Fuzzy Relations

Murat Osmanoglu

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

• $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$
- if we form the pairs (a,b) based on a specific property, it's called relation,

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$
- if we form the pairs (a,b) based on a specific property, it's called relation,

 $R \subseteq AxB$, $(a,b) \in R$ or aRb, 'a is in relation R with y'

• if $R \subseteq A \times B$, binary relation; if $R \subseteq A_1 \times A_2 \times ... \times A_n$, called n-ary relation

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$
- if we form the pairs (a,b) based on a specific property, it's called relation,

- if $R \subseteq A \times B$, binary relation; if $R \subseteq A_1 \times A_2 \times ... \times A_n$, called n-ary relation
- $A = \{1,2,3\}, R = \{(1,1), (1,3), (2,2), (2,3)\}$

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$
- if we form the pairs (a,b) based on a specific property, it's called relation,

$$R \subseteq AxB$$
, $(a,b) \in R$ or aRb, 'a is in relation R with y'

- if $R \subseteq AxB$, binary relation; if $R \subseteq A_1xA_2x...xA_n$, called n-ary relation
- $A = \{1,2,3\}, R = \{(1,1), (1,3), (2,2), (2,3)\}$

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$
- if we form the pairs (a,b) based on a specific property, it's called relation,

- if $R \subseteq A \times B$, binary relation; if $R \subseteq A_1 \times A_2 \times ... \times A_n$, called n-ary relation
- $A = \{1,2,3\}, R = \{(1,1), (1,3), (2,2), (2,3)\}$

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$
- if we form the pairs (a,b) based on a specific property, it's called relation,

- if $R \subseteq A \times B$, binary relation; if $R \subseteq A_1 \times A_2 \times ... \times A_n$, called n-ary relation
- $A = \{1,2,3\}, R = \{(1,1), (1,3), (2,2), (2,3)\}$

Cartesian product AxB defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $A_1 \times A_2 \times ... \times A_n$ consists of all n-tuples $(a_1, a_2, ..., a_n)$
- if we form the pairs (a,b) based on a specific property, it's called relation,

- if $R \subseteq A \times B$, binary relation; if $R \subseteq A_1 \times A_2 \times ... \times A_n$, called n-ary relation
- $A = \{1,2,3\}, R = \{(1,1), (1,3), (2,2), (2,3)\}$

R	1	2	3
1	1	0	1
2	0	1	1
3	0	0	0

Characteristics of Relations

Characteristics of Relations

• Surjection: for all $y \in B$, there exists some $x \in A$ s.t. $(x,y) \in R$

Characteristics of Relations

- Surjection: for all $y \in B$, there exists some $x \in A$ s.t. $(x,y) \in R$
- Injection: for all $x_1,x_2 \in A$, if $(x_1,y) \in R$ and $(x_2,y) \in R$, then $x_1 = x_2$

Characteristics of Relations

- Surjection: for all $y \in B$, there exists some $x \in A$ s.t. $(x,y) \in R$
- Injection: for all $x_1, x_2 \in A$, if $(x_1, y) \in R$ and $(x_2, y) \in R$, then $x_1 = x_2$
- Bijection: it's surjective and injective at the same time

Characteristics of Relations

- Surjection: for all $y \in B$, there exists some $x \in A$ s.t. $(x,y) \in R$
- Injection: for all $x_1, x_2 \in A$, if $(x_1, y) \in R$ and $(x_2, y) \in R$, then $x_1 = x_2$
- Bijection: it's surjective and injective at the same time

Funtions

Characteristics of Relations

- Surjection: for all $y \in B$, there exists some $x \in A$ s.t. $(x,y) \in R$
- Injection: for all $x_1, x_2 \in A$, if $(x_1, y) \in R$ and $(x_2, y) \in R$, then $x_1 = x_2$
- Bijection: it's surjective and injective at the same time

Funtions

• for all $x \in A$, there exists some $y \in B$ s.t. $(x,y) \in R$

Characteristics of Relations

- Surjection: for all $y \in B$, there exists some $x \in A$ s.t. $(x,y) \in R$
- Injection: for all $x_1, x_2 \in A$, if $(x_1, y) \in R$ and $(x_2, y) \in R$, then $x_1 = x_2$
- Bijection: it's surjective and injective at the same time

Funtions

- for all $x \in A$, there exists some $y \in B$ s.t. $(x,y) \in R$
- for all $y_1,y_2 \in B$, if $(x,y_1) \in R$ and $(x,y_2) \in R$, then $y_1 = y_2$

- Complement, $R \subseteq AxB$, $\neg R = \{(x,y) \mid (x,y) \notin R\}$
- Intersection, R,S \subseteq AxB, R \cap S = {(x,y) | (x,y) \in R and (x,y) \in S}
- Union, $R,S \subseteq AxB$, $R \cup S = \{(x,y) \mid (x,y) \in R \text{ or } (x,y) \in S\}$

- Complement, $R \subseteq AxB$, $\neg R = \{(x,y) \mid (x,y) \notin R\}$
- Intersection, R,S \subseteq AxB, R \cap S = {(x,y) | (x,y) \in R and (x,y) \in S}
- Union, R,S \subseteq AxB, R \cup S = {(x,y) | (x,y) \in R or (x,y) \in S}
- Inverse, $R \subseteq AxB$, $R^{-1} \subseteq BxA$, $R^{-1} = \{(y,x) \mid (x,y) \in R\}$

- Complement, $R \subseteq AxB$, $\neg R = \{(x,y) \mid (x,y) \notin R\}$
- Intersection, R,S \subseteq AxB, R \cap S = {(x,y) | (x,y) \in R and (x,y) \in S}
- Union, R,S \subseteq AxB, R \cup S = {(x,y) | (x,y) \in R or (x,y) \in S}
- Inverse, $R \subseteq AxB$, $R^{-1} \subseteq BxA$, $R^{-1} = \{(y,x) \mid (x,y) \in R\}$
- Composition, $R \subseteq AxB$, $S \subseteq BxC$, $\subseteq AxC$, SoR = $\{(x,z) \mid (x,y) \in R \text{ and } (y,z) \in S \text{ for some } y \in B\}$

- Complement, $R \subseteq AxB$, $\neg R = \{(x,y) \mid (x,y) \notin R\}$
- Intersection, R,S \subseteq AxB, R \cap S = {(x,y) | (x,y) \in R and (x,y) \in S}
- Union, R,S \subseteq AxB, R \cup S = {(x,y) | (x,y) \in R or (x,y) \in S}
- Inverse, $R \subseteq AxB$, $R^{-1} \subseteq BxA$, $R^{-1} = \{(y,x) \mid (x,y) \in R\}$
- Composition, $R \subseteq AxB$, $S \subseteq BxC$, $\subseteq AxC$, SoR = $\{(x,z) \mid (x,y) \in R \text{ and } (y,z) \in S \text{ for some } y \in B\}$

