

Dr. Roselyn IsimetoLecturer
University of Lagos

David Akanji
Data Scientists
University of Lagos

Introduction to Machine Learning

MACHINE LEARNING FOR DATA SCIENCE: INDUSTRY APPLICATIONS

Agenda

- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Generative models

Machine Learning:

"The science of getting computers to act without being explicitly programmed."

Andrew Ng

When should we use machine learning?

- Machine learning is not appropriate for every task!
 - If you can solve it analytically, that's better! (More explainable)
- When you have access to data which "matches" the task
- When errors are allowable
- When it's cost effective
 - Machine learning costs include (i) dataset creation and processing and (ii) model development, deployment, and maintenance

Machine learning strengths and limitations

Strengths

- Performing tasks at scale
- Modeling complex systems
- Generating derived data
- Integrating with other methods, e.g. domain and physical models

Limitations

- "Garbage in, garbage out"
- Inherits biases in data + human design/use
- > Assumes patterns are persistent
- > Finds correlation, not causation

Types of learning

Supervised learning

Learning to predict or classify labels based on labeled input data Performance feedback

Unsupervised learning

Finding patterns in unlabeled data No performance feedback

Reinforcement learning

Learning well-performing behavior from state observations and rewards Performance feedback

Supervised vs. Unsupervised learning

Supervised Unsupervised Apple Apple Banana Banana

Data Types

Continuous

- **Binary**
 - Special case of categorical
- Ordinal

Discrete

Categorical

- How do you feel today?
- 1 Very Unhappy
- 2 Unhappy
- 3 − OK
- 4 Happy
- 5 Very Happy

- How satisfied are you with our service?
- 1 Very Unsatisfied
- 2 Somewhat Unsatisfied
- 3 Neutral
- 4 Somewhat Satisfied
- 5 Very Satisfied

Agenda

- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Generative models

Supervised learning: training

Supervised learning: test / prediction

Supervised learning: categorical versus continuous labels

- Classification: categorical labels
 - Examples: pregnant or not, from which country, which type of road sign
- Regression: continuous labels
 - Examples: future stock price, life expectancy, distance to obstacle

Example: predicting bicycle counts

https://www.climatechange.ai/papers/iclr2023/15

Given: historical data of the number of bicycles in certain locations per hour

Want to predict: number of bicycles in future times at those locations

Which type are the labels? Categorical or continuous?

Supervised models

Model	When to use it?
KNN	 Little / no training time, large prediction time Given small / medium dataset size
Linear / polynomial regression	 Linear / polynomial relationship between input and output Small training time Given small / medium dataset size
Logistic regression, SVM, decision tree	Categorical outputGiven small / medium training time
Neural network	 Large training time, large computer Given large dataset size

k-Nearest Neighbors Algorithm

Training set: n instances, each with a feature vector and an output category

Now, given another (unseen) instance, we want to determine its category

Check the k instances in the training data that are closest to your new instance

Categorical: choose the majority of those values

 $(6,6) \rightarrow blue$

Continuous: choose the mean/median of those values

Linear / polynomial regression

Given $x \in {\mathbb{R}} \ y \in \mathbb{R}$

Find a function $f: x \rightarrow y$

How?

Define a **loss function** ("error") and minimize it!

Other supervised classifiers

Decision tree

Determining if a word is end-of-sentence: a Decision Tree

Other supervised classifiers

- Decision tree
- Support Vector Machine

Other supervised classifiers

- **Decision tree**
- **Support Vector Machine**
- **Neural Network**

How good is the model?

We define a **metric** to measure and compare accuracy.

- Precision
 - Out of those tested positive, how many are truly positive?
 - TP / (TP + FP)
- Recall
 - Out of those truly positive, how many tested positive?
 - \circ TP / (TP + FN)
- F1

relevant elements

How many selected items are relevant?

Precision =

How many relevant items are selected?

Overfitting

Solution: Cross-Validation

Split the training data into two non-overlapping sets. Train on one set, and measure performance on the other. Pick the model that does well on the data that you didn't train on.

Supervised models

Model	When to use it?
KNN	 Little / no training time, large prediction time Given small / medium dataset size
Linear / polynomial regression	 Linear / polynomial relationship between input and output Small training time Given small / medium dataset size
Logistic regression, SVM, decision tree	Categorical outputGiven small / medium training time
Neural network	 Large training time, large computer Given large dataset size

Note / life tip

- Don't re-implement it yourself!
 - Unless you are doing research on the method itself, you are trying to learn how it works, or you are coding
 in an obscure language where it isn't already implemented
 - The already implemented versions are widely used and tested

Note / life tip

Don't re-implement it yourself!

- Unless you are doing research on the method itself, you are trying to learn how it works, or you are coding
 in an obscure language where it isn't already implemented
- The already implemented versions are widely used and tested

Use these common tools:

- Scikit-learn has most supervised and unsupervised methods you might need
- o If you want to build a custom neural network, try using Pytorch or Tensorflow
- There are many task-specific libraries

Session Agenda

- 1. What is Machine Learning
- 2. What is the ML Process
- 3. Problem Formulation
- 4. Loading the raw data
- 5. Data Pre-processing:
 - Cleaning
 - Distributions
 - Vizualizations
 - Transformations
 - Feature Engineering
- 6. Splitting the data
- 7. Running Regression
- 8. Evaluation Metrics

What is Machine Learning (ML) in a nutshell

Machine learning is the science (and art) of programming computers so they can learn from data" by Aurélien Géron book (Hands-On Machine Learning with Scikit-Learn and TensorFlow)

- ML uses statistical models and algorithms to perform tasks like predictions & classifications without explicit instructions
- ML is a subset of Artificial Intelligence

The Machine Learning Process

1. Problem Formulation - What question are we trying to answer?

The Machine Learning Process

1. Problem Formulation

 What question are we trying to answer?

2. Raw Data Gathering

- Identifying the data sources we need to answer the question

3. Data Preprocessing

- Exploratory Data Analysis (EDA)
- Cleaning & aggregating
- Joins & Transformations
- Distributions, normalization & scaling
- Converting categorical values to numeric representation
- Feature Selection
- Feature Engineering

4. Splitting the Data

- Break the data into Train (70%) – Test (20%)
 - Evaluation (10%)
 - Separate Xs & y variable(s)

5. ML Model Selection & Training

- Regression models when predicting a continues number. Examples: LR, RFR, SVR, NNR, etc.
- Classification models when predicting a class.
 Examples: Logistic Regression, Naïve Bayes,
 Decision Trees, RF, Knn, SVM, NN, etc
- **Unsupervised models** when investigating relationships / clustering. Examples: K-means, hierarchical clustering, PCA, etc.
- **Time Series models** when predicting the future values of time series variable. Examples: Arima, Auto-Arima, exponential smoothing, prophet, etc
- Train the model on 70% of the data

7. Parameter Tuning

Trying to improve the Evaluation Metrics of the model by adjusting their hyperparameters.

Examples: activation function, regularization parameter C, different weights or distributions, penalty parameters, gamma function, training steps, learning rate, etc.

6. Model Evaluation

- Evaluate the model on the 20% of the data
- Metrics for Regression: R^2, MSE, RMSE, etc.
- Metrics for Classification:
 Accuracy, Log Loss, Confusion
 Matrix, AUC, etc.
- Metrics for Unsupervised: Inertia, Adjusted Rand Index, etc.

Problem Formulation

- We want to understand the factors that affect car prices
- We want to be able to predict car prices based on our data/variables

Raw data: https://www.kaggle.com/datasets/shaistashaikh/carprice-assignment