Álgebra lineal I, Grado en Matemáticas

Primera Prueba de Evaluación Continua. Matrices.

16 de noviembre de 2023

En las preguntas 1 a 4 determine cuál es la opción correcta y justifique por qué. Todas las respuestas y resultados de los ejercicios tienen que estar suficientemente justificados. Todas las operaciones elementales de filas o columnas deben estar explícitamente descritas.

- 1. (1 punto) Sea A es una matriz no cuadrada de orden $m \times n$ que admite inversa por la derecha. Determine cuál de las siguientes afirmaciones es falsa:
 - (a) La forma de Hermite por filas es $H_f(A) = (I_m|B)$
 - (b) La forma de Hermite por columnas es $H_c(A) = (I_m|0)$
 - (c) La forma de Hermite puede ser $H(A) = \begin{pmatrix} I_n & 0 \\ \hline 0 & 0 \end{pmatrix}$.
- 2. (1 punto) Sea A una matriz cuadrada de orden n > 1 tal que $H_f(A) = H_c(A)$. Entonces,
 - (a) A es invertible.
 - (b) Si A es invertible $H_f(A) = H_c(A) = H(A)$
 - (c) Si A no es invertible no puede ser $H_f(A) = H_c(A) = H(A)$.
- 3. (1 punto) Sean A y B dos matrices cuadradas de orden n tales que $I_n AB$ es invertible. Entonces, la matriz $I_n BA$ cumple una de las siguientes condiciones:
 - (a) es invertible y su inversa es $I_n + B(I_n AB)^{-1}A$
 - (b) es invertible y su inversa es $B(I_n AB)^{-1}A$
 - (c) puede tener rango menor que n.
- 4. (1 punto) Sean A y B dos matrices no cuadradas tales que AB es cuadrada de orden n. Entonces,
 - (a) det(AB) y det(BA) son distintos.
 - (b) Si AB es invertible, entonces BA no es invertible.
 - (c) Puede ocurrir $\det(AB) \neq 0$ y $\det(BA) \neq 0$

 $\bf Ejercicio~1.~(2~puntos)$ Dada la matriz

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix},$$

demuestre por inducción que para todo $n \geq 1$ la n-ésima potencia de A es

$$A^{n} = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 2^{n-1} - 1 & 1 & 2^{n-1} \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix},$$

Ejercicio 2. Sea B_n la matriz de orden n cuyas entradas son $b_{ij} = \max\{i, j\}$ para $i, j \in \{1, \dots, n\}$.

- (a) Calcule el determinante y el rango de B_n para todo $n \ge 1$. (2 puntos)
- (b) Determine la inversa de B_n cuando exista. (2 puntos)

Sugerencia: utilice operaciones elementales. Recuerde indicar claramente todas las operaciones elementales que realiza, si no, no se corregirá el ejercicio.

Soluciones

- 1. Sea A es una matriz no cuadrada de orden $m \times n$ que admite inversa por la derecha, entonces $\operatorname{rg}(A) = m$ y m < n. La forma de Hermite por filas de A, $H_f(A)$, tiene m pivotes, pero no necesariamente tienen que estar en las m primeras filas, por lo que (a) es falsa. La forma de Hermite por columnas tiene m pivotes y n-m columnas nulas, las últimas. Entonces, es de la forma $H_c(A) = (I_m|0_{m \times (n-m)})$ y (b) es la respuesta correcta. La opción (c) es incorrecta porque el rango es igual a m y no n.
- 2. Sea A una matriz cuadrada de orden n > 1 tal que $H_f(A) = H_c(A)$. Como ambas matrices tienen el mismo rango, entonces el número de filas no nulas de $H_f(A)$ es igual al número de columnas no nulas de $H_c(A)$ e igual a r, el rango de A. Así que, las filas y columnas no nulas, en las que estarán los pivotes, serán las r primeras, es decir

$$H_f(A) = H_c(A) = \left(\frac{|I_r| |0|}{0 |0|} \right)$$
, si $r < n$, o bien $H_f(A) = H_c(A) = I_n$ si $r = n$.

y esa es precisamente H(A), la forma de Hermite de A. Entonces, tanto si A es invertible (rango máximo) como si no, siempre se cumple $H_f(A) = H_c(A) = H(A)$, lo que hace que (b) sea la opción correcta.

