Basi di Dati Algebra relazionale

KEEP CALM **AND** STUDY DATABASES

Base di dati «Ricoveri»

• Schema relazionale con vincoli di integrità referenziale

PAZIENTI(<u>COD</u>, Cognome, Nome, Residenza, AnnoNascita)

MEDICI(<u>MATR</u>, Cognome, Nome, Residenza, Reparto)

REPARTI(<u>COD</u>, Nome-Rep, Primario)

RICOVERI(<u>PAZ</u>, Inizio, Fine, Reparto)

Base di dati «Ricoveri»

pazienti

Parionici				
COD	Cognome	Nome	Residenza	AnnoNascita
A102	Necchi	Luca	TO	1950
B372	Rossigni	Piero	NO	1940
B543	Missoni	Nadia	TO	1960
B444	Missoni	Luigi	VC	2000
S555	Rossetti	Gino	AT	2010

reparti

<u> </u>		
COD	Nome-Rep	Primario
Α	Chirurgia	203
В	Pediatria	574
С	Medicina	530
L	Lab-Analisi	530
R	Radiologia	405

ricoveri

PAZ	Inizio	Fine	Reparto
A102	2/05/2014	9/05/2014	Α
A102	2/12/2004	2/01/2005	Α
S555	5/10/2014	3/12/2014	В
B444	1/12/2004	2/01/2005	В
S555	6/09/2015	1/11/2015	А

medici

<u>MATR</u>	Cognome	Nome	Residenza	Reparto
203	Neri	Piero	AL	Α
574	Bisi	Mario	MI	В
461	Bargio	Sergio	TO	В
530	Belli	Nicola	TO	С
405	Mizzi	Nicola	AT	R
501	Monti	Mario	VC	Α

Algebra relazionale

Codd formalizza le interrogazioni utilizzando un'algebra. L'algebra relazionale:

- non «manipola» numeri ma relazioni,
- fornisce un fondamento teorico ai linguaggi di interrogazione delle basi di dati,
- le sue proprietà vengono sfruttate internamente dai DBMS per ottimizzare le query,
- è una costruzione *procedurale* dell'interrogazione, cioè un elenco dei passi da eseguire per rispondere all'interrogazione. Ogni passo è definito astrattamente attraverso gli operatori algebrici.

Operatori dell'algebra relazionale

L'algebra relazionale è costituita da operatori di base e da operatori derivati

Operatori di base

- Selezione σ_p

- Proiezione $\pi_{\scriptscriptstyle A}$

Prodotto cartesiano ×

Unione

Differenza–

- Ridenominazione $\rho_B \leftarrow A$

Operatori derivati

Intersezione∩

Join (theta, equi, natural)⋈

– Quoziente ÷

Operatori algebrici

Ogni operatore dell'algebra relazionale riceve, come argomento, una relazione e produce, in uscita, una relazione (detta anche relazione virtuale)

Operatore di selezione

• Data una relazione r su uno schema A, $\sigma_p(r(A))$

è **l'operatore di selezione** dove p è un predicato e r(A) è l'argomento dell'operatore

 Per semplicità per ora ignoreremo la possibilità che ci siano valori nulli

Operatore di selezione

Data una relazione r(A) su uno schema A, l'operatore di selezione

$$\sigma_p(r(A))$$

produce come risultato una relazione con

- schema: A
- istanza: le tuple della relazione r che soddisfano il predicato p.

Sintassi del predicato di selezione

Il predicato p è un'espressione booleana formata componendo predicati atomici di due tipi

- $-A_i$ ϕ costante
- $-A_i \phi A_i$

dove

- $-A_i e A_j$ sono attributi in A
- φ è un **operatore di confronto** nell'insieme $\{=, \neq, >, \geq, <, \leq\}$

• Esempi:

- $-\sigma_{Nome='Luca'}(pazienti)$
- $-\sigma_{Nome=Cognome}(pazienti)$
- $-\sigma_{Nome='Luca' \vee Nome='Chiara'}(pazienti)$

Selezione dei pazienti con residenza a Torino ('TO')

Selezione dei pazienti con residenza a Torino ('TO') $\sigma_{Residenza='TO'}$ (pazienti)

Selezione dei pazienti con residenza a Torino ('TO') $\sigma_{Residenza='TO'}$ (pazienti)

Selezione dei pazienti residenti a Torino o a Vercelli ('VC')

Selezione dei pazienti con residenza a Torino ('TO') $\sigma_{Residenza='TO'}$ (pazienti)

Selezione dei pazienti residenti a Torino o a Vercelli ('VC')

 $\sigma_{Residenza='TO' \vee Residenza='VC'}$ (pazienti)

Selezione dei pazienti con residenza a Torino ('TO') $\sigma_{Residenza='TO'}$ (pazienti)

Selezione dei pazienti residenti a Torino o a Vercelli ('VC') $\sigma_{Residenza='TO' \lor Residenza='VC'}$ (pazienti)

Selezione dei pazienti non residenti a Torino

Selezione dei pazienti con residenza a Torino ('TO') $\sigma_{Residenza='TO'}$ (pazienti)

Selezione dei pazienti residenti a Torino o a Vercelli ('VC')

σ_{Residenza='TO' ∨ Residenza='VC'} (pazienti)

Selezione dei pazienti non residenti a Torino $\sigma_{Residenza \neq 'TO'}$ (pazienti)

$\sigma_{Residenza='TO'}$ (pazienti)

COD	Cognome	Nome	Residenza	AnnoNascita
A102	Necchi	Luca	TO	1950
B543	Missoni	Nadia	TO	1960

$\sigma_{Residenza='TO' \ \lor Residenza='VC'}$ (pazienti)

COD	Cognome	Nome	Residenza	AnnoNascita
A102	Necchi	Luca	TO	1950
B543	Missoni	Nadia	TO	1960
B444	Missoni	Luigi	VC	2000

$\sigma_{\neg Residenza='TO'}$ (pazienti)

COD	Cognome	Nome	Residenza	AnnoNascita
B372	Rossigni	Piero	NO	1940
B444	Missoni	Luigi	VC	2000
S555	Rossetti	Gino	AT	2010

Cardinalità della selezione

La **cardinalità** della relazione virtuale prodotta dall'operazione di selezione $\sigma_p(r(A))$ è $0 \le |\sigma_p(r(A))| \le |r(A)|$

- La cardinalità è 0 (relazione vuota) se il predicato è falso per ogni tupla
- La cardinalità è |r(A)| se il predicato è vero per ogni tupla

$\sigma_{Residenza='CN'}$ (pazienti)

COD	Cognome	Nome	Residenza	AnnoNascita
	000			

σ_{AnnoNascita<2012} (pazienti)

COD	Cognome	Nome	Residenza	AnnoNascita
A102	Necchi	Luca	TO	1950
B372	Rossigni	Piero	NO	1940
B543	Missoni	Nadia	TO	1960
B444	Missoni	Luigi	VC	2000
S555	Rossetti	Gino	AT	2010

