Intelligence Artificielle Logiques

Emmanuel ADAM

Université Polytechnique des Hauts-De-France

UPHF/INSA HdF

- Introduction
 - Typologie de la connaissance
 - Représentations
 - Savoir et Savoir-Faire
- 2 Logique propositionnelle
 - Eléments de définition
 - Clauses
 - Axiomes
 - Théorèmes
 - Statisfiabilité, tautologies
 - Table de vérité
 - Résolution
 - Algorithme de Quine
 - Preuve par réfutation
 - Algorithme de Réduction
 - Résolvante
 - Algorithme de résolution
 - Algorithme de Davis & Putman
 - Algorithme DPLL

UPHF/INSA HdF

Introduction

Logique classiques

- Etude en Philosophie, Logique, Linguistique, Psychologie cognitive, Intelligence Artificielle
- Informatique : théorie et traitement de l'information (Le Robert)
 - Nécessité de représenter la connaissance
 - But : manipulation par " systèmes experts "
 - Objectif : faciliter, aider la décision
- Connaître = Mémoriser + Raisonner
- Représenter = Formaliser + Inférer

Typologie de la connaissance

Les différents types de connaissances

De définition : toujours vraie

Un triangle est un polygone ayant exactement 3 côtés

Evolutive/atemporelle : peut être modifiée

Anne est étudiante à l'UVHC

Incertaine/certaine:

La Lune provient d'une collision de la Terre

Floue/précise : évaluation difficile

Les lendemains de fêtes ne sont pas très productifs

Typique/universelle : peut être contredit

Habituellement, le prof arrive en retard

Ambiguë: plusieurs significations

Nikos savait que que Abi allait gagner.

savoir / se douter?

Problèmes de représentation

Pas de formalisme idéal

- Modalités : je crois que, je pense que, il est probable que, . . .
- Evolutivité : les connaissances changent
- Typicalité et partage de propriété
- Connaissances incomplètes
- . . .

→ pas de formalisme idéal!

Propriété de représentation

Objectif de la représentation

- Adéquation représentationnelle
- Adéquation et efficacité inférentielle
- Efficacité acquisitionnelle et extensibilité
- Simplicité (utilisable par un non informaticien)
- Connaissance explicite
- . . .

Famille de connaissances

Savoir et Savoir-Faire

- Représentation déclarative
 - Les connaissances n'ont pas d'ordre
 - Connaissances indépendantes ou liées
 - Pertinence fixée a priori
 - modularité, connaissance stockée une seule fois
- Représentation procédurale
 - Les connaissances ont un caractère opératoire
 - Pertinence définie par un programme qui traite les connaissances
 - facilité de codage, représentation des connaissances sur des opérations

Logique propositionnelle

Eléments de définition

- Origine : de Aristote $-> XIX^e$ (premières formalisations)
- Alphabet $\Sigma = vocabulaire = \{variables, connecteurs\}$
- $variables(atomes) = \{p, r, pepin, charlemagne, terre, ...\}$
- connecteurs = $\{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$
- Formule :

$$A: p \land q \rightarrow r$$

 $A \lor B. \dots$

• domaine de valeurs = $\{V, F\}$ (en logique booléenne $\{0, 1\}$)

Logique propositionnelle

Identités remarquable et Loi de De Morgan

Propriétés. A étant défini :

- on ne peut avoir une chose et son contraire : $A \land \neg A = Faux$
- on peut toujours avoir une chose ou son contraire : $A \vee \neg A = Vrai$

$$\neg (C_1 \lor \ldots C_{n-1} \lor C_n) \equiv \neg (C_1 \lor \ldots C_{n-1}) \land \neg C_n \equiv (\neg C_1 \land \ldots \land \neg C_n)$$

$$\neg (C_1 \land \ldots C_{n-1} \land C_n) \equiv \neg (C_1 \land \ldots C_{n-1}) \lor \neg C_n \equiv (\neg C_1 \lor \ldots \lor \neg C_n)$$

- $(A \rightarrow B) \equiv (\neg A \lor B)$
- $\bullet \ A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$
- $\bullet \ \ A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- $A \wedge (A \vee B) \equiv (A)$
- $A \vee (A \wedge B) \equiv (A)$

Logique propositionnelle : Clauses

Notations équivalentes

Soit F_0 une formule, il existe F_1, F_2, F_3, F_4 équivalentes à F_0 tq :

- F_1 : n'utilise que les connecteurs \vee , \neg
- F_2 : n'utilise que les connecteurs \land, \neg
- F_3 : n'utilise que les connecteurs \rightarrow , \neg
- F_4 : n'utilise que les connecteurs \vee , \wedge , \neg

