Linear Algebra's Extra Problems #1

February 23, 2021

- 1. For a set of vectors $S = \{v_1, v_2, \cdots, v_n\}$, prove that span(S) is the intersection of all subspaces that contain S.
- 2. Determine the dimensions of each of the following vector spaces:
 - a) The space of polynomials having degree n or less.
 - b) The space $\mathbf{R}^{m \times n}$ of $m \times n$ matrices.
 - c) The space of $n \times n$ symmetric matrices.
- 3. Let $B = \{b_1, b_2, \dots, b_n\}$ be a basis for a vector space V. Prove that each $v \in V$ can be expressed as a linear combination of the b_i 's

$$v = \alpha_1 b_1 + \alpha_2 b_2 + \cdots + \alpha_n b_n ,$$

in only one way—i.e., the coordinates α_i are unique.

- 4. If V is a vector space over \mathbb{C} of dimension n, prove that V can be regarded as a vector space over \mathbb{R} of dimension 2n.
- 5. Let $P_0(X), P_1(X), \dots, P_n(X)$ be polynomials in $\mathbb{R}_n[X]$ such that, for each i, the degree of $P_i(X)$ is i, prove that $\{P_0(X), P_1(X), \dots, P_n(X)\}$ is a basis for $\mathbb{R}_n[X]$.
- 6. Prove that if V and W are three-dimensional subspaces of \mathbb{R}^5 , then V and W must have a nonzero vector in common.
- 7. Suppose V is known to have dimension k. Prove that
 - a) any k independent vectors in V form a basis;
 - b) any k vectors that span V form a basis.

In other words, if the number of vectors is known to be correct, either of the two properties of a basis implies the other.