JVC

SERVICE MANUAL

COLOR VIDEO MONITOR

TM-A9UCV

BASIC CHASSIS

A10

CONTENTS

	SAFETY PRECAUTIONS · · · · · 2
*	OPERATING INSTRUCTIONS · · · · · · · 1-1
	SPECIFIC SERVICE INSTRUCTIONS · · · 3
	SERVICE ADJUSTMENTS 6
*	STANDARD CIRCUIT DIAGRAM ·····2-1
_	DADTE IST

CONTENTS

ltem Content		Item	Content		
Colour system	NTSC	Video input	1 line BNC × 2 (with 1 bridge connected		
Picture tube	9" measured diagonally,		output),		
	90° deflection, in-line gun,		1Vp-p, 75Ω, negative sync,		
	vertical stripe phosphor pitch 0.5mm		bridge connection possible (termination		
Screen size (W×H)	6-13/16" × 5-3/8" (173 × 136mm)		switch provided)		
Scanning frequency	(H) 15.734kHz				
	(V) 59.94Hz				
Horizontal resolution	280 TV lines or more				
High Voltage	22kV±1kV (at zero been current)	Power requirements	120V AC, 60Hz		
		Power consumption	0.63A (max)		
Operation		Dimensions			
temperature	0-40°C (32-104° F)	(W×H×D)	8-3/4" × 9" × 12-1/2"		
Relative humidity	20-80%		(222mm × 227mm × 317mm)		
-		Mass	15.2 lbs (6.9kg)		

Design & specification are subject to change without notice.

SAFETY PRECAUTIONS

- The design of this product contains special hardware, many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Service should be performed by qualified personnel only.
- Alterations of the design or circuitry of the products should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacturer of responsibility for personal injury or property damage resulting therefrom
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the parts list of Service manual. Electrical components having such features are identified by shading on the schematics and by (△) on the parts list in Service manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement part shown in the parts list of Service manual may cause shock, fire, or other hazards.
- Use isolation transformer when hot chassis.

The chassis and any sub-chassis contained in some products are connected to one side of the AC power line. An isolation transformer of adequate capacity should be inserted between the product and the AC power supply point while performing any service on some products when the HOT chassis is exposed.

 Don't short between the LIVE side ground and ISOLATED (NEUTRAL) side ground or EARTH side ground when repairing.

Some model's power circuit is partly different in the GND. The difference of the GND is shown by the LIVE : (\bot) side GND, the ISOLATED(NEUTRAL) : (\clubsuit) side GND and EARTH : (\clubsuit) side GND. Don't short between the LIVE side GND and ISOLATED(NEUTRAL) side GND or EARTH side GND and never measure with a measuring apparatus (oscilloscope etc.) the LIVE side GND and ISOLATED(NEUTRAL) side GND or EARTH side GND at the same time.

If above note will not be kept, a fuse or any parts will be broken.

- If any repair has been made to the chassis, it is recommended that the B1 setting should be checked or adjusted (See ADJUSTMENT OF B1 POWER SUPPLY).
- 7. The high voltage applied to the picture tube must conform with that specified in Service manual. Excessive high voltage can cause an increase in X-Ray emission, arcing and possible component damage, therefore operation under excessive high voltage conditions should be kept to a minimum, or should be prevented. If severe arcing occurs, remove the AC power immediately and determine the cause by visual inspection (incorrect installation, cracked or melted high voltage harness, poor soldering, etc.). To maintain the proper minimum level of soft X-Ray emission, components in the high voltage circuitry including the picture tube must be the exact replacements or alternatives approved by the manufacturer of the complete product.
- 8. Do not check high voltage by drawing an arc. Use a high voltage meter or a high voltage probe with a VTVM. Discharge the picture tube before attempting meter connection, by connecting a clip lead to the ground frame and connecting the other end of the lead through a 10k Ω 2W resistor to the anode button.
- 9. When service is required, observe the original lead dress. Extra precaution should be given to assure correct lead dress in the high voltage circuit area. Where a short circuit has occurred, those components that indicate evidence of overheating should be replaced. Always use the manufacturer's replacement components.

10. Isolation Check

(Safety for Electrical Shock Hazard)

After re-assembling the product, always perform an isolation check on the exposed metal parts of the cabinet (antenna terminals, video/audio input and output terminals, Control knobs, metal cabinet, screwheads, earphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.

(1) Dielectric Strength Test

The isolation between the AC primary circuit and all metal parts exposed to the user, particularly any exposed metal part having a return path to the chassis should withstand a voltage of 1100V AC (r.m.s.) for a period of one second.

(.... Withstand a voltage of 1100V AC (r.m.s.) to an appliance rated up to 120V, and 3000V AC (r.m.s.) to an appliance rated 200V or more, for a period of one second.)

This method of test requires a test equipment not generally found in the service trade.

(2) Leakage Current Check

Plug the AC line cord directly into the AC outlet (do not use a line isolation transformer during this check.). Using a "Leakage Current Tester", measure the leakage current from each exposed metal part of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground (water pipe, etc.). Any leakage current must not exceed 0.5mA AC (r.m.s.).

However, in tropical area, this must not exceed 0.2mA AC (r.m.s.).

Alternate Check Method

Plug the AC line cord directly into the AC outlet (do not use a line isolation transformer during this check.). Use an AC voltmeter having 1000 ohms per volt or more sensitivity in the following manner. Connect a $1500\,\Omega$ 10W resistor paralleled by a $0.15\,\mu$ F AC-type capacitor between an exposed metal part and a known good earth ground (water pipe, etc.). Measure the AC voltage across the resistor with the AC voltmeter. Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and measure the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. Any voltage measured must not exceed 0.75V AC (r.m.s.). This corresponds to 0.5mA AC (r.m.s.).

However, in tropical area, this must not exceed 0.3V AC (r.m.s.). This corresponds to 0.2mA AC (r.m.s.).

11. High voltage hold down circuit check.

After repair of the high voltage hold down circuit, this circuit shall be checked to operate correctly.

See item "How to check the high voltage hold down circuit".

This mark shows a fast operating fuse, the letters indicated below show the rating.

OPERATING INSTRUCTIONS

COLOR VIDEO MONITOR

TM-A9U TM-A9UCV **INSTRUCTIONS**

DIVISION OF US JVC CORP. 41 Slater Drive, Etmwood Park, N.J. 07407

JVC CANADA INC.
21 Finchdene Square, Scarborough Ontario M1X 1A7

Printed in Japan LCT0149-001A 1297-Tu-U-VP

For Customer Use: Eater below the Model No. and Serial No. which are located on the rear of the cabinet. Retain this

information for future reference. Model No.

Serial No.

© 1997 VICTOR COMPANY OF JAPAN, LIMITED

Thank you for purchasing this JVC color video monitor. Before using it, read and follow all instructions carefully to take fullest advantage of the monitor's performance.

