

Reminder: Basics of Binary Search Trees

Index

block(=page): may have one or more records

Record

record

Reg. #	Name Hom		ne address	Phone #	Student id	Awards	
Education history		•••					

Blocks

Sector: 512, 4K, ... bytes

Disk block: multiple of sectors

File block: multiple of disk blocks

<그림. from Wikipedia>

- * OS에서 file system block size 지정 가능
- * 한 컴퓨터가 여러 file system을 가질 수 있다

Record, Key, Search Tree

A record

- Contains all information for an object
- e.g., human record
 - <resident registration #주민변호, name, home address, phone #s, education history, income, family members, ... > ← a collection of such fields

Field

- each unit information in a record
- e.g., in the above record, resident registration #, name, home address, ...

Search key or Key

- A field which can uniquely identifies each record
- A key may consist of a field or more

Search tree

- A key in each node
- An index for keys and corresponding record locations

Binary Search Trees

- A key in each node. All keys are distinct.
- Root node in the top level
- Each node has at most two children.
- The key of a node is greater than all the keys of its left subtree, and smaller than all the keys of its right subtree.

Examples of Binary Search Trees

Examples of Subtrees

(b) Node *r*'s left subtree

(c) Node *r*'s right subtree

(Static) Optimal Binary Search Tree

Possible to construct optimal binary search tree.

See < Dynamic Programming>.

Reminder: Search in Binary Search Trees

In real fields, a node contains the key field and the corresponding record location t.left

t.right

Recursive View of Search

Reminder: Insertion in Binary Search Trees

```
insert(t, x):
 \blacktriangleleft t: root node, x: key to insert
       if (t=NIL)
                                                 ◄ r: new node
                r.key \leftarrow x
                return r
       if (x < t.\text{key})
                t.\operatorname{left} \leftarrow \operatorname{insert}(t.\operatorname{left}, x)
               return t
        else t.right \leftarrow insert(t.right, x)
               return t
```


Examples of Insertion

Reminder: Deletion in Binary Search Trees

t: root node

r: node to deleted

There are three cases

- Case 1 : r is a leaf node
- Case 2 : r has only one child
- Case 3 : r has two children

Reminder: Deletion in Binary Search Trees

Example: Case 1

Example: Case 2

(a) r has only one child

(b) Remove *r*

(c) Put r's (only) child at r's location

Example: Case 3

(a) Find r's inorder successor s

(b) Remove *r* (imaginary removal)

(c) Move s to r's location (copy s to r)

(d) Move s's (only) child to s's location

Efficiency of Binary Search Trees

IPL: Internal Path Length

Sum of depths of all the nodes

Theorem

The IPL of a binary search tree made at random is $O(n \log n)$ on average (Assume every permutation of the input sequence is equally likely)

<Proof>
Next page

Equivalently, a sequence of n inserts into an empty binary search tree takes $O(n \log n)$ on average (Assume every permutation of the input sequence is equally likely)

✓ Meaning: Average search time for a key is O(logn).

<Proof>

D(n): the average IPL(Internal Path Length) of a binary tree with n nodes.

Clearly D(0) = 0, D(1)=1.

$$D(n) = \frac{1}{n} \sum_{k=1}^{n} [D(k-1) + (k-1) + D(n-k) + (n-k) + 1]$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} D(k) + n$$

Assume that $\exists c > 0$ s.t. $D(k) \le ck \log k \ \forall k < n$.

Then, we verify that $D(n) \le cn \log n$ (i.e., $D(n) = O(n \log n)$)

$$D(n) = \frac{2}{n} \sum_{k=0}^{n-1} D(k) + n$$

$$= \frac{2}{n} \sum_{k=2}^{n-1} D(k) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=2}^{n-1} ck \log k + \Theta(n)$$

$$\leq \frac{2}{n} \int_{1}^{n} cx \log x \, dx + \Theta(n)$$

$$= \frac{2c}{n} \left(\left[\frac{1}{2} x^{2} \log x \right]_{1}^{n} - \left[\frac{1}{4} x^{2} \right]_{1}^{n} \right) + \Theta(n)$$

$$= \frac{2c}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{4} n^2 + \frac{1}{4} \right) + \Theta(n)$$

$$= cn \log n - \frac{cn}{2} + \frac{c}{2n} + \Theta(n)$$

$$= cn \log n - \frac{cn}{2} + \Theta(n)$$
absorbed

 $\leq c n \log n$

We can choose c > 0 s.t. $\frac{cn}{2}$ dominates $\Theta(n)$

$$\therefore D(n) = O(n \log n)$$

Balanced Binary Search Trees

Reminder: AVL Tree

Devised by Adelson-Velskii and Landis

A balanced search tree

such that

the heights(depths) of the left and right subtrees of any node

differ by at most 1

Covered in <Data Structures>

1. Type LL: Right rotation

2. Type LR: <u>Left rotation</u> then right rotation

(conversion to type LL)

