

工科数学试卷汇总

高数、线代、概率、复变

作者: sikouhjw、xajzh

组织: 临时组织起来的重排小组

时间: May 14, 2019

版本: 1.00

确实,时 间和空间 是有限的。确实,我们总会有 分开的时候。但是正因为这样, 我们才会努力学习,我们才会 努力前进。我们的信仰是 享受数学。因为"数 学穿越时空"。

 \Diamond

"不论一个人的数学水平有多高,只要对数学拥有一颗真诚的心,他就在自己的心灵上得到了升华。"—SCIbird

目 录

1	声明		1
2	高等	数学试卷汇总	2
	2.1	高数 (一) 期中	 2
		2.1.1 2018-2019 A7	 2
		2.1.2 2018-2019 A7 答案	 3
	2.2	高数 (一) 期终	 5
		2.2.1 2018-2019 A15	 5
		2.2.2 2018-2019 A15 答案	 5
	2.3	高数 (二) 期中	 5
		2.3.1 2017-2018	 5
		2.3.2 2017-2018 答案	 5
		2.3.3 2018-2019 B10	 5
	2.4	高数 (二) 期终	 5
		2.4.1 2014-2015	 5
		2.4.2 2014-2015 答案	 7
		2.4.3 2017-2018 A	 7
		2.4.4 2017-2018 A 答案	 8
		2.4.5 2017-2018 B	 8
		2.4.6 2017-2018 B 答案	 8
	2.5	额外的练习	 8
3	线性	代数试卷汇总	9
4	概率	统计试卷汇总	10
	4.1	2018-2019 14B	 10
	4.2	2018-2019 14B 答案	 12
5	复变	函数试卷汇总	15
	5.1	2018-2019A	 15
	5.2	2018-2019A 答案	 16

第1章 声明

本汇总不得用	引于商业用途,	最新版下载地址:	Github, 不保证题目、	答案的正确性,如
有错误可通过 QQ	群」或者邮箱	2联系我们		

 $^{^2489765924@}qq.com$

第2章 高等数学试卷汇总

2.1 高数 (一) 期中

2.1.1 2018-2019 A7

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	选择题			
1.	微分方程 $(y')^3 + 3\sqrt{y''}$ -	$+ x^4 y''' = \sin x$ 的阶数是	()	
	(A) 1	(B) 4	(C) 2	(D) 3
2.	设 $f(x, y) = x - y - \sqrt{x^2}$	$x + y^2$, $y = 0$		
	(A) $\frac{3}{5}$	(B) $\frac{2}{5}$	(C) $-\frac{2}{5}$	(D) $\frac{1}{5}$
3.	微分方程 $y' = \frac{y}{x}$ 的一个	特解是()		
	(A) y = 2x	(B) $e^y = x$	$(C) y = x^2$	(D) $y = \ln x$
4.	若 $z = \ln \sqrt{1 + x^2 + y^2}$,	则 $dz _{(1,1)} = ($)		
	(A) $\frac{dx + dy}{3}$	(B) $\frac{dx + dy}{2}$	(C) $\frac{dx + dy}{1}$	(D) $3(dx + dy)$
5.	设直线 $L: \begin{cases} x + 3y + 2z \end{cases}$	z+1=0 $\partial z+3=0$, 平面 $\eta:4z$	$x - 2y + z - 2 = 0$, \mathbb{M} ()
	(2x - y - 10)	0z + 3 = 0		
	(A) L 在 η 上	(B) L 平行于 η	(C) L 垂直于 η	(D) L 与 η 斜交
6.	方程 $y' + 3xy = 6x^2y$ 是	E ()		
	(A) 二阶微分方程		(B) 非线性微分方程	
	(C) 一阶线性非齐次微分	分方程	(D) 可分离变量的微分	方程
7.		i平面 $x = y$ 的交线是 ()	
	(A) 两条直线	(B) 双曲线	(C) 椭圆	(D) 抛物线
8.	设 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = ($)		
	(A) $2y(1+x^3)e^{x^2y}$		(B) e^{x^2y}	
	(C) $2x(1+x^2y)e^{x^2y}$		(D) $2xe^{x^2y}$	
9.	下列结论正确的是()			
	(A) $\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b}$	$-\vec{a} \times \vec{c}$	(B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 \vec{c}	$\vec{a} \neq \vec{0}$,则 $\vec{b} = \vec{c}$
	(C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$		(D) 若 $ \vec{a} = 1, \vec{b} = 1$, $ \vec{b} = 1$	$\left \vec{a} \times \vec{b} \right = 1$
:	填空题			
1.	平面过点 (2,0,0), (0,1,0	0), (0, 0, 0.5), 则该平面的	方程是	
2.	设 y_1 是 $y'' + p(x)y' + q$	$y(x)y = f(x)$ 的解, $y_2 \neq y$	y'' + p(x)y' + q(x)y = f(x)	x) 的解,则 y ₁ + y ₂
	是			

