2 Funzioni

Definizione 2.0.1 (Funzione). - $f: A \longrightarrow B$:

Dati due insiemi A, B, detti dominio e codominio, una funzione è una "legge" o "regola" che associa ad ogni elemento di A uno ed uno solo elemento di B.

Note 2.0.1. Tipicamente in questo corso le funzioni saranno date come formule del tipo $f(x) = x^2 - 7x - e^x$ specificando dominio e codominio in questo modo $f: \mathbb{R} \longrightarrow \mathbb{R}$. Si noti che la definizione di una funzione **deve** includere sia la funzione che il suo dominio. Ad esempio $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = x^2$ e $g: \mathbb{R} \ge 0 \longrightarrow \mathbb{R}$ $g(x) = x^2$ sono due funzioni diverse.

Note 2.0.2. Se non vengono specificati dominio e codominio allora il dominio è il sottoinsieme più grande di \mathbb{R} in cui la formula ha senso. Per la funzione $f(x) = \frac{1}{x}$ il dominio è $x \in \mathbb{R} \mid x \neq 0$.

Esempio 2.0.1. Esempi funzioni:

- $g(x) = x^2 7x e^x$ $g(0, +\infty) \longrightarrow \mathbb{R}$
- $g(x) = x^2$ $g(0, +\infty) \longrightarrow (0, +\infty)$. Va bene perché $x^2 > 0$ per qualsiasi valore di x.
- $h(x) = x^2$ $h(0, +\infty) \longrightarrow (-\infty, 0)$. Questa forma non va bene non definendo una funzione perché la formula non mi da numeri di $(-\infty, 0)$.
- $h(x) = x^2$ $h(0, +\infty) \longrightarrow (-\infty, 1)$ Non va bene perché se prendiamo x=3 f(3) = 9 e 9 non fa parte del codominio.

2.1 Grafico

Una funzione $f:A\longrightarrow B$ con $A,B\in\mathbb{R}$ ha un **grafico** che si indica come:

$$graph(f) = \{(a,b) \in A \times B \mid b = f(a)\}$$

$$\tag{1}$$

Figure 3: $f(x) = x^2 \text{ con } f : \mathbb{R} \longrightarrow \mathbb{R}$

Esempio 2.1.1. Esempio punto sulla funzione

- Il punto A sta sul grafico si $f(x) = x^2$ esattamente quando $y = x^2$.
- Il punto B non sta sul grafico quindi $y \neq x^2$.

Note 2.1.1. A X B $\subseteq \mathbb{R}$ X \mathbb{R} . Dove R X R = \mathbb{R}^2 .

Esempio 2.1.2. A e B = $(0, +\infty)$, da qui vediamo che A X B rappresenta il primo quadrante.

2.2 Immagine

Definizione 2.2.1 (Immagine). Prendendo $f: A \longrightarrow B$ e $D \subseteq A$ l'immagine di D tramite $f \in il$ sottoinsieme $f(D) \subseteq B$ costituito dagli elementi f(d) dove $d \in D$.

Esempio 2.2.1. Esempi immagine:

- Immagine di A, $f(A) \subseteq B$ si chiama anche immagine della funzione.
- $f(x) = x^2$, $f: \mathbb{R} \longrightarrow \mathbb{R}$ immagine di g è $[0, +\infty)$ perché $x^2 \ge 0 \,\forall \, x \in \mathbb{R}$.
- g(x) = x?2, $g: [2, +\infty) \longrightarrow \mathbb{R}$ l'immagine di g è $[4, +\infty]$ perché se si calcola il punto minore del dominio, cioè 2, torna $g(2) = x^2$ che è uguale a 4, da lì possiamo prendere tutti i punti.

2.3 Suriettiva

Definizione 2.3.1 (Suriettiva). Una funzione si dice suriettiva quando ogni elemento del codominio è immagine di almeno un elemento del dominio. Quindi prendendo una f(x), per che sia suriettiva deve l'immagine I essere uguale ad un valore, I(f) = b.

$$\forall y \in B \exists x \in A \tag{2}$$

Note 2.3.1. La suriettività si traduce graficamente nel fatto una qualsiasi retta orizzontale intersechi il grafico almeno una volta.

