Honours Algebra Notes

Anthony Catterwell

April 4, 2019

Contents

1	Vector Spaces					
	1.1	Solutions of simultaneous linear equations				
	1.2	Fields & vector spaces				
	1.3	Products of sets and of vector spaces				
	1.4	Vector subspaces				
	1.5	Linear independence and bases				
	1.6	Dimension of a vector space				
	1.7	Linear mappings				
	1.8	Rank-Nullity theorem				
2	Linear Mappings and Matrices					
	2.1	Linear mappings $F^m \to F^n$ and matrices				
	2.2	Basic properties of matrices				
	2.3	Abstract linear mappings and matrices				
	2.4	Change of a matrix by change of basis				
3	Rin	gs and Modules				
	3.1	Rings				
	3.2	Properties of rings				
	3.3	Polynomials				
	3.4	Homomorphisms, Ideals, and Subrings				
	3.5	Equivalence Relations				
	3.6	Factor Rings and the First Isomorphic Theorem				
	3.7	Modules				
4	Determinants & Eigenvalues Redux 16					
	4.1	The sign of a permutation				
	4.2	Determinants & what they mean				
	4.3	Characterising the determininant				
	4.4	Rules for calculating with determinants				
	4.5	Eigenvalues & Eigenvectors				
	4.6	Triangularisable, Diagonalisable, & the Cayley-Hamilton theorem				
	4.7	Google's PageRank Algorithm				
5	Inner Product Spaces 20					
	5.1	Inner Product Spaces: Definitions				
	5.2	Orthogonal Complements and Orthogonal Projections				
	5.3	Adjoints & Self-Adjoints				
6	Ref	erence 24				
	6.1	Terminology of Algebraic Structures				

1 Vector Spaces

1.1 Solutions of simultaneous linear equations

• Theorem 1.1.4 Solution sets of inhomogeneous systems of linear equations
If the solution set of a linear system of equations is non-empty, then we obtain all solutions by adding component-wise an arbitrary solution of the associated homogenised system to a fixed solution of the system.

1.2 Fields & vector spaces

• Definition 1.2.1.1 Fields

A field F is a set with functions

addition =
$$+: F \times F \to F$$
; $(\lambda, \mu) \mapsto \lambda + \mu$
multiplication = $.: F \times F \to F$; $(\lambda, \mu) \mapsto \lambda \mu$

such that (F, +) and $(F \setminus \{0\}, .)$ are abelian groups, with

$$\lambda(\mu + \nu) = \lambda\mu + \lambda\nu \in F, \quad \forall \lambda\nu \in F$$

The neutral elements are called $0_F, 1_F$. In particular

$$\lambda + \mu = \mu + \lambda$$
, $\lambda \cdot \mu = \mu \cdot \lambda$, $\lambda + 0_F = \lambda$, $\lambda \cdot 1_F = \lambda \in F$, $\forall \lambda, \mu \in F$

For every $\lambda \in F$ there exists $-\lambda \in F$ such that

$$\lambda + (-) = 0_F \in F$$

For every $\lambda \neq 0 \in F$ there exists $\lambda^{-1} \neq 0 \in F$ such that

$$\lambda(\lambda^{-1}) = 1_F \in F$$

• Definition 1.2.1.2 Vector space

A vector space V over a field F is a pair consisting of an abelian group V = (V, +) and a mapping

$$F \times V \to V : (\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v}$$

such that for all $\lambda, \mu \in F$ and $\mathbf{v}, \mathbf{w} \in V$ the following identities hold:

$$\lambda(\mathbf{v} + \mathbf{w}) = (\lambda \mathbf{v}) + (\lambda \mathbf{w})$$
 (distributivity)

$$(\lambda + \mu)\mathbf{v} = (\lambda \mathbf{v}) + (\mu \mathbf{v})$$
 (distributivity)

$$\lambda(\mu \mathbf{v}) = (\lambda \mu)\mathbf{v}$$
 (associativity)

$$1_F \mathbf{v} = \mathbf{v}$$

A vector space V over a field F is called an F-vector space.

- Lemma 1.2.2 Product with the scalar zero If V is a vector space and $\mathbf{v} \in V$, then $0\mathbf{v} = \mathbf{0}$
- Lemma 1.2.3 Product with the scalar (-1)If V is a vector space and $\mathbf{v} \in V$, then $(-1)\mathbf{v} = -\mathbf{v}$.
- Lemma 1.2.4 Product with the zero vector If V is a vector space over a field F, then $\lambda \mathbf{0} = \mathbf{0}$ for all $\lambda \in F$. Furthermore, if $\lambda \mathbf{v} = \mathbf{0}$, then either $\lambda = 0$ or $\mathbf{v} = \mathbf{0}$.

1.3 Products of sets and of vector spaces

1.4 Vector subspaces

• Definition 1.4.1 Vector subspaces

A subset U of a vector space V is called a vector subspace or subspace if U contains $\mathbf{0}$ and

$$\mathbf{u}, \mathbf{v} \in U \text{ and } \lambda \in F \implies \mathbf{u} + \mathbf{v} \in U \text{ and } \lambda \mathbf{u} \in U$$

• Proposition 1.4.5 Generating a vector subspace from a subset

Let T be a subset of a vector space V over a field F. Then amongst all vector subspace of V that include T, there is a smallest vector subspace

$$\langle T \rangle = \langle T \rangle_F \subseteq V$$

It can be described as the set of all vectors $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_r \mathbf{v}_r$ with $\alpha_1, \ldots, \alpha_r \in F$ and $\mathbf{v}_1, \ldots, \mathbf{v}_r \in T$, together with $\mathbf{0}$ in the case $T = \emptyset$.

• Definition 1.4.7 Generating set

A subset of a vector space is called a *generating set* of our vector space if its span is all of the vector space. A vector space that has a finite generating set is said to be *finitely generated*.

• Definition 1.4.9

The set of all subsets $\mathcal{P}(X) = \{U : U \subseteq X\}$ of X is the power set of X.

A subset of $\mathcal{P}(X)$ is a system of subsets of X.

Given such a system $\mathcal{U} \subseteq \mathcal{P}(X)$ we can create two new subsets of X, the *union* and the *intersection* of the sets of our system \mathcal{U} :

$$\bigcup_{U \in \mathcal{U}} U = \{x \in X : \exists U \in \mathcal{U}. x \in U\}$$
$$\bigcap_{U \in \mathcal{U}} U = \{x \in X : x \in U \ \forall \ U \in \mathcal{U}\}$$

In particular the intersection of the empty system of subsets of X is X, and the union of the empty system of subsets X is the empty set.

1.5 Linear independence and bases

• **Definition 1.5.1** Linear independence

A subset L of a vector space V is *linearly independent* if for all pairwise different vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r \in L$ and arbitrary vectors $\alpha_1, \ldots, \mathbf{v}_r \in F$,

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r = \mathbf{0} \implies \alpha_1 = \dots = \alpha_r = 0$$

• Definition 1.5.2 Linear dependence

A subset L of a vector space V is called *linearly dependent* if it is not linearly independent.

• Definition 1.5.8 Basis

A basis of a vector space V is a linearly independent generating set in V.

• Theorem 1.5.11 Linear combinations of basis elements

Let F be a field, V be a vector space over F, and $\mathbf{v}_1, \ldots, \mathbf{v}_r \in V$ vectors. The family $(\mathbf{v}_i)_{1 \leq i \leq r}$ is a basis of V if and only if the following "evaluation" mapping

$$\Phi: F^r \to V$$
$$(\alpha_1, \dots, \alpha_r) \mapsto \alpha \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r$$

is a bijection.

• Theorem 1.5.12 Characterisation of bases

The following are equivalent for a subset E of a vector space V:

- 1. E is a basis, i.e. a linearly independent generating set;
- 2. E is minimal among all generating sets, meaning that $E \setminus \{\mathbf{v}\}\$ does not generate $V, \forall \mathbf{v} \in E;$
- 3. E is maximal among all linearly independent subsets, meaning that $E \cup \{\mathbf{v}\}$ is not linearly independent $\forall \mathbf{v} \in V$.

