Zápočtová úloha z předmětu KIV/ZSWI

DOKUMENT SPECIFIKACE POŽADAVKŮ

28. 3. 2018

Tým: RLP

Členové:

Tomáš Rozsypal rotosi@students.zcu.cz
Michal Linha mlinha@students.zcu.cz
Lukáš Pavlík lpavlik@students.zcu.cz

Eye Tracker

Dokument specifikace požadavků

pro Eye Tracker

Verze 3.1

Historie dokumentu

Datum	Verze	Popis	Autor
13. 3. 2018	1.0	Úvodní verze	Rozsypal Tomáš
20. 3. 2018	2.0	Úprava specifikací	Rozsypal Tomáš
26. 3. 2018	3.0	Úprava dle zadavatele	Rozsypal Tomáš
27. 3. 2018	3.1	Podpisová verze	Rozsypal Tomáš

Obsah

1.	1. Úvod				
	1.1	Předmět specifikace			
	1.2	Typografické konvence			
	1.3	Cílová skupina			
	1.4	Rozsah projektu			
	1.5	Odkazy			
2.	Obe	cný popis			
	2.1	Kontext systému			
	2.2	Funkce produktu			
	2.3	Uživatelé			
	2.4	Provozní prostředí			
	2.5	Omezení návrhu a implementace			
	2.6	Uživatelská dokumentace			
	2.7	Předpoklady a závislosti			
3.	3. Funkce systému				
		Nastavení kamery			
	3.1.				
	3.1.	2 Události a odpovědi			
1		Kalibrace kamery			
	3.2.	· · · · · · · · · · · · · · · · · · ·			
	3.2.	2 Události a odpovědi			
	3.3	Načtení nových obrázků do aplikace			
	3.3.				
	3.3.				
	3.4	Výběr obrázků			
	3.4.				
	3.4.	2 Události a odpovědi			
•		Vykreslení mřížky.			
	3.5.				
	3.5.				
	3.6	Výběr pole v mřížce			
	3.6.	1 Popis a priorita			
	3.6.				
4.	Pož	adavky na vnější rozhraní			
4.1 Uživatelská rozhraní					
	4.2	Hardwarová rozhraní			
	43	Softwarová rozhraní			

1. Úvod

1.1 Předmět specifikace

Tato specifikace popisuje software pro Eye Tracker umožňující výběr obrázků z množiny obrázků zobrazených na monitoru. Software je vytvářen v rámci předmětu KIV/ZSWI.

Projekt má do budoucna za úkol pomoci lidem bez možnosti pohybu v komunikaci s okolním světem.

1.2 Typografické konvence

Pro odlišení jednotlivých významných prvků v textu je použita konvence:

Názvy komponent v grafickém uživatelském rozhraní jsou psány kurzívou

1.3 Cílová skupina

Tato specifikace je určena pro zadavatele projektu, pro cvičícího učitele předmětu ZSWI a pro náš tým. Tento dokument poskytuje základní popis toho, co má systém dělat, jak bude vypadat, na kterých knihovnách bude záviset a o platformě, na které poběží.

1.4 Rozsah projektu

Hlavním účelem programu je umožnit uživateli vybrat jeden nebo více obrázků z množiny obrázků na monitoru pouze pomocí určení směru pohledu a následného mrknutí). Obrázky představují činnosti nebo potřeby člověka, například: obrázek jídla znamená, že uživatel má hlad atd.

Samotný Eye Tracker reaguje pouze na pohyb oka a na tlačítko pro ukončení aplikace. Uživatelské rozhraní aplikace je blíže popsané v kapitole 4.1.

1.5 Odkazy

Veškeré informace k softwaru Pupil jsou k dispozici na uložišti GitHub:

Moritz Kassner, William Patera, Pupil Github Repository - https://github.com/pupil-labs/pupil

Tým Carel - předmět ZSWI 2016/2017 - https://github.com/teamCarel/EyeTracker

2. Obecný popis

2.1 Kontext systému

Tento systém je založen na open-source platformě Pupil a je vyvíjen jako plugin do Pupillabs. Pupil je software určený ke sledování a nahrávání pohybu zorničky v předem definované oblasti jednoznačně určené kalibrací kamery. Systém obsahuje jednoduché uživatelské rozhraní pro nastavení, kalibraci a výběr obrázků, a také komponentu pro vybrání konkrétního obrázku nebo konkrétní posloupnosti obrázků z matice podle zaměření zorničky uživatele. Tento projekt je nutné vyvíjet jako plugin do Pupil softwaru.