• Si
$$F_4 = \bigwedge_{i=1}^n C_i = C_1 \wedge ... \wedge C_n$$
 où
$$C_i = \bigvee_{i=1}^k \langle l_i t_i \rangle = l_i t_i \vee \langle l_i t_i \rangle = l_i t_i \vee \langle l_i t_i \rangle$$

$$C_i = \bigvee_{j=1}^{N} (lit_i) = lit_1 \vee \ldots \vee lit_k$$

liti litéral de la forme a ou $\neg a$ Alors les C_i sont appelées clauses

et F_4 est une forme normale conjonctive

• Si
$$F_4 = \bigvee_{i=1}^n \bigwedge_{j=1}^m lit_{ij}$$

Alors F_4 est une forme normale disjonctive

Logique propositionnelle : Clauses de Horn

Clauses de Horn

Les clauses de Horn sont des clauses contenant *au plus* 1 *littéral positif*. Trois types de clauses sont définis :

```
stricte : de la forme p \vee \neg n_1 \vee ... \vee \neg n_m, m \geq 1
```

positive : de la forme p

négative : de la forme $\neg n_1 \lor ... \lor \neg n_m, m \ge 1$

Logique propositionnelle

Axiomes et règles

- $A1: A \rightarrow (B \rightarrow A)$
- $A2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- $A3: (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$
- règle de réduction : modus ponens : $A, (A \rightarrow B) \vdash B$

Logique propositionnelle : Théorèmes

Théorème

Un théorème se déduit à partir des axiomes, d'autres théorèmes et de règles de réduction (ici le modus ponens).

Ne nécessitant pas d'hypothèse initiales, le théorème s'écrit : $\vdash F$.

```
Démontrer que p \rightarrow p est un théorème.
```

émontrer que
$$p \to p$$
 est un théorème.
 $A2: (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
 $F1: ((p \to ((q \to p) \to p)) \to ((p \to (q \to p) \to (p \to p)))$
 $A1: A \to (B \to A)$
 $F2: (p \to ((q \to p) \to p))$
 $F3: ((p \to (q \to p) \to p))$
 $F3: ((p \to (q \to p) \to (p \to p))$
 $A1: A \to (B \to A)$
 $F4: (p \to (q \to p))$
 $F5: (p \to p)$
 $A2: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$
 $A1: A \setminus p, B \setminus (q \to p), C \setminus p$

Partant "de rien" (des axiomes et autres théorèmes), on déduit $p \rightarrow p$.

On peut écrire $\vdash p \rightarrow p$

 $p \rightarrow p$ est un théorème de la logique propositionnelle.

Logique propositionnelle : Théorèmes

Propositions

Sachant que $\vdash A \rightarrow A$:

- Proposition 1 : $\forall A, A \rightarrow A$
- Proposition 2 : Si $A_1, A_2, \dots, A_{n-1} \vdash A_n \rightarrow B$ Alors $A_1, A_2, \dots, A_{n-1}, A_n \vdash B$
- Proposition 3 : Si $A_1, A_2, \dots, A_{n-1}, A_n \vdash B$ Alors $A_1, A_2, \dots, A_{n-1} \vdash A_n \rightarrow B$

Logique propositionnelle : Théorèmes

Théorèmes

Les formules suivantes sont des théorèmes :

- $T_0: (A \to A)$
- $T_1: ((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))$
- $T_2:(B \rightarrow ((B \rightarrow C) \rightarrow C))$
- $T_3: (\neg B \rightarrow (B \rightarrow C))$
- $T_4: (\neg \neg B \rightarrow B)$
- $T_5: (B \rightarrow \neg \neg B)$
- $T_6: ((A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A))$
- $T_7: (B \rightarrow (\neg C \rightarrow \neg (B \rightarrow C)))$
- $T_8: ((B \rightarrow A) \rightarrow (\neg B \rightarrow A) \rightarrow A))$

Logique propositionnelle : Statisfiabilité, tautologie

Tables de vérité

A	В	$B \rightarrow A$	$A \rightarrow (B \rightarrow A)$
F	F	V	V
F	V	F	V
V	F	V	V
V	V	V	V

- lorsque la formule F est Vraie pour toute interprétation (ici de A et B), on écrit ⊨ F
- Les axiomes, les théorèmes sont tous des tautologies (toujours vrais)
- une formule F est insatisfiable (inconsistante) s'il n'existe pas d'interprétation I où I(F) = Vrai
- une formule F est satisfiable (consistante) s'il existe un interprétation I où I(F) = Vrai
- une formule *F* est valide si elle est vraie pour toute interprétation
- un problème de recherche d'assignation de variables pour satisfaire une formule est dit problème SAT

Logique propositionnelle : résolution

Soit
$$F = ((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$$

 $F = \neg((\neg p \lor \neg q) \lor r) \lor (\neg p \lor (\neg q \lor r))$

Vérifions que F est une tautologie par table de vérité :

F est donc vraie pour toute interprétation de p, q, r; on note $\models F$

 2^n lignes sont nécessaires pour une formule à n variables!

