### DENSELY CONNECTED CONVOLUTIONAL NETWORKS

ACCORDING TO GAO HUANG\*, ZHUANG LIU\*, LAURENS VAN DER MARTEN, KILIAN Q. WEINBERGER CVPR 2017 SLIDE

#### Prof. Mohammad-R. Akbarzadeh-T

Ferdowsi University of Mashhad

#### A Presentation by:

- Hosein Mohebbi
- M.-Sajad Abavisani



# **CVPR 2017 BEST PAPER AWARD**









Gao Huang Cornell University h-index: 12

Zhuang Liu Tsinghua University h-index: 5

Laurens van der Maaten <u>Facebook AI Research</u> h-index: 29

Kilian Weinberger Associate Professor Cornell University h-index: 41







### REVOLUTION OF DEPTH IN CNNs



ImageNet Classification top-5 error (%)

### THE DEGRADATION

- Normalized initialization and intermediate normalization layers
- The main culprit : Vanishing/exploding gradients
- Not caused by overfitting



# RESNET: SKIP CONNECTION









# STOCHASTIC DEPTH

Deep network during testing, but shallower network during training.

$$H_l = ReLU(b_l f_l(H_{l-1}) + id(H_{l-1}))$$
  $b_l \in \{0,1\}$ 



They all share a key characteristic:
They create short paths from early layers to later layers

# DENSE CONNECTIVITY

 $\frac{l(l+1)}{2}$  direct connections



: Channel-wise concatenation

## DENSE AND SLIM

• The growth rate regulates how much new information each layer contributes to the global state.



k: Growth Rate

# SUMMERY OF EQUATIONS

• Traditional Convolutional feed-forward networks :

$$x_l = H_l\left(x_{l-1}\right)$$

ResNets:

$$x_l = H_l(x_{l-1}) + x_{l-1}$$

DenseNets:

$$x_l = H_l([x_0, x_1, ..., x_{l-1}])$$

Where  $[x_0, x_1, ..., x_{l-1}]$  refers to the concatenation of the feature-maps produced in layers 0.....l-1.

## FORWARD PROPAGATION



## COMPOSITE LAYER IN DENSENET



 $x_5 = h_5([x_0, ..., x_4])$ 

### COMPOSITE LAYER IN DENSENET

### WITH BOTTLENECK LAYER



Higher parameter and computational efficiency

## DENSENET





### ADVANTAGE 1: STRONG GRADIENT FLOW

- Direct access: Deep Supervision with single classifier
- Reduces overfitting on tasks with smaller training set sizes



## COMPARISON BETWEEN ARCHITECTURES

| Method                            | Depth | Params | C10    | C10+ | C100   | C100+ | SVHN |
|-----------------------------------|-------|--------|--------|------|--------|-------|------|
| Network in Network [22]           | -     | -      | 10.41  | 8.81 | 35.68  | -     | 2.35 |
| All-CNN [31]                      | -     | -      | 9.08   | 7.25 | _      | 33.71 | -    |
| Deeply Supervised Net [20]        | -     | -      | 9.69   | 7.97 | -      | 34.57 | 1.92 |
| Highway Network [33]              | -     | -      | -      | 7.72 | -      | 32.39 | -    |
| FractalNet [17]                   | 21    | 38.6M  | 10.18  | 5.22 | 35.34  | 23.30 | 2.01 |
| with Dropout/Drop-path            | 21    | 38.6M  | 7.33   | 4.60 | 28.20  | 23.73 | 1.87 |
| ResNet [11]                       | 110   | 1.7M   | -      | 6.61 | -      | -     | -    |
| ResNet (reported by [13])         | 110   | 1.7M   | 13.63  | 6.41 | 44.74  | 27.22 | 2.01 |
| ResNet with Stochastic Depth [13] | 110   | 1.7M   | 11.66  | 5.23 | 37.80  | 24.58 | 1.75 |
|                                   | 1202  | 10.2M  | -      | 4.91 | -      | -     | -    |
| Wide ResNet [41]                  | 16    | 11.0M  | -      | 4.81 | -      | 22.07 | -    |
|                                   | 28    | 36.5M  | -      | 4.17 | -      | 20.50 | -    |
| with Dropout                      | 16    | 2.7M   | -      | -    | -      | -     | 1.64 |
| ResNet (pre-activation) [12]      | 164   | 1.7M   | 11.26* | 5.46 | 35.58* | 24.33 | -    |
|                                   | 1001  | 10.2M  | 10.56* | 4.62 | 33.47* | 22.71 | -    |
| DenseNet $(k = 12)$               | 40    | 1.0M   | 7.00   | 5.24 | 27.55  | 24.42 | 1.79 |
| DenseNet $(k = 12)$               | 100   | 7.0M   | 5.77   | 4.10 | 23.79  | 20.20 | 1.67 |
| DenseNet $(k=24)$                 | 100   | 27.2M  | 5.83   | 3.74 | 23.42  | 19.25 | 1.59 |
| DenseNet-BC $(k = 12)$            | 100   | 0.8M   | 5.92   | 4.51 | 24.15  | 22.27 | 1.76 |
| DenseNet-BC $(k=24)$              | 250   | 15.3M  | 5.19   | 3.62 | 19.64  | 17.60 | 1.74 |
| DenseNet-BC $(k=40)$              | 190   | 25.6M  | -      | 3.46 | -      | 17.18 | -    |

