```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from \ sklearn.metrics \ import \ precision\_recall\_curve
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from \ sklearn.preprocessing \ import \ MinMaxScaler
from sklearn.metrics import (
    accuracy_score, confusion_matrix, classification_report,
    roc_auc_score, roc_curve, auc,
    ConfusionMatrixDisplay, RocCurveDisplay
from\ statsmodels.stats.outliers\_influence\ import\ variance\_inflation\_factor
from imblearn.over_sampling import SMOTE
```

df=pd.read_csv('logistic_regression.csv')

df.head(5)

loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ow
10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	
8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4 years	MOR
15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year	
7200.0	36 months	6.49	220.65	Α	A2	Client Advocate	6 years	
24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	MOR
	10000.0 8000.0 15600.0	10000.0 36 months 8000.0 36 months 15600.0 36 months 7200.0 36 months	10000.0 36 11.44 8000.0 36 11.99 15600.0 36 10.49 7200.0 36 months 6.49	10000.0 36 11.44 329.48 8000.0 36 11.99 265.68 15600.0 36 10.49 506.97 7200.0 36 6.49 220.65	10000.0 36 11.44 329.48 B 8000.0 36 11.99 265.68 B 15600.0 36 10.49 506.97 B 7200.0 36 6.49 220.65 A	10000.0 36 11.44 329.48 B B4 8000.0 36 11.99 265.68 B B5 15600.0 36 10.49 506.97 B B3 7200.0 36 6.49 220.65 A A2	10000.0 36 months 11.44 329.48 B B4 Marketing 8000.0 36 months 11.99 265.68 B B5 Credit analyst 15600.0 36 months 10.49 506.97 B B3 Statistician 7200.0 36 months 6.49 220.65 A A2 Client Advocate 24375.0 60 months 17.27 609.33 C C5 Management	10000.0 36 months 11.44 329.48 B B4 Marketing 10+ years 8000.0 36 months 11.99 265.68 B B5 Credit analyst 4 years 15600.0 36 months 10.49 506.97 B B3 Statistician < 1 year

df.info()

<pr RangeIndex: 235886 entries, 0 to 235885 Data columns (total 27 columns):

Data	columns (total 27 col	umns):	
#	Column	Non-Null Count	Dtype
0	loan_amnt	235886 non-null	float64
1	term	235886 non-null	object
2	int_rate	235886 non-null	float64
3	installment	235886 non-null	float64
4	grade	235886 non-null	object
5	sub_grade	235886 non-null	object
6	emp_title	222209 non-null	object
7	emp_length	224948 non-null	object
8	home_ownership	235886 non-null	object
9	annual_inc	235886 non-null	float64
10	verification_status	235886 non-null	object
11	issue_d	235886 non-null	object
12	loan_status	235886 non-null	object
13	purpose	235886 non-null	object
14	title	234848 non-null	object
15	dti	235886 non-null	float64
16	earliest_cr_line	235886 non-null	object
17	open_acc	235886 non-null	float64
18	pub_rec	235886 non-null	float64
19	revol_bal	235886 non-null	float64
20	revol_util	235715 non-null	float64
21	total_acc	235886 non-null	float64
22	<pre>initial_list_status</pre>	235886 non-null	object
23	application_type	235886 non-null	object
24	mort_acc	213302 non-null	float64
25	<pre>pub_rec_bankruptcies</pre>	235557 non-null	float64
26	address	235885 non-null	object
dtype	es: float64(12), objec	t(15)	
memoi	ry usage: 48.6+ MB		

