Interactive Analysis of Word Vector Embeddings

Florian Heimerl and **Michael Gleicher**Department of Computer Sciences
University of Wisconsin - Madison

Interactive Analysis of Word Vector Embeddings

Florian Heimerl and Michael Gleicher Department of Computer Sciences University of Wisconsin - Madison

Summary:

Word vector embeddings offer unique challenges

Task analysis of needs

characteristic	single target	multiple targets
similarity	(1) inspect local neighborhood	(2) compare local neighborhoods
average, offset	(3) inspect arithmetic structure	(4) compare arithmetic results
co-oc. probability	(5) analyze encoded probabilities	(6) compare probabilities
concept axis	(7) analyze vector relations	(8) compare vector relations
multiple	(9) discover interesting aspects	(10) compare interesting aspects

3 Designs for unmet needs

Buddy Plots

What is an embedding?

General mathematics:

Place a smaller structure into a larger structure

Computer science:

Place a discrete set of objects into a vector space

Encode relationships between objects

High Dimensional Data

Objects

have associated Vectors

Kinds of relationships in embeddings

Distance

A is closer to B than to C

Linear Structure

A is to B as C is to D

Semantic Directions

A is more X than C

Relationships are interesting even if global positions are not

Word vector embeddings

Place words in a high-dimensional vector space

Words similar in meaning should be close in space

Infer similarity by **distributional semantics**: similar context implies similar meaning

```
my pet cat is brown my pet dog is brown my big car is brown
```

Construct embeddings by processing a **corpus** of text

Several ways to build embeddings

Word2Vec

Skip-gram model

Neural embedding

GLoVE

Co-occurrence model

Factor matrix by optimization

Why use Word Vector Embeddings?

Learn about Language or Corpora (Texts)

Find similar words/synonyms

Track changes of word usage

Exploring polysemy

Creating lexical resources

Evidence of bias

...

Natural Language Applications Pre-Processing

Translation

Sentiment Analysis

Interpretation

. . .

Challenges of Word Vector Embeddings

Large numbers of Words

High-dimensional spaces

Complex relationships – meaningless positions

Complex processes for building embeddings Complex downstream applications

No ground truth - subjective aspects

Why visualization?

Tasks are inherently human-centric

Variety of tasks involving interpretation Linguistic and domain knowledge for applications

But what are those tasks?

Task Analysis: What do people do with Word Embeddings?

Literature survey

111 papers from diverse communities

Consider use cases in Linguistics, HCI, Digitial Humanities, etc.

Augment this list by extrapolation what tasks would users want – but aren't doing yet

Use cases suggest tasks

Learn about Language or Corpora (Texts)

Find similar words/synonyms

Track changes of word usage

Exploring polysemy

Creating lexical resources

Interpretation

Identify items of interest Probe values of interest

Natural Language Applications Pre-Processing

Translation

Sentiment Analysis

Interpretation

Evaluation

Intrinsic (good embedding?)
Extrinsic (applications success?)

Linguistic Tasks and Characteristics

We identified 7 distinct *linguistic tasks* within the literature

Two ways those tasks are relevant

- Automatically test embeddings through human-curated resources
- Users probe embedding

4 characteristics pertinent to those tasks: similarity, arithmetic structures, concept axis, and co-occurrences

linguistic tasks	characteristics	examples
rank word pairs	similarity	[BDK14, PSM14]
compare concepts	average, similarity	[RBS17, SLMJ15]
find analogies	offset, similarity	[SLMJ15,LG14]
view neighbors	similarity	[HLJ16, YWL* 16]
select synonyms	similarity	[BDK14,FDJ*14]
project based on concepts	concept axis	[BCZ*16,FRMW17]
predict contexts	co-oc. probability	[SN16,LJW*15]

