Zápisky k předmětu Využití počítačů ve fyzice

Pavel Stránský

24. března 2020

1 Obyčejné diferenciální rovnice

Každou obyčejnou diferenciální rovnici n-tého řádu lineární v nejvyšší derivaci lze převést na soustavu n obyčejných diferenciálních rovnic prvního řádu ve tvaru

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{x}, t),\tag{1}$$

kde x = x(t) je vektor hledaných funkcí.

Příklad 1.1: Pohybovou rovnici

$$Ma = F(y), (2)$$

kde M je hmotnost pohybujícího se tělesa, y=y(t) jeho poloha a $a=a(t)=\mathrm{d}^2 y/\mathrm{d}t^2$ převedeme na dvě diferenciální rovnice prvního řádu triviálním zavedením rychlosti $v=v(t)=\mathrm{d}y/\mathrm{d}t$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y \\ v \end{pmatrix} = \begin{pmatrix} v \\ \frac{1}{M} F(y) \end{pmatrix},\tag{3}$$

tj. vektor funkce pravých stran podle rovnice (1) je

$$\mathbf{f}(\mathbf{x},t) = \begin{pmatrix} v \\ \frac{1}{M}F(y) \end{pmatrix} \tag{4}$$

 $kde \ \boldsymbol{x} \equiv (y, v).$

Příklad 1.2: Pohybová rovnice pro harmonický oscilátor (matematické kyvadlo s malou výchylkou) při volbě jednotek $M = \Omega = 1$, kde M je hmotnost kmitající částice a Ω její rychlost, zní

$$a = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -y \qquad \iff \qquad \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y \\ v \end{pmatrix} = \begin{pmatrix} v \\ t \end{pmatrix} \tag{5}$$

Úkol 1.1: Převeď te na soustavu obyčejných diferenciálních rovnic prvního řádu rovnici třetího řádu pro Hiemenzův tok

$$y''' + yy'' - y'^2 + 1 = 0. (6)$$

Řešení 1.1: Hledaná soustava diferenciálních rovnic je

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y \\ v \\ a \end{pmatrix} = \begin{pmatrix} v \\ a \\ -ya + v^2 - 1 \end{pmatrix}. \tag{7}$$

1.1 Diferenciální rovnice prvního řádu

Drtivá většina knihoven a algoritmů pro integraci diferenciálních rovnic počítá s rovnicemi ve tvaru (1). Zde se omezíme na jednu rovnici

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y,t),\tag{8}$$

přičemž rozšíření na soustavu je triviální: místo skalárů y a f vezmeme vektory.

Řešení diferenciální rovnice spočívá v nahrazení infinitezimálních přírůstků přírůstky konečnými:

$$\frac{\Delta y}{\Delta t} = \phi(y, t) \tag{9}$$

kde ϕ je funkce, která udává směr, podél kterého se při numerickém řešení vydáme. Volbá této funkce je klíčová a záleží na ní, jak přesné řešení dostaneme a jak rychle ho dostaneme.

1.1.1 Pár důležitých pojmů

• **Jednokrokové algoritmy:** Algoritmy, které výpočtu následujícího kroku hodnoty funkce y_{i+1} vyžadují znalost pouze aktuálního kroku y_i . Rozepsáním (9) dostaneme

$$y_{i+1} = y_i + \underbrace{\phi(y_i, t)}_{\phi_i} \Delta t, \qquad (10)$$

přičemž počáteční hodnota y_0 je dána počáteční podmínkou. My se omezíme pouze na tyto algoritmy.

• Lokální diskretizační chyba:

$$\mathcal{L} = y(t + \Delta t) - y(t) - \phi(y(t), t)\Delta t, \tag{11}$$

kde y(t) udává přesné řešení v čase t.