Logique propositionnelle : résolution

Théorème du principe de déduction

- A est conséquence d'un ensemble de formules \mathbb{F} si $\{A\} \cup \mathbb{F}$ est satisfiable.
- trouver une interprétation qui **SATistasse** $\{A\} \cup \mathbb{F}$.
- ou prouver que $\{\neg A\} \cup \mathbb{F}$ est **INSATisfiable (UNSAT)**
- 2ⁿ lignes par tables de vérités (pour *n* atomes).
- ⇒ utiliser un algorithme dédié.

Logique propositionnelle : Algorithme de Quine

Arbre de résolution

- construction d'un arbre binaire d'une formule F constituée des atomes p₁,..., p_n
- chaque arc est étiqueté par un atome p_i ou $\neg p_i$
- nous avons alors deux mondes, l'un où p_i est vrai, l'autre où $\neg p_i$ est vrai
- évaluation partielle de la formule à chaque nœud

Logique propositionnelle : Algorithme de Quine

Prouvez que $F = \neg((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))$ n'est pas valide.

$$F = \neg(\neg(\neg A \lor B) \lor (\neg(\neg B \lor C) \lor (\neg A \lor C)))$$

$$F = (\neg A \lor B) \land ((\neg B \land C) \land (A \land \neg C))$$

$$(\neg A \lor B) \land ((\neg B \lor C) \land (A \land \neg C))$$

$$(B) \land ((\neg B \land C) \land (\neg C)) \land (A \land \neg C)$$

$$Faux (B) Faux (\neg B)$$

Toutes les branches (tous les "mondes") mènent à des feuilles fausses. Il n'existe pas de modèle pour F: F est insatisfiable.

Donc son opposé $((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))$ est valide.

Logique propositionnelle : Algorithme de Quine

Prouvez que
$$F = ((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))$$
 est valide.

$$F = (\neg(\neg A \lor B) \lor (\neg(\neg B \lor C) \lor (\neg A \lor C)))$$

$$F = ((A \land \neg B) \lor ((B \land \neg C) \lor (\neg A \lor C)))$$

$$(A \land \neg B) \lor ((B \land \neg C) \lor (\neg A \lor C))$$

$$(\neg B) \lor ((B \land \neg C) \lor (C)) (A) \quad Vrai (\neg A)$$

$$Vrai (c) \quad (\neg B) \lor (B) (\neg C)$$

$$Vrai$$

Toutes les branches (tous les "mondes") mènent à des succès.

Donc *F* est valide.

L'algo conclue cela sans avoir à balayer tous les cas!

Les modèles trouvés sont : $(\neg A)$, $(A \land C)$, $(A \land \neg C)$.

Logique propositionnelle : preuve par réfutation

Algorithme de Réduction

- preuve par réfutation (ou falsification)
- Pour toute formule F de la forme A → B :
 on tente de vérifier si elle peut être fausse :
 A → B est faux ssi A = Vrai ∧ B = Faux
 - Créer un nœud pour évaluer Vrai(A)
 - Créer un nœud pour évaluer Faux(B)
- jusqu'à obtention d'un modèle ou d'une contradiction

Logique propositionnelle : résolution

Algorithme de Réduction

Démontrer que $((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$ est valide Démontrer que l'on ne peut avoir $Faux((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$

$$Faux(((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$$
 $Vrai((p \land q) \rightarrow r)$
 $Faux(p \rightarrow (q \rightarrow r))$
 $Vrai((Vrai \land Vrai) \rightarrow Faux)$
 $Vrai(p)$
 $Vrai(Faux)$
 $Vrai(Faux)$
 $Vrai(q)$
 $Vrai(q)$

Il est impossible que ce soit faux (contradiction), donc c'est vrai!

