STM32F10X函式庫之GPIO驅動介紹

Declared Version

Training Only	
Declare	
Document Version	1.00
Release Date	2009.08
Document Title	STM32F10X函式庫之GPIO驅動介紹
Exercise Time	
Platform	■ MIAT_STM32 ■ MIAT_IOB
Peripheral	Key Switch, LED
Author	■ WU-YANG Technology Co., Ltd.

Outline

- ☐ GPIO Features
- ☐ GPIO Configuration Modes
- □ GPIO registers介紹
- □ GPIO標準函式庫驅動介紹

GPIO Features

- ☐ Up to 112 multifunction bi-direction I/O ports
 - Standard I/Os 5V tolerant
 - The GPIOs can sink 25mA (total currents suck is 150mA)
 - Configurable Output Speed up to 50 MHz
 - Up to 16/21 Analog Inputs
 - Alternate Functions pins (like USARTx, TIMx, I2Cx, SPIx, CAN, USB...)
 - Software remapping of I/O alternate functions
 - All mappable on 16 external interrupt vectors
 - One I/O can be used as Wake-Up from STANDBY (PA0)
 - Atomic Bit Set and Bit Reset using BSRR and BRR registers
 - The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence has been applied on a port bit, it is no longer possible to modify the value of the port bit until the next reset.

GPIO configuration Modes

Table 17. Port bit configuration table

Configu	ration mode	CNF1	CNF0	MODE1	MODE0	PxODR register	
General purpose	Push-pull	0	0	C	0 or 1		
output	Open-drain		1	Ī .	0	0 or 1	
Alternate Function	Push-pull	4	0	_1	don't care		
output	Open-drain	1	1	see Ta	able 18	don't care	
	Analog input	0	0			don't care	
loout	Input floating	0	1		.0	don't care	
Input	Input pull-down	-	0		00	0	
	Input pull-up	1	U		9	1	

Table 18. Output MODE bits

MODE[1:0]	Meaning	
00	Reserved	7
01	Max. output speed 10 MHz	
10	Max. output speed 2 MHz	7
11	Max. output speed 50 MHz	

Input configuration

- ☐ When the I/O Port is programmed as Input:
 - The Output Buffer is disabled
 - The Schmitt Trigger Input is activated
 - The weak pull-up and pull-down resistors are activated or not depending on input configuration (pull-up, pull-down or floating):
 - The data present on the I/O pin is sampled into the Input Data Register every APB2 clock cycle
 - A read access to the Input Data Register obtains the I/O State.

Output configuration

- ☐ When the I/O Port is programmed as Output:
 - The Output Buffer is enabled:
 - Open Drain Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register leaves the port in Hi-Z. (the P-MOS is never activated)
 - Push-Pull Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register activates the P-MOS.
 - The Schmitt Trigger Input is activated.
 - The weak pull-up and pull-down resistors are disabled.
 - The data present on the I/O pin is sampled into the Input Data Register every APB2 clock cycle
 - A read access to the Input Data Register gets the I/O state in open drain mode
 - A read access to the Output Data register gets the last written value in Push-Pull mode

Alternate function configuration

- ☐ When the I/O Port is programmed as Alternate Function:
 - The Output Buffer is turned on in Open Drain or Push-Pull configuration
 - The Output Buffer is driven by the signal coming from the peripheral (alternate function out)
 - The Schmitt Trigger Input is activated
 - The weak pull-up and pull-down resistors are disabled.
 - The data present on the I/O pin is sampled into the Input Data Register every APB2 clock cycle
 - A read access to the Input Data Register gets the I/O state in open drain mode
 - A read access to the Output Data register gets the last written value in Push-Pull mode

9

Analog input configuration

- □ When the I/O Port is programmed as Analog Input Configuration:
 - The Output Buffer is disabled.
 - The Schmitt Trigger Input is de-activated providing zero consumption for every analog value of the I/O pin. The output of the Schmitt Trigger is forced to a constant value (0).
 - The weak pull-up and pull-down resistors are disabled.
 - Read access to the Input Data Register gets the value "0".

Peripherals' GPIO configurations

TIM1/8 pinout	configuration	GPIO configuration
TIM1/0 CLIV	Input capture channel x	Input floating
TIM1/8_CHx	Output compare channel x	Alternate function push-pull
TIM1/8_CHxN	Complementary output channel x	Alternate function push-pull
TIM1/8_BKIN	Break input	Input floating
TIM1/8_ETR	External trigger timer input	Input floating
		4

I2C pinout	Configuration	GPIO configuration
I2Cx_SCL	I2C clock	Alternate function open drain
I2Cx_SDA	I2C Data I/O	Alternate function open drain

□ Port configuration register low (GPIOx_CRL) (x=A..G)

Address offset: 0x00

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	7[1:0]	MODE	7[1:0]	CNF	6[1:0]	MODE	E6[1:0]	CNF	5[1:0]	MODE	5[1:0]	CNF	4[1:0]	MODE	E4[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	3[1:0]	MODE	[3:0]	CNF	2[1:0]	MODE	E2[1:0]	CNF	1[1:0]	MODE	E1[1:0]	CNF	0[1:0]	MODE	E0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30, 27:26, CNFy[1:0]: Port x configuration bits (y= 0 .. 7)

23:22, 19:18, 15:14, 11:10, 7:6, 3:2

These bits are written by software to configure the corresponding I/O port.

Refer to Table 17: Port bit configuration table on page 140.

In input mode (MODE[1:0]=00):

00: Analog input mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] > 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, MODEy[1:0]: Port x mode bits (y= 0 .. 7)

21:20, 17:16, 13:12, 9:8, 5:4, 1:0

These bits are written by software to configure the corresponding I/O port.

Refer to Table 17: Port bit configuration table on page 140.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	15[1:0]	MODE	15[1:0]	CNF1	14[1:0]	MODE	14[1:0]	CNF1	3[1:0]	MODE	13[1:0]	CNF1	2[1:0]	MODE	12[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	11[1:0]	MODE	[11[1:0]	CNF1	10[1:0]	MODE	10[1:0]	CNF	9[1:0]	MOD	E9[1:0]	CNF	8[1:0]	MODE	E8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30, 27:26, CNFy[1:0]: Port x configuration bits (y= 8.. 15)

23:22, 19:18, 15:14, 11:10, 7:6, 3:2 These bits are written by software to configure the corresponding I/O port.

Refer to Table 17: Port bit configuration table on page 140.

In input mode (MODE[1:0]=00):

00: Analog input mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] > 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, MODEy[1:0]: Port x mode bits (y= 8 .. 15)

21:20, 17:16, 13:12, 9:8, 5:4, 1:0

These bits are written by software to configure the corresponding I/O port.

Refer to Table 17: Port bit configuration table on page 140.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

☐ Port input data register (GPIOx_IDR) (x=A..G)

Address offset: 0x08h

Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
ır	r	⊚ r ⊗	r	r	ur:	(r)	r	r	r	r	r	ı, r	ı.r.	r	r)

Bits 31:16 Reserved, always read as 0.

Bits 15:0 IDRy[15:0]: Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input value of the corresponding I/O port.

- □ Port output data register (GPIOx_ODR) (x=A..G)
 - ☐ Address offset: 0x0C
 - ☐ Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, always read as 0.

Bits 15:0 ODRy[15:0]: Port output data (y= 0 .. 15)

□ Port bit set/reset register (GPIOx_BSRR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	W	w	W	W	W	W	W	W	W	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	W	W	W	w	w	w	w	w	W	w	w	w	w	w	w

Bits 31:16 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x Set bit y (y=0...15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Set the corresponding ODRx bit

□ Port bit reset register (GPIOx_BRR) (x=A..G)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	W	w	W	w	W	W	w	w	w	W	w	w	w	W	W

Bits 31:16 Reserved

Bits 15:0 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

- Port configuration lock register (GPIOx_LCKR) (x=A..G)
 - This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit it is no longer possible to modify the value of the port bit until the next reset.
 - Each lock bit freezes the corresponding 4 bits of the control register (CRL, CRH).

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	21	26	25	24	23	22	21	20	19	18	17	16
						-									LCKK
							Reserved								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 16 LCKK[16]: Lock key

This bit can be read anytime. It can only be modified using the Lock Key Writing Sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. GPIOx_LCKR register is locked until an MCU reset occurs.

LOCK key writing sequence:

Write 1

Write 0

Write 1

Read 0

Read 1 (this read is optional but confirms that the lock is active)

Note: During the LOCK Key Writing sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence will abort the lock.

Bits 15:0 LCKy: Port x Lock bit y (y= 0 .. 15)

These bits are read write but can only be written when the LCKK bit is 0.

0: Port configuration not locked

1: Port configuration locked.

AF remap and debug I/O configuration register

☐ EX: I2C1 alternate function remapping

Alternate function	I2C1_REMAP = 0	I2C1_REMAP = 1 (1)		
I2C1_SCL	PB6	PB8		
I2C1_SDA	PB7	PB9		

- ☐ AF remap and debug I/O configuration register (AFIO_MAPR)
 - ☐ Address offset: 0x04
 - ☐ Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Reserve	d			SWJ_ CFG[2:0]	1		Reserved	17	ADC2_ ETRGR EG_RE MAP	ADC2_ ETRGIN J_REM AP	ADC1_ ETRGR EG_RE MAP		TIM5CH 4_IREM AP
					w	w	w				rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PD01_ REMAP		REMAP 1:0]	TIM4_ REMAP		REMAP :0]		REMAP :0]		REMAP :0]		ART3_ AP[1:0]	USART 2_ REMAP	USART 1_ REMAP	1201_	SPI1_ REMAP
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

STM32F10x Standard Library for GPIO

☐ The five GPIO peripherals are declared in stm32f10x_map.h:

typedef struct
{
vu32 CRL;
vu32 CRH;
vu32 IDR;
vu32 ODR;
vu32 BSRR;
vu32 BRR;
vu32 LCKR;
} GPIO_TypeDef;
typedef struct
{
vu32 EVCR;
vu32 MAPR;
vu32 EXTICR[4];
} AFIO_TypeDef;

Register	Description			
CRL	Port Control Register low			
CRH	Port Control Register High			
IDR	Input Data Register			
ODR	Output Data Register			
BSRR	Bit Set Reset Register			
BRR	Bit Reset Register			
LCKR	Lock Register			
EVCR	Event Control Register			
MAPR	Remap Debug and AF Register			
EXTICR	EXTI Line 0 to Line 15 Configuration Register			

```
#define PERIPH_BASE ((u32)0x40000000)

#define APB1PERIPH_BASE PERIPH_BASE

#define APB2PERIPH_BASE (PERIPH_BASE + 0x10000)

#define AHBPERIPH_BASE (PERIPH_BASE + 0x20000)

...

#define AFIO_BASE (APB2PERIPH_BASE + 0x0000)

#define GPIOA_BASE (APB2PERIPH_BASE + 0x0800)

#define GPIOB_BASE (APB2PERIPH_BASE + 0x0C00)

#define GPIOC_BASE (APB2PERIPH_BASE + 0x1000)

...

#define GPIOF_BASE (APB2PERIPH_BASE + 0x1C00)
```

#define GPIOG_BASE (APB2PERIPH_BASE + 0x2000)

GPIO firmware library functions

☐ GPIO firmware library functions

Function name	Description
GPIO_DeInit	Resets the GPIOx peripheral registers to their default reset values.
GPIO_AFIODeInit	Resets the Alternate Functions (remap, event control and EXTI configuration) registers to their default reset values.
GPIO_Init	Initializes the GPIOx peripheral according to the specified parameters in the GPIO_InitStruct.
GPIO_StructInit	Fills each GPIO_InitStruct member with its default value.
GPIO_ReadInputDataBit	Reads the specified input port pin
GPIO_ReadInputData	Reads the specified GPIO input data port
GPIO_ReadOutputDataBit	Reads the specified output data port bit
GPIO_ReadOutputData	Reads the specified GPIO output data port
GPIO_SetBits	Sets the selected data port bits
GPIO_ResetBits	Clears the selected data port bits
GPIO_WriteBit	Sets or clears the selected data port bit
GPIO_Write	Writes data to the specified GPIO data port
GPIO_PinLockConfig	Locks GPIO Pins configuration registers
GPIO_EventOutputConfig	Selects the GPIO pin used as Event output.
GPIO_EventOutputCmd	Enables or disables the Event Output.
GPIO_PinRemapConfig	Changes the mapping of the specified pin.
GPIO_EXTILineConfig	Selects the GPIO pin used as EXTI Line.

GPIO_Init function

Function name	GPIO_Init
Function prototype	void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
Behavior description	Initializes the GPIOx peripheral according to the specified parameters in the GPIO_InitStruct.
Input parameter1	GPIOx: where x can be (AG) to select the GPIO peripheral.
Input parameter2	GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure that contains the configuration information for the specified GPIO peripheral. Refer to GPIO_InitTypeDef structure for more details on the allowed values for this parameter.
Output parameter	None
Return parameter	None
Required preconditions	None
Called functions	None

□ Example:

/* Configure all the GPIOF in Output PP mode */ GPIO_Init(GPIOF, &GPIO_InitStructure);

GPIO_InitTypeDef structure

☐ The GPIO_InitTypeDef structure is defined in the stm32f10x_gpio.h file:

☐ GPIO_Pin

GPIO_Pin	Description
GPIO_Pin_None	No pin selected
GPIO_Pin_0	Pin 0 Selected
GPIO_Pin_1	Pin 1 Selected
GPIO_Pin_2	Pin 2 Selected

. . .

GPIO_Pin_12	Pin 12 Selected
GPIO_Pin_13	Pin 13 Selected
GPIO_Pin_14	Pin 14 Selected
GPIO_Pin_15	Pin 15 Selected
GPIO_Pin_All	All Pins Selected

☐ GPIO_Speed

GPIO_Speed	Description
GPIO_Speed_10MHz	Output Maximum Frequency = 10 MHz
GPIO_Speed_2MHz	Output Maximum Frequency = 2 MHz
GPIO_Speed_50MHz	Output Maximum Frequency = 50 MHz

☐ GPIO_Mode

GPIO_Mode	Description		
GPIO_Mode_AIN	Analog Input		
GPIO_Mode_IN_FLOATING	Input Floating		
GPIO_Mode_IPD	Input Pull-Down		
GPIO_Mode_IPU	Input Pull-up		
GPIO_Mode_Out_OD	Open Drain Output		
GPIO_Mode_Out_PP	Push-Pull Output		
GPIO_Mode_AF_OD	Open Drain Output Alternate-Function		
GPIO_Mode_AF_PP	Push-Pull Output Alternate-Function		

Example:

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

■ Example:

```
/* Configure all the GPIOA in Input Floating mode */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
```


GPIO_ReadInputData function

Function name	GPIO_ReadInputData
Function prototype	u16 GPIO_ReadInputData(GPIO_TypeDef* GPIOx)
Behavior description	Reads the specified GPIO input data port.
Input parameter	GPIOx: where x can be (AG) to select the GPIO peripheral.
Output parameter	None
Return parameter	GPIO input data port value.
Required preconditions	None
Called functions	None

Example:

/*Read the GPIOB input data port and store it in ReadValue variable*/ u16 ReadValue;

ReadValue = GPIO_ReadInputData(GPIOB);

GPIO_SetBits

Function name	GPIO_SetBits
Function prototype	void GPIO_SetBits(GPIO_TypeDef* GPIOx, u16 GPIO_Pin)
Behavior description	Sets the selected data port bits.
Input parameter1	GPIOx: where x can be (AG) to select the GPIO peripheral.
Input parameter2	GPIO_Pin: specifies the port bits to be written. This parameter can be any combination of GPIO_Pin_x where x can be (015). Refer to GPIO_Pin for more details on the allowed values for this parameter.
Output parameter	None
Return parameter	None
Required preconditions	None
Called functions	None

Example:

/* Set the GPIOA port pin 11 */
GPIO_SetBits(GPIOA, GPIO_Pin_11);

☐ GPIO_ResetBits

Function name	GPIO_ResetBits
Function prototype	void GPIO_ResetBits(GPIO_TypeDef* GPIOx, u16 GPIO_Pin)
Behavior description	Clears the selected data port bits.
Input parameter1	GPIOx: where x can be (AG) to select the GPIO peripheral.
Input parameter2	GPIO_Pin: specifies the port bits to be written. This parameter can be any combination of GPIO_Pin_x where x can be (015). Refer to GPIO_Pin for more details on the allowed values for this parameter.
Output parameter	None
Return parameter	None
Required preconditions	None
Called functions	None

/* Clears the GPIOF port pin 11*/
GPIO_ResetBits(GPIOF, GPIO_Pin_11);

上機實作練習

□ 試使用STM32F10X之GPIO標準函式庫,寫一段程式其動作當按下KEY1時,LED 全亮,按下KEY2時,LED全滅,按下KEY3,LED輪流的由右至左點亮一次,按 下KEY4,LED輪流的由左至右點亮一次。

Q & A

