

Informe 5 Laboratorio de Maquinas: Comportamiento de un compresor reciproco

José Luis Riveros

Profesores: Tomás Herrera Muñoz

Cristóbal Galleguillos Ketterer

ICM557-2

2020

Índice:

- 1. Introducción
 - 1.1. objetivo
- 2. Desarrollo
- 3. Tabla de valores
- 4. Gráfico y análisis
 - 4.1. Rendimiento volumétrico real, convencional, convencional indicado y la capacidad, en función de la presión de descarga.
 - 4.2. Temperatura de aspiración y descarga de cada cilindro, en función de la presión de descarga.
 - 4.3. Presión de aspiración y descarga de cada cilindro y la presión intermedia teórica, en función de la presión de descarga.
 - 4.4. Potencia indicada de cada cilindro y total; la potencia y la corriente eléctrica, en función de la presión de descarga.
 - 4.5. Temperatura de entrada y salida del agua de refrigeración; el caudal de agua; el calor total de la refrigeración del compresor, en función de la presión de descarga.
 - Relación de compresión de cada cilindro, en función de la presión de descarga.
- 5. Conclusión
- 6. Anexo

1. Introducción

Los compresores recíprocos son máquinas de desplazamiento positivo, es decir que aumenta la presión disminuyendo su volumen, generalmente se usan para cuando se necesita una alta presión y un bajo flujo

1.1 objetivo

Analizar el comportamiento del compresor recíproco sometido a distintas condiciones de operación

2. Desarrollo

2.1 Formulas

Capacidad:

$$V = 8,62 * \alpha * S * T_a * \sqrt{\frac{H}{T * P_a}}$$

Cilindrada:

$$Cl = \frac{1}{4} * \pi * D_{CBP}^2 * L$$

Desplazamiento:

$$Dl = Cl * n$$

Rendimiento volumétrico:

$$\eta_{\rm r} = \frac{\rm V}{60*\rm Dl}*100$$

Rendimiento volumétrico convencional:

$$\eta_{VC} = \left(1 - C\left(r^{\left(\frac{1}{k}\right)} - 1\right)\right) * 100$$

Porcentaje de espacio muerto [-]

$$C = \frac{Volumen\ espacio\ Muerto_{CBP}}{Cl}$$

Rendimiento volumétrico convencional indicado:

$$\eta_{VCI} = \frac{l_{Capacidad}}{l_{Cl}} * 100$$

Presión media Indicada:

$$Pmi = \frac{A_{DICXP}}{L_{DICXp}} * K_{Resorte\ CXP}\ [kp/cm^2]$$

Potencia Indicada:

$$Ni_{CXP} = \frac{Pmi_{CXP} * A_{CXP} * L * n * 9,80665}{60 * 1000} [kW]$$

Corriente media:

$$I = \frac{I_1 + I_2 + I_3}{3} [A]$$

Potencia eléctrica:

$$N_{Elec} = W_1 + W_2 [kW]$$

Caudal de agua:

$$V_{agua} = \frac{10}{\tau} * 60 \text{ [l/min]}$$

Calor transferido:

$$Q = \rho * V_{agua} * c * (t_s - t_E) \text{ [kcal/min]}$$

3. Tabla de valores

En la primera tabla tenemos los valores medidos

	Compresor					Estar	ngue de	Agua de refrigeración			Motor Eléctrico							
	Veloci				'			Temperatu tiemp		Tensió								
	Presión	Presión d Temperatura		baja presión		ra		0	n	Corrientes			Potencia					
			tecb	tseb	teca	teca	teb											
	Pd	n	р	р	р	р	р	ΔP	tea	tsa	10 l	V	l1	12	13	W1	W2	Patm.
	[kp/cm							[mmc										
	2]	[rpm]	[°C]	[°C]	[°C]	[°C]	[°C]	a]	[°C]	[°C]	[s]	[V]	[A]	[A]	[A]	[kW]	[kW]	[mmHg]
1	7,0	499,3	23	48	27	89	39	514	18	26,5	78	375	17,2	15,9	16	6,53	3,28	760,1
2	6,0	498,7	23	49	27	87	40	544	18,5	26,5	75	375	16,5	15,3	15	6,53	3,06	760,1
3	4,9	500,8	23	49	27	77	41	532	18,5	26,5	77	376	15,2	13,9	14	5,73	2,7	760,1
4	3,9	503,0	23	50	27	67	40	552	18,5	26,5	76	376	14,1	13,2	13	5,33	2,6	760,1
5	2,8	503,4	24	56	27	56	39	562	18,5	26,5	76	376	13,2	12,6	12	5	2,4	760,1
6	1,8	505,2	24	56	27	42	37	576	18,5	26,5	74	376	11,9	11,4	11	4,69	2,12	760,1
7	1,0	507,0	23	54	27	31	39	584	18,5	26,5	77	376	10,4	9,9	9,5	4,1	1,64	760,1

