Curs 3 Analiză Matematică

Radu MICULESCU

octomber 2023

Puncte de acumulare

Definiție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$ și $a \in \overline{\mathbb{R}}$. Spunem că a este punct de acumulare al lui A dacă există

$$(x_n)_{n\in\mathbb{N}}\subseteq A\smallsetminus\{a\}$$

astfel încât

$$\lim_{n\to\infty} x_n = a.$$

Notație. Pentru $A \subseteq \mathbb{R}$, $A \neq \emptyset$, vom nota cu A' mulțimea punctelor de acumulare ale lui A.

A' se numește derivata lui A.

Puncte izolate

Definiție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$. Punctele lui A care nu aparțin lui A' se numesc puncte izolate ale lui A.

Exemplu

1. Pentru

$$A = (0, 1] \cup \{2\}$$

avem:

$$A^{'} = [0, 1]$$

- 2 este un punct izolat al lui A.

2. Pentru

$$A = \mathbb{Q}$$

avem:

.

$$A^{'}=\mathbb{R}$$

- A nu are puncte izolate.

Limita unei funcții într-un punct

Definiție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$, a, $I \in \overline{\mathbb{R}}$, $a \in A^{'}$ și $f : A \to \mathbb{R}$. Spunem că funcția f are, în punctul a, limita I dacă pentru orice șir $(x_n)_{n \in \mathbb{N}} \subseteq A \setminus \{a\}$ astfel încât

$$\lim_{n\to\infty} x_n = a,$$

avem

$$\lim_{n\to\infty}f(x_n)=I.$$

Observație. În contextul definiției anterioare, există cel mult un element $l \in \overline{\mathbb{R}}$ care satisface cerințele specificate. În cazul existenței unui astfel de element, acesta se notează cu

$$\lim_{x\to a} f(x).$$

O condiție suficientă pentru ca o funcție să nu aibă limită într-un punct

Observație. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $a \in \overline{\mathbb{R}}$, $a \in A'$ și $f : A \to \mathbb{R}$. Dacă există $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}} \subseteq A \setminus \{a\}$ astfel încât

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$$

și

$$\lim_{n\to\infty}f(x_n)\neq\lim_{n\to\infty}f(y_n),$$

atunci f nu are limită în punctul a.

Exemplu

Nu există $\lim_{x\to 0}\cos\frac{1}{x}$, deoarece

$$\lim_{n\to\infty}\cos\frac{1}{\frac{1}{2n\pi}}=1$$

şi

$$\lim_{n\to\infty}\cos\frac{1}{\frac{1}{2n\pi+\frac{\pi}{2}}}=0.$$

Observație extrem de importantă

Propozițiile privind operațiile cu șiruri care au limită, precum și cele privind trecerea la limită în inegalități, au corespondent imediat în contextul limitelor de funcții.

Limite fundamentale I

Propoziție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $a \in A \cap A'$ și $f : A \to \mathbb{R}$ o funcție elementară. Atunci

$$\lim_{x\to a} f(x) = f(a).$$

Limite fundamentale II

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{tg \ x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

Limite fundamentale III

$$\lim_{x\to 0}\frac{a^x-1}{x}=\ln a,$$

pentru orice a > 0;

$$\lim_{x\to 0}\frac{(1+x)^{\alpha}-1}{x}=\alpha,$$

pentru orice $\alpha \in \mathbb{R}$;

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e;$$

$$\lim_{x\to\infty}\frac{x^{\alpha}}{a^x}=0,$$

pentru orice $\alpha > 0$ și orice a > 1;

$$\lim_{x\to\infty}\frac{\log_a(x)}{x^\alpha}=0,$$

pentru orice $\alpha > 0$ și orice a > 1.

