Table of Contents

Title:Control System-Second Order System:open loop with different values	. 1
This Document has equation for DC Motor	1
Math analysis	. 1
IVT	. 1
Analysis:	. 5
Control System-Second Order System:varying zeta value open system	. 5
Analysis	14
This Document has movement of poles for Second Order System	14
Analysis	16
This Document has movement of poles for Second Order System	16
Negtaive Feedback	
Positive Feedback	
Analysis	30
Analysis	36

Title:Control System-Second Order System:open loop with different values

```
%Author:Ravikumar M Pise
%PS No:99003747
%Date:7/04/2021
%Version:1.0
```

This Document has equation for DC Motor

Math analysis

IVT

```
%for impulse is 0
%for step is 0
%%FVT
%for impulse is K/((b*L)+(R*J))=0.1667
```

```
for step is K/((R*b)+(K*K))=0.0999001
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF = tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
sys = tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))])
subplot(3,3,1)
step(sys)
subplot(3,3,2)
impulse(sys)
subplot(3,3,3)
%S = stepinfo(sys)
[z,p,k] = tf2zp([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))])
zplane(z,p)
S = stepinfo(sys)
J = 0.1;
b = 1;
K = 0.1;
R = 10;
L = 5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
sys = tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))])
subplot(3,3,4)
step(sys)
subplot(3,3,5)
impulse(sys)
subplot(3,3,6)
%S = stepinfo(sys)
[z2,p2,k2] = tf2zp([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]
zplane(z2,p2)
S = stepinfo(sys)
J = 0.01;
b = 0.01;
K = 0.1;
R = 0.1;
L = 0.05;
%TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
sys = tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))])
subplot(3,3,7)
step(sys)
subplot(3,3,8)
impulse(sys)
subplot(3,3,9)
%S = stepinfo(sys)
[z1,p1,k1] = tf2zp([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]
zplane(z1,p1)
S = stepinfo(sys)
```

sys = 200 _____ $s^2 + 12 s + 220$ Continuous-time transfer function. z =0×1 empty double column vector p =-6.0000 +13.5647i -6.0000 -13.5647i k =200 S = struct with fields: RiseTime: 0.0993 SettlingTime: 0.5669 SettlingMin: 0.8527 SettlingMax: 1.1356 Overshoot: 24.9123 Undershoot: 0 Peak: 1.1356 PeakTime: 0.2303 sys = 0.2 $s^2 + 12 s + 20.02$ Continuous-time transfer function. z2 =

0×1 empty double column vector

p2 =

```
-9.9975
   -2.0025
k2 =
    0.2000
S =
  struct with fields:
        RiseTime: 1.1351
    SettlingTime: 2.0652
     SettlingMin: 0.0090
     SettlingMax: 0.0100
      Overshoot: 0
      Undershoot: 0
            Peak: 0.0100
        PeakTime: 3.6758
sys =
       200
  s^2 + 3 s + 22
Continuous-time transfer function.
z1 =
  0×1 empty double column vector
p1 =
  -1.5000 + 4.4441i
  -1.5000 - 4.4441i
k1 =
   200
S =
  struct with fields:
```

RiseTime: 0.2882

SettlingTime: 2.3810
SettlingMin: 8.0006
SettlingMax: 12.2393
Overshoot: 34.6325
Undershoot: 0
Peak: 12.2393
PeakTime: 0.7061

Analysis:

1.1st response of system is accurate because settling time is less 2.1st response speed is high because rise time is less 3.2nd response is more stable because overshoot is zero