SAFETY PRECAUTIONS

WARNING:

TO PREVENT FIRE OR SHOCK HAZARDS, DO NOT EXPOSE THIS APPLIANCE TO RAIN OR MOISTURE.

CAUTION:

To reduce the risk of electric shock, do not remove cover Refer sevicing to qualified service personnel.

INFORMATION

CAUTION: Changes or modification not approved by JVC could void the user's authority to operate the acuipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

■ PRECAUTIONS

- Use only the power source specified on the unit.
- Keep flammable material, water, and metal objects away from the unit — especially the interior of the unit.
- This unit incorporates high voltage circuitry.
 For your own safety and that of your equipment, do not attempt to modify or disassemble this monitor.
 There are no user-serviceable parts inside.
- Unplug the monitor when you're not going to be using it for a long period.

HANDLING

- Avoid shocks or vibrations. These may damage the unit and cause it to malfunction.
- Do not block the ventilation slots.
- Do not expose this unit to high temperatures.
 Extended exposure to direct sunlight or a heater could deform the cabinet or cause the performance of internal components to deteriorate.
- Do not place the unit near appliances generating strong electric or magnetic fields. These can generate picture noise and instability.
- Keep the monitor clean by wiping the cabinet and CRT screen with a piece of soft cloth. Do not apply thinner or benzene. These chemicals can damage the finish and erase printed letters. When the unit is excessively dirty, use a diluted neutral cleanser, then wipe away the cleanser with a dry cloth.

SCREEN BURN

 It is not recommended to keep a certain still image displayed on screen for a long time as well a dispalying extremely bright images on screen. This may cause a burning (sticking) phemomenon on the screen of cathoderay tube.

This problem does not occur as far as displaying normal video playback motion images.

FEATURES

- 9-inch TV-grade cathode-ray tube
- Horizontal resolution of 280 TV lines or more
- Professional metal cabinet design
- Bridge-connectable input terminals (1 line for video, 1 line for audio *1)
 - *1: The audio function can only be used with the TM-A9U. It is not available with the TM-A9UCV.

CONTENTS

SAFETY PRECAUTIONS	.2
FEATURES	.3
CONTROLS AND FEATURES	.4
CONNECTION EXAMPLE	.5
BASIC OPERATION	.5
PICTURE ADJUSTMENTS	.6
TROUBLESHOOTING	.6
SPECIFICATIONS	.7

CONTROLS AND FEATURES

[TM-A9U] (Front view of TM-A9U shown.) (Front view of TM-A9U

- 1 VOLUME control (TM-A9U only)
 Turn to adjust speaker volume.
- 2 PHASE control

Turn to adjust picture hue, using natural skin color as a reference.

3 CHROMA control

Turn to adjust picture color density according to your requirements.

4 BRIGHT control

Turn to adjust picture brightness according to your requirements.

5 CONTRAST control

Turn to adjust picture contrast according to your requirements.

6 Power indicator

Glows to indicate that power is on.

7 POWER switch

Press to turn the power on or off.

8 Speaker (TM-A9U only)

The built-in speaker is located on the side panel.

[TM-A9U] [TM-A9UCV] **REAR** VIDEO VIDEO 0 **(** (Rear view of TM-A9U shown.) 9 (\bigcirc) (\bigcirc) OUT OUT 0 750 75Ω 10 10 OPEN AUDIO -12

VIDEO IN (video input), VIDEO OUT (video output) terminals

These are the input and output (bridge-connected output) terminals (BNC) for the video signal. When a signal is input through the IN terminal, a bridge-connected (looping) output can be obtained from the OUT terminal.

- Confirm if the termination switch setting matches the VIDEO terminal connection.
- 10 Termination switch

Set to OPEN for bridge connection; set to 75Ω for input signal only.

AUDIO IN (audio input), AUDIO OUT (audio output) terminals (TM-A9U only)

These are the input and output (bridge-connected output) terminals (RCA) for the audio signal. When a signal is input through the IN terminal, a bridge-connected (looping) output can be obtained from the OUT terminal.

12 Power cord

Connect the power plug to an AC outlet (120 V AC, 60 Hz).

60 Hz). Note:

 The monitor may be equipped with a 3-blade grounding-type plug. If you are unable to insert the plug into the outlet, contact your electrician.

CONNECTION EXAMPLE

Notes:

- The illustration above only shows some possible connection examples, for reference. Terminal types and/or connections may
 differ according to the component connected. Also refer to the Instruction Manual of the component to be connected.
- Before connecting, be sure to turn off the power of all the components.
- \bullet For video signal connection, use only a 75 Ω coaxial cable
- Input and output terminals for video or audio (The TM-A9UCV is not equipped with audio terminals.) are bridge-connected. Do
 not apply two input signals to both (input and output) terminals at the same time.
- For a bridge (loop) connection, connect each of input and output terminals on the monitor to separate video components. For
 example, if both of them are connected to a video recorder, the picture will shake abnormally except when in the recorder's play
 mode. This phenomenon occurs due to a signal circulating around inside a certain component, and is not a malfunction.

BASIC OPERATION

1. To turn the power on: Push the POWER switch.

The power indicator glows green. To turn off power, push the POWER switch again, and the power indicator goes off.

2. To adjust the audio level: (TM-A9U only)

Turn the VOLUME control to the right to increase the level, or to the left to decrease the level.

Note:

The audio function can only be used with the TM-A9U.
It is not available with the TM-A9UCV.

Turn a separate front panel control to adjust picture contrast, picture brightness, picture color density and picture hue respectively:

■ CONTRAST (picture contrast) control —

■ CHROMA (picture color density) control —

Softer CONTRACT

hinner O Dei

■ BRIGHT (picture brightness) control —

Brighter

—— ■ P

■ PHASE (picture hue) control

Darker O

Purplish Greenis

TROUBLESHOOTING

Before concluding a problem has occurred, check the following points. If the problem persists after carrying out the checks, disconnect the power cord from the AC outlet and consult the dealer from whom you purchased the monitor.

Note:

No.51357

The audio function can only be used with the TM-A9U.
 It is not available with the TM-A9UCV.

Problems	Points to be checked	Measures
No power supply.	Is the power plug connected to the AC outlet?	Securely connect the power plug to the AC outlet.
No picture or sound.	is the monitor turned on?	Press the POWER switch to turn the monitor ON (see pages 4 and 5).
	Is an output signal coming in from a source component?	Perform required settings on the output component.
	Is the cable connected improperly?	Connect both the video/audio signal cables securely and properly (see pages 4 and 5).
Normal picture but no sound.	Is audio level set to the minimum?	Adjust the VOLUME control (see pages 4 and 5).
	Is the audio signal cable connected improperly?	Connect the audio signal cable securely and properly (see pages 4 and 5).
Normal sound but no picture.	Is the video signal cable disconnected or connected improperty?	Connect the video signal cable securely and properly (see pages 4 and 5).
No color, wrong color, or dark picture.	Have the picture settings been changed?	Adjust CHROMA, BRIGHT, CONTRAST and/or PHASE controls (see pages 4 and 6).
Shaking picture.	Is there a device generating a strong magnetic field (motor, transformer, etc.) near the monitor?	Move it away from the monitor until the picture becomes stable.
Unnatural, irregularly colored or distorted picture.	Is there a speaker, magnet or any other magnetized object near the monitor?	After moving it away from the monitor, turn the monitor's power off. After 30 minutes or more, turn the power on again.

