NWEN 242

Pipelined Datapath and Control

Agenda

- Single-cycle vs. pipelined performance
- Pipeline register and pipeline operation
- Control for the pipeline

Introduction to pipelining

- Involves having several instructions in the processor all at once
 - Each at a different stage of its execution
 - Individual instructions take the same time (five steps)

Benefits of pipelining

- Pipelining gives better performance than single-cycle design
- Improved throughput

Throughput for single-cycle datapath

- Assumed latencies
 - Memory 10ns
 - ALU 10ns
 - Register 5ns

- Suitable clock speed
 - 25 MHz
 - 40ns period
- 120 ns to execute the three instructions

Throughput for pipelined datapath

					Single Cycle											
	lw					sw					addi					
	Fetch inst. 1	Reg	ALU	R/W data	Reg	Fetch inst.2	Reg	ALU	R/W data	Reg	Fetch inst. 3	Reg	AL	U	R/W data	Reg
	1	0	20	30 I	4	0 50		60 •	ı		1		10 I	0		_
				ı									ı		TIME (ns)

Pipeline

Total clock cycles = 5 + (n-1)

- Assumed latencies
 - Memory 10ns
 - ALU 10ns
 - Register 5ns
- To ns to execute the three instructions

What is the performance gain?

- Non-pipelined
 - Each instruction takes 40ns to complete
 - e.g. completing 3 instructions takes 120ns

Time to complete the first instruction

- Pipelined with 5 stages
 - Each instruction takes 50ns to complete
 - e.g. third instruction finishes after 50+20=70ns

Time to complete next two instructions

- Thus pipelined processor is 120/70 = 1.71 faster (for three instructions) than non-pipelined processor
- How many times faster is the pipelined processor for executing 1000 instructions?

- Single-cycle processor: (4×1000) stages $\times 10$ ns = 40,000ns
- Pipelined processor: (5 + (1000-1)) stages x 10ns = 10,040ns
- Pipelined processor is almost four times faster than nonpipelined counterpart.

- Single-cycle processor: (4×1000) stages $\times 10$ ns = 40,000ns
- Pipelined processor: (5 + (1000-1)) stages x 10ns = 10,040ns
- Pipelined processor is almost four times faster than nonpipelined counterpart.

Performance Gain = single-cycle cycle time / pipelined cycle time

How pipeline works

New datapath element: Pipeline Registers

Pipeline registers

- Need registers between stages
 - to hold information produced in previous cycle
 - get written for every cycle

Pipeline operation

Cycle-by-cycle flow of instructions through the pipelined datapath

- Description Right half of a block colored means it's being read
- Left half of a block colored means it's being written

lw stage 5 (WB = Write-Back) lw Write back IF/ID ID/EX EX/MEM MEM/WB Add Shift left 2 Address Read Read register 1 data 1 Aead register 2 Registers ALU Instruction ALU Read Read Address data data 2 register Data Write memory data Write Sign-Wrong register number

The write register has been changed

- As soon as we decode a new instruction, we will overwrite the contents of the Read Register 1 and 2 and the write register
- Hence, we have to pass along the register address to write through pipeline registers

Corrected Datapath for Load

Control for the pipelined datapath

- Mostly same as for single-cycle datapath
 - Control signals are needed at corresponding stage of execution
 - No new control signals required
- But control for stage x depends on instruction at stage x
 - Control for x is decided in ID
 - Control signal is passed to pipeline registers with the instruction

Summary

- Pipelined processors are generally faster than single-cycled processors
 - Provided the pipeline is kept full
 - The latency of an individual instruction may be greater
- Pipeline registers
 - isolate stages
 - hold information produced in previous cycle
 - get written for every cycle
 - and control hand-over of partially completed instructions
- Pipeline operation
- Control signals (values)
 - are determined in ID
 - pass through the pipeline registers as the instruction moves down the pipeline
 - are grouped and used by pipeline stage

