	NumPy Exercises
	Now that we've learned about NumPy let's test your knowledge. We'll start off
	with a few simple tasks, and then you'll be asked some more complicated
	Import NumPy as np
In [1]:	import numpy as np
In [7]:	<pre>create an array of 10 zeros z = np.zeros(10) z</pre>
Out[7]:	array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
In [6]:	<pre>create an array of 10 ones z=np.ones(10) z</pre>
Out[6]:	array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
In [10]:	Create an array of 10 fives fives_array = np.array([5.] * 10)
Out[10]:	fives_array array([5., 5., 5., 5., 5., 5.,
	5., 5., 5.]) Create an array of the integers from 10 to 50
In [11]:	<pre>integers_array = np.arange(10, 51) integers_array</pre>
Out[11]:	array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2 5, 26,
	27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 4 2, 43, 44, 45, 46, 47, 48, 49, 5
	O]) Create an array of all the even
In [12]:	<pre>integers from 10 to 50 even_integers_array = np.arange(10</pre>
Out[12]:	even_integers_array array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 4
	0, 42, 44, 46, 48, 50]) Create a 3x3 matrix with values
In [13]:	<pre>ranging from 0 to 8 matrix = np.arange(9).reshape(3, 3</pre>
Out[13]:	matrix array([[0, 1, 2],
	[6, 7, 8]]) Create a 3x3 identity matrix
In [16]:	<pre>identity_matrix = np.identity(3) identity_matrix</pre>
Out[16]:	array([[1., 0., 0.],
	Use NumPy to generate a random number between 0 and 1
In [19]:	<pre>random_number = np.random.rand()</pre>
Out[19]:	random_number 0.28818489089727484
	Use NumPy to generate an array of 25 random numbers sampled from a standard normal
In [21]:	<pre>random_numbers = np.random.rand(25</pre>
Out[21]:	random_numbers array([0.54320252, 0.12255061, 0.0 3574113, 0.44316817, 0.62299306,
	0.40250306, 0.96253512, 0.3 7255967, 0.41870246, 0.11498521, 0.99733794, 0.27693735, 0.2 1026894, 0.36378982, 0.31725749,
	0.46187461, 0.45167626, 0.4 9396683, 0.08354117, 0.75840936, 0.98592443, 0.74876035, 0.8 3841041, 0.67168562, 0.64182248])
Tn [22].	Create the following matrix: matrix = np.arange(0.01, 1.01, 0.0)
In [23]:	matrix array([[0.01, 0.02, 0.03, 0.04, 0.
Out[23]:	05, 0.06, 0.07, 0.08, 0.09, 0.1], [0.11, 0.12, 0.13, 0.14, 0. 15, 0.16, 0.17, 0.18, 0.19, 0.2], [0.21, 0.22, 0.23, 0.24, 0.
	25, 0.26, 0.27, 0.28, 0.29, 0.3], [0.31, 0.32, 0.33, 0.34, 0. 35, 0.36, 0.37, 0.38, 0.39, 0.4], [0.41, 0.42, 0.43, 0.44, 0.
	45, 0.46, 0.47, 0.48, 0.49, 0.5], [0.51, 0.52, 0.53, 0.54, 0. 55, 0.56, 0.57, 0.58, 0.59, 0.6], [0.61, 0.62, 0.63, 0.64, 0.
	65, 0.66, 0.67, 0.68, 0.69, 0.7], [0.71, 0.72, 0.73, 0.74, 0. 75, 0.76, 0.77, 0.78, 0.79, 0.8], [0.81, 0.82, 0.83, 0.84, 0.
	85, 0.86, 0.87, 0.88, 0.89, 0.9], [0.91, 0.92, 0.93, 0.94, 0. 95, 0.96, 0.97, 0.98, 0.99, 1.]])
	Create an array of 20 linearly spaced points between 0 and 1:
In [24]:	<pre>linear_points = np.linspace(0, 1, linear_points array([0.</pre>
Out[24]:	0526316, 0.15789474, 0.21052632, 0.26315789, 0.31578947, 0.3 6842105, 0.42105263, 0.47368421, 0.52631579, 0.57894737, 0.6
	3157895, 0.68421053, 0.73684211, 0.78947368, 0.84210526, 0.8 9473684, 0.94736842, 1.])
	Numpy Indexing and Selection
	Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:
In [25]:	<pre>mat = np.arange(1,26).reshape(5,5) mat</pre>
Out[25]:	array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15],
In []:	[16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]) # WRITE CODE HERE THAT REPRODUCES
In [33]:	# BE CAREFUL NOT TO RUN THE CELL B # BE ABLE TO SEE THE OUTPUT ANY MO matrix = np.array([[12, 13, 14, 15
	[17, 18, 19, 20 [22, 23, 24, 25]
Out[33]:	array([[12, 13, 14, 15], [17, 18, 19, 20], [22, 23, 24, 25]])
In []:	# WRITE CODE HERE THAT REPRODUCES # BE CAREFUL NOT TO RUN THE CELL B # BE ABLE TO SEE THE OUTPUT ANY MO
In [34]:	x=20 x 20
ouc[o+].	# WRITE CODE HERE THAT REPRODUCES # BE CAREFUL NOT TO RUN THE CELL B
In [36]:	<pre># BE ABLE TO SEE THE OUTPUT ANY MO matrix = np.arange(2, 13, 5).resha</pre>
Out[36]:	matrix array([[2],
In []:	<pre># WRITE CODE HERE THAT REPRODUCES # BE CAREFUL NOT TO RUN THE CELL B</pre>
In [37]:	<pre># BE ABLE TO SEE THE OUTPUT ANY MO matrix = np.arange(21, 26, 1).resh</pre>
Out[37]:	matrix array([[21, 22, 23, 24, 25]])
In []:	# WRITE CODE HERE THAT REPRODUCES # BE CAREFUL NOT TO RUN THE CELL B # BE ABLE TO SEE THE OUTPUT ANY MO
	matrix = np.arange(16, 26, 1).resh matrix array([[16, 17, 18, 19, 20],
out[38]:	[21, 22, 23, 24, 25]]) Now do the following
	Get the sum of all the values in mat
In [39]:	<pre>sum_of_values = np.sum(mat) print(sum_of_values)</pre>
	Get the standard deviation of the
In [40]:	values in mat
	print(std_deviation) 7.211102550927978
Tn 「44っ	Get the sum of all the columns in mat sum_of_columns = np.sum(mat, axis=
In [41]: Out[41]:	sum_of_columns = np.sum(mat, axis= sum_of_columns array([55, 60, 65, 70, 75])
- ~ [¬+]·	