University of Siegen Faculty of Natural Science and Engineering Department of Electrical Engineering and Computer Science - Mechatronics

RECENT ADVANCES IN MACHINE LEARNING - SS2022

Detecting Real and Generated Images

Author:

- 1. Rajababu Udainarayan Singh (1530580)
- 2. Shubham Shivaji Suryavanshi (1537745)

Supervised by Professorin Dr.-Ing. Margret Keuper July 31, 2022

> University of Siegen Center for Sensorsystems Paul-Bonatz-Straße 9-11 H-57076 Siegen Germany

Outline

Task Description	
Methodology	
Experimental Results	
Conclusion	

References

Task Description

- 1. To classify the real and fake images, where the fake images have been generated using SNGAN using different upsampling techniques:
 - Bilinear interpolation
 - Bicubic interpolation
 - Pixelshuffle
- 2. Is the model working for other upsampling techniques?
- 3. Can we get better results by using vertical and horizontal projections instead of radial ones, when images are transformed in frequency domain?
- 4. Can we get better results by using a convolution neural network (CNN) for the detection?

Methodology

Figure: An illustration of our proposed methods

- Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions [1]
- ▶ Unmasking DeepFakes with simple Features [2]
- ► A Material-Sensing Time-of-Flight Camera [3]

Methodology

Figure: Mean plots of extracted features

Experimental Results

Azimuthal Integration

Table: Support Vector Machine

		Testing			
		Bilinear Bicubic Pixelshuffle			
	Bilinear	0.7525	0.6475	0.645	
Training	Bicubic	0.66	0.67	0.6325	
	Pixelshuffle	0.635	0.685	0.675	

Table: Logistic Regression

		Testing			
		Bilinear Bicubic Pixelshuffle			
	Bilinear	0.72	0.635	0.62	
Training	Bicubic	0.6825	0.6725	0.6225	
	Pixelshuffle	0.6475	0.695	0.67	

Experimental Results

Average along X & Y axis

Table: Support Vector Machine

		Testing				
		Bilinear Bicubic Pixelshuffle				
	Bilinear	0.8125	0.755	0.74		
Training	Bicubic	0.6775	0.80	0.7225		
	Pixelshuffle	0.6775	0.72	0.785		

Table: Logistic Regression

		Testing			
		Bilinear Bicubic Pixelshuffle			
	Bilinear	0.7725	0.725	0.685	
Training	Bicubic	0.6875	0.7875	0.6725	
	Pixelshuffle	0.68	0.725	0.7875	

Experimental Results

Unrolled Amplitude Spectrum

Table: Support Vector Machine

		Testing			
		Bilinear Bicubic Pixelshuffle			
	Bilinear	0.875	0.6675	0.665	
Training	Bicubic	0.6275	0.8125	0.66	
	Pixelshuffle	0.6375	0.6825	0.8075	

Table: Logistic Regression

		Testing			
		Bilinear Bicubic Pixelshuffle			
	Bilinear	0.8675	0.655	0.6275	
Training	Bicubic	0.605	0.8025	0.585	
	Pixelshuffle	0.625	0.6475	0.81	

Experimental Result

Table: Result based on Deep Learning Techniques

Upsampling	Validation accuracy using developed deep learning model in %							
Techniques	RGB		Gray-scale		Gray-scale $DFT: [\mathbb{R}, \mathbb{I}]$ $DFT: [\mathbb{R}, \mathbb{I}, abs, Phase]$			$T: [\mathbb{R}, \mathbb{I}, abs, Phase]$
Bilinear	85	T.L.	82	T.L.	84	T.L.	95	T.L.
Bicubic	76	78	78	77	82	84	93	93
Pixelshuffle	67	68	73	72	84	84	92	89

- ► T.L. = Transfer Learning
- Our developed model works for other upsampling techniques.

Conclusion

In this work we have exploited several state-of-the-art machine learning and deep learning techniques. Ours results has depicted that the spatial low resolution deepfake generated using SNGAN based on different upsampling techniques can be classified using our developed methods with a maximum accuracy of 95%. The future work can be analysis of our developed models on images that are wavelet based transformed.

References

R. Durall López, M. Keuper, and J. Keuper, "Watch your up-convolution: Cnn based generative deep neural networks are failing to reproduce spectral distributions," 03 2020.

R. Durall, M. Keuper, F.-J. Pfreundt, and J. Keuper, "Unmasking deepfakes with simple features," *ArXiv*, vol. abs/1911.00686, 2019.

M. Heredia Conde, "A material-sensing time-of-flight camera," *IEEE Sensors Letters*, vol. 4, no. 7, pp. 1–4, 2020.