Contents

1	List decoding of Reed-Solomon codes	1
	1.1 Introduction	
	1.2 Reed-Solomon Codes	3
	SL = L	5
	2.1 Zig-zag product	7
3	$O(\sqrt{\log n})$ approximation for sparsest cut by Arora, Rao and Vazirani	9
	3.1 Problem	
	3.2 Metrics	10

1 List decoding of Reed-Solomon codes

1.1 Introduction

An error-correcting code is $C \subseteq \Sigma^n$, where $\Sigma, |\Sigma| = q$ is the alphabet and n is the encoding length.

Define the normalized Hamming distance

$$d(x,y) = \frac{1}{n} |\{i : x_i \neq y_i\}|.$$

We want

$$\delta = \min_{x,y \in C, x \neq y} d(x,y)$$

to be as large as possible (constant as $n \to \infty$). Imagine balls of radius $\delta/2$ around each point. We can send one of |C| messages by mapping $[|C|] \to \Sigma^n$; they can withstand $\delta/2$ errors. The rate of the code is $\frac{\lg |C|}{n}$ (how many bits of actual information are sent compared with encoding length); we want the rate and distance to be high, but there are fundamental limits to what can be achieved.

 $\delta/2$ is the unique decoding radius. Unique decoding is not possible beyond $\delta/2$.

In many cases, even if there is not a unique codeword within a given radius $(\frac{\delta}{2} + \varepsilon, \text{say})$, there may be a only a small number of codewords.

Definition 1.1: C is (δ, L) -list decodable if for all $x \in \Sigma^n$, $|B(x, \delta) \cap C| \leq L$.

If you choose your code randomly—that is, choose a codeword, removing a $\frac{\delta}{2}$ ball around it, and repeat—with high probability it will have good list decodability, up to distance $(1 - \varepsilon)\delta$. List decoding is a better way to handle talk about how good the code is than stochastically, because it's worst-case.

The maximum δ is the list-decoding radius. Here L(n) is a function of n. The ideal setting is L(n) = poly(n). Informally the list decoding radius is the maximum δ such that L(n) = poly(n).

What does a random code give us; what is possible and not possible? What is the capacity of list decoding?

Theorem 1.2: Let $0 < \delta < 1 - \frac{1}{q}$. (Above this error, the noisy word is essentially random, so we can say nothing.) Then there exists a (δ, L) -list decodable code with rate

$$1 - H_q(\delta) - \frac{1}{L}.$$

Here H_q is defined so that

$$|B(0^n, \delta)| \sim q^{H_q(\delta)n}$$
.

Proof. Choose $M = q^{Rn}$ codewords at random. We want

$$\mathbb{P}(C \text{ not } (\delta, L)\text{-list decodable}) < 1.$$

Do a union bound. The probability is at most, by the union bound,

$$\binom{M}{L+1}q^n \left(\frac{|B(x,\delta)|}{q^n}\right)^{L+1} < 1.$$

 $(q^n \text{ is the number of points; the probability of } L+1 \text{ points in a ball centered at a point is } \leq \binom{M}{L+1} \left(\frac{|B(x,\delta)|}{q^n}\right)^{L+1}.)$

This is almost tight.

Theorem 1.3: If a code is (δ, L) -list decodable with

$$R \ge 1 - H_q(\delta) + \varepsilon$$

then $L(n) \ge q^{\frac{\varepsilon n}{2}}$.

A random ball will contain too many points.

Proof.

$$\mathbb{E}_{x \in_R \Sigma^n}[|B(x,\delta) \cap C|] = |C| \frac{|B(0^n,\delta)|}{q^n}$$

$$\geq 2^{Rn} q^{n(H_q(\delta)-1)}$$

$$\geq q^{\varepsilon n/2}.$$

When $q \to \infty$, $H_q(\delta) \to \delta$. We can achieve rate $R \ge 1 - \delta - \varepsilon$ with alphabet of size $2^{O(\frac{1}{\varepsilon})}$ and list size $O(\frac{1}{\varepsilon})$.

Graph: the achievable rates are below the line $\delta + R = 1$.

This is what is known existentially.

