Recitation 1: Logic & Basic Proofs

1 Truth tables and equivalences

Decide if the following statements are equivalent. You can use truth tables or logical basic identities.

- a) $p \to q$ vs. $\neg p \lor q$.
- b) $p \wedge (q \vee r)$ vs. $(p \wedge q) \vee (p \wedge r)$.
- c) $p \leftrightarrow q$ vs. $(p \land q) \lor (\neg p \land \neg q)$.
- d) $\neg (p \land q)$ vs. $\neg p \lor \neg q$.
- e) $(p \to r) \land (q \to r)$ vs. $(p \lor q) \to r$.

Decide whether each is a tautology / contradiction / contingent:

- f) $(p \to q) \lor (q \to p)$
- g) $(p \land (p \rightarrow q)) \rightarrow q$
- h) $(p \leftrightarrow q) \leftrightarrow (\neg p \leftrightarrow \neg q)$

Prove using equivalence laws (no truth tables):

- i) $p \to (q \to r) \equiv (p \land q) \to r$.
- $\mathbf{j}) \ (p \to q) \wedge (p \to r) \ \equiv \ p \to (q \wedge r).$

2 From English to Logic

Convert the following sentences to propositional logic.

- a) "Alice will meet Bob unless Bob is seeing Claire."
- b) "You cannot access the dataset if you lack credentials unless the PI has approved you."
- c) "The server restarts iff the watchdog fails or the temperature exceeds the threshold, but not both."
- d) "If the model overfits, then either the dataset is too small or the regularizer is disabled."

3 Inference rules & short derivations

- a) From $A \vee B$, $\neg A \rightarrow C$, $\neg B \rightarrow C$, is C entailed?
- b) Show: from $p \to (q \lor r)$ and $\neg q$ infer $p \to r$.

4 Basic Proofs

Here $a \mod b = c$ is the same as $a \equiv c \mod b$.

- 1. Show: If $a \mid b$ and $a \mid c$ then $a \mid (mb + nc)$ for any $m, n \in \mathbb{Z}$.
- 2. Show that $a^2 \mod 4 = 0$ or $a^2 \mod 4 = 1$ for all $a \in \mathbb{Z}$.
- 3. Show: For all $x, y \in \mathbb{Z}$, if $x \equiv y \pmod{m}$ then $x^2 \equiv y^2 \mod{m}$.
- 4. Prove the triangle inequality. That is, show that for all $x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$.