Lesson 5.1: E/ER-to-Relational Model Mapping

CSC430/530 - DATABASE MANAGEMENT SYSTEMS

DR. ANDREY TIMOFEYEV

MAPPING ALGORITHM STEPS

- Step 1: Mapping of regular entity types.
- Step 2: Mapping of weak entity types.
- Step 3: Mapping of binary 1:1 relationship types.
- Step 4: Mapping of binary 1:N relationship types.
- Step 5: Mapping of binary M:N relationship types.
- Step 6: Mapping of multivalued attributes.
- Step 7: Mapping of n-ary relationship types.
- Step 8: Mapping of specializations and generalizations.
- Step 9: Mapping of union types (categories).

STEP 1: MAPPING OF REGULAR ENTITY TYPES

- •For each **regular** (*strong*) **entity type** *E* in the ER schema, create a **relation** *R* that includes **all** the **simple attributes** of *E*.
- •Choose one of the **key attributes** of *E* as the **primary key** for *R*.
 - If the chosen key of E is composite, the set of simple attributes (that form it) will together form the primary key of R.

STEP 1: MAPPING OF REGULAR ENTITY TYPES

STEP 1: MAPPING OF REGULAR ENTITY TYPES

STEP 2: MAPPING OF WEAK ENTITY TYPES

- •For each weak entity type W in the ER schema with owner entity type E, create a relation R and include all simple attributes of W as attributes of R.
- •Also, include as **foreign key attributes** of *R* the **primary key attribute(s)** of the **relation** that correspond to the **owner entity type.**
- •The **primary key** of *R* is the **combination** of the **primary key(s)** of the **owner(s)** and the **partial key** of the **weak entity type** *W*, if any.

STEP 2: MAPPING OF WEAK ENTITY TYPES

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary

DEPARTMENT

Dname <u>Dnumber</u>

PROJECT

Pname <u>Pnumber</u> Plocation

STEP 2: MAPPING OF WEAK ENTITY TYPES

STEP 3: MAPPING OF BINARY 1:1 RELATIONSHIPS

- •Three possible options:
- •Foreign Key (2 relations -S, T).
 - Choose one of the relations S and include as a foreign key in S the primary key of T.
 - It is better to choose an **entity type** with **total participation** in *R* in the role of *S*.
- •Merged relation (1 relation).
 - Merging the two entity types and the relationship into a single relation.
 - Appropriate when both participations are total.
- •Cross-reference or relationship relation (3 relations R, S, T).
- Set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types.
 - The **relation** R will include the **primary key** attributes of S and T as **foreign keys** to S and T.
 - The **primary key** of *R* will be one of the two **foreign keys**, and the other **foreign key** will be a **unique key** of *R*.

most applicable when both porticipations are portial

STEP 3: MAPPING OF BINARY 1:1 RELATIONSHIPS

Salary

STEP 3: MAPPING OF BINARY 1:1 RELATIONSHIPS

STEP 4: MAPPING OF BINARY 1:N RELATIONSHIPS

- •For each **binary 1:N relationship type** *R*, identify the **relation** *S* that represent the participating **entity type** at the **N-side** of the **relationship** type.
 - Include as **foreign key** in *S* the **primary key** of the **relation** *T* that represents the **other entity type** participating in *R*.
 - Include any simple attributes of the 1:N relation type as attributes of S.

STEP 4: MAPPING OF BINARY 1:N RELATIONSHIPS

EMPLOYEE

	Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary
- 1								

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date

PROJECT

Pname	<u>Pnumber</u>	Plocation

DEPENDENT

Essn Dependent name Sex Bdate Relationship
--

STEP 4: MAPPING OF BINARY 1:N RELATIONSHIPS

STEP 5: MAPPING OF BINARY M:N RELATIONSHIPS

- •For each binary M:N relationship type R, create a new relation S to represent R.
 - This is a relationship relation.
- •Include as **foreign key attributes** in *S* the **primary key attributes** of the **relations** that represent the participating **entity types** their **combination** will form the **primary key** of *S*.
- •Also, include any **simple attributes** of the **M:N relationship type** as attributes of *S*.

STEP 5: MAPPING OF BINARY M:N RELATIONSHIPS

Name

Sex

Birth date

Relationship

STEP 5: MAPPING OF BINARY M:N RELATIONSHIPS

STEP 6: MAPPING OF MULTIVALUED ATTRIBUTES

- •For each multivalued attribute A, create a new relation R.
 - Relation R will include an attribute corresponding to A, plus the primary key attribute K as a foreign key in R of the relation that represents the entity or relationship type that has A as an attribute.
 - The **primary key** of *R* is the **combination** of *A* and *K*.
 - If the multivalued attribute is composite, include all its simple components.

