# Methodlogy

# 1. Autoencoder + Siamese Network



Stage 2: Supervised Training (DeepChess)

# **DeepChess Score Estimator**

- Autoencoder: This embedding the state board into a lower-dimensional space.
  - Encoder: maps the input to a lower-dimensional latent space
  - Decoder: maps the latent space back to the original input space
- Siamese Network: This learned to compare two input mapping it to end score
  - The network takes two inputs: the current state and the next state
  - The network outputs a score

#### Minimax Search

- Minimax Search: This is a search algorithm that is used to find the best move in a game.
  - The algorithm works by recursively exploring the game tree and evaluating the possible moves at each level.
  - The algorithm assumes that both players play optimally, and it tries to minimize the maximum loss for the player.
- We use the score which be outputted from the DeepChess Score Estimator as the evaluation function for the Minimax Search.



```
function minimax(position, depth, maximizingPlayer)
    if depth == 0 or game over in position
        return static evaluation of position
    if maximizingPlayer
        maxEval = -infinity
        for each child of position
            eval = minimax(child, depth - 1, false)
            maxEval = max(maxEval, eval)
        return maxEval
    else
        minEval = +infinity
        for each child of position
            eval = minimax(child, depth - 1, true)
            minEval = min(minEval, eval)
        return minEval
// initial call
minimax(currentPosition, 3, true)
```

#### Minimax Search with Alpha-Beta Pruning

• Speed up the Minimax Search by eliminating branches that do not need to be explored.



```
function minimax(position, depth, alpha, beta, maximizingPlayer)
    if depth == 0 or game over in position
        return static evaluation of position
    if maximizingPlayer
        maxEval = -infinity
        for each child of position
            eval = minimax(child, depth - 1, alpha, beta, false)
            maxEval = max(maxEval, eval)
            alpha = max(alpha, eval)
            if beta <= alpha
                break // beta cutoff
        return maxEval
   else
        minEval = +infinity
        for each child of position
            eval = minimax(child, depth - 1, alpha, beta, true)
            minEval = min(minEval, eval)
            beta = min(beta, eval)
            if beta <= alpha</pre>
                break // alpha cutoff
        return minEval
```

# 2. Heuristic Search

| Component                          | Description                                                        | Purpose                                                   |
|------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|
| 1. Material<br>Score               | Fixed value per piece (e.g., pawn = 100, knight = 320)             | Measure of piece count advantage                          |
| 2. Piece-<br>Square Table<br>(PST) | Bonus/penalty per piece depending on its square location           | Encourage good piece positioning                          |
| 3. Game Phase<br>Score             | Interpolation factor (0 to 1) based on remaining material          | Adjust importance of features between opening and endgame |
| 4. Pawn<br>Structure<br>Score      | Includes:                                                          |                                                           |
| - Isolated Pawn<br>Penalty         | - Penalty if no adjacent same-color pawns                          | Penalize weak, undefended pawns                           |
| - Passed Pawn<br>Bonus             | - Bonus for pawns with no enemy pawn in front or adjacent          | Encourage promotion potential                             |
| 5. Bishop Pair<br>Bonus            | Bonus if player owns both bishops                                  | Recognize strength in open positions                      |
| 6. Rook on<br>Open File            | Bonus if rook is on a file with no pawns                           | Encourage control of open files                           |
| 7. Mobility<br>Score               | Difference in number of legal moves between players                | Favor active positions, punish cramped setups             |
| 8.<br>Interpolation<br>Score       | Weighted average of opening/endgame scores using game phase factor | Make the evaluation responsive to game stage              |

<sup>⇒</sup> Also use Minimax Search with Alpha-Beta Pruning to choose the best move for board state.

# 3. Deep Q-Learning

# **Core Components**

#### a) ChessQNetwork

- What: A convolutional neural network (CNN) with 3 convolutional blocks and a dense head.
- · Key Features:
  - Input: 903 features (8x8 board encoding + game state metadata + action features).
  - Architecture:
    - Conv2d(14,128) → BatchNorm → ReLU (×3 conv layers)
    - Linear(512\*8\*8+9 → 1024 → 1) (dense layers)
  - Purpose: Predicts Q-values for (board state, move) pairs.

#### b) PrioritizedReplayBuffer

- What: Experience replay with priority sampling.
- · Key Mechanics:
  - **Priority**: Samples transitions with TD-error-based importance.
  - Annealing: Uses alpha=0.6 (priority exponent), beta=0.4 (importance sampling).
  - Stability: Clips priorities to avoid extremes (np.clip(priorities, 1e-5, None)).

#### c) Board Encoding

- What: Converts chess boards to 903D vectors.
- · Structure:
  - Piece channels: 14-layer 8x8 tensor (6 piece types × 2 colors + 2 empty).
  - Metadata: Castling rights, turn, check, move count.

#### d) Reward Function

- Components:
  - Material gain/loss
  - Center control
  - King safety
  - Mobility penalty
  - Repetition penalty
- Design Choice: Combines handcrafted heuristics with learned values.