SPECIFICATIONS

Type : Color video monitor

Color system : NTSC

Picture tube : 9" measured diagonally,

90° deflection, in-line gun, vertical stripe phosphor pitch

0.5 mm

Screen size (W x H) : 6-13/16" x 5-3/8" (173 x 136 mm)

Scanning frequency : (H) 15.734 kHz

(V) 59.94 Hz

Horizontal resolution: 280 TV lines or more

Video input : 1 line, BNC x 2 (with 1 bridge-

connected output).

1.0 V p-p, 75 Ω, negative sync,

bridge connection possible (termina-

tion switch provided)

Audio input : TM-A9U only

1 line (monaural), RCA x 2 (with 1 bridge-connected output), 0.5 V rms, high impedance, bridge connection

possible

Audio power output : TM-A9U only

(effective) 1 W (monaural)

Built-in speaker : TM-A9U only

3-3/16" (8 cm) round, 8 Ω x 1

Operation : 0 - 40 °C (32 - 104 °F) temperature

Relative humidity : 20 - 80 %

Power requirements : 120 V AC, 60 Hz

Power consumption: 0.66 A maximum (TM-A9U)

0.63 A maximum ITM-A9UCVI

Dimensions : 8-3/4" x 9" x 12-1/2"

(W x H x D) (222 x 227 x 317 mm)

Weight : 15.4 lbs (7.0 kg) [TM-A9U]

15.2 lbs (6.9 kg) [TM-A9UCV]

Dimensions

^{*} The faceplate dimensions shown are larger than the visible portion of the screen (screen size).

(TM-A9U shown.)

E. & O.E. Design and specifications subject to change without notice.

SPECIFIC SERVICE INSTRUCTIONS

REPLACEMENT OF CHIP COMPONENT

■ CAUTIONS

- 1. Avoid heating for more than 3 seconds.
- 2. Do not rub the electrodes and the resist parts of the pattern.
- 3. When removing a chip part, melt the solder adequately.
- 4. Do not reuse a chip part after removing it.

■ SOLDERING IRON

- 1. Use a high insulation soldering iron with a thin pointed end of it.
- 2. A 30w soldering iron is recommended for easily removing parts.

■ REPLACEMENT STEPS

- 1. How to remove Chip parts
- ♦ Resistors, capacitors, etc
 - (1) As shown in the figure, push the part with tweezers and alternately melt the solder at each end.

(2) Shift with tweezers and remove the chip part.

- ♦ Transistors, diodes, variable resistors, etc
 - (1) Apply extra solder to each lead.

(2) As shown in the figure, push the part with tweezers and alternately melt the solder at each lead. Shift and remove the chip part.

Note: After removing the part, remove remaining solder from the pattern.

- 2. How to install Chip parts
- Resistors, capacitors, etc
 - (1) Apply solder to the pattern as indicated in the figure.

(2) Grasp the chip part with tweezers and place it on the solder. Then heat and melt the solder at both ends of the chip part.

- ◆ Transistors, diodes, variable resistors, etc
 - (1) Apply solder to the pattern as indicated in the figure.
- (2) Grasp the chip part with tweezers and place it on the solder.
- (3) First solder lead A as indicated in the figure.

(4) Then solder leads ${f B}$ and ${f C}$.

DISASSEMBLY PROCEDURE

[Inportant]

Always remove the electrical cord from the well outlet before assembly and disassembly because certain parts will still be electrically changed even when the power switch is turned off.

REMOVING THE TOP COVER

- 1. Remove 4 screws A and 4 screws B.
- 2. The top cover can be removed by spreading its lower part sightly and raising it while pulling it towards the rear of the unit.

REMOVING THE REAR PANEL

- Afthe removing the top cover.
- 1. Remove 5 screws C.
- Pull the upper part slightly to the rear and pull the chassis back to remove it

REMOVING THE BOTTOM COVER

- After removing the top cover and rear panel, follow the steps given below.
- Place the front surface downward, then stand the bottom cover while facing it toward you.
 - At this time, care must be exercised not to damage the front panel and CRT surface.
- 2. Loosen the two screws marked D as shown in the figure.
- 3. Remove the one screw marked E as shown in the figure.
- After pulling the rear panel side of the bottom cover toward you slightly, keep the chassis base from the bottom cover slightly.
- When the chassis base has been kept from the bottom cover slightly, pull the bottom cover upward while leaving the situation as it is, then remove the bottom cover.
- When the bottom cover has been removed, you can check the main PWB and control PWB in such a situation.

[CAUTION]

- * When erecting the chassis, be careful so that there will be no contacting with other PW board.
- Before turning on power, make sure that the CRT earth wire and other connectors are properly connected.

WIRE CLAMPING AND CABLE TYING

- 1. Be sure to clamp the wire.
- Never remove the cable tie used for tying the wires together.Should it be inadvertently removed, be sure to tie the wires with a new cable tie.

SERVICE ADJUSTMENTS

PRIOR TO STARTING ADJUSTMENT

- 1. Supply power to the set and measuring instruments and allow to warm up for at least 30 minutes.
- 2. Confirm the proper AC power voltage is being supplied.
- 3. Use care not to disturb controls and switches not mentioned in the adjustment items.
- 4. Refer to adjustment settings and set user operated controls (bright, contrast, chroma, etc.) to the indicated positions.

TOOLS AND FIXTURES FOR ADJUSTMENT

- DC voltmeter (digital voltmeter)
- Oscilloscope
- Signal generator (NTSC systems)

Color bar and split color bar patterns

Crosshatch pattern

Cross pattern

Red raster pattern

Green raster pattern

Blue raster pattern

• Color analyzer or color temperature megsurement device.

ADJUSTMENT SETTINGS

1. Front controls

CONTRAST BRIGHT Center click position

Center click position Center click position

CHROMA PHASE

Center click position

2. Rear switch

TERMINATION SW

: 75Ω

(75Ω/OPEN)

3. On PW board switch

Positioned N side of each SERVICE SW on PW boards.

FOCUS, SCREEN, CUT OFF AND DRIVE ADJUSTMENT HOLES

- The Focus and Screen adjustment holes are on the side of the set (see Page 5).
- The Cut off and Drive adjustment holes are on the rear panel of the set (see Page 5).

[CAUTION]

Be sure to use a non-metallic driver for adjusting there VRs. A metallic driver can cause damage by shorting.

