

Обзор IT-систем: принципы работы современных компьютеров

Андрей Вахутинский

Заместитель начальника ІТ-отдела АО "ИНТЕКО"

План занятия

- 1. Введение
- 2. Что такое компьютер
- 3. <u>Из чего состоит компьютер</u>
- 4. <u>Hardware (аппаратное обеспечение)</u>
- 5. <u>Software (coφτ)</u>
- 6. Network (сеть)
- 7. <u>Storage (хранение данных)</u>
- 8. <u>Серверные, ЦОД</u>
- 9. <u>ИТ-системы</u>
- 10. Итоги
- 11. Домашнее задание

Введение

Информация и её ценность

Информация — любая совокупность сигналов, сведений (данных), которые какая-либо система воспринимает из окружающей среды, выдает в окружающую среду или сохраняется внутри определенной системы.

"Кто владеет информацией, тот владеет миром"

Натан Ротшильд.

Информационные технологии (ИТ)

Основа ИТ — ИНФОРМАЦИЯ

Основные информационные процессы*:

- создание информации;
- хранение информации;
- обработка информации;
- передача информации;
- использование информации;
- защита информации.

^{*}Информационные процессы можно понимать как действия над данными

Развитие системного администратора

Базовые знания и навыки

- знать как устроен компьютер/сервер;
- базовые знания офисного ПО;
- администрирование ОС (Windows и/или Linux);
- базовые знания сетей (иногда телефонии);
- базовое серверное ПО (почта, файловое хранилище);
- базовые знания ПО для мониторинга (проактивность);
- английский язык.

Современные тренды

- виртуализация;
- контейнеризация;
- облачные решения;
- автоматизация;
- инструменты CI/CD;
- и многое другое...

Что такое компьютер?

Определение компьютера

Компью́тер — устройство или система, способная выполнять заданную, чётко определённую, изменяемую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако сюда относятся и операции ввода-вывода.

Примеры компьютеров:

- домашний ПК, игровой ПК;
- ноутбук, нетбук, ультрабук;
- рабочая станция;
- игровая приставка (Sony PS);
- моноблок;
- медиацентр;
- планшет;
- смартфон;
- умные часы.

Компьютеры и их взаимодействие с информацией

Информационные процессы	Тип устройств/компьютеров	Ключевые особенности устройств
Создание информации	персональный компьютерсмартфон/планшет	просто пользоватьсянизкая ценаширокое распространение
Хранение информации	система хранения данных (СХД)файловое хранилищеоблачное хранилище	большой объем данныхотказоустойчивость
Обработка информации	сервер (железо/облако)компьютер (небольшие объёмы)	• высокая производительность
Передача информации	• сетевое оборудование (железо и/или сервер+ПО)	высокая пропускная способность
Защита информации	серверыспециализированное ПО	должны быть сертифицированы для этих задач

Из чего состоит компьютер

Из чего состоит компьютер

1. Hardware

Можно потрогать руками

- материнская плата
- процессор
- память
- диски
- и др.

2. Software

Набор команд для hardware

- Системное ПО
 - a. операционная система: Windows, MacOS, Linux
 - b. драйверы
- Прикладное ПО
 - а. офисные приложения
 - b. графические редакторы
 - с. и др.

Hardware

Аппаратное обеспечение

Hardware

Аппаратное обеспечение, аппаратные средства, компьютерные комплектующие, «железо» (англ. hardware) — электронные и механические части вычислительного устройства, входящие в состав системы или сети, **исключая** ПО и данные.

Основные компоненты персонального компьютера Графическая Жёсткий диск Сетевой адаптер Оперативная память Процессор Блок питания Система охлаждения Корпус Материнская плата

Hardware

Название устройства	Выполняемая функция	
Материнская плата	Физическое объединение всех модулей компьютера.	
Чипсет (Chipset)	Набор микросхем на материнской плате, определяющий взаимодействие CPU, памяти, какие интерфейсы на мат.плате и функциональность в целом.	
Процессор (СРU)	Производит вычисления (выполнение машинных инструкций).	
Оперативная память (RAM)	Содержит данные ОС, запущенные программы и их данные для оперативного доступа к ним. Данные хранятся только пока на модуль подаётся напряжение.	
Жесткий диск (HDD, SSD)	Хранит данные для дальнейшего доступа к ним. Данные хранятся даже когда напряжение на диск не подаётся.	
Видеокарта (Videocard)	Вывод изображения на экран (базовая функция). Большинство современных видеокарт имеют встроенный графический процессор, который производит обработку данных, снимая эту задачу с СРU (например, для игр или обработки графики в 3D моделировании).	
Система охлаждения	Охлаждение CPU, chipset на материнской плате, процессора видеокарты.	

