PQ05RF1Series

1A Output Low Power-Loss Voltage Regulators

Features

- Compact resin full-mold package
- Low power-loss (Dropout voltage:MAX.0.5V)
- Built-in ON/OFF control terminal (PQ05RF1/PQ05RF11 series)
- Built-in output voltage minute adjustment terminal (Critical rate of ripple rejection is improved.)
 (PQ05RF1V series)
- Lead forming type (PQ05RF1A/1B series) is also available.

■ Model Line-ups

Output voltage	5Voutput	9Voutput	12Voutput
Output voltage precision:±5%	PQ05RF1	PQ09RF1	PQ12RF1
Output voltage precision:±2.5%	PQ05RF11	PQ09RF11	PQ12RF11
Minute adjustment (Output voltage adjust- ment range:±10%)	PQ05RF1V	PQ09RF1V	PQ12RF1V

Applications

 Seris power supply for various electronic equipment such as VCRs and musical instruments

■ Equivalent Circuit Diagram

Outline Dimensions

(Unit: mm)

· Please refer to the chapter" Handling Precautions ".

■ Absolute Maximum Ratings

 $(T_a=25^{\circ}C)$

Parameter			Rating	Unit
*1 Input voltage			35	V
*1 ON/OFF control	PQ05RF1 series	Vc	25	v
terminal voltage	PQ05RF11 series] v c	35	
Output current	Io	1	A	
Power dissipation (No heat sink)		P _{D1}	1.5	W
Power dissipation (With infinite heat sink)		P _{D2}	15	W
*2 Junction temperature		Tj	150	.С
Operating temperature		Topr	-20 to +80	.С
Storage temperature		Tstg	-40 to +150	.с
Soldering temperature		Tsol	260 (For 10s)	.с

^{*1} All are open except GND and applicable terminals.

■ Electrical Characteristics

(Unless othewise specified, condition shall be Io=0.5A, Ta=25°C,*3)

	Parai	meter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	PC	05RF1/PQ05RF1V	Vo	-	4.75	5.0	5.25	v
	PC	09RF1/PQ09RF1V			8.55	9.0	9.45	
	PC	12RF1/PQ12RF1V			11.4	12.0	12.6	
		PQ05RF11			4.88	5.0	5.12	
		PQ09RF11			8.78	9.0	9.22	
		PQ12RF11			11.7	12.0	12.3	
Load regulation			$R_{eg}L$	Io=5mA to 1A	-	0.1	2.0	%
Line regulation			RegI	*4	-	0.5	2.5	%
Temperature coe	efficient	t of output voltage	TcVo	T _j =0 to 125°C	-	±0.02		%/*C
Ripple rejection PQ0	PQ05	RF1/PQ05RF11 series	RR	Refer to Fig. 2.	45	55	-	dB
	F	Q05RF1V series			55	•		
Dropout voltage			V _i -o	*5	-		0.5	V
ON-state voltage for o	control	PQ05RF1/PQ05RF11 series	Vc (on)	-	2.0 *6		-	V
ON-state current for	control	PQ05RF1/PQ05RF11 series	Ic (on)	Vc=2.7V	-		20	μA
OFF-state voltage for	control	PQ05RF1/PQ05RF11 series	Vc (off)	-	-		0.8	V
OFF-state current for	control	PQ05RF1/PQ05RF11 series	Ic (off)	Vc=0.4V	-		-0.4	mA
Quiescent curren	ıt		$\mathbf{I}_{\mathbf{q}}$	Io=0	-	•	10	mA
Output voltage minu adjustment characte	nuto	PQ05RF1V	Vo (adj)	-	4.5	5.0	5.5	
		PQ09RF1V			8.1	9.0	9.9	V
	teristics	PQ12RF1V			10.8	12.0	13.2	

^{*3} PQ05RF1 series:V_{IN}=7V, PQ09RF1 seris:V_{IN}=15V, PQ12RF1 seris:V_{IN}=18V

PQ09RF1/PQ09RF1V: $V_{IN}=10$ to 25V

PQ12RF1/PQ12RF11/PQ12RF1V: V_{IN} =13 to 29V

^{*2} Overheat protection may operate at 125=<Tj=<150°C

^{*4} PQ05RF1/PQ05RF11/PQ05RF1V: V_{IN} =6 to 12V

^{*5} Input voltage shall be the value when output voltage is 95% in comparison with the initial value.

 $^{^{*6}}$ In case of opening control terminal 4, output voltage turns on. (PQ05RF1/PQ05RF11 series)

Fig.1 Test Circuit

Fig.2 Test Circuit of Ripple Rejection

Fig.3 Power Dissipation vs. Ambient Temperature

Ambient temperature Ta (*C)
Note) Oblique line portion:Overheat protection may operate in this area.

Fig.5 Output Voltage Minute Adjustment Characteristics (PQ05RF1V)

Fig.4 Overcurrent Protection

Fig.6 Output Voltage Minute Adjustment Characteristics (PQ09RF1V)

Fig.7 Output Voltage Minute Adjustment Characteristics (PQ12RF1V)

Fig.9 Output Voltage Deviation vs. Junction Temperature (PQ09RF1/PQ09RF11/PQ09RF1V)

Fig.11 Output Voltage vs. Input Voltage (PQ05RF1/PQ05RF11/PQ05RF1V)

Fig.8 Output Voltage Deviation vs. Junction Temperature (PQ05RF1/PQ05RF11/PQ05RF1V)

Fig.10 Output Voltage Deviation vs. Junction Temperature (PQ12RF1/PQ12RF11/PQ12RF1V)

Fig.12 Output Voltage vs. Input Voltage (PQ09RF1/PQ09RF11/PQ09RF1V)

Fig.13 Output Voltage vs. Input Voltage (PQ12RF1/PQ12RF11/PQ12RF1V)

Fig.15 Circuit Operating Current vs. Input Voltage (PQ09RF1/PQ09RF11/PQ09RF1V)

Fig.17 Dropout Voltage vs. Junction Temperature

Fig.14 Circuit Operating Current vs. Input Voltage (PQ05RF1/PQ05RF11/PQ05RF1V)

Fig.16 Circuit Operating Current vs. Input Voltage (PQ12RF1/PQ12RF11/PQ12RF1V)

Fig.18 Quiescent Current vs. Junction Temperature

Fig.21 Ripple Rejection vs. Output Current

Fig.20 Ripple Rejection vs. Input Ripple Frequency (PQ05RF1V/PQ09RF1V/PQ12RF1V)

■ Typical Application

PQ05RF1/PQ05RF11 Series

PQ05RF1V Series

(Note) R1' and R2' are built in a specific IC.

■ Model Line-ups for Lead Forming Type

Output voltage	5V output	9V output	12V output
Output voltage precision:±5%	PQ05RF1A	PQ09RF1A	PQ12RF1A
Output voltage precision:±2.5%	PQ05RF1B	PQ09RF1B	PQ12RF1B

■ Outline Dimensions (PQ05RF1A/PQ05RF1B series)

(Unit: mm)

Note) The value absolute maximum ratings and electrical characteristics is same as ones of PQ05RF1/11 series.

■ Precautions for Use

(1) Minute adjustment of output voltage (PQ05RF1V series)

If the external resistor is attached to the terminals 2, 3 and 4, minute adjustment of output voltage is possible. (Refer to the example of basic circuit (PQ05RF1V series) and Fig.5 to 7.)