AIFA: Fuzzy Relation

07/03/2024

Koustav Rudra

Relations

- AI = {Akash, Ashish}
- MATH = {Sundar, Sekhar}
- AI x MATH = {(Akash, Sundar), (Akash, Sekhar), (Ashish, Sundar), (Ashish, Sekhar)}
- Relation R = Close Friends
- $R \subseteq \{(Akash, Sundar), (Ashish, Sekhar)\}$
- How to go beyond absolute membership?

Fuzzy Relations

• A Fuzzy relation for N sets is defined as an extension of the crisp relation to include membership grade

•
$$R = \{\mu_R(x_1, ..., x_N) / (x_1, ..., x_N) | x_i \in X_i \}$$

Fuzzy Relation

- Fuzzy relation describes interactions between variables
- It defines the mapping of variables from one fuzzy set to another
 - Like crisp relation, we can also define the relation over fuzzy sets
- Main fuzzy operations and compositions are followings:
 - Union
 - Intersection
 - Complement
 - Difference
 - Max-min composition
 - Max-product composition

Operations on Fuzzy Set

• Union:

- *A* ∪ *B*
- $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)), \forall x \in X$ [Every member of A and B]
- Example:
 - The First Fuzzy Set is: {'a': 0.2, 'b': 0.3, 'c': 0.6, 'd': 0.6}
 - The Second Fuzzy Set is: {'a': 0.9, 'b': 0.9, 'c': 0.4, 'd': 0.5}
 - Fuzzy Set Union is: {'a': 0.9, 'b': 0.9, 'c': 0.6, 'd': 0.6}

• Intersection:

- $A \cap B$
- $\mu_{A \cup B}(x) = \min(\mu_A(x), \mu_B(x)), \forall x \in X$ [Every member of A and B]
- Example:
 - The First Fuzzy Set is: {'a': 0.2, 'b': 0.3, 'c': 0.6, 'd': 0.6}
 - The Second Fuzzy Set is: {'a': 0.9, 'b': 0.9, 'c': 0.4, 'd': 0.5}
 - Fuzzy Set Intersection is : {'a': 0.2, 'b': 0.3, 'c': 0.4, 'd': 0.5}

Operations on Fuzzy Set

• Complement

- A'
- $\mu_{A'}(x) = 1 \mu_A(x)$
- Example:
 - The Fuzzy Set is: {'a': 0.2, 'b': 0.3, 'c': 0.6, 'd': 0.6}
 - Fuzzy Set Complement is : {'a': 0.8, 'b': 0.7, 'c': 0.4, 'd': 0.4}

• Difference:

- A B
- $\mu_{A-B}(x) = \min(\mu_A(x), 1 \mu_B(x)), \forall x \in X$ [Every member of A and B]
- Example:
 - The First Fuzzy Set is: {'a': 0.2, 'b': 0.3, 'c': 0.6, 'd': 0.6}
 - The Second Fuzzy Set is: {'a': 0.9, 'b': 0.9, 'c': 0.4, 'd': 0.5}
 - Fuzzy Set Intersection is : {'a': 0.1, 'b': 0.1, 'c': 0.6, 'd': 0.5}

Operations on Fuzzy Set

- Containment
 - $A \subseteq B$
 - $\mu_A(x) \le \mu_B(x)$), $\forall x \in X$
- Equality:
 - A = B
 - $\mu_A(x) = \mu_B(x), \forall x \in X$

Compositions of two relations

- Max-Min Composition
- Given two relation matrices R and S, the max-min composition is defined as $T = R \circ S$
 - $T(x,z) = \max\{\min\{R(x,y), S(y,z) \text{ and } \forall_{y} \in Y\}\}\$

Max-Min Composition

•
$$X = \{1,3,5\}; Y = \{1,3,5\}$$

•
$$R =$$

•
$$R = \{(x, y) | y = x + 2\}; S = \{(x, y) | x < y\}$$

• R and S is on $X \times Y$

	1	3	5
1	0	1	0
3	0	0	1
5	0	0	0

1 2	5
	J
1 0 1	1
3 0 0	1
5 0 0	0

• S =

•
$$R = \{(1,3), (3,5)\}$$

•
$$S = \{(1,3), (1,5), (3,5)\}$$

		1	3	5
R°S	1	0	0	1
	3	0	0	0
	5	0	0	0

Fuzzy Cartesian Product

- A is a fuzzy set on the universe of discourse X with $\mu_A(x)|x \in X$
- B is a fuzzy set on the universe of discourse Y with $\mu_B(y)|y \in Y$
- $R = A \times B \subset X \times Y$
- $\mu_R(X,Y) = \mu_{A \times B}(X,Y) = \min\{\mu_A(x), \mu_B(y)\}$
- $A = \{(a_1, 0.2), (a_2, 0.7), (a_3, 0.4)\}, B = \{(b_1, 0.5), (b_2, 0.6)\}$