Control System-Second Order System:varying zeta value open system

This Document has equation for Second Order System

```
%w=1
jeta=1;
TF=tf([1],[1,(2*jeta),1])
sys = tf([1],[1,(2*jeta),1])
```

```
figure
subplot(2,3,1)
S = stepinfo(sys)
[z,p,k] = tf2zp([1],[1,(2*jeta),1])
zplane(z,p)
jeta=0.7;
TF=tf([1],[1,(2*jeta),1])
sys = tf([1],[1,(2*jeta),1])
%hold on
subplot(2,3,2)
S = stepinfo(sys)
[z,p,k] = tf2zp([1],[1,(2*jeta),1])
zplane(z,p)
jeta=1.5;
TF=tf([1],[1,(2*jeta),1])
sys = tf([1],[1,(2*jeta),1])
subplot(2,3,3)
S = stepinfo(sys)
[z,p,k] = tf2zp([1],[1,(2*jeta),1])
zplane(z,p)
jeta=-1;
TF=tf([1],[1,(2*jeta),1])
sys = tf([1],[1,(2*jeta),1])
subplot(2,3,4)
S = stepinfo(sys)
[z,p,k] = tf2zp([1],[1,(2*jeta),1])
zplane(z,p)
jeta=-0.5;
TF=tf([1],[1,(2*jeta),1])
sys = tf([1],[1,(2*jeta),1])
subplot(2,3,5)
S = stepinfo(sys)
[z,p,k] = tf2zp([1],[1,(2*jeta),1])
zplane(z,p)
jeta=-1.5;
TF=tf([1],[1,(2*jeta),1])
sys = tf([1],[1,(2*jeta),1])
subplot(2,3,6)
S = stepinfo(sys)
[z,p,k] = tf2zp([1],[1,(2*jeta),1])
zplane(z,p)
figure
jeta=0;
TF=tf([1],[1,(2*jeta),1])
sys = tf([1],[1,(2*jeta),1])
S = stepinfo(sys)
[z,p,k] = tf2zp([1],[1,(2*jeta),1])
```

```
zplane(z,p)
TF =
        1
  s^2 + 2 s + 1
Continuous-time transfer function.
sys =
        1
  s^2 + 2 s + 1
Continuous-time transfer function.
S =
  struct with fields:
        RiseTime: 3.3579
    SettlingTime: 5.8339
     SettlingMin: 0.9000
     SettlingMax: 0.9994
       Overshoot: 0
      Undershoot: 0
            Peak: 0.9994
        PeakTime: 9.7900
z =
  0×1 empty double column vector
p =
    -1
    -1
k =
     1
TF =
```

1

7

```
s^2 + 1.4 s + 1
Continuous-time transfer function.
sys =
        1
  s^2 + 1.4 s + 1
Continuous-time transfer function.
S =
  struct with fields:
       RiseTime: 2.1268
    SettlingTime: 5.9789
     SettlingMin: 0.9001
     SettlingMax: 1.0460
       Overshoot: 4.5986
      Undershoot: 0
           Peak: 1.0460
       PeakTime: 4.4078
z =
  0×1 empty double column vector
p =
 -0.7000 + 0.7141i
  -0.7000 - 0.7141i
k =
     1
TF =
      1
```

Continuous-time transfer function.

 $s^2 + 3 s + 1$

sys = 1 $s^2 + 3 s + 1$ Continuous-time transfer function. S = struct with fields: RiseTime: 5.8584 SettlingTime: 10.6547 SettlingMin: 0.9012 SettlingMax: 0.9999 Overshoot: 0 Undershoot: 0 Peak: 0.9999 PeakTime: 25.9983 z =0×1 empty double column vector p = -2.6180 -0.3820 k = 1 TF =1 ----s^2 - 2 s + 1 Continuous-time transfer function. sys =

1

s^2 - 2 s + 1

S = struct with fields: RiseTime: NaN SettlingTime: NaN SettlingMin: NaN SettlingMax: NaN Overshoot: NaN Undershoot: NaN Peak: Inf PeakTime: Inf z =0×1 empty double column vector p =1 1 k = 1 TF =1 _____ s^2 - s + 1 Continuous-time transfer function. sys = 1 s^2 - s + 1 Continuous-time transfer function. S =

struct with fields:

Continuous-time transfer function.

```
RiseTime: NaN
    SettlingTime: NaN
     SettlingMin: NaN
     SettlingMax: NaN
       Overshoot: NaN
      Undershoot: NaN
           Peak: Inf
       PeakTime: Inf
z =
  0×1 empty double column vector
p =
  0.5000 + 0.8660i
   0.5000 - 0.8660i
k =
     1
TF =
  s^2 - 3s + 1
Continuous-time transfer function.
sys =
  s^2 - 3s + 1
Continuous-time transfer function.
S =
  struct with fields:
        RiseTime: NaN
    SettlingTime: NaN
     SettlingMin: NaN
     SettlingMax: NaN
```

Overshoot: NaN

Undershoot: NaN Peak: Inf PeakTime: Inf z = 0×1 empty double column vector p =2.6180 0.3820 k =1 TF =1 s^2 + 1 Continuous-time transfer function. sys = 1 s^2 + 1 Continuous-time transfer function. S = struct with fields: RiseTime: NaN SettlingTime: NaN SettlingMin: NaN SettlingMax: NaN Overshoot: NaN

Undershoot: NaN
 Peak: Inf
PeakTime: Inf

z =

0×1 empty double column vector

p =

0.0000 + 1.0000i 0.0000 - 1.0000i

k =

1

Analysis

To get stable system zeta value should be greater than zero

```
% if zeta value is between 0 to 1-->poles are conjugate
% if zeta is greater than 1-->poles are real stable
% if zeta is less then 1 -->Poles are real and unstable
```

This Document has movement of poles for Second Order System

```
zeros = 0;
poles = [-10+20i -10-20i];
gain = 1;
sys = zpk(zeros,poles,gain)
hold on
pzmap(sys)

zeros = 0;
poles = [-10+10i -10-10i];
gain = 1;
```

```
sys = zpk(zeros,poles,gain)
pzmap(sys)
zeros = 0;
poles = [-5+20i -5-20i];
gain = 1;
sys = zpk(zeros,poles,gain)
pzmap(sys)
zeros = 0;
poles = [-5+10i -5-10i];
gain = 1;
sys = zpk(zeros,poles,gain)
pzmap(sys)
sys =
        s
 (s^2 + 20s + 500)
Continuous-time zero/pole/gain model.
sys =
  (s^2 + 20s + 200)
Continuous-time zero/pole/gain model.
sys =
        S
 (s^2 + 10s + 425)
Continuous-time zero/pole/gain model.
sys =
  (s^2 + 10s + 125)
Continuous-time zero/pole/gain model.
```


Analysis

```
% 1.when the pole is moving lef overshoot decreses, Frequency increses
% 2.zeta value is gettting incresed, means damping is less, systemwill
be stable

% In Vertical Shifting
% 1.Overshoot increases, damping decreases

% diagonal Shifting
% Overshoot, Damping will be same
% Frequency Increases
```

This Document has movement of poles for Second Order System

```
zeros = 0;
poles = [-10 -5];
gain = 1;
sys = zpk(zeros,poles,gain)
hold on
pzmap(sys)
```

```
zeros = 0;
poles = [-9+5i -5+5i];
gain = 1;
sys = zpk(zeros,poles,gain)
hold on
pzmap(sys)
zeros = 0;
poles = [-15+2i -20+2i];
gain = 1;
sys = zpk(zeros,poles,gain)
hold on
pzmap(sys)
zeros = 0;
poles = [-15-2i -20-2i];
gain = 1;
sys = zpk(zeros,poles,gain)
hold on
pzmap(sys)
zeros = 0;
poles = [-15-2i -20-2i];
gain = 1;
sys = zpk(zeros,poles,gain)
hold on
pzmap(sys)
sys =
  (s+10) (s+5)
Continuous-time zero/pole/gain model.
Warning: This zpk model has a complex gain or some complex zeros or
 poles that
do not come in conjugate pairs.
sys =
  (s+(9-5i)) (s+(5-5i))
Continuous-time zero/pole/gain model.
Warning: This zpk model has a complex gain or some complex zeros or
 poles that
do not come in conjugate pairs.
```

sys =

Continuous-time zero/pole/gain model.

Warning: This zpk model has a complex gain or some complex zeros or poles that

do not come in conjugate pairs.

```
sys =
```

```
s
-----
(s+(15+2i)) (s+(20+2i))
```

Continuous-time zero/pole/gain model.

Negtaive Feedback

```
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=10
sys = CF*TF
NCTF1=feedback(sys,1)
subplot(3,2,1)
step(NCTF1)
title("Step with negative")
subplot(3,2,2)
impulse(NCTF1)
title("impulse with negative")
S = stepinfo(NCTF1)
[wn,zeta]=damp(NCTF1)
J = 0.01;
b = 0.1;
K = 1;
```

```
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=tf([1,0],[1])
sys = CF*TF
NCTF2=feedback(sys,1)
subplot(3,2,3)
step(NCTF2)
title("Step with diff")
subplot(3,2,4)
impulse(NCTF2)
title("impulse with diff")
S = stepinfo(NCTF2)
[wn,zeta]=damp(NCTF2)
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=tf([1],[1,0])
sys = CF*TF
NCTF3=feedback(sys,1)
subplot(3,2,5)
step(NCTF3)
title("Step with integrator")
subplot(3,2,6)
impulse(NCTF3)
title("impulse with integrator")
S = stepinfo(NCTF3)
[wn,zeta]=damp(NCTF3)
CF =
    10
sys =
        2000
  s^2 + 12 s + 220
Continuous-time transfer function.
NCTF1 =
        2000
```

```
s^2 + 12 s + 2220
Continuous-time transfer function.
S =
 struct with fields:
       RiseTime: 0.0245
   SettlingTime: 0.6206
     SettlingMin: 0.4993
    SettlingMax: 1.5026
      Overshoot: 66.7860
     Undershoot: 0
           Peak: 1.5026
       PeakTime: 0.0667
wn =
  47.1169
  47.1169
zeta =
   0.1273
   0.1273
CF =
 S
Continuous-time transfer function.
sys =
      200 s
  _____
 s^2 + 12 s + 220
Continuous-time transfer function.
NCTF2 =
```

