Hierarchical & Spectral clustering Lecture 13

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

 How should we define "closest" for clusters with multiple elements?

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
- Different choices create different clustering behaviors

 How should we define "closest" for clusters with multiple elements?

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

[Pictures from Thorsten Joachims]

Clustering Behavior

Mouse tumor data from [Hastie et al.]

When can this be expected to work?

Closest pair (single-link clustering)

Strong separation property:

All points are more similar to points in their own cluster than to any points in any other cluster

Then, the true clustering corresponds to some **pruning** of the tree obtained by single-link clustering!

Slightly weaker (stability) conditions are solved by average-link clustering

(Balcan et al., 2008)

Spectral Clustering

Slides adapted from James Hays, Alan Fern, and Tommi Jaakkola

Spectral clustering

[Shi & Malik '00; Ng, Jordan, Weiss NIPS '01]

Spectral clustering

[Figures from Ng, Jordan, Weiss NIPS '01]

Spectral clustering

Group points based on links in a graph

How to Create the Graph?

 It is common to use a Gaussian Kernel to compute similarity between objects

$$W(i,j) = \exp \frac{-|x_i - x_j|^2}{\sigma^2}$$

- One could create
 - A fully connected graph
 - K-nearest neighbor graph (each node is only connected to its K-nearest neighbors)

Can we use minimum cut for clustering?

Fig. 1. A case where minimum cut gives a bad partition.

Graph partitioning

Graph Terminologies

Degree of nodes

$$d_i = \sum_j w_{i,j}$$

Volume of a set

$$vol(A) = \sum_{i \in A} d_i, A \subseteq V$$

Graph Cut

Consider a partition of the graph into two parts A and B

• Cut(A, B): sum of the weights of the set of edges that connect the two groups $Cut(A, B) = \sum w = 0.3$

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij} = 0.3$$

 An intuitive goal is find the partition that minimizes the cut

Normalized Cut

 Consider the connectivity between groups relative to the volume of each group

$$Ncut(A, B) = \frac{cut(A, B)}{Vol(A)} + \frac{cut(A, B)}{Vol(B)}$$

$$Ncut(A, B) = cut(A, B) \frac{Vol(A) + Vol(B)}{Vol(A)Vol(B)}$$

Minimized when Vol(A) and Vol(B) are equal. Thus encourage balanced cut

Solving NCut

• How to minimize *Ncut*?

Let W be the similarity matrix, $W(i, j) = W_{i,j}$; Let D be the diag. matrix, $D(i, i) = \sum_{j} W(i, j)$; Let x be a vector in $\{1,-1\}^N$, $x(i) = 1 \Leftrightarrow i \in A$.

With some simplifications, we can show:

$$\min_{x} Ncut(x) = \min_{y} \frac{y^{T}(D - W)y}{y^{T}Dy}$$
Rayleigh quotient

Subject to: $y^T D1 = 0$ (y takes discrete values)

NP-Hard!

Solving NCut

 Relax the optimization problem into the continuous domain by solving generalized eigenvalue system:

$$\min_{y} y^{T}(D - W)y$$
 subject to $y^{T}Dy = 1$

- Which gives: $(D W)y = \lambda Dy$
- Note that (D W)1 = 0, so the first eigenvector is $y_0 = 1$ with eigenvalue 0.
- The second smallest eigenvector is the real valued solution to this problem!!

2-way Normalized Cuts

- 1. Compute the affinity matrix W, compute the degree matrix (D), D is diagonal and $D(i,i) = \sum_{j \in V} W(i,j)$
- 2. Solve $(D W)y = \lambda Dy$, where D W is called the Laplacian matrix
- 3. Use the eigenvector with the second smallest eigen-value to bipartition the graph into two parts.

Creating Bi-partition Using 2nd Eigenvector

- Sometimes there is not a clear threshold to split based on the second vector since it takes continuous values
- How to choose the splitting point?
 - a) Pick a constant value (0, or 0.5).
 - b) Pick the median value as splitting point.
 - c) Look for the splitting point that has the minimum Ncut value:
 - 1. Choose *n* possible splitting points.
 - 2. Compute *Ncut* value.
 - Pick minimum.

Spectral clustering: example

Spectral clustering: example cont'd

Components of the eigenvector corresponding to the second largest eigenvalue

K-way Partition?

- Recursive bi-partitioning (Hagen et al., '91)
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner.
 - Disadvantages: Inefficient, unstable
- Cluster multiple eigenvectors
 - Build a reduced space from multiple eigenvectors.
 - Commonly used in recent papers
 - A preferable approach... its like doing dimension reduction then k-means

Beyond bi-partition

