# Математический анализ 4 семестр Конспект лекций Додонова Н. Ю.

# shared with $\heartsuit$ by artemZholus

# Содержание

| 1 | Критерий Лебега интегрируемости по Риману                                                                                                                | 2          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2 | Суммируемые функции         2.1         Неотрицательные суммируемые функции             2.2         Суммируемые функции произвольного знака              |            |
| 3 | Предельный переход в классе суммируемых функций         3.1 Теорема Лебега о мажорируемой сходимости          3.2 Теорема Леви          3.3 Теорема Фату | 7          |
| 4 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                    |            |
| 5 | Мера подграфика                                                                                                                                          |            |
| 6 | Теорема Фубини                                                                                                                                           |            |
| 7 | О многократных интегралах Римана                                                                                                                         | <b>1</b> 4 |
| 8 | Криволинейные и поверхностные интегралы           8.1 Криволинейные интегралы                                                                            |            |

# 1 Критерий Лебега интегрируемости по Риману

Определение (Колебание на отрезке).

$$\omega(f,c,d) = \sup_{[c,d]} f - \inf_{[c,d]} f = \text{(по лемме из 1го семестра)} = \sup_{x',x'' \in [c,d]} |f(x') - f(x'')|$$

Определение (Колебание функции в точке).

$$\omega(f, x) = \lim_{\delta \to 0} \omega(f, x + \delta, x - \delta)$$

Очевидно, колебание на отрезке неотрицательно, и, если  $0 < \delta_1 < \delta_2$  то  $\omega(f, x - \delta_1, x + \delta_1) < \omega(f, x - \delta_2, x + \delta_2)$ . Поэтому, вышеприведенный предел существует.

Утверждение 1.1.  $\omega(f,x)=0 \Leftrightarrow f \in C(x)$ 

Доказательство. 1. ← Раз функция непрерывна, значит она достигает на отрезке своего sup и inf. Значит, если устремить границы отрезка к одной точке, в пределе получим разность двух одинаковых чисел.

 $2. \Rightarrow \omega(f,x) = 0$  означает, что можно подобрать такую  $\delta$ -окрестность для x, что она будет сколь угодно малой. Берем формулу  $\sup_{x',x''\in[x-\delta,x+\delta]}|f(x')-f(x'')|=0$  фиксируем x''=x (от этого sup разве что уменьшится) и получаем определение непрерывности в x.

**Определение.**  $\tau$ : - разбиение отрезка [a,b], если  $\tau = \{x_i\}$ :  $a = x_0 < x_1 < \dots < x_n = b$ 

Ведем кусочно-постоянную функцию  $g(\tau,x)=\omega(f,x_j,x_{j+1}),$  при  $x\in[x_j,x_{j+1}]$ 

**Утверждение 1.2.**  $g(\tau_n,x) \xrightarrow[n \to +\infty]{} \omega(f,x)$  почти всюду на отрезке

Доказательство. Очевидно, мы можем подбирать  $\tau_n$  так, чтобы границы отрезка, содержащего x совпали с границами из определения  $\omega(f,x)$ . Тогда для неграничных точек получим стремление. Граничных точек на конечном шаге - конечное число, а это значит, что мы не перейдем за границу счетной мощности (danger zone - МАТЛОГИКА), и предел будет почти всюду

Тогда, по теореме Лебега о предельном переходе под знаком интеграла, получаем:

$$\int_{[a,b]} g(\tau_n, x) dx \to \int_{[a,b]} \omega(f, x) dx$$

Левая часть, по лемме из первого семестра равна  $\int\limits_{[a,b]}g( au_n,x)dx=\omega(f, au_n).$  Получаем:

$$\lim_{rang\tau_n \to 0} \omega(f, \tau_n) = \int_{[a,b]} \omega(f, x) dx$$

Это наша рабочая формула.

Теорема 1.3 (Критерий Лебега интегрируемости по Риману).

$$f \in \Re(a, b) \Leftrightarrow \lambda\{a : f \notin C(a)\} = 0$$

 $\square$ оказательство. 1.  $\Rightarrow$ 

Пусть  $\omega(f,x)=0$  почти всюду на [a,b]. Тогда  $\int\limits_{[a,b]}\omega(f,x)dx=0 \Rightarrow f\in\Re[a,b]$ 

2.  $\Leftarrow$  Пусть  $f \in \Re[a,b]$ . Тогда, по определению,  $\omega(f,\tau_n) \to 0$ . Тогда  $\int_{[a,b]} \omega(f,x) dx = 0$ . Но  $\omega(f,x) \geqslant 0$ . Значит  $\omega(f,x) = 0$  почти всюду на [a,b] (И, по лемме, почти всюду непрерывна).

#### $\mathbf{2}$ Суммируемые функции

#### 2.1Неотрицательные суммируемые функции

Здесь и далее считаем, что мера  $\mu$  - полная и  $\sigma$ -конечная. Наша задача - распространить интеграл Лебега на более широкую ситуацию. Считаем, что  $E \in \mathcal{A}, f : E \xrightarrow{\text{измеримо}} \mathbb{R}, f(x) \geqslant 0$  на E.

**Определение.**  $e \subset E$  называется допустимым для f если:

- 1.  $\mu(e) < +\infty$
- $2. \, f$  ограничена на e

Утверждение 2.1. Непустые допустимые множества существуют.

Доказательство. Пусть  $E_n = E(n < f(x) \leqslant n+1)$ . Понятно, что  $E = \bigcup_n E_n$ . По  $\sigma$ -конечности  $X = \bigcup_m X_m$ , причем  $X_m$  - конечномерны. Тогда  $E = \bigcup_{n,m} E_n X_m$  - допустимые множества. Если они все пустые, то E, тоже пусто. Значит среди них хотя бы одно непустое. 

Определение (Несобственный интеграл Лебега).

$$\int_{E} f d\mu \stackrel{\text{def}}{=} \sup_{e-\text{допустимо}} \int_{e} f d\mu$$

**Определение** (Неотрицательная суммируемая функция). Неотрицательная функция f называется суммируемой на множестве E, если  $\int\limits_{E}fd\mu<+\infty$ 

Очевидно, если  $\mu E < +\infty, \ f(x) \geqslant 0, \ {\rm To} \ \int\limits_E f d\mu = \sup_{e \subset E} \int\limits_e f d\mu.$ 

Проверим аддитивность и линейность.

