Lista 3 - Otimização Não Linear Inteira Mista COS886 - 2021/3

Amanda Ferreira de Azevedo - afazevedo@cos.ufrj.br

PESC/UFRJ — 28 de janeiro de 2022

Exercício 4.1

Considere o problema de otimização:

$$\begin{array}{ll} \min & f_0\left(x_1, x_2\right) \\ \text{s.a.} & 2x_1 + x_2 \geq 1 \\ & x_1 + 3x_2 \geq 1 \\ & x \geq 0 \end{array}$$

Faça um desenho e apresente a região viável e duas curvas de nível para a função objetivo do problema. Para cada função objetivo, determine o conjunto ótimo e o valor ótimo da função objetivo, a partir do gráfico.

- 1. $f_0(x_1, x_2) = x_1 + x_2$.
- 2. $f_0(x_1, x_2) = -x_1 x_2$.
- 3. $f_0(x_1, x_2) = x_1$.
- 4. $f_0(x_1, x_2) = \max\{x_1, x_2\}.$
- 5. $f_0(x_1, x_2) = x_1^2 + 9x_2^2$.

O conjunto de restrições nos dá a região viável delimitada por $(0,\infty),(0,1),(2/5,1/5),(1,0),(\infty,0)$, como mostra a Figura 1.

Figura 1: Região viável

$$f_0(x_1, x_2) = x_1 + x_2$$

As curvas de nível são definidas pelo conjunto $\{x_1,x_2\mid x_1+x_2=C\}$. Como o problema é de minimização, então a direção da solução ótima será oposta ao gradiente. Neste caso, $\nabla f(x)=(1,1)$ e a curva de nível x+y=0.6 bate exatamente no ponto $x^*=(2/5,1/5)$, que é perpendicular a esta curva.

As curvas de nível são definidas pelo conjunto $\{x_1,x_2\mid x_1+x_2=C\}$. Como o problema é de minimização, então a direção da solução ótima será oposta ao gradiente. Neste caso, $\nabla f(x)=(-1,-1)$ e as curvas de nível não encontrarão nenhum ponto, pois a região é ilimitada para este lado.

$$f_0\left(x_1, x_2\right) = x_1.$$

Observando a Figura ??, basta encontrarmos o menor valor que x_1 pode assumir na região viável. Esta solução é atingida exatamente quando $x_1=0$ e $x_2\geq 1$, uma vez que a função objetivo independe do valor de x_2 .

$$f_0(x_1, x_2) = \max\{x_1, x_2\}.$$

Suponha que $x_1 > x_2$. Teremos a mesma função objetivo do item anterior. No entanto, não podemos tomar $x_1 = 0$, uma vez que $x_2 \ge 1/5$ e $x_1 > x_2$. Dessa forma, $x_1 > 1/5$.

De forma análoga, se tomarmos $x_2 > x_1$, vamos minimizar x_2 e $x_2 > 2/5$, pois $x_1 \ge 2/5$.

Se $x_1 = x_2$, o menor valor é atingido no ponto $x^* = (1/3, 1/3)$.

Dessa forma, o menor valor que a função objetivo pode atingir é exatamente no caso em que $x_1 = x_2$.

$$f_0(x_1, x_2) = x_1^2 + 9x_2^2.$$

Observe que podemos trocar a função objetivo por $x_1 + 3x_2$, uma vez que f_0 é exatamente isto elevado ao quadrado. Podemos fazer isso para calcular as curvas de nível e o gradiente. Derivando, temos que $\nabla f(x) = (2,6)$.

Indo na direção contrária ao gradiente, perpendicular as curvas de nível, chegamos ao ponto $x^* = (1/2, 1/7)$.

Exercício 4.8

Apresente uma solução explicita para cada um dos PPLs

1. Minimizando a função linear em um conjunto afim.

$$\min c^{\top} x$$

s.a. $Ax = b$

2. Minimizando a função linear em um semi-espaço.

$$\begin{array}{ll}
\min & c^{\top} x \\
\text{s.a.} & a^{\top} x \le b
\end{array}$$

onde $a \neq 0$.

3. Minimizando a função linear em um retângulo.

$$\begin{array}{ll} \min & c^{\top} x, \\ \text{s.a.} & l \leq x \leq u, \end{array}$$

onde l e u satisfazem $l \succeq u$.

4. Minimizando a função linear em um simplex probabilístico, definido com o conjunto de vetores $\left\{x \in \mathbb{R}^n : \mathbf{1}^\top x = 1, x \succeq 0\right\}$.

$$\begin{array}{ll} \min & c^{\top} x \\ \text{s.a.} & \sum_{i=1}^{n} x_i = 1 \\ & x > 0 \end{array}$$

Depois de resolver o problema, diga o que ocorre se a restrição de igualdade for substituída por uma inequação $\sum_{i=1}^{n} x_i \leq 1$.

