

Preliminary Technical Information

HiPerFET™ Power MOSFETs Q2-Class

IXFH14N100Q2

N-Channel Enhancement Mode Avalanche Rated, High dv/dt, Low $\mathbf{Q}_{\mathbf{g}}$ Low intrinsic $\mathbf{R}_{\mathbf{g}}$, low $\mathbf{t}_{\mathbf{rr}}$

Symbol	Test Conditions	Maximum Rat		
V _{DSS}	T _J = 25°C to 150°C	1000	V	
$\mathbf{V}_{\mathtt{DGR}}$	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{\rm GS}} = 1\text{M}\Omega$	1000	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C =25°C	14	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	56	Α	
I _A	T _C =25°C	14	A	
E _{AS}	$T_{c} = 25^{\circ}C$	2.5	J	
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	20	V/ns	
P_{D}	T _c =25°C	500	W	
T_{J}		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	1.6mm (0.063 in) from case for 10s	300		
M _d	Mounting torque	1.13/10	Nm/lb.in.	
Weight		6	g	

			eristic Values Typ. Max.		
V _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	1000			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.0		5.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			25 1	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			950	mΩ

 $V_{DSS} = 1000V$ $I_{D25} = 14A$ $R_{DS(on)} \le 950m\Omega$ $t_{rr} \le 300ns$

G = Gate	D	=	Drain
S = Source	TAB	=	Drain

Features

- Double metal process for low gate resistance
- International standard package
- Epoxy meet UL 94 V-0, flammability classification
- Avalanche energy and current rated
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Switched-mode and resonant-mode power supplies, >500kHz switching
- DC choppers
- Pulse generation
- Laser drivers

Advantages

- Easy to mount
- Space savings
- High power density

Symbol (T _J = 25°			Cha Min.	naracteristic Values Typ. Max.		
g _{fs}		$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	15	28	S	
C _{iss})			2800	pF	
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		287	pF	
\mathbf{C}_{rss}	J			100	pF	
t _{d(on)}	1	Resistive Switching Times		12	ns	
t,		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		10	ns	
t _{d(off)}	Ì	$R_{\rm G} = 2\Omega$ (External)		28	ns	
t,)			12	ns	
Q _{g(on)})			83	nC	
Q _{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		20	nC	
\mathbf{Q}_{gd}	J			40	nC	
R _{thJC}					0.25 °C/W	
$\mathbf{R}_{ ext{thCK}}$				0.21	°C/W	

TO-247 (IXFH) Outline
B A2 A2 A1
Terminals: 1 - Gate 2 - Drain

Dim.	Milli	meter	Inc	Inches		
	Min.	Max.	Min.	Max.		
Α	4.7	5.3	.185	.209		
A,	2.2	2.54	.087	.102		
A ₂	2.2	2.6	.059	.098		
b	1.0	1.4	.040	.055		
b,	1.65	2.13	.065	.084		
b ₂	2.87	3.12	.113	.123		
С	.4	.8	.016	.031		
D	20.80	21.46	.819	.845		
Е	15.75	16.26	.610	.640		
е	5.20	5.72	0.205	0.225		
L	19.81	20.32	.780	.800		
L1		4.50		.177		
ØP	3.55	3.65	.140	.144		
Q	5.89	6.40	0.232	0.252		
R	4.32	5.49	.170	.216		

Source-Drain Diode

			ristic Values Typ. Max.		
I_s $V_{GS} = 0V$			14	Α	
Repetitive, pulse width limited by T _{JM}			56	Α	
V_{SD} $I_F = I_S$, $V_{GS} = 0$ V, Note 1			1.5	V	
$ \begin{cases} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{cases} $		0.8 7	300	ns μC Α	

1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$. Notes:

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 5. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. I_D

Fig. 2. Extended Output Characteristics

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance 20 18 16 14 I D - Amperes $T_J = 125^{\circ}C$ 12 25⁰C 10 - 40⁰C 8 6 4 2 0 5.0 5.5 7.0 4.0 4.5 6.5

 $V_{\rm GS}$ - Volts Fig. 9. Source Current vs. Source-To-Drain Voltage

10000 C_{iss} Capacitance - pF 1000 C_{oss} 100 Crss f = 1MHz10 10 15 20 25 30 35 40 V_{DS} - Volts

Fig. 11. Capacitance

Fig. 8. Transconductance

28

24

20

25°C

16

25°C

12

I_D - Amperes

16

20

24

28

0

4

8

Fig. 12. Maximum Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

