MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ

PATRICK THIERRY LORUSSO EL OMAIRI

DESENVOLVIMENTO DE UMA SOLUÇÃO IOT PARA MEDIDA REMOTA DE TEMPERATURA, UMIDADE DO AR E DO SOLO COM BAIXO CUSTO E BAIXO CONSUMO DE ENERGIA

CURITIBA

2018

PATRICK THIERRY LORUSSO EL OMAIRI

DESENVOLVIMENTO DE UMA SOLUÇÃO IOT PARA MEDIDA REMOTA DE TEMPERATURA, UMIDADE DO AR E DO SOLO COM BAIXO CUSTO E BAIXO CONSUMO DE ENERGIA

Trabalho de conclusão de curso apresentado como requisito parcial para a obtenção do grau de engenheiro eletricista, no programa de graduação em engenharia elétrica da Universidade Federal do Paraná.

Orientador: Prof. Dr. Márlio José do Couto Bonfim

CURITIBA

AGRADECIMENTOS

LISTA DE FIGURAS

4.1	Cronograma do projeto	 14

LISTA DE SIGLAS

IoT Internet das coisas

SUMÁRIO

1	INTRODUÇÃO	9
	1.1 Problematização	9
	1.2 Objetivos	9
	1.2.1 Objetivo Geral	9
	1.2.2 Objetivos Específicos	9
	1.2.1 Objetivo Geral	9
2	FUNDAMENTAÇÃO TEÓRICA	11
3	METODOLOGIA	12
4	CRONOGRAMA	13
ВΙ	BLIOGRAFIA	15

CAPÍTULO 1 INTRODUÇÃO

1.1 Problematização

Com a crescente demanda para uma produção agrícola mais eficiente, devido ao crescimento populacional em escala mundial e nacional, existe uma demanda muito grande para métodos mais eficientes e ecológicos de agricultura.

Uma das maneiras de deixar mais eficiente o plantio, é medindo grandezas no campo, como por exemplo a temperatura, a umidade do solo e do ar. O acompanhamento dessas grandezas em tempo real pode dar informações essenciais para o fazendeiro. Por exemplo, tendo informações sobre a umidade do solo, será possível saber quando será o momento ideal para irrigar os campos.

Com vários sensores capazes de medir tais grandezas espalhados pela fazenda, o fazendeiro seria capaz de obter informações mais específicas sobre determinadas partes do campo, como a distribuição da temperatura, da umidade do solo e relativa do ar, e derivados destes.

Este projeto visa desenvolver um sensor capaz de medir a temperatura, a umidade relativa do ar e a umidade do solo, capaz de enviar essas informações por uma rede *loT*, mais especificamente, *LoRa*, tendo um consumo extremamente baixo e consequentemente uma grande autonomia.

1.2 Objetivos

1.2.1 Objetivo Geral

Desenvolver um dispositivo eletrônico capaz de medir temperatura, umidade relativa do ar e do solo, e enviar os dados por uma rede *IoT LoRa*. Todos os sensores integrados junto do microcontrolador numa só placa de baixo custo e baixo consumo de energia. O sensor de umidade do solo será capacitivo para que ele tenha uma longa duração e será integrado dentro da placa de circuito impresso.

1.2.2 Objetivos Específicos

- Desenvolvimento do hardware.
- Simulação do hardware no LTSpice ou em scripts Python
- Desenvolvimento de uma placa de circuito impresso
- Desenvolvimento do software embarcado para microcontrolador STM32

1.3 Justificativa

As exportações Brasileiras ligadas ao agronegócio chegam a 41,5% das vendas externas totais no país, onde somente a soja é o principal produto exportado com

42,5% das exportações nacionais do agronegócio (FIESP, 2018).

Além disso, a produção de carnes, outro setor muito importante para a exportação nacional, depende diretamente da agricultura uma vez que as rações dos animais são feitas com produtos provenientes da agricultura.

Sendo então a agricultura uma área essencial para o desenvolvimento econômico e sustentável do Brasil, inovações nessa área tem um potencial enorme para deixar mais eficiente o crescimento das plantas, diminuindo gastos com água, por exemplo.

Um dispositivo eletrônico capaz de disponibilizar essas informações do campo para o fazendeiro pode ser essencial para o desenvolvimento do negócio, uma vez que o fazendeiro poderá monitorar seu plantio. E com o surgimento das redes *IoT*, se torna mais viável colocar vários dispositivos desses, de baixo custo, espalhados pelo campo para conseguir o maior número de dados possível.

CAPÍTULO 2 FUNDAMENTAÇÃO TEÓRICA

CAPÍTULO 3

METODOLOGIA

A metodologia à ser seguida para desenvolver o projeto é a seguinte:

Começar por uma revisão bibliográfica, para ver o que já foi feito. O foco nessa parte é procurar artigos que implementaram, principalmente, medida de umidade no solo, pois é o mais importante para a planta.

Depois começa o desenvolvimento hardware, onde será feita a escolha dos componentes, dos circuitos de condicionamento dos sensores, do microcontrolador e do módulo de transmissão LoRa.

A simulação do hardware é então feita, sera usado LTSpice, Python e FEMM para simular os diversos sensores presentes no projeto.

Uma vez a simulação feita, é testado o hardware em testes de bancada. Com o hardware funcionando, é feita a placa de circuito impresso no software KiCAD.

Com a PCB feita, é desenvolvido o software embarcado para STM32. O firmware sera escrito em C, na IDE Atollic TrueSTUDIO. O software STM32CUBEMX também será utilizado para geração do código base.

Finalmente, será feita a comunicação via rede LoRa. Definindo a payload, os parâmetros de rede, os módulos e desenvolvendo um gateway.

CAPÍTULO 4 CRONOGRAMA

O cronograma foi desenvolvido como mostrado na figura 4.1.

Atividade	Julho	Agosto			Setembro				Outubro					Novembro				Dezembr o	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Revisão Bibliográfica	X																		
Elaboração do circuito e escolha de componentes		X	X	X	X														
Simulações					X	X													
1ª Avaliação – Orientador					X														
Roteamento da PCI						X	Χ												
Fabricação da PCI								X	X	X									
2ª Avaliação - Banca										X									
Desenvolvimento do software											Χ	X	X	X					
Calibração dos sensores															X	X			
Gateway LoRa e testes LoRa																Χ	X	Χ	
Redação final e correções																		X	X
3ª Avaliação - Banca																			X

Figura 4.1: Cronograma do projeto

BIBLIOGRAFIA

FIESP, D. *Balança Comercial Brasileira do Agronegócio - Agosto 2018.* 2018. http://www.fiesp.com.br/indices-pesquisas-e-publicacoes/balanca-comercial/attachment/file-20180918140623-bca2018/. Acesso em 24/09/2018.