

FLAME-RESISTANT POLYCARBONATE BLENDS

Field of the Invention

The present invention relates to toughened polycarbonate blends that incorporate a combination of organic phosphorus compounds and inorganic phosphorus/oxygen compounds or phosphorus/sulfur

5 compounds that have an excellent flame proofing and improved stress cracking behaviour (towards media such as solvents or greases).

Background of the Invention

EP-A 0 640 655 describes moulding compositions composed of aromatic polycarbonate, styrene-containing copolymers and graft polymers

10 that can be rendered flame-resistant with monomeric and/or oligomeric organic phosphorus compounds.

EP-A 0 363 608 describes flame-resistant polymer blends composed of aromatic polycarbonate, styrene-containing copolymer or 15 graft copolymer and oligomeric organic phosphates as flame retardants.

US-A 5,061,745 describes polymer blends composed of aromatic polycarbonate, ABS graft polymer and/or styrene-containing copolymer and organic monophosphates as flame retardants.

20 A combination of organic phosphorus compounds and inorganic phosphorus/oxygen compounds or phosphorus/sulfur compounds is not described therein. Common to all the applications cited is that, to achieve an excellent flame-proofing with very short burning times, very large 25 amounts of phosphates have to be used and these have an adverse effect on the stress cracking behaviour of the respective moulding compositions.

The demand for a property combination comprising outstanding flame resistance and very good stress cracking behaviour complies, in particular, with the demand for increasingly thinner moulded-part wall 30 thicknesses.

"Express Mail" mailing label number ET730176409US

Date of Deposit December 3, 2001

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Arlington, VA 22214

Karen S. Lockhart

(Name of person mailing paper or fee)

Signature of person mailing paper or fee)

Detailed Description of the Invention

The object of the present invention is to provide polycarbonate compositions having an improved flame resistance and improved stress cracking behaviour in contact with media such as, for example, greases, 5 oils or solvents. This spectrum of properties is demanded, in particular, in applications in the field of data technology, such as, for instance, for housings of monitors, printers, copiers, notebooks etc.

It has now been found that polycarbonate compositions that contain 10 a combination of organic phosphorus compounds and inorganic phosphorus/oxygen compounds as flame retardants have the desired properties.

The invention therefore relates to **thermoplastic molding**

15 compositions containing

A) aromatic polycarbonate and/or polyester carbonate,

B) impact modifier,

20 C) optionally, thermoplastic homopolymer and/or copolymer,

D) a combination of

25 D.1 phosphorus compound and

D.2 phosphorus/oxygen compound different from D.1 or
phosphorus/sulfur compound or the reaction product of D.1
and D.2.

30

Component D is preferably present in an amount of 0.1 to 30 parts by weight (relative to the entire composition). Preferably, component D.2 contains a phosphorous/oxygen compound.

5 The invention preferably relates to blends containing

A) 40 to 99, preferably 60 to 98.5 parts by weight of aromatic polycarbonate and/or polyester carbonate,

10 B) 0.5 to 60, preferably 1 to 40, in particular 2 to 25 parts by weight of a graft polymer of

B.1) 5 to 95, preferably 30 to 80 wt % of one or more vinyl monomers on

15 B.2) 95 to 5, preferably 20 to 70 wt % of one or more graft bases having a glass-transition temperature of < 10°C, preferably < 0°C, particularly preferably < -20°C,

C) 0 to 45, preferably 0 to 30, particularly preferably 2 to 25 parts by weight of at least one thermoplastic polymer selected from the group consisting of vinyl (co)polymers and polyalkylene terephthalates,

20 D) 0.1 to 30 parts by weight, preferably 1 to 25 parts by weight, particularly preferably 2 to 20 parts by weight of a combination of

D.1) organic phosphorus compound and

D.2) a phosphorus/oxygen compound or phosphorus/sulfur compound and also

25

30

E) 0 to 5, preferably 0.1 to 3, particularly preferably 0.1 to 1 part by weight, in particular 0.1 to 0.5 parts by weight of fluorinated polyolefin,

5 wherein the sum of the parts by weight of the components A-E is
100.

Component A

According to the invention, suitable aromatic polycarbonates and/or aromatic polyester carbonates in accordance with component A are known in the literature and can be prepared by methods known in the literature (for the preparation of aromatic carbonates, see, for example, Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964 and also DE-A 1 495 626, DE-A 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396; for the preparation of aromatic polyester carbonates see, for example, DE-A 3 077 934).

Aromatic polycarbonates are prepared, for example, by reacting diphenols with carbonyl halides, preferably phosgene, and/or with aromatic 20 dicarboxylic dihalides, preferably benzenedicarboxylic dihalides, by the phase boundary surface method, optionally using chain terminators, for example monophenols, and optionally using trifunctional or more than trifunctional branching agents, for example triphenols or tetraphenols.

25 Diphenols for preparing the aromatic polycarbonates and/or aromatic polyester carbonates are preferably those of the formula (I)

where

A is a single bond, C₁-C₅-alkylene, C₂-C₅-alkylidene, C₅-C₆-cycloalkylidene, -O-, -SO-, -CO-, -S-, -SO₂-, C₆-C₁₂-arylene onto which further aromatic rings, optionally containing heteroatoms may be condensed,
 5 or a radical of the formula (IIa) or (IIb)

10 where

B is, in each case, C₁-C₁₂-alkyl, preferably methyl, halogen, preferably chlorine and/or bromine,

15 x is, in each case, independently of one another 0,1 or 2,

p is 1 or 0 and

20 R⁷ and R⁸ are, individually selectable for every X¹ and independently of one another, hydrogen or C₁-C₆-alkyl, preferably hydrogen, methyl or ethyl,

X¹ is carbon and

m is an integer from 4 to 7, preferably 4 or 5, with the proviso that, at least at one atom X¹, R⁷ and R⁸ are simultaneously alkyl.

Preferred diphenols are hydroquinone, resorcinol,

5 dihydroxydiphenols, bis(hydroxyphenyl)-C₁-C₅-alkanes,
bis(hydroxyphenyl)-C₅-C₆-cycloalkanes, bis(hydroxyphenyl) ethers,
bis(hydroxyphenyl) sulfoxides, bis(hydroxyphenyl) ketones,
bis(hydroxyphenyl) sulfones and α,α -
bis(hydroxyphenyl)diisopropylbenzenes and also their nucleus-brominated
10 and/or nucleus-chlorinated derivatives.

