# **Topological Quantum Computation Problems**

#### Alec Lau

In spring 2018, Shawn X. Cui taught an excellent seminar on topological quantum computation, and these were the homework problems.

### **Contents**

| 1 | Logical operators in toric code                      | 1          |
|---|------------------------------------------------------|------------|
| 2 | $V_{gs}$ is an error-correcting code                 | 5          |
| 3 | Braiding statistics of quasi-particles in toric code | $\epsilon$ |
| 4 | Single-particle excitation on a torus                | 7          |
| 5 | Local operators interpreted as ribbon operators      | 12         |

### 1 Logical operators in toric code

**Question.** In class, we studied string operators  $S^Z(t)$  and  $S^Z(t')$  where t and t' are string operators on the lattice and dual lattice, respectively. By definition,  $S^Z(t)$  acts by Pauli Z on each edge of t and by identity otherwise. Similarly,  $S^X(t')$  acts by Pauli X on each edge crossed by t' and by identity otherwise. Consider the case where both t,t' are closed strings. Let  $V_{gS}$  be the ground state space.

• Show that  $S^Z(t)$  and  $S^X(t')$  preserve  $V_{gs}$  for arbitrary closed strings t,t'. Moreover, show that the action of these operators on  $V_{gs}$  only depends on the isotopy class of the strings. In particular, this means if a closed string is contractible, the corresponding string operator acts by identity on ground states.



Figure 1: Closed strings in the lattice and dual lattice on the torus.

• By the previous result, there are four string operators of Z-type which are  $\{S^Z(\emptyset), S^Z(m), S^Z(l), S^Z(m \cup l)\}$ , where  $\emptyset$  is the empty string or any contractible string, m is a loop along the horizontal direction, and l is a loop along the vertical direction. See Figure 4. Similarly, there are four strings of X-type,  $\{S^X(\emptyset), S^X(m), S^X(l), S^X(m \cup l)\}$ . Let

$$\hat{Z}_1 = S^Z(m), \hat{Z}_2 = S^Z(l),$$
 (1)

$$\hat{X}_1 = S^X(l'), \hat{X}_2 = S^X(m') \tag{2}$$

Show that on the ground states the commutation relations between the operators  $\{\hat{Z}_1, \hat{Z}_2, \hat{X}_1, \hat{X}_2\}$  behave like the usual Pauli operators  $\{Z_1, Z_2, X_1, X_2\}$ . These operators are the logical operators.

• Show that the space of logical operators, i.e. those preserving  $V_{gs}$ , is generated as an algebra by  $\{\hat{Z}_1, \hat{Z}_2, \hat{X}_1, \hat{X}_2\}$ . (Hint: the space of all operators on a physical qubit has a basis given by  $\{Id, X, Z, XZ\}$ .)

*Proof.* • The Hamiltonian on toric code is given by

$$H := \sum_{v \in V} (1 - A_v) + \sum_{p \in F} (1 - B_p)$$
 (3)

for

$$A_{v} := (\bigotimes_{e \in star(v)} X) \otimes (\bigotimes_{e \in E - star(v)} Id), \tag{4}$$

$$B_p := (\bigotimes_{e \in \partial p} Z) \otimes (\bigotimes_{e \in E - \partial p} Id) \tag{5}$$

and F the set of plaquettes, E is the set of edges, and V the set of vertices. Thus the ground state  $V_{gs}$  is given by

$$V_{gs} = \{ |\psi\rangle \in \mathcal{H}_{T^2} = \bigotimes_{e \in E} \mathbb{C}^2 : A_v |\psi\rangle = |\psi\rangle, B_p |\psi\rangle = |\psi\rangle, \forall v \in V, p \in F \}$$
(6)