Материнская плата

Основные части материнской платы:

- разъём процессора (ЦПУ);
- разъёмы оперативной памяти (ОЗУ);
- микросхемы чипсета;
- загрузочное ПЗУ;
- контроллеры шин и их слоты расширения;
- контроллеры и интерфейсы периферийных устройств.

Материнская плата с сопряженными устройствами монтируется внутри корпуса с блоком питания и системой охлаждения, формируя в совокупности системный блок компьютера.

Материнская плата — сокет

Разъём центрального процессора (англ. CPU socket, сокет) — гнездовой или щелевой разъём (гнездо) в материнской плате, предназначенный для установки в него центрального процессора.

Использование разъёма вместо непосредственного припаивания процессора на материнской плате упрощает замену процессора для проведения модернизации или ремонта компьютера, а также значительно снижает стоимость материнской платы. В некоторых ноутбуках процессоры припаяны.

Материнская плата — сокет

Примеры сокетов:

- Socket H3 (LGA1150);
- Socket R3 (LGA2011-3);
- Socket H4 (LGA 1151);
- Socket R4 (LGA 2066).

Подробнее о сокетах >>

Чипсет

Чипсет — набор микросхем, является основой платформы / материнской платы.

Что делает?

Определяет в компьютере его быстродействие, расширяемость, стабильность работы, модернизируемость, сферу применения и т.д.

• Как опознать?

Название состоит из нескольких букв и цифр: H410, Q470 (Intel), VX855 (VIA) Основные производители: Intel, NVidia, AMD, SiS

Чипсет

B Intel Sandy Bridge* (2011 г.) северный мост был полностью заменен system agent, который фактически выполнял все функции северного моста и при этом был интегрирован в кристалл процессора, находясь вместе с ядрами процессора, контроллером памяти и графическим процессором.

*Sandy Bridge — название процессора Intel

Процессор

Центра́льный проце́ссор (ЦП; англ. central processing unit, CPU) — электронный блок либо интегральная схема, исполняющая код программ, главная часть аппаратного обеспечения компьютера.

Главные характеристики ЦПУ:

- тактовая частота;
- производительность;
- энергопотребление;
- нормы литографического процесса (нм).

Источник: wikipedia.org

Процессор

Основная отличительная особенность – техпроцесс, то есть размер транзисторов, используемых в производстве чипа. Показатель измеряется в нанометрах (*нм*).

Транзисторы являются базой для ЦП:

чем больше их размещено на кремниевой подложке, тем мощнее конкретный экземпляр чипа.

Источник: xdrv.ru

Процессор

Возьмем 2 модели устройств от Intel: **Core i7 2600k** и **Core i7 7700k**.

Оба имеют 4 ядра в процессоре, однако техпроцесс существенно отличается: **32 нм** против **14 нм** соответственно при одинаковой площади кристалла.

У Core i7 7700k (14 нм):

- базовая частота выше;
- тепловыделение ниже;
- набор исполняемых инструкций шире;
- тах пропускная способность памяти больше;
- поддержка большего числа функций.

То есть, снижение нм = рост производительности.

Оперативная память (RAM)

Оперативная память (англ. Random Access Memory, RAM, память с произвольным доступом, ОЗУ) — энергозависимая часть системы компьютерной памяти.

В RAM во время работы компьютера хранится выполняемый машинный код, а также входные, выходные и промежуточные данные, обрабатываемые процессором.

RAM позволяет единовременно получить доступ к любой ячейке на чтение или запись — всегда за одно и то же время, вне зависимости от расположения.

Оперативная память (RAM)

Особенность RAM:

- Содержащиеся в полупроводниковой оперативной памяти данные доступны и сохраняются только тогда, когда на модули памяти подаётся напряжение.
- Выключение питания оперативной памяти, даже кратковременное, приводит к искажению либо полному разрушению хранимой информации.

Оперативная память (DRAM)

DRAM (англ. dynamic random access memory) — динамическая память с произвольным доступом.

