Ajuste de curvas pelo método dos mínimos quadrados

Algoritmos Numéricos Ajuste de curvas pelo método dos mínimos quadrados Profa. Cláudia Galarda Varassin

Março de 2021

Sumário

- Motivação
- 2 Critério para obtenção da curva
- O método dos mínimos quadrados (só a ideia)

Ajuste de uma curva a um conjunto de pontos

Ajustar uma curva a um conjunto de pontos consiste em obter uma função (expressão analítica) que permita descrever a relação entre variáveis em análise.

Surge quando se tem um conjunto de pontos onde há alguma incerteza envolvida nos dados. Quer-se expressar (descobrir) a relação entre as variáveis.

Ilustrando: dado um conjunto com *n* pontos quaisquer:

x_k	x_1	<i>x</i> ₂	<i>X</i> ₃	 X _n
Уk	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	 y _n

a curva ajustada:

Ajuste de uma curva a um conjunto de pontos Critérios para obtenção da curva Ideia do método dos mínimos quadrados

Tipo de ajuste e quando fazer um ajuste... Um exemplo Escolha do modelo (tipo de curva)

Neste curso será tratado apenas o caso de ajuste com problemas envolvendo duas variáveis (x e y, por exemplo). Uma das variáveis é a variável dependente (a variável resposta, a imagem). A outra é a variável independente.

Neste curso será tratado apenas o caso de ajuste com problemas envolvendo duas variáveis (x e y, por exemplo). Uma das variáveis é a variável dependente (a variável resposta, a imagem). A outra é a variável independente.

• Como a relação entre as variáveis é conhecida somente para um conjunto de pontos ((x1, y1), (x2, y2), ···, (xn, yn)), a função do ajuste serve para se estimar/prever o valor da variável dependente (y) para os valores de x onde a imagem (y) não é conhecida. obs: chama se de extrapolação quando se estima o valor da variável dependente (resposta) para algum ponto fora do intervalo tabelado de x.

Neste curso será tratado apenas o caso de ajuste com problemas envolvendo duas variáveis (x e y, por exemplo). Uma das variáveis é a variável dependente (a variável resposta, a imagem). A outra é a variável independente.

- Como a relação entre as variáveis é conhecida somente para um conjunto de pontos ((x1, y1), (x2, y2), ···, (xn, yn)), a função do ajuste serve para se estimar/prever o valor da variável dependente (y) para os valores de x onde a imagem (y) não é conhecida. obs: chama se de extrapolação quando se estima o valor da variável dependente (resposta) para algum ponto fora do intervalo tabelado de x.
- A função do ajuste serve também se ter para uma representação gráfica da relação entre variáveis (de forma a ficar visível a dependência entre as variáveis).

Um exemplo

Exemplo extraído e adapatado do exercicio 20.24 de Chapra e Canale) O escoamento de água (em m^3/s) em um rio está relacionado com a precipitação anual de chuva (em cm). As seguintes informações foram coletadas, em vários anos, para um dado rio:

precip., (x)								
escoam., (y)	14.6	16.7	15.3	23.2	19.5	16.1	18.1	16.6

Um exemplo

Exemplo extraído e adapatado do exercicio 20.24 de Chapra e Canale) O escoamento de água (em m^3/s) em um rio está relacionado com a precipitação anual de chuva (em cm). As seguintes informações foram coletadas, em vários anos, para um dado rio:

precip., (x)								
escoam., (y)	14.6	16.7	15.3	23.2	19.5	16.1	18.1	16.6

Com estes dados, poderia se estar interessado em saber o escoamemto quando, em um dado ano, a precipitação fosse de 120 cm, por exemplo.

Poderia se buscar ajustar uma reta $f(x) = \beta_1 + \beta_2 x$

A escolha do modelo (tipo de curva)

Para se fazer o ajuste, é necessário escolher a forma funcional, isto é, o modelo (tipo da função) a ser empregado.

Exemplos:

- (1)Modelo quadrático: $f(x) = a + bx + cx^2$
- (2) Modelo exponencial: $f(x) = \beta_0 e^{\beta_1 x}$
- (3) Modelo com funções trigonométricas: f(x) =

A escolha do modelo (tipo de curva)

Para se fazer o ajuste, é necessário escolher a forma funcional, isto é, o modelo (tipo da função) a ser empregado.

