

Simple Spectral Graph Convolution

Hao Zhu, Piotr Koniusz

Problems

What is oversmoothing?

Spectral Analysis of oversmoothing is right?

How to relieve/avoid that?

Chebshev Net

Spectral Graph Convolution (Defferrard et al., 2016). We consider spectral convolutions on graphs defined as the multiplication of a signal $\mathbf{x} \in \mathbb{R}^n$ with a filter g_{θ} parameterized by $\boldsymbol{\theta} \in \mathbb{R}^n$ in the Fourier domain:

$$g_{\theta}(\mathbf{L}) * x = \mathbf{U} g_{\theta}^{*}(\mathbf{\Lambda}) \mathbf{U}^{\top} \mathbf{x}, \tag{1}$$

where the parameter $\theta \in \mathbb{R}^n$ is a vector of spectral filter coefficients. We can understand g_θ as a function operating on eigenvalues of \mathbf{L} , that is $g_\theta^*(\mathbf{\Lambda})$. To avoid eigendecomposition, $g_\theta(\mathbf{\Lambda})$ can be approximated by a truncated expansion in terms of Chebyshev polynomials $T_k(\mathbf{\Lambda})$ up to the K-th order (Defferrard et al., 2016):

$$g_{\theta}^{*}(\mathbf{\Lambda}) \approx \sum_{k=0}^{K-1} \theta_{k} T_{k}(\tilde{\mathbf{\Lambda}}),$$
 (2)

Simplifying GCNs

Theorem 1. (Chung & Graham, 1997) Let λ_2 denote second largest eigenvalue of transition matrix $\widetilde{\mathbf{T}} = \mathbf{D}^{-1}\mathbf{A}$ of a non-bipartite graph, $\mathbf{p}(t)$ be the probability distribution vector and π the stationary distribution. If walk starts from the vertex i, $p_i(0) = 1$, then after t steps for every vertex:

$$|p_j(t) - \pi_j| \le \sqrt{\frac{d_j}{d_i}} \lambda_2^t, \tag{6}$$

Graph Diffusion Convolution

Graph diffusion Density defines edges

Sparsify edges

Computational and storage Cost

Personalized Propagation of Neural Prediction (PPNP)

Figure 1: Illustration of (approximate) personalized propagation of neural predictions (PPNP, APPNP). Predictions are first generated from each node's own features by a neural network and then propagated using an adaptation of personalized PageRank. The model is trained end-to-end.

Markov Diffusion Kernel

Claim I. Our filter, by design, will give the highest weight to the closest neighborhood of a node as neighborhoods \mathcal{N} of diffusion steps $k=0,\cdots,K$ obey: $\mathcal{N}(\widetilde{\mathbf{T}}^0)\subseteq\mathcal{N}(\widetilde{\mathbf{T}}^1)\subseteq\cdots\subseteq\mathcal{N}(\widetilde{\mathbf{T}}^K)\subseteq\mathcal{N}(\widetilde{\mathbf{T}}^K)$. That is, smaller neighbourhoods belong to larger neighbourhoods too.

Claim II. As $K \to \infty$, the ratio of energies contributed by S²GC to SGC is 0. Thus, the energy of infinite-dimensional receptive field (largest k) will not dominate the sum energy of our filter. Thus, S²GC can incorporate larger receptive fields without overbearing contributions of smaller receptive fields. This is substantiated by Table 8 where we achieve K = 16 while SGC achieves K = 4.

words, two nodes are close if they are in the same cluster which has a consistent local structure. More precisely, the diffusion distance at time K between nodes i and j is defined as follows:

$$d_{ij}(K) = \|\mathbf{x}_i(K) - \mathbf{x}_j(K)\|_2^2, \tag{8}$$

where the average visiting rate $\mathbf{x}_i(K)$ after K steps for a process that started at time k=0 is computed as follows:

$$\mathbf{x}_i(K) = \frac{1}{K} \sum_{k=1}^K \mathbf{T}^k \mathbf{x}_i(0). \tag{9}$$

By defining $\mathbf{Z}(K) = \frac{1}{K} \sum_{k=1}^{K} \mathbf{T}^{k}$, we reformulate Eq. 8 as a metric given as:

$$d_{ij}(K) = \|\mathbf{Z}(K)(\mathbf{x}_i(0) - \mathbf{x}_j(0))\|_2^2.$$
(10)

The underlying feature map of Markov Diffusion Kernel (MDK) is given as $\mathbf{Z}(K)\mathbf{x}_i(0)$ for node i.

