Cognome		
Nome		Non scrivere qui
Matricola		
Laurea	CIV AMB GEST INF ELN TLC MEC	1 2 3 4 5 6

Università degli Studi di Parma Dipartimento di Ingegneria e Architettura Esame di Analisi Matematica 2 — Soluzioni A.A. 2016-2017 — PARMA, 21 APRILE 2017

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di tre ore. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. Sia $K = \{(x,y): x^2 + y^2 \le 9 \text{ e } 0 < x < y^2\}$. Quale tra le seguenti affermazioni è falsa?

- (a) (0,0) è di accumulazione per K. (b) $(0,1) \times \{1\} \subset K$. (c) (1,1) è interno a K.

Soluzione.

L'insieme K è rappresentato nella figura a fianco. I punti A = (0,0) e B = (1,1)non appartengono a K (appartengono al bordo di K). Quindi, l'affermazione (a) è vera e l'affermazione (c) è falsa. Inoltre, per $x \in (0,1)$ risulta $x^2 + 1 < 9$ e 0 < x < 1 e quindi il segmento $(0,1) \times \{1\}$ è contenuto in K. L'affermazione falsa è quindi (c).

Esercizio 2. La curva di equazione polare $\rho(\theta) = \theta^2 e^{\theta}$, $\theta \in [-\pi, \pi]$,

- (a) è semplice e chiusa ma non è regolare.
- (b) non è semplice ma è chiusa e regolare.
- (c) è semplice ma non è né chiusa né regolare.
- (d) è semplice e regolare ma non è chiusa.

Soluzione. Da $\rho(-\pi) \neq \rho(\pi)$ si deduce che γ non è chiusa e questo esclude le risposte (a) e (b). Inoltre, da $\|\gamma'(\theta)\|^2 = [\rho(\theta)]^2 + [\rho'(\theta)]^2 = 0$ per $\theta = 0$ si ricava che γ non è regolare e questo esclude la risposta (d). Resta solo la risposta (c) e effettivamente γ è una curva semplice poiché risulta $\rho(\theta) = 0$ solo per $\theta = 0$ e $\rho(-\pi) \neq \rho(\pi)$. La risposta corretta è quindi (c).

Esercizio 3. Sia $f \in C^1(\mathbb{R}^2)$ una funzione con gradiente $\nabla f(1,1) = (-3,1)$. Per quale delle seguenti curve $\gamma: [0,1] \to \mathbb{R}^2$ la funzione $\varphi(t) = f(\gamma(t)), t \in [0,1]$, verifica la condizione $\varphi'(0) > 0$?

(a)
$$\gamma(t) = (\cos t \cdot 1 + \sin t)$$

(a)
$$\gamma(t) = (\cos t, 1 + \sin t);$$
 (b) $\gamma(t) = (1 - t^2, 1 + t^3);$ (c) $\gamma(t) = (e^t, 2t + 1).$

(c)
$$\gamma(t) = (e^t, 2t + 1)$$

Soluzione. Per tutte tre le curve γ risulta $\gamma(0)=(1,1)$ mentre si ha $\gamma'(0)=(0,1), \gamma'(0)=(0,0)$ e $\gamma'(0) = (1,2)$ nei tre casi (a), (b) e (c). Per la formula della derivata della funzione composta si ha

$$\varphi'(0) = \langle \nabla f(1,1), \gamma'(0) \rangle$$

e da ciò segue $\varphi'(0) = 1$, $\varphi'(0) = 0$ e $\varphi'(0) = -1$ nei tre casi. La risposta corretta è quindi (a).

Esercizio 4. Sia

$$K = \{(x, y, z) : 9x^2 + y^2 + z^2 - xy \le 5\}$$

e sia $f: \mathbb{R}^3 \to \mathbb{R}$ la funzione definita da

$$f(x, y, z) = x - 2y + z,$$
 $(x, y, z) \in \mathbb{R}^3.$

- (a) Determinate massimo e minimo globali di f su K.
- (b) Determinate l'insieme f(K).

Soluzione. (a) L'insieme K è chiuso poiché risulta $K = \{\Phi \leq 0\}$, essendo Φ il polinomio definito da

$$\Phi(x, y, z) = 9x^2 + y^2 + z^2 - xy - 5, \qquad (x, y, z) \in \mathbb{R}^3,$$

ed è anche limitato poiché dalla disuguaglianza $xy \leq (x^2 + y^2)/2$ valida per ogni x e y risulta

$$(x,y,z) \in K$$
 \Longrightarrow $5 \ge 9x^2 + y^2 + z^2 - xy \ge 17x^2/2 + y^2/2 + z^2 \ge (x^2 + y^2 + z^2)/2$.

