三、分段函数

Note: 18世纪后半叶, Euler、Lagrange (法国数学家)等人在研究弦振动问题时引入.

例 1: 阶跃函数
$$f(x) = \begin{cases} a, & x \leq x_0, \\ b, & x > x_0, \end{cases}$$

例 2: 符号函数
$$\operatorname{sgn}(x) = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0, \end{cases}$$

例 3: 税费函数
$$f(x) = \begin{cases} 0, & x \leq 3500, \\ 0.03 \times (x - 3500), & 3500 < x \leq 5000, \\ 45 + 0.1 \times (x - 5000), & 5000 < x \leq 8000, \\ 345 + 0.15 \times (x - 8000), & 8000 < x \leq 12500. \end{cases}$$

定义: 在定义域上不能由一个统一的数学表达式表示,但在定义域的不同范围上能用不同的数学表达式给出的函数称为**分段函数**. (分段点)

例 4: 取整函数 [x] 也是一个分段函数.

四、隐函数

例 1: 对任意的 $k \in (-\infty,0]$,存在唯一的 x,使得方程 $2^x = kx + 2$ 成立,因此该方程就确定了一个从 $k \in (-\infty,0]$ 到 x 的函数关系.

例 2: 方程
$$y = x + \frac{1}{2}\sin x$$
 也确定了一个从 y 到 x 的函数关系.

例 3:
$$x^2 + y^2 = 1$$
 称为函数 $y = \sqrt{1 - x^2}$ 或 $y = -\sqrt{1 - x^2}$ 的隐函数形式.