A6-Assignment-Ch4.1

Section 4.1: 6, 7.b, and 10.a due

6. Find the polynomial p of least degree that takes these values:

- p(0) = 2
- p(2) = 4
- p(3) = -4
- p(5) = 82

Use divided differences to get the correct polynomial. It is not necessary to write the polynomial in the standard form $a_0 + a_1x + a_2x^2 + \cdots$

Theory Recap

- Divided differences provide a way to recursively compute the coefficients of the interpolation polynomial.
- The Newton form of the interpolation polynomial is:
 - $p(x) = f[x_0] + f[x_0, x_1](x x_0) + f[x_0, x_1, x_2](x x_0)(x x_1) + \cdots$

Working Steps

- Step 1. List the data points:
 - $x_0 = 0$, $f(x_0) = 2$
 - $x_1 = 2$, $f(x_1) = 4$
 - $x_2 = 3$, $f(x_2) = -4$
 - $x_3 = 5$, $f(x_3) = 82$
- Step 2. Calc the first divided differences:
 - $f[x_0, x_1] = \frac{f(x_1) f(x_0)}{x_1 x_0} = \frac{4 2}{2 0} = \frac{2}{2} = 1$
- Step 3. Calc the second divided differences:

$$\begin{array}{l} \bullet \quad f[x_0,x_1,x_2] = \frac{f[x_1,x_2] - f[x_0,x_1]}{x_2 - x_0} = \frac{-8 - 1}{3 - 0} = \frac{-9}{3} = -3 \\ \bullet \quad f[x_1,x_2,x_3] = \frac{f[x_2,x_3] - f[x_1,x_2]}{x_3 - x_1} = \frac{43 - (-8)}{5 - 2} = \frac{51}{3} = 17 \end{array}$$

$$ullet f[x_1,x_2,x_3] = rac{f[x_2,x_3]-f[x_1,x_2]}{x_3-x_1} = rac{43-(-8)}{5-2} = rac{51}{3} = 17$$

• Step 4. Calc the third divided difference:

$$f[x_0,x_1,x_2,x_3]=rac{f[x_1,x_2,x_3]-f[x_0,x_1,x_2]}{x_3-x_0}=rac{17-(-3)}{5-0}=rac{20}{5}=4$$

- Step 5. Write the Newton interpolation polynomial:
 - The general form is:

$$ullet p(x) = f[x_0] + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1) + f[x_0,x_1,x_2,x_3](x-x_0)$$

• Substituting the computed values:

•
$$p(x) = 2 + 1(x - 0) - 3(x - 0)(x - 2) + 4(x - 0)(x - 2)(x - 3)$$

- Final Answer for Problem 6:
 - p(x) = 2 + x 3(x)(x-2) + 4(x)(x-2)(x-3)

Divided Difference Table

x	f[,]	f[,,,]	f[,,,,,]	f[,,,,,,]
0	2			
2	4	1		
3	-4	-8	-3	
5	82	43	17	4

7.b.

Complete the following divided-difference tables, and use them to obtain polynomials of degree 3 that interpolate the function values indicated:

x	$f[\]$	$f[\;,\;]$	$f[\;,\;,\;]$	$f[\;,\;,\;,\;]$
-1	2			
1	-4			
3	46	53.5		
4	99.5			

Write the final polynomials in a form most efficient for computing.

Theory Recap

- As before, the Newton form is:
 - $\bullet \ \ p(x) = f[x_0] + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1) + f[x_0,x_1,x_2,x_3](x-x_0)$
- Each level of divided differences is computed using:
 - $ullet f[x_i,x_{i+1},\ldots,x_{i+k}] = rac{f[x_{i+1},\ldots,x_{i+k}] f[x_i,\ldots,x_{i+k-1}]}{x_{i+k} x_i}$