memory usage: 48.6+ MB

₹	loan_amn		int_rate	installment	annual_inc	dti	open_acc	pub_rec	revol_bal	revol_util	total_a
	count	235886.000000	235886.000000	235886.000000	2.358860e+05	235886.000000	235886.000000	235886.000000	2.358860e+05	235715.000000	235886.0000
	mean	14104.732053	13.643355	431.524698	7.427901e+04	17.325831	11.306932	0.179167	1.581559e+04	53.777674	25.424
	std	8354.907949	4.467399	250.662467	6.006704e+04	8.130635	5.136844	0.544709	2.045974e+04	24.502087	11.898
	min	500.000000	5.320000	16.250000	2.500000e+03	0.000000	0.000000	0.000000	0.000000e+00	0.000000	2.0000
	25%	8000.000000	10.490000	250.330000	4.500000e+04	11.260000	8.000000	0.000000	6.011000e+03	35.800000	17.0000
	50%	12000.000000	13.330000	375.370000	6.400000e+04	16.880000	10.000000	0.000000	1.116300e+04	54.800000	24.0000
	75%	20000.000000	16.490000	567.010000	9.000000e+04	22.960000	14.000000	0.000000	1.960375e+04	72.900000	32.0000
	max	40000.000000	30.990000	1533.810000	7.446395e+06	189.900000	90.000000	86.000000	1.743266e+06	892.300000	151.0000

There is significant difference found in the mean and median of the following attributes

- loan_amnt
- terms
- installment

'issue_d',
'loan_status',
'purpose',

· revol_bal etc. These attributes might contain outliers

```
#checking for Non-Numeric Columns

cat_col=[col for col in df.columns if df[col].dtype=='0']

cat_col

['term',
    'grade',
    'sub_grade',
    'emp_title',
    'emp_length',
    'home_ownership',
    'verification_status',
```

'title',
 'earliest_cr_line',
 'initial_list_status',
 'application_type',
 'address']

#Number of Unique values from all non_numeric columns
for col in cat_col:

print(f"No. of Unique values {col}: {df[col].nunique()}")

No. of Unique values term: 2
No. of Unique values grade: 7
No. of Unique values sub_grade: 35
No. of Unique values emp_title: 111427
No. of Unique values emp_length: 11
No. of Unique values home_ownership: 6
No. of Unique values verification_status: 3
No. of Unique values issue_d: 115
No. of Unique values loan_status: 2
No. of Unique values purpose: 14
No. of Unique values title: 31403
No. of Unique values earliest_cr_line: 664
No. of Unique values initial_list_status: 2

No. of Unique values application_type: 3 No. of Unique values address: 234999

#convert string data types into datetime format
df["earliest_cr_line"]=pd.to_datetime(df["earliest_cr_line"])
df['issue_d']=pd.to_datetime(df['issue_d'])

<ipython-input-8-a65e86cf7087>:2: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To
 df["earliest_cr_line"]=pd.to_datetime(df["earliest_cr_line"])
 <ipython-input-8-a65e86cf7087>:3: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To
 df['issue_d']=pd.to_datetime(df['issue_d'])

df.info()

4

<class 'pandas.core.frame.DataFrame'> RangeIndex: 235886 entries, 0 to 235885 Data columns (total 27 columns): Non-Null Count Dtype # Column 0 loan_amnt 235886 non-null float64 1 term 235886 non-null object 2 int_rate 235886 non-null float64 3 installment 235886 non-null float64 235886 non-null object 4 grade

```
sub_grade
                          235886 non-null object
6
    emp_title
                          222209 non-null
                                          object
7
    emp_length
                          224948 non-null object
8
    home_ownership
                          235886 non-null
                                          object
9
    annual_inc
                          235886 non-null
                                          float64
10 verification_status
                         235886 non-null object
11
                          235886 non-null datetime64[ns]
    issue_d
12 loan status
                          235886 non-null object
                          235886 non-null object
13
    purpose
14
    title
                          234848 non-null object
                          235886 non-null
15
                                          float64
    dti
                          235886 non-null datetime64[ns]
16
    earliest_cr_line
                          235886 non-null
17
    open_acc
                                          float64
18
    pub_rec
                          235886 non-null
                                          float64
19
    revol_bal
                          235886 non-null
                                          float64
20
    revol_util
                          235715 non-null
                                          float64
                          235886 non-null float64
21 total_acc
22
                          235886 non-null object
    initial_list_status
23 application_type
                          235886 non-null object
24
                          213302 non-null float64
    mort acc
25 pub_rec_bankruptcies 235557 non-null float64
                          235885 non-null object
26 address
dtypes: datetime64[ns](2), float64(12), object(13)
memory usage: 48.6+ MB
```

