Inférer la distribution spatiale d'espèces halieutiques :

Effet de la réallocation uniforme des captures commerciales

Océane GUITTON, Chloé TELLIER, Juliette THEOLEYRE Cursus M2 Agronome - Spécialisation Science des données

Collaboration avec l'IFREMER et le Pôle halieutique, mer et littoral d'AgroCampus Ouest

Contexte

Des données valorisables : les déclarations de capture = **données commerciales**.

- Localisation des points de pêche et quantité de poissons pêchés.
- Peu coûteuses et disponibles en grande quantité.
- Ciblage des zones de forte abondance par les pêcheurs.

Le modèle considéré présente les trois composantes suivantes :

- ➤ La densité de biomasse : variable latente spatialisée.
- ➤ Un **processus d'échantillonnage** correspondant à la génération de la localisation des **points de pêche**.
- Un modèle d'observation qui génère la quantité de poisson pêchée en chaque point de pêche.

Densité de soles

La **densité de soles** est modélisée de la manière suivante :

$$S(x) = \exp(\alpha_S + \Gamma_S(x)^T \cdot \beta_S + \delta(x))$$

- $> \alpha_{\varsigma}$: intercept.
- $ightharpoonup \Gamma_{c}(x)$: covariables environnementales.
- B_s: paramètres associés à ces covariables.
- δ(x): effet spatial aléatoire qui traduit la corrélation spatiale de la distribution des soles.

Génération des localisations des points de pêche : processus de Poisson non homogène.

$$Xcom^{-}IPP(\lambda(x))$$

$$\lambda(x) = exp(\alpha_{x} + b \cdot log(S(x)) + \Gamma_{x}(x)^{T} \cdot \beta_{x} + \eta(x))$$

- $> \alpha_{\chi}$: intercept.
- b : paramètre traduisant un échantillonnage préférentiel.
- S(x): valeur de la densité de sole au point considéré.
- \succ $\Gamma_{\varsigma}(x)$: covariables.
- \triangleright β_x : paramètres associés aux covariables.
- \rightarrow $\eta(x)$: effet spatial aléatoire.

Modèle d'observation

Attribution de la quantité exacte de poissons pêchée en chaque point de pêche.

$$Y_{i} | x_{i}, S(x_{i}) \sim L (S(x_{i}), \sigma^{2})$$

Avec Yi la quantité pêchée.

Problématisation •••

Problématisation

1) Données commerciales du modèle d'Alglave et al.

2) Ajout des carrés statistiques du golfe de Gascogne

- En réalité, on n'a pas la quantité pêchée par point de pêche, mais à l'échelle d'un carré statistique pour un jour donné et un bateau donné.
- On se place à l'échelle d'un carré statistique.

Problématisation

La réallocation uniforme

Quantité pêchée par heure

4) Captures ré-allouées

Quantité totale pêchée (y_{total}) = **50** Nombre de points de pêche (n) = 5

$$\frac{(y_{\text{total}})}{(n)} = \frac{50}{5} = 10 = y_{\text{réallouée}}$$

→ Quantités pêchées ré-allouées : identiques pour tous les points de pêche du bateau d'un carré statistique. 9

Problématique

Quelle est la conséquence de cette procédure de ré-allocation sur les sorties du modèle, sur l'estimation des paramètres, et notamment sur l'estimation de l'abondance des poissons?

Simplification du modèle

> Etude par simulation sur différents scénarios.

- > Simplification du modèle :
 - Densité de soles :

$$S(x) = \exp(\alpha S + \Gamma S(x)T \cdot \beta S + \delta(x))$$

o Intensité du processus d'échantillonnage :

$$\lambda f(x) = \exp(\alpha Xf + bf.log(S(x)) + \Gamma X(x)T \cdot \beta Xf + \eta f(x))$$

Cadre d'étude

- > 150 points de pêche.
- **Échantillonnage préférentiel** plus ou moins fort :
 - Échantillonnage non préférentiel (b=0).
 - o Échantillonnage préférentiel modéré (b=1).
 - Échantillonnage préférentiel fort (b=3).

Protocole de simulation

zone de pêche

Centre de pêche

Protocole de simulation

Simulation des données commerciales

Paramètres de la structuration spatiale

- Nombre de bateaux de pêche considérés dans le protocole de simulation (P).
- Nombre moyen de zones de pêches visitées par l'ensemble des bateaux (Z).
- > Structuration spatiale dans la localisation des points de pêche.

Scénarios de simulation

Les différentes valeurs des paramètres

- 3 valeurs de nombre de bateaux possibles (P).
- > 3 valeurs de nombre moyen de zones de pêche possibles (Z).

Exemple des couples
 (P = 2, Z = 5) et
 (P = 10, Z = 1).

