Homework 2: solutions to selected problems.

Exercise 1 Prove the uniqueness of the empty set, that is, if A and B are empty sets, show that A = B.

Solution: Solved in class.

Exercise 2 The following claim is true, but the argument presented as its proof contains a mistake. Find the mistake, and fix it.

Claim: If A is a set, then $A \in \mathcal{P}(A)$.

Proof. Suppose
$$x \in A$$
. Then $\{x\} \subset A$. Thus $\{x\} \in \mathcal{P}(A)$. Therefore, $A \in \mathcal{P}(A)$.

Solution: Solved in class.

Exercise 3 Let A and B be sets. Prove that A = B if and only if $\mathcal{P}(A) = \mathcal{P}(B)$.

Exercise 4 Let A, B, C and D be sets. Prove that

- (a) $A \subset B$ if and only if $A B = \emptyset$.
- (b) If $A \subset B \cup C$ and $A \cap B = \emptyset$, then $A \subset C$.
- (c) If $A \subset C$ and $B \subset C$, then $A \cup B \subset C$.
- (d) If $C \subset A$ and $D \subset B$, then $C \cap D \subset A \cap B$.
- (e) If $A \cup B \subset C \cup D$, $A \cap B = \emptyset$, and $C \subset A$, then $B \subset D$.

Solution: In each part, we may take as the Universe of Discourse the union of the sets A, B, C and D, according to their appearance in the corresponding statement.

(a) Universe: $A \cup B$.

Consider the predicates

- P: "it belongs to A";
- Q: "it belongs to B".

In terms of these predicates, what we wish to prove is that

$$[\forall x \ (P(x) \Rightarrow Q(x))] \Leftrightarrow [\neg \exists x \ (P(x) \land \neg Q(x))]$$

By Material Implication,

$$P(x) \Rightarrow Q(x) \Leftrightarrow \neg P(x) \lor Q(x).$$

The negation of $[\forall x \ (P(x) \Rightarrow Q(x))]$ can thus be written as

$$[\exists x \ \neg (P(x) \Rightarrow Q(x))] \Leftrightarrow [\exists x \ \neg (\neg P(x) \lor Q(x))]$$
$$\Leftrightarrow [\exists x \ (P(x) \land \neg Q(x))],$$

thus the desired equivalence follows from the double negation law,

$$[\forall x \ (P(x) \Rightarrow Q(x))] \Leftrightarrow \neg[\neg[\forall x \ (P(x) \Rightarrow Q(x))]]$$

$$\Leftrightarrow \neg[\exists x \ \neg(P(x) \Rightarrow Q(x))]$$

$$\Leftrightarrow \neg[\exists x \ (P(x) \land \neg Q(x))].$$

(b) Universe: $A \cup B \cup C$.

Consider the predicates

- P: "it belongs to A";
- Q: "it belongs to B";
- R: "it belongs to C.

In terms of these predicates, the statement we seek to prove is that if

$$[\forall x \ (P(x) \Rightarrow Q(x) \lor R(x))] \land [\forall x \ (P(x) \Rightarrow \neg Q(x)) \land (Q(x) \Rightarrow \neg P(x))],$$

then

$$\forall x \ (P(x) \Rightarrow R(x)).$$

In doing so, the first step is to simplify the premise, extracting the quantifier

$$\forall x \; [(P(x) \Rightarrow Q(x) \lor R(x)) \land (P(x) \Rightarrow \neg Q(x)) \land (Q(x) \Rightarrow \neg P(x))].$$

From

$$(P(x) \Rightarrow Q(x) \lor R(x)) \land (P(x) \Rightarrow \neg Q(x)),$$

we may infer

$$(P(x) \Rightarrow R(x)),$$

thus

$$\forall x \; [(P(x) \Rightarrow R(x)) \land (Q(x) \Rightarrow \neg P(x))],$$

from which we infer the statement on the left by simplification,

$$\forall x (P(x) \Rightarrow R(x)),$$

as desired.