Tabla 1: valores medidos

Tabla con los valores de diagramas indicados

DIAG	DIAGRAMAS INDICADOS								
СВР	CAP	СВР у САР							
Área	Área	L _d							
[m²]	[m²]	[mm]							
0,000519	0,0005565	66							
0,0004907	0,0005112	66							
0,0004954	0,000447	66							
0,0004723	0,0003709	66							
0,0004893	0,0002664	66							
0,0004746	0,0001414	66							
0,0004405	0,0000507	66							

Tabla 2

Tabla de resultados calculados

	capacidad	cilindrada	despl	rendimiento		presi	on MI	Potencia				Corriente	caudal	calor transf	
	V	Cl	DI	real	conencional	indcado	СВР	CAP	СВР	CAP	Total	Electrica	1	Vagua	Q
	m3/h	m3	m3/min				kp/cm2	kp/cm2	kW	kW	kW	kW	Α	L/min	kcal/min
1	73,45808	0,00295	1,47256	83,1411	83,1738	77,7778	4,7E-05	5,1E-05	3,0906	3,55335	6,64395	9,81	16,3667	7,69231	65,3192
2	75,45058	0,00295	1,47079	85,499	85,5289	81,7518	4,5E-05	4,6E-05	2,36522	2,56697	4,93218	9,59	15,7333	8	63,936
3	74,49486	0,00295	1,47698	84,062	88,2538	88,8889	4,5E-05	4,1E-05	1,97706	1,60962	3,58668	8,43	14,3	7,79221	62,213
4	76,00334	0,00295	1,48347	85,3891	90,8877	73,6842	4,3E-05	3,4E-05	1,43654	0,88592	2,32246	7,93	13,4667	7,89474	63,0316
5	77,07099	0,00295	1,48465	86,5198	94,0225	82,963	4,4E-05	2,4E-05	1,10782	0,32839	1,43621	7,4	12,6333	7,89474	63,0316
6	78,27633	0,00295	1,48996	87,5599	97,1995	84,8485	4,3E-05	1,3E-05	0,67242	0,05969	0,73211	6,81	11,4333	8,10811	64,7352
7	78,30048	0,00295	1,49527	87,2759	100,135	84,8485	4E-05	4,6E-06	0,32296	0,00428	0,32724	5,74	9,93333	7,79221	62,213

Tabla 3

4. gráficos y análisis

4.1 Rendimiento volumétrico real, convencional, indicado y la capacidad en función de la presencia

¿La forma de las curvas es correcta?

La curva de capacidad cumple con lo que debería ser, porque aumenta a medida que aumenta la presión de descarga

Las curvas de rendimientos no corresponden debido a que estas deberían decrecer a medida que aumenta la presión de descarga, esto se podría deber a un error de lectura o un error del encargado de tomar dato y graficar. La curva de valor indicado tiene una variación particular con un crecimiento poco lineal con la recencia de dos crestas, esto nos dice que no es fiable.

¿Los valores del rendimiento volumétrico real están en el rango que le corresponde?

En promedio el rendimiento de los compresores suele estar por sobre el 80 % y el rendimiento medido varía entre un 83 y 87 % por lo tanto sí se encuentra dentro del rango que corresponde.

¿Cómo explica las diferencias entre el rendimiento volumétrico real y los otros rendimientos?

Las diferencias presentes en los rendimientos se deben a que en el rendimiento volumétrico real depende de los valeres que se toman en los diafragma, punto donde el fluido ya tuvo pérdidas de energía durante su trayectoria por la máquina,

4.2 Grafica de la temperatura de aspiración y descarga de cada cilindro, en función de la presión de descarga

¿La posición relativa de las curvas es la correcta? Si es necesario explique.

