МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Электротехнический факультет

Кафедра физики

Э. Н. ЛУЗЯНИНА

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ ВЕКТОРА ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

Учебно-методическое пособие

Киров

2014

Допущено к изданию методическим советом электротехнического факультета ФГБОУ ВПО «ВятГУ» для студентов всех специальностей

Рецензент

кандидат химических наук, доцент кафедры физики и материаловедения ФГБОУ ВПО «Вятская ГСХА» В. А. Морозов

Лузянина, Э. Н.

Л838 Определение горизонтальной составляющей вектора индукции магнитного поля Земли: учебно-методическое пособие / Э. Н. Лузянина. – Киров: ФГБОУ ВПО «ВятГУ», 2014 – 11 с.

УДК 537.85(07)

Учебно-методическое пособие предназначено для выполнения лабораторной работы по дисциплинам: «Физика», «Физические основы информационных технологий».

Тех. редактор А. В. Куликова

1. Магнитное поле Земли.

Планета Земля представляет собой большой магнит, т. е. имеет собственное магнитное поле.

Это поле по своей конфигурации совпадает с полем диполя (прямого магнита), расположенного внутри Земли и составляющего угол 11,5° с осью вращения Земли (рис. 1).

Поэтому, помимо географических полюсов (Северного и Южного), Земля имеет также магнитные полюса.

Географические полюса — это точки пересечения оси вращения Земли с её поверхностью. Магнитные, а точнее геомагнитные полюса — это точки, где сходятся линии индукции магнитного поля Земли (рис. 1). Так как магнитная ось не совпадает с географической, то геомагнитные полюса не совпадают с географическими. Они смещены на расстоянии примерно 1600 км от географических полюсов.

Рис. 1

Кроме того, в настоящее время магнитное поле Земли таково, что вблизи северного географического находится южный геомагнитный полюс и наоборот.

Индукция магнитного поля на полюсах максимальна, на экваторе минимальна. В других точках поверхности Земли она имеет промежуточные значения. Индукция на полюсах примерно в 2 раза больше индукции на экваторе.

Положение геомагнитных полюсов не является строго фиксированным. Имеется два основных типа движения полюсов: миграция и инверсия. В течение геологической истории Земли геомагнитные полюса медленно смещаются по поверхности Земли вокруг географических полюсов. Это явление называется миграцией. Наличие такого движения объясняется теорией дрейфа континентов, а также служит и её подтверждением.

Инверсия, или переполюсовка, заключается в перемене мест Северного и Южного геомагнитных полюсов. В процессе инверсии геомагнитное поле убывает почти до нуля, а потом возрастает до прежних значений, но в обратном направлении. Факты инверсий легко определяются при изучении намагниченности изверженных горных пород, и определяется время инверсии.

Частота инверсий магнитного поля в течение геологической истории Земли очень неравномерна. Интервал между инверсиями в разные геологические эпохи имел существенно разные значения: от 0,2 млн. лет до 40 млн. лет в другое время. Последняя инверсия происходила 780 тыс. лет назал.

То состояние поля, которое имеет место сейчас, называется прямой полярностью. Изменение положения полюсов на противоположное приводит к образованию обратной полярности. Таким образом, состояния прямой и обратной полярности чередуются в течение геологической истории Земли.

При детальном изучении магнитного поля в разных точках Земли, были обнаружены еще дополнительные более слабые изменения магнитного поля, названные вариациями магнитного поля.

Существуют вековые вариации и суточные. Сильные вариации, называемые магнитными бурями, оказывают существенное влияние на работу различных технических устройств. Например, нарушается радиосвязь, работа

навигационных приборов, наблюдаются нарушения в работе электрической сигнализации на железных дорогах, выходят из строя системы электропередачи, (нарушается изоляция электронесущих кабелей и обмоток трансформаторов). Также изменения магнитного поля влияют на состояние здоровья людей. Небезразличны к ним даже животные и растения.

Как же создаётся магнитное поле Земли? Было высказано много гипотез о его происхождении. В настоящее время принята теория геомагнитного динамо, созданная Я. И. Френкелем. Это сложная система уравнений магнито-гидродинамики. Сущность её такова. Главное геомагнитное поле генерируется в недрах Земли. Земля имеет сложное строение. Внутри неё находится твёрдое железное ядро, окружённое вторым жидким ядром, состоящим из железоникелевой расплавленной массы. За счёт разности температур верхних и нижних слоёв этой массы в ней возникают вихревые потоки, что эквивалентно замкнутым движущимся проводникам. Достаточно хотя бы слабого магнитного поля, чтобы в этих проводниках индуцировалась ЭДС индукции согласно закону Фарадея и возникли индукционные токи. А эти токи сами создают магнитное поле, которое и является полем Земли. Слабым внешним магнитным полем служит поле Солнца. И ещё 10 % в магнитное поле Земли вносят токи в ионосфере.

Суточные возмущения магнитного поля (вариации) происходят за счёт «солнечного ветра».

2. Элементы земного магнетизма.

Вектор индукции магнитного поля направлен по касательной к силовым линиям (линиям индукции). Поэтому как показывает рис. 1, направление вектора $\overrightarrow{B_T}$ в разных точках поверхности Земли различно, но везде, кроме экватора, этот вектор направлен под углом к горизонту. На экваторе вектор $\overrightarrow{B_T}$ горизонтален, на полюсах направлен по вертикали. Индекс T в обозначении вектора индукции происходит от латинского слова TERRA — Земля, т. е. $\overrightarrow{B_T}$ — это вектор индукция магнитного поля Земли. Найдём его составляющие, выбрав оси координат (рис. 2).

Рис. 2

Составляющие вектора $\overrightarrow{B_T}$: $\overrightarrow{B_Z}$ — вертикальная составляющая, $\overrightarrow{B_X}$ и $\overrightarrow{B_Y}$ соответственно северная и восточная составляющие, лежащие в горизонтальной плоскости, их сумма $\overrightarrow{B_H}$ — горизонтальная составляющая вектора $\overrightarrow{B_T}$. Таким образом $\overrightarrow{B_T}$ можно представить как сумму $\overrightarrow{B_H}$ и $\overrightarrow{B_Z}$:

$$\overrightarrow{B_T} = \overrightarrow{B_H} + \overrightarrow{B_Z}$$

Плоскость, определяемая векторами $\overrightarrow{B_T}$ и $\overrightarrow{B_H}$ называется плоскостью магнитного меридиана. Оси x и z определяют плоскость географического меридиана. Угол D между плоскостями географического и магнитного меридианов называется магнитным склонением. Угол J между вектором $\overrightarrow{B_T}$ и горизонтальной плоскостью называется магнитным наклонением.

Таким образом, $\overrightarrow{B_X}$, $\overrightarrow{B_Y}$, $\overrightarrow{B_Z}$, $\overrightarrow{B_H}$, D и J – это элементы земного магнетизма.

3. Экспериментальная установка и вывод расчётной формулы.

Для измерения горизонтальной составляющей вектора индукции магнитного поля Земли используется простая установка, называемая тангенсгальванометром. Тангенс-гальванометр состоит из очень короткой катушки, содержащей несколько витков проволоки, радиуса R. В нашей установке $R=25c_M$, а число витков N катушки равно 20. Катушка устанавливается на

подставке так, чтобы её плоскость была вертикальна, и она могла поворачиваться вокруг вертикальной оси. В центре катушки расположена подставка, на которую помещается компас. Стрелка компаса насажена на вертикальную ось, поэтому она может вращаться в горизонтальной плоскости, поворачиваясь на тот или иной угол, который можно отсчитать по делениям шкалы компаса. Концы обмотки тангенс-гальванометра выведены к клеммам, которые позволяют включать обмотку в электрическую цепь (рис. 3).

Рис. 3

В цепь также включается реостат для изменения силы тока, амперметр для её измерения, источник тока E, переключатель Π , который позволяет менять направление тока на противоположное, ключ K.

Перед началом эксперимента катушку тангенс-гальванометра ориентируют в плоскости магнитного меридиана, т. е. совмещают с направлением стрелки компаса.

 $\vec{B}_{\scriptscriptstyle K}$ — вектор индукции магнитного поля катушки в её центре.

Рис. 4

Пока цепь разомкнута, и тока в катушке нет, на стрелку действует только магнитное поле Земли, которое и ориентирует её в плоскости магнитного меридиана. Стрелка находится под действием горизонтальной составляющей \vec{B}_H вектора \vec{B}_T индукции магнитного поля Земли.

Если пустить ток в катушку, то катушка создаст своё собственное магнитное поле, которое в центре кругового тока выражается формулой:

$$B_K = \frac{\mu_0 I N}{2R}.\tag{1}$$

 $\vec{B}_{\scriptscriptstyle K} \perp$ плоскости катушки, т. е. плоскости магнитного Причём вектор меридиана. Теперь на стрелку компаса действуют два взаимно перпендикулярных она располагается поля, И ПО направлению равнодействующей этих полей:

$$\vec{B} = \vec{B}_K + \vec{B}_H. \tag{2}$$

Согласно принципу суперпозиции магнитного поля, стрелка отклонится на угол α по отношению к первоначальному её направлению по вектору B_H . Как видно из рис. 4, векторы \vec{B}_H и \vec{B}_K связаны простой зависимостью:

$$\frac{B_K}{B_H} = tg\alpha . ag{3}$$

Из формулы (3) находится B_H :

$$B_H = \frac{B_K}{tg\,\alpha} \,. \tag{4}$$

Учитывая выражение (1) для B_K , получится:

$$B_H = \frac{\mu_0 IN}{2R \cdot tg \,\alpha} \,. \tag{5}$$

Формула (5) и является расчётной формулой для определения горизонтальной составляющей вектора индукции \vec{B}_T магнитного поля Земли. Но ей можно придать более простой вид. Обозначив $C = \frac{\mu_0 N}{2R} = const$,

Формулу (5) можно записать:

 $\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma_H /_M -$ магнитная постоянная.

$$B_H = C \frac{I}{tg\alpha} \ . \tag{6}$$

Вычислив $const\ C$ один раз, можно считать \vec{B}_{H} для разных токов I и углов α .

