Applied model specification

Katie Schuler

2024-10-08

⚠ Under construction

Still working on this!

Now that we've covered the terminology and concepts, let's apply model specification to some real models.

library(tidyverse) library(mosaic)

1 "Toy" data

Let's start with the simplest possible example, a dataset with two data points. Suppose you record how many days you study over the next two days. On day 1, you study for 2 hours. On day 2, you study for 3 hours. Your dataset might look something like this.

2 Plot

3 Data

```
function (object, ...)
{
    UseMethod("model")
}
<bytecode: 0x149be8be0>
<environment: namespace:mosaic>
```

4 Code

```
toy_data <- tibble(
    x = c(1, 2, 3, 4, 5),
    y = c(2, 6, 7, 12, 13)
)

toy_data %>%
    ggplot(aes(x = x, y = y)) +
    geom_point() +
    theme_bw(base_size = 14)
```

- 1. **Specify our response variable**, *y*: the response variable (data, output, prediction) is the variable you are trying to predict or explain with your model.
 - y
- 2. Specify explantory variables, x_i : the explanatory variables (regressors, inputs, predictors) are the predictors in your data that could help explain the response variable. Our data has only one possible:
 - X
- 3. **Specify the functional form**: the functional form describes the relationship between the response and explanatory variables with a mathematical expresson. In a linear model, we express this relationship as a weighted sum of inputs:
 - $y = \sum_{i=1}^{n} w_i x_i$
- 4. **Specify model terms**: here we need to specify exactly *how* to express our explanatory variables in our functional form. The actual variables and constants that will be included in the model. There are four kinds of terms: (1) intercept, (2) main, (3) interaction, and (4) transformation. Here we have the simplest case of an intercept and one main term (no interactions or transformations necessary)
 - $y = w_1 \mathbf{1} + w_2 x_2$
 - in R: y ~ 1 + x

5 Plot

Model specification: $y = w_1 \mathbf{1} + w_2 \mathbf{x}$

7 Code

```
model <- lm(y ~ 1 + x, data = toy_data)

toy_data <- toy_data %>%
  mutate(with_formula = -0.4*1 + 2.8*x) %>%
  mutate(with_predict= predict(model, toy_data))

toy_data %>%
  ggplot(aes(x = x, y = y)) +
  geom_point() +
  geom_line(aes(y = with_predict), color = "blue") +
  theme_bw(base_size = 14)
```

8 Swim records

8.1 One input

9 Plot

Model specification: $y = w_1 \mathbf{1}$

Call:

lm(formula = time ~ 1, data = SwimRecords)

Coefficients:

(Intercept)

