Ph.D. Qualifying Exam, Real Analysis Spring 2010, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Suppose that X is a Banach space.
 - **a.** Suppose that the weak and the weak-* topologies on X^* are the same. Show that X is reflexive.
 - **b.** Show that every closed subspace of X (closed with respect to the norm topology) is weakly closed.
- Suppose that K is a bounded measurable function on $\{(x,y): 0 \le y \le x \le 1\} \subset [0,1]^2$. Let T be the Volterra operator

 $(Tf)(x) = \int_0^x K(x, y) f(y) dy,$

 $f \in L^p([0,1]), 1 . Show that <math>T$ is well-defined, and $T: L^p([0,1]) \to L^p([0,1])$ is bounded. Show moreover that the spectrum of T is $\{0\}$.

- 3 Let $S(\mathbb{R}^n)$, resp. $S'(\mathbb{R}^n)$, denote the set of Schwartz functions, resp. tempered distributions, on \mathbb{R}^n .
 - **a.** Suppose that $u \in S'(\mathbb{R}^n)$ and $x_j u = 0$ for j = 1, ..., n. Show that there exists $c \in \mathbb{C}$ such that $u = c\delta_0$.
 - **b.** Suppose that $f \in S'(\mathbb{R})$, $\psi_0 \in S(\mathbb{R})$ with $\int_{\mathbb{R}} \psi_0(x) dx \neq 0$, and $a \in \mathbb{R}$. Show that there is a unique $u \in S'(\mathbb{R})$ such that u' = f and $u(\psi_0) = a$.
- A number $\xi \in \mathbb{R}$ is *diophantine* (with exponent k, k > 0) if for some constant C > 0 there are no rational numbers p/q $(p, q \in \mathbb{Z}, q > 0)$ such that $|\xi p/q| < Cq^{-k}$.

 ξ is a *Liouville number* if it is not diophantine, i.e. if for every k>0 there exist integers p,q such that q>k and $|\xi-p/q|\leq q^{-k}$.

a. Prove that the set of diophantine numbers is of the first category in \mathbb{R} ; equivalently: the set of Liouville numbers is residual in \mathbb{R} .

Hint: Write $E_k = \bigcap_N \bigcup_{p,q \in \mathbb{Z}, \ q > N} \{ \xi : |\xi - p/q| < q^{-k} \}$, and show that $\mathcal{L} = \bigcap_k E_k$.

- **b.** Prove that the set \mathcal{L} of Liouville numbers has zero Hausdorff dimension. This means: for every $\epsilon > 0$ and finite interval I there are intervals I_n , $n \in \mathbb{N}$, such that $I \cap \mathcal{L} \subset \bigcup_{n \in \mathbb{N}} I_n$, and $\sum_n |I_n|^{\epsilon} < \epsilon$.
- Suppose that $P(\xi) = \sum_{|\alpha| \le m} a_{\alpha} \xi^{\alpha}$, $a_{\alpha} \in \mathbb{C}$, is a polynomial of degree m on \mathbb{R}^n ; here for $\alpha \in \mathbb{N}^n$, $|\alpha| = \sum_{j=1}^n \alpha_j$, and $\xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_n^{\alpha_n}$. Let P(D) be the corresponding differential operator, $P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$, $D_j = -i\partial_j$, $D^{\alpha} = D_1^{\alpha_1} \dots D_n^{\alpha_n}$. We say that P is elliptic if $\mathbb{R}^n \ni \xi \neq 0$ implies $\sum_{|\alpha| = m} a_{\alpha} \xi^{\alpha} \neq 0$.
 - **a.** Show that if P is elliptic, $u \in S'(\mathbb{R}^n)$ and $Pu \in S(\mathbb{R}^n)$ then $u \in C^{\infty}(\mathbb{R}^n)$.
 - **b.** Recall that for $m \geq 0$, $H^m(\mathbb{T}^n)$ is the subset of $L^2(\mathbb{T}^n)$ consisting of functions whose Fourier coefficients satisfy $\sum_{k \in \mathbb{Z}^n} (1+|k|^2)^m |\hat{f}(k)|^2 < \infty$. Here $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ and $\hat{f}(k) = (2\pi)^{-n/2} \int e^{-ix \cdot k} f(x) \, dx$, $k \in \mathbb{Z}^n$.

