Généralités sur les fonctions numériques

- *Exercice 1* Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f \circ f$ est croissante tandis que $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.
- **Exercice 2** Etudier la parité de la fonction f définie par $f(x) = \ln(\sqrt{x^2 + 1} + x)$.
- **Exercice 3** On rappelle que pour tout $x \in \mathbb{R}$, on a $|\sin x| \le |x|$. Montrer que la fonction $x \mapsto \sin x$ est 1 lipschitzienne.
- $\begin{aligned} \textit{Exercice 4} & \text{Soit } f: \mathbb{R} \to \mathbb{R} \text{ une fonction } k \text{ lipschitzienne (avec } k \in [0,1[) \text{ telle que } f(0) = 0 \text{ .} \\ & \text{Soit } a \in \mathbb{R} \text{ et } (u_n) \text{ la suite réelle déterminée par } u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \text{ .} \\ & \text{Montrer que } u_n \to 0 \text{ .} \end{aligned}$
- *Exercice* 5 Soit $f:[0,1] \to [0,1]$ une fonction croissante. Montrer que f admet un point fixe.

Limites d'une fonction numérique

Exercice 6 Déterminer les limites suivantes, lorsque celles-ci existent :

a)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

b)
$$\lim_{x \to +\infty} \frac{x - \sqrt{x}}{\ln x + x}$$

c)
$$\lim_{x \to 0+} x^x$$

d)
$$\lim_{x \to 1} \ln x \cdot \ln(\ln x)$$
.

e)
$$\lim_{x \to 0} (1+x)^{1/x}$$

f)
$$\lim_{x \to 1} \frac{1-x}{\arccos x}$$
.

Exercice 7 Déterminer les limites suivantes, lorsque celles-ci existent :

a)
$$\lim_{x \to 0} x \cdot \sin\left(\frac{1}{x}\right)$$

b)
$$\lim_{x \to +\infty} \frac{x \cos e^x}{x^2 + 1}$$

c)
$$\lim_{x \to \sin x} e^{x-\sin x}$$

d)
$$\lim_{x \to +\infty} \frac{x + \arctan x}{x}$$

e)
$$\lim_{x\to 0} xE\left(\frac{1}{x}\right)$$

f)
$$\lim_{x \to +\infty} xE\left(\frac{1}{x}\right)$$
.

- **Exercice 8** Déterminer les limites suivantes : $\lim_{x\to 0+} E(1/x)$, $\lim_{x\to 0} xE(1/x)$ et $\lim_{x\to 0} x^2E(1/x)$.
- **Exercice 9** Soit $a < b \in \mathbb{R}$ et $f :]a,b[\to \mathbb{R}$ une fonction croissante. Montrer que l'application $x \mapsto \lim_{x^+} f$ est croissante.
- *Exercice 10* Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T périodique (avec T > 0) telle que $\lim_{t \to \infty} f$ existe dans \mathbb{R} . Montrer que f est constante.
- Exercice 11 a) Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction périodique convergeant en $+\infty$. Montrer que g est constante. b) Soit $f,g: \mathbb{R} \to \mathbb{R}$ telles que f converge en $+\infty$, g périodique et f+g croissante. Montrer que g est constante.

Continuité des fonctions numériques

Exercice 12 Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que $\forall x \in \mathbb{R}$, on a f(2x) = f(x). Montrer que f est une fonction constante.

- *Exercice 13* Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 et en 1 telle que $\forall x \in \mathbb{R}, f(x) = f(x^2)$. Montrer que f est constante.
- *Exercice 14* Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et prenant la valeur 1 en 0. On suppose que $\forall x \in \mathbb{R}, f(2x) = f(x) \cos x$, déterminer f.
- **Exercice 15** Etudier la continuité sur \mathbb{R} de l'application $f: x \mapsto E(x) + \sqrt{x E(x)}$.
- **Exercice 16** Etudier la continuité de $x \mapsto E(x) + (x E(x))^2$.
- **Exercice 17** Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ sinon} \end{cases}$. Montrer que f est totalement discontinue.
- *Exercice 18* Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$ une fonction telle que $x \mapsto f(x)$ est croissante et $x \mapsto \frac{f(x)}{x}$ est décroissante. Montrer que f est continue.
- *Exercice 19* Soit $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions continues. Montrer que $\sup(f,g)$ est une fonction continue sur I.
- *Exercice* 20 Soient $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y)$.
 - a) Calculer $\,f(0)\,$ et montrer que pour tout $\,x\in\mathbb{R}\,$, $\,f(-x)=-f(x)\,$.
 - b) Justifier que pour tout $n \in \mathbb{Z}$ et tout $x \in \mathbb{R}$, f(nx) = nf(x).
 - c) Etablir que pour tout $r \in \mathbb{Q}$, f(r) = ar avec a = f(1).
 - d) Conclure que pour tout $x \in \mathbb{R}$, f(x) = ax.
- *Exercice 21* On cherche les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que $\forall x, y \in \mathbb{R}$, $f\left(\frac{x+y}{2}\right) = \frac{1}{2} \left(f(x) + f(y)\right)$.
 - a) On suppose f solution et f(0) = f(1) = 0.

