Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Представление и обработка информации в интеллектуальных системах» на тему

Найти минимальную степень ребра в неориентированном графе.

Выполнил: В. Д. Семеняко

Студент группы 321701

Проверила: Н. В. Малиновская

Содержание

1	Введение	2
2	Список понятий	2
3	Тестовые примеры 3.1 Тест 1	3
	3.2 Tect 2	4 5
4	Пример работы алгоритма в семантической памяти 4.1 Краткое описание:	7 7
5	Заключение	10
6	Список использованных источников	11

1 Введение

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей **Задача:** Найти минимальную степень ребра в неориентированном графе.

2 Список понятий

- 1. **Неориентированный граф** (абсолютное понятие) граф, в котором все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен.
 - (а) вершина (относительное понятие, ролевое отношение);
 - (b) связка (относительное понятие, ролевое отношение).

Рис. 1: Абсолютное понятие неориентированного графа

2. *Степень вершины* — это количество рёбер, инцидентных (подключённых) к этой вершине. В неориентированном графе степень вершины — это количество вершин, с которыми она связана.

Рис. 2: Абсолютное понятие степени вершины

3. *Степень ребра* в неориентированном графе — это количество рёбер, инцидентных вершинам, которые это ребро соединяет.

Рис. 3: Абсолютное понятие степени ребра

3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

3.1 Tect 1

Вход:

Необходимо найти минимальное значение степени ребра неориентрованного графа.

Рис. 4: Вход теста 1

Рис. 5: Выход теста 1

3.2 Tect 2

Вход: Необходимо найти минимальное значение степени ребра неориентрованного графа.

Рис. 6: Вход теста 2

Рис. 7: Выход теста 2

3.3 Тест 3

Вход: Необходимо найти минимальное значение степени ребра неориентрованного графа.

Рис. 8: Вход теста 3

Рис. 9: Выход теста 3

3.4 Tect 4

Вход: Необходимо найти минимальное значение степени ребра неориентрованного графа.

Рис. 10: Вход теста 4

Рис. 11: Выход теста 4

4 Пример работы алгоритма в семантической памяти

4.1 Краткое описание:

- 1. Инициализация множества вершин и рёбер;
- 2. Создание переменной для хранения минимальной степени ребра;
- 3. Поиск смежных вершин для каждой вершины;
- 4. Инициализация поиска минимальной степени для каждого ребра;
- 5. Обход всех рёбер;
- 6. Завершение обхода всех ребер;
- 7. Вывод результата.

4.2 Демонстрация на тесте 5:

1. graph получит в качестве значения sc-узел неориентированного графа;

Рис. 12: Вход теста 5

2. Инициализируем переменную minimum edge degree для минимальной степени ребра.

Рис. 13: Действие 1

3. Для вершины и создаём счётчик $degree\ U$, который будет хранить степень этой вершины, и аналогично для вершины v — переменная $degree\ V$. Мы будем вычислять эти степени для каждой вершины графа на основе матрицы смежности.

Рис. 14: Действие 2

4. Для каждой вершины и v, между которыми есть ребро, считаем сумму степеней этих вершин и записываем в переменную $edge\ degree$

Рис. 15: Действие 3

5. Если значение edge degree меньше значения minimum edge degree, то присваиваем значение переменной edge degree переменной minimum edge degree

Рис. 16: Действие 4

6. Таким образом, мы получаем переменную *minimum Edge Degree*, которая содержит то, что мы искали

Рис. 17: Действие 5

5 Заключение

В заключении у нас получилось формализовать поставленную задачу. Мы нашли нужные нам числовые значения. Реализовали алгоритм их поиска, который работает на любом неориентированном связном графе.

6 Список использованных источников

- (а) Оре О. Теория графов. 2-е изд.. М.: Наука, 1980. С. 336.
- (b) Кормен Т. Х. и др. Часть VI. Алгоритмы для работы с графами // Алгоритмы: построение и анализ = Introduction to Algorithms. 2-е изд.. М.: Вильямс, 2006. С. 1296.
- (c) Харари, Ф. Теория графов / Ф. Харари / Пер. с англ. и предисл. В.П. Козырева. Под ред. Г.П. Гаврилова. Изд. 2-е. М.: Едиториал УРСС, 2003. 269 с.
- (d) Нечипуренко, М. И. Алгоритмы и программы решения задач на графах и сетях / М.И. Нечипуренко, В.К. Попков, С.М. Майнагашев и др. Новосибирск: Наука. Сиб. отд-ние, 1990. $515~\rm c.$