Ecostats Homework 4

November 22, 2019

1) Shrub transition martices

(a) Asymptotic growth rate

• The asymptoic growth rate, λ , is 0.94.

(b) Stable age distribution

• The stable age distribution for stages 1-8 are 0.28, 0.03, 0.53, 0.01, 0.06, 0.06, 0.02, and 0.01, respectively.

(c) Stable stage distribution ignoring seeds

• The stable stage distribution for stages 2-8 (ignoring seeds) is 0.09, 0.82, 0.02, 0.04, 0.02, 0.00, and 0.00, respectively.

(d) Increasing matrix elements

• The largest element in the sensitivity matrix is row 5, column 5: 0.35. The new lambda is 1.01, which is an increase of 0.06 from the first lambda in part (a).

(e) Effect of canopy cover

• The elements [4,3] = 0.241; [1,5] = 0.087; [1,4] = 0.084 are the three highest values in the relative contribution to lambda matrix.

(f) part one: LTRE and lambda

• These values are fairly close: the calculated difference between lambda for both transition matrices equals 0.618, while the estimated difference in lambda from the LTRE is 0.560. These values differ by about 0.058.

(f) part two: transition matrix logic

• Well, the matrix as given shows a plant that flowered in 2010 was a seed in 2011 that had to transition to seedling with 0.1 in 2012. So it takes two years.

(g) re-written transition matrix

shrub2

```
## sdl juv pre sm med lg vlg
## 2 0.0 0.00 0.00 0.09 0.23 0.26 0.30
## 3 0.7 0.90 0.17 0.00 0.00 0.00 0.00
## 4 0.0 0.01 0.56 0.00 0.00 0.00 0.00
## 5 0.0 0.00 0.15 0.91 0.00 0.00 0.00
## 6 0.0 0.00 0.00 0.04 0.90 0.03 0.00
## 7 0.0 0.00 0.00 0.00 0.02 0.86 0.01
## 8 0.0 0.00 0.00 0.00 0.00 0.02 0.90
```

(h) lambda with new transition matrix

• The asymptotic growth rate is 0.94 and the stable stage distribution is 0.04, 0.73, 0.02, 0.08, 0.09, 0.02, 0.01. for stages seedling-large adult, respectively.

(i)

```
round(uc-u2, 4)

## [1] 0.0531 0.0954 0.0005 -0.0450 -0.0736 -0.0204 -0.0100

round(l.c-lambda3, 4)
```

[1] 0.0402

• For the method from part (c), the first two stages (seedling and juvenile) have higher relative abundances than the distribution from part (h) by 5% and 9%, respectively. The pre-adult stage is nearly the same in both approaches. All the adult stages have lower relative abundances in part (c) compared to (h), by about 1% to 7%. The population growth rate from part (c) is about 4% larger than in part (h). Since both the stable stage distribution and the population growth rates are roughly similar, this shows that there are many ways to organize a transition matrix and obtain similar estimates. Being thoughtful of the biology and the research question will inform how a transition matrix should be constructed.

2) Shrubs and hurricanes

```
one.a$meanlogl

## [1] 0.05273901

one.a$varlogl

## [1] 0.9732087
```

The population seems to be growing by about 5% annually.

(b) variance of lambda

The variance of the stochastic log lambda is estimated from the data and therefore this is a standard error of the estimate. The standard error concerns variability in an estimator (mean stochastic log lambda) from

sample to sample.

(c) Re-written environmental variability matrix

```
hurricane2
     env1 env2 env3 env4
## 1 0.95 0.95 0.00 0.00
## 2 0.00 0.00 0.95 0.00
## 3 0.00 0.00 0.00 0.95
## 4 0.05 0.05 0.05 0.05
one.c$meanlogl
## [1] 0.0598496
one.c$varlogl
## [1] 0.9734956
(d)
hurricane3
   env1 env2 env3 env4
## 1 0.99 0.99 0.00 0.00
## 2 0.00 0.00 0.99 0.00
## 3 0.00 0.00 0.00 0.99
## 4 0.01 0.01 0.01 0.01
one.d$meanlogl
## [1] -0.02773125
one.d$varlogl
## [1] 0.2906469
(e)
hurricane4
     env1 env2 env3 env4
##
## 1 0.95 0.95 0.00 0.50
## 2 0.00 0.00 0.95 0.45
## 3 0.00 0.00 0.00 0.00
## 4 0.05 0.05 0.05 0.05
one.e$meanlogl
## [1] 0.03430769
one.e$varlogl
## [1] 1.099466
```