4. 过点 P(0,2,4) 且与两平面 x + 2z = 1 和 y - 2z = 2 平行的直线方程是_____

3. 设 $z = y \arctan x$, 则 $\operatorname{grad} z|_{(1,2)} =$ _____

2.1 高数 (一) 期中 -3/18-

- 6. $y = e^x$ 是微分方程 y'' + py' + 6y = 0 的一个特解, 则 p =
- 7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是
- 8. 微分方程 y'' + 2y' + 5y = 0 的通解为 $y = ___$
- 9. $\forall z = e^{xy} + \cos(x^2 + y)$, $\bigcup \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$

三、大题

- 1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解
- 2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程
- 3. 设由方程组 $\begin{cases} x+y+z=0\\ x^2+y^2+z^2=1 \end{cases}$ 确定了隐函数 x=x(z), y=y(z), 求 $\frac{\mathrm{d}x}{\mathrm{d}z}, \frac{\mathrm{d}y}{\mathrm{d}z}$
- 4. 求方程 $y'' + 6y' + 13y = e^t$ 的通解
- 5. 设 $z = x^2y + \sin x + \varphi(xy + 1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

2.1.2 2018-2019 A7 答案

一、选择题

1. 微分方程 $(y')^3 + 3\sqrt{y''} + x^4y''' = \sin x$ 的阶数是 (D)

(D) 3

2. 设 $f(x,y) = x - y - \sqrt{x^2 + y^2}$, 则 $f_x(3,4) = (B)$

- (D) $\frac{1}{5}$

3. 微分方程 $y' = \frac{y}{x}$ 的一个特解是(A)

- (A) y = 2x
- (B) $e^y = x$
- (C) $y = x^2$
- (D) $y = \ln x$

(A) y = 2x (B) e = x (C) y = x (D) $y = \ln x$ 4. 若 $z = \ln \sqrt{1 + x^2 + y^2}$, 则 $dz|_{(1,1)} = (A)$ (A) $\frac{dx + dy}{3}$ (B) $\frac{dx + dy}{2}$ (C) $\frac{dx + dy}{1}$ (D) 3(dx + dy)5. 设直线 $L: \begin{cases} x + 3y + 2z + 1 = 0 \\ 2x - y - 10z + 3 = 0 \end{cases}$, 平面 $\eta: 4x - 2y + z - 2 = 0$, 则 (C)

- (A) L 在 η 上 (B) L 平行于 η (C) L 垂直于 η (D) L 与 η 斜交

- 6. 方程 $y' + 3xy = 6x^2y$ 是(D)
 - (A) 二阶微分方程

(B) 非线性微分方程

(C) 一阶线性非齐次微分方程

- (D) 可分离变量的微分方程
- 7. 曲面 $\frac{x^2}{9} \frac{y^2}{4} + \frac{z^2}{4} = 1$ 与平面 x = y 的交线是 (B)
 - (A) 两条直线
- (B) 双曲线
- (C) 椭圆
- (D) 抛物线

8. 读 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = (C)$

(A) $2y(1+x^3)e^{x^2y}$

(B) e^{x^2y}

(C) $2x(1+x^2y)e^{x^2y}$

(D) $2xe^{x^2y}$

9. 下列结论正确的是(A)

2.1 高数 (一) 期中 -4/18-

(A)
$$\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b} - \vec{a} \times \vec{c}$$

(B) 若
$$\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$$
 且 $\vec{a} \neq \vec{0}$, 则 $\vec{b} = \vec{c}$

(C)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$
 (D) 若 $|\vec{a}| = 1$, $|\vec{b}| = 1$, 则 $|\vec{a} \times \vec{b}| = 1$

二、填空颢

1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是 $\frac{x}{2} + y + 2z = 1$

2. $\forall y_1 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 是 y'' + p(x)y' + q(x)y = 2f(x) 方程的解

3. $\forall z = y \arctan x$, $|y| \operatorname{grad} z|_{(1,2)} = \operatorname{d} x + \frac{\pi}{4} \operatorname{d} y$

4. 过点 P(0,2,4) 且与两平面 x + 2z = 1 和 y - 2z = 2 平行的直线方程是 $\frac{x}{-2} = \frac{y-2}{2} = \frac{z-4}{1}$

6. $y = e^x$ 是微分方程 y'' + py' + 6y = 0 的一个特解, 则 p = -7

7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是 $A_1A_2 + B_1B_2 + C_1C_2 = 0$

8. 微分方程 y'' + 2y' + 5y = 0 的通解为 $y = C_1 e^{-x} \sin(2x) + C_2 e^{-x} \cos(2x)$

三、大题

1. 求方程 $\frac{dx}{dx} = -z + 4x$ 的通解 解 运用一阶线性非齐次微分方程公式,得

$$z = e^{-\int dx} \left(\int 4x e^{\int dx} dx + C \right) = e^{-x} \left(\int 4x e^x dx + C \right)$$
$$= e^{-x} \left(4(x-1)e^x + C \right) = 4(x-1) + Ce^{-x}$$

2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程

3. 设由方程组 $\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$ 确定了隐函数 x = x(z), y = y(z),求 $\frac{dx}{dz}, \frac{dy}{dz}$ 解 对方程组 $\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$ 两式求微分,得

$$\begin{cases} dx + dy + dz = 0 \\ 2x dx + 2y dy + 2z dz = 0 \end{cases}$$

解得

$$\begin{cases} \frac{dx}{dz} = -\frac{x+2z}{2x+z} \\ \frac{dy}{dz} = -\frac{y+2x}{2y+z} \end{cases}$$

