Probeklausur: Lösungsvorschläge

Aufgabe 1 Betrachten Sie den nebenstehenden NFA N.

- (a) Welche der Wörter ε , ba, aab und aabb sind in L(N)?
- (b) Wandeln Sie N mit der Potenzmengenkonstruktion in einen äquivalenten DFA M um.
- (c) Minimieren Sie M mit dem Verfahren aus der VL.
- (d) Geben Sie für jedes Paar $x, y \in \{\varepsilon, ba, aabb, aaab, aaabb\}$ an, ob $xR_L y$ gilt oder nicht. Begründen Sie.
- (e) Geben Sie ein Repräsentantensystem für R_L an.
- (f) Geben Sie einen möglichst kurzen regulären Ausdruck für L(N) an.

Lösung:

- (a) ε und aab sind enthalten, die anderen beiden nicht.
- (b)

(c) In der folgenden Tabelle sind für trennbare Zustände p,q jeweils Wörter aus $L(M)_p \triangle L(M)_q$ angegeben. Die Länge entspricht der Runde des Algorithmus, in der die Inäquivalenz festgestellt wird.

$\{2,4\}$ $\{2,3\}$	aab					
$\{2,3\}$		aab				
$\{2\}$	ab	ab	ab			
$\{1,3\}$	ε	ε	ε	ε		
$\{1\}$	ε	ε	ε	ε		
Ø	b	b	b	b	ε	ε
	$\{2, 3, 4\}$	$\{2, 4\}$	$\{2, 3\}$	{2}	$\{1, 3\}$	{1}

Damit gilt: $\{2,3,4\} \sim \{2,3\}, \{1\} \sim \{1,3\}$. Der resultierende Automat ist:

M':	b	a, b
	$\rightarrow (1,3)$	$a \Rightarrow \emptyset$
	b	
	$(\overbrace{2,3,4}) \xrightarrow{a} (\underbrace{2,4})$	

Wie immer gilt xR_Lx für alle $x \in \{\varepsilon, ba, aabb, aaab, aaabb\}$, da R_L reflexiv ist. Weiter gilt xR_Ly für alle $x,y \in \{ba, aabb, aaabb\}$, da der Minimalautomat M' für all diese x und y in den Zustand \varnothing geht. Ebenso gilt εR_Laaab und $aaabR_L\varepsilon$, da M' für ε und aaab in den Zustand $\{1,3\}$ geht. Für jedes andere Paar x,y gilt nicht xR_Ly , da M' für x und y in verschiedene Zustände geht.

- (e) z.B. $\{ab, aba, aa, aaa, aaaa\}$ oder $\{\varepsilon, a, b, aa, aaa\}$.
- (f) $((a|aa|aaa)b)^*$

(d)

Aufgabe 2 Für
$$\Sigma = \{\langle, \rangle, [,]\}$$
 sei $G = (\{S\}, \Sigma, P, S)$ 10 Punkte mit $P : S \to \langle S \rangle, [S], SS, \varepsilon$ $[\langle \to \langle [$

Zeigen Sie, dass L(G) kontextsensitiv, aber nicht kontextfrei ist.

Lösung:

• $L(G) \in \mathsf{CSL}$: $G' = (\{S_0, S\}, \Sigma, P', S_0)$ ist eine kontextsensitive Grammatik, wobei P': $S_0 \to S, \varepsilon$ $S \to \langle S \rangle, [S], SS, \langle \rangle, []$ $[\langle \to \langle [$

Es gilt L(G') = L(G), da G' nur solche und fast alle solche Regeln enthält, die man aus Regeln aus G konstruieren kann, wenn man ein oder mehrerer S auf der rechten Seite durch ε ersetzt. Die Regel $S \to S$ (entstanden aus $S \to SS$) kann entfallen, da sie an der Satzform nichts ändert, die Regel $S \to \varepsilon$ wurde durch $S_0 \to \varepsilon$ ersetzt. Es folgt, dass L(G') und somit L(G) kontextsensitiv ist.

