PHOSPHOR-TREATED MULTIMETALLIC OXIDE COMPOUNDS

Publication number: WO2006072447

Publication date: 2006-07-13

Inventor: HIBST HARTMUT (DE); SCHUNK STEPHAN A (DE) Applicant: HTE AG (DE); HIBST HARTMUT (DE); SCHUNK

STEPHAN A (DE)

Classification:

- international: B01J27/19; C07C45/33; C07C51/215; B01J27/14;

C07C45/00; C07C51/16;

- European: B01J23/00B; B01J23/28; B01J23/31; B01J27/057S;

B01J27/057T; B01J27/199; B01J35/00D;

B01J37/00B4C; B01J37/03; B01J37/16; B01J37/28; C07C45/33; C07C45/34; C07C51/215; C07C51/25B

Application number: WO2005EP14117 20051229 Priority number(s): DE200410063218 20041229

Also published as:

WO2006072447 (A1) DE102004063218 (A1)

Cited documents:

DE10321398 EP1254707 DE10248584 JP8057319

Report a data error here

Abstract of WO2006072447

The invention relates to phosphor- modified multimetallic oxide compounds and to the use thereof in the form of catalytically active materials for heterogeneously catalysing gas phase oxidations and/or gas phase ammooxidations.

Data supplied from the esp@cenet database - Worldwide

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 13. Juli 2006 (13.07.2006)

PCT

(10) Internationale Veröffentlichungsnummer WO 2006/072447 A1

(51) Internationale Patentklassifikation: *B01.J 27/19* (2006.01) *C07C 51/215*

C07C 45/33 (2006.01)

C07C 51/215 (2006.01) **C07C** 120/14 (2006.01)

(21) Internationales Aktenzeichen:

PCT/EP2005/014117

(22) Internationales Anmeldedatum:

29. Dezember 2005 (29.12.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10 2004 063 218.9

DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HTE AKTIENGESELLSCHAFT [DE/DE]; Kurp-

falzring 104, 69123 Heidelberg (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HIBST, Hartmut

[DE/DE]; 69198 Schriesheim (DE). SCHUNK, Stephan, A. [DE/DE]; 69115 Heidelberg (DE).

- (74) Anwalt: RICKER, Mathias; Jones, Day, Reavis & Pogue, Prinzregentenstrasse 11, 80538 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

[Fortsetzung auf der nächsten Seite]

(54) Title: PHOSPHOR-TREATED MULTIMETALLIC OXIDE COMPOUNDS

29. Dezember 2004 (29.12.2004)

(54) Bezeichnung: PHOSPHOR-BEHANDELTE MULTIMETALLOXIDMASSEN

(57) Abstract: The invention relates to phosphor- modified multimetallic oxide compounds and to the use thereof in the form of catalytically active materials for heterogeneously catalysing gas phase oxidations and/or gas phase ammooxidations.

[Fortsetzung auf der nächsten Seite]

WO 2006/072447 A1

EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. Phospor-behandelte Multimetalloxidmassen

Beschreibung

Die vorliegende Erfindung betrifft Phosphor-modifizierte Multimetalloxidmassen sowie deren Verwendung als katalytische Aktivmasse für heterogen katalysierte Gasphasen-oxidationen und/oder Gasphasenamoxidationen von Alkanen, Olefinen, Aromaten, Alkoholen, Aldehyden und Ketonen (Edukte) zu den entsprechenden Olefinen, Alkoholen, Säuren und Anhydriden (Produkte).

10

15

30

40

Multimetalloxidmassen, die Molybdän und Vanadium sowie wenigstens zwei Elemente, ausgewählt aus der Gruppe, bestehend aus Lanthaniden, Übergangselementen des Periodensystems der Elemente und Elementen der dritten bis sechsten Hauptgruppe des Periodensystems der Elemente enthalten, deren Röntgendiffraktogramm ein spezifisches Röntgenbeugungsmuster RM enthält, sind bekannt (vgl. z.B. DE-A 10248584, DE-A 10254279, DE-A 10051419, DE-A 10046672, DE-A 10261186, EP-A 1090684, DE-A 19835247, DE-A 10254278, EP-A 895809, DE-A 10122027, JP-A 7-232071 und JP-A 11-169716).

20 Das Röntgenbeugungsmuster RM bildet dabei den Fingerabdruck einer speziellen Kristallstruktur, einer speziellen Kristallphase, die im vorstehend herangezogenen Stand der Technik als "i-Phase" bezeichnet wird.

Aus den vorgenannten Schriften ist ferner bekannt, dass die i-Phase lediglich eine kristalline Phase darstellt, in welcher solche Multimetalloxidmassen auftreten können.

Eine zweite spezifische Kristallstruktur, in der solche Multimetalloxidmassen auftreten können, wird im Stand der Technik als k-Phase bezeichnet. Ihr Röntgendiffraktogramm ist gemäß den vorgenannten Schriften u. a. dadurch gekennzeichnet, dass es die folgenden Netzebenenbestände d [Å] repräsentierende Beugungsreflexe aufweist:

 $4,02 \pm 0,2,$

 $3,16 \pm 0,2,$

 $2,48 \pm 0,2,$

 $35 \quad 2,01 \pm 0,2, \text{ und}$

 $1,82 \pm 0,1.$

i-Phase und k-Phase sind einander ähnlich, unterscheiden sich jedoch vor allem dadurch, dass das Röntgendiftraktogramm der k-Phase normalerweise keine Beugungsreflexe für d ≥ 4,2 aufweist. Üblicherweise enthält die k-Phase auch keine Beugungsre-

flexe im Bereich 3,8 \geq d \geq 3,35 . Ferner enthält die k-Phase in der Regel keine Beugungsreflexe im Bereich 2,95 \geq d \geq 2,68 .

Aus dem vorgenannten Stand der Technik ist auch bekannt, dass solche Multimetalloxidmassen als Aktivmassen für Katalysatoren zur heterogen katalysierten partiellen
Gasphasenoxidation und zur heterogen katalysierten partiellen Gasphasenammoxidation (unterscheidet sich von der reinen partiellen Gasphasenoxidation im Wesentlichen
durch das zusätzliche Beisein von Ammoniak) von niederen (insbesondere 2, 3
und/oder 4 Kohlenstoffatome aufweisenden) Alkanen, Alkenen, Alkoholen und Aldehyden geeignet sind. Partielle Oxidationsprodukte sind dabei u.a. α,β-monoethylenisch
ungesättigte Aldehyde (z.B. Acrolein und Methacrolein) sowie α,β-monoethylenisch
ungesättigte Carbonsäuren (z.B. Acrylsäure und Methacrylsäure), gesättigte Carbonsäuren (z. B. Essigsäure) und deren Nitrile (z.B. Acetonitril, Acrylnitril und Methacrylnitril).

15

10

5

Ferner ist aus dem vorgenannten Stand der Technik bekannt, dass die katalytische Wirksamkeit (Aktivität, Selektivität der Zielproduktbildung) der Multimetalloxidmassen mit i-Phase-Struktur gegenüber jenen in anderer (z.B. k-Phase-) Struktur in der Regel überlegen ist.

20

Die katalytische Aktivität von solchen Systemen mit Phasenmischungen aus i- und k-Phase kann, was aus dem Stand der Technik ebenfalls bekannt ist, durch Herauswaschen der k-Phase mit geeigneten Flüssigkeiten verbessert werden.

25 Multimetalloxidmassen mit reiner i-Phase können auch durch Zugabe von Cäsium zu Synthesemischungen, die Molybdän und Vanadium enthalten, erhalten werden. So beschreibt die DE 103 21 398 A1 Multimetalloxide der allgemeinen Formel I

$A_a[Mo_{5-b-c}V_bX_cO_d]_1$ (I),

30 mit

35

- A = wenigstens eines der Elemente aus der Gruppe umfässend NH₄, Na, K, Rb, Cs und Ti;
- X = eines oder mehrere der Elemente aus der Gruppe umfassend La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Hf, Nb, Ta, W, Mn, Re, Fe, Co, Ni, Cr, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se und Te;
- a = 0,1 bis 1, vorzugsweise 0,2 bis 0,8, besonders bevorzugt 0,3 bis 0,7, insbesondere 0,4 bis 0,6;
- b = 0.25 bis 4.5; und
- 40 c = 0 bis 4.5

mit der Maßgabe, dass b + c \leq 4,5,

deren Röntgendiffraktogramm das nachfolgende Röntgenbeugungsmuster RM, wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [Å],

5 d [Å]
3,06 ± 0,2 (bevorzugt ± 0,1)
3,17 ± 0,2 (bevorzugt ± 0,1)
3,28 ± 0,2 (bevorzugt ± 0,1)
3,99 ± 0,2 (bevorzugt ± 0,1)
10 9,82 ± 0,4 (bevorzugt ± 0,2)
11,24 ± 0,4 (bevorzugt ± 0,2)
13,28 + 0,5 (bevorzugt ± 0,3), enthält.

Es ist ebenfalls bekannt, dass durch Zugabe von Cäsium und Phosphor zu nanokristallinen Multimetalloxiden der Formel Mo_aV_bW_cO_x (auch beschrieben in EP 0774291 A1)
 Verbesserungen bezüglich der Selektivität bei der Oxidation von ungesättigten Aldehyden zu den korrespondierenden ungesättigten Säuren erreicht werden können (J.C. Petzold, H. Böhnke, J.W. Gaube, H. Hibst, 4th World Congress on Oxidation Catalysis,
 September 16-21, 2001, Berlin, Potsdam, Germany, Book of Extended Abstracts Volume II, 127).

Obwohl diese zuletzt genannten Multimetalloxidmassen reinphasig sind, ist deren Aktivität und Selektivität für die Gasphasenoxidation und -amoxidation von funktionalisierten und nicht-funktionalisierten Kohlenwasserstoffen wie Alkanen, Alkenen, Aromaten, Seitenketten von Aromaten, Alkinen, Alkholen und Aldehyden zu den entsprechenden Nitrilen, Imiden, Säuren, Aldehyden und Alkoholen noch nicht zufrieden stellend.

Damit ergibt sich als Aufgabe für die vorliegende Erfindung, aktivere und selektivere Katalysatoren für die Gasphasenoxidation oder -amoxidation von funktionalisierten und nicht-funktionalisierten Kohlenwasserstoffen wie Alkanen, Alkenen, Aromaten, Seitenketten von Aromaten, Alkinen, Alkoholen und Aldehyden aufzufinden.

Erfindungsgemäß wird diese Aufgabe durch phosphor-modifizierte Multimetalloxidmassen gelöst. Diese phosphor-modifizierten Multimetalloxidmassen sind erhältlich durch Behandlung mit einem Phosphor-haltigen Agens von Multimetalloxidmassen der allgemeinen Formel I

$$A_a[Mo_{5-b-c}V_bX_cO_d]_1$$
 (I),

40 mit

25

A = wenigstens eines der Elemente aus der Gruppe umfassend NH₄, Na, K, Rb, Cs und Ti;

- x = eines oder mehrere der Elemente aus der Gruppe umfassend La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Hf, Nb, Ta, W, Mn, Re, Fe, Co, Ni, Cr, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se und Te;
- a = 0,1 bis 1, vorzugsweise 0,2 bis 0,8, besonders bevorzugt 0,3 bis 0,7, insbesondere 0,4 bis 0,6;
- b = 0.25 bis 4.5; und
- 10 c = 0 bis 4,5,

mit der Maßgabe, dass b + c \leq 4,5,

deren Röntgendiffraktogramm das nachfolgende Röntgenbeugungsmuster RM, wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [Å],

15 d [Å]

5

 $3,06 \pm 0,2$

 $3,17 \pm 0,2$

 $3,28 \pm 0,2$

 $3,99 \pm 0,2$

 $9,82 \pm 0,4$

 $11,24 \pm 0,4$

 $13,28 \pm 0,5$,

enthält.

35

Erfindungsgemäß ist es also vorgesehen, dass die Multimetalloxidmassen gemäß DE 103 21 398 A1 zusätzlich einer Behandlung mit einem Phosphor-haltigen Agens unterzogen werden. Solche nachbehandelten Festkörper zeigen eine unerwartet gute katalytische Aktivität und Selektivität bei der Konversion von beispielsweise Alkanen, Alkenen, Aromaten, Seitenketten von Aromaten, Alkinen, Alkoholen und Aldehyden zu den entsprechenden ungesättigten oder gesättigten Nitrilen, Imiden, Säuren, Aldehyden, Alkenen, Aromaten, Alkinen oder Alkoholen unter oxidativen Bedingungen in der Gasphase.

Ausgangs-Multimetalloxidmassen

Die erfindungsgemäßen phosphor-modifizierten Multimetalloxidmassen werden ausgehend von den Multimetalloxidmassen der DE 103 21 398 A1 (Ausgangs-Multimetalloxidmassen) durch Behandlung mit einem Phosphor-haltigen Agens erhalten. Die Ausgangsverbindungen sind daher Multimetalloxide der allgemeinen Formel I

40 $A_{a}[Mo_{5-b-c}V_{b}X_{c}O_{d}]_{1}$ (1),

WO 2006/072447 PCT/EP2005/014117 5

mit

A = wenigstens eines der Elemente aus der Gruppe umfassend NH₄, Na, K, Rb, Cs und Tl;

X = eines oder mehrere der Elemente aus der Gruppe umfassend La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Hf, Nb, Ta, W, Mn, Re, Fe,
Co, Ni, Cr, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Ge,
Sn, Pb, P, As, Sb, Bi, S, Se und Te;

a = 0,1 bis 1, vorzugsweise 0,2 bis 0,8, besonders bevorzugt 0,3 bis 0,7, insbesondere 0,4 bis 0,6;

10 b = 0,25 bis 4,5; und

c = 0 bis 4.5,

mit der Maßgabe, dass b + c ≤ 4,5,

deren Röntgendiffraktogramm das nachfolgende Röntgenbeugungsmuster RM, wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [Å],

d [Å]

 $3,06 \pm 0,2$ (bevorzugt $\pm 0,1$)

 $3,17 \pm 0,2$ (bevorzugt $\pm 0,1$)

 $3,28 \pm 0,2$ (bevorzugt $\pm 0,1$)

20 $3,99 \pm 0.2$ (bevorzugt ± 0.1)

 9.82 ± 0.4 (bevorzugt ± 0.2)

 11.24 ± 0.4 (bevorzugt ± 0.2)

13,28 + 0,5 (bevorzugt $\pm 0,3$),

enthält.

25

15

Über die genannten Beugungsreflexlagen hinaus, weist das Röntgenbeugungsmuster RM der Ausgangs-Multimetalloxidmassen in vielen Fällen (in Abhängigkeit von den enthaltenen Elementen und der Kristallitgeometrie (z.B. Nadelform oder Plättchenform) zusätzlich charakteristische Beugungsreflexintensitäten auf.

30

Bezogen auf die Intensität des den Netzebenenabstand d $[Å] = 3,99 \pm 0,2$ repräsentierenden Beugungsreflexes sind diese (relativen) Beugungsreflexintensitäten I (%) wie folgt:

d[Å]	I (%)
$3,06 \pm 0,2$	5 bis 65
$3,17 \pm 0,2$	5 bis 65
$3,28 \pm 0,2$	15 bis 130, häufig 15 bis 95
$3,99 \pm 0,2$	100
$9,82 \pm 0,4$	1 bis 50, häufig 1 bìs 30
11,24 ± 0,4	1 bis 45, häufig 1 bis 30

 $13,28 \pm 0,5$

1 bis 35, häufig 1 bis 15

Erfindungsgemäß bevorzugt ist A wenigstens eines der Elemente aus der Gruppe umfassend K, Rb und Cs. Besonders bevorzugt ist A Rb und/oder Cs und ganz besonders bevorzugt ist A Cs.

5

X ist vorzugsweise eines oder mehrere Elemente aus der Gruppe umfassend Ti, Zr, Ta, Cr, W, Mn, Re, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Al, Ga, In, Ge, Sn, Pb, P, Sb, Bi, Se und Te.

Besonders bevorzugt ist X eines oder mehrere Elemente aus der Gruppe umfassend Ti, Cr, W, Mn, Re, Fe, Co, Ni, Pd, Pt, Cu, Ag, Ga, Sn, Sb und Te.

Der stöchiometrische Koeffizient c ist vorzugsweise > 0, besonders bevorzugt 0,05 bis 4,5 und ganz besonders bevorzugt 0,05 bis 4,0.

15

20

Der stöchiometrische Koeffizient b ist mit Vorteil 0,5 bis 2,5.

Darüber hinaus ist es für die Ausgangs-Multimetalloxidmassen generell vorteilhaft, wenn a = 0,2 bis 0,8, vorzugsweise 0,3 bis 0,7 und besonders bevorzugt 0,4 bis 0,6 beträgt. Die experimentelle Bestimmung des Sauerstoffgehalts kann z.B. mittels eines Oxygen Determinators der LECO Corporation (USA) erfolgen (z.B. mittels eines TC-436 der Fa. LECO).

Ferner ist es für die Ausgangs-Multimetalloxide vorteilhaft, wenn das darin enthaltene V zu mehr als 25 mol-%, besonders bevorzugt zu mehr als 50 mol % und ganz besonders bevorzugt zu mehr als 75 mol % bzw. zu 100 mol % in der Oxidationsstufe +4 vorliegt. Die experimentelle Überprüfung der Oxidationsstufe des V kann titrimetrisch erfolgen, wie es in der EP-A 774297 beschrieben ist.

Neben den bereits genannten, besonders charakteristischen Beugungsreflexen sind im für die Ausgangs-Multimetalloxide die i-Phase repräsentierenden Röntgenbeugungsmuster vielfach noch die folgenden Beugungsreflexe, ebenfalls wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [Å], erkenntlich:

35

40

d [Å] 8,19 ± 0,3 (bevorzugt ± 0,15) 3,51 ± 0,2 (bevorzugt ± 0,1) 3,42 ± 0,2 (bevorzugt ± 0,1)

```
3,34 \pm 0,2 (bevorzugt \pm 0,1)

2,94 \pm 0,2 (bevorzugt \pm 0,1)

2,86 \pm 0,2 (bevorzugt \pm 0,1)
```

Bezogen auf die Intensität des den Netzebenenabstand d [Å] = 3.99 ± 0.2 repräsentierenden Beugungsreflex sind die (relativen) Intensitäten I (%) der vorstehenden Beugungsreflexe häufig wie folgt:

d [Å]	1 (%)
$8,19 \pm 0,3$ (bzw. $\pm 0,15$)	0 bis 25
$3,51 \pm 0,2$ (bzw. $\pm 0,1$)	2 bis 50
3,42 ± 0,2 (bzw. ± 0,1)	5 bis 75
3,34 ± 0,2 (bzw. ± 0,1)	5 bis 80
2,94 ± 0,2 (bzw. ± 0,1)	5 bis 55
2,86 ± 0,2 (bzw. ± 0,1)	5 bis 60

10 Vielfach ergänzen noch folgende Beugungsreflexe das die i-Phase repräsentierende Röntgenbeugungsmuster:

```
d [Å]

2,54 \pm 0,2 (bevorzugt \pm 0,1)

15 2,01 \pm 0,2 (bevorzugt \pm 0,1)
```

Die in gleicher Weise wie oben stehend bezogenen (relativen) Beugungsreflexintensitäten lauten bei diesen Beugungsreflexen vielfach wie folgt:

```
d [Å] I (%)

2,54 \pm 0,2 (bzw. \pm 0,1) 0,5 bis 40

2,01 \pm 0,2 (bzw. \pm 0,1) 5 bis 60
```

20

Erfindungsgemäß bevorzugt sind Ausgangs-Multimetalloxide in deren Röntgendiffraktogramm der den Netzebenenabstand d [Å] = 3,99 \pm 0,2 (bzw. \pm 0,1) oder der den Netzebenenabstand d [Å] = 3,28 \pm 0,2 (bzw. \pm 0,1) repräsentierende Beugungsreflex der intensivste (intensitätsstärkste) Beugungsreflex ist.

25

Ferner sind diejenigen Ausgangs-Multimetalloxide bevorzugt, bei denen die 29-Halbwertsbreite des Beugungsreflexes d [Å] = 3,99 \pm 0,2 (bzw. \pm 0,1) \leq 1°, vorzugsweise \leq 0,5° beträgt. Die 2 Θ -Halbwertsbreite der anderen angeführten Beugungsreflexe beträgt normalerweise \leq 3°, vorzugsweise \leq 1,5°, besonders bevorzugt \leq 1°.

Alle in dieser Schrift auf ein Röntgendiffraktogramm bezogenen Angaben gehen zurück auf ein unter Anwendung von Cu-K α -Strahlung (λ = 1,54178) als Röntgenstrahlung erzeugtes Röntgendiffraktogramm (Siemens-Diffraktometer Theta-Theta D-5000, Röhrenspannung: 40 kV, Röhrenstrom: 40 mA, Aperturblende V20 (variabel), Streustrahlblende V20 (variabel), Sekundärmonochromatorblende (0,1 mm), Deterktorblende (0,6 mm), Messintervall (20): 0,02°, Messzeit je Schritt: 2,4 s, Detektor: Scintillationszählrohr; die Definition der Intensität eines Beugungsreflexes im Röntgendiftraktogramm bezieht sich in dieser Schrift auf die in der DE-A 19835247, der DE-A 10122027, sowie die in der DE-A 10051419 und DE-A 10046672 niedergelegte Definition; das gleiche gilt für die Definition der 2 Θ -Halbwertsbreite).

5

10

15

20

25

Die Wellenlänge λ der zur Beugung verwendeten Röntgenstrahlung und der Beugungswinkel Θ (als Beugungsreflexlage wird in dieser Schrift der Scheitelpunkt eines Reflexes in der 2Θ -Auftragung verwendet) sind über die Bragg'sche Beziehung wie folgt miteinander verknüpft:

$$2 \sin \Theta = \lambda / d$$

wobei d der zum jeweiligen Beugungsreflex gehörige Netzebenenabstand der atomaren Raumanordnung ist.

Die Herstellung der Ausgangs-Multimetalloxidmassen gelingt in einer ersten Ausführungsform so, dass man von geeigneten Quellen der elementaren Konstituenten der Ausgangs-Multimetalloxidmasse ein möglichst inniges, vorzugsweise feinteiliges, Trockengemisch (feinteiliges Pulver) der gewünschten Konstituentenstöchiometrie erzeugt, dieses gegebenenfalls verdichtet und dann bei Temperaturen von 350 bis 1000 °C, vorzugsweise 400 bis 70 0°C, besonders bevorzugt 400 bis 650 °C, insbesondere 400 bis 600 °C thermisch behandelt (Calcinierung).

30 Die thermische Behandlung kann prinzipiell sowohl unter oxidierender, reduzierender als auch unter inerter Atmosphäre erfolgen. Als oxidierende Atmosphäre kommt z.B. Luft, mit molekularem Sauerstoff angereicherte Luft oder an Sauerstoff entreicherte Luft in Betracht. Vorzugsweise wird die thermische Behandlung jedoch unter inerter Atmosphäre, d.h. z.B. unter molekularem Stickstoff und/oder Edelgas, durchgeführt.
35 Üblicherweise erfolgt die thermische Behandlung bei Normaldruck (1 atm). Selbstverständlich kann die thermische Behandlung auch unter Vakuum oder unter Überdruck erfolgen.

Erfolgt die thermische Behandlung unter gasförmiger Atmosphäre, kann diese sowohl stehen als auch fließen. Vorzugsweise fließt sie. Insgesamt kann die thermische Behandlung bis zu 24 h oder mehr in Anspruch nehmen.

Bevorzugt erfolgt die thermische Behandlung zunächst unter oxidierender (Sauerstoff enthaltender) Atmosphäre (z.B. unter Luft) bei einer Temperatur von 150 bis 400 °C bzw. 250 bis 350 °C (= Vorzersetzungsschritt). Im Anschluss daran wird die thermische Behandlung zweckmäßig unter Inertgas bei Temperaturen von 350 bis 1000 °C, vorzugsweise 400 bis 700 °C, besonders bevorzugt 400 bis 650 °C, insbesondere 400 bis 600 °C fortgesetzt.

Das innige Vermischen der Ausgangsverbindungen kann jedoch nicht nur in trockener, sondern auch in nasser Form erfolgen.

In einer zweiten Ausführungsform erfolgt das innige Vermischen somit in nasser Form. Üblicherweise werden die Ausgangsverbindungen dabei in Form einer wässrigen Lösung (gegebenenfalls unter Mitverwendung komplexbildender Mittel; vgl. z.B. DE-A 10145958) und/oder Suspension miteinander vermischt, wobei geeignete wasserlösliche Quellen von Molybdän, Vanadium, A und X verwendet werden. Anschließend wird die wässrige Masse getrocknet und nach der Trocknung calciniert. Zweckmäßigerweise handelt es sich bei der wässrigen Masse um eine wässrige Lösung oder um eine wässrige Suspension.

20

25

30

35

15

10

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird eine wässrige Lösung verwendet, wobei die Lösung vorzugsweise so hergestellt wird, dass keine Niederschläge durch kristallisierende Feststoffe entstehen. Eine Temperierung der Lösung im Temperaturbereich von 20 bis 150 °C kann sich über einen Zeitraum von mehreren Stunden anschließen. Auch eine Justierung des pH-Wertes im Bereich von 1 bis 12 der Lösung kann in die Behandlung eingeschlossen sein. Typischerweise schließt sich an die Herstellung der Lösung eine Kristallisation des Multimetalloxids mit oder ohne Entfernung des Wassers an. Wenn das Wasser aus der Lösung entfernt werden soll, so erfolgt dieses in einem oder mehreren Trocknungsprozess(en) unmittelbar im Anschluss an die Herstellung der wässrigen Mischung (insbesondere im Fall einer wässrigen Lösung; vgl. z.B. JP-A 7-315842). Zur Trocknung kommen vorzugsweise folgende Verfahrensschritte in Frage: Eintrocknung auf heißen Platten, Eintrocknung im Rotationsverdampfer, Einengung auf dem Dampf- oder Sandbad (typischerweise unter Rührung), Gefriertrocknung, Sprühgranulierung oder Sprühtrocknung. Neben diesen Trocknungsverfahren können auch hydrothermalsynthetische Verfahrensschritte angewendet werden, wobei typische Produkte einer solchen hydrothermalen Behandlung in der Regel nicht amorph sind, sondern für kristalline Substanzen typische Reflexe aufweisen.

