Formal deformation theory

Reading seminar on DT theory

David KERN

University of Sheffield

15th May 2020

Section 1: Functors of Artin rings

- Functors of Artin rings
 - Artin rings as infinitesimally thickened points
 - From formal schemes to functors of Artin rings
- Tangent spaces to deformation problems
 - Properties
 - Computations of tangent spaces
- Extending deformations
 - Representability and atlases
 - Obstructions

Goal of deformation theory: Study infinitesimal neighbourhoods of points in moduli stacks.

Goal of deformation theory: Study infinitesimal neighbourhoods of points in moduli stacks.

Formal neighbourhood of a closed affine subscheme

Let $X = \operatorname{Spec} A$ be noetherian and I be an ideal of A defining $Z = \operatorname{Spec}(A/I)$.

The function ring of the formal neighbourhood is the complete adic ring $\widehat{A}_I = \varprojlim_n A/I^n$.

Goal of deformation theory: Study infinitesimal neighbourhoods of points in moduli stacks.

Formal neighbourhood of a closed affine subscheme

Let $X = \operatorname{Spec} A$ be notherian and I be an ideal of A defining $Z = \operatorname{Spec}(A/I)$. The function ring of the formal neighbourhood is the complete adic ring $\widehat{A}_I = \varprojlim_n A/I^n$.

Neighbourhood of a point

If I is prime so $Z = \{x\}$ is (the closure of) a point, then $\widehat{A}_I \simeq \widehat{(\mathcal{O}_{X,x})}_{\mathfrak{m}_x}$ where $\mathfrak{m}_x = I \cdot \mathcal{O}_{X,x}$.

Goal of deformation theory: Study infinitesimal neighbourhoods of points in moduli stacks.

Formal neighbourhood of a closed affine subscheme

Let $X = \operatorname{Spec} A$ be notherian and I be an ideal of A defining $Z = \operatorname{Spec}(A/I)$. The function ring of the formal neighbourhood is the complete adic ring $\widehat{A}_I = \varprojlim_n A/I^n$.

Neighbourhood of a point

If I is prime so $Z = \{x\}$ is (the closure of) a point, then $\widehat{A}_I \simeq \widehat{(\mathcal{O}_{X,x})}_{\mathfrak{m}_x}$ where $\mathfrak{m}_x = I \cdot \mathcal{O}_{X,x}$.

The formal neighbourhood \widehat{X}_Z is the topologically locally ringed space

$$\mathsf{Spf}(\widehat{A}_I) \coloneqq \Big(|\mathsf{Spec}(\widehat{A}_I/I)|_{\mathsf{Zar}} = |\mathsf{Spec}(A/I)|_{\mathsf{Zar}}, \ \varprojlim_n \mathscr{O}_{\mathsf{Spec}(A/I^n)} \Big).$$

▶ The formal neighbourhood of (p) in Spec \mathbb{Z} is the ring $\widehat{\mathbb{Z}}_{(p)}$ pf p-adic numbers.

▶ The formal neighbourhood of (p) in Spec \mathbb{Z} is the ring $\widehat{\mathbb{Z}}_{(p)}$ pf p-adic numbers.

We fix once and for all a base algebraically closed field k.

- ▶ The formal neighbourhood of 0 in \mathbb{A}^1_{\Bbbk} is $\widehat{\Bbbk[x]}_{(x)} = \varprojlim_k \Bbbk[x]/(x^k) = \Bbbk[x]$.
- More generally, the completion of $\mathbb{k}[x_1,\ldots,x_n]$ along the maximal ideal (x_1,\cdots,x_n) is $\mathbb{k}[x_1,\ldots,x_n]$.

▶ The formal neighbourhood of (p) in Spec \mathbb{Z} is the ring $\widehat{\mathbb{Z}}_{(p)}$ pf p-adic numbers.

We fix once and for all a base algebraically closed field k.

- ▶ The formal neighbourhood of 0 in \mathbb{A}^1_{\Bbbk} is $\widehat{\Bbbk[x]}_{(x)} = \varprojlim_k \Bbbk[x]/(x^k) = \Bbbk[x]$.
- More generally, the completion of $\mathbb{k}[x_1,\ldots,x_n]$ along the maximal ideal (x_1,\cdots,x_n) is $\mathbb{k}[x_1,\ldots,x_n]$.
- ▶ The formal neighbourhood of the singularity (0,0) in $\operatorname{Spec}(\mathbb{k}[x,y]/(xy))$ is $\mathbb{k}[x,y]/(xy)$.

▶ The formal neighbourhood of (p) in Spec \mathbb{Z} is the ring $\widehat{\mathbb{Z}}_{(p)}$ pf p-adic numbers.

We fix once and for all a base algebraically closed field k.

- ▶ The formal neighbourhood of 0 in $\mathbb{A}^1_{\mathbb{k}}$ is $\widehat{\mathbb{k}[x]}_{(x)} = \varprojlim_k \mathbb{k}[x]/(x^k) = \mathbb{k}[x]$.
- More generally, the completion of $\mathbb{k}[x_1,\ldots,x_n]$ along the maximal ideal (x_1,\cdots,x_n) is $\mathbb{k}[x_1,\ldots,x_n]$.
- ▶ The formal neighbourhood of the singularity (0,0) in $\operatorname{Spec}(\Bbbk[x,y]/(xy))$ is $\Bbbk[x,y]/(xy)$.
- The formal neighbourhood of (0,0) in $\mathbb{k}[x,y]/(y^2-x^2-x^3)$ is $\mathbb{k}[x,y]/((y-\xi)(y+\xi))$: in $\mathbb{k}[x,y]$, the polynomial $x^2(1+x)$ acquires a square-root $\xi=x\sqrt{1+x}$ (by formal Taylor expansion).

Contents - Section 1: Functors of Artin rings

- Functors of Artin rings
 - Artin rings as infinitesimally thickened points
 - From formal schemes to functors of Artin rings
- Tangent spaces to deformation problems
- Extending deformations

A ring is **Artinian** if it satisfies the descending chain condition for ideals. A **local Artin** \mathbb{k} -algebra is a local ring (A, \mathfrak{m}_A) with A Artinian and $A/\mathfrak{m}_A \simeq \mathbb{k}$.

Structure theory of Artin rings

► A finitely generated k-algebra is Artinian iff it is finite (as a k-algebra).

A ring is **Artinian** if it satisfies the descending chain condition for ideals. A **local Artin** \mathbb{k} -algebra is a local ring (A, \mathfrak{m}_A) with A Artinian and $A/\mathfrak{m}_A \simeq \mathbb{k}$.

- ► A finitely generated k-algebra is Artinian iff it is finite (as a k-algebra).
- $ightharpoonup \mathfrak{m}_A$ is nilpotent, so $\operatorname{Spec}(A)_{\operatorname{red}} = \operatorname{Spec}(A/\mathfrak{m}_A)$.

A ring is **Artinian** if it satisfies the descending chain condition for ideals. A **local Artin** \mathbb{k} -algebra is a local ring (A, \mathfrak{m}_A) with A Artinian and $A/\mathfrak{m}_A \simeq \mathbb{k}$.

- ► A finitely generated k-algebra is Artinian iff it is finite (as a k-algebra).
- ightharpoonup \mathfrak{m}_A is nilpotent, so $\operatorname{Spec}(A)_{\operatorname{red}} = \operatorname{Spec}(A/\mathfrak{m}_A)$.
- ► A is Artinian if and only if it is noetherian of dimension 0.

A ring is **Artinian** if it satisfies the descending chain condition for ideals. A **local Artin** \mathbb{k} -algebra is a local ring (A, \mathfrak{m}_A) with A Artinian and $A/\mathfrak{m}_A \simeq \mathbb{k}$.

- ► A finitely generated k-algebra is Artinian iff it is finite (as a k-algebra).
- $ightharpoonup \mathfrak{m}_A$ is nilpotent, so $\operatorname{Spec}(A)_{\operatorname{red}} = \operatorname{Spec}(A/\mathfrak{m}_A)$.
- ► *A* is Artinian if and only if it is noetherian of dimension 0.
- ▶ For every $n \ge 1$, $k[\varepsilon]/(\varepsilon^n)$ is a local Artin ring.

A ring is **Artinian** if it satisfies the descending chain condition for ideals. A **local Artin** \mathbb{k} -algebra is a local ring (A, \mathfrak{m}_A) with A Artinian and $A/\mathfrak{m}_A \simeq \mathbb{k}$.

- ▶ A finitely generated k-algebra is Artinian iff it is finite (as a k-algebra).
- $ightharpoonup \mathfrak{m}_A$ is nilpotent, so $\operatorname{Spec}(A)_{\operatorname{red}} = \operatorname{Spec}(A/\mathfrak{m}_A)$.
- ► A is Artinian if and only if it is noetherian of dimension 0.
- ▶ For every $n \ge 1$, $k[\varepsilon]/(\varepsilon^n)$ is a local Artin ring.
- ▶ A a k-algebra. The square-zero extension $A \oplus A$ is a (non-local) Artin ring. It is isomorphic to $A[\varepsilon]/(\varepsilon^2) \simeq A \otimes_k k[\varepsilon]/(\varepsilon^2)$.

A ring is **Artinian** if it satisfies the descending chain condition for ideals. A **local Artin** \mathbb{k} -algebra is a local ring (A, \mathfrak{m}_A) with A Artinian and $A/\mathfrak{m}_A \simeq \mathbb{k}$.

Structure theory of Artin rings

- ▶ A finitely generated k-algebra is Artinian iff it is finite (as a k-algebra).
- $ightharpoonup \mathfrak{m}_A$ is nilpotent, so $\operatorname{Spec}(A)_{\operatorname{red}} = \operatorname{Spec}(A/\mathfrak{m}_A)$.
- ► *A* is Artinian if and only if it is noetherian of dimension 0.
- ▶ For every $n \ge 1$, $k[\varepsilon]/(\varepsilon^n)$ is a local Artin ring.
- ▶ A a k-algebra. The square-zero extension $A \oplus A$ is a (non-local) Artin ring. It is isomorphic to $A[\varepsilon]/(\varepsilon^2) \simeq A \otimes_k k[\varepsilon]/(\varepsilon^2)$.

Write \mathfrak{Art}_{\Bbbk} the category of local Artin $\Bbbk\text{-algebras}$ and local homomorphisms.

Interpretation: $\mathfrak{Art}_{\mathbb{k}}^{op}$ is the category of (affine) "fat points".

Complete local rings

A pair (R, I) is **complete** if $R \to \widehat{R}_I$ is an isomorphism.

- ▶ If I is nilpotent, then (R, I) is complete.
- ▶ If I is finitely generated, $(\widehat{R}_I, \widehat{I}_I = I \cdot \widehat{R}_I)$ is complete. For example, if R is noetherian.

Write $\widehat{\mathfrak{Art}}_{\Bbbk}\supset \mathfrak{Art}_{\Bbbk}$ the category of local complete noetherian \Bbbk -algebras and local homomorphisms.

Complete local rings

A pair (R, I) is **complete** if $R \to \widehat{R}_I$ is an isomorphism.

- ▶ If I is nilpotent, then (R, I) is complete.
- ▶ If I is finitely generated, $(\widehat{R}_I, \widehat{I}_I = I \cdot \widehat{R}_I)$ is complete. For example, if R is noetherian.

Write $\widehat{\mathfrak{Art}}_{\Bbbk}\supset \mathfrak{Art}_{\Bbbk}$ the category of local complete nætherian \Bbbk -algebras and local homomorphisms.

Every complete local k-algebra R is a pro-object in \mathfrak{Art}_k .

Indeed, R is a projective limit $\varprojlim_n R/\mathfrak{m}_R^n$ where each R/\mathfrak{m}_R^n is local noetherian with nilpotent maximal ideal, so Artinian.

Surjections of Artin rings

A surjection of local Artin $\varphi \colon B \twoheadrightarrow A$ is a **small extension** if $\mathfrak{m}_B \cdot \ker(\varphi) = 0$. It is **principal** if $\ker(\varphi)$ is a principal ideal of B.

Remark: $ker(\phi)$ has a canonical structure of A-module (as $\mathfrak{m}_B \supset I$).

$$0 \to \mathbb{k} = (\varepsilon^n) \rightarrowtail \mathbb{k}[\varepsilon]/(\varepsilon^{n+1}) \twoheadrightarrow \mathbb{k}[\varepsilon]/(\varepsilon^n) \to 0$$
 is a principal small extension.

