E.M.E

Chapter 5: IDENTITY, INVERSE & WELL DEFINED MAPPINGS

Mphako-Banda

SCHOOL OF MATHEMATICS

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- A define when a mapping is 1-1 or onto
- ndetermine whether a given function is 1-1 or onto or both
- agiven two functions, determine whether their composite exists or no
- determine whether two given functions are numerically equivalent or no
- *

Part 2 E.M.B

Properties of mappings, compositions and bijections

Definition (5.2.1 (1))

 $\alpha: \mathbf{A} \to \mathbf{B}$ and $\beta: \mathbf{A} \to \mathbf{B}$ are equal iff

 $\alpha(a) = \beta(a), \quad \forall a \in A.$

if the domains are not equal then the functions cannot be compared

Definition (5.2.1 (2))

 $\alpha: A \to B$, $A \subseteq B$ is called an identity mapping on A if

 $\alpha(a) = a$ $\forall a \in A \ (denoted \ by \ \alpha = 1_A.)$ the mapping fixes all elements in the domain

Definition (5.2.1 (3))

$$\alpha: A \to B$$
 is one to one,(1-1) or (injective), if $\alpha(a_1) = \alpha(a_2) \Rightarrow a_1 = a_2 \forall a_1, a_2 \in A$.

This is equivalent to the horizontal line test in the plane \mathbb{R}^2 to find out if a mapping is not 1-1. e.g.

a(s) = a(t) but s is not equal to t

Definition (5.2.1 (4))

 $\alpha: A \rightarrow B$ is onto (surjective) if

 $\forall b \in B \quad \exists a \in A \mid b = \alpha(a).$

In this case Range $\alpha = CoD(\alpha)$.

all elements in the codomain set have a corresponding element(s) in the domain set

Definition (5.2.1 (5))

If α is well defined, 1-1 and onto, we say α is a bijection.

Example (5.2.2 EQUALITY)

$$\alpha: \mathbb{R} \to \mathbb{R}$$
 such that $\alpha(x) = x^2 + x + 1$. and $\beta: \mathbb{R} \to \mathbb{R}$ such that $\beta(x) = (x - 1)(x + 2) + 3$. Then $\alpha = \beta$ since

(i)
$$D(\alpha) = D(\beta) = \mathbb{R}$$
 and

(ii)
$$\alpha(x) = \frac{x^2 + x + 1}{x^2 + x + 1}$$
 and $\beta(x) = (x - 1)(x + 2) + 3 = \frac{x^2 + x + 1}{x^2 + x + 1}$.
Thus $\alpha(x) = \beta(x) \quad \forall x \in D(\alpha) = D(\beta) = \mathbb{R}$.

Example (5.2.2 ONE TO ONE)

(i)
$$\alpha : \mathbb{N} \to \mathbb{N}$$
; $\alpha(n) = 2n + 1$ is $1 - 1$.
Let $m, n \in \mathbb{N}$ $\alpha(m) = \alpha(n)$

$$\Rightarrow$$
 2 $m+1=2n+1$

$$\Rightarrow$$
 2 $m = 2n$

$$\Rightarrow$$
 $m = n$.

Therefore α is 1 – 1.

E.M.E

```
(ii) \alpha: \mathbb{R} \to \mathbb{R}  \alpha(n) = n^2 + 1 and

Let m, n \in \mathbb{R}  \alpha(m) = \alpha(n)

\Rightarrow m^2 + 1 = n^2 + 1

\Rightarrow m^2 = n^2

\Rightarrow m = n

Since (-m)^2 = (m)^2 but -m \neq m. Therefore \alpha is not 1 - 1.

But \alpha: \mathbb{N} \to \mathbb{N}; \alpha(n) = n^2 + 1 is 1 - 1.
```

(iii)
$$\alpha : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
; $\alpha(a,b) = ab$ not $1-1$ (injective) since $\alpha(2,3) = 6$ and $\alpha(1,6) = 6$ but $(2,3) \neq (1,6)$.

Since $m^2 = n^2 \Rightarrow m = n \text{ in } \mathbb{N}$.

E.M.B

Example (5.2.2 ONTO)

(i)
$$\alpha: \mathbb{R} \to \mathbb{R}$$
; $\alpha(x) = 2x - 5$ is onto since If $y = 2x - 5$ then $x = \frac{y+5}{2}$ in $\mathbb{R} \ \forall x \in \mathbb{R}$ for any $y=2x-5$ can we find (an) x value(s)? Now $\alpha(\frac{y+5}{2}) = 2(\frac{y+5}{2}) - 5 = y$

Thus $\forall y \in \mathbb{R}$, $\exists \frac{y+5}{2} \in \mathbb{R} \ | \ \alpha(\frac{y+5}{2}) = y$.