Exemplos:

- (1)Modelo quadrático: $f(x) = a + bx + cx^2$
- (2)Modelo exponencial: $f(x) = \beta_0 e^{\beta_1 x}$
- (3) Modelo com funções trigonométricas: f(x) =

Neste curso será tratado apenas o caso onde as funções são escritas como uma combinação linear de funções mais simples, ou seja, funções do tipo:

$$f(x) = \beta_1 g_1(x) + \beta_2 g_2(x) + \dots + \beta_i g_i(x) + \dots + \beta_m g_m(x)$$

As $g_i(x)$ são conhecidas como funções de base.

Para obter a função de ajuste é preciso, primeiramente, escolher as funções de base para, em seguida, determinar os coeficientes (β_i) do ajuste.

Obs: notar que a f(x) acima é um modelo matemático linear nos coeficientes pois os coeficientes β_i aparecem linearmente arranjados

A escolha das funções de base

Como escolher as $g_i(x)$?

A escolha das funções $g_1(x), g_2(x), \dots, g_m(x)$ pode se basear:

- No modelo matemático já conhecido para descrever aquele fenômeno (quando se trata de um fenômeno já estudado).
 Exemplos: corrente elétrica (i) x tensão (V)
 crescimento de bacteria x temperatura
- No diagrama de dispersão dos pontos. (quando não há nenhum um conhecimento a priori sobre o fenômeno)

Ajuste de uma curva a um conjunto de pontos Critérios para obtenção da curva Ideia do método dos mínimos quadrados

Tipo de ajuste e quando fazer um ajuste.. Um exemplo Escolha do modelo (tipo de curva)

Voltando ao exemplo escoamento de água (em m^3/s) e a precipitação anual de chuva (em cm).

(x) precip.	88.9	108.5	104.1	139.7	127.0	94.0	116.8	99.1
(y) escoam.	14.6	16.7	15.3	23.2	19.5	16.1	18.1	16.6

Ajuste de uma curva a um conjunto de pontos Critérios para obtenção da curva Ideia do método dos mínimos quadrados

Tipo de ajuste e quando fazer um ajuste. Um exemplo Escolha do modelo (tipo de curva)

Voltando ao exemplo escoamento de água (em m^3/s) e a precipitação anual de chuva (em cm).

(x) precip.	88.9	108.5	104.1	139.7	127.0	94.0	116.8	99.1
(y) escoam.	14.6	16.7	15.3	23.2	19.5	16.1	18.1	16.6

Dados os pontos $P:((x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n))$ e escolhido o tipo da função

Como obter o curva de ajuste?

É preciso encontrar a melhor função que se ajusta aos pontos.

O que é a melhor função?

Critério?

Critério?

O resíduo em um ponto x_k é definido por:

$$r_k = f(x_k) - y_k$$

É a diferença entre o modelo (valor fornecido pela função ajustada) e a observação.

$$r_k = (\beta_1 g_1(x_k) + \beta_2 g_2(x_k) + \dots + \beta_m g_m(x_k)) - y_k$$

Critério?

O resíduo em um ponto x_k é definido por:

$$r_k = f(x_k) - y_k$$

É a diferença entre o modelo (valor fornecido pela função ajustada) e a observação.

$$r_k = (\beta_1 g_1(x_k) + \beta_2 g_2(x_k) + \cdots + \beta_m g_m(x_k)) - y_k$$

Que critério adotar? Tornar "pequeno" todos os resíduos?

Ideia 1: tornar mínima a soma dos resíduos.

$$Min(\sum_{k=1}^{n} r_k) = Min(\sum_{k=1}^{n} (f(x_k) - y_k))$$

Problema: pode haver cancelamento mútuo.

Ideia 1: tornar mínima a soma dos resíduos.

$$Min(\sum_{k=1}^{n} r_k) = Min(\sum_{k=1}^{n} (f(x_k) - y_k))$$

Problema: pode haver cancelamento mútuo.

Ilustrando: ao ajustar uma reta a dois pontos, haverá várias soluções com soma = 0, no entanto, só uma é a solução de interesse (obs: qualquer reta que passa pelo ponto médio resulta em soma = 0).

