Image Formation, Camera Model and Calibration

Ying Wu

Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208

yingwu@northwestern.edu

http://www.eecs.northwestern.edu/~yingwu

Outline

Pinhole Camera Model

Coordinate Transformations

Homogeneous Coordinates Rigid Transformation Summary

Image Formation (Geometrical)

Camera Calibration

The Setting of the Problem
Computing the Projection Matrix
Computing Intrinsic and Extrinsic Parameters
Questions to Think Over

Perspective Projection

► A pinhole camera

Perspective projection

$$\begin{cases} x' = f'x/z \\ y' = f'y/z \end{cases} \tag{1}$$

▶ Thin lenses cameras has the same geometry.

Orthographic Projection

- the camera remains at a roughly constant distance from the scene
- ▶ the scene centers the optic axis
- orthographic projection:

$$\begin{cases} x' = x \\ y' = y \end{cases} \tag{2}$$

Weak Perspective Projection

- when the depth of the scene if "flat"
- ▶ a linear approximation to the perspective projection

$$\begin{cases} x' = (f'/z_0)x \\ y' = (f'/z_0)y \end{cases}$$
 (3)

also called scaled-orthographic projection.

Outline

Pinhole Camera Model

Coordinate Transformations

Homogeneous Coordinates Rigid Transformation Summary

Image Formation (Geometrical)

Camera Calibration

The Setting of the Problem
Computing the Projection Matrix
Computing Intrinsic and Extrinsic Parameters
Questions to Think Over

Homogeneous Coordinates

- ▶ A 3D point is $\mathbf{P} = [x \ y \ z]^T$ and a plane ax + by + cz d = 0.
- ▶ Homogeneous coordinates unify points and lines.
- ▶ for points:

$$\mathbf{P} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

for planes:

$$\Pi = \left(egin{array}{c} a \\ b \\ c \\ -d \end{array}
ight),$$

where the plane Π is defined up to a scale.

► We have

$$\mathbf{\Pi} \cdot \mathbf{P} = 0$$

Translation and Rotation

- "Craig notation". FP means point P in frame F.
- ▶ Translation

$${}^{B}\mathbf{P} = {}^{A}\mathbf{P} + {}^{B}\mathbf{O}_{A} \tag{4}$$

where B **O**_A is the coordinate of the origin **O**_A of frame A in the new coordinate system B.

Rotation

$${}_{A}^{B}\mathbf{R} = ({}^{B}\mathbf{i}_{A} {}^{B}\mathbf{j}_{A} {}^{B}\mathbf{k}_{A}) = \begin{pmatrix} {}^{A}\mathbf{i}_{B}^{T} \\ {}^{A}\mathbf{j}_{B}^{T} \\ {}^{A}\mathbf{k}_{B}^{T} \end{pmatrix}$$
(5)

where ${}^{B}\mathbf{i}_{A}$ is the coordinate of the axis \mathbf{i}_{A} of frame A in the new coordinate system B.

► Then we have,

$${}^{B}\mathbf{P} = {}^{B}_{A} \mathbf{R}^{A}\mathbf{P}$$

Rigid Transformation

$${}^{B}\mathbf{P} = {}^{B}_{A} \mathbf{R}^{A}\mathbf{P} + {}^{B}\mathbf{O}_{A}$$
 (6)

▶ If we make two consecutive rigid transformation, i.e., from $A \rightarrow B \rightarrow C$, then:

$$^{C}\mathbf{P} = _{B}^{C} \mathbf{R} (_{A}^{B} \mathbf{R}^{A} \mathbf{P} + _{B}^{B} \mathbf{O}_{A}) + _{C}^{C} \mathbf{O}_{B} = _{B}^{C} \mathbf{R}_{A}^{B} \mathbf{R}^{A} \mathbf{P} + (_{B}^{C} \mathbf{R}^{B} \mathbf{O}_{A} + _{C}^{C} \mathbf{O}_{B})$$

- It looks very awkward.
- Homogeneous coordinates make it concise.

