4/5/2025

SV Project Synchronous FIFO

Abdelrahman Ahmed Sayed

UNDER SUPERVISION OF: KAREEM WASEEM

• Contents: -	
 Verification plan 	
 Snippets for the FIFO top 	
 Snippets for the FIFO fixed design 	
 Snippets for the FIFO monitor 	
 Snippets for the FIFO transaction 	
 Snippets for the FIFO coverage 	
 Snippets for the FIFO scoreboard 	
o bugs detected	
o Do file	
 QuestaSim snippets and all Coverage report 	

VERIFICATION PLAN

Link

E12	▼ ∫jk				
	Α	В	С	D	E
1	Label	Description	Stimulus Generation	Functional Coverage	Functionality Check
2	FIFO_1	set rst_n to be 0 then 1 data_out should be 0 acting like nothing was there	direct in the testbench		in check_data function in golden model
3	FIFO_2	receiving write_acknowledge after wr_en when not full	Randomization under constraints for write enable	coverpoint for the wr_en signal & for full signal	write_acknowledge_assert will check for the functionality
4	FIFO_3	receiving overflow hight when wr_en is high and full is high	Randomization under constraints for wr_en	covered by Cross_rd_wr_overflow	overflow_assert will check for the functionality
5	FIFO_4	receiving underflow when rd_en is high and empty is high	Randomization under constraints for rd_en	covered by Cross_rd_wr_empty	empty_assert will check for the functionality
6	FIFO_5	receiving full when internal siganl count is equal FIFO_DEPTH	Randomization under constraints for wr_en	covered by Cross_rd_wr_full	full_assert will check for the functionality
7	FIFO_6	receiving almsotfull when the internal signal count is equal to FIFO_DEPTH - 1		covered by Cross_rd_wr_almostf	almsotfull_assert will check for the functionality
8	FIFO_7	9	Randomization under constraints for rd_en	covered by Cross_rd_wr_almostem	almsotempty_assert will check for the functionality
9	FIFO_8	receiving underflow when rd_en is high and empty is high	Randomization under constraints for rd_en	covered by Cross_rd_wr_empty	empty_assert will check for the functionality

4 Top module

♣FIXED DESIGN:

```
module FIFO(FIFO_interface.DUT fifo_if);
parameter FIFO_MDDH = 16;
parameter FIFO_MDDH = 8;

localparam max_fifo_addr = $clog2(FIFO_DEPTH);

reg [FIFO_WIDTH-1:0] mem [FIFO_DEPTH-1:0];

reg [max_fifo_addr-1:0] wr_ptr, rd_ptr;
reg [max_fifo_addr-1:
```

```
| fifo_if.data_out <= 0; end | else if (fifo_if.rd_en && count != 0) begin | fifo_if.data_out <= mem[rd_ptr]; rd_ptr <= rd_ptr <= 1; end | else begin | fifo_if.ind_en begin | fifo_if.ind_en)begin | fifo_if.ind_en]begin | fifo_if.ind_en]begin | fifo_if.ind_enflow <= 1; end | else begin | fifo_if.underflow <= 0; end | end |
```

```
`ifdef SIM
                Reset_Behavior: assert final ((wr_ptr == 0 && rd_ptr == 0 && count == 0));
         write_acknowledge_assert: assert property (pr1);
Write_Acknowledge_cover: cover property (pr1);
         property pr2;
    @(posedge fifo_if.clk) disable iff(!fifo_if.rst_n)
         endproperty
overflow_assert : assert property(pr2);
overflow_cover : cover property(pr2);
106
            property pr4;
    @(posedge fifo_if.clk) disable iff(!fifo_if.rst_n)
                (count == 0) |-> fifo_if.empty;
         empty_assert: assert property(pr4);
         empty_cover: cover prope
         endproperty
endproperty
full_assert: assert property(pr5);
cover_property(pr5);
         full_cover: cover proper
/////////
property pr6;
```

♣FIFO monitor

```
score_obj.check_data(trans_obj);
end

join

if (test_finish) begin

$display("Simulation finished");

$display("Correct count = %0d", correct_count);

$display("Error count = %0d", error_count);

$disp
```

FIFO transaction

```
import shared_pkg::*;

defined import shared_pkg::*;

class FIFO_transaction;
    rand logic [FIFO_WIDTH-1:0] data_in;
    rand logic rst_n, wr_en, rd_en;
    logic [FIFO_WIDTH-1:0] data_out;
    logic [FIFO_WIDTH-1:0] data_out;
    logic full, empty, almostfull, almostempty, underflow;
    int RD_EN_ON_DIST, WR_EN_ON_DIST;

function new (int RD_EN_ON_DIST_params=30, WR_EN_ON_DIST_params=70);
    RD_EN_ON_DIST = RD_EN_ON_DIST_params;
    WR_EN_ON_DIST = WR_EN_ON_DIST_params;
    endfunction

constraint Reset_con {
    rst_n dist {1:/90, 0:/10};
    }

constraint Wr_en_con{
    wr_en dist {1:/WR_EN_ON_DIST, 0:/(100-WR_EN_ON_DIST)};
    }

constraint Rd_en_con{
    wr_en dist {1:/RD_EN_ON_DIST, 0:/(100-RD_EN_ON_DIST)};
    }

endbackage

endbackage
```

