This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-319068

(43)公開日 平成11年(1999)11月24日

(51) Int.Cl.	•	識別記号		FI.		
A61L	27/00			A61L 27/00	. •	С.
	15/44		. •	15/03	~	
C 1 2 N	5/10			C 1 2 N 5/00		В

		来查請求	未請求 請求項の数6 OL (全 6 頁)
(21)出願番号	特願平10-129048	(71)出顕人	000138082
(ne) direct m			株式会社メニコン
(22)出願日	平成10年(1998) 5月12日	• •	愛知県名古屋市中区英3丁目21番19号
		(72) 発明者	黒柳 能光
•			神奈川県座間市小松原一丁目5137番地1
		(72)発明者	杉山 章寿
•			爱知県春日井市高森台五丁目1番地10 株
·	• • •		式会社メニコン総合研究所内
·. •		(72) 発明者	柳川 博昭
			爱知県春日井市高森台五丁目1番地10 株
	*		式会社メニコン総合研究所内
		(# A) (D ## 1	
.*		(74)代理人	弁理士 朝日奈 宗太 (外1名)
•			
	,	1 .	

(54) 【発明の名称】 人工皮膚用基材およびその製法

(57)【要約】

【課題】 効率よく強度が付与された支持体と細胞外基 質成分から作製されたスポンジからなる人工皮膚用基材 を提供すること。

【解決手段】 支持体と細胞外基質成分から作製された スポンジからなる人工皮膚用基材、およびその製法。

【特許請求の範囲】

【請求項1】 支持体と細胞外基質成分から作製された スポンジからなる人工皮屑用基材。

【請求項2】 支持体と前記スポンジが組み合された請 求項1記載の基材。

【請求項3】 細胞外基質がコラーゲン、ゼラチン、ヒ アルロン酸またはそれらの混合物である請求項1記載の

【請求項4】 支持体が合成高分子製または天然高分子 製の編物または織布、または不織布である請求項1記載 10 の基材。

【請求項5】 培養皮膚用基材または創傷被覆材である 請求項1記載の基材。

【請求項6】 支持体と細胞外基質成分から作製された スポンジを組み合せることからなる請求項1記載の基材 の製法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は支持体と細胞外基質 成分から作製されたスポンジからなる人工皮膚用基材お 20 よびその製法に関する。さらに詳しくは培養皮膚用基材 または創傷被覆材として用いられる前記基材およびその 製法に関する。

[0002]

【従来の技術】アテロコラーゲンなどの細胞外基質を用 いて作製したスポンジ状マトリックスを培養皮膚の基材 として皮膚欠損創へ適用するなど (黒柳能光、熱傷、

「細胞組み込み型人工皮膚」第23巻、第1号、199 7年3月、9~27頁参照)、細胞外基質からなる培養 皮膚用基材および創傷被覆材が従来から使用されてい る。しかしながら、前記基材は脆弱で強度が低いため、 ピンセットなどで前記基材をつまむと自重で落下した り、創面に適用する際に欠損するなど扱いづらく、また 従来行なわれている移植皮膚片の固定で使用するステー プル(ホッチキス)で前記基材を止めるとくずれるた め、前記基材を創面に固定することはできず、非常に使 いにくいものであった。また、前記基材の上にガーゼま たは被覆材をそえて皮膚欠損創面まで運び適用する試み がなされているが、前記のガーゼや被覆材はそえている だけなので、適用した基材は創面に固定されず、ずれて しまうなどの問題があった。

【0003】また、とくに前記基材を培養皮膚用基材と して用いたときには、細胞培養の際に用いた血清を適用 前に除く洗浄操作、凍結保存後に解凍して適用する際に は凍結保存液を除く洗浄操作などを行なう必要がある が、基材が脆弱であるが故に破損することが多かった。 [0004]

【発明が解決しようとする課題】本発明者らはこのよう な状況に鑑み、前記問題点を改善すべく鋭意研究を重ね た結果、支持体と細胞外基質成分から作製されたスポン 50 が好ましく、50~1000µm程度であることがより

ジを組み合せることにより、強度が付与され取扱いやす くなった基材が提供されることを見出し、本発明を完成 するに至った。

[0005]