Exemple I

Să se calculeze

$$\lim_{x \to 0} \frac{\cos 2x - \cos 10x}{x^2}.$$

Avem

$$\lim_{x \to 0} \frac{\cos 2x - \cos 10x}{x^2} = \lim_{x \to 0} \frac{2\sin 6x \sin 4x}{x^2} =$$

$$= 48 \lim_{x \to 0} \frac{\sin 6x}{6x} \frac{\sin 4x}{4x} = 48.$$

Exemple II

Să se calculeze

$$\lim_{x\to 0}\frac{\ln(1+\sin x)}{\ln(1+tgx)}.$$

Avem

$$\lim_{x\to 0}\frac{\ln(1+\sin x)}{\ln(1+tgx)}=\lim_{x\to 0}\frac{\ln(1+\sin x)}{\sin x}\lim_{x\to 0}\frac{1}{\frac{\ln(1+tgx)}{tgx}}\cos x=1.$$

Puncte de acumulare laterale

Definiție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$ și $a \in \mathbb{R}$. Spunem că a este punct de acumulare la stânga pentru A dacă există $(x_n)_{n \in \mathbb{N}} \subseteq A \cap (-\infty, a)$ astfel încât $\lim_{n \to \infty} x_n = a$.

Analog se definește noțiunea de punct de acumulare la dreapta pentru o submulțime a axei reale.

Exemple

- **1**. 0 este punct de acumulare la stânga al lui $(-\infty, 0)$.
- **2**. 0 este punct de acumulare la dreapta al lui $(0, \infty)$.

Limite laterale

Definiție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$, a, $I_s \in \overline{\mathbb{R}}$, a un punct de acumulare la stânga pentru A și $f: A \to \mathbb{R}$. Spunem că funcția f are, în punctul a, limita la stânga I_s dacă pentru orice șir

$$(x_n)_{n\in\mathbb{N}}\subseteq A\cap(-\infty,a)$$

astfel încât

$$\lim_{n\to\infty}x_n=a,$$

avem

$$\lim_{n\to\infty}f(x_n)=I_s.$$

Observație. În contextul definiției anterioare, există cel mult un element $l_s \in \mathbb{R}$ care satisface cerințele specificate.

În cazul existenței unui astfel de element, acesta se notează cu

$$\lim_{\substack{x \to a \\ x < a}} f(x).$$

Analog se se definește noțiunea de limită la dreapta a funcției f în punctul a care se notează cu

$$\lim_{\substack{x \to a \\ x > a}} f(x).$$

Criteriul de caracterizare a limitei unei funcții într-un punct cu ajutorul limitelor laterale

Propoziție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $a \in A' \cap \mathbb{R}$, $l \in \overline{\mathbb{R}}$ și $f : A \to \mathbb{R}$. Următoarele afirmații sunt echivalente: i)

$$\lim_{x\to a}f(x)=I;$$

ii) există ambele limite laterale ale lui f în a (care au sens) și sunt egale cu I.

Caracterizarea limitei unei funcții într-un punct cu ajutorul vecinătăților

Propoziție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $a, l \in \overline{\mathbb{R}}$, $a \in A'$ și $f : A \to \mathbb{R}$. Următoarele afirmații sunt echivalente:

i)

$$\lim_{x \to a} f(x) = I;$$

ii) pentru orice $V \in \mathcal{V}_l$ există $U \in \mathcal{V}_a$ astfel încât

$$f(x) \in V$$
,

pentru orice $x \in (U \cap A) \setminus \{a\}$.

Caracterizarea limitei unei funcții într-un punct în limbaj ε și δ

Propoziție. Fie $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $I \in \mathbb{R}$, $a \in A' \cap \mathbb{R}$ și $f : A \to \mathbb{R}$. Următoarele afirmații sunt echivalente: i)

$$\lim_{x\to a} f(x) = I;$$

ii) pentru orice $\varepsilon>0$ există $\delta_{\varepsilon}>0$ astfel încât

$$|f(x)-I|<\varepsilon$$
,

pentru orice $x \in A$ cu proprietatea că $0 < |x - a| < \delta_{\varepsilon}$.

Observație. Un rezultat similar celui de mai sus este disponibil și pentru cazurile în care a, $l \in \overline{\mathbb{R}}$.

