

Application Packet

中原大學・資訊工程學系 陳筱薇

目錄

專題研究報告	1
智慧塗鴉:感知相對位置的神經網路	
應用文字辨認技術於改善電子設計自動化	21
學術論文	40
研究與讀書計畫	43
就讀動機	44
研究興趣	45
讀書計畫	46
自傳相關	48
個人簡歷	49
歷年成績	50
優良表現	50
科技部大專生計畫	51
專題研究	51
前五名資工專業科目	52
作品集	
自傳	53
個人背景	54
求學歷程	
校外競賽	55
專題細節	
研討會	
課外經驗	
附件	58
作品集	59
相關證明	

專題 研究報告 Report

就讀動機

經過大學四年資工專業知識的訓練,以及投入專題研究、參與各項競賽以及研討會等等過程,讓我不僅僅是學習理論,更喜愛親自撰寫程式解決問題。在教授的指導下,我接觸了電子零件圖的影像文字區域抓取,以及實際對相對位置神經網路進行調參,在專案進行的過程中,深深感受到AI實為解決問題的一大工具,使我更加確信未來想繼續投入資訊工程領域,汲取更多知識。深知自己在資訊領域的知識深度遠遠不足,因此選擇繼續於研究所深造,滿足我對知識的渴求,增進自身的研究能力。

• 選擇中央大學資訊工程學系碩士班之動機

中央大學蔚為全國最知名的資訊人才搖籃,在資訊科學的教育與研究上提供了完整的系統,並著重培育人才及研發資訊科技,對於資訊領域的發展有重大貢獻,若有幸能錄取中央大學「資訊工程學系碩士班」,堅信我能善用這些資源,得到最大幅度的成長,希望貴校能賜予這個機會,學生必會盡我所能在資工領域做出貢獻。

前瞻技術發展

多項AI課程與活動於中央舉辦,積極培養AI人才,注重 高等資訊技術的研發

訓練專業人才

著重培育人才及研發、傳承 資訊科技,訓練具有開創性 之資訊人才

產學合作機會

國內大學中具有特色及聲譽 的系所,創系年代悠久,具 備完整教育系統及學術實力

拓展國際視野

多國姐妹校與交換學生資源 ,培養運用資訊科技解決問 題之能力,增強國際競爭力

研究興趣

現今科技因硬體效能的進步,以及各國積極推動相關研究,使人工智慧領域蓬勃發展,從一開始的機器學習算法,如Support Vector Machine(SVM)、Decision tree及K-means等,以及後來的深度學習領域,如CNN、RNN及GAN等神經網路,均有相當成熟的技術表現。但仍有許多問題無法透過這些算法來解決,因此專家們持續提出新的類神經網路,像是GNN、CapsNet等等,以求解決更複雜的問題。因先前接觸之專題研究,學生目前對人工智慧領域較有興趣,於以下研究方向有初步認識,不特別侷限在這幾項領域,學生對於資訊領域相關都抱持極大的熱忱,能夠投入研究心力並運用所學是學生所求,非常期望進入研究所後能與指導教授加以討論,探索各項領域並找到主要研究方向。

• 影像處理與文字辨識

神經網路運用在影像上的應用十分多元,包含圖片分類及文字偵測等等,對於自然場景文字檢測、光學字元識別等,可使用到CNN、CTPN或EAST等網路架構進行文字偵測,配合LSTM、CRNN等模型做文字識別。 貴系蘇柏齊教授、范國清教授、蘇木春教授及曾定章教授都有針對影像處理領域進行研究,與學生目前研究有極大關連,學生希望以研究為基礎繼續發展相關方向。

• 物體相對位置學習

針對神經網路是否能學習到多重物體相對位置,在近幾年火紅發展的圖神經網路(GNN)能夠建立物體與物體之間的關係,而CapsNet則是能改善CNN無法保留位置資訊的缺點,對於計算機視覺相關研究有極大的幫助,而貴系大部分教授都有針對人工智慧進行研究,學生希望有幸能受貴系教授的指導,延續目前專題研究之內容,加以研究GNN及CapsNet相關論文,並應用在物體相對位置的學習上,往該領域持續發展。

學習方向	目標	方法
	加強英文語言能力	大量閱讀英文雜誌、論文,並考取 TOEIC金色證書。
	精進程式實作能力	參與程式檢定或競賽,如CPE、黑 客松等。
能力加強	多方接觸AI相關知識	修習類神經網路、機器學習等課程 ,透過線上教材自我學習。
	參與資訊競賽、活動	與他校參與人員進行切磋交流, 提升資訊專案實作能力。
	練習Kaggle比賽題目	加強機器學習、深度學習方面的 實作能力。
	參與專題競賽、投稿	持續完善專題功能,累積專題研究經驗。
實務經驗	爭取實習機會	參與企業實習,增進未來職場競 爭力。
	累積個人作品集	實作程式作品,增加個人專案經驗。
	聯絡指導教授	提前請益規劃相關研究及學習事項。
瞭解 研究環境	閱讀國內外論文、期刊	針對研究領域閱讀相關論文,拓展 知識廣度與深度。
	參加研討會	觀摩論文發表,提前學習論文研究 之方式,同時瞭解領域發展現況。

