GRAPH STRUCTURE

图(Graph)

- · 图G=(V,E), V是顶点集合, E是边(弧)的集合.
- 顶点的度、出度和入度的概念

图的相关概念

图的存储

• 试想如何表达下图的信息?

- 可用邻接矩阵表达顶点及其关系。
- 根据邻接矩阵,如何判断各顶点的度?

图的存储(cont.)

- 建立二维数组A[n][n], n=|V|
- · 另需存放n个顶点信息
- 此方法直观、简单,但是会有什么问题?
- 现实中的图经常对应稀疏矩阵,在这样情形下会有很大空间浪费.

网的邻接矩阵

有些图的边带有权重(常用来表示成本、距离、时间等),这样的图称为网。

网的邻接矩阵表达权重,没有边的 顶点之间的权重默认为∞.

邻接表 (Adjacency List)

- 无向图的邻接表: 同一个顶点发出的边链接在同一个边链表中, 便于确定顶点的度
- · 需要n个头结点, 2e个表结点

邻接表 (cont.)

需n 个顶点结点, e个表结点

邻接表 (cont.)

课堂练习

- 1. 请写出数组存储和邻接表的类型定义
- 2. 请在如下方面对比数组表示法和邻接表示法
 - 存储表示是否唯一
 - 空间复杂度
 - 操作a: 求顶点Vi的度
 - 操作b: 判定(Vi, Vj)是否是图的一条边
 - 操作c: 通过遍历求边的数目

• 1. 请写出使用数组和邻接表的存储表示

顺序存储法

```
typedef struct Vertex {
  int VID;
  char data;
}Vertex;
```

typedef struct Graph {
 int AdjMatrix[VNum][VNum];//邻接矩阵
 Vertex VertexSeq[Vnum]; //顶点序列
 int GraphKind; //用1, 2, 3, 4表示有向图...
 int n, e;//顶点数和边数
}Graph;

• 1. 请写出使用数组和邻接表的存储表示

有向图 G_1

邻接表

```
typedef struct LGraph {
   Vnode AdjList[VNum];//邻接表
   int GraphKind;
   int n, e;
}LGraph;
```

```
typedef struct VNode{
  VInfoType vInfo;
  ENode *firstAdj;
};
```

```
typedef struct ENode{
  int AdjVNode;
  ENode *nextAdj;
};
```

	数组表示法	邻接表法		
存储表示结果	惟一	不惟一		
空间复杂度	O(n ²) 适用于稠密图	O(n+e) 适用于稀疏图		
求顶点Vi的度	无向图:第i行(或第i列)上非 零元素的个数	无向图:第i个边表中的结点个 数		
	有向图:第i行上非零元素的 个数是Vi出度,第i列上 非零元素的个数是Vi的入 度	有向图:第i个边表上的结点个数,求入度还需遍历各顶点的边表。逆邻接表则相反。		
判定(Vi, Vj)是 否是图的一 条边	看矩阵中的i行j列是否为0	扫描第i个边表		
求边的数目	检测整个矩阵中的非零元 所耗费的时间是O(n²)	对每个边表的结点个数计数 所耗费的时间是O(e+n)		

思考尝试

• 怎么把邻接表和逆邻接表相结合,同时表示出来?

有向图的十字链表

(v0) (v1) (v3) (v3)

将邻接表、逆邻接表结合起来

typedef struct Vexnode{
 VertexType data;
 ArcBox *firstin, *firstout;
}VexNode;

Typedef struct ArcBox{
 int headvex, tailvex;
 struct ArcBox *hlink, *tlink;
 InfoType *info;
}ArcBox

