Efficient Extraction of QBF (Counter)models from Long-Distance Resolution Proofs

(Supplementary Material)

We give an alternative definition of phase function in the following table. Here we simplified the notation by assuming that a literal is associated to its underlying clause, which should be clear from the context.

Table 1. Attributes of each vertex $v \in V_{\Pi}$ of an LQ-refutation Π of a false QBF Φ .

Attribute	Definition
Parent literal	Literal $l' \in u.clause$ is called a parent literal of $l \in v.clause$ if $var(l') = var(l)$ and $(u, v) \in E_{II}$. Note that l can only have 0, 1, or 2 parent literals.
Phase function	The phase function, denoted $l.phase$, of literal $l \in v.clause$ is defined as follows: - if l is positive, then $l.phase = 1$; - if l is negative, then $l.phase = 0$; - if l is merged and l has only one parent literal l' , then $l.phase = l'.phase$; - if l is merged and l has two parent literals $l_1 \in u_1.clause$ and $l_2 \in u_2.clause$ with $(u_1, v) \in E_{\Pi}$ and $(u_2, v) \in E_{\Pi}$, then $l.phase = (l_1.phase \land \overline{p}) \lor (l_2.phase \land p)$, where pivot $p \in X_{\exists}$, $p \in u_1.clause$ and $\overline{p} \in u_2.clause$.
Effective literal	The effective literal, denoted l.elit, of $l \in v.clause$ is a literal that satisfies l.elit $\leftrightarrow (x \leftrightarrow l.phase)$, where $x = var(l)$.
Shadow clause	The shadow clause, denoted v.shadclause, of $v \in V_{II}$ is the clause of effective literals of v: $v.shadclause = \bigcup_{l \in v.clause} (l.elit).$

The phase function intuitively represents the induced phase of a literal in a clause under a particular assignment to existential variables. The effective literal, on the other hand, represents the induced value of the corresponding literal in its underlying clause. By these definitions, observe that $l.elit \leftrightarrow l$ whenever l is not a merged literal. Effective literals are important in the sense that they unify the semantics of both merged and not-merged literals, and there is no further need to distinguish them in a clause.

As mentioned in Section 2, merged literals do not follow the same semantics as not-merged literals. The following example illustrates the problem of α -implication in the presence of tautological clauses.

Example 1. Consider a simple QBF $\Phi = \exists a \forall x \exists b. (a + x + b)_1 (\overline{a} + \overline{x} + b)_2 (\overline{b})_3$, and the corresponding LQ-resolution proof:

$$\Pi = \begin{cases}
1. & C_4 = resolve(C_1, C_2) \\
2. & C_5 = resolve(C_3, C_4) \\
3. & C_{empty} = reduce(C_5)
\end{cases}$$

Note that $C_5 = \{x^*\}$, and if the semantics of a merged literal x^* is to be treated similarly to an ordinary literal, then $C_5|_{\alpha} = 1$ for any assignment α . Therefore under no circumstances C_{empty} can be α -implied. On the other hand, the empty clause is soundly deduced following the LQ-resolution proof system [1].

To overcome the above difficulty, the attributes defined in Table 1 provide necessary information to keep track of the origin of a merged literal under some assignment. Consider the merged literal $x^* \in C_5$. By its effective literal $x^* \cdot elit = (\overline{a} \leftrightarrow x)$, under partial assignment a = 0 we have $x^* \cdot elit = x$. Moreover, under a = 0, C_2 evaluates to 1, and thus proof Π can be simplified to

$$\Pi|_{\{\overline{a}\}} = \left\{ \begin{array}{l} 1. \ C'_{4} = resolve(C_{1}|_{\{\overline{a}\}}, C_{3}|_{\{\overline{a}\}}) \\ 2. \ C'_{empty} = reduce(C'_{4}) \end{array} \right\}$$

Observe, that the merged literal $x^* \in C_5$ from the original proof Π now corresponds to the ordinary literal $x \in C'_4$, which is exactly equivalent to $x^*.elit$ under assignment a=0. Similar analysis can be performed for assignment a=1. Therefore intuitively, effective literals represent how the semantics of the merged literals should be interpreted under a given assignment.