SANTA CLARA UNIVERSITY	ELEN 115 Spring 2023	Dr. S. Krishnan
Laboratory #2: Single Time Constant Circuits		

Pre-lab:

Carry out a "paper-and-pencil" analysis of the RC circuit given in Figure 1. V_0 is the <u>initial</u> voltage present across the capacitor terminals just before the switch closes.

Figure 1: Single time constant circuit

- (a) Write the expression for the expected output voltage v_{OUT} as a function of time in terms of R1, R2, C1, V_0 , input voltage v_{IN} , and time. Assume that the input switches from 0 to a value VIN at time t=0.
- (b) Draw the waveform with respect to time for $v_{OUT}(t)$ for each case below.

Given R1= 20K Ω , R2= 20K Ω and that v_{IN} switches instantaneously from 0 to 10V.

There are different cases to consider while doing the calculations for the PRE-LAB:

- (i) $V_0 = 0$ volts and $C1 = 0.1 \mu F$
- (ii) $V_0 = 1$ volts and $C1 = 0.1 \mu F$
- (c) For an AC source at the input given as $v_{\mbox{\scriptsize IN}}$
 - (i) Classify the circuit as STC high pass or low pass with output v_{OUT} across $C1 = 0.1 \mu F$.
 - (ii) Find the cutoff or 3dB frequency in Hz for this circuit for $R1\text{=}10K\Omega$
 - (iii) Find the gain v_{OUT}/v_{in} at
 - $\bullet \quad \omega \, = 0$
 - $\omega = \infty$