- 图的存储结构
- 图的遍历
- 图的连通性

图的遍历

 图的遍历:从图的某项点出发,访问所有顶点,且 每个顶点仅被访问一次。

• 两种遍历

- 深度优先(类似于树的先根遍历)
- 广度优先(类似于树的层次遍历)
- 它们对无向图和有向图都适用

深度优先搜索 - Depth First Search

visited

stack

$$V_{1} \rightarrow V_{2} \rightarrow V_{3}$$

$$V_{2} \rightarrow V_{1} \rightarrow V_{4} \rightarrow V_{5}$$

$$V_{3} \rightarrow V_{1} \rightarrow V_{6} \rightarrow V_{7}$$

$$V_{4} \rightarrow V_{2} \rightarrow V_{8}$$

$$V_{5} \rightarrow V_{2} \rightarrow V_{8}$$

$$V_{6} \rightarrow V_{3} \rightarrow V_{7}$$

$$V_{7} \rightarrow V_{3} \rightarrow V_{6}$$

$$V_{8} \rightarrow V_{4} \rightarrow V_{5}$$

$$V_1 \rightarrow V_2 \rightarrow V_4 \rightarrow V_8 \rightarrow V_5$$

$$\rightarrow V_3 \rightarrow V_6 \rightarrow V_7$$

```
Boolean visited[MAX];
Status (* VisitFunc)(int v);
void DFSTraverse(Graph G, Status (* visit)(int v))
//深度优先遍历图G
{ VisitFunc = visit;
  for(v=0; v<G.vexnum; ++v) visited[v] = FALSE;
  for(v=0; v<G.vexnum; ++v)
                                v=0(即DFS(G,0))就可以完成
    if(!visited[v]) DFS(G,v);
                                遍历G,这从0开始的扫描是
void DFS(Graph G, int v)
//从第v顶点出发递归的深度优先遍历图G
{ visited[v] = TRUE; VisitFunc(v);
 for(w=FirstAdjVex(G, v); w; w = NextAdjVex(G,v,w))
    if(!visited[w]) DFS(G,w);
```

图不一定连通,需要遍历每一个节点

DFS算法分析

- 比较两种存储结构下的算法 (设 n 个顶点, e 条边)
 - 数组表示: 查找每个顶点的邻接点要遍历每一行,遍历的时间复杂度为 $O(n^2)$
 - 邻接表表示: 虽然有 2e 个表结点,但只需扫描 e 个结点即可完成遍历,加上访问 n个头结点的时间,遍历的时间复杂度为O(n+e)
- 结论: 稠密图适于在邻接矩阵上进行深度遍历; 稀疏图适于在邻接表上进行深度遍历。

广度优先搜索 -Breadth First Search

$$V_{1} \rightarrow V_{2} \rightarrow V_{3}$$

$$V_{2} \rightarrow V_{1} \rightarrow V_{4} \rightarrow V_{5}$$

$$V_{3} \rightarrow V_{1} \rightarrow V_{6} \rightarrow V_{7}$$

$$V_{4} \rightarrow V_{2} \rightarrow V_{8}$$

$$V_{5} \rightarrow V_{2} \rightarrow V_{8}$$

$$V_{6} \rightarrow V_{3} \rightarrow V_{7}$$

$$V_{7} \rightarrow V_{3} \rightarrow V_{6}$$

$$V_{8} \rightarrow V_{4} \rightarrow V_{5}$$

$$V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_5 \rightarrow V_6 \rightarrow V_7 \rightarrow V_8$$

visited

1	Λ	0	Λ	Λ	Λ	Λ	Λ
T	U	U	U	U	U	U	U

Queue

V_2V_3						
----------	--	--	--	--	--	--

```
void BFSTraverse(Graph G, Status (* visit)(int v)){
//广度优先遍历图G
  for(v=0; v<G.vexnum; ++v) visited[v] = FALSE;</pre>
  IntiQueque(Q);
  for(v=0; v<G.vexnum; ++v)
    if(!visited[v]) {
      visited[u] = TRUE; Visit (u);
      EnQueue(Q,v);
      while(!QueueEmpty(Q)){
         DeQueue(u);
         for(w=FirstAdjVex(G, u); w; w=NextAdjVex(G,u,w))
        if(!visited[w]) {
          visited[w]=TRUE;
          visited(w);
          EnQueue(G,w);
```

BFS算法分析

- 数组表示: BFS对于每一个被访问到的顶点,都要循环检测矩阵中的整整一行(n 个元素),总的时间代价为 $O(n^2)$ 。
- · 邻接表表示: 时间复杂度O(n+e).

作业练习

- 1、请写出如下有向图的邻接矩阵,基于该矩阵进行图的深度优先遍历;
- 2、建立如下有向图的邻接表,进行图的广度优先遍历.

