

The Web Ontology Language (OWL)

Ernesto Jiménez-Ruiz

Lecturer in Artificial Intelligence

Before we start...

Pizza party: Stage 3 and PG students

When: On Wednesday 21st Feb 13:00-14:30.

Where: Lovelace space (College building).

Drop-in hours

- Term 2
 - Tuesday 2-3pm (online)
 - Thursdays 2-3pm (on-campus). Only up to 3pm today.
- Additional (online) drop-ins can be arranged via email.

Where are we? Module organization.

- ✓ Introduction: Becoming a knowledge scientist.
- RDF-based knowledge graphs.
- 3. **OWL ontology language. Focus on modelling.** (Today)
- 4. SPARQL 1.0 Query Language.
- 5. From tabular data to KG.
- 6. RDFS Semantics and OWL 2 profiles.
- 7. Ontology Alignment.
- 8. Ontology (KG) Embeddings and Machine Learning.
- 9. SPARQL 1.1 and Graph Database solutions.
- 10. (Large) Language Models and KGs. (Seminar)

RDF in a nutshell

RDF-based (Knowledge) Graphs

- Resource Description Framework (RDF)
- A standardised data model based on the directed edge-labelled graph model.
 - Nodes: Internationalised Resource Identifiers (IRIs), literals, and blank nodes (nodes without identifier).
 - Edges: IRIs
- W3C recommendation.
- Conceptual modelling of resources.
- In this module we will study RDF-based (Knowledge) Graphs

RDF triples (i)

- RDF-based KGs are composed by triples (aka statements or facts)
- A triple consists of subject, predicate, and object
 - IRI/URI references may occur in all positions
 - Literals may only occur in object position
 - Blank nodes can not occur in predicate position

RDF triples (i)

- RDF-based KGs are composed by triples (aka statements or facts)
- A triple consists of subject, predicate, and object
 - IRI/URI references may occur in all positions
 - Literals may only occur in object position
 - Blank nodes can not occur in predicate position
- Relationships (i.e., edges) are made explicit and are first-class citizens:
 - The predicate is an element in the triple with an IRI.
 - There are also triples describing predicates.

RDF Vocabularies

- Families of related notions are grouped into vocabularies.
- Some important, well-known namespaces—and prefixes:

Modelling vocabulary:

```
rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a> - RDF
rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#</a> - RDF Schema
owl: <a href="http://www.w3.org/2002/07/owl#">http://www.w3.org/2002/07/owl#</a> - OWL
```

Support vocabularies:

```
dcterms: <a href="http://purl.org/dc/terms/">http://purl.org/dc/terms/</a> - Dublin Core
bfo: <a href="http://purl.obolibrary.org/obo/bfo.owl#">http://purl.obolibrary.org/obo/bfo.owl#</a> - Basic Formal Ontology
```

dbo: <http://dbpedia.org/ontology/> - DBPedia Ontology
dbr: <http://dbpedia.org/resource/> - DBPedia Resource

RDF Vocabularies

- Families of related notions are grouped into vocabularies.
- Some important, well-known namespaces—and prefixes:

Modelling vocabulary:

```
rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a> - RDF
rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#</a> - RDF Schema
owl: <a href="http://www.w3.org/2002/07/owl#">http://www.w3.org/2002/07/owl#</a> - OWL
```

Support vocabularies:

```
dcterms: <http://purl.org/dc/terms/> - Dublin Core
```

bfo: <http://purl.obolibrary.org/obo/bfo.owl#> - Basic Formal Ontology

```
dbo: <http://dbpedia.org/ontology/> - DBPedia Ontology
dbr: <http://dbpedia.org/resource/> - DBPedia Resource
```

Note that the prefix is not standardised.

Example vocabularies: RDF, RDFS

RDF: describing RDF graphs.

- rdf:Statement
- rdf:subject,
 rdf:predicate,
 rdf:object
- rdf:type

RDFS: describing RDF vocabularies.

- rdfs:Class
- rdfs:subClassOf, rdfs:subPropertyOf
- rdfs:domain, rdfs:range
- rdfs:label

Examples:

```
dbr:London rdf:type dbo:City.
dbr:London rdfs:label "London"@en.
dbo:City rdfs:subClassOf dbo:Place.
```

Example vocabularies: OWL

OWL: describing ontologies

- owl:equivalentClass
- owl:disjointWith

- owl:inverseOf

- owl:sameAs

Examples:

```
dbr:London owl:sameAs ex:London.
dbo:locationOf owl:inverseOf dbo:isLocatedIn.
dbo:City owl:disjointWith dbo:Person.
dbo:City owl:equivalentClass ex:City.
```

London is a city in England called Londres in Spanish

```
dbr:london rdf:type dbo:City .
dbr:london dbo:locationCountry dbr:england .
```

dbr:london rdfs:label "Londres"@es .