Die Herstellung der Ausgangs-Multimetalloxide auf hydrothermalem Weg, kann so erfolgen wie es z.B. die DE-A 10029338 und die JP-A 2000-143244 beschreiben.

5

10

15

25

30

35

40

Im Anschluss an das Trocknungsverfahren, das in der Regel ein röntgenamorphes Produkt liefert, erfolgt üblicherweise eine thermische Behandlung unter kontrollierter Atmosphäre. Eine solche thermische Behandlung erfolgt bevorzugt bewegt unter rotierenden Bewegungen des Ofenraumes. Übliche Temperaturbereiche für die thermische Behandlung liegen im Bereich von 200 bis 800 °C. Die thermische Behandlung kann unter inerter (beispielsweise Stickstoff oder Edelgase), oxidierender (beispielsweise Sauerstoff) oder reduzierender Atmosphäre (beispielsweise Ammoniak oder Kohlenwasserstoffe) stattfinden. Dem Fachmann ist bekannt, dass auch Mischungen aus den genannten Gasen verwendet werden können.

Dabei bedeutet die Bezeichnung oxidierend, dass im zugeführten Gasstrom nach Umsetzung aller enthaltenen Oxidations- und Reduktionsmittel, Oxidationsmittel im Gasstrom verbleibt, also brutto ein oxidierender Gasstrom zugeführt wird.

Dabei bedeutet die Bezeichnung reduzierend, dass im zugeführten Gasstrom nach Umsetzung aller enthaltenen Oxidations- und Reduktionsmittel, Reduktionsmittel im Gasstrom verbleibt, also brutto ein reduzierender Gasstrom zugeführt wird.

20 Inert bedeutet in diesem Zusammenhang dass entweder keine Oxidationsmittel oder Reduktionsmittel zugeführt werden, oder Oxidations- und Reduktionsmittel im zugeführten Gasstrom brutto inert sind, dass heißt, dass im zugeführten Gasstrom nach Umsetzung aller enthaltenen Oxidations- und Reduktionsmittel, weder Oxidationsmittel noch Reduktionsmittel im Gasstrom verbleiben.

Es kann unter stehender oder fließender Atmosphäre thermisch behandelt werden, vorzugsweise wird aber eine Behandlung unter einem fließenden Gasstrom vorgenommen, wobei eine ständige Frischgaszufuhr vor einer Gasrezyklierung bevorzugt wird. Typischerweise wird die Zusammensetzung der Atmosphäre als Funktion der Calcinierungstemperatur und -dauer variiert. Vorzugsweise wird im Temperaturbereich von 20 bis 350 °C, besonders bevorzugt von 20 bis 300 °C eine oxidierende Atmosphäre verwendet, während im Temperaturbereich von vorzugsweise 350 bis 1000 °C, besonders bevorzugt von 300 bis 1000 °C, eine reduzierende oder inerte Atmosphäre verwendet. Typischerweise wird eine bewegte thermische Behandlung, beispielsweise durch rotierende Calcinierungstrommeln, Schütteln oder Fluidisierung, bevorzugt. Für die Herstellung im Labor werden Öfen wie in der Fig. 1 der DE-A 10122027 bevorzugt.

Als Quellen für die elementaren Konstituenten kommen im Rahmen der Durchführung der vorstehend beschriebenen Herstellweisen von erfindungsgemäßen Multimetall-oxidmassen alle diejenigen in Betracht, die beim Erhitzen (gegebenenfalls an Luft) Oxide und/oder Hydroxide zu bilden vermögen. Selbstredend können als solche Aus-

gangsverbindungen auch bereits Oxide und/oder Hydroxide der elementaren Konstituenten mit verwendet oder ausschließlich verwendet werden. D.h., insbesondere kommen alle in den Schriften des gewürdigten Standes der Technik genannten Ausgangsverbindungen in Betracht.

5

Erfindungsgemäß geeignete Quellen für das Element Molybdän sind z.B. Molybdänpulver, Molybdänoxide wie Molybdäntrioxid und Molybdändioxid, Ammoniumdimolybdat, Ammoniumheptamolydat, Molybdänhalogenide wie Molybdänchlorid, Molybdänoxyhalogenide und Molybdänorganyle.

10

15

40

Geeignete, erfindungsgemäß mit zu verwendende Ausgangsverbindungen für das Element Vanadium sind z.B. Vanadiumpulver, Vanadylsulfat, Vanadiumoxysulfathydrat, Vanadylacetylacetonat, Vanadate wie Ammoniumvanadat und Ammoniummetavanadat, Vanadinoxide wie Vanadinpentoxid (V₂O₅) und Vanadiumoxid (VO₂), Vanadinhalogenide wie Vanadintetrachlorid (VCl₄), Vanadinoxyhalogenide wie VOCl₃ und Vanadiumorganyle. Dabei können als Vanadinausgangsverbindungen auch solche mit verwendet werden, die das Vanadin in der Oxidationsstufe +4 enthalten.

Erfindungsgemäß günstig ist es, als Quellen für das Element Vanadium Gemische aus Verbindungen, die das Element Vanadium in der Oxidationsstufe +5 enthalten, und elementarem Vanadin einzusetzen. Aus diesem Gemisch kann sich dann, spätestens bei der Calcination, die mittlere, erfindungsgemäß bevorzugte Oxidationsstufe +4 des Vanadium ausbilden.

Werden als Quellen des Vanadium ausschließlich Verbindungen eingesetzt, die das 25 Vanadium in der Oxidationsstufe +5 enthalten, ist es erfindungsgemäß vorteilhaft, Ausgangsverbindungen mit zu verwenden, die von elementarem Vanadium verschiedene Reduktionsmittel enthalten (z.B. NH_4^+ , bzw. dessen Zersetzungsprodukt NH_3) und die V⁵⁺ zu V⁴⁺ zu reduzieren vermögen. Ein solches Reduktionsmittel können auch Metalle, organische Säuren wie Weinsäure oder Oxalsäure, Oxalat (z.B. als Nioboxa-30 lat), Hydrazindihydrochlorid, Hydrazinsulfat, Hydrazin (Monohydrat), Hydroxylamin, Hydroxylaminhydrochlorid oder deren Salze sein. Vorzugsweise erfolgt die Präparation des innigen Trockengemischs unter Inertgasatmosphäre (z.B. N2) um eine bessere Kontrolle über die Oxidationsstufen zu gewährleisten. Alternativ können auch Reduktionsmittel zur Reduktion des Vanadiums in der Vorläuferlösung eingesetzt werden. Ge-35 eignete Reduktionsmittel sind unter anderem Lösungen von Hydrazin und Hydrazinsalzen,

Oxalsäure, Ameisensäure, Zitronensäure und andere dem Fachmann bekannte lösliche Reduktionsmittel. Vorzugsweise werden diese Reduktionsmittel in der Wärme zu der Metallsalzlösung zugegeben. Unter dem Begriff "in der Wärme" wird diesbezüglich vorzugsweise eine Temperatur von 50 °C bis zur Siedehitze verstanden.

Als Quellen für das Element Tellur eignen sich erfindungsgemäß Telluroxide wie Tellurdioxid, Tellurhalogenide wie TeCl₂ und Tellursäuren wie Orthotellursäure H₆TeO₆. Selbstredend können auch elementares Tellur oder andere Konstituenten in elementarer Form (z.B. Antimon, Eisen, Samarium, Zink, Aluminium, Arsen) als Reduktionsmittel (z.B. für V⁵⁺) mit verwendet werden.

Geeignete Quellen für Selen sind beispielsweise metallisches Selen, Selenoxide, Säuren des Selen, Selenhalogenide und andere Selenverbindungen.

10

5

Weitere vorteilhafte Antimonausgangsverbindungen sind metallisches Antimon, Antimonhalogenide wie SbCl₃, Antimonoxide wie Antimontrioxid (Sb₂O₃), Antimonoxiden wie HSb(OH)₆ und Antimonoxid-Salze wie Antimonoxid-sulfat (SbO)₂SO₄.

Erfindungsgemäß geeignete Niobquellen sind z. B. Nioboxide wie Niobpentoxid (Nb₂O₅), Nioboxidhalogenide wie NbOCl₃, Niobhalogenide wie NbCl₅, komplexe Verbindungen aus Niob und organischen Carbonsäuren und/oder Dicarbonsäuren wie z. B. Oxalate und Alkoholate und Niobethylat. Selbstredend kommen als Niobquelle auch die in der EP-A 895 809 verwendeten Nb enthaltenden Lösungen in Betracht.

20

25

35

Bezüglich aller anderen möglichen Elemente (insbesondere des Fe, Pb, Ni, Cu, Co, Bi und Pd sowie der Alkalielemente) kommen als geeignete Ausgangsverbindungen vor allem deren Halogenide, Nitrate, Formiate, Oxalate, Acetate, Hydrogencarbonate, Carbonate und/oder Hydroxide in Betracht. Geeignete Ausgangsverbindungen sind vielfach auch deren Oxoverbindungen wie z. B. Wolframate bzw. die von diesen abgeleiteten Säuren. Häufig werden als Ausgangsverbindungen auch Ammoniumsalze eingesetzt.

Fern 30 Betra

Ferner kommen als Ausgangsverbindungen auch Polyanionen vom Anderson-Typ in Betracht, wie sie z. B. in Polyhedron Vol. 6, No. 2, pp. 213-218, 1987 beschrieben sind. Eine weitere geeignete Literaturquelle für Polyanionen vom Anderson-Typ bildet Kinetics and Catalysis, Vol. 40, No. 3, 1999, pp 401 bis 404.

Andere als Ausgangsverbindungen geeignete Polyanionen sind z. B. solche vom Dawson- oder Keggin-Typ. Vorzugsweise werden solche Ausgangsverbindungen verwendet, die sich bei erhöhten Temperaturen entweder im Beisein oder bei Ausschluss von Sauerstoff, gegebenenfalls unter Freisetzung gasförmiger Verbindungen, in ihre Oxide umwandeln.

Der Fachmann wird die Ausgangsverbindung in der Regel so wählen, dass eine leichte Löslichkeit im Synthesemedium gewährleistet ist. Dies gilt ebenfalls für alle möglichen Elemente X. Ebenfalls eingeschlossen und im Sinne der Erfindung sind sämtliche For-

mulierungen aus Nanopartikeln von Oxiden oder Hydroxiden aller möglichen Elemente A und X.

- Auf die erfindungsgemäßen Multimetalloxidmassen sind selbstredend auch die Lehren der JP-A 8-57319 sowie der EP-A 1254707 anwendbar, gemäß denen die katalytische Performance (Aktivität und Selektivität der Zielproduktbildung) von Molybdän und Vanadium enthaltenden Multimetalloxidmassen durch Behandlung mit geeigneten Flüssigkeiten, z.B. Säuren, verbessert werden kann.
- Als solche Flüssigkeiten kommen z.B. organische Säuren und anorganische Säuren und deren wässrige Lösungen in Betracht (z.B. Oxalsäure, Ameisensäure, Essigsäure, Zitronensäure, Weinsäure, Salpetersäure, Schwefelsäure, Perchlorsäure, Salzsäure, Tellursäure, Borsäure und deren Mischungen sowie wässrigen Lösungen), aber auch Alkohole, alkoholische Lösungen der vorgenannten Säuren und wässrige Wasserstoffperoxidlösungen.

Bemerkenswerterweise erhöht ein solches Waschen im Fall einer Phasenheterogenität der erfindungsgemäßen Multimetalloxide deren i-Phase-Anteil (andere Phasen, z.B. die k-Phase, werden bevorzugt herausgelöst).

Ferner mindert ein solches Waschen in der Regel den Gehalt der erfindungsgemäßen Multimetalloxidmassen an den Elementen A relativ zu deren Gehalt an Molybdän, ohne dass dabei die in den Multimetalloxidmassen ausgebildete i-Phase beeinträchtigt wird.

25 Ein solcher Waschschritt kann vor, w\u00e4hrend oder nach der Impr\u00e4gnierung mit Phosphor stattfinden.

30

20

Behandlung der Ausgangs-Multimetalloxidmassen mit dem Phosphor-haltigen Agens

35 Erfindungsgemäß ist vorgesehen, dass die zuvor beschriebenen Ausgangs-Multimetalloxidmassen mit einem Phosphor-haltigen Agens behandelt werden. Unter einer Behandlung im Sinne der vorliegenden Erfindung versteht man dabei, dass das Phosphor-haltige Agens mit der Multimetalloxidmasse während der Synthese der Ausgangs-Mulitmetalloxidmassen oder danach als postsynthetische Behandlung in Kontakt 40 gebracht wird. Dabei kann – je nach Art der Behandlung mit dem Phosphor-haltigen Agens und dessen Menge – die Struktur des Multimetalloxides der Formel A_a[Mo_{5-b-c}V_bX_cO_d]₁ (allgemeine Formel (I)) erhalten bleiben. Dieses ist an den repräsentativen Beugungsreflexen des Röntgendifraktograms, also am repräsentativen Röntgenbeugungsmuster RM, der i-Phase erkennbar; für charakteristische Linien von RM siehe oben.

Durch die Behandlung der Ausgangs-Multimetalloxidmassen können allerdings auch in der Oxidmasse Nebenphasen gebildet werden oder aber es kann auch zu einer vollständigen Umwandlung der i-Phase in andere Phasen erfolgen.

10

15

20

25

30

35

40

5

Typische Nebenphasen, die durch die Behandlung der Ausgangs-Multimetalloxidmassen gebildet werden können, sind Heteropolysäuren, die isostrukturell mit dem Typ Heteropolysäure sind. Dieser Typ Heteropolysäure ist unter der Nummer 70-0129 (C), 46-0482 (*) oder 43-0314 (*) in der JCPDS Datei (Grundlage ICDD Release Version 2000) beschrieben.

Es ist im Rahmen der vorliegenden Erfindung jedoch ebenfalls möglich, dass durch die Behandlung mit dem Phosphor-haltigen Agenz die Verschiebung von typischen Reflexlagen oder das Fehlen typischer Reflexe, ein Phänomen, das dem Fachmann als Textur bekannt ist, auftritt.

In einer besonderen Ausführungsform der erfindungsgemäßen Phosphor-modifizierten Multimetalloxidmassen weist die resultierende Multimetalloxidmasse nach der Behandlung mit dem Phosphor-haltigen Agens die Struktur einer i-Phase und/oder einer Phase, die isostrukturell mit dem Typ Heteropolysäure ist, auf.

In einer weiteren besonderen Ausführungsform der erfindungsgemäßen Phosphormodifizierten Multimetalloxidmassen weist die resultierende Multimetalloxidmasse nach der Behandlung mit dem Phosphor-haltigen Agens die Struktur einer Scherstrukturphase und/oder einer Phase, die isostrukturell mit dem Typ Heteropolysäure ist, auf. Darüber hinaus können durch die erfindungsgemäß vorgesehene Behandlung der Ausgangs-Multimetalloxidmassen mit dem Phosphor-haltigen Agens auch röntgenamorphe Heteropolysäurephasen auftreten, die mit difraktometrischen Methoden nicht nachweisbar sind. Weitere Nebenphasen, die in den erfindungsgemäßen Phosphormodifizierten Multimetalloxidmassen auftreten können, sind typischerweise MoO₃-Phasen, MoO₂-Phasen und Vanadium-Molybdän-Oxid-Phasen und andere dem Fachmann bekannte Mischoxide der in der Verbindung vorliegenden Metalle.

Bei der Behandlung von Multimetalloxiden der Formel A_a[Mo_{5-b-c}V_bX_cO_d]₁ mit Phosphorhaltigen Agentien kann es ebenfalls zur Ausbildung von Multimetalloxiden kommen,

wie sie in der EP 0 774 297 A1 beschrieben sind. Diese Verbindungen können auch Heteropolysäuren enthalten.

Die erfindungsgemäß vorgesehene Behandlung der Ausgangs-Multimetalloxidmassen mit dem Phosphor-haltigen Agens kann prinzipiell während oder nach der Herstellung der Ausgangs-Multimetalloxidmassen erfolgen. Somit ist prinzipiell eine Zugabe des Phosphor-haltigen Agens auch bei einem der vorhergehenden Syntheseschritte möglich. So kann das Phosphor-haltige Agens beispielsweise zu der Metall-haltigen Lösung, die zur Herstellung der Ausgangs-Metalloxidmassen verwendet wird, zugegeben werden, welche vorzugsweise durch Sprühtrocknung getrocknet wird.

Als Phosphor-haltige Agentien können im Rahmen der vorliegenden Erfindung alle denkbaren Phosphor-haltigen organischen oder anorganischen Verbindungen verwendet werden. Geeignet sind beispielsweise Diphosphorpentoxid P₂O₅, Orthophosphorsäure H₃PO₄, Polyphosphorsäure, phosphorige Säure H₃PO₃, Salze der Phosphorsäure, Phosphorsäureester, Ester der phosphorigen Säure, Phosphine, Salze der phosphorigen Säure, Ultraphosphorsäuren (Polyphosphorsäuren mit verzweigten Ketten), Metaphosphorsäuren ((HPO₃)_n), Phosphinsäuren, Phosphonsäuren und deren Gemische.

20

5

10

15

Wenn im Rahmen der vorliegenden Erfindung von der Behandlung der Ausgangs-Multimetalloxidmasse mit einem Phosphor-haltigen Agens gesprochen wird, so wird hierunter die Verwendung von einer oder mehreren der zuvor genannten Verbindungen verstanden.

25

30

35

40

In einer ersten Ausführungsform erfolgt die Behandlung der Ausgangs-Multimetalloxidmasse mit dem Phosphor-haltigen Agens dadurch, dass die Ausgangs-Multimetalloxidmasse mit einer Lösung des Phosphor-haltigen Agens in einem oder mehreren Schritten getränkt wird und die hieraus resultierende getränkte Multimetalloxidmasse einer
anschließenden thermischen oder hydrothermalen Nachbehandlung unterzogen wird.
Wenn die Behandlung durch Tränkung der Ausgangs-Multimetalloxidmassen mit dem
Phosphor-haltigen Agens erfolgt, so wird das Phosphor-haltige Agens vorzugsweise in
einer wässrigen Lösung oder aber in einer Lösung in einem organischen Lösemittel
verwendet. Die Konzentrationen der Lösungen sind dabei variabel. So können beispielsweise verdünnte Lösungen (0,01 mol/l) oder konzentrierte Lösungen (3,0 mol/l)
verwendet werden. Geeignete organische Lösemittel sind beispielsweise Alkohole,
Ether, Ester, Amine und Dimethylsulfoxid.

Nach diesem Tränkschritt der Ausgangs-Multimetalloxidmasse erfolgt erfindungsgemäß vorzugsweise eine thermische oder hydrothermale Nachbehandlung. Typischerweise besteht diese thermische oder hydrothermale Nachbehandlung aus einem Trocknungsschritt bei Endtemperaturen von vorzugsweise 40 bis 400 °C, besonders bevorzugt 60 bis 350 °C, insbesondere 80 bis 300 °C. Dieser Trocknungsschritt der thermischen oder hydrothermalen Nachbehandlung erfolgt beispielsweise unter einer Atmosphäre von Luft, Stickstoff, gesättigtem Wasserdampf, Ammoniak oder Gemischen aus diesen Gasen. Die Aufzählung an entsprechenden Atmosphären ist nicht beschränkend aufzufassen, sondern nur beispielhaft. So sind weitere, dem Fachmann an sich bekannte Atmosphären hierfür geeignet.

5

20

35

40

An einen solchen Trocknungsschritt kann sich gegebenenfalls ein weiterer thermischer Behandlungsschritt anschließen. Dieser zweite thermische Behandlungsschritt (Trocknungsschritt) erfolgt vorzugsweise bei Endtemperaturen von 200 bis 1200 °C, besonders bevorzugt 250 bis 900 °C, insbesondere 300 bis 800 °C. Die Atmosphäre dieser zweiten thermischen Behandlung wird üblicherweise kontrolliert und kann ebenfalls beispielsweise aus Luft, Stickstoff, gesättigtem Wasserdampf, Ammoniak oder Gemischen aus diesen Gasen bestehen. Auch diese Aufzählung an geeigneten Atmosphären ist nur beispielhaft zu verstehen.

Es kann sinnvoll sein, während des ersten und/oder zweiten Behandlungs- bzw. Trocknungsschrittes dieser thermischen oder hydrothermalen Nachbehandlung einen oder mehrere Haltepunkte innerhalb der Behandlung anzusetzen. Der typische Temperaturbereich für Haltepunkte in der zweiten Trocknungsphase, d. h. dem zweiten Trocknungsschritt, liegt vorzugsweise zwischen 150 und 900 °C, besonders bevorzugt 210 bis 800 °C, insbesondere 220 bis 750 °C.

Für den ersten als auch für den zweiten Trocknungsschritt werden vorzugsweise Heizraten zwischen 0,1 °C/min bis 5 °C/min, besonders bevorzugt 0,2 bis 4 °C/min, insbesondere 0,3 bis 3 °C/min, verwendet.

Im Folgenden werden bevorzugte Bedingungen für den ersten bzw. zweiten Behand-30 lungs- bzw. Trocknungsschritt wiedergegeben.

Der erste Behandlungs- bzw. Trocknungsschritt wird vorzugsweise als Sprühtrocknung in einem Sprühturm durchgeführt. Die dabei verwendete Kopftemperatur beträgt vorzugsweise ungefähr 300 °C, während die verwendete Ausgangstemperatur vorzugsweise ungefähr 80 °C beträgt.

Der zweite Behandlungs- bzw. Trocknungsschritt wird vorzugsweise in einem Drehkugelofen gemäß der DE-A 101 22 027 durchgeführt. Dabei beträgt die Rotationsgeschwindigkeit vorzugsweise 10 bis 30/min. Die Vorspülzeit mit Luft beträgt vorzugsweise 0,01 bis 0,3 Stunden. Die Heizrate I beträgt vorzugsweise 1 bis 15 K/min, wobei eine Zieltemperatur I von vorzugsweise 200 bis 340 °C erreicht wird. Der Haltepunkt

bei der Zieltemperatur I beträgt vorzugsweise 30 Minuten bis 3,5 Stunden. Der Fluss an Luft beträgt im Allgemeinen 0,01 bis 0,7 I/min. Die Heizrate auf die Endtemperatur beträgt vorzugsweise 0,1 bis 45 K/min, wobei die Endtemperatur beträgt vorzugsweise 600 °C. Der Haltepunkt bei der Endtemperatur beträgt vorzugsweise 1 bis 16 Stunden. Der Fluss an Stickstoff zum Erreichen der Endtemperatur und beim Halten des Endpunktes beträgt vorzugsweise 0,01 bis 0,7 I/min.

In einer weiteren Ausführungsform der vorliegenden Erfindung wird die Behandlung der Ausgangs-Multimetalloxidmasse mit dem Phosphor-haltigen Agens durch vorzugsweise inniges Vermahlen und/oder vorzugsweise inniges Vermischen des Phosphor-haltigen Agens mit der Ausgangs-Multimetalloxidmasse durchgeführt. Diese Ausführungsform wird vorzugsweise bei festen Phosphor-haltigen Agentien angewendet.

In einer weiteren Ausführungsform der vorliegenden Erfindung erfolgt die Behandlung der Ausgangs-Multimetalloxidmasse mit dem Phosphor-haltigen Agens durch eine Chemical-Vapor-Deposition.

Der bevorzugte Einsatz des Elementes Phosphor schließt den Einsatz anderer Elemente zur Behandlung des erfindungsgemäßen Multimetalloxides nicht aus. Eine solche Behandlung kann in Kombination mit der Behandlung Phosphor-haltige Verbindungen oder als Substitut erfolgen.

Die Verwendung der so erhaltenen Aktivmassen für Katalysatoren kann in Pulverform oder zu Formkörpern geformt erfolgen. Dabei kann das Katalysatorbett ein Festbett, ein Wanderbett oder ein Wirbelbett sein.

Die Formung zu Formkörpern, beispielsweise Granulat, Tabletten oder Extrudaten, kann z.B. durch Aufbringen auf einen Trägerkörper erfolgen, wie es in der DE-A 10118814 bzw. der PCT/EP/02/04073 bzw. der DE-A 10051419 beschrieben wird.

Die dazu einzusetzenden Trägerkörper sind vorzugsweise chemisch inert. D.h., sie greifen in den Ablauf der partiellen katalytischen Gasphasenoxidation bzw. -ammoxidation, die durch die Aktivmassen katalysiert wird, im Wesentlichen nicht ein.

Als Material für die Trägerkörper kommen erfindungsgemäß insbesondere Aluminiumoxid, Siliciumdioxid, Silicate wie Ton, Kaolin, Steatit (bevorzugt mit geringem in Wasser löslichem Alkaligehalt), Bims, Aluminiumsilicat und Magnesiumsilicat, Siliciumcarbid, Zirkondioxid und Thoriumdioxid in Betracht.

5

10

20

25

30

35

Die Oberfläche des Trägerkörpers kann sowohl glatt als auch rau sein. Mit Vorteil ist die Oberfläche des Trägerkörpers rau, da eine erhöhte Oberflächenrauhigkeit in der Regel eine erhöhte Haftfestigkeit der aufgebrachten Aktivmassenschale bedingt.