【課題を解決するための手段】すなわち、本発明は支持 体と細胞外基質成分から作製されたスポンジからなる人 工皮膚用基材(請求項1)に関する。

【0006】また、本発明は支持体と細胞外基質成分か ら作製されたスポンジを組み合せることからなる請求項 1記載の基材の製法(請求項6)に関する。

【0007】前記基材は、好ましくは、支持体と前記ス ポンジが組み合された請求項1記載の基材 (請求項 2)、細胞外基質がコラーゲン、ゼラチン、ヒアルロン 酸またはそれらの混合物である請求項1記載の基材(請 -求項3)、支持体が合成高分子製または天然高分子製の 編物または織布、または不織布である請求項1記載の基 材(請求項4)および培養皮膚用基材または創傷被覆材 である請求項1記載の基材(請求項5)である。

[8000]

【発明の実施の形態】本発明における「細胞外基質成 分」とは、主に動植物からの分離・精製手法によりえら れるものであって、かつ生体内で消化(分解・吸収)さ れるものを意味し、具体的にはコラーゲン、ゼラチン、 ヒアルロン酸、ポリグリコール酸、コンドロイチン硫 酸、アルギン酸、アガロースおよびそれらの混合物など を含む。また創傷被覆材および培養皮膚用基材では創傷 面周辺の線維芽細胞の活性化を促し、創傷治癒を促進す ることからコラーゲンが好ましい。とくに培養皮膚用基 材では、さらに容易に細胞を接着させるためにコラーゲ ンまたはコラーゲンとゼラチン混合物が好ましい。表皮 細胞、線維芽細胞の移動を促進するばあいには、ヒアル ロン酸またはヒアルロン酸をコラーゲンおよび/または コラーゲンとゼラチン混合物に混合することが好まし い。前記混合物の組成と混合比は用途により適宜選択し

【0009】前記の分離・精製手法としては、当業者が 通常用いる、動植物組織から酵素処理して抽出するなど の手法があげられる。

【0010】本発明における「細胞外基質成分から作製 されたスポンジ」とは、前記細胞外基質成分から作製 し、スポンジ状の多孔構造を有するものであればどんな ものでもよい。培養皮膚用基材としては、細胞ができる だけ均一にスポンジ全体に浸透し、接着できるようにす るためには、空孔の径が10~500µmであることが 好ましく、30~300µm程度であることがより好ま

【〇〇11】創傷被覆材としては、創面からの浸出液を 充分に吸収し留置できる空孔を有することが望ましく、 そのためには、空孔の径が10μm~3mmであること 好ましい。空孔の径が3mmを超えると基材が脆弱となり、基材の分解も急速に起こりうるので、強度と分解速度との関係で空孔の大きさを調整する。

【0012】前記スポンジの作製方法としては、たとえば、前記細胞外基質成分を適当な溶媒(たとえば水)に溶解し、ゲル化したのちに凍結乾燥し、要すれば架橋を行なう方法、適当な溶媒(たとえば水)に架橋剤を加え、成型したのちに、洗浄乾燥する方法などがあげられる。

【0013】以下に細胞外基質成分から作製されたスポ 10 ンジがコラーゲンスポンジであるばあいについて、作製 手順を具体的に説明する。

【0014】コラーゲンスポンジは、酸可溶性コラーゲンを用いるばあい、酸性に調製したコラーゲン溶液をホモジナイザーを用いてホモジナイズすることにより充分に気泡を含ませたものを容器に流し込み、アンモニアガス雰囲気中に静置してゲル化させたのち凍結乾燥を行ない、ついて紫外線照射または架橋剤によって分子間架橋を導入することにより作製することができる。

【0015】前記コラーゲン溶液は、ウシ真皮などからえられたコラーゲンから調製して、pHを好ましくは2~4に調整し、濃度が0.2~3w/v%、好ましくは0.5~2w/v%とすることによりえられる。ゲル化はアンモニアなどのガス雰囲気下で必要に応じて数分~2時間程度行ない、水洗し、こののち、凍結乾燥を行なう。

【0016】架橋に用いる紫外線(UV)の主波長は250~270nmのものが好ましく、紫外線量は500~12000mWsec/cm²、好ましくは1000~5000mWsec/cm²の線量を照射するとよい。本発明に用いられる架橋剤の例としてはたとえば、グルタルアルデヒド、エチレングリコールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ヘキサメチレンジイソシアネートなどがあげられる。

