Stochastics

Bachelor Applied Artificial Intelligence (AAI-B3)

André Herzwurm

TH Rosenheim, WiSe 2022/23

Literature

H.-O. Georgii, Stochastics, DeGruyter, 2nd Edition, 2013.

A. Steland, Basiswissen Statistik, Springer, 4. Auflage, 2016. (German)

S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, 2014.

Contents

I	Int	roduction	1
II	Pro	obability Theory – Discrete Case	2
	1	Discrete Probability Spaces	2
	2	Probability Mass Functions	4
	3	Conditional Probability and Independence	6
	4	Random Variables	8
	5	Empirical Distribution	12
	6	Special Discrete Distributions	14

Chapter I

Introduction

We consider births in Germany. Question (two variants):

- (i) What is the probability of having a girl?
- (ii) Is it more likely to have a boy than a girl?

Empirical data from statistical sample yields the gender of N births:

$$k \text{ girls } (1), \quad N - k \text{ boys } (0).$$

The relative frequencies are given by

$$\widehat{p}(1) = \frac{k}{N}, \quad \widehat{p}(0) = \frac{N-k}{N} = 1 - \widehat{p}(1)$$

and serve as a metric of the data (descriptive statistics).

Naive answers to the above questions read:

- (i) The sought probability is given by $\widehat{p}(1)$.
- (ii) Yes if and only if $\widehat{p}(0) > \widehat{p}(1)$.

Criticism:

- The answers are based on only one sample or data set.
- The sample size and the variability of the data are not taken into account.

Therefore we will consider

inferential statistics (see Chapters ?? and ??)

to infer properties of an underlying probability distribution. This, in turn, requires a

mathematical model (see Chapters II and ??)

of the underlying random mechanism.

Chapter II

Probability Theory – Discrete Case

In this section we aim at modelling and analyzing random experiments with at most countably infinite outcomes (discrete case).

In the sequel let Ω be a finite or a countably infinite set. The set Ω is a model for the possible results of a random experiment.

1 Discrete Probability Spaces

Definition 1. The set Ω is called *sample space*. Its elements $\omega \in \Omega$ are called *outcomes*. Any subset $A \subseteq \Omega$ of Ω is called an *event*.

Example 2. Consider a fair coin with head (1) and tail (0) that is tossed twice. The corresponding sample space is given by

$$\Omega = \{(1,1), (1,0), (0,1), (0,0)\} = \{1,0\}^2.$$

The event $A = \{(1,1), (1,0)\}$ contains all outcomes with 1 in the first toss.

Clearly, we may also use this sample space as a model for two-stage processes having two outcomes (e.g., yes/no) per stage, e.g., a two-stage production process where in each stage some tolerance level is satisfied or not.

Terminology: We say that the event $A \subseteq \Omega$ occurs if $\omega \in A$.

Notation: For sets A, B we write $A \subseteq B$ if every element of A is also an element of B, and we write A = B if $A \subseteq B$ and $B \subseteq A$. The empty set containing no elements is denoted by \emptyset . The cardinality of a set A is denoted by |A|.

Definition 3. Let $A, B \subseteq \Omega$ be events. The *union*, the *intersection*, and the *difference* of A and B as well as the *complement* of A are defined by

$$A \cup B = \{ \omega \in \Omega \colon \omega \in A \text{ or } \omega \in B \},$$

$$A \cap B = \{ \omega \in \Omega \colon \omega \in A \text{ and } \omega \in B \},$$

$$A \setminus B = \{ \omega \in \Omega \colon \omega \in A \text{ and } \omega \notin B \},$$

$$A^{c} = \Omega \setminus A = \{ \omega \in \Omega \colon \omega \notin A \},$$

respectively.

