Assignment

Recall the SAR model $\mathbf{y}_n = \lambda \mathbf{W}_n \mathbf{y}_n + \mathbf{X}_n \boldsymbol{\beta} + \boldsymbol{\varepsilon}$. The regressor matrix \mathbf{X}_n is an $(n \times k)$ matrix of constant regressors.

1. Define $S_n(\lambda) = I_n - \lambda W_n$ and assume that $S_n^{-1}(\lambda)$ exists. Prove that the log-likelihood under $\varepsilon_n \sim N(\mathbf{0}, \sigma^2 I_n)$ is equal to

$$\log L_n(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) + \log\left(\det(\boldsymbol{S}_n(\lambda))\right) - \frac{1}{2\sigma^2}\left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right)'\left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right),$$

where $\boldsymbol{\theta} = (\lambda, \boldsymbol{\beta}', \sigma^2)'$.

Solution: Solving for y_n , we get $y_n = S_n^{-1}(\lambda)X_n\beta + S_n^{-1}(\lambda)\varepsilon$. Apparently, y_n is an affine transformation of the normally distributed random vector ε_n and thus normally distributed itself. Straightforward calculations provide

$$\mathbb{E}\big[\boldsymbol{y}_n\big] = \mathbb{E}\big[\boldsymbol{S}_n^{-1}(\lambda)\boldsymbol{X}_n\boldsymbol{\beta} + \boldsymbol{S}_n^{-1}(\lambda)\boldsymbol{\varepsilon}\big] = \boldsymbol{S}_n^{-1}(\lambda)\boldsymbol{X}_n\boldsymbol{\beta} + \boldsymbol{S}_n^{-1}(\lambda)\mathbb{E}\big[\boldsymbol{\varepsilon}\big] = \boldsymbol{S}_n^{-1}(\lambda)\boldsymbol{X}_n\boldsymbol{\beta},$$

and

$$\operatorname{Var} \left[\boldsymbol{y}_n \right] = \operatorname{Var} \left[\boldsymbol{S}_n^{-1}(\lambda) \boldsymbol{X}_n \boldsymbol{\beta} + \boldsymbol{S}_n^{-1}(\lambda) \boldsymbol{\varepsilon} \right] = \operatorname{Var} \left[\boldsymbol{S}_n^{-1}(\lambda) \boldsymbol{\varepsilon} \right]$$

$$= \boldsymbol{S}_n^{-1}(\lambda) \operatorname{Var} \left[\boldsymbol{\varepsilon} \right] \boldsymbol{S}_n^{-1}(\lambda) = \sigma^2 \boldsymbol{S}_n^{-1}(\lambda) \boldsymbol{S}_n^{-1}(\lambda).$$

Our first conclusion is

$$\mathbf{y}_n \sim \mathrm{N}\Big(\mathbf{S}_n^{-1}(\lambda)\mathbf{X}_n\boldsymbol{\beta}, \, \sigma^2 \mathbf{S}_n^{-1}(\lambda)\mathbf{S}_n^{-1\prime}(\lambda)\Big).$$
 (1)

We subsequently compute the associated log-likelihood. Recall that a normally distributed random *n*-vector, say $Y \sim N(\mu, \Sigma)$, has pdf

$$f(\boldsymbol{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \det(2\pi \boldsymbol{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1}(\boldsymbol{y} - \boldsymbol{\mu})\right)$$

and log-likelihood

$$\log L(\mu, \boldsymbol{\Sigma}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log\left(\det(\boldsymbol{\Sigma})\right) - \frac{1}{2}(\boldsymbol{y} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{y} - \boldsymbol{\mu}).$$

It remains to evaluate this log-likelihood using the distribution in (1). We provide the following intermediate results:

- Exploiting the properties of the determinant gives $\det \left(\sigma^2 \mathbf{S}_n^{-1}(\lambda) \mathbf{S}_n^{-1}(\lambda)\right) = \sigma^{2n} \det \left(\mathbf{S}_n^{-1}(\lambda)\right) \det \left(\mathbf{S}_n^{-1}(\lambda)\right) = \sigma^{2n} \det \left(\mathbf{S}_n(\lambda)\right)^{-2}.$
- $(\operatorname{Var}[\boldsymbol{y}_n])^{-1} = \frac{1}{\sigma^2} \boldsymbol{S}'_n(\lambda) \boldsymbol{S}_n(\lambda).$
- Finally,

$$(\mathbf{y}_{n} - \mathbb{E}[\mathbf{y}_{n}])' (\mathbb{V}\operatorname{ar}[\mathbf{y}_{n}])^{-1}(\mathbf{y}_{n} - \mathbb{E}[\mathbf{y}_{n}])$$

$$= \frac{1}{\sigma^{2}} (\mathbf{y}_{n} - \mathbf{S}_{n}^{-1}(\lambda)\mathbf{X}_{n}\boldsymbol{\beta})' \mathbf{S}_{n}'(\lambda)\mathbf{S}_{n}(\lambda) (\mathbf{y}_{n} - \mathbf{S}_{n}^{-1}(\lambda)\mathbf{X}_{n}\boldsymbol{\beta})$$

$$= \frac{1}{\sigma^{2}} (\mathbf{S}_{n}(\lambda)\mathbf{y}_{n} - \mathbf{X}_{n}\boldsymbol{\beta})' (\mathbf{S}_{n}(\lambda)\mathbf{y}_{n} - \mathbf{X}_{n}\boldsymbol{\beta}).$$

The claim follows after combining these intermediate results.

