# 자전거 수요 예측 분석 보고서

Dataset: Bike Sharing Demand (Kaggle)

AI\_02\_전혜정



### **INTRO**



자전거 공유 시스템은 도시에서 효율적이고 친환경적인 교통수단을 제공하며, 대여 수요 예측은 차량 관리와 사용자 경험 향상에 필수적이다. 이 프로젝트는 과거 대여 데이터를 기반으로 다양한 환경적 및 시간적 요인을 고려하여 자전거 대여 수를 예측하는 모델을 구축하게 되었다.

## 목표



목표는 **머신러닝 기법을 사용**하여 **시간대별 총 자전거 대여 수(count)를 예측**하는 것이다. 데이터셋에는 날씨 조건, 계절성, 사용자 유형 등 대여 수요에 영향을 미치는 다양한 요인이 포함되어 있다. 이 데이터를 활용하여 보이지 않는 테스트 데이터에 잘 일반화할 수 있는 견고한 모델을 구축하는 것을 목표로 한다.

# 데이터 설명



| 컬럼명        | 데이터 타입   | 설명                                             |  |  |
|------------|----------|------------------------------------------------|--|--|
| datetime   | datetime | 자전거 대여 기록의 날짜 및 시간. 예시: 2011-01-01 00:00:00    |  |  |
| season     | int      | 계절 (1: 봄, 2: 여름, 3: 가을, 4: 겨울)                 |  |  |
| holiday    | int      | 공휴일 여부 (0: 평일, 1: 공휴일)                         |  |  |
| workingday | int      | 근무일 여부 (0: 주말/공휴일, 1: 근무일)                     |  |  |
| weather    | int      | 날씨 상황 (1: 맑음, 2: 구름낌/안개, 3: 약간의 비/눈, 4: 폭우/폭설) |  |  |
| temp       | float    | 실측 온도 (섭씨)                                     |  |  |
| atemp      | float    | 체감 온도 (섭씨)                                     |  |  |
| humidity   | int      | 습도 (%)                                         |  |  |
| windspeed  | float    | 풍속 (m/s)                                       |  |  |
| casual     | int      | 등록되지 않은 사용자의 대여 수                              |  |  |
| registered | int      | 등록된 사용자의 대여 수                                  |  |  |
| count      | int      | 총 대여 수 (종속 변수)                                 |  |  |



### (특성들 간의 상관관계)

#### < hour ↔ count (0.4) >

- : 시간(hour)이 증가할수록 자전거 대여량(count)이 증가하는 경향이 있음.
- : 보통 출퇴근 시간(아침, 저녁)에 대여량이 증가할 가능성이 높음.

#### < temp ↔ count (0.39) >

- : 기온이 올라갈수록 자전거 대여량이 증가하는 경향이 있음.
- : 날씨가 따뜻할수록 사람들이 더 많이 자전거를 이용한다고 볼 수 있음.

#### < atemp ↔ temp (0.98) >

: 체감 온도와 온도는 거의 똑같다는 사실을 알 수 있음.





### (count 컬럼과의 상관관계)

#### < count $\leftrightarrow$ registered (0.97) >

: 회원 수 증가가 자전거 대여량 증가에 가장 큰 영향을 미침.

#### < count ↔ casual (0.69) ) >

: 비회원 이용도 중요한 요인이지만, 회원 대여량이 더 큰 영향을 미침.

#### < count ↔ hour (0.4) >

: 시간대가 자전거 이용에 영향을 줌. 출퇴근 시간의 패턴을 분석하면 대여량을 예측하는 데 도움이 될 수 있음..

#### < humidity ↔ count (-0.32) >

: 습도가 높아질수록 자전거 대여량이 감소하는 경향이 있음.

