# 1.1 A First Problem: Stable Matching

# Matching Residents to Hospitals

Goal. Given a set of preferences among hospitals and medical students, design a self-reinforcing admissions process.

Unstable pair: applicant x and hospital y are unstable if:

- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.

# Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

|        | favorite<br>ļ   | least favori <sup>.</sup><br>ļ |                 |  |
|--------|-----------------|--------------------------------|-----------------|--|
|        | 1 <sup>s†</sup> | 2 <sup>nd</sup>                | 3 <sup>rd</sup> |  |
| Xavier | Amy             | Bertha                         | Clare           |  |
| Yancey | Bertha          | Amy                            | Clare           |  |
| Zeus   | Amy             | Bertha                         | Clare           |  |

Men's Preference Profile

|        | favorite<br>ļ | least favorite  |                 |  |
|--------|---------------|-----------------|-----------------|--|
|        | <b>1</b> st   | 2 <sup>nd</sup> | 3 <sup>rd</sup> |  |
| Amy    | Yancey        | Xavier          | Zeus            |  |
| Bertha | Xavier        | Yancey          | Zeus            |  |
| Clare  | Xavier        | Yancey          | Zeus            |  |

Women's Preference Profile

# Stable Matching Problem

Perfect matching: everyone is matched monogamously.

- Each man gets exactly one woman.
- Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine assignment by joint action.

- In matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to their current partner.
- Unstable pair m-w could each improve by eloping.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n men and n women, find a stable matching if one exists.

#### Stable Roommate Problem

- Q. Do stable matchings always exist?
- A. Not obvious a priori.

### Stable roommate problem.

- 2n people; each person ranks others from 1 to 2n-1.
- Assign roommate pairs so that no unstable pairs.

|        | 1 <sup>s†</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> |
|--------|-----------------|-----------------|-----------------|
| Adam   | В               | С               | D               |
| Bob    | С               | Α               | D               |
| Chris  | Α               | В               | D               |
| Doofus | Α               | В               | С               |

$$A-B$$
,  $C-D$   $\Rightarrow$   $B-C$  unstable  
 $A-C$ ,  $B-D$   $\Rightarrow$   $A-B$  unstable  
 $A-D$ ,  $B-C$   $\Rightarrow$   $A-C$  unstable

Observation. Stable matchings do not always exist for stable roommate problem.

# Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
   Choose such a man m
   w = 1<sup>st</sup> woman on m's list to whom m has not yet proposed
   if (w is free)
        assign m and w to be engaged
   else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
   else
        w rejects m
}
```

#### Proof of Correctness: Termination

Observation 1. Men propose to women in decreasing order of preference.

Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim. Algorithm terminates after at most  $n^2$  iterations of while loop. Pf. Each time through the while loop a man proposes to a new woman. There are only  $n^2$  possible proposals.  $\blacksquare$ 

|        | 1 <sup>s†</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Victor | Α               | В               | С               | D               | Е               |
| Wyatt  | В               | С               | D               | Α               | Е               |
| Xavier | С               | D               | Α               | В               | Е               |
| Yancey | D               | Α               | В               | С               | Е               |
| Zeus   | Α               | В               | С               | D               | Е               |

|        | 1 <sup>s†</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Amy    | W               | X               | У               | Z               | V               |
| Bertha | X               | У               | Z               | V               | W               |
| Clare  | У               | Z               | V               | W               | X               |
| Diane  | Z               | V               | W               | X               | У               |
| Erika  | V               | W               | X               | У               | Z               |

n(n-1) + 1 proposals required

### Proof of Correctness: Perfection

Claim. All men and women get matched.

Pf. (by contradiction)

- Suppose, for sake of contradiction, that Zeus is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2, Amy was never proposed to.
- But, Zeus proposes to everyone, since he ends up unmatched.

# Proof of Correctness: Stability

men propose in decreasing

Claim. No unstable pairs.

## Pf. (by contradiction)

- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S\*.
- Case 1: Z never proposed to A. / order of preference
  - $\Rightarrow$  Z prefers his GS partner to A.
  - $\Rightarrow$  A-Z is stable.
- Case 2: Z proposed to A.
  - ⇒ A rejected Z (right away or later)
  - ⇒ A prefers her GS partner to Z. women only trade up
  - $\Rightarrow$  A-Z is stable.
- In either case A-Z is stable, a contradiction.

Amy-Yancey

5\*

Bertha-Zeus

. . .

## Summary

Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.

Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.

- Q. How to implement GS algorithm efficiently?
- Q. If there are multiple stable matchings, which one does G5 find?

# Efficient Implementation

Efficient implementation. We describe  $O(n^2)$  time implementation.

## Representing men and women.

- Assume men are named 1, ..., n.
- Assume women are named 1', ..., n'.

## Engagements.

- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays wife[m], and husband[w].
  - set entry to 0 if unmatched
  - if m matched to w then wife[m]=w and husband[w]=m

## Men proposing.

- For each man, maintain a list of women, ordered by preference.
- Maintain an array count [m] that counts the number of proposals made by man m.

# Efficient Implementation

## Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after O(n) preprocessing.

| Amy  | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> | 6 <sup>th</sup> | 7 <sup>th</sup> | 8 <sup>th</sup> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pref | 8               | 3               | 7               | 1               | 4               | 5               | 6               | 2               |

| Amy     | 1               | 2               | 3               | 4               | 5               | 6               | 7               | 8               |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Inverse | 4 <sup>th</sup> | 8 <sup>th</sup> | 2 <sup>nd</sup> | 5 <sup>th</sup> | 6 <sup>th</sup> | 7 <sup>th</sup> | 3 <sup>rd</sup> | 1 <sup>s†</sup> |

Amy prefers man 3 to 6
since inverse[3] < inverse[6]

2

7

# A few Computability Classes



# Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- Typically takes  $2^N$  time or worse for inputs of size N.
- Unacceptable in practice.

N! for stable matching with N men and N women

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants a > 0 and d > 0 such that on every input of size N, its running time is bounded by  $a \cdot N^d$  steps.

Def. An algorithm is poly-time if the above scaling property holds.

choose  $C = 2^d$ 

Property: poly-time is invariant over \*all\* computer models.

# Average/Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on any input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.
- For probabilistic algorithms, we take the worst average running time.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other input distributions.

# Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

## Justification: It really works in practice!

- Although  $6.02 \times 10^{23} \times N^{20}$  is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

## Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used
   because the worst-case instances seem to be rare.

Unix grep

# Why It Matters



# 2.2 Asymptotic Order of Growth

# Asymptotic Order of Growth

Let  $f: \mathbb{N} \to \mathbb{R}^+$  be a function, we define

## Upper bounds.

$$O(\mathsf{f}) = \{ g: \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, \, \mathsf{n}_0 \in \mathbb{N} \text{ s.t. } \forall \mathsf{n} \geq \mathsf{n}_0 \, [ \, g(\mathsf{n}) \leq c \cdot \mathsf{f}(\mathsf{n}) \, ] \, \}.$$

### Lower bounds.

$$\Omega(\mathsf{f}) = \{ g: \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, \, \mathsf{n}_0 \in \mathbb{N} \text{ s.t. } \forall \mathsf{n} \geq \mathsf{n}_0 \, [ \, g(\mathsf{n}) \geq c \cdot \mathsf{f}(\mathsf{n}) \, ] \, \}.$$

## Tight bounds.

$$\Theta(f) = O(f) \cap \Omega(f)$$
.

Ex: 
$$T(n) = 32n^2 + 17n + 32$$
.

$$T(n) \in O(n^2)$$
,  $O(n^3)$ ,  $\Omega(n^2)$ ,  $\Omega(n)$ , and  $\Theta(n^2)$ .  
 $T(n) \notin O(n)$ ,  $\Omega(n^3)$ ,  $\Theta(n)$ , or  $\Theta(n^3)$ .

#### Notation

Abuse of notation. T(n) = O(f(n)).

- Not transitive:
  - $f(n) = 5n^3$ ;  $g(n) = 3n^2$
  - $f(n) = O(n^3)$  and  $g(n) = O(n^3)$  but  $f(n) \neq g(n)$ .
- Better notation:  $T(n) \in O(f(n))$ .
- Acceptable notation: T(n) is O(f(n)). (if scared by  $\in !$ )

Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons.

- Statement doesn't "type-check".
- Precisely,  $f(n)=1 \in O(n \log n)$ , therefore "at least one comparison".
- Use  $\Omega$  for lower bounds: "at least  $\Omega$ (n log n) comparisons".
- "requires at least cn log n comparisons for c>0 and all large enough n".

#### Notation

# Limit theorems.

Let  $f,g:\mathbb{N}\to\mathbb{R}^+$  be functions, such that

$$\lim_{n\to\infty} f(n)/g(n) = c \in \mathbb{R}^+,$$

then 
$$f \in \Theta(g)$$
,  $g \in \Theta(f)$ ,  $\Theta(f) = \Theta(g)$ 

$$\lim_{n\to\infty} f(n)/g(n) = 0,$$

then 
$$f \in O(g)$$
,  $f \notin \Omega(g)$ ,  $O(f) \subseteq O(g)$ ,  $\Omega(g) \subseteq \Omega(f)$ 

# Properties

# Let $f,g:\mathbb{N}\to\mathbb{R}^+$ be functions Transitivity.

- If  $f \in O(g)$  and  $g \in O(h)$  then  $f \in O(h)$
- If  $f \in \Omega(g)$  and  $g \in \Omega(h)$  then  $f \in \Omega(h)$
- If  $f \in \Theta(g)$  and  $g \in \Theta(h)$  then  $f \in \Theta(h)$

since  $O(f)\subset O(g)\subset O(h)$ . since  $\Omega(f)\subset \Omega(g)\subset \Omega(h)$ .

since  $\Theta(f)\subset\Theta(g)\subset\Theta(h)$ .

### Additivity.

■ If  $f \in O(h)$  and  $g \in O(h)$  then  $f + g \in O(h)$ 

since  $f(n) < c_f h(n)$ ,  $g(n) < c_g h(n) \Rightarrow f(n) + g(n) < (c_f + c_g) h(n)$ .

- If  $f \in \Omega(h)$  and  $g \in \Omega(h)$  then  $f + g \in \Omega(h)$ .
- If  $f \in \Theta(h)$  and  $g \in O(h)$  then  $f + g \in \Theta(h)$ .

## Consequence:

- $f+g \in O(\max\{f,g\})$
- $f+g \in \Omega(\max\{f,g\})$
- $f+g \in \Theta(\max\{f,g\})$

since  $f + g \le 2\max\{f,g\}$ . since  $f + g \ge \max\{f,g\}$ .

since  $\max\{f,g\} \le f + g \le 2 \max\{f,g\}$ .

# Asymptotic Bounds for Some Common Functions

Polynomials. 
$$a_0 + a_1 n + ... + a_d n^d \in \Theta(n^d)$$
 if  $a_d > 0$ .

Polynomial time. Running time  $\in O(n^d)$  for some constant d independent of the input size n.

Logarithms. 
$$O(\log_a n) \in O(\log_b n)$$
 for any constants  $a, b > 0$ .

can avoid specifying the base

Logarithms. For every 
$$x > 0$$
,  $\log n \in O(n^x)$ .

log grows slower than every polynomial

Exponentials. For every 
$$r > 1$$
 and every  $d > 0$ ,  $n^d \in O(r^n)$ .

every exponential grows faster than every polynomial

# 2.4 A Survey of Common Running Times

## Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute minimum of n numbers  $a_1, ..., a_n$ .

