DETAILED DERIVATION OF I/O LOWER BOUND PROOFS

Detailed Derivation Of I/O Lower Bound Proofs

A.1 Computational Intensity

We start by proving Lemma 2:

Lemma 2. If $|H_{max}|$ can be expressed as a closed-form function of X, that is there exists some function χ such that $|H_{max}| = \chi(X)$, then the lower bound on Q may be expressed as

$$Q \ge n \frac{(X_0 - M)}{\chi(X_0)},$$

where $X_0 = \arg\min_X \rho = \arg\min_X \frac{\chi(X)}{X - M}$

Intuition. $\chi(X)$ expresses computation "volume", while X is its input "surface". The term X-M bounds the required communication and it comes from the fact that not all inputs have to be loaded (at most M of them can be reused). X_0 corresponds to the situation where the ratio of this "volume" to the required communication is minimized (corresponding to a highest lower bound).

PROOF. Note that Lemma 1 is valid for any X_c (i.e., for any X_c , it gives a valid lower bound). Yet, these bounds are not necessarily tight. As we want to find tight I/O lower bounds, we need to maximize the lower bound. X_0 by definition minimizes ρ ; thus, it maximizes the bound. Lemma 2 then follows directly from Lemma 1 by substituting $\rho = \frac{\chi(X_0)}{X_0 - M}$.

Note. If function $\chi(X)$ is differentiable and has a global minimum, we can find X_0 by, e.g., solving the equation $\frac{d\frac{\chi(X)}{X-M}}{dX} = 0$. The key limitation is that it is not always possible to find χ , that is, to express $|H_{max}|$ solely as a function of X. However, for many linear algebra kernels $\chi(X)$ exists. Furthermore, one can relax this problem preserving the correctness of the lower bound, that is, by finding a function $\hat{\chi}: \forall_X \hat{\chi}(X) \geq \chi(X)$.

Iteration vector, iteration domain, and access sizes

We now prove Lemma 3:

Lemma 3. Given the ranges of all iteration variables D^t , t = 1, ..., lduring subcomputation H, if $|H| = \prod_{t=1}^l |D^t|$, then $\forall j = 1, \ldots, m$: $|A_j(D)| = \prod_{k=1}^{\dim(\phi_j)} |D_j^k|$ and |H| is maximized among all valid subcomputations which iterate over $D = [D^1, \dots, D^t]$

Intuition. Lemma 3 states that if each iteration variable ψ^t , t = $1, \ldots, l$ takes $|R_h^t|$ different values, then there are at most $\prod_{t=1}^l |D^t|$ different iteration vectors ψ which can be formed in H. So, intuitively, to maximize |H|, all combinations of values ψ^t should be evaluated. On the other hand, this also implies maximization of all access sizes $|A_j(D)| = \prod_{k=1}^{\dim(\phi_j)} |D_j^k|.$ To prove it, we now introduce two auxiliary lemmas:

Lemma 9. For statement S, the size |H| of subcomputation H (number of vertices of S computed during H) is bounded by the sizes of the iteration variables' sets R_h^t , t = 1, ..., l:

$$|H| \le \prod_{t=1}^{l} |D^t|. \tag{5}$$

PROOF. Inequality 5 follows from a combinatorial argument: each computation in *H* is uniquely defined by its iteration vector $[\psi^1,\ldots,\psi^t]$. As each iteration variable ψ^t takes $[R_h^t]$ different values during H, we have $|R_h^1| \cdot |R_h^2| \cdot \cdot \cdot \cdot |R_h^t| = \prod_{t=1}^l |D^t|$ ways how to uniquely choose the iteration vector in H.

Now, given D, we want to assess how many different vertices are accessed for each input array A_j . Recall that this number is denoted as access size $|A_i(D)|$.

We will apply the same combinatorial reasoning to $A_i(D)$. For $A_j[\boldsymbol{\phi}_j(\boldsymbol{\psi})],$ $k = 1, \dots, dim(\phi_j)$ iteration variables loops over set $R_{h,j}^k$ during subcomputation H. We can thus bound size of $A_i(D)$ similarly to Lemma 9:

Lemma 10. The access size $|A_i(D)|$ of subcomputation H (the number of vertices from the array A_i required to compute H) is bounded by the sizes of $dim(\phi_j)$ iteration variables' sets $R_{h,j}^k$, $k = 1, ..., dim(\phi_j)$:

$$\forall_{j=1,...,m} : |A_j(D)| \le \prod_{k=1}^{\dim(\phi_j)} |D_j^k|$$
 (6)

 $\forall_{j=1,\ldots,m}:|A_{j}(D)|\leq\prod_{k=1}^{\dim(\phi_{j})}|D_{j}^{k}|\tag{6}$ where $D_{j}^{k}\ni\psi_{j}^{k}$ is the set over which iteration variable ψ_{j}^{k} iterates during H.

PROOF. We use the same combinatorial argument as in Lemma 9. Each vertex in $A_j(D)$ is uniquely defined by $[\psi_j^1, \dots, \psi_j^{\dim(\phi_j)}]$. Knowing the number of different values each ψ_j^k takes, we bound the number of different access vectors $\phi_i(\psi_h)$.