Simple Spectral Graph Convolution

Based on the aforementioned Markov Diffusion Kernel, we include self-loops and we propose the Simple Spectral Graph Convolution (S²GC) network with a softmax after a linear layer:

$$\hat{Y} = \operatorname{softmax}(\frac{1}{K} \sum_{k=0}^{K} \tilde{\mathbf{T}}^{k} \mathbf{X} \mathbf{W}). \tag{11}$$

$$\hat{Y} = \operatorname{softmax} \left(\frac{1}{K} \sum_{k=1}^{K} \left((1 - \alpha) \, \tilde{\mathbf{T}}^{k} \mathbf{X} + \alpha \mathbf{X} \right) \mathbf{W} \right). \tag{13}$$

Relation to other methods

Relation of S²GC to APPNP. Let us define $\mathbf{H}^0 = \mathbf{X}\mathbf{W}$ as we use the linear step in our S²GC. Then and only then, for l = 0 and $\mathbf{H}^0 = \mathbf{X}\mathbf{W}$, APPNP expansion yields $\mathbf{H}^1 = (1 - \alpha)\widetilde{\mathbf{T}}\mathbf{X}\mathbf{W} + \alpha\mathbf{X}\mathbf{W} = ((1 - \alpha)\widetilde{\mathbf{T}} + \alpha\mathbf{I})\mathbf{X}\mathbf{W}$ which is equal to our $\mathbf{Z}(1)\mathbf{X}\mathbf{W} = (\sum_{k=0}^K \widetilde{\mathbf{T}}^k)\mathbf{X}\mathbf{W} = \widetilde{\mathbf{T}}\mathbf{X} + \mathbf{X} = (\widetilde{\mathbf{T}} + \mathbf{I})\mathbf{X}\mathbf{W}$ if $\alpha = 0.5, K = 1$, except for scaling (constant) of \mathbf{H}^1 .

In contrast, for l=1 and general case $\mathbf{H}^0=f(\mathbf{X};\mathbf{W})$, APPNP yields $\mathbf{H}^2=(1-\alpha)^2\widetilde{\mathbf{T}}^2f(\mathbf{X};\mathbf{W})+(1-\alpha)\alpha\widetilde{\mathbf{T}}f(\mathbf{X};\mathbf{W})+\alpha f(\mathbf{X};\mathbf{W})$ from which is is easy to note specific weight coefficients $(1-\alpha)^2$, $(1-\alpha)\alpha$ and α associated with 2-, 1-, and 0-hops. This shows that the APPNP expansion is very different to S²GC expansion in Eq. 13. In fact, S²G and APPNP are only equivalent if $\alpha=0.5$, K=1 and a linear transformation f is used.

Moreover, APPNP assumes $\mathbf{H}^0 = f(\mathbf{X}; \mathbf{W}) = \text{ReLU}(\mathbf{X}\mathbf{W})$, thus their optimizer has to back-propagate through $f(\mathbf{X}; \mathbf{W})$ to obtain $\frac{\partial f}{\partial \mathbf{W}}$ and multiply this with the above expansion e.g., $\frac{\partial \mathbf{H}^2}{\partial \mathbf{W}} = (1 - \alpha)^2 \widetilde{\mathbf{T}}^2 f'(\mathbf{X}; \mathbf{W}) + (1 - \alpha)\alpha \widetilde{\mathbf{T}} f'(\mathbf{X}; \mathbf{W}) + \alpha f'(\mathbf{X}; \mathbf{W})$.