Show that if P is elliptic of order m then P considered as an operator $P: H^m(\mathbb{T}^n) \to L^2(\mathbb{T}^n)$ has finite dimensional nullspace.

Ph.D. Qualifying Exam, Real Analysis Spring 2010, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems:
 - **a.** Suppose that $f: \mathbb{R} \to \mathbb{R}$ is increasing, and is differentiable almost everywhere with respect to the Lebesgue measure. Show that $\int_0^1 f'(x) dx \le f(1) f(0)$.
 - **b.** Let $S(\mathbb{R})$, resp. $S'(\mathbb{R})$, denote the set of Schwartz functions, resp. tempered distributions, on \mathbb{R} .

For $\phi \in S(\mathbb{R})$, $\epsilon > 0$, $k \in \mathbb{Z}$, define $u_{\epsilon} : S(\mathbb{R}) \to \mathbb{C}$ by $u_{\epsilon}(\phi) = \int_{\mathbb{R}} (x + i\epsilon)^{-k} \phi(x) dx$. Show that for all $\epsilon > 0$, $u_{\epsilon} \in S'(\mathbb{R})$, and that there exists $u \in S'(\mathbb{R})$ such that for all $\phi \in S(\mathbb{R})$, $u_{\epsilon}(\phi) \to u(\phi)$ as $\epsilon \to 0$.

Suppose (X, \mathcal{T}) is a compact Hausdorff topological space, and f_j , $j \in \mathbb{N}$, are real valued continuous functions on X that separate points, i.e. if $x, y \in X$, $x \neq y$ then there exists $j \in \mathbb{N}$ such that $f_j(x) \neq f_j(y)$. Show that (X, \mathcal{T}) is metrizable.

3 a. Show that on $\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z}), f\in L^p(\mathbb{T}), 1\leq p<\infty$ implies that $\int_{\mathbb{T}}|f(x+h)-f(x)|^p\,dx\to 0$ or $h\to 0$

- **b.** Suppose that $f \in L^p(\mathbb{T})$, $1 , and <math>\sup_{h \neq 0, |h| < 1} \int_{\mathbb{T}} \left| \frac{f(x+h) f(x)}{h} \right|^p dx < \infty$. Show that the distributional derivative of f, f', satisfies $f' \in L^p(\mathbb{T})$.
- Let $C_c(\mathbb{R}^N)$ denote the set of continuous real-valued functions of compact support on \mathbb{R}^N . Let $\mu_n, n \in \mathbb{N}$, and μ be locally finite Borel measures on \mathbb{R}^N such that $\int f d\mu_n \to \int f d\mu$ for all $f \in C_c(\mathbb{R}^N)$.
 - **a.** Show that if $U \subset \mathbb{R}^N$ is open then $\mu(U) \leq \liminf_{n \to \infty} \mu_n(U)$.
 - **b.** Show that if S is a bounded Borel set and if $\mu(\partial S) = 0$ then $\mu(S) = \lim_{n \to \infty} \mu_n(S)$.
- A Banach space X is *uniformly convex* if for every $\epsilon \in (0,1)$ there exists $\eta < 1$ such that if $x,y \in X$, $\|x\| = \|y\| = 1$ and $\|x-y\| > 2\epsilon$ then $\|\frac{1}{2}(x+y)\| < \eta$.
 - **a.** Show that every Hilbert space is uniformly convex.
 - **b.** Let X be a uniformly convex Banach space. Suppose that C is a closed convex subset of X, and $z \in X$. Show that there exists a unique $x \in C$ such that $||x z|| = \inf\{||y z|| : |y| \in C\}$.
 - **c.** Give an example showing that the property in (b) can fail if X is not uniformly convex.