Project: Analyzing the effectiveness of Ads through app installation

Mobile Ads dataset (Source: mobilead.sas7bdat)

For this project, the above-mentioned dataset is used to develop two models namely – A logistic regression model and a linear probability model. The project aims to present the model evolution, factors considered, and the results obtained for each model. A brief overview of the dataset is presented before moving to the modelling part.

The source dataset is read into SAS. The dataset contains data about ads from an advertiser over various publishers (apps). Each observation represents an ad shown to a consumer on a publisher app. The dataset has 1,21,339 observations. The output variable is 'install' which is binary in nature. There are 9 predictor variables - 4 categorical, 4 numerical and 1 binary. All the categorical variables are considered for the analysis including the *publisher_id_class* as it doesn't truly represent an ID as it is not unique across all the observations.

The following are some exploratory analysis before the modelling process.

CORRELATION ESTIMATION

The correlations are determined prior to the modelling part as we wouldn't any highly correlated variables as it might hinder our modelling process giving us larger variances and incorrect estimates. Hence, using PROC CORR the correlations are estimated. The results are captured through the below screenshot. Please refer to the SAS code file for the coding.

It can be observed that significant correlations are: (resolution, $device_width$) – 81% (significant), (resolution, $device_height$) – 76% (significant). The correlations aren't significantly high. Hence, no variables are omitted at this step.

TARGET VARIABLE ANALYSIS

Next, we analyze the target variable – *install* for checking the frequency of each class (class 0 and class 1) as we would want a balanced set of the output classes for effective modelling. This is done using PROC FREQ and the results are captured using below screenshot.

We see that the event=1 is present only for 0.83%. Hence, we don't have a balanced set of the output classes. And since, the desired event is occurring in very small percent, this is termed as <u>rare event</u> modelling.

MISSING OBSERVATIONS ANALYSIS

The dataset's predictor variables are analyzed for any missing values using PROC FREQ. Missing values might lead to a reduced no. of observations being considered for the regression and hence leads to a loss of predictive power and sample size. A snipper of the results is presented below as screenshots. It can be inferred that the predictors don't have any missing values.

After all the preliminary analysis done above, we move forward with a sense of the data we are going to model and with a good hang of how we are going to model.

Part I. Logistic Regression Analysis

• Prior to the modelling step, the dataset is split into training and test set for model building, model evaluation purposes. The dataset us split using PROC SURVEYSELECT and the parameters

used are seed = 10 and sampling ratio of 80%. Hence, the training set consists of 97072 (0.8*121339) observations. The result of this step is available through below screenshot.

The SURVEYSELECT Procedure							
Selection Method	Si	mple Random Sampling					
In and Data Set		MODILEAD					
Input Data Set	MOBILEAD						
Random Number See	10						
Sampling Rate		0.8					
Sample Size		97072					
Selection Probability		0.800007					
Sampling Weight		0					
Output Data Set	MOBILEAD_SAMPLED						

- One more important point to be noted is, since this is a case of rare-event model modelling, I am using <u>FIRTH's penalized MLE</u> which is available in SAS for my logistic regression analysis. The coding can be referred in SAS code file.
- 1. The final best model as per my analysis <u>consists of a mix of interaction terms and quadratic</u> terms. The model is presented below.

$$BX = B_0 + B_1. (device_volume) + B_2. (resolution) + B_3. (wifi) + B_4. (device_width) \\ + B_5. (device_height) + B_6.p1 + B_7.p2 + \cdots + B_{14}.p9 + B_{15}.m1 + \cdots \\ + B_{23}.m9 + B_{24}.o1 + \ldots + B_{32}.o9 + B_{33}. (resolution * device_height) \\ + B_{34}. (resolution * device_width) + B_{35}. (resolution * resolution) \\ + B_{36}. (device_width * device_height) \\ + B_{37}. (device_width * device_width)$$

$$install = 1/(1 + e^{-BX})$$

This best model is arrived at through a series of experimentation and the evolution is presented below. For this model, as reported above, we have the following variables in use:

Output variable(1): install

Input variables(37):

- Original variables: device_volume, resolution, wifi, device_width, device_height
 p1 p9, m1 m9, o1 o9 {p, m, o -> one hot encoded variable for publisher_id_class, device make class, device os class }
- o Interaction terms: resolution*device_width, resolution*device_height
- Quadratic terms: resolution*resolution, device_height*device_height, device_weight*device_weight

For this model, the dataset is read into SAS. The categorical variables are specified as class variables and the interaction terms and quadratic terms are specified. The model is built using PROC LOGISTIC and the modelling results are presented using below screenshot. The best model is titled 'Model 4'. Please refer to the SAS code file for the implementation process.

Model 4: Us	sing qu	uadratic	terms						
The LOGISTIC Procedure									
Model Information									
Data Set		WORK.TR	AIN_MOBILEAD						
Response Variable		install							
Number of Response L	evels	2							
Model		binary logi	t						
Optimization Techniqu	е	Fisher's so	coring						
Likelihood Penalty		Firth's bias correction							
Number of Ob			97072 97072						
Number of Ob	servano	ins used	91012						
Re	sponse	Profile							
Ordered Value	install	To Frequer	otal ncy						
1	0	962	297						
2	1	1	775						
Probability	modele	d is install	l='1'.						

