

3. Gate-Level Minimization

3.1 Introduction

- The complexity of digital logic gates that implement a Boolean function
 - directly related to the function <u>expression</u>
- So, we want to find the <u>simplest</u> possible expres sion of a given function
- Method based on Truth Table
 - K-map (Karnaugh map)

3.2 The Map Method

Two-Variable Map

Fig. 3-1 Two-variable Map

 \bullet m1+m2+m3 = x'y +xy' +xy = x +y

Fig. 3-2 Representation of Functions in the Map

Three-Variable Map (Careful! bit sequence is Gray-coded – adjacent entries differ by only one bit)

(a)

FIGURE 3.3

Three-variable K-map

3.2 The Map Method

• Ex 3-1) Simplify the Boolean function, $F(x, y, z) = \Sigma(2, 3, 4, 5)$

$$F = x'y + xy'$$

Fig. 3-4 Map for Example 3-1; $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

- Ex 3-4) Given Boolean function, F = A'C + A'B +AB'C +BC
 - a) express it in sum of minterms

$$F(x, y, z) = \Sigma(1, 2, 3, 5, 7)$$

b) find the minimal sum of products

$$F = C + A'B$$

Fig. 3-7 Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B

- 1. Find the largest possible rectangle size 1,2,4,8,16
- 2. Find the expressions to represent the outputs of the rectangle

3.2 The Map Method

• Simplify the Boolean function, $F(x, y, z) = \Sigma(0,2,4,5,6)$

$$F = z' + xy'$$

Simplify

$$F(x, y, z) = \Sigma(3, 4, 6, 7)$$

$$F = yz + xz'$$

Note:
$$y'z' + yz' = z'$$

Note:
$$xy'z' + xyz' = xz'$$

3.3 Four-Variable Map

m_0	m_1	m_3	m_2	
m_4	m_5	m_7	m_6	
m_{12}	m_{13}	m ₁₅	m_{14}	
m_8	m_9	m_{11}	m_{10}	
(a)				

		yz			y	
1	vx\	0.0	01	11	10	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
	11	wxy'z'	wxy'z	wxyz	wxyz'	
w ·	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	´
	•		, (1	z o)	,	

Fig. 3-8 Four-variable Map

Ex 3-5) Simplify the Boolean function,

$$F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

$$F = y' + w'z' + xz'$$

Fig. 3-9 Map for Example 3-5; F(w, x, y, z)= Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'

• $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

- Prime implicant: the largest rectangles, can be of size 1,2,4,8 or 16.
- Essential prime implicant: prime implicant which contains a square which is s not covered by other implicants

• $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

- There are 5 prime implicants
- there are 2 essential prime implicants

• $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

Fig. 3-11 Simplification Using Prime Implicants

Procedure:

- 1. Find essential prime implicants, and derive corresponding minterms
- 2. Find other prime implicants which contain uncovered squares in Step
- 1, and derive minterms

• $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

(a) Essential prime implicants BD and B'D'

(b) Prime implicants CD, B'C AD, and AB'

Fig. 3-11 Simplification Using Prime Implicants

3.4 Five-Variable Map (NOT COVERED)

Fig. 3-12 Five-variable Map

Table 3-1The Relationship Between the Number of Adjacent Squares and the Number of Literals In the Term

	Number of Adjacent Squares	Number of Literals in a Term in an <i>n</i> -variable Map				
K	2^k	n = 2	n = 3	n = 4	n = 5	
0	1	2	3	4	5	
1	2	1	2	3	4	
2	4	0	1	2	3	
3	8		0	1	2	
4	16			0	1	
5	32				0	

3.4 Five-Variable Map (NOT COVERED)

• Ex 3-7) Simplify the Boolean function, $F(A,B,C,D,E)=\Sigma(0,2,4,6,9,13,21,23,25,29,31)$

Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE

3.5 Product of Sums Simplification

• Ex 3-8) Simplify the Boolean function, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 7, 9, 10)$

a) sum of products

$$F = B'D' + B'D' + A'C'D'$$

b) product of sum

$$F = (A' + B')(C' + D')(B' + D)$$
 (deMorgan's law)

Fig. 3-14 Map for Example 3-8; $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$ = B'D' + B'C' + A'C'D = (A' + B')(C' + D')(B' + D)

(a)
$$F = B'D' + B'C' + A'C'D$$

(b)
$$F = (A' + B') (C' + D') (B' + D)$$

Fig. 3-15 Gate Implementation of the Function of Example 3-8

3.5 Product of Sums Simplification

Table 3-2 *Truth Table of Function F*

X	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0
	NAME OF TAXABLE PARTY OF TAXABLE PARTY.		

