Racing for unbalanced methods selection the unbalanced package

Andrea Dal Pozzolo

24/2/2016

ABOUT ME

- I'm a Decision Analytics Consultant at VASCO Data Security.
- ▶ I hold a PhD from the Machine Learning Group (MLG) of the Université Libre de Bruxelles (ULB).
- My research focused on Machine Learning techniques for Fraud Detection in electronic transaction.

TABLE OF CONTENTS

1 Introduction

Introduction

- 2 Preprocessing methods
- 3 Racing
- 4 Conclusions

Introduction

- ▶ In several binary classification problems (e.g. fraud detection), the two classes are not equally represented in the dataset.
- When one class is underrepresented in a dataset, the data is said to be unbalanced.
- ▶ In unbalanced datasets, classification algorithms perform poorly in terms of predictive accuracy [9].
- A common strategy is to balance the classes before learning a classifier [1].

Technical sections will be denoted by the symbol

Figure : Transactions distribution over the first two Principal Components in different days.

THE FRAUD DETECTION PROBLEM

- ▶ We formalize FD as a classification task $f : \mathbb{R}^n \to \{+, -\}$.
- ▶ $X \in \mathbb{R}^n$ is the input and $Y \in \{+, -\}$ the output domain.
- \rightarrow + is the fraud (minority) and the genuine (majority) class.
- Given a classifier K and a training set T_N , we are interested in estimating for a new sample (x, y) the posterior probability $\mathcal{P}(y = +|x)$.

Preprocessing methods for unbalanced data

- Sampling methods
 - Undersampling [7]
 - Oversampling [7]
 - SMOTE [3]
- Distance based methods
 - Tomek link [15]
 - Condensed Nearest Neighbor (CNN) [8]
 - One side Selection (OSS) [10]
 - Edited Nearest Neighbor (ENN) [16]
 - ▶ Neighborhood Cleaning Rule (NCL) [11]

SAMPLING METHODS

Figure : Resampling methods for unbalanced classification. The negative and positive symbols denotes majority and minority class instances. In red the new observations created with oversampling methods.

SELECTING THE BEST STRATEGY

- With no prior information about the data distribution is difficult to decide which unbalanced strategy to use.
- ▶ *No-free-lunch theorem* [17]: no single strategy is coherently superior to all others in all conditions (i.e. algorithm, dataset and performance metric)
- ► Testing all unbalanced techniques is not an option because of the associated computational cost.
- ▶ We proposed to use the Racing approach [12] to perform strategy selection.

RACING FOR STRATEGY SELECTION

- Racing consists in testing in parallel a set of alternatives and using a statistical test to remove an alternative if it is significantly worse than the others.
- We adopted F-Race version [2] to search efficiently for the best strategy for unbalanced data.
- ► The F-race combines the Friedman test with Hoeffding Races [12].

RACING FOR UNBALANCED TECHNIQUE SELECTION

Automatically select the most adequate technique for a given dataset.

- 1. Test in parallel a set of alternative balancing strategies on a subset of the dataset
- 2. Remove progressively the alternatives which are significantly worse.
- 3. Iterate the testing and removal step until there is only one candidate left or not more data is available

	Candidate 1	Candidate 2	Candidate 3
subset 1	0.50	0.47	0.48
subset 2	0.51	0.48	0.30
subset 3	0.51	0.47	
subset 4	0.60	0.45	
subset 5	0.55		

F-RACE METHOD

- ▶ Use 10-fold Cross Validation (CV) to provide the data during the race.
- Every time new data is added to the race, the Friedman test is used to remove significantly bad candidates.
- We made a comparison of CV and F-race in terms of F-measure.

F-RACE VS CROSS VALIDATION

Dataset	Exploration	Method	Ntest	% Gain	Mean	Sd
ecoli	Race	Under	46	49	0.836	0.04
	CV	SMOTE	90	-	0.754	0.112
letter-a	Race	Under	34	62	0.952	0.008
	CV	SMOTE	90	-	0.949	0.01
letter-vowel	Race	Under	34	62	0.884	0.011
	CV	Under	90	-	0.887	0.009
letter	Race	SMOTE	37	59	0.951	0.009
	CV	Under	90	-	0.951	0.01
oil	Race	Under	41	54	0.629	0.074
	CV	SMOTE	90	-	0.597	0.076
page	Race	SMOTE	45	50	0.919	0.01
	CV	SMOTE	90	-	0.92	0.008
11. 11	Race	Under	39	57	0.978	0.011
pendigits	CV	Under	90	-	0.981	0.006
DI C	Race	Under	19	79	0.598	0.01
PhosS	CV	Under	90	-	0.608	0.016
satimage	Race	Under	34	62	0.843	0.008
	CV	Under	90	-	0.841	0.011
segment	Race	SMOTE	90	0	0.978	0.01
	CV	SMOTE	90	-	0.978	0.01
estate	Race	Under	27	70	0.553	0.023
	CV	Under	90	-	0.563	0.021
covtype	Race	Under	42	53	0.924	0.007
	CV	SMOTE	90	-	0.921	0.008
cam	Race	Under	34	62	0.68	0.007
	CV	Under	90	-	0.674	0.015
compustat	Race	Under	37	59	0.738	0.021
	CV	Under	90	-	0.745	0.017
creditcard	Race	Under	43	52	0.927	0.008
	CV	SMOTE	90	-	0.924	0.006

