First■Signal Law (FSL) — Biofilm Research Plan (High■Level)

Purpose

Test whether Restraint \geq Alignment \geq Persistence (R \geq A \geq P) predicts late window biofilm stability across controlled environmental constraints, coordination signaling, and matrix maturation, using nonmactionable, high level observational measurements.

Conceptual Variables (map to proxies)

- Restraint (R): environmental/therapeutic constraints that limit chaotic growth (e.g., nutrient limitation duty cycle, maximum antibiotic exposure ceiling, shear stress bounds). Normalize proxies to [0,1].
- Alignment (A): coherence of community signaling and coordinated behavior (e.g., quorum sensing coherence index from reporter signal; metabolic synchrony metrics). Normalize to [0,1].
- Persistence (P): temporal memory/inertia (e.g., EPS maturity window, matrix density/viscoelastic proxy, time■since■inoculation normalized to [0,1]).

Primary Outcome (stability target)

Late window stability = mean biomass/viability proxy over final observation window \times (1 – variance). Scale to [0,1] across the study. (Alternative: mean cooperative behavior proxy \times (1 – variance).)

Design Sketch (non■procedural)

Use parallel conditions spanning R, A, P ranges without step■by■step lab instructions. Example axes:

- (1) Constraint sweep: vary nutrient duty cycle and set a conservative antibiotic ceiling;
- (2) Alignment modulation: compare strains/consortia/reporters with different quorum

 signal coherence;
- (3) Persistence modulation: observe across early/mid/late matrix maturation windows.

Record high∎level observations only; avoid actionable wet∎lab detail.

Predictions (locked FSL, qualitative)

- Correct ordering (R≥A≥P) → highest stability;
- Misorder (P>A or A>R) → "stable■but■brittle" or quick fade;
- Added "release" analogs (e.g., intermittent stress relief) can prolong stability only when R is credible and A is coherent.

Data Schema (CSV columns)

domain, context_id, R_proxy, A_proxy, P_proxy, target_stability, notes

(Use the template you already have: FSL_biofilm_template.csv).

Analysis Plan (high∎level)

- 1) Normalize proxies to [0,1].
- 2) Compute FSL prediction with synergy and ordering penalties (locked model).
- 3) Plot reliability (binned predicted vs measured), report r/MAE/RMSE.
- 4) Slice by ordered vs unordered to test the law's core hypothesis.
- 5) Report gaps and adjust proxy mapping—not lab conditions—to improve calibration.

Ethical/Safety Note

This plan intentionally omits actionable wet lab instructions, quantities, organism specifics, or protocols. Focus is on conceptual modeling, measurement mapping, and statistical testing to keep within safe, high level guidance.