

General Idea of a User Interface: Recap A computer system involves communication from a Designer to a User Hopefully, the model intended by the designer is perceived by the user

Goal in HCI: Universal Usability: Recap Address the needs of ALL users The computer is incidental to the design Achieve usability by considering humans and human needs as the driving force behind a design. (1) Occurring or likely to occur as an unpredictable or minor accompaniment (2) Of a minor, casual, or subordinate nature

j#jまえ曽計算机学院 数字媒体与网络技术

jajaJ.曾计算机学院 数字媒体与网络技术と

- "IBM's focus on ease of use has led to technology breakthroughs and advances in design research"
- "For developers and manufacturers, the advantages of creating usable products far outweigh the costs"
- "Every dollar invested in ease of use returns \$10 to \$100"

janja Janja Hight 教字媒体与网络技术

http://www.ibm.com/ibm/easy/

https://www-01.ibm.com/software/u

"The Usability Group is an integral part of the product design process at Microsoft" Over 120 usability engineers Over 25 usability labs http://www.microsoft.com/usability/ http://www.microsoft.com/userresearch/default. mspx

Usability is good business • Quick facts: • \$1 spent up front saves \$10 during development and \$100 after release • Reduce development time by 33-50% • Reduce need for training by at least 25% • Reduce call centre volume by up to 66% • Increase customer satisfaction • Increased revenues and customer retention • Huge reduction in errors • Increased productivity • Avoid costly design flaws before you start coding.

ISO/IEC 9126-1 Definitions

- Functionality
 - The capability of the software product to provide functions which meet stated and implied needs when the software is used under specified conditions.
- Reliability
 - The capability of the software product to maintain a specified level of performance when used under specified conditions
- Usability
 - The capability of the software product to be understood, learned, used and attractive to the user, when used under specified conditions.
- Efficiency
 - The capability of the software product to provide appropriate performance relative to the amount of resources used under stated conditions
- Maintainability
 - The capability of the software product to be modified. Modifications may include corrections, improvements or adaptation of the software to changes environment, and in requirements and functional specifications.

ISO 9241-11 Guidance on Usability

Usability: The extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use.

Effectiveness: The accuracy and completeness with which users achieve specified goals.

Efficiency: The resources expended in relation to the accuracy and completeness with which users achieve goals.

Satisfaction: The comfort and acceptability of use.

Usability

- Usability is a quality measure for a system.
- It is a dynamic, unpredictable process which requires understanding of
 - who the *users* are, and
 - their knowledge, goals and tasks.
- It is measured by different types of evaluation.

Attempts to define Usability

- Usability is one *measure* of software quality:
 - The degree to which user tasks are supported for achieving user goals
- · Usability may be assessed in terms of:
 - Effectiveness (speed of use/frequency of errors)
 - Learnability (time to reach a specified performance level)
 - Flexibility (range of tasks supported)
 - Attitude of users (reflecting acceptability, effort, etc.)
- Principles of Usability may inform design (see later)

Some Criteria for measuring Usability (1)

- 1. A. Time to complete a task
 - B. Percent of task completed
 - C. Percent task complete per unit time
 - D. Ratio of success to failure
 - E. Time spent in errors
 - F. Percent or number of errors
 - G. Percent or number of competitors better than it.
 - H. Number of commands used

Some Criteria for measuring Usability (2)

- I. Frequency of help and documentation used
- J. Time spent using help or documentation
- K. Percent favorable/unfavorable user comments
- L. Number of repetition of failed commands
- M. Number of times interface misleads user
- N. Number good/bad features recalled by users
- O. Number of available commands not involved
- P. Number of "regressive behaviors"
- Q. Number of runs of success and of failure

• List at least 5 criteria for measuring usability.

A major problem is the variety of users: In knowledge and training (e.g. experienced, or novice) In goals (e.g. medical image workstation for radiologists making diagnoses, or surgeons planning surgery) In physical size and capability (e.g. pilot, or child)

》 海河北京 計算机學院 数字媒体与网络技术

Different sorts of Users and Tasks

Usability Engineering—Design Methods (1)

- Usability Engineering is a kind of software engineering
- Pitfalls to avoid:
 - Too easy to jump into a detailed design that is:
 - founded on incorrect requirements
 - not easily used
 - · never tested until it is too late

Usability Engineering—Design Methods (2)

- · Problems:
 - Users request changes, overlook tasks
 - Users do not always understand their own requirements
 - Technology issues

How to Design

- Need to take into account:
 - Who the users are (children, parents, people on a bus, elderly)
 - What activities are being carried out (on-line shopping, remote communication)
 - Where the interaction is taking place (home, work, public place)
 - Anything else?
- Need to optimize the interactions users have with a product
 - Match the users **activities** and **needs**. 常计算机学院 数字媒体与网络技术

Analyzing Interaction Paradigms

- Numerous and diverse configurations for computing systems have been created since Bush's Memex
- These configurations involve
 - Construction and arrangement of hardware
 - Development of software applications to control the bardware
 - Topologies of networked systems
 - Components of the human interface that define how people access the system's functionality.
- Together these components comprise an interaction paradigm.

Analyzing Interaction Paradigms

- Interaction paradigm: A model or pattern of human-computer interaction that encompasses all aspects of interaction, including physical, virtual ,perceptual, and cognitive
- An interaction paradigm defines the "who, what, where, when, why, and how" (5W+H) of computer system use.

Analyzing Interaction Paradigms Principal interaction paradigms Large-scale computing Personal computing Networked computing Mobile computing Why use the 5W+H heuristic to define existing interaction paradigms? Help to give us an understanding of how the interactive systems work how to apply that knowledge to the development

数字媒体与网络技术

of future systems

Understanding Users' Needs

- Take into account what users are good and bad at
- Consider what might help people in the way they currently do things
- Listen to what people want and get them involved — SYZ
- Employ tried and tested user-based methods