- $L(G) \notin \mathsf{CFL}$: Angenommen L(G) wäre kontextfrei, dann gäbe es nach dem Pumping-Lemma eine Zahl l, sodass sich alle Wörter der Länge mind. l pumpen lassen. Für diese Zahl l betrachte das Wort $z = \langle {}^l [{}^l \rangle^l]^l$. Dieses ist in L(G): $S \Rightarrow {}^l [{}^l S]^l \Rightarrow {}^{l+1} [{}^l \langle {}^l \rangle^l]^l \Rightarrow {}^{l^2} z$. Das Wort z lässt sich nicht pumpen, da für jede Zerlegung z = uvwxy mit $vx \neq \varepsilon$ und $|vwx| \leq l$ das Wort $z' = uv^0wx^0y$ nicht zu L(G) gehört. Denn:
 - Wegen $|vwx| \le l$ können in vx nicht gleichzeitig die Zeichen [und] bzw (und) vorkommen.
 - Falls o.B.d.A. [in vx auftritt ($vx \neq \varepsilon$), dann ist kein] in vx. Somit gilt $\#_{\ \ \ }(z') = \#_{\ \ \ }(z) = \#_{\ \ \ }(z')$. Also kann z' somit nicht zu L(G) gehören, da die einzige Regel, die ein] erzeugt auch ein [erzeugt und somit deren Anzahl immer gleich ist.

Somit kann L(G) nicht kontextfrei sein.

Aufgabe 3 Sei $A = \{a^n b^m \mid n, m \ge 0, m = \lfloor \frac{n}{2} \rfloor \}$. **10 Punkte** Geben Sie eine DTM M mit L(M) = A an und kommentieren Sie die Funktionsweise.

Lösung:

1-DTM $M=(\{q_0,\ldots,q_4,q_e\},\{a,b\},\{a,b,A,B,\sqcup\},\delta,q_0,\{q_e\})$ wobei δ wie folgt definiert ist:

Laufe zum ersten b und markiere dieses:

$$q_0a \rightarrow q_0aR$$

$$q_0A \rightarrow q_0AR$$

$$q_0B \rightarrow q_0BR$$

$$q_0b \rightarrow q_1BL$$

Gehe nach links, markiere zwei as (müssen ex., wenn M akzeptieren soll):

$$q_1B \to q_1BL$$

$$q_1A \to q_1AL$$

$$q_1a \to q_2AL$$

$$q_2a \to q_0AR$$

Falls kein b mehr gefunden wird, gucke ob maximal ein a übrig:

$$q_0 \sqcup \to q_3 \sqcup L$$

$$q_3 A \to q_3 A L$$

$$q_3 B \to q_3 B L$$

$$q_3 \sqcup \to q_e \sqcup N$$

$$q_3 a \to q_4 A L$$

$$q_4 \sqcup \to q_e \sqcup N$$

Alternative Lösung mit 2-DTM:

2-DTM $M = (\{q_0, q_1, q_2, q_e\}, \{a, b\}, \{a, b, \sqcup\}, \delta, q_0, \{q_e\})$ wobei δ wie folgt definiert ist: Kopiere jedes zweite a auf Band 2:

$$q_0 a \sqcup \rightarrow q_1 a \sqcup RN$$

 $q_1 a \sqcup \rightarrow q_0 a a RR$

Beim Erreichen des ersten bs bzw ersten \sqcup s versetze den Kopf von Band 2 um eins Feld nach links:

$$q_0b \sqcup \to q_2b \sqcup NL$$

$$q_1b \sqcup \to q_2b \sqcup NL$$

$$q_0 \sqcup \sqcup \to q_2 \sqcup \sqcup NL$$

$$q_1 \sqcup \sqcup \to q_2 \sqcup \sqcup NL$$

Teste, ob die Anzahl der as auf Band 2 gleich der Anzahl bs auf Band 1 ist (gehe nach R auf Band 1, nach L auf Band 2):

$$q_2ba \rightarrow q_2baRL$$

 $q_2 \sqcup \sqcup \to q_e \sqcup \sqcup NN$

Aufgabe 4 Seien $A, B \subseteq \Sigma^*$ zwei beliebige Sprachen. *12 Punkte* Für diese sei embed $(A, B) = \{xwy \in \Sigma^* \mid w \in A \land xy \in B\}$. Zeigen Sie:

(a) Gilt $B \in CFL$, so ist auch embed($\{\#\}, B$) kontextfrei.

Lösung:

Da B kontextfrei ist, existiert ein PDA $M=(Z,\Sigma,\Gamma,\delta,q_0,\$)$ mit L(M)=B. Wir ersetzen jeden Zustand q von M durch Zustände q' und q'', die speichern, ob das eingebettete # bereits gelesen wurde. Das Lesen selbst wird durch $q'\#A\to q''A$ für alle $A\in\Gamma(M)$ und alle $q\in Z$ realisiert. Um das Lesen von # zu garantieren, legen wir vorab ein neues Symbol auf den Kellerboden, das von allen q'' per Epsilonübergang entfernt werden kann.

