Types of Databases

Relational Databases (RDBMS)

قاعدة البيانات العلائقية (Relational Database) هي نوع من قواعد البيانات بيخزن البيانات في **جداول** (Relations) مكونة من **صفوف (Rows)** و **أعمدة (Columns)**، والعلاقات (Relations) بين الجداول بتتحدد بالمفاتيح (Primary Key & Foreign Key).

النظام اللي بيدير النوع ده من قواعد البيانات بيتسمى RDBMS – Relational Database النظام اللي بيدير النوع ده من

Advantages of Relational Databases (RDBMS)

- 1. الهيكلية المنظمة (Structured Data Organization)
- البيانات بتتخزن في Tables → Rows & Columns، وده بيخليها سهلة الفهم والإدارة.
 - 2. العلاقات (Relationships)
 - بتسمح بربط البيانات باستخدام Primary Key و Foreign Key
 - مثال: جدول Customers مرتبط بجدول •
 - 3. التكامل والاتساق (Data Integrity & Consistency)
- عن طريق **Constraints** زي (NOT NULL, UNIQUE, FOREIGN KEY) البيانات بتفضل صحيحة ومترابطة.
 - 4. لغة الاستعلام الموحدة (SQL Standard)
 - التعامل كله بيكون من خلال لغة موحدة اسمها SQL، متعلمة ومعروفة عالميًا.
 - 5. منع التكرار (Data Redundancy Control)
 - بفضل Normalization، بتمنع تكرار البيانات وتقلل مشاكل التناقض.
 - 6. المعاملات (Transactions)
- بتدعم مفهوم (ACID Properties (Atomicity, Consistency, Isolation, Durability) لضمان إن العمليات تتم صح 100%.
 - مثال: لو عميل بيحوّل فلوس، العملية كلها تتم أو كلها تتلغي، مفيش نص نص.
 - 7. التوسع الرأسي (Vertical Scalability)
 - ممكن تزود قدرات السيرفر (CPU, RAM) والـ Database تفضل شغالة بكفاءة.
 - 8. الدعم الواسع (Wide Support & Tools)
 - موجودة في كل الشركات ومجتمع المطورين عنده خبرة كبيرة بيها.
 - مدعومة من أدوات قوية زي Power Bl, Tableau, وغيرهم.

• أشهر أنظمة RDBMS

العنصر	SQL Server	MySQL	PostgreSQL
المالك (Owner)	Microsoft	Oracle کان) Open Source ولسه منه (نسخة مجانية	Open Source community
الانتشار (Usage)	مستخدم بقوة في المؤسسات الكبيرة (Enterprise)	مستخدم بكثرة في تطبيقات الويب (Web apps)	مستخدم في الأنظمة المعقدة والـ Startups والـ Enterprise
التكلفة (Cost)	مدفوع (لكن في نسخة مجانية اسمها SQL Server Express)	مجاني (Community Edition) + مدفوع للشركات	مجاني بالكامل (Open Source)
الأداء (Performance)	قوي جدًا مع الـ Enterprise apps ويدعم التحليلات (Bl)	سریع وخفیف، ممتاز للـ Websites	ممتاز مع البيانات الضخمة والتحليلات المعقدة
الدعم (Support)	دعم رسمي من Microsoft	دعم واسع من المجتمع + Oracle	دعم قوي من المجتمع (Community)
المميزات الفريدة (Unique Features)	تکامل مع + Windows NET + Power BI.	خفيف، بسيط، سهل الدمج مع PHP و WordPress	يدعم ,JSON, GIS Extensible Big Data
المجالات الأنسب (Best Use Cases)	بنوك، مؤسسات حكومية، شركات ضخمة	مواقع ويب، CMS، تطبيقات صغيرة ومتوسطة	أنظمة تحليل بيانات، GIS systems، شركات تقنية ناشئة أو كبيرة

Brief Intro to Non-Relational (NoSQL) Databases

- ال Relational Databases (RDBMS) بتخزن البيانات في شكل Relational Databases (RDBMS، والعلاقات بتكون عن طريق Primary Key / Foreign Key.
 - لكن NoSQL Databases مش معتمدة على الجداول، بتخزن البيانات بطرق مختلفة حسب النوع.
 - اتعملت عشان تحل مشاكل الـ Big Data والـ Scalability اللي صعب على الـ RDBMS التقليدية.