#### **Training Pipeline**

- a) Self-Play Generation
  - · Process:
    - i. Uses ε-greedy exploration (EPSILON START=1.0 → EPSILON END=0.1).
    - ii. Augments data with board rotations/flips.
    - iii. Applies final reward based on game outcome.

#### b) Network Update

- · Key Steps:
  - i. Samples prioritized transitions from buffer.
  - ii. Computes Q-values using online network.
  - iii. Computes target Q-values using target network (synced every SYNC\_INTERVAL=200).
  - iv. Updates priorities based on TD errors.

#### c) Loss & Optimization

- Loss: Prioritized MSE loss ( (weights \* (Q target\_Q)^2 ).
- Optimizer: AdamW with learning rate LR=1e-5, gradient clipping (clip\_grad\_norm=1.0).

#### **Hyperparameters**

| Parameter     | Value   | Purpose                              |
|---------------|---------|--------------------------------------|
| BATCH_SIZE    | 512     | Batch size for training              |
| BUFFER_SIZE   | 100,000 | Experience replay capacity           |
| GAMMA         | 0.999   | Discount factor for future rewards   |
| SYNC_INTERVAL | 200     | Target network sync frequency        |
| EPSILON_DECAY | 0.99999 | Exploration rate decay (per episode) |

# **Key Interactions**

- a) QNet ↔ Environment
  - Flow: Board  $\rightarrow$  encode\_board()  $\rightarrow$  QNet  $\rightarrow$  Q-values  $\rightarrow$   $\epsilon$ -greedy action  $\rightarrow$  New state
- b) Experience Replay ↔ Training
  - · Loop:
    - i. Self-play games → Buffer (with priorities).
    - ii. Sample batch → Compute loss → Update QNet.
    - iii. Adjust priorities → Repeat.
- c) Target Network Stabilization
  - Why: Avoids "chasing moving targets" in Q-value estimation.
  - How: Delayed sync ( SYNC\_INTERVAL ) of target network weights.

### **Evaluation Challenge**

#### **Stockfish Integration Issue**

- Symptoms: Fails to load Stockfish engine (path/library issues).
- Impact: Cannot benchmark AI against a strong baseline.
- Workaround:
  - Temporarily uses self-play win rates (evaluate\_model() fallback).
  - Requires fixing engine path/OS compatibility for proper evaluation.

## **Architecture Diagram**



## **Notable Design Choices**

- 1. Action Encoding: Normalizes move squares (from\_square/63, to\_square/63).
- 2. **Board Augmentation**: Random rotations/flips for data diversity.
- 3. **Delayed Rewards**: Adds game outcome reward to all transitions in an episode.

# 4. Discrete Diffusion Model + ASA

#### **Problem Settings**

- We describe Chess game as a Markov Process (Which is a type of Markov Decision Process Given the current state, the next state is independent of the previous states)
  - State Space (S): The state of the board
  - Action Space (A): The set of all possible moves
  - State transition function (f(s, a)): The function that takes a state and an action and returns the next state
  - Action Probability Distribution (p(a|s)): The probability of taking action a in state s
  - $o_i = 1 || -1$ : terminal reward at time *i* (win/loss)
  - Value function  $(v^p(s))$ : The expected return when both player play with the same strategy p

$$v^{p}(s) = E[o_{i}|s_{i} = s, a_{i...I} \sim p]$$

 $\implies$  Our target is maximize the value function  $v^p(s)$  for my engine. Then to do that we need to find the best action  $a^*$  in state s.

In other words, we need to find the best policy  $\pi^*$  that maximizes the value function  $v^p(s)$ .  $\Longrightarrow$  Learning the best probability distribution  $\pi^*(a|s)$  for each state s.

#### **Discrete Diffusion Model**

- Diffusion Models are a class of generative model which consist 2 processes: forward and reverse processes. Both processes are Markov chains.
  - The forward process is a Markov chain that gradually adds noise to the data,
  - The reverse process is a Markov chain that gradually removes noise from the data.
- Suppose we want to learn a target sample  $x_0 \sim q(x_0)$ ,  $x_0$  is a discrete random variable with K possible values. Defining the forward and backward processes as follows:
  - Forward process: gradually adds noise to the data

$$q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1})$$

Reverse process: gradually removes noise from the data

$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t)$$



• We propose the target function for conditioning the forward process on the action *a*:

$$K(q_{\psi}(\cdot|x), p_{\theta}(\cdot, x)) = \int_{-\infty}^{\infty} q_{\psi}(z|x) \log(\frac{q_{\psi}(z|x)}{p_{\theta}(z|x)})$$

$$L = E_{q_{\psi}(\cdot|x)} \left[\log(\frac{p_{\theta}(x, Z)}{q_{\psi}(Z|x)})\right]$$

$$\log p_{\theta}(x) = \int_{-\infty}^{\infty} q(\cdot|x) \log(p_{\theta}(x)) dz$$

$$= \int_{-\infty}^{\infty} q_{\psi}(\cdot|x) \log(\frac{p_{\theta}(x, Z)}{q_{\psi}(z|x)}) dz + \int_{-\infty}^{\infty} q_{\psi}(z|x) \log(\frac{q_{\psi}(z|x)}{p_{\theta}(z|x)}) dz$$

$$= L + K(q_{\psi}(\cdot|x), p_{\theta}(\cdot, x))$$

$$\geq L$$

$$\Rightarrow L \geq -\log p_{\theta}(x)$$

⇒ We call L as ELBO (Evidence Lower Bound)