Particularly preferred diphenols are 4,4'-dihydroxydiphenyl,
bisphenol A, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1,1-bis(4-
hydroxyphenyl)-cyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-
15 trimethylcyclohexane, 4,4'-dihydroxydiphenyl sulfide, 4,4'-
dihydroxydiphenylsulfone and also their di- and tetrabrominated or
chlorinated derivatives, such as, for example, 2,2-bis(3-chloro-4-
hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxy-phenyl)propane or
2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane.

20 Preferred, in particular, is 2,2-bis(4-hydroxyphenyl)propane
(bisphenol A).

Diphenols may be used individually or as any desired mixtures.

25 The diphenols are known in the literature or are obtainable by methods known in the literature.

Suitable for the preparation of thermoplastic aromatic
30 polycarbonates are chain terminators, for example, phenol, p-
chlorophenol, p-tert-butyl-phenol or 2,4,6-tribromophenol and also long-
chain alkylphenols, such as 4-(1,3-tetramethylbutyl)phenol in accordance

with DE-A 2 842 005 or monoalkylphenols or dialkylphenols having in total 8 to 20 carbon atoms in the alkyl substituents, such as 3,5-di-tert-butylphenol, p-isoctylphenol, p-tert-octylphenol, p-dodecylphenol and 2-(3,5-dimethylheptyl)phenol and 4-(3,5-dimethylheptyl)phenol. The amount 5 of chain terminators used is in general between 0.5 mol % and 10 mol %, relative to the molar sum of the diphenols used in each case.

The thermoplastic aromatic polycarbonates have mean weight-average molecular weights (M_w as measured, for example, by ultra-10 centrifuging or light scattering) of 10,000 to 200,000, preferably 20,000 to 80,000.

The thermoplastic aromatic polycarbonates can be branched in a known manner and, specifically, preferably by the incorporation of 0.05 to 15 2.0 mol %, relative to the sum of the diphenols used, of trifunctional or more than trifunctional compounds, for example those containing three phenolic groups and over.

Both homopolycarbonates and copolycarbonates are suitable. To 20 prepare copolycarbonates according to the invention in accordance with component A, 1 to 25 wt %, preferably 2.5 to 25 wt % (relative to the total amount of diphenols used) of polydiorganosiloxanes containing hydroxyaryloxy terminal groups may also be used. These are known (see, for example, US Patent 3 419 634) or can be prepared by methods known 25 in the literature. The preparation of polydiorganosiloxane-containing copolycarbonates is described, for example, in DE-A 3 334 782.

In addition to the bisphenol A homopolycarbonates, preferred 30 polycarbonates are the copolycarbonates of bisphenol A containing up to 15 mol %, relative to the molar sum of diphenols, of other diphenols named as preferred or particularly preferred, in particular 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane.

Aromatic dicarboxylic dihalides for preparing aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, terephthalic acid, diphenyl ether 4,4'-dicarboxylic acid and of naphthalene-5, 2,6-dicarboxylic acid.

Particularly preferred are mixtures of the diacid dichlorides of isophthalic acid and of terephthalic acid in a ratio of between 1:20 and 20:1.

10

A carbonyl halide, preferably phosgene, is concomitantly used as a bifunctional acid derivative in addition in the preparation of polyester carbonates.

In addition to the monophenols already mentioned, their

15 chloroformates and also the acid chlorides of aromatic monocarboxylic acids, which may optionally be substituted by C₁-C₂₂-alkyl groups or by halogen atoms, and also aliphatic C₂-C₂₂-monocarboxylic chlorides are suitable as chain terminators for the preparation of aromatic polyester carbonates.

20

The amount of chain terminators is, in each case, 0.1 to 10 mol %, relative in the case of the phenolic chain terminators to moles of diphenols and in the case of monocarboxylic chloride chain terminators to moles of dicarboxylic dichlorides.

25

The aromatic polyester carbonates may also incorporate aromatic hydroxycarboxylic acid.

30 The aromatic polyester carbonates may be linear or branched in a known manner (in this connection, see also DE-A 2 940 024 and DE-A 3 007 934).

As branching agents, use may be made, for example, of three-functional or multifunctional carboxylic chlorides, such as trimesic trichloride, cyanuric trichloride, 3,3',4,4'-benzophenonetetracarboxylic-tetrachloride, 1,4,5,8-naphthalinetetracarboxylic-tetrachloride or

5 pyromellitic tetrachloride, in amounts of 0.01 to 1.0 mol % (relative to the dicarboxylic dichloride used), or three-functional or multifunctional phenols, such as phloroglucinol, 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptene-
2,4,4-dimethyl-2,4-6-tri(4-hydroxyphenyl)heptane, 1,3,5-tri(4-hydroxy-
phenyl)benzene, 1,1,1-tri(4-hydroxyphenyl)ethane, tri(4-hydroxy-
10 phenyl)phenylmethane, 2,2-bis[4,4-bis(4-hydroxy-phenyl)-
cyclohexyl]propane, 2,4-bis(4-hydroxyphenyl-isopropyl)phenol, tetra(4-
hydroxyphenyl)methane, 2,6-bis(2-hydroxy-5-methylbenzyl)-4-
methylphenol, 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)propane,
15 tetra-[4-hydroxyphenylisopropyl]phenoxy methane, 1,4-bis[(4,4'-
dihydroxytriphenyl)methyl]benzene, in amounts of 0.01 to 1.0 mol %,
relative to the diphenols used. Phenolic branching agents may be
introduced with the diphenols, while acid chloride branching agents may
be fed in together with the acid dichlorides.

20 In the thermoplastic aromatic polyester carbonates, the proportion
of carbonate structural units may be varied as desired. Preferably, the
proportion of carbonate groups is up to 100 mol %, in particular up to 80
mol %, particularly preferably up to 50 mol %, relative to the sum of ester
groups and carbonate groups. Both the ester component and the
25 carbonate component of the aromatic polyester carbonates may be
present in the form of blocks or randomly distributed in the
polycondensate.