Example: Consider once more statement S1 from LU factorization in Figure 3. We have $\phi_0 = [i, k]$, $\phi_1 = [i, k]$, and $\phi_2 = [k, k]$. Denote the iteration subdomain for subcomputation H as $D = \{[k^1, i^1], \dots, [k^{|H|}, i^{|H|}]\}$, where each variable k and i iterates over its set $k^g \in \{\psi_{k,1}, \dots, \psi_{k,K}\} = R_h^k$ and $i^g \in \{\psi_{i,1}, \dots, \psi_{i,I}\} = R_h^i$, for g = 1, ..., |H|. Denote the sizes of these sets as $|R_h^k| = K_h$ and $|R_h^i| = I_h$, that is, during H, variable k takes K different values and i takes I_h different values. For ϕ_1 , both iteration variables used are different: k and i. Therefore, we have (Equation 6) $|A_1(D)| \leq K_h \cdot I_h$. On the other hand, for ϕ_2 , the iteration variable k is used twice. Recall that the access dimension is the minimum number of different iteration variables that uniquely address it (Section 2.2), so its dimension is $dim(A_2) = 1$ and the only iteration variable needed to uniquely determine ϕ_2 is k. Therefore, $|A_2(D)| \leq K_h$.

Dominator set. Input vertices A_1, \ldots, A_m form a dominator set of vertices A_0 , because any path from graph inputs to any vertex in A_0 must include at least one vertex from A_1, \ldots, A_m . This is also the *minimum* dominator set, because of the disjoint access property (Section 2.2): any path from graph inputs to any vertex in A_0 can include *at most* one vertex from A_1, \ldots, A_m .

Proof of Lemma 3. For subcomputation H, we have $|\bigcup_{i=1}^m A_i(D)| \le$ *X* (by the definition of an *X*-partition). Again, by the disjoint access property, we have $\forall j_1 \neq j_2 : A_{j_1}(\mathcal{D}) \cap A_{j_2}(\mathcal{D}) = \emptyset$. Therefore, we also have $\left|\bigcup_{j=1}^{m} A_j(D)\right| = \sum_{j=1}^{m} \left|A_j(D)\right|$. We now want to maximize |H|, that is to find H_{max} to obtain computational intensity ρ (Lemma 2).

Now we prove that to maximize |H|, inequalities 5 and 6 must be tight (become equalities).

From proof of Lemma 9 it follows that |H| is maximized when iteration vector $\boldsymbol{\psi}$ takes all possible combinations of iteration variables $\psi_h^t \in R_h^t$ during H. But, as we visit each combination of all l iteration variables, for each access A_j every combination of its $[\psi_j^1,\ldots,\psi_j^{\dim(\phi_j)}]$ iteration variables is also visited. Therefore, for every $j=1,\ldots,m$, each access size $|A_j(\mathcal{D})|$ is maximized (Lemma 10), as access functions are injective, which implies that for each combination of $[\psi_j^1,\ldots,\psi_j^{\dim(\phi_j)}]$, there is one access to A_j . $\prod_{t=1}^l |R_h^t|$ is then the upper bound on |H|, and its tightness implies that all bounds on access sizes $|A_j(\mathcal{D})| \leq \prod_{k=1}^{\dim(\phi_j)} |D_j^k|$ are also tight.

A.3 Computational intensity and out-degree one vertices

Here we present a short proof of Lemma 4 followed by an example:

Lemma 4. If in a cDAG G = (V, E) every non-input vertex has at least u direct predecessors with out-degree one that are graph inputs, then the maximum computational intensity ρ of this cDAG is bounded by $\rho \leq \frac{1}{u}$.

PROOF. By the definition of the red-blue pebble game, all inputs start in slow memory, and therefore, have to be loaded. By the assumption on the cDAG, to compute any non-input vertex $v \in V$, at least u input vertices need to have red pebbles placed on them using a load operation. Because these vertices do not have any other direct successors (their out-degree is 1), they cannot be used to compute any other non-input vertex w. Therefore, each computation of a non-input vertex requires at least u unique input vertices to be loaded.

Example: Consider Figure 11. In a), each compute vertex C[i,j] has two input vertices: A[i,j] with out-degree 1, and b[j] with out-degree n, thus u=1. As both array A and vector b start in the slow memory (having blue pebbles on each vertex), for each computed vertex from C, at least one vertex from A has to be loaded, therefore $\rho \leq 1$. In b), each computation needs two out-degree 1 vertices, one from vector a and one from vector b, resulting in u=2. Thus, $\rho \leq \frac{1}{2}$.

A.4 Data Reuse Across Multiple Statements

Lemma 5. The I/O cost of a program containing statements S and T which share the input array A_i is bounded by $Q_{tot} \ge Q_S + Q_T - Reuse(A_i)$

where Q_S , Q_T are the I/O costs of a program containing only statement S or T, respectively. Furthermore, we have: $Reuse(A_i) = \min\{|A_i(R_S)|, |A_i(R_T)|\}$

where $|A_i(R_S)|$ and $|A_i(R_T)|$ are the total number of accesses to array A_i during the optimal execution of statements S or T separately.

