Lecture 7

Annotation

The whole process

Annotation

Finding genomic features using computation and experimental methods

- Genes
- Repeat sequences
- 3. Transcriptional regions
- 4. Other

levels of annotation

- Gene prediction
- Function: Predictions of domains
- General Role and interaction: What pathways involved in?

What are genes?

DNA segments that produce functional products

- Manly proteins!
- RNA molecules!
- RNAi (interfering RNA)
- rRNA (ribosomal RNA)
- tRNA (trasnfer RNA)

Prokaryotic vs Eukaryotic gene model

Prokaryotic	Eukaryotic
Small genomes, high gene density	Large genomes, many regions without coding
Operons, many genes in one transcript	Operons, monocistronic. Some exceptions
Open reading frames. One OFR per genes. ORFs begin with start (ATG, GTG, TTG), end with stop codon (TAG, TAA, TGA)	Posttranscriptional modification

Prokaryotic gene model

Eukaryotic gene model

Gene identification

- 1- Homology-based gene prediction
- -Similarity search (BLAST!)
- -Genome browsers
- -RNA evidence (ETSs)

2- *Ab initio gene prediction*Gene predictions programs

Homology-based gene prediction

Similarity search:

Genome browsers:

AGTGAGATGGGACGACCCT New sequence

AGTGAGATGGGACGACCCTAGTGAGATGGGACGACCCT reference genome in genome Browsers: NCBI Map viewer, Ensembl, Apollo, UCSC-GB

RNA evidence: ETS

Ab initio gene prediction

Prokaryotes

ORF detectors

ATGgtgtgg.....ttggggTGA
Start stop

Eukaryotes

Position, extent and direction though promoter and polyA-signal

Promoter seqSplice-seq.....PolyAAA

Tools

ORF detectors

Gorf: http://www.ncbi.nih.gov/gorf/gorf.html

Promoter predictors

ICG TATA-Box predictor

BDGP <u>fruitfly.org/seq_tools/promoter.html</u>

Virtual footprint (for bacteria) http://www.prodoric.de/vfp

Softberry (for bacteria)

http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb

PolyA signal predictors

<u>CSHL: argon.cshl.org/tabaska/polyadq_form.html</u>

Splice site predictors

BDGP: http://www.fruitfly.org/seq_tools/splice.html

Gene prediction programs

Rule-based programs

Use specific set of rules to predict the genes(GeneFinder)

Hidden Markov Model-based programs

Use probabilities of states and transitions to predict (genscan, genomeScan, glimmer)

Annotation tools

- Blast searches (Blast)
- HHM models of specific genes or gene families (PFAM)
- Cellular location (PBSORT, SignalP)
- Biochemical pathwayd/subsystem informtaion (KEGG)

Gene Ontology (GO) http://www.geneontology.org/

The GO consortium describes gene productys with a standard vocabulary.

Biological process

Cellular component

Molecular function

For example: cytochrome C is described with

Biological process: phosphorylation GO:0016310

Cellular component: mitochondrial inner membrane GO:0005743

Molecular function: oxido-reductase activity GO:0016491

Each of these has a GO term

COG and KOG Cluster of orthologs group

 http://www.ncbi.nlm.nih.gov/books/ NBK21090/

 Phylogenetic Classification of Proteins from Complete Genomes

Tools for annotation

Prokka

RAST server

- http://rast.nmpdr.org/
- Rapid annotation using subsystem techology
- For prokaryotes.

Genome browsers, visualization and curation tools

The basic steps in annotating a genome using RAST

Artemis genome browser

 https://www.sanger.ac.uk/resources/ software/artemis/