(b) Wenn $A, B \in \mathsf{CFL}$, so gilt auch embed $(A, B) \in \mathsf{CFL}$. (*Hinweis:* Benutzen Sie (a).)

Lösung:

Für A existiert eine kontextfreie Grammatik G_1 mit Startsymbol S. Nach 4.a ist mit B auch embed($\{S\}, B$) kontextfrei. Sei G_2 eine kontextfreie Grammatik für embed($\{S\}, B$), wobei $V_{G_2} \cap (\Sigma_{G_1} \cup V_{G_1}) = \emptyset$ sowie $\Sigma_{G_2} \cap V_{G_1} = \{S\}$ gelten und S' das Startsymbol von G_2 ist. Wir konstruieren aus G_1 und G_2 eine Grammatik $G_3 = (V_1 \cup V_2, \Sigma_1 \cup (\Sigma_2 \setminus \{S\}), P, S')$, indem wir S nur als Variable nutzen und beide Regelmengen zu P vereinigen.

Jede Linksableitung eines Wortes $x \in L(G_3)$ muss genau einen Ableitungsschritt der Form $uS\beta \Rightarrow u\alpha\beta$ enthalten, wobei $u\beta$ in G_2 zu einem Wort $uw \in B$ ableitbar ist. Da das Teilwort v von x, welches aus S abgeleitet wird, in A enthalten ist, folgt $x = uvw \in \text{embed}(A, B)$. Andererseits gibt es für jedes Wort $x = uvw \in \text{embed}(A, B)$ mit $v \in A$ und $uw \in B$ eine Ableitung $S \Rightarrow^* v$ in G_1 , die wir mit der Ableitung $S' \Rightarrow^* uSw$ in G_2 zu einer Ableitung von uvw in G_3 ergänzen können.

Aufgabe 5 Seien A, B und C beliebige Sprachen. 12 Punkte Gelten folgende Aussagen jeweils? Begründen Sie kurz.

- (a) $(B \in \mathsf{CFL} \text{ und } A \leq^p B) \Rightarrow A \in \mathsf{NP}.$
- (b) $(A \leq^p B \text{ und } A \leq^p C) \Rightarrow A \leq^p B \cap C.$
- (c) Gibt es eine Funktion f in FP, die A auf B und A auf C reduziert, so gilt $A \leq^p B \cap C$.
- (d) $P = NP \Rightarrow SAT \leq^p \{a\}$

Lösung:

- (a) **Ja**: $\mathsf{CFL} \subset P$ wurde in den ÜA gezeigt, P ist unter \leq^p abgeschlossen und $\mathsf{P} \subseteq \mathsf{NP}$.
- (b) **Nein**: Wähle $A = \{1\}$, $B = \{1\}$, $C = \{0\}$. Für $A \leq^p B$ ist z.B. die Identitätsfunktion id, und für $A \leq^p C$ z.B. $f(x) = \begin{cases} 0 & \text{falls } x = 1 \\ 1 & \text{sonst} \end{cases}$ eine Reduktionsfunktion.

Beide sind offensichtlich in Polynomialzeit berechenbar. Es gibt allerdings keine (Polynomialzeit-)Reduktion die A auf $B \cap C$, d.h. $\{a\}$ auf \emptyset , reduziert.

(c) **Ja**: Es gilt:

$$x \in A \Rightarrow f(x) \in B \land f(x) \in C \Rightarrow f(x) \in B \cap C$$

 $x \notin A \Rightarrow f(x) \notin B \land f(x) \notin C \Rightarrow f(x) \notin B \cup C \Rightarrow f(x) \notin B \cap C$

und somit reduziert f auch A auf $B \cap C$.

(d) **Ja**: Falls P = NP, so existiert eine Polynomialzeit-DTM für SAT, die sich in eine DTM für f umwandeln lässt mit $f(w_F) = a$, falls $w_F \in SAT$ und $f(w_F) = \varepsilon$ sonst. Dieses f ist dann die Reduktionsfunktion für $SAT \leq^p \{a\}$.

Aufgabe 6 Zeigen Sie, dass folgendes Problem NP-vollständig ist. **10** Punkte QUADRATCLIQUE: **Gegeben:** Ein Graph G und $k \in \mathbb{N}$.

Gefragt: Enthält G eine Clique der Größe $k^2 + k$?

