

GigaMOS™ TrenchT2 HiperFET™ Power MOSFET

IXFK220N17T2 IXFX220N17T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25$ °C to 175°C	170	V	
V _{DGR}	$T_J = 25$ °C to 175°C, $R_{GS} = 1M\Omega$	170		
V _{GSS}	Continuous	± 20	V	
V _{GSM}	Transient	± 30		
I _{D25} I _{L(RMS)}	$T_{\rm c}=25^{\circ}{\rm C}$ (Chip Capability)	220	A	
	External Lead Current Limit	160	A	
	$T_{\rm c}=25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	550	A	
I _A	$T_{c} = 25^{\circ}C$	110	A	
E _{AS}	$T_{c} = 25^{\circ}C$	2	J	
P _D	T _C = 25°C	1250	W	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 175^{\circ}C$	20	V/ns	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C	
T _L	1.6mm (0.062 in.) from Case for 10s	300	°C	
T _{SOLD}	Plastic Body for 10s	260		
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in.	
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb.	
Weight	TO-264	10	g	
	PLUS247	6	g	

Symbol (T _J = 25°C U	Test Conditions nless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	170			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		5.0	V
l _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_{J} = 150^{\circ}C$			3	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 60A, Note 1$		5.1	6.3	mΩ

 $V_{DSS} = 170V$ $I_{D25} = 220A$ $R_{DS(on)} \le 6.3m\Omega$ $t_{rr} \le 140ns$

TO-264 (IXFK)

PLUS247 (IXFX)

G = Gate D = DrainS = Source Tab = Drain

Features

- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol Test Conditions Cl		Cha	racteristic Values			
$(T_{J} = 25)$	5°C Uı	nless Otherwise Specified)	Min.	Тур.	Max.	
\mathbf{g}_{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	105	175		S
C _{iss})			31		nF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2130		pF
C _{rss}	J			290		pF
R_{g_i}		Gate Input Resistance		1.40		Ω
$\mathbf{t}_{d(on)}$)	Resistive Switching Times		44		ns
t _r		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		160		ns
$\mathbf{t}_{d(off)}$		$R_{GS} = 10^{\circ}$, $R_{DS} = 0.00^{\circ}$ R_{DSS} , $R_{DSS} = 0.00^{\circ}$ R_{DSS}		40		ns
t _f	J			150		ns
$\mathbf{Q}_{g(on)}$)			500		nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		130		nC
\mathbf{Q}_{gd}	J			137		nC
R _{thJC}					0.12	°C/W
R _{thCS}				0.15		°C/W

Source-Drain Diode

Symbol Test Conditions			Cha	aracteristic Values			
$(T_{J} = 2)$	25°C, L	Inless Otherwise Specified)	Min.	Тур.	Max.		
Is		$V_{GS} = 0V$			220	Α	
I _{SM}		Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			880	Α	
V _{SD}		$I_F = 100A, V_{GS} = 0V, Note 1$			1.3	V	
t _{rr})	I ₌ = 110A, -di/dt = 100A/μs			140	ns	
$\mathbf{Q}_{_{\mathrm{RM}}}$	}	1		0.5		μС	
I _{RM}	J	$V_R = 85V, V_{GS} = 0V$		8.6		Α	

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-264 (IXFK) Outline R1 Back side 1 - Gate 2 - Drain 3 - Source

Dim.	Milli	meter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
С	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
Е	19.81	19.96	.780	.786
е	5.46 BSC		.215 BSC	
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
Р	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
Т	1.57	1.83	.062	.072

PLUS 247™ (IXFX) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source

Dim.	Milli	meter	Inches		
	Min.	Max.	Min.	Max.	
Α	4.83	5.21	.190	.205	
A ₁	2.29	2.54	.090	.100	
A ₂	1.91	2.16	.075	.085	
b	1.14	1.40	.045	.055	
b₁	1.91	2.13	.075	.084	
b ₂	2.92	3.12	.115	.123	
С	0.61	0.80	.024	.031	
D	20.80	21.34	.819	.840	
Е	15.75	16.13	.620	.635	
е	5.45	BSC	.215 BSC		
L	19.81	20.32	.780	.800	
L1	3.81	4.32	.150	.170	
Q	5.59	6.20	.220	0.244	
R	4.32	4.83	.170	.190	

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ $T_J = 150^{\circ}C$

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 110A Value vs. Junction Temperature

Fig. 5. Normalized $R_{DS(on)}I_D = 110A$ Value vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

t - Nanoseconds 300 200

V_{DS} = 85V

T_J = 125°C

T_J - Degrees Centigrade

vs. Junction Temperature $R_G = 1\Omega$, $V_{GS} = 10V$ V_{DS} = 85VI _D = 200A tr - Nanoseconds I_D = 100A

Fig. 13. Resistive Turn-on Rise Time

vs. Drain Current $R_G = 1\Omega$, $V_{GS} = 10V$ V_{DS} = 85VT_J = 25°C tr- Nanoseconds T_J = 125°C I_D - Amperes

Fig. 14. Resistive Turn-on Rise Time

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance t_{d(on)} - $T_J = 125^{\circ}C, V_{GS} = 10V$ I_D = 200A ر d_(on) - Nanoseconds tr - Nanoseconds I_D = 100A

Fig. 18. Resistive Turn-off Switching Times

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