Operatore di proiezione

Data una relazione r(A) e un insieme di attributi A_i , A_j , ... A_k , tutti appartenenti ad A, l'operatore di proiezione

$$\pi_{A_i, A_i, \dots A_k}(r(A))$$

produce come risultato una relazione con

- schema: {A_i, A_i, ... A_k}
- istanza: tutte le tuple della relazione argomento, ma solo rispetto agli attributi A_i , A_i , ... A_k

Proiezione della relazione *pazienti* sull'attributo COD e sull'attributo Cognome

 $\pi_{COD,Cognome}(pazienti)$

<u>COD</u>	Cognome
A102	Necchi
B372	Rossigni
B543	Missoni
B444	Missoni
S555	Rossetti

Cardinalità della proiezione

A prima vista sembrerebbe che la cardinalità della proiezione sia uguale alla cardinalità della relazione argomento, ovvero $|\pi_{A_i, A_i, \dots A_k}(r(A))| = |r(A)|$

Invece, la cardinalità della proiezione
$$\pi_{A_i, A_j, \dots A_k}(r(A))$$
 è $0 \le |\pi_{A_i, A_j, \dots A_k}(r(A))| \le |r(A)|$

Proiezione della relazione *pazienti* sull'attributo Cognome

 $\pi_{Cognome}(pazienti)$

Cognome
Necchi
Rossigni
Missoni
Missoni
Rossetti
•

È una relazione valida?

Proiezione della relazione *pazienti* sull'attributo Cognome

Non è più una relazione valida nel modello relazionale teorico di Codd (infatti non è più un insieme)

Proiezione della relazione *pazienti* sull'attributo *Cognome*

 $\pi_{Cognome}(pazienti)$

Cognome
Necchi
Rossigni
Missoni
Rossetti

Il risultato è una istanza di relazione senza ripetizioni

Proprietà della proiezione

Se gli attributi proiettati A_i , A_j , ... A_k formano una **superchiave** della relazione argomento, allora

$$|\pi_{A_{i}, A_{j}, ..., A_{k}}(r(A))| = |r(A)|$$

Composizione di operatori

L'algebra relazionale è composizionale, ovvero si possono costruire espressioni di algebra relazionale componendo operatori

Elencare codice e nome dei pazienti residenti a Torino o a Vercelli

Ottenuti i pazienti residenti a Torino o Vercelli...

$$\sigma_{Residenza='TO' \vee Residenza='VC'}$$
 (pazienti)

 …la relazione virtuale prodotta dalla selezione può essere usata come argomento per la proiezione

Elencare codice e nome dei pazienti residenti a Torino o a Vercelli

Ottenuti i pazienti residenti a Torino o Vercelli...

 …la relazione virtuale prodotta dalla selezione può essere usata come argomento per la proiezione

$$\pi_{COD,Nome}(\sigma_{Residenza='TO' \vee Residenza='VC'}(pazienti))$$

Risultato della composizione

Il risultato di

 $\pi_{COD,Nome}(\sigma_{Residenza='TO'})$ è una relazione che ha:

- schema: quello della proiezione, ovvero {COD, Nome}
- istanza: solo le tuple che soddisfano il predicato di selezione Residenza='TO' v Residenza='VC'

COD	Nome
A102	Luca
B543	Nadia
B444	Luigi

Notazione ad albero sintattico

 $\pi_{COD,Nome}(\sigma_{Residenza='TO' \vee Residenza='VC'}(pazienti))$

Correttezza sintattica

Per verificare che l'espressione algebrica sia sintatticamente corretta bisogna verificare che gli operatori algebrici siano coerenti con gli argomenti

- σ_{Residenza='TO' ν Residenza='VC'} (pazienti) è corretta perché Residenza è un attributo della relazione pazienti
- $\pi_{COD,Nome}(\sigma_{Residenza='TO' \lor Residenza='VC'}(pazienti))$ è corretta perché gli attributi COD e Nome sono compresi nello schema restituito dalla selezione

Espressione non corretta

Invertendo i due operatori algebrici

$$\sigma_{Residenza='TO' \lor Residenza='VC'}(\pi_{COD,Nome}(pazienti))$$

l'espressione diventa sintatticamente scorretta perché la relazione virtuale prodotta dalla proiezione su pazienti non contiene l'attributo *Residenza*

Espressione corretta

Per renderla corretta, possiamo aggiungere l'attributo Residenza all'operatore di proiezione

 $\sigma_{Residenza='TO' \lor Residenza='VC'}(\pi_{COD,Nome,Residenza}(pazienti))$

Espressione corretta

Per ottenere il risultato precedente, possiamo aggiungere *un'ulteriore* proiezione su *COD* e *Nome*

```
\pi_{COD,Nome}(\sigma_{Residenza='TO' \lor Residenza='VC'}(\pi_{COD,Nome,Residenza}(pazienti)))
```

• È possibile scrivere qualsiasi combinazione di operatori, purché sintatticamente corretta

Operatori insiemistici

Operatore unione U

Operatore differenza –

Gli operatori insiemistici richiedono per definizione che gli schemi delle relazioni argomento siano identici

Operatori insiemistici

Il risultato dell'operatore insiemistico sulle relazioni argomento $r_1(A)$ e $r_2(A)$ è una relazione che ha:

schema: lo stesso schema A delle relazioni argomento

istanza:

- Unione: $r_1 \cup r_2$ (unione delle tuple di $r_1 \in r_2$)

- Differenza: $r_1 - r_2$ (insieme delle tuple contenute in r_1 che non sono contenute in r_2)

Cardinalità dell'unione

La cardinalità dell'unione $r_1(A) \cup r_2(A)$ è

$$max\{|r_1(A)|,|r_2(A)|\} \le |r_1(A) \cup r_2(A)| \le |r_1(A)| + |r_2(A)|$$

 Ovviamente, se ci sono delle tuple ripetute, la cardinalità è strettamente minore della somma delle cardinalità delle due relazioni

Esempio

Elencare cognomi e nomi di tutte le persone coinvolte nel DB "Ricoveri Ospedalieri" (quindi medici e pazienti)

 $\pi_{Cognome,Nome}(pazienti) \cup \pi_{Cognome,Nome}(medici)$

Cognome	Nome
Necchi	Luca
Rossigni	Piero
Missoni	Nadia
Missoni	Luigi
Rossetti	Gino

Cognome	Nome		
Neri	Piero		
Bisi	Mario		
Bargio	Sergio		
Belli	Nicola		
Mizzi	Nicola		
Monti	Mario		

Rappresentazione ad albero

Cardinalità della differenza

La cardinalità della differenza $r_1(A) - r_2(A)$ è

$$0 \le |r_1(A) - r_2(A)| \le |r_1(A)|$$

Esempio

Elencare le province di residenza dei medici in cui non risiede alcun paziente

$$\pi_{Residenza}(medici) - \pi_{Residenza}(pazienti)$$

Proprietà della differenza

Contrariamente all'unione, la differenza non gode della proprietà commutativa

$$\pi_{Residenza}(pazienti) - \pi_{Residenza}(medici)$$

Operatore intersezione

Esattamente come gli altri due operatori, è definito su relazioni aventi lo stesso schema. Il risultato dell'operatore intersezione $r_1(A) \cap r_2(A)$ è una relazione che ha

schema: lo stesso schema A delle relazioni argomento

• istanza: $r_1 \cap r_2$ (insieme delle tuple di r_1 contenute anche in r_2)

Derivazione dell'intersezione

L'operatore di intersezione insiemistica può essere derivato dall'operatore di differenza insiemistica:

$$r_1(A) \cap r_2(A) := r_1(A) - (r_1(A) - r_2(A))$$

Cardinalità dell'intersezione

La cardinalità dell'intersezione $r_1(A) \cap r_2(A)$ è $0 \le |r_1(A) \cap r_2(A)| \le min\{|r_1(A)|, |r_2(A)|\}$

Problemi con gli operatori insiemistici

Con gli operatori che abbiamo visto posso ottenere i medici che non sono primari?

