МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

Нормальные формы формул алгебры логики

Дизъюнктивная нормальная форма (ДНФ) формулы есть формула, равносильная формуле исходной логической функции и записанная в виде дизъюнкции элементарных конъюнкций, построенных на пропозициональных переменных

$$F = K_1 \lor K_2 \lor K_3 \lor \ldots$$
, где $K_i = (A \land B \land C \land \ldots)$.

Элементарной конъюнкцией или конъюнктивным одночленом от переменных А,В,С,... называется конъюнкция каких-либо из этих переменных или их отрицаний.

- В элементарной конъюнкции нет двух одинаковых пропозициональных переменных, т.к. по закону идемпотентности F∧F=F.
- В ДНФ нет двух одинаковых элементарных конъюнкций, т.к. по закону идемпотентности F∨F=F.
- Если одна из элементарных конъюнкций содержит F и ¬F, то элементарную конъюнкцию следует удалить, т.к. F∧¬F=0.

Пример:

Дано выражение: $F = F_1 \wedge (F_1 \vee F_2) \vee F_2 \wedge (F_1 \vee F_2)$

по закону дистрибутивности:

$$F = F_1 \wedge F_1 \vee F_1 \wedge F_2 \vee F_1 \wedge F_2 \vee F_2 \wedge \overline{F_2}$$

по законам идемпотентности и противоречия:

$$F = F_1 \vee F_1 \wedge F_2$$

□ по закону поглощения:

$$F = F_1$$

Конъюнктивная нормальная форма

Конъюнктивная нормальная форма (КНФ)

формулы есть формула, равносильная формуле исходной логической функции и записанная в виде конъюнкции элементарных дизъюнкций, построенных на пропозициональных переменных, т.е.

$$F = D_1 \wedge D_2 \wedge D_3 \wedge \dots$$
, где $D_i = (A \vee B \vee C \vee \dots)$.

Элементарной дизъюнкцией или дизъюнктивным одночленом от переменных А,В,С,... называется дизъюнкция каких-либо из этих переменных или их отрицаний.

- В элементарной дизъюнкции нет двух одинаковых пропозициональных переменных, т.к. по закону идемпотентности F∨F=F.
- В КНФ нет двух одинаковых элементарных дизъюнкций, т.к. по закону идемпотентности F∧F=F.
- Если одна из элементарных дизъюнкций содержит F и ¬F, то ее следует удалить, т.к. F∨ ¬F = и.

Алгоритм приведения к нормальной форме

Шаг 1. Устранить логические связки " \leftrightarrow " и " \rightarrow " по правилам:

$$F_{1} \leftrightarrow F_{2} = (F_{1} \rightarrow F_{2})(F_{2} \rightarrow F_{1}) =$$

$$= (\overline{F_{1}} \vee F_{2})(\overline{F_{2}} \vee F_{1}) =$$

$$= \overline{F_{1}}\overline{F_{2}} \vee F_{1}F_{2};$$

$$F_{1} \rightarrow F_{2} = \overline{F_{1}} \vee F_{2} = (\overline{F_{1}}\overline{F_{2}})$$

Шаг 2. Продвинуть отрицание до элементарной формулы (пропозициональной переменной) по законам де Моргана и двойного отрицания.

Шаг 3. Применить закон дистрибутивности:

для КНФ –

$$F_1 \vee (F_2F_3) = (F_1 \vee F_2)(F_1 \vee F_3);$$

для ДНФ –

$$F_1(F_2 \vee F_3) = F_1F_2 \vee F_1F_3.$$

Пример:

Дана формула $F = ((F_1 \rightarrow (F_2 \lor F_3)) \rightarrow F_4)$ Необходимо привести формулу к виду КНФ.

$$F = (\overline{F_1} \vee (F_2 \vee \overline{F_3})) \longrightarrow F_4)$$

$$F = (\overline{F_1} \vee (F_2 \vee \overline{F_3})) \vee F_4)$$

$$F = F_1 \wedge \overline{F_2} \wedge F_3 \vee F_4$$

$$F = (F_1 \vee F_4) \wedge (\overline{F_2} \vee F_4) \wedge (F_3 \vee F_4)$$

Пример:

Дана формула $F = ((F_1 \wedge F_2) \wedge (F_1 \vee F_2))$ Необходимо привести формулу к виду ДНФ.

$$F = (\overline{F_1} \vee \overline{F_2}) \wedge (F_1 \vee F_2)$$

$$F = ((\overline{F_1} \vee \overline{F_2}) \wedge F_1) \vee ((\overline{F_1} \vee \overline{F_2}) \wedge F_2))$$

$$F = (\overline{F_1} \wedge F_1) \vee (\overline{F_2} \wedge F_1) \vee (\overline{F_1} \wedge F_2) \vee (\overline{F_2} \wedge F_2)$$

$$F = (\overline{F_2} \wedge F_1) \vee (\overline{F_1} \wedge F_2)$$

Совершенные нормальные формы

Если каждая элементарная конъюнкция (или элементарная дизъюнкция) формулы содержат символы всех пропозициональных переменных, то такая формула называется совершенной.

Алгоритм преобразования ДНФ к виду СДНФ

Шаг 1: если в элементарную конъюнкцию F не входит подформула F_i или $\overline{F_i}$, то дополнить элементарную конъюнкцию высказыванием $F_i \vee \overline{F_i}$ и выполнить преобразование формулы по закону дистрибутивности:

$$F(F_i \vee \overline{F_i}) = FF_i \vee F\overline{F_i};$$

Шаг 2: если в элементарную конъюнкцию F не входит подформула $F_{\mathfrak{j}}$ или $\overline{F_i}$, то повторить ш. 1

Шаг 3: Упрощаем полученную формулу, используя равносильности: $F \land F = F$; $F \lor F = F$.

Пример:

Дано
$$F = F_1 \overline{F_2} \vee F_1 \overline{F_3} F_4 \vee F_1 F_2 F_3 \overline{F_4}$$

Необходимо преобразовать формулу к виду СДНФ.

Алгоритм преобразования КНФ к виду СКНФ

Шаг 1: если в элементарную дизъюнкцию F не входит подформула F_i или F_i , то дополнить элементарную дизъюнкцию высказыванием ($F_i \land F_i$) и выполнить преобразование формулы по закону дистрибутивности:

$$F \vee (F_i \wedge \overline{F_i}) = (F \vee F_i) \wedge (F \vee \overline{F_i});$$

Шаг 2: если в элементарную конъюнкцию F не входит подформула F_i или F_i, то повторить ш. 1

Шаг 3: Упрощаем полученную формулу, используя равносильности: $F \land F = F$; $F \lor F = F$.

Пример:

Дано
$$F = (F_1 \vee F_2) \wedge (\overline{F_1} \vee \overline{F_2} \vee F_3 \vee F_4)$$

Необходимо преобразовать формулу к виду СКНФ.

Построение совершенных нормальных форм по таблицам истинности

Запись СДНФ: Элементарные конъюнкции СДНФ формируются для значений формулы "и".

Пропозициональные переменные, входящие в элементарную конъюнкцию, записываются без изменений, если их значение равно "и" и с логической связкой "¬", если их значение равно "л".

Запись СКНФ: Элементарные дизъюнкции СКНФ формируются для значений формулы "л".

Пропозициональные переменные, входящие в элементарную дизъюнкцию, записываются без изменений, если их значение равно "л" и с логической связкой "¬", если их значение равно "и".

- СДНФ для всякой логической функции единственна. Для тождественно ложной функции СДНФ не существует.
- СКНФ для всякой логической функции единственна. Единственная функция, не имеющая СДНФ тождественно истинная.

