

Übung 5! Anwendung höherer Programmiersprachen im Maschinenbau

Aufgabe 1 4.07.2019

Ziel: Entwurf und Umsetzung eines Molekulardynamikprogramms: Verwenden Sie module, Unterfunktionen/Routinen, dynamische Speicherverwaltung, Makefile

Entwerfen Sie einen Programmablauf, um die Struktur des Programms festzulegen!

Schreiben Sie ein Programm zur Berechnung der Bewegung einer gegebenen Anzahl N von Punkten. Dazu soll eine Bewegungsgleichung 2ter Ordnung verwendet werden.

Eingabe:

- (i) Einlesen einer Ausgangskonfiguration: definieren Sie sich hierzu ein geeignetes Dateiformat (z.B. es sollte die Anzahl der Teilchen, Masse, sowie Ort und Geschwindigkeit vorgegeben werden können)
- (ii) Einlesen der Parameter (für Kraftgesetz, Zeitschritt,...)

Berechnungen:

In jedem Zeitschritt müssen die folgenden Aufgaben durchgeführt werden

- 1. Berechnung der auf die Massenpunkte wirkenden Kräfte
- 2. Integration der Bewegungsgleichungen: *N* Newtonschen Gleichungen; Zeitschritt dt; Gesamtzeit wird um dt erhöht.
 - 1. Euler Verfahren
 - 2. Verlet Verfahren
- 3. Berechnung der Observablen: z.B. Gesamtenergie des Systems, mittlere Geschwindigkeit von Teilchen, Ausgabe der Positionen in Datei
- 4. Abbruchbedingung testen: weiter bei (1) oder Ende des Programms

Berechnen Sie die Planetenbewegung des auf Seite 208 beschriebenen Systems (4 "Teilchen")

(Beschreibung des MD Verfahrens in den Vorlesungsfolien)

Übung 5! Anwendung höherer Programmiersprachen im Maschinenbau

Aufgabe 2:

Erweiterung für Vielteilchensimulation mit kurzreichweitiger Wechselwirkung:

- implementieren Sie den linked cell Algorithmus (Vorlesungsfolien)
- Schreiben Sie einen Programm, welches Atome auf Gitterplätzen verteilt:
 - Quadratgitter
 - hexagonales Gitter (Gitterkonstante: a=1)

MD-Simulation mit Lennard-Jones(LJ) Potenzial:

1. Berechnen Sie analytisch den Gleichgewichtsabstand r0 für zwei Teilchen, deren Wechselwirkung mit dem LJ Potenzial beschrieben werden kann:

$$U(r_{ij}) = 4\epsilon \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right)$$

2. Berechnen Sie den mittleren Gleichgewichtsabstand für ein System mit N=100 Teilchen, die sich auf einem Quadratgitter mit 10x10 Plätzen befinden. Variieren Sie hierzu den Gitterabstand *a* um +-10% um den in (1) bestimmten Gleichgewichtsabstand und tragen sie die potenzielle Energie des Systems gegen den Gitterabstand *a* auf.