Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences

Yixin Cao National University of Singapore caoyixin2011@gmail.com Xiang Wang National University of Singapore xiangwang1223@gmail.com Xiangnan He*
University of Science and Technology
of China
xiangnanhe@gmail.com

Zikun Hu National University of Singapore zikunhu1016@gmail.com Tat-Seng Chua National University of Singapore dcscts@nus.edu.sg

> 51194506043 杨姕荆

Translation-based User Preference model (TUP)

Figure 1: An illustrative example on the necessity of considering the missing relations in KG for recommendation.

Related Work—Item Recommendation

- similarity based methods: CF, matrix factorization techniques
- similarity-based methods with NN: LSTM, RNN
- content-based methods: reviews, relational data, knowledge graph
- translation-based recommendation

Knowledge Graph:

- embedding-based
- path-pased

Related Work—KG Completion

- translational distance models
- semantic matching models.

Relationship between Two Tasks

- translational distance models
- semantic matching models.

Tasks and Notations

- Item Recommendation :
 - Input: Y={(u,i)}; targrt user:u
 - Output: top-N items
- KG Completion:
 - predict the missing entity e_h or e_t for a triple (e_h,e_t,r)
- TUP
 - item recommendation
 - Input:Y Output: g(u,i:p)
- KTUP
 - multi-task architecture
 - Input: KG, Y, A={(i,e)}
 - Output: g(u,i:p) f(e_h,e_t,r)

Figure 1: An illustrative example on the necessity of considering the missing relations in KG for recommendation.

TransH for KG Completion

• TransE: $e_h + r = e_t$

• TransH:
$$f(e_h, e_t, r) = ||e_{\frac{1}{h}} + r - e_{\frac{1}{t}}||$$

$$e_{\frac{1}{h}} = e_h - w_r^T e_h w_r$$

$$e_{\underline{1}} = e_t - w_r^T e_t w_r$$

Figure 2: Illustration of the two translation schemes for item recommendation

$$\mathcal{L}_k = \sum_{(e_h, e_t, r) \in \mathcal{KG}} \sum_{(e_h', e_t', r') \in \mathcal{KG}^-} [f(e_h, e_t, r) + \gamma - f(e_h', e_t', r')]_+$$

TUP FOR ITEM RECOMMENDATION

- Preference Induction
 - Hard Strategy: Straight-Through(ST) Gumbel SoftMax

$$\phi(p) = \frac{\exp(\log(\pi_p))}{\sum_{j=1}^{P} \exp(\log(\pi_j))}$$

$$z_p = \begin{cases} 1, & p = \arg\max_{j}(\log(\pi_j) + g_j) & \phi(u, i, p) = \text{Similarity}(\mathbf{u} + \mathbf{i}, \mathbf{p}) \\ 0, & \text{otherwise} \end{cases}$$

$$y_p = \frac{\exp((\log(\pi_p) + g_p)/\tau)}{\sum_{j=1}^{P} \exp((\log(\pi_j) + g_j)/\tau)}$$

• Soft Strategy:

$$p = \sum_{p \in P} \alpha_{p} p' \qquad \alpha_{p} - \Phi(u, i, p')$$

Hyperplane-based Translation.

$$\mathbf{u}^{\perp} = \mathbf{u} - \mathbf{w}_{p}^{\mathsf{T}} \mathbf{u} \mathbf{w}_{p}$$

$$\mathbf{i}^{\perp} = \mathbf{i} - \mathbf{w}_{p}^{\mathsf{T}} \mathbf{i} \mathbf{w}_{p}$$

$$\mathbf{w}_{p} = \sum_{p' \in \mathcal{P}} \alpha_{p'} \mathbf{w}_{p'}$$

$$\mathcal{L}_{p} = \sum_{(u,i) \in \mathcal{Y}} \sum_{(u,i') \in \mathcal{Y}'} -\log \sigma[g(u,i';p') - g(u,i;p)]$$

Figure 2: Illustration of the two translation schemes for item recommendation

JOINT LEARNING VIA KTUP FOR TWO TASKS

Figure 3: Framwork of KTUP. At the top is TUP for item recommendation including two components: preference induction and hyperplane-based translation. KTUP jointly learns TUP and TransH to enhance the item and preference modeling by transfering knowledge of entities as well as relations.

KTUP

• knowledge enhanced TUP translation function: $g(u,i;p) = ||\mathbf{u}^{\perp} + \hat{\mathbf{p}} - \hat{\mathbf{i}}^{\perp}||$

Entity

- projected: $\hat{\mathbf{i}}^{\perp} = \hat{\mathbf{i}} \hat{\mathbf{w}}_{p}^{T} \hat{\mathbf{i}} \hat{\mathbf{w}}_{p}$
- knowledge enhanced: $\hat{\mathbf{i}} = \mathbf{i} + \mathbf{e}, \ (i, e) \in \mathcal{A}$

Relation

- translation vector: $\hat{\mathbf{p}} = \mathbf{p} + \mathbf{r}$
- projection vector: $\hat{\mathbf{w}}_p = \mathbf{w}_p + \mathbf{w}_r$