DRAM состоит из ячеек, созданных в полупроводниковом материале в виде емкости. Заряженная или разряженная емкость хранит бит данных. Каждая ячейка такой памяти имеет свойство разряжаться (из-за токов утечки), поэтому их постоянно надо подзаряжать — отсюда название **«динамическая»** (динамически подзаряжать).

DDR → DDR2 → DDR3 → DDR4 — увеличение скорости, ниже энергопотребление.

Основными характеристиками DRAM являются рабочая частота и тайминги — измеряются в наносекундах или тактах. Чем меньше величина тайминга, тем быстрее будет работать оперативная память.

Оперативная память (ЕСС)

ЕСС-память (англ. error-correcting code memory, память с коррекцией ошибок) — тип компьютерной памяти, которая автоматически распознаёт и исправляет спонтанно возникшие изменения (ошибки) битов памяти. Память, не поддерживающая коррекцию ошибок, обозначается **non-ECC**.

ЕСС-память защищает от некорректной работы компьютерной системы в связи с порчей памяти и уменьшает вероятность фатального отказа системы. Такая память используется в системах, в которых важна бесперебойная и корректная работа.

Оперативная память

Жесткий диск

Жёсткий диск (англ. hard disk drive, HDD, винчестер) — устройство хранения информации, накопитель, произвольного доступа, основанное на принципе магнитной записи.

Характеристика	Описание	
Интерфейс (разъём + правила обмена)	Внутренние: SATA-3, SATA-6, SAS, SATA Express Внешние: eSATA, USB 2.0, USB 3.0 (чаще - через плату-переходник)	
Ёмкость	Количество данных, которые могут храниться накопителем	
Размер (форм- фактор)	3,5", 2,5", M.2 (для SSD)	
Скорость вращения шпинделя	5400, 7200 (ноутбуки); 7200 (персональные компьютеры); 7200, 10000, 15000 об./мин. (серверы и рабочие станции)	
IOPS (кол-во операций ввода-вывода/сек)	Параметр используется для оценки производительности HDD — 75-210 IOPS SSD SATA — 8000-120000 IOPS	

Жесткий диск — SSD

Твердотельный накопитель (англ. Solid-State Drive, SSD) —

компьютерное энергонезависимое немеханическое запоминающее устройство на основе микросхем памяти, альтернатива HDD.

Тип диска	Плюсы	Минусы
HDD	 низкая цена большое (почти бесконечное) количество циклов перезаписи выход из строя не мгновенный 	низкая скоростьвысокое энергопотреблениеналичие движущихся частей
SSD	 лучшее соотношение цена/скорость IOPS выше, скорость выше отсутствие шума, ниже энергопотребление 	 ограниченное количество циклов перезаписи цена выше HDD выход из строя внезапный сложность восстановления информации

Жесткий диск

HDD 2,5"

(корпус открыт)

SSD SATA

Видеокарта

Видеокарта (графический ускоритель) — устройство, которое занимается формированием графического образа и последующей передачей на экран. Производит обработку данных, снимая эту задачу с центрального процессора компьютера.

Бывают встроенными или дискретными.

В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Отличия компьютера и сервера

Сервер — компьютер, выделенный для выполнения какой-либо сервисной задачи без непосредственного участия человека.

Любой сервер — компьютер, но не любой компьютер — сервер.

Различия	Особенности сервера	
По функционалу	Работает без участия человека, выполняет определённую функцию (хранение данных, обработка данных, обработка запросов, и т.д.)	
По железу	Серверное железо часто более надёжное, мощное	
По форм-фактору	Чаще всего другие корпуса - для установки в стойку в серверной	
По масштабируемости/ расширяемости	На уровне железа поддерживается намного больше памяти, больше дисков, несколько процессоров, 2 блока питания	
По управляемости	Осуществление удалённого доступа к выключенному серверу	
По вендору	Чаще всего - известный производитель (вендор) - HP, Dell, Fujitsu комплектующие подобраны для максимальной стабильности и производительности	

Software

Системное и прикладное ПО

Системное ПО - BIOS/UEFI

BIOS — это Basic Input-Output system, базовая система ввода-вывода. Это программа низкого уровня, хранящаяся на чипе материнской платы вашего компьютера. BIOS загружается при включении компьютера и отвечает за пробуждение его аппаратных компонентов, убеждается в том, что они правильно работают, а потом запускает программу-загрузчик, запускающую операционную систему

UEFI — Unified Extensible Firmware Interface — унифицированный интерфейс расширяемой прошивки. Основное преимущество — может загружаться с дисков объёмом более 2,2 Тб (BIOS не может), плюс имеет намного больше возможностей.

