HW 1 - MATH403

Danesh Sivakumar

June 14, 2022

Problem 1 (Chapter 2, Exercise 4)

Which of the following sets are closed under the given operation?

- (a) $\{0, 4, 8, 12\}$ addition mod 16
- (b) $\{0, 4, 8, 12\}$ addition mod 15
- (c) $\{1, 4, 7, 13\}$ multiplication mod 15
- (d) $\{1, 4, 5, 7\}$ multiplication mod 9

Proof.

(a) Given the Cayley table:

	0	4	8	12
0	0	4	8	12
4	4	8	12	0
8	8	12	0	4
12	12	0	4	8

We observe that all entries in the table are in the set; thus the group is indeed closed.

- (b) Note that $(4+12) \mod 15 = 1 \notin G$; thus the group is not closed.
- (c) Given the Cayley table:

	1	4	7	13
1	1	4	7	13
4	4	1	13	7
	7	13	4	1
13	13	7	1	4

We observe that all entries in the table are in the set; thus the group is indeed closed.

(d) Note that $(4 \cdot 5) \mod 9 = 2 \notin G$; thus the group is not closed.

Problem 2 (Chapter 2, Exercise 16)

Show that the set $\{5, 15, 25, 35\}$ is a group under multiplication modulo 40. What is the identity element of this group? Can you see any relationship between this group and U(8)?

Proof. Given the Cayley table of this group:

		15		35
5	25	35 25	5	15
15	35	25	15	5
25	5	15	25	35
35	15	5	35	25

We observe that all entries in the table are in the set; thus the group is indeed closed. Furthermore, note that 25 is the identity; that is, it is the element e with the property that for any $a \in G$, $a \cdot e = a$. Now, given the Cayley table of U(8):

We observe that each element of the original group corresponds to an element of U(8); namely, 5 corresponds to 5, 15 corresponds to 7, 25 corresponds to 1, and 35 corresponds to 3.

Problem 3 (Chapter 2, Exercise 32)

Construct a Cayley table for U(12).

Proof.

	1	5	7	11
1	1	5	7	11
5	5 7	1 11	11	7
7		11	1	5
11	11	7	5	1

Problem 4 (Chapter 2, Exercise 36)

Let a and b belong to a group G. Find an x in G such that $xabx^{-1} = ba$.

Proof. Suppose $a, b, x \in G$ with the property that $xabx^{-1} = ba$. Then

$$xabx^{-1} = ba$$

$$xabx^{-1}x = bax$$

$$xabe = bax$$

$$xab = bax$$

Matching terms, we get that x=b works. We know that $b^{-1} \in G$ because $b \in G$, so:

$$babb^{-1} = bae = ba$$

Similarly, $x = a^{-1}$ works:

$$a^{-1}aba = eba = ba$$

Problem 5 (Chapter 2, Exercise 46)

Prove that the set of all 3×3 matrices with real entries of the form

$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

is a group.

Proof. Multiplication is defined as follows:

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+a' & b'+ac'+b \\ 0 & 1 & c'+c \\ 0 & 0 & 1 \end{bmatrix}$$

It is clear that a + a', b' + ac' + b, and c' + c are each real valued; thus the set is closed under multiplication.

We must first show that the set has an identity element; observe that the identity matrix I_3 is the identity in this group, because:

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

Thus $A \cdot e = e \cdot A = A$, with $e = I_3$

Now, we must show that inverses exist. Indeed, by equating coefficients in the definition of multiplication, we get:

$$A^{-1} = \begin{bmatrix} 1 & -a & -b + ac \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$

which is in the set, as -a, -b + ac and -c are real valued. Multiplying this out yields:

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -a & -b + ac \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$\begin{bmatrix} 1 & -a & -b + ac \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Thus $A \cdot A^{-1} = A^{-1} \cdot A = e$

Lastly, we must demonstrate the associative property. Indeed, observe that:

$$\begin{pmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a+d & e+af+b \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & g+a+d & h+i(a+d)+e+af+b \\ 0 & 1 & f+c+i \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \cdot \left(\begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & g & h \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & d+g & h+id+e \\ 0 & 1 & f+i \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & g+a+d & h+e+di+a(f+i)+b \\ 0 & 1 & f+c+i \\ 0 & 0 & 1 \end{bmatrix}$$

Thus, given matrices A, B and C, it follows that (AB)C = A(BC) = ABC. All three of the group axioms are satisfied, so this set under multiplication forms a group.

Problem 6 (Chapter 2, Exercise 48)

In a finite group, show that the number of nonidentity elements that satisfy the equation $x^5 = e$ is a multiple of 4. If the stipulation that the group be finite is omitted, what can you say about the number of nonidentity elements that satisfy the equation $x^5 = e$?

Proof. Suppose that for $a \in G$, we have $a^5 = e$ with $a \neq e$. Then, it follows that $(a^2)^5 = (a^5)^2 = e^2 = e$. Suppose FSOC $a^2 = e$, then $(a^2)^2 = a^4 = e^2 = e = a^5$, implying that a = e, which is a contradiction, so,

Similarly, it follows that $(a^3)^5 = (a^5)^3 = e^3 = e$. Suppose FSOC $a^3 = e$, then $(a^3)^2 = a^6 = e^2 = e = a^5$, implying that a = e, which is a contradiction, so,

Similarly, it follows that $(a^4)^5 = (a^5)^4 = e^4 = e$. Suppose FSOC $a^4 = e$, then $e=a^4=a^5$, implying that a=e, which is a contradiction, so, $a^4\neq e$.