∔FIFO coverage

```
content (ffictoreaction_sign);
import Ffictoreaction_sign);
import Ffictoreaction_sign);
import Ffictoreaction_sign);
ffictorea
```

∔FIFO scoreboard:

```
stage file_incorrence_desc_git;
import file_firesing_git;
import
```

```
| Sdisplay("HERE in pushing popping");
| end | else if (isEmpty()) begin |
| fiftor=frough.back(f_tom_param.data_in); |
| sdisplay("HERE in pushing 2"); |
| end | else if (isEmpty()) begin |
| dista_out_re= fiftor=frough.front(); |
| sdisplay("HERE in pushing 2"); |
| end | end |
| dista_out_re= fiftor=frough.front(); |
| sdisplay("HERE in pushing 2"); |
| dista_out_re= fiftor=frough.front(); |
| sdisplay("HERE in pushing 2"); |
| end | else if (isEmpty()) begin |
| end | else if (isEmpty()) beg
```

♣FIFO testbench:

BUGS

Bug 1(almostfull)

In the design:

```
62
63 assign fifo_if.almostfull = (count == FIFO_DEPTH-2)? 1 : 0; /
```

In assertions:

It should be:

```
assign fifo_if.almostfull = (count == FIFO_DEPTH-1)? 1 : 0;
```

▼ Name	Language	Enable	Failure Count	Assertion Type
	SVA	on	0	Immediate
	SVA	on	0	Concurrent
<u>→</u> /FIFO_top/dut/Overflow_Detection	SVA	on	7	Concurrent
<u>+</u> → /FIFO_top/dut/Underflow_Detection	SVA	on	0	Concurrent
	SVA	on	0	Concurrent
→ /FIFO_top/dut/Full_Flag	SVA	on	0	Concurrent
	SVA	on	0	Concurrent
→ /FIFO_top/dut/Almost_Empty_Flag	SVA	on	0	Concurrent
/FIFO_top/fifo_tb_inst/#ublk#182146786#12/immed15	SVA	on	0	Immediate

BUG 2 (wr_ack)

In design:

missing this part:

```
reg [max_fifo_addr-1:0] wr_ptr, rd_ptr;
reg [max_fifo_addr:0] count;

always @(posedge fifo_if.clk or negedge fifo_if.rst_n) begin
    if (!fifo_if.rst_n) begin
        wr_ptr <= 0;
        fifo_if.wr_ack <= 0; /// should make it 0 again if rst_n active
end
    else if (fifo_if.wr_en && count < FIFO_DEPTH) begin
        mem[wr_ptr] <= fifo_if.data_in;</pre>
```

Before it:

After it:

BUG 3(underflow)

In the design:

```
assign fifo_if.empty = (count == 0)? 1 : 0;

// assign fifo_if.underflow = (fifo_if.empty && fifo_if.rd_en)? 1 : 0; ///// SHOULD BE SEQ not assign fifo_if.almostfull = (count == FIFO_DEPTH-1)? 1 : 0; ////// FIXING
```

Underflow should be sequential

▼ Name	Language	Enable	Failure Count	Asser
→ /FIFO_top/dut/write_acknowledge_assert	SVA	on	0	Conc
<u>→</u> /FIFO_top/dut/overflow_assert	SVA	on	0	Conc
/FIFO_top/dut/underflow_assert	SVA	on	198	Conc
<u>→</u> /FIFO_top/dut/empty_assert	SVA	on	0	Conc
<u>→</u> /FIFO_top/dut/full_assert	SVA	on	0	Conc
→ /FIFO_top/dut/almsotfull_assert	SVA	on	0	Conc
<u>→</u> /FIFO_top/dut/almsotempty_assert	SVA	on	0	Conc
/FIFO_top/fifo_tb_inst/#ublk#182146786#12/immed15	SVA	on	0	Imme

Should be like this:

```
always @(posedge fifo_if.clk or negedge fifo_if.rst_n) begin
    if (!fifo_if.rst_n) begin
        rd_ptr <= 0;
        fifo_if.underflow <= 0;
end
    else if (fifo_if.rd_en && count != 0) begin
        fifo_if.data_out <= mem[rd_ptr];
        rd_ptr <= rd_ptr + 1;
end
    else begin
        if(count == 0 && fifo_if.rd_en)begin
              fifo_if.underflow <= 1;
        end
        else begin
              fifo_if.underflow <= 0;
end
end</pre>
```

ASSCIUOTS				
▼ Name	Language	Enable	Failure Count	Assertion '
<u>→</u> /FIFO_top/dut/write_acknowledge_assert	SVA	on	0	Concurren
<u>→</u> /FIFO_top/dut/overflow_assert	SVA	on	0	Concurren
<u>+</u> → /FIFO_top/dut/underflow_assert	SVA	on	0	Concurren
<u>+</u> → /FIFO_top/dut/empty_assert	SVA	on	0	Concurren
<u>+</u> → /FIFO_top/dut/full_assert	SVA	on	0	Concurren
→	SVA	on	0	Concurren

