Предсказание вероятности покупки товара, показанного клиенту рекомендательной системой

Работу выполнили: Парфенов П. А.

Тимофеева А. А.

Куратор практики: Кислинский В. Г.

Цель и задачи

Цель:

Улучшение существующей рекомендательной системы с помощью подсчета вероятности покупки товаров, предложенных системой.

Задачи:

- Разработка алгоритма предсказания вероятности покупки;
- Анализ методов машинного обучения;
- Реализация дополнительных метрик для анализа результатов.

Задача рекомендательной системы:

Увеличить продажи с помощью ранжирования рекомендаций

Постановка задачи

$$X = \{c, i, r\}_{k=1}^{N}$$

c — клиент;

i — товар, который смотрит клиент;

r — рекомендованный товар.

Задача ранжирования:

$$(c,i) \to r$$

$$r = \{r_1 \ge r_2 \ge r_3 \ge \cdots \ge r_n\}$$

Исходные данные

- Действия пользователей за август
- Данные о сессиях
- Текстовые описания товаров
- Целевая таблица

Обучающая выборка

clientid	itemid	jointitemid	label
7833842	31499843	138176581	1
19548158	147389610	148381589	0
32943407	6261257	4490956	0
10185243	148455169	148455173	0
30552232	152440009	152440052	0

clientid – клиент; itemid – товар, который смотрит клиент; joinitemid – рекомендованный товар; label – реакция пользователя (1-добавил в корзину, 0 - просмотрел товар).

Признаки

$$f(c,i,r) = feature$$

- Признаки популярности и новизны товаров;
- Коллаборативная фильтрация;
- Признаки, основанные на пользовательских сессиях;
- Схожесть по текстовому описанию.

Признаки популярности и новизны товаров

- Популярность товара по просмотрам/добавлению в корзину;
- Новизна дата первого просмотра товара;
- Количество просмотров/добавлений в корзину в последний день;
- Спрос на товар в последние 7 дней наблюдений.

Коллаборативная фильтрация

User-Based подход

Item-Based подход

User-Based подход

Взаимодействие пользователя с товаром

itemid

Похожесть клиентов clientid

			0	1	2	3	
0	0	1	0.4	0.5	0.4	>	
S =	clientid	1	0.4	1	0.8	0.33	
	<u>:</u>	2	0.5	0.8	1	0.4	
	3	0.2	0.33	0.4	1		

Требуется найти:

$$f(cr) = f(c_0 \cdot r_0) = \langle c_0, r_0 \rangle$$

$$s_{ij} = sim(client_i, client_j)$$

Признаки, основанные на пользовательских сессиях

Пример пользовательской сессии

Cart Add:

iRobot Roomba 895

Product View:

Philips FC9174/02

Philips FC8671/01
PowerPro Active,
Red пылесос

Philips PowerPro
Expert FC9734/01
Purple пылесос

Philips FC8021/03 мешок для сбора

Робот-пылесос iRobot Roomba 616

itemid

iRobot Roomba 895

Пример матрицы сессии sessionid

	0	1	2	3
0	1	0	1	0
1	1	0	0	0
2	0	1	1	0
3	1	1	1	1
4	0	0	1	0

Пример расчета схожести товаров

Найдем похожесть товаров:

Телефон + наушники

1) sim =
$$T_0 \cdot T_1 = 1 + 1 = 2$$

2) cossim =
$$\frac{T_0 \cdot T_1}{\|T_0\| \cdot \|T_1\|} = \frac{2}{\sqrt{3} \cdot \sqrt{3}} = 0.667$$

Телефон + свечи

1) sim =
$$T_0 \cdot T_2 = 1_0 + 1_2 = 2$$

2) cossim =
$$\frac{T_0 \cdot T_2}{\|T_0\| \cdot \|T_2\|} = \frac{3}{\sqrt{3} \cdot \sqrt{4}} = 0.577$$

Основы nlp для текста

- Токенизация
- Регулярные выражения
- Лемматизация текста
- Удаление стоп-слов
- Pacuet TF-IDF

Pacчет TF-IDF

$$Tf - idf(t, d, D) = tf(t, d) \times \log(\frac{D}{df_t})$$

tf(t,d) — частота слова t в документе d; df — количество документов, содержащих слово t; D — общее количество документов.

Обучение модели

Используемые метрики

Mean average precision

• Precision at
$$K$$
 $p@k = \frac{\sum_{k=1}^{K} r^{true}(\pi^{-1}(k))}{K} = \frac{\text{купленное из рекомендованного}}{K}.$

• Average precision at K $ap@k = \frac{1}{K} \sum_{k=1}^{K} r^{true} (\pi^{-1}(k)) \cdot p@k.$

• Mean average precision at K $map@k = \frac{1}{N} \sum_{i=1}^{N} ap@K_{i}.$

Используемые метрики

Recall

$$Recall@k = \frac{ ext{peromendoganhbe}\,k\,$$
 товаров, которые релевантны общее количество релевантных товаров

Важность признаков

18

Анализ результатов. Сравнение с Baseline

Метрики	Baseline RandomForest	CatboostClassifier
AUC	0.55339	0.6345
Map@3	0.11874	0.1368
Recall@3	0.47102	0.5372

Выводы

- Мы разработали и реализовали алгоритм предсказания вероятности покупки;
- Провели анализ методов машинного обучения;
- Реализовали дополнительные метрики для анализа результатов
- Обучили модель и сравнили результаты