The relative solution viscosity (η_{rel}) of the aromatic polycarbonates
30 and polyester carbonates is in the range from 1.18 to 1.4, preferably 1.22
to 1.3 (measured on solutions of 0.5 polycarbonate or polyester carbonate
in 100 ml of methylene chloride solution at 25°C).

The thermoplastic, aromatic polycarbonates and polyester carbonates can be used alone or in any desired mixture with one another.

Component B

5 The component B comprises one or more graft polymers of

B.1 5 to 95, preferably 30 to 80 wt % of at least one vinyl monomer on

B.2 95 to 5, preferably 70 to 20 wt % of one or more graft bases having 10 glass-transition temperatures of < 10°C, preferably < 0°C, particularly preferably < -20°C.

The graft base B.2 has in general a mean particle size (d_{50} value) of 0.05 to 5 μm , preferably 0.10 to 0.5 μm , particularly preferably 0.20 to 0.40

15 μm .

B.1 is preferably a mixture of

B.1.1 50 to 99 parts by weight of vinyl aromatics and/or nucleus-substituted vinyl aromatics (such as, for example, styrene, α -methylstyrene, p-methylstyrene, p-chlorostyrene) and/or C₁-C₄-alkyl methacrylates (such as, for example, methyl methacrylate, ethyl methacrylate) and

B.1.2 1 to 50 parts by weight of vinyl cyanides (unsaturated nitriles, such as acrylonitrile and methacrylonitrile) and/or C₁-C₈-alkyl (meth)acrylates (such as, for example, methyl methacrylate, n-butyl acrylate, tert-butyl acrylate) and/or derivatives (such as anhydrides or imides) of unsaturated carboxylic acids (for example, maleic anhydride and N-phenylmaleimide).

30

Preferred monomers B.1.1 are at least one of the monomers styrene, α -methylstyrene and methyl methacrylate and, preferably, monomers B.1.2 are at least one of the monomers acrylonitrile, maleic anhydride and methyl methacrylate.

5

Particularly preferred monomers are B.1.1 styrene and B.1.2 acrylonitrile.

Suitable graft bases B2 for the graft polymers B are, for example, 10 diene rubbers, EP(D)M rubbers, that is to say those based on ethylene/propylene or ethylene/propylene/diene; furthermore acrylate rubbers, polyurethane rubbers, silicone rubbers, chloroprene rubbers and ethylene/vinyl acetate rubbers.

15 Preferred graft bases B.2 are diene rubbers (for example, based on butadiene, isoprene, etc.) or mixtures of diene rubbers or copolymers of diene rubbers or their mixtures with further copolymerizable monomers (for example, in accordance with B.1.1 and B.1.2), with the proviso that the glass-transition temperature of the component B.2 is < 10°C, preferably 20 <0°C, particularly preferably <-10°C.

Particularly preferred is pure polybutadiene rubber.

Particularly preferred polymers B are, for example, ABS polymers 25 (emulsion, bulk and suspension ABS), such as are described, for example, in DE-A 2 035 390 (= US-A 3 644 574) or in DE-A 2 248 242 (= GB-A 1 409 275) or in the Ullmann Encyclopaedia of Industrial Chemistry, Vol. 19 (1980), pages 280 ff. The gel component of the graft base B.2 is at least 30 wt %, preferably at least 40 wt % (measured in toluene).

30

The graft copolymers B may be prepared by free-radical polymerization, for example by emulsion, suspension, solution or bulk polymerization, preferably by emulsion polymerization.

5 Particularly suitable graft rubbers are also ABS polymers that are produced by redox initiation using an initiator system composed of organic hydroperoxide and ascorbic acid in accordance with US-A 4 937 285.

10 Since the graft monomers are known not necessarily to be grafted completely onto the graft base during the graft reaction, graft polymers B are understood as meaning, according to the invention, only those products that are obtained by graft polymerization of the graft monomers in the presence of the graft base.

15 (See the note above relative to the inconsistency) Suitable acrylate rubbers according to B.2 of the polymers B are preferably polymers of alkyl acrylates, optionally with up to 40 wt %, relative to the weight of B, of other ethylenically unsaturated monomers that can be polymerized onto B.2. The preferred polymerizable acrylates include C₁-C₈-alkylesters, for example methyl, ethyl, butyl, n-octyl and 2-ethylhexyl ester; haloalkyl esters, preferably halo-C₁-C₈-alkyl esters, such as chloroethyl acrylate, and also mixtures of said monomers.

25 For the purpose of crosslinking, monomers containing more than one polymerizable double bond may be copolymerized. Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids containing 3 to 8 carbon atoms and unsaturated monohydric alcohols containing 3 to 12 carbon atoms, or saturated polyols containing 2 to 4 OH groups and 2 to 20 carbon atoms, such as, for example, ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, such as, for example, trivinyl

cyanurate and triallyl cyanurate; polyfunctional vinyl compounds, such as di- and trivinylbenzenes; and also triallyl phosphate and diallyl phthalate.

Preferred crosslinking monomers are allyl methacrylate, ethylene
5 glycol dimethacrylate, diallyl phthalate and heterocyclic compounds
containing at least three ethylenically unsaturated groups.

Particularly preferred crosslinking monomers are the cyclic
monomers trialkyl cyanurate, triallyl isocyanurate, triacryloylhexahydro-s-
10 triazine and triallylbenzenes. The amount of the crosslinked monomers is
preferably 0.02 to 5, in particular 0.05 to 2 wt %, relative to the graft base
B.2.

In the case of cyclic crosslinking monomers containing less than
15 three ethylenically unsaturated groups, it is advantageous to restrict the
amount to below 1 wt % of the graft base B.2.

Preferred "other" polymerizable, ethylenically unsaturated
monomers that may optionally serve to prepare graft base B.2 in addition
20 to acrylates are, for example, acrylonitrile, styrene, α -methylstyrene,
acrylamides, vinyl-C₁-C₆-alkyl ethers, methylmethacrylate and butadiene.
Preferred acrylate rubbers as graft base B.2 are emulsion polymers having
a gel content of at least 60 wt %.

25 Further suitable graft bases in accordance with B.2 are silicone
rubbers containing active graft positions, such as those described in DE-A
3 704 657, DE-A 3 704 655, DE-A 3 631 540 and DE-A 3 631 539.

