基于R软件的分层随机抽样方法

卢玉桂,黄基廷

(河池学院 数学与统计学院,广西 宜州 546300)

摘 要:文章以分层随机抽样为例,介绍了在完整抽样框下,运用R软件完成样本的抽取与总体参数的估计的方法,以及在仅样本数据的情况下(非完整抽样框),如何运用R软件完成总体参数的估计。

关键词:R软件;分层随机抽样;完整抽样框;非完整抽样框

中图分类号:0212.4 文献标识码:A 文章编号:1002-6487(2017)22-0036-04

0 引言

一般而言,抽样调查涉及两个重要的过程,即样本的选取与总体参数的估计。R软件提供了进行抽样的sampling包和对抽样结果进行估计的survey包,运用R软件可进行样本的选取与总体参数的估计,但目前关于如何运用R软件进行抽样和分析的介绍很少,特别是对于非完整抽样框下如何进行总体参数的估计更是无人提及,这不利于学生理解与掌握有关理论方法。因此,本文以分层随机抽样为例,介绍在完整抽样框下如何运用R软件实现样本选取与总体参数的估计,以及非完整抽样框下如何运用R软件实现总体参数的估计,使学生更好地理解与掌握分层随机抽样的有关理论及R软件实现。

1 分层随机抽样的相关理论

所谓分层随机抽样^[1],就是将总体的 N 个单元按某个变量划分为"不重不漏"的 L 个子总体(层),并在每一层中独立地按简单随机抽样方法抽取样本,总的样本量 n 由各层样本组成,总体参数的估计值由各层样本参数加权汇总得到的抽样方法。

假设在分层随机抽样中,L个子总体的单元总数依次记为 N_1, N_2, \cdots, N_L ,从每层独立抽取的样本量依次记为 n_1, n_2, \cdots, n_L ,第 h 层的 N_h 个总体指标值记为 $Y_{h1}, Y_{h2}, \cdots, Y_{hN_h}$,第 h 层的 n_h 个的样本指标值记为 $y_{h1}, y_{h2}, \cdots, y_{hn_h}$,则有第 h 层的层权 $W_h = \frac{N_h}{N}$,第 h 层的抽样比 $f_h = \frac{n_h}{N_h}$,第 h 层的总体均值 $\bar{Y}_h = \frac{1}{N_h}\sum_{i=1}^{N_h}Y_{hi}$,第 h 层的样本均值 $\bar{y}_h = \frac{1}{n_h}$ $\sum_{i=1}^{n_h}y_{hi}$,第 h 层的总体方差和样本方差分别为 $S_h^2 = \frac{1}{N_h-1}$

$$\sum_{i=1}^{N_h} (Y_{hi} - \bar{Y}_h)^2 \approx s_h^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \bar{y}_h)^2$$

1.1 简单估计

由于分层随机抽样是各层都独立的按简单随机抽样抽取样本,所以第 h 层的样本均值 \bar{y}_h 是其总体均值 \bar{Y}_h 的无偏估计量。容易验证,分层随机抽样的简单估计 $\bar{y}_{st} = \sum_{h=1}^{L} W_h \bar{y}_h$ 是总体均值 \bar{Y} 的无偏估计量。无偏性是衡量估计量优劣的一个标准,但不是唯一标准,一般还需要考虑进度的高低,精度通常用估计量的标准差来衡量。估计量 \bar{y}_{st} 方差 $V(\bar{y}_{st})$ 的无偏估计为:

$$v(\bar{y}_{st}) = \sum_{h=1}^{L} W_h \frac{1 - f_h}{n_h} s_h^2$$
 (1)

估计量 \bar{y}_{st} 的标准差为:

$$s(\bar{y}_{st}) = \sqrt{\nu(\bar{y}_{st})} = \sqrt{\sum_{h=1}^{L} W_h \frac{1 - f_h}{n_h} s_h^2}$$
 (2)

由式(2)可知,分层随机抽样的精度与层内方差 s_h^2 的大小有关,因而在选择分层变量时应选取层内差异小,层间差异大的变量,从而提高抽样估计的精度。

在进行分层随机抽样调查时,若存在与调查的主要变量 Y 高度相关的辅助变量 X ,利用辅助变量 X 的信息将有利于提高抽样估计的精度。借助辅助变量 X 进行参数估计时的方法有比估计和回归估计两种方式。

