第10章:力学量的代数解法

20:08 2017年6月20日

• 一维谐振子的代数解法

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
定义 $\widehat{a} = \frac{1}{\sqrt{2\hbar m\omega}}(m\omega x + i\widehat{p})$,
逆变换 $x = \sqrt{\frac{\hbar}{2m\omega}}(\widehat{a} + \widehat{a}^{\dagger})$, $\widehat{p} = \sqrt{\frac{\hbar m\omega}{2}}(\widehat{a}^{\dagger} - \widehat{a})$
由 $[x,p] = i\hbar$ 有 $[\widehat{a},\widehat{a}^{\dagger}] = 1$
则有
$$\widehat{H} = \hbar\omega \left[\widehat{a}^{\dagger}\widehat{a} + \frac{1}{2}\right]$$
定义厄米算符 $\widehat{N} = \widehat{a}^{\dagger}\widehat{a}$
则有 $\widehat{N}|n\rangle = n|n\rangle$
 $[\widehat{N},\widehat{a}] = -\widehat{a}$
 $[\widehat{N},\widehat{a}^{\dagger}] = \widehat{a}^{\dagger}$
 $\widehat{H} = \hbar\omega \left[\widehat{N} + \frac{1}{2}\right]$

★ 升降算符:升算符â[†],降算符â

在能量表象{\n\}中有

假设 $\hat{N}|n\rangle = n|n\rangle$

$$\begin{split} \widehat{N}\widehat{a}|n\rangle &= \left(\widehat{a}\widehat{N} - \widehat{a}\right)|n\rangle = \widehat{a}\left(\widehat{N} - 1\right)|n\rangle = (n - 1)\widehat{a}|n\rangle \\ \widehat{a}^{\dagger}|n\rangle &= \sqrt{n + 1}|n + 1\rangle \\ \widehat{a}|n\rangle &= \sqrt{n}|n - 1\rangle \\ &\vdash \end{split}$$

$$\begin{split} x|n\rangle &= \sqrt{\frac{\hbar}{m\omega}} \left[\sqrt{\frac{n}{2}} |n-1\rangle + \sqrt{\frac{n+1}{2}} |n+1\rangle \right] \\ \hat{p}|n\rangle &= -i\sqrt{\hbar m\omega} \left[\sqrt{\frac{n}{2}} |n-1\rangle - \sqrt{\frac{n+1}{2}} |n+1\rangle \right] \end{split}$$

相一致

对于基态有 $\hat{a}|0\rangle = 0$

第n个本征态可写为

$$|n\rangle = \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger}\right)^n |0\rangle$$

• 角动量的代数解法

? 角动量 \hat{j}^2 , \hat{j}_z 的共同本征态

定义
$$\hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y$$

逆变换 $\hat{J}_x = \frac{1}{2}(\hat{J}_+ + \hat{J}_-), \hat{J}_y = \frac{1}{2i}(\hat{J}_+ - \hat{J}_-)$

由 $[\hat{J}_{\alpha},\hat{J}_{\beta}] = i\varepsilon_{\alpha\beta\gamma}\hat{J}_{\gamma}$ 有 $[\hat{J}_{z},\hat{J}_{\pm}] = \pm\hbar\hat{J}_{\pm}$ $[\hat{J}^{2},\hat{J}_{\pm}] = 0$ 假设 \hat{J}^{2},\hat{J}_{z} 的共同本征态为 $|\lambda m\rangle$,即 $\hat{J}^{2}|\lambda m\rangle = \lambda\hbar^{2}|\lambda m\rangle$, $\hat{J}_{z}|\lambda m\rangle = \mu\hbar|\lambda m\rangle$ (λ,μ) 无量纲 由 $[\hat{J}^{2},\hat{J}_{\pm}] = 0$ $\hat{J}^{2}(\hat{J}_{\pm}|\lambda m\rangle) = \hat{J}_{\pm}\hat{J}^{2}|\lambda m\rangle = \lambda\hat{J}_{\pm}|\lambda m\rangle$ 于是 $\hat{J}_{\pm}|\lambda m\rangle$ 也是 \hat{J}^{2} 本征值为 λ 的本征态 由 $[\hat{J}_{z},\hat{J}_{\pm}] = 0$ $\hat{J}_{z}(\hat{J}_{\pm}|\lambda m\rangle) = (\hat{J}_{\pm}\hat{J}_{z} \pm \hbar\hat{J}_{\pm})|\lambda m\rangle = (m \pm 1)\hbar\hat{J}_{\pm}|\lambda m\rangle$ 于是 $\hat{J}_{\pm}|\lambda m\rangle$ 是 \hat{J}_{z} 本征值为 $m \pm 1$ 的本征态

所以有升降算符 \hat{J}_{\pm} 由于角动量分量不可能大于角动量大小,也不可能小于零

所以上升和下降都有限制, m既有上限又有下限

■ 假设上限为*i*

$$\begin{split} \hat{J}_{z}|\lambda j\rangle &= j\hbar|\lambda j\rangle; \; \hat{\pmb{J}}^{2}|\lambda l\rangle = \lambda\hbar^{2}|\lambda j\rangle \\ & \, \text{由} \; \hat{J}_{\pm}\hat{J}_{\mp} = \left(\hat{J}_{x} \pm i\hat{J}_{y}\right)\left(\hat{J}_{x} \mp i\hat{J}_{y}\right) = \hat{J}_{x}^{2} + \hat{J}_{y}^{2} \mp i\left(\hat{J}_{x}\hat{J}_{y} - \hat{J}_{y}\hat{J}_{x}\right) = \hat{\pmb{J}}^{2} - \hat{J}_{z}^{2} \pm \hbar\hat{J}_{z}\hat{\pmb{\eta}} \\ \hat{\pmb{J}}^{2}|\lambda j\rangle &= \left(\hat{J}_{-}\hat{J}_{+} + \hat{J}_{z}^{2} + \hbar\hat{J}_{z}\right)|\lambda j\rangle = (j^{2}\hbar^{2} + j\hbar)|\lambda j\rangle = \lambda\hbar^{2}|\lambda j\rangle \\ & \, \text{于是有} \; \lambda = j(j+1) \end{split}$$

这告诉我们可以用 \hat{J}_z 的最大本征值来表示 \hat{J}^2 的本征值。

■ 假设下限为̄

$$\begin{split} \hat{J}_z|\lambda\bar{j}\rangle &= \bar{\jmath}\hbar|\lambda\bar{\jmath}\rangle; \; \hat{\pmb{J}}^2|\lambda\bar{\jmath}\rangle = \lambda\hbar^2|\lambda\bar{\jmath}\rangle \\ \hat{\pmb{J}}^2|\lambda\bar{\jmath}\rangle &= (\hat{J}_+\hat{J}_- + \hat{J}_z^2 - \hbar\hat{J}_z)|\lambda\bar{\jmath}\rangle = (\bar{\jmath}^2\hbar^2 - \bar{\jmath}\hbar)|\lambda\bar{l}\rangle = \lambda\hbar^2|\lambda\bar{\jmath}\rangle \\ \mathcal{F} &= \hbar\lambda = \bar{\jmath}(\bar{\jmath} - 1) = j(j+1) \\ \text{所以有} \; \bar{\jmath} &= -j \end{split}$$

所以m 上限为 j 下限为 -j, 假设作用N次上升算符可以从上限到下限,则有 2j=N

于是

$$j = N/2$$
 可以取整数或半整数
$$\hat{j}_{\pm}|jm\rangle = \sqrt{(j \pm m + 1)(j \mp m)}|jm \pm 1\rangle$$