

Natural Language Processing

Yue Zhang Westlake University

Overview

Week 2
Data and Model
Overview of NLP architecture
Review of background

Week 13

Transformer Pre-training

Content

- 13.1 Transformer Pre-training
 - 13.1.1 GPT and Decoder-only Pre-training
 - 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
 - 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 13.1.4 BART: Bidirectional and Auto-Regressive Transformer
- 13.2 Using Pre-trained Transformer for Solving NLP Tasks
 - 13.2.1 Text Classification
 - 13.2.2 Continued Pre-training
 - 13.2.3 Adapters
 - 13.2.4 Structured prediction
 - 13.2.5 Machine Reading Comprehension
 - 13.2.6 Open Question Answering

Content

13.1 Transformer Pre-training

- 13.1.1 GPT and Decoder-only Pre-training
- 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
- 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
- 13.1.4 BART: Bidirectional and Auto-Regressive Transformer
- 13.2 Using Pre-trained Transformer for Solving NLP Tasks
 - 13.2.1 Text Classification
 - 13.2.2 Continued Pre-training
 - 13.2.3 Adapters
 - 13.2.4 Structured prediction
 - 13.2.5 Machine Reading Comprehension
 - 13.2.6 Open Question Answering

Transformer Pre-training

- **ELMo**(Embeddings from Language Models) shows the promise of pretraining a sequence encoder
- The same recurrent LM objective can also train Transformer
- More objectives can be defined to train the encoder, decoder, or encoder-decoder structure
- The use can be beyond contextualized embedding

- Use a decoder-only Transformer as a recurrent language model
- Objective: given $W_{1:n} = w_1 w_2 \cdots w_n$

$$L = -\sum_{i=1}^{n} \log P(w_i \mid W_{1:i-1})$$

- Use a decoder-only Transformer as a recurrent language model
- Objective: given $W_{1:n} = w_1 w_2 \cdots w_n$

$$L = -\sum_{i=1}^{n} \log P(w_i \mid W_{1:i-1})$$

• Model architecture:

$$\begin{split} \mathbf{X} &= [emb(w_0); ...; emb(w_n)] \ \mathbf{P} = [\text{PositionEncoding}(0); ...; \text{PositionEncoding}(n)] \\ \mathbf{H^0} &= \mathbf{X} + \mathbf{P} \\ \mathbf{H}^k &= DecoderLayer(\mathbf{H}^{k-1}), k \in [1, K_d] \\ \mathbf{P}(w_i \mid W_{1:i-1}) &= Softmax(\mathbf{W}\mathbf{h}_i^k) \end{split}$$

• Note: No cross attention sublayer! $w_0 = w_{n+1} = \langle s \rangle$

- Uses BPE to obtain subword vocabulary
- Trained on WebText (8M documents, 40GB text)
- Statistics:

Model	#heads	\mid #layers K_d	hidden size d_h	model size #params
GPT-2	12	12	768	117M

- Application
 - \mathbf{H}^{K_d} can be used for contextualized embedding
 - ► GPT gives a new way of usage — fine-tuning

classification

$$P(c \mid W_{1:n}) = softmax(\mathbf{W}\mathbf{h}_n^{K_d})$$

loss

$$\mathcal{L}^{FT} = -\sum_{(W_i, c_i) \in D} \log P(c_i|\ W_i)$$

The whole set of Transformer parameters are adjusted!

Content

- 13.1 Transformer Pre-training
 - 13.1.1 GPT and Decoder-only Pre-training
 - 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
 - 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 13.1.4 BART: Bidirectional and Auto-Regressive Transformer
- 13.2 Using Pre-trained Transformer for Solving NLP Tasks
 - 13.2.1 Text Classification
 - 13.2.2 Continued Pre-training
 - 13.2.3 Adapters
 - 13.2.4 Structured prediction
 - 13.2.5 Machine Reading Comprehension
 - 13.2.6 Open Question Answering

Masked Language Model

<i>n</i> -gram LM	recurrent LM
skip-gram LM	masked LM

• Predict missing word in a sentence

"I went to the _____ for lunch"

\$\bigcup\$
(café, canteen, restaurant, bar, ...)

Advantage: Context from both the left and right can be used.

