Birmday Paradox O(Vdays)

k proph in room

p(two have same birthday) - 1- p(two don't have same birmday)

k	prob	
	0	k-1
Z	(1- /365)	TT (1- C/365)
3	(1- 1/365) 2 1- 2/365)	C=1
4	$ 111 \times (1-3/365)$	k = 23 (more likely
	· ·	than not pair has same bday)

Balls and Bins

m bins, n balls

What fraction of the bins are empty?

prob(bin #1 is empty) = $(1-ym)^m \approx e^{-n/m}$ Limanity of Expectations $E[\#empty Lins] = m(1-yn)^m \approx me^{-n/m}$

What is the expected # of bins with 1 ball?

Pr (bin #1 gets 1 ball): (1) tm (1-1/m) 11-1

Hash Functions
H: W -> {0,, m-1?
bood hash functions look random
Vsug1: distribut ituus so you can look tuem
<u>Password chicking</u>
prevent bad passwords rather temproper to not use
· prevent bad passwords pathwaten proper to not use · small spall complexity (wi some mistakes) man to use
unsah pass
m bits
0 0 0 0 0 0 0
H: if 0 -> okay!
H(x) -> 0 to m-1 1 -> not okay, might have
sit that bit to I been a bad password
n kad pasiwords, m bits in Hash
p(say bad even through password is good) = #1s = 1-E
$p(qood) = m t^{-n/m} = t^{-n/m}$
νu
BLOOM FILLY M bits good password: at heast 10 option 1
Mbitt, nituus
k hain functions