• Corollary 1.5.13 The existence of a basis

Let V be a finitely generated vector space over a field F. The V has a basis.

• **Theorem 1.5.14** (Useful variant on the Characterisation of bases) Let *V* be a vector space.

- 1. If $L \subset V$ is a linearly independent subset and E is minimal amongst all generating sets of our vector space with the property that $L \subseteq E$, then E is a basis.
- 2. If $E \subseteq V$ is a generating set and if L is maximal amongst all linearly independent subsets of our vector space with the property $L \subseteq E$, then L is basis.

• Definition 1.5.15

Let X be a set and F a field. The set Maps(X, F) of all mappings $f: X \to F$ becomes an F-vector space with the operations of point-wise addition and multiplication by a scalar. The subset of all mappings which send almost all elements of X to zero is a vector subspace

$$F\langle X \rangle \subseteq \operatorname{Maps}(X, F)$$

This vector subspace is called the free vector space on the set X.

• Theorem 1.5.16 (Useful variant on Linear combinations of basis elements) Let F be a field, V an F-vector space, and $(\mathbf{v}_i)_{i\in I}$ a family of vectors from the vector space V.

The following are equivalent:

- 1. The family $(\mathbf{v}_i)i \in I$ is a basis for V;
- 2. For each vector $\mathbf{v} \in V$ there is precisely one family $(a_i)_{i \in I}$ of elements of our field F, almost all of which are zero and such that

$$\mathbf{v} = \sum_{i \in I} a_i \mathbf{v}_i$$

1.6 Dimension of a vector space

• Theorem 1.6.1 Fundamental estimate of linear algebra

No linearly independent subset of a given vector space has more elements than a generating set. Thus if V is a vector space, $L \subset V$ a linearly independent subset, and $E \subseteq V$ a generating set, then:

• Theorem 1.6.2 Steinitz exchange theorem

Let V be a vector space, $L \subset V$ and finite linearly independent subset, and $E \subseteq V$ and generating set. Then there is an injection $\Phi: L \to E$ such that $(E \setminus \Phi(L)) \cup L$ is also a generating set for V

We can swap out some elements of a generating set by the elements of our linearly independent set, and still keep a generating set.

• Lemma 1.6.3 Exchange lemma

Let V be a vector space, $M \subseteq V$ a linearly independent subset, and $E \subseteq V$ a generating subset,

such that $M \subseteq E$. If $\mathbf{w} \in V \setminus M$ is a vector set not belonging to M such that $M \cup \{\mathbf{w}\}$ is linearly independent, then there exists $\mathbf{e} \in E \setminus M$ such that $\{E \setminus \{\mathbf{e}\}\} \cup \{\mathbf{w}\}$ is a generating set for V.

• Corollary 1.6.4 Cardinality of bases

Let V be a finitely generated vector space.

- 1. V has a finite basis;
- 2. V cannot have an infinite basis;
- 3. Any two bases of V have the same number of elements.

• Definition 1.6.5 Dimension

The cardinality of one (and each) basis of a finitely generated vector space V is called the dimension of V and is denoted $\dim V$. If the vector space is not finitely generated, then $\dim V = \infty$ and V is infinite dimensional.

• Corollary 1.6.8 Cardinality criterion for bases

Let V be a finitely generated vector space.

- 1. Each linearly independent subset $L \subset V$ has at most dim V elements, and if $|L| = \dim V$, then L is actually a basis;
- 2. Each generating set $E \subseteq V$ has at least dim V elements, and if $|E| = \dim V$ then E is actually a basis.

• Corollary 1.6.9 Dimension estimate for vector subspaces

A proper vector subspace of a finite dimensional vector space has itself a strictly smaller dimension.

• **Theorem 1.6.11** The dimension theorem

Let V be a vector space containing vector subspaces $U, W \subseteq V$. Then

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$$

1.7 Linear mappings

• Definition 1.7.1 Linear mapping

Let V, W be vector spaces over a field F. A mapping $f: V \to W$ is called *linear* if for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ and $\lambda \in F$ we have

$$f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$$
$$f(\lambda \mathbf{v}_1) = \lambda f(\mathbf{v}_1)$$

A bijective linear mapping is called an *isomorphism* of vector spaces. If there is an isomorphism of vector spaces, we call them *isomorphic*. A homomorphism from one vector space to itself is called an *endomorphism*. An isomorphism of a vector space to itself is called an *automorphism*.

• **Definition 1.7.5** Fixed point

A point that is sent to itself by a mapping is called a *fixed point* of the mapping. Given a mapping $f: X \to X$, we denote the set of fixed points by

$$X^f = \{x \in X : f(x) = x\}$$

• **Definition 1.7.6** Complementary

Two vector subspace V_1, V_2 of a vector space V are complementary if addition defines a bijection

$$V_1 \times V_2 \to V$$

- Theorem 1.7.7 Classification of vector spaces by their dimension Let $n \in \mathbb{N}$. Then a vector space over a field F is isomorphic to F^n if and only if it has dimension n.
- Lemma 1.7.8 Linear mappings and bases
 Let V, W be vector spaces over F and let B ⊂ V be a basis. Then restriction of a mapping gives a bijection

$$\operatorname{Hom}_F(V, W) = \operatorname{Hom}(V, W) \subseteq \operatorname{Maps}(V, W)$$

 $f \mapsto f|_B$

In other words, each linear mapping determines and is completely determined by the values it takes on a basis.

• Proposition 1.7.9

- 1. Every injective linear mapping $f:V\to W$ has a left inverse, in other words a linear mapping $g:W\to V$ such that $g\circ f=\mathrm{id}_V$
- 2. Every surjective linear mapping $f:V\to W$ has a right inverse, in other words a linear mapping $g:W\to V$ such that $f\circ g=\mathrm{id}_W$

1.8 Rank-Nullity theorem

• Definition 1.8.1

The *image* of a linear mapping $f: V \to W$ is the subset $\operatorname{im}(f) = f(V) \subseteq W$. It is a vector subspace of W. The pre-image of the zero vector of a linear mapping $f: V \to W$ is denoted by

$$\ker(f) \equiv f^{-1}(0) = \{ v \in V : f(v) = 0 \}$$

and is called the kernel of the linear mapping f. The kernel is a vector subspace of V.

• Lemma 1.8.2

A linear mapping $f: V \to W$ is injective if and only if $\ker_f = 0$.

• Theorem 1.8.4 Rank-Nullity theorem

Let $f: V \to W$ be a linear mapping between vector spaces. Then

$$dimV = dim(ker f) + dim(im f)$$

= nullity + rank

• Corollary 1.8.5 (Dimension theorem, again)

Let V be a vector space, and $U, W \subseteq V$ vector subspaces. Then

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$$

• **Definition** *Idempotent*

An element f of a set with composition or product is called *idempotent* if $f^2 = f$.