時間	學習方向	目標	方法				
	研究能力	確定研究方向	找到欲研究之主題,與指導教授 討論,確立研究方向。				
		閱讀期刊、論文	大量閱讀相關領域的論文,培養 知識敏感度,作為研究參考。				
		參加研討會	即時了解新技術,學習他人研究模式。				
碩一	hL 35 7 bu ā48	英語論文寫作、閱讀	透過論文練習流暢閱讀英文。				
	外語加強	加強英語聽說	使用線上教材VoiceTube多加練習。				
		參加程式競賽、檢定	精進程式語言與團隊合作能力。				
	專業知識	精進專案實作能力	承接專案、計畫,檢測自身功力 水準,持續學習。				
		修習研究所課程	在碩一修習畢業所需學分,保留 時間撰寫論文並進行研究。				
	加焚战士	持續進行研究	與指導教授持續進行討論。				
碩二	研究能力	論文撰寫	完善研究方法及記錄。				
1织	增加個人作品		累積自身作品,與未來就業做 接軌。				
	專業知識	參與AI競賽	與各領域的專家切磋交流,寬 廣自身視野。				
碩三	碩三 學生深知自己於資訊領域的知識有待加強,為學習相關知識並完善研究,學生願意付出更多時間與努力,精進自身專業能力。						
畢業後	畢業後 以申請中央大學博士班為目標,保持進行學術研究的熱忱,繼續投入資訊領域研究,希望能對資訊工程領域做出貢獻。						

陳筱薇 Hsiao Wei Chen

就讀中原大學資訊工程學系,熟悉C/C++、Java、Python等程式語言,曾有發表論文之經歷。研究領域包含影像處理、深度學習等。

https://github.com/

@123@gmail.com

歷年成績

分數	88.28	94.11	89.74	91.95	94.95	95.25	
學期	106-1	106-2	107-1	107-2	108-1	108-2	

106、107、108學年度共獲得五次「書卷獎」

總成績 92.35 / 班排 2/50(4.00%) / 系排 5/102(4.90%)

優良表現

專業科目成績優異

25項資工專業科目獲前五名 其中高達17項獲第一名,共11項獲得獎項 通過CPE程式檢定A級(4-5題).排名比例8.6%

論文 - An Application of Text Detection and Recognition for EDA 發表於「2020 CVGIP」、「IEEE 2020 ICCE-TW」研討會於「IEEE 2020 ICCE-TW」由本人全程英文報告與答覆問題

研究計畫-應用文字辨認技術於改善電子設計自動化通過「109年科技部大專生研究計畫」(本系僅5名通過)

全國性競賽 - 2019富比庫AI校園競賽第三名

52支隊伍中唯一晉級決賽之私立學校 文字區域準確率高達93.36%,OCR準確率接近80% An Application of Text Detection and Recognition for Electronic Design Automation

電子設計自動化產業(EDA)發展幾十年來,針對電子零件資料處理階段,仍需經過繁複作業,導致效率低出錯率高。本計畫提出一種文字辨認系統,透過電腦視覺偵測影像中的文字,運用深度學習技術辨識文字,自動建立索引與文字的表格檔,提升工作效能。

專題研究

智慧塗鴉: 感知相對位置的神經網路

Smart Draw: a position-aware neural network

近年來,隨著人工智慧的發展,類神經網路成為專家致力研究的 重要範疇,本專題欲探討類神經網路是否能判別物體相對關係,包括 物體間的方位、距離及大小比例等等,提出一種以監督學習方式,使 類神經網路學習正確之物體相對關係的方法,生成完整之塗鴉。

前五名資工專業科目

科目	排名	成績	科目	排名。成績
計算機概論(一)	1	96	資料科學與應用	1 97
計算機概論(二)	1	99	計算機網路	1 99
微積分(上)	1	99	電路實驗	1 97
微積分(下)	2	97	電子實驗	1 99
資訊日文	1	100	機率與統計(一)	1 95
系統程式	1	99	機率與統計(二)	5 81
作業系統	1	99	計算機組織	2 93
專題實驗	1	99	資料結構	3 90
程式語言	1	99	資料結構與演算法	3 96
嵌入式系統實驗(一)	1	94	工程數學(一)	3 89
嵌入式系統實驗(二)	1	92	物件導向程式設計	5 82
組合語言與嵌入式系統	1	93	演算法分析	5 96
資訊工業講座(一)	1	93	前五名共25項、第一	-名佔17項

