1 Kinetic Theory of Gases

Basic Definitions

sic Definitions Quantity	Equation	Units
$N_A(Avogadro'snumber)$	6.02×10^{23}	mol^{-1}
Mole	$M = mN_A$	mol
Number of moles	$n = \frac{N}{N_A} = \frac{Msam}{M} = \frac{Msam}{mN_A}$	mol
Ideal Gas Law	pV = nRT	
Boltzmann constants' Ideal Gas Law	pV = NkT	
k (Boltzmann constant)	$P = \frac{R}{N_A} = 1.38 \times 10^{-23}$	J/K
Slow Adiabatic Volume Change	$pV^{\gamma} = a \ constant$ $\gamma = \frac{C_p}{C_V}$	
Free Expansion	$pV = a \ constant.$	

Applications

Name	Equation
Work done by an Ideal Gas	$W = nRT \ln \frac{V_f}{V_i}$