Error Correcting Codes Lecture 3. Cyclic Codes

Sang-Hyo Kim

Outline

- Definition of Cyclic Codes
- Polynomial Representation of Cyclic Codes
 - Generator polynomial
 - Check polynomial
- Systematic Encoding
- Decoding of Cyclic Codes
- Examples of Cyclic Codes
 - Linear codes
 - Cyclic Redundancy Check (CRC)

Definition of Cyclic Codes

Definition of Cyclic Codes

Definition of Cyclic Codes

- For quick understanding, we consider binary codes first (unless otherwise noted).
 - In $GF(2) = \{0,1\}$, note 1 + 1 = 0, -1 = 1.
- Linear [n, k, d] codes can be classified into
 - Cyclic codes
 - Non-cyclic codes
- Definition of cyclic codes
 - An [n, k] code C is said to be 'cyclic' if $\mathbf{c} = (c_0, c_1, ..., c_{n-1}) \in C$ then it cyclic shift $(c_{n-1}, c_0, c_1, ..., c_{n-2}) \in C$.

Advantage of Cyclic Codes

Definition of Cyclic Codes

- All below are codewrods
 - $lue{}$ Definition (T) Right (cyclic) shift operator

$$\begin{aligned} \boldsymbol{c} &= (c_0, c_1, \dots, c_{n-1}) \\ T \boldsymbol{c} &= (c_{n-1}, c_0, c_1, \dots, c_{n-3}, c_{n-2}) \\ T^i \boldsymbol{c} &= (c_{n-i}, c_{n-i+1}, \dots, c_{n-1}, c_0, \dots, c_{n-i-1}) \end{aligned}$$

Advantages

- Easy implementation of encoder and syndrome decoder
- Easy to develop implementable decoding algorithms
- Robust against burst errors

Polynomial Representation

Polynomial representation

Polynomial codes

Generator polynomial of cyclic codes

Check polynomial

Polynomial Representation

Polynomial Representation of Cyclic Codes

- Polynomial representation of code
 - Convenient

$$\mathbf{c} = (c_0, c_1, \dots, c_{n-1}) \Leftrightarrow c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$$

Cyclic shift of c (by i symbols)

$$T^{i}\mathbf{c} = (c_{n-i}, c_{n-i+1}, \dots, c_{n-1}, c_0, \dots, c_{n-i-1})$$

$$\leftrightarrow c_{n-i} + c_{n-i+1}x + \dots + c_{n-i-1}x^{n-1}$$

Rewritten as

$$c_0 x^i + c_1 x^{i+1} + \dots + c_{n-i} x^n + \dots + c_{n-1} x^{n+i-1}$$

$$= x^i (c_0 + c_1 x + \dots + c_{n-1} x^{n-1})$$

$$= x^i c(x)$$

 \blacksquare Multiplication of x is equivalent to the shift operator T.

Polynomial Codes and Cyclic Codes

- Polynomial codes
 - Code elements are represented by polynomials
 - - $c(x) = c_0 + \dots + c_{n-1}x^{n-1}$
 - Each codeword c(x) is divided by a polynomial g(x) of degree m < n.
 - g(x) is called the 'generator polynomial.'
- Cyclic codes
 - A polynomial code is 'cyclic' iff g(x) divides $x^n 1$ ($g(x)|x^n 1$)
 - Note that in $F_3 = \{0,1,2\}, -1 = 2$ since 1 + 2 = 3 = 0.
 - \square For binary codes, the condition is rewritten as $g(x)|x^n+1$

- Generator Polynomial for a Cyclic Code C
 - If an [n,k] code C is cyclic, there is a polynomial g(x) called "generator polynomial" such that

$${g(x), xg(x), ..., x^{k-1}g(x)}$$

Generator polynomial

form a basis of C.

The generator polynomial is given by

$$g(x) = g_0 + g_1 x + \dots + g_{n-k} x^{n-k}$$

 $g(x)|x^n+1$, $g_{n-k}\neq 0$, $g_0\neq 0$. The degree of g(x) is n-k.

