

"Realtime means we have some connection to the real time, right?"

Prof. Erich Styger erich.styger@hslu.ch +41 41 349 33 01

Learning Goals

- Problem: Setting up a periodic timer

- Clock
 - Clock Block Diagram
 - Clock Configuration

- Timer
 - Timer Setup
 - Timer Interrupt
 - LED flashing (1 sec interval)

Technik & Architektur

Realtime Systems: Timeliness

- -Categories
 - Absolute
 - Relative
- -Need
 - Time base
 - Clock
 - Interrupt Synchronization
- Derived
 - Timer
 - Time

What do we need?

- Linkage to the real time
 - ns, μs, ms, s, h, ...
- Periodic Ticks
 - Known real time tick period
 - External or Internal source
 - System/CPU/Bus clock
- Operations
 - Counting ticks
 - Sum/Calculation: real time entity
- Synchronization with counter(s)
 - Events
 - Flags

Technik & Architektur

Remote: K20 Clocks

Source: K20 RM

Figure 24-1. Multipurpose Clock Generator (MCG) block diagram

Robo: K22 Clocks

RTC oscillator

OSC logic

CG - Clock gate

PMC

PMC logic

LPO

RTC clock

Note: See subsequent sections for details on where these clocks are used.

Source: K22 RM

EXTAL32

XTAL32

Technik & Architektur

FRDM & Remote Board

- -8 MHz Crystal
- Enable System Oscillator
- Set PEE mode
- 48 MHz Core/Bus Clock (Remote: 50 MHz)
- 24 MHz Flash Clock (Remote: 25 MHz)

- Details in Lab Assignment

4	System oscillator 0			Enabled	
4	Clock source		External crystal		
	4	Clock input pin			
		Pin name	EXTAL0/PTA18/UART1_RX/TPM_C		
		Pin signal	EXTAL		
	4	Clock output pin			
		Pin name	XTAL0/PTA19/UART1_TX/TPM_CL		
		Pin signal	XTAL		
		Clock frequency [MHz]	8.0	robot and remote	
		Capacitor load	0pF	Tobot and Tomoto	
		Oscillator operating mode	Low power		

Technik & Architektur

Timer (TimerInt)

- M Enable
- Disable
- EnableEvent
- DisableEvent
- SetPeriodMode
- SetPeriodTicks16
- SetPeriodTicks32
- SetPeriodUS
- SetPeriodMS
- SetPeriodSec
- SetPeriodReal
- SetFreqHz
- SetFreqkHz
- SetFreqMHz
- BeforeNewSpeed
- AfterNewSpeed
- TI1_OnInterrupt

Name	Value	Details	
Component name	TII		
Periodic interrupt source	TPM11	TPM11	
Counter	TPM1	TPM1 [shared co	
Interrupt service/event	Enabled		
Interrupt	Vtpm1ch1	Vtpm1ch1	
Interrupt priority	medium priority	not supported	
Interrupt period	10 ms	10.000 ms	
Same period in modes	yes timer interrupt will fire every 1		
Component uses entire timer	no		
Initialization			
Enabled in init. code	yes		
Events enabled in init.	yes		
CPU clock/speed selection			
High speed mode	This component	This component	
Low speed mode	This component	This component	
Slow speed mode	This seems are set	This component	

Not (II)

Timer Interface

```
#define TMR TICK MS 10
  /* we get called every 10 ms
/ *!
 * \brief Function called from timer interrupt
 every TMR TICK MS.
 * /
void TMR_OnInterrupt(void);
/*! \brief Timer driver initialization */
void TMR Init(void);
```

Technik & Architektur

Summary

- Different clock sources
 - External Crystal/Oscillator
 - Internal Clock
- CPU clock vs. Bus Clock
- Setting up periodic Clock

Technik & Architektur

Lab: Clock and Timer

- Set/Verify Clock settings

Board	Core	Bus	Flash
Remote	50 MHz	50 MHz	25 MHz
Robo	120 MHz	60 MHz	24 MHz

- Add 10ms Timer
 - Processor Expert: TimerInt
 - Timer.c/Timer.h
 - Blink LED every 1 s
 - use an event