Chapter 4: Video 1 - Supplemental slides

The Autoregressive Model

Autoregressive (AR) processes

Let $\epsilon_1,\epsilon_2,\ldots$ be White Noise $(\mathbf{0},\!\sigma^2_\epsilon)$ innovations, with variance σ^2_ϵ

Then, Y_1, Y_2, \ldots is an AR process if for some constants μ and ϕ ,

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

We focus on 1st order case, the simplest AR process

Autoregressive (AR) processes

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

- μ is the mean of the $\{Y_t\}$ process
- If $\phi=0$, then $Y_t=\mu+\epsilon_t$, such that Y_t is White Noise (μ,σ^2_ϵ)
- If $\phi \neq 0$, then observations Y_t depend on both ϵ_t and Y_{t-1}
- ullet And the process $\{Y_t\}$ is autocorrelated
- If $\phi \neq 0$, then $(Y_{t-1} \mu)$ is fed forward into Y_t
- ullet ϕ determines the amount of feedback
- Larger values of $|\phi|$ result in more feedback

If $|\phi| < 1$, then

$$\begin{array}{rcl} E(Y_t) & = & \mu \\ & \mathrm{Var}(Y_t) & = & \sigma_Y^2 = \frac{\sigma_\epsilon^2}{1-\phi^2} \\ & \mathrm{Corr}(Y_t,Y_{t-h}) & = & \rho(h) = \phi^{|h|} \quad for \ all \ h \end{array}$$

• If $\mu = 0$ and $\phi = 1$, then

$$Y_t = Y_{t-1} + \epsilon_t$$

which is a random walk process, and $\{Y_t\}$ is NOT stationary