ADJUSTMENT LOCATIONS

ADJUSTING STEP

Item	Test equipment	Test points	Adjustment locations	Adjustment procedure		
Check of B1 POWER SUPPLY	Voltmeter Signal generator	TP-B1(TP-91) TP-E3 (上) (IC901 HEAT. SINK)		1. Input an all-black signal. 2. Confirm DC 115V ±1V between TP-B1(TP-91) and TP-E3 (丄).		
Focus adjustment	Signal generator		FOCUS VR [In HVT]	Input a crosshatch signal. While looking at the screen, adjust FOCUS VR so that the vertical and horizontal lines will be clear and in fine detail. Make sure that the picture is in focus even when the screen gets darkened.		
H. Size and H. Center adjustment screen size 95%	Signal generator screen size 90% Picture 100% size (Fig. A)	Picture size 100%	H. SIZE COIL (L522) [MAIN PWB] H. PHASE VR (R529) [SIGNAL PWB]	 Perform after completing brightness and contrast adjustments. 1. Input a crosshatch signal. 2. Adjust the H. PHASE VR to center the Picture on the CRT. 3. Adjust the H. SIZE COIL to set the horizontal size to 90% (Fig. A) 		
V. Size, V. Center and V. Linearity adjustment	Signal generator		V. SIZE VR (R433) V. CENTER SW (S421) V. LIN VR (R430) [MAIN PWB]	 Perform after completing brightness and contrast adjustments. 1. Input a crosshatch signal. 2. Adjust vertical linearity with the V. LIN VR. 3. Adjust the V. CENTER SWITCH to center the Picture on the CRT. 4. Adjust the V. SIZE VR to set the vertical size to 95% (Fig. A). 5. If necessary, readjust the V. LIN VR. 		
Brightness adjustment	Signal generator		SUB BRIGHT VR (R036) [CONTROL PWB]	 Perform after completing white balance adjustments. 1. Input a split color bar signal. 2. Adjust the SUB BRIGHT VR to eliminate illumination in the 0% black component. 		

Item	Test equipment	Test points	Adjustment locations	Adjustment procedure
Contrast adjustment	Signal generator Oscilloscope / Y C G M R B	TP-47B TP-E1(,,) [CRT SOCKET PWB]	SUB CONT. VR(R040) [CONTROL PWB]	 Input a colour bar signal (set for 0.525V between black and white). Connect an oscilloscope to TP-47B and TP-E1(). Adjust the SUB CONTRAST VR to set the level indicated in the figure to 27V.
Chroma	Signal generator	TP-47B	SUB PHASE VR	Input a color bar signal.
adjustment O level	Chroma Signal generator Oscilloscope TP-E1(+) [CRT SOCKET PWB] W Y C G M R B 1 2 3 4 4		(R026) SUB CHROMA VR (R031)	 Input a color bar signal. Connect an oscilloscope between TP-47B and TP-E1 (計). Set the COMB SWITCH (S305) to S (service) side. Adjust the SUB PHASE VR and arrange the W-M (White and Magenta). Adjust the SUB CHROMA VR and arrenge the W-B (White and Blue). Repeat this procedure alternately with W at the 0 level as shown in the figure until both M and B are at the 0 level. Return the COMB SWITH (S305) to N (normal) side.

Item	Test equipment	Test points	Adjustment locations	Adjustment procedure
White balance (low Light) adjustment	Signal generator		SERVICE SW (S303) [SIGNAL PWB] R CUT OFF VR (R313) G CUT OFF VR (R323) B CUT OFF VR (R333) [CRT SOCKET PWB] SCREEN VR [In HVT]	 Input a monoscope pattern signal. Set the SERVICE SWITCH of the signal PWB to S to produce a signal horizontal line. Turn the RED, GREEN and BLUE CUT OFF VRs fully counter-clockwise. Set the RED and BLUE DRIVE VRs to approximately center positions. Turn the SCREEN VR fully counter-clockwise, then gradually turn it clockwise until a single blue, green or red horizontal line just slightly appears. Turn the CUT OFF VR corresponding to the initial color about 10 degrees clockwise. Again adjust the SCREEN VR to where this color just slightly appears. Adjust the CUT OFF VRs of the other two colors to where the three overlapped colors appear white. Return the SERVICE SWITCH to normal(N). Set for a dark screen and fine adjust the R, G and B CUT OFF VRs to obtain the optimum white color.
White balance (high light) adjustment	Signal generator Colour analyzer		R DRIVE VR (R314) G DRIVE VR (R324) [CRT SOCKET PWB]	 Input a monoscope pattern signal. Adjust the RED and GREEN DRIVE VRs to produce an overall white screen. If a color temperature meter is available: Measure the center of the screen with the sensor of the color temperature meter. Adjust the RED and GREEN DRIVE VRs to obtain D6500°K. Turn the contrast and brightness VRs. Confirm correct white balance tracking from low light to high light.

PURITY, CONVERGENCE

PURITY ADJUSTMENT

Befor adjusting:

- Turn the screen VR to where the raster dose not appear.
- Set the white back switch (S304) to S, allow to run for at least 30 minutes, then return the switch to N.
- Set the screen VR to the original position.
- 1. Demagnetize CRT with the demagnetizer.
- 2. Loosen the retainer screw of the deflection yoke.
- 3. Remove the wedges.
- 4. Input a green raster signal from the signal generator, and turn the screen to green raster.
- 5. Move the deflection yoke backward.
- 6. Bring the long lug of the purity magnets on the short lug and position them horizontally. (Fig.2)
- 7. Adjust the gap between two lugs so that the GREEN RASTER will come into the center of the screen. (Fig.3)
- 8. Move the deflection yoke forward, and fix the position of the deflection yoke so that the whole screen will become green.
- Insert the wedge to the top side of the deflection yoke so that it will not move.
- 10. Input a crosshatch signal.
- 11. Verify that the screen is horizontal.
- 12. Input red and blue raster signals, and make sure that purity is properly adjusted.

Fig.1

Bring the long lug over the short lug and position them horizontally.

Fig.2

Fig.3

STATIC CONVERGENCE ADJUSTMENT

- 1. Input a crosshatch signal.
- 2. Using 4-pole convergence magnets, overlap the red and blue lines in the center of the screen (Fig.1) and turn them to magenta (red/blue).
- Using 6-pole convergence magnets, overlap the magenta(red/blue) and green lines in the center of the screen and turn them to white.
- 4. Repeat 2 and 3 above, and make best convergence.

DYNAMIC CONVERGENCE ADJUSTMENT

- 1. Move the deflection yoke up and down and overlap the lines in the periphery. (Fig. 2)
- 2. Move the deflection yoke left to right and overlap the lines in the periphery. (Fig. 3)
- 3. Repeat 1 and 2 above, and make best convergence.
- After adjustment, fix the wedge at the original position.
 Fasten the retainer screw of the deflection yoke.
 Fix the 6 magnets with glue.

Fig.1

(FRONT VIEW)

(FRONT VIEW)

HOW TO CHECK THE HIGH VOLTAGE HOLD DOWN CIRCUIT

1. HIGH VOLTAGE HOLD DOWN CIRCUIT

After repairing the high voltage hold down circuit shown in Fig. 1. This circuit shall be checked to operate correctly.

