Алгоритмы и модели вычислений, группы 774 - 775, задание 4

- Кормен-Лейзерсон-Ривест-Штайн, глава 34, параграфы 3, 4 и 5. *ОБЯЗАТЕЛЬНО ЧИТАТЬ ВСЁ!!!*.
- Конспек 3-ей лекций Мусатова по курсу теории сложностей у ФИВТов: http://ru.discrete-mathematics.org/fall2017/3/complexity/compl-book.pdf. Лекцию 3 теперь уже нужно прочитать полностью.
- Хорошая книжка по теории сложностей на английском http://theory.cs.princeton.edu/complexity/book.pdf. Из неё нужно разобраться с параграфами 2.2, 2.3, 2.4. Параграфы 2.5 и 2.7 тоже полезно почитать. Не бойтесь математического английского! Он простой, серьёзно.
- Также рекомендуем книгу блестящих математиков Гача и Ловаса по вычислительной сложности: http://www.cs.elte.hu/~lovasz/complexity.pdf. Здесь вам стоит разобраться с параграфами 6.5 и 6.6.

Задание 4

В задачах можете пользоваться любым из определений класса \mathcal{NP} - через недетерминированные машины Тьюринга или сертификаты.

Мотивация домашнего задания: на первой контрольной очень часто задачи на \mathcal{NP} -полноту формулируются коварно. А именно, вам предлагается какая-то задача и спрашивается является ли она \mathcal{NP} -полной или же вообще лежит в классе \mathcal{P} . Для того, чтобы подготовить вас к такому, мы предлагаем порешать домашнее задание с аналогичной постановкой. Отнеситесь к заданию серьёзно, в Интернете полно литературы на тему \mathcal{NP} -полноты и ей нужно проникнуться.

Напоминание: если пользуетесь каким-то источником или решаете задачу коллективно, то обязательно пишите об этом в ваших заданиях.

- 1. Во всех пунктах следующей задачи требуется либо доказать, что рассматриваемый язык \mathcal{NP} -полон либо доказать, что он лежит в классе \mathcal{P} .
 - (i) Язык задаётся набором: целые числа n, a, b и массив из n целых чисел, каждое из которых равно a либо b. При этом весь набор можно разбить на две непересекающиеся части так, чтобы суммы в каждой части были одинаковыми.
 - (ii) Язык задаётся набором: целое число n и массив из n целых чисел, каждое из которых может быть равно только неотрицательным степеням двойки: 1, 2, 4 и так далее. При этом весь набор можно разбить на две непересекающиеся части так, чтобы суммы в каждой части были одинаковыми.
 - (iii) Язык задаётся набором: целое число n и массив из n целых чисел. При этом весь набор можно разбить на две непересекающиеся части так, чтобы суммы в каждой части были одинаковыми. Обратите внимание, что теперь ограничений на числа в массиве нет.
 - (iv) Язык задаётся набором: целое число n и массив из n целых чисел. При этом весь набор можно разбить на две непересекающиеся части так, чтобы суммы в них отличались не более 10. Обратите внимание, что теперь ограничений на числа в массиве нет.

Hint: перед тем, как решать эту задачу, разберитесь с задачей о рюкзаке и задачей о сумме подмножества.

- 2. Следующая задача демонстрирует насколько близкими по постановке могут быть задачи из классов \mathcal{NPC} и \mathcal{P} :
 - (i) Докажите, что $2 COLOR \in \mathcal{P}$, где 2 COLOR язык неориентированных графов, вершины которых можно раскрасить в 2 цвета так, чтобы смежные вершины были раскрашены в разные цвета.
 - (ii) Рассмотрим язык 3-COLOR язык графов, вершины которых можно раскрасить в 3 цвета так, чтобы смежные вершины были раскрашены в разные цвета. Утверждается, что этот язык \mathcal{NP} -полон или же лежит в классе \mathcal{NPC} . Предлагается сводить язык $3-SAT \in \mathcal{NPC}$ к нему. Пусть формула ϕ содержит n переменных x_1, x_2, \ldots, x_n и m подвыражений в скобках. По ней строится граф, множество вершин которого V содержит по одной вершине для каждой переменной и по одной вершине для её отрицания, по 5 вершин для каждого подвыражения и 3 специальные вершины: TRUE, FALSE, RED. В графе имеются рёбра двух типов, первый тип («литеральные» рёбра): все 3 специальные вершины образуют треугольник, а также вершины $x_i, \neg x_i, RED$ образуют треугольник для всех $i \in \overline{1,n}$. Также для каждого подвыражения в скобках вида $x \lor y \lor z$ создаётся своя копия структурного элемента,

