SIMPLIS-2-PSPICE Translator Information

MVHC Apps

Exported on 03/26/2025

Table of Contents

1	Installation	4
1.1	Installing Python	4
1.2	Installing PSPICE	4
1.3	Installing SIMPLIS	4
1.4	Downloading the SIMPLIS-2-PSPICE Translator	5
2	How to use the Translator	6
2.1	Getting the SIMPLIS Netlist	6
2.2	Running the Translator in Command Line	6
2.3	Verifying the PSPICE Model in Cadence	7
2.4	What if something didn't get translated?	8
3	About the Python Script	10
3.1	Script Structure	10
3.2	Typical Logic Flow for Translations	10
3.3	Functions	10
4	Translations	12
4.1	General Translations	12
4.2	Primitive translations that start with "X"	16
4.3	Primitive translations that start with "!"	92
5	Script Support Contact	96
6	Additional Files	97
6.1	Step-by-Step Guide	97
6 2	Intern Presentation - Translator Verification	97

Link to SIMPLIS-2-PSPICE Translator Release History¹

¹ https://confluence.itg.ti.com/display/LT30VAPPS/SIMPLIS-2-PSPICE+Translator+Release+History

1 Installation

Directions for installing necessary software tools.

1.1 Installing Python

Download Python Version 3.7 from ESD/

Anaconda is a python environment that is great to use when working on the python script.

Anaconda Installer - Anaconda (1).EXE2

1.2 Installing PSPICE

Approx time: 1-2 hours

- 1. Go to Flames/ → EDA Software Downloads
- 2. Scroll down to "Cadence Products" and click on Silicon Package Board
- 3. On this page is a link for installing Cadence Allegro, go to the link. https://flamessw.design.ti.com/sam/cadence/spb/17.4/
- 4. Download the 2 zip files called "Base_SPB17..." (wint_1of2 and wint_2of2). Extract both zip folders when they finish downloading.
- 5. Go to the "wint_1of2" folder and run the "setup" application.
- 6. Click Install for "OrCAD and Allegro Products Installation". This will start a long installation
- 7. Half-way through the installation, it will prompt you to select Disk2 folder. Browse to the wint_2of2 folder, open it and select the Disk2 folder. The installation will finish up (this takes a while).

```
If prompted for the license file path during installation, enter the license path setting according to your location;
```

US user groups SPB/PCB license path setting:

5280@lelvflames20.itg.ti.com

1.3 Installing SIMPLIS

1. Flames/ → EDA Software Downloads → Simplis/Simetrix

² https://confluence.itg.ti.com/download/attachments/300391857/Anaconda%20%281%29.EXE? api=v2&modificationDate=1597068313000&version=1

1.4 Downloading the SIMPLIS-2-PSPICE Translator

The latest release for the SIMPLIS-2-PSPICE Translator can be found on the following confluence page. SIMPLIS-2-PSPICE Translator Release History³

³ https://confluence.itg.ti.com/display/LT30VAPPS/SIMPLIS-2-PSPICE+Translator+Release+History

2 How to use the Translator

Directions for using the python script to translate a SIMPLIS netlist into a PSPICE netlist.

2.1 Getting the SIMPLIS Netlist

 In SIMPLIS, open the top level SIMPLIS schematic for the part that you want to translate. This should be set up to run simulations in SIMPLIS.

Screenshot: Top level view of SIMPLIS schematic for Justin Jr.

- 2. Simulator > Run Schematic. This will run a SIMPLIS simulation
- 3. Simulator > Edit Netlist (before preprocess)
- 4. Save this .net file (For convenient use, save it to the folder where the SIMPLIS_2_PSPICE_Translator.py is located)

2.2 Running the Translator in Command Line

- 1. In command line, use the command [cd <destination>] to navigate to the folder where the Translator and SIMPLIS netlist are stored.
- 2. Enter the following command, replacing SIMPLIS_NETLIST with the name of your netlist.

```
[ python SIMPLIS_2_PSPICE_Translator.py SIMPLIS_NETLIST.net
<PSPICE_NETLIST.lib> ]
```

a. The PSPICE_NETLIST argument is optional if you want to choose the name of the PSPICE netlist. Without the optional argument, the PSPICE netlist will be the same name as the SIMPLIS netlist, only with a different extension.

Command Prompt

```
Microsoft Windows [Version 10.0.18363.693]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\a0234155>cd Desktop

C:\Users\a0234155\Desktop>python SIMPLIS_2_PSPICE_Translator.py TPS54JA20_Startu

File path containing translator Translator Input file path c
```

Screenshot: Command used to run the SIMPLIS_2_PSPICE Translator on the SIMPLIS Netlist for Justin Jr. (TPS54JA20_Startup.net)

- 3. When the program completes (takes about 1 second typically), locate the produced PSPICE netlist.
 - a. The program will print out status checks to display which part of the netlist is being translated.
 - b. The output file of the PSPICE netlist is printed in the commnad window when the program completes.

```
C:\Users\a0234155\Desktop>python SIMPLIS_2_PSPICE_Translator.py TPS54JA20_Startup.net
File read in complete...
Global variables complete...
Node mapping for subckt TPS54JA20_TRANS complete...
Translating subckt TPS54JA20_TRANS complete...
Node mapping for subckt PG00D_OV_UV complete...
Translating subckt PG00D_OV_UV complete...
Node mapping for subckt MODE_SEL complete...
Subckt PG00D_OV_UV complete...
Node mapping for subckt MODE_SEL...
Subckt MODE_SEL complete...
Translating subckt Soft_Start complete...
Subckt MODE_SEL complete...
Node mapping for subckt AMUX complete...
Translating subckt AMUX...
Subckt Soft_Start complete...
Translating subckt AMUX...
Subckt AMUX complete...
Translating subckt HouseKeeping complete...
Translating subckt HouseKeeping complete...
Translating subckt HouseKeeping...
Subckt HouseKeeping complete...
Output file path of PSPICE netlist
Program complete.

C:\Users\a0234155\Desktop>
```

Screenshot: Output window after running the command. Pictured here for the Justin Jr, netlist.

2.3 Verifying the PSPICE Model in Cadence

- 1. Open the PSPICE netlist (.lib file) in PSPICE Model Editor
- 2. Click File > Export to Capture Part Library (This creates the PSPICE symbol automatically (.olb file) for the PSPICE netlist)
- 3. Open the PSPICE symbol (.olb file) in Capture CIS

Place the automatically generated symbol pins where you want them to go.

Screenshot: PSPICE symbol generated for the Justin Jr. PSPICE netlist

- 4. Create a top level PSPICE schematic and place your symbol inside to test it. This is the only manpower that needs to go into building circuitry by hand in PSPICE
- 5. Click New Simulation Profile and setup the simulation you want to run.
 - a. Go to Configuration Files > Library and add your PSPICE netlist to the design from this window. This ensures that your netlist will be associated with your simulation.
 - b. Go to Data Collection and ensure that "All" is selected for Voltages and Currents. This allows you to probe inside the netlist.
 - c. Go to Probe Window and check "Last Plot" and "Display Probe Window: During Simulation". This will allow you to debug the PSPICE simulation a lot guicker.
 - d. Click Apply then Ok to leave the Edit Simulation Profile window
- 6. Click PSPICE > Run to start the simulation
- 7. Debug the PSPICE netlist as needed using the results of the simulation. You may please visit following pages for help in debugging:
 - a. SIMPLIS-2-PSPICE Projects Learnings⁴
 - b. SIMPLIS-2-PSPICE Debugging Tips⁵

2.4 What if something didn't get translated?

In the case that the Translator was not able to find a translation for some primitive in the SIMPLIS netlist, a blank dummy subckt is created in the PSPICE netlist. Scroll to the bottom of any translated PSPICE netlist to see if any blank subcircuits were created. You can use the blank subcircuit to reference which primitive didn't get translated, then you can add your own PSPICE definition to the blank subckt. This is so that you can get your simulations up and running quickly in the event that a translation doesn't exist.

⁴ https://confluence.itg.ti.com/display/LT30VAPPS/SIMPLIS-2-PSPICE+Projects+Learnings

⁵ https://confluence.itg.ti.com/display/LT30VAPPS/SIMPLIS-2-PSPICE+Debugging+Tips

If you are handy with python, please add the PSPICE translation logic to the script for any new SIMPLIS primitives, so that the script has that capability for future uses. If you are not comfortable with python, please reach out to Gerold Dhanabalan with information about the new primitive so that he can add it to a queue of primitives that will go on future releases of the SIMPLIS-2-PSPICE Translator.

3 About the Python Script

3.1 Script Structure

- 1. Read and store the SIMPLIS netlist (.net file) in an array
- Concatenate all "+" lines in the netlist to the line they are associated with. Sometimes parameters for
 primitives can be written out on following lines. This is denoted by a "+" in the netlist. The script will
 concatenate all "+" lines onto the line they belong.
- 3. Translate all .globalvars and write them out as .PARAMS at the top level of the PSPICE netlist. If they are written abovethe first .subckt then they can be referenced by all following subckts.
- 4. Iterate through the array storing the SIMPLIS netlist and make translations based off of keywords. Create a blank subckt definition for any primitives that do not have translations.
 - a. Make general translations (i.e. the starts and ends of subcircuits)
 - i. Node mapping is done at the beginning of a user defined subckt
 - b. Translate primitives of SIMPLIS netlist lines that start with an "X"
 - c. Translate primitives of SIMPLIS netlist lines that start with an "!"
 - d. Append primities of SIMPLIS netlist lines that don't need a translation
- 5. Limit all ROFF and RON values in the array storing the PSPICE netlist to 1T, so that ROFF and RON are not greater than 1/GMIN (the default GMIN value in PSPICE is 1E-12, hence the 1T limit).
- 6. Append subcircuit definitions
- 7. Append blank subcircuits defintions for missing primitives.
- 8. Write out the translated PSPICE netlist (.lib file)

3.2 Typical Logic Flow for Translations

- Split up the elements of the SIMPLIS line to be translated into array2
- 2. Iterate through array2 to gather parameters from the SIMPLIS line
- 3. Build the PSPICE translation in array3 using information from array2
- 4. Write out array3 into one line, ensuring that the PSPICE maximum character limit is not breached
- 5. Add needed subckt definitions for the primitive, if they have not already been added

3.3 Functions

There are a number of functions in the script that will be extremely useful to anyone who is adding logic for new primitives.

For more information about these functions, see the comments for each function in the python file (SIMPLIS_2_PSPICE_Translator.py).

4 Translations

4.1 General Translations

Туре	Search Word	SIMPLIS	PSPICE	Parameters in Use	Notes
Type of primi tive Check the box if this translatio n has been added to the script.	The keyword in SIMPLIS that the script looks for to make the translati on.	SIMPLIS netlist example and any following lines that are used in translation	PSPICE equivalent netlist and associated subcircuit definitions.	List of parameters that are being used in the translation	Any other notes

Туре	Search Word	SIMPLIS	PSPICE	Parameters in Use	Notes
	The search word(s) can also be used to search for this logic block in the python script. Copy and paste the search word into the Find tool in a text editor to quickly jump to this spot in the code. Include the quotatio n marks for greater precision .				
Start of User Creat ed Subc ircuit	".subckt"	.subckt NAME node1 node2 node3	.subckt NAME node1 node2 node3		

Тур)e	Search Word	SIMPLIS	PSPICE	Parameters in Use	Notes
>	End of User Creat ed Subc ircuit	".ends " + subckt_n ame	.ends NAME	.ends NAME		
V	Glob al Varia bles	".globalv ar"	.globalvar NAME VALUE	.PARAM NAME VALUE		• Global variables are handled prior to the first subckt translation, so that the .PARAM will be referencable by all subcircuits below.
>	Loca I Varia bles	".var"	.var NAME VALUE	.PARAM NAME VALUE		• Local variables are written within .subck t translations and are local to that .sucbkt
~	Volta ge Sour ce	"V"	V2 V+ V- Voltage	V2 V+ V- Voltage		
>	Curr ent Sour ce	" "	I1 v+ v- Current	1 v+ v- Current		

Туре	Search Word	SIMPLIS	PSPICE	Parameters in Use	Notes
Resi stor	"R"	R_R24 n1 n2 VALUE	R_R24 n1 n2 VALUE		• Can not have a value of 0 PSPICE but it could in SIMPLIS. If VALUE is 0, then it is changed to 1E-6 in PSPICE.
Capa citor	"C"	C_F24 n1 n2 VALUE	C_F24 n1 n2 VALUE		Can not have a value of 0 PSPICE but it could in SIMPLIS. If VALUE is 0, then it is changed to 1E-6 in PSPICE.
✓ Indu ctor	"L"	L_124 n1 n2 VALUE	L_124 n1 n2 VALUE		Can not have a value of 0 PSPICE but it could in SIMPLIS. If VALUE is 0, then it is changed to 1E-6 in PSPICE.
Curr ent Cont rolle d Curr ent Sour ce	"F"	F2 node1 node2 VF2\$TP_CCCS 1 VF2\$TP_CCCS cc+ cc- 0	F2 node1 node2 VF2\$TP_CCCS 1 VF2\$TP_CCCS cc+ cc- 0		

Туре	Search Word	SIMPLIS	PSPICE	Parameters in Use	Notes
Volta ge Cont rolle d Curr ent Sour ce	"G"	G1 Vout+ Vout- Vc+ Vc- gain	G1 Vout+ Vout- Vc+ Vc- gain		
Curr ent Cont rolle d Volta ge Sour ce	"H"	H_U1_H1 3 4 VH_U1_H1 1 VH_U1_H1 1 2 0V	H_U1_H1 3 4 VH_U1_H1 1 VH_U1_H1 1 2 0V		
Volta ge Cont rolle d Volta ge Sour ce	"E"	E1 Vout+ Vout- Vc+ Vc- gain	E1 Vout+ Vout- Vc+ Vc- gain		

4.2 Primitive translations that start with "X"

Sum mer	"SIMPLI S_SUM MER2_ BB"	X\$U1 VOUT+ VOUT- VIN1 VIN2 SIMPLIS_SUMMER2 _BB vars: K1=1 K2=250m OFFSET=0 + USE_RIN=0 RIN=1G	E_ABM_U1 VOUT+ VOUT- VALUE {(K1*V(VIN1))+ (K2*V(VIN2))}	K1: Gain of VIN1 K2: Gain of VIN2	
---------	----------------------------------	---	--	-----------------------------------	--

Com "SIMPLI X\$U13 out inv_out VOH: X_U13_comp v+ vpara S DIGI1 ref v+ v-Logic out ref _COMP SIMPLIS_DIGI1_CO tor high COMPHYS2_BASIC_ _Y" or "SIMPLI with MP Y vars: IC=0 voltage **GEN PARAMS:** RIN=50G ROUT=10 com VOL: VDD=VOH VSS=VOL S_LOGI plim Logic low + HYSTWD=2m + VTHRESH=<((VDD-C_BB_C voltage ente VOL=0 VOH=3 VSS)/2)+VSS> OMP" · HYSTWD: DELAY=2p VHYS=HYSTWD Hysteresi outp **ROUT=ROUT** ut s voltage node X_U13_compNot out used with and the inv_out refer calculate INV_BASIC_GEN ence PARAMS: VDD=VOH paramete node VSS=VOL + VTHRESH=<((VDD-VTHRESH VSS)/2)+VSS> ROUT=ROUT compare input voltages .subckt ROUT: COMPHYS2_BASIC_ Output GEN INP INM OUT resistanc **REF PARAMS:** VDD=1 VSS=0 VTHRESH=0.5 VHYS=1u ROUT=1 EIN INP1 INM1 INP INM 1 EHYS INM2 INM1 VALUE { IF(V(1) > {VTHRESH}, -{VHYS}/2, {VHYS}/ 2)} **EOUT OUT REF** VALUE { IF(V(INP1)>V(INM 2), {VDD}, {VSS}) } R1 OUT 1 {ROUT} C1 1 REF 1E-9 RINP1 INP1 REF 10K RINM2 INM2 REF 10K .ENDS COMPHYS2_BASIC_ GEN

.SUBCKT INV_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 + DELAY=1n	
E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES H}, {VSS}, {VDD})} } RINT YINT Y {ROUT}	
CINT Y 0 {DELAY*1.3} .ENDS INV_BASIC_GEN	

Com "SIMPLI VOH: X_U13_comp v+ v-X\$U13 out inv_out para S DIGI1 out ref Logic V+ V-_COMP COMPHYS2_BASIC_ tor high SIMPLIS_DIGI1_CO with _N" **GEN PARAMS:** voltage MP_N vars: IC=0 VDD=VOH VSS=VOL com VOL: RIN=50G ROUT=10 plim Logic low + VTHRESH=<((VDD-+ HYSTWD=2m ente voltage VSS)/2)+VSS> VOL=0 VOH=3 · HYSTWD: VHYS=HYSTWD DELAY=2p outp Hysteresi ROUT=ROUT ut s voltage X_U13_compNot out node used with inv_out and the INV_BASIC_GEN calculate no PARAMS: VDD=VOH refer VSS=VOL paramete ence node + VTHRESH=<((VDD-VTHRESH VSS)/2)+VSS> ROUT=ROUT compare input .subckt voltages COMPHYS2_BASIC_ ROUT: GEN INP INM OUT Output **REF PARAMS:** resistanc VDD=1 VSS=0 VTHRESH=0.5 VHYS=1u ROUT=1 EIN INP1 INM1 INP INM 1 EHYS INM2 INM1 VALUE { IF(V(1) > {VTHRESH}, -{VHYS}/2, {VHYS}/ 2)} **EOUT OUT REF** VALUE { IF(V(INP1)>V(INM 2), {VDD}, {VSS}) } R1 OUT 1 {ROUT} C1 1 REF 1E-9 RINP1 INP1 REF 10K RINM2 INM2 REF 10K .ENDS COMPHYS2_BASIC_ **GEN**

.SUBCKT INV_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n
E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES H}, {VSS}, {VDD})} }
RINT YINT Y {ROUT}
CINT Y 0 {DELAY*1.3}
.ENDS INV_BASIC_GEN

Com para tor with dela y	"SIMPLI S_COM P"	X\$U1 out1 out2 in1 in2 SIMPLIS_COMP vars: IC=0 RIN=10Meg ROUT=1 HYSTWD=1u + VOL=0 VOH=3 DELAY=30n	X_U1 in1 in2 comp_out out2 COMPHYS2_BASIC_ GEN PARAMS: VDD=VOH VSS=VOL + VTHRESH=<[VOH-VOL]/2 + VOL> VHYS=HYSTWD ROUT=ROUT X_U1_delay comp_out out1 out2 BUF_DELAY_BASIC_ GEN PARAMS: VDD=VOH VSS=VOL + VTHRESH=<[VOH-VOL]/2 + VOL> DELAY=DELAY ROUT=ROUT .subckt COMPHYS2_BASIC_ GEN INP INM COMP_OUT REF PARAMS: VDD=1 VSS=0 VTHRESH=0.5 VHYS=1u + ROUT=1 EIN INP1 INM1 INP INM 1 EHYS INM2 INM1 VALUE { IF(V(1) > {VTHRESH}, - {VHYS}/2, {VHYS}/2) } EOUT COMP_OUT REF VALUE { IF(V(INP1)>V(INM 2), {VDD}, {VSS}) } R1 COMP_OUT 1 {ROUT} C1 1 REF 1E-9 RINP1 INP1 REF 10K RINM2 INM2 REF 10K	DELAY: Delay of the buffer. If DELAY=0 then no buffer is used. VOH: Logic high voltage VOL: Logic low voltage HYSTWD: Hysteresi s voltage used with the calculate d paramete r VTHRESH to compare input voltages ROUT: Output resistanc e	

.ENDS COMPHYS2_BASIC_ GEN
.subckt BUF_DELAY_BASIC_ GEN A Y REF PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1
E_ABMGATE1 YINT1 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VDD}, {VSS})} }
RINT YINT1 YINT2 1
CINT YINT2 REF {DELAY*1.3}
E_ABMGATE2 YINT3 REF VALUE { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} }
RINT2 YINT3 Y {ROUT}
CINT2 Y REF 1n
.ENDS BUF_DELAY_BASIC_ GEN

E_ABM_b3 9 0 VALUE { IF(V(b3)>{THRESH} , 8, 0) }
E_ABM_B B 0 VALUE { V(6)+V(7)+V(8)+V(9) }
E_ABM_OUT1 out1 ref VALUE { IF(V(A) <v(b), td="" voh,="" vol)="" }<=""></v(b),>
E_ABM_OUT2 out2 ref VALUE { IF(V(A)<=V(B), VOH, VOL) }
E_ABM_OUT3 out3 ref VALUE { IF(V(A)==V(B), VOH, VOL) }
E_ABM_OUT4 out4 ref VALUE { IF(V(A)>=V(B), VOH, VOL) }
E_ABM_OUT5 out5 ref VALUE { IF(V(A)>V(B), VOH, VOL) }
.ends DIGI_COMP_4IN_4IN

Com para tor Mod el

"TP_GA TE" Note: The script searche for CO MP" in the .MO DEL line after finding "TP_GA TE" to ensure that this is a compar ator model.

X\$U1 Y A U1\$TP_GATE .SUBCKT U1\$TP_GATE 1 2

!D1 1 0 2 3 NAME IC=0

V130 VCOMP

.MODEL NAME COMP RIN=10meg ROUT=41.67 HYSTWD=0.1 VOL=0 VOH=5

+ DELAY=1e-008

.ENDS

X U1 A Y COMP_MODEL_LOGI C PARAMS: VOH=VOH VOL=VOL VCOMP=VCOMP

+ VTHRESH=<\VOH-VOL]/2 + VOL>

.subckt COMP_MODEL_LOGI C A Y PARAMS: VOH=1 VOL=0 VCOMP=0.5 VTHRESH=0.5

V1 3 0 {VCOMP}

X_COMP A 3 Y 0 COMPHYS2_BASIC_ **GEN PARAMS:** VDD={VOH} VSS={VOL} VTHRESH={VTHRES H}

.ends COMP_MODEL_LOGI С

.subckt COMPHYS2_BASIC_ **GEN INP INM** COMP OUT REF PARAMS: VDD=1 VSS=0

+ VTHRESH=0.5 VHYS=1u ROUT=1

EIN INP1 INM1 INP INM₁

EHYS INM2 INM1 VALUE { IF(V(1) > {VTHRESH}, -{VHYS}/2, {VHYS}/ 2)}

EOUT COMP_OUT REF VALUE { IF(V(INP1)>V(INM 2), {VDD}, {VSS}) }

VCOMP: Comparin g the voltage of node A to this voltage

VOH: Logic high voltage

VOL: Logic low voltage

			R1 COMP_OUT 1 {ROUT} C1 1 REF 1E-9 RINP1 INP1 REF 10K RINM2 INM2 REF 10K .ENDS COMPHYS2_BASIC_ GEN	
Diod es	"X\$D"	X\$D1 node1 node2 *Diodes come in a lot of different forms depending on the diode model chosen in SIMPLIS. For all cases, one of 3 diodes will be selected in PSPICE. • If diode line contains "SMBD2835/ SIE", then choose PSPICE diode D_D1. • If diode line contains "DIODE_SPICE_ V2", then choose PSPICE diode D_D1. • If diode line contains "D10DE_SPICE_ diode D_D1. • If diode line contains "D1n4148", then choose PSPICE diode D_D2. • Else, choose the default PSPICE diode D_IDEAL.	X_D1 node1 node2 DIODE *DIODE: D_D1 .subckt D_D1 1 2 d1 1 2 dd1 .model dd1 d is=1e-15 rs=0.05 n=0.5 .ends D_D1 *DIODE: D_D2 .subckt D_D2 1 2 d1 1 2 dd2 .model dd2 d is=1e-15 tt=1e-11 rs=0.001 n=0.001 .ends D_D2 *DIODE: D_IDEAL .subckt D_IDEAL 1 2 d1 1 2 dd1 .model dd1 d is=1e-15 rs=0.005 n=1 .ends D_IDEAL	 Diode models need to be parameteriz ed in order to have the exact behavior of the SIMPLIS diode. These diode options should get you close to where you want to go, but feel free to alter the diode definitions in the produced PSPICE netlist to reflect your specific diode cases.

