CSC 565 2020 Fall Homework 2

name1, unityID1

name2, unityID2

September 10, 2020

You can create a latex project of this homework through this link.

Cartesian Products

Let G, H be graphs. The Cartesian product between G and H can be defined as:

$$G\square H:=(V_G\times V_H,$$

$$\{(ab,cd)\mid (a=c \text{ and } (b,d)\in E_H) \text{ or }$$

$$(b=d \text{ and } (a,c)\in E_G),$$

$$a,c\in V_G,$$

$$b,d,\in V_H\})$$

1. Give a function $f_V:V_{G\square H}\to V_{H\square G}$ that induces an isomorphism. No need to prove it is an isomorphism.

Answer:

2. Prove that for all $i, j \geq 3$, $C_i \square P_j$ is planar.

Hint: You can try to do it by providing an embedding for the general case.

Answer:

3. Prove $C_3 \square C_3$ is <u>NOT</u> planar by completing the following steps. It is a fact that $C_3 \square C_3$ is 3-connected. Think about this and convince yourself of this first.

Euler's formula?
Answer:
3.2 How many non-separating induced cycles are there? You may assume without proving it that all such cycles have length 3 or 4.
Answer:
3.3 Complete the proof.
Answer:

3.1 Suppose it is planar. How many faces should it have according to

Outerplanar Graphs

4. Let G be an outerplanar graph with n vertices and as many edges as possible but subject to the constraint that G is not 2-connected. How many edges does G have? Prove it.

Answer:

5. Let G be the graph:

$$G = ([n], \{(i,j) \ | \ (j-i) \ \% \ n = 1 \lor (j-i) \ \% \ n = 2\}), n \ge 4$$

% is the modulo operator. Prove that G is $\underline{\mathbf{NOT}}$ outerplanar.

Answer:

Extra Questions

These questions are for your interest and practice. It's recommended to think about them. They will not be graded.

- 6. Prove that every outerplanar graph is 3-colorable.
- 7. Prove that no outerplanar graph is 3-connected.