Final Project

Song Liu (song.liu@bristol.ac.uk)

GA 18, Fry Building,

Microsoft Teams (search "song liu").

Final Project: "Recognising" Images

- In this final project, you will write a program that "recognises" handwritten digits.
- Given **test images**, your program guesses whether these images are digit "1" or not.
 - \circ The "guessing" is done using the k-nearest neighbours algorithm, a widely known machine learning algorithm.
- This project worth 25% of your total score in this unit.
 - You will get a score from 0-100.

Part I, Loading Images from File (25%)

- A lab folder will be provided, containing the skeleton code, data files.
- The folder contains 3 .matrix files.
 - \circ X.matrix contains a N by M^2 matrix X where each row is a flattened grayscale M by M image.
 - \circ Y matrix contains a N by 1 matrix Y where each row is a scalar, indicating whether the corresponding row in X is digit 1 or not.
 - \circ T.matrix contains a L by M^2 matrix T where each row is a flattened M by M test image.
 - $\circ \ X$ and Y together are called "training set" in machine learning, while T is the "testing set". Y is called the "labels" of X.

Part I, Data Structure

• If $Y_i=1$, then the image X_i is a handwritten digit 1. If $Y_i
eq 1$, the image X_i is NOT a handwritten digit 1.

Part I, Loading Images from File

- The format of these matrix files are exactly the same as the ones we encountered at Lab 7.
- ullet After loading the file, print out some basic statistics of X,Y and T.
 - \circ What are M , N and L?
 - \circ How many images in the training set X are digit 1?
- Relevant lectures:
 - Tutorial in week 5.
 - Lecture and Lab in week 7.

Part II Computing Distance Matrix D (25%)

- ullet Construct an N by L matrix D, where the i,j-th element $D_{ij}={
 m dist}2(X_i,T_j)$
 - $\circ \; X_i$ is the i-th row of X
 - $\circ \ T_j$ is the j-th row of T.
- ${
 m dist}2(a,b)$ computes the squared euclidean distance between two vectors a and b with K elements.

$$\circ \operatorname{dist2}(a,b) = \sum_{k=1}^K (a_k - b_k)^2$$
.

Part II (Computing D)

Part II Computing D

- **Hint**: Compare the computation of D and the matrix multiplication we have done before. What are the similarities and what are the dissimilarities?
 - \circ Can you modify the matrix multiplication code to compute matrix D?
- Hint, you can write a function

```
void pairwise_dist(Matrix X, Matrix T, Matrix D)
```

- \circ where D is the output, storing the outcome.
- Partial points will be given for correctly written code for computing $\operatorname{dist}(a,b)$.

Part III Guessing Labels (20%)

- ullet For each column of matrix D, find the indices of the five smallest elements.
 - \circ Suppose the j-th column in D is a column vector $[1,2,3,4,5,6,7,8,9,10]^{ op}$,
 - \circ The indices of the five smallest elements are [0,1,2,3,4].
- Hint: Write a function

```
void minimum5(int len, int a[len], int indices[5]),
```

It takes an array a with length len as input, then fills indices [5] with the indices of the five smallest elements.

Review Lab in week 3.

- Now, suppose indices contains the indices of the five smallest elements in column j of matrix D.
 - Create a new array labels with length 5.
 - \circ Assign the value of $Y_{\mathrm{indices}[i],0}$ to the i-th element in labels .
 - Count the number of 1 in labels.
- If the count >= 3, print out 1. Otherwise, print 0.
- ullet Repeat above for all columns in D.

For each column in D, do:

- During Part III, at each column D_j , the print-out are your "guess" of the testing image T_j using 5-nearest neighbour algorithm.
 - \circ If the print-out is 1, it means the algorithm thinks the image T_i is a digit 1.
 - \circ If the print-out is 0, it means the algorithm thinks the image T_j is NOT a digt 1.

 Hint: Write pseudo code for Part III before writing the real code.

Hint: Sample Output

- https://github.com/anewgithubname/MATH10017/blob/mai n/labs/sample_output.txt
- The visualization of digits is optional.

Final Project: Marking Criteria

- 5%: You have submitted a C or C++ file.
- 10%: Your code compiles and runs without major error.
 - It will be tested using gcc or g++ in the lab pack.
 - Erratic behavior includes crash, infinite loop.
- 10-30%: You have attempted the coursework "toward the right direction". However, your code does not produce any correct output given specific inputs within reasonable amount of runtime.
- Correctly write code for Part I, II and III will give you the remaining 70%.
 - Part I 25%, Part II 25% and Part III 20%.

Final Project: Dos and Don'ts

- You are encouraged to discuss with your classmates.
- Review relevant previous lab sessions before you start.
- You can use whatever material you can find to help you complete the task.
- You are only allowed to use standard features of C/C++.
 - You can use stdio.h, stdlib.h, limits.h and math.h.
 - If you want to use other libraries, consult with the lecturer or TA beforehand.

Final Project: Dos and Don'ts

- You are not allowed to copy code from each other or pass code to each other.
 - Similar submissions WILL trigger plagiarism investigation.

Final Project: Q&A

- We will only answer questions posted on the Blackboard forum or answering them during the lab sessions.
- We will inspect the forum regularly and try to respond in 24 hours.
- There is no guarantee after the holiday starts.
 - However, you can still communicate with each other on the forum.