First off, we examine the commutators  $[A_v, S^Z(t)], [B_p, S^Z(t)], [A_v, S^X(t')],$  and  $[B_p, S^X(t')]$  for t, t' closed loops. If t is a closed loop, every vertex in t must be connected to an even number of edges in t; a vertex in t connected to an odd number of edges in t would be a boundary of t, which is supposed to be closed. If v is a vertex that isn't in t, then  $A_v$  must commute with  $S^Z(t)$ , as they are acting on different tensor factors. If v is a vertex in t, it is adjacent to either 2 or 4 edges in t. Thus every vertex in t has an even number of t operators in the tensor product. By inspection, t and t in t has an even number as well. Furthermore, since t only consists of t operators and identity operators, and so does t only consists of t operators and identity operators, and so does t only consists of t of or all t in t in

Similarly, for a plaquette  $p \in F$  in t', there can either be 2 or 4 dual edges in p, and thus either 2 or 4 edges in  $\partial p$ . By the same reasoning as above,  $S^X(t')B_p = (-1)^{2,4}B_pS^X(t') = B_pS^X(t')$ , so  $[B_p, S^X(t')] = 0, \forall p \in t'$ . Similarly,  $A_v$  is comprised only of X operators and identity operators, and so is  $S^X(t')$ , so  $[A_v, S^X(t')]$  must be 0 for all  $p \in F$ . Note that this is true independently of the closed strings t, t'.

Let  $|\psi\rangle$  be a ground state, and define  $|\phi\rangle:=S^Z(t)\,|\psi\rangle$ ,  $|\phi'\rangle:=S^X(t')\,|\psi\rangle$ . From before, we have

$$A_{v} |\phi\rangle = A_{v} S^{Z}(t) |\psi\rangle = S^{Z}(t) A_{v} |\psi\rangle = S^{Z}(t) |\psi\rangle = |\phi\rangle$$
 (7)

$$B_{p}|\phi\rangle = B_{p}S^{Z}(t)|\psi\rangle = S^{Z}(t)B_{p}|\psi\rangle = S^{Z}(t)|\psi\rangle = |\phi\rangle$$
 (8)

and

$$A_{v}|\phi'\rangle = A_{v}S^{X}(t')|\psi\rangle = S^{X}(t')A_{v}|\psi'\rangle = S^{X}(t')|\psi\rangle = |\phi'\rangle$$
 (9)

$$B_p \left| \phi' \right\rangle = B_p S^X(t') \left| \psi \right\rangle = S^X(t') B_p \left| \psi \right\rangle = S^X(t') \left| \psi \right\rangle = \left| \phi' \right\rangle \quad (10)$$

Thus  $S^{Z}(t)$ ,  $S^{X}(t')$  preserve  $V_{gs}$ , if t, t' are closed strings.

Consider  $S^Z(t)|\psi\rangle$ . We can deform the action of  $S^Z(t)$  by acting by  $B_p$  on  $S^Z(t)$  where at least one edge in  $\partial p$  is in t. This deforms t around the plaquette p, because it acts by Z on the edges around p where t wasn't, and cancels out the edges around p where t already was, because  $Z^2 = Id$ . Similarly, we can deform the path of t' by acting by  $A_v$  on  $S^X(t')$  where at least one edge adjacent to v is crossed by an edge in t'. This deforms t' around the vertex v, because it acts by X on the dual edges around v where t' wasn't, and cancels out the dual edges around v where v wasn't, and cancels out the dual edges around v where v already was, by acting on such edges twice with v0, and thus acting on such edges by the identity. See the Figure 2 for an example.



Figure 2: Deformation of loops.

Thus if we get  $t_2$  by a deformation on  $t_1$ , we have  $S^Z(t_2) = B_{p_1}...B_{p_n}S^Z(t_2)$  for some plaquettes  $p_i, i \in \{1, ..., n\}$ . Thus, for  $|\psi\rangle$  a ground state, we have

$$S^{Z}(t_{2}) |\psi\rangle = B_{p_{1}}...B_{p_{n}} S^{Z}(t_{1}) |\psi\rangle = S^{Z}(t_{1}) |\psi\rangle$$
 (11)

$$S^{X}(t'_{2})|\psi\rangle = A_{v_{1}}...A_{v_{n}}S^{X}(t'_{1})|\psi\rangle = S^{X}(t'_{1})|\psi\rangle$$
 (12)

so although the operators  $S^X$ ,  $S^Z$  change with isotopy, their action on  $V_{gs}$  is preserved.

Up to isotopy, m intersects l' on only one edge of the lattice, as well as l and m'. Thus the commutation relations between  $\hat{Z}_1, \hat{X}_1$  and  $\hat{Z}_2, \hat{X}_2$  come down to their action on that one edge ( $\hat{Z}_1$  and  $\hat{X}_2$  need not intersect, and the same goes for  $\hat{Z}_2$  and  $\hat{X}_1$ ). Since their actions are Z and X, they must obey the same commutation relations as  $\{Z_1, Z_2, X_1, X_2\}$ .

Since the space of all operators on a qubit is generated by  $\{Z,X\}$ , and  $\{\hat{Z}_1,\hat{Z}_2,\hat{X}_1,\hat{X}_2\}$  is isomorphic as an algebra to  $\{Z_1,Z_2,X_1,X_2\}$ , the space of logical operators is generated by  $\{\hat{Z}_1,\hat{Z}_2,\hat{X}_1,\hat{X}_2\}$ .

# 2 $V_{gs}$ is an error-correcting code

**Question.** Let the square lattice  $\mathcal{L}$  in the definition of toric code have size  $L \times L$ , namely, there are L edges in the shortest non-contractible loop both along the horizontal direction and along the vertical direction. Let

$$P := \prod_{v \in V} \frac{Id + A_v}{2} \prod_{p \in F} \frac{Id + B_p}{2}$$
 (13)

Namely, P is the projector onto the ground space  $V_{gs}$ . Let  $\mathcal{O}$  be any operator acting on less than L qubits, namely,  $\mathcal{O}$  acts nontrivially on at most L-1 qubits. Show that

$$P\mathcal{O}P = \alpha_{\mathcal{O}}P,\tag{14}$$

for some scalar  $\alpha_{0}$ . ( $V_{gs}$  is an error-correcting code which corrects errors on arbitrary  $\lfloor \frac{L-1}{2} \rfloor$  qubits. (Hint: it suffices to show this equation for a basis of the space of operators acting on at most L-1 qubits. A basis for this space is given by

$$\{\prod_{e \in E} \mathscr{P}_e : \mathscr{P}_e \in \{Id, X, Z, XZ\}, \text{ and at most } L - 1 \mathscr{P}'_e \text{ s are not trivial}\}$$
 (15)

*Proof.* Each edge in  $\mathcal{L}$  is the side of two plaquettes and belongs to the star of two vertices. Thus, for each edge qubit e in some state [...  $\otimes e \otimes$  ...], we have

$$(\frac{2Id}{2})^{n_6}(\frac{Id+X}{2})(\frac{2Id}{2})^{n_5}(\frac{Id+X}{2})(\frac{2Id}{2})^{n_4}.$$
 (16)

$$(\frac{2Id}{2})^{n_3}(\frac{Id+Z}{2})(\frac{2Id}{2})^{n_2}(\frac{Id+Z}{2})(\frac{2Id}{2})^{n_1} \tag{17}$$

acting on e, with  $n_i \in \{0, ..., L^2 - 2\}$  depending on the order of ennumerating the vertices and plaquettes. This action on each e becomes

$$(\frac{Id+X}{2})(\frac{Id+X}{2})(\frac{Id+Z}{2})(\frac{Id+Z}{2}) = (\frac{Id+X}{2})(\frac{Id+Z}{2})$$
(18)

$$= (\frac{Id + X + Z + XZ}{4}) := P_e \quad (19)$$

For each edge, we have

$$P_e IdP_e = \frac{Id + X + Z + XZ}{8} = \frac{1}{2}P_e \tag{20}$$

$$P_e X P_e = P_e P_e = \frac{Id + X + Z + XZ}{8} = \frac{1}{2} P_e \tag{21}$$

$$P_e Z P_e = \frac{Id + X + Z + XZ}{8} = \frac{1}{2} P_e \tag{22}$$

$$P_e X Z P_e = -\frac{Id + X + Z + XZ}{8} = -\frac{1}{2} P_e \tag{23}$$

Thus, tensoring all the  $P_e$ s together to form P, we get

$$P \mathcal{O} P = \alpha_{\mathcal{O}} P \tag{24}$$

where  $\alpha_{\mathcal{O}}$  is a product of scalar multiples of  $\frac{1}{2}$ .

