Giriş

BİL346 Sistem Geliştirme ve Modelleme

Hafta #1 (14 Şubat 2012)

İçerik

- Kavramlar ve tanımlar
 - Bilgisayar sistemi
 - ▶ Bilgi sistemi
 - Yazılım sistemi
- Yazılım her yerde
- Geliştirme modelleri
 - Çağlayan modeli

Bilgisayar Sistemi

Sistem:

- Birbiriyle etkileşen veya ilişkili olan, bir bütün oluşturan, somut veya soyut varlıkların bileşkesidir.
 - Örnek: Güneş sistemi, ekosistem, bilgisayar sistemi

■ Bilgisayar Sistemi:

- Belirli bir amacı gerçekleştirmek veya işleyişi desteklemek için kurulmuş, bilgisayar donanımı, ağı ve yazılımı bileşenlerinden oluşan bütündür.
- Örnekler:
 - Kola Makinesi (gerçek zamanlı sistem)
 - Asansör (gerçek zamanlı sistem)
 - İnsan Kaynakları Yönetim Sistemi (bilgi sistemi)
 - ATM (hibrid)

Sistem Tanımı

- ISO/IEC 15288 (2008): Systems and software engineering System life cycle processes
- ISO/IEC 12207 (2008): Systems and software engineering Software life cycle processes
- "System: A combination of interacting elements organized to achieve one or more stated purposes"
 - ▶ A system may be considered as a product or as the services it provides.

Gömülü ve Gerçek Zamanlı Sistemler

İşletme başarımının zamana bağımlı olduğu ve kaynak yönetimi gerektiren sistemlerdir.

■ Gömülü sistem:

Amaca özel kullanım için tasarlanmış donanımı ve bunun üzerindeki yazılımı içeren sistemdir.

Gömülü ve Gerçek Zamanlı Sistemler (2)

Bilgi Sistemi ("Information System - IS")

[Olive 2007]

- "a means that allows wider systems to achieve their objectives (does not exist for its own purposes)"
 - ... a system designed to support operations, management, and decision making in an organization
 - ... a system that facilitates communication among its users
- "a system that collects, stores, processes, and distributes information related to the state of a certain domain, and that is designed and built by an engineer"
 - "domain" = "object system" = "universe of discourse"

Bilgi Sisteminin İşlevleri ("Functions")

Fig. 1.1. Functions of an information system

From Chapter 1 of "Conceptual Modeling of Information Systems" by A. Olivé, Springer-Verlag, Berlin Heidelberg 2007

Bilgi Sisteminin İşlevleri (2)

- Memory (Bellek)
 - ▶ To maintain a representation of the state of a domain
 - On request or autonomously
- Informative (Bilgilendirici)
 - To provide information about the state of a domain
 - On request or autonomously
 - Does not change the state of the domain
- Active (İşlem)
 - To perform actions that change the state of a domain
 - On request or autonomously

Yazılım Sistemi ("Software System")

- Sadece yazılım bileşenlerinden oluşan bilgisayar sistemidir.
 - Bu sistemin üzerinde çalışacağı donanım ve sistem yazılımları, bu tanımda kapsam dışında tutulmaktadır.
- ISO/IEC 12207 (2008): Systems and software engineering Software life cycle processes
 - "Software product: A set of computer programs, procedures, and possibly associated documentation and data"

Yazılım Nedir?

- Bilgisayar programları ile bunlarla ilişkili yapılandırma ve belgelerin bütünüdür.
 - Genel yazılım
 - Özellikleri pazardaki genel ihtiyaca göre belirlenerek geliştirilir.
 - "Generic software", "commercial-off-the-shelf (COTS) software"
 - Örnek: MS Office yazılımı
 - Müşteriye özel yazılım
 - Özellikleri belirli bir müşterinin ihtiyacına göre belirlenerek geliştirilir.
 - "Custom software"
 - Örnek: Hava trafiği kontrol yazılımı

Yazılım Her Yerde

- Yazılım ürünlerine olan talep ve yazılım ürünlerinden beklentiler çok hızlı artıyor
 - ▶ Boeing 777
 - A.B.D. ve Japonya'da 1700 iş istasyonu
 - 4,000,000 Kod Satırı
 - "Kanatları olan yazılım"
 - ▶ Beyaz eşyalar, cep telefonları, otomobiller
 - Akıllı ev ve ofis sistemleri

...

Bazı Dehşet Hikayeleri

Denver havaalanı otomatik bagaj sistemi

Hava trafik kontrol (FAA modernizasyon)

Comanche Helikopteri

- Açılış 2 yıl gecikti
- \$27 milyon maliyet aşımı
- \$360 milyon gecikme maliyeti
- \$5.6 milyar maliyet aşımı
- 8 yıl gecikme
- 4 sistemden 2 tanesi iptal edildi, üçüncü sistemin gereksinimlerinin %52'si karşılandı
- 10 yılda maliyeti 10 kat arttı, \$34.4 milyon
- Gereksinimleri %74 azaltıldı

Ürün Büyüklüğü – Başarı İlişkisi

Kestirim (C Satır)	Önce	Zamanında	Gecikme	İptal
13.000	6.06%	74.77%	11.83%	7.33%
130.000	1.24%	60.76%	17.67%	20.33%
1.300.000	0.14%	28.03%	23.83%	48.00%
13.000.000	0.0%	13.67%	21.33%	65.00%

Referans:

"Patterns of Software Failure and Success", C. Jones

Ürün Büyüklüğü – Yöntem?

Mühendislik Yaklaşımı!

- Ürününün geliştirilmesi, işletilmesi ve bakımı için uygulanan; sistematik, disiplinli ve ölçülebilir yaklaşımdır [IEEE, 1990].
 - Mühendislik, herhangi bir bilim alanındaki bilgi birikimini sistematik olarak pratiğe geçirmeyi hedefler; bilimi ve matematiği kullanır.
 - Yönetim parametreleri: İşlev, maliyet, zaman
 - Kalite parametreleri: Dayanıklılık, bakım kolaylığı, güvenlik, kullanım kolaylığı, vb.
 - ▶ Tekrarlanabilir başarılar için mühendislik yaklaşımı şarttır.
 - Mühendislik öğretisi ile bir yöntem uygulandığında, benzer sonuçları her zaman elde etme güvenliği vardır.

Geliştirme Modelleri

- Sistem geliştirmenin bahsedilen zorluklarıyla baş edebilmek için, geliştirmeyi sistematik hale getirmeyi hedefleyen çeşitli modeller ortaya çıkmıştır.
 - Bu modellerin temel hedefi; proje başarısı için, sistem geliştirme yaşam döngüsü ("system development life cycle") boyunca izlenmesi önerilen adımları tanımlamaktır.
 - Sistem geliştirme yaşam döngüsü: Bir sisteme olan ihtiyacın ortaya çıkmasından sistemin kullanımdan kalkmasına kadar geçen dönemdir.
 - Modellerin ortaya çıkmasında, ilgili dönemin donanım ve yazılım teknolojileri ile sektör ihtiyaçları önemli rol oynamıştır.

Çağlayan ("Waterfall") Geliştirme Modeli

Çağlayan Modeli - Geliştirme Aşamaları

- Analiz: Gerçekleştirilecek sistemin gereksinimlerinin belirlenmesi işlemidir.
 - Müşteri ne istiyor? Sistem ne yapacak, ne işlevsellik gösterecek?
- Tasarım: Gereksinimleri belirlenmiş bir sistemin yapısal ve detay tasarımını oluşturma işidir.
 - Sistem, müşterinin beklediği işlevselliği nasıl sağlayacak?
- Gerçekleştirme: Tasarımı yapılmış bir sistemin kodlanarak gerçekleştirilmesi işlemidir.
 - Sistem, tasarıma uygun şekilde gerçekleştirildi mi?
- Test: Gerçekleştirilmiş sistemin beklenen işlevselliği gösterip göstermediğini sınama işlemidir.
 - Sistem, müşterinin beklediği işlevselliği sağlıyor mu?
- Bakım: Müşteriye teslim edilmiş sistemi, değişen ihtiyaçlara ve ek müşteri taleplerine göre güncelleme işidir.
 - Sistem müşteri tarafından memnuniyetle kullanılabiliyor mu?

Sistem Geliştirme

Problem alanına ilişkin bilgi, en az çözüm alanına ilişkin bilgi kadar önemlidir. (Yanlış sistemi mükemmel de gerçekleştirseniz kullanılmayacaktır.)

Sistem geliştirme doğası gereği iki disiplin arası bir iştir.

Sistem Geliştirme ve Yazılım Geliştirme Arasındaki İlişki Nedir?

- Sistem geliştirme; yazılımın önemli rol oynadığı, karmaşık bilgisayar sistemlerinin geliştirilmesi ile ilgilenir.
 - Örnek: ATM sistemi
 - Sistem Mühendisliği; sistemin genel çatısıyla ilgilidir.
 - Sistemin kullanılacağı alana ilişkin süreçlerin analiz edilmesi, sistem gereksinimlerinin tanımlanması, sistem mimarisinin oluşturulması, sistem bileşenlerinin tümleştirilmesi gibi aşamaları içerir.
 - Söz konusu <u>bilgisayar sistemi; donanım, ağ, yazılım bileşenlerinden oluşur.</u> Sistem geliştirme, bileşenlere ilişkin mühendislik etkinliklerinin detaylarıyla pek ilgilenmez.
 - Bu tür sistemler için Yazılım Geliştirme (kapsamındaki tüm etkinliklerle birlikte),
 Sistem Mühendisliği altında ve onun bir parçası olarak uygulanır.
 - Sistem Geliştirme, Yazılım Geliştirmeye kıyasla çok daha eskidir.

Donanım Geliştirme ve Yazılım Geliştirme Arasındaki Farklar Nelerdir?

- Donanım ile yazılım geliştirmenin en belirgin farkı ürünlerdedir.
 - Yazılım ürünü diğer mühendislik ürünlerine oranla daha soyuttur.
 - Yazılım projesi geliştirme ile sonlanırken donanım projelerinde ek olarak imalat safhası vardır.
 - Seri üretim, yazılım geliştirme içerisinde neredeyse hiçten ibarettir.
 - Donanım ürünleri kullanıldıkça aşınır; yazılım ürünlerinde ise aşınma olmaz. Yalnızca baştan beri gizli bulunan hatalar, yazılım kullanıldıkça ortaya çıkar.
- Donanım geliştirmede maliyet odağı seri üretim ve yıpranmayken, yazılım geliştirmede maliyet odağı geliştirmenin kendisidir.

Donanım vs. Yazılım Kalite Maliyeti

■ Donanım kalite maliyeti dağılımı, tasarım sonrasında yoğunlaşır.

► Tasarım : %10

► Yıpranma : %60

▶ Üretim : %30

Yazılım kalite maliyeti, geliştirme aşamasında yoğunlaşır.

▶ Geliştirme : %99

► Yıpranma : %0

▶ Üretim : %1

Yazılım Geliştirmede Maliyetin Dağılımı Nedir?

Kabaca söylersek, yazılım maliyetinin;

%60 : Geliştirme maliyeti,

%40 : Test maliyetidir (test maliyetine bulunan hataları düzeltmenin maliyeti de dahildir.)

Müşteriye özel üretilen yazılımlar için idame (bakım) maliyeti, geliştirme maliyetinin birkaç katına çıkmaktadır.

Özet olarak;

- Bilgisayar sistemleri; donanım, ağ ve yazılım bileşenlerinden oluşur.
- Yazılım bileşeni, bilgisayar sistemlerinin önemli bir parçasıdır.
- Yazılım, her geçen gün, hayatımızı yönlendiren daha çok sistemin içinde yer almaktadır. Bu açıdan yazılım geliştirme, sistem geliştirmenin önemli bir bölümüdür.
- Sistem (ve yazılım) geliştirme, sistematik olarak yapılmalıdır.
- Sistematik sistem (ve yazılım) geliştirme için süreç modelleri ortaya atılmıştır. Çağlayan modeli bunların en eskilerindendir.