

Disciplina: Introdução à Álgebra Linear

Nome:	Valor: 2,5 pontos
-------	-------------------

Matrícula: Data:

1. (0,5 pontos) Mostre que

- a) Seja W = $\{(x,-2x); x \in IR\} \subseteq IR^2$. W é um subespaço vetorial do IR^2 .
- b) Seja S = $\{(x, x^2); x \in IR\} \subseteq IR^2$. S não é subespaço do IR^2 .
- 2. (0,4 pontos) Considere $V = IR^3$. Escreva o vetor z = (1,-3, 10) como combinação linear dos vetores u = (1, 0, 0), v = (1, 1, 0), v = (2,-3, 5). Responda: $z \in [u, v]$? Justifique.
- 3. (0,4 pontos) Determine uma base para o seguinte espaço vetorial $S = \{(x, y, z) \in IR^3 / y = 3x e z = -x/2 + y\}$
- 4. (0,3 pontos) Sejam $\beta_1 = \{ (1, 0), (0, 2) \}$, $\beta_2 = \{ (-1, 0), (1, 1) \}$ e $\beta_3 = \{ (-1, -1), (0, -1) \}$ três bases ordenadas de IR². Encontre as coordenadas de v = [-4,3] em relação a β_1 , β_2 e β_3
- 5. (0,5 pontos) Seja T: $IR^4 \rightarrow IR^3$ dada por T(x, y, z, w) = (y, z w, 2y + z + 2w). Verifique se T é uma transformação linear.
- 6. (0,4 pontos) Qual é a transformação linear T: IR $^3 \rightarrow$ IR tal que T(1, 1, 1) = 3, T(0, 1,-2) = 1 e T(0, 0, 1) = -2? Determine a imagem para o vetor v=(3,-4,0) e o núcleo de T.