London is a city in England called Londres in Spanish

```
dbr:london rdf:type dbo:City .
dbr:london dbo:locationCountry dbr:england .
dbr:london rdfs:label "Londres"@es .
```

dbr:london

London is a city in England called Londres in Spanish

```
dbr:london rdf:type dbo:City .
dbr:london dbo:locationCountry dbr:england .
dbr:london rdfs:label "Londres"@es .
```


London is a city in England called Londres in Spanish

```
dbr:london rdf:type dbo:City .
dbr:london dbo:locationCountry dbr:england .
dbr:london rdfs:label "Londres"@es .
```


London is a city in England called Londres in Spanish

```
dbr:london rdf:type dbo:City .
dbr:london dbo:locationCountry dbr:england .
dbr:london rdfs:label "Londres"@es .
```


The Web Ontology Language (OWL)

Semantic Web Technology Stack

OWL

- Acronym for The Web Ontology Language.
- A W3C recommendation:
 - OWL 1 (2004): http://www.w3.org/TR/owl-ref/
 - OWL 2 (2009): https://www.w3.org/TR/owl2-overview/

OWL

- Acronym for *The Web Ontology Language*.
- A W3C recommendation:
 - OWL 1 (2004): http://www.w3.org/TR/owl-ref/
 - OWL 2 (2009): https://www.w3.org/TR/owl2-overview/
- Built on **Description Logics (DL)**.
 - OWL 1: SHOIN(D)
 - OWL 2: SROIQ(D)
- Combines DL expressiveness with RDF technology
 - OWL-layered RDF-based knowledge graphs

Description Logics and OWL

 Origin: semantic networks and other graph-based models and the attempt to formalise them with First Order Logic (FOL).

Description Logics and OWL

- Origin: semantic networks and other graph-based models and the attempt to formalise them with First Order Logic (FOL).
- Core reasoning problems in FOL are undecidable.
- Trade-off between expressiveness and computational properties

Description Logics and OWL

- Origin: semantic networks and other graph-based models and the attempt to formalise them with First Order Logic (FOL).
- Core reasoning problems in FOL are undecidable.
- Trade-off between expressiveness and computational properties
- Description Logics (DL):
 - Family of knowledge representation languages
 - Decidable subset of FOL
 - Original called: Terminological language or concept language
 - OWL is based on DL

OWL 1, OWL 2 (profiles) and RDFS

Image adapted from Olivier Cure and Guillaume Blin. RDF Database Systems (Chapter 3). 2015. Elsevier.

Modelling with OWL 2: What is an Ontology?

Ontologies (information sciences)

- Core idea of knowledge graphs is the enhancement of the graph data model with...
 - "...a formal specifications of a shared domain conceptualization"
 - "...an abstract symbolic representations of a domain expressed in a formal language"

Thomas R. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge Sharing. 1993 Pim Borst, Hans Akkermans, and Jan Top. Engineering ontologies. 1999.

Ontologies as domain models (i)

- A model is a simplified (abstract) representation of certain aspects of the real world.
- Models help people communicate.
- Models explain and make predictions.
- Models mediate among multiple viewpoints.

Dean Allemang, James Hendler. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL.

Ontologies as domain models (ii)

- include vocabulary relevant to a domain (e.g., with RDF and IRIs)
- specify meaning (semantics) of terms (e.g., with OWL)
 - Heart is a muscular organ that is part of the circulatory system

Ontologies as domain models (ii)

- include vocabulary relevant to a domain (e.g., with RDF and IRIs)
- specify meaning (semantics) of terms (e.g., with OWL)
 - Heart is a muscular organ that is part of the circulatory system
- are **formalised** using a suitable logic language (e.g., with OWL)
 - Heart SUBCLASSOF
 MuscularOrgan AND (isPartOf
 SOME CirculatorySystem)

Before Modelling with OWL 2: Set Theory

Sets

– A set is a mathematical object:

$$\{$$
'a', $1, \triangle \}$

- Contains 'a', 1, and \triangle , and nothing else.
- There is no order between elements

$$\{1,\triangle\}=\{\triangle,1\}$$

Nothing can be in a set several times

$$\{1, \triangle, \triangle\} = \{1, \triangle\}$$

- Sets with different elements are different:

$$\{1,2\} \neq \{2,3\}$$

Sets: Element of-relation

 $- \in$ indicates that something is element of a set:

$$1 \in \{\text{`a'}, 1, \triangle\}$$

 $\text{`b'} \not\in \{\text{`a'}, 1, \triangle\}$

Sets: Element of-relation

 $- \in$ indicates that something is element of a set:

$$1 \in \{ ext{`a'}, 1, \triangle \}$$
 $ext{`b'}
ot \in \{ ext{`a'}, 1, \triangle \}$

- The set $P_{in3067/inm713}$ of people in the module
 - city:ernesto $\in P_{in3067/inm713}$
 - dbr:Johnny_Depp $ot \in P_{in3067/inm713}$

The Empty Set

- A set that has no elements.
- This is called the *empty set*
- Notation: ∅ or {}
- $-x \notin \emptyset$, for any x

