Linear Algebra

[KOMS120301] - 2023/2024

15.3 - Penerapan hasil kali dalam

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 15 (Desember 2023)

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

- menjelaskan konsep "Masalah Kuadrat Terkecil";
- menghitung solusi kuadrat terkecil, vektor kesalahan, dan kesalahan kuadrat terkecil;
- jelaskan bagaimana kuadrat terkecil diterapkan untuk menyesuaikan kurva polinomial dengan data;
- jelaskan bagaimana kuadrat terkecil diterapkan untuk mendekati suatu fungsi.

Bagian 1: Kuadrat Terkecil

Apa yang dimaksud "kuadrat terkecil"? (1)

Mari kita berikan sistem linier $A\mathbf{x} = \mathbf{b}$ dari persamaan m dan variabel n, yaitu tidak konsisten karena kesalahan dalam entri A atau \mathbf{b} .

Solusi yang mungkin \to carilah vektor $\hat{\mathbf{x}}$ yang "mendekati mungkin" untuk menjadi solusi.

Apa yang dimaksud "kuadrat terkecil"? (1)

Mari kita berikan sistem linier $A\mathbf{x} = \mathbf{b}$ dari persamaan m dan variabel n, yaitu tidak konsisten karena kesalahan dalam entri A atau \mathbf{b} .

Solusi yang mungkin o carilah vektor $\hat{\mathbf{x}}$ yang "mendekati mungkin" untuk menjadi solusi.

Permasalahan (Least Squares Problem)

Diberikan sistem linier $A\mathbf{x} = \mathbf{b}$ dari persamaan m dalam variabel n, carilah vektor \mathbf{x} dalam \mathbb{R}^n yang meminimalkan $\|\mathbf{b} - A\mathbf{x}\|$ wrt hasil kali dalam Euclidean pada \mathbb{R}^m .

Pertanyaan: Bisakah Anda menjelaskan mengapa kami meminimalkan $\|\mathbf{b} - A\mathbf{x}\|$?

Apa yang dimaksud "kuadrat terkecil"? (1)

Mari kita berikan sistem linier $A\mathbf{x} = \mathbf{b}$ dari persamaan m dan variabel n, yaitu tidak konsisten karena kesalahan dalam entri A atau \mathbf{b} .

Solusi yang mungkin o carilah vektor $\hat{\mathbf{x}}$ yang "mendekati mungkin" untuk menjadi solusi.

Permasalahan (Least Squares Problem)

Diberikan sistem linier $A\mathbf{x} = \mathbf{b}$ dari persamaan m dalam variabel n, carilah vektor \mathbf{x} dalam \mathbb{R}^n yang meminimalkan $\|\mathbf{b} - A\mathbf{x}\|$ wrt hasil kali dalam Euclidean pada \mathbb{R}^m .

Pertanyaan: Bisakah Anda menjelaskan mengapa kami meminimalkan $\|\mathbf{b} - A\mathbf{x}\|$?

Terminologi: \mathbf{x} disebut solusi kuadrat terkecil, $\mathbf{b} - A\mathbf{x}$ disebut vektor kesalahan kuadrat terkecil, dan $\|\mathbf{b} - A\mathbf{x}\|$ disebut kesalahan kuadrat terkecil.

Apa yang dimaksud "kuadrat terkecil"? (2)

Pertanyaan: Bisakah Anda menjelaskan mengapa kami meminimalkan $\|\mathbf{b} - A\mathbf{x}\|$?

Mencari solusi kuadrat terkecil $\mathbf{b} - A\mathbf{x}$ sama dengan **mencari vektor** $A\hat{\mathbf{x}}$ pada ruang kolom A yaitu textbfpaling dekat dengan \mathbf{b} .

Apa yang dimaksud "kuadrat terkecil"? (2)

Pertanyaan: Bisakah Anda menjelaskan mengapa kami meminimalkan $\|\mathbf{b} - A\mathbf{x}\|$?

Mencari solusi kuadrat terkecil $\mathbf{b} - A\mathbf{x}$ sama dengan **mencari vektor** $A\hat{\mathbf{x}}$ pada ruang kolom A yaitu textbfpaling dekat dengan \mathbf{b} .

Pertanyaan: Why is it named "least square"?

Apa yang dimaksud "kuadrat terkecil"? (2)

Pertanyaan: Bisakah Anda menjelaskan mengapa kami meminimalkan $\|\mathbf{b} - A\mathbf{x}\|$?

Mencari solusi kuadrat terkecil $\mathbf{b} - A\mathbf{x}$ sama dengan **mencari vektor** $A\hat{\mathbf{x}}$ pada ruang kolom A yaitu textbfpaling dekat dengan \mathbf{b} .