The current known explicit codes can achieve $R \geq 1 - \delta - \varepsilon$ with alphabet of size $2^{\text{poly}\left(\frac{1}{\varepsilon}\right)}$ and list size $n^{O\left(\frac{1}{\varepsilon}\right)}$. The idea is a folded Reed-Solomon code concatenated with an asymptotically good list-decodable code.

2

Theorem 1.4 (Johnson bound): Given $C \subseteq \Sigma^n$ with min-distance $\delta = 1 - \varepsilon$, then C is $(1 - \sqrt{\varepsilon}, \text{poly}(n))$ list-decodable.

The Johnson bound says that if you slightly increase the radius, there cannot be an exponential number of codewords.

Theorem 1.5 (Singleton bound): For any codewith distance δ , $R \leq 1 - \delta$.

MDS (maximal distance separable) codes are where $R + \delta = 1$, $\delta = 1 - R$, $R = \varepsilon$. MDS codes are $(1 - \sqrt{R}, poly(N))$ list-decodable.

Reed-Solomon Codes 1.2

We introduce the Reed-Solomon code $RS_{k,n,\mathbb{F}}$, $k < n \leq q$.

These are MDS codes. They achieve $R + \delta = 1$ so are $(1 - \sqrt{R}, poly(n))$ -list decodable. Let $\Sigma = \mathbb{F}_q =: \mathbb{F}$. Let

$$C = \{ \text{evaluations of degree } k \text{ polynomials on } \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{F} \}$$

where $\alpha_1, \ldots, \alpha_n$ are distinct and fixed. Codewords correspond to degree k polynomials in $\mathbb{F}[x]$. 2 distinct degree k polynomials can only agree on k points, so $\delta = \frac{n-k}{n} = 1 - \frac{k}{n}$. The rate is $\frac{\log_q(q^{k+1})}{n} = \frac{k+1}{n}$. The Reed-Solomon code is $(1 - \sqrt{\frac{k}{n}}, \text{poly}(n))$ -list decodable. What is the algorithm? Given a set of points, we need to find all polynomials passing

through enough of those points.

Problem 1.6: Given $(\alpha_1, y_1), \ldots, (\alpha_n, y_n)$, find all polynomials of degree $\leq k$ such that $p(\alpha_i) = y_i$ for at least \sqrt{nk} indices $i \in [n]$.

Madha Sudan (90's) showed that you can do this with $\sqrt{2nk}$.

Theorem 1.7: There is a polynomial-time algorithm (given in the proof) that given n points as above, finds all degree $\leq k$ polynomials agreeing on $\geq 2\sqrt{nk}$ points.

Proof. The algorithm is as follows. Note this algorithm will work even if the α_i are not distinct.

Define the (1,k)-weighted degree of a polynomial Q(x,y) as deg $Q(X,Y^k)$. The strategy is as follows.

We will find a low (1,k)-weighted degree polynomial Q(x,y) of degree D such that $Q(\alpha_i, y_i) = 0$ for all i.

Look at R(x) = Q(x, p(x)) where $p \in L$. We have

$$\deg R \leq D.$$

For all i such that $p(\alpha_i) = y_i$,

$$R(\alpha_i) = Q(\alpha_i, p(\alpha_i)) = Q(\alpha_i, y_i) = 0.$$

Suppose R has at least t roots and deg R < D. If we arrange so that t > D, then $R(x) \equiv 0$ identically. Then $Q(x, p(x)) \equiv 0$ implies $y - p(x) \mid Q(x, y)$. (There is a deterministic algorithm to factor bivariate polynomials.) Factor R to find all factors in the form y - p(x); then output those polynomials p(x).

Now we just need to find the polynomial R(x); this is polynomial interpolation. The number of coefficients in Q(x,y) is $\frac{1}{k}\binom{D+2}{2}$. We need to satisfy n linear constraints; they are linear homogeneous equations in the coefficients. If $\frac{\binom{D+2}{2}}{k} > n$ then there is a nonzero solution: a nonzero $\varphi(x,y)$ of (1,k) weight degree $\leq D$ with $\varphi(\alpha_i) = y_i$ for all i.