Esempio 2.3.1. Esempi funzioni suriettive:

- $f(x) = x^2$, $f: \mathbb{R} \to \mathbb{R}$ non è suriettiva perché tutti i valori del codominio y < 0 non hanno un rispettivo nel dominio.
- $g(x) = x^2$, $g: \mathbb{R} \longrightarrow (0, +\infty)$ lo è perchè andiamo a restringere il codominio ai punti che hanno un corrispettivo nel dominio.

2.4 Iniettiva

Definizione 2.4.1 (Iniettiva). Una funzione iniettiva è una funzione che associa, a elementi distinti del dominio, elementi distinti del codominio. Quindi prendendo una f(x) è iniettiva se prendendo due valori x_1, x_2 dove $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$. (Input diversi danno output diversi).

$$x_1, x_2 \in A \land x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \tag{3}$$

Note 2.4.1. L'iniettività si traduce graficamente nel fatto una qualsiasi retta orizzontale intersechi il grafico al più una volta.

Esempio 2.4.1. Esempi funzioni iniettiva:

- $f(x) = x^2$, $f: \mathbb{R} \longrightarrow \mathbb{R}$ non è iniettiva perché se prendiamo $x_1 = 1$ e $x_2 = -1$ $f(x_1) = f(x_2)$.
- $g(x)=x^2, g:[0,+\infty)\longrightarrow \mathbb{R}$ è invece iniettiva perché non consideriamo i valori negativi.

2.5 Biunivoca

Definizione 2.5.1 (Biunivoca). Una funzione si definisce biunivoca o bigettiva se è sia iniettiva che suriettiva.

2.6 Invertibile

Definizione 2.6.1 (Invertibile). Se una funzione è biunivoca si dice che tale funzione è anche invertibile.

Figure 4: $f(x) = x^2 e g(x) = \sqrt{x}$

Se f è una funzione invertibile i grafici di f e di f^{-1} (la funzione inversa) sono simmetrici rispetto alla retta y = x cioè alla bisettrice del primo e del terzo quadrante.

Esempio 2.6.1. Se vediamo nell'immagine [6] prendendo l'inverso della funzione $f(x) = x^2$ definita in $[0, +\infty] \longrightarrow \mathbb{R}$ e cioè la funzione $g(x) = \sqrt{x}$ è simmetrica.

2.3 Suriettiva 9

2.7 Funzioni Monotone

Definizione 2.7.1 (Monotone). Dati $A, B \in \mathbb{R}$ e $f: A \longrightarrow B$. $x_1, x_2 \in A$ con $x_1 < x_2$ se $\forall x_1, x_2$ risulta ciò che è scritto in Tabella 2.

[1] Strettamente Crescente	$f(x_1) < f(x_2)$
[2]Debolmente Crescente	$f(x_1) \le f(x_2)$
[3]Strettamente Decrescente	$f(x_1) > f(x_2)$
[4]Debolmente Decrescente	$f(x_1) \ge f(x_2)$

Table 2: Definizioni funzioni crescenti e decrescenti

Andando a considerare la Tabella 2 possiamo dire che:

- Strettamente monotona nei casi [1] e [3] della tabella.
- Debolmente monotona nei casi [2] e [4] della tabella.

Osservazione 2.7.1. Se f è strettamente monotona allora è iniettiva in quanto dati $x_1 \neq x_2$ con $x_1 < x_2 \implies f(x_1) < f(x_2)$ e in particolare $f(x_1) \neq f(x_2)$. Non vale però il contrario, infatti una funzione iniettiva non è per forza strettamente monotona (ad esempio data $f(x) = \frac{1}{x}$ con $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \setminus \{0\}$)

Osservazione 2.7.2. Se f è strettamente crescente allora è anche debolmente crescente.

Esempio 2.7.1. Esempi funzioni crescenti e decrescenti:

(a) $f(x_1) < f(x-2)$ quindi e crescente

(b) $f(x_1) > f(x-2)$ quindi è decrescente

Possiamo anche federe dalle immagini [5a] [5b] che:

- Se f(x) è crescente l'ordinamene verrà mantenuto.
- Se f(x) è decrescente l'ordinamento verrà invertito.

2.7 Funzioni Monotone 10

Osservazione 2.7.3. Osservazione sul rapporto incrementale:

Figure 6: $\frac{\Delta_y}{\Delta_x}$

Definito il **rapporto incrementale**¹ come:

$$\frac{\Delta_y}{\Delta_x} = \frac{f(x_1) - f(x_2)}{x_1 - x_2} \tag{4}$$

Note 2.7.1. Il denominatore ed il numeratori devono essere concordi per fare in modo che il rapporto incrementale sia maggiore di 0 e quindi la funzione crescente.