200 s

 $s^2 + 212 s + 220$

Continuous-time transfer function. S = struct with fields: RiseTime: 0 SettlingTime: 3.7813 SettlingMin: 6.5963e-04 SettlingMax: 0.9234 Overshoot: Inf Undershoot: 0 Peak: 0.9234 PeakTime: 0.0253 wn = 1.0429 210.9571 zeta = 1 1 CF =1 S Continuous-time transfer function. sys = 200 _____ $s^3 + 12 s^2 + 220 s$ Continuous-time transfer function.

NCTF3 =

200 -----s^3 + 12 s^2 + 220 s + 200

Continuous-time transfer function.

S =

struct with fields:

RiseTime: 2.2719
SettlingTime: 4.1463
SettlingMin: 0.9044
SettlingMax: 0.9993
Overshoot: 0
Undershoot: 0

Peak: 0.9993
PeakTime: 7.6683

wn =

0.9549 14.4725 14.4725

zeta =

1.0000 0.3816 0.3816

Positive Feedback

```
figure
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=10
sys = CF*TF
PCTF1=feedback(sys,-1)
subplot(3,2,1)
step(PCTF1)
title("Step with positive")
subplot(3,2,2)
impulse(PCTF1)
title("impulse with positive")
S = stepinfo(PCTF1)
[wn,zeta]=damp(PCTF1)
J = 0.01;
b = 0.1;
```

```
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=tf([1,0],[1])
sys = CF*TF
PCTF2=feedback(sys,-1)
subplot(3,2,3)
step(PCTF2)
title("Step with diff")
subplot(3,2,4)
impulse(PCTF2)
title("impulse with diff")
S = stepinfo(PCTF2)
[wn,zeta]=damp(PCTF2)
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=tf([1],[1,0])
sys = CF*TF
PCTF3=feedback(sys,-1)
subplot(3,2,5)
step(PCTF3)
title("Step with integrator")
subplot(3,2,6)
impulse(PCTF3)
title("impulse with integrator")
S = stepinfo(PCTF3)
[wn,zeta]=damp(PCTF3)
CF =
    10
sys =
        2000
  s^2 + 12 s + 220
Continuous-time transfer function.
PCTF1 =
```

```
2000
 s^2 + 12 s - 1780
Continuous-time transfer function.
S =
 struct with fields:
       RiseTime: NaN
   SettlingTime: NaN
    SettlingMin: NaN
    SettlingMax: NaN
      Overshoot: NaN
     Undershoot: NaN
           Peak: Inf
       PeakTime: Inf
wn =
  36.6146
  48.6146
zeta =
   -1
    1
CF =
 s
Continuous-time transfer function.
sys =
      200 s
  _____
 s^2 + 12 s + 220
Continuous-time transfer function.
PCTF2 =
       200 s
```

 $s^2 - 188 s + 220$

 ${\it Continuous-time\ transfer\ function.}$

S =

struct with fields:

RiseTime: NaN
SettlingTime: NaN
SettlingMin: NaN
SettlingMax: NaN
Overshoot: NaN
Undershoot: NaN

Peak: Inf
PeakTime: Inf

wn =

1.1776 186.8224

zeta =

-1

-1

CF =

1

s

Continuous-time transfer function.

sys =

200 -----s^3 + 12 s^2 + 220 s

Continuous-time transfer function.

PCTF3 =

200 -----s^3 + 12 s^2 + 220 s - 200 Continuous-time transfer function.

