Билет 58

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет 58: Поточечная и равномерная сходимость рядов. Остаток ряда. Критерии	
	Коши. Необходимое условие равномерной сходимости ряда	1

0.1. Билет 58: Поточечная и равномерная сходимость рядов. Остаток ряда. Критерий Коши. Необходимое условие равномерной сходимости ряда.

Замечание. Момент с лекции: youtu.be

Записи Александра Игоревича с лекции: drive.google

Определение 0.1.

$$u_n: E \to \mathbb{R}(\mathbb{C})$$

$$\sum_{n=1}^{\infty} u_n(x)$$
 – функциональный ряд

$$S_n(x) := \sum_{k=1}^n u_k(x)$$
 – частичная сумма.

Если S_n поточечно сходится к S,то ряд поточечно сходится, если $S_n \rightrightarrows S$, то ряд равномерно сходится.

Определение 0.2.

Пусть ряд
$$\sum_{n=1}^{\infty} u_n(x)$$
 сходится поточечно

$$r_n(x) := \sum_{k=n+1}^{\infty} u_k(x) = S(x) - S_n(x)$$
 – остаток функции ряда.

Теорема 0.1.

$$\sum\limits_{n=1}^{\infty}u_{n}(x)$$
 равномерно сходится на E

$$\iff r_n \rightrightarrows 0$$
 на E .

Доказательство.

$$\sum_{n=1}^{\infty} u_n(x)$$
 – равномерно сходится $\iff S_n \rightrightarrows S$ на $E \iff r_n = S - S_n \rightrightarrows 0$

Теорема 0.2 (Критерий Коши).

$$\sum u_n(x)$$
равномерно сходится на E

$$\iff \forall \epsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E \ |\sum_{k=n+1}^{n+p} u_k(x)| < \epsilon$$

Доказательство.

$$\sum u_n(x)$$
 равномерно сходится $\iff S_n \rightrightarrows S$ на E

$$\iff \forall \epsilon > 0 \ \exists N \ \forall m, n > N \ \forall x \in E \ |S_m - S_n| < \epsilon$$

$$\forall \epsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E \ |S_{n+p} - S_n| < \epsilon$$

$$\left|\sum_{k=n+1}^{n+p} u_k(x)\right| = \left|\sum_{k=1}^{n+p} u_k(x) - \sum_{k=1}^{n} u_k(x)\right| = \left|S_{n+p} - S_n\right|$$

Следствие (Необходимое условие сходимости функции ряда).

Если ряд $\sum u_n(x)$ равномерно сходится, то $u_n \Rightarrow 0$.

Доказательство.

Возьмем критерий Коши и p = 1.

$$\forall \epsilon > 0 \ \exists N \ \forall n > N \ \forall x \in E \ |u_{n+1}(x)| < \epsilon$$

Это определение равномерной сходимости $u_n \rightrightarrows 0$.

Билет 58 СОДЕРЖАНИЕ

Замечание.

- 1. Если $\exists x_n \in E$, для которой $u_n(x_n) \not\to 0$, то $\sum u_n(x)$ не сходится равномерно.
- 2. Из того, что ряд $\sum u_n(x_n)$ расходится ничего не следует

Пример.

ример.
$$u_n(x) = \begin{cases} \frac{1}{n} & \text{при } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right) \\ 0 & \text{иначе} \end{cases}$$

$$\sum u_n(\frac{1}{n+1}) = \sum \frac{1}{n}$$
 – расходится.