[Discrete Mathematics]

Tutorial sheet

Propositional Logic

Question 1.

Which of the following statements are propositions:

- 1. 2+2=4
- $2. \ 2 + 2 = 5$
- 3. $x^2 + 2 = 11$
- 4. x + y > 0
- 5. This coffee is strong

Solution:

- 1. 2+2=4 is a proposition as it is always true.
- 2. 2+2=5 is a proposition as it is always false
- 3. $x^2 + 2 = 11$ is **NOT** a proposition as its value depends on the value of x, it is true for x = 3 and x = -3, whereas for other values it is false.
- 4. x+y>0 is **NOT** a proposition as its value depends on the values of x and y, when x=-1 and y=2 it is true, whereas when x=-1 and y=-1 it is false.
- 5. This coffee is strong. is **NOT** a proposition as it is matter of opinion, the coffee may be strong for somebody and may not for somebody else.

Question 2.

Let s and i be the following propositions:

s: "stocks are increasing"

i: "interest rates are steady"

Write each of the following sentences symbolically:

- 1. Stocks are increasing but interest rates are steady
- 2. Neither are stocks increasing nor are interest rates steady

Solution:

- 1. Stocks are increasing but interest rates are steady. $= s \wedge i$
- 2. Neither are stocks increasing nor are interest rates steady = $\neg s \land \neg i = \neg (s \lor i)$

Question 3.

Let h, s and r be the following three propositions:

h: "It is hot"

s:"It is sunny"

r: "It is raining"

Write each of the following sentences symbolically:

- 1. It is not hot but it is sunny
- 2. It is neither hot nor sunny
- 3. It is either hot and sunny or it is raining
- 4. It is sunny or it is raining but not both

Solution:

- 1. It is not hot but it is sunny = $\neg h \land s$
- 2. It is neither hot nor sunny = $\neg h \land \neg s = \neg (h \lor s)$
- 3. It is either hot and sunny or it is raining = $(h \land s) \lor r$
- 4. It is sunny or it is raining but not both. $=s \oplus r$

Question 4.

Let l denote one of the letters in the word "software". The following propositions relate to l

p: "l is a vowel"; q: "l comes after the letter k in the alphabet".

Use the *listing method* to specify the truth sets corresponding to each of the following statements:

$$\neg q; \quad p \land \neg q; \quad \neg p \lor q.$$

Solution:

$$\begin{array}{ll} q = \{o, s, t, r, w\} & \neg q = \{a, e, f\} \\ p = \{a, e, o\} & p \land \neg q = \{a, e\} \\ \neg p = \{s, f, t, w, r\} & \neg p \lor q = \{o, f, t, w, r, s\} \end{array}$$

Question 5.

Let p and q be two propositions. Construct a truth table to show the truth value of each of the following logical statements:

$$p \lor q, \qquad \neg p \lor \neg q, \qquad p \land q, \qquad \neg (p \land q)$$

What can we say about the following two statements: $\neg p \lor \neg q$ and $\neg (p \land q)$? Solution:

p	q	$\neg p$	$\neg q$	$p \lor q$	$p \wedge q$	$\neg (p \land q)$	$\neg p \lor \neg q$
0	0	1	1	0	0	1	1
0	1	1	0	1	0	1	1
1	0	0	1	1	0	1	1
1	1	0	0	1	1	0	0

The columns for $\neg(p \land q)$ and $\neg p \lor \neg q$ are the same. Hence, $\neg(p \land q)$ and $\neg p \lor \neg q$ are equivalent statements (De Morgan's Law)

The same way we can show the second De Morgan's statement

$$\neg(p \lor q) = \neg p \land \neg q$$

Question 6.

Let h, s and r be the following three propositions:

h:"It is hot"

s: "It is sunny"

r: "It is raining"

Write each of the following sentences symbolically:

- 1. It is sunny or it is raining but not both
- 2. It is hot only if it is sunny
- 3. It is hot only if it is sunny and not raining.

Solution:

- 1. It is sunny or it is raining but not both $= s \oplus r$
- 2. It is not only if it is sunny = $h \rightarrow s$
- 3. It is not only if it is sunny and not raining. $= h \rightarrow (s \land \neg r)$

Question 7.

Let p, q be propositions. Construct a truth table to show the truth value of each of the following statements:

$$p \to q, \qquad \neg p \lor q, \qquad \neg q \to \neg p.$$

What can we say the above three logical statements?

