

August 1, 1977

Report No. MDC 37644/01

USER'S MANUAL FOR A FULLY AUTOMATIC THREE-DIMENSIONAL POTENTIAL-FLOW CALCULATION METHOD

AD A 0 47438

Part 1. With Viscous Correction
by Two-Dimensional Boundary-Layer Analysis

by

Dun-Pok Mack and Suzanne M. Schimle

COPY AVAILABLE TO DOC DOES NOT PERMIT FULLY LEGISLE PRODUCTION

This research was carried out under the Naval Ship Systems Command General Hydromechanics Research Program Subproject SR 023 02 01, administered by the Naval Ship Research and Development Center.

Contract N00014-74-C-0059

Approved for Public Ralesse: Distribution Unlimber

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DOUGLAS AIRCRAFT COMPANY

MCDONNELL DOUGLAS

D HE

USER'S MANUAL FOR A FULLY AUTOMATIC THREE-DIMENSIONAL POTENTIAL-FLOW CALCULATION METHOD

Part 1. With Viscous Correction

by Two-Dimensional Boundary-Layer Analysis

by

Dun-Pok Mack and Suzanne M. Schimke

This research was carried out under the Naval Ship Systems Command General Hydromechanics Research Program Subproject SR 023 01 01, administered by the Naval Ship Research and Development Center.

Contract N00014-74-C-0059

Approved for Public Release: Distribution Unlimited

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Copy number

Report number

USER'S MANUAL FOR A FULLY AUTOMATIC THREE-DIMENSIONAL POTENTIAL-FLOW CALCULATION METHOD.

Part I. With Viscous Correction by Two-Dimensional Boundary-Layer Analysis.

Revision date

Revision letter

Issue date / 1 August 1977

Contract number | NØØ014-74-C-ØØ59

Prepared by : Dun-Pok Mack Suzanne M. Schimke

Final rept. Oct 73-may 77

June Ceben

T. Cebeci

Chief Aerodynamics Engineer Research

Chief Staff Engineer Regional and Development Programs

Ae cs Subdivision

O. R. Dunn

Director - Aerodynamics

MICESS AS IN UNAMNOUNCED JUSTIFICATION ... DISTRIBUTION/AVAILABILITY CODES AVAIL and/or SPESIAL

DOUGLAS AIRCRAFT COMPANY

MCDONNELL DOUG

CORPORATION

116400

ABSTRACT

This report describes a computer program which calculates the viscous effects on the lift and pressure distributions of arbitrary three-dimensional bodies. The program is a combination of a panel method which computes the potential flow about arbitrary three-dimensional lifting configurations, and a two-dimensional boundary-layer method, which calculates the viscous-effects. These effects are applied to the three-dimensional shape in a "strip-theory" sense and the resultant viscous lift and pressure distributions are produced. Two methods of simulating the boundary layer in the final potential-flow calculation are available: 1) addition of the displacement thickness to the original shape, and 2) defining a surface blowing distribution on the body.

The computer program is written in Fortran IV for the IBM 370 systems. 16 temporary external units are used for storage. The region size needed to execute the program is about 360K bytes, but this is a direct function of the number of elements defining the configuration.

Also presented in this report is a detailed description of the program logic, complete instructions for executing the program, and a sample case.

TABLE OF CONTENTS

1.0	Intr	oduction
2.0		ram Description
		Potential-Flow Calculation
		2.1.1 Subroutines and Their Functions
	2.2	Two-Dimensional Boundary-Layer Calculation 4
		2.2.1 Program Notes
	2.3	Simulation Programs
		2.3.1 Program Notes
	2.4	Program Logic Flow Diagram
	2.5	Program Options
		2.5.1 Combination of Vorticity and Kutta Condition Option
	2.6	Program Restrictions
		2.6.1 Input Body Size
3.0	Inpu	t Instructions
	3.1	Input Data Groups
		3.1.1 Title and Case Execution Information Group
	3.2	Input Card Sequence — Variables and Formats
		3.2.1 Condensed Form
4.0	Input	t Load Sheets
5.0	Outpu	ut Explanation
	5.1	Results of the Initial Potential-Flow Calculations
		5.1.1 Basic Data

		<u>P</u>	age
		5.1.3 Kutta Point Solutions	37 38
	5.2	The Simulation Program	42
		5.2.1 Before Boundary-Layer Program	43 44
	5.3	Boundary-Layer Program Output	4 6
	5.4	Final Output	48
6.0	Erro	r Messages	49
	6.1	Inviscid Flow Program	49
	6.2	Boundary-Layer Program	51
	6.3	Simulation Programs	52
7.0	Deck	Setup	54
	7.1	Overlay Structure	54
	7.2	The Data Definition Cards (DD Cards) for the External Units	57
	7.3	Job Control Language Cards	57
		7.3.1 JCL Setup for Compile, Linkedit and Go7.3.2 JCL Setup for Executing the Program Already Stored on Disk	
	7.4	Run Time Estimation	61
8.0	Test	Case	62
	8.1	Test Case Input Data	62
	8.2	Test Case Output	67
		8.2.1 Initial Potential-Flow-Calculation Output	98 28
9.0	Refer	rences	75

1.0 INTRODUCTION

A procedure has been described [4] for the calculation of the viscous effects on the lift and pressure distributions of arbitrary three-dimensional configurations. This report is the user's manual for the computer program for this procedure which combines Hess' three-dimensional low-speed panel method [1] with Cebeci's two-dimensional boundary-layer method [2],[3]. The program automatically corrects the calculated potential-flow field for the displacement effect of the boundary layer. The corrections are made along streamwise strips of the lifting configuration where the boundary layer is assumed to be two-dimensional.

The logic of the program can conveniently be described in three steps. In step 1, the geometric quantities which define the configuration and the desired freestream flow conditions are input, and velocities and pressures are calculated at the control points of the body. The second step then determines the stagnation point of each lifting strip and, together with the previously calculated surface velocities, input quantities are generated for use in the boundary-layer program where a distribution of displacement thickness is determined. In the final step the calculated displacement thickness is used to simulate the boundary-layer effect. This effect may be simulated by either the addition of the displacement thickness to the original body coordinates to generate a new shape (referred to as the surface displacement method) or by the generation of a new set of source densities (blowing method). In either case a final potential-flow calculation which includes the viscosity effects is made.

The program has been prepared for use on the IBM 370 series digital computers and is written in Fortran IV. It makes use of overlays and requires 16 external storage units. The core size requirements depend on the number of elements that define the configuration but about 360 bytes may be needed. Single precision arithmetic is used. The time for a computer run is a function of several variables (element number, lifting strips, boundary-layer simulation methods, etc.) but a "typical" case of 500 lifting elements should take about 15 minutes.

The purpose of this report is to outline the use of the program and, in particular, to provide complete input instructions and a detailed explanation of the output. The technical background of the method for which this program is written and a discussion of some calculated results is presented in reference 4.

2.0 PROGRAM DESCRIPTION

This program couples a three-dimensional lifting potential-flow program [1] and a simplified version of a finite-difference program for calculating compressible laminar and turbulent boundary layers [2], [3] with a program which simulates the effect of the boundary layer on the flow. Two alternate subroutines allow the boundary layer to influence the potential flow by a displacement of the surface coordinates or by a simulated surface blowing. The program first computes an initial potential-flow solution, then solves two-dimensional boundary-layer equations in streamwise strips, to generate a distribution of displacement thickness over the body surface. This displacement thickness is used either to generate a new set of geometry coordinates or to calculate a simulated blowing velocity over the original body surface. The final potential-flow calculation is then made with the chosen boundary layer procedure producing the simulated viscous flow.

2.1 Potential-Flow Calculation

This part of the program is similar to that described in ref. [1]. It takes the body geometry coordinates, forms the velocity matrix, solves for the source density distribution, and computes the pressure coefficient at each of the element control points.

2.1.1 Subroutines and Their Functions

Following is a summary of the routines and their functions:

Name of Routines	Functions	
BDFORM	Directs the input to form the body geometry.	
INPUT	Accepts initial card input of the body points.	
DINPUT	Takes in the body points with δ^* added on.	
LIFT	Forms the lifting elements.	
NOLIFT	Forms the nonlifting elements.	
VFORM	Generates the velocity matrix.	
VFMNLF	Forms the nonlifting velocities.	

Name of Routines	Functions
VFMLFT	Forms the lifting velocities.
AFORM	Generates the normal velocity matrix to be solved for density distribution.
MATSOL	Directs the program to use initial matrix solution, or to solve more right sides.
COLSOL	Solves the columnwise matrix.
SOLMOR	Solves further right sides.
COMFLO	Computes the final combined flows.
PKUTTA	Solves the bound vorticity coefficients for the equal-pressure Kutta conditions.
PRINT	Generates the final output.
HEADER LDAY	Generates header label.

2.1.2 Program Notes

The body geometry input consists of sections and strips. Each section is divided into a number of strips, and each strip contains a certain number of elements (on-body elements and wake elements). These elements are defined by their corner points which are input along adjacent N-lines, two of which define a strip. A number of these N-lines compose a section as illustrated below:

Details of the input are available in reference 5.

For the lifting section of the body, the elements are formed into strips which are aligned in a direction along the streamflow. Each strip must also have elements off the body surface which will define the trailing vortex wake. Calculation of the flow about nonlifting bodies, e.g. a fuselage, may also be calculated in a similar manner. In this case, however, no wake representation is necessary, and the elements need not be in streamwise strips. Further, no boundary-layer displacement corrections are made on the nonlifting sections. Calculations for configurations that have both lifting and nonlifting sections may be made in one computer run, i.e. a wing on a fuselage.

Other special features of the program include the use of "extra strips" to carry wing vorticity through the fuselage and "ignored elements" to handle such problems as pylon-wing intersections. Section 6.8 of reference [1] provides further information on this procedures.

2.2 Two-Dimensional Boundary-Layer Calculation

2.2.1 Program Notes

A modified version of the Douglas finite-difference method for calculating compressible laminar and turbulent boundary layers [2], [3] is used here with a simplified input subroutine. The only inputs required are: (1) reference velocity in ft/sec, (2) Reynolds number/ft, and (3) the transition locations. The reference velocity and Reynolds number are input only once for the whole case, but transition locations have to be specified for the lower and upper surfaces separately on each strip. The user has the option of inputting the desired transition location number, or he may let the program calculate a transition location. Thus, an eight strip wing case requires 8 transition locations to be specified for the lower surface, and 8 transition locations for the upper.

The velocity and arc-length input needed for the boundary-layer program is determined inside the program. These parameters are stored on external units in the simulation program and passed to the boundary-layer program.

In order that the coordinate and velocity data from the potential flow part of the program is compatible with the input and output of the boundary-layer part of the program, a constant, FC (foot converter) must be input to the potential-flow program. The boundary-layer program is dimensional and calculations are done in terms of feet, and the displacement thickness δ^* is output in feet. Reference velocity and Reynolds number are also in ft/sec and ft⁻¹, respectively, as stated before.

Two examples may help to clarify the situation. A straight untapered wing is given with the chord equal to 1.0 foot and a test Reynolds number equal to 1.6 x 10^6 . The coordinates are input as they stand with FC = 1.0 and Re = 1.6×10^6 . If the reference velocity is not known, any small value, i.e. 100 ft/sec, may be chosen. Since the program calculates only incompressible flow, the value of the reference velocity does not affect the results.

Now assume that a swept tapered wing is defined with the root chord equal to 42 inches and the tip chord equal to 21 inches. The Reynolds number is 18×10^6 based on the mean aerodynamic chord. First, the data must be converted into feet; this can be accomplished by inputting the data as given (in inches), and inputting FC = 12.0. In this case the mean aerodynamic chord is used as the average chord and the Reynolds number per foot is calculated based on this value. The mean aerodynamic chord is 32 inches which equals $2.67 \, \mathrm{ft}$, thus the input Reynolds number/ft would be $18 \times 10^6/2.67 \, \mathrm{ft} = 6.74 \times 10^6 \, \mathrm{ft}^{-1}$. Again the reference velocity is given or some arbitrary small value is used.

2.2.2 <u>Subroutines and Their Functions</u>

Routines	Functions
BOUNDL	Controls program responsible for calling other boundary-layer-related subprograms.
INPT	Handles all input data to the boundary-layer program.
EINF	Calculates the transformed J-grid points.
IVPF	Generates initial velocity profile.
FLPR	Computes the fluid properties.
EDVS	Computes the eddy viscosity.

Routines	Routines Functions	
SHFT	Provides the initial guesses for each station.	
MOMX	Finds the solution of the x-momentum equation.	
TRNS	Computes the location of boundary-layer transition.	
SLOP	Computes the derivative DYDX from X,Y input.	
OTPT	Handles the results of the boundary-layer calculation.	

2.3 Simulation Programs

2.3.1 Program Notes

This part of the program manipulates the data in and out of the potential-flow and boundary-layer programs. It first determines the location of the stagnation point of a lifting strip, then separates the lifting strip into two "boundary-layer" strips, starting at the location of the stagnation point and proceeding toward the trailing edge on both upper and lower surfaces. It also organizes the velocity and arc length data for each "boundary-layer" strip. Experience has shown that the boundary-layer program requires at least a 50-station solution for good accuracy. Accordingly, the program interpolates to obtain input at 50 prescribed percent arc length stations before entering the boundary-layer program.

Upon returning from the boundary-layer program, the calculated displacement thickness distribution of each boundary-layer strip is back-interpolated to the original control-point locations. The upper surface and the lower surface boundary-layer data is then transformed to properly represent the displacement thickness associated with each lifting element. The program now branches to either the blowing method of boundary-layer simulation or the surface displacement method, depending upon the user's choice.

If the blowing method is used, a new onset flow with the boundary-layer influence is generated. The program proceeds to solve for a new set of source densities, and the potential-flow solution with viscosity effects is obtained.

If the surface displacement method is selected, a new set of input body coordinates which have the displacement thickness added to them is generated and fed back to the potential-flow program. Another potential-flow calculation is them made with the new input body coordinates.

In either case, a complete set of the new potential flow output is printed.

2.3.2 Subroutines and Their Functions

Routines	<u>Functions</u>
SETUP	Links the potential-flow program with the boundary-layer program.
BSETUP	Processes the input and output of the boundary-layer program for blowing method.
DSETUP	Same as BSETUP except it is for the surface displacement method.
CALCRS	Calculates a new flow to be solved in potential-flow program (blowing method).
MODXYZ	Modifies the original x,y,z coordinates with δ^* added on and generates new X,Y,Z data to be used in the final potential flow run (surface displacement method).
WAC	Handles the two-dimensional data interpolation.

2.4 Program Logic Flow Diagram

2.5 Program Options

Listed below are the options the program provides. Explanation and the option selector (as input variable) are given along with each option.

 Input moment origin (MØMENT)

Program will use an input moment origin to calculate the moment components in potential flow part of the program. If chosen, set $M\emptyset MENT=1$ and input the x,y,z components of the moment origin.

Input Kutta points for wake-tangency Kutta conditions (KUTTA)

When this option is used, set KUTTA=1 and input the x,y,z components of the Kutta points as well as the Kutta normals.

Input off-body points (NØFF)

To input off-body points, set the input parameter $N\emptyset FF=1$ and input the x,y,z components of the off-body points.

 Partial execution — basic geometry output only (LIST)

For the purpose of examining some input geometry and not go through the whole program, set LIST=1 and the program will stop after body-element formation.

Intermediate Print, velocity matrix (MPR)

Input MPR=1 prints the source velocity matrix V_{ij} MPR=2 prints the normal velocity matrix A_{ij} MPR=3 prints the dipole velocities.

6. Intermediate print, geometry quantities and sigma matrix (I \emptyset UT)

When IQUT #0, the element geometry quantities and the solution of the source density matrix will be printed.

7. Ignored element option

(IG)

When IG#O, input the element numbers to be ignored. The program will set the source velocity on these elements to zero. This special option is for a nonlifting section intersecting a lifting section.

Special last wake element calculation (LASWAK)

Input LASWAK $\neq 0$ and the program will use special formulas for semi-infinite last wake element. In most cases, this option is selected.

Multiple angles of attack

(IATACK)

If user only runs the potential flow part of the program, he may run it with more than one angle of attack. Set IATACK = number of angles of attack to be input. Maximum number allowed = 10. When using both potential flow and boundary-layer program, only 1 angle of attack is currently allowed.

10. Piecewise linear vorticity option

(IWIDTH)

If this is used, set IWIDTH#O and input the strip widths.

11. Step function vorticity option

(ISAVE)

Setting ISAVE≠0 will use step function vorticity.

12. Zero lift option

Setting ISAVE=9 will give the zero lift output in addition to the normal output. This option works only when the potential flow part of the program is run alone.

13. Symmetry features

(SYM1, SYM2)

Inputting SYM1 \neq 0 will treat the input as one plane of symmetry. With SYM1 \neq 0, SYM2 \neq 0 implies 2 planes of symmetry in the potential-flow program.

14. Parabolic vorticity option
 (IPCV)

If this option is used, input $IPCV \neq 0$. Otherwise, the program uses constant vorticity.

Boundary-layer calculation option (BL)

BL=0.0 executes only the potential flow part.

BL=1.0 uses blowing method.

BL=2.0 uses surface displacement method.

16. Extra strip option

(IXFLAG)

IXFLAG=O no extra strip input.

IXFLAG=1 treats the first input strip as an extra strip.

IXFLAG=3 treats the last input strip as an extra strip.

IXFLAG=2 both the first and last input strips are extra strips.

 Smoothing option for boundary-layer calculation (ISM)

Setting ISM=1 will generate 50 boundary-layer stations if the potential-flow input chordwise points were less than 50 on each of the surfaces (upper and lower).

18. Skip the boundary-layer calculation for the nonlifting section (NØCAL)

Setting NØCAL>0 will bypass the boundary-layer calculation for the nonlifting section. If NØCAL=0, the program assumes that the non-lifting section will have the boundary-layer calculation.

2.5.1 Combination of Vorticity and Kutta Condition Option

There are two options for selecting the Kutta condition as stated before. They are:

Equal pressure Kutta condition ISAVE Wake tangency Kutta condition KUTTA

These two input parameters are mutually exclusive. In other words, when ISAVE=0, KUTTA=1 or ISAVE=1, KUTTA=0. There are also four choices of vortices, namely:

Piecewise linear vorticity option	IWIDTH=1
Step function vorticity option	IWIDTH=0
Parabolic vorticity option	IPCV=1
Constant vorticity option	IPCV=0

If we list a table of these parameters, it can be readily seen that user may have eight choices of how to run his case in the potential flow part of the program. These choices are shown below:

KUTTA	ISAVE	IWIDTH	IPCV
1	0	0	0
0	1	0	0
1	0	1	0
0	1	1	0
1	0	0	1
0	1	0	1
1	0	1	1
0	1	1	1

2.5.2 One Point per Card Input Option

In inputting the body points, the user has the option of punching two points per card or one point per card. These input formats will be explained in the next section. The normal way to input is two points per card. When one point per card is input, the user must punch the characters "ØNE" on the title card from card column 69 to card column 72. For two points per card, this field is left blank.

2.6 Program Restrictions

2.6.1 Input Body Size

The total number of sections input is restricted to 10, with a maximum of 50 strips for the case. The maximum number of basic surface elements (including lifting and nonlifting) that can be formed from the input points is 1000. So if a user desires to use the full capacity of 50 strips, he may only have 20 elements on each, since 20 elements

x 50 strips = 1000 elements. But if he chose to have 60 elements on each strip, then the maximum number of strips he may use is 1000 elements \div 60 elements = 16 strips. These size restrictions apply to all cases; lifting, nonlifting and those with both flows.

2.5. Points

wake (..., sering KUTTA>O), points and normal vectors must be input.

These points are denoted Kutta points. Presently, the program allows a total of 50 Kutta points to be input (i.e., one for each lifting strip). The x,y,z coordinates of the Kutta points and the components of the Kutta point normal vectors are input.

2.6.3 Off-Body Points

When off-body points are input, the value of NØFF must be greater than zero. Inputting the off-body points is quite similar to that of the basic body points. A status flag of 3 indicates the end of the off-body point input. Maximum number of off-body points is 100.

2.6.4 Angles of Attack

User may input a total of 10 angles of attack if he uses only the potential-flow calculation part of the program (by inputting BL = 0.0). If potential-flow and boundary-layer calculations are needed, this program currently allows only one angle of attack to be input.

2.6.5 Nonlifting Section

The order of input to this program should be nonlifting sections first, followed by the lifting sections. User may not run nonlifting sections only in this program, but he may run lifting sections without nonlifting sections. To obtain the zero lift solution, it is necessary to submit the body as a lifting body, then set the input parameters ISAVE=9 and BL=0; this will run the potential flow part alone and give the zero lift answer after the lifting final output.

3.0 INPUT INSTRUCTIONS

Some basic data inputs are necessary for the program while others are optional depending on the user's setup of the control card. Basically, the input consists of three groups. Listed below are these input groups with their associated card types. Each card type will be detailed in the following sections.

3.1 Input Data Groups

3.1.1 Title and Case Execution Information Group

Group	Card Type	Card Type ID	Remarks
1	1	Title	1 card only
1	2	Option control card	1 card only
1	3	Angle of attack cards	at least 1 card
1	4	Moment origin cards	at least 1 card (optional)
1	5	Lifting section information cards	at least 1 card
1	6	Ignored element cards	at least 1 card (optional)
1	7	Lifting strip width cards	at least 1 card (optional)

There are 7 types of cards, but for general use only the 4 non-optional cards are needed.

3.1.2 Body Geometry Data Group

Group	Card Type	Card Type ID	Remarks
2	1	Basic body point input cards	more than 1 card
2	2	Kutta point cards	<pre>at least 1 card (optional)</pre>
2	3	Kutta normal cards	at least 1 card (optional)
2	4	Off-body point cards	at least 1 card

These are the 4 types of cards in this group. Usually only Type No. 1 is needed.

3.1.3 Boundary-Layer Program Required Data Group

Group	Card Type	Card Type ID	Remarks
3	1	Boundary-layer card	1 card only
3	2	Transition location cards	at least 2 cards

These two types of cards are both needed. The number of transition location cards = $2 \times \text{total}$ number of lifting strips.

3.2 Input Card Sequence - Variables and Formats

The input data card sequence is indicated below first with its variables and formats, then with a more detailed explanation of each variable.