Lösung:

- QUADRATCLIQUE ∈ NP: Eine NTM für das Problem berechnet bei Eingabe G = (V, E) und k zunächst l = k² + k und rät eine Knotenmenge V' der Größe l.
 Anschließend testet sie, ob für alle u, v ∈ V' mit u ≠ v gilt, dass {u, v} eine Kante in G ist.
- QUADRATCLIQUE ist NP-schwer: Wir zeigen CLIQUE \leq^p QUADRATCLIQUE. Sei $w \in \Sigma^*$. Falls w kein Paar (G,k) aus Graph G und natürlicher Zahl k codiert oder falls k größer als die Knotenzahl von G ist, so bilden wir auf die Kodierung des Paars $((\{v\}, \{\}), 1)$ ab (d.h. Graph mit nur einem Knoten, aber gesucht ist 2-Clique). Ansonsten wird (G,k) auf (G',k) abgebildet, wobei G' aus G entsteht indem eine k^2 -Clique hinzugenommen wird und mit allen Knoten aus G verbunden wird. Dann hat G' genau dann eine (k^2+k) -Clique, wenn G eine k-Clique hat. Alternativ kann G' auch gebildet werden, indem man jeden Knoten v von G durch eine (k+1)-Clique C_v ersetzt und zwei Knoten w, x aus verschiedenen Cliquen C_v bzw. C_u verbindet, wenn u und v verbunden waren. Dann hat G genau dann eine k-Clique, wenn G' eine (k(k+1))-Clique hat (also eine k-Clique aus (k+1)-Cliquen).

Aufgabe 7 15 Punkte

- (a) Beweisen Sie, dass co-RE unter ≤ abgeschlossen ist.
- (b) Für $w \in \{0,1\}^*$ sei f_w die durch die DTM M_w berechnete partielle Funktion. Sei \tilde{f}_w die einstellige numerische Repräsentation von f_w , d.h. falls eine Funktion $g: \mathbb{N}^1 \to \mathbb{N} \cup \{\uparrow\}$ existiert, sodass $f_w = \hat{g}$, ist $\tilde{f}_w = g$, sonst ist \tilde{f}_w die konstante Nullfunktion.

Bestimmen Sie welche der folgenden Sprachen entscheidbar sind. Begründen Sie.

- (1) $L_1 = \{ w \in \{0, 1\}^* \mid \tilde{f}_w \text{ ist WHILE-berechenbar} \}$
- (2) $L_2 = \{ w \in \{0,1\}^* \mid \tilde{f}_w \text{ ist LOOP-berechenbar} \}$
- (3) $L_3 = \{w \in \{0,1\}^* \mid \text{Bei jeder Eingabe besucht } M_w \text{ seinen Startzustand erneut.} \}$
- (4) $L_4 = \{ w \in \{0,1\}^* \mid \exists w', w'' \in \{0,1\}^* : w = w'w'' \text{ und } L(M_{w'}) = L(M_{w'w''}) \}$

Lösung:

(a) Zu zeigen: $(A \le L \text{ und } L \in \text{co-RE}) \Rightarrow A \in \text{co-RE}.$

$$A \leq L$$
 und $L \in \text{co-RE}$

 $\Rightarrow A \le L \text{ und } \bar{L} \in RE$ (Definition co-RE)

 $\Rightarrow \bar{A} \leq \bar{L} \text{ und } \bar{L} \in RE$ (aus Übungsaufgabe bekannt)

 $\Rightarrow \bar{A} \in RE$ (RE ist unter \leq abgeschlossen)

 $\Rightarrow A \in \text{co-RE}$ (Definition co-RE)

(b) (1) Entscheidbar:

Für alle $w \in \{0,1\}^*$ gilt:

 M_w berechnet die partielle Funktion f_w

- \Rightarrow f_w ist (Turing)-berechenbar
- \Rightarrow \tilde{f}_w ist GOTO-berechenbar
- $\Rightarrow \tilde{f}_w$ ist WHILE-berechenbar

Somit gilt $L_1 = \{0,1\}^*$, und L_1 ist entscheidbar.

(2) Nicht entscheidbar:

Benutze Satz von Rice. Sei $\mathcal{F} = \{f \mid \tilde{f} \text{ ist LOOP-berechenbar}\}$. Dann gilt $L_{\mathcal{F}} = L_2$. \mathcal{F} ist nicht trivial:

 $L_{\mathcal{F}} \neq \emptyset$, denn z.B. \tilde{f}_1 mit $\tilde{f}_1(x) \coloneqq x$ für alle x ist LOOP-berechenbar.

 $L_{\mathcal{F}} \neq \{0,1\}^*$, denn z.B. die Ackermannfunktion \tilde{a} oder \tilde{f}_2 mit $\tilde{f}_2(x) \coloneqq \uparrow$ für alle x ist nicht LOOP-berechenbar, aber WHILE-berechenbar, und damit $a = \hat{a}$ bzw. $f_2 = \hat{f}_2$ berechenbar.

