Análisis y Diseño de Algoritmos

Notación Asintótica

DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

- ¿Por qué el análisis de algoritmos?
 - o Determinar tiempos de respuesta (runtime)
 - Determinar recursos computacionales
- Aproximación teórica
 - o Generaliza el número de operaciones que requiere un algoritmo para encontrar la solución a un problema

Ventajas

- Elección de algoritmos eficientes para resolver problemas específicos
- No depende de lenguajes de programación ni de hardware

Desventajas

o Para muchos casos, en análisis no es trivial

- Para realizar el análisis de un algoritmo, es necesario:
 - o Conocer la complejidad del problema que resuelve el algoritmo
 - o Conocer la dimensión de la entrada (número de elementos)
 - O Determinar el número de operaciones a realizar
- La complejidad de un algoritmo se representa a través de una función matemática
 - Polinomios
 - Logaritmos
 - o Exponentes...

Funciones

- \circ f(n) = cn (algoritmos lineales)
- \circ $f(n) = cn^2$ (algoritmos cuadráticos)
- \circ $f(n) = cn^3$ (algoritmos cúbicos)
- Un algoritmo puede estar compuesto de dos o más operaciones, por lo que determinar la complejidad depende de identificar la operación más costosa en el algoritmo
 - o Por ejemplo, sume 2 matrices e imprima el resultado. ¿de que orden es el problema?

Principio de Invarianza

- A través de un análisis teórico, se pueden obtener funciones que representen el número de operaciones, independientemente de cómo se implementaron
- Análisis "Principio de la Invarianza"
 - Dos implementaciones distintas de un mismo algoritmo no van a diferir en su eficiencia en más de una constante multiplicativa "c"

Análisis Peor Caso – Caso Promedio - Mejor Caso

- El tiempo que requiere un algoritmo para dar una respuesta, se divide generalmente en 3 casos
 - Peor Caso: caso más extremo, donde se considera el tiempo máximo para solucionar un problema
 - Caso promedio: caso en el cual, bajo ciertas restricciones, se realiza un análisis del algoritmo
 - Mejor caso: caso ideal en el cual el algoritmo tomará el menor tiempo para dar una respuesta
- Por ejemplo, ¿Cuál es el peor y mejor caso de el algoritmo de ordenamiento "burbuja"?

Operación Elemental (OE)

- Es aquella operación cuyo tiempo de ejecución se puede acotar superiormente por una constante que solamente dependerá de la implementación particular usada
 - No depende de parámetros
 - O No depende de la dimensión de los datos de entrada

Crecimiento de Funciones

- Orden de crecimiento de funciones
 - o Caracteriza eficiencia de algoritmos
 - Permite comparar performance relativo de algoritmos
- Es posible en ocasiones calcular el tiempo de ejecución exacto
 - O No siempre vale la pena el esfuerzo
 - o Las constantes y términos de orden más bajo son dominados por los efectos del tamaño de la entrada

Crecimiento de Funciones

- Diccionario de la Real Academia Española
 - Asintótico, ca (De asíntota).
 - ➤ Adj. Geom. Dicho de una curva: Que se acerca de continuo a una recta o a otra curva sin llegar nunca a encontrarla.

Crecimiento de Funciones

- Eficiencia Asintótica de Algoritmos
 - Cuando el tamaño de la entrada es suficientemente grande que sólo el orden de crecimiento del tiempo de ejecución es relevante.
 - Sólo importa cómo incrementa el tiempo de ejecución con el tamaño de la entrada en el límite
 - El tamaño de la entrada incrementa sin frontera
- Usualmente el algoritmo asintóticamente más eficiente es la mejor opción, excepto para entradas muy pequeñas

Notación Asintótica

- Eficiencia Asintótica
 - o Orden de crecimiento del algoritmo conforme el tamaño de la entrada se acerca al límite (incrementa sin frontera)
- Para determinar la complejidad de un algoritmo, se siguen los siguientes pasos:
 - Se analiza el algoritmo para determinar una función que represente el número de operaciones a realizar por el mismo
 - Se define el orden de la función en términos de funciones matemáticas,
 - Se clasifica de acuerdo a su complejidad