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B

$$A \subseteq B$$

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a *subset* of B

$$A \subseteq B$$

- Examples
 - {city:ernesto, city:pravija} $\subseteq P_{in3067/inm713}$
 - $-\{1,3\} \not\subseteq \{1,2\}$
 - $\{1,3\}\subseteq\mathbb{N}$
 - $-\emptyset\subseteq A$ for any set A

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B

$$A \subseteq B$$

- Examples
 - {city:ernesto, city:pravija} $\subseteq P_{in3067/inm713}$
 - $-\{1,3\} \not\subseteq \{1,2\}$
 - $\{1,3\}\subseteq\mathbb{N}$
 - $-\emptyset\subseteq A$ for any set A
- -A = B if and only if $A \subseteq B$ and $B \subseteq A$

Intuition: Classes/concepts as Sets

KGs	Set Theory	
A rdf:type owl:Class	A is a set of resources	
x rdf:type A	$x\in A$	
A rdfs:subClassOf B	$A\subseteq B$	
:Person rdf:type owl:Class	:Person is a set of resources	
:ernesto rdf:type :Person	$\texttt{:ernesto} \in \texttt{:Person}$	
:Person rdfs:subClassOf :Animal	$\texttt{:Person} \subseteq \texttt{:Animal}$	

Pairs

A pair is an ordered collection of two objects

$$\langle x,y \rangle$$

– Equal if components are equal:

$$\langle a,b \rangle = \langle x,y
angle$$
 if and only if $a=x$ and $b=y$

Pairs

A pair is an *ordered* collection of two objects

$$\langle x,y \rangle$$

– Equal if components are equal:

$$\langle a,b \rangle = \langle x,y
angle$$
 if and only if $a=x$ and $b=y$

– Order matters:

$$\langle 1, \mathbf{a}' \rangle \neq \langle \mathbf{a}', 1 \rangle$$

- An object can be twice in a pair:

$$\langle 1, 1 \rangle$$

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$A \times B$$

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$A \times B$$

– Example:

$$-A = \{1, 2, 3\}, B = \{\text{`a'}, \text{`b'}\}.$$

$$egin{array}{lll} -A imes B = & \left\{ & \left<1, \mbox{`a'}
ight>, & \left<2, \mbox{`a'}
ight>, & \left<3, \mbox{`a'}
ight>, \\ & \left<1, \mbox{`b'}
ight>, & \left<2, \mbox{`b'}
ight>, & \left<3, \mbox{`b'}
ight> \end{array}
ight\} \end{array}$$

Relations

- A relation R between two sets A and B is...
- $-\ldots$ a set of pairs $\langle a,b\rangle\in A imes B$

$$R \subseteq A \times B$$

-R connects elements of A with elements of B. For example:

$$teaches At \subseteq Academic imes University$$

– We often write 'a R b' to say that $\langle a,b\rangle\in R$. For example:

$$\langle ernesto, city
angle \in teachesAt$$

– A relation R on a single set A is a relation between A and A:

$$R \subseteq A \times A = A^2$$

Example: Family Relations

- Consider the set $A = \{Homer, Marge, Bart, Lisa, Maggie\}$.
- Consider a relation P on A such that

$$x P y$$
 iff x is parent of y

– As a set of pairs:

$$P = \{ \langle \mathsf{Homer}, \mathsf{Bart} \rangle, \langle \mathsf{Homer}, \mathsf{Lisa} \rangle, \langle \mathsf{Homer}, \mathsf{Maggie} \rangle, \langle \mathsf{Marge}, \mathsf{Bart} \rangle, \langle \mathsf{Marge}, \mathsf{Lisa} \rangle, \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \} \subseteq A^2$$

- For instance:

```
\langle \mathsf{Homer}, \mathsf{Bart} \rangle \in P \qquad \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \in P \qquad \langle \mathsf{Bart}, \mathsf{Homer} \rangle \not \in P
```

Modelling with OWL 2: Introduction

Description Logics and Interpretations

- **Interpretations** (\mathcal{I}) might be conceived as potential "realities".
- They can be seen as a **function** from abstract representation to concrete elements in set theory.
- Interpretations assign values to elements and may be the model of a graph or ontology (i.e., I entails all its elements).
- For example (very small interpretation of the world):

```
- dbp:london<sup>\mathcal{I}</sup> = dbp:london<sup>\mathcal{I}</sup>

- dbo:City<sup>\mathcal{I}</sup> = {dbp:london<sup>\mathcal{I}</sup>}

- dbo:Country<sup>\mathcal{I}</sup> = {dbp:england<sup>\mathcal{I}</sup>}

- dbo:PopulatedPlace<sup>\mathcal{I}</sup> = {dbp:london<sup>\mathcal{I}</sup>, dbp:england<sup>\mathcal{I}</sup>}

- dbo:isLocatedIn<sup>\mathcal{I}</sup> = {\dbp:london<sup>\mathcal{I}</sup>, dbp:england<sup>\mathcal{I}</sup>}
```

Description Logics Syntax (first steps)

KG Triples	DL Syntax	Semantics
:london :location :england .	$oxed{location(london, england)}$	$ig ig\langle london^{\mathcal{I}}, england^{\mathcal{I}}ig angle \in$
		$location^{\mathcal{I}}$
:london rdf:type :City .	City(london)	$london^{\mathcal{I}} \in City^{\mathcal{I}}$
:City rdfs:subClassOf :Place .	$City \sqsubseteq Place$	$City^{\mathcal{I}} \subseteq Place^{\mathcal{I}}$
:capitalOf rdfs:subPropOf :location .	$capitalOf \sqsubseteq location$	$capitalOf^{\mathcal{I}} \subseteq location^{\mathcal{I}}$

(*) Not all OWL 2 axioms have a 1-to-1 triple representation.

OWL 2 entities: classes and individuals

owl:Class: to represent classes (*i.e.*, set of individuals).

- Atomic (with a IRI) :Person rdf:type owl:Class
- Complex (built from other entities)

OWL 2 entities: classes and individuals

owl:Class: to represent classes (*i.e.*, set of individuals).

- Atomic (with a IRI) :Person rdf:type owl:Class
- Complex (built from other entities)

owl:NamedIndividual, to represent individuals

:ernesto rdf:type owl:NamedIndividual

:ernesto rdf:type :Person

 $:ernesto^{\mathcal{I}} \in :Person^{\mathcal{I}}$

OWL 2 entities: Top and Bottom classes

owl:Thing

- \top (in DL syntax)
- Class containing all individuals.
- Its interpretation is $\Delta^{\mathcal{I}}$.
- For every owl:Class C, C is a subclass of owl:Thing.

OWL 2 entities: Top and Bottom classes

owl:Thing

- \top (in DL syntax)
- Class containing all individuals.
- Its interpretation is $\Delta^{\mathcal{I}}$.
- For every owl:Class C, C is a subclass of owl:Thing.

owl:Nothing

- \perp (in DL syntax)
- empty class containing no individuals.
- Its interpretation is the empty set ∅
- For every owl:Class C, owl:Nothing is a subclass of C

OWL 2 entities: properties

OWL Properties (instead of rdf:Property):

owl:DatatypeProperty. Targets data values.

:hasName rdf:type owl:DatatypeProperty.

Universal data property: $\mathcal{D}^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Lambda$ (Λ set of all literal values)

owl:ObjectProperty. Targets individuals.

:teaches rdf:type owl:ObjectProperty Universal object property: $U^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

- owl:AnnotationProperty. No logical implication.
rdfs:label rdf:type owl:AnnotationProperty.

The set of classes, named individuals, annotation, data and object properties are **mutually disjoint**.

Open World Assumptions

Closed World Assumption (CWA)

- Complete knowledge.
- Any statement that is not known to be true is false. (*)
- Typical semantics for database systems.

Open World Assumptions

Closed World Assumption (CWA)

- Complete knowledge.
- Any statement that is not known to be true is false. (*)
- Typical semantics for database systems.

Open World Assumption (**OWA**)

- Potential incomplete knowledge.
- (*) does not hold.
- Typical semantics for logic-based systems (including OWL).

Name Assumptions

Unique Name Assumption (UNA)

- Different names always denote different things.
 - E.g., $a^{\mathcal{I}} \neq b^{\mathcal{I}}$.
 - common in relational databases.

Name Assumptions

Unique Name Assumption (UNA)

- Different names always denote different things.
 - E.g., $a^{\mathcal{I}} \neq b^{\mathcal{I}}$.
 - common in relational databases.

Non-unique Name Assumption (**NUNA**)

- Different names need not denote different things. As in OWL.
 - dbpedia: $Person^{\mathcal{I}} = foaf: Person^{\mathcal{I}}$.
 - wikidata: ernesto^{\mathcal{I}} = city: ernesto^{\mathcal{I}}

Name Assumptions

Unique Name Assumption (UNA)

- Different names always denote different things.
 - E.g., $a^{\mathcal{I}} \neq b^{\mathcal{I}}$.
 - common in relational databases.

Non-unique Name Assumption (NUNA)

- Different names need not denote different things. As in OWL.
 - dbpedia: $Person^{\mathcal{I}} = foaf : Person^{\mathcal{I}}$.
 - wikidata:ernesto $^{\mathcal{I}}$ = city:ernesto $^{\mathcal{I}}$

Equal names (e.g., URIs) always denote the same "thing".

- E.g., cannot have city:ernesto^{\mathcal{I}} \neq city:ernesto^{\mathcal{I}}.

Modelling with OWL 2: Axioms and Class Constructs

OWL 2 Axioms

- OWL 2 ontologies are composed by axioms.
- Not all axioms have a 1-to-1 triple representation.
- Historically, axioms are put in boxes.

OWL 2 Axioms

- OWL 2 ontologies are composed by axioms.
- Not all axioms have a 1-to-1 triple representation.
- Historically, axioms are put in boxes.
- The TBox (terminological knowledge)
 - is typically independent of any actual instance data.
 - Class inclusion $C \sqsubseteq D$, equivalence $C \equiv D$
 - The set of property axioms are also referred to as RBox.

OWL 2 Axioms

- OWL 2 ontologies are composed by axioms.
- Not all axioms have a 1-to-1 triple representation.
- Historically, axioms are put in boxes.
- The TBox (terminological knowledge)
 - is typically independent of any actual instance data.
 - Class inclusion $C \sqsubseteq D$, equivalence $C \equiv D$
 - The set of property axioms are also referred to as RBox.
- The ABox (assertional knowledge)
 - contains facts about concrete instances (basically as in RDF)

OWL 2 TBox Axioms

- The TBox (excluding the RBox) is composed by:
 - Subsumption axioms: $C \sqsubseteq D \ (C^{\mathcal{I}} \subseteq D^{\mathcal{I}})$
 - Equivalence axioms: $C \equiv D \ (C^{\mathcal{I}} = D^{\mathcal{I}})$

OWL 2 TBox Axioms

- The TBox (excluding the RBox) is composed by:
 - Subsumption axioms: $C \sqsubseteq D \ (C^{\mathcal{I}} \subseteq D^{\mathcal{I}})$
 - Equivalence axioms: $C \equiv D \ (C^{\mathcal{I}} = D^{\mathcal{I}})$
- C and D can be named concepts (e.g., dbo:City) or complex concepts built from others.
 - **Negation**: ¬E (not)
 - Intersection: $E \sqcap F$ (and)
 - **Union**: $E \sqcup F$ (or)
 - **Property restrictions**: $\exists R.E$ (some), $\forall R.E$ (only)

OWL 2 TBox Axioms

- The TBox (excluding the RBox) is composed by:
 - Subsumption axioms: $C \sqsubseteq D \ (C^{\mathcal{I}} \subseteq D^{\mathcal{I}})$
 - Equivalence axioms: $C \equiv D \ (C^{\mathcal{I}} = D^{\mathcal{I}})$
- C and D can be named concepts (e.g., dbo:City) or complex concepts built from others.
 - **Negation**: $\neg E$ (not)
 - Intersection: $E \sqcap F$ (and)
 - Union: $E \sqcup F$ (or)
 - **Property restrictions**: $\exists R.E$ (some), $\forall R.E$ (only)
- We will focus on the cases where the LHS concept is atomic. e.g.,
 dbo:City □ dbo:Place □ ...

Union and Intersection

- $-A \square C \sqcap D$. "A is both C and D."
 - -e.g., DryRedWine □ DryWine \sqcap RedWine.

Union and Intersection

- $-A \square C \sqcap D$. "A is both C and D."
 - -e.g., DryRedWine □ DryWine \sqcap RedWine.

- $-A \sqsubseteq C \sqcup D$. "A is C or D."
 - *e.g.*, Wine □ BadWine □ GoodWine.

Negation and Disjointness

- $-C \sqsubseteq \neg D$: "C is not D."
 - *e.g.*, VegetarianTopping □ ¬MeatTopping.

Negation and Disjointness

- $-C \sqsubseteq \neg D$: "C is not D."
 - -e.g., VegetarianTopping $\sqsubseteq \neg$ MeatTopping.

- $-C \sqcap D \sqsubseteq \bot$: "Nothing is both a C and a D."
 - Equivalent to $C \sqsubseteq \neg D$ (and $D \sqsubseteq \neg C$).
 - *e.g.*, VegetarianTopping □ MeatTopping $\sqsubseteq \bot$.

Existential Restrictions

- $-A \sqsubseteq \exists R.C$: "A is R-related to (at least) one C."
- $\ (\exists R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid ext{there is a } b ext{ where } \langle a,b
 angle \in R^{\mathcal{I}} ext{ and } b \in C^{\mathcal{I}} \}$

Existential Restrictions

- $-A \sqsubseteq \exists R.C$: "A is R-related to (at least) one C."
- $\ (\exists R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid ext{there is a } b ext{ where } \langle a,b
 angle \in R^{\mathcal{I}} ext{ and } b \in C^{\mathcal{I}} \}$
- e.g., MeatPizza $\sqsubseteq \exists$ hasTopping.Meat

Existential Restrictions and rdfs:domain

Local scope for R:

- Pizza $\sqsubseteq \exists$ hasTopping.Topping

Domain: (global scope for *R*)

- If R has the domain C: (R rdfs:domain C)
- then anything 'using' R is in C.
- Domain can also be expressed as: ∃R. ⊤ $\sqsubseteq C$
- \exists hasTopping. $\top \sqsubseteq$ Pizza

Existential Restrictions and rdfs:domain

Local scope for R:

- Pizza $\sqsubseteq \exists$ hasTopping.Topping

Domain: (global scope for R)

- If R has the domain C: (R rdfs:domain C)
- then anything 'using' R is in C.
- Domain can also be expressed as: $\exists R. \top \sqsubseteq C$
- ∃hasTopping. \top \sqsubseteq Pizza
- Examples:
 - :pizza1 :hasTopping :meat1
 - :ice-cream1 :hasTopping :choco-chips1

Universal Restrictions

- *A* \sqsubseteq $\forall R.C$: *A* has *R*-relationships to *C*'s only.
- $\ (orall R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid ext{for all } b, ext{ if } \langle a,b
 angle \in R^{\mathcal{I}} ext{ then } b \in C^{\mathcal{I}} \}$

Universal Restrictions

- *A* \sqsubseteq $\forall R.C$: *A* has *R*-relationships to *C*'s only.
- $\ (orall R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid ext{for all } b, ext{ if } \langle a,b
 angle \in R^{\mathcal{I}} ext{ then } b \in C^{\mathcal{I}} \}$
- e.g., VeggiePizza $\sqsubseteq \forall$ hasTopping.VeggieTopping

Universal Restrictions and rdfs:range

Local scope for R:

- VeggiePizza $\sqsubseteq \forall hasTopping.VeggieTopping.$

Range: (global scope for R)

- If role R has the range C: (R rdfs:range C)
- then anything one can reach by R is in C,
- Range can also be expressed as \top \sqsubseteq $\forall R.C$.
- $\top \sqsubseteq \forall hasTopping.VeggieTopping.$

Universal Restrictions and rdfs:range

Local scope for R:

- VeggiePizza $\sqsubseteq \forall$ hasTopping.VeggieTopping.

Range: (global scope for R)

- If role R has the range C: (R rdfs:range C)
- then anything one can reach by R is in C,
- Range can also be expressed as $\top \sqsubseteq \forall R.C$.
- \top \sqsubseteq \forall hasTopping.VeggieTopping.
- Example:
 - :pizza1 :hasTopping :meat1 (iS meat1 a VeggieTopping?)

Universal Restrictions and rdfs:range

Local scope for R:

- VeggiePizza $\sqsubseteq \forall hasTopping.VeggieTopping.$

Range: (global scope for R)

- If role R has the range C: (R rdfs:range C)
- then anything one can reach by R is in C,
- Range can also be expressed as $\top \sqsubseteq \forall R.C$.
- $\mp \sqsubseteq \forall hasTopping.VeggieTopping$. $\top \sqsubseteq \forall hasTopping.PizzaTopping$.
- Example:
 - :pizza1 :hasTopping :meat1

Cardinality restrictions

- Restricts the number of relations a type of object can have.
- Syntax:
 - $-\leq_n R.C, \geq_n R.C$, and $=_n R.C$.

Cardinality restrictions

- Restricts the number of relations a type of object can have.
- Syntax:
 - $-\leq_n R.C, \geq_n R.C$, and $=_n R.C$.
- Axioms read:
 - $-A \sqsubseteq \Box_n R.C$: "An element of A is R-related to n number of C's."
 - <: at most</p>
 - \ge : at least
 - =: exactly
- -e.g., SuperMeatPizza $\sqsubseteq \ge_5$ hasTopping.Meat

Necessary conditions and primitive classes

Hawaiian pizza **implies** having pineapple as ingredient (among others); but not the other way round.

Sufficient conditions and defined classes

Meat pizza **implies** having meat as ingredient (and being pizza).

A pizza with meat as ingredient **implies** being a meat pizza.

Hawaiian pizzas have ham as ingredient and thus they are meat pizzas.

Detecting modelling errors

Ice cream **implies** having fruit as topping Ice cream is **disjoint with** Pizza

The domain of has topping is pizza, that is, having any topping **implies** being a pizza (domain is a type of sufficient condition).

Modeling with OWL 2: RBox

Property axioms

– subsumption:

 $hasBrother \sqsubseteq hasSibling$

- equivalence:

 $hasLocation \equiv locatedIn$

– inverse roles (only object properties):

 ${\tt hasParent} \equiv {\tt hasChild^{-1}}$

– role chains (only object properties):

 $\begin{array}{l} \mathtt{hasParent} \circ \mathtt{hasBrother} \sqsubseteq \mathtt{hasUncle} \\ (R \circ S)^{\mathcal{I}} = \{ \langle a^{\mathcal{I}}, c^{\mathcal{I}} \rangle \mid \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}, \langle b^{\mathcal{I}}, c^{\mathcal{I}} \rangle \in S^{\mathcal{I}} \} \end{array}$

A relation R over the set $\Delta^{\mathcal{I}}$ ($R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$) is

Characteristic	Semantics	Example
Reflexive:	if $\langle a,a angle \in R$ for all $a\in \Delta^{\mathcal{I}}$	part_of
Irreflexive:	if $\langle a,a angle ot \in R$ for all $a \in X$	hasParent

A relation R over the set $\Delta^{\mathcal{I}}$ ($R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$) is