K dispozici je projekt z minulého roku, který vyvíjel tým Carel. Jejich projekt fungoval jen na jejich počítači s linuxovým systémem. Náš systém je určený pro domácí použití koncových uživatelů, proto musí být přenositelný.

Na obrázku 1 je kontextový diagram, který popisuje tento projekt.

Obr. 1. Kontextový diagram

2.2 Funkce produktu

- Grafické uživatelské rozhraní.
- Výběr velikosti obrázkové matice.
- Výběr vlastních obrázků.
- Vyhodnocení cílového obrázku podle souřadnic pohledu očí.
- Potvrzení výběru obrázku pomocí mrknutí.

2.3 Uživatelé

Produkt je určen pro uživatele, pro které je nejsnazší komunikovat pomocí očí. Tito uživatelé mohou potřebovat pomoct se spuštěním a kalibrací aplikace, v závislosti na jejich imobilitě.

Pro asistenty je vyžadována co nejjednodušší instalace. Je nutné přečtení uživatelské dokumentace. Ovládání aplikace nevyžaduje žádné specifické dovednosti.

2.4 Provozní prostředí

Výsledný produkt musí být spustitelný na počítačích se systémem Windows 10/64bit. Nejvyšší priorita.

2.5 Omezení návrhu a implementace

Implementace bude provedena formou pluginu do systému Pupil-labs.

2.6 Uživatelská dokumentace

S projektem bude dodáván uživatelský manuál s popisem funkcí a návodem k použití. Ve spuštěné aplikaci bude tlačítko pro nápovědu k ovládání aplikace.

2.7 Předpoklady a závislosti

Závislost na Pupil-labs v1.5-12.

3. Funkce systému

3.1 Nastavení kamery

3.1.1 Popis a priorita

Funkce zobrazí pohled kamery, která snímá oko, a její možná nastavení jako obraz kamery, oblast zájmu a algoritmus. Celá tato funkce je převzatá od Pupil.

Priorita vysoká.

3.1.2 Události a odpovědi

Proces nastavení kamery lze spustit opakovaně, výsledný stav je trvalý a v dalším běhu programu jej nelze změnit.

Více informací lze nalézt v dokumentaci Pupilu.

3.2 Kalibrace kamery

3.2.1 Popis a priorita

Funkce zobrazí kalibrační proces přes celou plochu monitoru. Uživatel se dívá na jednotlivé kalibrační body. Funkce snímá jednou kamerou pohyb oka a druhou kamerou sleduje okolní svět (oblast, kterou před sebou uživatel skutečně má). Sjednocením kalibračních bodů s mapovanými koordináty se dosáhne optimální kalibrace.

Priorita vysoká.

3.2.2 Události a odpovědi

Proces kalibrace kamery lze spustit opakovaně, výsledný stav je trvalý a v dalším běhu programu jej nelze změnit.

Více informací lze nalézt v dokumentaci Pupilu.

3.3 Načtení nových obrázků do aplikace

3.3.1 Popis a priorita

Funkce otevře průzkumníka souborů a uživatelem vybrané obrázky přidá do seznamu obrázků

Priorita střední.

3.3.2 Události a odpovědi

Uživatel vybere jeden nebo více obrázků – názvy vybraných obrázků se objeví v seznamu obrázků.

Uživatel nevybere žádné obrázky – seznam obrázků zůstává ve stejném stavu, nic se nevkládá

Uživatel vloží nepodporovaný formát – soubory ve špatném formátu se do seznamu nevloží a zobrazí se chybová hláška o nekompatibilitě souborů.

