









Supamith Sutharojana
Application Engineers Team Lead
ASCENDAS Systems Co.,Ltd

Supamith.Sutharojana@ascendas-asia.com







#### Our software is used to design the products we rely on every day











#### And the breakthroughs transforming how we live, learn, and work











#### Our Customers / Key Industries



**Aerospace and Defense** 



**Automotive** 



**Biological Sciences** 



**Biotech and Pharmaceutical** 



**Communications** 



**Electronics** 



**Energy Production** 



**Financial Services** 



**Industrial Machinery** 



**Medical Devices** 



**Process Industries** 



**Neuroscience** 



**Railway Systems** 



**Semiconductors** 



**Software and Internet** 



#### MathWorks developed Model-Based Design with the auto industry











#### Simulink



check earlier and often



easy integration



used worldwide



result-oriented

>> url="www.mathworks.com/products/simulink.html" >> web(url);



Transforming the way Engineers work.

- Graphic Environment
- Integration with MATLAB
- Multi-domain modelling
- Model-Based Design



#### Simscape



teaching-oriented





software integration



#### Intuitive creation of multidomain models









For more info on **Simscape** check the documentation



















#### Physical Modeling Within Simulink

- Simulink is best known for signal-based modeling
  - Causal, or input/output
- Simscape enables bidirectional flow of energy between components
- System level equations:
  - Formulated automatically
  - Solved simultaneously
  - Cover multiple domains



Thermal Liquid

**Two-Phase** Fluid



Moist Air









**Thermal** 

Custom equations else





Simulink: Input/Output





**Simscape: Physical Networks** 







## Agenda

Introduction to Physical Modeling with Simscape

Stateflow for Logic Driven System Modeling

Discussion





#### **Example: Mass-spring-damper**



$$m\ddot{y} + b\dot{y} + ky = 0$$

Represented using diagram

Represented using equations





#### **Example: Mass-spring-damper**



$$m\ddot{y} + b\dot{y} + ky = 0$$

Represented using diagram

Represented using equations

How to convert this Mass-spring-damper to modelling





## Simulink approach

$$m\ddot{y} + b\dot{y} + ky = 0$$



$$\ddot{y} = \frac{-b\dot{y} - ky}{m}$$

Represented using equations

This equation can be modeled in Simulink using mathematical blocks.





#### Simulink approach



Represented using equations

This equation can be modeled in Simulink using mathematical blocks.







Represented using diagram







Represented using diagram

The model is built using blocks that represent physical components.







Start modelling Simscape model with RL Circuit first













Start modelling Simscape model with RL Circuit first









Start modelling Simscape model with RL Circuit first









Setting block parameters









Setting block parameters









Connect with Simulink interface





Solver Configuration block

f(x) = 0

Solver Configuration

## Domain-specific reference block



Simscape important Block







Represented using diagram

Let's try to create this Simscape model



# Stateflow for Logic Driven Modeling

- Graphical language that includes state transition diagrams, flow charts, state transition tables, and truth tables.
- Describe how MATLAB® algorithms and Simulink® models react to input signals, events, and time-based conditions





























## Simscape and Stateflow Onramp









#### **Upcoming session**

- Overview of the basic BMS operation and functionality
- Simulink for BMS application covering:
  - Cell Voltage Measurement
  - SoC Main Operation
  - State of Health
  - Cell Voltage Balancing
- BMS Safety and Protection Function
- Step of development BMS with MBD until HW implementation including equipment required
- Commercial implementation and typical specification example