Системное ПО — ОС

Операционная система — комплекс системных программ, расширяющий возможности вычислительной системы, а также обеспечивающий управление её ресурсами, загрузку и выполнение прикладных программ, взаимодействие с пользователями.

Самые популярные ОС на компьютере: Windows, Linux, MacOS

На телефонах также есть ОС: iOS, Android

Основные функции ОС:

- загрузка приложений в оперативную память и их выполнение;
- стандартизованный доступ к периферийным устройствам (устройства вводавывода);
- управление оперативной памятью (распределение между процессами, виртуальная память);
- управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, компакт-диск и т. д.), организованным в той или иной файловой системе;
- пользовательский интерфейс.

Системное ПО — драйверы

Дра́йвер (англ. driver) — ПО, с помощью которого операционная система получает доступ к аппаратному обеспечению некоторого устройства.

Обычно с операционными системами поставляются драйверы для ключевых компонентов аппаратного обеспечения, без которых система не сможет работать. Для некоторых устройств могут потребоваться специальные драйверы.

Драйвер не всегда управляет физическим устройством: он может их только имитировать (например, драйвер принтера, который записывает вывод из программ в файл PDF).

Прикладное ПО

Прикладная программа, или **приложение**, — программа, предназначенная для выполнения определённых задач и рассчитанная на непосредственное взаимодействие с пользователем. В большинстве операционных систем прикладные программы не могут обращаться к ресурсам компьютера напрямую, а взаимодействуют с оборудованием и другими программами посредством операционной системы.

Цель любого ПО — решить задачу пользователя (автоматизировать, оптимизировать, преобразовать, и т.д.)

Примеры прикладного ПО:

- текстовые и графические редакторы, электронные таблицы;
- веб-браузеры;
- видеоплееры, аудиоплееры, видео- и аудиоредакторы;
- ПО для 3D проектирования;
- архиваторы, конвертеры разных форматов;
- и др.

Network

Сеть

Network

Сеть нужна для объединения разных устройств с целью передачи информации от одного устройства другому.

Процесс передачи, если сильно упростить, очень похож на обычную почту: есть отправитель данных, есть получатель, есть их адреса, есть данные, которые необходимо передать.

Кроме отправителя и получателя есть ещё промежуточные узлы (коммутаторы и маршрутизаторы), основная задача которых — отправить пакет дальше по цепочке.

Виды сетей

Сети можно поделить на 2 типа:

- глобальные сети;
- локальные сети.

И те сети, и те созданы для передачи информации.

Локальная сеть — внутри здания (например, дома, в офисе) *Глобальная сеть* — между зданиями, городами, странами (интернет)

Network — среда, ограничения

Среда передачи данных — то, через что физически передаётся информация.

В большинстве случае это оптический кабель, медный кабель, воздух.

Устройства, передающие пакеты, могут также преобразовывать интерфейсы. *Например, домашний роутер:* телефон или ноутбук подключен по WiFi к роутеру, сам роутер к провайдеру по оптике или по меди.

Серверы могут подключаться как медью, так и оптикой.

При этом существуют различные ограничения.

Например, медью на скорости 1Гбит/сек нельзя подключить на расстояние больше 100м, на скорости 10 Гбит/сек — ещё меньше (зависит от стандарта). При этом по *оптике* можно подключать на несколько километров, и по одному и тому же проводу можно передавать данные на скоростях 1Гбит/сек, 10Гбит/сек, 40Гбит/сек, просто заменив приёмо-передающие модули.

Storage

Хранение данных

Storage

Движущей силой для развития сетей хранения данных стал взрывной рост объёма деловой информации (электронная почта, базы данных и высоконагруженные файловые серверы), требующей высокоскоростного доступа к дисковым устройствам

Место хранения	Минусы		
На компьютере пользователя	Данные могут пропасть из-за сбоя одного диска		
На дисковом массиве у пользователя	Компьютер должен быть всегда включен, если несколько таких компьютеров — сложно управлять		
На дисковом массиве на сервере	Ограниченное количество дисков на сервере		
На специальных системах хранения данных , которые подключаются к серверу	Сложность конфигурации		

Дисковый массив (RAID массив) — несколько дисков, объединённых с помощью специальных алгоритмов для увеличения скорости и/или отказоустойчивости.