4. 求方程 $y'' + 6y' + 13y = e^t$ 的通解

2.2 高数 (一) 期终 -5/18-

解 方程 $y''+6y'+13y=e^t$ 对应的齐次方程 y''+6y'+13y=0 的特征方程为 $r^2+6r+13=0$,解得 $r = -3 \pm 2i$,那么齐次方程的通解为 $C_1e^{-3t}\sin(2t) + C_2e^{-3t}\cos(2t)$

设特解为 ae^t , 代入方程 $y'' + 6y' + 13y = e^t$ 后解得 $a = \frac{1}{20}$

综上, 方程 $y'' + 6y' + 13y = e^t$ 的通解为 $C_1 e^{-3t} \sin(2t) + C_2 e^{-3t} \cos(2t) + \frac{e^x}{20}$

5. 设 $z = x^2y + \sin x + \varphi(xy+1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ $\mathbb{H} \frac{\partial z}{\partial x} = 2xy + \cos x + y\varphi'(xy+1), \frac{\partial z}{\partial y} = x^2 + x\varphi'(xy+1)$

2.2 高数 (一) 期终

- 2.2.1 2018-2019 A15
- 2.2.2 2018-2019 A15 答案
- 2.3 高数 (二) 期中
- 2.3.1 2017-2018
- 2.3.2 2017-2018 答案
- 2.3.3 2018-2019 B10
- 2.4 高数 (二) 期终

2.4.1 2014-2015

一、选择题 (每小题 3 分, 共 24 分)

· / • ! /	- 5		• • • • • • • • • • • • • • • • • • • •	
(A) e^x		(B) ax^2e^x	(C) ae^x	(D) axe^x

2. 过点 (3, 1, -2) 且通过直线 $\frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$ 的平面方程 ()

1. 方程 $v'' - 3v' + 2v = e^x$ 的待定特解 v* 的一个形式是 v* = ()

(A)
$$5x + 2y + z - 15 = 0$$
 (B) $\frac{x-3}{8} = \frac{y-1}{-9} = \frac{z+2}{-22}$

(C)
$$8x - 9y - 22z - 59 = 0$$
 (D) $\frac{x-3}{5} = \frac{y-1}{2} = \frac{z+2}{1}$

(C) $\frac{1}{3}$ (A) 1

4. $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 2\}$,利用二重积分的性质, $\iint_D \frac{1}{\sqrt{x^2 + y^2 + 2xy + 16}} \, dx \, dy$ 的最佳 估值区间为()

(B) $\left[\frac{1}{5}, \frac{1}{2}\right]$ (C) $\left[\frac{2}{5}, 1\right]$

- 5. Ω 由柱面 $x^2 + y^2 = 1$ 、平面 z = 1 及三个坐标面围成的在第一卦限内的闭区域,则
 - $\iiint_{\Omega} xy \, dV = ()$ (A) $\int_0^{\pi} d\theta \int_0^1 d\rho \int_0^1 \rho^3 \sin\theta \cos\theta dz$
 - (A) $\int_0^{\pi} d\theta \int_0^1 d\rho \int_0^1 \rho^3 \sin\theta \cos\theta dz$ (B) $\int_0^{2\pi} \int_0^1 d\rho \int_0^1 \rho^2 \sin\theta \cos\theta dz$ (C) $\int_0^{\frac{\pi}{2}} d\theta \int_0^1 d\rho \int_0^1 \rho^2 \sin\theta \cos\theta dz$ (D) $\int_0^{\frac{\pi}{2}} d\theta \int_0^1 d\rho \int_0^1 \rho^3 \sin\theta \cos\theta dz$

2.4 高数 (二) 期终 -6/18-

6. 设 $L \neq xoy$ 平面上的有向曲线,下列曲线积分中,()是与路径无关的

(A)
$$\int_{I} 3yx^{2} dx + x^{3} dy$$

(B)
$$\int_L y \, dx - x \, dy$$

(C)
$$\int_L 2xy \, dx - x^2 \, dy$$

(D)
$$\int_{I} 3yx^{2} dx + y^{3} dy$$

(C)
$$\int_{L} 2xy \, dx - x^{2} \, dy$$
 (D) $\int_{L} 3yx^{2} \, dx + y$ 7. 设 L 为圆周 $\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$ (C) $2\pi a^{3}$ (D) $2\pi a^{3}$ (C) $2\pi a^{3}$ 8. 下列级数中收敛的是()

(A)
$$a^{3}$$

(B)
$$\pi a^3$$

(C)
$$2\pi a^3$$

(D)
$$3\pi a^3$$

下列级数中收敛的是 () (A) $\sum_{n=1}^{\infty} \frac{n}{n+1}$ (B) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$ (C) $\sum_{n=1}^{\infty} \frac{1}{2(n+1)}$ (D) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$

(A)
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{2(n+1)}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$

二、填空题 (每空 3 分, 共 24 分)

1. 微分方程
$$\frac{dy}{dx} = -3y + e^{2x}$$
 的通解是 $y = \underline{\hspace{1cm}}$
2. 平行于 y 轴且通过曲线 $\begin{cases} x^2 + y^2 + 4z^2 = 1 \\ x^2 = y^2 + z^2 \end{cases}$ 的柱面方程是 $\underline{\hspace{1cm}}$
3. 设 $z = x^2y + xy^2$, 则 d $z = \underline{\hspace{1cm}}$
4. $\iint_D y^2 \sin^3 x \, dx \, dy = \underline{\hspace{1cm}}$
(区域 D 为: $-4 \le x \le 4, -1 \le y \le 1$)

5. 设 D 为平面闭区域: $x^2+y^2\leqslant 1$, 则 $\iint_D \sqrt{x^2+y^2}\,\mathrm{d}x\,\mathrm{d}y$ 化为极坐标系下二次积分的表达

 $x^2 + y^2 + z^2 = 4(z \ge 0)$ 与平面 z = 0 围成区域的表面, 取外侧.

8. 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$ 的收敛半径为_

三、综合题(请写出求解过程,8小题,共52分)

1. 求过点 (2,1,1), 且与直线 $\begin{cases} x-y+3z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程. $(6\, \%)$

2. 设 $z = f(e^{x+y}, \sin(xy))$, 且 f 具有一阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (6分)

3. 计算 $\iint_D (x^2 + y) \, dx \, dy$, D 是曲线 $y = x^2, x = y^2$ 围成的闭区域. (8分)

4. 计算 $\iiint_{\Omega} (x^2 + y^2) dx dy dz$, 其中 Ω 是由圆锥面 $z^2 = x^2 + y^2$ 及平面 z = 2 围成的闭区域.

5. 计算 $\int_{\Gamma} x^3 dx + 3zy^2 dy - x^2y dz$, 其中 Γ 是从点 A(2,2,1) 到原点 O 的直线段 AO. (6分)

6. 空间区域 Ω 由开口向下的旋转抛物面 $z=1-x^2-y^2$ 与平面 z=0 所围, Ω 的表面取外侧 为 Σ , 利用高斯公式计算 $\iint_{\Sigma} x^2 y z^2 \, dy \, dz - x y^2 z^2 \, dz \, dx + z (1 + x y z) \, dx \, dy$. (8分)

7. 判断级数 $\sum_{n=1}^{\infty} \frac{n^e}{e^n}$ 的敛散性. (6分)

8. 求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^{2n} (x \in (-1,1))$ 的和函数. (6分)

2.4 高数 (二) 期终

-7/18-

2.4.2 2014-2015 答案

2.4.3 2017-2018 A

- 、	选择题 (每	事小题 3 分 ,	共 24 分)			
1.	微分方程 $y'' - 6y' + 9y = (6x^2 + 2) e^x$ 的待定特解的一个形式可为()					
	$(A) y^* = ($	$(ax^2 + bx + c)$	e^x	$(B) y^* = x \left(ax^2 + bx + c \right)$	e) e^x	
	$(C) y^* = x$	$x^2\left(ax^2+bx+\right)$	$c) e^x$	(B) $y^* = x (ax^2 + bx + c^2)$ (D) $y^* = x^2 (x^2 + 1) e^x$		
2.	设向量 व	的三个方向角	$β$ 为 α 、 β 、 γ ,且已知 α	= 60° 、 $\beta = 120^{\circ}$,则 γ	= ()	
	(A) 120°		(B) 60°	(C) 45°	(D) 30°	
3.	设 $z = arc$	$\tan e^{xy}$,则 $\frac{\partial z}{\partial y}$	= ()			
	$(A) - \frac{xe^x}{\sqrt{1-e^x}}$	$\frac{xy}{2xy}$	(B) $\frac{xe^{xy}}{\sqrt{1-e^{2xy}}}$	$(C) - \frac{xe^{xy}}{1 + e^{2xy}}$	(D) $\frac{xe^{xy}}{1+e^{2xy}}$	
4.	D 为平面	区域 $x^2 + y^2$	≤4,利用二重积分的性	质, $\iint_D (x^2 + 4y^2 + 9) dx$	dy 的最佳估值区	
	间为()					
	(A) [36π,	52π]	(B) $[36\pi, 100\pi]$	(C) $[52\pi, 100\pi]$	(D) $[9\pi, 25\pi]$	
5.	设 Ω = {($(x, y, z) x^2 + y^2$	$z^2 + z^2 \leqslant 2, x \geqslant 0$, 则以了	下等式错误的是()		
	$(A) \iiint_{\Omega} x^{2}$	$^2y\mathrm{d}v=0$	(B) $\iiint_{\Omega} (x+y) \mathrm{d}v = 0$	(C) $\iiint_{\Omega} z \mathrm{d}v = 0$	(D) $\iiint_{\Omega} xy \mathrm{d}v = 0$	
6.	设L为直	$x \le y = y_0$ 上人	人点 $A(0, y_0)$ 到点 $B(3, y_0)$	的有向直线段,则 $\int_L 2 d$	y = ()	
	(A) 6		(B) $6y_0$	(C) $3y_0$	(D) 0	
7.	Σ为平面	x + y + z = 1 = 5	三坐标面所围区域表面的	的外侧,则 $\iint_{\Sigma} (2y+3z) \mathrm{d}y$	dz + (x + 2z) dz dx +	
	(y+1) dx	dy = ()				
	(A) 0		(B) $\frac{1}{6}$	(C) $\frac{2}{3}$	(D) $\frac{5}{3}$	
8.	交错级数	$\sum_{n=1}^{\infty} (-1)^{n-1}$	$\frac{1}{3^{n-1}}$ ()			
	(A) 发散		(B) 条件收敛	(C) 绝对收敛	(D) 无法确定	
	填空题 (包	事空 3 分 , 共	24 分)			
		(京齐次线性微分方程是		
		x = 3t - 2	和平面 π : $2x + 3y + 3z$			
2.	直线 L:	y = t + 2	和平面 π : $2x + 3y + 3z$	-8=0的交点是		
		z = 2t - 1				

