1120

for some unit $u_{i_0} \in A$ and some index i_0 , $1 \le i_0 \le m + n$. As a consequence, if $1 \le i_0 \le m$, then a divides b, and if $m + 1 \le i_0 \le m + n$, then a divides c. This proves that (2') holds.

Let us now assume that (2') holds. Assume that

$$a = a_1 \cdots a_m = b_1 \cdots b_n$$

where $a_i \in A$ and $b_j \in A$ are irreducible. Without loss of generality, we may assume that $m \leq n$. We proceed by induction on m. If m = 1,

$$a_1 = b_1 \cdots b_n$$

and since a_1 is irreducible, $u = b_1 \cdots b_{i-1} b_{i+1} b_n$ must be a unit for some $i, 1 \le i \le n$. Thus, (2) holds with n = 1 and $a_1 = b_i u$. Assume that m > 1 and that the induction hypothesis holds for m - 1. Since

$$a_1 a_2 \cdots a_m = b_1 \cdots b_n,$$

 a_1 divides $b_1 \cdots b_n$, and in view of (2'), a_1 divides some b_j . Since a_1 and b_j are irreducible, we must have $b_j = u_j a_1$, where $u_j \in A$ is a unit. Since A is an integral domain,

$$a_1 a_2 \cdots a_m = b_1 \cdots b_{j-1} u_j a_1 b_{j+1} \cdots b_n$$

implies that

$$a_2 \cdots a_m = (u_j b_1) \cdots b_{j-1} b_{j+1} \cdots b_n,$$

and by the induction hypothesis, m-1=n-1 and $a_i=v_ib_{\tau(i)}$ for some units $v_i \in A$ and some bijection τ between $\{2,\ldots,m\}$ and $\{1,\ldots,j-1,j+1,\ldots,m\}$. However, the bijection τ extends to a permutation σ of $\{1,\ldots,m\}$ by letting $\sigma(1)=j$, and the result holds by letting $v_1=u_j^{-1}$.

As a corollary of Proposition 32.2. we get the converse of Proposition 32.1.

Proposition 32.3. Let A be a factorial ring. For any $a \in A$ with $a \neq 0$, the principal ideal (a) is a prime ideal iff a is irreducible.

Proof. In view of Proposition 32.1, we just have to prove that if $a \in A$ is irreducible, then the principal ideal (a) is a prime ideal. Indeed, if $bc \in (a)$, then a divides bc, and by Proposition 32.2, property (2') implies that either a divides b or a divides c, that is, either $b \in (a)$ or $c \in (a)$, which means that (a) is prime.

Because Proposition 32.3 holds, in a UFD, an irreducible element is often called a *prime*.

In a UFD A, every nonzero element $a \in A$ that is not a unit can be expressed as a product $a = a_1 \cdots a_n$ of irreducible elements a_i , and by property (2), the number n of factors only depends on a, that is, it is the same for all factorizations into irreducible factors. We agree that this number is 0 for a unit.

Remark: If A is a UFD, we can state the factorization properties so that they also applies to units: