Machine Learning/Advanced Machine Learning

Lecture 6.1: Multilayer Perceptrons

Sami S. Brandt

Department of Computer Science IT University of Copenhagen

Based on slides originally made by Jes Frellsen

30 September 2019

IT UNIVERSITY OF COPENHAGEN

Learning Objectives for Week 6

- Reflect the structure of MLP networks
- Apply MLP networks and reflect their role in deep learning
- Use Tensorflow to build simple models and train them
- Explain backpropagation
- Use simple regularisation methods with neural networks
- Explain radial basis function networks
- Explain the principle of convolutional neural networks

Outline of lecture

Feed-forward neural networks

Training neural networks

Re-cap: Categories of Machine Learning

Supervised learning: $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)\}$

Classification

Regression

Unsupervised learning: $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$

Clustering

Density estimation

Figure(s) from Bishop.

Linear models for regression and classification

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=1}^{M} w_j \phi_i(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x})$$

Classification

where
$$f$$
 is an activation function such as the sigmoid or softmax.

Advantages:

- Useful computational properties: have closed form expressions
- · Can model "arbitrary" complicated functions.

Disadvantages:

• We have to choose the basis functions $\phi_i(\cdot)$, and these are **not adapted to data**.

E

Artificial neuron

Input: $\mathbf{x} = (x_1, ..., x_D)^{\mathsf{T}}$

Weights: $\mathbf{w} = (w_1, \dots, w_D)^{\mathsf{T}}$

Bias: b

Activation: $a = \sum_{i=1}^{D} w_i x_i + b = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$

Output: z = h(a)

Where $h(\cdot)$ is a nonlinear activation function.

Combining artificial neurons

Combining artificial neurons

Where $W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1D} \\ w_{21} & w_{22} & \cdots & w_{2D} \end{bmatrix}$ and h is applied element wise.

A two-layer neural network

$$\mathbf{x} \qquad \qquad \mathbf{z} = h(W^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) \qquad \mathbf{y} = \sigma(W^{(2)}\mathbf{z} + \mathbf{b}^{(2)})$$

Figure(s) from Bishop.

A two-layer neural network

$${f z} = h(W^{(1)}{f x} + {f b}^{(1)}) \qquad {f y} = \sigma(W^{(2)}{f z} + {f b}^{(2)})$$

$$\mathbf{y}(\mathbf{x},\mathbf{W},\mathbf{b}) = \sigma(W^{(2)}h(W^{(1)}\mathbf{x}+\mathbf{b}^{(1)})+\mathbf{b}^{(2)})$$

Figure(s) from Bishop.

A deep neural network

$$\mathbf{y}(\mathbf{x}, \mathbf{W}, \mathbf{b}) = f^{(4)}(f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x}))))$$

where

$$f^{(\ell)}(\mathbf{z}) = h^{(\ell)}(W^{(\ell)}\mathbf{z} + b^{(\ell)})$$

Activations functions

For hidden layers:

- Sigmoid: $h(a) = \frac{1}{1 + \exp(-a)}$
- Arctangent¹: h(a) = atan(a)
- Hyperbolic tangent: $h(a) = \tanh(a)$
- Rectified linear²: $h(a) = \max(0, a)$

For output layer:

- Regression: identity, h(a) = a
- Binary classification: sigmoid, $h(a) = \frac{1}{1 + \exp(-a)}$
- Multiclass classification: softmax, $h(a_k) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$

²The inverse of tan.

²Often called ReLU, but this is a misnomer as it means rectified linear unit

Activations functions

For hidden layers:

- Sigmoid: $h(a) = \frac{1}{1 + \exp(-a)}$
- Arctangent¹: h(a) = atan(a)
- Hyperbolic tangent: $h(a) = \tanh(a)$
- Rectified linear²: $h(a) = \max(0, a)$

For output layer:

- Regression: identity, h(a) = a
- Binary classification: sigmoid, $h(a) = \frac{1}{1 + \exp(-a)}$
- Multiclass classification: softmax, $h(a_k) = \frac{\exp(a_k)}{\sum_i \exp(a_j)}$

Why do we need activation functions in the hidden layers?

Why do we need activation functions in the **output layer for classification?**

²The inverse of tan.

²Often called ReLU, but this is a misnomer as it means rectified linear unit

Universal approximation theorem

Neural networks are universal approximators (Bishop):

"A two-layer network with linear outputs can uniformly approximate any continuous function on a compact input domain (compact subset of \mathbb{R}^N) to arbitrary accuracy provided the network has sufficiently large number of hidden units"

How do we program neural networks?

We could in principle program them directly in Python / NumPy

However, we need derivatives / gradients for training (later)

We will use **TensorFlow**, which has automatic differentiations.

TensorFlow works in a declarative style:

- First you declare/define a dataflow graph.
- Then you use a session to run/evaluate operations in the graph.

Example: Notebook 1

Outline of lecture

Feed-forward neural networks

Training neural networks

Training neural networks

We looked a the definition of a neural network, or a neural network function y(x, W, b).

If we are given some data as input vectors $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$ and target vectors $\mathbf{t} = \{\mathbf{t}_n\}_{n=1}^N$:

How can we find W and b?