【0017】前記スポンジの厚さは、用途により適宜選択すればよいが、熱傷などによる皮膚欠損に適用するばあいには、表皮層および真皮層に至る欠損創を被覆する必要があるため、好ましくは0.5~3 mm、より好ましくは1~2 mm、深い褥瘡に適用するばあいには好ましくは1~30 mmである。

【0018】前記スポンジの形状および大きさは適宜選択すればよいが薄板状、板状、棒状、紡錘状、両側凸レンズ状、球状などがあげられる。

【0019】本発明における「支持体」とは、生体内で 消化されない(非吸収性)構造物を意味し、たとえば、 ナイロン、ポリエステルまたはシリコンなどの合成高分 子、絹、木綿または麻などの天然高分子からできている 編物または織布、または不織布などが包含されるが、好 ましくは前記編物または織布である。前記編物または織 布とは、当該人工皮膚用基材の強度を増して、基材が消化される状態においても組織と癒着しにくい程度の目を持つ編物または織布を意味するが、前記基準を満たす編物または織布、または不織布であれば、本発明に用いることができる。このことから、メッシュの大きさとしては、3 ½~400メッシュでよい。好ましくは、細胞を通過させ難い200~400メッシュ、さらに好ましくは、体液を通過、蒸散させ難く創面に体液を温存させうる閉鎖包帯法(オクルーシブ)の状態に近い250~400メッシュである。前記メッシュとは、Tyler(テイラー)により定義されたものを意味する。

【0020】前記不織布とは短繊維とからみ合わせ、層化させた布状物を意味し、たとえば、和紙のような形態のものをいう。

【0021】前記支持体の厚みは、用途により適宜選択すればよいが、充分に基材を支持する強度を与え、取扱いやすくするためには、好ましくは0.01~1mmである。

【0022】本発明の基材とは、支持体と細胞外基質成分から作製されたスポンジ(状物質)からなるものを意味する。前記スポンジと前記支持体との組み合せの形態は、好ましくは前記支持体の少なくとも片面で前記スポンジが接触している形態であり、適用した際支持体が動かず、皮膚欠損創面へのせ、その上にガーゼをのせてとめたばあい、上方(前記創面からより違方)のスポンジがクッションのような役割を果すので、より好ましくは前記支持体の両面に前記スポンジが接触している形態(サンドイッチ状の形態)である(図1および2参

照)。本発明の基材の形状および大きさは、適用するも 30 のにしたがい適宜選択すればよい。

【0023】本発明の基材の作製方法としては、前記のように調製した細胞外基質成分溶液上に支持体をのせ、要すればさらにその上に前記溶液を加えたのち、ゲル化し、凍結乾燥を行ない、要すれば架橋を行なう方法などをあげることができる。

【0024】本発明にしたがった前記基材の製法は、好ましくは、細胞外基質成分からなる液体を支持体と前記支持体の少なくとも片面で接触させて凍結乾燥することによって支持体と細胞外基質成分から作製されたスポンジを組み合わせることからなり、より好ましくは、細胞外基質成分溶液上に支持体をのせてゲル化および凍結乾燥を行なうことによって支持体と細胞外基質成分から作製されたスポンジを組み合わせることからなり、とくに好ましくは、細胞外基質成分溶液上に支持体をのせ、その上に前記溶液を加えたのちに、ゲル化および凍結乾燥を行なうことによって支持体と細胞外基質成分から作製されたスポンジを組み合わせることからなる。前記細胞外基質成分溶液とは、細胞外基質成分と、前記細胞外基質成分を溶解する溶媒からなり、好ましくは、細胞外基質成分水溶液を意味する。

【0025】本発明の基材は人工皮膚以外のいかなる用途にも用いられうるが、人工皮膚用、好ましくは培養皮膚用基材または創傷被覆材として用いられる。

【0026】以下に本発明を実施例をあげてさらに詳細 に説明するが、本発明はもとよりこの実施例に限定され るものではない。

[0027]

【実施例】比較例1

コラーゲンスポンジの作製(従来技術)