Fig. 3-16 Map for the Function of Table 3-2

•
$$F(x, y, z) = \Sigma(1, 3, 4, 6) = \Pi(0, 2, 5, 7)$$

 $F = x'z + xz'$
 $F' = xz + x'z'$
 $F = (x'+z)(x + z')$

3.6 Don't-Care Conditions (NOT COVERED)

• Ex 3-9) Simplify the Boolean function, $F(w, x, y, z) = \Sigma(1,3,7,11,15)$ Don't-care conditions, $d(w, x, y, z) = \Sigma(0, 2, 5)$

Fig. 3-17 Example with don't-care Conditions

$$F(w, x, y, z) = yz + w'x' = \Sigma(0, 1, .2, 3, 7, 11, 15)$$

 $F(w, x, y, z) = yz + w'z = \Sigma(1, 3, 5, 7, 11, 15)$

10

X

0

0

0

3.7 NAND and NOR Implementation - NAND Circuit

Fig. 3-18 Logic Operations with NAND Gates

Fig. 3-19 Two Graphic Symbols for NAND Gate

3.7 NAND and NOR Implementation - Two Level Implementation

• F = ((AB)'(CD)')' = AB + CD

Fig. 3-20 Three Ways to Implement F = AB + CD

Ex 3-10) Implement the following Boolean function with NAND gates:

$$F(x, y, z) = \Sigma(1, 2, 3, 4, 5, 7) = xy' + x'y + z$$

Fig. 3-21 Solution to Example 3-10

3.7 NAND and NOR Implementation - Multilevel NAND Circuit

Fig. 3-22 Implementing F = A(CD + B) + BC

(a) NAND gates

3.7 NAND and NOR Implementation – NOR Implementation

NOR Implementation

Fig. 3-24 Logic Operations with NOR Gates

(a) OR-invert
$$x \longrightarrow x'y'z' = (x + y + z)'$$

(a) Invert-AND

Fig. 3-25 Two Graphic Symbols for NOR Gate

$\mathbf{F} = (\mathbf{A}\mathbf{B}' + \mathbf{A}'\mathbf{B})(\mathbf{C} + \mathbf{D}')$

Fig. 3-27 Implementing F = (AB' + A'B)(C + D') with NOR Gates

• (a)
$$F = (AB)' \cdot (CD)' = (AB + CD)'$$

$$\circ$$
 (b) F = (A + B)' + (C + D)' = [(A + B)(C + D)]'

TTL NAND gates.
(AND-OR-INVERT)

(b) Wired-OR in ECL gates

(OR-AND-INVERT)

AND-OR-Invert Circuits

$$-F = (AB + CD + E)$$

OR-AND-Invert Circuits

$$-F = [(A + B)(C + D)E]$$

Table 3.3 *Implementation with Other Two-Level Forms*

Equivalent Nondegenerate Form		Implements	Simplify F'	To Get
(a)	(b)*	the Function	into	an Output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR–OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and	
			then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

3.9 Exclusive-OR Function

○
$$x_{\oplus} y = xy' + x'y$$

 $(x_{\oplus} y)' = (xy' + x'y)' = xy + x'y'$
 $x_{\oplus} 0 = x$ $x_{\oplus} 1 = x'$
 $x_{\oplus} x = 0$ $x_{\oplus} x' = 1$
 $x_{\oplus} y' = x'_{\oplus} y = (x_{\oplus} y)'$
○ $A_{\oplus} B = B_{\oplus} A$

 $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

Fig. 3-32 Exclusive-OR Implementations

3.9 Exclusive-OR Function

Odd / Even Function

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

3.9 Exclusive-OR Function - Parity Generation and Checking

Parity Generation and Checking

Table 3-4 *Even-Parity-Generator Truth Table*

Three-Bit Message		Parity Bit	
х	у	Z	P
0	0	0	0
()	()	1	1
()	1	0	1
()	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$\mathbf{P} = \mathbf{x} \oplus \mathbf{y} \oplus \mathbf{z}$$

(a) 3-bit even parity generator

Table 3-5
Even-Parity-Checker Truth Table

Four Bits Received			Parity Error Check	
Х	y	Z	P	С
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	,1	1	0	1
1	1	1	1	0

(a) 4-bit even parity checker