Generator polynomial

Codeword polynomial (encoding)

$$c(x) = m_0 g(x) + m_1 x g(x) + m_2 x^2 g(x) + \dots + m_{k-1} x^{k-1} g(x)$$
$$= (m_0 + m_1 x + \dots + m_{k-1} x^{k-1}) g(x)$$

- Thus c(x) = m(x)g(x)
- Notes
 - Total number of message polynomials : $2^k = |C|$
 - The *i* th coefficient in c(x) is given by

$$c_{i} = \sum_{j=0}^{i} m_{j} g_{i-j} = m_{i} * g_{i}$$

Note: Polynomial multiplication is equivalent to the convolution operation.

Generator polynomial

- Example : [7,4] Hamming codes (cyclic)
 - $(x^7 + 1) = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1), n k = 3$
 - $g(x) = x^3 + x + 1 (or x^3 + x^2 + 1 \text{ for another Hamming code})$

	polynomial representation	vector representation
$0 \cdot g(x)$	0	(0000000)
$1 \cdot g(x)$	$1 + x + x^3$	(1101000)
$x \cdot g(x)$	$x + x^2 + x^4$	(0110100)
(1+x)g(x)		
$x^2g(x)$		
$(1+x^2)g(x)$		
$(x+x^2)g(x)$		
$(1+x+x^2)g(x)$		
$x^3g(x)$		
$(1+x^3)g(x)$		
$(x+x^3)g(x)$		
$(1+x+x^3)g(x)$		
$(x^2 + x^3)g(x)$		
$(1+x^2+x^3)g(x)$		
$(x+x^2+x^3)g(x)$		
$(1+x+x^2+x^3)g(x)$		

Generator Polynomial of Cyclic Code of Length 7

Generator polynomial

Generator polynomials of cyclic code of length 7 $x^7 + 1 = (x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$

generator polynomial	parameters	name of codes
1	[7, 7]	entire space
x+1	[7, 6]	even parity check code
$x^3 + x + 1$	[7, 4]	Hamming code
$(x+1)(x^3+x+1)$	[7, 3]	expurgated Hamming code
$x^3 + x^2 + 1$	[7, 4]	Hamming code
$(x+1)(x^3 + x^2 + 1)$	[7, 3]	expurgated Hamming code
$(x^3 + x + 1)(x^3 + x^2 + 1)$	[7,1]	repetition code
$(x+1)(x^3+x+1)(x^3+x^2+1)$	[7, 0]	$zero\ code \!= \{0\}$

Generator polynomial

Codeword polynomial

$$c(x) = m(x)g(x) = \sum_{i=0}^{k-1} m_i x^i g(x)$$

$$= (m_0, m_1, ..., m_{k-1}) \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix} \text{basis}$$

The generator matrix of the corresponding linear block code

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & g_2 & \cdots & g_{n-k} & 0 & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k-1} & g_{n-k} & 0 & \cdots & 0 \\ \vdots & & & & & & & \\ 0 & 0 & \cdots & g_0 & g_1 & \cdots & \cdots & g_{n-k} \end{bmatrix}$$

Example

Generator polynomial

- □ [7,4] Hamming code defined by $g(x) = x^3 + x + 1$
 - The generator matrix

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

By elementary row operations, it can be transformed into a systematic code generator

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Check Polynomial of Cyclic Codes

Check Polynomial

Find h(x) such that $h(x)g(x) = x^n + 1$ $h(x) = h_0 + h_1 x + \dots + h_{k-1} x^{k-1} + h_k x^k$

where deg h(x) = k, $h_0 \neq 0$, $h_k = 1$, then

$$c(x)h(x) = m(x)g(x) \cdot h(x)$$
$$= m(x)(x^n + 1) = 0, (\because x^n = 1)$$

- Parity check matrix
 - $\mathbf{D} \mathbf{h}_i \mathbf{g}_i^T$ forms a convolution of two sequences

$$\mathbf{H} = \begin{bmatrix} h_k & h_{k-1} & h_{k-2} & \cdots & h_1 & h_0 & 0 & 0 & \cdots & 0 \\ 0 & h_k & h_{k-1} & \cdots & h_2 & h_1 & h_0 & 0 & \cdots & 0 \\ \vdots & & & & & & & \vdots \\ 0 & 0 & \cdots & h_k & \cdots & \cdots & \cdots & h_1 & h_0 \end{bmatrix}$$