- 3. Sean A, B dos matrices cuadradas de orden n tales que $I_n AB$ es invertible. Multiplicamos la matriz $I_n BA$ por $I_n + B(I_n AB)^{-1}A$ y comprobamos que se obtiene I_n , por lo que la respuesta correcta es la (a).
- 4. Sean A, B dos matrices no cuadradas tales que AB es cuadrada de orden n. Entonces, A es de orden $n \times p$ y B es de orden $p \times n$, con $n \neq p$. La matriz BA tiene orden $p \neq n$, por lo que $AB \neq BA$.

Tenemos en cuenta la relación entre: determinante, inversa y rango. Una mateiz de orden n es invertible si y sólo si su determinante es distinto de 0, equivalentemente, si su rango es igual a n. Así, que la opción (c) podemos enunciarla como " puede ocurrir que tanto AB como BA sean invertibles. "

Supongamos que AB es invertible, entonces $n = rg(AB) \le min\{rg(A), rg(B)\} \le min\{n, p\}$, por lo que n < p. Entonces, el rango de la matriz BA, de orden p, cumple

$$\operatorname{rg}(BA) \leq \min\{\operatorname{rg}(B),\operatorname{rg}(A)\} \leq \min\{n,p\} = n < p$$

por tanto BA no es invertible. Es decir, (b) es la opción correcta.

Usando el razonamiento anterior, si $\det(AB) \neq 0$, entonces AB es invertible, por lo que BA no es invertible, es decir $\det(BA) = 0$, lo que hace (c) incorrecta.

Ejercicio 1: Sea A

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix},$$

En primer lugar, comprobamos sin más que sustituir, que en el caso n=1 se cumple la fórmula propuesta para la potencia.

Hipótesis de inducción: suponemos que se cumple para la potencia n-1, es decir

$$A^{n-1} = \begin{pmatrix} 2^{n-2} & 0 & 2^{n-2} \\ 2^{n-2} - 1 & 1 & 2^{n-2} \\ 2^{n-2} & 0 & 2^{n-2} \end{pmatrix},$$

A continuación, demostramos que se cumple para la potencia n.

$$A^{n} = AA^{n-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2^{n-2} & 0 & 2^{n-2} \\ 2^{n-2} - 1 & 1 & 2^{n-2} \\ 2^{n-2} & 0 & 2^{n-2} \end{pmatrix},$$

Tras hacer el producto se obtiene

$$A^{n} = \begin{pmatrix} 2^{n-2} + 2^{n-2} & 0 & 2^{n-2} + 2^{n-2} \\ 2^{n-2} - 1 + 2^{n-2} & 1 & 2^{n-2} + 2^{n-2} \\ 2^{n-2} + 2^{n-2} & 0 & 2^{n-2} + 2^{n-2} \end{pmatrix} = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 2^{n-1} - 1 & 1 & 2^{n-1} \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix},$$

como queríamos demostrar.

Ejercicio 2. Sea B_n la matriz de orden n cuyas entradas son $b_{ij} = \max\{i, j\}$ para $i, j \in \{1, ..., n\}$. Tenemos que calcular: determinante, rango e inversa (cuando se pueda).