If the number of roots is $t > D \approx \sqrt{2kn}$, then we can find all polynomials with agreement t.

Guruswami and Sudan improved this to \sqrt{kn} .

Consider k=1, $\mathbb{F}=\mathbb{R}$, find all lines which pass through at least 3 points. If you can interpolate a degree 2 polynomial through all these points, get all lines as lines within the curve. The degree 2 curve will be 2 lines.

Let's look at a small example to see how to improve the bound.

Consider the following picture (see notebook). Here n=10 and t=4. Here we can choose k=4. However it can only have 4 linear factors. The maximum D is 3. Peculiar: through each point there are 2 lines. An algebraic curve passing all points should vanish at the points with multiplicity 2. Fit a polynomial which vanishes with degree 2 at the points.

First define multiplicity.

Definition 1.8: Q(x,y) vanishes with multiplicity r at (α,β) if $Q(x+\alpha,y+\beta)$ doesn't have any monomial of degree < r.

Lemma 1.9: Let Q(x,y) be with (1,k) degree $\leq D$, vanishing at (α_i,y_i) with multiplicity r for all $i \in [n]$. Let P be a degree k polynomial with agreement t > D/r. Then y - p(x)Q(x,y).

Proof. Let $p \in L$, $P(\alpha_i) = y_i$. Define

$$Q^{i}(x,y) = Q(x + \alpha_{i}, y + y_{i});$$

it has no monomials of degree < r. Then

$$R(x) = Q(x, P(x))$$

$$= Q^{i}(x - \alpha_{i}, P(x) - y_{i})$$

$$= Q^{i}(x - \alpha_{i}, \underbrace{P(x) - p(\alpha_{i})}_{x - \alpha_{i} | P(x) - P(\alpha_{i})}).$$

 Q^i has no monomials of degree $\langle r \rangle$. Thus $(x-\alpha_i)^r \mid R(x)$. The number of linear factors is tr > D. Thus $R(x) \equiv 0$ and $y - p(x) \mid Q(x, y)$.

The number of coefficients in Q(x,y) of (1,k)-degree D is $\frac{1}{k} \binom{D+2}{D}$. The number of homogeneous linear equations is $n\binom{r+1}{2}$. So a nonzero Q exists if $\frac{1}{k}\binom{D+2}{2} > n\binom{r+1}{2}$.

Choose $D = \sqrt{knr(r+1)}$. Let $t = \frac{D}{r} = \sqrt{kn(1+\frac{1}{r})}$.

Make r large enough, we approach the Johnson bound.

The number of polynomials in the list is at most $\frac{D}{k} = \sqrt{\frac{nr(r+1)}{k}}$, the y-degree. Conclusion:

- 1. If $t > \sqrt{kn}$ the list size is $\leq n^{\varepsilon}$ and we can find all of them.
- 2. The Reed Solomon code of rate R can be list decoded up to $1 \sqrt{(1+\varepsilon)R}$ errors with best size $\frac{1}{\varepsilon\sqrt{R}}$.

This method (the polynomial method) is very flexible. We give another application, the list recovering problem. Given $x \in C$, a noisy channel turns each coordinate into a set s_i and spits out $s_1, \ldots, s_n, |s_i| \leq \ell$. We have $|s_i| \leq l$ such that for at least $1 - \delta$ fraction of i's, $x_i \in s_i$. Find all x such that $x_i \in s_i$ for at least $1 - \delta$ fraction of i's.

$$\left| \left(\bigcup_{y \in S_1 \times \dots \times S_n} B(y, \delta) \right) \cap C \right| \le L.$$

Reed-Solomon codes are also good list-recoverable codes.

If $t > \sqrt{knl}$, where t is the number of i such that $x_i \in S_i$, then the Reed-Solomon code is $(1 - \sqrt{kl}, l, O(n^2l^2) = L)$ list recoverable.