Scénarios de simulation

Comparaison de trois situations

Situation idéale, sans structuration ni réallocation

Situation avec structuration et sans réallocation

Situation avec structuration et avec réallocation

Estimation des paramètres

Utilisation du package TMB:

- Estimation des paramètres par méthode du maximum de vraisemblance.
- > TMB = Template Model Builder.
 - → Deux étapes :
 - Approximation de Laplace pour calculer la vraisemblance.
 - Recherche du maximum de vraisemblance grâce à un algorithme de descente de gradient.

Déroulé des scénarios

Objectif

Objectif: évaluer l'efficacité de notre modèle, sans ou avec réallocation uniforme.

Pour cela, nous allons nous intéresser à trois métriques de performance :

- Biais de la biomasse totale N. = $\frac{N_{\text{estimée}} N_{\text{simulée}}}{N_{\text{simulée}}} = \frac{1}{n} \cdot \sum_{\text{x}} \left(S(x)_{\text{simulé}} S(x)_{\text{estimée}}\right)^2$ Root Mean Squared Prediction Error (RMSPE). = $\sqrt{\frac{1}{n}} \cdot \sum_{\text{x}} \left(S(x)_{\text{simulé}} S(x)_{\text{estimée}}\right)^2$
- Biais de **l'échantillonnage préférentiel b**. = $\frac{b_{\text{estimé}} b_{\text{fixé}}}{b_{\text{fixé}} \text{ (ou 1 si } b_{\text{fixé}} = 0)}$

2 types de résultats:

- L'effet de la **structuration**.
- L'effet de la réallocation uniforme.

Rappels:

- > Un scénario = une valeur d'échantillonnage préférentiel (b), un nombre de bateaux (P), un nombre moyen de zones de pêche par bateau (Z).
- > 27 scénarios différents : 3 (b) * 3 (P) * 3 (Z).
- Un total de 54 scénarios : 27 * 2 (sans ou avec réallocation).
- > 100 simulations de chaque scénario.

Effet de la structuration et de la réallocation uniforme

5 bateaux (P=5) 5 zones de pêche en moyenne par bateau (Z=5)

Biais de la biomasse totale (N)

$$= \frac{N_{\text{estimée}} - N_{\text{simulée}}}{N_{\text{simulée}}}$$

Effet de la structuration et de la réallocation uniforme

- La structuration "en zones" de nos points de pêche commerciaux n'introduit pas de biais par rapport à des points de pêche non structurés.
- En revanche, la réallocation uniforme des captures commerciales:
 - Augmente fortement le biais de l' échantillonnage préférentiel (b), le biais de la biomasse totale (N) et le RMSPE.
 - Augmente la variabilité de ces métriques de performance.
 - Pour le biais de la biomasse totale (N) et le RMSPE, cet effet est d'autant plus important que l'échantillonnage préférentiel est fort.

Effet de la structuration en présence de réallocation

Biais médian de N pour les différentes situations ZP, avec réallocation uniforme et b=1			
Z/P	2	5	10
1	0.28	0.20	0.38
3	0.44	0.55	0.68
5	0.47	0.63	0.59

Rappels:

P = nombre de bateau de pêche Z = nombre moyen de zones de pêche

3

5

Effet de la structuration en présence de réallocation

1.12

3.41

3.13

3.95

4.33

Rappels:

P = nombre de bateau de pêche Z = nombre moven de zones de pêche

- La qualité d'estimation se dégrade avec l'augmentation du nombre moyen de zones visitées par bateau.
- Le nombre de bateaux ne semble pas influer sur la qualité de nos résultats.

Conclusion

> La structuration en zones de pêche n'introduit pas de biais dans l'estimation en comparaison avec une absence de structuration.

- A quel point la réallocation détériore-t-elle les performances du modèle ?
 - o Introduction de biais sur l'estimation de l'échantillonnage préférentiel et sur l'estimation de la biomasse totale ; erreurs locales dans l'estimation de la densité de soles.
 - Plus le nombre de zones homogénéisées est élevé, plus la réallocation est grossière → biais et erreurs plus importants.
 - → Nécessité de modifier le modèle pour prendre en compte la réallocation.

Discussion

- Perspectives:
 - Simuler des captures 'sans succès'.
 - Prendre en compte les effets spatiaux aléatoires.

- Peut on utiliser la donnée commerciale pour inférer la distribution spatiale des espèces halieutiques ?
 - → Introduire de la donnée scientifique qui pourrait être une **source** d'information supplémentaire non négligeable en présence de réallocation uniforme.

Un grand merci à **Marie-Pierre Etienne** et à **Baptiste Alglave** pour leur accompagnement tout le long du projet.