

提纲

- 古典控制基础
- 鲁棒控制理论基础
- 鲁棒控制在迟滞系统中应用
- 高精度跟踪与抗扰控制
- 故障诊断与容错控制
- 教材2-17章

Normalized Coprime H_∞ Control

Let D=0 and let $P=\tilde{M}^{-1}\tilde{N}$ be normalized coprime factorization. Then

$$\gamma_{\min} := \inf_{K \text{ stabilizing}} \begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \tilde{M}^{-1} \Big|_{\infty} = \frac{1}{\sqrt{1 - \lambda_{\max}(YQ)}}$$

where Y and Q are the solutions to

 $AY + YA^* - YC^*CY + BB^* = 0$ $Q(A - YC^*C) + (A - YC^*C)^*Q + C^*C = 0.$

Moreover, for any $\gamma > \gamma_{\min}$ a controller achieving

$$b_{P,K} := \begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \tilde{M}^{-1} \Big|_{T} = \begin{bmatrix} K \\ I \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \Big|_{T} < \gamma$$

is given by $K(s) = \left[\frac{A - BB^*X_{\infty} - YC^*C}{-B^*X_{\infty}} \left| \frac{-YC^*}{0} \right| \right]$ where $X_{\infty} = \frac{\gamma^2}{\gamma^2 - 1} Q \left[I - \frac{\gamma^2}{\gamma^2 - 1} YQ \right]^{-1}$.

• $P_{\Delta} = (\tilde{M} + \tilde{\Delta}_M)^{-1} (\tilde{N} + \tilde{\Delta}_N)$ with $\| \tilde{\Delta}_N - \tilde{\Delta}_M \| < \varepsilon$.

Then there is a robustly stabilizing controller for P_{Λ} if and only if $\varepsilon \le \sqrt{1 - \lambda_{\max}(YQ)} = b_{\text{opt}}(P) = \min_{K} b_{P,K}$

为什么这个指标?

G

b_{Р.К}>0 意味着 К 也鲁棒镇定:

- □ $P_a = P + \Delta_a$ (加性不确定性) 其中 P_a 与 P 具有相同的不稳定 极点并且 || Δ_α || ∞ < b_{P.K.}
- □ $P_m = (I + \Delta_m)P$ (乘性不确定性) 其中 $P_m = P$ 具有相同的不稳 定极点并且 ||Δ_m||∞ < b_{P.K}.
- □ P_f = (I + Δ_f)-1P (反馈不确定性) 其中 P_f与 P具有相同的不稳 定极点并且 || Δ_f|| ∞ < b_{P,K}.
- 鲁棒性对P与 K是一样的:

 $b_{P,K} = b_{K,P}$

(没有控制器的脆弱性)

为什么这个指标?

SISO P: 增益裕度 $\geq \frac{1+b_{p,K}}{1-b_{p,K}}$ 相位裕度 $\geq 2 \arcsin(b_{p,K})$

$$\begin{bmatrix} I \\ K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix}$$
 性能不要 求每项都 小,也不 可能

$$= \begin{bmatrix} T_{er} & -T_{ed} \\ T_{ur} & -T_{ud} \end{bmatrix}$$

Proof. Note that for SISO system

$$b_{P,K} \le \frac{\left|1-k\right|}{\sqrt{\left(1+\left|P\right|^{2}\right)\left(1+\frac{k^{2}}{\left|P\right|^{2}}\right)}} \le \frac{\left|1-k\right|}{\sqrt{\min_{P}\left\{\left(1+\left|P\right|^{2}\right)\left(1+\frac{k^{2}}{\left|P\right|^{2}}\right)\right\}}} = \frac{\left|1-k\right|}{\left|1+k\right|},$$

which implies that $k \le \frac{1 - b_{P,K}}{1 + b_{P,K}}$ or $k \ge$

From which the gain margin result follows.

