

Homework 5 (Rcpp part I)

Select and solve 5 tasks from this list.

Include all the solutions in **one** R script file, see homework5_template.R for a template.

When you're done, send them via courses.ipipan.edu.pl.

All the scripts will be examined by plagiarism detection software.

Exercise 05.01. Write an Rcpp function lcs() to compute the length of the longest common subsequence of two numeric vectors.

Exercise 05.02. Write an Rcpp function sortedmerge() which merges two already sorted (nondecreasingly or nonincreasingly – two cases are possible) numeric vectors into a one, sorted vector. If incorrect data is provided, call stop() to throw an error.

Exercise 05.03. Write an Rcpp function naomit() to remove all missing values from a given numeric vector.

Exercise 05.04. Write an Rcpp function sample2() to generate a random subvector of length k of a given numeric vector \mathbf{x} (without replacement, something like sample(\mathbf{x} , \mathbf{k})).

Exercise 05.05. Write an Rcpp function randperm() to generate a random permutation of a given numeric vector.

Exercise 05.06. Write an Rcpp function NAimput() to impute all missing values found in a given nondecreasingly ordered numeric vector \mathbf{x} .

If there are any missing values at the beginning or at the end of \mathbf{x} , substitute them, respectively, for the first or last non-missing value. For example, if the input is (NA, NA, 4, 5, NA), then the output should be $(\mathbf{4}, \mathbf{4}, 4, 5, \mathbf{5})$

Otherwise, use a linear interpolation between the neighboring elements. For example, given (1, NA, 2, NA, NA, 3), we expect to get (1, 1.5, 2, 2.33, 2.67, 3).

