

Bahria University

Lahore Campus Department of Computer Sciences

THEORY OF AUTOMATA

Assignment #01

DUE DATE: 14, OCTOBER 2023

Instructor Name: Mr. Tahir Iqbal

Program: BSCS 4A

Q.1 Consider the following recursive definition of PALINDROME:

- a. Rule 1. a and b are in PLANILDROME
 Rule 2. If x is in PALINDROME then so are axa and bxb.
 Unfortunately the words defined by the rules have odd lengths. Fix the problem such that all appropriate words are included.
- b. Prove that if x is in PALINDROME then so is x^n for any n.
- c. Prove that if z^n is in PALINDROME (for positive integer n) then so is z.
- d. Prove that PALINDROME has as many word of length 2n as it does of length 2n-1. How many words is that?
- Q.2 Construct a regular expression defining each of the following languages over {a, b};
 - a. All strings such that the number of a's is a multiple of 3.
 - b. All strings such that the number of a's is odd.
- Q.3 Construct a regular expression over $\{a, b\}$ of all words that do not have both the substrings bba and abb.
- Q.4 Construct a regular expression over $\{a, b\}$ containing all string that have an even number of a's an odd number of b's
- Q.5 Show that the following pair of regular expressions define the same language over alphabet $\{a, b\}$: a(ba+a)*b and aa*b(aa*b)*
- Q.6 Show that the following pair of regular expressions define the same language over alphabet $\{a, b\}$: $a(aa)*(\Lambda+a)b+b$ and a*b