Similarly, at frequencies where $P(j\omega)K(j\omega) = -e^{j\omega}$

$$b_{P,K} \leq \frac{\left|1 - e^{j\theta}\right|}{\sqrt{\left(1 + \left|P\right|^2\right)\left(1 + \frac{1}{\left|P\right|^2}\right)}} \leq \frac{\left|2\sin\frac{\theta}{2}\right|}{\sqrt{\min_{P}\left\{\left(1 + \left|P\right|^2\right)\left(1 + \frac{1}{\left|P\right|^2}\right)\right\}}} = \frac{\left|2\sin\frac{\theta}{2}\right|}{2},$$

For example, $b_{\rm P,K}=~1/2$ guarantees a gain margin of 3 and a phase margin of 60°.

- $>> b_{p,k} = \text{emargin } (P,K); \% \text{ given } P \text{ and } K, \text{ compute } b_{P,K}$
- $>> [K_{opt}, b_{p,k}] = ncfsyn(P,1);$ % find the optimal controller K_{opt}
- $>> [K_{sub}, b_{p,k}] = ncfsyn(P,2);$ % find a suboptimal controller K_{sub} .

H_m Loop Shaping Design

Given nominal model P(s).

 $lue{}$ (1) Loop Shaping: Obtain a desired open-loop shape (singular values) by using a precompensator W_I and/or a postcompensator W_2 ,

$$P = W_* P W_*$$

Assume that W_1 and W_2 are such that P_s contains no hidden modes.

(2) (a) Calculate robust stability margin $b_{opt}(P_s)$. If $b_{opt}(P_s) \ll 1$, return to (1) and adjust W_1 and W_2 . (b) Select $\varepsilon \le b_{\text{opt}}(P_s)$, then synthesize a stabilizing controller K_{∞} which satisfies

$$\begin{bmatrix} I \\ K_{\infty} \end{bmatrix} (I + P_s K_{\infty})^{-1} \widetilde{M}_s^{-1} \bigg|_{\infty} \le \varepsilon^{-1}.$$

 \square (3) The final controller $K=W_1K_{\infty}W_2$

A typical design works as follows: the designer inspects the open-loop singular values of the nominal plant, and shapes these by pre- and/or postcompensation until nominal performance (and possibly robust stability) specifications

are met. (Recall that the open-loop shape is related to closed-loop objectives.) A feedback controller K_{∞} with associated stability margin (for the shaped plant) $\epsilon \le b_{opt}(P_s)$ is then synthesized. If $b_{opt}(P_s)$ is small, then the specified loop shape is incompatible with robust stability requirements, and should be adjusted accordingly, then K_{∞} is reevaluated.

- Note that the final controller is $K=W_1K_\infty W_2$, so it is necessary to check if the loop properties are significantly changed. It is helpful to choose W_1 and W_2 with small condition numbers.
- Only W_1 or W_2 is needed if P is SISO.

Weighted H_∞ Control Interpretation

This shows how all the closed - loop objective are incorporat ed.

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} W_2 & & \\ & W_1^{-1} \end{bmatrix} \begin{bmatrix} I \\ K \end{bmatrix} (I + PK)^{-1} \begin{bmatrix} I & P \end{bmatrix} \begin{bmatrix} W_2^{-1} & & \\ & W_1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Chapter 17: Gap Metric and v-Gap Metri

Measure of Distance:

$$P_1(s) = \frac{1}{s}, \quad P_2(s) = \frac{1}{s+0.1}.$$

Closed-loop:

$$||P_1(I+P_1)^{-1}-P_2(I+P_2)^{-1}||_2=0.0909,$$

Open-loop:

$$||P_1 - P_2||_{\infty} = \infty.$$

Need new measure.

Gap Metric

Normalized right and left stable coprime factorizations:

$$P = NM^{-1} = \widetilde{M}^{-1}\widetilde{N}.$$

$$M^-M + N^-N = I$$
, $\widetilde{M}\widetilde{M}^- + \widetilde{N}\widetilde{N}^- = I$

The graph of the operator P is the subspace of H_2 consisting of all pairs (u,y) such that y=Pu. This is given by

$$\begin{bmatrix} M \\ N \end{bmatrix} H_2$$

and is a closed subspace of H_2 . The gap between two systems P_1 and P_2 is defined by

$$\mathcal{S}_{g}(P_{1},P_{2}) = \Pi_{\begin{bmatrix} M_{1} \\ N_{1} \end{bmatrix} H_{2}} - \Pi_{\begin{bmatrix} M_{2} \\ N_{2} \end{bmatrix} H_{2}}$$

where \prod_{κ} denotes the orthogonal projection onto K and $P_1 = N_1 M_1^{-1}$ and $P_2 = N_2 M_2^{-1}$ are normalized right coprime