: 습도가 높으면 불쾌지수가 상승하고, 사람들이 야외 활동을 줄이는 것으로 추측

|            | 4       | <b>1.0</b> |
|------------|---------|------------|
| count      | 1       |            |
| registered | 0.97    |            |
| casual     | 0.69    | - 0.8      |
| hour       | 0.4     |            |
| temp       | 0.39    | - 0.6      |
| atemp      | 0.39    |            |
| year       | 0.26    | - 0.4      |
| month      | 0.17    | 0.4        |
| season     | 0.16    |            |
| windspeed  | 0.11    | - 0.2      |
| day        | 0.02    |            |
| workingday | 0.012   | - 0.0      |
| holiday    | -0.0054 |            |
| weather    | -0.13   | 0.2        |
| humidity   | -0.32   |            |
|            | count   |            |





근 무 일

: 출퇴근 시간(07시~09시, 17시~19시) 수요 급증

: 출퇴근 시간대의 수요 증가는 근무일과 강한 연관성을 가짐

휴 일 : 정오 오후(11시~18시) 수요 높음

: 근무일과 달리 출퇴근 시간의 피크타임이 나타나지 않음

: 이는 여가 활동을 위해 자전거 대여를 이용하는 것으로 해석 가능





- **✓ 날씨가 맑을수록 자전거 대여 수요가 증가**하는 경향이 있음
- **✓ 여름(Summer)**과 **가을(Fall)**에서 대여량이 가장 높음

- ✓ 맑은 날(Sunny)만큼은 아니지만 흐린 날(Cloudy)에도 대여량이 많음
- ✓ 겨울(Winter)은 다른 계절보다 전체적으로 대여량이 적음
- ✔ 봄(Spring)은 대체로 낮은 편, 특히 비나 눈이 오는 날(Spring에서 가장 낮은 막대) 은 확연히 적음

## 전처리 - 결측치



| train.isnull | ().Sull() | test.isnull( | ) . Sum ( ) |
|--------------|-----------|--------------|-------------|
| season       | 0         | datetime     | 0           |
| holiday      | 0         | season       | 0           |
| workingday   | 0         | holiday      | 0           |
| weather      | 0         | workingday   | 0           |
| temp         | 0         | weather      | 0           |
| atemp        | 0         | temp         | 0           |
| humidity     | 0         | atemp        | 0           |
| windspeed    | 0         | humidity     | 0           |
| casual       | 0         | windspeed    | 0           |
| registered   | 0         | hour         | 0           |
| count        | 0         | day          | 0           |
| hour         | 0         | month        | 0           |
| day          | 0         | year         | 0           |
| month        | 0         | dtype: int64 |             |
| year         | 0         |              |             |
| dtvpe: int64 |           |              |             |



## 전처리 - 중복값



```
train.duplicated().sum()
```

0

test.duplicated().sum()

0



train 데이터, test 데이터 둘 다 중복값 또한 없다.







#### (train 데이터)

windspeed, casual, registered, count의 경우 이상치가 존재할 수 있는 그래프 개형이다.

#### (test 데이터)

Windspeed의 경우 이상치가 존재할 수 있는 그래프 개형이다.





- ✓ **습도**의 경우, 0 또는 100에 근접한다면, 사막, 고산지대이거나 열대우림, 바다 한가운데인 경우이기에 이상치일 가능성이 높다.
- ✓ 풍속의 경우, 20m/s이상만 되어도 걸어다닐 수 없을 정도로 강한 바람이기에 20m/s 이상은 이상치일 가능성이 높다.



```
# 이상치 개수 확인
for col in train.columns:
   q1 = train[col].quantile(0.25)
   q3 = train[col].quantile(0.75)
   iqr = q3 - q1
   lower bound = q1 - 1.5 * igr
   upper_bound = q3 + 1.5 * iqr
   outliers = train[(train[col] < lower_bound) | (train[col] > upper_bound)]
   print(f"{col} : {len(outliers)}")
  season: 0
                                                          datetime: 0
                       → train 데이터 이상치 개수
                                                                            → test 데이터 이상치 개수
  holiday : 311
                                                          season: 0
  workingday: 0
                                                          holiday: 189
  weather: 1
                                                          workingday: 0
  temp: 0
                                                          weather: 2
  atemp: 0
                                                          temp: 0
  humidity: 22
                                                          atemp: 0
  windspeed: 227
                                                          humidity: 0
  casual: 749
                                                          windspeed: 115
  registered: 423
                                                          hour: 0
  count: 300
                                                          day: 0
  hour: 0
  day: 0
                                                          month: 0
  month: 0
                                                          year: 0
  year: 0
```



```
def plot_hist_qq(data, column):
    fig, axes = plt.subplots(1, 2, figsize=(12, 5))
   # 히스토그램
    sns.histplot(data[column], bins=30, kde=True, ax=axes[0])
    axes[0].set title(f"Histogram of {column}")
   # Q-Q 플롯
    stats.probplot(data[column], dist="norm", plot=axes[1])
    axes[1].set_title(f"Q-Q Plot of {column}")
    plt.tight_layout()
    plt.show()
```