df.dtypes

```
→ loan_amnt
                                    float64
    term
                                     object
    int_rate
                                    float64
    installment
                                    float64
    grade
                                     object
    sub_grade
                                     object
    emp_title
                                     object
    emp_length
                                     object
    home_ownership
                                     object
    annual_inc
                                    float64
    verification_status
                                     object
                             datetime64[ns]
    issue_d
    loan_status
                                     object
    purpose
                                     obiect
    title
                                     obiect
                                    float64
    dti
                             datetime64[ns]
    earliest_cr_line
    open_acc
                                    float64
    pub_rec
                                    float64
    revol_bal
                                    float64
    revol_util
                                    float64
    total_acc
                                    float64
    initial_list_status
                                     object
    application_type
                                     object
                                    float64
    mort acc
    pub_rec_bankruptcies
                                    float64
    address
                                     object
    dtype: object
```

df.duplicated().sum()

_ 0

df.isnull().sum()

→ loan_amnt 0 0 term 0 int_rate installment 0 grade 0 sub_grade 0 emp_title 13677 10938 emp_length home_ownership 0 annual_inc 0 verification_status 0 0 issue_d loan_status 0 purpose a title 1038 dti 0 earliest_cr_line 0 open_acc 0 0 pub_rec revol_bal 0 revol_util 171 total_acc 0 initial_list_status 0 0 application_type 22584 mort_acc pub_rec_bankruptcies 329 address 1 dtype: int64

df.de	df.describe(include = 'object')														
		term	grade	sub_grade	emp_title	emp_length	home_ownership	verification_status	loan_status	purpose	title	initial_l			
	count	235886	235886	235886	222209	224948	235886	235886	235886	235886	234848				
	unique	2	7	35	111427	11	6	3	2	14	31403				
	top	36 months	В	В3	Teacher	10+ years	MORTGAGE	Verified	Fully Paid	debt_consolidation	Debt consolidation				
	frea	179776	69059	15801	2607	75166	118154	82951	189716	139631	90798				

- Most of the loan disburesed for the 36 months period
- Most of the loan applicant have mortgage the home
- Majority of loans been fully paid off
- Majorily the loans been disbursed for the purpose of debt consolidation
- · Most of the applicant is Individual

Univariate Analysis

```
num_vars = df.select_dtypes('float64').columns.tolist()

for i in num_vars:
    plt.title("Distribution of {}".format(i))
    sns.histplot(df[i]/df[i].max(), kde=True, bins=50)
    plt.show()
```


- Most of the distribution is highly skewed towerds the left side which tells us that they might contain outliers
- Almost all the continuous features have outliers present in the dataset.

```
cat_vars = ['home_ownership', 'verification_status', 'loan_status', 'application_type', 'grade', 'sub_grade', 'term']
for i in cat_vars:
    plt.figure(figsize=(8, 4))
    plt.title(f'Distribution of {i}')
    sns.countplot(data=df, x=i)
    plt.xticks(rotation = 45)
    plt.show()
```


- All the application type is Individual
- · Most of the loan tenure is disbursed for 36 months
- The grade of majority of people those who have took the loan is 'B' and have subgrade 'B3'.
- So from that we can infer that people with grade 'B' and subgrade 'B3' are more likely to fully pay the loan.

Bivariate Analysis

```
plt.figure(figsize=(15,20))
plt.subplot(4,2,1)
sns.countplot(x='term',data=df,hue='loan_status')
plt.subplot(4,2,2)
sns.countplot(x='home_ownership',data=df,hue='loan_status')
plt.subplot(4,2,3)
sns.countplot(x='verification_status',data=df,hue='loan_status')
plt.subplot(4,2,4)
g=sns.countplot(x='purpose',data=df,hue='loan_status')
g.set_xticklabels(g.get_xticklabels(),rotation=90)
plt.show()
```