Computing Gap Metric

Theorem 0.1 Let $P_1 = N_1 M_1^{-1}$ and $P_2 = N_2 M_2^{-1}$ be normalized right coprime factorizations. Then

$$\delta_g(P_1, P_2) = \max \{ \vec{\delta}(P_1, P_2), \vec{\delta}(P_2, P_1) \}$$

where $\vec{\delta}(P_1, P_2)$ is the directed and can be computed by

$$\vec{\delta}_{g}(P_{1}, P_{2}) = \inf_{Q \in \mathcal{H}_{a}} \begin{bmatrix} M_{1} \\ N_{1} \end{bmatrix} - \begin{bmatrix} M_{2} \\ N_{2} \end{bmatrix} Q \bigg|_{g}.$$

• If $\delta_g(P_1, P_2) < 1$, then $\delta_g(P_1, P_2) = \vec{\delta}_g(P_1, P_2) = \vec{\delta}_g(P_2, P_1)$.

$$>> \delta_g (P_1, P_2) = gap(P_1, P_2, tol)$$

$$>> \delta_{g} \ (\mathbf{P_{1}}, \mathbf{P_{2}}) = \mathbf{gap}(\mathbf{P_{1}}, \mathbf{P_{2}}, \mathbf{tol})$$

$$\delta_{g} \left(\frac{1}{s}, \frac{1}{s+0.1}\right) = 0.0995$$

$$G(s) = \begin{bmatrix} M_{1} \\ N_{1} \end{bmatrix} \begin{bmatrix} M_{2} \\ N_{2} \\ -I \end{bmatrix}$$

$$\delta \left(\frac{1}{2}, \frac{1}{2} \right) = 0.0999$$

Gap 的下界

$$\Phi = \begin{bmatrix} M_2^- & N_2^- \\ -\widetilde{N}_2 & \widetilde{M}_2 \end{bmatrix}.$$

Then $\Phi \Phi = \Phi \Phi = I$ and

$$\begin{split} \vec{\delta}_{g}(P_{i}, P_{2}) &= \inf_{Q \in \mathcal{U}_{e}} \left[\begin{bmatrix} M_{2}^{-} & N_{2}^{-} \\ -\widetilde{N}_{2} & \widetilde{M}_{2} \end{bmatrix} \left[\begin{bmatrix} M_{1} \\ N_{1} \end{bmatrix} - \begin{bmatrix} M_{2} \\ N_{2} \end{bmatrix} Q \right] \right]_{e} \\ &= \inf_{Q \in \mathcal{U}_{e}} \left[\begin{bmatrix} M_{2}^{-} M_{1} + \widetilde{N}_{2} N_{1} - Q \\ -\widetilde{N}_{2} M_{1} + \widetilde{M}_{2} N_{1} \end{bmatrix} \right]_{e} \\ &\geq \left\| \Psi(P_{i}, P_{2}) \right\|_{e} \end{split}$$

$$\Psi(P_1, P_2) := -\widetilde{N}_2 M_1 + \widetilde{M}_2 N_1 = \begin{bmatrix} \widetilde{M}_2 & \widetilde{N}_2 \end{bmatrix} \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \begin{bmatrix} M_1 \\ N_1 \end{bmatrix}$$

 $\|\Psi(P_1, P_2)\|_{\infty}$ is related to the v-gap metric.

$$\Psi(P_1, P_2) = (I + P_2 P_2^-)^{-1/2} (P_1 - P_2) (I + P_1^- P_1)^{-1/2}$$

6

$$P_1 = \frac{k_1}{s+1}, \quad P_2 = \frac{k_2}{s+1}.$$

Then it is easy to verify that $P_i = N_i / M_i$, i=1,2, with

$$N_i = \frac{k_i}{s + \sqrt{1 + k_i^2}}, \quad M_i = \frac{s + 1}{s + \sqrt{1 + k_i^2}},$$