Prior Work: Word Vector Embedding Visualizations

Liu et al., InfoVis 2017 Analogy Relationships

Smilkov et al., 2016 Distance Relationships

Rong and Adar, 2016 Training Process

Tasks and Characteristics vs. Visualizations

Rank word pairs

View neighbors

Select synonyms

Compare concepts

Find analogies

Project on Concept

Predict Contexts

similarity

similarity

similarity

average, similarity

offset, similarity

concept axis

co-oc. probability

Smilkov, et al 2016

Liu, et al 2017

Tasks and Characteristics vs. Visualizations

Rank word pairs

Similarity

Smilkov, et al 2016

Select synonyms

Smillarity

Smilkov, et al 2016

Smilkov, et al 2016

Smillarity

Tind analogies

Project on Concept

Concept axis

Predict Contexts

Smillarity

Smilkov, et al 2016

Liu, et al 2017

Concept axis

Co-oc. probability

- Tasks we seek designs for in this paper

1. Similarities (local distances)

1860
1870
1880
1890
1990
1910
1910
1920
1930
1940
1950
1970
1970
1970
1970
1970

Buddy Plots

2. Co-Occurrances

3. Concept Axes

1. Similarities (local distances)

Buddy Plots

2. Co-Occurrances

3. Concept Axes

Similarities: Understanding local distances

Distances are meaningful

even if absolute values are not

What is close to a word?

Are there groups of words that are similar?

Ordered lists are useful

Density (how many can you show)

Sense of relative distances

Comparison between words

Embedding Projector Smilkov, et al. 2016

Buddy Plots (1D lists)

Map distance (to selected reference) to horizontal axis

Not dimensionality reduction?

Map distance to word to horizontal axis

Focus on a single point – other relations not preserved

Embedding Projector Smilkov, et al. 2016

Nearest points in the original space:		
cattle	0.543	
cows	0.566	
dog	0.607	
dogs	0.644	
sheep	0.650	
milk	0.659	
mad	0.670	
labyrinth	0.673	
breed	0.682	
horse	0.686	
bull	0.686	

Stacked/Chained buddy plots

Use color to encode distance

Stacked/Chained buddy plots

Use color to encode distance in the reference row

Stacked/Chained buddy plots

Use color to encode distance in the reference

Same word... different embedding

1. Similarities (local distances)

Buddy Plots

2. Co-Occurrances

3. Concept Axes

Why are words similar? Understanding word co-occurence

Similarity based on co-occurrence count how often one word occurs near another

Co-occurrence matrix

main form of input data

many models approximate the matrix (reconstruct)

Useful for understanding and diagnosing models

Co-occurrence view

How do we view the massive matrix?

color encoding (heat map) – density, relative values

select rows (specify words of interest)

select columns (metrics of interestingness – given rows)

highest values

highest variance

Co-occurrence matrix view

Matrix comparison view

High variance words in one embedding may be low in the other

1. Similarities (local distances)

Buddy Plots

2. Co-Occurrances

3. Concept Axes

Concept Axes: Understanding Semantic Directions

Opposing concepts make an axis

Concept Axes: Understanding Concept Axes

Define an axis from one concept to another

Ways to define axes

Vector between two concepts

Interaxis - Kim et al., 2015

Classifier between two groups

Explainers – Gleicher, 2013

Multiple Concept Axes

Use multi-variate plots

2D = Scatterplot

Small

 $\frac{\mathbf{B}}{\mathbf{p}}$

Pet Food

Scatterplot Interaction

Application: Word meaning change

Application: Stability Assessment

Implementation

http://graphics.cs.wisc.edu/Vis/EmbVis/

Everything runs on line (simplified interfaces) cloud version uses small models

Python backend / D3 frontend

Limitations

Implementation Usability and Scalability

Effectiveness Evaluation (of designs)

Completeness More Tasks

Identifying Probes

Explicit Comparison

Connection to (model) evaluation

Feedback to model building

Summary:

Word vector embeddings offer unique challenges

Task analysis of needs

characteristic	single target	multiple targets
similarity	(1) inspect local neighborhood	(2) compare local neighborhoods
average, offset	(3) inspect arithmetic structure	(4) compare arithmetic results
co-oc. probability	(5) analyze encoded probabilities	(6) compare probabilities
concept axis	(7) analyze vector relations	(8) compare vector relations
multiple	(9) discover interesting aspects	(10) compare interesting aspects

Designs for 3 unmet needs

Buddy Plots

Acknowledgments

This work is funded in part by NSF 1162037 and DARPA FA8750-17-2-0107