## 3 Braiding statistics of quasi-particles in toric code

**Question.** In class, we have shown that there are four types of quasi-particles, the vacuum 1, the electric charge e, the magnetic charge m, and the composite em of an electric charge with a magnetic charge. Consider a pair of electric charges e, and denote the state of such configuration by

$$|\psi_{in}\rangle = S^Z(t)|\epsilon\rangle$$
 (25)

where  $|\epsilon\rangle$  is some ground state. If we swap the two particles in counterclockwise direction, then the state becomes

$$|\psi_{fi}\rangle = S^Z(t')|\epsilon\rangle$$
 (26)

But since t and t' can be deformed to each other, we have  $|\psi_{in}\rangle = |\psi_{fi}\rangle$ . Hence the electric charge e is a boson. Similarly, the magnetic charge m is also a boson. However, show that the composite em is a fermion.

*Proof.* I assume that an *em* charge on the lattice is a site (adjacent vertex and dual vertex) on the lattice. Exchanging the *em* sites involves composing the paths creating the quasiparticles with a loop where the vertices of said loop are the locations of the particles:

$$|\psi_{em}\rangle := S^X(t')S^Z(t)|\epsilon\rangle \xrightarrow{exchange} S^X(t'\cup t'_{loop})S^Z(t\cup t_{loop})|\epsilon\rangle$$
 (27)

$$= S^X(t')S^X(t'_{loop})S^Z(t)S^Z(t_{loop})\left|\epsilon\right\rangle \quad (28)$$

$$=S^{X}(t')S^{X}(t'_{loop})S^{Z}(t)|\epsilon\rangle$$
 (29)

$$= -S^{X}(t')S^{Z}(t)S^{X}(t'_{loop})|\epsilon\rangle$$
 (30)

$$= -S^{X}(t')S^{Z}(t)|\epsilon\rangle \tag{31}$$

$$= - |\psi_{em}\rangle \tag{32}$$

since trivial (dual) loops act by identity on  $|\epsilon\rangle \in V_{gs}$ , and  $S^Z(t)$  intersects  $S^X(t'_{loop})$  once, since the vertices are adjacent, and thus they anticommute. Since the exchange operator gives a phase factor of -1, em charges are fermions.

### 4 Single-particle excitation on a torus

Recall Kitaev's quantum double model based on a finite group G on a torus. For  $\mathscr{L}$  an arbitrary lattice on the torus, we fix an orientation and associated to each edge the Hilbert space  $\mathbb{C}[G]$  for a total Hilbert space on  $\mathscr{L}$  denoted by  $\mathscr{H}_{tot}$ . We denote the set of all vertices V and the set of all plaquettes F. For each site s = (v, p) (for each vertex we associate the plaquette to its upper right) we have the operators: We further define

$$A(v) := \frac{1}{|G|} \sum_{g \in G} A_g(v), B(p) = B_e(v, p)$$
 (33)





Figure 3: Operators used to construct the Hamiltonian, for  $g, h \in G$ 

and then define the Hamiltonian by

$$H = \sum_{v \in V} (1 - A(v)) + \sum_{p \in F} (1 - B(p))$$
 (34)

where the ground state is

$$V_{gs} = \{ |\psi\rangle \in \mathcal{H}_{tot} : A(v) |\psi\rangle = |\psi\rangle, B(p) |\psi\rangle = |\psi\rangle \}$$
 (35)

**Question.** Single-particle excitations cannot occur on the sphere, but they can occur on the torus. Consider a square lattice on the torus. All horizontal edges are oriented to the right and all vertical edges are oriented upward. Let G be a finite group and let  $a,b \in G$  be two group elements which do not commute. Let  $r = aba^{-1}b^{-1}$ . Recall that on each edge lives a Hilbert space with the basis  $\{|g\rangle:g\in G\}$  and the total Hilbert space is the tensor product of the Hilbert space on all edges. Let  $|\psi\rangle$  be the basis state in the total Hilbert space whose value at each edge is shown in Figure 5, and all other edges are labeled by e. Define

$$|\psi_{a,b}\rangle := \prod_{v \in V} A(v) |\psi\rangle$$
 (36)

