PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bareau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

(11) International Publication Number:

WO 90/02713

C03C 13/06

(43) International Publication Date:

22 March 1990 (22,03,90)

(21) International Application Number:

(22) International Filing Date:

4 September 1989 (04.09.89)

(30) Priority data:

4923 88

5 September 1988 (05.09.88) DK

(71) Applicant (for all designated States except US): ROCKWOOL INTERNATIONAL A S [DK DK]; Hovedgaden 501.

DK-2640 Hedehusene (DK).

(72) Inventor: 2nd

("5) Inventor/ Applicant for US only : MOGENSEN, Gurli [DK DK]: Egevej 78, Vemmedrup, DK-4632 Bjæverskov

DKi

(74) Agent: LEHMANN & REE: Frederiksberg Alle 26. DK-1820 Frederiksberg C (DK).

PCT DK89 00205 (81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), IT FI. FR (European patent), GB (European patent), IT (European patent). LU (European patent). NL (European patent). NO. SE (European patent). US.

Published

With international search report.

(54) Title: MINERAL FIBRES

(57) Abstract

Fibres with the following composition: SiO₂ 47.54% by weight, Al₂O₃ 4-7.5% by weight, Fe₂O₃ 1-8.5% by weight, CaO 10-245 by weight, MgO 10-21 to by weight, Na-O 0.1-10% by weight, K2O 0.1-1.5% by weight soluble in salt solutions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austra	53	Spain	MG	Madagascar
ΑÜ	Australia	គា	Finland	ML	Mah
B8	Barbados	FR	France	MR	Mauritania
8E	Belgium	GA	Gabon	MW	Mainwi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
81	8enun	π	Italy	RO	Romania
BR	8ावस्य	JP	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic	SE	Sweden
CF.	Central African Republic		of Korea	SN.	Senegai
CG	Congo	KR	Republic of Korea	an ar	Sovet Union
а	Switzerland	u	Liechtenstein	TD	Chad
CM	Cameroon	Ĺ K	Sri Lanka	TG	Togo
DΕ	Germany, Federal Republic of	ı.	Luxembourg	us	•
DK	Denmark	MC	Monaco	us	United States of Ameri

Mineral fibres

The present invention relates to a novel type of mineral fibres.

5 Conventional mineral fibres are produced from naturally occuring materials and therefore the costs of raw materials are relatively low.

Such known mineral fibres typically have the following composition:

10

25

30

	SiO ₂	about	45	%	bу	weight
	A1203	•	13.5	-		
	FeO .	-	5.5	-		
	CaO	-	20.5	-		
15	Mg0	-	10.5	-		
	TiO	-	1.0.	-		
	$Na_{2}0 + K_{2}0$	-	2.5	-		

The known mineral fibres are characterized by their high temperature resistance, but they are only slightly affected by salt solutions. Therefore they degrade very slowly when deposited at a tip or in other places in nature after use.

The specification of NO patent application No. 874323 (Manville Corporation) describes inorganic fibres serving as a substitute for conventional mineral wool fibres and containing MgO in an amount of 0.1-30 % by weight and Al_2O_3 in an amount of 0-10 % by weight in addition to SiO_2 and CaO. According to the above-mentioned patent application said fibres, which are mainly characterized in having a relatively low content of Al_2O_3 , are considerably more soluble in salt solutions than conventional mineral fibres, e.g. in the so-called Gamble's solution, i.e. an aqueous solution containing the following salts in a dissolved form:

35	Component	Concentration o/1		
	MgCl ₂ . 6H ₂ O	0.160		
	NaCl	6.171		
	KC1	0.311		

	2
Na ₂ HPO ₄	0.149
Na ₂ SO ₄	0.079
CaCl ₂ , 2H ₂ O	0.060
NaHCO ₃	1.942
NaC ₂ H ₃ O ₂	1.066

An essential drawback of the known soluble fibres is that they are produced from relatively expensive oxides and not from naturally occuring raw materials.

2

10

5

Furthermore some of the known fibres have a relatively poor heat resistance and are consequently unsuitable for use at high temperatures.

Surprisingly it has been found that mineral fibres with a considerably greater solubility in salt solutions than the above-mentioned known mineral fibres, and which at the same time exhibit an acceptable high temperature resistance can be produced from naturally occurring raw materials and other inexpensive raw materials.

20

Mineral fibres according to the invention are characterized in having the following composition:

	SiO ₂	47-54	% by weight
25	A1203		-
•	Fe ₂ 0 ₃	1-8.5	-
	CaO	10-24.5	-
	Mg0	10-21	-
	Na ₂ O	0.1-10	-
30	K ₂ 0	0.1-1.5	•

the total content of SiO_2 , $\mathrm{Al}_2\mathrm{O}_3$ and $\mathrm{Fe}_2\mathrm{O}_3$ not exceeding 65 % by weight.

Mineral fibres of the above-mentioned composition can be produced from naturally occuring raw materials and other readily obtainable and inexpensive materials such as waste products from the production of mineral wool fibres and glass. Examples of such raw material compositions are listed in Table I.

