

Further feature measurement and output (non-CAD)

© 2013 Renishaw plc. All rights reserved.

Renishaw® is a registered trademark of Renishaw plc.

This document may not be copied or reproduced in whole or in part, or transferred to any other media or language, by any means, without the prior written permission of Renishaw.

The publication of material within this document does not imply freedom from the patent rights of Renishaw plc.

Disclaimer

Considerable effort has been made to ensure that the contents of this document are free from inaccuracies and omissions. However, Renishaw makes no warranties with respect to the contents of this document and specifically disclaims any implied warranties. Renishaw reserves the right to make changes to this document and to the product described herein without obligation to notify any person of such changes.

Trademarks

All brand names and product names used in this document are trade names, service marks, trademarks, or registered trademarks of their respective owners.

Renishaw part no: H-1000-5321-01-A

Issued: 12 2013

Further feature measurement and output (non-CAD)

Care of equipment

Renishaw probes and associated systems are precision tools used for obtaining precise measurements and must therefore be treated with care.

Changes to Renishaw products

Renishaw reserves the right to improve, change or modify its hardware or software without incurring any obligations to make changes to Renishaw equipment previously sold.

Warranty

Renishaw plc warrants its equipment for a limited period (as set out in our Standard Terms and Conditions of Sale) provided that it is installed exactly as defined in associated Renishaw documentation.

Prior consent must be obtained from Renishaw if non-Renishaw equipment (e.g. interfaces and/or cabling) is to be used or substituted. Failure to comply with this will invalidate the Renishaw warranty.

Claims under warranty must be made from authorised service centres only, which may be advised by the supplier or distributor.

Trademarks

Windows 98, Windows XP, Windows 2000 and Windows NT are registered tradenames of the Microsoft Corporation.

IBM is the tradename of the International Business Machines Inc

All trademarks and tradenames are acknowledged.

Contents

1	Further feature measurement and output (non-CAD)6						
	1.1	Tutorial pre-requisites	6				
	1.2	Tutorial objectives	6				
2	Introd	duction	7				
3	Apply	tolerance functions to measured features	8				
4	Outp	ut of measured results1	1				
5	Generation of report from feature grid15						
6	Work	ing in polar co-ordinates1	7				
7	Outp	ut of measured results in polar co-ordinates1	9				

1 Further feature measurement and output (CAD)

1.1 Tutorial pre-requisites

• The student should have completed, and have a sound knowledge of all 'Alignment' tutorials and 'Further CNC measurement function' tutorials

1.2 Tutorial objectives

- Further exposure to feature measurement using data obtained from drawing definition
- Introduction to the tolerancing and output of measured results
- Introduction to the creation of simple reports
- Introduction to the use of polar co-ordinates for both measurement and output

2 Introduction

This tutorial will further develop feature measurement skills as well introducing the student to the tolerancing and output of measured results. Additionally, the student will be introduced to the concept of defining feature position by using radial and angular parameters which are particularly useful when features have rotational symmetry about a datum.

3 Apply tolerance functions to measured features

Use 'Plane', 'Line', 'Point' program to generate the alignment. Move / translate origins from position A to Position B.

Enter the drawing values:

Now measure some points, add tolerances to them and then output the measured results.

NOTE: The program will NOT show any new code at this point.

Move the probe to the right hand face of block using an 'Absolute' GOTO move:

Click: 'Inspect' then select 'Point'. Input nominal data for point to be measured as shown below:

Click: 'Add Touches' then click 'Apply' to complete the measurement process.

Now move the probe to the left hand face of the block using an 'Absolute' GOTO move:

Click: 'Inspect' then select 'Point'. Input nominal data for point to be measured as shown below:

Click: 'Add Touches' then click 'Apply' to complete the measurement process.

4 Output of measured results

After selecting the measured feature(s) to output click 'New'.

Input all details as required including axis then click 'OK' to continue. For further info: Press F1.

Tolerances applied in grid and output window:

DMIS code generated for program working in Cartesian:

```
DMISMM/'Start Template', 05.2
DU(0)=DMESWU/'15,1,1,514'
UNITS/MM,ANGDEC
DECPL/ALL,DEFALT
U(0)=UFORM/ALL,PLOT
DISPLY/TERM,U(0),STOR,DMIS,U(0)
SNSET/APPRCH,5
SNSET/CLRSRF,15
SNSET/DEPTH,0
D(0)=DATSET/MCS
MODE/MAN
ICORROL,XAXIS,-
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
              MODE/MAN
T(CORTOL_X1)=TOL/CORTOL,XAXIS,-0.1,0.1
T(CORTOL_Y1)=TOL/CORTOL,YAXIS,-0.1,0.1
T(CORTOL_Z1)=TOL/CORTOL,ZAXIS,-0.1,0.1
T(DIAM_1)=TOL/DIAM,-0.1,0.1
000013
000014
000015
000015
000017
000018
000019
               RECALL/SA(nick_1.1.20.2.A0.0-B0.0)
SNSLCT/SA(nick_1.1.20.2.A0.0-B0.0)
000020
000021 MODE/PROG,MAN
000022
000023
000024
               GOTO/CART,0,0,100
               F(X_PLUS_POINT)=FEAT/POINT,CART,62.5,0,-5,1,0,0
MEAS/POINT,F(X_PLUS_POINT),1
PTMEAS/CART,62.5,0,-5,1,0,0
000025
000026
000027
000028
               ENDMES
000029
000030
000031
               GOTO/CART,70,0,10
               T(X_POINT_TOL)=TOL/CORTOL,XAXIS,-0.05,0.1
OUTPUT/FA(X_PLUS_POINT),TA(X_POINT_TOL)
000032
000033
000034
000035
               GOTO/CART.-70.0.10
              F(X_NEG_POINT)=FEAT/POINT,CART,-62.5,0,-5,-1,0,0
MEAS/POINT,F(X_NEG_POINT),1
PTMEAS/CART,-62.5,0,-5,-1,0,0
ENDMES
000036
000037
000038
000039
000040
000041
000046
000047
000048
              PAUSE
Endfil
```

