Use the following semiconductor parameters unless specified otherwise:

Bandgap	1.12 eV	Diffusion length	$L_n = 50 \mu m$
Effecti			$L_p = 30 \mu m$
Effective DOS at 300 K	$N_c = 2.8 \times 10^{19} \text{ cm}^{-3}$	Mobility	$\mu_n=300\times(T/300)^{-3/2}$
Temperature	$N_V = 3.1 \times 10^{19} \text{ cm}^{-3}$		$\mu_p = 100 \times (T/300)^{-3/2}$
	300 K	Free space dielectric constant	$\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$

1. Consider a diode with the above material parameters. Find out the built-in potential, width of the depletion region, and peak electric field at equilibrium. [5]

$N_D = 10^{15} \text{ cm}^{-3}$	$N_{\Delta} = 10^{18} \text{ cm}^{-3}$	
+		
0.1 μm	300 μm	

- 2. Consider a long Silicon diode with $N_D=N_A=10^{17}~cm^{-3}$. Find out the position the quasi Fermi levels for electrons and holes at both the edges the of depletion regions with respect of to the valence band. [5]
- 3. Consider the above semiconductor to be direct bandgap. A piece of this semiconductor is uniformly illuminated with an optical generation rate of 10^{14} cm⁻³/sec. Find out the excess current flowing through the semiconductor due to the optical generation at 1 V when the length of the semiconductor is 1 μ m. [5]
- Consider the diode in question 2. Find out the current at room temperature for forward bias 0.4 V. What is the voltage we need to apply at 400 K to get the same current. Assume minority carrier lifetime does not change with temperature. [5]