

一、晶体的双折射现象

实验结论:

1. 一束光遵从折射定律:

称为寻常光,或o光。

2. 另一束不遵从折射定律:

称为非寻常光,或e光。

3. o光和e光皆为线偏振光,且振动方向相互垂直。

二、晶体双折射现象的解释

1. 媒质中光的传播机理:

二、晶体双折射现象的解释

1. 媒质中光的传播机理:

晶体中
$$u = \frac{1}{\sqrt{\varepsilon \mu}}$$

$$n = \frac{c}{u} = \sqrt{\varepsilon_r \mu_r} \approx \sqrt{\varepsilon_r}$$

各向异性介质 ε_r 并非为常数,与方向有关!

3. 晶体中 o、e 光的特点:

主平面: 光轴与光线构成的平面。

主截面: 光轴与表面法线

构成的平面。

入射面: 入射光线与表面

法线构成的平面。

若入射面与主截面重合,则o、e光主平面皆与重合。

晶体中o、e光的子波波阵面:

e光的主折射率:

$$n_e = \frac{c}{v_e}$$

晶体	n_o	n_e
方解石	1.658	1.486
白云石	1.681	1.500
硝酸钠	1.585	1.332
冰	1.309	1.310

4. 惠更斯作图法的解释(以负晶体为例):

三、Nicol 棱镜

方解石: $n_o = 1.658$, $n_e = 1.486$

加拿大树胶:无双折射现象,n=1.55

面ABCD: 为方解石晶体的主截面。

三、Nicol 棱镜

方解石: $n_o = 1.658$, $n_e = 1.486$

加拿大树胶:无双折射现象,n=1.55

面ABCD: 为方解石晶体的主截面。

Chapter 11. 光学 § 11. 11 晶体的双折射 波片

用作起偏器: 出射光为线偏振光, 偏振面//主截面!

用作检偏器:只让偏振面平行于主截面的线偏振光通过!

面ABCD: 为方解石晶体的主截面。

Pail:

- o、e光及其特点:
- 2. 双折射晶体的光轴、主截面;
 - 3. Nicol 棱镜及其起偏与检偏;
- 4. 二分之一波片、四分之一波片:

$$d_{1/2} = \frac{2k+1}{n_o - n_e} \frac{\lambda}{2}$$
 $d_{1/4} = \frac{2k+1}{n_o - n_e} \frac{\lambda}{4}$

5. 椭圆偏振光、圆偏振光及其他偏振光的区分。

(请看录像)