S =

struct with fields:

RiseTime: NaN
SettlingTime: NaN
SettlingMin: NaN
SettlingMax: NaN
Overshoot: NaN
Undershoot: NaN
Peak: Inf

PeakTime: Inf

wn =

0.8653 15.2030 15.2030

zeta =

-1.0000 0.4231 0.4231

figure
hold on
pzmap(NCTF1)
pzmap(NCTF2)
pzmap(NCTF3)
pzmap(PCTF1)
pzmap(PCTF1)
pzmap(PCTF3)

Analysis

by adding positive feedback with integrator damping will be less, so the system will be stable

% Overshooot is infinity,in differentiator closed loop, system is unstable

```
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=1;
sys1 = CF*TF;
subplot(4,2,1)
step(sys1)
title("Step ")
subplot(4,2,2)
impulse(sys1)
title("Impulse")
S = stepinfo(sys1);
[wn,zeta]=damp(sys1)
p1=pole(sys1)
```

```
z1=zero(sys1)
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=10;
sys2 = CF*TF;
subplot(4,2,3)
step(sys2)
title("Step with gain")
subplot(4,2,4)
impulse(sys2)
title("impulse with gain")
S = stepinfo(sys2)
[wn,zeta]=damp(sys2)
p2=pole(sys2)
z2=zero(sys2)
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=tf([1,0],[1]);
sys3 = CF*TF;
subplot(4,2,5)
step(sys3)
title("Step with zero ")
subplot(4,2,6)
impulse(sys3)
title("impulse with zero ")
S = stepinfo(sys3)
[wn,zeta]=damp(sys3)
p3=pole(sys3)
z3=zero(sys3)
J = 0.01;
b = 0.1;
K = 1;
R = 1;
L = 0.5;
TF=tf([K/(J*L)],[1,((b/J)+(R/L)),(((K*K)+(R*b))/(L*J))]);
CF=tf([1],[1,0]);
sys4 = CF*TF;
```

```
subplot(4,2,7)
step(sys4)
title("Step with pole ")
subplot(4,2,8)
impulse(sys4)
title("impulse with pole ")
S = stepinfo(sys4)
[wn,zeta]=damp(sys4)
p4=pole(sys4)
z4=zero(sys4)
wn =
   14.8324
   14.8324
zeta =
    0.4045
    0.4045
p1 =
  -6.0000 +13.5647i
  -6.0000 -13.5647i
z1 =
  0×1 empty double column vector
S =
  struct with fields:
        RiseTime: 0.0993
    SettlingTime: 0.5669
     SettlingMin: 8.5269
     SettlingMax: 11.3557
       Overshoot: 24.9123
      Undershoot: 0
            Peak: 11.3557
        PeakTime: 0.2303
wn =
   14.8324
   14.8324
```

```
zeta =
    0.4045
    0.4045
p2 =
  -6.0000 +13.5647i
  -6.0000 -13.5647i
z2 =
  0×1 empty double column vector
S =
  struct with fields:
        RiseTime: 0
    SettlingTime: 0.6520
     SettlingMin: -2.0155
     SettlingMax: 8.0919
       Overshoot: Inf
      Undershoot: Inf
            Peak: 8.0919
        PeakTime: 0.0844
wn =
   14.8324
   14.8324
zeta =
    0.4045
    0.4045
p3 =
  -6.0000 +13.5647i
 -6.0000 -13.5647i
z3 =
```

0

```
S =
  struct with fields:
        RiseTime: NaN
    SettlingTime: NaN
     SettlingMin: NaN
     SettlingMax: NaN
       Overshoot: NaN
      Undershoot: NaN
           Peak: Inf
        PeakTime: Inf
wn =
         0
   14.8324
   14.8324
zeta =
   -1.0000
   0.4045
    0.4045
p4 =
  0.0000 + 0.0000i
  -6.0000 +13.5647i
  -6.0000 -13.5647i
z4 =
  0×1 empty double column vector
```


figure
hold on
pzmap(sys1)
pzmap(sys2)
pzmap(sys3)
pzmap(sys4)

Analysis

without gain-->Complex conjugate poles

- % when we add differentiator, with different constant values, the Transfer function is settling at zero in step response
- % Poles are getting changed when we change constant values
- % Pole Location is not getting changed irrespective of controller taken into consederation
- % By adding defferential controller, IVT changes from 0 to some value.
- % FVT remains same for impulse response.
- % by adding integrator in step response the system is not settling.

Published with MATLAB® R2020b