**Теорема 2.2** ( $\sigma$ -аддитивность несобственного интеграла Лебега). Пусть  $E=\bigcup_n E_n$  - дизтинктивны. Тогда  $\int\limits_E f=\sum\limits_n \int\limits_{E_n} f$ 

Докажем в два этапа. сначала конечную аддитивность, потом  $\sigma$ -аддитивность

Доказательство. 1. Пусть  $E = E_1 \cup E_2$ .Пусть  $e_1 \in E_1$ ,  $e_2 \in E_2$  - допустимые. И любое допустимое для E множество  $e = e_1 \cup e_2$ . Для определенного интеграла мы знаем, что  $\int\limits_e f = \int\limits_{e_1} f + \int\limits_{e_2} f \leqslant \int\limits_{E_1} f + \int\limits_{E_2} f$ 

Переходя к sup по e получаем  $\int\limits_E f\leqslant \int\limits_{E_1} f+\int\limits_{E_2} f$  В обратную сторону. Считаем, что f - суммируема (иначе все тривиально). По определению sup,  $\forall \varepsilon >$ 

$$0$$
  $\exists e_j \subset E_j$  :  $\int\limits_{E_j} f - \varepsilon < \int\limits_{e_j} f$ . 
$$\int\limits_{E_1} f + \int\limits_{E_1} f - 2\varepsilon < \int\limits_{e_1} f + \int\limits_{e_2} f = \int\limits_{e} f \leqslant \int\limits_{E} f$$
. Устремив  $\varepsilon \to 0$  получим  $\int\limits_{E_1} f + \int\limits_{E_2} f \leqslant \int\limits_{E} f$ . Значит  $\int\limits_{E_1} f + \int\limits_{E_2} f = \int\limits_{E} f$ 

2. Итак, пусть  $e = \bigcup_{n=1}^{+\infty} e_n$ . Очевидно  $\int\limits_{e_n} f \leqslant \int\limits_{E_n} f$  и  $\int\limits_{e} f = \sum\limits_{n} \int\limits_{e_n} f$ . Значит  $\int\limits_{E} f \leqslant \sum\limits_{n} \int\limits_{E_n} f$ . Обратно.  $\forall \varepsilon > 0 \,\exists e_n \subset E_n$ :

 $\int\limits_{E_n} f - \frac{\varepsilon}{2^n} < \int\limits_{e_n} f$ . Сложим первые p неравенств:  $\sum\limits_{1}^{p} \int\limits_{E_n} f - \varepsilon \sum\limits_{1}^{p} \frac{1}{2^n} < \sum\limits_{1}^{p} \int\limits_{e_n} f \leqslant \int\limits_{E} f$ . Устремляя  $p \to +\infty$ ,

получаем  $\sum_{n=1}^{+\infty} \int_{\mathcal{E}} f - \varepsilon \leqslant \int_{\mathcal{E}} f$ . Теперь устремим  $\varepsilon \to 0$  и получим обратное неравенство.

Теорема 2.3 (Линейность несобственного интеграла Лебега).

1. 
$$\int_{E} \alpha f = \alpha \int_{E} f$$
,  $\alpha > 0$ 

2. 
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

Доказательство. Первое свойство следует непосредственно из определения. Докажем второе. Итак, пусть  $E_n = E(n < f + g \leqslant n + 1)$ . Тогда, очевидно,  $E = \bigcup_n E_n$ . По  $\sigma$ -конечности можно написать  $X = \bigcup_n X_n$ . От  $X_n$  мы хотим дизъюнктивности, поэтому, если они не таковы, то проделаем следующий трюк:

мы хотим дизъюнктивности, поэтому, если они не таковы, то проделаем следующий трюк:  $X = X_1 \cup (X_2 \setminus X_1) \cup \cdots \cup (X_n \setminus \bigcup_{1}^{n-1} X_j) \cup \ldots$  Теперь E можно разбить как  $E = \bigcup_{n,m} E_n X_m$  - эти множества дизъюнктивны и допустимы для f+g. Далее по  $\sigma$ -аддитивности пишем:  $\int_E (f+g) = \sum_n \int_{A_n} (f+g) = (\text{по линейности определенного интеграла}) = \sum_n \int_{A_n} f + \sum_n \int_{A_n} g = (\text{по } \sigma$ -аддитивности несобственного) =  $\int_E f + \int_E g \quad \Box$ 

**Утверждение 2.4.** Если  $0 \leqslant f \leqslant g$ , то  $\int\limits_E f \leqslant \int\limits_E g$ 

 $Доказательство. \ 0 \leqslant g-f$  - по арифметике измеримости, эта функция суммируема. Раз она неотрицательна, интеграл от нее тоже.

$$0\leqslant \int\limits_{E}g-f=\int\limits_{E}g-\int\limits_{E}f\,\Rightarrow\int\limits_{E}f\leqslant \int\limits_{E}g$$

2.2 Суммируемые функции произвольного знака

Определение.

$$f^{+}(x) = \begin{cases} 0 & , f(x) < 0 \\ f(x) & , f(x) \ge 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} -f(x) & , f(x) < 0 \\ 0 & , f(x) \geqslant 0 \end{cases}$$

Заметим, что  $f=f^+-f^-, |f|=f^++f^-.$   $f^+$  и  $f^-$  - неотрицательные суммируемые функции (если f - измерима).

**Определение.** f называется суммируемой на E, если одновременно  $f^+$  и  $f^-$  - суммируемы.

$$\int_{E} f \stackrel{\text{def}}{=} \int_{E} f^{+} - \int_{E} f^{-}$$

**Утверждение 2.5.** f -  $суммируема \Leftrightarrow |f|$  - суммируема.

Доказательство. f - суммируема тогда и только тогда, когда  $f^+$  и  $f^-$  - суммируемы. |f| - суммируема тогда и только тогда, когда  $f^+$  и  $f^-$  - суммируемы.

Аналогом суммируемости функций служит абсолютная сходимость.

Проверим  $\sigma$ -аддитивность и линейность для случая функции произвольного знака:

**Теорема 2.6** (Аддитивность в случае произвольного знака). Пусть  $E = \bigcup_n E_n$  - дизбюнктивные, тогда  $\int\limits_E f = \sum\limits_n \int\limits_{E_n} f$ 

Доказательство. 
$$\int\limits_{E} f^{+} = \sum\limits_{n} \int\limits_{E_{n}} f^{+}$$
, то же для  $f^{-}$ . Тогда  $\int\limits_{E} f = \int\limits_{E} f^{+} - \int\limits_{E} f^{-} = \sum\limits_{n} \int\limits_{E_{n}} f^{+} - \sum\limits_{n} \int\limits_{E_{n}} f^{-} = \sum\limits_{n} (\int\limits_{E_{n}} f^{+} - \int\limits_{E} f^{-}) = \sum\limits_{n} \int\limits_{E_{n}} f = \int\limits_{E_{n}} f^{-} = \sum\limits_{n} \int\limits_{E_{n$ 

Теорема 2.7 (Линейность в случае произвольного знака).