作品集

科目	名稱	二具
程式語言	Our-C interpreter-約5000行,可執行簡單C程式(含迴圈和函式)	C/C++
實習作品	運用Katalon實作網頁自動化測試	Java/ Katalon
資料科學與應用	使用機器學習算法進行App分析	Python
系統程式	SIC/XE Assembler	C/C++
作業系統	CPU Scheduling	C/C++
作業系統	MultiProcess與MultiThread排序時間比較	Java
實習作品	結合H2OUVE實作BIOS設定更改介面	Python
計算機組織	5-Stage Pipeline CPU	Verilog
作業系統 作業系統 實習作品	CPU Scheduling MultiProcess與MultiThread排序時間比較 結合H2OUVE實作BIOS設定更改介面	C/C++ Java Python

作品皆置於github上(https://github.com/

自傳 Autobiography

個人背景

我在成長過程中培養獨立思考的能力,憑藉自身學習上的努力,使我在大學四年中奠定理論知識、程式撰寫、研究開發及實務操作等實力。

求學歷程

在資工領域中,不僅僅是成績優異,我也通過CPE檢定A級(4-5題),程式方面具備充足實力。其中在「程式語言」必修課,需使用C++開發約5000行的類C語言直譯器,可處理簡單C程式(含迴圈及functions)。這門課對本系多數人來說非常困難(每年不及格人數達4-5成)。此作業困難在於須通過隱藏數據測試(只顯示程式有錯,不給看數據及輸出結果),本人於此作業拿到滿分,且本班僅兩位滿分。

▲ 程式實作分數滿分

▲ 程式分數組距圖

校外競賽

本人與團隊成員參與全國性校園競賽—「2019 富比庫AI校園競賽」,獲得第三名的佳績。針對EDA中電子零件資料處理階段,將圖像轉換文字結果的過程自動化,目前文字區域抓取準確率達93.36%。實作細節可參考大專生計畫報告-「應用文字辨識技術於改善電子設計自動化」。

▲ 富比庫競賽簡報部分 (全程由本人報告)

▲ 富比庫競賽第三名頒獎

專題細節

我們設計一個機器學習的應用,使用者指定物體,程式會自動將物體擺放至畫布中適當位置。資料集擷取角度、邊界關係、距離比及寬高比等資訊,提供MLP神經網路訓練,並運用最大似然估計解決問題。本專題細節可參考專題研究報告-「智慧塗鴉:感知相對位置的神經網路」。

▲ 選擇物件(cat&dog)

▲ 產生結果圖

研討會

本人與指導老師合著之論文「An Application of Text Detection and Recognition for Electronic Design Automation」發表於「IEEE 2020 ICCE-TW」及「2020 CVGIP」,這兩場研討會使我對新技術有更深入的瞭解,相信未來必能在碩士論文研究上好好表現。

IEEE 2020 ICCE-TW

此次國際性研討會由我負責上台發表,全程使用英文報告與答覆問題,並 學習到Deep Learning的研究現況,是一次非常寶貴的參與經驗。

▲ 報告過程

▲ ICCE-TW合照

2020 CVGIP

這次CVGIP論文發表是由另一位研究者負責報告,而我則協助回答問題, 發表收到許多回饋,並對人工智慧有更深入的認識,使我受益匪淺。

▲ 問答過程

▲ CVGIP合照

課外經驗

• 營邦企業-新技術工程部實習生

實習過程中我涉獵了軟、韌、硬體三大領域,使用自動化測試提升測試品質,開發出具商業價值的程式碼,優秀表現使我獲得107學年度營邦企業實習獎學金。

▲ server硬體組裝實作

▲ 部門會議

▲ 實習成果發表會

• 資工系學會幹部

任職資工系學會美宣組幹部期間,我總共擔任12個活動工作人員,並負責 資工系聚會的總協。本屆資工系學會獲得108學年度全國評鑑特優及校內評鑑 第一名的佳績。

▲ 資工系聚會活動(擔任總協)

