Elementi di Informatica (Lezione II, parte I) Sistemi di numerazione: binario, ottale ed esadecimale

Il sistema di numerazione posizionale decimale

Nella numerazione posizionale ogni cifra del numero assume un valore in funzione della "posizione":

221 in notazione compatta, cioè 2 x 100 + 2 x 10 + 1 x 1

ovvero, con la notazione esplicita $2 \times 10^2 + 2 \times 10^1 + 1 \times 10^0$

Sistema posizionale

➤ Ogni numero si esprime come la somma dei prodotti di ciascuna cifra per la base elevata all'esponente che rappresenta la *posizione* della cifra:

$$221 = 2 \times 10^2 + 2 \times 10^1 + 1 \times 10^0$$

Sistema posizionale (cont.)

- La *notazione posizionale* può essere usata con qualunque base creando così differenti sistemi di numerazione.
 - Per ogni base di numerazione si utilizza un numero di cifre uguale alla base.
- ➤ In informatica si utilizza prevalentemente la numerazione:
 - · binaria,
 - ottale,
 - · esadecimale.
- ➤ Il sistema di numerazione romano <u>non</u> è posizionale:
 - Ad esempio, XIII vs. CXII.

Sistema di numerazione decimale

- La numerazione *decimale* utilizza una notazione posizionale basata su 10 cifre (da 0 a 9) e sulle potenze di 10.
 - Il numero 234 può essere rappresentato esplicitamente come:

$$2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$$

Sistema di numerazione binario

- ➤ Il sistema di numerazione *binario* utilizza una notazione posizionale basata su 2 cifre (0 e 1) e sulle potenze di 2.
 - Il numero 1001 può essere rappresentato esplicitamente come:

$$1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 9_{10}

Sistema di numerazione ottale

- ➤ Il sistema di numerazione *ottale* utilizza una notazione posizionale basata su 8 cifre (da 0 a 7) e sulle potenze di 8.
 - Il numero 534 può essere rappresentato esplicitamente come:

$$534_8 = 5 \times 8^2 + 3 \times 8^1 + 4 \times 8^0 = 348_{10}$$

Sistema di numerazione esadecimale

- ➤ La numerazione *esadecimale* utilizza una notazione posizionale basata su 16 cifre (da 0 a 9 ed i caratteri A, B, C, D, E, F) e sulle potenze di 16.
 - Il numero B7FC₁₆ può essere rappresentato esplicitamente come:

$$(11) \times 16^3 + 7 \times 16^2 + (15) \times 16^1 + (12) \times 16^0$$

= 47100_{10}

Conversione da base n a base 10

➤ Per convertire un numero da una qualunque base alla base 10 è sufficiente rappresentarlo esplicitamente:

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13_{10}$$

$$710_8 = 7 \times 8^2 + 1 \times 8^1 + 0 \times 8^0 = 456_{10}$$

$$A51_{16} = (10) \times 16^2 + 5 \times 16^1 + 1 \times 16^0 = 2641_{10}$$

Conversione da base 10 a base n

- Per convertire un numero ad una base n qualsiasi occorre trovare tutti i resti delle successive divisioni del numero per la base n.
 - Come esempio si vuole trovare il valore binario del numero 210
 - Basterà dividere 210 per la base 2,

- ...

Conversione da base 10 a base 2

210	2	resto	0
105	2		1
52 26 13	2		0
26	2		0
13	2		1
6	2		0
3	2		1
1	2		1

➤ Leggendo la sequenza dei resti dal basso verso l'alto, si ottiene il numero:

11010010₂

Verifica di correttezza

➤ Per una verifica di correttezza basta riconvertire il risultato alla base 10:

$$11010010_{2} = 1 \quad x \cdot 2^{7} + 1 \cdot x \cdot 2^{6} + 0 \cdot x \cdot 2^{5} +$$

$$1 \cdot x \cdot 2^{4} + 0 \cdot x \cdot 2^{3} + 0 \cdot x \cdot 2^{2} +$$

$$1 \cdot x \cdot 2^{1} + 0 \cdot x \cdot 2^{0} = 210_{10}$$

Costruzione dei numeri binari

Per costruire la successione dei numeri binari si può seguire il seguente schema:

0	0	0	0	=	0
0	0	0	1	=	1
0	0	1	0	=	2
0	0	1	1	=	3
0	1	0	0	=	4
0	1	0	1	=	5
0	0 0 0 0 1 1 1	1	0	=	6
0	1	1	1	=	7

I primi 32 numeri binari

I primi 32 numeri binari (cont.)

Operazioni binarie

$$\begin{array}{ccc}
 10110101+ & 00110011+ \\
 \hline
 1000110 = & 00111000 = \\
 \hline
 11111011 & 01101011
 \end{array}$$

Operazioni binarie (cont.)

$$\begin{array}{ccc}
1101 & x & 10011 & x \\
11 & & & & & \\
1101 & & & & & \\
\hline
1101 & & & & & \\
100111 & & & & \\
\hline
100110 & & & & \\
\end{array}$$

Esercizi

Eseguire le seguenti operazioni direttamente in binario, convertire in decimale e verificare il risultato:

- 110000 + 1001010;
- \bullet 1001010 + 11111111 + 10;
- 100110 x 111100;
- •001001 x 111.

