- 1. (a) Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$.
 - (b) Let θ be a root of p(x). Find the (multiplicative) inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.
- 2. (a) Show that $q(x) = x^3 2x 2$ is irreducible in $\mathbb{Q}[x]$.
 - (b) Let θ be a root of q(x). Compute each of the following in $\mathbb{Q}(\theta)$ (simplify answers):
 - (i) $(1 + \theta)(1 + \theta + \theta^2)$, and
 - (ii) $\frac{1+\theta}{1+\theta+\theta^2}.$
- 3. Determine with justification the degree over $\mathbb Q$ of the following:
 - (a) $2 + \sqrt{3}$, and
 - (b) $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 4. Let $F = \mathbb{Q}(i)$. Prove that the following are both irreducible in F[x]:
 - (a) $x^3 2$, and
 - (b) $x^3 3$.
- 5. Determine the degree of the extension $\mathbb{Q}(\sqrt{3+2\sqrt{2}})$ over \mathbb{Q} .
- 6. Let $\sqrt{3+4i}$ denote the square root of the complex number 3+4i that lies in the first quadrant and let $\sqrt{3-4i}$ denote the square root of 3-4i that lies in the fourth quadrant. Prove that $\left[\mathbb{Q}(\sqrt{3+4i}+\sqrt{3-4i}):\mathbb{Q}\right]=1$.
- 7. Prove that if F is any field and $[F(\alpha):F]$ is odd then $F(\alpha)=F(\alpha^2)$.
- 8. Let K/F be an algebraic extension and let R be a ring contained in K and containing F. Prove that R is a field.