Example: Notebook 2

Regression with neural networks

We find W and b by minimizing an error function that measures the misfit between y(x, W, b) and $t = \{t_n\}_{n=1}^N$.

The sum-of-squares error function is given by

$$E(\mathbf{W}, \mathbf{b}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}(x_n, \mathbf{W}, \mathbf{b}) - \mathbf{t}_n||^2.$$

Recall, this corresponds to **finding the MLE** of **W** and **b** with the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{W}, \mathbf{b}, \beta) = \prod_{n=1}^{N} p(\mathbf{t}_n|\mathbf{x}_n, \mathbf{W}, \mathbf{b}, \beta)$$

where

$$p(\mathbf{t}_n|\mathbf{x}_n, \mathbf{W}, \mathbf{b}, \beta) = \mathcal{N}(\mathbf{t}_n|\mathbf{y}(x_n, \mathbf{W}, \mathbf{b}), \beta^{-1}I)$$

Binary classification with neural networks

Now consider a classification problem, where $t_n \in \{0, 1\}$.

In this cases we use the sigmoid activation function

$$y(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \sigma(a^{(L)}) = \frac{1}{1 + \exp(-a^{(L)})}$$

We then use the binomial distribution

$$p(t|\mathbf{x}, \mathbf{W}, \mathbf{b}) = y(\mathbf{x}, \mathbf{W}, \mathbf{b})^{t} (1 - y(\mathbf{x}, \mathbf{W}, \mathbf{b}))^{1-t}$$
(1)

Assuming i.i.d. training data we get the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{W}, \mathbf{b}, \beta) = \prod_{n=1}^{N} p(t_n|\mathbf{x}_n, \mathbf{W}, \mathbf{b})$$
 (2)

We then set the error function to the negative log-likelihood

$$E(\mathbf{W}, \mathbf{b}) = -\sum_{n=1}^{N} t_n \ln y(\mathbf{x}_n, \mathbf{W}, \mathbf{b}) + (1 - t_n) \ln(1 - y(\mathbf{x}_n, \mathbf{W}, \mathbf{b}))$$
(3)

0.6 - 0.4 - 0.2 - 0.0 - 2 - 4 - 6

Which is also called the cross-entropy error function

Binary classification with neural networks

Now consider a classification problem, where $t_n \in \{0, 1\}$.

In this cases we use the sigmoid activation function

$$y(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \sigma(a^{(L)}) = \frac{1}{1 + \exp(-a^{(L)})}$$

We then use the binomial distribution

$$p(t|\mathbf{x}, \mathbf{W}, \mathbf{b}) = y(\mathbf{x}, \mathbf{W}, \mathbf{b})^{t} (1 - y(\mathbf{x}, \mathbf{W}, \mathbf{b}))^{1-t}$$

Assuming i.i.d. training data we get the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{W}, \mathbf{b}, \beta) = \prod_{n=1}^{N} p(t_n|\mathbf{x}_n, \mathbf{W}, \mathbf{b})$$
 (2)

We then set the error function to the negative log-likelihood

$$E(\mathbf{W}, \mathbf{b}) = -\sum_{n=1}^{N} t_n \ln y(\mathbf{x}_n, \mathbf{W}, \mathbf{b}) + (1 - t_n) \ln(1 - y(\mathbf{x}_n, \mathbf{W}, \mathbf{b}))$$
(3)

Exercise
Use equation (1) and (2) to derive (3).

(1)

Which is also called the cross-entropy error function

Multi-class classification with neural networks

Now consider a classification problem, where $t_n \in \{0,1\}^K$.

In this cases we use the **softmax activation** function

$$y_k(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \sigma(\mathbf{a}^{(L)}) = \frac{\exp(a_k)}{\sum_{j=1}^K \exp(a_j)}$$

In this case we obtain the error function

$$E(\mathbf{W}, \mathbf{b}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_k(\mathbf{x}_n, \mathbf{W}, \mathbf{b}).$$
 (4)

from the log-likelihood function.

This is also called the cross-entropy error function

Parameter optimization and gradient descent

We want to find $\mathbf{W} = (\mathbf{W}, \mathbf{b})$ that minimizes $E(\mathbf{W})$, i.e. find \mathbf{W} such that $\nabla E(\mathbf{W}) = 0$.

Gradient descent starts with an initial random point $\mathbf{W}^{(0)}$, and iteratively refines it by following the steepest descent direction:

$$\mathbf{W}^{(\tau+1)} = \mathbf{W}^{(\tau)} - \eta \nabla E(\mathbf{W}^{(\tau)})$$

where η is the called the **learning rate**.

Normally the gradient is calculated on the full dataset (batch optimization).

To avoid getting stuck in local minima, we can calculate the gradient on mini-batches:

$$\mathbf{W}^{(\tau+1)} = \mathbf{W}^{(\tau)} - \eta \nabla E_s(\mathbf{W}^{(\tau)})$$

where E_s is the error on a subset of the data.

Examples: regression

Example: Notebook 3

Examples: binary classification

Example: Notebook 4

Next lecture

- Backpropagation
- · Regularisation of neural networks
- · Radial basis functions
- Brief introduction to CNNs

References I

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.