

Introduction

- Mann and Whitney's U-test is the **non-parametri**c statistic hypothesis test that is used to analyze the **difference between two independent samples of ordinal data**.
- Non-parametric methods allow statistical inference without making the assumption that the sample has been taken from a particular distribution (i.e. normal) .
- Here we are provided two **randomly drawn samples** and we have to verify whether these two samples is from the same population.

Assumptions for Mann Witney test

- All values of both groups are independent of each other.
- The values of the independent variable should be in an **ordinal manner** (means they can be compared to each other and ranked in order of highest to lowest).
- The variable should be **two independent**, categorical groups.
- The null hypothesis in Mann-Whitney U-test is always the same i.e. there
 is no significant difference between the two samples.
- Mann Whitney test is applied to two distribution that need not be normally distributed but should have the same curve shape. For Example: If one curve (of a sample) has longer right-tailed, the other curve (or other samples) should also have a longer right tail.....Blah Blah

puzzled with this theory as me...???

Don't worry I will Explain you this topic with the help of an easy example

Example:

A Pharma organization created a new drug to cure sleepwalking and observed the result on a group of 5 patients after a month. Another group of 5 has been taking the old drug for a month. The organization then asked the individuals to record the number of sleepwalking cases in the last month. The result of Sleepwalk cases in a month-

Old Drug	7	8	4	9	8
New Drug	3	4	2	1	1

If you look at the table, the number of sleepwalking cases recorded in a month while taking the new drug is lower as compared to the cases reported while taking the old drug.

Plot time

```
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
sns.distplot(batch_1)
sns.distplot(batch_2)
<AxesSubplot:ylabel='Density'>
   0.25
   0.20
Density
0.15
   0.10
   0.05
Significant difference between 2 samples
```

Testing Process Begins...

• Let's see how Mann Whitney U test works here. We are interested in knowing whether the two groups taking different drugs, report the same number of sleepwalking cases or not.

 H_0 : The two groups report same number of cases H_1 : The two groups report different number of cases

- I am selecting 5% level of significance for this test. The next step is to set a test statistic.
- For Mann Whitney U test, the **test statistic** is denoted by **U** which is the minimum of U1 and U2.

$$U_1 = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1$$

$$U_2 = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - R_2$$

where R_1 is the sum of ranks of group $1, R_2$ is the sum of ranks of group 2 n_1 is the size of group 1 and n_2 is the size of group 2

Till now we know:

n1=5 and n2=5 as they are sample size alpha = 0.5 R1=? and R2=? U1=? and U2=?

Now its time to find Ranks and here are they-

Old Drug	7	8	4	9	8
New Drug	3	4	2	1	1

	ND	ND	ND	Z	ND	OD	OD	OD	OD	OD
Sample	1	_	2	З	4	4	7	8	8	9
Ranks	1	2	3	4	5	6	7	8	9	10

First arrange observations of both samples in increasing order then calculate ranks by checking the observation is greater and equal to how many elements before it.

From the left check a specific elements is greater then equal to how many elements upto it -

1 is greater then equal to itself, so 1

Second 1 is greater then equal to previous 1 and itself, so 2

2 is greater then equal to 1,1,2 so 3

3 is greater then equal to 1,1,2,3 so 4

4 is greater then equal to 1,1,2,3,4 so 5 And so on

Testing Process Continues...

When there is a tie, We assign the mean rank when there are ties in a sample to make sure that the sum of ranks in each sample of size n is same. Therefore, the sum of ranks will always be equal to

$$\frac{n(n+1)}{2}$$

	ND	ND	ND	ND	ND	OD	OD	OD	OD	OD
Sample	1	1	2	3	4	4	7	8	8	9
Rank	1.5	1.5	3	4	5.5	5.5	7	8.5	8.5	10

There are 2 ones, so (1+2)/2 = 1.5 assign 1.5 to both 1 and like this do with 4 and 8

Testing Process Continues...

 The next step is to compute the sum of ranks for group 1 and group 2.

Using the formula of U1 & U2, compute their values.

