Análisis y Visualización de Datos

Diplomatura CDAAyA 2024

Prueba o Test de Hipótesis

En muchos problemas se requiere tomar una decisión, verificar alguna afirmación sobre un parámetro o una población

Esta proposición o afirmación recibe el nombre de **hipótesis estadística**, y el procedimiento de toma de decisión sobre la hipótesis se conoce como **prueba o test de hipótesis**.

Es un **procedimiento** para **juzgar** si una propiedad es **compatible** con lo observado en una muestra aleatoria de la misma población

Se quiere testear H₀ vs H₁

H_o: Hipótesis nula (se le da el beneficio de la duda)

H₁: Hipótesis alternativa

A partir de la muestra <u>se construye o elige un estadístico (función de la m.a.)</u> para afirmar o rechazar H_0 . Se supone que la evidencia empírica (la muestra) me dará las suficientes razones (contundentes) para **rechazar (o no)** H_0

Se quiere testear H₀ vs H₁

H_o: Hipótesis nula (se le da el beneficio de la duda)

H₁: Hipótesis alternativa

Cuándo rechazar H_n?

necesitamos establecer una regla para tomar la decisión

H _o	Rechazo H ₀	No rechazo H ₀	
cond V	Error tipo I	Decisión correcta	
cond F	Decisión correcta	Error tipo II	

Se busca una regla que controle principalmente (o primero) el Error tipo I. Cómo?

H _o	Rechazo H ₀	No rechazo H ₀	
cond V	P(Error tipo I)=α	P(Decisión correcta)=1-α	
cond F	P(Decisión correcta)=1-β	P(Error tipo II)= <mark>/</mark>	

P(Error tipo I)=P(rechazar H_0 | H_0 verdadera)= α nivel de significancia

Potencia=1-P(Error tipo II)=1- β = 1-P(No rechazar H₀ | H₀ Falsa)

Rechazar o no rechazar, esa es la cuestión...

A partir de la muestra se construye o elige un <u>estadístico</u> (función de la <u>muestra</u>) para afirmar o rechazar H_0 . Se supone que la evidencia empírica (la muestra) me dará las suficientes razones para **rechazar o no H_0**.

Para ciertos valores del **estadístico** la decisión será rechazar H_0 . Estos valores se conocen como los valores críticos y determinan una región crítica o de rechazo y una zona de aceptación.

Atenti!! Receta!!

- Formular la H₀ a contrastar
- 2. Establecer el nivel de significancia del test α
- 3. Cálculo/elección del estadístico de contraste
- 4. Regla de decisión
- 5. ¿Qué me dijeron los datos?
- 6. Conclusión

Test de Hipótesis: Formulación de las hipótesis

En la situación que tengo una m.a. de una distribución Normal, con media.µ.

Ejemplos de planteamientos:

```
H_0: \mu = 170 \text{ vs. } H_1: \mu < 170 \text{ (hipótesis alternativa unilateral)} ó H_0: \mu = 170 \text{ vs. } H_1: \mu > 170 \text{ (hipótesis alternativa unilateral)} ó H_0: \mu = 170 \text{ vs. } H_1: \mu \neq 170 \text{ (hipótesis alternativa bilateral)}
```

Test de Hipótesis: Ejemplo

En la situación que tengo una m.a. de una distribución Normal, con media.µ.

 $H_0: \mu = 43 = \mu_0 \text{ vs. } H_1: \mu \neq 43 \text{ (bilateral)}$

Se fija el nivel de significancia lpha

Se elige el estadístico \overline{X}

Bajo
$$H_0$$
: $\frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$

$$P\left(\left|\frac{X-\mu_0}{s/\sqrt{n}}\right| \ge t_{\alpha/2} \middle| H_0\right) = \alpha$$
Rechazo

Test de Hipótesis: p-valor

Se calcula para la realización de NUESTRA muestra, nuestros datos

Es el nivel de significancia más pequeño que conduce al rechazo de la hipótesis nula H_0 : $\mu = \mu_0$ En el primer ejemplo:

$$P\left(\left[\begin{array}{c} \overline{X} - \mu_0 \\ \hline s/\sqrt{n} \end{array}\right] \geq \left[\begin{array}{c} \overline{x} - \mu_0 \\ \hline s/\sqrt{n} \end{array}\right] H_0\right) = p - valor$$
 estadístico T_{n-1} realización

Test de Hipótesis: p-valor

Se usan nuestros datos, NUESTRA muestra. El resultado experimental es la realización del estadístico para nuestros datos (del experimento o estudio).

Hay test para hacer dulce! depende de lo que se plantee como H₀:

- Independencia de variables.
- Independencias de variable categóricas: Test Chi-Cuadrado
- Que los datos provienen de una distribución normal: Test K-S
- Homocedasticidad (varianzas iguales).
- Igualdad de medias (de dos o más distribuciones/ tratamientos)
- A las de verificación de supuestos en general se las conoce como Pruebas de Bondad de ajuste.
- etc.

Test Chi-Cuadrado para independencia de v.a. categóricas:

Prueba si la distribución de datos categóricos de muestra coincide con una distribución esperada (de datos independientes). Nos sirve para probar si "el género" es independiente del "signo" de las personas (en determinada población).

Al trabajar con datos categóricos, los valores de las observaciones en sí mismas no son de mucha utilidad para las pruebas estadísticas porque las categorías como "masculino", "femenino" y "otro" no tienen ningún significado matemático. Las pruebas que tratan con variables categóricas se basan en **conteos** de variables en lugar del valor real de las variables mismas.

