

page table base register page table entry virtual page number physical page number

Fast cache access

processes

Homonym

Issues

2

ne sub

· Only require address translation upon miss

Same VA maps to different PAs upon context switch

(3 points) What is highest speedup possible through pipelining for a 6 instruction program if latch delay is 2 ns and total combinational logic delay of a non-pipelined design is 10 ns?

The highest speedup can be obtained when dividing the total combinational logic into N stages, which each stage taking 10/N ns.

On the non-pipelined processor, the program takes $6 \times 10 = 60$ ns to run.

On a pipelined processor, each stage takes $\frac{10}{N}$ +2 ns. The program in total takes

$$(N-1+6) \times \left(\frac{10}{N}+2\right)$$
$$= (N+5)\left(\frac{10}{N}+2\right) \text{ns}$$

The total time is minimized for N = 5. The speedup is $\frac{60}{40} = 1.5$.

(12 points) Fill in the blanks and calculate the cache access times for the following actions in sequence (the second action follows immediately after the first one). Show your calculations for full credit. Write the address in hex and circle hit or miss.

- i. Read virtual address 4x00107
 - · Cache access time: 207 ns
 - · Physical address: x3307
 - · Cache hit / miss
 - · TLB hit / miss

VA: 00 0000 0001 0000 0111 TLB miss on VPN = 00 0000 0001

0011 0011 0000 0111 Cache Compulsory Miss

5 + 80 + 5 = 90 ns to get the physical tag

4 ns to detect a cache miss by tag comparison

100 ns to access the main memory

10+3=13 ns to access data (tag access can be done in parallel)

- ii. Read virtual address 4x34500
 - · Cache access time: 13 ns
 - Physical address: x3300
 - · Cache hit / miss
 - TLB hit / miss

VA: 11 0100 0101 0000 0000 TLB hit on VPN = 11 0100 0101

0011 0011 0000 0000 Cache hit

Parallelism:

Indexing tag + tag comparison = 8 + 4 = 12 ns

Indexing data + multiplexing data = 10 + 3 = 13 ns

- · Byte addressable
- 256 byte (28 byte) page size

- · Virtually-indexed and physically-tagged
- . 4-way set-associative with 64 index bits
- 4 KB (2¹2 byte) 1 KB (2¹0 byte) data storage (excluding bits for dirty, valid, tag and LRU)
- · Read allocate policy
- · Indexing the data array takes 10 ns
- . Indexing the tag array takes 8 ns
- Tag comparison takes 4 ns
- · Multiplexing the output data takes 3 ns
- . A cache miss takes 100 ns to access the main memory and allocate to the cache line
- · Assume a hit or miss is detected immediately after the tag comparison
- · Initially empty (all lines are invalid)

TLB:

- · Fully-associative
- · A TLB access takes 5 ns
- · Read allocate policy
- . TLB is updated on a TLB miss
- · All entries are listed below

Valid 0	VPN			PPN	
	00	0000	0001	0001	0000
1	00	0000	0010	0000	1110
0	00	0001	0110	0011	0011
0	00	0001	1011	0000	0000
1	11	1010	0100	1000	0100
1	11	0100	0101	0011	0011
1	10	0010	1010	1100	0110
0	00	0000	0000	0000	0001

Page Table:

- · Single level page table
- · A page table access takes 80 ns
- · Some of the entries are listed below

Valid 0	VPN			PPN	
	00	0000	0000	0001	0000
1	00	0000	0001	0011	0011
1	00	1101	0010	0000	0000
0	01	0000	0011	0010	0100
1	01	1010	0010	1110	0001
1	01	1111	1101	0000	1110
1	10	0000	0110	1100	0110
0	11	1111	1111	0101	0110

- Gain benefit of a VIVT and PIPT
 - Very common in commercial processors
 - Parallel Access to TLB and VIPT cache
 - Issues
 - Synonym as VIVT; no homonym