Logique propositionnelle : Résolvante

Algorithme par Résolvante

• soit F une formule d'un forme normale conjonctive :

$$F = \bigwedge_{i=1}^{n} C_i$$
 avec $C_i = \bigvee_{j=1}^{k} p_j$

- Soient C_i et C_j telles que $p \in C_i$ et $\neg p \in C_j$
- Soit $R_{ij} = C_i \setminus \{p\} \cup C_j \setminus \{\neg p\}$
- alors F et $F \cup R_{ij}$ sont équivalents
- R_{ij} est appelée résolvante de C_i et C_j

Logique propositionnelle : Résolvante

Exemple de résolvante

```
F_1 = \{(p \lor q \lor r), (\neg p \lor t)\}
Choix de résolvante par p : R_1 = (p \lor q \lor r) \setminus p \cup (\neg p \lor t) \setminus \neg p
R_1 = (q \lor r \lor t)
F_1' = \{(p \lor q \lor r), (\neg p \lor t), (q \lor r \lor t)\} est équivalent à F_1
F_2 = \{(\neg a \lor b), (a)\}
Choix de résolvante par a : R_2 = (\neg a \lor b) \setminus \neg a \cup (a) \setminus a
R_2 = (b)
F_2' = \{(\neg a \lor b), (a), (b)\} est équivalent à F_2
```


Logique propositionnelle : algorithme de résolution

La formule doit être une forme normale conjonctive ET les clauses doivent être des clauses de Horn.

```
procedure RESOLUTION(F)
    fin ← Faux
    while \neg fin \land \varnothing \notin F do
         fin ← Vrai
         choisir P \in F, tq P = (p) (clause positive)
         if P \neq \emptyset then
             choisir C \in F, tq \neg p \in C
             if C \neq \emptyset then
                  R \leftarrow \text{RESOLVANTE}(P,C) = C \setminus (\neg p)
                  F \leftarrow (F \setminus C) \cup R
                  fin ← Faux
             end if
         end if
    end while
    if \varnothing \in F then return "inconsistance"
    else return "consistance"
    end if
end procedure
```


Logique propositionnelle : résolution

Clauses de Horn

Il faut prouver l'inconsistance de $F = \{\neg p \lor r, \neg r \lor s, p, \neg s\}$

Prenons
$$P = p$$
 et $C = (\neg p \lor r)$, Alors $R = \emptyset \cup \{(r)\} = \{(r)\}$
 $F = F \setminus C \cup R = \{\neg r \lor s, p, \neg s, r\}$

Prenons
$$P = r$$
 et $C = (\neg r \lor s)$, Alors $R = \emptyset \cup \{(s)\} = \{(s)\}$
 $F = F \setminus C \cup R = \{p, \neg s, r, s\}$

Prenons
$$P = s$$
 et $C = (\neg s)$, Alors $R = \varnothing \cup \varnothing = \{\varnothing\}$
 $F = F \setminus C \cup R = \{s, p, \varnothing, r\}$

 $\emptyset \in F$ donc F est inconsistant

Logique propositionnelle : Davis & Putman

Algorithme de Davis & Putman

• soit F une formule d'un forme normale conjonctive :

$$F = \bigwedge_{i=1}^{n} C_i$$
 avec $C_i = \bigvee_{j=1}^{k} lit_{ij}$

- On note lit un littéral, et lit_c son complémentaire (sa négation)
- □, la clause vide est insatisfiable
- Ø. l'ensemble vide de toute clause est satisfiable

Logique propositionnelle : Davis & Putman

Règles de Davis & Putman

Appliquer les règles suivantes jusqu'à ce qu'aucune ne puisse plus s'appliquer; lorsque plusieurs règles sont applicables, on choisit celle de plus petit numéro :

- R1 Enlever les tautologies (clause contenant lit et lit_c)
- R2 Si l'une des clauses ne possède qu'un seul littéral *lit*, enlever toutes les clauses contenant *lit* et enlever dans les autres clauses toutes les occurrences de *lit*_c.
- R3 Si *lit* apparaît dans certaines clauses et que *lit_c* n'apparaît pas, enlever toutes les clauses contenant *lit*.
- R4 Si une clause C_i a tous ses littéraux présents dans une clause C_i , ôter C_i .
- R5 Si *lit* et *lit_c* sont présents dans des clauses, remplacer celui-ci par deux ensembles de clauses :
 - un ensemble obtenu en enlevant toutes les clauses contenant lit et toutes les occurrences litc
 - un ensemble obtenu en enlevant toutes les clauses contenant lite et toutes les occurrences lit

