Protezione e Sicurezza nei Sistemi Operativi: Public-kov Cryptography and

Public-key Cryptography and the RSA Algorithm

Ozalp Babaoglu

ALMA MATER STUDIORUM – UNIVERSITA' DI BOLOGNA

RSA Algorithm

- One of the first practical responses to the challenge posed by Diffie-Hellman was developed by *Ron Rivest*, *Adi Shamir*, and *Len Adleman* of MIT in 1977
- Resulting algorithm is known as RSA

Based on properties of prime numbers and results from

number theory

Public-Key Cryptography

- "Is it possible to exchange information confidentially without having to first agree on a key?"
- Breakthrough idea due to Diffie, Hellman and Merkle in their 1976 works
- Respond "yes" to the interrogative as long if the "one-way trap-door" concept can be implemented mathematically

© Babaoglu Sicurezza 2

Notation

Let

$$\mathbb{Z} = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$$
 denote the set of integers $\mathbb{Z}_n = \{0, 1, 2, 3, \dots, n-1\}$ denote the set of integers modulo n $GCD(m,n)$ denote the *greatest common divisor* of m and n \mathbb{Z}_n^* denote the integers *relatively prime* with n $\varphi(n) = |\mathbb{Z}_n^*|$ denote *Euler's totient* function

Babaoglu Sicurezza 4

© Babaogl

Some Facts

If GCD(n,m)=1 (n and m are relatively prime or coprime) then $\varphi(nm)=\varphi(n)\varphi(m)$

If p and q are two primes, then

$$\varphi(p) = (p-1)$$

$$\varphi(pq) = (p-1)(q-1)$$

© Babaoglu Sicurezza

RSA

- To define RSA, we need to specify the following operations:
 - How to generate the keys
 - How to encrypt: C(m)
 - How to decrypt: D(c)

Example

- Let *n*=15
- What is $\varphi(15)=?$
- Integers *relatively prime* with 15: {1, 2, 4, 7, 8, 11, 13, 14}
- Therefore, $\varphi(15)=8$
- Observe that $15=3\times5$
- Therefore, $\varphi(n) = \varphi(3 \times 5)$

=
$$\varphi(3) \times \varphi(5)$$

= $(3-1) \times (5-1)$
= 2×4

=8

© Babaoglu Sicurezza

RSA: Generation of the keys

- Choose two very large primes p, q
- Compute $n = p \times q$
- Compute $\varphi(n) = (p-1)(q-1)$
- Choose $1 < e < \varphi(n)$ such that $GCD(e, \varphi(n)) = 1$ (e and $\varphi(n)$ are coprime)
- Compute d as the *multiplicative inverse* of e:

$$d \times e \mod \varphi(n) = 1$$

- Public key = (e,n)
- Private key = (d,n)

© Babaoglu Sicurezza

RSA: Encryption

$$C(m) = m^e \mod n$$

© Babaoglu Sicurezza

RSA: Example 1

- Assume we choose p=5, q=11 (not realistic!!)
- Therefore $n = 5 \times 11 = 55$, $\varphi(n) = (5 1)(11 1) = 40$
- Choose e = 7 (verify that $GCD(e, \varphi(n)) = GCD(7, 40) = 1$)
- Compute d as the multiplicative inverse of e:

$$d \times e \mod \varphi(n) = 1$$

 $d \times 7 \mod 40 = 1$

RSA: Decryption

$$D(c) = c^d \bmod n$$

© Babaoglu Sicurezza

RSA: Example 1

- d can be computed using the extended Euclidean algorithm
- Euclidean algorithm computes $GCD(e, \varphi(n))$
- Extended Euclidean algorithm expresses $GCD(e, \varphi(n))$ as a linear combination of e and $\varphi(n)$

© Babaoglu Sicurezza 11

© Babaoglu Sicurezza

RSA: Example 1

Extended Euclidean algorithm for GCD(7,40)

$$40 = (5)^{7} + (5)$$

$$7 = (1)5 + (2)$$

$$5 = (2)^2 + (1)$$
 Stop when we reach 1 (*GCD*(7,40))

Back substitution: Start with last equation in terms of 1

$$1 = 5 - 2(2)$$
 Substitute for 2

$$1 = 5 - 2(7 - (1)5)$$
 Distribute the 2 and collect terms

$$1 = 3(5) - 2(7)$$
 Substitute for 5

$$1 = 3(40 - 5(7)) - 2(7)$$

$$1 = 3(40) - \frac{17}{7}$$
 Stop when we reach $e(7)$

- The answer is the coefficient 17
- Because it is negative, we have to subtract it from $\varphi(n)$ d = 40 17 = 23

