The **Boyce-Codd Normal Form (BCNF)** is a stricter version of the Third Normal Form (3NF) in database normalization. A table is in BCNF if, for every functional dependency A o B, A is a superkey (i.e., A uniquely identifies every row in the table).

Easiest Understandable Example of BCNF

Example 1: A Table Violating BCNF

Imagine a table StudentCourse with the following attributes:

StudentID	CourseID	Instructor
1	Math101	Dr. Smith
2	Math101	Dr. Smith
3	CS101	Dr. Lee

Functional Dependencies (FDs):

- 1. CourseID o Instructor (Each course ught by one instructor.)
- StudentID, CourseID → Instructor (Primary key: StudentID, CourseID.)

3.5NF

Problem:

• CourseID o Instructor violates BCNF because <math>CourseID is not a superkey.

Steps to Convert to BCNF

To fix the violation, we split the table:

1. First Table (CourseInstructor):

CourseID	Instructor
Math101	Dr. Smith
CS101	Dr. Lee

ullet This table captures the dependency CourseID
ightarrow Instructor.

2. Second Table (StudentCourse):

StudentID	CourseID
1	Math101
2	Math101
3	CS101

· This table ensures that StudentID, CourseID is the key.

Final Tables in BCNF

- 1. CourseInstructor satisfies BCNF because CourseID is a superkey.
- 2. StudentCourse satisfies BCNF because StudentID, CourseID is a superkey.

Multivalued Dependency (MVD):

A multivalued dependency occurs when one attribute in a table determines a set of values for another attribute, independently of other attributes. It extends the concept of functional dependency but applies to sets of values.

Formal Definition:

If A and B are attributes in a table, and A
ightarrow B is a multivalued dependency, then:

 For each value of A, there exists a set of values for B, independent of other attributes in the table.

In simpler terms:

Knowing A tells you all possible values of B, regardless of any other attribute in the table.

Example of Multivalued Dependency:

Table: StudentActivities

StudentID	Sport	Club
1	Football	Music Club
1	Cricket	Music Club
1	Football	Drama Club
1	Cricket	Drama Club

Multivalued Dependency:

- StudentID →→ Sport: The sports a student participates in are independent of the clubs they are part of.
- StudentID o o Club: The clubs a student joins are independent of the sports they play.

4th Normal Form (4NF):

A table is in 4th Normal Form (4NF) if:

- 1. It is in Boyce-Codd Normal Form (BCNF).
- 2. It has no non-trivial multivalued dependencies.

Non-Trivial MVD:

An MVD A
ightarrow
ightarrow B is non-trivial if:

- B is not a subset of A, and
- $A \cup B$ does not form all attributes in the table.

Steps to Achieve 4NF:

- 1. Identify the multivalued dependencies in the table.
- 2. Decompose the table into smaller tables to isolate the multivalued dependencies.

Decomposing the Example Table into 4NF:

Original Table:

StudentID	Sport	Club
1	Football	Music Club
1	Cricket	Music Club
1	Football	Drama Club
1	Cricket	Drama Club

Step 1: Decompose into Two Tables

1. Table 1: StudentSports

StudentID	Sport
1	Football
1	Cricket

2. Table 2: StudentClubs

StudentID	Club
1	Music Club
1	Drama Club

Now, each table independently satisfies 4NF because:

- ullet In StudentSports , there is no multivalued dependency; StudentID determines Sport.
- ullet In StudentClubs , there is no multivalued dependency; StudentID determines Club.

Scenario:

Imagine a table EmployeeProjects where an employee can work on multiple projects and also have multiple skills. The projects and skills are independent of each other.

Original Table: EmployeeProjects

EmployeeID	Project	Skill
1	ProjectA	Java
1	ProjectB	Java
1	ProjectA	Python
1	ProjectB	Python

SOLUTION ????

Join Dependency and 5th Normal Form (5NF)

Join Dependency (JD):

A **join dependency** occurs when a table can be decomposed into two or more smaller tables and then rejoined to recreate the original table **without any loss of information**. This generalizes the concept of functional dependencies.

For a table R, a join dependency $*(R_1,R_2,\ldots,R_n)*$ exists if R can be decomposed into R_1,R_2,\ldots,R_n , and reconstructing R by joining R_1,R_2,\ldots,R_n is lossless.

5th Normal Form (5NF):

A table is in 5NF (or Project-Join Normal Form) if:

- 1. It is in 4th Normal Form (4NF).
- 2. It has no non-trivial join dependencies.

