这理	$A \in \mathcal{M}_{m,n}(\mathcal{R}), \mathcal{N}(A) = \mathcal{N}(A^{T}A)$	
ļŪ	$(A^{T}A)\vec{x} = \vec{A}^{T}(A\vec{x}) = \vec{D} . \vec{x} \in \mathcal{N}(A^{T}A)$	
	$\mathcal{N}(A) \subseteq \mathcal{N}(A^T A)$	
	$\therefore \overrightarrow{R}^{T} \overrightarrow{A}^{T} \overrightarrow{A} \overrightarrow{R} = \overrightarrow{D} \implies (\overrightarrow{A} \overrightarrow{R})^{T} (\overrightarrow{A} \overrightarrow{R}) = \overrightarrow{D}$	
	$\mathbb{R}^{2}(A\overrightarrow{x})\cdot(A\overrightarrow{x})=\overrightarrow{0}.\qquad \therefore A\overrightarrow{x}=\overrightarrow{0}$	
	$\mathcal{L} = \mathcal{N}(A^T A) \subseteq \mathcal{N}(A).$	
	3条60, ②, 有 N(A)=N(ATA). 井	
排毡	川当A的列线性相关时、习不+了、St. A交=D. 那文 $eN(A) = V(A^TA)$ ATA的副也线性相关.	
	(2)······	
	LUNT ATA: n×n, 对施.	