Montrer que f est périodique et que $\forall x \in \mathbb{R}$, 2f(x) = f(2x). En déduire que f est nulle.

b) Déterminer toutes les fonctions f solutions.

Théorème des valeurs intermédiaires

- *Exercice 22* Soit $f:[0,1] \rightarrow [0,1]$ continue. Montrer que f admet un point fixe.
- *Exercice 23* Montrer que les seules applications continues de \mathbb{R} vers \mathbb{Z} sont les fonctions constantes.
- *Exercice 24* Soit $f:[a,b] \to \mathbb{R}$ continue et $p,q \in \mathbb{R}^+$. Montrer que $\exists c \in [a,b]$ tel que p.f(a) + q.f(b) = (p+q).f(c).
- *Exercice 25* Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{t \to \infty} f = -1$ et $\lim_{t \to \infty} f = 1$. Montrer que f s'annule.
- *Exercice 26* Soit $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions continues telles que : $\forall x \in I, |f(x)| = |g(x)| \neq 0$. Montrer que f = g ou f = -g.

- *Exercice* 27 Soit $f:[0,1] \to \mathbb{R}$ continue telle que f(0) = f(1).

 Montrer que $\forall n \in \mathbb{N}^*$, $\exists \alpha \in [0,1-1/n]$ tel que $f(\alpha+1/n) = f(\alpha)$.
- *Exercice 28* Soit $f: \mathbb{R} \to \mathbb{R}$ continue et décroissante. Montrer que f admet un unique point fixe.
- *Exercice* 29 Soit $f:[0,+\infty[\to\mathbb{R} \text{ continue, positive et telle que } \lim_{x\to+\infty}\frac{f(x)}{x}=\ell<1$. Montrer qu'il existe $\alpha\in[0,+\infty[$ tel que $f(\alpha)=\alpha$.
- Exercice 30 Notre objectif dans cet exercice est d'établir la proposition : « Toute fonction $f:I\to\mathbb{R}$ continue et injective est strictement monotone. » Pour cela on raisonne par l'absurde et on suppose : $\exists (x_1,y_1)\in I^2, x_1< y_1 \text{ et } f(x_1)\geq f(y_1) \text{ et } \exists (x_2,y_2)\in I^2, x_2< y_2 \text{ et } f(x_2)\leq f(y_2)$ Montrer que la fonction $\varphi:[0,1]\to\mathbb{R}$ définie par $\varphi(t)=f((1-t)x_1+tx_2)-f((1-t)y_1+ty_2)$ s'annule. Conclure.
- *Exercice 31* Soit $f:[0,+\infty[\to\mathbb{R} \text{ continue. On suppose que } |f|_{+\infty}^{\longrightarrow}+\infty$. Montrer que $f\underset{+\infty}{\longrightarrow}+\infty$ ou $f\underset{+\infty}{\longrightarrow}-\infty$.

Continuité sur segment

- *Exercice 32* Soit $f,g:[a,b] \to \mathbb{R}$ continues telles que $\forall x \in [a,b], f(x) < g(x)$. Montrer: $\exists \alpha > 0$ tel que $\forall x \in [a,b], f(x) \leq g(x) \alpha$.
- **Exercice 33** Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que : $\lim_{+\infty} f = \lim_{-\infty} f = +\infty$. Montrer que f admet un minimum absolu.
- *Exercice 34* Soit $f: \mathbb{R} \to \mathbb{R}$ bornée et $g: \mathbb{R} \to \mathbb{R}$ continue. Montrer que $g \circ f$ et $f \circ g$ sont bornées.
- *Exercice* 35 Montrer qu'une fonction continue et périodique définie sur \mathbb{R} est bornée.
- Exercice 36 Soit $f,g:[0,1]\to\mathbb{R}$ continue. On pose $\varphi(t)=\sup_{x\in[0,1]}\left(f(x)+tg(x)\right)$. Montrer que φ est bien définie sur \mathbb{R} et qu'elle y est lipschitzienne.
- *Exercice* 37 Soit $f: \mathbb{R} \to \mathbb{R}$ continue. On suppose que chaque $y \in \mathbb{R}$ admet au plus deux antécédents par f. Montrer qu'il existe un $y \in \mathbb{R}$ possédant exactement un antécédent.

