

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 May 2003 (15.05.2003)

PCT

(10) International Publication Number
WO 03/040306 A2

(51) International Patent Classification⁷: C12N Christchurch (NZ). HALL, Claire [GB/NZ]; 2/56 Rukutai Street, Orakei, Auckland (NZ).

(21) International Application Number: PCT/NZ02/00239

(74) Agent: BALDWIN SHELSTON WATERS; P.O. Box 852, Wellington (NZ).

(22) International Filing Date:
7 November 2002 (07.11.2002)

(81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/337,703 7 November 2001 (07.11.2001) US

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicants (for all designated States except US): GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMITED [NZ/NZ]; 1 Fox Street, Parnell, Auckland (NZ). WRIGHTSON SEEDS LIMITED [NZ/NZ]; 14 Hartham Place, P.O. Box 50240, Porirua (NZ).

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): DEMMER, Jeroen [NL/NZ]; 59 Merriefield Avenue, Forrest Hill, Auckland (NZ). FORSTER, Richard, L. [NZ/NZ]; 36 Windermere Crescent, Blockhouse Bay, Auckland (NZ). GIBSON, John, Bryan [AU/AU]; 28 Rodway Street, Yarralumla, Canberra, ACT 2600 (AU). SHENK, Michael, Andrew [US/NZ]; 39 Cape Horn Road, Waikowhai, Auckland (NZ). NORRISS, Michael, Geoffrey [NZ/NZ]; 16 Ilam Road, Riccarton, Christchurch (NZ). GLENN, Matthew [GB/NZ]; 14 Waimarie Road, Whenuapai, Auckland (NZ). SAULSBURY, Keith, Martin [NZ/NZ]; 8 Samuel Street,

WO 03/040306 A2

(54) Title: COMPOSITIONS FROM THE GRASSES *LOLIUM PERENNE* AND *FESTUCA ARUNDINACEA*

(57) Abstract: Isolated polynucleotides encoding polypeptides from *Lolium perenne* and *Festuca arundinacea* active in lignin, fructan and tannin biosynthetic pathways are provided, together with expression vector and host cells comprising such isolated polynucleotides. Methods for the use of such polynucleotides and polypeptides are also provided.

Compositions from the grasses *Lolium perenne* and *Festuca arundinacea*.

COMPOSITIONS ISOLATED FROM FORAGE GRASSES AND METHODS FOR THEIR USE

Reference to Related Applications

This application claims priority to U.S. Provisional Patent Application No. 60/337,703 filed November 7, 2001.

10

Technical Field of the Invention

This invention relates to polynucleotides isolated from forage grass tissues, specifically from *Lolium perenne* (perennial ryegrass) and *Festuca arundinacea* (tall fescue), as well as oligonucleotide probes and primers, genetic constructs comprising the polynucleotides, biological materials (including host cells and plants) incorporating the polynucleotides, polypeptides encoded by the polynucleotides, and methods for using the polynucleotides and polypeptides. More particularly, the invention relates to polypeptides involved in the lignin, tannin and fructan biosynthetic pathways, and to polynucleotides encoding such polypeptides.

20

Background of the Invention

Over the past 50 years, there have been substantial improvements in the genetic production potential of ruminant animals (sheep, cattle and deer). Levels of meat, milk or fiber production that equal an animal's genetic potential may be attained within controlled feeding systems, where animals are fully fed with energy dense, conserved forages and grains. However, the majority of temperate farming systems worldwide rely on the *in situ* grazing of pastures. Nutritional constraints associated with temperate pastures can prevent the full expression of an animal's genetic potential. This is illustrated by a comparison between milk production by North American grain-fed dairy cows and New Zealand pasture-fed cattle. North American dairy cattle produce, on average, twice the milk volume of New Zealand cattle, yet the genetic base is similar within both systems (New Zealand Dairy Board and United States Department of Agriculture figures). Significant potential therefore exists

to improve the efficiency of conversion of pasture nutrients to animal products through the correction of nutritional constraints associated with pastures.

Lignin Biosynthetic Pathway

5 Lignin is an insoluble polymer that serves as a matrix around the polysaccharide components of some plant cell walls, and that is primarily responsible for the rigidity of plant stems. Generally, the higher the lignin content, the more rigid the plant. For example, tree species synthesize large quantities of lignin, with lignin constituting 20%-30% of the dry weight of wood. The lignin content of grasses ranges from 2-8% of dry weight and changes
10 during the growing season. In addition to providing rigidity, lignin aids in water transport within plants by rendering cell walls hydrophobic and water impermeable. Lignin also plays a role in disease resistance of plants by impeding the penetration and propagation of pathogenic agents.

15 Forage digestibility is affected by both lignin composition and concentration. Lignin is largely responsible for the digestibility, or lack thereof, of forage crops, with small increases in plant lignin content resulting in relatively high decreases (> 10%) in digestibility (Buxton and Russell, *Crop. Sci.* 28:5358-558, 1988). For example, crops with reduced lignin content provide more efficient forage for cattle, with the yield of milk and meat being higher relative to the amount of forage crop consumed. During normal plant growth, an increase in
20 the maturity of the plant stem is accompanied by a corresponding increase in lignin content and composition that causes a decrease in digestibility. This change in lignin composition is to one of increasing syringyl:guaiacyl (S:G) ratio. When deciding on the optimum time to harvest forage crops, farmers must therefore choose between a high yield of less digestible material and a lower yield of more digestible material.

25 Lignin is formed by polymerization of three different monolignols, *para*-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, that are synthesized in a multistep pathway, with each step in the pathway being catalyzed by a different enzyme. The three monolignols are derived from phenylalanine or tyrosine in a multistep process and are then polymerized into lignin by a free radical mechanism. Following polymerization, *para*-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol are converted into the *p*-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of lignin, respectively. While these three types of lignin subunits

are well known, it is likely that slightly different variants of these subunits may be involved in the lignin biosynthetic pathway in various plants. For example, studies suggest that both free monolignols and monolignol-4-coumarate esters may be substrates for lignin formation in grasses. The relative concentration of the monolignol residues in lignin varies among 5 different plant species and within species. For example, the monolignol content for H/G/S of grasses, alfalfa and softwood gymnosperms is 22%/44%/34%, 7%/39%/54% and 14%/80%/6%, respectively (van Soest in "Nutritional Ecology of the Ruminant". Cornell University Press, Ithaca, NY). The composition of lignin may also vary among different tissues within a specific plant.

10 Coniferyl alcohol, *para*-coumaryl alcohol and sinapyl alcohol are synthesized by similar pathways (Whetten *et al.*, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 49:585-609, 1998; Guo *et al.*, *Plant Cell* 13:73-88, 2001). The first step in the lignin biosynthetic pathway is the deamination of phenylalanine or tyrosine by phenylalanine ammonia-lyase (PAL) or tyrosine ammonia-lyase (TAL), respectively. In maize, the PAL enzyme also has 15 TAL activity (Rosler *et al.*, *Plant Physiol.* 113:175-179, 1997). The product of TAL activity on tyrosine is 4-coumarate, whereas the product of PAL activity on phenylalanine is cinnamate which is then hydroxylated by cinnamate 4-hydroxylase (C4H) to form 4-coumarate. 4-Coumarate is hydroxylated by coumarate 3-hydroxylase (C3H) to give 20 caffeate. The newly added hydroxyl group is then methylated by caffeic acid O-methyl transferase (COMT) to give ferulate. Several other methylation reactions can be catalyzed by COMT, including caffeoylaldehyde to coniferaldehyde, and 5-hydroxyconiferaldehyde to sinapaldehyde. 4-Coumarate, caffeate and ferulate can all be conjugated to coenzyme A by 25 4-coumarate:CoA ligase (4CL) to form 4-coumaryl CoA, caffeoyl CoA and feruloyl CoA, respectively. Caffeoyl CoA can then be methylated by the enzyme caffeoyl-CoA O-methyl transferase (CAMT).

Coniferaldehyde is hydroxylated to 5-hydroxyconiferaldehyde by ferulate 5-hydroxylase (F5H). Reduction of 4-coumaryl CoA, caffeoyl CoA and feruloyl-CoA to 4-coumaraldehyde, caffeoyl aldehyde and coniferaldehyde, respectively, is catalyzed by cinnamoyl-CoA reductase (CCR). Coumaraldehyde, caffeoyl aldehyde, coniferaldehyde and 30 5-hydroxyconiferaldehyde are further reduced by the action of cinnamyl alcohol dehydrogenase (CAD) to give coniferyl alcohol which is then converted into its glucosylated

form for export from the cytoplasm to the cell wall by coniferol glucosyl transferase (CGT). Recently a sinapyl alcohol dehydrogenase (SAD) was described that converts sinapaldehyde to sinapyl alcohol (Li *et al.*, *Plant Cell* 13:1567-1586, 2001). Following export, the de-glucosylated form of coniferyl alcohol is obtained by the action of coniferin *beta*-glucosidase (CBG). Finally, polymerization of the three monolignols to provide lignin is catalyzed by phenolase (PNL), laccase (LAC) and peroxidase (PER). For a more detailed review of the lignin biosynthetic pathway, *see* Whetton R and Sederoff R, *The Plant Cell*, 7:1001-1013, 1995 and Whetten *et al.*, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 49:585-609, 1998.

Both lignin levels and composition have been changed in a range of plant species by altering the expression of specific lignin biosynthetic enzymes. For example, anti-sense 4CL constructs in transgenic aspen trees reduced lignin content from 20 to 11% (a 45% reduction) but at the same time increased both cellulose levels (by 15%) and growth rate (Hu *et al.* *Nature Biotechnol.* 17:808-812, 1999). These trees had the same level of total carbon, suggesting that carbon partitioning had been altered. Reducing 4CL by either anti-sense or sense-suppression in tobacco plants led to an accumulation of hydroxycinnamic acids in cell walls as well as a reduction in both guaiacyl and syringyl lignin units (Kajita *et al.*, *Plant Cell. Physiol.* 37:957-965, 1996). In transgenic tobacco plants in which levels of C4H were reduced by anti-sense or sense suppression, total lignin content was reduced, in addition to a reduction in syringyl lignin units (Sewalt *et al.*, *Plant Physiol.* 115:41-50, 1997). Reducing the levels of PAL in tobacco plants by anti-sense or sense-suppression reduced total lignin content but did not change the syringyl-guaiacyl (S:G) lignin ration. In alfalfa, reducing expression of COMT through either anti-sense or gene silencing decreased total lignin by decreasing the amount of guaiacyl units and resulted in a near total loss of syringyl lignin units (Guo *et al.*, *Plant Cell* 13:73-88, 2001). In contrast, reducing CCOMT expression through anti-sense or gene silencing in alfalfa plants also decreased total lignin by reducing the total amount of guaiacyl lignin units but had no effect on the amount of syringyl lignin. Reducing CCR expression by anti-sense in tobacco plants resulted in reduced lignin content and increased S:G ratios due to lower guaiacyl lignin units (Piquemal *et al.*, *Plant J.* 13:71-83, 1998). *A. thaliana* plants where the F5H gene had been mutated contained only traces of syringyl lignin (Marita *et al.*, *Proc. Natl. Acad. Sci. USA* 96:12323-12332, 1999).

Alteration of grass lignin composition may usefully be employed to maintain high forage digestibility throughout the year. This is most important when the plant is approaching flowering and/or during flowering. At this time, the entire lignin biosynthetic pathway will preferably be reduced, in particular lowering the amount of syringyl lignin units, thereby lowering the S:G ratio and maintaining the digestibility of the forage crop.

Several of the enzymes involved in the lignin biosynthetic pathway also have other functions within the plant. For example, PAL is a key enzyme of plant and fungi phenylpropanoid metabolism and catalyzes the first step in phenylpropanoid metabolism. It is involved in the biosynthesis of a wide variety of secondary metabolites such as flavonoids, furanocoumarin phytoalexins and cell wall components. These compounds have many important roles in plants during normal growth and in responses to environmental stress. PAL catalyzes the removal of an ammonia group from phenylalanine to form trans-cinnamate. PAL and the related histidine ammonia lyase are unique enzymes which are known to have the modified amino acid dehydroalanine (DHA) in their active site (Taylor *et al.*, *J. Biol. Chem.* 265:18192-18199, 1990). Phenylalanine and histidine ammonia-lyases (PAL) active site has a consensus of GTITASGDLVPLSYIA. The serine residue is central to the active site, and the region around this active site residue is well conserved (Langer *et al.*, *Biochem.* 33:6462-6467, 1994).

C4H, which is a member of the cytochrome P450 monooxygenase superfamily, plays a central role in both phenylpropanoid metabolism and lignin biosynthesis where it anchors a phenylpropanoid enzyme complex to the endoplasmic reticulum (ER). The phenylpropanoid pathway controls the synthesis of lignin, flower pigments, signaling molecules, and a large spectrum of compounds involved in plant defense against pathogens and UV light. This is also a branch point between general phenylpropanoid metabolism and pathways leading to various specific end products. 4CLs are a group of enzymes necessary for maintaining a continuous metabolic flux for the biosynthesis of plant phenylpropanoids, such as lignin and flavonoids that are essential to the survival of plants, because they serve important functions in plant growth and adaptation to environmental perturbations. Three isoforms of 4CL have been identified with distinct substrate preference and specificities. Expression studies in angiosperms revealed a differential behavior of the three genes in various plant organs and upon external stimuli such as wounding and UV irradiation or upon challenge with fungi.

One isoform is likely to participate in the biosynthetic pathway leading to flavonoids whereas the other two are probably involved in lignin formation and in the production of additional phenolic compounds other than flavonoids (Ehlting *et al.*, *Plant J.* 19:9-20, 1999).

5 F5H is involved in the phenylpropanoid biosynthesis pathway. It belongs to the CYP84 subfamily of the cytochrome P450 family and is known as cytochrome P450 84A1. F5H is one of the enzymes in the pathways leading to the synthesis of sinapic acid esters, but also has coniferaldehyde hydroxylase activity (Nair *et al.*, *Plant Physiol.* 123:1623-1634, 2000). In the generalized pathway for phenylpropanoid metabolism, F5H catalyzes the formation of 5-hydroxyferulate (a precursor of sinapate) and sinapate in turn as the precursor 10 for sinapine and for sinapoyl CoA in two bifurcated pathways (Chapple *et al.*, *Plant Cell* 4:1413-1424, 1992). Sinapoyl CoA has been considered as the precursor for sinapyl alcohol, which is then polymerized into syringyl (S) lignin. In addition, CYP84 F5H product carries out the hydroxylation of coniferaldehyde (ConAld) to 5-OH ConAld (Nair *et al.*, *Plant Physiol.* 123:1623-1634, 2000).

15 Peroxidases are heme-containing enzymes that use hydrogen peroxide as the electron acceptor to catalyze a number of oxidative reactions. They belong to a superfamily consisting of 3 major classes. Class III consists of the secretory plant peroxidases, which have multiple tissue-specific functions in removal of hydrogen peroxide from chloroplasts and cytosol, oxidation of toxic compounds, biosynthesis of the cell wall, defense responses towards 20 wounding, indole-3-acetic acid (IAA) catabolism and ethylene biosynthesis.

Fructan Biosynthetic Pathway

Plant carbohydrates can be divided into two groups depending on their function within the plant. Structural carbohydrates, such as cellulose, are usually part of the 25 extracellular matrix. Non-structural, storage carbohydrates act as either long- or short-term carbohydrate stores. Examples of non-structural carbohydrates include starch, sucrose and fructans.

Fructans are polymers that are stored in the vacuole and that consist of linear and branched chains of fructose units (for review see Vijn and Smeekens *Plant Physiol.* 120:351-30 359, 1999). They play an important role in assimilate partitioning and possibly in stress tolerance in many plant families. Grasses use fructans instead of starch as a water-soluble

carbohydrate store (Pollock *et al.*, in "Regulation of primary metabolic pathways in plants", N.J. Kruger *et al.*, (eds), Kluwer Academic Publishers, The Netherlands, pp195-226, 1999). Increasing the amount of fructans and sucrose in forage crops leads to an increase in the level of water-soluble carbohydrates and thereby enhances the nutritional value of the plants. In 5 addition, increasing the amount of fructans in forage plants decreases methane production in animals fed the plants, thereby leading to lower greenhouse gas emissions, and decreases urea production in animals as less protein is degraded in the rumen (Biggs and Hancock, *Trends in Plant Sci.* 6:8-9, 2001). Fructans have also been implicated in protecting plants against water deficits caused by drought or low temperatures. Introduction of enzymes 10 involved in the fructan biosynthetic pathway into plants that do not naturally synthesize fructans may be employed to confer cold tolerance and drought tolerance (Pilon-Smits, *Plant Physiol.* 107:125-130, 1995).

The number of fructose units within a fructan chain is referred to as the degree of polymerization (DP). In grasses, fructans of DP 6-10 are common. Such fructans of low DP 15 are naturally sweet and are therefore of interest for use as sweeteners in foodstuffs. Long fructan chains form emulsions with a fat-like texture and a neutral taste. The human digestive system is unable to degrade fructans, and fructans of high DP may therefore be used as low-calorie food ingredients. Over-expression of enzymes involved in the fructan biosynthetic pathway may be usefully employed to produce quantities of fructans that can be 20 purified for human consumption.

Five major classes of structurally different fructans have been identified in plants, with each class showing a different linkage of the fructosyl residues. Fructans found in grasses are of the mixed levan class, consisting of both (2-1)- and (2-6)-linked beta-D-fructosyl units (Pollock *et al.*, in "Regulation of primary metabolic pathways in plants", N.J. Kruger *et al.*, (eds), Kluwer Academic Publishers, The Netherlands, pp195-226, 1999). Fructans are synthesized by the action of fructosyltransferase enzymes on sucrose in the 25 vacuole. These enzymes are closely related to invertases, enzymes that normally hydrolyze sucrose.

Grasses use two fructosyltransferase enzymes to synthesize fructans, namely 30 sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) (Pollock *et al.*, in "Regulation of primary metabolic pathways in plants", N.J. Kruger *et*

al., (eds), Kluwer Academic Publishers, The Netherlands, pp195-226, 1999). 1-SST is a key enzyme in plant fructan biosynthesis, while 6-SFT catalyzes the formation and extension of beta-2,6-linked fructans that is typically found in grasses. Specifically, 1-SST catalyzes the formation of 1-kestose plus glucose from sucrose, while 6-SFT catalyzes the formation of 5 bifurcose plus glucose from sucrose plus 1-kestose and also the formation of 6-kestose plus glucose from sucrose. Both enzymes can modify 1-kestose, 6-kestose and bifurcose further by adding additional fructose molecules. Over-expression of both 1-SST and 6-SFT in the same plant may be employed to produce fructans for use in human foodstuffs (Sevenier *et al.*, *Nature Biotechnol.* 16:843-846; Hellwege *et al.*, *Proc. Natl. Acad. Sci. USA* 97:8699-10 8704, 2000).

The synthesis of sucrose from photosynthetic assimilates in plants, and therefore the availability of sucrose for use in fructan formation, is controlled, in part, by the enzymes sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP). Sucrose plays an important role in plant growth and development, and is a major end product of 15 photosynthesis. It also functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression (for a review see Smeekens, *Curr. Opin. Plant Biol.* 1:230-234, 1998). SPS regulates the synthesis of sucrose by regulating carbon partitioning in the leaves of plants and therefore plays a major role as a limiting factor in the export of photoassimilates out of the leaf. The activity of SPS is regulated by phosphorylation and 20 moderated by concentration of metabolites and light (Huber *et al.*, *Plant Physiol.* 95:291-297, 1991). Specifically, SPS catalyzes the transfer of glucose from UDP-glucose to fructose-6-phosphate, thereby forming sucrose-6-phosphate (Suc-6-P). Suc-6-P is then 25 dephosphorylated by SPP to form sucrose (Lunn *et al.*, *Proc. Natl. Acad. Sci. USA* 97:12914-12919, 2000). The enzymes SPS and SPP exist as a heterotetramer in the cytoplasm of mesophyll cells in leaves, with SPP functioning to regulate SPS activity. SPS is also important in ripening fruits, sprouting tubers and germinating seeds (Laporte *et al.*, *Planta* 212:817-822, 2001).

Once in the vacuole, sucrose can be converted into fructan by fructosyltransferases as 30 discussed above, or hydrolyzed into glucose and fructose by the hydrolase enzymes known as invertases (Sturm, *Plant Physiol.* 121:1-7, 1999). There are several different types of invertases, namely extracellular (cell wall), vacuolar (soluble acid) and cytoplasmic, with at

least two isoforms of each type of invertase normally being found within a plant species. In addition to having different subcellular locations, the different types of invertases have different biochemical properties. For example, soluble and cell wall invertases operate at acidic pH, whereas cytoplasmic invertases work at a more neutral or alkaline pH. Invertases 5 are believed to regulate the entry of sucrose into different utilization pathways (Grof and Campbell, *Aust. J. Plant Physiol.* 28:1-12, 2001). Reduced invertase activity may increase the level of water-soluble carbohydrates in plants. Plants contain several isoforms of cell wall invertases (CWINV), which accumulate as soluble proteins. CWINV plays an important role in phloem unloading and in stress response. It hydrolyzes terminal non-reducing beta-D-fructofuranoside residues in beta-D-fructo-furanosides. 10

Another enzyme that acts upon sucrose in plants is soluble sucrose synthase (SUS). Recent results indicate that SUS is localized in the cytosol, associated with the plasma membrane and the actin cytoskeleton. Phosphorylation of SUS is one of the factors controlling localization of the enzyme (Winter and Huber, *Crit. Rev. Biochem. Mol. Biol.* 15 35:253-89, 2000). It catalyzes the transfer of glucose from sucrose to UDP, yielding UDP-glucose and fructose. Increasing the amount of SUS in a plant increases the amount of cellulose synthesis, whereas decreasing SUS activity should increase fructan levels. Increased SUS concentration may also increase the yield of fruiting bodies. SUS activity is highest in carbon sink tissues in plants and low in photosynthetic source tissues, and studies 20 have indicated that SUS is the main sucrose-cleaving activity in sink tissues. Grasses have two isoforms of SUS that are encoded by separate genes. These genes are differentially expressed in different tissues.

Tannin Biosynthetic Pathway

Condensed tannins are polymerized flavonoids. More specifically, tannins are composed of catechin 4-ol and catechin monomer units, and are stored in the vacuole. In many temperate forage crops, such as ryegrass and fescue, foliar tissues are tannin-negative. This leads to a high initial rate of fermentation when these crops are consumed by ruminant livestock, resulting in both protein degradation and production of ammonia by the livestock. 25 These effects can be reduced by the presence of low to moderate levels of tannin. In certain other plant species, the presence of high levels of tannins reduces palatability and nutritive 30

value. Introduction of genes encoding enzymes involved in the biosynthesis of condensed tannins into a plant may be employed to synthesize flavonoid compounds that are not normally made in the plant. These compounds may then be isolated and used for treating human or animal disorders or as food additives.

5 Much of the biosynthetic pathway for condensed tannins is shared with that for anthocyanins, which are pigments responsible for flower color. Therefore, modulation of the levels of enzymes involved in the tannin biosynthetic pathway may be employed to alter the color of foliage and the pigments produced in flowers.

10 Most tannins described to date contain pro-cyanidin units derived from dihydroquercetin and pro-delphinidin units derived from dihydromyricetin. However, some tannins contain pro-pelargonidin units derived from dihydrokaempferol. The initial step in the tannin biosynthetic pathway is the condensation of coumaryl CoA with malonyl CoA to give naringenin-chalcone, which is catalyzed by the enzyme chalcone synthase (CHS). The enzyme chalcone isomerase (CHI) catalyzes the isomerization of naringenin chalcone to 15 naringenin (also known as flavanone), which is then hydroxylated by the action of the enzyme flavonone 3- beta-hydroxylase (F3 β H) to give dihydrokaempferol. The enzyme flavonoid 3'-hydroxylase (F3'OH) catalyzes the conversion of dihydrokaempferol to dihydroquercetin, which in turn can be converted into dihydromyricetin by the action of flavonoid 3'5'-hydroxylase (F3'5'OH). The enzyme dihydroflavonol-4-reductase (DFR) 20 catalyzes the last step before dihydrokaempferol, dihydroquercetin and dihydromyricetin are committed for either anthocyanin (flower pigment) or proanthocyanidin (condensed tannin) formation. DFR also converts dihydrokaempferol to afzelchin-4-ol, dihydroquercetin to catechin-4-ol, and dihydromyricetin to gallocatechin-4-ol, probably by the action of more than one isoform. For a review of the tannin biosynthetic pathway, see, Robbins M.P. and 25 Morris P. in Metabolic Engineering of Plant Secondary Metabolism, Verpoorte and Alfermann (eds), Kluwer Academic Publishers, the Netherlands, 2000.

30 While polynucleotides encoding some of the enzymes involved in the lignin, fructan and tannin biosynthetic pathways have been isolated for certain species of plants, genes encoding many of the enzymes in a wide range of plant species have not yet been identified.

Thus there remains a need in the art for materials useful in the modification of lignin, fructan and tannin content and composition in plants, and for methods for their use.

Summary of the Invention

5 The present invention provides enzymes involved in the lignin, fructan or tannin biosynthetic pathways that are encoded by polynucleotides isolated from forage grass tissues. The polynucleotides were isolated from *Lolium perenne* (perennial ryegrass) and *Festuca arundinacea* (tall fescue) tissues taken at different times of the year, specifically in winter and spring, and from different parts of the plants, including: leaf blades, leaf base, 10 pseudostems, floral stems, roots, inflorescences and stems. The present invention also provides genetic constructs, expression vectors and host cells comprising the inventive polynucleotides, and methods for using the inventive polynucleotides and genetic constructs to modulate the biosynthesis of lignins, fructans and tannins.

In specific embodiments, the isolated polynucleotides of the present invention 15 comprise a sequence selected from the group consisting of: (a) SEQ ID NO: 1-62 and 125-162; (b) complements of SEQ ID NO: 1-62 and 125-162; (c) reverse complements of SEQ ID NO: 1-62 and 125-162; (d) reverse sequences of SEQ ID NO: 1-62 and 125-162; (e) sequences having a 99% probability of being functionally or evolutionarily related to a sequence of (a)-(d), determined as described below; and (f) sequences having at least 75%, 20 80%, 90% or 98% identity to a sequence of (a)-(d), the percentage identity being determined as described below. Polynucleotides comprising at least a specified number of contiguous residues ("x-mers") of any of SEQ ID NO: 1-62 and 125-162; and oligonucleotide probes and primers corresponding to SEQ ID NO: 1-62 and 125-162 are also provided. All of the above polynucleotides are referred to herein as "polynucleotides of the present invention."

25 In further aspects, the present invention provides isolated polypeptides comprising an amino acid sequence of SEQ ID NO: 63-124 and 163-190, together with polypeptides comprising a sequence having at least 75%, 80%, 90% or 98% identity to a sequence of SEQ ID NO: 63-124 and 163-190, wherein the polypeptide possesses the same functional activity as the polypeptide comprising a sequence of SEQ ID NO: 63-124 and 163-190. The present 30 invention also contemplates isolated polypeptides comprising at least a functional portion of a polypeptide comprising an amino acid sequence selected from the group consisting of: (a)

SEQ ID NO: 63-124 and 163-190; and (b) sequences having at least 75%, 80%, 90% or 98% identity to a sequence of SEQ ID NO: 63-124 and 163-190.

In another aspect, the present invention provides genetic constructs comprising a polynucleotide of the present invention, either alone, in combination with one or more of the 5 inventive sequences, or in combination with one or more known polynucleotides.

In certain embodiments, the present invention provides genetic constructs comprising, in the 5'-3' direction: a gene promoter sequence; an open reading frame coding for at least a functional portion of a polypeptide of the present invention; and a gene termination sequence. An open reading frame may be orientated in either a sense or anti-sense direction. Genetic 10 constructs comprising a non-coding region of a polynucleotide of the present invention or a polynucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided. Preferably, the gene promoter and termination sequences are functional in a host cell, such as a plant cell. Most 15 preferably, the gene promoter and termination sequences are those of the original enzyme genes but others generally used in the art, such as the Cauliflower Mosaic Virus (CMV) promoter, with or without enhancers, such as the Kozak sequence or Omega enhancer, and *Agrobacterium tumefaciens* nopalil synthase terminator may be usefully employed in the present invention. Tissue-specific promoters may be employed in order to target expression to one or more desired tissues. The construct may further include a marker for the 20 identification of transformed cells.

In a further aspect, transgenic cells, such as transgenic plant cells, comprising the constructs of the present invention are provided, together with tissues and plants comprising such transgenic cells, and fruits, seeds and other products, derivatives, or progeny of such plants.

In yet another aspect, methods for modulating the lignin, fructan or tannin content 25 and composition of a target organism, such as a plant, are provided, such methods including stably incorporating into the genome of the target plant a genetic construct comprising a polynucleotide of the present invention. In a preferred embodiment, the target plant is a forage grass, preferably selected from the group consisting of *Lolium* and *Festuca* species, 30 and most preferably from the group consisting of *Lolium perenne* and *Festuca arundinacea*. In a related aspect, a method for producing a plant having altered lignin, fructan or tannin

composition is provided, the method comprising transforming a plant cell with a genetic construct comprising of the present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth.

5 In yet a further aspect, the present invention provides methods for modifying the activity of an enzyme in a target organism, such as a plant, comprising stably incorporating into the genome of the target organism a genetic construct of the present invention. In a preferred embodiment, the target plant is a forage grass, preferably selected from the group consisting of *Lolium* and *Festuca* species, and most preferably from the group consisting of *Lolium perenne* and *Festuca arundinacea*.

10

Brief Description of the Drawings

Fig. 1 shows the activity of recombinant LpSPP (SEQ ID NO: 8) and FaSPP (SEQ ID NO 7) on dephosphorylating Suc-6-P and Fru-6-P. The pET41a extract was the vector control.

15

Fig. 2 shows the peroxidase activity of PER3 (SEQ ID NO: 50) and PER5 (SEQ ID NO: 52) as determined by oxidation of ABTS. Horseradish peroxidase of known activity (Sigma, St Louis, MI) was used as a positive control and boiled samples as a negative control.

20

Fig. 3 shows PCR verification of transgenic *N. benthamiana* plants transformed with Lp6-SFT1 (SEQ ID NO: 3). Genomic DNA was isolated from kanamycin resistant T2 *N. benthamiana* plants and the Lp6-SFT fragment was amplified using specific PCR primers.

25

Fig. 4 shows PCR verification of transgenic *N. benthamiana* plants transformed with Lp1-SST (SEQ ID NO: 1). Genomic DNA was isolated from kanamycin resistant T2 *N. benthamiana* plants and the Lp1-SST fragment was amplified using specific PCR primers.

Plant number 5 is a non-transgenic control.

Fig. 5 shows the fructan level in transgenic *N. benthamiana* lines transformed with Lp6-SFT1 (SEQ ID NO: 3) and Lp1-SST (SEQ ID NO: 1).

30

Fig. 6 shows the sucrose synthesizing activity of FaSPS-N (SEQ ID NO: 9) with and without SPP (SEQ ID NO: 8) in mammalian cell extracts. The non-transfected cells are controls.

Fig. 7 shows the sucrose cleaving activity of FaSUS1 (SEQ ID NO: 13) in mammalian cell extracts.

Fig. 8 shows the invertase activity for vacuolar invertase (SEQ ID NO: 25) and two cell wall invertases (SEQ ID NO: 17 and 19); absence of invertase activity from an empty 5 vector (pPICZalphaA) control is also shown.

Detailed Description of the Invention

The polypeptides of the present invention, and the polynucleotides encoding the polypeptides, have activity in lignin, fructan and tannin biosynthetic pathways in plants. 10 Using the methods and materials of the present invention, the lignin, fructan and/or tannin content of a plant may be modulated by modulating expression of polynucleotides of the present invention, or by modifying the polynucleotides or polypeptides encoded by polynucleotides. The isolated polynucleotides and polypeptides of the present invention may thus be usefully employed in the correction of nutritional imbalances associated with 15 temperate pastures and to increase the yield of animal products from pastures.

The lignin, fructan and/or tannin content of a target organism, such as a plant, may be modified, for example, by incorporating additional copies of genes encoding enzymes involved in the lignin, fructan or tannin biosynthetic pathways into the genome of the target plant. Similarly, a modified lignin, fructan and/or tannin content can be obtained by 20 transforming the target plant with anti-sense copies of such genes. In addition, the number of copies of genes encoding for different enzymes in the lignin, fructan and tannin biosynthetic pathways can be manipulated to modify the relative amount of each monomer unit synthesized, thereby leading to the formation of lignins, fructans or tannins having altered composition.

25 The present invention thus provides methods for modulating the polynucleotide and/or polypeptide content and composition of an organism, such methods involving stably incorporating into the genome of the organism a genetic construct comprising one or more polynucleotides of the present invention. In one embodiment, the target organism is a plant species, preferably a forage plant, more preferably a grass of the *Lolium* or *Festuca* species, 30 and most preferably *Lolium perenne* or *Festuca arundinacea*. In related aspects, methods for producing a plant having an altered genotype or phenotype is provided, such methods

comprising transforming a plant cell with a genetic construct of the present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth. Plants having an altered genotype or phenotype as a consequence of modulation of the level or content of a polynucleotide or polypeptide of the 5 present invention compared to a wild-type organism, as well as components (seeds, etc.) of such plants, and the progeny of such plants, are contemplated by and encompassed within the present invention.

The isolated polynucleotides of the present invention have utility in genome mapping, in physical mapping, and in positional cloning of genes. Additionally, the polynucleotide 10 sequences identified as SEQ ID NOS: 1-62 and 125-162 and their variants, may be used to design oligonucleotide probes and primers. Oligonucleotide probes and primers have sequences that are substantially complementary to the polynucleotide of interest over a certain portion of the polynucleotide. Oligonucleotide probes designed using the polynucleotides of the present invention may be employed to detect the presence and 15 examine the expression patterns of genes in any organism having sufficiently similar DNA and RNA sequences in their cells using techniques that are well known in the art, such as slot blot DNA hybridization techniques. Oligonucleotide primers designed using the polynucleotides of the present invention may be used for PCR amplifications. Oligonucleotide probes and primers designed using the polynucleotides of the present 20 invention may also be used in connection with various microarray technologies, including the microarray technology of Affymetrix (Santa Clara, CA).

In a first aspect, the present invention provides isolated polynucleotide sequences identified in the attached Sequence Listing as SEQ ID NO: 1-62 and 125-162, and polypeptide sequences identified in the attached Sequence Listing as SEQ ID NO: 63-124 25 and 163-190. The polynucleotides and polypeptides of the present invention have demonstrated similarity to the following polypeptides that are known to be involved in lignin, fructan and tannin biosynthetic processes:

TABLE 1

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
1 and 125	63 and 163	Fructan biosynthesis	Homolog of Sucrose:Sucrose 1-fructosyl-transferase (1-SST) isolated from <i>Festuca arundinacea</i> . They contain a typical signature of the glycosyl hydrolases family 32 (amino acid residues 120 to 133). The glycosyl hydrolases family 32 domain signature has a consensus of HYQPxxH/NxxNDPNG, where D is the active site residue (Henrissat, <i>Biochem. J.</i> 280:309-316, 1991).
2	64	Fructan biosynthesis	Homolog of Sucrose:Sucrose 1-fructosyl-transferase (1-SST) isolated from <i>Festuca arundinacea</i> . It contains a typical signature of the glycosyl hydrolases family 32 (amino acid residues 120 to 133). The glycosyl hydrolases family 32 domain signature has a consensus of HYQPxxH/NxxNDPNG, where D is the active site residue (Henrissat, <i>Biochem. J.</i> 280:309-316, 1991).
3 and 126	65 and 164	Fructan biosynthesis	Homolog of Sucrose:fructan 6-fructosyl-transferase (6-SFT) isolated from <i>Festuca arundinacea</i> . They contain a typical signature of the glycosyl hydrolases family 32 (amino acid residues 90 to 564). The glycosyl hydrolases family 32 domain signature has a consensus of HYQPxxH/NxxNDPNG, where D is the active site residue (Henrissat, <i>Biochem. J.</i> 280:309-316, 1991).
4 and 127	66 and 165	Fructan biosynthesis	Homolog of Sucrose:fructan 6-fructosyl-transferase (6-SFT) isolated from <i>Lolium perenne</i> . They contain a typical signature of the glycosyl hydrolases family 32 (amino acid residues 96 to 107). The glycosyl hydrolases family 32 domain signature has a consensus of HYQPxxH/NxxNDPNG, where D is the active site residue (Henrissat, <i>Biochem. J.</i> 280:309-316, 1991).
5	67	Fructan biosynthesis	Homolog of sucrose:fructan 6-fructosyl-transferase (6-SFT) isolated from <i>Festuca arundinacea</i> .
6 and 128	68 and 166	Fructan biosynthesis	Homolog of Sucrose:fructan 6-fructosyl-transferase (6-SFT) isolated from <i>Lolium perenne</i> . They contain a typical signature of the glycosyl hydrolases family 32 (amino acid

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			residues 90 to 103). The glycosyl hydrolases family 32 domain signature has a consensus of HYQPxxH/NxxNDPNG, where D is the active site residue (Henrissat, <i>Biochem. J.</i> 280:309-316, 1991).
7 and 129	69	Fructan biosynthesis	Homolog of Sucrose-6-phosphate phosphohydrolase (SPP; EC 3.1.3.24) isolated from <i>Festuca arundinacea</i> . This enzyme belongs to the superfamily of hydrolases, and has the three conserved motifs found in these proteins (Galperin and Koonin, <i>Trends Biochem Sci.</i> 23:127-129, 1998). Motif I (amino acid residues 10 to 19) contains conserved Asp and a Thr residues, motif II (amino acid residues 48 to 53) contains a conserved Thr residue, and Motif III (residues 167 to 220) contains conserved Lys (position 167) and Asp residues (position 202 and 206). These conserved amino acid residues are required for activity of the enzyme.
8	70	Fructan biosynthesis	Homolog of Sucrose-6-phosphate phosphohydrolase (SPP; EC 3.1.3.24) isolated from <i>Lolium perenne</i> . This enzyme belongs to the superfamily of hydrolases, and has the three conserved motifs found in these proteins (Galperin and Koonin, <i>Trends Biochem Sci.</i> 23:127-129, 1998). Motif I (residues 10 to 19) contains conserved Asp and Thr residues, motif II (amino acid residues 48 to 53) contains a conserved Thr residue, and Motif III (amino acid residues 167 to 220) contains conserved Lys (position 167) and Asp residues (position 202 and 206). These conserved amino acid residues are required for activity of the enzyme.
9 and 130	71	Fructan biosynthesis	Homolog of sucrose phosphate synthase (SPS-1) isolated from <i>Festuca arundinacea</i> .
10 and 131	72 and 167	Fructan biosynthesis	Homolog of sucrose phosphate synthase (SPS-1) isolated from <i>Lolium perenne</i> and that is involved in the sucrose synthesis pathway.
11 and 132	73 and 168	Fructan biosynthesis	Homolog of sucrose phosphate synthase (SPS-N) isolated from <i>Lolium perenne</i> and that is involved in the sucrose synthesis pathway.
12 and 133	74 and 169	Fructan	Homolog of sucrose synthase (SuS) isolated

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
		biosynthesis	from <i>Lolium perenne</i> . These molecules contain a leucine zipper motif in amino acid position 191 to 213. Leucine zipper motifs are present in many gene regulatory proteins (Landschulz <i>et al.</i> , <i>Science</i> 240:1759-1764, 1988).
13	75	Fructan biosynthesis	Homolog of sucrose synthase (SuS) isolated from <i>Festuca arundinacea</i> . This molecule contains a leucine zipper motif in amino acid position 191 to 213. Leucine zipper motifs are present in many gene regulatory proteins (Landschulz <i>et al.</i> , <i>Science</i> 240:1759-1764, 1988).
14 and 134	76 and 170	Fructan biosynthesis	Homolog of sucrose synthase (SuS) isolated from <i>Lolium perenne</i> .
15	77	Fructan biosynthesis	Homolog of sucrose synthase (SuS) isolated from <i>Festuca arundinacea</i> .
16 and 135	78 and 171	Fructan biosynthesis	Homologue of cell wall invertase (CWINV) isolated from <i>Festuca arundinacea</i> that belongs to the family 32 of glycosyl hydrolases. These molecules contain a conserved peptide domain in amino acid residues 139 to 144 and 242-247, respectively. The consensus peptide domain of invertases is (WVYL)EC(PIL)D (LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999).
17	79	Fructan biosynthesis	Homolog of cell wall invertase (CWINV) isolated from <i>Lolium perenne</i> that belongs to the family 32 of glycosyl hydrolases. This molecule contains a conserved pentapeptide bF-motif at amino acid residues 70 to 74 and a peptide domain in amino acid residues 250 to 255. The consensus peptide domain of invertases is (WVYL)EC(PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999). It also contains a glycosyl hydrolases family 32 signature region at amino acids 61 to 74 that contains a conserved His residue important in the catalytic reaction (Reddy and Maley, <i>J. Biol. Chem.</i> 265:10817-10120, 1990).
18 and 136	80 and 172	Fructan biosynthesis	Homolog of cell wall invertase (CWINV) isolated from <i>Lolium perenne</i> that belongs to the family 32 of glycosyl hydrolases.
19	81	Fructan	Homolog of cell wall invertase (CWINV)

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
		biosynthesis	isolated from <i>Festuca arundinacea</i> that belongs to the family 32 of glycosyl hydrolases. This molecule contains a conserved pentapeptide bF-motif at amino acid residues 60 to 64. The consensus peptide domain of invertases is (WVYL)EC(PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999). It also contains a glycosyl hydrolases family 32 signature region at amino acids 51 to 64 that contains a conserved His residue important in the catalytic reaction (Reddy and Maley, <i>J. Biol. Chem.</i> 265:10817-10120, 1990). A signal peptide is present in amino acid residues 1 to 24.
20 and 137	82 and 173	Fructan biosynthesis	Homolog of cell wall invertase (CWINV) isolated from <i>Festuca arundinacea</i> that belongs to the family 32 of glycosyl hydrolases. These molecules contain a peptide domain in amino acid residues 61 to 66 and 242-247, respectively. The consensus peptide domain of invertases is (WVYL)EC(PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999).
21	83	Fructan biosynthesis	Homolog of cell wall invertase (CWINV) isolated from <i>Festuca arundinacea</i> that belongs to the family 32 of glycosyl hydrolases. This molecule contains a conserved pentapeptide bF-motif at amino acid residues 73 to 77 and a peptide domain in amino acid residues 253 to 258. The consensus peptide domain of invertases is (WVYL)EC(PIL)D-(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999). It also contains a glycosyl hydrolases family 32 signature region at amino acid 64 to 77 that contains a conserved His residue important in the catalytic reaction (Reddy and Maley, <i>J. Biol. Chem.</i> 265:10817-10120, 1990).
22 and 138	84 and 174	Fructan biosynthesis	Homolog of cell wall invertase (CWINV) isolated from <i>Lolium perenne</i> that belongs to the family 32 of glycosyl hydrolases. These molecules contain a peptide domain in amino acid residues 174 to 179 and 234 to 239,

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			respectively. The consensus peptide domain of invertases is (WVYL)EC- (PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999).
23	85	Fructan biosynthesis	Homolog of cell wall invertase (CWINV) isolated from <i>Festuca arundinacea</i> that belongs to the family 32 of glycosyl hydrolases. This molecule contains a conserved pentapeptide bF-motif at amino acid residues 56 to 60. The consensus peptide domain of invertases is (WVYL)EC(PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999). It also contains a glycosyl hydrolases family 32 signature region at amino acid 47 to 60 that contains a conserved His residue that is important in the catalytic reaction (Reddy and Maley, <i>J. Biol. Chem.</i> 265:10817-10120, 1990). A signal peptide is present in amino acid residues 1 to 22.
24 and 139	86 and 175	Fructan biosynthesis	Homolog of cell wall invertase (CWINV) isolated from <i>Lolium perenne</i> that belongs to the family 32 of glycosyl hydrolases. These molecules contain a conserved pentapeptide bF-motif at amino acid residues 244 to 249. The consensus peptide domain of invertases is (WVYL)EC(PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999). They also contain a glycosyl hydrolases family 32 signature region at amino acid 56 to 69 that contains a conserved His residue that is important in the catalytic reaction (Reddy and Maley, <i>J. Biol. Chem.</i> 265:10817-10120, 1990). A signal peptide is present in amino acid residues 1 to 25.
25 and 140	87 and 176	Fructan biosynthesis	Homolog of vacuolar invertase (SINV) isolated from <i>Lolium perenne</i> that belongs to the family 32 of glycosyl hydrolases. These molecules contain a conserved pentapeptide bF-motif at amino acid residues 136 to 140 and 138 to 142, respectively and a peptide domain in amino acid residues 317 to 322 and 319 to 324, respectively. The consensus peptide domain of

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			invertases is (WVYL)EC(PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999). It also contains a glycosyl hydrolases family 32 signature region at amino acid 127 to 140 and 129 to 142 that contains a conserved His residue that is important in the catalytic reaction (Reddy and Maley, <i>J. Biol. Chem.</i> 265:10817-10120, 1990).
26 and 141	88 and 177	Fructan biosynthesis	Homolog of invertase (SINV) isolated from <i>Lolium perenne</i> that belongs to the family 32 of glycosyl hydrolases. These molecules contain a peptide domain in amino acid residues 143 to 148 and 184 to 189, respectively. The consensus peptide domain of invertases is (WVYL)EC(PIL)D(LFI) with the conserved Cys residue part of the catalytic domain (Sturm, <i>Plant Physiol.</i> 121:1-7, 1999).
27	89	Lignin/Tannin biosynthesis	Homolog of 4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) isolated from <i>Lolium perenne</i> . The molecule has two conserved AMP binding regions at amino acid residues 182 to 193 and 383 to 389 (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998). The AMP-binding domain signature consists of two binding site motifs. The consensus of the first motif is LPYSSGTTGLPK (Etchegaray <i>et al.</i> , <i>Biochem. Mol. Biol. Int.</i> 44:235-243, 1998). The region very rich in glycine, serine, and threonine followed by a conserved lysine. In most of these proteins, the residue that follows the Lys at the end of the pattern is a Gly. The second motif consensus sequence is GEIC(V/I)RG (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998).
28 and 142	90	Lignin/Tannin biosynthesis	Homolog of 4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) isolated from <i>Lolium perenne</i> . The molecule has two conserved AMP binding regions at amino acid residues 195 to 206 and 395 to 401 (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998). The AMP-binding domain signature consists of two binding site motifs. The consensus of the first motif is LPYSSGTTGLPK (Etchegaray <i>et al.</i> ,

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			<i>Biochem. Mol. Biol. Int.</i> 44:235-243, 1998). The region very rich in glycine, serine, and threonine followed by a conserved lysine. In most of these proteins, the residue that follows the Lys at the end of the pattern is a Gly. The second motif consensus sequence is GEIC(V/I)RG (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998).
29	91	Lignin/Tannin biosynthesis	Homolog of 4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) isolated from <i>Festuca arundinacea</i> . The molecule has two conserved AMP binding regions at amino acid residues 195 to 206 and 395 to 401 (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998). The AMP-binding domain signature consists of two binding site motifs. The consensus of the first motif is LPYSSGTTGLPK (Etchegaray <i>et al.</i> , <i>Biochem. Mol. Biol. Int.</i> 44:235-243, 1998). The region very rich in glycine, serine, and threonine followed by a conserved lysine. In most of these proteins, the residue that follows the Lys at the end of the pattern is a Gly. The second motif consensus sequence is GEIC(V/I)RG (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998).
30 and 143	92 and 178	Lignin/Tannin biosynthesis	Homolog of 4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) isolated from <i>Lolium</i> . The molecules have two conserved AMP binding regions at amino acid residues 194 to 205 and 394 to 400 (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998). The AMP-binding domain signature consists of two binding site motifs. The consensus of the first motif is LPYSSGTTGLPK (Etchegaray <i>et al.</i> , <i>Biochem. Mol. Biol. Int.</i> 44:235-243, 1998). The region very rich in glycine, serine, and threonine followed by a conserved lysine. In most of these proteins, the residue that follows the Lys at the end of the pattern is a Gly. The second motif consensus sequence is GEIC(V/I)RG (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998).
31	93	Lignin/Tannin biosynthesis	Homolog of 4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) isolated from <i>Festuca</i>

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			<i>arundinacea</i> . The molecule has two conserved AMP binding regions at amino acid residues 194 to 206 and 482 to 490 (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998). The AMP-binding domain signature consists of two binding site motifs. The consensus of the first motif is LPYSSGTTGLPK (Etchegaray <i>et al.</i> , <i>Biochem. Mol. Biol. Int.</i> 44:235-243, 1998). The region very rich in glycine, serine, and threonine followed by a conserved lysine. In most of these proteins, the residue that follows the Lys at the end of the pattern is a Gly. The second motif consensus sequence is GEIC(V/I)RG (Hu <i>et al.</i> , <i>Proc. Natl. Acad. Sci. USA</i> 95:5407-5412, 1998).
32 and 144	94 and 179	Lignin/Tannin biosynthesis	Homolog of cinnamic acid 4-hydroxylase (C4H) isolated from <i>Lolium perenne</i> . The molecules have a conserved cytochrome P450 region in amino acids 436 to 445 that contains a conserved Cys residue involved in heme binding (Miles <i>et al.</i> , <i>Biochim Biophys Acta</i> 1543:383-407, 2000).
33	95	Lignin/Tannin biosynthesis	Homolog of cinnamic acid 4-hydroxylase (C4H) isolated from <i>Festuca arundinacea</i> . The molecule has a conserved Cytochrome P450 region in amino acids 440 to 449 that contains a conserved Cys residue involved in heme binding. The cytochrome P450 cysteine heme-iron ligand signature consensus is FGxGRRSCPG where the conserved C is the heme iron ligand (Miles <i>et al.</i> , <i>Biochim. Biophys. Acta</i> 1543:383-407, 2000). It also contains an aldehyde dehydrogenases active site (Hempel <i>et al.</i> , <i>Adv. Exp. Med. Biol.</i> 436:53-59, 1999) at amino acid residues 428 to 435. A hydrophobic signal peptide region is present in amino acid residues 1 to 24.
34 and 145	96 and 180	Lignin biosynthesis	Homolog of cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) isolated from <i>Lolium perenne</i> . These molecules contain a conserved zinc-containing alcohol dehydrogenase domain (Joernvall <i>et al.</i> , <i>Eur. J. Biochem.</i> 167:195-201, 1987) in amino acid residues 69 to 83, with a conserved His residue at position 70. They also

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			contain a cytochrome C family heme-binding site signature (Mathews, <i>Prog. Biophys. Mol. Biol.</i> 45:1-56, 1985) in residues 45 to 50.
35	97	Lignin biosynthesis	Homolog of cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) isolated from <i>Festuca arundinacea</i> . CAD belongs to the family of zinc-binding dehydrogenases. This molecule contains a conserved zinc-containing alcohol dehydrogenases domain (Joernvall <i>et al.</i> , <i>Eur. J. Biochem.</i> 167:195-201, 1987) in amino acid residues 69 to 83, with a conserved His residue at position 70. It also contains a Cytochrome C family heme-binding site signature. The cytochrome C family heme-binding site signature is CGICHT. In the cytochrome C protein family, the heme group is covalently attached by thioether bonds to two conserved cysteine residues. The consensus sequence for this site is Cys-X-X-Cys-His and the histidine residue is one of the two axial ligands of the heme iron. This arrangement is shared by all proteins known to belong to cytochrome C family (Mathews, <i>Prog. Biophys. Mol. Biol.</i> 45:1-56, 1985).
36 and 146	98	Lignin biosynthesis	Homolog of caffeoyl coenzyme A O-methyltransferase (CCoAOMT) (EC 2.1.1.104) isolated from <i>Lolium perenne</i> .
37	99	Lignin biosynthesis	Homolog of caffeoyl coenzyme A O-methyltransferase (CCoAOMT) (EC 2.1.1.104) isolated from <i>Festuca arundinacea</i> .
38 and 147	100 and 181	Lignin biosynthesis	Homolog of cinnamoyl CoA:NADP oxidoreductase (CCR, EC 1.2.1.44) isolated from <i>Lolium perenne</i> that catalyzes the conversion of cinnamoyl CoA esters to their corresponding cinnamaldehydes in the first specific step in the synthesis of the lignin monomers. A hydrophobic region typical of a signal peptide is present in amino acid residues 1 to 24.
39 and 148	101	Lignin biosynthesis	Homolog of cinnamoyl CoA:NADP oxidoreductase (CCR, EC 1.2.1.44) isolated from <i>Festuca arundinacea</i> that catalyzes the conversion of cinnamoyl CoA esters to their corresponding cinnamaldehydes in the first

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			specific step in the synthesis of the lignin monomers.
40 and 149	102 and 182	Lignin biosynthesis	Homolog of caffeic acid 3-O-methyltransferase (COMT1) isolated from <i>Festuca arundinacea</i> A conserved consensus phosphopantetheine attachment site was identified in amino acid residues 47 to 62. This domain is involved in the attachment of activated fatty acid and amino-acid groups, with the Ser residue at position 52 crucial for the phosphopantetheine attachment (Pugh and Wakil, <i>J. Biol. Chem.</i> 240:4727-4733, 1965).
41 and 150	103	Lignin biosynthesis	Homolog of caffeic acid 3-O-methyltransferase (COMT1) isolated from <i>Lolium perenne</i> A conserved consensus phosphopantetheine attachment site was identified in amino acid residues 47 to 62. This domain is involved in the attachment of activated fatty acid and amino-acid groups, with the Ser residue at position 52 crucial for the phosphopantetheine attachment (Pugh and Wakil, <i>J. Biol. Chem.</i> 240:4727-4733, 1965).
42	104	Lignin biosynthesis	Homolog of caffeic acid 3-O-methyltransferase (COMT1) isolated from <i>Festuca arundinacea</i> A conserved consensus phosphopantetheine attachment site was identified in amino acid residues 47 to 62. This domain is involved in the attachment of activated fatty acid and amino-acid groups, with the Ser residue at position 52 crucial for the phosphopantetheine attachment (Pugh and Wakil, <i>J. Biol. Chem.</i> 240:4727-4733, 1965).
43	105	Lignin biosynthesis	Homolog of caffeic acid 3-O-methyltransferase (COMT1) isolated from <i>Lolium perenne</i> A conserved consensus phosphopantetheine attachment site was identified in amino acid residues 47 to 62. This domain is involved in the attachment of activated fatty acid and amino-acid groups, with the Ser residue at position 52 crucial for the phosphopantetheine attachment (Pugh and Wakil, <i>J. Biol. Chem.</i> 240:4727-4733, 1965).
44 and 151	106 and 183	Lignin biosynthesis	Homolog of ferulate 5-hydroxylase (F5H) isolated from <i>Lolium perenne</i> . The molecules

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			have a conserved cytochrome P450 region in amino acids 463 to 472 that contains a conserved Cys residue involved in heme binding (Miles <i>et al.</i> , <i>Biochim Biophys Acta</i> 1543:383-407, 2000). A signal peptide is present in amino acid residues 1 to 30.
45	107	Lignin biosynthesis	Homolog of ferulate 5-hydroxylase (F5H) isolated from <i>Festuca arundinaceae</i> . The molecule has a conserved cytochrome P450 region in amino acids 462 to 471 that contains a conserved Cys residue involved in heme binding (Miles <i>et al.</i> , <i>Biochim Biophys Acta</i> 1543:383-407, 2000). A signal peptide is present in amino acid residues 1 to 30.
46 and 152	108	Lignin/Tannin biosynthesis	Homolog of phenylalanine ammonia-lyase (EC 4.3.1.5) (PAL) isolated from <i>Lolium perenne</i> . The polypeptide has a conserved PAL-histidase region in amino acid residues 193 to 209.
47 and 153	109 and 184	Lignin/Tannin biosynthesis	Homolog of phenylalanine ammonia-lyase (EC 4.3.1.5) (PAL) isolated from <i>Festuca arundinacea</i> . A conserved phenylalanine and histidine ammonia-lyases active site signature has been identified in amino acid residues 195 to 210.
48	110	Lignin biosynthesis	Homolog of peroxidase (PER) isolated from <i>Festuca arundinacea</i> . The conserved peroxidase I region is present in amino acid residues 188 to 199 and contains a conserved His residue at position 196 in the active site, and the conserved peroxidase 2 region is present in amino acid residues 60 to 71, with a conserved His residue at position 69 that is involved in heme binding (Kimura and Ikeda-Saito, <i>Proteins</i> 3:113-120, 1988). A signal peptide is present in amino acid residues 1 to 27.
49	111	Lignin biosynthesis	Homolog of peroxidase (PER) isolated from <i>Lolium perenne</i> . The conserved peroxidase I region is present in amino acid residues 199 to 209 and contains a conserved His residue at position 208 in the active site. A signal peptide is present in amino acid residues 1 to 33.
50	112	Lignin biosynthesis	Homolog of peroxidase (PER) isolated from <i>Festuca arundinacea</i> . The conserved

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			peroxidase I region is present in amino acid residues 180 to 190 and contains a conserved His residue at position 188 in the active site, and the conserved peroxidase 2 region is present in amino acid residues 55 to 66, with a conserved His residue at position 64 that is involved in heme binding (Kimura and Ikeda-Saito, <i>Proteins</i> 3:113-120, 1988). A signal peptide is present in amino acid residues 1 to 22.
51 and 154	113	Lignin biosynthesis	Homolog of peroxidase (PER) isolated from <i>Lolium perenne</i> . The conserved peroxidase I region is present in amino acid residues 199 to 209 and contains a conserved His residue at position 207 in the active site, and the conserved peroxidase 2 region is present in amino acid residues 70 to 80, with a conserved His residue at position 78 that is involved in heme binding (Kimura and Ikeda-Saito, <i>Proteins</i> 3:113-120, 1988). A signal peptide is present in amino acid residues 1 to 20.
52 and 155	114	Lignin biosynthesis	Homolog of peroxidase (PER) isolated from <i>Lolium perenne</i> . The conserved peroxidase I region is present in amino acid residues 198 to 208 and contains a conserved His residue at position 206 in the active site (Kimura and Ikeda-Saito, <i>Proteins</i> 3:113-120, 1988). A signal peptide is present in amino acid residues 1 to 34.
53, 156, and 162	115, 185, and 190	Lignin biosynthesis	Homolog of peroxidase (PER) isolated from <i>Lolium perenne</i> . The conserved peroxidase I region is present in amino acid residues 157 to 168, 188 to 199, and 190 to 201, respectively and contain a conserved His residue at position 165, 196 and 198, respectively in the active site, and the conserved peroxidase 2 region is present in amino acid residues 29 to 41, 60 to 72 and 62 to 74, respectively, with a conserved His residue at position 38, 69 and 71, respectively that is involved in heme binding (Kimura and Ikeda-Saito, <i>Proteins</i> 3:113-120, 1988).
54	116	Lignin biosynthesis	Homolog of peroxidase (PER) isolated from <i>Festuca arundinacea</i> . The conserved

SEQ ID NO Polynucleotide	SEQ ID NO Polypeptide	Category	Description
			peroxidase I region is present in amino acid residues 176 to 186 and contains a conserved His residue at position 184 in the active site, and the conserved peroxidase 2 region is present in amino acid residues 55 to 67, with a conserved His residue at position 64 that is involved in heme binding (Kimura and Ikeda-Saito, <i>Proteins</i> 3:113-120, 1988). A signal peptide is present in amino acid residues 1 to 22.
55	117	Tannin Biosynthesis	Homolog of chalcone isomerase (CHI) isolated from <i>Lolium perenne</i> . The molecule contains a chalcone isomerase region at amino acid residues 1 to 213.
56	118	Tannin Biosynthesis	Homolog of chalcone isomerase (CHI). The molecule contains a chalcone isomerase region at amino acid residues 23 to 235.
57 and 157	119 and 186	Tannin Biosynthesis	Homolog of Chalcone Synthase (CHS) isolated from <i>Lolium perenne</i> and that is an important enzyme in flavonoid synthesis. The molecules contain a conserved chalcone synthase active site (Lanz <i>et al.</i> , <i>J. Biol. Chem.</i> 266:9971-9976, 1991) at amino acid residues 166 to 175, with the conserved Cys residue at position 167.
58 and 158	120 and 187	Tannin Biosynthesis	Homolog of dihydroflavonal-4-reductase (DFR) isolated from <i>Festuca arundinacea</i> .
59 and 159	121 and 188	Tannin Biosynthesis	Homolog of dihydroflavonal-4-reductase (DFR) isolated from <i>Lolium perenne</i> .
60 and 160	122 and 189	Tannin Biosynthesis	Homolog of dihydroflavonal-4-reductase (DFR) isolated from <i>Lolium perenne</i> . These molecules contain a conserved ATP/GTP binding site at amino acid residues 84 to 91 and 86 to 93, respectively, known as the "A" sequence (Walker <i>et al.</i> , <i>EMBO J.</i> 1:945-951, 1982) or "P-loop" (Saraste <i>et al.</i> , <i>Trends Biochem. Sci.</i> 15:430-434, 1990).
61 and 161	123	Tannin biosynthesis	Homolog of flavanone 3- β hydroxylase (F3 β H) isolated from <i>Lolium perenne</i> .
62	124	Tannin Biosynthesis	Homolog of flavanone 3- β hydroxylase (F3 β H) isolated from <i>Festuca arundinacea</i> .

All the polynucleotides and polypeptides provided by the present invention are isolated and purified, as those terms are commonly used in the art. Preferably, the polypeptides and polynucleotides are at least about 80% pure, more preferably at least about 90% pure, and most preferably at least about 99% pure.

5 The word "polynucleotide(s)," as used herein, means a polymeric collection of nucleotides, and includes DNA and corresponding RNA molecules and both single and double stranded molecules, including RNAi, HnRNA and mRNA molecules, sense and anti-sense strands of DNA and RNA molecules, and comprehends cDNA, genomic DNA, and wholly or partially synthesized polynucleotides. A polynucleotide of the present invention 10 may be an entire gene, or any portion thereof. As used herein, a "gene" is a DNA sequence which codes for a functional protein or RNA molecule. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all operable anti-sense fragments. Anti-sense polynucleotides and techniques involving anti-sense polynucleotides are well known in the 15 art and are described, for example, in Robinson-Benion *et al.*, *Methods in Enzymol.* 254(23): 363-375, 1995 and Kawasaki *et al.*, *Artific. Organs* 20(8): 836-848, 1996.

In specific embodiments, the present invention provides isolated polynucleotides comprising a sequence of SEQ ID NO: 1-62 and 125-162; polynucleotides comprising variants of SEQ ID NO: 1-62 and 125-162; polynucleotides comprising extended sequences 20 of SEQ ID NO: 1-62 and 125-162 and their variants, oligonucleotide primers and probes corresponding to the sequences set out in SEQ ID NO: 1-62 and 125-162 and their variants, polynucleotides comprising at least a specified number of contiguous residues of any of SEQ ID NO: 1-62 and 125-162 (x-mers), and polynucleotides comprising extended sequences 25 which include portions of the sequences set out in SEQ ID NO: 1-62 and 125-162, all of which are referred to herein, collectively, as "polynucleotides of the present invention." Polynucleotides that comprise complements of such polynucleotide sequences, reverse complements of such polynucleotide sequences, or reverse sequences of such polynucleotide sequences, together with variants of such sequences, are also provided.

30 The definition of the terms "complement(s)," "reverse complement(s)," and "reverse sequence(s)," as used herein, is best illustrated by the following example. For the sequence 5' AGGACC 3', the complement, reverse complement, and reverse sequence are as follows:

complement	3' TCCTGG 5'
reverse complement	3' GGTCCT 5'
reverse sequence	5' CCAGGA 3'.

5 Preferably, sequences that are complements of a specifically recited polynucleotide sequence are complementary over the entire length of the specific polynucleotide sequence.

As used herein, the term “ x -mer,” with reference to a specific value of “ x ,” refers to a polynucleotide comprising at least a specified number (“ x ”) of contiguous residues of: any of the polynucleotides provided in SEQ ID NO: 1-62 and 125-162. The value of x may be from about 20 to about 600, depending upon the specific sequence.

10 Polynucleotides of the present invention comprehend polynucleotides comprising at least a specified number of contiguous residues (x -mers) of any of the polynucleotides identified as SEQ ID NO: 1-62 and 125-162, or their variants. Similarly, polypeptides of the present invention comprehend polypeptides comprising at least a specified number of contiguous residues (x -mers) of any of the polypeptides identified as SEQ ID NO: 63-124 and 163-190. According to preferred embodiments, the value of x is at least 20, more preferably at least 40, more preferably yet at least 60, and most preferably at least 80. Thus, 15 polynucleotides of the present invention include polynucleotides comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mer; or a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide provided in SEQ ID 20 NO: 1-62 and 125-162, or a variant of one of the polynucleotides corresponding to the polynucleotides provided in SEQ ID NO: 1-62 and 125-162. Polypeptides of the present invention include polypeptides comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mer; or a 300-mer, 400-mer, 500-mer or 600-mer of a polypeptide provided in SEQ ID NO: 63-124 and 163-190, or a variant 25 thereof.

Polynucleotides of the present invention were isolated by high throughput sequencing of cDNA libraries comprising forage grass tissue collected from *Lolium perenne* and *Festuca arundinacea*. Some of the polynucleotides of the present invention may be “partial” sequences, in that they do not represent a full-length gene encoding a full-length polypeptide. 30 Such partial sequences may be extended by analyzing and sequencing various DNA libraries using primers and/or probes and well known hybridization and/or PCR techniques. Partial

sequences may be extended until an open reading frame encoding a polypeptide, a full-length polynucleotide and/or gene capable of expressing a polypeptide, or another useful portion of the genome is identified. Such extended sequences, including full-length polynucleotides and genes, are described as "corresponding to" a sequence identified as one of the sequences 5 of SEQ ID NO: 1-62 and 125-162 or a variant thereof, or a portion of one of the sequences of SEQ ID NO: 1-62 and 125-162 or a variant thereof, when the extended polynucleotide comprises an identified sequence or its variant, or an identified contiguous portion (x -mer) of one of the sequences of SEQ ID NOS: 1-62 and 125-162 or a variant thereof. Similarly, RNA sequences, reverse sequences, complementary sequences, anti-sense sequences and the 10 like, corresponding to the polynucleotides of the present invention, may be routinely ascertained and obtained using the cDNA sequences identified as SEQ ID NOS: 1-62 and 125-162.

The polynucleotides identified as SEQ ID NOS: 1-62 and 125-162 contain open reading frames ("ORFs") or partial open reading frames encoding polypeptides and 15 functional portions of polypeptides. Additionally, open reading frames encoding polypeptides may be identified in extended or full length sequences corresponding to the sequences set out as SEQ ID NOS: 1-62 and 125-162. Open reading frames may be identified using techniques that are well known in the art. These techniques include, for example, analysis for the location of known start and stop codons, most likely reading frame 20 identification based on codon frequencies, etc. These techniques include, for example, analysis for the location of known start and stop codons, most likely reading frame identification based on codon frequencies, etc. Suitable tools and software for ORF analysis are well known in the art and include, for example, GeneWise, available from The Sanger 25 Center, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom; Diogenes, available from Computational Biology Centers, University of Minnesota, Academic Health Center, UMHG Box 43 Minneapolis MN 55455; and GRAIL, available from the Informatics Group, Oak Ridge National Laboratories, Oak Ridge, Tennessee TN. Once a partial open reading frame is identified, the polynucleotide may be extended in the area of the partial open reading frame using techniques that are well known 30 in the art until the polynucleotide for the full open reading frame is identified.

Once open reading frames are identified in the polynucleotides of the present invention, the open reading frames may be isolated and/or synthesized. Expressible genetic constructs comprising the open reading frames and suitable promoters, initiators, terminators, etc., which are well known in the art, may then be constructed. Such genetic constructs may 5 be introduced into a host cell to express the polypeptide encoded by the open reading frame. Suitable host cells may include various prokaryotic and eukaryotic cells, including plant cells, mammalian cells, bacterial cells, algae and the like.

The polynucleotides of the present invention may be isolated by high throughput sequencing of cDNA libraries prepared from forage grass tissue, as described below in 10 Example 1. Alternatively, oligonucleotide probes and primers based on the sequences provided in SEQ ID NOS: 1-62 and 125-162 can be synthesized as detailed below, and used to identify positive clones in either cDNA or genomic DNA libraries from forage grass tissue cells by means of hybridization or polymerase chain reaction (PCR) techniques. Hybridization and PCR techniques suitable for use with such oligonucleotide probes are well 15 known in the art (see, for example, Mullis *et al.*, *Cold Spring Harbor Symp. Quant. Biol.*, 51:263, 1987; Erlich, ed., *PCR technology*, Stockton Press: NY, 1989; and Sambrook *et al.*, eds., *Molecular cloning: a laboratory manual*, 2nd ed., CSHL Press: Cold Spring Harbor, NY, 1989). In addition to DNA-DNA hybridization, DNA-RNA or RNA-RNA hybridization assays are also possible. In the first case, the mRNA from expressed genes would then be 20 detected instead of genomic DNA or cDNA derived from mRNA of the sample. In the second case, RNA probes could be used. Artificial analogs of DNA hybridizing specifically to target sequences could also be employed. Positive clones may be analyzed by restriction enzyme digestion, DNA sequencing or the like.

The polynucleotides of the present invention may also, or alternatively, be 25 synthesized using techniques that are well known in the art. The polynucleotides may be synthesized, for example, using automated oligonucleotide synthesizers (e.g., Beckman Oligo 1000M DNA Synthesizer; Beckman Coulter Ltd., Fullerton, CA) to obtain polynucleotide segments of up to 50 or more nucleic acids. A plurality of such polynucleotide segments may then be ligated using standard DNA manipulation techniques that are well known in the 30 art of molecular biology. One conventional and exemplary polynucleotide synthesis technique involves synthesis of a single stranded polynucleotide segment having, for

example, 80 nucleic acids, and hybridizing that segment to a synthesized complementary 85 nucleic acid segment to produce a 5 nucleotide overhang. The next segment may then be synthesized in a similar fashion, with a 5 nucleotide overhang on the opposite strand. The "sticky" ends ensure proper ligation when the two portions are hybridized. In this way, a 5 complete polynucleotide of the present invention may be synthesized entirely *in vitro*.

Oligonucleotide probes and primers complementary to and/or corresponding to SEQ ID NOS: 1-62 and 125-162, and variants of those sequences, are also comprehended by the present invention. Such oligonucleotide probes and primers are substantially complementary to the polynucleotide of interest over a certain portion of the polynucleotide. An 10 oligonucleotide probe or primer is described as "corresponding to" a polynucleotide of the present invention, including one of the sequences set out as SEQ ID NOS: 1-62 and 125-162 or a variant thereof, if the oligonucleotide probe or primer, or its complement, is contained within one of the sequences set out as SEQ ID NOS: 1-62 and 125-162 or a variant of one of the specified sequences.

15 Two single stranded sequences are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared, with the appropriate nucleotide insertions and/or deletions, pair with at least 80%, preferably at least 90% to 95%, and more preferably at least 98% to 100%, of the nucleotides of the other strand. Alternatively, substantial complementarity exists when a first DNA strand will selectively hybridize to a 20 second DNA strand under stringent hybridization conditions.

In specific embodiments, the oligonucleotide probes and/or primers comprise at least about 6 contiguous residues, more preferably at least about 10 contiguous residues, and most 25 preferably at least about 20 contiguous residues complementary to a polynucleotide sequence of the present invention. Probes and primers of the present invention may be from about 8 to 100 base pairs in length, preferably from about 10 to 50 base pairs in length, and more preferably from about 15 to 40 base pairs in length. The probes can be easily selected using procedures well known in the art, taking into account DNA-DNA hybridization stringencies, annealing and melting temperatures, potential for formation of loops, and other factors which are well known in the art. Preferred techniques for designing PCR primers are disclosed in 30 Dieffenbach and Dyksler, *PCR Primer: a laboratory manual*, CSHL Press: Cold Spring Harbor, NY, 1995. A software program suitable for designing probes, and especially for

designing PCR primers, is available from Premier Biosoft International, 3786 Corina Way, Palo Alto, CA 94303-4504.

The isolated polynucleotides of the present invention also have utility in genome mapping, in physical mapping, and in positional cloning of genes.

5 The polynucleotides identified as SEQ ID NOS: 1-62 and 125-162 were isolated from cDNA clones and represent sequences that are expressed in the tissue from which the cDNA was prepared. RNA sequences, reverse sequences, complementary sequences, anti-sense sequences, and the like, corresponding to the polynucleotides of the present invention, may be routinely ascertained and obtained using the cDNA sequences identified as SEQ ID
10 NOS: 1-62 and 125-162.

Identification of genomic DNA and heterologous species DNA can be accomplished by standard DNA/DNA hybridization techniques, under appropriately stringent conditions, using all or part of a polynucleotide sequence as a probe to screen an appropriate library. Alternatively, PCR techniques using oligonucleotide primers that are designed based on
15 known genomic DNA, cDNA and protein sequences can be used to amplify and identify genomic and cDNA sequences.

In another aspect, the present invention provides isolated polypeptides encoded by the above polynucleotides. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full-length proteins, wherein the amino acid residues are
20 linked by covalent peptide bonds. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a polynucleotide that comprises a partial isolated polynucleotide sequence provided herein. In specific embodiments, the inventive polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 63-124 and 163-190, as well as variants of such sequences.

25 As noted above, polypeptides of the present invention may be produced recombinantly by inserting a polynucleotide sequence of the present invention encoding the polypeptide into an expression vector and expressing the polypeptide in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed. Expression may be achieved in any appropriate host cell that has been
30 transformed or transfected with an expression vector containing a polynucleotide molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, and

higher eukaryotic cells. Preferably, the host cells employed are plant, *E. coli*, insect, yeast, or a mammalian cell line such as COS or 293T. The polynucleotide sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof. The expressed polypeptides may be used in various assays known in the art to determine their biological activity. Such polypeptides may also be used to raise antibodies, to isolate corresponding interacting proteins or other compounds, and to quantitatively determine levels of interacting proteins or other compounds.

In a related aspect, polypeptides are provided that comprise at least a functional portion of a polypeptide having an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NO: 63-124 and 163-190, and variants thereof. As used herein, the "functional portion" of a polypeptide is that portion which contains an active site essential for affecting the function of the polypeptide, for example, a portion of the molecule that is capable of binding one or more reactants. The active site may be made up of separate portions present on one or more polypeptide chains and will generally exhibit high binding affinity. Functional portions of a polypeptide may be identified by first preparing fragments of the polypeptide by either chemical or enzymatic digestion of the polypeptide, or by mutation analysis of the polynucleotide that encodes the polypeptide and subsequent expression of the resulting mutant polypeptides. The polypeptide fragments or mutant polypeptides are then tested to determine which portions retain biological activity, using methods well known to those of skill in the art, including the representative assays described below.

Portions and other variants of the inventive polypeptides may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. *See* Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied Biosystems, Inc. (Foster City, California), and may be operated according to the manufacturer's instructions. Variants of a native polypeptide may

be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (Kunkel, *Proc. Natl. Acad. Sci. USA* 82:488-492, 1985). Sections of DNA sequences may also be removed using standard techniques to permit preparation of truncated polypeptides.

5 As used herein, the term "variant" comprehends nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant sequences (polynucleotide or polypeptide) preferably exhibit at least 75%, more preferably at least 80%, more preferably at least 90%, more preferably yet at least 95% and most preferably, at least 98% identity to a sequence of the present invention. The percentage identity is determined by aligning the two sequences to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100.

10 Polynucleotides and polypeptides having a specified percentage identity to a polynucleotide or polypeptide identified in one of SEQ ID NO: 1-190 thus share a high degree of similarity in their primary structure. In addition to a specified percentage identity to a polynucleotide or polypeptide of the present invention, variant polynucleotides and polypeptides preferably have additional structural and/or functional features in common with a polynucleotide of the present invention. Polynucleotides having a specified degree of identity to, or capable of hybridizing to, a polynucleotide of the present invention preferably additionally have at least one of the following features: (1) they contain an open reading frame, or partial open reading frame, encoding a polypeptide, or a functional portion of a polypeptide, having substantially the same functional properties as the polypeptide, or functional portion thereof, encoded by a polynucleotide in a recited SEQ ID NO:; or (2) they contain identifiable domains in common. Similarly, polypeptides having a specified degree of identity to a polypeptide of the present invention preferably additionally have at least one of the following features: (1) they have substantially the same functional properties as the polypeptide in the recited SEQ ID NO:; or (2) they contain identifiable domains in common.

15 20 25 30 Polynucleotide or polypeptide sequences may be aligned, and percentages of identical nucleotides or amino acids in a specified region may be determined against another

polynucleotide or polypeptide, using computer algorithms that are publicly available. The BLASTN and FASTA algorithms, set to the default parameters described in the documentation and distributed with the algorithm, may be used for aligning and identifying the similarity of polynucleotide sequences. The alignment and similarity of polypeptide 5 sequences may be examined using the BLASTP algorithm. BLASTX and FASTX algorithms compare nucleotide query sequences translated in all reading frames against polypeptide sequences. The FASTA and FASTX algorithms are described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85:2444-2448, 1988; and in Pearson, *Methods in Enzymol.* 183:63-98, 1990. The FASTA software package is available from the University of 10 Virginia by contacting the Assistant Provost for Research, University of Virginia, PO Box 9025, Charlottesville, VA 22906-9025. The BLASTN software is available from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, MD 20894. The BLASTN algorithm Version 2.0.11 [Jan-20-2000] and Version 2.2.1 [Apr-13-2001] set to the default parameters described in the 15 documentation and distributed with the algorithm, are preferred for use in the determination of polynucleotide variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN, BLASTP and BLASTX, is described in the publication of Altschul *et al.*, "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," *Nucleic Acids Res.* 25:3389-3402, 1997.

20 The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to the E values and percentage identity for polynucleotides: Unix running command with the following default parameters: blastall -p blastn -d embldb -e 10 -G 0 -E 0 -r 1 -v 30 -b 30 -i queryseq -o results; and parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost 25 to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -r Reward for a nucleotide match (BLASTN only) [Integer]; -v Number of one-line descriptions (V) [Integer]; -b Number of alignments to show (B) [Integer]; -i Query File [File In]; -o BLAST report Output File [File Out] Optional.

30 The following running parameters are preferred for determination of alignments and similarities using BLASTP that contribute to the E values and percentage identity of

polypeptide sequences: blastall -p blastp -d swissprotdb -e 10 -G 0 -E 0 -v 30 -b 30 -i queryseq -o results; the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -v Number of 5 one-line descriptions (v) [Integer]; -b Number of alignments to show (b) [Integer]; -I Query File [File In]; -o BLAST report Output File [File Out] Optional.

The "hits" to one or more database sequences by a queried sequence produced by BLASTN, BLASTP, FASTA, or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of 10 sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.

As noted above, the percentage identity of a polynucleotide or polypeptide sequence is determined by aligning polynucleotide and polypeptide sequences using appropriate algorithms, such as BLASTN or BLASTP, respectively, set to default parameters; identifying 15 the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the present invention; and then multiplying by 100 to determine the percentage identity. By way of example, a queried polynucleotide having 220 nucleic acids has a hit to a polynucleotide sequence in the EMBL database having 520 20 nucleic acids over a stretch of 23 nucleotides in the alignment produced by the BLASTN algorithm using the default parameters. The 23-nucleotide hit includes 21 identical nucleotides, one gap and one different nucleotide. The percentage identity of the queried polynucleotide to the hit in the EMBL database is thus 21/220 times 100, or 9.5%. The percentage identity of polypeptide sequences may be determined in a similar fashion.

The BLASTN and BLASTX algorithms also produce "Expect" values for 25 polynucleotide and polypeptide alignments. The Expect value (E) indicates the number of hits one can "expect" to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a significance threshold for determining whether the hit to a database indicates true similarity. For example, an E 30 value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion

of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the sequences then have a probability of 90% of being related. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the 5 BLASTN algorithm. E values for polypeptide sequences may be determined in a similar fashion using various polypeptide databases, such as the SwissProt database.

According to one embodiment, "variant" polynucleotides and polypeptides, with reference to each of the polynucleotides and polypeptides of the present invention, preferably comprise sequences having the same number or fewer nucleotides or amino acids than each 10 of the polynucleotides or polypeptides of the present invention and producing an E value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a variant polynucleotide or polypeptide is any sequence that has at least a 99% probability of being related to the polynucleotide or polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or BLASTX algorithms set 15 at the default parameters. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or fewer nucleic acids than a polynucleotide of the present invention that has at least a 99% probability of being related to the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN algorithm set at the default parameters. Similarly, according to a preferred embodiment, a 20 variant polypeptide is a sequence having the same number or fewer amino acids than a polypeptide of the present invention that has at least a 99% probability of being related as the polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTP algorithm set at the default parameters.

In an alternative embodiment, variant polynucleotides are sequences that hybridize to 25 a polynucleotide of the present invention under stringent conditions. Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures can be as low as 5°C, but are generally greater than about 22°C, more preferably greater than about 30°C, and most preferably greater than about 37°C. 30 Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as

probe composition, presence of organic solvents, and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. An example of "stringent conditions" is prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes 5 each in 1X SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65°C.

The present invention also encompasses polynucleotides that differ from the disclosed sequences but that, as a consequence of the discrepancy of the genetic code, encode a polypeptide having similar enzymatic activity to a polypeptide encoded by a polynucleotide 10 of the present invention. Thus, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NO: 1-62 and 125-162, or complements, reverse sequences, or reverse complements of those sequences, as a result of conservative substitutions are contemplated by and encompassed within the present invention. Additionally, polynucleotides comprising sequences that differ from the polynucleotide 15 sequences recited in SEQ ID NO: 1-62 and 125-162, or complements, reverse complements or reverse sequences thereof, as a result of deletions and/or insertions totaling less than 10% of the total sequence length are also contemplated by and encompassed within the present invention. Similarly, polypeptides comprising sequences that differ from the polypeptide sequences recited in SEQ ID NO: 63-124 and 163-190 as a result of amino acid substitutions, 20 insertions, and/or deletions totaling less than 10% of the total sequence length are contemplated by and encompassed within the present invention, provided the variant polypeptide has activity in a lignin, fructan or tannin biosynthetic pathway.

In another aspect, the present invention provides genetic constructs comprising, in the 5'-3' direction, a gene promoter sequence; an open reading frame coding for at least a 25 functional portion of a polypeptide of the present invention; and a gene termination sequence. The open reading frame may be orientated in either a sense or anti-sense direction. For applications where amplification of lignin, fructan or tannin synthesis is desired, the open reading frame may be inserted in the construct in a sense orientation, such that transformation of a target organism with the construct will lead to an increase in the number 30 of copies of the gene and therefore an increase in the amount of enzyme. When down-regulation of lignin, fructan or tannin synthesis is desired, the open reading frame may be

inserted in the construct in an anti-sense orientation, such that the RNA produced by transcription of the polynucleotide is complementary to the endogenous mRNA sequence. This, in turn, will result in a decrease in the number of copies of the gene and therefore a decrease in the amount of enzyme. Alternatively, regulation may be achieved by inserting 5 appropriate sequences or subsequences (e.g., DNA or RNA) in ribozyme constructs.

Genetic constructs comprising a non-coding region of a gene coding for a polypeptide of the present invention, or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided. As used herein the term "non-coding region" includes both transcribed sequences which are 10 not translated, and non-transcribed sequences within about 2000 base pairs 5' or 3' of the translated sequences or open reading frames. Examples of non-coding regions which may be usefully employed in the inventive constructs include introns and 5'- non-coding leader sequences. Transformation of a target plant with such a genetic construct may lead to a reduction in the amount of lignin, fructan or tannin synthesized by the plant by the process of 15 cosuppression, in a manner similar to that discussed, for example, by Napoli *et al.*, *Plant Cell* 2:279-290, 1990; and de Carvalho Niebel *et al.*, *Plant Cell* 7:347-358, 1995.

The genetic constructs of the present invention further comprise a gene promoter sequence and a gene termination sequence, operably linked to the polynucleotide to be transcribed, which control expression of the gene. The gene promoter sequence is generally 20 positioned at the 5' end of the polynucleotide to be transcribed, and is employed to initiate transcription of the polynucleotide. Gene promoter sequences are generally found in the 5' non-coding region of a gene but they may exist in introns (Luehrsen, *Mol. Gen. Genet.* 225:81-93, 1991). When the construct includes an open reading frame in a sense orientation, the gene promoter sequence also initiates translation of the open reading frame. For genetic 25 constructs comprising either an open reading frame in an anti-sense orientation or a non-coding region, the gene promoter sequence consists only of a transcription initiation site having a RNA polymerase binding site.

A variety of gene promoter sequences which may be usefully employed in the genetic constructs of the present invention are well known in the art. The promoter gene sequence, 30 and also the gene termination sequence, may be endogenous to the target plant host or may be exogenous, provided the promoter is functional in the target host. For example, the

promoter and termination sequences may be from other plant species, plant viruses, bacterial plasmids and the like. Preferably, gene promoter and termination sequences are from the inventive sequences themselves.

Factors influencing the choice of promoter include the desired tissue specificity of the construct, and the timing of transcription and translation. For example, constitutive promoters, such as the 35S Cauliflower Mosaic Virus (CaMV 35S) promoter, will affect the activity of the enzyme in all parts of the plant. Use of a tissue specific promoter will result in production of the desired sense or anti-sense RNA only in the tissue of interest. With DNA constructs employing inducible gene promoter sequences, the rate of RNA polymerase binding and initiation can be modulated by external stimuli, such as light, heat, anaerobic stress, alteration in nutrient conditions and the like. Temporally regulated promoters can be employed to effect modulation of the rate of RNA polymerase binding and initiation at a specific time during development of a transformed cell. Preferably, the original promoters from the enzyme gene in question, or promoters from a specific tissue-targeted gene in the organism to be transformed, such as *Lolium* or *Festuca*, are used. Grass promoters different from the original gene may also be usefully employed in the inventive genetic constructs in order to prevent feedback inhibition. For example, the fructosyltransferase gene will be regulated by sucrose sensing systems; therefore removing the gene from under control of its normal promoter allows the gene to be active all the time. Other examples of gene promoters which may be usefully employed in the present invention include, mannopine synthase (mas), octopine synthase (ocs) and those reviewed by Chua *et al.*, *Science* 244:174-181, 1989.

The gene termination sequence, which is located 3' to the polynucleotide to be transcribed, may come from the same gene as the gene promoter sequence or may be from a different gene. Many gene termination sequences known in the art may be usefully employed in the present invention, such as the 3' end of the *Agrobacterium tumefaciens* nopaline synthase gene. However, preferred gene terminator sequences are those from the original enzyme gene or from the target species to be transformed.

The genetic constructs of the present invention may also contain a selection marker that is effective in plant cells, to allow for the detection of transformed cells containing the inventive construct. Such markers, which are well known in the art, typically confer

resistance to one or more toxins. One example of such a marker is the NPTII gene whose expression results in resistance to kanamycin or hygromycin, antibiotics which are usually toxic to plant cells at a moderate concentration (Rogers *et al.*, in Weissbach A and H, eds., *Methods for Plant Molecular Biology*, Academic Press Inc.: San Diego, CA, 1988).

5 Alternatively, the presence of the desired construct in transformed cells can be determined by means of other techniques well known in the art, such as Southern and Western blots.

Techniques for operatively linking the components of the inventive genetic constructs are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Sambrook *et al.*, (*Molecular 10 cloning: a laboratory manual*, CSHL Press: Cold Spring Harbor, NY, 1989). The genetic construct of the present invention may be linked to a vector having at least one replication system, for example, *E. coli*, whereby after each manipulation, the resulting construct can be cloned and sequenced and the correctness of the manipulation determined.

The genetic constructs of the present invention may be used to transform a variety of 15 plants, both monocotyledonous (*e.g.*, grasses, maize/corn, grains, oats, rice, sorghum, millet, rye, sugar cane, wheat and barley), dicotyledonous (*e.g.*, *Arabidopsis*, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and gymnosperms. In a preferred embodiment, the inventive genetic constructs are employed to transform grasses. Preferably the target plant is selected from the group consisting of *Lolium* and *Festuca* species, most preferably from the 20 group consisting of *Lolium perenne* and *Festuca arundinacea*. Other plants that may be usefully transformed with the inventive genetic constructs include other species of ryegrass and fescue, including, but not limited to *Lolium multiflorum* (Italian ryegrass), *Lolium hybridum* (hybrid ryegrass), *Lolium rigidum* (Wimerra grass), *Lolium temulentum* (darnel), *Festuca rubra* (red fescue) and *Festuca pratensis* (meadow fescue). As discussed above, 25 transformation of a plant with a genetic construct of the present invention will produce a modified lignin, fructan or tannin content in the plant.

The production of RNA in target cells may be controlled by choice of the promoter sequence, or by selecting the number of functional copies or the site of integration of the polynucleotides incorporated into the genome of the target organism. A target plant may be 30 transformed with more than one construct of the present invention, thereby modulating the lignin, fructan and/or tannin biosynthetic pathways by affecting the activity of more than one

enzyme, affecting enzyme activity in more than one tissue or affecting enzyme activity at more than one expression time. Similarly, a construct may be assembled containing more than one open reading frame coding for an enzyme encoded by a polynucleotide of the present invention or more than one non-coding region of a gene coding for such an enzyme.

5 The polynucleotides of the present invention may also be employed in combination with other known sequences encoding enzymes involved in the lignin, fructan and/or tannin biosynthetic pathways. In this manner, more than one biosynthetic pathway may be modulated, or a lignin, fructan or tannin biosynthetic pathway may be added to a plant to produce a plant having an altered phenotype.

10 Techniques for stably incorporating genetic constructs into the genome of target plants are well known in the art and include *Agrobacterium tumefaciens* mediated introduction, electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, high velocity projectile introduction and the like. The choice of technique will depend upon the target plant to be transformed. For example, dicotyledonous

15 plants and certain monocots and gymnosperms may be transformed by *Agrobacterium* Ti plasmid technology, as described, for example by Bevan, *Nucleic Acid Res.* 12:8711-8721, 1984. Targets for the introduction of the genetic constructs of the present invention include tissues, such as leaf tissue, disseminated cells, protoplasts, seeds, embryos, meristematic regions; cotyledons, hypocotyls, and the like. Transformation techniques which may be

20 usefully employed in the inventive methods include those taught by Ellis *et al.*, *Plant Cell Reports*, 8:16-20, 1989; Wilson *et al.*, *Plant Cell Reports* 7:704-707, 1989; Tautorus *et al.*, *Theor. Appl. Genet.* 78:531-536, 198; Hiei *et al.*, *Plant J.* 6:271-282, 1994; and Ishida *et al.*, *Nature Biotechnol.* 14:745-750, 1996; US Patent 5,591,616; and European Patent Publication EP 672 752 A1. Once the cells are transformed, cells having the inventive DNA construct

25 incorporated in their genome may be selected by means of a marker, such as the kanamycin resistance marker discussed above. Transgenic cells may then be cultured in an appropriate medium to regenerate whole plants, using techniques well known in the art. In the case of protoplasts, the cell wall is allowed to reform under appropriate osmotic conditions. In the case of seeds or embryos, an appropriate germination or callus initiation medium is

30 employed. For explants, an appropriate regeneration medium is used. Regeneration of plants is well established for many species. The resulting transformed plants may be reproduced

sexually or asexually, using methods well known in the art, to give successive generations of transgenic plants.

Polynucleotides of the present invention may also be used to specifically suppress gene expression by methods that operate post-transcriptionally to block the synthesis of products of targeted genes, such as RNA interference (RNAi), and quelling. For a review of techniques of gene suppression see *Science*, 288:1370-1372, 2000. Exemplary gene silencing methods are also provided in WO 99/49029 and WO 99/53050. Posttranscriptional gene silencing is brought about by a sequence-specific RNA degradation process which results in the rapid degradation of transcripts of sequence-related genes. Studies have provided evidence that double-stranded RNA may act as a mediator of sequence-specific gene silencing (see, e.g., review by Montgomery and Fire, *Trends in Genetics*, 14: 255-258, 1998). Gene constructs that produce transcripts with self-complementary regions are particularly efficient at gene silencing. A unique feature of this posttranscriptional gene silencing pathway is that silencing is not limited to the cells where it is initiated. The gene-silencing effects may be disseminated to other parts of an organism and even transmitted through the germ line to several generations.

The polynucleotides of the present invention may be employed to generate gene silencing constructs and or gene-specific self-complementary RNA sequences that can be delivered by conventional art-known methods to plant tissues, such as forage grass tissues. Within genetic constructs, sense and antisense sequences can be placed in regions flanking an intron sequence in proper splicing orientation with donor and acceptor splicing sites, such that intron sequences are removed during processing of the transcript and sense and antisense sequences, as well as splice junction sequences, bind together to form double-stranded RNA. Alternatively, spacer sequences of various lengths may be employed to separate self-complementary regions of sequence in the construct. During processing of the gene construct transcript, intron sequences are spliced-out, allowing sense and anti-sense sequences, as well as splice junction sequences, to bind forming double-stranded RNA. Select ribonucleases bind to and cleave the double-stranded RNA, thereby initiating the cascade of events leading to degradation of specific mRNA gene sequences, and silencing specific genes. Alternatively, rather than using a gene construct to express the self-complementary RNA sequences, the gene-specific double-stranded RNA segments are

delivered to one or more targeted areas to be internalized into the cell cytoplasm to exert a gene silencing effect. Gene silencing RNA sequences comprising the polynucleotides of the present invention are useful for creating genetically modified plants with desired phenotypes as well as for characterizing genes (e.g., in high-throughput screening of sequences), and
5 studying their functions in intact organisms.

Example 1

ISOLATION OF cDNA SEQUENCES FROM *L. PERENNE* AND
F. ARUNDINACEA cDNA LIBRARIES

10 *L. perenne* and *F. arundinacea* cDNA expression libraries were constructed and screened as follows. Tissue was collected from *L. perenne* and *F. arundinacea* during winter and spring, and snap-frozen in liquid nitrogen. The tissues collected include those obtained from leaf blades, leaf base, pseudostem, floral stems, inflorescences, roots and stem. Total
15 RNA was isolated from each tissue type using TRIzol Reagent (BRL Life Technologies, Gaithersburg, MD). mRNA from each tissue type was obtained using a Poly(A) Quik mRNA isolation kit (Stratagene, La Jolla, CA), according to the manufacturer's specifications. cDNA expression libraries were constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA in Lambda ZAP
20 using a ZAP Express cDNA Synthesis Kit (Stratagene, La Jolla, CA), according to the manufacturer's protocol. The resulting cDNA clones were packaged using a Gigapack II Packaging Extract (Stratagene, La Jolla, CA) employing 1 μ l of sample DNA from the 5 μ l ligation mix. Mass excision of the libraries was done using XL1-Blue MRF⁺ cells and
25 XLOR cells (Stratagene, La Jolla, CA) with ExAssist helper phage (Stratagene, La Jolla, CA). The excized phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, MD) and plated out onto LB-kanamycin agar plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactosidase (X-gal) and isopropylthio-beta-galactoside (IPTG). Of the colonies plated and picked for DNA preparations, the large majority contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and DNA was
30 purified following standard protocols. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye terminator sequences were prepared using a

Biomek 2000 robot (Beckman Coulter Inc., Fullerton, CA) for liquid handling and DNA amplification using a 9700 PCR machine (Perkin Elmer/Applied Biosystems, Foster City, CA) according to the manufacturer's protocol.

The DNA sequences for positive clones were obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced from the 5' end. The polynucleotide sequences identified as SEQ ID NO: 4, 6, 11, 127, 128 and 132 were identified from *L. perenne* leaf cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 1, 14, 15, 26, 32, 36, 38, 41, 49, 125, 134, 141, 144, 147, and 150 were identified from *L. perenne* vegetative stem cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 17, 22, 25, 138, and 140 were identified from *L. perenne* leaf and pseudostem cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 43, 57, 61, 157, and 161 were identified from *L. perenne* pseudostem cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 10, 12, 28, 30, 34, 44, 60, 131, 133, 142, 143, 145, 151, and 160 were identified from *L. perenne* floral stem cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 8, 18, 46, 52, 53, 55, 59, 136, 152, 155, 156, 159, and 162 were identified from *L. perenne* stem cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 51 and 154 were identified from a *L. perenne* root cDNA expression library; the polynucleotide sequences identified as SEQ ID NO: 24, 27 and 139 were identified from *L. perenne* leaf blade cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 9, 37, 39, 40, 45, 130, 148, and 149 were identified from *F. arundinacea* basal leaf cDNA expression libraries; the polynucleotide sequences identified as SEQ ID NO: 19, 21, 29, 33, 35, 47, 48, and 153 were identified from *F. arundinacea* combined day 3 and day 6 basal leaves cDNA expression libraries; the polynucleotide sequence identified as SEQ ID NO: 54 was identified from a *F. arundinacea* combined day 3 and day 6 leaves cDNA expression library; the polynucleotide sequence identified as SEQ ID NO: 56 was identified from a *F. arundinacea* inflorescence cDNA expression library; the polynucleotide sequences identified as SEQ ID NO: 20 and 137 were identified from a subtracted *F. arundinacea* leaf blade cDNA expression library; the polynucleotide sequences identified as SEQ ID NO: 7, 23, 42, 50, 62, and 129 were identified from *F. arundinacea* pseudostem cDNA expression libraries; the polynucleotide

sequences identified as SEQ ID NO: 2, 13, 16 and 135 were identified from *F. arundinacea* leaf cDNA expression libraries; and the polynucleotide sequences identified as SEQ ID NO: 3, 5, 31, and 126 were identified from a *F. arundinacea* inflorescence day 0 cDNA expression library.

5

BLASTN Polynucleotide Analysis

The isolated cDNA sequences were compared to sequences in the EMBL DNA database using the computer algorithm BLASTN. Comparisons of DNA sequences provided in SEQ ID NOS: 1-62 to sequences in the EMBL DNA database were made as of October 10 19, 2001 using BLASTN algorithm Version 2.0.11 [Jan-20-2000], and the following Unix running command: blastall -p blastn -d embldb -e 10 -G0 -E0 -r 1 -v 30 -b 30 -i queryseq -o. Comparisons of DNA sequences provided in SEQ ID NOS: 125-162 to sequences in the EMBL DNA database were made using BLASTN algorithm Version 2.2.1 [Apr-13-2001], and the following Unix running command: blastall -p blastn -d embldb -F F -e 10 -G0 -E0 -r 1 -v 2 -b 2 -i queryseq -o.

15 The sequences of SEQ ID NO: 4-6, 9-11, 17-19, 21-26, 33, 44, 45, 48, 49, 51-55, 59, 60, 130-132, 136, 139, 146, 151, 154-156, 159, and 162 were determined to have less than 50% identity to sequences in the EMBL database using the computer algorithm BLASTN, as described above. The sequences of SEQ ID NO: 2, 3, 7, 8, 14, 16, 36-38, 46, 47, 50, 56-58, 20 61, 129, 135, 137, 138, 152, 153, 157, 158, 160 and 161 were determined to have less than 75% identity to sequences in the EMBL database using the computer algorithm BLASTN, as described above. The sequences of SEQ ID NOS: 1, 12, 13, 15, 20, 28, 31, 32, 35, 40 62, 125-128, 133, 134, 142, 144 and 147 were determined to have less than 90% identity to sequences in the EMBL database using the computer algorithm BLASTN, as described above. 25 Finally, the sequences of SEQ ID NOS: 29, 30, 39, 41-43, 141, 143, 148, and 149 were determined to have less than 98% identity to sequences in the EMBL database using the computer algorithm BLASTN, as described above.

BLASTP Polypeptide Analysis

30 The protein sequences corresponding to the isolated cDNA sequences were compared to sequences in the SwissProt/Trembl protein database using the computer algorithm

BLASTP. Comparisons of protein sequences provided in SEQ ID NOS: 63-124 to sequences in the SwissProt/Trembl protein database were made as of October 19, 2001 using BLASTP algorithm Version 2.0.11 [Jan-20-2000], and the following Unix running command: blastall -p blastp -dstdb -e 10 -G0 -E0 -v 30 -b 30 -i queryseq -o. Comparisons of protein sequences provided in SEQ ID NOS: 163-190 to sequences in the SwissProt/Trembl protein database were made using BLASTP algorithm Version 2.2.1 [Apr-13-2001], and the following Unix running command: blastall -p blastp -d stdb -F F -e 10 -G0 -E0 -v 2 -b 2 -i queryseq -o.

The sequences of SEQ ID NOS: 65-68, 72, 73, 78, 80, 81, 84, 85, 87, 88, 106, 107, 110, 111, 113-115, 117, 118 and 121 were determined to have less than 50% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTP, as described above. The sequences of SEQ ID NOS: 71, 79, 82, 83, 86, 95, 98-100, 112, 116, 120, 122-124, 167, 168, 171-174, 185, 188, and 190 were determined to have less than 75% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTP, as described above. The sequences of SEQ ID NOS: 63, 64, 69, 70, 74-77, 90, 91, 93, 94, 97, 101, 102, 104, 108, 109, 119, 175, 183, 187, and 189 were determined to have less than 90% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTP, as described above. Finally, the sequences of SEQ ID NOS: 89, 92, 96, 103, 105, 163-165, 169, 170, 177, 179, 181, 184, and 186 were determined to have less than 98% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTP, as described above.

BLASTX Polynucleotide Analysis

The isolated cDNA sequences were compared to sequences in the SwissProt/Trembl protein database using the computer algorithm BLASTX. Comparisons of DNA sequences provided in SEQ ID NOS: 1-62 to sequences in the SwissProt/Trembl protein database were made as of October 19, 2001 using BLASTX algorithm Version 2.0.11 [Jan-20-2000], and the following Unix running command: blastall -p blastx -dstdb -e 10 -G0 -E0 -v 30 -b 30 -i queryseq -o. Comparisons of DNA sequences provided in SEQ ID NOS: 1-62 to sequences in the SwissProt/Trembl protein database were made using BLASTX algorithm

Version 2.2.1 [Apr-13-2001], and the following Unix running command: blastall -p blastx -d stdb -F F -e 10 -G0 -E0 -v 2 -b 2 -i queryseq -o.

The sequences of SEQ ID NOS: 11, 44, 45, 48, 49, 51, 52, 55, 130, 132, 155, 156, and 162 were determined to have less than 50% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTX, as described above. The sequences of SEQ ID NOS: 3-10, 16-26, 33, 36-38, 40-43, 50, 53, 54, 56, 58-62, 129, 131, 135-139, 146, 150, 151, 154, and 158-161 were determined to have less than 75% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTX, as described above. The sequences of SEQ ID NOS: 1, 2, 12-15, 27, 28-32, 34, 35, 39, 46, 47, 57, 125-128, 133, 134, 141-145, 147-149, 152, 153, and 157 were determined to have less than 90% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTX, as described above. Finally, the sequence of SEQ ID NO: 140 was determined to have less than 98% identity to sequences in the SwissProt/Trembl database using the computer algorithm BLASTX, as described above.

The location of open reading frames (ORFs), by nucleotide position, contained within the sequences of SEQ ID NO: 1-62 and 125-162, and the corresponding amino acid sequences are provided in Table 2 below. SEQ ID NO: 1-8, 10-15, 17, 19, 21, 23-25, 28-52, 54-59, 61-62 and 125-162 are believed to contain full-length ORFs.

20

TABLE 2

POLYNUCLEOTIDE SEQ ID NO:	ORF	POLYPEPTIDE SEQ ID NO:
1	56-2,020	63
2	64-2,010	64
3	64-1,926	65
4	74-1,945	66
5	40-1,911	67
6	79-1,938	68
7	246-1,514	69
8	264-1,532	70
9	84-3,272	71
10	73-3,297	72
11	129-2,942	73
12	46-2,472	74
13	113-2,539	75
14	61-2,505	76

POLYNUCLEOTIDE SEQ ID NO:	ORF	POLYPEPTIDE SEQ ID NO:
15	103-2,253	77
16	3-1,439	78
17	26-1,777	79
18	2-1,174	80
19	59-1,852	81
20	2-1,201	82
21	1-1,779	83
22	198-1,097	84
23	27-1,772	85
24	36-1,802	86
25	78-2,084	87
26	2-1,423	88
27	3-1,622	89
28	85-1,764	90
29	72-1,751	91
30	127-1,800	92
31	137-1,810	93
32	62-1,567	94
33	80-1,597	95
34	32-1,117	96
35	86-1,171	97
36	55-852	98
37	75-872	99
38	149-1,240	100
39	90-1,118	101
40	28-1,110	102
41	66-1,148	103
42	64-1,146	104
43	85-1,170	105
44	88-1,683	106
45	93-1,721	107
46	111-2,246	108
47	144-2,285	109
48	22-993	110
49	4-1,038	111
50	87-1,067	112
51	59-1,135	113
52	18-1,052	114
53	1-882	115
54	80-1,015	116
55	322-1,014	117
56	172-762	118
57	118-1,299	119

POLYNUCLEOTIDE SEQ ID NO:	ORF	POLYPEPTIDE SEQ ID NO:
58	5-595	120
59	14-1,003	121
60	1-987	122
61	65-1,174	123
62	103-1,245	124
125	55-2,019	163
126	63-1,925	164
127	73-1,944	165
128	71-1,930	166
131	72-3,299	167
132	134-2,950	168
133	45-2,471	169
134	65-2,512	170
135	74-1,819	171
136	170-1,855	172
137	28-1,770	173
138	26-1,733	174
139	35-1,801	175
140	71-2,083	176
141	63-1,607	177
143	126-1,799	178
144	61-1,566	179
145	67-1,152	180
147	148-1,239	181
149	27-1,109	182
151	87-1,718	183
153	143-2,284	184
156	46-1,017	185
157	117-1,313	186
158	81-1,193	187
159	12-1,001	188
160	26-1,018	189
162	50-1,027	190

SEQ ID NO: 125 and 163 are related to SEQ ID NO: 1 and 63, respectively; SEQ ID NO: 126 and 164 are related to SEQ ID NO: 3 and 65, respectively; SEQ ID NO: 127 and 165 are related to SEQ ID NO: 4 and 66, respectively; SEQ ID NO: 128 and 166 are related to SEQ ID NO: 6 and 68, respectively; SEQ ID NO: 129 is an extended sequence of SEQ ID NO: 7; SEQ ID NO: 130 is an extended sequence of SEQ ID NO: 9; SEQ ID NO: 131 and 167 are related to SEQ ID NO: 10 and 72, respectively; SEQ ID NO: 132 and 168 are related

to SEQ ID NO: 11 and 73, respectively; SEQ ID NO: 133 and 169 are related to SEQ ID NO: 12 and 74, respectively; SEQ ID NO: 134 and 170 are related to SEQ ID NO: 14 and 76, respectively; SEQ ID NO: 135 and 171 are full-length sequences of SEQ ID NO: 16 and 78, respectively; SEQ ID NO: 136 and 172 are full-length sequences of SEQ ID NO: 18 and 80, respectively; SEQ ID NO: 137 and 173 are related to SEQ ID NO: 20 and 82, respectively; SEQ ID NO: 138 and 174 are full-length sequences of SEQ ID NO: 22 and 84, respectively; SEQ ID NO: 139 and 175 are related to SEQ ID NO: 24 and 86, respectively; SEQ ID NO: 140 and 176 are related to SEQ ID NO: 25 and 87, respectively; SEQ ID NO: 141 and 177 are full-length sequences of SEQ ID NO: 26 and 88, respectively; SEQ ID NO: 142 is related to SEQ ID NO: 28 and encodes the same amino acid sequence; SEQ ID NO: 143 and 178 are related to SEQ ID NO: 30 and 92, respectively; SEQ ID NO: 144 and 179 are related to SEQ ID NO: 32 and 94, respectively; SEQ ID NO: 145 and 180 are full-length sequences of SEQ ID NO: 34 and 96, respectively; SEQ ID NO: 146 is related to SEQ ID NO: 36 and encodes the same amino acid sequence; SEQ ID NO: 147 and 181 are related to SEQ ID NO: 38 and 100, respectively; SEQ ID NO: 148 is related to SEQ ID NO: 39, and encodes the same amino acid sequence; SEQ ID NO: 149 and 182 are related to SEQ ID NO: 40 and 102, respectively; SEQ ID NO: 150 is related to SEQ ID NO: 41 and encodes the same amino acid sequence; SEQ ID NO: 151 and 183 is related to SEQ ID NO: 44 and 106, respectively; SEQ ID NO: 152 is related to SEQ ID NO: 46, and encodes the same amino acid sequence; SEQ ID NO: 153 and 184 are related to SEQ ID NO: 47 and 109, respectively; SEQ ID NO: 154 is related to SEQ ID NO: 51, and encodes the same amino acid sequence; SEQ ID NO: 155 is related to SEQ ID NO: 52, and encodes the same amino acid sequence; SEQ ID NO: 156 and 185 are full-length sequences of SEQ ID NO: 53 and 115, respectively; SEQ ID NO: 162 and 190 are variants of SEQ ID NO: 156 and 185, respectively, with a difference in the 5' region of SEQ ID NO: 156 and 162; SEQ NO: 157 and 186 are related to SEQ ID NO: 57 and 119, respectively; SEQ ID NO: 158 and 187 are related to SEQ ID NO: 58 and 120, respectively; SEQ ID NO: 159 and 188 are full-length sequences of SEQ ID NO: 59 and 121, respectively; SEQ ID NO: 160 and 189 are full-length sequences of SEQ ID NO: 60 and 122, respectively; and SEQ ID NO: 161 is related to SEQ ID NO: 61 and encodes the same amino acid sequence.