Are normalized coprime factorizations and it can be further shown, as in Georgiou and Smith [1990], that

$$\begin{split} \delta_{\varepsilon}(P_1,P_2) = \left\| \Psi(P_1,P_2) \right\|_{\varepsilon} = \begin{cases} \frac{|k_1-k_2|}{|k_1|+|k_2|}, & \text{if } |k_1k_2| > 1; \\ \frac{|k_1-k_2|}{\sqrt{(1+k_1^2)(1+k_2^2)}}, & \text{if } |k_1-k_2| \leq 1. \end{cases} \end{split}$$

举例:最优标称模型

Question: Given an uncertain plant

$$P(s) = \frac{k}{s-1}$$
, $k \in [k_1, k_2]$,
the best nominal design model $P_0 = \frac{k_0}{s-1}$ in the s

Question: Given an uncertain plant $P(s) = \frac{k}{s-1}, \quad k \in [k_1, k_2],$ (a) Find the best nominal design model $P_0 = \frac{k_0}{s-1}$ in the sense $\inf_{k_0 \in \{l_1, k_2\}_{k_0 \in \{l_2, k_2\}_{k_0}}} \sup_{\delta_R} \delta_R(P, P_0).$

For simplicity, suppose $k_1 \ge 1$. It can be shown that

$$\delta_{g}(P, P_{0}) = \frac{|k_{0} - k|}{k_{0} + k}.$$

Then the optimal k_{θ} for question (a) satisfies

$$\frac{k_0-k_1}{k_0+k_1}=\frac{k_2-k_0}{k_2+k_0}\,;$$

that is, $k_0 = \sqrt{k_1 k_2}$ and

$$\inf_{k_0 \neq (k_1, k_2)} \sup_{k \neq (k_1, k_2)} \delta_g(P, P_0) = \frac{\sqrt{k_2} - \sqrt{k_1}}{\sqrt{k_2} + \sqrt{k_1}}$$

Example

$$P_1 = \frac{100}{2s+1}, P_2 = \frac{100}{2s-1}, P_3 = \frac{100}{(s+1)^2}.$$

$$\begin{split} \delta_v(P_1, P_2) &= \delta_g(P_1, P_2) = 0.02, \delta_v(P_1, P_3) = \delta_g(P_1, P_3) = 0.8988, \\ \delta_v(P_2, P_3) &= \delta_v(P_2, P_3) = 0.8941, \end{split}$$

Which show that P_1 and P_2 are very close while P_1 and P_2 (or P_2 and P_3) are quite far away. It is not surprising that any reasonable controller for P_1 will do well for P_2 but not necessarily for P_3 .

$$b_{obt} = 0.7106$$
, and $b_{obt}(P_2) = 0.7036$

(in fact, the optimal controllers for P_1 and P_2 are K = 0.99and K = 1.01, respectively).

Corollary 0.2 Let *P* have a normalized coprime factorization $P = NM^{-1}$. Then for all $0 < b \le 1$,

$$\left\{P_1: \vec{\delta}_g(P, P_1) < b\right\}$$

$$= \left\{ P_1 : P_1 = (N + \Delta_N)(M + \Delta_M)^{-1}, \Delta_N, \Delta_M \in H_{\infty}, \left\| \begin{bmatrix} \Delta_N \\ \Delta_M \end{bmatrix} \right\|_{\infty} < b \right\}.$$

互质因子不确定性=gap不确定性

Theorem 0.3 Suppose the feedback system with the pair (P_0, K_0) is stable. Let

$$P := \{P : \delta_{\sigma}(P, P_0) < r_1\} \text{ and } K := \{K : \delta_{\sigma}(K, K_0) < r_2\}.$$

Ther

(a) The feedback system with the pair (P,K) is also stable for all $P \in P$ and $K \in K$ if and only if

$$\arcsin b_{P_0,K_0} \ge \arcsin r_1 + \arcsin r_2.$$

(b) The worst possible performance resulting from these sets of plants and controllers is given by

 $\inf_{p_0p_1K\in \mathbf{K}} \arcsin b_{p_1K} = \arcsin b_{p_0K_0} - \arcsin r_1 - \arcsin r_2.$ one can take either $r_1=0$ or $r_2=0$.

v-Gap Metric

Definition 0.2 The winding number of g(s) with respect to this contour, denoted by wno(g), is the number of counterclockwise encirclements around the origin by g(s) evaluated on the Nyquist contour Γ . (A clockwise encirclement counts as a negative encirclement.)

