Lezione 8 – Chiusura di un insieme di dipendenze funzionali

Prof.ssa Maria De Marsico demarsico@di.uniroma1.it

Introduciamo FA

- Ricordiamo che il nostro problema è calcolare l'insieme di dipendenze F⁺ che viene soddisfatto da ogni istanza legale di uno schema R su cui è definito un insieme di dipendenze funzionali F
- Abbiamo concluso che banalmente F F in quanto una istanza è legale solo se soddisfa tutte le dipendenze in F
- E le altre?
- Partiamo da un insieme diverso, «facile» da calcolare anche se ... richiede tempo!
- Introduciamo F^A

Assiomi di Armstrong

- •Denotiamo con F^A l'insieme di dipendenze funzionali definito nel modo seguente:
- se *f*∈*F* allora *f* ∈ *F*^A
- se $Y \subseteq X \subseteq R$ allora $X \to Y \in F^A$ (assioma della riflessività)
- se $X \to Y \in F^A$ allora $XZ \to YZ \in F^A$, per ogni $Z \subseteq R$ (assioma dell'aumento)
- se X → Y ∈ F^A e Y → Z ∈ F^A allora X → Z ∈ F^A (assioma della transitività)
 - •Dimostreremo che F+=F^A, cioè che la chiusura di un insieme di dipendenze funzionali F può essere ottenuta a partire da F applicando ricorsivamente gli assiomi della riflessività, dell'aumento e della transitività, conosciuti come assiomi di Armstrong.

Qualche semplice osservazione

- se $Y \subseteq X \subseteq R$ allora $X \to Y \in F^A$ (assioma della riflessività)
- •Nome ⊆ (Nome, Cognome) quindi **ovviamente se** due tuple hanno uguale la coppia (Nome, Cognome) **allora** avranno sicuramente uguale l'attributo Nome (idem per Cognome), quindi (Nome, Cognome) → Nome viene sempre soddisfatta
- se X → Y ∈ F^A allora XZ → YZ ∈ F^A, per ogni Z ⊆ R (assioma dell'aumento)

CodFiscale → Cognome è soddisfatta quando, se due tuple hanno CodFiscale uguale, allora hanno anche Cognome uguale.

Se la dipendenza è soddisfatta, e aggiungo l'attributo *Indirizzo*, avrò che **se** due tuple sono uguali su (*CodFiscale*, *Indirizzo*), **lo devono essere** anche su (*Cognome*, *Indirizzo*) (*Indirizzo* è **incluso** nella porzione di tuple che è **uguale**), quindi se viene soddisfatta

CodFiscale → Cognome

viene soddisfatta anche

CodFiscale, *Indirizzo* → *Cognome, Indirizzo*

Qualche semplice osservazione

• se $X \to Y \in F^A$ e $Y \to Z \in F^A$ allora $X \to Z \in F^A$ (assioma della transitività)

Matricola → CodFiscale è soddisfatta quando, **se** due tuple hanno Matricola uguale, **allora** hanno anche CodFiscale uguale.

CodFiscale → Cognome è soddisfatta quando, **se** due tuple hanno CodFiscale uguale, **allora** hanno anche Cognome uguale

Allora se entrambe le dipendenze sono soddisfatte, e due tuple hanno *Matricola* uguale, allora hanno anche *CodFiscale* uguale, ma allora hanno anche *Cognome* uguale, quindi ... Se entrambe le dipendenze sono soddisfatte, ogni volta che due tuple hanno *Matricola* uguale avranno anche *Cognome* uguale, e quindi viene soddisfatta anche

Matricola→ Cognome

Prima di procedere ...

- •Prima di procedere introduciamo altre tre regole conseguenza degli assiomi che consentono di derivare da dipendenze funzionali in F^A altre dipendenze funzionali in F^A .
- se $X \rightarrow Y \in F^A$ e $X \rightarrow Z \in F^A$ allora $X \rightarrow YZ \in F^A$ (regola dell'unione)
- se $X \rightarrow Y \in F^A$ e $Z \subseteq Y$ allora $X \rightarrow Z \in F^A$ (regola della decomposizione)
- se $X \to Y \in F^A$ e $WY \to Z \in F^A$ allora $WX \to Z \in F^A$ (regola della pseudotransitività).