Another Instance of Type LR

3. Type RR: Left rotation

4. Type RL: <u>Right rotation</u> then left rotation (conversion to type RR)

* LL과 RR, LR과 RL은 각각 symmetric

Red-Black Trees

- Every node in the search tree has a color: red or black.
- It has to satisfy the following properties
 (red-black properties = RB properties):
 - 1 Every leaf is **black**
 - 2 If a node is **red**, its children should be **black** (no two consecutive **red**s)
 - 3 In any path from the root to a leaf, the # of black nodes on the path is the same (black height)
 - ✓ Here, a leaf is not a general leaf node.

 Every null reference links to the NIL leaf node(sentinel).
 - ✓ 보통은 root가 black이라는 성질이 포함되는데 제외해도 별 문제 없음

BST to RB Tree

(a) An example binary search tree

(b) A red-black counterpart of (a)

Sentinel: An Imaginary Leaf Node

(b) A red-black counterpart of (a)

(c) Implementation of (b)

✓ NIL leaf는 구현상 매우 유용하다

Sentinel is Useful

Programming example:

NIL is a **black**-colored TreeNode object

Theorem

* black height: 루트에서 리프 노드에 이르는 경로상에서 만나는 블랙 노드의 개수(루트는 제외)

Theorem

키가 총 n개인 RB 트리의 가능한 최대 깊이는 O(log n)이다

<Proof>

키의 총 수가 $n \rightarrow$ internal node의 수가 n.

- \rightarrow 가장 이상적으로 균형잡힌 이진검색트리의 깊이는 $[\log_2 n]+1$.
- ightarrow RB 트리가 이상적으로 만들어져도 black height는 $\lfloor \log_2 n \rfloor + 1$ 를 넘을 수 없다.

RB property ②에 의해,

루트에서 리프에 이르는 경로 상에서 레드 노드가 블랙 노드보다 많을 수 없다

RB 트리의 internal node의 경로 길이는 $2(\lfloor \log_2 n \rfloor + 1)$ 를 넘을 수 없다이것은 $O(\log n)$ 이다.

Do general BST insertion, color **red** to the inserted node x, and link two NIL leaves from x

Situation after insertion: p is **black** or **red**

1. If p is black: satisfies all the RB properties. Completed!

There are only these four cases

2. If p is red: RB property ② is violated

If p is the root, change p to **black**. Completed! otherwise, repair (next page..)

root가 black이라는 제약을 없앤 뒷수습

There are only these two cases.

They are symmetric. Here I show just the left case.

Two cases depending on p's sibling s

Case 1: s is red

Case 2: s is black

Change p and s to **black**, p^2 to **red**.

Case 2: s is black

Running Time

Case 1: $O(\log n)$

Case 2: Θ(1)

 \longrightarrow O(log n) in total (considered only repairing)

Deletion

• We can **restrict to the cases** that the deleted node has

no child or only one child

- reason: <쉽게 배우는 알고리즘>(p.174) or <Introduction to Algorithms>(p.289)
- m: 삭제될 노드
- If m is red: no problem! (m has no child)
- Even when m is black, no problem if m has a child($\biguplus \subseteq \land \mid red \hookrightarrow)!$

Problematic Case

Problem occurs only when the black m has no child.

Depends on colors around *x*

Classification of Cases

Case 2

All Possible Cases

Five Groups

Five Groups

either black or red

Case *-3

Repair Operations

: either **black** or red

: node whose color changes or may change

Repair Operations

Running Time

Case 2-1: $O(\log n)$

All the other cases except Case 2-1: $\Theta(1)$

 \longrightarrow O(log n) in total (considered only repairing)

✓ In addition, intuitively think about why repairs (insertion and deletion) takes $O(\log n)$