$$\begin{bmatrix} {}^{B}\mathbf{P} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{B}\mathbf{R} & {}^{B}\mathbf{O}_{A} \\ \mathbf{0}^{T} & 1 \end{bmatrix} \begin{bmatrix} {}^{A}\mathbf{P} \\ 1 \end{bmatrix}$$

and

$$\begin{bmatrix} {}^{\mathsf{C}}\mathbf{P} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{\mathsf{C}}_{B}\mathbf{R} & {}^{\mathsf{C}}\mathbf{O}_{B} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}\mathbf{P} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} {}^{\boldsymbol{C}}\boldsymbol{\mathsf{P}} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{\boldsymbol{C}}_{\boldsymbol{B}}\boldsymbol{\mathsf{R}} & {}^{\boldsymbol{C}}\boldsymbol{\mathsf{O}}_{\boldsymbol{B}} \\ \boldsymbol{\mathsf{0}}^{\,\boldsymbol{T}} & 1 \end{bmatrix} \begin{bmatrix} {}^{\boldsymbol{B}}_{\boldsymbol{A}}\boldsymbol{\mathsf{R}} & {}^{\boldsymbol{B}}\boldsymbol{\mathsf{O}}_{\boldsymbol{A}} \\ \boldsymbol{\mathsf{0}}^{\,\boldsymbol{T}} & 1 \end{bmatrix} \begin{bmatrix} {}^{\boldsymbol{A}}\boldsymbol{\mathsf{P}} \\ 1 \end{bmatrix}$$

Summary

Projective transformation

$$T = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix}$$

Affine transformation

$$\mathcal{T} = egin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^{\mathcal{T}} & 1 \end{bmatrix}$$

▶ Euclidean transformation, if $\mathbf{A} = \mathbf{R}$, i.e., a rotation matrix $(\mathbf{R}^T \mathbf{R} = \mathbf{I})$,

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

Q: what are preserved under these transformations?

Outline

Pinhole Camera Model

Coordinate Transformations

Homogeneous Coordinates Rigid Transformation Summary

Image Formation (Geometrical)

Camera Calibration

The Setting of the Problem
Computing the Projection Matrix
Computing Intrinsic and Extrinsic Parameters
Questions to Think Over

Geometric Image Formation

- Relation between 3D coordinates and image coordinates?
- ► For a 3D point $\mathbf{p}^w = [x^w, y^w, z^w]^T$ in the world coordinate system (W), it is mapped to a camera coordinate system (C), then to the physical image plane, and then the image coordinates $[u, v]^T$.

Transformation Concatenation

- ▶ Normalized image plane: located at the focal length f = 1.
- ▶ The pinhole (c) is mapped to the origin of the image plane (\hat{c}) , and \mathbf{p} is mapped to $\hat{\mathbf{p}} = [\hat{u}, \hat{v}]^T$.

$$\hat{\mathbf{p}} = \begin{bmatrix} \hat{u} \\ \hat{v} \\ 1 \end{bmatrix} = \frac{1}{z^c} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}^c \\ 1 \end{bmatrix} = \frac{1}{z^c} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} x_c \\ y^c \\ z^c \\ 1 \end{bmatrix}$$

And we also have

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z^c} \begin{bmatrix} kf & 0 & u_0 \\ 0 & lf & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x^c \\ y^c \\ z^c \end{bmatrix} = \frac{1}{z^c} \begin{bmatrix} kf & 0 & u_0 \\ 0 & lf & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} x^c \\ y^c \\ z^c \\ 1 \end{bmatrix}$$

Intrinsic and Extrinsic Parameters

- ▶ Let $\alpha = kf$ and $\beta = lf$.
- ▶ intrinsic parameters: α, β, u_0 and v_0 intrinsic parameters.

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z^c} \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x^c \\ y^c \\ z^c \\ 1 \end{bmatrix} = \frac{1}{z^c} \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} x^w \\ y^w \\ z^w \\ 1 \end{bmatrix}$$

extrinsic parameters: R and t, i.e., the camera pose.

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z^c} \mathbf{M_1} \mathbf{M_2} \mathbf{p}^w = \frac{1}{z^c} \mathbf{M} \mathbf{p}^w \tag{7}$$

▶ We call **M** the projection matrix.

