

# UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEE CURSO DE CIRCUITOS ELÉTRICOS EM C.A. – TH108 LABORATÓRIO DE CIRCUITOS ELÉTRICOS II

PROF.: RUTH P.S. LEÃO

# TEOREMA DE THÉVENIN

#### **OBJETIVOS**

Testar o teorema de Thévenin

#### MATERIAL UTILIZADO

Simulador PSIM.

### CONCEITO TEÓRICO

O teorema de Thévenin é usado para simplificar circuitos ou redes elétricas lineares. Uma rede linear é definida como um circuito que pode conter fontes independentes e dependentes lineares e elementos passivos lineares. Na prática, uma rede linear é aquela em que a "resposta é proporcional à excitação", ou seja, a multiplicação de todas as fontes (excitação de tensão e corrente) por uma constante k aumenta todas as correntes e tensões-respostas do mesmo fator k. Matematicamente, se  $y_1(t)$  e  $y_2(t)$  representam as respostas a duas fontes independentes  $x_1(t)$  e  $x_2(t)$ , então um sistema genérico é dito linear se e somente se a resposta para  $x(t) = k_1 x_1(t) + k_2 x_2(t)$  é  $y(t) = k_1 y_1(t) + k_2 y_2(t)$ .

Seja uma rede linear de dois terminais A e B conectada a uma carga arbitrária que pode ser não linear, conforme mostra a Figura 1. A tensão  $\vec{V}$  é a tensão entre os terminais A e B e a corrente  $\vec{I}$  é a corrente que percorre os terminais A e B.

Figura 1. Circuito ilustrando as condições para aplicação do teorema de Thévenin.



Em termos gerais, o teorema de Thévenin afirma que a forma de onda da corrente  $\vec{l}$  e a forma de onda da tensão  $\vec{V}$  não serão afetadas se a rede linear for substituída por um "circuito equivalente de Thévenin". Em análise senoidal, o circuito equivalente de Thévenin é formado por uma fonte senoidal equivalente de tensão  $\vec{V}_{TH}$  em série com uma impedância  $Z_{TH}$ , conforme mostra a Figura 2. A fonte de tensão  $\vec{V}_{TH}$  é a tensão de circuito aberto da rede linear, ou seja, é a tensão medida entre os terminais A e B com a carga desligada ou desabilitada. A polaridade indicada na Figura 2 representa a forma como a tensão é medida. A impedância equivalente  $Z_{TH}$  é a impedância entre os terminais A e B, estando a carga arbitrária desabilitada e todas as fontes independentes da rede linear anuladas, isto é, desabilitadas, o que significa curto circuitar os terminas das fontes de tensão independentes e abrir os terminais das fontes de corrente independentes.

Figura 2. Circuito equivalente de Thévenin para análise senoidal.



A rede simplificada pelo equivalente de Thévenin é capaz de representar o mesmo comportamento que o circuito original do ponto de vista dos terminais dos quais se quer analisar.

#### **PROCEDIMENTO**

- 1. Montar e simular no PSIM o circuito da Figura 3. Neste circuito, o circuito linear está em cinza e a carga é o capacitor. Fechar a chave do banco capacitivo e fazer o que se pede abaixo:
- a) Determinar, de forma indireta, a corrente eficaz total  $I_T$  do circuito relação entre a tensão monitorada pela ponteira de tensão ( $CH_2$ ) e a resistência de 60  $\Omega$ ;
- b) Plotar as ondas de tensão capturadas pelas ponteiras  $CH_1$  e  $CH_2$  e medir o ângulo de defasagem entre a tensão ( $CH_1$ ) e a imagem da corrente de alimentação do circuito medida por ( $CH_2$ );
- c) Medir com um amperímetro a corrente eficaz  $I_c$  e com um voltímetro a tensão eficaz  $V_{AB}$  do banco do capacitor e calcular a potência  $Q_c$  do capacitor;
- d) Medir com um Varímetro a potência reativa do circuito e calcular a potência aparente complexa  $S_T$  vista da fonte.
- e) Preencher a Tabela 1.

Figura 3. Circuito para ensaio em simulador.



