OPERATING POINT UNIT-7

OPERATING POINT

Stability of quiescent operating point:

Let us assume that the transistor is replaced by an other transistor of same type. The b_{dc} of the two transistors of same type may not be same. Therefore, if b_{dc} increases then for same I_B , output characteristic shifts upward. If b_{dc} decreases, the output characteristic shifts downward. Since I_B is maintained constant, therefore the operating point shifts from Q to Q_1 as shown in **fig. 5**. The new operating point may be completely unsatisfactory.

Therefore, to maintain operating point stable, I_B should be allowed to change so as to maintain V_{CE} & I_C constant as b_{dc} changes.

Fig. 5

A second cause for bias instability is a variation in temperature. The reverse saturation current changes with temperature. Specifically, I_{CO} doubles for every $10^{\circ}C$ rise in temperature. The collector current I_{C} causes the collector junction temperature to rise, which in turn increases I_{CO} . As a result of this growth I_{CO} , I_{C} will increase (b_{dc} I_{B} + (1+ b_{dc}) I_{CO}) and so on. It may be possible that this process goes on and the ratings of the transistors are exceeded. This increase in I_{C} changes the characteristic and hence the operating point.

OPERATING POINT UNIT-7

Stability Factor:

The operating point can be made stable by keeping I_C and V_{CE} constant. There are two techniques to make Q point stable.

- 1. stabilization techniques
- 2. compensation techniques

In first, resistor biasing circuits are used which allow I_B to vary so as to keep I_C relatively constant with variations in b_{dc} , I_{CO} and V_{BE} .

In second, temperature sensitive devices such as diodes, transistors are used which provide compensating voltages and currents to maintain the operating point constant.

To compare different biasing circuits, stability factor S is defined as the rate of change of collector current with respect to the I_{CO} , keeping b_{dc} and V_{CE} constant

$$S = I_C / I_{CO}$$

If S is large, then circuit is thermally instable. S cannot be less than unity. The other stability factors are, I_C / b_{dc} and I_C / V_{BE} . The bias circuit, which provide stability with I_{CO} , also show stability even if b and V_{BE} changes.

$$I_C = b_{dc}I_B + (I + b_{dc}) I_{CO}$$

Differentiating with respect to I_C,

$$1 = \beta_{dc} \frac{\partial I_B}{\partial I_C} + \frac{(1 + \beta_{dc})}{S}$$

$$\therefore S = \frac{1 + \beta_{dc}}{1 - \beta_{dc} \frac{\partial I_B}{\partial I_C}}$$

OPERATING POINT UNIT-7

In fixed bias circuit, I_B & I_C are independent. Therefore $\frac{\partial I_B}{\partial I_C} = 0$ and $S = 1 + b_{dc}$. If $b_{dc} = 100$, S = 101, which means I_C increases 101 times as fast as I_{CO} . Such a large change definitely operate the transistor in saturation.