Class publisher_id_class				orma		n Mar	iable			
publisher_id_class	Value		_		_	n Var				
	1	1	0	0	0	0	0	0	0	0
	2	0	1	0	0	0	0	0	0	0
	3	0	0	1	0	0	0	0	0	0
	4	0	0	0	1	0	0	0	0	0
	5	0	0	0	0	1	0	0	0	0
	6	0	0	0	0	0	1	0	0	0
	7	0	0	0	0	0	0	1	0	0
	8	0	0	0	0	0	0	0	1	0
	9	0	0	0	0	0	0	0	0	1
	10	-1	-1	-1	-1	-1	-1	-1	-1	-1
device_make_class	1	1	0	0	0	0	0	0	0	0
	2	0	1	0	0	0	0	0	0	0
	3	0	0	1	0	0	0	0	0	0
	4	0	0	0	1	0	0	0	0	0
	5	0	0	0	0	1	0	0	0	0
	6	0	0	0	0	0	1	0	0	0
	7	0	0	0	0	0	0	1	0	0
	8	0	0	0	0	0	0	0	1	0
	9	0	0	0	0	0	0	0	0	1
	10	-1	-1	-1	-1	-1	-1	-1	-1	-1
device_os_class	1	1	0	0	0	0	0	0	0	0
	2	0	1	0	0	0	0	0	0	0
	3	0	0	1	0	0	0	0	0	0
	4	0	0	0	1	0	0	0	0	0
	5	0	0	0	0	1	0	0	0	0
	6	0	0	0	0	0	1	0	0	0
	7	0	0	0	0	0	0	1	0	0
	8	0	0	0	0	0	0	0	1	0
	9	0	0	0	0	0	0	0	0	-1
	10	-1	-1	-1	-1	-1	-1	-1	-1	-1

	Mod	lel Fit 9	Statisti	ics			
Criterion In	tercept	Only	Inter	cept a	nd	Covariates	
AIC	878	4.199				8655.864	
SC	879	3.682				9025.709	
-2 Log L	878	2.199				8577.864	
Testing	Global	Null H	ypoth	esis: I	BE.	TA=0	
Test		Chi-Sq	uare	DF	P	r > ChiSq	
Likelihood F	Ratio	204.	3348	38		<.0001	
Score		214.	8087	38		<.0001	
Wald	214.	9565	38		<.0001		
	Type 3	Analys	is of E	ffects			
Effect DF Chi-Square Pr > ChiSq							
		DF 1	Cni-	5 quai		Pr > ChiSq 0.3071	
device_volume		1		7.913	-	0.3071	
wifi resolution		1		2.7117		0.0049	
		1		3.6524		0.0996	
device_height device width		1	1,6998		0.0560		
oublisher_id_c	lace	9	1/	00.191	-	<.0001	
device_os_clas		9	-	20.476	-	0.0152	
device_os_cias		9	_	41.397	-	<.0001	
olatform	,,,,,,	1	_	4.431	-	0.0353	
resolutio*devic	e hei	1		2.972	-	0.0333	
resolutio*devic		1		1.010		0.0047	
esolutio*resol		1		1.589		0.2074	
device he*devi				3 289	•	0.0697	
device wi*devi				0.156	-	0.6926	

Interpreting the model results, firstly we look at the Chi-square test which tests if the model is statistically significant or not. The hypothesis is provided below:

Null hypothesis (H₀): All beta coefficients are equal to zero

Alternate hypothesis (H₁): At least one of the beta coefficients is not zero

The chi-square test records a <u>high test-statistic of 204.33</u> and a <u>p-value<0.0001</u> which is less than 0.05 for 95%CI. Hence, we fail to reject the null and conclude that **built regression model is statistically significant**. Going forward, we see that the model reports significantly lower values of <u>AIC = 8655</u>, <u>BIC = 9025</u>.

The coefficients of the model are interpreted in the following way.

- The wifi variable is significant at 95%CI. The presence of wifi increases log of odds of consumer installing the app by 0.2432 units.
- The publisher_id_class of 1 increases the odds of the app getting installed by e^1.4703 times as compared to publisher_id_class of 10.
- The platform variable suggests that Android platform has reduced probability of app getting installed as compared to iOS platform.
- The odds of the app getting installed when resolution is increased by 1 unit, depends on device_height, device_width etc.

All the above interpretations involve keeping the other variables that are not involved in the interpretation, constant. Since there are 37 variables, I have interpreted only a few. The interpretation of the other variables is similar.

Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-24.1400	11.0913	4.7371	0.0295
device volume		1	0.1192	0.1167	1.0429	0.3071
wifi		1	0.2432	0.0865	7.9132	0.0049
resolution		1	-41.5321	25.2209	2.7117	0.0996
device_height		1	0.0322	0.0168	3.6524	0.0560
device_width		1	0.0211	0.0162	1.6998	0.1923
publisher_id_class	1	1	1.4703	0.5806	6.4139	0.0113
publisher_id_class	2	1	0.3485	0.1464	5.6686	0.0173
publisher_id_class	3	1	0.8576	0.1265	45.9645	<.0001
publisher_id_class	4	1	-0.0340	0.1606	0.0448	0.8325
publisher_id_class	5	1	0.1470	0.1628	0.8160	0.3664
publisher_id_class	6	1	-0.2989	0.2274	1.7284	0.1886
publisher_id_class	7	1	-1.0186	0.2430	17.5759	<.0001
publisher_id_class	8	1	-0.9707	0.2579	14.1647	0.0002
publisher_id_class	9	1	-0.3486	0.2212	2.4833	0.1151
device_os_class	1	1	0.1648	0.0852	3.7456	0.0529
device_os_class	2	- 1	0.0992	0.1201	0.6833	0.4085
device_os_class	3	1	-0.0971	0.1433	0.4590	0.4981
device_os_class	4	1	0.2626	0.1181	4.9466	0.0261
device_os_class	5	1	0.3165	0.1659	3.6397	0.0564
device_os_class	6	1	0.2259	0.1812	1.5547	0.2124
device_os_class	7	1	-0.8110	0.2976	7.4287	0.0064
device_os_class	8	1	0.4088	0.1861	4.8250	0.0280
device_os_class	9	- 1	-0.5276	0.3546	2.2134	0.1368
device_make_class	1	1	-0.7524	0.2397	9.8546	0.0017
device_make_class	2	1	-0.9047	0.2447	13.6698	0.0002
device_make_class	3	1	-0.7462	0.2366	9.9442	0.0016
device_make_class	4	-1	0.8376	0.3431	5.9612	0.0146
device_make_class	5	1	-0.5952	0.2456	5.8738	0.0154
device_make_class	6	-1	-0.2506	0.1945	1.6611	0.1975
device_make_class	7	1	-0.2545	0.2584	0.9699	0.3247
device_make_class	8	-1	0.8752	0.3583	5.9665	0.0146
device_make_class	9	1	1.0459	0.3642	8.2487	0.0041
platform		-1	-0.9140	0.4342	4.4319	0.0353
resolutio*device_hei		1	0.0149	0.00862	2.9720	0.0847
resolutio*device_wid		1	0.00824	0.00820	1.0107	0.3147
resolutio*resolution		1	-3.6086	2.8622	1.5896	0.2074
device_he*device_hei		1	-0.00001	5.757E-6	3.2892	0.0697
device_wi*device_wid		1	-2.07E-6	5.226E-6	0.1563	0.6926

