Übungsblatt 7

Entwicklung von Potenzreihen

Aufgabe 1

Nach dem Satz von Taylor gilt $f(x) = T_n(x) + R_n(x)$, wobei $T_n(x)$ das n-te Taylor-Polynom und

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x - x_0)^{n+1}$$

für ein z zwischen x und x_0 das Restglied ist. Zeigen Sie für $f(x) = e^x$, dass das Restglied gegen 0 konvergiert.

Wir schreiben $f(x) = e^x$ als Maclaurin-Polynom plus Restglied

$$f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{e^z}{(n+1)!} x^{n+1}.$$

Die Zahl z liegt zwischen 0 und x. Es folgt daraus

$$0 < e^z \le e^{|x|}.$$

Hierbei ist x eine fest gelegte Zahl, sodass wir uns nur um $\frac{x^{n+1}}{(n+1)!}$ kümmern müssen. Mit einer Indexverschiebung müssen wir nur zeigen, dass $\lim_{n\to\infty}\frac{x^n}{n!}$ für eine fest gelegte Zahl x gegen 0 konvergiert.

Wir wählen eine positive ganze Zahl k mit der Eigenschaft k > 2|x| aus.

D.h. für n > k gilt

$$0 < \frac{|x|^n}{n!} < \frac{|x|^k}{k!2^{n-k}}$$

und für $n \to \infty$ geht $\frac{|x|^k}{k!2^{n-k}}$ gegen 0.

Aufgabe 2

Bestimmen Sie jeweils die Maclaurin-Reihe der gegebenen Funktionen.

a)
$$g(x) = e^{\sqrt{x}}$$
 b) $h(x) = e^{(x^2)}$

b)
$$h(x) = e^{(x^2)}$$

Aus Teil a) konvergiert die Reihen

$$M_{e^x} = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

gegen der Funktion $f(x) = e^x$, sodass wir auch

$$f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

schreiben dürfen. Dies ist möglich, weil

$$f(x) = \lim(T_n(x) + R_n(x)) = \lim T_n(x).$$

Nun ist $g(x) = f(\sqrt{x})$ und $h(x) = f(x^2)$. Damit erhalten wir

$$M_{e^{\sqrt{x}}} = \sum_{k=0}^{\infty} \frac{(\sqrt{x})^k}{k!} = \sum_{k=0}^{\infty} \frac{x^{k/2}}{k!}$$

sowie

$$M_{e^{(x^2)}} = \sum_{k=0}^{\infty} \frac{(x^2)^k}{k!} = \sum_{k=0}^{\infty} \frac{x^{2k}}{k!}.$$

Aufgaben aus Edwards und Penney, Calculus and Analytic Geometry, Prentice-Hall (1986).