Medici

- IIIOGIOI				
<u>MATR</u>	Cognome	Nome	e Residenza Re	
203	Neri	Piero	AL	Α
574	Bisi	Mario	MI	В
461	Bargio	Sergio	TO	В
530	Belli	Nicola	TO	С
405	Mizzi	Nicola	AT	R
501	Monti	Mario	VC	Α

Reparti

Nome-Rep	Primario
Chirurgia	203
Pediatria	574
Medicina	530
Lab-Analisi	530
Radiologia	405
	Chirurgia Pediatria Medicina Lab-Analisi

L'attributo Primario della relazione Reparti contiene la matricola (MATR) del medico che ha le funzioni di primario

Problemi con gli operatori insiemistici

Con gli operatori che abbiamo visto posso ottenere i medici che non sono primari?

Potrei usare la differenza insiemistica:

$$\pi_{MATR}(medici) - \pi_{Primario}(reparti)$$

 Ma l'interrogazione è sintatticamente scorretta: lo schema del primo argomento dell'operatore differenza è diverso dallo schema del secondo argomento (gli attributi hanno nome diverso)!

Operatore di ridenominazione

L'operatore di **ridenominazione** ha come argomento una relazione r(A).

Il suo compito è semplicemente quello di cambiare nome agli attributi (una parte o tutti) della relazione argomento

Operatore di ridenominazione

Data una relazione r(A), con $A = \{A_1, ..., A_i, ..., A_j, ..., A_k, ..., A_n\}$ il risultato della ridenominazione

$$\rho_{B_i,B_j,...,B_k} \leftarrow_{A_i,A_j,...A_k} (r)$$

è una nuova relazione **virtuale**(*) r'(A') con

- schema: $A' = \{A_1, ..., B_i, ..., B_j, ..., B_k, ..., A_n\}$ e
- istanza: r' = r (stesse tuple)

(*) cioè l'operatore **non modifica** la relazione originale nella base di dati, ma produce una nuova relazione con uno schema diverso

Esempio

Elencare i medici che non sono primari:

$$\pi_{MATR}(medici) - \rho_{MATR} \leftarrow Primario(\pi_{Primario}(reparti))$$

Rappresentazione ad albero

Elencare i codici dei pazienti che non sono mai stati ricoverati

Elencare i codici dei pazienti che non sono mai stati ricoverati

Suggerimento: potreste usare la differenza

Elencare i codici dei pazienti che non sono mai stati ricoverati

$$\pi_{COD}(pazienti) - \rho_{COD} \leftarrow PAZ(\pi_{PAZ}(ricoveri))$$

Elencare le città in cui risiedono sia medici che pazienti

Elencare le città in cui risiedono sia medici che pazienti

Suggerimento: potreste usare l'intersezione

Elencare le città in cui risiedono sia medici che pazienti

 $\pi_{Residenza}(medici) \cap \pi_{Residenza}(pazienti)$

Ridenominazione dell'intero schema

Data una relazione r con schema R(A), $A = \{A_1, ..., A_i, ..., A_j, ..., A_k, ..., A_n\}$ il risultato della ridenominazione dello schema

$$\rho_{R'(B_i,B_j,...,B_k)} \leftarrow_{R(A_i,A_j,...A_k)} (r)$$

è una relazione **virtuale**(*) con schema $R'(A_1,...,B_i,...,B_j,...,B_k,...,A_n)$

Esempio:

- $\rho_{UTENTI(CF,Provincia)} \leftarrow PAZIENTI(COD,Residenza)(pazienti)$
- Lo schema del risultato è UTENTI(CF, Cognome, Nome, Provincia, AnnoNascita)
- (gli attributi non ridenominati rimangono)

Prodotto cartesiano

Date due relazioni $r_1(A)$ e $r_2(B)$ con $A \cap B = \emptyset$ (i due schemi non hanno attributi in comune), il prodotto cartesiano

$$r_1(A) \times r_2(B)$$

produce come risultato una relazione r' con

- Schema: R' composto dall'unione degli schemi A U B
- Istanza: giustapposizione (combinazione) di tutte le tuple di $r_1(A)$ con tutte le tuple di $r_2(B)$.

Esempio

X

Α	В	С
a1	b1	c1
a2	b2	c2

Α	В	С	D	E
a1	b1	c1	d1	e1
a1	b1	c1	d2	e2
a1	b1	c1	d3	e3
a2	b2	c2	d1	e1
a2	b2	c2	d2	e2
a2	b2	c2	d3	e3

Esempio

D	E
d1	e1
d2	e2
d3	e3

D	Е	Α	В	С
d1	e1	a1	b1	c1
d1	e1	a2	b2	c2
d2	e2	a1	b1	c1
d2	e2	a2	b2	c2
d3	e3	a1	b1	c1
d3	e3	a2	b2	c2

Proprietà del prodotto cartesiano

Il prodotto cartesiano gode della proprietà commutativa

$$r_1(A) \times r_2(B) = r_2(B) \times r_1(A)$$

Infatti, ricordiamo che nella relazione di Codd:

- nello schema di una relazione non è importante l'ordine degli attributi
- nell'istanza di una relazione non è importante l'ordine delle tuple

Relazioni identiche

Α	В	С	D	E
a1	b1	c1	d1	e1
a1	b1	c1	d2	e2
a1	b1	c1	d3	e3
a2	b2	c2	d1	e1
a2	b2	c2	d2	e2
a2	b2	c2	d3	e3

D	E	А	В	С
d1	e1	a1	b1	c1
d1	e1	a2	b2	c2
d2	e2	a1	b1	c1
d2	e2	a2	b2	c2
d3	e3	a1	b1	c1
d3	e3	a2	b2	c2

Prodotto cartesiano

 Considereremo l'operatore di base prodotto cartesiano come un operatore «tecnico»

• Cioè non ha un'utilità pratica diretta, ma sarà utile nella definizione di altri operatori molto importanti

Cardinalità del prodotto cartesiano

La cardinalità del prodotto cartesiano $r_1(A) \times r_2(B)$ è

$$0 \le |r_1(A) \times r_2(B)| = |r_1(A)| \cdot |r_2(B)|$$

Infatti

- r₁ e r₂ sono insiemi di tuple, quindi le tuple sono tutte distinte
- giustapponendo tuple distinte con altre tuple distinte ottengo una relazione di tuple distinte

Operatore di ⊖-join: ⋈_⊖

Serve a costruire informazioni estratte da più relazioni

 Mette in correlazione informazioni di una relazione con informazioni di un'altra relazione

Esempi

 Come posso elencare tutte le informazioni dei pazienti ricoverati?

