

Machine Learning Analysis Feature Extraction

GyeongYeong, Kim

ML/DL Lab 2nd Day

- Keras Model Analysis
 - Callback
 - History Confirmation
 - Wrong Sample Confirmation
 - Confusion Matrix
- Feature Extraction
 - CNN / Pooling Layer
 - Batch Normalization / DropOut

- Pytorch Feature Extraction
 - CNN / Pooling Layer
 - Batch Normalization / DropOut
 - Best Model Saving
 - History Confirmation
 - Confusion Matrix
 - Wrong Sample Confirmation
 - Early Stopping

Keras Callbacks

PIAI Research Department

- Keras Callbacks : 학습 이슈을 분석하거나 조정할 때 쓰이는 학습 보조기능

ModelCheckpoint : 학습 도중모델 저장

TerminateOnNaN: NaN 손실이 발생했을 때 학습을 종료

RemoteMonitor: 이벤트를서버에 스트림

LearningRateScheduler : 학습속도에 대해 스케쥴을 짬

EarlyStopping: 학습 양상을 보고 학습을 조기에 종료(Overfitting 방지)

Tensorboard: 텐서보드로그래프를확인할수있도록학습양상을기록(동적그래프나활성화히스토그램시각화)

ReduceLROnPlateau: 측정 항목이 향상되지 않는 경우 학습속도를 줄임

Model Checkpoint

PIAI Research Department

Model Checkpoint : 케라스의 모델(혹은 weight)를 규칙에 따라 저장하는 콜백

- file_path:모델저장경로
- monitor(metric) /save_best_only(True/False) : 모니터할 metric 설정 및 이에 따른 높은 성능의 모델을 저장
- mode (auto/min/max) : 모니터할 metric의 최대나최소중선택(acc는 max, loss는 min)
- Initial_value_threshold: 모니터할최소/최대기준값
- save_freq(int): 저장할주기(epoch기준으로설정)
- verbose(0/1/2): 콜백이적용될시표출할모드
- (save_weight_only:full model의저장대신weight만저장)

Early Stopping

PIAI Research Department

Keras Callbacks: 학습이슈을 분석하거나 조정할 때 쓰이는 학습 보조기능

- monitor(metric): 모니터할기준
- patience(int):학습개선이없어학습을멈출최소epoch기준
- verbose(0/1/2): 콜백이적용될시표출할모드
- mode(auto/min/max): monitor metric을 결정하는 기준
- baseline:모니터하는데에있어서의베이스라인값
- restore_best_weights(True/False): 기장좋은성능으로저장할지안할지설정

TensorBoard

PIAI Research Department

- Keras Callbacks 중하나 : 시각화도구로 활용됨
- 실시간업데이트확인가능: Time Series탭내 Settings로확인

Settings

Reload data	
Reload Period 30	
Pagination Limit	

History 확인

- Epoch 마다의 학습 추이를 확인
- Loss나 Accuracy의 추이를 통해 추가 학습의 필요 여부, Underfitting/ Overfitting 확인

Confusion Matrix

- 모델결과에 대한 분석이 용이함
- 클래스가 많으면 하기에 어려울 수 있음
- 모델의 구체적인 문제 사례를 확인하기엔 한계가 있음 → 특정 사례에 한해 직접 확인!

Wrong Sample 확인

- Confusion Matrix : 거시적 분석 / Wrong Sample : 미시적 분석
- 학습을 통한 개선이 가능한지의 여부를 확인 가능 (항상 네트워크 학습으로 해결할 수 있는 것은 아니다..!)

Feature Extraction

Image classification

PIAI Research Department

어떻게 하면 컴퓨터가 '고양이'를 인식하도록 코딩할 수 있을까?

Traditional Image classification

PIAI Research Department

- Traditional Image Classification

Data → Feature extraction → Classification

Image classification

가치창출대학
POSTILE 다

Overall Flow of Deep Learning

가치창출대학
POSTELH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

PIAI Research Department

- CNN

Feature extraction (Convolution, Pooling layer)

DNN (Fully Connected, Activation layer ···)

Fully Connected Layer

가치창출대학
POSTELH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

PIAI Research Department

1,	1 _{×0}	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

POSTELH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

PIAI Research Department

activation map

Image classification

POSTECH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

PIAI Research Department

activation maps

POSTELH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

PIAI Research Department

각각의 필터는 input image만큼의 depth를 가져야한다. 그리고 필터를 거친 activation map은 필터의 개수만큼 만들어 진다. Padding을 적용하지 않으면 이미지의 크기가 점점 줄어들어 convolution을 진행할 수 없다. (28 -> 26 -> 22 ...)

