Departamento de Produção e Sistemas Universidade do Minho

Exercícios de Investigação Operacional

1. Considere o seguinte problema de programação linear:

max
$$4x_1 + 4x_2$$

suj. $2x_1 + 7x_2 \le 21$
 $7x_1 + 2x_2 \le 49$
 $x_1, x_2 \ge 0$

- a) Desenhe o domínio de soluções válidas no espaço (x_1, x_2) .
- b) Identifique graficamente o ponto óptimo, e indique o valor das variáveis de decisão no ponto óptimo e o valor do óptimo do problema.
- c) Determine a variação permitida para os coeficientes da função objectiva de modo a que a solução da alínea anterior se mantenha óptima.
- d) Resolver o problema usando o método simplex.
- 2. Determine a solução óptima do seguinte problema de programação linear usando o método simplex:

max
$$2x_1 + x_2 - 3x_3 + 5x_4$$

suj. $x_1 + 7x_2 + 3x_3 + 7x_4 \le 46$
 $3x_1 - x_2 + x_3 + 2x_4 \le 8$
 $2x_1 + 3x_2 - x_3 + x_4 \le 10$
 $x_1, x_2, x_3, x_4 \ge 0$

3. Considere o seguinte problema de programação linear:

$$\max \quad 2x_1 - 4x_2 + 5x_3 - 6x_4$$

suj.
$$x_1 + 4x_2 - 2x_3 + 8x_4 \le 2$$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 \le 1$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- a) Determine um limite superior para o número de soluções possíveis.
- b) Determine os pontos extremos válidos (soluções básicas válidas).
- c) Determine a solução básica óptima.
- 4. Considere o seguinte problema de programação linear:

$$\max x_1 - 3x_2 - 7x_3 + 5x_4 - 8x_5$$
suj.
$$x_3 - 4x_4 + x_5 \le 10$$

$$-5x_1 + x_2 + 4x_4 + 5x_5 \le 5$$

$$-3x_1 + 6x_3 + x_4 + 9x_5 \le 5$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

- a) Determine a solução óptima usando o método simplex.
- 5. Considere o seguinte problema de programação linear:

max
$$1x_1 + 2x_2 + 3x_3$$

suj. $x_1 + 2x_2 + 3x_3 \le 10$
 $x_1 + x_2 \le 5$
 $x_1 \le 1$
 $x_1, x_2, x_3 \ge 0$

- a) Determine todas as soluções básicas óptimas alternativas.
- b) Escreva uma expressão que represente as soluções óptima não-básicas como uma combinação convexa das soluções óptimas alternativas determinadas na alínea anterior.
- 6. Considere o seguinte problema de programação linear:

max
$$2x_1 - x_2 + 3x_3$$

suj. $x_1 - x_2 + 5x_3 \le 10$
 $2x_1 - x_2 + 3x_3 \le 40$
 $x_1 \le 1$
 $x_1, x_2, x_3 \ge 0$

- a) Diga o que se pode concluir em relação ao espaço de soluções e à função objectivo.
- b) Mostre que os valores das variáveis básicas óptimas podem ser aumentados indefinidamente, permanecendo o valor da função objectivo constante.
- 7. Considere o seguinte problema de programação linear com apenas uma restrição.

max
$$5x_1 - 6x_2 + 3x_3 - 5x_4 + 12x_5$$

suj. $x_1 + 3x_2 + 5x_3 + 6x_4 + 3x_5 \le 90$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

- a) Considerando a estrutura das soluções óptimas dadas pelo método de simplex, determine a solução óptima do problema por inspecção.
- 8. Considere o seguinte problema de programação linear

max
$$2x_1 + 10x_2 + x_3$$

suj. $3x_1 - 3x_2 + 5x_3 \le 50$
 $x_1 + x_3 \le 10$
 $x_1 - x_2 + 4x_3 \le 20$
 $x_1, x_2, x_3 \ge 0$

- a) Em que direcção é que o espaço de soluções é ilimitado?
- b) O que se pode concluir em relação à solução óptima do problema?
- 9. Desenhe o domínio de soluções válidas e interprete graficamente as situações que ocorrem em cada um dos seguintes problemas, acompanhando com a resolução utilizando o algoritmo Simplex.
 - Soluções óptimas alternativas

min
$$2x_1 + 3x_2$$

suj. $x_1 + 3x_2 \ge 3$
 $4x_1 + 6x_2 \ge 8$
 $x_1, x_2 \ge 0$

• Solução óptima ilimitada

max
$$2x_1 + x_2$$

suj. $x_1 \le 4$
 $x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0$

• Espaço não limitado e solução óptima limitada

max
$$2x_1 - x_2$$

suj. $x_1 \le 4$
 $x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0$

• Solução temporariamente degenerada

max
$$x_1 + 2x_2$$

suj. $2x_1 + 5x_2 \le 10$
 $x_1 + 3x_2 \le 6$
 $x_1, x_2 \ge 0$

• Solução óptima degenerada

max
$$5x_1 + 4x_2$$

suj. $2x_1 + x_2 \le 4$
 $4x_1 + 3x_2 \le 12$
 $x_1, x_2 \ge 0$