Odds	Ratio Estimat	103	95%	Wald
Effect	Point Estim	nate		nce Limits
device_volume	1.	127	0.896	1.416
wifi	1.	275	1.077	1.511
publisher_id_class 1 vs 10	5.	068	1.426	18.004
publisher_id_class 2 vs 10	1.	650	1.221	2.231
publisher_id_class 3 vs 10	2.	746	2.148	3.511
publisher_id_class 4 vs 10	1.	126	0.812	1.561
publisher_id_class 5 vs 10	1.	349	0.977	1.863
publisher_id_class 6 vs 10	0.	864	0.532	1.402
publisher_id_class 7 vs 10	0.	421	0.256	0.691
publisher_id_class 8 vs 10	0.	441	0.258	0.75
publisher_id_class 9 vs 10	0.	822	0.528	1.280
device_os_class 1 vs 10	1.	230	0.949	1.593
device_os_class 2 vs 10	1.	152	0.838	1.582
device_os_class 3 vs 10	0.	946	0.659	1.358
device_os_class 4 vs 10	1.	356	0.992	1.853
device_os_class 5 vs 10	1.	431	0.953	2.149
device_os_class 6 vs 10	1.	307	0.850	2.01
device_os_class 7 vs 10	0.	0.463 0		
device_os_class 8 vs 10	1.	570	1.005	2.45
device_os_class 9 vs 10	0.	615	0.277	1.36
device_make_class 1 vs 10	0.	224	0.103	0.48
device_make_class 2 vs 10	0.	192	0.087	0.422
device_make_class 3 vs 10	0.	225	0.107	0.476
device_make_class 4 vs 10	1.	097	0.546	2.203
device_make_class 5 vs 10	0.	262	0.122	0.561
device_make_class 6 vs 10	0.	370	0.219	0.623
device_make_class 7 vs 10	0.	368	0.164	0.827
device_make_class 8 vs 10	1.	139	0.546	2.376
device_make_class 9 vs 10	1.	351	0.646	2.826
platform	0.	401	0.171	0.939
Association of Predicted Pr	obabilities ar	nd Ob	served R	esponses
Percent Concordant	64.7	Son	ners' D	0.294
Percent Discordant	35.3	Gar	nma	0.294
Percent Tied	0.0	Tau	-a	0.005

This summarizes the presentation of the final best model. The evolution of the modelling process is covered in the below section.

MODEL EVOLUTION

My first model was a rudimentary model with all the input variables with categorical variables defined as class variables for one-hot key encoding and numerical variables in their original form without any processing. This model was titled **Model 1.** The model was built using PROC LOGISTIC. The main results are provided through the below screenshot. The model significance, AIC/BIC values and the estimates are reported below.

It can be inferred from the below screenshot that the <u>built model is significant with a chi-square</u> <u>test statistic of 176.50 and p-value<0.0001</u>. The AIC value is 8758 and BIC value is 9081. Since, this is the first model there is no basis for comparison, and I move forwarded to build a better model by eliminating the insignificant variables in this model.

Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-8.4124	1.1816	50.6889	<.0001
device_volume		1	0.1328	0.1167	1.2959	0.2550
wifi		1	0.2402	0.0864	7.7262	0.0054
resolution		1	-2.0594	0.8389	6.0269	0.0141
device_height		1	0.00300	0.00103	8.4460	0.0037
device_width		1	0.00245	0.00103	5.6162	0.0178
publisher_id_class	1	1	1.3713	0.5799	5.5916	0.0180
publisher_id_class	2	1	0.2607	0.1439	3.2833	0.0700
publisher_id_class	3	1	0.7498	0.1238	36.6854	<.0001
publisher_id_class	4	1	-0.0585	0.1604	0.1331	0.7152
publisher_id_class	5	1	0.2282	0.1613	2.0012	0.1572
publisher_id_class	6	1	-0.4109	0.2262	3.2987	0.0693
publisher_id_class	7	1	-0.9328	0.2425	14.7968	0.0001
publisher_id_class	8	1	-0.7708	0.2551	9.1264	0.0025
publisher_id_class	9	1	-0.3510	0.2196	2.5552	0.1099
device_os_class	1	1	0.1221	0.0837	2.1303	0.1444
device_os_class	2	1	0.0771	0.1198	0.4137	0.5201
device_os_class	3	1	-0.1446	0.1424	1.0309	0.3099
device_os_class	4	1	0.2284	0.1169	3.8197	0.0507
device_os_class	5	1	0.2636	0.1655	2.5377	0.1112
device_os_class	6	1	0.1788	0.1810	0.9762	0.3231
device_os_class	7	- 1	-0.4769	0.2862	2.7776	0.0956
device_os_class	8	1	0.3707	0.1858	3.9782	0.0461
device_os_class	9	1	-0.5728	0.3549	2.6046	0.1066
device_make_class	1	1	-0.2831	0.1287	4.8378	0.0278
device_make_class	2	1	-0.4345	0.1396	9.6903	0.0019
device_make_class	3	1	-0.2821	0.1466	3.7009	0.0544
device_make_class	4	1	0.1808	0.1794	1.0163	0.3134
device_make_class	5	1	-0.1348	0.1607	0.7034	0.4016
device_make_class	6	1	-0.3577	0.1785	4.0142	0.0451
device_make_class	7	1	0.2187	0.1566	1.9518	0.1624
device_make_class	8	1	0.2044	0.2102	0.9460	0.3307
device_make_class	9	1	0.3868	0.2122	3.3216	0.0684
platform		1	-0.4122	0.3736	1.2168	0.2700

Model 1: Using existing variables The LOGISTIC Procedure Model Information WORK.TRAIN_MOBILEAD Data Set Response Variable Number of Response Levels 2 binary logit Optimization Technique Fisher's scoring Likelihood Penalty Firth's bias correction Number of Observations Read Number of Observations Used 97072 Response Profile Ordered Value Total install Frequency 1 0 96297 2 1 775 Probability modeled is install='1'.