Fine

Elementi di Informatica (Lezione II, parte II)

Analogico vs. Digitale

I segnali per comunicare

- > ANALOGICO
- > DIGITALE

Gli esseri umani ed i computer utilizzano differenti tipi di segnali per comunicare.

Informazione analogica

La voce umana e la trasmissione dei segnali di radio e televisione sono comunicazioni di tipo

ANALOGICO

dove le grandezze fisiche sono funzioni continue nel tempo e possono assumere infiniti valori.

Informazione digitale

La trasmissione dei segnali nei computer ed in genere nei circuiti elettronici avviene in modo

DIGITALE

poiché le grandezze fisiche sono rappresentate da *stati discreti*.

• Nei circuiti di memoria di un computer lo 0 viaggia come un segnale a basso voltaggio e spegne gli interruttori (transistor), al contrario l'1 viaggia ad alto voltaggio e li accende.

Digitalizzazione dei segnali

- ➤I segnali elettrici continui (analogici) vengono convertiti in segnali digitali.
- La conversione comporta un certo grado di approssimazione.

Precisione dei segnali

- ➤ I segnali digitali sono meno affetti da disturbi di trasmissione.
- La minore sensibilità al rumore consente di replicare perfettamente il segnale.

Precisione dei segnali (cont.)

La rappresentazione delle informazioni

- ➤ Tutte le informazioni sono rappresentate in forma binaria o digitale utilizzando due soli simboli: 0 ed 1.
- Con una cifra binaria si possono quindi rappresentare soltanto due informazioni.

La rappresentazione delle informazioni (cont.)

- Le ragioni di questa scelta sono prevalentemente di tipo tecnologico:
 - Due possibili stati di polarizzazione di una sostanza magnetizzabile;
 - Passaggio/non passaggio di corrente attraverso un conduttore;
 - Passaggio/non passaggio della luce attraverso una fibra ottica.

Il bit

- ➤ Unità fisica di informazione che vale 0 oppure 1.
 - Il nome proviene da Binary Digit.
- ➤ Si utilizzano i multipli del bit:

```
Kilo
           Kb
                              ~ un migliaio
                                                 (1024)
Mega
           Mb
                     2^{20}
                              ~ un milione
                                                 (1024x1024)
Giga
           Gb
                     2^{30}
                              ~ un miliardo
                                                 (1Mbx1024)
Tera
           Tb
                     2^{40}
                              ~ mille miliardi
                                                 (1Gbx1024)
```

Fine

Elementi di Informatica

(Lezione II, parte III)

Rappresentazione delle informazioni:

La codifica dei testi

Rappresentazione dei caratteri

- Cos'è un carattere?
 - Si tratta di un simbolo, in qualche modo astratto.
 - Per esempio una "A" è la rappresentazione grafica convenzionale (detta anche *glifo*) del concetto di carattere "a maiuscola".
- ➤ Dobbiamo trovare una "convenzione" con cui realizzare una rappresentazione comprensibile al computer dei caratteri.

Codifica binaria

- ➤ Per poter rappresentare le informazioni è necessario utilizzare *sequenze* di bit.
 - Utilizzando due bit si possono rappresentare quattro informazioni diverse:

00 01 10 11

➤ Il processo che fa corrispondere ad una informazione una configurazione di bit prende il nome di *codifica dell'informazione*.

Sequenze di bit

Numero di bit	Informazioni
nella sequenza	rappresentabili
2	4
3	8
4	16
5	32
6	64
7	128
8	256

In generale, con n bit si possono rappresentare 2^n differenti informazioni.

Il byte

- ➤ Un gruppo di 8 bit viene denominato Byte.
 - Corrisponde ad un carattere.
 - Unità di misura della capacità di memoria.

➤Si utilizzano i multipli del Byte:

- Kilo KB 2¹⁰ ~ un migliaio (1024)
 Mega MB 2²⁰ ~ un milione (1024x1024)
- Giga GB 2^{30} ~ un miliardo (1MBx1024)
- Tera TB 2^{40} ~ mille miliardi (1GBx1024)

I caratteri utilizzati nella comunicazione scritta

- ➤ 52 lettere alfabetiche maiuscole e minuscole
- ➤ 10 cifre (0, 1, 2, ..., 9)
- ➤ Segni di punteggiatura (, . ; : ! "?'^\...)
- \triangleright Segni matematici (+, -, \times , \pm , {, [, >, ...)
- Caratteri nazionali (à, è, ì, ò, ù, ç, ñ, ö, ...)
- \triangleright Altri segni grafici (©, ←, ↑, \oplus , @, € ...)
- ➤ In totale 220 caratteri circa.

