Machine Learning (BITS F464)

Assignment 3 Naive Bayes Classifier

Team Members:

 Kartik Srivastava 	2014B4A7755H
 Abhishek Singh 	2014B4A7752H
 Raj Aditya Kumar 	2014B4A7582H
 Shubham Jain 	2014A7PS085H

Training the faces

The each of 70x60 pixels of each of the images were analysed and the following probabilities were computed for each pixel:

- P('#' | image=face)
- P('#' | image!=face)
- P(''|image=face)
- P(''|image!=face)

Also along with these probabilities, two more probabilities were computed:

- P(image=face)
- P(image!=face)

Thus after calculating these probabilities, Naive bayes Classifier was used to predict whether each of the images were faces or not by computing the following probabilities:

$$P(image=face \mid pixels) = (\prod P(pixel('\#' \text{ or ' '}) \mid image=face)) P(image=face)$$

$$P(image!=face \mid pixels) = (\prod P(pixel('\#' \text{ or ' '}) \mid image!=face)) P(image!=face)$$

and classifying image as face or not a face according to the greater of the two calculated probabilities.

To prevent the values of P(image=face | pixels) and P(image!=face | pixels) from reaching zero due to multiplication of individual probabilities, each of the probabilities P(pixel('#' or ' ') | image=face) or P(pixel('#' or ' ') | image! =face) were multiplied by a constant value of **1.42**.

Confusion Matrix:

Classification / Truth	True	False
Positive	63	6
Negetive	71	10

Accuracy: 89.33%

Examples of Misclassification

False Positive

```
###
         # #
             ### #
           # ## #
         #
                #
         #
           #
                # #
                #### #
         #
               ##
            #
                  #
         #
            # ###
         #
           # ##
         #
           #
         #
         # #
                # ##
          #
           #
                # ##
               # #
#########
   ###
           # ###
                  ##
    #
              #
######
                # #
  ### #
           # ## # #
         # #####
     ####
             ####
 #
  # #
         # # # # #
                     ##
 ###
       # #### # # #
                      ##
#######
#########
            # # # # #######
           #######
 #######
 # # # #
   # # # ###### #
                    # #####
## # # # # # # # ##
 # # # # # # #
# # # # # ##
               #
            ####
            ## ###
 ######
 ####
            ## ###
  #### # #
            # #
   # # # ### # #
   # # # # ### # #
  ## # # # # #
               # #########
###### #### #
                           #######
          # # ###
    ####
      ### #
                #
          # ### #
           ## ####### ####
               ###
```

```
#+
##
#
##
####
    #
##
##
##
```

False Negetive

```
###
      ####
                     ## ##
                ###### # #
           ##
                 ##
        ####### ###
     #
    #
             ##
##
    #####
           ##
#######
           ##
                   #
     #
        ######
                  #
     # ###
             #
                  #
                        ##
   # # #
            #
                 #
                      #
   # # #
# ##
            #
                       ####
                  #
##
             #
                       #
 ### ## #
             #
  # ## #
                ###
            #
  ####
             #
                     #
                # #
    #
             #
                 # ##
             #
                  #
                    #
    #
  #
    #
           #
             #
                    # #
  # ###
            #
                    # ## #
  ###
  # # #
            #
              #
                   #
                      #
  ###
  ###
                     #####
 # ######
              #
                    # #
                     # #
####
              ###
        ####### # #####
    #
          # #
                 #
                    # # ##
          # #
                 #
                      ##
                 #
    #
       #
            #
            ##
  ### # #
                   #
          #
        ### # #
                   #
                       #
                     # ######
###
          ##
                  # # #
 #
      #
           #
                  # # #
  ###### #
                     ####
            #
                   #######
    # ###
            #
                     #
#####
        #
          # # #
                      #
                        #
 ##########
     #
       # # #
       ###
       ###
                      #
                  #
                      ####
     # # ###
                 # ######
## #### ## # #
                     #
        # ###
    ### ## #
   # ## #
                    #############
          #
     # # #
##
                 ###
      #
          ##
      #
                  #
      #
                  ###
       #
                   #
               #
               #
       #
                    #
      #
                 #
       ..
#
# ##
               #
                  #
                 # #
  #
       # #
       # #
                # ##
                #### ### #
```

```
## ###
               #### # ## ###
               #
                   #
                     #
               #
                  #
                    ##
         ##
               # # ###
# # ##
# # #
        ##
        #
#
       #
                  #
       #
                  # ####
       #
           ###
                  ########
       #
                  #
            #
     # # ##
# # ##
# ##
                # ## #
          ###
          # # #
# # #
# # # #
! # # ######
       ## # #
## #
## #
     #
     #
     #
   #
   #
   #
  #
#
#
                 ## # #
## # #
              #
         #
      #
      # #
# #
# #
# #
# ####
  #
  #
#
#
#
               #
                  # #######
              #
#
#
                  #
#
#
                   ##### # # #
             #
                     #####
                  ###
###
###
     #
                        #####
     #######
                    # #
###
                      #
      #
  #############
                #
                #
#
                      ###
                   #####
                          ##
               ## # #
                          #
               # # #
                           #
           ##
                          #
           "##### # #
# #
                        #
               # #
# #
# # ##
     ## #
                         #
       #
                         #
    ## #
                # # ####
                ## # # #
    ## #
#### ## #
### ##
                   ##
                         #####
   #
   ###
                #
                   #
                #
    ###
                   ##
     ############
                        #####
```

