Rapport Hebdo

Viet Anh Quach

3SR

5 septembre 2025

Changer la vitesse

500
400
200
100
0
0
0
0
0
0
0
1 $\frac{v = 1 \times 10^{-3}}{v = 6 \times 10^{-3}} = \frac{v = 5 \times 10^{-3}}{v = 6 \times 10^{-3}} = \frac{v = 5 \times 10^{-3}}{v = 6 \times 10^{-3}} = \frac{v = 6 \times 10^{-3}}{v = 6 \times 10^{-3}}$

Figure 1 – Contrainte - Déformation DEM (changer la vitesse)

Figure 2 – Bruyant concernant pas de temps MPM (avant)

$$\dot{x}(t) = \frac{x(t+\varepsilon) - x(t-\varepsilon)}{2\varepsilon}$$

Problème de arrondir?

Problème d'arrondir (Standard IEEE 754)

- Un type flottant ne représente qu'un nombre limité de chiffres significatifs ; au-delà, la valeur devient inexacte.
- Manipulation délicate à cause des différences entre binaire et décimal.
- Les opérations mathématiques amplifient les erreurs d'arrondi (e.g : + et \times).

```
If the money of the control of the c
```

Figure 3 – La fonction "hold" maintient $\varepsilon = const$ jusqu'à stabilisation de σ

Problème d'arrondir (Standard IEEE 754)

- La comparaison de valeurs flottantes peut poser problème.
- Si les opérandes sont très proches, les opérateurs (surtout = et ! =) deviennent peu fiables.

Revient chez DEM - cellule cube

Problème d'arrondir (Standard IEEE 754)

- The Art of Computer Programming, Volume II: Seminumerical Algorithms (Addison-Wesley, 1969)"
- Toujours contrôler la tolérance d'erreur (ϵ) au lieu de compter sur la "précision absolue" de l'ordinateur.

Code : ajouter tous les parties dynamiques

Figure 6 – Courbe Contrainte ($\sigma_3 = 300kPa$)

- I dans le régime quasi-statique : normal
- $I > 10^{-2}$: calcul erroné
- ⇒ Les résultats varient de manière très sensible avec I

Comparer entre les versions du code

Figure 7 – Courbe Contrainte ($\sigma_3 = 300kPa$)

- 0 terme : $\ddot{s} = h^{-1} \cdot (F/m) \rightarrow$ ancienne version
- 1 terme : $\ddot{s} = h^{-1} \cdot (F/m 2\dot{h}\dot{r}) \rightarrow \text{presque inchangé}$
- 2 termes : $\ddot{s} = h^{-1} \cdot (F/m 2\dot{h}\dot{r} \ddot{h}r) \rightarrow \text{calcul erroné}$

Essayer de changer la masse de la périodic

Figure 8 – Courbe Contrainte ($I = 10^{-2}$)

$$\ddot{h}_{xx} = rac{V_{ ext{cell}} \left(\sigma_{xx} - p
ight)}{h_{xx} \; h_{ ext{mass}}}$$
 $\ddot{h}_{yy} = rac{V_{ ext{cell}} \left(\sigma_{yy} - p
ight)}{h_{yy} \; h_{ ext{mass}}}$

Les résultats varient de manière très sensible avec I

Figure 9 – Recalcul I exact ($\sigma_3 = 300 \text{ kPa}$, R = 0.005 m)

V	1
0.1	4.4×10^{-4}
10	$4.4 imes 10^{-2}$

V	1
0.0227	10^{-4}
2.27	10^{-2}

Table 1 – Calcul précédent approximatif

Les résultats varient de manière très sensible avec I

Figure 10 – Contrainte - Déformation DEM (changer la vitesse)

Figure 11 – Bruyant concernant pas de temps MPM (avant)

 $I = 10^{-2}$ se marche maintenant

Souci concernant demi-vélocité

- Si Δt est très petit et $a(t) \approx a(t + \Delta t)$, on "perd" peut-être la moitié de l'incrément de $v(t + \Delta t)$.
- Pour des essais triaxiaux à chargement rapide, cette différence pourrait devenir critique.
- Lors du calcul des contraintes avec le terme dynamique (mv^2) , l'erreur peut s'amplifier, possiblement proportionnellement au carré de la vitesse.

Formules de référence du Verlet Velocité :

```
Demi-pas vitesse : v(t + 0.5\Delta t) = v(t) + 0.5 \Delta t a(t)
```

Vitesse au pas entier : $v(t + \Delta t) = v(t) + 0.5 \Delta t \left[a(t) + a(t + \Delta t) \right]$

```
The control of the co
```

Hors de sujet

Figure 13 - Cours de master