Surjections of Artin rings

A surjection of local Artin $\varphi \colon B \twoheadrightarrow A$ is a **small extension** if $\mathfrak{m}_B \cdot \ker(\varphi) = 0$. It is **principal** if $\ker(\varphi)$ is a principal ideal of B.

Remark: $ker(\phi)$ has a canonical structure of A-module (as $\mathfrak{m}_B\supset I$).

$$0 \to \mathbb{k} = (\varepsilon^n) \rightarrowtail \mathbb{k}[\varepsilon]/(\varepsilon^{n+1}) \twoheadrightarrow \mathbb{k}[\varepsilon]/(\varepsilon^n) \to 0$$
 is a principal small extension.

Proposition

Every surjection of local Artin rings factors as a composite of small extensions.

Surjections of Artin rings

A surjection of local Artin $\varphi \colon B \twoheadrightarrow A$ is a **small extension** if $\mathfrak{m}_B \cdot \ker(\varphi) = 0$. It is **principal** if $\ker(\varphi)$ is a principal ideal of B.

Remark: $\ker(\varphi)$ has a canonical structure of A-module (as $\mathfrak{m}_B \supset I$).

$$0 \to \mathbb{k} = (\varepsilon^n) \rightarrowtail \mathbb{k}[\varepsilon]/(\varepsilon^{n+1}) \twoheadrightarrow \mathbb{k}[\varepsilon]/(\varepsilon^n) \to 0$$
 is a principal small extension.

Proposition

Every surjection of local Artin rings factors as a composite of small extensions.

For any k-algebra R and an R-module I, we let $\mathsf{Ex}_k(R,I)$ denote the set of isomorphism classes of square-zero extensions of R by I.

► $\mathsf{Ex}_{\Bbbk}(R,I)$ has a structure of R-module, with $r \cdot [\widetilde{R}] := [\alpha_{r,*}\widetilde{R}]$ where $\alpha_r \colon I \to I, i \mapsto r \cdot i$ and, for any $a \colon I \to J$, $a_*\widetilde{R} = \widetilde{R} \coprod_I J$.

Contents - Section 1: Functors of Artin rings

- Functors of Artin rings
 - Artin rings as infinitesimally thickened points
 - From formal schemes to functors of Artin rings
- Tangent spaces to deformation problems
- Extending deformations

Pre-deformation functors

Fact: The functor of points of a formal scheme is determined by its values on k-algebras with reduced part k, *i.e.* it can be recovered from its restriction to \mathfrak{Art}_k .

▶ A **pre-deformation functor** is a precosheaf \mathscr{F} on \mathfrak{Art}_{\Bbbk} , that is a (covariant) functor $\mathfrak{Art}_{\Bbbk} \to \mathfrak{Set}$, such that $\mathscr{F}(\Bbbk) \simeq *$.

Pre-deformation functors

Fact: The functor of points of a formal scheme is determined by its values on k-algebras with reduced part k, *i.e.* it can be recovered from its restriction to \mathfrak{Art}_k .

- ▶ A **pre-deformation functor** is a precosheaf \mathscr{F} on \mathfrak{Art}_{\Bbbk} , that is a (covariant) functor $\mathfrak{Art}_{\Bbbk} \to \mathfrak{Set}$, such that $\mathscr{F}(\Bbbk) \simeq *$.
- ▶ A pre-deformation functor **admits a differential calculus** if it preserves pullbacks along $\mathbb{k}[\varepsilon]/(\varepsilon^2) \twoheadrightarrow \mathbb{k}$

Pre-deformation functors

Fact: The functor of points of a formal scheme is determined by its values on k-algebras with reduced part k, *i.e.* it can be recovered from its restriction to \mathfrak{Art}_k .

- ▶ A **pre-deformation functor** is a precosheaf \mathscr{F} on \mathfrak{Art}_{\Bbbk} , that is a (covariant) functor $\mathfrak{Art}_{\Bbbk} \to \mathfrak{Set}$, such that $\mathscr{F}(\Bbbk) \simeq *$.
- ▶ A pre-deformation functor **admits a differential calculus** if it preserves pullbacks along $\mathbb{k}[\varepsilon]/(\varepsilon^2) \to \mathbb{k}$: for any pullback on the left

the dashed map Υ on the right is an isomorphism.

Examples of deformation functors I

Pro-representable functors

(Co)Representable functors

Any local Artin \mathbb{k} -algebra A corepresents the functor $\mathbb{A}^A \colon B \mapsto \mathsf{hom}_{\mathfrak{Art}_{\mathbb{k}}}(A,B)$. There is a unique $\mathbb{k} \to A$, and representables preserve all limits.

Examples of deformation functors I

Pro-representable functors

(Co)Representable functors

Any local Artin k-algebra A corepresents the functor $\mathbb{A}^A \colon B \mapsto \mathsf{hom}_{\mathfrak{Art}_k}(A,B)$. There is a unique $k \to A$, and representables preserve all limits.

Suppose $R \in \widehat{\mathfrak{Art}}_{\Bbbk}$. The representable $\widehat{\mathbb{A}^R}$ is left-exact so $\widehat{\mathbb{A}^R}(S) = \varprojlim_n \widehat{\mathbb{A}^R}(S/\mathfrak{m}_S^n)$.

lacktriangle A pre-deformation functor $\mathscr F$ can be extended to $\widehat{\mathscr F}\colon\widehat{\mathfrak A\mathfrak r\mathfrak t}_\Bbbk o\mathfrak S\mathfrak e\mathfrak t$ by

$$\widehat{\mathscr{F}}\colon \widehat{\mathfrak{Art}}_{\Bbbk}\ni S\simeq \varprojlim_n S/\mathfrak{m}_S^n \quad \mapsto \quad \varprojlim_n \mathscr{F}(S/\mathfrak{m}_S^n)\eqqcolon \{\text{formal elements over }S\}.$$

 \mathscr{F} is **pro-representable** if $\widehat{\mathscr{F}}$ is representable by $R \in \widehat{\mathfrak{Art}}_{\Bbbk}$.

Examples of deformation functors I

Pro-representable functors

(Co)Representable functors

Any local Artin k-algebra A corepresents the functor $\mathbb{A}^A \colon B \mapsto \mathsf{hom}_{\mathfrak{Art}_k}(A,B)$. There is a unique $k \to A$, and representables preserve all limits.

Suppose
$$R \in \widehat{\mathfrak{Art}}_{\Bbbk}$$
. The representable $\widehat{\mathbb{A}^R}$ is left-exact so $\widehat{\mathbb{A}^R}(S) = \varprojlim_n \widehat{\mathbb{A}^R}(S/\mathfrak{m}_S^n)$.

lackbox A pre-deformation functor $\mathscr F$ can be extended to $\widehat{\mathscr F}\colon\widehat{\mathfrak{Art}}_{\Bbbk}\to\mathfrak{Set}$ by

$$\widehat{\mathscr{F}}\colon \widehat{\mathfrak{Art}}_{\Bbbk}\ni S\simeq \varprojlim_n S/\mathfrak{m}_S^n \quad \mapsto \quad \varprojlim_n \mathscr{F}(S/\mathfrak{m}_S^n) \eqqcolon \{\text{formal elements over }S\}.$$

 \mathscr{F} is **pro-representable** if $\widehat{\mathscr{F}}$ is representable by $R \in \widehat{\mathfrak{Art}}_{\Bbbk}$.

- ► For such $R \in \widehat{\mathfrak{Art}}_{\mathbb{K}}$, we denote \mathbb{A}^R : $A \mapsto \mathsf{hom}(R,A)$ the restriction of $\widehat{\mathbb{A}^R}$.
- **b** By Yoneda, morphisms $\hbar^R \to \mathscr{F}$ are in bijection with formal elements of \mathscr{F} over R.

Examples of deformation functors II

Formal neighbourhood of a point

The functor of points of a \mathbb{k} -scheme X is $\mathscr{R}_X \colon \mathfrak{Aff}_{\mathbb{k}}^{\text{op}} = \mathfrak{Alg}_{\mathbb{k}} \to \mathfrak{Ens}, A \mapsto \text{hom}(\text{Spec}\,A, X)$. However $\mathfrak{Art}_{\mathbb{k}}$ is not a full subcategory of $\mathfrak{Alg}_{\mathbb{k}}$.

Lemma

Let R be a local ring. There is a bijection between morphisms $f \colon \operatorname{Spec} R \to X$ mapping the unique closed point to $x \in X$ and *local* homomorphisms $f^{\sharp} \mathscr{O}_{X,x} \to R$.

Examples of deformation functors II

Formal neighbourhood of a point

The functor of points of a \mathbb{k} -scheme X is $\mathscr{R}_X \colon \mathfrak{Aff}_{\mathbb{k}}^{\text{op}} = \mathfrak{Alg}_{\mathbb{k}} \to \mathfrak{Ens}, A \mapsto \text{hom}(\text{Spec}\,A, X)$. However $\mathfrak{Art}_{\mathbb{k}}$ is not a full subcategory of $\mathfrak{Alg}_{\mathbb{k}}$.

Lemma

Let R be a local ring. There is a bijection between morphisms $f \colon \operatorname{Spec} R \to X$ mapping the unique closed point to $x \in X$ and local homomorphisms $f^{\sharp} \mathscr{O}_{X,x} \to R$.

Let X be a k-scheme and x: Spec $k \to X$ a point. Its formal neighbourhood is

$$A \mapsto \left\{ f \in \mathsf{hom}(\mathsf{Spec}\,A,X) \mid p_A^*f \coloneqq f|_{\mathsf{Spec}\,\Bbbk} = x \right\}$$

where $p_A^{\sharp} \colon A \to A/\mathfrak{m}_A = \mathbb{k}$ so $f|_{\operatorname{Spec} \mathbb{k}} \colon \operatorname{Spec} k \xrightarrow{p_A} \operatorname{Spec} A \xrightarrow{f} X$.

Section 2: Tangent spaces to deformation problems

- Functors of Artin rings
 - Artin rings as infinitesimally thickened points
 - From formal schemes to functors of Artin rings
- Tangent spaces to deformation problems
 - Properties
 - Computations of tangent spaces
- Extending deformations
 - Representability and atlases
 - Obstructions

Contents - Section 2: Tangent spaces to deformation problems

- Functors of Artin rings
- Tangent spaces to deformation problems
 - Properties
 - Computations of tangent spaces
- Extending deformations

The tangent space

The **tangent set** to a pre-deformation functor \mathscr{F} is $T_{\mathscr{F}} := \mathscr{F}(\mathbb{D})$, where $\mathbb{D} := \mathbb{k}[\varepsilon]/(\varepsilon^2)$.

Proposition

If \mathscr{F} admits a differential calculus, $T_{\mathscr{F}}$ is a \Bbbk -vector space.

Construction.

 \mathbb{D} is an \mathbb{k} -vector space object in $\mathfrak{Art}_{\mathbb{k}_*/\mathbb{k}}$ with

abelian group structure from $\mu: \mathbb{D} \times_{\mathbb{k}} \mathbb{D} \to \mathbb{D}, (a+b\varepsilon, a+b'\varepsilon) \mapsto a+(b+b')\varepsilon$,

scalar multiplication from $\rho_{\lambda} \colon \mathbb{D} \to \mathbb{D}, a + b\varepsilon \mapsto a + \lambda b\varepsilon$ for $\lambda \in \mathbb{k}$.

Then, as ${\mathcal F}$ preserves the relevant fibre products, define

$$+: \mathscr{F}(\mathbb{D}) \times \mathscr{F}(\mathbb{D}) \xrightarrow{\Upsilon^{-1}} \mathscr{F}(\mathbb{D} \times_{\mathbb{k}} \mathbb{D}) \xrightarrow{\mathscr{F}(\mu)} \mathscr{F}(\mathbb{D})$$
 and so on.

The tangent space

The **tangent set** to a pre-deformation functor \mathscr{F} is $T_{\mathscr{F}} := \mathscr{F}(\mathbb{D})$, where $\mathbb{D} := \mathbb{k}[\varepsilon]/(\varepsilon^2)$.

Proposition

If ${\mathcal F}$ admits a differential calculus, $T_{{\mathcal F}}$ is a ${\mathbb k}$ -vector space.