© Babaoglu Sicurezza

RSA: Example 2

- Assume we choose p=53, q=61 (still not realistic!!)
- Therefore $n=53\times61=3233$, $\varphi(n)=(53-1)(61-1)=3120$
- Choose e=17 (verify that $GCD(e, \varphi(n))=1$)
- Compute d=2753 and verify that $e \times d \mod \varphi(n) = 1$ $e \times d = 2753 \times 17 = 46801$ $e \times d \mod \varphi(n) = 46801 \mod 3120 = 1$ since $15 \times 3120 + 1 = 46801$
- Therefore, the private-public key pair becomes: K[priv] = (2753,3233) K[pub] = (17,3233)

RSA: Example 1

Verify:

with
$$d=23 e=7$$
, $23\times7 \mod 40 = 1 (23\times7=161=40\times4+1)$

■ Therefore, the private-public key pair becomes:

$$K[priv] = (23,40)$$
 $K[pub] = (7,40)$

© Babaoglu Sicurezza

RSA: Example 2

- Let the plaintext message be "hi"
- Encode message as a numeric value using the position of the letters in the alphabet: m = 0809
- Encryption: $809^{17} \mod 3233 = 1171 = c$
- Decryption: $1171^{2753} \mod 3233 = 809 = m$
- Decode numeric value as text: 08 = h 09 = i

Babaoglu Sicurezza 1

Remaining Questions

- How to encode the plaintext message as an integer m such that 0 < m < n? (Need to divide long messages into blocks)
- How can we guarantee that encryption and decryption are indeed inverses; in other words, D(C(m)) = m?
- How can we argue that RSA is secure?
- What about the efficiency of RSA?
- How to carry out the various steps in the algorithm?

© Babaoglu Sicurezza 1

Correctness of RSA

Need to show

$$\forall m: D(C(m)) = m$$

Correctness, Security and Efficiency of RSA

ALMA MATER STUDIORUM – UNIVERSITA' DI BOLOGNA

Correctness of RSA

- Classical results from number theory
- Euler's Theorem:

if GCD(m,n) = 1 then $m^{\varphi(n)} \mod n = 1$

Babaoglu Sicurezza 1

Sicurezza

Correctness of RSA

- Properties of modular arithmetic:
 - if $x \mod n = 1$, then for any integer y, we have $x^y \mod n = 1$
 - if $x \mod n = 0$, then for any integer y, we have $x^y \mod n = 0$
 - $(m^x \bmod n)^y = (m^x)^y \bmod n$
- Let m be an integer encoding of the original message such that 0 < m < n
- By definition, we have

$$D(C(m)) = D(m^e \bmod n)$$

$$= (m^e \bmod n)^d \bmod n$$

$$= (m^e)^d \bmod n$$

$$= m^{ed} \bmod n$$

© Babaoglu Sicurezza 2

Security of RSA

- How can the confidentiality (secrecy) property of RSA be compromised?
- Brute force attack
 - Try all possible private keys
- Defense (as for any other crypto-system)
 - Use large enough key space

Correctness of RSA

- By construction, we know that $ed \mod \varphi(n) = 1$
- Therefore, there must exist a positive integer k such that $ed = k\varphi(n) + 1$
- Substituting, we obtain

$$D(C(m)) = m^{ed} \bmod n = m^{k\varphi(n)+1} \bmod n$$

$$= m^{k\varphi(n)} \bmod n$$

$$= m \cdot 1 = m$$

• follows by Euler's Theorem when m is relatively prime to n (but can be extended to hold for all m) and properties of modular arithmetic

© Babaoglu Sicurezza 2

Security of RSA

- Mathematical attacks:
 - Factorize n into its prime factors p and q, compute $\varphi(n)$ and then compute $d=e^{-1}(\operatorname{mod} \varphi(n))$
 - Compute $\varphi(n)$ without factorizing n, and then compute $d=e^{-1} (\mathbf{mod} \ \varphi(n))$
- Both approaches are characterized by the difficulty of factoring n

Babaoglu Sicurezza

The Factoring Problem

- No theorems or lower-bound results
- Only empirical evidence about its difficulty
- No guarantee that what is secure today will remain secure tomorrow

© Babaoglu Sicurezza 25

RSA Factoring Challenge

- Launched by RSA Laboratories in 1991 to motivate research in computational number theory
- Published semi-primes (numbers with exactly two prime factors) with 100 to 617 decimal digits
- Offered cash prizes for factoring them
- Declared inactive in 2007

