Review of Chapter 2

Liang Ling E0220121@...

MATH@NUS

September 8, 2018

Table of Contents

Introduction to Matrices

Matrix Operations

Definition of Matrix

1 An $m \times n$ matrix can be written as

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} . \tag{1}$$

- ② Simply denoted by $A = (a_{ij})_{m \times n}$, where a_{ij} is the (i,j)-entry of **A**.
- A column matrix (vector) is a matrix with only one column. A row matrix (vector) is a matrix with only one row.
- **9** Square matrix, m = n.
- **1 A** is **diagonal** matrix $\Leftrightarrow a_{ij} = 0$ whenever $i \neq j$.
- **1** A is scalar matrix \Leftrightarrow A is diagonal matrix and $a_{ii} = c, \forall i, c$ constant.

Table of Contents

Introduction to Matrices

Matrix Operations

Equal, Additoin, Subtraction and Scalar Multiplicaton

- Two matrices are equal if they have the same size and their corresponding entries are equal.
- $\bullet \ \mathbf{A} = (a_{ij})_{m \times n}, \mathbf{B} = (b_{ij})_{m \times n}.$
 - **1** (Matrix Addition) $\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}$;
 - ② (Matrix Subtraction) $\mathbf{A} \mathbf{B} = (a_{ij} b_{ij})_{m \times n}$;
 - (Scalar Multiplication) $c\mathbf{A} = (ca_{ij})_{m \times n}$
- -A = (-1)A, A B = A + (-1)B.
- Note that all these operations required the sizes of matrices to be equal.

Theorem 2.2.6

Theorem

Let A, B, C be matrices of the same size and c, d scalars. Then

- (Commutative Law for Matrix Addition) $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$,
- **2** (Associative Law for Matrix Addition) $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$,
- $(c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A},$

- $oldsymbol{0}$ $\mathbf{A} \mathbf{A} = \mathbf{0}$, and
- **3** 0A = 0.

Matrix Multiplication

Let $\mathbf{A} = (a_{ij})_{m \times p}$ and $\mathbf{B} = (b_{ij})_{p \times n}$ be two matrices. The product \mathbf{AB} is defined to be an $m \times n$ matrix whose (i,j)—entry is

$$a_{i1}b1j + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj},$$

 $i = 1, 2, \cdots, m, \quad j = 1, 2, \cdots, n.$

Note that

- Be careful of the sizes of matrices.
- AB is not equal to BA (if the multiplications are defined) in general.
- Pre-multiplication of A to B: AB.
- **Operation** of A to B: BA.

Theorem 2.2.11

If the following all multiplications are defined.

Theorem

- **1** (Associative Law for Matrix Multiplication) A(BC) = (AB)C.
- ② (Distributive Law for Matrix Addition and Matrix Multiplication) $A(B_1 + B_2) = AB_1 + AB_2$ and $(C_1 + C_2)A = C_1A + C_2A$.
- $\mathbf{A}\mathbf{0} = \mathbf{0}, \mathbf{0}\mathbf{A} = \mathbf{0}, \mathbf{I}\mathbf{A} = \mathbf{A}\mathbf{I} = \mathbf{A}.$

8/8