Esquemes, taules i joc d'instruccions pels exàmens de CI

TABLE 25-2: PIC18(L)F2X/4XK22 INSTRUCTION SET

TABLE 2	5-2:	PIC18(L)F2X/4XK22 INSTRU	CHON	SEI					
Mnemo	nic.			16-	Bit Inst	ruction W	/ord	Status	
Opera		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (DPERATIONS	•					•	•
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f. d. a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f. d. a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f. a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	l	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVE	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
MOVAME	f -	f _d (destination) 2nd word	1	1111	ffff	ffff	ffff	None	
MOVWF	f, a	Move WREG to f	-	0110	111a	ffff	ffff	None	4.2
MULWF NEGF	f, a f, a	Multiply WREG with f Negate f	1	0000	001a 110a	ffff ffff	ffff ffff	None C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	l				C, DC, Z, OV, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0011	01da	ffff ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0100 0011	01da 00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0110	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
CODI WD	ι, α, α	borrow	l '	0101	olda			0, 50, 2, 01, 11	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	.,
	., ., .	borrow		0202				0, 20, 2, 0.,	
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
LITERAL C)PFRATI	IONS		-				•	
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f. k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
LISIK	1, K	to FSR(f) 1st word	_	l	0000	kkkk	kkkk	None	
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
	IORY ↔	PROGRAM MEMORY OPERATION	IS	<u> </u>				1	
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment	_	0000	0000	0000	1000	None	
TBLRD*-		Table Read with post-increment		0000	0000	0000	1011	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment	_	0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	
BIT-ORIENTED OPERATIONS								1	
								N	4.2
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank d = 1 for result destination to be file register (f)

a = 1 for BSR to select bank

CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	k, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	k	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	_	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	_	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	s	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	s	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

27.8 DC Characteristics: Input/Output Characteristics, PIC18(L)F2X/4XK22

DC CHA	ARACTER	ISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D140		with TTL buffer	_	_	0.8	V	4.5V ≤ VDD ≤ 5.5V		
D140A			_	_	0.15 VDD	V	1.8V ≤ VDD ≤ 4.5V		
	VIH	Input High Voltage					•		
		I/O ports:		_	_				
D147		with TTL buffer	2.0	_	_	V	4.5V ≤ VDD ≤ 5.5V		
D147A			0.25 VDD+ 0.8	_	_	٧	1.8V ≤ VDD ≤ 4.5V		
	Vol	Output Low Voltage							
D159		I/O ports	_	_	0.6	٧	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V		
	Vон	Output High Voltage ⁽³⁾							
D161		I/O ports	VDD - 0.7	_	ı	٧	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V		
	lıL	Input Leakage I/O and MCLR ^{(2),(3)}					Vss ≤ VPIN ≤ VDD, Pin at high-impedance		
D155		I/O ports and MCLR	-	0.1	50	nA	≤ +25°C ⁽⁴⁾		
			-	0.7	100	nA	+60°C		
			-	4 35	200 1000	nA nA	+85°C +125°C		

Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin (-40°C to +85°C)	300 mA
Maximum current out of Vss pin (+85°C to +125°C)	125 mA
Maximum current into VDD pin (-40°C to +85°C)	200 mA
Maximum current into VDD pin (+85°C to +125°C)	85 mA
Input clamp current, lik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, lok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports (-40°C to +85°C)	200 mA
Maximum current sunk by all ports (+85°C to +125°C)	110 mA
Maximum current sourced by all ports (-40°C to +85°C)	185 mA
Maximum current sourced by all ports (+85°C to +125°C)	70 mA

FIGURE 1-1: PIC18(L)F2X/4XK22 FAMILY BLOCK DIAGRAM

- OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 2.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional information.
- 3: Full-Bridge operation for PIC18(L)F4XK22, half-bridge operation for PIC18(L)F2XK22.