	多4.3 最小二乘遍沂
<u></u>	上节: 给这W=C(A)为次M的子室间,长方已次M,求其在C(A)上的报影节=A交 \Rightarrow ATA \overrightarrow{A} =AT \overrightarrow{B}
	本书:重点放在农上,农本AX=To、为To+C(A)取无解, 车专为求解ATA前=AT.J.
淹义.	浸A∈Mm×n(R). n=m.(too many equations), 浸vank(A)=n.(到满秋),则 C(A)为尺™的n维子定闻。
	取DERM, 当D◆C(A) 财, AA=D-无解.
	使得误差IID-A就就到某小的解交标为最小二乘解(least squares solution)
为注	(1) 由 $S4.2$, $p = A \hat{\chi}$ 为 $b \neq C(A)$ 上 附 正 $\hat{\chi}$ $\hat{\chi}$ $\hat{\chi}$ $\hat{\chi}$
	$ \overline{\chi}$ 满足: $A^TA\overline{\chi} = A^T\overline{b} $ (normal equation)
	(2) 另一种理解: RM = C(A) + N(AT)
	其中PEC(A),而已EN(AT),去掉它后,先将T提别可EC(A),再求解A交=P.
	(3)设入=[成,成,…,成了、考试,过=1,2,…,的两点正交,划
	$(A^{T}A)_{ij} = \vec{Q}_{i}, \vec{Q}_{j} = \begin{cases} 0, & \text{if } i \neq j \\ \vec{Q}_{j} ^{2}, & \text{if } i = j \end{cases} \Rightarrow A^{T}A = diag(\vec{Q}_{i} ^{2}, \vec{Q}_{i} ^{2}, \cdots, \vec{Q}_{i} ^{2}) \Rightarrow \beta \vec{Q}_{i} = \begin{cases} 0, & \text{if } i \neq j \\ \vec{Q}_{i} ^{2}, & \text{if } i = j \end{cases} \Rightarrow A^{T}A = diag(\vec{Q}_{i} ^{2}, \vec{Q}_{i} ^{2}, \cdots, \vec{Q}_{i} ^{2}) \Rightarrow \beta \vec{Q}_{i} = \begin{cases} 0, & \text{if } i \neq j \\ \vec{Q}_{i} ^{2}, & \text{if } i = j \end{cases} \Rightarrow A^{T}A = diag(\vec{Q}_{i} ^{2}, \vec{Q}_{i} ^{2}, \cdots, \vec{Q}_{i} ^{2}) \Rightarrow \beta \vec{Q}_{i} = \begin{cases} 0, & \text{if } i \neq j \\ \vec{Q}_{i} ^{2}, & \text{if } i = j \end{cases} \Rightarrow A^{T}A = diag(\vec{Q}_{i} ^{2}, \vec{Q}_{i} ^{2}, \cdots, \vec{Q}_{i} ^{2}) \Rightarrow \beta \vec{Q}_{i} = \begin{cases} 0, & \text{if } i \neq j \\ \vec{Q}_{i} ^{2}, & \text{if } i = j \end{cases} \Rightarrow A^{T}A = diag(\vec{Q}_{i} ^{2}, \vec{Q}_{i} ^{2}, \cdots, \vec{Q}_{i} ^{2}) \Rightarrow \beta \vec{Q}_{i} = \begin{cases} 0, & \text{if } i \neq j \\ \vec{Q}_{i} ^{2}, & \text{if } i = j \end{cases} \Rightarrow A^{T}A = diag(\vec{Q}_{i} ^{2}, \vec{Q}_{i} ^{2}, \cdots, \vec{Q}_{i} ^{2}) \Rightarrow \beta \vec{Q}_{i} = \begin{cases} 0, & \text{if } i \neq j \\ \vec{Q}_{i} ^{2}, & \text{if } i = j \end{cases} \Rightarrow A^{T}A = diag(\vec{Q}_{i} ^{2}, \vec{Q}_{i} ^{2}, \cdots, \vec{Q}_{i} ^{2},$
	$ \overrightarrow{Q} ^2 + i = j$ $(\overrightarrow{Q}_1 ^2 \hat{\chi}_1 = \overrightarrow{Q}_1 \cdot \overrightarrow{D}_1)$
	(A'A) X — A' b /16-75 2 male fendence equations:
	$ \overrightarrow{\alpha_n} ^2 \widehat{\chi_n} = \overrightarrow{\alpha_n} \cdot \overrightarrow{b}$
	⇒ <u>N= 11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>
	(多4.4. Gram-Schmidt 正文16)
	Fitting a Straight Like
131	经这平面上的广岛散点(ti, bi), t=1,···, m, ftig两大同。求解一条直线于(t)=C+dt.
5 7	拟合这些点,使得误差ei+ei+…+en 钛剂最小,其中ei=bi-f(ti). i=1,2,…,m. (最小=東流)
帮.	f(ti) = C + dti, We try to solve:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	-) Ax-b
	au
	通常情况下 $D \notin C(A)$. 上式元解. $\langle \hat{e} = [e_1, e_2, \cdots, e_m]^T$
	求解 $\hat{\chi} = [a]$. St. $e_1^2 + e_2^2 + \cdots + e_m^2 = e ^2 $

 $\vec{e} = \vec{b} - A\vec{x} \qquad \therefore \|\vec{e}\|^2 = \|\vec{b} - A\vec{x}\|^2$

A交二方的最小二乘解交列使11万-A交112 站到最小

而子台, i=1, ···· m 为之不同. ·· A到满株. 从而ATA可逆

由多4.2分,需求解ATA交=ATTA到交

(2) 思路=

 $e_1^2 + e_2^2 + \cdots + e_m^2 = \frac{m}{n} \left(b_1 - c - d_1 t_1 \right)^2 = \frac{n \cdot b}{n} E(c, d)$ $\frac{1}{n} = \frac{1}{n} A = [a_1 \ a_2]$

在巨的极小点处,应有 3元 = 3元 = D

$$\begin{cases} 27 - \frac{m}{2} = 2(bi - c - o(ti)(-1) = 0 \implies \frac{m}{2} + (bi - c - o(ti) = 0) \end{cases}$$

$$\frac{\partial \overline{t}}{\partial a} = \underbrace{\sum_{i=1}^{m} 2(bi - c - ati)(-ti) = 0}_{=0} = \underbrace{\sum_{i=1}^{m} ti(bi - c - ati) = 0}_{=0}$$

$$\int \widehat{U} \Rightarrow mc + \left(\sum_{i=1}^{m} t_i\right) d = \sum_{i=1}^{m} bi$$

$$(2) \Rightarrow (\underbrace{\sharp}_{i} t_{i})_{c} + \underbrace{\sharp}_{i} t_{i})_{d} = \underbrace{\sharp}_{i} t_{i} t_{i}$$

注. 3分的法均可控出normal egnation: (ATA) 前=ATB

(geometry). 我差(residual) 包= B-A交正交于C(A).

