```
In [1]: import pandas as pd
In [2]: data=pd.read csv("/home/placement/Desktop/reddy/fiat500.csv")
         #data['model']=data['model'].map({'lounge':1,'pop':2,'sport':3})
In [3]: data1=data.drop(['ID','lat','lon'],axis=1)
In [4]: data1
Out[4]:
               model engine_power age_in_days
                                                 km previous_owners price
                               51
                                               25000
                                                                 1 8900
            0 lounge
                                          882
                               51
                                         1186
                                               32500
                                                                    8800
                  pop
                 sport
                               74
                                         4658 142228
                                                                  1 4200
                               51
             3 lounge
                                         2739
                                              160000
                                                                  1 6000
                               73
                                         3074 106880
                                                                  1 5700
                  pop
                               51
          1533
                 sport
                                         3712 115280
                                                                    5200
          1534
                               74
                                         3835
                                              112000
                                                                  1 4600
               lounge
          1535
                               51
                                         2223
                                               60457
                                                                  1 7500
                  pop
          1536
               lounge
                               51
                                         2557
                                               80750
                                                                  1 5990
          1537
                               51
                                         1766
                                               54276
                                                                 1 7900
                  pop
         1538 rows × 6 columns
         Type Markdown and LaTeX: \alpha^2
In [5]: #data1=pd.get dummies(data1)
```

```
In [6]: #data1
In [7]: data1['model']=data1['model'].map({'lounge':1,'pop':2,'sport':3})
In [8]: data1
```

Out[8]:

_		model	engine_power	age_in_days	km	previous_owners	price
	0	1	51	882	25000	1	8900
	1	2	51	1186	32500	1	8800
	2	3	74	4658	142228	1	4200
	3	1	51	2739	160000	1	6000
	4	2	73	3074	106880	1	5700
	1533	3	51	3712	115280	1	5200
	1534	1	74	3835	112000	1	4600
	1535	2	51	2223	60457	1	7500
	1536	1	51	2557	80750	1	5990
	1537	2	51	1766	54276	1	7900

1538 rows × 6 columns

In [9]: data1=pd.get_dummies(data1)

In [10]: data1

Out[10]:

linear - Jupyter Notebook

	model	engine_power	age_in_days	km	previous_owners	price
0	1	51	882	25000	1	8900
1	2	51	1186	32500	1	8800
2	3	74	4658	142228	1	4200
3	1	51	2739	160000	1	6000
4	2	73	3074	106880	1	5700
1533	3	51	3712	115280	1	5200
1534	1	74	3835	112000	1	4600
1535	2	51	2223	60457	1	7500
1536	1	51	2557	80750	1	5990
1537	2	51	1766	54276	1	7900

1538 rows × 6 columns

```
In [11]: y=data1['price']
x=data1.drop('price',axis=1)
```

```
In [12]: y
Out[12]: 0
                  8900
                  8800
                 4200
         3
                  6000
                  5700
                  . . .
         1533
                  5200
         1534
                 4600
         1535
                 7500
         1536
                  5990
         1537
                  7900
         Name: price, Length: 1538, dtype: int64
In [13]: x
```

Out[13]:

	model	engine_power	age_in_days	km	previous_owners
0	1	51	882	25000	1
1	2	51	1186	32500	1
2	3	74	4658	142228	1
3	1	51	2739	160000	1
4	2	73	3074	106880	1
1533	3	51	3712	115280	1
1534	1	74	3835	112000	1
1535	2	51	2223	60457	1
1536	1	51	2557	80750	1
1537	2	51	1766	54276	1