The gel content of the graft base B.2 is determined at 25°C in a
30 suitable solvent (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I und
II (Polymer analysis I and II), Georg Thieme-Verlag, Stuttgart, 1977).

The mean particle size d_{50} is the diameter above and below which 50 wt % of the particles are in each case. It can be determined by means of ultracentrifuging measurements (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymere, 250 (1972), 782-1796).

5

Component C

The component C comprises one or more thermoplastic vinyl (co)polymers C.1 and/or polyalkylene terephthalates C.2.

10

Suitable as vinyl (co)polymers C.1 are polymers of at least one monomer from the group comprising the vinyl aromatics, vinyl cyanides (unsaturated nitriles), C_1 - C_8 -alkyl (meth)acrylates, unsaturated carboxylic acids and also derivatives (such as anhydrides and imides) of unsaturated carboxylic acids. Suitable, in particular, are (co)polymers of

C.1.1 50 to 99, preferably 60 to 80 parts by weight of vinyl aromatics and/or nucleus-substituted vinyl aromatics (such as, for example, styrene, α -methylstyrene, p-methylstyrene, p-chlorostyrene) and/or C_1 - C_8 -alkyl methacrylates (such as, for example, methyl methacrylate, ethyl methacrylate, and

C.1.2 1 to 50, preferably 20 to 40 parts by weight of vinyl cyanides (unsaturated nitriles) such as acrylonitrile and methacrylonitrile and/or C_1 - C_8 -alkyl (meth)acrylates (such as, for example, methyl methacrylate, n-butyl acrylate, tert-butyl acrylate) and/or unsaturated carboxylic acids such as maleic acid) and/or derivatives (such as anhydrides and imides) of unsaturated carboxylic acids (for example, maleic anhydride and N-phenylmaleimide).

20

(Co)polymers C.1 are resinous, thermoplastic and rubber-free.

25

30

Particularly preferred is the copolymer of C.1.1 styrene and C.1.2 acrylonitrile.

The (co)polymers in accordance with C.1 are known and can be

5 prepared by free-radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization. The (co)polymers preferably have molecular weights \bar{M}_w (average weight determined by light scattering or sedimentation) of between 15,000 and 200,000.

10 The polyalkylene terephthalates of the component C.2 are reaction products of aromatic dicarboxylic acid or their reactive derivatives, such as dimethyl esters or anhydrides, and aliphatic, cycloaliphatic or araliphatic diols and also mixtures of said reaction products.

15 Preferred polyalkylene terephthalates contain at least 80 wt %, preferably at least 90 wt %, relative to the dicarboxylic acid component, of terephthalic acid radicals and at least 80 wt %, preferably at least 90 mol %, relative to the diol component, of ethylene glycol and/or butane diol 1,4-radicals.

20 The preferred polyalkylene terephthalates may contain, in addition to terephthalate radicals, up to 20 mol %, preferably up to 10 mol %, of radicals of other aromatic or cycloaromatic dicarboxylic acids containing 8 to 14 carbon atoms or aliphatic dicarboxylic acids containing 4 to 12 carbon atoms, such as, for example, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid and cyclohexanediacetic acid radicals.

25 The preferred polyalkylene terephthalates may contain, in addition to ethylene glycol or butanediol 1,4-radicals, up to 20 mol %, preferably up to 10 mol % of other aliphatic diols containing 3 to 12 carbon atoms or

cycloaliphatic diols containing 6 to 21 carbon atoms, for example radicals of 1,3-propanediol, 2-ethyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 3-ethyl-2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-

5 ethyl-1,3-hexanediol, 2,2-diethyl-1,3-propanediol, 2,5-hexanediol, 1,4-di(β -hydroxyethoxy)benzene, 2,2-bis(4-hydroxycyclohexyl)propane, 2,4-dihydroxy-1,1,3,3-tetramethyl cyclobutane, 2,2-bis(4- β -hydroxyphenyl)propane and 2,2-bis(4-hydroxypropoxyphe nyl)propane (DE-OS 2 407 674, 2 407 776, 2 715 932).

10

The polyalkylene terephthalates may be branched by incorporating relatively small amounts of trihydric or tetrahydric alcohols or tribasic or tetrabasic carboxylic acids, for example in accordance with DE-A 1 900 270 and US-A 3,692,744. Examples of preferred branching agents are 15 trimesic acid, trimellitic acid, trimethylolmethane and trimethylolpropane and pentaerythritol.

Particularly preferred are polyalkylene terephthalates that have been prepared solely from terephthalic acid and its reactive derivatives (for example, its dialkylesters) and ethylene glycol and/or 1,4-butanediol and blends of said polyalkylene terephthalates.

Blends of polyalkylene terephthalates contain 1 to 50 wt %, preferably 1 to 30 wt % of polyethylene terephthalate and 50 to 99 wt %,

25 preferably 70 to 99 wt % of polybutylene terephthalate.

The polyalkylene terephthalates preferably used have, in general, an intrinsic viscosity of 0.4 to 1.5 dl/g, preferably 0.5 to 1.2 dl/g, measured in phenol/o-dichlorobenzene (1:1 parts by weight) at 25°C in the

30 Ubbelohde viscometer.

The polyalkylene terephthalates can be produced by known methods (see, for example, Kunststoff-Handbuch (Plastics Manual), Volume VIII, pages 695 ff., Carl-Hanser-Verlag, Munich, 1973).

5 Component D

D.1 in component D is preferably present in amounts of 50 - 98 wt.-%, particularly preferred in amounts of 70 to 98 wt.% and in particular in amounts of 75 to 95 wt.% and D.2 preferably in amounts of 50 to 2 wt.-%,

10 particularly preferred in amount of 30 to 2 wt.% and in particular in amounts of 25 to 5 wt.% relative to the weight of D.

Phosphorous -containing flame retardants in accordance with component D.1 are preferably selected from among the monomeric and

15 oligomeric phosphoric and phosphonic acid esters, phosphonate amines and phosphazenes, it also being possible to use mixtures of several components selected from one or several of these groups as flame retardants. Other halogen-free phosphorus compounds not specially mentioned here may be used alone or in any desired combination with
20 other halogen-free phosphorus compounds.

