基礎コンピュータ工学 第2章 情報の表現 (パート3)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

2進数の和差の計算

10**進数の場合**を思い出してみる。

9より大きくなる時に桁上げが発生する。

析借りでは10借りてくる。

2進数の和差の計算

2進数の場合は以下のようになる.

● 1より大きくなる時に**桁上げ**が発生する.

$$010$$
 001 010 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 010 011 010 010 010 010 010 010 010 010 011 010 010 010 010 010 010 010 010 011 010 010 011 010 010 010 010 010 011 010 010 010 010 011 010 010 010 010 010 010 010 010 010 010 010 011 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 011 010 010 010 010 010 010 010 010 010 010 010 010 011 010 010 010 011 010 011 010 010 010 010 010 010 010 011 010 010 010 010 010 011 010 010 010 010 010 011 010 010 010 010 010 010 010 010 010 010 011 010 01

桁借りでは2借りてくる。

2進数の和差の計算(問題)

問題8:10進数の計算と2進数の計算をしなさい.

<ロト <個ト < ≣ト < ≣ト のQ (~)

12 - 7

負の数を2進数でどのようにビットで表現するか約束する.

(1) 符号付き絶対値表現

左端のビットを符号 (+/一) として使用する.

- 4ビット符号付き絶対値表現の例

負数	2進数	正数	2進数
-7	1111_2	+7	0111_2
-6	1110_2	+6	0110_{2}
-5	1101_2	+5	0101_2
-1	1001_2	+1	0001_2
-0	1000_2	+0	0000_{2}
	'	'	'

- 4ビットで-7から+7の範囲を表現できる。
- 0の表現が二つある(-0と+0).

補数表現

- n桁の b進数において b^n から x を引いた数 y を x に対する「b の補数」と呼ぶ. $y = b^n x$ (y は x に対する b の補数)
- n桁のb進数において
 bⁿ − 1 からxを引いた数zをxに対する「(b − 1)の補数」と
 呼ぶ

$$z = b^n - 1 - x$$
 (zはxに対する(b-1)の補数)

2桁の10進数における補数の例

4桁の2進数における補数の例

(2) 1の補数による負数の表現

1の補数を負数の表現に使用する.

· 4 ビット2進数の1の補数(2⁴ – 1 – x = z)·

補数へ変換		補数(z)
$1111_2 - 0000_2$	=	1111_{2}
$1111_2 - 0001_2$	=	1110_{2}
$1111_2 - 0010_2$	=	1101_{2}
$1111_2 - 0011_2$	=	1100_{2}
$1111_2 - 0100_2$	=	1011_{2}
$1111_2 - 0101_2$	=	1010_{2}
$1111_2 - 0110_2$	=	1001_{2}
$1111_2 - 0111_2$	=	1000_{2}
	$\begin{array}{c} 1111_2 - 0000_2 \\ 1111_2 - 0001_2 \\ 1111_2 - 0010_2 \\ 1111_2 - 0011_2 \\ 1111_2 - 0100_2 \\ 1111_2 - 0101_2 \\ 1111_2 - 0110_2 \\ 1111_2 - 0110_2 \\ \end{array}$	$\begin{array}{rcl} 1111_2 - 0000_2 & = \\ 1111_2 - 0001_2 & = \\ 1111_2 - 0010_2 & = \\ 1111_2 - 0011_2 & = \\ 1111_2 - 0100_2 & = \\ 1111_2 - 0101_2 & = \\ 1111_2 - 0110_2 & = \\ \end{array}$

1の補数を用いた符号付き数値

```
1000_{2}
-7
-6
     1001_{2}
-5
     1010_{2}
-4
     1011_{2}
-3
     1100_{2}
-2
     1101_{2}
-1
     1110_{2}
-0
     1111_2 +
+0
     0000_2 +
+1
     0001_2
     0010_{2}
+2
+3
     0011_{2}
+4
     0100_{2}
+5
     0101_{2}
+6
     0110_{2}
+7
     0111_{2}
```

Ⅰの補数の求め方

$$x = +3_{10} = 0011_2$$
 (もとの数)
 $y = -3_{10} = 1100_2$ (1の補数)

• 表現できる数値の範囲

4 ビット:
$$-7 \sim +7 \left(-(2^3-1) \sim +(2^3-1)\right)$$

n ビット: $-(2^{n-1}-1) \sim +(2^{n-1}-1)$

• 正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

(3) 2の補数による負数の表現

2の補数 $(2^n - x)$ を負数の表現に使用する.

- 4ビット2進数の2の補数($2^4 - x = y$)

もとの数 (x)	補数へ変換		補数 (y)
0	$10000_{2} - 0000_{2}$	=	10000_{2}
1	$10000_{2} - 0001_{2}$	=	1111_{2}
2	$10000_{2} - 0010_{2}$	=	1110_{2}
3	$10000_{2} - 0011_{2}$	=	1101_{2}
4	$10000_{2} - 0100_{2}$	=	1100_{2}
5	$10000_{2} - 0101_{2}$	=	1011_{2}
6	$10000_{2} - 0110_{2}$	=	1010_{2}
7	$10000_{2} - 0111_{2}$	=	1001_{2}
8	$1 0000_2 - 1000_2$	=	1000_{2}

2の補数を用いた符号付き数値・

```
1000_{2}
-8
-7
     1001_{2}
-6
    1010_{2}
-5
    1011_{2}
-4
    1100_{2}
-3
    1101_{2}
-2 	1110_2
-1
    1111_{2}
 0
     0000_2 +
     0001_2
     0010_{2}
 3
     0011_{2}
     0100_{2}
 5
     0101_{2}
     0110_{2}
     0111_{2}
```

• 2の補数の求め方

ビット反転
$$+1$$

 $x = +3_{10} = 0011_2$ (もとの数)
 $y = -3_{10} = 1100_2 + 1 = 1101_2$ (2の補数)

元に戻すのもビット反転+1

$$y = -3_{10} = 1101_2$$
 (2の補数)
 $y = +3_{10} = 0010_2 + 1 = 0011_2$ (もとの数)

• 表現できる数値の範囲

4 ビット:
$$-8 \sim +7 (-2^3 \sim + (2^3 - 1))$$
n ビット: $-2^{n-1} \sim + (2^{n-1} - 1)$

• 正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

負数の表現(問題1/2)

問題9:次の10進数を2の補数表現形式の4桁の2進数に変換しなさい.

- **1)** 4₁₀
- 2) -4_{10}
- **3)** 5₁₀
- **4)** -5_{10}
- **5)** 6₁₀
- **6)** -6_{10}

負数の表現(問題2/2)

問題10:次の2の補数表現形式の4桁の2進数を10進数に変換しなさい.

- **1)** 1001₂
- **2)** 0111₂
- **3)** 1101₂
- **4)** 0011₂
- **5)** 1011₂
- **6)** 1100₂