3. 设 $z = xy^3$,则 dz =______ 6. 设 L 为由三点 (0,0), (3,0), (3,2) 围成的平面区域 D 的正向边界曲线, 由格林公式知 $\int_L (3x-$

2.5 额外的练习 -8/18-

三、综合题 (8 小题, 共 52 分)

- 1. 求方程 $\frac{dy}{dx} = \frac{xy}{1+x^2}$ 的通解. (6分)
- 2. 设 $z = \ln(x^2 y)$, 而 $y = \tan x$, 求 $\frac{dz}{dx}$. (6分)
- 3. 计算 $\iint_D (x^2 + y^2) dx dy$, D 为曲线 $x^2 2x + y^2 = 0$, y = 0 围成的在第一象限的闭区域. (6分)
- 4. 计算三重积分 $\iint_{\Omega} z \, dx \, dy \, dz$, 其中 Ω 是由圆锥面 $z = \sqrt{x^2 + y^2}$ 与球面 $z = \sqrt{2 x^2 y^2}$ 围成的区域. (6分)
- 5. 用高斯公式计算 $\iint_{\Sigma} (a^2x + x^3) \, dy \, dz + y^3 \, dz \, dx + z^3 \, dx \, dy$, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$, 取外侧. (8 分)
- 6. 用格林公式计算 $\oint_C x^2 y \, dx xy^2 \, dy$, 其中 C 为圆周 $x^2 + y^2 = 4$, 取正向. (8分)
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}(2n-1)}$ 的敛散性. (6分)
- 8. 在区间 (-1,1) 内求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数 s(x) . (6 分)

2.4.4 2017-2018 A 答案

- 2.4.5 2017-2018 B
- 2.4.6 2017-2018 B 答案
- 2.5 额外的练习

第3章 线性代数试卷汇总

第4章 概率统计试卷汇总

4.1 2018-2019 14B

_ ,	冼择颢	(毎颗 3	分。	# 21	分)

则 $P\{0 < X < \pi/4, \pi/4 < Y < \pi/2\} =$ ______

- 6. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$,方差 $D(X) = \sigma^2$,则由切比雪夫不等式有 $P\{|X \mu| \ge 3\sigma\} \le$
- 7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2$, $\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$ 中最有效的是______

三、解答题 (共 58 分)

- 1. (10 分)车间里有甲、乙、丙 3 台机床生产同一种产品,已知它们的次品率依次是 0.05、0.1、0.2,产品所占份额依次是 20%、30%、50%.现从产品中任取 1 件,发现它是次品,求次品来自机床乙的概率.
- 2. (10 分) 设随机变量 X 的分布函数为 $F(x) = \begin{cases} k ke^{-x^3}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 试求:
- (1) 常数 k;
- (2) X 的概率密度 f(x).
- 3. (10分)设二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3 \\ 0, & 其他 \end{cases},$$

试求 (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$, 并判断 X 与 Y 是否相互独立.

- 4. (10 分) 已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为 3:1,现种植杂交种 400 株,试用中心极限定理近似计算,结红果的植株介于 285 与 315 之间的概率. $\left(\Phi\left(\sqrt{3}\right)=0.9582,\Phi\left(\sqrt{2}\right)=0.9207\right)$
- 5. (8分)设二维随机变量(X,Y)的分布律为

		Y	
X	-1	0	1
-1	1/8	1/8	1/8
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y).

6. (10 分) 设 $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1\\ 0, & \text{其他} \end{cases}$$

求未知参数 α 的矩估计.