- 图的存储结构
- 图的遍历
- 图的连通性

图的连通性在计算机网、通信网和电 力网等方面有着重要的应用。

生成树(Spanning tree)

· 深度优先生成树 vs. 广度优先生成树

连通图的生成树是它的极小连通子图,有n个顶点和n-1条边。

非连通图的连通分量

- 对于非连通图则 遍历生成森林
- · 左图是深度优先 遍历生成森林

最小生成树

- · 很多现实问题可以抽象成网。比如,在n个 城市之间建立通信网,要求总成本最低。
- 上述问题是求连通网的最小生成树问题, 即挑选n-1条不产生回路的最短边,则总成本(生成树的各边的权重之和)达到最低。

最小生成树

构造最小生成树有多种算法,其中多数利用了最小生成树的下列性质:

假设G=(V, E)是一个连通图,U是顶点集V的一个非空子集。若 (u,v)是一条具有最小权值(代价)的边,其中 $u \in U$, $v \in V$ -U,则必存在一棵包含边 (u,v)的最小生成树。

Prim算法

从顶点出发: 找连通部分和未连通部分 之间的最小代价的一条路

Prim算法 (cont.)

	6	1	5		
6		5		3	
1 5	5		5	6	4
5		5			2
	3	6			6
		4	2	6	

- 采用邻接矩阵,搜索最小权 重的边需要**O**(n²);
- 优化方法
 - · 采用堆(binary heap)结构和邻接表,则需要O(elogn);
 - 采用Fibonacci heap可以降至 O(e+nlogn)。

	6	1	5		
6		5		3	
1	5		5	6	4
5		5			2
	3	6			6
		4	2	6	

不妨使用两个数组动态地维护每 个点到生成树T的点最短距离信息, 即可提高找最短边的效率。

Lowcost:每个顶点到生成树中

的最小代价

Closest: 最小代价对应边的相邻

节点

Kruskal算法

从边出发: 找最小代价、且连通不同 连通分量的一条路

课堂练习

- · 1、请分别写出使用Prim和Kruscal算法生成最小生成树的步骤;
- 2、请分别写出两种算法的存储结构(可以 采用邻接矩阵,或邻接表),以及算法伪 码;
- 3、分析算法的复杂度。

总结

· Prime算法:

将顶点归并,每次选与树最近的点加进来, 直到所有点加进来为 止。

算法复杂度O(n²),适 于稠密网。 • Kruskal算法:

将边归并,每次选权最小且不产生回路的边加进来,直到找到n-1条边加到树为止。

算法复杂度O(eloge), 适于稀疏网。

最短路径

- 许多地理问题在被抽象为图论下的网络图时,问题的核心就变成了网络图上的优化计算问题。最为常见的莫过于关于路径和顶点的优选计算问题。
- 前者最常见的是最短路径问题;后者最常见的是中心点和中位点选址问题。

最短路径的不同含义

- · 纯距离意义上的最短路径 e.g. 需要运送一批物资从城市0到城市5,选择什么样的运输路线距离最短?
- 经济、时间距离意义上的最短路径

Dijkstra算法

• E. W. Dijkstra (Netherlands), who won the 1972's ACM Turing Award, often regarded as the Nobel Prize for computing.

- · Dijkstra算法是典型的贪婪算法(Greedy Algorithm)——在每一步作出的选择使得当前有最好的结果。
 - 在每一步找距离源点最近的点
 - 找到之后看其他节点是否可以通过该节点变短?如果是,则修改
 - 实现时,记录下每个节点经过哪个最短路径到达当前 节点

Demo

Dijkstra's algorithm

www.combinatorica.com

举例

Floyd算法

- · 在加权图中求任意两个顶点之间的最短路时, Floyd算法是常用的算法。这是一个动态规划的算法。
 - Robert Floyd于1962年提出该算法,其实它与1959年B.
 Roy和1962年Warshall提出的算法不谋而合。

Robert Floyd(1936-2001)是计算机领域著名的科学家, 1978年图灵奖获得者。他出生在纽约,在1953年他17岁时便获得了liberal arts学士学位, 1958年又获得了物理学学士学位。曾在Carnegie Mellon, standford任职。