Example 2USE OF SUCROSE PHOSPHATE PHOSPHATASE TO DEPHOSPHORYLATE SUCROSE-6-PHOSPHATE

The *F. arundinacea* and *L. perenne* FaSPP and LpSPP genes (SEQ ID NO: 7 and 8, respectively) share amino acid sequence identity with sucrose-6-phosphate phosphatase genes from other plant species (Lunn *et al.*, *Proc. Natl. Acad. Sci. USA* 97:12914-12919, 2000). These genes were amplified by PCR using the primers given in SEQ ID NO: 191 and 192 to add an initiating methionine, and then cloned into the pET41a expression plasmid. These primers amplified nucleotides 263-1531 and 280-1548 for FaSPP and LpSPP, respectively. The resulting plasmids were transformed into *E. coli* BL21 cells using standard protocols, and protein expression was induced using IPTG.

The soluble recombinant protein was assayed for its ability to specifically dephosphorylate sucrose-6-phosphate (Suc-6-P) but not fructose-6-phosphate (Fru-6-P) using the procedure described by Lunn *et al.* (*ibid.*). The release of phosphate from Suc-6P and Fru-6-P was measured using the Fiske-Subbarow method of determining inorganic phosphate (SIGMA assay kit; Sigma, St Louis, MI), with the change in absorbance at 660 nm being proportional to the amount of phosphate released per unit time. As shown in Fig. 1, both the *Festuca* and *Lolium* SPP enzymes dephosphorylated Suc-6-P but not Fru-6-P, whereas control pET41 extract had no activity on either substrate.

20

Example 3PEROXIDASE ACTIVITY OF GRASS ENZYMES DEMONSTRATED BY THEIR ABILITY TO OXIDIZE
2,2'AZINO-BIS.3-ETHYLBENZYLTHIAZOLINE-6-SULFONIC ACID (ABTS)

25

A number of *L. perenne* or *F. arundinacea* genes (SEQ ID NO: 48 – 54) share amino acid identity with peroxidase genes from other plant species (Hiraga *et al.*, *Plant Cell Physiol.* 42:462-468, 2001). The putative amino acid secretion signal sequence was identified by signalP analysis of the *Lolium* and *Festuca* sequences and homology to known peroxidase proteins. Primers were designed to amplify DNA representing the mature protein (minus signal sequence; Table 3.). These genes were amplified by PCR to add an initiating methionine and then cloned into the pET25b expression plasmid. The resulting plasmid was

transformed into *E. coli* AD494 (DE3) pLysS cells using standard protocols, and protein expression was induced using IPTG.

TABLE 3

SEQ ID NO DNA	SEQ ID NO PROT	Gene	Primers SEQ ID NO:	DNA bp amplified	Protein codons
50	112	FaPER3	193 194	156-1077	24-326
52	114	LpPER5	195 196	120-1052	35-344

5

The insoluble recombinant protein was solubilized and re-folded following protocols described for several recombinant *Arabidopsis* peroxidases (Teilum *et al.*, *Protein Exp. and Purif.* 15:77-82, 1999). The insoluble inclusion bodies within *E. coli* were isolated from lysed cells by standard protocols and the recombinant protein solubilized in 8M urea. The solubilized peroxidase protein was refolded to gain active enzyme by diluting urea to 2M with 5µM Heme, 0.25mM Glutathione reduced, and 0.45mM Glutathione oxidized, pH 8 (20mM Tris-HCl). The refolded protein was used directly to assay peroxidase activity.

Peroxidase activity was measured by incubating recombinant peroxidase with pre-mixed ABTS/H₂O₂ liquid substrate (Sigma, St Louis, MI) and measuring ABTS oxidation by the increase in absorbance at 405nm. Horseradish peroxidase of known activity (Sigma, St Louis, MI) was used as a positive control and boiled samples as a negative control. The results provided in Fig. 2 show that FaPER3 and LpPER5 (SEQ ID NO: 50 and 52, respectively) had similar activity to that of horseradish peroxidase in these assays.

20

Example 4

USE OF GRASS FRUCTOSYLTRANSFERASE GENES TO SYNTHESIZE FRUCTANS

Transformation of *N. benthamiana* plants with fructosyltransferase genes

25 Sense constructs containing a polynucleotide including the coding region of fructosyltransferase genes isolated from *L. perenne* Lp1-SST and Lp6SFT1 (SEQ ID NO: 125 and 126, respectively) were inserted into a pART27 derived binary vector and used to

transform *A. tumefaciens* LBA4404 using published methods (see, An *et al.*, "Binary Vectors," in Gelvin and Schilperoort, eds., *Plant Molecular Biology Manual*, Kluwer Academic Publishers: Dordrecht, 1988). The presence and integrity of the binary vector in *A. tumefaciens* was verified by polymerase chain reaction (PCR). The primers px17 (SEQ ID NO: 207) and px18 (SEQ ID NO: 208) were used to confirm the presence of the Lp1-SST construct, whereas the primers px19 (SEQ ID NO: 209) and px 20 (SEQ ID NO: 210) were used to confirm the presence of the Lp6-SFT-1 construct.

The *A. tumefaciens* containing the sense gene constructs were used to transform *N. benthamiana* leaf discs (Burow *et al.*, *Plant Mol. Biol. Report* 8:124-139, 1990). Several 10 independent transformed plant lines were established for the sense construct for each fructosyltransferase gene. DNA was isolated from transformed plants containing the appropriate fructosyltransferase gene construct using the QIAGEN DNAeasy Plant Mini Kit (Qiagen, Valencia, CA). Presence of the fructosyltransferase gene was verified using PCR experiments as shown in Figs. 3 and 4. For the Lp6-SFT1 gene, the forward and reverse 15 primers given in SEQ ID NO: 197 and 198 were used, respectively. These primers amplify nucleotides 1572 - 1980 of the Lp6-SFT1 gene which corresponds to a 406 base pair fragment. For Lp1-SST, the forward and reverse primers given in SEQ ID NO: 199 and 200 were used, respectively. These primers amplify nucleotides 1332 - 1740 of Lp1-SST, corresponding to a 414 base pair fragment.

20

Effects of fructosyltransferase genes on fructosyltransferase concentration in transformed plants

Fructans are not normally found in *N. benthamiana* plants; hence, if introduction of the sense fructosyltransferase constructs was successful, it should be possible to extract 25 fructans from the transformed plants. The concentration of fructosyltransferase in the transformed plants was determined using the Fructan Assay Kit (Megazyme International Ireland Ltd, Wicklow, Ireland). Briefly, 300 mg of leaf material from the independent transformed plant lines containing the fructosyltransferase sense constructs were extracted individually at 80 °C with 1 ml 80% ethanol, followed by two 1 ml extractions with water. 30 The ethanol and water extracts were combined and frozen overnight at -20 °C. Extracts were centrifuged at 20,000 g to pellet chlorophyll. Clarified extracts were treated with 1%

PVP-40 to precipitate phenolic compounds. These extracts were then reduced in volume by rotary evaporation.

Fructan levels were determined in these extracts using the Megazyme Fructan Assay kit. Briefly, sucrose, starch and reducing sugars are removed from the plant carbohydrate extracts by using sucrase, β -amylase, pullulanase and maltase, and then converting the resulting reducing sugars to sugar alcohols. The remaining fructans are hydrolyzed with fructanase and the reducing sugars produced (glucose and fructose) are measured by the 4-hydroxybenzoic acid hydrazide (PAHBAH) reducing sugar method. The final extracts are assayed for absorbance at 410 nm. As shown in Fig. 5, fructans could be detected in both the Lp1-SST and Lp6-SFT-1 transgenic lines. Fructan levels were highest in lines 07, 09 and 12 for Lp1-SST, and lines 05 and 12 for Lp6SFT-1.

Example 5

USE OF SUCROSE PHOSPHATE SYNTHASE ENZYMES TO SYNTHESIZE SUCROSE

15

A *F. arundinacea* gene (FaSPS-N; SEQ ID NO: 9) has been identified that shares amino acid sequence identity with sucrose phosphate synthase (SPS) from other plant species. SEQ ID NO: 7 and 8 are also SPS sequences, with SEQ ID NO: 7 being a *Lolium perenne* homologue of SEQ ID NO: 9. The FaSPS-N was cloned into the pcDNA3 mammalian expression plasmid and the resulting plasmid transfected into 293T mammalian cells (human embryonic kidney derived cells) using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA).

Cell lysates from transfected cells were deionized on G25 spin columns and used in a sucrose synthesis assay. In this assay, mammalian cell extracts were tested for their ability to synthesize sucrose from fructose-6-phosphate and uridine 5'-diphosphoglucose. Following the synthesis reaction, hexoses were converted to sugar alcohols by boiling in the presence of 30% KOH. The sucrose synthesized was detected by the addition of 1.4 % anthrone reagent in H₂SO₄ and incubating at 40 °C for 20 min. The change in absorbance at 620 nm is relative to sucrose in the reaction (Botha and Black, *Aust. J. Plant Physiol.* 27:81-85, 2000). In these experiments, introducing FaSPS-N alone into mammalian cells produced a sucrose synthesis activity that was not detected in non-transfected cells (Fig. 6).

A known cofactor for SPS is SPP. To test whether SPP is required for SPS activity, the *L. perenne* LpSPP gene (SEQ ID NO: 8) was cloned into the pcDNA3 mammalian expression plasmid. Both the FaSPS-N and LpSPP plasmids were co-transfected into 293T mammalian cells using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA). Cell lysates from transfected cells were deionized on G25 spin columns and used in a sucrose synthesis assay as described above. As shown in Fig. 6, adding SPP did not significantly enhance or alter the sucrose synthesis activity of the cell extracts.

Example 6

10 USE OF SOLUBLE SUCROSE SYNTHASE ENZYMES TO CLEAVE SUCROSE

A *F. arundinacea* gene (FaSUS-1; SEQ ID NO: 13) was identified that shared amino acid sequence identity with soluble sucrose synthase enzymes (SUS) from other plant species. The FaSUS-1 gene was cloned into the pcDNA3 mammalian expression plasmid, which was transiently transfected into 293T mammalian cells (human embryonic kidney derived cells) using Lipofectamine 2000 reagent (Invitrogen Carlsbad, CA). Transfected cells were grown for several days before harvesting (by scraping cells in a sucrose synthase buffer). Harvested cells were frozen on dry ice and freeze-thawed twice before pelleting cell debris by centrifugation. The resulting supernatant (cell lysate) was deionized on G25 spin columns and then used in a sucrose cleavage assay as described by Sebkova *et al.* (*Plant Physiol.* 108:75-83, 1995). In these assays, the cell lysates were tested for their ability to cleave sucrose in the presence of UDP to produce fructose and uridine 5'-diphosphoglucose. Following a 30 min incubation at 30 °C, the enzyme activity was stopped by boiling the tubes for 1 min. Both NAD and UDP-glucose dehydrogenase were added and the change in OD at 25 340 nM (production of NADPH) was measured. As shown in Fig. 7, significantly higher levels of sucrose cleavage were observed in cells transfected with FaSUS1 construct than in non-transfected control cells.

Example 7USE OF ACID INVERTASES TO CLEAVE SUCROSE

A number of acid (vacuolar and cell wall) invertase genes from *L. perenne* and *F. arundinacea* (SEQ ID NOS: 17, 19, 21, 23 and 135-141) were identified that share amino acid sequence identity with acid invertases from other plant species (Unger *et al.*, *Plant Physiol.* 104:1351-1357, 1994; Goetz and Roitsch, *J. Plant Physiol.* 157:581-585, 2000). These sequences were analysed by SignalP and homology to identify signal regions and propeptide sequences, and primers were designed to amplify the DNA sequence encoding the mature protein (Table 4).

TABLE 4

SEQ ID NO DNA	SEQ ID NO PROT	Gene	Primers SEQ ID NO	DNA bp amplified	Protein codons
17	79	LpCWINV1	201 202	137-1803	38-583
19	81	FaCWINV4	203 204	134-1912	26-597
25	87	LpSINV1	205 206	387-2124	104-668

The PCR fragments were cloned into pPICZ α A vectors for expression in 15 methylotrophic yeast *Pichia pastoris* (EasySelect TM Pichia Expression Kit, Invitrogen, Carlsbad, CA). The sequences were cloned in frame with the α -mating factor for secretion of the recombinant invertase protein into liquid media, following similar methods described for the expression of barley 6-SFT and fescue 1-SST in *P. pastoris* (Hochstrasser *et al.*, *FEBS Letters* 440:356-360, 1998; Lüscher *et al.*, *Plant Physiol.*, 124:1217-1227, 2000). The 20 media was concentrated 10 fold by Vivaspin 30 kDa spin column (VivaScience, Hannover, Germany) to concentrate recombinant protein and used directly to assay invertase activity. Recombinant protein was assayed with 100mM sucrose in 500 μ l phosphate buffer pH5.0, at 25 30 °C for 1 hour. Release of glucose by invertase activity was measured using a glucose HK assay kit (Sigma, St Louis, MI). Fig. 8 shows the glucose released by invertase activity in terms of glucose concentration in the assay mix. As shown in Fig. 8, invertase activity was observed for the vacuolar invertase (LpSINV1; SEQ NO: 25) and the two cell wall invertases

(LpCWINV1 and FaCWINV4; SEQ NO: 17 and 19, respectively) but not for an empty vector (pPICZalphaA) control.

Example 8

5

USE OF TANNIN GENES TO MODIFY TANNIN BIOSYNTHESIS

Certain *Arabidopsis* mutants of the *transparent testa* (*tt*) phenotype do not make the anthocyanin pigment cyanidin and therefore have no seed coat color. The genes responsible for many of these mutants have now been identified as shown in Table 5.

10

TABLE 5

Enzyme	Abbreviation	Locus	Chromosome
Dihydroflavanol-4-reductase	DFR	<i>tt3</i>	5
Chalcone synthase	CHS	<i>tt4</i>	5
Chalcone isomerase	CHI	<i>tt5</i>	3
Flavanone 3- β -hydroxylase	F3 β H	<i>tt6</i>	3

Over-expression of the maize genes for CHS, CHI and DFR has been shown to complement the *Arabidopsis tt4*, *tt5* and *tt3* mutants, respectively, thereby restoring cyanidin synthesis and seed coat color (Dong *et al.*, *Plant Physiol.* 127:46-57, 2001).
15 Complementation of these *Arabidopsis* mutants may therefore be employed to demonstrate the function of the inventive polynucleotides encoding enzymes involved in the tannin biosynthetic pathway.

Sense constructs containing a polynucleotide including the coding region of tannin genes isolated from *L. perenne* or *F. arundinacea* LpCHS, LpCHI, LpF3 β H, LpDFR1, 20 FaCHI and FaF3 β H (SEQ ID NO: 157, 55, 161, 159, 56 and 62, respectively) under the control of the CaMV 35S promoter were inserted into a binary vector and used to transform *Agrobacterium tumefaciens* LBA4404 using published methods (*see*, An G, Ebert PR, Mitra A, Ha SB, "Binary Vectors," in Gelvin SB, Schilperoort RA, eds., *Plant Molecular Biology Manual*, Kluwer Academic Publishers: Dordrecht, 1988). The presence and integrity of the 25 binary vector in *A. tumefaciens* was verified by polymerase chain reaction (PCR) using the primer pairs described in Table 6.

TABLE 6

Gene	SEQ ID NO:	Transparent testa line	Forward Primer SEQ ID NO:	Reverse Primer SEQ ID NO:
LpCHS	157	<i>tt4</i>	211	212
LpCHI	55	<i>tt5</i>	213	214
LpF3 β H	161	<i>tt6</i>	217	218
LpDFR1	159	<i>tt3</i>	215	216
FaCHI	56	<i>tt5</i>	213	214
FaF3 β H	62	<i>tt6</i>	217	218

5 The *A. tumefaciens* containing the sense gene constructs are used to transform *Arabidopsis* by floral dipping (Clough and Bent, *Plant J.* 16:735-743, 1998). Several independent transformed plant lines were established for the sense construct for each of the tannin genes. Specifically, LpDFR1 constructs were transformed into *Arabidopsis tt3* mutants, LpCHS constructs were transformed into *Arabidopsis tt4* mutants, LpCHI and 10 FaCHI constructs were transformed into *Arabidopsis tt5* mutants, and LpF3 β H and FaF3 β H constructs were transformed into *Arabidopsis tt6* mutants. Several independent transformed plant lines were established for the construct for each of the tannin genes. Transformed plants containing the appropriate tannin gene construct were verified using PCR.

15 The presence of cyanidin in the FaCHI transformed plants is demonstrated by a phenotypic change in plant seedling color and by analyzing cyanidin extracts made from transgenic plants grown under stressed conditions (Dong *et al.*, *Plant Physiol.* 127:46-57, 2001). Briefly, cyanidins are extracted from plant tissue with an acid/alcohol solution (HCl/methanol) and water. Chlorophyll is removed by freezing the extracts followed by centrifugation at 4 °C at 20,000 g for 20 min. Any remaining chlorophyll is removed through 20 a chloroform extraction. The absorbance at 530 nm is measured for each of the cyanidin extracts. Non-transgenic wild type and control *Arabidopsis* plants are used as controls.

SEQ ID NOS: 1-218 are set out in the attached Sequence Listing. The codes for nucleotide sequences used in the attached Sequence Listing, including the symbol "n," conform to WIPO Standard ST.25 (1998), Appendix 2, Table 1.

5 All references cited herein, including patent references and non-patent publications, are hereby incorporated by reference in their entireties.

While in the foregoing specification this invention has been described in relation to certain preferred embodiments, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied 10 considerably without departing from the basic principles of the invention.

Claims

We claim:

1. An isolated polynucleotide comprising a sequence selected from the group consisting of:
 - (a) SEQ ID NO: 1-62 and 125-162;
 - (b) complements of SEQ ID NO: 1-62 and 125-162;
 - (c) reverse complements of SEQ ID NO: 1-62 and 125-162; and
 - (d) reverse sequences of SEQ ID NO: 1-62 and 125-162;
2. An isolated polynucleotide comprising a sequence selected from the group consisting of:
 - (a) sequences having a 99% probability of being functionally or evolutionarily related to a sequence of SEQ ID NO: 1-62 and 125-162;
 - (b) sequences having at least 75% identity to a sequence of SEQ ID NO: 1-62 and 125-162;
 - (c) sequences having at least 90% identity to a sequence of SEQ ID NO: 1-62 and 125-162; and
 - (d) sequences having at least 95% identity to a sequence of SEQ ID NO: 1-62 and 125-162,
3. An isolated oligonucleotide probe or primer comprising at least 10 contiguous residues complementary to 10 contiguous residues of a nucleotide sequence recited in claim 1.
4. A kit comprising a plurality of oligonucleotide probes or primers of claim 3.
5. A genetic construct comprising an isolated polynucleotide of any one of claims 1 and 2.

6. A transgenic cell comprising a construct according to claim 5.
7. A construct comprising, in the 5'-3' direction:
 - (a) a gene promoter sequence;
 - (b) a polynucleotide sequence comprising at least one of the following: (1) a polynucleotide coding for at least a functional portion of a polypeptide encoded by a polynucleotide of any one of claims 1 and 2; and (2) a polynucleotide comprising a non-coding region of a polynucleotide of any one of claims 1 and 2; and
 - (c) a gene termination sequence.
8. The construct of claim 7, wherein the polynucleotide is in a sense orientation.
9. The construct of claim 7, wherein the polynucleotide is in an anti-sense orientation.
10. A transgenic plant cell comprising a construct of claim 7.
11. A plant comprising a transgenic plant cell according to claim 10, or fruit or seeds or progeny thereof.
12. A method for modulating one or more of the lignin composition, fructan composition and tannin composition of a plant, comprising stably incorporating into the genome of the plant at least one polynucleotide of any one of claims 1 and 2.
13. The method of claim 12, wherein the plant is selected from the group consisting of grasses.
14. The method of claim 13, wherein the plant is selected from the group consisting of: *Lolium perenne* and *Festuca arundinacea*.

15. The method of claim 12 comprising stably incorporating into the genome of the plant a construct of claim 7.
16. A method for producing a plant having one or more of altered lignin composition, altered fructan composition and altered tannin composition, comprising:
 - (a) transforming a plant cell with a construct of claim 7 to provide a transgenic cell; and
 - (b) cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth.
17. A method for modifying the activity of a polypeptide involved in a lignin, fructan or tannin biosynthetic pathway in a plant comprising stably incorporating into the genome of the plant a construct of claim 7.
18. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of: SEQ ID NO: 63-124 and 163-190.
19. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
 - (a) sequences having at least 75% identity to a sequence of SEQ ID NO: 63-124 and 163-190;
 - (b) sequences having at least 90% identity to a sequence of SEQ ID NO: 63-124 and 163-190; and
 - (c) sequences having at least 95% identity to a sequence of SEQ ID NO: 63-124 and 163-190wherein the polypeptide has substantially the same functional properties as a polypeptide of SEQ ID NO: 63-124 and 163-190.
20. An isolated polynucleotide that encodes a polypeptide of claim 18.
21. An isolated polypeptide encoded by a polynucleotide of any one of claims 1 and 2.

Figure 1.

2 / 8

Figure 2.

3/8

Figure 3.

4/8

Figure 4.

5 / 8

Figure 5.

6 / 8

Figure 6.

7 / 8

Figure 7.

8/8

Figure 8.

SEQUENCE LISTING

<110> Demmer, Jeroen
 Forster, Richard L
 Gibson, John Bryan
 Shenk, Michael Andrew
 Norriss, Geoffrey
 Glenn, Matthew
 Saulsbury, Keith Martin
 Hall, Claire

<120> Compositions isolated from forage
 grasses and methods for their use

<140>

<141> 2002-11-07

<160> 218

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 2106
 <212> DNA
 <213> Lolium perenne

<400> 1	
gacttagcct tcctcggaac catcgaccgg gccgcccggc acgcgacgacg acgcgatgg	60
gtccagcgcc gtcgtccccg gcaccacggc gcccgtgctt ccttatgcgt acgcgcgc	120
gccgtcgcc tccgacgacg cccgtaaaaa cagaagtagac ggcggcgtga ggtggcgc	180
gtgcggccgtc gttctggcgg actcggcggtt ggcgggtggt gtcgtggcgt ggcgtcctc	240
ggggccgcagg gtggatcggg tcccgccgg cgcagacgtg ggcgtggccca cgggtccgg	300
cgtggcgatg gagttcccgaa ggagccgggg caaggacttg ggcgtgtcgg aagaagtcc	360
cgggtccctac tccggcggacg gcccgttccc gtggagcaac gcatgtcgc agtggcagc	420
cacccgggtt catttcccgaa cggagcagca ctatcatggaa gatccccaaacg gccccgtgt	480
ctacccggaa tggttaccacc tcttttacca gcacaacccc aaggggcgaca gctggggca	540
catcgcttgg gccccacggc tggccaaaggaa catggtaac acggccgtcacc tcccgctc	600
catgttccc gaccagtgtt acgacagcaa cggcgtccctc accggctcca tcaccgtgct	660
ccccacggc caggtcatcc tgctctacac cggcaacacc gacaccctag cccaggtcca	720
gtgcctcgcc acgcccggc acccggtccga cccgctccctc cgcaatggaa tcaaggacc	780
cgccaaacccc atcctttcc cggcccccgg gatcgggctc aaggacttcc ggcacccgct	840
cacccgctgg ttgcaccact cgcaccacac ctggcgcacc gtcatcggtt ccaaggacga	900
cgacggccac gccggcatca tcctcagcta caagaccaag gactgtcgtca actacgagct	960
catgccccggg aacatgcacc gccccggcggc atgtacgagt gatcgacc	1020
ctaccccggtc ggcggcaact cgtcgagat gtcggcgcc gacgactcgc cgcacgtgct	1080
cttgcgtcgtc aaggagagca gcatgacga acgtcacgac tactatgcgc tcggaaagg	1140
cgacccgtc gccaacgtt ggacccat cggccggac ctggacctt ggtatcggt	1200
cagatacgc tggggaaagt actacccctc caagtccttc tacgaccaga agaagaacc	1260
ccgcacatcgta tgggcataca tcggcgagac cgactccgag caggccgaca tcaccaagg	1320
atgggcaat ctcatgacga ttccaaaggaa ggtggagctt gacaggaaga cccgcacaaa	1380
cctcatccaa tggccagttgg aggaggtcga caccctccgc aggaactcca cggaccc	1440
tcgcacatcacc gtcaacgcgg gtcgtcgtcat tcgcctcccc ctccaccagg ggcgtcaact	1500
cgacatcgag gcctcccttc aactcaactc ttccgacgt gatgtatca acgaggccg	1560
cgtcggtcac aactcgacca ccagcggtgc cgccgtacgg gggccgtcgg gccccttt	1620
cctccgtcgtc cttgccaatg gccgaccga acagacgggt gtgtactt acgtgtccaa	1680
gggcgtcgac ggcggccctcc agacccactt ttgcacgac gatgtacgtt caacacggc	1740
aaaggatgtc gtgaatagga tgatggcag catgtccgg gtcgttgacg gtgagac	1800
ttcggtgagg gtgtatgttgg accactccat cgtcgacgac ttgcgtatgg gggggaggat	1860
cacggcgacg tcgcggcggt acccgacggc gaccatctac gccggccgcgg gggcttac	1920
cttcaacaac gccacggcgcc ccacgtcacc cggccggagg ctcgtcgtc acgagatgg	1980
ctcagctgac aaccatatact tcacaaacga cgacttggtag atgaaaccaa gtttagctcg	2040
tgttgcattc ttgttaacgg ccggtgattt cctatctaca cattcattttg gcggttcaaaa	2100
aaaaaaa	2106

<210> 2
 <211> 2293
 <212> DNA
 <213> Festuca arundinacea

<400> 2

gcatagtcca	ctcagccttc	ctcggaaacca	tcgaccgggc	cgccgcgcac	gacgcgcac	60
gcatggagt	ccagcgccgt	cgtcccgcc	accacggcgc	ggctgcgttc	ttatgcgtac	120
gcgcgcgtc	cgtcgccgtc	cgacgacgc	cgtaaaacc	aggtagcga	cgccgtgagg	180
tggcgccgt	gcgcgcgt	gttggccgc	tcggcggttgg	cggtgcgtgt	cgtggtcggg	240
ctccgcgg	ggggcagggt	ggatcgccg	ggtccggcc	cggtgcggc	ggtgccgacg	300
gagatcccga	ggagccgggg	caaggacttc	ggcggtgtcg	agaagtcgtc	cggggcctac	360
tccggcagc	gcgggttccc	gtggagcaac	gccatgctgc	agtggcagcg	caccgggttc	420
caactccagc	cgagcagca	ctacatgaac	gatcccaacg	gccccgtcta	ctacggcgga	480
tggtaccacc	tcttctaccac	gtacaacccc	aaggcgacaa	gctggggcaa	categcgtgg	540
gcccacgcgc	tgtccaaggaa	catggtaac	ttggcgccacc	tcccgctcgc	catgggtccc	600
gaccgtgtt	atgacagacaa	cggcgccctc	accggctcca	tcaccgtgt	ccccgacggc	660
cgggtcatcc	tgctctacac	cggaataacc	gacaccctgg	cccagggtcca	gtgcctcgcc	720
gagcccgcgc	accctccgc	cccactcctc	cgcgaaatgga	tcaagcaccc	ggccaacccc	780
atccctttcc	cgccgcggcc	gatcgccctc	aaggacttcc	gacgcacccct	caccgacttgg	840
ttcgatca	ccgacgacac	ctggcgact	gtcattgggt	ccaaggacga	cgacggccac	900
gccggcatca	tcctcagcta	caagacaaag	gacttcgtca	actacgagct	catgcccggg	960
aacatgcacc	gaggccccga	cggcacccggc	atgtacgagt	gcatcgaccc	ctacccagtg	1020
ggcgcgaact	cgtcggagat	gctcgccggc	gacgactcgc	ccgacgtgt	ctttgtgtc	1080
aaggagagca	cgatgcacga	gcgtcacgc	tactacgcgc	tcgggagggtt	cgacgcccgc	1140
gccaacattt	ggacacccat	cgaccaggag	ctggacactcg	ggatcggtt	caggtaacgac	1200
tggggaaagt	actacgcctc	aaagtccctc	taacgaccaggc	gaaagaaccg	ccgcgtcgta	1260
tgggcttaca	tcggcgagac	cgactccgg	caggccgaca	tcaccaagg	atggccaat	1320
ctcatgacga	tcccaagaac	ggtggagctt	gacaagaaga	cccgacaaa	cctcatccaa	1380
tggcagtgg	aggaggtcga	caccctccgc	aggaactcaca	cgacacttcgg	tcgcacatcacc	1440
gtcaacgcgc	gctccgtcat	tcgccttccc	ctccaccaag	gacgtcaact	cgacatcgag	1500
gcctccccc	agctcaactc	ttccgacgtg	gatgtctca	acgaggctga	cgtcggtc	1560
aactgcagca	ccagcggtc	cgccgtgcgt	ggggcgctcg	gcccccttgg	cctcctcg	1620
cttggcaacg	gccgcacccga	acagacggct	gtgtacttct	acgtgtccaa	gggcgttgat	1680
ggcgcctcc	agacccactt	ctgcacacgac	gagtacacgg	cgacgcccgg	aaaggatgtt	1740
gtgaatagga	tgtatggcag	catcgccgc	gtgcttgacg	gtgagacctt	ctcggtgagg	1800
gttctattgg	accactccat	cgtagcagac	ttcgcgtatgg	gtgggaggat	cacagcgacg	1860
tcgcggcg	acccgactga	ggctatctac	gcacggcg	gggtctacgt	cttcacacaac	1920
gccacgggt	ccaccgtcac	tgccgagagg	ctcgctgtgt	acgagatggc	ctcggctgac	1980
aaccatatct	tcaggaacga	cgacttgtag	atgaaaccaa	gtcgagctct	tgttgcattc	2040
atggtcatcg	gtatgcgcc	ctgtctacac	atccatttgg	cattcggtcg	gccccgttc	2100
cgatctgtc	atggatgggg	atcaagatgg	agtacaatag	ttttcggttt	gtttttttgt	2160
atcggtgaga	tgaatggaaa	ttagatgact	gtcctgcccc	caagtcaac	tatctgcagg	2220
agcacttctg	cagtgactat	gatgacgggt	tcatgtatca	actgtaccag	atcttttaaa	2280
ttgaaaaaaaaaa	aaa					2293

<210> 3
 <211> 2072
 <212> DNA
 <213> Festuca arundinacea

<400> 3

gcccacatccac	cgaggatatac	tagaaattc	ctgcaactcg	acctcggtt	ggaaattccg	60
gcaatggagt	cccgccgtt	tcccaacgcgc	gcgtacgcgc	cacttctgc	accacccgcgt	120
gacgacgcac	ccctggccaa	gcaggaccgc	cccgccgtgg	ggtggcgccg	gttcttaacc	180
gtgctggccg	cgtctggcgt	ggtggtgtc	ctcgctgcgt	ccactatgt	cgccggatcc	240
aggatgggtc	aggcaggcga	caccgacgc	gacggggccg	gagggttccc	gtggagcaac	300
gagatgtgc	agtggcagcg	cgccgggttc	cattaccacg	ccgaggggca	cttcatgagc	360
gatccagacg	gtccggata	ctaccgtgg	tattaccacc	tcttccttca	gtacaacccg	420
aggggcgtcg	cgtgggatga	ctacatagag	tgggggccacg	ttgtgtccca	ggacactggta	480
cactggcgcc	ctctccca	ggccctgcgg	cctgaccatt	ggtacgacaa	gaagggcg	540
ttgtcggtt	ccatcacgg	gctccacaat	ggcacgcctg	tcctgtctca	cacgggggtc	600
acagaagacc	ctatggccga	gtctcagtgc	atcgccgtcc	cgaccgaccc	caacgacccc	660
ctccttcgccc	attggacc	gcaccccgcc	aaccctgttc	tcgctcaccc	acaggggggtc	720
caggcatgg	acttccgaga	ccccaccagt	gatgttttgc	acaagtccga	cgccacgtgg	780

cgcattctca	tcgggttccaa	ggatgacgac	aatggaagcc	acgctggcat	cgccttcata	840
ttcaagacca	aggacttcct	tagttcggag	cgcgtccca	gtatctgtca	tctgtgtcgag	900
ggtaccggta	tgtgggagtg	catcgacttt	taccccgctcg	gagggtggcca	caactcttcg	960
tcggaggagc	tgtacgtat	aaaggcgagc	atggacgacg	aacgacacca	ctactactca	1020
ttggggagat	atgacgcggc	agccaacaca	ttggacgccc	tggacgccc	gctagacttg	1080
gggattgggc	ttagatacga	ctggggcaag	ctctacgtcg	ccacgtcg	ctacgatccg	1140
ctgaacgcggc	ggcgaattt	gttgggtt	gttagcgaga	ccgactctgc	acgagccgac	1200
gttgcggcagg	gatggggctc	acttcagtcg	attccggaga	cagtgacact	agacgagaag	1260
accaggacga	acccctctt	atggccgtg	gaggaggtgg	aggccctccg	ctacaactcc	1320
accgacctca	gtggcatcac	tgttgcaca	ggctcagtct	tccacccccc	cctccaccaaa	1380
gccactcacc	tggacatcga	ggcttccttc	cgcctcgacg	cttctgacgt	tgccggccatc	1440
aacgaggccg	atgtcggtca	taactgcagc	agcagcggtg	gcccggccgc	acgtggcgct	1500
atcggccccct	tcggcctcct	cgtccatgcc	gccggagacc	tccgtggcg	gcagacggcg	1560
gtgtacttct	acgtgtccag	ggccctcgac	gttaccctcc	ggactagctt	ctgcaacacgac	1620
gagacgcggc	cgtcacggc	caggacgtg	acgaagcggg	tggtggcag	cacggtgccg	1680
gtgctccacg	gtgaggcggt	gtcgatgagg	gtgctcggtg	accactccat	cgtgcagagc	1740
ttccatcg	gtggggagat	cacggcgacc	tcgggggtgt	acccaacgga	ggccatctac	1800
gccaggccgg	gggtgtacct	gttcaacaac	gctaccggcg	ccagcgtgac	tgcggagagg	1860
ctcatcg	acgagatggc	ctcggcgta	tacgacgaga	ccctgatcat	ggtttagggac	1920
tcgttagctgc	tcacatgagc	tatataatcg	accggtaacg	ttgggtca	tgcatttcca	1980
agcgttgaat	aatttactta	gcttagcaag	caacaggtcc	gaggttccaa	gtaaggggtg	2040
ggattttttt	cccggtttcc	aaaaaaaaaa	aaaaaaa	aa		2072

<210> 4

<211> 2207

<212> DNA

<213> Lolium perenne

<400> 4

gcacccatcc	accggaatat	atatactagt	cagggaaattc	ctgcaactcg	acctcgagtt	60
ggaaattccg	gcaatggagt	ccggggctt	tcccgacgcg	gcgtacgcgc	cacttctgc	120
atcccgca	gacgacgtcg	ccctggccaa	gcaggaccgc	cccgccgtgg	gttggcgcgg	180
gttcttaacc	gtgctggccg	cctgcggcgt	gttggtgctc	ctcgccgtg	ccactttgtc	240
cgcgggatcc	aggatgggtc	aggcaggcga	cggcgaaggc	aacaccgacg	aggatggggc	300
cggagggttc	ccgtggagca	acgagatgct	gcagtgccag	cgcgcgggt	tccattacca	360
gccgggggg	cacttcatga	gcatccaaa	ccgtccagta	tactaccgcg	gatattacca	420
cctcttctt	cagtacaacc	gaaggggcg	cgcggtgggt	gactacatag	agtggggcga	480
cgttgtgtcc	caggacctgg	tacactggc	ccctctccca	ctggccatgc	ggccctgacca	540
ttgttacgac	aagaaggggcg	tcttgcggg	tatcatcag	gtgctccaca	atggcacgct	600
cgtcctgctc	tacacggggg	tcacagaaga	ccctatggcc	gagtcccagt	gcatcgccgt	660
cccgaccgac	cccaacgcac	ccctccctcg	ccattggacc	aagcaccccg	ccaaaccccg	720
ccttgctcac	ccacaggggg	tccagggcat	ggacttccga	gaccacca	gcgcgtgggt	780
ggacaagtcc	gatgccacgt	ggcgcattct	catcggttcc	aaggacgacg	acaacggcag	840
ccacgctggc	atcgccttca	tcttcaagac	taaggacttc	cttagcttcg	agcgtgtccc	900
aggtatcg	catcggtcg	agggcaccgg	catgtgggag	tgcacatcgact	tttaccccg	960
cggaggtggc	cacaactctt	cgtcgagga	gttgcacgt	ataaaggcga	gcatggacga	1020
cgaacgcac	gactactact	cattggggag	gtacgacgcg	gcagcgaaca	catggacgc	1080
attggacgc	gagcttagact	tggggattgg	gctggatatac	gactggggca	agctctacgc	1140
ttccacgtcg	ttctacgatc	cggtgaagac	gcggcgatt	atgttgggtt	atgttaggcga	1200
ggtcactct	gcgcgagccg	atgttgcacaa	gggatggggc	tgcctcagt	cgattccgag	1260
gacagtggcg	ctagacgaga	agacccgaac	gaaccccttc	ctatggccgg	tggaggaggt	1320
ggaggccctc	cgctacaact	ccacccgaccc	cagcggcatc	accattgaca	acggctccgt	1380
cttccacctc	ccactccacc	agaccactca	gctggacatc	gaggcttc	tccgcctcga	1440
cgcttctgtat	gttgcggcca	tcaacgaggc	cgacgtcg	tacaactgca	gcagcagcgg	1500
cggcgcggcg	gcacgtggcg	ctctcgcccc	cttcggcctc	ctcgccatg	ccgcccggaga	1560
cctccgtggc	gaggcagacgg	cggtctactt	ctacgtgtcc	agggccctcg	acggtaccct	1620
ccggaccagc	ttctgcacg	acggacacgcg	gtcgtcgccc	gccaggacgc	tgacgaaagcg	1680
gggtgtgggc	agcacaaggc	cgggtctcg	ccggcaggccg	ttgttgcgt	gagtgcgtcg	1740
ggaccactcc	atcgatcg	gcttcgcgt	gggcgggggg	accacggcg	cctcgccggt	1800
gtacccgacg	gaggccatct	acggcaggcc	ttgggtgtac	ctgttcaaca	acgcccacccg	1860
cgcggcgtg	acggcggaga	ggctcatcg	gcacgagatg	gcctcgccgg	tatacgacga	1920
gaccctcatg	gttggagact	catacgct	cacccgttaac	gttgggtc	ttgcatttcc	1980
aagcgttga	ttaataat	acttgcgt	gcagcaagca	acggtccaag	gttccaagta	2040
aggtggata	ttataccaaa	ctccgcaag	cccgcaag	tgtgttaggt	taagttaaatg	2100
ttggcgcacc	ttggcgcacc	ttggcgcacc	ttggtattt	ttgttctttt	aaaaaagaaa	2160
gataccatc	taccatc	tgttgcata	aaaaaaa	aaaaaaa		2207

```

<210> 6
<211> 2200
<212> DNA
<213> Lolium perenne

<400> 6
agccgaggca cccatccacc ggagtatact agcttagaaaa ttccctgtgca actcgaccc 60
gagtttggaa ttccggcaat ggagtcccg gactttccca gcgcggcgta cgccgcacct 120
ctgccatctg cccgacacga cgtcgccccg gccaagcagg accggccccc 180
cgccgctct taaccgtct ggccgccttc ggcgtgggtgg tgctcctcg 240
ttgctcgccg ggtccaggat gggtcaggca ggcgacaccg acgaggacgg ggcggagg 300
ttcccggtga gcaacgagat gctgcagttt cagcgcggc 360
gggcacttca tgagcgatcc agacggttcg gtatactacc gtggatatta ccaccttcc 420
tttcagtatac accgaagagg ggtcgcgtgg gatgactaca tagagtgggg ccacgtgg 480
tcccaggacc tggtaactg ggcgccttc ccactggccca tgcggccctga ccattgttac 540
gacaagaagg gctgttgc 600
ctctacacgg gggcacaga agacccatag gccgagtccc acaatggcac gctcgccctt 660
gaccggcaacg acccccattt tcggccatgg accaagcacc ccgccaaccc 720
caccacacagg gggtccagg 780
tccgacttca cgtggcgcat tctcatcggt tccaaggacg acgacaacgg cagccacgct 840
ggcatcgct tcatcttcaa gaccaaggac ttcccttatct tcgagcggtt cccaggtatc 900

```

gtgcacatcg	tcgagggtac	cggcatgtgg	gagtgcacatcg	acttttaccc	cgttggaggt	960
ggccacaact	ttcgtcgaa	ggagttgtac	gtgataaaagg	cgagcatgga	cgacgaacga	1020
cacgactact	actcattggg	gaggtatgac	gccccagcga	acacatggac	gccattggac	1080
gccgagctag	acttggggat	tgggctgagg	tacgactggg	gcaagctcta	cgcttccacg	1140
tcgttctacg	atccactgaa	gcagccgcga	attatgttgg	ggtatgttagg	cgatgtcgac	1200
tctgcgcgag	ccgacgttgc	caagggatgg	gcctcacttc	agtgcattcc	gaggacagtg	1260
gcactagacg	agaagacccg	gacgaaccc	ctccatggc	cggtgaggga	ggtggaggcc	1320
ctccgtcata	actccacccg	cctcagccgc	atcactgttg	agaacggctc	catcttccac	1380
ctccctctcc	accaagccac	tcagctggac	atcgaggctt	ccttccgcct	cgatgcttct	1440
gatgttgcg	ccatcaacga	ggccgacgctc	ggctacaact	gcagcagcag	cgttggcgcg	1500
gccgctcg	gctctctcg	gccctcggc	ctcctcgtcc	atgcccggg	agaccccg	1560
ggcgagcaga	cgccgggtgt	cttctacgtg	tccaggccc	tcgacggtag	cctccggacc	1620
agcttctgca	acgacgagac	gcggcgtc	cgggcccggg	acgtggcgaa	gcccgtgggt	1680
ggcagcacgg	tgccgggtgt	cgacggcgag	gtgttagcga	tgaggggtgt	cgtggaccac	1740
tcgatcg	agagcttcgc	gatgggtgg	agggtcacgg	cgacgtcg	gtgttaccca	1800
acggaggcta	tctacgccc	ggcagggtgt	tacccgttca	acaacgccc	cggcggccagc	1860
gtgacggcgg	agaggctcat	cgtgcacgag	atggcctcg	cgttacg	cgagaccgtc	1920
atggtaagg	actcatagct	gctcacat	gagctatcag	accggtaacg	ttgggtact	1980
agcatttca	agcgtagga	taatttactt	ggcgttagca	gccccgggtc	cgaggttcca	2040
aaagtaaggt	gggatattct	tccaaactcc	gcgagtcc	caaggttgc	taggtgttaag	2100
tgtaatgtcg	tttgcgcacc	tgcgctgt	tttgtaattt	gctggatttg	ttgtttattt	2160
acagaaaaaa	aaggatacta	tactatgtaa	gtatctacat			2200

<210> 7

<211> 1756

<212> DNA

<213> Festuca arundinacea

<400> 7

cccatcttc	ccgaaacaac	cgctcgccac	ccgtctccct	ccccgtccct	cgcctccccca	60
ttcccttcc	tcttcttccc	ttggcgacgg	cctcgat	cggacccaaat	ctccaccaaa	120
cgcgcctccg	gatctcg	gcccctcga	aggggatcc	cccggtggccg	ccgtcctcct	180
ccgcgcctcg	gctggactgt	cgtggagcgg	gatcgaccc	gggtctctg	tcgctgggt	240
ctaaatgg	taagctcaat	ggttctgc	gtcttatgat	tgtttcagac	ctcgatcata	300
caatgg	tcatcatgac	gaagagaact	tgtcgttgc	taggttggg	gccctttggg	360
agtctgctt	ctgtcaggat	tctctacttg	tcttctcgac	cggagatca	ccactctct	420
ataaggaatt	gaggaaagag	aagccatgc	taactccaga	catcattat	atgtcggt	480
gcagttagat	aacttatgt	gaggccatgg	ttctctgat	tggctggag	gaatatctg	540
acaataagt	ggacagaaat	attgttctt	aggagaccgc	taagtattct	gagctgaagc	600
ttcagccaga	gacagaaacag	cgtccacata	aggtcagctt	cttgggtgc	aaaagaggt	660
ctcaggaat	gataaaatgt	ctctctgaga	agtttgagaa	acgtggggta	gatgcaaaaa	720
taatctatag	tggtggccaa	gaccttgaca	tattagctca	aggggctgga	agggtcagg	780
cgctgcata	tttactcaag	aagttcgct	catgcgggaa	aacaccaac	aatactctt	840
tttgggtga	ctctggcaat	gatcagaat	tattcagcat	ccctgtgt	cacgggtgt	900
tggtagcaa	tggccaaagag	gaactactcc	agtggcatgc	agaaaatgcg	aggataacc	960
ctaaggtaat	tcatgcaact	gagaggtgt	ctgctgtat	tattcaagct	attggggcact	1020
tcaagctagg	acctaataatt	tctccaagag	acattgagtt	tccttacgtc	aggaggact	1080
cttcaagcc	tacagcggt	gttgcgttgc	tctatgttct	ctgcgagaag	ttgcgttaggg	1140
ctgacgttcc	aaaggctgt	tcagttatag	agtacttcaa	aaacatcag	gatgcaagtg	1200
gaggattat	tcatccctct	ggcctcgaac	tttcgatcca	ttcttccatc	gatgcgttgg	1260
tttcatgtt	tggtgacaaaa	caagggaaaa	agtaccgatc	atgggtggac	agactagtta	1320
tctcacagac	tgcttctgac	agttggcttgc	ttagatttgc	tttgcgggg	gcagaagggt	1380
atgcatgggt	gtgcgttttgc	acaacttgc	cgctgaatgt	aaagcctgaa	accctgggg	1440
gtttcggt	aacacacatc	cacaagacat	ggctcaaaga	atattccggg	gatgagcagg	1500
cgtccaaact	ctagactgga	tcttaccgt	cagcgcacgg	gaaggaaatt	ttcttgagaa	1560
tcaaataaga	agcgcacaga	aaacacgaga	atttcttttc	tttgtcata	atgttaataaa	1620
gtgcctccag	acactacatc	tatcatactg	gatgaagtat	acggaggtct	tgatgcttgg	1680
cctaataatgtt	acttgcgttgc	taagataaaa	atattatatc	tcgttactgg	catgagaagc	1740
		aaaaaaa				1756

<210> 8

<211> 1778

<212> DNA

<213> Lolium perenne

<400> 8

ggaaccacaa	aggcgctcg	ccatctctcc	tccttcccga	aacaaccgct	cgccaccgg	60
ctccccc	ctgccc	ctcccccattc	ccctccctct	tcttcccttg	gccacggcct	120
cctcgatcg	acccaatctc	caccacacgc	gcctccggat	ctcgccgccc	gcctccaagg	180
ggatcctccc	gtcctcccc	gcccgtcggc	tggaccgtcg	tcgagcgggg	atcgaccgg	240
gctctccgtc	gctgggtgct	aaaatggata	agctcaatgg	ttctgcgcgt	ctcatgattg	300
tttcagacct	cgaccataca	atggtgtatc	accatgacga	agagaacttg	tctctgctta	360
ggttggggc	ccttggggag	tctacttaat	gcccaggattc	tcttcttg	tctcgaccg	420
gaagatcgcc	cactctctat	aaggaattga	ggaaagagaa	gcctatgctg	actccagaca	480
tcactattat	gtcggtggc	agtggatata	cttatggcg	ggccatgggt	cctgatgatg	540
gctggagga	atatctcaac	aataagtggg	acaagagttat	tgttctttag	gagaccgcta	600
agtttctga	gctgaagctt	caggcagaga	cagaacagcg	tccacataag	gtcagcttct	660
tggttgacaa	gaagactgct	caggaagtga	tcaagtctct	ctctgaaaag	tttgagaaac	720
gtgggtttaga	tgcggaaaata	atctatagtg	gtggccaaga	ccttgacata	ttagctcaag	780
gggctggaaa	gggtcaggcg	cttgcattatt	tactcaagaa	gttcgcctca	tgccggaaaa	840
cacccaacaa	tactcttgtt	tgcggtgact	ctggcaatga	tgcagaatta	ttcagcatcc	900
ctgggtgtca	cggtgtcatg	gttagcaatg	cccaagagga	actactccag	tgcgtgcag	960
aaaatgcgaa	ggataaccct	aaggtaatttc	atgcactgt	gaggtgtgt	gctggattata	1020
ttcaagctat	cgggcacttc	aagctaggac	ctaatgtttc	tccaaagagac	gttgagtttc	1080
cttacgtcaa	ggaggactct	ttcaagcttca	cagcggctgt	tgtgaagttc	tatgttctct	1140
gcgagaagtg	gctgtgggt	gacgttccaa	agactgattt	agttatagag	tacttcaaaaa	1200
acatcacgga	tgcaagtgga	gttattatttc	atccctctgg	ccttgaactt	tcgatccatt	1260
cttcacatcg	tgcggtggct	tcatgttatg	gtgacaaaca	agggaaaaag	taccgatcat	1320
gggttagacag	actagttatc	tcacagactg	cttctgacag	ttggcttgg	agatttgact	1380
tgtgggaggg	agaaggtgat	aagtgggtgt	gtgtttgac	aactcttgcg	ctgaatgtaa	1440
agcctgaaac	ccctgggggt	ttcgtgtttaa	cacacatcca	caagacatgg	ctcaaagaat	1500
attccgggaa	tgagcaggcg	tccaaactct	agactggatc	tccaccggca	gcccacggga	1560
aggaaatttt	tttgagaatc	aaataagaag	cccacagaaa	acatggataat	ttctttttct	1620
tgttcatata	tttataataat	gtctccagac	actacatata	tcatactgga	tgaagtctac	1680
ggaggtcttc	ggctaatgt	tacttggatgt	gtaaagataaa	aatattatata	tttgttactg	1740
catgagaagc	tgaagtaataat	gatccaaaaa	aaaaaaa			1778

<210> 9

<211> 3629

<212> DNA

<213> Festuca arundinacea

<400> 9						
agtagcctgc	ctgctcgccg	gcgagagata	gctagggagg	gagggttaact	agcgcaggag	60
gagcctgctc	gcctgcccgt	gagatggcg	cggggaacg	gtggatcaac	gggtacctgg	120
aggcgtatct	ggacgcgggg	tcgaagctgc	ggccgcagg	cgtgcagctg	ccgcgcgtgg	180
agacggcgcc	ggcgctcg	gccgaggagt	ccggcgcgc	ctacaacccc	accaggtaact	240
tcgtggagga	ggtgttcagg	agcttcgac	agcaggccc	ccacaagaca	tggacaaagg	300
tggtgtcgat	gctggacacg	caggagcg	gcaaccgg	ggagaacctg	tgctggagga	360
tcttggaaacgt	ctccaggcag	aagaagcagg	tggagtggg	ttacacgaaa	gaggtggccc	420
ggcggaaagct	tgagcaggag	ctggcagcc	gggaggcc	cgaggac	tccgagctct	480
ccgaggggcga	gaaggatacc	accaccgca	agcctgac	cgcaaccgt	caaccgtca	540
ccgacgatgg	cgagcaccag	cagccacaac	cacgcaccc	gctcg	cgaggatcc	600
aggtgcggct	cgtctccgac	gacgaggagg	agcagaccaa	gaagaggaac	ctctacatcg	660
tcctcatcg	catccatgg	ctggcgc	ggggaaacat	ggagctcg	cgagactccg	720
acacggagg	ccagggtgaa	tacgtgg	agctggccc	tgcgtgg	gccacggcg	780
gggtgcaccc	cgtggac	ctgac	cccgacgt	ccccgacgt	gactggac	840
acggcgagcc	ggtggagatg	ctggagcg	ttgcgtcg	ggacg	ggacgacg	900
gcgagcgtc	tggcggcg	gctgatcat	tgccg	gtgcgg	ccccggcc	960
acatccccaa	ggaggagctg	tggccgcaca	tcccg	gat	ggaccgt	1020
acgtcaccga	ggtggcgc	gctgat	ccat	ccat	ccatcc	1080
cgggcacgg	cgcaccc	gtggcag	gtacgt	gtacgt	ccatggcc	1140
acgcggacgc	ggcggagg	gcccga	gccc	gccc	ccatgg	1200
tgacgggca	ctcgctgg	cgcaaca	gat	gat	ccatgg	1260
cggccccga	gatccagg	acctaca	tcgc	tcgc	ccatgg	1320
gcctcgac	cgcggag	gtgg	gat	gat	ccatgg	1380
gcctctacga	cggcttc	ctcat	ggat	ggat	ccatgg	1440
gcgtcagc	cctcggc	tacat	ggat	ggat	ccatgg	1500
tca	gac	gac	ggat	ggat	ccatgg	1560
ttggccccga	caaggcca	aaggct	tttg	tttg	ccatgg	1620
tcacgaaccc	gcacaagg	atgat	tttg	tttg	ccatgg	1680
tcactacgct	gctcaagg	tacggc	ggat	ggat	ccatgg	1740

ctttgatact	gggaaacagg	gatgacatcg	aggacatggc	cggcggcggc	ggcgcggtgc	1800
tcacggcggt	gctcaagctc	atcgaccgat	acgacctcta	cggccagggt	gcctatccaa	1860
agcaccacaa	gcagacggac	gtgcctcaca	tctaccgcct	cgctgcaaaag	accaaggggag	1920
tattcaccaa	cccagctctt	gtagagccgt	tcggcctcac	aatcatcgag	gctgctgctt	1980
acggtttgcc	ggtgttcgca	accaagaacg	gaggggcggt	ggacatcctc	aaggcgctca	2040
acaacgggct	gctggggac	ccgcactcg	cgaggaggat	caccggcgc	ctgctgagcc	2100
tgctggccga	aaagtgcggg	tgggtggagt	ggcgcggca	cggcctccgc	aacatccacc	2160
gcttctcg	gccgcaccac	tgccgcctct	acctctccca	cgtctccacc	tactgcgacc	2220
agccctcgcc	gcaccagct	ctccgcgtgc	ccctgggcct	gggctctcg	accagcttcg	2280
gwgagacga	ctcgctctcg	gactcgctcc	gcccgcctctc	gctccagata	tccgtggacg	2340
cctccagcga	cctcaacgccc	gcggactccg	cgccgcggat	catggacgcg	ctccgcggc	2400
gcccggcctc	cgagaagccg	gcgagctccg	gtgcccaggc	gctcggcttc	gcgcggcggc	2460
ggcgggagag	cctccctggg	gtcgccgtcg	actgctacgg	cgacgacggc	aagccggacg	2520
tcaagcagct	aaagaaggcc	atcgacgcgg	cggtgtcggt	tggtgaatgc	gccccggagcta	2580
agcaggggta	cgtgtgtcg	accggcatga	ccatccccca	gcccgggag	gcatcaagg	2640
cgtgcggcgc	cgacgttgc	agcttcgacg	cgtgtatatc	cagcagcg	gcccggat	2700
gctacccgtg	aaaggagctc	cgccggcgc	aggagtagtgc	cgggcacgtc	gcgttccgg	2760
ggccgggtga	ccacgtaaaa	tccggcgtgc	ccaggcgtcg	gagctggag	gagatcgccc	2820
tcgcaatcga	tcgccccggc	tgctccgtgc	actgcccacgc	ctacggcgc	acggacgcac	2880
ccaaggtgaa	gaagggtgat	tcgatcagga	agtcgctgcg	gatgcgcgg	ttccggtgca	2940
acctcgctca	cacgcgcgcg	tgcacgcgc	tcaacgtcat	ccccctctcc	gcttccggc	3000
cgcgcgtct	caggtacctg	tcgatacagt	gggggatcga	tctcttcaag	gtggcggtgc	3060
tcgtggcga	gaccggcgcac	accgaccgcg	agaggctct	cccgaggat	cacaagacgc	3120
tcatccgtcc	gggaatggtc	gcccggggca	gchgaggagct	cctccggag	gacgacgggt	3180
acaccatggc	ggacgtcgtg	gccatggact	cccccaacat	tgtcacgc	gcgcggg	3240
agtctgcctc	cgaccccttc	aaggccatct	gagagcgtgc	tctgctgc	cctgtgtgc	3300
ttctgttttc	cacatctggg	acgcgtatgc	tctacttgg	tttgcgttgc	tgtgattttgc	3360
gcagggagat	gatgactgca	gaatttgcatt	tgcatataacc	gtatacctgt	gcaagcatga	3420
gcaaaacatg	tcagctaata	attcttaat	gttttggtca	tgccctccgt	aggtatgc	3480
gtgtgcattc	tataaaagaa	aaacgcaga	atgaaagaaa	gaaatatttt	caatgtaa	3540
tgatgtttct	tcctgacggc	ttcttacttg	gattgtctac	attaattgtt	tcaaggaaat	3600
acaaggatct	ccccctctcca	aaaaaaaaaa				3629

<210> 10

<211> 3745

<212> DNA

<213> *Lolium perenne*

<400> 10

gctccgatcc	cccacccacc	tcccaatttc	cccaagccgc	atcgcatcac	ctcgtctccc	60
gagagcaccg	cgatggcggt	gaacgactgg	atcaacagct	acctggaggc	cattcctcgac	120
gcggggggca	ccggggggga	catctcgcc	gcctctgtgg	ccggaggcga	tgtatggccgc	180
ggcgctggcg	gaggcactgc	gggggagaag	cgggacaagt	cgtcaactcat	gctccgagag	240
cgcggccgt	tcaacccccc	gcccgtacttc	gtcgaggagg	tcatctccgg	attcgacgcg	300
acggacccct	acaagacctg	ggtccgcacg	tcggccatga	gaagccgc	agagaggat	360
acggggctgg	agaacatgtc	ctggaggatc	tggacactcg	cttagaaagaa	gagcagcatt	420
gaaggtgagg	aaggccctccg	tttatcaaag	aaacgtcttg	aaacgtgagaa	ggctcgatcg	480
gatgctgtcg	ctgtatgtc	tgagagacta	tctgagggg	aaaaaggaga	aaacattaaac	540
ggatcatctg	ttcacgtat	gagcacaagg	ggacgaatgc	caaggatagg	ttcaactgtat	600
gctattgagg	tgtgggcaaa	tcagcacaaa	gataaaaaac	tgtacatagt	gctaataagt	660
attcatggtc	ttatacgtgg	tgagaatatg	gagcttggc	gtgattcaga	tacaggcgg	720
caggtaat	atgttgcata	gtttgcgtgg	gcattaggt	aaacacctgg	agtatacaga	780
gtggatctgc	tgacaaggca	gatttctgca	cctgtatgtt	actggagtt	cgggagaacct	840
acagagatgc	tgagtccaa	aaattctgag	aaccttgggg	atgacatgg	tgaaagcagt	900
ggtgcttata	tttgttaggt	acctttgg	ccaagagaaa	agtatataacc	taaagagcag	960
ctctggcccc	acatacagga	atttgtgtat	gtgtcacttg	tccatcat	gcagatgtcc	1020
aaggttcttg	gtgaacaact	tttgtgtgaa	cgccgagat	ggcctgttgt	tatccacgg	1080
cactatgtcg	atgcaggcga	ttctgtgtcg	ctattatctg	ggccactcaa	tgtcccaatg	1140
gtattcacag	gttcattct	tggcagagac	aaatttagagc	aactttgaa	gcaaggacgt	1200
caaaccaggc	acgaagtaaa	tgcaacatac	aagataatgc	gtcggttgc	agctgaggaa	1260
cttgcatttg	atgcatctg	aatttgcatt	acaagcacta	ggcaagaaaat	agagaaaacaa	1320
tggggattgt	acaatggatt	tgatgtact	atggagagaa	aacttagagc	agaacaaaag	1380
cgtgtgtc	gctgctatgg	tcgttacatg	cctgtatga	ttgcgttgc	tcctggcatt	1440
gagtttagcc	atattgtgc	tcatgtatgtt	gacctggatg	gtgtatgc	aaatgtaa	1500
ggctcagggtt	caccggatcc	acctattttgg	gctgtatcaa	tgctttctt	ctcaaaaccct	1560
cgtaagccca	tgattctcgc	tcttgctcg	ccagatccca	agaagaacat	cactacatttgc	1620

gtgaaggcat	ttggtaaca	ccctggattg	agaaattag	caaacc tac	actgatcatg	1680
ggtaaccgtg	atgttattga	tgaaatgtca	agcacaaaatg	gagctgttt	gacctcaga	1740
ctcaagttaa	ttgacaaaata	tgatctatat	ggccaagtgg	catacccaa	gcaccataag	1800
caatctgaag	ttccagatat	ttatcgttt	gcccgaagaa	caaagggggt	tttattaaat	1860
tgtgcttata	ttgaaaccatt	tgggctcacc	ttgatcgagg	ctgctgcta	tgtctaccg	1920
atgggtgcta	ccccaaatgg	tggcctgtc	gacatacacc	gggttcttga	caatggtac	1980
cttggtgata	cacacaacaa	aaatgatatt	gctgaggcac	tttataagct	tgttctgtat	2040
aagcacttgt	gggcacaatg	ccgtcagaat	ggtctggata	atatccatcg	attttcttgg	2100
cctgaacatt	gcaagaacta	tttgcacgg	gttggcacgg	tgaaggctag	acatccacga	2160
tggcaaagga	gtgatgatgc	tactgaagtt	tctgaatca	attcacctgg	cgattcttgg	2220
agggatgttc	atgatataatc	tcttaacttg	aagcttccct	tggacagtga	aaaagcaggc	2280
accaagataa	atactgaacg	aaattccacc	aatgccagaa	gaaatcttga	ggatgctgt	2340
ctaaaatttt	caaatgttgt	tagtgagggc	acaaaggatg	agtctgatga	gaatgctgag	2400
gccaccacag	gctccataaa	tggccatctt	tacggagaga	aacacattgt	tgttattgtct	2460
gtagattctg	tgaaaaatgc	tgacttgggt	cagattatca	aaaacctttt	tgaggcttca	2520
cgcaaaagaaa	aatcatctgg	tgctgttgggt	tttgcattgt	cgacatctcg	agcaatata	2580
gagacactt	cttttttaac	atctgggggc	atcaaacta	ctgaaatttga	tgccttcata	2640
tgcagcagt	gcagtgtatc	ttgttattcca	tcttcaagtt	cggaagacat	gcttagccct	2700
accgagcttc	catttatgt	tgatcttgc	tatcactctc	agattgaata	ccgttgggga	2760
ggggaaagggtt	taaggaagac	actaattcg	tggcagcac	aaaacaacag	tcagagtgg	2820
caagaagtag	ttactgaaga	tgaagaatgt	tcatccactt	actgcatttc	atttaaagt	2880
aagaatactg	aggctgtccc	tcctgtgaag	gatcttagaa	aaacaatgag	aattcaagca	2940
ctgcgggtgc	atgttattgt	cagccatgt	gtagtgcatt	tgaatcttat	acctcttcta	3000
gcatcacgt	ccccaaagact	aaggtaactt	tatatacgt	ggggggtaga	gctggcaaaac	3060
atgacagtgg	ttgttggta	aagtgtgtat	acagattatg	aagggtact	tgaggcgctg	3120
cacaagacca	tcataactaa	aggctcattt	atgtctgctc	caaaccagct	tcatgctgccc	3180
agaacgtt	cactggagga	tgtcatatcg	tttgacaaaac	cggaaattgc	ttcagtcgag	3240
ggatatctcc	cagatgtt	aaaatcagct	ctacaacaaat	tcgggtgtct	gaactaaagt	3300
gacaatcttg	ccatcagcag	aacagttaaag	taggtatct	attctatgt	gtccagatcg	3360
agaaatgtgc	agcaaggctt	gtcttcgctg	tttttaccacg	tcttgcattt	cagaataagt	3420
tctgttgag	gttttacctt	tacaactt	tttgcattttt	aaaagaattt	ggagctacga	3480
acttggatca	gttttttgc	caaggcaaaa	ctcaaggca	taataactgt	ccctaccatc	3540
agtccacaata	aagcaagatt	gaacatcattt	tttgagattt	gttaatgttt	tgtaaacta	3600
gtcatagtggtt	ggagtaattt	atatgttgtt	tcatgcattt	tattatttt	tatcttgtaa	3660
accatatttgc	ttttgggtgt	tgtatgtt	ttatgttac	atagctatgtt	accccccattat	3720
tatatttctt	cactcaaaaa	aaaaaa				3745

<210> 11
<211> 3735
<212> DNA
<213> Lolium perenne

<400> 11						
gcgcccgtgc	gcacacgtat	atagcccgat	caatatcaag	ttgggatctt	tagcgccgga	60
ggagcggagt	agcctgctcg	ccggcgagg	taatttagagc	aagaggatgc	tgcctcgccgt	120
caacaaagat	ggccggcggg	aacgagtgg	tcaacgggtt	cctagaggcg	atccctggacg	180
cggggtcgaa	gctgcggccg	caggcgtgc	actgtccggcc	gctggagaca	gcccggcgcc	240
tcggggccgaa	ggagagcgc	ggccgttaca	accccgaccag	gtacttcgtt	gaggagggtgg	300
tcaggagctt	cgacgagcag	ggccctccaca	agacatggac	aaagggtgtt	gcgtatgcgg	360
acagccagga	ggcgagcaac	cggctggaga	acctgtgtt	gaggatctgg	aacgtctcca	420
ggcagaagaa	gcagggtggag	tgggattaca	cgaaagaggt	ggctcgccgg	aagcttgcgc	480
aggagctggg	cagccgggag	gccggcgagg	acctatccga	gctctccgag	ggcgagaagg	540
acaccaccac	cgccaagcccc	gacggccgag	ccgctcaacc	gtccggccgac	gtggcgagc	600
accagcagcc	gcagccacgc	acccggctcg	cgaggatcaa	ctccgagggt	cggctcgct	660
ccgacacgca	ggaggagcag	accaagaaga	gaaacctcta	catcgccctc	atcagcatcc	720
atgggctgtt	gcccggggag	aacatggagc	tcggccgaga	ctccgacacc	gtggcccgag	780
tgaagtacgt	gggtggagct	gcccgtgcgc	tggccggcgc	ggccgggggt	caccgggttgg	840
acctgctgac	gcccggcagat	ttcttcccccgg	acgtggactt	gacctacggc	gagcccggtt	900
agatgctgtt	gcccgtgtcg	tcggccggacg	ccgacgcaga	cgacggcgag	caggccggcg	960
gcccgtccta	catcggtcg	ctggcgtcg	ggccaaggga	ccagtagatc	cccaaggagg	1020
agctgtggcc	gcacatcccc	gagttcggtt	accgcgcgt	ctcgacatcg	accgaggatcg	1080
cccgccgcgt	ccggcgagcg	ctccagctc	ctcccttctcc	ggccgacggc	gcccgtggcg	1140
cgcccatctg	gcccgtacgt	atccacggcc	actacgcgg	cgccggcgag	gtggccggcg	1200
acctggcgag	cgccgtcaac	gtgcccattt	tcatgcattt	ccactcgct	gggcgcacaa	1260
agctggagca	gctgctcaag	ctcgccgc	tgccggggccc	cgagatccag	ggcacctaca	1320
agatcgccgc	ccggatcgag	gccgaggaga	cggggctcga	caccgcggag	atgggtgttca	1380

ccagcaccaa	gcaggagatc	gaggagcagt	ggggactcta	cgacggcttc	gacctcatgg	1440
tggagcgaa	gctccggta	aggcagcgc	gccccgtca	cagcctcgga	cgtacatgc	1500
cgcgcattgc	ggtcatcccg	ccggcatgg	actcagctt	cgtcgagaca	caggacacgg	1560
ctgacggac	gggcccgtct	cagatgctca	ttgcgtccg	caaggccaag	aaggctctgc	1620
ctccatttg	gtcagacgtg	ctgcgttct	tcacgacgt	gcacaaggcc	atgatcctgg	1680
cgctgtcg	gcccggacca	aagaagaatg	tcaccaacgt	gctcaaggcc	tacggcgaga	1740
gccggcagct	ccggggagctc	gcgaacctga	cactgatact	ggggaaacagg	gatgacatcg	1800
aggacatggc	cgggtggcg	ggcgccgtgc	tcacggccgt	gctcaagctc	atcgaccgat	1860
acgacctcta	cggccagggt	gcctacccaa	agcaccacaa	gcagacggac	gtgcctcaca	1920
tctaccgcct	cgccgccaag	accaagggag	tattcatcaa	cccagctt	gtggagccgt	1980
tcggcctcac	aatcatcgag	gctgctgctt	atggtttgc	ggtgtggcg	accaagaacg	2040
gcggcccggt	ggacatctg	aaggcgtcc	acaacggct	gctgggtggac	ccgcactcg	2100
cggaaagcgat	caccggcg	ctgctgagcc	tgctggctga	gaagtcg	tggtggaggt	2160
gccggccgaa	cggccctccg	aaacatccacc	gcttctcg	gcccgcac	tgccgcctct	2220
acctctccca	cgcttccacc	tactgcgacc	agccctcgcc	gcaccaggcc	ctccgcgtgc	2280
ccctcgccct	gggctccccc	accagcttc	ggccgcacga	ctcgctctcg	gactcgctcc	2340
gcggccctc	gctccagata	tccgtggac	cctccagcg	cctcaacgc	gcccactcc	2400
cggccgcct	catggacgc	ctccggccgg	gcccggc	cgagaagcc	gcgagctcc	2460
gtgcaggc	gctcggttc	gcccggg	ggccggagag	cctccgtt	gtggccgtcg	2520
actgctacgg	cgacgacgc	aagccgcacg	tcgagcagct	gaagaaggcc	atcgacgcgg	2580
cggtgtcggt	tggtgaatgc	gcggggagc	agcaggggta	cgtcgtcg	accggcatga	2640
ccatccccga	ggccgcggag	gcgatcaagg	catgcggc	cgacgttgc	agtttcgac	2700
cgctgatatg	cagcagcgg	gcccagctat	gtaaccctgt	gaagaagctc	gtggccgac	2760
aggagtactc	cgggcacgtc	cggttccgg	gcccgggtg	ccacgtgaa	tccgcgtgc	2820
ccagcgctcg	gagcatggag	gagatcg	tcgcaatcg	tccgcggcc	tccgcgtgc	2880
actggccacgc	ctacggcc	acggacgc	atcaggtaag	cataacagag	cactactgt	2940
agtaaaccact	aaccagc	gtacatggc	tcctccatgc	ctaagtttct	gatgcgtgg	3000
gttttggca	ggtaagaag	gtggattcg	tcaggcaggc	gctgcggat	cgccgcttcc	3060
gggtcaacact	cgtctacacg	cgccctcg	cgccctcaa	cgtcatcccc	tctccgc	3120
cccgccgc	cgctctcagg	tacctgtcg	tacagtgggg	gatcgatctc	tccaagggtgg	3180
cgggtcg	cgccgagacc	ggcgacacc	accgcgagag	gctccccc	ggagtgcaca	3240
ggacgc	cctggcgggg	atggtc	gcccgc	ggagctc	cgaggc	3300
acgggtacac	catggcgg	gtcgtggcc	tggactcccc	caacattgtc	acgctcg	3360
aaggccagtc	tgcacccgac	atcctaagg	ccatctgaga	gcatgtct	tccctgtgc	3420
tgcctctgtt	ttccacatcc	cgacgc	acttccactt	cgattatttc	acgtgtg	3480
ttggcagaa	gatgactgca	gaattgcatt	tgcataatacc	gtataccctgt	gcaagcat	3540
gcaaaacatg	tcagctaata	attttttat	gttttggcca	tgcctccgt	agttatgt	3600
gtgtacatac	tataaaggaa	cagagagaga	aacgcagaa	tgaaagagag	aatattttc	3660
aatgtaaat	gatgtttctt	cctgacgg	tcttacaatg	gcttgtctac	attaattgtc	3720
tcaagaaaaa	aaaaaa					3735

<210> 12

<211> 2716

<212> DNA

<213> *Lolium perenne*

<400> 12

gcttctcccc	tcacacgcct	cgcattttgt	tttgtgtcct	gagccatggc	tgccaagctg	60
actcgccctcc	acagtctccg	ggagcgcctt	ggtgccacct	tccctccca	tcctaacgag	120
ctcattgccc	tcttttcaaa	gtatgttac	cagggcaaaag	gaatgcttca	gcccaccag	180
ctgctactg	agtttgaagc	cttggggag	gtgacaagg	agagatatgc	accctttgaa	240
gacattctcc	gtgctgtc	ggaagcaatt	gtgctgcccc	catgggtgc	actggccatc	300
aggcctaggg	ctgggtctg	ggactacata	cgggtgaatg	ttagcgagtt	ggctgtttag	360
gagctgacag	tttccgagta	cctggcattt	aaggAACAGC	tttgtatga	gcacGCCAGC	420
agcaagttt	tgcttgagct	tgatttttag	ccttcaatg	cctccttccc	acgtccttcc	480
atgttcaagt	ccattggaaa	tgggtgcag	ttcccttaacc	gtcacctgtc	ttccaagctg	540
ttccaggaca	aggagagcct	ctaccacta	ctgaacttcc	tgaagccca	taaccaccag	600
ggcacgacaa	tgatgctaaa	cgaccaatt	cagagccttc	gtgggctcca	atcagcccctt	660
agaaaggcag	aagagatatct	aacgagcatt	cctgaagaca	ccccgtcctc	tgagttcaac	720
cacaggttcc	aagagcttgg	cttggagaag	gttggggcg	acaccgctaa	gcgtgtacag	780
gacaccatcc	acttgcctt	tgatctactt	gaggcccctg	atccagccag	cttggagaag	840
ttcccttggaa	ctataccaat	gatgtcaat	tttgttatttc	tgttccacca	cgatattttt	900
gctcaatcca	atgtgttggg	ataccctgat	actgggtggcc	aggttgtgt	catcttggat	960
caagtcgtg	cttggagaaa	tgagatgctt	ctgaggattt	agcagcaagg	ccttgcacata	1020
acccctaaga	tcctcattt	caccaggctt	ttgcctgatg	ctgttggaaac	tacatgtggc	1080
cagccgctgg	agaaaagttat	tgggacttag	cacactgaca	ttctccgtgt	tccattcaga	1140
actgagaagg	ggatcctccg	taagtggatc	tctcgttttt	atgtctggcc	ataccctggag	1200
acatacaccg	aggatgttgc	aaacgaactc	atgagagaaa	tgcagaccaa	gcctgatctc	1260
attattggca	actacagtga	cggttaccc	gtgcctactc	tgcttgcgc	taagttggga	1320
gttacccagt	gcaccatttgc	ccatgtttt	gagaaaacaa	aataccccaa	ctcagacata	1380
tatttggaca	aatttgcacag	ccaataccat	ttctcatgc	agtttactgc	tgaccttattt	1440
gccatgaatc	acactgattt	catcatcc	agcacatttc	aggaaatttc	tgaagcaag	1500
gacagcgtgg	gccagttatga	gtctcacatt	gttttcaccc	tccctgtatct	ctaccgtgtt	1560
gtccatggaa	tttgcgttt	cgatcccaag	ttcaacattt	tctctcttgg	agcagatatg	1620
actgtctact	tcccatacac	tgaaacttgc	aagaggctt	ctgccttcca	ccctgaaattt	1680
gaagagctcc	tttacagtg	tttgttggaaac	tctgaacaca	agtttgtatt	gaaggacaag	1740
aacaagctta	tcatcttctc	aatggctcg	tttgaccgtt	tgaagaacat	gacaggctt	1800
gtttagatgt	tttgttggaa	tgctcatctg	aaggattttgg	caaaccctgt	gattgtcgct	1860
ggtgaccatg	gcaaggagtc	caaggatagg	gaggagcagg	ctgaggtaa	aaggatgtac	1920
agtctcattt	aggagtacaa	gctggggggc	cataatccgtt	ggatctcgc	tcaaatgtt	1980
cgttttcgca	atgcagatgtt	gtacccttac	atttgtgaca	ccaaggcgc	atgttttcag	2040
cctgcattct	atgaaggat	tggcctgtact	gttggcgagg	ccatgacat	tgttttgc	2100
acaatagcga	catggccatgg	tggcccttgc	gaaatatttt	tgaatgtgt	gtctggtttgc	2160
cacatcgatc	cttaccacat	tgacaaggct	gcagatattt	ttgtcaactt	ttttgagaaa	2220
tccacggcag	atccaaaccta	ctggggacaaa	atgtcgaaag	gtggcctgaa	gagaattttt	2280
gagaagtaca	ccttggaaagct	gtacttgc	aggctgtatgt	ccctgactgg	tgttatatttt	2340
ttcttggaaat	atgttggacaa	ccttggggagg	ctgttgcact	gcccgttac	tgagatgtt	2400
tacgttctgt	agtaccgcag	ccttggctgt	gcagttccat	tggccgtcg	tggcgagaac	2460
acggacaattt	agtgcgggac	atgaagaggc	gccttcaaaag	ggcgagggtgt	cggctgcgtt	2520
atgattttat	tgttctaccgg	agtttttattt	ttgttctattt	tgggtgtgt	acttggatgt	2580
ctcaggcact	tctgttggat	tttggggcgtt	tctttgttgc	ttccctgttgc	ctgcataatgt	2640
tgttcttcaat	aaacgcctgc	ccgttattttt	catcttctt	aattcaatgc	aatcttctgt	2700
tgcttcaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	2716

<210> 13

<211> 2754

<212> DNA

<213> Festuca arundinacea

<400> 13

gctggggttt	tgttgcctt	gtcttatttt	tatcccctt	ggatcttgc	aaaccctccg	60
ccgtttggct	tctcccttc	cccccttac	catttttttt	gtgtcttgc	ccatggctgc	120
caagctact	cgttccaca	gtctccgg	gccccttgc	gccaccttct	cctcccatcc	180
caacggatc	attggccat	tttcaatgt	ttttcatttt	ggcaaaaggaa	tgcttgcgc	240
ccaccagctt	cttactgtt	tttgcattt	tttttttttt	gacaaggaga	ggatgtgcacc	300
ttttcaatgt	atttccgtt	ctggccatgg	agcaattttt	tttccccat	gggttgcact	360
tgcattcagg	ccccaggctt	gtgttgcgg	tttgcatttt	gtgaatgtt	gcgagggttgc	420
cgttggggat	ctgacatgtt	ccgatgttcc	tttgcatttt	gagcagtttgc	tttgcgttgc	480
cgccaggatc	aattttgc	tttgcatttt	tttttttttt	ttcaatgcct	ccttccacac	540
tccttccat	tccaaatgtt	tttggaaatgg	tttgcatttt	tttgcatttt	tttgcatttt	600
caagctgtt	caggacaagg	agaggcttca	cccactactt	aacttgcgtt	aaggccatata	660
ccacaaggcc	acgacaatgt	tgcttcaatgt	cagaattttt	agccttcgtt	ggcttccatcc	720

agcccttaga	aaggcagaag	agtatctaac	aagcatcctt	gaagacaccc	cgtccttga	780
gttcaaccac	aggttccaag	agcttggctt	ggagaagggt	tgggtgaca	ccgctaagcg	840
tgtacaggac	accatccact	tgcttcttga	tctgcttgcg	gcccgtatc	cagccagctt	900
ggagaagttc	cttggacta	taccgatgt	gttcaatgtc	gttacatctgt	ctccacacgg	960
atattttgt	caatccaatg	tgttggata	ccctgatacc	ggtggccagg	tttgtacat	1020
cttggatcaa	gtccgtgctt	tggagaatga	gatgttctgt	aggattaagc	agcaaggcct	1080
tgacataacc	cctaagatcc	tcatttgcac	cagggtgttgc	cctgatgtc	ttgaaactac	1140
atgtggccag	cggctggaga	aggttattgg	gactgagcac	actgacattc	ttctgttcc	1200
attcagaact	gaaaaggggg	tcctccgtaa	gtggatatact	cgttttgtat	tctggccata	1260
cctggagaca	tacaccgagg	atgttcaaa	cgaactcatg	agagaaatgc	agaccaagcc	1320
tgatctcatt	attggcaact	acagtgcgg	taaccttgc	gccactctgc	tcgcgcataa	1380
gttggagtt	acccagtgca	ctattccca	tgcttggag	aaaaccaa	accccaactc	1440
agacatata	ttggacaaat	tcgacagcca	ataccatttc	tcatgc	caactgtca	1500
ccttattgcc	atgaatcaca	ctgatttcat	catcaccagg	acattccagg	aaattgtcg	1560
aagaaggac	agcgtggcc	agtatgagtc	tcacattgtc	ttcaccctcc	ctgatctcta	1620
ccgttggtc	catgggattt	acgttgcga	ttccaagg	aacattgtct	ctctggagc	1680
agatatgagc	gtctacttcc	catacactga	aactgacaa	aggcttactg	ccttccaccc	1740
tgaatttggaa	gagctccctt	acagcgatgt	tgagaactct	gaacaca	ttgtattgaa	1800
ggacaagaac	aagccgatca	tcttctcaat	ggctcgcc	gaccgtgt	agaacatgac	1860
aggcttggtt	gagatgttgc	gtaagaatgc	tcatctgaag	gatttggca	accttgtgat	1920
tgtcgctgg	gaccatggca	aggagtccaa	ggatagggag	gaggcagg	gttcaaaaag	1980
gatgtacagt	ctcatttgg	agtacaagct	gaagggccat	atccgg	tctcagctca	2040
gatgaaccgt	gttcgcaatg	cgagggtgt	ccgctacatc	tgtgacacca	aggcgcatt	2100
tgttcagcccc	gcgttctatg	aagcatttgg	cctgactgtt	atcgagg	tgacatgtgg	2160
tttggcgaca	atagcgacat	gccatgg	cccagctgaa	atcattgtt	atgggtgt	2220
tgggttgcac	atcgatcctt	accacagtga	caaggcgtgca	gatattctgg	tcaacttett	2280
tgagaatcc	acggcggatc	caaccaactg	gacacaaatg	tcggaaagg	gcctgaagag	2340
aattttatgag	aagtagacact	ggaagctgt	ctcagagagg	ctgatgaccc	tgactgtgt	2400
atatggtttgc	tggaaatgt	tgagaaac	cttggcgt	gagactcgcc	gttacattgaa	2460
gatgttctac	gctctgaatgt	accgcagcc	ggcagctgca	gttccattgg	ctgtcgacgg	2520
cgagaacaccc	gacagttgt	gcagaggcgc	cttcgcgg	caaagtattt	gtcgcgtt	2580
gatttgcata	ccgttagttc	catttgc	attatgggt	gttacatttgc	atgttgggt	2640
gtgtacatttgc	atgttggca	cttccctg	gatttgc	gttcaaaaaaa	agtgcatttgc	2700
tagctgcata	tgttgccttc	aataaacg	tgccatatt	gttcaaaaaaa	aaaa	2754

<210> 14
 <211> 2950
 <212> DNA
 <213> Lolium perenne

<400> 14						
ttcttcctcg	tggtgcgtt	cgtttgcgg	gttcttctga	agaagcggaa	ggtttgagca	60
atggggaaag	ccgcccgg	ccgtgtgct	agccgcctcc	acagcgatc	ggagcgaatc	120
ggcgactccc	tctccgccc	cccccaatg	ctcgatcgcc	tcttcaccag	gctggtcaac	180
cttggaaagg	aatgtgtca	gccccaccag	atcatcg	agtacaacac	tgcataccct	240
gaagcagagc	gcgagaagct	caaggacggc	gccttcgagg	atgtactg	ggcagcgcag	300
gaggcaatcg	tcatctcccc	atgggtgc	cttgcacatc	gcccattgg	tgtgtctgg	360
gagttatgt	gagtcaac	gagcgagct	gctgtcgagg	atgtgatgt	ccctgagat	420
ttgcgttca	aggaacagct	tgttggaa	agcaacaa	acttcgtct	tgagctggac	480
tttgagccat	tcaatgcctc	cttccctcg	ccttccctgt	cgaatccat	tggcaacgg	540
gtgcgttcc	tcaatagg	cctgtcatc	aagcttcc	atgacaagg	gaggatgtac	600
ccttgctca	acttcctcc	tgcacaca	tacaagg	tgcctatg	atgaaacgac	660
agagtccgc	gtctaaatgc	tctccagg	gctctgagg	aggccagg	gcatactgtct	720
ggtcttccag	cagacaccc	gtactcg	ttccaccaca	ggttccaaga	acttgggtt	780
gaaaagggt	gggggtat	tgccaagg	gcccagg	cccttccac	gtcctcgac	840
cttcttgagg	cacccgttcc	gtccacat	gagaagg	tttgtataat	cccaatgg	900
ttcaatgttgc	tcatcctc	tccacatgtt	tacttgc	aagccatgt	cttgggttac	960
cctgacaccg	gagggcagg	tgttgcatt	ttggatca	tccgtctat	ggagaatg	1020
atgttttgc	ggatcaagg	gcaaggact	gatatac	cacggatct	tattgttacc	1080
aggcttctcc	ctgtatgc	cgttacg	tcgggtc	gttgcgg	ttttgagaa	1140
actgagcaca	cccacatcc	tcgtgtg	ccatgttgc	gttgc	ttttgcgtt	1200
tggatctc	gttttgc	ctggcata	ctggagact	tcactgt	tgtggcgcac	1260
gagatttctg	gagagcttca	ggccaacc	gacctgat	tcggaaat	cagtgtatg	1320
aaccattgttgc	catgtttgc	tgcacaca	atgggcgtt	ctcatgt	cattgcgc	1380
gcgcgttgc	aaaccaag	ccccaaact	gacctgtact	ggaagg	tttgcgttgc	1440
taccacttct	catgccc	ccactgac	ttgattgca	tgaaccac	gcgcgttgc	1500

atcacaagta	ccttccaaga	gattgctgga	aacaaggaca	ccgttggtca	gtacgagtct	1560
cacatggcat	tcacgatgcc	tggaatgtac	cgtgttgc	acggtatcga	tgtttttgac	1620
cccaagtta	acatagttc	gcctggtgc	gacatgtcca	tctactccc	gtactcagag	1680
tcacaaagga	ggctcaccc	actccaccca	gagatggagg	agctgctcta	cagtgtatgc	1740
gacaacgatg	agcacagttg	tctgaaggac	aggaacaagg	caatcatctt	ctcgatggct	1800
cgtctggacc	gtgtcaagaa	cttgactgg	ctggttgac	tgtatggccg	gaaccctcgc	1860
ttgcaggagc	ttgttaac	tgtgttgtt	tgtgttgac	atggcaaccc	ataaaaggac	1920
aaggaggagc	aggctgagg	caaaaagatg	tttgaccta	ttgaacagta	caacctgaat	1980
ggccatatcc	gctggatctc	tgctcagatg	aaccgtgtcc	gtaatgctga	gctctatcgc	2040
tacatctgcg	acaccaaggg	tgctttgtg	cagcctgcat	tctatgaggc	ttcgggct	2100
actgtcatcg	aggccatgac	ctgtggtctt	ccaacatttg	caactgcata	tgtgttgc	2160
gctgagatca	tcgtgaacgg	tgtctccggc	taccacattt	atccttacca	gggtgacaag	2220
gcctcggctc	tgctcggtt	gttctttgag	aagtgcagg	gagaccacag	ccactggacc	2280
aagatctcac	tgggagggt	tcagcgtatt	gaggagaaat	acacctggaa	gtttaactct	2340
gagaggctga	tgaccctcac	cggtgtctat	ggcttctgg	agtagtctc	caaccttgag	2400
aggcgtgaga	cccggccgct	cctggaaatg	ctgtacgcgc	tcaagtaccg	caccatggcc	2460
agcactgtt	cattggctgt	cgagggggag	ccctcgagca	agtgatctgg	ccacctatcg	2520
gccgaaagaa	gaagaagaag	gttggcttcg	atttctgaaa	gatttgagat	ttgagaatgc	2580
gttggttt	ttcctagggc	ctgcttttt	agagttaa	tcgagttgt	gtgctagttt	2640
gattcagcag	tgggagttag	ttgagacaga	aggatgtgtt	gtgtgccagt	attgttgg	2700
ctttcgtgt	tctttggat	ttacccttga	ataatagtag	cggccttggc	gccgtttctg	2760
aaataatagt	agcatccctg	ctcggtgcca	agaaaatctt	agttttttt	tctcttgaac	2820
aagtggcaaa	gacgctctg	catctatctc	tgtcatttgac	attagctct	gttgcgggtc	2880
actggatacc	ttacattgt	ctagagaaca	gcaataaaag	ccggaccatg	tgattgtct	2940
aaaaaaaaaa						2950

<210> 15

<211> 2825

<212> DNA

<213> Festuca arundinacea

<400> 15

gcgcgtttcc	cctacactgt	acgttcccg	gtttccctt	ccggcgctc	tgcctcc	60
cttcctcaga	gcaagggtt	aggatccgac	tggaggatag	caatgggg	gagtgcagg	120
gagcgtctc	tgagccgt	ccacagcgta	agggagcgta	tcggcgatt	cctctcagcg	180
cacccaatg	agctcgctc	cgtcttctc	aggcttgc	accatggaa	ggaaatgctt	240
cagccccacc	agatcactgc	ttagataat	gctgttattt	ccggagctg	gcgagagaag	300
ctgaaggata	ccgccttgc	ggatctcta	aggggggcac	aggaggcaat	tgtcatcc	360
ccatgggtt	ctctcgccat	ccggccaagg	cctggcgt	gggagttatgt	gagggtcaat	420
gtgagcgc	tcggcggt	ggagttgag	gtccctgag	atttgcatt	caaggaacaa	480
ttgtgaaatg	aaagcactga	taacaactt	gtgcttgc	tggacttgg	gcatattca	540
gcctccttcc	ctcgccatc	gctgtcga	tctattgg	atggtgtc	gttcttgaac	600
aggcacctgt	catcaaagct	gttccatgac	aaggagagca	tgtacc	gtcaacttc	660
ctccgtgcac	acaactacaa	ggggatgacc	atgatgtt	acgacagaat	tgcagtc	720
agtgcctcc	aagatgcact	caggaaggca	gagaagcatt	tgtcagg	tcagctgac	780
accccgta	caggttcc	ccacccgtt	caggaactt	gttggagaa	aggttgggc	840
gactgtactc	agcgtgcac	cgagatatt	cacccctt	tggacttct	cgaggccc	900
gatccatcca	ccttggaaaa	gttctcg	ccaaatccaa	ttgtttca	tgttgtc	960
ctctccctc	atggttactt	tgctcagg	aatgtttt	ggtacccaga	cactgg	1020
cagggttct	acattttgg	ccaagtcgt	gctatgg	atgagatgt	attgagaatc	1080
aagcagcaag	gtcttgacat	tacaccaa	attctaa	tcaccagg	gtccctgt	1140
gcacacggca	ccacctg	ccagcg	gagaagg	ttggcact	gcacaccc	1200
attctcgct	tgccatttca	aacagaagat	gggattttt	gcaatgg	ctcacgtt	1260
gaagtctggc	cttaccttgg	agcttacacc	gatgttgc	cacatgg	tgttggag	1320
ctgcaggcc	accctgactt	gatcatttgg	aactacagt	atggaaac	tgtcg	1380
ttgttggcac	acaagttgg	gttactcat	tgttaccat	ctcatgc	ccatgg	1440
aagtacccca	actctgac	ttactgg	aaatttgg	atcactac	ctttcc	1500
cagttc	tgacatcgat	tgcaat	catgtact	tcatcat	cgttcc	1560
caagagat	ctggaaacaa	ggatactgt	ggcgtat	agtcgcac	ggcattcaca	1620
atgcctggcc	tctatcg	tgttcat	attgtgt	tcgaccc	gtcaacatc	1680
gtctccctg	gtgtcgacat	gaccatctac	ttcccata	ctgaaca	gaagagg	1740
accccgcttcc	atgctgagat	tgaggag	ctcttc	atgtcg	gacac	1800
aaatttgc	tgaaggacaa	gaacaagcc	atcatctt	cgatg	gttggacc	1860
gtcaagaata	tgactgg	gttgaact	tatggcc	acccac	ccatgg	1920
gtaaaccc	tgggtgt	tggagaccat	ggaaaag	ccaagg	ggagg	1980
cccgagt	ca	agaggat	tt	tgatctt	tac	2040

tggatctctg	ctcagatgaa	ccgtgtacgc	aacggtgagc	tctaccgcta	catctgcgac	2100
atgaagggag	cctttgtgca	gcctgcttc	tatgaggcct	tcgggcttac	cgtgatagag	2160
gccatgacat	gtggcctccc	cacatcgcc	actgcatacg	gtggccgac	tgagatcatt	2220
gtgaatggcg	tgtctggcta	ccacatcgat	ccataccaga	atgacaaggc	ctctgcgctg	2280
ctcgaggat	tctttgagaa	gtgccaggaa	gacccaagcc	actggaaaca	gatctcgac	2340
ggcgactcc	agcgcatacg	ggagaagttac	acctggaaagc	tgtactctga	gaggctgtat	2400
accctctctg	gtgtctatgg	tttcttggaa	tacgtctcca	accttgacag	gcgtgagact	2460
cgtcgctacc	tttagatgt	ctacgctctc	aagtaccgca	aatggctac	caccgttcca	2520
ttggctattt	aaggcgagac	cacaggcaaa	tgatggcc	tcatcgaa	aataaaaaggg	2580
cgaccagcg	ccccacttcc	ccattctgta	ttcagcattt	aagcacagat	cggagagat	2640
tatgcctttt	ctttcttag	gtttagttt	gaggaaatgt	ggttcccgt	agagtctctg	2700
tgttgtctgt	ggtagaggaa	ctggatgtga	gggatgtact	cagtgcctcg	gttgttactt	2760
tttcatggat	gctatgattt	gaatgaataa	taagataagt	ctttgtttac	cccccaaaaa	2820
aaaaaa						2825

<210> 16

<211> 1599

<212> DNA

<213> *Festuca arundinacea*

<400> 16

gctggatcat	acttgaaccc	gcaatagaac	cgatcacacc	aggtagacata	aaagggttgct	60
ggtcgcctc	agccacagg	atatctggta	gtcaaccgg	catcatgtac	accgggtggcg	120
atgttagagaa	tcatcaggtt	caaaaacattt	cgcttcctaa	gaacccgtct	gacccgttacc	180
ttatataatg	gaccaaggca	tgcaataacc	cagtgcctca	accgggttgg	ccaggaatga	240
acccaggcga	gttcaggat	ccgacgacag	gttggatcg	ggccggatgg	ctatggagaa	300
tatcaattgg	agctgagggt	aacggttaca	gttcagcact	tttgcatacg	agtgaagact	360
ttcttgcattt	gtagatgtt	gatcaccac	tgtatttcatt	cagtgcctcc	actatgtgg	420
agtgccttgg	cttcttcg	gtattaccgg	gcagtaacgg	tggactggac	ctgtccgcag	480
ctattccgaa	aggcgccaaa	catgtcctca	aagtcaacgt	ggatcaatgt	gacaagtaca	540
tgattgggg	ttatgtatc	gaacatgtt	cttttgc	tgataactatc	ctcgatgacc	600
gttgggtt	gccgaggatc	gattacggca	attactatgc	ttcaaaatcg	tttttcgact	660
cgaaaaatag	gaggaggatc	atatgggtt	ggactaatga	gtcagatgt	tcttcagatg	720
atgtcgcaaa	aggctggc	gttatctatg	caattccca	gacaatttg	ctagaccgtg	780
atggcaagca	gttgcgtca	tgcccgat	aagagatgt	gtcccttcga	agaaatgaaa	840
tcaactatc	aggactat	ctggagaagg	gagatctt	tgagatgt	ggagttgaca	900
ctttgcaggc	tgatgtggag	atagatgtt	actgcacgt	tattgtatgt	cgccgactt	960
ttgtatcc	ctggctttt	gatccggaa	agcatgtcc	ggaagcgggt	gcatcgtt	1020
atgggttat	aggggccattt	ggacttgtt	ttctggccac	cgccgacat	gaggagcaca	1080
ctgttgtca	cttcagatgc	tacaaatcac	agaaagaata	catgatactc	atgtgcctg	1140
atataagaag	gtcttcctg	agacaaggac	tgtacgcacc	tgcctatgg	ggcttcctt	1200
aatttgcatt	tgaaaaggaa	aggaagat	ctctgagaac	tctaattgt	cggtcggcgg	1260
tggagagctt	tggggccgt	ggcagggtt	gtatcatag	tagatgtt	ccagtggcga	1320
tttgtcgat	cgggagtgc	cacatgtat	ccttcaacaa	tggaaatgt	acgggtcagg	1380
tgcacacat	cagggcatgg	agcatgtat	cagcacaat	gaattttaa	aaaggctgaa	1440
gtgtatgat	acacagaaaa	gctaaatcc	tttattgt	ctttcttctt	ttcatgagca	1500
ctcattcgta	caaataaaacg	gaaattcaac	aggcatatgt	aattgtattt	ttccttgatc	1560
tcaatttattc	atataactata	attattat	aaaaaaa			1599

<210> 17

<211> 2010

<212> DNA

<213> *Lolium perenne*

<400> 17

gctcgcttc	ccctattaac	tgcgcatggg	gaatccgaaa	tgggtcttgg	cgccatgggg	60
gggtcgctt	ctccctcgac	tcgcctccgc	atctccat	gcccgcctga	gcctggagac	120
ctcgccgcg	tcggcgctgg	tcccagcctc	cattgttagc	ccgctgc	ggacaggct	180
ccacttccag	ccccccatga	actggatcaa	cgatccaaat	ggccgttgt	actacaagg	240
atgttatcac	ctgttctacc	agtacaaccc	caaggcgc	gtgtggggca	acatcatctg	300
ggcgactcg	gtgtcccg	acctgtat	ctggatcg	cttgagccgg	cgatctcgcc	360
gaccatcccg	acggaccat	acggcgtgt	gtccgggtt	acgacatcc	tccacgacgg	420
cactccggcg	atccctgtaca	cgggatcga	ccggccgagc	gtcaactacc	agatccagaa	480
catcgccctg	cccaagaacg	cgtcgaccc	tctccctccgg	gaatgtaca	agccggggta	540
caacccgatc	gcgggtccgg	tggaaatgt	aaacgcgacg	cagtcccg	acccgaccac	600
cgctgttgc	gccggcaggc	actggcgat	gctcgccg	gggctgaggc	cgggcagcgt	660

ccgcggggag	gcgattctgt	accggagccg	cgacttcaag	cactgggtcc	gcccaccaagca	720
cccgtgcac	tcggcgctca	ccggcatgtg	ggagtgcggc	gacttcttcc	cgtggggcaa	780
ggccgggtg	gagaaggccc	tggcacccctc	cgagtaacggc	gcccggcgg	gcgtggagaa	840
gcacgtctc	aagaacagcc	tcgacccctac	ccgctacgac	tactacacca	tcggcacgt	900
cgacaacgtc	aaggagcgtt	acgtgccgga	caaccccccacc	ggcgacgtct	accagcgcct	960
ccagatcgc	tacggcaact	tctacgcgtc	caagaccccttc	ttcgacccccc	tgaagcagcg	1020
ccggatctc	ctggggtggg	ccaacgagtc	cgatagcgtg	gcccacgaca	aggccaagggg	1080
ctggccggg	atccaggcga	ttcccaggaa	gatatggctt	gaccccagcg	gcaagcagct	1140
ggtcagtgg	ccgggtgggg	agctcgagaa	gctccggggc	aaggctgtca	acgttggcga	1200
caaggtcg	aagccggcc	agcatttga	gtcacgggc	ctgcagtc	accagtctga	1260
cgtggaggtg	agcttcgagg	tatcgagcct	gataaggct	gagcccttcg	atccggccta	1320
cagcaacgac	gcccagaagc	tctgcggcat	caagggcgc	gatgtcaagg	gccccgggtgg	1380
gcctttggg	cittgggtgc	tgtccctctgc	cgacctagca	gagaagactg	cagtgttctt	1440
cagagtctc	aaggatggat	acggcaacc	tatcgccctc	atgtgcagcg	acccacccacca	1500
gtcatctct	accccgatc	tatacaagcc	gactttcgcc	gggttcgtcg	acaccgacat	1560
ttcgtccggg	aatatcttc	tgagaagctt	gatcgatcg	tcgggtgttgc	agagcttcgg	1620
cgcgggaggg	aaagactgca	tcctatcaag	ggtgtaccc	tctatggccc	tagggaaaaga	1680
cgcgcaccc	cacgtttca	acaacgggaa	gacggatatt	aagggttcca	agctgaccgc	1740
gtggagatg	aagagaccat	tgtatgaatgg	cccttaagca	tgcaccatct	ccgacgagtt	1800
ttcgtttcct	cgcatttctg	ggtttcactt	cactgatatt	cagtgcctcg	attgctcact	1860
caagagctct	atgatcacat	atgattgca	attttggtgc	aaaattcatg	ggttgggtac	1920
cgtgggtac	gtacaataaa	agatattgtt	taatttccac	acgtctaaat	ataataatga	1980
agagctagct	tcatattttc	aaaaaaaaaa				2010

<210> 18

<211> 1389

<212> DNA

<213> *Lolium perenne*

<400> 18

ggcggtgggg	tccctgctgg	tgtaccggag	cgccgacttc	ctccgctggc	agcgcaacgc	60
cgcgcgcgt	cacgcccgt	cgcggacgt	gcccgtctg	gagtgcggc	acctgttccc	120
ggtggctcg	gcggcgcagg	gcccgtcgg	ggggctcgg	acttcggcac	cgagcggcgc	180
cggggctgagg	catgtgcac	agctcacgg	cttcggcaag	gaggaccact	acatgggttg	240
gttttacgac	gacgtggcgg	acacccctgt	gcccggggag	cccggcgc	gcccggcgg	300
cgacaactgg	cgccggctcg	accacggcc	cctgtacgc	tccaaatct	tctacgacgc	360
gcccacaag	cggcgcatac	tgtggcgtg	ggtggacgag	accgacgggt	gcccggcgtcg	420
caggggctgg	gcccgcattc	aggcgttccc	gagggcgat	tggctggacg	ccgacgggaa	480
gcccgtgggt	cagtggcccg	tggaggagat	cgagacgctg	cgaggagaagc	gggtcgccct	540
gcccgtggcg	acggacgtgg	aggccggcg	caggaaggag	atcgccggca	tcgtgagct	600
gcaggcggac	gtggaggtcg	tgttcgagat	cccgaaacctg	gaggaggccg	agacgttgg	660
ccccggatgg	gtgctggatc	cgaaagggt	gtgcgcggc	aaggcgcgt	ccgtgcacgg	720
cggcgtcgcc	cggttcgggc	tgctctgtt	ggcctccgg	gacctggagg	agcacactgc	780
tgtgttctc	agggtgttca	agcacgtgg	caagtacaag	gttctcatgt	gcaccgatct	840
cacaaggatca	tctacgaaag	caggggcaca	caagccatcc	tatggagcat	ttcttgatgt	900
ggacgtggag	aaggacaagt	tcatatcg	cagaacatgg	atcgatcaca	cggtgggtgg	960
gagcttcggc	gacggcgggaa	ggacgtgc	gacggcgt	gtgtaccccg	aacacgcggc	1020
gatggaaagc	acccacccgt	acgtgttca	caacgggaca	ggtgccgtaa	aggtgtccaa	1080
acttgaggcg	tgggagctgg	cgacggcggc	cgtgaacggc	ggctcgctt	cacccgtcg	1140
cgtcaaggca	tccgaccct	aaggccctt	gtattttag	ggtatgccc	ggatgggtgg	1200
tgcttagatg	atgtccgtcg	ttgatatt	cttgggtgc	gagttatgag	tttcgggtag	1260
gatgatttat	gccccaaatgc	aatttttagt	gctgtatgac	ctattggaca	aacatctgtc	1320
attggaaaaaa	cgtgggtata	tgtccacgc	catactaaa	ggtataatag	aggcatccca	1380
	aaaaaaaaaa					1389

ctctgatcta	agaaggctt	ctctgagatc	aggactgtac	acaccagcct	atggaggctt	960
ctttgaattt	gaccttgaaa	aggaaggaa	gatatctctc	agaactctga	ttgatcggtc	1020
agcgggtggag	agctttggcg	gcgggtggcg	ggctctgcata	acggccagga	tttatccagt	1080
ggcgcttgc	gacggcaggg	tccacatgt	tgccttcaac	aatggaaagta	ccacgggtcag	1140
gtgtccacaa	ctcggggcat	ggagcatgat	gacagcacaa	gtgaacgtga	ataagggtt	1200
aagtgtatgg	taacacagaa	gagcgtttc	attttcttaa	ttagcgtact	ctcattcagg	1260
agcactcctt	gttacaattt	aaaggaaattt	cgacaggaag	tagttgtca	aaaaaaaaaa	1319

<210> 21

<211> 1995

<212> DNA

<213> Festuca arundinacea

<400> 21						
ggtttccac	taataactgc	gcaagcaatg	ggaaatccaa	aatggatctt	cgcgcctatgg	60
gcgggtgttc	tgctcttct	cctgcagtc	gcctgcgc	ctcaccatac	ccgcccggagc	120
ctggagaccg	aggccgcgtc	gcccgtagta	ccagcttcca	ttgttagccc	gctgctcagg	180
acgggttatac	acttccagcc	ccccatgaac	tggatcaacg	atccaaatgg	gcattgtac	240
tacaagggt	ggtaccacct	tttcttaccag	tacaacccca	agggcgcgg	gtggggcaac	300
atcatctggg	cgactcggt	gtccccgcac	ctcatcaact	ggatgcctt	ggagccggcg	360
atcacgccc	gcatcccgac	ggacaagttac	ggcgtgtgg	ccgggtcgc	gacgatcctc	420
cacgacggg	cgccggcgat	cctgtacacg	gggatcgacc	ggccgagcat	caactaccag	480
atccagaaca	tcgcgttgc	caagaacgcg	tcggacccgc	tcctccggg	atggtacaag	540
cctgggtaca	acccgatcgc	cgtgcggatgt	gccggcatga	acgcgacgcg	gttccgcgc	600
ccgaccaccc	cggtgggtcgc	ccgcaggac	tggcggatgc	tgggggggg	cttccggccg	660
gggacgctcc	gcgggggggc	gatcgtgtac	ccggacgc	acttcaagaa	ctggacccgc	720
gcccaccacc	cgctcgactc	ggcgtgtacc	ggcatgtgg	agtgcggg	cttcttccc	780
gtggggcgagg	ccgggggtg	gaaggccgt	gacaccccg	agcacgg	aggggtggag	840
aagcacgtgc	tgaagaacag	cctcgaccc	acccgctacg	actactacac	cgtcgccacg	900
tacgacaacg	tcaaggagcg	gtacgttcc	gacaacccca	ccggcgcacgt	ctaccggcgc	960
ctccagttacg	actacggca	tttctacgc	tccaagaccc	tcttcgcac	cgtgaagcag	1020
cgccggatcc	tcctgggg	ggcaacag	tccgacagcg	tggccacga	caaggccaag	1080
ggctggggcc	ggatccaggc	gattccagg	aatatggc	ttgaccc	cggcaagcag	1140
ctgggtcgat	ggccgggtg	ggagctgg	aagctccgg	gcaaggctgt	caccgtcg	1200
gacaaggctc	tcaaggccgg	ccagcat	gggttcacgg	ggctgcagtc	ataccagtct	1260
gacgtggagg	tgagcttgc	ggtgcg	ctggataagg	ccgaggcgtt	cgatccggcc	1320
tacagcaacg	acgcgcagaa	gctgtgcgg	ataaggcgc	ccgatccaa	tggcgggg	1380
ggccctttt	ggctcggt	gctggctt	ggcgcac	cagagaagac	tgcagtgtt	1440
ttcagagtct	tcaaggatgg	atacggca	cccatcg	tcatgtgc	cgacccccc	1500
aagtcatctc	tcacccca	tctataca	ccgactt	ccgggtt	cgacaccgac	1560
atttcatccg	ggaagatctc	cctaaga	ttgattgacc	gtcgtgt	tgagagctt	1620
ggcgcgggag	ggaaaaccc	catctgt	agagtgtacc	cgtccat	cctagggaaa	1680
aatgcgcacc	ttcacgtgt	caacaacgg	gagacggata	tcaagtgt	caagctgacc	1740
gtgtgggaga	tgaagagacc	cttgcatt	ggcgcctaa	catgcac	ctccgacaag	1800
ttttcggtt	ctcgcattt	gtgggtttag	ttcactgtt	ttcagtgc	cgattgtc	1860
ctcaggagct	ctatgtat	atatgttgc	aaattttgtt	gcaaaattt	tgggttgggt	1920
accgtgggt	gtatgtacaa	ataaagatgt	tgttaattt	ccacgttct	aatataata	1980
gtaacaaaaaa	aaaaaa					1995