Codice

- ➤ Si pone quindi la necessità di codificare in numeri binari almeno 220 caratteri.
- La sequenza di bit necessaria a rappresentare 220 simboli deve essere composta da 8 bit e prende il nome di **CODICE.**

Il codice ASCII

		_		_	_
			0011 0000	48	0
0100 0001	65	A	0011 0001	49	1
0100 0010	66	В	0011 0010	50	2
0100 0011	67	С	0011 0011	51	3
0101 1000	88	X	0011 1010	58	:
0101 1001	89	Y	0011 1011	59	;
0101 1010	90	Z	0011 1100	60	<
			0011 1101	61	=
0110 0001	97	a			
0110 0010	98	b	1010 0100	164	ñ
0110 0011	99	С	1000 0111	135	ç

American Standard Code for Information Interchange

Il codice ASCII (cont.)

- ➤ I caratteri ASCII da 0 a 127:
 - I primi 32 (numerati da 0 fino a 31) sono "caratteri di controllo" *non stampabili*,
 - I successivi 95 simboli (numerati da 32 fino a 126) sono caratteri *stampabili*,
 - Il 128-esimo simbolo è ancora un "carattere di controllo" *non stampabile*.

Dove trovo le tabelle ASCII?

- Andate su un motore di ricerca (per esempio www.google.it) e digitate "tabella ASCII".
 - Un ottimo sito in italiano è:
 - http://www.cesit.unifi.it/online/principi/asciistd.html
 - Un buon sito in inglese è invece:
 - http://www.ibilce.unesp.br/courseware/datas/data1.htm

Tabella ASCII in notazione binaria: la concatenazione del 'nibble' di riga e di quello di colonna dà il codice ASCII in binario.

	0000	0001 1	0010 2	0011 3	0100 4	0101 5	0110 6	0111 7	1000 8	1001 9	1010 10	1011 11	1100 12	1101 13	1110 14	1111 15
0000																
0001 1																
0010 2	spazio	!	٠٠	#	\$	%	&	6	()	*	+	,	-		/
0011 3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100 4	@	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О
0101 5	P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	٨	_
0110 6	,	a	b	с	d	e	f	g	h	i	j	k	1	m	n	О
0111 7	p	q	r	S	t	u	V	W	X	y	Z	{		}	~	

Tabella ASCII in notazione decimale: la somma dell'indice di riga e di colonna dà il codice ASCII in decimale.

+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0																
16																
32	spazio	!	"	#	\$	%	&	6	()	*	+	,	-		/
48	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
64	@	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О
80	P	Q	R	S	T	U	V	W	X	Y	Z	[\]	^	
96	`	a	b	С	d	e	f	g	h	i	j	k	1	m	n	О
112	p	q	r	S	t	u	v	W	X	у	Z	{		}	~	

Sequenze di caratteri ASCII

Dividendo la sequenza in gruppi di byte è possibile risalire ai singoli caratteri:

 $01101001\ 01101100\ 00100000\ 01010000\ 01001111\ 00101110$ $01101001\ 01101100\ 00100000\ 01010000\ 01001111\ 00101110$

i l P O

Esempi di sequenze

➤ "Computer" in ASCII diventa:

Esercizio:

• Scrivere "ASCII" in decimale ed in binario.

Numeri e codice ASCII

➤ Con il codice ASCII è possibile rappresentare i numeri come sequenza di caratteri. Ad esempio il numero 234 sarà rappresentato come:

00110010 00110011 00110100

2 3

Con questo tipo di rappresentazione *non* è possibile effettuare operazioni aritmetiche.

Rappresentazione di dati alfabetici

Codifiche standard:

- **ASCII**, 8 bit per carattere, rappresenta 256 caratteri.
- UNICODE, 16 bit per carattere
 - ASCII e caratteri etnici ($2^{16} = 65.536$ simboli).
- ➤ Codifiche proprietarie:
 - MSWindows, 16 bit per carattere
 - simile ad UNICODE.

Dieci dita e qualche tasto...

- La mia tastiera ha meno di cento tasti.
 - Come ottenere tutti i simboli desiderati?
 - Usando combinazioni di tasti.
 - ❖ Per esempio, <Shift><tasto> dà la versione maiuscola.
 - Digitando la combinazione :
 - <Alt><codice ASCII in notazione decimale>
 - In questo caso bisogna usare il tastierino numerico per inserire il codice!

Rappresentare "testi" nel computer

- ➤ Cos'è un testo ?
 - una sequenza ordinata di "caratteri".
 - Esempio: abgx76 6&&&%""0??
 - una sequenza ordinata di caratteri formattati.
 - Esempio : AAAxb()...BB
- ➤ È importante notare che, a parte la superficiale similarità, i due concetti definiti sopra sono differenti.
 - Per questo richiedono rappresentazioni diverse.

Testi formattati

Sottolineato
Corsivo
Grassetto corsivo

Fine