Lab_10_Holloween

RUNQI ZHANG

Table of contents

```
candy_file <- "candy-data.csv"</pre>
  candy_file
[1] "candy-data.csv"
  candy = read.csv(candy_file, row.names=1)
  head(candy)
             chocolate fruity caramel peanutyalmondy nougat crispedricewafer
100 Grand
                             0
3 Musketeers
                      1
                             0
                                      0
                                                     0
                                                             1
                                                                               0
One dime
                      0
                             0
                                      0
                                                     0
                                                             0
                                                                               0
                      0
                             0
                                      0
                                                     0
                                                             0
One quarter
                                                                               0
Air Heads
                      0
                             1
                                      0
                                                     0
                                                             0
                                                                               0
                      1
                             0
                                      0
                                                     1
                                                                               0
Almond Joy
             hard bar pluribus sugarpercent pricepercent winpercent
100 Grand
                                        0.732
                                                     0.860
                                                              66.97173
3 Musketeers
                              0
                                        0.604
                                                     0.511
                                                              67.60294
One dime
                     0
                              0
                                        0.011
                                                     0.116
                                                              32.26109
One quarter
                0
                    0
                              0
                                        0.011
                                                     0.511
                                                              46.11650
Air Heads
                    0
                              0
                                        0.906
                                                     0.511
                                                              52.34146
                              0
                                        0.465
                                                     0.767
                                                              50.34755
Almond Joy
                   1
```

nrow(candy)

```
[1] 85
```

```
sum(candy$fruity)
```

[1] 38

- Q1. How many different candy types are in this dataset? A: 85
- Q2. How many fruity candy types are in the dataset? A: 38

The functions dim(), nrow(), table() and sum() may be useful for answering the first 2 questions.

```
candy["Twix",]$winpercent

[1] 81.64291

candy["Kit Kat",]$winpercent

[1] 76.7686
```

[1] 49.6535

- Q3. What is your favorite candy in the dataset and what is it's winpercent value? A: my favorite candy is Twix. It has a winpercent value of 81.64
- Q4. What is the winpercent value for "Kit Kat"? A: 76.77

candy["Tootsie Roll Snack Bars",]\$winpercent

• Q5. What is the winpercent value for "Tootsie Roll Snack Bars"? A: 49.65

the skimr::skim() function

```
library("skimr")
skim(candy)
```

Table 1: Data summary

27	
Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom _]	olete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

- Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset? A: The winperent, pricepercent, and sugarpercents look to be on a different scale to the majority of the other columns
- Q7. What do you think a zero and one represent for the candy*chocolatecolumn*? A: Azeroandoneinthecandychocolate column is represent whether or not the corresponding candy contains chocolate.

Hint: look at the "Variable type" print out from the skim() function. Most variables (i.e. columns) are on the zero to one scale but not all. Some columns such as chocolate are exclusively either zero or one values.

• Q8. Plot a histogram of winpercent values > Q8. Plot a histogram of winpercent values

```
library(ggplot2)

ggplot(candy)+
  aes(winpercent)+
  geom_histogram(bins=10)
```


- Q9. Is the distribution of winpercent values symmetrical? A: The distribution is not symmetrical and skewed to the left
- Q10. Is the center of the distribution above or below 50%? A: the center of the distribution (median) is below 50%
- Q11. On average is chocolate candy higher or lower ranked than fruit candy? A: chocolate candy is on average higher ranked than fruit candy
- Q12. Is this difference statistically significant? A: the difference is significant given the p-value = 2.871e-08 from the two sample t-test

```
win_choc <- candy$winpercent[as.logical(candy$chocolate)]
win_fruit <- candy$winpercent[as.logical(candy$fruity)]
mean(win_choc)</pre>
```

[1] 60.92153

```
mean(win_fruit)
[1] 44.11974
```

Welch Two Sample t-test

t.test(win_choc, win_fruit)

```
data: win_choc and win_fruit
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

Hint: The chocolate, fruity, nougat etc. columns indicate if a given candy has this feature (i.e. one if it has nougart, zero if it does not etc.). We can turn these into logical (a.k.a. TRUE/FALSE) values with the as.logical() function. We can then use this logical vector to access the coresponding candy rows (those with TRUE values). For example to get the winpercent values for all nougat containing candy we can use the code: candywinpercent[as.logical(candynougat)]. In addation the functions mean() and t.test() should help you answer the last two questions here.

head(candy[order(candy\$winpercent),], n=5)

	chocolate	fruity	cara	nel :	peanutyalr	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedri	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116

Jawbusters		0	1	0	1	0.093	0.511
	winpercent						
Nik L Nip	22.44534						
Boston Baked Beans	23.41782						
Chiclets	24.52499						
Super Bubble	27.30386						
Jawbusters	28.12744						

tail(candy[order(candy\$winpercent),], n=5)

	chocolate	fruity	caran	nel j	peanutyaln	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
ReeseÕs Miniatures	1	0		0		1	0
ReeseÕs Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
ReeseÕs Miniatures		0	0	0	0		0.034
ReeseÕs Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent wing	percer	nt			
Snickers	0.6	351 76	6.6737	78			
Kit Kat	0.5	511 76	3.7686	30			
Twix	0.9	906 81	1.6429	91			
ReeseÕs Miniatures	0.2	279 81	1.8662	26			
ReeseÕs Peanut Butter cup	0.6	851 84	1.1802	29			

- Q13. What are the five least liked candy types in this set? A: the five least liked candy types are, Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, Jawbusters, from the least likely, respectively.
- Q14. What are the top 5 all time favorite candy types out of this set? A: ReeseÕs Peanut Butter cup, ReeseÕs Miniatures, Twix, Kit Kat, Snickers, from the most liked, respectively.

Hint: Using base R we could use head(candy[order(candy\$winpercent),], n=5), whilst using dplyr we have: candy %>% arrange(winpercent) %>% head(5). Which apprach do you prefer and why?

• Q15. Make a first barplot of candy ranking based on winpercent values.

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill=my_cols)
```