Dimostriamolo

•**Teorema** Sia *F* un insieme di dipendenze funzionali. Valgono le seguenti implicazioni:

- a)se $X \rightarrow Y \in F^A$ e $X \rightarrow Z \in F^A$ allora $X \rightarrow YZ \in F^A$
- b)se $X \rightarrow Y \in F^A$ e $Z \subseteq Y$ allora $X \rightarrow Z \in F^A$
- c)se $X \rightarrow Y \in F^A$ e $WY \rightarrow Z \in F^A$ allora $WX \rightarrow Z \in F^A$.
- •Dim.

stiamo trattando con **insiemi!** Quindi ... XX=X

- Prova di a).
- •Se $X \rightarrow Y \in F^A$, per l'assioma **dell'aumento** si ha $X \rightarrow XY \in F^A$. Analogamente, se $X \rightarrow Z \in F^A$, per l'assioma **dell'aumento** si ha $XY \rightarrow YZ \in F^A$. Quindi, poiché $X \rightarrow XY \in F^A$ e $XY \rightarrow YZ \in F^A$, per l'assioma della **transitività** si ha $X \rightarrow YZ \in F^A$.
- Prova di b).
- •Se $Z\subseteq Y$ allora, per l'assioma della **riflessività**, si ha $Y\to Z\in F^A$. Quindi, poiché $X\to Y\in F^A$ e $Y\to Z\in F^A$. per l'assioma della **transitività** si ha $X\to Z\in F^A$.
- Prova di c).
- •Se $X \rightarrow Y \in F^A$, per l'assioma **dell'aumento** si ha $WX \rightarrow WY \in F^A$. Quindi, poiché $WX \rightarrow WY \in F^A$ e $WY \rightarrow Z \in F^A$, per l'assioma della **transitività** si ha $WX \rightarrow Z \in F^A$.

Osservazione

Osserviamo che:

- per la regola dell'unione, se X → A_i ∈ F^A, i=1, ..., n
 allora X → A₁, ..., A_i ... A_n∈ F^A
- per la regola della **decomposizione**, se $X \to A_1, ..., A_i$... $A_n \in F^A$ allora $X \to A_i \in F^A$, i=1, ..., n

quindi
•
$$X \rightarrow A_1, ..., A_i ... A_n \in F^A \Leftrightarrow X \rightarrow A_i \in F^A, i=1, ..., n$$

e possiamo limitarci in generale a considerare le dipendenze col membro destro singleton

Chiusura di un insieme di attributi

Definizione

Siano R uno schema di relazione, F un insieme di dipendenze funzionali su R e X un sottoinsieme di R.

La *chiusura* di X rispetto ad F, denotata con X^+_F (o semplicemente X^+ , se non sorgono ambiguità) è definito nel modo seguente:

$$X_F^+ = \{A | X \rightarrow A \in F^A \}$$

 In pratica fanno parte della chiusura di un insieme di attributi X tutti quelli che sono determinati funzionalmente da X eventualmente applicando gli assiomi di Armstrona

Banalmente ... **X** <u>C</u> **X**+_F (riflessività!)

Lemma

- •**Lemma** Siano R uno schema di relazione ed F un insieme di dipendenze funzionali su R. Si ha che: $X \rightarrow Y \in F^A$ se e solo se $Y \subseteq X^+$.
- Dim.

Sia $Y=A_1, A_2, ..., A_n$.

- Parte se.
- •Poiché $Y \subseteq X^+$, per ogni i, i=1,...,n, si ha che $X \to A_i \in F^A$. Pertanto, per la regola **dell'unione**, $X \to Y \in F^A$.
- Parte solo se.
- •Poiché $X \rightarrow Y \in F^A$, per la regola della **decomposizione** si ha che, per ogni i, i=1,...,n, $X \rightarrow A_i \in F^A$, cioè $A_i \in X^+$, per ogni i, i=1,...,n, e, quindi, $Y \subseteq X^+$.