TABLE 9-1: REGISTERS ASSOCIATED WITH INTERRUPTS

IADEL 0-	TABLE 9-1. REGISTERS ASSOCIATED WITH INTERROFTS											
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0				
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF				
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP				
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF				
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_				
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP				
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP				
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	CTMUIP	TMR5GIP	TMR3GIP	TMR1GIP				
IPR4	_	_	_	_	_	CCP5IP	CCP4IP	CCP3IP				
IPR5	_	_	_	_	_	TMR6IP	TMR5IP	TMR4IP				
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE				
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE				
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	CTMUIE	TMR5GIE	TMR3GIE	TMR1GIE				
PIE4	_	_	_	_	_	CCP5IE	CCP4IE	CCP3IE				
PIE5	_	_	_	_	_	TMR6IE	TMR5IE	TMR4IE				
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF				
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF				
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	CTMUIF	TMR5GIF	TMR3GIF	TMR1GIF				
PIR4	_	_	_	_	_	CCP5IF	CCP4IF	CCP3IF				
PIR5	_	_	_	_	_	TMR6IF	TMR5IF	TMR4IF				
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0				
RCON	IPEN	SBOREN	1	RI	TO	PD	POR	BOR				

Note 1: INTF flag is sampled here (every Q1).
2: Interrupt latency = 3-4 TcY where TcY = instruction cycle time.
Latency is the same whether instruction (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

TMR0ON: Timer0 on/off control bit

0 = stops Timer0

1 = Enables Timer0

T08BIT: Timer0 8-bit/16-bit control bit

0 = Timer0 is configured as a 16-bit timer

1 = Timer0 is configured as an 8-bit timer

T0CS: Timer0 clock source select

0 = Instruction cycle clock

1 = Transition on TOCKI pin

TOSE: Timer0 source edge select bit

0 = Increment on falling edge transition on T0CKI pin

1 = Increment on rising edge transition on T0CKI pin

PSA: Timer0 prescaler assignment bit

0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.

1 = Timer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.

T0PS2:T0PS0: Timer0 prescaler select bits

000 = 1:2 prescaler value

001 = 1:4 prescaler value

010 = 1:8 prescaler value

011 = 1:16 prescaler value

100 = 1:32 prescaler value

101 = 1:64 prescaler value

110 = 1:128 prescaler value

111 = 1:256 prescaler value

REGISTER 12-1: TXCON: TIMER1/3/5 CONTROL REGISTER

	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/0	R/W-0/u
	TMRxC	S<1:0>	TxCKP	S<1:0>	TxSOSCEN	TxSYNC	TxRD16	TMRxON
I	oit 7							bit 0

bit 7	
bit 7-6	TMRxCS<1:0>: Timer1/3/5 Clock Source Select bits 11 = Reserved. Do not use. 10 = Timer1/3/5 clock source is pin or oscillator: If TxSOSCEN = 0: External clock from TxCKI pin (on the rising edge) If TxSOSCEN = 1:
	Crystal oscillator on SOSCI/SOSCO pins 01 = Timer1/3/5 clock source is system clock (Fosc) 00 = Timer1/3/5 clock source is instruction clock (Fosc/4)
bit 5-4	TxCKPS<1:0>: Timer1/3/5 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	TxSOSCEN: Secondary Oscillator Enable Control bit 1 = Dedicated Secondary oscillator circuit enabled

0 = Dedicated Secondary oscillator circuit disabled TxSYNC: Timer1/3/5 External Clock Input Synchronization Control bit TMRxCS<1:0> = 1XDo not synchronize external clock input 0 = Synchronize external clock input with system clock (Fosc)

TMRxCS<1:0> = 0XThis bit is ignored. Timer1/3/5 uses the internal clock when TMRxCS<1:0> = 1x. TxRD16: 16-Bit Read/Write Mode Enable bit bit 1

1 = Enables register read/write of Timer1/3/5 in one 16-bit operation 0 = Enables register read/write of Timer1/3/5 in two 8-bit operation TMRxON: Timer1/3/5 On bit bit 0 1 = Enables Timer1/3/5 Stops Timer1/3/5

Clears Timer1/3/5 Gate flip-flop

REGISTER 12-2: TXGCON: TIMER1/3/5 GATE CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS	S<1:0>
bit 7							bit 0

ИRхGE	TxGPOL	TxGTM	TxGSPM	TxGGO/DONE	TxGVAL	TxGSS<1:0>
						bit 0
bit 7	If TMI	kGE: Timer1/3 RxON = 0: bit is ignored	3/5 Gate Enal	ble bit		

If TMRxON = 1: 1 = Timer1/3/5 counting is controlled by the Timer1/3/5 gate function 0 = Timer1/3/5 counts regardless of Timer1/3/5 gate function

TxGPOL: Timer1/3/5 Gate Polarity bit 1 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high)

0 = Timer1/3/5 gate is active-low (Timer1/3/5 counts when gate is low) bit 5 TxGTM: Timer1/3/5 Gate Toggle Mode bit

1 = Timer1/3/5 Gate Toggle mode is enabled

bit 6

bit 4

bit 3

bit 1-0

0 = Timer1/3/5 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1/3/5 gate flip-flop toggles on every rising edge.

TxGSPM: Timer1/3/5 Gate Single-Pulse Mode bit

1 = Timer1/3/5 gate Single-Pulse mode is enabled and is controlling Timer1/3/5 gate

0 = Timer1/3/5 gate Single-Pulse mode is disabled

TxGGO/DONE: Timer1/3/5 Gate Single-Pulse Acquisition Status bit

1 = Timer1/3/5 gate single-pulse acquisition is ready, waiting for an edge

 $_{\rm 0}$ = Timer1/3/5 gate single-pulse acquisition has completed or has not been started This bit is automatically cleared when TxGSPM is cleared.

TxGVAL: Timer1/3/5 Gate Current State bit Indicates the current state of the Timer1/3/5 gate that could be provided to TMRxH:TMRxL.

Unaffected by Timer1/3/5 Gate Enable (TMRxGE).

TxGSS<1:0>: Timer1/3/5 Gate Source Select bits

00 = Timer1/3/5 Gate pin 01 = Timer2/4/6 Match PR2/4/6 output (See Table 12-5 for proper timer match selection)

10 = Comparator 1 optionally synchronized output (sync_C1OUT) 11 = Comparator 2 optionally synchronized output (sync_C2OUT)

FIGURE 13-1: TIMER2/4/6 BLOCK DIAGRAM

bit 2

REGISTER 13-1: TyCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

THE OLD I EIT I	0 II. IXOOI				LILLOIGILIK			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		TxOUTPS<3:0>				TxCKPS<1:0>		
bit 7							bit 0	

bit 7 Unimplemented: Read as '0'

TxOUTPS<3:0>: TimerX Output Postscaler Select bits bit 6-3

0000 = 1:1 Postscaler 0001 = 1:2 Postscaler 0010 = 1:3 Postscaler 0011 = 1:4 Postscaler 0100 = 1:5 Postscaler 0101 = 1:6 Postscaler 0110 = 1:7 Postscaler 0111 = 1:8 Postscaler 1000 = 1:9 Postscaler 1001 = 1:10 Postscaler 1010 = 1:11 Postscaler 1011 = 1:12 Postscaler 1100 = 1:13 Postscaler 1101 = 1:14 Postscale

1110 = 1:14 Fostscaler 1111 = 1:16 Postscaler 1111 = 1:16 Postscaler bit 2 TMRxON: TimerX On bit

0 = TimerX is off bit 1-0 TxCKPS<1:0>: Timer2-type Clock Prescale Select bits

00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16

REGISTER 14-3: CCPTMRS0: PWM TIMER SELECTION CONTROL REGISTER 0

R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
C3TSE	L<1:0>	_	C2TSE	L<1:0>	_	C1TSE	L<1:0>				
bit 7							bit 0				
bit 7-6	C3TSI	EL<1:0>: C0	CP3 Timer S	election bits							
	00 = C	CCP3 - Capt	ure/Compar	e modes use	Timer1, PW	/M modes us	se Timer2				
	01 = C	CCP3 – Capt	ure/Compar	e modes use	Timer3, PW	/M modes us	se Timer4				
	10 = C	10 = CCP3 - Capture/Compare modes use Timer5, PWM modes use Timer6									
	11 = F	Reserved									
bit 5	Unuse	ed									
bit 4-3	C2TSI	EL<1:0>: CO	CP2 Timer S	election bits							
	00 = C	CCP2 - Capt	ure/Compar	e modes use	Timer1, PW	/M modes us	se Timer2				
	01 = C	CCP2 - Capt	ure/Compar	e modes use	e Timer3, PW	/M modes us	se Timer4				
	10 = C	CCP2 - Capt	ure/Compar	e modes use	Timer5, PW	/M modes us	se Timer6				
	11 = F	Reserved									
bit 2	Unuse	ed									
bit 1-0	C1TSI	EL<1:0>: C0	CP1 Timer S	election bits							
	00 = C	CCP1 - Capt	ure/Compar	e modes use	e Timer1, PW	/M modes us	se Timer2				
	01 = C	CCP1 – Capt	ure/Compar	e modes use	e Timer3, PW	/M modes us	se Timer4				
	10 = C	CCP1 – Capt	ure/Compar	e modes use	e Timer5, PW	/M modes us	se Timer6				
	11 = F	Reserved									