Solution:							
p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \lor q$	$\neg q \rightarrow \neg p$	
0	0	1	1	1	1	1	
0	1	1	0	1	1	1	
1	0	0	1	0	0	0	
1	1	0	0	1	1	1	

The columns of the three statements are the same and hence,

$$p \to q = \neg p \lor q = \neg q \to \neg p$$

 $\neg q \rightarrow \neg p$ is the contrapositive of $p \rightarrow q$.

Question 8.

Let p and q be the following propositions concerning a positive integer n.

p: "n is divisible by 5"; q: "n is even".

1. Express in words the following statements.

(i)
$$p \vee \neg q$$
; (ii) $p \wedge q$.

- 2. List the elements of the truth sets corresponding to each of the statements in (1).
- 3. Express each of the following conditional statements symbolically.
 - (i) if n is odd then n is divisible by 5.
 - (ii) n is even or n is divisible by 5 but not both.

Solution:

- 1. $p \lor \neg q$ "n is divisible by 5 or an odd number" $p \land q$ "n is an even number divisible by 5"
- 2. $p \lor \neg q = \{1, 3, 5, 7, 9, 10, 11, 13, \dots\}$ $p \land q = \{10, 20, 30, 40, \dots\}$
- 3. (i) $\neg q \rightarrow p$ (ii) $p \oplus q$

Question 9.

Let p and q be two propositions. Show that $p \vee \neg (p \wedge q)$ is a tautology. Solution:

 $p \vee \neg (p \wedge q) = p \vee \neg p \vee \neg q = T \vee q = T$

You can also show this using a truth table.

Question 10.

Copy and complete the following table by giving the truth value of each of the statements $p, q, p \rightarrow q, q \rightarrow p$ and $p \leftrightarrow q$.

$$\begin{array}{cccc} p & q & p \rightarrow q & q \rightarrow p & p \leftrightarrow q \\ 0 & 0 & \end{array}$$

U U

0 1

1 0

1 1

Solution:

p	q	p o q	$q \rightarrow p$	$p \leftrightarrow q$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

Question 11.

Write the inverse, the converse and the contrapositive of the following statement.

If it is November 5th then we have fireworks.

Solution:

Inverse: if it is not November the 5^{th} then we don't have fireworks

Converse: if we have fireworks then it is November the 5^{th}

Contrapositive: If we don't have fireworks then it is not November the 5th.

Question 12.

Let p denote the following statement about integers n:

If n is divisible by 15, then it is divisible by 3 or divisible by 5.

Write the inverse, the converse and the contrapositive of p.

Solution:

Inverse: If n is not divisible by 15, then it isn't divisible by either 3 or 5.

Converse: If n is divisible by 3 or divisible by 5, then it is divisible by 15.

Contrapositive: If n is not divisible by 3 and not divisible by 5, then it is not divisible by 15.

Question 13.

Let p and q be two propositions. Show, by constructing the truth table or otherwise, that the following statements are equivalent:

$$p \to q$$
 and $\neg(\neg(p \land q) \land p)$

Solution:

$$\neg(\neg(p \land q) \land p) = \neg((\neg p \lor \neg q) \land p)$$
 De Morgan's law
$$= \neg((\neg p \land p) \lor (\neg q \land p))$$
 Distributive
$$= \neg(F \lor (\neg q \land p))$$

$$= \neg(\neg q \land p)$$
 De Morgan's law
$$= (q \lor \neg p)$$
 De Morgan's law
$$= p \rightarrow q$$

This can also be shown by using a truth table.

Question 14.

Let p and q be two propositions, show that $(p \land \neg q) \lor (p \land q) = p$. Solution:

This can also be shown by using a truth table.

Question 15.

Let p,q and r be three propositions, show that $p \to (q \to r)$ and $(p \land q) \to r$ are two equivalent statements.

Solution:

```
 \begin{array}{cccc} & & & \\ \hline p \rightarrow (q \rightarrow r) & = & \neg p \lor (\neg q \lor r) \\ & = & (\neg p \lor \neg q) \lor r & \text{associative law} \\ & = & \neg (p \land q) \lor r & \text{De Morgan's law} \\ & = & (p \land q) \rightarrow r \\ \hline \hline \text{This can also be shown by using a truth table.} \\ \end{array}
```

End of questions