Building U-boot for pandaboard

- Export Cross-compiler path for Cortex-A9
 - PATH=\$PATH:\$(PATH_OF_CORTEX-A9)
- Configure u-boot for pandaboard
 - veda@linux # make omap4_panda_config
- Building u-boot for pandaboard
 - veda@linux # make CROSS_COMPILE=arm-linux-
- After a successful compilation, you should get the following U-Boot images.
 - 1. **MLO**
 - 2. u-boot.img

Building Linux Kernel for pandaboard

- Export Cross-compiler path for Cortex-A9
 - PATH=\$PATH:\$(PATH OF CORTEX-A9)
- Configure Linux kernel for pandaboard
 - veda@linux # make ARCH=arm omap2plus_defconfig
- Building Linux Kernel for pandaboard
 - make ARCH=arm CROSS_COMPILE= \$(CROSS_PATH) uImage LOADADDR=0x80008000
 - make ARCH=arm CROSS_COMPILE=\$(CROSS_PATH) modules
 - make ARCH=arm CROSS_COMPILE=\$(CROSS_PATH) modules_install INSTALL MOD PATH=\$(PANDABOARD ROOTFS PATH)
 - make ARCH=arm CROSS_COMPILE=\$(CROSS_PATH) omap4-panda-es.dtb

Rootfs for pandaboard

- vim etc
 - # Startup the system
 - null::sysinit:/etc/init.d/rcS
 - # Start shell on serial
 - ttyO2::respawn:-/bin/sh
 - # Stuff to do before rebooting
 - null::shutdown:/bin/umount -a -r

Booting pandaboard

- Create 2 partions on SD card (BOOT, ROOTFS)

BOOT partion should be fat32

ROOTFS partion can be any linux filesystem

- Copy following file to BOOT Partition

cp MLO u-boot.img uImage omap4-panda-es.dtb

- Create uEnv.txt in BOOT partition

vim uEnv.txt

bootargs=root=/dev/mmcblk0p2 console=ttyO2,115200 bootcmd=mmc rescan; setenv bootargs \${bootargs};fatload mmc 0:1 0x81000000 uImage; fatload mmc 0:1 0x82000000 omap4-panda-es.dtb; bootm 0x81000000 - 0x82000000 uenvcmd=boot

- Copy pandaboard rootfs to ROOTFS partition
- Boot pandaboard with SD Card