4.2 2018-2019 14B 答案

- . .	选择题 (每题 3 分, 共 2	21分)		
1.	从 0, 1, 2,, 9 中任意选	出3个不同的数字,三个	〉数字中不含0与5的概	率是(D)
	(A) $\frac{1}{15}$	(B) $\frac{2}{15}$	(C) $\frac{14}{15}$	(D) $\frac{7}{15}$
2.			上,则射击次数为3的概率	
	$(A) \left(\frac{3}{4}\right)^3$	(B) $\left(\frac{1}{4}\right)^2 \times \frac{3}{4}$	(C) $\left(\frac{1}{4}\right)^3$	(D) $\left(\frac{3}{4}\right)^2 \times \frac{1}{4}$
3.	设随机变量 X 的概率密	F度 $f(x)$ 满足 $f(-x) = f(-x)$	(x), $F(x)$ 是分布函数, 则	(A)
	(A) $F(-a) = 1 - F(a)$		(B) $F(-a) = \frac{1}{2}F(a)$	
	(C) $F(-a) = F(a)$		(D) $F(-a) = \frac{1}{2} - F(a)$	
4.	设二维随机变量(X,Y)的	的分布律为 $P\{X=i,Y=i\}$	$j\}=c\!\cdot\! i\!\cdot\! j, i=1,2,3,j=$	1, 2, 3, 则 c = (C)
	(A) $\frac{1}{12}$	(B) $\frac{1}{3}$	(C) $\frac{1}{36}$	(D) $\frac{1}{2}$
5.	设随机变量 X 服从均匀	分布, 其概率密度为 $f(x)$		D(X) = (B)
	(A) 3	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) 2
6.	设总体 $X \sim N(0, \sigma^2)$,		的一个样本, \overline{X} , S^2 分别为	
		1 , 服从 $\chi^{2}(n)$ 分布的是 (
	$(A) \sum_{i=1}^{n} X_i^2$	(B) $\frac{\overline{X}}{S/\sqrt{n-1}}$	(C) $\frac{(n-1)S^2}{\sigma^2}$	(D) $\frac{1}{\sigma^2} \sum_{i=1}^{n} X_i^2$
7.	设 X_1, X_2, \ldots, X_n 是来自	目正态总体 $N(\mu, \sigma^2)$ 的	一个样本, σ^2 未知, \overline{X} 是	是样本均值, S^2 =
	$\frac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2$, \mathcal{V}	果 $\overline{X} - k \frac{S}{\sqrt{n}}$ 是 μ 的置信	度为 $1-\alpha$ 的单侧置信下	限,则 k 应取(C)
			(C) $t_{\alpha}(n-1)$	
1.	填空题 (每题 3 分,共 2	21分)		
			()	

- 1. 设 A, B 为随机事件, P(A) = 0.8, P(A B) = 0.3, 则 $P(\overline{AB}) = 0.5$
- 2. 设随机变量 X 的分布律为 $P\{x=k\}=c(0.5)^k, k=1,2,3,\ldots$,则常数 $c=\underline{1}$
- 2. 经随机交量 X 的概率密度为 $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$, 则 $P\{|X| < 0.2\} = \frac{1}{125}$ 4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{c}, & 0 < x < c \\ 0, & \text{其他} \end{cases}$, 则 $\mathbb{E}(X) = \frac{c}{2}$
- 5. 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \sin x \cdot \cos y, & 0 < x < \pi/2, \ 0 < y < \pi/2 \\ 0, & \text{#th} \end{cases},$$

则 $P\{0 < X < \pi/4, \pi/4 < Y < \pi/2\} = \left(\frac{2-\sqrt{2}}{2}\right)^2$

6. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$, $\overline{f \neq D(X)} = \sigma^2$, 则由切比雪夫不等式有 $P\{|X - \mu| \geq$

$$3\sigma\} \leqslant \frac{1}{9}$$

7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2$, $\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$ 中最有效的是 $\hat{\mu}_1$

三、解答题 (共 58 分)

1. (10分)车间里有甲、乙、丙3台机床生产同一种产品,已知它们的次品率依次是0.05、0.1、0.2,产品所占份额依次是20%、30%、50%.现从产品中任取1件,发现它是次品,求次品来自机床乙的概率.

解 设抽取的产品为次品的事件为 A, 抽取的次品来自机床甲的事件为 B_1 , 抽取的次品来自机床乙的事件为 B_2 , 抽取的次品来自机床丙的事件为 B_3 .

根据全概率公式

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$$
$$= 0.05 \times 0.2 + 0.1 \times 0.3 + 0.2 \times 0.5 = 0.14$$

根据贝叶斯公式

$$P(B_2|A) = \frac{P(AB_2)}{P(A)} = \frac{P(A|B_2)P(B_2)}{P(A)} = \frac{0.1 \times 0.3}{0.14} = \frac{3}{14}$$

- 2. (10 分) 设随机变量 X 的分布函数为 $F(x) = \begin{cases} k k e^{-x^3}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$, 试求:
- (1) 常数 k;
- (2) X 的概率密度 f(x).

解

(1) 根据分布函数的性质 $\lim_{x\to+\infty} F(x) = k = 1$

(2)
$$F(x) = \begin{cases} 1 - e^{-x^3}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
, $\mathbb{M} f(x) = F'(x) = \begin{cases} 3x^2 e^{-x^3}, & x > 0 \\ 0, & x \le 0 \end{cases}$

3. (10分)设二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3 \\ 0, & \text{其他} \end{cases},$$

试求 (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$, 并判断 X 与 Y 是否相互独立.