We only achieve $1 - \sqrt{R}$. We want to attain (1 - R, L). Guruswami and Rudra came up with folded Reed-Solomon codes. Take a generator γ of \mathbb{F}_q^{\times} , n = q - 1. $\alpha_1, \ldots, \alpha_n$ are $S = \{1, \gamma, \ldots, \gamma^{q-1}\}$. Consider blocks. \mathbb{F}^m by m. $P(1), \ldots P(r), \ldots, P(r^{q-1})$.

It's an open problem to make $n^{O(\frac{1}{\varepsilon})}$ independent of n. Use concatention to get length down.

You can concatenate a list-recoverable code with a list-decodable codes to get a list-decodable code. $C_{\rm out} \circ C_{\rm in}$.

$2 ext{ } SL = L$

Reingold, Vadhan, and Wigderson.

There are many stories in this problem.

One of the most fundamental questions in theoretical CS is the following.

Claim 2.1: Randomness is useless.

This claim comes from very recent years. 20 years ago people actually believe it's useful (Papadimitriou gave $BPP \neq P$ as a homework exercise in his book).

There are 2 questions: is randomness useful in time and in space?

- 1. *BPP* $\stackrel{?}{P}$
- 2. $RL\stackrel{?}{L}$

We focus on the second problem. The first problem is wide open: we don't know $BPP \in DTIME(2^{o(n)})$. We know more about the second question: Savitch proves

$$BPP \subseteq DSPACE(\ln^2 n).$$

We can do better: Saks and Zhou in 1999 show

$$RL \subseteq DSPACE(\ln^{\frac{3}{2}}n).$$

(They actual show this for BPP.) Think of RL as (undirected) s-t nonconnectivity problem. coRL is interesting because it contains s-t connectivity. (RL doesn't have a complete problem.) For $P \stackrel{?}{=} NP$, just look at a complete problem; here we don't have one.

Here we show SL = L. Reingold showed this in 2004.

For simplicity, just think of SL as one problem, undirected s-t connectivity.

Consider a graph.

Jieming starts from a vertex and wants to find a way to Nanjing. Jieming has very little memory, and cannot remember the whole structure of the graph. He can't remember much more than the name of a city.

The standard way to solve this is to take a uniform random walk on the graph. If the graph has |V| = n, after $n^2 \ln n$ steps, there is a high probability that he will have visited Nanjing.

But for a general graph, it's necessary to flip $n^2 \ln n$ coins: Consider 2 complete graphs with a bridge: It takes order of n time to hit the bridge vertex, and it has $O\left(\frac{1}{n}\right)$ chance of crossing the bridge.

For which graphs can we do this randomized routing faster than the worst case? A natural family is the family of expaner graphs.

Expander graphs have rapid mixing under a random walk. There are 2 definitions.

Definition 2.2: A graph G = (V, E) is a λ -edge expander if for all sets $S \subseteq V$, $|S| \leq \frac{|V|}{2}$,

$$\frac{E(S, \overline{S})}{\operatorname{Vol}(S)} \ge \lambda.$$

Here, $\operatorname{Vol}(S) = \sum_{v \in S} \operatorname{deg}(v)$. (We'll focus on the simple case when the graph is d-regular, i.e, for all $v \in V_{\mathsf{i}} \operatorname{deg}(v) = d$.) (Pictorially, a subset of G = (V, E) is very spiky, like a sea urchin.)

A graph G = (V, E) is a λ -spectral expander of $\lambda_2(L(G)) \geq \lambda$. The Laplacian L(G) is defined from the adjacency matrix A_G . A_G is defined by $(A_G)_{ij} = 1$ if there is a edge between i and j. M is the random walk matrix $\frac{1}{d}A_G$, and

$$L = I - M$$
.

(Thinking of this matrix as an operator, $(Lx)_i = \frac{1}{d} \sum_{(i,j) \in E} x_{ij}$, it flows from a vertex to adjacent vertices.)

The Laplacian originates in differential geometry, $L = \operatorname{div} \nabla$.

These 2 definitions are quite close.

Theorem 2.3: Let h(G), $\lambda(G)$ denote the edge and spectral expansions of G. Then

$$\lambda(G) \le h(G) \le \sqrt{2\lambda(G)}$$
.

The LHS is trivial, the RHS is Cheeger's inequality. People in CS use a third definition that is more useful.

