

Simulation and Scientific Computing 2

Assignment 3: Interpolation between Unstructured Grids

Benjamin Mann Chair for System Simulation, Friedrich-Alexander University of Erlangen-Nuremberg June 9, 2022

Outline

Motivation

Grids

Uniform structured grid Unstructured grid

Interpolation between grids

Structured to unstructured grid Unstructured to structured grid Unstructured to unstructured grid

- To use experimental data as initial condition, comparison or for boundary conditions.
 - Eg: Comparison between wind tunnel results and numerical simulation [1].

- To use experimental data as initial condition, comparison or for boundary conditions.
 - Eg: Comparison between wind tunnel results and numerical simulation [1].
- To restart simulation from a stored state with different grids.

- To use experimental data as initial condition, comparison or for boundary conditions.
 - Eg: Comparison between wind tunnel results and numerical simulation [1].
- To restart simulation from a stored state with different grids.
- To compare simulation results from different simulations, which uses different grids or methods.
 - Eg: To solve fluid-structure interface problem [1].

- To use experimental data as initial condition, comparison or for boundary conditions.
 - Eg: Comparison between wind tunnel results and numerical simulation [1].
- To restart simulation from a stored state with different grids.
- To compare simulation results from different simulations, which uses different grids or methods.
 - Eg: To solve fluid-structure interface problem [1].
- To combine different discretization techniques

Figure: Numerical simulation of aircraft [2]

Figure: Wind tunnel testing of aircraft [3]

Grids

Grid definition

• $\Omega_h = \{(ih, jh) + (x_0, y_0) | i, j = 0, \dots, n\}$

Grid definition

- $\Omega_h = \{(ih, jh) + (x_0, y_0) | i, j = 0, \dots, n\}$
- · Values are stored at nodes.
- From here on (x_0, y_0) will be considered to be origin.

Interpolation procedure for a point

Interpolation procedure for a point

Let us consider a random point $P(x,y)\in\Omega_h$. Then to interpolate

1. Find the containing cell

Interpolation procedure for a point

- 1. Find the containing cell
 - No search is required to find the cell containing the point ${\cal P}(x,y)$

$$\frac{\left(\frac{x}{h}, \frac{y}{h} + 1\right) \quad \left(\frac{x}{h} + 1, \frac{y}{h} + 1\right)}{\left(\frac{x}{h}, \frac{y}{h}\right) \quad \left(\frac{x}{h} + 1, \frac{y}{h}\right)}$$

Interpolation procedure for a point

2. Apply suitable interpolation.

Interpolation procedure for a point

- 2. Apply suitable interpolation.
 - Nearest neighbor.
 - Bi-linear Interpolation.

Interpolation procedure for a point

- 2. Apply suitable interpolation.
 - Nearest neighbor.
 - Bi-linear Interpolation.

$$\lambda_1 = \frac{A(P, C_3)}{A(C_1, C_3)} \quad \lambda_2 = \frac{A(P, C_4)}{A(C_1, C_3)} \quad \lambda_3 = \frac{A(P, C_1)}{A(C_1, C_3)} \quad \lambda_4 = \frac{A(P, C_2)}{A(C_1, C_3)}$$

Interpolation procedure for a point

- 2. Apply suitable interpolation.
 - Nearest neighbor.
 - Bi-linear Interpolation.

$$\lambda_1 = \frac{A(P, C_3)}{A(C_1, C_3)} \quad \lambda_2 = \frac{A(P, C_4)}{A(C_1, C_3)} \quad \lambda_3 = \frac{A(P, C_1)}{A(C_1, C_3)} \quad \lambda_4 = \frac{A(P, C_2)}{A(C_1, C_3)}$$

 $V(P) = \sum_{i=1}^4 V(C_i) * \lambda_i \quad \text{, where V is value at corresponding point/node.}$

Grid definition

• $\Omega_u = \bigcup_i T_i$

Grid definition

- $\Omega_u = \bigcup_i T_i$
- It consist of array of points and an array of triangles.
- · Values are stored at nodes.