1.2 比估计

分层随机抽样的比估计包括分别比估计和联合比估计两种,其中,分别比估计是先计算各层的比估计量 R_h ,然后再进行加权平均;而联合比估计则是先对比率的分子、分母进行加权平均,然后构造比估计。一般情况下,在各层样本量 n_h 都比较大时,常用分别比估计进行估计。反之,在总样本量 n 比较大时,则用联合比估计进行估计。

假设 X 为与主要变量 Y 高度相关的辅助变量, X_1 , X_2 , ..., X_L 为辅助变量 X 的 L 个总体总值, x_{h1} , x_{h2} , ..., x_{hn} , 为

基金项目:广西高校中青年教师基础能力提升项目(KY2016LX279);河池学院课程教学模式改革项目(2015KTJY11) 作者简介:卢玉桂(1988—),女,广西崇左人,硕士,讲师,研究方向:抽样调查与数据分析。 (通讯作者)黄基廷(1964—),男,广西天等人,副教授,研究方向:应用数学。 第 h 层辅助变量 X_h 的 n_h 个样本指标值,则第 h 层辅助变量的总体均值 $\bar{X}_h = \frac{X_h}{N_h}$,第 h 层辅助变量的样本均值 $\bar{x}_h = \frac{1}{n_h \sum_{i=1}^{n_h} x_{hi}}$,第 h 层辅助变量的样本方差为 $s_{xh}^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (x_{hi} - \bar{x}_h)^2$,第 h 层的样本协方差为 $s_{xyh} = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \bar{y})(x_{hi} - \bar{x}_h)^2$,以及均值 \bar{X} 的分层简单估计为 $\bar{x}_{st} = \sum_{i=1}^{L} W_h \bar{x}_h$ 。

在各层样本量 n_h 都比较大时,第 h 层比率 R_h 的估计量 $\hat{R}_h = \bar{y}_h/\bar{x}_h$ 近似无偏,则总体均值 \bar{Y} 的分别比估计 \bar{y}_{RS} 近似无偏,并有:

$$\bar{y}_{RS} = \sum_{h=1}^L W_h \hat{R}_h \bar{X}_h = \sum_{h=1}^L W_h \frac{\bar{y}_h}{\bar{x}_h} \bar{X}_h$$

方差 V(v,c) 的估计为

$$v(\bar{y}_{RS}) \approx \sum_{h=1}^{L} \frac{W_h^2 (1 - f_h)}{n_h} (s_h^2 + \hat{R}_h^2 s_{xh}^2 - 2\hat{R}_h s_{yxh})$$
 (3)

在总样本量 n 比较大时, 比率 R 的估计量 $\hat{R}_C = \bar{y}_{st}/\bar{x}_{st}$ 近似无偏, 则总体均值 \bar{Y} 的联合比估计 \bar{y}_{RC} 近似无偏, 并有:

$$\begin{split} & \bar{y}_{RC} = \hat{R}_C \bar{X} = \frac{\bar{y}_{st}}{\bar{x}_{st}} \bar{X} \\ & \hat{T} \not\equiv V(\bar{y}_{RC}) \text{ 的估计为:} \\ & v(\bar{y}_{RC}) \approx \sum_{h=1}^{L} \frac{W_h^2 (1 - f_h)}{n_h} (s_h^2 + \hat{R}_C^2 s_{xh}^2 - 2\hat{R}_C s_{yxh}) \end{split} \tag{4}$$

2 完整抽样框下样本选取与估计

在实施调查前,应先编制抽样总体的抽样框,然后从该抽样框中按某种抽样方法抽取样本单元,完成样本单元的抽取之后,才能开展进一步的抽样调查工作。对于完整抽样框下的抽样调查(即抽样总体的所有指标值已经得到),R软件提供了进行样本选取与总体参数估计的软件包。本文以《中国统计年鉴2014》中分地区的城镇居民人均消费支出和人均可支配收入数据为例,介绍如何运用R软件实现完整抽样框下分层随机抽样的样本选取与估计。

例 1: 为调查 2013 年我国城镇居民人均消费支出,以全国 31 个省(市、自治区)为抽样单元,并根据《中国统计年鉴 2014》将其划分为东部、中部、西部和东北地区 4层,数据集中包含编号、地区、层、人均消费支出(y)、人均可支配收入(x)等变量,具体调查数据见表 1。现用 R 软件从 4 个层中独立的按简单随机抽样抽取各抽取 2 个样本单元,并求各地区人均消费支出均值的估计。即有 N=31, n=8, h=4。

由于R软件不能直接读取 Excel 表,故要先将其转换为其他格式的文件,如转换为"CSV(逗号分隔)"文件。具体方法为:打开 example 1.xls,并点击文件 \rightarrow 另存为,保存类型选择 CSV(逗号分隔),文件名为 example 1,完成数据

表 1 2013年我国分地区城镇居民人均消费支出调查数据

编号	地	X	层	у	х	编号	地区	层	у	x
1	北	京	1	26274.89	40321	17	内蒙古	3	19249.06	25496.67
2	天	津	1	21711.86	32293.57	18	广西	3	15417.62	23305.38
3	河	北	1	13640.58	22580.35	19	重 庆	3	17813.86	25216.13
4	上	海	1	28155	43851.36	20	四川	3	16343.45	22367.63
5	江	苏	1	20371.48	32537.53	21	贵州	3	13702.87	20667.07
6	浙	江	1	23257.19	37850.84	22	云 南	3	15156.15	23235.53
7	福	建	1	20092.72	30816.37	23	西藏	3	12231.86	20023.35
8	山	东	1	17112.24	28264.1	24	陕 西	3	16679.69	22858.37
9	广	东	1	24133.26	33090.05	25	甘肃	3	14020.72	18964.78
10	海	南	1	15593.04	22928.9	26	青 海	3	13539.5	19498.54
11	山	西	2	13166.19	22455.63	27	宁 夏	3	15321.1	21833.33
12	安	徽	2	16285.17	23114.22	28	新疆	3	15206.16	19873.77
13	江	西	2	13850.51	21872.68	29	辽宁	4	18029.65	25578.17
14	河	南	2	14821.98	22398.03	30	吉 林	4	15932.31	22274.6
15	湖	北	2	15749.5	22906.42	31	黑龙江	4	14161.71	19596.96
16	湖	南	2	15887.11	23413.99					

类型转换,并得到一个新的文件 example 1.csv。

打开R软件,点击文件 \rightarrow 改变工作目录,找到存放 example 1.csv 文件的工作目录,点击确定即可。完成改变工作目录的工作之后,点击文件 \rightarrow 新建程序脚本 \rightarrow 保存,打开一个新的R程序编辑器,并将其保存为 example 1.R文件。完成这一系列工作之后,开始编写程序。具体步骤如下:

(1)准备工作。将 sampling 包和 survey 包下载并加载到 R 软件中,其中, sampling 包用于抽取样本, survey 包用于估计(注意,运行 install.packages()时,会弹出一个对话框,此处选择 China (Beijing4) [https]映像进行下载)。除了此之外,还需加载一个基础包 grid。R 程序如下:

>install.packages('sampling')

>library(sampling)

>install.packages('survey')

> library(survey)

>library(grid)

(2)抽样。将总体数据文件 example 1.csv 导入R 软件,并完成变量总体单元数 N、各层单元总数 Nh、各层的层权 Wh、层数 L和各层抽取的样本量 nh 的定义。然后,调用分层抽样函数"strata"抽取样本(注意, strata 函数包含四个参数,其含义依次为总体的数据集、分层变量、各层样本量和各层抽样所用的抽样方法)。最后,调用 getdata 从总体数据集 example 中提取样本单元,完成样本单元的抽取。R程序如下:

>example=read.csv("example1.csv")

>N=nrow(data)

>Nh=table(example\$层);

>Wh=Nh/N

>L=4

>nh=rep(2,L)

>st=strata(example,"层",nh,"srswor");

>example.st=getdata(example,st)

(3)抽样设计。先定义每个样本单元的权重变量 pw

和fpc 变量,其中,pw 变量为各样本单元进入样本概率的倒数,fpc 变量为每个单元所在层的单元总数 Nh。然后,将变量pw 和fpc 加入样本数据集 example.st 中。此时可调用 svydesign 函数定义抽样设计 dst,其中,参数 id 用"~0"表示(不包含群变量);参数 strata 定义分层变量; weights 定义为权重变量;参数 data 定义样本数据集;参数 fpc 定义fpc 变量。R程序如下:

>pw=1/st\$Prob

>fpc=as.numeric(table(example\$景)[example.st\$景])

>agst=as.data.frame(cbind(example.st,pw,fpc))