 Come posso elencare tutte le informazioni dei primari di reparto?

Esempio di risultato

PAZ	Inizio	Fine	Reparto	COD	Cognome	Nome	Residenza	AnnoNascita
A102	2/05/2014	9/05/2014	Α	A102	Necchi	Luca	TO	1950
A102	2/12/2004	2/01/2005	Α	A102	Necchi	Luca	ТО	1950
S555	5/10/2014	3/12/2014	В	S555	Rossetti	Gino	AT	2010
B444	1/12/2004	2/01/2005	В	B444	Missoni	Luigi	VC	2000
S555	6/09/2015	1/11/2015	Α	S555	Rossetti	Gino	AT	2010

Operatore di ⊖-join: ⋈_⊖

Date:

- due relazioni $r_1(A)$ e $r_2(B)$ con $A \cap B = \emptyset$ (i due schemi non hanno attributi in comune)
- una condizione (predicato) Θ di join
 (tipicamente Θ è una formula proposizionale con confronti tra attributi del tipo A_i φ B_j o confronti tra attributi e valori A_i φ costante dove φ = {<,>,=,≠,≤,≥})

il Θ-join (theta-join) è definito come

$$r_1(A) \bowtie_{\Theta} r_2(B) := \sigma_{\Theta}(r_1(A) \times r_2(B))$$

Esempio

Elencare tutte le informazioni sui pazienti ricoverati

Cosa produce il prodotto cartesiano tra ricoveri e pazienti?

Esempio

Il prodotto cartesiano produce tutte le combinazioni di tutte le tuple di *ricoveri* con tutte le tuple di *pazienti* tra cui, ad esempio, queste due:

PAZ	Inizio	Fine	Reparto	COD	Cognome	Nome	Residenza	AnnoNascita
•••	•••							
A102	2/05/2014	9/05/2014	А	S555	Rossetti	Gino	AT	2010
A102	2/05/2014	9/05/2014	Α	A102	Necchi	Luca	TO	1950
•••	•••			•••		•••	•••	

Solo un accoppiamento è però significativo!

Impongo che il valore di PAZ sia uguale al valore di COD

PAZ	Inizio	Fine	Reparto	COD	Cognome	Nome	Residenza	AnnoNascita
						•••		
A102	2/05/2014	9/05/2014	А	S555	Rossetti	Gino	AT	2010
A102	2/05/2014	9/05/2014	А	A102	Necchi	Luca	TO	1950

Di tutte le giustapposizioni, filtro solo quelle che soddisfano la condizione di join *PAZ=COD*

Elencare tutte le informazioni sui pazienti ricoverati

ricoveri $\bowtie_{PAZ=COD}$ pazienti equivalente a $\sigma_{PAZ=COD}$ (ricoveri \times pazienti)

N.B.: gli schemi PAZIENTI e RICOVERI sono disgiunti

Elencare le informazioni dei primari di ogni reparto

COD	Nome-Rep	Primario	MATR	Cognome	Nome	Residenza	Reparto
Α	Chirurgia	203	203	Neri	Piero	AL	Α
В	Pediatria	574	574	Bisi	Mario	MI	В
С	Medicina	530	530	Belli	Nicola	TO	С
L	Lab-Analisi	530	530	Belli	Nicola	TO	С
R	Radiologia	405	405	Mizzi	Nicola	AT	R

Esempio più complesso

Elenco dei reparti con le informazioni del primario solo nel caso in cui il primario afferisca al reparto che dirige

COD	Nome-Rep	Primario	MATR	Cognome	Nome	Residenza	Reparto
Α	Chirurgia	203	203	Neri	Piero	AL	Α
В	Pediatria	574	574	Bisi	Mario	MI	В
С	Medicina	530	530	Belli	Nicola	ТО	С
L	Lab-Analisi	530	530	Belli	Nicola	ТО	С
R	Radiologia	405	405	Mizzi	Nicola	AT	R

Esempio più complesso

Elenco dei reparti con le informazioni del primario solo nel caso in cui il primario afferisca al reparto che dirige

COD	Nome-Rep	Primario	MATR	Cognome	Nome	Residenza	Reparto
А	Chirurgia	203	203	Neri	Piero	AL	А
В	Pediatria	574	574	Bisi	Mario	MI	В
С	Medicina	530	530	Belli	Nicola	TO	С
R	Radiologia	405	405	Mizzi	Nicola	AT	R

Altro esempio

Elenco dei reparti abbinati ai dati dei rispettivi primari solo nel caso in cui il primario non vi afferisca

COD	Nome-Rep	Primario	MATR	Cognome	Nome	Residenza	Reparto
L	Lab-Analisi	530	530	Belli	Nicola	TO	С

Cardinalità del O-join

La cardinalità di $r_1(A) \bowtie_{\Theta} r_2(B)$ si calcola considerando la cardinalità di $\sigma_{\Theta}(r_1(A) \times r_2(B))$

$$0 \leq |\sigma_{\Theta}(r_1(A) \times r_2(B))| \leq |r_1(A) \times r_2(B)|$$

Ma sappiamo che $|r_1(A) \times r_2(B)| = |r_1(A)| \cdot |r_2(B)|$, quindi

$$0 \le |r_1(A)| \bowtie_{\Theta} r_2(B)| \le |r_1(A)| \cdot |r_2(B)|$$

N.B.: la cardinalità del Θ-join ha un intervallo molto ampio!

Proiezione e join

reparti ⋈_{Primario=MATR} medici

COD	Nome-Rep	Primario	MATR	Cognome	Nome	Residenza	Reparto
Α	Chirurgia	203	203	Neri	Piero	AL	А
В	Pediatria	574	574	Bisi	Mario	MI	В
С	Medicina	530	530	Belli	Nicola	TO	С
L	Lab-Analisi	530	530	Belli	Nicola	TO	С
R	Radiologia	405	405	Mizzi	Nicola	AT	R

Non è utile avere nel risultato due volte l'informazione sulla matricola del medico

Proiezione e join

Elenco solo codice e nome del reparto e cognome del primario

 $\pi_{COD,Nome-Rep,Cognome}$ (reparti $\bowtie_{Primario=MATR}$ medici)

COD	Nome-Rep	Cognome
Α	Chirurgia	Neri
В	Pediatria	Bisi
С	Medicina	Belli
L	Lab-Analisi	Belli
R	Radiologia	Mizzi

Join con schemi non disgiunti

Esempio: elencare i pazienti abbinati ai medici che risiedono nella stessa città

pazienti ⋈_{Residenza=Residenza} medici

C'è un'ambiguità sull'attributo residenza!