Outline

Pinhole Camera Model

Coordinate Transformations
Homogeneous Coordinates
Rigid Transformation
Summary

Image Formation (Geometrical)

Camera Calibration

The Setting of the Problem Computing the Projection Matrix Computing Intrinsic and Extrinsic Parameters Questions to Think Over

The Setting of the Problem

- We are given:
 - a calibration rig, i.e., a reference object, to provide the world coordinate system
 - ▶ an image of the reference object.
- ► The problem is to solve:
 - ▶ the projection matrix,
 - the intrinsic and extrinsic parameters.
- ► Mathematically,
 - given: $[x_i^w, y_i^w, z_i^w]^T$, i = 1, ..., n, and $[u_i, v_i]^T$, i = 1, ..., n
 - \blacktriangleright to solve: \mathbf{M}_1 and \mathbf{M}_2 , s.t.,

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \frac{1}{z_i^c} \mathbf{M}_1 \mathbf{M}_2 \begin{bmatrix} x_i^w \\ y_i^w \\ z_i^w \\ 1 \end{bmatrix} = \frac{1}{z_i^c} \mathbf{M} \begin{bmatrix} x_i^w \\ y_i^w \\ z_i^w \\ 1 \end{bmatrix}, \quad \forall i$$

Computing the Projection Matrix

$$z_{i}^{c} \begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} x_{i}^{w} \\ y_{i}^{w} \\ z_{i}^{w} \\ 1 \end{bmatrix}$$

We can write

$$z_{i}^{c} u_{i} = m_{11}x_{i}^{w} + m_{12}y_{i}^{w} + m_{13}z_{i}^{w} + m_{14}$$

$$z_{i}^{c} v_{i} = m_{21}x_{i}^{w} + m_{22}y_{i}^{w} + m_{23}z_{i}^{w} + m_{24}$$

$$z_{i}^{c} = m_{31}x_{i}^{w} + m_{32}y_{i}^{w} + m_{33}z_{i}^{w} + m_{34}$$

▶ Then

$$x_i^w m_{11} + y_i^w m_{12} + z_i^w m_{13} + m_{14} - u_i x_i^w m_{31} - u_i y_i^w m_{32} - u_i z_i^w m_{33} = u_i m_{34}$$

$$x_i^w m_{21} + y_i^w m_{22} + z_i^w m_{23} + m_{24} - v_i x_i^w m_{31} - v_i y_i^w m_{32} - v_i z_i^w m_{33} = v_i m_{34}$$

Least Squares Solution to the Projection Matrix

► Then,

$$\begin{bmatrix} x_1^w & y_1^w & z_1^w & 1 & 0 & 0 & 0 & -u_1x_1^w & -u_1y_1^w & -u_1z_1^w \\ 0 & 0 & 0 & 0 & x_1^w & y_1^w & z_1^w & 1 & -v_1x_1^w & -v_1y_1^w & -v_1z_1^w \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ x_n^w & y_n^w & z_n^w & 1 & 0 & 0 & 0 & -u_nx_n^w & -u_ny_n^w & -u_nz_n^w \\ 0 & 0 & 0 & 0 & x_n^w & y_n^w & z_n^w & 1 & -v_nx_n^w & -v_ny_n^w & -v_nz_n^w \end{bmatrix} \begin{bmatrix} m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ \vdots \\ m_{32} \\ m_{33} \end{bmatrix} = \begin{bmatrix} u_1m_{34} \\ v_1m_{34} \\ u_2m_{34} \\ v_2m_{34} \\ \vdots \\ u_nm_{34} \\ v_nm_{34} \end{bmatrix}$$

- we can let $m_{34} = 1$ (Why?)
- ► We have:

$$Km = U$$
 (8)

► The least squares solution:

$$\mathbf{m} = \mathbf{K}^{\dagger} \mathbf{U} = (\mathbf{K}^{\mathsf{T}} \mathbf{K})^{-1} \mathbf{K}^{\mathsf{T}} \mathbf{U}$$
 (9)

where \mathbf{K}^{\dagger} is the pseudoinverse of \mathbf{K} .

▶ Here, **m** and $m_{34} = 1$ constitute the projection matrix **M**.