Continuando ad analizzare il rapporto incrementale possiamo ricavare anche i casi in cui una funzione e strettamente decrescente o debolmente crescente o debolmente decrescente. Puoi vedere tutte le casistiche nella tabella 3.

Strettamente Crescente	$\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$
Strettamente Decrescente	$\frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0$
Debolmente Crescente	$\frac{f(x_1) - f(x_2)}{x_1 - x_2} \ge 0$
Debolmente Decrescente	$\frac{f(x_1) - f(x_2)}{x_1 - x_2} \le 0$

Table 3: Analisi rapporto incrementale

Osservazione 2.7.4. Se una funzione f(x) è strettamente crescente è a sua volta anche debolmente crescente, mentre una funzione f(x) se è debolmente crescente non è strettamente crescente perché aggiunge una casistica che sarebbe $f(x_1) = f(x_2)$.

Esempio 2.7.2. Casistica particolare:

Data $f(x) = \frac{1}{x}$, $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \setminus \{0\}$. Funzione rappresentata nell'immagine [7].

Figure 7: $f(x) = \frac{1}{x}$, $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \setminus \{0\}$

Possiamo vedere che:

• f(x) è strettamente decrescente in $(0, +\infty)$. Quindi se andiamo a prendere $0 < x_3 < x_4$ abbiamo che $f(x_3) > f(x_4)$.

2.7 Funzioni Monotone 11

 $^{^{1}}$ I rapporto incrementale misura quanto il punto della f si sposta in verticale in rapporto a quanto abbiamo l'asciasse in orizzontale.

• f(x) è strettamente decrescente in $(-\infty, 0)$. Quindi se andiamo a prendere $x_1 < x_2 < 0$ abbiamo che $f(x_1) > f(x_2)$.

Se però andiamo a considerare tutto $\mathbb{R} \setminus \{0\}$, e quindi prendiamo i punti $x_1 < 0 < x_4$ vediamo che $f(x_1) < f(x_4)$. In conclusione si può dire quindi che $f(x) = \frac{1}{x}$) è decrescente in $(-\infty, 0)$ e in $(0, +\infty)$ ma non lo è in tutto $\mathbb{R} \setminus \{0\}$.

2.7.1 Composizione con funzioni monotone

Definizione 2.7.2 (Composizione). La composizione di funzioni si definisce come $g \circ f : A \longrightarrow C$, $(g \circ f)(a) = g(f(a))$

Prendendo i considerazioni 3 insiemi A, B, C tali che $A, B, C \subset \mathbb{R}$ e 2 funzioni f(x) e g(x) così definite: $f: A \longrightarrow B, g: B \longrightarrow C$.

- 1. Se f è crescente e g è crescente allora $g \circ f$ è crescente.
- 2. Se f è crescente e g è decrescente allora $g \circ f$ è decrescente e viceversa $(x_1 < x_2 \implies f(x_1) < f(x_2) \implies g(f(x_1)) < g(f(x_2)))$.
- 3. Se f è decrescente e g è decrescente allora $g \circ f$ è crescente $(x_1 < x_2 \implies f(x_1) > f(x_2) \implies g(f(x_1)) < g(f(x_2)))$.

Esempio 2.7.3. $h(x) = e^{x^3}$

La funzione h si ottiene dalla composizione di:

- $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = x^3$. Funzione crescente.
- $q: \mathbb{R} \longrightarrow \mathbb{R}$ $q(t) = e^t$. Funzione decrescente.

Quindi possiamo scrivere $h(x) = e^{x^3}$ come: $e^{f(x)} = g(f(x)) = (g \circ f)(x)$ Inoltre visto che f è crescente e g è crescente, h è strettamente crescente

Osservazione 2.7.5. Se prendiamo una funzione f(x) strettamente monotona, allora f(x) è iniettiva. Questa condizione è vera ma NON lo è viceversa: una funzione f(x) iniettiva NON è per forza strettamente monotona.

Esempio 2.7.4. Se prendiamo una f(x) tale che: $f(x) = \frac{1}{x}$ $\mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \setminus \{0\}$ Possiamo vedere rifacendoci all'esempio in figura [7] che f è iniettiva ma non monotona.