REGISTER 14-4: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	C5TSEL<1:0>		C4TSEL<1:0>	
bit 7				•			bit 0

bit 7-4 Unimplemented: Read as '0' bit 3-2

C5TSEL<1:0>: CCP5 Timer Selection bits

00 = CCP5 - Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP5 - Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP5 - Capture/Compare modes use Timer5, PWM modes use Timer6 11 = Reserved

bit 1-0 C4TSFL <1:0>: CCP4 Timer Selection bits

00 = CCP4 - Capture/Compare modes use Timer1, PWM modes use Timer2 01 = CCP4 - Capture/Compare modes use Timer3, PWM modes use Timer4 10 = CCP4 - Capture/Compare modes use Timer5, PWM modes use Timer6

11 = Reserved

14.5 Register Definitions: ECCP Control

REGISTER 14-1: CCPxCON: STANDARD CCPx CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	DCxB<1:0>		CCPxM<3:0>			
bit 7							bit 0

bit 7-6 Unused

bit 5-4 DCxB<1:0>: PWM Duty Cycle Least Significant bits Capture mode:

Unused

Compare mode: Unused

PWM mode These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

CCPxM<3:0>: ECCPx Mode Select bits bit 3-0

0000 = Capture/Compare/PWM off (resets the module)
0001 = Reserved

0010 = Compare mode: toggle output on match

0100 = Capture mode: every falling edge

0101 = Capture mode: every fising edge 0110 = Capture mode: every 4th rising edge 0111 = Capture mode: every 4th rising edge

1000 = Compare mode: set output on compare match (CCPx pin is set, CCPxIF is set)

1001 = Compare mode: clear output on compare match (CCPx pin is cleared, CCPxIF is set)
1010 = Compare mode: generate software interrupt on compare match (CCPx pin is unaffected,
CCPxIF is set)

COPAIR is Set)

1011 = Compare mode: Special Event Trigger (CCPx pin is unaffected, CCPxIF is set)

TimerX (selected by CxTSEL bits) is reset

ADON is set, starting A/D conversion if A/D module is enabled⁽¹⁾

11xx =: PWM mode

Note 1: This feature is available on CCP5 only

CAPTURE MODE FIGURE 14-1: OPERATION BLOCK

FIGURE 14-4: SIMPLIFIED PWM BLOCK DIAGRAM

Note 1: The 8-bit timer TMRx register is concatenated with the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 10-bit time

2: In PWM mode, CCPRxH is a read-only register.

$$PWM \ Period = [(PRx) + 1] \bullet 4 \bullet Tosc \bullet$$

 $(TMRx \ Prescale \ Value)$

Note 1: Tosc = 1/Fosc

$$Resolution = \frac{log[4(PRx + 1)]}{log(2)} bits$$

Duty Cycle Ratio =
$$\frac{(CCPRxL:CCPxCON<5:4>)}{4(PRx+1)}$$

FIGURE 14-2: **COMPARE MODE** OPERATION BLOCK DIAGRAM

- Reset TimerX TMRxH:TMRxL = 0x0000
- TimerX Interrupt Flag, (TMRxIF) is not set

Additional Function on

- CCP5 will
 - Set ADCON0<1>, GO/DONE bit to start an ADC Conversion if ADCON<0>, ADON = 1.

TABLE 16-3: BAUD RATE FORMULAS

(Configuration Bits		BRG/FUSART Mode	Baud Rate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Bada Kate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous	Fosc/[16 (n+1)]		
0	1	0	16-bit/Asynchronous			
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1 1 x		16-bit/Synchronous			

Legend: x = Don't care, n = value of SPBRGHx, SPBRGx register pair.