Pertanyaan: Why is it named "least square"?

Misal
$$\mathbf{b} - A\mathbf{x} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$$
. Maka: $\|\mathbf{b} - A\mathbf{x}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$

Bagaimana kita membuat kesalahan $\mathbf{e} = \mathbf{b} - A\mathbf{x}$ menjadi sekecil mungkin?

Teorema (Best Approximation: the vector closest to **b**)

Jika W adalah subruang berdimensi hingga dari ruang hasil kali dalam V, dan jika \mathbf{b} adalah vektor di V. Kemudian:

$$\|\mathbf{b} - proj_W \mathbf{b}\| \le \|\mathbf{b} - \mathbf{w}\|$$

untuk setiap vektor **w** di W, di mana **w** \neq proj $_W$ **b**

Bagaimana kita membuat kesalahan $\mathbf{e} = \mathbf{b} - A\mathbf{x}$ menjadi sekecil mungkin?

Teorema (Best Approximation: the vector closest to **b**)

Jika W adalah subruang berdimensi hingga dari ruang hasil kali dalam V, dan jika \mathbf{b} adalah vektor di V. Kemudian:

$$\|\mathbf{b} - proj_W \mathbf{b}\| \le \|\mathbf{b} - \mathbf{w}\|$$

untuk setiap vektor \mathbf{w} di W, di mana $\mathbf{w} \neq proj_W \mathbf{b}$

 \rightarrow This means that $\operatorname{proj}_W \mathbf{b}$ is the best approximation to \mathbf{b} from W.

 \rightarrow A least square solution is a vector **x** satisfying: A**x** = proj_{col(A)}**b**.

Bagaimana cara mendapatkan penyelesaian masalah kuadrat terkecil?

Teorema (Solusi kuadrat terkecil)

Untuk setiap sistem linier $A\mathbf{x} = \mathbf{b}$, solusi kuadrat terkecil dari sistem diberikan oleh underlinesemua solusi sistem:

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Selain itu, jika $\hat{\mathbf{x}}$ adalah solusi kuadrat terkecil dari $A\mathbf{x} = \mathbf{b}$, maka proyeksi ortogonal \mathbf{b} pada ruang kolom A adalah:

$$proj_{col(A)}\mathbf{b} = A\hat{\mathbf{x}}$$

Bagaimana cara mendapatkan penyelesaian masalah kuadrat terkecil?

Teorema (Solusi kuadrat terkecil)

Untuk setiap sistem linier $A\mathbf{x} = \mathbf{b}$, solusi kuadrat terkecil dari sistem diberikan oleh underlinesemua solusi sistem:

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Selain itu, jika $\hat{\mathbf{x}}$ adalah solusi kuadrat terkecil dari $A\mathbf{x} = \mathbf{b}$, maka proyeksi ortogonal \mathbf{b} pada ruang kolom A adalah:

$$proj_{col(A)}\mathbf{b} = A\hat{\mathbf{x}}$$

Kesimpulan

Ketika $A\mathbf{x} = \mathbf{b}$ tidak memiliki solusi, maka:

1 Kalikan kedua ruas $A\mathbf{x} = \mathbf{b}$ dengan A^T , sehingga diperoleh:

$$A^{\mathsf{T}}A\hat{\mathbf{x}} = A^{\mathsf{T}}\mathbf{b} \tag{1}$$

- ② Selesaikan sistem (1), sehingga kita mendapatkan semua solusi kuadrat terkecil $\hat{\mathbf{x}}$.
- **3** Selesaikan: $\mathbf{b} A\hat{\mathbf{x}}$ untuk mendapatkan *error vector*.
- Hitung $\|\mathbf{b} A\hat{\mathbf{x}}\|$ untuk mendapatkan *error vector*.

Contoh: Solusi kuadrat terkecil yang tunggal

Carilah kuadrat terkecil *solusi*, kuadrat terkecil *vektor kesalahan*, dan kuadrat terkecil *kesalahan* dari sistem linier:

$$\begin{cases} x_1 - x_2 = 4 \\ 3x_1 + 2x_2 = 1 \\ -2x_1 + 4x_2 = 3 \end{cases}$$

Contoh: Solusi kuadrat terkecil yang tunggal

Carilah kuadrat terkecil *solusi*, kuadrat terkecil *vektor kesalahan*, dan kuadrat terkecil *kesalahan* dari sistem linier:

$$\begin{cases} x_1 - x_2 = 4 \\ 3x_1 + 2x_2 = 1 \\ -2x_1 + 4x_2 = 3 \end{cases}$$

Solusi:

Dari sistem linear tersebut dapat kita peroleh:

$$A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$

Contoh solusi

1. Menemukan solusi: Hitung $A^T A$, $A^T \mathbf{b}$, dan selesaikan $A^T A \mathbf{x} = A^T \mathbf{b}$.

$$A^{T}A = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix}$$
$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

Sekarang, selesaikan sistem linier $A^T A \mathbf{x} = A^T \mathbf{b}$.

$$\begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

yang menghasilkan solusi kuadrat terkecil yang unik:

$$x_1 = \frac{17}{95}, \quad x_2 = \frac{143}{285}$$

Contoh solusi (cont.)