Häufig liegt die Oberflächenrauhigkeit Rz des Trägerkörpers im Bereich von 5 bis 200 um, oft im Bereich von 20 bis 100 μm (bestimmt gemäß DIN 4768 Blatt 1 mit einem "Hommel Tester für DIN-ISO Oberflächenmessgrößen" der Fa. Hommelwerke, DE).

Wahlweise kann die Behandlung der Multimetalloxidmasse der Formel A_a[Mo_{5-b-} 10 _cV_bX_cO_d]₁ mit dem Phosphor-haltigen Agenz vor oder nach der oben beschriebenen Beschichtung erfolgen.

Auch der Zusatz nanoskaliger Oxide wie beispielsweise TiO₂, SiO₂, ZrO₂ und anderer Oxide oder Mischoxide zu Multimetalloxidmassen der Formel A_a[Mo_{5-b-c}V_bX_cO_d]₁ vor oder nach der Phosphor-Behandlung ist im Rahmen der Erfindung eingeschlossen.

Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Phosphor-modifizierten Multimetalloxidmassen, ausgehend von Multimetalloxidmassen der allgemeinen Formel I

 $A_a[Mo_{5-b-c}V_bX_cO_d]_1 \qquad (I)$

mit

15

20

25

35

A = wenigstens eines der Elemente aus der Gruppe umfassend NH₄, Na, K, Rb, Cs und Tl;

X = eines oder mehrere der Elemente aus der Gruppe umfassend La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Hf, Nb, Ta, W, Mn, Re, Fe, Co, Ni, Cr, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se und Te;

30 a = 0.1 bis 1;

b = 0.25 bis 4.5; und

c = 0 bis 4.5

mit der Maßgabe, dass b + $c \le 4.5$,

deren Röntgendiffraktogramm das nachfolgende Röntgenbeugungsmuster RM, wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [Å],

d [Å]

 $3,06 \pm 0,2$

 $3,17 \pm 0,2$

40 3,28 ± 0,2

 $3,99 \pm 0,2$

 9.82 ± 0.4

 $11,24 \pm 0,4$

 $13,28 \pm 0,5$

15

20

enthält, wobei man die Multimetalloxidmassen der allgemeinen Formel (I) mit einem 5 Phosphor-haltigen Agens behandelt.

Hinsichtlich weiterer Merkmale des erfindungsgemäßen Verfahrens wird auf obige Ausführungen hinsichtlich der Multimetalloxidmassen an sich verwiesen.

10 Weiterer Gegenstand der vorliegenden Erfindung sind die durch dieses Verfahren erhältlichen Phosphor-modifizierten Multimetalloxidmassen.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Multimetalloxidmassen als katalytische Aktivmasse für heterogen katalysierte partielle Gasphasenoxidationen und/oder -amoxidationen von funktionalisierten und nicht-funktionalisierten Kohlenwasserstoffen wie Alkanen, Alkenen, Aromaten, Seitenketten von Aromaten, Alkinen, Alkholen, Ketonen und Aldehyden zu den entsprechenden Nitrilen, Imiden, Säuren, Aldehyden und Alkoholen insbesondere von gesättigten und/oder ungesättigten Kohlenwasserstoffen sowie von gesättigten und/oder ungesättigten Aldehyden.

Die zu oxidierenden Kohlenwasserstoffe sowie die zu oxidierenden Aldehyde enthalten vorzugsweise 1 bis 8 Kohlenstoffatome.

Insbesondere eignen sich die erfindungsgemäßen Multimetalloxidmassen als katalytische Aktivmassen für heterogen katalysierte partielle Gasphasenoxidationen von Acrolein zu Acrylsäure, Methacrolein zu Methacrylsäure und Ethan zu Essigsäure.

Die vorliegende Erfindung wird anhand der nachstehenden Ausführungsbeispiele nä-30 her erläutert:

Ausführungsbeispiele:

Alle Diffraktogramme werden mit einem Diffraktometer des Hertstellers Bruker AXS GmbH, 76187 Karlsruhe, Gerätebezeichnung: D8 Discover mit GADDS (GADDS = General Area Detector Diffraction System) aufgenommen. Zur Aufnahme der Diffraktogramme wird Cukα-Strahlung verwendet.

Der bei den Diffraktogrammen sichtbare Reflex bei 26,7°2Θ stammt von Graphitbei-40 mengungen zu den Katalysatormassen.

Die Prozentangaben an Acrolein, Methacrolein, Wasser und Sauerstoff in den nachfolgenden Tabellen sind in mol-%.

Beispiel 1

10

15

20

25

30

35

5 Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis Mo als Ammoniumheptamolybdat 0.64 molares Verhältnis V als Vanadat 0.18 molares Verhältnis Nb als Oxalat 0.09 molares Verhältnis

Ein Viertel des Vanadiums wird als Metall zur Ammoniumvanadatlösung zugegeben und 12 Stunden unter Stickstoff gerührt. Anschließend werden wie in den anderen Beispielen, die als Ausgangssubstanzen verwendeten Chemikalien zugegeben.

Das Fällungsgefäß ist ein 2000 ml fassender 4-Hals Kolben, der über einen Magnetrührer gerührt wird (500/min). Die Fällungstemperatur liegt bei 80°C. Der pH-Wert der Lösung wird nicht eingestellt und noch 1 Stunde nachgerührt. Die Probe wird anschließend im Sprühturm getrocknet. Anschließend wird die Probe einer Trocknung bei 80°C unter Luft im Trockenschrank unterworfen. Die Probe wird auf 100 bis 500 Mikrometer klassiert und in einem Drehkugelofen einer Kalzinierung unterworfen. Dabei werden folgende Parameter eingehalten:

Der Ofen ist ein Drehkugelofen nach der DE-A 10122027, die Rotationsgeschwindigkeit beträgt 15 /min. Die Vorspülzeit mit Luft beträgt 0,01 Stunden. Die Heizrate 1 beträgt 5 K/min. Die Zieltemperatur 1 beträgt 275 °C. Der Haltepunkt bei Zieltemperatur 275 °C dauerte 1,5 Stunden. Der Fluss an Luft beträgt 0,166 l/min. Die Heizrate auf die Endtemperatur beträgt 45 K/min. Die Endtemperatur beträgt 600 °C. Der Haltepunkt bei der Endtemperatur beträgt 6 h. Der Fluss an N₂ zum Erreichen der Endtemperatur und beim Halten des Endpunktes beträgt 0,166 l/min. Nach der Kalzinierung wird auf kleiner 500 Mikrometer klassiert.

Im Anschluss an die Kalzinierung wird die Probe mit wässriger Phosphorsäure gemäß der oben angegebenen Stöchiometrie auf einem Schüttler in einer Porzellanschale getränkt. Dabei wird auf 100 % der vorher mit Wasser ermittelten Wasseraufnahme getränkt. Anschließend wird die Probe bei 80 °C unter Luft getrocknet und danach auf 300 bis 500 Mikrometer klassiert und 1 ml der Probe in einem 48-fach Testreaktor gemäß DE 198 09 477.9 getestet. Folgende Ergebnisse wurden bei der Umsetzung von Acrolein erhalten:

GHSV	Reaktor-	Konzent-	Konzent-	Konzent-	Umsatz	Sel. Es-	Sel. Ac-	Ausbeu-
	tempera-	ration	ration	ration		sigsäure	rylsäure	te Acryl-
	tur	Wasser	Sauer-	Acrolein				säure
			stoff					
[h-1]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	270	2	15	2	97.1063	4.71226	84.9923	82.5329
1500	260	2	15	2	91.1755	3.85072	85.3885	77.8534
1500	280	2	15	2	99.0113	_	76.6827	75.9246
1500	270	2	9	2	88.6682	3.73109	84.3827	74.8206
1500	290	2	15	2	100	-	69.9821	69.9821
1500	250	2	15	2	83.0725	3.41778	83.1343	69.0618
1500	300	2	12	5	76.1215		83.0937	63.2522
1500	300	2	15	2	100	1.0	61.5793	61.5793
1500	290	2	9	5	59.1036	<u>-</u>	86.2143	50.9558
1500	290	2	12	5	55.3638		88.3911	48.9366
3000	310	4	15	5	47.5832	0.407703	88.8537	42.2795
3000	290	4	15	5	47.7641	-	84.5118	40.3663
1500	260	2	9	2	43.5543	2.98517	91.016	39.6414
3000	310	1	15	5	43.7976		88.6352	38.8201
3000	300	4	15	5	48.805		79.3837	38.7432
3000	310	0	15	5	35.4357		99.6167	35.2999
1500	280	2	9	5	38.9689	-	90.2584	35.1727
1500	280	2	12	5	36.572		88.1751	32.2474
1500	250	2	9	5	41.6424		65.0315	27.0807
3000	300	2	9	5	31.0261	м	80.0014	24.8213
3000	280	2	9	5	28.0207	1.01843	87.7151	24.5784
1500	250	2	9	2	22.0138	3.22246	97.7183	21.5115
1500	270	2	9	5	27.0511	-	76.0781	20.5799
3000	280	1	15	5	23.4102	3.66973	87.5502	20.4957
3000	300	0	15	5	21.0777	_	85.9742	18.1214
1500	260	2	9	5	16.3361	-	97.4614	15.9214
3000	290	1	15	5	16.9791	-	91.019	15.4542
3000	290	2	9	5	15.6737	-	98.2863	15.4051
3000	280	0	15	5	20.0107	2.95395	76.5926	15.3267
3000	280	0	19	5	19.2782	2.02239	77.7355	14.986
1500	240	2	9	2	13.3384	2.61419	79.0476	10.5436
3000	290	0	15	5	14.3578	_	58.2371	8.36159
1500	270	2	12	5	8.96387	-	35.2421	3,15905

Figur 1 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 17

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis Mo als Ammoniumheptamolybdat 0.62 molares Verhältnis V als Vanadat 0.22 molares Verhältnis W als Oxalat 0.07 molares Verhältnis

P als Phosphorsäure 0,04 molares Verhältnis

10

5

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

Folgende Ergebnisse werden bei der Umsetzung von Acrolein erhalten:

GHSV	Reaktor-	Konzent-	Konzent-	Konzent-	Umsatz	Sel. Es-	Sel. Ac-	Ausbeu-
	tempera-	ration	ration	ration		sigsäure	rylsäure	te Acryl-
	tur	Wasser	Sauer-	Acrolein				säure
			stoff	.]				
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	260	2	9	2	99.0898	4.03168	92.1883	91.3493
3000	300	1	15	5	98.1675	-	90.2526	88.5987
1500	280	4	9	5	98.7282	3.8019	87.6356	86.5211
1500	280	2	9	5	97.4828	3.64723	87.4154	85.215
1500	290	2	9	5	99.5477	4.81805	85.2396	84.8541
1500	290	2	9	5	100	4.22433	83.8155	83.8155
1500	280	2	9	5	97.8949	3.72752	85.6071	83.805
1500	290	2	12	5	99.3623	4.63739	84.1156	83.5792
1500	280	2	12	5	96.5155	3.46129	86.5132	83.4987
3000	300	0	15	5	96.031	•	86.7386	83.2959
3000	290	4	15	5	98.4133		84.6387	83.2957
1500	280	6	9	5	99.187	3.41916	83.9398	83.2574
1500	270	2	9	2	100	5.13481	83.2031	83.2031
3000	290	1	15	5	93.5415	-	88.6165	82.8932
1500	250	2	15	2	100	5.27318	82.6531	82.6531
1500	250	2	9	2	93.4031	3.10739	88.1839	82.3665
1500	290	4	9	5	100	4.5938	81.5316	81.5316
1500	270	2	9	5	90.179	3.19466	90.0652	81.2199
3000	310	0	15	5	99.062	-	81.4854	80.721
1500	290	6	9	5	100	4.58637	80.5092	80.5092
1500	260	2	15	2	100	5.9934	80.3672	80.3672
3000	300	2	9	5	90.1538	3.34664	88.1101	79.4346

23

1500	270	2	12	5	84.3308	3.17764	94.0277	79.2943
3000	300	4	15	5	99.4572	-	79.6057	79.1736
3000	310	1	15	5	100		79.1229	79.1229
1500	270	2	9	5	87.3549	3.14412	89.9559	78.5809
1500	270	4	9	5	90.9453	3.07986	86.091	78.2958
1500	270	6	9	5	93.8584	3.07261	81.6319	76.6184
1500	300	2	12	5	100		75.3212	75.3212
3000	290	0	15	5	87.22	-	85.2285	74.3362
1500	270	2	15	2	100	7.35637	73.5921	73.5921
3000	310	4	15	5	100	-	73.0393	73.0393
3000	280	0	19	5	77.4187		94.1662	72.9022
1500	250	2	9	5	78.6236	2.8966	90.3618	71.0457
3000	280	0	15	5	73.9313		95.3646	70.5042
. 1500	260	2	9	5	79.6212	2.79696	88.3238	70.3244
3000	280	1	15	5	83.9156	-	83.5269	70.0921
1500	260	4	9	5	76.4882	2.74724	88.5616	67.7392
3000	290	2	9	5	74.1033	2.83655	89.607	66.4018
1500	260	6	9	5	82.1686	2.60829	80.8011	66.3931
1500	240	2	9	2	68.7364	2.55191	91.5986	62.9615
1500	260	2	9	5	70.3794	2.7127	88.8422	62.5266
1500	280	2	1	2	100	9.24196	61.868	61.868
1500	250	2	9	5	62.4619	2.6575	93.8924	58.647
1500	250	6	9	5	70.6419	2.4647	82.5774	58.3343
3000	280	2	9	5	61.6609	2.73439	90.2318	55.6377
1500	250	4	9	. 5	65.0782	2.46802	85.2814	55.4996
1500	290	2	15	2	100	11.3601	52.0137	52.0137
1500	300	2	15	2	100	13.2385	40.4733	40.4733
1500	230	2	9	2	34.8694	2.55044	95.3771	33.2574
	L		J	L		l		·

Figur 14 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 22

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.59 molares Verhältnis
V als Vanadat 0.13 molares Verhältnis
Nb als Oxalat 0.13 molares Verhältnis
Te als Tellursäure 0,06 molares Verhältnis
P als Phosphorsäure 0,03 molares Verhältnis

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

Folgende Ergebnisse werden bei der Umsetzung von Acrolein erhalten:

GHSV	Reaktor-	Konzent-	Konzent-	Konzent-	Umsatz	Sel. Es-	Sel. Ac-	Ausbeu-
	tempera-	ration	ration	ration		sigsäure	rylsäure	te Acryl-
	tur	Wasser	Sauer-	Acrolein				säure
			stoff			!		
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	270	2	15	2	99.3625	4.02953	92.9086	92.3163
1500	260	2	15	2	97.2346	3.41749	91.7639	89.2263
1500	280	2	15	2	100	4.69607	87.4346	87.4346
1500	250	. 2	15	2	90.4258	3.09005	94.6841	85.6188
1500	290	2	15	2	100	5.5092	81.2918	81.2918
3000	310	4	15	5	83.4348	ш	95.2086	79.4371
1500	300	2	12	5	83.2212	3.16647	90.9841	75.7181
1500	300	2	15	2	100	6.56453	74.0753	74.0753
1500	270	2	9	2	81.5642	2.60699	88.975	72.5717
3000	300	4	15	5	69.4579	2.69792	93.9069	65.2258
3000	310	1	15	5	75.0684	ena .	76.6303	57.5252
3000	310	0	15	5	59.8831	-	94.944	56.8554
1500	290	2	9	5	57.5691	2.74962	98.2848	56.5816
1500	290	2	12	5	55.0575	2.71258	95.4544	52.5548
3000	290	4	15	5	56.7487	2.53395	89.607	50.8508
1500	260	2	9	2	53.1692	2.37812	94.0169	49.988
1500	250	2	9	2	32.0239	2.34819	94.2684	30.1884
1500	280	2	12	5	32.1003	2.62481	89.7325	28.8044
3000	290	1	15	5	26.5658	2.30154	86.0789	22.8676
3000	300	. 2	9	5	25.9799	2.45857	84.822	22.0367
1500	270	2	9	5	20.6917	2.46058	87.9573	18.1999
1500	270	2	12	5	18.3219	2.63636	86.7024	15.8856
3000	290	0	15	5	15.3179	2.58054	84.0498	12.8746
3000	280	0	19	5	14.3419	2.29678	75.6813	10.8541
1500	250	2	9	5	13.5683	2.09046	79.1375	10.7376
3000	280	2	9	5	9.57691	2.54533	80.6594	7.72468

Figur 18 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 23

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.59 molares Verhältnis
5 V als Vanadat 0.13 molares Verhältnis
Nb als Oxalat 0.13 molares Verhältnis
Te als Tellursäure 0,06 molares Verhältnis
P als Phosphorsäure 0,04 molares Verhältnis

10 Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

Folgende Ergebnisse werden bei der Umsetzung von Acrolein erhalten:

GHSV	Reaktor-	Konzent-	Konzent-	Konzent-	Umsatz	Sel. Es-	Sel. Ac-	Ausbeu-
	tempera-	ration	ration	ration		sigsäure	rylsäure	te Acryl-
	tur	Wasser	Sauer-	Acrolein				säure
			stoff					
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	270	2	15	2	99.648	4.37732	94.1691	93.8377
1500	260	2	15	2	99.115	3.66921	92.6894	91.8691
1500	280	2	15	2	100	4.9431	89.7458	89.7458
1500	250	2	15	2	95.8736	3.16909	92.1451	88.3428
1500	270	2	9	2	96.1744	3.0852	89,9826	86.5402
1500	300	2	12	5	96.042	3.57058	90.0972	86.5311
1500	290	2	15	2	100	5.82047	85.3658	85.3658
3000	310	4	15	5	97.8175	-	85.1843	83.3251
1500	290	2	9	5	84.7697	2.8142	91.4938	77.559
3000	300	1	15	5	81.1106	-	95.1964	77.2144
3000	310	0	15	5	86.5968	PP4	88.7505	76.8551
3000	300	4	15	5	94.1449	-	81.407	76.6405
3000	290	4	15	5	85.469		88,9248	76.0031
3000	310	1	15	5	93.9207	wa	79.0563	74.2502
1500	290	2	12	5	78.8373	2.89129	91.1095	71.8282
1500	260	2	9	2	74.3884	2.49991	94.8642	70.568
3000	290	1	15	5	60.3136	2.72255	98.1215	59.1806
1500	280	2	9	5	53.0307	2.60659	97.7136	51.8182
1500	280	2	12	5	51.7412	2.55376	94.8794	49.0917
1500	250	2	9	2	46.1867	2.33983	99.3611	45.8916
3000	300	2	9	5	44.1552	2.5268	94.5606	41.7534
3000	290	0	15	5	44.5902	2.38467	89.7054	39.9999
3000	280	1	15	5	38.2517	2.46082	95.974	36.7117

1500	270	2	12	5	28.562	2.60864	98.1843	28.0434
1500	270	2	9	5	30.7195	2.39057	90.9923	27.9523
1500	240	2	9	2	26.0461	2.23361	97.2306	25.3248
3000	290	2	9	5	19.6151	2.56136	90.9024	17.8306
1500	260	2	9	5	17.8326	2.39834	86.5671	15.4372

Das Diffraktogramm des Ausbaukatalysators gleicht dem in Beispiel 22.

Beispiel 31

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis 10 V als Vanadat 0.21 molares Verhältnis Bi als Nitrat 0,01 molares Verhältnis P als Phosphorsäure 0,04 molares Verhältnis

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

15

Folgende Ergebnisse werden bei der Umsetzung von Acrolein erhalten:

GHSV	Reaktor- tempera- tur		ration Sauer-	Konzent- ration Acrolein	Umsatz	Sel. Es- sigsäure	Sel. Ac- rylsäure	Ausbeu- te Acryl- säure
[h ⁻¹]	[°C]	[%]	stoff [%]	[%]	[%]	[%]	[%]	[%]
1500		<u></u>	9	5	99.5662			
1500			9	. 2	99.6478	4.01713	92.8714	92.5443
1500	280	2	12	5	98.9038	3.46922	93.5419	92.5165
1500	250	2	15	2	100	4.2613	92.509	92.509
1500	260	2	9	2	99.001	3.46844	93.16	92.2293
1500	290	2	9	5	99.5152	3.32659	91.3862	90.9431
1500	285	2	9	5	100	3.09288	90.1732	90.1732
3000	300	2	12	5	97.3283	3.59045	92.6244	90.1497
3000	300	1	15	5	97.7979	_	91.4722	89.4579
3000	300	2	15	5	99.1563	_	89.9911	89.2319
1500	280	4	9	5	97.2557	3.13443	91.134	88.6331
1500	290	2	9	5	100	3.2255	88.447	88.447
3000	310	2	9	5	99.1785	3.6878	89.0136	88.2824

1500	300	2	12	5	100	4.6687	88.236	88.236
3000		4	15	5	98.3746		89.4403	87.9866
1500		6	9	5	98.3676		89.3951	87.9358
3000		4	15	5	100		87.841	87.841
3000		2	12	5	100		87.8272	87.8272
3000		4	15	5	100		87.8255	87.8255
3000		4	12	5	98.4194		89.0773	87.6694
1500		4	9	5	100		87.1745	87.1745
1500	l	2	9	5	96.2351	3.11572	90.552	87.1428
1500	L	2	9	5	95.4175	3.01681	91.3232	87.1383
3000		4	9	5	99.4015	3.55167	87.4453	86.9219
1500	290	2	12	5	99.2799	3.75304	87.4612	86.8314
3000	300	2	9	5	94.4231	3.05565	91.8852	86.7609
1500	260	2.	15	2	100	4.35058	86.7518	86.7518
1500	295	2	9	5	100	3.93273	86.0231	86.0231
1500	290	2	12	5	100	3.78331	85.9489	85.9489
3000	300	0	15	5	93.6048	444	91.7324	85.8659
3000	280	2	15	5	91.741	3.08836	93.4608	85.7419
1500	290	6	9	5	100	3.69529	85.6719	85.6719
3000	290	2	15	5	96.7239	-	88.3942	85.4983
1500	270	2	12	5	94.7513	3.10503	90.2067	85.472
1500	270	2	15	2	100	5.05017	85.3861	85.3861
1500	250	2	9	2	89.7367	2.83144	95.0644	85.3077
3000	300	4	9	5	96.739	3.30527	87.8019	84,9386
3000	310	2	15	5	100	_	84.3202	84.3202
1500	280	2	12	5	91.3273	3.00852	92.2296	84.2308
3000	310		15	5	100	-	83.8923	83.8923
1500	300	2	12	5	100		83.6705	83.6705
3000	290	4	12	5	91.9571	3.00749	90.8993	83.5883
3000	290	1	15	5	89.3408	-	93.0325	83.116
1500	275	į.	ž	5	95.0917	2.31924	86.9415	82,6741
1500	280	2	15	2	100	5.95173	81.958	81.958
1500	270	2	9	5	92.4492	1.87337	88.6347	81.942
3000	290	2	12	5	89.3599	2.72846	88.4356	79.026
3000	290	4	9	5	87.0951	2.78363	90.6353	78.9389
3000	290	2	9	5	83.2706	2.68297	94.2077	78.4474
3000	280	4	15	5	87.7282	2.81832	89.4027	78.4314
3000	310	0	15	5	99.1526	-	78.4602	77.7953
1500	270	6	9	5	88.6391	2.54251	86.9833	77.1012
3000	300	2	9	5	84.6684	2.77205	90.4107	76.5494
3000	280	4	12	5	82.2874	2.40463	91.7878	75.5298

1500 290 2 15 2 100 7.24237 74.2479 74.2 1500 270 4 9 5 82.4866 2.549 89.6492 73.9 1500 270 2 9 5 79.7676 2.57829 90.915 72.5 3000 280 2 12 5 78.5396 2.31154 90.4 70.9 3000 290 0 15 5 78.182 - 89.3496 69.8 3000 280 4 9 5 75.576 2.51255 90.641 68.5 1500 270 2 9 5 76.5011 2.45417 89.1142 68.1 1500 300 2 15 2 100 8.60063 67.8813 67.8 3000 280 2 9 5 74.8314 2.09131 89.727 67.
1500 270 2 9 5 79.7676 2.57829 90.915 72.5 3000 280 2 12 5 78.5396 2.31154 90.4 70.9 3000 290 0 15 5 78.182 - 89.3496 69.8 3000 280 4 9 5 75.576 2.51255 90.641 68.5 1500 270 2 9 5 76.5011 2.45417 89.1142 68.1 1500 300 2 15 2 100 8.60063 67.8813 67.8
3000 280 2 12 5 78.5396 2.31154 90.4 70.9 3000 290 0 15 5 78.182 - 89.3496 69.8 3000 280 4 9 5 75.576 2.51255 90.641 68.5 1500 270 2 9 5 76.5011 2.45417 89.1142 68.1 1500 300 2 15 2 100 8.60063 67.8813 67.8
3000 290 0 15 5 78.182 - 89.3496 69.8 3000 280 4 9 5 75.576 2.51255 90.641 68.5 1500 270 2 9 5 76.5011 2.45417 89.1142 68.1 1500 300 2 15 2 100 8.60063 67.8813 67.8
3000 280 4 9 5 75.576 2.51255 90.641 68.5 1500 270 2 9 5 76.5011 2.45417 89.1142 68.1 1500 300 2 15 2 100 8.60063 67.8813 67.8
1500 270 2 9 5 76.5011 2.45417 89.1142 68.1 1500 300 2 15 2 100 8.60063 67.8813 67.8
1500 300 2 15 2 100 8.60063 67.8813 67.8
3000 280 2 9 5 74.8314 2.09131 89.727 67.
3000 280 1 15 5 75.5043 - 86.352 65.1
1500 270 2 12 5 69.0924 2.48297 90.5949 62.5
1500 260 6 9 5 68.9584 2.19843 88.0808 60.7
3000 280 0 19 5 63.3618 2.50151 94.1539 59.6
1500 240 2 9 2 63.3667 2.21896 92.3907 58.5
1500 260 2 9 5 62.0906 2.27792 91.8667 57.0
1500 260 4 9 5 59.7795 2,29524 91.8752 54.9
1500 250 2 9 5 57.4972 2.25505 94.3053 54.2
3000 290 2 9 5 55.0055 2.60728 97.9599 53.8
3000 280 0 15 5 55.9363 2.43566 93.259 52.1
1500 250 6 9 5 54.1742 2.12819 91.0737 49.3
1500 260 2 9 5 49.4795 2.40279 97.8431 48.4
1500 250 4 9 5 45.2073 2.08635 91.5365 41.3
1500 250 2 9 5 39.4108 2.13909 92.9833 36.6
3000 280 2 9 5 38.1894 2.23284 89.6917 34.2
1500 230 2 9 2 34.0678 2.04209 93.3221 31.7