• Now, U = min(U1, U2) = 0.5

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$

$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$

where R_1 is the sum of ranks of group 1, R_2 is the sum of ranks of group 2 n_1 is the size of group 1 and n_2 is the size of group 2

Testing Process Continues...

- For Mann Whitney U test, the value of U lies in the range(0, n1*n2) where 0 indicates that the two groups are completely different from each other and n1*n2 indicates some relation between the two groups. Also, U1 + U2 is always equal to n1*n2. Notice that the value of U is 0.5 here which is very close to 0.
- Now, we determine a critical value or a p-value (denoted by p) using Table for critical values which is in next page. We take n1=5, n2=5, and alpha=0.5 (Table is in next page)

Critical Values for the mean witney

										n	11								
n ₂	œ	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
-	.05		0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
3	.01		0	0	O	0	0	O	O	O	1	1	1	2	2	2	2	3	3
4	.05		0	1	2	3	4	4	5	6	7	8	9	10	11	1.1	12	13	14
4	.01			0	0	0	1	1	2	2	3	3	4	5	5	6	6	7	8
5	.05	O	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
	.01			O	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	.05	1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
	.01		O	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	.05	1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
	.01		0	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	.05	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
	.01		1	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	.05	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
	.01	O	1	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	.05	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
	.01	O	2	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42
11	.05	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
	.01	O	2	5	7	10	13	16	18	21	24	27	30	33	36	39	42	45	48
12	.05	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
	.01	1	3	6	9	12	15	18	21	24	27	31	34	37	41	44	47	51	54
13	.05	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
	.01	1	3	7	10	13	17	20	24	27	31	34	38	42	45	49	53	56	60
14	.05	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
	.01	1	4	7	11	15	18	22	26	30	34	38	42	46	50	54	58	63	67
15	.05	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
	.01	2	5	8	12	16	20	24	29	33	37	59 59	46	51	55	60	64	69	73
16	.05	6	11	15	21	26	31	37	42	47	53	45	64	70	75	81	86	92 74	98 79
	.01	6	11	17	13 22	18 28	34	39	31 45	36 51	57	63	50 67	55 75	81	65 87	70 93	99	105
17	.03	2	6	10	15	19	24	29	34	39	44	49	54	60	65	70	75	81	86
	.05	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
18	.03	2	6	11	16	21	26	31	37	42	47	53	58	64	70	75	81	87	92
	.05	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
19	.03	3	7	12	17	22	28	33	39	45	51	56	63	69	74	81	87	93	99
	.05	8	14	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127
20	.01	3	8	13	18	24	30	36	42	48	54	60	67	73	79	86	92	99	105
	.01			1.0	10	2-		30		40	5-4	- 00	0,	,,,	,,,	30	72		100

Hurrah! We get the final result

Reject H_0 : $U \le critical\ value$ $Accept\ H_0$: $U > critical\ value$

We get critical Value =2 from the table and U is 0.5, 0.5 <= 2 so it means We will reject the null Hypothesis and conclude that the there's no significant evidence to state that two groups report same number of sleepwalking cases.

Conclusion: We can say the new drug works as after taking new drug sleepwalking cases are not same as before.

Codes For Mann Witney u Test...

Mann Witney u Test

In []:

```
In [1]: # code for Mann-Whitney U test
        from scipy.stats import mannwhitneyu
        # Take batch 1 and batch 2 data as per above example
        batch_1 =[3, 4, 2, 6, 2, 5]
        batch 2 = [9, 7, 5, 10, 8, 6]
        # perform mann whitney test
        stat, p value = mannwhitneyu(batch 1, batch 2)
        print('Statistics=%.2f, p=%.2f' % (stat, p_value))
        # Level of significance
        alpha = 0.05
        # conclusion
        if p value < alpha:</pre>
            print('Reject Null Hypothesis (Significant difference between two samples)')
        else:
            print('Do not Reject Null Hypothesis (No significant difference between two samples)')
        Statistics=2.00, p=0.01
        Reject Null Hypothesis (Significant difference between two samples)
```