REDES NEURONALES RECURRENTES

Red Neuronal Recurrente (RNN)

- Una red neuronal recurrente es un tipo de red diseñada para procesar secuencias de datos, donde la información tiene una estructura temporal o secuencial.
- Las RNN utilizan conexiones recurrentes que les permiten mantener una especie de "memoria" de información previa y utilizarla para procesar entradas futuras en la secuencia.

Serie Temporal

- □ Una serie temporal es un conjunto de datos ordenados en el tiempo.
- Los datos están igualmente espaciados en el tiempo, lo que significa que se registraron cada hora, minuto, mes o trimestre.

Dataset: weather_dataset.csv

- p (mbar): presión del aire en milibars
- T (degC): temperatura del aire en °C

Se construirá un modelo capaz de predecir la temperatura

- Tpot (K): temperatura potencial
- Tdew (degC): temperatura de punto de rocío (a la cual el vapor de agua se condensa)
- rh (%): humedad relativa
- VPmax (mbar): presión de vapor de agua de saturación
- VPact (mbar): presión de vapor de agua real
- VPdef (mbar): déficit de presión de vapor de agua
- sh(g/kg): humedad específica
- H2OC (mmol/mol): nivel de concentración del vapor de agua
- rho $(g/m^{**}3)$: densidad del aire
- wv (m/s): velocidad del viento
- max. wv (m/s): velocidad del viento máxima
- wd (deg): dirección del viento

Preprocesamiento de los datos

- Antes de comenzar a trabaja es preciso analizar
 - Verificar que no haya valores faltantes. De ser necesario interpolar.
 - Verificar la periodicidad de las muestras
 - Eliminar duplicados.
 - Si hay diferencias en la periodicidad, reinterpolar el data set.
 - Verificar que la media de cada atributo no ha sufrido grandes modificaciones con todos estos cambios.

01_Preproceso_dataset.ipynb

Red Neuronal Recurrente (RNN)

- Según la cantidad de series temporales que se tengan en cuenta como entrada
 - Univariada
 - Multivariada

- Según la cantidad de valores que se predigan en cada instante de tiempo
 - One-step
 - Multi-step

Red Neuronal Recurrente (RNN)

- Enfoques
 - Univariado + one-step

- Univariado + multi-step
- Multivariado + one-step
- Multivariado + multi-step

- □ Tipos de RNN
 - SimpleRNN
 - LSTM

Preparando los datos de entrada

Ingresando los datos a la RNN

Según la documentación de Keras

(Batches, Input_Length, Features)

donde

- Batches : cant.de datos (ventanas) de entrenamiento
- Input_Lenght: Longitud de la ventana de entrada
- Features: cantidad de series o variables a utilizar

Ingresando los datos a la RNN

Según la documentación de Keras

(Batches, Output_Length, Features)

donde

- **Batches** : cant.de predicciones (ídem a los de entrada)
- Output_Lenght: Longitud de la ventana de salida
- **Features**: cantidad de series o variables a predecir

Preparación de los datos

Y = [[-9.67]]

[[-9.17]]

```
x, y = crear_dataset_supervisado(datos, 5, 1) (
```

Genera secuencias de entrada de longitud 5 y de salida de longitud 1

02a_UniVar_OneStep_SimpleRNN.ipynb

Preparación de los datos

□ Si se ingresan secuencias de longitud 5 y se predice el valor siguiente

```
secuencia = [-8.05 - 8.88 - 8.81 - 9.05 - 9.63 - 9.67 - 9.17 - 8.1 ...
entrada = [[-8.05]]
              [-8.88]
              [-8.81]
              [-9.05]
                                 (Batches, Input_Length, Features)
             [-9.63]]
                                  # sec
             [[-8.88]]
             [-8.81]
             [-9.05]
             [-9.63]
              [-9.67]
             . . . ]
salida = [[-9.67]]
           [[-9.17]]
                                 (Batches, Output_Length, Features)
                                  # sec
```

SimpleRNN

$$h_t = tanh(Wx_t + Ua_{t-1} + b)$$
$$y_t = softmax(a_t)$$

$$x_t \in \mathbb{R}^d$$
; $W \in \mathbb{R}^{hxd}$; $U \in \mathbb{R}^{hxh}$; $b \in \mathbb{R}^h$

La dimensión del vector a_t coincide con la cantidad h de neuronas ocultas


```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, SimpleRNN, Dense

modelo = Sequential(name='modelo')
modelo.add(SimpleRNN(4, input_shape=(24,1),name='Oculta'))
modelo.add(Dense(1, activation='linear', name='Salida'))

modelo.summary()
```

Model: "modelo"

Layer (type)	Output Shape	Param #
Oculta (SimpleRNN)	(None, 4)	24
Salida (Dense)	(None, 1)	5

Total params: 29 (116.00 Byte)

 $x_t \in \mathbb{R}^d;$ $W \in \mathbb{R}^{hxd}; \ b \in \mathbb{R}^h$ $U \in \mathbb{R}^{hxh}$ 1 de c/u por capa