# 히스토그램과 Q-Q Plot 그래프를 동시에 그리기 위한 함수





### ('windspeed' 컬럼 이상치 탐색)

▼ Q-Q Plot에서 양 끝이 정규분포에서 벗어난 형태 : 좌측 하단에서 점들이 직선에서 크게 벗어났다. → 풍속이 0인 데이터가 많음

: 우측 상단에서도 이상치 존재 가능성이 있다.



```
train["windspeed"].loc[train["windspeed"] > 30 ].value_counts()
 windspeed
 30.0026
            111
 31.0009
            89
 32.9975
            80
            58
 35,0008
 39.0007
            27
 36.9974
            22
 43.0006
            12
 40.9973
            11
 43.9989
 46.0022
 56.9969
 47.9988
 51.9987
 50.0021
 Name: count, dtype: int64
train["windspeed"] = np.where(train["windspeed"] >= 30, train["windspeed"].mean(), train["windspeed"])
```

### (이상치 처리 방법)

: windspeed가 20m/s 이상인 것부터 처리를 하면 데이터 손실이 있을 것 같아 30m/s이상인 값들을 windspeed 컬럼들 값의 평균값으로 대체.





### (이상치 처리 후 'windspeed' 컬럼)

- ✓ 이전 그래프보다 정규 분포에 가까워졌다.
- ✔ 이상치 처리를 통해 풍속 데이터의 왜곡이 줄어듦





### ( 'count' 컬럼 이상치 탐색)

- ▼ 히스토그램에서 자전거 대여량 데이터는 정규성을 따르지 않으며, 오른쪽으로 긴 꼬리를 가진 분포 (Right-Skewed Distribution) 분포를 보인다.
- ✔ QQ Plot 좌측 하단과 우측 상단에 몇 개의 극단적인 이상치가 존재.









### (train 데이터)

windspeed, casual, registered, count의 경우 이상치가 존재할 수 있는 그래프 개형이다.

### (test 데이터)

Windspeed의 경우 이상치가 존재할 수 있는 그래프 개형이다.





(등록되지 않은 사용자(casual)의 대여 수에 따른 이상치)



(등록된 사용자(registered)의 대여 수에 따른 이상치)

- ▼ casual 컬럼에 대한 이상치 경우, 점심시간대와 출퇴근 시간 이외의 시간대에서의 이상치가 의심된다.
- ✓ registered 컬럼에 대한 이상치 경우, 출퇴근 시간대라는 근거가 명확해 보인다.

## 전처리 - 데이터 변환



```
# 문자열 -> datetime
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):
                Non-Null Count Dtype
     Column
     datetime
                10886 non-null object
     season
                10886 non-null int64
     holiday
                10886 non-null int64
     workingday 10886 non-null int64
     weather
                10886 non-null int64
     temp
                10886 non-null float64
                10886 non-null float64
     atemp
                10886 non-null int64
     humidity
```

10886 non-null float64

10886 non-null int64

10886 non-null int64

registered 10886 non-null int64

dtypes: float64(3), int64(8), object(1)