Posso però ridenominare gli attributi omonimi, ad esempio:

 $\rho_{CognomeP,NomeP,ResidenzaP} \leftarrow_{Cognome,Nome,Residenza} (pazienti)$

Join con schemi non disgiunti

Posso anche ridenominare gli attributi omonimi in medici, ad esempio:

 $\rho_{CognomeM,NomeM,ResidenzaM} \leftarrow_{Cognome,Nome,Residenza} (medici)$

Quindi ora posso scrivere:

 $\rho_{CognomeP,NomeP,ResidenzaP} \leftarrow_{Cognome,Nome,Residenza} (pazienti)$

⋈_{ResidenzaP=ResidenzaM}

 $\rho_{CognomeM,NomeM,ResidenzaM} \leftarrow_{Cognome,Nome,Residenza} (medici)$

Join con schemi non disgiunti

 $\rho_{CognomeP,NomeP,ResidenzaP} \leftarrow Cognome,Nome,Residenza(pazienti)$

⋈ ResidenzaP=ResidenzaM

 $\rho_{CognomeM,NomeM,ResidenzaM} \leftarrow_{Cognome,Nome,Residenza} (medici)$

COD	CognomeP	NomeP	ResidenzaP	AnnoNascita	MATR	CognomeM	NomeM	ResidenzaM	Reparto
A102	Necchi	Luca	TO	1950	461	Bargio	Sergio	TO	В
A102	Necchi	Luca	TO	1950	530	Belli	Nicola	TO	С
B543	Missoni	Nadia	TO	1960	461	Bargio	Sergio	TO	В
B543	Missoni	Nadia	TO	1960	530	Belli	Nicola	TO	С
B444	Missoni	Luigi	VC	2000	501	Monti	Mario	VC	A
S555	Rossetti	Gino	AT	2010	405	Mizzi	Nicola	AT	R

Join e selezione

Elencare i pazienti ricoverati in chirurgia

- il nome del reparto è contenuto in *reparti*
- il codice dei pazienti ricoverati è in *ricoveri*

$$\sigma_{Nome-Rep='Chirurgia'}$$
 (reparti $\bowtie_{COD=Reparto}$ ricoveri)

Posso limitare il numero di informazioni richieste

$$\pi_{PAZ,Inizio}(\sigma_{Nome-Rep='Chirurgia'}(reparti \bowtie_{COD=Reparto} ricoveri))$$

Join e selezione

 $\pi_{PAZ,Inizio}(\sigma_{Nome-Rep='Chirurgia'}(reparti \bowtie_{COD=Reparto} ricoveri))$

Join e selezione (alternativa)

Possiamo anticipare la selezione

 $\pi_{PAZ,Inizio}(\sigma_{Nome-Rep='Chirurgia'}(reparti) \bowtie_{COD=Reparto} ricoveri)$

Equivalenza delle espressioni

Le due espressioni

$$\pi_{PAZ,Inizio}(\sigma_{Nome-Rep='Chirurgia'}(reparti \bowtie_{COD=Reparto} ricoveri))$$

$$e$$
 $\pi_{PAZ,Inizio}(\sigma_{Nome-Rep='Chirurgia'}(reparti) \bowtie_{COD=Reparto} ricoveri)$

sono perfettamente equivalenti!

Quali medici hanno avuto in cura il paziente Luigi Missoni?

 Per conoscere i dati del paziente ho bisogno della relazione pazienti...

 $\sigma_{Cognome='Missoni'\land Nome='Luigi'}$ (pazienti)

Quali medici hanno avuto in cura il paziente Luigi Missoni?

 ... per sapere dove è stato ricoverato ho bisogno della relazione ricoveri...

 $\sigma_{Cognome='Missoni' \land Nome='Luigi'}(pazienti) \bowtie_{COD=PAZ} ricoveri$

Quali medici hanno avuto in cura il paziente Luigi Missoni?

- ... per conoscere i medici afferenti al reparto ho bisogno della relazione *medici...*
- La relazione *medici* ha **molti attributi con lo stesso nome** di attributi della relazione virtuale prodotta da:

 $\sigma_{Cognome='Missoni' \land Nome='Luigi'}(pazienti) \bowtie_{COD=PAZ} ricoveri$

Quali medici hanno avuto in cura il paziente Luigi Missoni?

• ... ridenomino gli attributi di medici...

 $\rho_{CM,NM,RM,Rep} \leftarrow Cognome,Nome,Residenza,Reparto(medici)$

Quali medici hanno avuto in cura il paziente Luigi Missoni?

• ... ora posso mettere in join le due espressioni...

```
(\sigma_{Cognome='Missoni' \land Nome='Luigi'}(pazienti) \bowtie_{COD=PAZ} ricoveri)
\bowtie_{Reparto=Rep}
\rho_{CM,NM,RM,Rep} \leftarrow_{Cognome,Nome,Residenza,Reparto}(medici)
```

Quali medici hanno avuto in cura il paziente Luigi Missoni?

 ... infine, proietto sui dati che mi interessano, ad esempio:

```
\pi_{COD,AnnoNascita,CM,NM}((\sigma_{Cognome='Missoni'\land Nome='Luigi'}(pazienti))
\bowtie_{COD=PAZ} ricoveri) \bowtie_{Reparto=Rep}
\rho_{CM,NM,RM,Rep} \leftarrow_{Cognome,Nome,Residenza,Reparto}(medici))
```

```
\pi_{COD,AnnoNascita,CM,NM} ((\sigma_{Cognome='Missoni' \land Nome='Luigi'} (pazienti)
                    \bowtie_{COD=PAZ} ricoveri) \bowtie_{Reparto=Rep}
      \rho_{CM,NM,RM,Rep} \leftarrow Cognome,Nome,Residenza,Reparto (medici))
```


Semplificazione della ridenominazione

- L'operatore di ridenominazione appesantisce la lettura delle espressioni algebriche
- Quando ho attributi con lo stesso nome in relazioni diverse, posso disambiguare il nome dell'attributo specificando la relazione a cui appartiene utilizzando la dot-notation:

```
\pi_{COD,AnnoNascita,MEDICI.Cognome,MEDICI.Nome}
((\sigma_{Cognome='Missoni'\land Nome='Luigi'}(pazienti) \bowtie_{COD=PAZ} ricoveri)
\bowtie_{RICOVERI.Reparto=MEDICI.Reparto}(medici))
```

Ridenominazione e dot-notation

In pratica si sottintende un'operazione del tipo:

 $\rho_{MEDICI.Cognome,MEDICI.Nome,MEDICI.Residenza,MEDICI.Reparto} \leftarrow cognome,Nome,Residenza,Reparto (medici)$

Esercizio

Trovare cognome e nome del primario del reparto in cui è stato ricoverato il paziente Luigi Missoni

Esercizio

Trovare cognome e nome del primario del reparto in cui è stato ricoverato il paziente Luigi Missoni

```
\pi_{MEDICI.Cognome, MEDICI.Nome}
(((\sigma_{Cognome='Missoni' \land Nome='Luigi'}(pazienti) \bowtie_{PAZIENTI.COD=PAZ} ricoveri) \bowtie_{Reparto=REPARTI.COD} reparti) \bowtie_{Primario=MATR} medici)
```

Esercizio

Trovare cognome e nome del primario del reparto in cui è stato ricoverato il paziente Luigi Missoni

Esercizio (soluzione alternativa)

Trovare cognome e nome del primario del reparto in cui è stato ricoverato il paziente Luigi Missoni

Interrogazioni con aggregazioni

- Non vedremo operatori in algebra relazionale che effettuano aggregazioni (ad es. conteggi: quante volte sono stati ricoverati i pazienti?)
- In SQL sono possibili attraverso operatori specifici

- Vediamo che si può comunque rispondere in algebra relazionale a domande del tipo:
 - Elencare i pazienti che hanno avuto due o più ricoveri

Elencare i pazienti che hanno avuto due o più ricoveri

Intuizione: se un paziente è stato ricoverato più volte, sarà presente più volte nella relazione *ricoveri* con date di inizio ricovero diverse

Come confrontiamo tuple della stessa relazione?