5. Minimizando a função linear em uma caixa unitária com restrição de despesa total.

min
$$c^{\top}x$$
,
s.a. $\sum_{i=1}^{n} x_i = \alpha$,
 $0 \le x \le 1$,

onde α é um inteiro entre 0 e n. Depois de resolver o problema, diga o que ocorre se a restrição de igualdade for substituída por uma inequação $\sum_{i=1}^n x_i \leq \alpha$.

1. Minimizando a função linear em um conjunto afim.

Podemos dividir em alguns casos:

- 1. Se Ax = b não tiver solução, então o problema é **inviável**. Ou seja, a solução ótima é ∞ .
- 2. Se c é ortogonal ao espaço nulo de A, então c é ortogonal ao hiperplano Ax = b (basta transladar). Note que, como o núcleo de A é um subespaço vetorial, existe seu complemento ortogonal que será exatamente a imagem de A^{\top} . Em outras palavras, c pertence a $Im(A^{\top})$. Dessa forma, existe um vetor λ tal que

$$c = A^{\top} \lambda$$

Nessa situação, qualquer solução satisfazendo Ax = b resolve o problema uma vez que você não pode se mover por Ax = b de forma a decrescer c^Tx . Dessa forma, a solução ótima dada pela função objetivo será:

$$c^T x = \lambda^\top A x = \lambda^\top b$$

5

3. Se c não é ortogonal ao espaço nulo de A então a projeção de c no espaço nulo de A é uma projeção não-trivial e portanto, seguindo a direção contrária da projeção a função objetivo pode decrescer o tanto quanto for possível. Dessa forma, a solução pode ser dividida em

$$p^* = \begin{cases} \infty & \text{if } Ax = b \text{ quando não há solução} \\ \lambda^\top b & c = A^\top \lambda \text{ para algum } \lambda \\ -\infty & \text{if } Ax = b \text{ caso contrário} \end{cases}$$

2. Minimizando a função linear em um semi-espaço.

Neste caso, esse problema é sempre viável. Novamente, suponha que c seja ortogonal ao espaço nulo. Dessa forma, podemos decompor c com uma componente do espaço nulo somada a uma componente da imagem de A^T .

$$c = a\lambda + \hat{c}$$

Onde $a^T \hat{c} = 0$. Vamos dividir em alguns casos

Se $\lambda > 0$, então podemos escolher um x = -ta, com $t \ge 0$ fazendo $t \to \infty$, temos

$$c^T x = -tc^T a = -t\lambda a^T a \to -\infty$$

Além disso,

$$a^T x - b = -ta^T a - b < 0$$

Logo, o problema é ilimitado inferiormente.

Se $\hat{c}\neq 0$, o problema também será ilimitado inferiormente. Basta escolher x=e fazer $t\to\infty$. Se $c=\lambda a+\hat{c}$ e $x=ba-t\hat{c}$, então

$$c^{T}x = (\lambda a + \hat{c})^{T}(ba - t\hat{c})$$
$$= \lambda ba^{T}a + bc^{T}a - \lambda ta^{T}\hat{c} - t\hat{c}^{T}\hat{c}$$
$$= \lambda ba^{T}a + bc^{T}a - t\hat{c}^{T}\hat{c}$$

Como $\lambda ba^Ta + bc^Ta$ é constante, temos que $c^Tx \to -\infty$ quando $t \to \infty$. Se $\hat{c} = 0$, então $c = a\lambda$ para algum $\lambda \leq 0$. Logo,

$$c^T x = \lambda a^T x \underbrace{\geq \lambda b}_{a^T x < b}$$

Logo, $c^T x = \lambda b$. A solução final fica

$$p^{\star} = \begin{cases} \lambda b & c = a\lambda \text{ para algum } \lambda \leq 0 \\ -\infty & \text{caso contrário} \end{cases}$$

3. Minimizando a função linear em um retângulo.

Pela estrutura do problema, podemos **separá-los**, uma vez que a função objetivo é a soma de termos $c_i x_i$ e as restrições dependem apenas de uma única variável. Podemos resolver o problema minimizando cada componente de x independentemente. Ou seja, vamos resolver o seguinte problema

$$min c_i x_i
s.a l_i < x_i < u_i$$

Observe que:

- Se $c_i > 0$, então a solução ótima será $x_i^* = l_i$
- Se $c_i < 0$, então $x_i^* = u_i$
- se $c_i = 0$, então qualquer x_i no intervalo fechado $[l_i, u_i]$ é ótimo

Dessa forma, a solução ótima do problema original pode ser escrita como

$$p^* = l^T \max\{c, 0\} + u^T \max\{-c, 0\}$$

4. Minimizando a função linear em um simplex probabilístico, definido com o conjunto de vetores

Vamos ordenar as componentes do vetor c de forma crescente.

$$c_1 = c_2 = c_k < c_{k+1} \le \dots \le c_n$$

Como c_1 é a componente de menor valor, podemos escrever

$$\sum_{i=1}^{n} c_i x_i \ge c_1 \sum_{i=1}^{n} x_i$$

Que será o menor valor que c^Tx poderá assumir, com

$$x_1 + \dots + x_k = 1$$

Uma vez que k componentes possuem o mesmo valor e o resto das componentes

$$x_{k+1} = \dots = x_n = 0$$

Donde concluímos que $p^* = z$.

