FAST School of Computing

Spring-2023

Islamabad Campus

EE-1005:	Digital	Logic
Design		

Serial No:

Sessional Exam-I Total Time: 1 Hour Total Marks: 55

Tuesday,	28^{th}	February,	2023
----------	-----------	-----------	------

Course Instructors

Signature of Invigilator

Dr. Mehwish Hassan, Dr. Niaz Ahmed, Shehzad	
Ahmed, Dr. Muhammad Awais, Nirmal Tariq	

Student Name	Roll No.	Course Section	Student Signature

DO NOT OPEN THE QUESTION BOOK OR START UNTIL INSTRUCTED.

Instructions:

- 1. Attempt on question paper. Attempt all of them. Read the question carefully, understand the question, and then attempt it.
- 2. No additional sheet will be provided for rough work. Use the back of the last page for rough work.
- 3. If you need more space write on the back side of the paper and clearly mark question and part number etc.
- 4. After asked to commence the exam, please verify that you have <u>Nine (9)</u> different printed pages including this title page. There are a total of <u>Four (4)</u> questions.
- 5. Calculator sharing is strictly prohibited.
- 6. Use permanent ink pens only. Any part done using soft pencil will not be marked and cannot be claimed for rechecking.

	Q-1	Q-2	Q-3	Q-4	Total
Marks Obtained					
Total Marks	15	20	10	10	55

FAST School of Computing

Spring-2023

Islamabad Campus

Question 1 [15 Marks]

1. Convert (A0A)₁₆ to octal representation.

[2]

Solution:

$$A0A_{16} = 1010\ 0000\ 1010_2 = 101\ 000\ 001\ 010_2 = 5012_8$$

2. Convert (A0A)₁₆ to decimal representation.

[2]

Solution:

$$A0A_{16} = 10 \rightarrow 16^2 + 0 \rightarrow 16^1 + 10 \rightarrow 16^0 = 2560 + 0 + 10 = 2570_{10}$$

FAST School of Computing

Spring-2023

Islamabad Campus

3.	In a 8-bit two's-complement systematical systems of the system of the systems of the system of the	em, wha	t decimal	number	does the	bit pattern	10000111
	represent?						[3]

Solution:

The number is negative. Its magnitude can be found with two's-complement negation ...

invert bits of number: 0111 1000

add 1: 0111 1001

The magnitude is $2^6 + 2^5 + 2^4 + 2^3 + 2^0 = 64 + 32 + 16 + 8 + 1 = 121_{10}$.

The bit pattern represents the number -121_{10} .

4. One of the following bit patterns is valid BCD (binary-coded decimal), but the other one is not: 100110110100, 100100111000. Which one is not valid? For credit to be given, you must give a correct reason. [1]

Solution:

100110110100 is an invalid code because 4 bit combination 1011 doesn't exist in BCD code.

FAST School of Computing

Spring-2023

Islamabad Campus

5.	What number does the valid bit pattern from part (4) represent? Give your answer	in b	ase
	ten.	[1]	l

Solution: (938)₁₀

6. The ten-bit Gray code for 353₁₀ is 0111010001. Explain briefly but precisely why it cannot possibly be true that 0111010100 is the ten-bit Gray code for 354₁₀. Or calculate gray code for 354₁₀.

Solution:

 $(354)_{10} = 0111010011$

FAST School of Computing

7. Add BCD numbers 256₁₀ and 464₁₀.

Spring-2023

Islamabad Campus

Solution:

[2]

0010 0101 0110

0100 0110 0100 -----0111 1100 1010 0110 0110

0111 0010 0000

Find Subtraction of (402)₈ and (314)₈ using 7's complement method.

[3]

Solution:

Here A = 402, B = 314.

Find A - B = ? using 7's complement

First find 7's complement of B = 314

Note: 7's complement of a number is obtained by subtracting all bits from 777.

7's complement of 314 is

Now Add this 7's complement of B to A

FAST School of Computing

Spring-2023

Islamabad Campus

Question 2 [20 Marks]

1. Write the Canonical / Standard Sum Of Products expression for the given function. [3]

$$F(A, B, C, D) = \prod (0, 3, 4, 5, 9, 11, 14)$$

Solution:

For SOP form the function can be written as:

$$F(A,B,C,D) = \sum (1,2,6,7,8,10,12,13,15)$$

The canonical representation is

$$F = A'B'C'D + A'B'CD' + A'BCD' + A'BCD + AB'C'D' + ABC'D' + ABC'D' + ABC'D + ABCD$$

2. Write the Truth Table for the Function given in part (1).

[3]

Truth Table can be directly written from the minterms or maxterms as given in the function expression.

A	В	С	D	F	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	0	
1	1	1	1	1	

Islamabad Campus

3. Draw the circuit diagram from the Canonical SOP form written in part (1).

[10]

Solution:

[5]

Question 3 [10 Marks]

1. Write the Canonical Sum of Products expression for the given function and reduce it using Boolean Algebra. [5]

$$F(A,B,C) = \sum (0,1,3,4,5,7)$$

Solution:

The canonical expression is

$$F = A'B'C' + A'B'C + A'BC + AB'C' + AB'C + ABC$$

Reduction Steps are:

$$F = A'B'(C' + C) + BC(A' + A) + AB'(C' + C)$$

$$F = A'B' + BC + AB'$$

$$F = B'(A' + A) + BC$$

$$F = B' + BC$$

$$F = B' + C$$

2. Reduce the expression using Karnaugh Map.

 $F(A,B,C) = \sum (0,1,3,4,5,7)$

Solution:

$$F(A,B,C)=B'+C$$

FAST School of Computing

Spring-2023

Islamabad Campus

Question 4 [10 Marks]

1. Use a Karnaugh map to minimize the following function into minimal SOP expression:

$$(\overline{A} + \overline{B} + C + D)(A + \overline{B} + C + D)(A + B + C + \overline{D})(A + B + \overline{C} + \overline{D})(\overline{A} + B + C + \overline{D})(A + B + \overline{C} + D)$$

Solution:

Using a Karnaugh map, convert the following standard POS expression into a minimum POS expression, a standard SOP expression, and a minimum SOP expression.

$$(\overline{A} + \overline{B} + C + D)(A + \overline{B} + C + D)(A + B + C + \overline{D})(A + B + \overline{C} + \overline{D})(\overline{A} + B + C + \overline{D})(A + B + \overline{C} + D)$$