PIAI Research Department

1x1 convolution layers : 이미지 크기는 유지, depth를 줄임

Pooling Layer

PIAI Research Department

Pooling layers : 이미지 크기를 줄이고, depth를 유지

Pooling Layer

PIAI Research Department

Single depth slice

6 8 5 0

max pool with 2x2 filt	ers
and stride 2	

6	8
3	4

- 일반적으로 Max Pooling이나 Avg. Pooling을 사용
- Pooling 함으로써 데이터가 손실되지만 invariance를 얻음

Batch Normalization

Dropout

가치창출대학

Training time

Dropout

얼굴위주

색지우고

귀 빼고

Image classification

가치창출대학
Pの与TPにH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Code Running

(student)2_KerasFeature Extraction.ipynb

I-Eon, Na

CNN Feature Extraction

PIAI Research Department

CNN – with MNIST

- 특징을 추출하기 특화
- 기존 FC와 다르게 모든 뉴런들이 연결되어 있지 않음
- MLP에 비해 학습이 효율적이고, 모 델의 성능도 더 좋음
- 여러가지 학습 기법 적용 예정 (Batch Nor., EarlySt., Dropout, Check Point Save 기법 등)

CNN -데이터 전처리

PIAI Research Department

• 데이터 전처리 – Dataset Normalization

데이터셋의 평균(mean)과 표준편차(std)를 계산하여 적용시

학습할 이미지 데이터셋이 일반적인 조도, 각도, 배경, 사물체가 아닌 경우는 직접 평균/표준편차를 계산하여 적용할수 있습니다.

아래 함수는 이미지 데이터셋에 대하여 평균, 표준편차를 산출해 주는 함수 입니다.

```
def calculate_norm(dataset):
# dataset의 axis=1, 2에 대한 평균 산출
mean_ = np.array([np.mean(x.numpy(), axis=(1, 2)) for x, _ in dataset])
# r, g, b 체설에 대한 각각의 평균 산출
mean_r = mean_[:, 0].mean()
mean_g = mean_[:, 1].mean()
mean_b = mean_[:, 2].mean()
```

- MNIST 데이터 정규화 작업 (임의의 평균 & 표준편차 적용)
- 데이터 Normalize를 통하여 Global Minimum으로 빠르게 수렴
- 데이터의 평균과 표준편차를 직접 계산하여 적용 가능

(링크: https://teddylee777.github.io/pytorch/torchvision-transform)

CNN - 기능

PIAI Research Department

• 기능 - Batch Normalization

- 레이어 중간에 Batch Norm. 수행
- 이전 레이어의 파라미터 변화로 현재 레이어의 입력 분포가 바뀌는 현상 방지
- Local Minimum에 빠짐을 방지
- 수식 참조

(https://eehoeskrap.tistory.com/430#google_vignette)

CNN - 기능

PIAI Research Department

• 기능 – Dropout

```
self.layer1 = torch.nn.Sequential(
    nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, st
    nn.BatchNorm2d(32),
    nn.ReLU(),
    nn.Dropout(0.4),
    nn.MaxPool2d(kernel_size = 2, stride = 2),
)
```


- Dropout 기법을 사용하여 과적합을 방지
- 랜덤한 확률로 Layer 내에 있는 뉴 런들을 제거 후 학습하는 기법
- 매 학습 마다 새롭게 제거된 뉴런들
 의 조합으로 인하여 앙상블 러닝 효과 발생
- 일반적으로 0 ~ 0.5 사이로 사용

PIAI Research Department

• 기능 - Early Stopping 기법

```
class EarlyStopping:
    """주머진 patience 이후로 validation loss가 개선되지 않으면 학습을 조기 중지"""
   def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt'):
       self.patience = patience
       self.verbose = verbose
# Training Iteration
while epoch_not_finished():
   start_time = time.time()
   tloss, tacc = epoch(train_loader_es)
   end_time = time.time()
   time_taken = end_time - start_time
   record_train_log(tloss, tacc, time_taken)
   with torch.no_grad():
       vloss, vacc = epoch(valid_loader_es)
       record_valid_log(vloss, vacc)
   print_log()
   # early_stopping는 validation loss가 감소하였는지 확인이 필요하며.
   # 만약 감소하였을경우 현제 모델을 chackpoint로 만든다.
   early_stopping(vloss, net)
    if early_stopping.early_stop:
       print("Early stopping")
       break
EarlyStopping counter: 10 out of 10
Early stopping
```

