```
Clear["Global`*"]
(* A Wiener process is also known as Brownian motion,
a continuous-time random walk,or integrated white Gaussian noise *)
(* The state at time t follows a NormalDistribution \left[\mu\ t, \sigma\sqrt{t}\ \right] *)
T = 1;
sigma = 0.3;
r = 0.05;
K = 10;
data = RandomFunction[WienerProcess[r, sigma], {0, T, 0.01}]
ListLinePlot[data, Filling → Axis]
                          Time: 0 to 1
TemporalData
                          Data points: 101
                                            Paths: 1
0.30
0.25
0.20
```


Mean[WienerProcess[r, sigma][t]]

0.05 t

Variance[WienerProcess[t, sigma][t]]

0.09 t

```
(* simulate 500 Wiener-Walks *)
data500 = RandomFunction[WienerProcess[r, sigma], {0, T, 0.01}, 500];
sd = data500["SliceData", 1];
cf = ColorData["Rainbow"];
ListLinePlot data500, ImageSize → 400, PlotRange → All,
 AspectRatio \rightarrow 3/4, PlotStyle \rightarrow (cf/@Rescale[sd]),
 BaseStyle \rightarrow Directive[Thin, Opacity[0.5]], PlotRangePadding \rightarrow {{0, .25}, {.5, .5}}
```


 $Histogram[sd, \{Range[Min[sd], Max[sd], (Max[sd] - Min[sd]) / 20]\}]$

DistributionFitTest[sd] (* tests whether data is normally distributed *) 0.697585

HH = DistributionFitTest[sd, Automatic, "HypothesisTestData"]; HH["TestDataTable", All]

	Statistic	P-Value
Anderson-Darling	0.445199	0.28682
Baringhaus-Henze	0.463516	0.40545
Cramér-von Mises	0.0606235	0.378517
Jarque-Bera ALM	2.92381	0.21411
Kolmogorov-Smirnov	0.0281787	0.444874
Kuiper	0.0482046	0.404811
Mardia Combined	2.92381	0.21411
Mardia Kurtosis	-1.25724	0.208667
Mardia Skewness	1.41656	0.233971
Pearson χ^2	22.9	0.407395
Shapiro-Wilk	0.996229	0.283751
Watson U ²	0.0516376	0.441303

Show[Histogram[sd, Automatic, "ProbabilityDensity"], $\label{eq:pdf_pdf} $$Plot[PDF[HH["FittedDistribution"], x], \{x, -1.5, +1.5\}, PlotStyle \to Thick]]$$$

(* Test if the mean of the data is zero *) LocationTest[sd, Automatic, {"TestDataTable", All}]

	Statistic	P-Value
Paired T	3.54504	0.000429512
Paired Z	3.54504	0.000392561
Sign	286	0.00147246
Signed-Rank	74 363.	0.000282014
T	3.54504	0.000429512
Z	3.54504	0.000392561

Mean[opt] (* the option is convex, the loss is bounded at 0 *) Mean[sd] (* mean of the Wiener walk is expected to be 0.05 t *)

0.263728

0.048957

FinancialDerivative[{"European", "Call"}, {"StrikePrice" \rightarrow 0.10, "Expiration" \rightarrow 1}, {"InterestRate" \rightarrow r, "Volatility" \rightarrow sigma, "CurrentPrice" \rightarrow 0.10}]

FinancialDerivative[{"European", "Call"}, {"StrikePrice" \rightarrow 1.00, "Expiration" \rightarrow 1}, {"InterestRate" \rightarrow r, "Volatility" \rightarrow sigma, "CurrentPrice" \rightarrow 1.00}]

FinancialDerivative[{"European", "Call"}, {"StrikePrice" \rightarrow 10.0, "Expiration" \rightarrow 1}, {"InterestRate" \rightarrow r, "Volatility" \rightarrow sigma, "CurrentPrice" \rightarrow 10.0}]

0.0142313

0.142313

1.42313

```
dataG500 =
 RandomFunction[GeometricBrownianMotionProcess[r, sigma, 10], {0, 1, .01}, 2500]
sdG = dataG500["SliceData", 1];
ListLinePlot[dataG500, ImageSize → 400, PlotRange → All,
 AspectRatio \rightarrow 3/4, PlotStyle \rightarrow (cf/@Rescale[sd]),
 BaseStyle \rightarrow Directive[Thin, Opacity[0.5]], PlotRangePadding \rightarrow {{0, .25}, {.5, .5}}
                          Time: 0 to 1
TemporalData
                          Data points: 252 500
                                               Paths: 2500
25
20
                                         0.8
Histogram[sdG, {Range[Min[sdG], Max[sdG], (Max[sdG] - Min[sdG]) / 20]}]
400
300
200
100
                                                     25
DistributionFitTest[sdG]
optG = Select[sdG, # > 10 &];
Mean[optG]
13.0599
Mean[sdG]
10.5723
```

```
f1 = HistogramDistribution[optG];
Moment[f1, 1] (* mean *)
13.0782
Moment[f1, 2] (* variance *)
177.946
Quantile[f1, 0.95]
18.1906
optG1 = Select[sdG, # > 10 &];
optG1 = optG1 - 10;
Histogram[optG1]
300
250
200
150
100
50
                                              15
h2 = HistogramDistribution[sdG];
Moment[h2, 1]
10.5772
(* finally we want to estimate the value of a call option numerically *)
(* remember: the option value is the expected value of the claim \star)
NIntegrate [(x-10) * UnitStep[x-10] * PDF[h2, x], \{x, 0, 20\}]
1.4216
```