

# Лабораторная работа №3 Баллистический маятник

Хафизов Фанис

15 декабря 2019 г.

### 1 Цель работы

Цель данной работы заклчается в изучении законов сохранения количества движения и полной механической энергии и их применении при решении практических задач.

### 2 Схема установки



Лабораторный стенд включает направляющую трубу 1 для фиксации траектории движения шарика, баллистический маятник с конусомуловителем 2, датчик угла отклонения маятника 3 на его оси, оптический датчик 4 для определения скорости вылета шарика. К приборам и принадлежностям относятся также компьютер с необходимым программным обеспечением, концентратор для подключения датчика к компьютеру и металлический шарик.

### 3 Порядок действий

- 1)Соберем экспериментальную установку.
- 2)Запустим измерения на компьютере и отпустим шарик в трубу.

- 3)После отклонения на максимальный угол остановим измерения.
- 4)Повторим эксперимент еще 4 раза.

## 4 Таблицы данных и графики



Рис. 1: График перекрытия оптического датчика



Рис. 2: График зависимости угла отклонения маятника от времени

| $m, \Gamma$ | d, mm | М, г       | $m_{ct}$ , г | l, mm         |
|-------------|-------|------------|--------------|---------------|
| $24\pm0,1$  | 18,3  | $55\pm0,1$ | $34\pm0,1$   | $509,5\pm0,5$ |

Таблица 1:

| i | $t_{iimp}$ , c | $v_{iopt}$ , M/C | $\overline{v}_{opt},  \mathrm{m/c}$ | $\varphi_{imax}$ , град | $v_{ibm},{ m m/c}$ | $\overline{v}_{bm},~\mathrm{m/c}$ |
|---|----------------|------------------|-------------------------------------|-------------------------|--------------------|-----------------------------------|
| 1 | 0,0041         | 4,46             |                                     | 22,04                   | 3,315              |                                   |
| 2 | 0,0040         | 4,58             |                                     | 22,04                   | 3,315              |                                   |
| 3 | 0,0038         | 4,82             | 4,604                               | 23,87                   | 3,586              | 3,482                             |
| 4 | 0,0040         | 4,58             |                                     | 22,95                   | 3,598              |                                   |
| 5 | 0,0040         | 4,58             |                                     | 22,95                   | 3,598              |                                   |

Таблица 2: Результаты измерений

#### 5 Расчеты

$$\begin{split} v_{opt} &= \frac{d}{t_{imp}} \\ v_{bm} &= \frac{1}{m} \sqrt{(m+M+\frac{m_{st}}{2})(m+M+\frac{m_{st}}{2})2gl(1-cos\varphi_{max})} \\ \overline{v} &= \frac{\sum\limits_{i=1}^{5} v_{i}}{5} \\ \Delta v_{opt} &= 2 \sqrt{\frac{\sum\limits_{i=1}^{5} (v_{i}-\overline{v})}{5} + \overline{v} \cdot \varepsilon_{v}} = 2 \sqrt{\frac{\sum\limits_{i=1}^{5} (v_{i}-\overline{v})}{5} + \overline{v} \frac{\Delta t}{\overline{t}}} = 2 \cdot 0.12 + 4.6 \cdot \frac{0.0001}{0.004} = 0.355 \\ \Delta v_{bm} &= 2 \sqrt{\frac{\sum\limits_{i=1}^{5} (v_{i}-\overline{v})}{5} + \overline{v} \cdot \varepsilon_{v}} = 2 \sqrt{\frac{\sum\limits_{i=1}^{5} (v_{i}-\overline{v})}{5} + \overline{v} (\frac{\Delta m}{m} + \frac{1}{2} (\frac{\Delta m + \Delta M + \Delta m_{st}/2}{m + M + m_{st}/2} + \frac{\Delta m + \Delta M + \Delta m_{st}/3}{m + M + m_{st}/2} + \frac{\Delta l}{l} + \frac{\Delta cos\varphi_{max}}{1 - cos\varphi_{max}}) = 0.305 \\ \delta v_{opt} &= \frac{\Delta v}{v} = \frac{0.305}{3.482} = 0.08 \\ \delta v_{bm} &= \frac{\Delta v}{v} = \frac{0.305}{3.482} = 0.09 \end{split}$$

#### 6 Результаты

$$v_{opt} = (4,604 \pm 0,355) \text{ m/c}, \ \delta v_{opt} = 8\%$$
  
 $v_{bm} = (3,482 \pm 0,305) \text{ m/c}, \ \delta v_{bm} = 9\%$ 

## 7 Вывод

Полученные значения отличаются, несмотря на то, что в обоих экспериментах относительная погрешность меньше 10%. Это можно объяснить тем, что оптический датчик сложно установить так, чтобы шарик перекрывал его всем диаметром, а не частью, поэтому более точным методом является баллистический.