L'insieme K è formato dai punti (x, y, z) racchiusi dall'ellissoide di semiassi $a = 5 + \sqrt{65}/2$, $b = 5 - \sqrt{65}/2$ e c = 1 nelle direzioni delle rette individuate dai vettori

$$v_1 = (1, 8 - \sqrt{65}, 0);$$
 $v_2 = (1, 8 + \sqrt{65}, 0);$ $v_3 = (0, 0, 1).$

La funzione f è lineare e quindi è di classe $C^{\infty}(\mathbb{R}^3)$. Pertanto, f assume minimo e massimo globale su K per il teorema di Weierstrass. Inoltre, si ha evidentemente

$$(x, y, z) \in K \iff (-x, -y, -z) \in K$$

 $(x, y, z) \in \mathbb{R}^3 \implies f(-x, -y, -z) = -f(x, y, z)$

e quindi i punti di minimo e di massimo globali sono antipodali e il minimo e il massimo globali opposti tra loro.

Per determinare tali punti osserviamo che il gradiente di f di non si annulla in alcun punto di \mathbb{R}^3 e quindi il massimo e il minimo globale di f su K devono essere assunti sul bordo ∂K . Poiché risulta $\partial K = \{\Phi = 0\}$ con $\nabla \Phi(x,y,z) \neq (0,0,0)$ in ogni punto $(x,y,z) \in \partial K$, l'insieme ∂K risulta essere una 2-superficie regolare in \mathbb{R}^3 . Per il teorema dei moltiplicatori di Lagrange, nei punti di massimo e minimo il gradiente $\nabla f = (1,-2,1)$ di f deve essere parallelo al gradiente

$$\nabla \Phi(x, y, z) = (18x - y, 2y - x, 2z), \qquad (x, y, z) \in \mathbb{R}^3,$$

di Φ . I punti $(x,y,z) \in \mathbb{R}^3$ in cui ∇f e $\nabla \Phi(x,y,z)$ sono paralleli sono i punti (x,y,z) tali che risulti

$$\operatorname{rk} \begin{pmatrix} 1 & -2 & 1 \\ 18x - y & 2y - x & 2z \end{pmatrix} \le 1 \qquad \Longleftrightarrow \qquad \begin{cases} x = 0 \\ y + 2z = 0 \\ 2y + 4z = 0 \end{cases}$$

e quindi sono i punti della retta (0, -2t, t) al variare di $t \in \mathbb{R}$. Imponendo che t sia tale che i corrispondenti punti appartengano a ∂K si trova che deve essere $t = \pm 1$ cui corrispondono i punti $P_{\pm} = (0, \pm 2, \mp 1)$ nei quali risulta

$$\min_{K} f = f(P_{+}) = -5$$
 e $\max_{K} f = f(P_{-}) = 5$.

(b) L'insieme K è convesso, essendo un ellissoide, e quindi è connesso e la funzione f è continua. Risulta quindi f(K) = [-5, 5] per il teorema dei valori intermedi.

Esercizio 5. Sia

$$K = \{(x, y, z) : 0 \le 2z \le x^2 + y^2 + z^2 \le 4 \text{ e } x, y \ge 0\}.$$

(a) Descrive l'insieme K.

(b) Calcolate
$$I = \int_K xy \, dV_3(x, y, z)$$
.

Soluzione. (a) L'insieme K è formato dai punti di coordinate $x, y, z \ge 0$ tali che

$$x^{2} + y^{2} + (z - 1)^{2} \ge 1$$
 e $x^{2} + y^{2} + z^{2} \le 4$

e quindi è il quarto del solido di rotazione che si ottiene facendo ruotare attorno all'asse z la figura contenuta nel primo quadrante del piano rz (con $r = \sqrt{x^2 + y^2}$) compresa tra le ciconferenze di equazioni $r^2 + (z-1)^2 = 1$ e $r^2 + z^2 = 4$ come illustrato in figura.

L'insieme K è quindi formato dai punti (x, y, z) con coordinate $x, y, z \ge 0$ compresi tra la superficie della sfera di equazione $x^2 + y^2 + (z - 1)^2 = 1$ la superficie della sfera di equazione $x^2 + y^2 + z^2 = 4$.