Table: Results in terms of G-mean for RF classifier.

DISCUSSION

- ► The best strategy is extremely dependent on the data nature, algorithm adopted and performance measure.
- F-race is able to automatise the selection of the best unbalanced strategy for a given unbalanced problem without exploring the whole dataset.
- For the fraud dataset the unbalanced strategy chosen had a big impact on the accuracy of the results.

CONCLUSIONS

- ▶ With racing [6] we can rapidly select the best strategy for a given unbalanced task.
- ▶ However, we see that undersampling and SMOTE are often the best strategy to adopt.
- ▶ In R [14] we have a software package called unbalanced [4] that implements all these algorithms.

Let's see in practise how to do it ...

The code of this demo is available at

https://github.com/dalpozz/utility/blob/master/ubDEMO.R

Vignette: www.ulb.ac.be/di/map/adalpozz/pdf/unbalanced.pdf CRAN: http://CRAN.R-project.org/package=unbalanced Github: https://github.com/dalpozz/unbalanced Email: dalpozz@gmail.com

Conclusions

Questions?

BIBLIOGRAPHY I

- R. Akbani, S. Kwek, and N. Japkowicz.
 Applying support vector machines to imbalanced datasets.
 In Machine Learning: ECML 2004, pages 39–50. Springer, 2004.
- M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp.
 A racing algorithm for configuring metaheuristics.
 In Proceedings of the genetic and evolutionary computation conference, pages 11–18, 2002.
- N. Chawla, K. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
 Smote: synthetic minority over-sampling technique.
 Journal of Artificial Intelligence Research (JAIR), 16:321–357, 2002.
- [4] A. Dal Pozzolo, O. Caelen, and G. Bontempi. unbalanced: Racing For Unbalanced Methods Selection., 2015. R package version 2.0.
- [5] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating probability with undersampling for unbalanced classification. In 2015 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2015.
- [6] A. Dal Pozzolo, O. Caelen, S. Waterschoot, and G. Bontempi. Racing for unbalanced methods selection. In Proceedings of the 14th International Conference on Intelligent Data Engineering and Automated Learning. IDEAL, 2013.
- [7] C. Drummond and R. Holte.C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In Workshop on Learning from Imbalanced Datasets II, 2003.

BIBLIOGRAPHY II

١	8	 Р	E.	H	ar

The condensed nearest neighbor rule.

IEEE Transactions on Information Theory, 1968.

[9] N. Japkowicz and S. Stephen.

The class imbalance problem: A systematic study. *Intelligent data analysis*, 6(5):429–449, 2002.

[10] M. Kubat, S. Matwin, et al.

Addressing the curse of imbalanced training sets: one-sided selection.

In ICML, volume 97, pages 179-186. Nashville, USA, 1997.

[11] J. Laurikkala.

Improving identification of difficult small classes by balancing class distribution.

Artificial Intelligence in Medicine, pages 63-66, 2001.

[12] O. Maron and A. Moore.

Hoeffding races: Accelerating model selection search for classification and function approximation. *Robotics Institute*, page 263, 1993.

[13] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence.

Dataset shift in machine learning. The MIT Press, 2009.

[14] R Development Core Team.

R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0.

BIBLIOGRAPHY III

- [15] I. Tomek. Two modifications of cnn. IEEE Trans. Syst. Man Cybern., 6:769–772, 1976.
- [16] D. Wilson. Asymptotic properties of nearest neighbor rules using edited data. Systems, Man and Cybernetics, (3):408–421, 1972.
- [17] D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural computation, 8(7):1341–1390, 1996.

SAMPLING SELECTION BIAS

Sampling selection bias [13] occurs when the training and testing set comes from a different distribution. In this case we need to calibrate the posterior probability of the classifier [5].

