

Proseminar

Lineare Algebra f. Informatik

SoSe 2020

Test 1: 14.05.2020

Name:	Matrikelnummer:	

1. Überprüfen Sie, ob der \mathbb{R}^2 mit der gewöhnlichen Vektoraddition und folgender Skalarmultiplikation alle Vektorraumaxiome erfüllt:

$$\lambda \odot x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 für $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ und $\lambda \in \mathbb{R}$.

(6)

2. Im \mathbb{R}^3 seien die Vektoren $a = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ und $b = \begin{pmatrix} -6 \\ -2 \\ -4 \end{pmatrix}$ gegeben.

Bilden Sie den Vektor $c = \begin{pmatrix} m_{n-2} \\ m_{n-1} \\ m_n \end{pmatrix}$, wobei m_{n-2} die drittletzte Ziffer Ihrer Matrikelnummer ist, m_{n-1} deren zweitletzte Ziffer und m_n deren letzte Ziffer.

(Beispiel: Für die Matrikelnummer 76543210 wäre $c = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$.)

Geben Sie einen geeigneten Vektor $d \in \mathbb{R}^3$ an, sodass d eine Linearkombination der drei Vektoren a, b und c ist.

Verwenden Sie den Gauß-Algorithmus, um zu bestimmen, ob der Vektor $e = \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix}$ eine Linearkombination der vier Vektoren a, b, c und d ist.

(10)