Logique propositionnelle : Davis & Putman

Algorithme de Davis & Putman

```
Exemple: prouver \models ((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))
\Rightarrow \{((p \land q) \rightarrow r)\} \models (p \rightarrow (q \rightarrow r))?
\Rightarrow \{((p \land q) \rightarrow r), p\} \models (q \rightarrow r)?
\Rightarrow \{((p \land q) \rightarrow r), p, q\} \models r?
⇒ on cherche à prouver l'inconsistance de
F = \{((p \land q) \to r), (p), (q), (\neg r)\}\
\Rightarrow transformation en clauses : F = \{ (\neg(p \land q) \lor r), (p), (q), (\neg r) \}
F = \{ (\neg p \lor \neg q \lor r), (p), (q), (\neg r) \}
\Rightarrow Application de R2 (\neg r isolé) : F = \{(\neg p \lor \neg q), (p), (q)\}
\Rightarrow Application de R2 (q isolé) : F = \{(\neg p), (p)\}
\Rightarrow Application de R2 (p isolé) : F = \{\Box\}
\Rightarrow F est inconsistant donc \{((p \land q) \rightarrow r), (p), (q)\} \models r est vrai
donc ((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r)) est vrai
```


Logique propositionnelle : Davis, Putman, Logeman, Loveland

Règles de DPLL

```
L'algorithme de D.P.L et L est basé sur l'algo de Davis et Putman et
l'algorithme de Quine.
  procedure DPLL(F)
      if F = C and C coherent then
          return true
      end if
      if \Box \in F then
          return false
      end if
      for all C \in F do
          remove C_i where C \in C_i
      end for
      for all C \in F, C = (lit) do
          remove C_i where lit \in C_i
          remove \neg lit in C_i where \neg lit \in C_i
      end for
      choose liti
      return DPLL(F \wedge lit_i) \vee DPLL(F \wedge \neg lit_i)
  end procedure
```

Logique propositionnelle : DPLL

Algorithme DPLL

```
Exemple : \Rightarrow on cherche à prouver l'inconsistance de F = \{(\neg p \lor \neg q \lor r), (p), (q), (\neg r)\} \Rightarrow traitement de (p) : F = \{(\neg q \lor r), (q), (\neg r)\} \Rightarrow traitement de (q) : F = \{(r), (\neg r)\} \Rightarrow traitement de (r) : F = \{()\} F = \{(\Box)\} \Rightarrow F est inconsistant donc \{((p \land q) \to r), (p), (q)\} \models r est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r)) est vraidence ((p \land q) \to r) \to (p \to (q \to r))
```


Logique propositionnelle : DPLL

Algorithme DPLL

```
Exemple : ⇒ on cherche à prouver l'inconsistance de
F = \{(a \lor b \lor \neg d), (d \lor c), (\neg a \lor b), (\neg a \lor \neg c), (\neg b \lor c), (\neg c \lor a)\}
\Rightarrow séparation par (a) et (\neg a): F1 = \{(d \lor c), (b), (\neg c), (\neg b \lor c)\}
F2 = \{(b \lor \neg d), (d \lor c), (\neg b \lor c), (\neg c)\}\
Traitement de F1
   retrait de (b) : F1 = \{(d \lor c), (\neg c), (c)\}
   retrait de (c) : F1 = \{()\}
  \square \in F1. donc F1 insatisfiable
Traitement de F2
   retrait de (\neg c) : F2 = \{(b \lor \neg d), (d), (\neg b)\}
   retrait de (d) : F2 = \{(b), (\neg b)\}
   retrait de (b) : F2 = \{()\}
  \square \in F2, donc F2 insatisfiable
F = F1 \cup F2
F1 et F2 insatisfiables \Rightarrow F est insatisfibable, i.e. inconsistant
```

Université Polytechnique

Logique propositionnelle : résolutions

Plusieurs algorithmes

- un problème SAT (de satisfaction booléenne) peut donc être résolu selon différentes méthodes, algorithmes pour prouver la vérité ou l'insconsistance d'une formule
- table de vérité; vérifie si F est logiquement valide : $\models F$
- raisonnement par déduction, à partir d'axiomes et de règles d'inférence;
 vérifie si F est prouvable : ⊢ F
- algorithme de Quine
- algorithme de réduction (par réfutation)
- algorithme de Davis & Putman
- algorithme par clauses de Horn
- ...
- c'est un problème NP complet

Logiques

Intérêt au temps du Machine Learning?

- Les logiques (classique, des prédicats, modales, temporelles)
 s'appliquent à des problèmes de SATisfaction
- Elles ont pour objectif de fournir des solutions, des réponses précises et définitives à des problèmes à partir de règles et d'une description précise du problème
- La solution peut être justifiée et expliquée
- Au contraire, une solution proposée par un algo basé sur le machine learning donnera une solution "probable" sans justification autre que "habituellement ça fonctionne bien"
- Pour les problèmes de planification (ex. trajectoires), vérification (ex. circuits intégrés), ..., la logique est donc préférée