(c) Universe: $A \cup B \cup C$.

Consider the predicates

- P: "it belongs to A";
- Q: "it belongs to B";
- R: "it belongs to C.

In terms of these predicates, the statement we wish to prove is: if

$$\forall x [(P(x) \Rightarrow R(x)) \land (Q(x) \Rightarrow R(x))],$$

then

$$\forall x [(P(x) \lor Q(x)) \Rightarrow R(x)].$$

This is easily achived by using material implication (applied three times), distributivity, and DeMorgan's laws:

$$\forall x \ [(P(x) \Rightarrow R(x)) \land (Q(x) \Rightarrow R(x)) \Leftrightarrow \forall x \ [(\neg(x) \lor R(x)) \land (\neg Q(x) \lor R(x))],$$

$$\Leftrightarrow \forall x \ [(\neg P(x)) \land (\neg Q(x))] \lor R(x)$$

$$\Leftrightarrow \forall x \ [\neg(P(x) \lor Q(x))] \lor R(x)$$

$$\Leftrightarrow \forall x \ (P(x) \lor Q(x)) \Rightarrow R(x).$$

- (d) Suppose $x \in C \cap D$. Then, in particular, $x \in C$, hence $x \in A$, by inclusion. Likewise, $x \in D$, thus $x \in B$, by inclusion. It follows that $x \in A \cap B$. This shows that $C \cap D \subset A \cap B$.
- (e) Solved in class.

Exercise 5 Let A and B be sets. Prove that

$$\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B).$$

Show, by means of an example, that the equality

$$\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$$

need not be true.

Solution: Solved in class.

Exercise 6 Let A, B, C and D be sets.

- (a) Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- (b) Find an example that show thats the equality

$$(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$$

is, in general, false.

Solution: Solved in office hours.

Exercise 7 Use Mathematical Induction to verify the following statements:

(a) For every $n \in \mathbb{N}$, the number

$$\frac{n(n+1)}{2}$$

is an integer.

(b) For every $n \in \mathbb{N}$, the number

$$n(n+1)(2n+1)$$

is divisible by 6.

- (c) For all $n \in \mathbb{N}$, the sum of the interior angles of a convex polygon with (n+2)-sides is $180 \cdot n$ degrees.
- (d) For all $n \in \mathbb{N}$, given n points in a plane, no three of which are collinear, there are exactly

$$\frac{n^2 - n}{2}$$

line segments joining pairs all pairs of points.

Solution:

- (a) Solved in class.
- (b) Solved in class.
- (c) As remarked in class, there was a typo in this problem: the polygon is meant to have (n+3) sides, and the sum of angles is correspondently $180 \cdot (n+1)$ degrees. This is for compatibility with our assumption that $0 \in P$.

Consider the following subset of \mathbb{N} ,

 $P = \{n \in \mathbb{N} | \text{ the sum of angles of any convex polygon with } (n+3) \text{ sides is } 180 \cdot (n+1) \}.$

When n = 0, this is the statement that the sum of angles of any triangle is 180 degrees, which we know to be true, from Euclidean Geometry. This is a fundamental fact, which we will use during the inductive step.

Next, we assume that $n \in P$, and consider the question of whether $(n+1) \in P$. Let $A_0A_1A_2A_3\cdots A_{n+2}A_{n+3}$ be a convex (n+4)sided polygon, with A_i being the vertices. Consider the line segment $\overline{A_1A_{n+3}}$. It splits the polygon into two others, a triangle: $A_{n+3}A_0A_1$, and a polygon with (n+3)-sides, $A_1A_2\cdots A_{n+2}A_{n+3}$. By the induction hypothesis, the sum of angles in the latter is 180(n+1), while the sum of angles in the former is 180. Overall, the sum of angles in the original polygon is

$$180(n+1) + 180 = 180(n+2).$$

Since this procedure can be carried out for any (n+4)-sided polygon, we conclude that $(n+1) \in P$, as we wanted to show.

(d) Solved in class.

