BRAID GROUPS, AND THEIR REPRESENTATIONS

Zih-Yu Hsieh Mentor: Choomno Moos University of California Santa Barbara, College of Creative Studies

Introduction

Braid Groups & Mapping Class Groups

Def: Braid group of n strands B_n is generated by n-1 elements $\{\sigma_1, ..., \sigma_{n-1}\}$, satisfying *Braid Relations*:

- $\sigma_i \sigma_j = \sigma_j \sigma_i$, if $|i j| \ge 2$
- $\bullet \, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Def: Let D_n be an n-punctured disk. The *Mapping Class Group* $\mathfrak{M}(D_n)$ collects classes isotopic self-homeomorphisms on D_n that fixes disk boundary ∂D , and sends punctures to punctures.

Ex: The i^{th} Half Twist is a Self-Homeomorphism of D_n , swapping the i^{th} and $(i+1)^{th}$ punctures, while fixing the remaining ones.

Figure: For n=4, Half Twist τ_2 Swapping Punctures 2 and 3

Property: Half Twists $\tau_1, ..., \tau_{n-1}$ generates $\mathfrak{M}(D_n)$ and satisfies Braid Relations; in fact, $B_n \cong \mathfrak{M}(D_n)$, by $\sigma_i \mapsto \tau_i$.

Fundamental Group of \mathcal{D}_n & Braid Automorphism

For n-punctured disk D_n , fix $d \in \partial D$, the fundamental group $\pi_1(D_n,d)$ is generated by the n loops, each surrounding a puncture, which $\pi_1(D_n,d)=F_n(x_1,...,x_n)$, the *Degree-n Free Group*.

Then, each homeomorphism in $\mathfrak{M}(D_n)$ generates a group automorphism on $\pi_1(D_n,d)$, called *Braid Automorphism*.

Ex: Half Twist's action on $\pi_1(D_n, d)$:

$$(\tau_i)_* \in \operatorname{Aut}(\pi_1(D_n, d)), \quad (\tau_i)_*(x_j) = \begin{cases} x_i x_{i+1} x_i^{-1} & j = i \\ x_i & j = i+1 \\ x_i & \text{Otherwise} \end{cases}$$

Figure: τ_2 Action on Loops in D_4

Reduced Burau Representation

 $\psi_n^r: B_n \to \mathrm{GL}_{n-1}(\mathbb{Z}[t^\pm])$ satisfies:

$$\psi_n^r(\sigma_1) = \begin{pmatrix} -t & 0 & 0 \\ 1 & 1 & 0 \\ \hline 0 & 0 & I_{n-3} \end{pmatrix}, \ \psi_n^r(\sigma_{n-1}) = \begin{pmatrix} I_{n-3} & 0 & 0 \\ \hline 0 & 1 & t \\ 0 & 0 & -t \end{pmatrix}$$
$$\psi_n^r(\sigma_i) = \begin{pmatrix} I_{i-2} & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & t & 0 & 0 \\ \hline 0 & 0 & -t & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & I_{n-i-2} \end{pmatrix}$$

Ex: Homological Perspective on D_4

A 4-punctured disk D_4 can "continuously deform" into 4 circles joining at one point $(\bigvee_{i=1}^4 S^1)$, \Longrightarrow Same Fundamental Group.

Figure: Deformation Retraction of D_4 to $\bigvee_{i=1}^4 S^1$

Let $S^{(4)} := \bigvee_{i=1}^4 S^i$, consider the following space $\tilde{S}^{(4)}$:

Figure: Infinite Cyclic Cover $\tilde{S}^{(4)}$

Here, t is a right shift of $\hat{S}^{(n)}$ by degree 1:

- $t^k \cdot \tilde{d} = \mathsf{degree} \; k \; \mathsf{right} \; \mathsf{shift} \; \mathsf{of} \; \tilde{d}$
- $t^k \cdot \hat{x}_i = \text{degree } k \text{ right shift of } \hat{x}_i$

There is a continuous map $p: \tilde{S}^{(4)} \to S^{(4)}$, each $p(t^k \cdot \hat{x}_i) = x_i$, and $p(t^k \cdot \tilde{d}) = d$. Define the "Base Loops" $\ell_i := \hat{x}_{i+1} \cdot \hat{x}_i^{-1}$ (counterclockwise) for $1 \le i \le 3$:

- $-\ell_i$ = counterclockise version of ℓ_i
- $t^k \cdot \ell_i = \text{degree } k \text{ right shift of } \ell_i$

Then, all "Integer Laurent Polynomial" combination of ℓ_i forms $H_1(\tilde{S}^{(4)})$ as a free $\mathbb{Z}[t^{\pm}]$ -module with basis ℓ_1,ℓ_2,ℓ_3 .

Braid Group's Action on Covering Space

Recall: braid automorphism $(\tau_2)_*$ of $\pi_1(D_4,d)$ satisfies $(\tau_2)_*(x_2) = x_2 \cdot x_3 \cdot x_2^{-1}$, and $(\tau_2)_*(x_3) = x_2$. Which, it uniquely lifts to an transformation on the ℓ_i via p:

EX: $\ell_2 = \hat{x}_3 \cdot \hat{x}_2^{-1} \mapsto \hat{x}_2 \cdot \left((t \cdot \hat{x}_2) \cdot (t \cdot \hat{x}_3^{-1}) \cdot \hat{x}_2^{-1} \right) = -t \cdot \ell_2.$

Figure: ℓ_2 (Counterclockwise) Maps to $-t \cdot \ell_2$ (Right Shift by degree 1, Clockwise)

Doing this for each ℓ_i , put into matrix form with basis $\{\ell_i\}$, we recover the Representation.

Conclusion & Future Directions

Acknowledgement & Sources

We're genuinely thankful for the parent donors, Professor Cachadina and Professor Casteels who made this program possible. We also want to thank our mentor Choomno Moos for their great guidance.

- Braids, Links, Mapping Class Groups (Joan Birman)
- Briad Groups (Christian Kassel, Vladimir Turaev)
- Category Theory in Context (Emily Riehl)
- Algebra Chapter 0 (Paolo Aluffi)