2 Linear Mappings and Matrices

2.1 Linear mappings $F^m \to F^n$ and matrices

• Theorem 2.1.1 Linear mappings $F^m \to F^n$ and matrices Let F be a field and let $m, n \in \mathbb{N}$. There is a bijection between the space of linear mappings $F^m \to F^n$ and the set of matrices with n rows and m columns and entries in F

$$M: \operatorname{Hom}_F(F^m, F^n) \to \operatorname{Mat}(n \times m; F)$$

 $f \mapsto [f]$

6

This attaches to each linear mapping f its representing matrix $M(f) \equiv [f]$. The columns of this matrix are the images under f of the standard basis elements of F^m

$$[f] \equiv (f(\mathbf{e}_1)|f(\mathbf{e}_2)|\cdots|f(\mathbf{e}_m))$$

• Definition 2.1.6 Product

Let $n, m, l \in \mathbb{N}$, F and field, and let $A \in \operatorname{Mat}(n \times m; F)$ and $B \in \operatorname{Mat}(m \times l; F)$ be matrices. The product $A \circ B = AB \in \operatorname{Mat}(n \times l; F)$ is the matrix defined by

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

Matrix multiplication produces a mapping

$$\operatorname{Mat}(n \times m; F) \times \operatorname{Mat}(m \times l; F) \to \operatorname{Mat}(m \times l; F)$$

 $(A, B) \mapsto AB$

• Theorem 2.1.8 Composition of linear mappings and products of matrices Let $g: F^l \to F^m$ and $f: F^m \to F^n$ be linear mappings. The representing matrix of their composition is the product of their representing matrices

$$[f \circ g] = [f] \circ [g]$$

• Proposition 2.1.9 Calculating with matrices

Let $k, l, m, n \in \mathbb{N}$, $A, A' \in \operatorname{Mat}(n \times m; F)$, $B, B' \in \operatorname{Mat}(m \times l; F)$, $C \in \operatorname{Mat}(l \times k; F)$ and $I = I_m$. Then the following hold for matrix multiplication

$$(A + A')B = AB + A'B$$

$$A(B + B') = AB + AB'$$

$$IB = B$$

$$AI = A$$

$$(AB)C = A(BC)$$

2.2 Basic properties of matrices

• Definition 2.2.1 Invertible

A matrix A is called *invertible* if there exist matrices B and C such that BA = I and AC = I.

• Definition 2.2.2 Elementary matrix

An *elementary matrix* is any square matrix that differs from the identity matrix in at most one entry.

• Theorem 2.2.3

Every square matrix can be written as a product of elementary matrices.

• Definition 2.2.4 Smith Normal Form

Any matrix whose only non-zero entries lie on the diagonal, and which has first 1s on along the diagonal followed by 0s is in *Smith Normal Form*.

• Theorem 2.2.5 Transformation of a matrix into Smith-Normal form

For each matrix $A \in \operatorname{Mat}(n \times m; F)$ there exist invertible matrices P and Q such that PAQ is a matrix in Smith Normal Form and Q such that PAQ is a matrix in Smith Normal Form.

• Definition 2.2.6 Rank

The *column rank* of a matrix $A \in \text{Mat}(n \times m; F)$ is the dimension of the subspace of F^n generated by the columns of A. Similarly, the *row rank* of A is the dimension of the subspace of F^m generated by the rows of A.

• Theorem 2.2.7

The column rank and the row rank of any matrix are equal.

• Definition 2.2.8 Full rank

Whenever the rank of a matrix is equal to the number of rows (or columns — whichever is smaller), it has *full rank*.

2.3 Abstract linear mappings and matrices

• Theorem 2.3.1 Abstract linear mappings and matrices

Let F be a field, V and W vector spaces over F with ordered bases $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ and $\mathcal{B} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$. Then to each linear mapping $f: V \to W$ we associated a representing matrix $\mathcal{B}[f]_A$ whose entries a_{ij} are defined by the identity

$$f(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + \dots + a_{nj}\mathbf{w}_n \in W$$

This produces a bijection, which is even an isomorphism of vector spaces

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}: \operatorname{Hom}_{F}(V, W) \to \operatorname{Mat}(n \times m; F)$$

$$f \mapsto_{\mathcal{B}} [f]_{\mathcal{A}}$$

• Theorem 2.3.2 The representing matrix of a composition of linear mappings

Let F be a field and U, V, W finite-dimensional vector spaces over F with ordered bases $\mathcal{A}, \mathcal{B}, \mathcal{C}$ If $f: U \to V$ and $g: V \to W$ are linear mappings, then the representing matrix of the composition $g \circ f: U \to W$ is the matrix product of the representing matrices of f and g

$$_{\mathcal{C}}[g \circ f]_{\mathcal{A}} =_{\mathcal{C}} [g]_{\mathcal{B}} \circ_{\mathcal{B}} [f]_{\mathcal{A}}$$

• Definition 2.3.3

Let V be a finite-dimensional vector spaces with an ordered basis $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ We denote the inverse to the bijection $\Phi_{\mathcal{A}} : F^m \to V, (\alpha_1, \dots, \alpha_m)^T \mapsto \alpha_1 \mathbf{v}_1 + \dots + \alpha_m \mathbf{v}_m$ by

$$\mathbf{v} \mapsto_{\mathcal{A}} [\mathbf{v}]$$

The column vector $_{\mathcal{A}}[\mathbf{v}]$ is called the representation of the vector \mathbf{v} with respect to the basis \mathcal{A} .

• **Theorem 2.3.4** Representation of the image of a vector

Let V, W be finite-dimensional vector-spaces over F with ordered bases \mathcal{A}, \mathcal{B} and let $f: V \to W$ be a linear mapping. The following holds for $\mathbf{v} \in V$:

$$_{\mathcal{B}}[f(\mathbf{v})] =_{\mathcal{B}} [f]_{\mathcal{A}} \circ_{\mathcal{A}} [\mathbf{v}]$$

2.4 Change of a matrix by change of basis

• **Definition 2.4.1** Change of basis matrix

Let $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ and $\mathcal{B} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$ be ordered bases of the same F-vector space V. Then the matrix representing the identity mapping with respect to these bases

$$\mathcal{B}[\mathrm{id}_V]_{\mathcal{A}}$$

is called a *change of basis matrix*. By definition, its entries are given by the equalities $\mathbf{v}_j = \sum_{i=1}^n a_{ij} \mathbf{w}_i$.

• Theorem 2.4.3 Change of basis

Let V and W be finite-dimensional vector-spaces over F and let $f: V \to W$ be a linear mapping. Suppose that A, A' are ordered bases of V and B, B' are ordered bases of W. Then

$$_{\mathcal{B}'}[f]_{\mathcal{A}'} =_{\mathcal{B}'} [\mathrm{id}_W]_{\mathcal{B}} \circ_{\mathcal{B}} [\mathrm{f}]_{\mathcal{A}} \circ_{\mathcal{A}} [\mathrm{id}_V]_{\mathcal{A}'}$$

• Corollary 2.4.4 Let V be a finite-dimensional vector-space and let $f: V \to V$ be an endomorphism of V. Suppose that $\mathcal{A}, \mathcal{A}'$ are ordered bases of V. Then

$$_{\mathcal{A}'}[f]_{\mathcal{A}'} =_{\mathcal{A}'} [\mathrm{id}_V]_{\mathcal{A}'}^{-1} \circ_{\mathcal{A}} [\mathrm{f}]_{\mathcal{A}} \circ_{\mathcal{A}} [\mathrm{id}_V]_{\mathcal{A}'}$$

• Theorem 2.4.5 Smith Normal Form

Let $f: V \to W$ be a linear mapping between finite-dimensional F-vector spaces. There exist an ordered basis \mathcal{A} of V and an ordered basis $\mathcal{B}W$ of W such that the representing matrix $_{\mathcal{B}}[f]_{\mathcal{A}}$ has zero entries everywhere except possibly on the diagonal, and along the diagonal there are 1s first, followed by 0s.

• Definition 2.4.6 Trace

The trace of a square matrix is defined to be the sum of its diagonal entries. We denote this by

3 Rings and Modules

3.1 Rings

- Group Axioms
 - 1. Closure
 - 2. Associativity
 - 3. Existence of identity
 - 4. Existence of inverses
- Definition 3.3.1 Ring

A ring is a set with two operations (R, +, .) that satisfy

- 1. (R, +) is an abelian group;
- 2. (R, \cdot) is a *monoid*; this means that the second operation $\cdot : R \cdot R \to R$ is associative and that there is an *identity element* $1 = 1_R \in R$.
- 3. The distributive laws hold.

The two operations are called *addition* and *multiplication* in our ring.

A ring in which multiplication is commutative is a *commutative ring*.

• Proposition 3.1.7 Divisibility by sum

A natural number is divisible by 3 (respectively 9) precisely when the sum of its digits is divisible by 3 (respectively 9).

• Definition 3.1.8 Field

A field F is a non-zero commutative ring in which every non-zero element $a \in F$ has an inverse $a^{-1} \in F$.