Para a versão de *budget*, como não temos necessariamente uma igualdade para garantir o investimento e queremos minimizar $c^T x$, bastará priorizar as variáveis associadas aos coeficientes c negativos. Em outras palavras, $p^* = \min\{0, z\}$.

5. Minimizando a função linear em uma caixa unitária com restrição de despesa total.

Novamente, vamos ordenar de forma crescente os coeficientes c.

$$c_1 \leq \cdots \leq c_{i-1} < c_i = \cdots = c_\alpha = \cdots = c_k < c_{k+1} \leq \cdots \leq c_n$$

A solução ótima será exatamente a soma dos α menores valores de c, ou seja

$$c_1 + c_2 + \cdots + c_{\alpha}$$

Com

$$x_1 = \dots = x_{i-1} = 1$$

E, considerando que há alguns elementos iguais ao elemento na posição α , vamos fazer

$$x_i + \dots + x_k = \alpha - i + 1$$

Para considerar **exatamente** os α variáveis associadas ao coeficientes de menor custo. E com o resto, zeramos

$$x_{k+1} = \dots = x_n = 0$$

Para o segundo caso, basta tomarmos o somatório dos valores não positivos de c. Em outras palavras, faremos x=1 toda vez que $c_i < 0$, não ultrapassando α e 0 caso contrário.

Exercício 4.17

Considere o problema de otimização

$$\begin{array}{ll} \max & \sum_{j=1}^{n} r_{j}\left(x_{j}\right), \\ \text{s.a.} & Ax \leq c^{\max}, \\ & x \succeq 0, \end{array}$$

2 onde $x \in \mathbb{R}^n$ é a variável, $A \in \mathbb{R}^{m \times n}$ e $c^{\max} \in \mathbb{R}^m$ são dados, e $r_j(x_j)$ é uma função côncava linear por partes, dada por

$$r_{j}\left(x_{j}\right) = \begin{cases} p_{j}x_{j} & 0 \leq x_{j} \leq q_{j} \\ p_{j}q_{j} + p_{j}^{disc}\left(x_{j} - q_{j}\right) & x_{j} \geq q_{j} \end{cases}$$

onde $p,q\succeq 0$ e $0< p_j^{\mathrm{disc}}< p_j$ para todo $j=1,\ldots,n$. Transforme o modelo em um problema de programação linear, apresente os passos detalhadamente.

Podemos escrever a função de receita como

$$r_j(x_j) = min_j \{ p_j x_j, p_j q_j + p_j^{disc} (x_j - q_j) \}$$

Para vermos essa equivalência, considere

$$p_j x_j < p_j q_j + p_j^{disc}(x_j - q_j) \Leftrightarrow p_j (x_j - q_j) < p_j^{disc}(x_j - q_j)$$

Como $p_j > p_j^{disc}$, isso só será verdade se $x_j < q_j$. Por outro lado,

$$p_j x_j > p_j q_j + p_j^{disc}(x_j - q_j) \Leftrightarrow p_j(x_j - q_j) > p_j^{disc}(x_j - q_j)$$

Apenas se $x_i > q_i$.

Dessa maneira, podemos definir uma nova variável u_j que será um limite inferior para $r_j(x_j)$, de forma que podemos adicionar as seguintes restrições ao problema:

$$p_j x_j \ge u_j$$
$$p_j q_j + p_j^{disc}(x_j - q_j) \ge u_j$$

Como no problema original estamos querendo maximizar a receita total, podemos reescrever o problema da seguinte maneira

$$\max \quad \sum_{j=1}^{n} u_j \tag{1}$$

s.a.
$$x \succeq 0$$
 (2)

$$Ax \leq c^{max}$$
 resource limits (3)

$$p_j x_j \ge u_j l \tag{4}$$

$$p_j q_j + p_j^{disc}(x_j - q_j) \ge u_j \tag{5}$$

Em outras palavras, podemos crescer u_j até no máximo $p_j x_j$ ou $p_j q_j + p_j^{disc}(x_j - q_j) \ge u_j$, dependendo do valor de x_j .