Model Fit Statistics										
Criterion	Intercep	t Only	Intercept and Covariates							
AIC	88	8869.341		8758.834						
SC	88	78.825		9081.26						
-2 Log L	88	67.341		8690.83						
T	ting Globa	-1 MII II		: 1						
les	ung Grobe	ai Nuii n	ypotne	esis: i	BETA=0					
Test	ting Globa	Chi-So		DF	Pr > ChiSq					
		Chi-So								
Test		Chi-Sc 176	quare	DF	Pr > ChiSq					

By eliminating variables such as *device_volume*, *device_os_class* and *platform*, I eliminated the insignificant variables and estimated a model using PROC LOGISTIC. This model is titled as **Model 2.** The results are reported through screenshots below.

Looking at the model fit, it can be inferred that the <u>Model is significant</u> with a good chi-square <u>test statistic of 158.70 and p-value of <0.0001</u>. The <u>AIC is 8796 and BIC = 9014</u> which is higher than the original model estimated which is Model 1. Hence, <u>it was inferred that Model 2 wasn't</u> an improvement over Model 1 which had an AIC of 8758.

Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSc
Intercept		1	-7.6911	1.0674	51.9140	<.0001
wifi		1	0.2469	0.0859	8.2558	0.0041
resolution		1	-1.5592	0.7570	4.2429	0.0394
device_height		1	0.00241	0.000935	6.6223	0.0101
device_width		1	0.00188	0.000930	4.0897	0.0431
publisher_id_class	1	1	1.3670	0.5818	5.5211	0.0188
publisher_id_class	2	1	0.2483	0.1441	2.9681	0.0849
publisher_id_class	3	1	0.8020	0.1214	43.6574	<.0001
publisher_id_class	4	1	-0.0696	0.1605	0.1877	0.6648
publisher_id_class	5	1	0.2162	0.1612	1.7997	0.1797
publisher_id_class	6	1	-0.4185	0.2269	3.4011	0.0652
publisher_id_class	7	1	-0.9010	0.2428	13.7739	0.0002
publisher_id_class	8	1	-0.8223	0.2547	10.4251	0.0012
publisher_id_class	9	1	-0.3421	0.2201	2.4171	0.1200
device_make_class	1	1	-0.1679	0.1132	2.1984	0.1382
device_make_class	2	1	-0.3264	0.1252	6.7985	0.0091
device_make_class	3	1	-0.1930	0.1403	1.8928	0.1689
device_make_class	4	1	0.1175	0.1745	0.4537	0.5006
device_make_class	5	1	-0.0498	0.1555	0.1023	0.7491
device_make_class	6	1	-0.3254	0.1673	3.7824	0.0518
device_make_class	7	1	0.3048	0.1418	4.6216	0.0316
device_make_class	8	1	0.1386	0.2063	0.4511	0.5018
device_make_class	9	1	0.2858	0.2051	1.9404	0.1636

Moving forward, I tried building a better model using Model 1 as the base. Looking at the input variables, I deduced that there are certain variables whose change might impact other variables. For instance, <code>device_width</code> and <code>device_height</code>. Many mobile devices have standard <code>device_width</code> and <code>device_height</code> values. The mobile dimensions have never been random and arbitrary. Also, I analyzed that the resolution of the screen is dependent on the <code>device_width</code> and <code>device_height</code>. So, <code>I included 3 interaction terms</code> to weigh my deductions. I built <code>Model 3</code> using PROC LOGISTIC and got the following results.

Interpreting the results, the <u>model is significant with a high test statistic of 182.31 and p-value <0.0001</u>. The model recorded lower AIC and BIC values of 8724 and 9066 as compared to **Model 1**'s AIC and BIC values of 8758, 9081.

				Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept		1	-12.7685	2.3581	29.3206	<.0001
device_volume		1	0.1237	0.1166	1.1249	0.2889
wifi		1	0.2424	0.0864	7.8714	0.0050
resolution		1	-12.5367	4.6001	7.4272	0.0064
device_height		- 1	0.00875	0.00286	9.3584	0.0022
device_width		- 1	0.00851	0.00288	8.7565	0.0031
publisher_id_class	1	1	1.3723	0.5798	5.6020	0.0179
publisher_id_class	2	1	0.2573	0.1446	3.1673	0.0751
publisher_id_class	3	1	0.7714	0.1244	38.4617	<.0001
publisher_id_class	4	1	-0.0758	0.1605	0.2233	0.6365
publisher_id_class	5	- 1	0.2016	0.1616	1.5551	0.2124
publisher_id_class	6	1	-0.4062	0.2261	3.2275	0.0724
publisher_id_class	7	1	-0.9317	0.2425	14.7554	0.0001
publisher_id_class	8	1	-0.7526	0.2555	8.6771	0.0032
publisher_id_class	9	- 1	-0.3504	0.2207	2.5205	0.1124
device_os_class	1	- 1	0.1474	0.0844	3.0514	0.0807
device_os_class	2	- 1	0.0663	0.1199	0.3057	0.5803
device_os_class	3	- 1	-0.1208	0.1428	0.7159	0.3975
device_os_class	4	- 1	0.2543	0.1172	4.7087	0.0300
device_os_class	5	- 1	0.2818	0.1656	2.8959	0.0888
device_os_class	6	- 1	0.1935	0.1812	1.1404	0.2856
device_os_class	7	- 1	-0.6105	0.2897	4.4416	0.0351
device_os_class	8	- 1	0.3863	0.1860	4.3144	0.0378
device_os_class	9	- 1	-0.5562	0.3548	2.4581	0.1169
device_make_class	1	- 1	-0.6511	0.2096	9.6497	0.0019
device_make_class	2	- 1	-0.8030	0.2169	13.7053	0.0002
device_make_class	3	- 1	-0.6069	0.2043	8.8243	0.0030
device_make_class	4	- 1	0.6969	0.2984	5.4534	0.0195
device_make_class	5	- 1	-0.4610	0.2149	4.6037	0.0319
device_make_class	6	- 1	-0.3085	0.1788	2.9781	0.0844
device_make_class	7	1	-0.1600	0.2308	0.4803	0.4883
device_make_class	8	- 1	0.7190	0.3169	5.1472	0.0233
device_make_class	9	1	0.9110	0.3212	8.0453	0.0046
platform		1	-0.8133	0.4083	3.9679	0.0464
device_he*device_wid		0	0			
resolutio*device_hei		1	0.00147	0.000574	6.5345	0.0106
resolutio*device wid		- 1	0.00131	0.000568	5.2889	0.0215