Exercise 8 The Fibonacci numbers are recursively defined by the relations

$$f_1 = 1,$$

 $f_2 = 1,$
 $f_{n+2} = f_{n+1} + f_n.$

In this problem, you are required to use Induction (or its variants) to show the following:

- (a) Two consecutive terms of this sequence have no common divisors, other than ± 1 .
- (b) f_{3n} is always even.
- (c) f_{4n} is divisible by 3, for all $n \in \mathbb{N}$.

Solution: First, a clarification: the rules above imply that $f_0 = 0$.

(a) Consider the following subset of \mathbb{N} :

$$P = \{n \in \mathbb{N} | f_n \text{ and } f_{n+1} \text{ have no common divisors, other than } \pm 1\}.$$

We observe that $0 \in P$, as $f_0 = 0$ and $f_1 = 1$ have no common divisors, other than ± 1 .

Assume that $n \in P$, that is, f_n and f_{n+1} have no common divisors. Then, we consider the question of whether $(n+1) \in P$. We will prove this is the case by means of contradiction. Suppose that the induction hypothesis holds, but $(n+1) \notin P$, that is, suppose that f_{n+1} and f_{n+2} have a common divisor, say $k \in \mathbb{Z}$, $k \neq \pm 1$. Then,

$$f_{n+1} = ka, \text{ and,}$$

$$f_{n+2} = kb,$$

for certain integers a, b. It follows from the recursion relating f_{n+2} , f_{n+1} and f_n , that

$$f_n = f_{n+2} - f_{n+1} = kb - ka = k(b-a),$$

that is, k also divides f_n . This contradicts our induction hypothesis, so it must be the case that $(n+1) \in P$.

(b) Consider the following subset of N:

$$Q = \{n \in \mathbb{N} | f_{3n} \text{ is even} \}.$$

As usual, we begin by verifying that 0 belongs to Q, for $f_0 = 0$ is even.

Next we assume that f_{3n} is even. Then, we use the recursion defining the sequence to relate $f_{3(n+1)} = f_{3n+3}$ and f_{3n} :

$$f_{3n+3} = f_{3n+2} + f_{3n+1}$$

$$= (f_{3n+1} + f_{3n}) + f_{3n+1}$$

$$= 2f_{3n+1} + f_{3n}.$$

Since f_{3n} is even, and $2f_{3n+1}$ is even, their sum, f_{3n+3} , is also even, as we wanted to prove.

(c) Consider the following subset of N:

$$R = \{n \in \mathbb{N} | f_{4n} \text{ is divisible by 3} \}.$$

It is easy to verify that $0 \in R$, as $f_0 = 0$ is divisible by 3.

Assume that $n \in R$, that is, f_{4n} is divisible by 3. Again, we use the recursion to relate $f_{4(n+1)} = f_{4n+4}$ and f_n ,

$$f_{4n+4} = f_{4n+3} + f_{4n+2}$$

$$= (f_{4n+2} + f_{4n+1}) + (f_{4n+1} + f_{4n})$$

$$= f_{4n+2} + 2f_{4n+1} + f_{4n}$$

$$= (f_{4n+1} + f_{4n}) + 2f_{4n+1} + f_{4n}$$

$$= 3f_{4n+1} + 2f_{4n}.$$

Since f_{4n} is divisible by 3, so is $2f_{4n}$. Clearly, $3f_{4n+1}$ is divisible by 3, so the sum

$$f_{4n+4} = 3f_{4n+1} + 2f_{4n}$$

is divisible by 3, as we wanted to show.

Exercise 9 In a certain kind of tournament, every player plays every other player exactly once, and either wins or losess. There are no ties. Define a top player to be a player who, for every other player x, either beats x or beats a player y who beats x.

- (a) Show, by means of an example, that there can be more than one top player.
- (b) Use Induction to show that every such tournament with n players has a top player.
- (c) Use the Well-Ordering Principle to show that every such tournament with n players has a top player.

Solution: Solved in class.