### Imperial College London

## **NOTES**

### IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

# **422** Computational Finance

Author:

Thomas Teh (CID: 0124 3008)

Date: February 7, 2017

### 1 Theory of Interest

1. Relationship between effective interest rate  $r_{eff}$  and nominal rate (m period compounding),  $r^{(m)}$ :

$$1 + r_{eff} = \left(1 + \frac{r^{(m)}}{m}\right)^m$$

- 2. **Definitions.** An ideal bank
  - applies the same interest rates for borrowing and lending
  - no transaction costs
  - has the same rate for any size of principal
- 3. **Definitions.** An ideal bank has an interest value that is independent of the length of time of which it applies, it is called a constant ideal bank.
- 4. **Theorem.** The cash flow streams  $\{x_i\}_{i=1}^n$  and  $\{y_i\}_{i=1}^n$  are equivalent for a constant ideal bank with interest rate r if and only if their PVs are equal.
- 5. **Definitions.** The spot rate  $s_t$  is the annualized interest rate charged for money held from the present until time t. Properties of spot rate
  - Long commitments tend to offer higher interest rates than short commitments
  - The spot rate curve undulates around in time.
  - Spot rate curve is normally curved if it is increasing; and inverted if it is decreasing.
  - Spot rate curve is smooth.
- 6. **Definitions.** Forward rate between times  $t_1$  and  $t_2$  is denoted by  $f_{t_1,t_2}$ . It is the interest rate charged for borrowing money at time  $t_1$  which is to be repaid at  $t_2$ .  $f_{t_1,t_2}$  is agreed on today.

$$(1+s_{t_2})^{t_2} = (1+s_{t_1})^{t_1}(1+f_{t_1,t_2})^{t_2-t_1}$$

- 7. The forward rate  $f_{1,2}$  is
  - the implied rate for money loaned for 1 year, a year from now
  - the market expectation today of what the 1-year spot rate will be next year

#### 2 Fixed Income Securities

- 1. Important sequences:
  - Geometric Progression

$$S_n = \sum_{k=1}^n ar^{k-1} = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \sum_{k=0}^{\infty} ar^{k-1} = \frac{1}{1-r}$$

• Arithmetic - Geometric Progression

$$S_n = \sum_{k=1}^n \left[ a + (k-1)d \right] r^{k-1} = \frac{a - \left[ a + (n-1)d \right] r^n}{1 - r} + \frac{dr(1 - r^{n-1})}{(1 - r)^2}$$

- 2. Price of various basic securities
  - Annuities

$$a_{\overline{n}|} = \frac{1 - v^n}{r} \qquad \qquad a_{\overline{n}|}^{(m)} = \frac{1 - v^n}{r^m}$$

Perpetuity

$$a_{\overline{\infty}|} = \frac{1}{r} \qquad \qquad a_{\overline{\infty}|} = \frac{1}{r^m}$$

Varying annuity

$$(Ia)_{\overline{n}|} = Pa_{\overline{n}|} + D\left[\frac{a_{\overline{n}|} - nv^n}{i}\right]$$

• Bond

$$P = NCa_{\overline{n}|} + Nv^n$$

- 3. **Definition.** A bond's **yield to maturity** if the flat interest rate at which the PV of the CFs is equal to the current price. The bond's **current yield** is  $\frac{NC}{P}$ .
  - There's an inverse relationship between price and yield
  - The longer the time to maturity, the more sensitive is the price of the bond to the yield (think of duration!)
  - If yield to maturity is the same as the coupon rate, the bond price would be the face value

4. **Duration.** Duration measures the sensitivity of the bond with respect to the interest rate

$$D_{mac} = \frac{\sum_{t=1}^{n} t \times PV_t}{\sum_{t=1}^{n} PV_t}$$

$$D_{mod} = -\frac{1}{P(r_0)} \frac{dP(r)}{dr} \Big|_{r=r_0} = \frac{D_{mac}}{(1+r_0)}$$

5. Convexity. Convexity is defined as

$$C = \frac{1}{P(r_0)} \left. \frac{d^2 P(r)}{dr^2} \right|_{r=r_0} = \frac{1}{P(r_0)} \sum_{t=1}^n t^2 P V_t$$

6. Estimation of bond price change

$$\Delta P \approx -D_{mod}P(r_0)\Delta r + \frac{1}{2}P(r_0)(\Delta r)^2$$

- 7. **Immunization.** Let *A* be assets and *L* be liabilities.
  - PV(A) = PV(L)
  - D(A) = D(L)
  - C(A) > C(L)

Macaulay Duration Modified Duration