We claim that for distinct $i, j \in \{1, 2, 3, 4\}, a^i \neq a^j$. To this end, suppose FSOC that $a^i = a^j$. This is equivalent to $a^{i-j} = e$. WLOG assume i > j, then $i-j \in \{1,2,3\}$. We previously showed that $a, a^2, a^3 \neq e$, so $a^{i-j} \neq e$, which is a contradiction; thus, $a^i \neq a^j$.

Thus, we deduce that $\{a, a^2, a^3, a^4\}$ are 4 unique nonidentity elements that satisfy $x^5 = e$.

Now suppose that there exists $b \in G$ such that $b^5 = e, b \neq e$, and $b \notin G$ $\{a, a^2, a^3, a^4\}$. We will show that $\{b, b^2, b^3, b^4\}$ and $\{a, a^2, a^3, a^4\}$ are disjoint. Suppose FSOC that $b^4 = a^i$ for some $i \in \{1, 2, 3, 4\}$. Then $e = a^i b \implies a^{5-i} =$ $a^{5-i}a^ib \implies a^{5-i}=b$, which is a contradiction, so $b^4 \neq a^i$ for all $i \in \{1,2,3,4\}$ Suppose FSOC that $b^2 = a^i$ for some $i \in \{1, 2, 3, 4\}$. Then $(b^2)^2 = a^{2i} \implies b^4 = a^2$ a^{2i} , which contradicts the previous statement, so $b^2 \neq a^i$ for all $i \in \{1, 2, 3, 4\}$ Suppose FSOC that $b^3 = a^i$ for some $i \in \{1, 2, 3, 4\}$. Then $e = a^i b^2 \implies a^{5-i} =$ b^2 , which contradicts the previous statement, so $b^3 \neq a^i$ for all $i \in \{1, 2, 3, 4\}$ So $\{b, b^2, b^3, b^4\}$ and $\{a, a^2, a^3, a^4\}$ are disjoint, meaning that any $b \notin \{a, a^2, a^3, a^4\}$ will contribute 4 additional distinct solutions; since the group has finitely many elements, the total number of solutions is finite and a multiple of 4, as desired. If the group is not finite (i.e. is infinite), the group could have infinitely such nonidentity elements that satisfy the equation $x^5 = e$.

Problem 7 (Chapter 2, Exercise 52)

Suppose that in the definition of a group G, the condition that for each element a in G there exists an element b in G with the property that ab = ba = e is replaced by the condition that ab = e. Show that ba = e.

Proof. Let $a \in G$ be arbitrary. By assumption, there exists $b \in G$ such that ab = e. Left multiplying this expression by b yields bab = b. Right cancellation of b yields ba = e, which was to be shown.

Problem 8 (Chapter 3, Exercise 4)

Prove that in any group, an element and its inverse have the same order.

Proof. Let $a \in G$ be arbitrary with the property that |a| = n; that is, that $a^n = e$. Then $e = (aa^{-1})^n = a^n(a^{-1})^n = e(a^{-1})^n = (a^{-1})^n$, so by definition $|a^{-1}| = n$; interchanging the roles of a and a^{-1} proves the reverse implication.

Problem 9 (Chapter 3, Exercise 14)

Prove that if a is the only element of order 2 in a group, then a lies in the center of the group.

Proof. Suppose that $a \in G$ is the unique element of order 2; that is, that it is the only element such that $a^2 = e$. We deduce that $a = a^{-1}$. We want to show that for all $g \in G$ it follows that ag = ga. To this end, let $g \in G$ be arbitrary and consider $b = gag^{-1}$. Squaring both sides yields $b^2 = gag^{-1}gag^{-1} = gaag^{-1} = gaa^{-1}g^{-1} = gg^{-1} = e$. Since a is the only element of order 2, we deduce that b = a, so $a = gag^{-1}$; right multiplying both sides by g yields ag = ga, which was to be shown.

Problem 10 (Chapter 3, Exercise 18)

Suppose that a is a group element and $a^6 = e$. What are the possibilities for |a|? Provide reasons for your answer.

Proof. Because $a^6 = e$, it follows that $|a| \le 6$ by definition of order.

Suppose that |a| = 1, then a = e, meaning $a^6 = e^6 = e$. Thus, |a| = 1 is a possibility.

Suppose that |a| = 2, then $a^2 = e$, meaning $a^6 = (a^2)^3 = e^3 = e$. Thus, |a| = 2 is a possibility.

Suppose that |a| = 3, then $a^3 = e$, meaning $a^6 = (a^3)^2 = e^2 = e$. Thus, |a| = 3 is a possibility.

Suppose that |a| = 4, then $a^4 = e$, meaning $a^6 = e = a^4 a^2 = ea^2$, implying that $a^2 = e$, which contradicts the fact that |a| = 4. Thus, |a| = 4 is not a possibility.

Suppose that |a|=5, then $a^5=e$, meaning $a^6=e=a^5a=ea$, implying that a=e, which contradicts the fact that |a|=5. Thus, |a|=5 is not a possibility. Suppose that |a|=6, then $a^6=e$. Thus, |a|=6 is a possibility.

In summary, the possibilities of |a| are 1, 2, 3, and 6—namely the divisors of 6. $\hfill\Box$