PROBLEM sp-24-FINAL.1:

This problem is related to the above block diagram of an ideal C-to-D converter, a filter, and an ideal D-to-C converter.

(a) [2 points] If the output from the ideal C-to-D converter is $x[n] = 3\cos(0.5\pi n)$, and the sampling rate is 2000 samples/sec, then determine one possible value of the input frequency of x(t).

frequency 8000 Hz	
4000 Hz 2000 Hz	Pick a number from the list and enter its value in the answer box.
1600 Hz	£
1200 Hz	frequency =
1000 Hz	
800 Hz	
500 Hz	
400 Hz	
$_{ m 300~Hz}$	

(b) [3 points] If the input is $x(t) = 2\cos(100\pi t - 0.1\pi) - 7\cos(250\pi t + 0.2\pi)$, and the system is given as $h[n] = \delta[n] - \frac{\sin(0.4\pi n)}{\pi n}$, that y(t) = 0 without aliasing. find the smallest sampling frequency, $f_s = f_{min}$, such

Enter the value in the answer box. $f_{min} =$

(c) [2 points] Suppose that

$$x(t) = \cos(400\pi t + \pi/2) + \cos(200\pi t + \pi/2).$$

Determine one value of f_s such that x[n] = 0.

frequency	
8000 Hz	
$4000~\mathrm{Hz}$	D: 1
2000 Hz	Pick a
$1600~\mathrm{Hz}$	
1200 Hz	$f_s =$
1000 Hz	
$800~\mathrm{Hz}$	
$500~\mathrm{Hz}$	
$400~\mathrm{Hz}$	

 $300~\mathrm{Hz}$

Pick a number from the list and enter its value in the answer box.

(d) [5 points] Suppose that $x(t) = \cos(500\pi t)$ and $y(t) = 0.75\cos(200\pi t)$. Also, suppose that the discrete-time IIR system is given by the following difference equation: $y[n] = a_1y[n-1] + x[n] + b_2x[n-2]$. Determine a value for f_s that is larger than 200 Samples/s. The same f_s is used at both the Ideal C-to-D converter and the Ideal D-to-C converter.

frequency
750 Hz
700 Hz
$650~\mathrm{Hz}$
600 Hz
$550~\mathrm{Hz}$
$500~\mathrm{Hz}$
$450~\mathrm{Hz}$
400 Hz
$350~\mathrm{Hz}$
300 Hz

[2 points] Pick a number from the list and enter its value in the answer box. $f_s =$

[3 points] Determine the value of a_1 when the value for b_2 is given as $b_1 = 0.25$.

$a_1 =$	
a -	
_	

(e) [2 points] Suppose that the discrete-time LTI system is defined by the following difference equation:

$$y[n] = x[n] + b_1x[n-1] + x[n-2] + a_1y[n-1].$$

In this part, let $a_1 = -0.3$. The overall system can be used to null one continuous-time sinusoid. The frequency that is nulled is controlled by the value of b_1 . If the sampling rate is $f_s = 8000 \text{ Hz}$, find the value of b_1 so that the overall system nulls out a sinusoid at 60 Hz.

$$b_1 =$$

(f) [2 points] Suppose that the discrete-time LTI system is defined by the following difference equation:

$$y[n] = x[n] + b_1x[n-1] + x[n-2] + a_1y[n-1].$$

In this part, let $a_1 = 0$ and $b_1 = 1$. If the input x(t) = 1 for all t, what is y(t) for all t?

$$y(t) =$$

PROBLEM sp-24-FINAL.2:

The above block diagram depicts a cascade connection of three LTI systems. Suppose that the system function for system # 1 is given as $H_1(z) = 2 - 2z^{-5}$. Also, suppose that system # 2 is an FIR filter described by the following difference equation: $y[n] = 3y_1[n] + 3y_1[n-5]$.

(a) [2 points] Make a pole-zero plot for the first system, system # 1. Account for all poles and zeros.

(b) [2 points] If we would like to replace the first two systems, # 1 and # 2, with a single overall system that has an impulse response h[n], determine h[n] as a sum of scaled and shifted delta functions.

h[n] =

(c) [3 points] What is y[n] when $x[n] = \cos(\pi n + \pi/5)$.

y[n] =

(d) [2 points] Suppose that $y[n] = 6\delta[n-2] - 6\delta[n-12]$ is the output of system# 2 when $x[n] = \delta[n-B]$, where B is an integer. Determine the value of B.

B =

(e) [4 points] We would like to design system# 3 such that it inverts the cascade of the first two systems, $H_1(z)$ and $H_2(z)$. Suppose that system# 3 can be defined by the following difference equation: $w[n] = a_1w[n-1] + a_{10}w[n-10] + b_0y[n] + b_{10}y[n-10]$.

Determine the values of a_1 , a_{10} , b_0 , and b_{10} .

$$a_1 =$$

$$a_{10} =$$

$$b_0 =$$

$$b_{10} =$$

PROBLEM sp-24-FINAL.3:

(a) [2 points Each] Below are the pole-zero plots of the system functions, H(z), of several discrete-time systems. Also, there are plots of impulse responses, h[n], on the next page. For each pole-zero plot, enter the letters of the matching impulse response. There are more impulse response plots than pole-zero plots.

