Cortical thickness analysis

20210701

Outline

Methods

- i. Workflow of Cortical Thickness analysis
- ii. Desikan Killiany Atlas

Results

- i. teenagers' mothers (corresponding to table 3)
- ii. Teenagers (corresponding to table 4)

Methods

Workflow

Image processing

Schwarz, Christopher G., et al. "A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity." NeuroImage: Clinical 11 (2016): 802-812.

3D Volume rendering

Statistical analysis

Cortical Parcellation (Desikan-Killiany Atlas) 68 VOIs **Cortical Parcellation Statistics** Average cortical thickness Average surface area **Pearson correlation with Cortical Parcellation Statistics** (Bonferroni corrected p-value< 0.000735, 0.05/68) (by SPSS) Assessments from teenagers (25) Assessments from their mothers (46)

Scatter plot

Desikan Killiany Atlas

Nagtegaal, Steven HJ, et al. "Changes in cortical thickness and volume after cranial radiation treatment: A systematic review." Radiotherapy and Oncology 135 (2019): 33-42.

Statistical analysis

- Multivariate linear regression was performed to find the association between cortical measurements of teenage brain and EDC concentration.
- To eliminate multiple-comparison effects, Bonferroni correction (0.05/68) was performed for 68 cortical regions.
- A Bonferroni-corrected *p*-value of less than 0.05 was considered as statistically significant.

Results – Mothers (see table 3)

Results

Significant correlation between cortical thickness of specific brain regions and EDC measurements for all teenagers' mothers (see Table 3)

@66Zn_m

udma_maternal

Results

Significant correlation between cortical thickness of specific brain regions and EDC measurements for mothers with male teenagers (see Table 3)

No significant region

Results

Significant correlation between cortical thickness of specific brain regions and EDC measurements for mothers with female teenagers (see Table 3)

UCreatinine

@66Zn_m

PFOA_conc

PFUA_conc

uas3_maternal

PFNA_conc_CB

PFDeA_conc_CB

Results – Teenagers (see table 4)

Results

Significant correlation between cortical thickness of specific brain regions and EDC measurements for all teenagers (see Table 4)

MEHHP

MEOHP

MECPP

Testosterone

FreeTT

Results

Significant correlation between cortical thickness of specific brain regions and EDC measurements for male teenagers (see Table 4)

FreeT4

Results

Significant correlation between cortical thickness of specific brain regions and EDC measurements for female teenagers (see Table 4)

MBzP

T3