Code:

```
import java.io.*;
class NaiveBayes
     public static void main(String [] args)throws IOException
          double P_h1[][]=new double[70][60];//array to store
P('#'|(image=face))
          double P h0[][]=new double[70][60];//array to store
P('#'|(image=not face))
          double P_s1[][]=new double[70][60];//array to store P('
'|(image=face))
          double P_s0[][]=new double[70][60];//array to store P('
'|(image=not face))
          double acc=0;// to store accuracy
          double s_const=1.42;// smoothing constant to prevent the
probabilities from reaching zero
          int conf_mat[][]=new int[2][2];// confusion matrix
          double P 1=0;// to store probability of face images in
the training data
          double P_0=0; // to store the probility that image is not
of a face in the training data
          double P1=1.0;// probability that image to be tested is
of a face
          double P0=1.0;// probability that image to be tested is
not of a face
          int count=0;
          for (int i=0; i<2; i++)
          for (int j=0; j<2; j++)
          conf_mat[i][j]=0;//to initialize confusion matrix
elements to zero
          for (int i=0; i<70; i++)
               for (int j=0; j<60; j++)
                    P_h1[i][j]=0.0;
                    P_h0[i][j]=0.0;
                    P_s1[i][j]=0.0;
                    P_s0[i][j]=0.0;
               }// to initialize the probablities to zero before
training
          FileReader tr = new FileReader("facedatatrain");//opening
the training image file
          BufferedReader br=new BufferedReader(tr);
          String tr img=br.readLine();//stores each line of file
          FileReader tr_label=new
FileReader ("facedatatrainlabels"); // opening the training result
file
          BufferedReader br1=new BufferedReader(tr_label);
          String tr_res=br1.readLine();//stores result of image
          while((tr_img)!=null && (tr_res)!=null)
               if(tr_res.equals("1"))
```

```
P_1+=1.0;
               else
               P_0+=1.0;
                for (int i=0; i<70; i++)
                     for (int j=0; j<60; j++)
                     {
                          char ch=tr_img.charAt(j);
                          if(tr_res.equals("1"))
                               if (ch=='#')
                               P_h1[i][j] += 1.0;
                               else if(ch==' ')
                               P_s1[i][j] += 1.0;
                          else if(tr_res.equals("0"))
                               if(ch=='#')
                               P_h0[i][j]+=1.0;
                               else if(ch==' ')
                               P_s0[i][j] += 1.0;
                     }
                     tr_img=br.readLine();
                }//to scan each image of each image and increment
probabilities accordingly
               count++;
               tr_res=(br1.readLine());
          }
          tr.close();
          tr_label.close();
          // computing probabilities
          for (int i=0; i<70; i++)
                for (int j=0; j<60; j++)
                     P_h1[i][j]/=P_1;
                     P_h0[i][j]/=P_0;
                     P_s1[i][j]/=P_1;
                     P_s0[i][j]/=P_0;
                }
          }
          P_1/=count;
          P_0/=count;
          FileReader test = new
FileReader("facedatatest");//opening the training image file
```

```
BufferedReader br2=new BufferedReader(test);
          String ts_img=br2.readLine();//stores each line of file
          FileReader test_label=new
FileReader("facedatatestlabels");// opening the image testing file
          BufferedReader br3=new BufferedReader(test_label);
          String ts_res=br3.readLine();//stores the result of the
image
          count =0;
          System.out.println("Actual Output\tClassified Output");
          while((ts img)!=null && (ts res)!=null)
               P1=P 1;
               P0=P_0;//initializing the probailities
               int res=-1;
               for (int i=0; i<70; i++)
                    for (int j=0; j<60; j++)
                         char ch=ts_img.charAt(j);
                         switch(ch)
                              case '#': P1=P1*P_h1[i][j]*s_const;
                                        P0=P0*P_h0[i][j]*s_const;
                                        break;
                              case ' ': P1=P1*P_s1[i][j]*s_const;
                                        P0=P0*P_s0[i][j]*s_const;
                                        break;
                         }
                    }//computing probabilities P(face|data) and
P(not face|data)
                    ts_img=br2.readLine();
               }
               if(P1>P0)
               res=1;
               res=0;//computing result based on the probabilities
               if(res==0 && ts_res.equals("0"))
               conf_mat[0][0]++;
               else if(res==0 && ts_res.equals("1"))
               conf_mat[0][1]++;
               else if (res==1 && ts_res.equals("0"))
               conf_mat[1][0]++;
               else if (res==1 && ts_res.equals("1"))
               conf_mat[1][1]++;
               //incrementing values of the confusion matrix
```

```
System.out.println("\t"+ts_res+"\t\t"+res);//printing results
                count++;
                ts_res=(br3.readLine());
           }
          System.out.println("True Negetives: "+conf_mat[0][0]);
System.out.println("True Positives: "+conf_mat[1][1]);
          System.out.println("False Negetives: "+conf_mat[0][1]);
          System.out.println("False Positives: "+conf_mat[1][0]);
          // printing value of confusion matrix
          acc=(double)(conf_mat[0][0]+conf_mat[1][1])/
((double)count);//calculating accuracy
          System.out.println("Accuracy: "+acc*100+"%");
          if (count == (conf_mat[0][0]+conf_mat[0][1]+conf_mat[1]
[0]+conf_mat[1][1]))
          System.out.println("All files Read
Correctly");//Verifying that all files have been read
     }
}
```