Language & Logic 2017/18

Assignment 3 – Solutions Predicate Calculus

Model solutions are given below. For proofs, note that these are not unique (and not necessarily the best or the shortest ones possible!).

- 1. We use the following predicates:
 - F(x) = x speaks French, D(x) = x speaks German, H(x) = x speaks Hebrew
 - L(x,y) = x loves y

and the constant symbols:

- b = Bella
- c = Claire
- d = Daisy
- (a) If everyone who speaks French also speaks German and at least one person does not speak German, then somebody does not speak French.

$$(\forall x [F(x) \to G(x)] \land \exists x [\neg G(x)]) \to \exists x [\neg F(x)]$$

(b) Everyone who loves Bella also loves either Claire or Daisy, and none of them speak French, but at least one person who loves Daisy speaks German.

$$\forall x [L(x,b) \to (L(x,c) \lor L(x,d))] \land (\neg F(b) \land \neg F(c) \land \neg F(d)) \land \exists x [L(x,d) \land G(x)]$$

(c) If everyone either speaks French or loves Daisy, and Bella speaks neither French nor German, then somebody must love Daisy.

$$(\forall x [F(x) \lor L(x,d)] \land (\neg F(b) \land \neg G(b))) \rightarrow \exists x [L(x,d)]$$

(d) Everybody speaks French, except for the single person who speaks German and Hebrew.

$$\exists x [(G(x) \land H(x)) \land \forall y [(G(y) \land H(y)) \to (x = y)] \land \forall y [\neg (x = y) \to F(x)]]$$

2. Parts (a) and (c) from Question 1 are valid theorems. Proofs of validity are given below.

1.	$\forall x [F(x) \to G(x)] \land \exists x [\neg G(x)]$	Hypothesis	{1}
2.	$\forall x [F(x) \to G(x)]$	\land -elimination ₁	{1}
3.	$\exists x [\neg G(x)]$	\land -elimination ₁	{1}
4.	$\neg G(a)$	Hypothesis	$\{4\}$
5.	$F(a) \to G(a)$	\forall -elimination ₂	{1}
6.	F(a)	Hypothesis	$\{6\}$
7.	G(a)	\rightarrow -elimination _{5,6}	$\{1,6\}$
8.		\land -introduction _{7,4}	$\{1,4,6\}$
9.	$\neg F(a)$	\neg -introduction _{6,8}	$\{1,\!4\}$
10.	$\exists x [\neg F(x)]$	\exists -introduction ₉	$\{1,\!4\}$
11.	$\exists x [\neg F(x)]$	\exists -elimination _{3,4,10}	$\{1\}$
12.	$(\forall x [F(x) \to G(x)] \land \exists x [\neg G(x)]) \to \exists x [\neg F(x)]$	\rightarrow -introduction _{1,11}	{}

Language & Logic 2017/18

1.	$\forall x [F(x) \lor L(x,d)] \land (\neg F(b) \land \neg G(b))$	Hypothesis	{1}
2.	$\forall x [F(x) \lor L(x,d)]$	\wedge -elimination ₁	{1}
3.	$\neg F(b) \land \neg G(b)$	\wedge -elimination ₁	{1}
4.	$\neg F(b)$	\land -elimination ₃	{1}
5.	$F(b) \lor L(b,d)$	\forall -elimination ₂	{1}
6.	F(b)	Hypothesis	$\{6\}$
7.	eg L(b,d)	Hypothesis	$\{7\}$
8.		\land -introduction _{6,4}	$\{1,6\}$
9.	$\neg \neg L(b,d)$	\neg -introduction _{7,8}	$\{1,6\}$
10.	L(b,d)	$\neg\neg$ -elimination ₉	$\{1,6\}$
11.	L(b,d)	Hypothesis	$\{11\}$
12.	L(b,d)	\vee -elimination _{5,6,10,11,11}	$\{1\}$
13.	$\exists x[L(x,d)]$	\exists -introduction ₁₂	$\{1\}$
14.	$(\forall x [F(x) \lor L(x,d)] \land (\neg F(b) \land \neg G(b))) \rightarrow \exists x [L(x,d)]$	\rightarrow -introduction _{1,13}	{}

3. The proposed equality is:

$$\forall x[\exists y[F(y) \land \neg G(x,y)]] \equiv \forall x[\neg \forall y[\neg F(y) \land G(x,y)]]$$

and we consider each direction separately.