Teorema: $F^+=F^A$

- •**Teorema** Siano R uno schema di relazione ed F un insieme di dipendenze funzionali su R. Si ha $F^+ = F^A$.
- Dim. (l'uguaglianza d insiemi di dimostra dimostrando la doppia inclusione)

contiene

• $F^+ \supseteq F^A$. Sia $X \to Y$ una dipendenza funzionale in F^A . Dimostriamo che $X \to Y \in F^+$ per induzione sul numero i di applicazioni di uno degli assiomi di Armstrong.

Base dell'induzione: i=0. In tal caso $X \rightarrow Y$ è in F e quindi, banalmente, $X \rightarrow Y$ è in F⁺.

Induzione: *i>0*. Per **l'ipotesi induttiva** ogni dipendenza funzionale ottenuta a partire da *F* applicando gli assiomi di Armstrong un numero di volte **minore o uguale a** *i*-1 è in *F*+. Dobbiamo dimostrarlo per un numero di volte uguale a *i*. Si possono presentare tre casi

• $X \rightarrow Y$ è stata ottenuta mediante l'assioma della **riflessività**, in tal caso $Y \subseteq X$. Sia r un'istanza di R e siano t_1 e t_2 due tuple di r tali che $t_1[X] = t_2[X]$; banalmente si ha $t_1[Y] = t_2[Y]$.

- X→Y è stata ottenuta applicando l'assioma dell'aumento ad una dipendenza funzionale V→W in F^A, ottenuta a sua volta applicando ricorsivamente gli assiomi di Armstrong un numero di volte minore o uguale a i-1 (quindi per l'ipotesi induttiva V→W ∈ F⁺); sarà quindi
- X=VZ e Y=WZ, per qualche $Z\subseteq R$. Sia r un'istanza legale di R e siano t_1 e t_2 due tuple di r tali che $t_1[X]=t_2[X]$; banalmente si ha che $t_1[V]=t_2[V]$ e $t_1[Z]=t_2[Z]$. Per l'ipotesi induttiva da $t_1[V]=t_2[V]$ segue $t_1[W]=t_2[W]$; da $t_1[W]=t_2[W]$ e $t_1[Z]=t_2[Z]$ segue $t_1[Y]=t_2[Y]$.

X→Y è stata ottenuta applicando l'assioma della transitività a due dipendenze funzionale X→Z e Z→Y in F^A, ottenute a loro volta applicando ricorsivamente gli assiomi di Armstrong un numero di volte minore o uguale a i-1 (quindi per l'ipotesi induttiva X→Z e Z→Y ∈ F⁺). Sia r un'istanza legale di R e siano t₁ e t₂ due tuple di r tali che t₁[X]=t₂[X]. Per l'ipotesi induttiva da t₁[X]=t₂[X] segue t₁[Z]=t₂[Z]; da t₁[Z]=t₂[Z], ancora per l'ipotesi induttiva segue t1[Y]=t₂[Y].

• $F^+ \subseteq F^A$. Supponiamo **per assurdo** che esista una dipendenza funzionale $X \to Y \in F^+$ tale che $X \to Y \notin F^A$. Useremo una particolare istanza **legale** di R per dimostrare che questa supposizione porta ad una contraddizione.

Consideriamo la seguente istanza *r* di *R*:

			X +			F	?-X +	
r	1	1		1	1	1		1
	1	1		1	0	0		0

L'istanza da solo due tuple, uguali sugli attributi in X^+ e diverse in tutti gli altri $(R-X^+)$

Dimostreremo che l'istanza è legale

Utilizzando questa istanza dimostreremo che se $X \rightarrow Y \in F^+$ NON può succedere che $X \rightarrow Y \notin F^A$ (assumendo il contrario arriviamo ad una contraddizione).

