INTERPOLATING CURVES

Rodrigo Silveira

Curve and Surface Design Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

INTERPOLATING A SET OF POINTS

Interpolation problem

Given a set of points (e.g., data samples) originated by some unknown function, the goal is to estimate the values of the function on locations between the known values

In other (more precise) words:

Given P_0, \ldots, P_n in \mathbb{R}^d our goal is to find a curve $\gamma(t)$ such that $\gamma(t_i) = P_i$ for some values of t_0, \ldots, t_n .

a curve interpolating the points

Observe that:

- ullet The parameter values t_i are not known
- There are many curves that work

Piecewise linear interpolation

The simplest solution is piecewise linear interpolation: use a polygonal line that has the points P_1, \ldots, P_n as vertices, and line segments $P_{i-1}P_i$ as edges.

Parametrization

Given a set P of n+1 points P_0, P_1, \ldots, P_n in \mathbb{R}^d , and an increasing sequence of n+1 real values $t_0 < t_1 < \cdots < t_n$, the following curve interpolates the points in P:

$$P_0$$

a set of (data) points

$$P_1$$
 P_2

a curve interpolating the points

$$\gamma: [t_0, t_n] \to \mathbb{R}^d$$

$$\gamma(t) = \frac{t_i - t}{t_i - t_{i-1}} P_{i-1} + \frac{t - t_{i-1}}{t_i - t_{i-1}} P_i$$
 if $t \in [t_{i-1}, t_i]$ for all $i = 1, \dots, n$

Observations

- \bullet γ_{t-1} is continuous: trivially in (t_{i-1}, t_i) for all i, and also at each t_i for all i because $\gamma(t_i)$ is well defined (i.e., consecutive line segments coincide at data points)
- \bullet γ_{t-1} is not differentiable at the points t_i (unless three consecutive points are aligned)

Piecewise linear interpolation

How to choose the values $t_0 < t_1 < \cdots < t_n$?

ullet Make each subinterval $[t_{i-1},t_i]$ of the same length (say, 1)

We get $t_i = i$ for each i, and $[t_{i-1}, t_i] = [i-1, i]$, therefore:

$$\gamma(t) = (i-t)P_{i-1} + (t-i+1)P_i$$
 if $t \in [i-1,i]$ for all $i = 1, ..., n$

Parametrization $[0, n] \to \mathbb{R}^d$. Speed possibly different on each edge.

ullet Make each subinterval $[t_{i-1},t_i]$ of length $||P_i-P_{i-1}||=d_i$

We get $t_i = \sum_{k=1}^i d_k$, for each i, therefore:

$$\gamma(t) = \frac{\sum_{k=1}^{i} d_k - t}{d_i} P_{i-1} + \frac{t - \sum_{k=1}^{i-1} d_k}{d_i} P_i \qquad \text{if } t \in [t_{i-1}, t_i] \text{ for all } i = 1, \dots, n$$

Parametrization $[0, \sum_{k=1}^n d_k] \to \mathbb{R}^d$, unit-speed parametrization

Variation diminishing property

An important property for any interpolating curve

Suppose that the points you want to interpolate are samples from an unknown curve Γ

Given a curve Γ in \mathbb{R}^2 or \mathbb{R}^3 , and **any** line ℓ (in \mathbb{R}^2) or plane π (in \mathbb{R}^3), let us denote $cross(\Gamma, \ell)$ or $cross(\Gamma, \pi)$ the number of crossings (i.e., intersection points) of Γ and ℓ or π .

Consider any piecewise linear interpolation p(t) of Γ . Then:

$$cross(\Gamma, \ell) \ge cross(p, \ell) \text{ (in } \mathbb{R}^2)$$

 $cross(\Gamma, \pi) \ge cross(p, \pi) \text{ (in } \mathbb{R}^3)$

This is called the *variation diminishing property*

 \rightarrow note that this must hold for **any** line ℓ or plane π !

