r	_	\checkmark	✓	
H_{θ}	✓	✓	_	H_{θ}	✓	✓	✓	

Greensche Funktion $G(\mathbf{r}, \mathbf{r}')$: Impulsantwort des freien Raums für eine Punktladung

4.3. Leitungsbeläge

Elektrostatik (NF): R', G', C', L'Elektrodynamik (HF): γ, Z Koaxial Einzel

4.4. Leitungsgleichung LGS mit $U, I \in \mathbb{C}^n$

System DGLs:
$$\underline{\dot{U}}(x) = -i\omega\underline{\dot{L}}\underline{I}(x)$$
 $\underline{\dot{I}}(x) = -i\omega\underline{\dot{C}}\underline{U}(x)$ $\underline{\dot{I}}(x) = -i\omega\underline{\dot{C}}\underline{U}(x)$ $\underline{\begin{pmatrix} \underline{U}(l) \\ \underline{I}(l) \end{pmatrix}} = \begin{bmatrix} \cos(\beta l)\underline{E}_n & -i\omega\frac{\sin(\beta l)}{\beta}\underline{L} \\ -i\omega\frac{\sin(\beta l)}{\beta}\underline{C} & \cos(\beta l)\underline{E}_n \end{bmatrix} \underline{\begin{pmatrix} \underline{U}(0) \\ \underline{I}(0) \end{pmatrix}}$

Bei Einspeisung von Strom/Spannung in Leitung 1 kann eingekoppelter Strom/Spannung in Leitung n analytisch berechnet werden.

5. Messungen

EMI: Emissionsmessung EMS: Störfestigkeitsmessung

5.1. Messkammer

Reflexionsarme Wände (Absorber), Gitterboden unter dem die Kabel verlaufen, Messeguipment außerhalb der Kammer, Keine Fenster, nur Kamera Reflexionsarme

Antenne: Breitbandige drehbare Antenne

Kabel: Kabel müssen in kleinen Schleifen verkürzt werden und nicht zu Rollen gewickelt werden

Absorber: Graphitgetränkte Pyramidenabsorber: Teil der Welle dringt ein der andere Teil wird reflektiert.

Messgeräte: Messempfänger, Spektrumanalysator, Oszilloskop DUT: Device under Test (Entweder Störung oder Abstrahlung)

LISN: Line impedance stabilization network, Netznachbildung: Durchlassen von NF Speisung zum DUT und HF Störung vom DUT

5.2. Messantennen

Тур	Frequenz in 1
Stab / Schleifen	0.01 - 0.30
Bikonisch	20 - 220
Dipolantenne	30 - 10.000
Log-periodisch / Helix	200 - 20.000

Hornantenne

5.3. GTEM Zelle

Störfestigkeitsmessung mit Transversalwelle mit $Z=Z_0$ TEM-Zelle: Parallelplattenleitung, dazwischen kleines Objekt

> 1000

5.4. Freifeldmessung

Wenn zu messende Objekte zu groß für die Messkammer ist.

Freie Ellipse: Reflektierte Wellen müssen mindestens doppelten Weg zurücklegen. Messequipment muss geschirmt werden.

Probleme: Wetter, Bodenunebenheit, Rohre im Boden, Mobilfunk

6. Modellierung

Vorgehen:

Design Rule Checkers (z.B. EMBoardCheck von SimLab) Analytische Modellierung (einfache Strukturen) Leitungsmodellierung (CableMod von SimLab) Schaltungs-, Systemmodellierung (allgemein, z.B. Pspice) Physikalische Berechnung: FDTD, FEM, MOM, BEM, TLM

Hybride Methoden:

Berechnung der Leitungsparameter numerisch (FEM)

Ausbreitung auf Mehrleitersystem (Leitungsgleichung)

Berechnung der Abstrahlung mit Kabel als Quelle (Integralgleichungsme-

Wichtig: Be critical to model and tool!

