Mínimos Quadrados

Decomposição QR

Conteúdo

- 1. Introdução ao Problema de Mínimos Quadrados Discreto
- 2. Método dos Mínimos Quadrados
- 3. Decomposição QR
- 4. Processo de Gram-Schmidt
- 5. Processo de Gram-Schmidt Modificado
- 6. Refletores de Householder
- 7. Householder QR

Introdução ao Problema de Mínimos Quadrados Discreto

Dado um conjunto de pontos de dados discretos $\{(t_i,y_i)\}_{i=1}^m$, o objetivo do **problema de mínimos quadrados discreto** é encontrar um polinômio p(t) de grau d que aproxime esses dados minimizando o erro residual.

Formulação Matemática

O polinômio p(t) pode ser expresso como:

$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_d t^d$$

Os resíduos para cada ponto de dados são:

$$r_i = y_i - p(t_i), \quad ext{para } i = 1, 2, \dots, m$$

O objetivo é minimizar a soma dos quadrados dos resíduos:

$$\min_{a_0,a_1,\dots,a_d} \sum_{i=1}^m (y_i - p(t_i))^2$$

Representação Matricial

Podemos reescrever o problema em termos matriciais como:

$$\mathbf{Va}pprox\mathbf{y}$$

onde ${f a}$ é o vetor de coeficientes do polinômio p(t) e ${f V}$ é a matriz de Vandermonde.

Assim, temos:

$$egin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^d \ 1 & t_2 & t_2^2 & \cdots & t_2^d \ dots & dots & dots & \ddots & dots \ 1 & t_m & t_m^2 & \cdots & t_m^d \end{bmatrix} egin{bmatrix} a_0 \ a_1 \ dots \ a_1 \ dots \ a_d \end{bmatrix} pprox egin{bmatrix} y_1 \ y_2 \ dots \ y_m \end{bmatrix}$$

Matriz de Vandermonde

2. Método dos Mínimos Quadrados

Dado um sistema sobredeterminado $A\mathbf{x} \approx \mathbf{b}$:

- ullet $A \in \mathbb{R}^{m imes n}, m \gg n$ (mais equações do que incógnitas)
- Queremos minimizar o erro residual:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2^2$$

A solução é dada pelas **equações normais** [1]:

$$A^{ op}A\mathbf{x} = A^{ op}\mathbf{b},$$

que é um sistema linear de n equações e n incógnitas.

[1]: Pode se demonstrar que a solução das equações normais é o ponto de mínimo global do problema de mínimos quadrados.

3. Decomposição QR

Definição

A $\operatorname{\mathbf{decomposiç\~{ao}}}$ QR de uma matriz $A\in\mathbb{R}^{m imes n}$ ($m\geq n$) é a fatoraç\~{ao} de A em:

$$A = QR$$

onde:

- $ullet \ Q \in \mathbb{R}^{m imes m}$ é uma matriz ortogonal ($Q^ op Q = I$)
- ullet $R \in \mathbb{R}^{m imes n}$ é uma matriz triangular superior

Aplicação aos Mínimos Quadrados

Substituindo A=QR na equação das mínimas quadrados:

$$QR\mathbf{x} \approx \mathbf{b}$$

Multiplicando ambos os lados por $Q^{ op}$:

$$Q^{ op}QR\mathbf{x} = R\mathbf{x} = Q^{ op}\mathbf{b}$$

Como R é triangular superior, basta aplicarmos a substituição regressiva para encontrar a solução:

$$\mathbf{x} = R^{-1}Q^{\top}\mathbf{b}$$

4. Processo de Gram-Schmidt

Seja $\{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_n\}\in\mathbb{R}^m$ um conjunto LI.

- 1. Primeiro vetor ortonormal: $\mathbf{q}_1 = \frac{\mathbf{a}_1}{\|\mathbf{a}_1\|_2}$
- 2. Segundo vetor ortonormal:

$$\mathbf{q}_2 = rac{\mathbf{a}_2 - \mathrm{proj}_{\mathbf{q}_1}(\mathbf{a}_2)}{\|\mathbf{a}_2 - \mathrm{proj}_{\mathbf{q}_1}(\mathbf{a}_2)\|_2}$$

3. Generalização para o k-ésimo vetor:

$$\mathbf{q}_k = rac{\mathbf{a}_k - \sum_{j=1}^{k-1} (\mathbf{q}_j^ op \mathbf{a}_k) \mathbf{q}_j}{\|\mathbf{a}_k - \sum_{j=1}^{k-1} (\mathbf{q}_j^ op \mathbf{a}_k) \mathbf{q}_j\|_2}$$

A projeção de **v** sobre **u** é dada por:

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}}\mathbf{u}$$

5. Processo de Gram-Schmidt Modificado

Diferença principal:

- No Gram-Schmidt clássico, projetamos e subtraímos simultaneamente.
- No modificado, projetamos e subtraímos incrementalmente, garantindo maior ortogonalidade.

