**Example 1** (Section 1.3). Sketch the least positive angle  $\theta$  and find the values of the six trigonometric functions of  $\theta$  if the terminal side of an angle  $\theta$  in standard position is defined by

$$-\sqrt{5}x + y = 0$$

where  $x \geq 0$ .

The graph of  $-\sqrt{5}x + y = 0$  is...



The legs of the triangle is x = 1 and  $y = \sqrt{5}$ . The hypotenuse of the triangle is

$$r = \sqrt{1^2 + \left(\sqrt{5}\right)^2} = \sqrt{6}.$$

$$\cos(\theta) = \frac{1}{\sqrt{6}}$$

$$\tan(\theta) = \frac{\sqrt{5}}{1}$$

$$\sec(\theta) = \frac{\sqrt{6}}{1}$$

$$\csc(\theta) = \frac{\sqrt{6}}{\sqrt{5}}$$

$$\csc(\theta) = \frac{\sqrt{6}}{\sqrt{5}}$$

**Example 2** (Section 1.4). Find the exact value of each of the remaining trigonometric functions of  $\theta$ .

$$\sec(\theta) = -3$$

where  $\sin(\theta) > 0$ .

Since  $\sec(\theta) = -3$  and  $\sin(\theta) > 0$  we know that x = -1 and r = 3. To find y we solve the equation

$$(-1)^2 + y^2 = 3^2$$

and we will get  $y = \sqrt{8}$  or  $2\sqrt{2}$ .



With this triangle we have:

$$\cos(\theta) = \frac{-1}{3}$$

$$\tan(\theta) = \frac{\sqrt{8}}{-1}$$

$$\sec(\theta) = \frac{3}{-1}$$

$$\sin(\theta) = \frac{\sqrt{8}}{3}$$

$$\cot(\theta) = \frac{-1}{\sqrt{8}}$$

$$\csc(\theta) = \frac{3}{\sqrt{8}}$$

**Example 3** (Section 2.1). Write the following function in terms of its cofunction. Assume that all angles in which an unknown appears are acute angels.

$$\sec(\beta + 15^{\circ})$$

We know that  $\cos(\theta) = \sin(90 - \theta)$ . Further, we know  $\cos(A) = \sin(B)$  when A + B = 90. Here we have an  $A = \beta + 15$  need to find B.

$$A+B=90$$
 
$$(\beta+15)+B=90$$
 
$$B=90-\beta-15$$
 
$$B=75-\beta$$

$$\sec(\beta + 15) = \frac{1}{\cos(\beta + 15)}$$
$$= \frac{1}{\sin(75 - \beta)}$$
$$= \csc(75 - \beta)$$

**Example 4** (Section 2.2). Find reference angle:

- The reference angle for  $92^{\circ}$  is 180 92 = 88.
- The reference angle for  $218^{\circ}$  is 218 180 = 38.
- The coterminal angle for  $-150^{\circ}$  is -150 + 360 = 210 and the reference angle for  $-150^{\circ}$  is 210 180 = 30.
- The coterminal angle for  $-45^{\circ}$  is -45+360=315 and the reference angle for  $-45^{\circ}$  is 360-315=45.