The Factoring Problem

Number of decimal digits	Number of bits	Date achieved	MIPS-years	Algorithm
100	332	April 1991	7	Quadratic Sieve
110	365	April 1992	75	Quadratic Sieve
120	398	June 1993	830	Quadratic Sieve
129	428	April 1994	5000	Quadratic Sieve
130	431	April 1996	1000	Generalized number field sieve
140	465	February 1999	2000	Generalized number field sieve
155	512	August 1999	8000	Generalized number field sieve
160	530	April 2003	-	Lattice sieve
174	576	December 2003	-	Lattice sieve
200	663	May 2005	37500	Lattice sieve (18 months using 80 Opteron processors)

1GHz Pentium is about a 250-MIPS machine

© Babaoglu Sicurezza

Some RSA Numbers

- RSA-155=109417386415705274218097073220403576120037329454492059909138421314763499842889
 - $= 102639592829741105772054196573991675900716567808038066803341933521790711307779 \times 106603488380168454820927220360012878679207958575989291522270608237193062808643$
- RSA-160=215274110271888970189601520131282542925777358884567598017049767677813314521885 9135673011059773491059602497907111585214302079314665202840140619946994927570407753
 - $= 45427892858481394071686190649738831656137145778469793250959984709250004157335359 \times 47388090603832016196633832303788951973268922921040957944741354648812028493909367$
- RSA-174=188198812920607963838697239461650439807163563379417382700763356422988859715234
 66548531906060650474304531738801130339671619969232120573403187955065699622130516875930
 7650257059
 - =398075086424064937397125500550386491199064362342526708406385189575946388957261768583 317 $\,\times$
 - 472772146107435302536223071973048224632914695302097116459852171130520711256363590397527
- RSA-200=279978339112213278708294676387226016210704467869554285375600099293261284001076
 09345671052955360856061822351910951365788637105954482006576775098580557613579098734950
 144178863178946295187237869221823983
 - $= 3532461934402770121272604978198464368671197400197625023649303468776121253679423200058547956528088349 \times \\$
 - $7925869954478333033347085841480059687737975857364219960734330341455767872818152135381\\409304740185467$

© Babaoglu Sicurezza 28

© Babaoglu

Sicurezza

27

The Factoring Problem State-of-the-art

- As of February 2020, the 23 semi-primes from RSA-100 to RSA-250 had been factored
- As of today, special-form numbers of up to 950 bits and general-form numbers of up to about 600 bits can be factored in a few months on a few PCs by a single person without any special mathematical experience

© Babaoglu Sicurezza 29

Breaking News!!!

31

- "A crippling flaw in a widely used code library has fatally undermined the security of millions of encryption keys used in some of the higheststakes settings, including national identity cards, software- and application-signing, and trusted platform modules protecting government and corporate computers"
- "The weakness allows attackers to calculate the private portion of any vulnerable key using nothing more than the corresponding public portion"
- "The flaw resides in the Infineon-developed RSA Library version v1.02.013, specifically within an algorithm it implements for RSA primes generation"
- Factoring a 2048-bit RSA key generated with the faulty Infineon library takes a maximum of 100 years (on average only half that) and keys with 1024 bits take a maximum of only three months

© Babaoglu

AND STEPHEN

DIGITALINE ISIKUTUNNISTUS

REPUBLIC OF ESTONAL

DIGITALINE ISIKUTUNNISTUS

STEPHEN

DIGITALINE ISIKUTUNNISTUS

JURVETSON

STEPHEN

OZ. 12. 2017

DOKUMENDIN MERER / DOCUMENT NUMBER

RISKUKCOO / PERSONAL DIGITALINE ISIKUTUNNISTUS

STEPHEN

JURVETSON

STEPHEN

OZ. 12. 2017

NO1

RISKUKCOO / PERSONAL DOE

367030100

Efficiency of RSA

Enlarge / 750,000 Estonian cards that look like this use a 2048-bit RSA key that can be factored in a matter of days.

• How to compute $(x^z \mod n)$ efficiently:

 x^{32}

© Babaoglu

$$x \rightarrow x^2 \rightarrow x^4 \rightarrow x^8 \rightarrow x^{16} \rightarrow x^{32}$$

5 multiplications total since $5 = log_2(32)$

© Babaoglu Sicurezza

32

Efficiency of RSA

- What if z is not a power of two?
- Note that from x^y we can obtain x^{2y} and x^{2y+1} with at most two additional multiplications:

$$x^{2y} = (x^y)^2 = x^y \cdot x^y$$
$$x^{2y+1} = x^{2y} \cdot x = x^y \cdot x^y \cdot x$$

• How to decompose z as a linear combination of x^{2y} and x^{2y+1}

© Babaoglu Sicurezza 33

Efficiency of RSA

- For the time being, ignore mod and consider the exponent one bit at a time from msb to lsb
- Example: 1284¹¹⁰¹¹⁰2