Construction.

 \mathbb{D} is an \mathbb{k} -vector space object in $\mathfrak{Art}_{\mathbb{k}_{-}/\mathbb{k}}$ with

abelian group structure from $\mu \colon \mathbb{D} \times_{\Bbbk} \mathbb{D} \to \mathbb{D}, (a+b\varepsilon,a+b'\varepsilon) \mapsto a+(b+b')\varepsilon$,

scalar multiplication from $\rho_{\lambda} \colon \mathbb{D} \to \mathbb{D}, a + b\varepsilon \mapsto a + \lambda b\varepsilon$ for $\lambda \in \mathbb{k}$.

Then, as ${\mathcal F}$ preserves the relevant fibre products, define

$$+: \mathscr{F}(\mathbb{D}) \times \mathscr{F}(\mathbb{D}) \xrightarrow{\Upsilon^{-1}} \mathscr{F}(\mathbb{D} \times_{\mathbb{k}} \mathbb{D}) \xrightarrow{\mathscr{F}(\mu)} \mathscr{F}(\mathbb{D})$$
 and so on.

If $\varphi \colon \mathscr{F} \to \mathscr{G}$ is a transformation, $d\varphi \coloneqq \varphi_{\mathbb{D}} \colon T_{\mathscr{F}} \to T_{\mathscr{G}}$ is called its **differential**.

Example 0: Pro-representable functors

If $\mathscr{F} = \mathscr{R}^R$ is pro-representable, $T_{\mathscr{R}^R} = T_{R/\Bbbk,\mathfrak{m}_R} \simeq T_{R/\Bbbk}$ where \mathfrak{m}_R is the unique closed point of Spec R (so the tangent space is the tangent module).

If $\mathscr{F} = \mathbb{A}^R$ is pro-representable, $T_{\mathbb{A}^R} = T_{R/\Bbbk,\mathfrak{m}_R} \simeq T_{R/\Bbbk}$ where \mathfrak{m}_R is the unique closed point of Spec R (so the tangent space is the tangent module).

Proof.

We use the characterisation of $T_{R/\Bbbk,\mathfrak{m}_R}$ as the \Bbbk -dual of $\Omega^1_{R/\Bbbk,\mathfrak{m}_R}=\Omega^1_{R/\Bbbk}\otimes_R \Bbbk$, so

$$T_{R/\Bbbk,\mathfrak{m}_R} \simeq \mathsf{hom}_{\Bbbk}(\Omega^1_{R/\Bbbk} \otimes_R \Bbbk, \Bbbk) \simeq \mathsf{hom}_R(\Omega^1_{R/\Bbbk}, \Bbbk)$$

If $\mathscr{F} = \mathbb{A}^R$ is pro-representable, $T_{\mathbb{A}^R} = T_{R/\Bbbk,\mathfrak{m}_R} \simeq T_{R/\Bbbk}$ where \mathfrak{m}_R is the unique closed point of Spec R (so the tangent space is the tangent module).

Proof.

We use the characterisation of $T_{R/\Bbbk,\mathfrak{m}_R}$ as the \Bbbk -dual of $\Omega^1_{R/\Bbbk,\mathfrak{m}_R}=\Omega^1_{R/\Bbbk}\otimes_R \Bbbk$, so

$$T_{R/\Bbbk,\mathfrak{m}_R} \simeq \mathsf{hom}_{\Bbbk}(\Omega^1_{R/\Bbbk} \otimes_R \Bbbk, \Bbbk) \simeq \mathsf{hom}_R(\Omega^1_{R/\Bbbk}, \Bbbk) \simeq \mathsf{Der}_{\Bbbk}(R, \Bbbk).$$

Recall that k-linear derivations from R to an R-module M are in bijection with maps of R-augmented k-algebras into the square-zero extension $R \oplus M$

If $\mathscr{F} = \mathbb{A}^R$ is pro-representable, $T_{\mathbb{A}^R} = T_{R/\Bbbk,\mathfrak{m}_R} \simeq T_{R/\Bbbk}$ where \mathfrak{m}_R is the unique closed point of Spec R (so the tangent space is the tangent module).

Proof.

We use the characterisation of $T_{R/\Bbbk,\mathfrak{m}_R}$ as the \Bbbk -dual of $\Omega^1_{R/\Bbbk,\mathfrak{m}_R}=\Omega^1_{R/\Bbbk}\otimes_R \Bbbk$, so

$$T_{R/\Bbbk,\mathfrak{m}_R} \simeq \mathsf{hom}_{\Bbbk}(\Omega^1_{R/\Bbbk} \otimes_R \Bbbk, \Bbbk) \simeq \mathsf{hom}_R(\Omega^1_{R/\Bbbk}, \Bbbk) \simeq \mathsf{Der}_{\Bbbk}(R, \Bbbk).$$

Recall that k-linear derivations from R to an R-module M are in bijection with maps of R-augmented k-algebras into the square-zero extension $R \oplus M$:

$$T_{R/\Bbbk} \simeq \operatorname{\mathsf{hom}}_{\Bbbk,/R}(R, R \oplus \Bbbk) \simeq \operatorname{\mathsf{hom}}_{\Bbbk,/\Bbbk}(R, \Bbbk \oplus \Bbbk) = \operatorname{\mathsf{hom}}_{\Bbbk,/\Bbbk}(R, \mathbb{D}).$$

If $\mathscr{F} = \mathscr{h}^R$ is pro-representable, $T_{\mathscr{H}^R} = T_{R/\Bbbk,\mathfrak{m}_R} \simeq T_{R/\Bbbk}$ where \mathfrak{m}_R is the unique closed point of Spec R (so the tangent space is the tangent module).

Proof.

We use the characterisation of $T_{R/\Bbbk,\mathfrak{m}_R}$ as the \Bbbk -dual of $\Omega^1_{R/\Bbbk,\mathfrak{m}_R}=\Omega^1_{R/\Bbbk}\otimes_R \Bbbk$, so

$$T_{R/\Bbbk,\mathfrak{m}_R} \simeq \mathsf{hom}_{\Bbbk}(\Omega^1_{R/\Bbbk} \otimes_R \Bbbk, \Bbbk) \simeq \mathsf{hom}_R(\Omega^1_{R/\Bbbk}, \Bbbk) \simeq \mathsf{Der}_{\Bbbk}(R, \Bbbk).$$

Recall that k-linear derivations from R to an R-module M are in bijection with maps of R-augmented k-algebras into the square-zero extension $R \oplus M$:

$$T_{R/\Bbbk} \simeq \mathsf{hom}_{\Bbbk,/R}(R, R \oplus \Bbbk) \simeq \mathsf{hom}_{\Bbbk,/\Bbbk}(R, \Bbbk \oplus \Bbbk) = \mathsf{hom}_{\Bbbk,/\Bbbk}(R, \mathbb{D}).$$

Finally, a local morphism $R \to \mathbb{D}$ is exactly a morphism of k-augmented k-algebras.

Extending tangent modules

Recall that the tangent module to a \mathbb{k} -algebra R is $T_{R/\mathbb{k}} = \hom_R(\Omega_{R/\mathbb{k}}, R) = \mathrm{Der}_{\mathbb{k}}(R, R)$.

▶ For any morphism $S \rightarrow R$, there is an exact sequence

$$0 \longrightarrow \operatorname{Der}_{S}(R,I) \longrightarrow \operatorname{Der}_{\Bbbk}(R,I) \longrightarrow \operatorname{Der}_{\Bbbk}(S,I) \otimes_{S} R$$

$$\vdash \operatorname{Ex}_{S}(R,I) \longrightarrow \operatorname{Ex}_{\Bbbk}(R,I) \longrightarrow \operatorname{Ex}_{\Bbbk}(S,I) \otimes_{S} R,$$

hence one also writes $\operatorname{Ex}_{\Bbbk}(R,R) \eqqcolon \operatorname{H}^1(T_{R/\Bbbk}^{\bullet}) \ (= \operatorname{Ext}^1_R(\mathbb{L}\Omega^{1,ullet}_{R/\Bbbk},R)).$

Extending tangent modules

Recall that the tangent module to a \mathbb{k} -algebra R is $T_{R/\mathbb{k}} = \hom_R(\Omega_{R/\mathbb{k}}, R) = \mathrm{Der}_{\mathbb{k}}(R, R)$.

▶ For any morphism $S \rightarrow R$, there is an exact sequence

$$0 \longrightarrow \operatorname{Der}_{S}(R,I) \longrightarrow \operatorname{Der}_{\Bbbk}(R,I) \longrightarrow \operatorname{Der}_{\Bbbk}(S,I) \otimes_{S} R$$

$$\downarrow \operatorname{Ex}_{S}(R,I) \longrightarrow \operatorname{Ex}_{\Bbbk}(R,I) \longrightarrow \operatorname{Ex}_{\Bbbk}(S,I) \otimes_{S} R,$$

hence one also writes $\operatorname{Ex}_{\Bbbk}(R,R) \eqqcolon \operatorname{H}^1(T_{R/\Bbbk}^{\bullet}) (= \operatorname{Ext}_R^1(\mathbb{L}\Omega_{R/\Bbbk}^{1,\bullet},R)).$

- As a quasicoherent $\mathcal{O}_{\operatorname{Spec} R}$ -module, $\operatorname{Ex}_{\Bbbk}(R,R)$ is supported on the singular locus of $\operatorname{Spec} R \to \operatorname{Spec} \Bbbk$.
- ▶ If R is reduced, then $\operatorname{Ex}_{\Bbbk}(R,I) \simeq \operatorname{Ext}^1_R(\Omega^1_{R/\Bbbk},I)$.

Action of the tangent space

Lemma

For any principal extension $(t) \rightarrowtail \widetilde{A} \xrightarrow{p} A$, $T_{\mathscr{F}}$ acts on the fibres of $\mathscr{F}(\widetilde{A}) \xrightarrow{\mathscr{F}p} \mathscr{F}(A)$.

Proof.

▶ \mathbb{D} acts on \widetilde{A} by $\mathbb{D} \times_{\mathbb{k}} \widetilde{A} \xrightarrow{\operatorname{act}} \widetilde{A}$, $(\alpha + \beta \varepsilon, a) \mapsto a + \beta t$ where t generates (t).

Action of the tangent space

Lemma

For any principal extension $(t) \mapsto \widetilde{A} \xrightarrow{p} A$, $T_{\mathscr{F}}$ acts on the fibres of $\mathscr{F}(\widetilde{A}) \xrightarrow{\mathscr{F}p} \mathscr{F}(A)$.

Proof.

- ▶ \mathbb{D} acts on \widetilde{A} by $\mathbb{D} \times_{\mathbb{k}} \widetilde{A} \xrightarrow{\operatorname{act}} \widetilde{A}$, $(\alpha + \beta \varepsilon, a) \mapsto a + \beta t$ where t generates (t).
- ► The action preserves the fibres:

Proposition

If $\mathscr{F}=\mathscr{R}^R$ is pro-representable, the action of $T_{\mathscr{R}^R}$ is transitive and free on non-empty fibres.

Proof.

Let $\varpi \colon \widetilde{A} \twoheadrightarrow A$ be a principal extension with kernel $I \simeq \mathbb{k}$ and $\varphi \in \mathcal{R}^R(A) = \text{hom}(R,A)$. Fix $\widetilde{\varphi} \colon R \to \widetilde{A}$ in the fibre.

Proposition

If $\mathscr{F}=\mathscr{R}^R$ is pro-representable, the action of $T_{\mathscr{R}^R}$ is transitive and free on non-empty fibres.

Proof.

Let $\varpi \colon \widetilde{A} \twoheadrightarrow A$ be a principal extension with kernel $I \simeq \mathbb{k}$ and $\varphi \in \mathcal{R}^R(A) = \text{hom}(R,A)$. Fix $\widetilde{\varphi} \colon R \to \widetilde{A}$ in the fibre.

For any other $\widetilde{\psi}$ such that $\varpi \circ \widetilde{\psi} = \varphi$, one checks that $\widetilde{\varphi} - \widetilde{\psi}$ is a derivation $R \to I$.

Proposition

If $\mathscr{F}=\mathscr{R}^R$ is pro-representable, the action of $T_{\mathscr{R}^R}$ is transitive and free on non-empty fibres.

Proof.

Let $\varpi \colon \widetilde{A} \twoheadrightarrow A$ be a principal extension with kernel $I \simeq \mathbb{k}$ and $\varphi \in \mathcal{R}^R(A) = \text{hom}(R,A)$. Fix $\widetilde{\varphi} \colon R \to \widetilde{A}$ in the fibre.

For any other $\widetilde{\psi}$ such that $\varpi\circ\widetilde{\psi}=\varphi$, one checks that $\widetilde{\varphi}-\widetilde{\psi}$ is a derivation R o I.

Conversely, given $\delta \in \operatorname{Der}_{\Bbbk}(R,I)$, one still has $\varpi \circ (\widetilde{\varphi} + \delta) = \varphi$.

Proposition

If $\mathscr{F}=\mathbb{A}^R$ is pro-representable, the action of $T_{\mathbb{A}^R}$ is transitive and free on non-empty fibres.

Proof.

Let $\varpi \colon \widetilde{A} \twoheadrightarrow A$ be a principal extension with kernel $I \simeq \mathbb{k}$ and $\varphi \in \mathscr{R}^R(A) = \mathsf{hom}(R,A)$. Fix $\widetilde{\varphi} \colon R \to \widetilde{A}$ in the fibre.

For any other $\widetilde{\psi}$ such that $\varpi \circ \widetilde{\psi} = \varphi$, one checks that $\widetilde{\varphi} - \widetilde{\psi}$ is a derivation $R \to I$.

Conversely, given $\delta \in \mathsf{Der}_{\Bbbk}(R,I)$, one still has $\mathfrak{\varpi} \circ (\widetilde{\varphi} + \delta) = \varphi$.

In any category with products, an internal group action such that $G \times X \xrightarrow{(act,pr_2)} X \times X$ is an isomorphism is called a **torsor**.

 \Rightarrow Every choice of "base-point" $x: * \to X$ trivialises the torsor by $G \times * \simeq X \times *$.

Let $\mathscr G$ be a sheaf of groups and $\mathscr X$ a $\mathscr G$ -sheaf. If $\mathscr X(U)=\emptyset$, then $(\mathscr G\times\mathscr X)(U)=\emptyset$ and the torsor condition is trivially satisfied over U.

Let $\mathscr G$ be a sheaf of groups and $\mathscr X$ a $\mathscr G$ -sheaf. If $\mathscr X(U)=\emptyset$, then $(\mathscr G\times\mathscr X)(U)=\emptyset$ and the torsor condition is trivially satisfied over U. One usually asks that a sheaf torsor be locally non-empty: the local sections give a local trivialisation.

Let $\mathscr G$ be a sheaf of groups and $\mathscr X$ a $\mathscr G$ -sheaf. If $\mathscr X(U)=\emptyset$, then $(\mathscr G\times\mathscr X)(U)=\emptyset$ and the torsor condition is trivially satisfied over U. One usually asks that a sheaf torsor be locally non-empty: the local sections give a local trivialisation.

Lemma

Let $\mathscr G$ be a sheaf of abelian groups on a space X. The group $\check{\mathsf H}^1(X,\mathscr G)$ classifies $\mathscr G$ -torsors.

Let $\mathscr G$ be a sheaf of groups and $\mathscr X$ a $\mathscr G$ -sheaf. If $\mathscr X(U)=\emptyset$, then $(\mathscr G\times\mathscr X)(U)=\emptyset$ and the torsor condition is trivially satisfied over U. One usually asks that a sheaf torsor be locally non-empty: the local sections give a local trivialisation.

Lemma

Let $\mathscr G$ be a sheaf of abelian groups on a space X. The group $\check{\mathsf H}^1(X,\mathscr G)$ classifies $\mathscr G$ -torsors.

Proof.

Let $\coprod_{\alpha} U_{\alpha} \twoheadrightarrow X$ be an open cover, and $(\gamma_{\alpha\beta})$ a Čech cocycle. For any open $V \subset X$, define

$$\mathcal{S}(V) := \{ (g_{\alpha} \in \mathcal{G}(V \times_{X} U_{\alpha})) \mid \gamma_{\alpha\beta}g_{\beta} = g_{\alpha} \}$$

with the obvious restriction maps and \mathscr{G} -action. Any coboundary gives a trivial torsor.

Let $\mathscr G$ be a sheaf of groups and $\mathscr X$ a $\mathscr G$ -sheaf. If $\mathscr X(U)=\emptyset$, then $(\mathscr G\times\mathscr X)(U)=\emptyset$ and the torsor condition is trivially satisfied over U. One usually asks that a sheaf torsor be locally non-empty: the local sections give a local trivialisation.

Lemma

Let $\mathscr G$ be a sheaf of abelian groups on a space X. The group $\check{\mathsf H}^1(X,\mathscr G)$ classifies $\mathscr G$ -torsors.

Proof.

Let $\coprod_{\alpha} U_{\alpha} \twoheadrightarrow X$ be an open cover, and $(\gamma_{\alpha\beta})$ a Čech cocycle. For any open $V \subset X$, define

$$\mathcal{S}(V) := \{ (g_{\alpha} \in \mathcal{G}(V \times_{X} U_{\alpha})) \mid \gamma_{\alpha\beta} g_{\beta} = g_{\alpha} \}$$

with the obvious restriction maps and \mathscr{G} -action. Any coboundary gives a trivial torsor. Conversely, given a \mathscr{G} -torsor, its transition maps produce a class in $\check{\mathsf{H}}^1(X,\mathscr{G})$.

Contents - Section 2: Tangent spaces to deformation problems

- Functors of Artin rings
- Tangent spaces to deformation problems
 - Properties
 - Computations of tangent spaces
- Extending deformations

Flatness over the dual numbers

Given a k-scheme X and a k-algebra A, we write $X_A = X \otimes_k A = X \times_{\operatorname{Spec} k} \operatorname{Spec} A$.

Differential modules

An $\mathcal{O}_{X_{\mathbb{D}}}$ -module consists of:

- ightharpoonup a sheaf on $|X|_{Z_{ar}}$
- ightharpoonup with a structure of module over $\mathscr{O}_X \otimes_{\Bbbk} \mathbb{D} = \mathscr{O}_X[\varepsilon]/(\varepsilon^2)$

Modules over $\mathscr{O}_X[\varepsilon]/(\varepsilon^2)$ correspond to **differential** \mathscr{O}_X -modules: pairs $\mathscr{F}=(\mathscr{F}_0,\psi)$ where \mathscr{F}_0 is an \mathscr{O}_X -module and $\psi\colon \mathscr{F}_0\to \mathscr{F}_0$ such that $\psi\circ\psi=0$.

Flatness over the dual numbers

Given a k-scheme X and a k-algebra A, we write $X_A = X \otimes_k A = X \times_{\operatorname{Spec} k} \operatorname{Spec} A$.

Differential modules

An $\mathcal{O}_{X_{\mathbb{D}}}$ -module consists of:

- ightharpoonup a sheaf on $|X|_{Z_{ar}}$
- ightharpoonup with a structure of module over $\mathscr{O}_X \otimes_{\Bbbk} \mathbb{D} = \mathscr{O}_X[\varepsilon]/(\varepsilon^2)$

Modules over $\mathscr{O}_X[\varepsilon]/(\varepsilon^2)$ correspond to **differential** \mathscr{O}_X -modules: pairs $\mathscr{F}=(\mathscr{F}_0,\psi)$ where \mathscr{F}_0 is an \mathscr{O}_X -module and $\psi\colon \mathscr{F}_0\to \mathscr{F}_0$ such that $\psi\circ\psi=0$. Then $\mathscr{F}\otimes_{\mathscr{O}_X[\varepsilon]}\mathscr{O}_X=\mathscr{F}_0/\operatorname{im}(\psi)$.

Flatness over the dual numbers

Given a k-scheme X and a k-algebra A, we write $X_A = X \otimes_k A = X \times_{\operatorname{Spec} k} \operatorname{Spec} A$.

Differential modules

An $\mathcal{O}_{X_{\mathbb{D}}}$ -module consists of:

- ightharpoonup a sheaf on $|X|_{Zar}$
- \blacktriangleright with a structure of module over $\mathscr{O}_X \otimes_{\Bbbk} \mathbb{D} = \mathscr{O}_X[\varepsilon]/(\varepsilon^2)$

Modules over $\mathscr{O}_X[\epsilon]/(\epsilon^2)$ correspond to **differential** \mathscr{O}_X -modules: pairs $\mathscr{F}=(\mathscr{F}_0,\psi)$ where \mathscr{F}_0 is an \mathscr{O}_X -module and $\psi\colon \mathscr{F}_0\to \mathscr{F}_0$ such that $\psi\circ\psi=0$. Then $\mathscr{F}\otimes_{\mathscr{O}_X[\epsilon]}\mathscr{O}_X=\mathscr{F}_0/\operatorname{im}(\psi)$.

Flatness

Suppose $A woheadrightarrow \mathbb{k}$ is a principal extension. A quasicoherent \mathscr{O}_{X_A} -module \mathscr{F} is flat over A iff $\mathscr{F} \otimes \mathscr{O}_X = \mathscr{F}|_X$ is flat over \mathbb{k} and $\mathscr{F} \otimes \mathfrak{m}_A \mathscr{O}_{X_A} \xrightarrow{\cong} \mathfrak{m}_A \mathscr{F}$.

Remark: When $A = \mathbb{D} = \mathbb{k}[\varepsilon]/(\varepsilon^2)$, then $\varepsilon \mathcal{O}_{X_{\mathbb{D}}} \simeq \mathcal{O}_X$, so \mathscr{F}_0 splits (over \mathbb{k} , not \mathcal{O}_X).

Example 1: Deformations of a scheme

Let X_0 be a finite type \Bbbk -scheme. A deformation of X_0 over $A \in \mathfrak{Att}_{\Bbbk}$ is $X \to \operatorname{Spec}(A)$ flat and surjective with an isomorphism $\vartheta \colon X \otimes_A \Bbbk \xrightarrow{\cong} X_0$. A morphism $(X, \vartheta) \to (X', \vartheta')$ is $f \colon X \to X'$ such that $\vartheta' \circ (f \otimes_A \Bbbk) = \vartheta$.

▶ The functor of deformations of X_0 is $\mathscr{Def}_{X_0} \colon A \mapsto \{A\text{-deformations of } X_0\}/\simeq$. Functoriality is by taking pullbacks of families: if $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$, then $(\mathscr{Def}_{X_0}(f^{\sharp}))(X) = f^*X \coloneqq X \otimes_A B$.

Example 1: Deformations of a scheme

- Let X_0 be a finite type \Bbbk -scheme. A deformation of X_0 over $A \in \mathfrak{Art}_{\Bbbk}$ is $X \to \operatorname{Spec}(A)$ flat and surjective with an isomorphism $\vartheta \colon X \otimes_A \Bbbk \xrightarrow{\cong} X_0$. A morphism $(X, \vartheta) \to (X', \vartheta')$ is $f \colon X \to X'$ such that $\vartheta' \circ (f \otimes_A \Bbbk) = \vartheta$.
- ▶ An A-deformation $X \to \operatorname{Spec} A$ is **locally trivial** if there is a cover $\coprod_{\alpha} U_{\alpha} \twoheadrightarrow X_0$ such that $X|_{U_{\alpha}} \simeq U_{\alpha} \otimes_{\Bbbk} A$.
- ▶ The functor of deformations of X_0 is $\mathscr{Def}_{X_0} \colon A \mapsto \{A\text{-deformations of } X_0\}/\simeq$. Functoriality is by taking pullbacks of families: if $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$, then $(\mathscr{Def}_{X_0}(f^{\sharp}))(X) = f^*X \coloneqq X \otimes_A B$.
- ▶ Subfunctor $\mathscr{D}ef_{X_0}^{triv}$ of locally trivial deformations.

Lemma

Every deformation of a smooth affine k-scheme $X_0 = \operatorname{Spec} R_0$ is trivial.

Proof.

Let $X\in\mathscr{D}\!\mathit{ef}_{X_0}(\mathbb{D}).$ Note first that X is affine, $X=\operatorname{Spec} R,$ and smooth over \mathbb{D} (by flatness).

Lemma

Every deformation of a smooth affine k-scheme $X_0 = \operatorname{Spec} R_0$ is trivial.

Proof.

Let $X \in \mathscr{D}\!\mathit{ef}_{X_0}(\mathbb{D})$. Note first that X is affine, $X = \operatorname{Spec} R$, and smooth over \mathbb{D} (by flatness). Consider the commutative solid square below, where $R \to R_0$ comes from $R_0 \simeq R \coprod_{\mathbb{D}} \Bbbk$.

As $\mathbb{k} \to R$ is smooth, the dashed lift exists.

Lemma

Every deformation of a smooth affine k-scheme $X_0 = \operatorname{Spec} R_0$ is trivial.

Proof.

Let $X \in \mathscr{D}\!\mathit{ef}_{X_0}(\mathbb{D})$. Note first that X is affine, $X = \operatorname{Spec} R$, and smooth over \mathbb{D} (by flatness). Consider the commutative solid square below, where $R \to R_0$ comes from $R_0 \simeq R \coprod_{\mathbb{D}} \Bbbk$.

As $\mathbb{k} \to R$ is smooth, the dashed lift exists. It has an inverse from the bilinear $R_0 \times \mathbb{D} \to R$.

Lemma

Every deformation of a smooth affine k-scheme $X_0 = \operatorname{Spec} R_0$ is trivial.

Proof.

Let $X \in \mathscr{D}\!\mathit{ef}_{X_0}(\mathbb{D})$. Note first that X is affine, $X = \operatorname{Spec} R$, and smooth over \mathbb{D} (by flatness). Consider the commutative solid square below, where $R \to R_0$ comes from $R_0 \simeq R \coprod_{\mathbb{D}} \Bbbk$.

As $\mathbb{k} \to R$ is smooth, the dashed lift exists. It has an inverse from the bilinear $R_0 \times \mathbb{D} \to R$. Triviality over $A \in \mathfrak{Art}_{\mathbb{k}}$ is by induction on $\dim_{\mathbb{k}}(A)$: decompose in successive extensions.

Theorem

There is an isomorphism KS: $T_{\mathscr{D}\!\mathit{ef}_{X_0}^{triv}} \xrightarrow{\cong} \check{H}^1(X_0, \mathscr{T}_{X_0}).$

Theorem

There is an isomorphism KS: $T_{\mathscr{D}ef_{X_0}^{triv}} \xrightarrow{\simeq} \check{H}^1(X_0, \mathscr{T}_{X_0}).$

▶ If $X \to \operatorname{Spec}(\mathbb{D})$ is a locally trivial deformation, define $\varpi \colon X \to X_0$ using a trivialisation $X_0 = \bigcup_{\alpha} U_{\alpha}$: if $x \in X|_{U_{\alpha}}$, with $\vartheta_{\alpha} \colon X|_{U_{\alpha}} \xrightarrow{\simeq} U_{\alpha} \otimes_{\Bbbk} \mathbb{D}$, then $\varpi(x) := \operatorname{pr}_1(\vartheta_{\alpha}(x))$.

Theorem

There is an isomorphism KS: $T_{\mathscr{D}\!\mathit{ef}_{X_0}^{triv}} \xrightarrow{\cong} \check{H}^1(X_0, \mathscr{T}_{X_0}).$

- ▶ If $X \to \operatorname{Spec}(\mathbb{D})$ is a locally trivial deformation, define $\varpi \colon X \to X_0$ using a trivialisation $X_0 = \bigcup_{\alpha} U_{\alpha}$: if $x \in X|_{U_{\alpha}}$, with $\vartheta_{\alpha} \colon X|_{U_{\alpha}} \xrightarrow{\cong} U_{\alpha} \otimes_{\Bbbk} \mathbb{D}$, then $\varpi(x) := \operatorname{pr}_1(\vartheta_{\alpha}(x))$.
- Over $U_{\alpha\beta} = U_{\alpha} \times_X U_{\beta}$, the transition functions $\vartheta_{\beta} \circ \vartheta_{\alpha}^{-1} \colon U_{\alpha\beta} \otimes_{\Bbbk} \mathbb{D} \to U_{\alpha\beta} \otimes_{\Bbbk} \mathbb{D}$ are automorphisms of $U_{\alpha\beta} \otimes_{\Bbbk} \mathbb{D}$ fixing $U_{\alpha\beta}$. Such automorphisms correspond to elements of $\mathrm{Der}_{\Bbbk}(\mathcal{O}_{U_{\alpha\beta}}, \mathcal{O}_{U_{\alpha\beta}}) \simeq \Gamma(U_{\alpha\beta}, \mathcal{T}_{X_0})$.

Theorem

There is an isomorphism KS: $T_{\mathscr{D}\!\mathit{ef}_{X_0}^{triv}} \xrightarrow{\cong} \check{H}^1(X_0, \mathscr{T}_{X_0}).$

- ▶ If $X \to \operatorname{Spec}(\mathbb{D})$ is a locally trivial deformation, define $\varpi \colon X \to X_0$ using a trivialisation $X_0 = \bigcup_{\alpha} U_{\alpha}$: if $x \in X|_{U_{\alpha}}$, with $\vartheta_{\alpha} \colon X|_{U_{\alpha}} \xrightarrow{\cong} U_{\alpha} \otimes_{\Bbbk} \mathbb{D}$, then $\varpi(x) := \operatorname{pr}_1(\vartheta_{\alpha}(x))$.
- Over $U_{\alpha\beta} = U_{\alpha} \times_X U_{\beta}$, the transition functions $\vartheta_{\beta} \circ \vartheta_{\alpha}^{-1} \colon U_{\alpha\beta} \otimes_{\Bbbk} \mathbb{D} \to U_{\alpha\beta} \otimes_{\Bbbk} \mathbb{D}$ are automorphisms of $U_{\alpha\beta} \otimes_{\Bbbk} \mathbb{D}$ fixing $U_{\alpha\beta}$. Such automorphisms correspond to elements of $\mathrm{Der}_{\Bbbk}(\mathscr{O}_{U_{\alpha\beta}}, \mathscr{O}_{U_{\alpha\beta}}) \simeq \Gamma(U_{\alpha\beta}, \mathscr{T}_{X_0})$.

Indeed, in an affine chart $U_{\alpha\beta} = \operatorname{Spec} B$, an automorphism $B \otimes_{\Bbbk} \mathbb{D} \xrightarrow{\simeq} B \otimes_{\Bbbk} \mathbb{D}$ reducing to id_B modulo ε is of the form $b \mapsto b + \delta(b)\varepsilon$. By before δ must be a \mathbb{D} -derivation $B \otimes_{\Bbbk} \mathbb{D} \to B$, and $\operatorname{Der}_{\mathbb{D}}(B \otimes_{\Bbbk} \mathbb{D}, B) \simeq \operatorname{Der}_{\Bbbk}(B, B)$.

Tangent to deformations of a scheme

Proposition

If X_0 is of finite type over \mathbb{K} , then $T_{\mathscr{Def}_{X_0}} \simeq \mathsf{Ex}_{\mathbb{K}}(\mathscr{O}_{X_0}, \mathscr{O}_{X_0})$. In particular, if X_0 is reduced, $T_{\mathscr{Def}_{X_0}} \simeq \mathsf{Ext}^1_{\mathscr{O}_{X_0}}(\Omega^1_{X_0}, \mathscr{O}_X)$.

Proof.

Let X be a first-order deformation. Since \mathscr{O}_X is flat over \mathbb{k} it splits as a \mathbb{k} -linear extension $0 \to \varepsilon \mathscr{O}_X \rightarrowtail \mathscr{O}_X \twoheadrightarrow \mathscr{O}_{X_0} \to 0$, with $\varepsilon \mathscr{O}_X = \mathscr{O}_{X_0}$. Hence we get a \mathbb{k} -linear self-extension of \mathscr{O}_{X_0} .

Tangent to deformations of a scheme

Proposition

If X_0 is of finite type over \mathbb{k} , then $T_{\mathscr{Def}_{X_0}} \simeq \mathsf{Ex}_{\mathbb{k}}(\mathscr{O}_{X_0}, \mathscr{O}_{X_0})$. In particular, if X_0 is reduced, $T_{\mathscr{Def}_{X_0}} \simeq \mathsf{Ext}^1_{\mathscr{O}_{X_0}}(\Omega^1_{X_0}, \mathscr{O}_{X})$.

Proof.

- Let X be a first-order deformation. Since \mathscr{O}_X is flat over \mathbbm{k} it splits as a \mathbbm{k} -linear extension $0 \to \varepsilon \mathscr{O}_X \rightarrowtail \mathscr{O}_X \twoheadrightarrow \mathscr{O}_{X_0} \to 0$, with $\varepsilon \mathscr{O}_X = \mathscr{O}_{X_0}$. Hence we get a \mathbbm{k} -linear self-extension of \mathscr{O}_{X_0} .
- ▶ Given an extension $0 \to \mathcal{O}_{X_0} \xrightarrow{i} \mathcal{A} \xrightarrow{p} \mathcal{O}_{X_0} \to 0$, one can endow \mathcal{A} with a $\mathbb{D} \otimes_{\Bbbk} \mathcal{O}_{X_0}$ -algebra structure by having $i \circ p$ act as ε .

Example of the projective spaces

The Euler sequence $0 \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}} \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}}(1)^{\oplus n+1} \to \mathcal{T}_{\mathbb{P}^n_{\Bbbk}/\Bbbk} \to 0$ implies that $\mathsf{H}^1(\mathbb{P}^n_{\Bbbk}, \mathcal{T}_{\mathbb{P}^n_{\Bbbk}/\Bbbk}) = 0$ for $n \geq 1$, so \mathbb{P}^n_{\Bbbk} is rigid.

Example of the projective spaces

The Euler sequence $0 \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}} \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}}(1)^{\oplus n+1} \to \mathcal{F}_{\mathbb{P}^n_{\Bbbk}/\mathbb{k}} \to 0$ implies that $\mathsf{H}^1(\mathbb{P}^n_{\Bbbk}, \mathcal{F}_{\mathbb{P}^n_{\Bbbk}/\mathbb{k}}) = 0$ for $n \geq 1$, so \mathbb{P}^n_{\Bbbk} is rigid.

Computation for the affine line

Consider a first-order deformation of $\mathbb{P}^1_{\mathbb{k}}$ trivialised by the standard covering $\mathbb{P}^1_{\mathbb{k}} \simeq U_0 \coprod_{U_{01}} U_1$, where $U_0 = \mathbb{A}^1_{\mathbb{k}} = \operatorname{Spec} \mathbb{k}[x]$, $U_1 = \operatorname{Spec} \mathbb{k}[x^{-1}]$ and $U_{01} = \operatorname{Spec} \mathbb{k}[x, x^{-1}]$. The transition function is an automorphism of $\mathbb{k}[x, x^{-1}] \otimes_{\mathbb{k}} \mathbb{D}$ reducing to the identity, so a \mathbb{k} -derivation of $\mathbb{k}[x, x^{-1}]$.

Example of the projective spaces

The Euler sequence $0 \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}} \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}}(1)^{\oplus n+1} \to \mathcal{F}_{\mathbb{P}^n_{\Bbbk}/\Bbbk} \to 0$ implies that $\mathsf{H}^1(\mathbb{P}^n_{\Bbbk}, \mathcal{F}_{\mathbb{P}^n_{\Bbbk}/\Bbbk}) = 0$ for $n \geq 1$, so \mathbb{P}^n_{\Bbbk} is rigid.

Computation for the affine line

Consider a first-order deformation of \mathbb{P}^1_{\Bbbk} trivialised by the standard covering $\mathbb{P}^1_{\Bbbk} \simeq U_0 \coprod_{U_{01}} U_1$, where $U_0 = \mathbb{A}^1_{\Bbbk} = \operatorname{Spec} \mathbb{k}[x]$, $U_1 = \operatorname{Spec} \mathbb{k}[x^{-1}]$ and $U_{01} = \operatorname{Spec} \mathbb{k}[x, x^{-1}]$. The transition function is an automorphism of $\mathbb{k}[x, x^{-1}] \otimes_{\mathbb{k}} \mathbb{D}$ reducing to the identity, so a \mathbb{k} -derivation of $\mathbb{k}[x, x^{-1}]$.

