Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

Review: Diagonalizable Linear Function

Theorem

Let $T: V \to V$ be a linear function on a finite dimensional linear space V, and T has different eigenvalues $\lambda_1, \ldots, \lambda_k$. Suppose that W_i is the null space of $T - \lambda_i I$ for each $1 \le i \le k$. Then the following statements are equivalent:

- i. T is diagonalizable.
- ii. The characteristic polynomial of T is $f(x) = (x \lambda_1)^{n_1} \cdots (x \lambda_k)^{n_k}$, where $n_i = \dim W_i$.
- iii. $\sum_{i=1}^k \dim W_i = \dim V$.

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{r_i}(T))$ for each $1 \le i \le k$. Then

- $\bullet V = W_1 \oplus \cdots \oplus W_k.$
- **3** The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.

Minimal Polynomials for Vectors

Lemma

Suppose that T is a linear function on linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then

- Each vector $v \in V$ has a minimal polynomial with respect to T.
- ullet The minimal polynomial for v with respect to T is unique.
- **③** Take a vector v ∈ V and assume that f(x) is a polynomial with coefficients in \mathbb{F} such that f(T)v = 0, then p(x) | f(x) where p(x) is the minimal polynomial for v with respect to T.
- **1** Let f(x) and g(x) be two coprime polynomials. Then

$$N(f(T)) \cap N(g(T)) = \{0\}.$$

Review: Lemma

Lemma

Let T, S be two linear functions on linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} such that $T \circ S = S \circ T$ and $N(T) \cap N(S) = \{0\}$. Then

- ② If V is finite dimensional, then $\dim N(T \circ S) \leq \dim N(T) + \dim N(S)$ and consequently, $N(T \circ S) = N(T) \oplus N(S)$.

Review: Lemma.

Lemma

Let T_1, \ldots, T_k be linear functions on a finite dimensional linear space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} such that

- $\bullet \ T_i \circ T_j = T_j \circ T_i,$
- $N(T_i) \cap N(T_j) = \{0\}$

for each $1 \le i < j \le k$. Then $N(T_1 \circ \cdots \circ T_k) = N(T_1) \oplus \cdots \oplus N(T_k)$.

Lemma.

Lemma

Let T be a linear functions on a finite dimensional linear space V over $\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}$.

• Let f(x) be a polynomial with coefficient in \mathbb{F} and $f(x) = f_1(x)^{n_1} \cdots f_k(x)^{n_k}$ such that f_1, \ldots, f_k mutually coprime. Then

$$N(f(T)) = N(f_1(T)^{n_1}) \oplus \cdots \oplus N(f_k(T)^{n_k}).$$

② If the minimal polynomial T is factorized as $p(x) = p_1(x)^{n_1} \cdots p_k(x)^{n_k}$ where p_1, \dots, p_k are mutually coprime, then

$$V = N(p_1(T)^{n_1}) \oplus \cdots \oplus N(p_k(T)^{n_k}).$$

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{r_i}(T))$ for each $1 \le i \le k$. Then

- $\bullet V = W_1 \oplus \cdots \oplus W_k.$
- **2** $For each <math>1 \leq i \leq k, T(W_i) \subseteq W_i.$
- **3** The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.

Jordan Form

Suppose that T is a linear function on V with the characteristic polynomial is

$$f(x) = (x - \lambda_1)^{d_1} \dots (x - \lambda_k)^{d_k}$$

where $\lambda_1, \ldots, \lambda_k$ are distinct elements and $d_i \geqslant 1$.

Then the minimal polynomial for T will be

$$p(x) = (x - \lambda_1)^{r_1} \dots (x - \lambda_k)^{r_k}$$

where $1 \leq r_i \leq d_i$ based on the Cayley–Hamilton theorem.

If W_i is the null space of $(T - \lambda_i I)^{r_i}$, then the primary decomposition theorem tells us that

$$V = W_1 \oplus \cdots \oplus W_k$$

such that the linear function $T_i = T \upharpoonright_{W_i} : W_i \to W_i$ has minimal polynomial $(x - \lambda_i)^{r_i}$.

Jordan Form

$$V = W_1 \oplus \cdots \oplus W_k$$

Suppose that B_i is a basis for W_i . It has been proved that $B = \bigcup_{i=1}^k B_i$ is a basis for V. Based on primary decomposition theorem,

$$T(W_i) \subseteq W_i$$
.

Thus

$$[T]_B = \begin{bmatrix} [T_1]_{B_1} & & & \\ & \ddots & & \\ & & [T_k]_{B_k} \end{bmatrix}.$$

Jordan Form

$$V = W_1 \oplus \cdots \oplus W_k$$

and

$$[T]_B = \begin{bmatrix} [T_1]_{B_1} & & & \\ & \ddots & & \\ & & [T_k]_{B_k} \end{bmatrix}.$$

- Let N_i be the linear function on W_i defined by $N_i = T \lambda_i I$.
- Then N_i is nilpotent and has minimal polynomial x^{r_i} .
- Thus, T on W_i acts as N_i plus the scalar λ_i times the identity function I.
- Suppose we choose a basis for the subspace W_i and then find the representation matrix of N_i on W_i .

Nilpotent matrices and Nilpotent linear functions

Definition

A square matrix A is called nilpotent matrix with degree non-negative integer k if A^k is the zero matrix and A^r is the non-zero matrix for each r, $1 \le r \le k$.

Definition

A be a linear function T on V is called nilpotent linear function with degree non-negative integer k if T^k is the zero linear function and T^r is the non-zero one for each r, $1 \le r \le k$.

Example

Let $A \in M_3(\mathbb{R})$ be the following matrix:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Then

$$A^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \mathbf{O}$$

The third power of A is

$$A^{3} = A^{2}A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{O}$$

Nilpotent matrices

Lemma

Let the $n \times n$ matrix A is nilpotent with degree k, then

- 1) The matrix A is nilpotent if and only if all the eigenvalues of A is zero.
- 2) The matrix Ais nilpotent if and only if $A^n = O$.

Nilpotent matrices

Lemma

If a linear function T on V with $\dim V = n < \infty$ is nilpotent with degree n, then there is a basis for V such that

$$[T]_B = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

• • •

Thank You!