Definition 2.4: A graph is a λ -expander if for all $x \perp u = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}, x \neq 0$,

$$\left| \frac{x^T M x}{x^T x} \right| \le \lambda.$$

(For edge and spectral expansion we want λ to be large. For random walk expansion we want λ to be close to 0.) $\lambda(L)$ range from 0 to 2, while $\lambda(M)$ range from 1 to -1.

Note that

$$\left| \frac{x^T (I - L)x}{x^T x} \right| = \left| 1 - \frac{x^T L x}{x^T x} \right|$$

so spectral and random-walk expansion are not quite the same. For bipartite graphs, $\lambda(M) = 1$: random walks are not mixing at all. The side you're on depends on the parity.

For the zig-zag product they consider the third definition.

2.1 Zig-zag product

Think of G_1 having large size and degree (N_1, D_1) , G_2 having small size and degree (N_2, D_2) , and suppose $D_1 = N_2$.

$$G_3 = G_1(\mathbb{Z})G_2$$

has large size N_1N_2 and small degree, D_2^2 .

Let $\lambda_M(G_i) = \lambda_i$ denote the random walk expansion. Then (a naive bound)

$$\lambda_M(G_3) \leq \lambda_1 + \lambda_2 + \lambda_2^2$$
.

It's easy to construct a large degree expander. It's easy to construct small-size expanders (try all possible graphs). It's easy to construct G_1, G_2 , but an expander like G_3 is hard to construct. It takes as input 2 easy-to-construct expanders and outputs a harder to construct graph that's an expander.

Replace each vertex of the original graph with a copy of the second graph G_2 . Its size is hence N_1N_2 .

Each vertex in G_3 is labeled $(v, u) \in G_1 \times G_2$. The (i, j)th neighbor is defined as follows. Take u' the ith neighbor of u in G_2 , $u \xrightarrow{i} u'$. Take the u'th neighbor of v in G_1 ; move to the cloud of w; $v \xrightarrow{u'} w$ in G_2 . Now consider \tilde{u} such that $w \xrightarrow{\tilde{u}} v$ in G_1 ; we move to (w, \tilde{u}) . Now move $\tilde{u} \xrightarrow{j} \tilde{u}'$ in G_2 . Define

$$(v,u) \xrightarrow{(i,j)} (w, \widetilde{u}').$$

What's the magic of the zig-zag product? We claim

$$A_3 := A(G_3) = \widetilde{A_2}\widetilde{A_1}\widetilde{A_2}$$

where $\widetilde{B}_2 = I \otimes A_2$ has N_1 blocks and each is a copy of A_2 , and \widetilde{A}_1 is a permutation (actually matching) matrix where $(\widetilde{A}_1)_{((v,u),(w,u'))} = 1$ if

$$v \xrightarrow{u,G_1} w \xrightarrow{u',G_1} v.$$

Consider when $(u, v) \xrightarrow{(i,j)} (w, \tilde{u}')$:

$$u \xrightarrow{i,G_2} u'$$

$$v \xrightarrow{u',G_1} w \xrightarrow{\widetilde{u},G_1} v$$

$$\widetilde{u} \xrightarrow{j} \widetilde{u}'$$

What is the action of $\widetilde{A_2}\widetilde{A_1}\widetilde{A_2}$ on $e_{(v,u)}$? It goes to $\sum_{uu'\in G_2}e_{(v,u')}=e_v\otimes A_2e_u$. "Stay in the block of v, move to all the neighbors of u."

In the second step, we move across blocks as given by \widetilde{A}_1 .