In contrast, we use the linear function XW. Thus, $\frac{\partial XW}{\partial W}$ yields X. Thus, the multiplication of our expansion with X for the backprop step is in fact obtained in the forward pass which makes our approx very fast for large graphs.

Computational and storage Costs

Table 1: Computational and storage complexities $\mathcal{O}(\cdot)$.

Stage	Complexity	APPNP	GDC	SGC	S ² GC
Forward	Computation Cost	K E d+Knd	$\approx K E n$	K E d	K E d+Knd
Propagation	Storage Cost	nd + E	$\approx n^2$	nd + E	nd + E
Backward	Computation Cost	K E d	0	0	0
Propagation	Storage Cost	nd + E	0	0	0

Node Clustering

Table 3: Clustering performance with three different metrics on four datasets.

Methods	Input		Cora			Citeseer			Pubmed			Wiki	
		Acc%	NMI%	F1%	Acc%	NMI%	F1%	Acc%	NMI%	F1%	Acc%	NMI%	F1%
k-means	Feature	34.65	16.73	25.42	38.49	17.02	30.47	57.32	29.12	57.35	33.37	30.20	24.51
Spectral-f	Feature	36.26	15.09	25.64	46.23	21.19	33.70	59.91	32.55	58.61	41.28	43.99	25.20
Spectral-g	Graph	34.19	19.49	30.17	25.91	11.84	29.48	39.74	3.46	51.97	23.58	19.28	17.21
DeepWalk	Graph	46.74	31.75	38.06	36.15	9.66	26.70	61.86	16.71	47.06	38.46	32.38	25.74
GAE	Both	53.25	40.69	41.97	41.26	18.34	29.13	64.08	22.97	49.26	17.33	11.93	15.35
VGAE	Both	55.95	38.45	41.50	44.38	22.71	31.88	65.48	25.09	50.95	28.67	30.28	20.49
ARGE	Both	64.00	44.90	61.90	57.30	35.00	54.60	59.12	23.17	58.41	41.40	39.50	38.27
ARVGE	Both	62.66	45.28	62.15	54.40	26.10	52.90	58.22	20.62	23.04	41.55	40.01	37.80
AGC	Both	68.92	53.68	65.61	67.00	41.13	62.48	69.78	31.59	68.72	47.65	45.28	40.36
S ² GC	Both	69.60	54.71	65.83	69.11	42.87	64.65	70.98	33.21	70.28	52.67	49.62	44.31

Node Classification

Table 4: Test Micro F1 Score (%) averaged over 10 runs on Reddit. Performance of other models are cited from their original papers.

Setting	Model	Test F1
	SAGE-mean	95.0
Supervised	SAGE-LSTM	95.4
11 10 II	SAGE-GCN	93.0
Unsupervised	FastGCN	93.7
The second secon	SAGE-GCN	90.8
	DGI	94.0±0.001
	SGC	94.9±0.001
No Learning	S ² GC	95.3±0.001

Table 5: Test accuracy (%) averaged over 10 runs on citation networks.