Supongamos que tenemos los datos de 4 tratamientos médicos y con una descripción de cómo lo han recibido los pacientes. Los plasmamos en una **tabla de contingencia**

Trat_i \Res_ j	Peor	igual	mejor	
Tratamiento1	7	28	115	
Tratamiento2	15	20	85	
Tratamiento3	10	30	90	
Tratamiento4	5	40	115	
				560

En primer lugar vamos a plantear nuestras hipótesis

H₀="las dos variables en estudio son independientes"

H₁="las dos variables en estudio están relacionadas"

Como en los juicios, en estadística, se cumple $\mathbf{H_0}$ (las variables son independientes) hasta que demostremos lo contrario.

Entonces como datos disponibles tenemos las frecuencias observadas, las frecuencias marginales y el número 'gran total' de la muestra

i x j = 4*3	Peor	igual	mejor	
Tratamiento1	7	28	115	150
Tratamiento2	15	20	85	120
Tratamiento3	10	30	90	130
Tratamiento4	5	40	115	160
	37	118	405	560

¿cómo se contrasta la H₀?

fe_{ij}= (total fila i-ésima)*(total columna j-ésima) gran total Se calculan las frecuencias que cabría esperar si las 2 variables fueran independientes

Estadístico
$$\chi^2 = \Sigma \left| \frac{(f_0 - f_e)^2}{f_e} \right|$$
 con dist. Chi cuadrado bajo H_0 .

depende de la suma de las diferencias al cuadrado de la frecuencias observadas y las esperadas

Test para igualdad de medias $\mu_1 = \mu_2$

$$H_0: \mu_1 = \mu_2$$
 o bien $H_0: \mu_1 - \mu_2 = 0$

Muestras <u>apareadas</u>

 $X_1, X_2, ..., X_n$ una m.a. de una v.a. $X \sim N(\mu_1, \sigma_1^2)$ $Y_1, X_2, ..., Y_n$ una m.a. de una v.a. $Y \sim N(\mu_2, \sigma_2^2)$

 $(X_1,Y_1), (X_2,Y_2) ..., (X_n,Y_n)$ una m.a. de una $N((\mu_1,\mu_1),\sigma_1^2,\sigma_2^2,\rho)$

Z_i=X_i-Y_i (ej. BRUTO y NETO, datos apareados, la misma cantidad)

 $Z_1, Z_2, ..., Z_n$ una m.a. de una v.a. $N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2 - 2\rho * (\sigma_1 \sigma_2)) = N(0, \sigma^2)$ bajo H_0

Test para igualdad de medias µ₁=µ₂

 H_0 : $\mu_1 = \mu_2$ o bien H_0 : $\mu_1 - \mu_2 = 0$ (dif de medias 0)

$$X_1, X_2, ..., X_{n1}$$
 una m.a. de una v.a. $X \sim N(\mu_1, \sigma^2)$, una población por ej. $Y_1, Y_2, ..., X_{n2}$ una \overline{Y}^n).a. de una v.a. $Y \sim N(\mu_1, \sigma^2)$, otro tamaño de muestra (igual var) $T = \frac{(\overline{X}^n 2 - \overline{Y}^n) \cdot (\mu_1 - \overline{Y}^n)^2}{S\sqrt{(n_1 + n_2)/n_1 n_2}} \sim t_{n_1 + n_2 - 2}$
$$S^2 = \frac{\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2}{n_1 + n_2 - 2}$$

Varianzas distintas: <u>Test de Welch</u> (usa t de student con k... grados de libertad)

Volviendo a las recetas... Hay test para hacer dulce!

Hay que plantear bien los supuestos y la hipótesis nula, se elige el estadístico.

Luego se fija el nivel de significancia lpha para controlar el Error tipo I, define la RR

Si hay dos o más test con el mismo nivel de significancia se elige el más potente: $(1-\beta)$ alto (menos prob de error tipo II)

Test de Hipótesis: $P(Error tipo II) = \beta$

Dócima Lateral Derecha

$$H_0: \theta \leq \theta_0$$

 $H_1: \theta > \theta_0$

$$1 - \alpha = Pr\{\widehat{\theta} \le \widehat{\theta}_1^* / H_0 \ cierta\}$$

 $\alpha = Pr\{\widehat{\theta} > \widehat{\theta}_1^* / H_0 \ cierta\}$

$$eta = Prigl\{\widehat{m{ heta}} \leq \widehat{m{ heta}}_{m{1}}^* / H_0 \ falsaigr\}$$
 $m{1} - m{eta} = Prigl\{\widehat{m{ heta}} > \widehat{m{ heta}}_{m{1}}^* / H_0 \ falsaigr\}$

Contraste, Dócima o Verificación de Hipótesis. Dócima para μ

Poblaciones Normales		Poblaciones No Normales		
	σ^2 conocida		σ^2 conocida	
n Cualquiera	Distribución Normal $\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$	$n \geq 30$	Distribución Normal (Por TCL) $\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$	
		n < 30		
σ^2 desconocida		σ^2 desconocida		
n < 30	"t" de Student $\overline{x} \pm t_{n-1} \; rac{\widehat{s}}{\sqrt{n}}$	n < 30		
$n \geq 30$	Distribución Normal (Por TCL) $\overline{x} \pm z \frac{\hat{s}}{\sqrt{n}}$	$n \geq 30$	Distribución Normal (Por TCL) $\overline{x} \pm z \frac{\hat{s}}{\sqrt{n}}$	

A no mentirse...

Las hipótesis deben ser previas a los resultados del estudio

Schwartz-Woloshin / Ventura