Convolutional Neural Network (CNN)

卷积神经网络

Network Architecture designed for Image

Image Classification

one-hot vector 向量的长度 = 类别数量

(All the images to be classified have the same size.)

输入图片的大小都要一样

Image Classification

value represents intensity

100 x 100

Fully Connected Network

Do we really need "fully connected" in image processing?

考虑到image本身的特性,我们不需要用fully connected的操作。

观察到某个重要的特性来做判断

Observation 1

Identifying some critical patterns

Perhaps human also identify birds in a similar way ... ©

人也是抓住某个事物的特性来判断。

6

Some patterns are much smaller than the whole image.

Simplification 1

- Can different neurons have
 different sizes of receptive field?
 可以,常见招式,选择不同大小的receptive field。
 - Cover only some channels?
 可以,在network compression里会讲。
 - Not square receptive field?
 可以的,自己决定。

Simplification 1 – Typical Setting

^{3.} Each receptive field has a set of neurons (e.g., 64 neurons).

Observation 2 特征在不同的区域

• The same patterns appear in different regions.

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Each receptive field has the neurons with the same set of parameters.

Benefit of Convolutional Layer

- Some patterns are much smaller than the whole image.
- The same patterns appear in different regions.

Another story based on **filter** ©

Convolutional Layer

Consider channel = 1 (black and white image)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	
-1	1	-1	
-1	1	-1	Filter 2
-1	1	-1	
	:		•

(The values in the filters are unknown parameters.)

Inner Product

Filter 1

stride=1

6 x 6 image

左上角和左下角的值最大

有filter的特征

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

可以看成是另外一张图片,但是是64个channels。 # of channels = # of filters of the last layer

Multiple

Comparison of Two Stories

convolution = filter扫过整张图片 = receptive field共享参数 The neurons with different receptive fields share the parameters. bias . 0 bias

Each filter convolves over the input image.

Neuron Version Story	Filter Version Story
Each neuron only considers a receptive field.	There are a set of filters detecting small patterns.
The neurons with different receptive fields share the parameters.	Each filter convolves over the input image.

They are the same story.

pooling

Observation 3

Subsampling the pixels will not change the object

Pooling — Max Pooling 选的代表:最大的那个

有很多pooling的方法; e.g., mean pooling

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

3 0 3 1	-3 1	-3 -1 0 -3
	-3 -3 -2	0 1 -2 -1

Convolutional Layers + Pooling -1 -1 3 0 Convolution Repeat "Image" with 64 channels Pooling (会让图片失真) -1 3 29 pooling的目的:减少运算量

The whole CNN

cat dog Convolution softmax **Pooling Fully Connected** Layers Convolution 00000000 00000 Pooling 拉直(张量 向量) Flatten

Application: Playing Go 下围棋 = 分类问题

domain knowledge

48 channels

in Alpha Go

Black: 1

white: -1

none: 0

Fully-connected network can be used

But CNN performs much better.

Why CNN for Go playing?

1 • Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

² • The same patterns appear in different regions.

AlphaGo的CNN不用Pooling, 因为Pooling会掉信息,所以不 适合下棋的任务。

Why CNN for Go playing?

Subsampling the pixels will not change the object

Pooling

How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves \underline{k} filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Tabl 256 and Alpha Go does not use Pooling 384 filters

More Applications

语音和NLP上也都有应用。

Speech

https://dl.acm.org/doi/10.110 9/TASLP.2014.2339736

Convolution layer max pooling feature maps other fully feature maps connected hidden layers Frequency bands Frames Share same weights

Static, Δ , $\Delta\Delta$

Natural Language Processing

https://www.aclweb.org/anthology/S15-2079/

To learn more ...

放大/放小 旋转

• CNN is not invariant to scaling and rotation (we need data augmentation ⊕).

Spatial Transformer Layer

https://youtu.be/SoCywZ1hZak (in Mandarin)