windspeed

memory usage: 1020.7+ KB

casual

11 count

```
train['datetime'] = pd.to_datetime(train['datetime'])
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):
     Column
                 Non-Null Count Dtype
                10886 non-null datetime64[ns]
     datetime
     season
                10886 non-null int64
     holiday
                10886 non-null int64
     workingday 10886 non-null int64
     weather
                10886 non-null int64
     temp
                10886 non-null float64
                10886 non-null float64
     atemp
     humidity
                10886 non-null int64
    windspeed
                10886 non-null float64
     casual
                10886 non-null int64
    registered 10886 non-null int64
                10886 non-null int64
    count
dtypes: datetime64[ns](1), float64(3), int64(8)
memory usage: 1020.7 KB
```

```
# 연도, 월, 일, 시간 추출
train['hour'] = train['datetime'].dt.hour
train['day'] = train['datetime'].dt.day
train['month'] = train['datetime'].dt.month
train['year'] = train['datetime'].dt.year
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 16 columns):
     Column
                Non-Null Count Dtype
     datetime
                10886 non-null datetime64[ns]
     season
                10886 non-null int64
    holidav
                10886 non-null int64
    workingday
                10886 non-null int64
     weather
                10886 non-null int64
     temp
                10886 non-null float64
     atemp
                10886 non-null float64
    humidity
                10886 non-null int64
    windspeed
                10886 non-null float64
     casual
                10886 non-null int64
    registered
                10886 non-null int64
    count
                10886 non-null int64
11
 12 hour
                10886 non-null int32
    dav
                10886 non-null int32
 14 month
                10886 non-null int32
                10886 non-null int32
dtypes: datetime64[ns](1), float64(3), int32(4), int64(8)
memory usage: 1.2 MB
```

#object(문자열)을 datetime 타입으로 변환

# 연도, 월, 일, 시간 추출해서 각각의 컬럼 생성

### 모델링



```
df = df[['season', 'holiday', 'workingday', 'weather', 'temp', 'humidity',
         'windspeed', 'casual', 'registered', 'count', 'hour', 'day', 'month', 'year']]
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 14 columns):
                Non-Null Count Dtype
    Column
              10886 non-null object
    season
     holiday
                10886 non-null int64
    workingday 10886 non-null int64
    weather
                10886 non-null object
                10886 non-null float64
     temp
                10886 non-null int64
     humidity
    windspeed
               10886 non-null float64
     casual
                10886 non-null int64
     registered 10886 non-null int64
     count
                10886 non-null int64
 10
    hour
                10886 non-null int32
 11
    dav
                10886 non-null int32
 12
                10886 non-null int32
    month
 13 year
                10886 non-null int32
dtypes: float64(2), int32(4), int64(6), object(2)
memory usage: 1020.7+ KB
```

머신러닝 알고리즘은 숫자 데이터만 처리할 수 있기에 원-핫 인코딩(One-Hot Encoding)을 해야 한다. 또한 원-핫 인코딩 은 범주형 데이터를 효과적으로 변환하는 방법이기도 하다.

이 과정은 머신러닝 모델의 정확도를 높이고 학습 효율성을 향상시키는 중요한 전처리 과정이다.

### 예측 모델링에 사용할 컬럼들을 설정하여 새로운 데이터프레임 생성

### 모델링



```
X = df.drop(columns=['count'])
y = df['count']
X.shape, y.shape
```

((10886, 47), (10886,))

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_scaled_ss = ss.fit_transform(X)
X scaled ss
array([[-0.17149048, -1.46067232, -1.33366069, ..., -0.30220576,
        -0.30220576, -0.30238674],
       [-0.17149048, -1.46067232, -1.43890721, ..., -0.30220576,
        -0.30220576, -0.30238674],
       [-0.17149048, -1.46067232, -1.43890721, ..., -0.30220576,
        -0.30220576, -0.30238674],
       [-0.17149048, 0.68461625, -0.80742813, ..., -0.30220576,
        -0.30220576, 3.30702336],
       [-0.17149048, 0.68461625, -0.80742813, ..., -0.30220576,
        -0.30220576, 3.30702336],
       [-0.17149048, 0.68461625, -0.91267464, ..., -0.30220576,
        -0.30220576. 3.30702336]])
```

모델을 학습하기 위해 독립변수(X)와 종속 변수(v)를 분리함.

X: 10886개의 샘플 개수 / 47개의 특성(2D

y: 10886개의 샘플 개수(1D)

✓ 표준화는 sklearn.preprocessing의 StandardScaler를 사용하여
 수행함. → 표준화 시, 동일한 범위를 가지게 되어 모델이 특정 변수에
 의존하는 현상을 방지 가능.

- ✓ MinMaxScaler 대신 StandardScaler를 선택한 이유
- → 사용할 데이터는 이상치가 존재하는 변수도 포함되어 있기에 이상치에 덜 민감한 StandardScaler을 선택하였다.
- → StandardScaler : 평균=0, 표준편차=1 로 변환

### 평가 지표