• Proposition 3.1.11

Let $m \in \mathbb{Z}^+$. The commutative ring $\mathbb{Z}/m\mathbb{Z}$ is a field if and only if m is prime.

3.2 Properties of rings

• Lemme 3.2.1 Additive inverses

Let R be a ring and let $a, b \in R$. Then

1. 0a = 0 = a0

2.
$$(-a)b = -(ab) = a(-b)$$

3.
$$(-a)(-b) = ab$$

• Definition 3.2.3

Let $m \in \mathbb{Z}$. The m-th multiple ma of an element a in abelian group R is

$$ma = \underbrace{a + a + \dots + a}_{m \text{ terms}}$$
 if $m > 0$

0a = 0, and negative multiples are defined by (-m)a = -(ma).

• Lemma 3.2.4 Rules for multiples

Let R be a ring, let $a, b \in R$ and let $m, n \in \mathbb{Z}$. Then

1.
$$m(a+b) = ma + mb$$
;

$$2. (m+n)a = ma + na;$$

3.
$$m(na) = (mn)a;$$

4.
$$m(ab) = (ma)b = a(mb)$$
;

5.
$$(ma)(nb) = (mn)(ab);$$

• Definition 3.2.6 Unit

Let R be a ring. An element $a \in R$ is called a *unit* if it is invertible in R or (in other words) has a multiplicative inverse in R.

• Proposition 3.2.10

The set R^{\times} of units in a ring R forms a group under multiplication.

• Definition 3.2.13 Integral domains

An *integral domain* is a non-zero commutative ring that has no zero-divisors.

• Proposition 3.2.16 Cancellation law for integral domains

Let R be an integral domain and let $a, b, c \in R$.

$$ab = ac$$
 and $a \neq 0 \implies b = c$

• Proposition 3.2.17

Let $m \in \mathbb{N}$. Then $\mathbb{Z}/m\mathbb{Z}$ is an integral domain if and only if m is prime.

• Theorem 3.2.18

Every *finite* integral domain is a field.

3.3 Polynomials

• Definition 3.1.1

Let R be a ring. A polynomial over R is an expression of the form

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m$$

for some $m \in \mathbb{N}$ and elements $a_i \in R$ for $i \in [0, m]$.

The set of all polynomials over R is denoted by R[X].

In case a_m is non-zero, the polynomial P has degree m, written deg(P), and a_m is its leading coefficient.

When the leading coefficient is 1, the polynomial is a monic polynomial.

A polynomial of degree one is called *linear*, a polynomial of degree two is called *quadratic*, and a polynomial of degree three is called *cubic*.

• Definition 3.3.2 Ring of polynomials

The set R[X] is a ring called the *ring of polynomials over* R. The zero and the identity of R[X] are the zero and identity of R, respectively.

• Lemma 3.3.3

- 1. If R is ring with no zero-divisors, then R[X] has no zero-divisors and deg(PQ) = deg(P) + deg(Q) for non-zero $P, Q \in R[X]$.
- 2. If R is an integral domain, then so is R[X]

• Theorem 3.3.4 Division and remainder

Let R be an integral domain, and let $P, Q \in R[X]$ with Q monic. Then there exists unique $A, B \in R[X]$ such that P = AQ + B and $\deg(B) < \deg(Q)$ or B = 0.

• Definition 3.3.6

Let R be a commutative ring and $P \in R[X]$ a polynomial. Then the polynomial P can be evaluated at $\lambda \in R$ to produce $P(\lambda)$ by replacing the powers of X in the polynomial P by the corresponding powers of λ . This gives a mapping

$$R[X] \to \operatorname{Maps}(R, R)$$

An element $\lambda \in R$ is a root of P if $P(\lambda) = 0$.

• Proposition 3.3.9

Let R be a commutative ring, let $\lambda \in R$ and $P(X) \in R[X]$. Then λ is a root of P(X) if and only if $(X - \lambda)$ divides P(X).

• Theorem 3.3.10

Let R a ring, or more generally, an integral domain. Then an non-zero polynomial $P \in R[X] \setminus \{0\}$ has at most $\deg(P)$ roots in R.

• Definition 3.3.11 Algebraically closed

A field F is algebraically closed if each non-constant polynomial $P \in F[X] \setminus F$ with coefficients F has a root in F.

• Theorem 3.3.13 Fundamental theorem of algebra

If F is an algebraically closed field, then every non-zero polynomial $P \in F[X] \setminus \{0\}$ decomposes into linear factors

$$P = c(X - \lambda_1) \cdots (X - \lambda_n)$$

with $n \geq 0, c \in F^{\times}$ and $\lambda_1, \ldots, \lambda_n \in F$. This decomposition is unique up to reordering of the factors.

3.4 Homomorphisms, Ideals, and Subrings

• **Definition 3.4.1** Ring homomorphism

Let R and S be rings. A mapping $f: R \to S$ is a ring homomorphism if the following hold $\forall x,y \in R$

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$

• Prelude to ideals

Let $f: R \to S$ be a ring homomorphism with ker $f = \{r \in R : f(r) = 0_S\}$. Then ker f is:

- a subgroup of R under addition
- $-0_R \in \ker f$
- closed under multiplication

- closed under left and right multiplication by arbitrary elements of R i.e. $x \in \ker f \implies rx, xr \in \ker f \ \forall r \in R$

• Lemma 3.4.5

Let R and S be rings and $f: R \to S$ a ring homomorphism. Then $\forall x, y, \in R$ and $m \in \mathbb{Z}$

- 1. $f(0_R) = 0_S$
- 2. f(-x) = -f(x)
- 3. f(x-y) = f(x) f(y)
- 4. $f(m \cdot x) = m \cdot f(x)$

Where mx denotes the m-th multiple of x.

• Definition 3.4.7 Ideal

A subset I of a ring R is an *ideal*, written $I \subseteq R$, if the following hold:

- 1. $I \neq \emptyset$
- 2. I is closed under subtraction (it's a subgroup)
- 3. $\forall i \in I \text{ and } \forall r \in R \text{ we have } ri, ir \in I \text{ (I is closed under multiplication by elements of } R)$

Ideals satisfy the properties of rings, except possibly the existence of a multiplicative identity.

Ideals are subrings which are closed under multiplication with elements from the *ring* — not just elements from within the ideal!

• Definition 3.4.11 Generated ideal

Let R be a commutative ring and let $T \subset R$. Then the ideal of R generated by T is the set

$$_R\langle T \rangle = \{r_1t_1 + \dots + r_mt_m : t_1, \dots, t_m \in T, r_1, \dots, r_m \in R\}$$

together with the zero element in the case $T = \emptyset$.

• Proposition 3.4.14

Let R be a commutative ring and let $T \subseteq R$. Then $_R\langle T \rangle$ is the smallest ideal of R that contains T.

• Definition 3.4.15 Principle ideal

Let R be a commutative ring. An ideal $I \subseteq R$ is called a *principle ideal* if $I = \langle t \rangle$ for some $t \in R$.

• Definition 3.4.17 Kernel

Let R and S be rings, and let $f: R \to S$ be a ring homomorphism. Since F is in particular a group homomorphism from (R, +) to (S, +), the kernel of f already has a meaning:

$$\ker f = \{ r \in R : f(r) = 0_S \}$$

• Proposition 3.4.18

Let R and S be rings and $f: R \to S$ a ring homomorphism. Then ker f is an ideal of R.

- Lemma 3.4.20 f is injective if and only if ker $f = \{0\}$
- Lemma 3.4.21 The intersection of any collection of ideals of a ring R is an ideal of R.
- Lemma 3.4.22 Let I and J be ideals of a ring R. Then

$$I + J = \{a + b : a \in I, b \in J\}$$

is an ideal of R.

• Definition 3.4.23 Subring

Let R be a ring. A subset $R' \subseteq R$ is a *subring* of R if R' is itself a ring under the operations of addition and multiplication defined in R.