Looking at the coefficients, I inferred that the interaction

device_height and device_weight was insignificant, but others were indeed significant at 95% CI.

Headed in the same direction, I reasoned out that there could be certain variables which can have negative returns as they increase. For example, <code>device_height</code> is one variable which when increased will give a better space for advertising and hence can impact consumers to install the app. But after a point, increasing <code>device_height</code> could lead to more ads to be displayed and hence leading to a negative impact. To capture these negative returns, <code>I included 3 quadratic terms each for device_weight</code>, <code>device_height</code> and <code>resolution</code> as they follow a similar reasoning. I built a model using PROC LOGISTIC after removing the insignificant interaction term identified in previous <code>Model 3</code>. This model is titled as <code>Model 4</code>.

The results of this model are already presented at the top as this is the **best model**. This model was significant with a very high chi-square test statistic and significantly lower values of AIC and BIC as compared to all other models.

The screenshots, results and interpretation can be found above. This concludes the find for my bets model, which is **Model 4.**

All the above models were modelled using FIRTH's penalized MLE as mentioned at the start.

2. The <u>best model</u> reported above was used to perform predictions on the test set. Using the test predictions, a ROC curve was plotted using PROC LOGISTIC. Please refer to the SAS code file for the coding part. The results are provided below as screenshots. <u>The Area under the ROC curve is 0.6118</u>. The 95%CI is also reported below.

ROC Association Statistics										
	Mann-Whitney									
ROC Model	Area	Standard Error	95% Confiden	Wald ice Limits	Somers' D	Gamma	Tau-a			
ROC1	0.6118	0.0181	0.5763	0.6474	0.2237	0.2237	0.00425			

3. In this question, the success event is event=1, i.e. the consumer installing the app. Hence, the <u>False positives</u> are the ones who are predicted to install the app but really don't. <u>False negatives</u> are the ones who are predicted as people who won't install the app but in actual sense, they do. The costs incurred by the advertiser for each of the above misclassifications is given below: False positive Cost = \$0.01

False negative Cost = \$1

Total Cost -> (False negatives * \$1) + (False positives * \$0.01)

A ROC table is generated using the above analogy and the cost calculations are performed on this ROC table. A screenshot of the resultant table is reported below.

The threshold at which the cost is minimized is 0.007. The cost associated with that threshold is \$196.36.

	PROB	_FALPOS_	_FALNEG_	False_positive_cost	False_negative_cost	Total_cost -
1	0.0077100818	10236	94	102.36	94	196.36
2	0.0077096636	10239	94	102.39	94	196.39
3	0.0077096066	10241	94	102.41	94	196.41
4	0.0077092015	10242	94	102.42	94	196.42
5	0.0077084305	10243	94	102.43	94	196.43
6	0.0077083875	10244	94	102.44	94	196.44
7	0.0077736925	10044	96	100.44	96	196.44
8	0.0077726123	10045	96	100.45	96	196.45
9	0.0077083145	10246	94	102.46	94	196.46
10	0.0077723444	10046	96	100.46	96	196.46
11	0.0077719032	10047	96	100.47	96	196.47
12	0.0077082695	10247	94	102.47	94	196.47
13	0.007707431	10249	94	102.49	94	196.49
14	0.007771499	10050	96	100.5	96	196.5
15	0.0077686419	10051	96	100.51	96	196.51
16	0.0077053882	10252	94	102.52	94	196.52
17	0.0077668341	10053	96	100.53	96	196.53
18	0.0077050758	10253	94	102.53	94	196.53
19	0.0077667764	10054	96	100.54	96	196.54

Part II. Linear Probability Model

- Prior to modelling the Linear Probability Model, the 4 categorical variables device_os_class, device_make_class, device_platform_class, publisher_id_class are manually one-hot key encoded, since PROC REG doesn't allow the specification of categorical variables as class variables like PROC LOGISTIC.
- The dataset is split into training and test sets using PROC SURVEYSELECT. The parameters passed are seed=10, sampling ratio=0.8. Hence, the training test is 80% of the dataset in size and the remaining 20% constitutes the test set. A screenshot of the results is pasted below for reference. Please refer the code file for the SAS codes for the same.

 The final best Linear Probability model is presented below. The model is a <u>compact</u>, <u>heteroskedasticity-free model with logarithmic predictors</u>. It is a result of a weighted regression of the logarithmic predictors.

$$install = B_0 + B_1.log(device_height) + B_2.log(resolution) + B_3.(wifi) + B_4.p1 + \cdots + B_{12}.p9 + B_{13}.m1 + \cdots + B_{21}.m9 + B_{22}.o1 + \ldots + B_{30}.o9$$

This best model is arrived at through a series of experimentation and the evolution is presented below. For this model, as reported above, we have the following variables in use:

Output variable(1): install Input variables(30):

- Original variables: wifi, p1 p9, m1 m9, o1 o9 {p, m, o -> one hot encoded variables for publisher_id_class, device_make_class, device_os_class }
- <u>Transformed variables</u>: log(device_height), log(resolution)

For this model, the dataset is read into SAS. The categorical variables are one-hot key coded manually and some of the input variables are log transformed. The model is built using PROC REG and the modelling results are presented using screenshots. The best model is titled 'Model 4'. Please refer to the SAS code file for the implementation process.