```
def evaluate_regression_model(test, prediction):
    print("MAE : ", mean_absolute_error(test, prediction))
    print("MSE : ", mean_squared_error(test, prediction))
    print("RMSE : ", root_mean_squared_error(test, prediction))
```

```
MAE, MSE, RMSE
```

```
def rmsle(y_true, y_pred, convertExp=True):
# 지수변환
if convertExp:
y_true = np.exp(y_true)
y_pred = np.exp(y_pred)

# 로그변환 후 결측값을 0으로 변환
log_true = np.nan_to_num(np.log(y_true+1))
log_pred = np.nan_to_num(np.log(y_pred+1))

# RMSLE 계산
output = np.sqrt(np.mean((log_true - log_pred)**2))
return output
```



## 모델링&평가 - Linear Regression



```
lr_model_ss.fit(X_train, log_y_train)
  LinearRegression
LinearRegression()
lr model ss.coef , lr model ss.intercept
(array([-4.41616247e-03, -3.74129239e-02, 2.13173366e-01, -5.66787967e-02,
        -2.80797430e-02, 2.38382932e-02, 2.43964683e-01, 8.97827852e+11,
         2.45910646e+12, 1.30418374e+12, -8.29833432e-04, -1.39918691e-01,
         2.30624192e-02, -1.38395819e-01, -2.32991890e-01, -3.43554574e-01,
        -4.04930220e-01, -1.95108444e-01, 5.76913930e-02, 2.49447018e-01,
         3.81723297e-01, 3.12378995e-01, 2.47087958e-01, 2.70364605e-01,
         3.06303395e-01, 3.05292120e-01, 2.90211415e-01, 2.97921783e-01,
         3.53161231e-01, 4.32005264e-01, 4.18344702e-01, 3.63381375e-01,
         2.98750947e-01, 2.47822734e-01, 2.00699274e-01, 1.22125381e-01,
         5.35453940e-02, 7.46638293e-02, -9.92724661e+11, -9.94211961e+11,
        -9.94211961e+11, 5.76985959e+11, 5.76985959e+11, 5.76122811e+11,
        -2.56067734e+11, -2.56067734e+11, -2.56195395e+11]),
 4.55551579740905)
```

#### ✔ 선형 회귀 모델 훈련

- LinearRegression() 모델을 X\_train(훈련 데이터)과 log\_y\_train(로그 변환된 타깃 변수)으로 학습시킴.

#### ✓ 회귀 계수(coef\_) 및 절편(intercept\_) 출력

- coef\_ : 학습된 모델의 특성별 회귀 계수(가중치)를 나타냄

: coef\_ 배열의 각 숫자는 각 특성이 타깃 값에 미치는

영향력을 의미.

- intercept\_: 모든 특성이 0일 때 예측되는 값 (절편값)

### 모델링&평가 - GridSearchCV



```
from sklearn.model_selection import GridSearchCV

param_grid_ridge = {'하이퍼파라미터_이름': ['튜닝할 값 리스트']}
'객체명' = GridSearchCV('모델이름()', param_grid_ridge, cv='교차검증 횟수', scoring='r2', n_jobs=-1)
'객체명'.fit(X_train, log_y_train)

print("최적의 하이퍼파라미터:", '객체명'.best_params_)
'변수명' = '객체명'.best_estimator_
print('변수명')

(GridSearchCV 사용방법)
```

GridSearchCV는 머신러닝 모델의 하이퍼파라미터를 최적화하는 방법 중 하나이다.

여러 개의 하이퍼파라미터를 조합해보고, <u>가장 좋은 성능을 내는 조합을 선택</u> (단, 연산 속도가 느림.)

## 모델링&평가 - Ridge Regression

