Защита лабораторной работы №4. Модель гармонических колебаний

Исаханян Эдуард Тигранович 2022 Feb 26th

RUDN University, Moscow, Russian Federation

Защита лабораторной работы

Цель

Цель

Цель данной лабораторной работы научиться строить модели гармонических колебаний на примере линейного гармонического осциллятора.

Задачи

Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+1.5x=0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+\dot{x}+10x=0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+\dot{x}+11x=2sin(t)$ На интервале $t\in[0;60]$ (шаг 0.05) с начальными условиями $x_0=0,y_0=0$

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + w_0^2 x = f(t)$$

При отсутствии потерь в системе получаем уравнение консервативного осциллятора, энергия колебания которого сохраняется во времени:

$$\ddot{x} + w_0^2 x = 0$$

Для однозначной разрешимости уравнения второго порядка необходимо задать два начальных условия вида:

$$\begin{cases} x(t_0) = x_0 \\ \dot{x}(t_0) = y_0 \end{cases}$$

Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -w_0^2 x \end{cases}$$

Начальные условия для системы примут вид:

$$\left\{ \begin{array}{l} x(t_0) = x_0 \\ y(t_0) = y_0 \end{array} \right.$$

Вывод

Построили фазовый портрет гармонического осциллятора и решили уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+1.5x=0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+\dot{x}+10x=0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+\dot{x}+11x=2sin(t)$ На интервале $t\in[0;60]$ (шаг 0.05) с начальными условиями $x_0=0,y_0=0$