Figur 23 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 32

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis
V als Vanadat 0.21 molares Verhältnis
Bi als Nitrat 0,01 molares Verhältnis
P als Phosphorsäure 0,05 molares Verhältnis

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

10

Folgende Ergebnisse werden bei der Umsetzung von Acrolein erhalten:

GHSV	Reaktor-	Konzent-	Konzent-	Konzent-	Umsatz	Sel. Es-	Sel. Ac-	Ausbeu-
VA	tempera-	ration	ration	ration		sigsäure	rylsäure	te Acryl-
The state of the s	tur	Wasser	Sauer-	Acrolein				säure
**************************************			stoff				_	
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	250	2	9	2	98.467	3.50339	96.5143	95.0347
1500	260	2	9	2	99.6509	3.95739	94.919	94.5877
1500	280	2	12	5	99.1024	3.73199	91.5182	90.6968
3000	290	2	12	5	97.2968	3.37885	92.736	90.2291
3000	280	2	15	5	97.2184	-	92.6309	90.0543
1500	280	2	9	5	99.4731	3.69371	90.3931	89.9169
3000	. 290	4	15	5	99.5043	-	90.3329	89.8852
1500	280	6	9	5	100	3.20219	89.8475	89.8475
3000	290	2	15	5	99.1453	-	90.569	89.7949
1500	270	2	12	5	92.066	3.24903	97.1499	89.442
1500	280	2	9	5	99.4423	3.62712	89.6918	89.1916
3000	300	4	9	5	99.3517	3.77259	89.6135	89.0325
1500	290	4	9	5	100	4.20736	88.5949	88.5949
3000	310	4	9	5	100	-	88.4727	88.4727
1500	250	2	15	2	100	4.66242	88.2235	88.2235
3000	290	1	15	5	97.5073	-	90.4389	88.1845
1500	270	2	9	5	98.5302	2.43681	89.3893	88.0754
1500	270	2	9	5	96.2986	3.17814	91.3512	87.9699
1500	285	2	9	5	100	3.56582	87.7735	87.7735
3000	290	4	12	5	98.2333	3.47428	89.3257	87.7476
1500	290	6	9	5	100	4.25625	87.7214	87.7214
3000	300	4	15	5	100	_	87.709	87.709
3000	300	2	12	5	99.4447	4.05162	88.1736	87.684
1500	270	2	12	5	99.3546	3.67809	88.2279	87.6585
3000	300	4	12	5	100	-	87.6567	87.6567
1500	290	2	9	5	99.7126	4.44636	87.7817	87.5294
3000	300	2	9	5	99.1988	3.597	88.1671	87.4607
3000	300	2	9	5	96.444	3.35115	90.6295	87.4067
1500	280	2	12	5	100	3.83525	87.1793	87.1793
1500	290	2	9	5	100	3.78509	86.9599	86.9599
3000	290	2	9	5	95.4701	3.07196	90.9251	86.8063
3000	310	2	9	5	100	-	86.7134	86.7134
1500	290	2	9	5	100	3.75619	86.6154	86.6154
3000	300	2	15	5	100	**	86.6043	86.6043

					30				
	1500	270	4	9	5	97.3916	3.1725	88.9003	86.5814
	1500	280	4	9	5	100	3,47864	86.3019	86.3019
	1500	270	2	9	2	100	4.47487	86.0915	86.0915
	1500	275	2	9	5	99.3306	2.89028	86.4603	85.8815
	3000	280	4	15	5	95.8201	3.22154	89.6075	85.862
	1500	260	2	15	2	100	5.11174	85.6361	85.6361
	1500	295	2	9	5	100	4.59367	85.5391	85.5391
	1500	270	2	9	5	95.254	3.09917	89.5953	85.3431
	3000	310	0	15	5	100	-	85.1214	85.1214
	3000	290	4	9	5	96.9784	3.23287	87.7681	85.1161
	3000	300	1	15	5	99.5503	**	85.2871	84.9036
	3000	280	2	12	5	91.8796	2.82397	91.9941	84.5238
	3000	280	4	12	5	93.6716	2.74546	90.1538	84.4485
	1500	290	2	12	5	100	4.43065	84.2797	84.2797
-	3000	280	1	15	5	89.5783	-	94.0117	84.2141
-	3000	300	0	15	5	98.95		84.5468	83.659
1	3000	310	4	15	5	100	_	83.5723	83.5723
-	3000	310	2	12	5	100	-	82.997	82.997
	1500	290	2	12	5	100	4.03754	82.4052	82.4052
	3000	280	2	9	5	88.9219	2.60783	92.1967	81.983
	1500	270	2	15	2	100	5.99316	81.7818	81.7818
	3000	310	2	15	5	100		81.6544	81.6544
	3000	280	4	9	5	90.1518	2.83232	90.5259	81.6107
***************************************	1500	270	6	9	5	98.4972	3.00263	82.3799	81.1418
-	1500	300	2	12	5	100	-	81.0581	81.0581
ŀ	1500	300	2	12	5	100		80.7509	80.7509
	3000	290	0	15	5	93.5784		85.8301	80.3184
ŀ	1500	240	2	9	2	85.8525	2.61476	92.3377	79.2742
Ì	3000	280		19	5	84.9947	***	92.6962	78.7869
	3000	310	1	15	5	100		78.4229	78.4229
	1500	260	6	9	5	90.6327	2.72899	86.1583	78.0876
ľ	1500	260	4	9	5	86.955	2.65097	88.9832	77.3754
	3000	290		9	5	82.062	2.78863	92.2415	75.6953
-	1500	260	2	9	5	85.1344	2.62907	88.3967	75.256
	1500	280	2	15	2	100	7.09063	74.8764	74.8764
l	1500	250	2	9	5	78.1111	2.65982	94.2591	73.6268
ŀ	3000	280	0	15	5	79.8277		91.04	72.6751
l	1500	260	2	. 9	5	77.97	2.55471	89.0891	69.4628
ŀ	1500	290	2	15	2	100	8.71562	67.5559	67.5559
ŀ	1500	250	6	9	5	78.0642	2.31603	85.5069	66.7503
-	1500	250	4	9	5	70.488	2.29358	87.654	61.7855
1				··· [1		,	T TTT

	3000	280	2	9	5	62.9824	2.48576	93.0457	58.6024
Ī	1500	300	2	15	2	100	10.4792	58.4207	58.4207
ľ	1500	250	2	9	5	61.2987	2.41158	93.5681	57.356
ľ	1500	230	2	9	2	50.2722	2.22456	95.4597	47.9897

Figur 24 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 33

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat

0.09 molares Verhältnis

Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis

10 V als Vanadat 0.21 molares Verhältnis

Bi als Nitrat

0,01 molares Verhältnis

P als Phosphorsäure

0,09 molares Verhältnis

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

15

Folgende Ergebnisse werden bei der Umsetzung von Acrolein erhalten:

GHSV	Reaktor- tempera-		Konzent- ration	Konzent- ration	Umsatz	Sel. Es- sigsäure	Sel. Ac- rylsäure	Ausbeu- te Acryl-
	tur	Wasser	Sauer- stoff	Acrolein		oigouuro	Tyloddio	säure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
3000	300	4	12	5	96.7358	3.35545	97.9276	94.7311
1500	300	2	12	5	100	4.40973	93.3912	93.3912
1500	290	6	9	5	99.4966	3.7323	93.8515	93.3791
3000	310	2	12	5	98.4831	_	94.8067	93.3686
3000	310	2	9	5	97.9023	3,56614	95.1863	93.1896
1500	270	2	15	2	100	4.78578	93.0937	93.0937
3000	290	2	15	5	94.2477		97.9113	92.2792
1500	260	2	15	2	100	4.22255	91.8358	91.8358
3000	310	1	15	5	97.9106	-	93.7719	91.8126
3000	300	4	15	5	97.7741	-	93.8654	91.776
1500	260	2	9	2	98.2337	3.44629	93.3865	91.737
3000	310	2	15	5	98.9634	м.	92.2004	91.2447
1500	295	2	9	5	99.5542	3.84112	91.1844	90.7779
1500	285	2	9	5	99.0181	2.98638	91.3737	90.4766

1500	290	2	1		100	3.66049	90.3919	90.3919
1500	280	2	15	2	100	5.23138	90.3314	90.3314
1500	290	2	9	5	99.3202	3.83375	90.7782	90.1611
1500	250	2	15	2	100	4.04243	90.1284	90.1284
3000	300	4	9	5	95.1829	3.29143	94.6449	90.0858
1500	280	2	9	5	95.4287	3.44853	94.2354	89.9277
3000	310	4	15	5	98.9005	NA.	90.9178	89.9181
3000	300	2	15	5	97.8304	-	91.888	89.8944
1500	280	2	9	5	95.6408	3.45759	93.4545	89.3807
1500	290	2	9	5	99.293	3.08133	89.9974	89.3611
3000	310	0	15	5	97.3324		91.4785	89.0382
1500	290	2	9	5	99.1687	3.34362	89.7631	89.0169
1500	270	2	12	5	96.7248	3.42916	91.9142	88.9038
3000	300	0	15	5	92.1172	-	96.4826	88.8771
1500	290	2	. 15	2	100	5.93924	88.7714	88.7714
3000	300	2	9	5	94.1622	3.13626	94.1372	88.6417
1500	290	2	12	5	99.0226	3.96758	89.5098	88.6349
1500	270	2	9	2	99.6444	3.75952	88.6981	88.3827
3000	300	2	12	5	96.0707	3.32112	91.779	88.1728
1500	275	2	9	5	93.7315	2.79024	93.995	88.1029
1500	250	2	9	2	88.1019	3.03557	99.983	88.0869
3000	310	4	9	5	98.2861	3.10018	89.5188	87.9846
1500	280	2	12	5	99.1883	3.43071	88.6996	87.9796
3000	300	1	15	5	94.832	-	92.7159	87.9243
1500	280	2	12	5	95.4415	3.40654	92.0435	87.8477
1500	300	2	12	5	100	4.36691	87.5832	87.5832
1500	280	6	9	5	97.6662	2.74009	89.551	87.461
1500	290	4	9	5	99.3765	3.49361	87.9544	87.406
1500	280	4	9	5	96.6833	3.12073	89.8712	86.8904
3000	290	2	12	5	89.3412	2.89372	95.6896	85.4902
3000	280	2	15	5	88.0452	3.03592	96.855	85.2762
3000	290	4	12	5	91.8151	3.00656	92.1741	84.6298
3000	300	2	9	5	88.5762	3.06901	94.5846	83.7795
1500	300	2	15	2	100	6.59273	82.4473	82.4473
1500	270	2	9	5	89.8937	1.94143	91.7163	82.4472
3000	290	1	15	5	86.7244	-	94.0237	81.5415
1500	270	4	9	5	87.1825	2.89158	93.2502	81.2979
3000	290	4	9	5	87.3128	2.85067	91.9692	80.3009
3000	290	2	9	5	87.0006	2.72087	91.8432	79.9041
3000	280	4	15	5	86.7648	2.79292	91.9723	79.7996
1500	270	2	12	5	83.1778	2.98109	94.5335	78.6308
L		J						

1500	270	6	9	5	90.7253	2.69245	86.3933	78.3805
1500	270	2	9	5	84.7781	2.7881	91.2365	77.3486
3000	290	0	15	5	80.1685	-	96.3024	77.2042
3000	280	2	12	5	77.4106	2.50768	99.1128	76.7238
1500	270	2	9	5	82.6883	2.74367	92.4705	76.4623
3000	280	4	12	5	82.653	2.32439	91.283	75.4481
3000	280	2	9	5	77.5216	2.28374	95.7953	74.2621
3000	280	4	9	5	78.2074	2.53837	91.287	71.3932
1500	260	6	9	5	77.374	2.38508	91.6864	70.9414
3000	280	0	19	5	71.1113	-	96.7316	68.7871
3000	280	1	15	5	73.6689	1	93.1928	68.6541
3000	290	2	9	5	71.7378	2.6326	91.9366	65.9533
1500	260	2	9	5	70.2791	2.47535	90.2755	63.4448
1500	260	4	9	5	71.2217	2.34154	88.4613	63.0036
1500	240	2	9	2	64.85	2.46401	96.5665	62.6234
3000	280	0	15	5	65.1238	-	94.634	61.6292
1500	250	2	9	5	62.6774	2.45104	94.9013	59.4817
1500	260	2	9	5	61.1292	2.41491	91.0107	55.6341
1500	250	6	9	5	61.9543	2.12001	87.0687	53.9428
3000	280	2	9	5	51.2629	2.51644	97.281	49.8691
1500	250	4	9	5	54.1368	2.23447	91.2478	49.3986
1500	250	2	9	5	48.5958	2.3482	94.9074	46.1211
L			<u> </u>	·		·		

Das Diffraktogramm des Ausbaukatalysators gleicht dem in Beispiel 32.

Beispiel 42

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.67 molares Verhältnis
10 V als Vanadat 0.22 molares Verhältnis
Se als Selensäure 0,01 molares Verhältnis
P als Phosphorsäure 0,05 molares Verhältnis

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

15

		**************************************	·		-			/
CUCY		1/ namant	Vannant	Variant	Ilmant-	CAL EA	Cal Aa	Aughan
GHOV	Reaktor	Nonzent	NONZent-	NOHZEHL-	UlliSal	361. E5-	JUI. AU-	Ausbeu-
"								1

	tempera-	ration	ration	ration		sigsäure	rylsäure	te Acryl-
Accountant to the second to th	tur	Wasser	Sauer- stoff	Acrolein				säure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	250	2	15	2	99.3374	4.16564	91.3624	90.757
3000	300	4	15	5	98.6048	-	91.2167	89.9441
1500	285	2	9	5	97.0835	3.07711	92.5891	89.8887
1500	290	6	9	5	99.1072	4.09803	90.5156	89.7076
1500	290	2	12	5	97.6121	4.21033	91.779	89.5874
1500	280	2	12	5	97.0475	3.66296	91.7975	89.0872
1500	290	2	9	5	98.2992	4.25409	89.5489	88.0259
3000	290	4	15	5	94.653	-	92.4191	87.4775
3000	310	2	12	5	97.6906	_	89.399	87.3344
1500	260	2	9	2	93.7875	3.41045	93.0619	87.2804
1500	290	4	9	5	98.6134	3.73893	88.2765	87.0525
1500	270	2	9	2	99.1331	4.2622	87.6574	86.8975
1500	290	2	12	5	100	4.29804	86.7504	86.7504
3000	310	4	15	5	100	_	86.3441	86.3441
3000	310	4	9	5	97.1998	-	88.3825	85.9076
3000	300	2	15	5	95.6942	-	89.7617	85.8968
3000	300	2	12	5	92.3699	3.70898	92.917	85.8273
1500	290	2	9	5	97.9447	3.55642	87.4839	85.6858
1500	260	2	15	2	99.5986	4.64486	85.9918	85.6466
3000	300	. 0	15	5	91.3543	_	93.6374	85.5418
3000	310	0	15	5	97.8013	_	87.3545	85.4338
1500	290	. 2	9	5	98.3774	3.34084	86.799	85.3906
3000	300	1	15	5	95.9339	-	88.8958	85.2812
3000	310	2	9	5	96.5551	3.90813	88.1759	85.1383
1500	295	2	9	5	99.192	4.23415	85.5683	84.8769
3000	310	1	15	5	98.9418	-	85.3776	84.4741
1500	270	2	12	5	89.4094	3.25168	94.4279	84.4274
1500	280	2	9	5	91.7072	3.39139	91.9178	84.2953
3000	300	4	12	5	94.1523	3.40624	89.4536	84.2226
1500	270	2	15	2	100	5.6844	84.1807	84.1807
3000	310	. 2	15	5	98.8202	-	84.5776	83.5798
3000	300	4	9	5	91.3772	3.47853	91.1172	83.2604
1500	280	2	9	5	89.6455	3.3638	92.6728	83.077
3000	290	2	15	5	88.9431	-	93.2708	82.9579
1500	280	6	9	5	94.0549	2.72455	88.0059	82.7739
3000	300	2	9	5	89.3471	3.30219	92.5987	82.7343
1500	300	2	12	5	100	1	82.5063	82.5063

			4.0		4001			00.4000
1500	300	2	12	5	100		82.1382	82.1382
1500	280	2	12	5	89.4338	3.29404	91.1329	81.5036
3000	290	4	12	5	83.8507	3.17042	95.0665	79.7139
3000	290	1	15	5	86.1784		92.3896	79.6199
1500	280	4	9	5	92.3215	3.14817	85.7419	79.1583
1500	275	2	9	5	87.1398	2.39082	90.6593	79.0004
1500	270	2	9	5	80.9881	1.92624	96.6462	78.2719
1500	280	2	15	2	100	6.61018	77.1921	77.1921
3000	290	2	12	5	81.2193	2.95157	94.5408	76.7853
3000	280	2	15	5	78.6093	3.05718	96.5537	75.9002
3000	300	2	9	5	82.7805	3.12452	90.4881	74.9065
3000	290	4	9	5	79.9288	2.99103	93.2405	74.526
1500	250	2	9	2	76.7206	2.81588	96.5553	74.0778
3000	290	2	9	5	77.1272	2.88492	94.8715	73.1717
1500	270	6	9	5	80.9622	2.58765	89.0827	72.1233
3000	280	4	15	5	76.2284	2.85938	94,1513	71.77
1500	290	2	15	2	100	7.90179	71.4194	71.4194
1500	270	4	9	5	77.0295	2.81052	90.672	69.8442
1500	270	2	9	5	75.5236	2.75621	91.9749	69.4628
3000	290	o	15	5	78.2073	-	88.4571	69.1799
1500	270	2	12	5	72.6631	2.82514	93.718	68.0984
3000	280	4	12	5	69.3599	2.48307	97.3437	67.5175
3000	280	1	15	5	69.9905	_	95.5909	66.9046
1500	270	2	9	5	75.5584	2.71465	88.0358	66.5185
3000	280	2	12	5	66.7964	2.38211	93.876	62.7057
1500	300	2	15	2	100	9.1206	62.3132	62.3132
3000	280	o	19	5	63.4141	2.76881	97.5762	61.8771
3000	280	4	9	5	65.7308	2.65235	93.7892	61.6484
3000	280	2	9	5	65.5345	2.17723	92.649	60.717
3000	290	2	9	5	64.23	2.78376	94.2527	60.5385
1500	260	6	9	5	63.9989	2.45671	90.9155	58.185
3000	280	0					89.4951	54.0921
1500	260	2	9			<u> </u>	90.3329	53.3469
1500	260	4	9					52.6404
1500	260	2	9					47.7253
1500	240	2	9					47.7038
3000	280	2	9					
1500	250	6				.		
1500	250	4	9					
1500	250	2	9					
1900	200					VVI	J IIVE IV	

Figur 33 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 43

5 Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.67 molares Verhältnis
V als Vanadat 0.22 molares Verhältnis
10 Se als Selensäure 0,01 molares Verhältnis
P als Phosphorsäure 0,09 molares Verhältnis

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 1 dargestellt.

GHSV	Reaktor-	Konzent-	Konzent-	Konzent-	Umsatz	Sel. Es-	Sel. Ac-	Ausbeu-
Totales	tempera-	ration	ration	ration		sigsäure	rylsäure	te Acryl-
	tur	Wasser	Sauer-	Acrolein				säure
			stoff					
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	290	2	15	2	98.0355	4.13018	91.4077	89.612
1500	280	2	15	2	96.361	3.74274	92.6572	89.2854
1500	270	2	15	2	93.3419	3.42682	94.8774	88.5603
1500	300	2	15	2	98.6599	4.53412	89.3251	88.1281
3000	310	4	15	5	92.9906	_	91.486	85.0733
3000	310	1	15	. 5	88.366	-	95.4137	84.3132
3000	300	4	15	5	88.0389	-	94.9813	83.6205
3000	310	0	15	5	84.0858	-	97.9733	82.3817
1500	260	2	15	2	87.667	3.03282	93.7536	82,191
1500	250	2	15	2	81.2255	2.95666	99.0794	80.4777
3000	290	4	15	5	79.6104	•	97.0349	77.2499
1500	300	2	12	5	78.2005	3.29908	93.6848	73.262
1500	270	2	9	2	73.8782	2.7338	94.2995	69.6668
3000	300	0	15	5	69.0348	Pie	98.9548	68.3132
1500	290	2	9	5	69.0719	2.99433	98.1984	67.8276
1500	290	2	12	5	63.9363	2.93315	92,491	59.1353
3000	290	1	15	5	61.4375	2.38942	91.3181	56.1035
1500	280	2	9	5	51.2587	2.58742	96.3227	49.3738
3000	290	0	15	5	48.2308	2.46147	98.7805	47.6426

						,,,,		
1500	280	2	12	5	47.6671	2.65292	92.6715	44.1738
3000	280	1	15	5	38.9264	2.33707	98.2452	38.2433
3000	300	2	9	5	39.0249	2.54203	92.3938	36.0566
1500	270	2	12	5	31.4767	2.61036	99.0363	31.1734
1500	270	2	9	5	32.3477	2.29574	91.4557	29.5838
1500	240	2	9	2	17.6227	2.01304	89.8704	15.8376
1500	250	2	9	5	15.5279	2.05998	82.5628	12.8203
3000	280	2	9	5	14.2209	2.32915	87.4198	12.4319

Das Diffraktogramm des Ausbaukatalysators gleicht dem in Beispiel 42.

Vergleichsbeispiel 44

Ein Multimetalloxid der Zusammensetzung Mo_{0,7}V_{0,1}W_{0,2} wird durch Sprühtrocknung aus Lösungen von Ammoniumheptamolybdat, Ammoniumvanadat und Ammoniumwolframat hergestellt. Die dazu verwendete Herstellmethode entspricht der EP 0774297 A1. Anschließend wird das erhaltene Pulver mit Cs-Acetat-Lösung und Phosphorsäure getränkt. Das Cs/P-Verhältnis entspricht dabei 1/1 und das Mo/Cs-Verhältnis entspricht 22,61. Die Charge wird in zwei Hälften geteilt und die eine auf Steatitkugeln gecoatet und die andere direkt als Splitt eingesetzt.

Beim Test im Single-Pass-Rohrreaktor werden folgende Resultate erzielt.

15 Ergebnisse für den gecoateten Katalysator:

Experi- ment Nr.	Temp.	GHSV h ⁻¹	Methacrolein [%]	O ₂ [%]	H₂O [%]	Umsatz [%]	Selektivität zu Methacrylsäure [%]
1 .	325°C	1500 h ⁻¹	4,7%	8,6%	16%	58%	57%
2	309°C	1500 h ⁻¹	2,35%	8,6%	16%	61%	63%
3	296°C	750 h ⁻¹	2,35%	8,6%	16%	59%	67%
4	296°C	750 h ⁻¹	2,35%	8,6%	32%	59%	67%

Ergebnisse für den Katalysatorsplitt:

Experi- ment Nr.	Temp.	GHSV h ⁻¹	Methacrolein [%]	O ₂ [%]	H₂O [%]	Umsatz [%]	Selektivität zu Methacrylsäure [%]
1	294°C	750 h ⁻¹	2,35%	8,6%	32%	96%	34%
2	269°C	1500 h ⁻¹	2,35%	8,6%	32%	60%	50%
3	290°C	1500 h ⁻¹	2,35%	4,3%	32%	49%	74%

Figur 34 zeigt das Diffraktogramm für den Ausbaukatalysator (Katalysatorsplitt).

Beispiel 45

30

35

40

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.67 molares Verhältnis
10 V als Vanadat 0.22 molares Verhältnis
Se als Selensäure 0.01 molares Verhältnis
Hydrazin als wässrige Lösung 0.055 molares Verhältnis
P als Säure 0.06 molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die w\u00e4ssrige L\u00f6sung unter Stickstoff zusammengegeben:

	1	Cs ₂ CO ₃	17.861	g
	2	(NH ₄) ₆ Mo ₇ O ₂₄ x 4H ₂ O	143.49	g
20	3	NH ₄ VO ₃	31.351	g
	4	H₂SeO₄	1.757	g
	5	Hydrazin	2.137	g

Dabei erfolgt die Dosierung des Hydrazins als wässrige Lösung über einen Tropftrichter zunächst zu der Ammoniumvanadatlösung, danach werden alle anderen Komponenten zugegeben und anschließend der pH-Wert eingestellt.

