高等代数II

第3次讨论班

2023年3月1日

注: 若线性映射两空间相同时, 我们称其为线性变换.

问题 1. 设 V 是实系数多项式全体构成的实线性空间, 定义 V 上的变换 D, S 如下:

$$\mathbf{D}(f(x)) = \frac{\mathrm{d}}{\mathrm{d}x} f(x), \quad \mathbf{S}(f(x)) = \int_0^x f(t) \mathrm{d}t.$$

证明: D, S 均为 V 上的线性变换且 $DS = I_V$, 但 $SD \neq I_V$.

问题 2. 设 $V, U \in \mathbb{F}$ 上的有限维线性空间, $\varphi \in V$ 到 U 的线性映射, 求证:

- 1. φ 是单映射的充分必要条件是存在 U 到 V 的线性映射 ϕ , 使得 $\phi \varphi = Id_V$, 这里 Id_V 表示 V 上的恒等映射.
- 2. φ 是单映射的充分必要条件是存在 U 到 V 的线性映射 η , 使得 $\varphi \eta = Id_U$, 这里 Id_U 表示 V 上的恒等映射.

问题 3. 设 $f: V \longrightarrow W$ 为线性映射, 证明

- 1. 若 $S \in V$ 的子空间, 则 $f(S) \in W$ 的子空间.
- 2. 若 T 是 W 的子空间, 则 $f^{-1}(T)$ (回忆 f^{-1} 的定义) 是 V 的子空间.
- 3. Im f 为 W 的子空间.
- 4. Ker f 为 V 的子空间.

问题 4. 证明零度定理: 设 $f:V \longrightarrow W$ 为线性映射, 且 V 是有限维的,则

$$\dim \ker f + \dim f(V) = \dim V.$$

问题 5. 设 f 为 V 上的线性变换, 证明 $f^2 = f$ (幂等线性变换) 当且仅当 $V = \operatorname{Ker} f \oplus \operatorname{Im} f$.

注: 此例说明, 虽然我们有零度定理, 但是空间分解为两空间直和并非直接成立.

问题 6. 设 V 为线性空间, 考虑如下问题

- 1. 若 V 为有限维线性空间, 证明不存在 V 上的线性变换 φ, ϕ , 使得 $\varphi \phi \phi \varphi = Id_V$.
- 2. 若 V 为一般线性空间, 试构造 V 以及 V 上的线性变换 φ, ϕ ,使得 $\varphi \phi \phi \varphi = Id_V$.

问题 7. 考虑下列问题

- 1. 设 V 为 ℝ 上次数不超过 n 的多项式函数的向量空间, D 是微分算子, 求其在基底 $1, x, \ldots, x^n$ 下的变换矩阵.
- 2. 设 φ 是实四维空间 V 上的线性变换, 它在 V 的一组基下的表示矩阵为

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{pmatrix}$$

求 φ 的核空间与像空间, 用它们的基向量的线性组合来表示.

问题 8. 设 A, B 都是数域 \mathbb{F} 上的 $m \times n$ 矩阵, 求证: 方程组 Ax = 0, Bx = 0 同解的充要条件是存在可逆矩阵 P, 使得 B = PA.