>dst<-svydesign(id=~1,strata=~ Ξ ,weights=~pw,data=agst, fpc=~fpc)

>summary(dst)

(4)简单估计。完成以上抽样工作后,可调用svymean 计算目标变量y均值的简单估计和标准误。R程序如下:

>svymean(~y,dst,deff=TRUE)

(5)分别比估计。先调用 svyratio 函数计算各层的比率估计rsh,其中,四个参数的依次为目标变量 y、辅助变量 x、抽样设计 dst 和 separate=TRUE(取值 TRUE 表示分别比估计),然后计算辅助变量 x 的各层总体均值,最后调用 predict 函数对目标变量 y 的均值进行估计,其中,第一个参数为各层的比率估计rsh,第二个参数为辅助变量 x 的各层总体均值乘以各层的层权。R 程序如下:

>rsh<-svyratio(~y,~x,dst,separate=TRUE)

>ymean<-data.frame(x=tapply(example\$x,INDEX=example \$层,FUN=mean))

>predict(rsh,ymean\$x*Wh)

(6)联合比估计。先调用 svyratio 函数计算总比率 rc, 其中,前三个参数与分别比率估计的定义一致,区别在于 separate 为缺省值 FALSE((取值 FALSE 表示联合比估计))。然后计算辅助变量 x 的总体均值。最后,调用 predict 函数进行估计,其两个参数依次为总比率 rc 和辅助变量 x 的总体均值。R 程序如下:

>rc<-svyratio(~y,~x,dst)

>ymean<-data.frame(x=mean(example\$x))

>predict(rc,ymean\$x)

运行以上R程序代码,即可完成完整抽样框下分层随机抽样的样本抽取和总体参数的估计。运行一次所抽得的8个样本单元分别为层1的福建和海南、层2的山西和江西、层3的内蒙古和甘肃、层4的辽宁和吉林。与之对应的我国城镇居民人均消费支出的简单估计、分别比率估计和联合比率估计结果见表2。真值为17190.595。

表2

估计结果

估计方法	估计值	标准差的估计				
简单估计	16452.9	1131.8				
分别比估计	27169.68	255.4094				
联合比估计	17591.47	219.4147				

由表2可知,联合比估计的估计值与真值17190.6最 为接近,其估计精度也是最高的,这主要是因为总体样本 量8相对于总体规模31来说足够大;简单估计的估计精度 最差,这主要是因为简单估计没有利用辅助变量的信息; 而分别比估计虽然借助辅助变量进行估计,但是在各层样 本量较小时(例1中各层样本量仅为2),其偏倚较大。

3 非完整抽样框下目标变量的估计

在一般的抽样调查工作中,调查所得到的数据仅为样本数据,不是完整的总体数据(全面抽样、普查除外),即在实施抽样调查时,通常的做法是编制总体的抽样框后,运用R软件抽取样本单元,然后对被抽中的总体单元进行调查,从而获取样本单元的指标值。此时,不能用例1的方法对目标变量的总体参数进行估计,为说明如何运用R软件对这类数据完成参数估计,将引用文献[1]的例子进行简单介绍。

例2:为调查某公司职员的平均工资 \bar{Y} ,将该公司的职员分为一般职员和高级管理人员两层,其中,一般职员总数 N_1 =390,高级管理人员总数 N_2 =84。现已知一般职员和高级管理人员 刚入职时的工资总额分别为 X_1 =5523965和 X_2 =2541660。运用分层随机抽样分别从一般职员层和高级管理人员层分别抽取 n_1 =15和 n_2 =10 名职员进行调查。具体数据见表3。

表3

某公司工资收入调查数据

Id	层	X	у	Id	层	X	у	Id	层	X	у
1	1	8000	19200	10	1	10200	27450	19	2	29400	80250
2	1	16500	34800	11	1	15000	35750	20	2	37500	87500
3	1	10500	22950	12	1	15750	36750	21	2	23250	49625
4	1	15550	34400	13	1	13750	33250	22	2	31500	79500
5	1	18000	38350	14	1	21240	44875	23	2	34200	83500
6	1	16500	37800	15	1	10750	21300	24	2	33000	82250
7	1	14250	31650	16	2	26250	64750	25	2	35540	85500
8	1	13500	32550	17	2	22750	46000				
9	1	15000	36050	18	2	20000	41500				

