Foundations of Calculus & Numerical Applications

Exploring the mathematical foundations that power modern computation and analysis

Shafia Ameeruddin

Limits & Derivatives

Limit Definition

$$\lim_{x o a}f(x)=L$$

Function approaches a specific value as input approaches a point

Derivative Concept

Measures instantaneous rate of change at any point

Example: $f(x) = x^2 \rightarrow f'(x) = 2x$

Integrals & Fundamental Theorem

Integration Types

- Indefinite: $\int f(x)dx = F(x) + C$
- **Definite:** $\int_a^b f(x)dx = F(b) F(a)$
 - Fundamental Theorem: Derivative and integral are inverse processes they undo each other

Visual Concept

Integral represents the area under a curve between two points

Multivariate Gradients

1

2

3

Gradient Formula

For f(x, y):

$$abla f = \left(rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
ight)$$

Example

$$f(x,y) = x^2 + y^2$$

$$abla f = (2x,2y)$$

Application

Powers gradient descent optimization in machine learning algorithms

Numerical Methods with NumPy

```
import numpy as np
f = lambda x: np.sin(x)
# Derivative at pi/4
x, dx = np.pi/4, 1e-5
derivative = (f(x+dx)-f(x-dx))/(2*dx)
# Integral from 0 to pi
xs = np.linspace(0, np.pi, 1000)
integral = np.trapz(np.sin(xs), xs)
print("f'(pi/4):", derivative) \# \approx 0.707 (\sqrt{2}/2)
print("\{0^{\pi} \sin(x) dx:", integral) # \approx 2
```

Practical computation bridges theory with real-world applications

Worked Problem: Derivative of e^x

Find the derivative of $f(x) = e^x$ at x = 0 using limit definition

0

Apply Definition

$$f'(0)=\lim_{h o 0}rac{e^{0+h}-e^0}{h}$$

02

Simplify

$$=\lim_{h o 0}rac{e^h-1}{h}$$

03

Evaluate Limit

Result: 1

Key Takeaways

Limits

Foundation of all calculus concepts

Gradients

Enable multivariable optimization

Derivatives

Measure instantaneous rate of change

NumPy Methods

Bridge theory to practical computation

Integrals

Calculate accumulation and area