2.8 Insieme di definizione

Definizione 2.8.1 (Insieme di definizione). Data una funzione f(x) l'insieme di definizione o dominio naturale di una funzione è il più grande sottoinsieme di \mathbb{R} dove ha senso la funzione f(x).

Esempio 2.8.1. $f(x) = \frac{1}{x}$ L'insieme di definizione è $\mathbb{R} \setminus \{0\}$

2.9 Funzioni pari e dispari

Definizione 2.9.1 (Pari). La funzione è **pari** se $f(x) = f(-x) \forall x$ nel dominio di $f \longrightarrow f$. Il grafico di una funzione pari è simmetrico rispetto all'asse y.

Definizione 2.9.2 (Dispari). La funzione è dispari se $f(x) = -f(-x) \forall x$ nel dominio di $f \longrightarrow f$. Il grafico di una funzione dispari è simmetrico rispetto all'origine.

Note 2.9.1. Il dominio di f deve essere simmetrico.

Esempio 2.9.1. Esempio funzioni pari e dispari.

 $f(-x)=(-x)^2=x^2=f(x)$, f(x) è **pari**: $f(-x)=(-x)^2=x^2=-f(x)$, f(x) è **dispari**: Note 2.9.2. Una funzione del tipo $f(x)=x^(2n)$ con $n\in\mathbb{N}$ è sempre pari mentre una funzione del tipo $f(x)=x^(2n+1)$ con $n\in\mathbb{N}$ è sempre dispari.

(a) $f(x) = x^2$, graph(f) con f pari

(b) $f(x) = x^3$, graph(f) con f dispari

2.10 Funzione periodica

Definizione 2.10.1 (Periodicità). *Una funzione* f(x) *si dice periodica di periodo* $P \in \mathbb{R}$ *se* $\forall x f(x+P) = f(x)$.

Inoltre il dominio di f(x) deve essere tale che $x \in dom(f) \implies x + P \in dom(f)$.

Esempio 2.10.1. In figura [9] un esempio di funzione periodica.

Figure 9: $sin(x) = sin(x + 2\pi)$

2.11 Funzioni Elementari

2.11.1 Lineari

Funzione retta: f(x) = ax + b. $a, b \in \mathbb{R}$

Dove a (coefficiente angolare) indica la pendenza della retta, mentre b (termine noto) indica il punto di incontro con l'asse Y.

2.11.2 Esponente positivo o negativo

Fun. Esp. positivo: $f(x) = x^k, k \in \mathbb{N}$.

Osservazione 2.11.1. k pari: Le funzioni con il k pari sono funzioni pari e hanno tutte una forma simile a quella in figura [10a] per le funzioni con k positive e per le funzioni con k negativo figura [11a].

Osservazione 2.11.2. k dispari: Le funzioni con il k positivo e dispari sono funzioni dispari e hanno tutte una forma simile a quella in figura [10b] per le funzioni con k positive e per le funzioni con k negativo figura [11b].

2.11.3 Radici o esponente fratto

Funzionane radici o esponente fratto: $f(x) = x^{\frac{p}{q}}$ o $f(x) = \sqrt[q]{x^p}$ con $p, q \in \mathbb{N}$ e $q \neq 0$.

 $Note\ 2.11.1.\ p$ e q non possono essere entrambi pari perché in tal caso sono divisibili fra di loro e quindi portabili ad una forma ridotta.

Osservazione 2.11.3. q pari: Le funzioni con il q pari ha dominio $x \ge 0$ ed è invertibile sono come funzione $f:[0,+\infty) \longrightarrow [0,+\infty)$. È rappresentata in figura [12a].

Osservazione 2.11.4. q dispari: Le funzioni con il q positivo ha dominio $x \in \mathbb{R}$ ed è ugualmente invertibile su tutto \mathbb{R} , è inoltre una funzione dispari. È rappresentata in figura [12b].

2.11.4 Esponenziale

Funzione esponenziale: $f(x) = a^x \operatorname{con} a \in \mathbb{R}, \quad a > 0, \quad a \neq 1 \quad f: \mathbb{R} \longrightarrow (0, +\infty)$

Note 2.11.2. La funzione esponenziale è sempre positiva.

Osservazione 2.11.5. a > 1: La funzione è strettamente crescente, come in nell'immagine [13a].

Osservazione 2.11.6. 0 < a < 1: La funzione è decrescente, come in nell'immagine [13b].