Interpreting the results obtained, we first look at the F-test of model significance. The F-test has the below hypothesis:

Null hypothesis (H₀): All beta coefficients are equal to zero

Alternate hypothesis (H₁): At least one of the beta coefficients is not zero

Looking at the results, we see that the model is significant at 95% CI with an F-statistic of 1.72 and p-value=0.0277 which is less than 0.05(alpha). The adj-R² value is 0.1398, which is significantly higher than all the other previous models. Although it has increased manifold, it is still lesser than 15%.

A screenshot of the coefficient estimates is pasted below. Interpretations of some of the estimates are given below for **Model 4**:

• The estimates for *publisher_id_class = 9* and *device_os_class = 9* is zero, hence, they don't have any effect on the installation of the app by a consumer.

- The presence of *wifi* increases the chances of the app getting installed by the consumer by 0.01321 units
- Increasing resolution by 1% increases the chances of the app installation by 0.0000146 units. It has a very minor effect.
- On the other hand, increase device_height by 1% increases chances of app installation by 0.00006 units.
- It can be inferred that *publisher_id_class = 1* has a negative impact on the installation of the app with respect to the base group of *publisher_id_class = 10*.
- It is important to note that almost all the coefficient estimates are insignificant at 95%CI. This is because heteroskedasticity-consistent estimators have a higher standard error. That being said, the estimator is still unbiased and consistent and hence, our estimates are right.

Parameter Estimates									
						Heteroscedasticity Consiste			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standard Error	t Value	Pr >	
Intercept	1	-0.05162	0.43824	-0.12	0.9065	0.15747	-0.33	0.743	
p1	1	-0.06676	0.09419	-0.71	0.4802	0.05264	-1.27	0.207	
p2	1	-0.00015059	0.02978	-0.01	0.9960	0.01364	-0.01	0.991	
р3	1	-0.01412	0.02407	-0.59	0.5590	0.01167	-1.21	0.229	
p4	1	-0.02655	0.03248	-0.82	0.4157	0.02097	-1.27	0.208	
p5	1	0.11377	0.03751	3.03	0.0031	0.08666	1.31	0.192	
р6	1	-0.00326	0.04558	-0.07	0.9431	0.01824	-0.18	0.858	
р7	1	-0.04656	0.04110	-1.13	0.2601	0.04837	-0.96	0.338	
p8	1	0.03941	0.05740	0.69	0.4941	0.03347	1.18	0.242	
р9	0	0							
o1	1	0.01048	0.02978	0.35	0.7256	0.01546	0.68	0.499	
o2	1	-0.04483	0.03513	-1.28	0.2050	0.03727	-1.20	0.232	
o3	1	0.03120	0.04727	0.66	0.5108	0.02629	1.19	0.238	
04	1	0.01757	0.03679	0.48	0.6340	0.01735	1.01	0.313	
o5	1	-0.02048	0.04747	-0.43	0.6672	0.02982	-0.69	0.493	
06	1	0.01354	0.04973	0.27	0.7860	0.01766	0.77	0.444	
07	1	-0.04559	0.11594	-0.39	0.6950	0.04301	-1.06	0.291	
08	1	0.14563	0.04521	3.22	0.0017	0.10941	1.33	0.186	
09	0	0							
m1	1	-0.01384	0.05404	-0.26	0.7984	0.01987	-0.70	0.487	
m2	1	-0.00564	0.05805	-0.10	0.9228	0.02027	-0.28	0.781	
m3	1	-0.03340	0.06523	-0.51	0.6098	0.03444	-0.97	0.334	
m4	1	-0.02857	0.04726	-0.60	0.5470	0.02332	-1.23	0.223	
m5	1	-0.06699	0.07236	-0.93	0.3569	0.05593	-1.20	0.234	
m6	1	0.07491	0.05835	1.28	0.2023	0.05570	1.34	0.181	
m7	1	-0.02418	0.06860	-0.35	0.7252	0.02584	-0.94	0.351	
m8	1	-0.01799	0.05157	-0.35	0.7279	0.02199	-0.82	0.415	
m9	1	0.00274	0.05088	0.05	0.9571	0.01428	0.19	0.848	
wifi	1	0.01321	0.02125	0.62	0.5355	0.01250	1.06	0.293	
log_resolution	1	0.00146	0.04996	0.03	0.9768	0.01705	0.09	0.932	
log device height	1	0.00660	0.06464	0.10	0.9189	0.02241	0.29	0.769	

The above interpretations are made assuming all other variables are held constant except for the variable of interest. This summarizes the presentation of the best model **(Model 4)**.

MODEL EVOLUTION

I started out with the most basic model with all the input variables in their original form. The categorical variables were one-hot key encoded manually. They were — <code>publisher_id_class</code>, <code>device_make_lass</code>, <code>device_os_class</code> and <code>device_platform_class</code>. The other numerical variables were kept in their original form. The model was built using PROC REG. The output is captured through below screenshots. This model was titled <code>Model 1</code>.

The interpretations are given below the screenshots. Please refer to the SAS code file for the coding part.

		Parameter Es	timates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-0.01615	0.00858	-1.88	0.0598
p1	1	0.01410	0.00878	1.61	0.1085
p2	1	0.00267	0.00116	2.31	0.0211
р3	1	0.00890	0.00116	7.68	<.0001
p4	1	0.00028993	0.00119	0.24	0.8075
p5	1	0.00237	0.00133	1.78	0.0754
p6	1	-0.00158	0.00150	-1.06	0.2908
p7	1	-0.00544	0.00150	-3.64	0.0003
p8	1	-0.00380	0.00155	-2.45	0.0144
p9	1	-0.00233	0.00169	-1.38	0.1683
o1	1	0.00138	0.00101	1.36	0.1743
02	1	0.00090089	0.00124	0.73	0.4658
o3	1	-0.00048243	0.00132	-0.37	0.7148
04	1	0.00256	0.00134	1.91	0.0557
o5	1	0.00233	0.00166	1.40	0.1601
o6	1	0.00191	0.00187	1.02	0.3083
о7	1	-0.00358	0.00243	-1.47	0.1405
08	1	0.00326	0.00192	1.70	0.0900
09	1	-0.00255	0.00230	-1.11	0.2674
m1	1	-0.00654	0.00218	-3.00	0.0027
m2	1	-0.00765	0.00223	-3.44	0.0006
m3	1	-0.00632	0.00216	-2.93	0.0034
m4	1	-0.00325	0.00217	-1.50	0.1334
m5	1	-0.00535	0.00225	-2.38	0.0172
m6	1	-0.00665	0.00213	-3.12	0.0018
m7	1	-0.00134	0.00244	-0.55	0.5839
m8	1	-0.00304	0.00246	-1.23	0.2175
m9	1	-0.00102	0.00250	-0.41	0.6825
device_volume	1	0.00099056	0.00093631	1.06	0.2901
wifi	1	0.00172	0.00064967	2.65	0.0082
resolution	1	-0.01544	0.00629	-2.45	0.0141
device_height	1	0.00002301	0.00000773	2.98	0.0029
device_width	1	0.00001845	0.00000774	2.38	0.0172
platform	1	-0.00336	0.00298	-1.13	0.2591

The most basic model is significant as it records a good F-statistic of 5.73 and a p-value which is <0.0001. Although, this is the case, the R² value is 0.0019. The adj-R² value is 0.0016. When the R² and adj-R² values are within 5%, then we can use R itself as a model evaluation metric. The low values are indicative that Linear Probability model is performing poorly because it is the case of rare-event modelling. And also, a simple relationship among the independent and dependent variables is not enough to explain the variation in the output variable. Looking at the coefficient estimates, though it can be concluded that many of them are significant at 95%CI, their estimates and signs aren't truly indicative of the theory.

Going forward, as I had reasoned earlier in PART I (Logistic Regression Analysis), I wanted to include interaction effects among the variables *device_height*, *resolution* and *device_weight*. The interaction term – *device_ height*device_width* deems to biased estimates when included in the model. Hence, that term is excluded. For this model, **Model 2**, I included two interaction terms – *device_weight*resolution* and *device_height*resolution*. The model is built using the PROC REG procedure and the results are captured below through screenshots. Please refer to the SAS code for the coding part. The interpretation are given below the screenshots.

		Parameter Es	stimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > 1
Intercept	1	-0.04299	0.01891	-2.27	0.023
p1	1	0.01399	0.00879	1.59	0.1114
p2	1	0.00257	0.00118	2.19	0.028
р3	1	0.00896	0.00117	7.65	<.000
p4	1	0.00015886	0.00120	0.13	0.894
p5	1	0.00219	0.00134	1.64	0.100
p6	1	-0.00159	0.00150	-1.06	0.289
p7	1	-0.00543	0.00150	-3.63	0.000
р8	1	-0.00365	0.00156	-2.34	0.019
р9	1	-0.00231	0.00169	-1.37	0.172
01	1	0.00147	0.00101	1.45	0.147
o2	1	0.00085411	0.00124	0.69	0.489
о3	1	-0.00039963	0.00132	-0.30	0.762
04	1	0.00266	0.00134	1.99	0.046
o5	1	0.00239	0.00166	1.44	0.149
06	1	0.00196	0.00187	1.05	0.294
07	1	-0.00425	0.00248	-1.72	0.085
08	1	0.00331	0.00192	1.72	0.085
09	1	-0.00250	0.00230	-1.09	0.277
m1	1	-0.00962	0.00285	-3.37	0.000
m2	1	-0.01074	0.00289	-3.72	0.000
m3	1	-0.00917	0.00275	-3.33	0.000
m4	1	-0.00049806	0.00276	-0.18	0.856
m5	1	-0.00820	0.00282	-2.90	0.003
m6	1	-0.00717	0.00215	-3.34	0.000
m7	1	-0.00448	0.00307	-1.46	0.144
m8	1	-0.00026916	0.00299	-0.09	0.928
m9	1	0.00177	0.00304	0.58	0.559
device_volume	1	0.00096012	0.00093646	1.03	0.305
wifi	1	0.00172	0.00064993	2.64	0.008
resolution	1	-0.08156	0.04212	-1.94	0.0528
device_height	1	0.00005926	0.00002471	2.40	0.016
device_width	1	0.00005710	0.00002479	2.30	0.0213
platform	1	-0.00538	0.00320	-1.68	0.0922
r_dh	1	0.00000936	0.00000554	1.69	0.0909
r_dw	1	0.00000803	0.00000550	1.46	0.144

The model is significant with an F-statistic of 5.52 and a p-value <0.0001. Although the $\frac{\text{adj-R}^2}{\text{value}}$ is 0.0016, the $\frac{R^2}{\text{has}}$ increased to 0.0020 as compared to Model 1.

Looking at the estimates of the interaction terms, we see that one of them is significant at 90%CI. Introducing them has bettered the model, although not significantly.

Going forward, I pursued my same reasoning as in Logistic Regression analysis and introduced quadratic terms to my linear probability model in order to try recording higher R² values. So, I introduced three quadratic terms – resolution*resolution, resolution*device_width, resolution*device_height to my linear probability model. This is mainly done to capture the negative effects of the variables. This model is titled **Model 3.** I used PROC REG to build the model and the obtained results are reported below through screenshots. The interpretations are given below the screenshots.