(b) L'insieme K è evidentemente compatto ed è misurabile poiché è l'intersezione di un solido di rotazione e di un poliedro. Inoltre, la funzione $f(x,y,z)=xy,\,(x,y,z)\in\mathbb{R}^3$ è continua e quindi integrabile su ogni insieme compatto e misurabile come K.

Calcoliamo l'integrale di f su K mediante la formula di riduzione per strati. La proiezione di K sull'asse z è l'intervallo $\pi_z(K) = [0, 2]$ e la corrispondente sezione è la porzione di corona circolare

$$K^z = \left\{ (x, y) : x, y \ge 0 \text{ e } \sqrt{2z - z^2} \le \sqrt{x^2 + y^2} \le \sqrt{4 - z^2} \right\}, \qquad z \in [0, 2].$$

Per la formula di riduzione si ha allora

$$I = \int_0^2 \left(\int_{K^z} xy \, dV_2(x, y) \right) \, dz$$

e, utilizzando coordinate polari nel piano, per ogni $0 \le z \le 2$ risulta

$$\int_{K^z} xy \, dV_2(x,y) = \int_0^{\pi/2} \cos\theta \sin\theta \, d\theta \int_{\sqrt{2z-z^2}}^{\sqrt{4-z^2}} r^3 \, dr = \frac{1}{8} \left[\left(4 - z^2 \right)^2 - \left(2z - z^2 \right)^2 \right]$$

da cui segue infine

$$I = \frac{1}{8} \int_0^2 \left[\left(4 - z^2 \right)^2 - \left(2z - z^2 \right)^2 \right] dz =$$

$$= \frac{1}{2} \int_0^2 \left(z^3 - 3z^2 + 4 \right) dz =$$

$$= 2.$$

Esercizio 6. Considerate il problema di Cauchy

$$\begin{cases} x''(t) - x'(t) - 2x(t) = te^{-t} - t + 1\\ x(0) = 1/4 \text{ e } x'(0) = 25/18. \end{cases}$$

- (a) Determinate tutte le soluzioni dell'equazione differenziale.
- (b) Determinate la soluzione del problema di Cauchy.

Soluzione. (a) L'equazione caratteristica è $\lambda^2 - \lambda - 2 = 0$ le cui soluzioni sono $\lambda_1 = -1$ e $\lambda_2 = 2$. Quindi, le funzioni

$$x_1(t) = e^{-t}$$
 e $x_2(t) = e^{2t}$

con $t \in \mathbb{R}$ sono un sistema fondamentale di soluzioni dell'equazione omogenea e tutte le soluzioni dell'equazione sono date da

$$x(t) = C_1 e^{-t} + C_2 e^{2t} + x_p(t), \qquad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie e $x_p(t)$ soluzione dell'equazione completa. Cerchiamo una soluzione x_p dell'equazione completa della forma

$$x_n(t) = (At^2 + Bt)e^t + Ct + D, \qquad t \in \mathbb{R},$$

con $A, B, C, D \in \mathbb{R}$ costanti da determinare. Si ha

$$x_p''(t) - x_p'(t) - 2x_p(t) = (-6At + 2A - 3B)e^{-t} - 2Ct - C - 2D$$
 $t \in \mathbb{R}$,

cosicché la funzione x_p è soluzione dell'equazione completa per A-1/6, B=-1/9, C=1/2 e D=-3/4. Pertanto tutte le soluzioni dell'equazione completa sono le funzioni

$$x(t) = C_1 e^{-t} + C_2 e^{2t} - \left(\frac{t^2}{6} + \frac{t}{9}\right) e^{-t} + \frac{2t - 3}{4}, \quad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie.

(b) Scegliamo le costanti $C_i \in \mathbb{R}$ (i = 1, 2) in modo che la soluzione x(t) definita in (a) sia tale che risulti x(0) = 1/4 e x'(0) = 25/18. Si ha

$$\begin{cases} x(0) = C_1 + C_2 - 3/4 = 2\\ x'(0) = -C_1 + 2C_2 - 1/9 + 1/2 = 25/18 \end{cases}$$

da cui segue $C_1 = C_2 = 1$. La soluzione cercata è dunque la funzione

$$x(t) = e^{2t} - \left(\frac{t^2}{6} + \frac{t}{9} - 1\right)e^{-t} + \frac{2t - 3}{4}, \quad t \in \mathbb{R}.$$