Non-Trivial Join Dependency:

A join dependency is **non-trivial** if the table cannot be recreated without decomposing into multiple tables.

The goal of 5NF is to eliminate redundancy caused by **join dependencies** while ensuring no loss of data.

Example of Join Dependency and 5NF

Original Table: EmployeeProjectsRoles

EmployeeID	Project	Role
1	ProjectA	Developer
1	ProjectA	Tester
1	ProjectB	Developer
2	ProjectA	Tester

Join Dependencies:

- (EmployeeID, Project)
- (EmployeeID, Role)
- (Project, Role)

Problem:

The redundancy exists because the relationships between EmployeeID, Project, and Role are independent:

- 1. An employee can be associated with multiple projects.
- 2. An employee can have multiple roles.
- 3. A project can involve multiple roles.

Decomposing into 5NF:

To remove redundancy and satisfy 5NF, decompose the table into three smaller tables:

1. Table 1: EmployeeProjects

EmployeeID	Project
1	ProjectA
1	ProjectB
2	ProjectA

2. Table 2: EmployeeRoles

EmployeeID	Role
1	Developer
1	Tester
2	Tester

3. Table 3: ProjectRoles

Project	Role
ProjectA	Developer
ProjectA	Tester
ProjectB	Developer

Final Tables in 5NF:

- · Each table contains information about a single relationship.
- Joining all three tables recreates the original data without redundancy.
- This satisfies 5NF because no non-trivial join dependencies remain.

Inference Rules for Functional Dependencies

- Armstrong's axioms are used to conclude functional dependencies on a relational database.
- The inference rule is a type of assertion. It can apply to a set of FD(functional dependency) to derive other FD.
- Using the inference rule, we can derive additional functional dependency from the initial set.

The Functional dependency has 6 types of inference rule:

- 1. Reflexive Rule (IR₁)
- 2. Augmentation Rule (IR₂)
- 3. Transitive Rule (IR₃)
- 4. Union Rule (IR₄)
- 5. Decomposition Rule (IR₅)
- 6. Pseudo transitive Rule (IR6)

Armstrong's Axioms

1. Reflexivity Rule

If
$$Y \subseteq X$$
, then $X \to Y$.

(A set of attributes determines its own subset.)

Example:

If
$$X=\{A,B,C\}$$
, then $\{A,B,C\}
ightarrow \{A,B\}$.

2. Augmentation Rule

If
$$X o Y$$
, then $XZ o YZ$ for any Z .

(Adding attributes to both sides of a functional dependency preserves validity.)

Example:

If
$$A \to B$$
, then $AC \to BC$.

3. Transitivity Rule

If
$$X \to Y$$
 and $Y \to Z$, then $X \to Z$.

(A chain of dependencies can be combined into a single dependency.)

Example:

If
$$A o B$$
 and $B o C$, then $A o C$.

Additional Inference Rules (Derived from Armstrong's Axioms):

4. Union Rule

If
$$X \to Y$$
 and $X \to Z$, then $X \to YZ$.

(A single determinant can determine multiple attributes.)

Example:

If
$$A \to B$$
 and $A \to C$, then $A \to BC$.

5. Decomposition Rule

If
$$X \to YZ$$
, then $X \to Y$ and $X \to Z$.

(A determinant of a composite attribute can determine each component individually.)

Example:

If
$$A \to BC$$
, then $A \to B$ and $A \to C$.

6. Pseudotransitivity Rule

If
$$X \to Y$$
 and $WY \to Z$, then $WX \to Z$.

(Combining dependencies with overlapping attributes.)

Example:

If
$$A \to B$$
 and $BC \to D$, then $AC \to D$.

Closure of a Set of Attributes:

 The closure of a set of attributes X, denoted X⁺, is the set of all attributes that can be functionally determined by X using the given FDs and inference rules.

Steps to Find Attribute Closure:

- 1. Start with $X^+ = X$.
- 2. For each FD A o B:
 - If $A \subseteq X^+$, then add B to X^+ .
- 3. Repeat until no more attributes can be added to X^+ .

