Variational Autoencoders (VAE)

Mir Murtaza (PhD. Fellow)

Lecture Outline

First Preliminary Topics:

Maximum Likelihood Estimation (MLE)

Bayes Theorem

Generative and Discriminative Models

Variational Autoencoders (VAE):

Representation

Learning Mechanism

Maximum Likelihood Estimation (MLE)

 We seek to uncover general laws and principles that govern the behaviour under investigation

We formulate hypotheses to study these laws and principles

Such hypotheses are stated in terms of probability distributions called models

Probability Distribution Functions

Illustration on Board ...

MLE Process

- Statistically speaking, a data vector $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m)$ is a random sample from an unknown population
- Goal is to identify the population that generated the data
- Each of the population is identified by a corresponding probability distribution
- And a model is specified by a family of probability distributions
- For e.g $f(x|\Theta)$ denotes the probability density function (pdf) of observing data x given the parameters Θ

Mathematical Formulation of MLE

- The task is find the Θ that maximizes the probability
- $L(\Theta) = P(X_1 = x_1, X_2 = x_2, ..., X_3 = x_3) = f(x_1; \Theta).f(x_2, \Theta)...f(x_n, \Theta) = \sum_i f(x_i, \Theta)$
- Θ MLE = argmax L(Θ)
- Θ MLE = argmin Log L(Θ)
- $\partial \Theta MLE = 0$

MLE Derivation for Mean (µ) for a Gaussian Distribution

$$\Theta = \{\mu, \sigma 2\}$$

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Generative Models

Estimate the model → Define the classifier

Bayes Rule

$$P(a|b) = \frac{P(b|a) * P(a)}{P(b)}$$
Posterior
$$P(b|a) * P(b)$$
Normalization

Probabilistic Graphical Models

Generative and Discriminative Models

Generative models learn P(x, y) Use the capacity of the model to characterize how the data is generated (both inputs and outputs) Eg: Naïve Bayes, Hidden Markov Model Discriminative models learn P(y | x) Use model capacity to characterize the decision boundary only Eg: Logistic Regression, Conditional models (several names), most neural models

Deep Learning or Deep Representation Learning

Autoencoders

Features Learned?

Autoencoders

Basic Principle ...

The simpler the explanation of data, the more likely it is correct.

Goal is to maximally compress the data ...

As we did in the MLE example: parameterized distribution for a population, dataset ...

Variational Autoencoders (VAE)

Graphical Representation:

Prior: P(z) Latent Representation

Generate Data: P(x|z)

Bayes Rule: $P(x|z) \sim P(z|x) P(x) / evidence$

P(z|x) is computationally intractable

Approximate $P(z|x) \sim q(z|x)$

VAE

P(q|x):

Constraint P(q|x) to be a gaussian family of distributions...

Neural Net Approximator

Loss: L = -log p(z) / q(z|x)

-- Learn parameters: compute function gradients

with stochastic gradient descent +

-- Update hidden layer weights via

backpropagation

Generation (Imagination)

- 1) Choose $z \sim p(z)$
- 2) Calculate p(x|z)
- 3) Choose $x \sim p(x|z)$

Single pass through VAE

Very Efficient !!!

VAE Generation Results

Data

Mean Samples

Samples