2. Vektor kesalahan: Diberikan oleh $\mathbf{b} - A\mathbf{x}$, yaitu,

$$\mathbf{b} - A\mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} \frac{17}{95} \\ \frac{143}{285} \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} -\frac{92}{285} \\ \frac{439}{285} \\ \frac{95}{57} \end{bmatrix} = \begin{bmatrix} \frac{1232}{285} \\ -\frac{154}{285} \\ \frac{4}{3} \end{bmatrix}$$

3. Kesalahan kuadrat terkecil: Diberikan oleh $\|\mathbf{b} - A\mathbf{x}\|$.

$$\|\mathbf{b} - A\mathbf{x}\| \approx 4.556$$

Contoh solusi (cont.)

2. Vektor kesalahan: Diberikan oleh $\mathbf{b} - A\mathbf{x}$, yaitu,

$$\mathbf{b} - A\mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} \frac{17}{95} \\ \frac{143}{285} \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} -\frac{92}{285} \\ \frac{185}{285} \\ \frac{95}{5} \end{bmatrix} = \begin{bmatrix} \frac{1232}{285} \\ -\frac{154}{285} \\ \frac{4}{3} \end{bmatrix}$$

3. Kesalahan kuadrat terkecil: Diberikan oleh $\|\mathbf{b} - A\mathbf{x}\|$.

$$\|\mathbf{b} - A\mathbf{x}\| \approx 4.556$$

Pertanyaan: Bisakah Anda menjelaskan secara singkat interpretasi contoh ini?

Latihan: Berapa banyak solusi kuadrat terkecil?

Carilah kuadrat terkecil *solusi*, kuadrat terkecil *vektor kesalahan*, dan kuadrat terkecil *kesalahan* dari sistem linier:

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 2 \\ x_1 - 4x_2 + 3x_3 = -2 \\ x_1 + 10x_2 - 7x_3 = 1 \end{cases}$$

Berapa banyak solusi kuadrat terkecil yang Anda temukan?

Bagian 2: Penerapan

Penerapan 1: Kurva polinomial

Permasalahan (Menyesuaikan kurva dengan data)

Diberikan nilai eksperimen pasangan (x, y), yaitu:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Bagaimana cara mendapatkan hubungan matematis y = f(x)?

Kuadrat terkecil cocok untuk kurva linier

Misalkan kita ingin membuat garis lurus y = a + bx. Lalu kita selesaikan:

$$y_1 = a + bx_1$$

$$y_2 = a + bx_2$$

$$\vdots$$

$$y_n = a + bx_n$$

yang dapat ditulis dalam bentuk matriks:

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$$

atau sebagai Av = y, dimana:

$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}$$

Latihan: Bagaimana dengan memasang kurva polinomial?

Misalkan kita ingin memasukkan fungsi polinomial:

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

to *n* points:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Hint:

- Tentukan sistem persamaan n berdasarkan data di atas.
- Tentukan setiap komponen A, v, dan y.
- 3 Selesaikan kuadrat terkecil.

Penerapan 2: Aproksimasi fungsi

Permasalahan (Permasalahan aproksimasi)

Diberikan fungsi f yang kontinu pada interval [a,b], carilah "pendekatan terbaik" terhadap f hanya dengan menggunakan fungsi dari subruang W tertentu dari $C[a,b]^a$.

Example

Temukan perkiraan terbaik untuk:

- e^x lebih dari [0,1] dengan polinomial berbentuk $a_0 + a_1x + a_2x^2$
- **2** $\sin \pi x$ atas [-1,1] dengan fungsi dari bentuk:

$$a_0 + a_1 e^x + a_2 e^{2x} + a_3 e^{3x}$$

3 x di atas $[0, 2\pi]$ dengan fungsi berbentuk:

$$a_0 + a_1 \sin x + a_2 \sin 2x + b_1 \cos x + b_2 \cos 2x$$

^aruang fungsi kontinu pada [a, b]

Arti matematis dari "perkiraan terbaik terhadap [a, b]"

▲ Figure 6.6.1 The deviation between f and g at x_0 .

▲ Figure 6.6.2 The area between the graphs of \mathbf{f} and \mathbf{g} over [a, b] measures the error in approximating f by g over [a, b].

Penjelasan intuitif