- Use an encoder-only Transformer for masked language model
- Objective: given $W_{1:n}=w_1w_2\cdots w_n$, where $\mathcal M$ is set of masked words

$$\mathcal{L} = \sum_{i \in \mathcal{M}} -\log P(w_i|\ W_{1:n})$$

Model Architecture

$$\begin{split} \mathbf{X} &= [emb(w_0); ...; emb(w_n)] \\ \mathbf{P} &= [\text{PositionEncoding}(0); ...; \\ \text{PositionEncoding}(n)] \\ \mathbf{H^0} &= \mathbf{X} + \mathbf{P} \\ \mathbf{H}^k &= DecoderLayer(\mathbf{H}^{k-1}), k \in [1, K_e] \\ \mathbf{P}(w_i \mid W_{1:n}) &= Softmax(\mathbf{W}\mathbf{h}_i^{K_e} + \mathbf{b}) \\ \text{Note: } w_0 &= [\text{CLS}] \end{split}$$

BERT: Bidirectional Encoder

Representations from Transformer

• Model Architecture

$$\mathbf{X} = [emb(w_0); ...; emb(w_n)]$$

$$\mathbf{P} = [PositionEncoding(0); ...;$$

PositionEncoding(n)]

$$\mathbf{H}^0 = \mathbf{X} + \mathbf{P}$$

$$\mathbf{H}^k = DecoderLayer(\mathbf{H}^{k-1}), k \in [1, K_e]$$

$$\mathbf{P}(w_i \mid W_{1:n}) = Softmax(\mathbf{W}\mathbf{h}_i^{K_e} + \mathbf{b})$$

Note:
$$w_0 = [CLS]$$

- Masking 15% input words
- Test time: no mask training-testing inconsistency
 - ► 10% masked words unmasked, still predict
 - ► 10% masked words randomly change to a different word

(to prevent model from simply copying unmasked words)

• Additional objective: next sentence prediction a sentence pair W_1W_2 :

$$[CLS]w_1^1w_2^1\cdots w_{|W_1|}^1[SEP]w_1^2w_2^2\cdots w_{|W_2|}^2[SEP]$$

Predicts whether W_2 is the next sentence in data.

BERT: Bidirectional Encoder Representations from Transformer

• Additional objective: next sentence prediction a sentence pair W_1W_2 :

$$[CLS]w_1^1w_2^1\cdots w_{|W_1|}^1[SEP]w_1^2w_2^2\cdots w_{|W_2|}^2[SEP]$$

Predicts whether W_2 is the next sentence in data.

- Model architecture
 - add segment embedding (0/1) to word representation X + P
 - predicts binary class (next sentence of W_1 or not)

$$P(\text{true}|\ W_1W_2) = softmax(\mathbf{W'}\mathbf{h}_{[\text{CLS}]}^{K_e} + \mathbf{b'})$$

BERT: Bidirectional Encoder Representations from Transformer

- Use WordPiece to obtain subword vocabulary :alternative to BPE, using $\frac{P(w_1w_2)}{P(w_1)P(w_2)}$ instead of $P(w_1w_2)$ for merging
 - Trained on BooksCorpus (0.8B words) and English Wikipedia (2.5B words)

Statistics

Model	#heads	\mid #layers K_d	hidden size d_h	model size #params
$\overline{\mathrm{BERT}_{\mathrm{BASE}}}$	12	12	768	110M
$BERT_{LARGE}$	24	24	1024	340M

BERT: Bidirectional Encoder Representations from Transformer

- Application
 - Follows GPT on fine-tuning
 - Classification:

$$P(c \mid W_{1:n}) = softmax(\mathbf{W}\mathbf{h}_{[\text{CLS}]}^{K_e} + \mathbf{b})$$

loss

$$\mathcal{L}^{FT} = -\sum_{(W_i, c_i) \in D} \log P(c_i|\ W_i)$$

- For structured prediction, use the last hidden layer as H
- More tasks later...

RoBERTa: A Robustly Optimized BERT Pretraining Approach

- Variant of BERT
 - the same architecture as BERT
 - trained with more data (BookCorpus 16GB, CC News 76G, OpenWeb-Text 38GB, ... Total **160GB**)
 - dynamically mask training instances in each batch
 - focus less on next sentence prediction
- Statistics

Model	#heads	#layers	hidden size	model size
RoBERTa _{BASE}	12	12	768	125M
$RoBERTa_{LARGE}$	24	24	1024	355M

BART: Bidirectional and Auto-Regressive Transformer

- Use an encoder-decoder Transformer for denoising auto-encoder
- Objective: given a noisy $\mathbf{X}_{1:m}$, predict the original $\mathbf{Y}_{1:m}$

$$\mathcal{L} = -\sum_{i=1}^{m} P(y_i \mid \mathbf{X}_{1:m}, \mathbf{Y}_{< i})$$

BART: Bidirectional and Auto-Regressive Transformer

- Use an encoder-decoder Transformer for denoising auto-encoder
- Objective: given a noisy $\mathbf{X}_{1:m}$, predict the original $\mathbf{Y}_{1:m}$

$$\mathcal{L} = -\sum_{i=1}^{m} P(y_i \mid \mathbf{X}_{1:m}, \mathbf{Y}_{< i})$$

- Model Architecture
 - Standard Transformer
 - Change ReLU activation to GeLU

$$\operatorname{GeLU}(x) = x \cdot \frac{1}{2} \left[1 + \operatorname{erf}(x/\sqrt{2}) \right] \approx 0.5 x \left(1 + \tanh \left[\sqrt{2/\pi} (x + 0.044715 x^3) \right] \right)$$