Agora, temos um problema de programação linear com variáveis x e u. Para mostrar que esse novo problema é equivalente ao original, vamos fixar uma solução x.

As últimas duas restrições (4-5) garantem que $u_j \le r_j(x_j)$, então pra toda solução viável nesse LP, a função objetivo nos dá um valor menor ou igual a receita total. Por outro lado, sempre podemos pegar, sem perda de generalidade, $u_j = r_j(x_j)$ que é exatamente o caso em que as duas funções se igualam.

Exercício 4.11

Formule os problemas a seguir como problemas de programação linear. Explique detalhadamente a relação entre a solução ótima de cada problema e a solução do seu LP equivalente. Considere $A \in \mathbb{R}^{m \times n}$ e $b \in \mathbb{R}^m$ dados do problema.

- 1. Minimizar $||Ax b||_{\infty}$
- 2. Minimizar $||Ax b||_1$
- 3. Minimizar $||Ax b||_1$ sujeito a $||x||_{\infty} \le 1$
- 4. Minimizar $||x||_1$ sujeito a $||Ax b||_{\infty} \le 1$
- 5. Minimizar $||Ax b||_1 + ||x||_{\infty}$

Minimizar
$$||Ax - b||_{\infty}$$

Por definição, temos que $\|Ax-b\|_{\infty}=\max_i |Ax_i-b|$. Com isso, podemos criar uma nova variável u que será um limitante superior para Ax-b, ao passo que minimizamos u, descobrindo assim o maior valor para Ax-b. No entanto, como estamos lidando com módulo, também será necessário que Ax-b esteja limitando inferiormente pelo simétrico de u.

Formalmente, seja $u \in \mathbb{R}$, o novo LP pode ser reescrito como

$$\min u$$
 (6)

s.a
$$Ax - b \leq u$$
 (7)

$$Ax - b \succeq -u$$
 (8)

Agora, basta provarmos a equivalência. Para um x fixado as restrições 7 e 8 podem ser escritas, para algum k,

$$-u \le a_k^\top x - b_k \le u \Leftrightarrow u \ge \left| a_k^\top x - b_k \right|$$
$$\Leftrightarrow u \ge \max_k \left| a_k^\top x - b_k \right|$$
$$\Leftrightarrow u \ge \|Ax - b\|_{\infty}$$

Fazendo para todo x, chegamos no resultado minimizando u.

Minimizar
$$||Ax - b||_1$$

Usaremos a mesma ideia, no entanto, como não estamos olhando para o valor máximo, a dimensão de u deverá ser modificada. Considere $u \in \mathbb{R}^m$, podemos reescrever como seguinte LP:

min
$$\sum_{i=1}^{m} u_i$$
s.a $Ax - b \leq u$

$$Ax - b \succ -u$$

Agora, provemos a equivalência. Para um x fixado arbitrário, as restrições adicionais podem ser escritas como

$$-u_k \le a_k^T x - b_k \le u_k \Leftrightarrow u_k \ge \left| a_k^\top x - b_k \right|$$

Observe que atingimos o ótimo com relação a u escolhendo exatamente $u_k = \left|a_k^\top x - b_k\right| = \|Ax - b\|_1$. Fazendo para todo x, chegamos no resultado.

Minimizar
$$\|Ax-b\|_1$$
 sujeito a $\|x\|_\infty \leq 1$

Equivalente ao que fizemos anteriormente,

$$\begin{aligned} & \min & & \sum_{i=1}^m u_i \\ & \text{s.a} & & Ax - b \preceq u \\ & & & Ax - b \succeq -u \\ & & & x \leq 1 \\ & & & x \geq -1 \end{aligned}$$

Minimizar
$$||x||_1$$
 sujeito a $||Ax - b||_{\infty} \le 1$

Equivalente ao que fizemos anteriormente,

$$\min \quad \sum_{i=1}^{m} u_{i}$$
s.a
$$Ax - b \leq 1$$

$$Ax - b \geq -1$$

$$x \leq u$$

$$x \geq -u$$

$$\boxed{ \text{Minimizar } \|Ax - b\|_1 + \|x\|_{\infty}}$$

Para esta, vamos definir uma variável para cada componente da soma.

$$\min \quad \sum_{i=1}^{m} u_i + t$$

$$\text{s.a} \quad Ax - b \leq u$$

$$Ax - b \geq -u$$

$$x \leq \sum_{i=1}^{m} t$$

$$x \geq \sum_{i=1}^{m} -t$$

Exercicio adicional 4.1

Encontre condições necessárias e suficientes para $x \in \mathbb{R}^n$ minimizar a função convexa e diferenciável f no conjunto $\{x \in \mathbb{R}^n \mid \sum_{i=1}^n x = 1, x \succeq 0\}$.