Notación O

- f(n) = O(g(n)), g(n) es una cota superior de f(n)
- Dada una función g(n), denotamos como O(g(n)) al conjunto de funciones tales que:

 $O(g(n)) = \{f: N \rightarrow R^+ \mid \exists c \text{ constante positiva y } n_o \in N : f(n) \le cg(n),$

 $\forall n \geq n_0$

Propiedades de O

- 1. Para cualquier función de f se tiene que $f \in O(f)$.
- 2. $f \in O(g) \Rightarrow O(f) \subset O(g)$.
- 3. $O(f) = O(g) \Leftrightarrow f \in O(g) \text{ y } g \in O(f)$.
- 4. Si $f \in O(g)$ y $g \in O(h) \Rightarrow f \in O(h)$.
- 5. Si $f \in O(g)$ y $f \in O(h) \Rightarrow f \in O(\min(g,h))$.
- 6. Regla de la suma: Si $f_1 \in O(g)$ y $f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g,h))$.
- 7. Regla del producto: Si $f_1 \in O(g)$ y $f_2 \in O(h) \Rightarrow f_1 \cdot f_2 \in O(g \cdot h)$.
- 8. Si existe $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k$, dependiendo del valor de k obtenemos:
 - a) Si $k \neq 0$ y $k < \infty$ entonces O(f) = O(g).
 - b) Si k = 0 entonces $f \in O(g)$, es decir, $O(f) \subset O(g)$, pero sin embargo se verifica que $g \notin O(f)$.

Notación Omega: Ω

- $f(n) = \Omega(g(n)), g(n)$ es una cota asintótica inferior de f(n)
- Dada una función g(n), denotamos al conjunto de funciones $\Omega(g(n))$ de la siguiente forma:

 $\Omega(g(n)) = \{f: N \rightarrow R^+ \mid \exists c \text{ constante positiva y } n_0: o < cg(n) \le f(n),$

 $\forall n \geq n_0$

NOTA: $f(n) \in \Omega(g(n))$ sí y solo si $g(n) \in O(f(n))$

Propiedades de Omega

- 1. Para cualquier función de f se tiene que $f \in \Omega(f)$.
- 2. $f \in \Omega(g) \Rightarrow \Omega(f) \subset \Omega(g)$.
- 3. $\Omega(f) = \Omega(g) \Leftrightarrow f \in \Omega(g) \text{ y } g \in \Omega(f).$
- 4. Si $f \in \Omega(g)$ y $g \in \Omega(h) \Rightarrow f \in \Omega(h)$.
- 5. Si $f \in \Omega(g)$ y $f \in \Omega(h) \Rightarrow f \in \Omega(\max(g,h))$.
- 6. Regla de la suma: Si $f_1 \in \Omega(g)$ y $f_2 \in \Omega(h) \Rightarrow f_1 + f_2 \in \Omega(g + h)$.
- 7. Regla del producto: $\operatorname{Si} f_1 \in \Omega(g) \, \text{y} f_2 \in \Omega(h) \Rightarrow f_1 \cdot f_2 \in \Omega(g \cdot h)$.
- 8. Si existe $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k$, dependiendo del valor de k obtenemos:
 - a) Si $k \neq 0$ y $k < \infty$ entonces $\Omega(f) = \Omega(g)$.
 - b) Si k = 0 entonces $g \in \Omega(f)$, es decir, $\Omega(g) \subset \Omega(f)$, pero sin embargo se verifica que $f \notin \Omega(g)$.

Notación Theta: Θ

- $f(n) = \Theta(g(n))$, $c_2g(n)$ y $c_1g(n)$ son las cotas asintóticas de f(n) tanto superior como inferior respectivamente
- Diremos que $f(n) \in \Theta(g(n))$ si f(n) pertenece tanto a O(g(n)) como a $\Omega(g(n))$

 $\Theta(g(n)) = \{f: N \rightarrow R^+ \mid \exists c_1, c_2 \text{ constantes positivas, } n_0: 0 < c_1 g(n) \le f(n) \le c_2 g(n), \ \forall \ n \ge n_0 \}$