Algoritmo: GS modificado

Para cada vetor $\mathbf{a}_k \in \mathbb{R}^m$:

- 1. Inicialize $\mathbf{r}_k = \mathbf{a}_k$.
- 2. Para cada vetor ortonormal anterior \mathbf{q}_j :

$$r_{jk} = \mathbf{q}_j^ op \mathbf{a}_k, \quad \mathbf{r}_k = \mathbf{r}_k - r_{jk} \mathbf{q}_j$$

3. Normalize:

$$\mathbf{q}_k = rac{\mathbf{r}_k}{\|\mathbf{r}_k\|_2}$$

6. Refletores de Householder

Definição

Um refletor de Householder é uma matriz ortogonal $H \in \mathbb{R}^{m \times m}$ que reflete um vetor $\mathbf{x} \in \mathbb{R}^m$ em relação a um hiperplano ortogonal a um vetor $\mathbf{v} \in \mathbb{R}^m$:

$$H = I - 2rac{\mathbf{v}\mathbf{v}^ op}{\mathbf{v}^ op}$$

Propriedades:

- ullet $H^ op H = I$ (ortogonalidade)
- ullet $H=H^ op$ (simetria)

7. Householder QR

As reflexões de Householder podem ser aplicadas na decomposição QR.

O processo envolve a construção iterativa de matrizes de Householder para introduzir zeros abaixo da diagonal principal, transformando A em R.

O produto dessas matrizes de Householder forma a matriz ortogonal Q.

$$\underbrace{H_n H_{n-1} \cdots H_1}_{\text{Matrizes de Householder}} A = R$$

Ideia Central

Suponha que desejamos refletir um vetor $\mathbf{x} \in \mathbb{R}^n$ de modo que ele se alinhe com um múltiplo do primeiro vetor base padrão $\mathbf{e}_1 = [1,0,0,\dots,0]^T$.

1. Calcule a norma de x:

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$

2. Determine o escalar α :

$$lpha = -\operatorname{sign}(x_1) \cdot \|\mathbf{x}\|$$

3. Construa o vetor v:

$$\mathbf{v} = \mathbf{x} - \alpha \mathbf{e}_1$$

4. Normalize v:

$$\mathbf{v} = rac{\mathbf{v}}{\|\mathbf{v}\|}$$

- A matriz de Householder resultante é $H=I-2\mathbf{v}\mathbf{v}^T$.
- $H\mathbf{x}$ é um vetor com zeros em todos as componentes, exceto a primeira.

Ideia Central (continuação)

Para aplicar sucessivamente as reflexões de Householder e reduzir a matriz A a uma forma triangular superior, seguimos o seguinte procedimento:

1. Inicialmente, aplicamos a primeira reflexão de Householder H_1 à matriz completa A, zerando os elementos abaixo do primeiro elemento da primeira coluna. A matriz H_1 é da mesma dimensão de A.

$$H_1A=egin{bmatrix} *&*&*\0&*&*\0&*&* \end{bmatrix}$$

Ideia Central (continuação)

2. Depois, excluímos a primeira linha e a primeira coluna de A e construímos a matriz de Householder H_2 para zerar os elementos abaixo do primeiro elemento dessa submatriz. Aplicamos

$$egin{bmatrix} 1 & 0 & 0 \ 0 & * & * \ 0 & * & * \end{bmatrix} H_1 A = egin{bmatrix} * & * & * \ 0 & * & * \ 0 & 0 & * \end{bmatrix} \ H_2$$

3. Esse processo é repetido sucessivamente para submatrizes menores, até que todos os elementos abaixo da diagonal principal de A sejam zerados.

Exercício:

1. Aplique a decomposição QR utilizando o refletor de Householder à matriz:

$$A = egin{bmatrix} 4 & 1 & 2 \ 2 & 3 & 1 \ 1 & 2 & 3 \end{bmatrix}$$

- 2. Construa uma matriz de Hilbert 6×6 ;
 - 2.1. Aplique a decomposição QR utilizando (a) o processo de Gram-Schmidt clássico, (b) o processo de Gram-Schmidt modificado e (c) o refletor de Householder;
 - 2.2. Compare a precisão da decomposição QR utilizando os três métodos.

PERGUNTAS?