Discrete Structures

IIIT Hyderabad

Monsoon 2020

Tutorial 1 Solutions

September 18, 2020

Introduction

- Questions
 - Question 1
 - Question 2
 - Question 3
 - Question 4

1.1. Find the power set (or $\mathcal{P}(S)$) and it's order (or $|\mathcal{P}(S)|$) for the following sets -

- Set $S = {\phi}$ Sol: $\mathcal{P}(S) = {\phi, {\phi}}, |\mathcal{P}(S)| = 2$
- Set $S = \{a\}$

Sol:
$$\mathcal{P}(S) = \{\phi, \{a\}\}, |\mathcal{P}(S)| = 2$$

• Set $S = \{a, \phi\}$

Sol:
$$\mathcal{P}(S) = \{\phi, \{a\}, \{\phi\}, \{a, \phi\}\}, |\mathcal{P}(S)| = 4\}$$

• Set $S = \{a, \{\dot{\phi}\}\}$

Sol:
$$\mathcal{P}(S) = \{\phi, \{a\}, \{\{\phi\}\}, \{a, \{\phi\}\}\}\}, |\mathcal{P}(S)| = 4$$

• Set $S = \{\phi, \{\dot{\phi}\}, \{\{\phi\}\}\}$

Sol:
$$\mathcal{P}(S) = \{ \phi, \{\phi\}, \{\{\phi\}\}\}, \{\{\{\phi\}\}\}\}, \{\phi, \{\phi\}\}\}, \{\phi, \{\{\phi\}\}\}\}, \{\phi, \{\{\phi\}\}\}\}, \{\phi, \{\phi\}\}\}\}$$

1.2. If |A| = m and |B| = n and A and B are not mutually disjoint. Let

$$\mathcal{P}_i(S) = \mathcal{P}(\mathcal{P}(\mathcal{P} \dots \mathcal{P}(S))))$$
 i times

(Given m \geq n) then what are the bounds of the value of $|\mathcal{P}_4(A-B)|$, $|\mathcal{P}_2(A-B)|$.

*[On the basis of above, can you tell about $|\mathcal{P}_4(A-B) - \mathcal{P}_2(A-B)|$?] **Sol:** We have that $A-B=A-(A\cap B)$. Now $A\cap B$ can have maximum n and minimum 1 elements (since not disjoint). Thus

$$m - n \le |A - (A \cap B)| \le m - 1$$

$$2^{m-n} \le |P(A - (A \cap B))| \le 2^{m-1}$$

$$2^{2^{m-n}} \le |P_2(A - (A \cap B))| \le 2^{2^{m-1}}$$
:

 $2^{2^{2^{2^{m-n}}}} \leq |P_4(A-(A\cap B))| \leq 2^{2^{2^{2^{m-1}}}}$

For answering this question, go to: tinyurl.com/dstut1

True or False:

- $\ \, \Phi \subseteq \{\phi\} \text{ True}$
- **2** $\{x^2|x^2=1\}=\{x|x^2=x\}$ False
- **3** $\mathcal{P}(\{x, y, \{x\}, \{y\}) = \mathcal{P}(\{x, y, \{x, y\}) \text{False})$
- **1** $\{a, \phi\} \in \{a\}$ **False**
- **5** $\{a, \phi\} \subseteq \{a, \{a, \phi\}\}$ False
- **1** If $a \in \mathcal{P}(A)$, then $a \in A$ always **False**
- **o** For any set A, $A \subseteq A$ **True**
- **8** For any set A, $A \in A$ **False**
- Every nonempty set has at least two subsets True

Question 2 explanations

True or False:

- **§** Sol: \subseteq means "subset of", and ϕ is a subset of every set.
- **2** Sol: LHS describes the set $\{1\}$. RHS describes the set $\{0,1\}$.
- **Sol:** The cardinality of both the setsitself is different.
- **Sol:** $\phi \notin \{a\}$. However $\phi \subseteq \{a\}$.
- **Sol:** $\phi \notin \{a, \{a, \phi\}\}$
- **Sol:** Take $A = \{4\}$. $\mathcal{P}(A) = \{\phi, \{4\}\}$, now both $\phi \notin A$ and $\{4\} \notin A$
- **Sol:** Take any arbitrary set A. Now by the definition of subset for $A \subseteq A$: $\forall x \in A$, $x \in A$ which is always **true**
- **Sol:** This is not always true. Set $S = \{a\}, \{a\} \notin \{a\}$
- **Sol:** Power set of a set S with cardinality |S| has $2^{|S|}$ elements, and thus this is true.

3.1 Given $A = \{a, b, \{a, c\}, \phi\}$. Determine the following:

•
$$A - \phi$$

Sol: $A - \phi = A$

•
$$A - \{a, c\}$$

Sol: $A - \{a, c\} = \{b, \{a, c\}, \phi\}$

•
$$A - \{\{a, c\}\}\$$

Sol: $A - \{\{a, c\}\} = \{a, b, \phi\}$

•
$$\{a, c\} - A$$

Sol: $\{a, c\} - A = \{c\}$

3.2 One of the following set is different, which one ? (Choose one, MCQ)(\land is **AND** and \lor is **OR**)

- **1** Set $S = \{x | (x^2 = 1) \lor (x^2 = 4) \lor (x \text{ is prime} < 10)\}$
- ② Set $S = \{x | (x^2 = 4) \lor (x^2 = 1) \lor (x \text{ is odd} < 10)\}$
- **3** Set $S = \{x | (x < 9) \land (x > -3) \land ((x \text{ is odd}) \lor (x^2 = 4))\}$
- **9** Set $S = \{-2, -1, 1, 2, 3, 5, 7\}$

Sol: Option 2

Option 2 describes the set $\{-2,-1,1,2,3,5,7,9\}$ whereas all others describe the set $\{-2,-1,1,2,3,5,7\}$.

- **1** (U (A \cap B))' \cup ((C B) \cap A') **Sol**: $\{a, b\} \cup \{g\} = \{a, b, g\}$
- **2** $(A \cap C') \cup (A \cup B \cup C)' \underline{Sol:} \{b, f\} \cup \{h, i, j\} = \{b, f, h, i, j\}$
- **3** $(A (B \cap C)) \cap (U' (C \cap B))' \underline{Sol:} \{b, e, f\} \cap \{U\} = \{b, e, f\}$