January 12, 2018

1 Esercizi trasformata Bode

Domanda 1 Data la seguente rappresentazione ingresso uscita:

$100y\ddot{(t)} = -1.3y\dot{(t)} - 40y(t) + sin(\omega * t)$	(1)
quali delle seguenti affermazioni é vera:	
all'aumentare di ω l'ampiezza dell'oscillazione di $y(t)$ cala monotonicamente; \square é presente un picco di risonanza tra 0.5 e 0.7 rad/s; \square nessuna delle precedenti. \square per valori di ω elevati l'ampiezza assume valori negativi; \square é presente un picco di risonanza tra 0.5 e 0.7 Hz;	
Domanda 2 Data la seguente rappresentazione ingresso uscita:	
$0.5y\ddot{(t)} = -1y\dot{(t)} - 0.5y(t) + sin(\omega * t)$	(2)
dove $y(0) = y(0) = 0$ quale delle seguenti affermazioni é vera:	
nessuna delle precedenti. $y(t) \leq 5 \ \forall [t,\omega] \in R^2;$ $e presente un picco di risonanza tra 0.1 e 10 rad/s;$ $e presente un picco di risonanza in 1 rad/s;$ $per valori di \omega elevati l'ampiezza assume valori negativi;$	
Domanda 3 Data la seguente rappresentazione ingresso uscita:	
$102\ddot{y(t)} = -3y(t) + \sin(\omega * t)$	(3)
dove $y(0) = y(0) = 0$ quale delle seguenti affermazioni é vera:	
$ □ $ é presente un picco di risonanza in 0.1715 rad/s; $ □ $ $y(t) ≤ 100 ∀[t, ω] ∈ R^2; □ non é presente alcun picco di risonanza; □ nessuna delle precedenti. □ é presente un picco di risonanza tra 10 e 30 Hz;$	
Domanda 4 Data la seguente rappresentazione ingresso uscita:	
$44y\ddot{(t)} = -2y\dot{(t)} - 6y(t) + \sin(\omega * t)$	(4)
dove $y(0) = \dot{y(0)} = 0$ quale delle seguenti affermazioni é vera per $\omega = 0.1$ Hz:	
$ y(t) \approx 0.874 \sin(0.626t + 3.0315); $ $ y(t) \approx 0.0874 \sin(0.626t - 3.0315); $ $ y(t) \approx 0.474 \sin(0.626t + 3.0315); $ $ nessuna delle precedenti. $ $ y(t) \approx 4.74 \sin(0.626t + 3.0315); $	

Domanda 1

Data la seguente rappresentazione ingresso uscita:

$$100y(t) = -1.3y(t) - 40y(t) + \sin(\omega * t)$$
(5)

quali delle seguenti affermazioni é vera:

- 1. all'aumentare di ω l'ampiezza dell'oscillazione di y(t) cala monotonicamente;
- 2. per valori di ω elevati l'ampiezza assume valori negativi;
- 3. é presente un picco di risonanza tra 0.5 e 0.7 Hz;
- 4. é presente un picco di risonanza tra 0.5 e 0.7 rad/s;
- 5. nessuna delle precedenti.

La risposta corretta é la numero 4. Riportiamo il diagramma di bode della funzione di trasferimento.

La funzione di trasferimento del sistema in generale sará:

$$H(s) = \frac{1}{ms^2 + cs + k} \tag{6}$$

Dove nel caso in esame $m=100,\,c=1.3,\,k=40.$ Sostituiamo s=iw per trovare ampiezza e fase della risposta in frequenza:

$$H(i\omega) = \frac{1}{-m\omega + ci\omega + k} \tag{7}$$

$$|H(i\omega)|^2 = 1/((k - m\omega^2)^2 + (c\omega)^2)$$
(8)

