实验报告

计科 1605 班 201608010622 符希健

实验目标:

实现单周期 CPU 的设计

实验要求:

- 硬件设计采用 VHDL 或 Verilog 语言,软件设计采用 C/C++或 SystemC 语言,其它语言例如 Chisel、MyHDL 等也可选
- 实验报告采用 markdown 语言,或者直接上传 PDF 文档
- 实验最终提交所有代码和文档

实验内容:

1. RISC-V 指令集编码格式

RV32I Base Instruction Set

RV321 Base Instruction Set									
imm[31:12]				rd	0110111	LUI			
imm[31:12]				rd	0010111	AUIPC			
imm[20 10:1 11 19:12]			rd	1101111	JAL				
imm[11:0]		rs1	000	rd	1100111	JALR			
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	$_{ m BEQ}$			
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE			
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT			
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE			
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU			
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU			
imm[11:0]		rs1	000	rd	0000011	LB			
imm[11:0]		rs1 rs1	001	rd	0000011	LH			
	imm[11:0]		010	rd	0000011	LW			
	imm[11:0]		100	rd	0000011	LBU			
imm[11:		rs1	101	rd	0000011	LHU			
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB			
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH			
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW			
imm[11:0]		rs1	000	rd	0010011	ADDI			
imm[11:0]		rs1	010	$_{ m rd}$	0010011	SLTI			
imm[11:0]		rs1	011	rd	0010011	SLTIU			
imm[11:0]		rs1	100	rd	0010011	XORI			
imm[11:0]		rs1 rs1	110	rd	0010011	ORI			
	imm[11:0]		111	rd	0010011	ANDI			
0000000	shamt	rs1	001	rd	0010011	SLLI			
0000000	shamt	rs1	101	rd	0010011	SRLI			
0100000	shamt	rs1	101	rd	0010011	SRAI			
0000000	rs2	rs1	000	rd	0110011	ADD			
0100000	rs2	rs1	000	rd	0110011	SUB			
0000000	rs2	rs1	001	rd	0110011	SLL			
0000000	rs2	rs1	010	rd	0110011	SLT			
0000000	rs2	rs1	011	rd	0110011	SLTU			
0000000	rs2	rs1	100	rd	0110011	XOR			
0000000	rs2	rs1	101	rd	0110011	SRL			
0100000	rs2	rs1	101	rd	0110011	SRA			
0000000	rs2	rs1	110	rd	0110011	OR			
0000000	rs2	rs1	111	rd	0110011	AND			
fm pre		rs1	000	rd	0001111	FENCE			
00000000000		00000	000	00000	1110011	ECALL			
000000000	00000000001		000	00000	1110011	BBREAK			

2. RISC-V 指令集

Category Name	Fmt		RV32I Base
Shifts			
Shift Left Logical	R	SLL	rd,rs1,rs2
Shift Left Log.lmm.	- 1	SLLI	rd,rs1,shamt
Shift Right Logical	R	SRL	rd,rs1,rs2
Shift Right Log.lmm.	- 1	SRLI	rd,rs1,shamt
Shift Right Arithmetic	R	SRA	rd,rs1,rs2
Shift Right Arith.Imm.	I	SRAI	rd,rs1,shamt
Arithmetic			
ADD	R	ADD	rd,rs1,rs2
ADD Immediate	- 1	ADDI	rd,rs1,imm
SUBtract	R	SUB	rd,rs1,rs2
Load Upper Imm	U	LUI	rd,imm
Add Upper Imm to PC	U	AUIPC	rd,imm
Logical			
XOR	R	XOR	rd,rs1,rs2
XOR Immediate	- 1	XORI	rd,rs1,imm
OR	R	OR	rd,rs1,rs2
OR Immediate	- 1	ORI	rd,rs1,imm
AND	R	AND	rd,rs1,rs2
AND Immediate	I	ANDI	rd,rs1,imm

测试环境:

部件	配置		
CPU	core i7		
内存	16GB		
操作系统	windows 10		

测试结果:

ADD 指令

测试所用的指令为: 0000000001000010000000010110011

仿真结果为:

SUB 指令

测试所用的指令为: 0100000001000010000000010110011

仿真结果为:

AND 指令

测试所用的指令为: 0000000011000001111000010110011

仿真结果为:

OR 指令

测试所用的指令为: 0000000001100001110000010110011

仿真结果为:

XOR 指令

测试所用的指令为: 0000000000100000110000010110011

仿真结果为:

XORI 指令

测试所用的指令为: 00000010000100010100000010010011

仿真结果为:

分析和结论:

从测试结果可以看出编写的 cpu 能够完成指令的工作,达到了实验的目的。