Campo electrostático

Método e recomendacións

Cargas puntuais

- Dúas cargas eléctricas positivas de 3 nC cada unha están fixas nas posicións (2, 0) e (-2, 0) e unha carga negativa de -6 nC está fixa na posición (0, -1). Calcula:
 - a) A enerxía electrostática do conxunto das tres cargas.
 - b) O vector campo electrostático no punto (0, 1).
 - c) A aceleración que experimentaría un protón situado no punto (0, 1).
 - d) Colócase un protón no punto (0, 1), inicialmente en repouso e de maneira que é libre de moverse. Razoa se chegará ata a orixe de coordenadas e, en caso afirmativo, calcula a enerxía cinética que terá nese punto e a súa velocidade.
 - e) Calcula o traballo necesario para levar ao protón desde o punto (0, 1) ata a orixe.
 - f) Indica o signo e o valor da carga que habería que situar no punto (0, 1), en vez do protón, para que o potencial eléctrico na orixe se anulase.
 - g) Calcula a carga q₂ que habería que situar no punto (0, 1), en vez do protón, para que a intensidade do campo electrostático na orixe sexa nula.

Datos: $K = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $q(p) = 1.6 \cdot 10^{-19} \text{ C}$; $m(p) = 1.67 \cdot 10^{-27} \text{ kg}$. As posicións están en metros.

Problema baseado en A.B.A.U. ord. 21, ord. 20, ord. 19 **Rta.:** a) $E = -1,25 \cdot 10^{-7}$ J; b) $\overline{E} = -8,67$ $\overline{\mathbf{j}}$ N/C; c) $\overline{a} = -8,31 \cdot 10^8$ $\overline{\mathbf{j}}$ N/C; d) $E_c = 3,86 \cdot 10^{-18}$ J; $v = 6,80 \cdot 10^4$ m/s; e) $W = -3.86 \cdot 10^{-18} \text{ J; f}$ q = 3.00 nC; g $q_2 = -6.00 \text{ nC.}$

Valor da carga no punto A Valor da carga no punto B Valor da carga no punto C Posición do punto A Posición do punto B Posición do punto C Posición do punto D Posición do punto D Posición do punto D Posición do punto O	Cifras significativas: 3 $Q_A = 3,00 \text{ nC} = 3,00 \cdot 10^{-9} \text{ C}$ $Q_B = 3,00 \text{ nC} = 3,00 \cdot 10^{-9} \text{ C}$ $Q_C = -6,00 \text{ nC} = -6,00 \cdot 10^{-9} \text{ C}$ $\underline{r}_A = (2,00, 0) \text{ m}$ $\underline{r}_B = (-2,00, 0) \text{ m}$ $\underline{r}_C = (0, -1,00) \text{ m}$ $\underline{r}_D = (0, 1,00) \text{ m}$ $\underline{v}_D = 0$ $\underline{r}_O = (0, 0) \text{ m}$ $q = 1,60 \cdot 10^{-19} \text{ C}$ $m = 1,67 \cdot 10^{-27} \text{ kg}$.
Masa do protón Constante de Coulomb	$M = 1.67 \cdot 10^{-6} \text{ kg.}$ $K = 9.00 \cdot 10^{9} \text{ N} \cdot \text{m}^{2} \cdot \text{C}^{-2}$
Incógnitas	,
Enerxía electrostática do conxunto das tres cargas Intensidade do campo electrostático no punto D Aceleración dun protón situado no punto D Enerxía cinética dun protón soltado no punto D, ao pasar pola orixe Velocidade do protón ao pasar pola orixe Traballo necesario para levar ao protón desde o punto D ata a orixe. Carga no punto D para que o potencial eléctrico na orixe sexa 0 Carga no punto D para que o campo electrostático na orixe sexa nulo Outros símbolos Distancia Ecuacións	$ \frac{E}{E_{D}} $ $ a $ $ E_{CO} $ $ v $ $ W $ $ q $ $ q_{2} $ $ r $
Campo eléctrico nun punto a unha distancia, r , de unha carga puntual, Q	$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ $\vec{E}_A = \sum_i \vec{E}_{Ai}$
Principio de superposición	
Potencial eléctrico nun punto a unha distancia, \emph{r} , dunha carga puntual, \emph{Q}	$V = K \frac{Q}{r}$
Potencial eléctrico nun punto debido a varias cargas Enerxía potencial eléctrica dunha carga, q, situada nun punto A	$V = \sum V_i$ $E_{pA} = q \cdot V_A$

Enerxía cinética dun corpo de masa m que se despraza con velocidade v

Principio da conservación da enerxía entre dous puntos A e B

Enerxía potencial de cada interacción entre dúas cargas

$$E_{pi} = K \frac{Q \cdot q}{r}$$

$$\vec{F}_{F}$$

Campo eléctrico

 $\vec{E} = \frac{\vec{F}_E}{q}$ $\vec{F} = m \cdot \vec{a}$

2.ª ley de Newton da Dinámica

Traballo da forza eléctrica ao mover unha carga, q, do punto A ao punto B $W_{A\rightarrow B} = q(V_A - V_B)$

 $(E_{\rm c} + E_{\rm p})_{\rm A} = (E_{\rm c} + E_{\rm p})_{\rm B}$

Solución:

a) A enerxía potencial de cada interacción entre dúas cargas vén dada pola expresión:

$$E_{\rm pi} = K \frac{Q \cdot q}{r}$$

A enerxía total electrostática é a suma das enerxías das tres interaccións: AB; AC e BC.

$$\begin{split} E_{\rm AB} &= 9,00 \cdot 10^9 \, \big[\, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \big] \frac{3,00 \cdot 10^{-9} \, \big[\, \text{C} \big] \cdot 3,00 \cdot 10^{-9} \, \big[\, \text{C} \big]}{4,00 \, \big[\, \text{m} \big]} \\ &= 2,03 \cdot 10^{-8} \, \, \text{J} \\ E_{\rm AC} &= 9,00 \cdot 10^9 \, \big[\, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \big] \frac{3,00 \cdot 10^{-9} \, \big[\, \text{C} \big] \cdot \big(-6,00 \cdot 10^{-9} \big) \, \big[\, \text{C} \big]}{2,24 \, \big[\, \text{m} \big]} \\ &= -7,24 \cdot 10^{-8} \, \, \text{J} \\ E_{\rm BC} &= 9,00 \cdot 10^9 \, \big[\, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \big] \frac{3,00 \cdot 10^{-9} \, \big[\, \text{C} \big] \cdot \big(-6,00 \cdot 10^{-9} \big) \, \big[\, \text{C} \big]}{2,24 \, \big[\, \text{m} \big]} \\ &= -7,24 \cdot 10^{-8} \, \, \text{J} \\ E &= E_{\rm AB} + E_{\rm AC} + E_{\rm BC} = 2,03 \cdot 10^{-8} \, \big[\, \text{J} \big] + \big(-7,24 \cdot 10^{-8} \, \big[\, \text{J} \big] \big) + \big(-7,24 \cdot 10^{-8} \, \big[\, \text{J} \big] \big) = -1,25 \cdot 10^{-7} \, \, \text{J} \end{split}$$

Análise: Se se calculase a enerxía total como a suma das enerxías potenciais das tres cargas, o resultado daría o dobre, porque se estarían contando as interaccións dúas veces. Por exemplo, a interacción $A \leftrightarrow B$ aparece no cálculo da enerxía potencial da carga en A e tamén no cálculo da carga en B.

Faise un debuxo no que se sitúan os puntos A(2, 0), B(-2, 0), C(0, -1) e

Debúxanse os vectores do campo no punto D, un vector por cada carga, prestando atención ao sentido.

Os campos creados polas cargas situadas nos puntos A e B son de repulsión, porque as cargas son positivas, e son do mesmo valor, porque as cargas e as distancias son iguais.

Pero o campo producido pola carga situada no punto C é de atracción, porque é negativa, e será maior que o creado pola carga situada no punto A, porque o punto C está máis cerca do punto D que o punto A, e a carga situada no punto C é maior que a carga situada no punto A.

Debúxase o vector suma que é o campo resultante, \overline{E}_{D} .

Como os campos creados polas cargas situadas nos puntos A e B son do mesmo valor, a súas compoñentes horizontais anúlanse e a resul-

O valor do campo resultante será a suma das compoñentes verticais de cada carga. Como o valor do campo creado pola carga situada no punto C é maior que a suma das compoñentes verticais dos campos creados polas cargas situadas nos puntos A e B, a resultante dos tres campos estará dirixida no sentido negativo do eixe *Y*.

O principio de superposición di que a intensidade de campo eléctrico nun punto, debido á presencia de varias cargas, é a suma vectorial dos campos producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o campo nun punto, calcúlanse os campos creados nese punto por cada carga, e despois súmanse os vectores.

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e u_r o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, *r*, dunha carga puntual, *Q*, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot \mathbf{q}}{r^2} \vec{u}_r}{\frac{\mathbf{q}}{r}} = K \frac{Q}{r^2} \vec{u}_r$$

Calcúlase a distancia entre os puntos A(2, 0) e D(0, 1):

$$\vec{r}_{AD} = \vec{r}_{D} - \vec{r}_{A} = 1,00 \ \vec{j} \ [m] - 2,00 \ \vec{i} \ [m] = (-2,00 \ \vec{i} + 1,00 \ \vec{j}) \ m$$

$$r_{AD} = |\vec{r}_{AD}| = \sqrt{(-2,00 \ [m])^{2} + (1,00 \ [m])^{2}} = 2,24 \ m$$

Calcúlase o vector unitario do punto D, tomando como orixe o punto A:

$$\vec{\mathbf{u}}_{AD} = \frac{\vec{r}_{AD}}{|\vec{r}_{AD}|} = \frac{(-2,00\vec{\mathbf{i}} + 1,00\vec{\mathbf{j}})[m]}{2,24[m]} = -0,894\vec{\mathbf{i}} + 0,447\vec{\mathbf{j}}$$

Calcúlase o campo no punto D, creado pola carga de +3 nC situada no punto A:

$$\vec{E}_{DA} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \cdot \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{\left(2,24 \left[\text{m} \right] \right)^{2}} \left(-0,894 \, \vec{i} + 0,447 \, \vec{j} \right) = \left(-4,83 \, \vec{i} + 2,41 \, \vec{j} \right) \, \text{N/C}$$

O campo no punto D, debido á carga de +3 nC, situada no punto B, é simétrico ao creado pola carga situada no punto A. Os valores das súas compoñentes son os mesmos, pero o signo da compoñente horizontal é oposto, porque está dirixida en sentido contrario:

$$\vec{E}_{DB} = (4.83 \vec{i} + 2.41 \vec{j}) \text{ N/C}$$

A distancia do punto D ao punto C é: $r_{DC} = |(0, 1,00) \text{ [m]} - (0, -1,00) \text{ [m]}| = 2,00 \text{ m}.$

O vector unitario do punto D, tomando como orixe o punto C, é $\bar{\mathbf{j}}$, o vector unitario do eixe Y.

Calcúlase o campo no punto D, debido á carga de -6 nC situada no punto C:

$$\vec{E}_{DC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \cdot \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,00 \left[\text{m} \right])^2} \vec{j} = -13,5 \vec{j} \text{ N/C}$$

Polo principio de superposición, o campo resultante no punto D é a suma vectorial dos campos creados nese punto por cada carga.

$$\vec{E}_{\rm D} = \vec{E}_{\rm DA} + \vec{E}_{\rm DB} + \vec{E}_{\rm DC} = (-4.83\vec{i} + 2.41\vec{j}) [N/C] + (4.83\vec{i} + 2.41\vec{j}) [N/C] + (-13.5\vec{j}) [N/C] = -8.67\vec{j} N/C$$

Análise: Coincide co debuxo. O campo resultante do cálculo está dirixido no sentido negativo do eixe Y.

c) Para calcular a aceleración do protón, calcúlase antes a forza eléctrica a partir do campo eléctrico, que é a forza sobre a unidade de carga positiva:

$$\vec{E} = \frac{\vec{F}_E}{q} \implies \vec{F} = q \cdot \vec{E}_D = 1,60 \cdot 10^{-19} [C] \cdot (-8,67 \, \bar{\mathbf{j}} \, [\text{N/C}]) = -1,39 \cdot 10^{-18} \, \bar{\mathbf{j}} \, \text{N}$$

A aceleración calcúlase aplicando a segunda lei de Newton:

$$\vec{F} = m \cdot \vec{a} \Rightarrow \vec{a} = \frac{\vec{F}}{m} = \frac{-1,39 \cdot 10^{-18} \, \hat{j} \, [\text{N}]}{1,67 \cdot 10^{-27} \, [\text{kg}]} = -8,31 \cdot 10^8 \, \hat{j} \, \text{m/s}^2$$

d) Ao colocar un protón no punto D(0, 1), o campo exercerá unha forza dirixida no mesmo sentido que o campo, sentido negativo do eixe Y. A carga será empurrada e pasará pola orixe O(0, 0). Como a forza electrostática é unha forza conservativa, a enerxía mecánica consérvase.

$$(E_{c} + E_{p})_{O} = (E_{c} + E_{p})_{D}$$

$$E_{cO} + q \cdot V_{O} = E_{cD} + q \cdot V_{D}$$

Hai que calcular os potenciais eléctricos nos puntos D e O.

O potencial eléctrico nun punto, debido á presencia de varias cargas, é a suma dos potenciais producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o potencial eléctrico nun punto, calcúlanse os potenciais creados nese punto por cada carga, e despois súmanse.

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

Calcúlase o potencial no punto D, debido á carga de +3 nC situada no punto A:

$$V_{\rm DA} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,24 \left[\text{m} \right])} = 12,1 \text{ V}$$

O potencial no punto D debido á carga de +3 nC situada no punto B, vale o mesmo, xa que a distancia e a carga son as mesmas:

$$V_{\rm DR} = 12.1 \text{ V}$$

Calcúlase o potencial no punto D debido á carga de -6 nC situada no punto C:

$$V_{\rm DC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,00 \left[\text{m} \right])} = -27,0 \text{ V}$$

O potencial eléctrico nun punto, debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga.

$$V_{\rm D} = V_{\rm DA} + V_{\rm DB} + V_{\rm DC} = 12,1 \text{ [V]} + 12,1 \text{ [V]} + -27,0 \text{ [V]} = -2,8 \text{ V}$$

Faise o mesmo proceso para calcular o potencial eléctrico na orixe O. Calcúlase o potencial no punto O debido á carga de +3 nC situada no punto A:

$$V_{\text{OA}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,00 \left[\text{m} \right])} = 13,5 \text{ V}$$

O potencial no punto O, debido á carga de + 3 nC situada no punto B, vale o mesmo, xa que a distancia e a carga son as mesmas:

$$V_{OB} = 13.5 \text{ V}$$

Calcúlase o potencial no punto O debido á carga de -6 nC situada no punto C:

$$V_{\rm OC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{(1,00 \left[\text{m} \right])} = -54,0 \text{ V}$$

Calcúlase o potencial eléctrico no punto O sumando os potenciais debidos a cada carga.

$$V_{\rm O} = V_{\rm OA} + V_{\rm OB} + V_{\rm OC} = 13.5 \text{ [V]} + 13.5 \text{ [V]} + (-54.0 \text{ [V]}) = -27.0 \text{ V}$$

Substituíndo os valores dos potenciais e tendo en conta que no punto D a velocidade é nula, a ecuación de conservación da enerxía quedaría:

$$E_{\rm cO} + q \cdot V_{\rm O} = E_{\rm cD} + q \cdot V_{\rm D}$$

$$E_{\rm cO} + 1,60 \cdot 10^{-19} \, [{\rm C}] \cdot (-27,0 \, [{\rm V}]) = 0 + 1,60 \cdot 10^{-19} \, [{\rm C}] \cdot (-2,8 \, [{\rm V}])$$

Despexando, obtense o valor da enerxía cinética ao pasar pola orixe.

$$E_{cO} = 1,60 \cdot 10^{-19} [C] \cdot (27,0 - 2,8) [V] = 3,9 \cdot 10^{-18} J$$

A velocidade do protón na orixe obtense da expresión da enerxía cinética:

$$E_{cO} = \frac{1}{2} m \cdot v^2 \Rightarrow v = \sqrt{\frac{2 E_{cO}}{m}} = \sqrt{\frac{2 \cdot 3.9 \cdot 10^{-18} [J]}{1.67 \cdot 10^{-27} [kg]}} = 6.8 \cdot 10^4 [m/s]$$

e)

O campo eléctrico é un campo conservativo, porque o traballo realizado pola forza do campo, cando unha carga se move entre dous puntos, é independente do camiño seguido e depende só dos puntos inicial e final. Defínese unha función escalar chamada enerxía potencial, E_p , asociada ao campo vectorial de forzas, de tal xeito que o traballo realizado pola forza do campo ao mover unha carga entre dous puntos é igual á variación da enerxía potencial entre estes dous puntos, cambiada de signo.

$$W = -\Delta E_{\rm p}$$

Tamén se define outra magnitude escalar, chamada potencial eléctrico, que é igual á enerxía potencial da unidade de carga.

$$V = \frac{E_{\rm p}}{q}$$

O traballo realizado pola forza de campo, cando unha carga se move do punto A ao punto B, é:

$$W_{A\to B} = -\Delta E_p = -(E_{pB} - E_{pA}) = (E_{pA} - E_{pB}) = q \cdot V_A - q \cdot V_B = q (V_A - V_B)$$

O traballo que fai a forza do campo para levar un protón desde o punto D ata a orixe é:

$$W_{\rm D\to O} = q (V_{\rm D} - V_{\rm O}) = 1,60 \cdot 10^{-19} [\rm C] \cdot (-2,8 - (-27,0)) [\rm V] = 3,9 \cdot 10^{-18} \rm J$$

Supoñendo que chega coa mesma velocidade coa que sae, o traballo da forza resultante, igual ao cambio de enerxía cinética, será cero:

$$W(\text{resultante}) = W(\text{campo}) + W(\text{exterior}) = \Delta E_c = 0$$

O traballo a realizar é o contrario ao da forza de campo.

$$W(\text{exterior}) = -W(\text{campo}) = -3.9 \cdot 10^{-18} \text{ J}$$

Análise: O traballo faino a forza do campo. Se a pregunta é o traballo que hai que facer, podemos supoñer que é o traballo necesario para que chegue á orixe con velocidade nula. Como chega cunha enerxía cinética, o traballo será o oposto ao valor da enerxía cinética.

f) Para que o potencial na orixe se anule, debe cumprirse que:

$$V_{\text{O}} = V_{\text{OA}} + V_{\text{OB}} + V_{\text{OC}} + V_{\text{OD}} = 0$$

Despéxase o valor do potencial eléctrico que debe crear a carga que se colocará no punto D.

$$V_{\rm OD} = 0 - (-27.0 \text{ [V]}) = 27.0 \text{ V}$$

A carga que habería que colocar no punto D, obtense da ecuación do potencial eléctrico nun punto. A distancia do punto D(0,1) á orixe é de 1,00 m.

$$V = K \frac{q}{r} \Rightarrow q = \frac{V \cdot r}{K} = \frac{27.0 \text{ [V]} \cdot 1.00 \text{ [m]}}{9.00 \cdot 10^{9} \text{ [N} \cdot \text{m}^{2} \cdot \text{C}^{-2}]} = 3.00 \cdot 10^{-9} \text{ C} = 3.00 \text{ nC}$$

g) Para que a intensidade do campo electrostático na orixe sexa nulo, debe cumprirse que:

$$\vec{E}_{O} = \vec{E}_{OA} + \vec{E}_{OB} + \vec{E}_{OC} + \vec{E}_{OD} = \vec{0}$$

A distancia do punto A(2, 0) á orixe é: r_{AO} = 2,00 m.

O vector unitario do punto O, tomando como orixe o punto A, $\acute{\bf e}$ - $\ddot{\bf i}$, o vector unitario do eixe X en sentido negativo.

Calcúlase o campo electrostático na orixe, creado pola carga de +3 nC situada no punto A:

$$\vec{E}_{\text{OA}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \cdot \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{\left(2,00 \right. \left[\text{m} \right] \right)^2} \left(-\vec{i} \right) = -6,75 \,\vec{i} \, \text{N/C}$$

O campo electrostático na orixe, debido á carga de +3 nC, situada no punto B, é oposto ao creado pola carga situada no punto A. Está dirixida en sentido contrario:

$$\vec{E}_{OB} = 6,75 \, \vec{i} \, \text{N/C}$$

A distancia do punto C(0, -1) á orixe é: $r_{CO} = 1,00$ m.

O vector unitario do punto O, tomando como orixe o punto C é $\bar{\mathbf{j}}$, o vector unitario do eixe Y. Calcúlase campo electrostático na orixe, creado pola carga de -6 nC situada no punto C:

$$\vec{E}_{OC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \cdot \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{\left(1,00 \left[\text{m} \right] \right)^2} \vec{j} = -54,0 \vec{j} \text{ N/C}$$

A distancia do punto D(0, 1) á orixe é: r_{DO} = 1,00 m.

O vector unitario do punto O, tomando como orixe o punto D é $-\bar{\mathbf{j}}$, o vector unitario do eixe Y en sentido negativo.

Escríbese a expresión do campo electrostático na orixe, creado pola carga q₂ situada no punto D, en función da carga:

$$\vec{E}_{\text{OD}} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \cdot \frac{q_{2}}{(1,00 \, [\,\text{m}\,])^{2}} \left(-\vec{\mathbf{j}} \right) = -9,00 \cdot 10^{9} \cdot q_{2} \, \vec{\mathbf{j}} \left[\text{N} \cdot \text{C}^{-2} \right]$$

Súmanse as expresións e igualase ao vector $\overline{\mathbf{0}}$.

$$-6.75\vec{i}$$
 [N/C]+6.75 \vec{i} [N/C]-54.0 \vec{j} [N/C]-9.00·10°· $q_2\vec{j}$ [N·C⁻²]=0 \vec{i} +0 \vec{j}

O valor da carga obtense despexando q₂:

$$q_2 = \frac{-54.0 [\text{N/C}]}{9,00 \cdot 10^9 [\text{N} \cdot \text{C}^{-2}]} = -6,00 \cdot 10^{-9} \text{ C} = -6,00 \text{ nC}$$

Análise: O valor podería terse deducido inmediatamente, porque o punto D e o punto C están situados no eixe Y simetricamente respecto á orixe. As cargas en ambos deben ser iguais para que a súa achega ao campo se anule, do mesmo xeito que se anula a achega das cargas situadas en A e B, no eixe X, que tamén son iguais. Fíxese en que a carga que anula o campo non coincide coa que anula o potencial.

Algunhas das respostas e o seu cálculo poden verse coa folla de cálculo <u>Electrostática (es)</u>. Na folla de cálculo, faga clic na pestana «Enunciado» da parte inferior e escriba os datos nas celas brancas de bordo azul, e faga clic e elixa as magnitudes e unidades nas celas de cor salmón:

Os resultados dos apartados a) b) c) d) e e) aparecen nas respostas:

	Respostas	_	Cifras significativas:	3
	Compoñente x	Compoñente y	Módulo Unidades	S.I.
E (D) =	0	-8,67	8,67 N/C	
F =	0	$-1,39 \cdot 10^{-18}$	1,39·10 ⁻¹⁸ N	
a =	0	$-8,31\cdot10^{8}$	$8,31\cdot10^{8} \text{ m/s}^{2}$	
<i>V</i> (D) =	-2,85	<i>V</i> (G) =	−27,0 V	
	W(ext.) = -W(ca)	mpo D→G) =	$-3,86\cdot10^{-18} \text{ J}$	
$E_{\rm c}({ m D}) =$	0	$E_{\rm c}({\rm G}) =$	3,86·10 ⁻¹⁸ J	
		<i>v</i> (G) =	6,80·10 ⁴ m/s	

Conxunto
$$E_p = -1,25 \cdot 10^{-7} \text{ J}$$

Se desexa maior detalle nos resultados ou ver como se fixeron os cálculos, faga clic na parte inferior en algunha das lapelas «Campo», «Potencial» e/ou «Enerxía_Potencial». Os restantes apartados non os resolve esta folla de cálculo. Pode comprobar se os resultados obtidos son os correctos escribindo o valor da cuarta carga f) q = 3,00 nC, ou g) $q_2 = -6,00$ nC e comprobando que o potencial, no primeiro caso, ou o vector intensidade de campo, no segundo, son nulos.

Datos:

O vector campo eléctrico no	punto	G	Q_3	0	-1	-6
			Q_4	0	1	3
unha partícula de carga o	<i>q</i> =					
e masa n	n =			Coord X (m)	Coord Y (m)	
situada nese punto.			G	0	0	
Resultados:						
Compoñente x	Compoñente y	Mód	ulo Unida	des	S.I.	
$\vec{E}(G) = 0$	-81,0	8	1,0 N/C			
V(G) = 0			V			
Datos:						
			Q_4	0	1	-6
Resultados:						_
Compoñente x	Compoñente y	Mód	ulo Unida	des	S.I.	
$\vec{E}(G) = 0$	0		0 N/C			
V(G) = -81,0			V			

- 2. Nos vértices dun triángulo equilátero de 2,00 cm de lado sitúanse dúas cargas puntuais de $+3,00~\mu C$ cada unha. Calcula:
 - a) O campo eléctrico nun dos vértices.
 - b) A forza que actúa sobre a carga situada nese vértice.
 - c) A carga que habería que colocar no centro do triángulo para que o conxunto quede en equilibrio.
 - d) O potencial electrostático en calquera vértice, tendo en conta a carga no centro.
 - e) A enerxía potencial electrostática do conxunto das catro cargas.
 - f) A enerxía posta en xogo para que o triángulo rote 45° arredor dun eixo que pasa polo centro e é perpendicular ao plano do papel.
 - g) O traballo necesario para levar a carga situada no centro ata o punto medio dun lado.
 - h) Se a masa da carga é de 0,250 g, e sóltase sen velocidade no centro do lado, calcula a súa velocidade cando pasa polo centro do triángulo.

Datos: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$. Problema modelo baseado en P.A.U. Xuño 08, Xuño 11 e Set. 14

Rta.: a) $\overline{E} = 1,17 \cdot 10^8$ N/C, na bisectriz cara ao exterior; b) $\overline{F} = 351$ N; c) q = -1,73 μ C

d) $V = 1,35 \cdot 10^6 \text{ V}$; e) $E_p = 0$; f) $\Delta E = 0$; g) W(ext.) = -0,097 J; h) v = 28 m/s cara ao vértice oposto.

Datos Valor de cada carga fixa Lonxitude do lado do triángulo equilátero Masa da carga que se despraza Constante eléctrica	Cifras significativas: 3 $Q = 3,00 \ \mu\text{C} = 3,00 \cdot 10^{-6} \ \text{C}$ $L = 2,00 \ \text{cm} = 0,0200 \ \text{m}$ $m = 0,250 \ \text{g} = 2,50 \cdot 10^{-4} \ \text{kg}$ $K = 9,00 \cdot 10^{9} \ \text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2}$
Incógnitas	
Vector intensidade do campo eléctrico nun vértice	$\frac{\overline{E}}{F}$
Vector forza que actúa sobre a carga situada nese vértice	$\overline{m{F}}$
Carga que equilibre ás outras tres	q
Potencial electrostático nun vértice	V
Enerxía potencial do conxunto das catro cargas	$E_{ m p}$
Enerxía para que o triángulo rote 45°	ΔE
Traballo para levar a carga do centro ata o punto medio dun lado	$W_{ ext{O} o ext{D}}$
A velocidade cando pasa polo centro do triángulo	ν

Outros símbolos

Distancia entre dous puntos A e B

Ecuacións

Ecuacions
Intensidade do campo electrostático nun punto creado por unha carga pun- $\vec{E} = K \frac{Q}{r^2} \vec{u}_r = \frac{\vec{F}}{a}$ tual, Q, situada a unha distancia, r

Principio de superposición

Potencial electrostático nun punto creado por unha carga puntual, Q, situa- $V = K \frac{Q}{Q}$ da a unha distancia, r

Potencial electrostático nun punto debido a varias cargas

Traballo que fai a forza do campo cando se move unha carga, q, desde un punto A hasta outro punto B

Enerxía potencial electrostática dunha carga, q, nun punto A

Enerxía potencial electrostática dunha interacción entre dúas cargas puntuais, Q e q, a unha distancia, r, unha da outra

Enerxía potencial electrostática dun conxunto de cargas

Enerxía cinética dun corpo de masa m que se despraza con velocidade v

Principio da conservación da enerxía entre dous puntos A y B

 r_{AB}

$$\vec{E} = K \frac{Q}{r} \vec{u}_r = \frac{\vec{F}}{q}$$

$$\vec{E}_{A} = \sum_{O} \vec{E}_{Ai}$$

$$V = K \frac{Q}{r}$$

$$V = \sum V_i$$

$$W_{A\rightarrow B} = q (V_A - V_B)$$

$$vv_{A\rightarrow B} = q(v_A - v_B)$$

$$E_{pA} = q \cdot V_{A}$$

$$Q \cdot q$$

$$E_{\rm p} = K \frac{Q \cdot q}{r}$$

$$E_{p} = \sum E_{p i} = \frac{1}{2} \sum E_{p q}$$

$$E_{c} = \frac{1}{2} m \cdot v^{2}$$

$$E_{\rm c} = \frac{1}{2} m \cdot v^2$$

$$(E_{\rm c} + E_{\rm p})_{\rm A} = (E_{\rm c} + E_{\rm p})_{\rm B}$$

Solución:

a) Faise un debuxo situando as cargas nos vértices A e B do lado horizontal, que se elixe como base, e o punto C será o outro vértice.

Debúxase un vector por cada carga, prestando atención ao sentido. As intensidades de campo electrostático creadas polas cargas nos puntos A e B son de repulsión (porque as cargas son positivas) e os seus valores son iguais

Debúxase o vector suma vectorial, que é o vector intensidade de campo electrostático, $E_{\rm C}$, resultante.

Como os vectores intensidade de campo electrostático creados polas cargas de A e B son do mesmo valor, as súas compoñentes horizontais anúlanse e a resultante será vertical e estará dirixida cara o sentido positivo do eixe Y. O valor da resultante será a su-

Para determinar a intensidade de campo electrostático nun punto, calcúlase a intensidade de campo electrostático creado por cada carga nese punto, e despois súmanse os vectores.

A ecuación do vector intensidade de campo electrostático creado por unha carga puntual, Q, situada a unha distancia, r, é:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia entre os puntos A e C é o lado do triángulo: r = L = 2,00 cm = 0,0200 m. O vector unitario do punto C, $\overline{\boldsymbol{u}}_{AC}$ respecto de A é:

$$\vec{u}_{AC} = \cos 60^{\circ} \vec{i} + \sin 60^{\circ} \vec{j} = 0,500 \vec{i} + 0,866 \vec{j}$$

A intensidade de campo electrostático \overline{E}_{CA} no punto C, debida á carga de 3 μ C situada en A, é:

$$\vec{E}_{CA} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0200 \left[\text{m} \right])^{2}} (0,500 \vec{\mathbf{i}} + 0,866 \vec{\mathbf{j}}) = = (3,38 \cdot 10^{7} \vec{\mathbf{i}} + 5,85 \cdot 10^{7} \vec{\mathbf{j}}) \text{ N/C}$$

A intensidade de campo electrostático no punto C, debida á carga de 3 μC situada no punto B é simétrica á do punto A. Os valores das súas compoñentes son os mesmos, pero o signo da compoñente horizontal é oposto, porque está dirixido en sentido contrario:

$$\vec{E}_{CB} = (-3.38 \cdot 10^7 \, \vec{i} + 5.85 \cdot 10^7 \, \vec{j}) \, \text{N/C}$$

Polo principio de superposición, a intensidade de campo electrostático resultante no punto C é a suma vectorial das intensidades de campo debidas a cada carga.

$$\vec{E}_{C} = \vec{E}_{CA} + \vec{E}_{CB} = (3.38 \cdot 10^{7} \, \vec{i} + 5.85 \cdot 10^{7} \, \vec{j}) [N/C] + (-3.38 \cdot 10^{7} \, \vec{i} + 5.85 \cdot 10^{7} \, \vec{j}) [N/C] = 1.17 \cdot 10^{8} \, \vec{j} \, N/C$$

Análise: A dirección do campo resultante é vertical cara arriba, como se ve no debuxo.

Unha resposta xeral independente de como se elixiron os vértices sería: O campo eléctrico no terceiro vértice vale 1,17·10⁸ N/C e está dirixido segundo a bisectriz do ángulo cara ao exterior do triángulo.

b) Como a intensidade do campo electrostático nun punto é a forza sobre a unidade de carga positiva colocada nese punto, podemos calcular a forza electrostática sobre a carga de 3 μ C a partir do vector intensidade de campo electrostático:

$$\vec{F} = q \cdot \vec{E} = 3,00 \cdot 10^{-6} [\text{C}] \cdot 1,17 \cdot 10^{8} \, \vec{j} \, [\text{N/C}] = 351 \, \vec{j} \, \text{N}$$

Unha resposta xeral independente de como se elixiron os vértices sería:

A forza electrostática sobre a carga situada nun vértice vale 351 N e está dirixido segundo a bisectriz do ángulo cara ao exterior do triángulo.

c) Para calcular a carga que habería que colocar no centro O do triángulo para que o conxunto quede en equilibrio, buscamos a carga que, situada no centro do triángulo, exerza un campo eléctrico no vértice que anule o que producen as cargas situadas nos outros vértices.

$$\vec{E}_{CO} = -(\vec{E}_{CA} + \vec{E}_{CB})$$

Calcúlase primeiro a distancia do centro do triángulo ao vértice:

$$\cos 30^{\circ} = \frac{1 \text{ [cm]}}{d}$$

Chamando q á carga situada no centro O, debe cumprirse que o vector intensidade do campo electrostático creado por ela sea oposto ao que producen as cargas situadas nos outros vértices:

$$\vec{E}_{CO} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{q}{(0,0115 [\text{m}])^2} \vec{j} = -1,17 \cdot 10^8 \vec{j} \left[\text{N/C} \right]$$

$$q = \frac{-1.17 \cdot 10^8 \left[\text{N/C} \right] \cdot \left(0.0115 \left[\text{m} \right] \right)^2}{9.00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right]} = -1.73 \cdot 10^{-6} \text{ C}$$

d) Para calcular o potencial electrostático nun punto, calcúlase cada un dos potenciais creados nese punto por cada carga situada nos vértices e deseguido súmanse.

A ecuación do potencial, V, electrostático nun punto creado por unha carga puntual, Q, situada a unha distancia, r, é:

$$V = K \frac{Q}{r}$$

Calcúlanse os potenciais electrostáticos no vértice C, debidos a cada unha das cargas:

$$V_{\text{CA}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0200 \left[\text{m} \right])} = 1,35 \cdot 10^6 \text{ V}$$

$$V_{\rm CB} = V_{\rm CA} = 1,35 \cdot 10^6 \,\rm V$$

$$V_{\text{CO}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-1,73 \cdot 10^{-6} \left[\text{C} \right]}{\left(0,0115 \left[\text{m} \right] \right)} = -1,35 \cdot 10^6 \text{ V}$$

O potencial electrostático nun punto debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga.

$$V_{\rm C} = V_{\rm CA} + V_{\rm CB} + V_{\rm CO} = 1.35 \cdot 10^6 \, [\rm V] + 1.35 \cdot 10^6 \, [\rm V] - 1.35 \cdot 10^6 \, [\rm V] = 1.35 \cdot 10^6 \, \rm V$$

e, f) A enerxía potencial de cada interacción entre dúas cargas vén dada pola expresión:

$$E_{\rm pi} = K \frac{Q \cdot q}{r}$$

A enerxía total electrostática é a suma das enerxías das seis interaccións: A \leftrightarrow B, A \leftrightarrow C, B \leftrightarrow C, e A \leftrightarrow O, B \leftrightarrow O e C \leftrightarrow O.

A tres primeiras valen o mesmo, porque as cargas e as distancias son iguais:

$$E_{A \leftarrow B} = E_{A \leftarrow C} = E_{B \leftarrow C} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right] \cdot 3,00 \cdot 10^{-6} \left[\text{C} \right]}{0,0200 \left[\text{m} \right]} = 4,05 \text{ J}$$

E as tres últimas tamén valen o mesmo, porque as cargas e as distancias volven ser iguais:

$$E_{\text{A} \to \text{O}} = E_{\text{B} \to \text{O}} = E_{\text{C} \to \text{O}} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right] \cdot \left(-1,73 \cdot 10^{-6} \right) \left[\text{C} \right]}{0,0115 \left[\text{m} \right]} = -4,05 \text{ J}$$

$$E = E_{A \leftrightarrow B} + E_{A \leftrightarrow C} + E_{B \leftrightarrow C} + E_{A \leftrightarrow O} + E_{B \leftrightarrow O} + E_{C \leftrightarrow O} = 3 \cdot 4,05 \text{ [J]} + 3 \cdot (-4,05 \text{ [J]}) = 0$$

Análise: Se se calculase a enerxía total como a suma das enerxías potenciais das seis cargas, o resultado daría o dobre, porque estaríanse a contar as interaccións dúas veces. Por exemplo a interacción $A \leftrightarrow B$ aparece no cálculo da enerxía potencial da carga en A e tamén no cálculo da enerxía potencial da carga en B.

Como ao xirar 45°, as distancias relativas non cambian, a enerxía da nova disposición é a mesma, e a enerxía total requirida é cero.

$$\Delta E = E_{p'T} - E_{pT} = 0$$

g) Chámase punto D ao centro do lado AB.

O traballo realizado polas forzas do campo electrostático cando se move unha carga q desde o punto O centro do triángulo ao punto D centro dun lado, é a diminución da enerxía potencial entre os puntos O e D. Como o potencial electrostático é a enerxía potencial da unidade de carga, o traballo realizado polas forzas do campo é igual ao valor da carga, q, que se despraza, multiplicado pola diferencia de potencial entre os puntos de partida, O, e de chegada, D:

$$W_{\text{campo}} = W_{O \to D} = -(E_{p,D} - E_{p,O}) = E_{p,O} - E_{p,D} = q(V_O - V_D)$$

Calcúlanse os potenciais no punto O debidos a cada carga, excepto a que se move. Son todos iguais, porque as cargas e as distancias son iguais:

$$V_{\text{OA}} = V_{\text{OB}} = V_{\text{OC}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0115 \left[\text{m} \right])} = 2,34 \cdot 10^6 \text{ V}$$

O potencial electrostático no punto O é a suma:

$$V_{\rm O} = V_{\rm OA} + V_{\rm OB} + V_{\rm OC} = 3 \cdot 2,34 \cdot 10^6 \, [\rm V] = 7,01 \cdot 10^6 \, \rm V$$

Calcúlanse os potenciais no punto D, debidos a cada carga, excepto a que se move. O potencial no punto D, debido a cada unha das cargas do lado AB é:

$$V_{\rm DA} = V_{\rm DB} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0100 \left[\text{m} \right])} = 2,70 \cdot 10^6 \text{ V}$$

A distancia do vértice C ao centro D do lado oposto vale:

$$h = \sqrt{(2,00 \text{ [cm]})^2 - (1,00 \text{ [cm]})^2} = \sqrt{3,00 \text{ [cm]}^2} = 1,73 \text{ cm} = 0,0173 \text{ m}$$

Calcúlase o potencial no punto D, debido á carga situada no vértice C:

$$V_{\rm DC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0173 \left[\text{m} \right])} = 1,56 \cdot 10^6 \text{ V}$$

O potencial electrostático no punto D é a suma:

$$V_{\rm D} = V_{\rm DA} + V_{\rm DB} + V_{\rm DC} = 2 \cdot 2,70 \cdot 10^6 \, [{\rm V}] + 1,56 \cdot 10^6 \, [{\rm V}] = 6,96 \cdot 10^6 \, {\rm V}$$

O traballo realizado polas forzas do campo electrostático cando se move unha carga q = –1,73 μ C desde o punto O ao D é:

$$W_{\text{O}\rightarrow\text{D}} = q (V_{\text{O}} - V_{\text{D}}) = -1.73 \cdot 10^{-6} [\text{C}] \cdot (7.01 \cdot 10^{6} - 6.96 \cdot 10^{6}) [\text{V}] = -0.08 \text{ J}$$

Análise: <u>Pérdense dúas cifras significativas ao restar</u>. Se empregásemos 6 cifras significativas, o resultado sería: $W_{O\rightarrow D} = q (V_O - V_D) = -1,73205 \cdot 10^{-6} \cdot (7,01481 \cdot 10^6 - 6,95885 \cdot 10^6) = -0,09693 \text{ J}$

Supoñendo que salga de O e chegue a D coa mesma velocidade, o traballo da forza resultante, igual á variación de enerxía cinética, será nulo, e o traballo que hai que facer é o oposto ao da forza do campo:

$$W(\text{exterior}) = W(\text{resultante}) - W(\text{campo}) = 0 - W(\text{campo}) = -W(\text{campo})$$

O traballo necesario para mover unha carga $q = -1.73~\mu\text{C}$ desde o punto O ao D, supoñendo que chegue a D coa mesma velocidade que tiña en O, é:

$$W(\text{exterior}) = -W(\text{campo}) = 0.08 \text{ J}$$

h) Como a forza electrostática é unha forza conservativa, a enerxía mecánica consérvase.

$$(E_{c} + E_{p})_{O} = (E_{c} + E_{p})_{D}$$

$$\frac{1}{2} m v_{O}^{2} + q \cdot V_{O} = \frac{1}{2} m v_{D}^{2} + q \cdot V_{D}$$

$$-1,73 \cdot 10^{-6} [C] \cdot (7,01 \cdot 10^{6} [V]) = (2,50 \cdot 10^{-4} [kg] \cdot v_{D}^{2}) / 2 + (-1,73 \cdot 10^{-6} [C]) \cdot (6,96 \cdot 10^{6} [V])$$

$$v_{D} = \sqrt{\frac{2 \cdot (-1,73 \cdot 10^{-6} [C]) \cdot (7,01 \cdot 10^{6} - 6,96 \cdot 10^{6})[V]}{2,50 \cdot 10^{-4} [kg]}} = \sqrt{\frac{2 \cdot 0,09 [J]}{2,50 \cdot 10^{-4} [kg]}} = 3 \cdot 10^{1} \text{ m/s}$$

Análise: <u>Pérdense dúas cifras significativas ao restar</u>. Se empregásemos 6 cifras significativas, o resultado sería: $v_D = 27.8 \text{ m/s}$.

Como a velocidade é un vector, hai que deducir a dirección e sentido.

Do feito de que pase pola orixe, pódese deducir que a aceleración ten a dirección do eixo Y en sentido positivo. Se un móbil parte do repouso, e a aceleración ten dirección constante, o movemento será rectilíneo na liña da aceleración. Por tanto, a dirección da velocidade é a do eixo Y en sentido positivo

$$\overline{\mathbf{v}}_{\mathrm{D}} = 3.10^{1} \, \overline{\mathbf{j}} \, \mathrm{m/s}$$

En xeral, o vector velocidade valerá $3\cdot10^1$ m/s na dirección entre o centro do lado e o centro do triángulo, no sentido do vértice oposto ao lado do que sae.

Algunhas das respostas e o seu cálculo poden verse coa folla de cálculo <u>Electrostática (gal)</u>, aínda que hai que ir por partes.

Primeiro habería que calcular as coordenadas na pestana «Coords». Escriba os datos nas celas de cor branca e bordo azul, e faga clic e elixa as magnitudes e unidades nas celas de cor salmón:

ca e bordo azar, e raga ene e	ema as magnitud	es e minoames mas een	
Figura:	Triángulo equiláte	ro	2
Lonxitude do	lado	2 cm	
	x (cm)	y (cm)	1,5
Situar o punto <mark>A</mark>	-1	0 cm	
Xirar	210 °		
			0,5
RI	ESULTADOS		
Redondear a 8	decimais C	oordenadas	-1,5 -1 -0,5 0 0,5 1 1,
Punto	x (cm)	y (cm)	-0.5
A	-1	-0,57735027	
В	1	-0,57735027	-1
С	0	1,15470054	
A B	-1 1	-0,57735 027 -0,57735 027	-0,5 B

Seleccione as celas coas coordenadas e cópieas (pulsando ao tempo as teclas Ctrl e C). Faga clic na pestana «Enunciado» e faga clic á dereita de Q_1 . Elixa no menú: Editar \rightarrow Pegado especial \rightarrow Pegar só números.

Escriba os datos restantes nas celas de cor branca e bordo azul, e faga clic e elixa as magnitudes e unidades nas celas de cor salmón:

Enunciado Datos: K =	9,00.109		ε' =	1			
Dada a seguinte distribución	de cargas, (en	μC)		Coord X (cm)	Coord Y (cm)	Carga (µC)
(co	ordenadas en	cm)	$Q_{\scriptscriptstyle 1}$	-1	-0,57735027	3
e os puntos C e B, calcula:				Q_2	1	-0,57735027	3
a) O vector campo eléctrico no	punto	С		Q_3			
b) O vector forza sobre				Q_4			
unha partícula de carga q =	3	μC					
e masa m =					Coord X (cm)	Coord Y (cm)	
situada nese punto.				С	0	1,15470054	

Os resultados son:

R	espostas		Cifras significativas: 6	
C	Compoñente x	Compoñente y	Módulo Unidades	S.I.
E (C) =	0	1,16913·10 ⁸	1,16913·10 ⁸ N/C	
F =	0	350,740	350,740 N	
<i>V</i> (C) =	$2,70000 \cdot 10^6$		V	
P	untos do traba	ıllo non definidos	3	
		Conxunto $E_p =$	12,1500 J	
Carga que	equilibra	Q =	−1,73205·10 ⁻⁶ C	
en C	oordenada x	Coordenada y		
M	0	0	m	

Para o apartado d), haberá que escribir o valor da carga que equilibra e poñer as súas coordenadas na pestana «Enunciado».

Enunciado Datos: K =	9,00.109		ε' =	1			
Dada a seguinte distribución	de cargas, (en	μC)		Coord X (cm)	Coord Y (cm)	Carga (μC)
(co	oordenadas en	cm)	$Q_{\scriptscriptstyle 1}$	-1	-0,57735026919	3
e os puntos D e G, calcula:			_	Q_2	1	-0,57735026919	3
a) O vector campo eléctrico no	punto	С		Q_3	0	1,15470 053 838	3
b) O vector forza sobre				Q_4	0	0,000000000000	-1,7320507
unha partícula de carga q =							
e masa m =					Coord X (cm)	Coord Y (cm)	
situada nese punto.				С	0	1,15470 053 838	

\sim	novo		14 - J -	
. ,	$n\alpha v\alpha$	recu	ITAMA	ceria

Respostas	Cifras significativas: 6	
Compoñente x Compoñ	ente y Módulo Unidades	

$$F(C) = 0$$
 0 0 N/C
$$V(C) = 1,35000 \cdot 10^{6}$$
 V

Para os restantes apartados, haberá que escribir a masa e a carga da partícula que se despraza, poñer as coordenadas dos puntos medio G e D(centro da base do triángulo) e elixir os puntos inicial e final nos apartados d) traballo y e) velocidade. Pestana «Enunciado»

dos a) traballo y e) velocidade. Pest	ma «Enunciado	<i>>></i>					
Enunciado Datos: K	9,00.10	9	ε' =	1			
Dada a seguinte distribució	on de cargas, (er	nμC)		Coord X (cm)	Coord Y (cm)	Carga (μC)
	(coordenadas er	cm)	$Q_{\scriptscriptstyle 1}$	-1	-0,57735026919	3
e los puntos D e G, calcula	:		_	Q_2	1	-0,57735026919	3
a) El vector campo eléctrico	no punto	D		Q_3	0	1,15470 053 838	3
b) O vector forza sobre			_	Q_4	0	0,000000000000	-1,7320507
unha partícula de carga \emph{q}	= -1,7320507	μC					
e masa m	= 0,25	g			Coord X (cm)	Coord Y (cm)	
situada nese punto.				D	0	-0,57735026919	
				G	0	0	
d) O traballo necesario para o	lesprazar aa pai	tícula					
anterior desde <mark>o punto D a</mark>	ta o punto G		_				
e) A velocidade coa que pasa	polo punto	G					
se a velocidade en D é v(D)	= (m/s					
f) A enerxía potencial do cor	xunto de carga	s fixas					

Os novos resultados son:

$$V(D) = 6,95885 \cdot 10^6$$
 $V(G) = 7,01481 \cdot 10^6 \text{ V}$
 $W(\text{ext.}) = -W(\text{campo D} \rightarrow G) = -0,0969256 \text{ J}$
 $E_c(D) = 0$ $E_c(G) = 0,0969256 \text{ J}$
 $V(G) = 27,8461 \text{ m/s}$
 $Conxunto E_p = 0 \text{ J}$

- 3. Dúas cargas eléctricas positivas (q_1 e q_2) están separadas unha distancia de 1 m. Entre as dúas hai un punto, situado a 20 cm de q_1 , onde o campo eléctrico é nulo. Sabendo que q_1 é igual a 2 μ C, calcula:
 - a) O valor de q_2 .
 - b) O potencial no punto no que se anula o campo.
 - c) O traballo realizado pola forza do campo para levar unha carga de $-3~\mu C$ desde o punto no que se anula o campo ata o infinito.

Dato: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$. **Rta.**: a) $q_2 = 32 \mu\text{C}$; b) $V = 4.5 \cdot 10^5 \text{ V}$; c) W = -1.4 J. (A.B.A.U. Set. 18)

Datos

Distancia entre as cargas q_1 e q_2 Distancia do punto P á carga q_1 Valor da carga situada no punto 1 Valor da carga situada no punto P Campo eléctrico no punto P

Cifras significativas: 3

d = 1,00 m $d_{P1} = 20,0 \text{ cm} = 0,200 \text{ m}$ $q_1 = 2,00 \text{ }\mu\text{C} = 2,00 \cdot 10^{-6} \text{ C}$ $q = -3,00 \text{ }\mu\text{C} = -3,00 \cdot 10^{-6} \text{ C}$ $|E_P| = 0$

Datos	Cifras significativas: 3
Constante eléctrica	$K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$

Incógnitas

Valor da carga q₂ Potencial electrostático no punto P Traballo para trasladar unha carga de −3 µC desde P ata o infinito

Outros símbolos

Distancia entre dous puntos A e B

Ecuacións

Intensidade do campo electrostático nun punto creado por unha carga pun- $\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ tual Q situada a unha distancia, r

 $\vec{E}_{A} = \sum \vec{E}_{Ai}$ Principio de superposición

Potencial electrostático nun punto creado por unha carga puntual, Q, situada a unha distancia r $V = K \frac{Q}{r}$ da a unha distancia *r*

Potencial electrostático nun punto debido a varias cargas

Traballo que fai a forza do campo cando se move unha carga q desde un punto A ata outro punto B

$$W_{A\rightarrow B} = q (V_A - V_B)$$

Solución:

a) Faise un debuxo do vector intensidade de campo electrostático creado pola carga q_1 . Como a carga é positiva, o vector intensidade de campo electrostático está dirixido no sentido positivo do eixe *X*.

Para determinar a intensidade de campo electrostático nun punto, calcúlase a intensidade de campo electrostático creado por cada carga nese punto, e despois súmanse os vectores.

A ecuación do vector intensidade de campo electrostático creado por unha carga puntual, Q, situada a unha distancia, r, é:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia entre os puntos 1 e P é: d_{P1} = 20,0 cm = 0,200 m.

O vector unitario do punto P respecto ao punto 1, é o vector unitario do eixe X, \mathbf{i} .

A intensidade de campo electrostático no punto P, debido á carga de 2 μC situada no punto 1, é:

$$\vec{E}_{P1} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,200 \left[\text{m} \right])^2} \vec{i} = 4,50 \cdot 10^5 \vec{i} \text{ N/C}$$

A intensidade de campo electrostático no punto P debida á carga q_2 situada no punto 2, a 1 m de distancia da carga q_1 , ten que ser oposta, para que a intensidade de campo electrostático no punto P sexa nula.

$$\overline{E}_{P2} = -4,50 \cdot 10^5 \, \overline{\mathbf{i}} \, \text{N/C}$$

Tendo en conta que a distancia de q_2 ao punto P é d_{P2} = 1,00 [m] – 0,200 [m] = 0,80 m, pódese escribir para o módulo da intensidade do campo electrostático:

$$|\vec{E}| = K \frac{q}{r^2} \Rightarrow 4,50 \cdot 10^5 = 9,00 \cdot 10^9 \frac{q_2}{0.80^2}$$

Despéxase o valor da carga q_2 :

$$q_2 = 3.2 \cdot 10^{-5} \text{ C} = 32 \mu\text{C}$$

Análise: Como a distancia de q_2 ao punto P é 4 veces maior que a da carga q_1 , o valor da carga terá que ser $4^2 = 16$ veces maior.

b) Para calcular o potencial electrostático nun punto, calcúlase cada un dos potenciais creados nese punto por cada carga situada nos vértices e deseguido súmanse.

A ecuación do potencial, V, electrostático nun punto creado por unha carga puntual, Q, situada a unha distancia, r, é:

$$V = K \frac{Q}{r}$$

Calcúlanse os potenciais electrostáticos no punto P, debidos a cada unha das cargas:

$$V_{\rm P1} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,20 \left[\text{m} \right])} = 9,00 \cdot 10^4 \text{ V}$$

$$V_{\text{P}2} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{32 \cdot 10^{-6} \left[\text{C} \right]}{(0,80 \left[\text{m} \right])} = 3,6 \cdot 10^5 \text{ V}$$

O potencial electrostático dun punto debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga.

$$V_{\rm P} = V_{\rm P1} + V_{\rm P2} = 9,00 \cdot 10^4 \, [{\rm V}] + 3,6 \cdot 10^5 \, [{\rm V}] = 4,5 \cdot 10^5 \, {\rm V}$$

c) O traballo realizado polas forzas do campo electrostático cando se move unha carga, q, desde o punto P, onde se anula o campo, ao infinito, é a diminución da enerxía potencial entre eses puntos.

A enerxía potencial electrostática do infinito é nula, por definición. Como o potencial electrostático é a enerxía potencial da unidade de carga, o traballo realizado polas forzas do campo é igual ao valor da carga, q, que se despraza, multiplicado polo potencial do punto de partida P:

$$W_{\text{campo}} = W_{\text{P}\to\infty} = -(E_{\text{p}\infty} - E_{\text{p}P}) = E_{\text{p}P} - E_{\text{p}\infty} = q \cdot V_{\text{P}}$$

O traballo que fai a forza do campo para levar a carga de -3 µC desde o punto P ata o infinito é:

$$W_{P\to\infty} = q \cdot V_P = -3,00 \cdot 10^{-6} [C] \cdot 4,5 \cdot 10^5 [V] = -1,4 J$$

- Unha carga puntual Q ocupa a posición (0, 0) do plano XY no baleiro. Nun punto A de o eixe X o potencial é V = -100 V e o campo eléctrico é $\overline{E} = -10 \text{ i} \text{ N/C}$ (coordenadas en metros):
 - a) Calcula a posición do punto A e o valor de Q.
 - b) Determina o traballo necesario para levar un protón desde o punto B(2, 2) ata o punto A.
 - c) Fai unha representación gráfica aproximada da enerxía potencial do sistema en función da distancia entre ambas as cargas. Xustifica a resposta.

Dato: Carga do protón: $1,6 \cdot 10^{-19} \text{ C}$; $K = 9 \cdot 10^{9} \text{ N} \cdot \text{m}^{2} \cdot \text{C}^{-2}$. (P.A.U. Set. 11) **Rta.:** a) $\bar{r}_A = (10.0, 0) \text{ m}$; $Q = -1.11 \cdot 10^{-7} \text{ C}$; b) $W = -4.05 \cdot 10^{-17} \text{ J}$.

Datos	Cifras significativas: 3
Posición da carga <i>Q</i>	$\bar{r}_{0} = (0, 0) \text{ m}$
Potencial no punto A	V = -100 V
Campo eléctrico no punto A	$\overline{E} = -10.0 \overline{i} \text{ N/C}$
Posición do punto B	$\bar{r}_{\rm B} = (2,000, 2,000) {\rm m}$
Carga do protón	$q_{\rm p}$ = 1,60·10 ⁻¹⁹ C
Constante eléctrica	$K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Incógnitas	
Posición do punto A	- r _A
Valor da carga Q	Q
Traballo necesario para levar un protón de B a A	$W_{ m B o A}$
Outros símbolos	
Distancia entre dous puntos A e B	$r_{ m AB}$
Ecuacións	
	$\vec{E} = V \stackrel{Q}{=} \vec{z}$

Campo eléctrico creado por unha carga puntual Q a unha distancia r

 $\vec{E} = K \frac{\times}{r^2} \vec{u}_r$

Potencial electrostático dun un punto que dista unha distancia r dunha carga Q

Traballo que fai a forza do campo cando se move unha carga q desde un punto A $W_{A\rightarrow B}=q(V_A-V_B)$ ata outro punto B

 $E_{pA} = q \cdot V_{A}$ Enerxía potencial electrostática dunha carga q nun punto A

Solución:

a) Substitúense os datos nas ecuacións do campo:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$$

$$-10.0 \, \vec{i} \, [\text{N/C}] = 9.00 \cdot 10^9 \, [\text{N·m}^2 \cdot \text{C}^{-2}] \frac{Q}{r^2} \, \vec{u}_r$$

Tomando só o módulo, queda:

10,0 [N/C]=9,00 · 10⁹ [N·m²·C⁻²]
$$\frac{|Q|}{r^2}$$

Substitúese tamén na ecuación de potencial electrostático:

$$V = K \frac{Q}{r}$$

$$-100 [V] = 9,00 \cdot 10^{9} [N \cdot m^{2} \cdot C^{-2}] \frac{Q}{r}$$

Como na ecuación do campo aparece o valor absoluto da carga |Q|, aplicamos valores absolutos á ecuación do potencial, que queda:

$$100 [V] = 9,00 \cdot 10^{9} [N \cdot m^{2} \cdot C^{-2}] \frac{|Q|}{r}$$

Resólvese o sistema:

$$\begin{cases} 10,0=9,00 \cdot 10^9 \frac{|Q|}{r^2} \\ 100=9,00 \cdot 10^9 \frac{|Q|}{r} \end{cases}$$

Dividindo a segunda ecuación entre a primeira, obtense:

$$r = 10.0 \text{ m}$$

Despexando o valor absoluto da carga |Q| da segunda ecuación:

$$Q = 1,11 \cdot 10^{-7} \text{ C}$$

O potencial é negativo, por tanto, a carga debe ser negativa:

$$Q = -1.11 \cdot 10^{-7} \text{ C}$$

Como a intensidade do campo electrostático no punto é negativa, $\overline{E}_r = -10,0$ \overline{i} (N/C), o punto ten que estar no semieixe positivo:

$$\bar{r}_{A=}(10,0,0) \text{ m}$$

b) O traballo realizado polas forzas do campo electrostático cando se move unha carga, q, desde o punto B ao punto A, é a diminución da enerxía potencial entre os puntos B e A. Como o potencial electrostático é a enerxía potencial da unidade de carga, o traballo realizado polas forzas do campo é igual ao valor da carga, q, que se despraza, multiplicado pola diferencia de potencial entre os puntos de partida B e chegada A:

$$W_{\text{campo}} = W_{\text{B}\rightarrow\text{A}} = -(E_{\text{p A}} - E_{\text{p B}}) = E_{\text{p B}} - E_{\text{p A}} = q(V_{\text{B}} - V_{\text{A}})$$

O traballo que fai a forza do campo é

$$W_{\text{B}\to\text{A}} = q (V_{\text{B}} - V_{\text{A}})$$

Calcúlase a distancia do punto B á carga Q:

$$r_{\rm OR} = \sqrt{(2.00 \, [\, {\rm m}\,])^2 + (2.00 \, [\, {\rm m}\,])^2} = 2.83 \, {\rm m}$$

Calcúlase o potencial no punto B:

$$V_{\rm B} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{\left| -1,11 \cdot 10^{-7} \left[\text{C} \right] \right|}{2,83 \left[\text{m} \right]} = -353 \text{ V}$$

O traballo da forza do campo é:

$$W_{\text{B}\to\text{A}} = q (V_{\text{B}} - V_{\text{A}}) = 1,60 \cdot 10^{-19} [\text{C}] \cdot (-353 - (-100) [\text{V}] = 4,05 \cdot 10^{-17}]$$

Supoñendo que salga de B e chegue a A coa mesma velocidade, o traballo da forza resultante, igual á variación de enerxía cinética, será nulo, e o traballo que hai que facer é o oposto ao da forza do campo:

$$W(\text{exterior}) = W(\text{resultante}) - W(\text{campo}) = 0 - W(\text{campo}) = -W(\text{campo})$$

O traballo necesario para levar un protón desde o punto B ao A, supoñendo que chegue a A coa mesma velocidade que tiña en B, é:

$$W(\text{exterior}) = -W(\text{campo}) = 4,05 \cdot 10^{-17} \text{ J}$$

c) A enerxía potencial de dúas cargas vén dada pola expresión:

$$E_{p} = q \cdot V = K \frac{Q \cdot q}{r}$$

É inversamente proporcional á distancia entre ambas as cargas. Como as cargas son de signo oposto a enerxía potencial é negativa e aumenta coa distancia ata ser nula a unha distancia infinita

• Campo uniforme

- 1. Dúas láminas condutoras con igual carga e signo contrario están colocadas horizontalmente e separadas 5 cm. A intensidade do campo eléctrico no seu interior é 2,5·10⁵ N·C⁻¹. Unha micropinga de aceite cuxa masa é 4,90·10⁻¹⁴ kg, e con carga negativa, está en equilibrio suspendida nun punto equidistante de ambas as placas.
 - a) Razoa cal das dúas láminas está cargada positivamente.
 - b) Determina a carga da micropinga.
 - c) Calcula a diferenza de potencial entre as láminas condutoras.

Dato: $g = 9.8 \text{ m} \cdot \text{s}^{-2}$.

Rta.: b) $q = 1.92 \cdot 10^{-18} \text{ C}$; c) $\Delta V = 1.25 \cdot 10^4 \text{ V}$.

(P.A.U. Set. 15)

Datos

Intensidade do campo eléctrico

Distancia entre as láminas condutoras

Masa da micropinga

Valor do campo gravitacional terrestre

Incógnitas

Carga da micropinga

Diferenza de potencial entre as láminas condutoras

Ecuacións

Forza sobre unha carga puntual q nun campo electrostático uniforme $\overline{\pmb{E}}$

Valor da forza peso

Diferencia de potencial nun campo eléctrico constante

Cifras significativas: 3

 $|\mathbf{E}| = 2,50 \cdot 10^5 \text{ N/C}$

d = 5,00 cm = 0,0500 m

 $m = 4.90 \cdot 10^{-14} \text{ kg}$

 $g = 9.80 \text{ m/s}^2$

q

 $\overline{F}_E = q \cdot \overline{E}$

 $P = m \cdot g$

 $\Delta V = |\overline{\boldsymbol{E}}| \cdot d$

Solución:

a, b) Peso:

$$P = m \cdot g = 4,90 \cdot 10^{-14} \text{ [kg]} \cdot 9,80 \text{ [m} \cdot \text{s}^{-2}] = 4,80 \cdot 10^{-13} \text{ N}$$

Cando a micropinga alcanza o equilibrio, a forza eléctrica equilibra á forza peso.

$$F_E = q \cdot E = 4.80 \cdot 10^{-13} \text{ N}$$

Carga eléctrica:

$$q = \frac{F_E}{E} = \frac{4,80 \cdot 10^{-13} [\text{N/C}]}{2,5 \cdot 10^5 [\text{N}]} = 1,92 \cdot 10^{-18} \text{ C}$$

Análise: A carga eléctrica da micropinga é só lixeiramente maior que a do electrón. Corresponde á de $1,92\cdot10^{-18}$ C / $1,6\cdot10^{-19}$ C = 12 electróns. Este resultado parece razoable.

A forza eléctrica está dirixida cara arriba, en sentido contrario ao peso. Como a carga da micropinga é negativa, o campo eléctrico debe estar dirixido cara abaixo: a lámina superior é a positiva e a inferior a negativa.

c) A diferenza de potencial vale:

$$\Delta V = |\overline{E}| \cdot d = 2,50 \cdot 10^5 \text{ [N/C]} \cdot 0,0500 \text{ [m]} = 1,25 \cdot 10^4 \text{ V}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u>
Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela <u>Partícula cargada movéndose nun campo eléctrico uniforme</u>

do capítulo

Electromagnetismo Parabolico

Partícula cargada movéndose nun campo eléctrico uniforme

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

Os resultados son:

b) Carga (12 e) $q = -1.92 \cdot 10^{-18}$ C c) ΔV placas $\Delta V = 1.25 \cdot 10^{4}$ V

- 2. Unha esfera pequena, de masa 2 g e carga +3 μ C, colga dun fío de 6 cm de lonxitude entre dúas placas metálicas verticais e paralelas separadas entre si unha distancia de 12 cm. As placas posúen cargas iguais pero de signo contrario. Calcula:
 - a) O campo eléctrico entre as placas para que o fío forme un ángulo de 45° coa vertical.
 - b) A tensión do fío nese momento.
 - c) Se as placas se descargan, cal será a velocidade da esfera ao pasar pola vertical? Dato: $g = 9.81 \text{ m}\cdot\text{s}^{-2}$. (A.B.A.U. Xuño 17)

Rta.: a) $E = 6.54 \cdot 10^3 \text{ N/C}$; b) T = R = 0.0277 N; c) v = 0.587 m/s.

Datos Masa da esfera Carga da esfera Lonxitude do fío Cifras significativas: 3 $m = 2,00 \text{ g} = 2,00 \cdot 10^{-3} \text{ kg}$ $q = 3,00 \text{ } \mu\text{C} = 3,00 \cdot 10^{-6} \text{ C}$ L = 6,00 cm = 0,0600 m

,	.	
1	Jatos	

Ángulo que forma o fío coa vertical Valor do campo gravitacional terrestre

Incógnitas

Valor do campo eléctrico

Tensión do fío

Velocidade da esfera ao pasar pola vertical

Ecuacións

Forza sobre unha carga puntual q nun campo electrostático uniforme \overline{E}

Valor da forza peso

Enerxía potencial da forza peso

Enerxía cinética

Cifras significativas: 3

 $\alpha = 45^{\circ}$

 $g = 9.81 \text{ m/s}^2$

E T v

 $\overline{F}_E = q \cdot \overline{E}$

 $P = m \cdot g$ $E_{p} = m \cdot g \cdot h$

 $E_{\rm c} = \frac{1}{2} m \cdot v^2$

Solución:

a) Debúxase un esquema de forzas:

Cando a esfera alcanza o equilibrio, a tensión equilibra á resultante das forzas peso e eléctrica.

Calcúlase a forza peso:

$$P = m \cdot g = 2,00 \cdot 10^{-3} \text{ [kg]} \cdot 9,81 \text{ [m} \cdot \text{s}^{-2} \text{]} = 0,0196 \text{ N}$$

Como o ángulo entre a resultante e a vertical é de 45° e tan 45° = 1,00, a forza eléctrica vale o mesmo que o peso:

$$F_E = P = 0.0196 \text{ N}$$

Calcúlase o campo eléctrico:

Como son perpendiculares, a forza $E = \frac{F_E}{q} = \frac{0.0196 \text{ [N]}}{3.00 \cdot 10^{-6} \text{ [C]}} = 6.54 \cdot 10^3 \text{ N/C}$ resultante vale:

$$|\vec{R}| = \sqrt{(0.0196[N])^2 + (0.0196[N])^2} = 0.0277 \text{ N}$$

b) O valor da tensión é o mesmo que o da forza resultante:

$$T = R = 0.0277 \text{ N}$$

c) Ao descargarse as láminas só actúa a forza peso, que é unha forza conservativa. A enerxía mecánica consérvase entra a posición inicial e o punto máis baixo da traxectoria.

A altura do punto de equilibrio respecto do punto máis baixo pode calcularse do triángulo:

$$h = L - L \cos \alpha = L (1 - \cos \alpha) = 0,0600 \text{ [m]} (1 - \cos 45^\circ) = 0,0176 \text{ m}$$

A enerxía potencial do peso no punto de partida é:

$$E_p = m \cdot g \cdot h = 2,00 \cdot 10^{-3} \text{ [kg]} \cdot 9,81 \text{ [m} \cdot \text{s}^{-2}] \cdot 0,00240 \text{ [m]} = 3,45 \cdot 10^{-4} \text{ J}$$

Como a enerxía cinética é nula nese punto, a enerxía mecánica valerá o mesmo.

$$E = E_p = 3.45 \cdot 10^{-4} \text{ J}$$

No punto máis baixo a enerxía mecánica é a mesma, e como non hai enerxía potencial, ese será o valor da enerxía cinética. Por tanto, a velocidade valerá:

$$v = \sqrt{\frac{2E_c}{m}} = \sqrt{\frac{2 \cdot 3,45 \cdot 10^{-4} [\text{J}]}{2,00 \cdot 10^{-3} [\text{kg}]}} = 0,587 \text{ m/s}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Péndulo en campo eléctrico

do capítulo

Electromagnetismo Pendulo_Elec

Péndulo en campo eléctrico

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

Os resultados son:

a)	Campo eléctrico	E =	$6,54 \cdot 10^3 \text{ N/C}$
	Diferencia de potencial	ΔV =	785 V
b)	Tensión do fío	T =	0,0277 N
c)	Velocidade máxima	ν =	0,587 m/s

Esferas

- Unha esfera condutora de raio 4 cm ten unha carga de +8 μC en equilibrio electrostático. Calcula canto valen en puntos que distan 0, 2 e 6 cm do centro da esfera:
 - a) O módulo da intensidade do campo electrostático.
 - b) O potencial electrostático.
 - c) Representa as magnitudes anteriores en función da distancia ao centro da esfera.

DATO: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$

(A.B.A.U. Xuño 18)

Rta.: a) $|\overline{E}_1| = |\overline{E}_2| = 0$; $|\overline{E}_3| = 2,00 \cdot 10^7 \text{ N/C}$; b) $V_1 = V_2 = 1,80 \cdot 10^6 \text{ V}$; $V_3 = 1,20 \cdot 10^6 \text{ V}$

Datos		Cifras significativas: 3
Carga da esfera		$Q = 8,00 \ \mu\text{C} = 8,00 \cdot 10^{-6} \ \text{C}$
Radio da esfera		R = 4,00 cm = 0,0400 m
Distancias ao centro da esfera:	punto interior 1	$r_1 = 0 \text{ cm} = 0 \text{ m}$
	punto interior 2	$r_2 = 2,00 \text{ cm} = 0,0200 \text{ m}$
	punto exterior	$r_3 = 6,00 \text{ cm} = 0,0600 \text{ m}$
Constante eléctrica		$K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Incógnitas		
Intensidade do campo electros	tático nos puntos 1, 2 e 3	$\overline{m{E}}_{\!\scriptscriptstyle 1}, \overline{m{E}}_{\!\scriptscriptstyle 2}, \overline{m{E}}_{\!\scriptscriptstyle 3}$
Potencial electrostático nos pu	ntos 1, 2 e 3	V_1, V_2, V_3

Ecuacións

Intensidade do campo electrostático nun punto creado por unha carga pun- $\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ tual Q situada a unha distancia r

Potencial electrostático nun punto creado por unha carga puntual Q situada $V = K \frac{Q}{Q}$ a unha distancia r

Solución:

a) A intensidade de campo electrostático en o puntos 1 e 2, que se atopan no interior a 0 e 2 cm do centro da esfera, é nulo porque o condutor atópase en equilibrio e todas as cargas atópanse na superficie da esfera. A potencial electrostático en o puntos 1 e 2 é o mesmo que na superficie da esfera:

$$V_1 = V_2 = 9,00 \cdot 10^9 \left[\text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{\left(0,0400 \left[\text{m} \right] \right)} = 1,80 \cdot 10^6 \text{ V}$$

b) O módulo da intensidade de campo electrostático no punto 3 a 6 cm do centro da esfera é o mesmo que se a carga fose puntual

$$|\vec{E}_3| = 9,00 \cdot 10^9 [\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}] \frac{8,00 \cdot 10^{-6} [\text{C}]}{(0,0600 [\text{m}])^2} = 2,00 \cdot 10^7 \text{ N/C}$$

A potencial electrostático no punto 3 é o mesmo que se a $\stackrel{\square}{=}$ 15 carga fose puntual

$$V_3 = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0600 \left[\text{m} \right])} = 1,20 \cdot 10^6 \text{ V}$$

c) A gráfica da variación da intensidade do campo electrostático dá un valor 0 para distancias inferiores ao raio da esfera, faise máxima para o raio e diminúe inversamente proporcional ao cadrado da distancia ao centro da esfera.

A gráfica da variación do potencial electrostático da un valor constante para distancias inferiores ao raio da esfera e diminúe inversamente proporcional á distancia ao centro da esfera.

A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

do capítulo

Esferas concéntricas

Electromagnetismo Esferas

Esferas concéntricas

Faga clic nas celas de cor salmón e elixa as opcións como se mostra. Escriba os datos nas celas de cor branca e bordo azul.

ca e sere abeni					
Constante	<i>K</i> =	9,00·10°	$N \cdot m^2/C^2$	$\varepsilon' =$	1
Esfera		Interior	Exterior		
Carga da esfera	<i>Q</i> =		8		μC
Radio da esfera	<i>R</i> =		4		cm
Distancia	<i>r</i> =	0	2	6	cm
ao centro do punto		A	В	С	

Os resultados son:

	Punto	A	В	С
a)	Campo	0	0	2,00·10 ⁷ N/C
b)	Potencial	$1,80 \cdot 10^6$	$1,80 \cdot 10^6$	1,20·10 ⁶ V

Cuestións e problemas das <u>Probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha <u>folla de cálculo</u> de <u>LibreOffice</u> ou <u>OpenOffice</u> do mesmo autor. Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou. A tradución ao/desde o galego realizouse coa axuda de <u>traducindote</u>, de Óscar Hermida López. Procurouse seguir as <u>recomendacións</u> do *Centro Español de Metrología* (CEM) Consultouse o chat de Bing e empregáronse algunhas respostas nas cuestións.

Actualizado: 26/08/23

Sumario

CAMPO ELECTROSTÁTICO

Cargo	as puntuais1
	Dúas cargas eléctricas positivas de 3 nC cada unha están fixas nas posicións (2, 0) e (-2, 0) e unha
	carga negativa de -6 nC está fixa na posición (0, -1). Calcula:1
	a) A enerxía electrostática do conxunto das tres cargas
	b) O vector campo electrostático no punto (0, 1)
	c) A aceleración que experimentaría un protón situado no punto (0, 1)
	d) Colócase un protón no punto (0, 1), inicialmente en repouso e de maneira que é libre de moverse. Razoa se chegará ata a orixe de coordenadas e, en caso afirmativo, calcula a enerxía cinética
	que terá nese punto e a súa velocidade
	e) Calcula o traballo necesario para levar ao protón desde o punto (0, 1) ata a orixe
	f) Indica o signo e o valor da carga que habería que situar no punto (0, 1), en vez do protón, para que o potencial eléctrico na orixe se anulase
	g) Calcula a carga q ₂ que habería que situar no punto (0, 1), en vez do protón, para que a intensida-
	de do campo electrostático na orixe sexa nulade
2	Nos vértices dun triángulo equilátero de 2,00 cm de lado sitúanse dúas cargas puntuais de +3,00 μC
۷.	cada unha. Calcula:
	a) O campo eléctrico nun dos vértices
	b) A forza que actúa sobre a carga situada nese vértice
	c) A carga que habería que colocar no centro do triángulo para que o conxunto quede en equili-
	brio
	d) O potencial electrostático en calquera vértice, tendo en conta a carga no centro
	e) A enerxía potencial electrostática do conxunto das catro cargas
	f) A enerxía posta en xogo para que o triángulo rote 45° arredor dun eixo que pasa polo centro e é
	perpendicular ao plano do papel
	g) O traballo necesario para levar a carga situada no centro ata o punto medio dun lado
	h) Se a masa da carga é de 0,250 g, e sóltase sen velocidade no centro do lado, calcula a súa veloci-
	dade cando pasa polo centro do triángulo
3.	Dúas cargas eléctricas positivas (q_1 e q_2) están separadas unha distancia de 1 m. Entre as dúas hai
	un punto, situado a 20 cm de q_1 , onde o campo eléctrico é nulo. Sabendo que q_1 é igual a 2 μ C, cal-
	cula:13
	a) O valor de q ₂
	b) O potencial no punto no que se anula o campo
	c) O traballo realizado pola forza do campo para levar unha carga de $-3~\mu C$ desde o punto no que se anula o campo ata o infinito
4.	Unha carga puntual Q ocupa a posición (0, 0) do plano XY no baleiro. Nun punto A de o eixe X o
	potencial é $V = -100 \text{ V}$ e o campo eléctrico é $E = -10 \text{ i N/C}$ (coordenadas en metros):
	a) Calcula a posición do punto A e o valor de Q
	b) Determina o traballo necesario para levar un protón desde o punto B(2, 2) ata o punto A
	c) Fai unha representación gráfica aproximada da enerxía potencial do sistema en función da dis-
	tancia entre ambas as cargas. Xustifica a resposta
	bo uniforme17
1.	Dúas láminas condutoras con igual carga e signo contrario están colocadas horizontalmente e se-
	paradas 5 cm. A intensidade do campo eléctrico no seu interior é 2,5·10 5 N·C $^{-1}$. Unha micropinga de
	aceite cuxa masa é 4,90·10 ⁻¹⁴ kg, e con carga negativa, está en equilibrio suspendida nun punto
	equidistante de ambas as placas17
	a) Razoa cal das dúas láminas está cargada positivamente
	b) Determina a carga da micropinga
_	c) Calcula a diferenza de potencial entre as láminas condutoras
2.	Unha esfera pequena, de masa 2 g e carga +3 μ C, colga dun fío de 6 cm de lonxitude entre dúas pla-
	cas metálicas verticais e paralelas separadas entre si unha distancia de 12 cm. As placas posúen car-
	gas iguais pero de signo contrario. Calcula:
	a) O campo eléctrico entre as placas para que o fío forme un ángulo de 45° coa vertical b) A tensión do fío nese momento
	b) A tension do no nese momento

	c) Se as placas se descargan, cal será a velocidade da esfera ao pasar pola vertical?
Esfei	ras20
	Unha esfera condutora de raio 4 cm ten unha carga de +8 μC en equilibrio electrostático. Calcula
	canto valen en puntos que distan 0, 2 e 6 cm do centro da esfera:20
	a) O módulo da intensidade do campo electrostático
	b) O potencial electrostático
	c) Representa as magnitudes anteriores en función da distancia ao centro da esfera