Automata dan Teori Bahasa

Pertemuan 3
Deterministic Finite Automata

Definisi

 Untuk setiap simbol input, dapat ditentukan status ke mana mesin akan bergerak

Tuple

• DFA dapat di representasikan menjadi 5-tuple (Q, Σ , δ , q0, F)

Penjelasan

- Q adalah himpunan keadaan yang terbatas.
- ∑ adalah kumpulan simbol terbatas yang disebut alfabet.
- δ adalah fungsi transisi di mana δ : $Q \times \sum \rightarrow Q$
- q0 adalah status awal dari mana input diproses (q0 \in Q).
- F adalah himpunan keadaan akhir dari Q (F ⊆ Q).

Representasi Grafis DFA

- DFA direpresentasikan oleh state diagram
 - Vertices mewakili state.
 - Arcs (Busur) yang diberi label alfabet masukan menunjukkan transisi.
 - Initial State (Keadaan awal) dilambangkan dengan busur masuk tunggal yang kosong (empty single incoming arc).
 - The Final State (Keadaan akhir) ditunjukkan oleh lingkaran ganda.

Contoh 1 (1)

- $Q = \{a, b, c\},\$
- $\Sigma = \{0, 1\},$
- $q0 = \{a\},$
- $F = \{c\}$

Contoh 1 (2)

Present State	Next State for Input 0	Next State for Input 1
a	a	b
b	С	С
С	b	a

Contoh 1 (3)

Language Acceptance

- Diterima :
 - Semua string input dipindai
 - dan State terakhir menerima
- Ditolak :
 - Semua string input dipindai
 - dan State terakhir menerima

Contoh 2 (1)

Kasus sama dengan contoh 1

```
L = {0,1,0}, q0 = {a}
L = {0,1}, q0 = {b}
L = {0,0}, q0 = {c}
L = {1,0}, q0 = {a}
```

- Semua berakhir di C (F={c})
- 0 dan 1 tidak mesti berurutan

Contoh 2 (2)

- Ditolak karena :
 - $-L = \{0,1,1\}, q0 = \{a\}, berakhir di a$
 - $-L = \{0,1,0\}, q0 = \{b\}, berakhir di b$
 - $-L = \{0,1,0\}, q0 = \{c\}, berakhir di a$
 - $-L = \{1,0,1,1,0\}, q0 = \{a\}, berakhir di b$