• Denoise Tasks

Task	Input → Output
Token masking	$ABC.DE. \rightarrow A_C._E.$
Token deletion	$ABC.DE. \rightarrow A.C.E$
Text infilling (Span to mask)	$ABC.DE \rightarrow A\D_E (BC; \emptyset)$
Sentence permutation	$ABC.DE. \rightarrow DE.ABC.$
Document rotation	ABC.DE. \rightarrow C.DE.AB (start from C)

• Token masking is the most useful.

BART: Bidirectional and Auto-Regressive Transformer

- Uses BPE to obtain subword vocabulary (same as RoBERTa)
- trained data (BookCorpus 16GB, CC News 76G, OpenWebText 38GB, ... Total **160GB**, same as RoBERTa)
- Model Architecture
 Statistics

Model	#heads	#encoder layers K_e	#decoder layers K_d	hidden size	model size
$BART_{BASE}$	16	6	6	768	125M
$BART_{LARGE}$	24	12	12	1024	355M

BART: Bidirectional and Auto-Regressive Transformer

- Application
 - Follows GPT and BERT on fine-tuning
 - Classification: use $h_{< s>}^{\text{dec}}$ for prediction
 - Structured prediction: use $\mathbf{H}^{\mathrm{dec}}$ or $\mathbf{H}^{\mathrm{dec}} \oplus \mathbf{H}^{\mathrm{enc}}$ for hidden
 - Directly fine-tuned on sequence-to-sequence tasks

Content

- 13.1 Transformer Pre-training
 - 13.1.1 GPT and Decoder-only Pre-training
 - 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
 - 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 13.1.4 BART: Bidirectional and Auto-Regressive Transformer

13.2 Using Pre-trained Transformer for Solving NLP Tasks

- 13.2.1 Text Classification
- 13.2.2 Continued Pre-training
- 13.2.3 Adapters
- 13.2.4 Structured prediction
- 13.2.5 Machine Reading Comprehension
- 13.2.6 Open Question Answering

Using Pre-trained Transformer for Solving NLP Tasks

- Pre-training + Fine-tuning
 - Make use of pre-training knowledge (take a base model)
 - Inject task knowledge (tune it)
- Additional Model Structures
- Tasks—— NLI becomes easier!
 - Classification
 - Structured Prediction
 - Generation

Content

- 13.1 Transformer Pre-training
 - 13.1.1 GPT and Decoder-only Pre-training
 - 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
 - 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 13.1.4 BART: Bidirectional and Auto-Regressive Transformer
- 13.2 Using Pre-trained Transformer for Solving NLP Tasks

13.2.1 Text Classification

- 13.2.2 Continued Pre-training
- 13.2.3 Adapters
- 13.2.4 Structured prediction
- 13.2.5 Machine Reading Comprehension
- 13.2.6 Open Question Answering

Encoder model architecture

BERT/ RoBERTa model architecture

- Can use [CLS] for h or aggregated hidden for $W_{1:n}$
 - Take the whole BERT instead of word embeddings, as pre-trained parameters.
 - Fine-tune the whole BERT as fine-tuning word embeddings.

WestlakeNLP

- Classifying Two Texts
- NLI
 - premise: $W_1 = w_1^1, w_2^1, ..., w_{n_1}^1$
 - hypothesis: $W_2 = w_1^2, w_2^2, ..., w_{n_2}^2$

$$X = [{\rm CLS}] w_1^1...w_{n_1}^1 [{\rm SEP}] w_1^2...w_{n_2}^2$$

$$Y = \text{entail} / \text{contradict} / \text{neutral}$$

BERT/ RoBERTa model architecture

Word Sense Disambiguation (WSD)

"He went to the bank and closed his account this morning"

WordNet:

bank¹: *sloping land (especially the slope beside a body of water)*

bank²: banking company, banking concern, depository financial institution

bank³: *a long ridge or pile*

• Input: W_1 , WordNet sense: W_2

Classify two texts

BERT/ RoBERTa model architecture

Select the sense that has the highest score.

