$2.4~\mathrm{GHz}$ AMD Opteron 850 server with $32~\mathrm{GB}$ of RAM

	Chr 22		Chr 2		Whole Genome	
	35.1 Mbases		238 Mbases		2.87 Gbases	
	Time	Speedup	Time	Speedup	Time	Speedup
Bowtie	$10 \mathrm{m}{:}06 \mathrm{s}$	-	14m:57s	-	26m:57s	-
Maq	33m:01s	3.3x	1h:26m:25s	5.8x	24h:25m:16s	54.4x
Soap	53m:53s	5.3x	4h:13m:13s	16.9x	70h:07m:53s	156.1x
	Virtual	Resident	Virtual	Resident	Virtual	Resident
Bowtie	33 MB	33 MB	128 MB	115 MB	$1,174~\mathrm{MB}$	$1,126~\mathrm{MB}$
Maq	767 MB	727 MB	796 MB	756 MB	804 MB	763 MB
Soap	392 MB	379 MB	1,418 MB	1,331 MB	$13,619~\mathrm{MB}$	$13,312~\mathrm{MB}$

Table 1: Wall clock time and peak virtual/resident memory usage for mapping 8M simulated 35bp reads against human chromosomes 22 and 2 and the whole human genome on a single CPU of a server with a 2.4 GHz AMD Opteron 850 processor and 32 GB of RAM. Simulated reads were extracted only from the relevant region using a read simulator that attempts to recreate the error profile of typical Illumina/Solexa reads. Reference sequences were taken from the contigs of Genbank human genome build 36.3. Soap was not run against the whole-human reference because its memory footprint exceeds physical RAM. For the Maq runs, the reads were first divided into chunks of 2M reads each, as per the Maq Manual.