Mostriamo che:

• r è un'istanza legale di R. Sia $V \rightarrow W$ una dipendenza funzionale in F e supponiamo per assurdo che non sia soddisfatta da r (r non è legale). In tal caso le due tuple di r devono avere gli stessi valori per V e differenti valori per W; ciò implica che $V \subset X^+$ e $W \cap (R-X^+) \neq \emptyset$. Poiché $V \subset X^+$, per il Lemma, si ha che $X \rightarrow V \in F^A$; pertanto, per l'assioma della transitività $(X \rightarrow V \in V \rightarrow W)$, $X \rightarrow W \in F^A$ e, quindi, di nuovo per il Lemma, $W \subset X^+$ (che contraddice $W \cap (R-X^+) \neq \emptyset$). Quindi $V \rightarrow W$ è soddisfatta. Quindi siamo arrivati ad una contraddizione. Poiché abbiamo considerato una qualunque dipendenza in F, r le soddisfa tutte, quindi è legale. \Box

per avere **gli stessi valori** sulle due tuple **TUTTI** gli attributi di V devono essere in X^+ per avere **valori diversi** sulle due tuple **ALMENO UN** attributo di W deve stare fuori da X^+

Mostriamo che:

 $X \rightarrow Y \in F^+ \Rightarrow X \rightarrow Y \in F^A$. Supponiamo per assurdo che $X \rightarrow Y \in F^+$ e $X \rightarrow Y \notin F^A$. Abbiamo mostrato che la nostra r è un'istanza legale. Poiché le dipendenze in F^+ sono soddisfatte da ogni istanza legale, allora r soddisfa $X \rightarrow Y$. Abbiamo due tuple uguali su X? Certo! Poiché $X \subseteq X^+$ (per l'assioma della riflessività e il Lemma) le due tuple di r coincidono sugli attributi X e quindi, poiché r soddisfa $X \rightarrow Y$, devono coincidere anche sugli attributi di Y. Questo implica che $Y \subseteq X^+$ e, per il Lemma, che $X \rightarrow Y \in F^A$, arrivando ad una contraddizione.

Teorema: $F^+=F^A$ (Nota finale)

- E' utile notare che la dimostrazione di questo teorema si basa su due collegamenti MOLTO importanti:
 - Il collegamento che esiste tra l'insieme di dipendenze F⁺ e le istanze legali: se una istanza è legale allora soddisfa anche tutte le dipendenze in F⁺ e d'altra parte F⁺ è l'insieme di dipendenze soddisfatte da ogni istanza legale (notare che per verificare se una istanza è legale basta controllare che soddisfi le dipendenze in F)
 - Il collegamento che esiste **tra la chiusura** X^+ di un insieme di attributi X (diamo per scontato che l'insieme di dipendenze di riferimento sia F e omettiamo il pedice) e il **sottoinsieme di dipendenze in** F^A (che abbiamo appena visto essere uguale a F^+) **che hanno** X **come determinante**, cioè Y ⊆ $X^+ \Leftrightarrow X \to Y \in F^A$ che equivale a dire che $Y \subseteq X^+ \Leftrightarrow X \to Y \in F^+$ e in particolare che $X \to Y$ **deve essere soddisfatta da ogni istanza legale** □

A cosa ci serve conoscere F⁺?

- Quindi abbiamo ora un modo per identificare tutte le dipendenze in F⁺. Sono esattamente le stesse che si possono inserire in F^A partendo da F e applicando gli assiomi di Armstrong e le regole derivate (a costo però di una complessità esponenziale)
- Calcolare F^A, e quindi F⁺, richiede tempo esponenziale in | R|. Basta considerare gli assiomi della riflessività e dell'aumento oppure la regola della decomposizione; ogni possibile sottoinsieme di R porta a una o più dipendenze ... e i possibili sottoinsiemi di R sono 2^{|R|} ... pertanto il calcolo di | F⁺| ha complessità esponenziale in | R|.

A cosa ci serve conoscere F⁺?

- Parleremo di terza forma normale (3NF), delle sue proprietà e di come ottenerla se lo schema di relazione che abbiamo progettato è carente. Come abbiamo già accennato, il problema nasce dal fatto di aver rappresentato più concetti (oggetti) nella stessa relazione, e che la soluzione consiste nel decomporre lo schema in maniera opportuna.
- Ovviamente, tutte le dipendenze funzionali originarie devono essere soddisfatte anche dalle istanze dei nuovi schemi. In particolare, devono essere preservate tutte le dipendenze in F⁺.