Floyd算法

- 逐步尝试在原路径中加入其它顶点作为中间顶点,如果增加中间顶点后,得到的路径比原来的路径长度减少了,则以此新路径代替原路径,修改矩阵元素。
- 第一步,让所有边上加入中间顶点1,取
 A[i][j]与A[i][1]+A[1][j]中较小的值作A[i][j]的值,完成后得到A(1),
- 以此类推...

$$\mathbf{D}^{0} = (\mathbf{w_{ij}}) = \begin{pmatrix} 0.1 \times 2 \times \\ 1.0 \times 3.4 \times \\ \times 3.01.2 \\ 2.4 \times 10.3 \\ \times \times 23.0 \end{pmatrix}$$

$$D^{1} = \begin{pmatrix} 0 & 1 \infty & 2 \infty \\ 1 & 0 & 3 & 3 \infty \\ \infty & 3 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 3 \\ \infty & \infty & 2 & 3 & 0 \end{pmatrix} \qquad D^{2} = \begin{pmatrix} 0 & 1 & 4 & 2 \infty \\ 1 & 0 & 3 & 3 \infty \\ 4 & 3 & 0 & 1 & 2 \\ 2 & 3 & 1 & 0 & 3 \\ \infty & \infty & 2 & 3 & 0 \end{pmatrix}$$

$$D^{2} = \begin{pmatrix} 0 & 1 & 4 & 2 & \infty \\ 1 & 0 & 3 & 3 & \infty \\ 4 & 3 & 0 & 1 & 2 \\ 2 & 3 & 1 & 0 & 3 \\ \infty & \infty & 2 & 3 & 0 \end{pmatrix}$$

$$D^{3} = \begin{pmatrix} 0 & 142 & \underline{6} \\ 1 & 0 & 33 & \underline{5} \\ 43 & 01 & 2 \\ 2 & 310 & 3 \\ \underline{65} & 230 \end{pmatrix}$$

$$D^{4} = \begin{pmatrix} 0 & 1 & 3 & 2 & 5 \\ 1 & 0 & 3 & 3 & 5 \\ 3 & 3 & 0 & 1 & 2 \\ 2 & 3 & 1 & 0 & 3 \\ 5 & 5 & 2 & 3 & 0 \end{pmatrix} \qquad D^{5} = \begin{pmatrix} 0 & 1 & 3 & 2 & 5 \\ 1 & 0 & 3 & 3 & 5 \\ 3 & 3 & 0 & 1 & 2 \\ 2 & 3 & 1 & 0 & 3 \\ 5 & 5 & 2 & 3 & 0 \end{pmatrix}$$

$$\mathbf{p}^{5} = \begin{pmatrix} 0 & 1 & 32 & 5 \\ 1 & 0 & 33 & 5 \\ 33 & 01 & 2 \\ 23 & 10 & 3 \\ 55 & 23 & 0 \end{pmatrix}$$

中心点选址举例

• 假设某县下属的6个乡镇及其之间公路联系如图所示。每一顶点代表一个乡镇;每一条边代表连接两个乡镇之间的公路,每一条边旁的数字代表该条公路的长度。现在要设立一个消防站,为全县的6个乡镇服务。试问该消防站

的6个乡镇服务。试问该消防站 v_1 应该设在哪一个乡镇(顶点)? v_6 v_4 v_4 v_2 v_5 v_5 v_5 v_8

最短路径长度

$$D = \begin{pmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\ d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36} \\ d_{41} & d_{42} & d_{43} & d_{44} & d_{45} & d_{46} \\ d_{51} & d_{52} & d_{53} & d_{54} & d_{55} & d_{56} \\ d_{61} & d_{62} & d_{63} & d_{64} & d_{65} & d_{66} \end{pmatrix} = \begin{pmatrix} 0 & 3 & 6 & 3 & 6 & 4 \\ 3 & 0 & 3 & 4 & 5 & 7 \\ 6 & 3 & 0 & 3 & 2 & 4 \\ 3 & 4 & 3 & 0 & 5 & 7 \\ 6 & 5 & 2 & 5 & 0 & 2 \\ 4 & 7 & 4 & 7 & 2 & 0 \end{pmatrix}$$

消防站设在v1, v3, v5中任何一点上都是可行的参考(v1, v3, v5最坏的情况下(距离6)比v2, v4要好(距离7)):

拓扑排序 (Topological sort)

· 一个表示偏序的有向图可以用来表示一个流程图, 比如施工流程图、生产路线图、数据流图。如下 图所示,这样的图也成为Activity on Vertex

• 拓扑排序是由某个集合上的一个偏序得到该集合上的一个全序。

图的拓扑排序

• 对含环的有向图如何进行拓扑排序?