Advantages of NoSQL

1. مرونة (Flexibility):

- مش محتاج "Schema ثابت"، يعني تقدر تضيف Data مختلفة في نفس الـ Collection.
- مثال: مستخدم عنده (Name, Age, Address, Phone) ومستخدم تاني عنده

2. التوسع الأفقي (Horizontal Scalability):

• تقدر توزع البيانات على **Servers** كتير (Sharding)، عشان تتحمل ملايين أو مليارات البيانات.

3. سرعة عالية (High Performance):

- معمولة عشان تستجيب بسرعة في تطبيقات الويب والموبايل.
 - 4. أنواع بيانات متنوعة (Variety of Data):
 - تقدر تخزن نصوص، صور، JSON، بيانات جغرافية، ... إلخ.

NoSQL Databases

- 1. Document-oriented
- بتخزن البيانات في شكل Documents (غالبًا JSON أو BSON).
 - مثال: MongoDB, CouchDB.

- 2. Key-Value Stores
- کل Data بتتخزن في شکل شکل Key → Value زي Data
 - مثال: Redis, DynamoDB.

3. Column-oriented

- بتخزن البيانات بالـ Columns بدل الـ Rows.
 - مناسبة للتحليلات الضخمة.
 - مثال: Cassandra, HBase.

- 4. Graph Databases
- بتخزن البيانات في شكل Nodes & Edges (علاقات رسومية).
 - ممتازة للشبكات الاجتماعية وتحليل العلاقات.
 - مثال: Neo4j.

متی نستخدم NoSQL؟

- لما البيانات غير منظمة (Unstructured) أو شبه منظمة (Semi-structured).
 - في تطبيقات الويب والموبايل اللي محتاجة سرعة عالية جدًا.
 - في الأنظمة اللي بتتعامل مع Big Data.
 - لو في تغيير مستمر في شكل البيانات (Schema-less).

أمثلة مشهورة

- MongoDB → الأكثر شهرة Document-based.
- **Redis** → سریع جدًا کـ Key-Value.
- Cassandra → قوي جدًا مع البيانات الضخمة.
- Neo4j → والعلاقات Graphs متخصص في الـ

Important concepts

(الاتساق) Consistency

- المعنى: البيانات في قاعدة البيانات لازم تظل صحيحة ومتوافقة بعد أي عملية.
- مثال: لو عندك حساب بنكي، مجموع أرصدة الحسابات لازم يظل مضبوط بعد كل عملية تحويل.
- ضمن مفهوم الـ ACID، الاتساق يعني أي عملية تغيّر البيانات لازم تترك النظام في حالة صحيحة.

ACID Properties

ده اختصار لأربع خصائص مهمة في الـ RDBMS لضمان سلامة البيانات:

1. Atomicity (الذرية / الذرية)

- العملية تتم بالكامل أو لا تتم إطلاقًا. (All or None)
- مثال: تحويل 100\$ من حساب A إلى B → لو حصل خطأ، العملية كلها تلغى.
- 2. Consistency (الاتساق)

- البيانات تبقى صحيحة بعد كل عملية.
- مثال: رصيد الحسابات لا يمكن أن يصبح سالب إذا القاعدة تمنع ذلك.
- 3. Isolation (العزل)

- العمليات المتزامنة لا تؤثر على بعضها.
- مثال: لو شخصان يحاولان تعديل نفس الحساب في نفس الوقت، كل عملية تتم بشكل مستقل
 حتى الانتهاء.
- 4. Durability (الدوام *ا* الديمومة)
 - بمجرد اكتمال العملية، نتائجها تحفظ حتى لو حصل عطل أو انقطاع.
 - مثال: بعد تحويل الأموال بنجاح، حتى لو وقع انقطاع كهرباء، التغييرات تبقى محفوظة.

(التوسع الرأسي) Vertical Scalability

- المعنى: زيادة قدرات السيرفر الواحد (CPU, RAM, Storage) لتحمل المزيد من البيانات أو المستخدمين.
 - مثال: رفع RAM وCPU على قاعدة البيانات نفسها لتحمل عدد مستخدمين أكبر.
 - غالبًا يكون أسهل لكن محدود → السيرفر له حد معين.

(التوسع الأفقي) Horizontal Scalability

• المعنى: إضافة المزيد من السيرفرات لتوزيع البيانات والحِمل.

- مثال: بدل أن نرفع قدرات سيرفر واحد، نضيف 5 سيرفرات جديدة ووز ع البيانات بينهم (Sharding).
 - ممتاز لـ **NoSQL** أو أنظمة الـ Big Data.
 - يضمن سرعة أعلى وقدرة على معالجة ملايين العمليات في نفس الوقت.