This page is left blank so that you can use it as work space.

(b) [2 points Each] Below are the pole-zero plots of the system functions, H(z), of several discrete-time systems. Also, there are plots of frequency responses, $H(e^{j\omega})$, on the next page. For each pole-zero plot, enter the letters of the matching frequency response. There are more frequency response plots than pole-zero plots.

This page is left blank so that you can use it as work space.

PROBLEM sp-24-FINAL.4:

[3 points Each] Pick the correct frequency response characteristic and enter the number in the answer box. Each frequency response is used only once. There are more items on the right-hand list than on the left-hand list.

1.
$$H(e^{j\hat{\omega}}) = \frac{1}{1 - 0.5e^{-j\hat{\omega}}}$$

(b)
$$H(z) = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}$$

$$2. \quad H(e^{j\hat{\omega}}) = \frac{1}{1 + 0.5e^{-j\hat{\omega}}}$$

3. $H(e^{j\hat{\omega}}) = 2e^{-j2\hat{\omega}}(0.5 + \cos(\hat{\omega}) + \cos(2\hat{\omega}))$

(d)
$$h[n] = \sum_{k=0}^{3} \delta[n-k]$$

5.
$$|H(e^{j\hat{\omega}})| = 2\cos(\hat{\omega}/2)$$

4. $H(e^{j\hat{\omega}}) = \frac{1}{1-e^{-j0.5\hat{\omega}}}$

(e)
$$y[n] = x[n-1] + 2x[n-3] + x[n-5]$$

6.
$$H(e^{j\hat{\omega}}) = \frac{\sin(2\hat{\omega})}{\sin(0.5\hat{\omega})}e^{-j1.5\hat{\omega}}$$

(f)
$$y[n] = \frac{1}{2}y[n-1] + x[n]$$

7.
$$\angle H(e^{j\hat{\omega}}) = -3\hat{\omega}$$

8. $|H(e^{j\hat{\omega}})| = 0.5\cos(2\hat{\omega})$

This page is left blank so that you can use it as work space.

PROBLEM sp-24-FINAL.5:

The parts in this problem are independent from each other.

(a) [6 points] Two periodic sequences are given as follows:

n	 0	1	2	3	4	5	6	7	8	9	10	11	12	
$x_1[n]$	 1	0.5	-0.5	-1	-0.5	0.5	1	0.5	5	-1	-0.5	0.5	1	
$x_2[n]$	 0	2	0	-2	0	2	0	-2	0	2	0	-2	0	

Note that the two signals have different periodicity. Suppose that we add the two signals to have a new periodic signal $x[n] = x_1[n] + x_2[n]$. For the sequence x[n], n = 0, ..., 11, determine the 12-point DFT sequence and write the values in the following table.

Hint: Write $x_1[n]$ and $x_2[n]$ as simple sinusoids.

0	1	2	3	4	5
		6			
6	7	8	9	10	11
	6	6 7	6 7 8	6 7 8 9	0 1 2 3 4 6 7 8 9 10

(b) [2 points] Suppose the DFT, X[k], of a sequence x[n] shown below, is real. That is, $X^*[k] = X[k]$ for k = 0, ..., 7. Can the unknown values of x[n] be determined? If yes, give the missing values. If no, then justify your answer.

 $\{1, 7, ?, ?, 1, 6, 5, 7\}$

circle one YES (give the missing values below) or NO (justify)

(c) [1 point Each] Shown below are different outcomes that result from executing the following MATLABCOde:

stem(abs(fft(ones(1,L),N));

s Match each plot with the corresponding values for the variables N nd L by writing a letter (A through I) in each answer box.

$$L = 2$$
, $N = 64$ **ANS** =

$$L = 3$$
, $N = 64$ ANS =

$$L = 15$$
, $N = 16$ ANS =

PROBLEM sp-24-FINAL.6:

The parts in this problem are independent from each other.

(a) [4 points] Simplify the following expression of x[n] with a single term.

$$x[n] = \sum_{k=-\infty}^{\infty} \frac{\sin(0.7\pi k)}{\pi k} \cdot \frac{\sin(0.85\pi (n-k))}{\pi (n-k)}$$

$$x[n] =$$

(b) [4 points] Determine the fundamental frequency of the signal

$$x(t) = \cos(40\pi t)\cos(24\pi t) + \cos(60\pi t)$$

$$f_0 =$$
Hz

(c) $[4 \ points]$ Running the following Matlab code produces the plot below, for a specific value of the parameter W.

```
fsamp = 2400;
tmax = 4;
tt = 0:(1/fsamp):tmax;
xx = real((20+15*j)*exp(j*2*pi*W*(tt.^2)));
spectrogram(xx,128,120,512,fsamp,'yaxis')
```


Note that the y-axis is in kHz, i.e., the highest frequency shown is 1200 Hz. Determine the numerical value of the parameter W in the MATLAB code.

W =