When  $q(\cdot|x)$  close  $p_{\theta}(\cdot|x)$ , then ELBO similar to  $\log p_{\theta}(x) \implies L$  is an upper bound on the negative  $\log$ -likelihood

- $\implies$  Minimizing this upper bound L brings us closer to minimizing the true negative log-likelihood.
- ⇒ We got the general type of loss function

$$L_{vb} = -\log p_{\theta}(x) + K(q_{\psi}(\cdot|x), p_{\theta}(\cdot, x))$$

→ We can use above loss for muiltiple steps:

$$L=E_{q(x_{0})}[\underbrace{D_{\mathrm{KL}}[q(x_{T}|x_{0})\parallel p(x_{T})]}_{L_{T}} + \underbrace{\sum_{t=2}^{T}E_{q(x_{t}|x_{0})}[D_{\mathrm{KL}}[q(x_{t-1}|x_{t},x_{0})\parallel p_{\theta}(x_{t-1}|x_{t})]]}_{L_{t-1}} - \underbrace{E_{q(x_{1}|x_{0})}[\log p_{\theta}(x_{0}|x_{1})]}_{L_{0}}]$$

• We could simplified the above loss function by using the following equation:

$$K(q(x_{t-1}|x_t, x_0) \| p_{\theta}(x_{t-1}|x_t)) = -\lambda_t 1_{x_t = x_o} x_0^T \log f(x_t, \theta)$$

$$\implies L_{vb} = -\mathbb{E}_{q(x_0)} \left[ \sum_{t=1}^{T} \lambda_t \mathbb{E}_{q(x_t|x_0)} 1_{x_t = x_o} x_0^T \log f(x_t, \theta) \right]$$

- $\lambda_t = \frac{\alpha_{t-1} \alpha_t}{1 \alpha_t}$ : time-dependent reweighting term that assigns lower weight for noisier  $x_t$
- $\alpha_t \in [0, 1]$ : predefined noise scheduler

#### ASA - Action/State/Action

• Our probability distribution is a function of the state and action.

$$p_{\theta}(a_i, s_{i+1}, a_{i+1}, ..., s_{i+h-1}.a_{i+h-1}|s_i)$$

#### **Training**

• Data: use the output of the stockfish engine as the training data.

$$D = \{(s_i, (a_i^{SF}, s_{i+1}, ..., a_{i+h-1}^{SF}))\}\$$

Inference

$$\arg \max p_{\theta}(a_i, s_{i+1}, a_{i+1}, ..., s_{i+h-1}, a_{i+h-1} | s_i)$$

#### Algorithm 1 DIFFUSEARCH Training

```
Input: dataset \mathcal{D} = \{(s,(a,z))\}, neural network f(\cdot; \boldsymbol{\theta}), timesteps T.

Output: model parameters \boldsymbol{\theta}.

Denote state length l = |s|;

repeat

Draw (s,(a,z)) \sim \mathcal{D} and obtain \mathbf{x}_{0,1:N} = s \mid\mid a \mid\mid z (\mid\mid: concat);

Draw t \in \text{Uniform}(\{1,\ldots,T\});

Draw \mathbf{x}_{t,n} \sim q(\mathbf{x}_{t,n}|\mathbf{x}_{0,n}) for n \in \{l+1,\ldots,N\};

L(\boldsymbol{\theta}) = -\lambda_t \sum_{n=l+1}^N 1_{\mathbf{x}_{t,n} \neq \mathbf{x}_{0,n}} \mathbf{x}_{0,n}^{\top} \log f(\mathbf{x}_{t,n}; \boldsymbol{\theta});

Minimize L(\boldsymbol{\theta}) with respect to \boldsymbol{\theta};

until converged
```

#### Algorithm 2 DIFFUSEARCH Inference

```
Input: board state s, trained network f(\cdot; \boldsymbol{\theta}), timesteps T.

Output: next action a.

Denote state length l = |s|;
Initialize \mathbf{x}_{T,1:l} = s and \mathbf{x}_{T,l+1:N} \sim q_{\text{noise}};
for t = T, \ldots, 1 do

for n = l+1, \ldots, N do

Draw \widetilde{\mathbf{x}}_{0,n} \sim \operatorname{Cat}\left(f(\mathbf{x}_{t,n}; \boldsymbol{\theta})\right);
Draw \mathbf{x}_{t-1,n} \sim q(\mathbf{x}_{t-1,n} \mid \mathbf{x}_{t,n}, \widetilde{\mathbf{x}}_{0,n});
end for
end for
Return a = \mathbf{x}_{0,l+1}.
```