

${ m EA4-\acute{E}l\acute{e}ments}$ d'algorithmique Contrôle du 16 mars $2023-{ m Sujet}$ A

Durée: 1 heure 15

Aucun document autorisé Appareils électroniques éteints et rangés

Nom :
Prénom :
Numéro :
Groupe :

_	•	-1
HIVA	$\mathbf{rcic}\epsilon$	\ I •

On considère l'algorithme foo ci-contre.

Dessiner ci-dessous l'arbre des appels récursifs provoqués par l'appel foo([4, 3, 2, 1], 0, 4): pour chaque appel, indiquer le contenu de T au début et à la fin de l'appel (sauf s'il est inchangé), en encadrant le sous-tableau concerné.

En cas d'appels équivalents, vous pouvez ne dérouler que le premier.

def foo(T, deb, fin) :	`
if fin-deb <=1 : return	
m = (deb+fin)//2	
foo(T, deb, m)	
foo(T, m, fin)	
if T[m-1] > T[fin-1] :	
T[m-1], T[fin-1] = T[fin-1], T[m-1]	
foo(T, deb, fin-1)	
	_

Que fait foo? Justifier
Soit $C(n)$ le nombre de comparaisons effectuées par $foo(T)$ si T est un tableau de longueur n . Quelle relation de récurrence $C(n)$ satisfait-elle?

(horsbarème)

L2 Informatique Annee 2022-202
Cette relation implique que, $\forall n \geqslant 2$, $C(n) \geqslant \sum_{i=1}^{\lfloor n/2 \rfloor} C(i)$. (inégalité très large, mais suffisant
En déduire par récurrence sur k la propriété suivante : « pour tout entier $k \ge 0$, il existe $\alpha_k > 0$ tel que $\forall n \ge 2$, $C(n) \ge \alpha_k n^k$. »
« pour tout entier $\kappa \geqslant 0$, it existe $\alpha_k > 0$ tet que $\forall n \geqslant 2$, $C(n) \geqslant \alpha_k n$. »
1/ C() - (K)
Que pensez-vous de l'efficacité de foo? $\forall k C(n) = Q(n^k)$
Exercice 2 : Soit T un tableau de n éléments comparables, par exemple des entiers positifs. On dit que
possède un minimum local en position i si $T[i] \leq T[i-1]$ et $T[i] \leq T[i+1]$ (donc en particulie il faut que $n \geq 3$ et $0 < i < n-1$).
Entourer les 5 minima locaux du tableau $T = \begin{bmatrix} 9 & 7 & 7 & 2 & 1 & 3 & 7 & 5 & 4 & 7 & 3 & 3 & 6 \end{bmatrix}$.
Soit $n \ge 3$. Tout tableau T de longueur n possède-t-il un minimum local? Justifier.
Non: [1,2,3]
On suppose dorénavant que T satisfait la propriété : $T[0] \ge T[1]$ et $T[n-2] \le T[n-1]$ Justifier que sous cette hypothèse, T possède au moins un minimum local.
2 Trat & Trat
T(27>T[7]
Instiglization u=3 -> TII) in local
Instialization n = 3 -> T[1]) m local Hériedité T de taille n+1 avec T[0] > T[1]
Trally Trains
P(n) S. 1[0] > T[1]
et T[n-1] >, T[n-2)
dars Talmet 2 un min local
camer 2 mm min was

d'un tel tableau.	te pius efficace p	ossiole dans i	e pire cas pour	. determmer un	mmmum ioca
Quelle est sa complexi	té?				

Exercice 3:

Dans cet exercice, on représente des ensembles par des tableaux *sans doublon*, et on considère la fonction foo suivante :

```
def foo(E, F) :
    res = E[:]
    for f in F :
        if f not in E : res.append(f)
    return res
```

Que calcule foo(E, F)?

Quelle est sa complexité dans le pire cas si ${\tt E}$ et ${\tt F}$ sont supposés de même longueur n? Justifier.

& (n2)

Supposons maintenant que les ensembles sont représentés par des tableaux $tri\acute{e}s$ (et toujours sans doublon). Proposer un algorithme le plus efficace possible pour effectuer le même calcul.

L2 Informatique	Année 2022-2023
Quelle est sa complexité?	
Exercice 4:	
On s'intéresse au problème suivant : étant donné une liste L de nombres (nentiers) de longueur n , déterminer le $vainqueur$ de L, $i.e.$ l'élément de L qui y a fois (ou l'un quelconque d'entre eux, en cas d'égalité).	
Décrire un algorithme naïf permettant de résoudre ce problème sans modifier mémoire auxiliaire constante.	la liste L, et avec
Quel est la complexité (en temps) de cet algorithme? Justifier.	
Comment résoudre ce problème avec une complexité (dans le pire cas) stricte	ment meilleure?
Ouelle est le complerité de est e méthele?	
Quelle est la complexité de cette méthode?	