A Sharp Partitioning-Inequality for Non-Atomic Probability Measures Based on the Mass of the Infimum of the Measures

Theodore P. Hill

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Summary. If μ_1, \ldots, μ_n are non-atomic probability measures on the same measurable space (S, \mathcal{F}) , then there is an \mathcal{F} -measurable partition $\{A_i\}_{i=1}^n$ of S so that $\mu_i(A_i) \ge (n-1+m)^{-1}$ for all $i=1,\ldots,n$, where $m = \left\| \bigwedge_{i=1}^n \mu_i \right\|$ is the total mass of the largest measure dominated by each of the μ_i 's; moreover, this bound is attained for all $n \ge 1$ and all m in [0,1]. This result is an analog of the bound $(n+1-M)^{-1}$ of Elton et al. [5] based on the mass M of the supremum of the measures; each gives a quantative generalization of a well-known cake-cutting inequality of Urbanik [10] and of Dubins and Spanier [2].

§ 1. Introduction

Suppose $\mu_1, \mu_2, ..., \mu_n$ are non-atomic probability measures on the same measurable space (S, \mathcal{F}) , and let

$$m = \left\| \bigwedge_{i=1}^n \mu_i \right\|$$

denote the total mass of the sub-probability measure $\bigwedge_{i=1}^{n} \mu_i$, the largest measure dominated by each of the measures μ_i . The main purpose of this note is to prove the following result.

Theorem 1. If μ_1, \ldots, μ_n are non-atomic probability measures on the same measurable space (S, \mathcal{F}) , then there is an \mathcal{F} -measurable partition $\{A_i\}_{i=1}^n$ of S satisfying

$$\mu_i(A_i) \ge (n-1+m)^{-1}$$
 for all $i=1,\ldots,n;$ (1)

moreover, this bound is attained for all positive integers n and all $m \in [0, 1]$.

Theorem 1 is a direct analog of a sharp partitioning result of Elton et al. [5] based on the total mass $M = \left\| \bigvee_{i=1}^n \mu_i \right\|$ of the smallest measure $\bigvee_{i=1}^n \mu_i$ dominating each of the μ_i 's; namely, the existence of a measurable partition $\{A_i\}_{i=1}^n$ of S satisfying

$$\mu_i(A_i) \ge (n+1-M)^{-1}$$
 for all $i=1, ..., n$. (2)

It is easy to see that for n=2, both inequalities (1) and (2) are identical (since in that case m+M=2), but that for n>2 neither implies the other. Since

$$m=1 \Leftrightarrow M=1 \Leftrightarrow \mu_i = \mu_i$$
 for all $i, j=1, ..., n$

both inequalities (1) and (2) give quantitative generalizations of a well-known "cake-cutting" result of Urbanik [10] and of Dubins and Spanier [2] which state that if $\mu_i + \mu_j$ for some i + j, then there is a measurable partition $\{A_i\}_{i=1}^n$ of S satisfying

$$\mu_i(A_i) > n^{-1}$$
 for all $i = 1, ..., n$. (3)

(In the cake-cutting interpretation of these inequalities, S represents a cake which must be divided among n people, and $\mu_i(A)$ represents the value of piece A to person i; the reader is referred to [2] or [5] for more details.)

§ 2. Proof of Main Theorem

Since the conclusion of Theorem 1 is trivial if n=1, assume n>1. Throughout this section, Π_k denotes the collection of \mathscr{F} -measurable k-partitions of S, that is

$$\Pi_k = \{\{A_i\}_{i=1}^k \colon A_i \cap A_j = \emptyset \text{ if } i \neq j, \text{ and } A_i \in \mathscr{F} \ \forall i = 1, \dots, k\},$$

and $\vec{\mu} = (\mu_1, ..., \mu_n)$ is an *n*-dimensional vector-valued measure each of whose coordinates is a non-atomic (non-negative, countably additive) finite measure.

Let $PR(\vec{\mu})$ denote the partition-range of $\vec{\mu}$, that is,

$$PR(\tilde{\mu}) = \{(a_1, \dots, a_n) \in \mathbb{R}^n : \exists \{A_i\}_{i=1}^n \in \Pi_n \text{ with } \mu_i(A_i) = a_i \ \forall i = 1, \dots, n\}.$$

Two of the tools in the proof of Theorem 1 are a generalization of Lyapounov's Convexity Theorem due to Dvoretzky et al. [3] and an application of the convexity theorem by Neyman which solved Fisher's "Problem of the Nile"; both results are recorded here for convenience, and the reader is referred to [2] for more details concerning these and related results.

Lemma 2.1 ([3]). $PR(\bar{\mu})$ is convex and compact.

Lemma 2.2 ([9]). For each positive integer k, there exists a measurable partition $\{E_i\}_{i=1}^k$ of S satisfying

$$\mu_j(E_i) = k^{-1} \mu_j(S)$$
 for all $j = 1, ..., n$ and $i = 1, ..., k$.

The other main tool in the proof is an "inversion principle", which allows any small equipartition value t to be transformed into a new large value t', and vice versa. For the remainder of this paper μ_1, \ldots, μ_n are probability measures, and $\vec{1} = (1, 1, \ldots, 1)$.

Proposition 2.3 (Inversion Principle).

$$\vec{a} \in PR(\mu) \Rightarrow \vec{a}' = (\vec{1} - \vec{a})/(n-1) \in PR(\vec{\mu}).$$

Proof. Fix $\vec{a} = (a_1, ..., a_n) \in PR(\vec{\mu})$, and let $\{A_i\}_{i=1}^n$ be any element (partition) in Π_n with $\vec{a} = (\mu_1(A_1), ..., \mu_n(A_n))$.

For each i=1, ..., n, Lemma 2.2 (with k=n-1 and $S=A_i$) implies the existence of an \mathcal{F} -measurable (n-1)-partition $\{A_{i,k}\}_{k=1,k+i}^n$ of A_i satisfying

$$\mu_i(A_{i,k}) = (n-1)^{-1} \mu_i(A_i) \quad \forall j = 1, ..., n, \ \forall k \neq i, k = 1, ..., n.$$

Letting $B_i = \bigcup \{A_{i,j} : i \neq j, 1 \leq i \leq n\}$, it follows easily that

$$\mu_j(B_j) = (n-1)^{-1}(1-a_j)$$
 for each $j = 1, ..., n$.

Since $\{B_i\}_{i=1}^n \in \Pi_n$, this implies that $(\vec{1} - \vec{a})/(n-1) \in PR(\vec{\mu})$.

Note that \vec{a} small implies \vec{a}' is large (and vice versa) and that $\vec{a}'' \neq \vec{a}$. The useful aspect in this paper is that in general \vec{a}' lies outside the convex hull of \vec{a} and the unit coordinate vectors.

Proof of Theorem 1

Letting \tilde{e}_i denote the i^{th} unit coordinate vector (0, ..., 0, 1, 0, ..., 0) of \mathbb{R}^n , it is clear (taking $A_i = S$, $A_i = \emptyset$ for $j \neq i$) that $\tilde{e}_i \in PR(\tilde{\mu})$ for all i = 1, ..., n.

Fix $\vec{a} = (a_1, \dots, a_n) \in PR(\vec{\mu})$, and let

$$\beta_i = a_i \left(n - 1 + \sum_{j=1}^n a_j \right)^{-1}$$
 for $i = 1, ..., n$;

and

$$\beta_{n+1} = (n-1) \left(n - 1 + \sum_{i=1}^{n} a_i \right)^{-1}$$

Together, Lemma 2.1 (convexity) and Proposition 2.3 imply that

$$\vec{v} = \sum_{i=1}^{n} \beta_i \, \vec{e}_i + \beta_{n+1} (\vec{1} - \vec{a}) / (n-1) \in PR(\vec{\mu}),$$

and an easy calculation shows that $\vec{v} = (\alpha, \alpha, ..., \alpha) \in \mathbb{R}^n$, where $\alpha = \left(n - 1 + \sum_{i=1}^n a_i\right)^{-1}$.

