Fórmulas

Probabilidade:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{\sum_{j=1}^{k} P(A_j)P(B \mid A_j)}$$

•
$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Momentos (média, variância e covariância):

•
$$E[g(X)] = \begin{cases} \sum_{i} g(x_i) P(X = x_i) \\ \int_{-\infty}^{\infty} g(x) f(x) dx \end{cases}$$

•
$$Var(X) = E(X^2) - [E(X)]^2$$

•
$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

•
$$Corr(X, Y) = Cov(X, Y)/(\sigma_X \sigma_Y)$$

•
$$E[H(X,Y)] = \sum_{i} \sum_{j} H(x_i, y_j) P(x_i, y_j)$$

Distribuições amostrais quando $n \to \infty$:

•
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

•
$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

Intervalos de confiança:

•
$$\left(\overline{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

•
$$\left(\widehat{p}-z_{1-\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},\widehat{p}+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right)$$

$$\bullet \left(\overline{x} - t_{1-\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}}, \overline{x} + t_{1-\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}} \right)$$

Tamanho de amostra:

•
$$n = \left(\frac{z_{1-\frac{\alpha}{2}}\sigma}{E}\right)^2$$

•
$$n = \left(\frac{z_{1-\frac{\alpha}{2}}\sqrt{\tilde{p}(1-\tilde{p})}}{E}\right)^2$$

Observações:

Na fórmula do Teorema de Bayes, é necessário que $A_i \cap A_j = \emptyset$, $\forall i \neq j$ e $\Omega = A_1 \cup A_2 \cup \ldots \cup A_k$. O nível de confiança dos intervalos apresentados é de $1 - \alpha$. O quantil α da distribuição Normal padrão é denotado por $z_{\alpha} = P(Z \leq \alpha)$, onde $Z \sim N(0,1)$. De maneira análoga, o quantil α da distribuição T com n graus de liberdade é representado por $t_{\alpha;n}$. Denotamos por E a margem de erro máxima admitida no cálculo do tamanho de amostra e \tilde{p} é uma estimativa preliminar da proporção com base em amostra-piloto ou estudos anteriores. Distribuição nula é a distribuição da estatística de teste sob H_0 , e μ_0 e p_0 são os valores assumidos dos parâmetros na hipótese nula.

Distribuições de probabilidade:

$\mathbf{Bin}(n,p)$	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$	E(X) = np	Var(X) = np(1-p)
$\operatorname{Geo}(p)$	$P(X = k) = p(1 - p)^{k-1}$ $P(X = n + k \mid X > n) = P(X = k)$ $P(X > n + k \mid X > n) = P(X > k)$	$E(X) = \frac{1}{p}$	$Var(X) = \frac{1-p}{p^2}$
$\mathbf{Hiper}(N,b,n)$	$P(X = k) = \frac{\binom{b}{k} \binom{N - b}{n - k}}{\binom{N}{n}}$	$E(X) = \frac{nb}{N}$	$Var(X) = \frac{nb}{N} \left(1 - \frac{b}{n} \right) \left(\frac{N-n}{N-1} \right)$
$\mathrm{Pois}(\lambda)$	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$	$E(X) = \lambda$	$Var(X) = \lambda$
$\mathrm{Exp}(\lambda)$	$f(x) = \lambda e^{-\lambda x}, \ x > 0$ $F(x) = 1 - e^{-\lambda x}, \ x > 0$ $P(X > s + t \mid X > t) = P(X > s)$	$E(X) = \frac{1}{\lambda}$	$\mathbf{Var}(X) = \frac{1}{\lambda^2}$
$\mathbf{N}(\mu,\sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$E(X) = \mu$	$\mathbf{Var}(X) = \sigma^2$

Testes de hipóteses:

Parâmetro de interesse	Estatística de teste	Distribuição Nula
Média (Variância conhecida)	$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$Z \sim N(0,1)$
Média (Variância desconhecida)	$T = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$	$T \sim T_{n-1}$
Proporção	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$Z \sim N(0,1)$