2. CHECKING OF THE HIGH VOLTAGE HOLD DOWN CIRCUIT

- (1) Turn the POWER SW ON.
- (2) As shown in Fig.1, set the resistor (between X connector 1 & 3).
- (3) Make sure that the screen picture disappears.
- (4) Temporarily unplug the power cord.
- (5) Remove the resistor (between X connector 1 & 3).
- (6) Again plug the power cord, make sure that the normal picture is displayed on the screen.

Fig. 1

TM-A9UCV STANDARD CIRCUIT DIAGRAM

■ NOTE ON USING CIRCUIT DIAGRAMS

1. SAFETY

The components identified by the \$\text{\Lambda}\$ symbol and shading are critical for safety. For continued safety replace safety critical components only with manufactures recommended parts.

2.SPECIFIED VOLTAGE AND WAVEFORM VALUES

The voltage and waveform values have been measured under the following conditions.

(1)Input signal :Color bar signal

(2)Setting positions of each knob/button and

variable resistor :Original setting position

when shipped

(3)Internal resistance of tester :DC

:DC 20k Ω/V

(4)Oscilloscope sweeping time

:H ⇒ 20μS/div :V ⇒ 5mS/div

:Others ⇒ Sweeping time is

specified

(5)Voltage values

:All DC voltage values

* Since the voltage values of signal circuit vary to some extent according to adjustments, use them as reference values.

3.INDICATION OF PARTS SYMBOL [EXAMPLE]

●In the PW board :R1209→R209

4.INDICATIONS ON THE CIRCUIT DIAGRAM

(1)Resistors

●Resistance value

No unit $:[\Omega]$ K $:[K\Omega]$ M $:[M\Omega]$

●Rated allowable power

No indication :1/6[W]
Others :As specified

●Туре

No indication :Carbon resistor

OMR :Oxide metal film resistor

MFR :Metal film resistor
MPR :Metal plate resistor
UNFR :Uninflammble resistor
FR :Fusible resistor

*Composition resistor 1/2 [W] is specified as 1/2S or Comp.

(2)Capacitors

●Capacitance value

1 or higher :[pF] less than 1 :[μ F]

Withstand voltage

No indication :DC50[V]

Others :DC withstand voltage [V]

*Electrolytic Capacitors

47/50[Example]:Capacitance value [µF]/withstand voltage[V]

● Type No indication :Ceramic capacitor :Mylar capacitor MY MM .Metalized mylar capacitor PP :Polypropylene capacitor MPP :Metalized polypropylene capacitor MF :Metalized film capacitor TF :Thin film capacitor BP :Bipolar electrolytic capacitor TAN :Tantalum capacitor (3)Coils No unit :[uH] :As specified Others (4)Power Supply :B1(115V) :B2(12V) _____:5V *Respective voltage values are indicated (5)Test point :Test point :Only test point display (6)Connecting method :Connector :Wrapping or soldering

(7)Ground symbol

 \perp :LIVE side ground

:Receptacle

5.NOTE FOR REPAIRING SERVICE

This model's power circuit is partly different in the GND. The difference of the GND is shown by the LIVE: (\bot) side GND and the ISOLATED(NEUTRAL): (\bot) side GND. Therefore, care must be taken for the following points.

(1)Do not touch the LIVE side GND or the LIVE side GND and the ISOLATED(NEUTRAL) side GND simultaneously. If the above caution is not respected, an electric shock may be caused. Therefore, make sure that the power cord is surely removed from the receptacle when, for example, the chassis is pulled out.

(2)Do not short between the LIVE side GND and ISOLATED(NEUTRAL) side GND or never measure with a measuring apparatus (oscilloscope, etc.) the LIVE side GND and ISOLATED(NEUTRAL) side GND at the same time. If the above precaution is not respected, a fuse or any parts will be broken.

♦ Since the circuit diagram is a standard one, the circuit and circuit constants may be subject to change for improvement without any notice.

CONTENTS

SEMICONDUCTOR SHAPES 2-2
BLOCK DIAGRAM2-3
CIRCUIT DIAGRAMS AND PATTERN DIAGRAMS
SIGNAL PWB CIRCUIT DIAGRAM [FX-1079A] · · · · · · · · · · · · · · · · · · ·
MAIN(1/3),CONTROL(2/3), CRT SOCKET(3/3) PWB CIRCUIT DIAGRAM [FX-2041A] · · · · · · · · · 2-7
SIGNAL PWB PATTERN [FX-1079A] · · · · · · 2-9
MAIN(1/3), CONTROL(2/3), CRT SOCKET(3/3) PWB PATTERN [FX-2041A]2-9

SEMICONDUCTOR SHAPES

TRANSISTOR

CHIP IC

2-2 No.51357

BLOCK DIAGRAM

No.51357 2-3

CIRCUIT DIAGRAMS AND PATTERN DIAGRAMS

SIGNAL PWB CIRCUIT DIAGRAM

MAIN PWB (1/3), CONTROL PWB (2/3), CRT SOCKET PWB (3/3) CIRCUIT DIAGRAMS

CIRCUIT DIAGRAMS

MAIN PWB (1/3), CONTROL PWB (2/3), CRT SOCKET PWB (3/3) PATTERNS FRONT **CONTROL PWB** 16:9 ROSE SUB BR1. **S 8** MARK) S VIDEO/ Y/C (++)●-3400V CKF0275-D03 CN002 CN001 H.V.DEF C902 POWER U V.CENTER SN --W208-MAIN **PWB** P¥ **FRONT** 125V 4A W211 R525 F901 т.В ISOLATED \$ (++)LIVE (0) KF0275-D03-1(1/3) TP-E3 TP-E3(上)

PARTS LIST

CAUTION

- The parts identified by the △ symbol are important for the safety. Whenever replacing these parts, be sure to use specified ones to secure the safety.
- The parts not indicated in this Parts List and those which are filled with lines —— in the Parts No. columns will not be supplied.
- P. W. Board Ass'y will not be supplied, but those which are filled with the Parts No. in the Parts No. columns will be supplied.
- As a rule, the resistors and capacitors which are indicated as shown in "HOW TO EXPRESS PARTS NUMBERS OF STANDARD PARTS" are not shown in the list of the parts on the board.

When ordering the service parts, confirm the resistance/rated power, capacitance/rated voltage, and type of the parts, then order by the part No. indicated according to "HOW TO EXPRESS PARTS NUMBERS OF STANDARD PARTS".

ABBREVIATIONS OF RESISTORS, CAPACITORS AND TOLERANCES

	RESISTORS		CAPACITORS
CR	Carbon Resistor	C CAP.	Ceramic Capacitor
FR	Fusible Resistor	E CAP.	Electrolytic Capacitor
PR	Plate Resistor	M CAP.	Mylar Capacitor
VR	Variable Resistor	HV CAP.	High Voltage Capacitor
HV R	High Voltage Resistor	MF CAP.	Metalized Film Capacitor
MF R	Metal Film Resistor	MM CAP.	Metalized Mylar Capacitor
MG R	Metal Glazed Resistor	MP CAP.	Metalized Polystyrol Capacitor
MP R	Metal Plate Resistor	PP CAP.	Polypropylene Capacitor
OM R	Metal Oxide Film Resistor	PS CAP.	Polystyrol Capacitor
CMF R	Coating Metal Film Resistor	TF CAP.	Thin Film Capacitor
UNF R	Non-Flammable Resistor	MPP CAP.	Metalized Polypropylene Capacitor
CH V R	Chip Variable Resistor	TAN. CAP.	Tantalum Capacitor
CH MG R	Chip Metal Glazed Resistor	CH C CAP.	Chip Ceramic Capacitor
COMP. R	Composition Resistor	BP E CAP.	Bi-Polar Electrolytic Capacitor
LPTC R	Linear Positive Temperature Coefficient Resistor	CH AL E CAP.	Chip Aluminum Electrolytic Capacitor
		CH AL BP CAP.	Chip Aluminum Bi-Polar Capacitor
		CH TAN. E CAP.	Chip Tantalum Electrolytic Capacitor
		CH AL BP E CAP.	Chip Tantalum Bi-Polar Electrolytic Capacitor

	TOLERANCES								
F	G	J	к	М	N	R	Н	Z	Р
1.404	1.00/	±5%	±10%	±20%	±30%	+30%	+50%	+80%	+100%
±1%	±2%	±5%	±10%	±20%	±3076	-10%	-10%	-20%	-0%

HOW TO EXPRESS PARTS NUMBERS OF STANDARD PARTS

■ RESISTOR

■ CAPACITOR

CONTENTS

■ USING P.W. BOARD · · · · · · · · · · · · · · · · · · ·	• 17
■ EXPLODED VIEW PARTS LIST······	· 18
■ EXPLODED VIEW ·······	· 19
■ PRINTED WIRING BOARD PARTS LIST • SIGNAL PW BOARD ASS'Y	
■ PACKING	· 23
■ PACKING PARTS LIST ······	. 23

USING P.W. BOARD

P.W.B ASS'Y	TM-A9UCV
SIGNAL P.W.B	FX-1079A
MAIN (1/3), CONTROL (2/3),	EV 2044A
CRT SOCKET (3/3) P.W.B	FX-2041A

EXPLODED VIEW PARTS LIST

⚠	Ref. No.	Part No.	Part Name	Description	Local
$\overline{\Delta}$	L01	CELD046-001J1	DEG. COIL		
⚠	V01	A22JWG098X	PICTURE TUBE		
Δ	DY01	CE20300-00A	DEF YOKE		
$\overline{\Delta}$	T1521	CJ28234-00AJ1	HVT	(With in MAIN)	
	1	CM48174-001	SPRING	•••••••••••••••••••••••••••••••••••••••	
	2	CHGB0016-0G-N	BRAIDED ASSY		
	3	CE40666-00A	WEDGE ASSY	(×3)	
	4	GBSF4016M	TAPPING SCREW	$(\times 4)$	
	5	SDSF3006M	SCREW	(×4)	
	6	GBSB3008Z	TAPPING SCREW	(×2)	
	7	CM46758-004	VOLUME KNOB	(×4)	
	8	CM46115-C01	POWER KNOB		
	9	CM12725-B01-V0	CHASSIS BASE		
	10	CM22942-C01	BOTTOM COVER		
	11	QZF2207-001	F00T	(×4)	
	12	GBSB3008Z	TAPPING SCREW	(×4)	
	13	CM12726-003	TOP COVER	(SERVICE)	
	14	CM44287-00C	ASSY SCREW	(×4)	
	15	SBSB3010M	TAPPING SCREW		
	16	CM44141-B01	EARTH LABEL		
	17	CM36279-A01	TERMINAL BKT	(×2)	
	18	CM20701-001	CORD BUSHING		
⚠	19	QMP1120-200J5	POWER CORD		
	20	SBSF4012Z	T. SCREW		
	21	CM12727-003	REAR PANEL		
	22	CM48170-001	BEAD TIE		
Δ	23	CM22900-008 (R)	ROLL R LABEL		
	24	CM44287-00C	ASSY SCREW	(×5)	
	25	CM22946-010	CONTROL SHEET		
	26	CM48149-A01	JVC MARK		
	27	CM48192-001	CONNECT BKT		
	28	CM44287-00C	ASSY SCREW	(×2)	
	29	CM36241-004	WARNING LABEL		
	30	CM44117-00A	RIVET		
	31	CM44287-00B	ASSY SCREW	(×2)	
Δ		CM12723-COA-MO	FRONT PANEL ASSY	Inc. No. 101∼102	
	101	CM46756-A01	POWER KNOB		
	102	CM46757-001	SPRING		

EXPLODED VIEW

PRINTED WIRING BOARD PARTS LIST

SIGNAL P.W. BOARD ASS'Y (FX-1079A)

