

数字信号处理

Digital Signal Processing

主讲人: 陈后金

电子信息工程学院

窗函数法设计线性相位FIR滤波器

- ◆ 设计原理
- ◆ 设计方法
- ◆ 窗口选择
- ◆ 设计举例

窗口选择

- ※ 矩形窗
- ※ 加权窗
- ※ 可调窗

Hanning(汉宁)窗(w=hanning(N))

$$h[k] = h_{\mathrm{d}}[k] w_N[k]$$

$$w_N[k] = [0.5 - 0.5\cos(\frac{2\pi k}{N-1})]R_N[k]$$

 $A_{\rm p} \approx 0.056 \text{dB}, A_{\rm s} \approx 44 \text{dB}$

Hamming(海明)窗(w=hamming(N))

$$h[k] = h_{d}[k]w_{N}[k]$$

$$w_N[k] = [0.54 - 0.46\cos(\frac{2\pi k}{N-1})]R_N[k]$$

窗函数幅度谱 (M=30)

滤波器幅度函数

 $A_{\rm p} \approx 0.019 \text{dB}, A_{\rm s} \approx 53 \text{dB}$

Blackman(布莱克曼)窗(w=blackman(N))

$$h[k] = h_{\rm d}[k] w_N[k]$$

$$w_N[k] = [0.42 - 0.5\cos(\frac{2\pi k}{N-1}) + 0.08\cos(\frac{4\pi k}{N-1})]R_N[k]$$

滤波器幅度函数

 $A_{\rm p} \approx 0.0017 {\rm dB}$, $A_{\rm s} \approx 74 {\rm dB}$

常用窗函数性质

窗的类型	主瓣宽度	近似过 渡带宽度	$\delta_{ m p}$, $\delta_{ m s}$	$A_{\rm p}({\rm dB})$	$A_{\rm s}({ m dB})$
矩形	$4\pi / N$	$1.8\pi / N$	0.09	0.82	21
Hann	$8\pi/N$	$6.2\pi/N$	0.0064	0.056	44
Hamming	$8\pi/N$	$7.0\pi/N$	0.0022	0.019	53
Blackman	$12\pi / N$	$11.4\pi/N$	0.0002	0.0017	74

例:利用窗函数法设计一个幅度响应能逼近截止频率 $\Omega_c=\pi/2$ rad的低通滤波器 $H_d(e^{j\Omega})$ 的线性相位FIR滤波器。分别采用Hann窗、 Hamming窗、Blackman窗截短,并与矩形窗设计结果比较。

解: Hann窗与矩形窗的比较($\Omega_c = \pi/2$, M=30)

例:利用窗函数法设计一个幅度响应能逼近截止频率 $\Omega_c=\pi/2$ rad的低通滤波器 $H_d(e^{j\Omega})$ 的线性相位FIR滤波器。分别采用Hann窗、 Hamming窗、Blackman窗截短,并与矩形窗设计结果比较。

解: Hamming窗与矩形窗的比较($\Omega_c = \pi/2$, M=30)

例:利用窗函数法设计一个幅度响应能逼近截止频率 $\Omega_c=\pi/2$ rad的低通滤波器 $H_d(e^{j\Omega})$ 的线性相位FIR滤波器。分别采用Hann窗、 Hamming窗、Blackman窗截短,并与矩形窗设计结果比较。

解: Blackman窗与矩形窗的比较($\Omega_c = \pi/2$, M=30)

例:利用窗函数法设计满足下列指标的I型线性相位FIR低通滤波器

 $\Omega_{\rm p}$ =0.2 π rad, $\Omega_{\rm s}$ =0.4 π rad, $A_{\rm p}$ =0.3dB, $A_{\rm s}$ =55dB

分析:由设计指标中的阻带衰减 A_s =55dB的要求,只有采用Blackman窗才能满足设计要求

解:

$$\Omega_{\rm c}$$
= $(\Omega_{\rm p} + \Omega_{\rm s})/2$ =0.3 π rad

M=58, $A_{\rm s}=75.3{\rm dB}$

可调窗

Kaiser(凯塞)窗(w=kaiser(N, beta))

$$h[k] = h_{\rm d}[k] w_N[k]$$

$$w_N[k] = \frac{I_0(\beta \sqrt{1 - [1 - 2k/M]^2})}{I_0(\beta)}, \quad 0 \le k \le N - 1$$

 β : 可调参数,调节窗函数的形状

 $I_0(x)$:

The modified zeroth-order Bessel function

可调窗

M与 β 的确定

$$A=-20\lg \left(\min\{\delta_{\rm p}, \delta_{\rm s}\}\right)$$

$$\beta = \begin{cases} 0.1102(A-8.7), & A > 50 \\ 0.5842(A-21)^{0.4} + 0.07886(A-21), & 21 \le A \le 50 \\ 0, & A < 21 \end{cases}$$

$$M \approx \frac{A - 7.95}{2.285 \left| \Omega_{\rm p} - \Omega_{\rm s} \right|}, \qquad A > 21$$

例:利用Kaiser窗设计满足下列指标的I型线性相位FIR低通滤波器。

$$\Omega_{\rm p}$$
=0.2 π rad, $\Omega_{\rm s}$ =0.4 π rad, $A_{\rm p}$ =0.3dB, $A_{\rm s}$ =55dB

解:

- 1. 确定低通滤波器的截频 $\Omega_{\rm c} = (\Omega_{\rm p} + \Omega_{\rm s})/2 = 0.3\pi$ rad
- 2. 计算线性相位理想低通数字滤波器的 $h_{\rm d}[k]$ $h_{\rm d}[k] = 0.3{\rm Sa} \left(0.3\pi(k-0.5M)\right)$
- 3. 由通、阻带波动和过渡带确定Kaiser窗的参数 β 和阶数 M $A=-20lg (min {<math>\delta_{\rm p}$, $\delta_{\rm s}$ })= A_s

$$\beta = 0.1102(A_s - 8.7) = 5.1$$
 $M \approx \frac{A_s - 7.95}{2.285 |\Omega_p - \Omega_s|} = 32.77$

4. $h[k] = h_{d}[k] \cdot w_{N}[k]$

例:利用Kaiser窗设计满足下列指标的I型线性相位FIR低通滤波器。 $\Omega_{\rm p}$ =0.2 π rad, $\Omega_{\rm s}$ =0.4 π rad, $A_{\rm p}$ =0.3dB, $A_{\rm s}$ =55dB

解: 设计结果 M=34

 $A_{\rm s}$ =55.307 dB

实现同样技术指标,比 Blackman窗所需阶数更低

窗函数法设计线性相位FIR滤波器

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事和同行的交流,难以一一注明出处,特此说明并表示感谢!