59.92

Fitted model: y = (59.92)1

10 Data

year	time	sex	with_{-}	_formula	with_predict
1905	65.80	M		59.92	59.92419
1908	65.60	\mathbf{M}		59.92	59.92419
1910	62.80	\mathbf{M}		59.92	59.92419
1912	61.60	\mathbf{M}		59.92	59.92419
1918	61.40	\mathbf{M}		59.92	59.92419
1920	60.40	M		59.92	59.92419
1922	58.60	Μ		59.92	59.92419
1924	57.40	Μ		59.92	59.92419
1934	56.80	${\bf M}$		59.92	59.92419
1935	56.60	\mathbf{M}		59.92	59.92419
1936	56.40	\mathbf{M}		59.92	59.92419
1944	55.90	M		59.92	59.92419
1947	55.80	M		59.92	59.92419
1948	55.40	M		59.92	59.92419
1955	54.80	M		59.92	59.92419
1957	54.60	M		59.92	59.92419
1961	53.60	M		59.92	59.92419
1964	52.90	M		59.92	59.92419
1967	52.60	M		59.92 59.92	59.92419
1968	52.20	M		59.92	59.92419
1970	51.90	M		59.92	59.92419
1972	51.22	M		59.92	59.92419
1975	50.59	M		59.92	59.92419
1976	49.44	Μ		59.92	59.92419
1981	49.36	Μ		59.92	59.92419
1985	49.24	M		59.92	59.92419
1986	48.74	Μ		59.92	59.92419
1988	48.42	Μ		59.92	59.92419
1994	48.21	\mathbf{M}		59.92	59.92419
2000	48.18	\mathbf{M}		59.92	59.92419
2000	47.84	\mathbf{M}		59.92	59.92419
1908	95.00	\mathbf{F}		59.92	59.92419
1910	86.60	\mathbf{F}		59.92	59.92419
1911	84.60	\mathbf{F}		59.92	59.92419
1912	78.80	\mathbf{F}		59.92	59.92419
1915	76.20	\mathbf{F}		59.92	59.92419
1920	73.60	\mathbf{F}		59.92	59.92419
1923	72.80	\mathbf{F}		59.92	59.92419
1924	72.20	\mathbf{F}		59.92	59.92419
1926	70.00	\mathbf{F}		59.92	59.92419
1929	69.40	\mathbf{F}		59.92	59.92419
1930	68.00	\mathbf{F}		59.92	59.92419
1931	66.60	\mathbf{F}		59.92	59.92419
1933	66.00	F		59.92	59.92419
1934	65.40	F		59.92	59.92419
1936	64.60	F		59.92	59.92419
1956	62.00	F		59.92	59.92419
1958	61.20	F		59.92	59.92419
1960	60.20	F		59.92 59.92	59.92419
1960	59.50	F		59.92 59.92	59.92419
1902 1964	58.90	r F		59.92 59.92	59.92419 59.92419

11 Code

```
model <- lm(time ~ 1, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
   mutate(with_formula = 59.92*1) %>%
   mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
   ggplot(aes(x = year, y = time)) +
   geom_point() +
   geom_line(aes(y = with_predict), color = "blue") +
   theme_bw(base_size = 14)
```

11.1 Two inputs

12 Plot

Model specification: $y = w_1 \mathbf{1} + w_2 \mathbf{year}$

```
Call:
lm(formula = time ~ 1 + year, data = SwimRecords)
```

```
Coefficients: 
 (Intercept) year  567.2420 -0.2599  Fitted model: y=(567.2420)\mathbf{1}+(-0.2599)\mathbf{year}
```

14 Code

```
model <- lm(time ~ 1 + year, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
   mutate(with_formula = 567.2420*1 + -0.2599*year) %>%
   mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
   ggplot(aes(x = year, y = time)) +
   geom_point() +
   geom_line(aes(y = with_predict), color = "blue") +
   theme_bw(base_size = 14)
```

year	time	sex	with	formula	with_predict
$\frac{3}{1905}$	65.80	M		72.1325	72.17614
1908	65.60	\mathbf{M}		71.3528	71.39651
1910	62.80	M		70.8330	70.87676
1912	61.60	M		70.3132	70.35700
1918	61.40	M		68.7538	68.79774
1920	60.40	M		68.2340	68.27798
1922	58.60	M		67.7142	67.75823
1924	57.40	M		67.1944	67.23848
1934	56.80	M		64.5954	64.63971
1935	56.60	M		64.3355	64.37983
1936	56.40	M		64.0756	64.11995
1930 1944	55.90	M		61.9964	62.04093
1944 1947	55.80	M		61.2167	61.26130
1948	55.40	M		60.9568	61.00143
1948 1955					
1955 1957	54.80 54.60	M M		59.1375 58.6177	59.18229 58.66253
1961	53.60	M		57.5781	57.62302
1964	52.90	M		56.7984	56.84339
1967	52.60	M		56.0187	56.06376
1968	52.20	M		55.7588	55.80388
1970	51.90	M		55.2390	55.28413
1972	51.22	M		54.7192	54.76438
1975	50.59	M		53.9395	53.98474
1976	49.44	Μ		53.6796	53.72487
1981	49.36	M		52.3801	52.42548
1985	49.24	Μ		51.3405	51.38597
1986	48.74	Μ		51.0806	51.12610
1988	48.42	Μ		50.5608	50.60634
1994	48.21	Μ		49.0014	49.04708
2000	48.18	Μ		47.4420	47.48782
2000	47.84	Μ		47.4420	47.48782
1908	95.00	\mathbf{F}		71.3528	71.39651
1910	86.60	\mathbf{F}		70.8330	70.87676
1911	84.60	\mathbf{F}		70.5731	70.61688
1912	78.80	\mathbf{F}		70.3132	70.35700
1915	76.20	\mathbf{F}		69.5335	69.57737
1920	73.60	\mathbf{F}		68.2340	68.27798
1923	72.80	\mathbf{F}		67.4543	67.49835
1924	72.20	\mathbf{F}		67.1944	67.23848
1926	70.00	\mathbf{F}		66.6746	66.71872
1929	69.40	\mathbf{F}		65.8949	65.93909
1930	68.00	\mathbf{F}		65.6350	65.67921
1931	66.60	F		65.3751	65.41934
1933	66.00	F		64.8553	64.89958
1934	65.40	\mathbf{F}		64.5954	64.63971
1936	64.60	\mathbf{F}		64.0756	64.11995
1956	62.00	\mathbf{F}		58.8776	58.92241
1958	61.20	\mathbf{F}		58.3578	58.40266
1960	60.20	\mathbf{F}		57.8380	57.88290
1962	59.50	F		57.3182	57.36315
1964	58 90	F		56 7984	56 84339