- 학습중 Over Fitting 판단시, 중간 에 학습을 종료하는 기법
- [Patience] Validation Loss에 개선이 없으면 몇 번 기다렸다 학습을 중지 할지
- 학습 알고리즘에 Early Stopping 모듈을 추가하여 Over Fitting 감지 시, while문에서 break
- Early Stopping 작동 확인

CNN - 기능

PIAI Research Department

• 기능 – Check Point Save 기법

```
def __call__(self, val_loss, model):

score = -val_loss

if self.best_score is None:
    self.best_score = score
    self.save_checkpoint(val_loss, model)

def save_checkpoint(self, val_loss, model):
    # validation loss가 감소하면 모델을 제작한다.
    if self.verbose:
        print('Validation loss decresed ({:5} --> {:5}). Saving torch.save(model.state_dict(), self.path)
    self.val_loss_min = val_loss
```


- 학습 중 모델이 최고 점수를 기록하는 순간을 지속적으로 Epoch마다 저장
- EarlyStopping 이랑 비슷한 목적
- 학습 결과 Overfitting이 되었다고 하더라도, Best Model 보관 가능

CNN - 모델 설계

PIAI Research Department

CNN(Convolutional Neural Network) 모델 설계

```
class CNN_model(nn.Module):
   def __init__(self):
       super(CNN_model, self).__init__()
       # 1번 레이어 생성
       self.layer1 = torch.nn Sequential(
           nn.Conv2d in_channels=1, but_channels=32, ternel_size=3, stride=1, padding=1),
           nn.Conv2d(in_channels=32, out_channels=64 kernel_size=3, stride=1, padding 1)
           nn.BatchNorm2d(64).
           nn.ReLU(),
           nn.Dropout(0.1),
           nn.MaxPool2d(kernel_size = 2, stride = 2))
         2번 레이어 색석
       self.layer2 = torch.nn.Sequential(
           nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
           nn.Conv2d(in_channels=128, but_channels=256, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(256),
           _nn.ReLU(),
           nn.MaxPool2d(kernel_size = 2, stride = 2))
       #마지막 0 ~ 9 classification을 위한 fully connected layer 생성
       self.fc1 = nn.Linear(7 * 7 * 256, 10, bias = True)
       #가중치 초기화
       nn.init.xavier_uniform_(self.fc1.weight)
```


CNN -모델 설계

PIAI Research Department

설계된 CNN 모델의 구조 확인

43 44	# Model structure check Summary(CNN_model().to(device)	(1,	28,	28))

Layer (type)	Output Shape	Param #
Conv2d-1 Conv2d-2 BatchNorm2d-3 ReLU-4 Dropout-5 MaxPool2d-6 Conv2d-7 Conv2d-8 BatchNorm2d-9 ReLU-10 MaxPool2d-11 Linear-12	[-1, 32, 28, 28] [-1, 64, 28, 28] [-1, 64, 28, 28] [-1, 64, 28, 28] [-1, 64, 14, 14] [-1, 128, 14, 14] [-1, 256, 14, 14] [-1, 256, 14, 14] [-1, 256, 14, 14] [-1, 256, 7, 7] [-1, 10]	320 18, 496 128 0 0 0 73, 856 295, 168 512 0 0

Total params: 513,930 Trainable params: 513,930 Non-trainable params: 0

Input size (MB): 0.00

Forward/backward pass size (MB): 3.25

Params size (MB): 1.96

Estimated Total Size (MB): 5.22

Summary 기능으로 설계된 모델의 구조 확인

입력 데이터 사이즈 확인 (1, 28, 28)

> 1: Gray Scale (1 channel 이미지) 28 * 28: 사진의 화소

CNN - 모델 설계

PIAI Research Department

• CNN 모델 학습 알고리즘

```
# 對音 알고리즘

def epoch(data_loader, mode = 'train'):
    global epoch_cnt

# 사용되는 변수 초기화
    iter_loss, iter_acc, last_grad_performed, last_out, last_label = [],

for _data, _label in data_loader:
    data, label = _data.to(device), _label.to(device)

# 1, Feed-forward
    if mode == 'train':
        net.train()

else:
        net.eval()
    result, _ = net(data)
    _, out = torch.max(result, 1)
```

```
# 5, 권퓨전 매트릭스 출력을 위해 기록
|last_out = out.cpu().detach()
|last_label = _label
```