Interpolation procedure for a point

Let us consider a random point $P(x,y)\in\Omega_u$. Then to interpolate

1. Find the containing triangle

Interpolation procedure for a point

- 1. Find the containing triangle
 - \bullet Loop over all triangles and check whether P is contained inside

Interpolation procedure for a point

- 1. Find the containing triangle
 - ullet Loop over all triangles and check whether P is contained inside
 - To check use barycentric coordinates

Interpolation procedure for a point

- 1. Find the containing triangle
 - ullet Loop over all triangles and check whether P is contained inside
 - To check use barycentric coordinates

$$\lambda_1 = \frac{A(P, C_2, C_3)}{A(C_1, C_2, C_3)}$$

$$\lambda_2 = \frac{A(P, C_3, C_1)}{A(C_1, C_2, C_3)}$$

$$\lambda_3 = \frac{A(P, C_1, C_2)}{A(C_1, C_2, C_3)}$$

$$\sum_{i=1}^{3} \lambda_i = 1$$

Interpolation procedure for a point

- 1. Find the containing triangle
 - ullet Loop over all triangles and check whether P is contained inside
 - To check use barycentric coordinates
 - The point P(x,y) is contained if and only if $\lambda_i\geqslant 0\ \forall\ i$

Interpolation procedure for a point

- 1. Find the containing triangle
 - ullet Loop over all triangles and check whether P is contained inside
 - To check use barycentric coordinates
 - The point P(x,y) is contained if and only if $\lambda_i \geqslant 0 \ \forall \ i$
- 2. Apply suitable interpolation.

Interpolation procedure for a point

Let us consider a random point $P(x,y) \in \Omega_u$. Then to interpolate

- Find the containing triangle
 - Loop over all triangles and check whether P is contained inside
 - To check use barycentric coordinates
 - The point P(x,y) is contained if and only if $\lambda_i\geqslant 0\ \forall\ i$
- 2. Apply suitable interpolation.
 - Linear interpolation using barycentric coordinates:

$$V(P) = \sum_{i=1}^{3} V(C_i) * \lambda_i$$

ullet where V is value at corresponding point/node.

Interpolation from structured to unstructured grid

1. Loop over all the nodes of unstructured grid.

Interpolation from structured to unstructured grid

- Loop over all the nodes of unstructured grid.
 - And for every node/point perform interpolation of point as discussed in structured grid.

Interpolation from structured to unstructured grid

- 1. Loop over all the nodes of unstructured grid.
 - And for every node/point perform interpolation of point as discussed in structured grid.
- 2. This algorithm is quite fast with ${\cal O}(N)$.
 - $\bullet \ \ N \ \mbox{is number of nodes in unstructured grid}.$

Interpolation from unstructured to structured grid

- 1. Loop over all the triangles of unstructured grid (Ω_u) .
 - $\bullet \ \ {\rm And \ for \ each \ triangle} \ T \ {\rm form \ a \ bounding \ box} \ Q.$

Interpolation from unstructured to structured grid

- 1. Loop over all the triangles of unstructured grid (Ω_u) .
 - $\bullet \ \ {\rm And} \ {\rm for} \ {\rm each} \ {\rm triangle} \ T \ {\rm form} \ {\rm a} \ {\rm bounding} \ {\rm box} \ Q.$

Interpolation from unstructured to structured grid

- 1. Loop over all the triangles of unstructured grid (Ω_u) .
 - $\bullet \ \ {\rm And \ for \ each \ triangle} \ T \ {\rm form \ a \ bounding \ box} \ Q.$

• Loop over grid points $P\in\Omega_h\cap Q$, interpolate if $P\in T$ as discussed in unstructured grid

Interpolation from unstructured to structured grid

- 1. Loop over all the triangles of unstructured grid (Ω_u) .
 - ullet And for each triangle T form a bounding box Q.

- Loop over grid points $P\in\Omega_h\cap Q$, interpolate if $P\in T$ as discussed in unstructured grid
- 2. This algorithm is fast with O(N).
 - N is number of nodes in structured grid.

Interpolation from one unstructured to another unstructured grid

1. Construct a structured grid Ω_h such that both unstructured grids lie within the bounds of Ω_h and mesh width pprox mesh width of input unstructured grid (Ω_{u1})

- 1. Construct a structured grid Ω_h such that both unstructured grids lie within the bounds of Ω_h and mesh width pprox mesh width of input unstructured grid (Ω_{u1})
- 2. Store all triangles in the input mesh that intersect with a cell $C\in\Omega_h$ in a list:
 - For each triangle $T \in \Omega_{u1}$ (input grid):
 - Find all $C \in \Omega_h$ where $C \cap T \neq \emptyset$, e.g., by using the bounding box of T.

