

Model Optimization and Tuning Phase Template

Date	15 March 2024
Team ID	SWTID1720116037
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

$\label{thm:continuous} \textbf{Hyperparameter Tuning Documentation (6 Marks):}$

Model	Tuned Hyperparameters	Optimal Values
Random Forest	# Define the hyperparameter grid parents = { "n_estimators': (1800, 500, 300), # Increase the number of estimators 'criterian': ("gint', 'sectrony'), 'man_depth': (1000, 5, 300), # Add man_depth parameter 'man_depth': (1000, 5, 300), # Add min_manules_leaf parameter 'man_samples_leaf': (1, 5, 30) # Add min_manules_leaf parameter } # Perform hyperparameter tuning rimpasl = Gridsearcol((estimator-NeodomirrestClassifier)), param_grid-params, scaring'scorrexy', co-5) rimpasl = Gridsearcol((estimator-NeodomirrestClassifier)), param_grid-params, scaring'scorrexy', co-5) rimpasl = Gridsearcol((estimator-NeodomirrestClassifier)), param_grid-params, scaring'scorrexy', co-5) rimpasl = Gridsearcol((estimator-NeodomirrestClassifier) # Control = Gridsearcol((estimator-NeodomirrestClassifier) param = rimpasl.orginalistator-NeodomirrestClassifier) # Note predictions on the test data y_gred = Neof.orginalistator-NeodomirrestClassifier)	<pre>params = { 'n_estimators': [100, 150, 200], 'criterion': ['gini'], 'max_depth': [None, 5, 10], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 5, 10] }</pre>
ANN	<pre>ann = Sequential() ann.add(Dense(64, input_dim=8, activation='relu')) ann.add(Dense(128, activation='relu')) ann.add(Dense(128, activation='relu')) ann.add(Dense(1, activation='sigmoid')) ann.compile(loss="binary_crossentropy", optimizer='SGD',metrics=['accuracy']) ann.fit(X_train, y_train, epochs=200, batch_size=15)</pre>	<pre>ann = Sequential() ann.add(Dense(8, input_dim=8, activation='relu')) ann.add(Dense(16, activation='relu')) ann.add(Dense(16, activation='relu')) ann.add(Dense(11, activation='sigmoid')) ann.compile(loss="binary_crossentropy", optimizer='SGO',metrics=['accuracy']) ann.fit(X_train, y_train, epochs=100, batch_size=10)</pre>


```
Support

Vector

Machine

| param_grid = {
    'C': [0.1, 1, 5, 10, 50, 100],
    'gamma': ['scale', 'auto', 0.1, 1, 10],
    'kernel': ['rbf', 'poly', 'linear']
}
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric				
	bi tile (erassa	racutation (tep	,		
	print(classif	ication_repo	rt(y_test	y_pred))	
	Classification	on Report:			
		precision	recall	f1-score	support
Random	0	0.57	0.96	0.72	895
Kandom	1				
Forest					
I OIODU	accuracy			0.69	
	#10 SAN 900 00 5 Tele			0.69	2200
	macro avg weighted avg	0.79	0.69	0.69	2200
	macro avg	0.79	0.69 (matri	0.69 ((y_tes	2200 t,y_pred
	macro avg weighted avg print(co	0.79 nfusion_ ication_repo	ø.69 matri) rt(y_test	0.69 ((y_tes	2200 t,y_pred
	macro avg weighted avg print(co	0.79 nfusion_ ication_repo	0.69 matri) rt(y_test - 0s 2ms/	0.69 ((y_tes	2200 t,y_pred
ANINI	macro avg weighted avg print(co	0.79 nfusion_ ication_repo	matri) rt(y_test - 0s 2ms/ recall	0.69 ((y_tes) ,prediction step f1-score	2200 t,y_pred
ANN	print(cospination)	nfusion_ ication_repo precision	matri) rt(y_test - 0s 2ms/ recall	((y_tes ,prediction step f1-score 0.68	zzoo t,y_prec ss)) support
ANN	print(cossif.	nfusion_ ication_repo precision 0.57	matri) rt(y_test - 0s 2ms/ recall 0.84	,prediction step f1-score	2200 t,y_pred (s)) support 895 1305
ANN	print(comprint(classif	nfusion_ ication_repo precision 0.57 0.84	matri) rt(y_test - 0s 2ms/ recall 0.84	0.69 ((y_tes: ,prediction step f1-score 0.68 0.68 0.68	2200 t,y_pred (s)) support 895 1305 2200

port
895
1305
2200
2200
2200

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	The random forest model was selected due to its robustness, accuracy, and ability to handle large, complex datasets with both numerical and categorical features. Its ensemble approach, combining multiple decision trees, helps reduce overfitting, can manage missing values and improve generalization with project objectives, justifying its selection as the final model.