2.11.5 Logaritmo

Funzione logaritmo: $f(x) = \log_a x$, $f: (0, +\infty) \longrightarrow \mathbb{R}$ (inversa dell'esponenziale).

²In matematica è possibile scrivere una un esponente fratto come radice mettendo il numeratore al radicando della radice e il denominatore all'indice: $x^{\frac{p}{q}} = \sqrt[q]{x^p}$

Osservazione 2.11.7. Casistica particolare - $f(x) = e^x$.

In questa casistica se andiamo a ridurre il codominio la funzione esponenziale è invertibile. $f: \mathbb{R} \longrightarrow (0, +\infty)$. Il suo inverso è un caso particolare di logaritmo e di chiama **logaritmo naturale**. E si può scrive in due modi:

- ln x: sarebbe logaritmo in base naturale.
- \bullet log x: scrivendo il logaritmo senza la base intendiamo il logaritmo in base e.

2.11.6 Seno e Arcoseno

Seno: $f(x) = \sin x, f : \mathbb{R} \longrightarrow \mathbb{R}.$

Arcoseno: $f(x) = \arcsin x, f: [-1, 1] \longrightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$

Osservazione 2.11.8. $\operatorname{Sin}(\mathbf{x})$: La funzione $\sin x$ (immagine [15a]) è periodica per 2π quindi possiamo scrivere $\sin (x + 2\pi) = \sin x \ \forall x \in \mathbb{R}$. Inoltre è suriettiva per codominio [-1, 1]. Se invece definiamo $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow [-1, 1]$ la funzione $\sin x$ è strettamente crescente e suriettiva, quindi anche invertibile, e la sua inversa è appunto $\arcsin x$.

Osservazione 2.11.9. Arcsin(x): La funzione $\arcsin x$ è l'inverso del seno e può essere scritta anche come $f(x) = \sin x^{-1}$, è rappresentata nell'immagine [15b].

2.11.7 Coseno e Arcocoseno

Coseno: $f(x) = \cos x, f : \mathbb{R} \longrightarrow \mathbb{R}$.

Arcocoseno: $f(x) = \arccos x, f: [-1,1] \longrightarrow [0,\pi]$

(b) $\arccos x \circ \cos x^{-1}$

Osservazione 2.11.10. $\operatorname{Cos}(\mathbf{x})$: La funzione $\cos x$, rappresentata nell'immagine [16a], è periodica per 2π quindi possiamo scrivere $\cos (x+2\pi) = \cos x \, \forall x \in \mathbb{R}$. Inoltre è suriettiva per codominio [-1, 1]. Se invece definiamo $f:[0,\pi] \longrightarrow [-1,1]$ la funzione $\cos x$ è suriettiva, quindi anche invertibile, e la sua inversa è appunto $\operatorname{arccos} x$.

Osservazione 2.11.11. Arccos(x): La funzione arccos x è l'inverso del seno e può essere scritta anche come $f(x) = cos x^{-1}$ ed è rappresentata nell'immagine [16b].

2.11.8 Tangente e Arcotangente

Tangente: $f(x) = \tan x, f : \mathbb{R} \longrightarrow \mathbb{R}$

Arcotangente: $f(x) = \arctan x, f : \mathbb{R} \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

Osservazione 2.11.12. Tan(x): La funzione $\tan x$, rappresentata nell'immagine [17a], può essere scritta anche come $\frac{\sin x}{\cos x}$, ha come dominio $\{x \in \mathbb{R} \mid x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$. La funzione tangente è fatta da infiniti intervalli, è quindi periodica per π ; è di base non invertibile, ma se la ristringiamo in $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow \mathbb{R}$ diventa biunivoca ed accetta la funzione inversa che è arctan x.

Osservazione 2.11.13. Arctan(x): La funzione $\arctan x$, rappresentate nell'immagine [17b], è inversa della funzione $\tan x$, può quindi essere scritta anche con la forma $\tan x^{-1}$.

3 Massimi e minimi

3.1 Massimo e minimo intervalli

Definizione 3.1.1 (Massimo). Dato un insieme A tale che: $A \subseteq \mathbb{R}, \ A \neq \emptyset, \ m \in \mathbb{R} \ m \ si \ dice \ massimo \ di \ A \ se \ m \geq a \ \forall \ a \in A \ e \ m \in A$

Definizione 3.1.2 (Minimo). Dato un insieme A tale che: $A \subseteq \mathbb{R}, A \neq \emptyset, m \in \mathbb{R}$ m si dice **minimo** di A se $m \leq a \ \forall \ a \in A$ e $m \in A$

Esempio 3.1.1. Esempi massini e minimi intervalli:

- Dato A = [0, 1] il max(A) = 1 e il suo min(A) = 0
- Dato B = [0, 1) il min(B) = 0 mentre B non ha massimo.