Remark 4. Foe events $A, B, C \subseteq \Omega$ we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$(A \cap B)^{c} = A^{c} \cup B^{c},$$

$$(A \cup B)^{c} = A^{c} \cap B^{c},$$

$$A \setminus B = A \cap B^{c}.$$

Definition 5. The (countable) union of events $A_1, A_2, A_3, \ldots \subseteq \Omega$ is defined by

$$\bigcup_{i=1}^{\infty} A_i = \{ \omega \in \Omega \colon (\exists i \in \mathbb{N} \colon \omega \in A_i) \}.$$

The events $A_1, A_2, A_3, \ldots \subseteq \Omega$ are pairwise disjoint if $A_i \cap A_j = \emptyset$ for all $i, j \in \mathbb{N}$ with $i \neq j$.

Remark 6. Clearly, we can express the union of finitely many events as a countable union, i.e., for $n \in \mathbb{N}$ and events $A_1, \ldots, A_n \subseteq \Omega$ we have

$$\bigcup_{i=1}^{n} A_i = A_1 \cup \ldots \cup A_n = \bigcup_{i=1}^{\infty} A_i$$

if we put $A_i = \emptyset$ for i > n.

We are now going to assign probabilities P(A) to events $A \subseteq \Omega$.

Definition 7. The set

$$\mathcal{P}(\Omega) = \{A \colon A \subseteq \Omega\}$$

of all subsets of Ω is called *power set* of Ω .

Example 8. The power set of $\Omega = \{0, 1\}$ is given by

$$\mathcal{P}(\Omega) = \{\varnothing, \{0\}, \{1\}, \Omega\}.$$

Moreover, we have $|\mathcal{P}(\Omega)| = 2^{|\Omega|}$.

Definition 9. A function $P: \mathcal{P}(\Omega) \to \mathbb{R}$ is a probability measure (on Ω) (or probability distribution (on Ω)) if

- (i) $0 \le P(A) \le 1$ for all $A \subseteq \Omega$,
- (ii) $P(\Omega) = 1$,
- (iii) for all pairwise disjoint events $A_1, A_2, \ldots \subseteq \Omega$ we have

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$
 (\sigma-additivity)

In such a case the triple $(\Omega, \mathcal{P}(\Omega), P)$ is called a discrete probability space.

Proposition 10. Let P be a probability measure on Ω and let $A, B \in \mathcal{P}(\Omega)$. Then we have

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$
 (additivity),

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$
,

(iii)
$$A \subseteq B \Rightarrow P(A) \le P(B)$$
 (monotonicity),

(iv)
$$P(A^{c}) = 1 - P(A),$$

(v)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

Proof. ad (i): Since $A \cap B = \emptyset$, we have

$$A \cup B = A \cup B \cup \varnothing \cup \varnothing \cup \dots$$

for pairwise disjoint events and thus the σ -additivity of P shows

$$P(A \cup B) = P(A) + P(B) + \sum_{i=3}^{\infty} P(\varnothing).$$

Since $P(A \cup B) \in [0, 1]$, we have $P(\emptyset) = 0$.

ad (ii)-(v): See Exercise 1.1.

2 Probability Mass Functions

Definition 1. Let P be a probability measure on Ω . The function $p \colon \Omega \to \mathbb{R}$ defined by

$$p(\omega) = P(\{\omega\})$$

is called probability mass function (associated to P).

Proposition 2.

(i) For P and p according to Definition 1 and for every $A \subseteq \Omega$ we have

$$P(A) = \sum_{\omega \in A} p(\omega).$$

In particular, P is uniquely determined by p.

(ii) Every probability mass function $p: \Omega \to \mathbb{R}$ satisfies

$$\forall \omega \in \Omega \colon 0 \le p(\omega) \le 1 \quad \land \quad \sum_{\omega \in \Omega} p(\omega) = 1.$$
 (1)

(iii) Every function $p: \Omega \to \mathbb{R}$ satisfying (1) defines a probability measure P on Ω by

$$P(A) = \sum_{\omega \in A} p(\omega)$$

for $A \subseteq \Omega$.