Das Fällungsgefäß ist ein 2000 ml fassender 4-Hals Kolben, der über einen Magnetrührer gerührt wird (500/min). Die Fällungstemperatur liegt bei 80 °C. Der pH-Wert der Lösung wird mit HNO₃ auf 2,8 eingestellt und noch 1 Stunde nachgerührt. Die Probe wurde anschließend in flüssigem Stickstoff tröpfchenweise ausgefroren und bei -10 °C gefriergetrocknet. Anschließend wird die Probe einer Trocknung bei 80 °C unter Luft im Trockenschrank unterworfen. Die Probe wird auf 100 bis 500 Mikrometer klassiert und in einem Drehkugelofen einer Kalzinierung unterworfen. Dabei werden folgende Parameter eingehalten:

Der Ofen ist ein Drehkugelofen nach der DE-A 10122027, die Rotationsgeschwindigkeit beträgt 15 U/min. Die Vorspülzeit mit Luft beträgt 0,01 Stunden. Die Heizrate 1 beträgt 5 K/min. Die Zieltemperatur 1 beträgt 275 °C. Der Haltepunkt bei Zieltemperatur 275 °C dauert 1,5 Stunden. Der Fluss an Luft beträgt 0,166 I/min. Die Heizrate auf die Endtemperatur beträgt 45 K/min. Die Endtemperatur beträgt 600 °C. Der Halte-

punkt bei der Endtemperatur beträgt 6 h. Der Fluss an N₂ zum Erreichen der Endtemperatur und beim Halten des Endpunktes beträgt 0,166 l/min. Nach der Kalzinierung wird auf kleiner 500 Mikrometer klassiert.

5 Im Anschluss an die Kalzinierung wird die Probe mit wässriger Phosphorsäure gemäß der oben angegebenen Stöchiometrie auf einem Schüttler in einer Porzellanschale getränkt. Dabei wird auf 100% der vorher mit Wasser ermittelten Wasseraufnahme getränkt. Anschließend wird die Probe bei 80 °C unter Luft getrocknet und danach auf 300 bis 500 Mikrometer klassiert und 1 ml der Probe in einem 48-fach Testreaktor gemäß DE 198 09 477.9 getestet. Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h-1]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	250	1	2	15	79.3601	11.8657	56.7406	45.0294
1000	240	1	2	15	72.3725	14.049	61.1951	44.2884
750	260	2	4	15	79.1237	12.6781	54.3407	42.9964
1000	240	1	2	15	74.1007	15.2585	57.3923	42.5281
1000	250	1	2	15	85.7816	20.322	48.151	41.3047
1000	270	2	4	15	81.2615	11.9724	49.2748	40.0414
750	250	2	4	15	58.6721	10.3423	67.2205	39.4396
750	240	1	2	15	75.4175	12.419	52.2624	39.415
1000	260	1	2	15	89.9878	16.0478	43.6566	39.2856
1000	260	2	4	15	70.5515	11.3913	55.5767	39.2102
750	250	1	2	15	86.3476	15.3074	45.1623	38.9966
1000	240	1	2	15	67.5166	11.0843	57.6023	38.8911
1500	270	2	4	15	70.2201	11.7451	55.1865	38.752
1000	230	1	2	15	62.8514	11.8751	59.9913	37,7054
1000	250	1	2	15	82.3085	14.3582	45.7053	37.6194
1000	250	1	2	15	85.3817	15.569	43.8553	37.4444
1000	270	2	4	15	84.7105	14.4847	42.6781	36.1529
1000	260	2	4	15	69.3259	10.625	51.1029	35.4275
1000	270	2	4	15	80.2157	11.9319	44.0138	35.306
1000	270	3	6	15	78.6606	10.8045	44.6227	35.1005
1000	250	2	4	15	49.7255	7.47719	69.085	34.3528
750	270	2	4	15	93.426	19.2208	36.1721	33.7942
750	270	3	6	15	87.0752	11.9984	38.5155	33.5374
750	230	1	2	15	63.6245	11.1865	52.402	33.3405

1500	280	2	4	15	88.625	16.2892	37.3338	33.087
1000	260	1	2	15	93.1069	20.8393	35.5182	33.0699
1000	230	1	2	15	58.8537	12.3776	55.9582	32.9335
1500	260	2	4	15	54.6696	9.13133	60.2054	32.9141
1000	260	2	4	15	62.251	9.41817	52.3208	32.5702
750	280	4	8	15	90.5584	13.4325	35.5718	32.2132
750	260	3	6	15	69.185	9.90947	46.3709	32.0817
750	240	2	4	15	49.8562	9.49566	63.9182	31.8672
1000	230	1	2	15	50.2789	9.86062	62.5378	31.4433
1500	270	1	2	15	65.9973	13.0508	47.4979	31.3473
750	270	4	8	15	71.8582	9.85893	42.9409	30.8566
1000	250	2	4	15	53.5512	9.62803	55.9977	29.9874
1500	260	, 1	2	15	56.189	10.4651	52.9227	29.7367
1000	280	3	6	15	90.3124	14.5169	32.0671	28.9605
1000	220	1	2	15	51.7352	9.0804	55.7588	28.847
1000	260	1	2	15	92.9413	20.8024	30.7589	28.5877
1000	280	2	4	15	93.1086	18.309	30.5388	28.4342
750	260	1	2	15	95.2561	20.5842	29.6114	28.2067
750	230	2	4	15	51.6781	10.2405	54.2531	28.037
750	290	5	10	15	81.7794	12.2851	34.0544	27.8495
1000	260	3	6 ·	15	64.919	8.10857	42.0199	27.2789
750	280	3	6	15	94.7025	17.5182	27.9928	26.5098
1500	280	1	2	15	79.1424	17.5832	33.0438	26.1517
1500	250	2	4	15	41.5697	8.79398	62.7492	26.0847
1000	240	1	2	15	88.1283	21.4739	29.5557	26.0469
1000	280	2	4	15	95.0031	19.5664	27.3789	26.0108

Figur 35 zeigt das Diffraktogramm des Ausbaukatalysators.

5 Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

	Cs als Carbonat	0.09	molares Verhältnis
	Mo als Ammoniumheptamolybdat	0.67	molares Verhältnis
10	V als Vanadat	0.22	molares Verhältnis
	Se als Selensäure	0.01	molares Verhältnis
	Hydrazin als wässrige Lösung	0.055	molares Verhältnis
	P als Säure	0.07	molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs ₂ CO ₃	17.861	g
5	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	143.49	g
	3	NH ₄ VO ₃	31.351	g
	4	H ₂ SeO ₄	1.757g	
	5	Hydrazin	2.137g	

10 Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 45 dargestellt.

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	240	1	2	15	69.8158	13.5771	65.008	45.3858
1000	250	1	2	15	80.545	12.2242	54.515	43.9091
750	260	2	4	15	80.3727	13.9077	52.7856	42.4252
1000	240	1	2	15	73.3698	15.1275	55.565	40.768
1000	260	2	4	15	72.8852	12.112	54.4432	39.6811
1500	270	2	4	15	73.1627	12.7958	54.0733	39.5615
750	250	2	4	15	59.5731	11.0432	65.9149	39.2675
1000	250	1	2	15	80.6765	15.1303	47.5846	38.3896
1000	260	2	4	15	70.3113	11.3975	54.5499	38.3548
750	240	1	2	15	72.2339	12.3644	53.0411	38.3137
1000	250	1	2	15	85.226	18.9216	44.7608	38.1478
1000	270	2	4	15	82.8309	12.647	46.0423	38.1373
750	250	1	2	15	86.1781	14.9477	43.7457	37.6992
1000	240	1	2	15	65.0804	11.025	57.3587	37.3292
1000	250	1	2	15	86.3877	16.2465	43.1987	37.3183
1000	270	3	6	15	78.8096	11.1985	46.7333	36.8303
1000	270	2	4	15	85.7337	14.2972	42.9508	36.8233
1000	230	1	2	15	63.6653	11.044	57.1441	36.3809
1000	260	1	2	15	90.1367	16.1395	40.0247	36.0769
750	270	3	6	15	85.7607	12.8007	42.0604	36.0713
1500	260	1	2	15	67.1945	9.32452	52.3971	35,208
1000	270	2	4	15	82.7248	12.6507	42.1628	34.879
1000	250	2	4	15	50.5258	8.01297	68.946	34.8355

750	260	3		15	73.2445	9.32587	47.0947	34.4943
1500	270	1	2	15	79.8917	14.2927	43.0355	34.3818
1500	260	2	4	15	56.3806	9.11153	60.8685	34.318
750	270	4	8	15	74.6002	10.3534	45.8098	34.1742
1000	260	2	4	15	64.4395	9.18955	50.6076	32.6113
750	230	1	2	15	59.1255	11.2415	54.7755	32.3863
1000	250	2	4	15	54.8094	10.1973	58.4678	32.0458
1000	230	1	2	15	58.8536	11.4374	54.4349	32.0369
750	240	2	4	15	50.9341	9.39978	62.2248	31.6937
1000	260	3	6	15	66.8843	7.7896	47.3145	31.646
750	280	4	8	15	90.9645	14.7595	34.6495	31.5188
750	270	2	4	15	93.7656	20.8107	32.6338	30.5992
1000	230	1	. 2	15	48.9298	9.896	61.7826	30.2301
750	290	5	10	15	85.7108	14.3069	34.9388	29.9463
1500	280	2	4	15	90.6986	17.7612	32.8292	29.7756
1000	260	1	2	15	94.0823	22.0869	31.049	29.2117
1000	260	1	2	15	91.7883	20.2182	31.1376	28.5807
1000	240	1	2	15	86.0433	20.2637	33.1154	28.4936
750	230	2	4	15	50.2654	10.0294	56.0718	28.1848
1000	280	3	6	15	91.4293	15.8934	30.8254	28.1834
1000	220	1	2	15	50.9042	9.0341	54.5198	27.7529
750	260	1	2	15	94.4383	20.8547	29.222	27.5968
750	250	3	6	15	52.1207	8.86434	51.7823	26.9893
1500	250	2	4	15	43.4832	8.26487	61.8043	26.8745
750	260	4	8	15	55.5179	8.8461	47.8917	26.5885
1000	240	2	4	15	47.1965	8.64033	56.0057	26.4328
1000	250	2	4	15	45.2291	8.37623	56.1063	25.3764
	·		I			· · · · · · · · · · · · · · · · · · ·		

Figur 36 zeigt das Diffraktogramm des Ausbaukatalysators.

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

	Cs als Carbonat	0.09	molares Verhältnis
10	Mo als Ammoniumheptamolybdat	0.67	molares Verhältnis
	V als Vanadat	0.22	molares Verhältnis
	Se als Selensäure	0.01	molares Verhältnis
	Hydrazin als wässrige Lösung	0.055	molares Verhältnis

WO 2006/072447 PCT/EP2005/014117

P als Säure 0.08 molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

5				
	1	Cs ₂ CO ₃	17.861	g
	2	(NH4) _e Mo ₇ O ₂₄ x4H ₂ O	143.49	g
	3	NH₄VO₃	31.351	g
	4	H₂SeO₄	1.757	g
10	5	Hydrazin	2.137	g

Die Herstellung des Multimetalloxids erfolgte wie in Beispiel 45 dargestellt.

÷	~
7	-

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempe-	Methac-	Wasser	Sauer-		sigsäu-	thacryl-	Methac-
	ratur	rolein		stoff	1	re	säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
750	250	1	2	15	74.1678	12.1512	58.7527	43.5756
750	270	2	4	15	83.3182	14.7322	51.1978	42.6571
1000	260	1	2	15	79.3676	12.5281	52.5592	41.715
1000	270	2	4	15	67.2365	10.7668	61.4432	41.3123
1000	250	1	2	15	69.78	9.50482	59.1164	ļ
750	260	2	4	15	68.0292	10.1726	60.526	
1000	250	1	2	15	76.6467	12.1395	53.6463	41.1181
1000	260	1	2	15	85.6149	16.3032	47.2869	l
1000	250	1	2	15	68.8058	10.6864	57.8715	39.8189
1000	250	1	2	15	75.3458	13.7769	52.5531	39,5966
1000	260	1	2	15	81.0125	14.9118	48.5819	39.3574
1000	240	1	2	15	62.4025	11.3803	62.6552	39.0984
750	260	1	. 2	15	87.9848	15.36	44.0102	38.7223
1000	270	2	4	15	69.4555	11.2428	55.6069	38.6221
1000	260	1	2	15	84.4277	16.5205	45.5892	38.4899
750	240	1	2	15	61.902	9.98724	62.1475	38.4705
750	270	3	6	15	77.5592	9.05144	49.5323	38.4169
1500	280	2	4	15	74.8524	13.0447	51.0281	38.1958
750	280	4	8	15	81.9538	10.4746	46.3017	37.946
1000	240	1	2	15	73.6517	15.2649	50.8043	37.4182
1000	240) 1	2	15	56.284	9.59123	66.343	37.3405

1000	260		l	15	56.2274	10.2785	66.0305	37.1272
1000	270	2	4	15	65.8503	10.1301	55.8164	36.7553
1000	280	2	4	15	82.9763	14.3381	43.6147	36.1899
1500	270	1	2	15	60.6708	9.39947	59.362	36.0154
750	280	3	6	15	87.5774	13.442	40.6364	35.5883
1000	280	3	l	.	80.7993	11.388	43.5336	35.1749
1000	240	1	2	15	52.3862	9.42426	67.1005	35.1514
1000	280	2		15	85.5465	16.1297	40.5188	34.6624
1000	270	3	6	15	68.3349	8.23328	50.4414	34.4691
750	260	3	6	15	63.2499		52.4928	33.2016
1500	270	2	4	15	56.8653	9.1221	58.3577	33.1853
1500	280	1	2	15	78.8424	14.2806	41.8577	33.0016
1000	270	1	2	15	89.6985	17.882	36.7377	32.9532
1000	230	1	2	15	47.4095	10.0472	69.1687	32.7925
1000	260	2	4	15	55.9718	8.49223	58.3436	32.656
1500	260	1	2	15	47.9617	7.07036	67.3693	32.3114
750	270	4	8	15	60.3856	7.97893	53.3474	32.2142
750	250	2	4	15	48.898	8.02919	64.0646	31.3263
750	230	1	2	15	50.0827	9.12103	60.3045	30.2022
750	290	4	8	15	92.1602	15.5033	32.3828	29.8441
1000	270	1	2	15	90.9941	21.0063	32.5557	29.6237
750	300	5	10	15	90.0316	15.6508	32.4363	29.203
1000	290	3	6	15	91.6722	17.3289	31.7397	29.0964
1500	290	2	4	15	. 89.697	19.2699	32.3593	29.0253
1000	250	2	4	15	36.7839	6.61459	78.7017	28.9495
1000	280	2	4	15	90.833	15.8037	31.7787	28.8655
1000	260	2	4	15	49.4497	8.01678	55.946	27.6652
1000	230	1	2	15	43.0202	8.9867	64.0064	27.5357
1500	300	2	4	15	63.564	11.04	43.3032	27.5253

Figur 37 zeigt das Diffraktogramm des Ausbaukatalysators

5 Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

	Cs als Carbonat	0.09	molares Verhältnis
	Mo als Ammoniumheptamolybdat	0.67	molares Verhältnis
10	V als Vanadat	0.22	molares Verhältnis
	Se als Selensäure	0.01	molares Verhältnis

Hydrazin als wässrige Lösung	0.055	molares Verhältnis
P als Säure	0.08	molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stick-5 stoff zusammengegeben:

	1	Cs ₂ CO ₃	17.861 g
	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	143.49 g
	3	NH ₄ VO ₃	31.351 g
10	4	H₂SeO₄	1.757g
	5 .	Hydrazin	2.137g

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 45 dargestellt.

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
SAAAASSA MITTI	tur	rolein		stoff	;		säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	270	1	2	15	85.7248	19.8115	55.0371	47.1805
1000	260	1	2	15	74.9396	12.6552	61.0611	45.7589
750	270	2	4	15	73.7064	11.847	58.6231	43.209
1000	260	1	2	15	70.0044	11.3006	60.4146	42.2929
750	260	1	2	15	83.3337	12.9772	50.4367	42.0308
1000	260	1	2	15	76.2544	12.8083	54.9973	41.9379
1000	250	1	2	15	71.2708	12.1987	58.562	41.7376
750	250	1	2	15	72.4263	9.95336	56.4374	40.8755
1000	250	1	2	15	66.8818	9.55093	60.6466	40.5615
1000	260	1	2	15	81.0209	13.9164	49.403	40.0267
750	280	2	4	15	87.8753	16.2651	44.8466	39.409
1000	270	1	2	15	83.1511	15.0134	47.2225	39.266
1000	280	2	4	15	74.5005	11,4728	51.73	38.5391
1000	250	1	2	15	63.5432	8.22335	60.4869	38.4353
1000	250	1	2	15	62.5789	9.64989	61.1197	38.248
1000	270	2	4	15	55.0674	10.8138	69,1096	38.0569
750	280	3	6	15	82.2128	11.3786	46.1716	37.959
1000	280	2	4	15	75.4284	12.0494	49.9808	37.6997
1000	240	1	2	15	66.0032	12.3211	55.9873	36.9534
1500	280	2	4	15	63.5319	10.9469	57.6506	36.6265

1000	240		2	15	60.7036	9.42107	59.7602	36.2766
1000	290	2	4	15	87.4672	18.7491	41.3395	36.1585
1000	280	3	6	15	75.9009	9.36651	47.5257	36.0724
750	290	4	8	15	87.0979	12.7955	41.2841	35.9576
1000	280	2	4	15	80.4448	10.5564	44.2173	35.5705
750	260	2	4	15	54.4194	8.94058	65.0503	35.4
750	280	4	8	15	67.8461	9.23518	52.1681	35.394
1000	270	2	4	15	58.6994	9.86905	59.883	35.1509
1500	290	2	4	15	84.629	15.1455	41.1204	34.7998
1000	240	1	2	15	50.4137	9.47303	68.6419	34.605
1000	290	3	6	15	86.9367	13.8874	39.4152	34.2663
750	270	3	6	15	63.9686	8.58462	53.5623	34.263
750	240	1	2	15	56.2719	9.31569	60.834	34.2324
1000	270	1	2	15	87.5466	17.1315	39.0661	34.201
750	270	1	2	15	92.0998	18.479	37.0578	34.1302
1000	270	1	2	15	89.8881	19.1492	35.9837	32.3451
1000	240	1	2	15	47.3254	8.42548	66.9209	31.6706
1000	270	2	4	15	57.1532	8.42968	55.0568	31.4667
1000	270	3	6	15	60.5827	7.31616	51.1338	30.9783
1000	230	1	2	15	45.3956	9.02519	66.9727	30,4027
1500	280	1	2	15	57.3813	11.3492	52.3511	30.0398
750	300	5	10	15	78.264	12.9638	37.985	29.7286
1500	290	1	2	15	70.0453	14.3389	42.4076	29.7045
750	290	3	6	15	91.0438	16.4926	31.9469	29.0857
1000	260	2	4	15	51.7637	6.52597	55.8745	28.9227
1000	290	2	4	15	89.4308	16.8846	32.3366	28.9189
1000	290	2	4	15	91.2989	15.9944	31.6646	28.9094
1500	270	2	4	15	43.9414	8.47471	63.9403	28.0963
1000	260	. 2	4	15	44.2826	8.17777	61.9538	27.4348
750	230	1	2	15	45.8556	8.9286	59.6048	27.3322
•								

Figur 38 zeigt das Diffraktogramm des Ausbaukatalysators.

10

5 Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat	0.09	molares Verhältnis
Mo als Ammoniumheptamolybdat	0.69	molares Verhältnis
V als Vanadat	0.21	molares Verhältnis
Bi als Bi-Nitrat	0.01	molares Verhältnis

47

Hydrazin als wässrige Lösung 0.055 molares Verhältnis P als Säure 0.08 molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

1	Cs ₂ CO ₃	17.861g
2	$(NH4)_6Mo_7O_{24}x4H_2O$	143.49 g
3	NH ₄ VO ₃	31.351 g
4	$Bi(NO_3)_3x5H_2O$	5.745 g
5	Hydrazin	2.137g

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 45 dargestellt.

Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

	_
3	-
3	

10

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h-1]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
500	310	1	4	15	45.8507	16.188	59.1867	27.1375
500	300	1	4	15	40.7906	12.6738	57.2834	23.3662
500	310	1	_ 2	15	47.6531	14.7392	47.9015	22.8265
500	300	1	2	15	37.002	15.3067	59.3458	21.9591
750	310	1	4	15	33.8713	11.9772	62.2471	21.0839
750	310	1	8	15	37.2873	6.02576	56.3891	21.026
500	290	1	4	15	32.7598	11.9832	62.4803	20.4684
750	310	1	2	15	34.0338	12.86	59.2277	20.1574
500	290	1	2	15	29.013	14.7716	66.639	19.334
750	300	1	8	15	27.8418	5.58821	69.0915	19.2363
750	300	1	4	15	26.831	12.1463	70.5171	18.9204
750	300	1	2	15	25.4061	13.5457	69.9602	17.7741
500	310	3	6	15	29.9992	11.666	58.3196	17.4954
750	310	2	4	15	28.3151	10.8072	59,4303	16.8277
500	280	1	4	15	25.1983	12.0104	66.6808	16.8024
750	290	1	8	15	22.885	4.53501	70.178	16.0602
750	290	1	4	15	22.5529	11.0055	70.0332	15.7945
500	280	1	2	15	23.9931	12.8585	65.5063	15.717
750	290	1	2	15	17.7781	15.0735	87.5935	15.5724
750	300	2	4	15	25.3713	9.40053	56.0814	14.2286
500	300	3	6	15	25.5241	9.97932	53.84	13.7422

1500 330 2 4 15 22.5 8.32545 60.7174 13.6

1500	330	2	4	15	22.5	8.32545	60.7174	13.6614
1500	310	1	2	15	21.1226	10.5706	63.1685	13.3428
500	270	1	4	15	20.2536	11.2018	65.0466	13.1743
750	280	1	4	15	16.713	11.6181	77.0299	12.874
750	280	1	8	15	19.4937	2.37283	65.5482	12.7777
1500	320	2	4	15	16.8831	9.76246	72.653	12.2661
500	270	. 1	2	15	16.977	13.3012	71.349	12.1129
1500	300	1	2	15	16.7756	11.7976	69.1715	11.604
750	290	2	4	15	16.269	11.2757	66.4406	10.8092
750	280	1	2	15	26.1194	7.10584	41.2379	10.7711
500	290	3	6	15	20.2111	9.20774	50.1605	10.138
1500	310	2	4	15	14.2202	8.51121	66.3286	9.43203
750	270	1	.8	15	13.3724	1.7762	70.2532	9.39457
500	260	1	4	15	16.1529	10.4571	57.6108	9.30583
500	260	1	2	15	12.2932	13.9678	74.164	9.11714
1500	290	1	2	15	12.2743	12.1463	73.2547	8.9915
750	270	1	4	15	17.0855	7.84738	52.0833	8.89869
750	270	1	2	15	15.2003	9.51863	58.2535	8.85473
1500	300	2	8	15	8.0925	1.54569	96.3219	7.79484
750	280	2	4	15	14.7881	9.03063	52.5325	7.76857
1500	300	2	2	15	12.6425	9.30749	61.1348	7.72898
1500	300	2	4	15	11.4073	8.47839	65.02	7.41705
1500	300	2	4	15	10.1942	11.6109	72.6577	7.40689
500	250	1	4	15	9.06571		78.299	7.09836
500	280	3	6	15	15.1668	8.98786	46.3082	7.02347
750	260	1	4	15	9.36487	13.946	74.5384	6.98042
500	250	1	2	15	9.94603	15.83	68.9819	6.86096
750	260	1	8	15	9.79613	0.389906	68.9	6.74954
1500	280	1	2	15	8.48642	13.5142	78.8314	6.68996

Figur 39 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 50

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

	Cs als Carbonat	0.09	molares Verhältnis
	Mo als Ammoniumheptamolybdat	0.69	molares Verhältnis
10	V als Vanadat	0.21	molares Verhältnis
	Bi als Bi-Nitrat	0.01	molares Verhältnis

49

Hydrazin als wässrige Lösung 0.055 molares Verhältnis P als Säure 0.09 molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs ₂ CO ₃	17.861	g
	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	143.49 g	
	3	NH ₄ VO ₃	31.351 g	
10	4	Bi(NO ₃) ₃ x5H ₂ O	5.745 g	
	5	Hydrazin	2.137 g	

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 45 dargestellt.

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
Blair serikurus sara	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
500	310	1	4	15	50,4095	16.2288	52.5201	26.4751
500	310	1	2	15	47.6194	18.0583	50.7044	24.1451
500	300	1	4	15	45.2581	13.3945	52.0562	23.5596
500	300	1	2	15	39.4561	16.5324		23.3963
750	310	. 1	4	15	35.2735	13.6322	64.5317	22.7626
500	290	1	4	15	34.9253	13.3893	63.0453	22.0188
500	290	1	2	15	32.1845	15.5027	67.662	21.7766
750	310	1	2	15	35.3646	15.0283	60.0748	21.2452
750	310	1	8	15	41.82	10.1317	49.1994	20.5752
750	300	1	8	15	31.4186	9.1729	64.3682	20.2236
750	300	1	4	15	31.0901	11.7133	64.2719	19.9822
750	310	2	4	15	30.6358	12.4358	62.1394	19.0369
500	310	3	6	15	37.0924	11.628	51.2482	19.0092
750	300	1	2	15	30.3553	12.723	62.4422	18.9545
500	280	1	4	15	28.1305	12.2525	67.1602	18.8925
500	280	1	2	15	26.9191	13.5836	69.2317	18.6365
750	290	1	4	15	23.003	12.5474	78.2876	18.0085
750	290	1	8	15	25.1574	6.9577	70.8059	17.8129
750	290	1	2	15	19.2096	16.3972	89.9398	17.2771
500	300	3	6	15	27.8818	11.3025	60.3619	16.83

750	300	2	4	15	27.4661	10.0484	60.4646	16.6073
500	270	1	4	15	20.0402	13.0642	79.0936	15.8505
750	280	1	8	15	19.2079	4.85331	82.4916	15.8449
1500	330	2	4	15	22.7277	11.3333	68.1515	15.4893
1500	310	1	2	15	20.3013	12.9137	75.702	15.3685
750	280	1	4	15	21.3187	9.79352	69.4605	14.8081
500	270	1	2	15	21.7645	12.1026	67.4126	14.672
500	290	3	6	15	23.8205	9.96457	60.3647	14.3792
750	290	2	4	15	21.9384	9.30631	63.9786	14.0359
1500	320	2	4	15	19.9162	9.30937	69.583	13.8583
750	280	1	, 2	15	22.1778	9.74135	61.3899	13.6149
750	270	1	8	15	16.9229	2.50809	79.649	13.4789
1500	300	. 1	2	15	17.5911	11.8645	72.514	12.756
1500	310	2	4	15	15.1989	9.80788	83.2302	12.6501
1500	300	2	8	15	11.8295	1.85464	99.0001	12.4396
500	260	1	4	15	18.1339	10.5759	67.5828	12.2554
1500	300	2	4	15	14.665	9.01571	78.655	11.5348
750	280	2	4	15	15.702	10.229	73.1956	11.4932
750	270	1	4	15	14.6557	10.6875	76.6143	11.2284
1500	290	2	8	15	13.8287	0.817957	81.0765	11.2118
500	260	1	2	15	17.2871	11.1103	64.0762	11.0769
1500	290	1	2	15	13.9793	11.7389	77.7038	10.8624
750	260	1	8	15	13.2108	1.31938	81.7514	10.8
500	280	3	6	15	21.9432	7.44005	48.2183	10.5807
750	270	1	2	15	20.5314	8.02793	50.6243	10.3939
1500	300	2	4	15	11.7013	9.28292	88.3069	10.3331
1500	300	2	2	15	15.0374	9.08226	65.0613	9.78356
750	270	2	4	15	11.9884	10.2972	75.9584	9.10617
750	260	1	4	15	9.75815	14.8882	93.2653	9.10097
750	250	1	8	15	9.86821	2.38553	91.2883	9.00852
<u> </u>	L	L		L				

Figur 40 zeigt das Diffraktogramm des Ausbaukatalysators

5

10

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis Mo als Ammoniumheptamolybdat 0.62 molares Verhältnis V als Vanadat 0.22 molares Verhältnis

W als Ammoniumwolframat	0.07	molares Verhältnis
Hydrazin als wässrige Lösung	0.055	molares Verhältnis
P als Säure	0.03	molares Verhältnis

5 Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs₂CO₃	15.982 g
	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	118.81 g
	3	NH ₄ VO ₃	28.053 g
10	4	$(NH_4)_{10}W_{12}(OH)_2O_{40}x5H_2O$	19,88 g
	5	Hydrazin	1.912 g

15

20

35

40

Dabei erfolgt die Dosierung des Hydrazins als wässrige Lösung über einen Tropftrichter zunächst zu der Ammoniumvanadatlösung.

Das Fällungsgefäß ist ein 2000 ml fassender 4-Hals Kolben, der über einen Magnetrührer gerührt wird (500/min). Die Fällungstemperatur liegt bei 80 °C. Der pH-Wert der Lösung wird nicht eingestellt und noch 1 Stunde nachgerührt. Die Probe wurde anschließend in flüssigem Stickstoff tröpfchenweise ausgefroren und bei -10 °C gefriergetrocknet. Anschließend wird die Probe einer Trocknung bei 80 °C unter Luft im Trockenschrank unterworfen. Die Probe wird auf 100 bis 500 Mikrometer klassiert und in einem Drehkugelofen einer Kalzinierung unterworfen. Dabei werden folgende Parameter eingehalten:

Der Ofen ist ein Drehkugelofen nach der DE-A 10122027, die Rotationsgeschwindigkeit beträgt 15 U/min. Die Vorspülzeit mit Luft beträgt 0,01 Stunden. Die Heizrate 1 beträgt 5 K/min. Die Zieltemperatur 1 beträgt 275 °C. Der Haltepunkt bei Zieltemperatur 275°C dauert 1,5 Stunden. Der Fluss an Luft beträgt 0,166 l/min. Die Heizrate auf die Endtemperatur beträgt 45 K/min. Die Endtemperatur beträgt 600 °C. Der Haltepunkt bei der Endtemperatur beträgt 6 h. Der Fluss an № zum Erreichen der Endtemperatur und beim Halten des Endpunktes beträgt 0,166 l/min. Nach der Kalzinierung wird auf kleiner 500 Mikrometer klassiert.

Im Anschluss an die Kalzinierung wird die Probe mit wässriger Phosphorsäure gemäß der oben angegebenen Stöchiometrie auf einem Schüttler in einer Porzellanschale getränkt. Dabei wird auf 100% der vorher mit Wasser ermittelten Wasseraufnahme getränkt. Anschließend wird die Probe bei 80 °C unter Luft getrocknet und danach auf 300 bis 500 Mikrometer klassiert und 1 ml der Probe in einem 48-fach Testreaktor gemäß DE 198 09 477.9 getestet. Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[.c]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	260	1	8	9	52.9922	15.7303	62.8282	33.294
1000	260	1	6	9	62.0589	15.1284	49.6885	30.8362
1000	270	1	4	9	69.7453	19.1609	44.172	30.8079
1000	260	1	4	9	59.8519	14.1996	51.0531	30.5563
1000	260	1	8	9	69.2456	15.5556	43.9635	30.4428
1000	250	1	4	9	55.4789	13.1609	53.3308	29.5874
1000	250	1	6	9	50.4226	12.6768	56.845	28.6627
1000	270	1	6	9	72.79	18.7686	39.1715	28.5129
1000	250	1	4	9	50.9384	11.914	55.4342	28.2373
1000	250	1	8	9	58.3838	12.1588	48.3253	28.2142
1000	250	1	8	9	37.8283	12.7914	74.2237	28.0776
1000	280	2	4	15	63.945	17.3959	42.4023	27.1141
1000	270	1	8	9	81.8637	18.6041	32.8122	26.8613
1000	240	1	4	9	52.6471	12.2807	50.2223	26.4406
1000	270	2	4	15	50.0481	14.0566	52.0347	26.0424
1000	240	1	8	9	46.2518	11.3691	55.4381	25.6411
1000	240	1	4	9	43.0993	12.3254	57.2016	24.6535
3000	280	1	4	15	53.8398	18.2065	45.5995	24.5506
1500	280	2	4	15	54.4291	14.9557	44.2142	24.0654
1500	270	2	4	15	34.3749	14.4809	69.9325	24.0392
1500	280	2	8	15	59.4465	15.395	39.7394	23.6237
3000	280	1	. 8	15	58.0489	16.2732	40.5844	23.5588
3000	270	1	4	15	44.1714	14.8164	53.2115	23.5043
1000	240	1	6	9	42.4861	11.4741	54.9362	23.3402
1000	270	2	8	15	57.1415	12.8658	40.4902	23.1367
1000	260	. 2	4	15	37.8846	12.8158	60.8391	23.0486
3000	280	1	2	15	48.3422	17.8261	47.3035	22.8676
3000	270	1	2	15	37.7848	15.6243	59.9619	22.6565
3000	270	1	8	15	49.8956	13.2459	44.3078	22.1076
1000	290	2	4	15	80.0814	21.358	26.1972	20.9791
3000	260	1	8	15	38.8277	12.3776	52.681	20.4548
1000	260	2	8	15	45.3486	10.9249	44.8812	20.353
1000	230	1	8	9	35.3858	11.5579	57.4725	20.3371
3000	260	1	4	15	35.8945	11.1816	55.6879	19.9889

,,,,	*

1500 270 2 8 15 53.3338 10.4173 36.6904 3000 260 1 2 15 32.1033 11.2772 59.9665	19.7082 19.5684 19.2512 19.0035 18.6764
3000 260 1 2 15 32.1033 11.2772 59.9665	19.2512 19.0035
	19.0035
1500 260 2 4 15 31.2373 11.1004 60.8361	
	18.6764
1500 260 2 8 15 28.7376 13.7248 64.9895	
1000 250 2 4 15 32.3073 10.8851 57.7642	18.6621
1000 290 2 8 15 83.2587 19.2887 22.3982	18.6485
1500 280 3 6 15 43.2224 10.8226 41.4553	17.9179
3000 280 2 4 15 29.9776 12.2499 59.1802	17.7408
1000 220 1 8 9 14.9393 34.6897 114.845	17.157
1000 240 1 18 15 51.7401 8.53529 33.0477	17.0989
3000 250 1 8 15 28.7668 11.7426 59.3349	17.0687
3000 280 2 8 15 37.5822 11.3383 45.331	17.0364
3000 250 1 4 15 26.1899 10.546 63.4496	16.6174
1000 230 1 18 15 26.7812 13.1573 60.328	16.1566

Figur 41 zeigt das Diffraktogramm des Ausbaukatalysators.

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

	Cs als Carbonat	0.09	molares Verhältnis
	Mo als Ammoniumheptamolybdat	0.62	molares Verhältnis
10	V als Vanadat	0.22	molares Verhältnis
	W als Ammoniumwolframat	0.07	molares Verhältnis
	Hydrazin als wässrige Lösung	0.055	molares Verhältnis
	P als Säure	0.035	molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs ₂ CO ₃	15.982 g
	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	118.81 g
20	3	NH ₄ VO ₃	28.053 g
	4	$(NH_4)_{10}W_{12}(OH)_2O_{40}x5H_2O$	19,88g
	5	Hydrazin	1.912g

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 51 dargestellt.

Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	260	1	8	9	48.3158	13.9947	70.2907	33.9615
1000	270	1	4	9	67.4066	17.2878	47.4716	31.9989
1000	260	1	6	9	59.5575	13.6762	52.9931	31.5614
1000	260	1	8	9	65.904	13.6404	47.6212	31.3843
1000	260	1	4	9	57.7425	12.9242	54.1776	31.2835
1000	270	1	6	9	69.6613	17.5669	43.418	30.2456
1000	250	1	4	9	52.5697	11.6181	57.3804	30.1647
1000	270	1	8	9	76.7815	16.9033	37.971	29.1547
1000	250	1	8	9	53.3051	11.5397	54.6094	29.1096
1000	250	1	4	9	48.1288	10.9258	59.0129	28.4022
1000	250	1	8	9	34.0711	11.604	82.0375	27.9511
1000	250	1	6	9	50.59	10.637	54.398	27.52
1000	280	2	4	15	59.6514	17.646	45.8299	27.3381
1000	240	1	4	9	48.4443	10.4934	54.7661	26.531
1000	270	2	4	15	46.9075	14.116	55.6455	26.1019
1000	240	1	8	9	41.2513	10.9873	61.7111	25.4566
1500	280	2	8	15	61.0369	14.1128	40.089	24.4691
1000	240	1	4	9	40.9406	11.0169	59.1654	24.2227
3000	280	1	4	15	49.1967	15.9638	48.9366	24.0752
1000	270	2	8	15	53.5777	12.2577	43.403	23.2543
1500	280	2	4	15	53.0631	13.1177	43.5797	23.1248
1500	270	2	4	15	36.0605	11.962	63.8543	23.0262
3000	280	1	2	15	44.898	16.2808	51.1023	22.9439
1000	280	2	8	15	67.0484	15.0333	33.8424	22.6908
3000	270	1	4	15	40.2922	13.1489	56.159	22.6277
1000	240	1	6	9	41.8482	9.72078	53.8064	22.517
1000	290	2	4	15	75.3998	21.4414	29.8573	22.5124
3000	280	1	8	15	53.8864	14.1863	41.7058	22.4738
1000	260	2	4	15	36.2596	11.4333	61.1861	22.1858
3000	270	1	8	15	46.1669	12.2173	47.5293	21.9428
3000	270	1	2	15	36.0851	13.3573	60.0533	21.6703
1000	240	1	8	9	24.1995	11.8076	88.8523	21.5018
1000	230	1	8	9	33.5289	10.1065	60.4123	20.2556
1000	260	2	8	15	41.3758	10.8519	48.5226	20.0766

3000	260	1	8	15	32.8771	12.5054	60.7727	19.9803
1500	270	2	8	15	49.1699	10.8176	40.6	19.963
1000	290	2	8	15	78.9655	18.1997	24.9806	19.726
1500	280	3	6	15	39.9963	10.9163	48.0477	19.2173
3000	260	1	4	15	32.854	10.3355	58.2237	19.1288
1500	260	2	4	15	29.5018	10.864	64.0219	18.8876
1500	260	2	8	15	26.3036	12.7624	71.4068	18.7826
3000	260	1	2	15	30.083	10.243	60.2826	18.1348
1000	240	1	18	15	46.033	4.18123	39.3807	18.1281
1000	250	2	4	15	30.9337	9.7081	55.3684	17.1275
1500	280	3	12	15	45.6096	10.2331	37.1094	16.9254
3000	280	2	4	15	27.8055	10.967	60.2027	16.7397
3000	250	1	8	15	25.0858	11.6726	66.2321	16.6148
3000	280	2	8	· 15	33.9758	10.3601	48.2649	16.3984
3000	250	1	4	15	22.0782	10.7394	72.276	15.9572

Figur 42 zeigt das Diffraktogramm des Ausbaukatalysators.

5

Das Multimetalioxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

	Cs als Carbonat	0.09	molares Verhältnis
	Mo als Ammoniumheptamolybdat	0.62	molares Verhältnis
10	V als Vanadat	0.22	molares Verhältnis
	W als Ammoniumwolframat	0.07	molares Verhältnis
	Hydrazin als wässrige Lösung	0.055	molares Verhältnis
	P als Säure	0.045	molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs ₂ CO ₃	15.982	g
	2	$(NH4)_6Mo_7O_{24}x4H_2O$	118.81	g
20	3	NH ₄ VO ₃	28.053	g
	4	$(NH_4)_{10}W_{12}(OH)_2O_{40}x5H_2O$	19,88	g
	5	Hydrazin	1.912	g

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 51 dargestellt.

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	260	1	8	9	41.3299	13.1169	77.9046	32.1979
1000	270	1	4	9	61.6458	15.7647	50.9173	31.3883
1000	270	1	6	9	63.7354	15.8893	48.1747	30.7043
1000	260	1	8	9	61.5925	13.0196	48.6004	29.9342
1000	260	1	4	9	52.7512	12.1456	56.1761	29.6336
1000	260	1	6	9	54.9726	12.5941	53.8954	29.6277
1000	270	1	8	9	70.0767	15.3763	41.8261	29.3104
1000	250	1	8	9	47.4125	11.6596	60.5816	28.7233
1000	250	1	4	9	49.9538	10.6811	57.0314	28.4894
1000	280	2	4	15	51.0603	15.4875	53.4986	27.3165
1000	250	1	8	9	29.1406	11.0604	92.0308	26.8183
1000	250	1	4	9	41.2821	11.2195	64.9236	26.8018
1000	250	1	6	9	44.7069	10.323	58.9921	26.3735
1000	290	2	, 4	15	61.9497	18.8919	40.7227	25.2276
1000	280	2	8	15	56.4064	14.0636	44.1562	24.9069
1000	240	1	8	9	37.4938	10.5054	65.0661	24.3957
1000	240	1	4	9	43.6773	9.52337	55.4939	24.2382
1500	280	2	8	15	47.1573	13.8735	51.3147	24.1986
1000	270	2	4	15	40.3146	12.5714	57.9327	23.3553
1500	280	2	4	15	46.3544	13.6213	49.437	22.9162
1500	270	2	4	15	26.5793	14.9745	85.9148	22.8356
1000	240	1	4	9	34.4231	10.4239	65.7213	22.6233
1000	270	. 2	8	15	44.5853	11.9276	50.3068	22.4295
3000	280	1	4	15	42.5106	12.9926	51.8519	22.0425
3000	280	1	8	15	44.3681	12.3046	49.0029	21.7416
1000	290	2	8	15	66.34	16.1499	32.4678	21.5391
3000	280	1	2	15	37.4774	14.6493	57.1605	21.4223
1000	240	1	6	9	34.3687	9.83674	60.466	20.7814
3000	270	1	4	15	33.2614	11.7669	61.585	20.484
1500	270	2	8	15	41.3645	9.70251	48.8883	20.2224
1000	260	2	4	15	31.6809	10.66	61.7242	19.5548
3000	270	1	8	15	37.2084	10.7636	52.4696	19.5231
3000	270	1	2	15	32.4827	11.334	59.1571	19.2159
1000	240	1	8	9	21.1761	10.8417	89.7627	19.0083

_	,
Э	1

1500	280	3	6	15	32.1409	10.9143	58.3985	18.7698
1000	260	2	8	15	33.2572	10.7758	56.2577	18.7097
3000	260	1	8	15	28.6915	10.9123	64.3702	18.4688
1000	230	1	8	9	30.6455	9.23141	59.7124	18.2992
1500	260	2	8	15	22.2926	12.0836	80.0955	17.8554
1500	260	2	4	15	30.3882	8.91414	58.7001	17.8379
3000	260	1	4	15	26.8481	9.85901	63.5388	17.059
1000	230	1	8	9	9.78813	24.3252	98,003	16.6368
1000	230	1	18	15	21.1551	0.264013	77.5184	16.3991
3000	260	1	2	15	25.8188	9.52867	62.451	16.1241
1500	280	3	12	15	39.1574	8.50941	40.1782	15.7328
1000	250	2	4	15	24.4564	10.0895	62.6147	15.3133
1000	240	. 1	18	15	53.4079	0.060844	28.5559	15.2511
		•				2		
3000	250	1	8	15	21.9526	9.82699	66.4773	14.5935
3000	250	1	4	. 15	18.5306	10.1244	77.5766	14.3754
3000	280	2	4	15	24.2501	9.15185	59.1297	14.339
		MIN. VI	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			······································	·	

Figur 43 zeigt das Diffraktogramm des Ausbaukatalysators.

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

	Cs als Carbonat	0.09	molares Verhältnis
	Mo als Ammoniumheptamolybdat	0.62	molares Verhältnis
10	V als Vanadat	0.22	molares Verhältnis
	W als Ammoniumwolframat	0.07	molares Verhältnis
	Hydrazin als wässrige Lösung	0.055	molares Verhältnis
	P als Säure	0.05	molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs₂CO₃	15.982 g
	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	118.81 g
20	3	NH₄VO₃	28.053 g
	4	$(NH_4)_{10}W_{12}(OH)_2O_{40}x5H_2O$	19,88 g
	5	Hydrazin	1.912 g

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 51 dargestellt.

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h-1]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	270	1	4	9	58.6171	13.694	56.9277	33.3694
1000	270	1	6	9	60.9366	13.5886	53.0234	32.3107
1000	270	1	8	9	67.2974	13.2027	47.0209	31.6438
1000	260	1	8	9	57.3934	11.1243	53.9383	30.957
1000	260	1	, 6	9	50.996	11.1424	60.3937	30.7984
1000	260	1	4	9	50.5639	10.5037	60.0371	30.3571
1000	250	1	4	9	41.6504	10.1901	67.7008	28.1976
1000	250	1	8	9	44.8556		59.6688	26.7648
1000	250	1	6	9	41.6265	<u> </u>	64.1141	26.6885
1000	290	2	4	15		15.4481	43.377	26.4162
1000	280	2	4	15		12.6501	53.009	26.1876
1000	250	1	4	9	41.3458	8.83956		25.9381
1000	240	1	4	9	35.5529		69.5891	24.7409
1000	280	2	8	15	54.2969	11.4204		24.4205
1000	260	1	8	9	49.2743	8.21948	49.5263	24.4037
1500	280	2	4	15	40.2612	11.667	60.4778	24.3491
3000	280	1	4	15	40.4368	12.6154	59.3404	23.9954
1000	250	1	8	9	25.5979	9.25781	92.8493	23.7674
1000	290	2	8	15	65.098	13.5265	36.0413	23.4621
3000	280	1	8	15	41.4369	11.8497	55.1483	22.8518
3000	280	1	2	15	34.591	13.7492	65.1322	22.5298
1000	270	2	4	15	38.1608	10.8343	58.9894	22.5108
1000	240	1	8	9	33.4147	9.32418	66.4149	22.1924
1000	240	1	4	9	33.0783	8.89388	66.7456	22.0783
1000	270	2	8	15	43.2908	9.28001	48.3618	20.9362
3000	270	1	4	15	32.7442	10.2	63.6214	20.8323
1000	240	1	6	. 9	34.7728	7.99221	58.7795	20.4393
3000	270	1	2	15	28.7613	11.706	69.8713	20.0959
3000	270	1	8	15	35.3449	9.95123	56.7458	20.0567
1500	270	2	4	15	39.5767	8.38683	46.8231	18.531
1000	260	2	4	15	26.6108	10.7569	68.309	18.1775
1500	280	3	6	15	29.9055	10.3432	57.8516	17.3008

1000	240	1	8	9	18.5168	9.11654	91.838	17.0054
3000	260	1	8	15	27.6834	9.45108	61.3703	16.9894
3000	260	1	4	15	26.7102	8.33816	63.1847	16.8768
1000	230	1	8	9	28.4979	8.41833	59.0861	16.8383
1000	260	2	8	15	32.8362	8.36285	50.2686	16.5063
3000	260	1	2	15	24.3342	8.43561	65.1803	15.8611
1500	270	2	8	15	48.4622	9.01512	32.6483	15.8221
1500	280	· 2	8	15	69.1797	8.80916	22.1327	15.3113
1000	250	2	4	15	23.1669	8.80484	59.8595	13.8676
3000	280	2	4	15	22.6894	8.33399	61.1019	13.8637
1500	260	2	4	15	35.1066	6.35174	39.2885	13.7929
1000	230	1	8	9	6.73381	26.7867	203.562	13.7075
1500	260	2	8	15	32.8021	9.23428	40.8629	13.4039
3000	280	2	8	15	25.6583	8.32403	51.8363	13.3003
3000	250	1	4	15	19.6614	7.81658	67.5751	13.2862
3000	250	. 1	8	15	20.6283	8.83249	63.2703	13.0516
1000	250	2	8	15	23.8971	9.58017	54.314	12.9795
3000	250	1	2	15	19.6529	7.35749	63.8739	12.5531

Figur 44 zeigt das Diffraktogramm des Ausbaukatalysators.

5

10

15

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis
V als Vanadat 0.18 molares Verhältnis
Nb als Oxalat 0.04 molares Verhältnis
P als Säure 0.03 molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs₂CO₃	16.451 g
	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	136.69 g
	3	VOSO ₄ xXH ₂ O	49.677 g
20	4	Nb-Ammonium Oxalat	20.341 g

WO 2006/072447 PCT/EP2005/014117

Das Fällungsgefäß ist ein 2000 ml fassender 4-Hals Kolben, der über einen Magnetrührer gerührt wird (500/min). Die Fällungstemperatur liegt bei 80 °C. Der pH-Wert der Lösung wird nicht eingestellt und noch 1 Stunde nachgerührt. Die Probe wurde anschließend in flüssigem Stickstoff tröpfchenweise ausgefroren und bei -10 °C gefriergetrocknet. Anschließend wird die Probe einer Trocknung bei 80 °C unter Luft im Trockenschrank unterworfen. Die Probe wird auf 100 bis 500 Mikrometer klassiert und in einem Drehkugelofen einer Kalzinierung unterworfen. Dabei werden folgende Parameter eingehalten:

5

20

25

Der Ofen ist ein Drehkugelofen nach der DE-A 10122027, die Rotationsgeschwindigkeit beträgt 15 U/min. Die Vorspülzeit mit Luft beträgt 0,01 Stunden. Die Heizrate 1 beträgt 5 K/min. Die Zieltemperatur 1 beträgt 275 °C. Der Haltepunkt bei Zieltemperatur 275 °C dauert 1,5 Stunden. Der Fluss an Luft beträgt 0,166 I/min. Die Heizrate auf die Endtemperatur beträgt 45 K/min. Die Endtemperatur beträgt 600 °C. Der Haltepunkt bei der Endtemperatur beträgt 6 h. Der Fluss an N₂ zum Erreichen der Endtemperatur und beim Halten des Endpunktes beträgt 0,166 I/min. Nach der Kalzinierung wird auf kleiner 500 Mikrometer klassiert.

Im Anschluss an die Kalzinierung wird die Probe mit wässriger Phosphorsäure gemäß der oben angegebenen Stöchiometrie auf einem Schüttler in einer Porzellanschale getränkt. Dabei wird auf 100% der vorher mit Wasser ermittelten Wasseraufnahme getränkt. Anschließend wird die Probe bei 80 °C unter Luft getrocknet und danach auf 300 bis 500 Mikrometer klassiert und 1 ml der Probe in einem 48-fach Testreaktor gemäß DE 198 09 477.9 getestet. Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

GHSV	Reaktor- tempera- tur	Konz. Methac- rolein	Konz. Wasser	Konz. Sauer- stoff	Umsatz	Sel. Es- sigsäure	Sel. Me- thacryl- säure	Ausb. Methac- rylsäure
[h-1]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1000	280	1	2	15	58.2043	16.3179	51.035	29.7046
1500	270	1	2	15	39.3557	20.4715	75.1574	29.5787
1500	280	1	4	15	46.7822	13.7623	62.9534	29.451
1000	270	1	2	15	49.9189	12.9057	58.012	28.959
1000	280	2	4	15	49.4321	12.1463	57.8241	28.5837
1500	290	1	4	15	55.6121	14.6289	51.2763	28.5158
1000	290	2	4	15	56.658	15.2278	49.5242	28.0594
1500	280	1	4	15	44.6214	11.5003	62.0504	27.6877
1500	270	1	4	15	42.9368	10.6516	63.8154	27.4003

1000 290	<u></u>							·····	
1500 280	1000			2	15	41.4103	10.4821	65,0046	26.9186
1000 270 2 4 16 39.6109 10.465 64.6093 25.5923 1500 280 1 4 15 34.6363 9.73173 73.5015 25.4582 1500 280 1 2 15 41.3415 11.1855 61.5422 25.4424 1500 270 1 4 15 38.1426 9.26786 65.3037 24.9651 1500 270 1 4 15 38.1426 9.26786 65.3037 24.9085 1500 300 2 4 15 52.746 16.3416 47.0245 24.8036 1500 290 2 4 15 44.9566 11.3042 54.8494 24.6594 1500 290 2 4 15 44.9566 11.3042 54.8494 24.6594 1500 280 1 1 15 43.0406 12.8403 55.8737 24.0484 1500 280 1 2 15 60.7396 12.6187 39.5411 24.0171 1500 280 1 2 15 39.3317 14.2853 60.719 23.8818 1500 290 1 1 15 49.923 15.1411 47.8072 23.8688 1500 290 1 1 15 49.923 15.1411 47.8072 23.8688 1500 290 2 8 15 40.5329 12.01 56.972 23.6987 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6987 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6987 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6987 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6987 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6987 1500 280 2 4 15 31.5015 9.4424 72.1423 22.7559 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7559 1500 250 1 2 15 31.5015 9.4424 72.1423 22.7559 1500 260 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4						1			
1500 260	L								
1500									
1500 290 1 2 15 55.044 18.6447 45.3585 24.9671 1500 270 1 4 15 38.1426 9.26786 65.3037 24.9085 1500 300 2 4 15 52.746 16.3416 47.0245 24.8036 1500 290 2 4 15 44.9566 11.3042 54.8494 24.6584 1500 280 1 1 15 43.0406 12.8403 52.852 24.6295 1500 280 1 2 15 60.7396 12.6187 39.5411 24.0171 1500 270 1 8 15 39.8773 9.29596 60.2258 24.0164 1500 280 1 2 15 39.8773 9.29596 60.2258 24.0164 1500 280 1 1 15 49.923 15.1411 47.8072 23.8688 1500 290 1 1 15 49.923 15.1411 47.8072 23.8688 1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 35.339 10.8925 64.7823 22.8962 1500 270 1 1 15 35.339 10.8925 64.7823 22.7259 1000 250 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 280 2 4 15 32.4826 8.79541 66.3984 21.5684 1500 280 2 4 15 32.4826 8.79541 66.3984 21.5684 1500 280 2 4 15 32.4826 8.79541 66.3984 21.5684 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 32.8818 14.8966 62.9369 20.6966 1500 270 2 4 15 29.3681 8.79911 69.0896 20.8033 1500 290 3 6 15 33.7874 9.5483 68.664 20.8859 1500 250 1 2 15 33.8818 14.8896 62.9369 20.6966 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270	1500	260							
1500 270	1500	280	1						
1500 300 2 4 15 52.746 16.3416 47.0245 24.8036 1500 290 2 4 15 44.9566 11.3042 54.8494 24.6584 1500 290 2 4 15 46.6009 14.0533 52.852 24.6295 1500 280 1 1 15 43.0406 12.8403 55.8737 24.0484 1500 280 1 2 15 60.7396 12.6187 39.5411 24.0171 1500 270 1 8 15 39.8773 9.29596 60.2258 24.0164 1500 260 1 2 15 39.3317 14.2853 60.719 23.8818 1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.9771 10.0378 63.9237 23.0924 1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8926 64.7823 22.8934 1500 270 1 1 15 35.339 10.8926 64.7823 22.8934 1500 250 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.58459 67.9718 22.6549 1500 280 2 4 15 32.4826 8.79541 66.3984 21.3688 1500 280 2 4 15 32.4826 8.79541 66.3984 21.3688 1500 280 2 4 15 32.4826 8.79541 66.3984 21.5688 1500 280 2 4 15 32.4826 8.79541 66.3984 21.5688 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 2 15 31.17066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.7066 9.03561 67.2333 21.3174 1500 250 1 4 15 28.4837 9.35674 73.2287 20.8583 1500 250 1 4 15 28.4837 9.35674 73.2287 20.8583 1500 250 1 4 15 28.4837 9.35674 73.2287 20.8583 1500 250 1 4 15 28.4837 9.35674 73.2287 20.8583 1500 250 1 4 15 28.4837 9.35674 73.2287 20.8583 1500 250 1 4 15 28.4837 9.35674 73.2287 20.8583 1500 250 1 4 15 28.6842 9.3035 10.4619 60.6664 20.38	1500	290	1						
1500 290 2 4 15 44.9566 11.3042 54.8494 24.6584 1500 290 2 4 15 46.6009 14.0533 52.852 24.6295 1500 280 1 1 15 43.0406 12.8403 55.8737 24.0484 1500 280 1 2 15 60.7396 12.6187 39.5411 24.0171 1500 270 1 8 15 39.8773 9.29596 60.2258 24.0164 1500 260 1 2 15 39.3317 14.2853 60.719 23.8818 1500 290 1 1 15 49.923 15.1411 47.8072 23.8668 1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.3971 10.0378 63.9237 23.6371 1500 280 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.68589 73.4134 21.8405 1500 280 2 4 15 32.4826 8.79541 66.3984 21.668 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8563 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 250 1 4 15 29.8681 8.79911 69.0886 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3631 1500 270 2 4 15 30.5758 8.40493 66.664 20.3631 1500 270 2 4 15 29.8631 8.79911 69.0886 20.2903 1500 270 2 4 15 30.5758 8.40493 66.664 20.3631 1500 270 2 4 15 29.8031 10.4619 66.1568 19.7169 1500 270 2 4 15 33.0194 7.82403 58.9864 19.477	1500	270		4					
1500 290 2 4 15 46.600 14.0533 52.852 24.6295 1500 280 1 1 15 43.0406 12.8403 55.8737 24.0484 1500 280 1 2 15 60.7396 12.6187 39.5411 24.0171 1500 270 1 8 15 39.8773 9.29596 60.2258 24.0164 1500 260 1 2 15 39.3317 14.2853 60.719 23.8818 1500 290 1 1 15 49.923 15.1411 47.8072 23.8688 1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.3771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 36.3971 10.0378 63.9237 23.6371 1500 280 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1500 280 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 4 15 31.1339 10.4324 67.8495 21.1106 1500 280 2 4 15 34.345 10.4907 60.9488 20.9329 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 290 3 6 15 32.8178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 4 15 33.0194 7.82403 58.9864 19.477	1500	300		4					
1500 280 1	1500	290		4					
1500 280 1 2 15 60.7396 12.6187 39.5411 24.0171 1500 270 1 8 15 39.8773 9.29596 60.2258 24.0164 1500 260 1 2 15 39.3317 14.2853 60.719 23.8818 1500 290 1 1 15 49.923 15.1411 47.8072 23.8668 1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6974 1500 280 2 4 15 36.9771 10.0378 63.9237 23.0924 1500 290 2 2 15 40.4284 11.1339 66.6314 22.8952 1500 270 1<	1500	290	2	4	15	46.6009		52.852	24.6295
.1500 270 1 8 15 39.8773 9.29596 60.2258 24.0164 1500 260 1 2 15 39.3317 14.2853 60.719 23.8818 1500 290 1 1 15 49.923 15.1411 47.8072 23.8668 1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 40.5329 12.01 56.972 23.0924 1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8952 1500 250 1 <td>1500</td> <td>280</td> <td>1</td> <td>1</td> <td>15</td> <td>43.0406</td> <td>12.8403</td> <td>55.8737</td> <td>24.0484</td>	1500	280	1	1	15	43.0406	12.8403	55.8737	24.0484
1500 260 1 2 15 39.3317 14.2853 60.719 23.8818 1500 290 1 1 15 49.923 15.1411 47.8072 23.8668 1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 40.5329 12.01 56.972 23.0924 1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1	1500	280	1	2	15	60.7396	12.6187	39,5411	24.0171
1500 290 1 1 15 49,923 15,1411 47,8072 23,8668 1500 290 2 8 15 45,3654 9,71316 52,4601 23,7987 1500 280 2 4 15 39,0759 12,2829 60,4984 23,6403 1500 280 2 4 15 36,9771 10,0378 63,9237 23,6371 1500 280 2 4 15 40,5329 12,01 56,972 23,0924 1500 290 2 2 15 40,4284 11,1339 56,6314 22,8952 1500 270 1 1 15 35,339 10,8925 64,7823 22,8934 1500 270 1 2 15 31,5015 9,4424 72,1423 22,7259 1000 250 1 2 15 33,3298 9,56459 67,9718 22,6549 1500 260 1	. 1500	270	1	8	15	39.8773	9.29596	60.2258	24.0164
1500 290 2 8 15 45.3654 9.71316 52.4601 23.7987 1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 40.5329 12.01 56.972 23.0924 1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1500 280 2	1500	260	1	2	15	39.3317	14.2853	60.719	23.8818
1500 280 2 4 15 39.0759 12.2829 60.4984 23.6403 1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 40.5329 12.01 56.972 23.0924 1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7623 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1500 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2	1500	290	1	1	15	49.923	15.1411	47.8072	23.8668
1500 280 2 4 15 36.9771 10.0378 63.9237 23.6371 1500 280 2 4 15 40.5329 12.01 56.972 23.0924 1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2	1500	290	2	8	15	45.3654	9.71316	52.4601	23.7987
1500 280 2 4 15 40.5329 12.01 56.972 23.0924 1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1500 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2	1500	280	2	4	15	39.0759	12.2829	60.4984	23.6403
1500 290 2 2 15 40.4284 11.1339 56.6314 22.8952 1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1000 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 250 1	1500	280	2	4	15	36.9771	10.0378	63.9237	23.6371
1500 270 1 1 15 35.339 10.8925 64.7823 22.8934 1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1000 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 250 1	1500	280	2	4	15	40.5329	12.01	56.972	23.0924
1500 270 1 2 15 31.5015 9.4424 72.1423 22.7259 1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1000 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1	1500	290	2	2	15	40.4284	11.1339	56.6314	22.8952
1000 250 1 2 15 33.3298 9.56459 67.9718 22.6549 1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1000 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1	1500	270	1	1	15	35.339	10.8925	64.7823	22.8934
1500 260 1 4 15 29.75 8.58589 73.4134 21.8405 1000 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1	1500	270	1	2	15	31.5015	9.4424	72.1423	22.7259
1000 260 2 4 15 32.4826 8.79541 66.3984 21.568 1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 <td>1000</td> <td>250</td> <td>1</td> <td>2</td> <td>15</td> <td>33.3298</td> <td>9.56459</td> <td>67.9718</td> <td>22.6549</td>	1000	250	1	2	15	33.3298	9.56459	67.9718	22.6549
1500 280 2 8 15 40.1514 8.16168 53.3766 21.4315 1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 <td>1500</td> <td>260</td> <td>1</td> <td>4</td> <td>15</td> <td>29.75</td> <td>8.58589</td> <td>73.4134</td> <td>21.8405</td>	1500	260	1	4	15	29.75	8.58589	73.4134	21.8405
1500 280 2 4 9 31.7066 9.03561 67.2333 21.3174 1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 270 2 4 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 </td <td>1000</td> <td>260</td> <td>2</td> <td>4</td> <td>15</td> <td>32.4826</td> <td>8.79541</td> <td>66.3984</td> <td>21.568</td>	1000	260	2	4	15	32.4826	8.79541	66.3984	21.568
1500 280 2 2 15 31.1139 10.4324 67.8495 21.1106 1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 5 29.6042 9.20085 68.4746 20.2713 1500 270 2 <td>1500</td> <td>280</td> <td>2</td> <td>8</td> <td>15</td> <td>40.1514</td> <td>8.16168</td> <td>53,3766</td> <td>21.4315</td>	1500	280	2	8	15	40.1514	8.16168	53,3766	21.4315
1500 270 2 4 15 34.345 10.4907 60.9488 20.9329 1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 4 15 33.0194 7.82403 58.9864 19.477	1500	280			9	31.7066	9.03561	67.2333	21.3174
1500 290 3 6 15 35.7871 9.5463 58.3616 20.8859 1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	280	. 2	2	15	31.1139	10.4324	67.8495	21.1106
1500 250 1 4 15 28.4837 9.35274 73.2287 20.8583 1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	270	2	4	15	34.345	10.4907	60.9488	20.9329
1500 260 1 8 15 32.5178 8.24268 63.6644 20.7023 3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	290	3	6	15	35.7871	9.5463	58.3616	20.8859
3000 290 1 2 15 32.8815 14.8896 62.9369 20.6946 1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	250	1	4	15	28.4837	9.35274	73.2287	20.8583
1500 270 2 4 15 30.5758 8.40493 66.664 20.3831 1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	260	1	8	15	32.5178	8.24268	63,6644	20.7023
1500 270 2 4 15 29.3681 8.79911 69.0896 20.2903 1500 260 1 1 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	3000	290	1	2	15	32.8815	14.8896	62.9369	20.6946
1500 260 1 1 15 29.6042 9.20085 68.4746 20.2713 1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	270	2	4	15	30.5758	8.40493	66.664	20.3831
1500 270 2 4 15 29.8033 10.4619 66.1568 19.7169 1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	270	2	4	15	29.3681	8.79911	69.0896	20.2903
1500 270 2 8 15 33.0194 7.82403 58.9864 19.477	1500	260	1	1	15	29.6042	9.20085	68.4746	20.2713
	1500	270	2	4	15	29.8033	10.4619	66.1568	19.7169
1000 250 2 4 15 24.7343 9.54569 74.7473 18.4882	1500	270	2	8	15	33.0194	7.82403	58.9864	19.477
	1000	250	2	4	15	24.7343	9.54569	74.7473	18.4882

WO 2006/072447 PCT/EP2005/014117

4500	000			ا سویر	40 4000	0 20202	40 4070	400000
1500	2801	21	81	15	42.1095	8.79797	43.4278	18.2872
1000;	200	<i></i>	O ₁	, 0	72.1000	0.10101	-TOTE-1 O	10.2012

62

Figur 45 zeigt das Diffraktogramm des Ausbaukatalysators.

Beispiel 56

5 Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis
V als Vanadat 0.17 molares Verhältnis
Nb als Oxalat 0.05 molares Verhältnis
P als Säure 0.03 molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

 Cs_2CO_3 16.451 g $(NH4)_6Mo_7O_{24}x4H_2O$ 136.26 g $VOSO_4xXH_2O$ 46.77 g 4 Nb-Ammonium Oxalat 25.341 g

20

10

15

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 55 dargestellt.

GHSV	Reaktor- tempera-	Konz. Methac-	Konz. Wasser	Konz. Sauer-	Umsatz	Sel. Es- sigsäure	•	Ausb. Methac-
	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	270	1	2	15	36,2544	18.7522	76.206	27.628
1500	280	1	1	15	36.8474	28.8209	70.5997	26.0141
1500	290	1	2	15	48.5165	25.5733	52.9647	25.6966
1500	270	1	4	15	45.7768	12.3489	50.9493	23.323
1500	280	1	2	15	48.0459	15.522	48.1903	23.1534
1500	280	1	4	15	50.5197	12.8325	40.6216	20.5219
1500	270	1	1	15	33.1398	14.1255	57.1581	18.9421
1500	260	1	4	15	36.0952	11.3782	52.4199	18.9211
1500	280	2	2	15	30.4632	18.2533	61.6291	18.7742
1500	290	1	4	15	60.6231	13.3315	30.3283	18.3859
1500	290	2	8	15	43.9311	13.1704	41.4688	18.2177

1500	280	2	4	15	43.9365	18.9364	41.4143	18.196
1500	290	3	3	15	37.3795	15.8961	48.5904	18.1629
1500	290	2	4	15	56.5958	20.2554	32.0909	18.1621
1500	270	2	4	15	35.438	17.6606	50.5495	17.9137
1500	300	3	3	15	46.3233	16.712	38.1274	17.6619
1500	270	2	2	15	20.233	19.9162	86.6664	17.5352
1500	280	2	4	9	20.5972	20.1759	82.3069	16.9529
1500	290	2	4	9	44.5088	12.7174	37.0924	16.5094
1500	300	2	4	15	61.7248	21.0591	26.0333	16.069
1500	260	2	4	15	31.8251	14.0004	50.4373	16.0517
1500	290	3	6	15	43.9263	10.3832	36.3053	15.9476
1500	300	3	9	15	43.771	11.6896	36.2827	15.8813
1500	300	3	6	15	49.7118	12.0699	30.97	15.3957
1500	· 280	3	3	15	32.834	11.0151	45.0487	14.7913
1500	280	2	8	15	35.7075	10.8624	40.9449	14.6204
1500	290	3	9	15	38.4357	10.2637	36.4253	14.0003
1500	270	2	4	9	37.0784	7.30637	36.3862	13.4914
1500	280	3	6	15	29.4268	11.1587	45.349	13.3448
1500	260	1	1	15	29.7333	8.8947	43.7628	13.0121
1500	260	2	2	15	14.1689	17.3247	88.0679	12.4783
1500	270	2	8	15	34.8693	7.91877	34.2457	11.9412
1500	280	3	9	15	36.2253	7.70984	31.4527	11.3938
1500	250	2	4	15	2.30358	111.96	488.527	11.2536
1500	270	3	3	15	24.5777	9.03991	44.9036	11.0363
1500	260	2	4	9	20.9338	8.87847	51.0269	10.6819
1500	260	3	3	15	13.2789	13.811	72.1111	9.57554
1500	270	3	6	15	17.8745	11.6658	48.883	8.73759
1500	270	3	9	15	22.1088	7.87142	33.3489	7.37304
1500	260	. 3	6	15	14.8336	10.3243	49.4375	7.33337
1500	260	3	9	15	16.7374	6.57918	28.7727	4.8158
1500	260	1	2	15	99.4323	0.908948	2.92353	2.90693
<u> </u>	1	<u> </u>	J.,			·	L	hause

Figur 46 zeigt das Diffraktogramm des Ausbaukatalysators

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat

0.09 molares Verhältnis

Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis

V als Vanadat 0.18 molares Verhältnis
Nb als Oxalat 0.04 molares Verhältnis
P als Säure 0.03 molares Verhältnis

5 Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

	1	Cs₂CO₃	16.451	g
	2	(NH4) ₆ Mo ₇ O ₂₄ x4H ₂ O	136.69	g
10	3	VOSO ₄ xXH₂O	49,6	g
	4	Nb-Ammonium Oxalat	20.341	g

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 55 dargestellt.

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	290	1	2	15	44.491	27.1683	69.4457	30.8971
1500	280	1	4	15	51.7351	15.1543	58.7099	30.3736
1500	280	1	2	15	41.7306	16.1199	67.1915	28.0394
1500	280	1	1	15	34.4104	22.2457	77.6064	26.7046
1500	270	1	2	15	33.9546	16.0446	77.8706	26.4407
1500	280	2	4	15	38.605	20.3822	68.4387	26.4208
1500	290	2	4	15	49.6079	20.3936	47.8203	23.7226
1500	290	1	4	15	60.4521	14.7122	38.9281	23.5328
1500	300	2	4	15	54.9132	24.3502	41.7571	22.9302
1500	260	1	2	15	31.6659	11.3628	68.6932	21.7524
1500	270	1	4	15	43.6603	10.4974	47.8233	20.8798
1500	300	3	9	15	43.6881	12.2628	47.4926	20.7486
1500	270	1	1	15	29.9395	12.8387	67.9989	20.3586
1500	300	3	3	15	43.2292	13.9473	46.6246	20.1554
1500	270	2	4	15	46,5591	10.05	42.7065	19.8837
1500	290	2	8	15	49.5393	10.0802	39.2006	19.4197
1500	300	3	6	15	50.403	11.4089	38.4274	19.3686
1500	280	2	2	15	22.816	16.9801	84.4814	19.2752
1500	280	2	8	15	34.1179	10.6159	53.6785	18.314
1500	290	2	4	9	41.975	9.5686	42.7333	17.9373

1500	280	2	4	9	17.2185	17.781	103.58	17.8348
1500	260	1	4	15	29.1089	10.5205	59.3478	17.2755
1500	290	3	9	15	37.299	8.94903	44.3965	16.5594
1500	290	3	3	15	34.4702	10.2968	47.3702	16.3286
1500	260	2	4	15	37.2634	8.456	42.0374	15.6646
1500	290	3	6	15	42.611	7.42655	35.6605	15.1953
1500	260	1	1	15	35.1942	6.51338	42.6332	15.0044
1500	270	2	2	15	18.9491	11.3088	74.9428	14.201
1500	270	. 2	4	9	12.328	15.6988	110.422	13.6128
1500	280	3	3	15	24.6064	8.67299	51.8122	12.7491
1500	270	2	8	15	34.7172	7.00558	36.6378	12.7196
1500	280	3	6	15	27.2121	7.90942	45.0988	12.2723
1500	260	2	4	9	18.3085	7.67557	58.5694	10.7232
1500	260	2	2	15	4.11166	38.2706	253.041	10.4042
1500	250	2	4	15	46.9626	4.04425	21.5977	10.1429
1500	270	3	3	15	17.8321	8.21593	56.1359	10.0102
1500	280	3	9	15	28.9372	6.39065	33.5768	9.71621
1500	270	3	6	15	17.8707	7.47627	49.6111	8.86583
1500	260	3	3	15	9.42257	14.3356	90.0586	8.48584
1500	270	3	9	15	20.0182	6.19182	36.2455	7.25568
1500	260	3	6	15	15.522	7.34398	42.3842	6.5789
1500	260	3	9	15	14.9399	5.96841	34.4095	5.14074
Innumeroran		·	 					

Figur 47 zeigt das Diffraktogramm des Ausbaukatalysators

5

10

15

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis
Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis
V als Vanadat 0.21 molares Verhältnis
Nb als Oxalat 0.01 molares Verhältnis
P als Säure 0.04 molares Verhältnis

Die Chemikalien werden in folgender Reihenfolge in die wässrige Lösung unter Stickstoff zusammengegeben:

1 Cs₂CO₃ 16.6 g 2 (NH4)₆Mo₇O₂₄x4H₂O 137.99 g WO 2006/072447 PCT/EP2005/014117 66

3 VOSO₄xXH₂O 58.6 g 4 Nb-Ammonium Oxalat 5.1 g

5

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 55 dargestellt.

Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

GHSV	Reaktor-	Konz.	Konz.	Konz.	Umsatz	Sel. Es-	Sel. Me-	Ausb.
van-un-van-van-van-van-van-van-van-van-van-va	tempera-	Methac-	Wasser	Sauer-		sigsäure	thacryl-	Methac-
	tur	rolein		stoff			säure	rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	280	2	4	15	61.807	18.6842	51.9945	32.1362
1500	270	2	4	15	45.7629	14.7728	64.1234	29.3447
1500	280	2	4	9	44.06		65.1644	28.7114
1500	270	1	4	15	60.768	23.7835		28.3091
1500	280	1	1	15	60.5593	29.3318	46.7419	28.3066
1500	280	2	8	15	68.2436	13.9648	40.7416	
1500	290	2	4	9	66.8571	10.9586		
1500	270	1	2	15	63.1219	16.4919		26.4571
1500	290	3	6	15	65.6288	11.4298	40.2022	
1500	280	2	2	15	47.2018	13.2654		25.9573
1500	270	1	1	15	46.8625	16.5038		
1500	280	1	2	15	76.2567	22.4254	33.1497	25.2788
1500	270	2	8	15	62.27	l	<u> </u>	
1500	290	3	3	15	į	1	l	
1500	290	3	9	15	68.9096	11.6475	34.5887	23.8349
1500	290	2	4	15	85.3754	23.6593	27.3366	
1500	300	. 3	3	15	77.1577	14.5158	29.9879	
1500	· 280	3	6	15	45.2428	8.8272	50.8528	1
1500	270	2	4	9	29.024	10.706	77.5914	
1500	260	2	4	9	35.6747	8.60212	61.9902	22.1148
1500	260	1	4	15	63.8665	11.0527	34.5106	l
1500	300	3	6	15	83.1376	16.8418	26.4835	22.0177
1500	270	2	2	15	33.2478	12.9944	65.7014	21.8443
1500	260	1	1	15	53.4655	9.07552	39.5613	21.1516
1500	<u> </u>		4	15	31.3387	13.1335	66.7046	20,9044
1500	300	3	9	15	83.8832	19.2405	24.8287	20.8271
1500	290	2	8	15	81.9159	18.281	25.1222	20.5791
1500	280	3	9	15	50.8907	7.66242	39.9458	20.3287
1500	280	3	3	15	42.2637	8.14416	47.6568	20.1415

1500	250	2	4	15	51.2701	8.48164	38.8773	19.9324
1500	260	2	2	15	23.7266	12.2312	77.7937	18.4578
1500	280	1	4	15	88.1722	23.3575	19.5954	17.2777
1500	270	3	9	15	34.9302	6.84943	48.3936	16.904
1500	270	3	3	15	32.0098	7.4975	49.7842	15.9358
1500	260	3	3	15	26.0149	8.09859	58.3579	15.1818
1500	270	3	6	15	32.9471	6.52054	46.0549	15.1738
1500	260	1	2	15	98.5294	5.23613	13.8191	13.6159
1500	260	3	6	15	18.0682	9.83209	71.6998	12.9549
1500	260	3	9	15	23.6849	6.68627	54.1438	12.8239
1500	290	1	2	15	92.7924	25.0192	8.4833	7.87186
1500	290	1	4	15	97.5202	35.1411	7.50803	7.32184
1500	300	2	4	15	97.3591	22.6538	6.71243	6.53516

Figur 48 zeigt das Diffraktogramm des Ausbaukatalysators

5

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis):

Cs als Carbonat 0.09 molares Verhältnis Mo als Ammoniumheptamolybdat 0.69 molares Verhältnis V als Vanadat 0.2 molares Verhältnis 0.02 molares Verhältnis Nb als Oxalat P als Säure 0.07 molares Verhältnis

Die Herstellung des Multimetalloxids erfolgt wie in Beispiel 61 dargestellt.