- Complement, $R \subseteq AxB$, $\neg R = \{(x,y) \mid (x,y) \notin R\}$
- Intersection, R,S \subseteq AxB, R \cap S = {(x,y) | (x,y) \in R and (x,y) \in S}
- Union, R,S \subseteq AxB, RUS = {(x,y) | (x,y) \in R or (x,y) \in S}
- Inverse, $R \subseteq AxB$, $R^{-1} \subseteq BxA$, $R^{-1} = \{(y,x) \mid (x,y) \in R\}$
- Composition, $R \subseteq AxB$, $S \subseteq BxC$, $\subseteq AxC$, SoR = $\{(x,z) \mid (x,y) \in R \text{ and } (y,z) \in S \text{ for some } y \in B\}$

- Complement, $R \subseteq AxB$, $\neg R = \{(x,y) \mid (x,y) \notin R\}$
- Intersection, R,S \subseteq AxB, R \cap S = {(x,y) | (x,y) \in R and (x,y) \in S}
- Union, R,S \subseteq AxB, RUS = {(x,y) | (x,y) \in R or (x,y) \in S}
- Inverse, $R \subseteq AxB$, $R^{-1} \subseteq BxA$, $R^{-1} = \{(y,x) \mid (x,y) \in R\}$
- Composition, $R \subseteq AxB$, $S \subseteq BxC$, $\subseteq AxC$, SoR = $\{(x,z) \mid (x,y) \in R \text{ and } (y,z) \in S \text{ for some } y \in B\}$

Operations on Relations

Let $A = \{1,2,3\}$, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	а	b
1	1	0
2	0	1
3	0	0

S	X	У	Z
а	1	0	1
b	0	1	1
J	ı		

Let
$$A = \{1,2,3\}$$
, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	а	b	
1	1	0	
2	0	1	
3	0	0	

SoR	X	У	Z
1			
2			
3			

Let
$$A = \{1,2,3\}$$
, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	a	b
1	1	0
2	0	1
3	0	0

$$(u_1 \wedge v_1) \vee (u_2 \wedge v_2) \vee \ldots \vee (u_n \wedge v_n)$$

Operations on Relations

Let
$$A = \{1,2,3\}$$
, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	а	b
1	1	0
2	0	1
3	0	0

 $(1 \wedge 1) \vee (0 \wedge 0)$

Operations on Relations

Let
$$A = \{1,2,3\}$$
, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	а	b
1	1	0
2	0	1
3	0	0

 $(1 \land 0) \lor (0 \land 1)$

Operations on Relations

Let
$$A = \{1,2,3\}$$
, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	а	b
1	1	0
2	0	1
3	0	0

 $(1 \land 1) \lor (0 \land 1)$

Operations on Relations

Let $A = \{1,2,3\}$, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	a	b
1	1	0
2	0	1
3	0	0

SoR	X	У	Z
1	1	0	1
2	0	1	1
3	0	0	0

Let
$$A = \{1,2,3\}$$
, $B = \{a,b\}$, $C = \{x,y,z\}$ and $R \subseteq AxB$, $S \subseteq BxC$

R	a	b
1	1	0
2	0	1
3	0	0

SoR	X	У	Z
1	1	0	1
2	0	1	1
3	0	0	0

<u>Properties of Relations</u>

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, R⊆ AxA, R is anti-symmetric if (y,x) ∉ R for all (x,y) ∈ R and x ≠ y
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

Properties of Relations

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3
1	1	0	1
2	0	1	1
3	0	1	1

<u>Properties of Relations</u>

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3
1	1	0	1
2	0	1	1
3	0	1	1

Properties of Relations

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3
1	1	0	1
2	0	1	1
3	0	1	1

reflexive

<u>Properties of Relations</u>

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3
1	1	0	1
2	0	1	1
3	0	1	1

reflexive

Properties of Relations

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3
1	1	0	1
2	0	1	1
3	0	1	1

reflexive not symmetric

<u>Properties of Relations</u>

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, R⊆ AxA, R is anti-symmetric if (y,x) ∉ R for all (x,y) ∈ R and x ≠ y
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3
1	1	0	1
2	0	1	1
3	0	1	1

reflexive not symmetric

<u>Properties of Relations</u>

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3
1	1	0	1
2	0	1	1
3	0	1	1

reflexive not symmetric not anti-symmetric

Properties of Relations

- Reflexivity, $R \subseteq A \times A$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3	reflexive
1	1	0	1	not symmetric
2	0	1	1	not anti-symmetric
3	0	1	1	

 $(1,3) \in R$ and $(3,2) \in R$, but $(1,2) \notin R$

<u>Properties of Relations</u>

- Reflexivity, $R \subseteq AxA$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,

R	1	2	3	reflexive
1	1	0	1	not symmetric
2	0	1	1	not anti-symmetric
3	0	1	1	not transitive

 $(1,3) \in R$ and $(3,2) \in R$, but $(1,2) \notin R$

Properties of Relations

- Reflexivity, $R \subseteq A \times A$, R is reflexive if $(x,x) \in R$ for all $x \in A$
- Symmetry, $R \subseteq A \times A$, R is symmetric if $(y,x) \in R$ for all $(x,y) \in R$
- Anti-symmetry, $R \subseteq A \times A$, R is anti-symmetric if $(y,x) \notin R$ for all $(x,y) \in R$ and $x \neq y$
- Transitivity, $R \subseteq A \times A$, R is transitive if $(x,z) \in R$ for all $(x,y) \in R$ and $(y,z) \in R$,
- if a relation is reflexive, symmetric, and transitive, it's called equivalence relation
- if a relation is reflexive and symmetric, it's called compatibility relation
- if a relation is reflexive and transitive, it's called pre-order relation
- if a relation is reflexive, anti-symmetric, and transitive, it's called order relation

- R = {((x,y), μ_R) | μ_R (x,y) \ge 0} where R \subseteq AxB
- $\mu_R(x,y) \in [0,1]$, degree of relationship between x and y (strongly related or weakly related)

- R = {((x,y), μ_R) | μ_R (x,y) \ge 0} where R \subseteq AxB
- $\mu_R(x,y) \in [0,1]$, degree of relationship between x and y (strongly related or weakly related)
- $R \subseteq A \times A$, $A = \{1,2,3\}$