Example

[7,4] cyclic code with $g(x) = x^3 + x + 1$ $h(x) = (x+1)(x^3 + x^2 + 1) = x^4 + x^2 + x + 1$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix} \Longrightarrow \mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & : & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & : & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & : & 0 & 0 & 1 \end{bmatrix}$$

Systematic code

- Note : Dual code
 - An [n, k] cyclic code generated by g(x) has the (n, n k) dual code, which is generated by

$$h^*(x) = h_k + h_{k-1}x + \dots + h_1x^{k-1} + h_0x^k$$
 (reciprocal of $h(x)$)

Systematic Encoding

Systematic Encoding Encoder Implementation

Systematic Encoding of Cyclic Codes

Systematic Encoding

- Encoding of systematic cyclic code ¹
 - Division by generator polynomial where q(x) is the quotient and p(x) is the remainder $(x^n + 1 = 0)$

$$x^{n-k}m(x) = q(x)g(x) + p(x)$$

- Codeword: $c(x) = x^{n-k}m(x) + p(x) = q(x)g(x)$
 - Codeword vector

MSB here in this representation

$$\mathbf{c} = (p_0, p_1, \dots p_{n-k-1}, m_0, m_1, \dots, m_{k-1})$$

■ We have bijective (1to1 onto) mapping from m(x) to c(x)

Systematic Encoding of Cyclic Codes

```
Note: MSB on the left.
Example
 11010011101100 000 <--- input left shifted by 3 bits
 1011 <--- divisor
 01100011101100 000 <--- result
  1011 <--- divisor ...
 00111011101100 000
  1011
 00010111101100 000
    1011
 00000001101100 000
        1011
 0000000110100 000
         1011
 00000000011000 000
          1011
 00000000001110 000
           1011
 00000000000101 000
            101 1 -----
 0000000000000 100 <---remainder (3 bits)
```


New Basis for Systematic Cyclic Code

Systematic Encoding

Generator polynomial :

$$g(x) = g_0 + g_1 x + \dots + g_{n-k} x^{n-k}$$
 where $g_0 = g_{n-k} = 1$

Message polynomial :

$$m(x) = m_0 + m_1 x + \dots + m_{k-1} x^{k-1}$$

Consider monomials (i = 0, 1, ..., k - 1) and division with g(x)

$$x^{n-k+i} = q_i(x)g(x) + r_i(x)$$

 $\Rightarrow x^{n-k+i} + r_i(x) = q_i(x)g(x)$ 'a codeword'

New basis

$$\{x^{n-k+i} + r_i(x)|i=0,...,k-1\}$$

- C is spanned by the basis
- Example: codeword $x^{n-k} + r_0(x)$ is corresponding to $(r_{00}, r_{01}, ..., r_{0,n-k-1}; 1, 0, ..., 0)$

Generator Matrix of Systematic Cyclic Codes

Systematic Encoding

Generator matrix of an (n,k) systematic code is given by

$$\mathbf{G} = \begin{bmatrix} r_{00} & r_{01} & r_{02} & \cdots & r_{0,n-k-1} & \vdots & 1 & 0 & \cdots & 0 \\ r_{10} & r_{11} & r_{12} & \cdots & r_{1,n-k-1} & \vdots & 0 & 1 & \cdots & 0 \\ \vdots & & & & \vdots & & & \vdots & & \vdots \\ r_{k-1,0} & r_{k-1,1} & r_{k-1,2} & \cdots & r_{k-1,n-k-1} & \vdots & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$= [\mathbf{P} : \mathbf{I}_k]$$

- \square Corresponding parity check matrix is $[I_{n-k}: P^T]$
- Example: [7,4] cyclic codes generated by $g(x) = x^3 + x + 1$

$$x^{3} = 1 \cdot g(x) + x + 1$$

$$x^{4} = xg(x) + x^{2} + x$$

$$x^{5} = (x^{2} + 1)g(x) + x^{2} + x$$

$$x^{6} = (x^{3} + x + 1)g(x) + x^{2} + 1$$

$$\longrightarrow \begin{cases} 1 + x + x^{3} \\ x + x^{2} + x^{4} \\ 1 + x + x^{2} + x^{5} \\ 1 + x^{2} + x^{6} \end{cases}$$

Generator Matrix of Systematic Cyclic Codes

Systematic Encoding

- Generator matrix in the systematic form
 - Note: Left and right, up and down are reversed from the previous representation.