Proof. Since Ω is countable, every $A \subseteq \Omega$ is countable and can thus be expressed as a countable union $A = \bigcup_{\omega \in A} \{\omega\}$ of pairwise disjoint sets.

ad (i): The σ -additivity of P yields for $A \subseteq \Omega$

$$P(A) = P\left(\bigcup_{\omega \in A} \{\omega\}\right) = \sum_{\omega \in A} P(\{\omega\}) = \sum_{\omega \in A} p(\omega).$$

ad (ii): Use part (i) with $A = \Omega$ and note that $P(\Omega) = 1$.

ad (iii): Verify the conditions of Definition 1.9.

Example 3. Let Ω be finite with $|\Omega| = n \in \mathbb{N}$. For $\omega \in \Omega$ we put

$$p(\omega) = \frac{1}{n}.$$

Then p satisfies (1) and the associated probability measure P is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

for every $A \subseteq \Omega$. Hence the calculation of probabilities is based on counting elements.

Definition 4. The probability measure P according to Example 3 is called the *discrete* uniform distribution (on the finite set Ω).

Example 5. Consider a fair coin that is tossed twice, cf. Example 1.2. We model this random experiment by using the discrete uniform distribution P on

$$\Omega = \{(1,1), (1,0), (0,1), (0,0)\}.$$

The events

$$A = \{(1,1), (1,0)\} =$$
"1 in the first toss",
 $B = \{(1,1), (0,1)\} =$ "1 in the second toss"

satisfy

$$P(A) = \frac{2}{4} = \frac{1}{2} = P(B),$$

$$P(A \cap B) = P(\{(1, 1)\}) = \frac{1}{4} = P(A) \cdot P(B),$$

$$P(A \cup B) = P(\{(1, 1), (1, 0), (0, 1)\}) = \frac{3}{4}.$$

Example 6. Consider a two-stage production process where in each process a tolerance level is satisfied (1) or not (0). We model this by

$$\Omega = \{(1,1), (1,0), (0,1), (0,0)\}$$

and the (fictional) probability mass function

The events

$$A = \{(1,1), (1,0)\}$$
 = "tolerance level satisfied in first stage",
 $B = \{(1,1), (0,1)\}$ = "tolerance level satisfied in second stage"

satisfy

$$P(A) = 0.89,$$

 $P(B) = 0.81,$
 $P(A \cap B) = 0.8 \neq 0.7209 = P(A) \cdot P(B).$

3 Conditional Probability and Independence

In the sequel let $(\Omega, \mathcal{P}(\Omega), P)$ be a discrete probability space.

Question: How do we change the probability measure P if we know that a certain event $B \subseteq \Omega$ has occured.

Definition 1. For $A, B \subseteq \Omega$ with P(B) > 0 the conditional probability of A given B is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Example 2. Let P be the discrete uniform distribution on a finite set Ω . For $A, B \subseteq \Omega$ with $B \neq \emptyset$ we have P(B) > 0 and

$$P(A \mid B) = \frac{|A \cap B|}{|\Omega|} \cdot \frac{|\Omega|}{|B|} = \frac{|A \cap B|}{|B|}.$$

In Example 2.5 (fair coin tossed twice "independently") we thus have

$$P(A | B) = P(B | A) = \frac{1}{2}$$

for $A = \{(1,1), (1,0)\}$ and $B = \{(1,1), (0,1)\}.$

Example 3. In Example 2.6 (two-stage production process) we have

$$P(A \mid B) = \frac{P(\{(1,1)\})}{P(\{(1,1),(0,1)\})} = \frac{0.8}{0.81} \approx 0.9876$$

and

$$P(B \mid A) = \frac{P(\{(1,1)\})}{P(\{(1,1),(1,0)\})} = \frac{0.8}{0.89} \approx 0.8988$$

for
$$A = \{(1,1), (1,0)\}$$
 and $B = \{(1,1), (0,1)\}.$

Remark 4. Let p be the probability mass function associated to P, and let $B \subseteq \Omega$ with P(B) > 0. For $A \subseteq \Omega$ we have

$$P(A \mid B) = \frac{1}{P(B)} \cdot \sum_{\omega \in A \cap B} p(\omega) = \sum_{\omega \in A} q(\omega),$$

where

$$q(\omega) = \begin{cases} \frac{p(\omega)}{P(B)}, & \text{if } \omega \in B, \\ 0, & \text{else.} \end{cases}$$

Then $Q \colon \mathcal{P}(\Omega) \to \mathbb{R}$ given by

$$Q(A) = P(A \mid B)$$

defines a probability measure on Ω with probability mass function q.