Example 1

Given Table Attributes:

 $R = \{A, B, C, D, E\}$

Functional Dependencies (FDs):

- 1. $A \rightarrow B$
- 2. B o C
- 3. AC o D
- 4. D
 ightarrow E

Find Closure of $X = \{A\}$:

1. Start:

$$X^{+} = \{A\}.$$

2. Apply FD 1 (A o B):

Since $A\subseteq X^+$, add B:

$$X^{+} = \{A, B\}.$$

3. Apply FD 2 (B o C):

Since $B \subseteq X^+$, add C:

$$X^{+} = \{A, B, C\}.$$

4. Apply FD 3 (AC o D):

Since $A, C \subseteq X^+$, add D:

$$X^{+} = \{A, B, C, D\}.$$

5. Apply FD 4 (D
ightarrow E):

Since $D \subseteq X^+$, add E:

$$X^{+} = \{A, B, C, D, E\}.$$

6. No More FDs Apply:

 X^+ is now stable: $\{A,B,C,D,E\}$.

REFER SLIDE 60, 61 FOR MORE EXAMPLES ON CLOSURE

Equivalence and Minimal Cover

1. Equivalence of Functional Dependencies (FDs):

Two sets of FDs F and G are equivalent if:

- Every FD in F can be inferred from G, and
- 2. Every FD in G can be inferred from F.

To check equivalence, compute the **closure of attributes** for both sets of FDs and verify they produce the same results.

2. Minimal Cover (Canonical Cover):

A minimal cover for a set of FDs is a simplified version that is:

- Equivalent to the original FDs.
- Contains no redundant attributes or FDs.
- Each FD has a single attribute on the right-hand side.

Steps to Find Minimal Cover:

1. Split FDs:

Convert each FD into a form where the right-hand side has only one attribute.

For example:

$$A o BC$$
 becomes $A o B$ and $A o C$.

2. Remove Redundant Attributes from the Left-Hand Side:

For each FD A o B, check if removing an attribute from A still implies B. If yes, remove it.

3. Eliminate Redundant FDs:

Check if removing a dependency A o B still preserves equivalence. If yes, remove it.

Example of Minimal Cover:

Given FDs:

- 1. $A \rightarrow BC$
- B → C
- 3. A o D

Step 1: Split into Single Attributes on RHS:

- 1. A o B, A o C
- 2. $B \rightarrow C$
- 3. A o D

Step 2: Remove Redundant Attributes from LHS:

No attributes can be removed from the LHS.

Step 3: Eliminate Redundant FDs:

• Check $A \to C$: It can be inferred from $A \to B$ and $B \to C$. Remove $A \to C$.

Minimal Cover:

Consider the following decomposition for the relation schema: $R = \{A, B, C, D, E, F, G, H, I,\}$. Determine whether the decomposition D has (i) the dependency preservation property and (ii) the lossless join property, with respect to $F = \{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ\}$. $D = \{R1, R2, R3, R4, R5\}$; $R1 = \{A, B, C, D\}$, $R2 = \{D, E\}$, $R3 = \{B, F\}, R4 = \{F, G, H\}, R5 = \{D, I, J\}$.

Properties of Relational Decomposition

Relational decomposition splits a relation into smaller relations while preserving key properties.

Key Properties:

- Lossless Join: A decomposition is lossless if it allows the original relation to be reconstructed without loss of data.
 - Condition: For a decomposition R_1 and R_2 , $R_1\cap R_2$ must be a superkey in at least one of them.
- Dependency Preservation: A decomposition is dependency-preserving if all functional dependencies are enforceable on the decomposed relations without requiring a join.
- 3. Redundancy Elimination: Decomposition should minimize redundancy in data storage.

Algorithms for Relational Database Schema Design

1. Lossless Decomposition Algorithm:

Ensures that decomposition satisfies the lossless join property.

Steps:

- Identify the candidate keys of the relation.
- Check if the intersection of decomposed relations is a superkey in at least one of them.
- Decompose relations iteratively to meet the lossless join condition.

3. 3NF Decomposition Algorithm:

Produces a schema in 3rd Normal Form (3NF) while ensuring lossless join and dependency preservation.

Steps:

- Identify a minimal cover of FDs.
- 2. Create a relation for each FD A o B in the minimal cover.
- 3. Ensure that each relation contains a candidate key of the original relation.
- 4. Verify that the decomposition satisfies the lossless join and dependency preservation properties.

4. BCNF Decomposition Algorithm:

Produces a schema in Boyce-Codd Normal Form (BCNF).

Steps:

- 1. Check if the given schema is in BCNF,
- 2. If not, decompose the relation into smaller relations by removing violations of BCNF.
- 3. Ensure each decomposed relation is in BCNF.
- Verify the lossless join property for each decomposition.