Preferred monomeric and oligomeric phosphoric acid or phosphonic acid esters are phosphorus compounds of the general formula (III)

where

R¹, R², R³ and R⁴ are, independently of one another, in each case

optionally halogenated C₁- to C₈-alkyl, optionally substituted in each case by alkyl, preferably C₁-C₄-alkyl, and/or halogen-substituted,

5 preferably chlorine-substituted or bromine-substituted, C₅- to C₆-cycloalkyl, C₆- to C₂₀-aryl or C₇- to C₁₂-arylkyl,

n is, independently of one another, 0 or 1,

q is 0 to 30 and

10 X is a mononuclear or polynuclear aromatic radical containing 6 to 30 carbon atoms or a linear or branched aliphatic radical containing 2 to 30 carbon atoms, which may be OH-substituted and contain up to 8 ether bonds.

15 Preferably, R¹, R², R³ and R⁴ stand, independently of one another, for C₁-C₄-alkyl, phenyl, naphthyl or phenyl-C₁-C₄-alkyl. The aromatic groups R¹, R², R³ and R⁴ may be substituted in turn by halogen and/or alkyl groups, preferably chlorine, bromine and/or C₁-C₄-alkyl. Particularly preferable aryl radicals are cresyl, phenyl, xyleneyl, propylphenyl or butylphenyl and also the corresponding brominated and chlorinated derivatives thereof.

25 X in formula (III) is preferably a mononuclear or polynuclear aromatic radical containing 6 to 30 carbon atoms. It is preferably derived from the diphenols of formula (I).

n in formula (III) may be, independently of one another, 0 or 1, but preferably n is equal to 1.

30 q stands for values from 0 to 30. If blends of various components of formula (III) are used, blends can be used that preferably have

number-average q-values of 0.3 to 20, particularly preferably 0.5 to 10, in particular 0.5 to 6.

X stands, in particular for

5

or their chlorinated or brominated derivatives and, in particular, X is derived from resorcinol, hydroquinone, bisphenol A or diphenylphenol. Particularly preferably, X is derived from bisphenol A.

10

The use of oligomeric phosphoric acid esters of formula (III) that are derived from bisphenol A is particularly advantageous since the compositions incorporating said phosphorus compound have a particularly high stress crack resistance and hydrolysis resistance and also a

15

particularly low tendency to encrustation during the injection-moulding processing. Furthermore, a particularly high heat distortion resistance can be achieved with said flame retardants.

Monophosphates ($q = 0$), oligophosphates ($q = 1-30$) or mixtures of 20 monophosphates and oligophosphates may be used as component D.1 in accordance with the invention.

Monophosphorus compounds of formula III are, in particular, tributyl phosphate, tris(2-chloroethyl) phosphate, tris(2,3-dibromopropyl)

25 phosphate, triphenyl phosphate, tricresyl phosphate, diphenylcresyl phosphate, diphenyloctyl phosphate, diphenyl-2-ethylcresyl phosphate, tri(isopropylphenyl) phosphate, halogen-substituted arylphosphates,

dimethyl methyl phosphonate, diphenyl methylphosphonate, diethyl phenylphosphonate, triphenylphosphene oxide or tricresylphosphene oxide.

5 The phosphorus compounds in accordance with component D.1 of formula (III) are known (cf. for example, EP-A 363 608, EP-A 640 655) or can be prepared by known methods in an analogous way (for example, Ullmanns Encyclopaedia of Industrial Chemistry, Vol. 18, pages 301 ff., 1979; Houben-Weyl, Methoden der organischen Chemie (Methods of
10 Organic Chemistry), Vol. 12/1, page 43; Beilstein Vol. 6, page 177).

The mean q-values may be determined by determining the composition of the phosphate blend (molecular weight distribution) by means of suitable methods (gas chromatography (GC) High Pressure
15 Liquid Chromatography (HPLC), Gel permeation chromatography (GPC)) and calculating the mean values of q therefrom.

20 Phosphonate amines are preferably compounds of formula (IV)

in which

or (Vb)

A stands for a radical of formula (Va)

R¹¹ and R¹² stand, independently of one another, for unsubstituted or substituted C₁-C₁₀-alkyl or for unsubstituted or substituted C₆-C₁₀-aryl,

R¹³ and R¹⁴ stand, independently of one another, for unsubstituted or substituted C₁-C₁₀-alkyl or unsubstituted or substituted C₆-C₁₀-aryl
or

R¹³ and R¹⁴ may together form unsubstituted or substituted heterocyclic ring of 3 to 10 carbon atoms

10 y is the numerical values 0, 1 or 2 and

B¹ stands independently for hydrogen, optionally halogenated C₂-C₈-alkyl, unsubstituted or substituted C₆-C₁₀-aryl.

15 B¹ preferably stands independently for hydrogen, for ethyl, n-propyl or isopropyl, which may be substituted by halogen, unsubstituted or C₆-C₁₀-aryl, in particular phenyl or naphthyl, substituted by C₁-C₄-alkyl and/or halogen.

20 Alkyl in R¹¹, R¹², R¹³ and R¹⁴ stands independently preferably for methyl, ethyl, n-propyl, isopropyl, n-, iso-, sec- or tert-butyl, pentyl or hexyl.

Substituted alkyl in R¹¹, R¹², R¹³ and R¹⁴ stands independently preferably for halogen-substituted C₁-C₁₀ alkyl, in particular for a

25 monosubstituted or disubstituted methyl, ethyl, n-propyl, isopropyl, n-, iso-, sec- or tert-butyl, pentyl or hexyl.

C₆-C₁₀-aryl in R¹¹, R¹², R¹³ and R¹⁴ stands independently preferably for phenyl, naphthyl or binaphthyl, in particular o-phenyl, o-naphthyl, o-

30 binaphthyl, which may be halogen-substituted (in general mono-, di- or tri-substituted).

R^{13} and R^{14} may form a ring structure together with the oxygen atoms to which they are directly bound and the phosphorus atom.

By way of example and preferably, mention is made of:

5 5,5,5',5",5"-hexamethyltris(1,3,2-dioxaphosphorinanemethane)amino-2,2',2"-trioxide of formula (Va-1)

10

(Experimental product XPM 1000 produced by Solutia Inc., St Louis, USA), 1,3,2-dioxaphosphorinane-2-methaneamine, N-butyl-N-[(5,5-dimethyl-1,3,2-dioxa-2-phosphorinanyl)methyl]-5,5-dimethyl P,2-dioxides, 1,3,2-dioxaphosphorinane-2-methaneamine, N-[(5,5-dimethyl-1,3,2-dioxa-

15 2-phosphorinanyl)methyl]-5,5-dimethyl-N-phenyl P,2-dioxide, 1,3,2-dioxaphosphorinane-2-methaneamine, N,N-dibutyl-5,5-dimethyl 2-oxide,

1,3,2-dioxaphosphorinane-2-methanimine, N-[(5,5-dimethyl-1,3,2-dioxa-2-phosphorinanyl)methyl]-N-ethyl-5,5-dimethyl P,2-dioxide, 1,3,2-dioxaphosphorinane-2-methaneamine, N-butyl-N-[(5,5-dichloromethyl-

20 1,3,2-dioxa-2-phosphorinanyl)methyl]-5,5-dichloromethyl P,2-dioxide, 1,3,2-dioxaphosphorinane-2-methaneamine, N-[(5,5-dichloromethyl-1,3,2-dioxa-2-phosphorinanyl)methyl]-5,5-dichloromethyl-N-phenyl P,2-dioxide;

1,3,2-dioxa-2-phosphorinane methaneamine, N,N-di(4-chlorobutyl)-5,5-dimethyl 2-oxide, 1,3,2-dioxa-2-phosphorinanemethaneimine, N-[(5,5-

25 dimethyl-1,3,2-dioxa-2-phosphorinanyl)methane]-N-(2-chloroethyl)-5,5-di(chloromethyl) P,2-dioxide.

Preferred are, furthermore:

Compounds of formulae (Va-2) or (Va-3)

where

R^{11} , R^{12} , R^{13} and R^{14} have the meanings specified above.

or (Vb)

5

Particularly preferred are compounds of formulae (Va-2) and (Va-1).

The preparation of the phosphate amines is described, for example, in US Patent 5,844,028.

10 Phosphazenes are compounds of formulae (VIa) and (VIb)

wherein

R is in each case identical or different and stands for amino, in each case optionally halogenated, preferably fluorine-halogenated C₁- to C₈-alkyl, or C₁- to C₈-alkoxy, in each case optionally substituted by alkyl, preferably C₁-C₄-alkyl, and/or halogen-substituted, preferably

5 chlorine- and/or bromine-substituted, C₅-C₆-cycloalkyl, C₆- to C₂₀-aryl, preferably phenyl or naphthyl, C₆- to C₂₀-aryloxy, preferably phenoxy, naphthoxy or C₇- to C₁₂-aralkyl, preferably phenyl-C₁-C₄-alkyl,

10 k stands for 0 or a number from 1 to 15, preferably for a number from 1 to 10.

15 By way of example mention may be made of:

Propoxyphosphazene, phenoxyphosphazene,
methylphenoxyphosphazene, aminophosphazene and
fluoroalkylphosphazene.

20 Preferred is phenoxyphosphazene.

The phosphazenes may be used alone or as mixtures. The radical R can always be identical or 2 or more radicals in formulae (Ia) and (Ib)

25 may be different.

Phosphazenes and their preparation are described, for example, in EP-A 728 811, DE-A 1 961 668 and WO 97/40092.

30 The flame retardants may be used alone or in any desired mixture with one another or in mixtures with other flame retardants.

Phosphorus/oxygen compounds and phosphorus/sulfur compounds in accordance with component D.2 are preferably phosphorus oxides and phosphorus sulfides. Particularly preferred is P₂O₅. Aluminium phosphates, alkaline-earth phosphates, alkali phosphates or ammonium phosphates are also suitable.

5 The phosphorus-containing flame retardant in accordance with component D.1 and the phosphorus compounds in accordance with component D.2 may be added in the preparation of the polymer blend 10 separately or mixed as a special formulation. Components D.1 and D.2 can be mixed at room temperature or at elevated temperature. Preferably, these blends are prepared at temperatures above 100°C, particularly preferably above 200°C. In the context according to the invention, those products are also to be understood that are obtained at higher 15 temperatures from component D.1 and component D.2.

Component E

The fluorinated polyolefins E have fluorine contents preferably of 65 to 76, in particular of 70 to 76 wt %, and mean particle diameters d₅₀ of 20 0.05 to 1000, preferably 0,08 to 20 µm. In general, the fluorinated polyolefins F have a density of 1,2 to 2,3 g/cm³. Preferred fluorinated polyolefins F are polytetrafluoroethylene, polyvinylidene fluoride and tetrafluoroethylene/hexafluoropropylene and ethylene-tetrafluoroethylene copolymers. The fluorinated polyolefins are known (cf. "Vinyl and Related 25 Polymers" by Schildknecht, John Wiley & Sons, Inc., New York, 1962, pages 484-494; "Fluoropolymers" by Wall, Wiley Interscience, John Wiley & Sons, Inc., New York, Volume 13, 1970, pages 623-654; "Modern Plastics Encyclopedia", 1970-1971, Volume 47, No. 10 A, October 1970, McGraw-Hill, Inc., New York, pages 134 and 774; "Modern Plastics 30 Encyclopedia", 1975-1976, October 1975, Volume 52, No. 10 A, McGraw-Hill, Inc., New York, pages 27, 28 and 472, and US Patents 3 671 487, 3 723 373 and 3 838 092).

They can be prepared by known methods, for example by polymerizing tetrafluoroethylene in an aqueous medium using a catalyst that forms free radicals, for example, sodium peroxydisulfate, potassium 5 peroxydisulfate or ammonium peroxydisulfate at pressures of 7 to 71 kg/cm² and at temperatures of 0 to 200°C, preferably at temperatures of 20 to 10°C (see, for example, US-A 2 393 967 for further details). Depending on the form in which it is used, the density of these materials may be between 1.2 and 2.3 g/cm³ and the mean particle size between 0.5 10 and 1000 µm.

According to the invention, preferred fluorinated polyolefins E are tetrafluoroethylene polymers having a mean particle diameter of 0.05 to 20 µm, preferably 0.08 to 10 µm, and a density of 1.2 to 1.9 g/cm³, and are 15 preferably used in the form of a coagulated mixture of emulsions of the tetrafluoroethylene polymers F with emulsions of the graft polymers B.