- R = {((x,y), μ_R) | μ_R (x,y) \ge 0} where R \subseteq AxB
- $\mu_R(x,y) \in [0,1]$, degree of relationship between x and y (strongly related or weakly related)
- $R \subseteq A \times A$, $A = \{1,2,3\}$

- R = {((x,y), μ_R) | μ_R (x,y) \ge 0} where R \subseteq AxB
- $\mu_R(x,y) \in [0,1]$, degree of relationship between x and y (strongly related or weakly related)
- $R \subseteq A \times A$, $A = \{1,2,3\}$

).5	
0.8	1)	2	0.2
	3	1	

R	1	2	3
1	0.5	0	0.8
2	0	0.2	1
3	0	0	0

- R = {((x,y), μ_R) | μ_R (x,y) \ge 0} where R \subseteq AxB
- $\mu_R(x,y) \in [0,1]$, degree of relationship between x and y (strongly related or weakly related)
- $R \subseteq A \times A$, $A = \{1,2,3\}$

R	1	2	3
1	0.5	0	0.8
2	0	0.2	1
3	0	0	0

R	İst	Ank	Kon
İst	0	0.4	0.7
Ank	0.4	0	0.3
Kon	0.7	0.3	0

Cartesian product AxB defined as

$$AxB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

• $\mu_{A\times B}(x,y) = \min \{\mu_A(x), \mu_B(y)\}$

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $\mu_{A\times B}(x,y) = \min \{\mu_A(x), \mu_B(y)\}$
- A = 'luxury cars', B = 'monthly income considered as rich'

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $\mu_{A\times B}(x,y) = \min \{\mu_A(x), \mu_B(y)\}$
- A = 'luxury cars', B = 'monthly income considered as rich'

$$A = \{(Porche, 1), (Toyota, 0.6), (Tofaş, 0.2)\}$$

$$B = \{(100k, 1), (10k, 0.5), (3k, 0.1)\}$$

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $\mu_{A\times B}(x,y) = \min \{\mu_A(x), \mu_B(y)\}$
- A = 'luxury cars', B = 'monthly income considered as rich'

$$A = \{(Porche, 1), (Toyota, 0.6), (Tofaş, 0.2)\}$$

$$B = \{(100k, 1), (10k, 0.5), (3k, 0.1)\}$$

R	100	10	3
Por	1	0.5	0.1
Toy	0.6	0.5	0.1
Tof	0.2	0.2	0.1

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

- $\mu_{A\times B}(x,y) = \min \{\mu_A(x), \mu_B(y)\}$
- A = 'luxury cars', B = 'monthly income considered as rich'

$$A = \{(Porche, 1), (Toyota, 0.6), (Tofaş, 0.2)\}$$

$$B = \{(100k, 1), (10k, 0.5), (3k, 0.1)\}$$

R	100	10	3
Por	1	0.5	0.1
Toy	0.6	0.5	0.1
Tof	0.2	0.2	0.1

•
$$\mu_{\text{dom(R)}}(x) = \max_{y} \{\mu_{R}(x,y)\}$$

•
$$\mu_{codom(R)}(y) = max_x \{\mu_R(x,y)\}$$

• Complement, $R \subseteq AxB$, $T = \neg R$, $\mu_T(x,y) = 1 - \mu_R(x,y)$

- Complement, $R \subseteq AxB$, $T = \neg R$, $\mu_T(x,y) = 1 \mu_R(x,y)$
- Intersection, R,S \subseteq AxB, T = R \cap S, $\mu_T(x,y)$ = min{ $\mu_R(x,y)$, $\mu_S(x,y)$ } $\mu_T(x,y) = \mu_R(x,y) \land \mu_S(x,y)$

- Complement, $R \subseteq AxB$, $T = \neg R$, $\mu_T(x,y) = 1 \mu_R(x,y)$
- Intersection, R,S \subseteq AxB, T = R \cap S, $\mu_T(x,y)$ = min{ $\mu_R(x,y)$, $\mu_S(x,y)$ } $\mu_T(x,y) = \mu_R(x,y) \land \mu_S(x,y)$
- $T = R_1 \cap R_2 \cap ... \cap R_n, \mu_T(x,y) = \Lambda_i \mu_{R_i}(x,y)$

- Complement, $R \subseteq AxB$, $T = \neg R$, $\mu_T(x,y) = 1 \mu_R(x,y)$
- Intersection, R,S \subseteq AxB, T = R \cap S, $\mu_T(x,y)$ = min{ $\mu_R(x,y)$, $\mu_S(x,y)$ } $\mu_T(x,y) = \mu_R(x,y) \land \mu_S(x,y)$
- $T = R_1 \cap R_2 \cap ... \cap R_n, \mu_T(x,y) = \Lambda_i \mu_{R_i}(x,y)$
- Union, R,S \subseteq AxB, T = RUS, $\mu_T(x,y) = \max\{\mu_R(x,y), \mu_S(x,y)\}$ $\mu_T(x,y) = \mu_R(x,y) \lor \mu_S(x,y)$

- Complement, $R \subseteq AxB$, $T = \neg R$, $\mu_T(x,y) = 1 \mu_R(x,y)$
- Intersection, R,S \subseteq AxB, T = R \cap S, $\mu_T(x,y)$ = min{ $\mu_R(x,y)$, $\mu_S(x,y)$ } $\mu_T(x,y) = \mu_R(x,y) \land \mu_S(x,y)$
- $T = R_1 \cap R_2 \cap ... \cap R_n, \mu_T(x,y) = \Lambda_i \mu_{R_i}(x,y)$
- Union, R,S \subseteq AxB, T = RUS, $\mu_T(x,y)$ = max{ $\mu_R(x,y)$, $\mu_S(x,y)$ } $\mu_T(x,y) = \mu_R(x,y) \lor \mu_S(x,y)$
- $T = R_1 \cup R_2 \cup ... \cup R_n, \mu_T(x,y) = V_i \mu_{R_i}(x,y)$

