

Stat GR4315 Lecture 5

Jingchen Liu

Department of Statistics Columbia University

Analysis of variance

► The decomposition

$$\sum (y_i - \bar{y})^2 = \sum (y_i - \hat{y}_i)^2 + \sum (\hat{y}_i - \bar{y})^2$$

$$SS_{total} = SS_{error} + SS_{regression}$$

► The analysis of variance table

	d.f.	Sum Sq	Mean Sq	F-value	<i>p</i> -value
×	p-1	$\sum (\hat{y}_i - \bar{y})^2$	$\frac{\sum (\hat{y}_i - \bar{y})^2}{p-1}$	$\frac{(n-p)\sum(\hat{y}_i-\bar{y})^2}{(p-1)\sum(y_i-\hat{y}_i)^2}$	*
		$\sum (y_i - \hat{y}_i)^2$	$\frac{\sum (y_i - \hat{y}_i)^2}{n-p}$		
Total	n-1	$\sum (y_i - \bar{y})^2$	•		

Analysis of variance

▶ The analysis of variance table of the Iris setosa data

	d.f.	Sum Sq	Mean Sq	<i>F</i> -value	<i>p</i> -value
×	1	3.9	3.2	59.0	7×10^{-10}
Residuals	48	3.2	0.066		
Total	49	7.1			

F-test and t-test

Inferential tools of simple linear model

- ► The four assumptions
- Point estimate
 - Understanding the least squares estimate
 - variance estimate
 - Frequentist's distribution
- Interval estimate
 - Regression coefficients
 - Prediction: conditional mean, future observation, simultaneous confidence band
- Hypothesis testing
 - ► Z-test
 - t-test: special case two sample test
 - F-test: analysis of variance, R²

Diagnosis - linearity

Some possible deviation away from the assumption

Diagnosis – graphical analysis

Diagnosis – box plot

Diagnosis – quantile-quantile plot

Diagnosis – quantile-quantile plot

Diagnosis – residuals

Some possible deviation away from the assumption

Diagnostic test

- ► Pure significant test
- ▶ Equal variance test: Brown-Forsythe test and Levene's test

Howard Levene

Transformation 101

▶ Logarithm!

Box-Cox tranformation

$$f_{\lambda}(y)$$

- $f_{\lambda}(y) = (y^{\lambda} 1)/\lambda$ if $\lambda \neq 0$; $f_{\lambda}(y) = \log y$, if $\lambda = 0$.
- ▶ Choice of λ : maximum likelihood estimate
- ▶ library{car}: box.cox.powers

Some other transformations

$$y$$
 ∈ [0, 1]

- ▶ Logit transform: $\log \frac{y}{1-y}$
- ▶ Probit transform: $F^{-1}(y)$ where $F(x) = P(Z \le x)$
- etc.

Multiple linear regression - motivation

- Simple linear model in subgroups
- Nonlinear relationship
- Multiple predictors
- Variable selection

Multiple group

Nonlinearity

Local regression

Multiple linear regression

- ▶ Response variable y and p covariates $x_1, ..., x_p$
- ► Regression model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

where $\varepsilon \sim N(0, \sigma^2)$

Matrix notation

•

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$\varepsilon_1$$
, ..., ε_n are i.i.d. $N(0, \sigma^2)$.

Write in short as

$$Y = X\beta + \varepsilon$$

where ε is multivariate normal with mean zero and covariance matrix $\sigma^2 L$

Least squares estimate

Least squares estimator

$$\hat{\beta} = \arg\min_{\beta} (\boldsymbol{Y} - \boldsymbol{X}\beta)^\top (\boldsymbol{Y} - \boldsymbol{X}\beta) = (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{Y}$$

Derive it.

Frequentist distribution

Unbiased distribution

$$E(\hat{\beta}) = \beta$$

Variance and covariance

$$Var(\hat{\beta}) = \sigma^2(X^\top X)^{-1}.$$

- Computation of covariance matrix
- Multivariate normal distribution

About multivariate normal distribution

 \blacktriangleright Multivariate normal distribution with mean μ and covariance matrix Σ

$$f(x) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{(x-\mu)^\top \Sigma^{-1}(x-\mu)}{2}}$$

Generating multivariate normal random variables

Variance estimation

► An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

► Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

Projection