AOV网中不应该出现有向环,这意味着 某项活动以自己为先决条件!

请对下列图进行拓扑排序

图的拓扑排序 (cont.)

٧	Indeg.	TopNum
0	0	1
1	1	-1
2	2	-1
3	3	-1
4	1	-1
5	3	-1
6	2	-1

>	Indeg.	TopNum
0	0	0
1	0	1
2	1	-1
3	2	-1
4	1	-1
5	3	-1
6	2	-1
	0 1 2 3 4	0 0 1 0 2 1 3 2 4 1 5 3

>	Indeg.	TopNum
0	0	0
1	0	1
2	1	-1
3	1	-1
4	0	2
5	3	-1
6	2	-1

٧	Indeg.	TopNum
0	0	0
1	0	1
2	1	-1
3	0	3
4	0	2
5	3	-1
6	1	-1

图的拓扑排序 (cont.)

Simple Topological Sort Algorithm

```
Status Toposort(Graph G) {
//有向图G采用邻接表存储,若G无回路输出它的一个拓扑序列
FindInDegree(G, indegree);
InitStack(S);
for(i = 0; Counter < G.vexnum; ++i)
                                        求入度的时间复杂度为O(e),入栈
  if (!indegree[i])
                                       出栈O(n), 总时间复杂度为O(n+e).
   push(S,i);
  count=0;
  while (!StackEmpty(S)){
    Pop(S,i); printf(I, G.vertices[i].data); ++count;
   for(p=G.vertices[i].firstarc; p; p++) {
     k=p->adjvex;
     if (!(--indegree[k])) push(S,k);
    }//for
   }//while
  if(count<G.vexnum) return ERROR;
   else return OK;
```

图的拓扑排序 (cont.)

• 可以考虑使用队列

(0)

V	Indeg.	TopSort	← —Rear
V0	0	-1	← —Head
V1	1	-1	
V2	2	-1	
V3	3	-1	
V4	1	-1	
V5	3	-1	
V6	2	-1	

(1)

٧	Indeg.	TopSort	Used
V0	0	V0	——Head ←—Rear
V1	1	-1	
V2	2	-1	
V3	3	-1	
V4	1	-1	
V5	3	-1	
V6	2	-1	

(2)

	. ,	•	
٧	Indeg.	TopSort	
V0	0	V0	
V1	0	V1	← Head Rear
V2	1	-1	
V3	2	-1	
V4	1	-1	
V5	3	-1	
V6	2	-1	

图的拓扑排序 (cont.)

(3)

(4)

0	1
2	4
5	6

V Indeg. TopSort

٧	Indeg.	TopSort	
V0	0	V0	
V1	0	V1	
V2	1	V4	← —Hea ← —Rea
V3	1	-1	
V4	0	-1	
V5	3	-1	
V6	2	-1	
	(6)		

		C	а	u
_	R	e	а	r

(7)

٧	Indeg.	TopSort	
V0	0	V0	
V1	0	V1	
V2	1	V4	
V3	0	V3	←—Hea∈ ←—Rea∈
V4	0	-1	
V5	3	-1	
V6	1	-1	

		_	
V0	0	V0	
V1	0	V1	
V2	0	V4	
V3	0	V3	
V4	0	V2	← —Head
V5	2	V6	← —Rear
V6	0	-1	

V	Indeg.	TopSort	
V0	0	V0	
V1	0	V1	
V2	0	V4	
V3	0	V3	
V4	0	V2	
V5	1	V6	——Head ──Rear
V6	0	-1	71001

٧	Indeg.	TopSort
V0	0	V0
V1	0	V1
V2	0	V4
V3	0	V3
V4	0	V2
V5	0	V6
V6	0	V5

_Head

-Rear

V	Indeg.	TopSort
V0	0	V0
V1	0	V1
V2	0	V4
V3	0	V3
V4	0	V2
V5	0	V6
V6	0	V5

-Rear

→ Head

(7)

