SGD - commuting gradient and expectation

Wednesday, April 17, 2024 11:25 AM

Let
$$L_D(\omega) = \mathbb{E} l(\omega, z)$$
. Is $\frac{d}{d\omega} L_D(\omega) = \mathbb{E} \frac{\partial}{\partial \omega} l(\omega, z)$?

Answer: Sometimes

Example
$$z \sim \text{Unif}(\xi \pm i \beta)$$
, $l(\omega, i)$ isn't differentiable, $l(\omega, -i) := -l(\omega, i)$
so $L_D(\omega) = 0$ which is differentiable

Example let
$$L_{\infty}(\omega) = |\omega|$$
 for $\omega \in (-7, \overline{\nu})$
the former series $is = \frac{\pi}{2} - \frac{4}{11} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos((2n-1)\omega)$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

$$\frac{\pi}{2} - |\omega| = \frac{4}{\pi} \cdot c \cdot \mathbb{E} \quad \cos((2z-1)\cdot \omega)$$

6P...

Use
$$L_{p}(\omega) = \omega$$
 which has former series $\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{5ih^{2}(n\omega)}{n^{2}} \omega \in (0, \pi)$

That periods periods at 0, π ...

OP ...
$$L_D(\omega) = \frac{\omega^2}{4} - \frac{\pi}{2} \omega + \frac{\pi^2}{6}$$
, former Series $\sum_{n=1}^{\infty} \frac{\cos(n\omega)}{n^2} \omega \in [0, 27]$

Thm (1D cose) cf. Folland Thm 2.2.7

Let
$$L: \mathcal{H} \times Z \to \mathbb{R}$$
 where $\mathcal{H} = [a, b]$. If $\forall \omega \in \mathcal{H}$, $\mathbb{E} | l(a, z)| < \infty$ and $\frac{dl}{d\omega} \exp(sts)$, and $\exists g: Z \to \mathbb{R}$ Et.

$$(\forall w, z) \quad \left| \frac{dl}{d\omega} (\omega, z) \right| \leq g(z) \quad \text{then}$$

$$\downarrow L_{\mathfrak{D}}(\omega) := \mathbb{E}_{z \to \mathcal{D}} l(\omega, z) \quad \text{is differentiable}, \quad \text{and}$$

2)
$$\frac{d}{d\omega} L_{D}(\omega) = E \frac{d}{d\omega}(\omega, \epsilon)$$

proof: Lebesque's Dominated Convergence Thro