Considere o conjunto

$$R = \{x \in \mathbb{R}^n \mid \sum_{i=1}^n x = 1, x \succeq 0\}$$

Pelas condições de otimalidade sabemos que se x é viável então $\nabla f(x)^{\top}(y-x) \geq 0$ para todo y viável.

Afirmação:

$$\nabla f(x)^{\top}(y-x) \ge 0 \Rightarrow \min_{i=1,\dots,n} \nabla f(x)_i \ge \nabla f(x)^{\top} x$$

Demonstração: Por hipótese, temos que vale $\nabla f(x)^{\top}(y-x) \geq 0$ para todo y viável, em particular, tome $y=e_i$, onde e_i é o vetor canônico. Dessa forma, temos

$$\nabla f(x)^{\top}(y - x) \ge 0 \Leftrightarrow \nabla f(x)_{i}^{\top} \underbrace{y}_{e_{i}} - \nabla f(x)^{\top} x \ge 0$$
$$\Leftrightarrow \nabla f(x)_{i}^{\top} \ge \nabla f(x)^{\top} x$$

Afirmação:

$$\min_{i=1}^{n} \nabla f(x)_i \ge \nabla f(x)^{\top} \Rightarrow \nabla f(x)^{\top} (y-x)$$

Demonstração: Seja y um ponto viável, temos por hipótese que para todo $i=1,\ldots,n$ vale

$$\nabla f(x)_i > \nabla f(x)^{\top} x$$

Multiplicando ambos os lados por y_i e somando, temos

$$\underbrace{\sum_{i=1}^{n} y_i \nabla f(x)_i}_{y^T \nabla f(x)} \ge \underbrace{\sum_{i=1}^{n} y_i}_{=1} \nabla f(x)^T x = \nabla f(x)^T x$$

Logo

$$y^T \nabla f(x) \ge \nabla f(x)^T x \Leftrightarrow \nabla f(x)^T (y - x) \ge 0$$

Reescrevendo,

$$\min_{i=1,\dots,n} \nabla f(x)_i \ge \nabla f(x)^T x \Leftrightarrow \min_{i=1,\dots,n} \frac{\partial f}{\partial x_i} \ge \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}$$

Como $\sum_{i=1}^{n} x = 1$ e $x \ge 0$, temos

$$\min_{i=1,\dots,n} \frac{\partial f}{\partial x_i} \le \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}$$

O que nos dá que

$$\min_{i=1,\dots,n} \frac{\partial f}{\partial x_i} = \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}$$

Isso só é possível se quando $\frac{\partial f}{\partial x_k} > \min_i \frac{\partial f}{\partial x_i}$, para algum $k, x_k = 0$. Além disso, se $x_k > 0$ então $\frac{\partial f}{\partial x_k} = \min_{i=1,\dots,n} \frac{\partial f}{\partial x_i}$.

Exercício adicional 5.1

Considere a matriz $X = X^{\top} \in \mathbb{R}^{m+n \times m+n}$ particionada como

$$X = \left[\begin{array}{cc} A & B \\ B^{\top} & C \end{array} \right]$$

onde $A \in \mathbb{R}^{n \times n}$. Se $\det(A) \neq 0$, a matriz $S = C - B^{\top} A^{-1} B$ é chamada de complemento de Schur de A em X.

1. O complemento de Schur aparece quando se minimiza uma função na forma quadrática em alguma das variáveis. Seja

$$f(u, v) = \begin{bmatrix} u^{\top} v^{\top} \end{bmatrix} X \begin{bmatrix} u^{\top} v^{\top} \end{bmatrix}^{\top}$$

onde $u \in \mathbb{R}^n$. Seja g(v) o menor valor de f em u, ou seja, $g(v) = \inf_u f(u, v)$. Veja que g(v) pode ser $-\infty$. Mostre que se $A \succ 0$, temos $g(v) = v^\top S v$.

- 2. O complemento de Schur aparece em diversas caracterizações de matrizes semi-definidas positivas e definidas positivas de uma matriz em blocos. Mostre que:
 - (a) $X \succ 0$ se e somente se $A \succ 0$ e $S \succ 0$.
 - (b) Se $A \succ 0$, então $X \succeq 0$ se e somente se $S \succeq 0$.
- (c) $X \succeq 0$ se e somente se $A \succeq 0$, $B^{\top} \left(I AA^{\dagger}\right) = 0$ e $C B^{\top}A^{\dagger}B \succeq 0$, onde A^{\dagger} é a pseudo-inversa de Moore-Penrose de $A \cdot \left(C B^{\top}A^{\dagger}B\right)$ serve como generalização do complemento de Schur no caso em que A é singular e semi-definida positiva).

Afirmação: Se $A \succ 0$, temos $g(v) = v^{\top} S v$.