Elencare i pazienti che hanno avuto due o più ricoveri

Posso mettere la relazione ricoveri in join con se stessa $ricoveri \bowtie_{\Theta} ricoveri$

Ma devo prima ridenominare tutti gli attributi!

 $\rho_{PAZ1,Inizio1,Fine1,Reparto1} \leftarrow_{PAZ,Inizio,Fine,Reparto}(ricoveri) \bowtie_{\Theta}$ $\rho_{PAZ2,Inizio2,Fine2,Reparto2} \leftarrow_{PAZ,Inizio,Fine,Reparto}(ricoveri)$

Elencare i pazienti che hanno avuto due o più ricoveri

Posso ora esplicitare il O

 $\rho_{PAZ1,Inizio1,Fine1,Reparto1} \leftarrow_{PAZ,Inizio,Fine,Reparto} (ricoveri)$

M_{PAZ1=PAZ2 ∧ Inizio1≠Inizio2}

 $\rho_{PAZ2,Inizio2,Fine2,Reparto2} \leftarrow_{PAZ,Inizio,Fine,Reparto} (ricoveri)$

Elencare i pazienti che hanno avuto due o più ricoveri

 $\rho_{PAZ1,Inizio1,Fine1,Reparto1} \leftarrow_{PAZ,Inizio,Fine,Reparto} (ricoveri)$

M_{PAZ1=PAZ2 ∧ Inizio1≠Inizio2}

 $\rho_{PAZ2,Inizio2,Fine2,Reparto2} \leftarrow_{PAZ,Inizio,Fine,Reparto} (ricoveri)$

PAZ1	Inizio1	Fine1	Reparto1	PAZ2	Inizio2	Fine2	Reparto2
A102	2/05/2014	9/05/2014	A	A102	2/12/2004	2/01/2005	A
A102	2/12/2004	2/01/2005	А	A102	2/05/2014	9/05/2014	A
S555	5/10/2014	3/12/2014	В	S555	6/09/2015	1/11/2015	А
S555	6/09/2015	1/11/2015	Α	S555	5/10/2014	3/12/2014	В

Esempio (raffinamento)

Elencare i pazienti che hanno avuto due o più ricoveri

 $\rho_{PAZ1,Inizio1,Fine1,Reparto1} \leftarrow_{PAZ,Inizio,Fine,Reparto} (ricoveri)$

 $\rho_{PAZ2,Inizio2,Fine2,Reparto2} \leftarrow_{PAZ,Inizio,Fine,Reparto} (ricoveri)$

PAZ1	Inizio1	Fine1	Reparto1	PAZ2	Inizio2	Fine2	Reparto2
A102	2/12/2004	2/01/2005	Α	A102	2/05/2014	9/05/2014	Α
S555	5/10/2014	3/12/2014	В	S555	6/09/2015	1/11/2015	А

Esempio (ridenominazione dello schema)

Elencare i pazienti che hanno avuto due o più ricoveri

 $\rho_{RICOVERI1} \leftarrow_{RICOVERI} (ricoveri)$

 $\bowtie_{\mathsf{RICOVERI1.PAZ}=\mathsf{RICOVERI2.PAZ} \land \mathsf{RICOVERI1.Inizio} < \mathsf{RICOVERI2.Inizio}$

Elencare cognome e nome dei pazienti ricoverati più di una volta

Elencare cognome e nome dei pazienti ricoverati più di una volta

• • •

 $\rho_{RICOVERI1} \leftarrow_{RICOVERI} (ricoveri)$

RICOVERI1.PAZ=RICOVERI2.PAZ \(\times\) RICOVERI1.Inizio<\(\text{RICOVERI2.Inizio}\)

 $\rho_{RICOVERI2} \leftarrow_{RICOVERI} (ricoveri)$

• • •

Elencare cognome e nome dei pazienti ricoverati più di una volta

 $\pi_{\mathsf{Cognome},\mathsf{Nome}}$

 $(((\rho_{RICOVERI1} \leftarrow_{RICOVERI}(ricoveri))))$

RICOVERI1.PAZ=RICOVERI2.PAZ \(\triangle\) RICOVERI1.Inizio<RICOVERI2.Inizio

 $\rho_{RICOVERI2} \leftarrow_{RICOVERI} (ricoveri))$

⋈_{RICOVERI1.PAZ=PAZIENTI.COD} pazienti))

Elencare nome e cognome dei pazienti residenti in città in cui risiede almeno un medico

Elencare nome e cognome dei pazienti residenti in città in cui risiede almeno un medico

 Suggerimento: posso sfruttare un join tra pazienti e medici

Elencare nome e cognome dei pazienti residenti in città in cui risiede almeno un medico

 $\pi_{\mathsf{PAZIENTI}.\mathsf{Nome},\mathsf{PAZIENTI}.\mathsf{Cognome}}$

(pazienti ⋈_{PAZIENTI.Residenza=MEDICI.Residenza} medici)

Base di Dati "Impiegati"

impiegati

mipiogati				
MATR	Cognome	Nome	Età	Stipendio
203	Neri	Piero	50	40
574	Bisi	Mario	60	60
461	Bargio	Sergio	30	61
530	Belli	Nicola	40	38
405	Mizzi	Nicola	55	60
501	Monti	Mario	25	35

IMPIEGATI(MATR, Cognome, Nome, Età, Stipendio)

ORGANIGRAMMA(Capo,Impiegato)

organigramma

organigramma				
Саро	Impiegato			
203	405			
203	501			
574	203			
574	530			
405	461			

Elencare i capi che guadagnano meno di almeno uno dei loro subalterni...

Elencare i capi che guadagnano meno di almeno uno dei loro subalterni...

- occorre mettere in join la relazione impiegati con organigramma per conoscere lo stipendio dei capi
- per conoscere lo stipendio dei subalterni devo mettere in join un'altra volta la relazione impiegati

Elencare i capi che guadagnano meno di almeno uno dei loro subalterni...

1) Dovendo usare due volte la relazione impiegati, devo ridenominarla:

 $\rho_{CAPI} \leftarrow IMPIEGATI$ (impiegati)

Elencare i capi che guadagnano meno di almeno uno dei loro subalterni...

2) occorre mettere in join la relazione *impiegati* con *organigramma* per conoscere lo stipendio dei capi

 $\rho_{CAPI \leftarrow IMPIEGATI}$ (impiegati) $\bowtie_{CAPI.MATR = CAPO}$ organigramma

Elencare i capi che guadagnano meno di almeno uno dei loro subalterni...

3) per conoscere lo stipendio dei subalterni devo mettere in join un'altra volta la relazione *impiegati*

 $(\rho_{CAPI} \leftarrow_{IMPIEGATI} (impiegati) \bowtie_{CAPI.MATR = CAPO} organigramma)$

M_{IMPIEGATO = IMPIEGATI.MATR} impiegati

Elencare i capi che guadagnano meno di almeno uno dei loro subalterni...

4) Imponiamo ora che lo stipendio del capo sia inferiore dello stipendio del subalterno

 $\sigma_{CAPI.Stipendio < IMPIEGATI.Stipendio}((\rho_{CAPI} \leftarrow_{IMPIEGATI}(impiegati)))$

 $\bowtie_{\mathsf{CAPI}.\mathsf{MATR} = \mathsf{Capo}} \mathit{organigramma}$

M_{Impiegato = IMPIEGATI.MATR} impiegati)

Elencare i capi che guadagnano meno di almeno uno dei loro subalterni...

5) proiettiamo solo le informazioni necessarie

 $\pi_{\mathit{CAPI.Cognome,CAPI.Nome}}(\sigma_{\mathit{CAPI.Stipendio} < \mathit{IMPIEGATI.Stipendio}})$

 $((\rho_{CAPI} \leftarrow_{IMPIEGATI}(impiegati) \bowtie_{CAPI.MATR = Capo} organigramma)$

M_{Impiegato = IMPIEGATI.MATR} impiegati)

Esempio (albero sintattico)

 $\pi_{\mathit{CAPI.Cognome},\mathit{CAPI.Nome}}(\sigma_{\mathit{CAPI.Stipendio}<\mathit{IMPIEGATI.Stipendio}})$ $((\rho_{CAPI} \leftarrow_{IMPIEGATI}(impiegati) \bowtie_{CAPI,MATR = Capo} organigramma)$ ≈_{Impiegato = IMPIEGATI.MATR} impiegati) π CAPI.Cognome,CAPI.Nome σ_{CAPI}.Stipendio<IMPIEGATI.Stipendio ™Impiegato=IMPIEGATI.MATR impiegati $\bowtie_{CAPI.MATR=CAPO}$ organigramma PCAPI ~IMPIEGATI impiegati

Casi particolari di join

Ricordiamo la cardinalità del Θ-join

$$0 \le |r_1(A)| \bowtie_{\Theta} r_2(B)| \le |r_1(A)| \cdot |r_2(B)|$$

In alcuni casi si può cercare di essere **più precisi** sull'intervallo della cardinalità **restringendo il predicato O a casi particolari**

Equi-join: Θ_e-join

L'Equi-join è un caso particolare del Θ-join in cui i confronti sono solo uguaglianze.

Date $r_1(A)$ e $r_2(B)$ la condizione (predicato) di join Θ_e è da intendersi come una **congiunzione di uguaglianze del tipo** $A_i = B_i$ (o $A_i = costante$).

L'equi-join (Θ_e -join) si rappresenta come

$$r_1(A) \bowtie_{\Theta_e} r_2(B)$$

$$\Theta_e := A_{i1} = B_{i1} \land A_{i2} = B_{i2} \dots \land A_{in} = B_{in}$$

Equi-join: Θ_e-join

Per semplicità consideriamo un solo predicato atomico $r_1(A) \bowtie_{Ai=Bj} r_2(B)$

A seconda del numero di tuple in r_2 che troviamo per ogni tupla di r_1 , possiamo individuare due casi particolari:

Caso 1: per ogni tupla di r₁ abbiamo *al più una* tupla in r₂

Caso 2: per ogni tupla di r_1 abbiamo *esattamente una* tupla in r_2

Casi particolari

$$r_1(A) \bowtie_{Ai=Bj} r_2(B)$$

Caso 1 («al più una»)

- Assumiamo che B_i sia la chiave primaria di $r_2(B)$
- Non facciamo nessuna assunzione su A (per es. potrebbero non esserci vincoli di integrità referenziale)

Per ogni tupla di r_1 , si troverà al più una corrispondenza con r_2 : se ci fossero più corrispondenze sarebbe violato il vincolo di chiave primaria!

Quindi:

$$0 \le |r_1(A)| \bowtie_{\Theta_e} r_2(B)| \le |r_1(A)|$$

Casi particolari

$$r_1(A) \bowtie_{Ai=Bj} r_2(B)$$

Caso 2 («esattamente una»)

- Assumiamo che B_i sia la chiave primaria di $r_2(B)$
- Inoltre assumiamo che esista un vincolo di integrità referenziale tra A e B («r(A_i) referenzia r(B_j)»). Formalmente $\forall t_i \in r_1 \ (\exists t_i \in r_2 \ (t_i[A_i] = t_i[B_i]))$

In questo caso, ogni tupla di r_1 troverà **esattamente una corrispondenza in** r_2

$$|r_1(A)| \bowtie_{\Theta_e} r_2(B)| = |r_1(A)|$$

Quante tuple genera l'equi-join ricoveri ⋈_{PAZ=COD} pazienti?

Quante tuple genera l'equi-join ricoveri ⋈_{PA7=COD} pazienti?

In *ricoveri* $\bowtie_{PAZ=COD}$ *pazienti* la condizione coinvolge la chiave primaria di pazienti ed esiste un vincolo di integrità referenziale tra ricoveri e pazienti.

Quindi per ogni tupla di ricoveri esiste una e una sola tupla di pazienti che rispetta la condizione.

Quindi

|ricoveri ⋈_{PAZ=COD} pazienti|=|ricoveri|

Natural join

Cambiamo leggermente il database RICOVERI dando nomi uguali agli attributi che rappresentano lo stesso concetto

pazienti

COD	Cognome	Nome	Residenza	AnnoNascita
A102	Necchi	Luca	TO	1950
B372	Rossigni	Piero	NO	1940
B543	Missoni	Nadia	TO	1960
B444	Missoni	Luigi	VC	2000
S555	Rossetti	Gino	AT	2010

K 0	_	- ~4	i
re	Νč	art	ı

Rep	Nome-Rep	MATR
A	Chirurgia	203
В	Pediatria	574
С	Medicina	530
L	Lab-Analisi	530
R	Radiologia	405

ricoveri

COD	Inizio	Fine	Rep
A102	2/05/2014	9/05/2014	Ä
A102	2/12/2004	2/01/2005	Α
S555	5/10/2014	3/12/2014	В
B444	1/12/2004	2/01/2005	В
S555	6/09/2015	1/11/2015	A

medici

Cognome	Nome	Residenza	Rep
Neri	Piero	AL	A
Bisi	Mario	MI	В
Bargio	Sergio	TO	В
Belli	Nicola	ТО	С
Mizzi	Nicola	AT	R
Monti	Mario	VC	A
	Neri Bisi Bargio Belli Mizzi	Neri Piero Bisi Mario Bargio Sergio Belli Nicola Mizzi Nicola	Neri Piero AL Bisi Mario MI Bargio Sergio TO Belli Nicola TO Mizzi Nicola AT