Figure 0.33: The Nyquist contou

Lemma 0.4 (The Argument Principle) Let F be a closed contour in the complex plane. Let f(s) be a function analytic along the contour;that is, f(s) has no poles on F. Assume f(s) has Z zeros and P poles inside F. Then f(s) evaluated along the contour F once in an anti-clockwise direction will make Z - P anti-clockwise encirclements of the origin.

Properties of wno

Denote $\eta(G)$ and $\eta_0(G)$, respectively, the number of open right-half plane and imaginary axis poles of G(s).

Lemma 0.5 Let g and h be biproper rational scalar transfer functions and let F be a square transfer matrix. Then

(a) wno(gh)=wno(g)+wno(h);

(b) $\operatorname{wno}(g) = \eta(g^{-1}) - \eta(g);$

(c) $\operatorname{wno}(g^{-}) = -\operatorname{wno}(g) - \eta_0(g^{-1}) + \eta_0(g);$

(d) wno(1+g) = 0 if $g \in RL_x$ and $||g||_{\infty} < 1$;

(e) wno det(I+F) = 0 if $F \in RL_{\infty}$ and $||F||_{\infty} < 1$;

Example

 $g_1 = \frac{1.2(s+3)}{s-5}, g_2 = \frac{s-1}{s-2}, g_3 = \frac{2(s-1)(s+2)}{(s+3)(s+4)}, g_4 = \frac{(s-1)(s+3)}{(s-2)(s-4)}.$

 $wno(g_i) = -1$, $wno(g_2) = 0$, $wno(g_3) = 2$, $wno(g_4) = -1$

v-Gap Metric

Definition 0.3 The v-gap metric is defined as

$$\delta_{\nu}(P_1, P_2) == \begin{cases} \|\Psi(P_1, P_2)\|_{\infty} & \text{if } \det \Theta(j\omega) \neq 0 \ \forall \omega \\ & \text{and } \text{wno } \det \Theta(s) = 0. \\ 1, & \text{otherwise} \end{cases}$$

where $\Theta(s) := N_2^- N_1 + M_2^- M_1$ and $\Psi(P_1, P_2) := -\widetilde{N}_2 M_1 + \widetilde{M}_2 N_1$. $\delta_{\nu}(P_1, P_2) = \delta_{\nu}(P_2, P_1) = \delta_{\nu}(P_1^T, P_2^T)$ $>> \delta_{\nu}(\mathbf{P}_1, \mathbf{P}_2) = \mathbf{nugap}(\mathbf{P}_1, \mathbf{P}_2, \mathbf{tol})$

where tol is the computational tolerance.

Theorem 0.6 The v-gap metric is defined as

$$\delta_{v}(P_{1}, P_{2}) == \begin{cases} \|\Psi(P_{1}, P_{2})\|_{\infty} & \text{if } \det(I + P_{2}^{-}P_{1}) \neq 0 \ \forall \omega \text{ and} \\ & \text{wno } \det(I + P_{2}^{-}P_{1}) + \eta(P_{1}) \\ & -\eta(P_{2}) - \eta_{0}(P_{2}) = 0, \\ 1, & \text{otherwise} \end{cases}$$

where $\Psi(P_1, P_2)$ can be written as $\Psi(P_1, P_2) = (I + P_2 P_2^-)^{-1/2} (P_1 - P_2) (I + P_1^- P_1)^{-1/2}.$

v-间隙度量(读作nu)

□ 在满足某个winding number条件下,两个系统 $P_1(s)$ 和 $P_2(s)$ 之间的 \mathbf{v} -间隙度量(Vinnicombe,1993):

$$\delta_{v}(P_{1}, P_{2}) = \sup_{\omega \in \mathbb{R}} \frac{\left| P_{1}(j\omega) - P_{2}(j\omega) \right|}{\sqrt{1 + \left| P_{1}(j\omega) \right|^{2}} \sqrt{1 + \left| P_{2}(j\omega) \right|^{2}}} \quad (\leq 1)$$