STEP 6: MAPPING OF MULTIVALUED ATTRIBUTES

Birth date

Name

Relationship

STEP 6: MAPPING OF MULTIVALUED ATTRIBUTES

STEP 7: MAPPING OF N-ARY RELATIONSHIPS

- •For each **n-ary relationship type** R (n>2), create a new **relationship** S to represent R.
 - Include as **foreign key attributes** in *S* the **primary key attributes** of the **relations** that represent the **participating entity types**.
 - Also, include any simple attributes of the n-ary relationship type as attributes of S.
 - The **primary key** of *S* is a combination of all the **foreign keys** that reference the **relations** representing the participating entity types.

STEP 7: MAPPING OF N-ARY RELATIONSHIPS

MAPPING BETWEEN ER AND RELATIONAL CONCEPTS

ER Model

Relational Model

Entity type	Entity relation		
1:1 or 1:N relationship type	Foreign key (relationship relation)		
M:N relationship type	Relationship relation and two foreign keys		
N-ary relationship type	Relationship relation and n foreign keys		
Simple attribute	Attribute		
Composite attribute	Set of simple component attributes		
Multivalued attributes	Relation and foreign key		
Value set	Domain		
Key attribute	Primary (or secondary) key		

ER and relational models concepts

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (1)

- •Convert each **specialization** with m subclasses $\{S_1, S_2, ..., S_m\}$ and generalized **superclass** C, where the **attributes** of C are $\{k, a_1, ..., a_n\}$ and k is the **primary key**, into **relational schemas** using one of the four following options:
 - Option 8A: Multiple relations superclass and subclasses relations.
 - Create a relation L for C with attributes $Attrs(L) = \{k, a_1, ..., a_n\}$ and L[PK] = k.
 - Create a relation L_i for each subclass S_i with the attributes $Attrs(L_i) = \{k\} \ U \ \{attributes \ of \ S_i\}$ and $L_i[PK] = k$.
 - Works for any specialization (total or partial, disjoint or overlapping).

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (1)

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (2)

- •Convert each **specialization** with m subclasses $\{S_1, S_2, ..., S_m\}$ and generalized **superclass** C, where the **attributes** of C are $\{k, a_1, ..., a_n\}$ and k is the **primary key**, into **relational schemas** using one of the four following options:
 - Option 8B: Multiple relations subclass relations only.
 - Create a relation L_i for each subclass S_i with the attributes $Attr(L_i) = \{attributes \ of \ S_i\} \ U \ \{k, \ a_1, \dots, \ a_n\}$ and $L_i[PK] = k$.
 - Works for a total & disjoint specialization.

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (2)

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (3)

- •Convert each **specialization** with m subclasses $\{S_1, S_2, ..., S_m\}$ and generalized **superclass** C, where the **attributes** of C are $\{k, a_1, ..., a_n\}$ and k is the **primary key**, into **relational schemas** using one of the four following options:
 - Option 8C: Single relation with one type attribute.
 - Create a single relation L with attributes $Attrs(L) = \{k, a_1, ..., a_n\} \cup \{attributes \ of \ S_1\} \cup ... \cup \{attributes \ of \ S_m\} \cup \{t\} \ and \ L[PK] = k.$
 - The attribute t is called a type (or discriminating) attribute that indicates the subclass to which each tuple belongs.
 - Works for a disjoint specialization.

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (3)

EMPLOYEE

Ssn	Fname	Minit	Lname	Birth date	Address	Job type	Typing_speed	Tgrade	Eng type
		100.0					J1 0- 1		0- 31

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (4)

- •Convert each **specialization** with m subclasses $\{S_1, S_2, ..., S_m\}$ and generalized **superclass** C, where the **attributes** of C are $\{k, a_1, ..., a_n\}$ and k is the **primary key**, into **relational schemas** using one of the four following options:
 - Option 8D: Single relation with multiple type attributes.
 - Create a single relation schema L with attributes $Attrs(L) = \{k, a_1, ..., a_n\}$ U { $attributes of S_1$ } U...U { $attributes of S_m$ } U { $attributes of S_n$ } U and U and U are U and U are U and U are U and U are U are U are U and U are U are U and U are U and U are U are U are U are U and U are U and U are U are U are U and U are U a
 - Each t_i is a Boolean type attribute indicating whether a tuple belongs to the subclass S_i .
 - Works for an overlapping specialization.

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (4)

PART

Part_no	Description	Mflag	Drawing_no	Manufacture_date	Batch_no	Pflag	Supplier_name	List_price
---------	-------------	-------	------------	------------------	----------	-------	---------------	------------

STEP 8: MAPPING OF SPECIALIZATIONS & GENERALIZATIONS (5)

STEP 9: MAPPING OF UNION TYPES (CATEGORIES)

•For mapping a **category** whose **defining superclass** has **different keys**, it is customary to specify a new **key attribute**, called a **surrogate key**, when creating a **relation** to correspond to the **category**.

STEP 9: MAPPING OF UNION TYPES (CATEGORIES)

