Programmierparadigmen Cheat Sheet

Linus Schöb (Darius Schefer, Max Schik)

Contents

Haskell	2
General Haskell stuff	2
Important functions	3
Idioms	3
Lambda Calculus	4
General stuff	4
Primitive Operations	4
Equivalences	4
α -equivalence (Renaming)	4
Reductions	4
β -reduction	4
Church-Rosser	4
Recursion	4
recursion	4
Typen	5
Regelsysteme	5
Typsysteme	5
Regeln	5
Typschema	5
V I	
Prolog	5
Generelles Zeug	5
Wichtige Funktionen	6
Unifikation	6
Unifikator	6
Definition Unifikator	6
Definition mgu	6
Unifikationsalgorithmus: unify(C) =	6
Parallelprogrammierung	7
Flynn's Taxanomy	7
MPI	7
Communication Modes	8
Collective Operations	8
Java	9
Multithreading	9
Race conditions	9
Caching and code reordering	10
Functional programming	10
Executors	10
Streams	11
Example	11
Design by Contract	11
Liskov Substitution Principle	11
	4.0
Compiler	12

Basics	12
Linksrekursion	12
Java Bytecode	12
General	12
Examples	13

Haskell

Referenzielle Transparenz: Im gleichen Gültigkeitsbereich bedeuten gleiche Ausdrücke stets das gleiche. Zwei verschiedene Ausdrücke, die zum gleichen Wert auswerten, können stets durch den anderen ersetzt werden, ohne die Bedeutung des Programms zu verändern.

General Haskell stuff

```
-- type definitions are right associative
foo :: a -> b -> c -> d
foo :: (a -> (b -> (c -> d)))
-- function applications are left associative
foo a b c d
((((foo a) b) c) d)
-- pattern matching can use constructors and constants
head (x:x2:xs) = x
only [x] = x
first (Pair a b) = a
first (a, b) = a
response "hello" = "world"
-- alias for pattern matching
foo 1@(x:xs) = 1 == (x:xs) -- returns true
-- quards
foo x y
  | x > y = "bigger"
  | x < y = "smaller"
  | x == y = "equal"
  | otherwise = "love"
-- case of does pattern matching
foo x = case x of
          [] -> "salad"
          [1] -> "apple"
          (420:1) -> "pear"
-- linear recursion = only one recursive branch per call
-- end recursion = linear recursion + nothing to do with the result after recursive call
-- end recursion makes things memory efficient
fak n = fakAcc n 1
  where fakAcc n acc = if (n==0) then acc else fakAcc (n-1) (n*acc)
-- end of where is determined by indentation!
-- list comprehension
[foo x | x \leftarrow [1..420], x \mod 2 == 0]
[0..5] == [0,1,2,3,4,5]
-- combine two functions
f :: a -> b
g :: b -> c
h :: a -> c
```

```
h = f \cdot g
-- type alias
type Car = (String,Int)
-- data types
data Tree a = Leaf
              | Node (Tree a) a (Tree a)
               deriving (Show)
-- defines interfac
class Eq t where
  (==) :: t -> t -> Bool
  (/=) :: t -> t -> Bool
  -- default implementation
  x /= y = not $ x == y
class Coll c where
  contains :: (Ord t) =>
  (c t) \rightarrow t \rightarrow Bool
-- extends interface
class (Show t) => B t where
  foo :: (B t) -> String
-- implement interface
instance Eq Bool where
  True == True = True
  False == False = True
  True == False = False
  False == True = False
```

Important functions

backtrack conf

| solution conf = [conf]

solutions = backtrack initial

See extra Cheat Sheet: https://github.com/rudymatela/concise-cheat-sheets

foldr can handle infinite lists (streams) if combinator does sometimes not depend on right rest. foldl cannot. Result is a list => probably want to use foldr

Additional functions (maybe handwrite on other cheatsheet):

```
-- in a list of type [(key, value)] returns first element where key matches given value lookup :: Eq a => a -> [(a, b)] -> Maybe b
-- applies function until the predicate is true
until :: (a -> Bool) -> (a -> a) -> a -> a
-- returns true if the predicate is true for at least one element
any :: Foldable t => (a -> Bool) -> t a -> Bool
-- return true if the predicate is true for all elements
all :: Foldable t => (a -> Bool) -> t a -> Bool
-- reverse list
reverse = foldl (flip (:)) []

Idioms
-- backtracking
backtrack :: Conf -> [Conf]
```

| otherwise = concat (map backtrack (filter legal (successors conf)))

