

Introduction to data structures and algorithm

Hyerim Bae

Department of Industrial Engineering, Pusan National University ${\bf hrbae@pusan.ac.kr}$

블록체인은 어떻게 구현되어 있을까요?

• 블록과 체인

Source: https://steemkr.com/kr/@tintom/2fqvq8

Transactions Hashed in a Merkle Tree

Source: https://needjarvis.tistory.com/634

Data and information

- Data
 - Set of values that are obtained by observation, measuring
 - Expression about facts or concept
 - Numeric, Characters
- Information
 - Assignments of meaning to data
 - Knowledge about decision

Data structure

- Definition
 - Data representation
 - Relation among data items
 - Sometimes it means 'Algorithm'
- Data type
 - Numerical
 - Decimal
 - Unpacked decimal
 - Packed decimal
 - Binary
 - Integer
 - Float
 - Non-numerical
 - Character
 - BCD
 - EBCDIC
 - ASCII
 - Logical
 - Pointer

- Types of Data structure
 - Linear
 - 배열, 벡터, 리스트, 스택, 큐
 - Non-linear
 - 트리
 - 그래프
 - File structure
 - 순차파일
 - 색인파일
 - 직접파일

Contacts

lifeplanet (위라이프플레닝 연공지축보함(변용급리) 지금부터 준비하면

2017년 연말정산 실패는 없닭! (관련 세법 요건 충족 시)

주식 갤러리

Directory

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$$

Math

- Selecting data structure
 - Amount of data
 - Frequency of using data
 - Characteristics of data (Dynamic, or static?)
 - Capacity of memory
 - Access time
 - Easy of programming

Algorithm

- 5 elements of algorithm
 - Input
 - Output
 - Definiteness
 - Finiteness, Terminate
 - Effectiveness
- Languages for algorithm
 - Natural language
 - Flow chart
 - Pseudo Code *
 - Programming language
 - Low level language: Assembler, machine language
 - High level language: Interpreter, Compiler

알고리즘(Algorithm)

- 알고리즘이란 문제를 해결하기 위하여 특정한 형태의 입력(input)을 가지고 원하는 결과(output)을 얻어낼 수 있는 잘 정의된(well-defined) 절차
- 우리 생활에서 발견할 수 있는 알고리즘

요리 레시피

제품 조립설명

프로그램(Program)

- 알고리즘이란
 문제를 해결하기 위하여 특정한 형태의 입력(input)을 가지고 원하는 결과 (output)을 얻어낼 수 있는 <u>잘 정의된(well-defined)</u> 절차
- 프로그램(Program) 알고리즘에 정의된 절차를 컴퓨터로 하여금 수행하도록 하기 위해 기 술한 지시문

알고리즘의 구조

알고리즘을 구성하는 세가지 구조 알고리즘에 사용되는 절차는 세 가지 구조의 조합으로 구성되어 있다.

결국 알고리즘은

- 복잡한 일도 작은 단위로 쪼개면 단순한 작업들의 흐름이 된다.
- 알고리즘은 순차+선택+반복을 조합하여 선택과 반복
- 복잡한 흐름은 순차적으로만은 표현할 수 없다.

Algorithm

- Languages for algorithm
 - Natural language
 - Flow chart
 - Pseudo Code *
 - Programming language
 - Low level language: Assembler, machine language
 - High level language: Interpreter, Compiler

알고리즘의 체계적 표현법 - 순서도

- 알고리즘에 사용되는 처리와 절차를 도형 기호를 사용해 시각적으로 표현
- 직관적이고 표현이 쉽지만, 복잡한 경우 오히려 알고리즘의 이해를 방해

순서도 예시

• 주어진 5개의 수에서 최대값을 찾는 알고리즘

알고리즘의 체계적 표현법 - 유사코드

- 자연어보다는 구조적이지만, 실제 프로그래밍 언어보다는 덜 구체적인 표현방법
- 알고리즘의 핵심적 내용에 집중하고, 프로그램을 구현할 때 여러가지 문제들을 감출 수 있음.
- 예시: 유사코드의 작동원리

Pseudocode (§3.2)

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
Output ...
```

Method call

var.method (arg

• Return value return expression

- Expressions
 - ← Assignment (like = in Java)
 - = Equality testing
 (like == in Java)
 - Superscripts and other mathematical formatting allowed
- Array indexing
 - A[i] represents the *i*-th cell in the array
 - The cells of an n-celled array
 A are indexed from A[0] to
 A[n-1]

유사코드 예시

Algorithm arrayMax(A, n)

Input array A of n integers
Output maximum element of A

