

Feuille n°4: Variable Complexe

Exercice 1:

On pose $f(z) = \frac{e^{i\theta z}}{z^2 + 1}$ et $\varphi(z) = \frac{\pi e^{-i\pi z}}{\sin \pi z}$, et on applique le théorème des résidus à la fonction $f\varphi$ sur le cercle C_n introduit en cours. Les résidus de cette fonction sont :

$$resf\varphi(k) = f(k) \quad k \in \mathbb{Z}$$

$$resf\varphi(i) = \frac{\pi e^{-\theta}}{e^{-2\pi} - 1}$$

$$resf\varphi(-i) = \frac{\pi e^{\theta}}{1 - e^{2\pi}}$$

Lorsque l'intégrale sur le cercle tend vers 0 lorsque n tend vers ∞ , on obtient

$$\sum_{n=1}^{+\infty} \frac{\cos\left(n\theta\right)}{n^2 + 1} = -\frac{1}{2} + \frac{\pi ch\left(\theta - \pi\right)}{2sh\pi}$$

En étudiant l'intégrale sur C_n , on montre que les deuxièmes lemmes de Jordan s'appliquent si $0 < \theta < 2\pi$.

Exercice 2:

1)

$$\frac{\cos z}{\sin z} = \frac{1}{z} - \frac{z}{3} + o(z)$$

2) En posant $g(z) = \frac{f(z)}{z-u}$, on montre que

$$resg(u) = f(u)$$

$$resg(k\pi) = \frac{1}{k\pi - u}$$

et donc

$$I_n(u) = \sum_{k=1}^n \frac{2u}{k^2 \pi^2 - u^2} + f(u)$$

De la même façon, on obtient $I_n(0) = 0$ (ce qui correspond d'ailleurs à ce qu'on obtient en faisant un passage à la limite dans l'expression précédente). En admettant que $|f(z)| \leq M, \forall z \in C_n$, on a en posant $z = r_n e^{i\theta} = \left(n + \frac{1}{2}\right) \pi e^{i\theta}$:

$$|J_n(u)| \le \frac{|u|M}{2\pi} \int_0^{2\pi} \frac{d\theta}{|r_n e^{i\theta} - u|} \le \frac{|u|M}{2\pi} \int_0^{2\pi} \frac{d\theta}{|r_n - u|} \le \frac{|u|M}{|r_n - u|}$$

et donc $\lim_{n\to\infty} J_n(u) = 0$, d'où le résultat recherché :

$$f(u) = \frac{\cos u}{\sin u} - \frac{1}{u} = \sum_{k=1}^{\infty} \frac{2u}{u^2 - k^2 \pi^2}$$

3) On sait que

$$\frac{\theta'(z)}{\theta(z)} = \frac{d\log\theta(z)}{dz}$$

donc

$$\frac{\theta'(z)}{\theta(z)} = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{2z}{z^2 - k^2} = \pi \cot(\pi z)$$

Si deux fonctions θ et ψ sont holomorphes sur un domaine Ω vérifiant $\frac{\theta'(z)}{\theta(z)} = \frac{\psi'(z)}{\psi(z)}$ pour tout $z \in \mathbb{C}$ tel que $\theta(z) \neq 0$ et $\psi(z) \neq 0$, alors

$$\left[\frac{\theta(z)}{\psi(z)}\right]' = \frac{\theta'\psi - \theta\psi'}{\psi^2} = \frac{\theta}{\psi} \left[\frac{\theta'}{\theta} - \frac{\psi'}{\psi}\right] = 0$$

Donc $\frac{\theta(z)}{\psi(z)}$ est une constante c'est-à-dire $\theta(z) = c\psi(z)$. On remarque alors qu'avec $\psi(z) = \sin(\pi z)$, on a

$$\frac{\psi'(z)}{\psi(z)} = \pi \cot(\pi z)$$

et donc

$$\frac{\psi'(z)}{\psi(z)} = \frac{\theta'(z)}{\theta(z)}$$

En utilisant le résultat précédent, on obtient

$$\psi(z) = \sin(\pi z) = cz \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$$

Pour déterminer la constante c, il suffit d'écrire le résultat précédent sous la forme

$$\frac{\sin(\pi z)}{\pi z} = \frac{c}{\pi} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

et de faire un passage à la limite $z \to 0$, ce qui donne :

$$1 = \frac{c}{\pi} \Leftrightarrow c = \pi$$