Y	Digit al Con stan t	"SIMPLI S_DIGI1 _D_CON STANT"	X\$U17 node SIMPLIS_DIGI1_D_C ONSTANTX\$U17 vars: VALUE=0	V_U17 node 0 VOLTAGE	 Utilizes the find_H_L_ THRESH() function to pull paramete rs VOH and VOL from another line in the netlist. VALUE=0: VOLTAGE is set to VOL VALUE=1: VOLTAGE is set to VOH 	
----------	---------------------------------	--	--	-------------------------	--	--

Volt age Cont rolle d Swit ch "VC_SW ITCH" X\$\$1 v+ v- ctrl+ ctrl-4 SIMPLIS_VC_SWITC H vars: ROFF=1G RON=1m + THRESHOLD=500m HYSTWD=100m IC='OPEN' LOGIC='POS'	S_S5 1 2 3 4 SIMPLIS_VC_SWITC H_S1 .MODEL SIMPLIS_VC_SWITC H_S1 VSWITCH ROFF=1G RON=1m VOFF= <th 2="" reshold-hystwd=""> + VON=<threshold +hystwd="" 2=""></threshold></th> <th> RON: On resistanc e ROFF: Off resistanc e THRESHO LD: Threshold voltage. Used with HYSTERE SIS to calculate VOFF and VON HYSTWD: Hysteresi s voltage. Used with THRESHO LD to calculate VOFF and VON LOGIC: If LOGIC='N EG', then switch VOFF and VON. </th>	+ VON= <threshold +hystwd="" 2=""></threshold>	 RON: On resistanc e ROFF: Off resistanc e THRESHO LD: Threshold voltage. Used with HYSTERE SIS to calculate VOFF and VON HYSTWD: Hysteresi s voltage. Used with THRESHO LD to calculate VOFF and VON LOGIC: If LOGIC='N EG', then switch VOFF and VON.
--	---	--	--

		1			
Swit ch VCV S	"SIMPLI S_SWIT CH_VC VS_BB"	X\$U3 VOUT RTN VIN CTRL SIMPLIS_SWITCH_V CVS_BB vars: THRESHOLD=1 + HYSTWD=100m IC=0 LOGIC='POS'	X_U3 VOUT RTN VIN CTRL SIMPLIS_SWITCH_V CVS PARAMS: VON= <threshold +HYSTWD/2> VOFF=<thresh- HYSTWD/2></thresh- </threshold 	THRESHO LD: Threshold voltage. Used with HYSTERE SIS to calculate VOFF and	Schematic for a SIMPLIS_SW ITCH_VCVS TRL
			.subckt SIMPLIS_SWITCH_V CVS vout rtn vin ctrl PARAMS: VON=0.6 VOFF=0.4	VON • HYSTWD: Hysteresi s voltage. Used with THRESHO	rin
			S1 VIN VOUT CTRL RTN SIMPLIS_VC_SWITC H1 .MODEL	LD to calculate VOFF and VON • LOGIC: If	
			SIMPLIS_VC_SWITC H1 VSWITCH ROFF=1G RON=1m VOFF={VOFF} VON={VON}	LOGIC='N EG', then switch VOFF and VON.	
			S2 VOUT RTN CTRL RTN SIMPLIS_VC_SWITC H2		
			.MODEL SIMPLIS_VC_SWITC H2 VSWITCH ROFF=1G RON=1m VOFF={VON} VON={VOFF}		
			.ends SIMPLIS_SWITCH_V CVS		

Volt "SIMPLI X\$S5 v+ v- vc+ vc-RSAT: X_S5 v+ v- vc+ vcage S VC O SIMPLIS_VC_QSWIT SIMPLIS_VC_QSWIT Saturatio SWITC Cont CH vars: CH PARAMS: rolle H" ROFF=1Mea ROFF=ROFF resistanc RSAT=50 TH=200m d RSAT=RSAT Tran ROFF: Off + HYSTWD=1m + VOFF=<THsisto resistanc VSAT=0 GAIN=10 HYSTWD/2> IC='OPEN' VON=<TH+HYSTWD Swit TH: LOGIC='POS' /2> VSAT=VSAT ch Threshold IFLOW='Bivoltage. directional' Used with .subckt HYSTERE SIMPLIS_VC_QSWIT POLARITY='Positive' SIS to CH vp vn vcp vcn LEVEL=2 calculate PARAMS: VOFF and ROFF=1Meg RSAT= VON 50 VOFF=0.6 HYSTWD: + VON=0.5 VSAT=0 Hysteresi S_on vp 2 vcp vcn s voltage. SIMPLIS_VC_SWITC Used with H1 **THRESHO** LD to .MODEL calculate SIMPLIS_VC_SWITC VOFF and H1 VSWITCH VON ROFF=1G RON=1m LOGIC: If VOFF={VOFF} LOGIC='N VON={VON} EG', then R_sat 2 3 {RSAT} switch V_sat 3 vn {VSAT} VOFF and VON. S_off vp 1 vcp vcn VSAT: SIMPLIS_VC_SWITC Saturatio H2 n voltage .MODEL that is SIMPLIS VC SWITC produced H2 VSWITCH when ROFF=1G RON=1m device is VOFF={VON} VON={VOFF} saturation R_off 1 vn {ROFF}

SIMPLIS_VC_QSWIT

CH

Layout showing the saturation path (a) and off path (b) of a transistor switch

Curr ent Cont rolle d Tran sisto r Swit ch	"SIMPLI S_CC_Q SWITC H"	X\$S2 v+ v- cc+ cc- SIMPLIS_CC_QSWIT CH vars: ROFF=1G RSAT=100k TH=0 HYSTWD=1p + VSAT=100m GAIN=1 IC='OPEN' LOGIC='POS' IFLOW='Uni- directional' + POLARITY='Positive' LEVEL=2	X_S2 v+ v- cc+ cc- SIMPLIS_CC_QSWIT CH PARAMS: ROFF=ROFF RSAT=RSAT + IOFF= <th- 2="" hystwd=""> ION=<th+hystwd 2=""> VSAT=VSAT .subckt SIMPLIS_CC_QSWIT CH vp vn ccp ccn PARAMS: ROFF=1Meg RSAT= 50 IOFF=0 + ION=-1E-3 VSAT=0 V_W_S ccp ccn 0V W_S2 vp 2 V_W_S ISW_S2 .MODEL ISW_S2 ISWITCH ROFF=1G RON=1m IOFF={IOFF} ION={ION} R_sat 2 3 {RSAT} V_sat 3 vn {VSAT} W_S1 vp 1 V_W_S ISW_S1 .MODEL ISW_S1 ISWITCH ROFF=1G RON=1m IOFF={ION} ION={IOFF} R_off 1 vn {ROFF} .ends SIMPLIS_CC_QSWIT CH</th+hystwd></th->	RSAT: Saturatio n resistanc e ROFF: Off resistanc e TH: Threshold current. Used with HYSTERE SIS to calculate IOFF and ION HYSTWD: Hysteresi s current. Used with THRESHO LD to calculate IOFF and ION LOGIC: If LOGIC='N EG', then switch IOFF and ION. VSAT: Saturatio n voltage that is produced when device is in saturation .

XOR "SIMPLI ROUT: X\$U25 xor xnor ref X_U25_xor A B xor S DIGI1 Output ΑВ XOR_BASIC_GEN XNO _XOR_Y resistanc SIMPLIS_DIGI1_XOR PARAMS: VDD=VOH " or R _Y vars: NumInv=0 VSS=VOL "SIMPL VOH: with VTHRESH=TH IC=0 RIN=10Meg refer IS_LOGI Logic ROUT=ROUT + ROUT=10 ence C_BB_X high DELAY=DELAY HYSTWD=500m OR" node voltage VOL=0 VOH=5 X_U25_xnor A B xnor VOL: DELAY=120p XNOR_BASIC_GEN Logic low TH=1.5 PARAMS: VDD=VOH voltage VSS=VOL TH: VTHRESH=TH Threshold ROUT=ROUT voltage. **DELAY=DELAY** Used to determine high or .SUBCKT low signal XOR_BASIC_GEN A DELAY: B Y PARAMS: VDD=1 Delay (in VSS=0 seconds) VTHRESH=0.5 can be ROUT=1 DELAY=1n represent **E_ABMGATE YINT 0** ed in $VALUE \{ \{IF((V(A) >$ Farads at {VTHRESH} & V(B) < the output {VTHRESH}) | capacitor by + (V(A) < {VTHRESH} multiplyin & V(B) {VTHRESH}), g it by {VDD}, {VSS})} } 1.3. RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS XOR_BASIC_GEN .SUBCKT XNOR_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n **E_ABMGATE YINT 0** VALUE { {IF((V(A) > {VTHRESH} & V(B) < {VTHRESH}) | + (V(A) < {VTHRESH} & V(B) {VTHRESH}),

{VSS}, {VDD}))} }

RINT YINT Y {ROUT}	
CINT Y 0 {DELAY*1.3}	
.ENDS XNOR_BASIC_GEN	

XOR
/
XNO
R
with
out
refer
ence
node

"SIMPLI S_DIGI1 _XOR_N

X\$U25 xor xnor A B SIMPLIS_DIGI1_XOR _Y vars: NumInv=0 IC=0 RIN=10Meg

+ ROUT=10 HYSTWD=500m VOL=0 VOH=5 DELAY=120p TH=1.5 X_U25_xor A B xor XOR_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH ROUT=ROUT DELAY=DELAY

X_U25_xnor A B xnor XNOR_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH ROUT=ROUT

+ DELAY=DELAY

.SUBCKT XOR_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n

E_ABMGATE YINT 0 VALUE { {IF((V(A) > {VTHRESH} & V(B) < {VTHRESH}) |

+ (V(A) < {VTHRESH} & V(B) {VTHRESH}), {VDD}, {VSS})} }

RINT YINT Y {ROUT}

CINT Y 0 {DELAY*1.3}

.ENDS XOR_BASIC_GEN

.SUBCKT XNOR_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF((V(A) >

{VTHRESH} & V(B) < {VTHRESH}) | NumInv: Number οf inverted inputs. The inputs are inverted in a backward s order, so the last input is inverted when NumInv= 1 and the first input isn't inverted unless all the inputs are

ROUT: Output resistanc

inverted.

- VOH: Logic high voltage
- VOL: Logic low voltage
- TH: Threshold voltage. Used to determine high or low signal

	+ (V(A) < {VTHRESH} & V(B) {VTHRESH}), {VSS}, {VDD})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS XNOR_BASIC_GEN	• DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3.	
--	--	--	--

AND "SIMPLI X\$U13 and out Available X_U13_and in1 in2 S DIGI1 nand out ref in1 in2 cases: 2 and out NAN _AND2_ SIMPLIS_DIGI1_AN inputs, 3, AND2_BASIC_GEN Y" or D D2 Y vars: 4, 5, 6, 7, PARAMS: VDD=VOH "SIMPLI NumInv=0 IC=1 with VSS=VOL refer S_LOGI NumInv: + RIN=10Meg + VTHRESH=TH Number ence C_BB_A ROUT=10 ROUT=ROUT of node ND2" HYSTWD=1 VOL=0 DELAY=DELAY inverted VOH=3 DELAY=2p inputs. X_U13_nand in1 in2 TH=1.5 nand out The NAND2_BASIC_GEN inputs are inverted PARAMS: VDD=VOH VSS=VOL in a backward + VTHRESH=TH s order. ROUT=ROUT so the DELAY=DELAY last input inverted .SUBCKT when AND2_BASIC_GEN A NumInv= B Y PARAMS: VDD=1 1 and the VSS=0 first input VTHRESH=0.5 isn't ROUT=1 DELAY=1n inverted E_ABMGATE YINT 0 unless all VALUE { {IF(V(A) > the inputs {VTHRESH} & V(B) > are {VTHRESH},{VDD}, inverted. {VSS})} } ROUT: RINT YINT Y {ROUT} Output resistanc CINT Y 0 {DELAY*1.3} VOH: .ENDS Logic AND2_BASIC_GEN high voltage VOL: .SUBCKT Logic low NAND2_BASIC_GEN voltage A B Y PARAMS: TH: VDD=1 VSS=0 Threshold VTHRESH=0.5 voltage. ROUT=1 DELAY=1n Used to **E_ABMGATE YINT 0** determine VALUE { {IF(V(A) > high or {VTHRESH} & V(B) > low signal

{VTHRESH},{VSS},

RINT YINT Y {ROUT}

{VDD})} }

	CINT Y 0 {DELAY*1.3} .ENDS NAND2_BASIC_GEN	• DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3.	
--	---	--	--

AND / NAN D with out refer ence ndoe

"SIMPLI S_DIGI1 _AND2_ N" X\$U13 and_out nand_out in1 in2 SIMPLIS_DIGI1_AN D2_N vars: NumInv=0 IC=1