The \rightarrow direction is valid. A proof of validity is given below.

1.	$\forall x[\exists y[F(y) \land \neg G(x,y)]]$	Premise	{1}
2.	$\exists y [F(y) \land \neg G(a,y)]$	\forall -elimination ₁	{1}
3.	$F(b) \wedge \neg G(a,b)$	Hypothesis	$\{3\}$
4.	$\forall y[\neg F(y) \land G(a,y)]$	Hypothesis	$\{4\}$
5.	$\neg F(b) \wedge G(a,b)$	\forall -elimination ₄	$\{4\}$
6.	$ \neg F(b)$	\land -elimination ₅	$\{4\}$
7.		\land -elimination ₃	$\{3\}$
8.		\land -introduction _{7,6}	${3,4}$
9.	$\neg \forall y [\neg F(y) \land G(a,y)]$	\neg -introduction _{4,8}	$\{3\}$
10.	$\neg \forall y [\neg F(y) \land G(a,y)]$	\exists -elimination _{3,9}	{1}
11.	$\forall x [\neg \forall y [\neg F(y) \land G(x,y)]]$	\forall -introduction ₁₀	{1}

The \leftarrow direction is *invalid*.

A counterexample is the interpretation that a single constant a, where F(a) = true and G(a, a) = true. This makes the right-hand side true and the left-hand side false.

Language & Logic 2017/18

4. The proposed equality is:

$$\forall x [\exists y [L(y,x) \land \forall z [L(z,x) \to (y=z)]]] \ \land \ \exists x [L(x,x)] \ \equiv \ \exists x [\neg \exists y [L(y,x) \land \neg (x=y)]]$$

and we consider each direction separately.

The \rightarrow direction is valid. A proof of validity is given below.

1. 2. 3. 4. 5.	$ \forall x [\exists y [L(y,x) \land \forall z [L(z,x) \to (y=z)]]] \land \exists x [L(x,x) \\ \forall x [\exists y [L(y,x) \land \forall z [L(z,x) \to (y=z)]]] \\ \exists x [L(x,x)] \\ L(a,a) \\ \exists y [L(y,a) \land \neg (a=y)] $	$egin{array}{ll} & \operatorname{Premise} \\ & \wedge \operatorname{-elimination_1} \\ & - & \operatorname{Hypothesis} \\ & - & \operatorname{Hypothesis} \end{array}$	{1} {1} {1} {4} {5}
6.	$L(b,a) \land \neg (a=b)$	Hypothesis	{6}
7.	L(b,a)	\land -elimination ₆	{6 }
8.	$\neg (a=b)$	\land -elimination ₆	$\{6\}$
9.	$\exists y [L(y,a) \land \forall z [L(z,a) \to (y=z)]]$	\forall -elimination ₂	{1}
10.	$L(c,a) \land \forall z [L(z,a) \to (c=z)]$	Hypothesis	$\{10\}$
11.	$\forall z[L(z,a) \to (c=z)]$	\land -elimination ₁₀	{10}
12.		\forall -elimination ₁₁	{10}
13.	c = b	\rightarrow -elimination _{12,7}	$\{6,10\}$
14.		\forall -elimination ₁₁	{10}
15.	$ \mid \mid c = a $	\rightarrow -elimination _{14,4}	$\{4,10\}$
16.	a = b	=-elimination _{15,13}	$\{4,6,10\}$
17.		\land -introduction _{16,8}	$\{4,6,10\}$
18.		\exists -elimination _{9,10,17}	$\{1,4,6\}$
19.		\exists -elimination _{5,6,18}	$\{1,4,5\}$
20.	$\neg \exists y [L(y, a) \land \neg (a = y)]$	\neg -introduction _{5.19}	$\{1,4\}$
21.	$\neg \exists y [L(y,a) \land \neg (a=y)]$	\exists -elimination _{3,4,20}	{1}
22.	$\exists x [\neg \exists y [L(y,x) \land \neg (x=y)]]$	\exists -introduction ₂₁	$\{1\}$

The \leftarrow direction is *invalid*.

A counterexample is the interpretation that a single constant a, where L(a, a) = false. This makes the right-hand side true and the left-hand side false.