1 gの粉末コラーゲン ((株) 高研製) をp H 3 の塩酸 10 酸性水溶液100m1に溶解した、えられたコラーゲン 溶液60m1をホモジナイザー((株)日本精機製作所 製)で1分間ホモジナイズして充分に気泡を含ませたの ち、19cm×10cm、高さ2.5cmのポリスチレ ン製の容器(商品名:スチロール角型ケースNO.1 5、(株)サンプラテック製)に入れ、水平を維持して アンモニアガスの雰囲気下にて中和し(25℃、120 分)ゲル化させた。えられたコラーゲンゲルを約-80 ℃で凍結したのち、真空凍結乾燥機(ラブコンコ社製) に移して-30℃より段階的に室温まで昇温し、30時 間かけて凍結乾燥しコラーゲンスポンジをえた。えられ たコラーゲンスポンジに紫外線(3600mW/cm² UV、15分)を表裏に照射して架橋した。えられた架 橋コラーゲンスポンジの形状は約18×9.5×0.1 8cmであった。

【0028】また、ダルベッコ変法イーグル最小必須培地(ギブコ社製)溶液50mlを前記架橋コラーゲンスポンジに加えたばあいの前記スポンジの引裂き強度は、約0.2ニュートン/mmであり、取扱いはガーゼを添えて扱わなければならず非常に脆弱で取扱いが困難であった。なお、引裂き強度はインストロン万能材料試験機(モデル4301、インストロン社製)を用いて、2×3cmの長方形試験片の短辺中央にて長辺に平行に2cmの長さの切り込みを入れ、この両端を引張ることで求めた。

【0029】実施例1

コラーゲンスポンジと支持体からなる基材の作製 1gの粉末コラーゲン((株)高研製)をpH3の塩酸酸性水溶液100mlに溶解した。えられたコラーゲン溶液の60mlをホモジナイザー((株)日本精機製作所製)で1分間ホモジナイズして充分に気泡を含ませたのち、このコラーゲン溶液の30mlを19cm×10cm、高さ2.5cmのポリスチレン製の容器(商品名:スチロール角型ケースNO.15、(株)サンプラテック製)に入れ、水平を維持し、前記容器と同形状の300メッシュのナイロン製織布を前記コラーゲン溶液の上に静かにのせた。さらに残りのコラーゲン溶液の上に静かにのせた。さらに残りのコラーゲン溶液30mlを前記ナイロン製織布の上に静かに注入した。コラーゲン溶液+ナイロン製織布+コラーゲン溶液が入った容器の水平を保ち、アンモニアガスの雰囲気下で中和し

(25℃、120分)ゲル化させた。えられたコラーゲンゲルについて比較例1と同様に凍結乾燥を行ない、コラーゲンスポンジをえた。えられたコラーゲンスポンジに紫外線(3600mW/cm² UV、15分)を表裏に照射し架橋してえられた架橋コラーゲンスポンジの形状は約18×9.5×0.19cmであった(図3(a)~(d)および図4(a)~(d)参照)。

【0030】また、ダルベッコ変法イーグル最小必須培地 (ギブコ製)溶液50m1を前記架橋コラーゲンスポンジに加えたばあいの前記スポンジは引裂き強度試験が困難なほどの強度を有しており、ガーゼなどを添えることなく、そのまま困難なく取扱うことができた。なお、引裂き強度試験は比較例1と同様に行なった。

【0031】試験例1

実施例1と同様にしてえられた基材の一方のスポンジ上 に10%牛胎児血清(以下、FBS)含有ダルベッコ変 法イーグル最小必須培地(以下、DMEM+10%FB S、ギブコ社製)中に懸濁した培養ウサギ線維芽細胞を 1×10⁴細胞/cm²の密度で播種したのちCO₂5 %、35℃のインキュベーター中で7日間培養し、培養 真皮を作製した。培地を除去し、これを凍結保存液(1 0%グリセロール含有DMEM+10%FBS) に入れ -152℃の冷凍庫内で保存した。3カ月間凍結保存し たのち、解凍して凍結保存液を除去し、ハンクス液30 m1で2回洗浄して動物実験に使用した。ウサギの背部 に直径7 c mの円を描き前層皮膚を切除した。切除後、 皮膚欠損創の直径は9 c m と広がった。この皮膚欠損創 に解凍した前記基材(同種培養真皮)を直径9 c m に切 って適用し創周辺をナイロン6. 0縫合糸(協和時計工 業(株)製)により縫合し、その上にバイオクルーシブ (ポリウレタンフィルム製創傷被覆材)を適用し、さら に直径9 c mの滅菌パットをのせて、前記と同様に創周 辺と縫合固定し伸縮性包帯で圧迫固定した。1週間後 に、包帯交換を行ない創面を観察して、再度、新しい基 材を適用し、さらに2週間(3週目)に創面を観察し