1. 
$$\int_{E} \alpha f = \alpha \int_{E} f, \ \alpha \in \mathbb{R}$$

2. 
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

Доказательство. Пункт 1 очевиден, не будем на нем останавливаться. Докажем пункт 2:

$$\int\limits_E f + \int\limits_E g = (\int\limits_E f^+ + \int\limits_E g^+) - (\int\limits_E f^- + \int\limits_E g^-) = \int\limits_E (f^+ + g^+) - \int\limits_E (f^- + g^-) = (*) = \int\limits_E (f + g)^+ - \int\limits_E (f + g)^- = \int\limits_E (f + g)^$$

Проверим переход (\*). Для этого нужно, чтобы выполнялось  $(f^+ + g^+) = (f + g)^+$  - в общем случае, это неправда. Поэтому нужно рассмотреть много случаев:

- 1.  $f \geqslant 0, g \geqslant 0 \Rightarrow$  пусть  $E_1 = E(f \geqslant 0, g \geqslant 0)$ , тогда
  - $f^+ = f$ ,  $g^+ = g$ ,  $(f+g)^+ = f+g \Rightarrow f^+ + g^+ = f+g = (f+g)^+$
  - $f^- = 0, g^- = 0, (f+g)^- = 0 \Rightarrow 0 + 0 = 0$
- 2.  $f \leqslant 0, g \leqslant 0 \Rightarrow$  пусть  $E_2 = E(f \leqslant 0, g \leqslant 0),$  разбираем аналогично пункту (1) появятся минусы в формулах

В остальных случаях переход (\*) не верен, но под-интегральные функции можно перегруппировать по другому, например  $\int_{\mathbb{R}} (f^+ - g^-) - \int_{\mathbb{R}} (f^- - g^+)$ :

- 3.  $f \geqslant 0, \ g \leqslant 0 \Rightarrow$  тут нужно различить два подслучая:
  - (a)  $f+g\geqslant 0 \Rightarrow$  пусть  $E_3=E(f\geqslant 0,\ g\leqslant 0,\ f+g\geqslant 0),$  тогда
    - $f^+ = f$ ,  $g^- = -g$ ,  $(f+g)^+ = f+g \Rightarrow f^+ g^- = f+g = (f+g)^+$
    - $f^- = 0$ ,  $q^+ = 0$ ,  $(f+q)^- = 0 \Rightarrow 0 0 = 0$
  - (b)  $f + g < 0 \Rightarrow$  пусть  $E_4 = E(f \ge 0, g \le 0, f + g < 0)$ , тогда
    - $f^+ = f$ ,  $g^- = -g$ ,  $(f+g)^- = -(f+g) \Rightarrow -f^+ + g^- = -(f+g) = (f+g)^-$
    - $f^- = 0, g^+ = 0, (f+g)^+ = 0 \Rightarrow -0 + 0 = 0$
- 4.  $f \le 0$ ,  $g \ge 0 \Rightarrow$  аналогично, два подслучая, разбор которых аналогичен пункту (3), если поменять f и g местами :
  - (a)  $f+g\geqslant 0 \Rightarrow$  пусть  $E_5=E(f\leqslant 0,\ g\geqslant 0,\ f+g\geqslant 0)$
  - (b)  $f + g < 0 \Rightarrow \text{пусть } E_6 = E(f \le 0, g \ge 0, f + g < 0)$

Очевидно, эти множества дизъюнктивны (на 0 забьем) и можно написать:  $\int\limits_{E} f = \sum_{1}^{6} \int\limits_{E_{j}} f$ .

# 3 Предельный переход в классе суммируемых функций

### 3.1 Теорема Лебега о мажорируемой сходимости

**Теорема 3.1** (Теорема Лебега о мажорируемой сходимости). Пусть  $f_n \Rightarrow f$  на E,  $|f_n| \leqslant \phi$  на E,  $\phi$  - суммируема. Тогда:

1. f - суммируема

2. 
$$\int_E f_n \to \int_E f$$

Следует иметь ввиду, что в условии теоремы достаточно требовать выполнения свойств почти всюду.

Теорема 3.2. Пусть f - суммируема на E. Тогда  $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall E' \subset E \Rightarrow \mu E' < \delta \Rightarrow |\int\limits_{E'} f| < \varepsilon$ 

Доказательство. По определению, можно написать  $\forall \varepsilon > 0 \; \exists e : \int\limits_{E \backslash e} |f| < \varepsilon$ . Так как e - допустимо, f - ограничена на e и  $E = (E \backslash e) \cup e$ . Возьмем любое  $E' \subset E$ , тогда  $E' = E'(E \backslash e) \cup E'e$ .

$$\left| \int_{E'} f \right| \leqslant \left| \int_{E'(E \setminus e)} f \right| + \left| \int_{E'e} f \right| \leqslant \varepsilon + \left| \int_{E'e} f \right|$$

Мы считаем, что  $|f(x)| \leq M$ . Заметим, что выбор E' не накладывал никаких ограничений на M. Тогда:

$$\int_{E'e} |f| \leqslant M\mu E'e \leqslant M\mu E'$$

Поэтому  $\delta$  мы можем выбрать как  $\delta=\frac{\varepsilon}{M}$ . И получится, что  $\mu E'\leqslant\delta\Rightarrow\left|\int\limits_{E'}f\right|\leqslant2\varepsilon$ 

Доказательство теоремы Лебега. По теореме Рисса  $f_{n_k} \to f$  почти всюду, причем  $|f_{n_k}(x)| \leqslant \phi(x)$ , занчит  $|f(x)| \leqslant \phi(x) \Rightarrow f$  суммируема. Рассмотрим  $\left|\int\limits_E f_n - \int\limits_E f\right| \leqslant \int\limits_E |f_n - f|$ . Так как  $\phi$  - суммируема,  $\forall \varepsilon > 0 \ \exists e$  (допустимое для  $\phi$ ) :  $\int\limits_E \phi \leqslant \varepsilon$ 

$$\int_{E} |f_n - f| = \int_{E \setminus e} |f_n - f| + \int_{e} |f_n - f| \leqslant 2\varepsilon + \int_{e} |f_n - f|$$

Пусть  $|\phi|\leqslant M\Rightarrow |f_n-f|\leqslant 2M$ . Так же мы знаем, что  $\int\limits_e |f_n-f|\xrightarrow[n\to+\infty]{}0(*)$ . Значит, начиная с некоторого  $N_0,\int\limits_e |f_n-f|<\varepsilon$ . Следовательно, начиная с  $N_0,\int\limits_E |f_n-f|\leqslant 3\varepsilon$ 

Доказательство звездочки. Распишем е:

$$e = e(|f_n - f| \ge \xi) \cup e(|f_n - f| < \xi) = e_1 \cup e_2$$

$$\Rightarrow \int_{e} |f_n - f| = \int_{e_1} |f_n - f| + \int_{e_2} |f_n - f| \le 2M\lambda e_1 + \xi \lambda e_2$$

В силу сходимости по мере,  $\lambda e_1 \to 0$ ,  $\forall \xi$ , так как  $\xi$  - любое, можем устремить его к нулю.

#### 3.2 Теорема Леви

**Теорема 3.3** (Теорема Леви). Пусть  $f_n(x) \leqslant 0$ ,  $f_n(x) \leqslant f_{n+1}(x)$ ,  $f(x) = \lim_{n \to +\infty} f_n(x)$  на E. Тогда  $\int\limits_E f_n \to \int\limits_E f_n(x)$ 

Доказательство. Два случая:

- 1. f почти всюду конечна на E. Два подслучая:
  - (a)  $\int_E f < +\infty$ . Так как  $|f_n(x)| \leq f(x) \Rightarrow f$  суммируемая мажоранта для  $f_n$ , и теорема верна по теореме Лебега о мажорируемой сходимости.
  - (b)  $\int_E f = +\infty$ . (f все еще мажоранта для  $f_n$ , но уже не суммируемая) Мы поступим так. Раз  $\sup_{e-\text{допустимо}} \int_e f = +\infty$ , значит  $\forall c > 0 \; \exists e$  допустимоедля  $f: c < \int_e f$ . В силу  $f_n \leqslant f$  по теореме Лебега о мажорируемой сходимости  $\int_e f_n \to \int_e f$ . Это значит, начиная c некоторого  $N_0$ ,  $c < \int_e f_n \leqslant \int_E f_n \to \int_E f_n \to +\infty = \int_E f$
- 2.  $\mu E(f=+\infty)>0$  (Расслабьтесь, и будет не больно) Очевидно, в этой ситуации может быть только  $\int\limits_E f=+\infty$ . Из  $f_n(x)\leqslant f_{n+1}(x)\Rightarrow \int\limits_E f_n(x)\leqslant \int\limits_E f_{n+1}(x)$ . По теореме Вейерштрасса, у последовательности  $\left\{\int\limits_E f_n\right\}$  будет существовать предел. Причем он будет конечным тогда и только тогда, когда эта последовательность ограничена. Так что нам нужно вывести противоречие из того факта, что эта последовательность ограничена. Предположим, что это так: пусть  $\int\limits_E f_n\leqslant M$ . Итак, зафиксируем  $\forall c>0$ . Рассмотрим  $E(f_n\geqslant c)\subset E$ .

$$\int_{E(f_n \geqslant c)} f_n \leqslant M$$

$$c\mu E(f_n \geqslant c) \leqslant \int_{E(f_n \geqslant c)} f_n \Rightarrow \mu E(f_n \geqslant c) \leqslant \frac{M}{c}$$

Можно проверить, что:

$$E(f = +\infty) \subset \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c)$$

Доказательство. Пусть  $x \in E(f=+\infty)$ . Значит  $f_n(x) \xrightarrow[n \to +\infty]{} +\infty$ . Следовательно  $\forall c > 0 \exists N_x : \forall n > N_x \Rightarrow f_n(x) \geqslant c \xrightarrow[def]{} x \in \bigcap_{n=N}^{\infty} E(f_n \geqslant c)$ 

Заметим одну интересную штуку.

$$\forall c > 0 f_n(x) \geqslant c \Rightarrow f_{n+1}(x) \geqslant c \Rightarrow E(f_n \geqslant c) \subset E(f_{n+1} \geqslant c) \Rightarrow \bigcap_{n=m}^{\infty} E(f_n \geqslant c) = E(f_m \geqslant c) \Rightarrow$$
$$\Rightarrow \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c) = \lim_{m \to +\infty} E(f_m \geqslant c)$$

Отсюда делаем вывод, что:

$$\mu \bigcap_{n=m}^{\infty} E(f_n \geqslant c) \xrightarrow[m \to +\infty]{} \mu \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c) \geqslant \mu E(f = +\infty)$$

$$\mu \bigcap_{n=m}^{\infty} E(f_n \geqslant c) = \mu E(f_m \geqslant c) \leqslant \frac{M}{c} \Rightarrow$$

$$\Rightarrow \mu \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c) \leqslant \frac{M}{c} \Rightarrow$$

$$\Rightarrow \mu E(f = +\infty) \leqslant \frac{M}{c}$$

c - любое, поэтому можно устремить  $c \to +\infty$ . Значит  $\mu E(f = +\infty) = 0$ . Противоречие получено.

Следствие 3.4. Пусть  $u_n(x)\geqslant 0$  и  $\sum\limits_n\int\limits_E u_n$  - сходится. Тогда  $\sum\limits_n u_n(x)$  - сходится почти всюду на E.

Доказательство.  $S_n = u_1 + u_2 + \dots + u_n$ . Так как интеграл сходится, его частичная сумма ограничена.  $M \geqslant \sum_{n=1}^m \int\limits_E u_n = \int\limits_E S_m$  Обозначим  $S(x) = \sum\limits_n u_n(x)$ . В силу неотрицательности  $u_n(x)$ ,  $S_n(x)$  - возрастает  $(S_n \leqslant S_{n+1})$ , и  $S(x) = \lim_{n \to +\infty} S_n(x)$ . Следовательно, по теореме Леви  $\int\limits_E S_n \to \int\limits_E S$ . Следовательно, S - суммируемая функция, это значит, что она почти всюду конечна.

Следствие 3.5. Пусть  $f\geqslant 0,\ f_n(x)=\min\left\{f(x),n\right\}$  - срезка функции f. Тогда  $\int\limits_E f_n \to \int\limits_E f$ .

#### 3.3 Теорема Фату

**Теорема 3.6** (Теорема Фату). Пусть  $f_n \geqslant 0$ ,  $f_n \Rightarrow f$  на E. Тогда

$$\int_{E} f \leqslant \sup_{n \in \mathbb{N}} \int_{E} f_n$$

Доказательство. Применим теорему Рисса, получив, что  $f_{n_k} \to f$  почти всюду. Без ограничения общности можем считать, что  $f_n \to f$  почти всюду (потому что если доказать для sup по подпоследовательности, неравенство будет верно и для последовательности). Пусть  $g_n = \min\{f_n, f\}$ . Тогда  $g_n \leqslant f$ . Рассмотрим два случая:

- 1. f суммируема. Тогда, по теореме Лебега,  $\int\limits_E g_n \to \int\limits_E f$ . Предел последовательности  $\int\limits_E g_n$  не превзойдет своего верхнего предела, поэтому  $\int\limits_E f \leqslant \sup\limits_n \int\limits_E g_n \leqslant \sup\limits_n \int\limits_E f_n$
- 2.  $\int\limits_E f = +\infty$ . Тогда  $\forall e$  допустимо для f.  $\int\limits_e f < +\infty$  Как мы показали,  $\int\limits_e f \leqslant \sup\limits_n \int\limits_E f_n$ . Переходя к sup по e получаем необходимое неравенство.

# 4 Пространства $L_p$

Определение.  $L_p(E)\stackrel{ ext{def}}{=} \left\{ f: E o \mathbb{R}, f$  — измерима,  $\int\limits_E |f|^p < +\infty 
ight\}$ 

Нам нужно проверить, что  $L_p(E)$  - НП. То есть,  $f, g \in L_p \Rightarrow \alpha f + \beta g \in L_p$ ,  $\|f\|_p = \left(\int_E |f|^p\right)^{\frac{1}{p}}$ . Причем,  $\|f\|$  - удовлетворяет аксиомам нормы.

**Утверждение 4.1.**  $\|f\|_p$  удовлетворяет двум свойствам:

1. 
$$\|\alpha f\|_p = |\alpha| \|f\|_p$$

2. 
$$||f + g||_p \le ||f||_p + ||g||_p$$

Доказательство. 1. Очевидно.

