R⁴H₂O: R for Water Professionals: Session 1

Dr Peter Prevos

Online Sessions

Case Study 1: Exploring and analysing water quality data

- 1. Introduction to R
- 2. Visualising and communicating results

Case Study 2: Cleaning, exploring and analysing a customer survey

- 3. Cleaning and exploring data
- 4. Analysing and communicating results

Session 1 Program

- Introduction
- Principles of Data Science
- ► Introduction to R
- Exploring Data
- Descriptive Statistics

Figure 1: R for Water Professionals workshop (Melbourne, 2019).

My Data Science Evolution

Resources

Figure 2: Register to get access to the on-line syllabus: https://leanpub.com/c/R4H2O/c/esc-vic

Principles of Data Science

Figure 3: The Conway Venn Diagram (Drew Conway, 2013).

Figure 4: The Vitruvian triangle of good data science.

What is useful data science?

Figure 5: Modified version of the DIKW model.

What is sound data science?

Figure 6: Validity and reliability.

What is sound data science?

Figure 7: Poverse engineering a spreadshoot

What is sound data science?

Reproducible code:

```
reservoirs %>%
    select(Date, River_Flow, Natural_Flow, ERV) %>%
    mutate(Date = as.Date(Date, format = "%d %m %Y")) %>%
    gather(Source, Value, -Date) %>%
    mutate(type = factor(Source == "ERV").
           type = fct recode(type, Flow = "FALSE",
                             Volume = "TRUE")) %>%
    ggplot(aes(Date, Value, col = Source)) +
    geom line() +
    facet_grid(type~., scales = "free_y")
```

What is aesthetic data science?

Figure 8: Data visualisation is about telling stories.

Configure R Studio

Desktop

- ► Install R and RStudio
- Download materials: https://github.com/ pprevos/r4h2o
- Unzip folder
- File > Open Project
- Open the r4h2o.Rproj file in the downloaded folder

Cloud

- Sign-up at: rstudio.cloud
- New Project > New Project from Git Repo

Enter GitHub URL

Console exercise

- Enter sample code into the console (see syllabus for examples)
- 2. Observe the output in the console
- 3. Observe the environment
- 4. Use ↑↓ to scroll history
- 5. Use TAB for completion
- 6. Play with variations

```
x < -10:10
y < -x^2 -2 * x + 30
plot(x, y, type = "l",
     col = "blue")
abline(h = 0, col = "grey")
abline(v = 0, col = "grey")
```

R is Meme-Proof

VIRAL MATH PROBLEM

$$6 \div 2(1+2) =$$

Quiz 1: Calculate Channel Flows

Determine the flow in a channel. Go to exercise 1 and answer the questions.

$$q = \frac{2}{3}C_d\sqrt{2g} \ bh^{3/2}$$

- ightharpoonup q: Flow $[m^3/s]$.
- $ightharpoonup C_d \approx 0.6$: Constant.
- $ightharpoonup g = 9.81 m/s^2$
- ▶ *b*: Width of the weir [*m*]
- ▶ h: Water depth over weir [m]

Figure 10: Channel with weirplate (Photo: Coliban Water).

Scripts versus Console

- Store all code in a text file with .R extension
- Output in console, plots and viewer
- ▶ Use comments (start with #) to explain the code
- ► File > New File > R Script
- Open the channel_flow.R script in inroduction folder.
- ► Reverse-Engineer the code

```
## Question 2
h <- c(150, 136, 75) / 1000 # Create a vector
q <- (2/3) * Cd * sqrt(2 * 9.81) * b * h^(3/2)
mean(q) * 1000 # Convert to l/s
```

Reproducible Code

- Give meaningful names
- Use a consistent method, e.g.:
 - Only lower case: channelflow
 - Underscore for spaces: channel_flow
 - Camel case:
 ChannelFlow

- Use comments to explain the process
- Add links to documentation
- Automate as much as possible

The Tidyverse

An opinionated collection of R packages optimised for data science. All packages share an underlying design philosophy, grammar, and data structures.

install.packages("tidyverse")
library(tidyverse)

Load the casestudy1.R script in the casestudy1 folder.

Data frames or 'tibbles'

- Rectangular data
- Variables in columns
- Observations in rows
- One variable in R environment
- ► Tidy data
- ► Read data:

dataframe <- read_csv(filename)</pre>

Figure 11: Data frame structure.

Filter a data frame

Town	Measure	Result
Bellmoral	THM	0.097
Bellmoral	Turbidity	0.2
Blancathey	THM	0.009
Blancathey	Turbidity	0.05
Merton	THM	0.28
Merton	Turbidity	0.1

Town	Measure	Result
Bellmoral	Turbidity	0.2
Blancathey	Turbidity	0.05
Merton	Turbidity	0.1

Figure 12: filter(gormsey, Measure == "Turbidity")

Quiz 2: Explore data

- Load the CSV file for the Gormsey system in the casestudy1 folder.
- Explore the data.
- Answer the questions in Exercise 2 in your syllabus.
- You can cheat by opening the quiz_02.R script.

Descriptive Statistics

Safe Drinking Water Regulations 2015: "the 95th percentile of results for samples in any 12 months must be less than or equal to 5.0 Nephelometric Turbidity

Units."

Guidance document:

"The method recommended by the department is described as the Weibull method and is the method adopted by the National Institute of Standards and Technology (NIST)."

Percentiles

1. The data are placed in ascending order:

$$y_1, y_2, \ldots y_n$$

- 2. Calculate the rank of the required percentile
- ▶ Weibull: r = p(n+1)
 - Excel: r = 1 + p(n-1)
 - 3. Interpolate between adjacent numbers: $X_p = (1 r_{frac}) Y_{r_{int}} + r_{frac} Y_{r_{int+1}}$

Figure 13: Explore the percentiles.R script in the casestudy1 folder.

Grouping

Town	Measure	Result
Bellmoral	THM	0.097
Bellmoral	Turbidity	0.2
Blancathey	THM	0.009
Blancathey	Turbidity	0.05
Merton	THM	0.28
Merton	Turbidity	0.1

Town	Measure	Result
Bellmoral	THM	0.097
Blancathey	THM	0.009
Merton	THM	0.28

Town	Measure	Result
Bellmoral	Turbidity	0.2
Blancathey	Turbidity	0.05
Merton	Turbidity	0.1

Figure 14: group_by(gormsey, Measure)