• Thus, we can compute x^y doing only $2 \lceil log_2(y) \rceil$ multiplications

Efficiency of RSA

- Suppose we need to compute 1284⁵⁴ mod 3233
- Write the exponent 54 as a binary number: 110110₂
- Now we need to compute 1284¹¹⁰¹¹⁰2 mod 3233

₿ Babaoglu Sicurezza

Efficiency of RSA

Property of modular arithmetic:

$$(a \times b) \bmod n = [(a \bmod n) \times (b \bmod n)] \bmod n$$

lacktriangleright Therefore, each of the intermediate results can be reduced by modulo n

Babaoglu Sicurezza

Efficiency of RSA

• Example: 1284¹¹⁰¹¹⁰2 **mod** 3233

 $\begin{array}{lll} 1284^{12} & (1284) \ \text{mod} \ 3233 \\ 1284^{112} & (1284^2 \cdot 1284) \ \text{mod} \ 3233 \\ 1284^{1102} & ((1284^2 \cdot 1284)^2) \ \text{mod} \ 3233 \\ 1284^{11012} & (((1284^2 \cdot 1284)^2)^2 \cdot 1284) \ \text{mod} \ 3233 \\ \end{array}$

This makes the computation practical and avoids overflows

© Babaoglu Sicurezza 37

Generation of Large Primes

- For small primes, we can look them up in a table
- But what if we want primes that have hundreds of digits?
- How are prime numbers distributed?
- What is the probability that a number n picked at random is prime?

 $Pr(n \text{ picked at random is prime}) \sim 1/log(n)$

Generation of Large Primes

ALMA MATER STUDIORUM – UNIVERSITA' DI BOLOGNA

Generation of Large Primes

- For example, if *n* has 10 digits, then $Pr(n \text{ is prime}) \sim 1/23$
- If *n* has 100 digits, then $Pr(n \text{ is prime}) \sim 1/230$
- These probabilities are too small for us to use the randomly generated number as if it were prime
- If we had a test for primality, p_test(n), we could use it to reject the randomly generated number if the test fails and generate a new one until the test succeeds

```
n=rand() #generate a large random number
while p_test(n) == false:
    n=rand()
```

Primality Testing

- How to implement p_test(n) such that it responds "true"
 if n is prime, "false" otherwise (composite)
- Naïve method: check wether any integer k from 2 to n-1 divides n
- Rather than testing all integers up to n-1, if suffices to test only up to \sqrt{n}
- Complexity: $O(\sqrt{n})$ or $O(2^{\sqrt{2}m})$ where m=log(n) is the size of the input in bits

© Babaoglu Sicurezza 41

Probabilistic Primality Testing

• Fermat's little theorem: if n is prime, then for any integer a, 0 < a < n

$$a^{(n-1)} \bmod n = 1$$

- Result of Pomerance (1981):
 - What is the probability that Fermat's theorem holds even when n is not a prime?
 - Let n be a *large integer* (more than 100 digits)
 - For any positive random integer a less than n $Pr[(n \text{ is not prime}) \text{ and } (a^{(n-1)} \mod n = 1)] \approx 10^{-13}$

Primality Testing

- Until recently, no polynomial (in the size of the input) algorithm existed for primality testing
- If we assume the generalized Riemann hypothesis, an $O((\log n)^4)$ for primality testing exists
- In 2002, Agrawal, Kayal and Saxena (AKS) discovered an $O((log\ n)^6)$ for primality testing
- Even though these algorithms are polynomial, they are too expensive to be practical
- Resort to "probabilistic" primality testing

© Babaoglu Sicurezza 4:

Probabilistic Primality Testing

```
def p_test(n):
    a = rand() mod n
    x = a^(n-1) mod n
    if x == 1:
        return "true"
    else:
        return "false"
```

© Babaoglu Sicurezza 4

Probabilistic Primality Testing

- If the test "fails", then n cannot be a prime
- If the test "passes", then n may still not be a prime with probability 10^{-13}
- This probability is small but may still not be acceptable
- Idea: repeat the test k times with different values of a each time

© Babaoglu Sicurezza 45

Probabilistic Primality Testing

- Probability of accepting n that is not prime is reduced to $(10^{-13})^k$
- On the average, how many numbers are tested before accepting?

log(n)/2

• Example: for a 200-bit random number, need about $log(2^{200})/2=70$ trials

Probabilistic Primality Testing

```
def p_test(n, k):
    repeat k times:
    a = rand() mod n
    x = a^(n-1) mod n
    if x != 1:
        return "false"
    return "true"
```

© Babaoglu Sicurezza 2

Other Public-key Schemes

- While it is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms
- The discrete logarithm of g base b is the integer k solving the equation $b^k = g$ where b and g are elements of a finite group
- Public-key schemes based on discrete logarithms
 - Diffie-Hellman
 - El Gamal