- · Most of the people took loan term for 36 months and full paid on time
- · Most of people have home ownership as mortgage and rent
- Most of the people took loan for debt consolidations

```
plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
grade = sorted(df.grade.unique().tolist())
sns.countplot(x='grade', data=df, hue='loan_status', order=grade)

plt.subplot(2, 2, 2)
sub_grade = sorted(df.sub_grade.unique().tolist())
g = sns.countplot(x='sub_grade', data=df, hue='loan_status', order=sub_grade)
g.set_xticklabels(g.get_xticklabels(), rotation=90)

plt.show()
```

r <ipython-input-18-4fc383fe14dc>:10: UserWarning: FixedFormatter should only be used together with FixedLocator
g.set_xticklabels(g.get_xticklabels(), rotation=90)

- The grade of majority of people those who have fully paid the loan is 'B' and have subgrade 'B3'.
- · So from that we can infer that people with grade 'B' and subgrade 'B3' are more likely to fully pay the loan.

<ipython-input-19-d54df4ff7f6f>:7: UserWarning: FixedFormatter should only be used together with FixedLocator
g.set_xticklabels(g.get_xticklabels(),rotation=90)

- · Person who employed for more than 10 years has successfully paid of the loan
- Manager and Teacher are the most afforded loan on titles

Correlatio Analysis

```
plt.figure(figsize=(10,8))
sns.heatmap(df.corr(numeric_only=True), cmap = 'crest', annot = True)
plt.show()
```


- We can see that almost perfect correlation between "loan_amnt" the "installment" feature.
- installment: The monthly payment owed by the borrower if the loan originates.
- loan_amnt: The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.

```
#drop column Installment
# df.drop(columns=['installment'],axis=1,inplace=True)
```

Feature Engineering

df['pub_rec']=df.pub_rec.apply(pub_rec)

```
def pub_rec(number):
    if number == 0.0:
        return 0
    else:
        return 1
def mort_acc(number):
    if number == 0.0:
        return 0
    elif number >= 1.0:
        return 1
    else:
        return number
def pub_rec_bankruptcies(number):
    if number == 0.0:
        return 0
    elif number >= 1.0:
        return 1
    else:
        return number
```

```
df['pub_rec_bankruptcies']=df.pub_rec_bankruptcies.apply(pub_rec_bankruptcies)
```

plt.figure(figsize=(12,20))

```
plt.subplot(6,2,1)
sns.countplot(x='pub_rec',data=df,hue='loan_status')
plt.subplot(6,2,2)
sns.countplot(x='initial_list_status',data=df,hue='loan_status')
plt.subplot(6,2,3)
sns.countplot(x='application_type',data=df,hue='loan_status')
plt.subplot(6,2,4)
\verb|sns.countplot(x='mort_acc',data=df,hue='loan_status')|\\
plt.subplot(6,2,5)
sns.countplot(x='pub_rec_bankruptcies',data=df,hue='loan_status')
plt.show()
₹
                                                                              120000
                                                           loan_status
                                                                                           loan_status
         150000
                                                             Fully Paid
                                                                              100000
                                                                                             Fully Paid
         125000
                                                             Charged Off
                                                                                             Charged Off
                                                                               80000
         100000
                                                                           count
                                                                               60000
          75000
                                                                               40000
          50000
                                                                               20000
          25000
               0
                                                                                    0
                                          pub_rec
                                                                                                           initial_list_status
                                                           loan_status
                                                                                           loan_status
                                                                              100000
                                                            Fully Paid
                                                                                             Fully Paid
         150000
                                                             Charged Off
                                                                                             Charged Off
                                                                               80000
                                                                           count
                                                                               60000
         100000
                                                                               40000
          50000
                                                                               20000
               0
                                                                                    0
                                           JOINT
                     INDIVIDUAL
                                                           DIRECT_PAY
                                                                                                   0.0
                                                                                                                                1.0
                                      application_type
                                                                                                              mort_acc
                                                           loan_status
         150000
                                                             Fully Paid
                                                             Charged Off
        100000
          50000
               0
                                                           1.0
                              0.0
```

• As we can see that Most the loan disbursed to the people whose do not hold bankrupties record have successfully paid loan

pub_rec_bankruptcies

df.describe()

<u>-</u>		loan_amnt	int_rate	installment	annual_inc	issue_d	dti	earliest_cr_line	open_acc	pub_rec	
	count	235886.000000	235886.000000	235886.000000	2.358860e+05	235886	235886.000000	235886	235886.000000	235886.000000	2
	mean	14104.732053	13.643355	431.524698	7.427901e+04	2014-02-02 12:26:02.544618752	17.325831	1998-04-30 06:31:22.122720512	11.306932	0.146579	1
	min	500.000000	5.320000	16.250000	2.500000e+03	2007-06-01 00:00:00	0.000000	1944-01-01 00:00:00	0.000000	0.000000	0
	25%	8000.000000	10.490000	250.330000	4.500000e+04	2013-05-01 00:00:00	11.260000	1994-10-01 00:00:00	8.000000	0.000000	6
	50%	12000.000000	13.330000	375.370000	6.400000e+04	2014-04-01 00:00:00	16.880000	1999-09-01 00:00:00	10.000000	0.000000	1
	75%	20000.000000	16.490000	567.010000	9.000000e+04	2015-03-01 00:00:00	22.960000	2003-04-01 00:00:00	14.000000	0.000000	1
	max	40000.000000	30.990000	1533.810000	7.446395e+06	2016-12-01 00:00:00	189.900000	2013-10-01 00:00:00	90.000000	1.000000	1

NaN

8.130635

NaN

5.136844

0.353687 2

Default title text

std

@title Default title text

8354.907949

df['total_acc'] = pd.to_numeric(df['total_acc'], errors='coerce')

4.467399

250.662467 6.006704e+04

df.head(5)

₹		loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownership	annual_inc	•••	open_acc	pub_rec	revol_ba
	0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	RENT	117000.0		16.0	0	36369.
	1	8000.0	36 months	11.99	265.68	В	В5	Credit analyst	4 years	MORTGAGE	65000.0		17.0	0	20131.
	2	15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year	RENT	43057.0		13.0	0	11987.
	3	7200.0	36 months	6.49	220.65	А	A2	Client Advocate	6 years	RENT	54000.0		6.0	0	5472.
	4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	MORTGAGE	55000.0		13.0	0	24584.
	5 ro	ws × 27 colu	mns												

df.isnull().sum()

→	loan_amnt term int_rate installment grade sub_grade emp_title emp_length home_ownership annual_inc verification_status issue_d loan_status purpose title dti earliest_cr_line open_acc pub_rec revol_bal revol_util total_acc initial_list_status application_type mort_acc pub_rec_bankruptcies address	0 0 0 0 13677 10938 0 0 0 1038 0 0 0 171 0 0 22584 329
	. = = :	

```
# Dropping rows with null values

df.dropna(inplace=True)

# Remaining no. of rows

df.shape

(199942, 27)

def box_plot(col):
    plt.figure(figsize=(8,5))
    sns.boxplot(x=df[col])
    plt.title('Boxplot for {}'.format(col))
    plt.show()

for col in num_vars:
    box_plot(col)
```


Boxplot for int_rate

Boxplot for installment

Boxplot for annual_inc

Boxplot for revol_util

Boxplot for total_acc

Boxplot for mort_acc

Boxplot for pub_rec_bankruptcies

box_plot(col)

```
for col in num_vars:
    mean=df[col].mean()
    std=df[col].std()

    upper_limit=mean+3*std
    lower_limit=mean-3*std

    df=df[(df[col]<upper_limit) & (df[col]>lower_limit)]

df.shape

$\frac{1}{2}$ (189438, 27)

def box_plot(col):
    plt.figure(figsize=(8,5))
    sns.boxplot(x=df[col])
    plt.title('Boxplot')
    plt.show()

for col in num_vars:
```


