

Proximity Sensors

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

19 de outubro de 2023

Visão Geral

- 1 Introdução
- 2 Metodologia
- 3 Experimentos
- A Resultados
- 5 Aplicações e Trabalho Futuro
- 6 Conclusões

Introdução

- Contexto de robôs móveis e desafios de dead-reckoning
 - Importância de robôs móveis em automação
 - Problemas comuns como deslizamento e deriva
- Objetivo do método IPEC
 - Correção de erros de posição
 - Melhoria da acurácia da orientação
- Apresentação do veículo CLAPPER como caso de estudo
 - Seleção de CLAPPER
 - Relevância na pesquisa atual

Metodologia

- Descrição da estrutura do CLAPPER
 - Hardware
 - Software
- Sensores ultrassônicos e suas funcionalidades
 - Detecção de obstáculos
 - Medição de distância
- Planejamento de caminho e monitoramento
 - Algoritmos de planejamento
 - Realimentação e correções

O Experimento da Linha Reta

- Configurações de testes com e sem IPEC
 - Velocidade
 - Tipo de terreno
- Efeitos de "bumps" na trajetória
 - Impacto nas medidas
 - Correções necessárias
- Resultados de erros de posição e orientação
 - Comparação estatística
 - Gráficos de desempenho

O Experimento do Caminho Retangular

- Desafios em trajetórias fechadas
 - Problemas de acumulação de erros
 - Correções em tempo real
- Importância de testar em ambas as direções
 - Impacto na simetria da trajetória
 - Coleta de dados
- Resultados e comparação com e sem IPEC
 - Métricas de erro
 - Validade das correções

Resultados

- Melhoria significativa na precisão do dead-reckoning
 - Quantificação da melhoria
 - Implicações práticas
- Redução dos erros de orientação
 - Impacto no planejamento de caminho
 - Benefícios a longo prazo
- Resultados em diferentes condições de piso
 - Variação dos resultados
 - Escopo de aplicabilidade

Aplicações e Trabalho Futuro

- Aplicação em ambientes industriais e agrícolas
 - Redução de custos
 - Aumento da eficiência
- Extensão para outros tipos de veículos
 - Drones
 - Veículos aquáticos
- Investigação em robôs colaborativos
 - Sincronização
 - Comunicação inter-robô

Conclusões

- Resumo das contribuições do método IPEC
 - Eficácia na correção de erros
 - Versatilidade de aplicação
- Importância da correção imediata dos erros
 - Redução do retrabalho
 - Melhoria na confiabilidade
- Validade do método em diferentes cenários
 - Extensão do estudo
 - Limitações encontradas

Proximity Sensors

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

19 de outubro de 2023

