## Devoir facultatif n° 11

On désigne par  $\mathbb{R}[X]$  l'espace vectoriel des polynômes à coefficients réels et par  $\mathbb{R}_2[X]$  le sous espace vectoriel formé des polynômes de degré inférieur ou égal à 2 et du polynôme nul. On rappelle que la base canonique de  $\mathbb{R}_2[X]$  est  $\mathscr{B} = (1, X, X^2)$ .

## Partie I - Changement de bases et division euclidienne

1) Étant donnés trois réels deux à deux distincts  $a_1$ ,  $a_2$  et  $a_3$ , on considère trois polynômes  $Q_1$ ,  $Q_2$  et  $Q_3$  de  $\mathbb{R}[X]$  tels que :

$$\forall i, j \in \{1, 2, 3\}, \begin{cases} Q_i(a_j) = 0 & \text{si } i \neq j \\ Q_i(a_i) \neq 0 \end{cases}$$
.

Démontrer que  $Q_1$ ,  $Q_2$  et  $Q_3$  sont linéairement indépendants.

2) On pose

$$\begin{cases} P_1(X) &= \frac{1}{8}(X-3)(X-5) \\ P_2(X) &= -\frac{1}{4}(X-1)(X-5) \\ P_3(X) &= \frac{1}{8}(X-1)(X-3) \end{cases}$$

Calculer  $P_i(1)$ ,  $P_i(3)$  et  $P_i(5)$  pour  $i \in \{1, 2, 3\}$ .

- 3) En déduire que  $\mathscr{P}=(P_1,P_2,P_3)$  est une base de  $\mathbb{R}_2[X]$ .
- 4) Déterminer la matrice de passage A de la base  $\mathscr{B}$  à la base  $\mathscr{P}$ .
- 5) Démontrer que A est inversible et calculer son inverse.
- 6) On pose  $P_0(X) = (X-1)(X-3)(X-5)$ . Pour tout polynôme P(X) de  $\mathbb{R}[X]$ , on note  $\hat{P}(X)$  le reste de la division euclidienne de P par  $P_0$  et par f l'application de  $\mathbb{R}[X]$  dans  $\mathbb{R}[X]$  définie par  $f(P) = \hat{P}$ . Démontrer que f est linéaire.
- 7) Déterminer l'image de f.
- 8) Déterminer le noyau de f.
- 9) Comparer  $f^2$  et f; reconnaître f et en donner les éléments caractéristiques.
- **10)** Démontrer que  $\hat{P}(X) = P(1)P_1(X) + P(3)P_2(X) + P(5)P_3(X)$ .
- 11) Retrouver ainsi la matrice inverse de A.

## Partie II - Calcul matriciel

On pose:

$$M = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \text{ et } I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 12) Calculer le produit (M-I)(M-3I)(M-5I), ainsi que chacun des produits se déduisant par permutation des trois facteurs.
- 13) On note E l'ensemble des matrices de la forme  $aI + bM + cM^2$  avec a, b et c réels. Démontrer que E est un sous espace vectoriel de l'espace vectoriel  $\mathcal{M}_3(\mathbb{R})$  des matrices carrées d'ordre 3 à coefficients réels.
- 14) Déterminer la dimension de E.
- **15)** Pour tout polynôme  $P(X) = a + bX + cX^2$ , on pose  $P(M) = aI + bM + cM^2$  et on note  $\varphi$  l'application de  $\mathbb{R}_2[X]$  dans E définie par  $\varphi[P(X)] = P(M)$ . Démontrer que  $\varphi$  est un isomorphisme d'espaces vectoriels.
- **16)** On pose  $B_i = P_i(M)$  pour  $i \in \{1, 2, 3\}$ . En utilisant la question **10)** et le résultat précédent, exprimer I, M et  $M^2$  sous forme de combinaison linéaire de  $B_1$ ,  $B_2$  et  $B_3$ .
- 17) Déduire de la question 12) la valeur des produits  $B_i B_j$  pour  $i \neq j$ .