> + RIN=10Meg ROUT=10 HYSTWD=1 VOL=0 VOH=3 DELAY=2p TH=1.5

X_U13_and in1 in2 and_out AND2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL

+ VTHRESH=TH ROUT=ROUT DELAY=DELAY

X_U13_nand in1 in2 nand_out NAND2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL

+ VTHRESH=TH ROUT=ROUT DELAY=DELAY

.SUBCKT AND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0

E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} & V(B) > {VTHRESH},{VDD}, {VSS})} }

RINT YINT Y {ROUT}

CINT Y 0 {DELAY*1.3}

.ENDS AND2_BASIC_GEN

.SUBCKT
NAND2_BASIC_GEN
A B Y PARAMS:
VDD=1 VSS=0
VTHRESH=0.5
ROUT=1 DELAY=1n
E_ABMGATE YINT 0
VALUE { {IF(V(A) >
{VTHRESH}, {VSS},
{VDD})} }
RINT YINT Y {ROUT}

- Available cases: 2 inputs, 3, 4, 9
- NumInv: Number of inverted inputs. The inputs are inverted in a backward s order. so the last input inverted when NumInv= 1 and the first input isn't inverted unless all the inputs are inverted.
- ROUT:
 Output
 resistanc
- VOH: Logic high voltage
- VOL: Logic low voltage
- TH:
 Threshold
 voltage.
 Used to
 determine
 high or
 low signal

		CINT Y 0 {DELAY*1.3} .ENDS NAND2_BASIC_GEN	• DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3.
_	X\$U25 out ref in1 in2 SIMPLIS_AND2 vars: IC=1 RIN=100Meg ROUT=1 TH=1 + HYSTWD=10m VOL=0 VOH=3 DELAY=1f	X_U25 in1 in2 out AND2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH ROUT =ROUT DELAY=DELAY .SUBCKT AND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH}, & V(B) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS AND2_BASIC_GEN	 Available cases: 2 inputs ROUT: Output resistanc e VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage. Used to determine high or low signal DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3.

OR/ "SIMPLI Available X\$U13 or_out X_U13_or in1 in2 NOR S DIGI1 cases: nor_out ref in1 in2 or_out _OR2_Y 2inputs, 3, with SIMPLIS DIGI1 OR2 OR2_BASIC_GEN " or refer 4, 5, 6, 7, _Y vars: NumInv=0 PARAMS: VDD=VOH "SIMPLI ence IC=1 VSS=VOL node S_LOGI NumInv: + RIN=10Meg + VTHRESH=TH Number C_BB_O ROUT=ROUT ROUT=10 R2" of HYSTWD=1 VOL=0 DELAY=DELAY inverted VOH=3 DELAY=2p inputs. X_U13_nor in1 in2 TH=1.5 nor out The NOR2_BASIC_GEN inputs are inverted PARAMS: VDD=VOH VSS=VOL in a backward + VTHRESH=TH s order. ROUT=ROUT so the **DELAY=DELAY** last input is inverted .SUBCKT when OR2_BASIC_GEN A B NumInv= Y PARAMS: VDD=1 1 and the VSS=0 first input VTHRESH=0.5 ROUT=1 isn't inverted + DELAY=1n unless all E ABMGATE YINT 0 the inputs VALUE { {IF(V(A) > are $\{VTHRESH\} \mid V(B) >$ inverted. {VTHRESH}, {VDD}, ROUT: {VSS})} } Output resistanc RINT YINT Y {ROUT} CINT Y 0 VOH: {DELAY*1.3} Logic .ENDS high voltage OR2_BASIC_GEN VOL: Logic low .SUBCKT voltage NOR2_BASIC_GEN A TH: B Y PARAMS: VDD=1 Threshold VSS=0 voltage. VTHRESH=0.5 Used to ROUT=1 determine high or + DELAY=1n

low signal

	E_ABMGATE YINT 0 VALUE { (IF(V(A) > {VTHRESH} V(B) > {VTHRESH}, {VSS}, {VDD})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS NOR2_BASIC_GEN	• DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3.	
--	---	--	--

OR/ NOR with out refer ence node

"SIMPLI S_DIGI1 _OR2_N

X\$U13 or_out nor_out in1 in2 SIMPLIS_DIGI1_OR2 _Y vars: NumInv=0 IC=1

+ RIN=10Meg ROUT=10 HYSTWD=1 VOL=0 VOH=3 DELAY=2p TH=1.5 X_U13_or in1 in2 or_out OR2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL

+ VTHRESH=TH ROUT=ROUT DELAY=DELAY

X_U13_nor in1 in2 nor_out NOR2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL

+ VTHRESH=TH ROUT=ROUT DELAY=DELAY

.SUBCKT
OR2_BASIC_GEN A B
Y PARAMS: VDD=1
VSS=0
VTHRESH=0.5
ROUT=1

+ DELAY=1n

E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} | V(B) > {VTHRESH}, {VDD}, {VSS})} }

RINT YINT Y {ROUT}

CINT Y 0 {DELAY*1.3}

.ENDS OR2_BASIC_GEN

.SUBCKT NOR2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} | V(B) > {VTHRESH}, {VSS}, {VDD})} } Available cases: 2inputs, 3, 4

NumInv: Number of inverted inputs. The inputs are inverted in a backward s order. so the last input inverted when NumInv= 1 and the first input isn't inverted unless all the inputs are inverted.

ROUT: Output resistanc

VOH: Logic high voltage

 VOL: Logic low voltage

TH:
Threshold
voltage.
Used to
determine
high or
low signal

			RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS NOR2_BASIC_GEN	• DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3.
✓ OR gate	"SIMPLI S_OR2"	X\$U25 out ref in1 in2 SIMPLIS_OR2 vars: IC=1 RIN=100Meg ROUT=1 TH=1 HYSTWD=10m VOL=0 VOH=3 DELAY=1f	X_U25 in1 in2 out OR2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH + ROUT=ROUT DELAY=DELAY .SUBCKT OR2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} V(B) > {VTHRESH},{VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS OR2_BASIC_GEN	 Avaialable e cases: 2inputs ROUT: Output resistance e VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage. Used to determine high or low signal DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3.

	1		I		
BUF/INV with refer ence node	"SIMPLI S_DIGI1 _BUF_Y" or "SIMPLI S_LOGI C_BB_B UF"	X\$U1 buf_out inv_out ref in SIMPLIS_DIGI1_BUF _Y vars: IC=1 RIN=10Meg ROUT=10 + HYSTWD=1 VOL=0 VOH=3 DELAY=2p TH=1.5	X_U1_buf in buf_out BUF_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH X_U1_inv in inv_out INV_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH .SUBCKT BUF_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES} H}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS BUF_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES} H}, {VDD}1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES} H}, {VSS}, {VDD}} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS INT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS INV_BASIC_GEN	VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage. Used to determine high or low signal ROUT: Output resistanc e DELAY: Effects output capacitan ce	

BUF with dela y	"SIMPLI S_BUFF ER"	X\$U24 out ref in SIMPLIS_BUFFER vars: IC=0 RIN=100Meg ROUT=1 TH=1.5 + HYSTWD=10m VOL=0 VOH=3 DELAY=12n	X_U24 in out ref BUF_DELAY_BASIC_ GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH + DELAY=DELAY ROUT=ROUT .subckt BUF_DELAY_BASIC_ GEN A Y REF PARAMS: VDD=1 VSS=0 VTHRESH=0.5 + DELAY=10n ROUT=1 E_ABMGATE1 YINT1 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT1 YINT2 1 CINT YINT2 REF {DELAY*1.3} E_ABMGATE2 YINT3 REF VALUE { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS	 VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage. Used to determine high or low signal DELAY: Delay (in seconds) can be represent ed in Farads at the output capacitor by multiplyin g it by 1.3. ROUT: Output resistanc e
-----------------	--------------------------	---	--	--

▼ INV gate	"SIMPLI S_INV"	X\$U6 A 0 Y SIMPLIS_INV vars: IC=0 RIN=10Meg ROUT=10 TH=2.5 HYSTWD=100m + VOL=0 VOH=5 DELAY=0	X_U6 A Y INV_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH .SUBCKT INV_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES H}, {VSS}, {VDD}})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS INV_BASIC_GEN	 VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage. Used to determine high or low signal
------------	-------------------	---	--	--

□ One "SIMPLI
Shot Shot S_1SHO T_BB* S_1SHO T_BB* S_1SHO T_BB* ONE_SHOT PARAMS: T=T_DUR find_H_L VTHRESH VTHRES H VTHRESH VTHRESH H Surars: T_DUR=200n VTHRESH-0.5 H VSS=0 VTHRESH-0.5 S_s1 meas 0 reset2 0 s1 e_abm1 oh 0 value { iff (v(in)=/VTHRESH), (VDD), (VSS)) } r_r2 reset2 reset 0.1 e_abm3 out 0 value { iff (v(ineas)=/VTHRESH, (VDD), (VSS)) } r_r1 meas ch {(t/(1E-9))} c_c2 0 reset2 1.4427n e_abm2 reset 0 value { iff (v(in)=/VTHRESH), (VDD), (VSS)) } onder shot pulse width S_1SHO T_ARMS: T=T_DUR the find_H_L VDD ind_HESH (vOL, and vTHRESH) function to pull paramete rs VOH. VOL, and vTHRESH from another line in the netlist. VOH: Logic high voltage vol

VCV S with limit er	"SIMPLI S_VCVS _WITH_ LIMITE R"	X\$U33 VOUT+ VOUT- VIN1 VIN2 SIMPLIS_VCVS_WIT H_LIMITERX\$U14 vars: GAIN=111m + MIN_OUTPUT=-100 m MAX_OUTPUT=100 m	E_ABM_33 VOUT+ VOUT- VALUE {LIMIT((GAIN*(V(VIN 1)-V(VIN2))), MIN_OUTPUT, MAX_ OUTPUT)}	GAIN: Gain of the VCVS MIN_OUT PUT: Minimum output limit. Anything under this value will be set to this value. MAX_OUT PUT: Maximum output limit. Anything over this value will be set to this value.
VCC S with limit er	"SIMPLI S_VCCS _WITH_ LIMITE R"	X\$U10 vout+ vout- in1 in2 SIMPLIS_VCCS_WIT H_LIMITERX\$U10 vars: GAIN=760u + MIN_OUTPUT=-12u MAX_OUTPUT=36u	G_ABMI_U10 vout+ vout- VALUE { LIMIT(GAIN*(V(in1) -V(in2)), MIN_OUTPUT, MAX_OUTPUT) }	 GAIN: Gain of the VCCS MIN_OUT PUT: Minimum output limit. Anything under this value will be set to this value. MAX_OUT PUT: Maximum output limit. Anything over this value will be set to this value.

CCV S with limit er	"SIMPLI S_CCVS _WITH_ LIMITE R"	X\$U21 vout+ vout- in1 in2 SIMPLIS_CCVS_WIT H_LIMITERX\$U21 vars: + GAIN={Rtrip_Gain/ 0.3} MIN_OUTPUT=4 MAX_OUTPUT=17.6	H_U21 h_out 0 VH_U21 GAIN VH_U21 in1 in2 0V E_ABM_U21 abm_out 0 VALUE { LIMIT(V(h_out), MAX_OUTPUT, MIN_OUTPUT) } E_U21 vout+ vout- abm_out 0 1	GAIN: Gain of the CCVS MIN_OUT PUT: Minimum output limit. Anything under this value will be set to this value. MAX_OUT PUT: Maximum output limit. Anything over this value will be set to this value.	
---------------------	---	---	---	---	--

✓ SR Latc h with refer ence node

or

S_LOGI

C_BB_S

RFF" or

"SIMPLI

S_SRFF"

"SIMPLI X\$U2 q qbar ref s r S DIGI1 SIMPLIS_DIGI1_SRL _SRLAT ATCH Y vars: IC=0 CH Y" RIN=10Mea ROUT=10 "SIMPLI

- + TH=1.5 HYSTWD=1 VOL=0 VOH=3 OUT DELAY=20p SET_RESET_LEVEL=
- + GNDREF='Y' DOM='S'

*S dominant

X_U2 s r q qbar srlatchshp_basic_ge n params: vdd=VOH vss=VOL vthresh=TH

*R dominant

X_U2 s r q qbar srlatchrhp_basic_ge n params: vdd=VOH vss=VOL vthresh=TH

*S dominant

.subckt srlatchshp_basic_ge n s r q qb params: vdd=1 vss=0 vthresh=0.5

gg 0 gint value = $\{ if(v(s) > \{vthresh\}, \}$ 5, if(v(r)>{vthresh}, -5, 0))}

cqint qint 0 1n rqint qint 0 1000meg d_d10 qint my5 d_d1

v1 my5 0 {vdd}

d_d11 myvss qint d_d1

v2 myvss 0 (vss)

eq qqq 0 qint 0 1

x3 qqq qqqd1 BUF_BASIC_GEN PARAMS: VDD={vdd} VSS={vss} VTHRESH={vthresh}

rqq qqqd1 q 1 eqb qbr 0 value = $\{if(v(q) > \{vthresh\},\$

{vss},{vdd})} rqb qbr qb 1

cdummy1 q 0 1n

cdummy2 qb 0 1n

DOM: Determin es S or R dominanc e. S is default. Can also be presented as DomType or not given at all. This will determine which subcircuit definition is used, the one for S dominant or the one for R dominant.

- VOH: Logic high value
- VOL: Logic low value
- TH: Threshold voltage

.ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01 .ends srlatchshp_basic_ge *R dominant .subckt srlatchrhp_basic_ge n s r q qb params: vdd=1 vss=0 vthresh=0.5 gq 0 qint value = $\{ if(v(r) > \{vthresh\}, \}$ -5, if(v(s)>{vthresh}, 5, 0))} cqint qint 0 1n rqint qint 0 1000meg d_d10 qint my5 d_d1 v1 my5 0 {vdd} d_d11 myvss qint d_d1 v2 myvss 0 {vss} eq qqq 0 qint 0 1 x3 qqq qqqd1 BUF_BASIC_GEN PARAMS: VDD={vdd} VSS={vss} VTHRESH={vthresh} rqq qqqd1 q 1 eqb qbr 0 value = $\{ if(v(q) > \{vthresh\}, \}$ {vss}, {vdd}) } rqb qbr qb 1 cdummy1 q 0 1n cdummy2 qb 0 1n .ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01

.ends srlatchrhp_basic_ge n	
*This subckt was called in the subcircuits above .SUBCKT BUF_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5	
ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES} H} , {VDD}, {VSS})} }	
RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS BUF_BASIC_GEN	

✓ SR Latc h with out refer ence node

"SIMPLI S DIGI1 _SRLAT CH N"

X\$U2 q qbar s r SIMPLIS_DIGI1_SRL ATCH_Y vars: IC=0 RIN=10Mea ROUT=10

+ TH=1.5 HYSTWD=1 VOL=0 VOH=3 OUT_DELAY=20p SET_RESET_LEVEL=

+ GNDREF='Y' DOM='S'

*S dominant

X_U2 s r q qbar srlatchshp_basic_ge n params: vdd=VOH vss=VOL vthresh=TH

*R dominant

X_U2 s r q qbar srlatchrhp_basic_ge n params: vdd=VOH vss=VOL vthresh=TH

*S dominant

.subckt srlatchshp_basic_ge n s r q qb params: vdd=1 vss=0 vthresh=0.5

gq 0 qint value = $\{ if(v(s) > \{vthresh\}, \}$ 5, if(v(r)>{vthresh}, -5, 0))}

cqint qint 0 1n

rgint gint 0 1000meg

d_d10 qint my5 d_d1

v1 my5 0 {vdd}

d_d11 myvss gint

d_d1

v2 myvss 0 (vss)

eq qqq 0 qint 0 1

x3 qqq qqqd1 BUF_BASIC_GEN PARAMS: VDD={vdd} VSS={vss}

VTHRESH={vthresh}

rqq qqqd1 q 1

eqb qbr 0 value = $\{if(v(q) > \{vthresh\},$ {vss},{vdd})}

rqb qbr qb 1

cdummy1 q 0 1n

cdummy2 qb 0 1n

DOM: Determin es S or R dominanc e. S is default. This will determine which subcircuit definition is used. the one for S dominant or the one for R dominant.

- VOH: Logic high value
- VOL: Logic low value
- TH: Threshold voltage

.ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01 .ends srlatchshp_basic_ge *R dominant .subckt srlatchrhp_basic_ge n s r q qb params: vdd=1 vss=0 vthresh=0.5 gq 0 qint value = $\{ if(v(r) > \{vthresh\}, \}$ -5, if(v(s)>{vthresh}, 5, 0))} cqint qint 0 1n rqint qint 0 1000meg d_d10 qint my5 d_d1 v1 my5 0 {vdd} d_d11 myvss qint d_d1 v2 myvss 0 {vss} eq qqq 0 qint 0 1 x3 qqq qqqd1 BUF_BASIC_GEN PARAMS: VDD={vdd} VSS={vss} VTHRESH={vthresh} rqq qqqd1 q 1 eqb qbr 0 value = $\{ if(v(q) > \{vthresh\}, \}$ {vss}, {vdd}) } rqb qbr qb 1 cdummy1 q 0 1n cdummy2 qb 0 1n .ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01

.ends srlatchrhp_basic_ge n	
*This subckt was called in the subcircuits above	
.SUBCKT BUF_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1	
+ DELAY=1n	
E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRES H}, {VDD}, {VSS})} }	
RINT YINT Y {ROUT}	
CINT Y 0 {DELAY*1.3}	
.ENDS BUF_BASIC_GEN	

v3 qqq qqqd1 rqq qqqd1 q 1 eqb qbr 0 value = $\{if(v(q) > \{vthresh\},\$ {vss},{vdd})} rqb qbr qb 1 cdummy1 q 0 1nf cdummy2 qb 0 1nf .ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01 .ends dff1sr_rhpbasic_gen .subckt BUF_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 **E_ABMGATE1 YINT1** 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT1 YINT2 1 **CINT YINT2 REF** {DELAY*1.3} E_ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS BUF_DELAY_BASIC_ GEN

.subckt INV_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 E ABMGATE1 YINT1 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VSS}, {VDD}))} } RINT YINT1 YINT2 1 **CINT YINT2 REF** {DELAY*1.3} E ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS INV_DELAY_BASIC_ GEN .SUBCKT AND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} & V(B) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS AND2_BASIC_GEN

Flop with out refer ence node Second	D Flip	"SIMPLI S_DIGI1	X\$U29 q qb d clk SIMPLIS_DIGI1_DFF	X_U29_Buf d d_delayed 0	
SETOP_TIME=10p HOLD_TIME=1p GNDREF='Y' .subckt dff1sr_rhpbasic_gen q dp clk d r s params: vdd=1 vss=0 vthresh=0.5 x1 clk clkdel INV_DELAY_BASIC_ GEN params: vdd={vdd} vss={vss} vthresh={vthresh} de lay=10n x2 clk clkdel clkint AND2_BASIC_GEN params: vdd={vdd} vss={vss} vthresh={vthresh} gq 0 qint value = {if(v(r) > {vthresh}, 5, if(v(clkint)>{vthresh}, 5, if(v(clkint)>{vthresh}, 5, -5), 0)))} cqint qint 0 1n	Flop with out refer ence	Flop _DFF_N with out refer ence	_Y vars: IC=0 RIN=10Meg ROUT=10 TH=1.5 + HYSTWD=1 VOL=0 VOH=3 MIN_CLK=10p TRIG_COND='0_TO_ 1' + CLK_TO_OUT_DELA Y=20p SETUP_TIME=10p HOLD_TIME=1p	BUF_DELAY_BASIC_ GEN PARAMS: VDD=VOH VSS=VOL VTHRESH =TH X_U29 q qb clk d_delayed 0 0 DFF1SR_RHPBASIC_ GEN PARAMS: VDD=VOH VSS=VOL VTHRESH	
INV_DELAY_BASIC_ GEN params: vdd={vdd} vss={vss} vthresh={vthresh} de lay=10n x2 clk clkdel clkint AND2_BASIC_GEN params: vdd={vdd} vss={vss} vthresh={vthresh} gq 0 qint value = {if(v(r) > {vthresh}, -5, if(v(s) > {vthresh}, 5, if(v(clkint)>{vthresh}, if(v(d)>{vthresh}, 5, -5), 0)))} cqint qint 0 1n				.subckt dff1sr_rhpbasic_gen q qb clk d r s params: vdd=1	
AND2_BASIC_GEN params: vdd={vdd} vss={vss} vthresh={vthresh} gq 0 qint value = {if(v(r) > {vthresh},-5,if(v(s) > {vthresh}, 5, if(v(clkint)>{vthresh}, if(v(d)>{vthresh}, 5, -5), 0)))} cqint qint 0 1n				INV_DELAY_BASIC_ GEN params: vdd={vdd} vss={vss} vthresh={vthresh} de	
{if(v(r) > {vthresh},-5,if(v(s) > {vthresh}, 5, if(v(clkint)>{vthresh}, if(v(d)>{vthresh}, 5, -5), 0)))} cqint qint 0 1n			AND2_BASIC_GEN params: vdd={vdd} vss={vss}		
			{if(v(r) > {vthresh},-5,if(v(s) > {vthresh}, 5, if(v(clkint)>{vthresh}, if(v(d)>{vthresh}, 5,		
raint aint () 1000maa					

d_d10 qint my5 d_d1

v1 my5 0 {vdd} d_d11 myvss qint

v2 myvss 0 {vss} eq qqq 0 qint 0 1

 d_d1

VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage

v3 qqq qqqd1 rqq qqqd1 q 1 eqb qbr 0 value = $\{if(v(q) > \{vthresh\},\$ {vss},{vdd})} rqb qbr qb 1 cdummy1 q 0 1nf cdummy2 qb 0 1nf .ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01 .ends dff1sr_rhpbasic_gen .subckt BUF_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 **E_ABMGATE1 YINT1** 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT1 YINT2 1 **CINT YINT2 REF** {DELAY*1.3} E_ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS BUF_DELAY_BASIC_ GEN

.subckt INV_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 E ABMGATE1 YINT1 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VSS}, {VDD}))} } RINT YINT1 YINT2 1 **CINT YINT2 REF** {DELAY*1.3} E ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS INV_DELAY_BASIC_ GEN .SUBCKT AND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} & V(B) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS AND2_BASIC_GEN

✓ DFF with S, R, R_Y" and refer ence node S

"SIMPLI X\$U4 q qb ref d clk s r SIMPLIS_DIGI1_DFF SR_Y" SR_Y vars: IC=0 RIN=10Meg ROUT=10

+ TH=2.5 HYSTWD=1 VOL=0 VOH=5 MIN_CLK=200p TRIG_COND='0_TO_ 1'

CLK_TO_OUT_DELA Y=500p SETUP_TIE=10p HOLD_TIME=1p SET_RESET_DELAY =200p

SET_RESET_TYPE=' ASYNC' SET_RESET_LEVEL= 0 GNDREF='Y' X_U29_Buf d d_delayed 0 BUF_DELAY_BASIC_ GEN PARAMS: VDD=VOH VSS=VOL VTHRESH =TH

X_U29 q qb clk d_delayed r s DFF1SR_RHPBASIC_ GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH

.subckt dff1sr_rhpbasic_gen q qb clk d r s params: vdd=1 vss=0 vthresh=0.5

x1 clk clkdel INV_DELAY_BASIC_ GEN params: vdd={vdd} vss={vss} vthresh={vthresh} de lay=10n

x2 clk clkdel clkint AND2_BASIC_GEN params: vdd={vdd} vss={vss} vthresh={vthresh}

gq 0 qint value =

{if(v(r) > {vthresh},-5,if(v(s) > {vthresh}, 5, if(v(clkint)>{vthresh}, if(v(d)>{vthresh}, 5, -5), 0)))}

cqint qint 0 1n
rqint qint 0 1000meg
d_d10 qint my5 d_d1
v1 my5 0 {vdd}
d_d11 myvss qint
d_d1
v2 myvss 0 {vss}

v2 myvss 0 (vss) eq qqq 0 qint 0 1 v3 qqq qqqd1 VOH: Logic high voltage

VOL: Logic low voltage

 TH: Threshold voltage rqq qqqd1 q 1 eqb qbr 0 value = $\{if(v(q) > \{vthresh\},\$ {vss},{vdd})} rqb qbr qb 1 cdummy1 q 0 1nf cdummy2 qb 0 1nf .ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01 .ends dff1sr_rhpbasic_gen .subckt BUF_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 **E_ABMGATE1 YINT1** 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VDD}, {VSS})} } **RINT YINT1 YINT2 1 CINT YINT2 REF** {DELAY*1.3} E ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS BUF_DELAY_BASIC_ GEN