3.4 Výběr obrázků

3.4.1 Popis a priorita

Pro spuštění aplikace je nutné vybrat rozložení mřížky, ve které se obrázky zobrazía vložit alespoň jeden obrázek. Vybraný obrázek se zobrazí v seznamu zvolených obrázků. Obrázek je možné odebrat kliknutím na název obrázku v seznamu obrázků a následným kliknutím na tlačítko *Remove*.

Priorita střední.

3.4.2 Události a odpovědi

Uživatel vloží obrázek – název obrázku se zobrazív seznamu zvolených obrázků.

Uživatel odebere obrázek – obrázek se odebere ze seznamu zvolených obrázků.

3.5 Vykreslení mřížky.

3.5.1 Popis a priorita

Funkce ze zvolených obrázků vytvoří mřížku požadované velikosti. Obrázky jsou v mřížce uspořádané podle pořadí vložení. Pokud uživatel vloží více obrázků než dovoluje rozměr mřížky, funkce vytvoří více stránek s mřížkami o zadaném rozměru, ve kterých se obrázky zobrazí. Mezi jednotlivými stránkami je možné přepínat tlačítky *Back* a *Next*.

Priorita vysoká.

3.5.2 Události a odpovědi

Funkce se spouští tlačítkem Start v hlavní nabídce aplikace.

Uživatel se pokusí spustit aplikaci s libovolným počtem zvolených obrázků – přes celou plochu monitoru se vykreslí mřížka s obrázky a spustí se sledování zorničky.

Uživatel se pokusí spustit aplikaci bez vložených obrázků – aplikace se nespustí a vyskočí chybová hláška.

3.6 Výběr pole v mřížce

3.6.1 Popis a priorita

Funkce sleduje zorničku a podle sledované oblasti vybere příslušnou sekci a zvýrazní obrázek v sekci. Funkce vybere obrázek, na který se oko zaměří.

Pokud uživatel Eye Trackeru mrkne, potvrdí tím vybraný obrázek.

Priorita středí.

Uživatel si nastaví určitý počet obrázků v sekvenci. Po jejich detekci se aplikace ukončí. Tlačítkem *Finish* se aplikace ukončí, aniž by uživatel detekoval celou sekvenci obrázků.

Priorita vysoká.

3.6.2 Události a odpovědi

V dolní části obrazovky budou tlačítka *New*, *Finish* a *Exit* umožňující návrat do menu a nový výběr obrázků, zobrazení uživatelem zvolených obrázků v galerii nebo ukončení celého procesu.

4. Požadavky na vnější rozhraní

4.1 Uživatelská rozhraní

Návrh spouštějícího okna je na Obr. 2. Má tlačítko Add Picture, které přidá obrázek.

Dále tlačítko *Start*, kterým se aplikace spustí a tlačítko *Exit*, kterým se celý proces vybírání obrázků ukončí.

Obr. 2. Úvodní menu programu, ve kterém uživatel volí obrázky

Návrh obrazovky s mřížkou obrázků je na Obr. 3. Jsou tam tlačítka *Next* a *Back* pomocí nichž se uživatel dostane na další stránku s dalšími obrázky.

Tlačítkem *New* vytvoří novou stránku s novými obrázky, tlačítkem *Finish* ukončí výběr obrázků a zobrazí okno s výsledky. Tlačítkem *Exit* se ukončí celý program.

Obr. 3. Okno s mřížkou pro vybírání obrázků uživatelem

Na Obr. 4. je zobrazené výsledkové okno aplikace. Zde se zobrazí uživatelem vybrané obrázky. Okno obsahuje tlačítko *New*, pro vytvoření nové mřížky a *Exit* pro ukončení programu.

Obr. 4. Okno s výsledky

4.2 Hardwarová rozhraní

Eye Tracker. Pro spojení kamer Eye Trackeru se softwarem slouží rozhraní USB 3.0.

4.3 Softwarová rozhraní

Pupil-labs v1.5-12. Provozní prostředí operační systém Windows. Programovací jazyk Python.

5. Ostatní požadavky

5.1 Komentáře

Kódy budou okomentované v anglickém jazyce.