1. By definition,  $|\psi_{a,b}\rangle$  is stabilized by all A(v)s. Let  $p_0$  be the plaquette on the top right of the lattice. Show that

$$B(p) |\psi_{a,b}\rangle = |\psi_{a,b}\rangle, \forall p \neq p_0, \tag{37}$$

$$B(p_0)|\psi_{a,b}\rangle = 0 \tag{38}$$

Thus  $|\psi_{a,b}\rangle$  is a state which violates only one constraint. Note that  $|\psi_{a,b}\rangle$  is not the zero vector.

2. Let C be the conjugacy class containing r. Let  $v_0$  be a vertex on the boundary of  $p_0$  and  $s_0 = (v_0, p_0)$  be a site. For each  $c \in C$ , define

$$|c\rangle := B_c(s_0) |\psi_{a,b}\rangle \tag{39}$$

and let  $V = span\{|c\rangle : c \in C\}$ . Show that the states  $\{|c\rangle : c \in C\}$  form a basis of V.

- 3. It is not hard to see that any state in V is stabilized by all A(v) and B(p) for which  $v \neq v_0$ ,  $p \neq p_0$ . What is the action of the operators  $A_g(s_0)$  and  $B_h(s_0)$  on V? Write it out under the basis  $\{|c\rangle:c\in C\}$ . Conclude which irrep V corresponds to. A state in V represents an excitation on the single site  $s_0$ .
- *Proof.* 1. Every edge in  $\mathscr L$  is hit twice by  $\prod_{v\in V}$ . Due to the orientation of each edge around every plaquette, when we order the edges clockwise around the plaquette we get right multiplication by  $\overline g$  on one edge, and left multiplication by g on the right edge, for every g in the sum in A(v), once all vs are taken into account. Suppose a plaquette p's state  $|p\rangle$  has edges  $h_1, h_2, h_3$ , and  $h_4$  going clockwise around the plaquette, starting from the bottom edge. Acting on  $\mathscr L$  by  $\prod_{v\in V} A(v)$ , the Hilbert subspace around the plaquette becomes

$$\prod_{v \in V} A(v) |\psi\rangle = \frac{1}{|G|^4} \sum_{g_1, g_2, g_3, g_4} (g_1 h_1 \overline{g_2} \otimes g_2 h_2 \overline{g_3} \otimes g_4 h_3 \overline{g_3} \otimes g_1 h_4 \overline{g_4})$$

$$\tag{40}$$

This gives us

$$B(p) |\psi_{a,b}\rangle := B_{e}(p) |\psi_{a,b}\rangle = \frac{1}{|G|^4} \sum_{g_1, g_2, g_3, g_4} \delta_{e, g_1 h_1 \overline{g_2} g_2 h_2 \overline{g_3} g_3 \overline{h_3}} \delta_{\overline{g_4} g_4 \overline{h_4} \overline{g_1}} |\psi_{a,b}\rangle$$
(41)

$$= \frac{1}{|G|^4} |G|^3 \sum_{g_1 \in G} \delta_{e,g_1 h_1 h_2 \overline{h_3}} \frac{1}{h_4} \frac{1}{g_1} |\psi_{a,b}\rangle \qquad (42)$$



Figure 4: Lattice on a torus

In our particular labelling, all plaquettes except for  $p_0$  are of configuration either *eeee*, *aeae*, or *ebeb*, so the action of B(p) for all  $p \in F$  except for  $p_0$  is the identity.

The configuration on  $p_0$  is *abab*, giving us

$$B(p_0) |\psi_{a,b}\rangle = \frac{1}{|G|} \sum_{g \in G} \delta_{e,gab\overline{a}\,\overline{b}\,\overline{g}} |\psi_{a,b}\rangle \tag{43}$$

Since a, b do not commute,  $e \neq gab\overline{a} \overline{b} \overline{g}$  for any  $g \in G$ , and the state becomes 0.

#### 2. From the above calculation, we have

$$|c\rangle := B_c(s_0) |\psi_{a,b}\rangle = \frac{1}{|G|} \sum_{g \in G} \delta_{c,gr\overline{g}} |\psi_{a,b}\rangle$$
 (44)

There is a unique set of  $g \in G$  such that, for a fixed  $c \in C$ ,  $gr\overline{g} = c$ . Call this set  $G_c$ . Thus completely disjoint subsets of G are kept in the sum for each  $c \in C$ .

Let  $\{a_c \in \mathbb{C} | c \in C\}$  be such that

$$\sum_{c \in C} a_c |c\rangle = 0 = \sum_{c \in C} a_c \prod_{v \in V} \frac{1}{|G|} \sum_{g \in G_c} A_g(v) |\psi\rangle \tag{45}$$

But since these are all different gs, the only  $\{a_c\}$  set in which this is true is  $a_c = 0$  for all  $c \in C$ .

#### 3. Fix a $c \in C$ for now. We have

$$A_{\sigma}(s_0)|c\rangle = A_{\sigma}(s_0)B_{\sigma}(s_0)|\psi_{a,b}\rangle \tag{46}$$

$$= \delta_{gc\overline{g},gab\overline{a}\,\overline{b}\,\overline{g}} A_g(s_0) |\psi_{a,b}\rangle \tag{47}$$

$$= B_{gc\overline{g}} A_g(s_0) |\psi_{a,b}\rangle \tag{48}$$

$$=B_{gc\overline{g}}A_g(s_0)\prod_{v\in V}\frac{1}{|G|}\sum_{g'\in G}A_{g'}\left|\psi\right\rangle \tag{49}$$

$$=B_{\varrho c\overline{\varrho}}\left|\psi_{a,b}\right\rangle \tag{50}$$

since the action of  $A_g(s_0)$  just rearranges the sum on  $v_0 \in s_0$  for  $\frac{1}{|G|} \sum_{g' \in G} A_{g'} |\psi\rangle$ . Thus

$$A_g(s_0)|c\rangle \mapsto |gc\overline{g}\rangle$$
 (51)

for all  $c \in C$ .

Next we look at  $B_h(s_0) |c\rangle$ . We have

$$B_h(s_0)|c\rangle = B_h(s_0)B_c(s_0)|\psi_{a,b}\rangle \tag{52}$$

For a plaquette p with clockwise labels  $g_1, g_2, g_3$ , and  $g_4$ , starting from the bottom label, we have

$$B_h(p)B_c(p) = B_h(p)\delta_{c,g_1g_2\overline{g_3}} \frac{1}{g_4}$$
(53)

$$= \delta_{h,g_1g_2\overline{g_3}} \overline{g_4} \delta_{c,g_1g_2\overline{g_3}} \overline{g_4}$$
 (54)

$$=\delta_{h,c}\delta_{c,g_1g_2\overline{g_3}}\frac{1}{g_4} \tag{55}$$

$$=\delta_{h,c}B_c(p) \tag{56}$$

Thus we have

$$B_h(s_0) |c\rangle = \delta_{h,c} |c\rangle \tag{57}$$





Figure 5: Lattice on a torus

for all  $c \in C$ .

We now check what irreducible representation of the quantum double V corresponds to. An irreducible representation of the quantum double corresponds to  $(C, \chi)$ , where  $\chi$  is an irreducible representation of the centralizer of r. The Hilbert space corresponding to  $(C, \chi)$  is given by

$$\mathbb{C}[C] \otimes V_{\gamma} \tag{58}$$

Since  $V = \mathbb{C}[C]$ , the irreducible representation corresponding to V is (C, 1).

