Quantum Schur-type dualities of affine type ${\cal B}$

Chun-Ju Lai

University of Virginia cl8ah@virginia.edu

May 17, 2014

(joint work with L. Luo and W. Wang)

Outline

- (old) Schur-type dualities (of finite type A)
- (new) Schur-type dualities of affine type B [?]

Schur-type dualities of type A

 $V:=\mathbb{C}^n$ natural representation of general linear Lie algebra \mathfrak{gl}_n

 $V_q = \mathbb{Q}(q)^n$ is the natural representation of $U_q(\mathfrak{gl}_n)$.

Hecke algebra (of finite type A)

The Hecke algebra \mathcal{H}_d^A is a $\mathbb{Q}(q)$ -algebra generated by

$$\{T_i \mid i = 1, \dots, d-1\}$$

subject to

- Braid relations (among T_i 's)
- Hecke relations $(T_i q^{-1})(T_i + q) = 0$.

Hecke algebra action (of finite type A)

- $V_q = \sum_i \mathbb{Q}(q)v_i$
- \bullet e.g. d=2 $V_q^{\otimes 2} \curvearrowleft \mathcal{H}_2^A \text{ by }$

$$(v_a \otimes v_b)T_1 = \begin{cases} v_b \otimes v_a & \text{if } b > a \\ q^{-1}v_a \otimes v_b & \text{if } b = a \\ v_b \otimes v_a + (q^{-1} - q)v_a \otimes v_b & \text{if } b < a \end{cases}$$

Specializing $q = 1 \Rightarrow (v_a \otimes v_b)T_1 = v_b \otimes v_a = (v_a \otimes v_b)(12)$

Quantum group (of finite type A)

The quantum group $U_q(\mathfrak{gl}_n)$ is a $\mathbb{Q}(q)$ -algebra generated by

$$\{E_i, F_i, D_j, D_j^{-1}\}$$

subject to

- q-Chevalley relations
- q-Serre relations

Remark: The quantum group $U_q(\mathfrak{sl}_n)=\{E_i,F_i,K_i,K_i^{-1}\}$ is related via the embedding

$$\begin{array}{ccc} U_q(\mathfrak{sl}_n) & \hookrightarrow & U_q(\mathfrak{gl}_n) \\ K_i & \mapsto & D_i D_{i+1}^{-1} \end{array}$$

Schur-Jimbo duality

$$\begin{array}{cccc} U_q(\mathfrak{gl}_n) & \stackrel{\psi}{\curvearrowright} & V_q^{\otimes d} & \stackrel{\varphi}{\curvearrowleft} & \mathcal{H}_d^A \\ \text{quantum group} & & & \text{Hecke algebra} \end{array}$$

Schur-Jimbo duality (Jimbo1986)

The algebras $U_q(\mathfrak{gl}_n)$ and \mathcal{H}_d^A satisfy double centralizer property. That is,

$$\begin{array}{cccc} \operatorname{End}_{\psi(U_q(\mathfrak{gl}_n))}(V_q^{\otimes d}) & = & \varphi(\mathcal{H}_d^A) \\ & \psi(U_q(\mathfrak{gl}_n)) & = & \operatorname{End}_{\varphi(\mathcal{H}_d^A)}(V_q^{\otimes d}) \end{array}$$

Quantum Schur duality of finite type A

$$q\text{-Schur algebra }S_q^A(n,d):=\operatorname{End}_{\mathcal{H}_d^A}\left(V_q^{\otimes d}\right).$$

Proposition (Dipper-James1991)

The algebras $S_q^A(n,d)$ and \mathcal{H}_d^A satisfy double centralizer property.

Affine Hecke algebra of type B'

The affine Hecke algebra $\widehat{\mathcal{H}}_d^B$ is a $\mathbb{Q}(q)$ -algebra generated by

$$\{T_i \mid i = 0, 1, \dots, d-1\} \cup \{X_j, X_j^{-1} \mid j = 1, \dots, d\}$$

such that

- $\langle T_i \rangle \simeq \mathcal{H}_d^B$
- $\langle X_i, X_i^{-1} \rangle$ is a Laurent polynomial ring
- T_i, X_i satisfy some mixed relations

Affine Hecke algebra action of type B

- $V_q = \sum\limits_{i \in I} \mathbb{Q}(q) v_i$ where $I = \left\{ -n + \frac{1}{2}, \ldots, n \frac{1}{2} \right\}$
- $V_q^{\otimes d} \curvearrowleft T_0 \approx q$ -sign change on the 1st copy.
- We have an explicit but complicated description [?] of $\widehat{\mathcal{H}}_d^B$ -action on the infinite-dimensional tensor space

$$\mathbb{V}_q = V_q \otimes \mathbb{Q}(q)[z, z^{-1}]$$

• We define the q-Schur algebra $\widehat{S}^{\imath}_{q}(n,d)$ of affine type B similarly, i.e.

$$\widehat{S}_q^{\imath}(n,d) := \operatorname{End}_{\widehat{\mathcal{H}}_d^B} \left(\mathbb{V}_q^{\otimes d} \right)$$

affine type $B\ (\mathrm{new})$

Quantum Schur duality of affine type B

$$\widehat{S}^{\imath}_q(n,d) \curvearrowright \mathbb{V}^{\otimes d}_q
ightarrow \widehat{\mathcal{H}}^B_d$$
 affine q -Schur algebra affine Hecke algebra

Proposition (L-Luo-Wang, 2014)

The algebras $\widehat{S}^{\imath}_{q}(n,d)$ and $\widehat{\mathcal{H}}^{B}_{d}$ satisfy double centralizer property.