Sí, son correctos, los valores de admisión se mantienen estables ya que corresponden a temperaturas de ambiente, la admisión CAP es ligeramente mayor que la admisión CBP. Para la temperatura de salida del cilindro de baja presión se eleva alcanzando una cresta a 56° C y luego desciende a 46 °C, temperatura que mantiene hasta el final, esto es porque es porque el gas es refrigerado y en el cilindro de alta presión la curva crece continuamente hasta los 90 °C

¿Los valores están en el rango que le corresponde?

Sí, las temperaturas están dentro del rango.

4.3 Presión de aspiración y descarga de cada cilindro y la presión intermedia teórica, en función de la presión de descarga.

¿La posición relativa de las curvas es la correcta? Si es necesario explique.

Las curvas son correctas, la de admisión es constante porque corresponde a la presión atmosférica, la curva de presión de descarga presenta un comportamiento ascendente a medida que la relación de compresión aumenta, la presión intermedia es la raíz del producto de la presion de admisión y la descarga

¿Los valores están en el rango que le corresponde?

Sí, los valores de las presiones se encuentran dentro del rango

4.4 Graficar la potencia indicada de cada cilindro y total; la potencia y la corriente eléctrica, en función de la presión de descarga.

¿La posición relativa de las curvas es la correcta? Si es necesario explique

Se puede observar que la posición de la curva relacionada con la variable eléctrica está por encima de la potencia del compresor, porque la potencia eléctrica es la potencia total que llega al compresor, y convertir esta energía no puede evitar la irreversibilidad y pérdida. Además, cuanto mayor sea la presión de descarga, mayor será la potencia necesaria para comprimir el gas.

¿Los valores están en el rango que le corresponde?

Sí, se encuentran dentro del rango normal

4.5 temperatura de entrada y salida del agua de refrigeración; el caudal de agua; el calor total de la refrigeración del compresor, en función de la presión de descarga

¿La posición relativa de las curvas es la correcta? Si es necesario explique

Las curvas de de la temperatura de entrada y salida son constantes, al ideal que la de caudal, esto es porque la refrigeración se mantiene a régimen constante, esto porque las revoluciones del compresor se mantienen constantes. La curva de transferencia de calor tiene pequeñas variaciones, pero de todas maneras tiende a mantenerse constante

¿Los valores están en el rango que le corresponde?

Los valores si corresponden, la temperatura de salida es mayor porque absorbe calor del compresor.

4.6 Graficar la relación de compresión de cada cilindro, en función de la presión de descarga.

¿La posición relativa de las curvas es la correcta? Si es necesario explique

La curva de la relación de compresión debe ser lineal ascendente, por lo que están en una posición relativa correcta

¿Los valores están en el rango que le corresponde?

Los rangos de compresión son entre 1,2 a 4 para cada etapa, por lo que si se encuentran en los rangos.

5. Conclusiones

Pudimos analizar el comportamiento de un compresor reciproco, utilizando el concepto de turbomáquinas, es posible probar la tasa de ocurrencia de diferentes parámetros de entrada relacionados con el funcionamiento y rendimiento del compresor. Se puede concluir que el funcionamiento está dentro del rango permisible y se alcanza la eficiencia volumétrica de 83 % a la máxima presión de descarga.

6. Anexo

DIAGRAMAS INDICADOS

DIAGRA	AMAS INDICAL	DOS
CBP	CAP	CBP y CAP
Área	Área	Ld
[m ²]	[m²]	[mm]
0,000519	0,0005565	66
0,0004907	0,0005112	66
0,0004954	0,000447	66
0,0004723	0,0003709	66
0,0004893	0,0002664	66
0,0004746	0,0001414	66
0,0004405	0,0000507	66

 Diámetro CBP
 170,0 [mm]

 Diámetro CAP
 110,0 [mm]

 Carrera
 130,0 [mm]

 Volumen espacio muerto CBP
 170,0 [cm3]

 Velocidad nominal
 600,0 [rpm]

 Caudal de aire nominal
 1,5 [m³/min]

 Presión nominal
 7,0 [kp/cm²]

 Volumen del estanque de acumulación
 585,3 [l]