EXAMPLE 16-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

$$Desired Baud Rate = \frac{Fosc}{64([SPBRGHx:SPBRGx] + 1)}$$
Solving for SPBRGHx:SPBRGX:
$$X = \frac{Fosc}{04}$$

$$= \frac{Fosc}{64}$$

$$= \frac{16000000}{64} - 1$$

$$= [25.042] = 25$$

$$Calculated Baud Rate = \frac{16000000}{64(25 + 1)}$$

$$= 9615$$

$$Error = \frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$$

$$= \frac{(9615 - 9600)}{9600} = 0.16\%$$

REGISTER 16-1: TxSTAx: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0

R/W-0

CSRC	TX9	TXEN(1)	SYNC	SENDB	BRGH	TRMT	TX9D		
bit 7							bit 0		
bit 7	Asynchro Don't care Synchron 1 = Mas	lock Source Sele nous mode: e ous mode: ster mode (clock ve mode (clock f	generated inter)				
bit 6	1 = Sele	t Transmit Enabl ects 9-bit transm ects 8-bit transm	ission						
bit 5	1 = Tran	ansmit Enable b smit enabled smit disabled	it ⁽¹⁾						
bit 4	1 = Syne	USART Mode Se chronous mode achronous mode							
bit 3	Asynchro 1 = Seno 0 = Syno	Break transmis ous mode:	next transmiss	ion (cleared by h	nardware upon co	mpletion)			
bit 2	BRGH: H Asynchro 1 = High 0 = Low Synchron	BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 5 = Low speed Synchronous mode: Unused in this mode							
bit 1	TRMT: Tr 1 = TSR 0 = TSR		ister Status bit						
bit 0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nth bit of Transn ddress/data bit o							
DEGISTED 46 9-	DOSTA	v. DECEIVE	STATUS A	ID CONTRO	I DECISTED				

REGISTER 16-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7		•					bit 0

SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
7							bit 0				
bit 7	SPEN: S	Serial Port Enal	ble bit								
		ial port enabled ial port disable			TXx/CKx pins as	serial port pin	S)				
bit 6	RX9: 9-l	oit Receive Ena	able bit								
		ects 9-bit recep									
	0 = Selects 8-bit reception										
bit 5	SREN:	Single Receive	Enable bit								
	Asynchr	onous mode:									

Don't care Synchronous mode - Master

Enables single receive
 Disables single receive
 This bit is cleared after reception is complete.
 Synchronous mode — Slave

Don't care

bit 4 CREN: Continuous Receive Enable bit

Asynchronous mode:

1 = Enables receiver

0 = Disables receiver

Synchronous mode:

1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive

ADDEN: Address Detect Enable bit

Asynchronous mode 9-bit (RX9 = 1):

1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0):

Don't care

bit 2 FERR: Framing Error bit

1 = Framing error (can be updated by reading RCREGx register and receive next valid byte)
0 = No framing error
OERR: Overrun Error bit

1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error

bit 0 RX9D: Ninth bit of Received Data

This can be address/data bit or a parity bit and must be calculated by user firmware.

REGISTER 16-3: BAUDCONX: BAUD RATE CONTROL REGISTER

REGISTER 16-3: BAUDCONX: BAUD RATE CONTROL REGISTER									
R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	_	WUE	ABDEN		
bit 7 bit									
bit 7 ABDOVF: Auto-Baud Detect Overflow bit									

Asynchronous mode:

1 = Auto-baud timer overflowed

0 = Auto-baud timer did not overflow
Synchronous mode:
Don't care

RCIDL: Receive Idle Flag bit

= Start bit has been detected and the receiver is active

Synchronous mode: Don't care

bit 5 DTRXP: Data/Receive Polarity Select bit Asynchronous mode:

= Receive data (RXx) is inverted (active-low) = Receive data (RXx) is not inverted (active-high)

Synchronous mode:

1 = Data (DTx) is inverted (active-low)

0 = Data (DTx) is not inverted (active-high)

CKTXP: Clock/Transmit Polarity Select bit

Asynchronous mode:

= Idle state for transmit (TXx) is low = Idle state for transmit (TXx) is high

0 = lide state for transmit (1 xx) is nign.

Synchronous mode:

1 = Data changes on the falling edge of the clock and is sampled on the rising edge of the clock on the control of the clock and is sampled on the falling edge of the clock on the control of the clock of the clock

Unimplemented: Read as '0'

Unimplemented: Read as 6
WUE: Wake-up Enable bit
Asynchronous mode:
1 = Receiver is waiting for a falling edge. No character will be received but RCxIF will be set on the falling
edge. WUE will automatically clear on the rising edge.
9 = Receiver is operating normally
Synchronous mode:

bit 0

Don't care ABDEN: Auto-Baud Detect Enable bit

Asynchronous mode:

1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete) = Auto-Baud Detect mode is disabled

Synchronous mode: Don't care