МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №7

по дисциплине 'ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ'

Вариант: 698

Выполнил: Студент группы Р3113 Свиридов Дмитрий Витальевич Преподаватель: Афанасьев Дмитрий Борисович

Содержание

C	одержание	2
1	Задание	3
2	Текст синтезированной микропрограммы	3
3	Текст тестовой программы	3
4	Таблица трассировки микрокоманд	4
5	Методика проверки команды	4
6	Вывол	4

1 Задание

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. MADC M сложение с учетом переноса аккумулятора с ячейкой памяти с записью результата в ячейку памяти и без установки N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса 00F9₁₆

2 Текст синтезированной микропрограммы

Адрес МП	Микрокоманда	Действие
3D	81E1104002	$ ext{if } \operatorname{CR}(12) = 1 ext{ then GOTO E1} $
E1	80E4011040	if PS(C) = 0 then GOTO E4
E2	0001009411	$AC + DR + 1 \rightarrow DR$
E3	80E5101040	GOTO E5
E4	0001009011	$AC + DR \rightarrow DR$
E5	0200000000	$DR \to MEM(AR)$
E6	80C4101040	GOTO INT @ C4

3 Текст тестовой программы

ORG OxF9 TR1: WORD ? TR2: WORD ? TR3: WORD ? RES: WORD 1 START: CALL T1 ST TR1 BNE N2 ST RES N2: CALL T2 ST TR2 BNE N3 ST RES N3: CALL T3 ST TR3 BNE EN ST RES HLTEN: WORD 0x1 A1: B1: WORD 0x2 R1: WORD 0x3 T1: LD A1 WORD Ox9EFC LD B1 CMP R1 BNE WR

BR COR

A2: WORD 0x1
B2: WORD 0x2
R2: WORD 0x4

T2: CLC CMC LD A1

WORD Ox9EFC

LD B1 CMP R1 BNE WR BR COR

A3: WORD 0x1 B3: WORD 0x2

T3: CLC

CMC LD A1

WORD Ox9EFC

BCC WR BR COR

COR: LD #1

RET

WR: LD #0

RET

4 Таблица трассировки микрокоманд

MP до выборки MK	Содердимое памяти и регистров процессора								
	после выборки и исполнения микрокоманды								
	MR	IP	CR	AR	DR	$_{\mathrm{BR}}$	$^{\mathrm{AC}}$	NZVC	МР (СчМК)
28	813C804002	10F	9EFC	10B	0002	FFFC	0001	0000	3C
3C	8143204002	10F	9EFC	10B	0002	FFFC	0001	0000	3D
3D	81E1104002	10F	9EFC	10B	0002	FFFC	0001	0000	E1
E1	80E4011040	10F	9EFC	10B	0002	FFFC	0001	0000	E4
E4	0001009011	10F	9EFC	10B	0003	FFFC	0001	0000	E5
E5	0200000000	10F	9EFC	10B	0003	FFFC	0001	0000	E6
E6	80C4101040	10F	9EFC	10B	0003	FFFC	0001	0000	C4

5 Методика проверки команды

- 1. Занести микрокод в микропрограммную память, а тестовую программу в основную память БЭВМ.
- 2. Запустить программу с адреса 0х0FD в режиме 'Работа'.
- 3. Дождаться останова БЭВМ.
- 4. Проверить значение ячейки памяти RES (0x0FC) с помощью пультовой операции 'Чтение'.
- 5. Если там записана '1', то все тесты успешно пройдены. Если '0', проверить, какой тест не пройден, считывая значения ячеек $TR1\ (0x0F9)-TR3\ (0x0FB)$ по аналогии.
 - Т1: Проверка корректной записи результата
 - Т2: Проверка использования флага переноса
 - Т3: Проверка сохранения состояния флага С

6 Вывод

В ходе выполнения данной лабораторной работы я познакомился с работой МПУ в БЭВМ, видами микрокоманд и внутренней работой некоторых элементов БЭВМ. Эти знания пригодятся мне для понимания работы современных ЭВМ.