Classic Edge Detection:

1st and 2nd Order Derivative Edge Detectors

C.-C. Jay Kuo University of Southern California

Two Main Branches of Image Processing

- Image/Video Compression
 - Still image compression 1980
 - JPEG, JPEG 2000
 - Video compression 1990-2020
 - MPEG-1, MPEG-2, MPEG-4, H.264/AVC, H.265/HEVC, H.266/VVC
- Image Understanding
 - Image analysis (low-level vision tasks)
 - Edge detection, segmentation, etc.
 - Computer vision (high-level vision tasks)
 - Object recognition, activity recognition, etc.
 - Slow progress from 1980-2010
 - Rapid progress in the last decade (leveraging a large amount of labeled data)

Classic Edge Detection Methods

- 1st Order Derivative Method
- 2nd Order Derivative Method
- Canny Edge Detection (1986)

1st Order Derivative Edge Detector (1)

1st Order Derivative Edge Detector (2)

1st Order Derivative Edge Detector (3)

1st Order Derivative Edge Detector (4)

$$\frac{\partial F}{\partial x} = \frac{\sin \theta}{\cos \theta} = \tan \theta$$

$$\frac{\partial F}{\partial x}$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \tan \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \tan \theta$$

$$\frac{\partial F}{\partial x} = \cos \theta$$

$$\frac{\partial F}{\partial$$

1st Order Derivative Edge Detector (5)

1st Order Derivative Edge Detector (6)

1st Order Derivative Edge Detector (7)

1st Order Derivative Edge Detector (8)

	Operator	Row gradient	Column gradient
	Pixel difference	$ \left[\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right] $	$ \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
Pratt's Book Page 478	Separated pixel difference	$ \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right] $	$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
	Roberts	$ \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
	Prewitt	$ \frac{1}{3} \left[\begin{array}{ccc} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{array} \right] $	$ \frac{1}{3} \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} $
	Sobel	$\frac{1}{4} \left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{array} \right]$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Frei-Chen	$\frac{1}{2+\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 0 & -1 \end{bmatrix}$	$\frac{1}{2+\sqrt{2}} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ 0 & 0 & 0 \\ 1 & \sqrt{2} & 1 \end{bmatrix}$

DSP:

- Impulse response
- Convolution

DIP:

- Image filter
- Correlation (or elementwise multiplication)

FIGURE 15.2-6. Impulse response arrays for 3×3 orthogonal differential gradient edge operators.

1st Order Derivative Edge Detector (9)

1st Order Derivative Edge Detector (10)

1st Order Derivative Edge Detector (11)

1st Order Derivative Edge Detector (12)

- Differencing filters often amplify noise
- To suppress noise, we have

Compound Filter: DoG (Derivative of Gaussian)

1st Order Derivative Edge Detector (13)

Example of Compound Filters

$$\mathbf{H}_{R} = \frac{1}{34} \begin{bmatrix} 1 & 1 & 1 & 0 & -1 & -1 & -1 \\ 1 & 2 & 2 & 0 & -2 & -2 & -1 \\ 1 & 2 & 3 & 0 & -3 & -2 & -1 \\ 1 & 2 & 3 & 0 & -3 & -2 & -1 \\ 1 & 2 & 3 & 0 & -3 & -2 & -1 \\ 1 & 2 & 2 & 0 & -2 & -2 & -1 \\ 1 & 1 & 1 & 0 & -1 & -1 & -1 \end{bmatrix}$$

1st Order Derivative Edge Detector (14)

Directional Edge Detector

Pratt's Book Page 485

FIGURE 15.2-9. Template gradient 3×3 impulse response arrays.

1st Order Derivative Edge Detector (15)

Directional Edge Detector

> Pratt's Book Page 487

FIGURE 15.2-11. Nevatia-Babu template gradient impulse response arrays.

2nd Order Derivative Edge Detector (1)

2nd Order Derivative Edge Detector (2)

2nd Order Derivative Edge Detector (3)

2nd Order Derivative Edge Detector (4)

2nd Order Derivative Edge Detector (6)

2nd Order Derivative Edge Detector (7)

Denoising followed by edge detection

2nd Order Derivative Edge Detector (8)

- Laplacian of Gaussian (LoG) filters
 - also known as (a.k.a.) the Mexican hat filter

0	-1	0
-1	4	-1
0	-1	0