Quantum Schur-type dualities

finite type A	affine type ${\cal A}$
$U_q(\mathfrak{gl}_n)$	$U_q(\widehat{\mathfrak{gl}}_n)$
$ S_q^A(n,d) $	$\begin{vmatrix} & \downarrow \\ \widehat{S}_q^A(n,d) & \curvearrowright \mathbb{V}_q^{\otimes d} \curvearrowleft & \widehat{\mathcal{H}}_d^A \end{vmatrix}$
finite type B	affine type B
U^{\imath}	\widehat{U}^{\imath}
$\begin{bmatrix} & \downarrow \\ & S_q^{\imath}(n,d) & \curvearrowright V_q^{\otimes d} & \curvearrowright & \mathcal{H}_d^B \end{bmatrix}$	$\begin{vmatrix} & \downarrow \\ \widehat{S}_q^i(n,d) & \curvearrowright \mathbb{V}_q^{\otimes d} \curvearrowleft & \widehat{\mathcal{H}}_d^B \end{vmatrix}$

Remark: There is other type B duality replacing $U_q(\mathfrak{gl}_n)$ by $U_q(\mathfrak{so}_{2n+1})$ and \mathcal{H}_d^B by q-Brauer algebra.

Coideal subalgebra (of finite type B)

• The algebra U^i is generated by

$$\left\{e_i, f_i, k_i, k_i^{-1}\right\} \cup \left\{\mathbf{t}\right\}$$

subject to some Serre-type relations

• t arises from the Dynkin diagram involution

- U^i is a subalgebra of $U_q(\mathfrak{sl}_{\bullet}) = \langle E_i, F_i, K_i, K_i^{-1} \rangle$
- $(U_q(\mathfrak{sl}_{\bullet}), U^i)$ form a quantum symmetric pair

Coideal subalgebra action on V_q

• U^i -action v.s. U-action

$\imath ext{-Schur}$ duality of finite type B

Theorem (Bao-Wang, 2013)

- **1** The algebras U^i and \mathcal{H}^B_d satisfy double centralizer property.
- ${f 2}$ (U,U^{\imath}) gives a new formulation of the KL theory for Lie algebras of type B

Constructing U^i in affine type B

• The algebra \widetilde{U}^i is a $\mathbb{Q}(q)$ -algebra generated by

$$\left\{e_i, f_i, k_i, k_i^{-1}\right\} \cup \left\{t, \widetilde{t}\right\}$$

subject to similar Serre-type relations

ullet arises from the Dynkin diagram involution

• There is an embedding $\widetilde{U}^i \hookrightarrow U_q(\widehat{\mathfrak{sl}}_{\bullet})$ and $(U_q(\widehat{\mathfrak{sl}}_{\bullet}), \widetilde{U}^i)$ form a quantum symmetric pair

\widetilde{U}^{\imath} -action on \mathbb{V}_q

• \widetilde{U}^i -action \approx periodic U^i -action, while \widetilde{t} is slightly different.

$\imath ext{-Schur}$ duality of affine type B

$$U_q(\widehat{\mathfrak{sl}}_ullet)\supseteq \widetilde{oldsymbol{U}}^{oldsymbol{\imath}} \qquad \curvearrowright \qquad \mathbb{V}_q^{\otimes d} \qquad ext{\curvearrowleft affine Hecke algebra}$$

Theorem (L-Luo-Wang2014)

The actions of \widetilde{U}^\imath and $\widehat{\mathcal{H}}^B_d$ on $\mathbb{V}_q^{\otimes d}$ commute

Question: How do we achieve double centralizer property?

i-Schur duality of affine type B

We plan to "extend" \widetilde{U}^i to an affine coideal subalgebra $\widehat{U}^i \subseteq U_q(\widehat{\mathfrak{gl}}_{\bullet})$ by adding some central elements

We expect (work in progress)

- **1** \widehat{U}^i and $\widehat{\mathcal{H}}_d^B$ satisfy double centralizer property.
- \widetilde{U}^i and $\widehat{\mathcal{H}}^B_d$ satisfy double centralizer property if n>d.

Remark: Similar result holds for affine type A [Ginzburg-Vasserot, Lusztig, Green].

i-Schur duality of affine type B

Remark: There are two Schur-type dualities depending on the parity of $\dim V_a$

• \widetilde{U}^i has a counterpart \widetilde{U}^j generated by

$$\left\{e_i, f_i, k_i, k_i^{-1}\right\} \cup \left\{\widetilde{t}\right\}$$

• \tilde{t} arises from the Dynkin diagram involution.

• The above results hold for \widetilde{U}^{\jmath}

Thank you for your attention