Natural join

Date:

• due relazioni $r_1(A)$ e $r_2(B)$ con $A = X \cup Y \in B = X \cup Z$ ($X, Y \in Z$ sono insiemi disgiunti di attributi, quindi $A \cap B = X$),

il **natural join** è definito come

$$r_1(A)\bowtie r_2(B):=\pi_{R1.X,Y,Z}(\rho_{R1.X})\bowtie_{\Theta_e}\rho_{R2.X}(r_2)$$
dove

$$\Theta_e := (R1.X_1 = R2.X_1) \land ... \land (R1.X_k = R2.X_k)$$

ricoveri ⋈ pazienti

COD	Inizio	Fine	Rep	Cognome	Nome	Residenza	AnnoNascita
A102	2/05/2014	9/05/2014	Α	Necchi	Luca	TO	1950
A102	2/12/2004	2/01/2005	Α	Necchi	Luca	TO	1950
S555	5/10/2014	3/12/2014	В	Rossetti	Gino	AT	2010
B444	1/12/2004	2/01/2005	В	Missoni	Luigi	VC	2000
S555	6/09/2015	1/11/2015	А	Rossetti	Gino	AT	2010

ricoveri ⋈ reparti

COD	Inizio	Fine	Rep	Nome-Rep	MATR
A102	2/05/2014	9/05/2014	Α	Chirurgia	203
A102	2/12/2004	2/01/2005	А	Chirurgia	203
S555	5/10/2014	3/12/2014	В	Pediatria	574
B444	1/12/2004	2/01/2005	В	Pediatria	574
S555	6/09/2015	1/11/2015	Α	Chirurgia	203

ricoveri ≈ pazienti ≈ reparti

COD	Inizio	Fine	Rep	Cognome	Nome	Residenza	AnnoNascita	Nome-Rep	MATR
A102	2/05/2014	9/05/2014	Α	Necchi	Luca	TO	1950	Chirurgia	203
A102	2/12/2004	2/01/2005	Α	Necchi	Luca	TO	1950	Chirurgia	203
S555	5/10/2014	3/12/2014	В	Rossetti	Gino	AT	2010	Pediatria	574
B444	1/12/2004	2/01/2005	В	Missoni	Luigi	VC	2000	Pediatria	574
S555	6/09/2015	1/11/2015	Α	Rossetti	Gino	AT	2010	Chirurgia	203

Uso corretto del natural join

reparti ⋈ medici

reparti

<u>Rep</u>	Nome-Rep	MATR
Α	Chirurgia	203
В	Pediatria	574
С	Medicina	530
L	Lab-Analisi	530
R	Radiologia	405

medici

MATR	Cognome	Nome	Residenza	Rep
203	Neri	Piero	AL	Α
574	Bisi	Mario	MI	В
461	Bargio	Sergio	ТО	В
530	Belli	Nicola	ТО	С
405	Mizzi	Nicola	AT	R
501	Monti	Mario	VC	A

Vengono messi in uguaglianza **tutti** gli attributi omonimi. Quindi a quale interrogazione sto rispondendo?

Uso corretto del natural join

reparti ⋈ medici

reparti

<u>Rep</u>	Nome-Rep	MATR
Α	Chirurgia	203
В	Pediatria	574
С	Medicina	530
L	Lab-Analisi	530
R	Radiologia	405

medici

MATR	Cognome	Nome	Residenza	Rep
203	Neri	Piero	AL	Α
574	Bisi	Mario	MI	В
461	Bargio	Sergio	TO	В
530	Belli	Nicola	TO	С
405	Mizzi	Nicola	AT	R
501	Monti	Mario	VC	Α

Vengono messi in uguaglianza **tutti** gli attributi omonimi. Quindi a quale interrogazione sto rispondendo?

π_{Rep,Nome-Rep,MATR,Cognome,Nome,Residenza}
(reparti ⋈_{REPARTI.Rep=MEDICI.Rep∧REPARTI.MATR=MEDICI.MATR} medici)

Ricavo i medici che sono primari del reparto cui afferiscono

Uso corretto del natural join

Usare con cautela!

Casi limite del natural join

Se $A \in B$ sono due schemi disgiunti, cioè $A \cap B = \emptyset$, il natural join diventa equivalente al prodotto cartesiano

$$r_1(A) \bowtie r_2(B) = r_1(A) \times r_2(B)$$

Possiamo immaginarlo come un equi-join senza alcun attributo su cui verificare l'uguaglianza (cioè Θ_e è sempre vera)

Casi limite del natural join

Date due relazioni r_1 e r_2 definite sullo stesso schema A, a cosa corrisponde $r_1(A) \bowtie r_2(A)$?

Casi limite del natural join

Date due relazioni r_1 e r_2 definite sullo stesso schema A, a cosa corrisponde $r_1(A) \bowtie r_2(A)$?

Possiamo immaginarlo come un equi-join su tutti gli attributi, quindi prendiamo le tuple uguali su tutti gli attributi in r_1 e r2, quindi $r_1(A) \bowtie r_2(A) = r_1(A) \cap r_2(A)$

Semi-join: ⋉_Θ

Date due relazioni $r_1(A)$ e $r_2(B)$, definiamo il semi-join come

$$r_1(A) \bowtie_{\Theta} r_2(B) := \pi_A(r_1(A) \bowtie_{\Theta} r_2(B))$$

L'operatore di semi-join funziona come un filtro sulla prima relazione sfruttando la seconda relazione

Elencare tutti i dati dei primari

π_{MATR,Cognome,Nome,Residenza,Reparto}
(medici ⋈_{MATR=Primario} reparti)

Seleziono solo i medici che sono anche primari, equivalente a:

medici ⋉_{MATR=Primario} reparti

Elencare tutti i dati dei pazienti ricoverati in chirurgia

```
\pi_{pazienti.COD,Cognome,Nome,Residenza,AnnoNascita} ((pazienti <math>\bowtie_{COD=PAZ} ricoveri)
\bowtie_{Reparto=REPARTI.COD} (\sigma_{Nome-Rep='Chirurgia'}(reparti)))
```

equivalente a:

```
pazienti \Join_{COD=PAZ}
(ricoveri \Join_{Reparto=REPARTI.COD} (\sigma_{Nome-Rep='Chirurgia'}(reparti)))
```

Cardinalità del semi-join

$$|r_1(A)| \approx_{\Theta} r_2(B)| = |\pi_A(r_1(A))| \approx_{\Theta} r_2(B)|$$

La cardinalità del semi-join è uguale alla cardinalità della proiezione sullo schema *A*, quindi al massimo alla cardinalità della relazione costruita su *A*

$$0 \le |\pi_A(r_1(A))| \le |r_1(A)|$$

quindi:

$$0 \le |r_1(A)| \ltimes_{\Theta} r_2(B)| \le |r_1(A)|$$