Temos que

$$f(u,v) = u^T A u + 2v^T B u + v^T C v$$

Por hipótese, $A\succ 0$, então podemos minimizar f com relação a u calculando o gradiente em relação a u e igualando a zero.

Pela definição, temos que

$$\alpha = u^T A u = \sum_{j=1}^n \sum_{i=1}^n a_{ij} u_i u_j$$

Derivando α com respeito ao k-ésimo elemento de u, temos

$$\frac{\partial \alpha}{\partial u_k} = \sum_{j=1}^n a_{kj} u_j + \sum_{i=1}^n a_{ik} u_i$$

Fazendo para todo $k = 1, 2, \dots, n$, temos

$$\frac{\partial \alpha}{\partial u} = u^T A^T + u^T A = u^T (A^T + A)$$

Como as matrizes são simétricas então

$$\frac{\partial \alpha}{\partial u} = 2u^T A$$

Agora, derivando $\beta = 2v^T B u$ com respeito a u, temos que

$$\frac{\partial \beta}{\partial u} = 2v^T B$$

Logo, a derivada de f com respeito a u será

$$\frac{\partial f}{\partial u} = 2u^T A + 2v^T B$$

Igualando a zero, temos que

$$2u^{T}A + 2v^{T}B = 0$$

$$2u^{T}A = -2v^{T}B$$

$$u^{T}A = -v^{T}B$$

$$u^{T} = -v^{T}BA^{-1}$$

$$u = -A^{-1}Bv$$

Agora, substituindo em f, temos

$$f(u^*, v) = g(v) = -(A^{-1}Bv)^T A(-A^{-1}Bv) + 2v^T B(-A^{-1}Bv) + v^T Cv$$

Arrumando, temos

$$v^{T}B^{T}A^{-1}\underbrace{AA^{-1}}_{-1}Bv - 2v^{T}BA^{-1}Bv + v^{T}Cv$$

Botando v^T e v em evidência, temos

$$v^T (B^T A^{-1} B - 2 \underbrace{B}_{B = B^T} A^{-1} B v + C) v = v^T (C - B^T A^{-1} B) v = v^T S v$$

Afirmação: (\Rightarrow) Se $X \succ 0$ então $A \succ 0$ e $S \succ 0$.

Demonstração: Como $X \succ 0$ então f(u,v) > 0 para todo vetor não nulo (u,v). Em particular, se pegarmos $f(u,0) = u^T Au > 0$ para todo vetor não nulo u. Dessa forma, $A \succ 0$.

Pela questão anterior, podemos usar o ponto $u^* = -A^{-1}Bv$ para analisar o que acontece com S. Com isso, $f(u^*,v) = v^T(C-B^TA^{-1}B)v > 0$, dessa forma, $S = C-B^TA^{-1}B > 0$

Afirmação: (\Leftarrow) Se $A \succ 0$ e $S \succ 0$ então $X \succ 0$

Demonstração: Segue da questão anterior que

$$f(u,v) \ge f(u^*,v) = v^T S v > 0 \quad \because S > 0$$

Se $v \neq 0$. Por outro lado, se v = 0 e $u \neq 0$

$$f(u,0) = u^T A u > 0$$
 : $A \succ 0$

Logo, f(u, v) > 0 e consequentemente, $X \succ 0$.

Afirmação: (\Rightarrow) Se $A \succ 0$ (logo $X \succeq 0$) então $S \succeq 0$.

Demonstração: Por hipótese, $X \succ 0$, isto é, $f(u,v) \ge 0$ para todo u,v. Em particular, valerá para $f(u^*,v)$ que é exatamente $v^T S v$. Dessa forma, $S \succ 0$.

Afirmação: (\Leftarrow) $S \succeq 0$ então $A \succ 0$ (logo $X \succeq 0$).

Demonstração: Pelo item anterior, sabemos que se $A \succ 0$ então $f(u^*, v) = v^T S v$. Como por hipótese $S \succ 0$ então

$$f(u, v) > f(u^*, v) = v^T S v > 0$$

Para todo u, v. Dessa forma, $X \succ 0$ e por consequência, $A \succ 0$.

Afirmação: $X \succeq 0$ se e somente se $A \succeq 0, B^{\top} (I - AA^{\dagger}) = 0$ e $C - B^{\top} A^{\dagger} B \succeq 0$

Demonstração:

Vamos supor que $A \in \mathbb{R}^{k \times k}$ tem rank(A) = r. Dessa forma, existem matrizes $Q_1 \in \mathbb{R}^{k \times r}$ e $Q_2 \in \mathbb{R}^{k \times (k-r)}$ e uma matriz diagonal invetível $\Lambda \in \mathbb{R}^{r \times r}$ de tal forma que podemos decompor A da seguinte maneira

$$A = \left[\begin{array}{cc} Q_1 & Q_2 \end{array} \right] \left[\begin{array}{cc} \Lambda & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} Q_1 & Q_2 \end{array} \right]^T$$

Onde $\left[\begin{array}{cc}Q_1&Q_2\end{array}\right]^T\left[\begin{array}{cc}Q_1&Q_2\end{array}\right]=I\qquad \because \text{ortogonalidade}.$ Essa é a decomposição espectral de A.

