PRÁCTICA 1 - GEOMETRÍA COMPUTACIONAL - 2022 26 de enero y 2 de febrero de 2022

ATRACTOR LOGÍSTICO

Sea un sistema dinámico discreto $x_{n+1} = f(x_n)$ dominado por la función logística f(x) = rx(1-x). Se pide:

- i) Encuentra dos conjuntos atractores diferentes para $r \in (3, 3.544)$ con $x \in [0, 1]$. Estima los valores de sus elementos con el correspondiente intervalo de error.
- ii) Estima los valores de $r \in (3.544, 4)$, junto con su intervalo de error, para los cuales el conjunto atractor tiene 8 elementos. Obtén algún ejemplo concreto de conjunto atractor final.

Ayuda para quien lo necesite:

- Elije un valor concreto para r y x_0 dentro de los correspondientes intervalos dados.
- Encuentra la órbita parcial $orb_n(x_0, f)$ a partir de un $M \in \mathbb{N}$ tal que $\exists k \in \mathbb{N}$ que satisface $|f^{M+k}(x_0) f^M(x_0)| < \epsilon_M$ para un $\epsilon_M > 0$ arbitrariamente pequeño que depende de M.
 - Identifica los k estados a los que tiende $V_0 = \lim_{n \to \infty} \operatorname{orb}_n(x_0, f)$.
 - Repetir el proceso para diferentes $x_0 + \delta$ con $\delta > 0$, para analizar la estabilidad.
 - Repetir el proceso para diferentes $r + \Delta$ con $\Delta > 0$, para analizar posibles bifurcaciones.

Observaciones:

La memoria debe entregarse antes de que transcurran **15 días** desde el inicio de la práctica, salvo que se indique lo contrario.

La memoria, siempre en pdf, debe incluir **al menos** la siguiente información: (1) Introducción (motivación/objetivo de la práctica), (2) Material usado (método y datos), (3) Resultados, (4) Conclusión y (5) Anexo con el script/código utilizado.

La extensión máxima de la memoria **no superará las 2 páginas**, sin contar el código anexado (ilimitado). El total de la superficie de las figuras/tablas (si las hubiese) no podrán excederse del 50 % de la memoria.

Además, debe entregarse el código fuente como archivo '.py' independiente.