Figura: As duas retas têm a mesma soma mínima (soma = 0)

Ideia 2: tornar mínima a soma dos resíduos, em valor absoulto (em módulo).

$$Min(\sum_{k=1}^{n} |r_k|)$$

Problema: a obtenção do mínimo não é simples matematicamente

Ideia 2: tornar mínima a soma dos resíduos, em valor absoulto (em módulo).

$$Min(\sum_{k=1}^{n} |r_k|)$$

Problema: a obtenção do mínimo não é simples matematicamente

ldeia 3: tornar mínima a soma dos quadrados dos resíduos.

$$Min(\sum_{k=1}^{n} r_k^2)$$

Tornar mínima a
$$S_q = \sum_{k=1}^n r_k^2$$
 isto é $\Rightarrow Min(\sum_{k=1}^n r_k^2)$ onde $r_k = (\beta_1 g_1(x_k) + \beta_2 g_2(x_k) + \dots + \beta_m g_m(x_k)) - y_k$
$$S_q = ((\beta_1 g_1(x_1) + \beta_2 g_2(x_1) + \dots + \beta_m g_m(x_1)) - y_1)^2 + ((\beta_1 g_1(x_2) + \beta_2 g_2(x_2) + \dots + \beta_m g_m(x_2)) - y_2)^2 + \vdots$$

$$\vdots$$

$$+ ((\beta_1 g_1(x_n) + \beta_2 g_2(x_n) + \dots + \beta_m g_m(x_n)) - y_n)^2$$

Suponha dados os seguintes pontos e se queira ajustar uma função do tipo $f(x) = \beta_1 ln(x)$

Illustrando: suponha que
$$f(x)=\beta_1 ln(x)$$
 (caso onde $g_1=ln(x)$.) Tornar mínima S_q isto é \Rightarrow $Min(\sum\limits_{k=1}^n r_k^2)$
$$S_q=$$

$$(\beta_1 g_1(x_1)-y_1)^2 + (\beta_1 g_1(x_2)-y_2)^2 + (\beta_1 g_1(x_n)-y_n)^2$$

$$Min(\sum_{k=1}^{n} r_k^2)$$
 onde $Sq = (\sum_{k=1}^{n} r_k^2)$

$$S_q(\beta_1) = (\beta_1 g_1(x_1) - y_1)^2 + (\beta_1 g_1(x_2) - y_2)^2 + \dots + (\beta_1 g_1(x_n) - y_n)^2$$

Substituindo a função $g_1(x)$ por ln(x)

$$S_q(\beta_1) = (\beta_1 \ln(x_1) - y_1)^2 + (\beta_1 \ln(x_2) - y_2)^2 + \dots + (\beta_1 \ln(x_n) - y_n)^2$$

Tornar mínima $S_q(\beta_1)$

Fazendo a minimização ($\frac{dS_q}{d\beta_1}=0$) o mínimo de Sq ocorre para $\beta_1=1.13$ A função ajustada é: f(x)=1.13ln(x)

RESUMINDO:

Dados um conjunto de n pontos, no plano, é possível obter uma função que descreva a relação entre a variável x e y pelo método dos mínimos quadrados.

O processo consiste em:

- Definir o tipo do modelo para o ajuste.
 O método permite ajustar apenas funções do tipo:
 f(x) = β₁g₁(x) + β₂g₂(x) + ··· + β_ig_i(x) + ··· + β_mg_m(x)
- O Critério é: minimizar $(\sum_{k=1}^{n} r_k^2)$ onde $r_k = (\beta_1 g_1(x_k) + \beta_2 g_2(x_k) + \dots + \beta_m g_m(x_k)) - y_k$
- Resolver o problema do ajuste é resolver o problema de otimização $Min(\sum_{k=1}^{n}r_{k}^{2})$

Bibliografia Básica

- [1] Algoritmos Numéricos, Frederico F. Campos, Filho 2^a Ed., Rio de Janeiro, LTC, 2007.
- [2] Métodos Numéricos para Engenharia, Steven C. Chapa e Raymond P. Canale, Ed. McGraw-Hill, 5^a Ed., 2008.
- [3] Cálculo Numérico Aspectos Teóricos e Computacionais, Márcia A. G. Ruggiero e Vera Lúcia da Rocha Lopes, Ed. Pearson Education. 2ª Ed., 1996.