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, SimpleRNN, Dense

modelo2 = Sequential(name='modelo2')
modelo2.add(Input(shape=(24,1), name='Entrada'))
modelo2.add(SimpleRNN(10, return_sequences=True, name='Oculta1'))
modelo2.add(SimpleRNN(10, name='Oculta2'))
modelo2.add(Dense(1, activation='linear', name='Salida'))

modelo2.summary()
```

Model: "modelo2"

Total params: 341 (1.33 KB)

Layer (type)	Output Shape	Param #
=======================================	:==========	========
Oculta1 (SimpleRNN)	(None, 24, 10)	120
Oculta2 (SimpleRNN)	(None, 10)	210
Salida (Dense)	(None, 1)	11

 $x_t \in \mathbb{R}^d$; $W \in \mathbb{R}^{hxd}$; $b \in \mathbb{R}^h$ $U \in \mathbb{R}^{hxh}$

1 de c/u por capa

La red LSTM agrega
 una celda de estado o
 MEMORIA para
 resolver el problema
 de olvido de la red
 recurrente simple

$$f_t = sig(W_f x_t + U_f a_{t-1} + b_f)$$

Forget Gate

Retorna un vector con valores entre 0 y 1. Con valores cercanos a 0 "olvida" y con los cercanos a 1 "recuerda"

$$f_t = sig(W_f x_t + U_f a_{t-1} + b_f)$$

$$f_t = sig(W_f x_t + U_f a_{t-1} + b_f)$$
$$u_t = sig(W_i x_t + U_i a_{t-1} + b_i)$$

Update Gate

Retorna un vector con valores entre 0 y 1. Con valores cercanos a 1 serán preservados

$$f_t = sig(W_f x_t + U_f a_{t-1} + b_f)$$

$$u_t = sig(W_i x_t + U_i a_{t-1} + b_i)$$

$$\tilde{c}_t = tanh(W_c x_t + U_c a_{t-1} + b_c)$$

 $ilde{c}_t$ es un vector de valores candidatos a formar parte de la nueva memoria

$$f_t = sig(W_f x_t + U_f a_{t-1} + b_f)$$

$$u_t = sig(W_i x_t + U_i a_{t-1} + b_i)$$

$$\tilde{c}_t = tanh(W_c x_t + U_c a_{t-1} + b_c)$$

 $ilde{c}_t$ es un vector de valores candidatos a formar parte de la nueva memoria.

Esto valores se filtran utilizando u_t

$$f_{t} = sig(W_{f}x_{t} + U_{f}a_{t-1} + b_{f})$$

$$u_{t} = sig(W_{i}x_{t} + U_{i}a_{t-1} + b_{i})$$

$$\tilde{c}_{t} = tanh(W_{c}x_{t} + U_{c}a_{t-1} + b_{c})$$

$$f_{t} = sig(W_{f}x_{t} + U_{f}a_{t-1} + b_{f})$$

$$u_{t} = sig(W_{i}x_{t} + U_{i}a_{t-1} + b_{i})$$

$$\tilde{c}_{t} = tanh(W_{c}x_{t} + U_{c}a_{t-1} + b_{c})$$

$$o_{t} = sig(W_{o}x_{t} + U_{o}a_{t-1} + b_{o})$$

Determina qué valores de la memoria formarán parte del nuevo estado oculto a_t

$$f_t = sig(W_f x_t + U_f a_{t-1} + b_f)$$

$$u_t = sig(W_i x_t + U_i a_{t-1} + b_i)$$

$$\tilde{c}_t = tanh(W_c x_t + U_c a_{t-1} + b_c)$$

$$o_t = sig(W_o x_t + U_o a_{t-1} + b_o)$$

$$c_t = f_t \times c_{t-1} + u_t \times \tilde{c}_t$$

$$a_t = o_t \times tanh(c_t)$$

La dimensión de los vectores f_t , u_t , \tilde{c}_t y o_t coincide con la cantidad h de neuronas ocultas

$$x_t \in \mathbb{R}^d$$
; $W \in \mathbb{R}^{hxd}$; $U \in \mathbb{R}^{hxh}$; $b \in \mathbb{R}^h$

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

INPUT_SHAPE = (24,1)
OUTPUT_LENGTH = 1
N_UNITS = 1

modelo = Sequential()
modelo.add(LSTM(N_UNITS, input_shape=INPUT_SHAPE))
modelo.add(Dense(OUTPUT_LENGTH, activation='linear'))
modelo.summary()
```


Model: "sequential"

	Output Shape 	Param #
,	(None, 1) (None, 1)	12

Total params: 14 (56.00 Byte)

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

INPUT_SHAPE = (24,1)
OUTPUT_LENGTH = 1
N_UNITS = 3

modelo = Sequential()
modelo.add(LSTM(N_UNITS, input_shape=INPUT_SHAPE))
modelo.add(Dense(OUTPUT_LENGTH, activation='linear'))
modelo.summary()
```


Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 3)	60
dense (Dense)	(None, 1) ===========	4

Total params: 64 (256.00 Byte)