- 4. Методика проведения эксперимента и обработка результатов измерений.
 - 1. Собрать цепь согласно схеме на рис. 3.
- 2. Совместить плоскость катушки тангенс-гальванометра с направлением стрелки компаса.
- 3. Замкнуть цепь, установив ток такой, чтобы угол α имел значение в пределах 30°-55°.
- 4. Записать ток и измерить угол по обоим концам стрелки компаса. Среднее из двух значений угла α' занести в таблицу (рис. 5).
- 5. Для увеличения точности измерений изменить направление тока в катушке переключателем Π на обратное. Произвести замеры углов снова и найдя среднее из двух значений угла α'' занести в таблицу. Найти $\langle \alpha \rangle = \frac{\alpha' + \alpha''}{2}$.
- 6. Произвести 5-6 измерений так, как указано выше, для разных значений токов, не допуская увеличения угла более 55°. Данные занести в таблицу.
- 7. Рассчитать значение $const\ C$, учитывая, что N=20 ; $R=25\ cm$; $\mu_0=4\pi\cdot 10^{-7}\ \Gamma h/M\,.$
- 8. По формуле (6) рассчитать значения B_H для каждого опыта, найти среднее $\langle B_H \rangle$, разность между $\langle B_H \rangle$ и B_i и квадраты разностей.

$N\!$	I, A	α'	α"	$\langle \alpha \rangle$	С	B_{Hi} , T_{II}	$\langle B_H \rangle$, $T\pi$	$\langle B_H \rangle - B_{Hi}$, T_{II}	$(\langle B_H \rangle - B_{Hi})^2$, $T\pi^2$

9. Вычислить погрешность B_H по формуле:

$$\Delta B_H = t_{\alpha,\,n} \sqrt{\frac{\Sigma \big(\! \big\langle B_H \big\rangle\! - B_{H\!i} \big)^2}{n(n-1)}} \;, \quad \text{где} \quad t_{\alpha,\,n} \quad - \quad \text{коэффициент} \quad \text{Стьюдента,} \quad \text{который}$$
 находится по таблице.

10. Записать полученный результат с погрешностью в виде:

$$\boldsymbol{B}_{H} = (\langle \boldsymbol{B}_{H} \rangle \pm \boldsymbol{\Delta} \boldsymbol{B}_{H}) T \boldsymbol{\pi}, \ \boldsymbol{\alpha} = \boldsymbol{0}, 7$$

11. Сделать вывод.

Контрольные вопросы.

- 1. Какой вид имеет магнитное поле Земли?
- 2. Что такое геомагнитные полюса? Где они расположены?
- 3. Какие существуют виды движения полюсов?
- 4. Чем создаётся геомагнитное поле?
- 5. Написать в векторной и скалярной форме и пояснить закон Био-Савара-Лапласа.
 - 6. Вывести формулу (1).
 - 7. Сформулировать принцип суперпозиции магнитных полей.
 - 8. Вывести формулу (5).
- 9. Как определить направление вектора магнитной индукции в центре кругового тока?
 - 10. Что такое индукция магнитного поля? Каковы единицы её измерения?
 - 11. Что называется силовой линией?

Литература

- 1. Детлаф, А. А. Курс физики [Текст] / А. А. Детлаф, Б. М. Яворский. Москва : Высшая школа, 2002. 718 с.
- 2. Стейси, Ф. Физика Земли [Текст] / Ф. Стейси. Москва : Мир, 1974. 344 с.
- 3. Почтарев В. И. Тайна намагниченной земли [Текст] / В. И. Почтарев, Б. 3. Михлин. Москва : Педагогика. 1986. 112 с.
- 4. Карцев, В. В. Магнит за три тысячелетия [Текст] / В. В. Карцев ; под ред. Е. Я. Казовского. 2-е изд. Москва : Атомиздат 1972. 160 с.
- 5. Яворский, Б. М. Земной магнетизм [Текст] Т. 1 / Б. М. Яворский. Москва : Наука, 1970. 176 с.
- 6. Ботт, М. Внутреннее строение земли [Текст] / М. Ботт. Москва : Мир, 1974. 374 с.

Учебное издание

Лузянина Эмилия Николаевна

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ ВЕКТОРА ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

Учебно-методическое пособие

Подписано в печать 30.04.2014. Печать цифровая. Бумага для офисной техники.

Усл. печ. л. 0,92. Тираж 20. Заказ № 1738.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Вятский государственный университет»

610000, г. Киров, ул. Московская, 36, тел.: (8332) 64-23-56, http://vyatsu.ru