Definition 5. Two events $A, B \subseteq \Omega$ are independent if

$$P(A \cap B) = P(A) \cdot P(B).$$

Remark 6. Let P(B) > 0. Then we have

$$A, B \text{ independent} \Leftrightarrow P(A \mid B) = P(A).$$

Example 7. In Example 2.5 (fair coin tossed twice "independently") the events A and B are independent. In Example 2.6 (two-stage production process) the events A and B are dependent.

Proposition 8 (Bayes's law). Let $n \in \mathbb{N}$ and $\{B_1, \ldots, B_n\} \subseteq \mathcal{P}(\Omega)$ be a partition¹ of Ω with $P(B_i) > 0$ for all $i = 1, \ldots, n$.

(i) For all $A \subseteq \Omega$ we have

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) \cdot P(B_i).$$

(ii) For all $A \subseteq \Omega$ with P(A) > 0 and for all k = 1, ..., n we have

$$P(B_k | A) = \frac{P(A | B_k) \cdot P(B_k)}{\sum_{i=1}^{n} P(A | B_i) \cdot P(B_i)}.$$

Proof. ad (i): Since $\{B_1, \ldots, B_n\}$ is a partition, we obtain for every $A \subseteq \Omega$

$$A = A \cap \left(\bigcup_{i=1}^{n} B_i\right) = \bigcup_{i=1}^{n} (A \cap B_i)$$

with pairwise disjoint sets $A \cap B_1, \ldots, A \cap B_n \subseteq \Omega$. Hence we get

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i).$$

¹A partition of Ω is a family of non-empty pairwise disjoint sets $B_1, B_2, ... \subseteq Ω$ with $\bigcup_{i=1}^n B_i = Ω$.

Since $P(B_i) > 0$ for all i = 1, ..., n, the conditional probabilities $P(A | B_i)$ are well-defined such that $P(A \cap B_i) = P(A | B_i) \cdot P(B_i)$.

ad (ii): If P(A) > 0, the conditional probability $P(B_k | A)$ is well-defined and we have

$$P(B_k | A) \cdot P(A) = P(B_k \cap A) = P(A \cap B_k) = P(A | B_k) \cdot P(B_k)$$

for all k = 1, ..., n. Use part (i).

4 Random Variables

In the sequel let $(\Omega, \mathcal{P}(\Omega), P)$ be a discrete probability space.

Question: How can we describe particular aspects of a random experiment (rather than the full experiment)?

Example 1. Consider a fair die that is rolled twice independently, i.e., we consider a discrete uniform distribution P on $\Omega = \{1, \dots, 6\}^2$. Particular aspects could be:

- (i) "number of pips in first die roll",
- (ii) "number of pips in second die roll",
- (iii) "sum of pips".

In the sequel let $\mathfrak{X} \subseteq \mathbb{R}$ be finite or countably infinite. We will typically consider $\mathfrak{X} \subset \mathbb{N}_0$.

Definition 2. A function $X: \Omega \to \mathfrak{X}$ is called a random variable (with values in \mathfrak{X}). Its function values $x = X(\omega) \in \mathfrak{X}$ are called realizations of X.

