

Description

The VSM9P03 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 4.5V.

General Features

• $V_{DS} = -30V, I_{D} = -9.1A$

 $R_{DS(ON)}$ < 35m Ω @ V_{GS} =-4.5V

 $R_{DS(ON)}$ < 20m Ω @ V_{GS} =-10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Application

- Battery Switch
- Load switch
- Power management

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM9P03-S8	VSM9P03	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		VDS	-30	V	
Gate-Source Voltage		Vgs	±20	V	
	T _C =25°C		-11	۸	
Continuous Prain Current (T. =150%)	T _C =70°C	- I _D	-9		
Continuous Drain Current (T _J =150℃)	T _A =25℃		-9.1	A	
	T _A =70 °C		-7.2		
in Current-Pulsed (Note 1)		I _{DM}	-50	А	
Maximum Power Dissipation		P _D	3.1	W	
Operating Junction and Storage Temperature Range		T_{J}, T_{STG}	T _J ,T _{STG} -55 To 150		

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note 2)	R _{θJA}	40	°C/W
Thermal Resistance,Junction-to-Lead (Note 2)	$R_{ heta JL}$	24	°C/W

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V I_D =-250 μ A	-30	-33	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-30 V , V_{GS} =0 V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·		•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1	-1.5	-3	V
Desir Course On Otata Basistana	R _{DS(ON)}	V _{GS} =-10V, I _D =-9.1A	-	16	20	mΩ
Drain-Source On-State Resistance		V _{GS} =-4.5V, I _D =-6.9A	-	21	35	mΩ
Forward Transconductance	g FS	V _{DS} =-15V,I _D =-9.1A	10	-	-	S
Dynamic Characteristics (Note4)			•	•		
Input Capacitance	C _{lss}	V _{DS} =-15V,V _{GS} =0V, F=1.0MHz	-	1600	-	PF
Output Capacitance	C _{oss}		-	350	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0ivinz	-	300	-	PF
Switching Characteristics (Note 4)			•	•		
Turn-on Delay Time	t _{d(on)}		-	10	-	nS
Turn-on Rise Time	t _r	V _{DD} =-15V, ID=-1A,	-	15	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =6 Ω	-	110	-	nS
Turn-Off Fall Time	t _f			70	-	nS
Total Gate Charge	Qg	\/ - 15\/ - 0.10	-	30	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-15V, I_{D} =-9.1A V_{GS} =-10V	-	5.5	-	nC
Gate-Drain Charge	Q _{gd}	VGS10V	-	8	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-9.1A	-	-	-1.2	V

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ = 25° C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Rdson On-Resistance((2))

Figure 7 Transfer Characteristics

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)

Figure 10 Capacitance vs Vds

Figure 12 Source- Drain Diode Forward

Reverse Drain Current (A)

Vds Drain-Source Voltage (V)

Figure 13 Safe Operation Area

Figure 14BV_{DSS} vs Junction Temperature

Figure 15Normalized Maximum Transient Thermal Impedance