14.1 Three inputs

15 Plot

Model specification: $y = w_1 \mathbf{1} + w_2 \mathbf{year} + w_3 \mathbf{sex}$

Call:

lm(formula = time ~ 1 + year + sex, data = SwimRecords)

Coefficients:

(Intercept) year sexM 555.7168 -0.2515 -9.7980

Fitted model: $y = (555.7168)\mathbf{1} + (-0.2515)\mathbf{year} + (-9.7980)\mathbf{sex}$

16 Data

17 Code

model <- lm(time ~ 1 + year, data = SwimRecords)</pre>

year	time	sex	with_{-}	_formula	with_predict
1905	65.80	M		72.1325	66.88051
1908	65.60	\mathbf{M}		71.3528	66.12612
1910	62.80	\mathbf{M}		70.8330	65.62319
1912	61.60	\mathbf{M}		70.3132	65.12026
1918	61.40	\mathbf{M}		68.7538	63.61148
1920	60.40	\mathbf{M}		68.2340	63.10855
1922	58.60	\mathbf{M}		67.7142	62.60563
1924	57.40	\mathbf{M}		67.1944	62.10270
1934	56.80	Μ		64.5954	59.58806
1935	56.60	${\bf M}$		64.3355	59.33660
1936	56.40	${\bf M}$		64.0756	59.08513
1944	55.90	\mathbf{M}		61.9964	57.07343
1947	55.80	\mathbf{M}		61.2167	56.31903
1948	55.40	\mathbf{M}		60.9568	56.06757
1955	54.80	${ m M}$		59.1375	54.30732
1957	54.60	M		58.6177	53.80440
1961	53.60	M		57.5781	52.79854
1964	52.90	M		56.7984	52.04415
1967	52.60	M		56.0187	51.28976
1968	52.20	M		55.7588	51.03830
1970	51.90	M		55.2390	50.53537
1972	51.22	M		54.7192	50.03244
1972 1975	50.59	M		53.9395	49.27805
1976	49.44	M		53.6796	49.02659
1981	49.36	M		52.3801	47.76927
1985	49.24	M		51.3405	46.76341
1986	48.74	M		51.0806	46.51195
1988	48.42	M		50.5608	46.00902
1994	48.42	M		49.0014	44.50024
2000	48.18	M		49.0014	42.99146
					42.99146
2000	47.84	$_{ m F}$		47.4420	
1908 1910	95.00	F		71.3528 70.8330	75.92408
	86.60				75.42115
1911	84.60	F F		70.5731	75.16969
1912 1915	78.80	r F		70.3132	74.91822
	76.20			69.5335	74.16383
1920	73.60	F		68.2340	72.90651
1923	72.80	F		67.4543	72.15212
1924	72.20	F		67.1944	71.90066
1926	70.00	F		66.6746	71.39773
1929	69.40	F		65.8949	70.64334
1930	68.00	F		65.6350	70.39188
1931	66.60	F		65.3751	70.14041
1933	66.00	F		64.8553	69.6 37 49
1934	65.40	F		64.5954	69.38602
1936	64.60	F		64.0756	68.88310
1956	62.00	F		58.8776	63.85382
1958	61.20	\mathbf{F}		58.3578	63.35090
1960	60.20	\mathbf{F}		57.8380	62.84797
1962	59.50	\mathbf{F}		57.3182	62.34504
1964	58 90	\mathbf{F}		56 7984	61 84211

```
SwimRecords_predict <- SwimRecords %>%
  mutate(with_formula = 567.2420*1 + -0.2599*year) %>%
  mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
  ggplot(aes(x = year, y = time)) +
  geom_point() +
  geom_line(aes(y = with_predict), color = "blue") +
  theme_bw(base_size = 14)
```