Choosing $\{A_i\}_{i=1}^n$ so that $\sum_{i=1}^n a_i = m + \varepsilon$ (using the compactness conclusion of Lemma 2.1, ε may even be taken to be zero), establishes the inequality (1). That this bound is attained follows from the next example. \square

Example 2.4. For n>1 and $m\in[0,1]$, let $(S,\mathcal{F})=([0,1], Borels)$, let $f_1: [0, 1] \to \mathbb{R}$ be $2I_{[0, 1/2)}$ and $f_i = 2mI_{[0, 1/2)} + 2(1-m)I_{[1/2, 1]}$ for i = 2, ..., n, and define $\mu_1, ..., \mu_n$ on (S, \mathcal{F}) by $\mu_i(A) = \int_A f_i d\lambda$. Then $\mu_1, ..., \mu_n$ are non-atomic probability measures on (S, \mathcal{F}) with $\left\| \bigwedge_{i=1}^n \mu_i \right\| = m$, and an easy calculation shows

that for every \mathscr{F} -partition $\{A_i\}_{i=1}^n$ of [0,1], $\min_{i\leq n} \mu_i(A_i) \leq (n-1+m)^{-1}$, and that in fact this bound is attained. in fact this bound is attained.

Remarks. The idea to use the Dvoretzky-Wald-Wolfowitz result to establish (1) was triggered by a recent proof of (2) by Legut [8] using that same result; Dubins and Spanier [2] used a similar generalization (matrix convexity) to establish (3).

The extremal case m=0 in (1) is not completely analogous to the extremal case M=n in (2), since M=n implies the measures have essentially disjoint support and that the optimal-partitioning constant is always 1 in that case, whereas in the m=0 case the optimal-partitioning constant may be strictly bigger than $(n-1)^{-1}$ for some $\bar{\mu}$.

The inversion principle and the bound $(n-1+\sum a_i)^{-1}$ in the proof may be of some use when m is not known or easy to calculate, but instead only several partition-vectors $(a_1, \ldots, a_n) \in PR(\vec{\mu})$ are known.

If the measures have atoms, convexity and all the inequalities (1)-(3) may fail; analogs of the convexity theorem and (3) based on the maximum atom mass are contained in [4] and [7]. Similarly, if the measures are no longer assumed to be probability measures, again (1)-(3) may fail; [6] contains an analog of (3) based on the total masses of the measures (the constant n^{-1} is replaced by n^{-1} times the harmonic mean of the total masses of the measures).

§3. Applications

In the classification problem of statistical decision theory, the minimax risk $R(\mu_1, \ldots, \mu_n)$ of probability distributions μ_1, \ldots, μ_n can also be expressed (see [5]) as

$$R(\mu_1, \ldots, \mu_n) = 1 - \sup \{ \min_{i \le n} \mu_i(A_i) : \{A_i\}_{i=1}^n \in \Pi_n \},$$

so Theorem 1 has the following immediate consequence.

Corollary 1. If μ_1, \ldots, μ_n are non-atomic probability distributions, then the minimax risk in the corresponding classification problem is at most (n-2+m)/(n-1)+m), and this bound is best possible.

In [1] and [5], an application of (2) was made to the problem of distributing k indivisible objects to n people via lotteries, and a similar application can be made of (1).

Acknowledgement. The author is grateful to the referee for suggesting emphasis of the inversion principle, and for several other suggestions and comments.

References

- 1. Demko, S., Hill, T.: Equitable distribution of indivisible objects. Preprint (1985)
- 2. Dubins, L., Spanier, E.: How to cut a cake fairly. Am. Math. Monthly 68, 1-17 (1961)
- 3. Dvoretzky, A., Wald, A., Wolfowitz, J.: Relations among certain ranges of vector measures. Pacific J. Math. 1, 59-74 (1951)
- 4. Elton, J., Hill, T.: A generalization of Lyapounov's convexity theorem to measures with atoms. Proc. Am. Math. Soc., 99, 297-304 (1987)
- 5. Elton, J., Hill, T., Kertz, R.: Optimal-partitioning inequalities for non-atomic probability measures. Trans. Am. Math. Soc. 296, 703-725 (1986)
- 6. Hill, T.: Equipartitioning the common domain of non-atomic measures. Math. Z. 189, 415-419 (1985)
- 7. Hill, T.: Partitioning general probability measures. Ann. Prob., to appear (1987)
- 8. Legut, J.: Inequalities for α-optimal partitioning of measurable space. Math. Z., to appear (1987)
- 9. Neyman, J.: Un théorème d'existence. C.R. Acad. Sci. Paris 222, 843-845 (1946)
- 10. Urbanik, K.: Quelques théorèmes sur les mesures. Fund. Math. 41, 150-162 (1955)