Consequences of the least-upper-bound property of $\mathbb R$

Contents

1	The Archimedean property of $\mathbb R$	2
2	Density of $\mathbb Q$ and $\mathbb Q^\mathsf C$ in $\mathbb R$	2
3	Existence of n th roots in \mathbb{R}	3

The following is mostly paraphrased from Chapter 1 of [PMA].

Theorem 1. There exists an ordered field \mathbb{R} which has the least-upper-bound property. Moreover, \mathbb{R} contains \mathbb{Q} as a subfield.

For a proof of Theorem 1, see here. In this document, we shall present some consequences of Theorem 1.

1 The Archimedean property of \mathbb{R}

Theorem 2 (Archimedean property of \mathbb{R}). Let x > 0 and y be real numbers. Then there exists a positive integer n such that nx > y.

Proof. Suppose to the contrary that for all positive integers n we have $nx \leq y$. Then the set $A = \{nx : n \in \mathbb{N}\}$ is non-empty and bounded above, so by the least-upper-bound property of \mathbb{R} the supremum $\alpha = \sup A$ exists in \mathbb{R} . Since x > 0, we have $\alpha - x < \alpha$ so that $\alpha - x$ is not an upper bound of A. Hence there exists a positive integer m such that $\alpha - x < mx$, which gives $\alpha < (m+1)x$; but this contradicts the fact that α is the supremum of A.

2 Density of \mathbb{Q} and \mathbb{Q}^{C} in \mathbb{R}

Lemma 3. Any real number lies between two consecutive integers. That is, for any $x \in \mathbb{R}$ there exists an $m \in \mathbb{Z}$ such that $m - 1 \le x < m$.

Proof. By the Archimedean property, there exist positive integers m_1, m_2 such that $m_1 > x$ and $m_2 > -x$, which gives $-m_2 < x < m_1$. This implies that the set $A = \{n \in \mathbb{Z} : x < n\}$ is non-empty $(m_1 \in A)$ and bounded below (by $-m_2$). Then by the well-ordering principle, A has a least element; call it m. Since this is the least element of A, we must have $m-1 \notin A$ and so $m-1 \le x < m$.

Theorem 4. Between any two real numbers there exists a rational number. That is, for any $x, y \in \mathbb{R}$ with x < y there exists a $p \in \mathbb{Q}$ such that x .

Proof. By the Archimedean property, there exists a positive integer n such that n(y-x) > 1. By Lemma 3, there exists an integer m such that $m-1 \le nx < m$. Combining these inequalities gives $nx < m \le 1 + nx < ny$, which implies that $x < \frac{m}{n} < y$. So the desired rational is $p = \frac{m}{n}$. \square

Corollary 5. Between any two real numbers there exists an irrational number. That is, for any $x, y \in \mathbb{R}$ with x < y there exists a $z \in \mathbb{Q}^{\mathsf{C}}$ such that x < z < y.

Proof. By Theorem 4, there exists a rational number p such that $x - \sqrt{2} , which gives <math>x . So the desired irrational number is <math>z = p + \sqrt{2}$.

3 Existence of nth roots in \mathbb{R}

First, a useful inequality. Suppose n is a positive integer and a, b are real numbers such that 0 < a < b. This implies that $0 < b^{n-2}a < b^{n-1}$. Furthermore, we have $0 < a^2 < b^2$, which gives $0 < b^{n-3}a^2 < b^{n-1}$, and so on. Combining this with the equality

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1})$$

gives us the inequality

$$b^n - a^n < (b - a)nb^{n-1}. (1)$$

Theorem 6. For every real x > 0 and every positive integer n there is exactly one positive real y such that $y^n = x$.

Proof. Suppose y_1 and y_2 are positive real numbers such that $y_1 \neq y_2$. Without loss of generality, assume $0 < y_1 < y_2$. Then $0 < y_1^n < y_2^n$, so that $y_1^n \neq y_2^n$. Hence by the contrapositive, $y_1^n = y_2^n$ implies that $y_1 = y_2$. This gives us the uniqueness of any such y in Theorem 1.

For existence, let $E=\{t\in\mathbb{R}:t>0,t^n< x\}$. Observe that $t=\frac{x}{1+x}$ satisfies t< x and 0< t< 1, which gives $0< t^n< t< x$. Hence $t\in E$ and so E is non-empty. Now suppose $t\geq 1+x>1$, so that $t^n>t\geq 1+x>x$. Then by the contrapositive, $t^n< x$ implies that t< 1+x, and we see that E is bounded above by 1+x. We may now invoke the least-upper-bound property of $\mathbb R$ and set $y=\sup E$. Note that y must be positive, since $\frac{x}{1+x}$ belongs to E. To show that $y^n=x$, we will show that both of the assumptions $y^n< x$ and $y^n>x$ lead to contradictions.

First, assume that $y^n < x$. Using the Archimedean property, choose h such that 0 < h < 1 and $h < \frac{x-y^n}{n(y+1)^{n-1}}$. Now take a = y and b = y + h in inequality (1) to obtain

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n,$$

whence $(y+h)^n < x$ and so $y+h \in E$; but this contradicts the fact that y is the supremum of E, since y+h>y.

Next, assume that $y^n > x$ and set $k = \frac{y^n - x}{ny^{n-1}} < y$. Take a = y - k and b = y in inequality (1) to obtain

$$y^{n} - (y - k)^{n} < kny^{n-1} = y^{n} - x,$$

whence $(y-k)^n \ge x$. Then $t \ge y-k$ implies that $t^n \ge x$; the contrapositive of this shows that y-k is an upper bound for E. This contradicts the fact that y is the least upper bound of E, since y-k < y.

Corollary 7. Let a and b be positive real numbers and n a positive integer. Then

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}.$$

Proof. Let $\alpha = \sqrt[n]{a}$ and $\beta = \sqrt[n]{b}$. Then by the commutativity of multiplication, we have

$$(\alpha\beta)^n = \alpha^n\beta^n = ab.$$

The uniqueness part of Theorem 6 then implies that $\sqrt[n]{ab} = \alpha\beta = \sqrt[n]{a}\sqrt[n]{b}$.

[PMA] Rudin, W. (1976) Principles of Mathematical Analysis. 3rd edn.