Propiedades de Theta

- 1. Para cualquier función f se tiene que $f \in \Theta(f)$.
- 2. $f \in \Theta(g) \Rightarrow \Theta(f) \subset \Theta(g)$.
- 3. $\Theta(f) = \Theta(g) \Leftrightarrow f \in \Theta(g) \text{ y } g \in \Theta(f)$.
- 4. Si $f \in \Theta(g)$ y $g \in \Theta(h) \Rightarrow f \in \Theta(h)$.
- 5. Regla de la suma: $\operatorname{Si} f_1 \in \Theta(g)$ y $f_2 \in \Theta(h) \Rightarrow f_1 + f_2 \in \Theta(\max(g,h))$.
- 6. Regla del producto: Si $f_1 \in \Theta(g)$ y $f_2 \in \Theta(h) \Rightarrow f_1 \cdot f_2 \in \Theta(g \cdot h)$.
- 7. Si existe $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k$, dependiendo del valor de k obtenemos:
 - a) Si $k \neq 0$ y $k < \infty$ entonces $\Theta(f) = \Theta(g)$.
 - b) Si k = 0 entonces los órdenes exactos de f y g son distintos.

Notación Theta

• Teorema 2.1

o
$$f(n) = \Theta(g(n))$$
 sí y solo si $f(n) = O(g(n))$ y $f(n) = \Omega(g(n))$.

Ejemplo – Theta (1/3)

- Considere la función $f(n) = \frac{1}{2} n^2 3n$
 - O Debido a que f(n) es un polinomio cuadrático, se deduce que su estructura general tiene la forma $an^2 + bn + c$
 - Para *n* muy grande, *an*² "domina" al resto de la ecuación
 - Por tanto, se propone una $g(n) = n^2$ de tal forma que se demostrará si $f(n) \in \Theta(n^2)$

Ejemplo – Theta (2/3)

Para demostrarlo, se debe apelar a la definición de
 Θ:

$$\Theta(n^2) = \{f(n) \mid \exists c_1, c_2 \text{ constantes positivas, } n_0: 0 < c_1 n^2 \le f(n) \le c_2 n^2, \forall n \ge n_0 \}, \text{ donde } f(n) = \frac{1}{2} n^2 - 3n$$

 \rightarrow Se deben encontrar $c_{\scriptscriptstyle 1},\,c_{\scriptscriptstyle 2}$ y $n_{\scriptscriptstyle 0}$ para los cuales se cumple

$$0 < c_1 n^2 \le 1/2 n^2 - 3n \le c_2 n^2$$

$$\rightarrow 0 < c_1 \le 1/2 - 3/n \le c_2$$

→ Esta ecuación se analiza por casos:

$$\rightarrow c_1 \le 1/2 - 3/n$$

$$\rightarrow \frac{1}{2} - \frac{3}{n} \le c_2$$

Ejemplo – Theta (3/3)

- Para el caso $c_1 \le 1/2 3/n$
 - Ocomo c_1 es constante positiva, entonces $c_1 = c_2 c_3/n$
 - $\Rightarrow n > 6$
 - O Por tanto, si n_0 = 7, entonces $c_1 \le 1/2 3/7$, lo que es igual a $c_1 \le 1/14$. Sea $c_1 = 1/14$
- Para el caso $1/2 3/n \le c_2$, cuando $n \to \infty$ entonces $1/2 3/n \to 1/2$. Por tanto, $c_2 = 1/2$
- Para $c_1 = 1/14$, $c_2 = 1/2$ y $n_0 = 7$ se cumple que $f(n) \in \Theta(n^2)$

Ejemplo O (1/2)

- Considere la función $f(n) = 2n^2 + 3n + 1$
 - O Debido a que f(n) es un polinomio cuadrático, se deduce que su estructura general tiene la forma $an^2 + bn + c$
 - Para *n* muy grande, *an*² "domina" al resto de la ecuación
 - o Por tanto, se propone una $g(n) = n^2$ de tal forma que se demostrará si $f(n) \in O(n^2)$

Ejemplo O (2/2)