Working Steps

- Step 1. List the data points:
 - $ullet \ x_0 = -1$, \quad $f(x_0) = 2$
 - $x_1 = 1$, \quad $f(x_1) = -4$
 - $x_2=3$, \quad $f(x_2)=46$
 - $x_3 = 4$, \quad $f(x_3) = 99.5$
- Step 2. Calc the first divided differences:
 - $f[x_0, x_1] = \frac{-4-2}{1-(-1)} = \frac{-6}{2} = -3$
 - $f[x_1, x_2] = \frac{46 (-4)}{3 1} = \frac{50}{2} = 25$
 - $f[x_2, x_3] = \frac{99.5 46}{4 3} = \frac{53.5}{1} = 53.5$
 - (Note: The table already gives $f[x_2,x_3]=53.5$)
- Step 3. Calc the second divided differences:
 - $f[x_0, x_1, x_2] = \frac{25 (-3)}{3 (-1)} = \frac{28}{4} = 7$
 - $f[x_1, x_2, x_3] = \frac{53.5 25}{4 1} = \frac{28.5}{3} = 9.5$
- Step 4. Calc the third divided difference:
 - $ullet f[x_0,x_1,x_2,x_3]=rac{9.5-7}{4-(-1)}=rac{2.5}{5}=0.5$
- Step 5. Write the Newton interpolation polynomial:
 - Using $x_0 = -1$, the polynomial is:
 - $ullet p(x) = f[x_0] + f[x_0,x_1](x-(-1)) + f[x_0,x_1,x_2](x-(-1))(x-1) + f[x_0,x_1,x_2,x_1](x-(-1))(x-1) + f[x_0,x_1](x-(-1)) + f[x_0,x_1,x_2](x-(-1))(x-1) + f[x_0,x_1,x_2](x-(-1))(x-(-$
 - Substitute the values:
 - p(x) = 2 3(x+1) + 7(x+1)(x-1) + 0.5(x+1)(x-1)(x-3)
- Final Answer for Problem 7 (b):
 - p(x) = 2 3(x+1) + 7(x+1)(x-1) + 0.5(x+1)(x-1)(x-3)

Completed Divided Difference Table

x	f[,]	f[,,,]	f[,,,,,]	f[,,,,,,]
-1	2	-3	7	0.5
1	-4	25	9.5	
3	46	53.5		
4	99.5			

10.a. Construct Newton's interpolation polynomial for the data shown.

x	0	2	3	4
y	7	11	28	63

Theory Recap

• The Newton interpolation polynomial is built as:

$$\bullet \ \ p(x) = f[x_0] + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1) + f[x_0,x_1,x_2,x_3](x-x_0)$$

 This method uses the computed divided differences to progressively build the polynomial.

Working Steps

- Step 1. List the data points:
 - $x_0 = 0$, $f(x_0) = 7$
 - $x_1 = 2$, $f(x_1) = 11$
 - $x_2 = 3$, $f(x_2) = 28$
 - $x_3 = 4$, $f(x_3) = 63$
- Step 2. Calc the first divided differences:
 - $f[x_0, x_1] = \frac{11-7}{2-0} = \frac{4}{2} = 2$
 - $f[x_1, x_2] = \frac{28-11}{3-2} = \frac{17}{1} = 17$
 - $f[x_2, x_3] = \frac{63-28}{4-3} = \frac{35}{1} = 35$
- Step 3. Calc the second divided differences:

•
$$f[x_0, x_1, x_2] = \frac{17-2}{3-0} = \frac{15}{3} = 5$$

•
$$f[x_1, x_2, x_3] = \frac{35-17}{4-2} = \frac{18}{2} = 9$$

• Step 4. Calc the third divided difference:

•
$$f[x_0, x_1, x_2, x_3] = \frac{9-5}{4-0} = \frac{4}{4} = 1$$

- Step 5. Write the Newton interpolation polynomial:
 - Since $x_0 = 0$, the polynomial is:

$$ullet p(x) = f(x_0) + f[x_0,x_1](x-0) + f[x_0,x_1,x_2](x-0)(x-2) + f[x_0,x_1,x_2,x_3](x-0)$$

Substitute the values:

•
$$p(x) = 7 + 2x + 5x(x-2) + 1 \cdot x(x-2)(x-3)$$

• Final Answer for Problem 10 (a):

•
$$p(x) = 7 + 2x + 5x(x-2) + x(x-2)(x-3)$$

Divided Difference Table

x	f[,]	f[,,,]	f[,,,,,]	f[,,,,,,]
0	7	2	5	1
2	11	17	9	
3	28	35		
4	63			

Newton Interpolating Polynomial

•
$$p(x) = 7 + 2x + 5x(x-2) + x(x-2)(x-3)$$