HELWOIKS.	TO STATE OF THE PARTY OF THE PA	
Cora	Citeseer	Pubmed
81.4 ± 0.4	70.9 ± 0.5	79.0 ± 0.4
83.3 ± 0.7	72.6 ± 0.6	78.5 ± 0.3
79.8 ± 0.3	68.8 ± 0.6	77.4 ± 0.3
77.6 ± 1.1	66.1 ± 0.9	77.0 ± 1.2
82.5 ± 0.7	71.6 ± 0.7	78.4 ± 0.7
81.0 ± 0.02	71.9 ± 0.08	78.9 ± 0.03
81.8±0.6	71.4±0.8	80.0±1.1
83.3±0.5	71.7±0.6	80.1±0.2
78.0 ± 0.4	70.1 ± 0.5	78.0 ± 0.4
80.8 ± 0.02	69.3 ± 0.15	78.1 ± 0.01
83.0 ± 0.02	73.6 ± 0.09	80.4 ± 0.02
	Cora 81.4 ± 0.4 83.3 ± 0.7 79.8 ± 0.3 77.6 ± 1.1 82.5 ± 0.7 81.0 ± 0.02 81.8 ± 0.6 83.3 ± 0.5 78.0 ± 0.4 80.8 ± 0.02	Cora Citeseer 81.4 ± 0.4 70.9 ± 0.5 83.3 ± 0.7 72.6 ± 0.6 79.8 ± 0.3 68.8 ± 0.6 77.6 ± 1.1 66.1 ± 0.9 82.5 ± 0.7 71.6 ± 0.7 81.0 ± 0.02 71.9 ± 0.08 81.8 ± 0.6 71.4 ± 0.8 83.3 ± 0.5 71.7 ± 0.6 78.0 ± 0.4 70.1 ± 0.5 80.8 ± 0.02 69.3 ± 0.15

Table 6: Test accuracy (%) averaged over 10 runs on the large-scale OGB node property prediction.

(10) the state of									
methods	Products	Mag	Arxiv						
MLP	61.06±0.08	26.92±0.26	55.50±0.23						
GCN	75.64 ± 0.21	30.43 ± 0.25	71.74 ± 0.29						
GraphSage	78.29 ± 0.16	31.53±0.15	71.49 ± 0.27						
Softmax	47.70±0.03	24.13 ± 0.03	52.77 ± 0.56						
SGC	68.87 ± 0.01	29.47±0.03	68.78 ± 0.02						
S^2GC	70.22 ± 0.01	32.47±0.11	70.15 ± 0.13						
S ² GC+MLP	74.84 ± 0.20	32.72±0.23	72.01 ± 0.25						

Text Classification

Table 7: Test accuracy on the document classification task.

Model	20NG	R8	R52	Ohsumed	MR
Text GCN	87.9 ± 0.2	97.0 ± 0.2	93.8 ± 0.2	68.2 ± 0.4	76.3 ± 0.3
SGC	88.5 ± 0.1	97.2 ± 0.2	94.0 ± 0.2	$\textbf{68.5} \pm \textbf{0.3}$	75.9 ± 0.3
S ² GC	$\textbf{88.6} \!\pm \textbf{0.1}$	$\textbf{97.4} \pm \textbf{0.1}$	$\textbf{94.5} \pm \textbf{0.2}$	$\textbf{68.5} \pm \textbf{0.1}$	$\textbf{76.7} \pm \textbf{0.0}$

APPNP failed in this task

Parameter Analysis

Table 8: Summary of classification accuracy (%) results with various depths. In the linear model, filter parameter K is equivalent with the number of layers.

Dataset	Method	Layers (K)					
		2	4	8	16	32	64
Cora	GCN	81.1	80.4	69.5	64.9	60.3	28.7
	SGC	80.8	81.5	80.7	79.0	75.9	66.8
	S ² GC	76.5	79.8	82.5	83.0	82.2	80.0
Citeseer	GCN	70.8	67.6	30.2	18.3	25.0	20.0
	SGC	71.9	72.6	73.1	72.2	70.6	69.2
	S ² GC	70.9	72.7	72.7	73.4	73.1	73.2
Pubmed	GCN	79.0	76.5	61.2	40.9	22.4	35.3
	SGC	79.2	79.7	78.4	76.4	71.6	68.6
	S ² GC	77.6	78.7	79.4	80.6	78.0	74.9

Table 9: Classification accuracy (%) results with different α .

ILD	WILLIAM COL	LIVIVII	· ·		
- 69	Dataset	0.0	0.05	0.1	0.15
	cora	82.9	83.0	82.6	81.9
	citeseer	73	73.4	73.3	72.9
	pubmed	80.4	80.6	79.7	79.0

Future works

Linear GNNs (SGC and ours) and explainable models

Down Stream Tasks

Large Scale Graph Convolution

Learnable SSGC

Thanks for Your Attention!