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & : & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & : & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & : & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & : & 0 & 0 & 0 & 1 \end{bmatrix}$$

Parity check matrix in the systematic form

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & : & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & : & 0 & 1 & 1 & 1 \end{bmatrix}$$

Encoder Implementation

Encoder Implementation

- Systematic encoder using division circuit
 - Polynomial division can easily be implemented by a simple shift register circuit

- 1. First k clocks : G is closed. S is switched down. m_i 's come in.
- 2. Next n k clocks : G is open. S is switched up. Parity bits comes out.

Encoder Implementation

Encoder Implementation

Remarks

- Non-systematic codes are constructed by (generator matrix) multiplication.
- Systematic code is encoded by division.
- Encoding is simply to compute the remainder polynomial.
- Division operations can be conducted by simple symbol operations.
 (modulo 2 additions for binary codes)
- Practical encoding is implemented with the systematic encoding with polynomial division.

Encoder of [7,4] Hamming Codes

Encoder Implementation

□ (Systematic) Encoder of [7,4] Hamming code with generator polynomial $x^3 + x + 1$

Decoding of Cyclic Codes

Syndrome of a Cyclic Code

Syndrome of Cyclic Codes

- Received polynomial : y(x) = c(x) + e(x)
 - Codeword

$$c(x) = (\underbrace{c_0, c_1, \dots, c_{n-k-1}}_{\text{parity check}} : \underbrace{c_{n-k} \dots c_{n-1}}_{\text{Information}}) \text{ MSB}$$

- Parity part : p(x) (of max. degree n k 1)
- Information part : $c_{n-k}x^{n-k} + \dots + c_{n-1}x^{n-1} = x^{n-k}m(x)$
- Received

$$y(x) = \underbrace{m(x)x^{n-k} + p(x)}_{c(x)} + \underbrace{e_m(x)x^{n-k}}_{error in information part} + \underbrace{e_p(x)}_{errors in parity}$$

$$= \underbrace{[m(x) + e_m(x)]x^{n-k}}_{received information} + \underbrace{[p(x) + e_p(x)]}_{received parity}$$

Syndrome of a Cyclic Code

Syndrome of Cyclic Codes

Syndrome polynomial

$$s(x) = r(x) \mod g(x)$$

$$= \underbrace{([m(x) + e_m(x)]x^{n-k} \mod g(x))}_{\text{parity from the received information}} + \underbrace{p(x) + e_p(x)}_{\text{received parity}}$$

Example of Syndrome Calculation

Syndrome of Cyclic Codes

- Example: Cyclic code generated by $g(x) = x^3 + x + 1$
 - Received sequence : r = (1010110)

$$r(x) = 1 + x^2 + x^4 + x^5$$

- Syndrome : $\mathbf{s} = Hr^T \leftrightarrow s(x) = r(x) \mod g(x)$
- Above two operations are equivalent
 - $Hr^T = (0\ 0\ 1)^T$
 - $r(x) \bmod g(x) = x^2$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & : & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & : & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & : & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & : & 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & : & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & : & 0 & 1 & 1 \end{bmatrix}$$

Syndrome Computing Circuit

Syndrome of Cyclic Codes

Syndrome: $s(x) = r(x) \mod g(x)$

- A similar division circuit as the encoder circuit
- $lue{}$ Difference is that r(x) comes in from the left side.
- Memory units (registers) are initially set to zero.
- s(x)'s coefficients are the values stored in the memories after the last symbol comes into s_0 .

Syndrome Computing Circuit

Syndrome of Cyclic Codes

- Example
 - Syndrome circuit of [7,4] Hamming code

r = (0110100) (MSB on left)

Shift	Imput	Register contents
		000 (initial state)
1	0	000
2	1	100
3	1	110
4	0	011
5	1	011
6	0	111
7	0	101 (syndrome s)
8		100 (syndrome s ⁽¹⁾)
9	_	010 (syndrome s ⁽²⁾)

General Cyclic Code Decoder (Meggit Dec.)

Decoder of Cyclic Codes

- Detect error patterns, using error detection circuits one at a time by cyclically shifting r.
- Use the fact if $s(x) = r(x) \mod g(x)$ then $xr(x) \mod g(x) = xs(x)$ $\operatorname{mod} g(x)$. So a cyclic class of error patterns can be detected by one error pattern detector.
- Error patterns detected has an error in the last bit.
- If detected, flip the last symbol \mathbb{I}_{∞} One symbol is corrected.
- Decoder proceeds with the remained errors

Communication and Coding Theory Lab.

General Cyclic Code Decoder (Meggit Dec.)

Procedure

- Put the received vector from the left.
- After n-1 clocks we check e_{n-1} using the detection circuit.
- For following n-1 clocks e_i , for i < n-1, are checked.
- **During the time**, e_i are added (subtracted) to r_i for correction.

Note

The errors are corrected within the error correction capability.

■ E.g.: if t = 1 and e_{n-1} and e_{n-2} are in error then only another e_i is detected. (becomes 1)

Meggit Decoder of [7,4] Hamming Code

Error pattern $e(X)$	Syndrome $s(X)$	Syndrome vector (s_0, s_1, s_2)
$\mathbf{e}_6(X) = X^6$	$s(X) = 1 + X^2$	(101)
$e_5(X) = X^5$	$s(X) = 1 + X + X^2$	(111)
$e_4(X) = X^4$	$s(X) = X + X^2$	(011)
$e_3(X) = X^3$	s(X) = 1 + X	(110)
$e_2(X) = X^2$	$s(X) = X^2$	(001)
$e_1(X) = X^1$	s(X) = X	(010)
$e_0(X) = X^0$	s(X) = 1	(100)

Meggit Decoder of [7,4] Hamming Code

Decoder of Cyclic Codes

Buffer register

Correction

- Decoding example (MSB left)
- r (=1101101) = c (=1101001) + e (=0000100)

Examples of Cyclic Codes

Linear Codes
Cyclic Redundancy Check

Hamming Codes

Linear Codes

Hamming codes

$$n = 2^m - 1, k = n - m, d = 3$$

 $g(x) = \text{primitive polynomial of degree } m$
 $h(x) = (x^n + 1)/g(x), \text{ check polynomial } deg h(x) = 2^m - 1 - m$

Example : [7,4] Hamming code

$$g(x) = x^3 + x + 1,$$

 $h(x) = x^4 + x^2 + x + 1$

Simplex Codes

Linear Codes

Simplex codes

$$n = 2^{m} - 1, k^{\perp} = m, d = 2^{m-1}$$

$$g^{\perp}(x) = h^{*}(x) = h_{k} + h_{k-1}x + \dots + h_{1}x^{k-1} + h_{0}x^{k}$$

$$h^{\perp}(x) = g^{*}(x) = (x^{n} + 1)/h^{*}(x)$$

Example : [7,3] simplex code

$$g^{\perp}(x) = x^4 + x^3 + x^2 + x + 1 = h^*(x)$$

 $h^{\perp}(x) = x^3 + x^2 + 1 = g^*(x)$

Codewords

(0000000), (1011100), (0101110), (0010111)(1001011), (1100101), (1110010), (0111001)

Golay Codes

Linear Codes

[23,12,7] Golay codes example

$$t = 3$$
 "triple error correcting codes"
 $x^{23} + 1 = (x+1)g_1(x)g_2(x)$
 $g_1(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$
 $g_2(x) = 1 + x + x^5 + x^6 + x^7 + x^9 + x^{11} = g_1^*(x)$

- $g_1(x)$ or $g_2(x)$ may be used as a generator polynomial of Golay code
- Extended Golay code (Rate=1/2)
 - With an even parity bit

$$\mathbf{H}_{E} = \begin{bmatrix} & & & \vdots & 0 \\ & & & \vdots & 0 \\ & & \mathbf{H} & & \vdots & \vdots \\ & & & & \vdots & 0 \\ & & & & \vdots & 0 \\ & & & & \ddots & \ddots & \vdots \\ 111 & \cdots & 1 & \vdots & 1 \end{bmatrix}$$

Link: Golay's Original Paper

X Note: The paper on Golay code was referred to as 'the best single published page in coding theory' by Erwin Berlekamp

Other Examples

Shortened cyclic codes

$$[n,k] \to [n-s,k-s]$$

- not a cyclic code after shortening
- Expurgated cyclic codes
 - Example
 - a new code has the generator polynomial $g_1(x) = (1 + x)g(x)$ ⇒ Every Codeword has even weight
 - All odd weight codewords are thrown out
 - General expurgation
 - $g_1(x) = f(x)g(x)$ for f(x) (gcd(f(x), g(x)) = 1)

Cyclic Redundancy Check

Cyclic Redundancy Check

- Cyclic redundancy check codes
 - Error detection codes used in digital communication networks and storage devices to detect changes in raw data.
 - In general, $1 2^{-m}$ portion of errors are detected. Good for burst errors.
 - Very popular because they are easy to implement and analyze.
 - Can also be used for error detection or a hash function.
 - Invented by William W. Peterson in 1961.
- Technical aspects
 - Shortened cyclic codes
 - Codeword length varies according to the length of the message
 - The number of parities is kept the same.
 - Non-cyclic codes since it is shortened usually.
 - Has a generator polynomial g(x) degree m = n k

Wesley Peterson (wiki)

CRC as a Cyclic Code: Even Parity Check Code

Cyclic Redundancy Check

- Data $\mathbf{D} = (d_0, d_1, ..., d_{k-2}, d_{k-1})$ where k is the data length
- \square Parity bit p is added

$$D = (p, d_0, d_1, \dots, d_{k-2}, d_{k-1}) *$$

such that
$$d_0 + d_1 + \cdots + p = 0$$

- Received data
 - Even parity ⇒ no error or undetectable
 - Odd parity ⇒ errors

CRC as a Cyclic Code: Even Parity Check Code

Cyclic Redundancy Check

Polynomial representation

$$g(x) = x + 1$$

$$D(x) = d_0 + d_1 x + d_2 x^2 + \dots + d_{k-1} x^{k-1}$$

$$xD(x) = q(x)g(x) + p(x)$$

$$\deg p(x) = 0 \Rightarrow p(x) = p$$

■ Therefore, xD(x) + p(x) = q(x)g(x)

$$p + d_0 x + d_1 x^2 + \dots + d_{k-1} x^k = q(x)g(x)$$

$$g(x)|(xD(x) + p(x))$$

Since $(xD(x) + p(x))|_{x=1} = 0$, single error is detectable

CRC as a Cyclic Code: General Form

Generator polynomial

$$g(x) = g_0 + g_1 x + \dots + g_{m-1} x^{m-1} + g_m x^m$$

Data polynomial

$$D(x) = d_0 + d_1 x + d_2 x^2 + \dots + d_{k-1} x^{k-1}$$

$$x^m D(x) = q(x)g(x) + p(x)$$

where q(x) is the quotient polynomial and r(x) is the remainder $(\deg p(x) \le m-1)$

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{m-1} x^{m-1}$$

$$x^m D(x) + p(x) = q(x)g(x)$$

$$p_0 + \dots + p_{m-1} x^{m-1} + d_0 x^m + d_1 x^{m+1} + \dots + d_{k-1} x^{m+k-1} = q(x)g(x)$$

- Codeword $\mathbf{c} = (p_0, ..., p_{m-1}, d_0, d_1, ..., d_{k-1}, d_k)^*$
- \blacksquare The number of errors we can detect : m

Period of g(x) and Error Polynomial

Cyclic Redundancy Check

- \Box Period of polynomial g(x)
 - The least positive integer e such that $x^e + 1$ is divisible by g(x)
- Received polynomial

$$r(x) = c(x) + e(x) (r_0, r_1, \dots, r_{k+m-1})$$

- Record length of bit errors
 - Length of the duration from the first to the last bit error

Basic Properties

Theorem

- All single bit errors are detected by CRC with gen. $x^c + 1$, c > 0.
- \blacksquare Example: $e = (0 \ 0 \ 1 \ 0 \ 0)$

Theorem

- All causes of an odd number of bits in error are detected by a code with generator $x^c + 1$, (e.g. x + 1), c > 0.
- **Example:** e = (0 1 1 0 1 0)

Theorem

- A code detect all double error patterns if the record length is not greater than the period of the generator polynomial.
- **Example:** e = (0 1 0 0 0 0 1 0 0 0 0 0) if the period is 7.

Basic Properties

Theorem

 $lue{}$ A code with generator of degree m detects all single burst errors of a length not greater than m.