() (hhear algebra). $\overrightarrow{e} \in C(A)^+ = N(A^T)$

(3) (calculus). $\hat{\chi} = \begin{bmatrix} c \\ d \end{bmatrix}$ 是总误差 $E(\hat{\chi}) = ||\hat{b} - A\hat{\chi}||^2$ 所知慎知 (令号 = 号 = 0)

末解(ATA) ズ=AT方:

(1) 老A的到正夜,划(ATA)交=AT方易于共解

$$A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \end{bmatrix}, \quad \exists t_1 + t_2 + \dots + t_m = D 知. 两和正在 = ATA = \begin{bmatrix} m \\ \frac{5}{i=1} & t_1^2 \end{bmatrix}$$

the
$$(+)$$
 = $\int MC = \sum_{i=1}^{m} bi$ = $\int C = \frac{1}{m} \sum_{i=1}^{m} bi$
 $\left(\sum_{i=1}^{m} t_{i}^{2}\right) d = \sum_{i=1}^{m} t_{i}bi$ = $\int C = \frac{1}{m} \sum_{i=1}^{m} bi$

(2) 一般情形 可将七, 位, 一, 如平的: 七一一七, 其中元二十分(七十七2十一十七四)平均值 $\Rightarrow \underbrace{+}_{t} t = \underbrace{+}_{t} t - mt = 0.$ where $c = \frac{m}{m} = \frac{m}{2} = \frac{m}$ the best travelet like: $f(t) = C + d\hat{t} = C + d(t - \bar{t})$ 1. The Big Picture for Least Squares. $A \in M_{m \times n}(R)$ $(n \le m)$ $(n \le m)$. $A \in M_{m \times n}(R)$ $(n \le m)$ $(n \ge m)$ $(n \le m)$ $(n \ge m)$ $(n \ge m)$ $(n \ge m)$ $(n \ge m)$ $(n \ge$ 方边: RM=C(A)+N(AT) $\overline{p} := A \overline{\alpha} \in C(A) \rightarrow \overline{b}$ 到 C(A) 提剔 $IR^{N} = C(A^{T})$ $\vec{e} = \vec{b} - \vec{p} \in C(A)^{\perp} = N(A^{\perp})$ 左注: Rn=C(AT)+N(A) A到满根: N(A)= 904. $\hat{\chi} \in \mathbb{R}^n = C(A^T)$ ATE = D => ATAR = ATB o: mahanum 3.一般的多灵乱拟台 给这平面上的离散点(ti, bi), i=1,2,…, m. fti, i=1,2,…, m/两之不同. (n=m) 用曲线 f(t) = Co + Cit + ··· + Cn+th 拟名这些热, st We try to solve m equations for an exact fit: f(ti) = bi, $i = 1, \dots, m$ $\begin{cases}
C_0 + C_1 t_1 + \cdots + C_{N-1} t_1^{N-1} = b_1 \\
\vdots \\
\vdots$ 也可对 E(a,a,--, an) 前属 -> AA 2= A3 $\vec{e} = |\vec{e}_1| = \vec{b} - A\vec{\chi}$, $\vec{e}_1^2 + \vec{e}_2^2 + \dots + \vec{e}_m^2 = ||\vec{b}||^2 = ||\vec{b}||^2$. A页=D的最小二末解页可使ei+··+的达到最小。 We need to solve $A^{7}A\hat{\chi} = A^{7}\hat{b} \cdot \hat{\gamma} \Rightarrow \hat{\chi} = A^{7}A)^{-1}A^{7}\hat{b}$. A的到线性无关与ATAT进