九州大学大学院数理学府 平成 25 年度修士課程入学試験 専門科目

- [3](1) n を自然数とする. 複素係数の n 次方程式 f(z)=0 は複素数の中に解を持つ.
- (2) |f(z)| は連続関数なので円板 $|z| \leq R$ 上で最小値を持つ.

 $|z| o \infty$ のとき $|f(z)| o \infty$ なので R を十分大きくとると、この最小値は複素数全体での最小値と一致する、 $z=z_0$ で最小値をとるとして $f(z_0)=m$ とおく、

- (i) m=0 のとき $z=z_0$ が方程式の解である.
- (ii) $m \neq 0$ のとき $\frac{1}{m}f(z+z_0)$ を改めて f(z) と思うことにより z=0 で最小値 f(0)=1 をとるとして議論してよい.

このとき、

$$f(z) = 1 + az^{k} + bz^{k+1} + cz^{k+2} + \cdots \quad (a \neq 0)$$

とおける.

z を定数倍することによって a=-1 とできるので a=-1 として議論してよい.

|z| o +0 のとき $|bz+cz^2+\cdots| o +0$ なので |z| が十分小さければ, $|bz+cz^2+\cdots| < \frac{1}{2}$ となる. よって,

$$|f(z)| = |1 - z^k + bz^{k+1} + cz^{k+2} + \dots|$$

$$\leq |1 - z^k| + |bz^{k+1} + cz^{k+2} + \dots|$$

$$= |1 - z^k| + z^k|bz + cz^2 + \dots|$$

$$< |1 - z^k| + \frac{z^k}{2}$$

arepsilon>0 を十分小さく選び, z=arepsilon とおくと, この値は, $1-arepsilon^k+rac{arepsilon^k}{2}=1-rac{arepsilon^k}{2}<1$ となり最小値が1 であることに矛盾する. 従って $m\neq 0$ となることはない.

以上により、代数学の基本定理が示せた.

- [5](1) \mathbb{R}^2 の部分位相空間として R は有界閉集合なのでコンパクトである.
- 射影 $R \to S$ は連続写像なので S もコンパクトである.
- (2) S は実射影平面 $\mathbb{R}P^2$ なので

$$H_n(S; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} \ (n=0) \\ \mathbb{Z}/2\mathbb{Z} \ (n=1) \\ \{0\} \ (n \neq 0, 1) \end{cases}$$

$$\chi(S) = 1$$

である.

(3) $3\rho_2(K)=2\rho_1(K)$ とオイラー数の定義式 $\chi(M)=\rho_0(K)-\rho_1(K)+\rho_2(K)$ より

$$\chi(M) = \rho_0(K) - \rho_1(K) + \frac{2}{3}\rho_1(K)$$

であるから

$$\rho_1(K) = 3(\rho_0(K) - \chi(M))$$

頂点数が $ho_0(K)$ 個のときの辺の数の最大値は $\binom{
ho_0(K)}{2}$ なので

$$\frac{\rho_0(K)(\rho_0(K)-1)}{2} \ge \rho_1(K) = 3(\rho_0(K) - \chi(M))$$

である.

よって, $ho_0(K)^2 - 7
ho(K) + 6\chi(M) \geq 0$ であるので $ho_0(K) \geq 4$ より

$$\rho_0(K) \ge \frac{1}{2}(7 + \sqrt{49 - 24\chi(M)})$$

である.

- (4) $\chi(S) = 1$ を (3) の 2 番目の式に代入して $\rho_0(L) \geq 6$ を得る.
- (3) の 1 番目の式より $ho_1(L)=3(
 ho_0(L)-1)\geq 15$ となるので

$$\rho_2(L) = \frac{2}{3}\rho_1(L) \ge 10$$

である.