类似于例1,将表3的数据保存在 example2.csv 中,并利用R软件完成该公司职员的平均工资的估计(包括简单估计、分别比估计和联合比估计)。具体如下:

(1)准备工作。由于此时不需要抽取样本,因而只需下载并加载survey包和加载grid基础包,然后将样本数据文件example2.csv导入R软件,并完成总体单元数N、各层单元总数Nh、层权Wh、辅助变量X各层总体总量Xh、辅助变量X各层总体均值Xhmean的定义工作。R程序如下:

>install.packages('survey')

>library(survey)

>library(grid)

>example=read.csv("example2.csv")

>N=474

>Nh=c(390,84)

>Wh=Nh/N

>Xh=c(5523965,2541660)

>Xhmean=Xh/Nh

(2)抽样设计。定义样本权重变量 pw 和 fpc 变量,并将其加入样本数据集 example,得到新的数据集 agst。调用 svydesign 函数完成分层抽样设计 dst 的定义。(注意,尽管不需要抽取样本,但是,依然需要定义抽样设计,否则无法完成后面的估计)。R程序如下:

>pw=c(rep(390/15,15),rep(84/10,10))

>fpc=c(rep(390,15),rep(84,10))

>agst=as.data.frame(cbind(example,pw,fpc))

>dst<-svydesign(id=~1,strata=~\,\exists,weights=~pw,data=agst, fpc=~fpc)

(3)简单估计。调用 svymean 计算目标变量 y 均值的简单估计和标准误。R 程序如下:

>svymean(~y,dst,deff=TRUE)

(4)分别比估计。先调用 svyratio 函数计算各层的比率估计 rsh,然后定义辅助变量 x 的各层总体均值,最后调用 predict 函数对目标变量 y 的均值进行估计。各参数的含义与例1类似。R程序如下:

>rsh<-svyratio(~y,~x,dst,separate=TRUE)

>ymean<-data.frame(x=Xhmean)

>predict(rsh,ymean\$x*Wh)

(5)联合比估计。先调用svyratio函数计算总比率rc,然后定义辅助变量x的总体均值。最后调用predict函数对目标变量y的均值进行估计。各参数的含义与例1类似。R程序如下:

>rc<-svyratio(~y,~x,dst)

>ymean<-data.frame(x=sum(Xh)/N)

>predict(rc,ymean\$x)

运行以上R程序代码后,完成非完整抽样框下分层随

机抽样总体参数的估计,获得公司职员平均工资的简单估计、分别比估计和联合比估计结果见表4。

表 4 估计结果

估计方法	估计值	标准差的估计
简单估计	39131.6	1737.6
分别比估计	39267.5	558.2199
联合比估计	39250.43	576.0907

由表4可知,分别比估计与联合比估计的效果基本一致,简单估计的效果最差。

4 结束语

尽管 SPSS 软件有专门用于抽样的模块,实施起来也十分方便,但只能满足基本抽样方法,此外,SPSS 软件还涉及软件收费和版权问题,这限制了其使用范围。R 软件作为一款完全免费和公开的统计分析软件,它提供了大量统计分析模块,其中就有用于抽样和估计的 sampling 包和 survey 包,我们只需要在现有抽样模块的基础上编写新的抽样模块,就可以快速地完成随机样本的抽取和总体参数的估计。因此,在抽样调查过程中,应注意R软件在实际案例中的灵活运用,做到理论与实际相结合。

参考文献:

[1]金勇进等.抽样技术(第四版)[M].北京:中国人民大学出版社,2015. [2]薛毅,陈立萍.统计建模与R软件[M].北京:清华大学出版社,2006. [3]汤银才.R语言与统计分析[M].北京:高等教育出版社,2005. [4]朱春华. 如何运用 SPSS 软件进行简单随机抽样[J]. 统计与决策,2014,(9).

(责任编辑/亦 民)

Study on Stratified Random Sampling Based on R Software

Lu Yugui, Huang Jiting

(Department of Mathematics and Statistics, Hechi University, Yizhou Guangxi 546300, China)

Abstract: This paper takes the stratified random sampling as an example, and proposes a method for sample extraction and population parameter estimation by using R software under the frame of complete sampling. And the paper also introduces how to use R software to complete the population parameter estimation in the case of only sample data (non-complete sampling frame).

Key words: R software; stratified random sampling; complete sampling frame; non-complete sampling frame