Implies that the interpolating curve (p) does not wiggle much more than the original one (Γ)

Affine invariance of piecewise linear interpolation

Let $\gamma(t)$ be a curve in \mathbb{R}^d , and let p(t) be a piecewise linear interpolation of $\gamma(t)$. Let f be any affinity $f: \mathbb{R}^d \to \mathbb{R}^d$. Then f(p(t)) is a piecewise linear interpolation of $f(\gamma(t))$.

Why? Proof sketch:

Let P_0, P_1, \ldots, P_n be the vertices of the polygonal line of the piecewise linear interpolation p(t).

We have:

- f(p(t)) is a polygonal line
- the vertices of f(p(t)) are $f(P_0), \ldots, f(P_n)$
- for all i, $f(P_i)$ is a point in $f(\gamma(t))$, since P_i is a point in $\gamma(t)$

Therefore, f(p(t)) is a linear interpolation of $f(\gamma(t))$

Thus it is the same to (i) first linearly interpolate, then apply affine transformation, than (ii) first apply affine transformation, then linearly interpolate

Using higher degree polynomials

Idea: find a higher degree polynomial that interpolates the points in a smoother way

Let
$$P_0, P_1, \ldots, P_n$$
 with $P_i = (x_i, y_i)$, be $n+1$ points in \mathbb{R}^2

degree 1 (linear)
degree 2 (quadratic)

Interpolation theorem

There exists a unique polynomial of degree at most n that passes through P_0, P_1, \ldots, P_n

Proof

- 1) Uniqueness (if it exists, it is unique)
 - Suppose that there are two polynomials p(x) and q(x) that interpolate the points. Consider then r(x)=p(x)-q(x)
 - r(x) is also a polynomial of degree at most n, but it has n+1 different roots: one at each x_i (since $r(x_i) = p(x_i) q(x_i) = y_i y_i = 0$)
 - But a degree-n polynomial different from zero can have at most n roots! Then r(x) must be the zero polynomial, i.e., r(x) = 0, implying that p(x) = q(x)!

Using higher degree polynomials

Interpolation theorem

There exists a unique polynomial of degree at most n that passes through P_0, P_1, \ldots, P_n

Proof (cont'd)

- 2) Existence (it exists!)
 - We define the following auxiliary polynomials (known as Lagrange weights)

$$L_i^n(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

Observe:

- $L_i^n(x)$ is a polynomial of degree n for all $i = 0, \ldots, n$
- $L_i^n(x_j) = 1$ if j = i, and $L_i^n(x_j) = 0$ if $j \neq i$

Here is our interpolating polynomial:

$$p(x) = \sum_{i=0}^{n} L_i^n(x) y_i$$

Observe:

- $L_i^n(x)$ is a polynomial of degree n
- $p(x_i) = y_i$ for all $i = 0, \dots, n$

Langrange polynomial

$$p(x) = \sum_{i=0}^{n} L_i^n(x) y_i$$

- $L_i^n(x)$ is a polynomial of degree n
- $p(x_i) = y_i$ for all $i = 0, \dots, n$

This way to express the unique polynomial that interpolates n+1 points is known as Lagrange polynomial

(other ways exist, but they are reformulations of the same—unique!—polynomial)

Would it be possible to achieve the same with a lower degree polynomial?

No!

That is: the only degree that always allows to interpolate n+1 points is degree n

The exception is when two or more data points lie on a low-degree polynomial.

Example: n points on a line can be interpolated with a polynomial of degree just 1

Langrange polynomial

Lemma: n is the minimum degree that guarantees the existence of an interpolating polynomial for any set of n+1 distinct points.

Why? **Proof sketch:** (by induction on n)

- Base case: n = 1. Then we have only two points P_0, P_1 , and we know that two points are required to determine a line (i.e., a polynomial of degree 1)
- Induction step: assume that there exists a set of n points P_1, \ldots, P_n whose interpolating polynomial has degree exactly n-1 (i.e., with lower degree it is not possible)

Let P_0 be a point that does not lie on the polynomial curve that interpolates P_1, \ldots, P_n . Since that polynomial of degree n-1 is unique, and it does not go through P_0 , then the polynomial through P_0, P_1, \ldots, P_n must be different, and thus must have higher degree.

