

Sequence: > A/C needs to Clear an obstacle at height hip - Approach; Flown@ Vapproach & Ya 1.3 Vstall in landing config Vapproach VREF = flaps slats high Crmax

- flare: transition between approach @ ya to the horizontal ground Roll -> circular Radius r - free Roll: after touchdown, before brakes or thrust Reversers are implemented & Velocity ~ const @ Uranding Vianding ~ UREF -ground Roll: deceleration from Vianding to U=D

Flare $hf = \Gamma(1 - \cos \Theta_f) = \Gamma(1 - \cos \gamma_0)$ from geometry Of = Ya n= Load factor g(n-1)

		(SF	R=	3	tf	R.	Ur	EF						
Gro	ud	R	oll	•											
T	REI	/ =		Ze	ve	rse	T	hru	.st						
						\approx	3	0%		of eve	Ma	X Stax	Sea Sc		
											l s th	rus	+		
Dr	ag	2	1/2	ام_	JZ,	S	CD								
	0			1			1	Cn	<i>[</i>	_	Ho		lm	a	
						(Coe	ffi	ci e	nt	j	Y)	0	7	
							La	Cs ffi	g	Ce	onf	igu	sar	TON	
						ex:		CDI	p +	t k				~ !	
							•	CD)				CL	. is a	n Ru	Ľ
						L	DP0,	cle	ean	+	- C _I	-DP	gear laps	, etc	-6.

$$R = \mu_{\Gamma} (W-L)$$

$$\int_{L} L = \frac{1}{2} \rho V^{2} S C_{L}$$

$$\int_{L} L =$$

if I want to Reduce - Reduce VREF (increase Chan Reduce 4/5 - D1 TREVT R1 Total Landing distance Sa, Sf, SfR, Sq

Free Roll + Grount Roll Ex: W= 73000 lb S= 950 ft² CLMAXLD = 2.39 A/c: $C_{D_0} = 0.015 + 0.08 C_{c}^{2}$ DCsp when configured = 0.0124 Mr = 0.4 w/ brakes on TRW = 0 ASL = 0.00238 sluggy ter = 3sec

Vstall =
$$\sqrt{\frac{2W}{pSC_{2max}}}$$

= $\sqrt{\frac{2(73600 \text{ lb})}{(0.00738 \text{ slig})(950 \text{ ft}^2).239}}$
= 164.5 ft_5
 $VREF = 1.3 \cdot 164.5 \text{ ft}_5 = 213 \text{ ft}_5$
 $0.7 VREF = 149 \text{ ft}_5$
SFR = $VREF \cdot \text{ fr}_8$

$$D = \frac{1}{2} (0.00238 \frac{shg}{c+3}) (149 \frac{cH^{2}}{s})^{2} 950 f^{2} \frac{1}{c+3} (149 \frac{cH^{2}}{s})^{2} 950 f^{2} \frac{1}{c+3} \frac{1}{c+3} (149 \frac{cH^{2}}{s})^{2} 950 f^{2} \frac{1}{c+3} \frac$$

JREF

SQ = 2 00.7 UPEF