BUG 4 (missing when write and read high)

♣Do file

```
run_fixed.do
1    vlib work
2
3    vlog -f src_files_fixed.list +define+SIM +cover
4    # ADD THIS IF YOU WANT TO SEE EVERYTHING:=> <+define+DEBUG>
5
6    vsim -voptargs=+acc work.FIFO_top -cover
7    add wave *
8    add wave *
8    add wave /FIFO_top/dut/rd_ptr /FIFO_top/dut/wr_ptr /FIFO_top/dut/count /FIFO_top/dut/write_acknowledge_assert /FIFO_top/dut/overflow_assert /FIFO_top/dut/underf
coverage save FIFO_cov.ucdb -onexit -du work.FIFO
10
11
12
13
14
15
16
```

QuestaSim snippets

No errors in the fixed design:

```
# Correct:: output => 4249 equal the ref Out => 4249
# When rst n: 1, wr en: 0, rd en: 0, data in: 32091
# HERE in pushing 1
 ----- Correct -----
# Correct:: output => 4249 equal the ref Out => 4249
# When rst_n: 1, wr_en: 1, rd_en: 0, data_in: 41337
 HERE in pushing popping
         ----- Correct
 Correct:: output => 49050 equal the ref Out => 49050
# When rst_n: 1, wr_en: 1, rd_en: 1, data_in: 43235
 ======= Correct ======
# Correct:: output => 49050 equal the ref Out => 49050
# When rst_n: 1, wr_en: 0, rd_en: 0, data_in: 45636
 Correct:: output => 49050 equal the ref Out => 49050
# When rst_n: 1, wr_en: 0, rd_en: 0, data_in: 16200
 ----- Correct -----
# Correct:: output => 49050 equal the ref Out => 49050
# When rst_n: 1, wr_en: 0, rd_en: 0, data_in: 16200
# Simulation finished
# Correct count = 10009
# Error count = 0
 ** Note: $stop : FIFO_monitor.sv(54)
  Time: 200180 ns Iteration: 1 Instance: /FIFO_top/fifo_monitor
```

Write ack and Overflow and underflow:

Empty and full and almostfull:

almostempty and Pointer Wraparound Pointer threshold:

Cover directives:

Assertions:

Group coverage:

All coverage 100%:

```
wr_ptr[2-0]
Total Node Count =
                           10
Toggled Node Count =
                           10
Untoggled Node Count =
                           0
Toggle Coverage = 100.00% (20 of 20 bins)
DIRECTIVE COVERAGE:
                                   Design Design Lang File(Line) Hits Status
      | | | | | | | | | | | | | | | | | | Unit UnitType
/\FIFO_top#dut /Write_Acknowledge_cover FIFO Verilog SVA FIFO_fixed.sv(99)
/\FIFO_top#dut /overflow_cover FIFO Verilog SVA FIFO_fixed.sv(196)
                                                                    4034 Covered
                                                                      14 Covered
                                   FIFO Verilog SVA FIFO_fixed.sv(113)
/\FIFO_top#dut /underflow_cover
                                                                    1251 Covered
                                    FIFO Verilog SVA FIFO_fixed.sv(120)
/\FIFO_top#dut /empty_cover
                                   FIFO Verilog SVA FIFO_fixed.sv(127)
/\FIFO_top#dut /full_cover
/\FIFO_top#dut /almsotfull_cover
                                                                      25 Covered
                                   FIFO Verilog SVA FIFO_fixed.sv(134)
/\FIFO_top#dut /almsotempty_cover
                                                                      68 Covered
                                   FIFO Verilog SVA FIFO_fixed.sv(141)
                                                                    2958 Covered
                                   FIFO Verilog SVA FIFO_fixed.sv(150)
/\FIFO_top#dut /rd_ptr_wrap_cover
                             | | | | | | 23 Covered
TOTAL DIRECTIVE COVERAGE: 100.00% COVERS: 8
ASSERTION RESULTS:
                             Count
/\FIFO_top#dut /Reset_Behavior
                FIFO_fixed.sv(91)
/\FIFO_top#dut /write_acknowledge_assert
                 FIFO_fixed.sv(98)
/\FIFO_top#dut /overflow_assert
                 FIFO_fixed.sv(105)
/\FIFO_top#dut /underflow_assert
                  FIFO_fixed.sv(112)
/\FIFO_top#dut /empty_assert
                  FIFO_fixed.sv(119)
/\FIFO_top#dut /full_assert
                 FIFO_fixed.sv(126)
/\FIFO_top#dut /almsotfull_assert
                 FIFO_fixed.sv(133)
                                                 0
/\FIFO_top#dut /almsotempty_assert
                 FIFO_fixed.sv(140)
                                                 0
/\FIFO_top#dut /rd_ptr_wrap_asset
FIFO_fixed.sv(149)
Total Coverage By Instance (filtered view): 100.00%
End time: 09:34:18 on May 06,2025, Elapsed time: 0:00:00
Errors: 0, Warnings: 0
```