15

10

GHSV	Reaktor- tempera- tur	Konz. Methac- rolein	Konz. Wasser	Konz. Sauer- stoff	Umsatz	Sel. Es- sigsäure	Sel. Me- thacryl- säure	Ausb. Methac- rylsäure
[h ⁻¹]	[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1500	300	1	2	30	55.2876	50.257	22.6806	27,7859
1500	290	1	4	9	31,1923	85.6369	14.7804	26.7121
1500	300	2	8	9	31.7346	84.1539	15.0077	26.7059
1500	290	1	2	30	46.0312	56.9607	18.4576	26.2197
1500	270	1	4	12	19.6607	123.745	16.6344	24.3291

•	Ð
o	o

1500	290	1	2	15	28.0066	83.8222	21.9897	23.4758
1500	290	1	2	30	48.0847	48.5882	16.3886	23.3635
1500	300	1	4	30	56.6117	40.4569	19.5316	22.9033
1500	290	2	4	15	22.8943	98.1299	24.4989	22.4662
1500	280	1	2	30	37.045	59.0384	17.527	21.8708
1500	280	1	4	30	44.8903	48.6349	14.6323	21.8324
1500	300	1	8	30	52.7773	41,1363	20.9888	21.7106
1500	290	2	4	15	40.9007	53.0632	13.5609	21.7032
1500	270	1	4	15	33.2305	64.6067	9.41646	21,4691
1500	280	1	2	12	37.4462	56.6928	9.01684	21.2293
1500	290	2	8	15	28.579	73.0069	14.4652	20.8646
1500	290	1	1	15	31.2894	66.3662	17.4642	20.7656
1500	300	2	4	30	45.4584	45.5946	16.5254	20.7266
1500	290	1	2	. 12	36.1047	56.9549	13.5662	20.5634
1500	300	2	4	9	34.0302	59.8456	13,3631	20.3655
1500	290	1	4	12	51.192	38.7629	9.4865	19.8435
1500	270	1	4	30	31.8611	60.4453	14.31	19.2586
1500	300	1	1	30	52.2167	36.7961	16.4874	19.2137
1500	280	1	1	30	30.1327	62.6406	17.292	18.8753
1500	280	1	1	15	25.0807	74.9079	14.184	18.7874
1500	270	1	2	67	26.9634	69.5386	19.0237	18.75
1500	260	1	4	15	22.5091	81.9765	11.5674	18.4522
1500	280	1	4	15	41.4698	43.105	8.78943	17.8755
1500	300	2	8	15	46.8181	37.8972	9.18009	17.7428

Figur 51 zeigt das Diffraktogramm des Ausbaukatalysators.

Vergleichsbeispiel 70

5

15

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis:

Cs als Carbonat

0.09 molares Verhältnis

Mo als Ammoniumheptamolybdat 0.67 molares Verhältnis

10 V als Vanadat 0.22 molares Verhältnis

Bi als Nitrat

0.02 molares Verhältnis

Ein Viertel des Vanadiums wird als Metall zur Ammoniumvanadatlösung zugegeben und 12 Stunden unter Stickstoff gerührt. Anschließend werden die in den anderen Beipsielen aus Ausgangssubstanzen verwendeten Chemikalien zugegeben.

Das Fällungsgefäß ist ein 2000 ml fassender 4-Hals Kolben, dessen Innenraum über einen Magnetrührer gerührt wird (500/min). Die Fällungstemperatur liegt bei 80°C. Der pH der Lösung wird nicht eingestellt und noch 1 Stunde nachgerührt. Die Probe wird anschließend im Sprühturm getrocknet. Anschließend wird die Probe einer Trocknung bei 80°C unter Luft im Trockenschrank unterworfen. Die Probe wird auf 100 bis 500 Mikrometer klassiert und in einem Drehkugelofen einer Kalzinierung unterworfen. Dabei werden folgende Parameter eingehalten:

Der Ofen ist ein Drehkugelofen nach der DE-A 10122027, die Rotationsgeschwindigkeit betrug 15 U/min. Die Vorspülzeit mit Luft beträgt 0,01 Stunden. Die Heizrate 1 beträgt 5 K/min. Die Zieltemperatur 1 beträgt 275 °C. Der Haltepunkt bei Zieltemperatur 275°C dauert 1,5 Stunden. Der Fluss an Luft beträgt 0,166 l/min. Die Heizrate auf die Endtemperatur beträgt 45 K/min. Die Endtemperatur beträgt 600 °C. Der Haltepunkt bei der Endtemperatur beträgt 6 h. Der Fluss an N₂ zum Erreichen der Endtemperatur und beim Halten des Endpunktes beträgt 0,166 l/min. Nach der Kalzinierung wird auf kleiner 500 Mikrometer klassiert.

Im Anschluss an die Kalzinierung wird die Probe mit wässriger Phosphorsäure gemäß der oben angegebenen Stöchiometrie auf einem Schüttler in einer Porzellanschale getränkt. Dabei wird auf 100 % der vorher mit Wasser ermittelten Wasseraufnahme getränkt. Anschließend wird die Probe bei 80°C unter Luft getrocknet und danach auf 300 bis 500 Mikrometer klassiert und 1 ml der Probe in einem 48-fach Testreaktor gemäß DE 198 09 477.9 getestet. Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

25

20

5

10

Reaktor- tempera- tur	GHSV	Konz. Me- thac- rolein	Konz. Was- ser	Konz. Sauer- stoff	Ausb. Methac- rylsäure	Umsatz	Sel. Essig- säure	Sel. Me- thacrylsäu- re
[°C]	[h ⁻⁷]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
260	2000	2	10	15	24.2512	47.0758	29.7196	51.5153
260	2000	2	20	15	23.0953	51.0328	19.9892	45.2558
270	2000	2	18	15	23.0048	60.6302	23.5381	37.9427
270	2000	2	20	10	22.8486	51.1968	19.0612	44.629
280	2000	2	20	10	22.7823	56.0921	23.1035	40.6158
290	2000	2	20	10	22.219	59.9724	26.1295	37.0487
290	2000	2	15	12	21.9032	58.1601	47.7239	37.6601
270	2000	2	20	15	21.7926	93.649	12.1947	23.2706
260	2000	2	18	15	21.2454	52.7374	19.4011	40.2854
270	2000	2	10	15	21.2414	58.5531	21.8974	36.2773
280	2000	2	10	10	21.2085	57.0984	23.0514	37.1437

	0000			45	04 4005	P	04.0400	00.077
280	2000	2	22	15	21,1825		21.6182	36.677
260	2000	2	4	15	21.1398		17.4222	52.2448
270	2000	2	10	10			18.6584	44.4699
280	2000	2	20	. 15		69.4077	23.5245	29.7025
290	2000	2	10	10	20.6007		26.1984	35.4304
280	2000	2	18	15			26.4083	28.103
260	2000	2	10	15	20.2592	43.708	<u> </u>	46.3512
270	2000	2	10	12			21.9075	43.423
270	2000	2	22	15	20.1795	52.4603	17.4803	38.4663
270	2000	2	10	15	20.161	62.5516	25.0243	32.2309
260	2000	2	20	10	20.0421	42.4436	16.1779	47.2206
260	2000	2	10	10	19.9769	30.6614	20.4375	65.1532
280	2000	3	6	9	19.8357	38.6795	27.3966	51.2821
270	2000	2	4	15	19.7844	50.8883	21.6222	38.8781
290	2000	2	18	10	19.6603	58.478	24.8621	33.62
260	2000	2	4	15	19.3687	41.7334	19.8401	46.4106
270	2000	2	18	10	19.3192	43.7475	17.5017	44.1607
270	2000	3	6	9	19.291	25.9618	18.4872	74.3054
280	2000	2	10	15	19.243	73.5976	40.4123	26.1463
270	2000	2	10	15	19.213	54.0975	22.1427	35.5156
270	2000	2	4	9	19.1985	33.4889	19.7726	57.3278
260	2000	2	15	15	19.132	37.998	22.5857	50.3501
260	2000	2	10	12	19.1021	37.4188	18.8464	51.0496
270	2000	2	4	12	19.0461	45.7348	20.3568	41.6447
270	2000	2	4	15	18.8993	51.0644	17.7759	37.0106
260	2000	1	4	9	18.8772	60.5288	17.8512	31.1871
250	2000	2	4	15	18.8412	32.1668	14.2097	58.5733
270	2000	2	10	9	18.7642	42.3881	18.4669	44.2675
260	2000	1	2	9	18.6677	40.9954	20.1091	45.536
270	2000	2	4	10	18.639	41.4219	15.6779	44.998
280	2000	2	10	12	18.6209	59.3329	25.9874	31.3837
290	2000	3	12	9	18.5479	52.5066	21.9896	35.3248
280	2000	2	10	15	18.5404	66.7429	25.9222	27.7788
270	2000	2	15	15	18.4961	55.0065	20.8683	33.6253
250	2000	2	10	15	18.3473	37.5281	17.7576	48.8895
280	2000	2	18	10	18.3099	50.4522	18.361	36.2916
290	2000	2	22	15	18.2634	71.4932	23.8715	25.5457
300	2000	2	18	10	18.1991	67.2512	28.5957	27.0613
290	2000	2	20	15	18.1605	77.0651	30.7595	23,5652
L								L

Figur 59 zeigt das Diffraktogramm des Ausbaukatalysators.

Vergleichsbeispiel 71

Das Multimetalloxid hat folgende molare Zusammensetzung (angegeben als molares Verhältnis:

Cs als Carbonat 0.09 molares Verhältnis Mo als Ammoniumheptamolybdat 0.67 molares Verhältnis V als Vanadat 0.22 molares Verhältnis Se als Selensäure 0.02 molares Verhältnis

10

25

30

35

5

Ein Viertel des Vanadiums wird als Metall zur Ammoniumvanadatlösung zugegeben und 12 Stunden unter Stickstoff gerührt. Anschließend werden die in den anderen Beispielen aus Ausgangssubstanzen verwendeten Chemikalien zugegeben.

Das Fällungsgefäß ist ein 2000 ml fassender 4-Hals Kolben, dessen Innenraum über einen Magnetrührer gerührt wird (500/min). Die Fällungstemperatur liegt bei 80°C. Der pH der Lösung wird nicht eingestellt und noch 1 Stunde nachgerührt. Die Probe wird anschließend im Sprühturm getrocknet. Anschließend wird die Probe einer Trocknung bei 80°C unter Luft im Trockenschrank unterworfen. Die Probe wird auf 100 bis 500 Mikrometer klassiert und in einem Drehkugelofen einer Kalzinierung unterworfen. Dabei werden folgende Parameter eingehalten:

Der Ofen ist ein Drehkugelofen nach der DE-A 10122027, die Rotationsgeschwindigkeit beträgt 15 /min. Die Vorspülzeit mit Luft beträgt 0,01 Stunden. Die Heizrate 1 beträgt 5 K/min. Die Zieltemperatur 1 beträgt 275 °C. Der Haltepunkt bei Zieltemperatur 275 °C dauert 1,5 Stunden. Der Fluss an Luft beträgt 0,166 l/min. Die Heizrate auf die Endtemperatur beträgt 45 K/min. Die Endtemperatur beträgt 600 °C. Der Haltepunkt bei der Endtemperatur beträgt 6 h. Der Fluss an N₂ zum Erreichen der Endtemperatur und beim Halten des Endpunktes beträgt 0,166 l/min. Nach der Kalzinierung wird auf kleiner 500 Mikrometer klassiert.

Im Anschluss an die Kalzinierung wird die Probe mit wässriger Phosphorsäure gemäß der oben angegebenen Stöchiometrie auf einem Schüttler in einer Porzellanschale getränkt. Dabei wird auf 100% der vorher mit Wasser ermittelten Wasseraufnahme getränkt. Anschließend wird die Probe bei 80°C unter Luft getrocknet und danach auf 300 bis 500 Mikrometer klassiert und 1 ml der Probe in einem 48-fach Testreaktor gemäß DE 198 09 477.9 getestet. Folgende Ergebnisse werden bei der Umsetzung von Methacrolein erhalten:

п					7.00				A	É
	Reaktor-	CHCV	L CONT	Konz	KANT	Ausb.	Umsatz	Sel.	Sel. Me-	É
	I REMARUI **	Unov	I ILUIIZ.	ITOHE	I I VIII I	Augu.				é
	1.000				1			į.		é .

tempera- tur		Me- thac-	Was-	Sauer- stoff	Methac- rylsäure		Essig- säure	thacrylsäu- re
		rolein	301	Cton	Tyloudio		Saure	10
[°C]	[h-1]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
280	2000	2	10	15	9.90258	42.2525	32.7921	23.4366
300	2000	2	10	15	9.12496	46.9474	40.1693	19.4366
290	2000	2	10	15	8.54736	46.51	38.13	18.3775
270	2000	2	10	15	7.86581	37.7351	27.8468	20.8448
260	2000	2	10	15	6.57085	29.5365	27.5965	22.2465
280	2000	2	4	15	5.90843	47.9062	53.9951	12.3333
300	2000	2	4	15	5.32831	60.9861	36.4228	8.73692
270	2000	2	4	15	4.79038	37.6445	54.0404	12.7253
260	2000	2	2	15	4.63582	19.4012	27.2088	23.8945
260	2000	2	4	15	4.4294	32.216	33.8969	13.7491
250	2000	2	4	15	4.09742	26.1742	33.3719	15.6544
240	2000	2	4	15	3.60163	12.0041	50.5024	30.0032
290	2000	2	4	15	3.33058	54.0996	30.7621	6.15639

Figur 60 zeigt das Diffraktogramm des Ausbaukatalysators.

Patentansprüche

 Phosphor-modifizierte Multimetalloxidmassen, erhältlich durch Behandlung mit einem Phosphor-haltigen Agens von Multimetalloxidmassen der allgemeinen Formel (I)

$A_a[Mo_{5-b-c}V_bX_cO_d]_1 \qquad (I)$

10

mit

- A = wenigstens eines der Elemente aus der Gruppe umfassend NH₄, Na, K, Rb, Cs und TI;
- X = eines oder mehrere der Elemente aus der Gruppe umfassend La, Ce, Pr,
 Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Hf, Nb, Ta, W, Mn,
 Re, Fe, Co, Ni, Cr, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al,
 Ga, In, C, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se und Te;
 - a = 0.1 bis 1;
 - b = 0.25 bis 4.5; und
- c = 0 bis 4,5,

mit der Maßgabe, dass b + c \leq 4,5,

deren Röntgendiffraktogramm das nachfolgende Röntgenbeugungsmuster RM, wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [Å],

- 25 d [Å]
 - $3,06 \pm 0,2$
 - $3,17 \pm 0,2$
 - $3,28 \pm 0,2$
 - 3.99 ± 0.2
- 30 9.82 ± 0.4
 - $11,24 \pm 0,4$
 - $13,28 \pm 0,5$
 - enthält.
- 2. Phosphor-modifizierte Multimetalloxidmassen nach Anspruch 1, dadurch gekennzeichnet, dass die Multimetalloxidmasse nach der Behandlung mit dem Phosphor-haltigen Agens die Struktur einer i-Phase und/oder einer Phase, die isostrukturell mit dem Typ Heteropolysäure ist, aufweist.
- 40 3. Phosphor-modifizierte Multimetalloxidmassen nach Anspruch 1, dadurch gekennzeichnet, dass die Multimetalloxidmasse nach der Behandlung mit dem

Phosphor-haltigen Agens die Struktur einer Scherstruktur und/oder einer Phase, die isostrukturell mit dem Typ Heteropolysäure ist, aufweist.

- 4. Phosphor-modifizierte Multimetalloxidmassen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Multimetalloxidmassen Nebenphasen umfasst, die ausgewählt sind aus der Gruppe, bestehend aus röntgenamorphen Heteropolysäurephasen, MoO₃-Phasen, MoO₂-Phasen und Vanadium-Molybdän-Oxid-Phasen.
- 10 5. Phosphor-modifizierte Multimetalloxidmasse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Behandlung durch das Phosphor-haltige Agens während oder nach der Herstellung der Multimetalloxidmasse der allgemeinen Formel (I) erfolgt.
- Phosphor-modifizierte Multimetalloxidmasse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Phosphor-haltige Agens ausgewählt ist aus der Gruppe, bestehend aus Diphosphorpentoxid P₂O₅, Orthophosphorsäure H₃PO₄, Polyphosphorsäure, Phosphorige Säure H₃PO₃, Salze der Phosphorsäure, Phosphorsäureester, Ester der phosphorigen Säure, Phosphine, Salze der phosphorigen Säure, Ultraphosphorsäuren, Metaphosphorsäuren, Phosphinsäuren, Phosphonsäuren und deren Gemischen.
 - 7. Phosphor-modifizierte Multimetalloxidmasse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Behandlung der Multimetalloxidmasse der allgemeinen Formel (I) durch Tränkung der Multimetalloxidmasse mit einer Lösung des Phosphor-haltigen Agens und einer anschließenden thermischen oder hydrothermalen Nachbehandlung der getränkten Multimetalloxidmasse erfolgt.
- 8. Phosphor-modifizierte Multimetalloxidmasse nach einem der Ansprüche 1 bis 6, 30 dadurch gekennzeichnet, dass die Behandlung der Multimetalloxidmasse der allgemeinen Formel (I) durch Vermahlen und/oder Vermischen erfolgt.
- Phosphor-modifizierte Multimetalloxidmasse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Behandlung der Multimetalloxidmasse der allgemeinen Formel (I) durch ein Chemical-Vapour-Deposition-Verfahren erfolgt.
 - 10. Verfahren zur Herstellung von Phosphor-modifizierten Multimetalloxidmassen, ausgehend von Multimetalloxidmassen der allgemeinen Formel I

 $A_a[Mo_{5-b-c}V_bX_cO_d]_1 \qquad (I)$

40

mit

- A = wenigstens eines der Elemente aus der Gruppe umfassend NH₄, Na, K, Rb, Cs und Ti;
- X = eines oder mehrere der Elemente aus der Gruppe umfassend La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Hf, Nb, Ta, W, Mn, Re, Fe, Co, Ni, Cr, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se und Te;
- a = 0,1 bis 1;
- b = 0.25 bis 4.5; und
- c = 0 bis 4.5,
- 10 mit der Maßgabe, dass $b + c \le 4.5$,

deren Röntgendiffraktogramm das nachfolgende Röntgenbeugungsmuster RM, wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [Å],

d [Å]

15 $3,06 \pm 0,2$

 $3,17 \pm 0,2$

 3.28 ± 0.2

 $3,99 \pm 0,2$

 $9,82 \pm 0,4$

20 $11,24 \pm 0,4$

 $13,28 \pm 0,5$

enthält,

dadurch gekennzeichnet, dass man die Multimetalloxidmassen der allgemeinen Formel I mit einem Phosphor-haltigen Agens behandelt.

25

- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Phosphorhaltige Agens ausgewählt ist aus der Gruppe, bestehend aus Diphosphorpentoxid P₂O₅, Orthophosphorsäure H₃PO₄, Polyphosphorsäure, Phosphorige Säure H₃PO₃, Salze der Phosphorsäure, Phosphorsäureester, Ester der phosphorigen Säure, Phosphine Salze der phosphorigen Säure, Ultraphosphorsäuren, Metaphosphorsäuren, Phosphinsäuren, Phosphonsäuren und deren Gemischen.
- Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Behandlung der Multimetalloxidmasse der allgemeinen Formel (I) durch Tränkung der Multimetalloxidmasse mit einer Lösung des Phosphor-haltigen Agens und einer anschließenden thermischen oder hydrothermalen Nachbehandlung der getränkten Multimetalloxidmasse erfolgt.

- 13. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Behandlung der Multimetalloxidmasse der allgemeinen Formel (I) durch Vermahlen und/oder Vermischen erfolgt.
- 5 14. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Behandlung der Multimetalloxidmasse der allgemeinen Formel (I) durch ein Chemical-Vapour-Deposition-Verfahren erfolgt.
- 15. Verwendung von Phosphor-modifzierten Multimetalloxidmassen gemäß einem der Ansprüche 1 bis 9 als katalytische Aktivmasse für heterogen katalysierte partielle Gasphasenoxidationen und/oder -ammoxidationen von gesättigten und/oder ungesättigten Kohlenwasserstoffen sowie von gesättigten und/oder ungesättigten Aldehyden.
- 15 16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass Acrolein zu Acrylsäure, Methacrolein zu Methacrylsäure und/oder Ethan zu Essigsäure oxidiert wird.

25

30

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

INTERNATIONAL SEARCH REPORT

International application No /EP2005/014117

A. CLASS	FIGATION OF SUBJECT MATTER B01J27/19 C07C45/33 C07C51,	/215 C07C12O/14		
According to	o International Patent Classification (IPC) or to both national classi	fication and IPC		
	SEARCHED			
Minimum do	ocumentation searched (classification system followed by classific $B01J$ $C07C$	ation symbols)		
Documenta	tion searched other than minimum documentation to the extent tha	at such documents are included in the fields so	earched	
Electronic d	ata base consulted during the international search (name of data	base and, where practical, search terms used)	
EPO-In	ternal, PAJ			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.	
Υ	DE 103 21 398 A1 (BASF AG) 27 May 2004 (2004-05-27) cited in the application claims 22,23,26 page 7, paragraph 60-62		1-16	
Υ	EP 1 254 707 A (ROHM AND HAAS CO 6 November 2002 (2002-11-06) cited in the application claims 1,4,6 page 7, paragraphs 30,33	1–16		
		/		
X Furth	ner documents are listed in the continuation of Box C.	X See patent family annex.		
"A" docume consid "E" earlier d filing d	nt which may throw doubts on priority claim(s) or	"T" later document published after the inter or priority date and not in conflict with i cited to understand the principle or the invention "X" document of particular relevance; the ci cannot be considered novel or cannot involve an inventive step when the doc	the application but ory underlying the laimed invention be considered to cument is taken alone	
citation "O" docume other n "P" docume	is cited to establish the publication date of another or other special reason (as specified) entrefering to an oral disclosure, use, exhibition or neans are prior to the international filing date but an the priority date claimed	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family		
Date of the a	actual completion of the international search	Date of mailing of the international sear		
9	March 2006	20/03/2006		
Name and m	naliing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer		
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Jourdan, A		

INTERNATIONAL SEARCH REPORT

International application No
FI/EP2005/014117

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	i i
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Refevant to claim No.
Υ	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 07, 31 July 1996 (1996-07-31) & JP 08 057319 A (MITSUBISHI CHEM CORP), 5 March 1996 (1996-03-05) cited in the application abstract	1-16
Ą	DE 102 48 584 A1 (BASF AG) 29 April 2004 (2004-04-29) the whole document	1-16
,		
	,	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PI/EP2005/014117

	Publication date		Patent family member(s)	Publication date
A1	27-05-2004	NONE		
A	06-11-2002	BR CN JP MX	0201365 A 1382523 A 2003024788 A PA02003870 A	10-06-2003 04-12-2002 28-01-2003 14-07-2003
A	05-03-1996	NONE	-	
A1	29-04-2004	CN CN	1705637 A 1705638 A	07-12-2005 07-12-2005
	A	A1 27-05-2004 A 06-11-2002 A 05-03-1996	A1 27-05-2004 NONE A 06-11-2002 BR CN JP MX A 05-03-1996 NONE A1 29-04-2004 CN	A1 27-05-2004 NONE A 06-11-2002 BR 0201365 A

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES B01J27/19 C07C45/33 C07C51/215 C07C120/14 Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) B01J CO7C Recherchierte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* Y DE 103 21 398 A1 (BASF AG) 1 - 1627. Mai 2004 (2004-05-27) in der Anmeldung erwähnt Ansprüche 22,23,26 Seite 7, Absatz 60-62 Υ EP 1 254 707 A (ROHM AND HAAS COMPANY) 1 - 166. November 2002 (2002-11-06) in der Anmeldung erwähnt Ansprüche 1,4,6 Seite 7, Absätze 30,33 Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen X Siehe Anhang Patentfamilie "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolikdiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den altgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkelt beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationaten Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des Internationalen Recherchenberichts Datum des Abschlusses der Internationalen Recherche 20/03/2006 9. März 2006 Bevolimächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Fijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Jourdan, A

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

		1/EPZUU	05/014117
	zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden	Betr. Anspruch Nr.	
Y	PATENT ABSTRACTS OF JAPAN Bd. 1996, Nr. 07, 31. Juli 1996 (1996-07-31) & JP 08 057319 A (MITSUBISHI CHEM CORP), 5. März 1996 (1996-03-05) in der Anmeldung erwähnt Zusammenfassung		1-16
А	DE 102 48 584 A1 (BASF AG) 29. April 2004 (2004-04-29) das ganze Dokument		1~16
•			
		ar ar	-

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentil

an, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
T/EP2005/014117

			Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE	10321398	Al	27-05-2004	KEI	NE.	
EP	1254707	A	06-11-2002	BR CN JP MX	0201365 A 1382523 A 2003024788 A PA02003870 A	10-06-2003 04-12-2002 28-01-2003 14-07-2003
JP	08057319	Α	05-03-1996	KEI	VE	
DE	10248584	A1	29-04-2004	CN CN	1705637 A 1705638 A	07-12-2005 07-12-2005

Formblatt PCT/ISA/210 (Anhang Patentfamilie) (April 2005)

N.	