Math 215 Exam #2 Practice Problems

- 1. For each of the following statements, say whether it is true or false. If the statement is true, prove it. If false, give a counterexample.
 - (a) If Q is an orthogonal matrix, then $\det Q = 1$.
 - (b) Every invertible matrix can be diagonalized.
 - (c) Every diagonalizable matrix is invertible.
 - (d) If the matrix A is not invertible, then 0 is an eigenvalue of A.
 - (e) If \vec{v} and \vec{w} are orthogonal and P is a projection matrix, then $P\vec{v}$ and $P\vec{w}$ are also orthogonal.
 - (f) Suppose A is an $n \times n$ matrix and that there exists some k such that $A^k = 0$ (such matrices are called *nilpotent* matrices). Then A is not invertible.
- 2. Let Q be an $n \times n$ orthogonal matrix. Show that if $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is an orthonormal basis for \mathbb{R}^n , then so is $\{Q\vec{v}_1, \ldots, Q\vec{v}_n\}$.
- 3. Let

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$

- (a) Let R be the region in the plane enclosed by the unit circle. If T is the linear transformation of the plane whose matrix is A, what is the area of T(R)?
- (b) Find the matrix for the transformation T^{-1} without doing elimination.
- 4. Let ℓ be the line in \mathbb{R}^3 through the vector $\vec{a} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.
 - (a) Find a basis for the orthogonal complement of ℓ .

(b) If
$$\vec{v} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
, write \vec{v} as a sum

$$\vec{v} = \vec{v}_1 + \vec{v}_2,$$

where $\vec{v}_1 \in \ell$ and $\vec{v}_2 \in \ell^{\perp}$.

5. Find the line C + Dt that best fits the data

$$(-1,1), (0,1), (1,2).$$

- 6. Let ℓ be the line through a vector $\vec{a} \in \mathbb{R}^n$ and let P be the matrix which projects everything in \mathbb{R}^n to ℓ .
 - (a) Show that the trace of P equals 1.
 - (b) What can you say about the eigenvalues of P?
- 7. Suppose A is a 2×2 matrix with eigenvalues λ_1 and λ_2 corresponding to non-zero eigenvectors \vec{v}_1 and \vec{v}_2 , respectively. If $\lambda_1 \neq \lambda_2$, show that \vec{v}_1 and \vec{v}_2 are linearly independent.

1