Dimotrazione 3.1.1. Dimostriamo questo esempio:

Supponiamo per assurdo che $m \in \mathbb{R}$ sia il max di B, con ovviamente $m \in B$. Se tale condizione è vera m < 1 perché 1 non è incluso nell'insieme B = [0, 1).

Poniamo ora $\epsilon=1-m,$ così facendo ϵ diventa la lunghezza dell'intervallo fra 1 ed m.

Figure 18: Segmento B

Definiamo ora un $m_1 = m + \frac{\epsilon}{2}$. Creando questo valore m_1 vediamo che $m_1 \in B$ ma anche che $m < m_1$ che contrasta con la definizione di massimo di B che dovrebbe essere $m \ge b \,\forall\, b \in B$. Così dimostriamo la non esistenza di un valore massimo.

3.2 Maggiorante e minorante intervalli

Definizione 3.2.1 (Maggiorante). $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $k \in \mathbb{R}$ si dice **maggiorante** di A se $k \geq a \ \forall \ a \in A$. L'insieme di tutti i maggioranti si indica con M_A .

Definizione 3.2.2 (Minorante). $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $k \in \mathbb{R}$ si dice **minorante** di A se $k \leq a \ \forall \ a \in A$. L'insieme di tutti i minoranti si indica con m_A .

Esempio 3.2.1. A = [0,3] allora 3 è un maggiorante di A, quindi $3 \in M_A$. Mentre $\frac{1}{4}$ non è un maggiorante, quindi $\frac{1}{4} \notin M_A$, perché 1 > A e $1 > \frac{1}{2}$.

Osservazione 3.2.1. Se esiste un maggiorante di A allora ne esistono infiniti. Infatti se prendiamo un $k \in M_A$, m è un maggiorante di A $\forall m \geq k$. Questo discorso vale anche per i minoranti, infatti con $k \in m_A$, m è un minorante di A $\forall m \leq k$.

Esempio 3.2.2. Esempi per l'osservazione sopra:

- $A = \mathbb{R}$, A non ha maggioranti.
- $A = [4, +\infty]$ non ha maggioranti ma ha minoranti.

3.3 Intervallo limitato

Definizione 3.3.1 (Limitato superiormente). Dato un intervallo A, se $M_A \neq \emptyset$ (insieme dei maggioranti) allora l'intervallo A si dice limitato superiormente

Definizione 3.3.2 (Limitato inferiormente). Dato un intervallo A, se $m_A \neq \emptyset$ (insieme dei minoranti) allora l'intervallo A si dice **limitato inferiormente**

Definizione 3.3.3 (Limitato). $A \subset \mathbb{R}$, $A \neq \emptyset$, se A è sia superiormente che inferiormente limitato allora A si dice semplicemente intervallo **limitato**.

Osservazione 3.3.1. A è limitato se e solo se $\exists h, k \in \mathbb{R}$ tale che $k \leq a \leq h \ \forall \ a \in A$

3.3.1 Estremi superiori ed inferiori

Teorema 3.3.1 (Estremo superiore). $A \subset \mathbb{R}$, $A \neq \emptyset$ ed A è superiormente limitato, allora esiste il minimo dell'insieme dei maggioranti. Tale minimo si dice **estremo superiore** di A e si indica con sup(A).

Teorema 3.3.2 (Estremo inferiore). $A \subset \mathbb{R}$, $A \neq \emptyset$ ed A è inferiormente limitato, allora esiste il massimo dell'insieme dei minoranti. Tale massimo si dice **estremo inferiore** di A e si indica con inf(A).