```
currentMax \leftarrow A[0]
for i \leftarrow 1 to n-1 do
if A[i] > currentMax then
currentMax \leftarrow A[i]
return currentMax
```

- 3. A list of n distinct integers a₁, a₂,..., a_n is called a mountain list if the elements reading from left to right first increase and then decrease. The location of the peak is the value i where a_i is greatest. For example, the list 1, 2, 3, 7, 6 is a mountain list with a peak at 4 since the greatest number occurs in the fourth position. We also consider a list of n increasing numbers to be a mountain list with a peak at n, and a list of n decreasing numbers to be a mountain list with a peak at 1.
 - (a) Give pseudocode for an algorithm based on linear search that takes as input a mountain list a₁, a₂,..., a_n and returns the location of the peak.

```
procedure LinearPeak(a_1, a_2, \dots, a_n): mountain list)
```

return n

(b) (5 points) Give an algorithm based on binary search that takes as input a mountain list a₁, a₂,..., a_n and returns the location of the peak.

procedure BinaryPeak $(a_1, a_2, ..., a_n)$: mountain list)

1.
$$i := 1$$

2. $j := n$
3. while $(i < j)$
4. $m := \lfloor \frac{i+j}{2} \rfloor$
5. if $i := m+1$
7. else
8. $j := m$

return i

알고리즘 예시: 탐색과 정렬

• 가장 기초적이고 대표적으로 활용되는 두 알고리즘: {탐색}과 {정렬}

최대공약수 구하기 - 컨셉

12 와 30의 최대 공약수는?

심화: 에라토스테네스의 체

에라토스테네스의 체

동전 던지기에서 앞면이 나올 확률

1회, 2회, 3회, 4회,

배열의 평균배열 (Prefix Average) 구하기

- The *i*-th prefix average of an array *X* is average of the first (i + 1) elements of *X*: A[i] = (X[0] + X[1] + ... + X[i])/(i+1)
- Computing the array A of prefix averages of another array X has applications to financial analysis

좋은 알고리즘이란?

문제해결을 위해 효율적인 알고리즘 설계 필요 같은 문제에 대해 서로 다른 알고리즘이 존재 가능

 좋은 알고리즘이란? 다른 알고리즘에 비해 효율적인 알고리즘이란 어때야 할까? 알고리즘의 성능 분석이 가능할까?

알고리즘의 성능

- 알고리즘의 효율성을 평가하는 두가지 척도 존재 = {시간, 공간}
- 시간(Time)
 - 알고리즘의 명령문을 실행하는데 시간(time)이 소요됨
 - 알고리즘이 얼마나 빠르게 문제를 해결하는가?
 - 알고리즘의 실행시간에 무엇이 영향을 미치는가?
- 공간(Space)
 - 데이터구조는 컴퓨터의 메모리공간 (memory space)를 차지
 - 어떤 종류의 데이터 구조가 사용될 수 있는가?
 - 데이터 구조가 실행시간에 어떻게 영향을 끼치는가?
- 컴퓨터 저장 용량의 증가에 따라 공간 보다는 시간의 중요성이 커지고 있음 → 해당 챕 터에서는 {시간}에 대해 집중

프로그램 구현을 통한 시간측정

- 같은 문제를 해결하기 위한 서로 다른 두 알고리즘을 어떻게 비교할까?
- 가장 간단한 방법 → 프로그램 구현을 통한 시간측정
 - 두 알고리즘을 프로그래밍 언어(Java, Python)로 구현
 - 두 프로그램의 실행시간을 측정
- 프로그램 구현을 통한 비교 방식의 문제점
 - 알고리즘 자체가 아닌 여러가지 요소에 의해 영향을 받을 수 있음
 - 프로그래밍 스타일
 - 특정한 데이터 타입
 - 컴퓨터의 성능
 - 백그라운드 프로그램(공정한 시간 비교를 방해)

System.currentTimeMillis()

시간복잡도 분석을 통한 성능평가

• 알고리즘 분석

- {컴퓨터, 데이터, 프로그래밍 언어} 등의 외적인 요소를 배제
- 수학적 기법을 통해 알고리즘의 성능을 객관적으로 평가

• 알고리즘 분석 방법

- 알고리즘 수행에 소요되는 연산의 개수를 파악
- 연산의 개수를 알고리즘 <u>입력크기{n}</u>에 비례하는 <u>시간복잡도 함수{ff(n)}</u>로 표현
- 시간복잡도 함수를 통한 알고리즘 간의 효율성 비교

알고리즘 내부의 기본 연산

할당

$$sum = 0;$$

사칙연산 (+, -, *, /)

$$sum = sum + i;$$

비교

각각의 기본연산을 위해 상수의 연산시간 이 소요됨

시간복잡도 계산을 위한 일반적 룰

• 일반적 실행문

- 상수의 연산횟수를 더한다

• 조건문

- 두 조건에서 실행되는 실행문의 최대치보다 클 수 없다.

반복문

- 반복문 안에서 실행되는 연산의 횟수만큼 더한다

• 중첩된 반복문

- 반복이 중첩된만큼 곱하여 연산의 횟수를 계산한다

시간복잡도 계산 예시

■ 일반 실행문

■ 조건문이 포함된 경우

시간복잡도 계산 예시

■ 반복문 포함된 경우

총비용:

$$c_1 + c_2 + (n+1) \cdot c_3 + n \cdot c_4 + n \cdot c_5$$

변수 n에 비례

시간복잡도 계산 예시

■ 중첩된 반복문

연산시간 연산횟수