Characteristic	Semantics	Example
Reflexive:	if $\langle a,a angle \in R$ for all $a\in \Delta^{\mathcal{I}}$	part_of
Irreflexive:	if $\langle a,a angle ot\in R$ for all $a\in X$	hasParent
Symmetric:	if $\langle a,b angle \in R$ implies $\langle b,a angle \in R$	hasSibling
Asymmetric:	if $\langle a,b angle \in R$ implies $\langle b,a angle otin R$	memberOf/hasParent

A relation R over the set $\Delta^{\mathcal{I}}$ ($R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$) is

Characteristic	Semantics	Example
Reflexive:	if $\langle a,a angle \in R$ for all $a\in \Delta^{\mathcal{I}}$	part_of
Irreflexive:	if $\langle a,a angle ot\in R$ for all $a\in X$	hasParent
Symmetric:	if $\langle a,b angle \in R$ implies $\langle b,a angle \in R$	hasSibling
Asymmetric:	if $\langle a,b angle \in R$ implies $\langle b,a angle otin R$	memberOf/hasParent
Transitive:	if $\langle a,b \rangle$, $\langle b,c \rangle \in R$ implies $\langle a,c \rangle \in R$	locatedIn

A relation R over the set $\Delta^{\mathcal{I}}$ ($R \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$) is

Semantics	Example
f $\langle a,a angle \in R$ for all $a\in \Delta^{\mathcal{I}}$	part_of
f $\langle a,a angle ot\in R$ for all $a\in X$	hasParent
f $\langle a,b angle \in R$ implies $\langle b,a angle \in R$	hasSibling
$f\: \langle a,b angle \in R \; implies \; \langle b,a angle otin R$	memberOf/hasParent
$f\left\langle a,b ight angle ,\left\langle b,c ight angle \in R ext{ implies }\left\langle a,c ight angle \in R$	locatedIn
$f\left\langle a,b ight angle$, $\left\langle a,c ight angle \in R$ implies $b=c$	${\tt has Biological Mother}$
$f\left\langle a,b ight angle ,\left\langle c,b ight angle \in R ext{ implies } a=c$	gaveBirthTo
1111	$egin{aligned} &\{\langle a,a angle \in R \text{ for all } a \in \Delta^{\mathcal{I}} \ &\{\langle a,a angle \notin R \text{ for all } a \in X \ &\{\langle a,b angle \in R \text{ implies } \langle b,a angle \in R \ &\{\langle a,b angle \in R \text{ implies } \langle b,a angle \notin R \ &\{\langle a,b angle , \langle b,c angle \in R \text{ implies } \langle a,c angle \in R \ &\{\langle a,b angle , \langle a,c angle \in R \text{ implies } b = c \end{aligned}$

 $(\sp{*})$ Functional characteristics can also be applied to data properties.

Datatypes for data properties

- Many predefined datatypes are available in OWL:
 - all common XSD datatypes: xsd:string, xsd:int, ...
 - a few from RDF: rdf:PlainLiteral,
 - and a few of their own: owl:real and owl:rational.

Datatypes for data properties

- Many predefined datatypes are available in OWL:
 - all common XSD datatypes: xsd:string, xsd:int, ...
 - a few from RDF: rdf:PlainLiteral,
 - and a few of their own: owl:real and owl:rational.
- Datatypes may be restricted with constraining facets, borrowed from XML Schema.
 - Teenager is equivalent to:

```
Person \sqcap (\existsage.xsd:integer[>= 13, <= 19])
```

Modeling with OWL 2: ABox

ABox: Assertional axioms

Contains:

- Facts about concrete instances a, b, c, \ldots
- A set of concept assertions C(a) as in RDF

DL: Person(ernesto)

Triple :ernesto rdf:type :Person

ABox: Assertional axioms

Contains:

- Facts about concrete instances a, b, c, \ldots
- A set of concept assertions C(a) as in RDF

DL: Person(ernesto)

Triple :ernesto rdf:type :Person

- Role assertions R(b, c) as in RDF

DL: teaches(ernesto, inm713-in3067)

Triple: :ernesto :teaches :inm713-in3067

ABox: Assertional axioms

Contains:

- Facts about concrete instances a, b, c, \ldots
- A set of concept assertions C(a) as in RDF

DL: Person(ernesto)

Triple :ernesto rdf:type :Person

- Role assertions R(b, c) as in RDF

DL: teaches(ernesto, inm713-in3067)

Triple: :ernesto :teaches :inm713-in3067

- Equality and non-equality between individuals
 - DL: ernesto = ejr, ernesto \neq aidan;
 - Triple (1) :ernesto owl:sameAs :ejr (2) :ernesto owl:differentFrom :aidan

OWL 2 Syntaxes and Serialization

OWL Syntaxes

- OWL (as RDF) is an abstract construction with several syntaxes.
- VeggiePizza □ ∀hasTopping.VeggieTopping

In Turtle syntax (storage basically as triples):

```
:VeggiePizza rdfs:subClassOf [ rdf:type owl:Restriction ;
                               owl:onProperty :hasTopping ;
                               owl:allValuesFrom :VeggieTopping ]
```

Manchester OWL Syntax

- Used in Protégé for concept descriptions.
- Correspondence to DL constructs:

DL	Manchester
$C\sqcap D$	C and D
$C \sqcup D$	C or D
$\neg C$	$not\ C$
$\forall R.C$	R only C
$\exists R.C$	R some C
$\leq_n R.D$	R max n C
$\geq_n R.D$	R min $n\ C$
$=_n R.D$	R exactly $n \ C$

OWL 2 Reasoning

Automated Reasoning (i)

- Formal semantics allows the automatic deduction of new facts.
- Also allows us to perform checks that aim to detect the correctness of the designed model (e.g., :dolphin is a :Fish?).