## 5 Local operators interpreted as ribbon operators

**Question.** Let s = (v, p) be any site on a lattice. We show the local operators  $A_g(s)$  and  $B_h(s)$ ,  $h, g \in G$  can be interpreted as ribbon operators for certain ribbons. We start with  $B_h(s)$ . Let  $t_s$  be a ribbon contained in the plaquette p, starting and ending both at s. See Figure 5 (Left). It consists of four triangles of type-II (direct triangles)  $t_1, t_2, t_3, t_4$ , and is directed in the order the triangles are listed. Assume the edges on the boundary of p are directed as shown in Figure 5 (Left) and a basis state  $|x_1, x_2, x_3, x_4\rangle$  is given. Then

$$F^{(h,g)}(t_i)|x_i\rangle = \delta_{g,x_i}|x_i\rangle \tag{59}$$

By the inductive formula for ribbon operators

$$F^{(h,g)}(t_1t_2) := \sum_{k \in G} F^{(h,k)}(t_1) F^{(\overline{k}hk,\overline{k}g)}(t_2), \tag{60}$$

we have

$$F^{(h,g)}(t_1t_2) |x_1, x_2\rangle = \sum_{k \in G} F^{(h,k)}(t_1) |x_1\rangle \otimes F^{(\overline{k}hk, \overline{k}g)}(t_2) |x_2\rangle$$
 (61)

$$= \sum_{k \in G} \delta_{k,x_1} \delta_{\overline{k}g,x_2} |x_1, x_2\rangle \tag{62}$$

$$= \delta_{g,x_1x_2} |x_1, x_2\rangle \tag{63}$$

Inductively, it is not hard to see that

$$F^{(h,g)}(t_s)|x_1, x_2, x_3, x_4\rangle = \delta_{g, x_1 x_2 x_3 x_4}|x_1, x_2, x_3, x_4\rangle = B_g(s)$$
 (64)

Similarly, let  $\tau_s$  be a ribbon around the vertex v, starting and ending at s. It has four triangles of type-I (dual triangles)  $\tau_1, \tau_2, \tau_3, \tau_4$ , and is also directed in the order the triangles are listed. See Figure 5 (Right). Prove that

$$F^{(h,g)}(\tau_s) = \delta_{g,e} A_h(s). \tag{65}$$

Note that  $A_h(s)$  actually only depends on v, hence the ribbon operator  $F^{(h,g)}(\tau_s)$  does not depend on the choice of the initial site.

*Proof.* By the inductive formula for ribbon operators, we have

$$F^{(h,g)}(\tau_s) = \sum_{k \in G} F^{(h,k)}(\tau_1 \tau_2 \tau_3) F^{(\overline{k}hk, \overline{k}g)}(\tau_4)$$
 (66)

$$= \sum_{k \in G} \sum_{l \in G} F^{(h,l)}(\tau_1 \tau_2) F^{(\bar{l}hl,\bar{l}k)}(\tau_3) F^{(\bar{k}hk,\bar{k}g)}(\tau_4)$$
 (67)

$$=\sum_{k\in G}\sum_{l\in G}\sum_{m\in G}F^{(h,m)}(\tau_1)F^{(\overline{m}hm,\overline{m}l)}(\tau_2)F^{(\overline{l}hl,\overline{l}k)}(\tau_3)F^{(\overline{k}hk,\overline{k}g)}(\tau_4) \quad (68)$$

Since

$$F^{(h,g)}(t)|x\rangle = \delta_{g,e}|hx\rangle \tag{69}$$

This gives us

$$F^{(h,g)}(\tau_s) | x_1, x_2, x_3, x_4 \rangle = \sum_{k \in G} \sum_{l \in G} \sum_{m \in G} \delta_{m,e} | h x_1 \rangle \otimes \delta_{\overline{m}l,e} | \overline{m} h m x_2 \rangle \tag{70}$$

$$\otimes \delta_{\overline{l}k,e} | \overline{l}hlx_3 \rangle \otimes \delta_{\overline{k}g,e} | \overline{k}hkx_4 \rangle \tag{71}$$

$$= |hx_1\rangle \otimes |hx_2\rangle \otimes |hx_3\rangle \otimes \delta_{g,e} |hx_4\rangle \tag{72}$$

$$= \delta_{g,e} A_h(s) | x_1, x_2, x_3, x_4 \rangle$$
 (73)