考试类别[学生填写](□正考 □补考 □重修 □补修 □缓考 □其它)

题号	_	=			Ξ				四	总分
	1-6	7-12	13	14	15	16	17	18	19	
得分										

《线性代数与空间解析几何》期末考试试卷A 适用专业: 电气、食工、化工 2020 级、国教 19 级各专业 本试卷共 4 页,四大题 19 小题,总计 100 分

得 分	
评卷人	

一、选择题(6小题,每小题3分,共18分)

- 1. 设A是 3 阶方阵,且行列式|A|=8,矩阵 $B=-\frac{1}{2}A$,则|B|= (
 - (A) 4;
- (B) 4;
- (C)-1;
- (D) 1.

2. 下列矩阵中不是正交矩阵的是(

(A)
$$\begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$$
; (B) $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$; (C) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; (D) $\begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \end{pmatrix}$.

- 3. 设非齐次线性方程组 $A_{mxn}x = b$ 的系数矩阵的秩 R(A) = m,则 (
- (A) $A_{m \times n} x = b$ 一定有解:

(B) $A_{m \times n} x = b$ 可能无解:

(C) $A_{mxn}x=0$ 一定只有零解;

- (D) $A_{m \times n} x = 0$ 一定有非零解.
- 4. 设三阶矩阵 A 的特征值分别为 $-2, -\frac{1}{2}, 2, 则下列矩阵中可逆的是($
- (A) A + 2E;
- (B) A 2E;
- (C) 2A+E;
- (D) 2A E.
- 5. 方程 $x^2 + 4v^2 z^2 = -9$ 表示什么曲面(

- (A)单叶双曲面; (B) 双叶双曲面; (C) 椭圆双曲面; (D) 双曲抛物面. 6. 二次型 $f(x_1,x_2,x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 - (x_1 - x_2)^2$ 的正惯性指数与负惯 性指数依次为(
- (A) 2, 0;
- (B) 1, 1;
- (C) 2, 1;
- (D) 1, 2.

得 分 评卷人

二、填空题(6小题,每小题3分,共18分)

7. 设
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \\ 3 & 1 & 2 & 4 \\ 1 & 1 & 1 & 2 \end{vmatrix}$$
 , $A_{4j}(j=1,2,3,4)$ 为 D 中第 4 行元素的代数余子式,

 $[II] A_{41} + A_{42} + A_{43} + A_{44} =$

8. 己知
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 & 1 \\ 1 & 2 \\ 1 & -2 \end{pmatrix}$$
,则 $\mathbf{A}^T \mathbf{B} = \underline{\qquad}$.

- 9. 直线 $l: \frac{x-1}{1} = \frac{y-3}{-2} = \frac{z-5}{1}$ 与平面 $\pi: x+y-2z=3$ 的夹角为_
- 10. 已知矩阵 $A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & x \\ 4 & 0 & 5 \end{pmatrix}$ 可相似对角化,则 x =_______.
 - 11. 设 $\alpha_1 = (1,2,5)^T$, $\alpha_2 = (2,4,1)^T$, $\alpha_3 = (3,6,6)^T$, 则由向量组 $\alpha_1,\alpha_2,\alpha_3$ 生成的 向量空间 $V = \{x = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + k_2 \boldsymbol{\alpha}_2 \mid k_1, k_2, k_3 \in R\}$ 的维数 dimV =
 - 12. 设四元非齐次线性方程组的系数矩阵的秩为 3,已知 η_1 、 η_2 、 η_3 为它的 三个解向量,且 $\eta_1 + \eta_2 + \eta_3 = (6,3,0,3)^T$, $\eta_1 + \eta_2 - 2\eta_3 = (1,0,2,1)^T$,则其通解

第1页/共4页 节约用纸 两面书写

三、解答题(6小题,共58分)

得 分	
评卷人	

13 (本题 9 分) 计算行列式
$$D = \begin{vmatrix} 1 & 1 & -1 & 3 \\ -1 & -1 & 2 & 1 \\ 2 & 5 & 2 & 4 \\ 1 & 2 & 3 & 2 \end{vmatrix}$$
.

15 (本题 9 分) 求矩阵
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}$$
 的逆矩阵.

得 分	
评卷人	

14 (本题 10 分) 已知三点 P₁(1,2,3), P₂(2,1,4), P₃(-1,0,2),

- (1) 求由 P_1, P_2 两点所确定的直线的方程;
- (2) 求由 P_1, P_2, P_3 三点所确定的平面方程.

第2页/共4页节约用纸 两面书写

得 分	
评卷人	

16 (本题 10 分) 求向量组

….线……

$$\alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 2 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} 1 \\ 2 \\ -3 \\ -4 \end{pmatrix}, \alpha_{5} = \begin{pmatrix} 2 \\ -1 \\ 2 \\ 5 \end{pmatrix} \text{ for } R$$

和一个极大无关组,并把不属于极大无关组的向量用极大无关组线性表示 出来.

得 分	
评卷人	

17(本题 10分)求齐次线性方程组

$$\begin{cases} 3x_1 - 4x_2 + 2x_3 + x_4 = 0 \\ 2x_1 - 5x_2 + 3x_3 + 2x_4 = 0 \text{ 的基础解系与通解.} \\ 5x_1 - 2x_2 - x_4 = 0 \end{cases}$$

第3页/共4页 节约用纸 两面书写

得	分	
评考	人念	

18 (本题 10 分) 求正交变换 x = Py, 化二次型 $f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + x_3^2 + 4x_1x_3$ 为标准形.

四、应用题(本题6分)

得分	19(本题 6 分) 一种佐料由三种原料 A、B、C 混合而成,
评卷人	这种佐料现有三种规格,这三种规格的佐料中,三种原料
	的比例分别为 1:2:2, 1:2:1 和 2:1:1. 现在需要三种原料

的比例为 6:9:8 的第四种规格的佐料. 问:第四种规格的佐料能否由前三种规格的佐料按一定比例配制而成?如果能,怎么配制?