(3) Nicht entscheidbar:

Reduziere das spezielle Halteproblem K auf L_3 mittels folgender Funktion $f: w \to w'$. Das Wort w' ist die Kodierung einer DTM, die zunächst ihren

Anfangzustand verlässt (und ihn vorerst nicht wieder besucht), und dann unabhängig von ihrer Eingabe, M_w bei Eingabe w simuliert, und genau dann zurück in den Startzustand wechselt, wenn $M_w(w)$ hält.

(4) Entscheidbar:

$$L_4 \supseteq \{ w \varepsilon \in \{0, 1\}^* \mid L(M_w) = L(M_{w\epsilon}) \}$$

= $\{ w \in \{0, 1\}^* \mid L(M_w) = L(M_w) \} = \{0, 1\}^*$

Aufgabe 8 Sei G der nebenstehende Graph.

21 Punkte

- (a) Bestimmen Sie folgende Parameter und begründen Sie.
 - (1) $\beta(G) = \min \{ \|U\| \mid U \text{ ist eine Kantenüberdeckung in } G \}$
 - (2) $\chi(G) = \min \{k \ge 1 \mid G \text{ ist } k\text{-färbbar}\},$
 - (3) $\mu(G) = \max \{ ||M|| \mid M \text{ ist ein Matching in } G \},$
 - (4) $\omega(G) = \max \{ \|C\| \mid C \text{ ist eine Clique in } G \},$
 - (5) $\alpha(G) = \max \{ ||S|| \mid S \text{ ist stabil in } G \}.$

- (b) Besitzt G eine Eulertour/einen Hamiltonkreis? Geben Sie eine/einen an, oder begründen Sie falls keine/keiner existiert.
- (c) Geben Sie einen Subgraphen von G an, der zu folgendem Graphen isomorph ist.

Lösung:

- (a) (1) $\beta(G) = 10$, da $\beta(G) = 15 \alpha(G)$. Nach der Lösung zu ?? ist $\alpha(G) = 5$.
 - (2) $\chi(G) = 3$. Der Graph G enthält einen $K_3 (\Rightarrow \chi(G) \ge 3)$ und der Graph kann wiefolgt gefärbt werden $(\Rightarrow \chi(G) \le 3)$:

- (3) $\mu(G) = 7$. $M = \{\{a_i, b_i\} \mid i \in \{1, \dots, 5\}\} \cup \{\{c_1, c_2\}, \{c_3, c_4\}\}$ ist ein Matching mit $|M| = 7 \ (\Rightarrow \mu(G) \ge 7)$. Da der Graph 15 Knoten enthält, können Matchings maximal |15/2| = 7 Kanten enthalten $(\Rightarrow \mu(G) \le 7)$.
- (4) $\omega(G) = 3$. $G[\{a_1, b_1, c_1\}]$ ist ein $K_3 \ (\Rightarrow \omega(G) \ge 3)$. Da $\chi(G) = 3$ kann G keinen K_4 enthalten $(\Rightarrow \omega(G) \le 3)$.
- (5) $\alpha(G) = 5$. Denn $S = \{a_1, b_2, a_3, b_4, c_5\}$ ist eine stabile Menge ($\Rightarrow \alpha(G) \ge 5$). In einer stabilen Menge darf höchstens 1 Knoten aus jeder Clique $\{a_i, b_i, c_i\}$

mit $i \in \{1, ..., 5\}$ enthalten sein. Wir haben eine *Cliquenüberdeckung* des Graphen gefunden, die aus 5 Cliquen besteht, somit kann jede stabile Menge höchstens 5 Knoten enthalten ($\Rightarrow \alpha(G) \leq 5$).

(b) G besitzt eine Eulertour, da alle Knoten geraden Grad haben. Eine solche ist:

$$a_1, a_2, b_2, c_2, a_2, a_3, b_3, c_3, a_3, a_4, b_4, c_4, a_4, a_5, b_5, c_5, a_5, a_1, b_1, b_2, b_3, b_4, b_5, b_1, c_1, c_2, c_3, c_4, c_5, c_1, a_1$$

G besitzt auch einen Hamiltonkreis, da folgendes ein Hamiltonkreis ist:

$$a_1, a_2, a_3, a_4, b_4, b_3, b_2, b_1, c_1, c_2, c_3, c_4, c_5, b_5, a_5, a_1.$$

(c) z.B.