• Akumulovaná diskretizační chyba:

$$\epsilon_i = y_i - y(t_i) \tag{12}$$

• **Rád metody:** Metoda je *p*-tého řádu, pokud

$$L(\Delta t) = \mathcal{O}(\Delta t^{p+1}) \tag{13}$$

- Symplektické algoritmy: Speciální algoritmy navržené pro řešení pohybových diferenciálních rovnic. Od běžných algoritmů je odlišuje to, že zachovávají objem fázového prostoru, a tedy i energii (zatímco u obecných algoritmů energie s integračním časem roste). V praxi se ze symplektických algoritmů používá pouze Verletův algoritmus 1.3.
- Kontrola chyby řešení: Chybu numerického řešení diferenciální rovnice lze zmenšit 1) menším krokem, 2) lepší metodou (metodou vyššího řádu). Menší krok však znamená vyšší výpočetní čas. Sofistikované metody proto průběžně mění velikost kroku: když se funkce mění pomalu, krok prodlouží, když se mění rychle, krok zkrátí (tzv. metody s adaptivním krokem). Tím se docílí vysoké přesnosti při co nejmenším výpočetním čase.

1.1.2 Eulerova metoda 1. řádu

$$\phi_i = f(y_i, t_i), \tag{14}$$

tj. krok do y_{i+1} děláme vždy ve směru tečny v bodě y_i .

- Nejjednodušší metoda integrace diferenciálních rovnic.
- Chyba je obrovská, k dosažení přesných hodnot je potřeba velmi malého kroku, což znamená dlouhý výpočetní čas.

1.1.3 Eulerova metoda 2. řádu

$$k_{1} = f(y_{i}, t_{i})$$

$$k_{2} = f(y_{i} + k_{1}\Delta t, t + \Delta t)$$

$$\phi_{i} = \frac{1}{2}(k_{1} + k_{2}),$$
(15)

tj. uděláme jednoduchý Eulerův krok ve směru k_1 , spočítáme derivaci k_2 po tomto kroku a vyrazíme z bodu y_i ve směru, který je průměrem obou směrů (doporučuji si nakreslit obrázek).

Ekvivalentní je udělat "Eulerův půlkrok" a vyrazit z bodu y_i ve směru derivace spočtené po tomto půlkroku:

$$k'_{1} = f(y_{i}, t_{i})$$

$$k'_{2} = f\left(y_{i} + k'_{1}\frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right)$$

$$\phi_{i} = k'_{2}$$

$$(16)$$

1.2 Runge-Kuttova metoda 4. řádu

$$k_{1} = f(y_{i}, t_{i})$$

$$k_{2} = f\left(y_{i} + k_{1}\frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right)$$

$$k_{3} = f\left(y_{i} + k_{2}\frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right)$$

$$k_{4} = f\left(y_{i} + k_{3}\Delta t, t + \Delta t\right)$$

$$\phi_{i} = \frac{1}{6}\left(k_{1} + 2k_{2} + 2k_{3} + k_{4}\right)$$
(17)

- Jedna z nejčastěji používaných metod.
- Vysoká rychlost a přesnost při relativní jednoduchosti.
- Existují i Runge-Kuttovy metody vyššího řádu p, avšak vyžadují výpočet více než p dílčích derivací k_j . Obecně platí, že metoda řádu $p \le 4$ vyžaduje p derivací, metoda řádu $5 \le p \le 7$ vyžaduje p+1 derivací a metoda řádu p=8,9 vyřaduje p+2 derivací.

1.3 Verletova metoda

Pro rovnici 2. řádu ve tvaru (pohybovou rovnici)

$$M\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = F(y),\tag{18}$$

kde M je hmotnost pohybující se částice a F síla, která na ni působí. Algoritmus je

$$y_{i+1} = y_i + v_i \Delta t + \frac{1}{2} a_i \Delta t^2,$$

$$v_{i+1} = v_i + \frac{1}{2} (a_{i+1} + a_i) \Delta t,$$
(19)

kde $a_i \equiv F(y_i)/M$.