		Parameter E	stimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-0.03440	0.06553	-0.52	0.5997
p1	1	0.01512	0.00879	1.72	0.0853
p2	1	0.00365	0.00120	3.04	0.0024
р3	1	0.00997	0.00119	8.37	<.0001
p4	1	0.00087975	0.00121	0.73	0.4661
p5	1	0.00219	0.00134	1.64	0.1008
p6	1	-0.00040022	0.00152	-0.26	0.7927
p7	1	-0.00558	0.00150	-3.73	0.0002
р8	1	-0.00489	0.00158	-3.10	0.0019
р9	1	-0.00174	0.00169	-1.03	0.3030
01	1	0.00163	0.00102	1.60	0.1091
o2	1	0.00103	0.00124	0.83	0.4045
о3	1	-0.00018106	0.00132	-0.14	0.8911
04	1	0.00277	0.00134	2.06	0.0390
05	1	0.00265	0.00166	1.60	0.1105
06	1	0.00219	0.00187	1.17	0.2430
07	1	-0.00628	0.00258	-2.43	0.0151
08	1	0.00347	0.00192	1.80	0.0712
09	1	-0.00224	0.00230	-0.98	0.3292
m1	1	-0.01041	0.00302	-3.45	0.0006
m2	1	-0.01155	0.00304	-3.80	0.0001
m3	1	-0.01025	0.00296	-3.46	0.0005
m4	1	0.00138	0.00319	0.43	0.6657
m5	1	-0.00924	0.00302	-3.06	0.0022
m6	1	-0.00715	0.00216	-3.31	0.0009
m7	1	-0.00517	0.00322	-1.60	0.1087
m8	1	0.00175	0.00339	0.52	0.6053
m9	1	0.00366	0.00345	1.06	0.2888
device_volume	1	0.00088345	0.00093710	0.94	0.3458
wifi	1	0.00175	0.00065028	2.69	0.0071
resolution	1	-0.07982	0.15859	-0.50	0.6148
device_height	1	0.00009668	0.00010212	0.95	0.3438
device_width	1	0.00000114	0.00010113	0.01	0.9910
platform	1	-0.00605	0.00329	-1.84	0.0655
r_dh	1	0.00003341	0.00005516	0.61	0.5448
r_dw	1	-0.00002518	0.00005480	-0.46	0.6459
г2	1	0.00235	0.01924	0.12	0.9026
dh2	1	-2.96904E-8	3.639803E-8	-0.82	0.4147
dw2	1	4.379821E-8	3.583509E-8	1.22	0.2216

The model is significant with an F-statistic of 5.72 and a p-value <0.001. We see that the R^2 and adj- R^2 , both record higher values of 0.0022, 0.0018 than the previous model. Hence, with the introduction of the quadratic terms, we are able to better explain the variation in the output variable.

In the next step, I wanted to check for Heteroskedasticity as 'Linear probability models' usually suffer from heteroskedasticity because actual values are binary in nature but predicted values are probabilities between 0 and 1. The check for heteroskedasticity is done through PROC REG by passing 'hcc spec' options. The results are shown in below screenshot. It can be inferred that heteroskedasticity is indeed present in the model as the p-value <0.0001 and we reject the null hypothesis that the model is free of heteroskedasticity.

An attempt is made to remove the heteroskedasticity by transforming the input variables to a logarithmic version and by performing a weighted regression using the PROC REG procedure. The variable used as weight is found to be *device_volume* though trial and error. The results are pasted below as screenshots. Please to the SAS code file for the coding part.

It can be inferred that the model is free of heteroskedasticity as we fail to reject the null at 95%CI. This model is rendered as the best model titled **Model 4.** The model fit and coefficient estimates are reported in the above sections as screenshots.

This best model has the highest adj-R² value of **0.1398** and R² value of **0.3341**. This tells us that 13.98% of the variation in the output variable is explained by the variation in input variables.

- 2. The ROC curve is plotted for the above best model by first predicting the output for the test set. The test set predictions are used to generate the ROC curve using PROC LOGISTIC and 'nofit' option. The curve is reported through the below screenshot.
 - It can be seen that the <u>Area under the curve is 0.4980</u>. The Confidence interval is recorded as (0.4633, 0.5327).

Contrasting with the results obtained for Logistic Regression case, the **Area under curve for** the Logistic Regression is more – **0.6118**.

Hence, we conclude that at 95% Confidence level, Logistic Regression records a higher Area under curve of 0.6118 as compared to 0.4980 of Linear probability model.

3. The cost calculations done for the Logistic Regression model are replicated for the Linear probability model as well. The cost calculations follow below equations.

False positive Cost = \$0.01

False negative Cost = \$1

Total Cost -> (False negatives * \$1) + (False positives * \$0.01)

The ROC table is plotted and the cost for the below thresholds are noted. [0.001 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050]

The predictions are captured in a table and they are used to calculate the False negatives and False positives for each threshold using PROC SQL. Please refer to the SAS code for the coding part.

A screenshot of the resultant table is posted below:

threshold	False_Positives	False_Negatives	FPCost	FNCost	Total_Cost
0.001	52014	585	520.14	585	1105.14
0.005	45330	626	453.3	626	1079.3
0.01	35517	709	355.17	709	1064.17
0.015	26979	816	269.79	816	1085.79
0.02	23888	847	238.88	847	1085.88
0.025	20467	870	204.67	870	1074.67
0.03	18828	881	188.28	881	1069.28
0.035	16266	892	162.66	892	1054.66
0.04	13285	912	132.85	912	1044.85
0.045	12833	914	128.33	914	1042.33
0.05	12372	917	123.72	917	1040.72

It can be inferred that the lowest cost of \$1040.72 occurs at a threshold of 0.05.

This <u>threshold</u> is <u>different from the value obtained for Logistic Regression model</u> which was **0.007**.

I calculated the average cost for both the models. They are reported below:

<u>Logistic Regression</u>: Average Cost -> \$211 <u>Linear Probability Model</u>: Average Cost -> \$1067

Conclusively, it can be concluded that Linear Probability model isn't as effectively able to fit the data as Logistic regression. The associated cost for Linear probability is evidencing that. Also, considering the rare event modelling, Logistic Regression effects a penalized MLE algorithm to fit the data effectively and better than Linear Probability model.