.subckt INV_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 E ABMGATE1 YINT1 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VSS}, {VDD}))} } RINT YINT1 YINT2 1 **CINT YINT2 REF** {DELAY*1.3} E ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS INV_DELAY_BASIC_ GEN .SUBCKT AND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} & V(B) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS AND2_BASIC_GEN

DFF "SIMPLI X\$U4 q qb d clk s r X_U29_Buf d VOH: with S DIGI1 SIMPLIS_DIGI1_DFF d_delayed 0 Logic S, R _DFF_S BUF_DELAY_BASIC_ _SR_N vars: IC=0 high R_N" node RIN=10Mea **GEN PARAMS:** voltage ROUT=10 VDD=VOH VOL: S VSS=VOL VTHRESH Logic low and + TH=2.5 voltage no =TH HYSTWD=1 VOL=0 TH: refer X_U29 q qb clk VOH=5 Threshold ence MIN_CLK=200p d delayed rs node voltage DFF1SR_RHPBASIC_ TRIG_COND='0_TO_ 1' **GEN PARAMS:** VDD=VOH VSS=VOL VTHRESH=TH CLK_TO_OUT_DELA Y=500p SETUP_TIE=10p .subckt HOLD_TIME=1p dff1sr_rhpbasic_gen SET_RESET_DELAY q qb clk d r s =200p params: vdd=1 vss=0 vthresh=0.5 SET RESET TYPE=' x1 clk clkdel ASYNC' INV_DELAY_BASIC_ SET_RESET_LEVEL= GEN params: 0 GNDREF='Y' vdd={vdd} vss={vss} vthresh={vthresh} de lay=10n x2 clk clkdel clkint AND2_BASIC_GEN params: vdd={vdd} vss={vss} vthresh={vthresh} gq 0 qint value = $\{if(v(r) >$ $\{vthresh\}, -5, if(v(s) >$ {vthresh}, 5, if(v(clkint)>{vthresh}, $if(v(d)>{vthresh}, 5,$ -5), 0)))} cqint qint 0 1n rgint gint 0 1000meg d_d10 qint my5 d_d1 v1 my5 0 {vdd} d_d11 myvss qint d_d1 v2 myvss 0 {vss}

> eq qqq 0 qint 0 1 v3 qqq qqqd1

rqq qqqd1 q 1 eqb qbr 0 value = $\{if(v(q) > \{vthresh\},\$ {vss},{vdd})} rqb qbr qb 1 cdummy1 q 0 1nf cdummy2 qb 0 1nf .ic v(qint) {vss} .model d_d1 d is=1e-15 tt=1e-11 rs=0.05 n=0.01 .ends dff1sr_rhpbasic_gen .subckt BUF_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 **E_ABMGATE1 YINT1** 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VDD}, {VSS})} } **RINT YINT1 YINT2 1 CINT YINT2 REF** {DELAY*1.3} E ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS BUF_DELAY_BASIC_ GEN

.subckt INV_DELAY_BASIC_ **GEN A Y REF** PARAMS: VDD=1 VSS=0 VTHRESH=0.5 DELAY=10n ROUT=1 E ABMGATE1 YINT1 0 VALUE { {IF((V(A)-V(REF)) > {VTHRESH}, {VSS}, {VDD}))} } RINT YINT1 YINT2 1 **CINT YINT2 REF** {DELAY*1.3} E ABMGATE2 YINT3 **REF VALUE** { {IF(V(YINT2) > {VTHRESH}, {VDD}, {VSS})} } RINT2 YINT3 Y {ROUT} CINT2 Y REF 1n .ENDS INV_DELAY_BASIC_ GEN .SUBCKT AND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} & V(B) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS AND2_BASIC_GEN

✓ Up Cou nter "SIMPLI S DIGI1 D UP COUNT FR"

X\$U26 d0 d1 d2 d3 clk en reset ref SIMPLIS_DIGI1_D_U P_COUNTER_YX\$U2 6 vars:

+ RIN=10Meg TH=1.5 HYSTWD=1 ROUT=10 VOL=0 VOH=3 MIN_CLK=10p

TRIG_COND='0_TO_ CLK_TO_OUT_DELA

Y=20p SETUP_TIME=10p HOLD_TIME=1p

ENABLE_DELAY=10 RESET_DELAY=15p RESET_TYPE='ASYN C' RESET_LEVEL=1

+ RESET_TO=-1 IC=0

X_U26 clk count_fe counter_out gnd reset rst int COUNTER PARAMS: MIN PW=10N COUN T_RST=16

E_ABM_U26 d4 0 VALUE { if(V(counter_out)>1 5.5, VOH, VOL) }

.SUBCKT Counter CLK COUNT FE COUNT_RE GND RESET RST_INT PARAMS: MIN_PW= 10n COUNT_RST=128

R_R4 N16838390 N16838391 {MIN_PW/2}

R R5 N16842332 CLKRF 1

C_C5 GND CLKRE 1n

R R3 RST INT N16832011 1

E ABM4 N16813271 0 VALUE { IF(V(RESET)>0.5 | V(RST_INT)>0.5, 0, IF(V(CLKRE)>0.55,

+ V(COUNT_FE)+1, V(COUNT_RE))) }

R R6 N168433471 CLKI 1

E_ABM6 N16832011 0 VALUE { if(v(COUNT_RE) < 10m,0,if(v(COUNT_F E)>

+ {COUNT_RST}-0.1, 1, V(RST_INT))) }

C_C1 GND COUNT_RE_INT 1n IC=0

C_C6 GND CLKI 1n

 Available cases: Only in the case of 5bit output and when the fifth

> VOH: Logic high voltage used to set logic high output

bit is what

is used.

VOL: Logic low voltage used to set logic low output

Can be given with or without reference node. The ref node does not affect other nodes indexes so the logic can handle both cases.

- The script only places an ABM to do analog to digital conversion on the 5th bit right now. This was what was used by Justin Jr.
- The counter can likely be used for applications beyond 5 bits but an ADC would need to be set up for all bits at output to be fully functional.

C_C3 GND RST_INT 1n IC=0 E_ABM10 N168433471 0 VALUE { IF(V(CLK)<0.5,1,0) } R_R1 COUNT_FE_INT N33733 1 E_ABM8 N16840706 0 VALUE { IF(V(RST_INT)<0.5, 1,0)} C_C4 GND N16838391 1.443n E_E4 COUNT_RE GND COUNT_RE_INT GND 1 R R2 COUNT_RE_INT N16813271 1 E_ABM2 N33733 0 VALUE { IF(V(RESET)>0.5 | V(RST_INT)>0.5, 0,IF(V(CLKI)>0.55, + V(COUNT_RE_INT), V(COUNT_FE))) } E_E3 COUNT_FE GND COUNT_FE_INT GND 1 C C2 GND COUNT_FE_INT 1n IC=0 E_ABM7 N16838390 0 VALUE { IF(V(CLK)<0.5,1,0) } E_ABM9 N16842332 0 VALUE { IF(V(N16838391)> 0.5,0,IF(V(CLK)>0.5 V(N16840706)>0.5, 1, 0))} .ENDS Counter

Up/ Dow n Cou "SIMPLI S_DIGI1 _D_UPD OWN_C OUNTE R"

X\$U16 d0 d1 d2 clk en set reset cnt_up <ref>

+ SIMPLIS_DIGI1_D_U
PDOWN_COUNTER_
YX\$U16 vars:
RIN=10Meg TH=1
+ HYSTWD=100m

ROUT=10 VOL=0 VOH=5 MIN_CLK=10p TRIG_COND='0_TO_ 1'

CLK_TO_OUT_DELA Y=20p SETUP_TIME=10p HOLD_TIME=1p ENABLE_DELAY=10 p

SET_RESET_DELAY =15p SET_RESET_TYPE=' ASYNC' SET_RESET_LEVEL= 1 SET_TO=-1

+ RESET_TO=-1 IC=0 X_U16 clk count_fe_U16 counter_out_U16 ref reset rst_int_U16 Counter PARAMS: COUNT_RST=8

X_U16_ADC d0 d1 d2 counter_out_U16 0 en ADC_3B_LOGIC PARAMS: VDD=VOH VSS=VOL THRESH=TH

count_fe and rst_int are unused nodes

.SUBCKT Counter CLK COUNT_FE COUNT_RE GND RESET RST_INT PARAMS: MIN_PW=10n COUNT_RST=128

R_R4 N16838390 N16838391 {MIN_PW/2}

R_R5 N16842332 CLKRE 1

C_C5 GND CLKRE 1n

R_R3 RST_INT N16832011 1

E_ABM4 N16813271 0 VALUE { IF(V(RESET)>0.5 | V(RST_INT)>0.5, 0, IF(V(CLKRE)>0.55, V(COUNT_FE)+1, V(COUNT_RE))) }

R_R6 N168433471

CLKI 1
E_ABM6 N16832011
0 VALUE
{ if(v(COUNT_RE) <
10m,0,if(v(COUNT_F
E)>
{COUNT_RST}-0.1, 1,
V(RST_INT))) }

 Available cases: Only set up to work with 3bits right now.

 The script can calculate the number of bits for the counter. COUNT_R ST value is set by 2^NUM_B ITS.

VOH:
Logic
high
voltage
used to
set logic
high
output

VOL:

 Logic low
 voltage
 used to
 set logic
 low
 output

Can be given with or without reference node. The ref node does not affect other nodes indexes so the logic can handle both cases.

- The logic can handle 3 bits right now, where it attaches a 3 bit ADC to the output of the counter to produce the 3 bits.
- This method could be applied to other bit numbers.

C C1 GND COUNT_RE_INT 1n IC=0 C_C6 GND CLKI 1n C_C3 GND RST_INT 1n IC=0 E_ABM10 N168433471 0 VALUE { IF(V(CLK)<0.5,1,0) } R_R1 COUNT_FE_INT N33733 1 E_ABM8 N16840706 0 VALUE { IF(V(RST_INT)<0.5, 1,0)} C_C4 GND N16838391 1.443n E_E4 COUNT_RE GND COUNT_RE_INT GND 1 R_R2 COUNT_RE_INT N16813271 1 E_ABM2 N33733 0 **VALUE** { IF(V(RESET)>0.5 | V(RST_INT)>0.5, 0,IF(V(CLKI)>0.55, V(COUNT_RE_INT), V(COUNT_FE))) } E_E3 COUNT_FE GND COUNT_FE_INT GND 1 C_C2 GND COUNT_FE_INT 1n IC=0 E_ABM7 N16838390 0 VALUE { IF(V(CLK)<0.5,1,0) } E_ABM9 N16842332 0 VALUE { IF(V(N16838391)> 0.5,0,IF(V(CLK)>0.5 V(N16840706)>0.5, 1, 0))} .ENDS Counter .SUBCKT ADC 3B LOGIC BITO BIT1 BIT2 VINP VINN EN PARAMS: REFP=8 VDD=1 VSS=0 THRESH=0.5 E_BIT0 BIT0temp 0 VALUE = {IF((V(VINP)-V(VINN))>=({REFP}/ 2-0.5) & V(EN)>{THRESH}, {VDD}, {VSS})} R1 BIT0temp BIT0 1 C1 BIT0 0 1p E_BIT1 BIT1temp VSS VALUE = {IF((V(VINP)-V(VINN)-V(BIT0temp)*{REFP} /2)>=(V(REFP)/4-0.5) & V(EN)>{THRESH}, {VDD}, {VSS})} R2 BIT1temp BIT1 1 C2 BIT1 0 1p E_BIT2 BIT2temp VSS VALUE = {IF((V(VINP)-V(VINN)-V(BIT0temp)*{REFP} /2-V(BIT1temp)*{REFP} /4)>=({REFP}/8-0.5) & V(EN)>{THRESH}, {VDD}, {VSS})} R3 BIT2temp BIT2 1 C3 BIT2 0 1p