### ADVANTAGE 2: PARAMETER & COMPUTATIONAL EFFICIENCY



#### DenseNet connectivity:



#### #parameters:



#### Standard Connectivity:

Classifier uses most complex (high level) features



★ Increasingly complex features 🎎

Remember feature visualization



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

"Collective Knowledge"





- Feature reuse
- Information flow from the first to the last layers of the block
- Compression in transition layer
- Concentrate on high level feature for final classification





# RESULTS ON CIFAR-10

- ResNet (110 Layers, 1.7 M)

  DenseNet (100 Layers, 0.8 M)
- ResNet (1001 Layers, 10.2 M)
  DenseNet (250 Layers, 15.3 M)





# DENSENET ARCHITECTURES FOR IMAGENET

| Laviana          | Output Circ                   | DenseNet-121( $k = 32$ )                                                                     | Danga Nat 160/h = 22\                                                                        | DenseNet-201 $(k = 32)$                                                                      | DenseNet-161 $(k = 48)$                                                                                  |  |  |  |
|------------------|-------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Layers           | Output Size                   | DenselNet-121( $\kappa = 32$ )                                                               | DenseNet-169( $k = 32$ )                                                                     | , ,                                                                                          | Denselvet-161( $\kappa = 48$ )                                                                           |  |  |  |
| Convolution      | $112 \times 112$              | $7 \times 7$ conv, stride 2                                                                  |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| Pooling          | 56 × 56                       | $3 \times 3$ max pool, stride 2                                                              |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| Dense Block      | ense Block (1) $56 \times 56$ | [ 1 × 1 conv ]                                                                                           |  |  |  |
| (1)              |                               | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$                             | $\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$  | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$                             | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$                                         |  |  |  |
| Transition Layer | 56 × 56                       | $1 \times 1 \text{ conv}$                                                                    |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| (1)              | $28 \times 28$                | 2 × 2 average pool, stride 2                                                                 |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| Dense Block      | 20 20                         | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$                   | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$                   | [ 1 × 1 conv ]12                                                                             | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$ |  |  |  |
| (2)              | 28 × 28                       | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$                            | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$                            | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$ |                                                                                                          |  |  |  |
| Transition Layer | $28 \times 28$                | $1 \times 1 \text{ conv}$                                                                    |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| (2)              | 14 × 14                       | 2 × 2 average pool, stride 2                                                                 |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| Dense Block      | 14 × 14                       | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 24$                   | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$                   | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$                   | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 36$                               |  |  |  |
| (3)              |                               | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 24$                            | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$                            | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$                            | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 30$                                        |  |  |  |
| Transition Layer | $14 \times 14$                | $1 \times 1 \text{ conv}$                                                                    |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| (3)              | 7 × 7                         | 2 × 2 average pool, stride 2                                                                 |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| Dense Block      | 7 7                           | [1 × 1 conv]                                                                                 | [ 1 × 1 conv ]22                                                                             | [ 1 × 1 conv ]22                                                                             | [ 1 × 1 conv ]                                                                                           |  |  |  |
| (4)              | 7 × 7                         | $\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$             |  |  |  |
| Classification   | 1 × 1                         | 7 × 7 global average pool                                                                    |                                                                                              |                                                                                              |                                                                                                          |  |  |  |
| Layer            |                               | 1000D fully-connected, softmax                                                               |                                                                                              |                                                                                              |                                                                                                          |  |  |  |

# RESULTS ON IMAGENET



### REFERENCES

- Kaiming He, et al. "Deep residual learning for image recognition" CVPR 2016
- Chen-Yu Lee, et al. "Deeply-supervised nets" AISTATS 2015
- Gao Huang, et al. "Deep networks with stochastic depth" ECCV 2016
- CS231n: Convolutional Neural Networks for Visual Recognition
- Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected convolutional networks. Conference on Computer Vision and Pattern Recognition, 2017
- Geoff Pleiss, et al. "Memory-Efficient Implementation of DenseNets", arXiv preprint arXiv:1707.06990 (2017)

