INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.12 - Electrónica III

Trabajo Práctico $N^{\circ}1$

Grupo 4

Bertachini, Germán	58750
Dieguez, Manuel	56273
Galdeman, Agustín	59827
LAGUINGUE, Juan Martín	57430

PROFESORES
DEWALD, Kevin
WUNDES, Pablo

Presentado el 5 de Septiembre de 2019

Índice

1.	Ejercicio 3 - Implementación de módulos en verilog	2
	1.1. DEMUX de 4 salidas	2
	1.2. ENCODER de 4 entradas	8
2.	Ejercicio 4 - Conversor a codigo de Gray	12

1. Ejercicio 3 - Implementación de módulos en verilog

A continuación, se implementarán los circuitos pedidos en lenguaje verilog, comentando como fue su desarrollo e emplementación.

1.1. DEMUX de 4 salidas

$$A = I \overline{S_1} \overline{S_0}$$

$$A = I S_1 \overline{S_0}$$

$$A = I \overline{S_1} S_0$$

$$A = I S_1 S_0$$

D	C_1	C_0	O_3	O_2	O_1	O_0
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

1.2. ENCODER de 4 entradas

$$S_0$$
 A_{AB}
 O_0
 O

$$S_0 = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D}$$

$$S_1$$
 A_B
 O_0
 O_1
 O_1
 O_1
 O_2
 O_3
 O_4
 O_4
 O_5
 O_5
 O_6
 O_6
 O_7
 O_8
 O_9
 O_9

$$S_0 = \overline{A}B\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D}$$

D	C	B	A	S_1	S_0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

2. Ejercicio 4 - Conversor a codigo de Gray

Para esté ejercicio, realizamos el desarrollo de un circuito lógico capaz de convertir un número binario de 4 bits a su equivalente de código de Gray, esto resulta en la siguiente tabla de verdad:

Entrada				Salida			
X_1	X_2	X_3	X_4	$Y_1 \mid Y_2 \mid Y_3 \mid Y_4$			
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

De la tabla de verdad obtenemos las siguientes ecuaciones en función de los mintérminos:

$$Y_4 = m_1 + m_2 + m_5 + m_6 + m_9 + m_{10} + m_{13} + m_{14}$$

$$Y_3 = m_2 + m_3 + m_4 + m_5 + m_{10} + m_{11} + m_{12} + m_{13}$$

$$Y_2 = m_4 + m_5 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11}$$

$$Y_1 = m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15}$$

Que al reemplazar cada mintérmino por su correspondiente expresión obtenemos:

$$Y_4 = \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot X_2 \cdot X_3 \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + X_1 \cdot X_2 \cdot \overline{X_3} \cdot \overline{X_4}$$

$$Y_3 = \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot X_4 + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot \overline{X_4} + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot \overline{X_4} + \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3}$$

Tenemos unas funciones muy larga y como las tenemos expresadas en mintérminos podemos simplificarlas por medio del mapa de Karnaugh. Ésto nos da a lugar a los siguientes mapas de Karnaugh y funciones de salida simplificadas:

$$Y_4 = X_3 \cdot \overline{X_4} + \overline{X_3} \cdot X_4$$
 Mapa de Karnaugh y formula de Y_4

X_3X_4	$X_1 X_2 \\ 00$	01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	1

$$Y_3 = X_2 \cdot \overline{X_3} + \overline{X_2} \cdot X_3$$

Mapa de Karnaugh y formula de Y_3

X_3X_4	$X_1 X_2 \\ 00$	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

X_3X_4	$X_1 X_2 \\ 00$	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	0	1	1
10	0	0	1	1

$$Y_2=X_1\cdot\overline{X_2}+\overline{X_1}\cdot X_2 \qquad Y_1=X_1$$
Mapa de Karnaugh y formula de Y_2
 Mapa de Karnaugh y formula de Y_1

De los valores obtenidos podemos realizar el siguiente circuito conformado por compuertas OR, AND y NOT:

Figura 1: Implementación del conversor a código de Gray