73. comparación del rendimiento de los sistemas intormáticos

3.1 875 × 1012 instrucciones Pixie
$$\int_{F=2.5 \text{ GHz}}^{CPI=1.4}$$
Dixic $\int_{F=3.8 \text{ GHz}}^{CPI=2.1}$

$$T_{ej} = \frac{10str. \times CPI}{F}$$

$$Pixie = \frac{875 \times 10^{12} \times 1.4}{2.5 \times 10^{9}} = 490000 \le$$

Dixie =
$$\frac{815 \times 10^{12} \times 2.1}{3.8 \times 10^9}$$
 = 483552,63165

			*	The internal for the
3,2	Prog.	Tis)	Instr (x10°)	T(5): 68 + 132 + 113 + 49 + 120 = 512/1
10	asterik	68	125	The second secon
	obelix	132	340	Instr (100): 125+340+
	Panoramix	113	227	227 + 154 + 328 =
. 0 (idefix	79	154	1174×104
	abraraurax	120	328	ara t
	1 0004)	

1. HIPS :
$$HIPS = \frac{Instr.}{IIIT \times 10^6} = \frac{II74 \times 10^6}{512 \times 10^6} = 2,28515625$$

Ha 238'0 For 22

operation	cantidad (x109)	op. normalitadas
add.s, sub.s	456	1 /
div.s, mul.s	0 V E	3
Sqrt. s	180	12
99r1. d	OF	15
Log. d	30	18

inflops? d'HFLOPS normalitados?

HFLOPS rormalizados:

$$\frac{(2 \times 0.6 + 5 \times 0.4) \times 32 \times 10^{9}}{32 \times 10^{9}} = 3.2$$

$$F \Rightarrow Tei = \frac{N^{\circ} \text{ instr. } \times CPI}{F}$$

$$F = 120 \times 32 \times 16^{\circ} \times 3.2 \quad \neg F = 2.288 \times 10^{9} \quad 0.853 \text{ GHz}$$

12.288 GHz

cuestion 3.13

Programa	BALLENATO		CACHALOTE		Bulne
desci frator	Р		12		
morsecoder	3	- 14	a	MIN 1	11111
caesariulius	8	69 I, I	5	() j	ets referen
alberti code	5	4	6		

a) Informe sobre el rendimiento de los 2 computadores:

• BALLENATO: 9+3+8+5 = 25 } tardan la misma en ejecutar • CACHALOTE: 12+2+6+5 = 25 | Hodos las programas

- podrían tener rendimientos equivalentes.

Al ser carga real se evalva haciendo la media aritmética de los tiempos o el tiempo total de ejecución (WAW).

b) d El informe sugiera la compra de BALLENATO?

Hacer una evaluación ponderada en la que los pesos de los programas en los que BALLENATO es más rápido sea mayor. (descitrator sobretodo y podría hacerse también con albarticade).

Ei.

Programa	Peso	Jarahon par constitution of the	
descifr.	0'5	en it count to make it	1 1 1
morsede.	0'1		
eaesari.	0,1		
albertic.	0'3		

Programa	Α	В	C,
mafalda	185	164	126
felipe	161	163	143
miguelito	182	110	295

No sabemos
si es
carga
idéntica
o similar

1 WAW: suponemos cargas identicas.

$$T_{TOT. EJ.} = A \rightarrow 185 + 161 + 182 = 528$$

$$B \rightarrow 164 + 163 + 110 = 437$$

$$C \rightarrow 126 + 143 + 295 = 564$$

y c es la más rapida
y c es la más lenta.

@ suponemos cargas similares (asignamos pesos)

Programa	Peso
maraida	016
felipe	0,3
miguelito	0'1

3 También podriamos normalizar respecto, a una que consideremas referencia y hacer la media geométrica.

Programa	T. original	T. mejorado
P1	500	250 Julian
P2	50	50
Р3	200	50
PY	1000	1250
P5	250	200 """

a) Aceleración global x T. ejecución.

T. orig =
$$500 + 50 + 200 + 1000 + 250 = 2000$$

b) Ac. de cada programa independientemente:

clicon que media se obtiene la aceleración global a partir de las individuales?

si para ponderar usamos el T. mejorado, este está en el denominador podemos usar la media aritmética ponderada.

$$A = \sum_{i=1}^{5} A_{pi} \times W_{pi} = 2 \times \frac{250}{1800} + 1 \times \frac{50}{1800} + 4 \times \frac{50}{1800} + 0^{1} 8 \times \frac{1250}{1800} + \frac{1125}{1800} \times \frac{200}{1800} = 11$$

Si queremos ponderar según el tiempo original, que está en el numerador, entonces tenemos que usar la media armónica ponderada:

$$A = \frac{5}{\sum_{i=1}^{5} \frac{W_{Pi}}{A_{Pi}}} = \frac{500}{2000} + \frac{50}{2000} + \frac{200}{2000} + \frac{200}{2000} + \frac{1}{2000}$$

$$\frac{1}{2000} = \frac{1}{2000} = \frac{1}{2000}$$

westion 3.10

puración = 1055 mal sono interestrollar por

HOUIPS - mejora de la calidad x segundo

Tiempo (s)	QUIPS (×104)
15	I so money
45 (11) (11)	in soloo (
30	2.5
10	5 (18.1 office
5	That A M only I a

si ponderamos

según el tiempo que

es la unica unidad

que tenemos, sabemas

que está en el

denominador x la que

toca media aritmética

ponderada.

$$T_{QUIPS} = 50^{\circ} + 100^{\circ} + 25 + 65 + 1 = 101$$

$$T_{E} = 15 + 45 + 30 + 10 + 5 = 105$$

$$50 \times \frac{15}{105} + 100 \times 45 / 105$$

$$= 51^{\circ} 66$$

The first and th

to one other set is afternoon consist to assess to treat and one of any

*