Electrocardiogram Analysis for Heart Disease Anomaly Detections

Similar Solutions

- Academic researches {i.e. MIT/Physionet, Stanford/Andrew Ng}
- Prediction based on heart beat sound
- Prediction based on Wearables/Raw data
- Biggest challenge in healthcare-diagnosis: Accuracy, confidence - collecting signals and predicting

- Physionet Challenge: Consortium of universities and hospitals that provide real-world signals to be used as bases of training in challenges to improve diagnostic tools
- WFDB from PhysioBank: Wave Form Database prevent reinventing the wheel
 - Easy way to interpret the wave form, without need to understand fourrier series, for example

An open access	s database fo	or the evalua	tion of heart	sound algori	thms. (ncbi.r	ılm.nih.gov/p	ubmed)
PhysioBank, PhysioToolkit, and PhysioNet Components of a New Research Resource for Complex Physiologic Signals (circ.ahajournals.org/content/101/23/e215.full)							
	2010 Challenge	2011 Challenge	2013 Challenge	2014 Challenge	2015 Challenge	2016 Challenge	2017 Challenge
[fs] Frequency of the Record	125	500	1000	360	250	2000	300
[n_sig] Signals collected	6	12	4	6	4	1	1
[fmt] Bytes format	['16', '16', '16', '16', '16', '16']	['16','16','16','16','1 6','16','16','16'		['16', '16', '16', '16', '16', '16']	['16', '16', '16', '16']	['16']	['16']
[sig_len] Signal length – array	75000	5000	6000	206517	75000	243997	18260
[samps_per_frame] Samples of each channel present in each frame	[1, 1, 1, 1, 1, 1]	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[1, 1, 1, 1]	[1, 1, 1, 1, 1, 1]	[1, 1, 1, 1]	[1]	[1]
[sig_name] Signal names. Used with sig_units to form y labels, if ylabel is not set		['I','II','III','aVR','a VF','aVL','V1','V2', V3','V4','V5', 'V6']		['ECG II','Pressure1','Pr essure 2','Pressure','Pre ssure','No signal']	['II', 'V', 'PLETH', 'ABP']	['PCG']	['ECG']
[comments] Comments to be written to the header file	0	[' <age>: 0 <sex>: ?']</sex></age>	0	0	['Asystole', 'True alarm']	['Abnormal']	0
[units] Units of each signal channel		['mV','mV','mV','m V','mV','mV','mV',' mV','mV','	['uV', 'uV', 'uV',	['mV', 'mV', 'mV', 'mV', 'mV', 'mV']	['mV', 'mV', 'NU', 'mmHg']	['mV']	['mV']
Training Samples	100	1500	75	100	750	2290	8044
Test Samples	200	39	100	0	0	0	0

```
record = wfdb.rdrecord('../../Databases/physionet/training_2017/training/a103l', channels='all')
wfdb.plot wfdb(record=record, title='Record a103l from Physionet Challenge 2017')
display(record. dict
print(record.p_signal.shape)
for x in range(0, 30):
    print(record.p_signal[x])
{'adc gain': [1000.0].
'adc res': [16],
'adc zero': [0],
                                                         Record a103l from Physionet Challenge 2017
'base counter': None,
'base date': None,
'base_time': '2013'.
                                          1.00
'baseline': [0],
'block size': [0],
'byte offset': [24].
'checksum': [0],
                                          0.75
'comments': Π.
'counter freg': None,
'd signal': None.
'e d signal': None,
                                          0.50
'e p signal': None.
'file name': ['a103l.mat'],
'fmt': ['16'],
                                    ECG/mV
'fs': 300,
                                          0.25
'init value': [-202],
'n sig': 1,
'p signal': array([[-0.202],
   [-0.235],
                                          0.00
   [-0.272],
   [-0.313],
   [-0.173]
                                        -0.25
   [-0.052]]),
'record name': 'a103l',
'samps per frame': [1],
'sig len': 10904,
                                        -0.50
'sig name': ['ECG'],
```

2000

4000

6000

time/sample

8000

10000

'skew': [None], 'units': ['mV']} (10904, 1)

None [-0.202]

[-0.235] [-0.272] [-0.305]

ECG Leads

- The 12 lead consist of:
 - Three Standard limb or bipolar leads (I, II, III) utilize three electrodes; these leads form a triangle known as Einthoven's Triangle.
 - Three Augmented unipolar leads (aV_R, aV_L, aV_F).
 - Six Precordial unipolar leads (V₁, V₂, V₃, V₄, V₅, V₆).

