Here is a Penrose diagram (or Carter-Penrose diagram, or Conformal diagram) for empty space.

What this picture does is collapse all of space into the x-axis and time into the y-axis. The idea is then that you can summarize all of the possible causal relationships in all of infinite space and all of time in one small finite picture. Objects moving at the speed of light then move along lines that have a slope of exactly 45 degrees ($\pi/4$). These are also called "null" rays or geodesics (e.g. shortest paths through spacetime).

For convenience we stretched the diagram in the *x* direction a bit so we have a bit more room for labels and such.

Here are what the labels mean:

- i^+ is where time is at + infinity, also called "timelike" infinity.
- i^- is where time is at infinity.
- i^0 is + infinity for space, , also called "spacelike" infinity. The zero here is because time is zero on this line?
- \bullet \mathscr{I}^+ is "future null infinity". That is, it's where null rays go to in the future.
- \mathscr{I}^- is "past null infinity". This is where null rays come from in the past.

Now here is a more complicated diagram of a star collapsing to become a black hole. This diagram is not square anymore because I wanted more room for the extra labels and things. So it's a bit wider than it is tall for convenience. That's why i^0 seems like it's in the wrong place.

Here are what the new labels mean:

- r = 0 is the origin of a polar coordinate system if we wanted to use one. Along this line the radius of the start is 0.
- \mathcal{H}^+ is position of the event horizon at plus infinity.
- The wavy line is the the singularity inside the black hole.
- The blue line is the star collapsing and forming the black hole.
- The coordinate system (u, v) moves along the null rays (45 degree lines). The event horizon of the black hole is that $u = \infty$, and the future of everything is that $v = \infty$.

Note that the ray at $v=v_0$ represents the last ray that passes through the star and reaches \mathscr{I}^+ . Thus any ray with $v>v_0$ falls through the event horizon and into the black hole. Any ray at $v< v_0$ escapes. We can think of v_0 as the 0 point in the v direction.

The next diagram shows these two types of rays in more detail.

Hawking's original paper observed that black holes appear to radiate because while the vacuum states of the fields are empty near \mathscr{I}^- these same states will contain particles when observed at \mathscr{I}^+ because of effects related to the curvature of spacetime. The details of the calculation trace wave packets from \mathscr{I}^+ back to \mathscr{I}^- through the shell and show that what the an observer sees on \mathscr{I}^+ will look like an extremely cold thermal bath.

Over time the black hole will radiate away all of its mass and disappear in a puff of quantum modes or some more violent explosion.

Our final diagram shows this process:

