

Answer Key

Chapter 1

Exercise 1.2

1. Where is the documentation for the PWM API located?

It is in the WICED API Reference. The path in that document is:

Cypress WICED API Reference Guide

Components

Hardware Drivers

PWM

Answer Key Page 1 of 8

Chapter 2

Exercise 2.1

1. What is the name of the first user application function that is executed? What does it do? The first user function is application_start().

It just initializes the Bluetooth stack and registers the callback.

2. What is the purpose of the function app_bt_management_callback? When does the BTM_ENABLED_EVT case occur?

It is the Bluetooth stack management callback function. It is called whenever there is a management event from the stack.

The BTM_ENABLED_EVT case occurs once the stack has completed initialization.

3. What controls the rate of the LED blinking?

The first parameter to the RTOS delay function wiced_rtos_delay_milliseconds specifies the delay which controls the rate of the LED blinking.

Exercise 2.9

1. How many bytes does the NVRAM read function get before you press the button the first time?

0

2. What is the return status value before you press the button the first time?

The return value is 40 (0x28).

1. What does the return value mean?

The return value of 40 (0x28) means ERROR. This is defined in the file wiced_result.h.

Answer Key Page 2 of 8

Chapter 3

Exercise 3.1

1. Do you need *wiced_rtos_delay_milliseconds()* in the LED thread? Why or why not?

No, because the wiced_rtos_get_semaphore will cause the thread to suspend each time through the infinite loop while it waits for another button press.

Exercise 3.2

Before you added the mutex, how did the LED behave when you pressed the button?

The LED flashes in an irregular pattern.

What changed when you added the mutex?

The LED flashes slowly (2Hz) when the button is not pressed and then flashes quickly (5Hz) when the button is pressed.

What happens if you forget to unlock the mutex in one of the threads? Why?

The other thread will never execute. That is:

If you don't unlock the mutex in the fast LED thread, the slow LED thread will not execute. The LED will blink fast when the button is pressed but will not blink when the button is not pressed.

If you don't unlock the mutex in the slow LED thread, the fast LED thread will never execute so the LED will blink slowly no matter what happens with the button.

Answer Key Page 3 of 8

Chapter 4A

Exercise 4A.3

1. How many bytes is the advertisement packet?

The advertisement packet is 17 bytes (assuming your initials are 3 characters). They are:

Flags (3)

Length (1)

Type (1)

Data (1)

Local Name (9)

Length (1)

Type (1)

Data (7)

Manufacturer Specific Data (5)

Length (1)

Type (1)

Data (3)

Exercise 4A.4

1. What function is called when there is a Stack event? Where is it registered?

The function is *app_bt_management_callback*. It is registered using *wiced_bt_stack_init* in *application_start*.

2. What function is called when there is a GATT database event? Where is it registered?

The function is *app_gatt_callback*. It is registered using *wiced_bt_gatt_register* in *app_bt_management_callback* in the BTM_ENABLED_EVT event.

3. Which GATT events are implemented? What other GATT events exist? (Hint: right click and select Open Declaration on one of the implemented events)

Implemented:

GATT_CONNECTION_STATUS_EVT

Answer Key Page 4 of 8

GATT_ATTRIBUTE_REQUEST_EVT

Others:

GATT_OPERATION_CPLT_EVT GATT_DISCOVERY_RESULT_EVT GATT_DISCOVERY_CPLT_EVT GATT_CONGESTION_EVT

4. In the GATT "GATT_ATTRIBUTE_REQUEST_EVT", what request types are implemented? What other request types exist?

Implemented:

GATTS_REQ_TYPE_READ GATTS_REQ_TYPE_WRITE

Others:

GATTS_REQ_TYPE_PREP_WRITE GATTS_REQ_TYPE_WRITE_EXEC GATTS_REQ_TYPE_MTU GATTS_REQ_TYPE_CONF

Answer Key Page 5 of 8

Chapter 4B

Exercise 4B.3

1. How long does the device stay in high duty cycle advertising mode? How long does it stay in low duty cycle advertising mode? Where are these values set?

High: 30 seconds

Low: 60 seconds

These are specified in the wiced_bt_cfg.c file in wiced_bt_cfg_settings.ble_advert_cfg.high_duty_duration and wiced_bt_cfg_settings.ble_advert_cfg.low_duty_duration

Exercise 4B.4

1. What items are stored in NVRAM?

Hostinfo (Remote BDADDR and Button CCCD state)
Local Keys (Privacy Information)
Paired Device Keys (Encryption Information)

2. Which event stores each piece of information?

Hostinfo is stored during BTM_PAIRING_COMPLETE_EVT and in ex03_ble_bond_set_value if the Button CCCD value was written

Local Keys are stored during BTM_LOCAL_IDENTITY_KEYS_UPDATE_EVT

Paired Keys are stored during BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT

All three are cleared out (i.e. reset) in the button_cback function to allow re-pairing.

3. Which event retrieves each piece of information?

Hostinfo is retrieved by BTM_ENCRYPTION_STATUS_EVT (if the device was previously bonded

Local Keys are retrieved by BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT

Paired Keys are retrieved by ex03_ble_bond_app_init (at startup) and by BTM PAIRED DEVICE LINK KEYS REQUEST EVT

4. In what event is the privacy info read from NVRAM?

BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT

5. Which event is called if privacy information is not retrieved after new keys have been generated by the stack?

BTM LOCAL IDENTITY KEYS UPDATE EVT

Answer Key Page 6 of 8

Exercise 4B.5

1. Other than BTM_IO_CAPABILITIES_NONE and BTM_IO_CAPABILITIES_DISPLAY_ONLY, what other choices are available? What do they mean?

BTM_IO_CAPABILITIES_DISPLAY_AND_YES_NO_INPUT

Device can display values (e.g. 6-digit numbers) and can accept a Yes/No input from the user.

BTM_IO_CAPABILITIES_KEYBOARD_ONLY

Device can accept input (e.g. numbers) but cannot display any values.

BTM_IO_CAPABILITIES_BLE_DISPLAY_AND_KEYBOARD_INPUT

Device can display values (e.g. 6-digit numbers) and can accept input (e.g. numbers).

2. What additional stack callback event occurs compared to the previous exercise? At what point does it get called?

BTM_PASSKEY_NOTIFICATION_EVT

This event is called between BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT and BTM_ENCRYPTION_STATUS_EVT.

Answer Key Page 7 of 8

Chapter 4C

Exercise 4C.1

1. Which lines in the code are used to configure and initialize sleep?

Lines 117 – 128:

2. When in the code is sleep configured (i.e. after which event)?

Sleep configuration is done in the BTM_ENABLED_EVT callback. This executes once the stack has been enabled.

3. What is used as a wakeup source?

WICED_GPIO_PIN_BUTTON_1 is used as a wakeup source.

4. What is the name of the sleep permit handler function?

```
low_power_sleep_callback
```

5. When are the connection interval min, max, latency, and timeout values updated and what values are used?

The values are updated in the GATT connect callback function when a connection is established. The code is:

```
wiced_bt_12cap_update_ble_conn_params(p_conn_status->bd_addr, 200, 200, 3, 512);
```

The values are set to:

Min Interval: 250ms (200 * 1.25ms) Max Interval: 250ms (200 * 1.25ms)

Latency: 3

Timeout: 5120ms (512 * 10ms)

Answer Key Page 8 of 8