解
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \begin{cases} \int_1^3 \frac{1}{4} \, dy, & 2 \leqslant x \leqslant 4 \\ 0, & 其它 \end{cases} = \begin{cases} \frac{1}{2}, & 2 \leqslant x \leqslant 4 \\ 0, & 其它 \end{cases}$$

同理
$$f_Y(y) = \begin{cases} \frac{1}{2}, & 1 \leq y \leq 3 \\ 0, & 其它 \end{cases}$$
, $f_X(x)f_Y(y) = \begin{cases} \frac{1}{4}, & 2 \leq x \leq 4, 1 \leq y \leq 3 \\ 0, & 其它 \end{cases} = f(x, y)$

因此 X 与 Y 相互独立

4. (10 分) 已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为 3:1,现种植杂交种 400 株, 试用中心极限定理近似计算, 结红果的植株介于 285 与 315 之间的概率. $\left(\Phi\left(\sqrt{3}\right)=0.9582, \Phi\left(\sqrt{2}\right)=0.9207\right)$

解 设结红果的植株的株数为 X, $X \sim B(400, 3/4)$, 则 $\mathbb{E}(X) = 300$, D(X) = 75 根据中心极限定理

$$P(285 \leqslant X \leqslant 315) = P\left(\frac{-15}{\sqrt{75}} \leqslant \frac{X - 300}{\sqrt{75}} \leqslant \frac{15}{\sqrt{75}}\right) = \Phi\left(\sqrt{3}\right) - \Phi\left(-\sqrt{3}\right)$$

= $2\Phi\left(\sqrt{3}\right) - 1 = 0.9164$

5. (8分)设二维随机变量(X,Y)的分布律为

		Y	
X	-1	0	1
-1	$\frac{1}{8}$	1/8	1/8
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y).

解
$$\mathbb{E}(X) = -1 \times \frac{3}{8} + 1 \times \frac{3}{8} = 0$$
,同理通过计算得 $\mathbb{E}(Y) = 0$, $\mathbb{E}(XY) = 0$
因此 $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0$

6. (10 分) 设 $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1\\ 0, & \text{其他} \end{cases}$$

求未知参数 α 的矩估计.

解
$$\mathbb{E}(X) = \int_0^1 (\alpha+1) x^{\alpha+1} \, \mathrm{d}x = \frac{\alpha+1}{\alpha+2}$$
 , $\mu_1 = \overline{X} = \sum_{i=1}^n \frac{X_i}{n}$, 因此 $\alpha = \frac{2\overline{X}-1}{1-\overline{X}}$

第5章 复变函数试卷汇总

5.1 2018-2019A

一、选择题 (每小题 3 分, 共 15 分)

1. $\frac{(\sqrt{3}-i)^4}{(1-i)^8} = ($

$$(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

 $(B) - \frac{1}{8} \left(1 + \sqrt{3}i \right)$

$$(C) \frac{1}{8} \left(-1 + \sqrt{3}i \right)$$

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

2. 设
$$f(z) = 2x^3 + 3y^3i$$
, 则 $f(z)$ ()

(A) 处处不可导

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

(C) 处处解析

(D) 仅在 (0,0) 点可导

3. 下列等式正确的是()

(A) Ln i = $(2k\pi - \frac{\pi}{2})$ i, ln i = $\frac{\pi}{2}$ i

(B) Ln i = $(2k\pi + \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(C) Ln i = $(2k\pi + \frac{\pi}{2})$ i, ln i = $\frac{\pi}{2}$ i

(D) Ln i = $(2k\pi - \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

4. z = 0 是函数 $\frac{1-\cos z}{z-\sin z}$ 的()

(A) 本性奇点

(B) 可去奇点

(C) 二级极点

(D) 一级极点

5. 设 C 为 z = (1 - i)t, t 从 1 到 0 的一段, 则 $\int_{C} \overline{z} dz = ($)

(A) - 1

(B) 1

(C) -i

(D) i

二、填空题 (每小题 3 分, 共 15 分)

1. 若 z + |z| = 2 + i,则 z =2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z-2} dz =$

3. 若 $z = 2 - \pi i$,则 $e^z =$

4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 =$

5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 $F(s) = ______$

三、计算题 (70 分)

1. 设 u(x,y) = x - 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分)

2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)

3. 计算积分 $\oint_{C} \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分)

4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分) 5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)

7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数, 求 a, b, c 的值. (12 分)

8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = \mathrm{e}^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分)

5.2 2018-2019A 答案

一、选择题 (每小题 3 分, 共 15 分)

1. $\frac{(\sqrt{3}-i)^4}{(1-i)^8} = (D)$

 $(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$

(C) $\frac{1}{8}\left(-1+\sqrt{3}\mathrm{i}\right)$

2. 设 $f(z) = 2x^3 + 3y^3i$, 则 f(z) (B)

(A) 处处不可导

(C) 处处解析

3. 下列等式正确的是(C)

(A) Ln i = $(2k\pi - \frac{\pi}{2})$ i, ln i = $\frac{\pi}{2}$ i

(C) Ln i = $\left(2k\pi + \frac{\pi}{2}\right)$ i, ln i = $\frac{\pi}{2}$ i

4. z = 0 是函数 $\frac{1-\cos z}{z-\sin z}$ 的 (D)