- Symplektický algoritmus, tj. algoritmus zachovávající energii (pokud systém popsaný rovnicí (18) energii zachovává).
- Užívá se nejčastěji v molekulární dynamice k simulaci pohybu velkého množství vzájemně interagujících částic.
- ullet Řád této metody je p=2. Symplektické algoritmy s vyšším řádem existují, avšak v praxi se nepoužívají.

Úkol 1.2: Naprogramujte Eulerovu metodu 1. a 2. řádu¹, Runge-Kuttovu metodu a Verletovu metodu a vyřešte diferenciální rovnici harmonického oscilátoru

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -y\tag{20}$$

s počátečními podmínkami $y_0=0,\ y_0'\equiv v_0=1$ (analytickým řešením je funkce $\sin t$). Časový krok ponechte jako volný parametr. Nakreslete grafy řešení y(t) a grafy energie E(t) pro rozdílné hodnoty integračních kroků, například $\Delta t=0.01$ a $\Delta t=0.1$ pro čas $t\in\langle 0;30\rangle$. Energie harmonického oscilátoru je dána vzorcem

$$E = \frac{1}{2} \left(y^2 + v^2 \right). \tag{21}$$

Přesvědčte se, že jediná Verletova metoda skutečně zachovává energii. Pro ostatní metody energie roste.

Řešení 1.2: Jedno možné řešení je rozděleno do dvou souborů ODE.py a Oscillator.py, které můžete stáhnout z GitHubu https://www.github.com/PavelStransky/PCInPhysics (o GitHubu bude pojednáno v sekci??).

- ODE.py: Modul napsaný dostatečně obecně, aby ho bylo možné použít na řešení libovolných soustav diferenciálních rovnic.
 - StepEuler1: Integrační krok Eulerovy metody 1. řádu.
 - StepEuler2: Integrační krok Eulerovy metody 2. řádu.
 - StepVerlet: Integrační krok Verletovy metody.
 - StepRungeKutta: Integrační krok Runge-Kuttovy metody 4. řádu.
 - ODESolution: Integruje diferenciální rovnici danou pravými stranami prvního parametru Derivatives pomocí kroku (metody) dané parametrem Step a délkou dt, přičemž vrátí pole hodnot řešení soustavy rovnic v jednotlivých časech, pole časů a jméno integračního kroku (pro snazší pozdější porovnání různých metod).

¹Tyto metody jsme již naprogramovali na cvičení minulý týden.

- ScipyODESolution: Integruje diferenciální rovnici pomocí funkce odeint z knihovny scipy.integrate. Pozor, parametr dt zde neznamená integrační krok, nýbrž časový krok výsledného pole. Funkce odeint používá sofistikovaný řešitel diferenciálních rovnic s proměnným krokem. Pro více detailů můžete mrknout na dokumentaci k této funkci na https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html.
- ShowGraphSolutions: Vykreslí graf řešení diferenciální rovnice (jako první parametr odeSolutions lze zadat seznam více řešení různými metodami či s různým krokem). Parametr ExactFunction je odkaz na přesné řešení dané diferenciální rovnice. Je-li specifikován, vykreslí se do grafu dva panely: jeden s hodnotami numerického řešení, druhý s rozdílem řešení numerického a přesného.

Funkce StepEuler1, StepEuler2 a StepRungeKutta fungují pro obecnou soustavu n obyčejných diferenciálních rovnic prvního řádu. Funkce StepVerlet funguje jen pro pohybovou rovnici, tj. pro jednu diferencální rovnici původně druhého řádu.

- Oscillator.py: Soubor, který využívá obecných funkcí z modulu ODE.py pro integraci harmonického oscilátoru různými metodami.
 - Energy: Pro zadanou polohu a rychlost vrátí energii harmonického oscilátoru.
 - Derivatives: Pravá strana soustavy diferenciálních rovnic harmonického oscilátoru.
 - CompareMethods: Vyřeší diferenciální rovnici harmonického oscilátoru různými metodami a řešení nakreslí do jednoho grafu. Následně vykreslí grafy E(t). Harmonický oscilátor je konzervativní systém (zachovává energii), rostoucí energie je způsobena nepřesností integrační metody.