Lambda Calculus

General stuff

- Function application is left associative λx . $f(x)y = \lambda x$. ((f(x))y)
- untyped lambda calculus is turing complete

Primitive Operations

Let

• let $x = t_1$ in t_2 wird zu $(\lambda x. t_2) t_1$

Church Numbers

- $c_0 = \lambda s. \lambda z. z$
- $c_1 = \lambda s. \lambda z. s z$
- $c_2 = \lambda s. \lambda z. s (s z)$
- $c_3 = \lambda s. \lambda z. s (s (s z))$
- etc...
- Successor Function
 - $succ c_2 = c_3$
 - $succ = \lambda n. \, \lambda s. \, \lambda z. \, s \, (n \, s \, z)$
- Arithmetic Operations
 - $plus = \lambda m. \, \lambda n. \, \lambda s. \, \lambda z. \, m \, s \, (n \, s \, z)$
 - $-times = \lambda m. \lambda n. \lambda s. n (m s)$
 - $-exp = \lambda m. \lambda n. n m$
- $isZero = \lambda n. n \ (\lambda x. c_{false}) \ c_{true}$

Boolean Values

- $c_{true} = \lambda t. \ \lambda f. \ t$
- $c_{false} = \lambda t. \ \lambda f. f$
- $not = \lambda a. a \ c_{false} \ c_{true}$
- $and = \lambda a. \lambda b. a b a$
- $or = \lambda a. \lambda b. a \ a \ b$
- $xor = \lambda a. \lambda b. a (not b) b$
- $if = \lambda a. \lambda then. \lambda else. a then else$

Equivalences

α -equivalence (Renaming)

Two terms t_1 and t_2 are α -equivalent $t_1 \stackrel{\alpha}{=} t_2$ if t_1 and t_2 can be transformed into each other just by consistent (no collision) renaming of the bound variables. Example: $\lambda x.x \stackrel{\alpha}{=} \lambda y.y$

η -equivalence (End Parameters)

Two terms $\lambda x.f$ x and f are η -equivalent $\lambda x.f$ $x \stackrel{\eta}{=} f$ if x is not a free variable of f. Example: $\lambda x.f$ a b $x \stackrel{\eta}{=} f$ a b

Reductions

β -reduction

A λ -term of the shape $(\lambda x. t_1)$ t_2 is called a Redex. The β -reduction is the evaluation of a function application on a redex. (Don't forget to add parenthesis!)

$$(\lambda x. t_1) t_2 \Rightarrow t_1 [x \mapsto t_2]$$

A term that can no longer be reduced is called **Normal Form**. The Normal Form is unique. Terms that don't get reduced to Normal Form diverge (grow infinitely large). Example: $(\lambda x. x. x) (\lambda x. x. x)$

Full β -Reduction: Every Redex can be reduced at any time.

Normal Order: The leftmost outer redex gets reduced.

Call by Name (CBN): Reduce the leftmost outer Redex *if* not surrounded by a lambda. Example:

$$(\lambda y. (\lambda x. y (\lambda z. z) x)) ((\lambda x. x) (\lambda y. y))$$

$$\Rightarrow (\lambda x. ((\lambda x. x) (\lambda y. y)) (\lambda z. z) x) \Rightarrow$$

Call by Value (CBV): Reduce the leftmost Redex that is not surrounded by a lambda and whose argument is a value. A value is a term that can not be further reduced. Example:

$$(\lambda y. (\lambda x. y (\lambda z. z) x)) ((\lambda x. x) (\lambda y. y))$$

$$\Rightarrow (\lambda y. (\lambda x. y (\lambda z. z) x)) (\lambda y. y)$$

$$\Rightarrow (\lambda x. (\lambda y. y) (\lambda z. z) x) \Rightarrow$$

Call by Name and Call by Value may not reduce to the Normal Form! Call by Name terminates more often than Call by Value.

Church-Rosser

The untyped λ is confluent: If $t \stackrel{*}{\Rightarrow} t_1$ and $t \stackrel{*}{\Rightarrow} t_2$ then there exists a t' with $t_1 \stackrel{*}{\Rightarrow} t'$ and $t_2 \stackrel{*}{\Rightarrow} t'$.

Recursion

Rekursive Funktion = Fixpunkt des Funktionals

 $Y = \lambda f.(\lambda x. f(x x))(\lambda x. f(x x))$ is called the recursion operator. Y G is the fixpoint of G.

Typen

Regelsysteme

- Term ψ herleitbar: " $\vdash \psi$ "
- Frege'scher Schlussstrich: aus dem über dem Strich kann man das unter dem Strich herleiten
- Prädikatenlogik erster Stufe:

$$\begin{array}{c|c} & \text{AI} & \frac{\vdash \psi & \vdash \varphi}{\vdash \psi \land \varphi} & \text{AE}_1 & \frac{\vdash \psi \land \varphi}{\vdash \psi} & \text{AE}_2 & \frac{\vdash \psi \land \varphi}{\vdash \varphi} \\ \\ \forall \mathsf{E} & \frac{\vdash \forall \mathsf{X} \mathrel{.} \varphi}{\vdash \varphi [\mathsf{X} \mapsto \psi]} & \forall \mathsf{I} & \frac{\vdash \varphi [\mathsf{X} \mapsto c] & \mathsf{Variable} \ c \ \mathsf{kommt} \ \mathsf{nicht} \ \mathsf{in} \ \varphi \ \mathsf{vor} \\ & \vdash \forall \mathsf{X} \mathrel{.} \varphi \\ \\ \mathsf{MP} & \frac{\vdash \psi \Rightarrow \varphi & \vdash \psi}{\vdash \varphi} & \mathsf{LEM} & \frac{\vdash \varphi \lor \neg \varphi}{\vdash \varphi \lor \neg \varphi} \end{array}$$

- Beweiskontext: $\Gamma \vdash \phi$
 - ϕ unter Annahme von Γ herleitbar
 - Erleichtert Herleitung von $\phi \Rightarrow \psi$
 - Assumption Introduktion $\Gamma, \phi \vdash \phi$

Typsysteme

- Einfache Typisierung
 - $-\vdash (\lambda x. 2):bool \rightarrow int$
 - $-\vdash (\lambda x. 2): int \rightarrow int$
 - $\vdash (\lambda f. 2) : (int \rightarrow int) \rightarrow int$
- Polymorphe Typen
 - $\vdash (\lambda x. 2) : \alpha \to int \ (\alpha \text{ ist implizit all quantifizient})$
- Nicht alle sicheren Programme sind typisierbar
 - Typisierbare λ -Terme (ohne **define**) haben Normalform \Rightarrow terminieren \Rightarrow sind nicht turing-mächtig
 - Typsystem nicht vollständig bzgl. β -Reduktion
 - * insb. Selbstapplikation im Allgemeinen nicht typisierbar
 - * damit auch nicht Y-Kombinator

Regeln

- " $\Gamma \vdash t : \tau$ ": im Typkontext Γ hat Term t den Typ τ
- Γ ordnet freien Variablen x ihren Typ $\Gamma(x)$ zu

$$\begin{array}{ll} \text{Const} & \frac{c \in Const}{\Gamma \vdash c : \tau_c} & \text{Abs} & \frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x . t : \tau_1 \to \tau_2} \\ \\ \text{Var} & \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} & \text{App} & \frac{\Gamma \vdash t_1 : \tau_2 \to \tau \quad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 \: t_2 : \tau} \end{array}$$

Typschema

- " $\forall \alpha_1 \dots \forall \alpha_n . \tau$ " heißt Typschema (Kürzel ϕ)
 - Es bindet freie Typvariablen $\alpha_1, \ldots, \alpha_n$ in τ
- Var-Regel muss angepasst werden:

VAR
$$\frac{\Gamma(x) = \phi \quad \phi \succeq \tau}{\Gamma \vdash x : \tau}$$

• Neu:

LET
$$\frac{\Gamma \vdash t_1 : \tau_1 \quad \Gamma, x : ta(\tau_1, \Gamma) \vdash t_2 : \tau_2}{\Gamma \vdash \mathbf{let} \ x = t_1 \ \mathbf{in} \ t_2 : \tau_2}$$

- $ta(\tau, \Gamma)$: Typabstraktion
 - Alle freien Typvariablen von τ quantifiziert, die nicht frei in Typannahmen von Γ , also alle "wirklich unbekannten" (auch global)

Prolog

Generelles Zeug

Prolog ist nicht vollständig da die nächste Regel deterministisch gewählt wird, daher können Endlosschleifen entstehen und keine Lösung gefunden werden obwohl sie existiert.

```
% klein geschriebene Namen sind Atome
mag(ich, dich). % nein tu ich nicht

% Prolog erfüllt Teilziele von links nach rechts
foo(X) :- subgoal1(X), subgoal2(X), subgoal3(X).

% ! signalisiert einen cut, alles vor dem cut ist nicht reerfüllbar.

% Arten von Cuts:

% - Blauer Cut

% - beeinflusst weder Programmlaufzeit, noch -verhalten

% - Grüner Cut

% - beeinflusst Laufzeit, aber nicht Verhalten

% - Roter Cut

% - beeinflusst das Programmverhalten

% Zuweisungen immer nach dem cut!
foo(X, Y) :- operation_where_we_only_want_the_first_result(X, Z), !, Y = Z.
```

```
% generate and test
foo(X, Y) :- generator(X, Y), tester(Y).

% listen sind so wie in haskell
foo([H|T]) :- ...

% weitere listen sachen
[1,2,3|[4,5,6,7]] = [1,2,3,4,5,6,7]

% Arithmetik ist komisch. 2 - 1 ist ein Term, keine Zahl!
2 - 1 \= 1

% Um Terme auszuwerten braucht man "is"
N1 is N - 1.
```

Wichtige Funktionen

```
% prüft ob X in L
member(X, L).

% fügt A und B zu C zusammen.
append(A, B, C).

% Länge N einer Liste L
length(L, N).

% sowas wie append kann auch als Generator verwendet werden, sofern C instanziiert ist.
append(A, B, C) % A und B gehen durch alle Teillisten von C

% Negation
not(X). % X ist ein prädikat
```

Unifikation

Unifikator

- Gegeben: Menge C von Gleichungen über Terme
- $\tau = \text{Basistyp}, X = \text{Var}$
- Gesucht ist eine Substitution, die alle Gleichungen erfüllt: Unifikator
- most general unifier, mgu ist der allgemeinste Unifikator

Definition Unifikator

Substitution σ unifiziert Gleichung $\theta = \theta'$, falls $\sigma\theta = \sigma\theta'$.

 σ unifiziert C, falls $\forall c \in C$ gilt: σ unifiziert c.

Bsp.
$$C = \{f(a, D) = Y, X = g(b), g(Z) = X\} \Rightarrow \sigma = [Y \rightarrow f(a, b), D \rightarrow d, X \rightarrow g(b), Z \rightarrow b]$$

Definition mgu

 σ mgu, falls \forall Unifikator $\gamma \exists$ Substitution δ . $\gamma = \delta \circ \sigma$.

- Unifikator mit der minimalen Menge an Substitutionen
- Für das Beispiel: $\sigma = [Y \to f(a, D), X \to g(b), z \to b]$ – für γ z. Bsp. $\delta = [D \to b]$

Unifikationsalgorithmus: unify(C) =

if C ==
$$\emptyset$$
 then [] else let $\{\theta_l = \theta_r\} \uplus \mathsf{C}' = \mathsf{C}$ in if θ_l == θ_r then unify(C')

```
else if \theta_l == Y and Y \notin FV(\theta_r) then unify([Y \to \theta_r]C') \circ [Y \to \theta_r] else if \theta_r == Y and Y \notin FV(\theta_l) then unify([Y \to \theta_l]C') \circ [Y \to \theta_l] else if \theta_l == f(\theta_l^1,...,\theta_l^n) and \theta_r == f(\theta_r^1,...,\theta_r^n) then unify(C' \cup {\theta_l^1 = \theta_r^1,...,\theta_l^n = \theta_r^n}) else fail
```

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Parallelprogrammierung

Uniform Memory access (UMA): .

Parallelismus: Mindestens zwei Prozesse laufen gleichzeitig. Concurrency: Mindestens zwei Prozesse machen Fortschritt.

Amdahls' Law:

$$S(n) = \frac{T(1)}{T(n)} = \frac{\text{execution time if processed by 1 processor}}{\text{execution time if processed by n processors}} = \text{speedup}$$

$$S(n) = \frac{1}{(1-p) + \frac{p}{n}} \text{ with } p = \text{parallelizable percentage of program}$$

Data Parallelism: Die gleiche Aufgabe wird parallel auf unterschiedlichen Daten ausgeführt.

Task Parallelism: Unterschiedliche Aufgaben werden auf den gleichen Daten ausgeführt.

Flynn's Taxanomy

Name	Beschreibung	Beispiel
SISD SIMD	a single instruction stream operates on a single memory one instruction is applied on homogeneous data (e.g. an array)	von Neumann Architektur vector processors of early supercomputer
MIMD MISD	different processors operate on different data multiple instructions are executed simultaneously on the same data	multi-core processors redundant architectures

MPI

```
// default communicator, i.e. the collection of all processes
MPI_Comm MPI_COMM_WORLD;

// returns the number of processing nodes
int MPI_Comm_size(MPI_Comm comm, int *size);

// returns the rank for the processing node, root node has rank 0
int MPI_Comm_size(MPI_Comm comm, int *size);

// initializes MPI
int MPI_Init(int *argc, char ***argv);

// Cleans up MPI (called in the end)
int MPI_Finalize();

// blocks until all processes have called it
int MPI_Barrier(MPI_Comm comm);

// blocking asynchrounous send. blocks until message buffer can be reused, i.e. message has been received.
```

Communication Modes

Synchronous

No buffer, synchronization (both sides wait for each other)

Buffered

Explicit buffering, no synchronization (no wait for each other)

Ready

No buffer, no synchronization, matching receive must already be initiated

Standard

May be buffered or not, can be synchronous (implementation dependent)

There is only one receive mode.

Collective Operations

MPI Bcast

int MPI_Bcast(void* buffer, int count, MPI_Datatype t, int root, MPI_Comm comm);

$$\begin{bmatrix} A_0 & & \\ & & \rightarrow \end{bmatrix} \xrightarrow{Broadcast} \begin{bmatrix} A_0 & & \\ A_0 & & \\ A_0 & & \end{bmatrix}$$

MPI_Scatter MPI_Gather

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ & & & \\ & & & \end{bmatrix} \underset{gather}{scatter} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \end{bmatrix}$$

MPI_Allgather

$$\begin{bmatrix} A_0 \\ B_0 \\ C_0 \end{bmatrix} \xrightarrow{Allgather} \begin{bmatrix} A_0 & B_0 & C_0 \\ A_0 & B_0 & C_0 \\ A_0 & B_0 & C_0 \end{bmatrix}$$

MPI_Alltoall

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{Alltoall} \begin{bmatrix} A_0 & B_0 & C_0 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix}$$

MPI_Reduce

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{Reduce} \begin{bmatrix} A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \\ \end{bmatrix}$$

MPI_allreduce

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{All reduce} \begin{bmatrix} A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \\ A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \\ A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \end{bmatrix}$$

MPI Reduce scatter

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{Reduce-scatter} \begin{bmatrix} A_0 + B_0 + C_0 \\ A_1 + B_1 + C_1 \\ A_2 + B_2 + C_2 \end{bmatrix}$$

MPI_Scan

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{Scan} \begin{bmatrix} A_0 & A_1 & A_2 \\ A_0 + B_0 & A_1 + B_1 & A_2 + B_2 \\ A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \end{bmatrix}$$

Java

Multithreading

Race conditions

A race condition exists if the order in which threads execute thei operations influences the result of the program.

Mutual Exclusion

A code section, of which only one thread is allowed to execute operations at a time, is called a critical section. If one thread exectues operations of a critical section, other threads will be blocked if they want to enter it as well.

```
// Synchronized block, someObject is used as the monitor
synchronized(someObject) {
    ...
}

// synchronized function
synchronized void foo() {
    ...
}
```

Caching and code reordering

- cached variables can lead to inconsistency
- code can be reordered by the compiler

volatile-keyword

volatile ensures that changes to variables are immediately visible to all threads/processors.

- establishes a happens-before relationship
- values are not locally cached in a CPU cache
- no optimization by compiler

```
// declares a volatile variable
volatile int c = 420;
```

Functional programming

```
// lambdas
(int i, int j) -> i + j;

// functional interfaces
@FunctionalInterface
interface Predicate {
  boolean check(int value);
}

public int sum(List<Integer> values, Predicate predicate) {
    ...
};

sum(values, i -> i > 5);

// method reference to static function
SomeClass::staticFunction;
// method reference to object function
someObject::function;
```

Executors

- Executors abstract from thread creation.
- $\bullet\,$ provides an execute method that accepts a Runnable

```
void execute(Runnable runnable);
```

• ExecutorService is an interface that provides further lifecycle management logic

```
Callable<Integer> myCallable = () -> { return currentValue; };
Future<Integer> myFuture = executorService.submit(myCallable);
```

Streams

Provides functions like

- filter
- map, reduce
- collect
- findAny, findFirst
- min, max

Any Java collection can be treated as a stream by calling the stream() method

Example

```
List<Person> personsInAuditorum = ...;
double average =
 personsInAuditorum
  .stream()
  .filter(Person::isStudent)
  .mapToInt(Person::getAge) // converts a regular Stream to IntStream
  .average()
  .getAsDouble();
// collector
R collect(
  Supplier<R> supplier,
 BiConsumer<R, ? super T> accumulator,
  BiConsumer<R, R> combiner // only used for parallel streams
);
personsInAuditorum.stream().collect(
  () -> 0,
  (currentSum, person) -> { currentSum += person.getAge(); }.
  (leftSum, rightSum) -> { leftSum += rightSum; }
);
// parallel stream
someValues.parallelStream();
```

Design by Contract

Form of a Hoare triple $\{P\}$ C $\{Q\}$

- P: precondition \rightarrow specification what the supplier expects from the client
- C: series of statements \rightarrow the method of body
- Q: postcondition → specification of what the client can expect from the supplier if the precondition is fulfilled
- client has to ensure that the precondition is fulfilled
- client can expect the postcondition to be fulfilled, if the precondition is
- Non-Redundancy-Principle: the body of a routine shall not test for the routine's precondition

```
/*@ requires size > 0;
  @ ensures size == \old(size) - 1;
  @ ensures \result == \old(top());
  @ ensures true; // trivial constraint
  @*/
Object pop() { ... }
```

Liskov Substitution Principle

- preconditions must not be more restrictive than those of the overwritten method: $Precondition_{Super} \Rightarrow Precondition_{Sub}$
- postcondition must be at least as restrictive as thos of the overwritten methods: Postcondition_{Sub} \Rightarrow Postcondition_{Super}

Compiler

Basics

- Lexikalische Analyse:
 - Eingabe: Sequenz von Zeichen
 - Aufgaben:
 - * erkenne bedeutungstragende Zeichengruppen: Tokens
 - * überspringe unwichtige Zeichen (Leerzeichen, Kommentare, ...)
 - st bezeichner identifizieren und zusammenfassen in Stringtabelle
 - Ausgabe: Sequenz von Tokens
- Syntaktische Analyse:
 - Eingabe: Sequenz von Tokens
 - Aufgaben:
 - * überprüfe, ob Eingabe zu kontexfreier Sprache gehört
 - * erkenne hierachische Struktur der Eingabe
 - Ausgabe: Abstrakter Syntaxbaum (AST)
- Semantische Analyse:
 - Eingabe: Syntax Baum
 - Aufgaben: kontextsensitive Analyse (syntaktische Analyse ist kontextfrei)
 - * Namensanalyse: Beziehung zwischen Deklaration und Verwendung
 - * Typanalyse: Bestimme und prüfe Typen von Variablen, Funktionen, ...
 - * Konsistenzprüfung: Alle Einschränkungen der Programmiersprache eingehalten
 - Ausgabe: Attributierter Syntaxbaum
 - ungültige Programme werden spätestens in Semantischer Analyse abgelehnt
- Codegenerierung:
 - Eingabe: Attributierter Syntaxbaum oder Zwischencode
 - Aufgaben: Erzeuge Code für Zielmaschine
 - Ausgabe: Program in Assembler oder Maschinencode

Linksrekursion

- Linksrekursive kontextfreie Grammatiken sind für kein k SLL(k).
- Für jede kontextfreie Grammatik G mit linksrekursiven Produktionen gibt es eine kontextfreie Grammatik G' ohne Linksrekursion mit L(G) = L(G')

Java Bytecode

General

```
; this list partly is stolen from some quy on discord, but I forgot which one
; types
i -> int
1 -> long
s -> short
b -> byte
c -> char
f -> float
d -> double
a -> reference
; load constants on the stack
aconst_null ; null object
dconst 0 ; double 0
dconst 1 ; double 1
fconst 0 ... fconst 2; float 0 to 2
iconst_0 ... iconst_5 ; integer 0 to 5
; push immediates
bipush i ; push signed byte i on the stack
sipush i ; push signed short i on the stack
```

```
; variables (X should be replaced by a type, for example i (integer))
; there exists Xload_i for i in [0, 3] to save a few bytes
Xload i ; load local variable i (is a number)
Xstore i ; store local variable i
; return from function
return ; void return
Xreturn; return value of type X
; conditional jumps
if_icmpeq label ; jump if ints are equal
if_icmpge label ; jump if first int is >=
if_icmpgt label ; jump if first int is >
if_icmple label ; jump if first int is <=</pre>
if_icmplt label ; jump if first int is <</pre>
ifeq label ; jump if = zero
ifge label ; jump if >= zero
ifgt label ; jump if > zero
iflt label ; jump if < zero
ifle label ; jump if <= zero
ifne label ; jump if != zero
ifnull label ; jump if null
ifnonnull label; jump if not null
; Arithmetic, always operates on stack
; push left side first, then right side
iinc var const ; increment variable var (number) by const (immediate)
isub; Integer subtraction, for stack top -> [1,2,3] it would be 2 - 1
iadd; Integer addition
imul ; Integer multiplication
idiv ; Integer division
ineg; negate int
ishl; shift left (arith)
ishr; shift right (arith)
; Logic (für [i, l])
iand; Bitwise and
ior ; Bitwise or
ixor ; Bitwise or
; Method calls. Stack: [objref, arg1, arg2] <-
invokevirtual #desc ; call method specified in desc
invokespecial #desc ; call constructor
invokeinterface #desc ; call method on interface
invokestatic #desc ; call static method (no objref)
; Misc
nop ; No operation
; Arrays
newarray T; new array of type T
Xaload ; load type X from array [Stack: arr, index] <-</pre>
Xastore ; store type X in array [Stack: arr, index, val] <-</pre>
arraylength; length of array
Examples
```

Arithmetic

Java:

```
void calc(int x, int y) {
  int z = 4;
  z = y * z + x;
Bytecode:
iconst_4 // lege eine 4 auf den stack
istore_3 // pop stack und speichere Wert in Variable 3 (z)
iload_2 // lade Variable 2 (y) und lege sie auf den stack
iload_3 // lade Variable 3 (z) und lege sie auf den stack
imul // multipliziere die oberen zwei elemente und lege das ergebnis auf den stack (y * z)
iload_1 // lade Variable 1 (x) und lege sie auf den Stack
iadd // addiere die oberen zwei Elemente und lege sie auf den stack
istore_1 // pop stack und speichere Wert in Variable 3 (z)
Loops
Java:
public int fib(int steps) {
  int last0 = 1;
  int last1 = 1;
  while (--steps > 0) {
    int t = last0 + last1;
    last1 = last0;
    last0 = t;
  }
}
Bytecode:
  iconst_1 // put 1 on stack
  istore_2 // store top of stack in var 2
  iconst_1 // put 1 on stack
  istore_3 // store top of stack in var 3
loop_begin: // label
  iinc 1 - 1 // increment var 1 by -1
  iload_1 // load var 1 and put on stack
  ifle after_loop // if top of stack <= 0, jump to after_loop
  iload_2 // put var 2 on stack
  iload_3 // put bar 3 on stack
  iadd // add top two elements and put on stack
  istore 4 // store top of stack in var 4
  iload_2 // load var 2 and put on stack
  istore 3 // store top of stack in var 3
  iload 4 // load var 4 and put on stack
  istore_2 // store top of stack in var 2
  goto loop_begin // jump to loop_begin
after_loop: // label
  iload_2 // load var 2 and put on stack
```

ireturn // return top of stack