Bijection continue

- **Exercice 38** Montrer que $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{x}{1+|x|}$.
 - a) Montrer que f réalise une bijection de \mathbb{R} vers]-1,1[.
 - b) Déterminer, pour $y \in]-1,1[$ une expression de $f^{-1}(y)$ analogue à celle de f(x).

Exercice 39 Soit $a < b \in \mathbb{R}$ et $f :]a,b[\to \mathbb{R}$ une fonction strictement croissante.

Montrer que f est continue ssi $f(]a,b[) = \lim_{a} f, \lim_{b} f$.

Uniforme continuité

Exercice 40 Montrer que $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Exercice 41 Montrer que $x \mapsto \ln x$ n'est pas uniformément continue sur \mathbb{R}^{+*} .

Exercice 42 Montrer que $x \mapsto x \ln x$ est uniformément continue sur [0,1].

Comparaison de fonctions numériques

Exercice 43 Déterminer un équivalent simple aux fonctions suivantes aux points considérés :

a)
$$\frac{\sqrt{x^3+1}}{\sqrt[3]{x^2+1}}$$
 en $+\infty$ b) $\sqrt{x^2+1}+\sqrt{x^2-1}$ en $+\infty$ c) $\sqrt{1+x^2}-\sqrt{1-x^2}$ en 0 d) $\ln(1+\sin x)$ en 0^+ e) $\sqrt{\ln(x+1)-\ln(x)}$ en $+\infty$ f) $\ln\cos x$ en $\pi/2^-$

b)
$$\sqrt{x^2 + 1} + \sqrt{x^2 - 1}$$
 en $+\infty$

c)
$$\sqrt{1+x^2} - \sqrt{1-x^2}$$
 en 0

d)
$$\ln(1 + \sin x)$$
 en 0^+

e)
$$\sqrt{\ln(x+1) - \ln(x)}$$
 en $+\infty$

f)
$$\ln \cos x$$
 en $\pi/2^{-1}$

g)
$$\frac{\ln(1+\sqrt{x})}{\sqrt{\sin x}}$$
 en 0^{-1}

g)
$$\frac{\ln(1+\sqrt{x})}{\sqrt{\sin x}}$$
 en 0^+ h) $x \ln(x+1) - (x+1) \ln x$ en $+\infty$.

Exercice 44 Déterminer les limites suivantes :

a)
$$\lim_{x \to +\infty} \frac{x e^{-x} + x^2}{x - \ln x}$$

b)
$$\lim_{x \to 0^+} \frac{x + \sin x}{x \ln x}$$

c)
$$\lim_{x \to +\infty} \frac{x^{\ln x}}{\ln x}$$

d)
$$\lim_{x \to +\infty} \frac{x \ln x - x}{x + \cos x}$$

e)
$$\lim_{x \to +\infty} \left(\frac{x}{\ln x} \right)^{\frac{\ln x}{x}}$$

f)
$$\lim_{x \to 0} \frac{\ln x + x^2}{\ln(x + x^2)}$$

g)
$$\lim_{x \to 1} \frac{\ln x}{x^2 - 1}$$

h)
$$\lim_{x \to +\infty} \frac{\sqrt{xe^x - x^2}}{e^x + e^{-x}}$$

i)
$$\lim_{x \to +\infty} \frac{\operatorname{argsh} x}{\ln x}$$
.

Exercice 45 Déterminer un équivalent simple au fonctions proposées :

a)
$$\frac{\ln(x+1)}{\ln x} - 1$$
 quand $x \to +\infty$,

b)
$$\ln(1+x)^2 - \ln(1-x)^2$$
 quand $x \to 0$,

c)
$$\sqrt{\ln(x+1)} - \sqrt{\ln(x-1)}$$
 quand $x \to +\infty$,

d)
$$\tan x - \sin x$$
 quand $x \to 0$.

e)
$$\ln(1+\ln(1+x))$$
 quand $x\to 0$.

Exercice 46 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction décroissante telle que $f(x) + f(x+1) \sim \frac{1}{x}$.

- a) Etudier la limite de f en $+\infty$.
- b) Donner un équivalent de f en $+\infty$.

Etude de branches infinies de fonctions

Exercise 47 Etudier les branches infinies de $f(x) = \frac{(x+1)\ln(x+1)}{\ln x}$.

Exercice 48 Etudier les branches infinies de $f(x) = \frac{x^2 + 2x}{|x - 1| + x}$.

david Delaunay http://mpsiddl.free.fr