Computing Intrinsic and Extrinsic Parameters

- ▶ Note: **M** obtained is a scaled version of the true **M** (why?)
- ► Apparently, we have:

$$m_{34}\mathbf{M} = m_{34} \begin{bmatrix} \mathbf{m}_{1}^{T} & m_{14} \\ \mathbf{m}_{2}^{T} & m_{24} \\ \mathbf{m}_{3}^{T} & 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_{0} & 0 \\ 0 & \beta & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1}^{T} & t_{x} \\ \mathbf{r}_{2}^{T} & t_{y} \\ \mathbf{r}_{3}^{T} & t_{z} \\ \mathbf{0}^{T} & 1 \end{bmatrix} = \begin{bmatrix} \alpha \mathbf{r}_{1}^{T} + u_{0} \mathbf{r}_{3}^{T} & \alpha t_{x} + u_{0} t_{x} \\ \beta \mathbf{r}_{2}^{T} + v_{0} \mathbf{r}_{3}^{T} & \beta t_{y} + v_{0} t_{x} \\ \mathbf{r}_{3}^{T} & t_{x} \end{bmatrix}$$

where $\mathbf{m}_{i}^{T} = [m_{i1}, m_{i2}, m_{i3}], \mathbf{M} = \{m_{ij}\}$ is computed before.

- ▶ $\mathbf{r}_i^T = [r_{i1}, r_{i2}, r_{i3}], \mathbf{R} = \{r_{ij}\}$ is the rotation matrix.
- ► To see it clearly, we have:

$$\begin{bmatrix} \alpha \mathbf{r}_{1}^{T} + u_{0} \mathbf{r}_{3}^{T} & \alpha t_{x} + u_{0} t_{x} \\ \beta \mathbf{r}_{2}^{T} + v_{0} \mathbf{r}_{3}^{T} & \beta t_{y} + v_{0} t_{x} \\ \mathbf{r}_{3}^{T} & t_{x} \end{bmatrix} = \begin{bmatrix} m_{34} \mathbf{m}_{1}^{T} & m_{34} m_{14} \\ m_{34} \mathbf{m}_{2}^{T} & m_{34} m_{24} \\ m_{34} \mathbf{m}_{3}^{T} & m_{34} \end{bmatrix}$$

Factorization

- ightharpoonup easy to see $m_{34}\mathbf{m}_3 = \mathbf{r}_3$.
- Then, we have (why?)

$$m_{34}=\frac{1}{|\mathbf{m}_3|}$$

▶ Then, it is easy to figure out all the other parameters:

$$\mathbf{r}_{3} = m_{34}\mathbf{m}_{3}$$

$$u_{0} = (\alpha \mathbf{r}_{1}^{T} + u_{0}\mathbf{r}_{3}^{T})\mathbf{r}^{3} = m_{34}^{2}\mathbf{m}_{1}^{T}\mathbf{m}_{3}$$

$$v_{0} = (\beta \mathbf{r}_{2}^{T} + v_{0}\mathbf{r}_{3}^{T})\mathbf{r}^{3} = m_{34}^{2}\mathbf{m}_{2}^{T}\mathbf{m}_{3}$$

$$\alpha = m_{34}^{2}|\mathbf{m}_{1} \times \mathbf{m}_{3}|$$

$$\beta = m_{34}^{2}|\mathbf{m}_{2} \times \mathbf{m}_{3}|$$

Factorization (cont.)

▶ After that, it is also easy to get:

$$\mathbf{r}_{1} = \frac{m_{34}}{\alpha} (\mathbf{m}_{1} - u_{0} \mathbf{m}_{3})$$

$$\mathbf{r}_{2} = \frac{m_{34}}{\beta} (\mathbf{m}_{2} - v_{0} \mathbf{m}_{3})$$

$$t_{z} = m_{34}$$

$$t_{x} = \frac{m_{34}}{\alpha} (m_{14} - u_{0})$$

$$t_{y} = \frac{m_{34}}{\beta} (m_{24} - v_{0})$$

Questions to Discuss

- Enhance the accuracy?
 - ► The projection matrix M has 10 independent variables. (why?)
 - Even $m_{34} = 1$, we still have 11 parameters to determine.
 - ▶ However, these 11 parameters are not independent!
 - Can we use this dependency to enhance the accuracy?
- ► The method described above assumes that we know the 2D image coordinates. How can we get these 2D image points?
- ▶ If the detection of these 2D image points contains noise, how does the noise affect the accuracy of the result?
- ▶ If we are not using point-corespondences, can we use lines?