изображенного ниже (для рисования подобных графов можно пользоваться сайтом http://madebyevan.com/fsm/, которым ваши семинаристы пользовались в своё время при изучении ТРЯПа), рёбра в таких структурных элементах принадлежат второму типу - «дизъюнктивные рёбра». Каждое подвыражение требует своей копии пяти вершин, выделенных на рисунке двойными кругами, они соединяются с литералами подвыражения и специальной вершиной TRUE. Докажите, что при любом 3-раскрашивании подграфа, описанного выше, состоящего из «литеральных» рёбер, для каждой пары вершин $x_i, \forall x_i$ одна имеет цвет вершины TRUE, а другая - цвет вершины FALSE. Также докажите, что для любого значений переменных функции ϕ существует 3-раскрашивание графа, содержащего только «литеральные» рёбра.

- (ііі) Докажите, что если каждая из вершин x, y, z окрашена в один из двух цветов вершин TRUE и FALSE, то для изображённого на рисунке структурного элемента правильное 3-раскрашивание возможно тогда и только тогда, когда цвет хотя бы одной из x, y, z равен цвету вершины TRUE.
- (iv) Завершите доказательство утверждения \mathcal{NP} -полноты языка 3 COLOR.
- 3. В этой задаче нужно доказать принадлежность языка stingy SAT одному из классов \mathcal{P} или \mathcal{NPC} . stingy SAT это язык, состоящий из формулы ϕ в виде КНФ и числа k таких, что существует выполняющий набор переменных для ϕ , в котором не более k переменным присвоено значение true.
- 4. Язык $k-SPANNING\ TREE$ состоит из пар: числа $k \geq 2$ и неориентированного связного графа, для которого существует остовное дерево, каждая вершина которого имеет степень не более k.
 - (i) Докажите, что $k SPANNING\ TREE \in \mathcal{NP}$.
 - (ii) Докажите, что $k SPANNING\ TREE \in \mathcal{NPC}$.

 Hint : для решения второго пункта начните со случая k=2 и попробуйте свести её к задаче о гамильтоновом пути.

- 5. Рассмотрим язык 3 CLIQUE язык, состоящий из натуральных чисел k и неориентированных графов G таких, что степень каждой вершины графа G не превышает 3 и в графе G есть клика на k вершинах.
 - (i) Докажите, что $3 CLIQUE \in \mathcal{NP}$.
 - (ii) Найдите ошибку в следующем рассуждении: «Для доказательства \mathcal{NP} -полноты сведём этот язык к языку CLIQUE (ведь мы уже знаем, что этот язык \mathcal{NP} -полон). Поскольку $3-CLIQUE \subset CLIQUE$, то сведение никак не будет менять ни данный граф G, степень каждой вершины которого не превосходит трёх, ни параметр k. Более того, решение для полученной задачи о клике, очевидно, является решением и для исходной задачи о 3-клике. Таким образом, сведение построено, а значит $3-CLIQUE \in \mathcal{NPC}$.»
 - (iii) Докажите, что $3 CLIQUE \in \mathcal{P}$.
- 6. Сведите язык гамильтоновых путей в ориентированных графах HAMILTON DIR PASS к языку гамильтоновых путей в неориентированных графах HAMILTON PASS.
- 7. Пусть имеется программа, которая за полиномиальное время отвечает на вопрос, содержит ли входной граф гамильтонов цикл. Как с её помощью найти за полиномиальное время сам цикл (если он есть)?
- 8. Докажите, что язык, состоящий из пары графов G_1 и G_2 таких, что G_1 изоморфен какому-то подграфу G_2 , \mathcal{NP} -полон.
- 9. Доминирующим множеством (dominating set) неориентированного графа G = (V, E) называется такое подмножество его вершин $D \subseteq V$, что любая вершина графа либо лежит D сама, либо соединена с вершиной, лежащей в D. Число $\gamma(G)$ определяется как число вершин в наименьшем по мощности доминирующем множестве. Язык DOMINATING SET состоит из графов G и натуральных чисел k таких, что $\gamma(G) \le k$. Докажите, что DOMINATING $SET \in \mathcal{NPC}$.