Theorem

A code detects all single-, double-, and triple errors iff the generator polynomial is of the form $(x^c + 1)a(x)$ and the record length is not greater than the period of g(x).

Theorem

- A code with $g(x) = (x^c + 1)a(x)$ has a guaranteed double burst error capability provided the record length is not greater than the period of the generator polynomial.
- The code will detect any combination of double bursts when the length of shorter burst is not greater than the degree of a(x) and the sum of the burst lengths is not greater than c+1.

Examples of CRC

Cyclic Redundancy Check

Example: Generator polynomial of CRC-CCITT code

$$g(x) = x^{16} + x^{12} + x^5 + 1$$

= $(x+1)(x^{15} + x^{14} + x^{13} + x^{12} + x^4 + x^3 + x^2 + x + 1)$

- \blacksquare Period of g(x) is 32767
- Error detection probability
 - All odd number of errors
 - All single, double, and triple errors if record length is ≤ 32767
 - All single burst errors of 16 bit, or less
 - Detect 99.99695% of all possible burst of length 17, and 99.99847% of all possible longer burst.

 \times Note: If an error e(x) is not divisible by g(x), then e(x) can be detected.

Examples of CRC

Popularly used CRC codes

- \square CRC-7 : $g(x) = x^7 + x^6 + x^4 + 1$
- □ CRC-8: $g(x) = (x^5 + x^4 + x^3 + x^2 + x + 1)(x^2 + x + 1)(x + 1)$
- □ CRC-12: $g(x) = x^{12} + x^{11} + x^3 + x^2 + x + 1$
- \square CRC-ANSI : $g(x) = x^{16} + x^{12} + x^2 + 1$
- CRC-CCITT: $g(x) = x^{16} + x^{12} + x^5 + 1$

Note

- Primitive polynomial is not the best CRC generator, although this has the maximum period.
- At the price of reduction of period, the CRC can cover more error patterns.
- Many works had been done in mid 70's

CRC implementation: CRCencoder()

```
void crcEncoder(int *in, int *out, int N) {
 int n, m;
 int mem[16], fb;
 int nCRC;
 nCRC = 16; // for CRC CCITT
 //crc initialized
 for(n=0;n<16;n++) mem[n] = 0;
 for(n=0;n<N;n++) { // CCITT g(x) = X^16 + X^12 + X^5 + 1}
 fb = (mem[15] + in[n])\%2;
 mem[15] = mem[14];
 mem[14] = mem[13];
 mem[13] = mem[12];
 mem[12] = (fb+mem[11])\%2;
 mem[11] = mem[10];
```


CRC implementation: CRCencoder()

```
mem[10] = mem[9];
 mem[9] = mem[8];
 mem[8] = mem[7];
 mem[7] = mem[6];
 mem[6] = mem[5];
 mem[5] = (fb+mem[4])\%2;
 mem[4] = mem[3];
 mem[3] = mem[2];
 mem[2] = mem[1];
 mem[1] = mem[0];
 mem[0] = fb;
for(n=0;n<N;n++) out[n] = in[n];// data part
for(n=0;n< nCRC;n++) out[N+n]=mem[nCRC-n-1];// parity part
```

CRCdecoder()

```
int crcDecoder(int *in, int N) {
 int n, m; int mem[16], fb;
 int nCRC;
 nCRC = 16; // for CRC CCITT
 //crc initialized
 for(n=0;n<16;n++) mem[n] = 0;
 for(n=0;n<N;n++) { // CCITT g(x) = X^16 + X^12 + X^5 + 1
  fb = (mem[15] + in[n])\%2;
   mem[15] = mem[14];
   mem[14] = mem[13];
   mem[13] = mem[12];
   mem[12] = (fb+mem[11])\%2;
   mem[11] = mem[10];
   mem[10] = mem[9];
```


CRCdecoder()

```
mem[8] = mem[7];
  mem[7] = mem[6];
  mem[6] = mem[5];
  mem[5] = (fb+mem[4])\%2;
  mem[4] = mem[3];
  mem[3] = mem[2];
  mem[2] = mem[1];
  mem[1] = mem[0];
  mem[0] = fb;
for(n=0;n< nCRC;n++)
if (in[N+n]!=mem[nCRC-n-1])
 return 1;// CRC bad
return 0; //CRC good
```