```
30
```

```
from sklearn.model selection import GridSearchCV
param_grid_ridge = {'alpha': [0.0001, 0.001, 0.01, 0.1, 1]}
ridge = GridSearchCV(Ridge(), param_grid_ridge, cv=5, scoring='r2', n_jobs=-1)
ridge.fit(X train, log y train)
print("최적의 하이퍼파라미터:", ridge.best_params_)
best ridge = ridge.best estimator
print(best ridge)
최적의 하이퍼파라미터: {'alpha': 0.1}
Ridge(alpha=0.1)
# 최적의 Ridge 모델 가져오기
print("Ridge 회귀 계수 (Weights):", best ridge.coef )
print("Ridge 절편 (Intercept):", best_ridge.intercept_)
Ridge 회귀 계수 (Weights): [-6.24406809e-03 -3.81395288e-02 2.14060419e-01 -5.59708349e-02
-2.76453164e-02 2.34165238e-02 2.43938172e-01 -1.99534149e-01
  3.96425761e-02 7.41855510e-02 -3.09513714e-04 -1.39956630e-01
 2.32651759e-02 -1.38583623e-01 -2.33157908e-01 -3.43396097e-01
 -4.04412353e-01 -1.94975202e-01 5.77518252e-02 2.49036736e-01
  3.81380652e-01 3.12328039e-01 2.47785792e-01 2.69949286e-01
  3.05703498e-01 3.05332454e-01 2.90336844e-01 2.98525300e-01
  3.52671952e-01 4.31999113e-01 4.18040234e-01 3.63361319e-01
  2.98378867e-01 2.47548603e-01 2.00066056e-01 1.21764362e-01
  5.32813687e-02 7.48338652e-02 -2.09414353e-02 4.70537886e-02
  3.59015355e-02 2.88999818e-02 4.32546512e-02 6.02553779e-02
  4.98758747e-02 3.89071783e-02 2.73842723e-021
Ridge 절편 (Intercept): 4.552990076444588
```

# ridge.best\_params\_: 최적의 alpha 값을 출력 # best\_ridge.coef\_: 최적 모델의 가중치 (Feature Weights) # best\_ridge.intercept : 최적 모델의 절편 (Intercept)

## 모델링&평가 - Lasso Regression

```
# 최적의 파라미터 찾기 : GridSearchCV
from sklearn.model_selection import GridSearchCV
param_grid_lasso = {'alpha': [0.0001, 0.001, 0.01, 0.1, 1]}
lasso = GridSearchCV(Lasso(), param_grid_lasso, cv=5, scoring='r2', n_jobs=-1)
lasso.fit(X train, log y train)
print("최적의 하이퍼파라미터:", lasso.best_params_)
best_lasso = lasso.best_estimator_
print(best lasso)
최적의 하이퍼파라미터: {'alpha': 0.0001}
Lasso(alpha=0.0001)
best_lasso = lasso.best_estimator_
print("Lasso 회귀 계수 (Weights):", best_lasso.coef_)
print("Lasso 절편 (Intercept):", best_lasso.intercept_)
Lasso 회귀 계수 (Weights): [-6.14995773e-03 -3.80088119e-02 2.14478784e-01 -5.60872659e-02
 -2.74480827e-02 2.33103981e-02 2.43802083e-01 -2.66003013e-01
  0.00000000e+00 4.96638129e-02 -2.31245334e-04 -1.39845881e-01
  2.31516516e-02 -1.39674397e-01 -2.34235844e-01 -3.44447712e-01
 -4.05476072e-01 -1.96046429e-01 5.64852735e-02 2.47763233e-01
  3.80102321e-01 3.11024093e-01 2.46460332e-01 2.68606063e-01
  3.04349332e-01 3.03961386e-01 2.88957514e-01 2.97143758e-01
  3.51291352e-01 4.30631794e-01 4.16678005e-01 3.62018548e-01
  2.97052265e-01 2.46233318e-01 1.98756134e-01 1.20470147e-01
  5.28266803e-02 7.43110269e-02 -3.87106641e-02 2.90607763e-02
  1.78422433e-02 -1.43404928e-02 -0.00000000e+00 1.69598137e-02
  2.22542264e-02 1.13778790e-02 -0.00000000e+001
Lasso 절편 (Intercept): 4.552986569071433
```



# lasso.best\_params\_: 최적의 alpha 값을 출력 # best\_lasso.coef\_: 최적 모델의 가중치 (Feature Weights) # best\_lasso.intercept : 최적 모델의 절편 (Intercept)

### 모델링&평가 - Lasso Regression



