Incentivizing Exploration by Heterogeneous Users COLT 2018

Bangrui Chen, Peter Frazier

Cornell University
Operations Research and Information Engineering
bc496@cornell.com, pf98@cornell.edu

David Kempe

University of Southern California Department of Computer Science david.m.kempe@gmail.com

July 8, 2018

Motivation

Amazon wants users to *explore*Each customer only wants to buy one good item

Previous Work

Without Money Transfer:

- Implementing the "Wisdom of the Crowd", Kremer et al. 2014;
- Bayesian incentive-compatible bandit exploration, Mansour et al. 2015;
- ...

With Money Transfer

- Incentivizing exploration, Frazier et al. 2014;
- Incentivizing exploration with heterogeneous value of money, Han et al. 2015;
- . .

Our Contribution

- First algorithm and analysis for incentivizing exploration when users have heterogeneous preferences over arms;
- We proved "heterogeneity provides free exploration".

Problem Setting

N arms

- Each arm is associated with a feature vector $u_i \in \mathbb{R}^d$;
- Both the agents and the principal can observe the current estimate of u_i , denoted as $\hat{u}_{i,t}$, which equals to the average of all past observations;

Myopic Agents

- Agents arrive sequentially and their preference $\theta_t \in \mathbb{R}^d$ follows known distribution $F(\cdot)$.
- Without any incentives, agent θ_t would choose the arm $i_t = \arg \max_i \{\theta_t \cdot \hat{u}_{i,t}\}.$

Problem Setting

Agents behavior and feedback

- Principal chooses payment $c_{t,i}$ for arm i at time t;
- Agent θ_t would choose the arm $i_t = \arg \max_i \{\theta_t \cdot \hat{u}_{i,t} + c_{t,i}\};$
- Each pull provides vector-valued outcomes equal to u_i , perturbed by independent noise.

Principal's goal

- Regret $r_t = (\max_i \theta_t \cdot u_i) \theta_t \cdot u_{i_t}$ and payment $c_t = c_{t,i_t}$;
- Incentivize to minimize the cumulative regret while making a small cumulative payment;

Key Assumptions

- (Every arm is someone's best) We use p to denote the minimum (over all arms) fraction of users that prefer any particular arm.
- (Not too many near-ties) Let q(z) be the cumulative distribution function of those agents whose utility difference between their best and second best arm is less than or equal to z, then there exists a $\hat{z} > 0$, L such that $q(z) \leq L \cdot z$ for all $z \leq \hat{z}$.
- (Compact Support) θ has a compact support set contained in $[0, D]^d$.

Main Result

Theorem 1

With the previously stated assumptions, there is a policy that achieves expected cumulative regret $O(Ne^{2/p} + LN \log^3(T))$, using expected cumulative payments of $O(N^2e^{2/p})$.

In particular, when agents who are close to tied between two arms have measure 0, both the expected regret and expected payment are bounded by constants (with respect to T).

Notations

Phase

• Phase s starts when each arm has been pulled at least s times.

Payment-eligible

- Arm i has been pulled at most s times up to time t;
- The conditional probability of pulling arm i is less than $\frac{1}{\log(s)}$ given the current estimates $\hat{u}_{i,t}$.

Algorithm

Set the current phase number s=1. {Each arm is pulled once initially "for free."}

for time steps $t = 1, 2, 3, \dots$ do

if $m_{t,i} \ge s + 1$ for all arms i then Increment the phase s = s + 1.

if there is a payment-eligible arm i then

Let i be an arbitrary payment-eligible arm.

Offer payment $c_{t,i} = \max_{\theta,i'} \theta \cdot (\hat{\mu}_{t,i'} - \hat{\mu}_{t,i})$ for pulling arm i (and payment 0 for all other arms).

else

Let agent t play myopically, i.e., offer payments 0 for all arms.

Payment Analysis

Key technical lemma: an adaptive concentration inequality (Zhao et al. 2016);

Early Phases: bound by N;

Later Phases: exponentially unlikely as the phases advances;

Regret Analysis

When principal incentivizes: similar to the payment proof;

When agents pull myopically: We define a phase-dependent cutoff $\gamma(s(t))$ to further distinguish agents based on the regret.

- $r(t) \ge \gamma(s(t))$:
 - * this happens with exponentially decreasing probability;
 - * since θ_t has a compact support, the maximum regret is bounded by a constant;
- $r(t) \leq \gamma(s(t))$:
 - * not so many agents have near-ties preferences;
 - * the maximum regret is bounded above by $\gamma(s(t))$;

Question?

Thanks for your time!