APPENDIX C

SUMMARY OF COMMON PROBABILITY DISTRIBUTIONS

DISCRETE DISTRIBUTIONS	
Distribution	PMF, Expectation, Variance
Uniform $(1, \ldots, n)$	$P(X = k) = \frac{1}{n}, k = 1,, n$ $E(X) = \frac{n+1}{2} Var(X) = \frac{n^2 - 1}{12}$
Binomial	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, k = 0, 1, \dots, n$ E(X) = np Var(X) = np(1 - p)
Poisson	$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0, 1, 2, \dots$ $E(X) = \lambda Var(X) = \lambda$
Geometric	$P(X = k) = (1 - p)^{k-1}p, k = 1, 2, \dots$ $E(X) = \frac{1}{p} Var(X) = \frac{1 - p}{p^2}$ $P(X > t) = (1 - p)^t$
Negative binomial	$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r},$ $k = r, r+1, \dots, r = 1, 2, \dots$ $E(X) = \frac{r}{p} Var(X) = \frac{r(1-p)}{p^2}$
Hypergeometric	$P(X = k) = \frac{\binom{D}{k} \binom{N-D}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, n$ $E(X) = \frac{nD}{N} Var(X) = \frac{nD(N-D)}{N^2} \left(1 - \frac{n-1}{N-1}\right)$

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow. © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

CONTINUOUS DISTRIBUTIONS	
Distribution	Density, CDF, Expectation, Variance
Uniform (a, b)	$f(x) = \frac{1}{b-a}, a < x < b$ $F(x) = \frac{x-a}{b-a}, a < x < b$ $E(X) = \frac{a+b}{2} Var(X) = \frac{(b-a)^2}{12}$
Exponential	$f(x) = \lambda e^{-\lambda x}, x > 0$ $F(x) = 1 - e^{-\lambda x}, x > 0$ $E(X) = \frac{1}{\lambda} Var(X) = \frac{1}{\lambda^2}$
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right), -\infty < x < \infty$ $E(X) = \mu Var(X) = \sigma^2$
Gamma	$f(x) = \lambda e^{-\lambda x} \frac{(\lambda x)^{r-1}}{\Gamma(r)}, x > 0,$ where $\Gamma(r) = \int_0^\infty t^{r-1} e^{-t} dt$ $E(X) = \frac{r}{\lambda} Var(X) = \frac{r}{\lambda^2}$
Beta	$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, 0 < x < 1,$ where $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$ $E(X) = \frac{\alpha}{\alpha + \beta} Var(X) = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$