3.2.1 Condensed Form

1. Title card (required)

Format - (18A4)

Variable - TITLE

2. Option control card (required)

Format - (A4, 1313, 3F4.0, F12.0)

Variables — CASE, LIFSEC, MØMENT, KUTTA, NØFF, LIST, MPR, IØUT, IG, LASWAK, IATACK, IWIDTH, ISAVE, IPCV, SYM1, SYM2, BL, FC

3. Angle of attack card (required)

Format - (6E10.0)

Variables — ALPHAX(I), ALPHAY(I), ALPHAZ(I)
(I goes from 1 to IATACK)

4. Moment origin card (optional)

Format - (6E10.0)

Variables - ØRIGNX, ØRIGNY, ØRIGNZ

5. Lifting section information card (required)

Format - (1614)

Variables - NSØRCE(J), NWAKE(J), NSTRIP(J), IXFLAG(J) (J goes from 1 to LIFSEC)

6. Ignored element card (optional)

Format — (16I4)

Variables — IG1(I,J), IGN(I,J) (I goes from 1 to NSTRIP(J))

(J goes from 1 to LIFSEC)

7. Lifting strip width card (optional)

Format — (6E10.0)

Variables — WIDXTR(1,J), WIDTH(I,J), WIDXTR(2,J)

(I goes from 1 to NSTRIP(J)) (J goes from 1 to LIFSEC)

8. Basic body point input cards (required)

Either one of these two formats Format - (3E10.0, 2I1) [2(3E10.0, 2I1)] Variables - X,Y,Z, STATUS, LABEL

9. Kutta point cards (optional)

Format — (6E10.0)

Variables — CUTTAX(I), CUTTAY(I), CUTTAZ(I), CUTTAX(I+1), CUTTAY(I+1), CUTTAZ(I+1), (I goes from 1 to KUTTA)

10. Kutta normal cards (optional)

Format — (6F10.0)

Variables — CNX(I), CNY(I), CNZ(I), CNX(I+1), CNY(I+1), CNZ(I+1)

(I goes from 1 to KUTTA)

11. Off-body point cards (optional)

Format -[2(3E10.0,I1)]Variables - XØFF(I), YØFF(I), ZØFF(I), STATUS, XØFF(I+1), YØFF(I+1), - ZØFF(I+1), STAT (the last off-body point should have a status = 3)

12. Boundary-layer run card (required)

Format — (2F15.0, 3I5) Variables — UI, RI, ISM, IBETA, NØCAL

13. Transition location cards (required)

Format - (I5) Variable - NTR

3.2.2 Detailed Explanation of the Input Data

1. Title Card - Group 1, Type 1. Required

Card Format - (18A4)

Column	Format	Code	Explanation
1-68	17A4	TITLE	68 character description of the case to be run
69-72	A4	TITLE(18)	If imputting body points one point per card, punch " ØNE", otherwise, leave blank.

2. Option Control Card - Group 1, Type 2. Required

Card Format - (A4, 1313, 3F4.0, F12.0)

Column	Format	Code	Explanation
1-4	A4	CASE	4 characters used as case ID
5-7	13	LIFSEC	Total number of lifting sections input
8-10	13	MØMENT	A nonzero number indicates coordinates of the moment origin will be input.
11-13	13	KUTTA	Total number of Kutta points to be input. If KUTTA #0, Kutta points and normals must be input after basic body points and c.c.40 on this card must be zero.
14-16	13	NØFF	Off-body point input option. A nonzero number indicates there will be off-body points input.
17-19	13	LIST	Case execution flag. LIST=0 implies full execution. LIST = 0 will have partial execution and terminates after basic geometry is printed.
20-22	13	MPR	Matrix print flag MPR=0 no matrix print MPR=1 Vij matrix print MPR=2 Aij and sigma solution print MPR=3 onset flow and sigma print
23-25	13	IØUT	<pre>IØUT=0 will print all the geometric quantities associated with each element</pre>

Column	Format	Code	Explanation
26-28	13	IG	Ignored element option. If IG#0, card type #6 (ignored element card) will be needed.
29-31	13	LASWAK	A nonzero number means to use the formulas for the special semi-infinite last wake element.
32-34	13	IATACK	Number of angles of attack to be input.
35-37	13	IWIDTH	IWIDTH=0, step function option is used, and card type #7 (lifting strip width cards) are not needed. IWIDTH≠0, piecewide linear option is used, and card type #7 is required.
38-40	13	ISAVE	ISAVE=0, Kutta points will be used. ISAVE≠0, equal-pressure Kutta condition option is used and no Kutta points are needed. ISAVE=9, will also give zero lift.
41-43	13	IPCV	IPCV#0 will select parabolic vorticity option.
44-47	F4.0	SYM1	+1.0 or -1.0 is used for 1 plane of symmetry (negative sign implies antisymmetric).
48-51	F4.0	SYM2	+1.0 or -1.0 is used for two planes of symmetry with SYM1 \neq 0.
52-55	F4.0	BL	Boundary-layer computation option. BL=0 No boundary-layer calculation, inviscid flow only. BL=1.0 Use boundary-layer calculation, then use blowing method for the final computation. BL=2.0 Use boundary-layer calculation, then use the surface displace- ment method to compute the final flows.
56-72	F12.0	FC	Foot converter to convert the input coordinates to the units of feet.

3. Angle of Attack Card — Group 1, Type 3. Required

Card Format — (6E10.0)

Column	Format	Code	Explanation
1-10	E10.0	ALPHAX	x-component of the first uniform onset flow.
11-20	E10.0	ALPHAY	y-component of the first uniform onset flow.
21-30	E10.0	ALPHAZ	z-component of the first uniform onset flow.
			For more than 1 uniform onset flow, repeat the same format from c.c. 31-60. Two uniform onset flows (angles of attack) per card. May use as many cards as needed to satisfy IATACK.

4. Moment Origin Cards — Group 1, Type 4. Optional

Card Format - (6E10.0)

Column	Format	Code	Explanation
1-10	E10.0	ØRIGNX	x-coordinate of the moment origin.
11-20	E10.0	ØRIGNY	y-coordinate of the moment origin.
21-30	E10.0	ØRIGNZ	z-coordinate of the moment origin.

5. Lifting Section Information Card — Group 1, Type 5. Required

Card Format - (1614)

Column	Format	Code	Explanation
1-4	14	NSØRCE(J)	Number of on-body elements (including ignore-elements) on each lifting strip in the lifting section J.
5-8	14	NWAKE(J)	Number of wake elements on each lifting strip in the lifting section J.
9-12	14	NSTRIP(J)	Number of lifting strips (including extra strip) in the lifting section J.
13-16	14	IXFLAG(J)	Extra strip option. IXFLAG=0 no extra strip input IXFLAG=1 first input lifting strip of section J is an extra strip IXFLAG=3 last input lifting strip of section J is an extra strip IXFLAG=2 implies both first and last strips of a lifting section J are extra strips

Column Format Code Explanation

Repeat the above format again from c.c. 17 to 64. Four sections per card. Subscript J goes from 1 to the total number of lifting sections (LIFSEC).

6. Ignored Element Card — Group 1, Type 6. Optional

Card Format - (1614)

Column	Format	Code	Explanation
1-4	14	IG1(I,J)	Punch a number K — it means the Kth element in a lifting strip that is used as the beginning of the ignored element group.
5-8	14	IGN(I,J)	Punch a number M — it means the Mth element in a lifting strip that the ignored element group ends. For example, assume a lifting strip has 10 source elements, and the 3rd, 4th, 5th elements are the ignored elements. In this case, IG1=3, IGN=5. I = strip indix, J = section index. Repeat the same format on the same card for the next strip. 7 strips of ignored elements per card. Start a new card for a new lifting section.

7. Lifting Strip Width Card — Group 1, Type 7. Optional

Card Format - (6E10.0)

Column	Format	Code	Explanation
1-10	E10.0	WIDXTR(1,J)	Width for the first extra strip of a lifting section. Leave blank if there is no first extra strip.
11-20	E10.0	WIDTH(I,J)	Width value for the first lifting strip. Repeat the same format for successive strips until all lifting strip widths are punched. If there are more than 6 values, use another card. I = strip index, J = section index.
21-30	E10.0	WIDXTR(2,J)	The last width value is the last extra strip width. If no last extra strip, leave this field blank. Start a new card for a new lifting section.

8. Basic Body Point Input Cards - Group 2, Type 1. Required

Card Format -[2(3E10.0,2I1)] if TITLE(18) is blank.

Card Format - (3E10.0,2I1) if TITLE(18) is " ONE".

Column	Format	Code	Explanation
1-10 11-20 21-30	E10.0 E10.0 E10.0	X Y Z	x,y,z coordinates of a point on the line to be read in to form an element
31	11	STATUS	STATUS=2 new section STATUS=1 new line STATUS=0 same line STATUS=3 end of all body point input
32	11	LABEL	LABEL=1 lifting section LABEL=0 nonlifting section
33-42 43-52 53-62	E10.0 E10.0 E10.0	XX YY ZZ	x,y,z coordinates of the next point. Use only if 2 points per card option was selected. Status & label have
63	11	STATUS	same meanings as a bove.
64	11	LABEL	

9. Kutta Point Cards - Group 2, Type 2. Optional.

Card Format - (6E10.0)

Column	Format	Code	Explanation
1-10 11-20 21-30	E10.0 E10.0 E10.0	CUTTAX(I) CUTTAY(I) CUTTAZ(I)	x,y,z coordinates of the Kutta point controls
31-40 41-50 51-60	E10.0 E10.0 E10.0	CUTTAX(I+1) CUTTAY(I+1) CUTTAZ(I+1)	x,y,z coordinates of the next Kutta points

Two Kutta points per card. Repeat same card until all Kutta points are input.

10. Kutta Normal Cards — Group 2, Type 3. Optional.

Card Format - (6E10.0)

Column	Format	Code	Explanation
1-10	E10.0	CNX(I)	x,y,z components of the Kutta point normal vector
11-20	E10.0	CNY(I)	
21-30	E10.0	CNZ(I)	

Column	Format	Code	Explanation
31-40 41-50 51-60	E10.0 E10.0 E10.0	CNX(I+1) CNY(I+1) CNZ(I+1)	x,y,z components of the next Kutta point normal vector
			Repeat the same format for the next card if needed, until all Kutta point normals are input.

11. Off-Body Point Cards — Group 2, Type 4. Optional.

Card Format -[2(3E10.0,I1)]

Column	Format	Code	Explanation
1-10 11-20 21-30	E10.0 E10.0 E10.0	XØFF(I) YØFF(I) ZØFF(I)	x,y,z components of the input off-body point
31	11	STATUS	Punch 3 for the last off-body point, otherwise leave blank
32-41 42-51 52-61	E10.0 E10.0 E10.0	XØFF(I+1) YØFF(I+1) ZØFF(I+1)	Same meaning as above
62	11		

Repeat the format of this card as many time as needed for all the off-body points. The last card must have a 3 punched in either column 31 or 62 depending on where the point ends.

12. Boundary Layer Run Card - Group 3, Type 1. Required.

Card Format - (2F15.0,3I5)

<u>Column</u>	Format	Code	Explanation
1-15	F15.0	UI	Reference velocity, (ft/sec)
16-30	F15.0	RI	Reynold's number, (ft ⁻¹)
31-35	15	ISM	ISM#O will generate more boundary-layer calculation stations from the potential-flow output stations.
36-40	15	IBETA	IBETA $\neq 0$ uses alternate way to compute 8. Usually this flag should be set to 0.
41-45	15	NØCAL	NØCAL≠O will suppress the boundary-layer calculation for the nonlifting section.

13. Transition Location Card — Group 3, Type 2. Required.

Card Format - (I5)

Column	Format	Code	Explanation
1-5	15	NTR	Transition location of the input boundary layer strip. If this value is unknown, user may punch a large value and the program will calculate the transition location. Two transition location cards per lifting strip, one for the lower surface and one for the upper surface, are input in that order. The number of transition location cards needed = 2 x the total number of lifting strips.

3.3 Input Card Deck Setup

The following illustration shows the arrangement of the input data cards.

First index on the upper right corner indicates the Group Number, second one is the Card Type Number.

4.0 INPUT LOAD SHEETS

The following input data sheets are designed to assist users loading their data to be key punched. The Group No., Card Type No., and Sequence No. are put in for reference only and the user need not fill them in.

GROUP 1 — TYPE 1 TITLE CARD (REQUIRED)

TYPE	-36	5			-1	
екопь	120	2+	+		1010	
GEOILE	113	0]	7		0	
	15/	1	+		+	
	::	1	1			
	27	+	-		111	-
	E	1	1	S	BNE	ONE
	-6	1	4	SA	0	0
	55	1	1	2		
	-8	1	+	d.	+	
	3]	7	K	1	
	3	1	+	10	4	
	8	1	1	0	1	
	19	-	+		-	
	9		1	10	1	
	270	-	4	N	7	
	3		1	ш		
	13	1	+	AR	4	
	33		1	S	-	
	3	1	4	Z	7	
	32		1	0	+	
	8.3	-	4	>		
	77		1	00	-	
	546	7	7	æ	1	
	3		+	10	1 + + + + + + + + + + + + + + + + + +	
	8		7	AS	1	
	=======================================	1	+	<u> </u>	+	
	9	1	7	出	1	
	383	-	+	Z	+	
	3		7	포	1	
ш	35.	1	+	3	4	
TITLE	25		7		1	
F	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	=	4	5	=	
	8	(18A4	Ţ	IS	74	
	93(5-	+	-	5	
	782		1	AA		
	29	-	+	08	4	
	81990pt papapapa	1	7	0		
	325	-	-	ARI	-	
	8	1	7	S		
	-8-	-	+	111	-	
	19		1		1	
	7118	-	+	(7	-	
	191	1	1	IN		
	4 15	1	1	MO	7	
	13	1	7	L	-	
	112	1	7	FO	1	
	-5	1	+	THE FOLLOWING TITLE CARD FORMAT IS USED WHEN THE BASIC BODY POINTS ARE INPUT 1 POINT PER CARD	-	
	7 8 9	1	1	F		
	00		1			
	7		-		7	
	6 7	=	=		=	
	1567					

GROUP 1 - TYPE 2 OPTION CONTROL CARD (REQUIRED)

		_			
	TYPE	-86	0,2	-	-
	скопь	200	6		
		19			
		4/5	-	_	-
		/3/7		-	
		1 12	-	-	-
		100		-	
		859	_	_	-
		67			
		555		-	-
		2			
		828	-	-	-
	ЭŦ	19			
		89	-	-	-
	74	38			
		253	-	-	-
		18		-	_
-	BL	35	-	-	-
		8			
	71.10	-50	-	-	-
	SYM2	6			
		4	-		-
	11116	46			
	LMY2	24	6	-	-
	10.17	43	2.		
	IPCV	411	F-	-	-
	ISAVE	8	, 1313, 354,0, 512,0)		_
	3//21	383	4.	-	-
	HTGIWI	33	3F	_	
	HIGIMI	3536	*	-	-
	IATACK	B	313		
	NOVIVI	32	-	-	-
	\	3	4,	-	-
	LASWAK	298	Ą)	-	-
	nı	728	_	-	_
	91	352	-	-	-
	TUQI	425		-	-
		8			
	MPR	122	-	-	-
	ddn	202			-
	LISI	8 19	-	-	-
	1311	17			
	NØFF	516	-	-	-
	7701	14]	-		
	ATTUX	12 131	-	-	
	MOMENT	9 10	-	-	-
		80			
	LIFSEC	1 9	-		-
		5			
	7040	3.4	-	-	, -
	CASE	CV			

		20/12/12	-	-	-	-
		967 RR F9	-	-		1 1 1
		6364656	-	1	-	-
		001162			-	
	[(I+1	565788			-	
	ALPHAZ(I+1)	2835455			-	
		1950515			-	
	ALPHAY(I+1)	54647 48	-	-	-	-
	ALPHA	त्रातात्रकात्रकात्रकात्रकात्रकात्रकात्रक	(6E10.0)			
_	(1	3839404	-	-	-	-
UIRED	ALPHAX(I+1)	1353637	0.0		-	-
(REQ	ALPH	31 22 33	(6E10.0)	-	-	-
ANGLE OF ATTACK CARD (REQUIRED)	(1)	7282930		-	-	-
TTACK	ALPHAZ(I)	242562	-	-	-	
0F A	AL	22122	-		-	
ANGLE	(3)	17118/19/20	-	-	-	
	ALPHAY(1)	1415[16]	-		-	
ص س	A	01112/13	-	-	-	-
- TYPE	Ξ	7 8 9 1		-	-	
GROUP 1 - TYPE 3	ALPHAX(I)	3 4 5 6	-			
GRO	A	12			_	

0,1,0,3

ТУРЕ

THE ABOVE FORMAT IS REPEATED UNTIL THE INDEX I - IATACK AS INPUT IN GROUP 1 TYPE 2.

GROUP 1 — TYPE 4 MOMENT ORIGIN CARD (OPTIONAL)

ØRIGNX ØRIGNY ØRIGNZ	1175	ne su	0 4	-	
 #RIGNZ #2 ชายายุธระทางสามาราชาสา 2012-2012-2012-2012-2012-2012-2012-2012	СКОПР	12			
86		167	0 -		-
86		15			1 :
86		37	-	-	-
86		127			
86		-5	-	-	
86		6	-		1 -
8		13	_	-	1 7
8		8	-	-	1
8		455	_	_	
86		8	-	-	-
8		8	_	-	1
8		9	-	-	-
8		9	_	_	
8		<u> </u>	-	-	-
8		35	-	-	1
8		35	-	-	1
8		,33			
8		515	-	-	-
8		3	1	-	
8		89	-	-	
8		617		_	1
8		35	-	-	-
8		= = =			1
8		27	-	-	-
8		===			
8		59	-	-	-
8		738			
8		-83	0	-	-
8		35	10	1	1
8		8	9 T	7	-
8		8			
8		35.8	+		
8		87.9	7		
8		212	-	-	-
6	SNZ	35	7	-	=
	RIC	242	-	-	-
ØRIGNX ØRIGNY 1/2 [3]: [5 [7 8 9 1011 12 13 15 15 10 10 10 10 10 10	0	233	7	-	-
### ##################################		2	-	-	
ØRIGNX ØRIGNY 1/2 (3): [5] (7) [8] 9] (4) (1/2) (3) (4) (5) (6) (7) (8)		920	4	-	-
### PRIGNX PRIGNY PRIGNY		13.1	-	+	-
ØRIGNX ØRIG	×	617	7	7	7
ØRIGNX ØR	116	151	1	-	7
ØRIGNX	P. B.	3]14	1	-	7
ØRIGNX 12[3]:[5[6]7]8[9]1(1)		121	-		7
ØRIGNX		=	7		
ØRIGNX		9	1	1	-
ØRIGN)	_	7 8	-	-	-
ØRI0	SS	6	1		1
6	RI	5	-	+	-
2	0	3	3		1
		1 2	-	-	-

	ТУРЕ	75.50	0.5		-	_	_	-	1
		81	2			-	-	-	+
	евопь	-	0	-	-	_	-	-	i
		1/5		_	-	-		-	
			_		-	-	-	-	
		3	-	-	-	-	-	-	
		12.13	-	-	-	-	-	-	
		150						! :	
		0463	-	-	-	-	-	-	
		8	-	-	-	-	-	-	
		27	-	-	-	-	-	-	
		93						!]	
		33	_		-				
	1XFLAG (3+3)	ದ್ವಾಡಿಗ	-	-	-	-	-	-	
	IXFLAG	8	-	-	-	-	-	-	
		5		-		_			
	(2+3)	3	_	_	-	_	_	-	
	NSTRIP	(38)	-	-	-	-	-	-	
	GIGISN	55	-	-	-	-	-	-	2
	(2+3)	33							ш
	NMAKE \	13	_	_	_	-	_	_	9
	MILIAVE	3	-	-	-	-	-	-	TYPE 2.
		8	-		-	-	-	-	
	(1+3)	13		-	-	-		-	۵
	NZØBCE	3							3
		- 55	-			-		-	38
	(3+5)	17	-	-	-	-	-	-	-
	IXFLAG	19	-	-	-	-	-	-	
		45							-
	(1+5)	3		_	_	_	_	_	\mathbb{R}
	NSTRIP	-27	-	-	-	-	-	-	N
_	araran	=	-		-	-	-	-	10
0	(3+5)	9							Ä
RE	(CTL)	- 55	-	_	-	_	_	_	C
In	NMAKE	3	-	-	-	-	-	-	SE
ΕQ	(7.0)	133	-		-	-	-		1
R	(1+5) NSØBCE	33		_		-		-	_
_	NSORCE	-3	_	-	_			_	11
R		8	4-					-	7
\mathcal{C}	IXFLAG (1+t)	=======================================	1614	-	-	-	-	-	
Z	IXFLAG	E							EX
10		6.							9
LIFTING INFORMATION CARD (REQUIRED)	(1+0)	-8-	-	-	-	-	-	-	THE INDEX J = LIFSEC AS INPUT IN GROUP 1
₹ I	MSTRIP	-3	-	-	-	-	-	-	Ψ
0		93	1			_	7	-	=
Z	([+ቦ)	22		_	_	_		_	_
-	NMAKE	2	_		-	-	-	-	I
NG.		2	-	-	-	-	-	-	S
	(1+1) NSØBCE	8 19 2021							0
1	NSBRCE	5			-				Ш
	TOGESIA	718	-	-	-	-	-	-	A
1	(6)	13	-			-			PE
	IXFLAG (נ)	53	_			_			RE
	DAJAXI	31415		1					S
		- 53	-						I
5	(1)	=	-	-	-	-	-	-	1
E	USTRIP (C)	भाषाच्यात्राक्ष	-	-	-		-	111	M
7		9							OR
-	(0)	7 8	_	_	-	_	-	-	L
1	(1)		-	-	-	-	-	-	VE
-		5	-	-	-	-	-	1111	80
GROUP 1 — TYPE 5	(r)	3 4 5 6	1						THE ABOVE FORMAT IS REPEATED UNTIL
ق ا	NZØBCE	-	-			1	1	_	平
5	Jodpon	1 2	-	-	-	-	-	-	=
				-	-				

	-		_	-	-	,		
TYPE	- <u>F</u>	9010	-		-	-	-	
СКОИР	187	=	-	-	-	-		
alloas	11	0						9
	12	-	-	-	-	-	-	Ξ
		-	-	-	-	-		Œ
	2	-	-	-	-			
	2				-	-		~
	-							뿌
	1-6	-	-	-	-	-	-	E
	1-12-	-	-	-	-	-	-	N N
	129	-	1	-	-	-	1	Q.
	3			1				S
-	23645	-			-			ш
	3	-	-	-	-	-	-	8
ICN	8	-				-		A
								_
	7/8/20 (2)	-	-	-	_	-	-	E C
IEI	70	-	-	-	-	-	-	Z
	3	-		-	-			A
	33		-		-		-	₽
IGN	13.	-	-	_	-	-	1	A
	3	-	-	-	-	-	-	ST
	3	-	-	-1	-			
	Tā.							
191	-52						7	R
	16 17 48 195	-	-	-	-			3
ICN	4	-	-	-	-	-	1	I
NOI	16	-	1	-	-	7	1	AC
	¥3.							ш
	=======================================	_	_	_	_	_	_	Z
191	-27	-	-	-	-	-	-	0
	=	-	-	-	-	7	-	H
	-							T.
ICN	<u> </u>	_	_	_	111	_	4	S
	3	-	-	-	-	-	4	7
	36	-			-		-	
191	35		J			1	1	٦.
1 .01	_8		1	_		1	-	Z
-	8	1614			-	- 4	1	10
	31	16	+	-	-	4	1	5
ICN	×	-		1		1		SE
	_23							
Int	-61	-	-	-	-	-	-	žz
[9]	3	-	1	-	7	-	+	FA
	13	1						IF AG
(C'Z+I)	323	_	_	-		-	-	7_
(C,2+1)	-2-	-	-	-	4	+	+	AA
NOT	22	-	+	-	4	+	-	F 8
(1+5,3)	1970	1						_ F
(L,2+1)	19	1]]	7	மிய
[91]	718	-	4	-	4	-	-	A A
1.55	19	-		-	-	-	-	IS
(C, f+1)	2	1	7]	1	1	1	유
(C, [+1)	3]14[15]		1	1]	1		Z F
	3	-		-	-	-		SI
(C'L+I)		-	-	4	-	+	-	E A
(c, f+1)	0	7	7	1	7	7		EP
101	9	1						F
(051)	00	1	1	1	-	-	1	19
(L,1)	-	-	-	-	-	-	-	- A
	5	-	-	+	-	+	-	I Z
	3 4 5 6 7 8 9 10		J			J	7	I IS THE LIFTING STRIP INDEX OF A LIFTING SECTION J. 7 STRIP ON EACH CARD. START A NEW CARD FOR ANOTHER LIFTING SECTION AND REPEAT THE SAME FORMAT AGAIN.
(C,1)	3	_		1	1	-	1	IS
[91]	1 2	-	+	-	-	+	-	SE

GROUP 1 - TYPE 6

IGNORED ELEMENT CARD (OPTIONAL)

GROUP 1 - TYPE 7		ING STRIP WIDTH	LIFTING STRIP WIDTH CARD (OPTIONAL)				
WIDXTR (1,J)	WIDTH (I,J)	WIDTH (L,1+1)	WIDTH (I+2,J)	WIDTH (1+3,J)	WIDXTR* (2,J)		GROUP
123:5678910	2 3 1 5 6 7 8 9 1011 12 13 14 15 16 17 18 9 1021 22 23	01 22 23 24 25 27 28 29 50 U	31 20 52 53 53 53 53 53 53 53 53 53 53 53 53 53	414243 44 45,46,47 48,19-50	155555588	र्यक्ष्यक्षण्यात्रात्रात्रात्रात्रात्रात्रात्रात्रात्र	6/1/18/19
			(6E10.0)	1111111111			010
							1
1111111				******			1
11111111				*****			1
							1
11111111		=					1
1111111		=					1
		=					1
							1
							1
							=
1 10 111 1 1111	VACUATE ANITAL ANT ST.	111 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STORE MOTEOTO CHITTIE FILE OF	2			

I IS THE LIFTING STRIP INDEX. J IS THE LIFTING SECTION INDEX. START A NEW CARD WITH A NEW LIFTING SECTION AND REPEAT THE SAME FORMAT. *THIS FIELD FOLLOWS AFTER ALL LIFTING STRIPS OF A SECTION IS INPUT. IF THERE IS NO LAST EXTRA STRIP, PUNCH 0.0.