```
i=1;
sum=0;
while (i <= n) {
                                        n+1
   j=1;
                                        n
   while(j<=n){</pre>
                                        n*(n+1)
      sum=sum+i;
                                        n*n
      j=j+1;
                                        n*n
   i=i+1;
                                        n
```

변수 n의 제곱에 비례

총비용: $c_1 + c_2 + (n+1)c_3 + nc_4 + n(n+1)c_5 + n^2c_6 + n^2c_7 + nc_8$

점근적 분석

• 크기가 작은 문제

- 알고리즘의 효율성이 중요하지 않다
- 비효율적인 알고리즘도 무방

• 크기가 충분히 큰 문제

- 알고리즘의 효율성이 중요하다
- 비효율적인 알고리즘은 치명적

• 점근적 분석

- 알고리즘의 시간복잡도 입력크기 n에 따라 얼마나 빠르게 증가하는지 파악하여 알고리즘을 비교하는 방식 필요.
- 입력의 크기가 충분히 큰 경우에 대한 분석을 점근적 분석이라 한다
- 점근석 분석을 위한 시간복잡도의 표현방식 → 빅오표기법

빅오 표기법

- O(f(n))
 - 기껏해야 f(n)의 비율로 증가하는 모든 함수들의 모임
- 수학적 정의
 - 만약 어떤 알고리즘 A의 시간복잡도(f(n))보다 항상 클 수 있도록 만드는 c*g(n) 상수 c와 문제의 입력사이즈 n_0 가 존재하면 알고리즘 A는 O(g(n))을 따른다고 말한다.
- 예시
 - 만약 어떤 알고리즘의 시간 복잡도가 n^2 -3*n+10로 계산되었다고 하자. 이 알고리즘이 $O(n^2)$ 을 따르는가?
 - → 위 시간복잡도 함수에 대해 다음을 만족시키는 c와 n_0 존재. $3*n^2 > n^2 3*n + 10$ for all $n \ge 2$ 따라서 위 알고리즘은 $O(n^2)$ 을 따른다.

빅오 예

- Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - $n \le c$
 - The above inequality cannot be satisfied since c must be a constant

빅오에 대한 규칙

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

빅오 표기법의 의미

- 입력자료의 크기가 큰 경우, 차수가 큰 항이 전체의 값을 주도
- 시간 복잡도 함수에서 불필요한 정보를 제거하여 알고리즘 분석을 쉽게 할 목적으로 도입
- 다시 말하면 O(f(n))은 최고차항의 차수가 f(n)과 일치하거나 더 작은 함수의 집합이라고 볼 수 있음.
- 예시
 - $-5n^2+4n = O(n^2)$
 - $-4n = O(n^2)$
 - $2nlogn = O(n^2)$

빅오표기법으로 표시된 차수

- **O(1)** Time requirement is **constant**, and it is independent of the problem's size.
- **O(log₂n)** Time requirement for a **logarithmic** algorithm increases increases slowly as the problem size increases.
- **O(n)** Time requirement for a **linear** algorithm increases directly with the size of the problem.
- $O(n*log_2n)$ Time requirement for a $n*log_2n$ algorithm increases more rapidly than a linear algorithm.
- $O(n^2)$ Time requirement for a **quadratic** algorithm increases rapidly with the size of the problem.
- O(n³) Time requirement for a cubic algorithm increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm.
- O(2ⁿ) As the size of the problem increases, the time requirement for an exponential algorithm increases too rapidly to be practical.

빅오표기법으로 표시된 차수

 10^{2}

 10^{3}

 10^{3}

 10^{4}

 10^{6}

 10^{30}

(a) n 10 100 1,000 10,000 100,000 1,000,000 **Function** 3 9 13 16 19 6 log₂n 10^{2} 105 10 10^{3} 10^{4} 10⁶ n 10⁵ 10⁶ 10^{7} 30 664 9,965 * log₂n

 10^{6}

 10^{9}

 10^{301}

 10^{8}

 10^{12}

103,010

 10^{10}

 10^{15}

1030,103

 10^{12}

 10^{18}

10301,030

 n^2

 n^3

2ⁿ

그래프로 표현

시간 비교

insertion sort is

 $n^2 / 4$

merge sort is

2 n lg

fort a million items?

insertion sort takes

roughly 70 hours

while

merge sort takes roughly 40 seconds

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n²	~ c n ² + 2c n	4c n²	16c n ²
c n ³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

人はおけましても	최대 문제 크기(n)						
실행시간	1초	1분	1시간				
400n	2,500	150,000	9,000,000				
$20n \lceil \log n \rceil$	4,096	166,666	7,826,087				
$2n^2$	707	5,477	42,426				
n^4	31	88	244				
2^n	19	25	31				

빅오표기법의 수학적 성질

- 언제나 작은 차수는 무시할 수 있다.
 - 만약 알고리즘의 시간복잡도가 $n^3+4n^2+3^n$ 라면 $O(n^3+4n^2+3^n)$ 대신 $O(n^3)$ 라고 표시할 수 있다.
 - 즉 가장 높은 차수만을 사용하여 표시하면 된다.
- 다항식 앞에 곱하는 상수항은 무시할 수 있다.
 - 만약 알고리즘이 $O(5n^3)$ 이라면 이 알고리즘은 또한 $O(n^3)$ 이다.
- $\bullet \quad O(f(n)) + O(g(n)) = O(f(n)+g(n))$
 - 서로 다른 빅오 표기법으로 표시된 복잡도 함수를 합칠 수 있다.
 - $O(n^3) + O(4n) = O(n^3 + 4n) = O(n^3)$

시간복잡도 계산 예시

■ 일반 실행문

■ 조건문이 포함된 경우

시간복잡도 계산 예시

■ 반복문 포함된 경우

총비용:

$$c_1 + c_2 + (n+1) \cdot c_3 + n \cdot c_4 + n \cdot c_5$$

 $\rightarrow O(n)$

시간복잡도 계산 예시

■ 중첩된 반복문

연산시간 연산횟수