【0032】コラーゲンスポンジ内にはナイロンメッシュが組み込まれているため解凍後の洗浄操作は非常に容易であり、また移植操作が容易であった。とくに創周辺との縫合固定が可能であった。3週目において良好な肉芽組織が形成され、創周辺からの表皮化も観察された。新生組織はナイロンメッシュに食い込んでおらず容易に創面からナイロンメッシュを除去することができた。【0033】

【発明の効果】本発明によれば、支持体と細胞外基質成分から作製されたスポンジを組み合せることにより、これらからなる基材の強度が向上され取扱いやすくなった人工皮膚用基材を提供することが可能となる。さらに、本発明の基材のスポンジ上に細胞を播種することにより培養皮膚が大量に生産でき、凍結保存が可能で、要時解

東し使用できる。えられた培養皮層は解凍後の凍結保存液を除去するための洗浄操作性、輸送性および移植操作性が向上されており、また創面をオクルーシブに近い状態にできるので、創面の組織修復が促進されることになり、適当な時期に新生組織に悪影響を与えることなく創面から支持体を除去することができる。本発明の基材は、培養皮膚用基材と同様、創傷被覆材としても好適に用いられる。

【図面の簡単な説明】

【図1】本発明の基材の一実施例の説明図であって、ス 10 ボンジとスポンジの間に支持体がはさまった状態で支持 体とスポンジが組み合されている基材の断面図を示す図 である。

【図2】本発明の基材の別の一実施例の説明図であって、支持体の片面でスポンジが接触している状態で支持

体とスポンジが組み合されている基材の断面を示す図で ある。

【図3】本発明の基材の一作製手順(前半)を示す説明 図である。

【図4】本発明の基材の一作製手順(後半)を示す説明 図である。

【符号の説明】

- 1 スポンジ
- 2 支持体
- 0 3 コラーゲン溶液
 - 4 コラーゲンゲル
 - 11 コラーゲンスポンジ
 - 12 架橋コラーゲンスポンジ
 - 21 ナイロンメッシュ

【図3】

) 23 コターゲン溶液

↓300メッシュのナイロン製機布をのせる

【図4】

WEST

Generate Collection Print

L5: Entry 1 of 4

File: JPAB

Nov 24, 1999

PUB-NO: JP411319068A

DOCUMENT-IDENTIFIER: JP 11319068 A

TITLE: BASE MATERIAL FOR ARTIFICIAL SKIN AND PRODUCTION THEREOF

PUBN-DATE: November 24, 1999

INVENTOR - INFORMATION:

NAME

COUNTRY

KUROYANAGI, TAKAMITSU SUGIYAMA, AKIHISA YANAGAWA, HIROAKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MENICON CO LTD

APPL-NO: JP10129048 APPL-DATE: May 12, 1998

INT-CL (IPC): A61 L 27/00; A61 L 15/44; C12 N 5/10

ABSTRACT:

PROBLEM TO BE SOLVED: To impart strength while facilitating handling by constituting a base material of a support and a sponge formed from an extracellular matrix component.

SOLUTION: A base material for an artificial skin consists of a support 2 and a sponge (like substance) 1 formed from an extracellular matrix component. The combined form of the sponge 1 and the support 2 is set so that the sponge 1 is pref. brought into contact with at least the single surface of the support 2 and more pref. brought into contact with both surfaces thereof. The base material is produced by placing the support 2 on a prepared extracellular matrix component soln. and further adding the soln. to the surface of the support if necessary and gelling the soln. to lyophilize the same and crosslinking the extracellular matrix component layer if necessary. Herein, as the extracellular matrix component, collagen, gelatin, hyaluroinic acid or a mixture of them are used. As the support 2, a knitted fabric, a fabric or a nonwoven fabric made of a synthetic polymer such as nylon or polyester or a natural polymer such as silk or cotton is used and, pref., the knitted fabric or the fabric is used.

COPYRIGHT: (C) 1999, JPO