Assessment of the sensitivity of the Antarctic ice-sheet to ice-shelf collapse

Yelmo sensitivity to different methods and strategies

Sergio Pérez-Montero, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya & Alexander Robinson ISS Bilbao, 2022.06.08

Correspondence: Sergio Pérez-Montero (sepere07@ucm.es)

Acknowledgements: Antonio Juárez Martínez, Daniel Moreno, Diane Segalla, Jan Swierczek-Jereczek and Ilaria Tabone

Current state & uncertainties

Climate projections

→ Observed tendencies

(e) Global mean sea

level change in 2300 relative to 1900 Sea level rise greater than 15 m cannot be ruled out with high emissions

9 m

8 m

7 m

6 m

West Antarctic Ice Sheet (WAIS)

Pattyn et al., 2018

- → Marine nature
- → Retrograde bed
- → Marine Ice-Sheet Instability

Ice shelves

Simulated world

Model's grid

- → Discretization
- → ABUMIP (Sun et al., 2020)
- → Uncertainties in methodology
 - Melting at the ...
 - Grounding Line
 - Ice-shelves front

Melting at the Grounding Line (GL)

Model's grid

Melting parameterizations (MP)

Adapted from: Leguy et al., 2021

Melting at the ice-shelves front

Ice-shelf mass balance

$$\dot{M}_{shlf} = \dot{m}_s + \dot{b}_f - \dot{c} + \dot{d} + \dot{m}_f$$

Frontal mass balance

$$\dot{m}_f = \dot{b}_f \cdot \frac{A_f}{A_b} \cdot (f_c)$$

Model Yelmo (Robinson et al., 2020)

palma-ice.github.io/yelmo-docs palma-ice/yelmo.git

- → Ice-sheet-shelf model
 - DIVA
 - Regularized Coulomb
 - ♦ 32 km resolution
- → ABUM (Sun et al., 2020)
 - ◆ -400 m/yr
 - ♦ 500 yrs

Model performance

Spin-ups (30 kyrs)	PMP	FCMP	NMP	Mean	Std. dev.
$\overline{\mathrm{RMSE}_H}$ (m)	193.94	163.38	195.18	184	15
$\mathrm{RMSE}_{u_s} \; (\mathrm{m/yr})$	201.32	200.40	202.79	201.50	0.98
Ice volume (m SLE)	55.99	56.39	57.07	56.48	0.44

Melting method effect

Melting method

PMP
FCMP
NMP

Melting method effect + Frontal melting

Melting method effect + Amplification factor

Melting method

PMP
FCMP
NMP

Clustering

Melting method

—— PMP

— FCMP

NMP

 $f_c = 10.0$ $f_c = 1.0$ $f_c = 0.0$

Retreat distribution

Debuttressing effect

NMP,
$$f_c = 0.0$$

PMP,
$$f_c = 10.0$$

Take home messages

- → Melting at the
 - ◆ Grounding line
 - ♦ Ice-shelves front
- → Great spread
- → Sensitivity to methodology

Which combination is realistic?

Future work

Open questions

- → Dependency on scenario?
- → Model Geometry?
- → Model Numerics?

Possible pathways

- → Paleoclimatic constraints
- → More comprehensive models
- → Numerics and statistics

Thank you!