```
i=1;
sum=0;
while (i <= n) {
                                        n+1
   j=1;
                                         n
   while(j<=n){</pre>
                                        n*(n+1)
      sum=sum+i;
                                        n*n
      j=j+1;
                                        n*n
   i=i+1;
                                         n
```

 \rightarrow O(n²)

총비용: $c_1 + c_2 + (n+1)c_3 + nc_4 + n(n+1)c_5 + n^2c_6 + n^2c_7 + nc_8$

시간복잡도의 최상, 최악, 평균적 케이스

- 알고리즘은 입력사이즈 (n)의 문제라 할지라도 서로 다른 시간복잡도를 가질 수 있음 → {Worst, Best, Average Case}
- 최악의 경우 {Worst case}
 - 문제를 해결하는데 가장 많은 시간을 소모
 - 시간복잡도의 상한선 (Upper limit)
 - 보통 알고리즘 복잡도 계산에 많이 사용됨
- 최선의 경우 (Best case)
 - 문제를 해결하는데 최소한의 시간을 소모
- 평균적인 경우 (Average case)
 - 입력사이즈 n의 문제를 해결하는데 들어가는 평균시간 계산
 - 입력사이즈 n을 기준으로 가능한 데이터의 모든 경우의 수를 따져봐야 함으로 보통 매우 복잡

선형탐색의 시간복잡도

• 선형탐색 알고리즘

```
LinearSearch(Array[n],x):
    for i=1 to i=n
    if a[i]==x
        return i;
    return -1
```

 15
 74
 34
 51
 23

1) 찾는 값이 15일 때

1번만에 탐색 종료 → 최상의 경우

2) 찾는 값이 23일 때

5번만에 탐색 종료 → 최악의 경우

선형탐색의 복잡도

선형탐색 알고리즘