A derivation δ : $\mathbb{k}[x,x^{-1}] \to \mathbb{k}[x,x^{-1}]$ satisfies $0 = \delta(1) = \delta(xx^{-1}) = x\delta(x^{-1}) + x^{-1}\delta(x)$ so $\delta(x^{-1}) = -x^{-2}\delta(x)$. It is determined by its action on x, which must be \mathbb{k} -linear.

Example of the projective spaces

The Euler sequence $0 \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}} \to \mathcal{O}_{\mathbb{P}^n_{\Bbbk}}(1)^{\oplus n+1} \to \mathcal{F}_{\mathbb{P}^n_{\Bbbk}/\Bbbk} \to 0$ implies that $\mathsf{H}^1(\mathbb{P}^n_{\Bbbk}, \mathcal{F}_{\mathbb{P}^n_{\Bbbk}/\Bbbk}) = 0$ for $n \geq 1$, so \mathbb{P}^n_{\Bbbk} is rigid.

Computation for the affine line

Consider a first-order deformation of \mathbb{P}^1_{\Bbbk} trivialised by the standard covering $\mathbb{P}^1_{\Bbbk} \simeq U_0 \coprod_{U_{01}} U_1$, where $U_0 = \mathbb{A}^1_{\Bbbk} = \operatorname{Spec} \mathbb{k}[x]$, $U_1 = \operatorname{Spec} \mathbb{k}[x^{-1}]$ and $U_{01} = \operatorname{Spec} \mathbb{k}[x, x^{-1}]$. The transition function is an automorphism of $\mathbb{k}[x, x^{-1}] \otimes_{\mathbb{k}} \mathbb{D}$ reducing to the identity, so a \mathbb{k} -derivation of $\mathbb{k}[x, x^{-1}]$.

- A derivation $\delta \colon \mathbb{k}[x,x^{-1}] \to \mathbb{k}[x,x^{-1}]$ satisfies $0 = \delta(1) = \delta(xx^{-1}) = x\delta(x^{-1}) + x^{-1}\delta(x)$ so $\delta(x^{-1}) = -x^{-2}\delta(x)$. It is determined by its action on x, which must be \mathbb{k} -linear.
- ▶ Let δ_0 : $\mathbb{k}[x] \to \mathbb{k}[x]$ be the derivation defined by $x \mapsto \delta(x)$ and δ_1 : $\mathbb{k}[x^{-1}] \to \mathbb{k}[x^{-1}]$ defined by $\delta_1(x^{-1}) = -\delta(x^{-1})$. Then $\delta_0 \otimes_{\mathbb{k}} \mathbb{k}[x^{-1}] \delta_1 \otimes_{\mathbb{k}} \mathbb{k}[x]$ gives back δ .

Hence the Čech cocycle defined by δ is a coboundary, and defines a trivial deformation.

Let \mathcal{F}_0 be a quasicoherent sheaf on X_0 , flat over k.

- ▶ An A-deformation of \mathscr{F}_0 is a quasicoherent sheaf \mathscr{F} on the trivial deformation $X_A := X_0 \times_{\operatorname{Spec} \Bbbk} \operatorname{Spec} A$, flat over A, with an isomorphism $\mathscr{F}|_{X_0} = \mathscr{F} \otimes_A \Bbbk \xrightarrow{\simeq} \mathscr{F}_0$.
- ▶ The functor of deformations of \mathscr{F}_0 is $\mathscr{D}ef_{\mathscr{F}_0}$: $A \mapsto \{A\text{-deformations of }\mathscr{F}_0\}/\simeq$. If $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ and $\mathscr{F} \in \mathscr{D}ef_{\mathscr{F}_0}(A)$, then $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) := \mathscr{F} \otimes_A B$, that is $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) = p_f^*\mathscr{F}$ where $p_f \colon X_B \to X_A$.

Let \mathcal{F}_0 be a quasicoherent sheaf on X_0 , flat over k.

- An A-deformation of \mathscr{F}_0 is a quasicoherent sheaf \mathscr{F} on the trivial deformation $X_A := X_0 \times_{\operatorname{Spec} \Bbbk} \operatorname{Spec} A$, flat over A, with an isomorphism $\mathscr{F}|_{X_0} = \mathscr{F} \otimes_A \Bbbk \xrightarrow{\simeq} \mathscr{F}_0$.
- ▶ The functor of deformations of \mathscr{F}_0 is $\mathscr{D}ef_{\mathscr{F}_0}$: $A \mapsto \{A\text{-deformations of }\mathscr{F}_0\}/\simeq$. If $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ and $\mathscr{F} \in \mathscr{D}ef_{\mathscr{F}_0}(A)$, then $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) := \mathscr{F} \otimes_A B$, that is $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) = p_f^*\mathscr{F}$ where $p_f \colon X_B \to X_A$.

Restrictions and inductions of sheaves

The principal extension $0 \to \Bbbk \hookrightarrow \mathbb{D} \twoheadrightarrow \Bbbk \to 0$ induce maps $p: X_{\mathbb{D}} \to X_0$ and $i: X_0 \to X_{\mathbb{D}}$.

Let \mathcal{F}_0 be a quasicoherent sheaf on X_0 , flat over k.

- An A-deformation of \mathscr{F}_0 is a quasicoherent sheaf \mathscr{F} on the trivial deformation $X_A := X_0 \times_{\operatorname{Spec} \Bbbk} \operatorname{Spec} A$, flat over A, with an isomorphism $\mathscr{F}|_{X_0} = \mathscr{F} \otimes_A \Bbbk \xrightarrow{\simeq} \mathscr{F}_0$.
- ▶ The functor of deformations of \mathscr{F}_0 is $\mathscr{D}ef_{\mathscr{F}_0}$: $A \mapsto \{A\text{-deformations of }\mathscr{F}_0\}/\simeq$. If $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ and $\mathscr{F} \in \mathscr{D}ef_{\mathscr{F}_0}(A)$, then $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) := \mathscr{F} \otimes_A B$, that is $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) = p_f^*\mathscr{F}$ where $p_f \colon X_B \to X_A$.

Restrictions and inductions of sheaves

The principal extension $0 \to \Bbbk \hookrightarrow \mathbb{D} \twoheadrightarrow \Bbbk \to 0$ induce maps $p \colon X_{\mathbb{D}} \to X_0$ and $i \colon X_0 \to X_{\mathbb{D}}$.

lacktriangledown For \mathscr{F} an $\mathscr{O}_{X_{\mathbb{D}}}$ -module: $i^*\mathscr{F}=\mathscr{F}|_{X_0}=\mathscr{F}/(\varepsilon)$, while $p_*\mathscr{F}$ is \mathscr{F} seen as an \mathscr{O}_X -module.

Let \mathcal{F}_0 be a quasicoherent sheaf on X_0 , flat over k.

- ▶ An A-deformation of \mathscr{F}_0 is a quasicoherent sheaf \mathscr{F} on the trivial deformation $X_A := X_0 \times_{\operatorname{Spec} \Bbbk} \operatorname{Spec} A$, flat over A, with an isomorphism $\mathscr{F}|_{X_0} = \mathscr{F} \otimes_A \Bbbk \xrightarrow{\simeq} \mathscr{F}_0$.
- ▶ The functor of deformations of \mathscr{F}_0 is $\mathscr{D}ef_{\mathscr{F}_0}$: $A \mapsto \{A\text{-deformations of }\mathscr{F}_0\}/\simeq$. If $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ and $\mathscr{F} \in \mathscr{D}ef_{\mathscr{F}_0}(A)$, then $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) := \mathscr{F} \otimes_A B$, that is $(\mathscr{D}ef_{\mathscr{F}_0}f)(\mathscr{F}) = p_f^*\mathscr{F}$ where $p_f \colon X_B \to X_A$.

Restrictions and inductions of sheaves

The principal extension $0 \to \Bbbk \hookrightarrow \mathbb{D} \twoheadrightarrow \Bbbk \to 0$ induce maps $p: X_{\mathbb{D}} \to X_0$ and $i: X_0 \to X_{\mathbb{D}}$.

- lackbox For $\mathscr F$ an $\mathscr O_{X_{\mathbb D}}$ -module: $i^*\mathscr F=\mathscr F|_{X_0}=\mathscr F/(\varepsilon)$, while $p_*\mathscr F$ is $\mathscr F$ seen as an $\mathscr O_X$ -module.
- ► For \mathscr{F}_0 an \mathscr{O}_{X_0} -module: $i_*\mathscr{F}_0$ is \mathscr{F}_0 seen as an $\mathscr{O}_X[\varepsilon]/(\varepsilon^2)$ -module with trivial ε -action, while $p^*\mathscr{F}_0 = \mathscr{F}_0 \otimes \Bbbk[\varepsilon]/(\varepsilon^2)$. The differential \mathscr{O}_{X_0} -module is $(\mathscr{F}_0 \oplus \mathscr{F}_0, (\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix}))$.

Theorem

If \mathscr{F}_0 is locally free, $T_{\mathscr{D}ef_{\mathscr{F}_0}}\simeq \check{H}^1(X_0,\mathscr{H}om(\mathscr{F}_0,\mathscr{F}_0)).$

 $p_*\mathcal{F}$ (where $p: X_{\mathbb{D}} \to X_0$) is a torsor under $\mathscr{H}om(\mathcal{F}_0, \mathcal{F}_0)$: we will show that the group of transition functions on $U_{\alpha\beta}$ is $\Gamma(U_{\alpha\beta}, \mathscr{H}om(\mathcal{F}_0|_{U_{\alpha\beta}}, \mathcal{F}_0|_{U_{\alpha\beta}}))$.

Theorem

If \mathscr{F}_0 is locally free, $T_{\mathscr{D}ef_{\mathscr{F}_0}}\simeq \check{H}^1(X_0,\mathscr{H}om(\mathscr{F}_0,\mathscr{F}_0)).$

 $p_*\mathscr{F}$ (where $p: X_{\mathbb{D}} \to X_0$) is a torsor under $\mathscr{H}om(\mathscr{F}_0, \mathscr{F}_0)$: we will show that the group of transition functions on $U_{\alpha\beta}$ is $\Gamma(U_{\alpha\beta}, \mathscr{H}om(\mathscr{F}_0|_{U_{\alpha\beta}}, \mathscr{F}_0|_{U_{\alpha\beta}}))$. Assume $U_{\alpha\beta} = \operatorname{Spec} R$ and $\mathscr{F}|_{U_{\alpha\beta}} = \widetilde{M}$, $\mathscr{F}_0|_{U_{\alpha\beta}} = \widetilde{M}_0$. We will use the splitting $M = \operatorname{im}(\psi) \oplus M/\operatorname{im}(\psi) \simeq M_0 \oplus M_0$.

Theorem

If \mathscr{F}_0 is locally free, $T_{\mathscr{D}e\!f_{\mathscr{F}_0}}\simeq \check{H}^1(X_0,\mathscr{H}om(\mathscr{F}_0,\mathscr{F}_0)).$

 $p_*\mathcal{F}$ (where $p\colon X_{\mathbb{D}}\to X_0$) is a torsor under $\mathscr{H}om(\mathcal{F}_0,\mathcal{F}_0)$: we will show that the group of transition functions on $U_{\alpha\beta}$ is $\Gamma(U_{\alpha\beta},\mathscr{H}om(\mathcal{F}_0|_{U_{\alpha\beta}},\mathcal{F}_0|_{U_{\alpha\beta}}))$. Assume $U_{\alpha\beta}=\operatorname{Spec} R$ and $\mathscr{F}|_{U_{\alpha\beta}}=\widetilde{M}$, $\mathscr{F}_0|_{U_{\alpha\beta}}=\widetilde{M}_0$. We will use the splitting $M=\operatorname{im}(\psi)\oplus M/\operatorname{im}(\psi)\simeq M_0\oplus M_0$.

▶ Given $f: M_0 \to M_0$, we obtain $(x, y) \mapsto (x, y + f(x))$.

Theorem

If \mathscr{F}_0 is locally free, $T_{\mathscr{D}\!e\!f_{\mathscr{F}_0}}\simeq \check{H}^1(X_0,\mathscr{H}\!\mathit{om}(\mathscr{F}_0,\mathscr{F}_0)).$

 $p_*\mathcal{F}$ (where $p: X_{\mathbb{D}} \to X_0$) is a torsor under $\mathcal{H}om(\mathcal{F}_0, \mathcal{F}_0)$: we will show that the group of transition functions on $U_{\alpha\beta}$ is $\Gamma(U_{\alpha\beta}, \mathcal{H}om(\mathcal{F}_0|_{U_{\alpha\beta}}, \mathcal{F}_0|_{U_{\alpha\beta}}))$. Assume $U_{\alpha\beta} = \operatorname{Spec} R$ and $\mathcal{F}|_{U_{\alpha\beta}} = \widetilde{M}$, $\mathcal{F}_0|_{U_{\alpha\beta}} = \widetilde{M}_0$. We will use the splitting $M = \operatorname{im}(\psi) \oplus M/\operatorname{im}(\psi) \simeq M_0 \oplus M_0$.

- ▶ Given $f: M_0 \to M_0$, we obtain $(x, y) \mapsto (x, y + f(x))$.
- Let $\varphi \colon M \xrightarrow{\simeq} M$ restricting to id_{M_0} , that is $\varphi(x,y) = (x,\delta(x,y))$. The map δ is additive in (x,y) so $\delta(x,y) = \delta(0,y) + \delta(x,0)$.

Theorem

If \mathscr{F}_0 is locally free, $T_{\mathscr{D}\!e\!f_{\mathscr{F}_0}}\simeq \check{H}^1(X_0,\mathscr{H}\!\mathit{om}(\mathscr{F}_0,\mathscr{F}_0)).$

 $p_*\mathscr{F}$ (where $p: X_{\mathbb{D}} \to X_0$) is a torsor under $\mathscr{H}om(\mathscr{F}_0, \mathscr{F}_0)$: we will show that the group of transition functions on $U_{\alpha\beta}$ is $\Gamma(U_{\alpha\beta}, \mathscr{H}om(\mathscr{F}_0|_{U_{\alpha\beta}}, \mathscr{F}_0|_{U_{\alpha\beta}}))$. Assume $U_{\alpha\beta} = \operatorname{Spec} R$ and $\mathscr{F}|_{U_{\alpha\beta}} = \widetilde{M}$, $\mathscr{F}_0|_{U_{\alpha\beta}} = \widetilde{M}_0$. We will use the splitting $M = \operatorname{im}(\psi) \oplus M/\operatorname{im}(\psi) \simeq M_0 \oplus M_0$.

- ▶ Given $f: M_0 \to M_0$, we obtain $(x, y) \mapsto (x, y + f(x))$.
- Let $\varphi \colon M \xrightarrow{\simeq} M$ restricting to id_{M_0} , that is $\varphi(x,y) = (x,\delta(x,y))$. The map δ is additive in (x,y) so $\delta(x,y) = \delta(0,y) + \delta(x,0)$. We set $f(x) = \delta(x,0)$ and $u(y) = \delta(0,y)$; we have $f \in \mathrm{End}(M_0)$ and $u \in \mathrm{Aut}(M_0)$.

Theorem

If \mathscr{F}_0 is locally free, $T_{\mathscr{D}\!e\!f_{\mathscr{F}_0}}\simeq \check{H}^1(X_0,\mathscr{H}\!\mathit{om}(\mathscr{F}_0,\mathscr{F}_0)).$

 $p_*\mathscr{F}$ (where $p\colon X_{\mathbb{D}}\to X_0$) is a torsor under $\mathscr{H}om(\mathscr{F}_0,\mathscr{F}_0)$: we will show that the group of transition functions on $U_{\alpha\beta}$ is $\Gamma(U_{\alpha\beta},\mathscr{H}om(\mathscr{F}_0|_{U_{\alpha\beta}},\mathscr{F}_0|_{U_{\alpha\beta}}))$. Assume $U_{\alpha\beta}=\operatorname{Spec} R$ and $\mathscr{F}|_{U_{\alpha\beta}}=\widetilde{M}$, $\mathscr{F}_0|_{U_{\alpha\beta}}=\widetilde{M}_0$. We will use the splitting $M=\operatorname{im}(\psi)\oplus M/\operatorname{im}(\psi)\simeq M_0\oplus M_0$.

- ▶ Given $f: M_0 \to M_0$, we obtain $(x, y) \mapsto (x, y + f(x))$.
- Let $\varphi: M \xrightarrow{\simeq} M$ restricting to id_{M_0} , that is $\varphi(x,y) = (x,\delta(x,y))$. The map δ is additive in (x,y) so $\delta(x,y) = \delta(0,y) + \delta(x,0)$. We set $f(x) = \delta(x,0)$ and $u(y) = \delta(0,y)$; we have $f \in \mathrm{End}(M_0)$ and $u \in \mathrm{Aut}(M_0)$.
- ▶ We must show that u = id. Note that $y \in \text{im}(\psi)$, so $y = \psi(x, 0)$. By \mathbb{D} -linearity of the transition functions, $(0, u(y)) := \varphi(\psi(x, 0)) = \psi(\varphi(x, 0))$

Theorem

If \mathscr{F}_0 is locally free, $T_{\mathscr{D}\!e\!f_{\mathscr{F}_0}}\simeq \check{H}^1(X_0,\mathscr{H}\!\mathit{om}(\mathscr{F}_0,\mathscr{F}_0)).$

 $p_*\mathscr{F}$ (where $p\colon X_{\mathbb{D}}\to X_0$) is a torsor under $\mathscr{H}om(\mathscr{F}_0,\mathscr{F}_0)$: we will show that the group of transition functions on $U_{\alpha\beta}$ is $\Gamma(U_{\alpha\beta},\mathscr{H}om(\mathscr{F}_0|_{U_{\alpha\beta}},\mathscr{F}_0|_{U_{\alpha\beta}}))$. Assume $U_{\alpha\beta}=\operatorname{Spec} R$ and $\mathscr{F}|_{U_{\alpha\beta}}=\widetilde{M}$, $\mathscr{F}_0|_{U_{\alpha\beta}}=\widetilde{M}_0$. We will use the splitting $M=\operatorname{im}(\psi)\oplus M/\operatorname{im}(\psi)\simeq M_0\oplus M_0$.

- ▶ Given $f: M_0 \to M_0$, we obtain $(x, y) \mapsto (x, y + f(x))$.
- Let $\varphi: M \xrightarrow{\simeq} M$ restricting to id_{M_0} , that is $\varphi(x,y) = (x,\delta(x,y))$. The map δ is additive in (x,y) so $\delta(x,y) = \delta(0,y) + \delta(x,0)$. We set $f(x) = \delta(x,0)$ and $u(y) = \delta(0,y)$; we have $f \in \mathrm{End}(M_0)$ and $u \in \mathrm{Aut}(M_0)$.
- We must show that $u=\mathrm{id}$. Note that $y\in\mathrm{im}(\psi)$, so $y=\psi(x,0)$. By $\mathbb D$ -linearity of the transition functions, $(0,u(y))\coloneqq\varphi(\psi(x,0))=\psi(\varphi(x,0))=\psi(x,\delta(x,0))=\psi(x,0)=y$.

Tangent to deformations of a quasicoherent sheaf

Proposition

For any \mathscr{F}_0 quasicoherent, $T_{\mathscr{D}\!e\!f_{\mathscr{F}_0}}\simeq\operatorname{Ext}^1_{\mathscr{O}_{X_0}}(\mathscr{F}_0,\mathscr{F}_0).$

Tangent to deformations of a quasicoherent sheaf

Proposition

For any \mathscr{F}_0 quasicoherent, $T_{\mathscr{D}ef_{\mathscr{F}_0}} \simeq \operatorname{Ext}^1_{\mathscr{O}_{X_0}}(\mathscr{F}_0,\mathscr{F}_0)$.

▶ For \mathscr{F} on $X_{\mathbb{D}}$, tensoring with $0 \to \mathbb{k} \xrightarrow{\cdot \varepsilon} \mathbb{D} \to \mathbb{k} \to 0$ gives $0 \to \mathscr{F}_0 \to \mathscr{F} \to \mathscr{F}_0 \to 0$, which is exact iff \mathscr{F} is flat over \mathbb{D} . Using $X_{\mathbb{D}} \to X_0$, the sequence becomes one of \mathscr{O}_{X_0} -modules, so an element of $\operatorname{Ext}^1_{\mathscr{O}_{X_0}}(\mathscr{F}_0,\mathscr{F}_0)$.

Tangent to deformations of a quasicoherent sheaf

Proposition

For any \mathscr{F}_0 quasicoherent, $T_{\mathscr{D}ef_{\mathscr{F}_0}} \simeq \operatorname{Ext}^1_{\mathscr{O}_{X_0}}(\mathscr{F}_0,\mathscr{F}_0)$.

- ▶ For \mathscr{F} on $X_{\mathbb{D}}$, tensoring with $0 \to \mathbb{k} \xrightarrow{\cdot \varepsilon} \mathbb{D} \to \mathbb{k} \to 0$ gives $0 \to \mathscr{F}_0 \to \mathscr{F} \to \mathscr{F}_0 \to 0$, which is exact iff \mathscr{F} is flat over \mathbb{D} . Using $X_{\mathbb{D}} \to X_0$, the sequence becomes one of \mathscr{O}_{X_0} -modules, so an element of $\mathsf{Ext}^1_{\mathscr{O}_{X_0}}(\mathscr{F}_0,\mathscr{F}_0)$.
- ▶ Given an \mathcal{O}_{X_0} -extension of \mathcal{F}_0 by \mathcal{F}_0 , there is again a unique $\mathcal{O}_{X_{\mathbb{D}}}$ -module structure restricting to \mathcal{F}_0 : for $0 \to \mathcal{F}_0 \xrightarrow{i} \mathcal{E} \xrightarrow{p} \mathcal{F}_0 \to 0$ the nilpotent endomorphism is $i \circ p \colon \mathcal{F} \to \mathcal{F}$.

Section 3: Extending deformations

- Functors of Artin rings
 - Artin rings as infinitesimally thickened points
 - From formal schemes to functors of Artin rings
- Tangent spaces to deformation problems
 - Properties
 - Computations of tangent spaces
- Extending deformations
 - Representability and atlases
 - Obstructions

Contents - Section 3: Extending deformations

- Functors of Artin rings
- 2 Tangent spaces to deformation problems
- Extending deformations
 - Representability and atlases
 - Obstructions

Formal smoothness

A morphism of schemes $\varphi: X \to Y$ is formally smooth when it has the right lifting property against square-zero immersions, *i.e.* if for any square-zero immersion

 $\iota \colon \operatorname{\mathsf{Spec}}(A/I) \hookrightarrow \operatorname{\mathsf{Spec}} A$

Formal smoothness

A morphism of schemes $\varphi\colon X\to Y$ is formally smooth when it has the right lifting property against square-zero immersions, *i.e.* if for any square-zero immersion $\iota\colon \operatorname{Spec}(A/I)\hookrightarrow \operatorname{Spec} A$, the map

$$\begin{array}{c} \mathsf{hom}(\mathsf{Spec}\,A,X) \to \mathsf{hom}(\mathsf{Spec}\,A/I,X) \underset{\mathsf{hom}(\mathsf{Spec}\,A/I,Y)}{\times} \mathsf{hom}(\mathsf{Spec}\,A,Y) & \mathsf{Spec}(A/I) \xrightarrow{\ \ \, \forall \ \ } X \\ \psi \mapsto (\psi \circ \iota, \phi \circ \psi) & & \downarrow \downarrow \varphi \\ \mathsf{Spec}\,A \xrightarrow{\ \ \, \forall \ \ } Y \end{array}$$

is surjective.

Formal smoothness

A morphism of schemes $\varphi\colon X\to Y$ is formally smooth when it has the right lifting property against square-zero immersions, *i.e.* if for any square-zero immersion $\iota\colon \operatorname{Spec}(A/I)\hookrightarrow \operatorname{Spec} A$, the map

$$\begin{array}{c} \mathsf{hom}(\mathsf{Spec}\,A,X) \to \mathsf{hom}(\mathsf{Spec}\,A/I,X) \underset{\mathsf{hom}(\mathsf{Spec}\,A/I,Y)}{\times} \mathsf{hom}(\mathsf{Spec}\,A,Y) & \mathsf{Spec}(A/I) \xrightarrow{\ \ \, \forall \ \ } X \\ \psi \mapsto (\psi \circ \iota, \phi \circ \psi) & & \downarrow \varphi \\ \mathsf{Spec}\,A \xrightarrow{\ \ \, \forall \ \ } Y \end{array}$$

is surjective.

