

嵌入式人脸识别系统

www.xuecong.co

特点

识别速度快: 性能速度是百度产品的3~4倍以上

准确率高: 活体检测,人脸对比等准确率均高于百度产品

内存占用少: 神经网络在前向推理时只占用较少内存

预练模型: 提供预训练模型,满足多数场景需求

提供源码: 可针对定制化场景调整模型、求修改软件架构

系统软件架构

系统性能

CPU	RK3399,双 Cortex-A72 大核+四 Cortex-A53 小核,主频高达 2.0 GHz
GPU	四核 ARM Mali-T860,OpenGL ES 1.1/2.0 /3.0,OpenVG1.1, OpenCL, Directx11
DDR	双通道 DDR-1866/DDR3L-1866/LPDDR3-1866/LPDR4
	2GB/4GB(<mark>可选</mark>)

实测指标:

• 人脸检测:50 – 70 ms

• 人脸特征点抽取: <50 ms

• 活体检测: <150 ms

• 人脸对比: <50 ms

准确性

• LFW人脸公开数据集跑分 99%

软件包大小: <50MB

百度指标:

• 人脸检测: 100ms

• 人脸特征点抽取: <300 ms

• 活体检测: <200 ms

人脸对比:未提供

准确性(官方没有提供)

Android SDK 大小: 200MB

系统标准规格

支持人脸库	1:1万
错误识别率	<0.02%
通过率	>99%
拒绝率	>99.5%
识别距离	1米~2米
可支持相机像素	200万
人脸筛选方式	最大人脸
活体检测方式	单目活体检测
支持操作系统	Linux
支持CPU	ARM 64bit, X86 64bit

^{*}部分规格都可以通过修改配置或参数进行自定义,以适配目标场景

软件包内容

神经网络模型文件

- 人脸检测网络模型文件
- 人脸关键点检测网络模型文件
- 活体检测网络模型文件
- 人脸特征抽取网络模型文件

C++源代码文件

- 人脸检测算法源文件
- 活体检测算法源文件
- 人脸对比算法源文件
- 神经网络推理CPU加速源文件
- · API 接口源文件
- Web server源码文件

*部分源码中可能包含开源软件

典型应用场景

闸机

考勤打卡

楼道门禁

成功案例:智能照片分拣

I find and deliver photos from

Summer Camp

Youth Sports Leagues

Schools

Family Vacations

Weddings and Events

关于我们

- 我们的核心团队成员来自Google、Apple、Intel、LSI、PMC-Sierra、戴尔等世界顶级科技企业,拥有及海外的工作经历和丰富的科技咨询、技术研发、产品营销和服务经验。
- 我们为企业提供人工智能领域的核心算法、技术咨询和技术服务。

联系我们

联系人: 李先生

Email: leon.li@xuecong.co

手机: 18621071690