1538 rows × 5 columns

1409

```
In [14]: #!pip3 install scikit-learn
In [15]: #data1=pd.get dummies(data1)
In [16]: #data1
 In [ ]:
In [17]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [18]: x_test.head(5)
Out[18]:
               model engine_power age_in_days
                                               km previous_owners
                   2
                                       3197 120000
                                                              2
           481
                              51
            76
                   2
                              62
                                       2101 103000
          1502
                              51
                                        670
                                             32473
           669
                              51
                                             29000
                                        913
```

```
In [19]: x_train.shape
Out[19]: (1030, 5)
In [20]: y_train.shape
Out[20]: (1030,)
```

1

18800

762

51

In [21]: x_train.head()

Out[21]:

	model	engine_power	age_in_days	km	previous_owners
527	1	51	425	13111	1
129	1	51	1127	21400	1
602	2	51	2039	57039	1
331	1	51	1155	40700	1
323	1	51	425	16783	1

In [22]: y_train.head()

Out[22]: 527

9990

129 9500

602 7590

8750 331

323 9100

Name: price, dtype: int64

In [23]: x_test.head()

Out[23]:

	model	engine_power	age_in_days	km	previous_owners
481	2	51	3197	120000	2
76	2	62	2101	103000	1
1502	1	51	670	32473	1
669	1	51	913	29000	1
1409	1	51	762	18800	1

```
In [24]: y test.head()
Out[24]: 481
                 7900
                 7900
         76
                 9400
         1502
         669
                 8500
         1409
                 9700
         Name: price, dtype: int64
In [25]: from sklearn.linear_model import LinearRegression
         reg=LinearRegression()
         reg.fit(x train,y train)
Out[25]:
          ▼ LinearRegression
         LinearRegression()
In [26]: #!pip3 install scikit-learn
In [27]: ypred=reg.predict(x test)
```

```
In [28]: ypred
Out[28]: array([ 5994.51703157,
                                  7263.58726658,
                                                   9841.90754881,
                                                                   9699.31627673,
                                  9630.58715835,
                 10014.19892635,
                                                   9649.4499026 , 10092.9819664 ,
                 9879.19498711,
                                  9329.19347948, 10407.2964056,
                                                                   7716.91706011,
                  7682.89152522,
                                  6673.95810983.
                                                   9639.42618839, 10346.53679153,
                  9366.53363673,
                                  7707.90063494.
                                                  4727.33552438, 10428.17092937,
                 10359.87663878, 10364.84674179,
                                                   7680.16157493,
                                                                   9927.58506055,
                  7127.7284177 ,
                                  9097.51161986,
                                                   4929.31229715.
                                                                   6940.60225317,
                  7794.35120591,
                                  9600.43942019.
                                                   7319.85877519,
                                                                   5224.05298205,
                  5559.52039134,
                                  5201.35403287,
                                                   8960.11762682,
                                                                   5659.72968338,
                  9915.79926869,
                                  8255.93615893,
                                                   6270.40332834,
                                                                   8556.73835062,
                  9749.72882426,
                                  6873.76758364,
                                                   8951.72659758, 10301.95669828,
                  8674.89268564, 10301.93257222,
                                                   9165.73586068,
                                                                   8846.92420399,
                                  9052.4031418 ,
                                                  9390.75738772, 10267.3912561
                  7044.68964545.
                 10046.90924744,
                                  6855.71260655,
                                                   9761.93338967,
                                                                   9450.05744337,
                  9274.98388541, 10416.00474283,
                                                   9771.10646661,
                                                                   7302.96566423,
                                                                   7134.21944391,
                 10082.61483093,
                                  6996.96553454,
                                                   9829.40534825,
                  6407.26222178,
                                                                   8614.84049875,
                                  9971.82132188,
                                                   9757.01618446,
                                  6489.24658616,
                                                  7752.65456507,
                  8437.92452169.
                                                                   6626.60510856,
                  8329.88998217, 10412.00324329,
                                                   7342.77348105,
                                                                   8543.63624413,
In [29]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[29]: 0.8383895235218546
In [30]: from sklearn.metrics import mean squared error as ns
         o=ns(y test,ypred)
Out[30]: 593504.2888137395
In [31]: import math
         math.sgrt(o)
Out[31]: 770.3922954013361
```

```
In [32]: ypred
Out[32]: array([ 5994.51703157,
                                   7263.58726658,
                                                   9841.90754881,
                                                                    9699.31627673,
                 10014.19892635,
                                   9630.58715835,
                                                   9649.4499026 , 10092.9819664 ,
                  9879.19498711,
                                   9329.19347948, 10407.2964056,
                                                                    7716.91706011,
                  7682.89152522,
                                   6673.95810983,
                                                   9639.42618839, 10346.53679153,
                  9366.53363673,
                                   7707.90063494,
                                                   4727.33552438, 10428.17092937,
                 10359.87663878, 10364.84674179,
                                                   7680.16157493,
                                                                    9927.58506055,
                  7127.7284177 ,
                                                                    6940.60225317,
                                   9097.51161986,
                                                   4929.31229715,
                  7794.35120591,
                                   9600.43942019,
                                                   7319.85877519,
                                                                    5224.05298205,
                  5559.52039134,
                                   5201.35403287,
                                                    8960.11762682,
                                                                    5659.72968338,
                                   8255.93615893,
                                                                    8556.73835062,
                  9915.79926869,
                                                   6270.40332834,
                  9749.72882426,
                                   6873.76758364,
                                                   8951.72659758, 10301.95669828,
                  8674.89268564, 10301.93257222,
                                                   9165.73586068,
                                                                    8846.92420399,
                                                   9390.75738772, 10267.3912561
                  7044.68964545.
                                   9052.4031418 ,
                 10046.90924744,
                                   6855.71260655,
                                                   9761.93338967,
                                                                    9450.05744337,
                  9274.98388541,
                                 10416.00474283,
                                                   9771.10646661,
                                                                    7302.96566423,
                                                                    7134.21944391,
                 10082.61483093,
                                   6996.96553454,
                                                    9829.40534825,
                  6407.26222178,
                                   9971.82132188,
                                                   9757.01618446,
                                                                    8614.84049875,
                  8437.92452169,
                                                   7752.65456507,
                                   6489.24658616,
                                                                    6626.60510856,
                  8329.88998217, 10412.00324329,
                                                    7342.77348105,
                                                                    8543.63624413,
```

```
In [33]: Results=pd.DataFrame(columns=['price','predicted'])
Results['price']=y_test
Results['predicted']=ypred
Results=Results.reset_index()
Results['ID']=Results.index
Results.head(15)
```