PROOF. Consider an optimal sequential schedule of a cDAG G_S containing statement S only. For any subcomputation H_S and its associated iteration domain R_S its minimum dominator set is $Dom(H_S) = \bigcup_{j=1}^m A_j(R_S)$. To compute H_S , at least $\sum_{i=1}^m |A_j(R_S)| - M$ vertices have to be loaded, as only M vertices can be reused from previous subcomputations.

Figure 11: cDAGs with out-degree 1 input vertices. a) $u_a=1$, $\rho_a\leq 1$. b) $u_b=2$, $\rho_b\leq \frac{1}{2}$.

We seek if any loads can be avoided in the common schedule if we add statement T, denoting its cDAG G_{S+T} . Consider a subset $A_i(R_x)$ of vertices in A_i .

Consider some subset of vertices in A_i which potentially could be reused and denote it Θ_i . Now denote all vertices in A_0 (statement S) which depend on any vertex from Θ_i as Θ_S , and, analogously, set Θ_T for statement T. Now consider these two subsets Θ_S and Θ_T separately. If Θ_S is computed before Θ_T , then it had to load all vertices from Θ_i , avoiding no loads compared to the schedule of G_S only. Now, computation of Θ_T may take benefit of some vertices from Θ_i , which can still reside in fast memory, avoiding up to $|\Theta_i|$ loads.

The total number of avoided loads is bounded by the number of loads from A_i which are shared by both S and T. Because statement S loads at most $|A_i(R_S)|$ vertices from A_i during optimal schedule of G_S , and T loads at most $|A_i(R_T)|$ of them for G_T , the upper bound of shared, and possibly avoided loads is $Reuse(A_i) = \min\{|A_i(R_S)|, |A_i(R_T)|\}$.

The **reuse size** is defined as $Reuse(A_i) = min\{|A_i(R_S)|, |A_i(R_T)|\}$. Now, how to find $|A_i(R_S)|$ and $|A_i(R_T)|$?

Observe that $|A_i(R_S)|$ is a property of G_S , that is, the cDAG containing statement S only. Denote the I/O optimal schedule parameters of G_S : V_{max}^S , X_0^S , and $|A_i(R_{max}^S(X_0^S))|$ (Section 3.2). Similarly, for G_T : V_{max}^T , X_0^T , and $|A_i(R_{max}^T(X_0^T))|$. We now derive: 1) at least how many subcomputations does the optimal schedule have: $s \geq \frac{|V|}{|H_{max}|}$, 2) at least how many accesses to A_i are performed per optimal subcomputation $|A_i(R_{max}(X_0))|$. Then:

$$Reuse(A_{i}) = \min\{|A_{i}(R_{max}^{S}(X_{0}^{S}))| \frac{|V^{S}|}{|V_{max}^{S}|},$$

$$|A_{i}(R_{max}^{T}(X_{0}^{T}))| \frac{|V^{T}|}{|V_{max}^{T}|}\}$$
(7)

We now proceed to Lemma 6

Lemma 6. Any dominator set of set $B_j(\mathcal{D})$ must be of size at least $|Dom(B_j(\mathcal{D}))| \ge \frac{|B_j(\mathcal{D})|}{\rho_S}$.

PROOF. By Lemma 1, for one loaded vertex, we may compute at most ρ_S vertices of A_0 . These are also vertices of B_i . Thus, to

compute $|B_j(\mathcal{D})|$ vertices of B_j , at least $\frac{|B_j(\mathcal{D})|}{\rho_S}$ loads must be performed. We just need to show that at least that many vertices have to be in any dominator set $Dom(B_j(\mathcal{D}))$. Now, consider the converse: There is a vertex set $D = Dom(B_j(\mathcal{D}))$ such that $|D| < \frac{|B_j(\mathcal{D})|}{\rho_S}$. But that would mean, that we could potentially compute all $|B_j(\mathcal{D})|$ vertices by only loading |D| vertices, violating Lemma 1.

A.5 Parallel I/O Lower Bounds

Lemma 7. The minimum number of I/O operations in a parallel pebble game, played on a cDAG with |V| vertices with P processors each equipped with M pebbles, is $Q \geq \frac{|V|}{P \cdot \rho}$, where ρ is the maximum computational intensity independent of P (Lemma 1).

PROOF. Following the analysis of Section 3 and the parallel machine model (Section 5), the computational intensity ρ is independent of a number of parallel processors - it is solely a property of a cDAG and private fast memory size M. Therefore, following Lemma 1, what changes with P is the volume of computation |V|, as now at least one processor will compute at least $|V_p| = \frac{|V|}{P}$ vertices. By the definition of the computational intensity, the minimum number of I/O operations required to pebble these $|V_p|$ vertices is $\frac{|V_p|}{\rho}$.