Exemple I

Să se calculeze limitele laterale în 0 ale funcției $f: \mathbb{R} \smallsetminus \{0\} o \mathbb{R}$ dată de

$$f(x) = x\left[\frac{1}{x}\right]$$

pentru orice $x \in \mathbb{R} \setminus \{0\}$.

Conform inegalității părții întregi, avem

$$\frac{1}{x} - 1 < \left[\frac{1}{x}\right] \le \frac{1}{x},$$

pentru orice $x \in \mathbb{R} \setminus \{0\}$.

Prin urmare

$$1 - x < f(x) \le 1,$$

pentru orice x > 0.

Cum

$$\lim_{x\to 0}(1-x)=1,$$

având în vedere lema cleștelui, deducem că

$$\lim_{\substack{x\to 0\\x>0}} f(x) = 1.$$

Similar obținem că

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = 1,$$

ceea ce ne permite să concluzionăm că

$$\lim_{x\to 0} f(x) = 1.$$

Exemple II

Să se calculeze limitele laterale în 1 ale funcției $f: \mathbb{R} \smallsetminus \{1\} o \mathbb{R}$ dată de

$$f(x)=\frac{1}{e^{\frac{1}{x}}-e},$$

pentru orice $x \in \mathbb{R} \setminus \{1\}$.

Avem

$$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = -\infty$$

şi

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \infty.$$

O propoziție utilă

Propoziție. Pentru $A \subseteq \mathbb{R}$, $a \in A$ și $f : A \to \mathbb{R}$, următoarele afirmații sunt echivalente:

- i) Pentru orice șir $(x_n)_{n\in\mathbb{N}}$, de elemente din A, care converge către a, șirul $(f(x_n))_{n\in\mathbb{N}}$ converge către f(a).
- ii) Pentru orice $V \in \mathcal{V}_{f(a)}$ există $U \in \mathcal{V}_a$ astfel încât

$$f(a) \in V$$

pentru orice $x \in U \cap A$.

iii) Pentru orice arepsilon>0 există $\delta_arepsilon>0$ astfel încât

$$|f(x)-f(a)|<\varepsilon$$
,

pentru orice $x \in A$ cu proprietatea că $|x-a| < \delta_{\epsilon}$.

Funcții continue într-un punct

Definiție. Fie $A \subseteq \mathbb{R}$, $a \in A$ și $f : A \to \mathbb{R}$. Spunem că f este continuă în a dacă sunt îndeplinite condițiile echivalente din propoziția anterioară. În caz contrar, f se numește discontinuă în a.

Observații

- 1. Dacă a ∉ A['], atunci f este continuă în a.
- **2**. Dacă $a \in A'$, atunci f este continuă în a dacă și numai dacă există $\lim_{x \to a} f(x)$ și valoarea ei este f(a).

Discontinuități de prima și de a doua speță

Definiție. Fie $A \subseteq \mathbb{R}$ și $f: A \to \mathbb{R}$. Un punct $a \in A$ se numește punct de discontinuitate de prima speță dacă există și sunt finite limitele laterale (care au sens) ale lui f în a, dar cel puțin una dintre ele este diferită de f(a). Celelalte puncte de discontinuitate din D se numesc puncte de discontinuitate de speța a doua.

Funcții continue pe o mulțime

Definiție. Fie $A \subseteq \mathbb{R}$, $A_1 \subseteq A$ și $f : A \to \mathbb{R}$. Spunem că f este continuă pe A_1 dacă este continuă în orice punct al lui A_1 .

Dacă $A_1 = A$, în loc să spunem că f este continuă pe tot domeniul său de definiție, spunem, pe scurt, că f este continuă.

Observații extrem de importante privind clasa funcțiilor continue

- 1. Toate funcțiile elementare sunt continue, i.e. clasa funcțiilor continue conține funcțiile elementare.
- 2. Clasa funcțiilor continue este închisă la adunare, scădere, înmulțire, împărțire, ridicare la putere și la considerarea logaritmului, precum și la compunerea funcțiilor.

