TUGAS 1 PERSOALAN KLASIFIKASI PEMBELAJARAN MESIN LANJUT

SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG TAHUN 2022

Tugas 1
Persoalan Klasifikasi pada dataset Fashion MNIST dengan menggunakan CNN:

Proses klasifikasi pada dataset Fashion MNIST dengan menggunakan CNN, dapat dilihat pada Gambar 1 berikut:

Berdasarkan Arsitektur pada Gambar 1 diperoleh: (In [21])

i. contoh output yang benar (memberikan hasil yang baik) untuk data training 48000 dan validasi 12000 adalah sebagai berikut:

Nilai Epoch	Data Validation		Data Training	
	Nilai Akurasi	Nilai Loss	Nilai Akurasi	Nilai Loss
27	0.9087	0.4890	0.9909	0.0256
28	0.9097	0.5140	0.9909	0.0243

ii. Contoh output yang Salah (memberikan hasil yang kurang bagus) untuk data training 48000 dan data validation 12000 adalah pada saat:

Nilai Epoch	Data Validation		Data Training	
	Nilai Akurasi	Nilai Loss	Nilai Akurasi	Nilai loss
1	0.8653	0.3723	0.8089	0.5287
2	0.8746	0.3453	0.8774	0.3360

Seperti terlihat pada Gambar 2 Berikut:

Proses klasifikasi pada dataset Fashion MNIST dengan menggunakan CNN lainnya, dapat dilihat pada Gambar 3 berikut:

Berdasarkan Arsitektur pada Gambar 2 diperoleh: (In [27])

i. Contoh output yang benar (memberikan hasil yang baik) untuk data training 48000 dan validasi 12000 adalah sebagai berikut:

	Data Validation		Data Training	
Nilai Epoch	Nilai Akurasi	Nilai Loss	Nilai Akurasi	Nilai loss
37	0.9197	0.2246	0.9250	0.1999
39	0.9204	0.2214	0.9249	0.1997

ii. Contoh output yang Salah (memberikan hasil yang kurang bagus) untuk data training 48000 dan data validation 12000 adalah sebagai berikut:

Nilai Epoch	Data Validation		Data Training	
	Nilai Akurasi	Nilai Loss	Nilai Akurasi	Nilai loss
1	0.8189	0.4801	0.7135	0.7589
2	0.8597	0.3845	0.8131	0.4995

Seperti terlihat pada Gambar 4 berikut:

Contoh gambar yang diprediksi dengan benar dan salah dapat dilihat pada gambar 5 berikut:

Gambar 5. Contoh gambar yang diprediksi Benar (Gambar a), contoh gambar yang diprediksi Salah (Gambar b)

Berdasarkan hasil diatas diperoleh nilai Test Akurasi sebesar 0.9294 dan nilai Test Loss sebesar 0.20247	