2. 
$$\int\limits_E |f+g|^p \leqslant \int\limits_E (|f|+|g|)^p$$
. Пусть  $E_1=E(|f|\leqslant |g|),\ E_2=E(|f|>|g|)$ . Тогда  $E=E_1\cup E_2$ .

$$\int_{E} (|f| + |g|)^{p} = \int_{E_{1}} (|f| + |g|)^{p} + \int_{E_{2}} (|f| + |g|)^{p} \le$$

$$\le \int_{E_{1}} (2|g|)^{p} + \int_{E_{2}} (2|f|)^{p} < +\infty$$

Следовательно  $f + g \in L_p$ 

# 4.1 Неравенство Гельдера

**Теорема 4.2** (Неравенство Гельдера). Пусть p>1 и  $q:\frac{1}{p}+\frac{1}{q}=1$ . Пусть  $f\in L_p,\ g\in L_q$ . Тогда

$$\int\limits_{E}\left|f\right|\left|g\right|\leqslant\left(\int\limits_{E}\left|f\right|^{p}\right)^{\frac{1}{p}}\left(\int\limits_{E}\left|g\right|^{q}\right)^{\frac{1}{q}}$$

Доказательство. Воспользуемся неравенством Юнга:  $(uv\leqslant \frac{1}{p}u^p+\frac{1}{q}v^q)$ . Пусть  $u=\frac{|f|}{\|f\|_p},\,v=\frac{|g|}{\|g\|_p}$ 

$$\begin{split} \frac{|f|\,|g|}{\|f\|_p\,\|g\|_p} \leqslant \frac{1}{p} \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \frac{|g|^q}{\|g\|_p^q} \\ \int_E \frac{|f|\,|g|}{\|f\|_p\,\|g\|_p} \leqslant \frac{1}{p} \int_E \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \int_E \frac{|g|^q}{\|g\|_p^q} = \frac{1}{p} + \frac{1}{q} = 1 \end{split}$$

#### 4.2 Неравенство Минковского

**Теорема 4.3** (Неравенство Минковского). Пусть  $p > 1, f, g \in L_p$ . Тогда

$$\left(\int\limits_{E}(|f|+|g|)^{p}\right)^{\frac{1}{p}}\leqslant\left(\int\limits_{E}|f|^{p}\right)^{\frac{1}{p}}+\left(\int\limits_{E}|g|^{p}\right)^{\frac{1}{p}}$$

Доказательство. Рассмотрим  $(f+g)^p = f(f+g)^{p-1} + g(f+g)^{p-1}$ .

$$\int_{E} (f+g)^{p} = \int_{E} f(f+g)^{p-1} + \int_{E} g(f+g)^{p-1} \leqslant$$

$$\leqslant \left(\int_{E} f^{p}\right)^{\frac{1}{p}} \left(\int_{E} (f+g)^{q(p-1)}\right)^{\frac{1}{q}} + \left(\int_{E} g^{p}\right)^{\frac{1}{p}} \left(\int_{E} (f+g)^{q(p-1)}\right)^{\frac{1}{q}}$$

$$\text{пусть } q = \frac{p}{p-1}$$

$$\left(\int_{E} (f+g)^{p}\right)^{1-\frac{1}{q}} \leqslant \left(\int_{E} f^{p}\right)^{\frac{1}{p}} + \left(\int_{E} g^{p}\right)^{\frac{1}{p}}$$

$$\frac{1}{p} = 1 - \frac{1}{q}$$

Если подставить в неравенство Минковского определение нормы, то можно заметить, что мы доказали неравенство треугольника.

**Теорема 4.4.**  $L_p(E)$  - Банахово пространство.

Докажем вспомогательную лемму:

**Лемма 4.5.** Пусть  $f_n$  - измеримы,  $u \ \forall \delta > 0 \ \mu E \left( |f_n - f_m| \geqslant \delta \right) \xrightarrow[n,m \to +\infty]{} 0$ . Тогда  $\exists n_1 < n_2 < \dots < n_k < \dots : f_{n_k} \to f$  почти всюду.

Доказательство. Пусть  $\delta = \frac{1}{2^k}$ . Можно проверить, что (**TODO**)  $\exists n_1 < n_2 < \dots < n_k < \dots$ :  $\mu E\left(\left|f_{n_{k+1}} - f_{n_k}\right| \geqslant \frac{1}{2^k}\right) \leqslant \frac{1}{2^k}$ . Рассмотрим следующее множество:

$$E' = \bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} E\left(\left|f_{n_{j+1}} - f_{n_j}\right| \leqslant \frac{1}{2^j}\right)$$

Рассмотрим функциональный ряд  $S=f_1+(f_2-f_1)+(f_3-f_2)+\dots$  Фиксируем  $x\in E'$ . Тогда  $\exists k_x: x\in \bigcap\limits_{j=k_x}^{\infty} E\left(\left|f_{n_{j+1}}-f_{n_j}\right|\leqslant \frac{1}{2^j}\right)$ . Это значит, что при  $j>k_x$  выполняется  $\left|f_{n_{j+1}}(x)-f_{n_k}(x)\right|\leqslant \frac{1}{2^j}\xrightarrow[j\to+\infty]{}0$ . Следовательно, на E' функциональный ряд S - сходится. Нам осталось проверить, что его дополнение нуль-мерно. Т. е.  $\mu\overline{E'}=0$ . Очевидно:

$$\overline{E'} = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E\left(\left|f_{n_{j+1}} - f_{n_{j}}\right| > \frac{1}{2^{j}}\right) \Rightarrow$$

$$\Rightarrow \overline{E'} \subset \bigcup_{j=k}^{\infty} E\left(\left|f_{n_{j+1}} - f_{n_{j}}\right| > \frac{1}{2^{j}}\right) \Rightarrow$$

$$\Rightarrow \mu \overline{E'} \leqslant \sum_{j=k}^{\infty} \mu E\left(\left|f_{n_{j+1}} - f_{n_{j}}\right| > \frac{1}{2^{j}}\right) \leqslant \sum_{j=k}^{\infty} \frac{1}{k \to +\infty} 0 \Rightarrow$$

$$\Rightarrow \mu \overline{E'} = 0$$

Доказательство Теоремы. Докажем для случая p=1 (общий случай напишу потом **TODO**). Итак,  $f_n \in L_1(E), \|f_n - f_m\|_1 \xrightarrow[n,m \to +\infty]{} 0$ . Зафиксируем  $\forall \delta > 0$ . Тогда

$$\delta \mu E(|f_n - f_m| \ge \delta) \le \int_{E(|f_n - f_m| \ge \delta)} |f_n - f_m| \le \int_{E} |f_n - f_m| = ||f_n - f_m||_1 \to 0$$

Отсюда, по лемме,  $\exists (n_1 < n_2 < \dots < n_k < \dots) : f_{n_k} \xrightarrow[k \to +\infty]{} f$  почти всюду на E. Коль скоро k - фиксированное,  $|f_{n_k} - f_{n_m}| \xrightarrow[m \to +\infty]{} |f_{n_k} - f|$  почти всюду на E. По теореме Фату:

$$\int\limits_{E} |f_{n_k} - f| \leqslant \sup\limits_{m} \int\limits_{E} |f_{n_k} - f_{n_m}|$$

B силу  $\|f_{n_k} - f_{n_m}\|_1 \xrightarrow[k,m \to +\infty]{} 0$ 

$$\forall \varepsilon > 0 \exists M : \forall k, m > M \Rightarrow ||f_{n_k} - f_{n_m}||_1 \leqslant \varepsilon$$

Без ограничения общности можем считать, что k и m удовлетворяют вышеприведенному условию. Получаем, что

$$\forall k > M \Rightarrow \int_{E} |f_{n_k} - f| \leqslant \varepsilon$$

Отсюда,  $f_{n_k}-f$  суммируема, а значит  $\in L_1$ . Но, по условию,  $f_{n_k}\in L_1\Rightarrow f\in L_1$ . Так же, мы знаем, что  $\|f_{n_k}-f\|_1\leqslant \varepsilon$ , что, в свою очередь означает, что  $f_{n_k}\to f$  по норме в  $L_1$ . Оценим  $\|f_n-f\|_1$ :

$$||f_n - f||_1 \le ||f_{n_k} - f_n||_1 + ||f_{n_k} - f||_1$$

$$||f_{n_k} - f_n||_1 \xrightarrow[n,k \to +\infty]{} 0$$

$$||f_{n_k} - f||_1 \xrightarrow[k \to +\infty]{} 0$$

Получаем сходимость  $f_n$  к f по норме в  $L_1$ . А значит - полноту.

Может показаться, что требование измеримости функции f в определении пространства  $L_p$  - излишне. Это отнюдь не так.

**Утверждение 4.6.** Существует функция f такая, что ее p-я степень измерима, но сама функция - нет. Доказательство. Рассмотрим произвольное неизмеримое множество  $C \subset \mathbb{R}$ . Тогда пусть

$$f(x) = \begin{cases} 1 & , x \in C \\ -1 & , x \notin C \end{cases}$$

Очевидно, f -неизмерима (так как множество Лебега  $E(f>\frac{1}{2})={\rm C}$  - неизмеримо). Но  $f^2(x)=1$  при  $x\in\mathbb{R}$  - очевидно, измеримая функция.

Рассмотрим  $f,g\in L_2$ . По неравенству Гельдера, их произведение суммируемо. Положим  $\langle f,g\rangle=\int\limits_E f\cdot g$ . Очевидно, таким образом построенное отображение удовлетворяет аксиомам скалярного произведения. Получается, что  $L_2$  - гильбертово пространство с нормой, естественным образом порожденной скалярным произведением:  $\|f\|_2=\sqrt{\langle f,f\rangle}$ .

Приведем важный частный случай пространства  $L_2(E)$ : В качестве тройки множество -  $\sigma$ -алгебра мера возьмем:  $(X, \mathcal{A}, \mu) = (\mathbb{N}, 2^{\mathbb{N}}, \mu)$ , где  $\mu$  - считающая мера (количество элементов в множестве). Тогда  $\int_E f = \sum_{n=1}^\infty f(n)$ . В данном контексте суммируемость будет значить абсолютную сходимость.

Рассмотрим  $L_2(\mathbb{N})$ , Обозначаем  $a_n=f(n)$ . Тогда  $f\in L_2(\mathbb{N})\Leftrightarrow \sum\limits_n a_n^2<+\infty$ . Принято бозначать  $L_2(\mathbb{N})=l_2$ 

## 5 Мера подграфика

Итак, рассмотрим  $(X, \mathcal{A}, \mu)$ . Считаем, что мера - полная и  $\sigma$ -конечная.  $f: E \xrightarrow{\text{изм.}} \mathbb{R}, \, f \geqslant 0$  почти всюду.

**Определение.**  $G_f \stackrel{\text{def}}{=} \{(x,y) : x \in E, 0 \le y \le f(x)\}$  - подграфик функции f.

Здесь и далее, в качестве  $X \equiv \mathbb{R}^n$ ,  $\mu \equiv \lambda_n$ .

**Теорема 5.1** (Об измеримости подграфика). Подграфик измерим, и его мера равна  $\lambda_{n+1}(G_f) = \int\limits_E f dx$ 

**Утверждение 5.2.**  $G_c(E)$  - измеримо,  $\lambda G_c(E) = c\lambda E$ , где c - константа.

Доказательство. Пойдем от простого к сложному. Для ячейки  $\mathbb{R}^n$  формула верна по определению. Пусть теперь E - открытое множество. Как известно, любое открытое множество представляется в виде  $E = \bigcup_m \Pi_m$ ,  $\Pi_m$  - дизъюнктные ячейки.  $G(E) = \bigcup_m G(\Pi_m) \Rightarrow \lambda G(E) = \sum_m \lambda G(\Pi_m) = c \sum_m \lambda G(\Pi_m) = c \lambda E$ . Далее, без ограничения общности, можем считать, что  $\mu E < +\infty$  (Потому что у нас есть  $\sigma$  - конечность;  $\mathbb{R}^n = \bigcup_m T_m \ (T_m : \lambda T_m < +\infty) \Rightarrow E = \bigcup_m E T_m \ (\lambda E T_m < +\infty)$ ). Воспользуемся формулой:  $\lambda^* E = \inf_{E \subset G - \text{открыто}} \lambda G$  По аксиоме выбора,  $\exists G_m : G_m \subset G_{m+1}, E = \bigcap_m G_m$ . Понятно, что тогда  $\lambda G_m \to \lambda E$ . Так же  $G(E) = \bigcap_m G(G_m)$ . Следовательно  $\lambda G(G_m) = c\lambda G_m \to c\lambda E$ 

Доказательство теоремы. Мы умеем писать суммы Лебега-Дарбу:  $\underline{S}(\tau) \leqslant \int\limits_{E} f \leqslant \overline{S}(\tau)$ . Важно, что интеграл Лебега - единственное число, которое обладает таким свойством.  $\tau: E = \bigcup\limits_{m} e_{m}$  - конечное объединение дизъюнктных множеств, и

$$\underline{S}(\tau) = \sum_{p} m_{p} \lambda e_{p}, \ m_{p} = \inf_{x \in e_{p}} f(x)$$
$$\overline{S}(\tau) = \sum_{p} M_{p} \lambda e_{p}, \ M_{p} = \sup_{x \in e_{p}} f(x)$$

Обозначим  $\underline{E}_p=G_{m_p}(e_p)$ . Тогда  $\lambda\underline{E}_p=m_p\lambda e_p$ . Пусть  $\underline{E}(\tau)=\bigcup_p\underline{E}_p$ . Заметим, что

$$\lambda \underline{E}(\tau) = \sum_{p=1}^{n} \lambda \underline{E}_{p} = \sum_{p=1}^{n} m_{p} \lambda e_{p} = \underline{S}(\tau)$$

$$\lambda \overline{E}(\tau) = \sum_{p=1}^{n} \lambda \overline{E}_{p} = \sum_{p=1}^{n} M_{p} \lambda e_{p} = \overline{S}(\tau)$$

$$\underline{E}(\tau) \subset G_{f}(E) \subset \overline{E}(\tau)$$

По свйоствам сумм Лебега-Дарбу:  $\forall \varepsilon > 0 \exists \tau_{\varepsilon} : \forall \tau \leqslant \tau_{\varepsilon} \ \overline{S}(\tau) - \underline{S}(\tau) \leqslant \varepsilon$  Сопоставляя это с предыдущими фактами, получаем  $\underline{S}(\tau) \leqslant \lambda G_f(E) \leqslant \overline{S}(\tau)$ . И тогда, необходимо,  $\lambda G_f(E) = \int\limits_E f$ 

# 6 Теорема Фубини

Определение (Линейное сечение множества E).  $E_x \stackrel{\text{def}}{=} \{y \in \mathbb{R} : (x,y) \in E\}$ 

 $\Pi$ ример. Пусть  $E = [a, b] \times [c, d]$ . Тогда

$$E_x = \begin{cases} \varnothing, x \notin [a, b] \\ [c, d], x \in [a, b] \end{cases}$$

**Теорема 6.1.** Пусть  $\lambda E < +\infty$ , тогда

- 1. Любое  $E_x$  измеримо.
- 2.  $\lambda E_x$  измеримая, почти всюду конечная функция.
- 3.  $\lambda E_x = \int_{\mathbb{R}} E_x dx$

Доказательство. Пусть для начала E=G - открытое множество. Тогда  $G=\bigcup_m\Pi_m$  - дизъюнктные ячейки. Очевидно,  $G_x=\bigcup_m\Pi_{n,x}$ . По  $\sigma$ . По  $\sigma$  - аддитивности,  $\lambda G_x=\sum_m\lambda\Pi_{m,x}$ . Каждое слагаемое, как функция, измеримо, значит, очевидно, будет измерима и сумма. Поэтому, по теореме Леви, данное равенство можно интегрировать.

$$\int\limits_{\mathbb{D}} \lambda G_x = \sum\limits_{m} \int\limits_{\mathbb{D}} \lambda \Pi_{m,x} = \sum\limits_{m} \lambda \Pi_m = \lambda G$$

Далее, пусть E - произвольное измеримое множество. Воспользуемся формулой  $\lambda E = \inf_{E \subset G} \lambda G$ , где G - открытые. **TODO** 

Определение. Пусть  $E\subset\mathbb{R}^2, f$  - измерима и неотрицательна. Тогда  $\int\limits_E f(x,y)d\lambda\stackrel{\text{def}}{=} \iint\limits_E f(x,y)dxdy$ 

Теперь мы можем сформулировать теорему Фубини:

**Теорема 6.2** (Теорема Фубини). Пусть  $E \subset \mathbb{R}^2$ , f - суммируема на E, тогда почти всюду  $f(x,\cdot)$  - суммируема на  $E_x$ ,  $\int\limits_{E_x} f(x,y) dy$  - суммируема на  $\mathbb{R}$  u

$$\iint\limits_{E} f(x,y)dxdy = \int\limits_{\mathbb{R}} dx \int\limits_{E_{\tau}} f(x,y)dy$$

Доказательство. Достаточно доказать для неотрицательных функций. Для функций произвольного знака это будет следовать из линейности двойного интеграла. Итак, мы знаем, что подграфик  $G_f = \{(x,y) \in \mathbb{R} : (x,y) \in E, 0 \leqslant z \leqslant f(x,y)\}$  измерим.  $\iint_{\mathbb{R}} f(x,y) dx dy = \lambda G_f$ .

$$G_{f,x}=\{(y,z):(x,y)\in E, 0\leqslant z\leqslant f(x,y)\}=\\=\{(y,z):y\in E_x, 0\leqslant z\leqslant f(x,y)\}=G_{f(x,\cdot)}\Rightarrow\\$$
  $\Rightarrow$  по теореме о мере подграфика  $\Rightarrow \lambda G_{f,x}=\int\limits_{E_{-}}f(x,y)dy$ 

Подставляя это в исходную формулу, получаем формулу повторного интегрирования.

# 7 О многократных интегралах Римана

Обобщим понятние интеграла Римана на множества большей размерности (для упрощения будем вести речь в терминах  $\mathbb{R}^2$ ). Итак, рассмотрим  $\Pi = [a,b] \times [c,d], \, \tau_1 : a = x_0 < x_1 < \dots < x_n = b, \, \tau_2 : c = y_0 < y_1 < \dots < y_n = d$ . Тогда  $\tau = \tau_1 \times \tau_2$ , и  $\Pi_{ij} = [x_i, x_{i+1}) \times [y_j, y_{j+1}), \, \Pi \equiv \bigcup_{i,j} \Pi_{ij}$ . Теперь мы можем составить суммы Римана:

$$\sigma(f,\tau) = \sum_{ij} f(\overline{x}_i, \overline{y}_j) \Delta x_i \Delta y_j$$

Положим  $rang au \equiv \max_{ij} \left\{ diam\Pi_{ij} \right\}$ . Тогда:

$$\lim_{rang\tau\to+\infty}\sigma(f,\tau)=\int\limits_a^b\int\limits_c^df(x,y)dxdy$$

Если вышеприведенный предел существует , то он называется двойным интегралом Римана. Ясно, что функция интегрируемая по Риману на прямоугольнике интегрируема по Лебегу. Это позволяет воспользоваться теоремой Фубини:

$$\int_{a}^{b} f(x,y)dxdy = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy$$

В общем случае, это не означает, что  $\int\limits_a^b f(x,y)dy$  - интегрируема по Риману. Далее, встает вопрос - как обобщить кратный интеграл на произвольное плоское множество? Можно воспользоваться двумя равносильными подходами:

1. Пусть  $\overline{f}: E \to \mathbb{R}$ 

$$\overline{f} = \begin{cases} 0, & (x, y) \notin E \\ f(x, y), & \text{otherwise} \end{cases}$$

Так как E - ограничено, его можно поместить в прямоугольник  $\Pi$  и тогда:

$$\iint\limits_{E} f \stackrel{\text{def}}{=} \iint\limits_{\Pi} \overline{f}$$

Если  $f\equiv 1$  на E то тогда  $\iint\limits_E f=\lambda E$ 

2. \*Выводим аналог формулы замены переменной для функционалов\*  $\mathbf{TODO}$  (там много картинок, ничего сложного)

# 8 Криволинейные и поверхностные интегралы

#### 8.1 Криволинейные интегралы

Интегралы, которые будут рассмотрены в данном параграфе будут частными случаями интегралов по многообразиям от дифференциальных форм.

Итак, рассмотрим кривую  $\Gamma:\langle a,b\rangle\to\mathbb{R}^3.$  Здесь и далее считаем корринатные функции непрерывнодифференцируемыми, а дугу - спрямляемой (на всякий случай: эти понятия эквивалентны). Напомним, что спрямляемость означает существование интеграла  $l(\Gamma)=\int\limits_a^b\sqrt{x'^2+y'^2+z'^2}dx$ 

Мы будет рассматривать 2 случая:

1.  $f:\Gamma\to\mathbb{R}^3$ 

В силу спрямляемоси дуги  $\exists l(\widehat{P_kP_{k+1}})$ . Как всегда, рассматриваем разбиение  $\tau: a=t_0 < t_1 < \cdots < t_n=b$ . У нас появилось множество точек  $P_k=(x(t_k),y(t_k),z(t_k))$ . Пусть  $\widetilde{P}_k=(x(\widetilde{t_k}),y(\widetilde{t_k}),z(\widetilde{t_k}))$ , где  $\widetilde{t_k}\in[t_k,t_{k+1}]$ . Составляем интегральную сумму:

$$\sigma(\tau) = \sum_{k=0}^{n-1} f(\widetilde{P}_k) l(\widehat{P_k P_{k+1}})$$
(1)

Определение.  $rang au = \max_k l(\widehat{P_k P_{k+1}})$ 

**Определение** (Криволинейный интеграл первого рода). Если  $\exists \lim_{rang au \to 0} \sigma(\tau)$ , и он не зависит от выбора промежуточных разбиений, то он называется криволинейным интегралом первого рода