- Day1 알고리즘에서 <mark>2개</mark> 기능 추가
- 1) Train/Valid 모드에 따라 다르게 동작
- → net.train() : dropout, batch nor. -> 사용
- → net.eval() : dropout, batch nor. -> 미사용
- 2) Confusion Matrix 기록 로직 추가

CNN - Verbose Setting(Graph)

PIAI Research Department

그래프 출력

plt.draw()

loss_axis.grid() # 격자 설정

학습 추이 그래프 출력

가치창출대학

Verbose – 실시간 학습 추이 그래프 출력

```
hist_fig, loss_axis = plt.subplots(figsize=(10, 3), dpi=99) # 그래프 사이즈 설정
hist_fig.patch.set_facecolor('white') # 그래프 배경색 설정
# Loss Line 구설
|loss_t_line = plt.plot(iter_log, tloss_log, label='Train Loss', color='red', marker='o')
loss_v_line = plt.plot(iter_log, vloss_log, label='Valid Loss', color='blue', marker='s')
loss_axis.set_xlabel('epoch')
loss_axis.set_ylabel('loss')
# Acc. Line 구설
lacc_axis = loss_axis.twinx()
acc_t_line = acc_axis.plot(iter_log, tacc_log, label='Train Acc.', color='red', marker='+')
acc_v_line = acc_axis.plot(iter_log, vacc_log, label='Valid Acc.', color='blue', marker='x')
acc_axis.set_vlabel('accuracy')
```

• 학습 추이를 그래프를 통하여 실시간 으로 모니터링

Train과 Validation에 대하여 Loss 와 Acc.를 실시간으로 시각화

CNN -모델 학습

가치창출대학
POSTELH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

PIAI Research Department

• CNN 모델 학습

- CNN 모델 학습
- 실시간 그래프로 학습 추이 확인
- 모델의 정확도 확인

Test Acc.: 0.9898 Test Loss: 0.0321

CNN - 결과 분석

PIAI Research Department

Confusion Matrix

```
# Confusion matrix
our_cmatrix = confusion_matrix(test_label, test_out)
plt.figure(figsize=(8, 6), dpi=99)
4 sns.heatmap(our_cmatrix, annot=True, fmt='g', cmap='YIGn').set(xlabel='Predicted', ylabel='Truth')
5 plt.title('Confusion Matrix')
6 plt.show()
```


- 호동 행렬을 통하여 모델이 예측하는 10개의 Class에 대한 성능을 한눈에 가시화
- 모든 Class에 대하여 모델이 분류한 결과 확인

CNN - 결과 분석

PIAI Research Department

• 모델의 오 분류 사례 분석

```
# 배촉 결과 1, 2, 3순위를 만드는 과정
max_pred = max(pred_info)
second_pred = pred_info[1]
third_pred = pred_info[2]
pred_label = pred_info.index(max_pred)
second_label = pred_info.index(second_pred)
thirt_label = pred_info.index(third_pred)
```

```
# 정답과 예측 결과가 다른 경우(모델이 잘못 분류한 경우)
if gt_label != pred_label:
  # p/t로 4개를 한번에 출력하기 때문에 4번동안 리스트에 누적시킨다
  show_cnt += 1
  wrong_pic, _ = test_data[cnt]
  plt_pic_list.append(wrong_pic)
  gt_label_list.append(gt_label)
  pred_label_list.append(pred_label)
  second_pred_label_list.append(second_label)
  third_pred_label_list.append(thirt_label)
  plt_cnt += 1
```


- 학습된 모델이 잘못 분류한 케이스 분석
- 모델의 Prediction 결과가 Ground Truth랑 다른 경우를 예측 확률 순위 로 1, 2, 3위 출력 (정답지가 4인 사진을 6로 잘못 예측 했으며, 두번째 세번째 후보는 4과 2)
- › 모델이 잘못했는지, 데이터가 잘못되 었는지를 판단

CNN – Feature Extraction (PyTorch)

PIAI Research Department

Code Running

(student) 2. Pytorch CNN – Feature Extraction.ipynb