Esempio 3.3.1. Esempio estremi superiori ed inferiori:

- A = [0, 1) $M_A = [1, +\infty) e m_A = (-\infty, 0] \min(M_A) = \sup(A) = 1 \max(m_A) = \inf(A) = 0$
- B = [0, 1] $M_B = [1, +\infty)$ e $m_A = (-\infty, 0]$ $\min(M_B) = \sup(B) = 1$ $\max(m_B) = \inf(B) = 0$

Osservazione 3.3.2. Se esiste max(A) allora max(A) = sup(A) e viceversa se esiste min(A) allora min(A) = inf(A)

Note 3.3.1. Se A non è superiormente limitato scriviamo $\sup(A) = -\infty$ e se non è inferiormente limitato $\inf(A) = -\infty$.

Osservazione 3.3.3. $A \neq \emptyset$ e A è superiormente limitata, allora $m = \sup(A)$ se e solo se valgono 2 condizioni:

- 1. $a \le m \ \forall \ a \in A$ Questo dice che m è un maggiorante
- 2. $\forall \epsilon > 0 \; \exists \; \overline{a}^3 \in A \mid \overline{a} > m \epsilon \quad m \epsilon \text{ mi dice che non ci sono maggioranti più piccoli di m.}$

 $^{3\}overline{a}$ è un semplice metodo di notazione

Se valgono queste 2 condizioni m è l'estremo sup e viceversa se m è $\sup(A)$ allora valgono queste condizioni.

Note 3.3.2. Questa considerazione vale anche per $m = \inf(A)$.

Osservazione 3.3.4. La scrittura $\sup(A) < +\infty$ vuol dire che l'estremo superiore di A è un numero reale, quindi A è superiormente limitato. Viceversa la scrittura $\inf(A) > -\infty$ vuol dire che l'estremo inferiore di A è un numero reale, quindi A è inferiormente limitato.

3.4 Retta reale estesa

Definizione 3.4.1 (Retta reale estesa). La retta reale estesa si indica con $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$ in modo che valga: $-\infty \le x \le +\infty \ \forall x \in \overline{\mathbb{R}}$

Osservazione 3.4.1. Se $x \in \mathbb{R}$ (quindi $x \neq +\infty, x \neq -\infty$) allora $-\infty < x < +\infty$

3.4.1 Operazioni in $\overline{\mathbb{R}}$

- Se $x \neq +\infty$ allora $x + (-\infty) = -\infty$.
- Se $x \neq -\infty$ allora $x + (+\infty) = +\infty$.
- Se x > 0 allora $x(+\infty) = +\infty$ e $x(-\infty) = -\infty$.
- Se Se x < 0 allora $x(+\infty) = -\infty$ e $x(-\infty) = +\infty$.
- $(+\infty) + (-\infty)$ e viceversa $0(+\infty)$ o $0(\infty)$ Sono vietate
- $(+\infty)(+\infty) = +\infty$ $(+\infty)(-\infty) = -\infty$ $(-\infty)(-\infty) = +\infty$ Sono consentite

Osservazione 3.4.2. Dato $A \subset \mathbb{Z}$ se A è superiormente limitato, A ha un massimo e se A è inferiormente limitato allora A ha un minimo.

3.5 Parte intera di un numero

Definizione 3.5.1. Dato $x \in \mathbb{R}$ si dice **parte intera di x** e si indica con [x] il numero [x] = $max\{m \in \mathbb{Z} : m \leq x\}$

Possiamo spiegarlo in maniera semplice che è il primo numero intero che troviamo alla sinistra di x.

Esempio 3.5.1.
$$\left[\frac{25}{10}\right] = 2$$
 $\left[-\frac{25}{10}\right] = -2$

Figure 19: Parte intera di x

18

3.5.1 Grafico di f(x) = [x]

Figure 20: Grafico f(x) = [x]

Possiamo vedere nell'immagine [20] che tutti numeri vanno a valere in y come il valore del primo intero a sinistra.

Esempio 3.5.2. Esempio per f(x) = [x]: $f(\frac{1}{2}) = 0$ $f(\frac{3}{2}) = 1$

$$f(\frac{10}{3}) = 3 \qquad f(\frac{4}{3}) = 1$$

3.4 Retta reale estesa

3.6 Limiti, massimi e minimi su funzioni

Andiamo a fare una serie di definizioni prendendo due insiemi A, B tale che $A \subseteq \mathbb{R}$ e $B \subseteq \mathbb{R}$ ed una funzione f(A) definita come $f:A \longrightarrow B$.

Definizione 3.6.1 (Limitata superiormente, inferiormente). f si dice limitata superiormente se f(A) è limitata superiormente. Viceversa f si dice limitata inferiormente se f(A) è limitata inferiormente. Se f è sia limitata superiormente che inferiormente si dice che f è limitata.