VARIAB	LE RESISTO	R				
R1529	QVPE611-503HZ	V R (H. PHASE)	50kΩ	В		
RESIST (R1505	O R QRD149J-220S	C R	22 Ω	1/4W	J	
		- · · · · · · · · · · · · · · · · · · ·		1/ 4#		
CAPACI		TE CAD	0.10 5	501		
C1107 C1205	QFV71HJ-124MZ	TF CAP.	0. 12 μ F	50V	J	
	QEN61CM-106Z	BP E CAP.	10 μ F	16V	M	
C1206	NCTO3CH-121AY	CHIP CAP.	120 p F	50V	J	
C1208	QEN61CM-476Z	BP E CAP.	47 μ F	16V	M	
C1211	QEN61CM-106Z	BP E CAP.	10 μ F	16V	M	
C1213	NCTO3CH-680AY	CHIP CAP.	68 p F	50V	J	
C1214 C1216	NCB21HK-333AY NCB21HK-332AY	CHIP CAP. CHIP CAP.	0.033 μ F 3300 p F	50V 50V	K K	
			0000 p 1	001	.,	
C1305	NCTO3CH-221AY	CHIP CAP.	220 p F	50 V	J	
C1306	NCB21HK-103AY	CHIP CAP.	0. 01 μ F	50V	K	
C1314-15	NCB21HK-103AY	CHIP CAP.	0. 01 μ F	50V	K	
C1316	QEN61HM-335Z	BP E CAP.	3.3 µ F	50V	W	
C1317	QFV71HJ-684MZ	TF CAP.	0. 68 μ F	50V	J	
C1318	QEN61HM-225Z	BP E CAP.	2. 2 μ F	50 V	M	
C1319	QFV71HJ-474MZ	TF CAP.	0. 47 μ F	50V	j	
C1320	QFV71HJ-334MZ	TF CAP.	0. 33 μ F	50 V	J	
C1322	NCB21HK-103AY	CHIP CAP.	0. 01 μ F	50V	K	
C1324	NCB21HK-103AY	CHIP CAP.	0.01 μ F	50V	K	
C1326	NCB21HK-103AY	CHIP CAP.	0.01 μ F	50V	K	
C1328	QEN61HM-474Z	BP E CAP.	0. 47 μ F	50V	M	
C1329-31	NCT03CH-331AY	CHIP CAP.	330 p F	50V	J	
C1401	QFV71HJ-105MZ	TF CAP.	1 μ F	50 V	J	
C1502	NCB21HK-822AY	CHIP CAP.	8200 p F	50 V	K	
C1505	NCB21HK-223AY	CHIP CAP.	0. 022 μ F	50 V	K	
C1506	NCTO3CH-471AY	CHIP CAP.	470 - F	50 V	J	
C1507	NCTO3CH-152AY	CHIP CAP.	470 p F 1500 p F	50 V	J	
C1508	QEN61HM-474Z	BP E CAP.	0. 47 μ F	50V	M	
C1509	NCTO3CH-271AY	CHIP CAP.	0. 47 μ F 270 p F	50 V		
C1530	NCTO3CH-271AY	CHIP CAP.	270 p F	50V	J J	
TRANSFO	O R M E R CELT034-001	B. PASS TRANSF.				
		D. FAGO TRANGE.				
COIL L1201	CELP026-470Z	PEAKING COIL	47 μ H			
DIODE						
D1101-02	1SS353-X	SI. DIODE				
D1204-05	1SS353-X	SI. DIODE				
D1303	MA3056(H)-X	ZENER DIODE				
D1304	1SS353-X	SI. DIODE				
D1305	MA3030(H)-X	ZENER DIODE				
D1306-07	1SS353-X	SI. DIODE				
D1401	1SS353-X	S1. DIODE				
D1402	MA3110(M)-X	ZENER DIODE				
D1501	1SS353-X	SI. DIODE				
D1529	MA3051 (M) -X	ZENER DIODE				
TRANSIS		ANIB TB				
31101	2SC2412K (QR) -X	CHIP TRANSISTOR				
31202-04	2SC2412K (QR) -X	CHIP TRANSISTOR				
21207	2SA1037K (QR) -X	CHIP TRANSISTOR				
31208-11	2SC2412K (QR) -X	CHIP TRANSISTOR				
31212	2SA1037K (QR) -X	CHIP TRANSISTOR				
31302-03	2SC2412K (QR) -X	CHIP TRANSISTOR				
31304-06 31402	2SA1037K (QR) –X 2SA1037K (QR) –X	CHIP TRANSISTOR CHIP TRANSISTOR				
	ZONIOON (MI) N	OHI HANGIOION				
I C IC1301	M51413ASP	I.C. (MONO-ANA)				
101001						

Local	Description	Part Name	Part No.	Symbol No.
				OTHERS
		DELAY LINE	CE40444-001	DL1201
		BNC CONNECTOR	CEMB015-002	J1101
	TERM INATION	SLIDE SWITCH	QSS1F22-C07	\$1101
	SERVICE SW	LEVER SWITCH	QSL6A13-C01	\$1303
	WHITE BACK	LEVER SWITCH	QSL6A13-C01	\$1304
	COMB SW	LEVER SWITCH	QSL6A13-C01	S1305
		CRYSTAL	CE41092-00A	X1301

MAIN (1/3), CONTROL (2/3), CRT SOCKET (3/3) P.W. BOARD ASS'Y (FX-2041A)

Δ:	Symbol No.	Part No.	Part Name	Description	Local
	VARIABL	E RESISTOR			
	R2025	QVAA021-CB14A	V R (PHASE)	10kΩ B	
ı	R2026	QVPA603-473AZ	V R (SUB PHASE)	47kΩ B	
	R2030	QVAA021-CB14A	V R (CHROMA)	10kΩ B	
	R2031	QVPA603-473AZ	V R (SUB CHROMA)	47kΩ B	
	R2035	QVAA021-CB14A	V R (BRIGHT)	10kΩ B	
	R2036	QVPA603-473AZ	V R (SUB BRIGHT)	47kΩ B	
	R2039	QVAA021-CB14A	V R (CONTRAST)	10kΩ B	
	R2039	QVPA603-473AZ	V R (SUB CONT)	47kΩ B	
	K2040	QVFX003-4/3XZ	V K (SOB CONT)	T/R3E D	
	R2313	QVPE805-103H	V R (R CUT OFF)	10kΩ B	
1	R2314	QVPE805-201H	V R(R DRIVE)	200 Ω B	
	R2323	QVPE805-103H	V R(G CUT OFF)	10kΩ B	
1	R2324	QVPE805-201H	V R(G DRIVE)	200 Ω B	
1	R2333	QVPE805-103H	V R(B CUT OFF)	10kΩ B	
1	R2430	QVPC611-501HZ	V R (V. LIN)	500 Ω B	
	R2433	QVPC611-501HZ	V R (V. SIZE)	500 Ω B	
	RESISTO) P	-		
	R2316	QRG029J-822A	OM R	8.2kΩ 2W J	
	R2326	QRG029J-822A	OM R	8.2kΩ 2W J	
	R2336	QRG029J-822A	OM R	8.2kΩ 2W J	
	R2435	QRX019J-4R7S	MF R	4.7Ω 1W J	
	R2521	QRZ0101-001	R D BLOCK		
	R2522	QRD129J-4R7S	C R	4.7 Ω 1/2W J	
	R2524	QRD121J-2R7SY	C R	2.7 Ω 1/2W J	
			MFR	3.3 Ω 2W J	
	R2525	QRX029J-3R3	Mr K	3:3 \$2 2# 0	
- 1	R2535	QRX019J-2R7S	MF R	2.7 Ω 1W J	
- 1	R2536	QRG019J-333S	OM R	33kΩ 1W J	
	R2537	QRG019J-682S	OM R	6.8kΩ 1W J	
	R2902	QRD121J-183SY	C R	18kΩ 1/2W J	
	R2903	QRD149J-330S	C R	33 Ω 1/4W J	
	R2905	QRD149J-221S	C R	220 Ω 1/4W J	
	R2906	QRX029J-2R7A	MF R	2.7 Ω 2W J	
	R2907	QRF204J-561	UNF R	560 Ω 20W J	
		000404K 00557	AOMD D	6.8MΩ 1/2W K	
	R2908	QRC121K-685EZ	COMP. R		
	R2909	QRF074K-2R0	UNF R	2.0 Ω 7W K	
	CAPACI1				
(02301	QETC2EM-475Z	E CAP.	4.7μF 250V M	
- (C2302	QCZ0121-102M	C CAP.	1000 p F 3000 V A	
- (C2311	NCTO3CH-471AY	CHIP CAP.	470 p F 50V J	
(C2321	NCTO3CH-681AY	CHIP CAP.	680 p F 50V J	
	02331	NCTO3CH-561AY	CHIP CAP.	560 p F 50V J	
	C2424	QFLC1HJ-103MZ	M CAP.	0.01 μF 50V J	
	C2428	QFLC1HJ-223MZ	M CAP.	0.022 µF 50V J	
	C2521	QETC1VM-107Z	E CAP.	100 μ F 35V M	
	00505	0ETC1VM_2277	E CAD	220 µ F 35V M	
	02525	QETC1VM-227Z	E CAP.		
	C2526	QFV71HJ-124MZ	TF CAP.	- · · - /- /- · · · · · · · · · · · · ·	
	C2532	QFLC1HJ-473MZ	M CAP.	0. 047 μ F	
	C2533	QFLC2AK-472MZ	M CAP.	4700 p F 100V K	
	C2534	QFLC2AK-822MZ	M CAP.	8200 p F 100V K	
A 1	C2536	QFZ0117-4501S	MPP CAP.	4500 p F1. 4kVH±2. 5%	

