CS204: Discrete Mathematics

Ch 1. The Foundations: Logic and Proofs

Predicate Logic-2
Natural Deduction

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Well-Formed Formulas of Proportional Logic

 Well-Formed Formulas(wffs): Grammatically (or syntactically) correct expressions of a language.

Well-Formed Formulas of Propositional Logic

- 1) Every proposition symbols such as p, q, r, ... and P, Q, R, ... are wffs.
- 2) If α and β are wffs, then so are $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$ and $(\alpha \to \beta)$.
- Note that we do now consider \leftrightarrow here because $\alpha \leftrightarrow \beta \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$ and thus it is redundant.

Well-Formed Formulas of Predicate Logic

Term: A variable or an expressions that is built by prefixing a function symbol to a sequence of terms.

Examples f, f(t), f(t1,t2) ..., g, g(t), g(t1,t2), ... where t, t1, t2, ... are terms.

Atomic Formula: A proposition symbol or an expression that is built by prefixing a predicate symbol to a sequence of terms.

Examples p, q, r, ..., P, Q, R, ..., P(*t*), P(*t*1,*t*2), ..., Q(*t*), Q(*t*1,*t*2), ... where *t*, *t*1, *t*2, ... are terms.

Well-Formed Formulas of Predicate Logic

- 1) Atomic formulas are wffs.
- 2) If α and β are wffs, then so are $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$ and $(\alpha \to \beta)$.
- 3) If x is a variable and α is a wff, then $(\forall x)\alpha$ and $(\exists x)\alpha$ are wffs.

Gentzen's Natural Deduction

Rules for Propositional Logic

A = 11		
∧-ın	u	U

A, B

 $A \wedge B$

∨-intro

A

 $A \vee B$

 \rightarrow -intro

 Σ , A |- B

 $\Sigma \mid -A \rightarrow B$

¬-intro (proof by contradiction)

 \sum , A |- B,

 $\sum |--A|$

∑, A |- ¬ B

∨-intro

 $A \vee B$

В

∧-elim

 $A \wedge B$

Α

∧-elim

 $A \wedge B$

В

√-elim (proof by cases)

 Σ , A |- C Σ , B |- C

 Σ , A \vee B |- C

→ -elim (modus ponens)

 $A,\,A\to B$

В

¬-elim

 $\neg\neg A$

"|-" is read "yield".

Α

D1, . . . , Di |- E

means

"E is provable from D1, ..., Di",

i.e.

"There is a formal proof (using only the given rules of inference) of E from D1, ..., Di."

D1, ..., Di are called assumptions. E is called the *conclusion*.

 Σ is used to represent a set of assumptions.

The name for the symbol "|-" is "turnstile".

Gentzen's Natural Deduction

Rules for Propositional Logic

∧-intro A, B		∧-elim A ∧ B	∧-elim A ∧ B	
A ∧ B ∨-intro A	∨-intro B	A \vee -elim (proof by Σ , A - C Σ ,		
$A \lor B$ $A \lor B$ \rightarrow -intro (Deduction Theorem) Σ , A - B		Σ , A \vee B - C \rightarrow -elim (modus ponens) A, A \rightarrow B		
$\Sigma \mid -A \rightarrow B$ \neg -intro (proof by contradiction) Σ , A \mid - B, \neg B		B ¬-elim ¬¬ A		
Σ - ¬ A		A		

∧-intro rule and ∧-elim rule

∧-elim A ∧ B ———B

 \wedge -intro rule introduces \wedge in the conclusion.

 \wedge -elim rule eliminates \wedge in the premise.

∨ -intro rule and ∨-elim rule

∨-intro	∨-intro	\vee -elim (proof by cases)
A	B	Σ , A - C Σ , B - C
$A \lor B$	$A \vee B$	Σ , A \vee B - C

∨-intro rule introduces ∨ in the conclusion.

 \vee -elim rule eliminates \vee in the premise A \vee B so that it does not appear in the premises of the two subproofs.

Example (Proof by cases):

```
Let \Sigma : {r, s}
A: p
B: q
C: (p \wedge r) \vee (q \wedge r)
Show {r, s}, p \vee q |- (p \wedge r) \vee (q \wedge r)
```

$$\vee$$
-elim (proof by cases)
 Σ , A |- C Σ , B |- C
 Σ , A \vee B |- C

 $\Sigma, A \vee B \mid -C \mid (1)$

Example (Proof by cases):

Let
$$\Sigma$$
 : {r, s}
A: p
B: q
C: $(p \wedge r) \vee (q \wedge r)$
Show $\{r, s\}, p \vee q \mid -(p \wedge r) \vee (q \wedge r)$

Proof Need to prove the following two cases

$$\begin{array}{c|c}
\Sigma & r \\
S \\
P \\
\hline
(P \land r) \lor (Q \land r)
\end{array}$$

$$\begin{array}{c|c}
\Sigma & r \\
S \\
Q \\
\hline
(p \land r) \lor (Q \land r)
\end{array}$$

$$\begin{array}{c|c}
C & r \\
S \\
Q \\
\hline
(p \land r) \lor (Q \land r)
\end{array}$$

Then by \vee -elim Q.E.D.

\rightarrow -intro rule and \rightarrow -elim rule

 $\begin{array}{lll} \rightarrow \text{-intro (Deduction Theorem)} & \rightarrow \text{-elim (modus ponens)} \\ \Sigma, A \mid \text{-} & B & A, A \rightarrow B \\ \hline \Sigma \mid \text{-} & A \rightarrow B & B \end{array}$

- \rightarrow -intro rule introduces \rightarrow in the conclusion.
- \rightarrow -elim rule eliminates \rightarrow in the premise A \rightarrow B.

—-intro rule and —-elim rule

\neg -intro (proof by contradiction) Σ , A - B, \neg B	⊸-elim ⊸⊸ A
Σ - ¬ A	A

- \neg -intro rule introduces \neg in the conclusion.
- \neg -elim rule eliminates \neg in the premise $\neg\neg$ A.

Quiz 06-1

[1] State whether the following statement is true or false.

"Any expression (for propositional logic) with more left parentheses than right parentheses is not a well-formed formula."

[2] Which of the following is NOT a well-formed formula of predicate logic?

- (a) $((p \lor q) \rightarrow r)$
- (b) $(\exists x) (P(f(x),x) \land q)$
- (c) $(\exists x) P(f(x),x) \land q)$
- (d) $(\exists x) P(f(x),x) \land q$