Training

$$\mathcal{L} = \lambda \mathcal{L}_p + (1 - \lambda) \mathcal{L}_k$$

Relationship to SOTA Models - Baseline

- Item Recommendation
 - Typical similarity-based methods:FM, BPRMF
 - CFKG
 - CKE
 - CoFM
- Implicity of User Preference
- Variety of User Preference
- Transfered Knowledge from KG

EXPERIMENTS

- Datasets:
 - MovieLens-1m DBPedia
 - DBbook20142

Table 1: Statistics of MovieLens-1m and DBbook2014

		MovieLens-1m	DBbook2014		
	# Users	6,040	5,576		
User-Item	# Items	3,240	2,680		
Interactions	# Ratings	998,539	65,961		
interactions	# Avg. ratings	165	12		
	Sparsity	94.9%	99.6%		
	# Entity	14,708	13,882		
KG	# Relation	20	13		
	# Triple	434,189	334,511		
	# Item-Entity	2,934	2,534		
Multi-Tasks	Alignments	2,934			
	Coverage	90.6%	94.6%		

Item Recommendation

• Metrics: Precision@N, Recall@N, F1score@N, Hitratio@N, nDCG@N

Table 2: Overall performance on Item Recommendation

	MovieLens-1m (@ 10, %)				DBbook2014 (@10, %)					
	Precision	Recall	F1	Hit	NDCG	Precision	Recall	F1	Hit	NDCG
FM	29.28	11.92	13.81	81.06	59.48	3.44	21.55	5.75	30.15	20.10
BPRMF	30.81	12.95	14.84	83.18	61.02	3.56	22.46	5.96	31.26	21.01
CFKG	29.45	12.49	14.23	82.24	58.97	3.17	19.69	5.30	28.09	19.87
CKE	38.67	16.65	18.94	88.36	67.05	3.92	23.41	6.51	33.18	27.78
CoFM (share)	32.08	13.02	15.12	83.30	58.69	3.41	20.78	5.67	29.84	20.92
CoFM (reg)	31.74	12.74	14.87	82.67	58.66	3.32	20.54	5.54	28.96	20.53
TUP (hard)	37.29	17.07	18.98	89.60	67.40	3.40	21.11	5.67	29.56	20.19
TUP (soft)	37.00	16.79	18.76	89.47	67.02	3.62	22.81	6.06	31.42	21.54
KTUP (hard)	40.87	17.24	19.79	88.97	69.65	4.04	24.48	6.71	34.49	27.38
KTUP (soft)	41.03	17.25	19.82	89.03	69.92	4.05	24.51	6.73	34.61	27.62

Influence of Training Data Sparsity

Figure 4: Influence of Different Sparsity on MovieLens-1m. The x-axis shows 10 user groups splited according to interaction number, the left y-axis corresponds to the bars indicating the number of interactions in each user group, and the right y-axis denotes F1-score of curves.

KnowledgeGraph Completion

• Metrics:

- Hit ratio@N
- Mean Rank

Table 4: Overall performance on KG Completion

	MovieLe	ns-1m	DBbook2014		
	Hit@10 Mea		Hit@10	Mean	
	(%)	Rank	(%)	Rank	
TransE	46.95	537	60.71	531	
TransH	47.63	537	60.06	556	
TransR	38.93	609	56.33	563	
CFKG	41.56	523	58.83	547	
CKE	34.37	585	54.66	593	
CoFM (share)	46.62	515	57.01	529	
CoFM (reg)	46.51	506	60.81	521	
KTUP (hard)	48.39	525	60.53	501	
KTUP (soft)	48.90	527	60.75	499	

Table 3: Performance on MovieLens by Relation Category

Task	Prediction Head (Hits@10, %)				Prediction Tail (Hits@10, %)			
Relation Category	1-to-1	1-to-N	N-to-1	N-to-N	1-to-1	1-to-N	N-to-1	N-to-N
TransE	59.62	56.76	64.55	24.56	65.38	62.16	78.52	46.25
TransH	61.54	48.65	65.73	25.51	57.69	78.38	75.62	46.73
TransR	17.31	29.73	32.88	18.50	17.31	43.24	53.12	38.88
CFKG	59.62	51.35	63.31	20.30	57.69	70.27	78.56	41.22
CKE	19.23	21.62	24.16	14.81	7.69	24.32	37.83	34.82
CoFM (share)	65.38	59.46	66.13	24.42	61.54	72.97	81.05	45.99
CoFM (reg)	69.23	70.27	66.09	24.30	48.08	86.49	80.72	45.79
KTUP (hard)	67.31	59.46	66.42	25.67	57.69	81.08	79.22	47.24
KTUP (soft)	75.00	56.76	67.16	26.09	63.46	81.08	78.34	47.65

Mutual Benefits of Two Tasks

Figure 5: Correlation of Training Curves between Two Tasks on DBbook2014, which is denoted by the Pearson's correlation coefficient ρ . The x-axis is training epoch, the left y-axis corresponds to KG completion via hit ratio, and the right y-axis is for item recommendation through F1. (Note that we scale the values of both F1 and Hit Ratio to the same magnitude.)

Case Study

Figure 6: Real Example from MovieLens-1m

CONCLUSION

- translation-based recommender model TUP
- TUP+KG model explainability

FUTURE

- multi-hop entity relations more complex user preferences
- KG reasoning