图与网络

- 用数学语言来说,网络就是一种图,一般认为它专指加权图。网络除了数学定义外,还有具体的物理含义,即网络是从某种相同类型的实际问题中抽象出来的模型,习惯上就称其为什么类型网络,如开关网络、运输网络、通信网络、计划网络等。
- 现实生活中的许多问题都可以使用图与网络的模型来刻画, 比如交通路线的优化、ERP系统的工作计划制定等。

社会网络 (social network)

- 社会网络是指社会个体成员之间 因为互动而形成的相对稳定的关系体系。
- 社会网络分析(SNA)是西方社会学的一个重要分支,是从上世纪30年代末在国外出现并逐步得到发展的研究社会结构的方法和技术。从30年代到60年代,在心理学、社会学、人类学以及数学、物理、统计、概率研究领域,越来越多的学者开始构建和研究社会结构概念,SNA的理论、方法和技术日益深入,成为一种重要的社会结构研究范式。

六度分隔 (Six Degrees of Separation)

- 这个理论是1929年由匈牙利作家弗里奇斯·卡林思在短篇 小说中首次提出的,他指出,世界上所有人都可以通过至 多五个中间人联系起来。
- 1967年,哈佛大学社会心理学教授Stanley Milgram (1933-1984)进行了一项实验。他从Nebraska和Kansas随机选择了300多名志愿者,请他们寄一封信函给指定的一名住在波士顿的股票经纪人。结果,有六十多封信函最终到达了目标人手中,并且这些信函经过的中间人的数目平均只有5个。从此,六度空间理论受到了全世界的关注,后来还催生了电影《六度空间》。此外,Milgram还发现了漏斗效应,他发现大部分的传递都是由那些极少数的明星人物完成的。

150法则 (Rule of 150)

- · 从欧洲发源的"赫特兄弟会"是一个自给自足的农民自发组织,他们有一个不成文的严格规定:每当聚居人数超过150人的规模,他们就把它变成两个,再各自发展。
- 150也被称为"邓巴数字(Dunbar's number)",该理论认为人的大脑新皮层大小有限,提供的认知能力只能使一个人维持与大约150人的稳定人际关系。
- 把人群控制在150人以下似乎是管理人群的一个最佳和最有效的方式。早期中国移动的动感地带sim卡最多保存150个手机号,早期一个MSN帐号只能对应150个联系人。
- 不管你认识多少人,或者与更多人建立了弱链接,那些强链接仍然在此次此刻符合150法则。这也符合"二八"法则,即80%的社会活动可能被150个强链接所占有。

社会网络 (cont.)

- 社会网络是在成员之间传播信息、意见、创新等的介质。
 - 农夫们仿效他们的邻居而采纳新品种的稻谷[Ryan and Gross, 1943]

- 在商业领域,口碑营销(Word-of-mouth)的力量有目共

睹。

网络模型

- 热点从传统的随机网络向其它转移
 - 小世界网络(small world network)
 Watts, Strogatz, nature, 1998.

- 无标度网络(scale-free network)
 Albert, Science, 1999.

小世界网络 Small world network

无标度网络 Scale-free network

小世界网络

- · 在小世界网络中,节点具有均质特性 (homogeneous),即具有大致相同数目的连接
- · 小世界网络对于许多社会过程的动态(dynamics) 研究非常重要
 - 疾病/病毒传播
 - 信息传播与公众舆情
 - 财富分配
 - 文化/价值观传播

无标度网络

- 在无标度网络中,节点不再具有同质性,节点的度服从幂律发布。任意节点与其它k个节点连接的概率P(k)满足P(k) ∝k⁻r,通常2<r≤3。绝大多数节点有很少连接,而有极大连结度的节点数量非常之少,节点的度没有明显的长度,这也是无标度网络名称的由来。
- 无标度性已 被证明是因 特网的重要 特性

本章作业

- 理解求解生成树和最短路径的4个算法,然后编码实现,编码中加上必要的注释,方法和变量需要指定对应的类型(例如对于变量x,指定其为字符串类型,则可以: x:str = 'hello')。
- 四个算法中,普里姆算法和迪杰斯特拉算法必做, 另外两种为选做题目。
- · 截止时间为下5月26日晚23:00之前,邮件标题为: 姓名+学号+图算法