Now, for the first time, using this plot we can answer questions like: * Q17. What is the worst ranked chocolate candy? A: sixlets

• Q18. What is the best ranked fruity candy? A: Starburst

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

- Q19. Which candy type is the highest ranked in terms of winpercent for the least money i.e. offers the most bang for your buck? A: Reese miniatures offers the most band for your buck!
- Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular? A: The top 5 most expensive candy types are Nik L Nip, Nestle Smarties, Ring pop, Hershey's Kracker, and Hershey's Milk Chocolate. Nik L Nip is the least popular among those.

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

Q21.

library(corrplot)

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


- Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? A: Chocolate and fruity are anti-correlated, fruity is with anti-correlated to bar and to peanutyalmondy
- Q23. Similarly, what two variables are most positively correlated? A: Chocolate shows strong correlations to Bar and Winpercent, and is moderately correlated to pricepercent

HINT: Do you like chocolaty fruity candies?

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                 PC4
                                                        PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
Cumulative Proportion
                           PC8
                                   PC9
                                          PC10
                                                   PC11
                                                           PC12
                       0.74530 0.67824 0.62349 0.43974 0.39760
Standard deviation
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```


plot(pca\$x[,1:2], col=my_cols, pch=16)

Warning: ggrepel: 60 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

alternatively

```
#library(plotly)
#ggplotly(p)
```

pca\$rotation

	PC1	PC2	PC3	PC4	PC5
chocolate	-0.4019466	0.21404160	-0.01601358	0.016673032	-0.066035846
fruity	0.3683883	-0.18304666	0.13765612	0.004479829	-0.143535325
caramel	-0.2299709	-0.40349894	0.13294166	0.024889542	0.507301501
peanutyalmondy	-0.2407155	0.22446919	-0.18272802	-0.466784287	-0.399930245
nougat	-0.2268102	-0.47016599	-0.33970244	-0.299581403	0.188852418
crispedricewafer	-0.2215182	0.09719527	0.36485542	0.605594730	-0.034652316
hard	0.2111587	-0.43262603	0.20295368	0.032249660	-0.574557816
bar	-0.3947433	-0.22255618	-0.10696092	0.186914549	-0.077794806
pluribus	0.2600041	0.36920922	0.26813772	-0.287246604	0.392796479
sugarpercent	-0.1083088	-0.23647379	0.65509692	-0.433896248	-0.007469103
pricepercent	-0.3207361	0.05883628	0.33048843	-0.063557149	-0.043358887
winpercent	-0.3298035	0.21115347	0.13531766	-0.117930997	-0.168755073
	PC6	PC7	7 PC8	PC9	PC10

```
chocolate
                   0.09018950 \quad 0.08360642 \ -0.49084856 \quad 0.151651568 \quad 0.107661356
                   0.04266105 \; \hbox{--}0.46147889 \quad 0.39805802 \quad 0.001248306 \quad 0.362062502
fruity
caramel
                   0.40346502 \quad 0.44274741 \quad 0.26963447 \quad -0.019186442 \quad 0.229799010
peanutyalmondy
                   0.09416259 \quad 0.25710489 \quad 0.45771445 \quad -0.381068550 \quad -0.145912362
                  -0.09012643 -0.36663902 -0.18793955 -0.385278987
nougat
                                                                       0.011323453
crispedricewafer 0.09007640 -0.13077042 0.13567736 -0.511634999 -0.264810144
hard
                   0.12767365 0.31933477 -0.38881683 -0.258154433 0.220779142
bar
                  -0.25307332 -0.24192992 -0.02982691 -0.091872886 -0.003232321
pluribus
                  -0.03184932 -0.04066352 -0.28652547 -0.529954405 0.199303452
sugarpercent
                  -0.02737834 -0.14721840 -0.04114076 0.217685759 -0.488103337
                  -0.62908570 0.14308215 0.16722078 0.048991557 0.507716043
pricepercent
winpercent
                   0.56947283 - 0.40260385 - 0.02936405 0.124440117 0.358431235
                         PC11
                                      PC12
chocolate
                  -0.10045278 -0.69784924
fruity
                  -0.17494902 -0.50624242
caramel
                  -0.13515820 -0.07548984
peanutyalmondy
                  -0.11244275 -0.12972756
                   0.38954473 -0.09223698
nougat
crispedricewafer 0.22615618 -0.11727369
hard
                  -0.01342330 0.10430092
bar
                  -0.74956878 0.22010569
                  -0.27971527 0.06169246
pluribus
sugarpercent
                  -0.05373286 -0.04733985
pricepercent
                   0.26396582 0.06698291
winpercent
                   0.11251626 0.37693153
  par(mar=c(8,4,2,2))
  barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


- ** How to read this plot The PC1 contribution shows the linkage between PC1 and the provided variables. Use the plot for example, as we move further on the direction of PC1, we will find more fruitiness.
 - Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you? A: Fruity, hard, and pluribus are strongly picked up by PC1 in the postive direction. It does make sense because most fruity candies are hard and come in pluribus.

HINT. pluribus means the candy comes in a bag or box of multiple candies.