```
LinearSearch(Array[n],x):
      for i=1 to i=n
       if a[i]==x
           return i;
      return -1
```

- 최상의 경우 x가 Array의 첫번째에 위치하는 경우 \rightarrow O(1)
- 최악의 경우 x가 Array의 마지막에 위치하는 경우 \rightarrow O(n)
- 평균적 경우 x가 Array 내에서 위치할 확률 1/n 이를 이용해 다음과 같이 계산

$$\frac{\sum_{i=1}^{n} i}{n} = \frac{(n^2 + n)/2}{n}$$
 \to O(n)

이진탐색의 시간복잡도

• 전략: 중앙값과 비교를 통해 탐색범위를 절반씩 추려 나감

이진탐색의 시간복잡도

```
int binarySearch(int a[], int size, int x) {
  int low =0;
  int high = size -1;
  int mid; // mid will be the index of
             // target when it's found.
  while (low <= high) {</pre>
      mid = (low + high)/2;
      if (a[mid] < x)
       low = mid + 1;
      else if (a[mid] > x)
          high = mid - 1;
    else
          return mid;
  return -1;
```

```
Best Case
                 → 1회
Worst Case
                 \rightarrow \log_2 n + 1
n=2<sup>5</sup>=32개 → 5+1=6회
n=2^6=64 \rightarrow 6+1=7 \Rightarrow
n=2<sup>7</sup>=128개 → 7+1=8회
```


버블정렬의 시간복잡도

- 버블 정렬에서 worst-case의 시간 복잡도는?
 - Swap의 발생 여부에 따라 조기 종료하는 방식이 아닌 알고리즘의 경우,
 - 단위 연산: S[i]와 S[j]의 값을 교환하는 회수
 - 최악의 경우: if 조건 문이 항상 true여서 교환이 매번 발생함
 - → 입력 배열이 거꾸로 정렬되어 있을 경우

```
public static void bubble sort(int n, int[] S) {
   for(int i = n - 1; i > 0; i--)
      for(int j = 0; j < i; j++)
         if(S[i] > S[i + 1])
\rightarrow
            exchange S[i] with S[i + 1];
```

Worst Case

$$W(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} (n-1-i)$$
$$= (n-1) + (n-2) + \dots + 1$$
$$= \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

Prefix Averages (Quadratic)

 The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages1(X, n)
   Input array X of n integers
   Output array A of prefix averages of X #operations
   A \leftarrow new array of n integers
                                                  n
   for i \leftarrow 0 to n-1 do
                                                              n
           s \leftarrow X[0]
           for j \leftarrow 1 to i do 1 + 2 + ... + (n - 1)
                                                    1+2+...+(n-1)
           S \leftarrow S + X[j]
A[i] \leftarrow S / (i+1)
   return A
```

알고리즘 평가해보기

- The running time of *prefixAverages1* is O(1+2+...+n)
- The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm *prefixAverages1* runs in $O(n^2)$ time

Prefix Averages (Linear)

■ The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm prefixAverages $2(X, n)$ Input array X of n integers Output array A of prefix averages of X #operations $A \leftarrow \text{new array of } n$ integers $s \leftarrow 0$ for $i \leftarrow 0$ to $n - 1$ do $s \leftarrow s + X[i]$ $A[i] \leftarrow s / (i + 1)$ n return A									n 1		
	i	0	1	2	3	4	5	6	7	8	9
	X[i]	1	2	3	4	5	6	7	8	9	10
	S	1	3	6	10	15	21	28	36	45	55
	A[i]	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5

• Algorithm prefixAverages2 runs in O(n) time

빅오의 친척들

Big-Oh

• f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)

big-Theta

• f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)

빅오의 친척들

\blacksquare 5n² is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c>0 and an integer constant $n_0\geq 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let
$$c = 5$$
 and $n_0 = 1$

\blacksquare 5n² is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c>0 and an integer constant $n_0\geq 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let
$$c = 1$$
 and $n_0 = 1$

\blacksquare 5n² is $\Theta(n^2)$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Let
$$c = 5$$
 and $n_0 = 1$

Scale of Big Graphs

[Paul Burkhardt, Chris Waring 2013].

- Social Scale: 1 billion vertices, 100 billion edges
 - adjacency matrix: >108 GB
 - adjacency list: >103GB
 - edge list: >103GB
- · Web Scale: 50 billion vertices, 1 trillion edges
 - adjacency matrix: >1011 GB
 - adjacency list: > 10⁴ GB
 - edge list: > 104 GB
- · Brain Scale: 100 billion vertices, 100 trillion edges
 - adjacency matrix: >1020 GB
 - adjacency list: > 106 GB
 - edge list: > 106 GB

1 terabyte (TB) =1,024GB ~10*GB 1 petabyte (PB) =1,024TB ~ 10*GB 1 exabyte (EB) =1,024PB~10*GB 1 (ZB) =1,024EB~10*GB 1 =1,024ZB~10*GB