7. Maßnahmen gegen EMB (Beeinflussung)

7.1. Schirmung

Schirmungsfaktor $Q(\omega) = \frac{\underline{H}_{innen}}{\overline{H}_{obs}}$

- E-Dipol (Nahfeld, hochohmig): Dämpfung nimmt mit zunehmender Frequenz ab, niedrige Frequenz ightarrow Reflexion, hohe Frequenz ightarrow Absorption, Abschirmung leicht realisierbar (dünnes Metall → Skintiefe)
- H-Dipol (Nahfeld, niederohmig) Dämpfung nimmt mit steigender Frequenz zu, hauptsächlich Absorption, Abschirmung niederohmiger Magnetfelder bei niedrigen Frequenzen schwierig
- EM Welle (Fernfeld)Dämpfung in weitem Frequenzbereich frequenzunabhängig, unabhängig vom Abstand, Schirmung leicht

7.2. Blitzschutz

Fanganordnungen sollen den Blitz einfangen Blitzableiter sollen den Strom abtransportieren Bestimmung der Orte mit Blitzkugelmethode Schutzerde: Evtl. Multiground (Achtung Erdschleifen!)

Schaltung sollte mind. 1 cm von nicht geerdeten Teilen und mind. 1 mm von geerdeten Gehäuseteilen entfernt sein!

7.3. PCB Design

8. EMVU – Umweltverträglichkeit

Effekte von el. mag. Feldern auf biologisches Material.

Thermische Effekte: Erwärmung $P_A = \pi f \varepsilon_0 \iiint_V \varepsilon_r'' \|\underline{\boldsymbol{E}}\|^2 dv$ Mikrowellenhören

Nicht-thermische Effekte

auf Zellmembranen (Potential, Ströme, ${\sf Ca}^{2+}$ Fluss)

Nervensystem (EEG, Schlaf, Melatonin)

Immunsystem, Krebsgefahr

Physikalische Primäreffekte: Ladungsinfluenz, Feldeinkopplung, Ladungsbewegung, Polarisation von Molekülen

Biologische Sekundäreffekte: Durch Primäreffekte ausgelöste biologische Effekte (Herzkammerflimmern, Verbrennungen)

Ab 5 GHz absorbiert nur obere Haut und Fettschicht Specific Absorbtion Rate: $SAR = c \frac{dT}{dt}$

Wissenschaftlich Effekte* $SAR = 4 \frac{W}{kg}$ $SAR = 0.4 \frac{W}{k_B}$ Arbeiter $SAR = 0.4 \frac{V}{kg}$ $SAR = 0.08 \frac{W}{kg}$ Bevökerung

*: Erhöhung der Körpertemperatur um 1 °C nach 30 Minuten.

9. Übungen

Freileiter Bündelanordnung: Schwächeres Feld Schmalbanige Störungen: Mikrowelle, Computer, Radio Breitbandige Störung: Blitz, Relais, Schalter

Relai Schalten: Hohe Induktion in der Spule (Maß: Diode) Antennenstörung: Abstand, Abschirmung, Drehen der Antenne EMI besser als Spektrumanalysator: Dynamik, Präzision, SNR Aber SA schneller als EMI

EMI-Zeiten: Sweepzeit, Haltezeit, Gesamtzeit = SZ + HZ

Antennenfaktor: $\frac{\|\underline{E}\|}{U}$

EMS heißt elektromagnetische Störfestigkeit, Funktioniert Gerät

Genzwerte: Physikalisch 1, Arbeiter $\frac{1}{10}$, Allgemein $\frac{1}{50}$ Keine Ecken, Schleifen, lange dünne Drähte in PCBs

10. Klausurfragen:

Wer gibt Normen vor?

Wo werden solche NOrmen produziert: Regierungen, Fabrikanten wegen Qualität, Militärische Standards (Robustheit)

Was wird Standardisiert? Prüfverfahren und Grenzwerte

Störquellen: Breibandige, Schmalbandig, Natürlich (Blitze, Entladungen) Stromerhöhung, Menschliche, Inustrielle Quellen (Schalter über Leitungen, Ladungstrennung durch Reibung)

Kopplungen: Leitungen oder Freiraum

Welle größer als Objekt: Statisch, getrennte Betrachtung von el. und

Welle in der selben Größenordung: Gekoppelte Welleneffekte

Schirmung: Box (Achten auf Löcher in Wellenlängengrößenordnung), Materialen mit hohem μ_r Parallele Leitungen verhindern. Drähte verdrillen, Absorber dazwischen

Messkammer: Homogene Feldverteilung, Leistung aufdrehen Messequipment: ANtennen, Filter, Reflektoren

Modellierung und Simmulation

EMVU: thermische (primär und sekundäreffekte) und nicht thermische Immer 2 Gruppen testen.