全國評鑑特優& 校內評鑑第一名


```
使用工具:
                   C/C++(個人作品)
   簡介
                    一個約5000行的類C語言直譯器,可處理簡單C程式(含迴圈及functions)
                      Our-C running ... > int gA, gY ; // 'gY', a to be used global Definition of gA entered ...
                      Definition of gY entered ...
                      > void F111( int gA ) {
                          int gX, b
                          gX = b = 12 + gY;
                          cout << "F2(): gX : " << gX << " ; gA : " << gA << "\n" ;
                         gY = gA * 2;
                         gX = 180;
                       } // F111()
                      Definition of F111() entered ...
                      > gY = 3;
                      Statement executed ...
                      > gA = 20;
                      Statement executed ...
                      > F111( gA )
                      F2(): gX : 15 ; gA : 20
   成果
                      Statement executed ...
                      > Done();
                      Our-C exited ...
                                              ▲ 互動式介面結果輸出(functions部分)
                                                                    > int i, a[30];
                         Definition of i entered ...
Definition of a entered ...
                          > i = 0;
                         Statement executed ...
                         > while ( i < 30 ) {
                          a[i] = i;
                                                                    int y;
y = AddTwo(x);
return y + 3;
                          Statement executed ...
                                                                    Statement executed ...
> int x;
Definition of x entered ...
> x = 100;
Statement executed ...
> x = x + AddFive( x );
Statement executed ...
> if (x > 200)
    x = AddTwo( 300 );
else
    x = x + AddFive( 200 ) + 5;
Statement executed ...
> if (x AddTwo( x ) > 200 )
    x = 5 + AddThree( 200 );
ine 2; undefined identifier 'AddThree'
> else
Line 1: unexpected token 'else'
> x = x + AddFive( 200 ) + 5;
Statement executed ...
                                                                     Statement executed ...
                          > i = 0;
                          Statement executed ...
                          > while ( i < 5 ) { a[i] = i+1;
                          cout << a[i] << '\n';
                          i++;
                         Statement executed ...
                                            ▲ 互動式介面結果輸出(迴圈及error檢查部分)
```

使用工具 Java/Katalon(團隊作品)

簡介

與同期實習生兩人共同合作,使用網頁自動化測試工具Katalon,結合Java程式語言撰寫自動化測試之腳本,針對公司網頁進行多項功能測試。

▲ 測試公司網頁之群組功能-結果報告資訊 (三項測試成功,兩項測試失敗)

成果

▲ 測試出現error時的網頁截圖 (此圖為ARMOR網頁測試中的截圖)

	ARMOR	TOAST	RMC	ВМС
Test cases	38	5	3	10

▲ 各網頁完成之自動化測試腳本個數 (共四個網頁:ARMOR, TOAST, RMC, BMC) (一個腳本約測試1~2項功能,共56個腳本)

使用工具

Python(團隊作品)

簡介

針對Play Store上的App相關資訊,進行資料對照及分析,根據分析結果篩選需要的特徵,結合機器學習算法推測App是否熱門(評價>4為熱門)。

▲ 各種類App數量

▲ App高評價及低評價數量 (評價>4標記為1, 評價<=4標記為0)

成果

▲ App各項特徵混淆矩陣

Classfier_name	train_score	test_score
SVC	0.949655	0.623874
DecisionTree	0.682507	0.665278
RamdomForest	0.693869	0.68112
LGBM	0.770228	0.681811
XGB	0.93539	0.671248

▲ 使用5種分類器算法之準確率 (驗證方式為交叉驗證k=10)

使用工具	C/C++(個 <i>)</i>	(作品)						
簡介	將SIC或SIC/XE的語法做檢查,並翻成object code,架構上分成pass1和 pass2。pass1負責切token並檢查語法是否正確,pass2則把指令翻成 object code。							
成果	COPY START FIRST STL LDB BASE CLOOP +JSUB LDA COMP JEQ +JSUB J ENDFIL LDA STA LDA STA +JSUB J	RETADR #LENGTH LENGTH RDREC LENGTH #0 ENDFIL WRREC CLOOP EOF BUFFER #3 LENGTH WRREC	Line 5 10 12 13 15 20 25 30 35 40 45 50 55 60 65 70	Loc 0000 0000 0003 0006 000A 000D 0010 0013 0017 001A 001D 0020 0023 0026 002A	Source COPY FIRST CLOOP ENDFIL	statemen START STL LDB BASE +JSUB LDA COMP JEQ +JSUB J LDA STA LDA STA +JSUB J	O RETADR #LENGTH LENGTH RDREC LENGTH #0 ENDF IL WRREC CLOOP BOF BUFFER #3 LENGTH WRREC @RETADR	Object code 17202D 69202D 4B101036 032026 290000 332007 4B10105D 3F2FEC 032010 0F2016 010003 0F200D 4B10105D 3E2003

CPU Scheduling

作業系統課程

結合H20UVE實作BIOS設定更改介面

實習作品

Verilog(團隊作品) 使用工具 使用Verilog HDL與Modelsim模擬器,以ALU Design 為基礎,設計一個 簡介 Pipelined MIPS-Lite CPU,內含16道指令(add, sub, and, or, sll, slt, lw, sw, beq, bne, j, multu, mfhi, mflo, nop) ° RegWrite IF/ID ID/EX EX/MEM MEM/WB 架構圖 成果 ▲ waveform(含11道指令) 輸出(含11道指令)

有限狀態機 (FSM) 模擬自動販賣機

邏輯設計實驗課程