Lo importante en este ejercicio es observar cuidadosamente cómo son las filas (o columnas) de la matriz y qué parecido tienen para hacer las operaciones elementales con las que conseguimos transformar la matriz en triangular. Para hacernos una idea escribimos la matriz de orden 6 correspondiente

$$B_6 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 2 & 3 & 4 & 5 & 6 \\ 3 & 3 & 3 & 4 & 5 & 6 \\ 4 & 4 & 4 & 4 & 5 & 6 \\ 5 & 5 & 5 & 5 & 5 & 6 \\ 6 & 6 & 6 & 6 & 6 & 6 \end{pmatrix}$$

Las filas 1 y 2 son iguales salvo por la primera entrada, las filas 2 y 3 son iguales salvo por las 2 primeras, etc. En general, la fila i de B_n se diferencia de la i+1 en las i primeras entradas, y además

$$F_i - F_{i+1} = (-1 \cdots \underbrace{-1}_{\text{posición } i} 0 \cdots 0)$$

Entonces, haciendo las operaciones elementales de filas

$$f_i \to f_i - f_{i+1}$$
, para $i = 1, \dots, n-1$;

obtenemos la matriz

$$B'_{n} = \begin{pmatrix} -1 & 0 & \cdots & \cdots & 0 \\ -1 & -1 & 0 & & \vdots \\ \vdots & & \ddots & \ddots & & \\ \vdots & & & \ddots & \ddots & \vdots \\ -1 & \cdots & \cdots & \cdots & -1 & 0 \\ n & n & n & n & n & n \end{pmatrix}$$

Nótese que se modifican todas las filas menos la última. Como B'_n es triangular, y hemos aplicado operaciones elementales que no modifican el determinante, podemos afirmar que

$$\det(B_n) = \det(B'_n) = (-1)^{n-1}n$$

y como el determinante nunca se anula, el rango es máximo, es decir, $rg(B_n) = n$ para todo n.

Esto último garantiza que la matriz es invertible para todo n, por lo que podemos seguir aplicando transformaciones elementales de filas para calcular la inversa. Las aplicamos a la matriz $(B_n|I_n)$ hasta convertirla en $(I_n|B_n^{-1})$.

Realizando las operaciones anteriores obtenemos:

$$(B_{n}|I_{n}) \sim_{f} \begin{pmatrix} -1 & 0 & \cdots & \cdots & 0 & 1 & -1 & 0 & \cdots & 0 \\ -1 & -1 & 0 & & & \vdots & 0 & 1 & -1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots & & & \ddots & \ddots & \ddots \\ -1 & \cdots & \cdots & \cdots & -1 & 0 & & & 0 & 1 & -1 \\ n & n & n & n & n & n & 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Tenemos que continuar haciendo ceros por debajo de la diagonal principal con las operaciones

$$f_n \to f_n + n f_{n-1}; \ f_i \to f_i - f_{i-1}, \ \text{para} \ i = n-1, \dots, 2.$$

Obtenemos, en la parte izquierda una matriz diagonal

$$\begin{pmatrix}
-1 & 0 & \cdots & \cdots & 0 & 1 & -1 & 0 & \cdots & 0 \\
0 & -1 & 0 & & \vdots & -1 & 2 & -1 & 0 & \cdots & 0 \\
\vdots & & \ddots & \ddots & & & & & \ddots & \ddots \\
\vdots & & & \ddots & \ddots & \vdots & & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & -1 & 0 & & & & -1 & 2 & -1 \\
0 & & \cdots & & & 0 & n & 0 & \cdots & & n & 1-n
\end{pmatrix}$$

Finalmente convertimos la primera parte de la matriz en I_n con las operaciones

$$f_n \to \frac{1}{n} f_n; \quad f_i \to -f_i, \text{ para } i = n - 1, \dots, 1$$

$$\begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & & \vdots & 1 & -2 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & & 0 & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & 0 & & 0 & 1 & -2 & 1 \\ 0 & \cdots & \cdots & 0 & 1 & 0 & \cdots & & 0 & 1 & \frac{1-n}{n} \end{pmatrix} = (I_n | B_n^{-1})$$

 B_n^{-1} es una matriz tridiagonal.