- Complement, $R \subseteq AxB$, $T = \neg R$, $\mu_T(x,y) = 1 \mu_R(x,y)$
- Intersection, R,S \subseteq AxB, T = R \cap S, $\mu_T(x,y)$ = min{ $\mu_R(x,y)$, $\mu_S(x,y)$ } $\mu_T(x,y) = \mu_R(x,y) \land \mu_S(x,y)$
- $T = R_1 \cap R_2 \cap ... \cap R_n, \mu_T(x,y) = \Lambda_i \mu_{R_i}(x,y)$
- Union, R,S \subseteq AxB, T = RUS, $\mu_T(x,y) = \max\{\mu_R(x,y), \mu_S(x,y)\}$ $\mu_T(x,y) = \mu_R(x,y) \lor \mu_S(x,y)$
- $T = R_1 \cup R_2 \cup ... \cup R_n, \mu_T(x,y) = V_i \mu_{R_i}(x,y)$
- Inverse, $R \subseteq AxB$, $R^{-1} \subseteq BxA$, $T = R^{-1}$, $\mu_T(x,y) = \mu_R(x,y)$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \{((a,u),), ((a,v),), ((b,u),), ((b,v),), ((c,u),), ((c,v),)\}$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \{((a,u), 0.6), ((a,v),), ((b,u),), ((b,v),), ((c,u),), ((c,v),)\}$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \{((a,u), 0.6), ((a,v), 0.3), ((b,u),), ((b,v),), ((c,u),), ((c,v),)\}$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \{((a,u), 0.6), ((a,v), 0.3), ((b,u), 0.6), ((b,v),), ((c,u),), ((c,v),)\}$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \{((a,u), 0.6), ((a,v), 0.3), ((b,u), 0.6), ((b,v), 1), ((c,u),), ((c,v),)\}$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \{((a,u), 0.6), ((a,v), 0.3), ((b,u), 0.6), ((b,v), 1), ((c,u), 0), ((c,v),)\}$$

$$\mu_T(x,z) = \max_y \{\min[\mu_R(x,y), \mu_S(y,z)]\}$$

$$\mu_T(x,z) = \bigvee_y [\mu_R(x,y) \land \mu_S(y,z)]$$

$$\mu_T(x,z) = \{((a,u), 0.6), ((a,v), 0.3), ((b,u), 0.6), ((b,v), 1), ((c,u), 0), ((c,v), 0.3)\}$$

• $R \subseteq A \times B$, $R_a = \{(x,y) \mid \mu_R(x,y) \ge a\}$

• $R \subseteq A \times B$, $R_{\alpha} = \{(x,y) \mid \mu_{R}(x,y) \geq \alpha\}$

R	1	2	3
а	1	0.5	0.1
b	0	0	1
С	0.2	0.7	0.4

• $R \subseteq A \times B$, $R_a = \{(x,y) \mid \mu_R(x,y) \ge a\}$

R	1	2	3
а	1	0.5	0.1
b	0	0	1
С	0.2	0.7	0.4

R _{0.4}	1	2	3
а	1	1	0
b	0	0	1
С	0	1	1

• $R \subseteq A \times B$, $R_a = \{(x,y) \mid \mu_R(x,y) \ge a\}$

R	1	2	3
а	1	0.5	0.1
b	0	0	1
С	0.2	0.7	0.4

R _{0.4}	1	2	3
а	1	1	0
b	0	0	1
С	0	1	1

• a fuzzy relation can be decomposed into a-cut relations, R = \cup a. R_a

R	1	2
а	0.9	0.5
b	0.5	0.3

• $R \subseteq A \times B$, $R_a = \{(x,y) \mid \mu_R(x,y) \ge \alpha\}$

R	1	2	3	
а	1	0.5	0.1	
b	0	0	1	
С	0.2	0.7	0.4	

• a fuzzy relation can be decomposed into a-cut relations, R = \cup a. R_a

• $R \subseteq A \times B$, $S \subseteq A \times B \times C$, how to apply $R \cup S$ or $R \cap S$?

• $R \subseteq AxB$, $S \subseteq AxBxC$, how to apply $R \cup S$ or $R \cap S$?

Projection

project fuzzy relation R ⊆ AxB with respect to A or B as follows:

$$\mu_{R_{-}A}(x) = \max_{y} \mu_{R}(x,y), \mu_{R_{-}B}(y) = \max_{x} \mu_{R}(x,y)$$

• $R \subseteq AxB$, $S \subseteq AxBxC$, how to apply $R \cup S$ or $R \cap S$?

Projection

• project fuzzy relation $R \subseteq AxB$ with respect to A or B as follows:

$$\mu_{R_{-}A}(x) = \max_{y} \mu_{R}(x,y), \mu_{R_{-}B}(y) = \max_{x} \mu_{R}(x,y)$$

R	1	2	3
а	1	0.5	0.1
b	0	0.8	1
С	0.2	0.7	0.4

• $R \subseteq AxB$, $S \subseteq AxBxC$, how to apply $R \cup S$ or $R \cap S$?

Projection

• project fuzzy relation $R \subseteq AxB$ with respect to A or B as follows:

$$\mu_{R_A}(x) = \max_{y} \mu_{R}(x,y), \mu_{R_B}(y) = \max_{x} \mu_{R}(x,y)$$

R	1	2	3	R_A					
а	1	0.5	0.1	а	1	R_{B}	1	2	3
b	0	0.8	1	b	1		1	0.8	1
С	0.2	0.7	0.4	С	0.7				

• $R \subseteq A \times B$, $S \subseteq A \times B \times C$, how to apply $R \cup S$ or $R \cap S$?

• $R \subseteq AxB$, $S \subseteq AxBxC$, how to apply $R \cup S$ or $R \cap S$?

Cylindrical Extension

• extend fuzzy relation $R \subseteq AxB$ to the domain AxBxC:

$$\mu_{C(R)}(x,y,z) = \mu_R(x,y)$$

• $R \subseteq AxB$, $S \subseteq AxBxC$, how to apply $R \cup S$ or $R \cap S$?

Cylindrical Extension

• extend fuzzy relation $R \subseteq AxB$ to the domain AxBxC:

$$\mu_{C(R)}(x,y,z) = \mu_R(x,y)$$

R	
а	1
b	0.5
С	0.7

• $R \subseteq AxB$, $S \subseteq AxBxC$, how to apply $R \cup S$ or $R \cap S$?

Cylindrical Extension

• extend fuzzy relation $R \subseteq AxB$ to the domain AxBxC:

$$\mu_{C(R)}(x,y,z) = \mu_R(x,y)$$

R			C(R)	1	2	3
	1		а	1	1	1
	0.5		b	0.5	0.5	0.5
С	0.7		С	0.7	0.7	0.7

• Let A be a fuzzy set, B be a fuzzy or crisp set, and $R \subseteq AxB$ is a crisp relation

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a crisp relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \mu_{A}(x) \text{ s.t. } (x,y) \in \mathbb{R}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and $R \subseteq AxB$ is a crisp relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \mu_{A}(x) \text{ s.t. } (x,y) \in \mathbb{R}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and $R \subseteq AxB$ is a crisp relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \mu_{A}(x) \text{ s.t. } (x,y) \in \mathbb{R}$$

A = 'people having a particular disease'

R = 'contact relation'

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a crisp relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \mu_{A}(x) \text{ s.t. } (x,y) \in \mathbb{R}$$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1,), (2,), (3,)\}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a crisp relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \mu_{A}(x) \text{ s.t. } (x,y) \in \mathbb{R}$$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1, 0.9), (2,), (3,)\}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a crisp relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \mu_{A}(x) \text{ s.t. } (x,y) \in \mathbb{R}$$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1, 0.9), (2, 0.9), (3,)\}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a crisp relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \mu_{A}(x) \text{ s.t. } (x,y) \in \mathbb{R}$$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1, 0.9), (2, 0.9), (3, 0.7)\}$$

• Let A be a fuzzy set, B be a fuzzy or crisp set, and $R \subseteq AxB$ is a fuzzy relation

- Let A be a fuzzy set, B be a fuzzy or crisp set, and $R \subseteq AxB$ is a fuzzy relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \{ \min[\mu_{A}(x), \mu_{R}(x,y)] \}$$
 s.t. $(x,y) \in R$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a fuzzy relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \{ \min[\mu_{A}(x), \mu_{R}(x,y)] \}$$
 s.t. $(x,y) \in R$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a fuzzy relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \{ \min[\mu_{A}(x), \mu_{R}(x,y)] \} \text{ s.t. } (x,y) \in R$$

A = 'people having a particular disease'

R = 'contact relation'

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a fuzzy relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \{ \min[\mu_{A}(x), \mu_{R}(x,y)] \} \text{ s.t. } (x,y) \in R$$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1,), (2,), (3,)\}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a fuzzy relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \{ \min[\mu_{A}(x), \mu_{R}(x,y)] \}$$
 s.t. $(x,y) \in R$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1, 0.7), (2,), (3,)\}$$

max
$$\begin{cases} \min\{\mu_{A}(b), \, \mu_{R}(b,1)\} \\ \min\{\mu_{A}(c), \, \mu_{R}(c,1)\} \end{cases}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a fuzzy relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \{\min[\mu_{A}(x), \mu_{R}(x,y)]\} \text{ s.t. } (x,y) \in R$$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1, 0.7), (2, 0.4), (3,)\}$$

$$\max \left\{ \min\{\mu_A(a), \mu_R(a,2)\} \right\}$$

- Let A be a fuzzy set, B be a fuzzy or crisp set, and R ⊆ AxB is a fuzzy relation
- get a fuzzy set B' in B by R and A

$$\mu_{B'}(y) = \max_{x} \{ \min[\mu_{A}(x), \mu_{R}(x,y)] \}$$
 s.t. $(x,y) \in R$

A = 'people having a particular disease'

R = 'contact relation'

$$B' = \{(1, 0.7), (2, 0.4), (3, 0.6)\}$$

max
$$\begin{cases} \min\{\mu_{A}(a), \mu_{R}(a,3)\} \\ \min\{\mu_{A}(d), \mu_{R}(d,3)\} \end{cases}$$

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	8.0
У	0	1.0	0.6
Z	0.7	0	0
t	0.4	0.1	0.5

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
†	0.4	0.1	0.5

· B' induced by A and R

$$B = \{(a,), (b,), (c,)\}$$

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
†	0.4	0.1	0.5

B' induced by A and R

$$B = \{(a, 0.7), (b,), (c,)\}$$

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
†	0.4	0.1	0.5

• B' induced by A and R

$$B = \{(a, 0.7), (b, 0.3), (c,)\}$$

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
†	0.4	0.1	0.5

B' induced by A and R

$$B = \{(a, 0.7), (b, 0.3), (c, 0.5)\}$$

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
†	0.4	0.1	0.5

• B' induced by A and R $B = \{(a, 0.7), (b, 0.3), (c, 0.5)\}$

• B' induced by A and $R_{0.5}$ B = {(a,), (b,), (c,)}

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
†	0.4	0.1	0.5

• B' induced by A and $R_{0.5}$ B = {(a,), (b,), (c,)}

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
t	0.4	0.1	0.5

• B' induced by A and R
$$B = \{(a, 0.7), (b, 0.3), (c, 0.5)\}$$

• B' induced by A and $R_{0.5}$ B = {(a, 1.0), (b,), (c,)}

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
†	0.4	0.1	0.5

• B' induced by A and $R_{0.5}$ B = {(a, 1.0), (b, 0.3), (c,)}

• $A = \{(x, 0.4), (y, 0.3), (z, 1.0), (t, 0.7)\}$

$$B = \{a, b, c\}$$

R	а	b	С
X	0.3	0	0.8
У	0	1.0	0.6
Z	0.7	0	0
t	0.4	0.1	0.5

• B' induced by A and $R_{0.5}$ B = {(a, 1.0), (b, 0.3), (c, 0.7)}

Fuzzy Distance

 Let A and B be fuzzy sets, the fuzzy distance metric d(A,B) can be defined by the same formula

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{ \min[\mu_A(a), \mu_A(b)] \}$$
 s.t. $\delta = d(a,b)$

Fuzzy Distance

 Let A and B be fuzzy sets, the fuzzy distance metric d(A,B) can be defined by the same formula

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{ \min[\mu_A(a), \mu_A(b)] \}$$
 s.t. $\delta = d(a,b)$

• $A = \{(1, 0.3), (2, 1.0), (3, 0.6)\}$ and $B = \{(3, 0.7), (4, 1.0), (5, 0.4)\}$

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{ \min[\mu_A(a), \mu_A(b)] \}$$
 s.t. $\delta = d(a,b)$

•
$$A = \{(1, 0.3), (2, 1.0), (3, 0.6)\}$$
 and $B = \{(3, 0.7), (4, 1.0), (5, 0.4)\}$

$$d(A,B) = \{(0,), (1,), (2,), (3,), (4,)\}$$

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{ \min[\mu_A(a), \mu_A(b)] \}$$
 s.t. $\delta = d(a,b)$

$$\max = \left\{ \min\{\mu_A(3), \mu_B(3)\} \right\}$$

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{ \min[\mu_A(a), \mu_A(b)] \}$$
 s.t. $\delta = d(a,b)$

$$\max \left\{ \min\{\mu_A(3), \mu_B(3)\} \right\}$$

max
$$\begin{cases} \min\{\mu_{A}(2), \mu_{B}(3)\} \\ \min\{\mu_{A}(3), \mu_{B}(4)\} \end{cases}$$

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{ \min[\mu_A(a), \mu_A(b)] \}$$
s.t. $\delta = d(a,b)$

$$\max = \left\{ \min\{\mu_A(3), \mu_B(3)\} \right\}$$

max
$$\begin{cases} \min\{\mu_A(2), \mu_B(3)\} \\ \min\{\mu_A(3), \mu_B(4)\} \end{cases}$$

max =
$$\begin{bmatrix} \min\{\mu_{A}(1), \mu_{B}(3)\} \\ \min\{\mu_{A}(2), \mu_{B}(4)\} \\ \min\{\mu_{A}(3), \mu_{B}(5)\} \end{bmatrix}$$

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{\min[\mu_A(a), \mu_A(b)]\} \text{ s.t. } \delta = d(a,b)$$

$$\max \left\{ \min\{\mu_{A}(3), \, \mu_{B}(3)\} \right. \\ \left. \max \left\{ \min\{\mu_{A}(1), \, \mu_{B}(4)\} \atop \min\{\mu_{A}(2), \, \mu_{B}(5)\} \right. \right. \\ \left. \min\{\mu_{A}(2), \, \mu_{B}(5)\} \right. \\ \left. \min\{\mu_{A}(2), \, \mu_{B}(2)\} \right. \\ \left. \min\{\mu_{A}(2), \, \mu_{B}(2$$

max
$$\begin{cases} \min\{\mu_{A}(2), \mu_{B}(3)\} \\ \min\{\mu_{A}(3), \mu_{B}(4)\} \end{cases}$$

min{
$$\mu_A(1), \mu_B(3)$$
}

max = min{ $\mu_A(2), \mu_B(4)$ }

min{ $\mu_A(3), \mu_B(5)$ }

$$\mu_{d(A,B)}(\delta) = \max_{d(a,b)} \{\min[\mu_A(a), \mu_A(b)]\} \text{ s.t. } \delta = d(a,b)$$

•
$$A = \{(1, 0.3), (2, 1.0), (3, 0.6)\}$$
 and $B = \{(3, 0.7), (4, 1.0), (5, 0.4)\}$

$$d(A,B) = \{(0,0.6), (1,0.7), (2,1.0), (3,0.4), (4,0.3)\}$$

$$\max = \begin{cases} \min\{\mu_{A}(3), \mu_{B}(3)\} \\ \min\{\mu_{A}(2), \mu_{B}(5)\} \end{cases}$$

$$\max = \begin{cases} \min\{\mu_{A}(2), \mu_{B}(3)\} \\ \min\{\mu_{A}(3), \mu_{B}(4)\} \end{cases}$$
 $\max = \begin{cases} \min\{\mu_{A}(1), \mu_{B}(1),

max =
$$\begin{bmatrix} min\{\mu_{A}(1), \mu_{B}(3)\} \\ min\{\mu_{A}(2), \mu_{B}(4)\} \\ min\{\mu_{A}(3), \mu_{B}(5)\} \end{bmatrix}$$

$$\max \left\{ \min\{\mu_A(1), \mu_B(5)\} \right\}$$

Reflexivity

• Let $R \subseteq A \times A$ be a fuzzy relation. If for all $x \in A$, $\mu_R(x,x) = 1$, then R is called 'reflexive'

Reflexivity

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $x \in A$, $\mu_R(x,x) = 1$, then R is called 'reflexive'
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$ $R = \{(x,y) \mid x,y \in A \text{ and } x \text{ close to } y\}$

Reflexivity

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $x \in A$, $\mu_R(x,x) = 1$, then R is called 'reflexive'
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A R = \{(x,y) \mid x,y \in A \text{ and } x \text{ close to } y\}$

R	0	1	2	3
0	1.0	0.8	0.6	0.4
1	0.8	1.0	0.8	0.6
2	0.6	0.8	1.0	8.0
3	1.0 0.8 0.6 0.4	0.6	0.8	1.0

Reflexivity

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $x \in A$, $\mu_R(x,x) = 1$, then R is called 'reflexive'
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A R = \{(x,y) \mid x,y \in A \text{ and } x \text{ close to } y\}$

	0	1	2	3
0	1.0	0.8	0.6	0.4
1	0.8	1.0	8.0	0.6
2	0.6	0.8	1.0	8.0
3	1.0 0.8 0.6 0.4	0.6	0.8	1.0

Symmetry

• Let $R \subseteq A \times A$ be a fuzzy relation. If for all $(x,y) \in A \times A$, $\mu_R(x,y) = \mu_R(y,x)$ then R is called 'symmetric'

<u>Symmetry</u>

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $(x,y) \in A \times A$, $\mu_R(x,y) = \mu_R(y,x)$ then R is called 'symmetric'
- If for all $(x,y) \in AxA$ and $x \neq y$, $\mu_R(x,y) \neq \mu_R(y,x)$ or $\mu_R(x,y) = \mu_R(y,x) = 0$ then R is called 'anti-symmetric'

<u>Symmetry</u>

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $(x,y) \in A \times A$, $\mu_R(x,y) = \mu_R(y,x)$ then R is called 'symmetric'
- If for all $(x,y) \in A \times A$ and $x \neq y$, $\mu_R(x,y) \neq \mu_R(y,x)$ or $\mu_R(x,y) = \mu_R(y,x) = 0$ then R is called 'anti-symmetric'
- $A = \{0, 1, 2, 3\}$ and $R, S \subseteq A \times A$

<u>Symmetry</u>

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $(x,y) \in A \times A$, $\mu_R(x,y) = \mu_R(y,x)$ then R is called 'symmetric'
- If for all $(x,y) \in A \times A$ and $x \neq y$, $\mu_R(x,y) \neq \mu_R(y,x)$ or $\mu_R(x,y) = \mu_R(y,x) = 0$ then R is called 'anti-symmetric'
- $A = \{0, 1, 2, 3\}$ and $R, S \subseteq A \times A$

R	0	1	2	3
0	1.0	0.8	0.6	0.4
1	0.8	1.0	0.8	0.6
2	0.6	0.8	1.0	8.0
3	1.0 0.8 0.6 0.4	0.6	0.8	1.0

5	0	1	2	3
0	0	0.8	0.3	0
1	0	1.0	0	0
2	0.6	0	1.0	0.5
3	0	0.8 1.0 0 0.6	0.8	0.9

<u>Symmetry</u>

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $(x,y) \in A \times A$, $\mu_R(x,y) = \mu_R(y,x)$ then R is called 'symmetric'
- If for all $(x,y) \in A \times A$ and $x \neq y$, $\mu_R(x,y) \neq \mu_R(y,x)$ or $\mu_R(x,y) = \mu_R(y,x) = 0$ then R is called 'anti-symmetric'
- $A = \{0, 1, 2, 3\}$ and $R, S \subseteq A \times A$

R		1		3
0	1.0 0.8 0.6 0.4	0.8	0.6	0.4
1	0.8	1.0	0.8	0.6
2	0.6	0.8	1.0	8.0
3	0.4	0.6	0.8	1.0

5	0	1	2	3
0	0	0.8	0.3	0
1		4.0	^	_
2	0.6	0 0.6	1.0	0.5
3	0	0.6	0.8	0.9

symmetric

<u>Symmetry</u>

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all $(x,y) \in A \times A$, $\mu_R(x,y) = \mu_R(y,x)$ then R is called 'symmetric'
- If for all $(x,y) \in A \times A$ and $x \neq y$, $\mu_R(x,y) \neq \mu_R(y,x)$ or $\mu_R(x,y) = \mu_R(y,x) = 0$ then R is called 'anti-symmetric'
- $A = \{0, 1, 2, 3\}$ and $R, S \subseteq A \times A$

	0			3
0	1.0	0.8	0.6	0.4
1	0.8	1.0	0.8	0.6
2	0.6	0.8	1.0	8.0
3	1.0 0.8 0.6 0.4	0.6	0.8	1.0

5	0	1	2	3
0	0	0.8	0.3	0
1		4.0	^	_
2	0.6	0 0.6	1.0	0.5
3	0	0.6	0.8	0.9

symmetric

anti-symmetric

Transitivity

• Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'
- If $R^2 \subseteq R$ (or $M_R \ge M_{R^2}$), R is transitive

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'
- If $R^2 \subseteq R$ (or $M_R \ge M_{R^2}$), R is transitive
- $A = \{0, 1, 2\}$ and $R \subseteq A \times A$

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'
- If $R^2 \subseteq R$ (or $M_R \ge M_{R^2}$), R is transitive
- $A = \{0, 1, 2\}$ and $R \subseteq A \times A$

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R ²	0	1	2
0			
1			
2			

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'
- If $R^2 \subseteq R$ (or $M_R \ge M_{R^2}$), R is transitive
- $A = \{0, 1, 2\}$ and $R \subseteq A \times A$

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R^2	0	1	2
0	0.2		
1			
2			

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'
- If $R^2 \subseteq R$ (or $M_R \ge M_{R^2}$), R is transitive
- $A = \{0, 1, 2\}$ and $R \subseteq A \times A$

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

\mathbb{R}^2	0	1	2
0	0.2	0.6	
1			
2			

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'
- If $R^2 \subseteq R$ (or $M_R \ge M_{R^2}$), R is transitive
- $A = \{0, 1, 2\}$ and $R \subseteq A \times A$

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R^2	0	1	2
0	0.2	0.6	0.3
1			
2			

<u>Transitivity</u>

- Let $R \subseteq A \times A$ be a fuzzy relation. If for all (x,y), (y,z), $(x,z) \in A \times A$, $\mu_R(x,z) \ge \max_y \{ \min[\mu_R(x,y), \mu_R(y,x)] \}$ then R is called 'transitive'
- If $R^2 \subseteq R$ (or $M_R \ge M_{R^2}$), R is transitive
- $A = \{0, 1, 2\}$ and $R \subseteq A \times A$

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R	0	1	2
0	0.2	1.0	0.4
1	0	0.6	0.3
2	0	1.0	0.3

R ²	_	1	2
0	0.2	0.6 0.6	0.3
1	0	0.6	0.3
2	0	0.6	0.3

Fuzzy Equivalence Relation

• Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, symmetric and transitive, R is called 'equivalence relation'

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, symmetric and transitive, R is called 'equivalence relation'
- $A = \{0, 1, 2, 3, 4\}$ and $R \subseteq A \times A$

		1			4
0	1.0	0.6	1.0	0 0 0 1.0	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	0	0	0.6	1.0

Fuzzy Equivalence Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, symmetric and transitive, R is called 'equivalence relation'
- $A = \{0, 1, 2, 3, 4\}$ and $R \subseteq A \times A$

R	0	1	2	3	4
0	1.0	0.6	1.0	0 0 0 1.0 0.6	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	0	0	0.6	1.0

reflexive

Fuzzy Equivalence Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, symmetric and transitive, R is called 'equivalence relation'
- $A = \{0, 1, 2, 3, 4\}$ and $R \subseteq A \times A$

R	0	1	2	3	4
0	1.0	0.6	1.0	0 0 0 1.0 0.6	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	0	0	0.6	1.0

reflexive symmetric

Fuzzy Equivalence Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, symmetric and transitive, R is called 'equivalence relation'
- $A = \{0, 1, 2, 3, 4\}$ and $R \subseteq A \times A$

R	0	1	2	3	4	
0	1.0	0.6	1.0	0	0	
1	0.6	1.0	0.6	0	0	
2	1.0	0.6	1.0	0	0	
3	0	0	0	1.0	0.6	
4	0	0.6 1.0 0.6 0	0	0.6	1.0	

\mathbb{R}^2	0	1	2	3	4
0	1.0	0.6	1.0	0 0 0 1.0 0.6	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	0	0	0.6	1.0

reflexive symmetric

Fuzzy Equivalence Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, symmetric and transitive, R is called 'equivalence relation'
- $A = \{0, 1, 2, 3, 4\}$ and $R \subseteq A \times A$

R	0	1	2	3	4	
0	1.0	0.6	1.0	0	0	
1	0.6	1.0	0.6	0	0	
2	1.0	0.6	1.0	0	0	
3	0	0	0	1.0	0.6	
4	0	0.6 1.0 0.6 0	0	0.6	1.0	

	R^2	0	1	2	3	4
_	0	1.0	0.6	1.0	0 0 0 1.0 0.6	0
	1	0.6	1.0	0.6	0	0
	2	1.0	0.6	1.0	0	0
	3	0	0	0	1.0	0.6
	4	0	0	0	0.6	1.0

reflexive symmetric transitive

R	0	1	2	3	4
0	1.0	0.6	1.0	0	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	0.6 1.0 0.6 0	0	0.6	1.0

R	0	1	2	3	4
0	1.0	0.6	1.0	0	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	1 0.6 1.0 0.6 0	0	0.6	1.0

R	0	1	2	3	4
0	1.0	0.6	1.0	0	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	0	0	0 0 0 1.0 0.6	1.0

R _{0.6}	0	1	2	3	4
0	1	1	1	0	0
1	1	1	1	0	0
2	1	1	1	0	0
3	0	0	0	1	1
4	0	0	1 1 1 0 0	1	1

R	0	1	2	3	4
0	1.0	0.6	1.0	0	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	1.0 0.6 1.0 0	0	0	0.6	1.0

R _{0.6}	0	1	2	3	4
0	1	1	1	0	0
1	1	1 1 0	1	0	0
2	1	1	1	0	0
3	0	0	0	1	1
4	0	0	0	1	1

$$\pi(A/R_{0.6}) = \{\{0,1,2\},\{3,4\}\}$$

R	0	1	2	3	4
0	1.0	0.6	1.0	0	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	0	0	0	0 0 0 1.0 0.6	1.0

R _{0.6}	0	1	2	3	4
0	1	1	1	0	0
1	1	1	1	0	0
2	1	1	1	0	0
3	0	0	0	1	1
4	0	1 1 1 0 0	0	1	1

R _{1.0}	0	1	2	3	4
0	1	0 1 0 0	1	0	0
1	0	1	0	0	0
2	1	0	1	0	0
3	0	0	0	1	0
4	0	0	0	0	1

$$\pi(A/R_{0.6}) = \{\{0,1,2\},\{3,4\}\}$$

R	0	1	2	3	4
0	1.0	0.6	1.0	0	0
1	0.6	1.0	0.6	0	0
2	1.0	0.6	1.0	0	0
3	0	0	0	1.0	0.6
4	1.0 0.6 1.0 0	0	0	0.6	1.0

$R_{0.6}$	0	1	2	3	4
0	1	1	1	0	0
1	1	1	1	0	0
2	1	1	1	0	0
3	0	0	0	1	1
4	0	1 1 1 0 0	0	1	1

R _{1.0}	0	1	2	3	4
0	1	0	1		0
1	0	1 0	0	0	0
	1	0	1	0	0
3	_	0	_	1	0
4	0	0	0	0	1

$$\pi(A/R_{0.6}) = \{\{0,1,2\},\{3,4\}\}$$

$$\pi(A/R_{1,0}) = \{\{0,2\},\{1\},\{3\},\{4\}\}$$

Fuzzy Order Relation

• Let $R \subseteq A \times A$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset A': ∩_{x in A'} R, [x]

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3
0	1.0	0	0.5 0.7 1.0 1.0	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	1.0	1.0

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3
0	1.0	0	0.5 0.7 1.0	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	1.0	1.0

reflexive

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A' : \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3
0	1.0	0	0.5 0.7 1.0 1.0	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	1.0	1.0

reflexive anti-symmetric

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset A': ∩_{x in A'} R, [x]
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3				2	
	1.0				0	1.0	0	0.5 0.7 1.0 1.0	0
	0.7				1	0.7	1.0	0.7	0
	0				2	0	0	1.0	0
3	1.0	0.9	1.0	1.0	3	1.0	0.9	1.0	1.0

reflexive anti-symmetric

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A' : \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

			2			1		2	
0	1.0	0	0.5	0	0	1.0	0	0.5 0.7	0
1	0.7	1.0	0.7	0	1	0.7	1.0	0.7	0
2	0	0	1.0	0	2	0	0	1.0 1.0	0
3	1.0	0.9	1.0	1.0	3	1.0	0.9	1.0	1.0

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3
0	1.0	0	0.5 0.7 1.0	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	1.0	1.0

• $R_{>[0]} = \{(0,1.0),(1,0.7),(3,1.0)\}$

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3
0	1.0	0	0.5 0.7 1.0	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	1.0	1.0

- $R_{>[0]} = \{(0,1.0),(1,0.7),(3,1.0)\}$
- $R_{[0]} = \{(0,1.0),(2,0.5)\}$

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3
0	1.0 0.7 0	0	0.5	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	1.0	1.0

- $R_{>[0]} = \{(0,1.0),(1,0.7),(3,1.0)\}$
- $R_{<[0]} = \{(0,1.0),(2,0.5)\}$
- $R_{[1]} = \{(1,1.0),(3,0.9)\}$

reflexive anti-symmetric

transitive

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$

transitive

• $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3
0	1.0	0	0.5 0.7 1.0	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	1.0	1.0

- $R_{>[0]} = \{(0,1.0),(1,0.7),(3,1.0)\}$
- $R_{<[0]} = \{(0,1.0),(2,0.5)\}$
- $R_{[1]} = \{(1,1.0),(3,0.9)\}$
- $A' = \{0,1\}$, fuzzy upper bound for A'

reflexive anti-symmetric

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	_	2	3
0	1.0	0	0.5	0
1	0.7	1.0	0.7	0
2	0	0	1.0	0
3	1.0	0.9	0.5 0.7 1.0 1.0	1.0

•
$$R_{>[0]} = \{(0,1.0),(1,0.7),(3,1.0)\}$$

•
$$R_{[0]} = \{(0,1.0),(2,0.5)\}$$

•
$$R_{[1]} = \{(1,1.0),(3,0.9)\}$$

•
$$A' = \{0,1\}$$
, fuzzy upper bound for A'

$$R_{>[0]} \cap R_{>[1]}$$

Fuzzy Order Relation

- Let $R \subseteq AxA$ be a fuzzy relation. If R is reflexive, anti-symmetric and transitive, R is called 'order relation'
- $R_{[x]} = \{(y,\mu) \mid \mu = \mu_R(y,x)\}$, dominating class of the element x
- $R_{x} = \{(y,\mu) \mid \mu = \mu_R(x,y)\}$, dominated class of the element x
- A fuzzy upper bound of a subset $A': \bigcap_{x \text{ in } A'} R_{x \text{ in } A'}$
- $A = \{0, 1, 2, 3\}$ and $R \subseteq A \times A$

R	0	1	2	3	
0	1.0	0	0.5	0	
1	0.7	1.0	0.7	0	
2	0	0	1.0	0	
3	1.0	0.9	0.5 0.7 1.0 1.0	1.0	

•
$$R_{>[0]} = \{(0,1.0),(1,0.7),(3,1.0)\}$$

•
$$R_{[0]} = \{(0,1.0),(2,0.5)\}$$

•
$$R_{[1]} = \{(1,1.0),(3,0.9)\}$$

•
$$A' = \{0,1\}$$
, fuzzy upper bound for A'

$$R_{>[0]} \cap R_{>[1]} = \{(1,0.7),(3,0.9)\}$$