- 1. Construct a structured grid Ω_h such that both unstructured grids lie within the bounds of Ω_h and mesh width pprox mesh width of input unstructured grid (Ω_{u1})
- 2. Store all triangles in the input mesh that intersect with a cell $C\in\Omega_h$ in a list:
 - For each triangle $T \in \Omega_{u1}$ (input grid):
 - Find all $C \in \Omega_h$ where $C \cap T \neq \emptyset$, e.g., by using the bounding box of T.
 - $\bullet \ \ \mathsf{Add} \ T \ \mathsf{to} \ \mathsf{the} \ \mathsf{lists} \ \mathsf{corresponding} \ \mathsf{to} \ \mathsf{those} \ \mathsf{cells} \ C$

- 1. Construct a structured grid Ω_h such that both unstructured grids lie within the bounds of Ω_h and mesh width pprox mesh width of input unstructured grid (Ω_{u1})
- 2. Store all triangles in the input mesh that intersect with a cell $C\in\Omega_h$ in a list:
 - For each triangle $T \in \Omega_{u1}$ (input grid):
 - Find all $C \in \Omega_h$ where $C \cap T \neq \emptyset$, e.g., by using the bounding box of T.
 - Add T to the lists corresponding to those cells ${\cal C}$
- 3. For every vertex $P \in (\Omega_{u2})$ (output grid):
 - Find the cell $C \in \Omega_h$ that contains P.

- 1. Construct a structured grid Ω_h such that both unstructured grids lie within the bounds of Ω_h and mesh width pprox mesh width of input unstructured grid (Ω_{u1})
- 2. Store all triangles in the input mesh that intersect with a cell $C\in\Omega_h$ in a list:
 - For each triangle $T \in \Omega_{u1}$ (input grid):
 - Find all $C \in \Omega_h$ where $C \cap T \neq \emptyset$, e.g., by using the bounding box of T.
 - Add T to the lists corresponding to those cells ${\cal C}$
- 3. For every vertex $P \in (\Omega_{u2})$ (output grid):
 - Find the cell $C \in \Omega_h$ that contains P.
 - Find the triangle $T \in \Omega_{u1}$ where $P \in T$ in the list of triangles intersecting with C.

- 1. Construct a structured grid Ω_h such that both unstructured grids lie within the bounds of Ω_h and mesh width pprox mesh width of input unstructured grid (Ω_{u1})
- 2. Store all triangles in the input mesh that intersect with a cell $C\in\Omega_h$ in a list:
 - For each triangle $T \in \Omega_{u1}$ (input grid):
 - Find all $C \in \Omega_h$ where $C \cap T \neq \emptyset$, e.g., by using the bounding box of T.
 - Add T to the lists corresponding to those cells ${\cal C}$
- 3. For every vertex $P \in (\Omega_{u2})$ (output grid):
 - Find the cell $C \in \Omega_h$ that contains P.
 - Find the triangle $T \in \Omega_{u1}$ where $P \in T$ in the list of triangles intersecting with C.
 - ullet Perform the interpolation from T to P as discussed in unstructured grid.

- 1. Construct a structured grid Ω_h such that both unstructured grids lie within the bounds of Ω_h and mesh width pprox mesh width of input unstructured grid (Ω_{u1})
- 2. Store all triangles in the input mesh that intersect with a cell $C\in\Omega_h$ in a list:
 - For each triangle $T \in \Omega_{u1}$ (input grid):
 - Find all $C \in \Omega_h$ where $C \cap T \neq \emptyset$, e.g., by using the bounding box of T.
 - ullet Add T to the lists corresponding to those cells C
- 3. For every vertex $P \in (\Omega_{u2})$ (output grid):
 - Find the cell $C \in \Omega_h$ that contains P.
 - Find the triangle $T \in \Omega_{u1}$ where $P \in T$ in the list of triangles intersecting with C.
 - ullet Perform the interpolation from T to P as discussed in unstructured grid.
- 4. This algorithm has the complexity O(NM).
 - N is number of nodes in unstructured grid Ω_{u2} .
 - M is number of triangles stored in a cell.

Take a look at assignment sheet.

How to use paraview ?

Thanks for listening.

Any questions?

References

References I

- [1] E. Rank, A. Halfmann, D. Scholz, et al., Wind loads on lightweight structures: Numerical simulation and wind tunnel tests. Germany: WILEY-VCH, 2004.
- [2] https://www.bionicsurface.com/wpcontent/uploads/2016/01/Boeing777_pressure_01.png.
- [3] http://www.boeingimages.com/archive/777-Wind-Tunnel-Testing-at-QinetiQ-2F3XC50ETU4.html.