Quiz 3 Recap

- Main effects vs. interaction effects
 - Main: One IV on its own effects DV
 - Interaction: 2 (or more) IVs effect DV together
- Quiz gave a graph of effect of sex and time of testing on test scores, and asked you to identify the effects shown
- The possible effects:
 - Main Effect: Sex
 - Main Effect: Time of Testing
 - Interaction Effect: Sex AND Time of Testing

Possible Effects (2 lvs)

Possible Effects Cont'd

Main Effect of Sex NO Main Effect of Time of Testing Interaction Effect Total Effects: 2

NO Main Effect of Sex NO Main Effect of Time of Testing Interaction Effect Total Effects: 1

Time of Testing

Correlational Studies

- Find relationship between 2 variables
 - Pearson's r for quantitative data
 - -1 for strong negative correlation
 - 1 for strong positive correlation
 - 0 for no correlation
 - Spearman's rho for qualitative data
- Predict data with best fit line using linear regression
 - Given x, predict y

Correlation Strength

- Strong Positive: r is close to 1
- Weak Positive: r is close to 0.5
- No Correlation: r is close to 0
- Weak Negative: r is close to -0.5
- Strong Negative: r is close to -1

Correlations with >2 Variables

- Multiple correlation
 - Multiple correlation coefficient (values between 0 and 1)
- Multiple regression
 - Prediction of y from multiple x $(x_1, x_2, ... x_n)$
 - Best fit plane/hyperplane
 - Relative importance of certain factors is hard to visualize in space higher than 2D

Multivariable Correlation

We have a scatterplot of data points that look like this:

The best fit plane is this:

But how do we tell how strongly x_1 and x_2 predict y? Let's look at the 2D correlations.

The data points projected onto the x_1 -y axis looks like this:

It looks like x₁ perfectly predicts y! How does x₂ perform?

x2 does not predict y at all!

Sometimes it can be helpful to look at 2D correlations individually (much more visualizable than ND)

Exercise 5

- A researcher is interested in the relationship between stress and severity of cold symptoms.
 Volunteers are exposed to a cold virus and also indicate the amount of stress they have been feeling over the last week on a 10-point scale.
 Four days later, the participants indicate on a 10point scale the severity of cold symptoms they are experiencing.
 - If the researcher finds a correlation of .85, how would she describe the relationship?
 - Indicate a correlation coefficient r that would be interpreted as a weak negative relationship.
 - What statistical technique would be used to predict cold symptom severity?

Natural Settings

- Types:
 - Observational Research Designs
 - Field Experiments
- Useful starting points
- Might be the only way to study a certain phenomenon
 - e.g., kestrel
- High ecological validity!

Observational Designs

- Naturalistic Observation
 - Researcher does not interfere with the environment
- Participant Observation
 - Researcher is part of the group of participants

Naturalistic Observation

- Researchers unobtrusively observe the phenomenon in its natural setting
 - Don't change anything in environment
 - Being aware of the researchers can change behavior
- When focused on specific behaviors and settings, this is called systematic naturalistic observation
- When observations made overtly:
 - Desensitization: researcher gradually moves closer until no behavior change
 - Habituation: researcher appears in setting many times until their presence no longer affects behavior

Participant Observation

- Researcher actively participates in the situation
 - Undisguised vs. disguised
- Researcher must be aware of personal biases
 - Try to hone in on specific behavior to avoid outside biases

Undisguised Participant Observation

- Researcher informs participants of his/her identity and observes the group, interacting from time to time
- Fun example: Ed Hutchins (Cog Sci professor) frequently does undisguised participant observation to study things like:
 - Naval ship navigation
 - Social interactions between commercial airline pilots
 - Abstract reasoning in Trobriand Islanders

Disguised Participant Observation

- People being observed are unaware of the researcher's true identity
- Usually done to avoid people changing their behavior because they are aware of the experiment
 - this is especially true in cases where people are sharing sensitive information
- Ethical problem: cannot get informed consent beforehand

Concept Question 10.1

- A researcher is interested in the treatment of the elderly people in our society. Discuss how each type of observational study might work:
 - Naturalistic Observation
 - Undisguised Participant Observation
 - Disguised Participant Observation

Problems with Observation

- Usually can't establish causal relationships
- Two types of confounds:
 - Observer influence
 - Biased observations

Observer Influence

- Hawthorne Effect
 - Participants change their behavior because they're in an experiment
- Reactivity
 - Participants' behavior is different because they are aware they're being observed
 - Minimized via desensitization and habituation
- How to avoid?
 - Have some level of deception in the study
 - Use disguised participant observation

Observer Bias

- Expectancy effects
 - Preferences affect observations (confirmation bias)
 - Have to very specifically operationalize every single behavior
 - E.g., what is aggressive behavior? If you have a bias, may consider more things as aggressive behavior
 - Use naïve observers

Biased vs. Unbiased Coding

Biased Observer

Time	Aggressive Behavior	
0:00	0	
0:15	0	
0:30 (rocks taken away)	1	
0:45	3	
1:00	6	
1:15	9	
1:30	10	

Unbiased Observer

Time	Aggressive Behavior	
0:00	0	
0:15	0	
0:30 (rocks taken away)	1	
0:45	2	
1:00	4	
1:15	5	
1:30	5	

Observer Bias Cont'd

- Using recording devices can help
 - Have multiple naïve people code videos/ recordings independently for extra safety!
 - E.g., Prof. Deák's work here at UCSD (mom & baby shared attention)

Example Coding

 Coders watch video and judge whether a baby is looking at its toy or at its mother (or neither) at different time points

	Looking at toy	Looking at mom
0:05	1	0
0:10	0	1
0:15	0	0
0:20	0	1

Drawbacks to Recordings

- A lot of information is lost
- Audio recording of speech will lose visual context
- Audiovisual recording will lose what's happening in the periphery

Field Experiments

- Controlled study that takes place in a natural setting
- Researcher manipulates IV and measures effect on a DV
- Tons of ecological validity!
- Internal validity
 - Same confounds possible as in lab experiments and issues w/ having less control, extraneous variables, etc.

How to Choose a Design?

- Ecological Validity
 - observation > field exp. > lab
- Control
 - lab > field exp. > observation
- Other considerations
 - Time
 - Resources/money
 - Logistics
 - Ethical issues

Data Collection

- What phenomenon will be observed, and how?
 - Keep in mind the characteristics of good measurement (reliability, validity, sensitivity, objectivity)
- Reliability
 - Interobserver reliability
 - Based on percentage agreement/disagreement

Interobserver Reliability

- Two observers collect data for a specific behavior. They make 350 observations, and disagree on 28.
 - Interobserver reliability = 92%
 - In general, over 90% is good, but should be adjusted for individual experiments (e.g., the standard should be higher if the behavior being coded is relatively unambiguous)