<210> 22

<211> 1760

<212> DNA

<213> Lolium perenne

<400> 22						
ggatggctt	gtgaccc	gaattctccg	gcaacacaaa	agatccaaat	ggaccaatgt	60
actacaatgg	tatctaccat	gagtcttacc	agtacaaccc	caatggctcc	ctctgggta	120
acataattt	gggcatttca	gtttcgacgg	acctcatcaa	ctggatccca	gtagaacctg	180
cgatagaacg	ggatataccca	agtgcataaa	acgggttctg	gaccgc	gccacaat	240
tttccgtt	tcaaccaatt	atcatataca	ccggagccg	caaggagaac	cgtcagctcc	300
agaacattgt	gcttccaaa	aacaagtctg	acccgtatct	gagggagtgg	acaaaaggcag	360
gtaataaccc	ggtgatccaa	ccagtcggc	caggctt	tgcgaccc	ttcagggt	420
cgacaaccgg	ttggatgg	ccggatggac	tgtggaggat	agcagg	gtcgacgtt	480
atggctacgg	tgctgcactt	ttgtacaaga	gtcaagactt	tctgaattt	actagatgtt	540
atcaccgc	gtattcatcc	aatgcatcc	caatgtgg	gtgccc	agat tttcgcgg	600
tattgcggg	aaatagtgtt	ggacttgacc	tatctgcaga	aatccaaat	ggcgccaa	660

atgtcctcaa aatgagccta gattcctgtg acaagtacat gatcggagtt tatgatctga	720
aaagtatac ctttatgcca gatagtgtgt tagatgaccg tcgactgtgg tcgaggatcg	780
atcatggcaa tttctatgtc tcaaagtcat tcttcgactc gaaaaaggaa aggaggatca	840
tatgggttg gacaaatgag acagatagct cttcagatga tggcaaaaa ggttgggctg	900
gaatccatgc aattccagg acaatatggt tagacaggta tggcaagcag ttgctgcaat	960
ggccaaattga agagatcgac tccctcgaa gaaataaaat cagccatcaa ggactagagc	1020
tgaagaaagg agacctattt gagataaaag gaactgacac ttgcgagggt gttccatgttt	1080
ttttagggaa actgttagctt atctggcaca tcattttctt gaaacaggct gatgtggagg	1140
tagatttga gctgacatcc attgataatg ccgacccttt tgatccctcc tggcttctgg	1200
atgtcgagaa gcagtggcga gaagcagggt catcggttca aggtggcata gggccatgg	1260
gacttgggt cttggcctt gacaacatgg aggagcacac tgctgtacac ttcaagatgtt	1320
acaatcgca gcaaagctac atgatccca tggttctga tctaagaagg tcttccctga	1380
gatcaggaat gtacacacca gcataatggag gcttcttgc atttgaccctt cagaaggaaa	1440
gaaagatatac tctgagaact ctgattgtac ggtcagcggg ggagagctc ggaggcgggt	1500
gcagggctcg catcgatggc agagtttac cggtgggtgt tgcgtatgt ggcggggccc	1560
acatgtacgc cttcaacaat ggcagttacca cggtcagggt gccacagctc agggcatgg	1620
gcatgagcag ggcagagcac aagttaatgt aagttaaag tggatgattaa catagaagag	1680
caaatacta tgacatgtga ttggaggact ggaaaatgtga tttaaatgct tagcacaatt	1740
gtttcttgc aaaaaaaaaaaaa	1760

<210> 23

<211> 2059

<212> DNA

<213> Festuca arundinacea

<400> 23

ggaaccagcc acccacctgg ccatccatgg ccgggctccg tctccgcgc gtcgccttcc	60
acctctgcct cctgctctt ccgtcgtcct ccctccgccc gctctaccac gaggacgacg	120
aggcagagag cacgccagc catggcggga gcaggaccgc ctaccacttc caaccgcga	180
agaactggca gaacgatccg aatggccga tggatccaa cggcttgcac cacttgcgttct	240
accagtacaa cccacgtggc gccacctggg gcaacggcaa cctctccctgg ggccactccg	300
tgtcgtcga cctcgtaac tggccgccc tgcacaccgc cttgaccccc gactccccgt	360
tcgacgccaa cggctgctgg tcgggatcag ccaccatcc ccccgatgga caaccggcca	420
ttctctacac cggcatcgac gccgctggca accaggtcca aaacgtcgcc ttcccaaga	480
aggcatccga tccactccctt cgtgagtggg tgaaggctga ctacaacccc gtcattccctc	540
tccccaaggaa cgtcgtgcac gacagttcc gtcgatccccc cacggcgtgg cgccggcgtg	600
acggcctcg gctgtggcc atcgccggca aggtcaacagt gaccgtgacc gtgggggtcaa	660
cactgatcta cggagcaag gacttccggc gctgggagag gaacggcgcg ccgctgtacg	720
agtctcttcg cggccgcattt gttggatgtcc cggacctgtt cccggcggc aagcccggtg	780
cgcagaacgg gctcgactac gcccctcga gcagggcggc gaggcacgtg ctgaagctga	840
gcgtgggtgc cacgctccag gactactacg tggatgggggt gtacgacgac actgcggaca	900
ccttcaatgc gggccggc gccgacaaacg actggcggac ctggccgcgc atcgactacg	960
gccacgtgt a cgcgtccaa tccttcttcg acgcgcgaaa gaaccggcgc gtgtttgggt	1020
gctggggccaa cgagtctgac accgaggccg actacatcgc cagggttgg tctggcgtcc	1080
agacggtccc gagaaagatc tggctggaca tcgatggaa gcagctgtc cagtggccga	1140
tcaaggat agagacgtcg aggaagaagg gggctgggggt gcttagaaacg gagatgaaact	1200
ctggcggcct gaacgaaatc atcgccgtcg cggcgtcga ggcggacgtg gaggtcgtct	1260
tcaagatccc gaccctggag gggctgaga acattgagcc caatgagcta ttggacccgc	1320
aaaagctatg cggcaacaat ggcgcgtcaa tggatggggcag tatcgcccg ttgggtctac	1380
tcctccttagc ctccggcgcac ctgctggagc acacctcagt cttcttcagg gtgttcaagc	1440
acggtgccaa gtacaaggatc ctatgtgca cgcacccac aagatcgact acgagatccg	1500
acgtgtacaa ggcgtcgac ggagggttcg tggacatgga catcgacaaag accaagagca	1560
tatcgctcg aacattgtt gatcactctg tggatggagag cttcggcggt gggggggcga	1620
cgtgcatcac ggcgcgggtg taccggagc acgcggagat ggcacacagc cacatctata	1680
tgttcaacaa tggatggggc ggggtgaagg tagccaaagct cggggcgtgg gagctggcga	1740
cagccaaacgt gaatgtcgcg ggcacgggt gataacccca agtgcacatga atagtctgaa	1800
cacgtttcag tggatggatgt ttagataaa actgtggggag ctactaggtt ttattctcgaa	1860
aaactatata tgccacttat ataactactt aattaggata tgcttctgca aaaaaaaaaatc	1920
ttcaaaaattt ggtccaaatgggg ggcggccccc cgacatacac attcctctgc	1980

atatgcttgt aacgtggta gaaaggtaaa taagtacgca ggactttgtg attctcgcca	2040
taggcataaa aaaaaaaaaa	2059

<210> 24

<211> 2167

<212> DNA

<213> Lolium perenne

<400> 24

gggaccttgc gcccaagtac gtagtctgca cagcaatggg ggttcgctc gggagagtag	60
cttggcggtg cccggcggtt ctgggtctgc tcttgcagct cgccggagcg tcccatgtcg	120
tctacgagac cagcctcctc gagaccgagg cggcgccggc caccgtgcca gcctccattt	180
ttgagctgag caccgggtac cacttccggc ctctagaagaa ctggatcaac gatcccaacg	240
cgccgctgtt ctacaagggt tggtaccatc ttttcttcca gtacaacccc aaggggcgccg	300
tgtggggcaaa catcggtgg ggcgactcg tgcgcgcga cctcatcaac tgggtggccc	360
tggagacggc cctggcgccg agcatcgacg cggacaaaata cggctgtcg tgggggtcg	420
cgaccatcat gcccgcggc acggcggtga tcatgtacac gggcgctcgc cgccggacg	480
tcaactacga ggtccagaac gtcgccttcc ccaagaacacg ctgcgaccct ctctccggg	540
agtgggtgaa gccggcgac aaccgggtga tgcgtccggg gggcgcatc aacgcgacgc	600
agttccggga cccgaccacg gcctggta cg ggcgggca ctggcgatc ctggtgggca	660
ccctctccgg cgctggccg ggcgtggcg acgtgtaccg gagccgcac tttccggcg	720
ggacgcgggt gccaaggccg ctgcactcg cggcgacggg gatgtgggag tggccggact	780
tctacccggg gaccgtggac ggcaaggaga gcccgggtgg cacgtccgt gtgtccagct	840
cgagggtgaa gcacgtgctc aagaacagcc tgcaccccg cgcgtacg tactacaccg	900
tcgggaccta cgaccggctg aaggagagggt acgtggccgg aaaaaaaaaa ggcgacaaggc	960
accacctgtag gtacgactac ggcaacttct acgcgtccaa gacgttctac gacccgttca	1020
agcgcggccg catccgtgg gatgtggcga acgatccga caccggcgtc gacgacgtcg	1080
ccaaagggtgt ggccggaaatc caggcgattt ctcggaaagggt ttggctggac ccaaggcgaa	1140
ggcagctgtat gcagtggccg gtggaggagg tgaaggcgct caggggaaag aacccgggtca	1200
gcctcaagga ccggatggta aaggcgccgg aacacgtcg ggtcacccgg ctacaaaccg	1260
cacaggctga cgtcgagggt agcttcgagg tgccgagcc ggaggggcg gaggcgctgg	1320
accggcgct ggccaacgac gcccagaagc ttgcggcggt gaaggcgcc gacgtggagg	1380
gcggcggtgg gcccttcgtt ctgtgggtgc tggcgctcgca aagctggag gagaggaccg	1440
ccgtcttctt cagggtgttc aaggccggc gcaacgtcaa cagcacaag cccctcg	1500
tcatgtgttc cgatccaaacc aagtcatctc tgaacaagaa cctgtaccac ccgacccctcg	1560
cgggttcgtt tgatattgac atggctaagg gcaagattt tctcagaacg ctatcgatc	1620
aatccgtgtt ggagaggtt gggccggag gcaggacgtt catctcttct cgcgtctacc	1680
cgtcgtctgc cattggcagg aacgttcacc tccacgtttt caacaacggc aaggcgacca	1740
tcaagggtgtc gcggctcaacg gcgtggaaa tgaagaagcc ggacgtcatg aacgggtcc	1800
agatttagat tcaggcaggaa gcaccatatg catgattcc acatatgtgc ttgaatttgg	1860
ctcaggcatg cgtctggggc gttattctga tttaattt acctctggta aaacatgtca	1920
gttttacaag ggcgctacg tagctagcta gtttgcacg ctgttaagt gaagggggtc	1980
attttgtatg ccccccggaa taataaaagat ccatgcatag cctgagggtgg gcatcggtag	2040
aaagtttattt ttttggaaacg gggcaaaaata ttgtcccaa tcaactactc ctggcatggaa	2100
ttaaaaataag gagcaacaaa gtagaagttt tacaagaaag ttaatgtttt gattattaaa	2160
aaaaaaaaa	2167

<210> 25

<211> 2138

<212> DNA

<213> Lolium perenne

<400> 25

gcccctcgac tagtcggccg aggcatctt cctagttgt tccatcgcat cgatctcgat	60
ccacagattt tatgccaatg gaggcaagag atggcgcttc gatccctatc tctatgcgg	120
ccctgcccgg gtagcccgag gcacgggtgg ttggcgccgg tcggccggacc gggctctgt	180
tcgcacgtt gctgttgacg ttggcgccgg cgctcccttgc cgtcgccgcg ctggctggcg	240
tcaggctgtt tggcgaggatc cttccgggggg gctcgctcat gcccacacc cccatgtggaa	300
tcatggacgt cagcggtagc agggccctg agtcaggcgt gtcggagaag acgtccgggg	360
ccgccagcgaa gacggccggc atgctggcg ccgacccccc cagcaacgcg tttccgtggaa	420
gcaatgcgt gtcggatgg cagcgcaccgc gttccactt ccaccccgag aagaactggaa	480
tgaacgaccc caacggcccg gtcactaca aggggtggta ccaccccttc taccagtaca	540
acccggaggg cgcaatctgg ggcaacaaga tcgcgtgggg ccatggcgat tcccgccgaca	600
tgctccgggt ggcacccatcg cccatcgcca ttggcccgat ccagggttac gacatcaacg	660
gacgtggcgc aggctccgccc accgtgctcc ccgacggccg catcgatcg ctctacacgg	720
gctccacca cgcctccgtt caggccatgt gcctcgccctt cccctccgac ccctccgacc	780

cgctgctcac	caactggacc	aagtatgagg	gcaacccgg	gctgtacccg	cctccgcacg	840
tcggggagaa	ggacttccgg	gaccggacca	ctgcataatgt	cgatggctcc	gatggatgt	900
ggcgcgtatcg	catcggttcc	aaggataacc	ggcgcccg	catggccctt	actacaaga	960
ccaagaactt	ccatgat	gagctcggttcc	ccggagtgct	gcacccgg	ccggcgacgg	1020
ggatgtggaa	gtgcataatgt	ttgtacccgg	ttggcgccgc	gagggcatt	gacatgacgg	1080
aggccgttgc	ggcgccatcc	aacagcggt	gtggtaagt	tttgcataatgt	atgaaggaga	1140
gctcagacga	cgaccgacat	gactactacg	cgcttagggag	gtacatgtca	gcgacaaaaca	1200
agtggacacc	gctagatgcc	gacgcggat	tcggcatcg	gctgaggat	gattggggaa	1260
agtttctacgc	atccaagacc	ttctatgacc	cgccaaagaa	gaggcggt	ctatgggggt	1320
gggtcgccga	gactgactt	gagcgcccg	acgtggccaa	ggatgggt	tccttacagt	1380
cgatccctcg	cacgggtgt	ctagatacca	agacgggcag	caacccat	cagtggccgg	1440
tggtcgaggt	ggagacgctc	cgtaccaact	ccaccaatct	cgggagcatc	atcgatcgagc	1500
atggctccgt	cttccctctc	agtctccacc	gggcccacaca	gctcgacatc	gaggcttcct	1560
tccgcctgga	cccgctcgat	gtcgccgg	caaaggaggg	cgacgttgc	tacaactgca	1620
gcacccgg	tggcgccgg	ggtcgtggag	cgctcggtcc	cttggcctg	ctcgactcg	1680
ccgatgcccag	gcccgttgc	ggggacacgg	agcagacccg	cgttactt	tacgtcgca	1740
ggggcctcg	tggcaacctg	cgcacgcact	tctgcata	cgagtcacgg	tcatcccg	1800
ccaaacgat	tgtcaaaagg	gtcgttggca	acatcgatgc	agtgcgtac	gaaaaggcgc	1860
tgtctgttag	ggtttgggt	gcccactcca	ttgtcgagag	cttcgcacag	ggtggggaggt	1920
cggtgtgtac	ttcacagat	tacccgact	aggccatcta	cgccaaatgc	gggtataacc	1980
ttttcaacaa	cgccaccgg	gcccgggtcc	ccgcccacca	tctcgatgc	cataaaatgg	2040
accctctta	caaccagaac	caggccgaaa	ttgcttcatt	gtaaatcgaa	aatgtacata	2100
ttgttttttg	tgctagatg	ttgcccgtaa	aaaaaaaaaa			2138

<210> 26

<211> 1768

<212> DNA

<213> *Lolium perenne*

<400> 26

ggtcattgg	cgccaccctcc	cgctcgccat	ggtgcggc	caatggat	acatcaacgg	60
tgtctggaca	ggctccgcca	ccgtgttccc	cgatggacc	ctgaacatgc	tctacacggg	120
gtccaccaat	gcctccgtc	aggcccagt	cctcgccgt	cccgaggacc	ccaatgactc	180
cctccctccgc	aactggacca	agcacgaagc	caacccgg	ctccctccac	ccccgggat	240
cggtgacaa	gacttccgt	acccaaaccac	cgcacgttgc	gacgagatct	accagacgt	300
gcccacccgtc	atcgggttca	aggacaacaa	ccggccacgc	ggcatgc	tgtgtacaa	360
gaccaaagac	ttccctcaat	acgagctat	cccgggat	ttgcacgc	tcgacggc	420
ccgcacgttgc	gagtgcac	acttctaccc	cgtcggcg	aagaacggc	gcccggagct	480
gtacgtgatc	aggagagac	gcgcacgc	ccgacatgc	ttgtacacgc	tagggaaata	540
cgacgcggc	gccaacacgt	tcacggccgc	ggacccgg	aacgcac	ggattgggct	600
gaggatc	tggggcaagt	tctacgcgtc	caagac	tacgaccc	ccaagaagcg	660
gcccgtgt	tgggggttga	ttggcgagac	cgactcc	cgccgcgt	tcgccaagg	720
atgggcattcc	ctcatgtc	ttccgaggac	ggtggag	gacgaga	cctggacca	780
cctcatccaa	tggccagtgg	aggagatc	gaccctcc	atcaagtcc	ccgac	840
tggcatacc	attgaccac	gcacgttca	ccactcc	ctccaccc	ccacac	900
agacatcgat	gcctccctcc	gcctcgac	cccccac	ggcccttca	acagg	960
cgtaggctac	aattgcac	ccagggcg	cttccat	cgccgc	toggccc	1020
tggcatcc	gtcccttgc	acggtaaggc	ggagcaac	cggtgt	tctatgt	1080
caagggcctt	gacggggccc	tcgagaccc	cttctcc	gacgagtc	gatcgac	1140
ggccaaggat	gtcgttgc	gatgggtgg	atacacc	cctgttct	atggtgagg	1200
atttccgt	agggtgtc	tggaccact	aattgtgg	agcttc	tgggtggaa	1260
gtccacggcg	acgtcgagg	tgtaccc	ggagtctat	tacggc	ctgggtcata	1320
tcttttcaac	aatgccacc	cggttcc	gaccgtt	aagctgt	tgcatgagat	1380
ggactcgat	tacaacc	tcttcat	tgacgact	tagtacc	catccat	1440
tagcgatcg	tggtgaggat	gatcac	tacata	tacata	tgtcgaa	1500
atccccggat	cggtcggtt	tggcttcc	ttttttt	tgcaga	gatgg	1560
tagtactt	atttaccat	ttgtgtt	tttgg	tttgg	tttgg	1620
agatggat	attagat	gtgat	tgtgt	tttctt	ccttcc	1680
gtaactacat	atattggc	gatcgat	atccctgt	catgac	agtgat	1740
atttgtat	atattgt	aaaaaaa				1768

<210> 27
 <211> 1855
 <212> DNA
 <213> Lolium perenne

<400> 27

ggatcttcg	gtccaggctc	ccggacatcg	acatccctac	ccacatgccc	ctgcacgact	60
actgcttcg	gacggcagcc	tcggcccccgg	acgcgcgtg	cctcattacc	gcagccacgg	120
ggcgaccta	cacgttcggc	gagacgcacc	tgctctggcg	caaggccgcg	gccccgtcgc	180
acgggctcg	cgtgcgcccac	ggggaccggg	tcatggtgc	gctgcagaac	tccgtggagt	240
tcgcgtcgc	tttcttcggc	gcgtccatgc	tcggggccgt	cagcacggcg	gcaaccgt	300
tctgcacgcc	gcaggagatc	cacaagcagc	tcgtggcctc	cggcgcgaag	ctggtcgtca	360
cgcagtccgc	ctacgtcgac	aagctccggc	acgaggccct	cccacgaatc	ggcgaggccc	420
tgaccgtgat	caccatcgac	gacgacggca	ccccggacgg	ctgcccagcc	ttctggggcc	480
tcgtgtcgc	cgccgacgag	aacacgtcc	cgaggtctcc	catctcgccg	gacgacgccc	540
tggcgtcgc	ctactcgtc	ggcagacgg	ggctggccaa	ggcggtgggt	ctgacgcacg	600
ggggccttgg	gtcgagctg	gcccgcgg	ttggacggcg	gaacccgaac	ctgcacatgc	660
ggggggggga	ggacgtggt	ctctgcgtgc	tgccgctctt	ccacatcttc	tcgctcaact	720
cggtgcgtct	gtgcgcgtg	cgggcggg	ccgcccgtat	gctgatgcct	agttcgaga	780
tggggccat	gctggagggc	atcgagcggt	ggcgcgtcac	ggtggggcc	ttggtgccgc	840
cgctggtgct	cgcgctcgcc	aagaacccc	gggtggagaa	gcacgaccc	agtcattc	900
ggatcggtct	ctccggcgcc	gcccgcgtcg	gcaaggagct	cgaggacgc	ctacgtggcc	960
gcctggccca	ggccatcttc	ggacagggct	acgggatgac	ggagggccgg	ccggctgtgt	1020
ccatgtgccc	ggcggtcg	cgggagccg	cgccggccaa	gtccggctcc	tgccgcacgg	1080
tggtgcgca	cgccgagctc	aagggtgg	acccggacac	cggcgtctcc	ctcgccgcga	1140
accccccgg	cgagatctgc	atcccgcc	cgccagatcat	gaaaggatata	ttgaatgtatc	1200
ccgtggccac	cgccgcgacc	atcgacgtc	aggatggct	ccacaccgc	gacatcggt	1260
acgtcgacg	cgacgacgag	gtcttcatcg	tcgaccgcgt	caaggagctc	atcaagttca	1320
agggttcca	ggtaccgcg	gccgagctcg	aggctctgt	catcgccac	ccgtccatcg	1380
ccgacgcggc	cgtcgcccg	caaaaggatg	atgcccgg	cgaggtcccg	gtcgcttcg	1440
tggccgcgc	cgccgactcc	gacatcgcc	aggaggccat	caaggagttc	gtatccaagc	1500
agggtgtt	ctacaagagg	ctgcacaagg	tctacttcac	ccacgcgatc	ccaaagtcgg	1560
cgtggggaa	gatactcagg	aaagaactca	gagctaaact	cgccggcccg	gcaactgcct	1620
gaagagtgt	tcaaggctc	atgctaata	tttcgatcg	aaaggcagtt	cctatgttcc	1680
acctttgtt	tcatttggaa	gattgtattc	cagctagtgg	ccagtactg	agtaaggat	1740
ggggataaaaa	gttttgccta	cgttttctt	tacgctactc	tctccattga	ggagtacaat	1800
gtatcagggg	attctgtatt	gaaattaatc	aagattgggt	caattaaaaaa	aaaaaa	1855

<210> 28
 <211> 2041
 <212> DNA
 <213> Lolium perenne

<400> 28

gaggagggtgg	tggaggagca	cgaaatcccg	gccgcattc	ctccaccttc	cgctccgacc	60
aaagatttc	atccggcgag	atccatggc	tccatcgccg	cagacttggc	gccggaggcg	120
cccgccgg	tgggtttcg	gtcgaaatc	ccggacatcg	agatccgc	ccacctgac	180
ctcaagact	actgcttcg	gcccgcgtcg	gagctctccg	cccgccgcctg	cctcatcgac	240
ggccacgg	gcccgcgtct	cacctacggc	gagggtggacg	ccctctcg	ccgtgcgcg	300
gccccgtc	gcccctcg	cgtcgc	ggcgcacgtgg	tcatggcgt	cctccgcac	360
tgcggcgt	tgcgttctgt	gttcctcg	cgccggccgg	tcggccgc	caccaccacc	420
gccaacccgt	tctacacg	ccacgagatc	caccgc	ccgcccggc	ccgcgcac	480
gtgatcgta	ccgaggcc	cgccgtcg	aaagggtcg	ccttcgc	cgagagaggg	540
atccccgtc	tctccgtc	cgaggcc	gacgacggct	gcctccgtt	ccgcgcact	600
ctccctgggg	aagaaagccg	cgaggccgtt	gtcgacgagg	cggtcgaccc	cgacgacgtg	660
gtggcgtc	cgtaatcg	cgccaccc	ggcctgcca	agggcgtat	gtcaccac	720
cgcacgcctc	tcaccagg	cgcccg	gtggacggct	agaacccgaa	cgtcacttc	780
agctcgcc	acgtcg	gtcgctgt	ccgtgttcc	acatctactc	gtcaactcg	840
gtgtcgctcg	ccgggttac	cgccgggt	gcatcgta	tcatgcgaa	gttcgaccac	900
ggcgcttgg	tggacctgg	gcccgc	ggcgtcacgg	tggccatt	cgccgc	960
atcggtgtt	agatcgccaa	gagcgcg	gtgaccgc	cgacgc	gtcgatccgg	1020
ctggcatgt	cgggggccgc	gcccattggc	aaggagctc	aggacgcgtt	catggccaag	1080
atccccaaac	ctgtcg	gcaggat	ggatgaccc	aggccggccc	cgtctagcc	1140
atgtgcctgg	ccttcg	ggaggcc	gaggtaat	ctggctct	ccgcacccgtc	1200
gtccggaaac	ccgagct	gatcg	ccgcaccc	gcccctcc	cgccgcac	1260
ctggccgggg	agatctcg	ccggc	cgacat	aaggtaat	aatgatccg	1320

gaggccacaa	agaacaccat	tgacaaggac	ggttggctgc	atactggaga	cattggttat	1380
gtcgatgtg	acgacgagat	ctttattgtc	gacagactga	aggagataat	caaataataag	1440
ggattccaag	tacctccagc	agaacttcaa	gcccctctca	ttacgcaccc	tgaatcaag	1500
gatgtgctg	tcgtatcgat	gcaagacgaa	cttgctgggt	aagttccggt	tgcgtttgtt	1560
gtgcggactg	aagggttcaga	gatcagcgaa	aacgagatca	agcagttcg	tgaaaagag	1620
gttggttct	acaaggaggat	ctgcaaaatgt	ttcttcgcgg	attccattcc	aaagagtcca	1680
tctgcaaga	tcctcaggaa	ggacctgaga	gcaaaagctcg	ccgcaggcat	tcccggcagt	1740
gataccacac	agtccaaaaaa	ctaagtca	tataattgtt	cccaaccgt	cacacctctg	1800
tccaaacacca	tgtaatgttc	ttaatataaa	cggaaaattat	tacatataga	agggctgatt	1860
cttttacta	gatgtgtcca	acatatgata	tgtttgttag	gccgatgatg	ggtaacctgt	1920
catgtataga	taaccgcctt	tttttgataa	gaaaggctga	ttataatgt	taccatgagc	1980
tgaatatttg	ttcaagaaga	tcaggattcg	gttgccaatt	gtttaccctt	aaaaaaaaaa	2040
a						2041

<210> 29

<211> 1934

<212> DNA

<213> Festuca arundinacea

<400> 29

gggagcacgg	aatcccgccc	gccattcctc	cacccctcagg	tccggccaaa	gatttccatc	60
cggcgagatc	catgggctcc	atcgccgcgg	acgcgcggaa	ggcgcctccc	gcccagctgg	120
tgttccggtc	caagctcccg	gacatcgaga	tcccgaccct	cctgacgcgt	caggactact	180
gcttccagcg	cctgcccggag	cactccgcgc	gcccgcgcct	catgcacggc	gcacccggcg	240
ccgcgcctcac	ctacggcggag	gtggacgcgc	tctccgcgg	ttgcgcggcc	ggcctccggcc	300
gcctgggggt	ccgcgaaggc	gacgtcgctca	ttgcgcgtgt	ccgcaactgc	ccggagttcg	360
ccttcgtgtt	cctcggcgc	gcccggctcg	gcccggccac	caccaccgc	aaccgggttct	420
acacggccca	cgagatccac	cgccaggc	ccgcgcgcgg	cgccaaagg	atcgaccccg	480
aggcgtcg	cggtcgagaag	gtgcgcgcgt	tcgcgcgcga	gagagggtata	accgtcgct	540
ccgtcgacga	gggcgtcgac	gacggtcgcc	tccgcgtcg	cgagactctg	ctcggggaaag	600
acggcgcg	gcggttcgtc	gacgaggcgg	tcgaccggaa	cgacgtgg	gcccgtccgt	660
actcgccgg	caccaccgc	ctccccaagg	cgctcatgt	caccaccgc	agcctcg	720
ccagcgctgc	ccagcagg	gacgggtgaga	acccgaatct	gcacttcagc	tcgtcgacg	780
tgcgtgtgt	cgtgctcg	ctgttccaca	tctactctct	caactcg	ctgctggcgg	840
ggctccgcgc	gggttgcgcg	atcggtatca	tcgcgaatgt	cgaccacgt	gcccgtgtgg	900
acctcggtgcg	cgccacgcgc	gtcaccgtgg	cgccattcgt	gcccgcac	gtgggtggaga	960
tcgccaagag	cgccgggg	acggggcg	acctggcg	catccggct	gtcatgtcg	1020
ggggccgcgc	catggcaag	gagctcgagg	acgcgttcat	ggccaa	atccacgcgc	1080
tgctcgcc	gggatatgg	atgaccgg	ccggccccgt	gctggccat	tgccctggcct	1140
tcgccaagga	gccgttcg	gtcaagtcc	gctcctgcgg	caccgtcg	cggaacgcgc	1200
agctcaagat	cgtcgacccc	gacaccggc	cctccctcg	ccgcaac	cccgccccgaga	1260
tctgcaccc	cgcaagcag	atcatgaaag	gttacctaa	tgatccgg	gccacaaaaga	1320
acaccattga	caaggacggt	ttgctgcata	ctggagacat	tggttatgt	gtatgtac	1380
acgagatctt	tattgtc	agactgaagg	agataatcaa	atataagg	ttccaagat	1440
ctccggcaga	acttgaagg	cttcttca	cgccaccctg	aatcaagg	gtctgtgt	1500
tatcgatgca	agacgaactt	gtcggtgaag	ttccgggttgc	gttgg	cgactgt	1560
gttcagat	cagcgaaac	gagatca	gttgcgttgc	aaaagagg	gttttctaca	1620
agaggatctg	caaaatgttc	ttcgccggact	ccatccgaa	gatcc	gttaagat	1680
ttagaagga	cctgagag	aagctcgcc	caggcatccc	ccgcgtgaa	accacacagt	1740
ccaaagcta	agtcaagat	attgttccc	aaccttacac	acctctgt	aacatcatgt	1800
aatgttctt	atataatgg	aaatataatac	atatagaagg	gtgtat	tttactagat	1860
gtccattgtat	atatttttag	tccgtatgt	tgtaccctgt	catgtataga	taccgcctt	1920
attgaaaaaa	aaaa					1934

<210> 30

<211> 2014

<212> DNA

<213> Lolium perenne

<400> 30

ggagagag	gatcaagc	gccatctccc	acgactaatt	tagaagaaga	tttacttagt	60
ctctgttct	cgctcgatcg	ccggccgg	aggttagct	ctagctact	gtactagat	120
attaccatgg	tttccgtgc	ggaggagt	gtgggtgt	tggccgcgg	ggagacgg	180
ttccggcgt	agctcccg	catcgagatc	aacaaacg	agacgtcg	gagctact	240
ttcgagaaga	tggccgag	cgcgtccgc	ccctgc	tcgacggc	gacggggcgc	300
tcctacac	acacggag	cgactac	acccgtcg	ccgcggcg	gctgcgc	360

atgggcgtgg	ggaaggggcga	cgtgggtatg	aacctgtctcc	gcaactgccc	cgagttcgcc	420
ttctccttcc	tgggcgcggc	caggctgggc	gccgccacca	ccacccgcaa	cccgttctac	480
accccgacacg	agatccacccg	ccaggcggag	gcggggggcg	ccaagctgtat	cgtcaccgag	540
gcctgcggcc	tggagaaggt	gctggagttc	gcgggggggc	ggggcctgccc	cgtggtcacc	600
gtcgacggga	ggcgcgacgg	gtgcgtggac	ttcgcggagc	tgatcggccc	cgaggagctg	660
cccgaggccg	acgaggccgg	gatcctcccc	gacgacgtcg	tcgcccctgccc	ctactcctcc	720
ggcaccacccg	ggctccccaa	gggcgtcatg	ctcaccacc	gcagcctcg	caccacgtc	780
gccccagctgg	ttgacgggtc	gaacccaaac	gtgtgttca	acaaggacga	cgcgtgtcg	840
tgcctgtcgc	cgctgttcca	catctactcg	ctgcacacgg	tgctgttggc	ggggctccgc	900
gtcgccggcc	ccatctgtcat	catgcgcaag	ttcgcacgtcg	gcgcgcgtcg	ggacccctgc	960
cgcgcgaccc	gcatcaccat	cgcgcatttc	gtgcgccttca	tcgtcggttgc	gatcggcaag	1020
agcgaccgcg	tcggcgccga	gcacatcgca	tccatccgc	tggtgctctc	cggcggcccg	1080
cccatgggca	aggacccatca	ggacgccttc	atggccaaga	tccccaacgc	cgtgtcgga	1140
cagggttacg	ggatgactga	ggccggggcc	gtgtgttca	tgtgcctggc	gttcggcaag	1200
gagcccttca	aggtcaagtc	cgggtcggtc	ggcacccgtgg	tgcgcaacgc	agagctcaag	1260
gtcgtcgacc	ccgcacaccgg	cgcattccctc	ggcaggaacc	agcccgccga	gatctcggtc	1320
cgcgggaagc	agatcatgtat	aggttacctg	aacgaccatc	agtctaccaa	gaacaccatc	1380
gacaaggacg	gctggctgca	caccggagat	atcgcttgg	tggacgacga	cgacgagatc	1440
ttcatctgtcg	acaggctcaa	ggagatcatc	aagtacaagg	gttccagggt	gggcgcggcg	1500
gagctcgagg	ccctccctct	cacgaaccccg	gaggtcaagg	acgcccggcg	cgtaggggtg	1560
aaggatgatc	tctgcggcga	agtcccggtc	gccttcattaa	agaggatcga	aggatctgag	1620
atcaccgaga	acgagatcaa	gcaattcgtc	tcaaaggagg	ttgttttca	caagaggatc	1680
aacaagggtct	acttccatcg	ctccatttcc	aagaaccctt	ccggcaagat	cgtaaagga	1740
gacttggagag	ccaggctcgc	cgcgtggcatc	ccccaccgaag	tgccgcggcc	gagaagctaa	1800
ggggccgttc	tcaggaacgc	aatccatccat	ggtgcttttt	agggtgttgc	atagaccaca	1860
ccaaatgggg	aaagaaacta	cgggagggga	tcatattatt	tttgcaggag	atatcagttt	1920
gttatttttgc	cctgtttgt	taatgttgc	aaaatgaaat	gatagaatag	atgtttgtt	1980
ttatTTTTT	accatgtaaa	aaaaaaaaaa	aaaaaa			2014

<210> 31

<211> 2073

<212> DNA

<213> *Festuca arundinacea*

<400> 31

gagcaaggcgc	gcgcacgcac	tcgcacccatc	tcccacgact	aatttaacca	ccttacaaga	60
agatttcctt	agtctccgtt	tctctctcga	tcgcggccg	gtgaggtagc	tagctagcta	120
ctcgtagatc	attaccatgg	ggctgtgcc	ggaggagtc	gtggtagccg	cggccgtggc	180
ggagacgtgt	ttccggtcga	agctccctga	catcgagatc	aacaacgagc	agacgctgca	240
gagctactgc	ttcgagaaga	tggccgaggt	cgcattccgc	ccctgcatca	tcgcggggca	300
gacggggcgc	tcctacacct	acacagaggt	ggagtcctcg	accctgtcg	ccgcggcggg	360
gctccggcgc	atggcgtgg	ggaaggggc	cgtgtgtatg	aacctgtctt	gcaactgtccc	420
cgatgttc	ttctcccttc	tggggcggc	gcccgtccgc	gccgccacca	ccaccggcaa	480
cccgttctac	accccgacacg	agatccacccg	ccagggcgag	gcccggggc	ccaaggtgtat	540
cgtcacggag	gcctgcgccc	tggagaaggt	gctggagttc	gcggcggagc	ggggactgccc	600
cgtggtgacc	gtcgacggga	agcgcgacgg	gtgcgtcgac	ttcgcggagc	tgatcgcggg	660
cgaggagctg	cccgaggcgg	aggagggccgg	gatccctccc	gacgacgtcg	ttgcctctgcc	720
gtactcgtcc	ggcaccacccg	ggctcccttca	gggcgtcatg	ctcaccaccc	gcagccctgt	780
caccagcgtc	gcccagctgt	ttgacgggtc	gaacccgaac	gtgtgttca	acaaggacga	840
cgcgctgtcg	tgcctgtcgc	cgctcttcca	catctactcg	ctgcacacgg	tgctgtcg	900
ggggctccgc	gtcgggggcg	ccatcgctcat	catcgcaag	ttcgacgtcg	gcgcgtgtgt	960
ggacctcgtc	cgcgcgcacc	gcatcaccat	cgcgcatttc	gtgccccccg	tcgttggtga	1020
gatcgccaa	agcgaccgcg	tcacccgcga	cgacacctaca	tccatccgca	tggtgtctc	1080
cggcgcgcg	cccatgggca	aggaccttca	ggacgcgttc	atggccaaga	tcccaacacgc	1140
cgtgtctgga	cagggttacg	ggatgactga	ggccgggtccg	tgctggcca	tgtgcctggc	1200
gttcgccaag	gagcccttca	aggtcaagtc	cgggtccctgc	ggcaccgtgg	tgcgaacacgc	1260
cagactcaag	gtcgctgacc	ccgacacccgg	cgcacccctc	ggccggaacc	agcctggcga	1320
gatctcggtc	cgcgggaagc	agatcatgtat	aggttacctg	aacgacccag	agtcgaccaa	1380
gaacaccatc	gacaaggacg	gctggctgca	cacccggagac	atcggttgg	tggtatgacga	1440
cgacgagatc	ttcatcgtc	acaggctcaa	ggagatcatc	aagtacaagg	gcttccagggt	1500
ggccgcgcgc	gagctcgagg	ccctcccttc	cacgaaccccg	gaggtcaagg	acgcccgcgt	1560
cgtaggggt	aaggatgtac	tctggggca	agtccgggtc	gccttcattat	agaggatcga	1620
aggatctgag	atcaccgaga	acgacatcaa	gcaattcgtc	tcaaaggagg	ttgttttcta	1680
caagaggatc	aacaagggtct	acttcacccga	ctccattttcc	aagaaccctt	ccggcaagat	1740
cctaaggaa	gacttgagag	ccaggctcgc	cgctggcatc	cccacccgagg	ttgcccgcgc	1800
aagaagctaa	ggggcgtcc	tcaggaacgc	agtccacccat	ggtgctgtta	tagaccacac	1860

caaataaaaaa	aagaaaactac	gggagggta	atgatca	tattcttgc	ggagatata	1920
gttttgtt	tcgcctg	tgtgtatgt	tgataaaat	aatgatata	atagatgt	1980
tgttttattt	tttgaccat	gtaagaacaa	ggctgggatt	ttactccaa	acaaacaaaa	2040
agaacaaggc	ttggattttt	ttcaaaaaaa	aaa			2073

<210> 32
 <211> 1798
 <212> DNA
 <213> Lolium perenne

<400> 32						60
gctcaacact	cgccaaatccc	acagccacag	aagccaccta	ccaccgctcc	accgatcgac	120
gatggaggtc	ctccctcctgg	agaaggccct	actggggctc	ttcgcggcg	cgtgtctggc	180
catcgccgtc	gcbaagctcg	ccggcaagcg	cttcggccctc	ccggccggcc	ccctccggcgc	240
ccccatcgtc	ggcaactggc	tccaggtcgg	cgacgacctg	aaccaccgca	acctgtatggg	300
catcgca	cggttcgggg	aggtgttctt	gctccgcatg	ggcattccgca	acctgggtgt	360
ggtgtccagc	ccggagctgg	ccaaggaggt	gctccacacg	caggcgtgg	agttcggctc	420
ccgcacccgc	aacgtcgct	tcgacatctt	caccggcaac	ggccaggaca	tgttcttcac	480
cgtctacggc	gaccactggc	gcaagatgca	ccggatcatg	accgtcccct	tcttcaccaa	540
caaggtgt	gkgcagaacc	gggtgggctg	ggaggaggag	gccaggctcg	tggtgagga	600
cgtcaaggcc	gaccggcgt	tcgcgaccgc	ccgcaccgtg	atccggcgt	ggctgcagct	660
catgatgtac	aacgacatgt	tccgcatcat	gttcgaccgc	agttcgt	ccgtcgacga	720
cccgctcttc	aacaagctca	aggccatgaa	cgccgagcgc	agcatctgt	cgcagagctt	780
cgaactacaac	tacggcga	tcatccccat	tctccgaccg	ttccggcga	agtacctcaa	840
ccggcaca	aacctcacga	ccaaggaggat	gaagctcttc	gaggaccact	tgtcgctga	900
cagaaaagaag	gkgcgtggagc	agaatgggg	gatcagggtgc	ggccatggacc	acatccttgg	960
ggcgaggg	aaaggcgaga	tcaaccacga	caacgtcctc	tacatcg	agaacatcaa	1020
cgttgcagcc	atcgagacaa	cgctgtggc	gatcgagtgg	ggcatcg	agctgggtgaa	1080
ccaccggac	gtccagt	agctccgcga	cgagatgacc	ggcggtctgg	gkgccgacgt	1140
ggcggtgacg	gagccggacc	tggagcgc	cccttacctg	cagtcgtcg	tgaaggagac	1200
cctccgcctc	cgcatggcca	tcccgtgct	cggtccgcac	atgaatctca	gkgacgcca	1260
gctcgccgc	tacgacatcc	ccgcccagtc	caagatcctc	gtcaacgc	gggtccctcg	1320
caacgacccc	aagcgtggg	tgcgcgccc	cgagttcagg	cccgagcgt	tccgtggagga	1380
ggagaaggcc	gtcgaggccc	acggcaacga	cttccgc	gtgccttcg	gkgtcggcc	1440
ccggagctgc	cccggtatcg	tcctcgcgt	gcccacatc	ggcatcacgc	tccggacgc	1500
cgtcagaac	ttccagctgc	tgccgcgc	cgggcaggac	aagatcgata	ccaccggagaa	1560
gcccggacag	ttcgc	caacc	gacgccc	gtcgctcg	agccgctcg	1620
ggcttagaa	tttctattt	atcgatgaa	ggcttctgac	atgcgtgt	gtgc	1680
gctgtaacgc	ttgtgcggg	agatcgatct	atgcacgc	gtgatgt	ttttcc	1740
tttgtgc	tatttactt	atgtgcattt	ttgttgt	tcatgt	agg	1798
tagatttgc	atgttgt	taatgt	aaacttctt	aaaaaaa	aaaaaaa	

<210> 33
 <211> 1775
 <212> DNA
 <213> Festuca arundinacea

<400> 33						60
gcaacaaccg	ttactgagcg	cgcgaaaacg	cacgagagag	agagtgaagc	ggcgctgt	120
ttcttactg	gcccgtccca	tggatttcgt	cttcgtggag	aagctctcg	tcgggctc	180
agcgccgt	gtggtcgca	tcgtcg	caagatccgc	ggccgaaac	tgaggctgc	240
gccccggcccc	atccccgtc	ccatcttcgg	caactggctg	caggcgggg	acgacctgaa	300
ccaccgcaac	ctggcggcga	tggccgc	gttcggggag	gtgttcttc	tccgc	360
catccgcaac	ctgggtgt	tgtcgagccc	ggagctggcc	aaggaggtgc	tccacacgc	420
gggcgtggag	ttccggtccc	gcacacgca	cgctgtctc	gacatcttc	ccggcaagg	480
gcaggacatg	gtgttacacg	tgtacggcga	ccactggc	aatatcg	ggatcg	540
ggtgccttc	ttcacgca	agggtgt	cgacttcc	ggccgggtgg	aggcggagg	600
ggccttcgtt	gtggacaac	tgcgcgc	cccaaggcc	ggccacgc	gkgtggt	660
ccggcccccac	ctgcagctg	tgtat	caacatgt	cgcatcat	tccggcc	720
gttcgagagc	atggacgacc	cgcttcc	ccgcctcagg	ggcgtcaac	gkgagcgc	780
ccgcctggcg	cagacttc	agtacaacta	cgccgacttc	atccccgtt	tccggcc	840
cctccgcggc	tacctcggc	tctgcg	ggtcaaggag	acccgcctc	agctcttca	900
ggattactc	ctggacgaga	ggaagaagct	ggcgacaca	aagtccatgg	acaccaacgg	960
cctcaagtgc	gccattgatc	acatccgtt	ggcgcaggag	aaggagaga	tcaacgagga	1020
caacgtcctc	tacatcatcg	agaacatcaa	cgtcgcgc	atcgagac	cgctgtgg	1080
gatcgagtgg	ggatcg	aaacttctt	aaaaaaa	aaaaaaa		

cgagatggac	gcggtgctgg	gcccggcca	ccagatcacg	gagcccgaca	cgcacaagct	1140
cccctacctg	caaggcgta	tcaaggagac	gctcggtctg	cgcacatggta	tcccgctgtc	1200
ggtggccgac	atgaacccctc	acgacgcca	gctcgccggc	tacaacatcc	ccgcccggag	1260
caagatccctc	gtcaacgcct	ggttccctcg	caacaacccg	gagcagtgg	agaggccccg	1320
cgagttccgc	cccgagcgct	tcctggagga	ggagaagcac	gtcgaggcca	gcccgaacga	1380
cttcagggttc	ctggcccttc	gctcgccgg	ccggagctgc	ccggggatca	tctcgcgcgt	1440
gccccatccctc	ggcatcacca	tcggccct	cgtcagaac	ttcagagctca	ccacgcccgc	1500
gggggtggac	aagctcgaca	ccaccggagaa	gggtggccag	ttcagccctc	acatcttgc	1560
ccactccacc	atcgctcgcca	agccccagagt	tttctgagtt	ctgagttgc	tgcagcttct	1620
ggtttgatgc	tgtactctct	tgcgtgcata	tttgcgtc	ctaaaacatt	aattatgtat	1680
gtctactaca	gagtagatac	aagtttcgt	ttttatctgc	aagaaaacaga	ggatataat	1740
gaactttttt	aaaaaaacagt	aaaaaaaaaa	aaaaaa			1775

<210> 34

<211> 1323

<212> DNA

<213> *Lolium perenne*

<400> 34

tcctctcgcc	gacgcgctca	gagccaagag	catggcatac	gtcaacgcct	ccgagaagac	60
gatcacccgc	tggccgcca	gggacgcccac	cgcccaccc	tccccgtaca	cgtacaaccc	120
caggaggacg	ggcgctgaag	atgtgggtct	gaaggttctg	tactgcccga	tctgcccacac	180
tgacccctcac	cagaccaaga	accaccccttgg	tgctccaaa	tacccatgg	ttcccgccgca	240
tgagggtgtt	ggcgagggtgg	tggaggtcg	gcccggagggt	agcaagtaca	gctgcggcga	300
tgtgtcgcc	gtgggggtga	tcgtgggtg	ctgcccgcac	tgccggccgt	gaaaggccaa	360
cgttggacg	tactgcaca	agaagatctg	tcgtacaaac	gacgttaca	ccgacggaaa	420
gcccacccgc	ggcgccctcg	cctccatgt	gtcgtcgac	cagaagttcg	tgtgaagat	480
cccaaggccgg	ctagccccc	agcaggccgc	gcccgtgctg	tgcgctggcg	tcacgggtta	540
cagcccgctg	aaggacttgc	ggctgtatgac	cccgccgcctc	cgccggccga	tcctcgccct	600
ggccggcggt	ggccacatgg	gctgttgggt	ggccaagtcc	atggggccacc	acgtcaccgt	660
gatcagctcc	tccgacaaga	agcgcgcga	ggccatggac	gacctggcg	ccgacgccta	720
cctcgctcagc	tccgacgggg	cccagatggc	cgccgcctatg	gactcgctgg	actacatcat	780
cgacaccgtg	cccgctca	acccgctcga	gcccctaccc	gctgtgtca	agatggacgg	840
caagctcgtc	ctcatgggc	tcattggcga	ggcgctcagc	ttcggttccc	ccatggtcat	900
gctcgggagg	aagaccata	cgggcagctt	catcgggagc	atcgaggaga	ccgaggagggt	960
gctcagggtt	tcgcgtcgaca	agggcctcac	ctcgacatgc	gagggtgtca	agatggacta	1020
cctcaaccag	gctgttggaga	ggctcgagcg	caacgacgtc	agttaccgt	tcgtcgctga	1080
cgtcgcagg	agcaacatcg	acgacactgc	cgcatgtaca	acttggcaac	gacgagcgaa	1140
cctccattgt	gctcgacaaat	ttccgtgaca	tatactccctc	aacttggttc	aatacatatgt	1200
tgtgaactgt	gtgaatgtgt	ttccgtcttc	tatcagagat	tcagagtgt	catgttagtt	1260
tcaataggaa	gaaatgtttt	gtatgagtcc	ggcctaataaa	taacggattt	gctaaaaaaaa	1320
aaa						1323

<210> 35

<211> 1313

<212> DNA

<213> *Festuca arundinacea*

<400> 35

gttcccaagc	ccacccaatc	ctcaccagca	tctctctcg	ccacgcctcc	gatctcctct	60
cggccgcgc	ctcagtggca	agagaatggg	cagcgctc	gcctccgaga	agacgatcac	120
cggtggggcc	gccaggagaca	ccaccggta	cctctccccc	tacacgtaca	ccctcaggag	180
gacgggcgc	gaagatgtgg	tgctgttgggt	tctgtactgc	ggcatctgtc	acactgaccc	240
ccaccagacc	aagaaccacc	ttgggtccctc	aaaatacccc	atgggtcccg	ggcatgaggt	300
ggttaggcgag	gtgggtggagg	tcggccgg	ggtgagcaag	tacagcgctc	gcgacgtgg	360
tggcgtcgcc	gtgtatgtcg	ggtgcgtc	cgactgcgg	ccgtgc	aaacacgttga	420
gcagtactgc	aacaagaaga	tctggtcgt	caacgacgtc	tacaccgc	gcaagccaa	480
gcagggccgc	ttcgccctcg	ccatggtcgt	cgaccagaag	ttcgccgt	agatcccgcc	540
ggggctggcg	ccggagcagg	cgccgcgc	gctctgcgc	gggggtacgg	tgtacagccc	600
actgaaggac	tttgggtgt	tgacccagg	cctccgcggc	ggcatctctgg	gcctcgccgg	660
cgtggggccac	atgggcgt	aggtggccaa	gtccatggc	caccacgtc	ccgtgtatcg	720
ctctccaaac	aagaaggcgc	ccgaggccat	ggacgaccc	ggcgccgac	cctacctcg	780
cagctccgac	gaggcccaga	tggccccc	catggactcg	ctcgactaca	tcatcgacac	840
cgtcccccgtc	aaggcaccgc	tcgagccct	cctcgccgt	ctgaagatgg	acggcaagct	900
cgtcctcatg	ggcgtgtatcg	ccgagccgc	cagcttcgt	tcccccattgg	tcatgtcg	960
gaggaagacc	atcacggga	gcttcatcg	cagcatcg	gagaccgagg	aggtgtcg	1020

gttctgcgtc	gaaaagggcc	tcacctcgca	gatcgaggtc	gtcaagatgg	actaccta	1080
ccacgcctt	gagaggctcg	agcgcaacga	cgtcaggtac	cgcttcgtcg	tcgacgtcg	1140
tgggagcaac	atcaaggacg	ccgacgcctg	atcgacttgg	aaccta	actcc	1200
gcgataattt	ccgtgacata	tgctcctcaa	ctcggtgcag	tacatgattt	tgacctgtgt	1260
gtgaatttgt	ttccgtcttc	tatcagagtg	cgtgctagtt	tccatggaaa	aaa	1313

<210> 36

<211> 1059

<212> DNA

<213> *Lolium perenne*

<400> 36

gcaatcatcc	agcccagatc	tcacgcgtt	cttcctcca	gctaaagacc	ggcaatggcg	60
accacggcgg	ctgatgcccac	ggccacgggtt	gccaaggagc	agaccaccac	caacggcgcc	120
gccagcggtg	ccgagcagg	cacccgcccac	tccgagggtcg	ggcacaagag	cctgctccag	180
agcagcgcgc	tctaccatgt	cacccatggag	accaccgtgt	acccgcgcga	gcacgagtgc	240
atgaagcagc	ttccgcgagga	caccccaac	cacccatggga	acctgatgac	cacgtcggcg	300
gacgaggggcc	agttcctcaa	cctgctcatc	aagctcatcg	gcccggaa	gaccatggag	360
atcggcgtct	acaccggcta	ctccctcc	gccaccgcgc	tcgcccc	cgaggacggc	420
acgatcttgg	ccatggacat	caacccgcag	aactacgaga	ccatcgccaa	gccgtgcac	480
gagaaggccg	gcgtcgcgca	caagatcgac	ttccgcgagg	ggcccgct	cccggtgctc	540
gacgagctgc	tcgaggacga	ggccaaaccac	gcccatttc	acttcgtt	cgtcgacgccc	600
gacaaggaca	actaccta	ctaccaccag	cgcctcatga	agctcgtag	ggtcggcgcc	660
cttctcggt	acgacaacac	gctctggaa	ggatccgtcg	tgctcccc	cgacgcgc	720
atgcgaagt	acatccgcta	ctaccgcac	ttcgctctcg	agcttaacaa	ggccctcgcc	780
gcagacgacc	gcgtcgagat	ctgcccgc	cccggtggcg	acggcatc	cctctggcc	840
cgcgccaagt	gattgtctga	ttgatgacgc	gagcgcgc	ccccctcgcc	tccgctccgc	900
tccatggatg	cggacaaagaa	ttgattattt	attattcccc	attttgcgt	tctggctt	960
ttctgtatct	tcttggaaac	aaatattgtc	cctttatgt	cgtatata	atttatatcc	1020
agacaaataa	tattactcct	ataaaaaaaa	aaaaaaaaaa			1059

<210> 37

<211> 1063

<212> DNA

<213> *Festuca arundinacea*

<400> 37

ggtcgactca	gcaagacagc	ccaatcatcc	agcccagatc	tcgccccgtt	cttcctcca	60
gctaaagacc	ggcaatggcg	accacggcgg	ctgatgcccac	ggccacgggt	cccaaggagc	120
agcccgcac	caacggcgcc	gccacgggt	ccgagcagg	cacccgcac	tccgagggtcg	180
gccacaagag	cctgctccag	agcagcgcgc	tctaccatgt	cacccatggag	accaccgtgt	240
acccgcgcga	gcacgagtgc	atgaagcagc	ttccgcgagg	caccccaac	cacccatgg	300
acctgatgac	cacgtcgccg	gacgaggggcc	agttcctcaa	cctgctcatc	aagctcatcg	360
gcccggaa	gaccatggag	atcggcgtct	acaccggcta	ctccctcc	gccaccgcgc	420
tcggccatccc	agaagacggc	acgatcttgg	ccatggacat	caacccgcag	aactacgaga	480
ccatcgccaa	gccgtgcac	gagaaggccg	gcgtggcgca	caagatcgac	ttccgcgagg	540
ggccggcgct	cccggtcc	gacgagctgc	tcgaggacga	ggccacacc	ggctcc	600
acttcgtt	cgtcgacgc	gacaaggaca	actaccatca	ctaccaccag	cgcctcatga	660
agctcgtag	ggtcggcgcc	ctcatcgct	acgacaacac	gctctggaa	ggatccgtag	720
tgctcccc	cgacgcgc	atgcgaagt	acatccgcta	ctaccgcac	ttcgctctcg	780
agctcaacaa	ggccctcgcc	gcagacgacc	gcgtcgagat	ctgcccgc	cccggtggcg	840
acggcatc	cctctggcc	cgcgccaagt	gattgtctga	ttgatgacgc	tcgcccc	900
ccccctctgc	tccgctccat	ggatgcggac	aagaattat	taattattcc	ccat	960

tttcttgctt tcttctgtat cttcttgaa acaaatattg tcctttatg tacgtataca	1020
aatttatatac cagacaaata atattactcc tataaaaaaa aaa	1063

<210> 38

<211> 1333

<212> DNA

<213> *Lolium perenne*

<400> 38

ggacgaatcc taccaaaccg agtaccaga tccttctcta ctaatcgagc tccctccgca	60
tgtcctcgac cccgcctcac cgccggccgg ttctccgctc cgagctatac gtcgcgtccga	120
gaacaccgt cccatattaa ctatcaacat gacagtgcgtc gaggctttag ctgcccggcga	180
cgccggccgc gccgcgggtgg cgccggccgc cgggaacggg cagaccgtgt gtgtgaccgg	240
cgccggccgg tacatcggt cctggctcgta caagctgtcg ctggagaagg ggtacactgt	300
caagggcacc gtcaggaaacc cagacgaccc gaagaacgcg cacctgaggg cgctcgacgg	360
cgccggccgac cggctgggtcc tctgaaggccgac cggacttcctc gactacgacg ccatccggc	420
cgccatcgac ggctgcgcacg gctgttcca caccgcatacc ccaagtactg acgaccccgaa	480
gcaaatggtg gagccggccgc tgaggggcac gcagtcgtc atagacgcgg cgccggaggc	540
cggcacggtg cggcggatgg tgctcacctc ctccatcgcc gccgttccca tcgaccccaa	600
ccggggccgc gacgtgggtcg tcgacgagtc gtgctggagc gacctcgact tctgcaagaa	660
aaccaggaac tggtaactgct acgggaaggc gttgcggag caggccgcac cggagttggc	720
gcccgcgcgc ggcgtggacc ttgtgggtgtt gaacccgggtg ctgggtatcg gccccctgt	780
gcagccgacg gtgaacgcaaa gcatcgccca catcctcaag tacctggacg gtcggccag	840
caagttcgcc aacgcgtgtc aggctgtacgt gacgtccgc gacgtggccg acgcccacct	900
ccgcgttcc gagtgcgcgc cgcgtccgg cgcgcaccc tgcgcgcgc ggtcctccaa	960
ccggcaggac gtcgtgcgcac tcctcgccaa gctctttttt gatccacaaag tccccacaa	1020
gtgtccgcac gaggcgaacc cgaggaaagc gccatacaag atgtctaacc agaagctcca	1080
ggacctcgga ctgcgttca ggcgggttag ccagtcctgt tacagacgg tgaagagcct	1140
ccaggagaag ggccacccctc cgggtctcag cgacgaggca gaggccgaca agggaaacccct	1200
ggctgcagag ctgcaggcag gggtaaccat ccgagcatga ggaacaagaa atcaaccatg	1260
tccatactgc tactgtcatg taaaccaggc agtgtctgtt gaatgcctaa tctaagttct	1320
tgtaaaaaaa aaa	1333

<210> 39

<211> 1237

<212> DNA

<213> *Festuca arundinacea*

<400> 39

gcaagagcta gttcttctgt ccatccgtag ctcttccctt tcaccaacaa gctagtttag	60
acaagtacag tggtaactgta agagcaacaa tgaccgttgcgac ggcgcgcac	120
tgcctggcca tgggcagacc gtgtgcgtca cccgcgcgc ggggtacatc gctgcggggc	180
tcgtcaagct gtcctggag agaggctaca cccgtgaaggc cacagtggg aacccagatg	240
atcccaagaa cgcgcacccctg aaggcgctgg acggcgccac cgagaggctg atccctctgca	300
aaggcgaccc cctcgactac gacccatcgatc ggcgcgcgcg cggggctgc cacggcgtgt	360
tccacacccgc ctctccagtc accgtatgtc ctgagcagatc ggtggagccg gccgtgcggg	420
gcacggagta cgtatcaac gcccgcgcgg atgcggggac ggtgcgcgg ggtgtgttca	480
cgtcgtcaat cgggtccatc accatggacc ccaaccgcgg tcctgcgtca gtcgtcaatg	540
agtccctgctg gaggcgttccatc gatctcgca agaaaaaccaa gaactggatc tgctacggca	600
aggccgtggc ggaggcgttccatc gatctcgca agaaaaaccaa gaactggatc tgctacggca	660
tcgtgaaccc tggtaactgta gtcggccgc tgctgcaccc aacgggtgaac gctagcgcgg	720
cacacatctc caagtacatc gacggctcgg ccaagaagta cgccaaacgcgt gtgcagtcat	780
acgttagacgt gctgtacgt gcccgcgcgc acatccgggt gttcgaggcg cctgaggcg	840
cggccggta cctctgcgc gaggcgttccatc gatctcgca agaaaaaccaa gaactggatc tgctacggca	900
gcaaaactctt ccctgtgttccaa caagggtgtc tgatgaagtg aacccacgg	960
agcaggctta taagatgtcc aacccaaaggc tgccaggatct tggccctccatc ttcactcctg	1020
tgaacgactc tctgtatgttccatc gatctcgca agaaaaaccaa gaactggatc tgctacggca	1080
caagcaaacc agagggatataa aacgggtgtaa cggcatgtataa ctgtaaaaaaa agcagcagag	1140
ttcacgtgttccatc tggtaactgta gatctcgca agaaaaaccaa gaactggatc tgctacggca	1200
tatcggttccatc tttaagtgaa ctaagagaaaa aaaaaaaaaa	1237

<210> 40

<211> 1429

<212> DNA

<213> *Festuca arundinacea*

<400> 40

gctctcgatc	ggcagacgca	gagatcgatg	ggttccaccg	ccgcccacat	ggccgcgtcc	60
gccgaccagg	aggcgatc	gttcgccc	cagctcgcc	cctcgatc	cctcccgatg	120
acgctgaaga	acgccc	atcg	ctggagatcc	tggtggccgc	cggcggcaag	180
tcgctgaccc	ccaccgaggt	ggccgccaag	cctccgtcc	cggcgaaccc	ggaagcgccg	240
gacatggtgg	accgc	atcgatgt	cggcgctc	gctcgataca	acgtcgatgc	300
gaggaggcg	aggacggcg	cctctcccg	agctacggcg	ccgcgc	gtgcgtgt	360
ctcaccccca	acgaggacgg	cgtctccatg	gcggcgctcg	cgctcatgaa	ccaggacaag	420
gtcctcatgg	agagctgtt	ctacctaag	gacgcgg	ttgacggcg	catccc	480
aacaaggcgt	acggcatgtc	ggcg	taccacggca	cg	cttcaaccgc	540
gtttcaacg	aagggtt	gaa	accactcc	atcatcatca	ccaagaagct	600
taccacggct	tccagggc	cggcac	gtcgacgtcg	gcggcgg	cggcgc	660
gtggccgcca	tcgccc	ctaccccg	atcaaggggg	tcaact	cctcc	720
gtcatctccg	aggcgccgca	gttccgg	gtcacc	tcggcgg	catgtt	780
gagggtcc	cgggcgacg	catcc	atcgat	tcac	gacgt	840
cactcgcc	cgctgt	caa	gaactgtac	gacgc	gacacgg	900
ctcg	ctcg	ggt	caaccc	ccag	ctcg	960
cacgtcgaca	tgatcatgt	cg	cgacaca	ccc	ggcgg	1020
ttcgaggccc	tggcc	agctgg	accgg	atg	ccacgt	1080
aacgcgtgg	ccatcg	agg	gtt	ttt	atcgatcc	1140
gcaac	cctccc	cccgat	gatcg	ttt	tcggc	1200
ctgcatcgat	ttgcaaa	accc	tttgg	ttt	tttcc	1260
catgtctga	attt	gaatt	ttgatgg	gtcgtcgat	ctgtcgaa	1320
aagg	ttgg	ttt	tttgg	atgtatgt	atgtatgt	1380
aaaactcgag	taatt	gaa	tttgc	tttgc	tttgc	1429
aaaactcgag	taatt	gaa	tttgc	tttgc	tttgc	

<210> 41

<211> 1457

<212> DNA

<213> *Lolium perenne*

<400> 41

gctctcgctc	acaccaa	at	cggcc	acc	ag	cata	60
gatcgatggg	ctcc	acc	gccc	acc	ag	cgatgt	120
tcgc	cctcc	ca	gtc	gttcc	cc	cgatgt	180
ttgg	cctcc	gg	atcg	gttcc	cc	ggatgg	240
ccg	cc	gg	cc	gg	cc	atgttgc	300
gg	ctc	gt	tc	gt	cc	ggac	360
tct	cc	ac	cc	gt	cc	ggcg	420
tct	cc	at	cc	gt	cc	ggcg	480
ac	ct	cc	cc	gt	cc	atgt	540
cgt	cg	ac	cc	gt	cc	acaa	600
acc	act	cc	cc	gt	cc	gggt	660
gc	ac	tc	cc	gt	cc	ccact	720
ac	cc	cc	cc	gt	cc	ccact	780
tcc	cc	cc	cc	gt	cc	ccact	840
tc	cc	cc	cc	gt	cc	ccact	900
act	gt	cc	cc	gt	cc	ccact	960
tca	ac	cc	cc	gt	cc	ccact	1020
cgc	aca	cc	cc	gt	cc	ccact	1080
ccg	att	cc	cc	gt	cc	ccact	1140
cca	at	cc	cc	gt	cc	ccact	1200
cgt	gt	cc	cc	gt	cc	ccact	1260
ttc	cc	at	cc	gt	cc	ccact	1320
tcg	cc	at	cc	gt	cc	ccact	1380
gaa	act	tg	ta	ttt	cc	ccact	1440
tga	gt	ta	ttt	cc	ccact	1457	
aaa	ttt	cc	cc	cc	cc	ccact	

<210> 42

<211> 1452

<212> DNA

<213> *Festuca arundinacea*

<400> 42

gctcgctcac	accaaaatca	cccaccagca	ccagcatctc	tcgatcgca	gaggcagaga	60
tcgatggct	ccaccgccc	cgacatgacc	gcgtccgccc	acgaggaggc	gtgcatgttc	120
gccctccagc	tcgcctcctc	gtcgatcc	ccgatgacgc	tgaagaacgc	catcgagctt	180
ggccctcctgg	agatccttgt	ggccgcccggc	ggcaagtcgc	tgaccccccac	cgaggtggcc	240
gccaagctcc	cgtccgcg	gaaccggaa	gcacccgaca	tggtgaccc	catgctccgg	300
ctgctggct	gttacaac	tgtgtcg	ctgggtggagg	agggcaagga	cgccgcctc	360
tcccggaact	acggcgcc	gcccgtgtc	aagttcctca	cccccaacga	ggacggcg	420
tccatggcg	cgctcg	catgaacc	gacaagg	tcatggag	ctggactat	480
ctgaaggacg	cggccttga	cgccggatc	ccgttcaaca	aggcgtacgg	catgtcgg	540
ttcgagttacc	acggaacg	cccgcgctt	aaccgcgt	tcaacgaagg	gatgaagaac	600
cactccatca	tcatcac	gaagtc	gagctctac	acggcttca	ggactcg	660
accctcg	acgttgg	cgccgtc	gccaccgt	ccgccc	actac	720
cccggccatca	aggggg	cttcgac	ccccacgt	tctccg	ggcc	780
ccggcg	cccacgt	cgccgacat	tcaagaagg	tgc	ccgg	840
atgatgaagt	ggatc	cgactgg	gaccagact	gcaacg	ct	900
tgctacg	cgctcg	gcacgg	gtgg	tgcat	cctg	960
aacccggagg	ccaagg	ctcg	gtgttcc	tcgacat	catg	1020
cacaaccc	gccc	gagg	gaggat	aggcc	caggg	1080
gggttcg	gcgtca	acata	ta	cctgg	cgat	1140
aagttagat	gatcc	tccagg	ctcc	aat	gtgg	1200
gattt	gctg	ctg	atcg	at	ttt	1260
ttttcc	tttcc	cat	ctc	at	ttt	1320
tgtcg	tgc	tgc	tgt	tct	gat	1380
tgtat	aatgg	cat	accat	aa	ttt	1440
aaaaaaa	aa	aa	aa	aa	aa	1452

<210> 43

<211> 1440

<212> DNA

<213> Lolium perenne

<400> 43

gctcggtct	ctcgctata	ctacaaaa	cacccagc	cacaccagc	tctctcg	60
caggaga	agacacag	agagatgg	tccaccgc	ccgaaattc	cgccgtcc	120
gacgagg	cgtgtt	cgcc	ctcggtcg	cgtcgat	cccaat	180
ctgaaga	ccatcg	tgg	ctcg	tggcc	cggaag	240
ctgaccc	ccgagg	gtc	ccgt	cgaaga	ggaa	300
gacatgg	accgc	ccgg	cg	acttag	gtgc	360
gaggagg	cgatgg	cct	ccgt	gtgc	ccagg	420
ctcac	acgagg	ctg	acgg	cgct	ccagg	480
gtc	agag	ctac	tgcc	ttgac	ccat	540
aacaagg	acgg	gtc	ttgg	ac	cccgtt	600
gtgtt	aagc	gg	ttgg	cc	caacc	660
tacgac	tgcc	cc	ttgg	cc	cc	720
gtggcc	tcac	ctac	cc	cc	cc	780
gtc	aggc	at	cc	cc	cc	840
aagg	gggt	ccat	cc	cc	cc	900
catt	cg	ctca	cc	cc	cc	960
ctgg	gtc	cc	cc	cc	cc	1020
cacgt	catc	cc	cc	cc	cc	1080
tacgagg	cgcc	at	cc	cc	cc	1140
aacgc	ccat	cc	cc	cc	cc	1200
atgct	tgct	cc	cc	cc	cc	1260
ttttcc	tttct	cat	cc	cc	cc	1320
gctcg	tacc	aa	cc	cc	cc	1380
gatgt	aatg	ttt	cc	cc	cc	1440

<210> 44

<211> 2102

<212> DNA

<213> Lolium perenne

<400> 44

gcatcaac	aaaacccac	ctatcca	ccccctag	aaaaacaaa	acaaaaagat	60
tacagt	ttcct	gtttg	agat	tcaatcg	gtggc	120

atccaagatc	cactgagctg	gctgttcatc	gcctccgtgg	tttcgtgg	tctgcagcgg	180
cggccgcgg	gcaacgtgc	gccgttccc	ccgggcccga	aaccgtgcc	gatcgctggc	240
aacatgtcg	tgatggacca	gctcacccac	cgtggcctgg	cggcgtc	gaaggagtagac	300
ggcgccttc	tccacatccg	gctcggttaag	ctccacacct	ttgcccgtgtc	gacgcccagag	360
tatccccggg	agggtgctga	ggtgcaggac	ggtgccttct	cgaaccgtcc	cgcgaccatc	420
gccatcgct	acctcaccta	cgaccgagac	gacatggcgt	tgcgcacta	cggcccttc	480
tggcccgaga	tgcgcaagct	tgcggtatg	aagcttctca	gcccggcgg	cccgagacg	540
tggctcgccg	tgcgacga	gtcccggtct	ctcgccgc	ccgtggccag	gcccggcggc	600
gagttccgtgg	acctcgccga	gctcattttt	aaactcaccac	agaatgtcat	cttcccgcc	660
gcttcggag	ctgggtcggt	cgccgcccac	gccgaggagg	gcaacggagc	agggaaagcag	720
gacgagttca	tcgcccattct	ccaggagttc	tccaagctct	tcggccctt	caacatcgga	780
gacttcatcc	cgtggctgag	ctggggcggac	ccgcaggggca	tcaacgtcg	cctccgcgc	840
gcfgcaacg	ccctcgcacga	gttcatcgac	aagatcatcg	acgagcacat	ggagaggggc	900
aagaatcccg	atgatgcca	tgccgacatg	gtggacgaca	tgctcggtt	cctcccgag	960
gcgaagccga	agaagggcgc	cgccggcgcac	ggcgtggacg	acctcgagaa	cacgctccgc	1020
ctcaccgcg	acaacatcaa	ggccattatc	atggacgtga	tgtttggcgg	ggcggagacg	1080
gtggcgtcg	cgatcgagtg	ggcgtatggcg	gagatgtac	acagccccga	cgaccccccgc	1140
cgcctgcgc	aggagctcg	cgacgtggtg	gggctcgacc	ggaacgtgga	cgagtcggac	1200
ctcgacaagc	tccccttct	caagtgcgtc	atcaaggaga	cgctccggct	gaccccgccc	1260
atcccgctgc	tcctccacga	gaccggcggag	gactgcgtcg	tcggccgcta	ctccgtgccc	1320
cggggctccc	gctgtatgat	caacgtctac	gccatcgccc	gcgaccgcag	ggcgtggaaag	1380
gacgcccgcg	tgttccggcc	gtcgggttcc	gtgcaggggg	aaggggaggc	cgccggggctc	1440
gacttcaagg	ggggatgcctt	cgagttcctg	cccttcgggt	caggccgccc	ctcctggccct	1500
ggcatggcgc	tcggcctgt	cgcgctggag	ctcgccgttg	cgcaactgc	gacagggtttc	1560
agctgggagc	tgcccgcacgg	gatgaagccg	tcggagctgg	acatgagcga	cgctttcggc	1620
ctcacccccc	cgcgccac	caggcttcc	gccgtgccc	cgccccccct	cgcatgcacc	1680
cagctgctgg	gagctgacga	cgccggcgc	caggctgac	ggccatgtct	gtgttagcaa	1740
gcatcgatg	gtatatgtac	cagctggccg	gaagatgaag	gtgtttgata	tattcagagg	1800
tgatggcgg	ggccatgg	gtggagcttg	gtggttttat	cttgctttt	ttttactatt	1860
tttcttaaac	tttgaactca	attaagtctg	gtgacaacag	aaccaataa	gcggattattc	1920
atgcttgctg	gatgcacgt	tggatacagt	gttaagcatg	atgtttta	ccatgaagaa	1980
cgcaaattgt	aaaaacaagt	ttttagacct	gctgccccga	gattctgtat	tttcttcctc	2040
ttggttttcc	atcgtaggaa	ctatattat	gccaggatga	tagtacccgt	tgaaaaaaaaaa	2100
aa						2102

<210> 45

<211> 2051

<212> DNA

<213> Festuca arundinacea

<400> 45

gagagcatca	acctaaaacc	cacgcgatcg	aacaccccta	aaaaaaaaaa	caaaaaacaaaa	60
aagattacag	ttcctgggtt	gagtatcaat	cgatggtggg	cttcgtctaag	atcgccatgg	120
agtggctcca	agaaccactg	agctggctgt	tcatcgccctc	cgtggttttc	gtggttctgc	180
agcggcggcg	gccccggcaac	gtggcggccgt	ttccccccgg	cccgaaagccg	ctgcccgtacg	240
tcggcaacat	gtcgatgtat	gaccagctga	cccacccgtgg	cctggcggcg	ctcgcaagg	300
agtacggcg	ccttctccac	atccggctcg	ggaagctc	tgccttgc	gtgtcgacgc	360
cggaaatatgc	ccggggaggt	ctgcagggtc	aggacggcgc	cttctcgaa	cgtcccgcg	420
ccatcgccat	cgcttaccc	acctacgacc	gagccgacat	ggcgtcgc	cactacgggc	480
ccttctggcg	ccagatgcgc	aagctgtcg	tgatgaagct	cttcagccgg	cgccggccgg	540
agacgtggct	cgccgtgcgc	gacgagtccg	cgccgctcg	ccgcggcgt	gccaggcgg	600
gcggcgagtc	cgtggaccc	ggcgagctca	tttttaact	caccaagaat	gtcatcttcc	660
gcgcccgcgtt	cgccgtgtt	cgccgtccgg	gcaacggcga	cgccgacgg	gcagggaaagc	720
aggacgagtt	catcgccatc	ctccaggagt	tctccaagct	cttcggcgc	ttcaacatcg	780
gagacttcat	cccgtggctg	agctggccgg	acccgcagg	catcaacgtg	cgccctccgc	840
ccgcgcgcgc	cgcctcgac	gagtctcg	acaagatcat	cgacgacgc	atggagagg	900
gcaagaatcc	cgacgacgc	gacggccaca	tggggacga	catgtcg	ttcctccgg	960
agacgaagcc	gaagaaggc	gccccggcg	acggcgtga	cgacctgc	aacacgtcc	1020
gcctcacccg	tgacaacatc	aaggccatc	tcatggacgt	gatgttggc	gggacggaga	1080
cggtggcg	ggcgatcg	tggggatgg	cgagatgt	gcacagcccc	ggcgacccgc	1140
gccgcctgca	cgaggagctc	gccgacgtcg	tggggctcg	ccggaaacgt	gacgagtcgg	1200
acctcgacaa	gtcccccttc	ctcaagtgc	tcatcaagg	gacgctccgg	ctgcacccgc	1260
ccatcccgct	gctcctccac	gagaccggcg	aggactgc	cgtcggccgg	tactccgtgc	1320
cccggggttc	ccgcgtcatg	atcaacgtct	acgcccattcg	ccgcgaccgc	aaggcgtgga	1380
aggacgccga	cgtgttcgg	ccgtcgccgt	tcgtcgagg	gaaaggggag	gcccggggc	1440
tcgacttcaa	ggggggatgc	ttcgagttct	tgccctttgg	gtccggccgc	cgctccgtgc	1500

ctggcatggc	gctcgccctg	tacgcactgg	agctcgccgt	ggcgcaagctc	gcbcacgggt	1560
tcagctggga	gctgcccgcac	gggatgaagc	cgtcgagact	ggacatgagc	gacgtcttcg	1620
gcctcaccgc	gccgcgcgccc	accaggctct	tcgcccgtgcc	cacgccccgc	ctcgcatgca	1680
cccagctgct	gggggctgac	gacgcgggccc	gtcaggcgtg	acgtcgctgt	gcccgcgcgc	1740
ggcattgttt	gtgttagcaa	gcgatcgatg	gtatatgtac	cagcttggaa	atgaagggtgt	1800
tttatatatt	cagaggtat	ggcggccggcg	ccatttggtg	agcttggtttgg	ttttctcttg	1860
ctttttttac	aactgttgg	tttactttgaa	ctcaattaag	tctggtcaca	acagaacaca	1920
ataagcggat	tatcatgctc	gctggatgca	tgcttaggt	acagttaa	atggcgtgtt	1980
ctaccatcaa	gaccgcaaat	tgtataaaaa	gttttttagac	ctgctgcacc	gcaaattgt	2040
aaaaaaaaa	a					2051

<210> 46

<211> 2461

<212> DNA

<213> *Lolium perenne*

<400> 46

ggttctttgc	aacgatcaac	actgtcagaa	tccagataca	cacacacaca	cacacacacc	60
aagcagcgtc	tagctagctt	acttgcctta	gtagttcttt	gcaaatatcc	atggagtcgg	120
agaacgttgc	cgccaaacggc	gatggctgt	gcgtggcaca	gcccgtcgc	gccgaccctc	180
tgaactgggg	aaaagcagcc	gaggagctgt	ctgggagcca	tcttgcgtcc	gtgaagcgaa	240
tggtgagga	gtaccgcgc	cctgtgtga	ccatggaaagg	cgccagccgt	actatgccca	300
tggtcgtgc	ggtggctgcc	ggcggccgaca	ccagggttgg	gctcgacgag	tccgcccgcg	360
gacgcgtcaa	ggagagcagc	gactgggtca	tgaacagcat	gcccacacgc	accgacagct	420
acggtgtcac	caccggcttc	ggtgcaccc	cccacccggag	gaccaaggag	gttggcgctc	480
tccagagaga	gctcatcagg	tttctcaatg	cggggagatt	cgccacccgc	agcgatggcc	540
acgttctgcc	cgctcgacgc	acggggctg	ctatgttgc	ccgtgtcaac	accctgctcc	600
agggtactc	tggtatccgc	tttggatc	tgcagacgg	cgccacgcct	ctcaacgcac	660
acgtgacacc	gtgcctaccg	ctccggggca	cgatcacggc	atccggtgac	ctcggtccgc	720
tgtccatcat	cgccggcctt	gtgacccggc	gccccaaattc	tgtggcgact	gctccggatg	780
gcacgaaggt	taacgctgca	gaggcattca	aaatcgccgg	catccacac	ggtttctttg	840
agctgcagcc	taaggaaggc	cttgcacatgg	tcaacggcac	cgccgtgggc	tccggacttgg	900
cgtccatgg	gctcttcgag	gctaacatcc	ttggcattcc	cgctgagg	ctgtcggtcg	960
tgttctgtga	ggtcatgaac	ggcaagccag	agtacaccga	ccacccatc	cacaaggta	1020
agcaccaccc	tggtcagatt	gaggccgcgg	ctatcatgg	gcacatccct	gaaggaagct	1080
cctcatatgt	gctcgcaag	aagctcgccg	agctcgacc	actgtatgg	ccgaagacaa	1140
ataggtatgc	ccttcgaaca	tcaccgaat	gcttggggcc	tcatgg	gtatccgtg	1200
ccgcacccaa	tgtccatcgag	cgcgagatca	actccgtcaa	cgacaaccc	ctcatcgac	1260
tcttcgagg	caaggccatc	catggtggca	acttccagg	cacacccatc	gttgtgtcca	1320
tggataacac	caggcttggc	attgctgcg	tccgcaagct	catgttgc	cagttctctg	1380
agctagtgaa	cgacttctac	aacaatgg	tgccttccaa	tctctgggt	ggcgcaacc	1440
cgagcttgg	ctatggcttc	aagggtgctg	agattgccc	ggcctctat	tgctccgagc	1500
tccaattctt	gggcaaccct	gtgactaacc	atgtgcagag	tgcggagcag	cacaaccaag	1560
acgtcaactc	tcttggtctc	atctctgc	gaaagaccc	tgagggccatc	gatattctga	1620
agctcatgtc	atcgacatc	ttgggtgc	tgtgccaagc	tatcgac	cgccaccc	1680
aggagaatgt	caagaatgcc	gtcaagaact	gtgtgaagat	ggtggctagg	aagaccctga	1740
gcaccaatga	cagtggccat	ctccacagcg	cacgttctg	cgagaaggac	ctgtcttg	1800
cgatcgaccg	cgaggcggtg	ttcgccatcg	cacgaccc	ttgcagcgc	aactacccac	1860
tgtatcgagaa	gatgcgtgca	gttctcggt	agcacgcctt	gccaacgg	gaggctgagc	1920
gggatgtgca	gacgtcagtg	ttcgccaa	ttgcccatt	cgagcaggag	ctccgtgcag	1980
tgcttcaag	ggaggtcgag	tcagccgg	gtgctgtgg	gaatggcacc	gccgcgcagc	2040
aaaaccgcat	caccgaatgc	cggtcgatc	cgctgtacc	ttcgtgcgc	aaggagctcg	2100
gaaccgagta	cttgaccgga	gagaagacga	ggtctcttgg	tgaagagg	gacaagggtgt	2160
tttgtggctat	gaaccagggg	aaacacatcg	acgcactgt	tgagtgc	aaggagtgg	2220
acggtgagcc	cctgcctatc	tgctgaagaa	tgaatcaagg	aactgaagaa	tagagtact	2280
gagagttcag	aaggctccac	atgtgcctt	ttaatagtaa	gtatagact	gttttttcat	2340
tgtatctgt	gcattatata	tacatgtaac	actggataaa	aatttcaaaa	aatcagatca	2400
ctcaatggc	agcatgtaac	actggataaa	aaatttcaaa	aaaatcagat	caaaaaaaaaa	2460
a						2461

<210> 47

<211> 2596

<212> DNA

<213> *Festuca arundinacea*

<400> 47

gctcctctgt	aattcgagct	cctcttcagc	acaagtactt	ccaccagagt	gccagacaac	60
aatccagcac	caactccaga	atacatacac	acacgtaccc	gtgtctaaac	cttacttgct	120
ttccatgttc	tttgcataatc	tccatggagt	gcgagaaacgg	gcacgttgcc	gccaacggcg	180
atggcctcg	cgtggcgca	ccagccggg	ccgaccctct	caactggggg	aaggcagcag	240
aggagctgtc	cgggagccat	ttggatggcg	tgaaggcgat	ggtcgaagag	taccgcagac	300
cagtcgtgac	atggaggggc	gccagcttga	ccattgttat	ggtcgcggcg	gtggccgccc	360
gcccgcacac	cggggtggag	ctcgacgagt	ccgcccgcgg	acgcgtcaag	gagagcagcg	420
actgggtcat	gaacagcatg	gcaacggta	ccgacagcta	tggtgtcacc	accggcttcg	480
gcccacactc	acaccggagg	accaaggagg	gtggcgctct	gcagagagag	ctcatcaggt	540
tccttaacgc	gggagcattt	ggcaccggca	gcatggcca	tgttttgc	gctgcaacaa	600
ccagggcgcc	catgctcg	cgtgtcaaca	ctctgtctca	ggggtaactct	ggcatccgct	660
tcgaaattct	cgagacgatc	gccacgcttc	tcaatgc	cgtgacgc	tgccatccgt	720
accggggcac	aatcacggca	tccggcgacc	tcgtccat	atcctacatc	gcccggcttg	780
tgactggccg	cccaaactct	gtggcgacag	ctccagatgg	cagaagggtt	aacgcagcag	840
aggcttcaa	gattggccgc	atccagcatg	gttcttttg	gctgcagccc	aaggaaggcc	900
ttgccatgtt	caacggca	gcccgtggct	ccgggctcgc	gtccatagtg	ctttcgaag	960
ctaacatctt	ttggatctt	ggcgggtt	tatcgccgt	gttctgc	gtgatgaatg	1020
gcaagccgga	gtacaccgac	caccta	acaagctgaa	gcaccaccc	ggccagatcg	1080
aggccgcgc	catcatggag	catatctt	aaggcagctc	ctacatgtat	ctcgcgaaga	1140
agctcggtga	gctcgaccca	ctgatgaagc	caaaaacaaga	taggtatgca	ctccgcacat	1200
caccacaatg	gctcgccct	cagatcgagg	tcatccgtc	tgctaccaag	tccatcgagc	1260
gtgagatcaa	ctccgtcaac	gacaacccac	tcatcgacgt	ctccgcgc	aaggctatcc	1320
acggtgccaa	cttccagggc	acgccc	atcg	gtgtgtccat	ggacaacac	1380
ttgcggccat	ggcgaagctc	atgttgc	ccc	agttctcgga	gcttgc	1440
acaacggtt	gccttccaat	ctctctgg	ggcgaat	cttc	gatttctaca	1500
agggtgctga	gattgtat	gcctcataat	gtctcg	gagcttgc	tatggcttca	1560
tgactaa	tg	tg	gagc	acaatcaaga	cgtcaactct	1620
tctcttccag	gaa	gaccg	ct	gatttggaa	gtc	catgttcc
tggtgcctt	gt	gcca	at	gat	tc	gacattca
tcaagaactg	tgt	gaa	gac	tt	tc	gat
tccacaatgc	ac	g	cc	tc	cc	g
tcgcctacgc	ag	at	cc	cc	cc	cc
ttctcg	gt	at	cc	cc	cc	cc
tcgccaagct	tg	cc	ac	cc	cc	cc
ctgcccgtg	tt	cc	gg	cc	cc	cc
ggtcatacc	cc	tc	tc	cc	cc	cc
gat	tc	tc	tc	cc	cc	cc
agaagacgag	gt	tc	tc	cc	cc	cc
gat	tc	tc	tc	cc	cc	cc
agcacattga	cg	cg	ct	cc	cc	cc
gat	tc	tc	tc	cc	cc	cc
gctgaa	gg	ct	ca	aa	at	tt
ttataattat	at	ct	cc	gg	at	tt
tagaaaagat	aa	ta	ga	tt	tt	tt
agtttagaaa	aa	gg	gt	at	tt	tt
tttatatcaa	tt	tt	tc	tt	tt	tt
cctgccaaaa	aa	aa	aa	aa	aa	aa

<210> 48

<211> 1301

<212> DNA

<213> Festuca arundinacea

<400> 48

ggtcccttgc	atcagctgat	catggctttt	tccggcagcg	tcagcggcg	tgttctcg	60
gtggcgatcc	tgcttctggg	tctggcccg	gcccgtc	cacagctg	ggcgacgtt	120
tacgacgcgt	cctgccc	cg	ccgtc	ccgt	ccgt	180
aacaacgagg	cccgc	atgg	ccct	ccgt	ccgt	240
caaggatgc	acgcgtcg	gtc	tc	cc	cc	300
gccttccca	accgc	tc	ca	cc	cc	360
gtcgaggccg	tatgcac	gac	cc	cc	cc	420
gactccatcg	tcg	cc	cc	cc	cc	480
accacccgcg	gc	ct	cc	cc	cc	540
gatctcg	gca	actt	tc	cc	cc	600
ggagcccaca	cg	atc	cc	cc	cc	660
tccaa	cc	cc	cc	cc	cc	720
aatggcgacg	gt	ac	cc	cc	cc	780
tactacggca	ac	tc	cc	cc	cc	840

ggcggctcga	ccgactccct	cgtcagcacc	tacgcctcca	acgcccgcga	gttcagcggc	900
gacttcggcg	cgccatgtt	gaacatgggc	aacatggcg	tgctcaccgg	cgcccagggg	960
gagatccggc	tcaattgtgg	caaggtaat	tgagtggaa	cccgacaact	gagactgcag	1020
gtgaaagtgg	atggggcaca	tgcaattgcg	aagctgggc	ggtagcttta	ctgaaaccga	1080
ataagggtgc	aacgtgaagg	ccatattgt	gtgcttattt	ggcctatctt	gaaattcctt	1140
acagggttcc	agattcagtc	atttccttcc	cgcattgtt	atttggttcc	cacagaaaaat	1200
aaggatataa	taatactgt	taatcctgt	aaaaaaaggaa	acgatactgt	atagttgtgc	1260
ctatacaacaa	ccacatttct	ggttggaa	acgttggaa	tttttttttt	tttttttttt	1301

<210> 49
<211> 1236
<212> DNA
<213> *Lolium perenne*

<400> 49						
gagatggctt	cttcttcata	ccccttttct	cgggtctccc	agctagccgt	caaggcggac	60
gtcctggcg	ccgtctgcct	cctccctccac	ggcggaggcg	ggagtagcgc	atccggcggcg	120
gagctgtcg	tgagctacta	cgaccacacg	tgtccggacg	cgtacaagat	cgtgcagggg	180
gtgctgggtgg	aggctcaca	gtcgaccccg	cgcattctcg	ccagcctcat	ccgcctccat	240
ttccacacgt	gcttcgtgt	gggctgcgac	ggctcgctgc	tgctggacac	tttccccggc	300
ttccagtcgg	agaaggacgc	gcccggccaa	aacaactcg	cgcgcggcta	ccccgtcg	360
gacgcccggca	aggccgctt	cgagaaggcg	tgccccggag	tcgtctcc	cgccgacatc	420
ctcgccctcg	ccgcccggat	ctccgtccag	ctgtccggag	gaccgggtg	gggcgtgtt	480
ctggggaggc	tggacggtaa	gaccctccagc	atagccggcg	cccagaac	accggcccg	540
ttcgcacggcc	tcaagaatct	cacccttaag	ttccaaggcc	tcaatctcg	cgttactgac	600
ctcgctcg	tctcagggtc	tcacacttgc	gttgcgtgt	aatgcgggtt	cgtcacgaa	660
cgtctgtaca	acttcagcg	gacgaaaccag	cctgaccccg	cccttaatgc	ggcttaccgg	720
gcgttccgt	caacggatg	cccaaggaac	ggcgatcgaa	actctctaa	tgaccttgat	780
ccgacgacgc	ccgacaccc	tgacaagaac	tacttcacg	acctcgagaa	aaatcgccg	840
tttcttgact	ctgaccaaca	actcaaata	gaccagggt	cattaaacg	gacggccggc	900
attgtcgata	ggtttgcaag	cagccaggac	gcattcttta	agagcttcgc	atggtctat	960
atcaagatgg	gaaacattt	gccaattaca	gatccctccc	gtggagaat	ccggaaacac	1020
tgcgcgtt	tcaatttgat	ttaatttagc	agaaggccac	atgtgatac	aactacggcc	1080
tatgtatata	gcfgaaaatc	atggatctc	ttgtcatgtt	caataattgg	taatataat	1140
gccaaccaat	gtacgtaa	ttatgtgtc	gttttgcatt	cacaagtgc	atgaagtgaa	1200
atcttatttc	ccgtttgagg	ttgatcaaaa	aaaaaa			1236

<210> 50
<211> 1205
<212> DNA
<213> *Festuca arundinacea*

<400> 50						
gcaagcttcc	ctcgattagc	taccttgc	agccaccgtc	gtccttgcac	agccaaggaa	60
gaagcaaagc	tatttggctt	ctaacaatgg	cgacgagggg	tgtcatgtt	gctgtctgc	120
tcgcggcggt	ggcggcgct	tgcgtctatg	cacagctgc	cgagaagttc	catagtgtat	180
cgtggcccg	cgtggaggac	gtcgccgg	aggagatgtt	catggccta	ttccctcg	240
caagcctcgc	cgcgcggc	ctcaggatgc	acttccacg	ctgcttcgtc	aggggggtcg	300
acggctcggt	tctgctggac	tcggcgaaca	agacggcg	gaaggacgc	ctgcccac	360
agacgctcg	cggcttcgac	ttcgtcgaga	gggtgaaggc	cgccgtgg	aaaggcctgc	420
ccgacaccgt	ctccctcg	gacgtggta	cgctcatag	caggacgc	gtctggct	480
gcaaggccc	attctggaa	gttctttgg	gcccggcaga	cggcagcgt	tccatctcc	540
acgagaccga	cgcgtcgcc	cctccaccc	ccaacatc	cgtgtcacc	cagcttctcg	600
ccgccaagaa	ccttgacatc	aaggacctcg	tcgtccctc	tgccgcgcac	acgatcg	660
catcgactg	cttctcc	tccgaccggc	tctacaactt	cacgggc	gacaacgc	720
gcgacatcg	ccccaccctt	gaacccctt	acatggcaaa	gctgaagac	aatgtc	780
gtctcgacg	caacacgc	ctcggtggaa	tggacccccc	gagcttcaag	accttcgacc	840
tcgactactt	caagctcg	agcaacgc	ggggccctt	ccactccgac	ggtgcctcc	900
tcaccgcacg	cttcaccgt	gcctcatcc	tcgcacacg	caccggc	ttcaaggac	960
agttctcg	cgactttgc	gtctccatgg	taaagatgg	caacaccg	gtgctact	1020
gaagccagg	cgagatcagg	aagaagtgc	ccgtgtt	ccattagtt	ggcgtggaa	1080
taccgggttgg	cataccaacc	cttttgat	gtgaccatgt	ttttttct	tgttagattat	1140
tactgtaaaa	ccgttacttc	atttccct	ccccaaat	tttttttct	ttgtttaaaaa	1200
aaaaaa						1205

<210> 51
 <211> 1382
 <212> DNA
 <213> Lolium perenne

<400> 51

ggccacaact	cgccacattt	ggcatagcga	gcactgacag	cgagctacat	ccatcaccat	60
ggcttcttagc	cgtgtcctgc	tcctcgtcgt	ggcagctctg	gcgatctccg	tgccgcac	120
ggccgcggcc	accaagatca	gtgcttcaact	accgcccgt	gccaaggggc	tgaacttcga	180
tttctacaag	gccacctgcc	cgcaggccga	gtccatcgtc	ttcaacttcc	tccgcgacgc	240
catccgcaag	gacgtcgccc	tcgcccggc	gctcctccgc	atccacttcc	acgactgctt	300
cgtgcagggc	tgcgacggct	ccgtgctcct	cgacaagacc	ggcggcaccg	acagcgagaa	360
gatgcacca	cccaacgtca	cgctccgccc	caccgccttc	aaggccatca	acgacactccg	420
cgctctcctc	gccaaggcct	gccccggcgt	cgtctcctgc	gcccacatcg	ccgccttggc	480
cgcgcgcgac	tccgtgcacc	tcgcccggg	gcccactac	cccgccccg	tccgcgccc	540
cgacgggctc	gccccggcga	acctcatacc	catccctcaac	gcccccccg	caccgagctc	600
caacgtcacc	accctcttca	gattcctcgc	caagatcagg	ctcgacgcca	acgacactcg	660
cgcgtatcc	ggcgcgcaca	cgctcggcat	cgcgcactgc	acctccttc	agagcgccct	720
cttcccgcag	aacgacgtca	ccctcaacaa	gtggttcgcg	tcgcagctca	ggttcacactg	780
cccggcgctc	aacaccgaca	acaccaccaa	caacgacatc	cgcacccca	acgtttcga	840
caacaagtac	tacgtcgacc	tgctcaaccg	ccagggactc	ttcacccctcg	accaggacct	900
gcacaccgac	gccaggacca	agcccaccgt	caccaggttc	gcccgtcgacc	aggccgcctt	960
tttcgaccag	ttcgtcttct	ccgtcgtcaa	gatggggccag	atcaacgtgc	tcaccggcag	1020
ccagggacag	atacgcaacg	actgctccgc	gccccacaaa	gcccgcacca	acgacgaccc	1080
gccgtggtcc	gtgctcgaga	ccgtcaccga	gcccccccaag	agcttgggt	ttagatatg	1140
cgctgtggat	agggtgggtc	agtgcgttca	tctctagccct	acgtactttc	ttcccaaagt	1200
ttagcttta	tttagcgagcc	gtgtggtaat	ggtttgggtc	tttagagagcc	cagttgatgc	1260
atgtgtgttt	atgttcttga	gcaactcgac	cagtttaata	atcacagagat	ggtttttgg	1320
gtgtcgaatg	acgactagaa	aatttagatg	aatatttgc	ataaaaaaaa	aa	1380
						1382

<210> 52
 <211> 1261
 <212> DNA
 <213> Lolium perenne

<400> 52

gategcctt	ctccctccatg	accaccatgg	gccccgtcg	gatccctggcc	gccccgaccg	60
tggcgcac	ggcgctgggt	ctgctgatcg	tgctgttcgc	atgcggcga	acgggtggcga	120
aagggtctgg	gctgtccgtc	gggttctaca	agaagttgt	tccgaaggcg	gagaaggtcg	180
tccggcgaac	tgtcaccaag	gccttggaga	aggagcctgg	caccgggccc	gacatcatcc	240
gcctcttctt	tcacgactgc	tttgcggag	ggtgcacgc	atcggtgctg	ctggaatcca	300
cgcaggcg	catggcgagg	agggactcga	aggcaacaaa	ccccagcttg	atgggttttg	360
aggtcattag	cgacgc	gagacccttg	agaagctctg	cccgcaaaacc	gtctccctgt	420
ctgacattct	ccgcctcgcc	gccccgcgt	gcccctactc	cgctacgcgg	ctcgactatg	480
cgggtggccac	cggccggcgt	gatggcc	tctccaagg	agacgagg	ttccctagtg	540
tccotcacc	cgtacttcaac	catttc	tcgtggaaaa	cttcacggca	aaaggcttta	600
cggcgagga	gatggtgac	ctgtgggggg	cgcacccat	cgccaccc	cactgctcg	660
ccttcacgga	ccgcctctac	aacttctccc	agggcggcgc	gctgaccac	gaccctgcgc	720
tgccggcggc	atacgcccgc	ctgctgaagg	agaagtgccc	gcccggagaca	gccccgcaga	780
acgacaccac	catggtgac	ctcgacgac	tgacgcccgt	cgtgatggac	aaccagtact	840
acaagaacct	gcttgcggc	accgtgccc	tcggctccg	cgtacgc	atggagagcc	900
ccgacacggc	ggcgctcg	gagctctac	cccgccgac	cgccgag	tgggccaagc	960
gcttcgttgc	ggcgatgg	aaaggagcg	agatggaggt	gctcacc	ggcggaggggg	1020
agatccggct	caactgc	aaaggact	agtatataac	cggttgc	tttgcgtct	1080
gtactatatg	tttggaaag	atgacgatac	acgttcttct	tttgcgtt	ttttttttct	1140
ttcatattgtt	ttcatatgtt	ggtgagaaat	atatacacat	ttgttgcgt	cataaaactgt	1200
aaagcttaca	cagcatgcat	aaaagcatct	atatcattcc	atttgcgtt	aaaaaaa	1260
						1261

<210> 53
 <211> 1059
 <212> DNA
 <213> Lolium perenne

<400> 53

```

acgagggaga actactacgg gtcttcttgt cccaccgcgc ttctcaccat caggactgtc      60
gtgacgacgg cgggtctgct ggaccaccgc atgggcgctt ctcttctccg gtcacacttc      120
cacgactgtc ttgtgcaagg gtgcgacgcg tccgttctgc tggatgacac ggcgggcttc      180
accggcggaga aggggggccgg gccgaacgcg ggggtcgctgc gcggtctgga ggtgatcgac      240
aagatcaaga tgctgcttgg gttcatgtgc cccgggaccg tctcctgcgc cgacatccic      300
gccgtcgccg cccgcgactc cgtcgccgt cttaggggggc catcatggc ggttcaactt      360
ggaaggaggg acgccaccac agcaagcgcg tcacttgcta gtatgtaccc cccaggcccc      420
aactccaacc tcaatgatct cctcaccgct ttctccaaa aaggactaag caccacggac      480
atgggtgctc tatcaggggc ccataccatc ggccgggccc agtgcggaa ctaccggaaac      540
cgatctaca ccgacaccga cattgacggg gcattcgcag cgtccctgcg aggccggctgc      600
ccacaggccg gccgcgacgg caacctcgcg ccgctcgacg cgtccctctcc caacacccctc      660
gataacggct acttctccgg cctcctctcc cgccaggggc tgctccattc cgaccaggcg      720
ctgtacgacg gccgcctccac ggacatctg gtcaggacat acgcctccaa taacgatcaag      780
tttggcagcg acttcgtcgc ggcgtatgg aactgagaca atatccggct gtcacgggg      840
tcgtccgggg agatcagggt caactgccc gccgtgaaatt aacgatggat ggtatggggc      900
atcatgaaac gaacaaggcg tgcatttcc gggactgcag gcaacgaaac tgcataatttta      960
tgtacactgc ctatatttattt cctgtccttgc ttgtccctgc ttgttatattt acatccataa      1020
tccatgttaa gatggtggca ttgggtttaaa aaaaaaaaaa      1059

```

<210> 54

<211> 1266

<212> DNA

<213> Festuca arundinacea

<400> 54

```

ggccagataa caagtgcagg cagcaaaccg gttacaggca cgccgcaata tagcttgggt      60
ctttagcta gccatagcca tggcatctgc ctcttgcatt tctttgggt tgctggggc      120
tctggccgccc acggcggcgt cggcgccagct gtcgtcaacg ttctatgaca cgtcgcc      180
cagggccctg gccaccatca agaggcggt ggcggccgccc gtgagcagca accccccgcat      240
gggtgcgtcg ctgctcaggc tgcaatttca cgactgtttt gttaatggct gtgacgcgtc      300
cgttctgctg tccggcaacg agcagaacgc gcccgcgaac gccgggtcgc tgtttggctt      360
cggcgtcatac gacaacatca agaccagct cgagggtatc tgcaagcaga ccgtctccctg      420
cgccgacatc ctaccgtcg ccgcccgtga ctctgtcgtc gcccctcgag gcccgtcatg      480
gacagtctt ctcggcagac gggactcgac gagcgcacacc ggcaataccg gggacactccc      540
gggccttggg tccagcctcg cacagcttca ggcgcgttgc gccaagaaga acctgaacac      600
cgtggatctt gtagcgtctt ccggcgcga caccatcggt cgggcgcgtt gccagaactt      660
ccgtcgcggg atctacggcg gcgactctaa catcaacgcc gccttcgcga cctcgctcaa      720
ggccaactgc ccgcagtcgg gccgcacccgg caacctggcg ggcgtggacg ccacgaccgc      780
caacgccttc gacaacgcct actacaccaa cctgtctcc cagaaggggc ttctccactc      840
cgaccagggt ctcttcaaca acggcagcac cgacaacacc gtcaggaact tgcgtccag      900
cggggcggcg ttcagcagcg cttcgcgc ggcgtatgtc aagatggca acatctcgcc      960
gctgacaggg acgcaggggc agatcaggct cagctgttcc aaggtgaact cgtgattagc      1020
gtacgaggag ccgcacagaca gtcgcgcagca ctatacgta cgtgaatgaa taaggccaca      1080
gaaccggcgcc ccaatccaca gtactattag cagttcagca ctagctagaa ccgtgtatata      1140
ataacatgc agctcaaat tattcatgca cctctacaca tctaacttgc gatattctctc      1200
atgcaaaaggc ataaagaatt acttcaatatacatacaactac aactaccatt attctcaaaa      1260
aaaaaaaaa      1266

```

<210> 55

<211> 1164

<212> DNA

<213> Lolium perenne

<400> 55

```

gctagctccc cggcgctacc ttccgccttcc gctccccc tccggccttgc gcccctctgc      60
cgccaagtgcg cctggcttgg ccgggtcgca ctccctcat cccctggctc accccctcccc      120
tcaggctctt cttccctctcc cttggccctt gaggcagtcg gtcggatctg gccggcgtc      180
ggagacgcgc tcggccgtcc actgtcgcc gccgtcgct tctagccact accgttcaggc      240
ctccagagcc aaggcgactt ctggccaaac agcaggagcg tagaatagtgt ttaccttctt      300
tttcattattt caatatacaa aatggccgtg tcggagctt aggtgcacgg cgtcgtcttc      360
ccggcgttgg cccgtccggc gggcacagcc cacgcgcact tcctcgcggc cgcagggtgt      420
cgagggatgg agctcgccgg caacttcatac aagtgcacgg ccatcggcgt gtacctgcag      480
gccgacgcgc ccgtgtccgc gctcgccacg aagtggccg ggaaacccgc cgacgagctt      540
gctgcagaca acgccttctt ccgcgacgtc gtcacaggcg agttcgagaa gttcacgcgc      600
gtgaccatga ttccgtccgtt caccggcgcc cagttactccg agaagggtgac cgagaacttgc      660

```

gtcgcgtact	ggaaggccgt	cgcaagtac	acgaacgccc	aggccgccc	cgtcgacaag	720
ttcaaggagg	ccttcaggac	tgagagcttc	cctcccccggcg	cgtccatcct	cttcacccac	780
tccccggccg	gcgtcctcac	cgtcgcgttc	tcaaggactc	cgtcggtacc	agagtcgccc	840
ggcgtggcga	tcgagaacag	gccgctctgc	gaggccgtgc	tggagttccat	catcgccgag	900
cacgggtct	cgccggcggc	gaagctcagc	ctggcgacca	gggtcgccga	gctcctgaat	960
gaggccgccc	ccgtcggcga	agcggcggca	gagcccggtgt	cggtttctgc	gtgaacggac	1020
cggacaccgt	cactgctgca	ttgtgtgtt	ggcgatgtcc	gttggttgaga	cgtcgttttc	1080
cggagtttct	accgttgtt	tctgtgtgt	cgaggtgaac	cgtgctaact	tgaataaaga	1140
aaccgctgcc	caagaaaaaa	aaaa				1164

<210> 56

<211> 933

<212> DNA

<213> Festuca arundinacea

<400> 56

gtgcacacac	agctaccat	ccaatccacc	cctgtctccg	gccgcgcgcg	catcgatctc	60
ataccatcg	ccgtctcg	gcttgagg	tcggcgctcg	tcttccgc	gctggcccg	120
ccgcggcga	cagcccac	gcacttc	gccggcgca	gtgtcgagg	gatggagctc	180
ggcggcaact	tcatcaag	cacggccatc	ggcggttacc	tgcaggccga	cgccgcgt	240
tccgcgtcg	ccgcgaag	ggccggaaa	ccgcgcgac	agttgcgc	agacaacg	300
ttctcccg	acgtcg	ggcgagtt	gagaagttca	ggcggttgc	catgatcct	360
ccgctcacc	gchg	ctccgagaag	gtgaccgaga	actgcgtc	ctactgaa	420
gccgtcg	agtacacg	cgctgagg	ggccgcgt	acaagttca	ggaggc	480
aaggccgaga	gtttccccc	ccgcgcgt	atccttta	cccactcccc	ccgcggcg	540
ctcacccgt	cggtctcg	agactcg	ttggcgagg	ccggcg	ggcgatag	600
aacaggccg	tctcgagg	cgtgtgaa	tccatcatcg	gcaagcatgg	gtctcg	660
gccgcga	tcagcctgg	gaccagg	gccgagctcc	tgaaggagg	cgcacccgt	720
ggcggccgg	cggtggc	gcccgt	gtttcagcat	qaacggact	ggcacccgt	780
ctgctgg	atacatgt	ttgggtatgt	ccgtgttgg	acatcg	ccggagctt	840
taccgtt	tctcttg	ccaggtca	cgtgctaact	tgaataaaga	aaccccag	900
attgaaattt	atttacatca	aataaaaaaa	aaa			933

<210> 57

<211> 1531

<212> DNA

<213> Lolium perenne

<400> 57

gactcattca	tctgtcg	cctgttccc	tcaagcttag	atcgattgca	gccggccgg	60
gactgtcg	ctaccact	cggtcg	tacgagcgg	cgtaaggaga	gatccagat	120
gccgcgac	tgaccgt	ggaggtg	aaggcac	gggcggagg	gccggc	180
gtgctgg	tcggcac	gacggcc	aactgtgt	accagctg	ctacccgg	240
tactact	caatcac	gagcgg	ctcgccgat	tcaaggaga	gttcaagag	300
atgtgc	agtctc	cggagg	tacatgc	tgacggagg	gatcctgg	360
gagaaccc	acatgt	gtacatgg	ccgtcg	acgcgc	ggacatag	420
gtcg	tcccga	cgggagg	ccggc	aggcgat	ggagtgg	480
cagccgc	ccaa	ccactcg	ttctgc	cctctgg	ggacatg	540
ggcgcg	actacc	caagat	ggcctgc	cgtcg	gcccct	600
atgtacc	agggct	cgccgc	acgg	gcctcg	ggac	660
gaaaacaacc	gcccgc	cgtcg	gtctg	agatcac	cg	720
cgcggcc	acgag	cact	ctgg	aggcg	cttc	780
gctccgc	tgataat	cgcc	aggcg	tcgag	gggg	840
ctgggtcg	cgagcc	catct	tcg	gccc	ggcc	900
aggagg	gcctcac	ccac	tcg	ccgg	ccct	960
atcgag	ccctgg	agc	tcg	gttcc	ctcc	1020
tttgggt	cgc	ccccc	cg	gg	aaact	1080
ctcaaca	agcggat	cg	tcg	gg	aaagg	1140
agcgc	tctt	ccac	tcg	gg	taac	1200
accacc	gcgagg	at	tcg	gg	atgt	1260
gtcgag	ttgt	ggat	tcg	gg	ttgt	1320
gttccat	cgtt	ttt	tcg	gg	atcg	1380
ctgtat	aagtaatt	tatt	tcg	gg	ttgt	1440
attcg	ctattat	gtcg	cgt	gg	ttgt	1500
caaacgg	acgg	ttat	actgt	ttgt	atcg	1531

<210> 58
 <211> 774
 <212> DNA
 <213> *Festuca arundinacea*

<400> 58

acagatgtac	ttcggtc	agtccctggc	ggagaacgcc	gccatggact	acgccaaga	60
gaacggcgt	gacttcat	gcatacatccc	cacgctcg	gtcgccccct	tcctcagcgc	120
cgccatgcc	cccagcctgg	tcaccgc	ggcactc	acggggaa	aggcccacta	180
ctcgatc	aaggcagg	tcggac	ctctgc	act	ccatgaccta	240
ccttcgag	cacccggac	ccaacggcc	ctacatctgc	tcctccc	acaccaccat	300
tcatggc	gccaggat	tcaaggag	gttccc	tacgacat	cacagaaatt	360
cccgggag	gacgac	ttcagcc	caactt	ttcaaga	tgctcgacca	420
cggttcagg	ttcagg	ccggcag	catgtcg	gcccgg	ggacgtgc	480
ggagaagg	ctgatcc	tcggac	agggcagg	ggccgg	gtcagccg	540
caagctgg	gctgttct	tggcag	tttgcagg	gtgtc	gataagcg	600
agtgc	cactagg	gtctacat	acacatgg	gagcgt	tatgttgc	660
aatttacta	tcctatatt	cggtt	cagaa	attgcatt	gagaacc	720
gatattat	acggattat	gaacgca	aaat	acttcat	cgaaaaaaa	774

<210> 59
 <211> 1211
 <212> DNA
 <213> *Lolium perenne*

<400> 59

gggagcacca	cacatggcga	ctgaagccaa	gggggagac	gtgtggta	ccggcgccag	60
cggc	ttc	atc	ggctc	tcgt	ccctgc	120
cgc	cc	c	ccat	cc	cc	180
ccgc	gtc	c	ccat	cc	cc	240
ggcc	gg	cc	ccat	cc	cc	300
gctc	cc	cc	ccat	cc	cc	360
cctc	cc	cc	ccat	cc	cc	420
gctc	cc	cc	ccat	cc	cc	480
ccgc	cc	cc	ccat	cc	cc	540
ccgc	cc	cc	ccat	cc	cc	600
ccgc	cc	cc	ccat	cc	cc	660
ccgc	cc	cc	ccat	cc	cc	720
ccgc	cc	cc	ccat	cc	cc	780
ccgc	cc	cc	ccat	cc	cc	840
ccgc	cc	cc	ccat	cc	cc	900
ccgc	cc	cc	ccat	cc	cc	960
ccgc	cc	cc	ccat	cc	cc	1020
ccgc	cc	cc	ccat	cc	cc	1080
ccgc	cc	cc	ccat	cc	cc	1140
ccgc	cc	cc	ccat	cc	cc	1200
ccgc	cc	cc	ccat	cc	cc	1211

<210> 60
 <211> 1229
 <212> DNA
 <213> *Lolium perenne*

<400> 60

ggctcaacca	agggcaa	gtgtgta	act	ggggcttc	gttttgttgc	ctcttggtc	60
atcaagaa	ac	tc	ctt	gagtc	tggat	atcat	120
cgaagaa	agg	tg	gg	ac	tg	atagg	180
agatgtac	tat	gg	gg	at	gg	atgg	240
ttcacatt	cg	tc	tt	cc	tc	atagg	300
gttcctgca	ta	at	tg	gg	tg	atgg	360
aaaagg	tt	tc	tc	cc	tc	atgg	420
ccagaact	tat	gg	gg	ag	tc	tgt	480
ctatgg	cc	ct	tt	ct	tc	atgg	540
aataacatt	ac	tt	tt	tc	tc	atgg	600
gaattgt	gt	tc	tc	tc	tc	atgg	660
acttgt	ac	tt	tc	tc	tc	atgg	720

gtgtacgaaa	caccggaggc	aactggcaga	tatctgtgca	gctcagtgg	tctggataac	780
aatgaattgg	ttggcttact	ggcaaaacag	tttccagtat	tccccattcc	aaggaggctc	840
aagaaccct	atggaaagca	ggcataccag	ctagacacat	ccaagctcca	ggggctgggt	900
ctcaagttca	aaggagtgc	ggagatgtt	aacgactgc	tcgaatcgct	gaaagatcag	960
ggccatttgc	tggagtgccc	gttggataa	cagagacagc	attgacaagc	catagccaaa	1020
cagcattgac	aagccatgc	caaacacatc	tcaactatgc	ctgaatcatg	tcagttctcg	1080
agtcatagat	ttttttttc	tcttcaataa	attcccatgt	actctcctta	ctataccgaa	1140
catcaattgt	cagcggcaga	ttaaatgtgt	ccatatgctt	tgcaattgtt	tcaatttagta	1200
atgaaatatt	tgaaacaaaa	aaaaaaaaaa				1229

<210> 61

<211> 1439

<212> DNA

<213> Lolium perenne

<400> 61

aaacgactcc	aacgcaccga	tcgacgacac	acccctgcac	ttcacgggtc	gatcgatcg	60
gaggatggcg	ccgggtgg	agagagcgcc	cttcctgccc	acgggggagg	ccacgcgtcg	120
gccgtccttc	gtgcgggacg	aggacgagcg	gcccagggt	gcgcacgacc	gcttcagcga	180
cgaggtgccc	gtcatctcgc	tccacggcat	cgacgacgc	cgaggagacc	agatccggga	240
ccgcgtggcg	cgccgtgc	aggggtgggg	catcttccag	gtcgatcgacc	acggcgatcg	300
cgccgcgtc	atcgccgaga	tggccaggct	ctcgatcgac	ttcttcgcgc	tccccgcccga	360
ggacaagctc	cgctacgaca	tgtccggcgg	caagaagggg	ggattatcg	tctccagccca	420
cctccaggcc	gagacggtcc	aggactggcg	ggagatcg	acctacttct	cgtacccgg	480
caaggcgcgg	gactacggcc	ggtggccgg	caagcccg	gggtggcg	cgtgtggg	540
gcagtacagc	gagcggtc	tggcgctgc	ctgcagatcg	ctgggggtgc	tgtcgagggc	600
catgggcctc	gagacggagg	ccctgtccaa	ggcgatcg	gacatggacc	agaagggtgg	660
gttcaacttc	taccccaatg	gccccagcc	cgacccatcc	ctcgccatca	agcgccacac	720
cgaccggcgc	accatcaccc	tcccttccca	ggacctcg	ggcgactcc	agccaccccg	780
cgacggcgcc	aacacctg	tcacccgtaca	gcccattcg	ggcgatcc	tgtcaaccc	840
cgccgaccac	ggccactact	tgagcaacgg	gagggttaa	aacgcggacc	accaggcg	900
ggtgaacggg	gagagcagca	ggctgtccat	cgccacgtt	cagaacccgg	cgccgacgc	960
caaggtgtgg	ccgctggcgg	tgagggaggg	ggaggacacc	atcctggagg	agccatcac	1020
cttcaccgag	atgtaccg	gcaagatggc	gcgcgaccc	gagctcgca	agcgcaagaa	1080
gcaggccaag	gccgatc	tcaagcagca	gctgcagcg	gaggccg	ccgcccgc	1140
gcccaccaag	ccactcaacc	agattcttgc	ctagattcc	tgccgattca	ttcatgcgt	1200
atataatagta	ctatgtacta	tatgttataa	aaataatgaa	ttatcttat	ctactcattt	1260
gtgtgttaatt	aagagatgag	taattatcta	gtatatacac	atgtctgc	gaggagc	1320
ctggacctgt	aataacatgt	agcatgtc	acgtggaaacc	gatcagatcg	ttggagct	1380
cacatgagtt	tgctgtgtc	agaaattgaa	cgcattcg	actgc	ttcaaaaaaa	1439

<210> 62

<211> 1320

<212> DNA

<213> Festuca arundinacea

<400> 62

gaaacggccc	tgcactagac	gaaccagaca	aacgactcca	tcccacagac	gactcgccg	60
ccgcacaccc	cacgcaccac	tttacggggc	cgatcgatc	ggatggcg	ggggagaaac	120
gcgcgcgttcc	tgccgacggc	ggcgcacggc	gaggccacgc	tgccgcgtc	cttcgtgcgg	180
gacgaggacg	agcgacccaa	gttgcgcac	gaccgttca	gcgcacgg	ggcggtcatc	240
tgcgtccacg	gcatcgatg	tggcgccgc	cgaggggcc	agatccgg	ccgcgtggcg	300
gcggcgatcg	agggtgggg	ctgttccag	gtcgatcg	acggcgatcg	cgccgcgc	360
gtcgccgaga	tggccaggct	ctcccgccag	ttcttcgcac	tcccccgg	ggacaagctc	420
cgctacgaca	tgtccggcgg	caagaaagg	gtattatcg	tctccagcc	cctccagg	480
gagacgggtcc	aggactggcg	ggagatcg	acctacttct	cgtacccgg	gaaggcg	540
gactacgggc	gttggccgg	gaaggtcg	gggtggcg	cggtggg	cgactac	600
gagcggctca	tggcgctgc	gtgcagatcg	ctgggggtgc	tgtcgaa	aggatggc	660
gagacggagg	ccctgtccaa	ggcgatcg	gacatggacc	agaagggtgg	gtcaacttc	720
taccccaatg	gccccagcc	cgacccatcc	ctcggtctca	agcgccacac	cgacccgg	780
accatcaccc	tccttc	ggacccatcg	ggcgactcc	aggccactcg	cgacggcg	840
aacacctgga	tcaccgtgc	gcccgtcc	ggcgcc	ctgtcaaccc	cgcgaccc	900
ggccactact	tgagcaacgg	gagggttaa	aacgcggacc	accaggcg	ggtcaaccc	960
gagacggcga	ggctgtccat	cgccacgtt	cagaacccgg	cgccaga	agggtgt	1020
ccgctggcg	taaggggaggg	ggaggacacc	atactggagg	agccatcac	ttcaccg	1080
atgtaccg	gcaagatggc	gtgcac	ctgc	agcgcaagaa	gcaggcca	1140

ggcgaccagc tcaaggcagca gctgcagcag gagcagcagg aggcggggc cggccggcg	1200
cccaagcccg ccaccaccaa gcccctcaac cagattcttg cctagattcc atgtatatgt	1260
atatcgatt aaaataagaa attatctata tatatatata tatatataaa aaaaaaaaaa	1320
<210> 63	
<211> 654	
<212> PRT	
<213> <i>Lolium perenne</i>	
<400> 63	
Met Glu Ser Ser Ala Val Val Pro Gly Thr Thr Ala Pro Leu Leu Pro	
1 5 10 15	
Tyr Ala Tyr Ala Pro Leu Pro Ser Ser Asp Asp Ala Arg Glu Asn	
20 25 30	
Arg Ser Ser Gly Gly Val Arg Trp Arg Ala Cys Ala Val Val Leu Ala	
35 40 45	
Asp Ser Ala Leu Ala Val Val Val Val Gly Leu Leu Ala Gly Gly	
50 55 60	
Arg Val Asp Arg Val Pro Ala Gly Ala Asp Val Ala Ser Ala Thr Val	
65 70 75 80	
Pro Ala Val Pro Met Glu Phe Pro Arg Ser Arg Gly Lys Asp Leu Gly	
85 90 95	
Val Ser Glu Lys Ser Ser Gly Ala Tyr Ser Ala Asp Gly Gly Phe Pro	
100 105 110	
Trp Ser Asn Ala Met Leu Gln Trp Gln Arg Thr Gly Phe His Phe Gln	
115 120 125	
Pro Glu Gln His Tyr Met Asn Asp Pro Asn Gly Pro Val Tyr Tyr Gly	
130 135 140	
Gly Trp Tyr His Leu Phe Tyr Gln His Asn Pro Lys Gly Asp Ser Trp	
145 150 155 160	
Gly Asn Ile Ala Trp Ala His Ala Val Ser Lys Asp Met Val Asn Trp	
165 170 175	
Arg His Leu Pro Leu Ala Met Val Pro Asp Gln Trp Tyr Asp Ser Asn	
180 185 190	
Gly Val Leu Thr Gly Ser Ile Thr Val Leu Pro Asp Gly Gln Val Ile	
195 200 205	
Leu Leu Tyr Thr Gly Asn Thr Asp Thr Leu Ala Gln Val Gln Cys Leu	
210 215 220	
Ala Thr Pro Ala Asp Pro Ser Asp Pro Leu Leu Arg Glu Trp Ile Lys	
225 230 235 240	
His Pro Ala Asn Pro Ile Leu Phe Pro Pro Pro Gly Ile Gly Leu Lys	
245 250 255	
Asp Phe Arg Asp Pro Leu Thr Ala Trp Phe Asp His Ser Asp His Thr	
260 265 270	
Trp Arg Thr Val Ile Gly Ser Lys Asp Asp Gly His Ala Gly Ile	
275 280 285	
Ile Leu Ser Tyr Lys Thr Lys Asp Phe Val Asn Tyr Glu Leu Met Pro	
290 295 300	
Gly Asn Met His Arg Gly Pro Asp Gly Thr Gly Met Tyr Glu Cys Ile	
305 310 315 320	
Asp Leu Tyr Pro Val Gly Gly Asn Ser Ser Glu Met Leu Gly Gly Asp	
325 330 335	
Asp Ser Pro Asp Val Leu Phe Val Leu Lys Glu Ser Ser Asp Asp Glu	
340 345 350	
Arg His Asp Tyr Tyr Ala Leu Gly Arg Phe Asp Ala Val Ala Asn Val	
355 360 365	
Trp Thr Pro Ile Asp Arg Asp Leu Asp Leu Gly Ile Gly Leu Arg Tyr	
370 375 380	
Asp Trp Gly Lys Tyr Tyr Ala Ser Lys Ser Phe Tyr Asp Gln Lys Lys	
385 390 395 400	
Asn Arg Arg Ile Val Trp Ala Tyr Ile Gly Glu Thr Asp Ser Glu Gln	
405 410 415	
Ala Asp Ile Thr Lys Gly Trp Ala Asn Leu Met Thr Ile Pro Arg Thr	
420 425 430	
Val Glu Leu Asp Arg Lys Thr Arg Thr Asn Leu Ile Gln Trp Pro Val	
435 440 445	

Glu Glu Val Asp Thr Leu Arg Arg Asn Ser Thr Asp Leu Gly Arg Ile
 450 455 460
 Thr Val Asn Ala Gly Ser Val Ile Arg Leu Pro Leu His Gln Gly Ala
 465 470 475 480
 Gln Leu Asp Ile Glu Ala Ser Phe Gln Leu Asn Ser Ser Asp Val Asp
 485 490 495
 Ala Ile Asn Glu Ala Asp Val Gly Tyr Asn Cys Ser Thr Ser Gly Ala
 500 505 510
 Ala Val Arg Gly Ala Leu Gly Pro Phe Gly Leu Leu Val Leu Ala Asn
 515 520 525
 Gly Arg Thr Glu Gln Thr Ala Val Tyr Phe Tyr Val Ser Lys Gly Val
 530 535 540
 Asp Gly Gly Leu Gln Thr His Phe Cys His Asp Glu Ser Arg Ser Thr
 545 550 555 560
 Arg Ala Lys Asp Val Val Asn Arg Met Ile Gly Ser Ile Val Pro Val
 565 570 575
 Leu Asp Gly Glu Thr Phe Ser Val Arg Val Leu Val Asp His Ser Ile
 580 585 590
 Val Gln Ser Phe Ala Met Gly Gly Arg Ile Thr Ala Thr Ser Arg Ala
 595 600 605
 Tyr Pro Thr Glu Thr Ile Tyr Ala Ala Ala Gly Val Tyr Leu Phe Asn
 610 615 620
 Asn Ala Thr Gly Ala Thr Val Thr Ala Glu Arg Leu Val Val His Glu
 625 630 635 640
 Met Ala Ser Ala Asp Asn His Ile Phe Thr Asn Asp Asp Leu
 645 650

<210> 64

<211> 648

<212> PRT

<213> Festuca arundinacea

<400> 64

Met Glu Ser Ser Ala Val Val Pro Gly Thr Thr Ala Arg Leu Leu Pro
 1 5 10 15
 Tyr Ala Tyr Ala Pro Leu Pro Ser Ser Ala Asp Asp Ala Arg Glu Asn
 20 25 30
 Gln Gly Ser Asp Gly Val Arg Trp Arg Ala Cys Ala Ala Val Leu Ala
 35 40 45
 Ala Ser Ala Leu Ala Val Leu Val Val Gly Leu Leu Ala Gly Gly
 50 55 60
 Arg Val Asp Arg Pro Gly Pro Ala Ala Val Pro Ala Val Pro Thr Glu
 65 70 75 80
 Ile Pro Arg Ser Arg Gly Lys Asp Phe Gly Val Ser Glu Lys Ser Ser
 85 90 95
 Gly Ala Tyr Ser Ala Asp Gly Gly Phe Pro Trp Ser Asn Ala Met Leu
 100 105 110
 Gln Trp Gln Arg Thr Gly Phe His Phe Gln Pro Glu Gln His Tyr Met
 115 120 125
 Asn Asp Pro Asn Gly Pro Val Tyr Tyr Gly Gly Trp Tyr His Leu Phe
 130 135 140
 Tyr Gln Tyr Asn Pro Lys Gly Asp Ser Trp Gly Asn Ile Ala Trp Ala
 145 150 155 160
 His Ala Val Ser Lys Asp Met Val Asn Trp Arg His Leu Pro Leu Ala
 165 170 175
 Met Val Pro Asp Gln Trp Tyr Asp Ser Asn Gly Val Leu Thr Gly Ser
 180 185 190
 Ile Thr Val Leu Pro Asp Gly Arg Val Ile Leu Leu Tyr Thr Gly Asn
 195 200 205
 Thr Asp Thr Leu Ala Gln Val Gln Cys Leu Ala Glu Pro Ala Asp Pro
 210 215 220
 Ser Asp Pro Leu Leu Arg Glu Trp Ile Lys His Pro Ala Asn Pro Ile
 225 230 235 240
 Leu Phe Pro Pro Pro Gly Ile Gly Leu Lys Asp Phe Arg Asp Pro Leu
 245 250 255
 Thr Asp Trp Phe Asp His Ser Asp Asp Thr Trp Arg Thr Val Ile Gly

260	265	270
Ser Lys Asp Asp Asp Gly His Ala Gly Ile Ile Leu Ser Tyr Lys Thr		
275	280	285
Lys Asp Phe Val Asn Tyr Glu Leu Met Pro Gly Asn Met His Arg Gly		
290	295	300
Pro Asp Gly Thr Gly Met Tyr Glu Cys Ile Asp Leu Tyr Pro Val Gly		
305	310	315
Gly Asn Ser Ser Glu Met Leu Gly Gly Asp Asp Ser Pro Asp Val Leu		
325	330	335
Phe Val Leu Lys Glu Ser Ser Asp Asp Glu Arg His Asp Tyr Tyr Ala		
340	345	350
Leu Gly Arg Phe Asp Ala Ala Asn Ile Trp Thr Pro Ile Asp Gln		
355	360	365
Glu Leu Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Tyr Tyr		
370	375	380
Ala Ser Lys Ser Phe Tyr Asp Gln Arg Lys Asn Arg Arg Val Val Trp		
385	390	395
Ala Tyr Ile Gly Glu Thr Asp Ser Glu Gln Ala Asp Ile Thr Lys Gly		
405	410	415
Trp Ala Asn Leu Met Thr Ile Pro Arg Thr Val Glu Leu Asp Lys Lys		
420	425	430
Thr Arg Thr Asn Leu Ile Gln Trp Pro Val Glu Glu Val Asp Thr Leu		
435	440	445
Arg Arg Asn Ser Thr Asp Leu Gly Arg Ile Thr Val Asn Ala Gly Ser		
450	455	460
Val Ile Arg Leu Pro Leu His Gln Gly Ala Gln Leu Asp Ile Glu Ala		
465	470	475
Ser Phe Gln Leu Asn Ser Ser Asp Val Asp Ala Leu Asn Glu Ala Asp		
485	490	495
Val Gly Tyr Asn Cys Ser Thr Ser Gly Ala Ala Val Arg Gly Ala Leu		
500	505	510
Gly Pro Phe Gly Leu Leu Val Leu Ala Asn Gly Arg Thr Glu Gln Thr		
515	520	525
Ala Val Tyr Phe Tyr Val Ser Lys Gly Val Asp Gly Ala Leu Gln Thr		
530	535	540
His Phe Cys His Asp Glu Ser Arg Ser Thr Arg Ala Lys Asp Val Val		
545	550	555
Asn Arg Met Ile Gly Ser Ile Val Pro Val Leu Asp Gly Glu Thr Phe		
565	570	575
Ser Val Arg Val Leu Leu Asp His Ser Ile Val Gln Ser Phe Ala Met		
580	585	590
Gly Gly Arg Ile Thr Ala Thr Ser Arg Ala Tyr Pro Thr Glu Ala Ile		
595	600	605
Tyr Ala Ala Ala Gly Val Tyr Val Phe Asn Asn Ala Thr Gly Ala Thr		
610	615	620
Val Thr Ala Glu Arg Leu Val Val Tyr Glu Met Ala Ser Ala Asp Asn		
625	630	635
His Ile Phe Arg Asn Asp Asp Leu		
645		

<210> 65

<211> 620

<212> PRT

<213> Festuca arundinacea

<400> 65

Met Glu Ser Arg Ala Phe Pro Asn Ala Ala Tyr Ala Pro Leu Leu Pro		
1	5	10
Pro Thr Ala Asp Asp Ala Thr Leu Gly Lys Gln Asp Arg Pro Gly Val		
20	25	30
Gly Trp Arg Gly Phe Leu Thr Val Leu Ala Ala Ser Gly Val Val Val		
35	40	45
Leu Leu Val Ala Ala Thr Met Leu Ala Gly Ser Arg Met Gly Gln Ala		
50	55	60
Gly Asp Thr Asp Glu Asp Gly Ala Gly Gly Phe Pro Trp Ser Asn Glu		
65	70	75
		80

Met Leu Gln Trp Gln Arg Ala Gly Phe His Tyr Gln Pro Glu Gly His
 85 90 95
 Phe Met Ser Asp Pro Asp Gly Pro Val Tyr Tyr Arg Gly Tyr Tyr His
 100 105 110
 Leu Phe Gln Tyr Asn Arg Arg Gly Val Ala Trp Asp Asp Tyr Ile
 115 120 125
 Glu Trp Gly His Val Val Ser Gln Asp Leu Val His Trp Arg Pro Leu
 130 135 140
 Pro Leu Ala Leu Arg Pro Asp His Trp Tyr Asp Lys Lys Gly Val Leu
 145 150 155 160
 Ser Gly Thr Ile Thr Val Leu His Asn Gly Thr Leu Val Leu Leu Tyr
 165 170 175
 Thr Gly Val Thr Glu Asp Pro Met Ala Glu Ser Gln Cys Ile Ala Val
 180 185 190
 Pro Thr Asp Pro Asn Asp Pro Leu Leu Arg His Trp Thr Lys His Pro
 195 200 205
 Ala Asn Pro Val Leu Ala His Pro Gln Gly Val Gln Gly Met Asp Phe
 210 215 220
 Arg Asp Pro Thr Ser Ala Trp Phe Asp Lys Ser Asp Ala Thr Trp Arg
 225 230 235 240
 Ile Leu Ile Gly Ser Lys Asp Asp Asp Asn Gly Ser His Ala Gly Ile
 245 250 255
 Ala Phe Ile Phe Lys Thr Lys Asp Phe Leu Ser Phe Glu Arg Val Pro
 260 265 270
 Gly Ile Val His Arg Val Glu Gly Thr Gly Met Trp Glu Cys Ile Asp
 275 280 285
 Phe Tyr Pro Val Gly Gly His Asn Ser Ser Ser Glu Glu Leu Tyr
 290 295 300
 Val Ile Lys Ala Ser Met Asp Asp Glu Arg His Asp Tyr Tyr Ser Leu
 305 310 315 320
 Gly Arg Tyr Asp Ala Ala Ala Asn Thr Trp Thr Pro Leu Asp Ala Glu
 325 330 335
 Leu Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Leu Tyr Ala
 340 345 350
 Ala Thr Ser Phe Tyr Asp Pro Leu Lys Gln Arg Arg Ile Met Leu Gly
 355 360 365
 Tyr Val Gly Glu Thr Asp Ser Ala Arg Ala Asp Val Ala Lys Gly Trp
 370 375 380
 Ala Ser Leu Gln Ser Ile Pro Arg Thr Val Thr Leu Asp Glu Lys Thr
 385 390 395 400
 Arg Thr Asn Leu Leu Trp Pro Val Glu Glu Val Glu Ala Leu Arg
 405 410 415
 Tyr Asn Ser Thr Asp Leu Ser Gly Ile Thr Val Asp Asn Gly Ser Val
 420 425 430
 Phe His Leu Pro Leu His Gln Ala Thr His Leu Asp Ile Glu Ala Ser
 435 440 445
 Phe Arg Leu Asp Ala Ser Asp Val Ala Ala Ile Asn Glu Ala Asp Val
 450 455 460
 Gly Tyr Asn Cys Ser Ser Ser Gly Gly Ala Ala Ala Arg Gly Ala Ile
 465 470 475 480
 Gly Pro Phe Gly Leu Leu Val His Ala Ala Gly Asp Leu Arg Gly Glu
 485 490 495
 Gln Thr Ala Val Tyr Phe Tyr Val Ser Arg Ala Leu Asp Gly Thr Leu
 500 505 510
 Arg Thr Ser Phe Cys Asn Asp Glu Thr Arg Ser Ser Arg Ala Arg Asp
 515 520 525
 Val Thr Lys Arg Val Val Gly Ser Thr Val Pro Val Leu His Gly Glu
 530 535 540
 Ala Leu Ser Met Arg Val Leu Val Asp His Ser Ile Val Gln Ser Phe
 545 550 555 560
 Ala Met Gly Gly Arg Val Thr Ala Thr Ser Arg Val Tyr Pro Thr Glu
 565 570 575
 Ala Ile Tyr Ala Arg Ala Gly Val Tyr Leu Phe Asn Asn Ala Thr Gly
 580 585 590
 Ala Ser Val Thr Ala Glu Arg Leu Ile Val His Glu Met Ala Ser Ala
 595 600 605

Val Tyr Asp Glu Thr Leu Ile Met Val Glu Asp Ser
 610 615 620

 <210> 66
 <211> 623
 <212> PRT
 <213> *Lolium perenne*

 <400> 66
 Met Glu Ser Arg Ala Phe Pro Ser Ala Ala Tyr Ala Pro Leu Leu Pro
 1 5 10 15
 Ser Ala Ala Asp Asp Val Ala Leu Ala Lys Gln Asp Arg Pro Gly Val
 20 25 30
 Gly Trp Arg Gly Phe Leu Thr Val Leu Ala Ala Cys Gly Val Val Val
 35 40 45
 Leu Leu Val Gly Ala Thr Leu Leu Ala Gly Ser Arg Met Gly Gln Ala
 50 55 60
 Gly Asp Gly Glu Gly Asn Thr Asp Glu Asp Gly Ala Gly Gly Phe Pro
 65 70 75 80
 Trp Ser Asn Glu Met Leu Gln Trp Gln Arg Ala Gly Phe His Tyr Gln
 85 90 95
 Pro Glu Gly His Phe Met Ser Asp Pro Asn Gly Pro Val Tyr Tyr Arg
 100 105 110
 Gly Tyr Tyr His Leu Phe Phe Gln Tyr Asn Arg Arg Gly Val Ala Trp
 115 120 125
 Asp Asp Tyr Ile Glu Trp Gly His Val Val Ser Gln Asp Leu Val His
 130 135 140
 Trp Arg Pro Leu Pro Leu Ala Met Arg Pro Asp His Trp Tyr Asp Lys
 145 150 155 160
 Lys Gly Val Leu Ser Gly Thr Ile Thr Val Leu His Asn Gly Thr Leu
 165 170 175
 Val Leu Leu Tyr Thr Gly Val Thr Glu Asp Pro Met Ala Glu Ser Gln
 180 185 190
 Cys Ile Ala Val Pro Thr Asp Pro Asn Asp Pro Leu Leu Arg His Trp
 195 200 205
 Thr Lys His Pro Ala Asn Pro Val Leu Ala His Pro Gln Gly Val Gln
 210 215 220
 Gly Met Asp Phe Arg Asp Pro Thr Ser Ala Trp Trp Asp Lys Ser Asp
 225 230 235 240
 Ala Thr Trp Arg Ile Leu Ile Gly Ser Lys Asp Asp Asn Gly Ser
 245 250 255
 His Ala Gly Ile Ala Phe Ile Phe Lys Thr Lys Asp Phe Leu Ser Phe
 260 265 270
 Glu Arg Val Pro Gly Ile Val His Arg Val Glu Gly Thr Gly Met Trp
 275 280 285
 Glu Cys Ile Asp Phe Tyr Pro Val Gly Gly His Asn Ser Ser Ser
 290 295 300
 Glu Glu Leu Tyr Val Ile Lys Ala Ser Met Asp Asp Glu Arg His Asp
 305 310 315 320
 Tyr Tyr Ser Leu Gly Arg Tyr Asp Ala Ala Ala Asn Thr Trp Thr Pro
 325 330 335
 Leu Asp Ala Glu Leu Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly
 340 345 350
 Lys Leu Tyr Ala Ser Thr Ser Phe Tyr Asp Pro Val Lys Gln Arg Arg
 355 360 365
 Ile Met Leu Gly Tyr Val Gly Glu Val Asp Ser Ala Arg Ala Asp Val
 370 375 380
 Ala Lys Gly Trp Ala Ser Leu Gln Ser Ile Pro Arg Thr Val Ala Leu
 385 390 395 400
 Asp Glu Lys Thr Arg Thr Asn Leu Leu Leu Trp Pro Val Glu Glu Val
 405 410 415
 Glu Ala Leu Arg Tyr Asn Ser Thr Asp Leu Ser Gly Ile Thr Ile Asp
 420 425 430
 Asn Gly Ser Val Phe His Leu Pro Leu His Gln Thr Thr Gln Leu Asp
 435 440 445

Ile Glu Ala Ser Phe Arg Leu Asp Ala Ser Asp Val Ala Ala Ile Asn
 450 455 460
 Glu Ala Asp Val Gly Tyr Asn Cys Ser Ser Ser Gly Gly Ala Ala Ala
 465 470 475 480
 Arg Gly Ala Leu Gly Pro Phe Gly Leu Leu Val His Ala Ala Gly Asp
 485 490 495
 Leu Arg Gly Glu Gln Thr Ala Val Tyr Phe Tyr Val Ser Arg Ala Leu
 500 505 510
 Asp Gly Thr Leu Arg Thr Ser Phe Cys Asn Asp Glu Thr Arg Ser Ser
 515 520 525
 Arg Ala Arg Asp Val Thr Lys Arg Val Val Gly Ser Thr Val Pro Val
 530 535 540
 Leu Asp Gly Glu Ala Leu Ser Met Arg Val Leu Val Asp His Ser Ile
 545 550 555 560
 Val Gln Ser Phe Ala Met Gly Gly Arg Thr Thr Ala Thr Ser Arg Val
 565 570 575
 Tyr Pro Thr Glu Ala Ile Tyr Ala Arg Ala Gly Val Tyr Leu Phe Asn
 580 585 590
 Asn Ala Thr Gly Ala Gly Val Thr Ala Glu Arg Leu Ile Val His Glu
 595 600 605
 Met Ala Ser Ala Val Tyr Asp Glu Thr Leu Met Val Glu Asp Ser
 610 615 620

<210> 67

<211> 623

<212> PRT

<213> Festuca arundinacea

<400> 67

Met Glu Ser Arg Ala Phe Pro Ser Ala Ala Tyr Ala Pro Leu Leu Pro
 1 5 10 15
 Pro Thr Ala Asp Asp Ala Thr Leu Gly Lys Gln Asp Arg Pro Gly Val
 20 25 30
 Gly Trp Arg Gly Phe Leu Thr Val Leu Ala Ala Ser Gly Val Val Val
 35 40 45
 Leu Leu Val Ala Ala Ser Leu Leu Ala Gly Ser Arg Met Gly Gln Ala
 50 55 60
 Gly Asp Gly Glu Gly Asn Thr Asp Glu Asp Gly Ala Gly Gly Phe Pro
 65 70 75 80
 Trp Ser Asn Glu Met Leu Gln Trp Gln Arg Ala Gly Phe His Tyr Gln
 85 90 95
 Pro Glu Gly His Phe Met Ser Asp Pro Asp Gly Pro Val Tyr Tyr Arg
 100 105 110
 Gly Tyr Tyr His Leu Phe Phe Gln Tyr Asn Arg Arg Gly Val Ala Trp
 115 120 125
 Asp Asp Tyr Ile Glu Trp Gly His Val Val Ser Gln Asp Leu Val His
 130 135 140
 Trp Arg Pro Leu Pro Val Ala Met Arg Pro Asp His Trp Tyr Asp Lys
 145 150 155 160
 Lys Gly Val Leu Ser Gly Thr Ile Thr Val Leu His Asn Gly Thr Leu
 165 170 175
 Val Leu Leu Tyr Thr Gly Val Thr Glu Asp Pro Met Ala Glu Ser Gln
 180 185 190
 Cys Ile Ala Val Pro Thr Asp Pro Asn Asn Pro Leu Leu Arg His Trp
 195 200 205
 Thr Lys His Pro Ala Asn Pro Val Leu Ala His Pro Gln Gly Val Gln
 210 215 220
 Gly Met Asp Phe Arg Asp Pro Thr Ser Ala Trp Phe Asp Lys Ser Asp
 225 230 235 240
 Ala Thr Trp Arg Ile Leu Ile Gly Ser Lys Asp Asp Asp Asn Gly Ser
 245 250 255
 His Ala Gly Ile Ala Phe Ile Phe Lys Thr Lys Asp Phe Leu Ser Phe
 260 265 270
 Glu Arg Val Pro Gly Ile Val His Arg Val Glu Gly Thr Gly Met Trp
 275 280 285

Glu	Cys	Ile	Asp	Phe	Tyr	Pro	Val	Gly	Gly	Gly	His	Asn	Ser	Ser	Ser
290					295					300					
Glu	Glu	Leu	Tyr	Val	Ile	Lys	Ala	Ser	Met	Asp	Asp	Glu	Arg	His	Asp
305					310					315					320
Tyr	Tyr	Ser	Leu	Gly	Arg	Tyr	Asp	Ala	Ala	Ala	Asn	Thr	Trp	Thr	Pro
					325					330					335
Leu	Asp	Ala	Glu	Leu	Asp	Leu	Gly	Ile	Gly	Leu	Arg	Tyr	Asp	Trp	Gly
					340					345					350
Lys	Leu	Tyr	Ala	Ala	Thr	Ser	Phe	Tyr	Asp	Pro	Leu	Lys	Gln	Arg	Arg
					355					360					365
Ile	Met	Leu	Gly	Tyr	Val	Gly	Glu	Thr	Asp	Ser	Ala	Arg	Ala	Asp	Val
					370					375					380
Ala	Lys	Gly	Trp	Ala	Ser	Leu	Gln	Ser	Ile	Pro	Arg	Thr	Val	Thr	Leu
					385					390					400
Asp	Glu	Lys	Thr	Arg	Thr	Asn	Leu	Leu	Leu	Trp	Pro	Val	Glu	Glu	Val
					405					410					415
Glu	Ala	Leu	Arg	Tyr	Asn	Ser	Thr	Asp	Leu	Ser	Gly	Ile	Thr	Ile	Asp
					420					425					430
Asn	Gly	Ser	Val	Phe	His	Leu	Pro	Leu	His	Gln	Ala	Thr	Gln	Leu	Asp
					435					440					445
Ile	Glu	Ala	Ser	Phe	Arg	Leu	Asp	Ala	Ser	Asp	Val	Ala	Ala	Ile	Asn
					450					455					460
Glu	Ala	Asp	Val	Gly	Tyr	Asn	Cys	Ser	Ser	Ser	Gly	Gly	Ala	Ala	Ala
					465					470					480
Arg	Gly	Ala	Ile	Gly	Pro	Phe	Gly	Leu	Leu	Val	His	Ala	Ala	Gly	Asp
					485					490					495
Leu	Arg	Gly	Glu	Gln	Thr	Ala	Val	Tyr	Phe	Tyr	Val	Ser	Arg	Ala	Leu
					500					505					510
Asp	Gly	Thr	Leu	Arg	Thr	Ser	Phe	Cys	Asn	Asp	Glu	Thr	Arg	Ser	Ser
					515					520					525
Arg	Ala	Arg	Asp	Val	Thr	Lys	Arg	Val	Val	Gly	Ser	Thr	Val	Pro	Val
					530					535					540
Leu	Asp	Gly	Glu	Ala	Leu	Ser	Met	Arg	Val	Leu	Val	Asp	His	Ser	Ile
					545					550					560
Val	Gln	Ser	Phe	Ala	Met	Gly	Gly	Arg	Val	Thr	Ala	Thr	Ser	Arg	Val
					565					570					575
Tyr	Pro	Thr	Glu	Ala	Ile	Tyr	Ala	Arg	Ala	Gly	Val	Tyr	Leu	Phe	Asn
					580					585					590
Asn	Ala	Thr	Gly	Ala	Ser	Val	Thr	Ala	Glu	Arg	Leu	Ile	Val	His	Glu
					595					600					605
Met	Ala	Ser	Ala	Val	Tyr	Asp	Glu	Thr	Leu	Met	Val	Gln	Asp	Ser	
					610					615					620

<210> 68
<211> 619
<212> PRT
<213> *Lolium perenne*

```

<400> 68
Met Glu Ser Arg Asp Phe Pro Ser Ala Ala Tyr Ala Pro Leu Leu Pro
1 5 10 15
Ser Ala Ala Asp Asp Val Ala Leu Ala Lys Gln Asp Arg Pro Gly Val
20 25 30
Gly Trp Arg Gly Phe Leu Thr Val Leu Ala Ala Cys Gly Val Val Val
35 40 45
Leu Leu Val Ala Ala Ser Leu Leu Ala Gly Ser Arg Met Gly Gln Ala
50 55 60
Gly Asp Thr Asp Glu Asp Gly Ala Gly Gly Phe Pro Trp Ser Asn Glu
65 70 75 80
Met Leu Gln Trp Gln Arg Ala Gly Phe His Tyr Gln Pro Glu Gly His
85 90 95
Phe Met Ser Asp Pro Asp Gly Pro Val Tyr Tyr Arg Gly Tyr Tyr His
100 105 110
Leu Phe Phe Gln Tyr Asn Arg Arg Gly Val Ala Trp Asp Asp Tyr Ile
115 120 125

```

Glu Trp Gly His Val Val Ser Gln Asp Leu Val His Trp Arg Pro Leu
 130 135 140
 Pro Leu Ala Met Arg Pro Asp His Trp Tyr Asp Lys Lys Gly Val Leu
 145 150 155 160
 Ser Gly Thr Ile Thr Val Leu His Asn Gly Thr Leu Val Leu Leu Tyr
 165 170 175
 Thr Gly Val Thr Glu Asp Pro Met Ala Glu Ser Gln Cys Ile Ala Val
 180 185 190
 Pro Thr Asp Pro Asn Asp Pro Leu Leu Arg His Trp Thr Lys His Pro
 195 200 205
 Ala Asn Pro Val Leu Ala His Pro Gln Gly Val Gln Gly Met Asp Phe
 210 215 220
 Arg Asp Pro Thr Ser Ala Trp Trp Asp Lys Ser Asp Ser Thr Trp Arg
 225 230 235 240
 Ile Leu Ile Gly Ser Lys Asp Asp Asp Asn Gly Ser His Ala Gly Ile
 245 250 255
 Ala Phe Ile Phe Lys Thr Lys Asp Phe Leu Ile Phe Glu Arg Val Pro
 260 265 270
 Gly Ile Val His Arg Val Glu Gly Thr Gly Met Trp Glu Cys Ile Asp
 275 280 285
 Phe Tyr Pro Val Gly Gly His Asn Ser Ser Glu Glu Leu Tyr
 290 295 300
 Val Ile Lys Ala Ser Met Asp Asp Glu Arg His Asp Tyr Tyr Ser Leu
 305 310 315 320
 Gly Arg Tyr Asp Ala Ala Ala Asn Thr Trp Thr Pro Leu Asp Ala Glu
 325 330 335
 Leu Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Leu Tyr Ala
 340 345 350
 Ser Thr Ser Phe Tyr Asp Pro Leu Lys Gln Arg Arg Ile Met Leu Gly
 355 360 365
 Tyr Val Gly Asp Val Asp Ser Ala Arg Ala Asp Val Ala Lys Gly Trp
 370 375 380
 Ala Ser Leu Gln Ser Ile Pro Arg Thr Val Ala Leu Asp Glu Lys Thr
 385 390 395 400
 Arg Thr Asn Leu Leu Leu Trp Pro Val Glu Glu Val Glu Ala Leu Arg
 405 410 415
 Tyr Asn Ser Thr Asp Leu Ser Gly Ile Thr Val Glu Asn Gly Ser Ile
 420 425 430
 Phe His Leu Pro Leu His Gln Ala Thr Gln Leu Asp Ile Glu Ala Ser
 435 440 445
 Phe Arg Leu Asp Ala Ser Asp Val Ala Ala Ile Asn Glu Ala Asp Val
 450 455 460
 Gly Tyr Asn Cys Ser Ser Ser Gly Gly Ala Ala Ala Arg Gly Ala Leu
 465 470 475 480
 Gly Pro Phe Gly Leu Leu Val His Ala Ala Gly Asp Leu Arg Gly Glu
 485 490 495
 Gln Thr Ala Val Tyr Phe Tyr Val Ser Arg Ala Leu Asp Gly Ser Leu
 500 505 510
 Arg Thr Ser Phe Cys Asn Asp Glu Thr Arg Ser Ser Arg Ala Arg Asp
 515 520 525
 Val Ala Lys Arg Val Val Gly Ser Thr Val Pro Val Leu Asp Gly Glu
 530 535 540
 Val Leu Ala Met Arg Val Leu Val Asp His Ser Ile Val Gln Ser Phe
 545 550 555 560
 Ala Met Gly Gly Arg Val Thr Ala Thr Ser Arg Val Tyr Pro Thr Glu
 565 570 575
 Ala Ile Tyr Ala Arg Ala Gly Val Tyr Leu Phe Asn Asn Ala Thr Gly
 580 585 590
 Ala Ser Val Thr Ala Glu Arg Leu Ile Val His Glu Met Ala Ser Ala
 595 600 605
 Val Tyr Asp Glu Thr Val Met Val Lys Asp Ser
 610 615

<210> 69

<211> 422

<212> PRT
 <213> Festuca arundinacea

<400> 69
 Met Asp Lys Leu Asn Gly Ser Ala Arg Leu Met Ile Val Ser Asp Leu
 1 5 10 15
 Asp His Thr Met Val Asp His His Asp Glu Glu Asn Leu Ser Leu Leu
 20 25 30
 Arg Phe Gly Ala Leu Trp Glu Ser Ala Tyr Cys Gln Asp Ser Leu Leu
 35 40 45
 Val Phe Ser Thr Gly Arg Ser Pro Thr Leu Tyr Lys Glu Leu Arg Lys
 50 55 60
 Glu Lys Pro Met Leu Thr Pro Asp Ile Thr Ile Met Ser Val Gly Ser
 65 70 75 80
 Glu Ile Thr Tyr Gly Glu Ala Met Val Pro Asp Asp Gly Trp Glu Glu
 85 90 95
 Tyr Leu Asn Asn Lys Trp Asp Arg Asn Ile Val Leu Glu Glu Thr Ala
 100 105 110
 Lys Tyr Ser Glu Leu Lys Leu Gln Pro Glu Thr Glu Gln Arg Pro His
 115 120 125
 Lys Val Ser Phe Leu Val Asp Lys Ser Ala Gln Glu Val Ile Lys
 130 135 140
 Ser Leu Ser Glu Lys Phe Glu Lys Arg Gly Val Asp Ala Lys Ile Ile
 145 150 155 160
 Tyr Ser Gly Gly Gln Asp Leu Asp Ile Leu Ala Gln Gly Ala Gly Lys
 165 170 175
 Gly Gln Ala Leu Ala Tyr Leu Leu Lys Lys Phe Ala Ser Cys Gly Lys
 180 185 190
 Thr Pro Asn Asn Thr Leu Val Cys Gly Asp Ser Gly Asn Asp Ala Glu
 195 200 205
 Leu Phe Ser Ile Pro Gly Val His Gly Val Met Val Ser Asn Ala Gln
 210 215 220
 Glu Glu Leu Leu Gln Trp His Ala Glu Asn Ala Lys Asp Asn Pro Lys
 225 230 235 240
 Val Ile His Ala Thr Glu Arg Cys Ala Ala Gly Ile Ile Gln Ala Ile
 245 250 255
 Gly His Phe Lys Leu Gly Pro Asn Ile Ser Pro Arg Asp Ile Glu Phe
 260 265 270
 Pro Tyr Val Lys Glu Asp Ser Phe Lys Pro Thr Ala Ala Val Val Lys
 275 280 285
 Phe Tyr Val Leu Cys Glu Lys Trp Arg Arg Ala Asp Val Pro Lys Ala
 290 295 300
 Asp Ser Val Ile Glu Tyr Phe Lys Asn Ile Thr Asp Ala Ser Gly Val
 305 310 315 320
 Ile Ile His Pro Ser Gly Leu Glu Leu Ser Ile His Ser Ser Ile Asp
 325 330 335
 Ala Leu Ala Ser Cys Tyr Gly Asp Lys Gln Gly Lys Lys Tyr Arg Ser
 340 345 350
 Trp Val Asp Arg Leu Val Ile Ser Gln Thr Ala Ser Asp Ser Trp Leu
 355 360 365
 Val Arg Phe Asp Leu Trp Glu Ala Glu Gly Asp Ala Trp Val Cys Cys
 370 375 380
 Leu Thr Thr Leu Ala Leu Asn Val Lys Pro Glu Thr Pro Gly Gly Phe
 385 390 395 400
 Val Val Thr His Ile His Lys Thr Trp Leu Lys Glu Tyr Ser Gly Asp
 405 410 415
 Glu Gln Ala Ser Lys Leu
 420

<210> 70
 <211> 422
 <212> PRT
 <213> Lolium perenne

<400> 70
 Met Asp Lys Leu Asn Gly Ser Ala Arg Leu Met Ile Val Ser Asp Leu
 1 5 10 15
 Asp His Thr Met Val Asp His His Asp Glu Glu Asn Leu Ser Leu Leu
 20 25 30
 Arg Phe Gly Ala Leu Trp Glu Ser Thr Tyr Cys Gln Asp Ser Leu Leu
 35 40 45
 Val Phe Ser Thr Gly Arg Ser Pro Thr Leu Tyr Lys Glu Leu Arg Lys
 50 55 60
 Glu Lys Pro Met Leu Thr Pro Asp Ile Thr Ile Met Ser Val Gly Ser
 65 70 75 80
 Glu Ile Thr Tyr Gly Glu Ala Met Val Pro Asp Asp Gly Trp Glu Glu
 85 90 95
 Tyr Leu Asn Asn Lys Trp Asp Lys Ser Ile Val Leu Glu Glu Thr Ala
 100 105 110
 Lys Phe Ser Glu Leu Lys Leu Gln Ala Glu Thr Glu Gln Arg Pro His
 115 120 125
 Lys Val Ser Phe Leu Val Asp Lys Lys Thr Ala Gln Glu Val Ile Lys
 130 135 140
 Ser Leu Ser Glu Lys Phe Glu Lys Arg Gly Val Asp Ala Lys Ile Ile
 145 150 155 160
 Tyr Ser Gly Gly Gln Asp Leu Asp Ile Leu Ala Gln Gly Ala Gly Lys
 165 170 175
 Gly Gln Ala Leu Ala Tyr Leu Leu Lys Lys Phe Ala Ser Cys Gly Lys
 180 185 190
 Thr Pro Asn Asn Thr Leu Val Cys Gly Asp Ser Gly Asn Asp Ala Glu
 195 200 205
 Leu Phe Ser Ile Pro Gly Val His Gly Val Met Val Ser Asn Ala Gln
 210 215 220
 Glu Glu Leu Leu Gln Trp Arg Ala Glu Asn Ala Lys Asp Asn Pro Lys
 225 230 235 240
 Val Ile His Ala Thr Glu Arg Cys Ala Ala Gly Ile Ile Gln Ala Ile
 245 250 255
 Gly His Phe Lys Leu Gly Pro Asn Val Ser Pro Arg Asp Val Glu Phe
 260 265 270
 Pro Tyr Val Lys Glu Asp Ser Phe Lys Pro Thr Ala Ala Val Val Lys
 275 280 285
 Phe Tyr Val Leu Cys Glu Lys Trp Arg Arg Ala Asp Val Pro Lys Thr
 290 295 300
 Asp Ser Val Ile Glu Tyr Phe Lys Asn Ile Thr Asp Ala Ser Gly Val
 305 310 315 320
 Ile Ile His Pro Ser Gly Leu Glu Leu Ser Ile His Ser Ser Ile Asp
 325 330 335
 Ala Leu Ala Ser Cys Tyr Gly Asp Lys Gln Gly Lys Lys Tyr Arg Ser
 340 345 350
 Trp Val Asp Arg Leu Val Ile Ser Gln Thr Ala Ser Asp Ser Trp Leu
 355 360 365
 Val Arg Phe Asp Leu Trp Glu Ala Glu Gly Asp Lys Trp Val Cys Cys
 370 375 380
 Leu Thr Thr Leu Ala Leu Asn Val Lys Pro Glu Thr Pro Gly Gly Phe
 385 390 395 400
 Val Val Thr His Ile His Lys Thr Trp Leu Lys Glu Tyr Ser Gly Asp
 405 410 415
 Glu Gln Ala Ser Lys Leu
 420

<210> 71
 <211> 1062
 <212> PRT
 <213> Festuca arundinacea

<400> 71
 Met Ala Ala Gly Asn Glu Trp Ile Asn Gly Tyr Leu Glu Ala Ile Leu
 1 5 10 15
 Asp Ala Gly Ser Lys Leu Arg Pro Gln Gly Val Gln Leu Pro Pro Leu
 20 25 30

Glu Thr Ala Pro Ala Leu Ala Ala Glu Glu Ser Gly Ala Ala Tyr Asn
 35 40 45
 Pro Thr Arg Tyr Phe Val Glu Glu Val Val Arg Ser Phe Asp Glu Gln
 50 55 60
 Ala Leu His Lys Thr Trp Thr Lys Val Val Ala Met Arg Asn Ser Gln
 65 70 75 80
 Glu Arg Ser Asn Arg Leu Glu Asn Leu Cys Trp Arg Ile Trp Asn Val
 85 90 95
 Ser Arg Gln Lys Lys Gln Val Glu Trp Asp Tyr Thr Lys Glu Val Ala
 100 105 110
 Arg Arg Lys Leu Glu Gln Glu Leu Gly Ser Arg Glu Ala Ala Glu Asp
 115 120 125
 Leu Ser Glu Leu Ser Glu Gly Glu Lys Asp Thr Thr Ala Lys Pro
 130 135 140
 Asp Ala Ala Thr Ala Gln Pro Ser Thr Asp Asp Gly Glu His Gln Gln
 145 150 155 160
 Pro Gln Pro Arg Thr Arg Leu Ala Arg Ile Asn Ser Glu Val Arg Leu
 165 170 175
 Val Ser Asp Asp Glu Glu Gln Thr Lys Lys Arg Asn Leu Tyr Ile
 180 185 190
 Val Leu Ile Ser Ile His Gly Leu Val Arg Gly Glu Asn Met Glu Leu
 195 200 205
 Gly Arg Asp Ser Asp Thr Gly Gly Gln Val Lys Tyr Val Val Glu Leu
 210 215 220
 Ala Arg Ala Leu Ala Ala Thr Ala Gly Val His Arg Val Asp Leu Leu
 225 230 235 240
 Thr Arg Gln Ile Ser Cys Pro Asp Val Asp Trp Thr Tyr Gly Glu Pro
 245 250 255
 Val Glu Met Leu Glu Arg Leu Ser Ser Ala Asp Ala Asp Glu Asp Asp
 260 265 270
 Gly Glu Gln Ser Gly Gly Ala Tyr Ile Val Arg Leu Pro Cys Gly
 275 280 285
 Pro Arg Asp Gln Tyr Ile Pro Lys Glu Glu Leu Trp Pro His Ile Pro
 290 295 300
 Glu Phe Val Asp Arg Ala Leu Ser His Val Thr Glu Val Ala Arg Ala
 305 310 315 320
 Leu Gly Asp Gln Leu Gln Pro Pro Pro Thr Pro Ala Ala Gly Asp Gly
 325 330 335
 Ala Ala Leu Val Ala Ala Pro Ile Trp Pro Tyr Val Ile His Gly His
 340 345 350
 Tyr Ala Asp Ala Ala Glu Val Ala Ala Asn Leu Ala Ser Ala Leu Asn
 355 360 365
 Val Pro Met Val Met Thr Gly His Ser Leu Gly Arg Asn Lys Leu Glu
 370 375 380
 Gln Leu Leu Lys Leu Gly Arg Met Pro Gly Pro Glu Ile Gln Gly Thr
 385 390 395 400
 Tyr Lys Ile Ala Arg Arg Ile Glu Ala Glu Glu Thr Gly Leu Asp Thr
 405 410 415
 Ala Glu Met Val Val Thr Ser Thr Lys Gln Glu Ile Glu Glu Gln Trp
 420 425 430
 Gly Leu Tyr Asp Gly Phe Asp Leu Met Val Glu Arg Lys Leu Arg Val
 435 440 445
 Arg Gln Arg Arg Gly Val Ser Ser Leu Gly Arg Tyr Met Pro Arg Met
 450 455 460
 Ala Val Ile Pro Pro Gly Met Asp Phe Ser Phe Val Glu Thr Gln Asp
 465 470 475 480
 Thr Ala Glu Gly Asp Gly Ala Asp Leu Gln Met Leu Ile Ala Pro Asp
 485 490 495
 Lys Ala Lys Lys Ala Leu Pro Pro Ile Trp Ser Asp Val Leu Arg Phe
 500 505 510
 Phe Thr Asn Pro His Lys Pro Met Ile Leu Ala Leu Ser Arg Pro Asp
 515 520 525
 Pro Lys Lys Asn Val Thr Thr Leu Leu Lys Ala Tyr Gly Glu Ser Arg
 530 535 540
 Gln Leu Arg Glu Leu Ala Asn Leu Thr Leu Ile Leu Gly Asn Arg Asp
 545 550 555 560

Asp Ile Glu Asp Met Ala Gly Gly Gly Ala Val Leu Thr Ala Val
 565 570 575
 Leu Lys Leu Ile Asp Arg Tyr Asp Leu Tyr Gly Gln Val Ala Tyr Pro
 580 585 590
 Lys His His Lys Gln Thr Asp Val Pro His Ile Tyr Arg Leu Ala Ala
 595 600 605
 Lys Thr Lys Gly Val Phe Thr Asn Pro Ala Leu Val Glu Pro Phe Gly
 610 615 620
 Leu Thr Ile Ile Glu Ala Ala Ala Tyr Gly Leu Pro Val Val Ala Thr
 625 630 635 640
 Lys Asn Gly Gly Pro Val Asp Ile Leu Lys Ala Leu Asn Asn Gly Leu
 645 650 655
 Leu Val Asp Pro His Ser Ala Glu Ala Ile Thr Gly Ala Leu Leu Ser
 660 665 670
 Leu Leu Ala Glu Lys Ser Arg Trp Val Glu Cys Arg Arg Asn Gly Leu
 675 680 685
 Arg Asn Ile His Arg Phe Ser Trp Pro His His Cys Arg Leu Tyr Leu
 690 695 700
 Ser His Val Ser Thr Tyr Cys Asp Gln Pro Ser Pro His Gln Pro Leu
 705 710 715 720
 Arg Val Pro Leu Gly Leu Gly Ser Ser Thr Ser Phe Gly Ala Asp Asp
 725 730 735
 Ser Leu Ser Asp Ser Leu Arg Gly Leu Ser Leu Gln Ile Ser Val Asp
 740 745 750
 Ala Ser Ser Asp Leu Asn Ala Ala Asp Ser Ala Ala Ile Met Asp
 755 760 765
 Ala Leu Arg Arg Arg Pro Ala Ser Glu Lys Pro Ala Ser Ser Gly Ala
 770 775 780
 Arg Ala Leu Gly Phe Ala Pro Gly Arg Arg Glu Ser Leu Leu Val Val
 785 790 795 800
 Ala Val Asp Cys Tyr Gly Asp Asp Gly Lys Pro Asp Val Lys Gln Leu
 805 810 815
 Lys Lys Ala Ile Asp Ala Ala Val Ser Val Gly Glu Cys Ala Gly Ala
 820 825 830
 Lys Gln Gly Tyr Val Leu Ser Thr Gly Met Thr Ile Pro Glu Ala Ala
 835 840 845
 Glu Ala Ile Lys Ala Cys Gly Ala Asp Val Ala Ser Phe Asp Ala Leu
 850 855 860
 Ile Cys Ser Ser Gly Ala Glu Leu Cys Tyr Pro Trp Lys Glu Leu Ala
 865 870 875 880
 Ala Asp Glu Glu Tyr Ser Gly His Val Ala Phe Arg Trp Pro Gly Asp
 885 890 895
 His Val Lys Ser Ala Val Pro Arg Leu Gly Ser Leu Glu Glu Ile Ala
 900 905 910
 Leu Ala Ile Asp Arg Pro Ala Cys Ser Val His Cys His Ala Tyr Ala
 915 920 925
 Ala Thr Asp Ala Ser Lys Val Lys Val Asp Ser Ile Arg Lys Ser
 930 935 940
 Leu Arg Met Arg Gly Phe Arg Cys Asn Leu Val Tyr Thr Arg Ala Cys
 945 950 955 960
 Thr Arg Leu Asn Val Ile Pro Leu Ser Ala Ser Arg Pro Arg Ala Leu
 965 970 975
 Arg Tyr Leu Ser Ile Gln Trp Gly Ile Asp Leu Ser Lys Val Ala Val
 980 985 990
 Leu Val Gly Glu Thr Gly Asp Thr Asp Arg Glu Arg Leu Leu Pro Gly
 995 1000 1005
 Val His Lys Thr Leu Ile Leu Pro Gly Met Val Ala Arg Gly Ser Glu
 1010 1015 1020
 Glu Leu Leu Arg Gly Asp Asp Gly Tyr Thr Met Ala Asp Val Val Ala
 1025 1030 1035 1040
 Met Asp Ser Pro Asn Ile Val Thr Leu Ala Glu Gly Gln Ser Ala Ser
 1045 1050 1055
 Asp Leu Leu Lys Ala Ile
 1060

<210> 72
 <211> 1074
 <212> PRT
 <213> *Lolium perenne*

<400> 72
 Met Ala Gly Asn Asp Trp Ile Asn Ser Tyr Leu Glu Ala Ile Leu Asp
 1 5 10 15
 Ala Gly Gly Thr Ala Gly Asp Ile Ser Ala Ala Ser Val Ala Gly Gly
 20 25 30
 Asp Asp Gly Pro Gly Ala Gly Gly Thr Ala Gly Glu Lys Arg Asp
 35 40 45
 Lys Ser Ser Leu Met Leu Arg Glu Arg Gly Arg Phe Asn Pro Ala Arg
 50 55 60
 Tyr Phe Val Glu Glu Val Ile Ser Gly Phe Asp Glu Thr Asp Leu Tyr
 65 70 75 80
 Lys Thr Trp Val Arg Thr Ser Ala Met Arg Ser Pro Gln Glu Arg Asn
 85 90 95
 Thr Arg Leu Glu Asn Met Ser Trp Arg Ile Trp Asn Leu Ala Arg Lys
 100 105 110
 Lys Lys Gln Ile Glu Gly Glu Ala Ser Arg Leu Ser Lys Lys Arg
 115 120 125
 Leu Glu Arg Glu Lys Ala Arg Arg Asp Ala Ala Asp Leu Ser Glu
 130 135 140
 Asp Ile Ser Glu Gly Glu Lys Gly Glu Asn Ile Asn Gly Ser Ser Val
 145 150 155 160
 His Asp Glu Ser Thr Arg Gly Arg Met Pro Arg Ile Gly Ser Thr Asp
 165 170 175
 Ala Ile Glu Val Trp Ala Asn Gln His Lys Asp Lys Lys Leu Tyr Ile
 180 185 190
 Val Leu Ile Ser Ile His Gly Leu Ile Arg Gly Glu Asn Met Glu Leu
 195 200 205
 Gly Arg Asp Ser Asp Thr Gly Gly Gln Val Lys Tyr Val Val Glu Leu
 210 215 220
 Ala Arg Ala Leu Gly Glu Thr Pro Gly Val Tyr Arg Val Asp Leu Leu
 225 230 235 240
 Thr Arg Gln Ile Ser Ala Pro Asp Val Asp Trp Ser Tyr Gly Glu Pro
 245 250 255
 Thr Glu Met Leu Ser Pro Arg Asn Ser Glu Asn Leu Gly Asp Asp Met
 260 265 270
 Gly Glu Ser Ser Gly Ala Tyr Ile Val Arg Ile Pro Phe Gly Pro Arg
 275 280 285
 Glu Lys Tyr Ile Pro Lys Glu Gln Leu Trp Pro His Ile Gln Glu Phe
 290 295 300
 Val Asp Gly Ala Leu Val His Ile Met Gln Met Ser Lys Val Leu Gly
 305 310 315 320
 Glu Gln Val Gly Arg Glu Arg Arg Val Trp Pro Val Val Ile His Gly
 325 330 335
 His Tyr Ala Asp Ala Gly Asp Ser Ala Ala Leu Leu Ser Gly Ala Leu
 340 345 350
 Asn Val Pro Met Val Phe Thr Gly His Ser Leu Gly Arg Asp Lys Leu
 355 360 365
 Glu Gln Leu Leu Lys Gln Gly Arg Gln Thr Arg Asp Glu Val Asn Ala
 370 375 380
 Thr Tyr Lys Ile Met Arg Arg Ile Glu Ala Glu Leu Cys Leu Asp
 385 390 395 400
 Ala Ser Glu Ile Ile Thr Ser Thr Arg Gln Glu Ile Glu Lys Gln
 405 410 415
 Trp Gly Leu Tyr Asn Gly Phe Asp Val Thr Met Glu Arg Lys Leu Arg
 420 425 430
 Ala Arg Thr Lys Arg Gly Val Ser Cys Tyr Gly Arg Tyr Met Pro Arg
 435 440 445
 Met Ile Ala Ile Pro Pro Gly Met Glu Phe Ser His Ile Val Pro His
 450 455 460
 Asp Val Asp Leu Asp Gly Asp Glu Ala Asn Glu Val Gly Ser Gly Ser
 465 470 475 480

Pro Asp Pro Pro Ile Trp Ala Asp Ile Met Arg Phe Phe Ser Asn Pro
 485 490 495
 Arg Lys Pro Met Ile Leu Ala Leu Ala Arg Pro Asp Pro Lys Lys Asn
 500 505 510
 Ile Thr Thr Leu Val Lys Ala Phe Gly Glu His Pro Gly Leu Arg Asn
 515 520 525
 Leu Ala Asn Leu Thr Leu Ile Met Gly Asn Arg Asp Val Ile Asp Glu
 530 535 540
 Met Ser Ser Thr Asn Gly Ala Val Leu Thr Ser Val Leu Lys Leu Ile
 545 550 555 560
 Asp Lys Tyr Asp Leu Tyr Gly Gln Val Ala Tyr Pro Lys His His Lys
 565 570 575
 Gln Ser Glu Val Pro Asp Ile Tyr Arg Leu Ala Ala Arg Thr Lys Gly
 580 585 590
 Val Phe Ile Asn Cys Ala Tyr Ile Glu Pro Phe Gly Leu Thr Leu Ile
 595 600 605
 Glu Ala Ala Ala Tyr Gly Leu Pro Met Val Ala Thr Gln Asn Gly Gly
 610 615 620
 Pro Val Asp Ile His Arg Val Leu Asp Asn Gly Ile Leu Val Asp Pro
 625 630 635 640
 His Asn Gln Asn Asp Ile Ala Glu Ala Leu Tyr Lys Leu Val Ser Asp
 645 650 655
 Lys His Leu Trp Ala Gln Cys Arg Gln Asn Gly Leu Asp Asn Ile His
 660 665 670
 Arg Phe Ser Trp Pro Glu His Cys Lys Asn Tyr Leu Ser Arg Val Gly
 675 680 685
 Thr Val Lys Pro Arg His Pro Arg Trp Gln Arg Ser Asp Asp Ala Thr
 690 695 700
 Glu Val Ser Glu Ser Asp Ser Pro Gly Asp Ser Leu Arg Asp Val His
 705 710 715 720
 Asp Ile Ser Leu Asn Leu Lys Leu Ser Leu Asp Ser Glu Lys Ala Gly
 725 730 735
 Thr Lys Ile Asn Thr Glu Arg Asn Ser Thr Asn Ala Arg Arg Asn Leu
 740 745 750
 Glu Asp Ala Val Leu Lys Phe Ser Asn Ala Val Ser Glu Gly Thr Lys
 755 760 765
 Asp Glu Ser Asp Glu Asn Ala Glu Ala Thr Thr Gly Ser Ile Asn Gly
 770 775 780
 His Leu Tyr Gly Glu Lys His Ile Val Val Ile Ala Val Asp Ser Val
 785 790 795 800
 Gln Asn Ala Asp Leu Val Gln Ile Ile Lys Asn Leu Phe Glu Ala Ser
 805 810 815
 Arg Lys Glu Lys Ser Ser Gly Ala Val Gly Phe Val Leu Ser Thr Ser
 820 825 830
 Arg Ala Ile Ser Glu Thr Leu Thr Phe Leu Thr Ser Gly Gly Ile Gln
 835 840 845
 Thr Thr Glu Phe Asp Ala Phe Ile Cys Ser Ser Gly Ser Asp Leu Cys
 850 855 860
 Tyr Pro Ser Ser Ser Ser Glu Asp Met Leu Ser Pro Thr Glu Leu Pro
 865 870 875 880
 Phe Met Ile Asp Leu Asp Tyr His Ser Gln Ile Glu Tyr Arg Trp Gly
 885 890 895
 Gly Glu Gly Leu Arg Lys Thr Leu Ile Arg Trp Ala Ala Glu Asn Asn
 900 905 910
 Ser Gln Ser Gly Gln Glu Val Val Thr Glu Asp Glu Glu Cys Ser Ser
 915 920 925
 Thr Tyr Cys Ile Ser Phe Lys Val Lys Asn Thr Glu Ala Val Pro Pro
 930 935 940
 Val Lys Asp Leu Arg Lys Thr Met Arg Ile Gln Ala Leu Arg Cys His
 945 950 955 960
 Val Leu Tyr Ser His Asp Gly Ser Lys Leu Asn Leu Ile Pro Leu Leu
 965 970 975
 Ala Ser Arg Ser Gln Ala Leu Arg Tyr Leu Tyr Ile Arg Trp Gly Val
 980 985 990
 Glu Leu Ala Asn Met Thr Val Val Gly Glu Ser Gly Asp Thr Asp
 995 1000 1005

Tyr Glu Gly Leu Leu Gly Gly Val His Lys Thr Ile Ile Leu Lys Gly
 1010 1015 1020
 Ser Phe Asn Ala Ala Pro Asn Gln Leu His Ala Ala Arg Ser Tyr Ser
 1025 1030 1035 1040
 Leu Glu Asp Val Ile Ser Phe Asp Lys Pro Gly Ile Ala Ser Val Glu
 1045 1050 1055
 Gly Tyr Leu Pro Asp Ser Leu Lys Ser Ala Leu Gln Gln Phe Gly Val
 1060 1065 1070
 Leu Asn

<210> 73
 <211> 937
 <212> PRT
 <213> *Lolium perenne*

<400> 73
 Met Ala Ala Gly Asn Glu Trp Ile Asn Gly Tyr Leu Glu Ala Ile Leu
 1 5 10 15
 Asp Ala Gly Ser Lys Leu Arg Pro Gln Gly Val Gln Leu Pro Pro Leu
 20 25 30
 Glu Thr Ala Pro Ala Leu Ala Ala Glu Glu Ser Ser Ala Ala Tyr Asn
 35 40 45
 Pro Thr Arg Tyr Phe Val Glu Glu Val Val Arg Ser Phe Asp Glu Gln
 50 55 60
 Ala Leu His Lys Thr Trp Thr Lys Val Val Ala Met Arg Asn Ser Gln
 65 70 75 80
 Glu Arg Ser Asn Arg Leu Glu Asn Leu Cys Trp Arg Ile Trp Asn Val
 85 90 95
 Ser Arg Gln Lys Lys Gln Val Glu Trp Asp Tyr Thr Lys Glu Val Ala
 100 105 110
 Arg Arg Lys Leu Glu Gln Glu Leu Gly Ser Arg Glu Ala Ala Glu Asp
 115 120 125
 Leu Ser Glu Leu Ser Glu Gly Glu Lys Asp Thr Thr Ala Lys Pro
 130 135 140
 Asp Ala Ala Ala Ala Gln Pro Ser Ala Asp Asp Gly Glu His Gln Gln
 145 150 155 160
 Pro Gln Pro Arg Thr Arg Leu Ala Arg Ile Asn Ser Glu Val Arg Leu
 165 170 175
 Val Ser Asp Asp Glu Glu Glu Gln Thr Lys Lys Arg Asn Leu Tyr Ile
 180 185 190
 Val Leu Ile Ser Ile His Gly Leu Val Arg Gly Glu Asn Met Glu Leu
 195 200 205
 Gly Arg Asp Ser Asp Thr Gly Gly Gln Val Lys Tyr Val Val Glu Leu
 210 215 220
 Ala Arg Ala Leu Ala Ala Thr Ala Gly Val His Arg Val Asp Leu Leu
 225 230 235 240
 Thr Arg Gln Ile Ser Cys Pro Asp Val Asp Trp Thr Tyr Gly Glu Pro
 245 250 255
 Val Glu Met Leu Glu Arg Leu Ser Ser Ala Asp Ala Asp Asp Asp Asp
 260 265 270
 Gly Glu Gln Ala Gly Gly Ala Tyr Ile Val Arg Leu Pro Cys Gly
 275 280 285
 Pro Arg Asp Gln Tyr Ile Pro Lys Glu Glu Leu Trp Pro His Ile Pro
 290 295 300
 Glu Phe Val Asp Arg Ala Leu Ser His Val Thr Glu Val Ala Arg Ala
 305 310 315 320
 Leu Gly Glu Gln Leu Gln Pro Pro Pro Ser Pro Ala Asp Gly Ala Val
 325 330 335
 Ala Ala Pro Ile Trp Pro Tyr Val Ile His Gly His Tyr Ala Asp Ala
 340 345 350
 Ala Glu Val Ala Ala Asn Leu Ala Ser Ala Leu Asn Val Pro Met Val
 355 360 365
 Met Thr Gly His Ser Leu Gly Arg Asn Lys Leu Glu Gln Leu Leu Lys
 370 375 380

Leu Gly Arg Met Pro Gly Pro Glu Ile Gln Gly Thr Tyr Lys Ile Ala
 385 390 395 400
 Arg Arg Ile Glu Ala Glu Glu Thr Gly Leu Asp Thr Ala Glu Met Val
 405 410 415
 Val Thr Ser Thr Lys Gln Glu Ile Glu Glu Gln Trp Gly Leu Tyr Asp
 420 425 430
 Gly Phe Asp Leu Met Val Glu Arg Lys Leu Arg Val Arg Gln Arg Arg
 435 440 445
 Gly Val Ser Ser Leu Gly Arg Tyr Met Pro Arg Met Ala Val Ile Pro
 450 455 460
 Pro Gly Met Asp Phe Ser Phe Val Glu Thr Gln Asp Thr Ala Asp Gly
 465 470 475 480
 Thr Gly Arg Ser Gln Met Leu Ile Ala Pro Asp Lys Ala Lys Ala
 485 490 495
 Leu Pro Pro Ile Trp Ser Asp Val Leu Arg Phe Phe Thr Asn Pro His
 500 505 510
 Lys Pro Met Ile Leu Ala Leu Ser Arg Pro Asp Pro Lys Lys Asn Val
 515 520 525
 Thr Thr Leu Leu Lys Ala Tyr Gly Glu Ser Arg Gln Leu Arg Glu Leu
 530 535 540
 Ala Asn Leu Thr Leu Ile Leu Gly Asn Arg Asp Asp Ile Glu Asp Met
 545 550 555 560
 Ala Gly Gly Gly Ala Val Leu Thr Ala Val Leu Lys Leu Ile Asp
 565 570 575
 Arg Tyr Asp Leu Tyr Gly Gln Val Ala Tyr Pro Lys His His Lys Gln
 580 585 590
 Thr Asp Val Pro His Ile Tyr Arg Leu Ala Ala Lys Thr Lys Gly Val
 595 600 605
 Phe Ile Asn Pro Ala Leu Val Glu Pro Phe Gly Leu Thr Ile Ile Glu
 610 615 620
 Ala Ala Ala Tyr Gly Leu Pro Val Val Ala Thr Lys Asn Gly Gly Pro
 625 630 635 640
 Val Asp Ile Leu Lys Ala Leu His Asn Gly Leu Leu Val Asp Pro His
 645 650 655
 Ser Ala Glu Ala Ile Thr Gly Ala Leu Leu Ser Leu Leu Ala Glu Lys
 660 665 670
 Ser Arg Trp Val Glu Cys Arg Arg Asn Gly Leu Arg Asn Ile His Arg
 675 680 685
 Phe Ser Trp Pro His His Cys Arg Leu Tyr Leu Ser His Val Ser Thr
 690 695 700
 Tyr Cys Asp Gln Pro Ser Pro His Gln Pro Leu Arg Val Pro Leu Ala
 705 710 715 720
 Leu Gly Ser Ser Thr Ser Phe Gly Ala Asp Asp Ser Leu Ser Asp Ser
 725 730 735
 Leu Arg Gly Leu Ser Leu Gln Ile Ser Val Asp Ala Ser Ser Asp Leu
 740 745 750
 Asn Ala Ala Asp Ser Ala Ala Ala Ile Met Asp Ala Leu Arg Arg Arg
 755 760 765
 Pro Ala Ser Glu Lys Pro Ala Ser Ser Gly Ala Arg Ala Leu Gly Phe
 770 775 780
 Ala Pro Gly Arg Arg Glu Ser Leu Leu Val Val Ala Val Asp Cys Tyr
 785 790 795 800
 Gly Asp Asp Gly Lys Pro Asp Val Glu Gln Leu Lys Lys Ala Ile Asp
 805 810 815
 Ala Ala Val Ser Val Gly Glu Cys Ala Gly Ala Lys Gln Gly Tyr Val
 820 825 830
 Leu Ser Thr Gly Met Thr Ile Pro Glu Ala Ala Glu Ala Ile Lys Ala
 835 840 845
 Cys Gly Ala Asp Val Ala Ser Phe Asp Ala Leu Ile Cys Ser Ser Gly
 850 855 860
 Ala Glu Leu Cys Tyr Pro Trp Lys Lys Leu Val Ala Asp Glu Glu Tyr
 865 870 875 880
 Ser Gly His Val Ala Phe Arg Trp Pro Gly Asp His Val Lys Ser Ala
 885 890 895
 Val Pro Arg Leu Gly Ser Met Glu Glu Ile Ala Leu Ala Ile Asp Arg
 900 905 910

Pro Ala Ser Ser Val His Cys His Ala Tyr Ala Ala Thr Asp Ala Ser
 915 920 925
 Lys Val Ser Ile Thr Glu His Tyr Leu
 930 935

<210> 74
 <211> 808
 <212> PRT
 <213> *Lolium perenne*

<400> 74
 Met Ala Ala Lys Leu Thr Arg Leu His Ser Leu Arg Glu Arg Leu Gly
 1 5 10 15
 Ala Thr Phe Ser Ser His Pro Asn Glu Leu Ile Ala Leu Phe Ser Lys
 20 25 30
 Tyr Val His Gln Gly Lys Gly Met Leu Gln Arg His Gln Leu Leu Thr
 35 40 45
 Glu Phe Glu Ala Leu Phe Glu Ala Asp Lys Glu Arg Tyr Ala Pro Phe
 50 55 60
 Glu Asp Ile Leu Arg Ala Ala Gln Glu Ala Ile Val Leu Pro Pro Trp
 65 70 75 80
 Val Ala Leu Ala Ile Arg Pro Arg Pro Gly Val Trp Asp Tyr Ile Arg
 85 90 95
 Val Asn Val Ser Glu Leu Ala Val Glu Glu Leu Thr Val Ser Glu Tyr
 100 105 110
 Leu Ala Phe Lys Glu Gln Leu Val Asp Glu His Ala Ser Ser Lys Phe
 115 120 125
 Val Leu Glu Leu Asp Phe Glu Pro Phe Asn Ala Ser Phe Pro Arg Pro
 130 135 140
 Ser Met Ser Lys Ser Ile Gly Asn Gly Val Gln Phe Leu Asn Arg His
 145 150 155 160
 Leu Ser Ser Lys Leu Phe Gln Asp Lys Glu Ser Leu Tyr Pro Leu Leu
 165 170 175
 Asn Phe Leu Lys Ala His Asn His Gln Gly Thr Thr Met Met Leu Asn
 180 185 190
 Asp Arg Ile Gln Ser Leu Arg Gly Leu Gln Ser Ala Leu Arg Lys Ala
 195 200 205
 Glu Glu Tyr Leu Thr Ser Ile Pro Glu Asp Thr Pro Ser Ser Glu Phe
 210 215 220
 Asn His Arg Phe Gln Glu Leu Gly Leu Glu Lys Gly Trp Gly Asp Thr
 225 230 235 240
 Ala Lys Arg Val Gln Asp Thr Ile His Leu Leu Leu Asp Leu Leu Glu
 245 250 255
 Ala Pro Asp Pro Ala Ser Leu Glu Lys Phe Leu Gly Thr Ile Pro Met
 260 265 270
 Met Phe Asn Val Val Ile Leu Ser Pro His Gly Tyr Phe Ala Gln Ser
 275 280 285
 Asn Val Leu Gly Tyr Pro Asp Thr Gly Gly Gln Val Val Tyr Ile Leu
 290 295 300
 Asp Gln Val Arg Ala Leu Glu Asn Glu Met Leu Leu Arg Ile Lys Gln
 305 310 315 320
 Gln Gly Leu Asp Ile Thr Pro Lys Ile Leu Ile Val Thr Arg Leu Leu
 325 330 335
 Pro Asp Ala Val Gly Thr Thr Cys Gly Gln Arg Leu Glu Lys Val Ile
 340 345 350
 Gly Thr Glu His Thr Asp Ile Leu Arg Val Pro Phe Arg Thr Glu Lys
 355 360 365
 Gly Ile Leu Arg Lys Trp Ile Ser Arg Phe Asp Val Trp Pro Tyr Leu
 370 375 380
 Glu Thr Tyr Thr Glu Asp Val Ala Asn Glu Leu Met Arg Glu Met Gln
 385 390 395 400
 Thr Lys Pro Asp Leu Ile Ile Gly Asn Tyr Ser Asp Gly Asn Leu Val
 405 410 415
 Ala Thr Leu Leu Ala His Lys Leu Gly Val Thr Gln Cys Thr Ile Ala
 420 425 430

His Ala Leu Glu Lys Thr Lys Tyr Pro Asn Ser Asp Ile Tyr Leu Asp
 435 440 445
 Lys Phe Asp Ser Gln Tyr His Phe Ser Cys Gln Phe Thr Ala Asp Leu
 450 455 460
 Ile Ala Met Asn His Thr Asp Phe Ile Ile Thr Ser Thr Phe Gln Glu
 465 470 475 480
 Ile Ala Gly Ser Lys Asp Ser Val Gly Gln Tyr Glu Ser His Ile Ala
 485 490 495
 Phe Thr Leu Pro Asp Leu Tyr Arg Val Val His Gly Ile Asp Val Phe
 500 505 510
 Asp Pro Lys Phe Asn Ile Val Ser Pro Gly Ala Asp Met Thr Val Tyr
 515 520 525
 Phe Pro Tyr Thr Glu Thr Asp Lys Arg Leu Thr Ala Phe His Pro Glu
 530 535 540
 Ile Glu Glu Leu Leu Tyr Ser Asp Val Glu Asn Ser Glu His Lys Phe
 545 550 555 560
 Val Leu Lys Asp Lys Asn Lys Pro Ile Ile Phe Ser Met Ala Arg Leu
 565 570 575
 Asp Arg Val Lys Asn Met Thr Gly Leu Val Glu Met Phe Gly Lys Asn
 580 585 590
 Ala His Leu Lys Asp Leu Ala Asn Leu Val Ile Val Ala Gly Asp His
 595 600 605
 Gly Lys Glu Ser Lys Asp Arg Glu Glu Gln Ala Glu Phe Lys Arg Met
 610 615 620
 Tyr Ser Leu Ile Glu Glu Tyr Lys Leu Glu Gly His Ile Arg Trp Ile
 625 630 635 640
 Ser Ala Gln Met Asn Arg Val Arg Asn Ala Glu Leu Tyr Arg Tyr Ile
 645 650 655
 Cys Asp Thr Lys Gly Ala Phe Val Gln Pro Ala Phe Tyr Glu Ala Phe
 660 665 670
 Gly Leu Thr Val Val Glu Ala Met Thr Cys Gly Leu Pro Thr Ile Ala
 675 680 685
 Thr Cys His Gly Gly Pro Ala Glu Ile Ile Val Asn Gly Val Ser Gly
 690 695 700
 Leu His Ile Asp Pro Tyr His Ser Asp Lys Ala Ala Asp Ile Leu Val
 705 710 715 720
 Asn Phe Phe Glu Lys Ser Thr Ala Asp Pro Thr Tyr Trp Asp Lys Met
 725 730 735
 Ser Glu Gly Leu Lys Arg Ile Tyr Glu Lys Tyr Thr Trp Lys Leu
 740 745 750
 Tyr Ser Glu Arg Leu Met Thr Leu Thr Gly Val Tyr Gly Phe Trp Lys
 755 760 765
 Tyr Val Ser Asn Leu Glu Arg Arg Glu Thr Arg Arg Tyr Leu Glu Met
 770 775 780
 Phe Tyr Ala Leu Lys Tyr Arg Ser Leu Ala Ala Ala Val Pro Leu Ala
 785 790 795 800
 Val Asp Gly Glu Asn Thr Asp Asn
 805

<210> 75

<211> 808

<212> PRT

<213> Festuca arundinacea

<400> 75

Met Ala Ala Lys Leu Thr Arg Leu His Ser Leu Arg Glu Arg Leu Gly
 1 5 10 15
 Ala Thr Phe Ser Ser His Pro Asn Glu Leu Ile Ala Leu Phe Ser Lys
 20 25 30
 Tyr Val His Gln Gly Lys Gly Met Leu Gln Arg His Gln Leu Leu Thr
 35 40 45
 Glu Phe Glu Ala Leu Phe Glu Ser Asp Lys Glu Arg Tyr Ala Pro Phe
 50 55 60
 Gln Asp Ile Leu Arg Ala Ala Gln Glu Ala Ile Val Leu Pro Pro Trp
 65 70 75 80

Val Ala Leu Ala Ile Arg Pro Arg Pro Gly Val Trp Asp Tyr Ile Arg
 85 90 95
 Val Asn Val Ser Glu Leu Ala Val Glu Glu Leu Thr Val Ser Glu Tyr
 100 105 110
 Leu Ala Phe Lys Glu Gln Leu Val Asp Glu His Ala Ser Ser Lys Phe
 115 120 125
 Val Leu Glu Leu Asp Phe Glu Pro Phe Asn Ala Ser Phe Pro Arg Pro
 130 135 140
 Ser Met Ser Lys Ser Ile Gly Asn Gly Val Gln Phe Leu Asn Arg His
 145 150 155 160
 Leu Ser Ser Lys Leu Phe Gln Asp Lys Glu Ser Leu Tyr Pro Leu Leu
 165 170 175
 Asn Phe Leu Lys Ala His Asn His Lys Gly Thr Thr Met Met Leu Asn
 180 185 190
 Asp Arg Ile Thr Ser Leu Arg Gly Leu Gln Ser Ala Leu Arg Lys Ala
 195 200 205
 Glu Glu Tyr Leu Thr Ser Ile Leu Glu Asp Thr Pro Ser Phe Glu Phe
 210 215 220
 Asn His Arg Phe Gln Glu Leu Gly Leu Glu Lys Gly Trp Gly Asp Thr
 225 230 235 240
 Ala Lys Arg Val Gln Asp Thr Ile His Leu Leu Leu Asp Leu Leu Glu
 245 250 255
 Ala Pro Asp Pro Ala Ser Leu Glu Lys Phe Leu Gly Thr Ile Pro Met
 260 265 270
 Met Phe Asn Val Val Ile Leu Ser Pro His Gly Tyr Phe Ala Gln Ser
 275 280 285
 Asn Val Leu Gly Tyr Pro Asp Thr Gly Gly Gln Val Val Tyr Ile Leu
 290 295 300
 Asp Gln Val Arg Ala Leu Glu Asn Glu Met Leu Leu Arg Ile Lys Gln
 305 310 315 320
 Gln Gly Leu Asp Ile Thr Pro Lys Ile Leu Ile Val Thr Arg Leu Leu
 325 330 335
 Pro Asp Ala Val Gly Thr Thr Cys Gly Gln Arg Leu Glu Lys Val Ile
 340 345 350
 Gly Thr Glu His Thr Asp Ile Leu Arg Val Pro Phe Arg Thr Glu Lys
 355 360 365
 Gly Ile Leu Arg Lys Trp Ile Ser Arg Phe Asp Val Trp Pro Tyr Leu
 370 375 380
 Glu Thr Tyr Thr Glu Asp Val Ala Asn Glu Leu Met Arg Glu Met Gln
 385 390 395 400
 Thr Lys Pro Asp Leu Ile Ile Gly Asn Tyr Ser Asp Gly Asn Leu Val
 405 410 415
 Ala Thr Leu Leu Ala His Lys Leu Gly Val Thr Gln Cys Thr Ile Ala
 420 425 430
 His Ala Leu Glu Lys Thr Lys Tyr Pro Asn Ser Asp Ile Tyr Leu Asp
 435 440 445
 Lys Phe Asp Ser Gln Tyr His Phe Ser Cys Gln Phe Thr Ala Asp Leu
 450 455 460
 Ile Ala Met Asn His Thr Asp Phe Ile Ile Thr Ser Thr Phe Gln Glu
 465 470 475 480
 Ile Ala Gly Ser Lys Asp Ser Val Gly Gln Tyr Glu Ser His Ile Ala
 485 490 495
 Phe Thr Leu Pro Asp Leu Tyr Arg Val Val His Gly Ile Asp Val Phe
 500 505 510
 Asp Pro Lys Phe Asn Ile Val Ser Pro Gly Ala Asp Met Ser Val Tyr
 515 520 525
 Phe Pro Tyr Thr Glu Thr Asp Lys Arg Leu Thr Ala Phe His Pro Glu
 530 535 540
 Ile Glu Glu Leu Leu Tyr Ser Asp Val Glu Asn Ser Glu His Lys Phe
 545 550 555 560
 Val Leu Lys Asp Lys Asn Lys Pro Ile Ile Phe Ser Met Ala Arg Leu
 565 570 575
 Asp Arg Val Lys Asn Met Thr Gly Leu Val Glu Met Phe Gly Lys Asn
 580 585 590
 Ala His Leu Lys Asp Leu Ala Asn Leu Val Ile Val Ala Gly Asp His
 595 600 605

Gly Lys Glu Ser Lys Asp Arg Glu Glu Gln Ala Glu Phe Lys Arg Met
 610 615 620
 Tyr Ser Leu Ile Glu Glu Tyr Lys Leu Lys Gly His Ile Arg Trp Ile
 625 630 635 640
 Ser Ala Gln Met Asn Arg Val Arg Asn Ala Glu Leu Tyr Arg Tyr Ile
 645 650 655
 Cys Asp Thr Lys Gly Ala Phe Val Gln Pro Ala Phe Tyr Glu Ala Phe
 660 665 670
 Gly Leu Thr Val Ile Glu Ala Met Thr Cys Gly Leu Pro Thr Ile Ala
 675 680 685
 Thr Cys His Gly Gly Pro Ala Glu Ile Ile Val Asp Gly Val Ser Gly
 690 695 700
 Leu His Ile Asp Pro Tyr His Ser Asp Lys Ala Ala Asp Ile Leu Val
 705 710 715 720
 Asn Phe Phe Glu Lys Ser Thr Ala Asp Pro Thr Tyr Trp Asp Lys Met
 725 730 735
 Ser Glu Gly Leu Lys Arg Ile Tyr Glu Lys Tyr Thr Trp Lys Leu
 740 745 750
 Tyr Ser Glu Arg Leu Met Thr Leu Thr Gly Val Tyr Gly Phe Trp Lys
 755 760 765
 Tyr Val Ser Asn Leu Glu Arg Arg Glu Thr Arg Arg Tyr Leu Glu Met
 770 775 780
 Phe Tyr Ala Leu Lys Tyr Arg Ser Leu Ala Ala Ala Val Pro Leu Ala
 785 790 795 800
 Val Asp Gly Glu Asn Thr Asp Ser
 805

<210> 76

<211> 814

<212> PRT

<213> Lolium perenne

<400> 76

Met Gly Glu Ala Ala Gly Asp Arg Val Leu Ser Arg Leu His Ser Val
 1 5 10 15
 Arg Glu Arg Ile Gly Asp Ser Leu Ser Ala His Pro Asn Glu Leu Val
 20 25 30
 Ala Val Phe Thr Arg Leu Val Asn Leu Gly Lys Gly Met Leu Gln Pro
 35 40 45
 His Gln Ile Ile Ala Glu Tyr Asn Thr Ala Ile Pro Glu Ala Glu Arg
 50 55 60
 Glu Lys Leu Lys Asp Gly Ala Phe Glu Asp Val Leu Arg Ala Ala Gln
 65 70 75 80
 Glu Ala Ile Val Ile Ser Pro Trp Val Ala Leu Ala Ile Arg Pro Arg
 85 90 95
 Pro Gly Val Trp Glu Tyr Val Arg Val Asn Val Ser Glu Leu Ala Val
 100 105 110
 Glu Glu Leu Ser Val Pro Glu Tyr Leu Gln Phe Lys Glu Gln Leu Val
 115 120 125
 Glu Gly Ser Asn Lys Asp Phe Val Leu Glu Leu Asp Phe Glu Pro Phe
 130 135 140
 Asn Ala Ser Phe Pro Arg Pro Ser Leu Ser Lys Ser Ile Gly Asn Gly
 145 150 155 160
 Val Gln Phe Leu Asn Arg His Leu Ser Ser Lys Leu Phe His Asp Lys
 165 170 175
 Glu Ser Met Tyr Pro Leu Leu Asn Phe Leu Arg Ala His Asn Tyr Lys
 180 185 190
 Gly Met Pro Met Met Met Asn Asp Arg Val Arg Ser Leu Ser Ala Leu
 195 200 205
 Gln Gly Ala Leu Arg Lys Ala Glu Glu His Leu Ser Gly Leu Pro Ala
 210 215 220
 Asp Thr Pro Tyr Ser Asp Phe His His Arg Phe Gln Glu Leu Gly Leu
 225 230 235 240
 Glu Lys Gly Trp Gly Asp Cys Ala Lys Arg Ala Gln Glu Thr Leu His
 245 250 255

Leu Leu Leu Asp Leu Leu Glu Ala Pro Asp Pro Ser Thr Leu Glu Lys
 260 265 270
 Phe Leu Gly Thr Ile Pro Met Val Phe Asn Val Val Ile Leu Ser Pro
 275 280 285
 His Gly Tyr Phe Ala Gln Ala Asn Val Leu Gly Tyr Pro Asp Thr Gly
 290 295 300
 Gly Gln Val Val Tyr Ile Leu Asp Gln Val Arg Ala Met Glu Asn Glu
 305 310 315 320
 Met Leu Leu Arg Ile Lys Gln Gln Gly Leu Asp Ile Thr Pro Arg Ile
 325 330 335
 Leu Ile Val Thr Arg Leu Leu Pro Asp Ala Thr Gly Thr Thr Cys Gly
 340 345 350
 Gln Arg Leu Glu Lys Val Leu Gly Thr Glu His Thr His Ile Leu Arg
 355 360 365
 Val Pro Phe Arg Thr Glu Asn Gly Ile Val Arg Lys Trp Ile Ser Arg
 370 375 380
 Phe Glu Val Trp Pro Tyr Leu Glu Thr Phe Thr Asp Asp Val Ala His
 385 390 395 400
 Glu Ile Ser Gly Glu Leu Gln Ala Asn Pro Asp Leu Ile Ile Gly Asn
 405 410 415
 Tyr Ser Asp Gly Asn Leu Val Ala Cys Leu Leu Ala His Lys Met Gly
 420 425 430
 Val Thr His Cys Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr Pro
 435 440 445
 Asn Ser Asp Leu Tyr Trp Lys Lys Phe Glu Asp His Tyr His Phe Ser
 450 455 460
 Cys Gln Phe Thr Thr Asp Leu Ile Ala Met Asn His Ala Asp Phe Ile
 465 470 475 480
 Ile Thr Ser Thr Phe Gln Glu Ile Ala Gly Asn Lys Asp Thr Val Gly
 485 490 495
 Gln Tyr Glu Ser His Met Ala Phe Thr Met Pro Gly Met Tyr Arg Val
 500 505 510
 Val His Gly Ile Asp Val Phe Asp Pro Lys Phe Asn Ile Val Ser Pro
 515 520 525
 Gly Ala Asp Met Ser Ile Tyr Phe Pro Tyr Ser Glu Ser Gln Arg Arg
 530 535 540
 Leu Thr Ser Leu His Pro Glu Ile Glu Glu Leu Leu Tyr Ser Asp Val
 545 550 555 560
 Asp Asn Asp Glu His Ser Cys Leu Lys Asp Arg Asn Lys Pro Ile Ile
 565 570 575
 Phe Ser Met Ala Arg Leu Asp Arg Val Lys Asn Leu Thr Gly Leu Val
 580 585 590
 Glu Leu Tyr Gly Arg Asn Pro Arg Leu Gln Glu Leu Val Asn Leu Val
 595 600 605
 Val Val Cys Gly Asp His Gly Asn Pro Ser Lys Asp Lys Glu Glu Gln
 610 615 620
 Ala Glu Phe Lys Lys Met Phe Asp Leu Ile Glu Gln Tyr Asn Leu Asn
 625 630 635 640
 Gly His Ile Arg Trp Ile Ser Ala Gln Met Asn Arg Val Arg Asn Ala
 645 650 655
 Glu Leu Tyr Arg Tyr Ile Cys Asp Thr Lys Gly Ala Phe Val Gln Pro
 660 665 670
 Ala Phe Tyr Glu Ala Phe Gly Leu Thr Val Ile Glu Ala Met Thr Cys
 675 680 685
 Gly Leu Pro Thr Phe Ala Thr Ala Tyr Gly Gly Pro Ala Glu Ile Ile
 690 695 700
 Val Asn Gly Val Ser Gly Tyr His Ile Asp Pro Tyr Gln Gly Asp Lys
 705 710 715 720
 Ala Ser Ala Leu Leu Val Glu Phe Phe Glu Lys Cys Gln Gly Asp His
 725 730 735
 Ser His Trp Thr Lys Ile Ser Leu Gly Gly Leu Gln Arg Ile Glu Glu
 740 745 750
 Lys Tyr Thr Trp Lys Leu Tyr Ser Glu Arg Leu Met Thr Leu Thr Gly
 755 760 765
 Val Tyr Gly Phe Trp Lys Tyr Val Ser Asn Leu Glu Arg Arg Glu Thr
 770 775 780

Arg Arg Tyr Leu Glu Met Leu Tyr Ala Leu Lys Tyr Arg Thr Met Ala
 785 790 795 800
 Ser Thr Val Pro Leu Ala Val Glu Gly Glu Pro Ser Ser Lys
 805 810

<210> 77
 <211> 816
 <212> PRT
 <213> Festuca arundinacea

<400> 77
 Met Gly Glu Ser Ala Gly Glu Arg Ala Leu Ser Arg Leu His Ser Val
 1 5 10 15
 Arg Glu Arg Ile Gly Asp Ser Leu Ser Ala His Thr Asn Glu Leu Val
 20 25 30
 Ala Val Phe Ser Arg Leu Val Asn His Gly Lys Gly Met Leu Gln Pro
 35 40 45
 His Gln Ile Thr Ala Glu Tyr Asn Ala Ala Ile Pro Glu Ala Glu Arg
 50 55 60
 Glu Lys Leu Lys Asp Thr Ala Phe Glu Asp Leu Leu Arg Gly Ala Gln
 65 70 75 80
 Glu Ala Ile Val Ile Pro Pro Trp Val Ala Leu Ala Ile Arg Pro Arg
 85 90 95
 Pro Gly Val Trp Glu Tyr Val Arg Val Asn Val Ser Glu Leu Gly Val
 100 105 110
 Glu Glu Leu Ser Val Pro Glu Tyr Leu Gln Phe Lys Glu Gln Leu Val
 115 120 125
 Asn Glu Ser Thr Asp Asn Asn Phe Val Leu Glu Leu Asp Phe Gly Pro
 130 135 140
 Phe Asn Ala Ser Phe Pro Arg Pro Ser Leu Ser Lys Ser Ile Gly Asn
 145 150 155 160
 Gly Val Gln Phe Leu Asn Arg His Leu Ser Ser Lys Leu Phe His Asp
 165 170 175
 Lys Glu Ser Met Tyr Pro Leu Leu Asn Phe Leu Arg Ala His Asn Tyr
 180 185 190
 Lys Gly Met Thr Met Met Leu Asn Asp Arg Ile Arg Ser Leu Ser Ala
 195 200 205
 Leu Gln Asp Ala Leu Arg Lys Ala Glu Lys His Leu Ser Gly Leu Pro
 210 215 220
 Ala Asp Thr Pro Tyr Ser Glu Phe His His Arg Phe Gln Glu Leu Gly
 225 230 235 240
 Leu Glu Lys Gly Trp Gly Asp Cys Thr Gln Arg Ala His Glu Thr Ile
 245 250 255
 His Leu Leu Asp Leu Leu Glu Ala Pro Asp Pro Ser Thr Leu Glu
 260 265 270
 Lys Phe Leu Gly Thr Ile Pro Met Val Phe Asn Val Val Ile Leu Ser
 275 280 285
 Pro His Gly Tyr Phe Ala Gln Ala Asn Val Leu Gly Tyr Pro Asp Thr
 290 295 300
 Gly Gly Gln Val Val Tyr Ile Leu Asp Gln Val Arg Ala Met Glu Asn
 305 310 315 320
 Glu Met Leu Leu Arg Ile Lys Gln Gln Gly Leu Asp Ile Thr Pro Lys
 325 330 335
 Ile Leu Ile Val Thr Arg Leu Leu Pro Asp Ala His Gly Thr Thr Cys
 340 345 350
 Gly Gln Arg Leu Glu Lys Val Leu Gly Thr Glu His Thr His Ile Leu
 355 360 365
 Arg Val Pro Phe Lys Thr Glu Asp Gly Ile Val Arg Lys Trp Ile Ser
 370 375 380
 Arg Phe Glu Val Trp Pro Tyr Leu Glu Ala Tyr Thr Asp Asp Val Ala
 385 390 395 400
 His Glu Ile Ala Gly Glu Leu Gln Ala Asn Pro Asp Leu Ile Ile Gly
 405 410 415
 Asn Tyr Ser Asp Gly Asn Leu Val Ala Cys Leu Leu Ala His Lys Leu
 420 425 430

Gly Val Thr His Cys Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr
 435 440 445
 Pro Asn Ser Asp Leu Tyr Trp Lys Lys Phe Glu Asp His Tyr His Phe
 450 455 460
 Ser Cys Gln Phe Thr Ala Asp Leu Ile Ala Met Asn His Ala Asp Phe
 465 470 475 480
 Ile Ile Thr Ser Thr Phe Gln Glu Ile Ala Gly Asn Lys Asp Thr Val
 485 490 495
 Gly Gln Tyr Glu Ser His Met Ala Phe Thr Met Pro Gly Leu Tyr Arg
 500 505 510
 Val Val His Gly Ile Asp Val Phe Asp Pro Lys Phe Asn Ile Val Ser
 515 520 525
 Pro Gly Ala Asp Met Thr Ile Tyr Phe Pro Tyr Thr Glu Gln Gln Lys
 530 535 540
 Arg Leu Thr Ser Leu His Ala Glu Ile Glu Glu Leu Leu Phe Ser Asp
 545 550 555 560
 Val Glu Asn Ser Glu His Lys Phe Val Leu Lys Asp Lys Asn Lys Pro
 565 570 575
 Ile Ile Phe Ser Met Ala Arg Leu Asp Arg Val Lys Asn Met Thr Gly
 580 585 590
 Leu Val Glu Leu Tyr Gly Arg Asn Pro Arg Leu Gln Glu Leu Val Asn
 595 600 605
 Leu Val Val Val Cys Gly Asp His Gly Lys Glu Ser Lys Asp Lys Glu
 610 615 620
 Glu Gln Ala Glu Phe Lys Arg Met Phe Asp Leu Ile Glu Gln Tyr Asn
 625 630 635 640
 Leu Ser Ser His Ile Arg Trp Ile Ser Ala Gln Met Asn Arg Val Arg
 645 650 655
 Asn Gly Glu Leu Tyr Arg Tyr Ile Cys Asp Met Lys Gly Ala Phe Val
 660 665 670
 Gln Pro Ala Phe Tyr Glu Ala Phe Gly Leu Thr Val Ile Glu Ala Met
 675 680 685
 Thr Cys Gly Leu Pro Thr Phe Ala Thr Ala Tyr Gly Gly Pro Ala Glu
 690 695 700
 Ile Ile Val Asn Gly Val Ser Gly Tyr His Ile Asp Pro Tyr Gln Asn
 705 710 715 720
 Asp Lys Ala Ser Ala Leu Leu Val Glu Phe Phe Glu Lys Cys Gln Glu
 725 730 735
 Asp Pro Ser His Trp Asn Lys Ile Ser Gln Gly Gly Leu Gln Arg Ile
 740 745 750
 Glu Glu Lys Tyr Thr Trp Lys Leu Tyr Ser Glu Arg Leu Met Thr Leu
 755 760 765
 Ser Gly Val Tyr Gly Phe Trp Lys Tyr Val Ser Asn Leu Asp Arg Arg
 770 775 780
 Glu Thr Arg Arg Tyr Leu Glu Met Leu Tyr Ala Leu Lys Tyr Arg Lys
 785 790 795 800
 Met Ala Thr Thr Val Pro Leu Ala Ile Glu Gly Glu Thr Thr Gly Lys
 805 810 815

<210> 78

<211> 478

<212> PRT

<213> Festuca arundinacea

<400> 78

Trp Ile Ile Leu Glu Pro Ala Ile Glu Pro Asp Thr Pro Gly Asp Ile
 1 5 10 15
 Lys Gly Cys Trp Ser Ala Ser Ala Thr Val Ile Ser Gly Ser Gln Pro
 20 25 30
 Val Ile Met Tyr Thr Gly Gly Asp Val Glu Asn His Gln Val Gln Asn
 35 40 45
 Ile Ala Leu Pro Lys Asn Arg Ser Asp Pro Tyr Leu Ile Glu Trp Thr
 50 55 60
 Lys Ala Cys Asn Asn Pro Val Leu Gln Pro Val Gly Pro Gly Met Asn
 65 70 75 80

Pro Gly Glu Phe Arg Asp Pro Thr Thr Gly Trp Ile Gly Pro Asp Gly
 85 90 95
 Leu Trp Arg Ile Ser Ile Gly Ala Glu Val Asn Gly Tyr Ser Ala Ala
 100 105 110
 Leu Leu Tyr Lys Ser Glu Asp Phe Leu Asn Trp Ser Arg Val Asp His
 115 120 125
 Pro Leu Tyr Ser Ser Ala Ser Thr Met Trp Glu Cys Leu Asp Phe
 130 135 140
 Phe Ala Val Leu Pro Gly Ser Asn Gly Gly Leu Asp Leu Ser Ala Ala
 145 150 155 160
 Ile Pro Lys Gly Ala Lys His Val Leu Lys Val Ser Val Asp Gln Cys
 165 170 175
 Asp Lys Tyr Met Ile Gly Val Tyr Asp Leu Glu His Asp Ala Phe Val
 180 185 190
 Pro Asp Thr Ile Leu Asp Asp Arg Trp Leu Leu Pro Arg Ile Asp Tyr
 195 200 205
 Gly Asn Tyr Tyr Ala Ser Lys Ser Phe Phe Asp Ser Lys Asn Arg Arg
 210 215 220
 Arg Ile Ile Trp Gly Trp Thr Asn Glu Ser Asp Ser Ser Asp Asp
 225 230 235 240
 Val Ala Lys Gly Trp Ala Gly Ile Tyr Ala Ile Pro Arg Thr Ile Trp
 245 250 255
 Leu Asp Arg Asp Gly Lys Gln Leu Leu Gln Trp Pro Val Glu Glu Ile
 260 265 270
 Glu Ser Leu Arg Arg Asn Glu Ile Asn Tyr Gln Gly Leu Asp Leu Glu
 275 280 285
 Lys Gly Asp Leu Tyr Glu Ile Lys Gly Val Asp Thr Leu Gln Ala Asp
 290 295 300
 Val Glu Ile Asp Phe Glu Leu Thr Ser Ile Asp Asp Ala Asp Ser Phe
 305 310 315 320
 Asp Pro Ser Trp Leu Leu Asp Pro Glu Lys His Cys Arg Glu Ala Gly
 325 330 335
 Ala Ser Val His Gly Ile Gly Pro Phe Gly Leu Val Ile Leu Ala
 340 345 350
 Thr Gly Asp Met Glu Glu His Thr Val Val His Phe Arg Val Tyr Lys
 355 360 365
 Ser Gln Lys Glu Tyr Met Ile Leu Met Cys Ser Asp Ile Arg Arg Ser
 370 375 380
 Ser Leu Arg Gln Gly Leu Tyr Ala Pro Ala Tyr Gly Gly Phe Phe Glu
 385 390 395 400
 Phe Asp Leu Glu Lys Glu Arg Lys Ile Ser Leu Arg Thr Leu Ile Asp
 405 410 415
 Arg Ser Ala Val Glu Ser Phe Gly Gly Gly Arg Val Cys Ile Ile
 420 425 430
 Ala Arg Val Tyr Pro Val Ala Ile Val Asp Asp Gly Ser Ala His Met
 435 440 445
 Tyr Ala Phe Asn Asn Gly Ser Thr Thr Val Arg Val Pro Gln Ile Arg
 450 455 460
 Ala Trp Ser Met Met Thr Ala Gln Val Asn Leu Lys Lys Gly
 465 470 475

<210> 79

<211> 583

<212> PRT

<213> Lolium perenne

<400> 79

Met Gly Asn Pro Lys Trp Val Leu Ala Pro Trp Ala Val Leu Leu
 1 5 10 15
 Leu Gln Leu Ala Ser Ala Ser His His Ala Arg Leu Ser Leu Glu Thr
 20 25 30
 Ser Ala Ala Ser Pro Ser Val Pro Ala Ser Ile Val Ser Pro Leu Leu
 35 40 45
 Arg Thr Gly Tyr His Phe Gln Pro Pro Met Asn Trp Ile Asn Asp Pro
 50 55 60

Asn Gly Pro Leu Tyr Tyr Lys Gly Trp Tyr His Leu Phe Tyr Gln Tyr
 65 70 75 80
 Asn Pro Lys Gly Ala Val Trp Gly Asn Ile Ile Trp Ala His Ser Val
 85 90 95
 Ser Arg Asp Leu Ile Asn Trp Ile Ala Leu Glu Pro Ala Ile Ser Pro
 100 105 110
 Thr Ile Pro Thr Asp Gln Tyr Gly Val Trp Ser Gly Ser Thr Thr Ile
 115 120 125
 Leu His Asp Gly Thr Pro Ala Ile Leu Tyr Thr Gly Ile Asp Arg Pro
 130 135 140
 Ser Val Asn Tyr Gln Ile Gln Asn Ile Ala Leu Pro Lys Asn Ala Ser
 145 150 155 160
 Asp Pro Leu Leu Arg Glu Trp Tyr Lys Pro Gly Tyr Asn Pro Ile Ala
 165 170 175
 Val Pro Val Glu Gly Ile Asn Ala Thr Gln Phe Arg Asp Pro Thr Thr
 180 185 190
 Ala Trp Phe Ala Gly Arg His Trp Arg Met Leu Val Gly Gly Leu Arg
 195 200 205
 Pro Gly Thr Leu Arg Gly Glu Ala Ile Leu Tyr Arg Ser Arg Asp Phe
 210 215 220
 Lys His Trp Val Arg Ala Lys His Pro Leu His Ser Ala Leu Thr Gly
 225 230 235 240
 Met Trp Glu Cys Pro Asp Phe Pro Val Gly Lys Ala Gly Val Glu
 245 250 255
 Lys Gly Leu Asp Thr Ser Glu Tyr Gly Ala Ala Ala Gly Val Glu Lys
 260 265 270
 His Val Leu Lys Asn Ser Leu Asp Leu Thr Arg Tyr Asp Tyr Tyr Thr
 275 280 285
 Ile Gly Thr Tyr Asp Asn Val Lys Glu Arg Tyr Val Pro Asp Asn Pro
 290 295 300
 Thr Gly Asp Val Tyr Gln Arg Leu Gln Tyr Asp Tyr Gly Asn Phe Tyr
 305 310 315 320
 Ala Ser Lys Thr Phe Phe Asp Pro Val Lys Gln Arg Arg Ile Leu Leu
 325 330 335
 Gly Trp Ala Asn Glu Ser Asp Ser Val Ala His Asp Lys Ala Lys Gly
 340 345 350
 Trp Ala Gly Ile Gln Ala Ile Pro Arg Lys Ile Trp Leu Asp Pro Ser
 355 360 365
 Gly Lys Gln Leu Val Gln Trp Pro Val Glu Glu Leu Glu Lys Leu Arg
 370 375 380
 Gly Lys Pro Val Asn Val Gly Asp Lys Val Val Lys Pro Gly Gln His
 385 390 395 400
 Phe Glu Val Thr Gly Leu Gln Ser Tyr Gln Ser Asp Val Glu Val Ser
 405 410 415
 Phe Glu Val Ser Ser Leu Asp Lys Ala Glu Pro Phe Asp Pro Ala Tyr
 420 425 430
 Ser Asn Asp Ala Gln Lys Leu Cys Gly Ile Lys Gly Ala Asp Val Lys
 435 440 445
 Gly Gly Val Gly Pro Phe Gly Leu Trp Val Leu Ser Ser Ala Asp Leu
 450 455 460
 Ala Glu Lys Thr Ala Val Phe Phe Arg Val Phe Lys Asp Gly Tyr Gly
 465 470 475 480
 Lys Pro Ile Val Leu Met Cys Ser Asp Pro Thr Lys Ser Ser Leu Thr
 485 490 495
 Pro Asp Leu Tyr Lys Pro Thr Phe Ala Gly Phe Val Asp Thr Asp Ile
 500 505 510
 Ser Ser Gly Lys Ile Ser Leu Arg Ser Leu Ile Asp Arg Ser Val Val
 515 520 525
 Glu Ser Phe Gly Ala Gly Lys Thr Cys Ile Leu Ser Arg Val Tyr
 530 535 540
 Pro Ser Met Ala Leu Gly Lys Asp Ala His Leu His Val Phe Asn Asn
 545 550 555 560
 Gly Glu Thr Asp Ile Lys Val Ser Lys Leu Thr Ala Trp Glu Met Lys
 565 570 575
 Arg Pro Leu Met Asn Gly Ala
 580

<210> 80
 <211> 390
 <212> PRT
 <213> *Lolium perenne*

<400> 80
 Gly Val Gly Ser Leu Leu Val Tyr Arg Ser Ala Asp Phe Leu Arg Trp
 1 5 10 15
 Gln Arg Asn Ala Ala Pro Leu His Ala Ser Ser Arg Asp Val Pro Val
 20 25 30
 Leu Glu Cys Pro Asp Leu Phe Pro Val Ala Ala Ala Gln Gly Ala
 35 40 45
 Thr Glu Gly Leu Glu Thr Ser Ala Pro Ser Gly Ala Gly Val Arg His
 50 55 60
 Val Leu Lys Leu Thr Asp Phe Ala Lys Glu Asp His Tyr Met Val Gly
 65 70 75 80
 Phe Tyr Asp Asp Val Ala Asp Thr Phe Val Pro Ala Glu Pro Glu Arg
 85 90 95
 Gly Asp Asp Pro Asp Asn Trp Arg Arg Leu Asp His Gly His Leu Tyr
 100 105 110
 Ala Ser Lys Ser Phe Tyr Asp Ala Arg Asn Lys Arg Arg Ile Leu Trp
 115 120 125
 Ala Trp Val Asp Glu Thr Asp Gly Gly Val Ala Arg Gly Trp Ala
 130 135 140
 Gly Ile Gln Ala Phe Pro Arg Ala Met Trp Leu Asp Ala Asp Gly Lys
 145 150 155 160
 Arg Leu Val Gln Trp Pro Val Glu Glu Ile Glu Thr Leu Arg Arg Lys
 165 170 175
 Arg Val Gly Leu Arg Trp Ala Thr Asp Val Glu Ala Gly Gly Arg Lys
 180 185 190
 Glu Ile Ala Gly Ile Val Ser Ser Gln Ala Asp Val Glu Val Val Phe
 195 200 205
 Glu Ile Pro Asn Leu Glu Glu Ala Glu Thr Leu Asp Pro Glu Trp Val
 210 215 220
 Leu Asp Pro Lys Gly Leu Cys Ala Ala Lys Gly Ala Ser Val His Gly
 225 230 235 240
 Gly Val Gly Pro Phe Gly Leu Leu Val Leu Ala Ser Gly Asp Leu Glu
 245 250 255
 Glu His Thr Ala Val Phe Phe Arg Val Phe Lys His Asp Gly Lys Tyr
 260 265 270
 Lys Val Leu Met Cys Thr Asp Leu Thr Lys Ser Ser Thr Lys Ala Gly
 275 280 285
 Ala His Lys Pro Ser Tyr Gly Ala Phe Leu Asp Val Asp Val Glu Lys
 290 295 300
 Asp Lys Phe Ile Ser Leu Arg Thr Leu Ile Asp His Thr Val Val Glu
 305 310 315 320
 Ser Phe Gly Asp Gly Gly Arg Thr Cys Met Thr Ala Arg Val Tyr Pro
 325 330 335
 Glu His Ala Ala Met Gly Ser Thr His Leu Tyr Val Phe Asn Asn Gly
 340 345 350
 Thr Gly Ala Val Lys Val Ser Lys Leu Glu Ala Trp Glu Leu Ala Thr
 355 360 365
 Ala Ala Val Asn Gly Gly Ser Leu Ala Pro Val Val Val Lys Ala Ser
 370 375 380
 Asp Pro Lys Glu Ala Leu
 385 390

<210> 81
 <211> 597
 <212> PRT
 <213> *Festuca arundinacea*

<400> 81
 Met Ala Gly Leu Arg Leu Ala Ala Cys Ala Ala Val Ala Val Leu Leu
 1 5 10 15

Cys Leu Leu Leu Ser Ser Ser Ala Ala Leu Arg Trp Leu Ser Asp Pro
 20 25 30
 Ala Pro Glu Ser Ala Ala Ala Gly Val Ser His Asp Ser Tyr Arg Thr
 35 40 45
 Ala Tyr His Phe Gln Pro Thr Glu Asn Trp Gln Asn Asp Pro Asn Gly
 50 55 60
 Pro Met Tyr Tyr Lys Gly Val Tyr His Phe Phe Tyr Gln Tyr Asn Pro
 65 70 75 80
 Tyr Arg Ala Thr Trp Gly Asn Gly Asn Leu Ser Trp Gly His Ser Val
 85 90 95
 Ser Val Asp Leu Val Asn Trp Ser Ala Leu Glu Asn Ala Met Asp Pro
 100 105 110
 Asp Ser Ser Phe Asp Ile Asn Gly Cys Trp Ser Gly Ser Ala Thr Ile
 115 120 125
 Leu Pro Asp Gly Thr Pro Val Phe Leu Tyr Thr Gly Ile Asp Ala Asp
 130 135 140
 Asn Asn Gln Val Gln Asn Val Ala Phe Pro Lys Asn Ala Ser Asp Pro
 145 150 155 160
 Leu Leu Arg Glu Trp Val Lys Pro Ser Tyr Asn Pro Val Ile Ala Leu
 165 170 175
 Pro Asp Asp Val Val His Asp Asn Phe Arg Asp Pro Ser Thr Ala Trp
 180 185 190
 Leu Gly Arg Asp Gly Leu Trp Arg Val Ala Val Ser Ala Gly Leu Lys
 195 200 205
 Asp Gly Thr Gly Thr Thr Leu Val Tyr Arg Ser Lys Asp Phe Arg Gln
 210 215 220
 Trp Glu Arg Asn Ala Glu Pro Leu Tyr Ser Ser Asp Ala Gly Met
 225 230 235 240
 Val Glu Cys Pro Asp Leu Phe Pro Leu Ala Glu Pro Gly Asp Gln His
 245 250 255
 Gly Leu Asp Tyr Thr Pro Ser Asn Gly Ala Ala Val Ser Tyr Val Leu
 260 265 270
 Lys Gln Ser Val Met Asp Thr Leu Ser Asp Tyr Tyr Val Leu Gly Arg
 275 280 285
 Tyr Asp Asp Ala Ala Asp Thr Phe Ser Pro Val Glu Ala Asp Asn Asp
 290 295 300
 Cys Arg Thr Trp Gln Arg Phe Asp Tyr Gly His Val Tyr Ala Ser Lys
 305 310 315 320
 Ser Phe Tyr Asp Ala Gly Lys Lys Arg Arg Val Leu Trp Ser Trp Ala
 325 330 335
 Asn Glu Ser Asp Pro Glu Ala Asp Tyr Leu Ala Arg Gly Trp Ala Gly
 340 345 350
 Val Gln Ala Val Pro Arg Arg Ile Trp Leu Asp Ser Lys Gly Lys Gln
 355 360 365
 Leu Leu Gln Trp Pro Ile Glu Glu Ile Glu Thr Leu Arg Lys Thr Arg
 370 375 380
 Val Gly Leu Leu Gly Ala Glu Met Asn Ala Gly Gly Met Asn Glu Ile
 385 390 395 400
 Ile Gly Val Ala Gly Ala Gln Ala Asp Val Glu Val Val Phe Glu Val
 405 410 415
 Pro Ser Leu Glu Gly Ala Glu Asn Leu Asp Pro Asn Gln Leu Leu Asp
 420 425 430
 Pro Gln Arg Leu Cys Gly Glu Lys Gly Ala Ser Val Leu Gly Gly Val
 435 440 445
 Gly Pro Phe Gly Leu Leu Val Leu Ala Ser Gly Asp Leu Gln Glu His
 450 455 460
 Thr Ser Val Phe Phe Arg Val Phe Arg His Glu Gly Lys Tyr Lys Val
 465 470 475 480
 Leu Met Cys Thr Asp Leu Arg Arg Ser Thr Thr Arg Ala Asp Val Tyr
 485 490 495
 Lys Pro Pro Tyr Gly Gly Phe Val Asp Ile Asp Ile Glu Lys Glu Arg
 500 505 510
 Ser Ile Ser Leu Arg Thr Leu Val Asp His Ser Val Val Glu Ser Tyr
 515 520 525
 Gly Gly Gly Arg Thr Val Ile Thr Ala Arg Val Tyr Pro Glu His
 530 535 540

Ala Ala Thr Thr Asn Ser Arg Leu Phe Met Phe Asn Asn Gly Thr Gly
 545 550 555 560
 Ala Val Lys Val Ser Lys Leu Asp Ala Trp Glu Leu Ala Pro Ala Lys
 565 570 575
 Val Asn Val Pro Gly Asp Gly Leu Ile Thr Ala Gly Ser Ser Met His
 580 585 590
 Leu Arg Glu Ala Tyr
 595

<210> 82
 <211> 399
 <212> PRT
 <213> Festuca arundinacea

<400> 82
 Leu Asn Ser Thr Glu Phe Arg Asp Pro Thr Thr Gly Trp Ile Gly Pro
 1 5 10 15
 Asp Gly Leu Trp Arg Ile Ala Ile Gly Ala Glu Leu Asn Gly Tyr Gly
 20 25 30
 Ala Ala Leu Leu Tyr Lys Ser Glu Asp Phe Leu Asn Trp Thr Arg Val
 35 40 45
 Asp His Pro Leu Tyr Ser Asp Asn Ala Pro Ser Met Trp Glu Cys Pro
 50 55 60
 Asp Phe Phe Ala Val Leu Pro Gly Asn Asn Gly Gly Leu Asp Leu Ser
 65 70 75 80
 Ala Ala Ile Pro Lys Gly Ala Lys His Val Leu Lys Met Ser Val Asp
 85 90 95
 Tyr Ser Asp Lys Tyr Met Ile Gly Val Tyr Asp Leu Lys Arg Asp Ala
 100 105 110
 Phe Val Pro Asp Val Val Leu Asp Asp Arg Arg Leu Trp Leu Arg Ile
 115 120 125
 Asp Tyr Gly Thr Phe Tyr Ala Ser Lys Ser Phe Phe Asp Ser Lys Arg
 130 135 140
 Gly Arg Arg Val Ile Trp Gly Trp Ser Asn Glu Thr Asp Ser Val Ser
 145 150 155 160
 Asp Asp Gly Ala Lys Gly Trp Ala Gly Ile His Ala Ile Pro Arg Ser
 165 170 175
 Ile Trp Leu Asp Ser Asp Gly Lys Gln Leu Leu Gln Trp Pro Ile Asp
 180 185 190
 Glu Ile Glu Ser Leu Arg Arg Asp Glu Ile Asn His Gln Gly Leu Glu
 195 200 205
 Leu Lys Asn Gly Asp Leu Phe Glu Ile Lys Gly Ile Asp Thr Leu Gln
 210 215 220
 Ala Asp Ile Glu Val Asp Phe Glu Leu Thr Ser Ile Asp Ser Ala Asp
 225 230 235 240
 Pro Phe Asp Pro Ser Trp Leu Leu Asp Val Glu Arg His Cys Arg Glu
 245 250 255
 Ala Gly Ala Ser Val Gln Gly Gly Ile Gly Pro Phe Gly Leu Val Val
 260 265 270
 Leu Ala Ser Asp Asn Met Glu Glu His Ile Ala Val His Phe Arg Val
 275 280 285
 Tyr Lys Ser Gln Lys Ser His Met Ile Leu Met Cys Ser Asp Leu Arg
 290 295 300
 Arg Ser Ser Leu Arg Ser Gly Leu Tyr Thr Pro Ala Tyr Gly Gly Phe
 305 310 315 320
 Phe Glu Phe Asp Leu Glu Lys Glu Arg Lys Ile Ser Leu Arg Thr Leu
 325 330 335
 Ile Asp Arg Ser Ala Val Glu Ser Phe Gly Gly Gly Arg Val Cys
 340 345 350
 Ile Thr Ala Arg Ile Tyr Pro Val Ala Leu Val Asp Gly Arg Val His
 355 360 365
 Met Tyr Ala Phe Asn Asn Gly Ser Thr Thr Val Arg Val Pro Gln Leu
 370 375 380
 Gly Ala Trp Ser Met Met Thr Ala Gln Val Asn Val Asn Lys Gly
 385 390 395

<210> 83
 <211> 583
 <212> PRT
 <213> Festuca arundinacea

<400> 83
 Met Gly Asn Pro Lys Trp Ile Phe Ala Pro Trp Ala Val Leu Leu Leu
 1 5 10 15
 Phe Leu Leu Gln Leu Ala Cys Ala Ser His His Thr Arg Arg Ser Leu
 20 25 30
 Glu Thr Glu Ala Ala Ser Pro Ser Val Pro Ala Ser Ile Val Ser Pro
 35 40 45
 Leu Leu Arg Thr Gly Tyr His Phe Gln Pro Pro Met Asn Trp Ile Asn
 50 55 60
 Asp Pro Asn Gly Pro Leu Tyr Tyr Lys Gly Trp Tyr His Leu Phe Tyr
 65 70 75 80
 Gln Tyr Asn Pro Lys Gly Ala Val Trp Gly Asn Ile Ile Trp Ala His
 85 90 95
 Ser Val Ser Arg Asp Leu Ile Asn Trp Ile Ala Leu Glu Pro Ala Ile
 100 105 110
 Thr Pro Ser Ile Pro Thr Asp Lys Tyr Gly Val Trp Ser Gly Ser Thr
 115 120 125
 Thr Ile Leu His Asp Gly Thr Pro Ala Ile Leu Tyr Thr Gly Ile Asp
 130 135 140
 Arg Pro Ser Ile Asn Tyr Gln Ile Gln Asn Ile Ala Leu Pro Lys Asn
 145 150 155 160
 Ala Ser Asp Pro Leu Leu Arg Glu Trp Tyr Lys Pro Gly Tyr Asn Pro
 165 170 175
 Ile Ala Val Pro Val Ala Gly Met Asn Ala Thr Gln Phe Arg Asp Pro
 180 185 190
 Thr Thr Ala Trp Phe Ala Gly Arg His Trp Arg Met Leu Val Gly Gly
 195 200 205
 Leu Arg Pro Gly Thr Leu Arg Gly Glu Ala Ile Leu Tyr Arg Ser Leu
 210 215 220
 Asp Phe Lys Asn Trp Thr Arg Ala His His Pro Leu His Ser Ala Leu
 225 230 235 240
 Thr Gly Met Trp Glu Cys Pro Asp Phe Phe Pro Val Gly Glu Ala Gly
 245 250 255
 Val Glu Lys Gly Leu Asp Thr Ser Glu His Gly Glu Gly Val Glu Lys
 260 265 270
 His Val Leu Lys Asn Ser Leu Asp Leu Thr Arg Tyr Asp Tyr Tyr Thr
 275 280 285
 Val Gly Thr Tyr Asp Asn Val Lys Glu Arg Tyr Val Pro Asp Asn Pro
 290 295 300
 Thr Gly Asp Val Tyr Arg Arg Leu Gln Tyr Asp Tyr Gly Asn Phe Tyr
 305 310 315 320
 Ala Ser Lys Thr Phe Phe Asp Pro Val Lys Gln Arg Arg Ile Leu Leu
 325 330 335
 Gly Trp Ala Asn Glu Ser Asp Ser Val Ala His Asp Lys Ala Lys Gly
 340 345 350
 Trp Ala Gly Ile Gln Ala Ile Pro Arg Lys Ile Trp Leu Asp Pro Ser
 355 360 365
 Gly Lys Gln Leu Val Gln Trp Pro Val Glu Glu Leu Glu Lys Leu Arg
 370 375 380
 Gly Lys Pro Val Thr Val Gly Asp Lys Val Val Lys Pro Gly Gln His
 385 390 395 400
 Phe Glu Val Thr Gly Leu Gln Ser Tyr Gln Ser Asp Val Glu Val Ser
 405 410 415
 Phe Glu Val Ser Ser Leu Asp Lys Ala Glu Pro Phe Asp Pro Ala Tyr
 420 425 430
 Ser Asn Asp Ala Gln Lys Leu Cys Gly Ile Lys Gly Ala Asp Ala Asn
 435 440 445
 Gly Gly Val Gly Pro Phe Gly Leu Val Val Leu Ala Ser Ala Asp Leu
 450 455 460
 Ala Glu Lys Thr Ala Val Phe Phe Arg Val Phe Lys Asp Gly Tyr Gly
 465 470 475 480

Lys Pro Ile Val Leu Met Cys Ser Asp Pro Thr Lys Ser Ser Leu Thr
 485 490 495
 Pro Asp Leu Tyr Lys Pro Thr Phe Ala Gly Phe Val Asp Thr Asp Ile
 500 505 510
 Ser Ser Gly Lys Ile Ser Leu Arg Ser Leu Ile Asp Arg Ser Val Val
 515 520 525
 Glu Ser Phe Gly Ala Gly Gly Lys Thr Cys Ile Leu Ser Arg Val Tyr
 530 535 540
 Pro Ser Met Ala Leu Gly Lys Asn Ala His Leu His Val Phe Asn Asn
 545 550 555 560
 Gly Glu Thr Asp Ile Lys Val Ser Lys Leu Thr Val Trp Glu Met Lys
 565 570 575
 Arg Pro Leu Met Asn Gly Ala
 580

<210> 84
 <211> 346
 <212> PRT
 <213> Lolium perenne

<400> 84
 Met Tyr Tyr Asn Gly Ile Tyr His Glu Phe Tyr Gln Tyr Asn Pro Asn
 1 5 10 15
 Gly Ser Leu Trp Gly Asn Ile Ile Trp Gly His Ser Val Ser Thr Asp
 20 25 30
 Leu Ile Asn Trp Ile Pro Val Glu Pro Ala Ile Glu Arg Asp Ile Pro
 35 40 45
 Ser Asp Ile Asn Gly Cys Trp Thr Gly Ser Ala Thr Ile Ile Ser Gly
 50 55 60
 Asp Gln Pro Ile Ile Tyr Thr Gly Ala Asp Lys Glu Asn Arg Gln
 65 70 75 80
 Leu Gln Asn Ile Val Leu Pro Lys Asn Lys Ser Asp Pro Tyr Leu Arg
 85 90 95
 Glu Trp Thr Lys Ala Gly Asn Asn Pro Val Ile Gln Pro Val Gly Pro
 100 105 110
 Gly Leu Asn Ala Ser Gln Phe Arg Asp Pro Thr Thr Gly Trp Ile Gly
 115 120 125
 Pro Asp Gly Leu Trp Arg Ile Ala Val Gly Ala Glu Leu Asn Gly Tyr
 130 135 140
 Gly Ala Ala Leu Leu Tyr Lys Ser Gln Asp Phe Leu Asn Trp Thr Arg
 145 150 155 160
 Val Asp His Pro Leu Tyr Ser Ser Asn Ala Ser Ser Met Trp Glu Cys
 165 170 175
 Pro Asp Phe Phe Ala Val Leu Pro Gly Asn Ser Gly Gly Leu Asp Leu
 180 185 190
 Ser Ala Glu Ile Pro Asn Gly Ala Lys His Val Leu Lys Met Ser Leu
 195 200 205
 Asp Ser Cys Asp Lys Tyr Met Ile Gly Val Tyr Asp Leu Lys Ser Asp
 210 215 220
 Thr Phe Met Pro Asp Ser Val Leu Asp Asp Arg Arg Leu Trp Ser Arg
 225 230 235 240
 Ile Asp His Gly Asn Phe Tyr Ala Ser Lys Ser Phe Phe Asp Ser Lys
 245 250 255
 Lys Gly Arg Arg Ile Ile Trp Gly Trp Thr Asn Glu Thr Asp Ser Ser
 260 265 270
 Ser Asp Asp Val Ala Lys Gly Trp Ala Gly Ile His Ala Ile Pro Arg
 275 280 285
 Thr Ile Trp Leu Asp Ser Tyr Gly Lys Gln Leu Leu Gln Trp Pro Ile
 290 295 300
 Glu Glu Ile Glu Ser Leu Arg Arg Asn Glu Ile Ser His Gln Gly Leu
 305 310 315 320
 Glu Leu Lys Lys Gly Asp Leu Phe Glu Ile Lys Gly Thr Asp Thr Ser
 325 330 335
 Gln Val Val His Val Phe Leu Gly Lys Leu
 340 345

<210> 85
 <211> 581
 <212> PRT
 <213> Festuca arundinacea

<400> 85
 Met Ala Gly Leu Arg Leu Ala Ala Val Ala Phe His Leu Cys Leu Leu
 1 5 10 15
 Leu Ser Pro Ser Ser Ser Leu Arg Arg Leu Tyr His Glu Asp Asp Glu
 20 25 30
 Ala Glu Ser Thr Pro Gly His Gly Gly Ser Arg Thr Ala Tyr His Phe
 35 40 45
 Gln Pro Ala Lys Asn Trp Gln Asn Asp Pro Asn Gly Pro Met Tyr His
 50 55 60
 Asn Gly Leu Tyr His Leu Phe Tyr Gln Tyr Asn Pro Arg Gly Ala Thr
 65 70 75 80
 Trp Gly Asn Gly Asn Leu Ser Trp Gly His Ser Val Ser Val Asp Leu
 85 90 95
 Val Asn Trp Ala Ala Leu Asp Thr Ala Leu Asp Pro Asp Ser Pro Phe
 100 105 110
 Asp Ala Asn Gly Cys Trp Ser Gly Ser Ala Thr Ile Leu Pro Asp Gly
 115 120 125
 Gln Pro Ala Ile Leu Tyr Thr Gly Ile Asp Ala Ala Gly Asn Gln Val
 130 135 140
 Gln Asn Val Ala Phe Pro Lys Lys Ala Ser Asp Pro Leu Leu Arg Glu
 145 150 155 160
 Trp Val Lys Pro Asp Tyr Asn Pro Val Ile Pro Leu Pro Lys Asp Val
 165 170 175
 Val His Asp Ser Phe Arg Asp Pro Ser Thr Ala Trp Arg Gly Arg Asp
 180 185 190
 Gly Leu Trp Arg Val Ala Ile Ala Ala Lys Val Asn Val Thr Val Thr
 195 200 205
 Val Gly Ser Thr Leu Ile Tyr Arg Ser Lys Asp Phe Arg Arg Trp Glu
 210 215 220
 Arg Asn Ala Ala Pro Leu Tyr Glu Ser Leu Ala Ala Gly Met Val Glu
 225 230 235 240
 Cys Pro Asp Leu Phe Pro Val Ala Lys Pro Gly Ala Gln Asn Gly Leu
 245 250 255
 Asp Tyr Ala Pro Ser Ser Arg Ala Ala Arg His Val Leu Lys Leu Ser
 260 265 270
 Val Val Ala Thr Leu Gln Asp Tyr Tyr Val Val Gly Leu Tyr Asp Asp
 275 280 285
 Thr Ala Asp Thr Phe Asn Ala Ala Ala Gly Ala Asp Asn Asp Trp Arg
 290 295 300
 Thr Trp Arg Arg Ile Asp Tyr Gly His Val Tyr Ala Ser Lys Ser Phe
 305 310 315 320
 Phe Asp Ala Arg Lys Asn Arg Arg Val Leu Trp Cys Trp Ala Asn Glu
 325 330 335
 Ser Asp Thr Glu Ala Asp Tyr Ile Ala Arg Gly Trp Ser Gly Val Gln
 340 345 350
 Thr Val Pro Arg Lys Ile Trp Leu Asp Ile Asp Gly Lys Gln Leu Leu
 355 360 365
 Gln Trp Pro Ile Lys Glu Ile Glu Thr Leu Arg Lys Lys Arg Val Gly
 370 375 380
 Leu Leu Gly Thr Glu Met Asn Ser Gly Gly Leu Asn Glu Ile Ile Gly
 385 390 395 400
 Val Ala Gly Ser Gln Ala Asp Val Glu Val Val Phe Lys Ile Pro Thr
 405 410 415
 Leu Glu Gly Ala Glu Asn Ile Glu Pro Asn Glu Leu Leu Asp Pro Gln
 420 425 430
 Lys Leu Cys Gly Asn Asn Gly Ala Ser Met Arg Gly Ser Ile Gly Pro
 435 440 445
 Phe Gly Leu Leu Leu Leu Ala Ser Gly Asp Leu Leu Glu His Thr Ser
 450 455 460
 Val Phe Phe Arg Val Phe Lys His Gly Ala Lys Tyr Lys Val Leu Met
 465 470 475 480

Cys Thr Asp Leu Thr Arg Ser Thr Thr Arg Ser Asp Val Tyr Lys Pro
 485 490 495
 Ser Tyr Gly Gly Phe Val Asp Met Asp Ile Asp Lys Thr Lys Ser Ile
 500 505 510
 Ser Leu Arg Thr Leu Ile Asp His Ser Val Val Glu Ser Phe Gly Gly
 515 520 525
 Gly Gly Arg Thr Cys Ile Thr Ala Arg Val Tyr Pro Glu His Ala Glu
 530 535 540
 Met Ser Asn Ser His Ile Tyr Met Phe Asn Asn Gly Thr Gly Ala Val
 545 550 555 560
 Lys Val Ala Lys Leu Glu Ala Trp Glu Leu Ala Thr Ala Asn Val Asn
 565 570 575
 Val Ala Gly His Gly
 580

<210> 86
 <211> 588
 <212> PRT
 <213> Lolium perenne

<400> 86
 Met Gly Val Arg Leu Gly Arg Val Ala Trp Ala Cys Pro Ala Val Leu
 1 5 10 15
 Val Leu Leu Leu Gln Leu Ala Gly Ala Ser His Val Val Tyr Glu Thr
 20 25 30
 Ser Leu Leu Glu Thr Glu Ala Ala Ala Ala Thr Val Pro Ala Ser Ile
 35 40 45
 Phe Glu Leu Ser Thr Gly Tyr His Phe Arg Pro Gln Lys Asn Trp Ile
 50 55 60
 Asn Asp Pro Asn Ala Pro Leu Tyr Tyr Lys Gly Trp Tyr His Leu Phe
 65 70 75 80
 Phe Gln Tyr Asn Pro Lys Gly Ala Val Trp Gly Asn Ile Val Trp Ala
 85 90 95
 His Ser Val Ser Arg Asp Leu Ile Asn Trp Val Ala Leu Glu Thr Ala
 100 105 110
 Leu Ala Pro Ser Ile Asp Ala Asp Lys Tyr Gly Cys Trp Ser Gly Ser
 115 120 125
 Ala Thr Ile Met Pro Asp Gly Thr Pro Val Ile Met Tyr Thr Gly Val
 130 135 140
 Ser Arg Pro Asp Val Asn Tyr Glu Val Gln Asn Val Ala Phe Pro Lys
 145 150 155 160
 Asn Ser Ser Asp Pro Leu Leu Arg Glu Trp Val Lys Pro Ala His Asn
 165 170 175
 Pro Val Ile Val Pro Glu Gly Gly Ile Asn Ala Thr Gln Phe Arg Asp
 180 185 190
 Pro Thr Thr Ala Trp Tyr Ala Asp Gly His Trp Arg Ile Leu Val Gly
 195 200 205
 Ala Leu Ser Gly Ala Ser Arg Gly Val Ala Tyr Val Tyr Arg Ser Arg
 210 215 220
 Asp Phe Arg Arg Trp Thr Arg Val Arg Lys Pro Leu His Ser Ala Pro
 225 230 235 240
 Thr Gly Met Trp Glu Cys Pro Asp Phe Tyr Pro Val Thr Val Asp Gly
 245 250 255
 Lys Glu Ser Gly Val Asp Thr Ser Val Val Ser Ser Arg Val Lys
 260 265 270
 His Val Leu Lys Asn Ser Leu Asp Leu Arg Arg Tyr Asp Tyr Tyr Thr
 275 280 285
 Val Gly Thr Tyr Asp Arg Leu Lys Glu Arg Tyr Val Pro Asp Asn Pro
 290 295 300
 Ala Gly Asp Lys His His Leu Arg Tyr Asp Tyr Gly Asn Phe Tyr Ala
 305 310 315 320
 Ser Lys Thr Phe Tyr Asp Pro Ser Lys Arg Arg Arg Ile Leu Trp Gly
 325 330 335
 Trp Ala Asn Glu Ser Asp Thr Ala Val Asp Asp Val Ala Lys Gly Trp
 340 345 350

Ala Gly Ile Gln Ala Ile Pro Arg Lys Val Trp Leu Asp Pro Ser Gly
 355 360 365
 Arg Gln Leu Met Gln Trp Pro Val Glu Glu Val Lys Ala Leu Arg Gly
 370 375 380
 Lys Lys Pro Val Ser Leu Lys Asp Arg Met Val Lys Arg Gly Glu His
 385 390 395 400
 Val Glu Val Thr Gly Leu Gln Thr Ala Gln Ala Asp Val Glu Val Ser
 405 410 415
 Phe Glu Val Pro Ser Leu Glu Gly Ala Glu Ala Leu Asp Pro Ala Leu
 420 425 430
 Ala Asn Asp Ala Gln Lys Leu Cys Gly Val Lys Gly Ala Asp Val Glu
 435 440 445
 Gly Gly Val Gly Pro Phe Gly Leu Trp Val Leu Ala Ser Ser Lys Leu
 450 455 460
 Glu Glu Arg Thr Ala Val Phe Phe Arg Val Phe Lys Ala Ala Gly Asn
 465 470 475 480
 Val Asn Ser Thr Lys Pro Leu Val Leu Met Cys Ser Asp Pro Thr Lys
 485 490 495
 Ser Ser Leu Asn Lys Asn Leu Tyr His Pro Thr Phe Ala Gly Phe Val
 500 505 510
 Asp Ile Asp Met Ala Lys Gly Lys Ile Ser Leu Arg Ser Leu Ile Asp
 515 520 525
 Gln Ser Val Val Glu Ser Phe Gly Ala Gly Arg Thr Cys Ile Leu
 530 535 540
 Ser Arg Val Tyr Pro Ser Leu Ala Ile Gly Arg Asn Ala His Leu His
 545 550 555 560
 Val Phe Asn Asn Gly Lys Ala Asp Ile Lys Val Ser Arg Leu Thr Ala
 565 570 575
 Trp Glu Met Lys Lys Pro Ala Leu Met Asn Gly Ala
 580 585

<210> 87
 <211> 668
 <212> PRT
 <213> Lolium perenne

<400> 87
 Met Glu Ala Arg Asp Gly Val Ser Met Pro Tyr Ser Tyr Ala Ala Leu
 1 5 10 15
 Pro Glu Asp Ala Glu Ala Ala Val Val Gly Arg Gly Arg Arg Thr Gly
 20 25 30
 Pro Leu Phe Ala Ala Leu Leu Leu Thr Leu Val Ala Ala Leu Leu Ala
 35 40 45
 Val Ala Ala Leu Ala Gly Val Arg Leu Val Gly Glu Leu Pro Ala Gly
 50 55 60
 Gly Val Val Met Pro Asn His Pro Met Glu Val Met Asp Val Ser Gly
 65 70 75 80
 Ser Arg Gly Pro Glu Ser Gly Val Ser Glu Lys Thr Ser Gly Ala Ala
 85 90 95
 Ser Glu Ser Gly Gly Met Leu Gly Ala Asp Ala Gly Ser Asn Ala Phe
 100 105 110
 Pro Trp Ser Asn Ala Met Leu Gln Trp Gln Arg Thr Gly Phe His Phe
 115 120 125
 Gln Pro Glu Lys Asn Trp Met Asn Asp Pro Asn Gly Pro Val Tyr Tyr
 130 135 140
 Lys Gly Trp Tyr His Leu Phe Tyr Gln Tyr Asn Pro Glu Gly Ala Ile
 145 150 155 160
 Trp Gly Asn Lys Ile Ala Trp Gly His Ala Val Ser Arg Asp Met Leu
 165 170 175
 Arg Trp Arg His Leu Pro Ile Ala Met Phe Pro Asp Gln Trp Tyr Asp
 180 185 190
 Ile Asn Gly Ala Trp Ser Gly Ser Ala Thr Val Leu Pro Asp Gly Arg
 195 200 205
 Ile Val Met Leu Tyr Thr Gly Ser Thr Asn Ala Ser Val Gln Val Gln
 210 215 220

Cys Leu Ala Phe Pro Ser Asp Pro Ser Asp Pro Leu Leu Thr Asn Trp
 225 230 235 240
 Thr Lys Tyr Glu Gly Asn Pro Val Leu Tyr Pro Pro Pro His Val Gly
 245 250 255
 Glu Lys Asp Phe Arg Asp Pro Thr Thr Ala Trp Tyr Asp Gly Ser Asp
 260 265 270
 Gly Met Trp Arg Ile Val Ile Gly Ser Lys Asp Asn Arg Arg Ala Gly
 275 280 285
 Met Ala Leu Thr Tyr Lys Thr Lys Asn Phe His Asp Phe Glu Leu Val
 290 295 300
 Pro Gly Val Leu His Arg Val Pro Ala Thr Gly Met Trp Glu Cys Ile
 305 310 315 320
 Asp Leu Tyr Pro Val Gly Gly Ala Arg Gly Ile Asp Met Thr Glu Ala
 325 330 335
 Val Ala Ala Ala Ser Asn Ser Gly Gly Glu Val Leu His Val Met
 340 345 350
 Lys Glu Ser Ser Asp Asp Asp Arg His Asp Tyr Tyr Ala Leu Gly Arg
 355 360 365
 Tyr Asp Ala Ala Thr Asn Lys Trp Thr Pro Leu Asp Ala Asp Ala Asp
 370 375 380
 Val Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Phe Tyr Ala Ser Lys
 385 390 395 400
 Thr Phe Tyr Asp Pro Ala Lys Lys Arg Arg Val Leu Trp Gly Trp Val
 405 410 415
 Gly Glu Thr Asp Ser Glu Arg Ala Asp Val Ala Lys Gly Trp Ala Ser
 420 425 430
 Leu Gln Ser Ile Pro Arg Thr Val Val Leu Asp Thr Lys Thr Gly Ser
 435 440 445
 Asn Leu Ile Gln Trp Pro Val Val Glu Val Glu Thr Leu Arg Thr Asn
 450 455 460
 Ser Thr Asn Leu Gly Ser Ile Ile Val Glu His Gly Ser Val Phe Pro
 465 470 475 480
 Leu Ser Leu His Arg Ala Thr Gln Leu Asp Ile Glu Ala Ser Phe Arg
 485 490 495
 Leu Asp Pro Leu Asp Val Ala Ala Lys Glu Ala Asp Val Gly Tyr
 500 505 510
 Asn Cys Ser Thr Ser Gly Gly Ala Ala Gly Arg Gly Ala Leu Gly Pro
 515 520 525
 Phe Gly Leu Leu Val Leu Ala Asp Ala Arg Arg His Gly Gly Asp Thr
 530 535 540
 Glu Gln Thr Ala Val Tyr Phe Tyr Val Ala Arg Gly Leu Asp Gly Asn
 545 550 555 560
 Leu Arg Thr His Phe Cys His Asp Glu Ser Arg Ser Ser Arg Ala Asn
 565 570 575
 Asp Ile Val Lys Arg Val Val Gly Asn Ile Val Pro Val Leu Asp Gly
 580 585 590
 Lys Ala Leu Ser Val Arg Val Leu Val Ala His Ser Ile Val Glu Ser
 595 600 605
 Phe Ala Gln Gly Gly Arg Ser Val Val Thr Ser Arg Val Tyr Pro Thr
 610 615 620
 Glu Ala Ile Tyr Ala Asn Ala Gly Val Tyr Leu Phe Asn Asn Ala Thr
 625 630 635 640
 Gly Ala Arg Val Pro Ala Thr Ser Leu Val Val His Lys Met Asp Pro
 645 650 655
 Ser Tyr Asn Gln Asn Gln Ala Glu Met Ala Ser Leu
 660 665

<210> 88

<211> 473

<212> PRT

<213> Lolium perenne

<400> 88

Val His Trp Arg His Leu Pro Leu Ala Met Val Pro Asp Gln Trp Tyr
 1 5 10 15

Asp Ile Asn Gly Val Trp Thr Gly Ser Ala Thr Val Phe Pro Asp Gly
 20 25 30
 Thr Leu Asn Met Leu Tyr Thr Gly Ser Thr Asn Ala Ser Val Gln Ala
 35 40 45
 Gln Cys Leu Ala Val Pro Glu Asp Pro Asn Asp Ser Leu Leu Arg Asn
 50 55 60
 Trp Thr Lys His Glu Ala Asn Pro Val Leu Leu Pro Pro Pro Gly Ile
 65 70 75 80
 Gly Asp Lys Asp Phe Arg Asp Pro Thr Thr Ala Trp Phe Asp Glu Ser
 85 90 95
 Asp Gln Thr Trp Arg Thr Val Ile Gly Ser Lys Asp Asn Asn Gly His
 100 105 110
 Ala Gly Ile Ala Met Val Tyr Lys Thr Lys Asp Phe Leu Asn Tyr Glu
 115 120 125
 Leu Ile Pro Gly Tyr Leu His Arg Val Asp Gly Thr Gly Met Trp Glu
 130 135 140
 Cys Ile Asp Phe Tyr Pro Val Gly Gly Lys Asn Gly Ser Glu Glu Leu
 145 150 155 160
 Tyr Val Ile Lys Glu Ser Ser Asp Asp Asp Arg His Asp Trp Tyr Thr
 165 170 175
 Leu Gly Lys Tyr Asp Ala Ala Asn Thr Phe Thr Ala Ala Asp Pro
 180 185 190
 Glu Asn Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Phe Tyr
 195 200 205
 Ala Ser Lys Thr Phe Tyr Asp Pro Ala Lys Lys Arg Arg Val Leu Trp
 210 215 220
 Gly Trp Ile Gly Glu Thr Asp Ser Glu Arg Ala Asp Val Ala Lys Gly
 225 230 235 240
 Trp Ala Ser Leu Met Ser Ile Pro Arg Thr Val Glu Leu Asp Glu Lys
 245 250 255
 Thr Trp Thr Asn Leu Ile Gln Trp Pro Val Glu Glu Ile Glu Thr Leu
 260 265 270
 Arg Ile Lys Ser Thr Asp Leu Gly Gly Ile Thr Ile Asp His Gly Ser
 275 280 285
 Val Tyr Pro Leu Pro Leu His Arg Ala Thr Gln Leu Asp Ile Glu Ala
 290 295 300
 Ser Phe Arg Leu Asp Ala Ala Thr Val Ala Leu Asn Glu Ala Asp
 305 310 315 320
 Val Gly Tyr Asn Cys Ser Thr Ser Gly Gly Ser Thr His Arg Gly Ala
 325 330 335
 Leu Gly Pro Phe Gly Ile Leu Val Leu Ala Asp Gly Lys Ala Glu Gln
 340 345 350
 Thr Ala Val Tyr Phe Tyr Val Ser Lys Gly Leu Asp Gly Ala Leu Glu
 355 360 365
 Thr His Phe Cys His Asp Glu Ser Arg Ser Thr Leu Ala Lys Asp Val
 370 375 380
 Val Lys Arg Val Val Gly Tyr Thr Val Pro Val Leu Asp Gly Glu Ala
 385 390 395 400
 Phe Ser Val Arg Val Leu Val Asp His Ser Ile Val Glu Ser Phe Ala
 405 410 415
 Met Gly Gly Arg Ser Thr Ala Thr Ser Arg Val Tyr Pro Thr Glu Ser
 420 425 430
 Ile Tyr Gly Ala Ala Gly Ala Tyr Leu Phe Asn Asn Ala Thr Gly Gly
 435 440 445
 Ser Val Thr Val Glu Lys Leu Val Val His Glu Met Asp Ser Ser Tyr
 450 455 460
 Asn Gln Ile Phe Met Ala Asp Asp Leu
 465 470

<210> 89

<211> 539

<212> PRT

<213> Lolium perenne

<400> 89
 Ile Phe Arg Ser Arg Leu Pro Asp Ile Asp Ile Pro Thr His Met Pro
 1 5 10 15
 Leu His Asp Tyr Cys Phe Ala Thr Ala Ala Ser Ala Pro Asp Ala Pro
 20 25 30
 Cys Leu Ile Thr Ala Ala Thr Gly Arg Thr Tyr Thr Phe Ala Glu Thr
 35 40 45
 His Leu Leu Cys Arg Lys Ala Ala Ala Leu His Gly Leu Gly Val
 50 55 60
 Arg His Gly Asp Arg Ile Met Val Leu Leu Gln Asn Ser Val Glu Phe
 65 70 75 80
 Ala Leu Ala Phe Phe Gly Ala Ser Met Leu Gly Ala Val Ser Thr Ala
 85 90 95
 Ala Asn Pro Phe Cys Thr Pro Gln Glu Ile His Lys Gln Leu Val Ala
 100 105 110
 Ser Gly Ala Lys Leu Val Val Thr Gln Ser Ala Tyr Val Asp Lys Leu
 115 120 125
 Arg His Glu Ala Phe Pro Arg Ile Gly Glu Ala Leu Thr Val Ile Thr
 130 135 140
 Ile Asp Asp Asp Gly Thr Pro Asp Gly Cys Gln Pro Phe Trp Gly Leu
 145 150 155 160
 Val Ser Ala Ala Asp Glu Asn Ser Val Pro Glu Ser Pro Ile Ser Pro
 165 170 175
 Asp Asp Ala Val Ala Leu Pro Tyr Ser Ser Gly Thr Thr Gly Leu Pro
 180 185 190
 Lys Gly Val Val Leu Thr His Gly Gly Leu Val Ser Ser Val Ala Gln
 195 200 205
 Gln Val Asp Gly Glu Asn Pro Asn Leu His Met Arg Ala Gly Glu Asp
 210 215 220
 Val Val Leu Cys Val Leu Pro Leu Phe His Ile Phe Ser Leu Asn Ser
 225 230 235 240
 Val Leu Leu Cys Ala Leu Arg Ala Gly Ala Ala Val Met Leu Met Pro
 245 250 255
 Arg Phe Glu Met Gly Ala Met Leu Glu Gly Ile Glu Arg Trp Arg Val
 260 265 270
 Thr Val Ala Ala Val Val Pro Pro Leu Val Leu Ala Leu Ala Lys Asn
 275 280 285
 Pro Gly Val Glu Lys His Asp Leu Ser Ser Ile Arg Ile Val Leu Ser
 290 295 300
 Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Ala Leu Arg Gly Arg
 305 310 315 320
 Leu Pro Gln Ala Ile Phe Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly
 325 330 335
 Pro Val Leu Ser Met Cys Pro Ala Phe Ala Arg Glu Pro Thr Pro Ala
 340 345 350
 Lys Ser Gly Ser Cys Gly Thr Val Val Arg Asn Ala Glu Leu Lys Val
 355 360 365
 Val Asp Pro Asp Thr Gly Val Ser Leu Gly Arg Asn Leu Pro Gly Glu
 370 375 380
 Ile Cys Ile Arg Gly Pro Gln Ile Met Lys Gly Tyr Leu Asn Asp Pro
 385 390 395 400
 Val Ala Thr Ala Ala Thr Ile Asp Val Glu Gly Trp Leu His Thr Gly
 405 410 415
 Asp Ile Gly Tyr Val Asp Asp Asp Glu Val Phe Ile Val Asp Arg
 420 425 430
 Val Lys Glu Leu Ile Lys Phe Lys Gly Phe Gln Val Pro Pro Ala Glu
 435 440 445
 Leu Glu Ala Leu Leu Ile Ala His Pro Ser Ile Ala Asp Ala Ala Val
 450 455 460
 Val Pro Gln Lys Asp Asp Ala Ala Gly Glu Val Pro Val Ala Phe Val
 465 470 475 480
 Val Arg Ala Ala Asp Ser Asp Ile Ala Glu Glu Ala Ile Lys Glu Phe
 485 490 495
 Val Ser Lys Gln Val Val Phe Tyr Lys Arg Leu His Lys Val Tyr Phe
 500 505 510

Thr His Ala Ile Pro Lys Ser Ala Ser Gly Lys Ile Leu Arg Lys Glu
 515 520 525
 Leu Arg Ala Lys Leu Ala Ala Pro Ala Thr Ala
 530 535

<210> 90
 <211> 559
 <212> PRT
 <213> *Lolium perenne*

<400> 90
 Met Gly Ser Ile Ala Ala Asp Leu Ala Pro Glu Ala Pro Ala Glu Leu
 1 5 10 15
 Val Phe Arg Ser Lys Leu Pro Asp Ile Glu Ile Pro Thr His Leu Thr
 20 25 30
 Leu Gln Asp Tyr Cys Phe Glu Arg Leu Pro Glu Leu Ser Ala Arg Ala
 35 40 45
 Cys Leu Ile Asp Gly Ala Thr Gly Ala Ala Leu Thr Tyr Gly Glu Val
 50 55 60
 Asp Ala Leu Ser Arg Arg Cys Ala Ala Gly Leu Arg Arg Leu Gly Val
 65 70 75 80
 Arg Lys Gly Asp Val Val Met Ala Leu Leu Arg Asn Cys Pro Glu Phe
 85 90 95
 Ala Phe Val Phe Leu Gly Ala Ala Arg Leu Gly Ala Ala Thr Thr Thr
 100 105 110
 Ala Asn Pro Phe Tyr Thr Pro His Glu Ile His Arg Gln Ala Ala Ala
 115 120 125
 Ala Gly Ala Lys Val Ile Val Thr Glu Ala Cys Ala Val Glu Lys Val
 130 135 140
 Arg Ala Phe Ala Ala Glu Arg Gly Ile Pro Val Val Ser Val Asp Glu
 145 150 155 160
 Ala Val Asp Asp Gly Cys Leu Pro Phe Ala Ala Thr Leu Leu Gly Glu
 165 170 175
 Glu Ser Gly Glu Arg Phe Val Asp Glu Ala Val Asp Pro Asp Asp Val
 180 185 190
 Val Ala Leu Pro Tyr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val
 195 200 205
 Met Leu Thr His Arg Ser Leu Val Thr Ser Val Ala Gln Gln Val Asp
 210 215 220
 Gly Glu Asn Pro Asn Leu His Phe Ser Ser Ser Asp Val Leu Leu Cys
 225 230 235 240
 Val Leu Pro Leu Phe His Ile Tyr Ser Leu Asn Ser Val Leu Leu Ala
 245 250 255
 Gly Leu Arg Ala Gly Cys Ala Ile Val Ile Met Arg Lys Phe Asp His
 260 265 270
 Gly Ala Leu Val Asp Leu Val Arg Ala His Gly Val Thr Val Ala Pro
 275 280 285
 Phe Val Pro Pro Ile Val Val Glu Ile Ala Lys Ser Ala Arg Val Thr
 290 295 300
 Ala Ala Asp Leu Ala Ser Ile Arg Leu Val Met Ser Gly Ala Ala Pro
 305 310 315 320
 Met Gly Lys Glu Leu Gln Asp Ala Phe Met Ala Lys Ile Pro Asn Ala
 325 330 335
 Val Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly Pro Val Leu Ala
 340 345 350
 Met Cys Leu Ala Phe Ala Lys Glu Pro Phe Glu Val Lys Ser Gly Ser
 355 360 365
 Cys Gly Thr Val Val Arg Asn Ala Glu Leu Lys Ile Val Asp Pro Asp
 370 375 380
 Thr Gly Ala Ser Leu Gly Arg Asn Leu Pro Gly Glu Ile Cys Ile Arg
 385 390 395 400
 Gly Lys Gln Ile Met Lys Gly Tyr Leu Asn Asp Pro Glu Ala Thr Lys
 405 410 415
 Asn Thr Ile Asp Lys Asp Gly Trp Leu His Thr Gly Asp Ile Gly Tyr
 420 425 430

Val Asp Asp Asp Asp Glu Ile Phe Ile Val Asp Arg Leu Lys Glu Ile
 435 440 445
 Ile Lys Tyr Lys Gly Phe Gln Val Pro Pro Ala Glu Leu Glu Ala Leu
 450 455 460
 Leu Ile Thr His Pro Glu Ile Lys Asp Ala Ala Val Val Ser Met Gln
 465 470 475 480
 Asp Glu Leu Ala Gly Glu Val Pro Val Ala Phe Val Val Arg Thr Glu
 485 490 495
 Gly Ser Glu Ile Ser Glu Asn Glu Ile Lys Gln Phe Val Ala Lys Glu
 500 505 510
 Val Val Phe Tyr Lys Arg Ile Cys Lys Val Phe Phe Ala Asp Ser Ile
 515 520 525
 Pro Lys Ser Pro Ser Gly Lys Ile Leu Arg Lys Asp Leu Arg Ala Lys
 530 535 540
 Leu Ala Ala Gly Ile Pro Gly Ser Asp Thr Thr Gln Ser Lys Asn
 545 550 555

<210> 91

<211> 559

<212> PRT

<213> Festuca arundinacea

<400> 91
 Met Gly Ser Ile Ala Ala Asp Ala Pro Glu Ala Pro Pro Ala Glu Leu
 1 5 10 15
 Val Phe Arg Ser Lys Leu Pro Asp Ile Glu Ile Pro Thr His Leu Thr
 20 25 30
 Leu Gln Asp Tyr Cys Phe Gln Arg Leu Pro Glu His Ser Ala Arg Ala
 35 40 45
 Cys Leu Ile Asp Gly Ala Thr Gly Ala Ala Leu Thr Tyr Gly Glu Val
 50 55 60
 Asp Ala Leu Ser Arg Arg Cys Ala Ala Gly Leu Arg Arg Leu Gly Val
 65 70 75 80
 Arg Lys Gly Asp Val Val Met Ala Leu Leu Arg Asn Cys Pro Glu Phe
 85 90 95
 Ala Phe Val Phe Leu Gly Ala Ala Arg Leu Gly Ala Ala Thr Thr Thr
 100 105 110
 Ala Asn Pro Phe Tyr Thr Pro His Glu Ile His Arg Gln Ala Thr Ala
 115 120 125
 Ala Gly Ala Lys Val Ile Val Thr Glu Ala Cys Ala Val Glu Lys Val
 130 135 140
 Arg Ala Phe Ala Ala Glu Arg Gly Ile Thr Val Val Ser Val Asp Glu
 145 150 155 160
 Gly Val Asp Asp Gly Cys Leu Pro Phe Gly Glu Thr Leu Leu Gly Glu
 165 170 175
 Asp Gly Gly Arg Phe Val Asp Glu Ala Val Asp Pro Asp Asp Val
 180 185 190
 Val Ala Leu Pro Tyr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val
 195 200 205
 Met Leu Thr His Arg Ser Leu Val Thr Ser Val Ala Gln Gln Val Asp
 210 215 220
 Gly Glu Asn Pro Asn Leu His Phe Ser Ser Asp Val Leu Leu Cys
 225 230 235 240
 Val Leu Pro Leu Phe His Ile Tyr Ser Leu Asn Ser Val Leu Leu Ala
 245 250 255
 Gly Leu Arg Ala Gly Cys Ala Ile Val Ile Met Arg Lys Phe Asp His
 260 265 270
 Gly Ala Leu Val Asp Leu Val Arg Ala His Gly Val Thr Val Ala Pro
 275 280 285
 Phe Val Pro Pro Ile Val Val Glu Ile Ala Lys Ser Ala Arg Val Thr
 290 295 300
 Ala Ala Asp Leu Ala Ser Ile Arg Leu Val Met Ser Gly Ala Ala Pro
 305 310 315 320
 Met Gly Lys Glu Leu Gln Asp Ala Phe Met Ala Lys Ile Pro Asn Ala
 325 330 335

Val Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly Pro Val Leu Ala
 340 345 350
 Met Cys Leu Ala Phe Ala Lys Glu Pro Phe Glu Val Lys Ser Gly Ser
 355 360 365
 Cys Gly Thr Val Val Arg Asn Ala Glu Leu Lys Ile Val Asp Pro Asp
 370 375 380
 Thr Gly Ala Ser Leu Gly Arg Asn Leu Pro Gly Glu Ile Cys Ile Arg
 385 390 395 400
 Gly Lys Gln Ile Met Lys Gly Tyr Leu Asn Asp Pro Glu Ala Thr Lys
 405 410 415
 Asn Thr Ile Asp Lys Asp Gly Trp Leu His Thr Gly Asp Ile Gly Tyr
 420 425 430
 Val Asp Asp Asp Asp Glu Ile Phe Ile Val Asp Arg Leu Lys Glu Ile
 435 440 445
 Ile Lys Tyr Lys Gly Phe Gln Val Pro Pro Ala Glu Leu Glu Ala Leu
 450 455 460
 Leu Ile Thr His Pro Glu Ile Lys Asp Ala Ala Val Val Ser Met Gln
 465 470 475 480
 Asp Glu Leu Ala Gly Glu Val Pro Val Ala Phe Val Val Arg Thr Glu
 485 490 495
 Gly Ser Glu Ile Ser Glu Asn Glu Ile Lys Gln Phe Val Ala Lys Glu
 500 505 510
 Val Val Phe Tyr Lys Arg Ile Cys Lys Val Phe Phe Ala Asp Ser Ile
 515 520 525
 Pro Lys Ser Pro Ser Gly Lys Ile Leu Arg Lys Asp Leu Arg Ala Lys
 530 535 540
 Leu Ala Ala Gly Ile Pro Gly Ser Glu Thr Thr Gln Ser Lys Ser
 545 550 555

<210> 92

<211> 557

<212> PRT

<213> Lolium perenne

<400> 92

Met Gly Ser Val Pro Glu Glu Ser Val Val Ser Val Ala Ala Ala Glu
 1 5 10 15
 Thr Val Phe Arg Ser Lys Leu Pro Asp Ile Glu Ile Asn Asn Glu Gln
 20 25 30
 Thr Leu Gln Ser Tyr Cys Phe Glu Lys Met Ala Glu Val Ala Ser Arg
 35 40 45
 Pro Cys Ile Ile Asp Gly Gln Thr Gly Ala Ser Tyr Thr Tyr Thr Glu
 50 55 60
 Val Asp Tyr Leu Thr Arg Arg Ala Ala Ala Gly Leu Arg Arg Met Gly
 65 70 75 80
 Val Gly Lys Gly Asp Val Val Met Asn Leu Leu Arg Asn Cys Pro Glu
 85 90 95
 Phe Ala Phe Ser Phe Leu Gly Ala Ala Arg Leu Gly Ala Ala Thr Thr
 100 105 110
 Thr Ala Asn Pro Phe Tyr Thr Pro His Glu Ile His Arg Gln Ala Glu
 115 120 125
 Ala Ala Gly Ala Lys Leu Ile Val Thr Glu Ala Cys Ala Val Glu Lys
 130 135 140
 Val Leu Glu Phe Ala Ala Gly Arg Gly Leu Pro Val Val Thr Val Asp
 145 150 155 160
 Gly Arg Arg Asp Gly Cys Val Asp Phe Ala Glu Leu Ile Ala Gly Glu
 165 170 175
 Glu Leu Pro Glu Ala Asp Glu Ala Gly Ile Leu Pro Asp Asp Val Val
 180 185 190
 Ala Leu Pro Tyr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Met
 195 200 205
 Leu Thr His Arg Ser Leu Val Thr Ser Val Ala Gln Leu Val Asp Gly
 210 215 220
 Ser Asn Pro Asn Val Cys Phe Asn Lys Asp Asp Ala Leu Leu Cys Leu
 225 230 235 240

Leu Pro Leu Phe His Ile Tyr Ser Leu His Thr Val Leu Leu Ala Gly
 245 250 255
 Leu Arg Val Gly Ala Ala Ile Val Ile Met Arg Lys Phe Asp Val Gly
 260 265 270
 Ala Leu Val Asp Leu Val Arg Ala His Arg Ile Thr Ile Ala Pro Phe
 275 280 285
 Val Pro Pro Ile Val Val Glu Ile Ala Lys Ser Asp Arg Val Gly Ala
 290 295 300
 Asp Asp Leu Ala Ser Ile Arg Met Val Leu Ser Gly Ala Ala Pro Met
 305 310 315 320
 Gly Lys Asp Leu Gln Asp Ala Phe Met Ala Lys Ile Pro Asn Ala Val
 325 330 335
 Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly Pro Val Leu Ala Met
 340 345 350
 Cys Leu Ala Phe Ala Lys Glu Pro Phe Lys Val Lys Ser Gly Ser Cys
 355 360 365
 Gly Thr Val Val Arg Asn Ala Glu Leu Lys Val Val Asp Pro Asp Thr
 370 375 380
 Gly Ala Ser Leu Gly Arg Asn Gln Pro Gly Glu Ile Cys Val Arg Gly
 385 390 395 400
 Lys Gln Ile Met Ile Gly Tyr Leu Asn Asp Pro Glu Ser Thr Lys Asn
 405 410 415
 Thr Ile Asp Lys Asp Gly Trp Leu His Thr Gly Asp Ile Gly Leu Val
 420 425 430
 Asp Asp Asp Asp Glu Ile Phe Ile Val Asp Arg Leu Lys Glu Ile Ile
 435 440 445
 Lys Tyr Lys Gly Phe Gln Val Ala Pro Ala Glu Leu Glu Ala Leu Leu
 450 455 460
 Leu Thr Asn Pro Glu Val Lys Asp Ala Ala Val Val Gly Val Lys Asp
 465 470 475 480
 Asp Leu Cys Gly Glu Val Pro Val Ala Phe Ile Lys Arg Ile Glu Gly
 485 490 495
 Ser Glu Ile Thr Glu Asn Glu Ile Lys Gln Phe Val Ser Lys Glu Val
 500 505 510
 Val Phe Tyr Lys Arg Ile Asn Lys Val Tyr Phe Thr Asp Ser Ile Pro
 515 520 525
 Lys Asn Pro Ser Gly Lys Ile Val Arg Lys Asp Leu Arg Ala Arg Leu
 530 535 540
 Ala Ala Gly Ile Pro Thr Glu Val Ala Ala Pro Arg Ser
 545 550 555

<210> 93

<211> 557

<212> PRT

<213> Festuca arundinacea

<400> 93

Met Gly Ser Val Pro Glu Glu Ser Val Val Ala Ala Val Ala Glu
 1 5 10 15
 Thr Val Phe Arg Ser Lys Leu Pro Asp Ile Glu Ile Asn Asn Glu Gln
 20 25 30
 Thr Leu Gln Ser Tyr Cys Phe Glu Lys Met Ala Glu Val Ala Ser Arg
 35 40 45
 Pro Cys Ile Ile Asp Gly Gln Thr Gly Ala Ser Tyr Thr Tyr Thr Glu
 50 55 60
 Val Glu Ser Leu Thr Arg Arg Ala Ala Ala Gly Leu Arg Arg Met Gly
 65 70 75 80
 Val Gly Lys Gly Asp Val Val Met Asn Leu Leu Arg Asn Cys Pro Glu
 85 90 95
 Phe Ala Phe Ser Phe Leu Gly Ala Ala Arg Leu Gly Ala Ala Thr Thr
 100 105 110
 Thr Ala Asn Pro Phe Tyr Thr Pro His Glu Ile His Arg Gln Ala Glu
 115 120 125
 Ala Ala Gly Ala Lys Val Ile Val Thr Glu Ala Cys Ala Val Glu Lys
 130 135 140

Val Leu Glu Phe Ala Ala Glu Arg Gly Leu Pro Val Val Thr Val Asp
 145 150 155 160
 Gly Lys Arg Asp Gly Cys Val Asp Phe Ala Glu Leu Ile Ala Gly Glu
 165 170 175
 Glu Leu Pro Glu Ala Glu Glu Ala Gly Ile Leu Pro Asp Asp Val Val
 180 185 190
 Ala Leu Pro Tyr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Met
 195 200 205
 Leu Thr His Arg Ser Leu Val Thr Ser Val Ala Gln Leu Phe Asp Gly
 210 215 220
 Ser Asn Pro Asn Val Cys Phe Asn Lys Asp Asp Ala Leu Leu Cys Leu
 225 230 235 240
 Leu Pro Leu Phe His Ile Tyr Ser Leu His Thr Val Leu Leu Ala Gly
 245 250 255
 Leu Arg Val Gly Ala Ala Ile Val Ile Met Arg Lys Phe Asp Val Gly
 260 265 270
 Ala Leu Val Asp Leu Val Arg Ala His Arg Ile Thr Ile Ala Pro Phe
 275 280 285
 Val Pro Pro Ile Val Val Glu Ile Ala Lys Ser Asp Arg Val Thr Ala
 290 295 300
 Asp Asp Leu Thr Ser Ile Arg Met Val Leu Ser Gly Ala Ala Pro Met
 305 310 315 320
 Gly Lys Asp Leu Gln Asp Ala Phe Met Ala Lys Ile Pro Asn Ala Val
 325 330 335
 Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly Pro Val Leu Ala Met
 340 345 350
 Cys Leu Ala Phe Ala Lys Glu Pro Phe Lys Val Lys Ser Gly Ser Cys
 355 360 365
 Gly Thr Val Val Arg Asn Ala Glu Leu Lys Val Val Asp Pro Asp Thr
 370 375 380
 Gly Ala Ser Leu Gly Arg Asn Gln Pro Gly Glu Ile Cys Val Arg Gly
 385 390 395 400
 Lys Gln Ile Met Ile Gly Tyr Leu Asn Asp Pro Glu Ser Thr Lys Asn
 405 410 415
 Thr Ile Asp Lys Asp Gly Trp Leu His Thr Gly Asp Ile Gly Leu Val
 420 425 430
 Asp Asp Asp Asp Glu Ile Phe Ile Val Asp Arg Leu Lys Glu Ile Ile
 435 440 445
 Lys Tyr Lys Gly Phe Gln Val Ala Pro Ala Glu Leu Glu Ala Leu Leu
 450 455 460
 Leu Thr Asn Pro Glu Val Lys Asp Ala Ala Val Val Gly Val Lys Asp
 465 470 475 480
 Asp Leu Cys Gly Glu Val Pro Val Ala Phe Ile Lys Arg Ile Glu Gly
 485 490 495
 Ser Glu Ile Thr Glu Asn Asp Ile Lys Gln Phe Val Ser Lys Glu Val
 500 505 510
 Val Phe Tyr Lys Arg Ile Asn Lys Val Tyr Phe Thr Asp Ser Ile Pro
 515 520 525
 Lys Asn Pro Ser Gly Lys Ile Leu Arg Lys Asp Leu Arg Ala Arg Leu
 530 535 540
 Ala Ala Gly Ile Pro Thr Glu Val Ala Ala Pro Arg Ser
 545 550 555

<210> 94
 <211> 501
 <212> PRT
 <213> *Lolium perenne*

<400> 94
 Met Glu Val Leu Leu Leu Glu Lys Ala Leu Leu Gly Leu Phe Ala Ala
 1 5 10 15
 Ala Val Leu Ala Ile Ala Val Ala Lys Leu Ala Gly Lys Arg Phe Arg
 20 25 30
 Leu Pro Pro Gly Pro Ser Gly Ala Pro Ile Val Gly Asn Trp Leu Gln
 35 40 45

Val Gly Asp Asp Leu Asn His Arg Asn Leu Met Gly Ile Ala Lys Arg
 50 55 60
 Phe Gly Glu Val Phe Leu Leu Arg Met Gly Ile Arg Asn Leu Val Val
 65 70 75 80
 Val Ser Ser Pro Glu Leu Ala Lys Glu Val Leu His Thr Gln Gly Val
 85 90 95
 Glu Phe Gly Ser Arg Thr Arg Asn Val Val Phe Asp Ile Phe Thr Gly
 100 105 110
 Asn Gly Gln Asp Met Val Phe Thr Val Tyr Gly Asp His Trp Arg Lys
 115 120 125
 Met Arg Arg Ile Met Thr Val Pro Phe Phe Thr Asn Lys Val Val Ala
 130 135 140
 Gln Asn Arg Val Gly Trp Glu Glu Ala Arg Leu Val Val Glu Asp
 145 150 155 160
 Val Lys Ala Asp Pro Ala Phe Ala Thr Ala Gly Thr Val Ile Arg Arg
 165 170 175
 Arg Leu Gln Leu Met Met Tyr Asn Asp Met Phe Arg Ile Met Phe Asp
 180 185 190
 Arg Arg Phe Glu Ser Val Asp Asp Pro Leu Phe Asn Lys Leu Lys Ala
 195 200 205
 Met Asn Ala Glu Arg Ser Ile Leu Ser Gln Ser Phe Asp Tyr Asn Tyr
 210 215 220
 Gly Asp Phe Ile Pro Ile Leu Arg Pro Phe Leu Arg Lys Tyr Leu Asn
 225 230 235 240
 Arg Cys Thr Asn Leu Thr Thr Lys Arg Met Lys Leu Phe Glu Asp His
 245 250 255
 Phe Val Ala Asp Arg Lys Lys Ala Leu Glu Gln Asn Gly Glu Ile Arg
 260 265 270
 Cys Ala Met Asp His Ile Leu Glu Ala Glu Arg Lys Gly Glu Ile Asn
 275 280 285
 His Asp Asn Val Leu Tyr Ile Val Glu Asn Ile Asn Val Ala Ala Ile
 290 295 300
 Glu Thr Thr Leu Trp Ser Ile Glu Trp Gly Ile Ala Glu Leu Val Asn
 305 310 315 320
 His Pro Asp Val Gln Ser Lys Leu Arg Asp Glu Met Thr Ala Val Leu
 325 330 335
 Gly Ala Asp Val Ala Val Thr Glu Pro Asp Leu Glu Arg Leu Pro Tyr
 340 345 350
 Leu Gln Ser Val Val Lys Glu Thr Leu Arg Leu Arg Met Ala Ile Pro
 355 360 365
 Leu Leu Val Pro His Met Asn Leu Ser Asp Ala Lys Leu Ala Gly Tyr
 370 375 380
 Asp Ile Pro Ala Glu Ser Lys Ile Leu Val Asn Ala Trp Phe Leu Ala
 385 390 395 400
 Asn Asp Pro Lys Arg Trp Val Arg Ala Asp Glu Phe Arg Pro Glu Arg
 405 410 415
 Phe Leu Glu Glu Lys Ala Val Glu Ala His Gly Asn Asp Phe Arg
 420 425 430
 Phe Val Pro Phe Gly Val Gly Arg Arg Ser Cys Pro Gly Ile Val Leu
 435 440 445
 Ala Leu Pro Ile Ile Gly Ile Thr Leu Gly Arg Leu Val Gln Asn Phe
 450 455 460
 Gln Leu Leu Pro Pro Pro Gly Gln Asp Lys Ile Asp Thr Thr Glu Lys
 465 470 475 480
 Pro Gly Gln Phe Ser Asn Gln Ile Leu Lys His Ala Thr Val Val Cys
 485 490 495
 Lys Pro Leu Glu Ala
 500

<210> 95

<211> 505

<212> PRT

<213> Festuca arundinacea

<400> 95
 Met Asp Phe Val Phe Val Glu Lys Leu Leu Val Gly Leu Leu Ala Ser
 1 5 10 15
 Val Val Val Ala Ile Val Val Ser Lys Ile Arg Gly Arg Lys Leu Arg
 20 25 30
 Leu Pro Pro Gly Pro Ile Pro Val Pro Ile Phe Gly Asn Trp Leu Gln
 35 40 45
 Val Gly Asp Asp Leu Asn His Arg Asn Leu Ala Ala Met Ala Arg Lys
 50 55 60
 Phe Gly Glu Val Phe Leu Leu Arg Met Gly Ile Arg Asn Leu Val Val
 65 70 75 80
 Val Ser Ser Pro Glu Leu Ala Lys Glu Val Leu His Thr Gln Gly Val
 85 90 95
 Glu Phe Gly Ser Arg Thr Arg Asn Val Val Phe Asp Ile Phe Thr Gly
 100 105 110
 Lys Gly Gln Asp Met Val Phe Thr Val Tyr Gly Asp His Trp Arg Lys
 115 120 125
 Met Arg Arg Ile Met Thr Val Pro Phe Phe Thr Asn Lys Val Val Gln
 130 135 140
 Gln Tyr Arg Ala Gly Trp Glu Ala Glu Ala Phe Val Val Asp Asn
 145 150 155 160
 Val Arg Ala Asp Pro Lys Ala Ala Thr Asp Gly Val Val Leu Arg Arg
 165 170 175
 His Leu Gln Leu Met Met Tyr Asn Asn Met Tyr Arg Ile Met Phe Asp
 180 185 190
 Arg Arg Phe Glu Ser Met Asp Asp Pro Leu Phe Leu Arg Leu Arg Ala
 195 200 205
 Leu Asn Gly Glu Arg Ser Arg Leu Ala Gln Ser Phe Glu Tyr Asn Tyr
 210 215 220
 Gly Asp Phe Ile Pro Val Leu Arg Pro Phe Leu Arg Gly Tyr Leu Gly
 225 230 235 240
 Leu Cys Glu Gln Val Lys Glu Thr Arg Leu Lys Leu Phe Lys Asp Tyr
 245 250 255
 Phe Leu Asp Glu Arg Lys Lys Leu Ala Ser Thr Lys Ser Met Asp Thr
 260 265 270
 Asn Gly Leu Lys Cys Ala Ile Asp His Ile Leu Glu Ala Gln Glu Lys
 275 280 285
 Gly Glu Ile Asn Glu Asp Asn Val Leu Tyr Ile Ile Glu Asn Ile Asn
 290 295 300
 Val Ala Ala Ile Glu Thr Thr Leu Trp Ser Ile Glu Trp Gly Ile Ala
 305 310 315 320
 Glu Leu Val Asn His Pro Glu Ile Gln Gln Lys Leu Arg Asp Glu Met
 325 330 335
 Asp Ala Val Leu Gly Ala Gly His Gln Ile Thr Glu Pro Asp Thr His
 340 345 350
 Lys Leu Pro Tyr Leu Gln Ala Val Ile Lys Glu Thr Leu Arg Leu Arg
 355 360 365
 Met Ala Ile Pro Leu Leu Val Pro His Met Asn Leu His Asp Ala Lys
 370 375 380
 Leu Ala Gly Tyr Asn Ile Pro Ala Glu Ser Lys Ile Leu Val Asn Ala
 385 390 395 400
 Trp Phe Leu Ala Asn Asn Pro Glu Gln Trp Lys Arg Pro Asp Glu Phe
 405 410 415
 Arg Pro Glu Arg Phe Leu Glu Glu Lys His Val Glu Ala Ser Gly
 420 425 430
 Asn Asp Phe Arg Phe Leu Pro Phe Gly Val Gly Arg Arg Ser Cys Pro
 435 440 445
 Gly Ile Ile Leu Ala Leu Pro Ile Leu Gly Ile Thr Ile Gly Arg Leu
 450 455 460
 Val Gln Asn Phe Glu Leu Thr Thr Pro Pro Gly Val Asp Lys Leu Asp
 465 470 475 480
 Thr Thr Glu Lys Gly Gly Gln Phe Ser Leu His Ile Leu Asn His Ser
 485 490 495
 Thr Ile Val Ala Lys Pro Arg Val Phe
 500 505

<210> 96
 <211> 361
 <212> PRT
 <213> Lolium perenne

<400> 96
 Met Gly Ile Val Asn Ala Ser Glu Lys Thr Ile Thr Gly Trp Ala Ala
 1 5 10 15
 Arg Asp Ala Thr Gly His Leu Ser Pro Tyr Thr Tyr Asn Leu Arg Arg
 20 25 30
 Thr Gly Ala Glu Asp Val Val Leu Lys Val Leu Tyr Cys Gly Ile Cys
 35 40 45
 His Thr Asp Leu His Gln Thr Lys Asn His Leu Gly Ala Pro Lys Tyr
 50 55 60
 Pro Met Val Pro Gly His Glu Val Val Gly Glu Val Val Glu Val Gly
 65 70 75 80
 Pro Glu Val Ser Lys Tyr Ser Val Gly Asp Val Val Gly Val Gly Val
 85 90 95
 Ile Val Gly Cys Cys Arg Asp Cys Arg Pro Cys Lys Ala Asn Val Glu
 100 105 110
 Gln Tyr Cys Asn Lys Lys Ile Trp Ser Tyr Asn Asp Val Tyr Thr Asp
 115 120 125
 Gly Lys Pro Thr Gln Gly Phe Ala Ser Ser Met Val Val Asp Gln
 130 135 140
 Lys Phe Val Val Lys Ile Pro Ala Gly Leu Ala Pro Glu Gln Ala Ala
 145 150 155 160
 Pro Leu Leu Cys Ala Gly Val Thr Val Tyr Ser Pro Leu Lys His Phe
 165 170 175
 Gly Leu Met Thr Pro Gly Leu Arg Gly Ile Leu Gly Leu Gly Gly
 180 185 190
 Val Gly His Met Gly Val Lys Val Ala Lys Ser Met Gly His His Val
 195 200 205
 Thr Val Ile Ser Ser Ser Asp Lys Lys Arg Ala Glu Ala Met Asp Asp
 210 215 220
 Leu Gly Ala Asp Ala Tyr Leu Val Ser Ser Asp Glu Ala Gln Met Ala
 225 230 235 240
 Ala Ala Met Asp Ser Leu Asp Tyr Ile Ile Asp Thr Val Pro Val Lys
 245 250 255
 His Pro Leu Glu Pro Tyr Leu Ala Leu Leu Lys Met Asp Gly Lys Leu
 260 265 270
 Val Leu Met Gly Val Ile Gly Glu Pro Leu Ser Phe Val Ser Pro Met
 275 280 285
 Val Met Leu Gly Arg Lys Thr Ile Thr Gly Ser Phe Ile Gly Ser Ile
 290 295 300
 Glu Glu Thr Glu Glu Val Leu Arg Phe Cys Val Asp Lys Gly Leu Thr
 305 310 315 320
 Ser Gln Ile Glu Val Val Lys Met Asp Tyr Leu Asn Gln Ala Leu Glu
 325 330 335
 Arg Leu Glu Arg Asn Asp Val Arg Tyr Arg Phe Val Val Asp Val Ala
 340 345 350
 Gly Ser Asn Ile Asp Asp Thr Ala Ala
 355 360

<210> 97
 <211> 361
 <212> PRT
 <213> Festuca arundinacea

<400> 97
 Met Gly Ser Val Asp Ala Ser Glu Lys Thr Ile Thr Gly Trp Ala Ala
 1 5 10 15
 Arg Asp Thr Thr Gly His Leu Ser Pro Tyr Thr Tyr Thr Leu Arg Arg
 20 25 30
 Thr Gly Ala Glu Asp Val Val Leu Lys Val Leu Tyr Cys Gly Ile Cys
 35 40 45

His Thr Asp Leu His Gln Thr Lys Asn His Leu Gly Ala Ser Lys Tyr
 50 55 60
 Pro Met Val Pro Gly His Glu Val Val Gly Glu Val Val Glu Val Gly
 65 70 75 80
 Pro Glu Val Ser Lys Tyr Ser Val Gly Asp Val Val Gly Val Gly Val
 85 90 95
 Ile Val Gly Cys Cys His Asp Cys Arg Pro Cys Lys Ala Asn Val Glu
 100 105 110
 Gln Tyr Cys Asn Lys Lys Ile Trp Ser Tyr Asn Asp Val Tyr Thr Asp
 115 120 125
 Gly Lys Pro Thr Gln Gly Phe Ala Ser Ala Met Val Val Asp Gln
 130 135 140
 Lys Phe Ala Val Lys Ile Pro Ala Gly Leu Ala Pro Glu Gln Ala Ala
 145 150 155 160
 Pro Leu Leu Cys Ala Gly Val Thr Val Tyr Ser Pro Leu Lys His Phe
 165 170 175
 Gly Leu Met Thr Pro Gly Leu Arg Gly Ile Leu Gly Leu Gly Gly
 180 185 190
 Val Gly His Met Gly Val Lys Val Ala Lys Ser Met Gly His His Val
 195 200 205
 Thr Val Ile Ser Ser Ser Asn Lys Arg Ala Glu Ala Met Asp Asp
 210 215 220
 Leu Gly Ala Asp Ala Tyr Leu Val Ser Ser Asp Glu Ala Gln Met Ala
 225 230 235 240
 Ala Ala Met Asp Ser Leu Asp Tyr Ile Ile Asp Thr Val Pro Val Lys
 245 250 255
 His Pro Leu Glu Pro Tyr Leu Ala Leu Lys Met Asp Gly Lys Leu
 260 265 270
 Val Leu Met Gly Val Ile Ala Glu Pro Leu Ser Phe Val Ser Pro Met
 275 280 285
 Val Met Leu Gly Arg Lys Thr Ile Thr Gly Ser Phe Ile Gly Ser Ile
 290 295 300
 Glu Glu Thr Glu Glu Val Leu Arg Phe Cys Val Glu Lys Gly Leu Thr
 305 310 315 320
 Ser Gln Ile Glu Val Val Lys Met Asp Tyr Leu Asn His Ala Leu Glu
 325 330 335
 Arg Leu Glu Arg Asn Asp Val Arg Tyr Arg Phe Val Val Asp Val Ala
 340 345 350
 Gly Ser Asn Ile Lys Asp Ala Asp Ala
 355 360

<210> 98

<211> 265

<212> PRT

<213> Lolium perenne

<400> 98

Met Ala Thr Thr Ala Ala Asp Ala Thr Ala Thr Val Ala Lys Glu Gln
 1 5 10 15
 Thr Thr Thr Asn Gly Ala Ala Ser Gly Ala Glu Gln Val Thr Arg His
 20 25 30
 Ser Glu Val Gly His Lys Ser Leu Leu Gln Ser Asp Ala Leu Tyr Gln
 35 40 45
 Tyr Ile Leu Glu Thr Thr Val Tyr Pro Arg Glu His Glu Cys Met Lys
 50 55 60
 Gln Leu Arg Glu Asp Thr Ala Asn His Pro Trp Asn Leu Met Thr Thr
 65 70 75 80
 Ser Ala Asp Glu Gly Gln Phe Leu Asn Leu Leu Ile Lys Leu Ile Gly
 85 90 95
 Ala Lys Lys Thr Met Glu Ile Gly Val Tyr Thr Gly Tyr Ser Leu Leu
 100 105 110
 Ala Thr Ala Leu Ala Ile Pro Glu Asp Gly Thr Ile Leu Ala Met Asp
 115 120 125
 Ile Asn Arg Glu Asn Tyr Glu Thr Ile Gly Lys Pro Cys Ile Glu Lys
 130 135 140

Ala Gly Val Ala His Lys Ile Asp Phe Arg Glu Gly Pro Ala Leu Pro
 145 150 155 160
 Val Leu Asp Glu Leu Leu Glu Asp Glu Ala Asn His Gly Thr Phe Asp
 165 170 175
 Phe Val Phe Val Asp Ala Asp Lys Asp Asn Tyr Leu Asn Tyr His Gln
 180 185 190
 Arg Leu Met Lys Leu Val Arg Val Gly Gly Leu Leu Gly Tyr Asp Asn
 195 200 205
 Thr Leu Trp Asn Gly Ser Val Val Leu Pro Ala Asp Ala Pro Met Arg
 210 215 220
 Lys Tyr Ile Arg Tyr Tyr Arg Asp Phe Val Leu Glu Leu Asn Lys Ala
 225 230 235 240
 Leu Ala Ala Asp Asp Arg Val Glu Ile Cys Gln Leu Pro Val Gly Asp
 245 250 255
 Gly Ile Thr Leu Cys Arg Arg Ala Lys
 260 265

<210> 99

<211> 265

<212> PRT

<213> Festuca arundinacea

<400> 99

Met Ala Thr Thr Ala Ala Asp Ala Thr Ala Thr Val Pro Lys Glu Gln
 1 5 10 15
 Pro Ala Thr Asn Gly Ala Ala Ser Gly Ala Glu Gln Val Thr Arg His
 20 25 30
 Ser Glu Val Gly His Lys Ser Leu Leu Gln Ser Asp Ala Leu Tyr Gln
 35 40 45
 Tyr Ile Leu Glu Thr Thr Val Tyr Pro Arg Glu His Glu Cys Met Lys
 50 55 60
 Gln Leu Arg Glu Asp Thr Ala Asn His Pro Trp Asn Leu Met Thr Thr
 65 70 75 80
 Ser Ala Asp Glu Gly Gln Phe Leu Asn Leu Leu Ile Lys Leu Ile Gly
 85 90 95
 Ala Lys Lys Thr Met Glu Ile Gly Val Tyr Thr Gly Tyr Ser Leu Leu
 100 105 110
 Ala Thr Ala Leu Ala Ile Pro Glu Asp Gly Thr Ile Leu Ala Met Asp
 115 120 125
 Ile Asn Arg Glu Asn Tyr Glu Thr Ile Gly Lys Pro Cys Ile Glu Lys
 130 135 140
 Ala Gly Val Ala His Lys Ile Asp Phe Arg Glu Gly Pro Ala Leu Pro
 145 150 155 160
 Val Leu Asp Glu Leu Leu Glu Asp Glu Ala Asn His Gly Ser Phe Asp
 165 170 175
 Phe Val Phe Val Asp Ala Asp Lys Asp Asn Tyr Leu Asn Tyr His Gln
 180 185 190
 Arg Leu Met Lys Leu Val Arg Val Gly Gly Leu Ile Gly Tyr Asp Asn
 195 200 205
 Thr Leu Trp Asn Gly Ser Val Val Leu Pro Ala Asp Ala Pro Met Arg
 210 215 220
 Lys Tyr Ile Arg Tyr Tyr Arg Asp Phe Val Leu Glu Leu Asn Lys Ala
 225 230 235 240
 Leu Ala Ala Asp Asp Arg Val Glu Ile Cys Gln Leu Pro Val Gly Asp
 245 250 255
 Gly Ile Thr Leu Cys Arg Arg Ala Lys
 260 265

<210> 100

<211> 363

<212> PRT

<213> Lolium perenne

<400> 100

Met Thr Val Val Glu Val Leu Ala Ala Gly Asp Ala Ala Ala Ala Ala
 1 5 10 15

Val Ala Arg Pro Ala Gly Asn Gly Gln Thr Val Cys Val Thr Gly Ala
 20 25 30
 Ala Gly Tyr Ile Ala Ser Trp Leu Val Lys Leu Leu Leu Glu Lys Gly
 35 40 45
 Tyr Thr Val Lys Gly Thr Val Arg Asn Pro Asp Asp Pro Lys Asn Ala
 50 55 60
 His Leu Arg Ala Leu Asp Gly Ala Ala Asp Arg Leu Val Leu Cys Lys
 65 70 75 80
 Ala Asp Leu Leu Asp Tyr Asp Ala Ile Arg Arg Ala Ile Asp Gly Cys
 85 90 95
 His Gly Val Phe His Thr Ala Ser Pro Val Thr Asp Asp Pro Glu Gln
 100 105 110
 Met Val Glu Pro Ala Val Arg Gly Thr Gln Tyr Val Ile Asp Ala Ala
 115 120 125
 Ala Glu Ala Gly Thr Val Arg Arg Met Val Leu Thr Ser Ser Ile Gly
 130 135 140
 Ala Val Thr Met His Pro Asn Arg Gly Pro Asp Val Val Val Asp Glu
 145 150 155 160
 Ser Cys Trp Ser Asp Leu Asp Phe Cys Lys Lys Thr Arg Asn Trp Tyr
 165 170 175
 Cys Tyr Gly Lys Ala Val Ala Glu Gln Ala Ala Ser Glu Leu Ala Arg
 180 185 190
 Gln Arg Gly Val Asp Leu Val Val Asn Pro Val Leu Val Ile Gly
 195 200 205
 Pro Leu Leu Gln Pro Thr Val Asn Ala Ser Ile Gly His Ile Leu Lys
 210 215 220
 Tyr Leu Asp Gly Ser Ala Ser Lys Phe Ala Asn Ala Val Gln Ala Tyr
 225 230 235 240
 Val Asp Val Arg Asp Val Ala Asp Ala His Leu Arg Val Phe Glu Cys
 245 250 255
 Ala Ala Ala Ser Gly Arg His Leu Cys Ala Glu Arg Val Leu His Arg
 260 265 270
 Glu Asp Val Val Arg Ile Leu Ala Lys Leu Phe Pro Glu Tyr Pro Val
 275 280 285
 Pro Thr Arg Cys Ser Asp Glu Ala Asn Pro Arg Lys Gln Pro Tyr Lys
 290 295 300
 Met Ser Asn Gln Lys Leu Gln Asp Leu Gly Leu Glu Phe Arg Pro Val
 305 310 315 320
 Ser Gln Ser Leu Tyr Glu Thr Val Lys Ser Leu Gln Glu Lys Gly His
 325 330 335
 Leu Pro Val Leu Ser Glu Gln Ala Glu Ala Asp Lys Glu Thr Leu Ala
 340 345 350
 Ala Glu Leu Gln Ala Gly Val Thr Ile Arg Ala
 355 360

<210> 101

<211> 342

<212> PRT

<213> Festuca arundinacea

<400> 101

Met Thr Val Val Asp Ala Ala Ala Pro Gln Leu Pro Gly His Gly Gln
 1 5 10 15
 Thr Val Cys Val Thr Gly Ala Ala Gly Tyr Ile Ala Ser Gly Leu Val
 20 25 30
 Lys Leu Leu Glu Arg Gly Tyr Thr Val Lys Gly Thr Val Arg Asn
 35 40 45
 Pro Asp Asp Pro Lys Asn Ala His Leu Lys Ala Leu Asp Gly Ala Thr
 50 55 60
 Glu Arg Leu Ile Leu Cys Lys Ala Asp Leu Leu Asp Tyr Asp Ala Ile
 65 70 75 80
 Cys Ala Ala Val Glu Gly Cys His Gly Val Phe His Thr Ala Ser Pro
 85 90 95
 Val Thr Asp Asp Pro Glu Gln Met Val Glu Pro Ala Val Arg Gly Thr
 100 105 110

Glu Tyr Val Ile Asn Ala Ala Asp Ala Gly Thr Val Arg Arg Val
 115 120 125
 Val Phe Thr Ser Ser Ile Gly Ala Ile Thr Met Asp Pro Asn Arg Gly
 130 135 140
 Pro Asp Val Val Val Asn Glu Ser Cys Trp Ser Asp Leu Glu Phe Cys
 145 150 155 160
 Lys Lys Thr Lys Asn Trp Tyr Cys Tyr Gly Lys Ala Val Ala Glu Gln
 165 170 175
 Ala Ala Trp Glu Ala Ala Arg Lys Arg Gly Ile Asp Leu Val Val Val
 180 185 190
 Asn Pro Val Leu Val Val Gly Pro Leu Leu Gln Pro Thr Val Asn Ala
 195 200 205
 Ser Ala Ala His Ile Leu Lys Tyr Leu Asp Gly Ser Ala Lys Lys Tyr
 210 215 220
 Ala Asn Ala Val Gln Ser Tyr Val Asp Val Arg Asp Val Ala Gly Ala
 225 230 235 240
 His Ile Arg Val Phe Glu Ala Pro Glu Ala Ser Gly Arg Tyr Leu Cys
 245 250 255
 Ala Glu Arg Val Leu His Arg Gly Asp Val Val Gln Ile Leu Ser Lys
 260 265 270
 Leu Phe Pro Glu Tyr Pro Val Pro Thr Arg Cys Ser Asp Glu Val Asn
 275 280 285
 Pro Arg Lys Gln Pro Tyr Lys Met Ser Asn Gln Lys Leu Gln Asp Leu
 290 295 300
 Gly Leu Gln Phe Thr Pro Val Asn Asp Ser Leu Tyr Glu Thr Val Lys
 305 310 315 320
 Ser Leu Gln Glu Lys Gly His Leu Leu Val Pro Ser Lys Pro Glu Gly
 325 330 335
 Leu Asn Gly Val Thr Ala
 340

<210> 102
 <211> 360
 <212> PRT
 <213> Festuca arundinacea

<400> 102
 Met Gly Ser Thr Ala Ala Asp Met Ala Ala Ser Ala Asp Gln Glu Ala
 1 5 10 15
 Cys Met Phe Ala Leu Gln Leu Ala Ser Ser Ser Ile Leu Pro Met Thr
 20 25 30
 Leu Lys Asn Ala Ile Glu Leu Gly Leu Leu Glu Ile Leu Val Ala Ala
 35 40 45
 Gly Gly Lys Ser Leu Thr Pro Thr Glu Val Ala Ala Lys Leu Pro Ser
 50 55 60
 Ala Ala Asn Pro Glu Ala Pro Asp Met Val Asp Arg Met Leu Arg Leu
 65 70 75 80
 Leu Ala Ser Tyr Asn Val Val Thr Cys Leu Val Glu Glu Gly Lys Asp
 85 90 95
 Gly Arg Leu Ser Arg Ser Tyr Gly Ala Ala Pro Val Cys Lys Phe Leu
 100 105 110
 Thr Pro Asn Glu Asp Gly Val Ser Met Ala Ala Leu Ala Leu Met Asn
 115 120 125
 Gln Asp Lys Val Leu Met Glu Ser Trp Tyr Tyr Leu Lys Asp Ala Val
 130 135 140
 Leu Asp Gly Gly Ile Pro Phe Asn Lys Ala Tyr Gly Met Ser Ala Phe
 145 150 155 160
 Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Arg Val Phe Asn Glu Gly
 165 170 175
 Met Lys Asn His Ser Ile Ile Ile Thr Lys Lys Leu Leu Glu Leu Tyr
 180 185 190
 His Gly Phe Gln Gly Leu Gly Thr Leu Val Asp Val Gly Gly Gly Val
 195 200 205
 Gly Ala Thr Val Ala Ala Ile Ala His Tyr Pro Ala Ile Lys Gly
 210 215 220

Val Asn Phe Asp Leu Pro His Val Ile Ser Glu Ala Pro Gln Phe Pro
 225 230 235 240
 Gly Val Thr His Val Gly Gly Asp Met Phe Lys Glu Val Pro Ser Gly
 245 250 255
 Asp Ala Ile Leu Met Lys Trp Ile Leu His Asp Trp Ser Asp Gln His
 260 265 270
 Cys Ala Thr Leu Leu Lys Asn Cys Tyr Asp Ala Leu Pro Ala His Gly
 275 280 285
 Lys Val Val Leu Val Glu Cys Ile Leu Pro Val Asn Pro Glu Ala Lys
 290 295 300
 Pro Ser Ser Gln Gly Val Phe His Val Asp Met Ile Met Leu Ala His
 305 310 315 320
 Asn Pro Gly Gly Arg Glu Arg Tyr Glu Arg Glu Phe Glu Ala Leu Ala
 325 330 335
 Arg Gly Ala Gly Phe Thr Gly Val Lys Ser Thr Tyr Ile Tyr Ala Asn
 340 345 350
 Ala Trp Ala Ile Glu Phe Thr Lys
 355 360

<210> 103
 <211> 360
 <212> PRT
 <213> *FLolium perenne*

<400> 103
 Met Gly Ser Thr Ala Ala Asp Met Ala Ala Ser Ala Asp Glu Asp Ala
 1 5 10 15
 Cys Met Phe Ala Leu Gln Leu Ala Ser Ser Ser Val Leu Pro Met Thr
 20 25 30
 Leu Lys Asn Ala Ile Glu Leu Gly Leu Leu Glu Ile Leu Val Ala Ala
 35 40 45
 Gly Gly Lys Ser Leu Thr Pro Thr Glu Val Ala Ala Lys Leu Pro Ser
 50 55 60
 Ala Ala Asn Pro Glu Ala Pro Asp Met Val Asp Arg Ile Leu Arg Leu
 65 70 75 80
 Leu Ala Ser Tyr Asn Val Val Thr Cys Leu Val Glu Gly Lys Asp
 85 90 95
 Gly Arg Leu Ser Arg Ser Tyr Gly Ala Ala Pro Val Cys Lys Phe Leu
 100 105 110
 Thr Pro Asn Glu Asp Gly Val Ser Met Ala Ala Leu Ala Leu Met Asn
 115 120 125
 Gln Asp Lys Val Leu Met Glu Ser Trp Tyr Tyr Leu Lys Asp Ala Val
 130 135 140
 Leu Asp Gly Gly Ile Pro Phe Asn Lys Ala Tyr Gly Met Ser Ala Phe
 145 150 155 160
 Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Arg Val Phe Asn Glu Gly
 165 170 175
 Met Lys Asn His Ser Ile Ile Ile Thr Lys Lys Leu Leu Glu Leu Tyr
 180 185 190
 His Gly Phe Glu Gly Leu Gly Ser Leu Val Asp Val Gly Gly Gly Val
 195 200 205
 Gly Ala Thr Val Ala Ala Ile Ala Ala His Tyr Pro Thr Ile Lys Gly
 210 215 220
 Val Asn Phe Asp Leu Pro His Val Ile Ser Glu Ala Pro Gln Phe Pro
 225 230 235 240
 Gly Val Thr His Val Gly Gly Asp Met Phe Lys Glu Val Pro Ser Gly
 245 250 255
 Asp Ala Ile Leu Met Lys Trp Ile Leu His Asp Trp Ser Asp Gln His
 260 265 270
 Cys Ala Thr Leu Leu Lys Asn Cys Tyr Asp Ala Leu Pro Ala His Gly
 275 280 285
 Lys Val Val Leu Val Glu Cys Ile Leu Pro Val Asn Pro Glu Ala Asn
 290 295 300
 Pro Ser Ser Gln Gly Val Phe His Val Asp Met Ile Met Leu Ala His
 305 310 315 320

Asn Pro Gly Gly Arg Glu Arg Tyr Glu Arg Glu Phe Gln Ala Leu Ala
 325 330 335
 Arg Gly Ala Gly Phe Thr Gly Val Lys Ser Thr Tyr Ile Tyr Ala Asn
 340 345 350
 Ala Trp Ala Ile Glu Phe Thr Lys
 355 360

<210> 104
 <211> 360
 <212> PRT
 <213> Festuca arundinacea

<400> 104
 Met Gly Ser Thr Ala Ala Asp Met Thr Ala Ser Ala Asp Glu Glu Ala
 1 5 10 15
 Cys Met Phe Ala Leu Gln Leu Ala Ser Ser Ser Ile Leu Pro Met Thr
 20 25 30
 Leu Lys Asn Ala Ile Glu Leu Gly Leu Leu Glu Ile Leu Val Ala Ala
 35 40 45
 Gly Gly Lys Ser Leu Thr Pro Thr Glu Val Ala Ala Lys Leu Pro Ser
 50 55 60
 Ala Ala Asn Pro Glu Ala Pro Asp Met Val Asp Arg Met Leu Arg Leu
 65 70 75 80
 Leu Ala Ser Tyr Asn Val Val Ser Cys Leu Val Glu Glu Gly Lys Asp
 85 90 95
 Gly Arg Leu Ser Arg Asn Tyr Gly Ala Ala Pro Val Cys Lys Phe Leu
 100 105 110
 Thr Pro Asn Glu Asp Gly Val Ser Met Ala Ala Leu Ala Leu Met Asn
 115 120 125
 Gln Asp Lys Val Leu Met Glu Ser Trp Tyr Tyr Leu Lys Asp Ala Val
 130 135 140
 Leu Asp Gly Gly Ile Pro Phe Asn Lys Ala Tyr Gly Met Ser Ala Phe
 145 150 155 160
 Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Arg Val Phe Asn Glu Gly
 165 170 175
 Met Lys Asn His Ser Ile Ile Ile Thr Lys Lys Leu Leu Glu Leu Tyr
 180 185 190
 Asp Gly Phe Gln Gly Leu Gly Thr Leu Val Asp Val Gly Gly Val
 195 200 205
 Gly Ala Thr Val Ala Ala Ile Thr Ala His Tyr Pro Ala Ile Lys Gly
 210 215 220
 Val Asn Phe Asp Leu Pro His Val Ile Ser Glu Ala Pro Pro Phe Pro
 225 230 235 240
 Gly Val Thr His Val Gly Gly Asp Met Phe Lys Lys Val Pro Ser Gly
 245 250 255
 Asp Ala Ile Met Met Lys Trp Ile Leu His Asp Trp Ser Asp Gln His
 260 265 270
 Cys Ala Thr Leu Leu Lys Asn Cys Tyr Asp Ala Leu Pro Ala His Gly
 275 280 285
 Lys Val Val Leu Val Glu Cys Ile Leu Pro Val Asn Pro Glu Ala Lys
 290 295 300
 Pro Ser Ser Gln Gly Val Phe His Val Asp Met Ile Met Leu Ala His
 305 310 315 320
 Asn Pro Gly Gly Arg Glu Arg Tyr Glu Arg Glu Phe Glu Ala Leu Ala
 325 330 335
 Arg Gly Ala Gly Phe Ala Gly Val Lys Ser Thr Tyr Ile Tyr Ala Asn
 340 345 350
 Ala Trp Ala Ile Glu Phe Thr Lys
 355 360

<210> 105
 <211> 361
 <212> PRT
 <213> Lolium perenne

<400> 105
 Met Gly Ser Thr Ala Ala Glu Ile Ala Ala Ser Ala Asp Glu Glu Ala
 1 5 10 15
 Cys Leu Tyr Ala Leu Gln Leu Gly Ser Ser Ser Ile Leu Pro Met Thr
 20 25 30
 Leu Lys Asn Thr Ile Glu Leu Gly Leu Leu Glu Thr Leu Met Ala Ala
 35 40 45
 Gly Gly Lys Ser Leu Thr Pro Thr Glu Val Ala Ala Lys Leu Pro Cys
 50 55 60
 Ala Ala Lys Asn Pro Glu Ala Pro Asp Met Val Asp Arg Met Leu Arg
 65 70 75 80
 Leu Leu Ala Ser Tyr Asn Leu Val Ser Cys Leu Val Glu Glu Gly Thr
 85 90 95
 Asp Gly Arg Leu Ser Arg Arg Tyr Gly Ala Ala Pro Val Cys Lys Phe
 100 105 110
 Leu Thr Pro Asn Glu Asp Gly Val Ser Met Ala Ala Leu Ala Leu Met
 115 120 125
 Asn Gln Asp Lys Val Leu Met Glu Ser Trp Tyr Tyr Leu Lys Asp Ala
 130 135 140
 Val Leu Asp Gly Gly Ile Pro Phe Asn Lys Ala Tyr Gly Met Ser Ala
 145 150 155 160
 Phe Glu Tyr His Gly Thr Asp Leu Arg Phe Asn Arg Val Phe Asn Glu
 165 170 175
 Ala Met Lys Asn Asn Ser Ile Ile Ile Thr Lys Lys Leu Leu Gln Leu
 180 185 190
 Tyr Asp Gly Phe Gln Gly Leu Gly Thr Leu Val Asp Val Gly Gly Gly
 195 200 205
 Val Gly Ala Thr Val Ala Ala Ile Thr Ala His Tyr Pro Thr Ile Lys
 210 215 220
 Gly Ile Asn Phe Asp Leu Pro His Val Ile Ser Glu Ala Pro Pro Phe
 225 230 235 240
 Pro Gly Val Thr His Ile Gly Gly Asp Met Phe Lys Lys Val Pro Ser
 245 250 255
 Gly Asp Ala Ile Leu Met Lys Trp Ile Leu His Asp Trp Ser Asp Gln
 260 265 270
 His Cys Ala Thr Leu Leu Lys Asn Cys Tyr Asp Ala Leu Pro Val His
 275 280 285
 Gly Lys Val Val Leu Val Glu Cys Ile Leu Pro Val Asn Pro Glu Ala
 290 295 300
 Lys Pro Ser Ser Gln Gly Val Phe His Val Asp Met Ile Met Leu Ala
 305 310 315 320
 His Asn Pro Gly Gly Arg Glu Arg Tyr Glu Arg Glu Tyr Glu Ala Leu
 325 330 335
 Ala Arg Gly Ala Gly Phe Ala Gly Phe Lys Ser Thr Tyr Ile Tyr Ala
 340 345 350
 Asn Ala Trp Ala Ile Glu Phe Thr Lys
 355 360

<210> 106

<211> 532

<212> PRT

<213> Lolium perenne

<400> 106

Met Val Gly Phe Ala Lys Ile Ala Met Glu Trp Ile Gln Asp Pro Leu
 1 5 10 15
 Ser Trp Leu Phe Ile Ala Ser Val Val Phe Val Val Leu Gln Arg Arg
 20 25 30
 Arg Arg Gly Asn Val Ala Pro Phe Pro Pro Gly Pro Lys Pro Leu Pro
 35 40 45
 Ile Val Gly Asn Met Ser Met Met Asp Gln Leu Thr His Arg Gly Leu
 50 55 60
 Ala Ala Leu Ala Lys Glu Tyr Gly Gly Leu Leu His Ile Arg Leu Gly
 65 70 75 80
 Lys Leu His Thr Phe Ala Val Ser Thr Pro Glu Tyr Ala Arg Glu Val
 85 90 95

Leu Gln Val Gln Asp Gly Ala Phe Ser Asn Arg Pro Ala Thr Ile Ala
 100 105 110
 Ile Ala Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala His Tyr
 115 120 125
 Gly Pro Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys Leu Phe
 130 135 140
 Ser Arg Arg Arg Pro Glu Thr Trp Leu Ala Val Arg Asp Glu Ser Ala
 145 150 155 160
 Ala Leu Val Arg Ala Val Ala Arg Arg Thr Gly Glu Ser Val Asp Leu
 165 170 175
 Gly Glu Leu Ile Phe Lys Leu Thr Lys Asn Val Ile Phe Arg Ala Ala
 180 185 190
 Phe Gly Ala Gly Ala Val Ala Ala Asp Ala Glu Glu Gly Asp Gly Ala
 195 200 205
 Gly Lys Gln Asp Glu Phe Ile Ala Ile Leu Gln Glu Phe Ser Lys Leu
 210 215 220
 Phe Gly Ala Phe Asn Ile Gly Asp Phe Ile Pro Trp Leu Ser Trp Ala
 225 230 235 240
 Asp Pro Gln Gly Ile Asn Val Arg Leu Arg Ala Ala Arg Asn Ala Leu
 245 250 255
 Asp Glu Phe Ile Asp Lys Ile Ile Asp Glu His Met Glu Arg Gly Lys
 260 265 270
 Asn Pro Asp Asp Ala Asp Ala Asp Met Val Asp Asp Met Leu Ala Phe
 275 280 285
 Leu Pro Glu Ala Lys Pro Lys Lys Gly Ala Ala Gly Asp Gly Val Asp
 290 295 300
 Asp Leu Gln Asn Thr Leu Arg Leu Thr Arg Asp Asn Ile Lys Ala Ile
 305 310 315 320
 Ile Met Asp Val Met Phe Gly Gly Thr Glu Thr Val Ala Ser Ala Ile
 325 330 335
 Glu Trp Ala Met Ala Glu Met Met His Ser Pro Asp Asp Leu Arg Arg
 340 345 350
 Leu Gln Gln Glu Leu Val Asp Val Val Gly Leu Asp Arg Asn Val Asp
 355 360 365
 Glu Ser Asp Leu Asp Lys Leu Pro Phe Leu Lys Cys Val Ile Lys Glu
 370 375 380
 Thr Leu Arg Leu His Pro Pro Ile Pro Leu Leu His Glu Thr Ala
 385 390 395 400
 Glu Asp Cys Val Val Gly Gly Tyr Ser Val Pro Arg Gly Ser Arg Val
 405 410 415
 Met Ile Asn Val Tyr Ala Ile Gly Arg Asp Arg Arg Ala Trp Lys Asp
 420 425 430
 Ala Asp Val Phe Arg Pro Ser Arg Phe Val Gln Gly Glu Gly Glu Ala
 435 440 445
 Ala Gly Leu Asp Phe Lys Gly Gly Cys Phe Glu Phe Leu Pro Phe Gly
 450 455 460
 Ser Gly Arg Arg Ser Cys Pro Gly Met Ala Leu Gly Leu Tyr Ala Leu
 465 470 475 480
 Glu Leu Ala Val Ala Gln Leu Ala His Gly Phe Ser Trp Glu Leu Pro
 485 490 495
 Asp Gly Met Lys Pro Ser Glu Leu Asp Met Ser Asp Val Phe Gly Leu
 500 505 510
 Thr Ala Pro Arg Ala Thr Arg Leu Phe Ala Val Pro Thr Pro Arg Leu
 515 520 525
 Ala Cys Thr Gln
 530

<210> 107

<211> 542

<212> PRT

<213> Festuca arundinacea

<400> 107

Met Val Gly Phe Ala Lys Ile Ala Met Glu Trp Leu Gln Glu Pro Leu
 1 5 10 15

Ser Trp Leu Phe Ile Ala Ser Val Val Phe Val Val Leu Gln Arg Arg
 20 25 30
 Arg Arg Gly Asn Val Ala Pro Phe Pro Pro Gly Pro Lys Pro Leu Pro
 35 40 45
 Ile Val Gly Asn Met Ser Met Met Asp Gln Leu Thr His Arg Gly Leu
 50 55 60
 Ala Ala Leu Ala Lys Glu Tyr Gly Leu Leu His Ile Arg Leu Gly
 65 70 75 80
 Lys Leu His Ala Phe Ala Val Ser Thr Pro Glu Tyr Ala Arg Glu Val
 85 90 95
 Leu Gln Val Gln Asp Gly Ala Phe Ser Asn Arg Pro Ala Thr Ile Ala
 100 105 110
 Ile Ala Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala His Tyr
 115 120 125
 Gly Pro Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys Leu Phe
 130 135 140
 Ser Arg Arg Arg Pro Glu Thr Trp Leu Ala Val Arg Asp Glu Ser Ala
 145 150 155 160
 Ala Leu Val Arg Ala Val Ala Arg Arg Ser Gly Glu Ser Val Asp Leu
 165 170 175
 Gly Glu Leu Ile Phe Lys Leu Thr Lys Asn Val Ile Phe Arg Ala Ala
 180 185 190
 Phe Gly Ala Gly Ala Val Ala Gly Asp Gly Asp Gly Asp Gly Ala Gly
 195 200 205
 Lys Gln Asp Glu Phe Ile Ala Ile Leu Gln Glu Phe Ser Lys Leu Phe
 210 215 220
 Gly Ala Phe Asn Ile Gly Asp Phe Ile Pro Trp Leu Ser Trp Ala Asp
 225 230 235 240
 Pro Gln Gly Ile Asn Val Arg Leu Arg Ala Ala Arg Ala Leu Asp
 245 250 255
 Glu Phe Ile Asp Lys Ile Ile Asp Glu His Met Glu Arg Gly Lys Asn
 260 265 270
 Pro Asp Asp Ala Asp Ala Asp Met Val Asp Asp Met Leu Ala Phe Leu
 275 280 285
 Pro Glu Thr Lys Pro Lys Lys Gly Ala Ala Gly Asp Gly Val Asp Asp
 290 295 300
 Leu Gln Asn Thr Leu Arg Leu Thr Arg Asp Asn Ile Lys Ala Ile Ile
 305 310 315 320
 Met Asp Val Met Phe Gly Gly Thr Glu Thr Val Ala Ser Ala Ile Glu
 325 330 335
 Trp Ala Met Ala Glu Met Met His Ser Pro Gly Asp Leu Arg Arg Leu
 340 345 350
 Gln Gln Glu Leu Ala Asp Val Val Gly Leu Asp Arg Asn Val Asp Glu
 355 360 365
 Ser Asp Leu Asp Lys Leu Pro Phe Leu Lys Cys Val Ile Lys Glu Thr
 370 375 380
 Leu Arg Leu His Pro Pro Ile Pro Leu Leu His Glu Thr Ala Glu
 385 390 395 400
 Asp Cys Ile Val Gly Gly Tyr Ser Val Pro Arg Gly Ser Arg Val Met
 405 410 415
 Ile Asn Val Tyr Ala Ile Gly Arg Asp Arg Lys Ala Trp Lys Asp Ala
 420 425 430
 Asp Val Phe Arg Pro Ser Arg Phe Val Gln Gly Glu Gly Glu Ala Ala
 435 440 445
 Gly Leu Asp Phe Lys Gly Gly Cys Phe Glu Phe Leu Pro Phe Gly Ser
 450 455 460
 Gly Arg Arg Ser Cys Pro Gly Met Ala Leu Gly Leu Tyr Ala Leu Glu
 465 470 475 480
 Leu Ala Val Ala Gln Leu Ala His Gly Phe Ser Trp Glu Leu Pro Asp
 485 490 495
 Gly Met Lys Pro Ser Glu Leu Asp Met Ser Asp Val Phe Gly Leu Thr
 500 505 510
 Ala Pro Arg Ala Thr Arg Leu Phe Ala Val Pro Thr Pro Arg Leu Ala
 515 520 525
 Cys Thr Gln Leu Leu Gly Ala Asp Asp Ala Gly Arg Gln Ala
 530 535 540

<210> 108
 <211> 711
 <212> PRT
 <213> *Lolium perenne*

<400> 108
 Met Glu Ser Glu Asn Val Ala Ala Asn Gly Asp Gly Leu Cys Val Ala
 1 5 10 15
 Gln Pro Ala Arg Ala Asp Pro Leu Asn Trp Gly Lys Ala Ala Glu Glu
 20 25 30
 Leu Ser Gly Ser His Leu Asp Ala Val Lys Arg Met Val Glu Glu Tyr
 35 40 45
 Arg Arg Pro Val Val Thr Met Glu Gly Ala Ser Leu Thr Ile Ala Met
 50 55 60
 Val Ala Ala Val Ala Ala Gly Ala Asp Thr Arg Val Glu Leu Asp Glu
 65 70 75 80
 Ser Ala Arg Gly Arg Val Lys Glu Ser Ser Asp Trp Val Met Asn Ser
 85 90 95
 Met Ala Asn Gly Thr Asp Ser Tyr Gly Val Thr Thr Gly Phe Gly Ala
 100 105 110
 Thr Ser His Arg Arg Thr Lys Glu Gly Gly Ala Leu Gln Arg Glu Leu
 115 120 125
 Ile Arg Phe Leu Asn Ala Gly Ala Phe Gly Thr Gly Ser Asp Gly His
 130 135 140
 Val Leu Pro Ala Ala Thr Thr Arg Ala Ala Met Leu Val Arg Val Asn
 145 150 155 160
 Thr Leu Leu Gln Gly Tyr Ser Gly Ile Arg Phe Glu Ile Leu Glu Thr
 165 170 175
 Val Ala Thr Leu Leu Asn Ala Asn Val Thr Pro Cys Leu Pro Leu Arg
 180 185 190
 Gly Thr Ile Thr Ala Ser Gly Asp Leu Val Pro Leu Ser Tyr Ile Ala
 195 200 205
 Gly Leu Val Thr Gly Arg Pro Asn Ser Val Ala Thr Ala Pro Asp Gly
 210 215 220
 Thr Lys Val Asn Ala Ala Glu Ala Phe Lys Ile Ala Gly Ile Gln His
 225 230 235 240
 Gly Phe Phe Glu Leu Gln Pro Lys Glu Gly Leu Ala Met Val Asn Gly
 245 250 255
 Thr Ala Val Gly Ser Gly Leu Ala Ser Met Val Leu Phe Glu Ala Asn
 260 265 270
 Ile Leu Gly Ile Leu Ala Glu Val Leu Ser Ala Val Phe Cys Glu Val
 275 280 285
 Met Asn Gly Lys Pro Glu Tyr Thr Asp His Leu Thr His Lys Leu Lys
 290 295 300
 His His Pro Gly Gln Ile Glu Ala Ala Ala Ile Met Glu His Ile Leu
 305 310 315 320
 Glu Gly Ser Ser Tyr Met Met Leu Ala Lys Lys Leu Gly Glu Leu Asp
 325 330 335
 Pro Leu Met Lys Pro Lys Gln Asp Arg Tyr Ala Leu Arg Thr Ser Pro
 340 345 350
 Gln Trp Leu Gly Pro Gln Ile Glu Val Ile Arg Ala Ala Thr Lys Ser
 355 360 365
 Ile Glu Arg Glu Ile Asn Ser Val Asn Asp Asn Pro Leu Ile Asp Val
 370 375 380
 Ser Arg Gly Lys Ala Ile His Gly Gly Asn Phe Gln Gly Thr Pro Ile
 385 390 395 400
 Gly Val Ser Met Asp Asn Thr Arg Leu Ala Ile Ala Ala Ile Gly Lys
 405 410 415
 Leu Met Phe Ala Gln Phe Ser Glu Leu Val Asn Asp Phe Tyr Asn Asn
 420 425 430
 Gly Leu Pro Ser Asn Leu Ser Gly Gly Arg Asn Pro Ser Leu Asp Tyr
 435 440 445
 Gly Phe Lys Gly Ala Glu Ile Ala Met Ala Ser Tyr Cys Ser Glu Leu
 450 455 460

Gln Phe Leu Gly Asn Pro Val Thr Asn His Val Gln Ser Ala Glu Gln
 465 470 475 480
 His Asn Gln Asp Val Asn Ser Leu Gly Leu Ile Ser Ala Arg Lys Thr
 485 490 495
 Ser Glu Ala Ile Asp Ile Leu Lys Leu Met Ser Ser Thr Phe Leu Val
 500 505 510
 Ala Leu Cys Gln Ala Ile Asp Leu Arg His Leu Glu Glu Asn Val Lys
 515 520 525
 Asn Ala Val Lys Asn Cys Val Lys Met Val Ala Arg Lys Thr Leu Ser
 530 535 540
 Thr Asn Asp Ser Gly His Leu His Ser Ala Arg Phe Cys Glu Lys Asp
 545 550 555 560
 Leu Leu Leu Thr Ile Asp Arg Glu Ala Val Phe Ala Tyr Ala Asp Asp
 565 570 575
 Pro Cys Ser Ala Asn Tyr Pro Leu Met Gln Lys Met Arg Ala Val Leu
 580 585 590
 Val Glu His Ala Leu Ala Asn Gly Glu Ala Glu Arg Asp Val Gln Thr
 595 600 605
 Ser Val Phe Ala Lys Leu Ala Ala Phe Glu Gln Glu Leu Arg Ala Val
 610 615 620
 Leu Pro Arg Glu Val Glu Ser Ala Arg Cys Ala Val Glu Asn Gly Thr
 625 630 635 640
 Ala Ala Gln Gln Asn Arg Ile Thr Glu Cys Arg Ser Tyr Pro Leu Tyr
 645 650 655
 Arg Phe Val Arg Lys Glu Leu Gly Thr Glu Tyr Leu Thr Gly Glu Lys
 660 665 670
 Thr Arg Ser Pro Gly Glu Glu Val Asp Lys Val Phe Val Ala Met Asn
 675 680 685
 Gln Gly Lys His Ile Asp Ala Leu Leu Glu Cys Leu Lys Glu Trp Asn
 690 695 700
 Gly Glu Pro Leu Pro Ile Cys
 705 710

<210> 109

<211> 713

<212> PRT

<213> Festuca arundinacea

<400> 109

Met Glu Cys Glu Asn Gly His Val Ala Ala Asn Gly Asp Gly Leu Cys
 1 5 10 15
 Val Ala Gln Pro Ala Arg Ala Asp Pro Leu Asn Trp Gly Lys Ala Ala
 20 25 30
 Glu Glu Leu Ser Gly Ser His Leu Asp Ala Val Lys Arg Met Val Glu
 35 40 45
 Glu Tyr Arg Arg Pro Val Val Thr Met Glu Gly Ala Ser Leu Thr Ile
 50 55 60
 Ala Met Val Ala Ala Val Ala Ala Gly Ala Asp Thr Arg Val Glu Leu
 65 70 75 80
 Asp Glu Ser Ala Arg Gly Arg Val Lys Glu Ser Ser Asp Trp Val Met
 85 90 95
 Asn Ser Met Ala Asn Gly Thr Asp Ser Tyr Gly Val Thr Thr Gly Phe
 100 105 110
 Gly Ala Thr Ser His Arg Arg Thr Lys Glu Gly Gly Ala Leu Gln Arg
 115 120 125
 Glu Leu Ile Arg Phe Leu Asn Ala Gly Ala Phe Gly Thr Gly Ser Asp
 130 135 140
 Gly His Val Leu Pro Ala Ala Thr Thr Arg Ala Ala Met Leu Val Arg
 145 150 155 160
 Val Asn Thr Leu Leu Gln Gly Tyr Ser Gly Ile Arg Phe Glu Ile Leu
 165 170 175
 Glu Thr Ile Ala Thr Leu Leu Asn Ala Asn Val Thr Pro Cys Leu Pro
 180 185 190
 Tyr Arg Gly Thr Ile Thr Ala Ser Gly Asp Leu Val Pro Leu Ser Tyr
 195 200 205

Ile Ala Gly Leu Val Thr Gly Arg Pro Asn Ser Val Ala Thr Ala Pro
 210 215 220
 Asp Gly Ser Lys Val Asn Ala Ala Glu Ala Phe Lys Ile Ala Gly Ile
 225 230 235 240
 Gln His Gly Phe Phe Glu Leu Gln Pro Lys Glu Gly Leu Ala Met Val
 245 250 255
 Asn Gly Thr Ala Val Gly Ser Gly Leu Ala Ser Ile Val Leu Phe Glu
 260 265 270
 Ala Asn Ile Leu Gly Ile Leu Ala Glu Val Leu Ser Ala Val Phe Cys
 275 280 285
 Glu Val Met Asn Gly Lys Pro Glu Tyr Thr Asp His Leu Thr His Lys
 290 295 300
 Leu Lys His His Pro Gly Gln Ile Glu Ala Ala Ala Ile Met Glu His
 305 310 315 320
 Ile Leu Glu Gly Ser Ser Tyr Met Met Leu Ala Lys Lys Leu Gly Glu
 325 330 335
 Leu Asp Pro Leu Met Lys Pro Lys Gln Asp Arg Tyr Ala Leu Arg Thr
 340 345 350
 Ser Pro Gln Trp Leu Gly Pro Gln Ile Glu Val Ile Arg Ala Ala Thr
 355 360 365
 Lys Ser Ile Glu Arg Glu Ile Asn Ser Val Asn Asp Asn Pro Leu Ile
 370 375 380
 Asp Val Ser Arg Gly Lys Ala Ile His Gly Gly Asn Phe Gln Gly Thr
 385 390 395 400
 Pro Ile Gly Val Ser Met Asp Asn Thr Arg Leu Ala Ile Ala Ala Ile
 405 410 415
 Gly Lys Leu Met Phe Ala Gln Phe Ser Glu Leu Val Asn Asp Phe Tyr
 420 425 430
 Asn Asn Gly Leu Pro Ser Asn Leu Ser Gly Gly Arg Asn Pro Ser Leu
 435 440 445
 Asp Tyr Gly Phe Lys Gly Ala Glu Ile Ala Met Ala Ser Tyr Cys Ser
 450 455 460
 Glu Leu Gln Phe Leu Gly Asn Pro Val Thr Asn His Val Gln Ser Ala
 465 470 475 480
 Glu Gln His Asn Gln Asp Val Asn Ser Leu Gly Leu Ile Ser Ser Arg
 485 490 495
 Lys Thr Ala Glu Ala Ile Asp Ile Leu Lys Leu Met Ser Ser Thr Phe
 500 505 510
 Met Val Ala Leu Cys Gln Ala Ile Asp Leu Arg His Ile Glu Glu Asn
 515 520 525
 Val Lys Asn Ala Val Lys Asn Cys Val Lys Thr Val Ala Arg Lys Thr
 530 535 540
 Leu Ser Thr Asn Asp Ser Gly His Leu His Asn Ala Arg Phe Cys Glu
 545 550 555 560
 Lys Asp Leu Leu Leu Thr Ile Asp Arg Glu Ala Val Phe Ala Tyr Ala
 565 570 575
 Asp Asp Pro Cys Ser Ala Asn Tyr Pro Leu Met Gln Lys Met Arg Ala
 580 585 590
 Val Leu Val Glu His Ala Leu Ala Asn Gly Glu Ala Glu Gln Asp Val
 595 600 605
 Gln Thr Ser Val Phe Ala Lys Leu Ala Thr Phe Glu Gln Glu Leu Arg
 610 615 620
 Ala Val Leu Pro Lys Glu Val Glu Ser Ala Arg Cys Ser Val Glu Asn
 625 630 635 640
 Gly Thr Ala Ala Gln Gln Asn Arg Ile Ser Glu Cys Arg Ser Tyr Pro
 645 650 , 655
 Leu Tyr Arg Phe Val Arg Lys Glu Leu Gly Thr Glu Tyr Leu Thr Gly
 660 665 670
 Glu Lys Thr Arg Ser Pro Gly Glu Glu Val Asp Lys Val Phe Val Ala
 675 680 685
 Met Asn Gln Gly Lys His Ile Asp Ala Leu Leu Glu Cys Leu Lys Glu
 690 695 700
 Trp Asn Gly Glu Pro Leu Pro Ile Cys
 705 710

<210> 110
 <211> 323
 <212> PRT
 <213> Festuca arundinacea

<400> 110
 Met Ala Phe Ser Gly Ser Val Ser Gly Val Val Leu Val Val Ala Ile
 1 5 10 15
 Leu Leu Leu Gly Leu Ala Ala Ala Ser Ala Gln Leu Ser Ala Thr
 20 25 30
 Phe Tyr Asp Ala Ser Cys Pro Ser Ala Leu Ala Thr Ile Lys Ser Ala
 35 40 45
 Val Thr Ala Ala Val Asn Asn Glu Ala Arg Met Gly Ala Ser Leu Leu
 50 55 60
 Arg Leu His Phe His Asp Cys Phe Val Gln Gly Cys Asp Ala Ser Val
 65 70 75 80
 Leu Leu Asn Asp Thr Ala Asn Phe Thr Gly Glu Gln Thr Ala Phe Pro
 85 90 95
 Asn Arg Asn Ser Ile Arg Gly Leu Asn Val Ile Asp Asn Val Lys Ala
 100 105 110
 Gln Val Glu Ala Val Cys Thr Gln Thr Val Ser Cys Ala Asp Ile Leu
 115 120 125
 Ala Val Ala Ala Arg Asp Ser Ile Val Ala Leu Gly Gly Pro Ser Tyr
 130 135 140
 Thr Val Pro Leu Gly Arg Arg Asp Ser Thr Thr Ala Ser Leu Ser Glu
 145 150 155 160
 Ala Asn Arg Asp Leu Pro Pro Ser Ser Asp Leu Ala Asp Leu Val
 165 170 175
 Gly Asn Phe Ser Arg Lys Gly Leu Ser Val Thr Asp Met Val Ala Leu
 180 185 190
 Ser Gly Ala His Thr Ile Gly Arg Ala Ala Cys Leu Asn Phe Arg Ser
 195 200 205
 Arg Ile Tyr Gly Glu Ser Asn Ile Ala Pro Ala Tyr Ala Ala Ser Leu
 210 215 220
 Gln Ala Asn Cys Pro Gln Ser Ala Pro Asn Gly Asp Gly Thr Leu Ala
 225 230 235 240
 Pro Leu Asp Val Ser Thr Pro Asp Ala Phe Asp Asn Ala Tyr Tyr Gly
 245 250 255
 Asn Leu Leu Ser Gln Gln Gly Leu Leu His Ser Asp Gln Gln Leu Phe
 260 265 270
 Asn Gly Gly Ser Thr Asp Ser Leu Val Ser Thr Tyr Ala Ser Asn Ala
 275 280 285
 Ala Gln Phe Ser Gly Asp Phe Ala Ala Ala Met Val Asn Met Gly Asn
 290 295 300
 Ile Gly Val Leu Thr Gly Ala Gln Gly Glu Ile Arg Leu Asn Cys Gly
 305 310 315 320
 Lys Val Asn

<210> 111
 <211> 344
 <212> PRT
 <213> Lolium perenne

<400> 111
 Met Ala Ser Ser Ser Ser Pro Phe Ser Arg Val Ser Gln Leu Ala Val
 1 5 10 15
 Lys Ala Thr Val Leu Ala Ala Val Cys Leu Leu Leu His Gly Gly Gly
 20 25 30
 Gly Ser Ser Ala Ser Ala Ala Glu Leu Cys Val Ser Tyr Tyr Asp His
 35 40 45
 Thr Cys Pro Asp Ala Tyr Lys Ile Val Gln Gly Val Leu Val Glu Ala
 50 55 60
 His Lys Ser Asp Pro Arg Ile Phe Ala Ser Leu Ile Arg Leu His Phe
 65 70 75 80

His Asp Cys Phe Val Leu Gly Cys Asp Gly Ser Leu Leu Leu Asp Thr
 85 90 95
 Phe Pro Gly Phe Gln Ser Glu Lys Asp Ala Arg Pro Asn Asn Asn Ser
 100 105 110
 Ala Arg Gly Tyr Pro Val Val Asp Ala Ala Lys Ala Leu Glu Lys
 115 120 125
 Ala Cys Pro Gly Val Val Ser Cys Ala Asp Ile Leu Ala Leu Ala Ala
 130 135 140
 Glu Ile Ser Val Gln Leu Ser Gly Gly Pro Gly Trp Gly Val Leu Leu
 145 150 155 160
 Gly Arg Leu Asp Gly Lys Thr Ser Ser Ile Ala Gly Ala Gln Asn Leu
 165 170 175
 Pro Gly Pro Phe Asp Gly Leu Lys Asn Leu Thr Leu Lys Phe Gln Ala
 180 185 190
 Val Asn Leu Asp Val Thr Asp Leu Val Ala Leu Ser Gly Ala His Thr
 195 200 205
 Phe Gly Arg Val Lys Cys Arg Phe Val Thr Asn Arg Leu Tyr Asn Phe
 210 215 220
 Ser Gly Thr Asn Gln Pro Asp Pro Thr Leu Asn Ala Ala Tyr Arg Ala
 225 230 235 240
 Phe Leu Ser Thr Arg Cys Pro Arg Asn Gly Asp Ala Asn Ser Leu Asn
 245 250 255
 Asp Leu Asp Pro Thr Thr Pro Asp Thr Phe Asp Lys Asn Tyr Phe Thr
 260 265 270
 Asn Leu Glu Lys Asn Arg Gly Phe Leu Asp Ser Asp Gln Gln Leu Lys
 275 280 285
 Ser Asp Pro Gly Ala Leu Thr Thr Ala Pro Ile Val Asp Arg Phe
 290 295 300
 Ala Ser Ser Gln Asp Ala Phe Phe Lys Ser Phe Ala Trp Ser Met Ile
 305 310 315 320
 Lys Met Gly Asn Ile Leu Pro Ile Thr Asp Pro Ser Arg Gly Glu Val
 325 330 335
 Arg Lys His Cys Ala Phe Val Asn
 340

<210> 112

<211> 326

<212> PRT

<213> Festuca arundinacea

<400> 112
 Met Ala Thr Arg Gly Val Met Val Ala Leu Leu Ala Ala Val Ala
 1 5 10 15
 Ala Ser Cys Ala His Ala Gln Leu His Glu Lys Phe Tyr Ser Glu Ser
 20 25 30
 Cys Pro Ser Val Glu Asp Val Val Arg Lys Glu Met Val Met Ala Leu
 35 40 45
 Ser Leu Ala Pro Ser Leu Ala Ala Pro Leu Leu Arg Met His Phe His
 50 55 60
 Asp Cys Phe Val Arg Gly Cys Asp Gly Ser Val Leu Leu Asp Ser Ala
 65 70 75 80
 Asn Lys Thr Ala Glu Lys Asp Ala Leu Pro Asn Gln Thr Leu Arg Gly
 85 90 95
 Phe Asp Phe Val Glu Arg Val Lys Ala Ala Val Glu Lys Ala Cys Pro
 100 105 110
 Asp Thr Val Ser Cys Ala Asp Val Val Thr Leu Ile Ala Arg Asp Ala
 115 120 125
 Val Trp Leu Ser Lys Gly Pro Phe Trp Glu Val Pro Leu Gly Arg Arg
 130 135 140
 Asp Gly Ser Val Ser Ile Ser Asn Glu Thr Asp Ala Leu Pro Pro Pro
 145 150 155 160
 Thr Ala Asn Ile Thr Val Leu Thr Gln Leu Phe Ala Ala Lys Asn Leu
 165 170 175
 Asp Ile Lys Asp Leu Val Val Leu Ser Ala Ala His Thr Ile Gly Thr
 180 185 190

Ser His Cys Phe Ser Phe Ser Asp Arg Leu Tyr Asn Phe Thr Gly Leu
 195 200 205
 Asp Asn Ala Ser Asp Ile Asp Pro Thr Leu Glu Pro Phe Tyr Met Ala
 210 215 220
 Lys Leu Lys Ser Lys Cys Thr Ser Leu Asp Asp Asn Ser Thr Leu Val
 225 230 235 240
 Glu Met Asp Pro Gly Ser Phe Lys Thr Phe Asp Leu Asp Tyr Phe Lys
 245 250 255
 Leu Val Ser Lys Arg Arg Gly Leu Phe His Ser Asp Gly Ala Leu Leu
 260 265 270
 Thr Asp Ala Phe Thr Arg Ala Tyr Ile Leu Arg His Ala Thr Gly Ala
 275 280 285
 Phe Lys Asp Glu Phe Phe Ala Asp Phe Ala Val Ser Met Val Lys Met
 290 295 300
 Gly Asn Thr Asp Val Leu Thr Gly Ser Gln Gly Glu Ile Arg Lys Lys
 305 310 315 320
 Cys Ser Val Val Asn His
 325

<210> 113

<211> 358

<212> PRT

<213> Lolium perenne

<400> 113

Met Ala Ser Ser Arg Val Leu Leu Val Val Ala Ala Leu Ala Ile
 1 5 10 15
 Ser Val Ser Ala Thr Ala Ala Ala Thr Lys Ile Ser Ala Pro Leu Pro
 20 25 30
 Pro Leu Ala Lys Gly Leu Asn Phe Asp Phe Tyr Lys Ala Thr Cys Pro
 35 40 45
 Gln Ala Glu Ser Ile Val Phe Asn Phe Leu Arg Asp Ala Ile Arg Lys
 50 55 60
 Asp Val Gly Leu Ala Ala Leu Leu Arg Ile His Phe His Asp Cys
 65 70 75 80
 Phe Val Gln Gly Cys Asp Gly Ser Val Leu Leu Asp Lys Thr Gly Gly
 85 90 95
 Thr Asp Ser Glu Lys Ile Ala Pro Pro Asn Val Thr Leu Arg Pro Thr
 100 105 110
 Ala Phe Lys Ala Ile Asn Asp Leu Arg Ala Leu Leu Ala Lys Ala Cys
 115 120 125
 Gly Ala Val Val Ser Cys Ala Asp Ile Ala Ala Leu Ala Ala Arg Asp
 130 135 140
 Ser Val His Leu Ala Gly Gly Pro His Tyr Pro Val Pro Leu Gly Arg
 145 150 155 160
 Arg Asp Gly Leu Ala Pro Ala Asn Leu Thr Thr Ile Leu Asn Ala Leu
 165 170 175
 Pro Ala Pro Ser Ser Asn Val Thr Thr Leu Leu Arg Phe Leu Ala Lys
 180 185 190
 Ile Ser Leu Asp Ala Asn Asp Leu Val Ala Leu Ser Gly Ala His Thr
 195 200 205
 Leu Gly Ile Ala His Cys Thr Ser Phe Gln Glu Arg Leu Phe Pro Gln
 210 215 220
 Asn Asp Val Thr Leu Asn Lys Trp Phe Ala Ser Gln Leu Arg Leu Thr
 225 230 235 240
 Cys Pro Ala Leu Asn Thr Asp Asn Thr Thr Asn Asn Asp Ile Arg Thr
 245 250 255
 Pro Asn Val Phe Asp Asn Lys Tyr Tyr Val Asp Leu Leu Asn Arg Gln
 260 265 270
 Gly Leu Phe Thr Ser Asp Gln Asp Leu His Thr Asp Ala Arg Thr Lys
 275 280 285
 Pro Thr Val Thr Arg Phe Ala Val Asp Gln Ala Ala Phe Phe Asp Gln
 290 295 300
 Phe Val Phe Ser Val Val Lys Met Gly Gln Ile Asn Val Leu Thr Gly
 305 310 315 320

Ser Gln Gly Gln Ile Arg Asn Asp Cys Ser Ala Pro Asn Lys Gly Arg
 325 330 335

Thr Asn Asp Asp Leu Pro Trp Ser Val Leu Glu Thr Val Thr Glu Ala
 340 345 350

Ala Gln Ser Leu Val Leu
 355

<210> 114

<211> 344

<212> PRT

<213> Lolium perenne

<400> 114

Met Thr Thr Met Gly Gly Ser Ser Ile Leu Pro Ala Pro Thr Val Ala
 1 5 10 15

Thr Thr Ala Leu Val Leu Leu Ile Val Leu Phe Ala Ser Pro Ala Thr
 20 25 30

Val Ala Lys Gly Ser Gly Leu Ser Val Gly Phe Tyr Lys Lys Leu Cys
 35 40 45

Pro Lys Ala Glu Lys Val Val Arg Arg Thr Val Thr Lys Ala Phe Glu
 50 55 60

Lys Glu Pro Gly Thr Pro Ala Asp Ile Ile Arg Leu Phe Phe His Asp
 65 70 75 80

Cys Phe Val Arg Gly Cys Asp Ala Ser Val Leu Leu Glu Ser Thr Pro
 85 90 95

Gly Arg Met Ala Glu Arg Asp Ser Lys Ala Asn Asn Pro Ser Leu Asp
 100 105 110

Gly Phe Glu Val Ile Ser Asp Ala Lys Glu Thr Leu Glu Lys Leu Cys
 115 120 125

Pro Gln Thr Val Ser Cys Ala Asp Ile Leu Ala Leu Ala Ala Arg Asp
 130 135 140

Gly Ala Tyr Leu Ala Ser Gly Leu Asp Tyr Ala Val Pro Thr Gly Arg
 145 150 155 160

Arg Asp Gly Leu Val Ser Lys Glu Asp Glu Val Leu Pro Ser Val Pro
 165 170 175

His Pro Asp Phe Asn His Ser Gln Leu Val Glu Asn Phe Thr Ala Lys
 180 185 190

Gly Phe Thr Ala Glu Glu Met Val Thr Leu Ser Gly Ala His Thr Ile
 195 200 205

Gly Thr Ser His Cys Ser Ser Phe Thr Asp Arg Leu Tyr Asn Phe Ser
 210 215 220

Gln Gly Gly Ala Leu Thr Thr Asp Pro Ala Leu Pro Ala Ala Tyr Ala
 225 230 235 240

Ala Leu Leu Lys Glu Lys Cys Pro Pro Glu Thr Ala Ala Gln Asn Asp
 245 250 255

Thr Thr Met Val Gln Leu Asp Asp Val Thr Pro Phe Val Met Asp Asn
 260 265 270

Gln Tyr Tyr Lys Asn Leu Leu Ala Gly Thr Val Pro Leu Gly Ser Asp
 275 280 285

Val Ala Leu Met Glu Ser Pro Asp Thr Ala Ala Leu Val Glu Leu Tyr
 290 295 300

Ala Arg Glu Pro Ala Glu Tyr Trp Ala Lys Arg Phe Val Ala Ala Met
 305 310 315 320

Val Lys Val Ser Glu Met Glu Val Leu Thr Gly Ala Glu Gly Glu Ile
 325 330 335

Arg Leu Asn Cys Ser Lys Val Asn
 340

<210> 115

<211> 293

<212> PRT

<213> Lolium perenne

<400> 115

Thr Arg Glu Asn Tyr Tyr Gly Ser Ser Cys Pro Thr Ala Leu Leu Thr
 1 5 10 15

Ile Arg Thr Val Val Thr Thr Ala Val Leu Leu Asp His Arg Met Gly
 20 25 30
 Ala Ser Leu Leu Arg Leu His Phe His Asp Cys Phe Val Gln Gly Cys
 35 40 45
 Asp Ala Ser Val Leu Leu Asp Asp Thr Ala Gly Phe Thr Gly Glu Lys
 50 55 60
 Gly Ala Gly Pro Asn Ala Gly Ser Leu Arg Gly Leu Glu Val Ile Asp
 65 70 75 80
 Lys Ile Lys Met Leu Leu Glu Phe Met Cys Pro Arg Thr Val Ser Cys
 85 90 95
 Ala Asp Ile Leu Ala Val Ala Ala Arg Asp Ser Val Val Arg Leu Gly
 100 105 110
 Gly Pro Ser Trp Ala Val Gln Leu Gly Arg Arg Asp Ala Thr Thr Ala
 115 120 125
 Ser Ala Ser Leu Ala Ser Ser Asp Leu Pro Gly Pro Asn Ser Asn Leu
 130 135 140
 Asn Asp Leu Leu Thr Ala Phe Ser Lys Lys Gly Leu Ser Thr Thr Asp
 145 150 155 160
 Met Val Ala Leu Ser Gly Ala His Thr Ile Gly Arg Ala Gln Cys Gln
 165 170 175
 Asn Tyr Arg Asn Arg Ile Tyr Thr Asp Thr Asp Ile Asp Gly Ala Phe
 180 185 190
 Ala Ala Ser Leu Arg Gly Gly Cys Pro Gln Ala Gly Gly Asp Gly Asn
 195 200 205
 Leu Ala Pro Leu Asp Ala Ser Ser Pro Asn Thr Phe Asp Asn Gly Tyr
 210 215 220
 Phe Ser Gly Leu Leu Ser Arg Gln Gly Leu Leu His Ser Asp Gln Ala
 225 230 235 240
 Leu Tyr Asp Gly Gly Ser Thr Asp Asp Leu Val Arg Thr Tyr Ala Ser
 245 250 255
 Asn Asn Asp Gln Phe Gly Ser Asp Phe Ala Ala Ala Met Val Lys Leu
 260 265 270
 Ser Asn Ile Gly Leu Leu Thr Gly Ser Ser Gly Glu Ile Arg Val Asn
 275 280 285
 Cys Arg Ala Val Asn
 290

<210> 116

<211> 311

<212> PRT

<213> Festuca arundinacea

<400> 116

Met Ala Ser Ala Ser Cys Ile Ser Leu Val Leu Leu Val Ala Leu Ala
 1 5 10 15
 Ala Thr Ala Ala Ser Ala Gln Leu Ser Ser Thr Phe Tyr Asp Thr Ser
 20 25 30
 Cys Pro Arg Ala Leu Ala Thr Ile Lys Ser Gly Val Ala Ala Ala Val
 35 40 45
 Ser Ser Asn Pro Arg Met Gly Ala Ser Leu Leu Arg Leu His Phe His
 50 55 60
 Asp Cys Phe Val Asn Gly Cys Asp Ala Ser Val Leu Leu Ser Gly Asn
 65 70 75 80
 Glu Gln Asn Ala Pro Ala Asn Ala Gly Ser Leu Phe Gly Phe Gly Val
 85 90 95
 Ile Asp Asn Ile Lys Thr Gln Leu Glu Gly Ile Cys Lys Gln Thr Val
 100 105 110
 Ser Cys Ala Asp Ile Leu Thr Val Ala Ala Arg Asp Ser Val Val Ala
 115 120 125
 Leu Gly Gly Pro Ser Trp Thr Val Pro Leu Gly Arg Arg Asp Ser Thr
 130 135 140
 Ser Ala Thr Gly Asn Thr Gly Asp Leu Pro Gly Pro Gly Ser Ser Leu
 145 150 155 160
 Ala Gln Leu Gln Ala Ala Phe Ala Lys Lys Asn Leu Asn Thr Val Asp
 165 170 175

Met Val Ala Leu Ser Gly Ala His Thr Ile Gly Arg Ala Gln Cys Gln
 180 185 190
 Asn Phe Arg Ser Arg Ile Tyr Gly Gly Asp Ser Asn Ile Asn Ala Ala
 195 200 205
 Phe Ala Thr Ser Leu Lys Ala Asn Cys Pro Gln Ser Gly Gly Asn Gly
 210 215 220
 Asn Leu Ala Ala Leu Asp Ala Thr Ala Asn Ala Phe Asp Asn Ala
 225 230 235 240
 Tyr Tyr Thr Asn Leu Leu Ser Gln Lys Gly Leu Leu His Ser Asp Gln
 245 250 255
 Val Leu Phe Asn Asn Gly Ser Thr Asp Asn Thr Val Arg Asn Phe Ala
 260 265 270
 Ser Ser Gly Ala Ala Phe Ser Ser Ala Phe Ala Thr Ala Met Ile Lys
 275 280 285
 Met Gly Asn Ile Ser Pro Leu Thr Gly Thr Gln Gly Gln Ile Arg Leu
 290 295 300
 Ser Cys Ser Lys Val Asn Ser
 305 310

<210> 117
 <211> 230
 <212> PRT
 <213> Lolium perenne

<400> 117
 Met Ala Val Ser Glu Leu Glu Val Asp Gly Val Val Phe Pro Pro Leu
 1 5 10 15
 Ala Arg Pro Pro Gly Thr Ala His Ala His Phe Leu Ala Gly Ala Gly
 20 25 30
 Val Arg Gly Met Glu Leu Gly Gly Asn Phe Ile Lys Phe Thr Ala Ile
 35 40 45
 Gly Val Tyr Leu Gln Ala Asp Ala Ala Val Ser Ala Leu Ala Thr Lys
 50 55 60
 Trp Ala Gly Lys Pro Ala Asp Glu Leu Ala Ala Asp Asn Ala Phe Phe
 65 70 75 80
 Arg Asp Val Val Thr Gly Glu Phe Glu Lys Phe Thr Pro Val Thr Met
 85 90 95
 Ile Leu Pro Leu Thr Gly Ala Gln Tyr Ser Glu Lys Val Thr Glu Asn
 100 105 110
 Cys Val Ala Tyr Trp Lys Ala Val Gly Lys Tyr Thr Asn Ala Glu Ala
 115 120 125
 Ala Ala Val Asp Lys Phe Lys Glu Ala Phe Arg Thr Glu Ser Phe Pro
 130 135 140
 Pro Gly Ala Ser Ile Leu Phe Thr His Ser Pro Ala Gly Val Leu Thr
 145 150 155 160
 Val Ala Phe Ser Lys Asp Ser Ser Val Pro Glu Ser Gly Gly Val Ala
 165 170 175
 Ile Glu Asn Arg Pro Leu Cys Glu Ala Val Leu Glu Ser Ile Ile Gly
 180 185 190
 Glu His Gly Val Ser Pro Ala Ala Lys Leu Ser Leu Ala Thr Arg Val
 195 200 205
 Ala Glu Leu Leu Asn Glu Ala Ala Pro Val Gly Gln Ala Ala Ala Glu
 210 215 220
 Pro Val Ser Val Ser Ala
 225 230

<210> 118
 <211> 231
 <212> PRT
 <213> Festuca arundinacea

<400> 118
 Met Ala Val Ser Glu Leu Glu Val Asp Gly Val Val Phe Pro Pro Leu
 1 5 10 15
 Ala Arg Pro Pro Gly Thr Ala His Ala His Phe Leu Ala Gly Ala Gly
 20 25 30

Val Arg Gly Met Glu Leu Gly Gly Asn Phe Ile Lys Phe Thr Ala Ile
 35 40 45
 Gly Val Tyr Leu Gln Ala Asp Ala Ala Val Ser Ala Leu Ala Ala Lys
 50 55 60
 Trp Ala Gly Lys Pro Ala Asp Glu Leu Ala Ala Asp Asn Ala Phe Phe
 65 70 75 80
 Arg Asp Val Val Thr Gly Glu Phe Glu Lys Phe Arg Arg Val Thr Met
 85 90 95
 Ile Leu Pro Leu Thr Gly Ala Gln Tyr Ser Glu Lys Val Thr Glu Asn
 100 105 110
 Cys Val Ala Tyr Trp Lys Ala Val Gly Lys Tyr Thr Asp Ala Glu Ala
 115 120 125
 Ala Ala Val Asp Lys Phe Lys Glu Ala Phe Lys Ala Glu Ser Phe Pro
 130 135 140
 Pro Gly Ala Ser Ile Leu Phe Thr His Ser Pro Ala Gly Val Leu Thr
 145 150 155 160
 Val Ala Phe Ser Lys Asp Ser Ser Leu Pro Glu Ser Gly Gly Val Ala
 165 170 175
 Ile Glu Asn Arg Pro Leu Cys Glu Ala Val Leu Lys Ser Ile Ile Gly
 180 185 190
 Lys His Gly Val Ser Pro Ala Ala Lys Leu Ser Leu Ala Thr Arg Val
 195 200 205
 Ala Glu Leu Leu Lys Glu Ala Ala Pro Val Gly Glu Pro Ala Val Ala
 210 215 220
 Glu Pro Val Ser Val Ser Ala
 225 230

<210> 119

<211> 394

<212> PRT

<213> Lolium perenne

<400> 119

Met Ala Ala Thr Met Thr Val Glu Glu Val Arg Lys Ala Gln Arg Ala
 1 5 10 15
 Glu Gly Pro Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Ala Asn
 20 25 30
 Cys Val Tyr Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Lys Ile Thr Lys
 35 40 45
 Ser Asp His Leu Ala Asp Leu Lys Glu Lys Phe Lys Arg Met Cys Asp
 50 55 60
 Lys Ser Gln Ile Arg Lys Arg Tyr Met His Leu Thr Glu Glu Ile Leu
 65 70 75 80
 Glu Glu Asn Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Leu Asp Ala
 85 90 95
 Arg Gln Asp Ile Val Val Val Glu Val Pro Lys Leu Gly Lys Ala Ala
 100 105 110
 Ala Gln Lys Ala Ile Lys Glu Trp Gly Gln Pro Arg Ser Lys Ile Thr
 115 120 125
 His Leu Val Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp
 130 135 140
 Tyr Gln Leu Thr Lys Met Leu Gly Leu Arg Pro Ser Val Lys Arg Leu
 145 150 155 160
 Met Met Tyr Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu
 165 170 175
 Ala Lys Asp Leu Ala Glu Asn Asn Arg Gly Ala Arg Val Leu Val Val
 180 185 190
 Cys Ser Glu Ile Thr Ala Val Thr Phe Arg Gly Pro His Glu Ser His
 195 200 205
 Leu Asp Ser Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala
 210 215 220
 Val Ile Ile Gly Ala Asp Pro Asp Val Ser Val Glu Arg Pro Leu Phe
 225 230 235 240
 Gln Leu Val Ser Ala Ser Gln Thr Ile Leu Pro Asp Ser Glu Gly Ala
 245 250 255

Ile Asp Gly His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys
 260 265 270
 Asp Val Pro Gly Leu Ile Ser Lys Asn Ile Glu Arg Ala Leu Glu Glu
 275 280 285
 Ala Phe Lys Pro Leu Gly Ile Asp Asp Trp Asn Ser Val Phe Trp Val
 290 295 300
 Ala His Pro Gly Gly Pro Ala Ile Leu Asp Met Val Glu Ala Lys Val
 305 310 315 320
 Asn Leu Asn Lys Glu Arg Met Arg Ala Thr Arg His Val Leu Ser Glu
 325 330 335
 Tyr Gly Asn Met Ser Ser Ala Cys Val Leu Phe Ile Met Asp Glu Met
 340 345 350
 Arg Lys Arg Ser Ala Glu Asp Gly His Thr Thr Thr Gly Glu Gly Met
 355 360 365
 Asp Trp Gly Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr
 370 375 380
 Val Val Leu His Ser Met Pro Ile Ala Ala
 385 390

<210> 120

<211> 196

<212> PRT

<213> Festuca arundinacea

<400> 120

Met Tyr Phe Val Ser Lys Ser Leu Ala Glu Asn Ala Ala Met Asp Tyr
 1 5 10 15
 Ala Lys Glu Asn Gly Val Asp Phe Ile Ser Ile Ile Pro Thr Leu Val
 20 25 30
 Val Gly Pro Phe Leu Ser Ala Gly Met Pro Pro Ser Leu Val Thr Ala
 35 40 45
 Leu Ala Leu Ile Thr Gly Asn Glu Ala His Tyr Ser Ile Leu Lys Gln
 50 55 60
 Val Gln Leu Val His Leu Asp Asp Leu Cys Asp Ser Met Thr Tyr Leu
 65 70 75 80
 Phe Glu His Pro Asp Ala Asn Gly Arg Tyr Ile Cys Ser Ser His Asp
 85 90 95
 Thr Thr Ile His Gly Ile Ala Arg Met Leu Lys Glu Arg Phe Pro Glu
 100 105 110
 Tyr Asp Ile Pro Gln Lys Phe Pro Gly Ala Asp Asp Asp Leu Gln Pro
 115 120 125
 Ile His Phe Phe Lys Lys Leu Leu Asp His Gly Phe Arg Phe Arg
 130 135 140
 Tyr Thr Ala Glu Asp Met Phe Asp Ala Ala Val Trp Thr Cys Arg Glu
 145 150 155 160
 Lys Gly Leu Ile Pro Leu Gly Ala Glu Gly Ala Gly Gly Pro Ala Ser
 165 170 175
 Ala Ala Gly Lys Leu Gly Ala Val Leu Val Gly Glu Gly Gln Ala Ile
 180 185 190
 Gly Ala Glu Thr
 195

<210> 121

<211> 329

<212> PRT

<213> Lolium perenne

<400> 121

Met Ala Thr Glu Ala Lys Gly Glu Thr Val Leu Val Thr Gly Ala Ser
 1 5 10 15
 Gly Phe Ile Gly Ser Trp Leu Val Arg Leu Leu Leu Ala Arg Gly Tyr
 20 25 30
 Ser Val His Ala Ala Val Leu Asn Pro Asp Asp Lys Ala Glu Thr Asp
 35 40 45
 His Leu Leu Ala Leu Ala Ala Ala Gly Asp Glu Gly Arg Ile Arg
 50 55 60

Phe Phe Arg Cys Asp Leu Leu Asp Gly Ala Ala Met Leu Ala Ala Val
 65 70 75 80
 Arg Gly Cys Ser Gly Val Phe His Leu Ala Ser Pro Cys Thr Val Asn
 85 90 95
 Leu Val Leu Asn Pro Gln Lys Glu Leu Val Val Pro Ala Val Glu Gly
 100 105 110
 Thr Leu Asn Val Leu Arg Ala Ala Lys Glu Ala Gly Val Arg Arg
 115 120 125
 Val Val Val Thr Ser Ser Val Ser Ala Leu Val Pro Cys Pro Gly Trp
 130 135 140
 Pro Ala Gly Glu Val Leu Asp Glu Arg Cys Trp Thr Asp Ile Asp Tyr
 145 150 155 160
 Cys Asp Lys Asn Gly Val Trp Tyr Pro Ala Ser Lys Ala Leu Ala Glu
 165 170 175
 Lys Ala Ala Trp Lys Phe Ala Glu Asn Gly Leu Asp Val Val Thr
 180 185 190
 Val Asn Pro Gly Thr Val Leu Gly Glu Met Ile Pro Pro Arg Leu Asn
 195 200 205
 Ala Ser Met Ala Met Phe Leu Arg Leu Leu Glu Gly Cys Lys Glu Glu
 210 215 220
 Tyr Ala Asp Phe Phe Ile Gly Pro Val His Val Glu Asp Val Ala Leu
 225 230 235 240
 Ala His Ile Leu Leu Tyr Glu Asn Pro Ser Ala Ser Gly Arg His Leu
 245 250 255
 Cys Val Glu Pro Ile Cys His Trp Ser Val Phe Ala Ala Lys Val Ala
 260 265 270
 Glu Leu Tyr Pro Asp Tyr Lys Val Pro Lys Phe Pro Glu Asp Thr Gln
 275 280 285
 Pro Gly Leu Val Arg Ala Lys Ala Val Pro Lys Lys Leu Met Ala Leu
 290 295 300
 Gly Leu Gln Phe Thr Pro Leu Glu Lys Ile Ile Arg Asp Ala Val Glu
 305 310 315 320
 Ser Leu Lys Ser Arg Gly Cys Ile Ala
 325

<210> 122
 <211> 328
 <212> PRT
 <213> Lolium perenne

<400> 122
 Gly Ser Thr Lys Gly Lys Val Cys Val Thr Gly Ala Ser Gly Phe Val
 1 5 10 15
 Ala Ser Trp Leu Ile Lys Lys Leu Leu Glu Ser Gly Tyr His Val Ile
 20 25 30
 Gly Thr Val Arg Asp Pro Gly Asn Arg Arg Lys Val Gly His Leu Trp
 35 40 45
 Lys Leu Pro Gly Ala Asn Glu Arg Leu Gln Leu Val Arg Ala Asp Leu
 50 55 60
 Leu Glu Glu Gly Ser Phe Asp Asp Ala Val Arg Ala Cys Glu Gly Val
 65 70 75 80
 Phe His Ile Ala Ser Pro Val Leu Gly Lys Ser Asp Ser Asn Cys Lys
 85 90 95
 Glu Ala Thr Leu Gly Pro Ala Ile Asn Gly Thr Leu Asn Val Leu Arg
 100 105 110
 Ser Cys Lys Lys Ser Pro Phe Leu Lys Arg Val Val Leu Thr Ser Ser
 115 120 125
 Ser Ser Ala Val Arg Ile Arg Asp Glu Thr Gln Gln Pro Glu Leu Leu
 130 135 140
 Trp Asp Glu Thr Thr Trp Ser Ser Val Pro Leu Cys Glu Lys Leu Gln
 145 150 155 160
 Leu Trp Tyr Ala Leu Ala Lys Val Phe Ala Glu Lys Ala Ala Leu Asp
 165 170 175
 Phe Ala Lys Glu Asn Asn Ile Asp Leu Val Thr Val Leu Pro Ser Phe
 180 185 190

Val Ile Gly Pro Ser Leu Ser His Glu Leu Cys Thr Thr Ala Ser Asp
 195 200 205
 Ile Leu Gly Leu Leu Gln Gly Asp Thr Asp Arg Phe Thr Leu Tyr Gly
 210 215 220
 Arg Met Gly Tyr Val His Ile Asp Asp Val Ala Arg Ser His Ile Leu
 225 230 235 240
 Val Tyr Glu Thr Pro Glu Ala Thr Gly Arg Tyr Leu Cys Ser Ser Val
 245 250 255
 Val Leu Asp Asn Asn Glu Leu Val Gly Leu Leu Ala Lys Gln Phe Pro
 260 265 270
 Val Phe Pro Ile Pro Arg Arg Leu Lys Asn Pro Tyr Gly Lys Gln Ala
 275 280 285
 Tyr Gln Leu Asp Thr Ser Lys Leu Gln Gly Leu Gly Leu Lys Phe Lys
 290 295 300
 Gly Val Gln Glu Met Phe Asn Asp Cys Val Glu Ser Leu Lys Asp Gln
 305 310 315 320
 Gly His Leu Leu Glu Cys Pro Leu
 325

<210> 123

<211> 369

<212> PRT

<213> Lolium perenne

<400> 123

Met Ala Pro Val Val Glu Arg Ala Pro Phe Leu Pro Thr Gly Glu Ala
 1 5 10 15
 Thr Leu Arg Pro Ser Phe Val Arg Asp Glu Asp Glu Arg Pro Lys Val
 20 25 30
 Ala His Asp Arg Phe Ser Asp Glu Val Pro Val Ile Ser Leu His Gly
 35 40 45
 Ile Asp Asp Ala Arg Arg Thr Glu Ile Arg Asp Arg Val Ala Ala Ala
 50 55 60
 Cys Glu Gly Trp Gly Ile Phe Gln Val Val Asp His Gly Val Asp Ala
 65 70 75 80
 Ala Leu Ile Ala Glu Met Ala Arg Leu Ser Arg Asp Phe Ala Leu
 85 90 95
 Pro Ala Glu Asp Lys Leu Arg Tyr Asp Met Ser Gly Gly Lys Gly
 100 105 110
 Gly Phe Ile Val Ser Ser His Leu Gln Gly Glu Thr Val Gln Asp Trp
 115 120 125
 Arg Glu Ile Val Thr Tyr Phe Ser Tyr Pro Val Lys Ala Arg Asp Tyr
 130 135 140
 Gly Arg Trp Pro Asp Lys Pro Ala Gly Trp Arg Ala Val Val Glu Gln
 145 150 155 160
 Tyr Ser Glu Arg Leu Met Ala Leu Ser Cys Lys Leu Leu Gly Val Leu
 165 170 175
 Ser Glu Ala Met Gly Leu Glu Thr Glu Ala Leu Ser Lys Ala Cys Val
 180 185 190
 Asp Met Asp Gln Lys Val Val Asn Phe Tyr Pro Lys Cys Pro Gln
 195 200 205
 Pro Asp Leu Thr Leu Gly Leu Lys Arg His Thr Asp Pro Gly Thr Ile
 210 215 220
 Thr Leu Leu Leu Gln Asp Leu Val Gly Gly Leu Gln Ala Thr Arg Asp
 225 230 235 240
 Gly Gly Asn Thr Trp Ile Thr Val Gln Pro Ile Ala Gly Ala Phe Val
 245 250 255
 Val Asn Leu Gly Asp His Gly His Tyr Leu Ser Asn Gly Arg Phe Lys
 260 265 270
 Asn Ala Asp His Gln Ala Val Val Asn Gly Glu Ser Ser Arg Leu Ser
 275 280 285
 Ile Ala Thr Phe Gln Asn Pro Ala Pro Asp Ala Lys Val Trp Pro Leu
 290 295 300
 Ala Val Arg Glu Gly Glu Asp Thr Ile Leu Glu Glu Pro Ile Thr Phe
 305 310 315 320

Thr Glu Met Tyr Arg Arg Lys Met Ala Arg Asp Leu Glu Leu Ala Lys
 325 330 335
 Arg Lys Lys Gln Ala Lys Ala Asp Gln Leu Lys Gln Gln Leu Gln Gln
 340 345 350
 Glu Ala Ala Pro Ala Ala Ala Pro Thr Lys Pro Leu Asn Gln Ile Leu
 355 360 365
 Ala

<210> 124
 <211> 380
 <212> PRT
 <213> Festuca arundinacea

<400> 124
 Met Ala Ser Val Glu Asn Ala Pro Phe Leu Pro Thr Ala Ala Thr Gly
 1 5 10 15
 Glu Ala Thr Leu Arg Pro Ser Phe Val Arg Asp Glu Asp Glu Arg Pro
 20 25 30
 Lys Val Ala His Asp Arg Phe Ser Asp Glu Val Pro Val Ile Ser Leu
 35 40 45
 His Gly Ile Asp Asp Gly Gly Ala Arg Arg Ala Glu Ile Arg Asp Arg
 50 55 60
 Val Ala Ala Ala Cys Glu Gly Trp Gly Val Phe Gln Val Val Asp His
 65 70 75 80
 Gly Val Asp Ala Ala Leu Val Ala Glu Met Ala Arg Leu Ser Arg Glu
 85 90 95
 Phe Phe Ala Leu Pro Ala Glu Asp Lys Leu Arg Tyr Asp Met Ser Gly
 100 105 110
 Gly Lys Lys Gly Gly Phe Ile Val Ser Ser His Leu Gln Gly Glu Thr
 115 120 125
 Val Gln Asp Trp Arg Glu Ile Val Thr Tyr Phe Ser Tyr Pro Val Lys
 130 135 140
 Ala Arg Asp Tyr Gly Arg Trp Pro Glu Lys Pro Ala Gly Trp Arg Ala
 145 150 155 160
 Val Val Glu Gln Tyr Ser Glu Arg Leu Met Ala Leu Ser Cys Lys Leu
 165 170 175
 Leu Gly Val Leu Ser Glu Ala Met Gly Leu Glu Thr Glu Ala Leu Ser
 180 185 190
 Lys Ala Cys Val Asp Met Asp Gln Lys Val Val Val Asn Phe Tyr Pro
 195 200 205
 Lys Cys Pro Gln Pro Asp Leu Thr Leu Gly Leu Lys Arg His Thr Asp
 210 215 220
 Pro Gly Thr Ile Thr Leu Leu Gln Asp Leu Val Gly Gly Leu Gln
 225 230 235 240
 Ala Thr Arg Asp Gly Gly Asn Thr Trp Ile Thr Val Gln Pro Val Pro
 245 250 255
 Gly Ala Phe Val Val Asn Leu Gly Asp His Gly His Tyr Leu Ser Asn
 260 265 270
 Gly Arg Phe Lys Asn Ala Asp His Gln Ala Val Val Asn Gly Glu Ser
 275 280 285
 Ser Arg Leu Ser Ile Ala Thr Phe Gln Asn Pro Ala Pro Glu Ala Lys
 290 295 300
 Val Trp Pro Leu Ala Val Arg Glu Gly Glu Asp Thr Ile Leu Glu Glu
 305 310 315 320
 Pro Ile Thr Phe Thr Glu Met Tyr Arg Arg Lys Met Ala Cys Asp Leu
 325 330 335
 Glu Leu Ala Lys Arg Lys Lys Gln Ala Lys Ala Asp Gln Leu Lys Gln
 340 345 350
 Gln Leu Gln Gln Glu Gln Glu Ala Val Ala Ala Ala Pro Lys
 355 360 365
 Pro Ala Thr Thr Lys Pro Leu Asn Gln Ile Leu Ala
 370 375 380

<210> 125
 <211> 2105
 <212> DNA
 <213> *Lolium perenne*

<400> 125
 acttagcctt cctcggaacc atcgaccggg ccggccggcga cgcgacgcga cgcgatggag 60
 tccagcgccg tcgtcccccgg caccacggcg cggctgcgtt cttatgcgtt cgcgcgcgtg 120
 ccgtcgctct ccgacgacgc cctgtaaaaac agaagttagcg gcccgcgtgag gtggcgccgc 180
 tgcgcccggc ttctggcggc ctcggcggtt gcccgtgtgg tcgtgtcggt gctcctcgcg 240
 ggcggcaggg tggatcggtt cccggccggc gcagacgtgg cgtcgccac ggtgcgggccc 300
 gtgcgcgtgg agttcccgag gagccggggc aaggacttgg gcgtgtcgga gaagtcctcc 360
 ggtgcctact ccggccgacgg cgggtccccg tggagcaacg ccatgtgcga gtggcagcgc 420
 accgggttcc atttccagcc ggagcagcac tacatgaacg atcccaacgg ccccggtgtac 480
 tacggcggat ggtaccaccc ttcttaccag cacaacccca agggcgacag ctggggcaac 540
 atcgcttggg cccacggcg gtccaaaggac atggtcaact ggcgcacact cccgctcgcc 600
 atggttcccg accagtggta cgacgacaaac ggcgtcctca ccggctccat caccgtgtc 660
 cccgacggcc aggtcatctt gtcgtacacc ggcacacccg acacccttagc ccagggtcc 720
 tgcctcgcc cggccggcga cccgtccgac cgcgtcctcc gcaatggat caagcacccc 780
 gccaacccca tccttcttcc gcccggggg atcgggctca aggacttccg cgacccqctc 840
 accggcttggt tcgaccactc cgaccacacc tggcgacccg tcatcggtc caaggacgac 900
 gacggccacg ccggcatcat ctcagctac aagaccaagg acttcgtcaa ctacgagctc 960
 atgcccggga acatgcacccg cggggccgac ggcacccggca tgcacggatg catgcaccc 1020
 taccccgtcg gcgcaactc gtcggagatg ctggcgccgg acgactcgcc cgacgtgtc 1080
 ttcgtgtca aggagagcag cgatgacgaa cgtcgtacact actatgcgt cggaaagggtc 1140
 gacgcccgtcg ccaacgtttt gacggccatc gaccgggacc tggaccccttgg gatcggtc 1200
 agatagact gggggaaagta ctacgcctcc aagtccctt acgaccagaa gaagaaccgc 1260
 cgcatcgat gggcatactt cggcggagacc gactccggac aggccgacat cacaaggga 1320
 tggccaatc tcatgacgat tccaagaacg gtggagatgg acaggaagac ccgcacaaaac 1380
 ctcatccaaat ggccagttt gggatgtcgac accctccgca ggaactccac ggacccgtt 1440
 cgcacatcccg tcaacgcggg ctccgtcatt cgcctcccccc tccaccaggcg cgtcaactc 1500
 gacatcgagg cctccttcca actcaactct tccgacgtgg atgctatcaa cgaggccgac 1560
 gtcggctaca actgcacccg cagccgtggc gccgtacggg gggcgctcg cccctttggc 1620
 ctcctcgcc ttgccaatgg ccgcacccgaa cagacggctg tgcgttctt cgtgtccaaag 1680
 ggcgtcgacg gcccgcctca gaccacttt tgccacgacg agtcacggc aacacgggca 1740
 aaggatgtcg tgaataggat gatggcggc atcgtgcggg tgcttgacgg tgagaccctt 1800
 tcgggtgggg tgctgttgg ccactccatc gtgcacggatc tgcgtatgggg cggggaggatc 1860
 acggcgacgt cgcggcgta cccgacggg gccatctactt cggccgcgg ggtctaccc 1920
 ttcaacaacg ccacggccgc caccgttcc gccgagggc tgcgtgtcga cgagatggcc 1980
 tcagctgaca accatatctt cacgaacgac gactttaga tggaaaccaag tttagctcg 2040
 gttgcattct tggtaacggc cgggtattgc ctatctacac attcatttgg cgttcaaaaaa 2100
 aaaaaa 2105

<210> 126
 <211> 2068
 <212> DNA
 <213> *Festuca arundinacea*

<400> 126
 cccatccacc ggagttataact agggaaattcc tgcaactcga ctcgcgttg ggaattccgg 60
 caatggagtc ccgggccttt cccaaacgcgg cgtacgcgcc acttctgcctt cccaccgctg 120
 acgacgcccac cctggggcaag caggacccggc cccggcggtt gtcgtgcgtt ttcttaaccg 180
 tgcgtggccgc gtctggcggtt gtgggtctcc tcgtcgctc cactatgcgtc gggggatcca 240
 ggtatgggtca ggcaggccgac accgacgggg acggggccgg aggggtccccg tggagcaacg 300
 agatgctgca gtggcagcgc gccgggttcc attaccagcc cgaggggcac ttcatgagcg 360
 atccagacgg tccggatatac taccgtggat attaccaccc tttctttcag tacaacccgaa 420
 gggggcgccgc gtgggtatgc tacatagatg gggggccacgt ggtgtcccg gacccgttac 480
 actggcgccc tctccctactt gcccgtccgc ctggccatcc gtcgacacaatg agggcggtct 540
 tgcgtgggtac catcagctgtt ctccacaatg gcacgtcggtt cctgtctac acgggggtca 600
 cagaagaccc tatggccggat ttcgtgtca tcggcggtcc gaccggccccc aacgacccccc 660
 tccttcgcca ttggaccaag caccggcca accctgttcc cgctcaccctt cagggggtcc 720
 agggcatgga ctccggagac cccaccgtt gatgggttgc caagtcgcac gccacgtggc 780
 gcattctcat cgggttccaaat gatgacgaca atggaagccca cgctggcatc gccttcatct 840
 tcaagaccaaa ggacttcctt agcttcgagc gctgtcccgagg tatcgtgtcat cgtgtcgagg 900
 gtaccggat gttggggatgc atcgactttt accccgtcg gggatggccac aactcttcgt 960
 cggaggagct gtacgtataa aaggcgagca tggacgacca acgacacgac tactactcat 1020

tggggagata	tgacgcggca	gccaacacat	ggacgccatt	ggaccccag	ctagacttgg	1080
ggattgggct	gagatacgcac	tggggcaagc	tctacgctgc	cacgtcgttc	tacgatccgc	1140
tgaagcagcg	gcgaattatg	ttgggtatg	taggcgagac	cgactctgca	cgagccgacg	1200
ttgccaaggg	atgggcctca	cttcagtcga	ttccgaggac	agtgacacta	gacgagaaga	1260
ccagggacgaa	cctccctccat	tggccggtgg	aggaggtgg	ggccctccgc	tacaactcca	1320
ccgacccctcg	tggcatcact	gttgacaacg	gctcgtctt	ccacccccc	ctccaccaag	1380
ccactcagct	ggacatcggag	gcttccttcc	gcttcgacgc	ttctgacgtt	gcccacatca	1440
acgaggccga	tgtcggtat	aactgcagca	cgacgggtgg	cgcggccgca	cgtggcgcta	1500
tcggccccc	cggcctccctc	gtccatgccc	ccggagacct	ccgtggcgag	cagacggcg	1560
tgtactctca	cgtgtccagg	gccctcgacg	gtaccctccg	gactagcttc	tgcaacgacg	1620
agacgcggtc	gtcacggggcc	agggacgtga	cgaagcgggt	ggtggcagc	acggtgccgg	1680
tgctccacgg	tgaggcggtg	tcgatgaggg	tgctcggtgg	ccactccatc	gtcagagct	1740
tcgcccattgg	tgggagatgc	acggcgcacct	cgcgggtgt	cccaacggag	gcacatctacg	1800
ccagggcagg	ggtgtacctg	ttcaacaacg	ctaccggcgc	cagcgtgact	gcccggaggc	1860
tcatctgtca	cgagatggcc	tcggcggtat	acgacgagac	cctgatcatg	gttggaggact	1920
cgttagctgct	cacatgagct	atataatcaga	ccggtaacgt	tgggtcactt	gcatttccaa	1980
gcgttgaata	atttacttag	cttagcaagc	aacagggtccg	agtttccaag	taagggtgtgg	2040
gatattcttc	caaaattcaa	aaaaaaaaaa				2068

<210> 127

<211> 2198

<212> DNA

<213> *Lolium perenne*

<400> 127

caccatccca	ccggaatata	tataactagcc	aggaaattcc	tgcaactcga	cctcgagttg	60
ggaattccgg	caatggagtc	ccgggcctt	cccagcgcgg	cgtagcgc	acttctgcca	120
tccggcgcag	acgacgtcgc	cctggccaag	caggaccggc	ccggcgtgg	gtggcgcggg	180
ttcttaaccg	tgtcgccgc	ctgcggcgtg	gtgggtctcc	tcgtcggtgc	cactttgctc	240
gcgggatcca	ggatgggtca	ggcaggcgac	ggcgaaggca	acaccgacga	ggatggggcc	300
ggaggggttcc	cgtggagcaa	cgagatgctg	cagtggcagc	gcgcggggtt	ccattaccag	360
ccggaggggc	acttcatgag	cgatccaaac	gttccagttat	actaccgcgg	atattaccac	420
ctcttcttcc	agtacaaccg	aaggggcgtc	gcgtgggatg	actacataga	gtggggccac	480
gtgggttccc	aggaccttgt	acactggcgc	cctctccac	tggccatgcg	gcctgaccat	540
tggtacgaca	agaagggcgt	cttgcgggt	accatcacgg	tgctccacaa	tgcacgc	600
gtcctgctct	acacgggggt	cacagaagac	cctatggccg	agtcccagt	catcgccgtc	660
ccgaccgacc	ccaacgaccc	cctccctcg	cattggacca	agcaccccg	caaccccg	720
ctcgctcacc	cacaggggt	ccaggcgt	gacttcccgag	accccccac	cgctgtgtgg	780
gacaagtccg	atgcccacgt	gcccattc	atcggttcca	aggacacga	caacggc	840
cacgctggca	tcgccttc	cttcaagact	aaggacttcc	ttagctcga	gcgtgtccca	900
ggtatctgtc	atcggtcga	gggcacccggc	atgtgggagt	gcatcgactt	ttaccccg	960
ggaggggtggcc	acaactcttc	gtcgaggag	ttgtacgtga	taaaggcgag	catggacgac	1020
gaacgcccacg	actactactc	attggggagg	tacgacgcgg	cagcgaacac	atggacgcca	1080
ttggacgccc	agctagactt	ggggatttgg	ctgagatacg	actggggca	gctctacgct	1140
tccacgtcgt	tctacgatcc	ggtgaagcag	ccggcgcatta	tgttgggtt	tgtaggcgag	1200
gtcgactctg	cgcgagccga	tgttgcgaag	gatggggct	cgcttcagtc	gattccgagg	1260
acagtggcgc	tagacgagaa	gaccgaacg	aacctccccc	tatggccgt	ggaggagggt	1320
gaggccctcc	gctacaactc	caccgaccc	acgggcata	ccattgacaa	cggtccgtc	1380
ttccacccctcc	cactccacca	gaccatcg	cggacatcg	aggctccctt	ccgcctcgac	1440
gcttctgtatg	ttggcccat	caacgaggcc	gacgtcggt	acaactgcag	cagcagcggc	1500
ggcgcggcgg	cacgtggcgc	tctggccccc	tccggcctcc	tcgtccatgc	cgccggagac	1560
ctccgtggcg	agcagacggc	ggtctacttc	tacgtgtc	gggcgcctcg	cggtaccctc	1620
cggaccagct	tctgcaacga	cgagacgcgg	tcgtcgccgg	ccaggagacgt	gacgaacgcgg	1680
gtgggtggca	gcacggtgcc	ggtgtcgac	ggcgaggcgt	tgtcgatgag	agtgtcg	1740
gaccactcca	tcgtgcagag	cttcgcgtat	ggcgaggagga	ccacggcgc	ctcgccgtg	1800
tacccgacgg	aggccatcta	cgccagggt	gggggtgtacc	tgttcaacaa	cgccacccggc	1860
gccggcgtga	cggcggagag	gctcatcg	cacgagatgg	cctcgccgg	atacgacgag	1920
accctcatgg	ttgaggactc	atagctgc	acccgtaaacg	ttgggtcact	tgcatttcca	1980
agcgttgaat	taataattt	tttgttgc	cagcaagcaa	cggtccagg	ttccaagttaa	2040
ggtggatat	tctaccaaa	tccgcagatc	ccgcaagggtt	gtgttaggt	gagttgtatgt	2100
tggcgcaccc	gcgcgtgtgc	atgtaaatgg	ttgttatttt	tgttcttttta	aaaaagaaaag	2160
ataccaaatct	accatactat	gtaaacataaa	aaaaaaaaaa			2198

<210> 128
 <211> 2208
 <212> DNA
 <213> *Lolium perenne*

<400> 128
 caccatcca ccggagata ctagcttaga aattcctgtg caactcgacc tcgagttgg 60
 aattccggca atggagtccc gggactttcc cagcgcggcg tacgcgccac ttctgcccata 120
 tgcccgagac gacgtcgccc tggcaagca ggaccgcccc ggcgtgggggt ggcgcggcgtt 180
 cttAACCGTG CTGGCGCCT GCGGCGTGGT GGTGCTCCTC GTCGCTGCCT CTTCGCTCG 240
 ggggtccagg atgggtcagg caggcgacac cgacgaggac ggggcggag gttcccggtg 300
 gagcaacgag atgctgcagt ggcagcgcgc cgggttccat taccagccgg agggcactt 360
 catgagcgat ccagacggc cggtatacta ccgtggatata taccacccctt tctttcagta 420
 caaccgaaga ggggtcgcgt gggatgacta catagagtgg ggccacgtgg tgcccgagga 480
 CCTGGTACAC TGGCGCCCTC TCCCACGTGGC CATGCGCCCT GACCATTGGT AGACAAAGAA 540
 gggcgtcttgc tcgggtacca tcacgtgtc ccacaatggc acgctcgatcc tccctcacac 600
 gggggtcaca gaagacccca tggcggatgc cagtcgtccat ggcgtccca cgcaccccaa 660
 cgaccccccctt ctccgcattt ggaccaagca ccccgccaaac cccgttctcg ctccacccaca 720
 ggggtccagg ggcatggact tccggacccc caccagcgcgc tgggtggaca agtccgactc 780
 cacgtggcgc attctcatcg gttccaaagga cgacgacaac ggcagccacg ctggcatcgc 840
 ctccatcttc aagaccaagg acttccttag ctccgagcgt gtcccaaggtt tcgtgcacatcg 900
 tgtcgagggt accggcatgt gggagtgcattt cggatccatcg cccgttggag gtggccacaa 960
 ctcttcgtcg gaggagtgtt acgtataaaa ggcgagcatg gacgacgaaac gacacgacta 1020
 ctactcattt gggaggtatg acgcggcagc gaacacatgg acgcatttgg acgcccggact 1080
 agacttgggg attgggctga ggtacgactg gggcaagctc tacgttcca cgtcgttctta 1140
 cgatccactg aagcagcggc gaattatgtt ggggtatgtt ggcgagggtc actctgcgcg 1200
 agccgacgtt gccaaggat gggcctact tcagtcgtt ccgaggacag tgcaactaga 1260
 cgagaagacc cggacgaacc tcctctatg gccgtggag gaggtggagg cctcccgcta 1320
 caactccacc gacccatcgatctgt tgagaacggc tccatcttcc actccctct 1380
 ccaccaagcc actcagctgg acatcgaggc ttccctccgc ctcgatgtt ctcgtgttgc 1440
 tgccatcaac gaggccgacg tcggctacaa ctgcagcagc agcgggtggc cggccgctcg 1500
 tggcgctctc gggcccttcg gcctccctgt ccatgcccggc ggagacctcc gtggcgagca 1560
 gacggcgggtg tacttctacg tgcctcaggc ctcgacggt agcctccggc ccagcttctg 1620
 caacgacgag acgcggctgt cacgggccccg ggacgtgacg aagcgggtgg tggcagcac 1680
 ggtgccgggtg ctgcacggcg aggtgttagc gatgagggtt ctcgtggacc actcgatcgt 1740
 gcagagcttc ggcgtgggtg ggagggttac ggcgacgtcg cgggtgttacc caacggaggc 1800
 tatctacgccc agggcagggg tgtaaccttta caacaacgccc accggccca gctgtacggc 1860
 ggagaggcctc atcgacgcgc agatggcctc ggcgttatac gacgagaccc tcattgtttaa 1920
 ggactcatag ctgcacac atgatgttcc agacccgtttaa ctttgggttca ctgcatttt 1980
 caagcgttga aataattttac ttggcgttagc aagcccccggg tccgggttcc caaaagtaag 2040
 gtggatattt cttccaaact ccgcgagttcc cgcacgggtt tcttaggtgt agtgtgtatgt 2100
 cgtttgcgc cctgcgcgtg tgcttgcata ttgctggatt tgggtttctt ttacagaaaa 2160
 aaaaggatac tatactatgt aagtatctac attgttgcata aaaaaaaaaa 2208

<210> 129
 <211> 1790
 <212> DNA
 <213> *Festuca arundinacea*

<400> 129
 caccacgaa attcgggagg aagaaaggcg ctcgcccata tctccgaaa caaccgctcg 60
 ccacccgtct ccctccctg ccctcgccctc cccattcccc ttcccttctt cccttggcg 120
 acggcctcgat cgatcgacc caatctccac caaacgcggc tccggatctc ggcgcggcc 180
 tcgaaggggta tcctccctgt gcccgggtcc tcctccgccc ctggctggta ctgtcggtgg 240
 gcggggatcg accccgggtc tctgtcgctg gttgttttttggataagct caatggttct 300
 ggcgtctta tgattgtttc agacccgtat catabatgg ttgatcatca tgacgaaagaa 360
 aacttgcgt tgcttaggtt tggggccctt tggggatgtcg cttaatgttca ggatttctcta 420
 cttgtctctc cgaccggaaatcaccact ctctataagg aattggggaa agagaaggct 480
 atgctaactc cagacatcac tattatgtcg gtggggatgtt agataactta tggtgaggcc 540
 atggttccctg atgatgggttggaggatataatcttgcataaataatgttca agtggacacg 600
 cttgaggaga ccgcttgcgtt aagcttgcgtt cagacacaga acagcgatcc 660
 cataaggtca gcttcttgggt tgacaaagaaatgtgttca aatgttgcgtt gtcgttctct 720
 gagaagtttgc gaaaacgtgg ggttagatgtca aaaataatctt atagttgtgg ccaagacctt 780
 gacatatttgc ctcaaggggc tggaaagggtt caggcgcttgc catatttactt caagaaggatc 840
 gcctcatgcg gaaaaacacc caacaataactt ctgtttgttgcgtt gtcgttctctt 900
 gaattattca gcatccctgg tgcacgggtt gtcgttctctt gcaatgcacca agagggacta 960

ctccagtgcc	atgcagaaaa	tgcgaaggat	aaccctaagg	taattcatgc	aactgagagg	1020
tgtgctgctg	gtattattca	agctattggg	cacttcaagc	taggacctaa	tatttctcca	1080
agagacattg	agtttcctta	cgtcaaggag	gactcttca	agcctacagc	ggctgttgtg	1140
aagtctatg	ttctctgcga	gaagtggcgt	agggctgacg	ttccaaaggc	tgattcagtt	1200
atagactact	tcaaaaacat	cacggatgca	agtggagtt	ttattcatcc	ctctggcctc	1260
gaactttcga	tccattcttc	catcgatgca	ttggcttcat	gttatggta	caaacaagggg	1320
aaaaagtacc	gatcatgggt	ggacagacta	tttatctcac	agactgttcc	tgacagttgg	1380
cttggatgt	ttgacttgcg	ggaggcagaa	ggtgatgcat	gggtgtgctg	tttgacaact	1440
cttgcgctga	atgtaaaggc	tgaaacccc	gggggttctg	tggtaacaca	catccacaag	1500
acatggctca	aagaatattc	cggggatgag	caggcgtcca	aactctagac	tggatctcta	1560
ccgtcagcgc	acgggaagga	aatttcttg	agaatcaaata	aagaagcga	cagaaaacac	1620
gagaatttct	tttccttgc	cataatgtta	ataagtgc	ccagacacta	catatatcat	1680
actggatgaa	gtatacggag	gtcttgc	ttggccta	gttacttga	tgtgtaagat	1740
aaaaatatta	tatctcgta	ctggcatgag	aagctgaagt	aaaaaaaaaa		1790

<210> 130

<211> 3633

<212> DNA

<213> Festuca arundinacea

<400> 130

gcagagtagc	ctgcctgctc	gccggcgaga	gatacgtagg	gagggagggt	aactagcgca	60
ggaggagcct	gctcgctgc	cgtcgagatg	gcggcgggga	acgagtggat	caacgggtac	120
ctggaggcga	tcctggacgc	cgggtcgaag	ctgcggccgc	agggcgtgca	gctgcccgg	180
ctggagacgg	cgccggcgct	cgcggccgag	gagtccggcg	ccgcctacaa	cccccaccagg	240
tacttcgtgg	aggaggtgt	caggagttc	gacgacgagg	ccctccacaa	gacatggaca	300
aagggtggtt	cgatgcggaa	cagcaggag	cgcagcaacc	ggctgtgagaa	cctgtgctgg	360
aggatctgga	acgtctccag	gcagaagaag	caggtggagt	gggattacac	gaaagagggt	420
gccccggcga	acgttgagca	ggagctgggc	agccggggagg	ccgcccggaga	cctctccgag	480
ctctccgagg	gcpagaaggaa	taccaccacc	gccaagcctg	acgcccacac	cgctcaaccc	540
tccaccgacg	atggcgagca	ccagcagcca	caaccacgca	cccgctcgc	gaggatcaac	600
tccgaggtgc	ggctcgctc	cgacgacgag	gaggagcaga	ccaagaagag	gaacctctac	660
atcgctctca	tcagcatcca	ttggctgggt	cgcggggaga	acatggagct	cggccgagac	720
tccgacaccg	gaggccaggt	gaagtacgtg	gtggagctgg	ccctgtgcgt	ggcggccac	780
gcgggggtgc	accgcgtgca	cctgctgacg	ccgcagatct	cctgcccga	cgtggactgg	840
acctacggcg	agccgggtgca	gatgtggag	cgcctgtcg	cggcggacgc	ggacggaggac	900
gacggcggc	agtctggcg	cggggcgtac	atcgctgcgc	tgcgtgcgg	ggccaggggac	960
cagtagatcc	ccaaggagga	gtgtggcc	ccatcccc	agttctgtga	ccgcgcgctc	1020
tcgcacgtca	cgagggtggc	gcpgcgccta	ggcgaccagc	tccagctcc	tcccactcc	1080
gccccggcgc	acggcgcagc	cctagtggca	gcccctat	ggccgtacgt	gatccacggc	1140
cactacgcgg	acgcggcgg	ggtggggcg	aacctggcga	gcpgcgtgaa	cgtccccatg	1200
gtcatgacgg	gccactcgct	ggggcgaac	aagctggagc	agctgtcaa	gtctggccgc	1260
atgccggcc	ccgagatcca	gggcaccc	aagatcg	gcccggatcg	ggccgaggag	1320
acggcctcg	acaccgcgga	gatgtggtc	accagcacca	agcaggagat	cgaggagcag	1380
tggggcctct	acgacggctt	cgaccatcg	gtggagcga	agctcagggt	aaggcagcgc	1440
cgccgcgtca	gcagcctcg	caggtacatg	ccgcgcatgg	cggtcatccc	gccccgcatg	1500
gactcagct	tcgtcgagac	acagacacg	gctgaggggg	atggcccg	cctgcagatg	1560
ctcattggcc	ccgacaaggc	caagaaggct	tcgcctccca	tttggctgga	cgtgtgagg	1620
ttcttcacga	acccgcacaa	gccgtatgatc	ctggcgctgt	cgcggccgga	cccgaaagaag	1680
aacgtacta	cgctgtctaa	ggcctacggc	gagagccggc	agctccggg	gctcgcgaa	1740
ctgactttga	tactggggaa	caggatgac	atcgaggaca	tggccggcg	ccgcggcg	1800
gtgtcacgg	cgggtctcaa	gctcatcgac	cgatacgacc	tctacggcca	gttggcctat	1860
ccaaagcacc	acaaggcagac	ggacgtgcct	cacatctacc	gcctcgctc	aaagaccaag	1920
ggagtttca	ccaaccc	tctttagag	ccgttccggc	tcacaatcat	cgaggctgct	1980
gcttacgggt	tgccgggt	cgcaaccaag	aacggagggc	cggtgacat	cctcaaggcg	2040
ctcaacaacg	ggctgtcggt	ggaccgcac	tcggcgagg	cgatcacccg	cccccgtctg	2100
agcctgtgg	ccgagaagtc	ccgggtgggt	gagtggcc	gcaacggc	ccgcacacatc	2160
caccgtctc	cgtggccgca	ccactgcgc	ctctacatct	cccacgtctc	cacctactgc	2220
gaccggccct	cgccgcacca	gccttc	gtgcccctcg	gcctgggctc	ctcgaccagc	2280
ttccggcg	acgactcgct	ctcgactcg	ctccgcggcc	tctcgctcca	gatatccgt	2340
gaccgcctca	cgacactc	cgccgcggac	tccgcggcc	ccatcatgga	cgcgctccgc	2400
cggccccgg	cctccgagaa	gcccgcgagc	tccggtgcc	ggcgctcg	ttcgcgccc	2460
ggccggcg	agaggctct	ggtggcgc	gtcgactgt	acggcgcacg	cgcaagccg	2520
gacgtcaagc	agctaaagaa	ggccatcgac	gccccgggt	cggttggtga	atgcgcggga	2580
gctaaggcagg	ggtacgtgt	gtcgaccggc	atgaccatcc	ccgaggccgc	ggaggcgatc	2640
aaggcgtcg	gcccgcacgt	tgccagttc	gacgcgtga	cgggccgc		2700

ctatgctacc	cgtggaaagga	gctcgccggcc	gacgaggagt	actccgggca	cgtcgcggttc	2760
cggtgcccg	gtgaccacgt	gaaatccgcc	gtgcccaggc	tcgggagctt	ggaggagatc	2820
gccctcgaa	tcgatcgccc	cgcctgctcc	gtgcactgccc	acgcctacgc	cgccacggac	2880
gcatccaagg	tgaagaagggt	ggattcgatc	aggaagtgcgc	tgccggatgcgc	cggggtccgg	2940
tgcaacctcg	tctacacgcg	cgcgtgcacg	cgcctcaacg	tcatccccct	ctccgcttcc	3000
cggccgcgcg	ctctcaggtt	cctgtcgata	cagtggggga	tcgatcttc	caaggtggcg	3060
gtgctcgctcg	gcgagacccg	cgacacccgac	cgcgagaggc	tcctcccccgg	agttcacaag	3120
acgctcatcc	tgccggaaat	ggtcgcccg	ggcagcgagg	agtcctcccg	aggcgacgac	3180
gggtcaccca	tggcggacgt	cgtggccatg	gactccccca	acattgtcac	gctcgccgaa	3240
ggccagtctg	cctccgactt	cctcaaggcc	atctgagggc	gtgctctgt	gtccctgtg	3300
ctgcttctgt	tttccacatc	tgggacgcag	tagtttactt	tggattgttt	cgccctgtgat	3360
tttggcagga	agatgatgac	tgcagaattt	catttgcata	taccgtatac	ctgtgcaagc	3420
atgagcaaaa	catgtcagtt	aataattctt	taatgttttt	gtcatgcctc	cgtgaggtat	3480
gcttgtgtgc	attctataaaa	agaaaaaacgc	aagaatgaaa	gaaagaaata	ttttcaatgt	3540
aagtgtatgt	tttccctgtt	cggtcttta	tttggattgt	ctacatataat	tgtttcaagg	3600
aaatacaagg	atctcccttc	tccaaaaaaa	aaa			3633

<210> 131
<211> 3747
<212> DNA
<213> Lolium perenne

<400> 131						
ctccgatccc	ccacccaccc	ccaaatttcc	ccaagccgca	tcgcatcacc	tcgtctcccg	60
agagcaccgc	gatggcgccc	aacgacttgg	tcaacagctt	cctggaggcc	atcctcgacg	120
cggggggcac	cgcgggggac	atctcgccg	cctctgtggc	cggaggcgat	gtggggccgg	180
ggcgtggcg	aggcacttgc	ggggagaaggc	gggacaaggc	gtcactcatg	ctccgagagc	240
gccccccgtt	caaaaaccggc	cgctacttgc	tcgaggagg	catctccgga	ttcgacgaga	300
cggacacttca	caagacccgg	gtccacacgt	cgcccatgag	aagccgcac	gagaggaata	360
cgcggcttgg	gaacatgtcc	tggaggatct	gaaacctcgc	taggaagaag	aagcagattt	420
aagggtgagga	agcctcccg	ttatcaaaga	aacgtcttgc	acgtgagaag	gctcgctcgag	480
atgtgtctgc	tgattttgtt	gaggacctt	ctgaggggaga	aaaaggagaa	aacattaacg	540
gatcatctgt	tcacatgttgc	agcacaagg	gacgaaatgcc	aaggataggt	tcaactgtat	600
ctattgaggt	gtgggcaaaat	cagcacaaag	ataaaaaact	gtacatagtg	ctaataaagta	660
ttcatggctt	tatacgttgt	gagaatatgg	agcttgggc	tgatttgcgt	acaggcggtc	720
aggtcaaata	tgttgttagag	cttgcgtagg	cattaggtga	aacaccttgg	gtatacagaa	780
tggatctgtc	gacaaggcag	atttctgcac	ctgtatgttgc	ctggagttac	ggagaacacta	840
cagagatgt	gagtccaaaga	aatttgcata	accttgggg	tgacatgggt	gaaaggcgtt	900
gtgttat	tgtttaggtt	ccctttggac	caagaaaaaa	gtatatacct	aaagagcagc	960
tctggcccca	catacaggaa	tttggtgatg	gtgcacttgt	ccatatcatg	cagatgtcca	1020
aggttcttgg	tgaacaagg	ggtcgtgaac	ggcgagttat	gcctttgtt	atccacggac	1080
actatgtca	tgcaggcgat	tctgtgtctc	tattatctgg	ggcactcaat	gtcccaatgg	1140
tattcacagg	tcattcttctt	ggcagagaca	aatttagagca	acttttgcag	caaggacgtc	1200
aaaccaggga	cgaagtaaaat	gcaacatata	agataatgc	tcggatttgc	gctgaggaac	1260
tttgtcttgc	tgcattcttgc	attgtatata	caagcacttgc	gcaagaaata	gagaaacaaat	1320
ggggatttgc	caatggattt	gatgtactt	ttggagaggaa	acttagagca	agaacaaaagc	1380
gtgtgttc	ctgttatgtt	ctgtatgttgc	ctcgatgtat	tgcgatttcc	cttggcatgg	1440
agtttagcca	tatttgcctt	catgtatgttgc	accttggatgtt	tgatgtatgc	aatgttgcgtt	1500
gctcagggtt	accggatcca	ccttattttgg	ctgtatataat	gcgtttcttc	tcaaacccttc	1560
gttagcccat	gatttctgc	cttgcgtggc	cagatcccaa	gaagaaacatc	actacattgg	1620
tgaaggcatt	tgttgcacac	cctgttgcattt	gaaattttgc	aaacccatc	ctgtatcatgg	1680
gtaaccgtt	tgttatttgc	gaaatgttgc	gcacaaatgg	agcttttttgc	acctcagtac	1740
tcaagttat	tgacaaatata	gatctatata	gccaatgtgc	ataccccaag	caccataacg	1800
aatctgtat	tccagatatt	tatgttttgc	cggttgcata	aaaggggggtt	tttattatatt	1860
gtgttat	tgaaccat	gggttgcaccc	tgatgttgc	tgctgtttat	ggtctaccga	1920
tgggtgttac	ccaaaatgg	gggcctgtcg	acatacaccg	ggttttgcac	aatgttgcac	1980
ttgttgcatt	acacaaccaa	aatgtatatttgc	ctgaggcact	ttataagtttgc	ttttcttgcata	2040
agacttgtt	ggcacaatgc	cgtcacaatgc	gtctggatata	tatccatgc	ttttcttgcata	2100
ctgaacatttgc	caagaactat	ttgttgcaccc	ttggcactgttgc	gaagccttgc	catccacgt	2160
ggcaaaaggag	tgtatgttgc	actgttgcatttgc	ctgtatataat	ttcacccatc	gattttttgc	2220
gggttgttca	tgtatataat	cttgcgttttgc	agctttcccttgc	ggacagtgc	aaagcaggca	2280
ccaagataaa	tactgttgc	aatttccatc	atgcccata	aaatcttgc	gatgttgcac	2340
taaaattttgc	aaatgttgc	agtgttgc	caaaggatgttgc	gtctgttgc	aatgttgcac	2400
ccaccacagg	cttccatataaa	tggccatcttgc	tacggaggag	aaaacacatt	gttgcatttgc	2460
ctgttagatttgc	tgttgcataat	gctgttttgc	tttgcatttgc	caaaaaccttgc	tttgcatttgc	2520
cacgcaaaaga	aaaatcatct	ggtgcgtttgc	gttttgcatttgc	gtcgacatct	cgagcaatata	2580

cagagacact tactttttta acatctgggg gcatacaaac tactgaattt gatgccttca 2640
 tatgcagcag tggcagtatc ctttgttatac catcttcaag ttcggaaagac atgcttagcc 2700
 ctaccgagct tccatttatg attgatctt attatcactc tcagattgaa taccgttggg 2760
 gaggggaagg ttaaggaaag acactaattc gttgggcagc agaaaacaac agtcagagtg 2820
 gacaagaagt agttactgaa gatgaagaat gttcatccac ttactgcatt tcatttaaag 2880
 tgaagaatac tgaggctgtc cctccotgtga aggatcttag aaaaacaatg aaaaatcaag 2940
 cactgcggt tcatgtatc tacagccatg atggtagcaa gttgaatctt ataccttcc 3000
 tagcatcagc atcccaagca ctaaggactt tttatatacg atgggggtt gagctggcaa 3060
 acatgcagctt gtttgttgtt gaaagggtgtt atacagat tgaagggtctt cttggaggcg 3120
 tgcacaagac catcatactc aaaggctcat ttaatgctgc tccaaaccag cttcatgctg 3180
 ccagaagcta ttcactggag gatgtcatat cgtttgcacaa accaggaatt gttcagtcg 3240
 agggatatct cccagatagc taaaatcag ctctacaaca gttcgggtgtg ctgaactaaa 3300
 gtgacaatct tgccatcagc agaacagttt agtagagtat ctattctatg tggccagat 3360
 cgagaaatgt gcagcaaggc ttgttccgc ttgttttacca cgtctgtcat ggcagaataa 3420
 gttctgggtt aggtttactt tctacaactc ttcttgtaaa cccaaaagaat ttggagctac 3480
 gaacttggat cagttttttt tccaaaggcaaa aactcaaggc aataatactg tggccatcca 3540
 tcagtcacaa taaagcaaga ttgaacatcc ttcttgatgat tcgtaatgt ttgttaagac 3600
 tagtcatagt ggggagtaat ttatgtttt tttcatgcat tttatgtt attatcttgc 3660
 aaaccattt tgggggtt tttatgtt tttatgtt acatagctt ttaccaccct 3720
 attatatttc ttccctcaaa aaaaaaaaaa 3747

<210> 132

<211> 3743

<212> DNA

<213> *Lolium perenne*

<400> 132

cacgcgcgc	cgtgcgcaca	cgtatatacg	ccgatcaata	tcaagttggg	atcttttagcg	60
ccggaggagc	ggagtagcct	gctgcggc	gagggttaatt	agagcaagag	gagtctgctc	120
gcccgtcaaca	aagatggccgg	cggggaacga	gtggatcaac	gggtacctag	aggcgatcct	180
ggacgcgggg	tcgaagctgc	ggccgcagg	cgtgcagctg	ccgcccgtgg	agacagcgcc	240
ggcgctcgc	gccgaggaga	gcagcgcgc	ctacaacccg	accaggtact	tcgtggagga	300
ggtgttcagg	agcttcgacg	agcaggccct	ccacaagaca	tggacaaagg	tgggttgcgt	360
gcggAACAGC	caggagcgg	gcaaccggct	ggagaacctg	tgctggagga	tctggAACGT	420
ctccaggcag	aagaagcagg	tggagtggg	ttacacgaaa	gagggtggctc	ggcggAAAGCT	480
tgagcaggag	ctgggcagcc	gggaggccgc	cgaggacact	tccgagctct	ccgaggggcga	540
gaaggacacc	accaccgc	agccgcacgc	cgcagccgct	caaccgtcc	ccgacgatgg	600
cgagcaccag	cagccgcgc	cacccacccg	gtcgcgcagg	atcaactccg	aggtgcggct	660
cgttccgcac	gacgaggagg	agcagacca	aaagaggaac	ctctacatcg	tcctcatcg	720
catccatggg	ctggcgcgc	ggggagacat	ggagctcggc	cgagactccg	acaccgggtgg	780
ccaggtgaag	tacgtgggtt	agctggcgc	tcgcgtggc	gcaacggcgg	gggtgcaccc	840
ggttggacctg	ctgacgcgc	agatctctg	cccgacgtg	gactggacct	acggcgagcc	900
cgtggagatg	ctggagcgc	tgtcgcgc	ggacgcccac	gacgacgacg	gcaacggcgg	960
cgccggcggt	gcctacatcg	tgcgcgtgc	gtgcgggcca	agggaccagt	acatccccaa	1020
ggaggagctg	tggccgcaca	tcccccagtt	cggtggaccgc	gcaacggcgg	acgtcaccga	1080
ggtcgcccgc	gcaacggcgc	agcagctcca	gcctcctct	tctccggccg	acggcgccgt	1140
ggccggccccc	atctggccgt	acgtgatcca	ccggccactac	gcaacggcgg	ggggagggtggc	1200
ggcgaacctg	gcaacggcgc	tgaacgtgc	catggatctc	acggggccact	cgctggggcg	1260
caacaagatc	gacgactgc	tcaagctcg	ccgcacatcg	ggcccccggaa	tccaggggcac	1320
ctacaagatc	gcaacggcgc	tcgaggccga	ggagacgggg	ctcgacaccc	gggagatgg	1380
ggtcaccacgc	accaaggcagg	agatcgagga	gcagtgggg	ctctacacgc	gttgcaccc	1440
catgggtggag	cgcaagctcc	gggttaaggca	gcgcgcggc	gtcagcagcc	tcggacggta	1500
catgcgcgc	atggcggtca	tcccccgg	catggacttc	agcttcgtcg	agacacagga	1560
cacggctgac	ggggacggcg	ccgatctcca	gatgcttatt	gctcccgaca	aggccaagaa	1620
ggctctgcct	cccatgggt	cagacgtgct	gcgggttctc	acgaacccgc	acaagccgat	1680
gatccctggcg	ctgtcgcgc	cggaacccaa	gaagaatgtc	accacgcgtc	tcaaggcccta	1740
cgccgcgcgc	cgccagctcc	gggagctgc	gaacctgtc	ctgtactgg	gaaacaggga	1800
tgacatcgag	gacatggccg	gtggcgccgg	cgccgtgc	acggccgtgc	tcaagctcat	1860
cgaccgatac	gacctctacg	gcaacggcgc	ctaccacaa	caccacaacg	agacggacgt	1920
gcctcacatc	taccgcctcg	ccgcacac	caagggatg	ttcatcaacc	cagcttgcgt	1980
ggagccgttc	ggcctcacaa	tcatcgaggc	tgctgttat	ggtttccgg	ttgtggcgac	2040
caagaacggc	ggggccgtgg	acatctgtaa	ggcgcctccac	aacgggctgc	ttgtggaccc	2100
gcactcggcg	gaagcgatca	ccggcgcgc	gctgacgtgc	ctgggtgaga	agtcgcgggt	2160
ggtggagtgc	cgccgcacac	gcctccgaa	catccaccgc	ttctcgtggc	ccgaccactg	2220
ccgcctctac	ctctccacag	tctccacca	ctgcgaccag	ccctcgcgc	accagccgat	2280
ccgcgtgccc	ctcgccctgg	gctccctccac	cagcttcg	gcaacgcact	cgctctcg	2340

ctcgctccgc	ggcctctcgc	tccagatatac	cgtggacgccc	tccagcgacc	tcaacgcccgc	2400
ggactccgcg	gccgcacatac	tggacgcgtc	ccgcccggcgc	ccggcatccg	agaagccggc	2460
gagctccgt	gccaggcgcc	tcggcttcgc	gccccggccgc	cgggagagcc	tcctgggtgg	2520
ggccgtcgac	tgctacggcg	acgacggcaa	gccccgacgtc	gagcagtga	agaaggccat	2580
cgacgcggcg	gtgtcggttg	gtgaatgcgc	gggaggcgaag	cagggttacg	tgctgtcgac	2640
cgccatgacc	atccccgagg	ccgcggaggc	gatcaaggca	tgccggccgc	acgttgcagg	2700
cttcgacgcg	ctgtatgcga	gcagggggcc	cgagctatgc	tacccgggta	aggagctcgt	2760
ggccgacgag	gagtaactccg	ggcacgtcgc	gttccgggtgg	cccggtgacc	acgtgaaatc	2820
cgccgtcccc	aggctcggg	gcatggagga	gatcgccctc	gcaatcgatc	ggcccgccctc	2880
ctccgtgcac	tgccacgcct	acgcccac	ggacgcacatcc	aaggtaagca	taacagagca	2940
ctactttag	taaccactaa	ccagcacgg	acatggtctc	ctccatgcct	aagcttctga	3000
tgcgtgggt	tttgggcagg	tgaagaagg	ggattcgatc	aggcaggcgc	tgccggatgcg	3060
cgccctccgg	tgcaacctcg	tctacacgcg	ccctcgacac	cgccctcaac	tcatccccct	3120
ctccgtttcc	cgccgcgcgc	ctctcaggta	cctgtcgata	cagtggggga	tcgatctctc	3180
caaggtggcg	gtgctcgctg	gcgagacccg	cgacaccgac	cgccgagaggc	tccctcccg	3240
agtgcacagg	acgctcatcc	tgccggggat	ggtcgccgc	ggcagcgagg	agcttctccg	3300
aggcgcacgac	gggtacacca	tggcgacgt	cgtggccat	gactccccc	acattgtcac	3360
gctcgcggaa	ggccagtctc	catccgacat	cctcaaggcc	atctgagagc	atgctctgct	3420
ccttgcgtct	cctctgtttt	ccacatccc	gacgcagtag	ctccacttcg	attatttac	3480
ctgtgat	tttggcaggaga	tgactgcaga	attgcattt	catataccgt	ataccgtgtc	3540
aagcatgagc	aaaacatgtc	agctaataat	tcttttatgt	tttggccat	cctccgtgag	3600
gtatgcgtgt	gtacatacta	taaaggaaca	gagagagaaa	cgcaagaatg	aaagagagaaa	3660
atatttcaa	tgttaagtta	tgtttcttcc	tgacggcttc	ttacaatggc	ttgtctacat	3720
taattgtctc	aagaaaaaaa	aaa				3743

<210> 133

<211> 2714

<212> DNA

<213> *Lolium perenne*

<400> 133

cttcctccct	cacacgcctc	gccattttgtt	ttgtgtcctg	agccatggct	gccaagctga	60
ctcgctccca	cagtctccgg	gagcccttgc	gtgccacatt	ctccctccat	cctaacgac	120
tcattgcct	ctttcaaaag	tatgttccac	agggcaaaagg	aatgcctcag	cgccaccacgc	180
tgctcactga	gtttgaagcc	ttgtttgagg	ctgacaagga	gagatatgc	ccctttgaag	240
acattctccg	tgctgctcag	gaagcaattt	tgctgcccc	atgggttgc	ctggccatca	300
ggccttaggcc	ttgtgtctgg	gactacatac	gggtgaatgt	tagcagttg	gtctgttgc	360
agctgacagt	tttgcgatc	ctggcatttgc	aggaacacgt	tgttgatgag	cacgcaggca	420
gcaaggttgt	gcttgagtt	gattttgagc	ctttaatgc	ctccctccca	cgtccctcca	480
tgtccaaatgc	cattggaaat	gggggtgcgt	tccttaacc	tcacccgtct	tccaagctgt	540
tccaggacaa	ggagagccctc	taccactac	tgaacttc	gaaagccat	aaccacaagg	600
gcacgacaat	gatgctaaac	gaccgaattt	agagccttc	tgggctccaa	tcagccctta	660
gaaaggcaga	agagtatcta	acgagcattt	ctgaagacac	cccgccctct	gagttcaacc	720
acaggttcca	agagcttggc	ttggagaagg	tttggggcga	caccgctaag	cgtgtacagg	780
acaccatcca	cttgcttcc	gatctacttgc	aggccctga	tccaggccac	ttggagaagt	840
tccttggaa	tataccaatg	atgttcaatg	ttgttatct	gtctccacac	ggatatttttgc	900
ctcaatccaa	tgtgttggga	taccctgata	ctgggtggca	ggttgcgtac	atttggatc	960
aagccgtgc	tttgggagaat	gagatgttgc	tgaggatata	gcagcaaggc	tttgacataa	1020
ccctaaatgt	ccttcatttgc	accaggctgt	tgcctgtatc	ttttgttgc	acatgtggcc	1080
agccgctgg	gaaaattttt	gggactgagc	acactgacat	tctccgtgtt	ccattcagaa	1140
ctgagaagg	gatccctccgt	aatggatct	ctcggttttgc	tgtctggcca	tacctggaga	1200
catacaccga	ggatgttgc	aacgaactca	tgagagaaaat	gcagaccaag	ctgtatctca	1260
ttattggcaa	ctacagtgc	ggttaaccttgc	tcgcccactt	gcttgcgc	aatgttggag	1320
ttacccagtg	caccatttgc	catgtttgg	agaaaaacaaa	ataccacac	ttagacatata	1380
atttggacaa	attcgacac	caataccatt	tctcatgcca	gttcaactgt	gaccttatttgc	1440
ccatgaatca	cactgatttgc	atcatcacca	gcacatttca	ggaaatttgc	ggaagcaagg	1500
acagcggtgg	ccagatgtat	tctcacatttgc	cttccatcc	ccctgtatctc	taccgtgttgc	1560
tccatggat	tgacgtgttgc	gatcccaatgt	tcaacatttgc	ctctccgttgc	tgagatgtata	1620
ctgtctactt	cccttacatct	gaaaactgaca	agaggcttac	tgcctccac	cctgaaatttgc	1680
aagagcttct	tttacatgtat	gttggaaact	ctgaacacaa	gtttgtatttgc	aaggacaaga	1740
acaaggcttat	catcttctca	atggctcg	ttgaccgtgt	gaagaacat	acaggcttgg	1800
ttgagatgtt	tggtaagaat	gctcatctca	aggatttggc	aaacccgttgc	atttgcgtct	1860
gtgaccatgg	caaggagttcc	aaggataggg	aggagcaggc	tgagttcaaa	aggatgtaca	1920
gtctcattga	ggagatacaag	ctggaggggcc	atatccgttgc	gatctcgtat	cagatgaacc	1980
gttttcgcaa	tgcagatgttgc	tacccttaca	tttgcacac	caagggcgca	tttgcgttgc	2040
ctgcatttcta	tgaagcat	ggccctgacttgc	tttgcgaggc	catgacatgt	gttttgc	2100

caatacgac	atgccatgg	ggcccagctg	aatcattgt	aatgggtgt	tctggtttgc	2160
acatcgatcc	ttaccacagt	gacaaggctg	cagatatcc	ggtaacttc	tttgagaaat	2220
ccacggcaga	tccaacctac	tgggacaaaa	tgtcggaagg	tggcctgaag	agaatttatg	2280
agaagtacac	ctggaagctg	tactcagaga	ggctgatgac	cctgactgtt	gtatatggtt	2340
tctgaaagta	tgtgagcaac	cttgagaggc	gtgagactcg	ccgttacctt	gagatgttct	2400
acgctctgaa	gtaccgcaga	ctggctgtc	cagttccatt	ggccgtcgat	ggcgagaaca	2460
cggacaata	gtgcccaca	tgaagaggcg	cttcaaaagg	gcgagggtgc	ggctgcgtta	2520
tgatttgatt	gtctaccgga	gtttcattt	gttctattgt	ggagtggtgt	cttggatgtc	2580
tcaggcactt	ctgtgagggtt	ttggcagttt	cttgcgtgtt	tcctgctagc	tgcatatgtt	2640
gtctcaata	aacgcctgcc	cgtattgttc	atctcttata	attcaatgca	atcttctgtt	2700
gcctaaaaaa	aaaa					2714

<210> 134

<211> 2957

<212> DNA

<213> *Lolium perenne*

<400> 134						
cggtttcttc	ctcgtggtgc	gttgcgttttgc	tcgggttctt	ctgaagaagc	ggaagggttttgc	60
agcaatgggg	gaagccgcgg	gcccggcgtgt	gctgagccgc	ctccacagcg	tcagggagcgc	120
aatccggcgcac	tccctctccg	ccccccccaa	ttagctcg	gcccgttca	ccaggctgg	180
caacccttgg	aagggaatgc	tgcagcccc	ccagatcatc	gctgagta	acactgcaat	240
ccctgaagca	gagcgcgaga	agctcaagga	ccgcgccttc	gaggatgtac	tgagggcgc	300
gcaggaggca	atcgtcatct	ccccatgggt	tgcacttgcc	atccgcctca	ggcctgggt	360
ctgggagttat	gtgagagtca	acgtgagcga	gcttgcgtc	gaggagttga	gtgtccctga	420
gtacttgcag	ttcaaggaac	agcttgcgtt	aggaagcaac	aaagacttcg	tgcttgagct	480
ggacttttag	ccattcaatg	cctcttccc	tcgtcccttc	ctgtcaagt	ccattggca	540
cgggtgtcag	ttcctcaata	ggcacctgtc	atcaaagctc	ttccatgaca	aggagagcat	600
gtaccctttg	tc当地acttcc	tccgtcaca	caactacaag	ggcatgccta	tgatgtgaa	660
cgacagagtc	cgcagtc当地	gtgctctca	gggagctctg	aggaaggccg	aggagcatct	720
gtctggcgtt	ccagcagaca	ccccgtactc	gacttccac	cacagttcc	agaacttg	780
tttggaaaag	ggctgggtt	attgtgc当地	gggtgc当地	gagaccctt	acctgctc	840
cgaccttctt	gaggcacctg	acccgtccac	acttgc当地	ttcctggta	caatccaa	900
gggttcaat	gttgc当地	tcttccaca	ttgttactt	gcacaagcc	atgtcttgg	960
gtacccttgc	accggagggc	aggttgc当地	cattttggat	caagttccgt	ctatggagaa	1020
tgagatgtt	ttgaggatca	agcagcaagg	actcgatata	acaccacgg	tccttattgt	1080
taccaggcgtt	ctccctgtat	caacccgtt	gacccgtcg	cagcgttgc	agaaggctt	1140
cggtaactgt	cacacccaca	tcctctgtt	gccattcaga	actgaaatg	gatgttgc	1200
caaattggatc	tcacgttttgc	aaacttggag	actttactg	atgtatgtgg	1260	
gcacgagatt	ctggagagc	tccaggccaa	ccctgacctt	atcatggaa	attacagtga	1320
tggaaaacctt	gttgc当地	tgctgc当地	caagatgggc	gttactcatt	gtaccattgc	1380
gcatgcgtt	gagaaaacca	agtaaaaaaa	ctctgacctt	tactggaaga	agtttggagga	1440
tcactaccac	ttctcatgca	agttcaccac	tgacttgc当地	gcaatgaacc	acgcggactt	1500
catcatcaca	agtaccttcc	aagagattgc	tggaaacaag	gacaccgtt	gtcagtgacga	1560
gtctcacatg	gcattcacga	tgccttggat	gtaccgtt	gtccacggta	tcgatgttt	1620
tgacccttgc	tttaacatag	tttgccttgg	tgccggacat	tccatctact	ttccgtactc	1680
agagtccaa	aggaggcttca	cctctacttca	cccagagat	gaggagcttgc	tctacagtga	1740
tgtcgacaa	gttgc当地	agtttgc当地	gaaggacagg	aacaagccaa	tcatcttctc	1800
gatggctcg	ctggaccgttca	tcaagaactt	gacttgc当地	gttgc当地	atggccggaa	1860
ccctcgcttgc	caggagcttgc	tttacccgtt	gggttgc当地	ggtgaccat	gcaacccatc	1920
aaaggacaag	gaggagcagg	ctgagttca	aaagatgtt	gaccttatttgc	aacagtacaa	1980
cctgaatggc	catatccgttca	ggatctctgc	tcatatggaa	cgtgtccgt	atgctgagct	2040
ctatcgctac	atctgc当地	ccaagggttca	tttgc当地	cctgcatttct	atgaggctt	2100
cgggcttaact	gtcatcgagg	ccatgacccgtt	ttgttccatca	acatttgc当地	ctgcatatgg	2160
tggtccagct	gagatcatcg	tgaacccgtt	ctccggcttac	catatgtatc	tttaccagg	2220
tgacaaggcc	tcggcttgc	tcgttgc当地	ttttgagaag	tgccaggagg	accacagcc	2280
ctggaccaag	atcttacttgc	gagggttca	gcgttatttgc	gagaataaca	cctggaaagct	2340
ttacttgcgt	aggctgtat	cccttccccc	tgtctatgc	ttctggaaat	acgttcttca	2400
ccttgcgttgc	cgttgc当地	ggccgttac	gaaaatgttgc	tacgc当地	atgaccgcac	2460
catggccagg	acttgc当地	tggctgtca	ggggggaggccc	tcgagcaat	gatctggca	2520
cctatcggttgc	ggaagaagaa	gaagaagggtt	ggcttgc当地	tctgaaat	ttgagatttgc	2580
agaatgcgtt	ggtttcttgc	ctaggcgcttgc	ctcttttgc当地	gttgc当地	agtttgc当地	2640
ctagttgttgc	tcagcgttgc	gagttgc当地	agacagaagg	atgttgc当地	tgccaggat	2700
gttgc当地	tttgc当地	tttgc当地	cccttgc当地	atagtgc当地	ccttggcgc当地	2760
gttgc当地	taatagtagc	atccttgc当地	gttgc当地	aaatcttagt	tttttttttgc当地	2820
cttgc当地	tggcaaaagcg	acctctgtat	ctatcttgc当地	cattgacatt	tagcttgc当地	2880

gccccgtgcact ggataacctta cattgctcta gagaacagca ataaaaagccg gaccatgtga 2940
tttgtgtaaaa aaaaaaaaaa 2957

<210> 135

<211> 1986

<212> DNA

<213> *Festuca arundinacea*

<400> 135

<210> 136

<211> 2073

<212> DNA

<213> *Lolium perenne*

<400> 136

aaaaactaga	ttattgtcca	gtctccttga	cttgcattaa	actttgcgat	ctggacggct	60
ataactgcgc	cctgaaaagcc	tictgcaatt	tacacatcga	tcggccagcc	catccatcag	120
tacccitgtc	ccctcttggt	cttcctctcc	gattccgatt	cgccaccacca	tgaattgaaat	180
cgagcacccg	ggcaatggcc	ggaccgccta	ccacttccaa	ccggcgaagc	attggcagaa	240
tgtaccccaat	ggggcaatgt	accacaacgg	cctgtaccac	ttcttctacc	agtacaatcc	300
ccacggcccg	acccctgggaca	ccggcaagt	atcatgggt	cactccgtct	ccggcggaccc	360
cgtwactgg	gcccgcctcg	acaatgcct	cgacccccacc	gccccgttgc	acgcacaacgg	420
ctgctgttcc	ggctccgcca	ccatccctcc	cgggggccgc	ccggccatcc	tctacaccgg	480
catcgacgccc	gacaagggtgc	aggtgcagaa	cgtggcattc	gccaaggacc	cctccgaccc	540
gctccctccgc	gagtgggaga	agcccagctg	caacccggtg	atcccgtacc	ccggccgacgt	600
gacgggcaac	aacttccgtg	atccgacgga	ggcgtggcgc	ggccgcgcacg	gcctgtggcg	660
ggtcggcata	gtcgccgagg	tgaaggggct	gggggtccctg	ctcgtgtacc	ggagcgcgga	720
cttcctccgc	tggcagcgca	acggccgcgc	gctgcacgc	agctcgcggg	acgtcccgt	780
gctggatgtc	ccggacactgt	tccgggttgc	tgccggcggcg	caggggcgcga	cggaggggct	840
cgagacttcg	gcacccgagcg	gcgccggggt	gaggcatgt	ctcaagctca	cggacttcgc	900
caaggaggac	cactacatgg	ttgggttta	cgacgcacgt	gccccacact	tcgtggccggc	960

ggagcccgag	cgccggcgacg	accccgacaa	ctggcgccgg	ctcgaccacg	gccacactgt	1020
cgcgtccaag	tccttctacg	acgcgcgcaa	caagcggcgc	atactgtggg	cgtgggtgg	1080
cgagaccgac	ggtggggcg	tcggccagggg	ctggggccggc	atccaggcgt	tcccggaggc	1140
gatgtggctg	gacggccgacg	ggaagcggt	ggtgcaagtgg	cccgtggagg	agatcgagac	1200
gctgcggagg	aaggcggtcg	gcctgcggtg	ggcgcacggac	gtggaggccg	gcggcaggaa	1260
ggagatcgcc	ggcatctgtga	gctcgacggc	ggacgtggag	gtcgtgttcg	agatcccgaa	1320
cctggaggag	gcccggacgt	tggaccccg	gtgggtgctg	gatccgaaag	ggctgtgcgc	1380
ggcgaagggc	gctgtccgtgc	acggcggcgt	cggcccggtc	gggctgtctcg	tcttggcctc	1440
cggtgacctg	gaggagcaca	ctgctgtgtt	cttcagggtg	ttcaagcacg	atggcaagta	1500
caaggttctc	atgtgcacccg	atctcacaaa	gtcatctacg	aaagcagggg	cacacaagcc	1560
atccatggta	gcattttcttg	atgtggacgt	ggagaaggac	aagttcatat	cgctcagaac	1620
attgtatcat	cacacgggtgg	tggagagct	cggcgcacggc	ggggaggacgt	gcatgacggc	1680
tcgtgtgtac	ccccaaacacg	cggcgatgg	aagcccccac	ctgtacgtt	tcaacaacgg	1740
gacagggtcc	gtaaagggtgt	ccaaacttgg	ggcgtggag	ctggcgacgg	cggccgtgaa	1800
cggcggctcg	cttgcaccccg	tcgtctca	ggcatccgac	cctaaagagg	cctttagtt	1860
ctagggtatg	ccccggatgg	tggctgttta	gatgtgtcc	gtcgttgatt	tatgtttgtt	1920
ggtcgagttt	ttagtggcg	gttagatgtat	ttatgcggaa	atgcatttt	agtggcgtca	1980
tgacctattt	gacaaacatc	tgtcatttgg	aaaacgtgg	gatatgtcca	cgcccatatc	2040
taaaggatata	ataqaggcat	ccccaaaaaa	aaa			2073

<210> 137

<211> 1888

<212> DNA

<213> *Festuca arundinacea*

<400> 137

<210> 138

<211> 1849

<212> DNA

<213> *Lolium perenne*

<400> 138

aaagttcatc	cctccttctg	tccccatggc	ccaagggtgg	cccttcttcc	taattgtcct	60
cttctcctcc	tgtgtatcca	accacctcg	aatggagaaa	agggtcttcc	tcttccccc	120
gtctcacaag	gtctcctcca	ttgtcagcaa	gaggtatagg	actgcctacc	acttccagcc	180
cccaagaac	tggatcaatg	gaccaatgt	ctacaatgtt	atctaccatg	agttctacca	240
gtacaacccc	aatggctccc	tctgggtaa	cataatttgg	ggccattcag	tttcgacgg	300
cctcatcaac	tggatcccag	tagaacctgc	gatagaacgg	gatatccaa	gtgacataaaa	360
cggtgtctgg	accggctcag	ccacaattat	tttcgggtat	caaccaatta	tcatatacac	420
cggagccgac	aggagaaccc	gtcagctcca	gaacattgt	cttccaaaaa	acaagtctga	480
cccgatctg	agggagttga	caaaaagcagg	taataaccc	gtgatccaac	cagtccggcc	540
aggctgaat	gcgagccagt	tcagggatcc	gacaaccgg	tggattggac	cggatggact	600
gtggaggata	gcagttgggt	ctgagctta	tggctacgg	gctgcactt	tgtacaagag	660
tcaagacttt	ctgaatttga	ctagagtta	tcacccgct	tattcatcca	atgcacatcc	720
aatgtggag	tgcccagatt	ttttcgcggt	attgcccgg	aatagtgg	gacttgacct	780
atctcagaa	atcccaatg	gcgc当地	tgtcctcaaa	atgaggctag	attcctgtga	840
caagtacatg	atcggagtt	atgatctga	aagtgtatcc	tttatggcc	atagtgtgtt	900
agatgaccgt	cgactgtgg	cgagggatc	tcatggcaat	tttcatgtct	caaagtccatt	960
cttcgactcg	aaaaaggaaa	ggaggatcat	atgggggttgg	acaaatggaa	cagatagctc	1020
ttcagatgt	gttgc当地	gttgggctgg	aatccatgca	attccaggaa	caatatggtt	1080
agacatgtat	ggcaagcagt	tgctgcaatg	gccaatttga	gagatcgagt	cccttcgaag	1140
aaatgaaatc	agccatcaag	gactagagct	gaagaaaagg	gacctattt	agattaaagg	1200
aactgacact	tcgcaggctg	atgtggaggt	agattttgag	ctgacatcca	ttgataatgc	1260
cgacccttt	gatccttct	ggcttctgg	tgtcgagaa	cagtccggag	aagcagggtgc	1320
atcggttcaa	ggtggcatag	ggccatttgg	acttgggtgc	ttggcctctg	acaacatgg	1380
ggagcacact	gctgtacact	tcaggttta	caaattcgc	caaagtata	tgtatccat	1440
gtgttctgat	ctaagaagg	tttccctgag	atcaggaat	tacacaccag	catatggagg	1500
cttcttggaa	tttgacccat	agaaggaaa	aaagatata	ctgagaactc	tgattgatcg	1560
gtcagcggtg	gagacttgc	ggggggctgg	cagggtctgc	atcatggca	gagtttatcc	1620
gttgggtctt	gtcgatgtat	ggggggccca	atgtacgg	tttcaacatg	gcagtaccac	1680
ggtcagggtg	ccacagctca	gggcatggag	catgagcagg	gcagagcaca	agtgaatgt	1740
aagttaaagt	gatgattaac	atagaagagc	aaatctaatt	gacgtgtat	tggaggactg	1800
aaaaagtat	ttaaatgtt	agcacaattt	tttcttgata	aaaaaaaaaa		1849

<210> 139

<211> 2166

<212> DNA

<213> Lolium perenne

<400> 139

gggaccttgc	gccccaaatgc	gtagtctgac	agcaatgggg	gttcgtctcg	ggagagtagc	60
ttgggcgtgc	ccggcggttc	ttgggtctgct	cttgcagctc	gcccggagcg	cccatgtcgt	120
ctacgagacc	agcctccctg	agaccggaggc	ggcggcggcc	accgtccag	cctccatttt	180
tgagctgagc	accgggttacc	acttccggcc	tcagaagaac	tggatcaacg	atcccaacgc	240
gccgctgtac	tacaagggtt	ggtaccatct	gttcttccag	tacaacccca	agggcgcgg	300
gtggggcaac	atcggttggg	cgcactcggt	gtcgcgcgac	ctcatcaact	gggtggccct	360
ggagacggcc	ctggcgccga	gcatcgacgc	cgacaaaatac	ggctgtgtt	gggggtcgcc	420
gaccatcatg	cccgacggca	ccggcggtat	catgtacacg	ggcgtcagcc	ggccggacgt	480
caactcagag	gtcccgaaacg	tcgccttccc	caagaacacg	tcggaccctc	tcctccgg	540
gtgggtgaag	ccggcgccaca	acccgggtat	cgccccggag	ggccggatca	acgcgacgc	600
gttccgggac	ccgacccacgg	cctgtacgc	ggacggggcac	tggcggatcc	tggggcgc	660
cctctccggc	gcgtcccgcc	gcgtggcgta	cggttacccg	agcccgact	tccggcggt	720
gacgggggtg	cggaagccgc	tgcactcgcc	gccgacgggg	atgtgggagt	gccccggactt	780
ctacccgggt	accgtggacg	gcaaggagag	cggggtggac	acgtccgtgg	tgtccagctc	840
gagggtgaag	cacgtgctca	agaacagcct	cgacccccc	cgctacgact	actacaccgt	900
cgggacctac	gaccggctga	aggagaggta	cggtccggac	aacccccc	gcgacaagca	960
ccacctgagg	tacgactacg	gcaacttcta	cgcttccaa	acgttctacg	acccgtccaa	1020
gcggccgcgc	atccgttggg	gatggcgaa	cgagtccgac	accggcgctc	acgacgtcgc	1080
caagggtctgg	ggccgaatcc	aggcattcc	tcggaaagg	tggctggacc	caagcgggaa	1140
gcagctgtat	cagtggccgg	tggaggaggt	ggaggcgctc	agggggaaa	agccgggtcag	1200
cctcaaggac	cggtgggtga	agcggggaga	acacgtcgag	gtcaccggc	tacaaaccgc	1260
acaggctgac	gtcgagggtg	gtttcgaggt	gccgagctg	gagggggcgg	aggcgctgga	1320
ccggcgctg	gccaacgacg	cccagaagct	tttgcggctg	aaaggcggcc	acgtggaggg	1380
ccggcgtgggg	cccttcggtc	tgtgggtct	ggcgtcgctc	aagctggagg	agaggaccgc	1440
cgtttcttc	agggtgttca	aggccgggg	caacgtcaac	agcaccaagc	ccctcgat	1500
catgtgttcc	gatccaatcca	agtcatctct	gaacaagaac	ctgttaccacc	cgacccttcgc	1560
gggcttcgtt	gatattgaca	tggctaaagg	caagatttct	ctcagaagcc	tgatcgatca	1620

atccgtcggt	gagagctttg	gggcccggagg	caggacgtgc	atcctctctc	gcgtctaccc	1680
gtcgctcgcc	attggcagga	acgctcacct	ccacgtcttc	aacaacggca	aggcggacat	1740
caagggtgtcg	cggctcacgg	cgtggaaat	gaagaagccg	gcgcgtcatga	acgggtgccta	1800
gatttagatt	cagggcaggag	caccatatgc	atgattccta	cataatgtgt	tgaatttggc	1860
tcagggcatgc	gtctggggcg	ttatttctgt	gttaatttga	cctctgggtga	aacatgttag	1920
tttttacaagg	gcgcgtaact	agctactgt	gttgcacgc	tgtgtaaatg	aagggggtca	1980
tttttgtatgc	ccccgggaaat	aataaaagatc	catgcatacg	ctgagggtgg	catcggtaga	2040
aagtttattt	tctgaaacgg	ggcaaaatat	ttgctcaat	caactactcc	tggcatggat	2100
taaaaataagg	agcaacaagg	tagaagttt	acaagaaatg	taatgtttt	attattaaaa	2160
	aaaaaa					2166

<210> 140

<211> 2137

<212> DNA

<213> Lolium perenne

<400> 140

ccctcgcaact	agtcggccga	ggcattcttc	ctagttgttt	ccatcgcatc	gatctcgatc	60
cacagattct	atgccaatgg	aggcaagaga	ttggcgtctcg	atgcctact	cgtatgcggc	120
cctggccggag	gacgcccggagg	cagcggtgg	ttggcgccgg	cgccgaccg	ggcctctgtt	180
cgcagcgttg	ctgttgacgt	tggtcgccgc	gtccttgc	gtgcgcgc	tggctggcgt	240
caggctcggt	ggcgagctgc	ctgccccggg	cgtcgatcg	cccaaccacc	cgatggaaat	300
catggacgtc	agcggtagca	gagggcctga	gtcaggcgt	tcggagaaga	cgtccggggc	360
cgcaggcggag	agcggccggca	tgcgtggcgc	cgacgcccgg	agcaacgcgt	tcccgtggag	420
caatcgatg	ctccagtggc	agcgcaccgg	cttccacttc	cagcccgaga	agaacttggat	480
gaacgacccc	aacggtccgg	tctactacaa	gggggtgttac	caccccttct	accagtacaa	540
cccgaggggc	gcaatctgg	gcaacaatgg	cgcggtgggg	catgcgtgt	cccgggacat	600
gtctccgggt	cgccacactgc	ccatcgccat	tttccccgac	cagtgttacg	acatcaacgg	660
cgcattgtca	ggctccggcc	ccgtgttccc	cgacggccgg	atcgatcg	tctacacggg	720
ctccaccaac	gcctccgtgc	agggtccatgt	cttcgccttc	ccctccgacc	ccctccgacc	780
gctgttcacc	aactggacca	atgttgggg	caacccgggt	ctgttccgc	ctccgcacgt	840
cggggagaag	gacttccggg	acccgaccac	tgcatgttac	gatggctcc	atggaatgtg	900
gcggatcgtc	atcggttca	aggataaccg	ccgcgcggc	atggccttga	cctacaagac	960
caagaacttc	catgattttt	agctcggttcc	cgaggtgt	caccgggtgc	cggcgacggg	1020
gatgtgggag	tgcatcgatt	tgttcccggt	ttggcgccgc	aggggcatttgc	acatgacgg	1080
ggccgttgcg	gcggcatcca	acagcggtgg	ttgttgaatgtt	ttgtatgtca	tgaaggagag	1140
ctcagacgac	gaccgcacat	actactacgc	gtctgggggg	tacgtgtc	cgacaaacaa	1200
gtggacaccg	ctagatggc	acgcgtatgt	ccgcgtcg	ctgaggatgt	atggggggaa	1260
gttctacgca	tccaaagatct	tctatgaccc	ggccaagaag	aggcgatgt	tatgggggtgt	1320
ggtcggcggag	actgtactgt	agcgcgcgc	cggtggccaa	ggatgggtt	ccctacatgtc	1380
gatccctcgc	acgggtgtgc	tagataccaa	gacggggcagc	aaccttatcc	agtggccgg	1440
ggtcggagggt	gagacgttcc	gtaccaactc	caccaatctc	gggagcatca	tcgtcgagca	1500
tggctccgtc	ttccctctca	gtctccaccg	ggccacacac	ctcgacatcg	aggcttcctt	1560
ccgcctggac	ccgctcgat	tcgccccgc	aaaggaggcc	gacgttggct	acaactgtc	1620
caccagcggt	ggcgcccccc	gtcgtggagc	gtccttgc	tttggcttgc	tcgttactcgc	1680
cgatgccagg	cgccatggc	gggacacgg	gcagaccgc	gtctacttct	acgtcgcgag	1740
gggcctcgat	ggcaaccgtc	gcacgcactt	ctgcatgtac	gagtacgg	catccccgtgc	1800
caacgacatt	gtcaagaggg	tcgttggcaa	cacgtgtc	gtgtcgacg	gagaggcgct	1860
gtctgtttag	gttctgggtt	accactccat	tggtcgatgt	ttcgacagg	gtgggggggtc	1920
gggtgggtact	tcacgatgtt	acccgactga	ggccatctac	gccaatgtcc	gggtataatct	1980
cttcaacaac	gcccgggtgt	cccggttac	cgccaccagt	ctcgatgttcc	atagatgttgc	2040
ccctccttac	aaccagaacc	aggccgagat	ggcttcatgt	taaatcgaaa	atgtacatata	2100
tgttttttgt	gctagatgt	tgccgtaaa	aaaaaaa			2137

<210> 141

<211> 1954

<212> DNA

<213> Lolium perenne

<400> 141

gaaagctttc	tttcctgttt	gctcgctgtt	ggggccggcg	gcgttaccc	tccggcgac	60
acatgcgtc	agatccaaac	ggtccggct	attaccgcgg	atggtaccac	cttcttctacc	120
agtacaaccc	cgagggggcg	gtctggggca	acatcgctg	ggggccacgt	gtctctcg	180
acctagtcca	ctggcgccac	ctcccgctcg	ccatgggtcc	tgaccgtgg	tacgacatca	240
acgggtctg	gacaggctcc	gccaccgtgt	tcccccgttgg	gaccctgaac	atgtcttaca	300
cggggtccac	caatgcctcc	gtcgaggccc	agtgcctcg	cgtgccccag	gaccggccat	360

actccctcct	ccgcaactgg	accaagcacg	aagccaaccc	ggtcctcctc	ccaccgcccc	420
ggatcggtga	caaggacttc	cgtgacccaa	ccaccgcatt	gttcgacgag	tctgaccaga	480
cgtggcgcac	cgtcatcggt	tccaaaggaca	acaacggcca	cggccgcatt	gccatgggt	540
acaagaccaa	agacttcctc	aactacgagc	tcatcccggt	atacttgcac	cgcgtcgacg	600
gcacccggat	gtgggaggtc	atcgacttct	accccgtcgg	cggcaagaac	ggcagcggagg	660
agctgtacgt	gatcaaggag	agcagcgcac	acgaccggaca	tgactggtag	acgctaggaa	720
aatacgacgc	ggcagccaa	acgttcacgg	ccgcggaccac	ggagaacgac	ctagggattg	780
ggctgagggt	cgactggggc	aagtttacg	cgttcaagac	cttctacac	ccagccaaga	840
agcggcgcgt	gctgtgggg	tggattggcg	agaccgactc	cgagcgcgc	gatgtcgcca	900
aggatgggc	atccctcatg	tcgattccga	ggacgggtga	gctcgacgag	aagacctggaa	960
ccaaacctat	ccaatggca	gtggaggaga	tcgagaccct	ccgcatcaag	tccaccgacc	1020
ttggggcat	caccattgac	cacggcagcg	tctaccac	ccctctccac	cgcgccacac	1080
agctagacat	cgaggccctc	ttccgcctcg	acgcccacac	cgtcggcc	ctcaacgagg	1140
ctgacgttag	ctacaatttc	agcaccagcg	gcggctctac	ccaccgcgc	gcactcgcc	1200
ccttggcat	cctcgccctt	gccgacggta	aggcggagac	aacggcggt	tacttctatg	1260
tgtccaaggg	ccttgcacgg	gccctcgaga	ccacttctg	ccacgcacgag	tcgcgatcga	1320
cgctggccaa	ggatgtcg	aagcaggtgg	ttggatatac	cgtgcgtgc	ctcgatgggt	1380
aggcattttc	cgtgagggtt	ctcggtggacc	actcaattgt	ggagagcttc	gcacatgggt	1440
gaagggttccac	ggcgcacgtcg	agggtgtacc	cgacggagtc	tatctacgc	gctgctgggt	1500
catactttt	caacaatgcc	accggcggt	ccgtgaccgt	tgagaagctc	tggtgtgcata	1560
agatggactc	gtcctacaac	cagatctca	ttgctgacga	ctttagtca	ccgtcatcca	1620
tggatagcgt	cggatgggt	ggatgatcac	ctactacata	tacatacata	ctattgatcg	1680
aacgatcacc	ggatcggtcg	gtgggtggctt	cctctttctc	ttggatgcag	aaggagatgg	1740
agtactagct	actctattt	ccatgttgg	tttttttttgg	tttttttttgg	tttgggtttt	1800
tgacgagatg	gatgaattag	ctatacatgg	atgattgtgt	cctatatttct	ctccctgcctt	1860
ccgagtgtaa	ctacatata	tggcaggatc	gatgatatcc	ctgttgcatg	acagtgtatga	1920
ttaattattt	tgtatgtat	gatcaaaaaaa	aaaa			1954

<210> 142

<211> 2039

<212> DNA

<213> *Lolium perenne*

<400> 142

aggagggttgt	ggaggagcac	gaaatcccg	ccgccattcc	tccacccattc	gctccgacca	60
aagatttcca	tccggcgaga	tccatgggt	ccatcgccgc	agacttggcg	ccggaggcgc	120
ccgcggagct	ggtgttcccg	togaacttc	ccgacatcg	gatcccgacc	cacctgacgc	180
tgcaagacta	ctgcttcgag	ccgcctccgg	agcttcccg	ccgcgcgtgc	ctcatcgacg	240
gcccgcacgg	ccgcgcgtc	acctacggcg	agggtggacgc	cctctcgcc	cgtgcgcgg	300
ccgggctcg	ccgcctcgcc	gtccgcaagg	gcgacgtgg	catggcgctc	ctccgcaact	360
gccccgagtt	ccgccttcgt	ttccctcgcc	ccggcccggt	ccgcggcc	accaccacgg	420
ccaaacctgtt	ctacacgc	cacgagatcc	accggccaggc	ccgcggcc	ggcgccaagg	480
tgatcgtcac	cgaggcctgc	ccgcgtcg	agggtgcgc	cttcggcc	gagagaggga	540
tccccgtcgt	ctccgtcgac	gaggccgtcg	acgacggctg	cctccgttc	gccgcgactc	600
tcctcgggga	agaaagcggc	gagcggttcg	tcgacgaggc	gtcgaccccc	gacgacgtgg	660
tggcgctgccc	gtactcgatc	ggcaccaccc	gcctgccccaa	gggcgtcatg	ctcacccacc	720
gcagccctcg	caccagcgtc	gcccacgg	ttgacgggtcg	gaaccgaa	ctgcacttca	780
gctcgctccg	cgtcgctcg	tgcgtgtcg	cgctgttca	catctactcg	ctcaactctcg	840
tgctcgctcg	cgggttacgc	gcccgggtcg	cgatctgtat	catgcgaag	ttcgaccacg	900
gcgccttgg	ggacactgtcg	cgcgcgcacg	gcgtcacgg	ggcgcattc	gtgcccggcca	960
tcgtgggtgg	gatcgccaag	agcgcgcgg	tgaccggcc	ggacctggcg	tcgatccggc	1020
tggtcatgtc	ggggggcgccg	cccatgggc	aggagctgc	ggacgcgttc	atggccaaga	1080
tccccaacgc	tgtgctcggt	cagggatatg	ggatgaccga	ggccggcccc	gtgctagcca	1140
tgtgcctggc	cttcgcctaa	gagccgttc	aggtcaagtc	tggctctgc	ggcaccgtcg	1200
tccggaacgc	cgagctcaag	atcgctgacc	ccgacacccg	ccctccctc	ggccgcacacc	1260
tgccggggga	gatctgcattc	cgccgcaagc	agatcatgaa	agttaccta	aatgatccgg	1320
agggcaca	gaacaccatt	gacaaggacg	gttggctgca	tactggagac	attgggttat	1380
tcgatgtat	cgacgagatc	tttattgtcg	acagactgaa	ggagataatc	aaatataagg	1440
gattccaaat	acctccacca	gaacttgcac	cccttctat	tacgcaccct	gaaatcaagg	1500
atgtcgctgt	cgtatcgat	caagacgac	ttgctggta	agttccgg	gcgtttgtt	1560
tgccgactga	aggttcagag	atcagcgtaa	acgagatcaa	gcagttcg	gcaaaaagagg	1620
ttttttctat	caagaggatc	tgcaaaatgt	tcttcgcgg	ttccattcca	aaagatccat	1680
ctggcaagat	cctcaggaag	gacctgagag	caaagctcgc	cgcaggcatt	ccggcagtg	1740
ataccacaca	gtccaaaaaa	taagtcaagat	atattgttcc	ccaaacctac	acacccctgt	1800
ccaacaccat	gtatgttct	taatataaaac	ggaaattatt	acatataagaa	gggctgattc	1860
ttttttactat	atgtgtccaa	catatgtat	gtttgtttag	ccgatgtatg	gttaacccgtc	1920

atgtatagat accgcctttt tttgataaga aaggctgatt ataatgtata ccatgagctg 1980
aatatttgtt caaggagatc aggattcggt tgccattgtt ttaccttta aaaaaaaaaa 2039

<210> 143

<211> 2006

<212> DNA

<213> Lolium perenne

<400> 143

gagagagggag atcaagcaag ccatctccca cgactaattt agaagaagat ttacttagtc 60
tctgcttc gctcgatcgc cggccgggtga ggttagctgc tagctactcg tactagatca 120
ttaccatggg ttccgtccg gaggagtcag tgggtgtccgt ggcgcggcg gagacgggtgt 180
tccgggtcgaa gctccccgac atcgagatca acaacgagca gacgctgcag actactgt 240
tcgagaagat ggccgagggtc gcgtcccccc cctgcatcat cgacggccag acgggcgcct 300
cctacaccata cacggagggtc gactccctga cccgtcgcgc cgccggggg ctgcgcgcga 360
tgggcgtggg gaaggggcag gtgggtatga acctgtccg caactgccc gagttcgccct 420
tctcccttc gggcgccggc aggctggcg cggccaccac caccggcaac ccgttctaca 480
ccccgcacga gatccaccgc caggcggagg cggcgccggc caagctgatc gtaccggagg 540
cctgcgcgcgt ggagaagggtc ctgggatcgc cggcgccggc gggctgccc gtggtcaccg 600
tcgacggggag ggcgcacggg tgcgtggact tcgcccggact gatccggc gaggagctgc 660
ccgaggcggg cgaggccggg atcctccccc acgacgtcg cgcctgccc tactctccg 720
gcaccacccg gctcccaag ggcgtcatgc tcacccaccg cagcctcgcc accagcgtcg 780
cccagctggt tgacgggtcg aacccaaacg tggcttcaa caaggacgac ggcgtgctgt 840
gcctgtgtcc gctgttccac atctactcgc tgcacacggg gtcgtggcg gggctccgcg 900
tcggccgcgc catcgatc atgcgcagaat tcgacgtcg cgcgtggcg gacctcgcc 960
gcccgcaccc catcaccatc ggcgcattcg tgccgcggcat cgtcggtgg atgcacaaga 1020
gcccgcgtcg cggcgccgac gacctcgat ccatccgcgat ggtgcgttcc ggcgcgcgc 1080
ccatggcaaa ggacccatcc gacgccttca tggccaaat ccccaacgc gtcgtcgac 1140
agggtatccg gatgactgag gcccggccgg tgccggcat gtcgtggcg ttcgccaagg 1200
agcccttcaa ggtcaagtcc gggtcgtgcg gcaccgtgg ggcacaacgca gagctcaagg 1260
tcgtcgaccc cgacaccggc gcatccctcg gcaggaacca gcccggcgag atctcgctcc 1320
gcggaaagca gatcatgata gtttacctga acgacccaga gtctaccaag aacaccatcg 1380
acaaggacgg ctggctgcac accggagata tcggcttggt ggacgacgac gacgagatct 1440
tcatcgatcg caggctcaag gagatcatca agtacaaggg ctccagggt ggcgcggcg 1500
agctcgaggg cctcccttc acgaacccgg aggtcaaggga cgcgcgcgtc gttaggggtga 1560
aggatgatct ctggcgcaaa gttccggctcg ctttcattaa gaggatcgaa ggatctgaga 1620
tcaccggaaa cgatcatcaag caattcgatc caaaggaggt tgtttctac aagaggatca 1680
acaaggatcc ctggcaccgc tccatccca agaacccttc cggcaacgat ctaaggaaagg 1740
acttgagagc caggctcgcc gtcggcatcc caccggaaat tgccgcgcgg agaaagctaag 1800
ggccgcttct caggaaacgc atcaccatcg gtcgtttta ggtgttta tagaccacac 1860
caaatggggaa aagaaactac gggagggat catattatcc ttgcaggaga tatcagttt 1920
ttgattcgcc ctgcttgggt aatgttata aatgaaatg atataataga tgggttgg 1980
tattttttaa ccatgtaaaa aaaaaa 2006

<210> 144

<211> 1789

<212> DNA

<213> Lolium perenne

<400> 144

ctcaacactc gccaatccca cagccacaga agccacactac caccgctcca cgcgtcgacg 60
atggaggctcc tcctccttggaa gaaggcccta ctggggctct tcgcggcgcc ggtgcgtggcc 120
atcgccgtcg cgaagctcgc cggcaagcgc ttccgcctcc cgcggggccc ctccggcgcc 180
cccatcgatcg gcaactggct ccagtcggc gacgacatcg accacccaa cctgtatgggc 240
atcgcaaggc ggttcggggaa ggtttccctg ctccgcattgg gcatccgca cctgggtgg 300
gtgtcccgcc cggagctggc caaggagggtg ctccacacgc agggcggtgg gttcggtcc 360
cgccacccgca acgtcgatcc cgcacatctt accggcaacg gccaggacat ggtcttcacc 420
gtctacggcg accactggcg caagatgcgc cggatcatga ccgtccctt cttcaccaac 480
aagggtgggg cgcagaaccg ggtggctgg gaggaggagg ccaggctcg ggtggaggac 540
gtcaaggccg accccggcgcc cgcgaccgc ggcaccgtga tccgcgttag gtcgtcgctc 600
atgatgtaca acgacatgtt ccgcattcatg ttcgaccgcg gttcgagtc cgtcgacgac 660
ccgccttca acaagctcaa ggccatgaac gcccggcgca gcatccgtc gcagagcttc 720
gactacaact acggcgactt catccccatt ctccgaccgt tcctccgcaaa gtacctcaac 780
cggtgcacaa acctcaagac caagaggatg aagcttctcg aggaccactt cgtcgctgac 840
agaaagaagg cgctggagca gaatggggag atcagggtgcg ccatggacca catcctggag 900
cgccgagagga agggcgagat caaccacgc aacgtccctt acatcgatcgaa acatcgatcaac 960

gttgcagcca	tcgagacaac	gctgtggtcg	atcgagtggg	gcatcgccga	gctggtaaac	1020
caccggacg	tccagtcgaa	gctccgcac	gagatgaccg	ccgtgtggg	cgccgacgtg	1080
gcgggtacgg	agccggacct	ggagccctc	ccctacctgc	agtccgtcgt	gaaggagacc	1140
ctccgcctcc	gcatggccat	cccgctgctc	gtgccgcaca	tgaatctcg	cgacgcctaag	1200
ctcgcggct	acgacatccc	cgccgagtcc	aagatcctcg	tcaacgcatg	gttcctcgcc	1260
aacgacccca	agcgggtgggt	gcccgcgcac	gagttcaggc	ccgagcgctt	cctcgaggag	1320
gagaaggccg	tcgaggccca	cggcacacgc	ttccgcttcg	tgcccttcgg	cgtcgccgc	1380
cggagctgcc	ccgggatcgt	cctcgctg	cccatcatcg	gcatcacgct	cgacgcctc	1440
gtgcagaact	tccagctgt	gcccggcccc	gggcaggaca	agatcgatac	caccgagaag	1500
cccgagact	tcagcaacca	gatccctcaag	cacgcacccg	tcgtctgcaa	gccgctcgag	1560
gcctagaatt	ttcttatttga	tcgtatggag	gcttctgaca	tgcgtgtctg	tgcatgcatg	1620
cgtgaacgct	ggtgccggga	gatcgatcta	tgcacgcatg	tgatgtgtat	tttccttttt	1680
tttgtctttt	attttactta	gttgcatttt	tttgtgtctt	catgtgaggc	gtcatgttgt	1740
agatttacta	tgttggtgat	aatgtatgaa	aacttcttca	aaaaaaaaaa		1789

<210> 145

<211> 1358

<212> DNA

<213> *Lolium perenne*

<400> 145

cctcaccaggc	acctctctcg	cccacgcctc	cgatctcctc	tcgcccgcgc	gctcggtgcc	60
aagagaatgg	gcagcgtcga	cgccctccgag	aagacgatca	ccggctgggc	cgccaggggac	120
gccaccggcc	acctctcccc	gtacacgtac	aacctcaggaa	ggacgggcgc	tgaagatgtg	180
gtgctgaagg	ttctgtactg	cggtcatctgc	cacactgacc	tccacccagac	caagaaccac	240
cttggtgctt	caaataaccc	catggttccc	gggcgtatgagg	tggtaggcga	gttgggtggag	300
gtcgggcccgg	agggtgagcaa	gtacagcgtc	ggcgtatgtgg	tcggcgccgg	gttgcgtcggt	360
gggtgtccgc	gcaactgcgc	ggccgtcaag	gccaacgttg	agcgtactg	caacaagaag	420
atctggtcgt	acaacgactg	ctacacgcac	ggaaaacccca	cgcaggccgg	cttcgcctcc	480
tccatggtcg	tcgaccagaa	gttctgtgt	aagatccca	cggggctagc	gccggagcaag	540
gcggcgcgc	tgctgtgcgc	tggcgtcactg	gtgtacagcc	cgctgaagca	cttcgggctg	600
atgaccccg	gcctccgcgg	cggtcatccctc	ggcctggggc	gcgtggggcca	catggggctg	660
aagggtggca	agtccatggg	ccaccacgtc	accgtatca	gctcctccga	caagaagcgc	720
gcccaggcc	tggacgaccc	gggcgcgcac	gccttacctcg	tcagctccga	cgaggccccc	780
atggccgcgg	ccatggactc	gctggactac	atcatcgaca	ccgtggccgt	caagcaccccg	840
ctcgagccct	acctcgcgc	gctcaagatg	gacggcaagc	tcgtctctat	ggcggtcatt	900
ggcgagccgc	tcagcttcgt	gtccccatg	gtcatgtcg	ggaggaagac	catcacgggc	960
agcttcatcg	ggagcatcg	ggagaccgag	gaggtgtctca	gttctgtcg	cgacaagggc	1020
ctcacctcgc	agatcgaggt	cgtcaagatg	gactaccta	accagggcgt	tgagaggctc	1080
gagcgcaacg	acgtcgagg	ccgcttcgtc	gtcgacgtcg	caggagcaaa	catcgacgac	1140
actgcccgc	gatcaacttgc	gcaacgacga	gcaacacccac	attgagcgcg	acaatttccg	1200
tgacatatac	tcctcaactt	ggttcaatac	atgattgtga	actgtgtgaa	tgtgtttccg	1260
tcttctatca	gagattcaga	gtgtgcatgt	tagttcaat	aggaagaaat	gtttggatag	1320
agtccggcct	aataataacg	gatttgctaa	aaaaaaaaaa			1358

<210> 146

<211> 1051

<212> DNA

<213> *Lolium perenne*

<400> 146

caatcatcca	gcccagatct	cacgcgtttc	cttcctccag	ctaaagacccg	gcaatggcga	60
ccacggccgc	tgatgccacg	gccacgggtt	ccaaggagca	gaccaccacc	aacggcgccg	120
ccagcggtgc	cgagcaggtc	acccgcact	ccgaggtcgg	gcacaagagc	ctgctccaga	180
gcgcacgcgt	ctaccagttac	atccctggaga	ccaccgtgt	cccgccgcgc	cacgagtgtca	240
tgaagcagct	ccgcgaggac	accgcacacc	acccatggaa	cctgtatgacc	acgtcgccgg	300
acgaggccca	gttccctaaac	ctgtctatca	agctcatcg	cgccaaagaag	accatggaga	360
tcggcgctca	cacgggtctac	tccctccctcg	ccaccgcgt	cgccatcccc	gaggacggca	420
cgatcttggc	catggacatc	aaccgcgaga	actacgagac	catcgcaag	ccgtgcac	480
agaaggccgg	cgtcgcgcac	aagatcgact	tccgcgagg	gcccgcgc	ccgggtcgctc	540
acgagctgct	cgaggacgag	gccaaccacg	gcacccctcg	ttcgcttc	gtcgacgcgg	600
acaaggacaa	ctaccccaac	taccaccacg	gcctcatgaa	gctcgctcagg	gtcgccggcc	660
tcctcggtca	cgacaacacg	ctctggaaac	gatccgtcg	gctcccccgc	gacgcgcacca	720
tgcgcaagta	catccgcgtac	taccgcgtact	tcgtctcgaa	gcttaacaag	gccctcgccgc	780
cagacgaccg	cgtcgagatc	tgccagctcc	ccgtcgccga	cggcacatcacc	ctctcgccgc	840
gcgccaagtg	attgtctgtat	tgatgacgcgc	agcgcgcgc	cccctcggt	ccgctcgccgt	900

ccatggatgc ggacaagaat tgattaatta ttattccccca ttttggcggtt ctggctttct	960
tctgtatctt cttggaaaca aatattgtcc ctttatgtac gtataatcaaa ttatataatcca	1020
gacaaataat attactccta taaaaaaaaa a	1051

<210> 147
<211> 1332
<212> DNA
<213> *Lolium perenne*

<400> 147	
gacgaatcct accaaaccga gctaccagat cttctctac taatcgagct ccctccgcct	60
gtcctcgcc cgcctcacc gcccgggt tctccgtcc gagctatacg tccgtccgag	120
aacacccgtc ccatattaac tatcaacatg acagtcgtcg aggtcttagc tgccggcgac	180
gccggccggc cgcgggtggc gcggccggcc gggAACGGG agaccgtgtg tggacgggc	240
gccggccgggt acatcgccgc ctggctcgta aagctgtgc tggagaagggttacactgtc	300
aaggcaccgc tcaggaaccc agacgaccgc aagaacgcgc acctgaggc gtcgacggc	360
gccggccggc ggctggctt ctgcaaggcc gacccctcg actacgcgc catccgcgc	420
gccatcgacg gctggccacgg cgttccac accgcatacc cagtctactga cgaccccgag	480
caaatgggtt agccggcggt gaggggcagc cagtcgtca tagacgcgc ggcggaggcc	540
ggcacgggtc ggcggatggt gctcacctcc tccatcgcc cgctcaccat ggacccaaac	600
cgcggccggc acgtggctgt cgacgagtcg tgctggagcg acctcgactt ctgcaagaaa	660
accaggaaact ggtactgtca cggaaaggcg gttgcggagc aggcggcatac ggagttggcg	720
cggcagcgcg cgctggacact tgggtgggtt aaccgggtgc tggatcgcccccctgctg	780
cagccgacgg tgaacgcacg catcgccac atccctcaagt acctggacgg gtcggccagc	840
aagttcgcca acggcgtgca ggcgtacgtg gacgtccgcg acgtggccga cgcccacctc	900
cgcgttccg agtgcgcccgc cgctccggc cgccacccctc gcccggagcg cgtccctccac	960
cgcgaggacg tcgtcgccat cctcgccaaag ctctcccg agtaccccgatccccacaagg	1020
tgctccgacg agggcaaccc gaggaaaggcg ccatacaaga tggatccaa gaaactccag	1080
gacccctggac tcgagtttagc gccggtagc cagtcctgt acgagacggtaaagagccctc	1140
caggagaagg gcccacccctt ggtgctcagc gagcaggcag aggcggacaa gaaacccttg	1200
gctcgagacg tgcaggcagg gttaccatc cgagcatgag aacaagaaa tcaaccatgt	1260
ccatactgtc actgtcatgt aaaccaggca gtgtctgtt aatgcctaata ctaagttctt	1320
gtaaaaaaaaa aa	1332

<210> 148
<211> 1236
<212> DNA
<213> *Festuca arundinacea*

<400> 148	
caagagctag ttcttctgtc catccgtagc tcttccctt caccacaaag ctatgtttaga	60
caagtacagt ggtactgtaa gagcaacaat gaccgttgc gacgcgcggc cgccgcagct	120
gcctggccat gggcagaccg tggctgtcac cggcgccgcg gggatcatcg cgtcggggct	180
cgtcaagctg ctctggaga gaggctacac cgtgaaggc acagtggagga acccagatga	240
tcccaagaac gcccacctga aggccgttgc cggcgccacc gagggctgtgatctgtc	300
agccgacccctc ctcgactacg acggccatatg cggccgcgtc gagggctgtcc acggcggtgtt	360
ccacaccgc tctccagtc cggatgtatcc tgagcagatc tggtggccgg cgggtggcc	420
cacggagtac gtgatcaacg cggcggccggc tgccggaaacg tgccggccggg tggatccac	480
gtcgtcaatc ggtggccatca ccatggggca caaccggcgat cctgcacgt tagtgcata	540
gtctctgtgg agcgacccctg aatttgcac gaaaaccaag aactgttact gctacggca	600
ggccgtggcg gagcaggctg cgtggggaggc ggccaggaaag cgccggatcatcg acctcgctgt	660
cgtgaaccct gtgctgtgg tagggccgt gctgcaacca acgggtgaacg ctatcgccgc	720
acacatccctc aagtacccctg acggcgttgc caagaaggatc gccaacgcgt tgcaatcata	780
cgttagacgtg cgtgacgttag cggcgccgc catccgggtt ttcgaggcgc ctgaggcggtc	840
ggggccggatc ctctgcggcc agcgctgtc gcaccgtgg gacgtgttcc aaatccctca	900
caaactcttc cctgagtacc ctgtgttccaaac aagggtgttcc gatgttgcac acccacggaa	960
gcagcccttat aagatgttca accagaaggatc gcaggatctt ggcctccact tcaactccctgt	1020
gaacgactct ctgttatgttca cctccaggag aaggggatc tccctgttacc	1080
aagcaacca gagggatcaa acgggttac ggcatacatc tgctaaagaa gcagcagatgt	1140
tcacgtgtc ctgttatgttca aatccctca gatgttccact tcaatccact	1200
atcgatgttca ttaatgttca taagagaaaa aaaaaaa	1236

<210> 149
<211> 1428
<212> DNA
<213> *Festuca arundinacea*

<400> 149

ctctcgatcg	gcagacgcag	agatcgatgg	gttccaccgc	cgccgacatg	gcccgcgtccg	60
ccgacgagga	ggcgtgcatg	ttcgccctcc	agctgcgc	ctcgatcgatc	ctcccgatga	120
cgctgaagaa	ccccatcgag	cttggcctcc	ttggatcc	gttggccgc	ggcggcaagt	180
cgctgacccc	caccgagggt	gcccgc	ccacgc	ggcgaacc	gaagcgc	240
acatgggtga	ccgcgc	cggtcg	cgtcgta	cgtcgatcg	tgccgtgt	300
aggagggcaa	ggacgggc	cttccc	gctacggc	cgcgc	tgcaagttcc	360
tcaccccaa	cgaggacgc	gtctccatgg	ggcgctcg	gctcatgaa	caggacaagg	420
tcctcatgga	gagctggta	tacctaagg	acgcgg	tgacggcgc	atccccttca	480
acaaggcgta	cggcgc	cggtcg	gacgtcg	ggacccgc	ttcaaccgc	540
ttttcaacga	agggatga	aaccactca	tcatcatca	caagaagtc	ctcgagctc	600
accacggctt	ccagggc	ggcaccc	tcgacgtcg	cggcgc	ggccaccc	660
tggccgccc	cgccgc	tacccgcca	tcaagggggt	caacttcgac	ctccccac	720
tcatctccga	ggcgcgc	ttcccg	tcacccacgt	cggcgc	atgttcaagg	780
aggtgcgc	gggcgc	atccatg	agtggatcc	ccacgc	agcgacc	840
actgcgc	cgtcg	caag	aactgc	acgcgc	ggcgcgt	900
tcgtcg	atcc	tcgc	gtcaaccc	aggcaag	cagtcgc	960
acgtgc	gatcatgc	gcgc	accaacc	ccggcgg	ggagaggt	1020
tcgaggcc	ggccagg	gctgg	tcacccgt	gtccacgt	atctacg	1080
acgcgtggc	catcg	accagt	tgagatcc	ccggc	tgcattcagg	1140
caacctcc	ccgat	atgag	aacgatgc	gtcgat	ctggctg	1200
tgcatcgatc	tgcata	ccctt	gttitt	ctgtt	taattt	1260
atgc	tgc	tgatgg	gtcg	tgc	tgtt	1320
aggtgcgt	tgtt	gtatgt	tgtaat	tgat	ctct	1380
atactcgagt	aaattg	aaat	gactct	tc	ctt	1428
	aaat	aaat	catc	ttc	ctg	
	aaaa	aaaa	aaaa	aaaa	aaaa	

<210> 150

<211> 1455

<212> DNA

<213> Lolium perenne

<400> 150

ctctcgctca	caccaaaatc	gcccacc	accagcatct	ctcgatcg	agacgcata	60
atcgatggc	tccaccgc	ccgacat	cgcg	gacgagg	cgtcgat	120
cgcctcc	ctcg	cttct	ccgat	ctgaaga	ccatcg	180
tggcctc	tgagat	cccg	ccgc	ctgac	ccgagg	240
cgc	ccgt	ccgc	ccgc	ccgc	gcata	300
gctcg	tcgt	acac	tcgt	cgtt	ggagg	360
c	c	ccgc	ccgc	ccgc	acggcc	420
c	c	ccgc	ccgc	ccgc	aggacgg	480
c	c	ccgc	ccgc	ccgc	gtgg	540
gtt	cac	ccgc	ccgc	ccgc	tcaacg	600
ccact	atc	ccgc	ccgc	ccgc	ggatg	660
cag	cac	ccgc	ccgc	ccgc	ggat	720
ccc	acc	ccgc	ccgc	ccgc	ggat	780
ccc	acc	ccgc	ccgc	ccgc	ggat	840
cct	cat	ccgc	ccgc	ccgc	ggat	900
ca	atc	ccgc	ccgc	ccgc	ggat	960
ca	ac	ccgc	ccgc	ccgc	ggat	1020
cg	cc	ccgc	ccgc	ccgc	ggat	1080
cg	cc	ccgc	ccgc	ccgc	ggat	1140
ca	at	ccgc	ccgc	ccgc	ggat	1200
ca	at	ccgc	ccgc	ccgc	ggat	1260
cg	cc	ccgc	ccgc	ccgc	ggat	1320
cg	cc	ccgc	ccgc	ccgc	ggat	1380
ca	at	ccgc	ccgc	ccgc	ggat	1440
ca	at	ccgc	ccgc	ccgc	ggat	1455

<210> 151

<211> 2101

<212> DNA

<213> Lolium perenne

<400> 151

catcaaccta	aaacccacgc	gatccaacac	cccctagaga	aaaacaaaaa	caaaaagatt	60
acagtttctg	gtttgagtat	caatcgatgg	tgggcttcgc	taagatcgcc	atggagtgg	120
tccaagatcc	actgagctgg	ctgttcatcg	cctccgtgg	ttcgtgg	ctgcagcgg	180
ggcggcgggg	caacgtggcg	cggttcccc	cgggcccgaa	accgctgc	atcgctgg	240
acatgtcgat	gatggaccag	ctcacccacc	gtggcctgg	ggcgctagcg	aaggagtac	300
gcggccttct	ccacatccgg	ctcgtaa	gtccacac	tgccgtgtcg	acgcccagat	360
atggccggga	ggtgctgcag	gtcaggacg	gtgccttct	gaaccgtccc	gcccacatcg	420
ccatcgctga	cctcacctac	gaccgagccg	acatggcg	cgcgactac	ggcccttct	480
ggcgcagat	gcbcagctg	tgctgtatga	agctcttc	ccggccgc	ccggagacgt	540
ggctcgccgt	gcbcagcag	tccgggctc	tcgtccgc	cgtggccagg	cgaccggcg	600
agtccgtgga	cctcggcgag	ctcatttta	aactcacaa	aatgtc	ttccgcgc	660
cgttcggagc	tggtgcgg	gccggc	ccgaggagg	cgacggagca	ggaaagcagg	720
acgagttcat	cgccatcc	caggagt	ccaagctt	cgccgc	aatatcg	780
acttcatccc	gtggctgagc	tggcggacc	ccgagg	caacgtgc	ctccgcgc	840
cgcgcacacgc	cctcgac	ttcatcgaca	agatcatcg	cgagcacat	gagaggggca	900
agaatcccg	tgatgccc	gcccacat	ttggac	gctcgctt	ctcccgagg	960
cgaaggccgaa	gaaggccg	ggccgc	ggctgg	cctgc	acgctccgc	1020
tcaccgcg	caacatca	gccattatca	ttggacgt	tttgc	acggagacg	1080
tggcgtcg	gatcgag	ggcgatgg	agatgt	cagcc	gac	1140
gcctcg	ggagctcg	gacgtgg	ggctcg	gaacgtgg	gagt	1200
tcgacaagct	ccccttc	aagtgc	tcaagg	gtccgg	caccc	1260
tcccgtgt	cctccac	accggc	actgc	ccgc	tccgt	1320
ggggctcccg	cgtcatgatc	aacgt	ccatcg	cgacc	gcgtgg	1380
acggc	gttccgg	tcgcgtt	tcaggg	aggggagg	gcccgg	1440
acttcaaggg	gggatgctt	gagt	cttc	aggcc	cttgc	1500
gcatggcg	cggc	ctgt	ggagc	gcag	tcgc	1560
gctggag	gccc	acgg	atga	cgat	gac	1620
tcaccgc	ggcg	ccacc	aggctt	ccgt	gccc	1680
agctgctgg	agctg	acgac	gccgg	aggcgt	gcat	1740
cgatcgat	tat	atgt	ccgg	gtct	tgat	1800
gatggcg	gccc	atttgg	ttggag	ttgtt	tttact	1860
ttcttata	ttga	actcaa	ttaa	ttgt	tttact	1920
tgctgctgg	atgc	atgt	ggata	ttgt	tttact	1980
gcaaattgt	aaa	acaag	tttag	ttgt	tttact	2040
tggtttcca	tcgt	gagta	tatatt	ttgt	tttact	2100
a						2101

<210> 152

<211> 2460

<212> DNA

<213> Lolium perenne

<400> 152

gttcttgc	acgatcaaca	ctgtcagaat	ccagata	acacacac	acacacacca	60
agcagcgt	actagctt	cttgc	ttagt	caaata	tcc	120
gaacgtgc	cccaacgc	atggctgt	ctgtgc	ccgg	ccgc	180
gaactggg	aaagcagg	aggactgt	ttggag	ccat	cttgc	240
ggtggagg	taccgc	ctgtgt	catg	ggc	ctatgc	300
ggtcgtcg	gtggctgc	gccc	acac	cagg	ctgc	360
acgcgtca	gagagc	actgg	cat	gaa	ccac	420
cgggtc	accgg	gtgc	ccac	cc	ccg	480
ccagagag	ctcat	caatgc	ggg	gac	ccgc	540
cgtcctg	gctgc	gac	cgagg	ctat	ccct	600
gggtact	gttat	ccgt	ttg	gac	gtca	660
cgtacac	tgcc	accgc	ccg	ccac	cc	720
gtcctacat	gcgg	cc	ttc	ccgt	cc	780
cacaagg	aacgc	agg	at	ccgc	at	840
gctcag	aagg	ttgc	catgt	ccac	gg	900
gtccatgg	cttgc	gagg	ctaa	ccac	gg	960
gttctgt	gtc	at	ccat	ttgc	gttgc	1020
gcaccac	ggtc	agg	ccgc	tat	cat	1080
ctacatgt	ctcg	caag	actcg	gac	ccaa	1140
tagttag	cttc	gaa	gat	cc	cc	1200
cgccacca	tccat	cgac	gca	ttcc	cc	1260
ctctcgagg	aaggccat	cccg	caat	gtgg	ccct	1320

ggataaacacc	aggcttgcca	ttgctgcgat	cgccaagctc	atgtttgccc	agttctctga	1380
gctagtgaac	gacttctaca	acaatggtt	gccttccaa	ctctcggtg	ggcgcaaccc	1440
gagcttggac	tatggcttca	agggtctga	gattgccatg	gcctccatt	gctccgagct	1500
ccaattcttgc	ggcaaccctg	tgactaacca	tgtcagagt	gcggagcgc	acaaccaaga	1560
cgtcaactct	cttggtctca	tctctgctag	gaagacctct	gaggccatcg	atattctgaa	1620
gctcatgtca	tcgacattct	tggttgcact	gtgccaagct	atcgacccctc	gccacccctga	1680
ggagaatgtc	aagaatgcgc	tcaagaactg	tgtgaagatg	gtggcttagga	agacccctgag	1740
caccaatgcac	agtggccatc	tcacacgcgc	acgcttctgc	gagaaggacc	tgccttgcac	1800
gatcgaccgc	gaggcggtgt	tcgcctacgc	agacgaccct	tgcagcgcta	actacccact	1860
gatcagaag	atgcgtgcag	ttctctgtgg	gcacgccttg	gccaacgggt	aggctgagcg	1920
ggatgtgcag	acgtcagtgt	tcgccaagct	tgccgcattc	gagcaggagc	tccgtgcagt	1980
gcttccaagg	gaggtcgagt	cagcccggt	tgctgtggag	aatggcaccg	ccgcgcagca	2040
aaaccgcata	accgaatgcc	ggtcgatccc	gctgtaccgc	ttcgtgcga	aggagctcgg	2100
aaccgagttac	ttgaccggag	agaagacgag	gtctccctgt	gaagaggtgg	acaaggtgtt	2160
tgtgctatg	aaccagggg	aacacatcga	cgcaactgttt	gagtgcctca	aggagtggaa	2220
cggtgagccc	ctgcctatct	gctgaagaat	gaatcaagga	actgaagaat	agagtaacttg	2280
agagttcaga	aggctccaca	tgtgcttagt	taatagtaag	tatagtaactg	ttttttcatt	2340
gtatcttgc	cattatata	acatgtaa	ctgaaataaa	atttcaaaaa	atcagatcac	2400
tcaatgggca	gcatgtaa	ctgaaataaa	atttcaaaaa	aaatcagatc	aaaaaaaaaa	2460

<210> 153

<211> 2595

<212> DNA

<213> Festuca arundinacea

<400> 153

ctccctctgt	attcgagctc	ctcttcagca	caagtacttc	caccagagtg	ccagacaaca	60
atccagcacc	acttccagaa	tacatacaca	cacgtacccg	tgtctaaacc	ttacttgc	120
tccttagtct	ttgcataatct	ccatggagt	cgagaacggg	cacgtgtccg	ccaacggcga	180
tggcctctgc	gtggcgcagc	cagccgggc	cgaccctctc	aactggggga	aggcagcaga	240
ggagctgtcc	gggagccatt	tggatgccgt	gaagcggatg	gtcgaagagt	accgcagacc	300
agtcgtgacc	atggagggcg	ccagcttgc	cattgctatg	gtgcgcgcgg	tggccgcgg	360
cgccgacacc	cgggtggagc	tcgacgagtc	cgccccgcgg	cgcgtcaagg	agagcagcga	420
ctgggtcatg	aacagcatgg	cgaacggtac	cgacagctat	gtgtcacc	ccggcttcgg	480
cgcacacc	caccggagga	ccaaggaggg	tggcgctctg	cagagagac	tcatcagg	540
ccttaacgcg	ggagcatttgc	gcacccggcag	cgatggccat	tttttgc	ctgcaacaac	600
cagggcggcc	atgctcg	gtgtcaacac	tctgtcc	gggtactctg	gcatccgctt	660
cgaattctc	gagacgtcg	ccacgttct	caatgc	gtgacccgt	gcctaccgct	720
ccggggcaca	atcacggc	ccggcagac	cgtcc	ttctacatc	ccggcctt	780
gactggccgc	ccaaactctg	tggcgacagc	tccagatgg	agcaaggta	accgcagcaga	840
ggcttcaag	attgccc	tccagcatgg	tttctttag	ctgcagccc	agaaggcct	900
tgccatgg	aacggcact	ccgtggg	ccggctc	tccatagt	tttcga	960
taacatcc	ggcatcc	ccgagg	ttctgc	ttctgcgagg	tgtaatgg	1020
caagccggag	tacaccgacc	accta	caagct	accacccgg	gccagatc	1080
ggccgccc	atcatgg	acatcc	aggc	actcc	tccgca	1140
gctcgtgt	ctcgaccc	tgtat	aaa	acaat	aggat	1200
accacaatgg	ctcgcc	agatcg	catcc	gttacca	ccatcg	1260
tgagatca	tccgt	aca	act	ccatcg	actcc	1320
cgg	cc	cc	cc	cc	cc	1380
tgccgc	ggca	ggca	ggca	ggca	ggca	1440
caacg	tttcc	caatc	tctct	tttctt	tttctt	1500
gggtg	attg	cctc	act	ccatcg	ccatcg	1560
gacta	gtgc	ccg	cc	caat	ccat	1620
ctcttcc	aagacc	ctg	aggc	tat	ccat	1680
ggttgc	tgca	ccac	gtt	tttctt	tttctt	1740
caaga	actgt	ccac	ccac	ccatcg	ccatcg	1800
ccaca	atgc	atgc	atgc	atgc	atgc	1860
cgc	ctcg	cc	cc	cc	cc	1920
tct	gtgg	cc	cc	cc	cc	1980
cgc	caat	cc	cc	cc	cc	2040
tcc	ccgt	cc	cc	cc	cc	2100
gtc	cata	cc	cc	cc	cc	2160
gaag	acg	cc	cc	cc	cc	2220
gcac	attg	cc	cc	cc	cc	2280
ctg	caag	cc	cc	cc	cc	2340
tata	attt	cc	cc	cc	cc	2400

agaaaagata atagcatgac ttggtagtgt tggtagcct agaaaatttc tatgatgtta	2460
gttagtaaaa gggtacactt tgtgataaat atacataatt attgcaactag tcctttat	2520
ttatataat gttctgtcta ctgaggcaac tttgaaggat tcaaagaatc tagtattggc	2580
ctgccaataaa aaaaa	2595

<210> 154
 <211> 1382
 <212> DNA
 <213> *Lolium perenne*

<400> 154	
ggccacaact cgccacatct ggcataloga gcactgacag tgagctacat ccatcaccat	60
ggctcttagc cgtgtcctgc tcctcgtcgt ggcagctctg gcgatctccg tgcggccac	120
ggccgccc accaagatca gtgcctcact accgcgcgt gccaaggcc tgaacttcga	180
tttctacaag gccacctgac cgcaggccgt gtccatcgct tcacttcc tccgcacgc	240
catccgcaag gacgtcgcc tcgcgcgcgt gtcctccgc atccacttcc acgactgctt	300
cgtcgaggc tgcgacggc cctgtcctcgat cgacaagacc ggcggcaccg acagcgagaa	360
gatcgcacca cccaaacgtca cgctccgc accgcgcgtt aaggccatca acgacctccg	420
cgcttcctc gccaaggccgt ggcgcgcgt cgtctcgtc gccgacatcg cccgcctggc	480
cgccgcgcac tccgtgcacc tcgcgcgcgt gccgcaactac cccgtccgc tcggccgcgg	540
cgacggcgtc gccccgcga acctcaccac catcctcaac gcccctccgg caccgagctc	600
caacgtcacc acccttcata gatttcgtcga caagatcagc ctcgacgcca acgacctcg	660
cgcgctatcc ggcgcgcaca cgctcgccat cgccgactgc accttcctcc aggagcgcct	720
cttccgcag aacgacgtca ccctcaacaa gtggttcgcg tcgcagctca gggtcacctg	780
ccggcgctc aacaccgaca acaccaccaaa caacgacatc cgccacccca acgttccga	840
caacaagtac tacgtcgacc tgctcaaccgt ccaggagactc ttccacttccg accaggac	900
gcacaccgac gccaggacca agccaccgtt caccagggtt ggcgtcgacc aggccgcctt	960
tttcgaccag ttctgttcc cctgtcgttca gatggggccag atcaacgtgc tcaccggcag	1020
ccaggagacat atacgcaacg actgtccgc gcccaacaaa ggccgcacca acgacgac	1080
gcccgtgtcc gtgctcgaga ccgtcaccga ggccgcggc agcttgggtg ttttagatatg	1140
cgtgtggat aggttgggtt cgtcgatcca tctctagct acgtacttcc ttcccaaagt	1200
tgtagtttta tttagcgagcc gtgtggtaat gttttgggtt ttgagagcca cagttgatgc	1260
atgtgtgttt agtttcttga gcaactcgac cagtttataata atcagagat ggtttttgggt	1320
gtgtcgaatg acgactagaa aattgagatg aatattttagt gttattttca ataaaaaaaaaa	1380
aa	1382

<210> 155
 <211> 1260
 <212> DNA
 <213> *Lolium perenne*

<400> 155	
atgcctttc tcctccatga ccaccatggg cggctcgctg atccctcccg cgccgaccgt	60
ggcgcacgc ggcgtgggtc tgctgtcgt gctgttcgc tcgcggccaa cgggtggcga	120
aggttctggg ctgtccgtcg gtttctacaa gaagttgtt ccgaaggccg agaaggctcg	180
ccggcgaact gtcaccaagg ccttgagaa ggagccgtcc accccggccg acatcatccg	240
cctcttctt cacgactgtt ttgtccgagg gtgcgacgca tcggctgtc tggatccac	300
gccaggcgcc atggccgaga gggactcgaa ggcaaaacaa cccagcttgg atgggtttga	360
ggtcatttgc gacgccaagg agacccttgc aaagctctgc ccgcacaaaccg tctctgtgc	420
tgacatttgc gcccgcgc cccgcgttgc cgccgtaccgc gctagccgc tcgactatgc	480
ggtgcccacc ggccgcgttgc atggctcgat ccctcaaggaa gacgagggtt tccctagtgt	540
ccctcaccacc gacttcaacc atttcgttgcgtt cgtggaaaac ttacccggccaa aaggctttac	600
ggccggaggag atggtgacgc tgctgggggc gcacaccatc ggcacccgtc actgtctcg	660
cttcacggac cgcctctaca acttctccca gggccgcgcg ctgaccacgg accctgcgc	720
gcccggccca tacgcccgcg tgctgaagga gaagtgcgcg ccggagacag cggccgcacaa	780
cgacaccacc atggtgacgc tcgacgcgtt gacccgttc gtgtatggaca accagtacta	840
caagaacccgtt cttgcgcgc cccgtccgcgtt cggctccgcac gtacgcgtca tggagagcc	900
cgacacccgcg ggcgtcgctcg agctctacgc ccgcgcgttcc gccgactact gggccaa	960
cttcgttgcg gcgatggtca aggtgagccg gatgggggtt ctcaccgggg cccgggggg	1020
gatccggctc aactgttca aggtgacta gtatataacc ggttgcgtcg tttgtctctg	1080
tactatatgt ttggggaaaga tgacgataca cgttcttctt ttgtgttaat gttttttctt	1140
tcattttttt tcatatgtgt gtgagaaata tatacacatt tggatgcgtc ataaactgtta	1200
tagtttacac agcatgcata aaagcatcta tattttccat tttgagttgtt aaaaaaaaaaa	1260

<210> 156
 <211> 1204
 <212> DNA
 <213> *Lolium perenne*

<400> 156
 atccccaaac cccaaagggtg aggccctccag atacttggat ctccaatggc tcctgctact 60
 cccaaaggaca gctctgctct gcctgtttg ctcttgccttc tcgcagcagc gacgtccgtg 120
 gcgtagcga acgcacagct atcagagaac tactacgggt cttcttgcctcc caccgcgtt 180
 ctcaccatca ggactgtcgt gacgacggcg gtgctgtgg accaccgcatt gggcgcttct 240
 cttctccggc tccacttcca cgactgcttt gtgcaagggt ggcacgcgtc cgttctgcgt 300
 gatgacacgg cggcgttccac cggcgagaag ggggcccggc cgaacgcggg gtcgctgcgc 360
 ggtctggagg tgatcgacaa gatcaagatg ctgctggagt tcatgtgccc gcccggccgtc 420
 tcctgcggc acatcctcgc cgtcggccgc cgcgactccg tcgtccgtct agggggggcca 480
 tcatggcggg ttcaacttgg aaggagggac gccaccacag caagcgcgtc acttgcgtatg 540
 agtgcaccccg caggccccaa ctccaaacctc aatgatctcc tcaccgcgtt ctccaaaaaaa 600
 ggactaagca ccacggacat ggttgcctca tcagggggccc ataccatcg cccggcgcag 660
 tgccagaact accggaaaccc gatctacacc gacaccgaca ttgacggggc attcgcagcg 720
 tcctgcgg gccggctgccc acaggccggc ggcgacggca acctcgcgc gctgcacgcg 780
 tcctctccca acacccctca taacgctac ttctccggcc tcctctcccg ccaggggctg 840
 ctccattccg accaggcgct gtacgacggc ggctccacgg acgatctgg caggacctac 900
 gcctccaata acgatcagg tggcagcgcac ttgcgtgcgg cgatggtaa actgagcaat 960
 atcggcctgc tgacggggc gtccggggag atcagggtca actgcgggc ggtgaattaa 1020
 cgatggatgg atgggggcat catgaaacga acaaggcggt cgatttccgg aactgcaggc 1080
 aacgaaactg catatttatg tacactgcct atttatttcc tgccttgc tcccccgtctt 1140
 gttatattac atccataatc catgttaaga tggtggcatt ggtttaaaaaa aaaaaaaaaa 1200
 aaaa 1204

<210> 157
 <211> 1530
 <212> DNA
 <213> *Lolium perenne*

<400> 157
 actcattccat ctgtcgcttc ctgcttccct caagcttaga tcgattgcag cccggccgggg 60
 actgttggc taccactgcc ggtcgctggg acgagcggac gtaaggagag atccagatgg 120
 ccgcgcacat gaccgtggag gaggtggagga aggacacagcg ggcggagggg cccggcgcacgg 180
 tgctggccat cggcgcggcg acgcggccgtc actgtgtctca ccaggctgac taccggact 240
 actacttcaa gatccaccaag agcgcggacc tcgcccgtatc caaggagaag ttcaagagga 300
 tgtgcgacaa gtctcgacat aggaagaggt acatgcaccc gacggaggag atcctggagg 360
 agaaccggca catgtgcgcg tacatggcgc cgtcgctggc cgcgcgcac gacatagttg 420
 tcgtcgaggt cccggcggc gggaaaggcgg cggcacagaaa ggcgatcaag gagtggggcc 480
 agccgcggc caagatcacc cacctcgctc tctgcactac ctctgggtg gacatgcccag 540
 gcgcgcacta ccagctcacc aagatgtcg gcctgcgcgc gtcggtaag cgcctcatga 600
 tgttaccagca gggctgcttc gccggcggca cggtgctccg cctcgccaaag gacctggctg 660
 aaaacaacccg cggcgcgcgc gtgctgggtg tctgctcgga gatcacggcc gtgaccccttc 720
 gcggccgcga cgagtccac ctcgactcgc tggtcggcca ggcgccttcc ggggacggcg 780
 ctgcgcgggt gataatcgcc gccgaccccg acgtgtccgt cgagcgcggc ctgttccagc 840
 tgggtcgcc gaggccagacc atcctggccgg actcgagggg cgcacatcgac gggcacctca 900
 gggagggtcg ctcacccctca cacctctca aggacgtgcc cgggctcata tccaagaaca 960
 tcgagcgcgc cctggaggaa gccttcaagc cgctcgccat cgacgactgg aactccgtct 1020
 tttgggtggc gcacccgggc gggccggcga tcctcgacat ggtggaggca aaggtaaacc 1080
 tcaacaagga gcggtcgat gccaccaggc acgttcccttc cgagtacggc aacatgtcca 1140
 ggcgcacatgcgt cctcttcatac atggacgaga tgcgaagcg ctctggcggag gatgggtcaca 1200
 ccaccacccg cgaggaaatg gatggggcg tcctctttgg ctgcggccccc ggcctcaccc 1260
 tcgagaccgt tgcctccac agcatgccc tgcggctga tgccaccgct tgatcgatgg 1320
 ttccatctcc gtttatctgc cacaatcgatg gatacactt actactaccg cccggccgc 1380
 tgctatccaa agtaatttgt attgtattca tgcatacctg gtttgatattt gttggtagga 1440
 ttcttcgcg tattatgtcg ctgtgtcg gtcacactgtt gtatccatgt aatagtaatc 1500
 aaacggagta cgggtttatgt aaaaaaaaaaa 1530

<210> 158
 <211> 1418
 <212> DNA
 <213> *Festuca arundinacea*

<400> 158

```

gaaaagacag cacagaaatc tatattctac aaggcagaaa agagcagcag gggaaatcta      60
gctaaggctc tgagaggaaat atgaagcagg aggtgaagag cgagatgaac ggcgagacga     120
tgagccgcaa caaaggccg gtgggtgtga cccgggctc gggtttgc ggtcatggc     180
tcgtcatgaa gtccttcag gcggggtaca cccgtccggc caccgtgcgc gaccctggg     240
acgtcgagaa gacgaagcca ttgctggagc ttcccgagc caaggagcgg ctgtccatct     300
ggcgtccgaa cctgagcgg gaaggcagct tcgacgaggc catcgccggc tgaccggcg     360
tcttcacgt cccacgccc atggacttcg agtccaaggaa ccctgagaac gaagtgtatca     420
agccgacggt ggaaggatg ctgagcatca tgagagcgtg caaggaggcc ggcaccgtca     480
agcgcgtcgt cttcaccc tccgccggca cccgtcaacat tgaggagcgg ccgaggccgg     540
cctacgacca ggacaactgg agcgcacatcg acttctgccc cccgtcaag atgacaggac     600
agatgtactt cgtgtccaag tccctggcg agaaggccgc catggactac gccaaggaga     660
acggcgtgga cttcatcagc atcatcccc cgcgtcgtc cggccccc ctcagcggccg     720
gcacatccgccc cagcgttgc accgccttgg cactcatcac ggggaacagag gccactact     780
cgatcctgaa gcagggtcag ctggccacc tggacgaccc ctgcgactcc atgacactacc     840
tcttcgagaa cccggacgccc aacggccgtc acatctgccc ctcacccacg accaccatc     900
atggcatcgc caggatgcgc aaggagagg tcccccggta cgacatcccc cagaaattcc     960
cgggagtgcg cgcgcaccc cagccgtatcc acttcttctt caagaagctg ctcgaccacg     1020
ggttcagggtt caggatcacc gccgaggaca tggcgtacgc cgcgtctgg acgtgcaggg     1080
agaaggccct gattccgctc ggagcggaaag gggcaggccgg cccggccagt gcagccggca     1140
agctgggagc tggctctgtc ggcgaaggc aggcgattgg tgctgagaca taagcgttag     1200
tgcatgtaca ctaggctggc tacctcagac acatggtgg gcatgatgat tggctgttaa     1260
ttctactatc ctatatttcg gttcagaaaat tgcatattaaga gaaccctgta attgggtggg     1320
tattatgaac ggattatgaa acgcaataa cttcatgaca aaaaaaaaaa aaaaaaaaaa     1380
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa     1418

```

<210> 159

<211> 1209

<212> DNA

<213> *Lolium perenne*

<400> 159

```

gagcaccacatggcact gaagccaagg gggagacggc gctggtcacc ggcgccagcg      60
gcttcatcggt ctcctggctc gtccgcctcc tcctcgcccc cggctactcc gtccacgcgg     120
ccgtccctcaa ccccgatgac aaggccgaga cggaccaccc cctcgctc gcgcgtgcgg     180
ccggcgtacga gggccgcata cgcttcgtca ggtgcgcaccc ctcgcacggc gcgcctatgc     240
tcggccgcgt gggggatgc tccggcgtgt tccacactcgc ctctccctgc accgtcgacc     300
tcgtccctgaa ccccccagaag gagcttgggg tgccggcggtt ggaggcagc ctcacactgc     360
tgcgcgcgc ccaaggaaat gggggagtgc ggcgggtgtt ggtacactcc tcctgtcccg     420
ccctcggtccc ctggccgggg tggccggccg gcgaggctcc cgacgacgc tgctggaccg     480
acatcgacta ctgcacaaag aacggggttt ggtacccctgc ttcaaaaggca ctggcggaga     540
aggcggcatg gaagtttgcg gaggagaatg gactggatgt ggtacggcgc aatccaggga     600
cggtttggg cgagatgattt ccgcacggc tcaatggccag catggccatg ttcttcgtct     660
tacttgaagg ttgcaaaaggag gaggatgcg atttcttcat cgggcacgtg cacgtggaaag     720
acgttgcatt agcccatatt ctgctgtacg agaatccgcg agcatccggg aggacactct     780
gcgtggagcc catctgtcac tggagtttgc tggccggcggaa agtcggcggat ctctaccctg     840
attacaaatgt tccaaatgtt cctgaggaca cacaggctgg gctgggtgg gggaggccgg     900
tgccaaagaa gctgtggcg ttgggtttgc agttcactcc tcttggaaat atcatcaggg     960
atggcgtggaa gacgcctcaag agcaggatgcatcgtccctt atgatggat cgtttaggcat     1020
gtcacccttc cgtcgatgtt tcatgtatcat ctttggatg agatgtgtt tgggtgttgc     1080
agcccagtgc ctacccagac catataactt ccagatgtat gatgcggatg ctgtcacact gactccctca     1140
gatgtacggc atcacctgcc ctacacttgg gatgcggatg ctgtcacact gactccctca     1200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa     1209

```

<210> 160

<211> 1260

<212> DNA

<213> *Lolium perenne*

<400> 160

```

gaaaagcttc acacagctt agaaaatggt gagctcaacc aaggccaaat tgggtgttaac      60
tggggcttca ggctttgtt cctctggct catcaagaaa ctccttgagt ctggatatac     120
tgtgtatggg actgtcagag acccaggaa tcgaagaaat gtgggacacc ttggaaact     180
accagggtcga aatgagaggc tccaaacttgc gagatgtatgt ctattggagg aaggagctt     240
tgacgtatgc gtaaggctt gtgagggtgtt cttccacatt gcgtgcctg tccttggaa     300
atctgattcc aatttgcagg aagcaacact cggcgtccgtca atcaatggta ccctcaacgt     360

```

gctaagatcc	tgcaagaaga	gtccatttct	caaaagggtt	gttctcacat	cttcacatcatc	420
cgcggttaagg	attagggatg	aaactcagca	gccagaactg	ttatggatg	aaacgcacatg	480
gagctctgtg	ccactctgtg	aaaagctaca	gctatggtat	gccctggcaa	agtttgc	540
agagaaaagca	gcattggact	ttgccaagga	gaataacatt	gacctgtga	cagttcttcc	600
atcattcgta	attggaccca	gtttatccca	tgaattgtgc	actactgtt	cagatattcct	660
tggcttactt	caaggtgaca	cagacagggtt	cactttgtac	ggaaggatgg	gatatgttca	720
catcgatgtat	gttggccgga	gccacattct	agtgtacgaa	acacccgggg	caactggcag	780
atatctgtgc	agctcagtttgc	ttctggataa	caatgaatttgc	gttggcttac	tgcaaaaca	840
gttttcaggat	ttccccatcc	caaggaggct	caagaacccc	tatggaaagc	agcataacca	900
gctagacaca	tccaagctcc	aggggctggg	tctcaagttc	aaaggagtgc	aggagatgtt	960
taacgactgc	gtcgaatcgc	tgaaaagatca	gggcattttg	ctggagtgc	cgttgcata	1020
acagagacag	cattgacaag	ccatagccaa	acagcattga	caagccatag	ccaaacacat	1080
ctcaactatg	cctgaatcat	gtcagttctc	gagtcataga	ttttttttt	ctcttcaaata	1140
aattccatgt	tactctccctt	actataccga	acatcaatttgc	tcagcggcag	attaaatgtt	1200
tccatatgct	ttgcaatttgc	ttcaatttgc	aatgaaataat	ttgaaacaaa	aaaaaaaaaa	1260

<210> 161

<211> 1438

<212> DNA

<213> *Lolium perenne*

<400> 161

aaacgactcc	aacgcaccga	tcgacgacac	accctgcact	tcacgggtcg	atcgatcg	60
aggatggcgc	cggtggtgg	gagagcgc	ttcctggcga	cggggaggc	cacgctgcgg	120
ccgtccctcg	tgccggacga	ggacgagcgg	cccaagggtt	cgcacgaccg	cttcagcgcac	180
gaggtgccc	tcatctcgct	ccacccgcac	gacgcacgc	ggaggaccga	atccgggac	240
cgctggcgg	cgccgtgcga	gggggtgggc	atcttccagg	tcgtgcacca	cggcgtcgac	300
gcccgcgtca	tcgcccggat	ggccaggctc	tcgcgcact	tcttcgcgt	ccccggccgg	360
gacaagctcc	gtctacgcac	gtccggcggc	aagaaggccg	gattcatgt	ctccagccac	420
ctccaggcgc	agacggtcca	ggactggcgg	gagatgttgc	cctacttctc	gtacccggc	480
aaggcgcgg	actacggcgg	gtggccggac	aagccgcgg	gttggcgcgc	gttgggtggag	540
cagtagcgc	agcggctcat	ggcgcgtgtcc	tgcaagctgc	tgggggtgt	gtcggaggcc	600
atgggcctgg	agacggaggc	cctgtccaag	gcgtgcgtgg	acatggacca	gaagggtggtg	660
gtcaacttct	accccaagt	cccccaagccc	gacctcaccc	tcggcctcaa	gcgcacacacc	720
gaccggcga	ccatcaccc	cttcctccag	gacctcgctc	gcggacttca	ggccacccgc	780
gacggcggc	acacctggat	caccgtacag	ccatcgccg	gcgcattcgt	cgtcaaccc	840
ggcgaccacg	gccactactt	gagcaacggg	aggtttaa	acgcggacca	ccaggcgggt	900
gtgaaacgggg	agagcagcag	gtgtccatc	gccacgttcc	agaacccggc	gcccgcacgc	960
aagggtgtgc	cgctggcggt	gaggagggg	gaggacacca	tcctggagga	gcccatcacc	1020
ttcaccggaa	tgatccggcg	caagatggcg	cgcgacctcg	agctcgccaa	gcgcaagaag	1080
caggccaagg	ccgatcagct	caagcagcag	ctgcagcagg	aggccgcgc	cggcgcggc	1140
cccaccaagc	cactcaacca	gattttgtcc	tagattccat	gccgattcat	tcatgcgtga	1200
tatatagtac	tatgtactat	atcgattaa	aataagtaat	tatctctatc	tactcatttgc	1260
tgttaattt	agagatgagt	aattatctag	tatatacaca	tttgcgtgc	aggagcggac	1320
tggacctgt	ataacatgt	gcatgtccta	cgtggaccc	atcagctgt	tggagctgtc	1380
acatgagttt	gctgtgtgc	gaaatttgcac	gcattcggt	ctgtttcaa	aaaaaaaaaa	1438

<210> 162

<211> 1214

<212> DNA

<213> *Lolium perenne*

<400> 162

aaaaatcccc	aaacccaaaa	ggtgaggcct	ccagatactt	ggatctccaa	tggctcctgc	60
tactccaaag	gacagctcta	gctctgctct	gcctgggtt	ctcttgc	tcgcacgc	120
gacgtccgt	cgccgtacgca	acgcacagct	atcagagaac	tactacgggt	cttcttgc	180
caccgcgtt	ctcaccatca	ggactgtcg	gacgcacggc	gtgtcgctt	accacccgt	240
gggcgcgtt	cttctccggc	tccacttcca	cgactcgctt	gtgcagggt	gcgcacgc	300
cgttctgt	gatgacacgg	ccggcttac	cggcggagaag	ggggccgggc	cgaacccgc	360
gtcgctgcgc	gggtgggg	tgatcgacaa	gatcaagatg	ctgtcgagg	tcatgtgc	420
gcggaccgtc	tcctgcggcg	acatccctcg	cgtcgcgc	cgcgactcc	tcgtccgt	480
agggggccaa	tcatggccgg	ttcaacttgg	aaggaggac	gccaccacag	caagcgcgc	540
acttgcgt	agtgcaccc	caggcccaa	ctccaaccc	aatgatctcc	tcaccgc	600
ctccaaaaaa	ggactaagca	ccacggacat	ggttgctcta	tcaggggccc	ataccatcg	660
ccggccgcag	tgccagaact	accgaaaccg	gatctacacc	gacaccgaca	ttgacggggc	720
attcgcagcg	tccctgcgag	cgccgtgc	acaggccggc	ggcgacggc	acctcg	780

gctcgacgct	tcctctccca	acacccctcgaa	taacggctac	ttctccggcc	tcctctcccg	840
ccaggggctg	ctccattccg	accaggcgct	gtacgacggc	ggctccacgg	acgatctgg	900
caggacctac	gcctccaata	acgatcagt	ttgcagcgac	ttcgctgcgg	cgatggtgaa	960
actgagcaat	atcggcctgc	tgacggggtc	gtccggggag	atcagggtca	actgcccggc	1020
ggtgaattaa	cgatggatgg	atgggggcat	catgaaacga	acaaggcg	cgatttccgg	1080
aactgcaggc	aacgaaactg	catatttgc	tacactgcct	atttatttcc	tgccttgc	1140
tccccgtctt	gttatttac	atccataatc	catgttaaga	tggtggcatt	ggtttaaaaaaa	1200
aaaaaaaaaa	aaaa					1214

<210> 163
<211> 654
<212> PRT
<213> *Lolium perenne*

<400> 163						
Met Glu Ser Ser Ala Val Val Pro Gly Thr Thr Ala Pro Leu Leu Pro						
1	5	10	15			
Tyr Ala Tyr Ala Pro Leu Pro Ser Ser Asp Asp Ala Arg Glu Asn						
20	25	30				
Arg Ser Ser Gly Gly Val Arg Trp Arg Ala Cys Ala Ala Val Leu Ala						
35	40	45				
Ala Ser Ala Leu Ala Val Val Val Val Gly Leu Leu Ala Gly Gly						
50	55	60				
Arg Val Asp Arg Val Pro Ala Gly Ala Asp Val Ala Ser Ala Thr Val						
65	70	75	80			
Pro Ala Val Pro Met Glu Phe Pro Arg Ser Arg Gly Lys Asp Leu Gly						
85	90	95				
Val Ser Glu Lys Ser Ser Gly Ala Tyr Ser Ala Asp Gly Gly Phe Pro						
100	105	110				
Trp Ser Asn Ala Met Leu Gln Trp Gln Arg Thr Gly Phe His Phe Gln						
115	120	125				
Pro Glu Gln His Tyr Met Asn Asp Pro Asn Gly Pro Val Tyr Tyr Gly						
130	135	140				
Gly Trp Tyr His Leu Phe Tyr Gln His Asn Pro Lys Gly Asp Ser Trp						
145	150	155	160			
Gly Asn Ile Ala Trp Ala His Ala Val Ser Lys Asp Met Val Asn Trp						
165	170	175				
Arg His Leu Pro Leu Ala Met Val Pro Asp Gln Trp Tyr Asp Ser Asn						
180	185	190				
Gly Val Leu Thr Gly Ser Ile Thr Val Leu Pro Asp Gly Gln Val Ile						
195	200	205				
Leu Leu Tyr Thr Gly Asn Thr Asp Thr Leu Ala Gln Val Gln Cys Leu						
210	215	220				
Ala Thr Pro Ala Asp Pro Ser Asp Pro Leu Leu Arg Glu Trp Ile Lys						
225	230	235	240			
His Pro Ala Asn Pro Ile Leu Phe Pro Pro Pro Gly Ile Gly Leu Lys						
245	250	255				
Asp Phe Arg Asp Pro Leu Thr Ala Trp Phe Asp His Ser Asp His Thr						
260	265	270				
Trp Arg Thr Val Ile Gly Ser Lys Asp Asp Gly His Ala Gly Ile						
275	280	285				
Ile Leu Ser Tyr Lys Thr Lys Asp Phe Val Asn Tyr Glu Leu Met Pro						
290	295	300				
Gly Asn Met His Arg Gly Pro Asp Gly Thr Gly Met Tyr Glu Cys Ile						
305	310	315	320			
Asp Leu Tyr Pro Val Gly Gly Asn Ser Ser Glu Met Leu Gly Gly Asp						
325	330	335				
Asp Ser Pro Asp Val Leu Phe Val Leu Lys Glu Ser Ser Asp Asp Glu						
340	345	350				
Arg His Asp Tyr Tyr Ala Leu Gly Arg Phe Asp Ala Val Ala Asn Val						
355	360	365				
Trp Thr Pro Ile Asp Arg Asp Leu Asp Leu Gly Ile Gly Leu Arg Tyr						
370	375	380				
Asp Trp Gly Lys Tyr Tyr Ala Ser Lys Ser Phe Tyr Asp Gln Lys Lys						
385	390	395	400			

Asn Arg Arg Ile Val Trp Ala Tyr Ile Gly Glu Thr Asp Ser Glu Gln
 405 410 415
 Ala Asp Ile Thr Lys Gly Trp Ala Asn Leu Met Thr Ile Pro Arg Thr
 420 425 430
 Val Glu Leu Asp Arg Lys Thr Arg Thr Asn Leu Ile Gln Trp Pro Val
 435 440 445
 Glu Glu Val Asp Thr Leu Arg Arg Asn Ser Thr Asp Leu Gly Arg Ile
 450 455 460
 Thr Val Asn Ala Gly Ser Val Ile Arg Leu Pro Leu His Gln Gly Ala
 465 470 475 480
 Gln Leu Asp Ile Glu Ala Ser Phe Gln Leu Asn Ser Ser Asp Val Asp
 485 490 495
 Ala Ile Asn Glu Ala Asp Val Gly Tyr Asn Cys Ser Thr Ser Gly Ala
 500 505 510
 Ala Val Arg Gly Ala Leu Gly Pro Phe Gly Leu Leu Val Leu Ala Asn
 515 520 525
 Gly Arg Thr Glu Gln Thr Ala Val Tyr Phe Tyr Val Ser Lys Gly Val
 530 535 540
 Asp Gly Gly Leu Gln Thr His Phe Cys His Asp Glu Ser Arg Ser Thr
 545 550 555 560
 Arg Ala Lys Asp Val Val Asn Arg Met Ile Gly Ser Ile Val Pro Val
 565 570 575
 Leu Asp Gly Glu Thr Phe Ser Val Arg Val Leu Val Asp His Ser Ile
 580 585 590
 Val Gln Ser Phe Ala Met Gly Gly Arg Ile Thr Ala Thr Ser Arg Ala
 595 600 605
 Tyr Pro Thr Glu Ala Ile Tyr Ala Ala Ala Gly Val Tyr Leu Phe Asn
 610 615 620
 Asn Ala Thr Gly Ala Thr Val Thr Ala Glu Arg Leu Val Val His Glu
 625 630 635 640
 Met Ala Ser Ala Asp Asn His Ile Phe Thr Asn Asp Asp Leu
 645 650

<210> 164

<211> 620

<212> PRT

<213> Festuca arundinacea

<400> 164

Met Glu Ser Arg Ala Phe Pro Asn Ala Ala Tyr Ala Pro Leu Leu Pro
 1 5 10 15
 Pro Thr Ala Asp Asp Ala Thr Leu Gly Lys Gln Asp Arg Pro Gly Val
 20 25 30
 Gly Trp Arg Gly Phe Leu Thr Val Leu Ala Ala Ser Gly Val Val Val
 35 40 45
 Leu Leu Val Ala Ala Thr Met Leu Ala Gly Ser Arg Met Gly Gln Ala
 50 55 60
 Gly Asp Thr Asp Glu Asp Gly Ala Gly Gly Phe Pro Trp Ser Asn Glu
 65 70 75 80
 Met Leu Gln Trp Gln Arg Ala Gly Phe His Tyr Gln Pro Glu Gly His
 85 90 95
 Phe Met Ser Asp Pro Asp Gly Pro Val Tyr Tyr Arg Gly Tyr Tyr His
 100 105 110
 Leu Phe Phe Gln Tyr Asn Arg Arg Gly Val Ala Trp Asp Asp Tyr Ile
 115 120 125
 Glu Trp Gly His Val Val Ser Gln Asp Leu Val His Trp Arg Pro Leu
 130 135 140
 Pro Leu Ala Leu Arg Pro Asp His Trp Tyr Asp Lys Lys Gly Val Leu
 145 150 155 160
 Ser Gly Thr Ile Thr Val Leu His Asn Gly Thr Leu Val Leu Leu Tyr
 165 170 175
 Thr Gly Val Thr Glu Asp Pro Met Ala Glu Ser Gln Cys Ile Ala Val
 180 185 190
 Pro Thr Asp Pro Asn Asp Pro Leu Leu Arg His Trp Thr Lys His Pro
 195 200 205

Ala Asn Pro Val Leu Ala His Pro Gln Gly Val Gln Gly Met Asp Phe
 210 215 220
 Arg Asp Pro Thr Ser Ala Trp Phe Asp Lys Ser Asp Ala Thr Trp Arg
 225 230 235 240
 Ile Leu Ile Gly Ser Lys Asp Asp Asp Asn Gly Ser His Ala Gly Ile
 245 250 255
 Ala Phe Ile Phe Lys Thr Lys Asp Phe Leu Ser Phe Glu Arg Val Pro
 260 265 270
 Gly Ile Val His Arg Val Glu Gly Thr Gly Met Trp Glu Cys Ile Asp
 275 280 285
 Phe Tyr Pro Val Gly Gly His Asn Ser Ser Ser Glu Glu Leu Tyr
 290 295 300
 Val Ile Lys Ala Ser Met Asp Asp Glu Arg His Asp Tyr Tyr Ser Leu
 305 310 315 320
 Gly Arg Tyr Asp Ala Ala Asn Thr Trp Thr Pro Leu Asp Ala Glu
 325 330 335
 Leu Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Leu Tyr Ala
 340 345 350
 Ala Thr Ser Phe Tyr Asp Pro Leu Lys Gln Arg Arg Ile Met Leu Gly
 355 360 365
 Tyr Val Gly Glu Thr Asp Ser Ala Arg Ala Asp Val Ala Lys Gly Trp
 370 375 380
 Ala Ser Leu Gln Ser Ile Pro Arg Thr Val Thr Leu Asp Glu Lys Thr
 385 390 395 400
 Arg Thr Asn Leu Leu Trp Pro Val Glu Glu Val Glu Ala Leu Arg
 405 410 415
 Tyr Asn Ser Thr Asp Leu Ser Gly Ile Thr Val Asp Asn Gly Ser Val
 420 425 430
 Phe His Leu Pro Leu His Gln Ala Thr Gln Leu Asp Ile Glu Ala Ser
 435 440 445
 Phe Arg Leu Asp Ala Ser Asp Val Ala Ala Ile Asn Glu Ala Asp Val
 450 455 460
 Gly Tyr Asn Cys Ser Ser Ser Gly Gly Ala Ala Ala Arg Gly Ala Ile
 465 470 475 480
 Gly Pro Phe Gly Leu Leu Val His Ala Ala Gly Asp Leu Arg Gly Glu
 485 490 495
 Gln Thr Ala Val Tyr Phe Tyr Val Ser Arg Ala Leu Asp Gly Thr Leu
 500 505 510
 Arg Thr Ser Phe Cys Asn Asp Glu Thr Arg Ser Ser Arg Ala Arg Asp
 515 520 525
 Val Thr Lys Arg Val Val Gly Ser Thr Val Pro Val Leu His Gly Glu
 530 535 540
 Ala Leu Ser Met Arg Val Leu Val Asp His Ser Ile Val Gln Ser Phe
 545 550 555 560
 Ala Met Gly Gly Arg Val Thr Ala Thr Ser Arg Val Tyr Pro Thr Glu
 565 570 575
 Ala Ile Tyr Ala Arg Ala Gly Val Tyr Leu Phe Asn Asn Ala Thr Gly
 580 585 590
 Ala Ser Val Thr Ala Glu Arg Leu Ile Val His Glu Met Ala Ser Ala
 595 600 605
 Val Tyr Asp Glu Thr Leu Ile Met Val Glu Asp Ser
 610 615 620

<210> 165

<211> 623

<212> PRT

<213> Festuca arundinacea

<400> 165

Met Glu Ser Arg Ala Phe Pro Ser Ala Ala Tyr Ala Pro Leu Leu Pro
 1 5 10 15
 Ser Ala Ala Asp Asp Val Ala Leu Ala Lys Gln Asp Arg Pro Gly Val
 20 25 30
 Gly Trp Arg Gly Phe Leu Thr Val Leu Ala Ala Cys Gly Val Val Val
 35 40 45

Leu Leu Val Gly Ala Thr Leu Leu Ala Gly Ser Arg Met Gly Gln Ala
 50 55 60
 Gly Asp Gly Glu Gly Asn Thr Asp Glu Asp Gly Ala Gly Gly Phe Pro
 65 70 75 80
 Trp Ser Asn Glu Met Leu Gln Trp Gln Arg Ala Gly Phe His Tyr Gln
 85 90 95
 Pro Glu Gly His Phe Met Ser Asp Pro Asn Gly Pro Val Tyr Tyr Arg
 100 105 110
 Gly Tyr Tyr His Leu Phe Phe Gln Tyr Asn Arg Arg Gly Val Ala Trp
 115 120 125
 Asp Asp Tyr Ile Glu Trp Gly His Val Val Ser Gln Asp Leu Val His
 130 135 140
 Trp Arg Pro Leu Pro Leu Ala Met Arg Pro Asp His Trp Tyr Asp Lys
 145 150 155 160
 Lys Gly Val Leu Ser Gly Thr Ile Thr Val Leu His Asn Gly Thr Leu
 165 170 175
 Val Leu Leu Tyr Thr Gly Val Thr Glu Asp Pro Met Ala Glu Ser Gln
 180 185 190
 Cys Ile Ala Val Pro Thr Asp Pro Asn Asp Pro Leu Leu Arg His Trp
 195 200 205
 Thr Lys His Pro Ala Asn Pro Val Leu Ala His Pro Gln Gly Val Gln
 210 215 220
 Gly Met Asp Phe Arg Asp Pro Thr Ser Ala Trp Trp Asp Lys Ser Asp
 225 230 235 240
 Ala Thr Trp Arg Ile Leu Ile Gly Ser Lys Asp Asp Asp Asn Gly Ser
 245 250 255
 His Ala Gly Ile Ala Phe Ile Phe Lys Thr Lys Asp Phe Leu Ser Phe
 260 265 270
 Glu Arg Val Pro Gly Ile Val His Arg Val Glu Gly Thr Gly Met Trp
 275 280 285
 Glu Cys Ile Asp Phe Tyr Pro Val Gly Gly His Asn Ser Ser Ser
 290 295 300
 Glu Glu Leu Tyr Val Ile Lys Ala Ser Met Asp Asp Glu Arg His Asp
 305 310 315 320
 Tyr Tyr Ser Leu Gly Arg Tyr Asp Ala Ala Ala Asn Thr Trp Thr Pro
 325 330 335
 Leu Asp Ala Glu Leu Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly
 340 345 350
 Lys Leu Tyr Ala Ser Thr Ser Phe Tyr Asp Pro Val Lys Gln Arg Arg
 355 360 365
 Ile Met Leu Gly Tyr Val Gly Glu Val Asp Ser Ala Arg Ala Asp Val
 370 375 380
 Ala Lys Gly Trp Ala Ser Leu Gln Ser Ile Pro Arg Thr Val Ala Leu
 385 390 395 400
 Asp Glu Lys Thr Arg Thr Asn Leu Leu Trp Pro Val Glu Glu Val
 405 410 415
 Glu Ala Leu Arg Tyr Asn Ser Thr Asp Leu Ser Gly Ile Thr Ile Asp
 420 425 430
 Asn Gly Ser Val Phe His Leu Pro Leu His Gln Thr Thr Gln Leu Asp
 435 440 445
 Ile Glu Ala Ser Phe Arg Leu Asp Ala Ser Asp Val Ala Ala Ile Asn
 450 455 460
 Glu Ala Asp Val Gly Tyr Asn Cys Ser Ser Gly Gly Ala Ala Ala
 465 470 475 480
 Arg Gly Ala Leu Gly Pro Phe Gly Leu Leu Val His Ala Ala Gly Asp
 485 490 495
 Leu Arg Gly Glu Gln Thr Ala Val Tyr Phe Tyr Val Ser Arg Ala Leu
 500 505 510
 Asp Gly Thr Leu Arg Thr Ser Phe Cys Asn Asp Glu Thr Arg Ser Ser
 515 520 525
 Arg Ala Arg Asp Val Thr Lys Arg Val Val Gly Ser Thr Val Pro Val
 530 535 540
 Leu Asp Gly Glu Ala Leu Ser Met Arg Val Leu Val Asp His Ser Ile
 545 550 555 560
 Val Gln Ser Phe Ala Met Gly Gly Arg Thr Thr Ala Thr Ser Arg Val
 565 570 575

Tyr Pro Thr Glu Ala Ile Tyr Ala Arg Ala Gly Val Tyr Leu Phe Asn
 580 585 590
 Asn Ala Thr Gly Ala Gly Val Thr Ala Glu Arg Leu Ile Val His Glu
 595 600 605
 Met Ala Ser Ala Val Tyr Asp Glu Thr Leu Met Val Glu Asp Ser
 610 615 620

<210> 166
 <211> 619
 <212> PRT
 <213> Festuca arundinacea

<400> 166
 Met Glu Ser Arg Asp Phe Pro Ser Ala Ala Tyr Ala Pro Leu Leu Pro
 1 5 10 15
 Ser Ala Ala Asp Asp Val Ala Leu Ala Lys Gln Asp Arg Pro Gly Val
 20 25 30
 Gly Trp Arg Gly Phe Leu Thr Val Leu Ala Ala Cys Gly Val Val Val
 35 40 45
 Leu Leu Val Ala Ala Ser Leu Leu Ala Gly Ser Arg Met Gly Gln Ala
 50 55 60
 Gly Asp Thr Asp Glu Asp Gly Ala Gly Gly Phe Pro Trp Ser Asn Glu
 65 70 75 80
 Met Leu Gln Trp Gln Arg Ala Gly Phe His Tyr Gln Pro Glu Gly His
 85 90 95
 Phe Met Ser Asp Pro Asp Gly Pro Val Tyr Tyr Arg Gly Tyr Tyr His
 100 105 110
 Leu Phe Phe Gln Tyr Asn Arg Arg Gly Val Ala Trp Asp Asp Tyr Ile
 115 120 125
 Glu Trp Gly His Val Val Ser Gln Asp Leu Val His Trp Arg Pro Leu
 130 135 140
 Pro Leu Ala Met Arg Pro Asp His Trp Tyr Asp Lys Lys Gly Val Leu
 145 150 155 160
 Ser Gly Thr Ile Thr Val Leu His Asn Gly Thr Leu Val Leu Leu Tyr
 165 170 175
 Thr Gly Val Thr Glu Asp Pro Met Ala Glu Ser Gln Cys Ile Ala Val
 180 185 190
 Pro Thr Asp Pro Asn Asp Pro Leu Leu Arg His Trp Thr Lys His Pro
 195 200 205
 Ala Asn Pro Val Leu Ala His Pro Gln Gly Val Gln Gly Met Asp Phe
 210 215 220
 Arg Asp Pro Thr Ser Ala Trp Trp Asp Lys Ser Asp Ser Thr Trp Arg
 225 230 235 240
 Ile Leu Ile Gly Ser Lys Asp Asp Asp Asn Gly Ser His Ala Gly Ile
 245 250 255
 Ala Phe Ile Phe Lys Thr Lys Asp Phe Leu Ser Phe Glu Arg Val Pro
 260 265 270
 Gly Ile Val His Arg Val Glu Gly Thr Gly Met Trp Glu Cys Ile Asp
 275 280 285
 Phe Tyr Pro Val Gly Gly Gly His Asn Ser Ser Ser Glu Glu Leu Tyr
 290 295 300
 Val Ile Lys Ala Ser Met Asp Asp Glu Arg His Asp Tyr Tyr Ser Leu
 305 310 315 320
 Gly Arg Tyr Asp Ala Ala Ala Asn Thr Trp Thr Pro Leu Asp Ala Glu
 325 330 335
 Leu Asp Leu Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Leu Tyr Ala
 340 345 350
 Ser Thr Ser Phe Tyr Asp Pro Leu Lys Gln Arg Arg Ile Met Leu Gly
 355 360 365
 Tyr Val Gly Glu Val Asp Ser Ala Arg Ala Asp Val Ala Lys Gly Trp
 370 375 380
 Ala Ser Leu Gln Ser Ile Pro Arg Thr Val Ala Leu Asp Glu Lys Thr
 385 390 395 400
 Arg Thr Asn Leu Leu Leu Trp Pro Val Glu Glu Val Glu Ala Leu Arg
 405 410 415

Tyr Asn Ser Thr Asp Leu Ser Gly Ile Thr Val Glu Asn Gly Ser Ile
 420 425 430
 Phe His Leu Pro Leu His Gln Ala Thr Gln Leu Asp Ile Glu Ala Ser
 435 440 445
 Phe Arg Leu Asp Ala Ser Asp Val Ala Ala Ile Asn Glu Ala Asp Val
 450 455 460
 Gly Tyr Asn Cys Ser Ser Gly Gly Ala Ala Ala Arg Gly Ala Leu
 465 470 475 480
 Gly Pro Phe Gly Leu Leu Val His Ala Ala Gly Asp Leu Arg Gly Glu
 485 490 495
 Gln Thr Ala Val Tyr Phe Tyr Val Ser Arg Ala Leu Asp Gly Ser Leu
 500 505 510
 Arg Thr Ser Phe Cys Asn Asp Glu Thr Arg Ser Ser Arg Ala Arg Asp
 515 520 525
 Val Thr Lys Arg Val Val Gly Ser Thr Val Pro Val Leu Asp Gly Glu
 530 535 540
 Val Leu Ala Met Arg Val Leu Val Asp His Ser Ile Val Gln Ser Phe
 545 550 555 560
 Ala Met Gly Gly Arg Val Thr Ala Thr Ser Arg Val Tyr Pro Thr Glu
 565 570 575
 Ala Ile Tyr Ala Arg Ala Gly Val Tyr Leu Phe Asn Asn Ala Thr Gly
 580 585 590
 Ala Ser Val Thr Ala Glu Arg Leu Ile Val His Glu Met Ala Ser Ala
 595 600 605
 Val Tyr Asp Glu Thr Val Met Val Lys Asp Ser
 610 615

<210> 167

<211> 1075

<212> PRT

<213> Lolium perenne

<400> 167
 Met Ala Gly Asn Asp Trp Ile Asn Ser Tyr Leu Glu Ala Ile Leu Asp
 1 5 10 15
 Ala Gly Gly Thr Ala Gly Asp Ile Ser Ala Ala Ser Val Ala Gly Gly
 20 25 30
 Asp Asp Gly Pro Gly Ala Gly Gly Thr Ala Gly Glu Lys Arg Asp
 35 40 45
 Lys Ser Ser Leu Met Leu Arg Glu Arg Gly Arg Phe Asn Pro Ala Arg
 50 55 60
 Tyr Phe Val Glu Glu Val Ile Ser Gly Phe Asp Glu Thr Asp Leu Tyr
 65 70 75 80
 Lys Thr Trp Val Arg Thr Ser Ala Met Arg Ser Pro Gln Glu Arg Asn
 85 90 95
 Thr Arg Leu Glu Asn Met Ser Trp Arg Ile Trp Asn Leu Ala Arg Lys
 100 105 110
 Lys Lys Gln Ile Glu Gly Glu Ala Ser Arg Leu Ser Lys Lys Arg
 115 120 125
 Leu Glu Arg Glu Lys Ala Arg Arg Asp Ala Ala Asp Leu Ser Glu
 130 135 140
 Asp Leu Ser Glu Gly Glu Lys Gly Glu Asn Ile Asn Gly Ser Ser Val
 145 150 155 160
 His Asp Glu Ser Thr Arg Gly Arg Met Pro Arg Ile Gly Ser Thr Asp
 165 170 175
 Ala Ile Glu Val Trp Ala Asn Gln His Lys Asp Lys Lys Leu Tyr Ile
 180 185 190
 Val Leu Ile Ser Ile His Gly Leu Ile Arg Gly Glu Asn Met Glu Leu
 195 200 205
 Gly Arg Asp Ser Asp Thr Gly Gly Gln Val Lys Tyr Val Val Glu Leu
 210 215 220
 Ala Arg Ala Leu Gly Glu Thr Pro Gly Val Tyr Arg Val Asp Leu Leu
 225 230 235 240
 Thr Arg Gln Ile Ser Ala Pro Asp Val Asp Trp Ser Tyr Gly Glu Pro
 245 250 255

Thr Glu Met Leu Ser Pro Arg Asn Ser Glu Asn Leu Gly Asp Asp Met
 260 265 270
 Gly Glu Ser Ser Gly Ala Tyr Ile Val Arg Ile Pro Phe Gly Pro Arg
 275 280 285
 Glu Lys Tyr Ile Pro Lys Glu Gln Leu Trp Pro His Ile Gln Glu Phe
 290 295 300
 Val Asp Gly Ala Leu Val His Ile Met Gln Met Ser Lys Val Ile Gly
 305 310 315 320
 Glu Gln Val Gly Arg Glu Arg Arg Val Trp Pro Val Val Ile His Gly
 325 330 335
 His Tyr Ala Asp Ala Gly Asp Ser Ala Ala Leu Leu Ser Gly Ala Leu
 340 345 350
 Asn Val Pro Met Val Phe Thr Gly His Ser Leu Gly Arg Asp Lys Leu
 355 360 365
 Glu Gln Leu Leu Lys Gln Gly Arg Gln Thr Arg Asp Glu Val Asn Ala
 370 375 380
 Thr Tyr Lys Ile Met Arg Arg Ile Glu Ala Glu Glu Leu Cys Leu Asp
 385 390 395 400
 Ala Ser Glu Ile Val Ile Thr Ser Thr Arg Gln Glu Ile Glu Lys Gln
 405 410 415
 Trp Gly Leu Tyr Asn Gly Phe Asp Val Thr Met Glu Arg Lys Leu Arg
 420 425 430
 Ala Arg Thr Lys Arg Gly Val Ser Cys Tyr Gly Arg Tyr Met Pro Arg
 435 440 445
 Met Ile Ala Ile Pro Pro Gly Met Glu Phe Ser His Ile Val Pro His
 450 455 460
 Asp Val Asp Leu Asp Gly Asp Glu Ala Asn Glu Val Gly Ser Gly Ser
 465 470 475 480
 Pro Asp Pro Pro Ile Trp Ala Asp Ile Met Arg Phe Ser Asn Pro
 485 490 495
 Arg Lys Pro Met Ile Leu Ala Leu Ala Arg Pro Asp Pro Lys Lys Asn
 500 505 510
 Ile Thr Thr Leu Val Lys Ala Phe Gly Glu His Pro Gly Leu Arg Asn
 515 520 525
 Leu Ala Asn Leu Thr Leu Ile Met Gly Asn Arg Asp Val Ile Asp Glu
 530 535 540
 Met Ser Ser Thr Asn Gly Ala Val Leu Thr Ser Val Leu Lys Leu Ile
 545 550 555 560
 Asp Lys Tyr Asp Leu Tyr Gly Gln Val Ala Tyr Pro Lys His His Lys
 565 570 575
 Gln Ser Glu Val Pro Asp Ile Tyr Arg Leu Ala Ala Arg Thr Lys Gly
 580 585 590
 Val Phe Ile Asn Cys Ala Tyr Ile Glu Pro Phe Gly Leu Thr Leu Ile
 595 600 605
 Glu Ala Ala Ala Tyr Gly Leu Pro Met Val Ala Thr Gln Asn Gly Gly
 610 615 620
 Pro Val Asp Ile His Arg Val Leu Asp Asn Gly Ile Leu Val Asp Pro
 625 630 635 640
 His Asn Gln Asn Asp Ile Ala Glu Ala Leu Tyr Lys Leu Val Ser Asp
 645 650 655
 Lys His Leu Trp Ala Gln Cys Arg Gln Asn Gly Leu Asp Asn Ile His
 660 665 670
 Arg Phe Ser Trp Pro Glu His Cys Lys Asn Tyr Leu Ser Arg Val Gly
 675 680 685
 Thr Val Lys Pro Arg His Pro Arg Trp Gln Arg Ser Asp Asp Ala Thr
 690 695 700
 Glu Val Ser Glu Ser Asp Ser Pro Gly Asp Ser Leu Arg Asp Val His
 705 710 715 720
 Asp Ile Ser Leu Asn Leu Lys Leu Ser Leu Asp Ser Glu Lys Ala Gly
 725 730 735
 Thr Lys Ile Asn Thr Glu Arg Asn Ser Thr Asn Ala Arg Arg Asn Leu
 740 745 750
 Glu Asp Ala Val Leu Lys Phe Ser Asn Ala Val Ser Glu Gly Thr Lys
 755 760 765
 Asp Glu Ser Asp Glu Asn Ala Glu Ala Thr Thr Gly Ser Asn Lys Trp
 770 775 780

Pro Ser Leu Arg Arg Arg Lys His Ile Val Val Ile Ala Val Asp Ser
 785 790 795 800
 Val Gln Asn Ala Asp Leu Val Gln Ile Ile Lys Asn Leu Phe Glu Ala
 805 810 815
 Ser Arg Lys Glu Lys Ser Ser Gly Ala Val Gly Phe Val Leu Ser Thr
 820 825 830
 Ser Arg Ala Ile Ser Glu Thr Leu Thr Phe Leu Thr Ser Gly Gly Ile
 835 840 845
 Gln Thr Thr Glu Phe Asp Ala Phe Ile Cys Ser Ser Gly Ser Asp Leu
 850 855 860
 Cys Tyr Pro Ser Ser Ser Glu Asp Met Leu Ser Pro Thr Glu Leu
 865 870 875 880
 Pro Phe Met Ile Asp Leu Asp Tyr His Ser Gln Ile Glu Tyr Arg Trp
 885 890 895
 Gly Gly Glu Gly Leu Arg Lys Thr Leu Ile Arg Trp Ala Ala Glu Asn
 900 905 910
 Asn Ser Gln Ser Gly Gln Glu Val Val Thr Glu Asp Glu Glu Cys Ser
 915 920 925
 Ser Thr Tyr Cys Ile Ser Phe Lys Val Lys Asn Thr Glu Ala Val Pro
 930 935 940
 Pro Val Lys Asp Leu Arg Lys Thr Met Arg Ile Gln Ala Leu Arg Cys
 945 950 955 960
 His Val Leu Tyr Ser His Asp Gly Ser Lys Leu Asn Leu Ile Pro Leu
 965 970 975
 Leu Ala Ser Arg Ser Gln Ala Leu Arg Tyr Leu Tyr Ile Arg Trp Gly
 980 985 990
 Val Glu Leu Ala Asn Met Thr Val Val Val Gly Glu Ser Gly Asp Thr
 995 1000 1005
 Asp Tyr Glu Gly Leu Leu Gly Gly Val His Lys Thr Ile Ile Leu Lys
 1010 1015 1020
 Gly Ser Phe Asn Ala Ala Pro Asn Gln Leu His Ala Ala Arg Ser Tyr
 1025 1030 1035 1040
 Ser Leu Glu Asp Val Ile Ser Phe Asp Lys Pro Gly Ile Ala Ser Val
 1045 1050 1055
 Glu Gly Tyr Leu Pro Asp Ser Leu Lys Ser Ala Leu Gln Gln Phe Gly
 1060 1065 1070
 Val Leu Asn
 1075

<210> 168
 <211> 938
 <212> PRT
 <213> Lolium perenne

<400> 168
 Met Ala Ala Gly Asn Glu Trp Ile Asn Gly Tyr Leu Glu Ala Ile Leu
 1 5 10 15
 Asp Ala Gly Ser Lys Leu Arg Pro Gln Gly Val Gln Leu Pro Pro Leu
 20 25 30
 Glu Thr Ala Pro Ala Leu Ala Ala Glu Glu Ser Ser Ala Ala Tyr Asn
 35 40 45
 Pro Thr Arg Tyr Phe Val Glu Glu Val Val Arg Ser Phe Asp Glu Gln
 50 55 60
 Ala Leu His Lys Thr Trp Thr Lys Val Val Ala Met Arg Asn Ser Gln
 65 70 75 80
 Glu Arg Ser Asn Arg Leu Glu Asn Leu Cys Trp Arg Ile Trp Asn Val
 85 90 95
 Ser Arg Gln Lys Lys Gln Val Glu Trp Asp Tyr Thr Lys Glu Val Ala
 100 105 110
 Arg Arg Lys Leu Glu Gln Glu Leu Gly Ser Arg Glu Ala Ala Glu Asp
 115 120 125
 Leu Ser Glu Leu Ser Glu Gly Glu Lys Asp Thr Thr Ala Lys Pro
 130 135 140
 Asp Ala Ala Ala Ala Gln Pro Ser Ala Asp Asp Gly Glu His Gln Gln
 145 150 155 160

Pro Gln Pro Arg Thr Arg Leu Ala Arg Ile Asn Ser Glu Val Arg Leu
 165 170 175
 Val Ser Asp Asp Glu Glu Glu Gln Thr Lys Lys Arg Asn Leu Tyr Ile
 180 185 190
 Val Leu Ile Ser Ile His Gly Leu Val Arg Gly Glu Asn Met Glu Leu
 195 200 205
 Gly Arg Asp Ser Asp Thr Gly Gly Gln Val Lys Tyr Val Val Glu Leu
 210 215 220
 Ala Arg Ala Leu Ala Ala Thr Ala Gly Val His Arg Val Asp Leu Leu
 225 230 235 240
 Thr Arg Gln Ile Ser Cys Pro Asp Val Asp Trp Thr Tyr Gly Glu Pro
 245 250 255
 Val Glu Met Leu Glu Arg Leu Ser Ser Ala Asp Ala Asp Asp Asp Asp
 260 265 270
 Gly Glu Gln Ala Gly Gly Ala Tyr Ile Val Arg Leu Pro Cys Gly
 275 280 285
 Pro Arg Asp Gln Tyr Ile Pro Lys Glu Glu Leu Trp Pro His Ile Pro
 290 295 300
 Glu Phe Val Asp Arg Ala Leu Ser His Val Thr Glu Val Ala Arg Ala
 305 310 315 320
 Leu Gly Glu Gln Leu Gln Pro Pro Pro Ser Pro Ala Asp Gly Ala Val
 325 330 335
 Ala Ala Pro Ile Trp Pro Tyr Val Ile His Gly His Tyr Ala Asp Ala
 340 345 350
 Ala Glu Val Ala Ala Asn Leu Ala Ser Ala Leu Asn Val Pro Met Val
 355 360 365
 Met Thr Gly His Ser Leu Gly Arg Asn Lys Leu Glu Gln Leu Leu Lys
 370 375 380
 Leu Gly Arg Met Pro Gly Pro Glu Ile Gln Gly Thr Tyr Lys Ile Ala
 385 390 395 400
 Arg Arg Ile Glu Ala Glu Glu Thr Gly Leu Asp Thr Ala Glu Met Val
 405 410 415
 Val Thr Ser Thr Lys Gln Glu Ile Glu Glu Gln Trp Gly Leu Tyr Asp
 420 425 430
 Gly Phe Asp Leu Met Val Glu Arg Lys Leu Arg Val Arg Gln Arg Arg
 435 440 445
 Gly Val Ser Ser Leu Gly Arg Tyr Met Pro Arg Met Ala Val Ile Pro
 450 455 460
 Pro Gly Met Asp Phe Ser Phe Val Glu Thr Gln Asp Thr Ala Asp Gly
 465 470 475 480
 Asp Gly Ala Asp Leu Gln Met Leu Ile Ala Pro Asp Lys Ala Lys Lys
 485 490 495
 Ala Leu Pro Pro Ile Trp Ser Asp Val Leu Arg Phe Phe Thr Asn Pro
 500 505 510
 His Lys Pro Met Ile Leu Ala Leu Ser Arg Pro Asp Pro Lys Lys Asn
 515 520 525
 Val Thr Thr Leu Leu Lys Ala Tyr Gly Glu Ser Arg Gln Leu Arg Glu
 530 535 540
 Leu Ala Asn Leu Thr Leu Ile Leu Gly Asn Arg Asp Asp Ile Glu Asp
 545 550 555 560
 Met Ala Gly Gly Gly Ala Val Leu Thr Ala Val Leu Lys Leu Ile
 565 570 575
 Asp Arg Tyr Asp Leu Tyr Gly Gln Val Ala Tyr Pro Lys His His Lys
 580 585 590
 Gln Thr Asp Val Pro His Ile Tyr Arg Leu Ala Ala Lys Thr Lys Gly
 595 600 605
 Val Phe Ile Asn Pro Ala Leu Val Glu Pro Phe Gly Leu Thr Ile Ile
 610 615 620
 Glu Ala Ala Ala Tyr Gly Leu Pro Val Val Ala Thr Lys Asn Gly Gly
 625 630 635 640
 Pro Val Asp Ile Leu Lys Ala Leu His Asn Gly Leu Leu Val Asp Pro
 645 650 655
 His Ser Ala Glu Ala Ile Thr Gly Ala Leu Leu Ser Leu Leu Ala Glu
 660 665 670
 Lys Ser Arg Trp Val Glu Cys Arg Arg Asn Gly Leu Arg Asn Ile His
 675 680 685

Arg Phe Ser Trp Pro His His Cys Arg Leu Tyr Leu Ser His Val Ser
 690 695 700
 Thr Tyr Cys Asp Gln Pro Ser Pro His Gln Pro Leu Arg Val Pro Leu
 705 710 715 720
 Ala Leu Gly Ser Ser Thr Ser Phe Gly Ala Asp Asp Ser Leu Ser Asp
 725 730 735
 Ser Leu Arg Gly Leu Ser Leu Gln Ile Ser Val Asp Ala Ser Ser Asp
 740 745 750
 Leu Asn Ala Ala Asp Ser Ala Ala Ile Met Asp Ala Leu Arg Arg
 755 760 765
 Arg Pro Ala Ser Glu Lys Pro Ala Ser Ser Gly Ala Arg Ala Leu Gly
 770 775 780
 Phe Ala Pro Gly Arg Arg Glu Ser Leu Leu Val Val Ala Val Asp Cys
 785 790 795 800
 Tyr Gly Asp Asp Gly Lys Pro Asp Val Glu Gln Leu Lys Lys Ala Ile
 805 810 815
 Asp Ala Ala Val Ser Val Gly Glu Cys Ala Gly Ala Lys Gln Gly Tyr
 820 825 830
 Val Leu Ser Thr Gly Met Thr Ile Pro Glu Ala Ala Glu Ala Ile Lys
 835 840 845
 Ala Cys Gly Ala Asp Val Ala Ser Phe Asp Ala Leu Ile Cys Ser Ser
 850 855 860
 Gly Ala Glu Leu Cys Tyr Pro Trp Lys Glu Leu Val Ala Asp Glu Glu
 865 870 875 880
 Tyr Ser Gly His Val Ala Phe Arg Trp Pro Gly Asp His Val Lys Ser
 885 890 895
 Ala Val Pro Arg Leu Gly Ser Met Glu Glu Ile Ala Leu Ala Ile Asp
 900 905 910
 Arg Pro Ala Ser Ser Val His Cys His Ala Tyr Ala Ala Thr Asp Ala
 915 920 925
 Ser Lys Val Ser Ile Thr Glu His Tyr Leu
 930 935

<210> 169

<211> 808

<212> PRT

<213> Lolium perenne

<400> 169

Met Ala Ala Lys Leu Thr Arg Leu His Ser Leu Arg Glu Arg Leu Gly
 1 5 10 15
 Ala Thr Phe Ser Ser His Pro Asn Glu Leu Ile Ala Leu Phe Ser Lys
 20 25 30
 Tyr Val His Gln Gly Lys Gly Met Leu Gln Arg His Gln Leu Leu Thr
 35 40 45
 Glu Phe Glu Ala Leu Phe Glu Ala Asp Lys Glu Arg Tyr Ala Pro Phe
 50 55 60
 Glu Asp Ile Leu Arg Ala Ala Gln Glu Ala Ile Val Leu Pro Pro Trp
 65 70 75 80
 Val Ala Leu Ala Ile Arg Pro Arg Pro Gly Val Trp Asp Tyr Ile Arg
 85 90 95
 Val Asn Val Ser Glu Leu Ala Val Glu Glu Leu Thr Val Ser Glu Tyr
 100 105 110
 Leu Ala Phe Lys Glu Gln Leu Val Asp Glu His Ala Ser Ser Lys Phe
 115 120 125
 Val Ile Glu Leu Asp Phe Glu Pro Phe Asn Ala Ser Phe Pro Arg Pro
 130 135 140
 Ser Met Ser Lys Ser Ile Gly Asn Gly Val Gln Phe Leu Asn Arg His
 145 150 155 160
 Leu Ser Ser Lys Leu Phe Gln Asp Lys Glu Ser Leu Tyr Pro Leu Leu
 165 170 175
 Asn Phe Leu Lys Ala His Asn His Lys Gly Thr Thr Met Met Leu Asn
 180 185 190
 Asp Arg Ile Gln Ser Leu Arg Gly Leu Gln Ser Ala Leu Arg Lys Ala
 195 200 205

Glu Glu Tyr Leu Thr Ser Ile Pro Glu Asp Thr Pro Ser Ser Glu Phe
 210 215 220
 Asn His Arg Phe Gln Glu Leu Gly Leu Glu Lys Gly Trp Gly Asp Thr
 225 230 235 240
 Ala Lys Arg Val Gln Asp Thr Ile His Leu Leu Leu Asp Leu Leu Glu
 245 250 255
 Ala Pro Asp Pro Ala Ser Leu Glu Lys Phe Leu Gly Thr Ile Pro Met
 260 265 270
 Met Phe Asn Val Val Ile Leu Ser Pro His Gly Tyr Phe Ala Gln Ser
 275 280 285
 Asn Val Leu Gly Tyr Pro Asp Thr Gly Gly Gln Val Val Tyr Ile Leu
 290 295 300
 Asp Gln Val Arg Ala Leu Glu Asn Glu Met Leu Leu Arg Ile Lys Gln
 305 310 315 320
 Gln Gly Leu Asp Ile Thr Pro Lys Ile Leu Ile Val Thr Arg Leu Leu
 325 330 335
 Pro Asp Ala Val Gly Thr Thr Cys Gly Gln Arg Leu Glu Lys Val Ile
 340 345 350
 Gly Thr Glu His Thr Asp Ile Leu Arg Val Pro Phe Arg Thr Glu Lys
 355 360 365
 Gly Ile Leu Arg Lys Trp Ile Ser Arg Phe Asp Val Trp Pro Tyr Leu
 370 375 380
 Glu Thr Tyr Thr Glu Asp Val Ala Asn Glu Leu Met Arg Glu Met Gln
 385 390 395 400
 Thr Lys Pro Asp Leu Ile Ile Gly Asn Tyr Ser Asp Gly Asn Leu Val
 405 410 415
 Ala Thr Leu Leu Ala His Lys Leu Gly Val Thr Gln Cys Thr Ile Ala
 420 425 430
 His Ala Leu Glu Lys Thr Lys Tyr Pro Asn Ser Asp Ile Tyr Leu Asp
 435 440 445
 Lys Phe Asp Ser Gln Tyr His Phe Ser Cys Gln Phe Thr Ala Asp Leu
 450 455 460
 Ile Ala Met Asn His Thr Asp Phe Ile Ile Thr Ser Thr Phe Gln Glu
 465 470 475 480
 Ile Ala Gly Ser Lys Asp Ser Val Gly Gln Tyr Glu Ser His Ile Ala
 485 490 495
 Phe Thr Leu Pro Asp Leu Tyr Arg Val Val His Gly Ile Asp Val Phe
 500 505 510
 Asp Pro Lys Phe Asn Ile Val Ser Pro Gly Ala Asp Met Thr Val Tyr
 515 520 525
 Phe Pro Tyr Thr Glu Thr Asp Lys Arg Leu Thr Ala Phe His Pro Glu
 530 535 540
 Ile Glu Glu Leu Leu Tyr Ser Asp Val Glu Asn Ser Glu His Lys Phe
 545 550 555 560
 Val Leu Lys Asp Lys Asn Lys Pro Ile Ile Phe Ser Met Ala Arg Leu
 565 570 575
 Asp Arg Val Lys Asn Met Thr Gly Leu Val Glu Met Phe Gly Lys Asn
 580 585 590
 Ala His Leu Lys Asp Leu Ala Asn Leu Val Ile Val Ala Gly Asp His
 595 600 605
 Gly Lys Glu Ser Lys Asp Arg Glu Glu Gln Ala Glu Phe Lys Arg Met
 610 615 620
 Tyr Ser Leu Ile Glu Glu Tyr Lys Leu Glu Gly His Ile Arg Trp Ile
 625 630 635 640
 Ser Ala Gln Met Asn Arg Val Arg Asn Ala Glu Leu Tyr Arg Tyr Ile
 645 650 655
 Cys Asp Thr Lys Gly Ala Phe Val Gln Pro Ala Phe Tyr Glu Ala Phe
 660 665 670
 Gly Leu Thr Val Val Glu Ala Met Thr Cys Gly Leu Pro Thr Ile Ala
 675 680 685
 Thr Cys His Gly Gly Pro Ala Glu Ile Ile Val Asn Gly Val Ser Gly
 690 695 700
 Leu His Ile Asp Pro Tyr His Ser Asp Lys Ala Ala Asp Ile Leu Val
 705 710 715 720
 Asn Phe Phe Glu Lys Ser Thr Ala Asp Pro Thr Tyr Trp Asp Lys Met
 725 730 735

Ser Glu Gly Gly Leu Lys Arg Ile Tyr Glu Lys Tyr Thr Trp Lys Leu
 740 745 750
 Tyr Ser Glu Arg Leu Met Thr Leu Thr Gly Val Tyr Gly Phe Trp Lys
 755 760 765
 Tyr Val Ser Asn Leu Glu Arg Arg Glu Thr Arg Arg Tyr Leu Glu Met
 770 775 780
 Phe Tyr Ala Leu Lys Tyr Arg Ser Leu Ala Ala Val Pro Leu Ala
 785 790 795 800
 Val Asp Gly Glu Asn Thr Asp Asn
 805

<210> 170
 <211> 815
 <212> PRT
 <213> Lolium perenne

<400> 170
 Met Gly Glu Ala Ala Gly Asp Arg Val Leu Ser Arg Leu His Ser Val
 1 5 10 15
 Arg Glu Arg Ile Gly Asp Ser Leu Ser Ala His Pro Asn Glu Leu Val
 20 25 30
 Ala Val Phe Thr Arg Leu Val Asn Leu Gly Lys Gly Met Leu Gln Pro
 35 40 45
 His Gln Ile Ile Ala Glu Tyr Asn Thr Ala Ile Pro Glu Ala Glu Arg
 50 55 60
 Glu Lys Leu Lys Asp Gly Ala Phe Glu Asp Val Leu Arg Ala Ala Gln
 65 70 75 80
 Glu Ala Ile Val Ile Ser Pro Trp Val Ala Leu Ala Ile Arg Pro Arg
 85 90 95
 Pro Gly Val Trp Glu Tyr Val Arg Val Asn Val Ser Glu Leu Ala Val
 100 105 110
 Glu Glu Leu Ser Val Pro Glu Tyr Leu Gln Phe Lys Glu Gln Leu Val
 115 120 125
 Glu Gly Ser Asn Lys Asp Phe Val Leu Glu Leu Asp Phe Glu Pro Phe
 130 135 140
 Asn Ala Ser Phe Pro Arg Pro Ser Leu Ser Lys Ser Ile Gly Asn Gly
 145 150 155 160
 Val Gln Phe Leu Asn Arg His Leu Ser Ser Lys Leu Phe His Asp Lys
 165 170 175
 Glu Ser Met Tyr Pro Leu Leu Asn Phe Leu Arg Ala His Asn Tyr Lys
 180 185 190
 Gly Met Pro Met Met Asn Asp Arg Val Arg Ser Leu Ser Ala Leu
 195 200 205
 Gln Gly Ala Leu Arg Lys Ala Glu Glu His Leu Ser Gly Leu Pro Ala
 210 215 220
 Asp Thr Pro Tyr Ser Asp Phe His His Arg Phe Gln Glu Leu Gly Leu
 225 230 235 240
 Glu Lys Gly Trp Gly Asp Cys Ala Lys Arg Ala Gln Glu Thr Leu His
 245 250 255
 Leu Leu Leu Asp Leu Leu Glu Ala Pro Asp Pro Ser Thr Leu Glu Lys
 260 265 270
 Phe Leu Gly Thr Ile Pro Met Val Phe Asn Val Val Ile Leu Ser Pro
 275 280 285
 His Gly Tyr Phe Ala Gln Ala Asn Val Leu Gly Tyr Pro Asp Thr Gly
 290 295 300
 Gly Gln Val Val Tyr Ile Leu Asp Gln Val Arg Ala Met Glu Asn Glu
 305 310 315 320
 Met Leu Leu Arg Ile Lys Gln Gln Gly Leu Asp Ile Thr Pro Arg Ile
 325 330 335
 Leu Ile Val Thr Arg Leu Leu Pro Asp Ala Thr Gly Thr Thr Cys Gly
 340 345 350
 Gln Arg Leu Glu Lys Val Leu Gly Thr Glu His Thr His Ile Leu Arg
 355 360 365
 Val Pro Phe Arg Thr Glu Asn Gly Ile Val Arg Lys Trp Ile Ser Arg
 370 375 380
 Phe Glu Val Trp Pro Tyr Leu Glu Thr Phe Thr Asp Asp Val Ala His

385	390	395	400
Glu Ile Ser Gly Glu Leu Gln Ala Asn Pro Asp Leu Ile Ile	Gly Asn		
405	410	415	
Tyr Ser Asp Gly Asn Leu Val Ala Cys Leu Leu Ala His Lys Met	Gly		
420	425	430	
Val Thr His Cys Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr	Pro		
435	440	445	
Asn Ser Asp Leu Tyr Trp Lys Lys Phe Glu Asp His Tyr His Phe	Ser		
450	455	460	
Cys Gln Phe Thr Thr Asp Leu Ile Ala Met Asn His Ala Asp Phe	Ile		
465	470	475	480
Ile Thr Ser Thr Phe Gln Glu Ile Ala Gly Asn Lys Asp Thr Val	Gly		
485	490	495	
Gln Tyr Glu Ser His Met Ala Phe Thr Met Pro Gly Met Tyr Arg	Val		
500	505	510	
Val His Gly Ile Asp Val Phe Asp Pro Lys Phe Asn Ile Val Ser	Pro		
515	520	525	
Gly Ala Asp Met Ser Ile Tyr Phe Pro Tyr Ser Glu Ser Gln Arg	Arg		
530	535	540	
Leu Thr Ser Leu His Pro Glu Ile Glu Glu Leu Leu Tyr Ser Asp	Val		
545	550	555	560
Asp Asn Asp Glu His Lys Phe Val Leu Lys Asp Arg Asn Lys Pro	Ile		
565	570	575	
Ile Phe Ser Met Ala Arg Leu Asp Arg Val Lys Asn Leu Thr Gly	Leu		
580	585	590	
Val Glu Leu Tyr Gly Arg Asn Pro Arg Leu Gln Glu Leu Val Asn	Leu		
595	600	605	
Val Val Val Cys Gly Asp His Gly Asn Pro Ser Lys Asp Lys Glu	Glu		
610	615	620	
Gln Ala Glu Phe Lys Lys Met Phe Asp Leu Ile Glu Gln Tyr Asn	Leu		
625	630	635	640
Asn Gly His Ile Arg Trp Ile Ser Ala Gln Met Asn Arg Val Arg	Asn		
645	650	655	
Ala Glu Leu Tyr Arg Tyr Ile Cys Asp Thr Lys Gly Ala Phe Val	Gln		
660	665	670	
Pro Ala Phe Tyr Glu Ala Phe Gly Leu Thr Val Ile Glu Ala Met	Thr		
675	680	685	
Cys Gly Leu Pro Thr Phe Ala Thr Ala Tyr Gly Gly Pro Ala Glu	Ile		
690	695	700	
Ile Val Asn Gly Val Ser Gly Tyr His Ile Asp Pro Tyr Gln Gly	Asp		
705	710	715	720
Lys Ala Ser Ala Leu Leu Val Glu Phe Phe Glu Lys Cys Gln Gly	Asp		
725	730	735	
His Ser His Trp Thr Lys Ile Ser Leu Gly Gly Leu Gln Arg Ile	Glu		
740	745	750	
Glu Lys Tyr Thr Trp Lys Leu Tyr Ser Glu Arg Leu Met Thr Leu	Thr		
755	760	765	
Gly Val Tyr Gly Phe Trp Lys Tyr Val Ser Asn Leu Glu Arg Arg	Glu		
770	775	780	
Thr Arg Arg Tyr Leu Glu Met Leu Tyr Ala Leu Lys Tyr Arg Thr	Met		
785	790	795	800
Ala Ser Thr Val Pro Leu Ala Val Glu Gly Glu Pro Ser Ser Lys			
805	810	815	

<210> 171

<211> 581

<212> PRT

<213> Festuca arundinacea

<400> 171

Met Ala Gln Ala Trp Ala Phe Phé Leu Leu Ala Leu Phe Ser	Phe Ser		
1	5	10	15
Ser Tyr Val Ser Arg Ile Phe Leu Cys Ser Arg Asn Gly Glu	Gly Ser		
20	25	30	
Phe Leu Cys Ala Arg Ala Pro Glu Val Pro Ser Ile Ala Ser Asp	Arg		
35	40	45	

Tyr Arg Thr Ala Tyr His Phe Gln Pro His Lys Asn Trp Met Asn Asp
 50 55 60
 Pro Asn Gly Pro Met Tyr Tyr Asn Gly Ile Tyr His Leu Phe Phe Gln
 65 70 75 80
 His Asn Pro Asn Gly Pro Gln Trp Gly Asp Ile Val Trp Gly His Ser
 85 90 95
 Val Ser Thr Asp Leu Val Asn Trp Ile Ile Leu Glu Pro Ala Ile Glu
 100 105 110
 Pro Asp Thr Pro Gly Asp Ile Lys Gly Cys Trp Ser Gly Ser Ala Thr
 115 120 125
 Val Ile Ser Gly Ser Gln Pro Val Ile Met Tyr Thr Gly Gly Asp Val
 130 135 140
 Glu Asn His Gln Val Gln Asn Ile Ala Leu Pro Lys Asn Arg Ser Asp
 145 150 155 160
 Pro Tyr Leu Ile Glu Trp Thr Lys Ala Cys Asn Asn Pro Val Leu Gln
 165 170 175
 Pro Val Gly Pro Gly Met Asn Pro Gly Glu Phe Arg Asp Pro Thr Thr
 180 185 190
 Gly Trp Ile Gly Pro Asp Gly Leu Trp Arg Ile Ser Ile Gly Ala Glu
 195 200 205
 Val Asn Gly Tyr Ser Ala Ala Leu Leu Tyr Lys Ser Glu Asp Phe Leu
 210 215 220
 Asn Trp Ser Arg Val Asp His Pro Leu Tyr Ser Ser Ser Ala Ser Thr
 225 230 235 240
 Met Trp Glu Cys Leu Asp Phe Phe Ala Val Leu Pro Gly Ser Asn Gly
 245 250 255
 Gly Leu Asp Leu Ser Ala Ala Ile Pro Lys Gly Ala Lys His Val Leu
 260 265 270
 Lys Val Ser Val Asp Gln Cys Asp Lys Tyr Met Ile Gly Val Tyr Asp
 275 280 285
 Leu Glu His Asp Ala Phe Val Pro Asp Thr Ile Leu Asp Asp Arg Trp
 290 295 300
 Leu Leu Pro Arg Ile Asp Tyr Gly Asn Tyr Tyr Ala Ser Lys Ser Phe
 305 310 315 320
 Phe Asp Ser Lys Asn Arg Arg Arg Ile Ile Trp Gly Trp Thr Asn Glu
 325 330 335
 Ser Asp Ser Ser Asp Asp Val Ala Lys Gly Trp Ala Gly Ile Tyr
 340 345 350
 Ala Ile Pro Arg Thr Ile Trp Leu Asp Arg Asp Gly Lys Gln Leu Leu
 355 360 365
 Gln Trp Pro Val Glu Glu Ile Glu Ser Leu Arg Arg Asn Glu Ile Asn
 370 375 380
 Tyr Gln Gly Leu Asp Leu Glu Lys Gly Asp Leu Tyr Glu Ile Lys Gly
 385 390 395 400
 Val Asp Thr Leu Gln Ala Asp Val Glu Ile Asp Phe Glu Leu Thr Ser
 405 410 415
 Ile Asp Asp Ala Asp Ser Phe Asp Pro Ser Trp Leu Leu Asp Pro Glu
 420 425 430
 Lys His Cys Arg Glu Ala Gly Ala Ser Val His Gly Gly Ile Gly Pro
 435 440 445
 Phe Gly Leu Val Ile Leu Ala Thr Gly Asp Met Glu Glu His Thr Val
 450 455 460
 Val His Phe Arg Val Tyr Lys Ser Gln Lys Glu Tyr Met Ile Leu Met
 465 470 475 480
 Cys Ser Asp Ile Arg Arg Ser Ser Leu Arg Gln Gly Leu Tyr Ala Pro
 485 490 495
 Ala Tyr Gly Gly Phe Glu Phe Asp Leu Glu Lys Glu Arg Lys Ile
 500 505 510
 Ser Leu Arg Thr Leu Ile Asp Arg Ser Ala Val Glu Ser Phe Gly Gly
 515 520 525
 Gly Gly Arg Val Cys Ile Ile Ala Arg Val Tyr Pro Val Ala Ile Val
 530 535 540
 Asp Asp Gly Ser Ala His Met Tyr Ala Phe Asn Asn Gly Ser Thr Thr
 545 550 555 560

Val Arg Val Pro Gln Ile Arg Ala Trp Ser Met Met Thr Ala Gln Val
 565 570 575
 Asn Leu Lys Lys Gly
 580

<210> 172
 <211> 562
 <212> PRT
 <213> *Lolium perenne*

<400> 172
 Met Asn Gly Ile Glu His Pro Gly Asn Gly Arg Thr Ala Tyr His Phe
 1 5 10 15
 Gln Pro Ala Lys His Trp Gln Asn Asp Pro Asn Gly Pro Met Tyr His
 20 25 30
 Asn Gly Leu Tyr His Phe Phe Tyr Gln Tyr Asn Pro His Gly Pro Thr
 35 40 45
 Trp Asp Thr Gly Lys Leu Ser Trp Gly His Ser Val Ser Gly Asp Leu
 50 55 60
 Val Asn Trp Ala Ala Leu Asp Asn Ala Leu Asp Pro Thr Ala Pro Phe
 65 70 75 80
 Asp Ala Asn Gly Cys Trp Ser Gly Ser Ala Thr Ile Leu Pro Gly Gly
 85 90 95
 Arg Pro Ala Ile Leu Tyr Thr Gly Ile Asp Ala Asp Lys Val Gln Val
 100 105 110
 Gln Asn Val Ala Phe Ala Lys Asp Pro Ser Asp Pro Leu Leu Arg Glu
 115 120 125
 Trp Glu Lys Pro Ser Cys Asn Pro Val Ile Pro Tyr Pro Ala Asp Val
 130 135 140
 Thr Gly Asn Asn Phe Arg Asp Pro Thr Glu Ala Trp Arg Gly Arg Asp
 145 150 155 160
 Gly Leu Trp Arg Val Gly Ile Val Ala Glu Val Lys Gly Val Gly Ser
 165 170 175
 Leu Leu Val Tyr Arg Ser Ala Asp Phe Leu Arg Trp Gln Arg Asn Ala
 180 185 190
 Ala Pro Leu His Ala Ser Ser Arg Asp Val Pro Val Leu Glu Cys Pro
 195 200 205
 Asp Leu Phe Pro Val Ala Ala Ala Gln Gly Ala Thr Glu Gly Leu
 210 215 220
 Glu Thr Ser Ala Pro Ser Gly Ala Gly Val Arg His Val Leu Lys Leu
 225 230 235 240
 Thr Asp Phe Ala Lys Glu Asp His Tyr Met Val Gly Phe Tyr Asp Asp
 245 250 255
 Val Ala Asp Thr Phe Val Pro Ala Glu Pro Glu Arg Gly Asp Asp Pro
 260 265 270
 Asp Asn Trp Arg Arg Leu Asp His Gly His Leu Tyr Ala Ser Lys Ser
 275 280 285
 Phe Tyr Asp Ala Arg Asn Lys Arg Arg Ile Leu Trp Ala Trp Val Asp
 290 295 300
 Glu Thr Asp Gly Gly Val Ala Arg Gly Trp Ala Gly Ile Gln Ala
 305 310 315 320
 Phe Pro Arg Ala Met Trp Leu Asp Ala Asp Gly Lys Arg Leu Val Gln
 325 330 335
 Trp Pro Val Glu Glu Ile Glu Thr Leu Arg Arg Lys Arg Val Gly Leu
 340 345 350
 Arg Trp Ala Thr Asp Val Glu Ala Gly Gly Arg Lys Glu Ile Ala Gly
 355 360 365
 Ile Val Ser Ser Gln Ala Asp Val Glu Val Val Phe Glu Ile Pro Asn
 370 375 380
 Leu Glu Glu Ala Glu Thr Leu Asp Pro Glu Trp Val Leu Asp Pro Lys
 385 390 395 400
 Gly Leu Cys Ala Ala Lys Gly Ala Ser Val His Gly Gly Val Gly Pro
 405 410 415
 Phe Gly Leu Leu Val Leu Ala Ser Gly Asp Leu Glu Glu His Thr Ala
 420 425 430
 Val Phe Phe Arg Val Phe Lys His Asp Gly Lys Tyr Lys Val Leu Met

435	440	445	
Cys	Thr Asp Leu Thr Lys Ser Ser	Thr Lys Ala Gly Ala His Lys Pro	
450	455	460	
Ser Tyr Gly Ala Phe Leu Asp Val Asp Val	Glu Lys Asp Lys Phe Ile		
465	470	475	480
Ser Leu Arg Thr Leu Ile Asp His Thr Val Val	Glu Ser Phe Gly Asp		
485	490	495	
Gly Gly Arg Thr Cys Met Thr Ala Arg Val Tyr Pro	Glu His Ala Ala		
500	505	510	
Met Gly Ser Thr His Leu Tyr Val Phe Asn Asn	Gly Thr Gly Ala Val		
515	520	525	
Lys Val Ser Lys Leu Glu Ala Trp Glu Leu Ala	Thr Ala Ala Val Asn		
530	535	540	
Gly Gly Ser Leu Ala Pro Val Val Val Lys Ala	Ser Asp Pro Lys Glu		
545	550	555	560
Ala Leu			

<210> 173
 <211> 580
 <212> PRT
 <213> Festuca arundinacea

<400> 173	
Met Ala His Ala Trp Ala Phe Phe Leu Leu Ala Leu Phe Ser	
1 5 10 15	
Ser Cys Val Ser Lys Leu Phe Ile Tyr Ser Arg Asn Gly Glu Gly Ser	
20 25 30	
Phe Leu Cys Thr Arg Ser Pro Glu Val Pro Ser Ile Ala Ser Lys Arg	
35 40 45	
Tyr Arg Thr Ala Tyr His Phe Gln Ser Pro Lys Asn Trp Ile Asn Asp	
50 55 60	
Pro Cys Gly Pro Met Tyr Tyr Asn Gly Ile Tyr His Glu Phe Tyr Gln	
65 70 75 80	
Tyr Asn Pro Gly Gly Thr Ile Ala Ala Asn Ile Val Trp Gly His Ser	
85 90 95	
Val Ser Thr Asp Leu Val Asn Trp Ile Gln Leu Glu Pro Ala Ile Val	
100 105 110	
Arg Asp Thr Pro Tyr Asp Ile His Gly Cys Trp Thr Gly Ser Ile Thr	
115 120 125	
Ile Leu Pro Gly Asp Gln Pro Val Ile Ile Tyr Thr Gly Arg Asp Ser	
130 135 140	
Asp Asn His Gln Ser Gln Asn Ile Glu Leu Pro Lys Asn Arg Ser Asp	
145 150 155 160	
Pro Tyr Leu Arg Glu Trp Thr Lys Ala Asp Asn Asn Pro Arg Ile Leu	
165 170 175	
Pro Val Gly Pro Asp Leu Asn Leu Thr Gln Phe Arg Asp Pro Thr Thr	
180 185 190	
Gly Trp Ile Gly Pro Asp Gly Leu Trp Arg Ile Ala Ile Gly Ala Glu	
195 200 205	
Leu Asn Gly Tyr Gly Ala Ala Leu Leu Tyr Lys Ser Glu Asp Phe Leu	
210 215 220	
Asn Trp Thr Arg Val Asp His Pro Leu Tyr Ser Asp Asn Ala Pro Ser	
225 230 235 240	
Met Trp Glu Cys Pro Asp Phe Phe Ala Val Leu Pro Gly Asn Asn Gly	
245 250 255	
Gly Leu Asp Leu Ser Ala Ala Ile Pro Lys Gly Ala Lys His Val Leu	
260 265 270	
Lys Met Ser Val Asp Tyr Ser Asp Lys Tyr Met Ile Gly Val Tyr Asp	
275 280 285	
Leu Lys Arg Asp Ala Phe Val Pro Asp Val Val Leu Asp Asp Arg Arg	
290 295 300	
Leu Trp Leu Arg Ile Asp Tyr Gly Thr Phe Tyr Ala Ser Lys Ser Phe	
305 310 315 320	
Phe Asp Ser Lys Arg Gly Arg Arg Val Ile Trp Gly Trp Ser Asn Glu	
325 330 335	

Thr Asp Ser Val Ser Asp Asp Gly Ala Lys Gly Trp Ala Gly Ile His
 340 345 350
 Ala Ile Pro Arg Ser Ile Trp Leu Asp Ser Asp Gly Lys Gln Leu Leu
 355 360 365
 Gln Trp Pro Ile Asp Glu Ile Glu Ser Leu Arg Arg Asp Glu Ile Asn
 370 375 380
 His Gln Gly Leu Glu Leu Lys Asn Gly Asp Leu Phe Glu Ile Lys Gly
 385 390 395 400
 Ile Asp Thr Leu Gln Ala Asp Ile Glu Val Asp Phe Glu Leu Thr Ser
 405 410 415
 Ile Asp Ser Ala Asp Pro Phe Asp Pro Ser Trp Leu Leu Asp Val Glu
 420 425 430
 Arg His Cys Arg Glu Ala Gly Ala Ser Val Gln Gly Gly Ile Gly Pro
 435 440 445
 Phe Gly Leu Val Val Leu Ala Ser Asp Asn Met Glu Glu His Ile Ala
 450 455 460
 Val His Phe Arg Val Tyr Lys Ser Gln Lys Ser His Met Ile Leu Met
 465 470 475 480
 Cys Ser Asp Leu Arg Arg Ser Ser Leu Arg Ser Gly Leu Tyr Thr Pro
 485 490 495
 Ala Tyr Gly Gly Phe Phe Glu Phe Asp Leu Glu Lys Glu Arg Lys Ile
 500 505 510
 Ser Leu Arg Thr Leu Ile Asp Arg Ser Ala Val Glu Ser Phe Gly Gly
 515 520 525
 Gly Gly Arg Val Cys Ile Thr Ala Arg Ile Tyr Pro Val Ala Leu Val
 530 535 540
 Asp Gly Arg Val His Met Tyr Ala Phe Asn Asn Gly Ser Thr Thr Val
 545 550 555 560
 Arg Val Pro Gln Leu Gly Ala Trp Ser Met Met Thr Ala Gln Val Asn
 565 570 575
 Val Asn Lys Gly
 580

<210> 174

<211> 569

<212> PRT

<213> Festuca arundinacea Lolium perenne

<400> 174

Met Ala Gln Gly Trp Pro Phe Phe Leu Leu Val Leu Phe Ser Ser Cys
 1 5 10 15
 Val Ser Asn His Leu Val Asn Gly Glu Arg Val Phe Leu Phe Pro Gln
 20 25 30
 Ser His Lys Val Ser Ser Ile Val Ser Lys Arg Tyr Arg Thr Ala Tyr
 35 40 45
 His Phe Gln Pro Pro Lys Asn Trp Ile Asn Gly Pro Met Tyr Tyr Asn
 50 55 60
 Gly Ile Tyr His Glu Phe Tyr Gln Tyr Asn Pro Asn Gly Ser Leu Trp
 65 70 75 80
 Gly Asn Ile Ile Trp Gly His Ser Val Ser Thr Asp Leu Ile Asn Trp
 85 90 95
 Ile Pro Val Glu Pro Ala Ile Glu Arg Asp Ile Pro Ser Asp Ile Asn
 100 105 110
 Gly Cys Trp Thr Gly Ser Ala Thr Ile Ile Ser Gly Asp Gln Pro Ile
 115 120 125
 Ile Ile Tyr Thr Gly Ala Asp Lys Glu Asn Arg Gln Leu Gln Asn Ile
 130 135 140
 Val Leu Pro Lys Asn Lys Ser Asp Pro Tyr Leu Arg Glu Trp Thr Lys
 145 150 155 160
 Ala Gly Asn Asn Pro Val Ile Gln Pro Val Gly Pro Gly Leu Asn Ala
 165 170 175
 Ser Gln Phe Arg Asp Pro Thr Thr Gly Trp Ile Gly Pro Asp Gly Leu
 180 185 190
 Trp Arg Ile Ala Val Gly Ala Glu Leu Asn Gly Tyr Gly Ala Ala Leu
 195 200 205
 Leu Tyr Lys Ser Gln Asp Phe Leu Asn Trp Thr Arg Val Asp His Pro

210	215	220	
Leu	Tyr Ser Ser Asn Ala Ser Ser Met Trp Glu Cys Pro Asp Phe Phe		
225	230	235	
Ala Val Leu Pro Gly Asn Ser Gly Gly	Leu Asp Leu Ser Ala Glu Ile	240	
245	250	255	
Pro Asn Gly Ala Lys His Val Leu Lys Met Ser Leu Asp Ser Cys Asp			
260	265	270	
Lys Tyr Met Ile Gly Val Tyr Asp Leu Lys Ser Asp	Thr Phe Met Pro		
275	280	285	
Asp Ser Val Leu Asp Asp Arg Arg Leu Trp Ser Arg	Ile Asp His Gly		
290	295	300	
Asn Phe Tyr Ala Ser Lys Ser Phe Phe Asp	Ser Lys Lys Gly Arg Arg		
305	310	315	320
Ile Ile Trp Gly Trp Thr Asn Glu Thr Asp	Ser Ser Ser Asp Asp Val		
325	330	335	
Ala Lys Gly Trp Ala Gly Ile His Ala Ile Pro Arg Thr Ile Trp Leu			
340	345	350	
Asp Ser Tyr Gly Lys Gln Leu Leu Gln Trp Pro Ile Glu Glu Ile Glu			
355	360	365	
Ser Leu Arg Arg Asn Glu Ile Ser His Gln Gly Leu Glu Leu Lys Lys			
370	375	380	
Gly Asp Leu Phe Glu Ile Lys Gly Thr Asp	Thr Ser Gln Ala Asp Val		
385	390	395	400
Glu Val Asp Phe Glu Leu Thr Ser Ile Asp Asn Ala Asp Pro Phe Asp			
405	410	415	
Pro Ser Trp Leu Leu Asp Val Glu Lys Gln Cys Arg	Glu Ala Gly Ala		
420	425	430	
Ser Val Gln Gly Gly Ile Gly Pro Phe Gly Leu Val Val Leu Ala Ser			
435	440	445	
Asp Asn Met Glu Glu His Thr Ala Val His Phe Arg	Val Tyr Lys Ser		
450	455	460	
Gln Gln Ser Tyr Met Ile Leu Met Cys Ser Asp Leu Arg Arg Ser Ser			
465	470	475	480
Leu Arg Ser Gly Met Tyr Thr Pro Ala Tyr Gly Gly Phe Phe Glu Phe			
485	490	495	
Asp Leu Gln Lys Glu Arg Lys Ile Ser Leu Arg Thr Leu Ile Asp Arg			
500	505	510	
Ser Ala Val Glu Ser Phe Gly Gly Gly Arg Val Cys Ile Met Ala			
515	520	525	
Arg Val Tyr Pro Val Val Leu Val Asp Asp Gly Gly Ala His Met Tyr			
530	535	540	
Ala Phe Asn Asn Gly Ser Thr Thr Val Arg Val Pro Gln Leu Arg Ala			
545	550	555	560
Trp Ser Met Ser Arg Ala Glu His Lys			
565			

<210> 175

<211> 588

<212> PRT

<213> *Lolium perenne*

<400> 175

Met	Gly Val Arg Leu Gly Arg Val Ala Trp Ala Cys Pro Ala Val Leu		
1	5	10	15
Val	Leu Leu Leu Gln Leu Ala Gly Ala Ser His Val Val Tyr Glu Thr		
20	25	30	
Ser	Leu Leu Glu Thr Glu Ala Ala Ala Ala Thr Val Pro Ala Ser Ile		
35	40	45	
Phe	Glu Leu Ser Thr Gly Tyr His Phe Arg Pro Gln Lys Asn Trp Ile		
50	55	60	
Asn	Asp Pro Asn Ala Pro Leu Tyr Tyr Lys Gly Trp Tyr His Leu Phe		
65	70	75	80
Phe	Gln Tyr Asn Pro Lys Gly Ala Val Trp Gly Asn Ile Val Trp Ala		
85	90	95	
His	Ser Val Ser Arg Asp Leu Ile Asn Trp Val Ala Leu Glu Thr Ala		
100	105	110	

Leu Ala Pro Ser Ile Asp Ala Asp Lys Tyr Gly Cys Trp Ser Gly Ser
 115 120 125
 Ala Thr Ile Met Pro Asp Gly Thr Pro Val Ile Met Tyr Thr Gly Val
 130 135 140
 Ser Arg Pro Asp Val Asn Tyr Glu Val Gln Asn Val Ala Phe Pro Lys
 145 150 155 160
 Asn Ser Ser Asp Pro Leu Leu Arg Glu Trp Val Lys Pro Ala His Asn
 165 170 175
 Pro Val Ile Val Pro Glu Gly Gly Ile Asn Ala Thr Gln Phe Arg Asp
 180 185 190
 Pro Thr Thr Ala Trp Tyr Ala Asp Gly His Trp Arg Ile Leu Val Gly
 195 200 205
 Ala Leu Ser Gly Ala Ser Arg Gly Val Ala Tyr Val Tyr Arg Ser Arg
 210 215 220
 Asp Phe Arg Arg Trp Thr Arg Val Arg Lys Pro Leu His Ser Ala Pro
 225 230 235 240
 Thr Gly Met Trp Glu Cys Pro Asp Phe Tyr Pro Val Thr Val Asp Gly
 245 250 255
 Lys Glu Ser Gly Val Asp Thr Ser Val Val Ser Ser Arg Val Lys
 260 265 270
 His Val Leu Lys Asn Ser Leu Asp Leu Arg Arg Tyr Asp Tyr Tyr Thr
 275 280 285
 Val Gly Thr Tyr Asp Arg Leu Lys Glu Arg Tyr Val Pro Asp Asn Pro
 290 295 300
 Ala Gly Asp Lys His His Leu Arg Tyr Asp Tyr Gly Asn Phe Tyr Ala
 305 310 315 320
 Ser Lys Thr Phe Tyr Asp Pro Ser Lys Arg Arg Arg Ile Leu Trp Gly
 325 330 335
 Trp Ala Asn Glu Ser Asp Thr Ala Val Asp Asp Val Ala Lys Gly Trp
 340 345 350
 Ala Gly Ile Gln Ala Ile Pro Arg Lys Val Trp Leu Asp Pro Ser Gly
 355 360 365
 Arg Gln Leu Met Gln Trp Pro Val Glu Glu Val Glu Ala Leu Arg Gly
 370 375 380
 Lys Lys Pro Val Ser Leu Lys Asp Arg Met Val Lys Arg Gly Glu His
 385 390 395 400
 Val Glu Val Thr Gly Leu Gln Thr Ala Gln Ala Asp Val Glu Val Ser
 405 410 415
 Phe Glu Val Pro Ser Leu Glu Gly Ala Glu Ala Leu Asp Pro Ala Leu
 420 425 430
 Ala Asn Asp Ala Gln Lys Leu Cys Gly Val Lys Gly Ala Asp Val Glu
 435 440 445
 Gly Gly Val Gly Pro Phe Gly Leu Trp Val Leu Ala Ser Ser Lys Leu
 450 455 460
 Glu Glu Arg Thr Ala Val Phe Phe Arg Val Phe Lys Ala Ala Gly Asn
 465 470 475 480
 Val Asn Ser Thr Lys Pro Leu Val Leu Met Cys Ser Asp Pro Thr Lys
 485 490 495
 Ser Ser Leu Asn Lys Asn Leu Tyr His Pro Thr Phe Ala Gly Phe Val
 500 505 510
 Asp Ile Asp Met Ala Lys Gly Lys Ile Ser Leu Arg Ser Leu Ile Asp
 515 520 525
 Gln Ser Val Val Glu Ser Phe Gly Ala Gly Gly Arg Thr Cys Ile Leu
 530 535 540
 Ser Arg Val Tyr Pro Ser Leu Ala Ile Gly Arg Asn Ala His Leu His
 545 550 555 560
 Val Phe Asn Asn Gly Lys Ala Asp Ile Lys Val Ser Arg Leu Thr Ala
 565 570 575
 Trp Glu Met Lys Lys Pro Ala Leu Met Asn Gly Ala
 580 585

<210> 176

<211> 670

<212> PRT

<213> Lolium perenne

<400> 176

Met Pro Met Glu Ala Arg Asp Gly Val Ser Met Pro Tyr Ser Tyr Ala
 1 5 10 15
 Ala Leu Pro Glu Asp Ala Glu Ala Ala Val Val Gly Arg Gly Arg Arg
 20 25 30
 Thr Gly Pro Leu Phe Ala Ala Leu Leu Leu Thr Leu Val Ala Ala Leu
 35 40 45
 Leu Ala Val Ala Ala Leu Ala Gly Val Arg Leu Val Gly Glu Leu Pro
 50 55 60
 Ala Gly Gly Val Val Met Pro Asn His Pro Met Glu Val Met Asp Val
 65 70 75 80
 Ser Gly Ser Arg Gly Pro Glu Ser Gly Val Ser Glu Lys Thr Ser Gly
 85 90 95
 Ala Ala Ser Glu Ser Gly Gly Met Leu Gly Ala Asp Ala Gly Ser Asn
 100 105 110
 Ala Phe Pro Trp Ser Asn Ala Met Leu Gln Trp Gln Arg Thr Gly Phe
 115 120 125
 His Phe Gln Pro Glu Lys Asn Trp Met Asn Asp Pro Asn Gly Pro Val
 130 135 140
 Tyr Tyr Lys Gly Trp Tyr His Leu Phe Tyr Gln Tyr Asn Pro Glu Gly
 145 150 155 160
 Ala Ile Trp Gly Asn Lys Ile Ala Trp Gly His Ala Val Ser Arg Asp
 165 170 175
 Met Leu Arg Trp Arg His Leu Pro Ile Ala Met Phe Pro Asp Gln Trp
 180 185 190
 Tyr Asp Ile Asn Gly Ala Trp Ser Gly Ser Ala Thr Val Leu Pro Asp
 195 200 205
 Gly Arg Ile Val Met Leu Tyr Thr Gly Ser Thr Asn Ala Ser Val Gln
 210 215 220
 Val Gln Cys Leu Ala Phe Pro Ser Asp Pro Ser Asp Pro Leu Leu Thr
 225 230 235 240
 Asn Trp Thr Lys Tyr Glu Gly Asn Pro Val Leu Tyr Pro Pro His
 245 250 255
 Val Gly Glu Lys Asp Phe Arg Asp Pro Thr Thr Ala Trp Tyr Asp Gly
 260 265 270
 Ser Asp Gly Met Trp Arg Ile Val Ile Gly Ser Lys Asp Asn Arg Arg
 275 280 285
 Ala Gly Met Ala Leu Thr Tyr Lys Thr Lys Asn Phe His Asp Phe Glu
 290 295 300
 Leu Val Pro Gly Val Leu His Arg Val Pro Ala Thr Gly Met Trp Glu
 305 310 315 320
 Cys Ile Asp Leu Tyr Pro Val Gly Ala Arg Gly Ile Asp Met Thr
 325 330 335
 Glu Ala Val Ala Ala Ser Asn Ser Gly Gly Glu Val Leu His
 340 345 350
 Val Met Lys Glu Ser Ser Asp Asp Arg His Asp Tyr Tyr Ala Leu
 355 360 365
 Gly Arg Tyr Asp Ala Ala Thr Asn Lys Trp Thr Pro Leu Asp Ala Asp
 370 375 380
 Ala Asp Val Gly Ile Gly Leu Arg Tyr Asp Trp Gly Lys Phe Tyr Ala
 385 390 395 400
 Ser Lys Thr Phe Tyr Asp Pro Ala Lys Lys Arg Arg Val Leu Trp Gly
 405 410 415
 Trp Val Gly Glu Thr Asp Ser Glu Arg Ala Asp Val Ala Lys Gly Trp
 420 425 430
 Ala Ser Leu Gln Ser Ile Pro Arg Thr Val Val Leu Asp Thr Lys Thr
 435 440 445
 Gly Ser Asn Leu Ile Gln Trp Pro Val Val Glu Val Glu Thr Leu Arg
 450 455 460
 Thr Asn Ser Thr Asn Leu Gly Ser Ile Ile Val Glu His Gly Ser Val
 465 470 475 480
 Phe Pro Leu Ser Leu His Arg Ala Thr Gln Leu Asp Ile Glu Ala Ser
 485 490 495
 Phe Arg Leu Asp Pro Leu Asp Val Ala Ala Lys Glu Ala Asp Val
 500 505 510
 Gly Tyr Asn Cys Ser Thr Ser Gly Gly Ala Ala Gly Arg Gly Ala Leu

515	520	525
Gly Pro Phe Gly Leu Leu Val	Leu Ala Asp Ala Arg Arg	His Gly Gly
530	535	540
Asp Thr Glu Gln Thr Ala Val	Tyr Phe Tyr Val Ala Arg	Gly Leu Asp
545	550	555
Gly Asn Leu Arg Thr His Phe	Cys His Asp Glu Ser	Arg Ser Ser Arg
565	570	575
Ala Asn Asp Ile Val Lys Arg	Val Val Gly Asn Ile	Val Pro Val Leu
580	585	590
Asp Gly Glu Ala Leu Ser Val	Arg Val Leu Val Asp	His Ser Ile Val
595	600	605
Glu Ser Phe Ala Gln Gly	Gly Arg Ser Val Val	Thr Ser Arg Val Tyr
610	615	620
Pro Thr Glu Ala Ile Tyr	Ala Asn Ala Gly Val	Tyr Leu Phe Asn Asn
625	630	635
Ala Thr Gly Ala Arg Val Thr	Ala Thr Ser Leu Val	Val His Glu Met
645	650	655
Asp Pro Ser Tyr Asn Gln Asn	Gln Ala Glu Met Ala	Ser Leu
660	665	670

<210> 177

<211> 514

<212> PRT

<213> Lolium perenne

<400> 177

Met His Ala Asp Pro Asn Gly	Pro Val Tyr Tyr Arg	Gly Trp Tyr His
1	5	10 15
Leu Phe Tyr Gln Tyr Asn Pro	Glu Gly Ala Val Trp	Gly Asn Ile Ala
20	25	30
Trp Gly His Ala Val Ser Arg	Asp Leu Val His Trp	Arg His Leu Pro
35	40	45
Leu Ala Met Val Pro Asp Gln	Trp Tyr Asp Ile Asn	Gly Val Trp Thr
50	55	60
Gly Ser Ala Thr Val Phe Pro	Asp Gly Thr Leu Asn	Met Leu Tyr Thr
65	70	75 80
Gly Ser Thr Asn Ala Ser Val	Gln Ala Cys Leu Ala	Val Pro Glu
85	90	95
Asp Pro Asn Asp Ser Leu Leu	Arg Asn Trp Thr Lys	His Glu Ala Asn
100	105	110
Pro Val Leu Leu Pro Pro Gly	Ile Gly Asp Lys Asp	Phe Arg Asp
115	120	125
Pro Thr Thr Ala Trp Phe Asp	Glu Ser Asp Gln Thr	Trp Arg Thr Val
130	135	140
Ile Gly Ser Lys Asp Asn Asn	Gly His Ala Gly Ile	Ala Met Val Tyr
145	150	155 160
Lys Thr Lys Asp Phe Leu Asn	Tyr Glu Leu Ile Pro	Gly Tyr Leu His
165	170	175
Arg Val Asp Gly Thr Gly	Met Trp Glu Cys Ile	Asp Phe Tyr Pro Val
180	185	190
Gly Gly Lys Asn Gly Ser	Glu Leu Tyr Val Ile	Lys Glu Ser Ser
195	200	205
Asp Asp Asp Arg His Asp	Trp Tyr Thr Leu Gly	Lys Tyr Asp Ala Ala
210	215	220
Ala Asn Thr Phe Thr Ala	Ala Asp Pro Glu Asn	Asp Leu Gly Ile Gly
225	230	235 240
Leu Arg Tyr Asp Trp Gly	Lys Phe Tyr Ala Ser	Lys Thr Phe Tyr Asp
245	250	255
Pro Ala Lys Lys Arg Arg	Val Leu Trp Gly Trp	Ile Gly Glu Thr Asp
260	265	270
Ser Glu Arg Ala Asp Val	Ala Lys Gly Trp Ala	Ser Leu Met Ser Ile
275	280	285
Pro Arg Thr Val Glu Leu	Asp Glu Lys Thr Trp	Thr Asn Leu Ile Gln
290	295	300
Trp Pro Val Glu Glu Ile	Glu Thr Leu Arg Ile	Lys Ser Thr Asp Leu
305	310	315 320

Gly Gly Ile Thr Ile Asp His Gly Ser Val Tyr Pro Leu Pro Leu His
 325 330 335
 Arg Ala Thr Gln Leu Asp Ile Glu Ala Ser Phe Arg Leu Asp Ala Ala
 340 345 350
 Thr Val Ala Ala Leu Asn Glu Ala Asp Val Gly Tyr Asn Cys Ser Thr
 355 360 365
 Ser Gly Gly Ser Thr His Arg Gly Ala Leu Gly Pro Phe Gly Ile Leu
 370 375 380
 Val Leu Ala Asp Gly Lys Ala Glu Gln Thr Ala Val Tyr Phe Tyr Val
 385 390 395 400
 Ser Lys Gly Leu Asp Gly Ala Leu Glu Thr His Phe Cys His Asp Glu
 405 410 415
 Ser Arg Ser Thr Leu Ala Lys Asp Val Val Lys Arg Val Val Gly Tyr
 420 425 430
 Thr Val Pro Val Leu Asp Gly Glu Ala Phe Ser Val Arg Val Leu Val
 435 440 445
 Asp His Ser Ile Val Glu Ser Phe Ala Met Gly Gly Arg Ser Thr Ala
 450 455 460
 Thr Ser Arg Val Tyr Pro Thr Glu Ser Ile Tyr Gly Ala Ala Gly Ala
 465 470 475 480
 Tyr Leu Phe Asn Asn Ala Thr Gly Gly Ser Val Thr Val Glu Lys Leu
 485 490 495
 Val Val His Glu Met Asp Ser Ser Tyr Asn Gln Ile Phe Met Ala Asp
 500 505 510
 Asp Leu

<210> 178

<211> 557

<212> PRT

<213> Lolium perenne

<400> 178

Met Gly Ser Val Pro Glu Glu Ser Val Val Ser Val Ala Ala Ala Glu
 1 5 10 15
 Thr Val Phe Arg Ser Lys Leu Pro Asp Ile Glu Ile Asn Asn Glu Gln
 20 25 30
 Thr Leu Gln Ser Tyr Cys Phe Glu Lys Met Ala Glu Val Ala Ser Arg
 35 40 45
 Pro Cys Ile Ile Asp Gly Gln Thr Gly Ala Ser Tyr Thr Tyr Thr Glu
 50 55 60
 Val Asp Ser Leu Thr Arg Arg Ala Ala Ala Gly Leu Arg Arg Met Gly
 65 70 75 80
 Val Gly Lys Gly Asp Val Val Met Asn Leu Leu Arg Asn Cys Pro Glu
 85 90 95
 Phe Ala Phe Ser Phe Leu Gly Ala Ala Arg Leu Gly Ala Ala Thr Thr
 100 105 110
 Thr Ala Asn Pro Phe Tyr Thr Pro His Glu Ile His Arg Gln Ala Glu
 115 120 125
 Ala Ala Gly Ala Lys Leu Ile Val Thr Glu Ala Cys Ala Val Glu Lys
 130 135 140
 Val Leu Glu Phe Ala Ala Gly Arg Gly Leu Pro Val Val Thr Val Asp
 145 150 155 160
 Gly Arg Arg Asp Gly Cys Val Asp Phe Ala Glu Leu Ile Ala Gly Glu
 165 170 175
 Glu Leu Pro Glu Ala Asp Glu Ala Gly Ile Leu Pro Asp Asp Val Val
 180 185 190
 Ala Leu Pro Tyr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Met
 195 200 205
 Leu Thr His Arg Ser Leu Val Thr Ser Val Ala Gln Leu Val Asp Gly
 210 215 220
 Ser Asn Pro Asn Val Cys Phe Asn Lys Asp Asp Ala Leu Leu Cys Leu
 225 230 235 240
 Leu Pro Leu Phe His Ile Tyr Ser Leu His Thr Val Leu Leu Ala Gly
 245 250 255
 Leu Arg Val Gly Ala Ala Ile Val Ile Met Arg Lys Phe Asp Val Gly

260	265	270
Ala Leu Val Asp Leu Val Arg Ala His Arg Ile Thr Ile Ala Pro Phe		
275	280	285
Val Pro Pro Ile Val Val Glu Ile Ala Lys Ser Asp Arg Val Gly Ala		
290	295	300
Asp Asp Leu Ala Ser Ile Arg Met Val Leu Ser Gly Ala Ala Pro Met		
305	310	315
Gly Lys Asp Leu Gln Asp Ala Phe Met Ala Lys Ile Pro Asn Ala Val		
325	330	335
Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly Pro Val Leu Ala Met		
340	345	350
Cys Leu Ala Phe Ala Lys Glu Pro Phe Lys Val Lys Ser Gly Ser Cys		
355	360	365
Gly Thr Val Val Arg Asn Ala Glu Leu Lys Val Val Asp Pro Asp Thr		
370	375	380
Gly Ala Ser Leu Gly Arg Asn Gln Pro Gly Glu Ile Cys Val Arg Gly		
385	390	395
Lys Gln Ile Met Ile Gly Tyr Leu Asn Asp Pro Glu Ser Thr Lys Asn		
405	410	415
Thr Ile Asp Lys Asp Gly Trp Leu His Thr Gly Asp Ile Gly Leu Val		
420	425	430
Asp Asp Asp Asp Glu Ile Phe Ile Val Asp Arg Leu Lys Glu Ile Ile		
435	440	445
Lys Tyr Lys Gly Phe Gln Val Ala Pro Ala Glu Leu Glu Ala Leu Leu		
450	455	460
Leu Thr Asn Pro Glu Val Lys Asp Ala Ala Val Val Gly Val Lys Asp		
465	470	475
Asp Leu Cys Gly Glu Val Pro Val Ala Phe Ile Lys Arg Ile Glu Gly		
485	490	495
Ser Glu Ile Thr Glu Asn Glu Ile Lys Gln Phe Val Ser Lys Glu Val		
500	505	510
Val Phe Tyr Lys Arg Ile Asn Lys Val Tyr Phe Thr Asp Ser Ile Pro		
515	520	525
Lys Asn Pro Ser Gly Lys Ile Leu Arg Lys Asp Leu Arg Ala Arg Leu		
530	535	540
Ala Ala Gly Ile Pro Thr Glu Val Ala Ala Pro Arg Ser		
545	550	555

<210> 179

<211> 501

<212> PRT

<213> Lolium perenne

<400> 179

Met Glu Val Leu Leu Glu Lys Ala Leu Leu Gly Leu Phe Ala Ala			
1	5	10	15
Ala Val Leu Ala Ile Ala Val Ala Lys Leu Ala Gly Lys Arg Phe Arg			
20	25	30	
Leu Pro Pro Gly Pro Ser Gly Ala Pro Ile Val Gly Asn Trp Leu Gln			
35	40	45	
Val Gly Asp Asp Leu Asn His Arg Asn Leu Met Gly Ile Ala Lys Arg			
50	55	60	
Phe Gly Glu Val Phe Leu Leu Arg Met Gly Ile Arg Asn Leu Val Val			
65	70	75	80
Val Ser Ser Pro Glu Leu Ala Lys Glu Val Leu His Thr Gln Gly Val			
85	90	95	
Glu Phe Gly Ser Arg Thr Arg Asn Val Val Phe Asp Ile Phe Thr Gly			
100	105	110	
Asn Gly Gln Asp Met Val Phe Thr Val Tyr Gly Asp His Trp Arg Lys			
115	120	125	
Met Arg Arg Ile Met Thr Val Pro Phe Phe Thr Asn Lys Val Val Ala			
130	135	140	
Gln Asn Arg Val Gly Trp Glu Glu Ala Arg Leu Val Val Glu Asp			
145	150	155	160
Val Lys Ala Asp Pro Ala Ser Ala Thr Ala Gly Thr Val Ile Arg Arg			
165	170	175	

Arg Leu Gln Leu Met Met Tyr Asn Asp Met Phe Arg Ile Met Phe Asp
 180 185 190
 Arg Arg Phe Glu Ser Val Asp Asp Pro Leu Phe Asn Lys Leu Lys Ala
 195 200 205
 Met Asn Ala Glu Arg Ser Ile Leu Ser Gln Ser Phe Asp Tyr Asn Tyr
 210 215 220
 Gly Asp Phe Ile Pro Ile Leu Arg Pro Phe Leu Arg Lys Tyr Leu Asn
 225 230 235 240
 Arg Cys Thr Asn Leu Lys Thr Lys Arg Met Lys Leu Phe Glu Asp His
 245 250 255
 Phe Val Ala Asp Arg Lys Lys Ala Leu Glu Gln Asn Gly Glu Ile Arg
 260 265 270
 Cys Ala Met Asp His Ile Leu Glu Ala Glu Arg Lys Gly Glu Ile Asn
 275 280 285
 His Asp Asn Val Leu Tyr Ile Val Glu Asn Ile Asn Val Ala Ala Ile
 290 295 300
 Glu Thr Thr Leu Trp Ser Ile Glu Trp Gly Ile Ala Glu Leu Val Asn
 305 310 315 320
 His Pro Asp Val Gln Ser Lys Leu Arg Asp Glu Met Thr Ala Val Leu
 325 330 335
 Gly Ala Asp Val Ala Val Thr Glu Pro Asp Leu Glu Arg Leu Pro Tyr
 340 345 350
 Leu Gln Ser Val Val Lys Glu Thr Leu Arg Leu Arg Met Ala Ile Pro
 355 360 365
 Leu Leu Val Pro His Met Asn Leu Ser Asp Ala Lys Leu Ala Gly Tyr
 370 375 380
 Asp Ile Pro Ala Glu Ser Lys Ile Leu Val Asn Ala Trp Phe Leu Ala
 385 390 395 400
 Asn Asp Pro Lys Arg Trp Val Arg Ala Asp Glu Phe Arg Pro Glu Arg
 405 410 415
 Phe Leu Glu Glu Lys Ala Val Glu Ala His Gly Asn Asp Phe Arg
 420 425 430
 Phe Val Pro Phe Gly Val Gly Arg Arg Ser Cys Pro Gly Ile Val Leu
 435 440 445
 Ala Leu Pro Ile Ile Gly Ile Thr Leu Gly Arg Leu Val Gln Asn Phe
 450 455 460
 Gln Leu Leu Pro Pro Pro Gly Gln Asp Lys Ile Asp Thr Thr Glu Lys
 465 470 475 480
 Pro Gly Gln Phe Ser Asn Gln Ile Leu Lys His Ala Thr Val Val Cys
 485 490 495
 Lys Pro Leu Glu Ala
 500

<210> 180

<211> 361

<212> PRT

<213> Lolium perenne

<400> 180

Met Gly Ser Val Asp Ala Ser Glu Lys Thr Ile Thr Gly Trp Ala Ala
 1 5 10 15
 Arg Asp Ala Thr Gly His Leu Ser Pro Tyr Thr Tyr Asn Leu Arg Arg
 20 25 30
 Thr Gly Ala Glu Asp Val Val Leu Lys Val Leu Tyr Cys Gly Ile Cys
 35 40 45
 His Thr Asp Leu His Gln Thr Lys Asn His Leu Gly Ala Ser Lys Tyr
 50 55 60
 Pro Met Val Pro Gly His Glu Val Val Gly Glu Val Val Glu Val Gly
 65 70 75 80
 Pro Glu Val Ser Lys Tyr Ser Val Gly Asp Val Val Gly Val Gly Val
 85 90 95
 Ile Val Gly Cys Cys Arg Asp Cys Arg Pro Cys Lys Ala Asn Val Glu
 100 105 110
 Gln Tyr Cys Asn Lys Lys Ile Trp Ser Tyr Asn Asp Val Tyr Thr Asp
 115 120 125
 Gly Lys Pro Thr Gln Gly Phe Ala Ser Ser Met Val Val Asp Gln

130	135	140
Lys Phe Val Val Lys Ile Pro Ala Gly Leu Ala Pro	Glu Gln Ala Ala	
145	150	155
Pro Leu Leu Cys Ala Gly Val Thr Val Tyr Ser Pro	Leu Lys His Phe	
165	170	175
Gly Leu Met Thr Pro Gly Leu Arg Gly Ile Leu Gly	Leu Gly Gly	
180	185	190
Val Gly His Met Gly Val Lys Val Ala Lys Ser Met	Gly His His Val	
195	200	205
Thr Val Ile Ser Ser Asp Lys Lys Arg Ala Glu	Ala Met Asp Asp	
210	215	220
Leu Gly Ala Asp Ala Tyr Leu Val Ser Ser Asp	Glu Ala Gln Met Ala	
225	230	235
Ala Ala Met Asp Ser Leu Asp Tyr Ile Ile Asp	Thr Val Pro Val Lys	
245	250	255
His Pro Leu Glu Pro Tyr Leu Ala Leu Leu Lys	Met Asp Gly Lys Leu	
260	265	270
Val Leu Met Gly Val Ile Gly Glu Pro Leu Ser	Phe Val Ser Pro Met	
275	280	285
Val Met Leu Gly Arg Lys Thr Ile Thr Gly Ser	Phe Ile Gly Ser Ile	
290	295	300
Glu Glu Thr Glu Glu Val Leu Arg Phe Cys Val	Asp Lys Gly Leu Thr	
305	310	315
Ser Gln Ile Glu Val Val Lys Met Asp Tyr Leu	Asn Gln Ala Leu Glu	
325	330	335
Arg Leu Glu Arg Asn Asp Val Arg Tyr Arg	Phe Val Val Asp Val Ala	
340	345	350
Gly Ser Asn Ile Asp Asp Thr Ala Ala		
355	360	

<210> 181

<211> 363

<212> PRT

<213> Lolium perenne

<400> 181

Met Thr Val Val Glu Val Leu Ala Ala Gly Asp	Ala Ala Ala Ala		
1	5	10	15
Val Ala Arg Pro Ala Gly Asn Gly Gln Thr Val	Cys Val Thr Gly Ala		
20	25	30	
Ala Gly Tyr Ile Ala Ser Trp Leu Val Lys Leu	Leu Glu Lys Gly		
35	40	45	
Tyr Thr Val Lys Gly Thr Val Arg Asn Pro Asp	Asp Pro Lys Asn Ala		
50	55	60	
His Leu Arg Ala Leu Asp Gly Ala Ala Asp	Arg Leu Val Leu Cys Lys		
65	70	75	80
Ala Asp Leu Leu Asp Tyr Asp Ala Ile Arg	Arg Ala Ile Asp Gly Cys		
85	90	95	
His Gly Val Phe His Thr Ala Ser Pro Val Thr	Asp Asp Pro Glu Gln		
100	105	110	
Met Val Glu Pro Ala Val Arg Gly Thr Gln	Tyr Val Ile Asp Ala Ala		
115	120	125	
Ala Glu Ala Gly Thr Val Arg Arg Met Val	Leu Thr Ser Ser Ile Gly		
130	135	140	
Ala Val Thr Met Asp Pro Asn Arg Gly Pro	Asp Val Val Val Asp Glu		
145	150	155	160
Ser Cys Trp Ser Asp Leu Asp Phe Cys Lys	Lys Thr Arg Asn Trp Tyr		
165	170	175	
Cys Tyr Gly Lys Ala Val Ala Glu Gln Ala Ala	Ser Glu Leu Ala Arg		
180	185	190	
Gln Arg Gly Val Asp Leu Val Val Val Asn Pro	Val Leu Val Ile Gly		
195	200	205	
Pro Leu Leu Gln Pro Thr Val Asn Ala Ser Ile	Gly His Ile Leu Lys		
210	215	220	
Tyr Leu Asp Gly Ser Ala Ser Lys Phe Ala Asn	Ala Val Gln Ala Tyr		
225	230	235	240

Val Asp Val Arg Asp Val Ala Asp Ala His Leu Arg Val Phe Glu Cys
 245 250 255
 Ala Ala Ala Ser Gly Arg His Leu Cys Ala Glu Arg Val Leu His Arg
 260 265 270
 Glu Asp Val Val Arg Ile Leu Ala Lys Leu Phe Pro Glu Tyr Pro Val
 275 280 285
 Pro Thr Arg Cys Ser Asp Glu Ala Asn Pro Arg Lys Gln Pro Tyr Lys
 290 295 300
 Met Ser Asn Gln Lys Leu Gln Asp Leu Gly Leu Glu Phe Arg Pro Val
 305 310 315 320
 Ser Gln Ser Leu Tyr Glu Thr Val Lys Ser Leu Gln Glu Lys Gly His
 325 330 335
 Leu Pro Val Leu Ser Glu Gln Ala Glu Ala Asp Lys Glu Thr Leu Ala
 340 345 350
 Ala Glu Leu Gln Ala Gly Val Thr Ile Arg Ala
 355 360

<210> 182

<211> 360

<212> PRT

<213> Festuca arundinacea

<400> 182

Met Gly Ser Thr Ala Ala Asp Met Ala Ala Ser Ala Asp Glu Glu Ala
 1 5 10 15
 Cys Met Phe Ala Leu Gln Leu Ala Ser Ser Ser Ile Leu Pro Met Thr
 20 25 30
 Leu Lys Asn Ala Ile Glu Leu Gly Leu Leu Glu Ile Leu Val Ala Ala
 35 40 45
 Gly Gly Lys Ser Leu Thr Pro Thr Glu Val Ala Ala Lys Leu Pro Ser
 50 55 60
 Ala Ala Asn Pro Glu Ala Pro Asp Met Val Asp Arg Met Leu Arg Leu
 65 70 75 80
 Leu Ala Ser Tyr Asn Val Val Thr Cys Leu Val Glu Glu Gly Lys Asp
 85 90 95
 Gly Arg Leu Ser Arg Ser Tyr Gly Ala Ala Pro Val Cys Lys Phe Leu
 100 105 110
 Thr Pro Asn Glu Asp Gly Val Ser Met Ala Ala Leu Ala Leu Met Asn
 115 120 125
 Gln Asp Lys Val Leu Met Glu Ser Trp Tyr Tyr Leu Lys Asp Ala Val
 130 135 140
 Leu Asp Gly Gly Ile Pro Phe Asn Lys Ala Tyr Gly Met Ser Ala Phe
 145 150 155 160
 Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Arg Val Phe Asn Glu Gly
 165 170 175
 Met Lys Asn His Ser Ile Ile Ile Thr Lys Lys Leu Leu Glu Leu Tyr
 180 185 190
 His Gly Phe Gln Gly Leu Gly Thr Leu Val Asp Val Gly Gly Val
 195 200 205
 Gly Ala Thr Val Ala Ala Ile Ala Ala His Tyr Pro Ala Ile Lys Gly
 210 215 220
 Val Asn Phe Asp Leu Pro His Val Ile Ser Glu Ala Pro Gln Phe Pro
 225 230 235 240
 Gly Val Thr His Val Gly Gly Asp Met Phe Lys Glu Val Pro Ser Gly
 245 250 255
 Asp Ala Ile Leu Met Lys Trp Ile Leu His Asp Trp Ser Asp Gln His
 260 265 270
 Cys Ala Thr Leu Leu Lys Asn Cys Tyr Asp Ala Leu Pro Ala His Gly
 275 280 285
 Lys Val Val Leu Val Glu Cys Ile Leu Pro Val Asn Pro Glu Ala Lys
 290 295 300
 Pro Ser Ser Gln Gly Val Phe His Val Asp Met Ile Met Leu Ala His
 305 310 315 320
 Asn Pro Gly Gly Arg Glu Arg Tyr Glu Arg Glu Phe Glu Ala Leu Ala
 325 330 335

Arg Gly Ala Gly Phe Thr Gly Val Lys Ser Thr Tyr Ile Tyr Ala Asn
 340 345 350
 Ala Trp Ala Ile Glu Phe Thr Lys
 355 360

<210> 183
 <211> 543
 <212> PRT
 <213> *Lolium perenne*

<400> 183
 Met Val Gly Phe Ala Lys Ile Ala Met Glu Trp Ile Gln Asp Pro Leu
 1 5 10 15
 Ser Trp Leu Phe Ile Ala Ser Val Val Phe Val Val Leu Gln Arg Arg
 20 25 30
 Arg Arg Gly Asn Val Ala Pro Phe Pro Pro Gly Pro Lys Pro Leu Pro
 35 40 45
 Ile Val Gly Asn Met Ser Met Asp Gln Leu Thr His Arg Gly Leu
 50 55 60
 Ala Ala Leu Ala Lys Glu Tyr Gly Gly Leu Leu His Ile Arg Leu Gly
 65 70 75 80
 Lys Leu His Thr Phe Ala Val Ser Thr Pro Glu Tyr Ala Arg Glu Val
 85 90 95
 Leu Gln Val Gln Asp Gly Ala Phe Ser Asn Arg Pro Ala Thr Ile Ala
 100 105 110
 Ile Ala Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala His Tyr
 115 120 125
 Gly Pro Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys Leu Phe
 130 135 140
 Ser Arg Arg Arg Pro Glu Thr Trp Leu Ala Val Arg Asp Glu Ser Ala
 145 150 155 160
 Ala Leu Val Arg Ala Val Ala Arg Arg Thr Gly Glu Ser Val Asp Leu
 165 170 175
 Gly Glu Leu Ile Phe Lys Leu Thr Lys Asn Val Ile Phe Arg Ala Ala
 180 185 190
 Phe Gly Ala Gly Ala Val Ala Ala Asp Ala Glu Glu Gly Asp Gly Ala
 195 200 205
 Gly Lys Gln Asp Glu Phe Ile Ala Ile Leu Gln Glu Phe Ser Lys Leu
 210 215 220
 Phe Gly Ala Phe Asn Ile Gly Asp Phe Ile Pro Trp Leu Ser Trp Ala
 225 230 235 240
 Asp Pro Gln Gly Ile Asn Val Arg Leu Arg Ala Ala Arg Asn Ala Leu
 245 250 255
 Asp Glu Phe Ile Asp Lys Ile Ile Asp Glu His Met Glu Arg Gly Lys
 260 265 270
 Asn Pro Asp Asp Ala Asp Ala Asp Met Val Asp Asp Met Leu Ala Phe
 275 280 285
 Leu Pro Glu Ala Lys Pro Lys Lys Gly Ala Ala Gly Asp Gly Val Asp
 290 295 300
 Asp Leu Gln Asn Thr Leu Arg Leu Thr Arg Asp Asn Ile Lys Ala Ile
 305 310 315 320
 Ile Met Asp Val Met Phe Gly Gly Thr Glu Thr Val Ala Ser Ala Ile
 325 330 335
 Glu Trp Ala Met Ala Glu Met Met His Ser Pro Asp Asp Leu Arg Arg
 340 345 350
 Leu Gln Gln Glu Leu Val Asp Val Val Gly Leu Asp Arg Asn Val Asp
 355 360 365
 Glu Ser Asp Leu Asp Lys Leu Pro Phe Leu Lys Cys Val Ile Lys Glu
 370 375 380
 Thr Leu Arg Leu His Pro Pro Ile Pro Leu Leu Leu His Glu Thr Ala
 385 390 395 400
 Glu Asp Cys Val Val Gly Gly Tyr Ser Val Pro Arg Gly Ser Arg Val
 405 410 415
 Met Ile Asn Val Tyr Ala Ile Gly Arg Asp Arg Arg Ala Trp Lys Asp
 420 425 430
 Ala Asp Val Phe Arg Pro Ser Arg Phe Val Gln Gly Glu Glu Ala

435	440	445
Ala Gly Leu Asp Phe Lys Gly	Gly Cys Phe Glu Phe	Leu Pro Phe Gly
450	455	460
Ser Gly Arg Arg Ser Cys Pro	Gly Met Ala Leu Gly	Leu Tyr Ala Leu
465	470	475
Glu Leu Ala Val Ala Gln Leu	Ala His Gly Phe Ser	Trp Glu Leu Pro
485	490	495
Asp Gly Met Lys Pro Ser Glu	Leu Asp Met Ser Asp	Val Phe Gly Leu
500	505	510
Thr Ala Pro Arg Ala Thr Arg	Leu Phe Ala Val Pro	Thr Pro Arg Leu
515	520	525
Ala Cys Thr Gln Leu Leu Gly	Ala Asp Asp Ala Gly	Arg Gln Ala
530	535	540

<210> 184

<211> 713

<212> PRT

<213> Festuca arundinacea

<400> 184

Met Glu Cys Glu Asn Gly His Val Ala Ala Asn Gly Asp Gly	Leu Cys		
1	5	10	15
Val Ala Gln Pro Ala Arg Ala Asp Pro	Leu Asn Trp Gly	Lys Ala Ala	
20	25	30	
Glu Glu Leu Ser Gly Ser His	Leu Asp Ala Val Lys	Arg Met Val Glu	
35	40	45	
Glu Tyr Arg Arg Pro Val Val	Thr Met Glu Gly	Ala Ser Leu Thr Ile	
50	55	60	
Ala Met Val Ala Ala Val Ala Ala Gly	Ala Asp Thr Arg Val	Glu Leu	
65	70	75	80
Asp Glu Ser Ala Arg Gly Arg Val Lys	Glu Ser Ser Asp Trp	Val Met	
85	90	95	
Asn Ser Met Ala Asn Gly Thr Asp Ser	Tyr Gly Val Thr	Thr Gly Phe	
100	105	110	
Gly Ala Thr Ser His Arg Arg	Thr Lys Glu Gly	Gly Ala Leu Gln Arg	
115	120	125	
Glu Leu Ile Arg Phe Leu Asn Ala Gly	Ala Phe Gly	Thr Gly Ser Asp	
130	135	140	
Gly His Val Leu Pro Ala Ala Thr	Thr Arg Ala Ala Met	Leu Val Arg	
145	150	155	160
Val Asn Thr Leu Leu Gln Gly Tyr	Ser Gly Ile Arg	Phe Glu Ile Leu	
165	170	175	
Glu Thr Ile Ala Thr Leu Leu Asn	Ala Asn Val Thr	Pro Cys Leu Pro	
180	185	190	
Leu Arg Gly Thr Ile Thr Ala Ser	Gly Asp Leu Val	Pro Leu Ser Tyr	
195	200	205	
Ile Ala Gly Leu Val Thr Gly Arg	Pro Asn Ser Val	Ala Thr Ala Pro	
210	215	220	
Asp Gly Ser Lys Val Asn Ala Ala	Glu Ala Phe Lys	Ile Ala Gly Ile	
225	230	235	240
Gln His Gly Phe Phe Glu Leu Gln	Pro Lys Glu Gly	Leu Ala Met Val	
245	250	255	
Asn Gly Thr Ala Val Gly Ser	Gly Leu Ala Ser	Ile Val Leu Phe Glu	
260	265	270	
Ala Asn Ile Leu Gly Ile Leu	Ala Glu Val	Leu Ser Ala Val Phe Cys	
275	280	285	
Glu Val Met Asn Gly Lys	Pro Glu Tyr Thr Asp	His Leu Thr His Lys	
290	295	300	
Leu Lys His His Pro Gly	Gln Ile Glu Ala Ala	Ile Met Glu His	
305	310	315	320
Ile Leu Glu Gly Ser	Ser Tyr Met Met	Leu Ala Lys Lys Leu Gly Glu	
325	330	335	
Leu Asp Pro Leu Met Lys Pro	Lys Gln Asp Arg	Tyr Ala Leu Arg Thr	
340	345	350	
Ser Pro Gln Trp Leu Gly Pro	Gln Ile Glu Val	Ile Arg Ala Ala Thr	
355	360	365	

Lys Ser Ile Glu Arg Glu Ile Asn Ser Val Asn Asp Asn Pro Leu Ile
 370 375 380
 Asp Val Ser Arg Gly Lys Ala Ile His Gly Gly Asn Phe Gln Gly Thr
 385 390 395 400
 Pro Ile Gly Val Ser Met Asp Asn Thr Arg Leu Ala Ile Ala Ile
 405 410 415
 Gly Lys Leu Met Phe Ala Gln Phe Ser Glu Leu Val Asn Asp Phe Tyr
 420 425 430
 Asn Asn Gly Leu Pro Ser Asn Leu Ser Gly Gly Arg Asn Pro Ser Leu
 435 440 445
 Asp Tyr Gly Phe Lys Gly Ala Glu Ile Ala Met Ala Ser Tyr Cys Ser
 450 455 460
 Glu Leu Gln Phe Leu Gly Asn Pro Val Thr Asn His Val Gln Ser Ala
 465 470 475 480
 Glu Gln His Asn Gln Asp Val Asn Ser Leu Gly Leu Ile Ser Ser Arg
 485 490 495
 Lys Thr Ala Glu Ala Ile Asp Ile Leu Lys Leu Met Ser Ser Thr Phe
 500 505 510
 Met Val Ala Leu Cys Gln Ala Ile Asp Leu Arg His Ile Glu Glu Asn
 515 520 525
 Val Lys Asn Ala Val Lys Asn Cys Val Lys Thr Val Ala Arg Lys Thr
 530 535 540
 Leu Ser Thr Asn Asp Ser Gly His Leu His Asn Ala Arg Phe Cys Glu
 545 550 555 560
 Lys Asp Leu Leu Leu Thr Ile Asp Arg Glu Ala Val Phe Ala Tyr Ala
 565 570 575
 Asp Asp Pro Cys Ser Ala Asn Tyr Pro Leu Met Gln Lys Met Arg Ala
 580 585 590
 Val Leu Val Glu His Ala Leu Ala Asn Gly Glu Ala Glu Gln Asp Val
 595 600 605
 Gln Thr Ser Val Phe Ala Lys Leu Ala Thr Phe Glu Gln Glu Leu Arg
 610 615 620
 Ala Val Leu Pro Lys Glu Val Glu Ser Ala Arg Cys Ser Val Glu Asn
 625 630 635 640
 Gly Thr Ala Ala Gln Gln Asn Arg Ile Ser Glu Cys Arg Ser Tyr Pro
 645 650 655
 Leu Tyr Arg Phe Val Arg Lys Glu Leu Gly Thr Glu Tyr Leu Thr Gly
 660 665 670
 Glu Lys Thr Arg Ser Pro Gly Glu Glu Val Asp Lys Val Phe Val Ala
 675 680 685
 Met Asn Gln Gly Lys His Ile Asp Ala Leu Leu Glu Cys Leu Lys Glu
 690 695 700
 Trp Asn Gly Glu Pro Leu Pro Ile Cys
 705 710

<210> 185
 <211> 324
 <212> PRT
 <213> *Lolium perenne*

<400> 185
 Met Ala Pro Ala Thr Pro Lys Asp Ser Ser Ala Leu Pro Gly Leu Leu
 1 5 10 15
 Leu Leu Phe Ala Ala Ala Thr Ser Val Ala Val Ala Asn Ala Gln Leu
 20 25 30
 Ser Glu Asn Tyr Tyr Gly Ser Ser Cys Pro Thr Ala Leu Leu Thr Ile
 35 40 45
 Arg Thr Val Val Thr Thr Ala Val Leu Leu Asp His Arg Met Gly Ala
 50 55 60
 Ser Leu Leu Arg Leu His Phe His Asp Cys Phe Val Gln Gly Cys Asp
 65 70 75 80
 Ala Ser Val Leu Leu Asp Asp Thr Ala Gly Phe Thr Gly Glu Lys Gly
 85 90 95
 Ala Gly Pro Asn Ala Gly Ser Leu Arg Gly Leu Glu Val Ile Asp Lys
 100 105 110
 Ile Lys Met Leu Leu Glu Phe Met Cys Pro Arg Thr Val Ser Cys Ala

115	120	125
Asp Ile Leu Ala Val Ala Ala Arg Asp Ser Val Val Arg	Leu Gly Gly	
130	135	140
Pro Ser Trp Ala Val Gln Leu Gly Arg Arg Asp Ala Thr	Thr Ala Ser	
145	150	155
Ala Ser Leu Ala Ser Ser Asp Leu Pro Gly Pro Asn Ser	Asn Leu Asn	
165	170	175
Asp Leu Leu Thr Ala Phe Ser Lys Lys Gly Leu Ser Thr	Thr Asp Met	
180	185	190
Val Ala Leu Ser Gly Ala His Thr Ile Gly Arg Ala Gln	Cys Gln Asn	
195	200	205
Tyr Arg Asn Arg Ile Tyr Thr Asp Thr Asp Ile Asp Gly	Ala Phe Ala	
210	215	220
Ala Ser Leu Arg Gly Gly Cys Pro Gln Ala Gly Gly Asp	Gly Asn Leu	
225	230	235
Ala Pro Leu Asp Ala Ser Ser Pro Asn Thr Phe Asp Asn	Gly Tyr Phe	
245	250	255
Ser Gly Leu Leu Ser Arg Gln Gly Leu Leu His Ser Asp	Gln Ala Leu	
260	265	270
Tyr Asp Gly Gly Ser Thr Asp Asp Leu Val Arg Thr Tyr	Ala Ser Asn	
275	280	285
Asn Asp Gln Phe Gly Ser Asp Phe Ala Ala Ala Met Val	Lys Leu Ser	
290	295	300
Asn Ile Gly Leu Leu Thr Gly Ser Ser Gly Glu Ile Arg	Val Asn Cys	
305	310	315
Arg Ala Val Asn		320

<210> 186

<211> 398

<212> PRT

<213> Lolium perenne

<400> 186

Met Ala Ala Thr Met Thr Val Glu Glu Val Arg Lys Ala Gln Arg Ala			
1	5	10	15
Glu Gly Pro Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Ala Asn			
20	25	30	
Cys Val Tyr Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Lys Ile Thr Lys			
35	40	45	
Ser Asp His Leu Ala Asp Leu Lys Glu Lys Phe Lys Arg Met Cys Asp			
50	55	60	
Lys Ser Gln Ile Arg Lys Arg Tyr Met His Leu Thr Glu Glu Ile Leu			
65	70	75	80
Glu Glu Asn Pro Asn Met Cys Ala Tyr Met Ala Pro Ser Leu Asp Ala			
85	90	95	
Arg Gln Asp Ile Val Val Val Glu Val Pro Lys Leu Gly Lys Ala Ala			
100	105	110	
Ala Gln Lys Ala Ile Lys Glu Trp Gly Gln Pro Arg Ser Lys Ile Thr			
115	120	125	
His Leu Val Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp			
130	135	140	
Tyr Gln Leu Thr Lys Met Leu Gly Leu Arg Pro Ser Val Lys Arg Leu			
145	150	155	160
Met Met Tyr Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu			
165	170	175	
Ala Lys Asp Leu Ala Glu Asn Asn Arg Gly Ala Arg Val Leu Val Val			
180	185	190	
Cys Ser Glu Ile Thr Ala Val Thr Phe Arg Gly Pro His Glu Ser His			
195	200	205	
Leu Asp Ser Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala			
210	215	220	
Val Ile Ile Gly Ala Asp Pro Asp Val Ser Val Glu Arg Pro Leu Phe			
225	230	235	240
Gln Leu Val Ser Ala Ser Gln Thr Ile Leu Pro Asp Ser Glu Gly Ala			
245	250	255	

Ile Asp Gly His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys
 260 265 270
 Asp Val Pro Gly Leu Ile Ser Lys Asn Ile Glu Arg Ala Leu Glu Glu
 275 280 285
 Ala Phe Lys Pro Leu Gly Ile Asp Asp Trp Asn Ser Val Phe Trp Val
 290 295 300
 Ala His Pro Gly Gly Pro Ala Ile Leu Asp Met Val Glu Ala Lys Val
 305 310 315 320
 Asn Leu Asn Lys Glu Arg Met Arg Ala Thr Arg His Val Leu Ser Glu
 325 330 335
 Tyr Gly Asn Met Ser Ser Ala Cys Val Leu Phe Ile Met Asp Glu Met
 340 345 350
 Arg Lys Arg Ser Ala Glu Asp Gly His Thr Thr Thr Gly Glu Gly Met
 355 360 365
 Asp Trp Gly Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr
 370 375 380
 Val Val Leu His Ser Met Pro Ile Ala Ala Asp Ala Thr Ala
 385 390 395

<210> 187

<211> 370

<212> PRT

<213> Festuca arundinacea

<400> 187
 Met Lys Gln Glu Val Lys Ser Glu Met Asn Gly Glu Thr Met Ser Gly
 1 5 10 15
 Asn Lys Gly Pro Val Val Val Thr Gly Ala Ser Gly Phe Val Gly Ser
 20 25 30
 Trp Leu Val Met Lys Leu Leu Gln Ala Gly Tyr Thr Val Arg Ala Thr
 35 40 45
 Val Arg Asp Pro Gly Asn Val Glu Lys Thr Lys Pro Leu Leu Glu Leu
 50 55 60
 Pro Gly Ala Lys Glu Arg Leu Ser Ile Trp Arg Ala Asp Leu Ser Glu
 65 70 75 80
 Glu Gly Ser Phe Asp Glu Ala Ile Ala Gly Cys Thr Gly Val Phe His
 85 90 95
 Val Ala Thr Pro Met Asp Phe Glu Ser Lys Asp Pro Glu Asn Glu Val
 100 105 110
 Ile Lys Pro Thr Val Glu Gly Met Leu Ser Ile Met Arg Ala Cys Lys
 115 120 125
 Glu Ala Gly Thr Val Lys Arg Val Val Phe Thr Ser Ser Ala Gly Thr
 130 135 140
 Val Asn Ile Glu Glu Arg Pro Arg Pro Ala Tyr Asp Gln Asp Asn Trp
 145 150 155 160
 Ser Asp Ile Asp Phe Cys Arg Arg Val Lys Met Thr Gly Gln Met Tyr
 165 170 175
 Phe Val Ser Lys Ser Leu Ala Glu Lys Ala Ala Met Asp Tyr Ala Lys
 180 185 190
 Glu Asn Gly Val Asp Phe Ile Ser Ile Ile Pro Thr Leu Val Val Gly
 195 200 205
 Pro Phe Leu Ser Ala Gly Met Pro Pro Ser Leu Val Thr Ala Leu Ala
 210 215 220
 Leu Ile Thr Gly Asn Glu Ala His Tyr Ser Ile Leu Lys Gln Val Gln
 225 230 235 240
 Leu Val His Leu Asp Asp Leu Cys Asp Ser Met Thr Tyr Leu Phe Glu
 245 250 255
 His Pro Asp Ala Asn Gly Arg Tyr Ile Cys Ser Ser His Asp Thr Thr
 260 265 270
 Ile His Gly Ile Ala Arg Met Leu Lys Glu Arg Phe Pro Glu Tyr Asp
 275 280 285
 Ile Pro Gln Lys Phe Pro Gly Val Asp Asp Asp Leu Gln Pro Ile His
 290 295 300
 Phe Phe Phe Lys Lys Leu Leu Asp His Gly Phe Arg Phe Arg Tyr Thr
 305 310 315 320
 Ala Glu Asp Met Phe Asp Ala Ala Val Trp Thr Cys Arg Glu Lys Gly

325	330	335
Leu Ile Pro Leu Gly Ala Glu Gly Ala	Gly Gly Pro Ala Ser Ala Ala	
340	345	350
Gly Lys Leu Gly Ala Val Leu Val	Gly Glu Gly Gln Ala Ile Gly Ala	
355	360	365
Glu Thr		
370		
<210> 188		
<211> 329		
<212> PRT		
<213> Lolium perenne		
<400> 188		
Met Ala Thr Glu Ala Lys Gly Glu Thr Val Leu Val Thr Gly Ala Ser		
1	5	10
Gly Phe Ile Gly Ser Trp Leu Val Arg Leu Leu Ala Arg Gly Tyr		
20	25	30
Ser Val His Ala Ala Val Leu Asn Pro Asp Asp Lys Ala Glu Thr Asp		
35	40	45
His Leu Leu Ala Leu Ala Ala Ala Gly Asp Glu Gly Arg Ile Arg		
50	55	60
Phe Phe Arg Cys Asp Leu Leu Asp Gly Ala Ala Met Leu Ala Ala Val		
65	70	75
Arg Gly Cys Ser Gly Val Phe His Leu Ala Ser Pro Cys Thr Val Asp		
85	90	95
Leu Val Leu Asp Pro Gln Lys Glu Leu Val Val Pro Ala Val Glu Gly		
100	105	110
Thr Leu Asn Val Leu Arg Ala Ala Lys Glu Ala Gly Gly Val Arg Arg		
115	120	125
Val Val Val Thr Ser Ser Val Ser Ala Leu Val Pro Cys Pro Gly Trp		
130	135	140
Pro Ala Gly Glu Val Leu Asp Glu Arg Cys Trp Thr Asp Ile Asp Tyr		
145	150	155
Cys Asp Lys Asn Gly Val Trp Tyr Pro Ala Ser Lys Ala Leu Ala Glu		
165	170	175
Lys Ala Ala Trp Lys Phe Ala Glu Glu Asn Gly Leu Asp Val Val Thr		
180	185	190
Val Asn Pro Gly Thr Val Leu Gly Glu Met Ile Pro Pro Arg Leu Asn		
195	200	205
Ala Ser Met Ala Met Phe Leu Arg Leu Leu Glu Gly Cys Lys Glu Glu		
210	215	220
Tyr Ala Asp Phe Phe Ile Gly Pro Val His Val Glu Asp Val Ala Leu		
225	230	235
Ala His Ile Leu Leu Tyr Glu Asn Pro Ser Ala Ser Gly Arg His Leu		
245	250	255
Cys Val Glu Pro Ile Cys His Trp Ser Val Phe Ala Ala Lys Val Ala		
260	265	270
Glu Leu Tyr Pro Asp Tyr Lys Val Pro Lys Phe Pro Glu Asp Thr Gln		
275	280	285
Pro Gly Leu Val Arg Ala Glu Ala Val Pro Lys Lys Leu Met Ala Leu		
290	295	300
Gly Leu Gln Phe Thr Pro Leu Glu Lys Ile Ile Arg Asp Ala Val Glu		
305	310	315
Ser Leu Lys Ser Arg Gly Cys Ile Ala		
325		

<210> 189

<211> 330

<212> PRT

<213> Lolium perenne

<400> 189

Met Val Ser Ser Thr Lys Gly Lys Val Cys Val Thr Gly Ala Ser Gly

1

5

10

15

Phe Val Ala Ser Trp Leu Ile Lys Lys Leu Leu Glu Ser Gly Tyr His

20	25	30	
Val Ile Gly Thr Val Arg Asp Pro Gly Asn Arg Arg Lys Val Gly His			
35	40	45	
Leu Trp Lys Leu Pro Gly Ala Asn Glu Arg Leu Gln Leu Val Arg Ala			
50	55	60	
Asp Leu Leu Glu Glu Gly Ser Phe Asp Asp Ala Val Arg Ala Cys Glu			
65	70	75	80
Gly Val Phe His Ile Ala Ser Pro Val Leu Gly Lys Ser Asp Ser Asn			
85	90	95	
Cys Lys Glu Ala Thr Leu Gly Pro Ala Ile Asn Gly Thr Leu Asn Val			
100	105	110	
Leu Arg Ser Cys Lys Ser Pro Phe Leu Lys Arg Val Val Leu Thr			
115	120	125	
Ser Ser Ser Ala Val Arg Ile Arg Asp Glu Thr Gln Gln Pro Glu			
130	135	140	
Leu Leu Trp Asp Glu Thr Thr Trp Ser Ser Val Pro Leu Cys Glu Lys			
145	150	155	160
Leu Gln Leu Trp Tyr Ala Leu Ala Lys Val Phe Ala Glu Lys Ala Ala			
165	170	175	
Leu Asp Phe Ala Lys Glu Asn Asn Ile Asp Leu Val Thr Val Leu Pro			
180	185	190	
Ser Phe Val Ile Gly Pro Ser Leu Ser His Glu Leu Cys Thr Thr Ala			
195	200	205	
Ser Asp Ile Leu Gly Leu Leu Gln Gly Asp Thr Asp Arg Phe Thr Leu			
210	215	220	
Tyr Gly Arg Met Gly Tyr Val His Ile Asp Asp Val Ala Arg Ser His			
225	230	235	240
Ile Leu Val Tyr Glu Thr Pro Glu Ala Thr Gly Arg Tyr Leu Cys Ser			
245	250	255	
Ser Val Val Leu Asp Asn Asn Glu Leu Val Gly Leu Leu Ala Lys Gln			
260	265	270	
Phe Pro Val Phe Pro Ile Pro Arg Arg Leu Lys Asn Pro Tyr Gly Lys			
275	280	285	
Gln Ala Tyr Gln Leu Asp Thr Ser Lys Leu Gln Gly Leu Gly Leu Lys			
290	295	300	
Phe Lys Gly Val Gln Glu Met Phe Asn Asp Cys Val Glu Ser Leu Lys			
305	310	315	320
Asp Gln Gly His Leu Leu Glu Cys Pro Leu			
325	330		

<210> 190

<211> 326

<212> PRT

<213> Lolium perenne

<400> 190

Met Ala Pro Ala Thr Pro Lys Asp Ser Ser Ser Ala Leu Pro Gly			
1	5	10	15
Leu Leu Leu Leu Ala Ala Ala Thr Ser Val Ala Val Ala Asn Ala			
20	25	30	
Gln Leu Ser Glu Asn Tyr Tyr Gly Ser Ser Cys Pro Thr Ala Leu Leu			
35	40	45	
Thr Ile Arg Thr Val Val Thr Thr Ala Val Leu Leu Asp His Arg Met			
50	55	60	
Gly Ala Ser Leu Leu Arg Leu His Phe His Asp Cys Phe Val Gln Gly			
65	70	75	80
Cys Asp Ala Ser Val Leu Leu Asp Asp Thr Ala Gly Phe Thr Gly Glu			
85	90	95	
Lys Gly Ala Gly Pro Asn Ala Gly Ser Leu Arg Gly Leu Glu Val Ile			
100	105	110	
Asp Lys Ile Lys Met Leu Leu Glu Phe Met Cys Pro Arg Thr Val Ser			
115	120	125	
Cys Ala Asp Ile Leu Ala Val Ala Ala Arg Asp Ser Val Val Arg Leu			
130	135	140	
Gly Gly Pro Ser Trp Ala Val Gln Leu Gly Arg Arg Asp Ala Thr Thr			
145	150	155	160

Ala Ser Ala Ser Leu Ala Ser Ser Asp Leu Pro Gly Pro Asn Ser Asn
165 170 175
Leu Asn Asp Leu Leu Thr Ala Phe Ser Lys Lys Gly Leu Ser Thr Thr
180 185 190
Asp Met Val Ala Leu Ser Gly Ala His Thr Ile Gly Arg Ala Gln Cys
195 200 205
Gln Asn Tyr Arg Asn Arg Ile Tyr Thr Asp Thr Asp Ile Asp Gly Ala
210 215 220
Phe Ala Ala Ser Leu Arg Gly Gly Cys Pro Gln Ala Gly Gly Asp Gly
225 230 235 240
Asn Leu Ala Pro Leu Asp Ala Ser Ser Pro Asn Thr Phe Asp Asn Gly
245 250 255
Tyr Phe Ser Gly Leu Leu Ser Arg Gln Gly Leu Leu His Ser Asp Gln
260 265 270
Ala Leu Tyr Asp Gly Gly Ser Thr Asp Asp Leu Val Arg Thr Tyr Ala
275 280 285
Ser Asn Asn Asp Gln Phe Gly Ser Asp Phe Ala Ala Ala Met Val Lys
290 295 300
Leu Ser Asn Ile Gly Leu Leu Thr Gly Ser Ser Gly Glu Ile Arg Val
305 310 315 320
Asn Cys Arg Ala Val Asn
325

<210> 191

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Made in the lab

<400> 191

catatggata agctcaatgg ttctgc

26

<210> 192

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Made in the lab

<400> 192

cggttagagat ccagtctaga g

21

<210> 193

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Made in the lab

<400> 193

tacatatgct gcacgagaag ttctacag

28

<210> 194

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Made in the lab

<400> 194	
ccacggctaa ctaatggttc a	21
<210> 195	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 195	
tacatatgaa aggttctggg ctgtccgtc	29
<210> 196	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 196	
ctagttcacc ttggagcagt tg	22
<210> 197	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 197	
gcagacggcg gtctactt	18
<210> 198	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 198	
aaatgcaagt gacccaacgt tac	23
<210> 199	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 199	
tcatgacgat tccaagaacg	20
<210> 200	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	

<400> 200	
gttgaccgtg actcgtcgt	19
<210> 201	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 201	
actgaattct cggtcccagc ctccatt	27
<210> 202	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 202	
gtagcggccg cgcgaaaact cgtcggaga	29
<210> 203	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 203	
gctgaattcc tccgatggct ctctgac	27
<210> 204	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 204	
atgcggccgc aagtccaaatc ggccacac	28
<210> 205	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 205	
tatgaattcg gcgccgacgc cggca	25
<210> 206	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	

<400> 206	
atgcggccgc gcaacatgct agcacaa	27
<210> 207	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 207	
aaacagaagt agcggcggc	19
<210> 208	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 208	
ggtcgttagaa ggacttgg	18
<210> 209	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 209	
cgccttcatac ttcaagac	18
<210> 210	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 210	
agccctggcg taaatgg	17
<210> 211	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	
<400> 211	
gacgcaagga gagatccaga	20
<210> 212	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Made in the lab	

<400> 212
agacgaggtg ggtgatcttg 20
<210> 213
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 213
tccatcctct tcacccactc 20
<210> 214
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 214
ggcagcggtt tctttattca 20
<210> 215
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 215
ggccatgttt cttcgcttac 20
<210> 216
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 216
ctacgacgga agggtgacat 20
<210> 217
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 217
gtggacatgg accagaaggt 20
<210> 218
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Made in the lab

<400> 218
cggtacatct cggtgaaggt

20