Automated Reasoning (i)

- Formal semantics allows the automatic deduction of new facts.
- Also allows us to perform checks that aim to detect the correctness of the designed model (e.g., :dolphin is a :Fish?).
- Possibly in the form of **obvious errors**:
 - :Mammal and :Fish are disjoint classes.
 - :dolphin cannot be an individual (or a subclass) of both :Mammal and
 :Fish.

Automated Reasoning (i)

- Formal semantics allows the automatic deduction of new facts.
- Also allows us to perform checks that aim to detect the correctness of the designed model (e.g., :dolphin is a :Fish?).
- Possibly in the form of **obvious errors**:
 - :Mammal and :Fish are disjoint classes.
 - :dolphin cannot be an individual (or a subclass) of both :Mammal and
 :Fish.
- Extremely valuable for designing correct ontologies/KGs, specially when working collaboratively and integrating various sources.

Automated Reasoning (ii)

- More after the reading week: RDFS semantics and OWL 2 profiles.
- Today we will use HermiT reasoner in Protégé to entail implicit knowledge within the KG.

Common modellings mistakes and misunderstandings

Common mistakes: part-of VS subclass-of (i)

City **subClassOf** isLocatedIn **some** Country

Common mistakes: part-of VS subclass-of (i)

Common mistakes: part-of VS subclass-of (ii)

Finger subClassOf partOf some Hand

Finger subClassOf Hand

Common mistakes: part-of VS subclass-of (ii)

Common mistakes: part-of VS subclass-of (iii)

Mexican_Restaurant **subClassOf** Restaurant

Common mistakes: property hierarchy

isLocatedInCity **subPropertyOf** isLocatedIn isLocatedInCountry **subPropertyOf** isLocatedIn

isLocatedInCity **subPropertyOf** isLocatedinCountry

Common mistakes: property hierarchy

isLocatedInCity **subPropertyOf** isLocatedIn isLocatedInCountry **subPropertyOf** isLocatedIn

isLocatedInCity **subPropertyOf** isLocatedinCountry

OWL 2 and Open World Assumption

- :Triangle EquivalentTo :hasSide exactly 3 :Side

- is :myTriangle a :Triangle?

OWL 2 and Open World Assumption

- :Triangle EquivalentTo :hasSide exactly 3 :Side

- is :myTriangle a :Triangle? I don't know because of OWA and NUNA.

OWL 2 and Open World Assumption

- :Triangle EquivalentTo :hasSide exactly 3 :Side

- is :myTriangle a :Triangle? I don't know because of OWA and NUNA.
- Solution: reasoning in OWL complemented with SPARQL queries (in this case with aggregates) → SPARQL 1.1 (not today)

Modelling ontologies outside OWL 2

- Combination of OWL 2 DL axioms leading to an ontology outside OWL 2 DL.
- These combination can easily be done in Protégé.

Michael Schneider et al. Modeling in OWL 2 without Restrictions: https://arxiv.org/pdf/1212.2902.pdf.

Modelling ontologies outside OWL 2

- Combination of OWL 2 DL axioms leading to an ontology outside OWL 2 DL.
- These combination can easily be done in Protégé.
- Very common (not allowed in OWL 2 DL):
 - cardinality restrictions on transitive properties
 - property chains on functional properties
 - transitive and asymmetric properties

Michael Schneider et al. Modeling in OWL 2 without Restrictions: https://arxiv.org/pdf/1212.2902.pdf.

Lab Session

Laboratory with OWL

- Modelling ontologies with Protégé.
 - Protégé presents ontologies almost like an OO modelling tool.
 - Pizza OWL tutorial.
- Short demo (in moodle): Week 2.

Coursework Part 1: Ontology modelling (i)

- Part 1 (20%): creation of an ontology that covers the knowledge of a given domain. Deadline: Sunday, 3 March 2024, 5:00 PM
- Work in pairs, or individually. Please register by February 23.

Coursework Part 1: Ontology modelling (ii)

(*) Ontology CW2 = Model solution \neq Your Ontology Part 1

Acknowledgements

Acknowledgements

- Prof. Martin Giese and others (University of Oslo)
 - INF4580 Semantic technologies
 - https://www.uio.no/studier/emner/matnat/ifi/INF4580/
- Dr. Valentina Tamma (University of Liverpool)
 - Comp 318 Advanced Web Technologies
 - https://cgi.csc.liv.ac.uk/~valli/Comp318.html