Пример:

Пример: Записать СДНФ и СКНФ для функции, заданной таблицей истинности

A	B	C	F(A,B,C)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Формула СДНФ:

$$F(A,B,C) = \overline{A} \wedge \overline{B} \wedge \overline{C} \vee \overline{A} \wedge B \wedge \overline{C} \vee A \wedge B \wedge \overline{C} \vee A \wedge \overline{B} \wedge \overline{C} \vee A \wedge B \wedge C$$

Формула СКНФ:

$$F(A,B,C) = (A \lor B \lor \overline{C}) \land (A \lor \overline{B} \lor C) \land (\overline{A} \lor B \lor \overline{C}) \land (\overline{A} \lor \overline{B} \lor C)$$

Принцип суперпозиций. Замкнутые классы логических функций

Суперпозицией булевых функций f_0 и $f_1,...,f_n$ называется функция

$$f(x_1,...,x_m) = f_0(g_1(x_1,...,x_m),...,g_k(x_1,...,x_m)),$$

где каждая из функций $g_i(x_1, ..., x_m)$ либо совпадает с одной из переменных (тождественная функция), либо — с одной из функций $f_1, ..., f_n$.

Например:

□ Функция $f(x,y) = \neg(x \land y)$ является суперпозицией функций ¬ и \land ;

Замыкание класса

Рассмотрим множество A логических функций, обладающих некоторым свойством. Пусть $G(Y_1,Y_2,...,Y_k) \in A$ и $F_i(X_1,X_2,...,X_n) \in A, i=1,2,...,k$. Произведем суперпозицию функций G и F:

$$G[F_1(X_1,...,X_n),...,F_k(X_1,...,X_n)] = H(X_1,...,X_n)$$

Если $H(X_1,...,X_n) \in A$, то A называется замкнутым классом логических функций по отношению к рассматриваемому свойству.

Замыкание класса

То есть, множество A логических функций называют замкнутым классом, если любая суперпозиция функций из A снова принадлежит A.

«Замечательные» свойства

1. Свойство сохранять 0

Функция $F(X_1,...,X_n)$ называется сохраняющей 0, если F(0,...,0)=0.

Функции X_1X_2 , X_1+X_2 , $X_1 \oplus X_2$ сохраняют 0, а $X_1 \rightarrow X_2$, $X_1 \sim X_2$, $X_1 | X_2$ не сохраняют.

$$C_0 = \{F(X_1,...,X_n) \mid F(0,...,0) = 0\}.$$

Докажем замкнутость класса функций, сохраняющих 0.

Пусть G(0,...,0)=0 и $F_i(0,...,0)=0$.

Произведем суперпозицию функций G и F_i :

$$G[F_1(X_1,...,X_n),...,F_k(X_1,...,X_n)]$$

Определим значение функции на нулевом наборе: $G[F_1(0,...,0),...,F_k(0,...,0)]=G(0,...,0)=0$, т.е. H(0,...,0)=0.

1. Свойство сохранять 1

Функция $F(X_1,...,X_n)$ называется coxpanseum единицу, если F(1,...,1)=1.

$$C_1 = \{F(X_1,...,X_n) \mid F(1,...,1) = 1\}.$$

Класс C_1 является замкнутым.

3. Самодвойственность

Самодвойственной функцией

- называется такая функция, для которой справедливо равенство $F(X_1, X_2, ..., X_n) = F^*(X_1, X_2, ..., X_n)$,
- где F^* двойственная функция по отношению к функции F.
- Двойственная функция определяется следующим образом: $F^*(X_1, X_2, ..., X_n) = \overline{F}(\overline{X_1}, \overline{X_2}, ..., \overline{X_n})$

Пример

$$F = X_1 X_2 + X_1 X_3 + X_2 X_3$$

$$F^* = \overline{\overline{X}_1 \overline{X}_2 + \overline{X}_1 \overline{X}_3 + \overline{X}_2 \overline{X}_3} = \overline{\overline{X}_1 \overline{X}_2} \cdot \overline{\overline{X}_1 \overline{X}_3} \cdot \overline{\overline{X}_2 \overline{X}_3} =$$

$$=(X_1+X_2)(X_1+X_3)(X_2+X_3)=X_1X_2+X_1X_3+X_2X_3=F$$

 C_C – класс всех самодвойственных функций

X	Y	$F=X\wedge Y$	$\neg X \land \neg Y$	$\neg(\neg X \land \neg Y)$
0	0	0	1	0
0	1	0	0	1
1	0	0	0	1
1	1	1	0	1

Функции $x \wedge y$ и $x \vee y$, задаваемые векторами значений (0,0,0,1) и (0,1,1,1) двойственны друг к другу.