#### Dicas:

- Usar uma chave bidirecional monofásica
- Os símbolos respectivos de amperímetro AC, voltímetro AC e Varímetro no PSIM são:



Tabela 1 – Grandezas do circuito da Figura 3.

| Carga | V[V] | $I_T[A]$ | $\theta$ [°] | $V_{AB}[V]$ | $I_c[A]$ | $S_T = P_T - jQ_T [VA]$ | FP | $Q_c[var]$ |
|-------|------|----------|--------------|-------------|----------|-------------------------|----|------------|
| 83 μF | 100  |          |              |             |          |                         |    |            |

- 1.1 Comparar e comentar sobre a componente imaginária da potência total  $S_T$  e a potência capacitiva  $Q_c$ .
- 1.2 Analisar, com base no valor do fator de potência calculado, a característica do circuito. O reativo capacitivo é muito significativo no circuito?
- 1.3 Determinar de forma indireta a corrente eficaz no resistor de 120  $\Omega$  (relação entre  $V_{AB}$  e o resistor de 120  $\Omega$ ).
- 1.4 Determinar o fasor corrente que circula pelo resistor de 120  $\Omega$  e comparar seu módulo com o valor da corrente determinada de forma indireta. Desenhe o diagrama fasorial de  $\vec{V}$ ,  $\vec{I}_T$ , e as componentes real e imaginária de correntes de  $\vec{I}_T$ .
- 2. Desabilitar o banco capacitivo. Com um voltímetro AC, medir a tensão  $V_{TH}$  entre os pontos A e B. Desativar a fonte de suprimento do circuito e calcular a resistência  $R_{TH}$  entre os pontos A e B. Anotar os valores na Tabela 2.

Tabela 2 – Valores medidos de  $V_{TH}$  e  $R_{TH}$   $V_{TH}[V]$   $R_{TH}[\Omega]$ 

3. Montar o circuito da Figura 4, conforme os valores de  $V_{TH}$  e  $R_{TH}$  medidos. Medir os valores de tensão  $V_{AB}$  e corrente  $I_c$  da carga capacitiva. Medir o ângulo de defasagem entre a tensão e a corrente de alimentação do circuito. Anotar os valores na Tabela 3.

Figura 4. Circuito equivalente de Thévenin.



Tabela 3. Determinação das características do circuito equivalente de Thévenin.

| Carga | $V_{TH}[V]$ | $I_{TH}\left[A\right]$ | θ [°] | $V_{AB}[V]$ | $S_{TH} = P_{TH}$ | $-jQ_{TH}$ [VA] | FP | $Q_c$ [var] |
|-------|-------------|------------------------|-------|-------------|-------------------|-----------------|----|-------------|
| 83 μF |             |                        |       |             |                   |                 |    |             |

- 3.1 Comparar os valores de tensão e corrente da carga capacitiva obtidos nos circuitos das Figuras 3 e 4. O que pode ser concluído?
- 3.2 Analisar o comportamento dos circuitos das Figuras 3 e 4, tendo como base a comparação entre as potências complexas totais e o fator de potência de cada circuito. Houve modificação no comportamento do circuito? O que pode ser concluído?
- 3.3 Determinar o fasor tensão no resistor  $R_{TH}$  e comparar seu módulo com o valor medido pela ponteira de tensão em  $CH_2$ . Desenhar um diagrama fasorial, mostrando todos os fasores de tensão do circuito da Figura 4 (utilizar o fasor corrente  $I_{TH}$  com ângulo de fase igual a  $0^{\circ}$ , como referência).

### **QUESTÕES**

- 1. Apresentar a equivalência que existe entre o teorema de Thévenin e o teorema de Norton.
- 2. Apresentar os procedimentos e as condições do circuito para cálculo da impedância de Thévenin baseados (a) no cálculo da corrente de curto-circuito nos terminais do circuito linear (b) na alimentação dos terminais a b do circuito linear por uma fonte teste de valor conhecido.

## **REFERÊNCIAS**

DESOER, Charles A.; KUH, Ernest S. Teoria Básica de Circuitos. Rio de Janeiro: Guanabara, 1988.

CLOSE, Charles M. The Analysis of Linear Circuits. New York: Harcourt, Brace & World, 1966.