CLAIMS

A universal monosaccharide building block of General Formula I or General Formula II

5

10

in which

A is a leaving group;

X is hydrogen, O, N or \hat{N}_3 ;

 X_1 is hydrogen, -CH2O-/, -CH2NH-, -CH3, -CH2N3 or

-COO-; and

B, C, D and E are protecting groups which can be cleaved orthogonally,

and in which 15

> B, C, D and E/are absent when X is hydrogen or N_3 , and E is absent when X_1 is hydrogen, CH_3 or N_3 .

A monosaccharide building block according to 2. claim 1, in which A is selected from the group consisting 20 of -SR; where R/is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, halogen; trichloroacetimidoyl-; sulphoxide; and -0-

alkenyl. 25

> A monosaccharide building block according to claim 1 or claim 2, which is a compound of General Formula III

30

- 44 -

$$E_1X_1$$
 D_1X
 XB_1
 XC_1

in which

B₁, C₁, D₁ and E₁ are orthogonal carbohydrate
5 protecting groups selected from protecting group sets 1, 2,
6 and 8 as herein defined.

4. A monosaccharide building block according to claim 1 or claim 2, which is a compound of General Formula

10 IV

$$E_2X_1$$
 O A XB_2 XC_2 IV

15 in which

 B_2 , C_2 , D_2 and E_2 are selected from the members of protecting group set 1, and in themselves constitute an orthogonal set.

- 20 5. A monosaccharide building block according to claim 4, in which the members of protecting group set 1 are levanoyl, chloroacetate, p-methoxybenzyloxycarbonyl and 2-trimethylsilylethylcarbonate.
- 25 6. A monosaccharide building block according to claim 1 or claim 2, which is a compound of General Formula

15

25

 E_3X_1 O A D_3X XB_3 V

in which

A, X and X_1 are as defined for General Formula I and II, and

 B_3 , C_3 , D_3 and E_3 are an orthogonal set of protecting groups selected from amongst the members of set 1 and from the remaining orthogonal sets.

- 7. A method of synthesis of a molecule selected from the group consisting of glycoconjugates of non-carbohydrate molecules, neo-glycoconjugates and oligosaccharides, comprising the step of using a monosaccharide building block according to any one of claims 1 to 6.
 - 8. A method according to claim 7, in which the molecule comprises one or more compounds in which substituents are linked to a pyranose or furanose ring.
- 9. A method according to claim 7 or claim 8, in which the molecule comprises a sugar analogue.
 - 10. A method according to any one of claims 7 to 9, in which the synthesis is carried out in solution.
 - 11. A method according to any one of claims 7 to 9, in which the synthesis is carried out on a solid-phase support.