A Proofs

We first prove the inequality of Theorem 1.

Theorem 1 restated. (Divergence on belief state representation) Consider a POMDP \mathcal{M} , and let b_t be a latent representation of the belief state, such that $P(s_t|x_{\leq t},a_{< t})=P(s_t|b_t)$. Let the policy $a_t\sim\pi(\cdot|b_t)$, so that $P(s_t|b_t,a_t)=P(s_t|b_t)$ Let D_f be a generic f-divergence. Then the following inequalities hold:

$$D_{f}(\rho_{\mathcal{M}}^{\pi}(s, a) \parallel \rho_{\mathcal{M}}^{\pi_{E}}(s, a)) \leq D_{f}(\rho_{\mathcal{M}}^{\pi}(b, a) \parallel \rho_{\mathcal{M}}^{\pi_{E}}(b, a)).$$
(16) 729

Proof. With the condition $P(s_t|x_{\leq t}, a_{\leq t}) = P(s_t|b_t)$, there is:

$$D_{f}\left(\rho_{\mathcal{M}}^{\pi}\left(b,a\right) \parallel \rho_{\mathcal{M}}^{\pi_{E}}\left(b,a\right)\right) = \mathbb{E}_{b,a \sim \rho_{\mathcal{M}}^{\pi_{E}}\left(b,a\right)} \left[f\left(\frac{\rho_{\mathcal{M}}^{\pi}(b,a)}{\rho_{\mathcal{M}}^{\pi_{E}}\left(b,a\right)}\right) \right]$$
(17) 733

$$= \mathbb{E}_{s,b,a \sim \rho_{\mathcal{M}}^{\pi_E}(s,b,a)} \left[f\left(\frac{\rho_{\mathcal{M}}^{\pi}(s,b,a)}{\rho_{\mathcal{M}}^{\pi_E}(s,b,a)}\right) \right]$$

$$(18) 735$$

$$= \mathbb{E}_{s,a \sim \rho_{\mathcal{M}}^{\pi_E}(s,a)} \left[\mathbb{E}_{b \sim \rho_{\mathcal{M}}^{\pi_E}(b|s,a)} \left[f\left(\frac{\rho_{\mathcal{M}}^{\pi}(s,b,a)}{\rho_{\mathcal{M}}^{\pi_E}(s,b,a)}\right) \right] \right]$$
(19) 737

$$\geq \mathbb{E}_{s,a \sim \rho_{\mathcal{M}}^{\pi_E}(s,a)} \left[f\left(\mathbb{E}_{b \sim \rho_{\mathcal{M}}^{\pi_E}(b|s,a)} \left[\frac{\rho_{\mathcal{M}}^{\pi}(s,b,a)}{\rho_{\mathcal{M}}^{\pi_E}(s,b,a)} \right] \right) \right] \tag{20}$$

$$= \mathbb{E}_{s,a \sim \rho_{\mathcal{M}}^{\pi_{E}}(s,a)} \left[f\left(\mathbb{E}_{b \sim \rho_{\mathcal{M}}^{\pi_{E}}(b|s,a)} \left[\frac{\rho_{\mathcal{M}}^{\pi}(s,a)\rho_{\mathcal{M}}^{\pi}(b|s,a)}{\rho_{\mathcal{M}}^{\pi_{E}}(s,a)\rho_{\mathcal{M}}^{\pi_{E}}(b|s,a)} \right] \right) \right]$$

$$(21)$$

$$_{743}$$

$$= \mathbb{E}_{s, a \sim \rho_{\mathcal{M}}^{\pi_{E}}(s, a)} \left[f \left(\mathbb{E}_{b \sim \rho_{\mathcal{M}}^{\pi}(b|s, a)} \left[\frac{\rho_{\mathcal{M}}^{\pi}(s, a)}{\rho_{\mathcal{M}}^{\pi_{E}}(s, a)} \right] \right) \right]$$
(22)

$$= \mathbb{E}_{s,a \sim \rho_{\mathcal{M}}^{\pi_E}(s,a)} \left[f\left(\frac{\rho_{\mathcal{M}}^{\pi}(s,a)}{\rho_{\mathcal{M}}^{\pi_E}(s,a)}\right) \right] \tag{23}$$

$$=D_{f}\left(\rho_{\mathcal{M}}^{\pi}\left(s,a\right)\parallel\rho_{\mathcal{M}}^{\pi_{E}}\left(s,a\right)\right).\tag{24}$$