- Para demostrarlo, se debe apelar a la definición de O:
 - $O(n^2) = \{f(n) \mid \exists c \text{ constante positiva}, n_0: 0 < f(n) \le c n^2, \ \forall \ n \ge n_0\},\$ donde $f(n) = 2n^2 + 3n + 1$
 - \rightarrow Se deben encontrar c y n_0 para los cuales se cumple

$$0 < 2n^2 + 3n + 1 \le c n^2$$

$$\rightarrow 0 < 2 + 3/n + 1/n^2 \le c$$

Notemos que si $n \rightarrow \infty$, $2 + 3/n + 1/n^2 \rightarrow 2$

Si
$$n = 1$$
 entonces $2 + 3/n + 1/n^2 = 6$

Por tanto, para c = 6 y $n_0 = 1$, se demuestra que $f(n) \in O(n^2)$

Notación o

• f(n) = o(g(n)), g(n) es una cota superior de f(n) que no es asintóticamente justa (tight)

Notación ω

• $f(n) = \omega(g(n)), g(n)$ es una cota inferior de f(n) que no es asintóticamente justa (tight)

Orden de Complejidad

- La familia O(f(n)), $\Omega(f(n))$, $\Theta(f(n))$ define un orden de complejidad
 - \circ Se elige como representante del orden de complejidad a la función f(n) más sencilla de la familia
- Se identifican diferentes familias de orden de complejidad

Orden de Complejidad

- O(c): Orden constante
- $O(\log n)$: orden logarítmico
- O(n): orden lineal
- $O(n \log n)$: orden "casi lineal"
- $O(n^2)$: Orden cuadrático
- $O(n^3)$: Orden cúbico
- $O(n^c)$: Orden polinómico de grado "c"
- $O(2^n)$: Orden exponencial
- O(n!): Orden factorial

Orden de Complejidad

Consejos

30

 Consejos para Identificar f(n) que Represente el Número de Operaciones Elementales (OE) de un Algoritmo

Consejo 1

- Se asume que el tiempo de una OE es de orden 1
 - La constante "c" del principio de la invarianza se asume, por fines prácticos, como 1
- El tiempo de ejecución de una secuencia de instrucciones (elementales o no elementales), se obtiene sumando los tiempos de ejecución de cada instrucción

Consejo Instrucción "case"

• El tiempo de ejecución de una instrucción "switch(n) – case 1: S_1 , ..., case k: S_k es:

$$f(n) = f(c) + \max\{f(S_1), ..., f(S_k)\}$$

o f(c) considera el tiempo de comparación de "n" con cada uno de los casos case 1 ... case k

Consejo Instrucción "if"

• El tiempo de ejecución de una instrucción "if C then S_1 else S_2 " es:

```
f(n) = f(C) + \max\{f(S_1), f(S_2)\}
if (n == 0)
for (i = 0; i < n; i ++)
r += i;
else
```

r = 2;

Consejo Instrucción "while"

34

Tiempo de ejecución de la instrucción:

```
while (c) {
S
} es definido por: f(n) = f(c) + (\#iteraciones) * (f(c) + f(s))
```

• Nota: las instrucciones for, repeat, loop son equivalentes a una instrucción while

Consejo Instrucción "while"

```
for (i = 0; i <= n; i++)
{
S;
}
```

```
i = 1;
while (i <= n)
{
    S;
    i++;
}</pre>
```

Consejo Llamado a Funciones NO Recursivas

- El tiempo de ejecución de una llamada a una función $F(A_1, ..., A_s)$ es:
 - o 1, por el llamado a la función, más
 - \circ Tiempo de evaluación de los parámetros $A_1, ..., A_s$
 - o Tiempo de ejecución de la función (s)

$$f(A_1, ..., A_s) = 1 + f(A_1) + ... + f(A_s) + f(s)$$

Consejo para Funciones Recursivas

(37)

• El tiempo de ejecución de una función recursiva se calcula a través de la solución de funciones de recurrencia (siguiente tema)

Tarea

- Ejercicios 2.1-3, 2.2-2 (del Cormen, Leiserson, Rivest, Stein)
- ¿Cuáles de las siguientes afirmaciones es cierta?
 - $on^2 \in O(n^3)$
 - $0 2^{n+1} \in O(2^n)$
 - $on^2 \in \Omega(n^3)$