4.4.1 – Амплитудная дифракционная решётка.

Цель работы. Знакомство с работой и настройкой гониометра, определение спектральных характеристик амплитудной решётки.

В работе используются: гониометр, дифракционная решётка, ртутная лампа.

Теоретическая часть. Спектральный анализ (разложение электромагнитного излучения на монохроматические составляющие) может многое сказать о природе источника излучения. Принципиальная схема установки для изучения спектра показана на рисунке 1: коллиматор формирует параллельный пучок света от источника, ДЭ осуществляет пространственное спектральное разложение пучка.

Рис. 1: Схема прибора: источник-коллиматор, диспергирующий элемент, зрительная труба.

В нашем эксперименте диспергирующим элементом является амплитудная дифракционная решетка (рис. 2). Каждая щель становится, по принципу Гюйгенса-Френеля, источником вторичных сферических волн, интерферирующих между собой; ясно, что максимум интенсивности света на экране наблюдается только в том случае, если дифрагирующие волны приходят в одной фазе:

$$d\sin\varphi = m\lambda,\tag{1}$$

где d — период решетки, λ — длина волны, m — целое число. Коль скоро пучок света представляет собой суперпозицию монохроматических волн с длинами волн λ_i , мы наблюдаем пространственное разделение максимумов в зависимости от длины волны (соотв. цвета).

Эксперимент. В данной работе будем исследовать спектр ртути (источник – ртутная лампа). Первым делом измерим угловые координаты (о гониометре говорить не будем) спектров ртути:

·	(0)
→	$d \int_{d\sin\varphi}^{\varphi}$
	
	b <u> </u>

Рис. 2: Дифракция световой волны на амплитудной решётке

цвет	φ	$\sin(\varphi-\varphi_0)$	λ , HM
фиолетовый	13°02′01″	0.225	404.7
синий	13°59′37″	0.242	435.8
голубой	14°27′08″	0.249	491.6
зеленый	15°43′20″	0.271	546.1
желтый	16°38′29″	0.286	577.0
желтый	16°42′36″	0.287	579.1

Рис. 3: Зависимость пространственного спектрального разложения от длины волны.

Измерения ясно показывают справедливость формулы (1). По графику зависимости определим шаг решетки:

$$d \simeq 2890 \pm 190$$
 нм

Заметим, что на установке N=500 штрихов/мм $\Rightarrow d=2000$ нм, что мы почти и получили.

Теперь исследуем угловую дисперсию по линия жёлтого дублета в спектрах разного порядка m:

$$D(\lambda) = \frac{\mathrm{d}\varphi}{\mathrm{d}\lambda} = \frac{m}{\sqrt{d^2 - m^2 \lambda^2}}.$$
 (2)

\overline{m}	1-ая линия	2-ая линия	$\Delta \varphi, \text{сек}$	$D_{\rm exp}$	D_{theor}
1	16°38′29″	16°42′36″	247	11.76	16.96
-1	6°58′00″	6°53′43″	-257	-12.23	-16.96
-2	26°31′01″	26°44′45″	824	-39.23	-44.11

Рис. 4: Угловая дисперсия.

Оценим также разрешающую способность $R=\lambda/\delta\lambda$. Ширина одного желтого дуплета есть $\delta\varphi=32''$, тогда $\delta\lambda=\delta\varphi/D\simeq 1.9 {\rm \AA} \quad \Rightarrow \quad R=1.9\cdot 10^3$. Тогда число одновременно работающих штрихов в критерии Релея $N=R/m=1.0\cdot 10^3$.

Вывод. В данной работе мы научились проводить простейший спектральный анализ, а также оценили по результатам эксперимента параметры установки.