Further preferred formulations according to the invention are the fluorinated polyolefins E:

20 E.1) as a coagulated mixture containing at least one of the components A to C, the fluorinated polyolefine E or polyolefin blend being mixed as an emulsion with at least one emulsion of the components A to C and then coagulated,

25 E.2) as a precompound with at least one of the components A to C, the fluorinated polyolefins E being mixed as powders with a powder or a granular material of at least one of the components A to C and compounded in the melt, in general at temperatures from 208°C to 30 330°C in the standard equipment, such as internal mixers, extruders or twin screws.

Preferred formulations for the fluorinated polyolefins E are coagulated mixtures containing a graft polymer B or a vinyl (co)polymer C. Suitable fluorinated polyolefins E that can be used in powdered form are

5 tetrafluoroethylene polymers having a mean particle diameter of 100 to 1000 µm and a density of 2.0 g/cm³ to 2.3 g/cm³.

To prepare a coagulated mixture of B and F, an aqueous emulsion (latex) of a graft polymer B is first mixed with a finely divided emulsion of a

10 tetrafluoroethylene polymer F; suitable tetrafluoroethylene polymer emulsions usually have a solids content of 30 to 70 wt %, in particular of 50 to 60 wt %, preferably of 30 to 35 wt %.

The amounts specified in the description of component B may

15 include the proportion of graft polymer for the coagulated blend of graft polymer and fluorinated polyolefins.

In the emulsion mixture, the weight ratio of graft polymer B to tetrafluoroethylene polymer F is 95:5 to 60:40. The emulsion blend is then

20 coagulated in a known manner, for example by spray drying, freeze drying or coagulation by adding inorganic or organic salts, acids, bases or organic water-miscible solvents, such as alcohols and ketones, preferably at temperatures of 20 to 150°C, in particular of 50 to 100°C. If necessary, drying can be carried out at 50 to 200°C, preferably 70 to 100°C.

25 Suitable tetrafluoroethylene polymer emulsions are commercially available products and are offered for sale, for example, by DuPont as Teflon® 30 N.

30 The molding compositions according to the invention may contain at least one of the standard additives, such as lubricants and mould release

agents, nucleating agents, antistatic agents, stabilizers and also dyes and pigments.

The blends according to the invention containing the components A

5 to E and, optionally, further known additives, such as stabilizers, dyes, pigments, lubricants and mould release agents, nucleating agents and also antistatic agents, are prepared by mixing the respective constituents in a known manner and melt-compounding and melt-extruding them at temperatures of 200°C to 300°C in standard equipment such as internal
10 mixers, extruders and twin-shaft screws, the component F preferably being used in the form of the coagulated mixture already mentioned.

The individual constituents may be mixed in a known manner either in steps or simultaneously and, specifically, either at about 20°C (room
15 temperature) or at higher temperature.

The invention therefore relates also to a method of preparing the moulding compositions.

20 Owing to their excellent flame resistance and stress behaviour and their good mechanical properties, the blends according to the invention are suitable for producing mouldings of any type, in particular those having enhanced requirements relating to stress cracking behaviour as, for instance, in the case of contact with oils, greases or organic solvents.

25 The blends of the present invention may be used to produce mouldings of any type. In particular, mouldings can be produced by injection-moulding. Examples of producible mouldings are: casing parts of any type, for example for domestic appliances, such as fruit presses,
30 coffee machines and mixers, for office machines, such as monitors, printers and copiers, covers for the building sector and parts for the motor

vehicle sector. In addition, they may be used in the field of electrical engineering because they have very good electrical properties.

Furthermore, the molding compositions according to the invention

5 may be used, for example, to produce the following mouldings or moulded parts:

Internal finishing parts for rail-borne vehicles, hub caps, casings of electrical appliances containing small transformers, casings for

10 information-processing and information-transmitting appliances, casings and lining for medical purposes, massaging appliances and casings therefor, toy vehicles for children, two-dimensional wall components, casings for safety devices, rear spoilers, thermally insulated transportation containers, devices for keeping or casing for small animals, moulded parts
15 for sanitary and bathroom fittings, cover gratings for ventilation openings, and moulded parts for garden and appliance sheds, and casings for garden appliances.

Further applications are possible

20

as appliances for file technology: telecommunication appliances, such as telephone sets and telefax machines, computers, printers, scanners, plotters, monitors, keyboards, typewriters, dictating machines, etc.,

25

as electrical appliances: mains units, chargers, small transformers for computers and entertainment electronics, low-voltage transformers, etc.,

as garden appliances: garden furniture, mowing-machine casings, pipes and casings for garden irrigation, garden sheds, leaf collectors, shredders,

30 chaff cutters, spraying appliances, etc.,

in the furniture field: worktops, furniture laminates, shutter components, office furniture, tables, chairs, armchairs, cupboards, shelves, door components, window components, linen drawers, etc.,

5 as sport appliances and toys: toy vehicles, seat surfaces, pedals, sports equipment, bicycles, table-tennis tables, home trainers, golf caddies, snowboards, outside parts of boats, camping products, beach chairs, etc.,

in the indoor and outdoor building sector: house cladding, profiled strips,

10 pipes, cables, shutter components, letterboxes, lamp casings, roof tiles, slabs, partitions, cable ducts, skirting boards, plug sockets, etc.,

in the field of motor vehicles/rail-borne vehicles: wall and roof claddings, seat shells, seats, benches, tables, luggage racks, hub caps, rear spoilers,

15 mudguards, tailgates, engine bonnets, side parts, etc.

A further type of processing is the production of mouldings by thermoforming from prefabricated slabs or films.

20 The present invention therefore relates, furthermore, also to the use of the moulding compositions according to the invention for producing mouldings of any type, preferably of the abovementioned types, and also to the mouldings composed of the moulding compositions according to the invention.

25 EXAMPLES

Component A

Linear polycarbonate based on bisphenol A having a relative solution viscosity of 1.252, measured in CH_2Cl_2 as solvent at 25°C and at a concentration of 0.5 g/100 ml.

Component B

Graft polymer of 40 parts by weight of a copolymer of styrene and acrylonitrile in a ratio of 72:28 to 60 parts by weight of particulate,

5 crosslinked polybutadiene rubber (mean particle diameter $d_{50} = 0.40 \mu\text{m}$), prepared by emulsion polymerization.