Также двойственными являются $x \oplus y$ и $x \leftrightarrow y$, задаваемые векторами (0,1,1,0) и (1,0,0,1).

Доказательство замкнутости класса самодвойственных функций.

Пусть $G(Y_1,...,Y_n)$ и $F_i(X_1,...,X_n)$ — самодвойственные функции.

Произведем суперпозицию функций G и F_i :

$$G[F_1(X_1,...X_n),...F_n(X_1,...,X_n)]$$

и определим двойственную функцию к ней:

$$G[F_{1}(\overline{X}_{1},...\overline{X}_{n}),...F_{n}(\overline{X}_{1},...,\overline{X}_{n})] = G[\overline{F_{1}(X_{1},...X_{n})},...\overline{F_{n}(X_{1},...,X_{n})}] =$$

$$= G[F_{1}(X_{1},...X_{n}),...F_{n}(X_{1},...,X_{n})]$$

 $\Rightarrow C_{\rm C}$ – замкнутый класс.

4. Монотонность

Критерий сравнения двух наборов аргументов:

• Если значение каждого аргумента одного набора больше или равно значению того же аргумента второго набора, то говорят, что первый набор не меньше второго.

При этом предполагается, что $0 \ge 0$; $1 \ge 0$; $1 \ge 1$.

 Логическая функция называется *монотонной*, если при любом возрастании набора значение этой функции не убывает.

(рассматриваются только сравнимые наборы)

Функция $f(x_1, ..., x_n)$ монотонна, если для любых двоичных наборов δ и τ длины n, при условии $\delta \leq \tau$, выполняется условие $f(\delta) \leq f(\tau)$.

См - класс всех монотонных функций

Например, монотонные функции: X&Y, X∨Y немонотонные функции: $X\leftrightarrow Y, X\to Y, X\oplus Y$

Доказательство замкнутости С_м:

- Пусть $G(Y_1,...,Y_n)$ и $F_i(X_1,...,X_n)$ монотонные.
- Произведем суперпозицию функций G и F :

$$G[F_1(X_1,...,X_n),...,F_k(X_1,...,X_n)] = H(X_1,...,X_n)$$

- Найдем значения функций F_i и G на некотором наборе $X_1,...,$ X_n , а затем увеличим этот набор.
- Так как функции F_i монотонные, то их значения либо увеличатся, либо останутся без изменения.
- Так как функция G монотонная, то ее значение либо увеличится, либо останется без изменения.
- ⇒значение функции Н при увеличении набора либо увеличится, либо останется без изменения,
- т.е. функция Н тоже является монотонной.

5. Линейность

Логическая функция называется *линейной*, если она может быть представлена полиномом первой степени, т.е. записана в виде $F(X_1, X_2, ..., X_n) = A_0 \oplus A_1 X_1 \oplus A_2 X_2 \oplus ... \oplus A_n X_n,$

где $A_0, A_1, ..., A_n$ — коэффициенты, равные нулю или единице.

 C_L – класс всех линейных функций.

Например, линейные функции:

$$X \oplus Y$$
, $X \leftrightarrow Y = 1 \oplus X \oplus Y$.

Доказательство замкнутости Сл:

Пусть функции $G(Y_1,...,Y_k)$ и $F_i(X_1,...,X_n)$ – линейные. Представим их в виде линейных полиномов:

$$G = A_0 \oplus A_1 Y_1 \oplus A_2 Y_2 \oplus \dots \oplus A_k Y_{k,}$$
$$F_i = B_{0i} \oplus B_{1i} X_1 \oplus B_{2i} X_2 \oplus \dots \oplus B_{ni} X_{n.}$$

Подставив функции F_i вместо аргументов Y_i в функцию G получим выражение, в котором постоянные коэффициенты A_i умножаются на линейные функции.

При этом получатся снова линейные функции.

- Приведя подобные члены, получим функцию $H(X_1,...,X_n)$ в виде линейного полинома.
- ⇒, что по свойству линейности функции образуют замкнутый класс.