Report on the Experiment

No. 14

Subject OP アンプによる増幅回路実験

Date 2019. 10. 21

Weather 晴れ Temp 22.5 °C Wet 60 %

Class E3

Group 2

Chief

Partner 井上 隆治

木下 拓真

重見 達也

DANDAR TUGULDUR

No 15

Name 小畠 一泰

Kure National College of Technology

1 目的

OP アンプを用いた増幅回路のシミュレーションと実験を行うことで, OP アンプの使い 方を学ぶとともに, 電圧増幅度, 利得, 周波数特性など増幅回路の基礎を理解することを目 的とする.

2 使用器具

- ノート PC
- 実験セット (直流スイッチング電源 (5 [V], +12 [V], -12 [V]), ブレッドボード, Analog Discovery)

3 実験方法

3.1 TINA によるシミュレーション

3.1.1 計測方法

各回路において、「DC 解析」-「DC 伝達特性」と「過渡解析」を行い、電圧増幅度と位相を確認した。電源 VS1,VS2 は 12 [V]. 入力信号は正弦波、振幅 0.2 [V]、周波数 1 [kHz] に設定、以下すべて同じとする。また、「AC 解析」-「AC 伝達特性」を実行して周波数特性を確認した。

図 1: DC 解析 - DC 伝達特性 設定

図 2: 過渡解析 設定

図 3: AC 解析 - AC 伝達特性 設定

1. 反転增幅回路

図 4: 反転増幅回路

図 5: 反転增幅回路 DC 解析 - DC 伝達特性 結果

図 6: 反転增幅回路 過渡解析 結果

図 7: 反転增幅回路 AC 解析 - AC 伝達特性 結果

2. 非反転增幅回路

図 8: 非反転增幅回路

図 9: 非反転增幅回路 DC 解析 - DC 伝達特性 結果

図 10: 非反転增幅回路 過渡解析 結果

図 11: 非反転增幅回路 AC 解析 - AC 伝達特性 結果

3. ボルテージ・フォロワ回路

図 12: ボルテージ・フォロワ回路

図 13: ボルテージ・フォロワ回路 DC 解析 - DC 伝達特性 結果

図 14: ボルテージ・フォロワ回路 過渡解析 結果

図 15: ボルテージ・フォロワ回路 AC 解析 - AC 伝達特性 結果

4. + 単電源の反転増幅回路と過渡解析

ここまでは \pm の 2 電源で OP アンプを使用する場合についてシミュレーションを行ったが、実際は単一電源で OP アンプを使用する場合が多い。図 16 は V_{cc} を GND にした、 V_{cc} + 単電源の反転増幅回路である。電源 VS1 は 5 [V] に設定。動作点を V_{cc} の中間にシフトさせるため、 R_3 と R_4 で電源電圧を抵抗分圧し非反転入力端子に加えてある。 C_2 で信号源の直流分はカットされ、出力 VF_1 は 2.5 [V] のオフセット電圧を中心に信号の 2 倍の振幅となる。また、出力 VF_2 は C_5 により直流分がカットされ、0 [V] を中心に信号の 2 倍の振幅となる。 C_3 入力信号はこれ以降正弦波、振幅 0.2 [V]、周波数 1 [kHz] とする。

図 16: + 単電源の反転増幅回路と過渡解析

図 17: + 単電源の反転増幅回路と過渡解析 結果