COMP 3711H Design and Analysis of Algorithms 2015 Fall Semester

Homework 1 Handed out: Sep 16

Due: Sep 30

Assignments should be submitted to the collection box located outside room 4210A in the lab area.

Problem 1. Consider the following recurrence relation for the running time T(n) of a divide and conquer algorithm:

$$T(1) = 1$$

 $T(n) = 6 T(n/2) + n^2$ if $n > 1$.

Assume that n is a power of 2. Answer the following questions regarding the recursion tree for this recurrence.

- (a) Recall that there is a subproblem associated with each node of the recursion tree. How many subproblems are there at level i of the recursion tree? (Recall that the root is assumed to be at level 0.)
- (b) What is the size of each subproblem at level i of the recursion tree?
- (c) How much work is needed for the *combine* part for each subproblem at level *i* (note: you must ignore the work done during the recursive calls)?
- (d) What is the work done summed over all the subproblems at level i (again, you must ignore the work done during the recursive calls)?
- (e) How many levels are there in the recursion tree?
- (f) Give a good asymptotic upper bound on the total work done summed over all the subproblems in the recursion tree. (In other words, you need to give a good upper bound on T(n). You should try to express your answer in the form of n raised to a suitable power.)

Problem 2. Do parts (a)-(f) of Problem 1, for the following recurrence relation:

$$T(1) = 1$$

 $T(n) = 3 T(n/2) + n^2$ if $n > 1$.

Assume that n is a power of 2.

Problem 3. Consider again the recurrence relations given in Problems 1 and 2. In each case, establish an asymptotic upper bound for T(n), using the *method of mathematical induction*. Make your bounds as tight as possible. You may assume that n is a power of 2.

- **Problem 4.** Assume you have non-negative functions f and g such that f(n) is O(g(n)). For each of the following statements, decide whether you think it is true or false and give a proof or counterexample.
 - (a) $2^{f(n)}$ is $O(2^{g(n)})$.
 - (b) $(f(n))^3$ is $O((g(n))^3)$.
- **Problem 5.** Give asymptotic upper bounds for T(n). Make your bounds as tight as possible. In each case, you may assume that T(1) = 1 and n is a power of 2. Just give the answers; no explanation is needed.
 - (a) T(n) = 4 T(n/2) + n, if n > 1.
 - (b) $T(n) = 7 T(n/2) + n^2$, if n > 1.
 - (c) $T(n) = T(n-1) + n^2$, if n > 1.
 - (d) T(n) = T(n/2) + 10, if n > 1.
 - (e) T(n) = 3 T(n-1) + 1, if n > 1.
- **Problem 6.** Arrange the following running times in order of increasing asymptotic complexity:

 $n^{4.5}$, $\sqrt{2n}$, $n^2 + 10$, $\log^2 n$, 11^n , 5^n , $n^2 \log n$

Note that you must write function f(n) before function g(n) if f(n) = O(g(n)). Just give the answer; no explanation is needed.

Problem 7. Arrange the following running times in order of increasing asymptotic complexity:

 2^{n^2} , 3^n , $n^{4/3}$, $n \log n$, $n^{\log n}$, 2^{2^n} , $2^{\sqrt{\log n}}$

Note that you must write function f(n) before function g(n) if f(n) = O(g(n)). Just give the answer; no explanation is needed. **Problem 8.** You are doing some stress-testing on various models of glass jars to determine the height from which they can be dropped and still not break. The setup for this experiment, on a particular type of jar, is as follows. You have a ladder with n rungs, and you want to find the highest rung from which you can drop a copy of the jar and not have it break. We call this the *highest safe rung*.

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then recursively try from rung n/4 or 3n/4 depending on the outcome. But this has the drawback that you could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the following strategy. Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each time until the jar breaks. In this way, you only need a single jar—at the moment it breaks, you have the correct answer—but you may have to drop it n times (rather than $\log n$ as in the binary search solution).

So here is the tradeoff: it seems you can perform fewer drops if you are willing to break more jars. In this problem, we will try to understand how this tradeoff works at a quantitative level.

- (a) Suppose you are given a budget of 2 jars. Describe a strategy for finding the highest safe rung that requires you to drop a jar at most f(n) times. Your goal is to minimize f(n), while breaking at most 2 jars. Give your upper bound on f(n) using asymptotic notation.
- (b) Same problem as in part (a), but this time you are given a budget of 3 jars.