BASIC BODY POINT INPUT CARD (REQUIRED) 2 POINT PER CARD FORMAT GROUP 2 - TYPE 1

×	>	Z		*	77 18A	KOND HRI
12315678910	१। क्षाच्यां युव्यक्षितिक विश्वतिक विश्वतिक विश्वतिक विश्वतिक विश्वतिक विश्वतिक विश्वतिक विश्वतिक विश्वतिक विश्व		त्राष्ट्रध्वम् ५५६६३५३४६५५५५५५५५५५५५५५५५५५५५५५५५५५५५५५)424344454647[48495451[22	त्य अस्टिनिसिम्बिमान्य	निकानिक्षित्र विकासिक
	*****	111111111		111111111		
11111111111				1111111111	+111111111	1
		11111111				
11111111	1111111	111111111				
1111111111	11:11:11	11111111				
111111111	111111111	1111111		111111111		
	111111111	11111111				
	1111111111					
	111111111			1111111	+	
1111111	111111111					
	111111111	111111111				
	11111111				+11111111	
					+	
111111	1111111111					
11111111	111111111	11111111				11111111111111
11111111	1111111	111111111	111111		1111111111	
11111111		11111111				
STAT (OR STATT)	= 2 NEW SECTION = 1 NEW N-LINE = 0 SAME N-LINE = 3 END OF ALL INPUT	ON E NE L INPUT	LAB	(OR LABL) = 0 = 1	NONLIFTING SECTION LIFTING SECTION	

FORMAT	
CARD	
r PER	
1 POINT	
BASIC BODY POINT INPUT CARD (REQUIRED)	
CARD	
INPUT	
POINT	
BODY	
BASIC	
- TYPE 1	
GROUP 2	

×	>	N 1472	TATA	GROUP
1 2 3 1 5 6 7 8 9 1011 12 131	9 1011 12 13 14 15 16 17 18 19 20 21 22 73	24256279	වෙන ගොඩක් සහ	7/18/17/5/1
		(3E)	3E10.0, 2II)	0,2,0,1
11111111111				4
41111111111		11111111		1
1111111111		+11111111		+
	1	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+
		+11111111		+
	1 1 1 1	+1111111		+
		1111111	**************************	+
111111111111		+1111111		1
		41411111		+
	1	41111111		+
		1111111		+
				1
				-
		+1111111	******************************	-
				-
111111111		411111111		1
				-
		11111111		4
	11111111			-
STAT = 2 NEW SECTION = 1 NEW N-LINE = 0 SAME N-LINE = 3 END OF ALL INPUT	N E INPUT		LAB = 0 NONLIFTING SECTION = 1 LIFTING SECTION	

	TYPE	75-30 DE-\$7	0 20 2	-	1	1	1	1	1	1	-	=	1	1	1	7	1	1	7	1	7	7	-	
	евопь	इन्ट्रिय १९४१ छ। छोष्ट्रिय छोष्ट्रिय । यह १९४५ में १९४५ अस्त्री अस्त्री अस्त्री अस्त्री अस्त्री अस्त्री अस्त्री	, 6		*************		*************	-			11111111111111111			***************************************		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		**********			111111111111111111	1 111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	CUTTAZ(I+1)	හ ඉතින්න්න් නික්කුක	1						1111111111	1111111111		111111111		111111111							111111111		111111111	
	CUTTAY(I+1)	वाष्ट्रवत्रीयाष्ट्रविद्या वहार्थान					111111111			****			1111111	111111111		111111111				111111111	1111111			TYPE 2
(OPTIONAL)	CUTTAX(I+1)	०५।दाइद्यात्रक्षेत्रहान्द्रश्चात्रहान्द्रश्चा	(6E10.0)				11111111						111111111			11111111	111111111	11111111	1111111	11111111		11111111	111111111	PUT IN GROUP 1
KUTTA POINT CARD (CUTTAZ(I)	त्राष्ट्रप्रदेशके इंक्ट्रिया है ।	=			11611111	11111111									11111111			1111111				11111111	I = KUTTA AS IN
	CUTTAY(I)	1 2 3 4 5 6 7 8 9 10112 1314 1516 1713 192021 22524 2			111111111			1111111		11111111			1111111111					1111111		1111111	1111111	11111111		REPEAT THE SAME FORMAT UNTIL I = KUTTA AS INPUT IN GROUP 1 TYPE
GROUP 2 - TYPE 2	CUTTAX(I)	12315678910	1111111	11111111					1111111	111111111		1111111111	11111111		1111111			11111111	1111111		1111111	11111111		REPEAT THE SAM
											3	31												

F	ROUP	1 2	0203	1	1	1	1	1	1	1	1	-	-	1	1	-	1	-	1	1	1	-]
	41100	1/3/15/17	0	+	+	+	+	+	+	+	1	-	-	1	1	-	-	1	1	+	+	+	-
		1 12/13/7	=	1	4	1	=	4	-	4	-	-	1	1	-	1	1	1	1	1	1	=	1
		3,59707	=	=	1	1	1	-	1	1	=	-	1	1	1	1	1	=	1	1	1	=	1
		55/6/167	=	1	1	1	1111	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=	1
		यस	11111]	1	-	=	}	=]]]]]]]]]	=	=	}	}	}
-		19(0) 61	=	1	1	+	+	+	+	1	1	-	1	1	-	1	-	1	1	1	+	1	-
	CNZ(I+1)	5 (55)/8	=	1	1	1	1	1	=	1	-	1	=======================================	1	1	=======================================	1	=	1	1	=======================================	=	1
	CNZ	23516	=	1	1	111	1	-	1	1	-	1	=	1	1	1	1	1	1	-	1	1	1
-		195061		-	1	1	1	-	1	7	-	-		-	-	-		1	=	-	1	-	-
	(l+1)	A647/48	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4	1	1	1	1	1
	CNY (I+1)	243/44/2	-		=	1	1	-	1	1	-	1	=	-	1	=	1	1	1	1	1	1	-
-		39/40/41/4	1	-	+	+	+	+	-	7					7	7	-	+	7	7	7	+	-
	(F	36 37 38	=		=	-	=	=	-	=		7	3]]	-	=	=		=	=	=	3
IONAL	CNX (I+1)	tapabs	(6:		1	1		-	-	1	-	-	-	-	=	-	-	=	1	1	1	1	1
CARD (OPTIONAL)		98(81)3	(6E10.0)	-	4	1	-	=	+	1	-	-		-	1	=	4	+	=	=	+	+	-
CARD	î.	984749	=	-	1	1	1111	-	4	1	1	-	=	1	1	4	1	1	1	1	7 7 7	1	1
RMAL	CNZ(I)	Spaps	=	-	1111	1	11111	1	1	1	1	=	=	1	1	1	=	1111			1	1	
KUTTA NORMAL		20/21/22	1	1	-+	1	1	-	1	-	=	-	-		-	7	-	-		-	1	-	_
T.S.	0	1718119	=		11111111	1	=	=	111111	1	-				1111111		=	1		411111	-		-
	CNY(I)	1411516	1		=	111111	4	=	1	=		-	1	-	=	1		1111111	-	1	1	1	-
8		d11/12/13	1	=	1	1	1	1	1	1	-	=	4	-	=	1	1	=	1	-	1		1
GROUP 2 - TYPE		6 7 8 9 1 1 1 1 1 1 1 1 1		-	-	1	1	-	1	-			-		1	1	1	1		1	1	11111111	
P 2	CNX(I)	9 5 :	=		1111111		1	=		1	-	-	1	=	11111111	-		11111111	1	111111	11111111	-	=
GROU	0	1 2 3	=	-	=	=	=	=	Ē	=	=	-	=	=	=	=	=	-	=	F	=	=	=

REPEAT THE SAME FORMAT UNTIL I = KUTTA AS INPUT IN GROUP 1 TYPE 2

32

	GROUP	ा क्रिक्ट हो	0,2,0,4		-		-	-	-		-	-		-		-							-	
	dilodo	15/16/17	0		-	7	7	7	7	-		-}	7		-}	-	7	-	-					
		1374			1	=	=	=	=	=	=	=	=	=	=	E	=	1	=	=	=	=	-	
		7 17 17		4	1	1	=	=	1	+	=	4	+	+	4	+	4	+	+	4	=	=	=	
		71819	=	}	1	=	=]	=	=]	=	=	=	=	=	=	=	=	=	=	=	3	
		65,666		4	1	4	1	4	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	
	TATZ	2000			-	-	-	=	7	-	-	-	-	4	4	-	=	4	-	-	-	-		
		Day 61	=	-	-	-	=	=	=	=	-	=	=	=	=	=	=	=	=	-	=	=	=	
	ZØFF	65758	=	=	1	1	=	1	1	1	1	-	=	=	=	=	1	1	1	=	=	1	=	
	7.0	5455	=	1	=	1	=	=	=	1	=	=	4	1	=	7	-	1	7	=	4	4	4	
		15233		_}			=	=	-	-	3	3	-	=		=	=	=	-	=	=	=		
		91950		1	-	1	1	=	=	1	1	=	1	=	=	=	=	=	=	=	=	=	=	
	YØFF	4647		1	1	=	1	=	7	1	1	7	=	7	7	7	7	=	1	4	=	=	4	
	>	3 44 45]	=	=	=	=	=	=	=	1	=	=	=	=	=	=	=		=	1	1	-	
}		41424	1			+	-	-	-	-	-	-	=	=	-	- 1	- =	- 1	-	-	1	-		
		38394	$\stackrel{\sim}{\sim}$	=	+	=	=	=	7	=	=	=	=	=	4	=	=	=	=	=	+	=	=	
NAL	XØFF	53637		=	=	=	=	=	=	-	=	=	=	=	=	=	=	-	1	=	=	=	=	_
PTIC	~	E E	10.0	=	1	=	=	=	1	=	=	=	=	=	=	=	1	=]	=	=	=	=	INPU'
CARD (OPTIONAL)	TAT2	3(8)	(2(3510.0, 11)	1	+	+	+	+	+	+	+	+	1	+	#	+	+	+	1	+	1	1	\exists	NIOC
CAR		77829	7	=	=	=	=	1	=	=	=	=	=	=	1	=	7	=	-	=	=	-	=	O NOT THE LAST OFF-BODY POINT 3 END OF ALL OFF-BODY POINT INPUT
POINT	A SE	79.52	1	1	=	1	1	=	=	=	=	=	=	=	=	=	=	=	1	=	=	=	=	F-B(
*	7	यध्य	=	1	+	=	7	7	+	=	+	=	=	7	7	7	=	1	+	7	=	=	=	T OF
OFF-BODY		92021	1		1	1	1	-	1	1	-	7	1	7	-	-	-	-	-	-	-	1	\dashv	LAS
OF		17.18 1	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=		표유
	YØFF	14 15 16	=	=	=	=	=	=	=	=	=	+	-	=	4	7	+	7	=	1	=	7	+	END
4		1/2/13	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	7	7	=	-	=	11 11
TYPE		12 3 1 5 6 7 8 9 1 0 11 2 13 14 15 16 17 18 19 20 21 22 22	=	E	=	=	1	=	=	=	=	=	=	3	=	3	=	1	=	=	=	+	_	STAT (OR STATT) =
1		8 / 3	=	=	=	=	=	=	=	=	=	=	-	=	=	-	=	=	11111	11111	-	=	1111111	R ST
GROUP 2	XØFF	40	=	=	-	=	-	=	=	1	111	=	-	=	-	-	=	-	1	-	-	11111	=	T (0
GRC		1 2 3	=	=	=	=	1	=	=	=	=	1	1	=	E	=	=	=	=	=	=	=	=	STA
												22												

1	ТУРЕ	181-	-1_1			TYPE	75sn	0302	-	-	1	1	1	7	-	-	-	-	
}	GROUP	0301	3			екопь	517/18	63	1	+	1	1	1	1	1	-	1		
1	dilodo	191	<u>'</u>	_			1/5/16	4	. =	1	4	=	1	1	1	1	1	1	
		1	4 4	=			2/13/7	4	1	1	1	1	4	=	4	=	=	=	
			1 1	4			0.11	4	4	1	1	=	1	1	1	1	1	4	
		9707	1 1	1			38.79	1	1	=	1	7	1	1	1	1	1	1	
		138	1 1	1			1057	7	7	7	7	1	7	7	1	7	1	1	
		99	7 7	1			8 55	7	7	7	7	7	7	7	7	7	7	7	
		8	<u> </u>	}			73	3	}]	}	=	=	3	}	}	3	}	ED.
		19	1 1	1			1902	1	3	-	}	3	}	3	}	}	}	}	ECT
		B B	1 1	=			758 3	4	1	1	1	1	=	1	=	1	=	1	SEL
		18	1 1	1			8 365	7	1	-	1	7	=	7	=	1	1	1	IS
		5455	7 7	7			3516	7	1	=	1	1	7	1	7	1	1	1	ON
		5253	7 7	-			122	7	7	=	7	7	7	7	7	7	=	1	AT I
		50	E E	3			1950	7	7	=	7	7	7	7	7	7	7	7	TOO.
		4	1 1	-			47 48	3	3]	3	3	}	3]	3]]	CAI
		184	1 1				15516	4	-	=	=	-	1	}]	}	}	}	LOW
	AL	1344	1 1	1			74344	1	=	+	=	1	=	1	=	4	4	1	Ī
į	NØCAL	62778899481 283348586 3738594441 4743444546 474845 5851 5968 5868 58 58 58 58 58 58 58 58 58 58 58 58 58	1.1	1	6		ग्रमात्रीयो हो	=	. =	=	=	-	=	1	=	1	=	=	THE ABOVE 2 TYPES OF CARDS ARE NOT NEEDED IF ONLY THE POTENTIAL FLOW CALCULATION IS SELECTED
	TA	839	1 1	=	IREC		3879	3	=]	=	=]	3	3	3	=	=	OTE.
(REQUIRED)	IBETA	315)	‡ ‡	1	(REQUIRED)		5963/	=	=	1	-	1	1	1	=	1	=	=	포
QUI	Σ	33	1]	(F)		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	=	=	1	1	=	=	1	1	7	#	=	⊢
	ISM	98(8) 283	1 1	1	LOCATION CARD		31/20	15)	=	1	-	=	=	=	7	1	7	1	ONL
YER CARD		1	+		NO		12930	ᅴ]]	=	3	.]	}	3]	=	3	IF
S C		27/28	= =	=	CAT		32778	4	+	1	-	4	=	1	1	=	1	=	DED
AYE		952	EE	3	LO		4254	7	=	4	=	1	4	1	1	7	=	=	NEE
BOUNDARY LA	RI	9 10 11 2 13 14 15 16 17 18 19 10 12 13 14 15	1 1	=	TRANSITION		223	7	1	1	7	7	7	1	7	7	7	7	VOT
NDAR	п.	- <u>S</u>	1 1	1.	ISIT		7021	7	7	1	7	7	7	1	7	7	7	1	RE
BOU		8 19	1 1	SED	TRAI		18 19	=	3]	=	=	=	=	=	3	=	=	SA
		1617	7 7	i i			116/17	=	=	1	=	1	=	=	=	-	=	=	ARD
		14 15	= =	IS NORMALLY USED.			31415	=	=	1	=	+	1	=	=	1	1	1)F C
-		12/13	= =	ORM	2		1 2 1	7	=	1	+	=	-	1	1	=	1	1	ES
TYPE			1 1	S	TYPE		9101	4	7	1	-	1	1	=	1	1	7	4	TYPI
-	In	8 8		0	- T		7 8	=	=	-	-	7	-	7	7	1	7		2
		5678	7 7	7 "	m		3 1 5 6 7 8	7	+	7	7	+	+	7	7	7	-	-	OVE
GROUP 3		 (C)	7 F	IBETA	GROUP	NTR	3 1	3	3		3	=	=	3	-	=	=	=	E AB
95		12	11	18	GR		1 2	1	1	1	1	1	1	1	1	1	1	1	TH
										-				-					

5.0 OUTPUT EXPLANATION

The output of each case is composed of four parts. Part one is the initial potential flow run. Part two is the output from the simulation program. Part three has all of the boundary-layer-calculation output. Finally, part four is the final output of the potential-flow calculations.

In addition to the above normal output, there are some optional intermediate outputs, which will be explained after the normal output.

5.1 Results of the Initial Potential-Flow Calculations

5.1.1 Basic Data

Symbol	Definition
N	An integer index to identify the strip number of the section.
М	An integer index to identify the element number of the strip.
X	x-coordinate of the element's corner point.
Υ	y-coordinate of the element's corner point.
Z	z-coordinate of the element's corner point.
NX	x-component of the unit normal vector.
NY	y-component of the unit normal vector.
NZ	z-component of the unit normal vector.
XO	x-coordinate of the centroid of the element.
Y0	y-coordinate of the centroid of the element.
ZO	z-coordinate of the centroid of the element.
D	The distance the four corner points are projected to become coplanar.
T	Maximum diagonal length of the projected element.
Α	Area of the element.
NLIF	Nonlifting section element.
LIFT	Lifting section element.
XTRA	Extra strip element.

Symbol Definition

WAKE Wake element.

Note: This will be the only output if "LIST" is input with a nonzero value on card #2.

5.1.2 On-Body Solutions

Symbol	Definition
N	An integer index to identify the strip number of the section.
М	An integer index to identify the element number on the strip.
XO	x-coordinate of the centroid of the element.
YO	y-coordinate of the centroid of the element.
ZO	z-coordinate of the centroid of the element.
VX	x-component of the total flow velocity.
VY	y-component of the total flow velocity.
VZ	z-component of the total flow velocity.
VT	Magnitude of the total velocity.
VTSQ	Magnitude of the total velocity squared.
CP	Pressure coefficient, equals $1 - VTSQ$.
DCX	x-component of the direction cosine of the velocity vector.
DCY	y-component of the direction cosine of the velocity vector.
DCZ	z-component of the direction cosine of the velocity vector.
NX	x-component of the unit normal vector.
NY	y-component of the unit normal vector.
NZ	z-component of the unit normal vector.
SIG	Surface source density.
VN	Dot product of the velocity and the unit normal.
AREA	Area of the element.

- Note: 1. The components listed for the forces and the moments are in the $x_{\flat}y_{\flat}z_{\flat}$ order.
 - 2. If there are ignored elements input, the solutions for the ignored elements will not be printed. The output of the on-body solutions in this case will show less elements than other strips which do not contain the ignored elements.

5.1.3 <u>Kutta Point Solutions</u>

Symbol	Definition
KUTTA POINTS	Identifies the Kutta point number.
XO	x-coordinate of the Kutta point.
YO	y-coordinate of the Kutta point.
ZO	z-coordinate of the Kutta point.
VX	x-component of the total velocity.
VY	y-component of the total velocity.
VZ	z-component of the total velocity.
VT	Magnitude of the total velocity.
VN	Dot product of the velocity and the unit normal.
СР	Pressure coefficient.
DCX	x-component of the direction cosine of the velocity vector.
DCY	y-component of the direction cosine of the velocity vector.
DCZ	z-component of the direction cosine of the velocity vector.
NX	x-component of the Kutta normal vector.
NY	y-component of the Kutta normal vector.
NZ	z-component of the Kutta normal vector.

5.1.4 Off-Body Point Solutions

Symbol	Definition
PØINTS	Identifies the off-body point number.
XO	x-coordinate of the off-body point.

Symbol	<u>Definition</u>
Y0	y-coordinate of the off-body point
ZO	z-coordinate of the off-body point
VX	x-component of the total velocity
VY	y-component of the total velocity
VZ	z-component of the total velocity
VT	Magnitude of the total velocity
VTSQ	Magnitude of the total velocity squared
СР	Pressure coefficient
DCX	x-component of the direction cosine
DCY	y-component of the direction cosine
DCZ	z-component of the direction cosine

5.1.5 Bound Vorticity Coefficient Solution

Symbol	Definition

STRIP N \emptyset . Identifies the order of the strips in the lifting section

B(STRIP) The bound vorticity coefficient (chordwise dipole derivative) associated with each strip.

5.1.6 Intermediate Print

This section explains the various messages, notes and quantities that are printed, other than the final output explained before.

1. Control Flags Print

This is the first page printout of all the input control flags and all the uniform onset flows. This part of the output enables user to check if the control variables are input properly.

2. Time Print at Various Steps During Execution

When the computer run starts, time is initialized to zero. At various parts of the program during execution of the run, current CPU time is called and printed. Subtraction of the time between steps will indicate the amount of CPU time used.

BEGIN THE SUBROUTINE INPUT. TIME IS xxx.xxx SEC.

Note: The time at the beginning of the input routine.

BEGIN THE FØRMATIØN ØF ELEMENTS. TIME IS XXX.XXX SEC.

Note: The time at the start of element formation.

FINISH THE FORMATION OF ELEMENTS. TIME IS XXX.XXX SEC.

Note: The time at the completion of element formation including the printout of the basic data.

Subtraction of the previous step time from this time should give the time it takes to form the body elements.

END OF SUBROUTINE INPUT. TIME IS xxx.xxx SEC.

Note: The time at the end of the input routine.

BEGINNING THE VFØRM RØUTINE. TIME IS XXX.XXX SEC.

Note: The time at the beginning of the velocity formation routine.

TIME FOR THE FORMATION OF THE LIFTING VELOCITY MATRIX = xx.xx MIN.

Note: This is the time required for forming either the nonlifting or lifting velocity matrix in minutes.

END OF THE VFORM ROUTINE. TIME IS xxx.xx SEC.

<u>Note</u>: This is the time at which the formation of the velocity matrix for the whole body is completed.

END OF THE AFORM ROUTINE. TIME IS XXX.XX SEC.

Note: This is the time at which the formation of the Aij matrix is completed.

THE N X N MATRIX WITH m RIGHT SIDES WAS SOLVED DIRECTLY IN xx.xxx MIN.

Note: This gives the total time the matrix solution routine requires.