Formally smooth morphism

A morphism of pre-deformation functors $\varphi \colon \mathscr{F} \to \mathscr{G}$ is **formally smooth** if for every small surjection $A \twoheadrightarrow B$, the map $\mathscr{F}(A) \to \mathscr{F}(B) \times_{\mathscr{G}(B)} \mathscr{G}(A)$ is surjective.

 \mathscr{F} is formally smooth if $\mathscr{F} \to *$ is so, *i.e.* $\mathscr{F}(A) \twoheadrightarrow \mathscr{F}(B)$ for every $A \twoheadrightarrow B$.

Versal families

A pre-deformation functor \mathscr{F} is pro-representable iff there is an isomorphism $\mathscr{R}_R \to \mathscr{F}$, which by Yoneda corresponds to a formal family $\widehat{\xi} \in \widehat{\mathscr{F}}(R)$. Such a family is called **universal**.

Versal families

A pre-deformation functor \mathscr{F} is pro-representable iff there is an isomorphism $\mathscr{R}_R \to \mathscr{F}$, which by Yoneda corresponds to a formal family $\widehat{\xi} \in \widehat{\mathscr{F}}(R)$. Such a family is called **universal**.

Atlases for deformation problems

A **semi-universal family** for \mathscr{F} is a formal element $\widehat{\xi} \in \widehat{\mathscr{F}}(R)$ such that the corresponding $\mathscr{Z}^R \to \mathscr{F}$ is smooth and its differential is an isomorphism $T_{R/\Bbbk} \stackrel{\cong}{\to} T_{\mathscr{F}}$.

Remark: If $\phi: \mathscr{E} \to \mathscr{F}$ is smooth, it is surjective (thus so is its differential).

Versal families

A pre-deformation functor \mathscr{F} is pro-representable iff there is an isomorphism $\mathscr{R}_R \to \mathscr{F}$, which by Yoneda corresponds to a formal family $\widehat{\xi} \in \widehat{\mathscr{F}}(R)$. Such a family is called **universal**.

Atlases for deformation problems

A semi-universal family for $\mathscr F$ is a formal element $\widehat{\xi} \in \widehat{\mathscr F}(R)$ such that the corresponding $\mathscr R^R \to \mathscr F$ is smooth and its differential is an isomorphism $T_{R/\Bbbk} \xrightarrow{\cong} T_{\mathscr F}$.

Remark: If $\phi \colon \mathscr{E} \to \mathscr{F}$ is smooth, it is surjective (thus so is its differential).

Proposition

If $(R,\widehat{\xi})$ and $(S,\widehat{\psi})$ are two semi-universal families, there is an isomorphism $(R,\widehat{\xi})\simeq (S,\widehat{\psi})$ inducing a uniquely determined $T_{R/\Bbbk}\simeq T_{S/\Bbbk}$.

If $(R, \hat{\xi})$ and $(S, \hat{\psi})$ are universal, the isomorphism between them is unique.

Schlessinger's criterion

Definition (deformation functor)

A pre-deformation functor \mathcal{F} is a **deformation functor** if

- 1. for every small surjection $p \colon \widetilde{A} \twoheadrightarrow A$ and every $f \colon B \to A$, the map $\Upsilon_{p,f} \colon \mathscr{F}(\widetilde{A} \times_A B) \to \mathscr{F}(\widetilde{A}) \times_{\mathscr{F}(A)} \mathscr{F}(B)$ is surjective
- 2. \mathscr{F} admits a differential calculus, *i.e.* $\Upsilon_{p,f}$ is bijective when $p: \mathbb{D} \to \mathbb{k}$.
- \mathscr{F} is **homogeneous** if the maps $\Upsilon_{p,f}$ are always bijective.

Schlessinger's criterion

Definition (deformation functor)

A pre-deformation functor \mathcal{F} is a **deformation functor** if

- 1. for every small surjection $p \colon \widetilde{A} \twoheadrightarrow A$ and every $f \colon B \to A$, the map $\Upsilon_{p,f} \colon \mathscr{F}(\widetilde{A} \times_A B) \to \mathscr{F}(\widetilde{A}) \times_{\mathscr{F}(A)} \mathscr{F}(B)$ is surjective
- 2. \mathscr{F} admits a differential calculus, *i.e.* $\Upsilon_{p,f}$ is bijective when $p: \mathbb{D} \to \mathbb{k}$.
- \mathscr{F} is **homogeneous** if the maps $\Upsilon_{p,f}$ are always bijective.

Theorem (Schlessinger)

- A pre-deformation functor \mathscr{F} admits a semi-universal formal family if and only if it is a deformation functor with finite-dimensional tangent space.
- ▶ It has a universal formal family iff it is in addition homogeneous.

Schlessinger's criterion

Definition (deformation functor)

A pre-deformation functor ${\mathscr F}$ is a **deformation functor** if

- 1. for every small surjection $p \colon \widetilde{A} \twoheadrightarrow A$ and every $f \colon B \to A$, the map $\Upsilon_{p,f} \colon \mathscr{F}(\widetilde{A} \times_A B) \to \mathscr{F}(\widetilde{A}) \times_{\mathscr{F}(A)} \mathscr{F}(B)$ is surjective
- 2. \mathscr{F} admits a differential calculus, *i.e.* $\Upsilon_{p,f}$ is bijective when $p: \mathbb{D} \to \mathbb{k}$.
- \mathscr{F} is **homogeneous** if the maps $\Upsilon_{p,f}$ are always bijective.

Theorem (Schlessinger)

- A pre-deformation functor \mathscr{F} admits a semi-universal formal family if and only if it is a deformation functor with finite-dimensional tangent space.
- ▶ It has a universal formal family iff it is in addition homogeneous.

Remark: For every $\mathbb{k} \hookrightarrow \widetilde{A} \twoheadrightarrow A$, $T_{\mathscr{F}}$ acts transitively on the fibres of $\mathscr{F}(\widetilde{A}) \to \mathscr{F}(A)$.

Contents - Section 3: Extending deformations

- Functors of Artin rings
- 2 Tangent spaces to deformation problems
- Extending deformations
 - Representability and atlases
 - Obstructions

Extensions and obstruction calculus

Definition (obstruction spaces)

An **obstruction theory** for a pre-deformation functor \mathscr{F} is a \Bbbk -vector space υ with, for every small extension $(E)\colon 0\to I\hookrightarrow \widetilde{A}\twoheadrightarrow A\to 0$ a map $o_{(E)}\colon \mathscr{F}(A)\to \upsilon\otimes_{\Bbbk} I$ which is functorial in morphisms of extensions, and such that when $A=\Bbbk$ (so $\mathscr{F}(A)=*$), $o_{(E)}(*)=0$.

We get for every $A \in \mathfrak{Art}_{\mathbb{k}}$, $\xi \in \mathscr{F}(A)$, and every \mathbb{k} -vector space I a \mathbb{k} -linear map $o_{(-)}(\xi) \colon \mathsf{Ex}_{\mathbb{k}}(A,I) \to \mathfrak{v} \otimes I$.

Extensions and obstruction calculus

Definition (obstruction spaces)

An **obstruction theory** for a pre-deformation functor \mathscr{F} is a \Bbbk -vector space υ with, for every small extension $(E)\colon 0\to I\hookrightarrow \widetilde{A}\twoheadrightarrow A\to 0$ a map $o_{(E)}\colon \mathscr{F}(A)\to \upsilon\otimes_{\Bbbk} I$ which is functorial in morphisms of extensions, and such that when $A=\Bbbk$ (so $\mathscr{F}(A)=*$), $o_{(E)}(*)=0$.

We get for every $A \in \mathfrak{Art}_{\mathbb{k}}$, $\xi \in \mathscr{F}(A)$, and every \mathbb{k} -vector space I a \mathbb{k} -linear map $o_{(-)}(\xi) \colon \mathsf{Ex}_{\mathbb{k}}(A,I) \to \mathfrak{v} \otimes I$.

Lemma

If $(\upsilon,(o_{(E)})_{(E)})$ is an obstruction theory for \mathscr{F} , then whenever an element $\xi\in\mathscr{F}(A)$ lifts along a small extension $(E)\colon\widetilde{A}\twoheadrightarrow A$ to $\widetilde{\xi}\in\mathscr{F}(\widetilde{A})$ we have $o_{(E)}(\xi)=0$.

An obstruction theory is called **complete** if vanishing of the obstruction $o_{(E)}(\xi)$ is equivalent to the existence of a lift along (E).

Universal obstruction theories

If \mathscr{F},\mathscr{G} are pre-deformation functors endowed with complete obstruction theories $(v^{\mathscr{F}},(o_E^{\mathscr{F}}))$ and $(v^{\mathscr{F}},(o_E^{\mathscr{F}}))$, an **obstruction map** for $\phi\colon\mathscr{F}\to\mathscr{G}$ is a linear map $o^{\phi}\colon v^{\mathscr{F}}\to v^{\mathscr{F}}$ such that for every $\xi\in\mathscr{F}(A)$ and every I, the following triangle commutes:

Theorem (Fantechi-Manetti)

Every deformation functor admits an initial obstruction theory, which is furthermore complete.

The universal obstruction theory for \mathscr{R}^R is $H^1(T^{ullet}_{R/\Bbbk,\mathfrak{m}_R}) \coloneqq \mathsf{Ex}_\Bbbk(R,\Bbbk)$.

Obstructions and smoothness

Proposition

Let $\phi\colon \mathscr{F} \to \mathscr{G}$ be a morphism of deformation functors. If ϕ has an injective obstruction map and $d\phi$ is surjective then ϕ is smooth.

 \Rightarrow A deformation functor is smooth if and only if it has 0 as obstruction theory.

For a scheme X_0 of finite type over \Bbbk , $H^2(X_0, \mathcal{T}_{X_0})$ is an obstruction space for $\mathscr{Def}_{X_0}^{triv}$. Hence if X_0 is smooth and $H^2(X_0, \mathcal{T}_{X_0}) = 0$, then \mathscr{Def}_{X_0} is smooth of dimension $\dim H^1(X_0, \mathcal{T}_{X_0})$.

Obstructions and smoothness

Proposition

Let $\phi\colon \mathscr{F} \to \mathscr{G}$ be a morphism of deformation functors. If ϕ has an injective obstruction map and $d\phi$ is surjective then ϕ is smooth.

 \Rightarrow A deformation functor is smooth if and only if it has 0 as obstruction theory.

For a scheme X_0 of finite type over \Bbbk , $H^2(X_0, \mathcal{T}_{X_0})$ is an obstruction space for $\mathscr{Def}_{X_0}^{triv}$. Hence if X_0 is smooth and $H^2(X_0, \mathcal{T}_{X_0}) = 0$, then \mathscr{Def}_{X_0} is smooth of dimension $\dim H^1(X_0, \mathcal{T}_{X_0})$.

Dimension from obstructions

- ▶ If $\mathscr{F} \to \mathscr{C}$ is smooth, then any obstruction theory for \mathscr{C} gives one for \mathscr{F} ; in particular any obstruction theory on a deformation functor induces one on a semi-universal family.
- ▶ If v is an obstruction theory for \mathbb{A}^R , then $\dim_{\mathbb{k}}(T_{R/\mathbb{k}}) \ge \dim_{\mathrm{Krull}}(R) \ge \dim_{\mathbb{k}}(T_{R/\mathbb{k}}) \dim_{\mathbb{k}}(v)$.

Other questions in deformation theory

Stacky aspects

▶ Automorphisms of deformations as obstructions to pro-representability

Formal aspects

- Effectivity of deformations
- ► Algebraisability of formal families

Cohomological aspects

- Extensions and obstructions from the cotangent complex
- (Derived) Deformation problems and differential graded Lie algebras

References

- Robin Hartshorne, Deformation Theory, 2010
- Max Lieblich, *Deformation theory of sheaves*, Workshop in deformation theory II at Roma La Sapienza, 2009
- Marco Manetti, Classical deformation theory, Chapter IV "Functors of Artin rings", 2012
- Brian Osserman, *Deformations (b): Representability and Schlessinger's criterion*, MSRI workshop "Deformation Theory and Moduli in Algebraic Geometry", 2007
- Edoardo Sernesi, Deformations of Algebraic Schemes, 2006