MATH-4006 Calculus 1 class 14, Homework 1 常見錯誤

B13902126 胡允升

For the writing style:

拜託各位寫題目的時候

- 如果是用電子檔寫題目可以新開一頁,把答案寫在下一頁
- 如果是用紙本,可以拿一張新的紙把題目標清楚

以減少助教眼壓

Problem 1-(b)-(ii)

Description. Solve the following equations for x.

$$\ln x + \ln(x - 1) = 1$$

Wrong Ans.

$$x = \frac{1 \pm \sqrt{1 + 4e}}{2}$$

Correct Ans.

$$x = \frac{1 + \sqrt{1 + 4e}}{2}$$

Reason. For $\ln(x-1)$ to be defined, we need x-1>0, or x>1.

Note. The domain of $\ln(x)$ is $(0, \infty)$

Therefore,

$$x = \frac{1 - \sqrt{1 + 4e}}{2}$$

is rejected.

Problem 2-(a)

Description. Simplify the following expressions.

$$\sin^{-1}\left(\sin\frac{5\pi}{4}\right)$$

Wrong Ans.

$$\frac{5\pi}{4}, \frac{7\pi}{4}$$

Correct Ans.

$$-\frac{\pi}{4}$$

Reason. Follow the definition from the textbook the definition \sin^{-1} is

Note. In page 62 of the textbook

$$\sin^{-1} x = y \iff \sin y = x, \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

The range of \sin^{-1} can only be in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Problem 2-(c)

Description. Simplify the following expressions.

$$\sin(\sec^{-1}(x))$$
 for $x \le -1$

Wrong Ans.

$$-\frac{\sqrt{x^2-1}}{x}$$

Correct Ans.

$$\frac{\sqrt{x^2 - 1}}{x}$$

Reason. By the Pythagoras Theorem, we can know that the answer might be

$$\pm \frac{\sqrt{x^2-1}}{x}$$

To get the "sign" of answer, we can first check the definition of \sec^{-1} on the textbook

Note. In page 64 of the textbook
$$y = \sec^{-1} x \ (|x| \ge 1) \iff \sec y = x, \ \text{ and } \ y \in (0, \pi/2] \cup [\pi, 3\pi/2)$$

When $x \leq -1$, \sec^{-1} is between $[\pi, 3\pi/2)$. Thus, \sec^{-1} lies in the third quadrant (第三象限), which will let sin function be negative. Hence, the final answer is

$$\frac{\sqrt{x^2 - 1}}{x}$$

which is negative when $x \leq -1$.

請務必對照課本,別忘記有課本

3

Problem 5-(b)

Description. Let

$$g(x) = \frac{x^2 - 5x + 6}{|x - 2|}$$

Does the limit $\lim_{x\to 2} g(x)$ exist ? Explain.

Wrong Ans. Since g(2) does not exist, the limit $\lim_{x\to 2} g(x)$ does not exist.

Correct Ans. Since $\lim_{x\to 2^+} g(x) \neq \lim_{x\to 2^-} g(x)$, the limit $\lim_{x\to 2} g(x)$ does not exist.

Reason. A function being discontinuous at a point, or even undefined there, does not necessarily mean that the limit at that point does not exist. Here is the counter example.

$$f(x) = \frac{x^2 - 1}{x - 1}$$

In this situation, f(1) does not exist but

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1} f(x)$$

the limit $\lim_{x\to 1} f(x)$ exists.

Figure 1: Graph of f