But $\alpha: \mathbb{Z} \to \mathbb{Z}$; $\alpha(x) = 2x - 5$ is not onto since $\frac{y+5}{2} \notin \mathbb{Z}$ $\forall y \in \mathbb{Z}$ [CoD of α].

(ii) $\alpha: \mathbb{N} \to \mathbb{N}$; $\alpha(n) = 2n + 1$. α maps all natural numbers to odd numbers. Therefore α not onto rodomain is the whole set of natural numbers but range=odd natural numbers.

when we make subject does the resultant expression represents an element in the domain?

Example (5.2.2 BIJECTION)

- (i) $\alpha : A \rightarrow A$ is a bijection if α is both 1 1 and onto.
- (ii) $\alpha : \mathbb{R} \to \mathbb{R}$; $\alpha(x) = 2x 5$ is a bijection since α is 1 1 and onto.
- (iii) $\alpha: \mathbb{R} \to \mathbb{R}$; $\alpha(x) = \sin x$ is not a bijection since α is not 1-1 since $\sin x = \sin y \quad \not\Rightarrow x = y$ e.g $x = \frac{\pi}{6}$; $y = 2\pi + \frac{\pi}{6}$ thus $\sin \frac{\pi}{6} = \sin 2\pi + \frac{\pi}{6}$ but $\frac{\pi}{6} \neq 2\pi + \frac{\pi}{6}$. α is not onto, Range $\alpha = [-1, 1] \neq CoD(\alpha)$

E.M.E

- (iv) $\alpha : \mathbb{R} \to \mathbb{R}$; $\alpha(x) = \tan x$ is not a bijection since α is onto but α is not 1 1.
- (v) $\alpha : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$; $\alpha(a,b) = ab$ is not a bijection α is not injective (1-1) but α is onto $\forall x \in \mathbb{R}$ $(1,x) \in \mathbb{R} \times \mathbb{R}$ and $\alpha(1,x) = 1.x = x$

do the horizontal line test on the graphs of the functions $\sin(x)$, $\tan(x)$ and $\cos(x)$ to confirm that the functions are not 1-1

Definition (5.2.1 (6))

If $\alpha: A \to B$ and $\beta: B \to C$ are well defined mappings, then

 $\beta \alpha : \mathbf{A} \to \mathbf{C}$ is a well defined mapping where

$$\beta\alpha(a) = \beta(\alpha(a))$$
 : $\alpha(a) \in B = D(\beta)$

 $\beta\alpha$ is the composition of β and α and here $D(\beta) = CoD(\alpha)$. $\beta\alpha$ start with α then β in that order.

 $\begin{array}{c} & & & \\ & &$

Note that $\alpha\beta$ does not exist. $\beta: B \to C$ we can not apply α since $D(\alpha) = A, D(\alpha) \neq C, D(\alpha) \not\subseteq C$.

- (i) If $\alpha: A \to A$, $1_A: A \to A$ then $\alpha 1_A = 1_A \alpha$. identity mapping If $\alpha: A \to B$ and $1_B: B \to B$ then $\alpha 1_B$ does not exist. $\alpha 1_A = \alpha$ and $1_B \alpha = \alpha$.
- (ii) $\alpha: \mathbb{R} \to \mathbb{R}$; $\alpha(x) = x + 1$, $\beta: \mathbb{R} \to \mathbb{R}$; $\beta(x) = x^2$ $\alpha\beta(x) = x^2 + 1$ and $\beta\alpha(x) = (x + 1)^2$ $\alpha\beta \neq \beta\alpha$ composition of mappings is not commutative

Part 2 E.M.B

Definition (5.2.1 (7))

If $\alpha: A \to B$; $\beta: B \to C$; $\delta: C \to D$ Composition of mappings is associative, $\delta(\beta\alpha) = (\delta\beta)\alpha$.

Definition (5.2.1 (8))

If $\alpha: A \to B$ and $\beta: B \to A$ such that $\alpha\beta = 1_B$ and $\beta\alpha = 1_A$. Then β and α are inverse maps $\beta = \alpha^{-1}$ and $\alpha = \beta^{-1}$. If β exists, it is unique.

Definition (5.2.1 (9))

If $\alpha: A \to B$ is a bijection, then A and B are in one to one correspondence and A and B are said to be numerically equivalent. We have |A| = |B|.