

This is the final project for the data science course: It is only a testing project, no real results and outputs are generated thus the developed models should not be used for any interpretation!

Need for predicting traffic collision severity

Need for predicting traffic collision severity - Distribution of resources is cruial for post-crash survival

- Road traffic crashes: high morbidity and mortality rates
 - Especially high burden for low income countries
- Prevention strategies to reduce mortality
 - Interventions: speed management, infrustructure, vehicle safety, traffic legislation
- Post-crash survival
 - Health care resources as limited factor: districtuion of resources is crucial

Methodology - Data

- Data source: Seattle Department of Transportation
 - https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv
- Target variable: Traffic collision severity
 - Property damage only
 - Injury
- Attributes: First available information
 - Involvement of objects/persons: Number of vehicles, number of persons, bicycles, pedestrians
 - Environmental factors: Weather and light condition
 - Infrastructural factors: Road condition, relation to junction

Methodology – Pre-processing

- Missing values: Missing mechanism for variables with rates > 5 % is MAR
- Feature selection
 - Reducing redundancy
 - Excluding identifier
 - Excluding geographical and time data
- Balancing
 - Inclusion in the final model algorithm

Environmental factors seem not to be crucial for more severe collisions

Junctions are rather related to collisions with property damage only

Involvement of pedestrians and/or bicycles are crucial for traffic collision severity

Modelling – Imbalanced dataset

- Balanced modelling shows a higher recall (true positive values) which is crucial for resource distribution
- Balanced modeling shows a lower precision which can be tolerated in the context of the resource distribution

Modelling – Evaluation metrics of balanced logistic regression

- Log loss 0.60
- Jaccard similarity score 0.65
- Precision for minority category (injury): 0.43
- Recall for minority category (injury): 0.65
- FI-Score for minority category (injury): 0.52

Need for predicting traffic collision severity - Conclusions

- Attributes can be used as targets for preventive strategies
- Resources can be allocated in the context of traffic collision severity
- Model needs to be evaluated and finalized as prediction performance is not as good as needed for the objective of re-distribute health care resources
- Only preliminary results!