Il denominatore é una parabola con concavitá verso l'alto. Per massimizzare il modulo di $H(i\omega)$ dobbiamo minimizzare il denominatore. Il denominatore é minimo nel vertice della parabola $(-\frac{b}{2a})$.

$$den = ((k - m\omega)^2 + (c\omega)^2)$$
$$= k^2 - 2km\omega^2 + m^2\omega^4 + c^2\omega^2$$

Sostituendo $\omega^2 = X$ otteniamo la seguente equazione di secondo grado:

$$den = k^2 - 2kmX + m^2X^2 + c^2X$$

Il minimo sará in:

$$\omega_{min}^2 = X_{min} = \frac{2km - c^2}{2*m^2}$$

$$\omega_{min} = \sqrt{\frac{2km - c^2}{2*m^2}}$$

Da notare che se $2km < c^2$, la radice non puó essere calcolata e quindi non esistendo ω_{min} la soluzione corretta sarebbe stata la 1. Il nostro problema peró presenta $2km > c^2$ quindi abbiamo la presenza di un massimo ed in particolare:

$$\omega_{min} = 0.6324 rad/s$$

Per conferma possiamo calcolare $H(i\omega_m in)$ e H(0):

$$|H(0)| = 0.0250/|H(0.6324i)| = |0.0104 - 1.2163i| = 1.2163$$

Possiamo affermare che la risposta corretta é la 4 in quanto abbiamo un massimo di ampiezza nel range indicato.

2.1 Domanda 2

Data la seguente rappresentazione ingresso uscita:

$$0.5y(t) = -1y(t) - 0.5y(t) + \sin(\omega * t)$$
(9)

dove y(0) = y(0) = 0 quale delle seguenti affermazioni é vera:

- 1. $y(t) \leq 5 \ \forall [t, \omega] \in \mathbb{R}^2$;
- 2. é presente un picco di risonanza in 1 rad/s;
- 3. é presente un picco di risonanza tra 0.1 e 10 rad/s;
- 4. nessuna delle precedenti.

La risposta corretta é la numero 1. Infatti possiamo notare come c > 2km per non possiamo identificare un $w_m in \in R$. Questo significa che il sistema é sovrasmorzato e non presenta picchi di risonanza. Come conferma il grafico di bode sotto riportato.

2.2 Domanda 3

Data la seguente rappresentazione ingresso uscita:

$$\ddot{102y(t)} = -3y(t) + \sin(\omega * t) \tag{10}$$

dove $y(0) = \dot{y(0)} = 0$ quale delle seguenti affermazioni é vera:

- 1. $y(t) \le 100 \ \forall [t, \omega] \in \mathbb{R}^2$;
- 2. é presente un picco di risonanza in 0.1715 rad/s;
- 3. é presente un picco di risonanza tra 10 e 30 Hz;
- 4. nessuna delle precedenti.

La risposta corretta é la numero 2. Possiamo notare come $\omega = 0.1715 rad/s$ annulli il denominatore. Nel suo intorno avremo quindi che il modulo della funzione di trasferimento tende a infinito,.

2.3 Domanda 4

Data la seguente rappresentazione ingresso uscita:

$$44y\ddot{(t)} = -2y\dot{(t)} - 6y(t) + \sin(\omega * t) \tag{11}$$

dove $y(0)=\dot{y(0)}=0$ quale delle seguenti affermazioni é vera per $\omega=0.1$ Hz:

- 1. $y(t) \approx 0.0874 \sin(0.626t 3.0315)$;
- 2. $y(t) \approx 0.874 \sin(0.626t + 3.0315)$;
- 3. $y(t) \approx 0.474 \sin(0.626t + 3.0315)$;
- 4. nessuna delle precedenti.

La risposta corretta é la numero 1. La funzione di trasferimento calcolata in $\omega=2*\pi*0.1$ rad/s vale:

$$H(i0.6283) = -0.0869 - 0.0096i$$

Il modulo sará quindi 0.0874 e la fase -3.0315rad.