17.1 Interaction

18 Plot

Model specification: $y = w_1 \mathbf{1} + w_2 \mathbf{year} + w_3 \mathbf{sex} + w_4 \mathbf{year} * \mathbf{sex}$

```
Call:
```

```
lm(formula = time ~ 1 + year * sex, data = SwimRecords)
```

Coefficients:

(Intercept) year sexM year:sexM 697.3012 -0.3240 -302.4638 0.1499

Fitted model: $y = (697.3012)\mathbf{1} + (-0.3240)\mathbf{year} + (-302.4638)\mathbf{sex} + (0.1499)\mathbf{year} \times \mathbf{sex}$

20 Code

```
model <- lm(time ~ 1 + year, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
   mutate(with_formula = 567.2420*1 + -0.2599*year) %>%
   mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
   ggplot(aes(x = year, y = time)) +
   geom_point() +
   geom_line(aes(y = with_predict), color = "blue") +
   theme_bw(base_size = 14)
```

20.1 Transformation

21 Plot

Model specification:

$$y = w_1 \mathbf{1} + w_2 \mathbf{year} + w_3 \mathbf{sex} + w_4 \mathbf{year} \times \mathbf{sex} + w_5 \mathbf{year}^2$$

year	time	sex	with_	_formula	with_predict
$\frac{3}{1905}$	65.80	M		72.1325	63.12106
1908	65.60	M		71.3528	62.59867
1910	62.80	M		70.8330	62.25041
1912	61.60	M		70.3132	61.90215
1918	61.40	M		68.7538	60.85738
1920	60.40	M		68.2340	60.50912
1922	58.60	M		67.7142	60.16086
1924	57.40	M		67.1944	59.81260
1934	56.80	M		64.5954	58.07131
1935	56.60	M		64.3355	57.89718
1936	56.40	M		64.0756	57.72305
1944	55.90	M		61.9964	56.33002
1947	55.80	M		61.2167	55.80763
1948	55.40	M		60.9568	55.63350
1955	54.80	M		59.1375	54.41459
1955 1957	54.60	M		58.6177	54.06634
1961	53.60	M		57.5781	53.36982
1964	52.90	M		56.7984	52.84743
1967	52.60	M		56.0187	52.32504
1968	52.00 52.20	M		55.7588	52.32504 52.15091
1908		M		55.2390	
	51.90				51.80266
1972	51.22	M		54.7192	51.45440
1975	50.59	M		53.9395	50.93201
1976	49.44	M		53.6796	50.75788
1981	49.36	M		52.3801	49.88723
1985	49.24	M		51.3405	49.19072
1986	48.74	M		51.0806	49.01659
1988	48.42	M		50.5608	48.66833
1994	48.21	M		49.0014	47.62355
2000	48.18	M		47.4420	46.57878
2000	47.84	M		47.4420	46.57878
1908	95.00	F		71.3528	79.02170
1910	86.60	F		70.8330	78.37361
1911	84.60	F		70.5731	78.04956
1912	78.80	F		70.3132	77.72552
1915	76.20	F		69.5335	76.75338
1920	73.60	F		68.2340	75.13315
1923	72.80	F		67.4543	74.16101
1924	72.20	F		67.1944	73.83697
1926	70.00	F		66.6746	73.18887
1929	69.40	F		65.8949	72.21674
1930	68.00	F		65.6350	71.89269
1931	66.60	F		65.3751	71.56864
1933	66.00	F		64.8553	70.92455
1934	65.40	F		64.5954	70.59651
1936	64.60	F		64.0756	69.94842
1956	62.00	F		58.8776	63.46750
1958	61.20	F		58.3578	62.81941
1960	60.20	F		57.8380	62.17131
1962	59.50	F		57.3182	61.52322
1964	58 90	\mathbf{F}		56 7984	60 87513