```
# 최적의 파라미터 찾기 : GridSearchCV
from sklearn.model selection import GridSearchCV
param grid sgd = {
   'alpha': [0.0001, 0.001, 0.01], # 정규화 강도 (L1, L2 규제의 세기)
   'penalty': ['l1', 'l2'], # 정규화 방식 선택 (Lasso vs Ridge)
   'learning rate': ['constant', 'optimal', 'invscaling'] # 학습률 스케줄링 방식
sqd = GridSearchCV(SGDRegressor(max iter=1000, tol=1e-3), param grid sqd, cv=5, scoring='r2', n jobs=-1)
sqd.fit(X train, log v train)
best_sgd = sgd.best_estimator_
print("sqd 회귀 계수 (Weights):", best sqd.coef )
print("sqd 절편 (Intercept):", best sqd.intercept )
sgd 회귀 계수 (Weights): [ 0. -0.03029063 0.26916463 -0.0671943 -0.00484829 0.01362529
 0.23158587 -0.19359781 0. 0.0825838 0.
                                                         -0.13059263
           -0.21359456 - 0.33030014 - 0.45456897 - 0.48763389 - 0.30590366
 -0.02262305 0.12824374 0.25679884 0.20093466 0.11563806 0.13395438
 0.17411732 0.17212341 0.17206925 0.16642651 0.22898554 0.30645269
 0.29469176 0.24294444 0.17418818 0.13215107 0.08608146 0.
     0.01493578 -0.01658545 0.02746585 0.
                                                        -0.01167918
                                   0. 0.
      0.01472026 0.
sqd 절편 (Intercept): [4.55977744]
```

# sgd.best\_params\_: 최적의 alpha 값을 출력 # best\_sgd.coef\_: 최적 모델의 가중치 (Feature Weights) # best\_sgd.intercept\_: 최적 모델의 절편 (Intercept)

## 모델링&평가



| 모델 / 평가지표         | R <sup>2</sup> | MAE     | MSE     | RMSE    | RMSLE   |
|-------------------|----------------|---------|---------|---------|---------|
| Linear Regression | 0.8265         | 0.4572  | 0.3853  | 0.6208  | 0.5833  |
| Ridge Regression  | 0.826534       | 0.45751 | 0.38522 | 0.62066 | 0.58327 |
| Lasso Regressioin | 0.826533       | 0.45754 | 0.38255 | 0.62069 | 0.58328 |
| SGD Regression    | 0.8164         | 0.4712  | 0.4085  | 0.6391  | 0.6008  |

 $\mathbf{R}^2$  (결정계수) : 모델의 성능을 나타내는 지표로 1에 가까울수록 좋음.

MAE: 오차의 평균 절댓값을 나타내며, 낮을수록 좋음

MSE : 오차를 제곱하여 평균을 낸 값 → 큰 오차가 있을 경우 더 큰 영향을 받음.

RMSE: MSE의 제곱근으로, 실제 데이터 단위와 같아 해석이 용이함.

RMSLE: 로그 변환을 사용한 RMSE로, 상대적 오차를 평가하는 데 유용.

## 결론



### <성능>

- Linear, Ridge, Lasso 모델은 성능이 거의 동일하게 보여짐
- : 데이터 자체가 선형 관계를 충분히 따르고 있음.
- SGD Regression은 다른 회귀 모델에 성능이 낮게 나타남.

### <최적 모델 선택>

- Linear, Ridge, Lasso 모두 성능 차이가 거의 없으므로, Linear Regression이 가장 간단하고 효율적
- 하지만 과적합이 의심되기에, Ridge Regression 또는 Lasso Regression을 선택하는 것이 바람직하다고 생각함.

## 운영 전략

#### <시간대별 패턴 반영>

- 대여 수요가 적은 시간대에는 추가 할인을 제공하여 많은 이용을 유도
- 출퇴근 시간대에 수요가 높은 지역에 자전거를 추가 배치

#### <요일별 패턴 반영>

- 평일: 회사 밀집 지역에 추가 배치

- 주말: 관광지나 공원 주변에 추가 배치