Regional association with ECG

Area of infarction		Leads associated	Vessels involved	
Inferior		Leads II, III, and aVF; ST elevations	Right coronary artery, left circumflex	
Posterior		Leads V1, V2, V3 ST depression; large R wave	Proximal right coronary artery, left circumflex	
Anterior		Leads V1, V2, V3, V4; ST elevation	Left anterior descending	
Lateral		Leads V1, AVL, V5, V6; ST elevation	Left circumflex	
Right ventrice	ular	Elevations in leads II, III, aVF, and V1; elevation greater in III than II; large R wave V4	Proximal right coronary artery	

Cardiac Cycle

- Common Patterns from ECG signal Labeling
- Heart Electrical Events: Animation https://library.med.utah.edu/kw/pharm/hyper_heart1.html

Electrical Activity	Graphic Depiction	Associated Pattern
Atrial Depolarization	4	P Wave
Delay at AV Node	1	PR Segment
Ventricular Depolarization		QRS Complex
Ventricular Repolarization	-16	T Wave
No electrical activity	10	Isoelectric Line

ARRHYTHMIA	ECTOPIC RATE	ECG DESCRIPTION
Wandering Atrial Pacemaker	60-100	Multiple P wave morphologies (usually 3 or more), variable rate
Ectopic Atrial Rhythm	40-250	Regular P waves with abnormal axis, PR interval > 120 msec, flat baseline between P waves, AV conduction may be 1:1 or variable
Mulitifocal Atrial Tachycardia	100–180	At least 3 P wave morphologies, varying PR intervals, rate > 100
Junctional Rhythms	40-120	Regular ventricular rhythm with P waves slightly before, hidden inside, or after QRS complex, PR interval < 120 msec
VT	120-250	Wide QRS tachycardia, regular ventricular rate

Model Architecture

- Unsupervised anomaly detection using Autoencoder
- Its goal is to induce a representation (encoding) for a set of data by learning an approximation of the identity function of this data

Code snippet, Building Block Modeling


```
X train, Y train = ecg gen(batch size)
       X train
       m = Sequential()
       #Autoencode
       m.add(LSTM(12, input shape=(10, 12)))
       m.add(LSTM(12, return sequences=True))
       print(m.summary())
       m.compile(loss='mse', optimizer='adam')
       history = m.fit(X train, Y train, n epoch, b size)
                                    Output Shape
                                                            Param #
       1stm 15 (LSTM)
                                    (None, 12)
                                                            1200
        repeat vector 8 (RepeatVecto (None, 10, 12)
       lstm 16 (LSTM)
                                    (None, 10, 12)
       Total params: 2,400
       Non-trainable params: 0
       10/10 [====
                        Epoch 2/5
                                           =1 - 0s 4ms/step - loss: 0.4883
       Epoch 3/5
       10/10 [====
                                             - 0s 4ms/step - loss: 0.4842
       Epoch 4/5
                                          =1 - 0s 4ms/step - loss: 0.4802
       Enoch 5/5
       10/10 [====
                                     ======1 - 0s 4ms/step - loss: 0.4764
In [5]: plt.plot(history.history['loss'])
        plt.vlabel("loss
       plt.xlabel("epoch")
       plt.show()
          0.5
          0.4
          0.3
          0.2
          0.1
```

Application Architecture

Quality Attributes

- Extensibility
- ConnectivityPerformance
- Real-time AI/ML
- Real-time reports

CDN, Distributed Content Cache

Next Steps

- Hyperparameter Tunning Autoencoders
- Structured Detection/Prediction, Grammar Graph (PyStruct, Cypher Pattern Matching)
- Benchmarking ML Algorithms Used by Similar Solutions/Researches: Hidden Markov Model, CNN, k-NN

Thank you

- https://github.com/TIAGOOOLIVEIRA/ECG-CVD-anomaly-detection
- https://www.linkedin.com/in/tiagoliveira/

References

- http://circ.ahajournals.org/content/101/23/e215.full Research Resource for Complex Physiologic Signals
- http://wfdb.readthedocs.io/en/latest/index.html WFDB documentation
- https://library.med.utah.edu/kw/pharm/hyper_heart1.html Heart electrical events animation
- http://ecg-interpretation.blogspot.de/2014/06/ecg-blog-92-basic-concepts-5-lvh.html
- https://physionet.org/
- https://www.slideshare.net/rohanchoudhari/ecg-23614046
- https://arxiv.org/pdf/1707.01836.pdf Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks
- http://www.internationaljournalofcardiology.com/article/S0167-5273(05)00404-3/abstract Common errors in computer electrocardiogram interpretation