MATS132 Lineaariset Lien ryhmät demo 4 (14.02.2018)

1. Olkoon G matriisiryhmä ja $\alpha: (-\epsilon, \epsilon) \to G$ sekä $\beta: (-\epsilon, \epsilon) \to G$ derivoituvia käyriä. Osoita, että $\alpha\beta: (-\epsilon, \epsilon) \to G$, $(\alpha\beta)(t) = \alpha(t)\beta(t)$ on myös derivoituva käyrä ja

$$\frac{d}{dt}\Big(\alpha(t)\beta(t)\Big) = \alpha'(t)\beta(t) + \alpha(t)\beta'(t).$$

2. Olkoon G matriisiryhmä, $\alpha:(-\epsilon,\epsilon)\to G$ derivoituva käyrä, ja $\alpha^{-1}:(-\epsilon,\epsilon)\to G$ käänteismatriisien käyrä $\alpha^{-1}(t)=\alpha(t)^{-1}$. Osoita, että käänteismatriisien käyrän derivaatta saadaan kaavalla

$$\frac{d}{dt}\left(\alpha(t)^{-1}\right) = -\alpha(t)^{-1}\alpha'(t)\alpha(t)^{-1}.$$

(Huomaa, että α^{-1} :n derivoituvuus seuraa siitä, että käänteismatriisien $\alpha(t)^{-1}$ komponentit ovat rationaalilausekkeita matriisin $\alpha(t)$ alkioista.)

3. Additiivisella ryhmällä $(\mathbb{R}^n, +)$ on matriisiesitys (vertaa demo 1.2.)

$$(\mathbb{R}^n, +) \simeq G = \left\{ \begin{bmatrix} I_n & x \\ 0 & 1 \end{bmatrix} \in GL(n+1, \mathbb{R}) : x \in \mathcal{M}_{n \times 1}(\mathbb{R}) \simeq \mathbb{R}^n \right\},$$

missä I_n on $n \times n$ -identiteettimatriisi. Määritä matriisiryhmän G tangenttiavaruus T_IG ja dimensio.

4. Olkoon V vektoriavaruus ja $L:V\times V\to V$ bilineaarinen kuvaus. Määritellään rekursiivisesti kuvaukset $L_n:V^n\to V$ asettamalla $L=L_2$ ja

$$L_{k+1}(v_1,\ldots,v_{k+1}) = L(v_1,L_k(v_1,\ldots,v_k)), \quad v_1,\ldots,v_{k+1} \in V.$$

Osoita, että jokainen kuvaus L_n , $n \geq 2$ on multilineaarinen.

5. Olkoon $\mathfrak g$ vektoriavaruus varustettuna bilineaarisella ja antikommutatiivisella kuvauksella $[\cdot,\cdot]:\mathfrak g\times\mathfrak g\to\mathfrak g$ ja olkoot $X,Y,Z\in\mathfrak g$ lineaarisesti riippuvia. Osoita, että Jacobin identiteetti pätee näille X,Y,Z, eli että

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

6. Todista Lemma 5.9: Olkoon \mathfrak{g} vektoriavaruus varustettuna bilineaarisella antikommutatiivisella kuvauksella $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$. Olkoon e_1,\ldots,e_n kanta vektoriavaruudelle \mathfrak{g} . Osoita, että jos kaikille $1\leq i< j< k\leq n$

$$[e_i, [e_j, e_k]] + [e_j, [e_k, e_i]] + [e_k, [e_i, e_j]] = 0,$$

niin kaikille $X, Y, Z \in \mathfrak{g}$

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

- 7. Olkoon G abelinen (eli AB=BA kaikille $A,B\in G$) matriisiryhmä ja $\mathfrak g$ sen Lien algebra. Osoita, että [X,Y]=0 kaikille $X,Y\in \mathfrak g$.
- **8.** (a) Olkoon $a \in \mathbb{R}$. Määritä matriisin $\begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R})$ eksponentiaali.
- (b) Osoita, että nämä matriisit muodostavat SO(2):n Lien algebran, eli että

$$\mathfrak{so}(2) = \left\{ \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix} : b \in \mathbb{R} \right\}.$$