Lista de Exercícios

Cálculo I

Seção 6.3: Cálculo de Volumes por Cascas Cilíndricas

Lista Referente aos exercícios da 6ª Edição do Livro de James Stewart, Cálculo-Volume I.

1. Seja S o sólido obtido pela rotação da região mostrada na figura em torno do eixo y. Explique por que é inconveniente fatiar para obter o volume V de S. Esboce uma casca típica de aproximação. Qual é a circunferência e a altura? Use cascas para encontrar o volume V.

2. Seja S o sólido obtido pela rotação da região mostrada na figura em torno do eixo y. Esboce uma casca cilíndrica típica, e encontre sua circunferência e altura. Use cascas para encontrar o volume de S. Você acha que esse método é preferível ao fatiamento? Explique.

Enunciado para as questões 3-5: Use o método das cascas cilíndricas para achar o volume gerado pela rotação em torno do eixo y da região limitada pelas curvas dadas. Esboce a região e uma casca típica.

3.
$$y = \frac{1}{x}$$
, $y = 0$, $x = 1$, $x = 2$;

4.
$$y = x^2$$
, $y = 0$, $x = 1$;

5.
$$y = e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$.

8. Seja V o volume do sólido obtido pela rotação em torno do eixo y da região limitada

1

por $y=\sqrt{x}$ e $y=x^2$. Encontre V pelos métodos de fatiamento e cascas cilíndricas. Em ambos os casos, desenhe um diagrama para explicar seu método.

Enunciado para as questões 15-17: Use o método das cascas cilíndricas para achar o volume gerado pela rotação da região limitada pelas curvas dadas em torno do eixo especificado. Esboce a região e uma casca típica.

15.
$$y = x^2$$
, $y = 0$, $x = 1$, $x = 2$; em torno de $x = 1$;

16.
$$y = \sqrt{x}, y = 0, x = 1$$
; em torno de $x = -1$;

17.
$$y = 4x - x^2$$
, $y = 3$; em torno de $x = 1$.

Gabarito

- 1. Dificuldade: Encontrar uma função tal que x=f(y). Volume: $\frac{\pi}{15}$, Circunferência: $2\pi x$, Altura: $x(x-1)^2$.
- 2. Dificuldade: Encontrar uma função tal que x=f(y). Volume: $2\pi,$ Circunferência: $2\pi x,$ Altura: $\mathrm{sen}(x^2).$
- 3. $V = 2\pi;$

4. $V = \frac{\pi}{2}$;

5. $V = \pi \left(\frac{e-1}{e}\right)$.

8. $V = \frac{3\pi}{10}$.

15. $V = \frac{17\pi}{6}$;

16. $V = \frac{32\pi}{15}$;

17. $V = \frac{8\pi}{3}$.