Lemma 1. (Simultaneous policy and model deviation) Let \hat{M} be approximate ⁷⁵⁰ MDP constructed using approximate dynamics model \hat{T} . \hat{M} differs \mathcal{M} only in ⁷⁵¹ transition dynamics - \hat{T} and \mathcal{T} . Let $R_{max} = max_{(s,a)\mathcal{R}(s,a)}$ be the upper-bound ⁷⁵² of rewards. Let $\mu_{\mathcal{M}}^{\pi}(s,a) = (1-\gamma)\rho_{\mathcal{M}}^{\pi}(s,a) = (1-\gamma)\sum_{t=0}^{\infty} (\gamma^{t}P(s_{t}=s,a_{t}=a|\pi))$ ⁷⁵⁴ be the normalized γ -discounted state-visitation distribution of a policy π in MDP ⁷⁵⁵ \mathcal{M} . If the dynamics of both \mathcal{M} and $\hat{\mathcal{M}}$ are such that

$$\mathbb{E}_{(s,a)\sim\mu_{\mathcal{M}}^{\pi,t}} \left[D_{TV}(\mathcal{T}(\cdot|s,a), \mathcal{T}(\cdot|\hat{s},a)) \right] \leq \epsilon \quad \forall t.$$
 (25)

then, the performance difference between policy π and expert policy π_E can be bounded as:

$$\left| J(\pi, \mathcal{M}) - J(\pi_E, \mathcal{M}) \right| \le \frac{R_{max}}{1 - \gamma} D_{TV}(\mu_{\mathcal{M}}^{\pi}, \mu_{\hat{\mathcal{M}}}^{\pi_E}) + \frac{\epsilon \gamma R_{max}}{(1 - \gamma)^2}$$
(26) 764

Proof. Depending on the definition of $J(\pi,\mathcal{M})$ and the triangle inequality on 765 D_{TV} , we have:

$$\left| J(\pi, \mathcal{M}) - J(\pi_E, \mathcal{M}) \right| = \left| \frac{1}{1 - \gamma} \mathbb{E}_{\mu_{\mathcal{M}}^{\pi}} \left[\mathcal{R}(s, a) \right] - \frac{1}{1 - \gamma} \mathbb{E}_{\mu_{\mathcal{M}}^{\pi_E}} \left[\mathcal{R}(s, a) \right] \right| \tag{27}$$

$$\leq \frac{R_{max}}{1 - \gamma} D_{TV}(\mu_{\mathcal{M}}^{\pi}, \mu_{\mathcal{M}}^{\pi_E})$$
(28) 770

$$\leq \frac{R_{max}}{1 - \gamma} \left(D_{TV}(\mu_{\mathcal{M}}^{\pi}, \mu_{\hat{\mathcal{M}}}^{\pi}) + D_{TV}(\mu_{\hat{\mathcal{M}}}^{\pi}, \mu_{\mathcal{M}}^{\pi_{E}}) \right) \tag{29}$$

$$\leq \frac{R_{max}}{1 - \gamma} D_{TV}(\mu_{\mathcal{M}}^{\pi}, \mu_{\hat{\mathcal{M}}}^{\pi_E}) + \frac{\epsilon \gamma R_{max}}{(1 - \gamma)^2}$$
 (30)

Thus, the divergence minimization in model-based IL guarantees the suboptimality with a bias that is proportional to the model error. It allows us to collect on-policy rollouts to update policies without interaction with the environment.

Environments В

To evaluate the performance of IL algorithms, we chose three classic control tasks from the Distracting DeepMind Control Suite. In each task, IL agents are 784 provided with RGB images whose height and width are set to 64 pixels. To evaluate the generalization further, the dynamic backgrounds of testing environments are chosen at random from the DAVIS 2017 dataset [58], as illustrated in Fig. 5. When the start or end frame is reached, we reverse the order of playing videos. In this way, the background changes are constantly continuous without abrupt alterations. As mentioned before, we use DrQ to train experts to generate demonstrations. The action repeat for the three tasks is set to 2, so that the episode length is 500. We construct the observation input as a 3-stack of consecutive frames for experts. As a result, experts make decisions depending on the observation with $64 \times 64 \times 3$ dimensions.

Fig. 5. Snapshots of testing environments used for evaluating generalization. The dy-namic backgrounds are randomly selected from scenes of 10 videos of the DAVIS 2017 dataset.

ACCV2022 #585

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 585	19

ACCV2022

#585

Ve provi	ide a list of hyperparameters in Table 1	l.
Table 1. Hyperparameters of IMAIL in experiments		
	Hyperparameters	Value
	Environment parameters	
	Image size	$64 \times 64 \times 3$
	Action repeat	2
	Exploration steps	1000
	Common parameters	
	Batch size	64
	Optimizer	Adam
	Discount	0.99
	Invariant encoder feature dim	256
	Noise encoder feature dim	30
	Belief encoder feature dim	30
	Expert demonstrations length	50
	Rollout length	15
	Dynamics model learning rate	6×10^{-4}
	Mutual information learning rate	6×10^{-4}
	Statistics network parameters	
	MLP network	$2 \times \{256\text{-}FC, Tanh\}$
	Learning rate	1×10^{-3}
	SAC parameters	
	Action MLP network	$4 \times \{256\text{-}FC, Elu\}$
	Value MLP network	$3 \times \{256\text{-}FC, Elu\}$
	Actor learning rate	8×10^{-5}
	Value learning rate	8×10^{-5}
	Discriminator parameters	
	MLP network	$2 \times \{256\text{-}FC, Elu\}$
	Learning rate	8×10^{-5}