Langrange polynomial

$$p(x) = \sum_{i=0}^{n} L_i^n(x) y_i$$

- $L_i^n(x)$ is a polynomial of degree n
- $p(x_i) = y_i$ for all $i = 0, \dots, n$

Is the Lagrange polynomial affine invariant?

How can we verify that?

We need to see if the weights that multiply the points (well, the y_i s) add up to 1

Clever idea: let's choose a really simple set of points to interpolate (we can choose any, because the $L_i^n(x)$ weights are independent of the points)

Consider n+1 distinct points on the function f(x)=1, that is: $P_i=(x_i,1)$ for $i=0,\ldots,n$. Then the unique polynomial of degree at most n that interpolates them is easy: p(x)=1

$$1 = p(x) = \sum_{i=0}^{n} L_i^n(x)y_i = \sum_{i=0}^{n} L_i^n(x) \cdot 1 = \sum_{i=0}^{n} L_i^n(x) \to \sum_{i=0}^{n} L_i^n(x) = 1$$

Therefore, the Langrange polynomial is affine invariant

Parametric version of Langrange polynomial

$$p(x) = \sum_{i=0}^{n} L_i^n(x) y_i \rightarrow \text{explicit equation}$$

This only works to interpolate values from a function, but doesn't work for any set of points (e.g., as soon as two points have the same x coordinate, it doesn't work)

Parametric version (arbitrary dimension)

Let P_0, P_1, \ldots, P_n be n+1 points in \mathbb{R}^d , and consider $0 = t_0 < t_1 < \cdots < t_n = 1$.

$$L_i^n(t) = \frac{\prod_{j \neq i} (t - t_j)}{\prod_{i \neq i} (t_i - t_j)}$$
, for $i = 0, \dots, n$ $\gamma(t) = \sum_{i=0}^n L_i^n(t) P_i$

- ullet $L_i^n(t)$ is a polynomial of degree n in t o so is $\gamma(t)$
- $L_i^n(t_j) = 1$ if j = i, and $L_i^n(t_j) = 0$ if $j \neq i$
- $\bullet \ \gamma(t_i) = P_i$
- For each value of t, $\gamma(t)$ is an affine combination of P_0, \ldots, P_n , with weights $L_i^n(t)$ that (you can prove) add up to $1 \to \text{this}$ interpolation is also affine invariant

Parametric version of Langrange polynomial

Remarks

- As before, the parametric Lagrange interpolation is not unique: we are free to choose the parameter values t_1, \ldots, t_{n-1} .
 - Uniform version: $t_i t_{i-1} = 1$ or $= \frac{1}{n}$
 - Non-uniform version: all other cases

You will play with this in Lab assignment 3

• There is a matricial expression of Lagrange interpolation

For example, for only two points P_0, P_1 We have $t_0=0$, $t_1=1$,

$$L_0^1(t) = \frac{t - t_1}{t_0 - t_1} = \frac{t - 1}{-1} = -t + 1 = (t, 1)(-1, 1)^t \qquad p(t) = L_0^1(t)P_0 + L_1^1(t)P_1 = L_1^1(t) = \frac{t - t_0}{t_1 - t_0} = \frac{t - 0}{1} = t = (t, 1)(1, 0)^t \qquad = (t, 1)\begin{pmatrix} -1 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} P_0\\ P_1 \end{pmatrix}$$

See bibliography for the matrix version for larger n

Issues with polynomial interpolation

- The high degree of the polynomial produces a curve with higher roughness (i.e., it can wiggle a lot) than probably desired
 - → The variation diminishing property is not satisfied!

You will play with this in

Lab assignment 3

- Intuitively: adding data points should improve the resulting polynomial curve. But that is not always the case! This is known as *Runge's phenomenon*
- Lagrange's formula requires $\Theta(n^2)$ additions and products, which is quite a lot (although more efficient versions exist)
- ullet If one has computed $\gamma(t)$ for n points and needs to add one extra point, everything needs to be recomputed
- Lagrange's formula is not numerically stable: small variations in the input points can produce large variations in the final curve
- The method is not easy to make interactive: if the curve is not what one wants, (and you cannot modify the data points) all you can do is to add more points