Für die Erzeugung von Zitronensäure ($C_6H_8O_7$). Also $a=6,\,b=8,\,c=7$ und anfangs n=1 erhält man $x=2.25,\,y=3.75,\,z=-0.5$. Jedoch sind gebrochene Stoffmengen nicht sinnvoll. Hier kommt das n ins Spiel. n beschreibt, wie viel Erzeugnis ich erreichen möchte. Also sind x,y,z direkt proportional zu n. Da wir aus dem Sachzusammenhang fordern müssen, dass $x,y,z\in\mathbb{Z},n\in\mathbb{N}$, erhöre ich n solange bis auch $x,y,z\in\mathbb{Z}$ sind. Für Zitronensäure ergibt sich für ein n=4: $x=9,\,y=15,\,z=-2$. Negative werte bedeuten hierbei, dass der der dazugehörige Stoff ($x\Leftrightarrow$ Methan, $y\Leftrightarrow$ Kohlendioxid, $z\Leftrightarrow$ Wasser) nicht hinzugefügt werden muss, sondern abgegeben wird. Hier alle Ergebnisse:

Stoffname	Summenformel	$\mid n \mid$	x	y	z
Fruktose	$C_6H_{12}O_6$	1	3	3	0
Ethanol	C_2H_6O	2	3	1	0
Weinsäure	$C_4H_6O_6$	4	5	11	2
Zitronensäure	$\mathrm{C_6H_8O_7}$	4	9	15	-2

Zu bemerken ist schließlich, dass man das kleinste n gefunden hat, für das $x, y, z \in \mathbb{Z}$ gilt, gdw. ggT(x, y, z) = 1. Dies ist hier leicht zu überprüfen.

Für den Vorteil gegenüber des Gauß-Jordan-Algorithmus, muss man sich die Laufzeiten anschauen. Gauß benötigt $O(n^3)$ (zum Lösen eines Gleichungssystems mit n Unbekannten und Gleichungen) für jede Lösung. Das liegt daran, dass auch die Inhomogenität im Algorithmus verwendet und verändert wird. Die LU-Zerlegung dauert zwar auch $O(n^3)$, jedoch muss dies nur einmal gemacht werde, da in diesem Algorithmus die Inhomogenität keine Rolle spielen. Die Vorwärts- bzw. Rückwärtssubstitution dauert dann nur $O(n^2)$. Somit kann man schlussfolgern, wenn häufig, wie hier der Fall, das selbe homogene Gleichungssystem unterschiedlicher Inhomogenitäten gelöst werden soll, dann bietet sich die LU-Zerlegung an.

Meine Behauptung, dass die LU-Zerlegung $O(n^3)$ dauert, kann man sehr schön anhand der Abbildung 1 verifizieren. Dort ist die Berechnungsdauer t von der LU-Zerlegung in Abhängigkeit von der Matrixgröße N (bedeutet, dass immer $N \times N$ - Matrizen zerlegt werden) abgezeichnet. Es zeigt sich, dass die gemessenen Zeiten sehr gut proportional zu N^3 ist. Der orangene Graph ist um genau zu sein

$$t(N) = 2.5 \cdot 10^{-7} \cdot N^3$$

Das $O(n^3)$ Verhalten kommt daher, dass für jede Spalte durch im Mittel durch die Hälfte aller Zeilen und dann nochmal im Mittel die Hälfte aller Spalten iteriert werden muss.

Abbildung 1: Berechnungsdauer t in Abhängigkeit von der Matrixgröße ${\cal N}$