• Proposition 3.4.26 Test for a subring

Let R be a ring, and $R' \subseteq R$. Then R' is a subring if and only if

- 1. R' has a multiplicative identity, and
- 2. R' is closed under subtraction, and
- 3. R' is closed under multiplication.

• Proposition 3.4.29 Let R and S be rings and $f: R \to S$ a ring homomorphism.

- 1. If R' is a subring of R then f(R') is a subring of S. In particular, f is a subring of S.
- 2. Assume that $f(1_R) = 1_S$. Then if x is a unit in R, f(x) is a unit is in S and $(f(x))^{-1} = f(x^{-1})$. In this case f restricts to a group homomorphism $f|_{R^{\times}} : R^{\times} \to S^{\times}$.

3.5 Equivalence Relations

• Definition 3.5.1 Relation

A relation R on a set X is a subset $R \subseteq X \times X$. R is an equivalence relation on X when $\forall x, y, z \in X$ the following hold:

- 1. Reflexivity: xRx
- 2. Symmetry: $xRy \iff yRx$
- 3. Transitivity: xRy and $yRz \implies xRz$

• Definition 3.5.3

Suppose that \sim is an equivalence relation on a set X. For $x \in X$ the set $E(x) \equiv \{z \in X : z \sim x\}$ is called the *equivalence class* of x.

A subset $E \subseteq X$ is called an *equivalence class* for \sim if $\exists x \in X \ni E = E(x)$.

An element of an equivalence class is called a representative of the class.

A subset $Z \subseteq X$ containing precisely one element from each equivalence class is called a *system* of representatives for the equivalence relation.

• Definition 3.5.5 Set of equivalence classes

Given an equivalence relation \sim on the set X, the set of equivalence classes, which is a subset of $\mathcal{P}(X)$, is

$$(X/\sim) \equiv \{E(x) : x \in X\}$$

There is a canonical mapping can : $X \to (X/\sim)$, $x \mapsto E(x)$. It is obviously a surjection.

• Remark

Suppose that \sim is an equivalence relation on X. If $f: X \to Z$ is a mapping with the property that $x \sim y \implies f(x) = f(y)$, then there is a unique mapping $\overline{f}: (X \setminus \sim) \to Z$ with $f = \overline{f} \circ \text{can}$. Its definition is easy: f(E(x)) = f(x). This property is called the *universal property of the set of equivalence classes*.

• Definition 3.5.7 Well-defined

 $g:(X/\sim)\to Z$ is well-defined if there is a mapping $f:X\to Z$ such that f has the property $x\sim y\implies f(x)=f(y)$ and $g=\overline{f}$.

3.6 Factor Rings and the First Isomorphic Theorem

• Prelude

Let $f: R \to S$ be a ring homomorphism.

$$x \sim y \iff f(x) = f(y) \iff f(x - y) = 0 \iff x - y \in \ker f$$

Then:

$$E(x) = x + \ker f \equiv \{x + k : k \in \ker f\}$$

So we have that:

- the rule $x \sim y \iff x y \in \ker f$ is an equivalence relation;
- the equivalence classes are the sets $x + \ker f$ for $x \in R$;
- the set of equivalence classes (R / \sim) is a ring, isomorphic to a subring of S.

• Definition 3.6.1 Cosets

Let $I \subseteq R$ be an ideal in a ring R. The set

$$x + I \equiv \{x + i : i \in I\} \subseteq R$$

is a coset of I in R, or the coset of x with respect to I in R.

• Definition 3.6.3 Factor ring

Let R be a ring, $I \subseteq R$ be an ideal, and \sim the equivalence relation defined by $x \sim y \iff x - y \in I$. Then R/I, the factor ring of R by I or the quotient of R by I, is the set (R/\sim) of cosets of I in R.

$$R/I = \{r + I : r \in R\}$$

• Theorem 3.6.4

Let R be a ring, and $I \subseteq R$ an ideal. Then R/I is a ring, where the operation of addition is defined by

$$(x+I)\dot{+}(y+I) = (x+y) + I \quad \forall x, y \in R$$

and multiplication is defined by

$$(x+I)\cdot(y+I) = xy+I \quad \forall x,y\in R$$

• Theorem 3.6.7 Universal Property of Factor Rings

Let R be a ring, and $I \subseteq R$.

- 1. The mapping can : $R \to R/I$ with can(r) = r + I is a surjective ring homomorphism with kernel I.
- 2. If $f: R \to S$ is a ring homomorphism with $f(I) = \{0_S\}$, so that $I \subseteq \ker f$, then there is a unique ring homomorphism $\overline{f}: R/I \to S$ such that $f = \overline{f} \circ \operatorname{can}$.

• Theorem 3.6.9 First Isomorphic Theorem for Rings

Let R and S be rings. Then every ring homomorphism $f: R \to S$ induces a ring isomorphism

$$\overline{f}: R/\ker f \tilde{\to} \operatorname{im} f$$

3.7 Modules

• **Definition 3.7.1** A (left) module M over a ring R is a pair consisting of an abelian group $M = (M, \dot{+})$ and a mapping

$$R \times M \to M$$

 $(r, a) \mapsto ra$

such that $\forall r, s \in R$ and $a, b \in M$ the following identities hold:

$$r(a \dot{+} b) = (ra) \dot{+} (rb)$$
 (distributivity)
 $(r+s)a = (ra) \dot{+} (sa)$ (distributivity)
 $r(sa) = (rs)a$ (associativity)
 $1_R a = a$

i.e. a vector space, but with a ring instead of a field.

- Lemma 3.7.8 Let R be a ring, and M an R-module.
 - 1. $0_R a = 0_M \ \forall a \in M$
 - 2. $r0_M = 0_M \ \forall r \in R$
 - 3. (-r)a = r(-a) = -(ra), $\forall r \in R, a \in M$. (Here, the first negative is in R, and the last two negatives are in M.)

• Definition 3.7.11

Let R be a ring, and let M, N be R-modules. A mapping $f: M \to N$ is an R-homomorphism if the following hold $\forall a, b \in M$ and $r \in R$:

$$f(a+b) = f(a) + f(b)$$
$$f(ra) = rf(a)$$

The kernel of f is ker $f = \{a \in M : f(a) = 0_N\} \subseteq M$ and the image of f is im $f = \{f(a) : a \in M\} \subseteq N$.

If f is a bijection then it is an *isomorphism*.

• Definition 3.7.15

A non-empty subset M' of an R-module M is a *submodule* if M' is an R-module with respect to the operations of the R-module M restricted to M'.

• Proposition 3.7.20 Test for a submodule

Let R be a ring and let M be an R-module. A subset $M' \subseteq M$ is a submodule if and only if

- 1. $0_M \in M'$
- $2. \ a,b \in M' \implies a-b \in M'$
- 3. $r \in R, a \in M' \implies ra \in M'$

• Lemma 3.7.21

Let $f: M \to N$ be an R-homomorphism. Then ker f is a submodule of M and im f is a submodule of N.

• Lemma 3.7.22

Let R be a ring, let M and N be R-modules and let $f: M \to N$ be an R-homomorphism. Then f is injective if and only if ker $f = \{0_M\}$.

• Definition 3.7.23

Let R be a ring, M an R-module, and let $T \subseteq M$. Then the submodule of M generated by T is the set

$$_{R}\langle T \rangle = \{r_{1}t_{1} + \dots + r_{m}t_{m} : t_{1}, \dots, t_{m} \in T, r_{1}, \dots, r_{m} \in R\},\$$

together with the zero element in case $T = \emptyset$.

The module M is finitely generated if it is generated by a finite set: $M =_r \langle \{t_1, \dots, t_n\} \rangle$. It is *cyclic* f it is generated by a singleton: $M =_R \langle t \rangle$.

- Lemma 3.7.28 Let $T \subseteq M$. Then $r\langle T \rangle$ is the smallest submodule of M that contains T.
- Lemma 3.7.29 The intersection of any collection of submodules of M is a submodule of M.

• Lemma 3.7.30 Let M_1 and M_2 be submodules of M. Then

$$M_1 + M_2 = \{a + b : a \in M_1, b \in M_2\}$$

is a submodule of M.

• Definition 3.7.31.1 Coset

Let R be a ring, M an R-module, and N a submodule of M. For each $a \in M$, the coset of a with respect to N in M is

$$a+N=\{a+b:b\in N\}.$$

It is a coset of N in the abelian group M and is is an equivalence class for the equivalence relation $a \sim b \iff a - b \in N$.

• Definition 3.7.31.2 Factor

M/N, the factor of M by N or the quotient of M by N, is the set (M/\sim) of all cosets of N in M.

$$M/N = \{a + N : a \in M\}$$

This becomes an R-module by introducing the operations of addition and multiplication as follows:

$$(a+N)\dot{+}(b+N) = (a+b) + N$$
$$r(a+N) = ra + N$$

for all $a, b \in M, r \in R$.

- Theorem 3.7.31.3 Factor module
 - The zero of M/N is the coset $0_{M/N} = 0_M + N$.
 - The negative of $a + N \in M/N$ is the coset -(a + N) = (-a) + N.
 - The R-module M/N is the factor module of M by the submodule N.
- Theorem 3.7.32 The Universal Property of Factor Modules

Let R be a ring, and let L and M be R-modules, and N a sub-module of M.

- 1. The mapping can : $M \to M/N$ sending a to a+N, $\forall a \in M$ is a surjective R-homomorphism with kernel N.
- 2. If $f: M \to L$ is an R-homomorphism with $f(N) = \{0_L\}$, so that $N \subseteq \ker f$, then there is a unique homomorphism $\overline{f}: M/N \to L$ such that $f = \overline{f} \circ \operatorname{can}$.
- Theorem 3.7.33 First Isomorphism Theorem for Modules

Let R be a ring and let M and N be R-modules. Then every R-homomorphism $f: M \to N$ induces a R-isomorphism

$$\overline{f}: M/\ker f \to \mathrm{im} f$$

4 Determinants & Eigenvalues Redux

4.1 The sign of a permutation

• Definition 4.1.1 Transposition

The group of all permutations of the set $\{1, 2, ..., n\}$, also known as bijections from $\{1, 2, ..., n\}$ to itself, is denoted by \mathfrak{S}_n and called the *n*-th symmetric group. It is a group under composition and has n! elements.

A transposition is a permutation that swaps two elements of the set and leaves all the others unchanged.

• Definition 4.1.2 Inversion & Sign

An inversion of a permutation $\sigma \in \mathfrak{S}_n$ is a pair (i,j) such that $1 \leq i < j \leq n$ and $\sigma(i) > \sigma(j)$. The number of inversions of the permutation σ is called the *length of* σ and written $\ell(\sigma)$. In formulas:

$$\ell(\sigma) = |\{(i, j) : i < j \text{ but } \sigma(i) > \sigma(j)\}|$$

The sign of σ is defined to be the parity of the number of inversions of σ . In formulas:

$$\operatorname{sgn}(\sigma) = (-1)^{\ell(\sigma)}$$

A permutation whose sign is +1, in other words which has even length, is called an *even permutation*, while a permutation whose sign is -1, in other words which has odd length, is called an *odd permutation*.

• Lemma 4.1.5 (Multiplicativity of the sign)

For each $n \in \mathbb{N}$ the sign of a permutation produces a group homomorphism sgn : $\mathfrak{S}_n \to \{+1, -1\}$ from the symmetric group to the two-element group of signs. In formulas:

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau) \quad \forall \sigma, \tau \in \mathfrak{S}_n$$

• **Definition 4.1.7** Alternating group

For $n \in \mathbb{N}$, the set of even permutations in \mathfrak{S}_n forms a subgroup of \mathfrak{S}_n because it is the kernel of the group homomorphism sgn : $\mathfrak{S}_n \to \{+1, -1\}$. This group is the *alternating group* and is denoted A_n .

4.2 Determinants & what they mean

• **Definition 4.2.1** Let R be a commutative ring and $n \in \mathbb{N}$.

The determinant is a mapping det: $Mat(n; R) \to R$ from square matrices with coefficients in R to the ring R that is given by the following formula:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \mapsto \det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

This formula is called the *Leibniz formula*.

The degenerate case n=0 assigns the value 1 as the determinant of the "empty matrix".

- The connection between determinants and volumes

 The determinant of a matrix is equal to the scaling factor it performs.
- The connection between determinants and orientation The sign of the determinant determines the orientation: $\det = +1$ preserves the orientation; $\det = -1$ reverses the orientation.

4.3 Characterising the determininant

• **Definition 4.3.1** Bi-linear forms

Let U, V, W be F-vector spaces.

A bi-linear form on $U \times V$ with values in W is a mapping $H: U \times V \to W$ which is a linear mapping in both of its entries.

This means that it must satisfy the following properties for all $u_1, u_2 \in U$; $v_1, v_2 \in V$; $\lambda \in F$:

$$H(u_1 + u_2, v_1) = H(u_1, v_1) + H(u_2, v_1)$$

$$H(u_1, v_1 + v_2) = H(u_1, v_1) + H(u_1, v_2)$$

$$H(u_1, \lambda v_1) = \lambda H(u_1, v_1)$$

$$H(\lambda u_1, v_1) = \lambda H(u_1, v_1)$$

The first two conditions state that for any fixed $v \in V$ the mapping $H(-,v): U \to W$ is linear. H is a bi-linear form. A bi-linear form H is symmetric if U = V and

$$H(u, v) = H(v, u) \quad \forall u, v \in U$$

while it is alternating or antisymmetric if U = V and

$$H(u, u) = 0 \quad \forall u \in U$$

• Definition 4.3.3 Multi-linear forms

Let V_1, \ldots, V_n, W be F-vector spaces. A mapping $H: V_1 \times V_2 \times \cdots \times V_n \to W$ is a multi-linear form or multi-linear if for each j, the mapping $V_j \to W$ defined by $v_j \mapsto H(v_1, \ldots, v_j, \ldots, v_n)$, with $v_i \in V_i$ arbitrary fixed vectors of V_i for $i \neq j$, is linear. In the case n = 2, this is exactly the definition of a bi-linear mapping.

• Definition 4.3.4 Alternating

Let V and W be F-vector spaces. A multi-linear form $H: V \times \cdots \times V \to W$ is alternating if it vanishes on every n-tuple of elements of V that has at least two entries equal, in other words if:

$$(\exists i \neq j \text{ with } v_i = v_j) \implies H(v_1, \dots, v_i, \dots, v_j, \dots, v_n) = 0$$

In the case n=2, this is exactly the definition of an alternating or anti-symmetric bi-linear mapping.

• Theorem 4.3.6 Characterisation of the determinant

Let F be a field. The mapping

$$\det: \operatorname{Mat}(n; F) \to F$$

is the unique, alternating, multi-linear form on n-tuples of column vectors with values in F that takes the value 1_F on the identity matrix.

- 1. Is it a multi-linear form?
- 2. Does it go from $F^n \times \cdots \times F^n \to F$?
- 3. Is it alternating?
- 4. Does it take the value 1 on the identity?

If (and only if) answered yes to all, then we have a determinant.

4.4 Rules for calculating with determinants

• Theorem 4.4.1 Multiplicativity of the determinant Let R be a commutative ring and let $A, B \in Mat(n; R)$. Then

$$det(AB) = det(A) det(B)$$

• Theorem 4.4.2 Determinantal criterion for invertibility

The determinant of a square matrix with entries in a field F is non-zero if and only if the matrix is invertible.

• Lemma 4.4.4

The determinant of a square matrix and the transpose of the square matrix are equal, that is, for all $A \in Mat(n; R)$ with R a commutative ring

$$\det(A^T) = \det(A)$$

• Definition 4.4.6 Cofactor

Let $A \in \operatorname{Mat}(n; R)$ for some commutative ring R and $n \in \mathbb{N}$. Let $i, j \in (1, n) \subset \mathbb{N}$. Then the (i, j) cofactor of A is $C_{ij} = (-1)^{i+j} \det(A\langle i, j \rangle)$ where $A\langle i, j \rangle$ is the matrix obtained by deleting the i-th row and the j-th column.

• Theorem 4.4.7 Laplace's expansion of the determinant

Let $A = (a_{ij})$ be an $(n \times n)$ matrix with entries from a commutative ring R.

For a fixed i, the i-th row expansion of the determinant is

$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$$

and for a fixed j, the j-th column expansion of the determinant is

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}$$

• **Definition 4.4.8** Adjugate matrix

Let A be an $(n \times n)$ matrix whose entries are $\operatorname{adj}(A)_{ij} = C_{ji}$ where C_{ji} is the (j,i) cofactor.

• Theorem 4.4.9 Cramer's rule

Let A be an $(n \times n)$ matrix with entries in a commutative ring R. Then

$$A \cdot \operatorname{adj}(A) = (\det A)I_n$$

• Corollary 4.4.11 Invertibility of matrices

A square matrix with entries in a commutative ring R is invertible if and only if its determinant is a unit in R. That is, $A \in \text{Mat}(n; R)$ is invertible if and only if $\det(A) \in R^{\times}$.

4.5 Eigenvalues & Eigenvectors

• Definition 4.5.1 Eigenvalue

Let $f: V \to V$ be an endomorphism of an F-vector space V. A scalar $\lambda \in F$ is an eigenvalue of f if and only if there exists a non-zero vector $\mathbf{v} \in V$ such that $f(\mathbf{v}) = \lambda \mathbf{v}$.

Each such vector is called an eigenvector of f with eigenvalue λ .

For any $\lambda \in F$, the eigenspace of f with eigenvalue λ is

$$E(\lambda, f) = \{ \mathbf{v} \in V : f(\mathbf{v}) = \lambda \mathbf{v} \}$$

When $\lambda = 1$, this is equivalent to having a fixed-point mapping.

When $\lambda = 0$, this is equivalent to the kernel of the mapping.

The corresponding eigenvectors are the null-space of $(A - \lambda I_n)$

• Theorem 4.5.4 Existence of Eigenvalues

Each endomorphism of a non-zero finite-dimensional vector space over an algebraically closed field has an eigenvalue.

• **Definition 4.5.6** Characteristic polynomial

Let R be a commutative ring and let $A \in \operatorname{Mat}(n; R)$ be a square matrix with entries in R. The polynomial $\det(A - xI_n) \in R[x]$ is called the *characteristic polynomial of the matrix* A. It is denoted by

$$\chi_A(x) \equiv \det(A - xI_n)$$

where χ stands for χ aracteristic.

• Theorem 4.5.8 Eigenvalues and characteristic polynomials

Let F be a field and $A \in \operatorname{Mat}(n; F)$ a square matrix with entries in F. The eigenvalues of the linear mapping $A: F^n \to F^n$ are exactly the roots of the characteristic polynomial χ_A .

4.6 Triangularisable, Diagonalisable, & the Cayley-Hamilton theorem

• Proposition 4.6.1 Triangularisability

Let $f: V \to V$ be an endomorphism of a finite-dimensional F-vector space V. The following two statements are equivalent:

1. The vector space V has an ordered basis $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ such that

$$f(\mathbf{v}_1) = a_{11}\mathbf{v}_1$$

$$f(\mathbf{v}_2) = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2$$

$$\vdots$$

$$f(\mathbf{v}_n) = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{nn}\mathbf{v}_n \in V$$

(so that the first basis vector \mathbf{v}_1 is an eigenvector, with eigenvalue a_{11}) or equivalently such that the $n \times n$ matrix $\mathbf{g}[f]_{\mathcal{B}} = (a_{ij})$ representing f with respect to \mathcal{B} is upper triangular.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{1n} \\ 0 & 0 & a_{33} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

When this happens, f is triangularisable.

2. The characteristic polynomial $\chi_{f(x)}$ of f decomposes into linear factors in F[x].

• **Definition 4.6.5** Diagonalisable

An endomorphism $f: V \to V$ of an F-vector space V is diagonalisable if and only if there exists a basis of V consisting of eigenvectors of f.

If V is finite-dimensional, then this is the same as saying that there exists an ordered basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ such that the corresponding matrix representing f is diagonal, that is $\mathcal{B}[f]_{\mathcal{B}} = \text{diag}(\lambda_1, \dots, \lambda_n)$. In this case, of course, $f(\mathbf{v}_i) = \lambda_i v_i$.

A square matrix $A \in \operatorname{Mat}(n; F)$ is diagonalisable if and only if the corresponding linear mapping $F^n \to F^n$ given by the left multiplication of A is diagonalisable. This just means that A is conjugate to a diagonal matrix: there exists an invertible matrix $P \in \operatorname{GL}(n; F)$ such that $P^{-1}AP = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. In this case, the columns of P are the vectors of a basis of F^n consisting of eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

• Lemma 4.6.8 Linear independence of Eigenvectors

Let $f: V \to V$ be an endomorphism of a vector space V and let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be eigenvectors of f with pairwise different eigenvalues $\lambda_1, \dots, \lambda_n$.

Then the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

• Theorem 4.6.9 Cayley-Hamilton Theorem

Let $A \in \operatorname{Mat}(n; R)$ be a square matrix with entries in a commutative ring R. Then evaluating its characteristic polynomial $\chi_A(x) \in R[x]$ at the matrix A gives zero.

4.7 Google's PageRank Algorithm

5 Inner Product Spaces

5.1 Inner Product Spaces: Definitions

• **Definition 5.1.1** Real inner product space Let V be a vector space over R. An inner product on V is a mapping

$$(-,-): V \times V \to \mathbb{R}$$

that satisfies the following for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\lambda, \mu \in \mathbb{R}$:

- 1. $(\lambda \mathbf{x} + \mu \mathbf{y}, \mathbf{z}) = \lambda(\mathbf{x}, \mathbf{z}) + \mu(\mathbf{y}, \mathbf{z})$ (bi-linear)
- 2. $(\mathbf{x}, \mathbf{y}) = (\mathbf{y}, \mathbf{x})$ (symmetric)
- 3. $(\mathbf{x}, \mathbf{x}) \ge 0$, with equality if and only if $\mathbf{x} = \mathbf{0}$. (positive definite)

A real inner product space is a real vector space endowed with an inner product.

• Definition 5.1.3 Complex inner product space

Let V be a vector space over \mathbb{C} . An inner product on V is a mapping

$$(-,-): V \times V \to \mathbb{C}$$

that satisfies the following for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\lambda, \mu \in \mathbb{C}$:

- 1. $(\lambda \mathbf{x} + \mu \mathbf{y}, \mathbf{z}) = \lambda(\mathbf{x}, \mathbf{z}) + \mu(\mathbf{y}, \mathbf{z})$ (bi-linear)
- 2. $(\mathbf{x}, \mathbf{y}) = \overline{(\mathbf{y}, \mathbf{x})}$ (symmetric)
- 3. $(\mathbf{x}, \mathbf{x}) \ge 0$, with equality if and only if $\mathbf{x} = \mathbf{0}$. (positive definite)

Here \overline{z} denotes the complex conjugate of z. A complex inner product space is a complex vector space endowed with an inner product.

• Definition Skew-linear

A mapping $f: V \to W$ between complex vector spaces is *skew-linear* if $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$ and $f(\lambda \mathbf{v}_1) = \overline{\lambda} f(\mathbf{v}_1)$ for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ and all $\lambda \in \mathbb{C}$.

• Definition Sesquilinear

A complex form that is skew-linear in its second variable. When such a form is commutative, it is hermitian.

Terminology

- A finite-dimensional real inner product space is a Euclidean vector space.
- A complex inner product space is a unitary space or pre-Hilbert space.
- A finite-dimensional inner product space is a finite-dimensional Hilbert space.