	Part No.	Part Name	Description	Local
CAPACI	TOR			
C2537	QFM72DK-563M	M CAP.	0.056 μ F 200V K	
C2539	QETC2EM-106Z	E CAP.	10 μ F 250V M	
C2540	QFZ0119-224S	MPP CAP.	$0.22 \mu F 200V \pm 3\%$	
C2541	QETC2EM-105Z	E CAP.	•	
02541		E CAP.	1μF 250V M	
	QETC2CM-105Z		1μF 160V M	
⚠ C2901	QFZ9036-104M	MF CAP.	0.1 μ FAC250V M	
△ C2902	QFZ9036-473M	MF CAP.	0.047 μ FAC250V M	
⚠ C2904	QCZ9033-472A	C CAP.	4700 p FAC125V M	
△ C2905	QCZ9033-472A	C CAP.	4700 p FAC125V M	
⚠ C2906	QCZ9054-102A	C CAP.	1000 p FAC250V Z	
△ C2907	QCZ9054-102A	C CAP.	1000 p FAC250V Z	
C2908	QEZ0169-337M	E CAP.	330 µ F 200 V M	
C2909	QETB2CM-336	E CAP.	33 μ F 160V M	
∆ C2910	QCZ9033-472A	C CAP.	4700 p FAC125V M	
C2913	QETB2CM-227	E CAP.	220 μ F 160V M	
△ C2923	QCZ9033-472A	C CAP.	4700 p FAC125V M	
TRANSF	ORMER			
⚠ T2521	CJ28234-00AJ1	HV TRANSF.		
△ T2522	CE41106-00C	DRIVE TRANSF.		
△ T2901	CETP003-001J1	POWER TRANSF.		
·	0E1F003-00131	FUNEK IKANSE.		·
COIL L2311	CELP026~271Z	DEAKING COLL	270 u	
		PEAKING COIL	270 μ H	
L2321	CELP026-271Z	PEAKING COIL	270 μ Η	
L2331	CELP026-271Z	PEAKING COIL	270 μ H	
L2521	CELL016-001	LINIARITY COIL		
L2522	CE40140-00F	WIDTH COIL		
DIODE				
D2021	GL2EG6	L. E. D. (GRN)	POWER LED	
D2422	MA3056 (H) -X	ZENER DIODE		
D2423	1SR35-100A-T2	SI. DIODE		
△ D2521	MA3075 (H) -X	ZENER DIODE		
D2522	1SS81-T2	SI. DIODE		
D2524	1SR35-100A-T2	SI. DIODE		
D2526-27	RGP10J (C1) -T3	SI. DIODE		
D2528	1SR35-100A-T2	SI. DIODE		
D2530	RGP10J (C1) -T3	SI. DIODE		
D2531	ERD07-15-L	SI. DIODE		
D2532	RU2-LFA1	SI. DIODE		
D2533	1SR124-400A-T2	SI. DIODE		
D2534	RH1S-T3	SI. DIODE		
∆ D2901	D3SBA60	DIODE BRIDGE		
D2931	S1WB (A) 20	SI. DIODE		
D2935	1SS353-X	SI. DIODE		
TRANSI	STOR			
Q2311	2SC3271 (NP) -C1	SI. TRANSISTOR		
Q2321	2SC3271 (NP) -C1	SI. TRANSISTOR		
Q2331	2SC3271 (NP) -C1	SI. TRANSISTOR		
	, ,			
Q2521	2SC2655 (Y) -T	SI. TRANSISTOR		
△ 02522	2SD1554-C1	SI. TRANSISTOR	H. OUT	
02931	2SA1015 (YG) -T	SI. TRANSISTOR		
I C			·	
1C2421	LA7830	I.C. (MONO-ANA)		
102521	AN7812F	I.C. (MONO-ANA)		
∆ 1C2901	STR30115	I. C. (H)		
OTHERS	CM46978-A01-H	L. E. D. HOLDER		
∆ F2901	QMF51U1-4ROS	FUSE	4. 0A	
∆ F2902	QMF51U1-R63S	FUSE	0. 63A	
↑ FR2539	QRZ0054-2R2M	FR	2.2 Ω 1/4W J	
∆ LF2901	CELF001-002J1	LINE FILTER		
S2421	QSL6A13-C01	LEVER SWITCH	V.CENTER SW	
	QSP2J21-C02	PUSH SWITCH	POWER SWITCH	
∆ S2901				
	CE42554-001	CRT SOCKET		
∆ S2901	CE42554-001 CEKP001-001	P. THERMISTOR		

22

PACKING

PACKING PARTS LIST

⚠ R	lef. No.	Part No.	Part Name	Description	Local
	1	CP11224-065	PACKING CASE		
	2	CP11460-B0A	CUSHION ASSY	8pcs in 1set	
	3	CP30974-003	POLY BAG		
	4	CP30975-001	POLY BAG		
⚠	5	LCT0149-001A	INST BOOK		
	6	CM47385-00A	POS/SERIAL LABEL		
	7	CM21428-00A	REC. KEEP CARD		
	8	BT-51010-1	WARRANTY CARD		
	9	BT-20104A	SERVICE CARD		

JVC SERVICE & ENGINEERING COMPANY OF AMERICA

DIVISION OF US JVC CORP.

Head office : 107 Little Falls Road, Fairfield, New Jersey 07004 (973)808-9279

(East Coast)

Midwest 705 Enterprise St. Aurora, Illinois 60504 (630)851-7855 West Coast: 5665 Corporate Avenue, Cypress, California 90630 (714)229-8011 Southeast: 1500 Lakes Parkway, Lawrenceville, Georgia 30243 (770)339-2522 Hawaii 2969 Mapunapuna Place, Honolulu, Hawaii 96819 (808)833-5828

JVC CANADA INC.

21 Finchdene Square Scarborough, Ontario M1X 1A7 (416)293-1311 Vancouver: 13040 Worster Court Richmond B.C. V6V 2B3 (604)270-1311