Out[33]:

	index	price	predicted	ID
0	481	7900	5994.517032	0
1	76	7900	7263.587267	1
2	1502	9400	9841.907549	2
3	669	8500	9699.316277	3
4	1409	9700	10014.198926	4
5	1414	9900	9630.587158	5
6	1089	9900	9649.449903	6
7	1507	9950	10092.981966	7
8	970	10700	9879.194987	8
9	1198	8999	9329.193479	9
10	1088	9890	10407.296406	10
11	576	7990	7716.917060	11
12	965	7380	7682.891525	12
13	1488	6800	6673.958110	13
14	1432	8900	9639.426188	14

```
In [34]: Results['price_diff']=Results.apply(lambda row: row.price - row.predicted,axis=1)
```

In [35]: Results

Out[35]:

	index	price	predicted	ID	price_diff
0	481	7900	5994.517032	0	1905.482968
1	76	7900	7263.587267	1	636.412733
2	1502	9400	9841.907549	2	-441.907549
3	669	8500	9699.316277	3	-1199.316277
4	1409	9700	10014.198926	4	-314.198926
503	291	10900	10007.364639	503	892.635361
504	596	5699	6390.174715	504	-691.174715
505	1489	9500	10079.478928	505	-579.478928
506	1436	6990	8363.337585	506	-1373.337585
507	575	10900	10344.486077	507	555.513923

508 rows × 5 columns

In []: