1. Вывести $\neg(\exists x)[\varphi \land (\exists z)\psi] \lor (\forall y)\theta \vdash (\exists y)\theta \rightarrow (\forall x)[(\exists z)\neg\psi \lor \varphi]$

2. Доказать что введение \exists слева обратимо. Сначала докажем, что $(\exists x)\varphi \vdash \varphi$ выводимо:

$$\frac{\varphi \vdash \varphi}{(\exists x)\varphi \vdash \varphi}$$
 (вв \exists лев)

Теперь можно воспользоваться допустимым правилом:

$$\frac{\Gamma, (\exists x) \varphi \vdash \psi}{\Gamma, \varphi \vdash \psi} (\text{доп. выв.})$$

3. Доказать что введение \exists справа необратимо. Рассмотрим сигнатуру $\Sigma = (\leq^{(2)}; +^{(2)}, 0^{(0)}, 1^{(0)})$ и алгебраическую систему в этой сигнатуре: $\mathcal{A} = (\omega, \leq; +, 0, 1)$. Пусть "введение \exists справа обратимое правило, тогда верно

$$\frac{\vdash (\exists x)x \le 0}{\vdash x < 0}$$

следовательно $\vdash x \leq 0$ выводима и является тождественно истинной. Но $\vdash x \leq 0$ не является тождественно истинной секвенцией, так как существует состояние $\sigma : \sigma(x) = 1$, на котором формула $x \leq 0$ ложна.