<u>Table I</u>

Raw material composition

5	.1	Diabase Cement briquettes ¹)	70 30	
	2	Diabase 2)	20	
		Clay briquettes ²⁾	80	%
10	3	Cement briquettes ³⁾	80	%
		Olivine-containing diabase	20	%
		Clay briquettes consisting of	f:	
15	4	Clay	45	%
		Sand	22	%
		Olivine sand	22	%
		Rasorite (Sodium borate)	8	%
		Blast-furnace slag	8	%
20		Iron oxide	3	%
		Clay briquettes consisting o	f:	
	5	Clay	50	% %
		Rock wool waste	10	%
25		Lime	20	%
		Sand	10	%
		Olivine sand	10	%
		Clay briquettes consisting o	f:	
30	6	Clay	50	%
		Lime	20	% %
		Sand	10	% %
		Olivine sand	10	0/ /a
		Soda	10	0/ /0
35		Cement briquettes consisting	of.	
	7	Olivine		%
	1	Glass waste from the produc-	J. J	
		tion of glass bottles	2 5	% %
		CIOU OL GIASS BULLIES	22	10

WO 90/02713

Cement

12 %

l) Consisting of 12 % cement, 40 % mineral wool waste. 5 % dolomite and 43 % diabase.

4

- 5
- Consisting of 50 % clay, 30 % mineral wool waste, 15 % olivine sand and 5 % iron oxide slag.
- Consisting of 15 % cement, 23 % mineral wool waste, 22 % sand,
 10 % olivine sand, 30 % olivine-containing diabase.

The solubility of the mineral fibres of the invention and known fibres has been examined by storing fibre samples weighing 830 mg in 250 ml of said Gamble's solution for 5 hours at a temperature which was increased from 37°C to 60°C and by measuring the SiO 2-concentration of the solution at the end of the test.

The results obtained will appear from Table II.

20

15

<u>Table II</u>

	Known Mi	neral Fibres		fibres acc	cordina to	the in-
Compo-			<u>vention</u>			
<u>sition</u>	Test 1	<u>Test 2</u>	Test 3	<u>Test 4</u>	Test 5	<u>Test 6</u>
SiO ₂	44.6	49.0	50.5	54.2	50.8	47.2
A1203	13.3	10.3	5.8	5.9		6.9
TiO ₂	1.1	2.2	0.6	0.4		0.4
Fe ₂ 0 ₃	6.1	8.0	7.9	5.0		3.0
CaO	20.3	14.3	11.8	9.8		20.7
MgO .	10.6	11.8	20.0	17.0		14.4
Na ₂ O	2.0	1.7	0.2			6.5
.	0.5	1.6	0.5			0.7
8203				3.2	•••	J. ,
	SiO ₂ Al ₂ O ₃ TiO ₂ Fe ₂ O ₃ CaO MgO Na ₂ O	Compo- sition Test 1 SiO ₂ 44.6 Al ₂ O ₃ 13.3 TiO ₂ 1.1 Fe ₂ O ₃ 6.1 CaO 20.3 MgO 10.6 Na ₂ O 2.0 0.5	Composition Test 1 Test 2 SiO ₂ 44.6 49.0 Al ₂ O ₃ 13.3 10.3 TiO ₂ 1.1 2.2 Fe ₂ O ₃ 6.1 8.0 CaO 20.3 14.3 MgO 10.6 11.8 Na ₂ O 2.0 1.7 0.5 1.6	Compo- <u>sition Test 1 Test 2 Test 3</u> SiO ₂ 44.6 49.0 50.5 Al ₂ O ₃ 13.3 10.3 5.8 TiO ₂ 1.1 2.2 0.6 Fe ₂ O ₃ 6.1 8.0 7.9 CaO 20.3 14.3 11.8 MgO 10.6 11.8 20.0 Na ₂ O 2.0 1.7 0.2 0.5 1.6 0.5	Compo- <u>sition Test 1 Test 2 Test 3 Test 4</u> SiO ₂ 44.6 49.0 50.5 54.2 Al ₂ O ₃ 13.3 10.3 5.8 5.9 TiO ₂ 1.1 2.2 0.6 0.4 Fe ₂ O ₃ 6.1 8.0 7.9 5.0 CaO 20.3 14.3 11.8 9.8 MgO 10.6 11.8 20.0 17.0 Na ₂ O 2.0 1.7 0.2 2.2 0.5 1.6 0.5 1.1	vention Composition Test 1 Test 2 Test 3 Test 4 Test 5 SiO2 44.6 49.0 50.5 54.2 50.8 Al2O3 13.3 10.3 5.8 5.9 6.2 TiO2 1.1 2.2 0.6 0.4 0.4 Fe2O3 6.1 8.0 7.9 5.0 2.3 CaO 20.3 14.3 11.8 9.8 24.4 MgO 10.6 11.8 20.0 17.0 12.7 Na2O 2.0 1.7 0.2 2.2 0.5 0.5 1.6 0.5 1.1 1.3

Solubility, ppm 5 SiO₂ 3.74 1.84 8.22 4.79 12.88 10.80

As will appear from the above Table II the mineral fibres according to the invention have a considerably higher solubility in the salt solution than the conventional known fibres.

10

30

A fibre sample according to NO patent application No. 874323 was subject to a similar examination. The fibres had the following composition:

11 0	
Al ₂ 0 ₃ 10.0 -	
TiO ₂ 0.3 -	
Fe ₂ 0 ₃ 0.7 -	
CaO 27.9 -	
20 MgO 6.8 -	
Na ₂ O 0.2 -	
κ ₂ 0 0.7 -	

A solubility corresponding to a SiO₂-concentration of 3.16 ppm was measured which is also considerably less than the solubility of the fibres of the invention.

It could be feared that mineral fibres with a relatively high solubility in salt solutions would be sensitive to heat and therefore would be unsuitable for use at high temperatures and that they lack the necessary fire resistance. However, tests have shown that this fear is groundless in respect of the fibres according to the invention.

The tests were carried out with mineral fiber samples weighing from 0.5 to 1 g. These samples were placed on a refractory plate and then inserted into an oven which was preheated to a given temperature. After 30 minutes in the oven at this given temperature the fibre samples were removed from the oven and examined. If the dimensions.

structures and elasticity of the fibres were unchanged this was taken as an indication of the fibres being resistant at the given temperature.

If it was found that the fibres were brittle (sintered), a new sample was subject to a similar treatment at a temperature which was 25°C below the one tried first.

If necessary the test was repeated with a further reduction of the temperature until the fibres remained unchanged.

The examination of the mineral fibres according to the invention (tests 3-6) listed in Table II showed that they were all resistant at a temperature higher than 750°C which corresponds to the temperature resistance of the mineral fibre sample according to NO patent application No. 874323.

Mineral fibres according to the invention with a composition within the following limits:

·	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	47-51 5-7 2-4	% by weight
25	CaO	15-21	-
	MgO Na ₂ O	10-15 0.5-7	
	K ₂ 0	0.5-1.5	-

30 exhibit a particularly high solubility in salt solutions.

20

Patent claims

1. Mineral fibres, characterized in having the following composition:

5 47-54 % by weight - _ -Si0₂ -4-7.5 -A1203 1-8.5 - Fe_2O_3 10-24.5.-CaO 10-21 -Mg0 10 0.1-10 -Na₂O 0.1-1.5 -K₂0

Mineral fibres according to claim 1, characterized
 in having the following composition:

25

30

International Application No

PCT/0K89/00205

CLASSIFICATION OF SUBJECT MATTER (1) several classification symbols activing tales at 1. According to international Patent Glassification (IPC) or to both National Classification and IPC 4.					
According to	o international Pati	ent Classification (IPC) or to both Hallonar			
	c 13/06				
; FIELDS	FIELDS SEARCHED Minimum Documentation Searched 7				
Classification	N. N. 414 TO		sification Sympols		
		12 C			
120 4		93 C	•		
US C1	106	-			
		Documentation Searched other than to the Estent that such Documents are	Included in the Fields Searched		
		along as above	•		
		classes as above			
	MENTS CONSI	DERED TO BE RELEVANT®	riste, of the relevant passages 12	! Relevant to Claim No. 12	
Catedory .	Citation of C	ocument. " With Indication		,	
		2 576 312 (LEONARD JOH	IN MINNICK)		
λ	US, A,	27 November 1951			
			ID MINERALISCHE	1	
4	GB, A,	2 152 026 (INSTITUT FOR ROHSTOFF-UND LAGERSTAT	TENWIRTSCHAFT)		
		31 July 1985			
÷	DE, Al.	3 222 546 (MENGEL, KU	RT, DR)		
		5 May 1983.		į	
		•			
,				·	
	•				
				:	
				:	
			"T" later document published aff	er the international filing date	
		cited documents: 18 tine general state of the art which is not in national relevance.	or priority data and not in co	or the international copies of theory underlying the	
		particular relevance it published on or after the international	INVENTION		
- I	iling date	on an amount claim(s) of	inadiae Su inadutine stab	the claimed invention	
•	AUICH :8 CITAG TO A	acial (eason (as specified)	"Y" document of particular rek cannot be considered to invi	THE MAN SUCH COCU.	
-0-6	socument referring	to an oral disclosure, use, sametast	ments, such commination of		
	other means "P" gocument published prior to the international filling date but ster man the priority date claimed "a" document member of the same satent family			me setent femily	
	STISICATION		Date of Meiling of this Internation	al Search Report	
Date of	the Actual Comp	etion of the International Search		-12- 9 4	
	89-11-15		: Signature of Autporizoe Officer	isallne	
i	tional Searching		Signature of Authorized Officer	H West	
5.4	edish Pate	nt Office	May Haline /		