2. Concentrate the log-likelihood with respect to σ^2 and show that

$$\widehat{\sigma}^2(\lambda) = \frac{1}{n} \boldsymbol{y}_n' \boldsymbol{S}_n'(\lambda) \boldsymbol{M}_X \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n,$$

where $\mathbf{M}_X = \mathbf{I}_n - \mathbf{X}_n (\mathbf{X}_n' \mathbf{X}_n)^{-1} \mathbf{X}_n'$.

Solution: A straightforward calculation (σ^2 is only a scalar) gives

$$\frac{\partial}{\partial \sigma^2} \log L_n(\boldsymbol{\theta}) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \Big(\boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big)' \Big(\boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big) \\
= -\frac{n}{2\sigma^4} \left(\sigma^2 - \frac{1}{n} \Big(\boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big)' \Big(\boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big) \right).$$

The optimal value for σ^2 (given λ and β) is

$$\widehat{\sigma}^2(\lambda, \boldsymbol{\beta}) = \frac{1}{n} \Big(\boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big)' \Big(\boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big).$$

As we have determined the optimal choice of β , $\widehat{\beta}(\lambda) = (X'_n X_n)^{-1} X'_n S_n(\lambda) y_n$, we can substitute. The substitution is easier if one realises that

$$egin{aligned} oldsymbol{S}_n(\lambda) oldsymbol{y}_n - oldsymbol{X}_n igl(oldsymbol{X}_n' oldsymbol{X}_n')^{-1} oldsymbol{X}_n' oldsymbol{S}_n(\lambda) oldsymbol{y}_n \ &= igl[oldsymbol{I}_n - oldsymbol{X}_n igl(oldsymbol{X}_n' oldsymbol{X}_n)^{-1} oldsymbol{X}_n' igr] oldsymbol{S}_n(\lambda) oldsymbol{y}_n = oldsymbol{M}_X oldsymbol{S}_n(\lambda) oldsymbol{y}_n. \end{aligned}$$

Noting that M_X is idempotent (i.e. $M_X = M_X'$ and $M_X^2 = M_X$), we recover

$$egin{aligned} \widehat{\sigma}^2(\lambda) &= \widehat{\sigma}^2(\lambda, \widehat{oldsymbol{eta}}(\lambda)) = rac{1}{n} \Big(oldsymbol{M}_X oldsymbol{S}_n(\lambda) oldsymbol{y}_n \Big)' \Big(oldsymbol{M}_X oldsymbol{S}_n(\lambda) oldsymbol{y}_n \Big) \ &= rac{1}{n} oldsymbol{y}_n' oldsymbol{S}_n'(\lambda) oldsymbol{M}_X oldsymbol{S}_n(\lambda) oldsymbol{y}_n. \end{aligned}$$

3. Derive the concentrated log-likelihood

$$\log L_n(\lambda) = -\frac{n}{2} \left(\log(2\pi) + 1 \right) - \frac{n}{2} \log \left(\widehat{\sigma}^2(\lambda) \right) + \log \left(\det(\mathbf{S}_n(\lambda)) \right).$$

Solution: We only need to substitute $\widehat{\beta}(\lambda)$ and $\widehat{\sigma}^2(\lambda)$. The details are below:

$$\log L_n(\lambda) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log\left(\widehat{\sigma}^2(\lambda)\right) + \log\left(\det(\mathbf{S}_n(\lambda))\right)$$
$$-\frac{1}{2\widehat{\sigma}^2(\lambda)} \left(\mathbf{S}_n(\lambda)\mathbf{y}_n - \mathbf{X}_n\widehat{\boldsymbol{\beta}}(\lambda)\right)' \left(\mathbf{S}_n(\lambda)\mathbf{y}_n - \mathbf{X}_n\widehat{\boldsymbol{\beta}}(\lambda)\right)$$
$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log\left(\widehat{\sigma}^2(\lambda)\right) + \log\left(\det(\mathbf{S}_n(\lambda))\right) - \frac{n}{2}$$
$$= -\frac{n}{2} \left(\log(2\pi) + 1\right) - \frac{n}{2} \log\left(\widehat{\sigma}^2(\lambda)\right) + \log\left(\det(\mathbf{S}_n(\lambda))\right)$$