M20 Základní síťový hardware

#technicke_vybaveni_pocitacu

- umožňují propojení počítačů, tiskáren, serverů a dalších zařízení do společné sítě; vzájemná komunikace a sdílení zdrojů
- při vybírání je důležité zvážit velikost sítě, potřebná rychlost, technologie zabezpečení a další funkce
- síťové rozhraní
 - v operačním systému síťová karta, WiFi rozhraní nebo virtuální rozhraní
 - přijímá a vysílá v síti data (např. ethernetové packety)
 - síťové rozhraní není: repeater, hub, switche a bridge (nelze přímo jemu poslat nějaká data)
- síť s hvězdicovou topologií
 - každý prvek je připojen pomocí kabelu k hubu
 - mezi dvěma stanicemi existuje jen jedna cesta

- · token ring
 - LAN technologie
 - principem je předávání vysílacího práva pomocí speciálního packetu (tzv. tokenu) mezi adaptéry, zapojenými do logického kruhu (fyzicky je síť v hvězdicovém zapojení)
 - centrální hub slouží pouze jako spoj pro uzly v sousedních ramenech hvězdy
 - původní rychlost byla 4 Mbit/s, později 16 Mbit/s, 100 Mbit/s a 1 Gbit/s

Síťová karta

- zařízení pro propojení počítačů v síti
- může být externí ve formě karty (PCle sběrnice na zk. desce) nebo integrovaná; pro laptopy se dají připojit i přes USB
- každá karta má od výrobce určenou MAC adresu
- obsahuje
 - specializovaný komunikační obvod specializovaný komunikační procesor obsahující vše, co komunikace přes síť vyžaduje
 - ROM paměť (BootROM)
 - paměť má v sobě nahraný program který umožňuje připojení k LAN bez dodatečného komunikačního softwaru
 - umožňuje postavení bezdiskové stanice veškerý software potřebný pro práci stáhne ze serveru
 - napěťový měnič z 5 V na 9 V potřebný pro některé druhy sítí
 - konektor pro připojení síťového kabelu
 - LED diody na indikaci aktivity sítě a přítomnosti signálu v síti
- rozdělení
 - serverové

- víceportové
- zvýšená datová propustnost
- rozšířené možnosti komunikace
- snížené zatížení procesoru
- pro pracovní stanice
- parametry
 - typ média: kroucená dvojlinka, tenký/tlustý koaxiální kabel, bezdrátová komunikace, optické vlákno
 - typ sítě: Ethernet, Fast Ethernet, Arcnet, Token Ring, FDDI
 - rychlost: 4 Mbit/s, 10 Mbit/s, 16 Mbit/s, 100 Mbit/s, 1 Gbit/s

Hub

- větví síť bez jakéhokoliv řízení do hvězdicové topologie (při zkolabování hubu zkolabuje celá síť)
- chová se jako opakovač data, která přijdou na jeden z portů, jsou obnovena a odeslána na všechny ostatní porty; zpoždění
 1 bit
- pracuje na 1. vrstvě OSI modelu
- dnes u starších sítích → nahrazeno switchem
- podle LEDek je možné zjistit vadné spojení
- kvůli schopnosti detekce kolize
 - je počet hubů v síti omezen dle rychlosti
 - 10 Mbit/s 5 segmentů (4 huby) mezi dvěma koncovými stanicemi
 - 10 Mbit/s 3 segmenty (2 huby) mezi dvěma koncovými stanicemi
 - některé huby mají speciální port, který umožňuje jejich slučování, takže se navenek chovají jako jeden

Switch

- propojuje zařízení nebo části jedné sítě hvězdicovou topologií; pracuje pouze v místní síti
- obsahuje menší i větší počet portů
- posílá síťový provoz jen do portů, do kterých je třeba
- způsoby přeposílání packetů
 - store and forward packet z jednoho portu přijme; uloží si jej do <u>bufferu</u>; prozkoumá hlavičky; odešle packet do příslušného portu
 - cut-through switching k analýze hlaviček dochází, když dorazí začátek packetu; jakmile je destinace určena, začne se packet odesílat (nečeká se na celý packet)
 - fragment free přeposlání packetu začne až po přijetí 64 bytů (pro detekci kolize); pro sítě kde je do switche připojen hub
 - adaptive switching automatické přepínání mezi metodami cut-through switching a store and forward
- vrstva
 - základní switche 2. vrstva OSI modelu
 - LAN switche 3. vrstva pokud je rozhodnutí založeno na IP adrese; 4. vrstva pokud je rozhodováno podle IP adresy a síťového portu

Router

- router spojuje dvě sítě a přenáší mezi nimi data
- na třetí vrstvě OSI modelu
- nejčastěji spojován s IP protokolem; lze použít i jiné protokoly
- jako router může být využít jakýkoliv počítač s podporou síťování; v menších sítí se často používají běžné osobní počítače; ve vysokorychlostních sítích se používají vysoce účelové počítače obvykle se speciálním hardwarem
- "jednoruký" router používá jeden port a routuje packety mezi VLAN provozovanými na této zásuvce
- "okrajový" router/ gateway připojuje klienty k vnější síti (většinou Internet)
- "vnitřní" router přenáší data mezi jinými routery

• routovací tabulka - obsahuje nejlepší cesty k jistým cílům

Repeater

- přijímá poškozený signál a zesílený ho vyšle dále
- k zvýšení dosahu média bez ztráty kvality a obsahu signálu
- patří do první vrstvy OSI modelu (pracuje přímo s el. signálem)
- odstraňuje šum tím, že obnoví příchozí signál do původní digitální podoby a poté jej znovu převede do analogové podoby a
 vyšle ve správný čas
- u Ethernetu je jejich počet omezen z důvodu kolizních protokolů
- komunikace
 - bezdrátová
 - repeater se skládá z rádio přijímače, zesilovače, vysílače, izolátoru a dvou antén
 - vysílač generuje signál na odlišné frekvenci od signálu na vstupu; ochrana vstupu od zesíleného signálu; izolátor v tomto případě poskytuje dodatečnou ochranu
 - umisťují se na střechy vysokých budov, vrcholky kopců aj.
 - rádiový signál k oddělení signálu v jejich frekvenčním rozsahu od jednoho přijímače ke druhému

- optická
 - repeater je složen z fotobuňky (přijímač) a LEDky/IREDky (vysílač)
 - signál je převeden na elektronický a po zrestaurování zpět na optický, který je dále vysílán
 - pracují s mnohem menšími výkony, než bezdrátové; mnohem jednodušší a levnější
 - jejich výroba vyžaduje vyšší přesnost a kvalitu; z důvodu minimalizace šumu

Bridge

- spojuje dvě části sítě na druhé vrstvě OSI modelu; pro vyšší vrstvy je most neviditelný
- odděluje provoz různých segmentů sítě a tím zmenšuje její zatížení
- v RAM si sám sestaví tabulku MAC adres a portů
- leží-li příjemce ve stejném segmentu jako odesílatel, most packety do jiných částí sítě neodešle; v opačném případě je odešle do příslušného segmentu v nezměněném stavu (Unicast packety) nebo je propoustí bez omezení (Multicast, Broadcast)
- transparent bridging
 - mosty jsou neviditelné pro koncové stanice
 - zařízení na začátku vůbec neví, jak jsou jednotlivé stanice v síti rozloženy, a musí paket přijatý na jedné síti poslat do
 všech ostatních připojených sítí, protože ještě neví, kde se cílová stanice nachází; postupně se naučí, jak jsou stanice v
 síti rozloženy
- source route bridging
 - ve spojení s tonen ring sítěmi
 - každý packet musí kromě adresy odesílatele a příjemce obsahovat také posloupnost adres všech mostů, kterými musí paket projít
- snižuje velikost kolizní domény
- transparentní k protokolům z vyšších vrstev
- vyšší latence, než opakovače z důvodu čtení MAC adresy; dražší než opakovače

- bridging × routing
 - bridging a routing jsou podobná řízení toku dat, ale pracují pomocí různých metod
 - bridging se provádí na 2. vrstvě; routing na 3. vrstvě
 - most směruje packety podle jejich hardwarové MAC adresy; router se rozhoduje podle IP adresy uvnitř přenášeného datagramu

Kabely

Měděné

- vysoká rychlost a stabilita
- levnější než optika
- obtížněji napadnutelné než bezdrátové sítě
- délka kabelu je omezena (zejména u vyšších rychlostí přenosu)

•

- UTP
 - ze dvou nebo více párů měděných drátů zkroucených dohromady
 - kroucení snižuje elektromagnetické rušení
- STP
 - podobný jako UTP
 - každý pár drátů je navíc chráněn kovovým opletením vyšší úroveň ochrany proti rušení
 - Coaxial centrální vodič obklopený izolací a kovovým opletením

Optické

- vysoká rychlost, dlouhý dosah a odolnost vůči rušení než u mědi
- přenášejí data ve formě světelných impulsů po tenkém skleněném nebo plastovém vlákně
- signál se v optickém vlákně tlumí mnohem méně než v měděném kabelu
- nejsou ovlivněny elektromagnetickým rušením
- vlákna jsou křehká a mohou se snadno poškodit

Konektory

- fyzické propojení jednotlivých zařízení přenosovým médiem (nejčastěji kabel)
- každý typ kabelu vyžaduje specifický typ konektoru
- různé konektory podporují různé rychlosti přenosu dat
- některé prostředí (např. průmysl) vyžadují odolnější typy konektorů
- rozdíl v počtu pinů

Typy

- RJ-45
 - konektor UTP a STP kabelů
 - název vychází z podobnosti s telefonními koncovkami (ty jsou však s moderními počítačovými síťovými kabely nekompatibilní)

Pin	Křížené zapojení (T568A)	Standardní zapojení (T568B)	Označení pinů na konektoru	Křížený gigabit ethernet (T568A)	Standardní gigabit ethernet (T568B)
1	zeleno-bílý	oranžovo-bílý		oranžovo-bílý	zeleno-bílý
2	zelený	oranžový		oranžový	zelený
3	oranžovo- bílý	zeleno-bílý		zeleno-bílý	oranžovo-bílý
4	modrý	modrý		nnědo-bílý	modrý
5	modro-bílý	modro-bílý		hnědý	modro-bílý
6	oranžový	zelený		zelený	oranžový
7	nnědo-bílý	nnědo-bílý		modrý	hnědo-bílý
8	n hedý	nnědý		modro-bílý	hnědý

• SC

- konektor pro optická vlákna
- čtvercový tvar a jednoduchý západkový mechanismus
- [Obrázek SC konektoru]

• ST

- konektor pro optická vlákna
- kulatý tvar a používá bajonetový zámek pro zajištění
- obecně považovány za robustnější než SC konektory

• LC

- nejmenší typ konektorů pro optická vlákna
- západkový mechanismus
- liší se úhlem leštění koncovky optického vlákna

• FC

- konektor pro optická vlákna
- navrženo pro prostředí s vysokými vibracemi
- kabel končí 2,5 mm kováním (Zinek nebo nerez)
- špička je naleštěna do koule

• BNC

- konektor pro koaxiální kabely
- impedance 50 až 75 Ohmů
- pro frekvence do 4 GHz; napětí do 500 voltů