TOTAL DIFFERENTIAL AND DIFFERENTIABILITY

ONE VARIABLE:

Def. 1: We call a function y = f(a) differentiable at a point (x,y) if

$$\lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

Crists. The value of the above limit is called the decivative of fat x.

Def. 2: The function y = f(x) is said to be differentiable at the point (x,y) if, at this point

Of = $f(x+ox)-f(x) = a ox + \varepsilon.ox$ where a is independent of ox and $\lim_{0x\to 0} \varepsilon = 0$. The value of a is the dorivative of f at x.

REMARK: Not that Def 1 & 2 are equivalent as

$$f(x+Dx)-f(x)=a$$
 anteox

$$(=) \frac{f(x+ox)-f(x)}{ox}=a+\varepsilon$$

(=)
$$\lim_{\delta x \to 0} \frac{f(x+\delta x)-f(a)}{\delta x} = a \left(\epsilon + 0 \text{ as } \delta x + 0 \right)$$

Det 1 is more practical for verifying differentiability of a function.

DIFFERENTIAL: The differential of the dependent vooiable y, written as dy, is defined to be

$$dy = f'(x) \Delta x$$
, where $y = f(x)$
or $dy = f'(x) dx$
or $df = f'(x) dx$

Differential of the independent variable x, written as dx, is some as Δx . one can also observed this by taking y = x and using the above definition of differential as

$$dx = (x)' \Delta x =) dx = 0x$$

Note that Dx (ord) is an increment while dy is total differential.

Dy is the enange in y due to change in x by on ar dx

Also Note that
$$\Delta y = f(x) \Delta x + \epsilon \Delta x$$

linear part

So the differential is a linear function of the increment ox.

TWO VARIABLE:

The function z = f(x,y) is said to be differentiable at the point (x,y) if, at this point

 $\Delta z = \alpha \Delta x + b \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$ where a and b are independent of Δx , Δy and ϵ_1 and ϵ_2 are functions of Dx and Dy such that

 $\lim_{\Delta x \to 0} \epsilon_1 = 0 \quad \text{and} \quad \lim_{\Delta x \to 0} \epsilon_2 = 0$ $\lim_{\Delta x \to 0} \Delta y \to 0$

Dr and Dy The linear function of a Dx + b Dy is ealled the at the total differential of z denoted by point (n, y) and is

> $dz = a \Delta x + b \Delta y$ = adn + bdy

If Δx and Δy are sufficiently small, dz gives a close approximation to Δz .

EXAMPLE: Show that $z = n^2 + ny + ny^2$ is differentiable and write down its total differential.

SOLUTION:

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$= (x + \Delta x)^{2} + (x + \Delta x)(y + \Delta y)$$

$$+ (x + \Delta x)(y + \Delta y)^{2} - x^{2} - xy$$

$$- xy^{2}$$

$$= \Delta x \left(2x + y + y^{2}\right) + \Delta y \left(x + 2x\right)$$

$$+ \left(\Delta x + \Delta y \left(1 + 2y\right)\right) \Delta x$$

$$+ \left(x \cdot \Delta y + \Delta x \Delta y\right) \Delta y$$

hence the function is differentiable.

Total differential $dz = (2x + y + y^2) dx + (x + 2xy) dy.$

NECESSARY CONDITION FOR DIFFERENTIABILITY

THEOREM: If z = f(x,y) is differentiable them f(x,y) is continuous and has partial derivatives with respect to x and y at the point (x,y) and that

 $a = f_{\chi}(n, y) = \frac{\partial z}{\partial n}, \quad b = f_{\chi}(n, y) = \frac{\partial z}{\partial y}$

PROOF: Let & be differentiable, the