Thursday Reading Assessment: Unit 3, Magnetic Forces and Fields

Prof. Jordan C. Hanson

April 2, 2020

1 Memory Bank

- $\vec{F} = I\vec{L} \times \vec{B}$... Lorentz Force on a Current
- $B = (\mu_0 I)/(2\pi r)$... The magnetic field B caused by the current I a distance r away.
- $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$

Figure 1: (Left) A current-carrying rod suspended by springs in a B-field. (Right) Current 1 causes a B-field to exert a Lorentz force on wire 2. Note that the RHR-2 determines the vector direction of the B-field.

2 Force on a Wire

1. Consider Fig. 1 (left). A metal rod of mass m and length L is hung from the ceiling using two springs of spring constant k. A uniform magnetic field of magnitude B pointing perpendicular to the rod and spring exists in a region of space covering a length w of the copper rod. The ends of the rod are then connected by flexible copper wire across the terminals of a battery. Determine the change in the length Δy of the springs when a current I runs through the copper rod, in terms of the other given variables.

3 Ampere's Law

1. Consider Fig. 1, in which the current I_1 creates a B-field \vec{B} that encircles I_1 . Each wire has a length of 1 meter, is separated by 1 meter from the other, and carries a current of 1 amp in the same direction as the other. What is the force that I_1 exerts on I_2 ?