Below is an example of the automated report generated in MODUS:

REPORT IN RTF FORMAT

05-Jan-2011	14:14		Start Template				Page 1	
(mm)	ACTUAL	NOMINAL	LO-TOL	HI-TOL	DEVIATION	GRAPHIC	ERROR	
Datum Diamet								
Diameter	79.996	80.000	-0.025	+0.025	-0.004	*		
8 Holes Equi	02							
XY-radius XY-angle	34.551	34.500	-0.100 -0.500	+0.100		+-*-		
Circle: PCD00 XY-radius XY-angle	34.520 45.006	34.500 45.000	-0.100 -0.500	+0.100		+*		
Circle:PCD00 XY-radius XY-angle	34.507 89.896	34.500 90.000	-0.100 -0.500	+0.100		*		
Circle: PCD00 XY-radius XY-angle	34.364 135.079	34.500 135.000	-0.100 -0.500	+0.100 +0.500		<+	-0.036	
Circle:PCD00 XY-radius XY-angle	34.558 -180.105	34.500 -180.000	-0.100 -0.500	+0.100 +0.500		+-*-		
Circle:PCD00 XY-radius XY-angle	34.439 -135.084	34.500 -135.000	-0.100 -0.500	+0.100 +0.500		-*-+ *+		
Circle:PCD00 XY-radius XY-angle	34.448 -89.890	34.500 -90.000	-0.100 -0.500	+0.100 +0.500		-*-+ +*		
Circle:PCD00 XY-radius XY-angle	34.527 -45.052	34.500 -45.000	-0.100 -0.500	+0.100	0.027 -0.052	+*		
PCD of 8 Hol		we To Datu	m Diameter					
X-axis Y-axis Diameter	0.041 0.001 68.979	0.000 0.000 69.000	-0.050 -0.050 -0.025	+0.050 +0.050 +0.025	0.041 0.001 -0.021	+-*- * *+		
Duration 10 secs FAIL in:19 out:1 End of Report								

5 Generation of report from feature grid

Prerequisite: A measured feature must be present in the program which has had tolerances applied.

When the report button is available, start 'MODUS reporter' directly from the grid window and display a form plot report appropriate for the feature selected in the grid window.

The report button is available for the following features and form tolerance types:

- Plane and flatness
- Line and straightness
- Circle and circularity
- Circle and circular runout
- Surface finish
- Airfoil

Use the report properties window to view and edit the properties of the selected area of the report.

Select the 'Form Plot' by clicking on it in the report page.

Report properties Mapplication properties

Error magnification has been used as an example. Adjust as required. After properties have been amended press 'F5' to view all amendments made.

For further details on report properties refer to the 'Reporter' help (F1) or subsequent tutorial.

To print report, click print icon and follow on screen instructions

6 Working in polar co-ordinates

In some cases when a part is measured, the output dimensions are required in the polar format. This enables angular and radial positions of a feature with respect to the current datum system instead of the default Cartesian (X and Y etc.).

Remember: Angles are struck from the major axis of the working plane.

In this part of the tutorial the eight holes shown below will be measured, and then output their position as a polar radius and polar angle..

Prior to measuring the holes carry out a precise alignment of the component as described in previous tutorials.

NOTE: The program will NOT show any new code at this point.

Move the probe to a position over circle PCD002 and make an 'Absolute' GOTO:

000033 > GOTO/POL,34.5,45,5

The GOTO statements are now in polar.

The format is 'Radius', 'Angle', 'Height'. Angles will be expressed between 0 to 180 / 0 to -180.

Measure the final seven holes as normal giving each of them a label (PCD002 to PCD008).

Insert GOTO moves to clear the part.

The program code should look something like this:-

GOTO/POL,34.5,-45,5

\$\$<MEAS_CIRCLE name = "PCD008">

F(PCD008)=FEAT/CIRCLE,INNER,POL,34.5,-45,-10,0,0,1,7

MEAS/CIRCLE,F(PCD008),4

PTMEAS/POL,34.449,-50.819,-12.092,0.752,0.659,0

PTMEAS/POL,36.364,-49.793,-11.308,0.263,0.965,0

PTMEAS/POL,37.909,-46.258,-11.444,-0.519,0.855,0

PTMEAS/POL,37.981,-44.427,-13.791,-0.78,0.626,0

ENDMES

\$\$<\MEAS_CIRCLE = PCD008>

GOTO/POL,34.5,-45,5

After the program has finished the following information should be seen:

7 Output of measured results in polar co-ordinates

At this point MODUS writes the following code to the program:

T(P_Ang)=TOL/CORTOL,ANGLE,-0.05,0.05

Now MODUS writes ALL the previously selected features along with the associated tolerances to the program and also populates the output window with the results:

Renishaw plc

New Mills, Wotton-under-Edge, Gloucestershire, GL12 8JR United Kingdom T +44 (0)1453 524524 F +44 (0)1453 524901 E uk@renishaw.com www.renishaw.com

For worldwide contact details, please visit our main web site at www.renishaw.com/contact

H-1000-5321-01