Storage — сети хранения

Сети хранения помогают повысить эффективность использования ресурсов систем хранения, поскольку дают возможность выделить любой ресурс любому узлу сети.

Совместное использование систем хранения, как правило, упрощает администрирование и добавляет изрядную гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому.

Storage — лента

Накопитель на магнитной ленте, поддерживающий работу одновременно с несколькими лентами, называется **ленточной библиотекой**. Роботизированные ленточные библиотеки могут содержать хранилища с тысячами магнитных лент, из которых робот автоматически достаёт требуемые ленты и устанавливает в одно или несколько устройств чтения-записи.

С программной точки зрения такая библиотека выглядит, как один накопитель с огромной ёмкостью и значительным временем произвольного доступа. Кассеты в ленточной библиотеке идентифицируются специальными наклейками со штрих-кодом, который считывает робот.

Серверные, ЦОД

Серверные

При установке серверов в офисе, мы имеем следующие особенности:

- шум;
- пыль вредна для техники;
- тепловыделение от серверов;
- неограниченный доступ.

Вывод — нужно отдельное помещение

Требования к серверной комнате:

- изолированность;
- контроль доступа;
- охлаждение (кондиционеры);
- система тушения пожаров.

ЦОД

Дата-центр (от англ. data center), или центр обработки данных (ЦОД) — это специализированное здание для размещения (хостинга) серверного и сетевого оборудования и подключения абонентов к каналам сети (Интернет или точка-точка). Требования к таким помещениям становятся ещё жёстче, чем к простым серверным, т.к. при переносе всей инфраструктуры в одно место, мы должны быть уверены у его устойчивости к различным проблемам (отключение электричества, интернета, и т.д.) Основной показатель работы ЦОД — отказоустойчивость. Специально был разработан показатель надежности: Tier.

Уровень Tier	Tier 1	Tier 2	Tier 3	Tier 4
Каналы питания	1	1	1+1 (резерв)	2
Сменность работы персонала	-	1 смена	> 1 смены	24x7x365
Одновременная эксплуатация и ТО	-	-	+	+
Допустимое время простоя (в год)	28,8 часа	22,0 часа	1,6 часа	0,4 часа
Бесперебойное охлаждение	_	-	+/-	+

ЦОД

ИТ-системы

ИТ-системы

Информационная система (ИС) — система, предназначенная для хранения, поиска и обработки информации, и соответствующие организационные ресурсы (человеческие, технические, финансовые и т.д.), которые обеспечивают и распространяют информацию

Люди, оборудование и информация образовывают ИТ-систему.

ИТ-системы

Примеры ИТ-систем:

- бухгалтерская программа 1С;
- банковское приложение (в мобильном или онлайн);
- брокерская система для торговли акциями;
- система заказа такси;
- соцсеть (VK, FB, и т.д.);
- мессенджеры (Telegram, Whatsapp, и т.д.);
- поисковая система (Яндекс, Google, и т.д.);
- доски объявлений (Avito);
- системы заказов билетов;
- и многое другое...

Наша задача как администраторов — чтобы это всё работало и развивалось.

В идеале хороший ИТ-специалист решает задачи бизнеса (рост прибыли, количества клиентов) через ИТ, а не просто настраивает оборудование и ПО.

Итоги

Итоги

Сегодня мы узнали:

- немного о системном администрировании;
- из чего состоит компьютер;
- для чего он нужен;
- какие задачи выполняет;
- что происходит с данными (передача, обработка, хранение) со стороны администратора;
- ИТ-системы что это и причём здесь мы.

Домашнее задание

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера
 Slack.
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Материалы для дальнейшего изучения

- <u>Уолтер Айзексон Инноваторы. Как несколько гениев, хакеров и гиков</u> <u>совершили цифровую революцию</u>
- Хабр Процессоры, ядра и потоки. Топология систем
- <u>IT-Tehnik Что такое ядра процессора, как их выбрать для разных задач</u> и на что они влияют

Задавайте вопросы и пишите отзыв о лекции!

Андрей Вахутинский