

VECTOR SPACE OF LINEAR TRANSFORMATIONS

Why

Can we think of linear maps as vectors?

Definitions

Suppose V and W are some vector spaces over a field \mathbf{F} . Denote the linear maps from V to W by $\mathcal{L}(V,W)$ as usual.

Addition. Given $S,T\in\mathcal{L}(V,W)$ the sum of S and T is the linear map $R\in\mathcal{L}(V,W)$ defined by

$$Rv = Sv + Tv$$
 for all $v \in V$

Scalar multiplication. Given $S \in \mathcal{L}(V, W)$ the (scalar) product of λ and T is the linear map $Q \in \mathcal{L}(V, W)$ defined by

$$Qv = \lambda Tv$$
 for all $v \in V$

Proposition 1. Suppose V and W are two vector spaces over the same field \mathbf{F} . Then $\mathcal{L}(V,W)$ is a vector space over the field \mathbf{F} with respect to the operations of addition and scalar multiplication just defined.

The additive identity of the vector space $\mathcal{L}(V, W)$ is the zero map $0 \in \mathcal{L}(V, w)$.

Notation

Given $S, T \in \mathcal{L}(V, W)$ the *sum* of S and T and $\lambda \in \mathbf{F}$, we denote the sum of S and T by S + T. Hence,

$$(S+T)(v) = Sv + Tv$$
 for all $v \in V$

We denote the product of λ and T by λT . Hence,

$$(\lambda T)(v) = \lambda (Tv)$$
 for all $v \in V$