Příslušné grafy jsou zobrazeny v obrázku 1.2.

Úkol 1.3: Rozšiřte kód tak, aby počítal průměrnou kumulovanou chybu

$$\mathcal{E} = \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (y_i - \sin t_i)^2}$$
 (22)

a nakreslete závislost $E(\Delta t)$ pro $\Delta t \in \langle 0.002; 0.1 \rangle$ a pro různé metody. Jelikož očekáváme mocninnou závislost dle (13), kde exponent je tím větší, čím větší je řád metody, je výhodné graf $E(\Delta t)$ kreslit v log-log měřítku. V Pythonu použijete místo $\operatorname{plot}(\ldots)$ funkci $\operatorname{loglog}(\ldots)$ z knihovny $\operatorname{matplotlib.pyplot}$.

Řešení 1.3: Průměrnou kumulovanou chybu počítá funkce CumulativeError z modulu ODE.py. Srovnání řešení diferenciální rovnice harmonického oscilátoru různými integračními metodami zakresluje do grafu funkce ShowGraphCumulativeErrors ze souboru Oscillator.py. Výsledný graf je znázorněn na obrázku 1.3. Vypočítanými křivkami $\ln \mathcal{E}(\ln \Delta t)$ je proložena přímka, jejíž sklon α udává exponent moncinného zákona

$$\mathcal{E} \propto (\Delta t)^{\alpha} \tag{23}$$

(k proložení přímky je využita funkce pro lineární regresi linregress z knihovny scipy.stats). Tento exponent výborně odpovídá řádu metody p dle rovnice (13).

Úkol 1.4: Eulerovu metodu 1. řádu lze pro harmonický oscilátor vylepšit následující záměnou:

(vypočítáme y_{i+1} a tuto hodnotu použijeme namísto hodnoty y_i pro výpočet rychlosti v_{i+1}). Naprogramujte tuto metodu u ukažte, že pro harmonický oscilátor se jedná o metodu 2. řádu. Využijte srovnání v grafu z předchozí úlohy.

Obrázek 1: Integrace diferenciální rovnice harmonického oscilátoru (20) různými metodami. Časový krok je $\Delta t = 0.1$. Levý sloupec: všechny metody. Pravý sloupec: bez Eulerovy metody 1. řádu. 1. řádek: hodnoty y(t). 2. řádek: rozdíly $\delta y(t) = y(t) - \sin t$. Pro Eulerovu metodu 1. řádu je divergence numerického od analytického řešení očividně exponenciální v čase. 3. řádek: energie (21). Pro Eulerovy metody energie roste i pro Runge-Kuttovu metodu a pro integraci pomocí funkce odeint, avšak růst je řádově menší, tudíž není na grafech při daném měřítku svislé osy vidět. Naopak pro Verletův algoritmus a pro "předbíhající" Eulerovu metodu energie osciluje okolo počáteční energie $E=\frac{1}{2}$.

Obrázek 2: Závislost průměrné kumulované chyby (22) na délce kroku Δt vypočítaná a vykreslená pomocí funkce ShowGraphCumulativeErrors pro harmonický oscilátor (soubor Oscillator.py). Křivka pro Verletovu metodu je "schovaná" za křivkou pro předbíhající Eulerovu metodu.

Řešení 1.4: Tato metoda je naimplementována v modulu ODE.py funkcemi StepEuler1AdvancedY a StepEuler1AdvancedV. Ze srovnání s ostatními metodami zobrazené v obrázcích 1.2 a 1.3 vyplývá, že tato metoda je

- symplektická (energie sice osciluje a osciluje s větší amplitudou než pro Verletovu metodu, ale pořád osciluje okolo počáteční hodnoty),
- 2. řádu.

V obrázcích jsou výsledky pouze pro metodu předbíhající v souřadnici. Díky symetrii jsou výsledky pro metodu předbíhající v rychlosti identické.

Úkol 1.5: Využijte hotové kódy a pohrajte si s řešením rovnice pro klesající exponenciálu

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = y \tag{25}$$

s počátečními podmínkami $y_0 = 1$, $y'_0 = -1$. Přesvědčte se, že Verletova metoda a vylepšená Eulerova metoda z posledního bodu jsou nestabilní — pro tuto rovnici v relativně krátkém čase začnou řešení exponenciálně divergovat.

Rešení 1.5: Rešení analogické k příkladu harmonického oscilátoru je v souboru **Exp.py**. Tento systém není konzervativní — nelze nadefinovat zachovávající se veličinu, která by měla význam energie.

Z obrázku 1.5 je vidět, že symplektické algoritmy jsou zde nestabilní, a tudíž nejsou na tento typ úlohy vhodné, což je pochopitelné, protože symplektické algoritmy jsou navrženy pouze pro energii zachovávající systémy. Obecné řešení rovnice (25) má tvar

$$y(t) = A e^t + B e^{-t},$$
 (26)

přičemž my speciálními počátečními podmínkami vybíráme pouze exponenciálně klesající řešení. Symplektické algoritmy v určitou chvíli "překmitnou" na exponenciálně rostoucí řešení a začnou divergovat.

Průměrná kumulovaná chyba je znázorněna na obrázku 1.5.

Obrázek 3: Totéž jako v obrázku 1.2, avšak pro exponenciálně klesající systém daný rovnicí (25). Symplektické algoritmy jsou nestabilní.

Obrázek 4: Totéž jako v obrázku 1.3, avšak pro exponenciálně klesající systém daný rovnicí (25). Pro symplektické algoritmy uvedený graf nedává příliš smysl, jelikož chyba je o řády vyšší než hledané řešení. Přesto stojí za povšimnutí, že předbíhající Eulerův algoritmus, který výborně funguje pro harmonický oscilátor a je pro něj metodou 2. řádu, se zde chová jako metoda 1. řádu.

1.4 Shrnutí

- Řešitelé obyčejných diferenciálních rovnic převážně pracují se soustavami diferenciálních rovnic prvního řádu. Na tento tvar není obtížné diferenciální rovnici vyššího řádu převést.
- Nejčastěji se používají jednokrokové metody, jejichž hlavní výhoda je v možnosti jednoduše měnit délku kroku.
- Přesnost řešení závisí na řádu metody p a na délce integračního kroku Δt . Čím je řád metody vyšší, tím rychleji klesá chyba se zmenšujícícm se krokem. V praxi, pokud nechcete svěřit svůj probém černé skříňce ve formě nějaké hotové knihovny, se velmi často používá Runge-Kuttova metoda 4. řádu, která je jednoduchá na implementaci, je stabilní a rychlá.
- Symplektické metody, z nichž nejběžnější je Verletova metoda, jsou výhodné k modelování fyzikálních systémů zachovávajících energii. Pro nekonzervativní systémy nejsou vhodné.
- V Pythonu se procvičilo:
 - předávání odkazů na funkce v argumentu,
 - vracení více hodnot z funkce a jejich následné zpracování,
 - vykreslování grafů a práce s více panely pomocí funkce subplot; argument této funkce přijímá trojciferné číslo, ve kterém první cifra udává počet panelů v řádcích, druhá cifra počet panelů ve sloupcích a třetí cifra pořadové číslo vykreslovaného panelu,
 - funkce lineregression z knihovny scipy.stats pro výpočet lineární regrese.

A nyní již umíte vypočítat a nakreslit průběh funkce sinus :-)