We need to show

$$\forall x \in \mathbb{R}^{N_1 \times N_2}, x \perp u \implies \frac{x^T M_3 x}{x^T x} \le \lambda_1 + \lambda_2 + \lambda_2^2.$$

Decompose x as a vector that is uniform on each block,

$$x = \underbrace{\alpha \otimes u}_{\alpha^{\parallel}} + \underbrace{x'}_{\alpha^{\perp}}$$

where x' has blocks $\widetilde{\alpha_i} \perp u_i$. Then (noting $\widetilde{A_2}\alpha^{\parallel} = \alpha^{\parallel}$),

$$\begin{split} \left\langle x, \widetilde{A_2} \widetilde{A_1} \widetilde{A_2} x \right\rangle &= \left\langle \widetilde{A_2} x, \widetilde{A_1} \widetilde{A_2} x \right\rangle \\ &= \left\langle \widetilde{A_2} (\alpha^{\parallel} + \alpha^{\perp}), \widetilde{A_1} \widetilde{A_2} (\alpha^{\parallel} + \alpha^{\perp}) \right\rangle \\ &= \left\langle \alpha^{\parallel} + \widetilde{A_2} \alpha^{\perp}, \widetilde{A_1} (\alpha^{\parallel} + \widetilde{A_2} \alpha^{\perp}) \right\rangle \\ &= \left\langle \alpha^{\parallel}, \widetilde{A_1} \alpha^{\parallel} \right\rangle + \left\langle \alpha^{\parallel}, \widetilde{A_1} \widetilde{A_2} \alpha^{\perp} \right\rangle + \left\langle \widetilde{A_2} \alpha^{\perp}, \widetilde{A_1} \alpha^{\parallel} \right\rangle + \left\langle \widetilde{A_2} \alpha^{\perp}, \widetilde{A_1} \widetilde{A_2} \alpha^{\perp} \right\rangle \\ &\leq \lambda_1 + 2\lambda_2 + \lambda_2^2 \end{split}$$

Because $\alpha_1 + \cdots + \alpha_{N_1} = 0$ we can use the expansion properties of G_1 to get the λ_1 bound for the first term.

The idea:

- 1. Suppose G has parameters (N, D) and expansion λ . (say $1 \frac{1}{ND}$)
- 2. G^2 has parameters (N, D^2) , expansion λ^2 .

3. Take H with parameters $(D^2, \sqrt{D}), \lambda_2$. Then

$$G^2(\mathbb{Z})H = G_{\text{new}}$$

has parameters (ND^2, D) expansion $\lambda(G_{\text{new}}) \leq \lambda^2 + 2\lambda_2 + \lambda_2^2 \leq \lambda^2 + \varepsilon$.

We go from G with parameters (N, D, λ) to G_{new} with parameters $(ND, D, \lambda^2 + \varepsilon)$. Call this operator Z. Doing this operator t times, $Z^tG = (ND^{2t}, D, \lambda^{2^t} + \varepsilon')$. Then set $t = \lg\left(\frac{ND}{2}\right)$ to get Z^tG with parameters $(N^2D, D, \frac{1}{e} + \varepsilon)$. (We're cheating a little, using the naive bound. We need a better bound to get ε small: G_3 has expansion $\frac{1}{2}(1-\lambda_2^2)\lambda_1 + \frac{1}{2}\sqrt{(1-\lambda_2^2)^2\lambda_1^2 + t\lambda_2^2}$. To go from our proof to the real proof, you just need to note $\alpha^{\parallel} \perp \alpha^{\perp}$, $\alpha^{\parallel} \perp \widetilde{A_2}\alpha^{\perp}$. Plug in this picture into the formula.

3 $O(\sqrt{\log n})$ approximation for sparsest cut by Arora, Rao and Vazirani

The outline of the talk is as follows.

- 1. Define the problem.
- 2. Give a LP relaxation (L, R) giving a $O(\ln n)$ approximation.
- 3. L_1 metrics and sparsest cut
- 4. Give the SDP relaxation due to Arora, Rao, and Vazirani.

3.1 Problem

Definition 3.1: Given a graph G=(V,E), a capacity function $c_e:E\to\mathbb{R}^+$, and $d:V\times V\to\mathbb{R}^+$, find

$$\min_{S \subseteq V} \frac{\sum_{(i,j) \in \delta(S)} c_{(i,j)}}{\sum_{i,j \in \delta(S)??} d_{(i,j)}}.$$

For simplicity, we consider uniform sparsest cut $c_e = 1, d_{ij} = 1$, so we want

$$\phi(S) = \min_{S \subseteq V} \frac{\delta(S)}{|S||V - S|}.$$

This is closely connected to the edge expansion $\alpha(G) = \min_{S \subseteq V, |S| \leq \frac{n}{2}} \frac{\delta(S)}{|S|}$. Approximating ϕ, α are equivalent up to a constant factor.

It's NP-hard to find the sparsest cut exactly.

3.2 Metrics

Definition 3.2: A metric is (X, d) with

$$d(x,z) \le d(x,y) + d(y,z),$$

d(x,y) = 0 iff x = y. (A semimetric only needs satisfy d(x,y) = 0 if x = y.)

There is a natural semimetric one can define on the space of cuts. Assign a distance of 1 if they are separated by 1:

$$d_S(x,y) = |1_S(x) - 1_S(y)|.$$

There is now a nice interpretation

$$\phi(G) = \min_{S} \frac{\sum_{e \in E, (i,j)} d_S(i,j)}{\sum_{i,j} d_S(i,j)}.$$

We can instead relax this to minimizing over all semimetrics d, rather than just metrics of the form d_S . Call this LR(G). We show

$$LR(G) \le \phi(G) \le O(\ln n) LR(G).$$

This can be formulated as a LP.

Find

$$\min \sum_{(i,j)\in E} d(i,j)$$

subject to $d(i,k) \le d(i,j) + d(j,k)$, $\sum_{i,j} d(i,j) = n^2$, $d(i,j) \ge 0$, d(i,j) = 0, d(i,j) = d(j,i). This can be solved in polynomial time.

Now we prove the inequality.

A finite L_1 metrics is $X \subseteq \mathbb{R}^d$ with $d(x,y) = ||x-y||_1$. Given any metric d we say there is an embedding $f: d \to L_1$ with distortion α if

$$||f(x) - f(y)||_1 \le d(x, y) \le ||f(x) - f(y)||_1 \alpha.$$

 L_1 metrics capture the sparsest cut problem.

Given any embedding f to L_1 , there exists S, d_S ,

$$\frac{\sum_{e} d_{S}(i, j)}{\sum_{i, j} d_{S}(i, j)} \le \frac{\sum_{e} \|f(x) - f(y)\|_{1}}{\sum_{i, j} \|f(i) - f(j)\|_{1}}.$$

RHS is

$$\geq \min_{i} \frac{\sum_{e} |f_i(x) - f_i(y)|}{\sum_{i,j} |f_i(i) - f_i(j)|}.$$

 $f_i(i) = g_i$. You can scale and shift so that $|\max g(i) - \min g(i)| = 1$. Fix a threshold d, take the embedding on a line, and take the cut defined by that threshold. Let i^* be where the minimum is attained. It equals

$$\frac{\mathbb{E}_{t} \sum_{e=\{i,j\}} d_{s_{t}}(i,j)}{\mathbb{E}_{t} \sum_{i,j} d_{S}(i,j)} \ge \frac{\sum d_{s_{t}}(i,j)}{\sum_{i,j}}.$$

Now we use

Theorem 3.3 (Bourgain): For every semimetric d there is an embedding $f: d \to L_1$ with distortion $O(\ln n)$.

The tight example comes from analyzing the LP. A constant degree expander.

Then

$$||f^*(x) - f^*(y)||_1 \le d(x, y) \le O(\ln n) ||f^*(x) - f^*(y)||_1$$
.

We get

$$\leq \frac{\sum_{e} \|f^*(x) - f^*(y)\|_1}{\sum_{x,y} \|f^*(x) - f^*(y)\|_1} \leq O(\ln n) \frac{\sum_{e} d(x,y)}{\sum_{x,y} d(x,y)}$$

Cone generated by semimetrics contains every L_1 metric.

Another relaxation is the spectral relaxation. Consider the normalized adjacency matrix A. The spectral gap is $1 - \lambda_2$. The spectral gap is

$$\sum_{x:V\to\mathbb{R}} \frac{\sum_{C} |x(i) - x(j)|^2}{\sum_{i,j} |x(i) - x(j)|^2}.$$

If we embed $x: V \to \mathbb{R}^n$ we use the L_2 norm.

What if we combine these two relaxations: impose the triangle inequality constraint, etc. We ask that $||x(i) - x(k)||^2 \le ||x(i) - x(j)||^2 + ||x(j) - x(k)||$.

$$ARV(G) = \sum_{x:V \to \mathbb{R}^n, \triangle \text{ inequalities}} \frac{\sum_C \|x(i) - x(j)\|^2}{\sum_{i,j} \|x(i) - x(j)\|^2}.$$

ARV showed

$$ARV(G) \le \phi(G) \le O(\sqrt{\ln n})ARV(G).$$

The lower bound is

$$\phi(G) \ge \Omega(\ln \ln n) ARV(G).$$

A cycle makes Cheeger's inequality tight. If you take a cycle and use the L_1 relaxation, it's not tight. (?) Tight ones are constant degree expanders. What is the balance between these two? ARV shows the union does give you some improvement.

We prove $\phi(G) \leq O(\sqrt{\ln n})ARV(G)$. We show the inequality $\phi(G) \leq O((\ln n)^{\frac{2}{3}})ARV(G)$ as it contains the main ideas but is similar.

We show ARV can be computed in polynomial time.

Assign vectors $x(i) \in \mathbb{R}^n$ to minimize:

$$\min \sum_{e} \|x(i) - x(j)\|^2$$

such that

$$\sum_{i,j} \|x(i) - x(j)\|^2 = n^2$$

and for all i, j, k,

$$||x(i) - x(k)||^2 \le ||x(i) - x(j)||^2 + ||x(i) - x(k)||^2$$
.

Find a cut such that the sparsity of the cut is at most $O(\sqrt{\ln n})$.

The rounding strategy is as follows. Suppose we can find an embeding $f: V \to \mathbb{R}$

$$\frac{\sum_{e} |f(i) - f(j)|}{\sum_{i,j} |f(i) - f(j)|} \le O(\sqrt{\ln n}) ARV(G).$$

Then we're done. The strategy for finding such an embedding: Let v_i the vector associated with vertex i by the SDP. Look at the metric

$$d(i,j) = ||v_i - v_j||^2$$
.

The strategy is to find a set S such that defining $f(i) = d(i, S) = \min_{j \in S} d(i, j)$.

An easy inequality by the triangle inequality.

$$f(i) - f(j) \le ||v_i - v_j||^2$$

$$ARV(G) = \frac{\sum_{e} \|v_i - v_j\|^2}{\sum_{i,j} \|v_i - v_j\|^2}.$$

Numerator inequality ok. Average distortion. Need to show

$$\sum_{i,j} f(i) - f(j) \ge \frac{\sum \|v_i - v_j\|^2}{\sqrt{\ln n}}.$$

later proved by ALN (2008): $L_2^2 \to L_1$ with distortion $O(\sqrt{\ln n} \ln \ln n)$.

 $L_2^2 \to L_2 \to L_1$. Second one is isometric.

Here we only need average case distortion.

We're trying to produce 2 disjoint sets L and R of vertices both of size $\Omega(n)$ separated by $\Delta = \frac{1}{\sqrt{\ln n}}$. Two sets that are far away. Let's do this for $(\ln n)^{\frac{2}{3}}$. (Separated in L_2^2 metric.) Then the equation is satisfied: look at summation between pairs coming from L and R. (Define S = L.)

Supposer there exists some vertex i^* such that $|B(i^*, \frac{1}{4})| \ge \frac{n}{4}$. Set $S = B(i^*, \frac{1}{4})$. Then the inequality holds:

$$n^{2} = \sum_{i,j} d(i,j)$$

$$\leq \sum_{i,j} d(i,i^{*}) + d(j,i^{*})$$

$$= 2n \sum_{i} d(i,i^{*})$$

$$\leq 2n(\sum_{i} d(i,S) + \frac{1}{4}).$$

Gives $\sum_i d(i, S) \ge \frac{n}{4}$. This gives

$$\sum_{j \in S} d(j, S) \ge \frac{n}{4}.$$

Get $|S| \sum_{j \in S} d(j, S)$. At least $\frac{n^2}{16}$.