Considere a seguinte matriz

$$M = \begin{bmatrix} Q_1 & Q_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & I \\ (n-k) \times r & (n-k) \times (k-r) & (n-k) \times (n-k) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Que é não-singular uma vez que

$$\left[\begin{array}{ccc} Q_1 & Q_2 & 0 \\ 0 & 0 & I \end{array}\right] \cdot \left[\begin{array}{ccc} Q_1 & 0 \\ Q_2 & 0 \\ 0 & I \end{array}\right] = \left[\begin{array}{ccc} I & 0 \\ 0 & I \end{array}\right] = I$$

Agora, como X é semi-definida positiva, vale

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0 \Leftrightarrow \begin{bmatrix} Q_1 & Q_2 & 0 \\ 0 & 0 & I \end{bmatrix}^T \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \begin{bmatrix} Q_1 & Q_2 & 0 \\ 0 & 0 & I \end{bmatrix} \succeq 0$$
$$\begin{bmatrix} Q_1 & Q_2 & 0 \\ 0 & 0 & I \end{bmatrix}^T \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} = \begin{bmatrix} [Q_1Q_2]^TA & [Q_1Q_2]^TB \\ B^T & C \end{bmatrix} =$$

Daí

$$\begin{bmatrix} \begin{bmatrix} [Q_1Q_2]^TA & [Q_1Q_2]^TB \\ B^T & C \end{bmatrix} \end{bmatrix} \begin{bmatrix} Q_1 & Q_2 & 0 \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} [Q_1Q_2]^TA[Q_1Q_2] & [Q_1Q_2]^TB \\ B^T[Q_1Q_2] & C \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \Lambda & 0 & Q_1^TB \\ 0 & 0 & Q_2^TB \\ B^TQ_1 & B^TQ_2 & C \end{bmatrix} \succeq 0$$

$$\Leftrightarrow Q_2^TB = 0, \begin{bmatrix} \Lambda & Q_1^TB \\ B^TQ_1 & C \end{bmatrix} \succeq 0.$$

Temos que $\Lambda \succ 0$ se e somente se $A \succeq 0$.

É verdade que

$$A^{\dagger} = Q_1 \Lambda^{-1} Q_1^T$$
, $I - A A^{\dagger} = Q_2 Q_2^T$.

Dessa forma,

$$Q_2^T B = 0 \Leftrightarrow Q_2 Q_2^T B = (I - A^{\dagger} A) B = 0$$

Além disso, como Λ é invertível,

$$\begin{bmatrix} \Lambda & Q_1^T B \\ B^T Q_1 & C \end{bmatrix} \succeq 0 \Leftrightarrow \Lambda \succ 0, \quad C - B^T Q_1 \Lambda^{-1} Q_1^T B = C - B^T A^{\dagger} B \succeq 0.$$

Exercício 1.1

Considere a matriz $X = X^{\top} \in \mathbb{R}^{m+n \times m+n}$ particionada como

$$X = \left[\begin{array}{cc} A & B \\ B^{\top} & C \end{array} \right]$$

onde $A \in \mathbb{R}^{n \times n}$. Se $\det(A) \neq 0$, a matriz $S = C - B^{\top}A^{-1}B$ é chamada de complemento de Schur de A em X. 1. Reconhecer complementos de Schur normalmente ajuda a representar restrições convexas não-lineares como inequações lineares de matrizes (LMI). Considere a função

$$f(x) = (Ax + b)^{\top} (P_0 + x_1 P_1 + \ldots + x_n P_n)^{-1} (Ax + b),$$

onde $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ e $P_i = P_i^{\top} \in \mathbb{R}^{m \times m}$, com o domínio

$$dom f = \{x \in \mathbb{R}^n \mid P_0 + x_1 P_1 + \dots + x_n P_n > 0\}.$$

Essa é a composição da função fracionária da matriz e um mapeamento afim, e então é uma função convexa. Dada uma representação LMI de epi f, encontre a matriz simétrica F(x,t) afim em (x,t), tal que

$$x \in \text{dom } f, \quad f(x) \le t \iff F(x,t) \succeq 0.$$

O epigrafo de f é definida como

epi
$$f = \{(x, P, t) \mid P \succ 0, x^T P^{-1} x < t\}$$

Onde $P = P_0 + x_1 P_1 + \cdots + x_n P_n$. Da outra questão, provamos que

Se
$$A \succ 0$$
, então $X \succeq 0$ se e somente se $S \succeq 0$.