2.  $f: \langle a, b \rangle \to \mathbb{R}^3$ .  $\tau$  и  $\widetilde{P}_k$  определяем так же. Пусть  $\Delta x_k = x(t_k k + 1) - x(t_k)$   $\Delta y_k = y(t_k k + 1) - y(t_k)$   $\Delta z_k = z(t_k k + 1) - z(t_k)$ . Составим три интегральные суммы:

$$\sigma_x(\tau) = \sum_{k=0}^{n-1} f_x(\widetilde{P}_k) \Delta x_k \tag{2}$$

$$\sigma_y(\tau) = \sum_{k=0}^{n-1} f_y(\widetilde{P}_k) \Delta y_k \tag{3}$$

$$\sigma_z(\tau) = \sum_{k=0}^{n-1} f_z(\widetilde{P}_k) \Delta z_k \tag{4}$$

**Определение** (Криволинейный интеграл второго рода). Если  $\exists \lim_{\text{rang} \tau \to 0} \sigma_x(\tau) = I_x, \exists \lim_{\text{rang} \tau \to 0} \sigma_y(\tau) = I_y, \exists \lim_{\text{rang} \tau \to 0} \sigma_z(\tau) = I_z$  Причем, они не зависят от выбора промежуточных разбиений, то они называются криволинейными интегралами второго рода по координатным функциям и обозначаются:

$$\int_{\Gamma} f_x(x, y, z) dx \stackrel{\text{def}}{=} I_x$$

$$\int_{\Gamma} f_y(x, y, z) dy \stackrel{\text{def}}{=} I_y$$

$$\int_{\Gamma} f_z(x, y, z) dz \stackrel{\text{def}}{=} I_z$$

**Теорема 8.1** (О вычислении криволинейных интегралов первого рода). Если f - непрерывна вдоль  $\Gamma$ , u  $\Gamma$  - гладкая, то криволинейный интеграл первого рода существует, u равен

$$\int_{\Gamma} f dl = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x'^2 + y'^2 + z'^2} dt$$

Доказательство. Мы составляли интегральные суммы вида:

$$\sigma(\tau) = \sum_{k=0}^{n-1} f(\widetilde{P_k}) l(\widehat{P_k P_{k+1}})$$

Так как  $f(\widetilde{P}_k) = f(x(\widetilde{t}_k), y(\widetilde{t}_k), z(\widetilde{t}_k))$ , а  $l(\widehat{P_kP_{k+1}}) = \int\limits_{t_k}^{t_{k+1}} \sqrt{x'^2 + y'^2 + z'^2} dt \Rightarrow \frac{dl}{dt} = \sqrt{x'^2 + y'^2 + z'^2}$ , причем последняя производная одна и та же для всех k. Тогда  $\int\limits_{\Gamma} f dl = \int\limits_{t_0}^{t_1} f(x(t), y(t), z(t)) l' dt =$ 

$$\int_{t_0}^{t_1} f(x(t), y(t), z(t)) \sqrt{x'^2 + y'^2 + z'^2} dt$$

**Теорема 8.2** (О вычислении криволинейных интегралов второго рода). Если f - непрерывна вдоль  $\Gamma$ , u  $\Gamma$  - гладкая, то

$$\int_{\Gamma} f_x dx + f_y dy + f_z dz = \int_{a}^{b} f_x(x(t), y(t), z(t)) x' dt + f_y(x(t), y(t), z(t)) y' dt + f_z(x(t), y(t), z(t)) z' dt$$

Доказательство. для простоты докажем формулу  $\int\limits_{\Gamma} f_x dx = \int\limits_a^b f_x(x(t),y(t),z(t))x'dt$ . Исходная получается аналогичным доказательством двух оставшихся, и применением свойства линейности. Рассмотрим следующую интегральную сумму:

$$\sigma(\tau) = \sum_{k=0}^{n-1} f(\overline{P}_k) x'(\overline{t}_k) \Delta t_k \xrightarrow[\text{rang}\tau \to 0]{b} \int_a^b f x' dt$$

Теперь оценим модуль разности:

$$|\sigma_x(\tau) - \sigma(\tau)| \le \sum_{k=0}^{n-1} |f_x(\widetilde{P}_k) - f_x(\overline{P}_k)| |x'(\overline{t}_k)| \Delta t_k$$

По теореме Кантора,  $f_x(t)$  - равномерно непрерывна на [a,b], это значит, что

$$\forall \varepsilon > 0 \exists \delta : \operatorname{rang} \tau \leqslant \delta \Rightarrow \forall t', t'' |f_x(t') - f_x(t'')| \leqslant \varepsilon \Rightarrow$$
$$\Rightarrow |\sigma_x(\tau) - \sigma(\tau)| \leqslant \varepsilon \sum_{k=0}^{n-1} x'(\bar{t}_k) \Delta t_k \leqslant \varepsilon M$$

Существует связь между криволинейным интегралом второго рода по замкнутому контуру и двойным интегралом по внутренности этого контура. Она выражается в следующей теореме:

**Теорема 8.3** (Формула Грина). Пусть P и Q - непрерывно-дифференцируемы в односвязной области G. Пусть  $\Gamma = \partial G$ . Тогда:

$$\int\limits_{\Gamma_1} P dx + Q dy = \iint\limits_{\Gamma} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

 $\Gamma_+$  - означает, что обход такой, что внутренность G всегда слева.

**Лемма 8.4.** Пусть  $G = \{(x,y): a \leqslant x \leqslant b, f(x) \leqslant y \leqslant g(x)\}$  Пусть в  $G \exists P$  - непрерывная  $u \exists \frac{\partial P}{\partial y}$  - непрерывная. Тогда:

$$\int\limits_{\partial G_+} P dx = - \iint\limits_G \frac{\partial P}{\partial y} dx dy$$

Доказательство. По теореме Фубини:

$$-\iint_{G} \frac{\partial P}{\partial y} dx dy = -\int_{a}^{b} dx \int_{f(x)}^{g(x)} \frac{\partial P}{\partial y} dy =$$
$$-\int_{a}^{b} (P(x, g(x)) - P(x, f(x))) dx$$

ТОООздесь будет картинка с 4мя кусочками кривой Разделим интеграл на 4:

$$\int\limits_{\partial G_{+}}Pdx=\int\limits_{\mathbf{I}}Pdx+\int\limits_{\mathbf{II}}Pdx+\int\limits_{\mathbf{III}}Pdx+\int\limits_{\mathbf{IV}}Pdx$$

I: 
$$\begin{cases} x = t \\ y = f(t) \end{cases} \Rightarrow \int_{\mathbf{I}} P dx = \int_{a}^{b} P(t, f(t)) dt$$

III: 
$$\begin{cases} x = t \\ y = g(t) \end{cases} \Rightarrow \int_{\text{III}_{-}} Pdx = \int_{a}^{b} P(t, g(t))dt$$

На II и IV  $x=\mathrm{const}\Rightarrow\int\limits_{\mathrm{II}}Pdx=\int\limits_{\mathrm{IV}}Pdx=0.$  Складывая, получаем, что правая часть формулы из условия, равна левой части

Доказательство формулы Грина.

| 8.2 | Поверхностные | интегралы |
|-----|---------------|-----------|
|-----|---------------|-----------|