		.ends ADC_3B_LOGIC			
--	--	-----------------------	--	--	--

"SIMPLI E_U1_in del_in 0 in RISE_DEL Asy X\$U1 out ref in S DIGI1 ref 1 AY: Rise mm SIMPLIS_DIGI1_D_A _D_ASY etric time SYMMETRIC_DELAY X_U1 del_in del_out Dela **MMETR** FALL DEL _Y vars: IC=0 ASYMMETRIC_DELA IC_DEL AY: Fall У RIN=1T ROUT=1m Y PARAMS: with AY_Y" time RISING_EDGE_DELA + TH=1.5 refer TH: Y=RISE_DELAY HYSTWD=1m Threshold ence VOL=0 VOH=3 + VTHRESH=TH node voltage RISE_DELAY=68u FALLING_EDGE_DEL VOL: FALL_DELAY=1u AY=FALL_DELAY Logic low GNDREF='Y' VDD=VOH VSS=VOL voltage VOH: E_U1_out out ref Logic del out 0 1 high voltage .subckt ASYMMETRIC_DELA Y inp out PARAMS: RISING_EDGE_DELA Y=1 VTHRESH=0.5 FALLING_EDGE_DEL AY=1 VDD=1 VSS=0 e_abm3 inp1 0 value { if(v(inp) > {vthresh}, {vdd}, {vss})} e_abm1 yin4 0 value $\{ if(v(yin3) >$ {vthresh}, {vdd}, {vss}) } e_abm2 yin2 0 value $\{ if(v(yin1) >$ {vthresh}, {vdd}, {vss}) } r_rint inp1 yin1 1 c_cint yin1 0 {1.443*rising_edge_ delay} d_d10 yin1 inp1 d_d1 r_r1 yin4 out 1 r_rout yin2 yin3 1 c_cout yin3 0 {1.443*falling_edge_ delay} c_c1 0 out 1n

	d_d11 yin2 yin3 d_d1	
	.model d_d1 d is=1e-15 tt=1e-11 rs=0.005 n=0.1	
	.ends asymmetric_delay	

"SIMPLI E_U1_in del_in 0 in RISE_DEL Asy X\$U1 out in S DIGI1 ref 1 AY: Rise mm SIMPLIS_DIGI1_D_A _D_ASY etric time SYMMETRIC_DELAY X_U1 del_in del_out Dela **MMETR** FALL DEL _N vars: IC=0 ASYMMETRIC_DELA IC_DEL AY: Fall У RIN=1T ROUT=1m Y PARAMS: with AY_N" time RISING_EDGE_DELA + TH=1.5 out TH: Y=RISE_DELAY HYSTWD=1m refer Threshold VOL=0 VOH=3 + VTHRESH=TH ence voltage RISE_DELAY=68u FALLING_EDGE_DEL node VOL: FALL_DELAY=1u AY=FALL_DELAY Logic low GNDREF='Y' VDD=VOH VSS=VOL voltage VOH: E_U1_out out ref Logic del out 0 1 high voltage .subckt ASYMMETRIC_DELA Y inp out PARAMS: RISING_EDGE_DELA Y=1 VTHRESH=0.5 FALLING_EDGE_DEL AY=1 VDD=1 VSS=0 e_abm3 inp1 0 value { if(v(inp) > {vthresh}, {vdd}, {vss})} e_abm1 yin4 0 value $\{ if(v(yin3) >$ {vthresh}, {vdd}, {vss}) } e_abm2 yin2 0 value $\{ if(v(yin1) >$ {vthresh}, {vdd}, {vss}) } r_rint inp1 yin1 1 c_cint yin1 0 {1.443*rising_edge_ delay} d_d10 yin1 inp1 d_d1 r_r1 yin4 out 1 r_rout yin2 yin3 1 c_cout yin3 0 {1.443*falling_edge_ delay} c_c1 0 out 1n

d_d11 yin2 yin3 d_d1	
.model d_d1 d is=1e-15 tt=1e-11 rs=0.005 n=0.1	
.ends asymmetric_delay	

		I		
Digit al Multi plex er	"SIMPLI S_DIGI1 _D_MU X"	X\$U18 out <ref> s0 s1 a0 b0 c0 d0 SIMPLIS_DIGI1_D_M UX_NX\$U18 vars: + OUT_DELAY=2p NUM_INPUTS=4 NUMBITS_OUT=1 RIN=10Meg ROUT=10 TH=2.5 + HYSTWD=1 VOL=0 VOH=5 INVERSION='N' IC=0</ref>	X_U18 out ref s0 s1 a0 b0 c0 d0 D_MUX_4IN_1B PARAMS: THRESH=TH VOH=VOH VOL=VOL .subckt D_MUX_4IN_1B out ref s0 s1 a0 b0 c0 d0 PARAMS: THRESH=0.5 VOH=1 VOL=0 E_ABM1 1 0 VALUE { IF(V(s0)>{THRESH}, V(d0), IF(V(s0)>{THRESH}, V(c0), IF(V(s0)>{THRESH}, V(c0), IF(V(s0)>{THRESH}, V(c0), IF(V(s0)>{THRESH}, V(b0), V(a0)))) } E_ABM2 out ref VALUE { IF(V(1)>({THRESH}, {VOH}, {VOL}) } .ends D_MUX_4IN_1B	Available cases: NUM_INP UTS=2/ NUMBITS =1, NUM_INP UTS=4/ NUMBITS =1 This can be given with or without a reference node, it doesn't affect translatio n. NUM_INP UTS: Number of inputs NUMBITS _OUT: Number of bits of output INVERSIO N: If INVERSIO N: It Inverted Inverte

Digit al Dem ultipl exer	"SIMPLI S_DIGI1 _D_DEM UX"	X e i O S E I + N N R R + V IN IN IO

X\$U4 a0 b0 c0 d0 e0 f0 g0 h0 s0 s1 s2 i0 rtn SIMPLIS_DIGI1_D_D EMUX_YX\$U4 vars:

- + OUT_DELAY=2p NUM_OUTPUTS=8 NUMBITS_IN=1 RIN=10Meg ROUT=10 TH=1
- + HYSTWD=100m VOL=0 VOH=5 INVERSION='N' INACTIVE_LEVEL=0 IC=1

X_U4 a0 b0 c0 d0 e0 f0 g0 h0 s0 s1 s2 i0 rtn DIGI_DEMUX_80UT_ 1B PARAMS:

+ THRESH=TH VOH=VOH VOL=VOL

.subckt DIGI_DEMUX_80UT_ 1B a0 b0 c0 d0 e0 f0 g0 h0 s0 s1 s2 i0 ref PARAMS:

+ THRESH=0.5 VOH=1 VOL=0

E_ABM1 1 0 VALUE { IF(V(s2)<{THRESH} & V(s1)<{THRESH} & V(s0)<{THRESH}, V(i0), 0) }

E_ABM2 2 0 VALUE { IF(V(s2)<{THRESH} & V(s1)<{THRESH} & V(s0)>{THRESH}, V(i0), 0) }

E_ABM_B b0 ref VALUE { IF(V(2)>{THRESH}, {VOH}, {VOL}) }

E_ABM3 3 0 VALUE { IF(V(s2)<{THRESH} & V(s1)>{THRESH} & V(s0)<{THRESH}, V(i0), 0) }

E_ABM_C c0 ref VALUE { IF(V(3)>{THRESH}, {VOH}, {VOL}) }

E_ABM4 4 0 VALUE { IF(V(s2)<{THRESH} & V(s1)>{THRESH} & V(s0)>{THRESH}, V(i0), 0) }

E_ABM_D d0 ref VALUE { IF(V(4)>{THRESH}, {VOH}, {VOL}) }

- Available cases: NUM_OU TPUTS=8
 - NUMBITS =1
- This can be given with or without a reference node, it doesn't affect translatio
- NUM_OU TPUTS: Number of outputs
- NUMBITS _IN: Number of bits of input
- INVERSIO
 N: If
 INVERSIO
 N='Y' then
 the input
 will be
 inverted
- TH: Threshold voltage
- VOH: Logic high voltage
- VOL: Logic low voltage

E_ABM5 5 0 VALUE { IF(V(s2)>{THRESH} & V(s1)<{THRESH} & V(s0)<{THRESH}, V(i0), 0)} E_ABM_E e0 ref VALUE { IF(V(5)>{THRESH}, {VOH}, {VOL}) } E_ABM6 6 0 VALUE { IF(V(s2)>{THRESH} & V(s1)<{THRESH} & V(s0)>{THRESH}, V(i0), 0)} E_ABM_F f0 ref VALUE $\{ IF(V(6)>\{THRESH\},$ {VOH}, {VOL}) } E_ABM7 7 0 VALUE { IF(V(s2)>{THRESH} & V(s1)>{THRESH} & V(s0)<{THRESH}, V(i0), 0) } E_ABM_G g0 ref VALUE $\{ IF(V(7)>\{THRESH\},$ {VOH}, {VOL}) } E_ABM8 8 0 VALUE { IF(V(s2)>{THRESH} & V(s1)>{THRESH} & V(s0)>{THRESH}, V(i0), 0)} E_ABM_H h0 ref VALUE $\{ IF(V(8)>\{THRESH\},$ {VOH}, {VOL}) } .ends DIGI_DEMUX_80UT_ 1B

	I			
Squ are Sour ce/ Step Sour ce	"SQU_S OURCE" or "STEP_ SOURC E"	X\$V2 out ref SQU_SOURCE vars: _V1=0 _V2=5 _FREQ=1Meg _DELAY=0 + _DRATIOx100=50 _T_RISE=0 _T_FALL=0 _DAMP_COEF=0 _PWIDTH=500n + _OFF_UNTIL_DELAY =0 _IDLE_IN_POP=0 _USEPHASE=0 _PHASE=0	V_U20 out ref PULSE _V1 _V2 _OFF_UNTIL_DELAY _T_RISE _T_FALL _PWIDTH <1/ _FREQ>	 _V1: Voltage 1 _V2: Voltage 2 _OFF_UN TIL_DELA Y: The pulse will not rise to Voltage 2 until this time has passed. _T_RISE: Rise time _T_FALL: Fall time _PWIDTH: Duration of Voltage 2 pulse _FREQ: Frequenc y is used to calculate period in PSPICE. Period=<1 /_FREQ>

		I		
Digit al Puls e	"SIMPLI S_DIGI1 _D_PUL SE"	X\$U20 out <out_not> <ref> SIMPLIS_DIGI1_D_P ULSE_N_Y vars: PERIOD={1/4Meg} + WIDTH={1/ (2*4Meg)} DELAY=0 ROUT=10 VOL=0 VOH=5 COMP='N' GNDREF='Y'</ref></out_not>	V_U20 out ref PULSE VOL VOH DELAY 0 0 WIDTH PERIOD	 VOL: Voltage 1 VOH: Voltage 2 COMP: Complime nt output node given or not. If COMP='Y' , an INV is added to output. GNDREF: Reference node given or not. Can handle both cases. DELAY: The pulse will not rise to Voltage 2 until this time has passed. WIDTH: Duration of Voltage 2 pulse PERIOD: Duration of full Voltage 1 and 2 cycle

Anal og to Digit al Con verte

r

"SIMPLI S_DIGI1 _D_A2D _CONV ERTER" X\$U11 d0 d1 d2 d3 d4 d5 d6 d7 POFL NOFL DR IN CLK EN RTN

SIMPLIS_DIGI1_D_A 2D_CONVERTER_YX \$U11 vars: RIN=10Meq

+ HYSTWD=100m VOL=0 VOH=5 RANGE=128m OFFSET=64m CODE='UNSIGNED'

ROUT=10 TH=1

+ MIN_CLK=10p TRIG_COND='0_T0_ 1'

SAMPLE_DELAY=1p ENABLE_DELAY=15

+

CONVERT_TIME=50 p DATA_READY_DELA

DATA_READY_DELA Y=10p IC=5 IC_OFL=0 IC_DATA_READY=1 X_U11 d0 d1 d2 d3 d4 d5 d6 d7 IN RTN EN ADC_8B_LOGIC PARAMS: VDD=VOH VSS=VOL THRESH=TH

.SUBCKT ADC_8B_LOGIC BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 VINP VINN EN

+ PARAMS: REFP=256 VDD=1 VSS=0 THRESH=0.5

E_BIT0 BIT0temp 0 VALUE = {IF((V(VINP)-V(VINN))>=({REFP}/ 2-0.5) &

+ V(EN)>{THRESH}, {VDD}, {VSS})}

R1 BIT0temp BIT0 1 C1 BIT0 0 1p

E_BIT1 BIT1temp VSS VALUE = {IF((V(VINP)-V(VINN)-

+

V(BIT0temp)*{REFP} /2)>=(V(REFP)/ 4-0.5) & V(EN)>{THRESH}, {VDD}, {VSS})}

R2 BIT1temp BIT1 1

C2 BIT1 0 1p

E_BIT2 BIT2temp VSS VALUE = {IF((V(VINP)-V(VINN)-V(BIT0temp)*{REFP} /2Available cases:8bit output

 VOL: Logic low voltage

 VOH: Logic high voltage

 TH: Threshold voltage Currently the script only handles 8bit ADC. The logic for 3bit ADC is provided in the Up/ Down Counter but has not been added to this logic yet.

 ADC should be scaled for other numbers of bits. V(BIT1temp)*{REFP} $/4)>=({REFP}/8-0.5)$ & V(EN)>{THRESH}, {VDD}, {VSS})} R3 BIT2temp BIT2 1 C3 BIT2 0 1p E_BIT3 BIT3temp VSS VALUE = {IF((V(VINP)-V(VINN)-V(BIT0temp)*V{REF P}/2-V(BIT1temp)*{REFP} V(BIT2temp)*{REFP} /8) $+ > = ({REFP}/16-0.5)$ & V(EN)>{THRESH}, {VDD}, {VSS})} R4 BIT3temp BIT3 1 C4 BIT3 0 1p E_BIT4 BIT4temp VSS VALUE = {IF((V(VINP)-V(VINN)-V(BIT0temp)*{REFP} /2-V(BIT1temp)*{REFP} /4 -V(BIT2temp)*{REFP} /8 -V(BIT3temp)*{REFP} /16)>=({REFP}/ 32-0.5) & V(EN)>{THRESH}, {VDD}, {VSS})} R5 BIT4temp BIT4 1 C5 BIT4 0 1p

E_BIT5 BIT5temp VSS VALUE = {IF((V(VINP)-V(VINN)-V(BIT0temp)*{REFP} /2-+ V(BIT1temp)*{REFP} /4 -V(BIT2temp)*{REFP} /8) V(BIT3temp)*{REFP} /16 -V(BIT4temp)*{REFP} /32>={REFP}/64-0.5) + V(EN)>{THRESH}, {VDD}, {VSS})} R6 BIT5temp BIT5 1 C6 BIT5 0 1p E_BIT6 BIT6temp VSS VALUE = {IF((V(VINP)-V(VINN)-V(BIT0temp)*{REFP} /2-V(BIT1temp)*{REFP} /4 -V(BIT2temp)*{REFP} /8) + -V(BIT3temp)*{REFP} V(BIT4temp)*{REFP} /32 -V(BIT5temp)*{REFP} $/64>=({REFP}/$ 128-0.5) & V(EN)>{THRESH}, {VDD}, {VSS})} R7 BIT6temp BIT6 1 C7 BIT6 0 1p

E_BIT7 BIT7temp VSS VALUE = {IF((V(VINP)- V(VINN)- V(BIT0temp)*{REFP} /2-
+ V(BIT1temp)*{REFP} /4 - V(BIT2temp)*{REFP} /8)
+ - V(BIT3temp)*{REFP} /16 - V(BIT4temp)*{REFP} /32 - V(BIT5temp)*{REFP} /64 -
+ V(BIT6temp)*{REFP} /128>=({REFP}/ 256-0.5) & V(EN)>{THRESH}, {VDD}, {VSS})}
R8 BIT7temp BIT7 1
C8 BIT7 0 1p .ENDS ADC_8B_LOGIC

Digit al to Anal og Con verte r	"SIMPLI S_DIGI1 _D_D2A _CONV ERTER"	X\$U1 out d0 d1 d2 d3 d4 d5 d6 d7 d8 <ref> SIMPLIS_DIGI1_D_D 2A_CONVERTER_YX \$U1</ref>	X_U1 out d0 d1 d2 d3 d4 d5 d6 d7 d8 ref D2A_CONVERTER_9 B PARAMS: + THRESH=THRESH .subckt D2A_CONVERTER_9 B out d0 d1 d2 d3 d4 d5 d6 d7 d8 ref PARAMS: + THRESH=0.5 E_ABM0 1 0 VALUE {IF(V(d0)>{THRESH},1,0)} E_ABM1 2 0 VALUE {IF(V(d1)>{THRESH},2,0)} E_ABM2 3 0 VALUE {IF(V(d2)>{THRESH},4,0)} E_ABM3 4 0 VALUE {IF(V(d3)>{THRESH},8,0)} E_ABM4 5 0 VALUE {IF(V(d4)>{THRESH},16,0)} E_ABM5 6 0 VALUE {IF(V(d5)>{THRESH},16,0)} E_ABM6 7 0 VALUE {IF(V(d5)>{THRESH},32,0)} E_ABM7 8 0 VALUE {IF(V(d7)>{THRESH},32,0)} E_ABM8 9 0 VALUE {IF(V(d7)>{THRESH},32,0)} E_ABM8 9 0 VALUE {IF(V(d8)>{THRESH},256,0)} E_ABM8 9 0 VALUE {IF(V(d8)>{THRESH},256,0)} E_ABMOUT out ref	 Available cases: 9bit input Use function find_H_L_ THRESH() to pull the threshold voltage from another SIMPLIS primitive for use in this translatio n A reference node can be supplied or not supplied, the logic can handle it NUM_BIT S: Number of bits is calculate d dependin g on whether a ref node was given or not. 	
			{ IF(V(d8)>{THRESH}		

	.ends D2A_CONVERTER_9 B		
--	-------------------------------	--	--

✓ OPA MP

"PARA M OPA MP"

X3 vin+ vin- VDD VSS out PARAM OPAMP vars: LEVEL=2 VOS=0 IB=100n

IBOS=1n

- + A0=100k GBW=500k SR_POS=10Meg SR_NEG=10Meg CMRR=100k PSRR=100k
- + RIN=10G IO_SRC_MAX=250u IO_SNK_MAX=250u ROUT=4k RO_AC=390 IQ=1m
- + VDIFF POS=100m VDIFF_NEG=100m USE_BACK_ANNO= 0 DEF_IC_R_FF2=1
- + DEF_IC_R_FF3=1 BA IC R FF2=2 BA_IC_R_FF3=2

X 3 vin+ vin- out VDD VSS Error_Amplifier

.SUBCKT Error_Amplifier INM INP OUT VDD VSS PARAMS: isource=5m headroo m=0

- + bw=1meg isink=5m
- + co=1n rout=100m vslewn=1e6 gain=100000 vslewp=1e6 IC=0
- .PARAM ro={1/ (2*3.1428*pole*co)} gm={gain/ro} pole={bw/gain} islewn={-
- vslewn*co} islewp={ vslewp*co}
- G ABM2I1 VDD N16716809 VALUE { LIMIT(((V(INP)-V(INM))*{gm}), {Islewn}, {Islewp}) }

D_D5 N16742688 N16742726 D_EA

R R1 **VSS** N16716809 {Ro}

C C1 N16716809 VSS {Co} IC={IC}

D D3 N16716809 N167167730 D_EA

R_R4 N16742680 OUT {Rout}

D_D4 N167167951 N16716809 D_EA no paramete rs are currently in use. It only implemen ts this default error_amp lifier

V_V1 N167167951 VSS {{Headroom}-90m}
V_V2 N167167730 VDD {{Headroom}-70m}
I_I2 N16742680 N16742688 DC {Isink}
D_D6 N16742688 N16742680 D_EA
E_E1 N16742726 VSS N16716809 VSS 1
I_I1 N16742726 N16742688 DC {Isource}
.model D_EA d is=1e-015 tt=1e-01 1 n=0.1
.ENDS Error_Amplifier

4.3 Primitive translations that start with "!"

VPW L Resis tor	"PWLR"	!R\$R22 node+ node- R22\$TP_SSPWLR IC=1 .MODEL R22\$TP_SSPWLR VPWLR NSEG=6 X0=0 Y0=0.1 X1=1 Y1=0.162 X2=2 Y2=0.237 + X3=3 Y3=0.332 X4=4 Y4=0.442 X5=5 Y5=0.619 X6=6 Y6=0.825 XN=10 YN=1 *Piece wise data points can extend as far as the user designs it	G_VPWL_R22 node+ node- TABLE {V(node+, node-)} ((X0,Y0) (X1,Y1) + (X2,Y2) (X3,Y3) (XN-1,YN-1) (XN,YN) (100k,Ycalculated)) R_VPWL_R22 node+ node- 1T	 X and Y values: The piecewise data points will be iterated over in full and copied over to the PSPICE netlist. The final 2 data points are used to calculate the slope and then that slope is used to calculate a distant data point at X=100k. Ycalculate d = m*(100k-XN) +YN 	
-----------------	--------	--	---	---	--

INV mod el	"TP_GAT E" Then search the .MO DEL line to determin e if: GATE == "INV"	!D\$U15 Y 0 A U15\$TP_GATE IC=0 .MODEL U15\$TP_GATE INV RIN=10meg ROUT=41.67 TH=2.15 HYSTWD=0.1 VOL=0 + VOH=5 DELAY=1e-010	X_U15 A Y INV_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH .SUBCKT INV_BASIC_GEN A Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A)>{VTHRESH}, {VSS}, {VDD})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS INV_BASIC_GEN	VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage
AND mod el	"TP_GAT E" Then search the .MO DEL line to determin e if: GATE == "AND2"	!D\$U12 Y 0 A B U12\$TP_GATE IC=0 .MODEL U12\$TP_GATE AND2 RIN=10meg ROUT=41.67 TH=2.15 HYSTWD=0.1 VOL=0 + VOH=5 DELAY=2e-010 LOGIC=POS	X_U12 A B Y AND2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH .SUBCKT AND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { (IF(V(A) > {VTHRESH} & V(B) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS AND2_BASIC_GEN	 Available # of inputs: 2, 3, 4 VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage

NAN D mod el	"TP_GAT E" Then search the .MO DEL line to determin e if: GATE == "NAND2"	!D\$U12 Y 0 A B U12\$TP_GATE IC=0 .MODEL U12\$TP_GATE NAND2 RIN=10meg ROUT=41.67 TH=2.15 HYSTWD=0.1 VOL=0 + VOH=5 DELAY=2e-010 LOGIC=POS	X_U12 A B Y NAND2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH .SUBCKT NAND2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} & V(B) > {VTHRESH}, {VSS}, {VDD})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS NAND2_BASIC_GEN	 Available # of inputs: 2 VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage
OR mod el	"TP_GAT E" Then search the .MO DEL line to determin e if: GATE == "OR2"	!D\$U12 Y 0 A B U12\$TP_GATE IC=0 .MODEL U12\$TP_GATE OR2 RIN=10meg ROUT=41.67 TH=2.15 HYSTWD=0.1 VOL=0 + VOH=5 DELAY=2e-010 LOGIC=POS	X_U12 A B Y OR2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH .SUBCKT OR2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} V(B) > {VTHRESH}, {VDD}, {VSS})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS OR2_BASIC_GEN	 Available # of inputs: 2, 3, 4 VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage

NOR mod el	"TP_GAT E" Then search the .MO DEL line to determin e if: GATE == "NOR2"	!D\$U12 Y 0 A B U12\$TP_GATE IC=0 .MODEL U12\$TP_GATE NOR2 RIN=10meg ROUT=41.67 TH=2.15 HYSTWD=0.1 VOL=0 + VOH=5 DELAY=2e-010 LOGIC=POS	X_U12 A B Y NOR2_BASIC_GEN PARAMS: VDD=VOH VSS=VOL VTHRESH=TH .SUBCKT NOR2_BASIC_GEN A B Y PARAMS: VDD=1 VSS=0 VTHRESH=0.5 ROUT=1 DELAY=1n E_ABMGATE YINT 0 VALUE { {IF(V(A) > {VTHRESH} V(B) > {VTHRESH}, {VSS}, {VDD})} } RINT YINT Y {ROUT} CINT Y 0 {DELAY*1.3} .ENDS NOR2_BASIC_GEN	 Available # of inputs: 2 VOH: Logic high voltage VOL: Logic low voltage TH: Threshold voltage
------------	--	---	---	--

5 Script Support Contact

Developed by: Britton Jones (britton@ti.com), BSR-MV Applications Engineer

6 Additional Files

6.1 Step-by-Step Guide

SIMPLIS_to_PSPICE_Step_by_Step_Guide_rF.docx⁶

6.2 Intern Presentation - Translator Verification

Intern_Presentation_John_Donaghey_8_6_21_r4.ppt⁷

⁶ https://confluence.itg.ti.com/download/attachments/300391857/SIMPLIS_to_PSPICE_Step_by_Step_Guide_rF.docx?api=v2&modificationDate=1646288586000&version=1

⁷ https://confluence.itg.ti.com/download/attachments/300391857/Intern_Presentation_John_Donaghey_8_6_21_r4.ppt? api=v2&modificationDate=1646323893000&version=1