Como $P \succ 0$, podemos definir X como

$$X = \left[\begin{array}{cc} P & Ax + b \\ (Ax + b)^T & t \end{array} \right] \succ 0$$

Que é uma matriz simétrica afim em (x, t).

Exercício 1.1

Formule o problema de otimização como problema de programação semidefinida. A variável é $x \in \mathbb{R}^n$ e F(x) é definida como

$$F(x) := F_0 + x_1 F_1 + x_2 F_2 + \dots + x_n F_n,$$

 $\mathrm{com}\, F_i \in \mathbb{S}^m \text{, para } i=1,\dots,n. \text{ O domínio de } f \text{ em cada subproblema \'e dado por dom } f=\left\{x \in \mathbb{R}^n \mid F(x) \succ 0\right\}.$

- 1. Minimizar $f(x) = c^{\top} F(x)^{-1} c$, onde $c \in \mathbb{R}^m$.
- 2. Minimizar $f(x) = \max_{i=1,\dots,K} c_i^{\mathsf{T}} F(x)^{-1} c_i$, onde $c_i \in \mathbb{R}^m, i=1,\dots,K$.
- 3. Minimizar $f(x) = \sup_{\|c\|_2 \le 1} c^\top F(x)^{-1} c$.

Considere a matriz $X = X^{\top} \in \mathbb{R}^{m+n \times m+n}$ particionada como

$$X = \left[\begin{array}{cc} A & B \\ B^{\top} & C \end{array} \right]$$

onde $A \in \mathbb{R}^{n \times n}$. Se $\det(A) \neq 0$, a matriz $S = C - B^{\top} A^{-1} B$ é chamada de complemento de Schur de A em X.

Minimizar
$$f(x) = c^{\top} F(x)^{-1} c$$
, onde $c \in \mathbb{R}^m$.

Considere a seguinte matriz

$$X = \left[\begin{array}{cc} F(x) & c \\ c^T & t \end{array} \right] \succeq 0$$

Como $F(x) \succ 0$, pela demonstração da questão anterior, $X \succeq 0$ e então $S \succeq 0$, onde S é o complemento de Schur de A em X. Daí, segue que

$$S = t - c^t F^{-1}(x)c \succ 0 \Leftrightarrow t \succ c^t F^{-1}(x)c$$

Dessa forma, podemos reescrever o problema como

$$\begin{aligned} & \min & & t \\ & \text{s.a.} & & \left[\begin{array}{cc} F(x) & c \\ c^T & t \end{array} \right] \succeq 0. \end{aligned}$$

Minimizar
$$f(x) = \max_{i=1,...,K} c_i^{\top} F(x)^{-1} c_i$$
, onde $c_i \in \mathbb{R}^m, i=1,...,K$.

Nesse caso, podemos usar a mesma ideia do item anterior, com a diferença que podemos definir K matrizes X, uma para cada i. Depois disso, podemos adicioná-las como K restrições no nosso problema, de forma que encontraremos o menor t que faz com que todas as matrizes definidas independentemente sejam menor do que t.

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \left[\begin{array}{cc} F(x) & c_i \\ c_i^T & t \end{array} \right] \succeq 0, \quad i=1,\ldots,K. \\ \\ t-c_i^tF^{-1}(x)c_i \succ 0 \Leftrightarrow t \succ c_i^tF^{-1}(x)c_i \quad \forall i=1,\ldots,K. \end{array}$$

$$\operatorname{Minimizar} f(x) = \sup_{\|c\|_2 \le 1} c^{\top} F(x)^{-1} c.$$

Segue da definição de autovalores e autovetores que

$$F^{-1}(x)c = \lambda c \Leftrightarrow \sup_{\|c\|=1} c^T F^{-1}(x)c = \lambda_{max}(F^{-1}(x))$$

Onde c são os autovetores associados aos autovalores λ . Dessa forma, considere a seguinte matriz

$$X = \left[\begin{array}{cc} F(x) & I \\ I & tI \end{array} \right] \succeq 0.$$

Como $F(x) \succ 0$, pela demonstração da questão anterior, $X \succeq 0$ e então $S \succeq 0$, onde S é o complemento de Schur de A em X. Daí, segue que

$$S = tI - F^{-1}(x) \succ 0 \Leftrightarrow tc^T Ic - c^T F^{-1}(x)v \succ 0 \Leftrightarrow t \succ c^T F^{-1}(x)c$$

Dessa forma, podemos reescrever o problema como

$$\begin{array}{ll} \min & t \\ \text{s.a.} & \left[\begin{array}{cc} F(x) & I \\ I & tI \end{array} \right] \succeq 0. \end{array}$$