Definizione 3.6.2 (Massimo e minimo). f ha massimo se la sua immagine f(A) ha massimo. Si dice che M è il massimo di f e si scrive M = max(f) se M = max(f(A)). Ugualmente f ha minimo se la sua immagine f(A) ha minimo. Si dice che m è il minimo di f e si scrive m = min(f) se m = min(f(A)).

Definizione 3.6.3. Se f non è limitata superiormente e si scrive $sup(f) = +\infty$. Ugualmente se f non è limitata inferiormente, e si scrive $inf(f) = -\infty$.

Note 3.6.1. Rircoda che $\sup(f)$ corrisponde a scrivere $\sup(f(A))$ e ugualmente $\inf(f)$ è uguale a $\inf(f(A))$.

Definizione 3.6.4 (Punti di massimo e minimo). Se f ha massimo allora ogni $x_0 \in A$ tale che $f(x_0) = max(f)$ si dice punto di massimo per f. Similmente se f ha minimo allora ogni $x_0 \in A$ tale che $f(x_0) = min(f)$ si dice punto di minimo per f.

Osservazione 3.6.1. Il massimo di f è unico mentre i punti di massimo possono essere molti.

Esempio 3.6.1.
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = \sin x$ [21]

$$\max(\mathbf{f}) = 1 \qquad x_0 = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$$

In questo caso essendo la funzione periodica in ogni intervallo di $x_0 = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$ esisterà un punto di massimo mentre il massimo rimarrà sempre 1.

Figure 21: funzione $f(x) = \sin x$

Esempio 3.6.2.
$$f:(0,+\infty) \longrightarrow \mathbb{R}$$
 $f(x) = \frac{1}{x}$ [22]

In questa casistica f non ha ne massimo ne minimo. Questo lo possiamo dimostrare andando ad immaginare una casistica dove esiste un massimo ed un minimo e facendo poi alcune considerazione.

Innanzitutto prendiamo per assurdo che f avesse massimo allora \Longrightarrow \exists m tale che $f(x) \leq m \ \forall \ x \in (0,+\infty)$.

Se in questa casistica prendessimo un punto x e dicessima che quello è il massimo, $f(\frac{1}{x}) = m$, ma se poi prendiamo un punto che è $\frac{x}{2}$ esso apparitene sempre alla funzione e $f(\frac{x}{2}) = 2m$ e 2m > m. Quindi vediamo come non è possibile determinare un massimo.

Questa funzione non può nemmeno avere un minimo perché $f(x) > 0 \, \forall \, x$, quindi inf(f) = 0. Se f avesse minimo dovrebbe essere m(f) = inf(f) = 0 ma questo presuppone che debba esiste un x_0 tale che $f(x_0) = 0$ cioè $\frac{1}{x_0} = 0$, ma questo è impossibile.

Figure 22: funzione $f(x) = \frac{1}{x}$

Osservazione 3.6.2. Consideriamo un insieme $A \subset \mathbb{R}$ e una funzione $f : A \longrightarrow \mathbb{R}$, valgono per essi le seguenti osservazioni:

• Se A ha massimo e f è debolmente crescente allora f ha max e $\max(f) = f(\max(A))$.

- Se A ha minimo e f è debolmente crescente allora f ha min e $\min(f) = f(\min(A))$.
- Se A ha minimo e f è debolmente crescente allora f ha min e min $(f) = f(\max(A))$.
- Se A ha massimo e f è debolmente crescente allora f ha max e $\max(f) = f(\min(A))$.

(b) Punti max min f decrescente

Osservazione 3.6.3. Se $f: A \longrightarrow \mathbb{R}$ allora $m = \sup(f)$ se e solo se valgono queste due condizioni:

- 1. $f(x) \leq m \ \forall \ x \in A$ Questo vuol dire che m deve essere maggiore o uguale di qualsiasi f(x)
- 2. $\forall \ \epsilon > 0 \ \exists \ \overline{x} \in A \mid f(\overline{x}) > m \epsilon$ Questo vuol dire che per qualsiasi valore ϵ maggiore di 0 deve esistere un \overline{x} appartenendo all'insieme A tale che, se sottraiamo il valore ϵ a m il risultato deve essere inferiore a $f(\overline{x})$ ciò vuol dire che non ci sono altri valori per il quale la funzione è sempre sotto.