

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Alexandros Filotheou

School of Electrical and Computer Engineering Aristotle University of Thessaloniki, Greece

Setup & Motivation

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
 - -environment repetitions
 - -map distortions
 - -sensor noise
 - -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1) and left-hand bottom figures)

- scales with position and orientation error
- is computationally cheap at $\sim O(\text{sensor rays})$