Example 3 (Continuation of Example 1). The first two aspects are described by $\mathfrak{X} = \{1, \dots, 6\}$ and the random variables $X_1, X_2 \colon \Omega \to \mathfrak{X}$ given by

$$X_1(\omega) = \omega_1, \quad X_2(\omega) = \omega_2$$

for $\omega = (\omega_1, \omega_2) \in \Omega$. The third aspect is described by $\mathfrak{S} = \{2, \dots, 12\}$ and the random variable $S: \Omega \to \mathfrak{S}$ given by

$$S(\omega) = X_1(\omega) + X_2(\omega) = \omega_1 + \omega_2.$$

In the sequel let $X : \Omega \to \mathfrak{X}$ be a random variable. In many cases one is just interested in the probabilities

$$P_X(A) = P(\{\omega \in \Omega \colon X(\omega) \in A\})$$

for $A \subseteq \mathfrak{X}$ and in particular in

$$p_X(x) = P_X(\{x\}) = P(\{\omega \in \Omega : X(\omega) = x\})$$

for $x \in \mathfrak{X}$.

Example 4 (Continuation of Example 3). For $x \in \{1, ..., 6\}$ we have

$$p_{X_1}(x) = p_{X_2}(x) = \frac{1}{6},$$

and p_S is given by

Proposition 5. The following holds true:

- (i) $p_X : \mathfrak{X} \to \mathbb{R}$ is a probability mass function,
- (ii) P_X is the associated probability measure on \mathfrak{X} , i.e., for all $A \subseteq \mathfrak{X}$ we have

$$P_X(A) = \sum_{x \in A} p_X(x).$$

Definition 6. P_X and p_X are called distribution and probability mass function of X, respectively.

Example 7 (Continuation of Example 4). A rod graph can be used to illustrate the probability mass function p_S , see Figure 4.1.

Figure 4.1:

Definition 8. Two random variables $X_1, X_2 : \Omega \to \mathfrak{X}$ are identically distributed if

$$P_{X_1}(A) = P_{X_2}(A)$$

for all $A \subseteq \mathfrak{X}$.

Example 9 (Continuation of Example 4). P_{X_1} and P_{X_2} are both the discrete uniform distribution on $\{1, \ldots, 6\}$. Hence X_1 and X_2 are identically distributed.

Proposition 10 (Criterion for identical distributions). $X_1, X_2: \Omega \to \mathfrak{X}$ are identically distributed if and only if

$$p_{X_1}(x) = p_{X_2}(x)$$

for all $x \in \mathfrak{X}$.

Proof. Use Proposition 5.

Remark 11. The case of a multivariate random variable (random vector)

$$X = (X_1, \ldots, X_n) \colon \Omega \to \mathfrak{X}$$

with an at most countably infinite set $\mathfrak{X} \subseteq \mathbb{R}^n$ is treated analogously. The components X_i of X are random variables.

Example 12 (Continuation of Example 3).

(i) For $\mathfrak{X} = \{1, \ldots, 6\}^2$ and $x = (x_1, x_2) \in \mathfrak{X}$ we have

$$p_{(X_1,X_2)}(x) = P(\{\omega \in \Omega : \omega = x\}) = P(\{x\}) = \frac{1}{36}.$$

Hence $P_{(X_1,X_2)}$ is the discrete uniform distribution on \mathfrak{X} .

(ii) For $\mathfrak{X} = \{(x_1, s) \in \mathbb{N}^2 : 1 \le x_1 \le 6 \land x_1 + 1 \le s \le x_1 + 6\}$ and $(x_1, s) \in \mathfrak{X}$ we have

$$p_{(X_1,S)}(x_1,s) = P(\{\omega \in \Omega : \omega_1 = x_1 \wedge \omega_1 + \omega_2 = s\}) = \frac{1}{36}.$$

Hence $P_{(X_1,S)}$ is the discrete uniform distribution on \mathfrak{X} .

In the sequel we use

$$\{X = x\} = \{\omega \in \Omega \colon X(\omega) = x\},\$$
$$\{X \in A\} = \{\omega \in \Omega \colon X(\omega) \in A\},\$$

and we consider random variables X_1, \ldots, X_n on $(\Omega, \mathcal{P}(\Omega), P)$ taking values in an at most countably infinite set \mathfrak{X} .

Definition 13. X_1, \ldots, X_n are independent if for all $A_1, \ldots, A_n \subseteq \mathfrak{X}$ we have

$$P\left(\bigcap_{i=1}^{n} \{X_i \in A_i\}\right) = \prod_{i=1}^{n} P(\{X_i \in A_i\}).$$

Example 14 (Continuation of Example 3).

(i) For $\mathfrak{X} = \{1, \ldots, 6\}$ and $A_1, A_2 \subseteq \mathfrak{X}$ we have

$$P(\{X_1 \in A_1\} \cap \{X_2 \in A_2\}) = P(\{\omega \in \Omega : \omega_1 \in A_1 \land \omega_2 \in A_2\})$$
$$= \frac{|A_1| \cdot |A_2|}{|\Omega|} = \frac{|A_1| \cdot |A_2|}{36}$$

and according to Example 9 for i = 1, 2

$$P(\{X_i \in A_i\}) = \frac{|A_i|}{6}.$$

Hence X_1 and X_2 are independent.

(ii) For $\mathfrak{X} = \{1, ..., 12\}$, $A_1 = \{6\}$ and $B = \{2\}$ we have

$$P(\lbrace X_1 \in A_1 \rbrace \cap \lbrace S \in B \rbrace) = P(\lbrace \omega \in \Omega \colon \omega_1 = 6 \land \omega_1 + \omega_2 = 2 \rbrace)$$
$$= P(\varnothing) = 0$$

as well as $P({X_1 \in A_1}) > 0$ and $P({S \in B}) > 0$. Hence X_1 and S are not independent.

Proposition 15 (Criterion for independence). X_1, \ldots, X_n are independent if and only if for all $x_1, \ldots, x_n \in \mathfrak{X}$ we have

$$P\left(\bigcap_{i=1}^{n} \{X_i = x_i\}\right) = \prod_{i=1}^{n} p_{X_i}(x_i).$$
 (2)

Proof. " \Rightarrow ": Take $A_i = \{x_i\}$.

" \Leftarrow ": Since $\mathfrak X$ is countable, every $A_i \subseteq \mathfrak X$ can be expressed as a countable union $A_i = \bigcup_{x_i \in A_i} \{x_i\}$ of pairwise disjoint sets. Use the σ-additivity of P and (2). [...] \square

Remark 16. Consider the special case of n = 2 and $\mathfrak{X} = \{0, \dots, k\}$ for some $k \in \mathbb{N}$. Put

$$p_{i,j} = P(\{X_1 = i\} \cap \{X_2 = j\})$$

and

$$p_{i,\bullet} = P(\{X_1 = i\}\})$$
 and $p_{\bullet,j} = P(\{X_2 = j\}\})$

for $i, j \in \{0, \dots, k\}$. Clearly, we have

$$p_{i,\bullet} = \sum_{j=0}^{k} p_{i,j}$$
 and $p_{\bullet,j} = \sum_{i=0}^{k} p_{i,j}$

for all $i, j \in \{0, ..., k\}$. The corresponding contingency table is given by Table II.1. Proposition 15 shows that

$$X_1, X_2$$
 independent $\Leftrightarrow \forall i, j \in \{0, \dots, k\} : p_{i,j} = p_{i,\bullet} \cdot p_{\bullet,j}$

X_2 X_1	0		k	Σ
0	$p_{0,0}$		$p_{0,k}$	$p_{0,ullet}$
:	:	٠.	:	:
k	$p_{k,0}$		$p_{k,k}$	$p_{k,ullet}$
\sum	$p_{\bullet,0}$		$p_{ullet,k}$	1

Table II.1: Contingency table from Remark 16.

5 Empirical Distribution

In the sequel let $(\Omega, \mathcal{P}(\Omega), P)$ be a discrete probability space and let $X : \Omega \to \mathfrak{X}$ be a random variable with a countable set $\mathfrak{X} \subseteq \mathbb{R}$.

We consider the case where the set \mathfrak{X} of possible realizations is known but the distribution P_X is unknown. Instead, a *sample* (data set)

$$x_1, \dots, x_N \in \mathfrak{X} \tag{3}$$

consisting of realizations of N independent repetitions of the random experiments is available.

Question: Can we approximately determine the probability mass function p_X of X?

Definition 1. Given the sample (3) the relative frequency of $x \in \mathfrak{X}$ is given by

$$\widehat{p}(x) = \frac{|\{\ell \in \{1, \dots, N\} : x_{\ell} = x\}|}{N}$$

$$= \frac{\text{number of elements of the sample equal to } x}{N}.$$

Remark 2. For $p = \widehat{p}$ we have (1) in Proposition 2.2(ii). According to Proposition 2.2(iii), see also Proposition 4.5, we obtain a probability distribution \widehat{P} on \mathfrak{X} satisfying

$$\widehat{P}(A) = \sum_{x \in A} \widehat{p}(x) = \frac{|\{\ell \in \{1, \dots, N\} : x_{\ell} \in A\}|}{N}$$

$$= \frac{\text{number of elements of the sample with values in } A}{N}$$

for $A \subseteq \mathfrak{X}$.

Definition 3. \widehat{P} is called *empirical distribution* of the sample (3).

Remark 4. A rod graph can be used to illustrate empirical distributions in terms of relative frequencies. Based on the scale of measure we distinguish the following types:

(i) Nominal scale: Elements of \mathfrak{X} indicate a name (operations $=, \neq$). Example: gender (male (0), female (1)).

X_2 X_1	0		k	Σ
0	$\widehat{p}_{0,0}$		$\widehat{p}_{0,k}$	$\widehat{p}_{0,ullet}$
:	:	٠.	:	:
k	$\widehat{p}_{k,0}$		$\widehat{p}_{k,k}$	$\widehat{p}_{k,ullet}$
Σ	$\widehat{p}_{ullet,0}$		$\widehat{p}_{ullet,k}$	1

Table II.2: Contingency table for empirical distribution.

- (ii) Ordinal scale: Elements of \mathfrak{X} allow for a ranking (operations <,>,=). Example: rank order.
- (iii) Metric (cardinal) scale: Elements of \mathfrak{X} are numeric and allow for arithmetic operations. Examples: time, temperature, sales.

Remark 5. The case of a multivariate random variable (random vector)

$$X = (X_1, \dots, X_n) \colon \Omega \to \mathfrak{X}$$

with an at most countably infinite set $\mathfrak{X} \subseteq \mathbb{R}^n$ is treated analogously.

Example (rod graph): Simulation of two independent fair coins, sample size N = 1000.

Remark 6 (Counterpart of Remark 4.16). Consider the special case of two random variables $(X_1, X_2) : \Omega \to \mathfrak{X}$ and $\mathfrak{X} = \{0, \dots, k\}^2$ with $k \in \mathbb{N}$. Put

$$\widehat{p}_{i,j} = \frac{|\{\ell \in \{1, \dots, N\} : x_{\ell} = (i, j)\}|}{N}$$

and

$$\widehat{p}_{i,\bullet} = \frac{|\{\ell \in \{1,\dots,N\} \colon x_{\ell,1} = i\}|}{N}, \quad \widehat{p}_{\bullet,j} = \frac{|\{\ell \in \{1,\dots,N\} \colon x_{\ell,2} = j\}|}{N}$$

for $i, j \in \{0, ..., k\}$. We clearly have

$$\widehat{p}_{i,\bullet} = \sum_{j=0}^{k} \widehat{p}_{i,j}$$
 and $\widehat{p}_{\bullet,j} = \sum_{i=0}^{k} \widehat{p}_{i,j}$

for all $i, j \in \{0, ..., k\}$. The corresponding contingency table is given by Table II.2. The random variables X_1 and X_2 are assumed to be independent if and only if

$$\widehat{p}_{i,j} \approx \widehat{p}_{i\bullet} \cdot \widehat{p}_{\bullet,j}$$

for all $i, j \in \{0, ..., k\}$.

Example (crosstab): Simulation of two independent fair coins, sample size N=1000.

Example (crosstab): Simulation of two-stage production process, sample size N=1000.

6 Special Discrete Distributions

In this section we discuss several discrete probability distributions that serve as standard models for special random experiments.

Binomial distribution

Consider a random experiment with the two outcomes 1 (success) and 0 (failure) that is repeated n times independently. This can be modeled by

- (i) parameters $n \in \mathbb{N}$ (number of repetitions) and $p \in [0,1]$ (probability of success),
- (ii) independent and identically distributed (i.i.d.) random variables X_1, \ldots, X_n satisfying

$$p = P({X_i = 1}) = 1 - P({X_i = 0})$$

for all $i = 1, \ldots, n$.

Put

$$S = \sum_{i=1}^{n} X_i$$

and note that for $\omega \in \Omega$ we have

$$S(\omega) = |\{i \in \{1, \dots, n\} : X_i(\omega) = 1\}|,$$

i.e., the number of successes is given by S.

Proposition 1. For $k \in \{0, ..., n\}$ we have

$$P(\{S = k\}) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}.$$

Definition 2. A random variable X is binomially distributed with parameters $n \in \mathbb{N}$ und $p \in [0, 1]$ if

$$P(\lbrace X = k \rbrace) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

for all $k \in \{0, ..., n\}$.

Notation: $X \sim B(n, p)$.

Statistical problem: Given n and k (by a sample), estimate p.

Example 3. pmf of $X \sim B(10, p)$ with p = 1/2 and p = 1/4.

Example 4. pmf of $X \sim B(100, p)$ with p = 1/2 and p = 1/20.

Proposition 5. Let X and Y be independent with $X \sim B(n, p)$ and $Y \sim B(m, p)$ for $m, n \in \mathbb{N}$ and $p \in [0, 1]$. Then we have

$$X + Y \sim B(n + m, p).$$

Multinomial distribution

Consider a random experiment with outcomes $0, \ldots, m-1$ that is repeated n times independently. This can be modeled by

- (i) parameters $n \in \mathbb{N}$ (number of repetitions), $m \in \mathbb{N} \setminus \{1\}$ (number of outcomes), and $p_0, \ldots, p_{m-1} \in [0, 1]$ such that $\sum_{j=0}^{m-1} p_j = 1$ (probabilities of m outcomes),
- (ii) i.i.d. random variables X_1, \ldots, X_n satisfying

$$P(\{X_i = j\}) = p_i$$

for all i = 1, ..., n and j = 0, ..., m - 1.

Put

$$S_i(\omega) = |\{i \in \{1, \dots, n\} : X_i(\omega) = j\}|$$

for $\omega \in \Omega$ and $j \in \{0, ..., m-1\}$, i.e., S_j is the number of random experiments with outcome j, and put

$$S = (S_0, \dots, S_{m-1}).$$

Remark 6. (i) For j = 0, ..., m-1 we have $S_j \sim B(n, p_j)$.

(ii) The random variables S_0, \ldots, S_{m-1} are not independent in general. We have

$$\sum_{j=0}^{m-1} S_j(\omega) = n$$

for all $\omega \in \Omega$.

Proposition 7. For $k = (k_0, \dots, k_{m-1}) \in \mathbb{N}_0^m$ with $\sum_{j=0}^{m-1} k_j = n$ we have

$$P(\{S=k\}) = \frac{n!}{k_0! \cdots k_{m-1}!} \cdot p_0^{k_0} \cdots p_{m-1}^{k_{m-1}}.$$

Definition 8. A random vector X follows a multinomial distribution with parameters $n \in \mathbb{N}$ and $p_0, \ldots, p_{m-1} \in [0, 1]$ such that $\sum_{j=0}^{m-1} p_j = 1$ if

$$P(\{X=k\}) = \frac{n!}{k_0! \cdots k_{m-1}!} \cdot p_0^{k_0} \cdots p_{m-1}^{k_{m-1}}$$

for all $k = (k_0, ..., k_{m-1}) \in \mathbb{N}_0^m$ with $\sum_{j=0}^{m-1} k_j = n$. Notation: $X \sim M(n, p_0, ..., p_{m-1})$.