Boxplot

Boxplot

Boxplot


```
# Converting term values to numerical val
term_values={' 36 months': 36, ' 60 months':60}
df['term'] = df.term.map(term_values)
# Mapping the target variable
df['loan_status']=df.loan_status.map({'Fully Paid':0, 'Charged Off':1})
# Initial List Status
df['initial_list_status'].unique()
np.array(['w', 'f'], dtype=object)
list_status = {'w': 0, 'f': 1}
df['initial_list_status'] = df.initial_list_status.map(list_status)
# Let's fetch ZIP from address and then drop the remaining details -
df['zip_code'] = df.address.apply(lambda x: x[-5:])
df['zip_code'].value_counts(normalize=True)*100
⇒ zip_code
            14.365650
    70466
     30723
             14.316557
     22690
             14.229986
     48052
             14.028864
     29597
             11.534117
     05113
             11.523559
     00813
             11.494526
     11650
              2.843147
     93700
              2.836812
     86630
              2.826782
    Name: proportion, dtype: float64
# Dropping some variables which we can let go for now
axis=1, inplace=True)
```

One hot encoding

```
dummies=['purpose', 'zip_code', 'grade', 'verification_status', 'application_type', 'home_ownership']
df=pd.get_dummies(df,columns=dummies,drop_first=True)
pd.set_option('display.max_columns',None)
pd.set_option('display.max_rows',None)
```

Data processing for modelling

```
from \ sklearn.model\_selection \ import \ train\_test\_split
```

```
X=df.drop('loan_status',axis=1)
y=df['loan_status']
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.30,stratify=y,random_state=42)
print(X_train.shape)
print(X_test.shape)
```

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
X_train
                             , 0.27226581, ..., 0.
, 0.69173973, ..., 0.
⇒ array([[0.57104736, 0.
                                                                , 0.
                      ],
            [0.66711141, 1.
                                                                , 0.
             1.
                     ],
            [0.6490994 , 1.
                                  , 0.11859714, ..., 0.
                                                                , 0.
             0. ],
                               , 0.29303184, ..., 0.
            [0.18412275, 0.
                                                                , 0.
             1. ],
            [0.37358239, 0.
                                 , 0.13244116, ..., 0.
                                                                , 1.
             0. ],
            [0.37358239, 0.
                                   , 0.40470697, ..., 0.
                                                                , 1.
                    ]])
X_test
                               , 0.28749423, ..., 0.
⇒ array([[0.18679119, 0.
                                                               , 0.
             0.
                     ],
            [0.4269513 , 0.
0. ],
                                , 0.26165205, ..., 0.
                                                                , 1.
            [0.37358239, 0.
                                  , 0.35394555, ..., 0.
            1. ],
            [0.72048032, 0.
                                 , 0.58467928, ..., 0.
                                                                , 0.
             0.
                     1,
            [0.17344897, 0.
                                 , 0.26165205, ..., 0.
                                                               , 0.
             0. ],
            [0.40026684, 1.
                                  , 0.60775265, ..., 0.
                                                                , 0.
             0.
                    ]])
Model Building
from \ sklearn.linear\_model \ import \ Logistic Regression
# Fit the LogisticRegression model on the preprocessed data
logreg=LogisticRegression(max_iter=1000)
logreg.fit(X_train,y_train)
             LogisticRegression
     LogisticRegression(max_iter=1000)
pd.Series((zip(X.columns, logreg.coef_[0])))
₹
    0
                           (loan_amnt, -0.04320443805806286)
     1
                                 (term, 0.5588719144348618)
     2
                             (int_rate, -0.1909295408914164)
                           (installment, 0.5846791039181174)
     4
                           (annual_inc, -1.0315790727485319)
                                   (dti, 1.0103079618003479)
     6
                              (open_acc, 0.7991834956794442)
                             (pub_rec, 0.13750498220070798)
     7
                           (revol_util, 0.48983719714913054)
     8
     9
                            (total_acc, -0.6984359021795911)
     10
     11
                  (initial_list_status, 0.01798726724955526)
     12
                           (mort_acc, -0.049546237270576714)
     13
                (pub_rec_bankruptcies, -0.16603105956947073)
                    (purpose_credit_card, 0.286135759732737)
     14
     15
            (purpose_debt_consolidation, 0.3398576323440972)
     16
              (purpose_home_improvement, 0.3906316452021177)
     17
                        (purpose_house, 0.24215443894893757)
                (purpose_major_purchase, 0.3948450037229394)
     18
     19
                      (purpose_medical, 0.47399190105679645)
     20
                        (purpose_moving, 0.3709326989026361)
     21
                         (purpose_other, 0.3017251333476671)
     22
              (purpose_renewable_energy, 0.3401120689222868)
     23
                (purpose_small_business, 0.7671526300924224)
     24
                     (purpose_vacation, 0.37073665091031516)
     25
                      (purpose_wedding, -0.5012600259510492)
                        (zip_code_05113, -2.811547183676483)
     26
     27
                        (zip_code_11650, 11.563392239598716)
     28
                        (zip_code_22690, 4.3333578375091015)
```

(132606, 50) (56832, 50)

