## Gradient Descent

## 1 11<sup>th</sup> Maths - Chapter 10

This is Problem-3.1 from Exercise 10.3

1. Reduce  $x - \sqrt{3}y + 8 = 0$  into normal form. Find its perpendicular distance from the origin and angle between perpendicular and the positive x-axis.

**Solution:** Equation for a line can be represented in parametric form as

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{1}$$

We choose

$$\mathbf{A} = \begin{pmatrix} -8\\0 \end{pmatrix} \tag{2}$$

$$\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{3}$$

yielding 
$$f(\lambda) = \frac{4}{3}\lambda^2 - 16\lambda + 64$$
 (4)

$$f'(\lambda) = \frac{8}{3}\lambda - 16\tag{5}$$

Computing  $\lambda_{min}$  using Gradient Descent method:

$$\lambda_{n+1} = \lambda_n - \alpha \nabla f(\lambda_n) \tag{6}$$

Choosing

- (a)  $\alpha = 0.001$
- (b) precision = 0.0000001

(c) 
$$n = 10000000$$

(d) 
$$\lambda_0 = -5$$

$$\lambda_{min} = 6 \tag{7}$$

Substituting the values of **A**, **m** and  $\lambda_{min}$  in equation (1)

$$\mathbf{x}_{min} = \mathbf{P} = \begin{pmatrix} -8\\0 \end{pmatrix} + 6 \begin{pmatrix} 1\\\frac{1}{\sqrt{3}} \end{pmatrix} \tag{8}$$

$$= \begin{pmatrix} -8\\0 \end{pmatrix} + \begin{pmatrix} 6\\\frac{6}{\sqrt{3}} \end{pmatrix} \tag{9}$$

$$= \begin{pmatrix} -2\\2\sqrt{3} \end{pmatrix} \tag{10}$$

$$OP = \|\mathbf{P} - \mathbf{O}\|^2 \tag{11}$$

$$= \left\| \begin{pmatrix} -2\\2\sqrt{3} \end{pmatrix} - \begin{pmatrix} 0\\0 \end{pmatrix} \right\| \tag{12}$$

$$=\sqrt{2^2+12}=\sqrt{16}=4\tag{13}$$

The angle  $\theta$  made by this perpendicular with x-axis is given by

$$\theta = \tan^{-1} \left( \frac{2\sqrt{3}}{-2} \right) \tag{14}$$

$$= \tan^{-1}\left(-\sqrt{3}\right) \tag{15}$$

$$=120^{\circ}$$
 (16)

The normal form of equation for straight line is given by

$$\left(\frac{\cos 120^{\circ}}{\sin 120^{\circ}}\right)^{\top} \mathbf{x} = 4$$
(17)

The relevant figure is as shown in 1 and 2



Figure 1



Figure 2