

NEURAL NETWORKS

Machine Learning Course Balázs Nagy, PhD

Neuron model

Neuron model: Perceptron

Neural Network Model

Neural Network Architecture

Example

Example

Example

If the treshold is 0 it result in the OR logic gate

Linear separability

Linear separability

NOT

in out0110

AND

 $\begin{array}{cccc} in_1 & in_2 & out \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$

OR

Steps:

- Initialization
- Activation
- Weight update
- Iteration

Steps:

- Initialization
- Activation
- Weight update
- Iteration

- Set the initial weights (w)
- Set the treshold value (θ) for a random variable between [-0.5, 0.5]
- Set the learning rate (η) between [0, 1]

Steps:

- Initialization
- Activation
- Weight update
- Iteration

- Calculate the output in the first (p=1) iteration
- Use a predefined activation function
 (Φ) like step or sigmoid function

$$y = \Phi\left(\sum_{i=1}^{m} x_i \cdot w_i\right)$$

Steps:

- Initialization
- Activation
- Weight update
- Iteration

Update the weights

$$w_i(p+1) = w_i(p) + \Delta w_i(p)$$

$$\Delta w_i(p) = \eta.x_i(p).e(p)$$

$$e(p) = d(p) - y(p)$$

Steps:

- Initialization
- Activation
- Weight update
- Iteration

- Increment p with 1 and do the same calculations
- Do the process until convergence

$$y = \Phi\left(\sum_{i=1}^m x_i \cdot w_i\right)$$

$$w_i(p+1) = w_i(p) + \Delta w_i(p)$$

• • • • • •

What about XOR?

What about XOR?

One single perceptron can not solve the problem. Need multiple perceptron in a layered architecture.

Representation Power of NNs

- NN with 1 hidden layer can represent:
 - Any bounded continuous function (to arbitrary ε)
 - Universal Approximation Theorem [Cybenko 1989]
 - Any Boolean function (exactly)

Tensorflow playground

https://playground.tensorflow.org/

Neural Network Learning Process

Forward step

In terms of indexes introduce the following:

 $a_i^{(j)}$ - activation of the i^{th} neuron in the j^{th} layer

 $s_i^{(j)}$ - summed output of the i^{th} neuron in the j^{th} layer

 $w_{lk}^{(j)}$ - weight between the l^{th} neuron in the j^{th} layer and the k^{th} neuron in the $j+1^{th}$ layer

 $x_n^{(m)}$ - the n^{th} feauture in the m^{th} input. $(x_0^{(1)}=1)$ is the BIAS.

 \hat{y} - the output

2024. 08. 06.

Forward step

The BIAS is added to the $x^{(1)}$ vector and multiplied by the first weight matrix.

$$\mathbf{x}_{1 \times 3}^{(1)} \times \mathbf{w}_{3 \times 3}^{(1)} = \mathbf{s}_{1 \times 3}^{(2)}$$

We perform the activation in the neurons of the hidden layer. We use the sigmoid function as activation function.

$$\mathbf{a}_{\overset{1\times 3}{1\times 3}}=f(\mathbf{s}_{\overset{1\times 3}{1\times 3}})=sigmoid(\mathbf{s}_{\overset{1\times 3}{1\times 3}})$$

We assign the BIAS to the hidden layer after the activation, but before the weight is applied!

$$\mathbf{a}_{1\times 4}^{(2)} \times \mathbf{w}_{4\times 3}^{(2)} = \mathbf{s}_{1\times 3}^{(3)}$$

After activation the value of the neurons in the output layer is obtained.

$$\mathbf{a}_{1\times3}^{(3)} = f(\mathbf{s}_{1\times3}^{(3)}) = sigmoid(\mathbf{s}_{1\times3}^{(3)})$$

The output layer contains the predictions.

$$\hat{\mathbf{y}}_{1\times 3} = \mathbf{a}_{1\times 3}^{(3)}$$

Cost function

$$C = \sum \{\frac{1}{2}(y - \hat{y})^2\}$$

$$C = \sum \{\frac{1}{2}(y - a^{(3)})^2\}$$

$$C = \sum \{\frac{1}{2}(y - f(s^{(3)}))^2\}$$

$$C = \sum \{\frac{1}{2}(y - f(a^{(2)}w^{(2)}))^2\}$$

$$C = \sum \{\frac{1}{2}(y - f(f(s^{(2)})w^{(2)}))^2\}$$

$$C = \sum \{\frac{1}{2}(y - f(f(xw^{(1)})w^{(2)}))^2\}$$

Back propagation

Sigmoid function and its derivative

$$g(z) = \frac{1}{1+e^{-z}}$$

$$g'(z) = \frac{d}{dz} \frac{1}{1+e^{-z}}$$

$$= \frac{1}{(1+e^{-z})^2} (e^{(-z)})$$

$$= \frac{1}{1+e^{-z}} (1 - \frac{1}{(1+e^{-z})})$$

$$= g(z)(1-g(z))$$

Back propagation

Sigmoid function and its derivative

$$g(z) = \frac{1}{1+e^{-z}}$$

$$g'(z) = \frac{d}{dz} \frac{1}{1+e^{-z}}$$

$$= \frac{1}{(1+e^{-z})^2} (e^{(-z)})$$

$$= \frac{1}{1+e^{-z}} (1 - \frac{1}{(1+e^{-z})})$$

$$= g(z)(1 - g(z))$$

$$\frac{\partial C}{\partial w^{(2)}} = \frac{\partial \sum \frac{1}{2} (y - \hat{y})^2}{\partial w^{(2)}} = \sum (\frac{\partial \frac{1}{2} (y - \hat{y})^2}{\partial w^{(2)}})$$

For the sake of clarity, let's derive the derivation for one element.

$$\frac{\partial \frac{1}{2} (y - \hat{y})^2}{\partial w^{(2)}} = (y - \hat{y})(-\frac{\hat{y}}{\partial w^{(2)}})$$

$$= -(y - \hat{y}) \cdot \frac{\partial \hat{y}}{\partial s^{(3)}} \cdot \frac{\partial s^{(3)}}{\partial w^{(2)}}$$

$$= -(y - \hat{y}) \cdot f'(s^{(3)}) \cdot \frac{\partial a^{(2)} w^{(2)}}{\partial w^{(2)}}$$

$$= \delta^{(3)} \cdot a^{(2)}$$

Introduce $\delta_i^{(j)}$ as the error term assigned to neuron i of layer j.

Extended in matrix form, after checking the dimensions, we obtain the following relation: $(a^{(2)})^T\delta^{(3)}$

Full algorithm

1,
$$xw^{(1)} = s^{(2)}$$

2, $f(s^{(2)}) = a^{(2)}$
3, $a^{(2)}w^{(2)} = s^{(3)}$
4, $f(s^{(3)}) = \hat{y}$
5, $C = \sum \{\frac{1}{2}(y - \hat{y})^2\}$
6, $-(y - \hat{y}) \cdot f'(s^{(3)}) = \delta^{(3)}$
7, $(a^{(2)})^T \delta^{(3)} = \frac{\partial C}{\partial w^{(2)}}$
8, $\delta^{(3)} \cdot (w^{(2)})^T \cdot f'(s^{(2)}) = \delta^{(2)}$
9, $x^T \delta^{(2)} = \frac{\partial C}{\partial w^{(1)}}$
10, $w^{(1)} = w^{(1)} - \mu \frac{\partial C}{w^{(1)}} + regularization$
 $w^{(2)} = w^{(2)} - \mu \frac{\partial C}{w^{(2)}} + regularization$

Thank you for your attention!