Goodness-of-fit typically measured by likelihood ratio index

Also commonly called **McFadden's Pseudo** R²

$$ho = 1 - rac{LL(\hat{eta})}{LL(0)}$$

Goodness-of-fit typically measured by likelihood ratio index

Also commonly called **McFadden's Pseudo** R²

$$\rho = 1 - \frac{LL(\hat{\beta})}{LL(0)}$$

Range:
$$\rho \in [0,1]$$

- $\rho = 0$: estimated model no better than no model
- $\rho = 1$: perfect prediction of all choices

Unlike regression R^2 , ρ has no intuitive interpretation between 0 and 1 (i.e. "pseudo")

 ρ represents the percentage increase in log-likelihood above zero parameters:

$$\rho = \frac{LL(0) - LL(\hat{\beta})}{LL(0)}$$

Unlike regression R^2 , ρ has no intuitive interpretation between 0 and 1 (i.e. "pseudo")

ho represents the percentage increase in log-likelihood above zero parameters:

$$\rho = \frac{LL(0) - LL(\hat{\beta})}{LL(0)}$$

Valid comparisons require:

- Same dataset
- Same choice alternatives
- Same *LL*(0) baseline

Unlike regression R^2 , ρ has no intuitive interpretation between 0 and 1 (i.e. "pseudo")

 ρ represents the percentage increase in log-likelihood above zero parameters:

$$\rho = \frac{LL(0) - LL(\hat{\beta})}{LL(0)}$$

Valid comparisons require:

- Same dataset
- Same choice alternatives
- Same LL(0) baseline

 $\uparrow \rho \Rightarrow$ better fit, but unclear meaning of specific values (0.2–0.4 is "excellent fit")

Another common goodness-of-fit metric is the percent correctly predicted ("accuracy")

This statistic predicts the alternative with highest probability for each individual

Another common goodness-of-fit metric is the percent correctly predicted ("accuracy")

This statistic predicts the alternative with highest probability for each individual

Key Problems:

- Contradicts the meaning of choice probabilities
- Depends on arbitrary threshold choice (typically 0.5)
- Performs poorly with imbalanced choice sets

Another common goodness-of-fit metric is the percent correctly predicted ("accuracy")

This statistic predicts the alternative with highest probability for each individual

Key Problems:

- Contradicts the meaning of choice probabilities
- Depends on arbitrary threshold choice (typically 0.5)
- Performs poorly with imbalanced choice sets

Choice probabilities represent expected shares across many repetitions, not individual predictions

This approach gives inaccurate market shares and implies perfect information