• Definition 5.1.5 Length or Inner Product Norm

In a real or complex inner product space the *length* or *inner product norm* or *norm* $\|\mathbf{v}\| \in \mathbb{R}$ of a vector \mathbf{v} is defined as the non-negative square root

$$\|\mathbf{v}\| = \sqrt{(\mathbf{v},\mathbf{v})}$$

Vectors whose length is 1 are called *units*. Two vectors \mathbf{v} , \mathbf{w} are *orthogonal* and we write

$$\mathbf{v} \perp \mathbf{w}$$

if and only if $(\mathbf{v}, \mathbf{w}) = 0$.

• Definition 5.1.7 Orthonormal family

A family $(\mathbf{v}_i)_{i\in I}$ for vectors from an inner product space is an *orthogonal family* if all the vectors v_i have length 1 and if they are pairwise orthogonal to each other, which, using the Kronecker delta, means

$$(\mathbf{v}_i, \mathbf{v}_i) = \delta_{ii}$$

An orthonormal family that is a basis is an orthonormal basis.

• Theorem 5.1.10

Every finite dimensional inner product space has an orthonormal basis.

5.2 Orthogonal Complements and Orthogonal Projections

• Definition 5.2.1 Orthogonal

let V be an inner product space and let $T \subseteq V$ be an arbitrary subset. Define

$$T^{\perp} = \{ \mathbf{v} \in V : \mathbf{v} \perp \mathbf{t}, \ \forall \mathbf{t} \in T \},$$

calling this set the orthogonal to T.

• Proposition 5.2.2

Let V be an inner product space and let U be a finite dimensional subspace of V. Then U and U^{\perp} are complementary (Definition 1.7.6). In other words

$$V = U \oplus U^{\perp}$$

• Definition 5.2.3 Orthogonal complement

Let U be a finite dimensional subspace of an inner product space V. The space U^{\perp} is the orthogonal complement to U. The orthogonal projection from V onto U is the mapping

$$\pi_{U}:V\to V$$

that sends $\mathbf{v} = \mathbf{p} + \mathbf{r}$ to \mathbf{p} . (With $\mathbf{v} \in U \oplus U^{\perp}$, $p \in U$, $r \in U^{\perp}$.)

• Proposition 5.2.4

Let U be a finite-dimensional subspace of an inner product space V and let π_U be the orthogonal projection from V to U.

- 1. π_U is a linear mapping with $\operatorname{im}(\pi_U) = U$ and $\ker(\pi_U) = U^{\perp}$.
- 2. If $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis of U, then π_U is given by the following formula for all $\mathbf{v} \in V$

$$\pi_U(\mathbf{v}) = \sum_{i=1}^n (\mathbf{v}, \mathbf{v}_i) \mathbf{v}_i$$

- 3. $\pi_U^2 = \pi_U$, that is π_U is an idempotent.
- Theorem 5.2.5 Cauchy-Schwarz Inequality

Let **v**, **w** be vectors in an inner product space. Then

$$|(\mathbf{v}, \mathbf{w})| \le ||\mathbf{v}|| ||\mathbf{w}||$$

with equality if and only if \mathbf{v} and \mathbf{w} are linearly dependent.

• Corollary 5.2.6

The norm $\|\cdot\|$ on an inner product space V satisfies, for any $\mathbf{v}, \mathbf{w} \in V$ and scalar λ :

- 1. $\|\mathbf{v}\| \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$
- 2. $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$
- 3. $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$, the triangle inequality.

• Theorem 5.2.7

Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be linearly independent vectors in an inner product space V. Then there exists an orthonormal family $\mathbf{w}_1, \dots, \mathbf{w}_k$ with the property that for all $1 \le i \le k$

$$\mathbf{w}_i \in \mathbb{R}_{\leq 0} \ \mathbf{v}_i + \langle \mathbf{v}_{i-1}, \dots, \mathbf{v}_1 \rangle$$

• Gram-Schmidt process

$$\mathbf{u}_{1} = \mathbf{v}_{1},$$
 $\mathbf{e}_{1} = \frac{\mathbf{u}_{1}}{\|\mathbf{u}_{1}\|}$ $\mathbf{u}_{2} = \mathbf{v}_{2} - \pi_{\mathbf{u}_{1}}(\mathbf{v}_{2}),$ $\mathbf{e}_{2} = \frac{\mathbf{u}_{2}}{\|\mathbf{u}_{2}\|}$ $\mathbf{u}_{3} = \mathbf{v}_{3} - \pi_{\mathbf{u}_{1}}(\mathbf{v}_{3}) - \pi_{\mathbf{u}_{2}}(\mathbf{v}_{3}),$ $\mathbf{e}_{3} = \frac{\mathbf{u}_{3}}{\|\mathbf{u}_{3}\|}$ \vdots \vdots $\mathbf{u}_{k} = \mathbf{v}_{k} - \sum_{i=1}^{k-1} \pi_{\mathbf{u}_{i}}(\mathbf{v}_{k}),$ $\mathbf{e}_{k} = \frac{\mathbf{u}_{k}}{\|\mathbf{u}_{k}\|}$

5.3 Adjoints & Self-Adjoints

• Definition 5.3.1 Adjoint

Let V be an inner product space. Then two endomorphisms $T, S : V \to V$ are called *adjoint* to one another if the following holds for all $\vec{v}, \vec{w} \in V$:

$$(T\vec{v}, \vec{w}) = (\vec{v}, S\vec{w})$$

In this case, $S = T^*$, and S is the adjoint of T.

• Theorem 5.3.4 Existence of the adjoint

Let V be a finite dimensional inner product space. Let $T: V \to V$ be an endomorphism. Then T^* exists. That is, there exists a unique linear mapping $T^*: V \to V$ such that for all $\vec{v}, \vec{w} \in V$

$$(T\vec{v}, \vec{w}) = (\vec{v}, T^*\vec{w})$$

• Definition 5.3.5 Self-adjoint

An endomorphism of an inner product space $T: V \to V$ is *self-adjoint* if it is equal to its own adjoint, that is if $T^* = T$.

• Theorem 5.3.7

Let $T: V \to V$ be a self-adjoint linear mapping of an inner product space V.

- 1. Every eigenvalue of T is real.
- 2. If λ and μ are distinct Eigenvalues of T with corresponding eigenvectors \vec{v} and \vec{w} , then $\vec{v}, \vec{w} = 0$.
- 3. T has an eigenvalue.

\bullet Theorem 5.3.9 The Spectral Theorem for Self-Adjoint Endomorphisms

Let V be a finite dimensional inner product space and let $T: V \to V$ be a self-adjoint linear mapping. Then V has an orthogonal basis consisting of eigenvectors of T.

• **Definition 5.3.11** Orthogonal matrix

An orthogonal matrix is an $n \times n$ matrix P with real entries such that $P^TP = I_n$. In other words, and orthogonal matrix is a square matrix P with real entries such that $P^{-1} = P^T$.

• Corollary 5.3.12 The Spectral Theorem for Real Symmetric Matrices

Let A be a real $(n \times n)$ -symmetric matrix. Then there is an $(n \times n)$ -orthogonal matrix P such that

$$P^T A P = P^{-1} A P = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

• Definition 5.3.14 Unitary matrix

A unitary matrix is an $(n \times n)$ -matrix P with complex entries such that $\overline{P}^T P = I_n$. In other words, a unitary matrix is a square matrix P with complex entries such that $P^{-1} = \overline{P}^T$.

• Corollary 5.3.15 The Spectral Theorem for Hermitian Matrices Let A be an $(n \times n)$ -hermitian matrix. Then there is an $(n \times n)$ -unitary matrix P such that

$$\overline{P}^T A P = P^{-1} A P = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

6 Reference

6.1 Terminology of Algebraic Structures

	Associativity	Identity	Inverses
Group	Yes	Yes	Yes
Monoid	Yes	Yes	No
Semi-group	Yes	No	No
Magma	No	No	No

Ring = (Group, Monoid)

Field = (Group, Group)