Exemplu

Să se afle constantele $a,b\in\mathbb{R}$ astfel încât funcția $f:\mathbb{R}\to\mathbb{R}$ dată de

$$f(x) = \begin{cases} \frac{a^{x}-1}{x}, & x < 0\\ b, & x = 0\\ x^{2}+1, & x > 0 \end{cases}$$

să fie continuă.

Funcția f este continuă în orice $x \neq 0$ deoarece există o vecinătate a lui x pe care f este elementară.

Continuitatea lui f în 0 echivalează cu

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = f(0),$$

i.e.

$$\ln a = 1 = b$$
,

deci

$$a=e$$
 și $b=1$.

Funcții cu proprietatea lui Darboux

Definiție. Fie $I \subseteq \mathbb{R}$ interval și $f: I \to \mathbb{R}$. Spunem că f are proprietatea lui Darboux dacă pentru orice $a, b \in I$ și orice λ între f(a) și f(b) există c între a și b astfel încât

$$\lambda = f(c)$$
.

Observație. Fie $I \subseteq \mathbb{R}$ interval și $f: I \to \mathbb{R}$. Atunci următoarele afirmații sunt echivalente:

- i) f are proprietatea lui Darboux;
- ii) $f(J) = \{f(x) \mid x \in J\}$ este interval pentru orice interval $J \subseteq I$ (i.e. f duce intervale \hat{i} n intervale).

Orice funcție continuă are proprietatea lui Darboux

Teoremă. Dacă $I \subseteq \mathbb{R}$ este interval și $f: I \to \mathbb{R}$ este continuă, atunci f are proprietatea lui Darboux.

Schiță de demonstrație

Fie $a, b \in I$, a < b. Putem presupune că $f(a) \le f(b)$. Fie

$$\lambda \in [f(a), f(b)].$$

Vom arăta că există $c \in [a,b]$ astfel încât

$$\lambda = f(c)$$
.

Dacă $\lambda = f(a)$, alegem c = a.

Dacă $\lambda = f(b)$, alegem c = b.

Dacă $\lambda \in (f(a), f(b))$, alegem

$$c = \sup\{x \in [a, b] \mid f(x) \le \lambda\}.$$

Corolar. Fie $I \subseteq \mathbb{R}$ interval și $f: I \to \mathbb{R}$ continuă.

- α) Dacă pentru a, $b \in I$ avem $f(a)f(b) \leq 0$ (i.e. f(a) și f(b) au semne contrare), există c între a și b astfel încât f(c) = 0.
- β) Dacă f nu se anulează pe I, atunci f are semn constant pe I.

Clasa funcțiilor continue este o subclasă strictă a clasei funcțiilor cu proprietatea lui Darboux

Există funcții cu proprietatea lui Darboux care nu sunt continue.

Spre exemplu $f:\mathbb{R} \to \mathbb{R}$ dată de

$$f(x) = \left\{ \begin{array}{ll} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{array} \right..$$

Exemplu

Să se arate că $f: \mathbb{R} \to \mathbb{R}$ dată de

$$f(x) = \left\{ \begin{array}{ll} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{array} \right.$$

are proprietatea lui Darboux.

Deoarece

$$\lim_{x\to 0} f(x) = f(0) = 1,$$

deducem că f este continuă, deci are proprietatea lui Darboux.

Teorema lui Weierstrass

Fie a, $b \in \mathbb{R}$, a < b și $f : [a, b] \to \mathbb{R}$ continuă. Atunci există $x_*, x^* \in [a, b]$ astfel încât

$$f(x_*) = \inf\{f(x) \mid x \in [a, b]\} \stackrel{\textit{not}}{=} \inf_{x \in [a, b]} f(x)$$

și

$$f(x^*) = \sup\{f(x) \mid x \in [a, b]\} \stackrel{not}{=} \sup_{x \in [a, b]} f(x),$$

i.e. orice funcție continuă pe un interval închis și mărginit este mărginită și își atinge marginile.