23 Code

```
model <- lm(time ~ 1 + year, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
  mutate(with_formula = 567.2420*1 + -0.2599*year) %>%
  mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
  ggplot(aes(x = year, y = time)) +
  geom_point() +
  geom_line(aes(y = with_predict), color = "blue") +
  theme_bw(base_size = 14)
```

24 Brain size (log)

25 Plant heights (polynomials)

26 Further reading

• Ch 6: Language of models in Statistical Modeling

year	time	sex	with	formula	with_predict
$\frac{3}{1905}$	65.80	M		72.1325	66.81874
1908	65.60	M		71.3528	65.55576
1910	62.80	M		70.8330	64.74106
1912	61.60	M		70.3132	63.94819
1918	61.40	M		68.7538	61.70057
1920	60.40	M		68.2340	60.99502
1922	58.60	M		67.7142	60.31130
1924	57.40	M		67.1944	59.64941
1934	56.80	M		64.5954	56.66741
1935	56.60	M		64.3355	56.39922
1936	56.40	M		64.0756	56.13650
1944	55.90	M		61.9964	54.23115
1947	55.80	M		61.2167	53.60669
1948	55.40	M		60.9568	53.40946
1955	54.80	M		59.1375	52.18160
1957	54.60	M		58.6177	51.87991
1961	53.60	M		57.5781	51.34200
1964	52.90	M		56.7984	50.99587
1967	52.60	M		56.0187	50.69886
1968	52.00 52.20	M		55.7588	50.61078
1900	51.90	M		55.2390	50.45097
1970 1972	51.22	M		54.7192	50.31300
1972 1975	50.59	M		53.9395	50.14697
1976	49.44	M		53.6796	50.10254
1981	49.36	M		52.3801	49.96226
1985	49.24	M		51.3405	49.94827
1986	49.24 48.74	M		51.0806	49.95841
1988	48.42	M		50.5608	49.99508
1994	48.21	M		49.0014	50.23605
2000	48.18	M		47.4420	50.67349
2000	47.84	M		47.4420	50.67349
1908	95.00	F		71.3528	82.16082
1910	86.60	F		70.8330	81.03116
1910	84.60	F		70.5330	80.47451
1911	78.80	F		70.3131	79.92332
1912	76.20	F		69.5335	78.30250
1910 1920	73.60	F		68.2340	75.71028
1920 1923	72.80	F		67.4543	74.22044
1923 1924	72.20	F		67.1944	73.73474
1924 1926	72.20 70.00	F		66.6746	72.77971
		г F			
1929	69.40	r F		65.8949	71.38810
1930	68.00			65.6350	70.93515
1931	66.60	$_{ m F}$		65.3751	70.48765
1933	66.00 65.40	F F		64.8553	69.6 09 03
1934	65.40			64.5954	69.17790
1936	64.60	F		64.0756	68.33203
1956	62.00	F		58.8776	61.07389
1958	61.20	F		58.3578	60.46814
1960	60.20	F		57.8380	59.88422
1962	59.50	F		57.3182	59.32213
1964	58 90	\mathbf{F}		56 7984	58 78187