```
min ← a<sub>1</sub>
for i = 2 to n {
   if (a<sub>i</sub> < min)
      min ← a<sub>i</sub>
}
```

# O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform  $O(n \log n)$  comparisons.

Closest Points on a line. Given n numbers  $x_1, ..., x_n$ , what is the smallest distance  $x_i$ - $x_j$  between any two points?

O(n log n) solution. Sort the n numbers. Scan the sorted list in order, identifying the minimum gap between successive points.

# Quadratic Time: O(n<sup>2</sup>)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane  $(x_1, y_1), ..., (x_n, y_n)$ , find the pair that is closest.

 $O(n^2)$  solution. Try all pairs of points.

```
min ← (x<sub>1</sub> - x<sub>2</sub>)<sup>2</sup> + (y<sub>1</sub> - y<sub>2</sub>)<sup>2</sup>

for i = 1 to n {

for j = i+1 to n {

d ← (x<sub>i</sub> - x<sub>j</sub>)<sup>2</sup> + (y<sub>i</sub> - y<sub>j</sub>)<sup>2</sup>

if (d < min)

min ← d

}
```

Remark. This algorithm is  $\Omega(n^2)$  and it seems inevitable in general, but this is just an illusion:  $\Theta(n \log n)$  is actually possible and optimal...  $\longrightarrow$  see chapter 5

# Quadratic Time: O(n<sup>2</sup>)

Quadratic time. Solve  $O(n^2)$  independent sub-puzzles each in constant-time.

nxnxn Rubik's cube. Given a scrambled nxnxn cube, put it in solved configuration.



Remark. This algorithm is  $\Omega(n^2)$  and it seems inevitable in general, but this is just an illusion:  $\Theta(n^2/\log n)$  is actually possible and optimal...

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Matrix multiplication. Given two nxn matrices of numbers A,B, what is their matrix product C?

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

 $O(n^3)$  solution. For each entry  $c_{ij}$  compute as below.

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

# Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

 $O(n^k)$  solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   if (S is an independent set)
     report S
   }
}
```

• Check whether S is an independent set =  $O(k^2)$ .

```
■ Number of k element subsets = \binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}

■ O(k^2 n^k / k!) = O(n^k).

poly-time for k=17, but not practical
```

# Exponential Time

Independent set. Given a graph, what is the maximum size of an independent set?

 $O(n^2 2^n)$  solution. Enumerate all subsets.

```
S* ← Ø
foreach subset S of nodes {
  if (S is an independent set and |S|>|S*|)
     update S* ← S
  }
}
```