with time-scale separation

Frédéric Legoll¹, Tony Lelièvre¹, <u>Keith Myerscough</u>² and Giovanni Samaey²

¹Ecole des Ponts ParisTech, ²KU Leuven

In a nutshell

Goal Simulate slow-fast SDEs over long time, quickly

Model Slow-fast system of SDEs, and a macroscopic model taken from the "fast" limit

Method Parallel-in-time algorithm that iteratively improves the macroscopic result

Result Reduction in wall clock time

Bonus Lower variance than full microscopic model

Microscopic model

Slow-fast system of coupled SDEs

$$dX = (-X_t^3 + X_t + Y_t^2) dt + \sqrt{\frac{2}{\beta}} dB_t^{(x)}$$

$$dY = \frac{1}{\epsilon} (X_t - Y_t) dt + \sqrt{\frac{2}{\beta \epsilon}} dB_t^{(y)}.$$

- Modeled as an ensemble \mathcal{X}_t of particles with positions $(X_t^p,\ Y_t^p)$ and weight W^p
- ullet Time integrator: a Lie-Trotter splitting, updating X_t first, then Y_t
- Validation: deterministic solution given by the Fokker-Planck equation, akin to the macroscopic model

Macroscopic model

Only slow variable, assume the fast Y_t is equilibrated and use only the expected value of the term Y_t^2

$$dZ = (-Z_t^3 + Z_t + Z_t^2 + \frac{1}{\beta}) dt + \sqrt{\frac{2}{\beta}} dI$$

or in potential form

$$\mathrm{d}Z = -\partial_z V_{\mathsf{eff}}(Z_t) \,\mathrm{d}t + \sqrt{\frac{2}{\beta}} \,\mathrm{d}B^{(x)}.$$

The associated Fokker-Planck equation reads

$$\partial_t \rho(z) = \partial_z \left(\rho(z) \partial_z V_{\text{eff}} \right) + \frac{1}{\beta} \partial_{zz} \rho(z).$$

 The macroscopic state is represented by integral quantities over a regular grid

Coupling

Restriction (\mathcal{R} , from micro to macro) sum the weights of all particles in each bin

Matching (\mathcal{M} , from macro to micro) reweight particles from a known microstate $(\bar{X}^p, \bar{Y}^p, \bar{W}^p)$

Resampling (\mathcal{M}^* , optional) retrieve an ensemble with all particles equal in weight

The parareal algorithm

Iteratively improves the macroscopic propagator by computing the discrepancies between the macroscopic and the microscopic models in parallel

Parallel use of the microscopic propagator gives a reduction in wall clock time if there are fewer iterations needed than time steps

Variance of the stochastic microscopic propagator dominates the error (see figures \rightarrow)

Reduction in variance by using a particle propagator with correlated noise for the macroscopic model in computing the discrepancies between the models

Convergence in iterations vergence in number of partic

Parameters used below: $\beta = 5, \epsilon = 0.1, K = N = 20, \Delta t = 0.025, \delta t = 1.0 \times 10^{-4}$