Component C

10 Styrene/acrylonitrile copolymer having a styrene/acrylonitrile weight ratio of 72:28 and an inherent viscosity of 0.55 dl/g (measured in dimethylformamide at 20°C).

Component D

15 D.1.1 Triphenylphosphate, disflamoll TP[®] supplied by Bayer AG
Leverkusen, Germany.

D.1.2 m-Phenylene bis(di-phenyl phosphate), Fyrolflex[®] supplied by
20 AKZO, Nobel Chemicals GmbH, 52349 Düren, Germany.

D.2 Commercially available P₂O₅, supplied by Riedel-de Haen,
Germany.

25 Da Mixture of D1.1 and D.2
Preparation:
The triphenyl phosphate is melted under nitrogen at 60°C. Then the phosphorus pentoxide is added. The mixture is stirred vigorously for 10 min, heated to 270°C and kept at this temperature for 120
30 minutes. After the reaction, the product is cooled, in which process needle-shaped crystals are produced.

The triphenyl phosphate: P₂O₅ ratio in Da) is 90:10.

Db) Preparation as for Da), but only 30 min at 270°C.

5 The triphenyl phosphate: P₂O₅ ratio in Db) is 75:25. Db) is a viscous liquid.

Component E

Tetrafluoroethylene polymer as a coagulated mixture of a SAN graft 10 polymer emulsion in accordance with component B in water and a tetrafluoroethylene polymer emulsion in water. The weight ratio of graft polymer B to tetrafluoroethylene polymer E in the mixture is 90 wt % to 10 wt %. The tetrafluoroethylene polymer emulsion has a solids content of 60 wt % and the mean particle diameter is between 0.05 and 0.5 µm. The 15 graft polymer emulsion has a solids content of 34 wt % and a mean latex particle diameter of 0.4 µm.

Preparation of E

20 The emulsion of tetrafluoroethylene polymer (Teflon 30 N supplied by DuPont) is mixed with the emulsion of graft polymer B and stabilised with 1.8 wt %, relative to the polymer solid, of phenolic antioxidants. The mixture is coagulated at 85 to 95°C with an aqueous solution of MgSO₄ (Epsom salts) and acetic acid at a pH of 4 to 5, filtered and washed until 25 practically electrolyte free, then freed of most of the water by centrifugation and then dried at 100°C to form a powder. Said powder can then be compounded with the further components in the equipment described.

Preparation and testing of the moulding compositions according to the invention

The components are mixed in a 3 l internal mixer. The mouldings
5 are produced in a type Arburg 270 E injection-moulding machine at 260°C.

The Vicat B heat resistance is determined in accordance with DIN
53 460 (ISO 306) on rods measuring 80 × 10 × 4 mm.

10 The stress cracking behaviour (ESC behaviour) is investigated on
rods measuring 80 × 10 × 4 mm (produced at a processing temperature of
260°C). A mixture of 60 vol.% of toluene and 40 vol.% of isopropanol is
used as test medium. The specimens are pre-stretched by means of a
circular-arc template (pre-stretching as a percentage) and stored at room
15 temperature in the test medium.. The stress cracking behaviour is
assessed from the crack formation or rupture as a function of the pre-
stretching ϵ) and the exposure time in the test medium.

20 The fire behavior of the samples was measured according to UL-
Subj. 94 V on rods measuring 127 × 12.7 × 1.6 mm produced on an
injection moulding machine at 260°C.

25 The UL 94 V-O classification comprises the properties, described
below, of materials that are tested in accordance with the UL 94 V
instructions.

30 The molding compositions in this class do not contain any samples
that burn for longer than 10 s whenever they are acted on by the residual
flame; they do not have a total burning time of more than 50 s when each
set of samples is acted upon by a flame for the second time; they do not
contain any samples that burn off completely up to the holding clamp fixed

to the upper end of the sample; they do not comprise any samples that ignite the cottonwool disposed beneath the sample as a result of burning drops or particles; they also do not contain any samples that glow for longer than 30 s after removing the test flame.

5

Other UL 94 classifications designate samples that are less flame-resistant or less self-extinguishing because they give off flaming drops or particles. These classifications are designated as UL 94 V-1 and V-2.

"N.B." means "failed" and is the classification of samples that have a burn

10 time of \geq 30 s.

Table: Moulding compositions and their properties

	1 (Comparison)	2	3	4	5	6 (Comparison)	7	8
Components [parts by wt]								
A	68.4	68.4	68.4	68.4	68.4	83.0	83.0	83.0
B	6.8	6.8	6.8	6.8	6.8	4.0	4.0	4.0
C	9.3	9.3	9.3	9.3	9.3	1.1	2.2	2.2
D.1.1	8.1	8.1	8.1	8.1	8.1	-	-	-
D.1.2	2.7	2.7	2.7	2.7	2.7	6.6	-	-
D2	-	0.25	0.5	0.75	1.0	-		
Da							6.6	
Db								6.6
E	4.2	4.2	4.2	4.2	4.2	3.6	3.6	3.6
Mould release agent	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Properties								
Vicat B120 ($^{\circ}$ C)	97	97	97	97	97	108	109	116
Total burning time UL 94 V 1.6 mm (sec)	32	25	22	19	11	65	36	60
ESC behaviour								
Rupture, ϵ_x in (%)	2.0%	2.0%	2.0%	2.0%	2.4%	0.8%	1.0%	1.4%
Time (min)	2:24	3:37	5:00	5:00	5:00	5:00	5:00	5:00

In the experimental series 1 to 5, it becomes clear that, if P₂O₅ is used, moulding compositions are obtained that have substantially shorter burning times and markedly better stress cracking behaviour (rupture at greater pre-stretching or for longer exposure times). In experiments 7 and 8, P₂O₅ and triphenyl phosphate were used at elevated temperatures to prepare a special formulation that proves to be a very effective flame retardant. The molding compound in experiment 7 has a triphenyl phosphate content reduced by 10% and, nevertheless, has a burning time shortened from 65 to 36 seconds, with advantages in heat resistance and stress cracking behaviour.

Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in

the art without departing from the spirit and scope of the invention except as it may be limited by the claims.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000