(A) 本性奇点

(B) 可去奇点

(C) 二级极点

 $(B) - \frac{1}{8} \left(1 + \sqrt{3}i \right)$

(D) 仅在 (0,0) 点可导

(B) Ln i = $(2k\pi + \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(D) Ln i = $(2k\pi - \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

(D) 一级极点

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

5. 设 C 为 z = (1 - i)t, t 从 1 到 0 的一段, 则 $\int_{C} \overline{z} dz = (A)$

(A) - 1

(B) 1

(C) -i

(D) i

二、填空题 (每小题 3 分, 共 15 分)

1. 若 z + |z| = 2 + i,则 $z = \frac{\frac{3}{4} + i}{2}$ 2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z-2} dz = 0$

3. 若 $z = 2 - \pi i$,则 $e^z = -e^2$

4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 = -\frac{1}{2}$

5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 $F(s) = \frac{1}{s^2+1}$

三、计算题 (70 分)

1. 设 u(x, y) = x - 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分) 解解析函数的 u, v 必定满足 C. - R. 方程, 即

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

 $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 1 - 2y$, $\frac{\partial v}{\partial y}$ 对 y 积分得 $v = y - y^2 + \varphi(x)$ $\frac{\partial u}{\partial y} = -2x = -\frac{\partial v}{\partial x} = -\varphi'(x)$, 可以得出 $\varphi(x) = x^2 + C$

由于 f(0) = 0, 因此 C = 0, 即 $f(z) = x - 2xy + i(y - y^2 + x^2)$

2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)

解 根据高阶导数公式 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$, 那么

$$\oint_C \frac{2e^z}{(z-0)^5} dz = \frac{2\pi i}{4!} (2e^z)^{(4)} \Big|_{z=0} = \frac{\pi i}{6}$$

3. 计算积分 $\oint_C \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分)

$$\oint_{C} \frac{3z+5}{z^{2}-z} dz = 2\pi i \operatorname{Res}_{z=0} \frac{3z+5}{z(z-1)} = 2\pi i \left. \frac{3z+5}{z-1} \right|_{z=0} = -10\pi i$$

4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分) 解 对 $\cos z$ 进行洛朗展开, $\cos z = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$, 那么 $1 - \cos z = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n}}{(2n)!}$ 那么 $\frac{1-\cos z}{z^3} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n-3}}{(2n)!}$,根据洛朗系数公式, $\operatorname{Res}_{z=0}^{\frac{1-\cos z}{z^3}} = c_{-1} = \frac{1}{2}$

5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

解

$$\operatorname{Res}_{z=0} \frac{2z^2 + 1}{z^2 + 2z} = \frac{2z^2 + 1}{z + 2} \bigg|_{z=0} = \frac{1}{2}, \operatorname{Res}_{z=-2} \frac{2z^2 + 1}{z^2 + 2z} = \frac{2z^2 + 1}{z} \bigg|_{z=-2} = -\frac{9}{2}$$

6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分) 解

$$f(z) = \frac{z}{4} \left(\frac{1}{z - 6} - \frac{1}{z - 2} \right) = \frac{z}{4} \left(-\frac{1}{6} \frac{1}{1 - z/6} - \frac{1}{z} \frac{1}{1 - 2/z} \right)$$
$$= \frac{z}{4} \left(-\frac{1}{6} \sum_{n=0}^{\infty} (z/6)^n - \frac{1}{z} \sum_{n=0}^{\infty} (2/z)^n \right)$$
$$= -\frac{1}{4} \left(\sum_{n=0}^{\infty} (z/6)^{n+1} + \sum_{n=0}^{\infty} (2/z)^n \right)$$

7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数, 求 a, b, c 的值. (12 分) 解 若 f(z) 为解析函数, 则其实部、虚部满足 C. – R. 方程, 设 $u = ay^3 + bx^2y$, $v = x^3 + cxy^2$, 则有

$$\begin{cases} \frac{\partial u}{\partial x} = 2bxy = 2cxy = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = 3ay^2 + bx^2 = -3x^2 - cy^2 = -\frac{\partial v}{\partial x} \end{cases}$$

解得

$$\begin{cases} a = 1 \\ b = c = -3 \end{cases}$$

8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = \mathrm{e}^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分)

解 设 $\mathcal{L}[x] = X(s)$, 对等式两边作拉普拉斯变换

$$\mathcal{L}[x'' + 6x' + 9x] = s^2 X(s) - sx(0) - x'(0) + 6sX(s) - 6x(0) + 9X(s)$$
$$= s^2 X(s) + 6sX(s) + 9X(s) = \frac{1}{s+3}$$

那么有 $X(s) = \frac{1}{(s+3)^3}$, 根据拉普拉斯变换的微分性质 $F''(s) = \mathcal{L}[t^2 f(t)]$

$$\frac{1}{(s+3)^3} = \frac{1}{2} \left(\frac{1}{s+3} \right)^{\prime\prime} = \frac{\mathcal{L}[t^2 e^{-3t}]}{2}$$

那么
$$x(t) = \frac{t^2 e^{-3t}}{2}$$