Функциональный анализ — задачи

Рудин — Глава 11. 2. 3. Рудин — Глава 2. Полнота 1. 2. 3. 4. 5. 6. 7. 8. 9. X, Y, Z банаховы, $B \colon X \times Y \to Z$ непрерывное билинейное. Докажем: $||B(x,y)|| \le M||x||||y||.$ Во-первых, заметим, что для каждого $x \in X$ линейное отображение

y.

 $l_x: Y \to Z$, определяемое $l_x(y) = B(x,y)$, непрерывно. Действительно, оно непрерывно по совокупности переменных, значит, и по одной

Во-вторых, отображение F_B из X в банахово пространство непрерывных линейных операторов из Y в Z, заданное формулой

$$F_B(x) = l_x,$$

ограничено. Действительно, покажем, что существует M такое, что если $\|x\| \le 1$, то

$$||F_B(x)|| = ||l_x|| \le M.$$

Из непрерывности B следует, что найдутся $\delta_1, \delta_2 > 0$ такие, что $\|B(x,y)\| < 1$, как только $\|x\| < \delta_1, \|y\| < \delta_2$. Отсюда, ясно, вытекает, что $\|B(x,y)\| \le C$ при $\|x\| \le 1, \|y\| \le 1$. Рассмотрим семейство операторов l_x при всех x, таких, что $\|x\| \le 1$. Значения этих операторов в каждой точке $y \in Y$ ограничены:

$$||l_x(y)|| = ||B(x,y)|| \le C||y||.$$

А значит, по теореме Банаха-Штейнгауза нормы всех этих операторов ограничены одним числом:

$$||l_x|| \le M, ||x|| \le 1.$$

А это и означает, что оператор F_B ограничен: $\|F_B\| \leq M$. Значит, имеем

$$||l_x|| \le M||x||, ||B(x,y)|| = ||l_x(y)|| \le ||l_x|| ||y|| \le M||x|| ||y||.$$

10.

3 Халмош

1.

2. Координатное доказательство леммы Рисса. Пусть l — непрерывный линейный функционал на H, его норма k. Пусть $c_i = l(e_i)$. Тогда

$$l(a_1e_1 + \ldots + a_ne_n) = a_1c_1 + \ldots + a_nc_n.$$

Нам надо показать, что $\sum\limits_{k}|c_{k}|^{2}<\infty$. Для этого оценим

$$|c_1|^2 + \ldots + |c_n|^2$$
.

Из неравенства $\|l\| \leq K$ следует

$$|a_1c_1 + \ldots + a_nc_n| \le K\sqrt{|a_1|^2 + \ldots + |a_n|^2}.$$

Это что-то похожее на неравенство Коши-Буняковского, и левая часть максимальна при $a_i=c_i^*$. Подставляя $a_i=c_i^*$, получаем

$$\sqrt{|c_1|^2 + \ldots + |c_n|^2} \le K.$$

Вот и всё.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20. Элементарное доказательство теоремы Банаха-Штейнгауза.

Пусть есть совокупность линейных непрерывных операторов A_{α} на гильбертовом пространстве H, которая не ограничена по норме, но ограничена на каждом векторе. Построим вектор, на котором она неограничена, и тем самым получим противоречие. Построим по индукции последовательности $A_n \in \{A_{\alpha}\}, f_n \in H$ с такими свойствами:

(a)
$$||f_n|| = m_n = \frac{1}{2^n(1+\max(||A_1||,...,||A_{n-1}||))};$$

(b)
$$||A_n f_n|| \ge 2^n + ||A_n (f_1 + \ldots + f_{n-1})||$$
.

Такой A_n существует, ибо множество $\{\|A_{\alpha}(f_1+\ldots+f_{n-1})\|\}$ ограничено, и, таким образом, правая часть

$$2^{n} + ||A_{\alpha}(f_{1} + \ldots + f_{n-1})||$$

ограничена (при фиксированном n), а левая часть

$$\sup_{\|f\|=m_n} \|A_{\alpha}f\|$$

неограничена в силу неограниченности норм A_{α} .

Имеем:

(a) Ряд
$$\sum_{n} f_n$$
 сходится, ибо $||f_n|| \leq \frac{1}{2^n}$. Пусть $f = \sum_{n} f_n$.

(b) При k > 0 имеем

$$||A_n f_{n+k}|| \le ||A_n|| ||f_{n+k}|| \le \frac{1}{2^{n+k}}.$$

Здесь мы воспользовались неравенством

$$||f_{n+k}|| = m_{n+k} \le \frac{1}{2^{n+k}||A_n||},$$

случай $A_n = 0$ нужно рассмотреть отдельно, но и в нём всё получается. Отсюда, учитывая непрерывность оператора A_n ,

$$||A_n \sum_{k=n+1}^{\infty} f_k|| \le \sum_{k=n+1}^{\infty} ||A_n f_k|| \le \frac{1}{2^n}.$$

Итак,

$$||A_n(f_1 + \ldots + f_n)|| \ge 2^n, ||A_n \sum_{k=n+1}^{\infty} f_k|| \le \frac{1}{2^n}.$$

В итоге,

$$||A_n f|| \ge 2^n - \frac{1}{2^n}.$$

Итак, множество $\{A_nf\}_{n=1}^{\infty}$ неограничено.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41. Нужно элементарное доказательство теоремы Банаха об обратном операторе. $A\colon H\to K$ взаимно однозначный. Надо показать, что он ограничен снизу.

Долго думал, но это просто. Я пробовал сначала построить последовательность векторов в H, которая по норме стремится к бесконечности, но образы которой сходятся (в K). Конечно, такую последовательность построить можно, но это ничего не даёт.

Решение было сразу найдено, когда я стал плясать не от оператора A, а от оператора A^{-1} . Всё сразу сводится к применению теоремы Банаха-Штейнгауза. Мы выбираем ортонормированный базис e_1, e_2, \ldots в H и определяем операторы $B_n \colon K \to H$ таким образом: B_n переводит вектор $z \in K$ в проекцию вектора $A^{-1}z$ на линейную оболочку e_1, \ldots, e_n . Так мы получаем совокупность линейных операторов $\{B_n\}$, которая ограничена на каждом векторе. Значит, она и вообще ограничена:

$$||B_n z|| \le C||z|| \ \forall n \forall z \in K.$$

Тогда в силу сходимости $B_n z \to A^{-1} z, n \to \infty$ получаем

$$||A^{-1}z|| \le C||z|| \ \forall z \in K.$$