□ 如果 $\tilde{P}(s)$ 和 $\tilde{K}(s)$ 满足 $\delta_{_{\!\!\!\!v}}(\tilde{P},P)\!\leq\!r_{_{\!\!\!\!P}}$ $\delta_{_{\!\!\!v}}(\tilde{K},K)\!\leq\!r_{_{\!\!\!\!K}}$ 则此系统也稳定,当且仅当

 $arcsin b_{P,K} > arcsin r_P + arcsin r_K$

并且有

 $\arcsin b_{\tilde{P},\tilde{K}} \geq \arcsin b_{P,K} - \arcsin r_P - \arcsin r_K$

立体投影

- □ 两个实(复)数距离: $d = |c_1 c_2|$ 。
- □ 不能描述距离的相对大小: d = |1-2| = |100-101| = 1。但是由1到2的变化是100%,而由100到101的变化仅仅1%。
- □ 立体投影后球面上两点弦距离

$$\delta_{v}(c_{1}, c_{2}) = \frac{|c_{1} - c_{2}|}{\sqrt{1 + |c_{1}|^{2}} \sqrt{1 + |c_{2}|^{2}}}$$

- \square 弧距离是 $arcsin \delta_{\nu}$
- 口 那么, $\delta_{\nu}(1, 2) = \frac{1}{\sqrt{10}}$, $\delta_{\nu}(100, 101) \approx 10^{-4}$

v-间隙度量下不确定性

$$G(s) = \frac{10(s+1)}{s(s+2)(s+3)}$$

The corresponding uncertain Nyquist diagram for $\delta_v(G(s), \tilde{G}(s)) \le 0.1$ with $\omega \in [1,100]$ at each frequency.

低频不确定性危害性小

6

Computing v-Gap

Theorem 0.7. Let $P_1 = N_1 M_1^{-1}$ and $P_2 = N_2 M_2^{-1}$ be normalized right coprime factorizations. Then

$$\delta_{\nu}(P_1, P_2) = \inf_{\mathcal{Q}, \mathcal{Q}^{-1} \in L_{\nu}} \left\| \begin{bmatrix} M_1 \\ N_1 \end{bmatrix} - \begin{bmatrix} M_2 \\ N_2 \end{bmatrix} \mathcal{Q} \right\|_{\infty}.$$

 $\operatorname{wnodet}(Q) = 0$

Moreover, $\delta_g(P_1, P_2) \le b_{obt}(P_1) \le \delta_v(P_1, P_2) \le \delta_g(P_1, P_2)$.

It is now easy to see that

$$\{P: \delta_{\nu}(P_0, P) < r\}$$

$$\supset \left\{ P = (N_0 + \Delta_N)(M_0 + \Delta_M)^{-1} : \begin{bmatrix} \Delta_N \\ \Delta_M \end{bmatrix} \in H_{\infty}, \begin{bmatrix} \Delta_N \\ \Delta_M \end{bmatrix} \right\}_{\infty} < r \right\}.$$

互质因子不确定性 ⊂ v-gap不确定性

Theorem 0.9 Let P_0 be a nominal plant and $\beta \le \alpha < b_{obs}(P_0)$. (I) For a given controller K, $\arcsin b_{P,K} > \arcsin \alpha - \arcsin \beta$ for all P satisfying $\delta_v(P_0, P) \le \beta$ if and only if $b_{P_0, K} > \alpha$. (ii) For a given plant P,

 $\arcsin b_{{\scriptscriptstyle P,K}} > \arcsin \alpha - \arcsin \beta$

for all K satisfying $b_{P_0,K} > \alpha$ if and only if $\delta_v(P_0,P) \le \beta$ Theorem 0.10 Suppose the feedback system with the pair (P_0,K_0) is stable. Then

 $\arcsin b_{P,K} \geq \arcsin b_{P_0,K_0} - \arcsin \delta_{\nu}(P_0,P) - \arcsin \delta_{\nu}(K_0,K)$

for any P and K.

