

Johan Jansen

Unsupervised learning – Final assignment https://github.com/jjzd83/UML-wk5

Challenge: Getting from A to B

Products related to this item

Original Snuggle Puppy

Heartbeat Stuffed Toy

for Dogs, Pet Anxiety

*** 62.135

Relief and Calmi...

Squirrel Plush Dog Toy

**** 61,139

Puzzle, Small

Squeaky Dog Toys Cute Stuffed Squirrel Durable Dog Plush Toys for... Squeaky Enrichme...

Squeaky Plush Stuffed Interactive Bunny Buddy Dog Toy with Crinkle and Dog Toy Dogs - Monkey ★★★★☆ 23,816

Lepawit Squeaky Dog Toys, Cute Plush Toy for Dogs Indoor Play, Interactive Dog Toys... ★★★★☆3

Page 1 of 58

T-Rex Squeaky Plush Dog Toy, Chew Guard Technology - Green,... ★★★☆☆ 66,811

Dataset

- Large e-commerce store, 2 csv for 2 consecutive months
- 14,68 gb or 11,1 million entries
- Source: ref #1, #2

- Converted to parquet and a sparse matrix
 - Each row a user session
 - Each column a # visits per product

- Precision at k (where k=10): Out of 10 suggestions, how many are actually visited?
- Mean absolute precision: measures errors in confidence

Models

- Alternating Least Squares (ALS): This model decomposes the interaction matrix (Ref #3). Has linear assumptions, scales well.
- Bayesian Personalized Ranking (BPR): BPR uses a pairwise ranking approach. It optimizes a pairwise loss function. (Ref #4). Compute intensive, but ranks well.
- Logistic Matrix Factorization: A probabilistic approach that incorporates logistic regression to predict the probability of interaction. Less scalable. (Ref #5)

Results different models (default settings)

• Small set:

 Model
 Precision@10
 MAP@10

 ALS
 0.082051
 0.050657

 BPR
 0.000000
 0.000000

 LMF
 0.066667
 0.045632

• Large set:

Model	Precision@10	MAP@10
ALS	0.120611	0.059842
BPR	0.087190	0.037055
LMF	0.019175	0.006370

Results after optimization with ALS

Using scikit optimize to find optimal settings for:

0 0 0

- Factors: How many columns for the intermediate matrix?
- Regularisation: How much punishment for a mistake
- Alpha: How to weight a positive example against a non-existing?
- Ran the final test set and found the following scores of:

Dataset	Precision @ 10	
Validation-set	20.8%	
Test-set	20.7%	

Lessons learned:

- Improvement in running the experiments
- Using the counts data improved scores
- Stay critical of parameters when training with a small dataset.

References

- 1. https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
- 2. https://rees46.com/en/open-cdp
- 3. Fast Matrix Factorization for Online Recommendation with Implicit Feedback, He et al, 2017
- 4. BPR: Bayesian Personalized Ranking from Implicit Feedback, Rendle et al, 2009
- 5. Logistic Matrix Factorization for Implicit Feedback Data, Johnson, 2014