Operations on Fuzzy Relations: Max-Min

	y_1	y_2		7	7	7
24	0.5	0.1		Z_1	Z_2	Z_3
x_1	0.5	0.1	y_1	0.6	0.4	0.7
Y	0.2	0.9	71			• • • • • • • • • • • • • • • • • • • •
x_2	0.2	0.9	y_2	0.5	0.8	0.9
x_3	0.8	0.6				

	Z_1	Z_2	Z_3
x_1	0.5	0.4	0.5
x_2	0.5	0.8	0.9
x_3	0.6	0.6	0.7

Compositions of two relations

- Max-Product Composition
- Given two relation matrices R and S, the max-min composition is defined as $T = R \circ S$
 - $T(x,z) = \max\{\{R(x,y) * S(y,z) \text{ and } \forall_y \in Y\}\}$

Operations on Fuzzy Relations: Max-Product

	y_1	y_2
x_1	0.6	0.3
x_2	0.2	0.9

	Z_1	Z_2	Z_3
y_1	1	0.5	0.3
y_2	0.8	0.4	0.7

	Z_1	Z_2	Z_3
x_1	0.6	0.3	0.21
x_2	0.72	0.36	0.63

Fuzzy Rule

07/03/2024

Koustav Rudra

Fuzzy Rule

- A Fuzzy implication of the form:
 - If X is A then Y is B
 - A and B are two linguistic variables defined by Fuzzy sets A and B
 - On the universe of discourses X and Y, respectively

• Antecedent: X is A

• Consequence: Y is B

If-Then Rules

- Use Fuzzy sets and Fuzzy operators as the subjects and verbs of fuzzy logic to form rules
 - If x is A then Y is B
 - Where A and B are linguistic terms defined by fuzzy sets on the sets X and Y respectively
 - If velocity is small, then current needed is small
 - If temp is high, put cooler as moderate

Fuzzy Implication: Example 1

- If pressure is high then temperature is low
- If mango is yellow then mango is sweet else mango is sour
- The Fuzzy Implication is denoted as $R: A \to B$

If-Then Rules

- If x is A is true then ...
- If 70 is high is true then ...

If-Then Rules

• If x is A is and y is B then ...

Evaluation of Fuzzy Rules

- In Boolean logic: $p \Rightarrow q$
 - If p is true then q is true
- In Fuzzy logic: $p \Rightarrow q$
 - If p is true to some degree then q is true to some degree
- $0.5p \Rightarrow 0.5q$
 - Partial premise implies partially
- How?

Max-min rule of composition

- Given N observations E_i over X and hypothesis H_i over Y we have N rules:
- If E_1 then H_1
- If E_2 then H_2
- If E_N then H_N

• $\mu_H = \max\{\min(\mu_{E_1}), \min(\mu_{E_2}), \dots, \min(\mu_{E_N})\}$

Fuzzy Cartesian Product

- A is a fuzzy set on the universe of discourse X with $\mu_A(x)|x \in X$
- B is a fuzzy set on the universe of discourse Y with $\mu_B(y)|y \in Y$
- $R = A \times B \subset X \times Y$
- $\mu_R(X,Y) = \mu_{A \times B}(X,Y) = \min\{\mu_A(x), \mu_B(y)\}$
- $A = \{(a_1, 0.2), (a_2, 0.7), (a_3, 0.4)\}, B = \{(b_1, 0.5), (b_2, 0.6)\}$

Fuzzy Implication: Example 2

- Suppose P and T represent Pressure and Temperature
- $P = \{1,2,3,4\}$
- $T = \{10, 15, 20, 25, 30, 35, 40, 45, 50\}$
- $T_{HIGH} = \{(20,0.2), (25,0.4), (30,0.6), (35,0.6), (40,0.7), (45,0.8), (50,0.8)\}$
- $P_{LOW} = \{(1,0.8), (2,0.8), (3,0.6), (4,0.4)\}$
- if temperature is HIGH, then pressure is LOW, $R: T_{HIGH} \rightarrow P_{LOW}$

	1	2	3	4
20	0.2	0.2	0.2	0.2
25	0.4	0.4	0.4	0.4
30	0.6	0.6	0.6	0.4
35	0.6	0.6	0.6	0.4
40	0.7	0.7	0.6	0.4
45	0.8	0.8	0.6	0.4
50	0.8	0.8	0.6	0.4

Set of Support

07/03/2024

Koustav Rudra

Set of Support

- It is a Crisp set
- Consist of elements whose membership values in the corresponding Fuzzy Set is greater than zero

α Cut / Horizontal Cut

- It is a crisp set
- Consist of elements whose membership values in the corresponding Fuzzy Set is greater than α

Thank You