```
(zip_code_70466, 4.3831363125349405)
     32
     33
                        (zip_code_86630, 11.547624020548648)
                        (zip_code_93700, 11.578847363633892)
     35
                                (grade_B, 0.5495342892516659)
                                (grade_C, 1.0653674979435734)
     36
                                (grade_D, 1.3950598653799136)
     37
                               (grade_E, 1.6288226893735742)
     38
     39
                                 (grade_F, 1.790221103052595)
     40
                                (grade_G, 1.9088402431029736)
     41
           (verification_status_Source Verified, 0.190195...
     42
           (verification_status_Verified, 0.0523628414920...
     43
           (application_type_INDIVIDUAL, 0.7916536514798871)
     44
               (application_type_JOINT, -0.1452821665339001)
     45
              (home_ownership_MORTGAGE, -0.2585992735960012)
     46
                  (home_ownership_NONE, -0.2344243559761461)
                 (home_ownership_OTHER, 0.48659722930795735)
     47
                 (home_ownership_OWN, -0.12966224859926567)
(home_ownership_RENT, 0.041645790966338914)
     48
     49
     dtype: object
y pred = logreg.predict(X test)
print('Accuracy of Logistic Regression Classifier on test set: {:.3f}'.format(logreg.score(X_test, y_test)))
→ Accuracy of Logistic Regression Classifier on test set: 0.890
!pip install scikit-plot
!pip install scikitplot
!pip install scikitplot.metrics
Requirement already satisfied: scikit-plot in /usr/local/lib/python3.10/dist-packages (0.3.7)
     Requirement already satisfied: matplotlib>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (3.7.1)
     Requirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (1.2.2)
     Requirement already satisfied: scipy>=0.9 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (1.11.4)
     Requirement already satisfied: joblib>=0.10 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (1.4.2)
     Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.2.1)
     Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (0.12.1)
     Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (4.51.0)
     Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.4.5)
     Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.25.2)
     Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (24.0)
     Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (9.4.0)
     Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (3.1.2)
     Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (2.8.2)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18->scikit-plot) (3.5.0)
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib>=1.4.0->scikit-plot) (1.
     ERROR: Could not find a version that satisfies the requirement scikitplot (from versions: none)
     ERROR: No matching distribution found for scikitplot
     ERROR: Could not find a version that satisfies the requirement scikitplot.metrics (from versions: none)
     ERROR: No matching distribution found for scikitplot.metrics
Classification Report
```

29

30

31

print(classification_report(y_test,y_pred))

→		precision	recall	f1-score	support
	0	0.88	0.99	0.94	45653
	1	0.93	0.47	0.63	11179
accur	racy			0.89	56832
macro	avg	0.91	0.73	0.78	56832
weighted	avg	0.89	0.89	0.87	56832

- Precision score and recall score for full paid status is almost same indicates that model is doing decent job which correctly classified the both of the scenarios
- · Precision score for charged off status is more than recall score which is perfect

(zip_code_29597, -2.808033859868557)

(zip_code_30723, 4.374741129605297)

(zip_code_48052, 4.420405036331178)

ROC / AUC

```
logit_roc_auc=roc_auc_score(y_test,logreg.predict(X_test))
fpr,tpr,thresholds=roc_curve(y_test,logreg.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr,tpr,label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0,1],[0,1],'r--')
```