Content

- 13.1 Transformer Pre-training
 - 13.1.1 GPT and Decoder-only Pre-training
 - 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
 - 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 13.1.4 BART: Bidirectional and Auto-Regressive Transformer
- 13.2 Using Pre-trained Transformer for Solving NLP Tasks
 - 13.2.1 Text Classification

13.2.2 Continued Pre-training

- 13.2.3 Adapters
- 13.2.4 Structured prediction
- 13.2.5 Machine Reading Comprehension
- 13.2.6 Open Question Answering

Continued Pre-training

- done between pre-training and fine-tuning
- inject more knowledge into representation model before fine-tuning

- domain-adaptive pre-training
 Train BERT on test domains (e.g. Biomedical, Computer Science, News reviews)
- Task-adaptive pre-training
 Train BERT on the task unlabeled data

Content

- 13.1 Transformer Pre-training
 - 13.1.1 GPT and Decoder-only Pre-training
 - 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
 - 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 13.1.4 BART: Bidirectional and Auto-Regressive Transformer
- 13.2 Using Pre-trained Transformer for Solving NLP Tasks
 - 13.2.1 Text Classification
 - 13.2.2 Continued Pre-training

13.2.3 Adapters

- 13.2.4 Structured prediction
- 13.2.5 Machine Reading Comprehension
- 13.2.6 Open Question Answering

Adapters

- Light-weight, parameter efficient tuning
- Add additional structures to Transformer
- Instead of tuning all parameters, tune added parameters

Content

- 13.1 Transformer Pre-training
 - 13.1.1 GPT and Decoder-only Pre-training
 - 13.1.2 BERT: Bidirectional Encoder Representations from Transformer
 - 13.1.3 RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 13.1.4 BART: Bidirectional and Auto-Regressive Transformer
- 13.2 Using Pre-trained Transformer for Solving NLP Tasks
 - 13.2.1 Text Classification
 - 13.2.2 Continued Pre-training
 - 13.2.3 Adapters

13.2.4 Structured prediction

- 13.2.5 Machine Reading Comprehension
- 13.2.6 Open Question Answering

Structured prediction

• useing BERT as pre-trained sequence encoder

- Use the hidden states of BERT to replace Transformer
- Add the target sequence labels depending on input/output pairs
- Fine-tune the whole BERT as fine-tuning word embeddings

Structured prediction

 Maximize pre-trained TLM utility by making the task close to pretraining

Template-based BERT Encoder

Machine Reading Comprehension

- $\bullet \ \ {\rm Passage} \ W_1 = w_1^1 w_2^1 ... w_{n_1}^1 \\$
- Question $W_2 = w_1^2 w_2^2 ... w_{n_2}^{\bar{2}}$
- Input to BERT:

$$[CLS]w_1^1w_2^1...w_{n_1}^1[SEP]w_1^2w_2^2...w_{n_2}^2$$

• Output of BERT:

$$\mathbf{h}_{[\text{CLS}]}, \mathbf{h}_1^1, \mathbf{h}_2^1, ..., \mathbf{h}_{n_1}^1, \mathbf{h}_{[\text{SEP}]}, \mathbf{h}_1^2, \mathbf{h}_2^2, ..., \mathbf{h}_{n_2}^2$$

• Predict on h beginning or end of answer span

Machine Reading Comprehension

- SpanBERT
 - add span knowledge to BERT
 - mask whole spans (randomly sample span size, and then beginning)
 - predict span content vs. boundary tokens.
- Given $W_{1:n} = w_1 w_2 ... w_n$, span $W_b, ..., W_e(b, e \in [1, ..., n])$ for all words $w_i (i \in [b, ..., e])$. Predict $P \big(w_i \mid w_{\{b-1\}}, w_{\{e+1\}}, \text{PositionEncode}(i) \big)$
- Use masked language modeling and span prediction
- Gives improved machine reading comprehension results

Machine Reading Comprehension

• Input: a question and a relevant database table

Student ID	Name	Class
20230101	Yue Zhang	3A
20230102	Ting Wang	3A
20230103	Ming Liu	4B

"Which class is Yue Zhang from?"

• Every database row as a sequence W_j^{row} Every database column as a sequence W_j^{col} Question as a sequence W^q Score $\operatorname{BERT}(W^q,W_j^{row})$ $\operatorname{BERT}(W^q,W_j^{col})$, find $\underset{i}{argmax}$

Open Question Answering

Dense passage retriver

• Contractive learning given $< W^q, W^{r+}, W_1^{r-}, W_2^{r-}, \cdots, W_m^{r-} >$

$$L = -\log \frac{e^{\text{sim}(W^q, W^{r+})}}{e^{\text{sim}(W^q, W^{r+})} + \sum_{i=1}^{M} e^{\text{sim}(W^q, W^{r+}_i)}}$$