3. Source Velocity Matrix Print

CØLUMN

CNTRL PT

VXS

VYS

VZS

Explanation: The numbers printed below these headers are the source velocity matrix column number, the control point number, the x,y and z components of the source velocity matrix.

Note: This printout will only appear when MPR=1 is input.

4. Dipole Velocity Matrix Print

STRIP

CØNTRØL PT

VXF, VXS

VYF, VYS

VZF, VZS

Explanation: The numbers printed below these headers are the strip count (lifting), control point number, the x,y,z components of the first and second dipole velocity.

Note: This printout will appear only if MPR is set equal to 2.

5. Onset Flow Matrix Print

ØNSET FLØW NØ

CONTROL POINTS

X-FLØW

Y-FLØW

Z-FLØW

Explanation: The numbers printed below these headers are the onset flow number, the control point number, and the x,y,z components of the onset flows.

Note: This printout will appear only if MPR=2 is input.

6. The Dot Product (Aij) Matrix Print

CØLUMN

AIJ

FLØW NØ.

RIJ

Explanation: Under these headers are the column count of the AIJ matrix, the dot product value, the onset flow numbers and the righthand side matrix.

Note: This printout will appear if MPR is set greater than or equal to 2.

7. The Sigma Matrix Print

SØLUTIØN ØBTAINED AFTER CØLSØL

FLØW NØ. — Indicates the onset flow number. Following it are the sigma solutions. 8 numbers to a line.

Note: This matrix will be printed if MPR is not less than 2.

8. Other Intermediate Print

TABLE OF INPUT INFORMATION

INPUT SECTION NO. - Section number count

SECTION TYPE - Type of input section

0 nonlifting

1 lifting

TOTAL NO. OF ELEMENT IN EACH SECTION

Summarize the total element count (including wake element less extra strip)

EXTRA STRIPS -0 no extra strip

1 first strip is extra

3 last strip is extra

2 both first and last strip are extra strips

STRIP NØ. - Indicates the strip count

SØURCE ELEMENTS IN THE STRIP — Prints number of on-body elements in each strip (including ignored elements).

WAKE ELEMENTS IN THE STRIP - Indicates the wake elements in the strip.

TØTAL NØ. ØF ELEMENTS INPUT — Sums up all the elements input (not counting the extra strip elements).

BØDY SECTION NO. = n- Indicates that the velocity formation is being processed for the input section n.

TYPE = i - Indicates this section n is of the type i(i = 0) for nonlifting, i = 1 for lifting).

TØTAL NØ. ØF PØINTS = mm — Indicates the total elements in the section n.

NØ. ØF STRIPS = j - Indicates the total number of strips in the section.

TØTAL NØ. ØF CØNTRØL PØINTS (INCL. ØFF-BØDY PØINTS) = nn - Indicates the total number of control points in the section.

LIFTING STRIP NØ. j, NØ. ØF IGNØRE ELEMENTS k- Indicates the lifting strip count and its number of ignored elements.

TØTAL NØ. ØF ELEMENTS IN THE LIFTING SECTIØN — Indicates the total number of lifting elements in the lifting section.

NØ. ØF FAR ELEMENTS = xx - Far field element count.

NØ. ØF INTERMEDIATE ELEMENTS = xx - Intermediate field element count.

NØ. ØF NEAR FIELD ELEMENTS = xx - Near field element count.

10. Identifying the zero-lift output for certain uniform onset flow.

ZERØ LIFT ØUTPUT FØR THE FØLLØWING UNIFØRM ØNSET FLØW

(+x.xxxxxxx, +x.xxxxxxx, +x.xxxxxxx)

These are the components of the uniform onset flow from which the zero lift is calculated.

5.2 The Simulation Program

SECTION NO.

There are two different types of simulation program output: one is for blowing method, and the other is the result of the surface displacement method. Either type of output is printed depending upon user's choice.

5.2.1 Before Boundary-Layer Program

This part of the output is the same for both blowing and surface displacement methods.

Symbol Definition

TYPE Nonlifting section is type 0.
Lifting section is of type 1.

TØTAL STRIPS Total number of strips within the section.

Section number of the input body

STRIP N \emptyset . Strip number of the printed section

STAGNATIØN Element number of the strip where stagnation point is $P\emptyset INT$ calculated

Symbol	<u>Definition</u>
XO YO ZO	The x,y,z coordinates of the computed stagnation point.
BL. STRIP	Boundary-layer strip number. A value of 1 denotes it is the lower surface of the original strip used in the potential flow calculation, while a value of 2 is for the upper surface.
C. PØINT	Original potential-flow calculation control point numbers, except number one which is the computed stagnation point.
X Y Z	The x,y,z components of the control point.
٧	Surface velocity at the control point.
S	Arc length between consecutive control points.
K	Boundary-layer station numbers if smoothing option is chosen.
PCHØRD	The percent chord associated with the smoothing stations. Note: This is a prescribed array in the program.
XK(K) ZK(K)	The interpolated x,z values at the smoothed boundary-layer stations.
S(K)	The interpolated arc lengths between successive stations.
V(K)	The interpolated surface velocities.
5.2.2 After Bo	oundary-Layer Program
Symbo1	<u>Definition</u>
I	Potential-flow calculation station number
SM(I)	Back interpolated arc length values from the smoothed boundary-layer stations.
VB(I)	Back interpolated surface velocities from the smoothed boundary-layer stations. $ \\$
DEL(I)	Back interpolated δ^{\star} values from the smoothed boundary-layer stations.

5.2.3 Surface Blowing Simulation Output

1. THE NEW RIGHT-HAND SIDE

These are the generated blowing normal velocities to be used in solving for the final potential-flow solution. These velocities for each strip are printed after the strip has finished its boundary-layer calculation, and, finally, a whole set of blowing normal velocities is printed before the matrix solution routine is called. This set of blowing normal velocities will be the right-side column matrix [C] in the matrix equation [A] $[C]^{-1}$ = [B], where

- [A] is the [Aij] matrix from the initial potential-flow calculation,
- [B] is the source density column matrix to be solved.

2. SØLUTIØN ØBTAINED AFTER CØLSØL

FLØW NØ. 1

This is the solution matrix [B] (the source density matrix) obtained after the matrix solution routine is called.

CHECKING THE SIGMAS AFTER B. LAYER LINK SIGMAS ØF THE UNIFØRM FLØW NØ. 1

First the original σ solution of the uniform flow is printed. This enables the user to check the same uniform flow solution (from initial potential-flow calculations) as brought back. Then the second part with the same message printout is the uniform flow σ solution plus the solution obtained from 2. It is the final σ result to be used in computing the final flow.

4. B-ARRAY

The new bound vorticity coefficient associated with each strip.

5. Boundary-layer calculation summaries for each lifting strip.

A table, which consists of the input to the boundary-layer program and the output δ^* 's for each lifting strip, is provided. Explanations of these parameters are given below.

Symbol	<u>Definition</u>
STRIP NØ.	Lifting strip number.
C.PØINT	Control point number in the strip
X Z	x,z coordinates of the control point
V	Surface velocity at the control point
S	Arc length between two control points
DEL	Displacement thickness δ^* at control points
DQDS	$\partial q/\partial S$ computed for each control point, where $q=\delta^*V$. When $\partial q/\partial S$ over the entire body is computed, it is used as a new right-hand side in the original matrix equation to be solved for density distribution.

5.2.4 Surface Displacement Simulation Output

After both the lower and upper surfaces are computed in the boundary-layer program, a summary of the input and output variables are printed in one table. The following list shows the symbols and their definitions.

Symbol	Definition	
STRIP NØ.	Lifting strip number	
C.PØINT	Control point number in the strip	
X Z	x,z coordinates of the control point	
V	Surface velocity at the control point	
S	Arc length between two control points	
DEL	Displacement thickness δ^* at control points	

Another output is a table of δ^* . This output is solely for the purpose of checking the δ^* 's on the external unit before they are used in generating new coordinates.

Symbol	Definition
DEL STAR	Displacement thickness δ★
K	A do-loop counter counting the number of strips
К1	A counter that was stored on the tape to identify the tape number. K1 should always be equal to K.

5.3 Boundary-Layer Program Output

The output of this program consists of three parts: The input body geometry data, the computed station data, and the output summary at each station.

Listed below are the output variables and their definitions in the order of their appearances in the output.

Symbo1	Definition
TRFLAG	Transition location flag. The value of this flag is set equal to 1. The program will calculate the transition location if the user inputs a number larger than the number of boundary-layer calculation stations for the value of NTR.
TRINT	Transition control flag. This flag is set equal to zero which means the transition is instantaneous.
TVC	= 0, not applicable
SHØRTP	Print control flag. This flag is set equal to 1 in the program. This means the program will use short printout (no velocity or enthalpy profiles printed).
X/C	Nondimensionalized x-coordinates.
Y/C	Nondimensionalized y-coordinates (it is actually the z-values from potential-flow program)
Χ	x-coordinate in feet
S	Surface distance in feet
S/C	Nondimensionalized surface distance
н	First increment of η calculation
С	Chord length in feet
PRO	Laminar Prandtl number
K	Variable grid factor. It is set equal to 1.14.
RHØREF	Freestream reference density, slugs/ft ³
SWEEP	Sweep angle. Not used in this version.
KK	Flow index KK = 0.0 for 2-D flows
MUREF	Freestream dynamic viscosity μ_{∞} , $1b_f$ sec/ft ²

Symbo1

Definition

HE	Total enthalpy at the edge of boundary layer, $(ft/sec)^2$.
EPS1	Converge criteria for laminar flow. Set equal to 0.005.
VREF	Reference velocity, ft/sec.
TREF	Reference temperature T_{∞} , °R.
REY	Reynolds number based on reference conditions.
MREF	Freestream Mach number.
RØ/C	It is the z values from the potential-flow program.
TW	Not applicable here.
UE	u_e , velocity at edge of boundary layer, ft/sec.
PE	Pe, pressure at edge of boundary layer, lb_f/ft^2 .
FW	$f_{_{\mathbf{W}}}$, the transformed stream function at the wall
	ρ.ν

$$f_w = -\frac{1}{(2\xi)^{1/2}} \int_0^{\xi} \frac{p_w^v w}{p_e^{\mu} e^u e} d\xi$$

 $\begin{array}{c} \text{ALPHA1} \\ \text{QW} \end{array} \qquad \qquad \text{Not applicable to this version}$

CP Pressure coefficient

MUE Local dynamic viscosity $\mu_{\mbox{e}}, \mbox{ at edge of boundary layer} 1 \mbox{b}_{\mbox{f}} \cdot \mbox{sec/ft}^2$

FPW f

BETA $\beta = (2\xi/u_e)(du_e/d\xi)$

ALPHA2

RR Not applicable in this version TE

SQUIG Transformed x-coordinate ξ

 $\xi = \int_{0}^{x} \rho_{e} u_{e} dx$

THETA Momentum thickness, θ , ft

Symbol	Definition
DELS	Boundary-layer displacement thickness
	$\delta^* = \int_0^\infty 1 - \frac{\rho u}{\rho_e u_e} dy, ft$
CF	Value of the local skin friction coefficient, $c_{\mbox{\it f}}$
	$c_f = \tau_w / (1/2\rho_e u_e^2)$
FPPW	f" _W
GW	Total enthalpy ratio H _W /H _e
IMAX	Number of points taken through the boundary layer.
RX	Reynold's number based on x
RTHETA	Momentum thickness Reynolds number, R_{θ}
Н	Boundary-layer shape factor, $H = 6*/\theta$
CFA	Integrated skin-friction coefficient, C_{F}
GPW	g_W^1 , slope of $g_W^{}$ as a function of η at the wall
ST	Stanton number, not used in this version

5.4 Final Output

 η_{∞}

ETAINF

The final output format of the program is identical to the initial potential-flow calculation output. When the blowing method is used the original coordinates will be output again with the new potential flow solution. For the surface displacement method, the new body coordinates are printed with the final potential-flow solution.

6.0 ERROR MESSAGES

6.1 Inviscid Flow Program

a. Message: MISMATCH ØF ELEMENTS IN A LIFTING STRIP IS DETECTED. ELEMENTS FØRM = xxx, ELEMENTS INPUT = xxx, CØMPUTATION TERMINATED.

Cause of error: Inconsistent input data. The program sums up the number of on-body elements plus the wake elements. This sum does not match that of the input elements formed from the input coordinates.

Action: Check the lifting body information card and the input basic body points coordinate cards.

Number of points input should equal the number of elements plus 1 on each strip.

For example. If in a lifting section, each lifting strip consists of 10 on-body elements and 1 wake element, the total element number is 11, and there should be 12 points input. Each point has x,y,z coordinates.

b. Message: ERRØR IN IGNØRED ELEMENT CØUNT xxx, SHØULD BE xxx.

Cause of error: Erroneous input of the ignored element information.

Action: Check the input data on group 1, type 6 cards. Make sure the ignored element information is properly input.

c. Message: LABEL ERRØR IN NØNLIFTING VFØRM.

Cause of error: Reading in wrong part of data from unit 4. The geometric quantities of each element are stored in unit #4. These data must be read in during the velocity formation routine. In front of these geometric quantities is a label which indicates they are lifting section data or nonlifting data. If computation is in the nonlifting section and the system is reading in lifting section data, the above message will be displayed.

Action: Check that the number of lifting strips input is the actual number of strips input.

d. Message: ERROR IN VFØRM. THE ELEMENTS FØRMED DØ NØT CØRRESPØND TØ THE NØ. ØF BØDY ELEMENTS.

Cause of error: The input number of elements does not correspond to the actual number of elements being formed.

Action: Check lifting body information input, and also the nonlifting body points, if any.

e. Message: AFTER xxx ITERATIØNS, DELTA B STILL DID NØT CØNVERGE TØ THE GIVEN CRITERIØN/LARGEST DELTA B = ±x.xxxxxxxE±xx/PRØGRAM PRØCEEDS WITH THE MØST CURRENT VØRTEX STRENGTH.

Cause of error: In the stepwise routine, after 100 iterations, the ΔB value is still bigger than the given criterion, so the max. B value is used for further calculation. (B = Bound vorticity coefficient.)

Action: Check the basic body coordinate input.

f. Message: XXX ØNBØDY PØINTS MISSED, EXECUTIØN TERMINATED.

Cause of error: In the final output, the on-body element count is incorrect.

Action: Check the number of source elements input.

g. Message: XXX KUTTA PØINTS MISSED, EXECUTIØN TERMINATED.

Cause of error: In the final output, the Kutta point count is incorrect.

Action: Check the total number of Kutta points input.

h. Message: XXX ØFF-BØDY PØINTS MISSED, EXECUTIØN TERMINATED.

Cause of error: In the final output, the off-body point count is incorrect.

Action: Check the number of off-body points input.

i. Message: THE MATRIX OF XXXXX ELEMENTS EXCEEDS XXXXXX.

Cause of error: The size of the matrix is too big for the work area

prepared for the COLSOL routine.

Action: Change ISIZE in the main program.

6.2 Boundary-Layer Program

a. Message: ***ITERATIONS EXCEED THE ALLOWABLE LIMIT***

Cause of error: In subroutine BØUNDL, if the number of iterations exceeds 9, this message will be printed and job stops.

Action: None.

b. Message: NEGATIVE VELØCITY IS FØUND, ITERATIØN ENDS

Cause of error: During iteration at a given station, a negative velocity is found, and run stops. This error message is printed in subroutine BØUNDL.

Action: None.

c. Message: **ERRØR - NØ INPUT FØR EITHER VREF ØR MREF

Cause of error: Both the reference velocity UI and the reference freestream Mach number are missing from the input.

Action: Check the input of VREF, make sure it is a nonzero number.

d. Message: **ERRØR — XI AT STATIØN 1 NE ØR GT O.

Cause of error: The first point of the surface distance must be equal to $\mathbf{0}$.

Action: Check the input S array. If $S(1)\neq 0$. Change it and rerun the job.

e. Message: **ERRØR - FP PRØFILE IS NEGATIVE AT I = xxx

Cause of error: At the printed station number, the f' profile is found to be negative.

Action: None.

f. Message: **ERRØR - IMAX(xxx) EXCEEDS 100 - IMAX = xxx.

Cause of error: The number of iteration at the printed station number exceeds 100.

Action: None.

g. Message: ********CASE TERMINATED*******

Cause of error: Any occurrence of the error messages in the boundary-layer program.

6.3 Simulation Programs

a. Message: NØ SEPARATIØN CAN BE FØUND FØR THIS STRIP

Cause of error: Using the potential-flow calculation results, the simulation program can not locate the stagnation point to separate the lifting strip into two boundary-layer strips.

Action: Check the input and output data of the potential-flow program.

b. Message: TØTAL PØINT IN SETUP NØT EQUAL TØ TØTAL CØNTRØL PØINT, PRØGRAM ENDS FØR CØRRECTIØN

Cause of error: In generating the new onset flow, the program checks the total number of control points with the control elements that are currently being worked on. If these two numbers do not agree, this message is printed.

Action: Check that the total number of control elements is passed correctly into here, and also check to see if some of the control points have been skipped.

c. Message: ELEMENTS INPUT TØ B.L. PRØGRAM = xxxxx. ELEMENTS RETURN TØ CALLING PRØGRAM = xxxxx. PRØGRAM STØPS.

Cause of error: Inconsistent source element count.

Action: Check that the number of source elements per strip stored on the external unit is agreeable with the number already stored in core.

d. Message: STRIP COUNT ERROR IN UNIT 3

Cause of error: The strip number stored on unit 3 with the $\delta *s$ is incorrect.

Action: Check that the total number of lifting strips is correctly passed.

e. Message: STRIP COUNT DIFFERS FROM TAPE IDEL

Cause of error: The strip counter recorded on the unit IDEL for the lifting section is not the same as the strip number being used at the time the error occurs.

Action: Check the contents of the unit IDEL.

f. Message: ELEMENT NØ. DIFFERS FRØM TAPE IDEL

Cause of error: The number of on-body elements recorded on unit 3 is incorrect.

Action: Check the contents of the unit 3.

q. Message: FINAL STRIP DIFFERS FROM TAPE IDEL

Cause of error: The total number of lifting strip count is not agreeable with the strip index on unit 3.

Action: Check the contents of unit 3.

h. Message: WAKE ELEMENT COUNT ERROR. K1 = XXX M1 = XXX EXECUTION STOPS WITH ERROR CODE 20

Cause of error: Generated total number of on-body points plus wake points is not the same as stored from the initial potential flow calculation.

Action: Check that the correct number of on-body elements and wakes are stored and passed to this part of the program correctly.

i. Message: IWAKE = XXXXX IWK = XXXXX STØP 19

Cause of error: The number of generated wake elements is not the same as stored from the initial potential-flow calculation.

Action: Check the number of elements and wakes generated in this part of the program.

7.0 DECK SETUP

This section illustrates how the input deck should be set up for various types of computer runs. The overlay arrangements and the job control cards illustrated are good for the IBM 370/165 systems only. Proper conversion should be made when other systems are used.

7.1 Overlay Structure

Because of the size and the structure of the program, it is beneficial to use the overlay technique to minimize the case region when executing it. The overlay structure is shown with segment numbers on the following page.

This page shows the overlay control cards corresponding to the overlay structure shown on the previous page.

123456789012345678901234567890123456789012345678901234567890 ---(Card Columns)

```
OVECLAY ALPHA
                        INSERT BOFORM
                       INSERT MISC
           THIS PRI LIFT
                         INSTRT
                                                             INPUT
           CVERLAY BETA
OVERLAY ALPHA
                       INSERT VEDEN
           TNSERT FIELDS
OVERLAY BETA
TNSERT VEMALE
OVERLAY BETA
TNSERT VEMLET
TWEET PSWISE
CVERLAY ALPHA
                       INSERT AFTRM
THE FRE MATSOL
                       INSERT SPACER
            OVERLAY BETA
           TNISERT COLSOL
OVERLAY RETA
TNISERT SOLMOR
CVERTAY ALPHA
                         INSERT COMELO
                        INSERT MIST
INSERT FINAL
           INSERT PRUTTA
           CVERLAY RETA
UNEUL AY VIDHO
                         INSERT SETUP
                         INSERT WAC
INSERT CALCRS
INSERT PSPARM
                         INSERT BOUNDL
                         INSERT INPT
                         INSERT TYPE
                        INSERT ELDO
INSERT ENVS
                         INSERT MOMY
                         INSERT TRNS
INSERT SLOPE
INSERT OTET
                        INSERT BLC1. BLC3. PLC5. BLC7. BLC2. RL10. BL11
INSERT BL13. PL14. PL15. BL16. PL17. BL19
INSERT BL20. BL21. BL25. BL26
            TVERLAY BETA
                                                             RSETUP
THE PROPERTY OF THE PROPERTY O
```

7.2 The Data Definition Cards (DD Cards) for the External Units

There are 17 external units required by this program. Special attention should be paid to the SPACE parameter. The number of tracks denoted in the SPACE parameter depends on the total number of input elements that defines the basic body. For instance, the unit that stored the Aij matrix for a 300-element case may require 40 tracks on a 3330 disk, the same unit when used to store a 1000 element case will require 320 tracks. User should estimate the track sizes before submitting a computer run.

Example No. 1 shows the DD Cards for cases with less than 400 elements and example No. 2 shows them for cases of 1000 elements or less.

7.3 Job Control Language Cards

The IBM/370 JCL card setup for two types of computer run is shown below. The first example shows a CØMPILE, LINKEDIT and GØ job. The second one shows the GØ step alone, i.e., executing the program which is already stored on a disk pack.

In these two examples, the data set name DAC.EOH3,DPM.J1HB.V2 is used. The volume on which the data set is stored is called CSLB30. The DD cards from examples 1 or 2 may be used or redefined by the user depending on the case size.

- 7.3.1 <u>JCL Setup for Compile, Linkedit and Go</u>. (First line is the card column identifier, not a JCL card.) The deck setup for this kind of job is shown in example No. 3.
- 7.3.2 <u>JCL Setup for Executing the Program Already Stored on Disk.</u> (First line is the card column identifier, not a JCL card.) This type of run is shown in example No. 4.

EXAMPLE NO. 1

External Unit DD Cards for Cases Less than 400 Elements

 $\frac{5}{1234567890} \frac{1}{1234567890} \frac{2}{1234567890} \frac{3}{1234567890} \frac{3}{1234567890} \frac{5}{1234567890} \frac{5}{1234567890} \frac{1}{1234567890} \frac{1}$ 01 00 SNAMFESTOR, UNITESYSDA, SPACE (TRK, (50,5)), OR SCRAMESTOR, UNITESYSDA, SPACE (TRK, (50,5)), OR SCRAMESTOR, UNITESYSDA, SPACE (TRK, (50,5)), OR SNAMFESTOR, UNITESYSDA, SPACE (TRK, (75,5)), OR SNAMFESTOR, SPACE (TRK, (75,5)), OR SNAMFESTOR, UNITESYSDA, SPACE (TRK, (75,5)), OR SNAMFESTOR, UNITESYSDA, SPACE (TRK, (75,5)), OR SNAMFESTOR, UNITESYSDA, SPACE (TRK, (75,5)), OR SNAMFESTOR, SPACE (TRK, (75,5)), OR DD DSWAMF=SET 01. UN IT=S YSDA, SPACE=(TRK, (50,5)),

DCB=(PECEM=VPS, RLKSIZE=6447, RHFNC=1)

DCB=(PECEM=VPS, UNIT=SYSDA, SPACE=(TPK, (50,10)),

DCB=(PECEM=VBS, BLKSIZE=6447, RUFNC=1) -(Card Columns) // GP. FT01F001 1166. 41195301 /GD.FT02F031 /GO.FT11F001 /GO.FT12FD01 160.FT13F001. /GO. FT 1 4F 001 /50.ET15F001 /Gn.FT18F001 760.FT03F001 ICC PTUGEDOI 760.FT10F001 /GO.FT16F001 1 GF. FT1 7F001 /Gr. FT04F001 // GO. FT07F001

EXAMPLE NO. 2

External Unit DD Cards for Cases Less than or Equal to 1000 Elements

 $\frac{1}{12345673991}$ -(Card Columns)

01 DD DSN = SET 14 + UNIT = SYSON + SPACE = (TPK + (20, 10))
DC DE (PECEMPURS) BLKS 17 = 6447 * BUFND=1
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (120, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1100 * UNIT = SYSON + SPACE = (TPK + (100, 10))
DD DSN = SET 1000 * UNIT = SYSON + SPACE = (TPK + (100, 10 DD DSWAMF=\$FT01, UNIT=\$Y\$DA,\$PACF=(TPK,(50.5)),
nCB=(PECFM=VBS,PLKSIZE=6447,BUFNG=1)
DD DSW=\$FT02,UMIT=SY\$DA,\$PACF=(TPK,(50.10)),
DCB=(RECFM=VBS,PLKSIZE=6447,BUFNC=1)
DD DSW=\$FT03,UMIT=\$Y\$DA,\$PACF=(TPK,(50.10)),
DCB=(RECFM=VBS,PLKSIZE=6447,BUFNC=1) . PI VSTZE=6447. PUFNG=1) . (DITT=SYSDA, SOACE=(TPK, (10,5)), . ALKSTZE=6447. RUEND=1) DCR=(DECEM=VPC //GP.FT01F001 1/60.FT18F001 // Gr. FT19F001 GO. FT11F001 Gr. F714F001 /GO.FT!6F001 GO.FT02F001 GO. FT02 FO0 1 160.F104F0U1 GO. FTOCEDO! GO.FTIOFOR GP.FT12FO01 760.FT13F001 GO.FT15F001 (GO.FT17F00] /GO.FTORFOOT

EXAMPLE NO. 3

JCL Cards for COMPILE, LINKEDIT and GO

12345678971224567890123456789012345678901224567890122456789012345678901 -(Card Columns)

(Insert Fortran Deck here.)

//LKED.SYSIN DO *
FNITPY WAIN
(Insert Overlay cards here.)

(Insert DD cards here.)
//GC.SYSUDUMP DD SYSOUT=A, SPACE=(TPK, (200), 91 SE)
//GC.SYSIM ED *

(Insert data cards here.)

EXAMPLE NO. 4

JCL Cards for Executing the Program Already Stored on Disk

123456789012345678°012345678971224567897123456789701234567897012345678971234567890 //JOBLIB DE DSN=PAC.FOH3.D0M.JIHB.V2.DISP=(SHP.PASS).UNIT=2330-1.// FYFC FORTGE,RFGION=380K (Insert DD cards here.)
//Gn.sysubump nn sysuut=A, Space=(TPK, (200), PLSE)
//Gn.sysin bn *

(Insert data cards here.)

7.4 Run Time Estimation

The estimation of run time depends a great deal on the total number of elements that depicts the input body, and the number of lifting strips. In general, the surface displacement method will run longer than the blowing method.

The figure below shows the number of elements versus time in minutes. The points shown on the figure are the actual data from various runs made on the IBM/370 systems. Users may apply these curves as a guide for their CPU time estimation.

8.0 TEST CASE

8.1 Test Case Input Data

The test case is a four strip swept wing with a symmetric airfoil section run at $\alpha = 8.22^{\circ}$. Listed below are the options used:

1.	One angle of attack	IATACK=1
2.	One plane of symmetry	SYM1=1.0
3.	One lifting section	LIFSEC=1
4.	Special formula for last wake	LASWAK=1
5.	Stepwise vorticity	IWIDTH=0
6.	Equal pressure Kutta conditions	ISAVE=1
7.	Case 1, blowing method	BL=1.0
8.	Case 2, displacement method	BL=2.0
9.	Input foot-converter	FC=12.0

The lifting body input consists of 4 lifting strips, and on each strip there are 30 on-body elements and 1 wake element. A sketch of this body geometry showing the wing planform with the strip locations, and the airfoil configuration with its defining elements (without wake element) is presented on the following page.

A complete set of data for test case No. 1 (blowing) is included in the following pages. For test case No. 2 (surface displacement), only the first two cards (group 1, type 1 and 2) from case No. 1 need to be changed, hence, only these two cards are listed.

WING PLANFORM

AIRFOIL SECTION

Sketch of Test Case Geometry.

TEST CASE NO. 1 (Blowing Method)

Group Group 1234567890123456739012745678931234567893123456789312345678931234567893 Y SY4. REDWING. 30 SOURC 77 WING. A=8.22. 0.142106 CMEDI (Card Columns V NAC CTRT0 NACA 1

(pər		
(continued	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
CASE NO.	4240001010101024242020242424242424242424	
TEST		
	AUGUNTUNATURA CONTRA CO	
	0.0448894040404040404040404040404040404040	

Group 2 (continued)

TEST CASE NO. 1 (continued)

12345678001234567900123456799012345678901224567890123456789 ⁵ 1234567890123456789 ⁷ 123456789	Group 3
5012345678	
123456789	C
234567890	-
67963123456799313	5.00000.5
12345678001234567	10000 10000 10000 10000 10000 10000 10000

TEST CASE NO. 2 (Surface Displacement Method)

Group 1 FOUR STRIP NACA SEFOT WING. A=0.72. I PL. SYM. DISPLANT 30 SOURTE I WK. NACA 1 (The remaining input data is identical to Case No. 1)

8.2 Test Case Output

The test case output in the following pages consists of:

- a. Complete potential-flow-calculation output.
- b. One strip of boundary-layer-calculation output.
- c. Complete sets of final outputs for both blowing and surface displacement methods.

The initial potential-flow-computation output is identical in both blowing and surface displacement methods, and one set of this output is included here.

Due to the amount of printout generated in the boundary-layer calculation, only 1 strip of boundary-layer output is shown as an example since the other strips have the same output formats.

8.2.1 <u>Initial Potential-Flow-Calculation Output</u>. (Same for both blowing and displacement methods.)

PROGRAM JIHA CASE NO. NACA

LUGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION MAN 28, 1977

:

PAGE

FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK.

CASE ID

LIFTING SECTIONS

CHE BODY POINTS

UNIFORM ONSET FLOWS

LOWER FLEMENT

MOWER FLEMENT

M

FOOT CONVERTER FACTOR INPUT ----12.0

COMPONENTS OF THE UNIFORM DNSET FLOWS (1) 0.989707, 0.0 , 0.143106

OTHER INPUT INFORMATION WILL BE WRITTEN ELSEWHERE IN THE OUTPUT.

69

PROGRAM JIHA

L.JGLAS ATRCRAFT CCMPANY LCNG BEACH MAR 28, 1977

2.

PAGE

FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK.

BEGIN THE SUBROUTINE INPUT . TIME IS 0.038 SEC.

BEGIN THE FORMATION OF ELEMENTS. TIME IS 0.079 SEC.

PAGE 3.	TYPE OF ELEMENT	LIFT											
E 1 WK.	OF4	1.3411E-07 1.2912E+01 1.2052E+01	1.7434E-06 1.3041E+01 1.2288E+01	1.07296-06 1.41126+01 2.54196+01	7.1526E-07 1.4465E+01 2.6529E+01	8.0466E-07 1.4846E+01 2.7698E+01	5.8115E-07 1.5254E+01 2.8939E+01	5.8115F-07 1.5692F+01 3.0267F+01	8.9407E-08 1.6163E+01 3.1724E+01	1.3746E-06 1.6673E+01 3.3389E+01	1.97256-06 1.72176+01 3.52156+01	1.1176F-06 1.5188F+01 1.8486F+01	1.0338E-07 1.5659E+01 9.5548E+00
WG. 30 SOURC	××0 ××0 ×0 ×0 ×0 ×0 ×0 ×0 ×0 ×0 ×0 ×0 ×0	58.584885 25.776428 -0.054459	57.372711 25.776474 -0.162476	55.494370 25.776413 -0.326453	52.906448 25.776428 -0.550439	50.203033 25.776443 -0.768573	47.375092 25.776443 -0.957604	44.413589 25.776413 -1.088724	41.309601 25.776459 -1.131930	38.051025 25.776429 -1.073872	34.627487 25.776413 -0.902095	21.961624 25.776474 -0.683659	30.595846 25.776443 -0.499731
RAFT CCMPANY MAR 28+ 1977 PL. SYM. BLOWIN	×>^ zzz	0.090204 -0.062060 -0.993988	0.087012	0.086719 -0.059595 -0.994449	0.085462 -0.058637 -0.994615	0.075367 -0.050544 -0.995974	0.057853 -0.035784 -0.997684	0.031566 -0.012516 -0.999423	-0.002927 0.019534 -0.999805	-0.031933 0.047821 -0.998346	-0.067104 0.083824 -0.994219	-0.111306 0.131340 -0.985069	-0.162682 0.187935 -0.968615
BEACH MONDAY.	1	55.830002 20.899979 0.0	54.543182 20.899979 -0.116777	53.230682 20.899979 -0.231624	50.515503 20.899979 -0.468395	47.681305 20.899979 -0.711922	44.718491 20.899979 -0.935147	41.617279 20.899979 -1.115976	38.368173 20.899979 -1.218599	34.961288 20.899979 -1.208626	31.380708 20.899979 -1.094101	27.620097 20.899979 -0.840280	25.664200 20.899979 -0.619272
LCNC LCNC CA SWEPT WING.	*>~	54.543182 20.899979 -0.116777	53.230682 20.899979 -0.231624	50.515503 20.899979 -0.468395	47.681305 20.899979 -0.711922	44.718491 20.899979 -0.936147	41.617279 20.899979 -1.115976	38.368103 20.899979 -1.218599	34.961288 20.899979 -1.208626	31.380798 20.899979 -1.694101	27.620087 20.899979 -0.840280	25.664200 20.899979 -0.619272	24.670090 20.899979 -0.45231.D
FOUR STRIP NAC	**~	61.600800 37.899979 -0.100660	67.469391 37.899979 -0.199656	58.128983 30.899979 -0.403749	55.685989 30.899979 -0.613665	33.859979 37.859979 -0.806943	30.458878 37.899979 -0.961953	47.658188 30.899979 -1.050411	44.721497 30.899979 -1.041816	41.635178	38.393600 30.899979 -0.724309	30.899979	35.850677 30.899979 -0.389884
JIHA • NACA	**~	62.710007 30.939979 0.0	61.503370 30.394979 -0.103550	60.453331 30.839979 -0.193656	58.123933	55.635939 30.359979 -0.513655	53-132030 30-377979 -0.815943	50.458878 30.895979 -0.351953	47.653138 30.835979 -1.353411	44.721497 30.399379 -1.341316	41.635178 30.855979 -0.343397	38.3339379 30.339379 -0.724338	36.717531 30.879779 -7.533333
PROGRAM CASE NO	2	-	7	9	4	5	•	1	8	6	10	=	12

CASE NO	1 J144	FOUR STRIP NA	LUG CA SWEPT WING	LAS AIRCR NG BEACH MONDAY, M	AFT COMPA AR 28, 1977 PL. SYM. BLO	NY WING. 30 SOURCE	1 WK.	PAGE
•	**~	×××	×>~	* ×>~	XXX	0000	CHA	TYPE OF
1 13	35.3506	77 35.415390 79 30.899979 84 -0.283678	24.165085 20.899979 -0.329099	24.670090 20.899979 -0.452310	-0.228777 0.261641 -0.937659	29.886734 25.776428 -0.364409	1.1260E-06 1.5380E+01 5.0140E+00	LIFT
4.	35.4153 30.8399 -0.2335	35.154694 79 31.899979 78 -0.186623	23.862686 20.899979 -0.216504	24.165085 20.899979 -0.329099	-0.324309 0.368814 -0.871091	29.510330 25.776535 -0.254440	2.0368E-06 1.5280E+01 3.2323E+00	
15	35.15+6 30.3999 -0.1365	34.979980 79.33.899979 23.0.0	23.659988 20.899979 0.0	23.862696 20.899979 -0.216504	-0.562733 0.637013 -0.525826	29.274643 25.776428 -0.100956	2.7493E-06 1.5237E+01 3.5819E+00	
16	34.97.99	30 35.154694 79 33.899979 0.186623	23.862686 20.899979 0.216504	23.659988 20.899979 0.0	-0.562733 0.637013 0.526826	29.274643 25.776428 0.130966	2.4140E-06 1.5237E+01 3.5819E+00	
11	35.1545 30.3399 0.1365	35.415390 79 33.899979 23 0.283678	24.165085 20.899979 0.329099	23.862636 20.899979 0.216504	-0.324309 0.368814 0.871091	29.510330 25.776535 0.254440	3.9339E-06 1.5280E+01 3.2323E+00	
18	35.4153 30.3339 0.2335	35.850677 33.89979 78 0.389884	24.670090 20.899979 0.452310	24.165035 20.859979 0.329099	-0.228777 0.261641 0.937659	29.836734 25.776428 0.364409	4.9174E-07 1.5380E+01 5.0140E+00	
19	35.1516 37.8999 0.1318	77 36.707581 79 30.899979 34 0.533303	25.664200 20.839979 0.619272	24.670090 20.899979 0.452310	-0.162682 0.187935 0.968615	30.585846 25.776443 0.499731	7.5996E-07 1.5650E+01 9.5548E+00	
20	35.7675	31 38.393600 79 30.899979 03.724308	27.620087 20.899979 0.840280	25.664200 20.899979 0.619272	-0.111306 0.131340 0.985069	31.961624 25.776474 0.680659	2.3693E-06 1.6188E+01 1.8436E+01	
21	38.3435 30.8599 0.7243	30, 41.635178 79, 30, 899979 38, 0,943097	31.380798 20.899979 1.094101	27.620087 20.899979 0.840280	-0.067104 0.083824 0.094219	34.627487 25.776413 0.902095	7.1526E-07 1.7217E+01 3.5215E+01	
22	41.6 3517 30.35997 0.34597	78 44.721497 79 37.899979 37 1.041316	34.961288 20.899979 1.208626	31.380798 20.899979 1.094101	-0.031933 0.047821 0.998346	38.051025 25.776429 1.073872	2.2352E-07 1.6673E+01 3.3389E+01	
23	44.721 + 30.39997 1.04131	47.658188 79 30.899979 16 1.050411	38.368103 20.899979 1.218598	34.961288 20.899979 1.208626	-0.002927 0.019534 0.999805	41.309601 25.776459 1.131930	4.4703E-07 1.6163E+01 3.1724E+01	
24	30.89.99	38 50.458878 79 30.899979 11 3.961653	41.617279 20.899979 1.115975	38.368103 20.899979 1.218598	0.031615	44.413605 25.776428 1.088651	8.1366E-05 1.5692E+01 3.0267E+01	

PAGE	TYPE OF ELEMENT	E-05 LIFT E+01 E+01	E+01 E+01 E+01	E+01 E+01	E+01 E+01	E+01 E+01 E+01	E+01 E+01	MAKE E+01 E+01	E+01 E+01 E+01	F+01 F+01	E+01 E+01	E+01 E+01	107
CE 1 WK.	OFA	8.00951 1.5254 2.8939	2.1514	7.1526	9.3877	6.7335	4.0792 1.2912 1.2052	0.0 1.2799 1.1980	7.5996 1.1068 1.1507	2.2352 1.1185 1.1731	1.1623	2.6922 1.2724 2.5327	3.1292
ANY CWING. 30 SOUR	000	47.375076 25.776428 0.956930	50.203033 25.776443 0.768573	52.906448 25.776428 0.550439	55.494370 25.776413 0.326453	57.372711 25.776474 0.162476	58.584885 25.776428 0.054459	59.785380 25.776428 0.0	52.210648 16.623062 -0.061945	50.834076 16.623062 -0.184512	48.701050 16.623077 -0.370727	45.762115 16.623062 -0.625091	42.692001 16.623047 -0.872811
RAFT COMP MAR 28, 1977 PL. SYM. BL	XXX ZZZ	0.057801 -0.035725 0.997689	0.0505367	0.085462 -0.758637 0.994615	0.086719 -0.059595 0.994449	0.087012	0.090204	0.0	0.090204	0.087014	0.086720 -0.059500 -0.994455	0.085462	0.075367
LONG BEACH	×>~	41.617279 20.899979 1.115976	44.718491 20.899979 0.936147	47.681305 20.899979 0.711922	50.515503 20.859979 0.468395	53.230682 20.899979 0.231624	54.543182 20.899979 0.116777	55.830002 20.899979 0.0	50.059982 12.499992 0.0	48.623581 12.499992 -0.130353	47.158493 12.499992 -0.258552	44.127686 12.499992 -0.522850	40.963989 12.499992 -0.794688
NACA SWEPT WIT	***	44.718491 20.899979 0.936147	47.681305 20.899979 0.711922	50.515503 20.899979 0.468395	53.230682 20.899979 0.231624	54.543182 20.899979 0.116777	55.830002 20.899979 0.0	57.116791 20.899979 0.0	48.623581 12.499992 -0.130353	47.158493	44.127686	40.963989 12.499992 -0.794688	37.656693 12.499992 -1.044980
FDUR STRIP N	***	53.132080 30.899979 0.806943	55.685989 30.899979 0.613665	58.128983 37.859979 0.403749	30.469391	61.600820 30.899979 0.100660	30.859975	33.819183 37.899979 0.0	54.543182 20.899979 -0.116777	53.230682 20.899975 -0.231624	50.515503 20.899979 -0.468395	47.681305 23.899979 -0.711922	44.718491 20.849979 -0.936147
JIHA NACA	*>~	50.453878 30.899979 0.951653	53.132330	55.535939 30.855979 0.015655	59.123933	60.463331 33.399979 0.133656	51.501470 30.395979 0.103650	30.439979 30.339979	55.8330)2 20.849979	54.543132 20.859979 -0.115777	53.233642 20.493979	50.515513 20.891919 -1.453395	47.531305 20.399979 -0.711924
PROGRAM CASE NO	2	1 25	26	27	28	53	30	31	2 1	2	6	4	2

PAGE		TYPE OF	64E-06 LIFT 68E+01 28E+01	982E+01	85E-07 87E+01	356-07 06E+01 77E+01	20E+01 21E+01	22E-07 27E+01 48E+01	87E-06 59E+01 19E+00	33E-06 27E+01 74E+00	17E-06 99E+01 59E+00	51E-06 43E+01 97E+00	43F+01 97E+00	9 7E - 06 9 9E + 01 5 9E + 00
	RCE 1 MK.		1.29	9.38 2.88	3.02	3.18	3.36	2.68 1.40 1.76	2.45	1.30	3.088	3.75	1.12 1.28 3.41	3.288
ANY	OWING. 30 SOUR	0000	39.480560	36.117416 16.623362 -1.236382	32.592407 16.623.062 -1.285449	28.891937 16.623062 -1.219516	25.004059 16.623062 -1.024441	21.976593	20.414337 16.623093 -0.567506	19.620255 16.622971 -0.413832	19.192657 16.623016 -0.288950	18.925339 16.623154 -0.114660	18.925339 16.623154 0.114660	19.192657 16.623016 0.288950
CRAFT COMP.	1 PL. SYM. BL	×>~ 227	0.057854	0.031566	0.019590	-0.031933 0.047858 -0.998344	-0.067103 0.083854 -0.994216	-0.111308 -0.131372 -0.985065	-0.162686 0.187972 -0.968607	-0.228752 0.261651 -0.937663	-0.324310 0.368867 -0.871068	-0.562718 0.537079 -0.526762	-0.562718 0.537079 0.526762	-0.324310 0.368867 0.871068
LUGLAS ATRO	NG. A=8.22.	*>~	37.656693 12.499992 -1.044980	34.194992 12.499992 -1.245718	30.568085 12.499992 -1.360271	26.765182 12.499992 -1.349138	22.768387 12.499992 -1.221299	18.570430 12.493992 -0.937969	16.387207 12.499992 -0.691267	15.277599 12.499992 -0.504895	14.713795 12.499992 -0.367359	14.376194 12.499992 -0.241674	14.149990	14.376194
3	NACA SWEPT WI	*>~	34.194992 12.499992 -1.245718	30.568085 12.499992 -1.360271	26.765182 12.499992 -1.349138	12.499992 12.499992 -1.221299	12.499992 12.499992 -0.937969	16.387207 12.499992 -0.691267	15.277599 12.499992 10.504895	12.499992	12.4	12.499992	12.499992	12.499992
	FOUR STRIP N	*>~	41.617279 20.899979 -1.115976	38.368103 20.899979 -1.218599	E21	31.380798 20.899979 -1.094101	207	771	122	24.165085 20.899979 -0.329099	23.862686 20.899979 -0.216504	23.659988	23.362586 20.899979 0.216504	24.165085 23.899975 0.329099
AM JIHA		***	20.859979 20.335147	41.517279 20.895.979 -1.115976	38.363103 20.399979 -1.213599	34.961.288 20.3.79.79 -1.203626	31.390798 20.399979 -1.034131	25.833979 25.83397979 -0.345230	25.65+200 23.899979 -0.519272	20.8331979 20.8331979 -0.452310	24.165385 20.399979 -7.323099	23.362636 20.8999779 -0.216534	23.659.938 23.899,779 0.0	21.352636 20.399979 0.216534
PROGRAM CASE NO		z	2	_	60	6	10	=	12	13	14	15	16	11

PAGE	TYPE O ELEMEN	81E-06 27E+01 74E+00	92E-06 59E+01 19E+00	03E-08 27E+01 48E+01	335-07 206+01 216+01	15E-07 06E+01 77E+01	07E-08 25E+01 87E+01	92E+01 96E+01	69E-07 69E+01 28E+01	76E-06 83E+01 43E+01	24E+01 27E+01	90E-07 68E+01	266-07 885E+01 31E+01
RCE 1 WK		11.30	3 1.33	3 4.47	9 4.02 2 1.53 1 3.36	7 5.81 2 1.48 3.18	3.02	2.73	8.85 7 2.34 7 2.76	1 1.11 2.64	2 1.27	22.5	2 1.11
ANY OWING. 30 SOUR	0 × × 0 × ×	19.62025 16.622971 0.413832	20.414337	21.976591	25.004759 16.623762 1.02444	28.89193 16.62306 1.21951	32.59240 16.623063 1.28544	36.117416 16.623062 1.236382	39.480560 16.623)77 1.08679	42.692001 16.62304 0.87281	45.762115 16.623062 0.625091	48.701050 16.623077 0.370727	50.834076 16.623063 0.184513
CRAFT CGMP H DIVISION MAR 28, 1977 1 PL. SYM. BL	×>~ 222	-0.228752 0.261651 0.937663	-0.162686 0.187972 0.968607	-0.111308 0.131372 0.385065	-0.067103 0.083854 0.994216	-0.031933 0.047858 0.998344	-0.002926 0.019580 0.999804	0.031566	0.057854 -0.035710 0.997686	0.075367 -0.050458 0.995879	0.085462 -0.058542 0.994620	0.086720-0.059500	0.087014 -0.059713 0.994416
JGLAS AIR LCNG BEAC MONDAY, NG. A=8.22.	*>~	12.499992	15.277599 12.499992 0.504895	16.387207 12.499992 0.691267	18.570480 12.499992 0.937969	22.768387 12.499992 1.221299	26.765182 12.499992 1.349138	30.568085 12.499992 1.360269	34.194992 12.499992 1.245718	37.656693 12.499992 1.044980	40.943989 12.499992 0.794688	44.127686 12.499992 0.522850	47.158493 12.499992 0.258552
LL.	***	0 15.277599 9 12.499992 0 0.504895	16.387207 9 12.499992 2 0.691267	1 18.570480 9 12.499992 0 0.937969	22.768387 9 12.499992 1 1.221299	26.765182 9 12.499992 6 1.349138	3 30.568085 12.499992 8 1.360269	9 34.194992 9 12.409992 6 1.245718	1 37.656693 9 12.499992 7 1.044980	5 40.563989 9 12.499992 0.794688	3 44.127686 9 12.499992 5 0.522850	47.158493 12.499992 4 0.258552	2 48.623591 9 12.499992 7 0.130353
FOUR STRIP N	***	24.67009 20.89997 0.45231	25.66420 20.89997 0.61927	27.62008 27.89997 3.84028	31.386.79 20.89997 1.09410	34.96128 20.89997 1.20862	33.36810 20.89997 1.21359	41.61727 20.89997 1.11597	44.71849 20.89997 0.93614	47.63130 20.89997 0.71132	50.51550 20.89997 0.46839	53.23068 21.89997 0.23162	54.54318 23.89997 0.11677
NO. NACA	***	24.165095	26.673030 20.399979 0.452310	25.65+230 20.859979 3.613272	20.891979	20.4349.798 20.4349.79 1.034101	34.351238 23.855979 1.238626	38-3541)3 20-399979 1-213578	20.399379	20.339979	20.335979	20.515573 20.899979 0.463339	53.23535 20.339379 0.231624
PROGRAM CASE NO	2	2 18	19	20	21	22	23	54	25	26	27	28	53

FOUR	u	au au	**~	*>~	* * * * * *	XXX	0000 74×	□► ∢	TYPE OF
\$182 55.830002 50.0	4.544182 55.830002 50.0599 0.339979 20.899979 12.4999 0.115777	5.830002 50.0599 0.899979 12.4999	0.0599	1 22	48.623581 12.499992 0.130353	0.090204	52.210648 16.623062 0.061845	7.1526E-07 1.1068E+01 1.1507E+01	LIFT
3 30 00 2 57 116 791 51 49639 3 9 9 7 9 20 8 9 9 9 7 9 12 4 9 9 9 9	5.3 30.002 57.116791 51.49639 0.395979 20.899979 12.49999 0.0	7.116791 51.49639 0.899979 12.49999 0.0	1.49639 2.49999 0.0	62	05998	00000	.57363 .62306	.0971E+0 .1437E+0	MAKE
1 50.359332 48.623581 43.832382 12.499992 5.699999 0.1)	0.059932 48.623581 43.83238 2.499992 5.69999 0.1)	8.623581 43.83238 0.130353 -0.14135	3.83238 5.69999 0.14135		45.389984 5.699999 0.0	0.090205	46.944550 9.054117 -0.067963	4.0233E-07 9.2219E+00 1.0241E+01	LIFT
2 48.523531 47.153493 42.243591 12.435992 12.499992 5.699999 -0.130353 -0.258552 -0.280368	8.5.23531 47.153493 42.24359 2.435.992 12.499992 5.69999 0.130353 -0.258552 -0.28036	2,499992 5,69999 0,258552 -0,28036	2.24359 5.69999 0.28036		43.832382 5.699999 -0.141352	0.787011 -0.059699 -0.994417	45.431732 9.054082 -0.202767	1.6987E-06 9.3256E+00 1.0441E+01	
	7.153473 44.127686 38.95710 2.499472 12.499992 5.69999 0.258552 -0.522850 -0.5596	4.127686 38.95710 3.499992 5.69999 0.522850 -0.59696	8.95710 5.69999 0.55696		42.243591 5.649999 -0.280368	0.086721 -0.059489 -0.994455	43.087692 9.054122 -0.407406	2.1905E-06 1.0658E+01 2.1599E+01	
4 44.127516 47.963989 35.525489 12.49332 12.499992 5.699999 -0.522850 -0.794688 -0.861742	4-127536 47,963989 35,52548 2-499332 12,499992 5,69999 0.522850 -0.794688 -0.86174	2,499992 5,69999 0,794688 -0.86174	5.52548 5.69999 0.86174		38.957108 5.699999 -0.566966	0.085462	39.858017 9.054117 -0.686936	1.0729E-06 1.0970E+01 2.2542E+01	
5 40.754993 37.656693 31.940094 12.49993 12.499992 5.699999 -0.794688 -1.044980 -1.133154	7.754999 2.499992 0.794688 -1.044980 -1.13315	7.656693 31.94009 2.499992 5.69999 1.044980 -1.13315	1.94009 5.69999 1.13315		35.526489 5.699999 -0.861742	0.075366	36.484177 9.054108 -0.959164	2.2352E-07 1.1304F+01 2.3536E+01	
6 37.6%693 34.194992 28.136295 12.49992 5.699999 -1.044930 -1.245718 -1.350829	7.656.673 34.194992 28.13629 2.493932 12.499392 5.69999 1.534930 -1.245718 -1.35082	4.194992 28.13629 2.499392 5.69999 1.245718 -1.35082	8.13629 5.69999 1.35082		31.940094 5.699999 -1.133154	0.057854	32.954941 9.054112 -1.194322	6.7055E-07 1.1663E+01 2.4589E+01	
7 34-134372 30.568085 24-253387 12-49992 12-499992 5-699999 -1.24-718 -1.360271 -1.475046	4.134372 30.568085 24.25338 2.499792 12.499992 5.69999 1.245718 -1.360271 -1.47504	2.499992 5.69999 1.360271 -1.47504	4.25338 5.69999 1.47504		28.186295 5.699999 -1.357829	0.031566	29.259109 9.054119 -1.358706	4.0233E-07 1.2047E+01 2.5718E+01	
	0.564095 26.765182 20.12957 2.459932 12.499992 5.69999 1.35)271 -1.349138 -1.46297	2.499992 2.499992 1.349138 -1.46297	0.12957 5.69999 1.46297		24.253387 5.699999 -1.475046	-0.002927 0.019593 -0.999804	25.385345 9.054112 -1.412629	2.2352E-07 1.2458E+01 2.6956E+01	
9 '5,765182 22,768387 15,795593 12,49,432 12,499992 5,699999 -1,349138 -1,221299 -1,324348	5.765192 22.768387 15.79559 2.495732 12.499992 5.69999 1.349138 -1.221299 -1.32434	2,768387 15,79559 2,499992 5,69999 1,221299 -1,32434	5.79559		20.129578 5.699999 -1.462976	-0.031933 0.047874 -0.998343	21.318771 9.054121 -1.340171	1.5367E-07 1.2906E+01 2.8372E+01	
0 22.763337 18.570480 11.243500 12.439932 12.499992 5.699999 -1.221239 -3.937969 -1.017112	2.763337 18.570480 11.24350 2.439932 12.499992 5.69999 1.221239 -3.937969 -1.01711	8.570480 11.24350 2.499992 5.69999 3.937969 -1.01711	1.24350 5.69999 1.01711		15.795593 5.699999 -1.324348	-0.067103 0.083875 -0.994214	17.046234 9.054118 -1.125796	1.0282E-06 1.3383E+01 2.9923E+01	

	TYPE OF	LIFT											
E 1 WK.	OFA	4703E-0	.5996E-0 .1055E+0	4.9174E-06 1.0666E+01 4.2610E+00	2.9071E-06 1.0514E+01 2.7467E+00	1.1176E-06 1.0446E+01 3.0438E+00	3.8892E-06 1.0446E+01 3.0438E+00	1.0282E-06 1.0514E+01 2.7467E+00	4.2915E-06 1.0666E+01 4.2610E+00	4.5151E-06 1.1055E+01 8.1188E+00	4.4703E-07 1.1843E+01 1.5707E+01	0.0 1.3383E+01 2.9923E+01	8.4937E-07 1.2906E+01 2.8372E+01
. 30 SOURC	000	3.71922	2.00232 9.05408 0.62365	11.129966 9.054173 -0.454774	10.659925 9.054097 -0.317537	8-10	10.365983 9.054114 0.126004	10.659924 9.054096 0.317537	11.129966 9.054173 0.454774	12.002323 9.054382 0.623654	13.719223 9.054111 0.849448	17.046234 9.054118 1.125796	21.318771 9.054121 1.340171
PL. SYM. BLOW	XXX	0.111130	0.16268 0.18800 0.96860	-0.228748 0.261698 -0.937650	-0.324282 0.368903 -0.871064	-0.562690 0.637163 -0.526691	-0.562690 0.637163 0.526691	-0.324282 0.368903 0.871064	-0.228748 0.261698 0.937650	-0.162684 0.138008 0.968601	-0.111308 0.131399 0.995061	-0.067103 0.083875 0.994214	-0.031933 0.047874 0.998343
5. A=8.22. 1	×>n	1.24350	8.87600 5.69999	7.672730 5.699999 -0.547496	7.061399 5.699999 -0.398356	6.655300 5.699999 -0.262066	6.449999 5.699999 0.0	6.695300 5.699999 0.262066	7.061399 5.699999	7.672770 5.699999 0.547496	8.876060 5.699999 0.749595	11.243500 5.699999	15.795593 5.69909 1.324348
CA SWEPT WI	×≻N	87600	.67270 .69999 .54749	7.061399 5.699999 -0.398356	6.695300 5.699999 -0.262066	6.449999 5.699999 0.0	6.695300 5.699999 0.262066	7.061399 5.699999 0.399356	.67270 .69999 .54749	.87600 .74959	11.243500 5.699999 1.017112	15.795593 5.699999 1.324348	20.129578 5.699999 1.462976
OUR STRIP NA	×>~	6.38720	5.27759 2.49999 0.50489	000	001		12.499992	000	000	000	000	22.768387 12.499992 1.221299	26.765182 12.499992 1.349138
ũ.	*>~	9.57043	6.33720 2.49993	15.277579	12.499992	12.499932	14.149 390 112.499 312	14.375134 12.499392 0.241574	14.713795	15.277539	16.3872)7 12.499332 0.5 11.257	18.573.30 12.499.332 0.137359	22.753337 12.495.992 1.221239
	r z	3 11	12	13	14	15	16	17	18	61	20	21	22
	DUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK.	M X X X X X X X X X X X X X X X X X X X	N		FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK. *** X	11 19.570490 16.387207 8.876000 11.243500 -0.1111308 13.719223 4.4703E-07 -0.5737599 12.499992 12.499999	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK. 1	11 13-570430 15-387207 2-670999 2-679999 2-	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLNWING. 30 SOURCE I WK. 1	FOLK STRIP NACA SHEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE I WK. 1	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 MK. 1	FOLK STRIP NACA SWEPT HING. A=8.22. I PL. SYM. BLMING. 30 SOURCE I WK. 1

10.		MENT	14								A.	151		
PAGE		ELE	ב								A	-		
	E 1 WK.	0+4	1.2517E-06 1.2458E+01 2.6956E+01	1.2957E-06 1.2047E+01 2.5718E+01	1.5199E-06 1.1653E+01 2.4589E+01	1.3858E-06 1.1304E+01 2.3536E+01	1.3411E-07 1.0970E+01 2.2542E+01	3.5763E-07 1.0658E+01 2.1598E+01	1.20705-06 9.3256E+00 1.0441E+01	2.2352E-07 9.2219E+00 1.0241E+01	0.0 9.13946+00 1.01806+01	1.2517E-06 7.9772E+00 9.2222E+00	8.0466E-07 8.0719E+00 9.4028E+00	3.5763E-07 9.5250E+00 1.9449E+01
,	OWING. 30 SOURC	000	25.385345 9.054112 1.412627	29.259109 9.054119 1.358706	32.954941 9.054112 1.194321	36-494.177 9-054108 0-959164	39.858017 9.054117 0.686936	43.087692 9.054122 0.407406	45.431732 9.054082 0.232767	46.944550 9.054117 0.067963	48.442383 9.054112 0.0	42.605057 2.820108 -0.672996	40.980225 2.820111 -0.217782	38.462585 2.820112 -0.437574
RAFT CCMPANY MAR 28, 1977	PL. SYM. BLOW	XXX	-0.002926 0.019593 0.999804	0.031566	0.057854	0.075366	0.085462 -0.058531 0.994621	0.086721	0.087011 -0.059699 0.994417	0.090205	0.0	0.090205	0.087009	0.786721 -0.059572 -0.994451
LONG BEACH	3. A=8.22. 1	*>~	20.127578 5.699999 1.462976	24.253387 5.699999 1.475046	28.186295 5.699999 1.350827	31.940094 5.699999 1.133154	35.526489 5.69999 0.861742	38.957108 5.699999 0.565966	42.243591 5.699999 0.280368	43.832382 5.699999 0.141352	45.389984 5.699999 0.0	41.470001	39.811203 0.0 -0.150536	38.119186 0.0 -0.298584
פריין	CA SWEPT WING	×>~	24.253387 5.699999 1.475046	28.186295 5.699999 1.350827	31.940094 5.699999 1.133154	35.526489 5.699999 0.861742	38.957108 5.699999 0.566966	42.243591 5.699999 0.280368	43.832382 5.699999 0.141352	45.389984 5.699999 0.0	46.947601 5.699999 0.0	39.811203	38.119186 0.0 -0.298584	34.619202
	OUR STRIP NAC	××n	30.568085 12.499992 1.360269	34.194992 12.499992 1.245718	37.656693 12.499992 1.044980	40.963989 12.499992 0.794688	44.127686 12.499992 0.522850	47.158493 12.499992 0.258552	43.623581 12.499992 0.130353	50.059982	51.496399	43.832382 5.699999 -0.141352	42.243591 5.699999 -0.280368	38.957108 5.699999 -0.566966
JI44	ũ	***	26.765132 12.499932 1.343138	30.568335 12.499732 1.353259	34.194342 12.459392 1.245718	37.655693 12.499 112 11.144980	40.163739 12.493732 0.734538	44.127586 12.459932 0.522350	47.153473	48.523531 12.495332 0.133353	50.159.132 12.499912 0.3	45.339334 5.694939 0.0	43.832332 5.599939 -0.141352	42.243571 5.699719 -0.23J358
DGRAM SE NO		x	23	54	2.5	56	2.2	28	62	30	31	-	2	m
CA		7	т									4		

CASE NO	JIHA		ר-ין	LONG BEACH	RCRAFT COMPANY			PAGE 11.
	u.	FOUR STRIP NACA	A SWEPT WING	A = 8	PL. SYM. BLOW	DMING. 30 SOURCE	1 WK.	
2	**~	***	*>~		X > N Z Z Z	0000	OFA	TYPE OF
4	39.457138 5.693999 -0.553966	35.526489 5.699999 -0.861742	30.965607	34.619202	0.085462 -0.058613 -0.994616	34.993744	3.5763E-07 9.8223E+00 2.0299E+01	LIFT
2	35.525439 5.659939 -0.351742	31.940094 5.659999 -1.133154	27.146301	30.965607	0.075368	31.370087	3.2634E-06 1.0141E+01 2.1194E+01	
9	31.940334 5.633939 -1.133154	28.186295 5.699999 -1.350829	23.148605	27.146301	0.057853 -0.035769 -0.997684	2.820107	9.8348E-07 1.0482E+01 2.2143E+01	
7	28.135295 5.691799 -1.351329	24.253387 5.659999 -1.475046	18.960083	23.148605 0.0 -1.438594	0.031566	23.609985	2.6822E-07 1.0847E+01 2.3159E+01	
ω	24.253337 5.69339 -1.475346	20.129578 5.699999 -1.462976	14.568398	18.960083	-0.002927 -0.019528 -0.999805	19.449387 2.820113 -1.517233	2.9895E-07 1.1238E+01 2.4274E+01	
6	20.123578 5.693939 -1.462976	15.795593 5.699999 -1.324348	9.952799	14.568398 0.0 -1.558027	-0.031933 0.047804 -0.998346	15.081688 2.823106 -1.439410	4.3306E-07 1.1664E+01 2.5548E+01	
10	15.7 3593 5.699999 -1.32+348	11.243500	5.104999	9.952799	-0.067104 0.083793 -0.994221	10.492810 2.820112 -1.209160	1.2070E-06 1.2118E+01 2.6945E+01	
11	11.243530 5.639339 -1.317112	8.876000 5.699999 -0.749595	2.583599	5.104999	-0.111307 -0.131292 -0.985075	6.919412 2.820093 -0.912350	2.4140E-06 1.0370F+01 1.4144E+01	
12	8.375030 5.631999 -0.741595	7.672700 5.699999 -0.547496	1.302200	2.583599 0.0 -0.798298	-0.162689 -0.187873 -0.968626	5.075452 2.820136 -0.669335	3.3528E-06 9.4805E+00 7.3103E+00	
13	5.597979	7.061399 5.699999 -0.398356	0.651100 0.0 -0.424238	1.302200	-0.228757 0.261520 -0.937698	4.138274 2.823052 -0.488451	4.8280E-06 9.0448E+00 3.8369E+00	
14	7.151319 5.691199 -0.313356	6.695300 5.699999 -0.262066	0.261300	0.651100	-0.324336 -0.368706 -0.871127	3.633697 2.820199 -0.341050	8.2254E-06 8.8739E+00 2.4730E+00	
15	6.635330 5.693039 -0.262356	6.449999 5.699999 0.0	000	0.261300	-0.562828 0.636881 -0.526885	3.317806 2.820056 -0.135334	5.2750E-06 8.7969E+00 2.7403E+00	

PROGRAM CASE NO	Z Z Z	JI 4A NACA	DUR STRIP NACA	SWEPT	LAS A)	RCRAFT COMPANY ACH DIVISION AAR 28, 1977 . 1 PL. SYM. BLOWI	ANY OWING. 30 SOURCE	• •	PAGE 12
z	· ·	*>~	**~	×≻NI	*>~	×>~	0000	OF 4	TYPE OF ELEMENT
4	•	6.449939 5.633339	6.695300 5.699999 0.262066	0.261300 0.0 0.279093	000	-0.562828 0.636881 0.526885	3.317806 2.820056 0.135334	1.1176E-05 8.7969E+00 2.7403E+00	LIFT
-	~	6.6 35 330 5.5 93 93 9 0.262356	7.061399 5.699999 0.398356	0.651100	0.261300 0.0 0.279093	-0.324336 0.368706 0.871127	3.633697 2.820199 0.341050	5.5432E-06 8.8739E+03 2.4730E+00	
-	80	7.061319 5.691999 0.333356	7.672700 5.699999	1.302200 0.0 0.583068	0.651100 0.0 0.424238	-0.228757 0.261520 0.937698	4.138274 2.820052 0.488451	4.6045E-06 9.0448E+00 3.8369E+00	
-	6	7.572730 5.639939 0.541436	8.876000 5.699999 0.7495°5	2.583499 0.0 0.798298	1.302200 0.0 0.583068	-0.162695 0.187981 0.968623	5.075466 2.820173 0.669835	6.4373E-06 9.4805E+00 7.3105E+00	
2	0	8.875330 5.63939 0.743595	11.243500 5.659999 1.017112	5.104999	2.583499 0.0 0.798298	-0.111305 0.131290 0.985076	6.919363 2.820075 0.912350	5.0962E-06 1.0370E+01 1.4145E+01	
2		5.694999	15.795593 5.699999 1.324348	9.952799	5.104999 0.0 1.083196	-0.067104 0.083793 0.994222	10.492810 2.820112 1.209161	4.0233E-07 1.2118E+01 2.6945E+01	
2	1 2	5.639319	20.129578 5.699999 1.462976	14.568398 0.0 1.558027	9.952799 0.0 1.410394	-0.031933 0.047804 0.998346	15.081688 2.820106 1.439410	1.3411E-07 1.1664E+01 2.5548E+01	
2	3 2	5.594949	24.253387 5.699999 1.475046	18.960083 0.0 1.570883	14.568398 0.0 1.558027	-0.002927 0.019528 0.999805	19.449387 2.320113 1.517232	6.7055E-07 1.1238F+01 2.4274F+01	
2	4	5.599337	28-186295 5-699999 1-350827	23.148605 0.0 1.438594	18.960083 0.0 1.570883	0.031566 -0.012510 0.979424	23.609995 2.820098 1.459319	7.9628F-07 1.0847F+01 2.3159E+01	
2	5 2	1.333 327 1.333 327	31.940094 5.699999 1.133154	27.146301	23.148605 0.0 1.438594	0.057854 -0.035769 0.997684	27.579529 2.820107 1.282760	1.3411E-07 1.0482E+01 2.2143E+01	
2	26 3	5.693939 1.133154	35.526489 5.699999 0.861742	30.965607	27.146301 0.0 1.206777	0.075367 -0.050523 0.995876	31.370097 2.920125 1.030189	1.1623F-06 1.0141E+01 2.1194E+01	
7	7 3	5.525439 5.693939 0.351742	38.957108 5.690999 0.566966	34.619202 0.0 0.60380A	30.965607	0.085462 -0.058613 0.994616	34.993744 2.823197 0.737803	1.5646F-06 9.8223F+00 -2.0299E+01	

PAGE 13.		TYPE OF ELEMENT	11157			WAKE
	1 ¥K.	OF 4	1.3411E-07 9.5250E+00 1.9449E+01	4.9174E-07 8.0719E+00 9.4028E+00	1.3411E-06 7.9772E+00 9.2222E+00	0.0 7.9053E+00 9.1668E+00
	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK.	0002	38.462585 2.820112 0.437574	40.980225 2.820111 0.217782	42.635057 2.820108 0.072996	44.213791 2.820111 0.0
LUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977	PL. SYM. BLOW	×>~ 227	0.086721 -0.059572 0.994451	0.087009	0.090205	0.0
SLAS AIRCR SNG BEACH MUNDAY.	5. A=R.22. 1	××N	34.619202	38.119186 0.0 0.298584	39.811203 0.0 0.150536	41.470001
007	CA SWEPT WING	*>~	38.119186	39.811203 0.0 0.150536	41.470301	43.128799
	DUR STRIP NAC	×>~	42.243591 5.699999 0.280368	43.832382 5.699999 0.141352	45.389984 5.699999 0.0	46.947601 5.699999 0.0
JIHA	Ĭ.	W>N	38. 357 108 5.693999 0.555566	42.243591 5.633999 0.233368	43.332332 5.593339 0.141352	45.339 384 5.593939 0.0
CASE NO.		z	4 28	53	30	31

81

1.072 SEC.

FINISH THE FORMATION OF ELEMENTS. TIME IS

14.				Z		
PAGE	•			MAKE ELEMENTS IN	majori	
>	ING. 30 SOURCE 1 WK			SOURCE ELEMENTS IN THE STRIP	0000 mmmm	124 1.168 SEC.
L_JGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION MONDAY. MAR 28, 1977	SYM. BLOW	*	TABLE OF INPUT INFORMATION	STRIP NO.	-0.m4	INPUT =
BEACH	.22. 1 PL.		INPUT	EXTRA	0	ELEMENTS NPUT .
L_JGLAS	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. RLOWING. 30 SOURCE I WK.		TABLE OF	TOTAL NO. OF ELEMENTS IN EACH SECTION	124	TOTAL NO. OF ELEMENTS INPUT = 124 OF THE SUBROUTINE INPUT. TIME IS
	FOUR STR			SECTION	-	END
CASE NO. NACA				SECTION NO.	ı	

LUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977

15.

PAGE

FOUR STRIP NACA SWEPT WING. A*8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK.

TIME IS

1.17 SEC REGINNING THE VEORM ROUTINE NO. OF STRIPS = 30 NO. OF SOURCE ELEMENTS TOTAL NO. OF POINTS = 124 LIFTING SECTION NO. TYPE = 1 BODY SECTION NJ. =

31 TOTAL NO. OF ELEMENTS PER STRIP OF WAKE ELEMENTS 1 .0N

TOTAL NO. OF CONTROL POINTS (INCL., OFF BODY POINTS ! = 120

LIFTING STRIP NO. 1. NO. OF IGNORE ELEMENTS

IGNORE ELEMENTS 2, NO. LIFTING STRIP NO.

IGNORE FLEMENTS NO. 3. NO. EIFTING STRIP

ELEMENTS IN THE LIFTING SECTION = 124 OF IGNORE ELEMENTS LIFTING STRIP NO. 4, NO. TOTAL NO. OF TI4E FOR THE FORMATION OF THE LIFTING VELOCITY MATRIX = 0.33MIN

NO. OF INTERMEDIATE ELEMENTS = 10296 NO. OF NEAR ELEMENTS = 17234 TIME 15 20.75 SEC END OF THE VFORM ROUTINE ELEMENTS = 2230

FAR

90

NO.

5 RIGHT SIDES WAS SOLVED DIRECTLY IN 0.042MINUTES. THE 123 X 123 MATRIX WITH

END OF THE AFORM ROUTINE

TIME IS 21.07 SEC

0.68838E-02-0.78109E-02-0.76385E-02-0.72685E-02

CASE NO. NACA

LUGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION MAR 28, 1977

16.

PAGE

FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK.

UNIFORM CONSET FLCM = (0.989707E+00, 0.0 , 0.143136E+00)

FINAL OUTPUT FOR THE FOLLOWING ANGLE OF ATTACK

0.989707, 0.0 , 0.143106)

ш g												
PAG.	SIG VN AREA	0.068020 0.000016 12.052448	0.068394 0.000011 12.288094	0.068508 -0.000055 25.419083	0.068023 -0.000012 26.528748	0.069050 -0.0000008 27.697723	0.072219 -0.000002 28.938980	0.078263	0.088187 -0.0000004 31.723709	0.100318	0.116231-0.00000435.214935	0.130337
. 30 SNURCE 1 0.143106E+00	XXX	0.090204 -0.062060 -0.993988	0.087012 -0.059807 -0.994410	0.086719	0.085462	0.075367 -0.050544 -0.995874	0.057853 -0.035784 -0.997684	0.031566	0.019534	-0.031933 0.047821 -0.998346	-0.067104 0.083824 -0.994219	-0.111306 0.131340 -0.985069
COMPANY 8, 1977 SYM. BLOWING.	X3000	0.993218 0.079133 0.085176	0.994308 0.066836 0.082971	0.994590 0.062394 0.083049	0.994708 0.062140 0.081819	0.995290 0.064878 0.072038	0.996091 0.068907 0.055291	0.996602 0.076514 0.030522	0.995491	0.119852	0.983414	0.960121
AIRCRAFT BEACH MAR 28 =8.22. 1 PL. 5 07E+00. 0.0	V 150 CP 0	0.922649 0.851281 0.148719	0.944815 0.892676 0.107324	0.963882 0.929069 0.070931	0.983938 0.968133 0.031867	0.999345 0.998691 0.001309	1.010259 1.020623 -0.020623	1.013346 1.026869 -0.026869	1.002073	0.979469 0.959360 0.040640	0.927570 0.860386 0.139614	0.863994 0.746485 0.253515
SWEPT WING. A=	×>>>	0.916392 0.073012 0.078588	0.939438 0.063148 0.078393	0.958668 0.060140 0.080050	0.978731 0.061142 0.080505	0.094638 0.064836 0.071991	1.006310 0.069614 0.055858	1.009902	0.991555	0.972076	0.912186	0.829538
JR STRIP NACA S	000 XXX	58.584885 25.776428 -0.054459	57.372711 25.776474 -0.162476	25.494370 25.776413 -0.326453	52.906448 25.776428 -0.550439	50. 203033 25. 776443 -0. 768573	47.375092 25.776443 -0.957004	44.413589 25.776413 -1.088724	41.309601 25.776459 -1.131930	39.051025 25.176428 -1.073872	34.627487 25.776413 -0.902095	31.961624 25.776474 -0.630659
FOU	z	-	7	6	4	S	٥	-	00	6	01	=
NACA	7	-										
PROGRAM JIHA CASE NO. NACA												

LUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY. MAR 28, 1977 FPT WING. A=8.22. 1 PL. SYM. BLOWING = (0.989707E+00, 0.0 ON - 800Y POINTS FINAL GUTPUT	VX VTSQ DCX VX	0.725772 0.804042 0.902654 -0.0341533 0.646483 0.424770 0.0055626 0.353517 -0.069183 -0.0	0.595787 0.767672 0.776096 -0.22 0.483596 0.589321 0.630472 0.26 0.010304 0.410679 -0.013422 -0.93	0.429241 0.804960 0.533311 -0.324 0.669520 0.647800 0.831946 0.3588 0.123674 0.352200 0.153659 -0.871	0.214323 1.277088 0.167822 -0.5627 0.909373 1.620955 0.712068 0.6370 0.870667 -0.630955 0.681760 -0.5268	1.199635 1.956298 0.613217 -0.5627 0.206794 3.827103 -0.105707 0.6370 1.531410 -2.827103 0.782810 0.5268	1.487316 1.762028 0.844093 -0.3243 0.533623 3.104740 -0.302846 0.3688 0.779666 -2.104740 0.442482 0.8710	1.409311 1.550751 0.908793 -0.2287 0.446384 2.404828 -0.287951 0.2616 0.468415 -1.404828 0.302057 0.9376	0.353505 1.403769 0.945240 -0.1626 0.353505 1.970569 -0.251826 0.1879 0.291452 -0.970569 0.207621 0.5686	1.255506 1.237394 0.968037 -0.11113 0.272377 1.684787 -0.209845 0.1313 0.178300 -0.684787 0.137366 0.9850	1.201294 1.222343 0.982779 -0.0671 0.203389 1.494123 -0.166393 0.0838 0.098235 -0.494123 0.080366 0.9942
VISION VISION VISION VM. BL	000 X	.90265 .42477 .06918	.63047 .01342	. 53331 . 83184 . 15365	.16782 .71206 .68176	.61321 .10570 .78281	.84409 .30284 .44248	.90879 .28785 .30205	.25182 .25182 .20762	.96803 .20984 .13736	.16639 .08036
AIRGRAF BEACH MDAY. MAR -8.22. 1 PL 37E+00. 0	500	.80404 .64648 .35351	76767 58932 41367	.80496 .64780 .35220	.63095 .63095	.95629 .82710	1.76202 3.10474 2.10474	1.55075 2.40482 1.40482	.970376 .97056 .97056	.68478 .68478	.22234 .49412 .49412
CK = C	×>~ >>>	.34153	. 59578 48359 . 01030	.42924 .66952 .12367	.21432 .90937 .87066	. 19963 . 20679 . 53141	. 53362 . 77966	.40931 .44638 .46841	.35350 .35350 .29145	.2555 .27237 .17830	.20129 .20338 .09823
R STRIP NACA ORM ONSET FL	XXX	30.585846 25.776443 -0.499731	29.886734 25.776428 -0.364409	29.510330 25.776535 -0.254440	25.77643	29.274643 25.776428 0.100966	29.510330 25.776535 0.254440	29.896734 25.776428 0.364409	30.585846 25.776443 0.499731	31.961624 25.776474 0.680659	34.627487 25.776413 0.902095
FOUR	×	71	13	41	15	16	17	18	61	50	21

PAGE	4	860 0001 709	698 0001 861	499 934	321 0003 723	797 0009 748	984	518 0001 094	126 014 448		+03	+03		107
1 MK.	N A I	-0.085 0.000 31.723	-0.082	-0.081	-0.081	-0.081 -0.000 26.528	-0.081 -0.000 25.419	-0.081 -0.000 12.288	-0.081 0.000 12.052	*****	0.102994E	0.826453E	* * *	0.078
30 SOURCE 0.143106E+	XXX	-0.002927 0.019534 0.999805	0.031615	0.057801	0.050544	0.085462 -0.058637 0.994615	0.086719	0.087012	0.090204	* * * * *	.154750E+02	361015E+04	* * *	0.090204
DIVISION 28, 1977 SYM. BLOWING.	X 300 200 200 200 200 200	0.993779 -0.111257 0.005084	0.994704-0.097453	0.994689	0.994493 -0.069137 -0.079775	0.994532 -0.055093 -0.088713	0.995081 -0.042744 -0.089369	0.995602 -0.029574 -0.088895	0.995805		3479E+02 0.	8E+04 -0.		0.992349 0.090028 0.084494
AIRCRAF BEACH MAR 18.22. 1 PL 176+00. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.266844	1.190707	1.057976	1.025434	0.996576 0.993165 0.006335	0.971513	0.949874 0.902260 0.097740	0.850998 0.850998 0.149002	****	-0.133	E 0.26476	****	0.930647 0.866103 0.133897
LUJGLAS LUNGA HEPT WING. A = (0.9897	×>~	1.118540 -0.125224 0.005722	1.085416 -0.106340 -0.035669	1.052357 -0.088021 -0.064120	1.020782 -0.070964 -0.080857	0.991128 -0.054904 -0.088409	0.966734 -0.041527 -0.085824	0.945696 -0.028991 -0.084440	0.918626 -0.009087 -0.083918		THIS STRIP ARE	THIS STRIP AR		0.923526 0.083785 0.078634
JUR STRIP NACA S IFORM ONSET FLOW	000 XX0 X00	41.309601 25.776459 1.131930	44.413605 25.775428 1.088651	47.375076. 25.775428 0.956930	50.203033 25.776443 0.768573	52.906448 25.775428 0.550439	55.494370 25.776413 0.326453	57.372711 25.776474 0.162476	58.584885 25.776428 0.054459	******	OMPONENTS OF	COMPONENTS OF	***	52.210648 16.623062 -0.061845
4A CA FD U4I	2	1 23	54	25	26	27	28	59	30	* * * *	THE FURCE C	MJ 4ENT	* * *	~
PROGRAM JITA	,										THE	THE		

AGE												
¥ ~	SIG	0.076486 0.000015	0.074999	0.072568 -0.000029 25.327362	0.071758 -0.000009 26.443405	0.073123	0.077311 -0.0000002 28.896103	0.085189 -0.000003 30.286697	0.094945	0.108533	0.121630	0.131422 -0.000005 9.121898
. 30 SOURCE 1 0.143106E+00	×>~ 222	0.087014	0.086720-0.059500-0.994455	0.085462 -0.058542 -0.994620	0.075367 -0.050458 -0.995879	0.057854 -0.035710 -0.997686	0.031566 -0.012456 -0.999424	-0.002927 0.019580 -0.999804	-0.031933 0.047858 -0.998344	-0.067103 0.083854 -0.994216	-0.111308 0.131372 -0.985065	-0.162686 0.197972 -0.958607
COMPANY 8, 1977 SYM. BLOWING	×550	0.993795 0.074638 0.082462	0.994629 0.061820 0.083018	0.995328 0.049969 0.082610	0.996455 0.041233 0.073331	0.035827 0.035827 0.056579	0.998804	0.098433	0.995678 0.088679 -0.027594	0.986293	0.963908	0.911529 0.404411 -0.074611
BEACH DI BEACH AR 28 =8.22. 1 PL. S 076+00, 0.0	1 × × × × × × × × × × × × × × × × × × ×	0.950387 0.903235 0.096765	0.968587 0.938160 0.061840	0.935797 0.971796 0.028204	0.997492 0.994990 0.005010	1.003615	1.000609	0.982187 0.964692 0.035308	0.953888 0.909902 0.090098	0.905989 0.820817 0.179183	0.851742 0.725465 0.274535	0.796586 0.634550 0.365450
JGLAS LCNGO MEPT WING. A = (0.9897 ON - BODY	*>>	0.944490 0.070935 0.078371	0.963384 0.059878 0.080410	0.981192 0.049259 0.081437	0.993956 0.041130 0.073147	1.001364 0.035957 0.056783	0.999412 0.037806 0.031097	0.980649	0.949765 0.084590 -0.026321	0.893571 0.141448 -0.048377	0.8217622 -0.063742	0.726112
IR STRIP NACA SI	000	50.834076 16.623062 -0.184512	48.701050 16.623077 -0.370727	45.762115 16.623062 -0.625091	42.692001 16.623047 -0.872811	39.480560 16.623077 -1.086797	36.117416 16.623062 -1.236382	32.592407 16.623062 -1.285449	28.891937 16.673062 -1.219516	25.074059 16.623062 -1.024441	21.576593	20.414337 16.623093 -0.567506
FOU	×	~	n	4	in	•	1	œ	6	01	11	12
J14A NACA	2	2										
CASE NO. NACA												

PAGE	- 5	. 00	SIG VN AREA	-0.137057 -0.000007 4.787437	0.137839	0.135433	-0.021226 -0.000007 3.419737	-0.087602 0.000004 3.085860	-0.059987 0.000004 4.787437	-0.104071 0.0000007 9.121888	0.000007 0.000007 17.648071	-0.096299 0.000006 33.620605	-0.088540 0.000005 31.877411	-0.083490 0.000005 30.286697
	. 30 SOURC	0.143106E+	X>N ZZZ	-0.228752 0.261651 -0.937663	-0.324310 0.368867 -0.871068	-0.562718 0.637079 -0.526762	-0.562718 0.637079 0.526762	-0.324310 0.368867 0.871068	-0.223752 0.261651 0.937663	-0.162696 0.187972 0.968607	-0.111308 0.131372 0.985065	-0.067103 0.083854 0.994216	-0.031933 0.047858 0.993344	-0.002928 0.019590 0.979804
DIVISION 28, 1977	SYM. BLOW	AL CUTPUT	X > 0000	0.795636	0.568006 0.812287 0.132513	0.190931 0.720154 0.667026	0.619003	0.846749	0.910207	0.945483	0.967018 -0.214190 0.137840	0.980341 -0.179774 0.081333	0.987504	0.090473
AIRCRAFT BEACH NDAY, MAR	=8.22. 1 PL.	POINTS FIN	V 150	0.758662 0.575569 0.424431	0.784222 0.615005 0.384995	1.217113	1.890361	1.723546 2.970613 -1.970613	1.526036 2.328786 -1.328786	1.389272	1.293052 1.671984 -0.671984	1.226617 1.504590 -0.504590	1.180318	1.152838
LUGLAS LONG	SWEPT WING.	ON - BODY	×>~ >>>	0.603619 0.459181 -0.019118	0.445443 0.637014 0.103920	0.232384 0.876509 0.811847	1.170139	1.459411 -0.512432 0.760360	1.389009	1.313533	1.250404	1.202502	1.165568 -0.180261 0.045928	1.141855 -0.158619 0.006455
	R STRIP NACA	JRM UNSET FL	× × × × × × × × × × × × × × × × × × ×	19.620255 16.622971 -0.413832	19.192657 16.623916 -0.288950	16.623154 -0.114660	18.925339 16.623154 0.114660	19.192657 16.623016 0.288950	19.620255 16.622971 0.413832	20.414337 16.623093 0.567506	21.976593 16.623077 0.772973	25.004059 16.623062 1.024441	28.891937 16.623052 1.219516	32.5924C7 16.623062 1.285449
	FOU	1	I	13	14	15	16	11	18	19	20	21	22	23
JIHA			2	~										
CASE NO.														

1 WK.	• 0	SIG	-0.082896 0.000002 28.896103	-0.083563 0.000001 27.628036	-0.084928 -0.000002 26.443405	-0.086893 -0.0000007 25.327362	-0.088694 0.0000011 24.267700	-0.089670 0.000018 11.731304	-0.091222 -0.000037 11.506591	***	0.1130446+03	0.453169E+03	***	0.076874 -0.0000016 10.241095	0.073348 0.000005 10.441466
. 30 SOURCE	0.143106E+0	XXX	0.031566	0.057854 -0.035710 0.997686	0.075367 -0.050458 0.995879	0.085462	0.086720 -0.059500 0.994455	0.087014 -0.059713 0.994416	0.090204	*	30466E+02	03654E+04	**	0.090205	0.087011 -0.059699 -0.994417
M. 8L	. OUTPUT	×>>00 ×>>00 ×>>00	0.992162 -0.120578 -0.032837	-0.101363 -0.101363	0.993494 -0.081712 -0.079329	0.994101 -0.061907 -0.089068	0.994997	0.995621 -0.029076 -0.088847	0.995836 -0.007331 -0.090868		186+02 0.	34E+04 -0.		0.992860 0.083791 0.084897	0.994285 0.067191 0.082961
=8.22. 1 PL.	PCINTS FINA	V 759	1.121397	1.086810	1.051960	1.017617	0.987658 0.975468 0.024532	0.962347 0.926111 0.073889	0.930456 0.865748 0.134252	** ** * * * * * * * * * * * * * * * * *	-0.11	E 0.18	****	0.934985 0.874197 0.125803	0.95251 0.906782 0.093218
SWEPT WING.	0N - 800Y	*>~ >>>	1.112607 -0.135215 -0.036824	1.079165 -0.110163 -0.066520	1.045116 -0.085958 -0.083451	1.011614 -0.062998 -0.090637	0.982717 -0.044005 -0.088317	0.958132	0.926582 -0.006921 -0.084549		THIS STRIP ARE	THIS STRIP AR		0.928310 0.078344 0.079377	0.946809 0.063982 0.078999
R STRIP NA	FJRM ONSET FL	000	36.117416 16.623062 1.236382	39.480560 16.623077 1.086797	42.692001 16.623047 0.872811	45.762115 16.623062 0.625091	48.701050 16.623077 0.370727	50.834376 16.623062 0.184512	52.210648 16.623062 0.061845	1 春春春春春春	DAPONENTS OF	COMPONENTS OF	****	46.944550 9.054117 -0.067963	45.431732 9.054082 -0.202767
F	2	Σ	54	52	56	21	28	53	30	* * *		MENT	* * *		~
		7	2											3	
											-	_			
	DUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I	DUR STRIP NACA SWEPT WING, A=8.22, 1 PL. SYM. BLOWING. 30 SOURCE 1 IFORM ONSET FLEW = (0.989707E+00, 0.0 ON - BODY PCINTS FINAL OUTPUT	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. VIFORM ONSET FLEM = (0.989707E+00, 0.0 ON - BODY PCINTS FINAL OUTPUT ON - BODY PCINTS FINAL OUTPUT VO VX VO VX VO VX VO VX VY VO VX VY VY VY VY VY VY VY VY VY	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK. UNIFORM ONSET FLCM = (0.989707E+00, 0.0	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK. UNIFORM ONSET FLCM = (0.989707E+00, 0.0 , 0.143106E+00) ON - BODY PCINTS FINAL CUTPUT ON - BODY PCINTS FINAL CUTPUT ON VY VTSQ DCX NX VTSQ VY VTSQ DCX VX VTSQ DCX NX ONSER94 24 36.117416 1.112607 1.121397 0.992162 0.031566 0.008289 25 39.480560 1.079165 1.086810 0.992964 0.0935710 0.008356 27.62803	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. UNIFORM ONSET FLEW = f 0.989707E+00, 0.0 ON - BODY PCINTS FINAL OUTPUT W	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. UNIFORM ONSET FLEM = f 0.989707E+00. ON - BODY PCINTS FINAL OUTPUT ON - BODY PCINTS FINAL OUTPUT ON - BODY PCINTS FINAL OUTPUT AREA 24 36.117416	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. U VIFORM ONSET FLEM = f 0.989707E+00, 0.0 M XO	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. UNIFORM ONSET FLCM = f 0.989707E+00, 0.0 WE NOTE TO THE STRIP LOUTPUT ON - BGDY PCINTS FINAL OUTPUT ON - BGDY PCINTS FINAL OUTPUT 24 36.117416	FOUR STRIP NACA SWEPT WING, A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. UNIF.JRM DNSET FLEM = [0.9897076+00, 0.0] M	Marical Strip Naca Smept Wing. A=8.22. Pl. Sym. Blowing. 30 Source WK.	FOUR STRIP NACA SWEPT WING, A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. UNIFORM DNSET FLEW = (0.9897076+00, 0.0) WY VITAL DUTPUT WY VITAL DUTPUT WY VITAL DUTPUT WY VITAL DUTPUT 24 36.117416 16.623062 16.623062 25 39.480560 26 42.62001 16.623062 26 42.62001 16.623062 27 42.62001 17.015161 28 48.0560 29 34.07 29 34.07 29 34.07 29 34.07 29 34.07 29 34.07 20 39.8457	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BIONING. 30 SOURCE I WK. UNIFORM DNSET FLCM = 1 0.989707E+00. 0.0 N	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYW. BLOWING. 30 SOURCE 1 WK. UJIFJRY GNSET FLEW = [0.9897076+00.	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK. UNIFORM DNSET FLCM = f 0.989707E+00. 0.0 No BOTY PCINTS FINAL OUTPUT V XO

PAGE

PAGE	4K.		SIG VN AREA	0.070456 0.000006 21.598480	0.066631 -0.000009 22.541809	0.064598 -0.000005 23.535599	0.064774	0.067707 -0.0000034 25.718033	0.074097 -0.0300094 26.956055	0.082027 -0.000003 28.371597	0.093455 -0.000003 29.923050	0.105051 -0.000005 15.707233	-0.0104277 -0.010005 8.118799	0.120126 -0.000004 4.260993
	. 30 SOURCE 1 0.143106E+00		X>N 272	0.086721 -0.059489 -0.994456	0.085462 -0.059531 -0.994621	0.075366	0.057854	0.031566-0.012444-0.999424	-0.002927 0.019593 -0.999804	-0.031933 0.047874 -0.998343	-0.067103 0.083875 -0.994214	-0.111308 0.131399 -0.985061	-0.162584 0.189008 -0.968601	-0.228748 0.261698 -0.937650
CCMPANY 1V ISICN 18, 1977	YM. BL	AL OUTPUT	000 000	0.995221 0.050156 0.083781	0.995917 0.034130 0.083575	0.996977	0.998226 0.016182 0.057310	0.999350	0.999382	0.997389 0.066264 -0.029721	0.990046 0.129159 -0.055922	0.218773	0.933241	0.846931
S AIRCRAFT BEACH D ONDAY, MAR 2	=8.22. 1 PL. 07E+00, 0.	POINTS FINA	V 4 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.969320 0.939581 0.060419	0.984877 0.969982 0.030018	0.995398 0.990817 0.009183	1.000436	0.996595 0.993181 0.006819	0.978011 0.956536 0.043494	0.950020 0.902538 0.097462	0.904°23 0.818885 0.191115	0.856685 0.733909 0.266091	0.804846 0.647777 0.352223	0.760002 0.577603 0.422397
LONG LAS	SWEPT WING W = (0.9	ON - 80DY	×××2 >>>	0.964687 0.048617 0.081211	0.983855 0.033614 0.082311	0.992389 0.022622 0.073962	0.998661 0.016189 0.057335	0.995937 0.017726 0.031239	0.977407	0.947539 0.062952 -0.027286	0,895915 0,116879 -0,050605	0.833070 0.187419 -0.069127	0.751115 0.280090 -0.071785	0.643669 0.401588 -0.044941
	R STRIP NACA		000 7,00 7,00	43.087692 9.054122 -0.407406	39.859017 9.054117 -0.686936	36.434177 9.054108 -0.959164	32.954941 9.054112 -1.194322	29.259109 9.054119 -1.358706	25.385345 9.054112 -1.412629	21.31.8771 9.054121 -1.340171	17.046234 9.054118 -1.125796	13.719223 9.054111 -0.849448	12.002323 9.054082 -0.623654	11.129966 9.054173 -0.454774
	LOUIF		z	m	•	s	٥	-	©	6	10	=	17	13
JIHA NACA			7	~										
PROGRAM CASE NO.														

PAGE												
¥ ~	SIG VN AREA	0.122135 -0.0000007 2.746725	0.124296 -0.0000008 3.043807	-0.010892 0.000014 3.043809	-0.072021 0.000006 2.746725	-0.083267 0.000005 4.260993	-0.086931 0.000008 8.118799	-0.085555 0.0000008 15.707233	-0.081135 0.000008 29.923050	-0.075752 0.000007 28.371597	-0.072864 0.000005 26.956055	-0.073670 0.000005 25.718033
30 SOURCE 1 0.143106E+00	XXX	-0.324282 0.368903 -0.871064	-0.562690 0.637163 -0.526691	-0.562690 0.637163 0.526691	-0.324282 0.368903 0.871054	-0.223748 0.261698 0.937650	-0.162684 0.188708 0.963601	-0.111308 0.131399 0.985061	-0.067103 0.083875 0.994214	0.047874	-0.002926 0.019593 0.999804	0.031566
COMPANY 28, 1977 SYM. BLOWING 0 .	X X 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.664850 0.743916 0.067553	0.265859 0.742751 0.614525	0.639746 -0.067863 0.765585	0.859049 -0.270705 0.434459	0.919444	0.952094	0.971496	0.983144	0.989170 -0.141658 0.038438	0.991532	0.992666 -0.116358 -0.032796
BEACH MAR BB.22. 1 PL. 07E+00. 0.	V 150	0.755188 0.570309 0.429691	1.082706	1.725070 2.975866 -1.975866	1.615253 2.609045 -1.609045	1.449490 2.101029 -1.101020	1.335904 1.784640 -0.784640	1.257822	1.206810	1.174724	1.155946	1.130775
SWEPT WING. CW = (0.989	*>>>	0.502087 0.561797 0.051015	0.287847 0.804181 0.665350	1.103607	1.387582	1.332725	1.271907 -0.304203 0.272681	1.221969 -0.244486 0.170698	1,186,468 -0:199273 0,096,813	1.162002 -0.166409 0.045154	1.146157 -0.145989 0.006299	1.122482
R STRIP NACA	000 000 000 000 000 000 000 000 000 00	10.659925	10.365980 9.054114 -0.126004	10.365980 9.054114 0.126004	10.659924 9.054096 0.317537	11.129966 9.054173 0.454774	12.002323 9.054082 0.623654	13.719223 9.054111 0.849448	17.046234 9.054118 1.125796	21.318771 9.054121 1.343171	25.385345 9.054112 1.412627	29.259109 9.054119 1.358706
F0.3	z	7	23	16	11	18	19	50	12	22	23	5 2
J14A NACA	-	•										
PROGRAM JI-14 CASE NO. NACA												

PAGE			SIG	075660 0000005 589478	078214 0000007 535599	081332 0000005 541809	084409 000015 593480	086700 0000021 441466	090105 0000001 241095		80E+02	12E+03		073375 0000005 222164	067416 000008 402838	062777 0000009 449326
	1 WK.		1	2,00	2300	-0 22.	200.	000	000	*****	0.9803	0.1686	*****	000	000	1000
	5. 30 SOURCE 1 0.143106E+00		NNN	-0.0357854 -0.035700 0.997687	0.075366	0.085462	0.086721	0.087011 -0.059699 0.994417	0.090205	***	8537406+01	196755E+04	****	0.090205	0.C87009 -0.059780 -0.994412	0.086721 -0.059572 -0.994451
DIVISION 28, 1977	SYM. BLOWING	AL OUTPUT	X > 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.993039 -0.100656 -0.061181	0.993308 -0.083871 -0.079413	0.993838 -0.065731 -0.089258	0.094806 -0.048252 -0.089623	0.995511	0.995817		E+01 0.	0877E+03 -0.		0.068525 0.068525 0.085929	0.995065	0.995671 0.033669 0.084521
S AIRCRAFT ONDAY.	A=8.22. 1 PL.	PCINTS FI	>1> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.209614	1.065644 1.135598 -0.135598	1.029966 1.060831 -0.060831	0.994182 0.005818	0.969765 0.940445 0.059555	0.934782 0.873818 0.126182	*********	E -0.	APF 0.880	******	939505	0.956792 0.915450 0.094550	0.952422 0.952422 0.047578
LONG OND A	SWEPT WING.	0N - 800	× > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2 > 2 >	1.091960 -0.110683 -0.067276	1.058513 -0.089377 -0.084626	1.023620 -0.067701 -0.091933	0.991908	0.965412 -0.031174 -0.086323	0.930872 -0.008408 -0.085001		THIS STRIP AR	THIS STRIP		0.933814 0.064379 0.080730	0.952070 0.050701 0.080264	0.971697 0.037738 0.082486
	DUR STRIP NACA !		7 × × 0	32.954941 9.054112 1.194321	36.484177 9.054108 0.959164	39.859017 9.054117 0.686936	43.087692 9.054122 0.4074C6	45.431732 9.054082 0.232767	46.944550 9.054117 0.067963	******	COMPONENTS OF	COMPONENTS OF	******	42.605057 2.820108 -0.072996	40.983225 2.823111 -0.217782	38.462585 2.823112 -0.437574
	5 Y		×	52	92	12	28	62	30	***	FJRCE C	4) tent	**	-	~	•
JI-14 NAC 4			z	•							THE F	THE 4		•		
PROGRAM JI-1A																

PAGE WK.	SIG VN AREA	0.057366-0.000007	0.054039 -0.000001 21.193649	0.052949	0.054435	0.058949 -0.000005 24.273834	0.064446 -0.000005 25.548492	0.072622-0.0000005	0.081462-0.000005	0.089361 -0.0000006 7.310763	0.095263	0.098736
. 30 SOURCE 1 0.143106E+00	X X X	0.085462 -0.058613 -0.994616	0.075368 -0.050523 -0.995876	0.057853 -0.035769 -0.997684	0.031566 -0.012510 -0.999424	-0.002927 0.019528 -0.999805	-0.031933 0.047804 -0.998346	-0.067104 0.083793 -0.994221	-0.111307 0.131292 -0.985075	-0.162689 0.187873 -0.968626	-0.228757 0.261520 -0.937698	-0.324336 0.363706 -0.871127
284 L	AL GUTPUT	0.996068 0.028390 0.083920	0.996993 0.021870 0.074344	0.998181 0.019048 0.057201	0.999262 0.022285 0.031287	0.999300	0.997717 0.060998 -0.028997	0.992508 0.107577 -0.057916	0.980508 0.175403 -0.087419	0.956054 0.272701 -0.107678	0.903830 0.414864 -0.104785	0.786835 0.616330 -0.032079
AIRCRAFT BEACH IV. MAR 22. 1 PL. :+00. 0.	VTS0 0250	0.990338 0.980769 0.019231	0.998763 0.997528 0.002472	1.000974	0.993938 0.987913 0.012087	0.972688 0.946122 0.053878	0.943099 0.889435 0.110554	0.900705 0.811270 0.188730	0.857498 0.735302 0.264698	0.812320 0.659864 0.340136	0.764277 0.584120 0.415880	0.728941 0.531355 0.468645
SWEPT WING.	2 ×× × × × × × × × × × × × × × × × × ×	0.986444 0.028116 0.083110	0.995760 0.021843 0.074252	0.999153 0.019067 0.057257	0.993205 0.022150 0.031097	0.972007 0.036327 -0.002131	0.057527	0.893957 0.096896 -0.052166	0.840869 0.150407 -0.074961	0.221521	0.690777	0.573556 0.449268 -0.023383
JR STRIP NACA SI	000	34.993744 2.820097 -0.737803	31.370087	27.579529 2.820107 -1.282761	23.609985 2.820098 -1.459319	19.449387 2.820113 -1.517233	15.081698 2.82)106 -1.439410	10.492810 2.823112 -1.239160	6.919413 2.820093 -0.912350	5.075452 2.820136 -0.669835	4.138274 2.820052 -0.488451	3.633697 2.820199 -0.341050
F0U	z	4	'n	۰	~	œ	•	01	=	12	13	±
JITA	7	•										
PROGRAM JI 14 CASE NO. NACA												

_		
_		
_	¥	0
_	=	Ā
ASE NO.		
ASE N	I	c
PROG	2	
4	90	u
	8	4

	¥	
	-	5
	SOURCE	
	30	
TA ALL	UR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK	
28, 19	SYM.	,
A A	٦.	
Ş _X	-	
LONG BEACH DIVISION MONDAY, MAR 28, 1977	A=8.22.	
LONG	MING.	000
	SWEPT	
	MACA	
	STRIP	
	UR	

1HA ACA			DUUGLAS LONG MON	AIRCRAFT BEACH DIV	COMPANY IV IS ION 8, 1977		PAGE
	FOUR	STRIP NACA	MEPT WING. A	8.22. 1 PL. 7E+00, 0.0	YM. BLOWING.	30 SQURCE 1	
			ON - 800Y	POINTS FINAL	DUTPUT		
Z	z	000 74x0	×>~ >>>	0212	0000 0004	XXX XXX	SIG VEN AREA
*	51	3.317806 2.820056 -0.135334	0.360338 0.691953 0.451502	0.901386 0.812496 0.187504	0.399760 0.767655 0.500898	-0.562828 0.636881 -0.526985	0.107359 -0.000006 2.740273
	16	3.317806 2.820056 0.135334	0.997601 -0.022242 1.092566	1.479663 2.189403 -1.189403	0.674238 -0.015032 0.738389	-0.562828 0.536931 0.526385	0.003618 0.000014 2.740273
	11	3.633697 2.820199 0.341050	-0.1273402 -0.127331 0.612665	1.450537 2.104056 -1.104056	0.877883	-0.324336 0.368706 0.871127	-0.049773 0.000010 2.473024
	18	4.138274 2.820052 0.488451	1.242879 -0.286748 0.383187	1.773803 -0.773803	0.933203 -0.215372 0.287712	-0.228157 0.261520 0.937698	-0.059426 0.000006 3.836887
	19	5.075466 2.820173 0.669835	1.205197 -0.235455 0.248109	1.252795 1.569496 -0.569496	0.962007 -0.187943 0.198044	-0.162695 0.187881 0.968623	-0.063058 0.000006 7.310487
	02	6.919363 2.820075 0.912350	-0.190568 0.158326	1.202184	0.978534 -0.158518 0.131699	-0.111305 0.131290 0.985076	-0.063159 0.000006 14.144726
	12	2.820112 1.209161	1.159507 -0.152447 0.091106	1.173028	0.988473 -0.129960 0.077668	-0.087104 0.083793 0.994222	-0.061927 -0.000001 26.945343
	22	2.820106 1.439410	1,149956 -0:126283 0.042833	1.157660	0.993345 -0.109084 0.036999	-0.031933 0.047804 0.998346	0.000004
	23	2.820113 1.517232	1.144312 -0.113538 0.005570	1.149943	0.995103 -0.098734 0.004844	-0.002927 0.019528 0.9999805	0.059555
	47	23.609985 2.820098 1.459319	1.129682 -0.101529 -0.036947	1.134836	0.995458 -0.089466 -0.032557	0.031566 -0.012510 0.999424	-0.061971
	52	27.579529 2.820167 1.282760	1.105734 -0.088683 -0.067296	1.111323	0.994970 -0.079799 -0.060554	0.057854	-0.065086 0.000003 22.142944

THIS STRIP ARE 0.225 ********* ********* THE SECTION ARE 0.56251
F THE OF THE

28.

PAGE

PROGRAM JIAA

PAGE				
D JGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK.	UNIFORM DNSET FLOW = (0.989707E+00, 0.0 , 0.143106E+00)	STRIP NO. B (STRIP)	1 -0.688382E-02 -0.781087E-02 3 -0.765847E-02 4 -0.726851E-02
JI 14				
PROGRAM CASE NO.				

TOTAL RUN TIME FOR THIS CASE WAS 0.40778 MINUTES.

8.2.2 Boundary-Layer-Calculation Output

Strip No. 4 is shown. Also included is the simulation program output. This part of the output is the same for both blowing and displacment methods.

136.				
PAGE	= -0.135495E-01	0.272515F 0.150604F 0.150604F 0.305591EF 0.1387235F 0.1387235F 0.202919F 0.204877F 0.204877F 0.204877F 0.204877F 0.204877F 0.2048877F 0.2048877F 0.2048877F 0.2048877F 0.2048877F 0.2048877F 0.2048877F	-	00000000000000000000000000000000000000
. 30 SOURCE 1 WK 0.143106E+00) P	235006E+00 Z0	0.72.8941E+000 0.72.820E+000 0.97.705E+000 0.97.705E+000 0.97.705E+000 0.97.8688+000 0.97.8688+000 0.97.8688+000 0.97.8688+000 0.97.8688+000 0.97.8688+000 0.97.928+000 0.97.928+000 0.97.928+000	×	0000 00000000000000000000000000000000
ACHMAR 28, 1977 1 PL. SYM. BLOWING 0, 0.0 1 IN SUBROUTINE SETU	79972E+00 YO = 0.	+000 +000	7K (K) SK	00000000000000000000000000000000000000
L_UGLAS BEA LONG BEA SWEPT WING. A=8.22. W = (0.989707E+00 INTERMEDIATE PRINT N NO. = 1 TYPE	14 x0 = 0.2	######################################	~ × × × ×	00000000000000000000000000000000000000
FOUR STRIP NACA SY UNIFORM ONSET FLOW SECTION	STAGNATION POINT =	22 33 34 55 56 57 57 57 57 57 57 57 57 57 57	PCHORD	00000000000000000000000000000000000000
PROGRAM JIHA CASE NO. NACA	STRIP NO. = 4		×	1004544 80 C10045 61 80 O10045 61 81

FOLLOWS

TUGTOD

PROGRAM

LAYER

BCUNDARY

137.					
PAGE	1 MK.			S/C	00000000000000000000000000000000000000
	BLOWING. 30 SOURCE 1 0.143106E+00			S	00000000000000000000000000000000000000
AIRCRAFT BEACH DIVI	ING. A=8.22. 1 PL. SYM. 0.989707E+00, 0.0	SHCRTP =1	DN 10000 ETRY DATA	*	0.224942 0.2859942 0.28572942 0.3957294
רסאפרי	NACA SWEPT W ET FLCW = (TVC =0	SPECIFIED AT STATION BODY GECME	3//	100 100 100 100 100 100 100 100 100 100
	CAIFORM ONS	TRINT =0	TRANSITION	3/x	2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.2
PROGRAM JI		TRFLAG =1		¥	101

138.								
PAGE	3/5	0.16919876 0.18155166+01 0.2104836426+01 0.2104836426+01 0.2104836426+01 0.24723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.25723768+01 0.257238+01				4E+07		2E+00
30 SOURCE 1 0.143106E+00		84.264 84.264		0.72000	0.0	0.3157074E+07	519.000	0.1995392E+00
(AFT CCMPANY DIVISION (AR 28, 1977 PL. SYM. RLCWING. 30 SOURCE 1 WK.	S	0.1691987E+01 0.1815516E+01 0.2068254E+01 0.2323348E+01 0.25723348E+01 0.2572336E+01 0.2572336E+01 0.2572336E+01 0.2572336E+01 0.2572336E+01 0.2572336E+01 0.2572336E+01 0.2176767E+01 0.3176767E+01 0.313926E+01 0.313654F+01	PARAMETERS	PRG =	SWEEP =	HE "	TREF =	MREF
GLAS AIRCRAFT CC GNG BEACH DIVISION MONDAY, MAR 28, 19 G. A=8.22, 1 PL. SYM. 989707E+00, 0.0	*	0.2951420 0.2084867E+01 0.2337451E+01 0.2337451E+01 0.2591817E+01 0.23470661 0.23470601 0.30795266+01 0.3179526+01 0.3165205E+01 0.3465205E+01 0.3465205E+01	QUANTITIES AND CONTROL PARAN	0.1000000E+01	0.11107655-01	0.37003346-06	0.2231996E+03	0.6700000E+07
LJGLAS AIRCR LONG BEACH, MONDAY, RIP NACA SWEPT WING. A=8.22. 1 ONSET FLCW = (0.989707E+00, BODY GEOMETRY DATA	7/6	-0.1217877E+0 -0.1114234E+00 -0.10165471E+00 -0.9650141E-01 -0.874936E-01 -0.8787862E-01 -0.3872031E-01 -0.3872031E-01 -0.226421E-01 -0.226421E-01 -0.226421E-01	REFERENCE QUANTITIES	C = 0.1	RHOREF = 0.1	MUREF = 0.2	VREF = 0.2	REY = 0.6
JIHA NAGA FOUR STRIP UNIFORM ONSE	3/x	0. 20 24 20 24 20 20 20 20 20 20 20 20 20 20 20 20 20	18	0.03533	1.14000	0.0	0.43939 496-32	
	¥	WWWW444444444400 \$P\$00-0444000000000000000000000000000000		"	"	"	" 1	
PROGRAM CASE NO.				Ŧ	×	¥	EP S1	

9 7	FOUR STRIP NACA SWEPT VIFJRM ONSET FLOW = (■	CRAFT CO H DIVISI MAR 28, 19 1 PL. SYM. 0.0	MPANY CN 77 81 DWING. 30 SOURCE 1 , 0.143106E+00	PAGE
844	RO/C ALPHA1 ALPHA2	334 204	AC CE	MUE TE	FPWFS
0.0	495E-01	000	0.0 0.1 0.0 0.0	0.0 0.370033E-06	000
0.1824	410F-01	000	0.758468F+02 0.884525E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.116402E-08
0.2248	830E-01	000	0.128253E+03 0.669824E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.430872E-08
-3.26302 3.0 0.3	26E-01	000	0.157088F+03 0.504667E+00 0.0	0.0	0.0 0.0 0.876295E-08
9.0	02E-01	000	0.163329E+03 0.464527E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.139054E-07
-0.32599 0.0	10-366	000	0.164918E+03 0.454053E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.194150E-07
0.3508	10-396	000	0.166531E+03 0.443320E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.253544E-07
3.3738	81 SE -01	000	0.168201E+03 0.432103E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.318792E-07
3578	830E-01	000	0.169963E+03 0.420144E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.391695E-07
0.0	10-318	000	0.171852E+03 0.407184E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.474363E-07
3.45486	10-369	000	0.173878F+03 0.393123E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.569043E-07

140.														
PAGE		SOUTG	0.0 0.0 0.678241E-07	0.0 0.0 0.804640E-07	0.0 0.0 0.951060E-07	0.0 0.0 0.112040E-06	0.0 0.0 0.131553E-06	0.0 0.0 0.153921E-06	0.0 0.0 0.179417E-06	0.0 0.0 0.208326E-06	0.0 0.0 0.240955E-06	0.0 0.0 0.277584E-06	0.0 0.0 0.318440E-06	0.0 0.0 0.363725E-06
MPANY ON 77 01 Outlot 20 Could's		MUE TE	0.0 0.3 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06	0.0 0.370033E-06 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06	0.0 0.370033E-06
1V 1 S 1 8 9 1 19	0.0	E CONT	0.176039E+03 0.377941E+00 0.0	0.178316F+03 0.361745E+00 0.0	0.180665E+03 0.344818E+00 0.0	0.182984E+03 0.327891E+00 0.0	0.185126E+03 0.312066E+00 0.0	0.187065E+03 0.297577E+00 0.0	0.188861E+03 0.284024E+00 0.0	0.190711E+03 0.269931E+00 0.0	0.192804E+03 0.253819F+00 0.0	0.194723E+03 0.238892E+00 0.0	0.196425F+03 0.225524E+00 0.0	0.197972E+03 0.213275E+00 0.0
		33°	000	000	000	000	000	000	000	000	000	000	000	000
A NAME OF OTHER	IFORM	ROJC ALPHAI ALPHAZ	-0.484311E-01 0.0 0.0	-0.514940E-01	-3.548272E-01	-0.595551E-01	-0.623854É-01	-0.662851E-01 0.0 0.0	-3.702921E-01	-0.745385E-01	-3.791294E-01	-0.836869E-01	-3.881425F-01	-0.925091E-01
PROGRAM JIHA CASE NO. NACA	5	X/C S BETA	0.390465E+03 0.107512E+03 0.146045E+03	0.397569E+0) 0.124369E+0) 0.154171E+0)	0.417151E+00 0.144716E+00 0.157212E+00	0.439494E+0) 0.167375E+0) 0.151929E+0)	0.454997E+03 0.193169E+03 0.140452E+03	0.493996E+03 0.222413E+03 0.129983E+03	0.556759E+03 0.255414E+03 0.128037E+03	0.563587E+C) 0.292474E+0) 0.139958F+0)	0.634723F+33 0.333373F+03 0.146254F+03	0.379466F+00 0.379466F+00 0.1347C7F+00	0.701117F+33 0.430591F+33 0.123426E+03	0.7563335+0) 0.4865635+0) 0.1197435+0)

E 141		•	•	•	•	•	9	9	9	•	~	•	v
PAGE I WK.	FW FPW SQUIG	0.0 0.0 0.413627E-06	0.0 0.0 0.468366E-06	0.0 0.0 0.528166E-06	0.0 0.0 0.593195E-06	0.0 0.0 0.663561E-06	0.0 0.0 0.739316E-06	0.0 0.0 0.820468E-06	0.0 0.0 0.906956E-06	0.0 0.0 0.998639E-06	0.0 0.0 0.109531E-05	0.0 0.0 0.119671E-05	0.0 0.0 0.130250E-05
MP ANY CN 77 9L NW ING. 30 SOURCE	, 0.143106E+00 MUE MUTE	0.0 0.370033E-06	0.0 0.370033E-06	0.0 0.370033E-06 0.0	0.0 0.370033E-06	0.0 0.370033E-06	0.0 0.370033E-06 0.0	0.0 0.370033E-06 0.0	0.0 0.370033E-06	0.0 0.370033E-06	0.0 0.370033E-06	0.0 0.370033E-06 0.0	0.0 0.370033E-06
DIV 151 28, 19	000 000 MCCUE	0.199514E+03 0.200976E+00 0.0	0.201317E+03 0.186472E+00 0.0	0.203314E+03 0.170249E+00 0.0	0.205328E+03 0.153728E+00 0.0	0.207347E+03 0.137006F+00 0.0	0.209362E+03 0.120147E+00 0.0	0.211365E+03 0.103235E+00 0.0	0.213295E+03 0.867847E-01 0.0	0.215146E+03 0.708653E-01 0.0	0.216937E+03 0.553289E-01 0.0	0.218718E+03 0.397531E-01 0.0	0.220410E+03 0.248374E-01 0.0
LUJGLAS AIRCRAFT LCNG BEACH MONDAY, MAR SWEPT WING, A=8.22, 1 PL.	W = (0.989707E+00 TW QW RR	000	000	, 600 000	000	000	000	000	000	000	000	000	000
FOUR STRIP NACA SWEPT	UNIFORM ONSET FLOW ROYC ALPHA1	-0.968733E-01 0.0 0.0	-0.101422E+00	-0.106006E+00	-0.110369E+00	-0.114424E+00 0.0	-0.118085E+00 0.0 0.0	-0.121269F+00	-0.123829E+00	-0.125600E+00	-0.126415E+00	-0.126127E+00	-0.124625E +00
DRJGRAM JIHA CASE NO. NACA	X/C S RETA	0.817783E+03 9.547552E+03 0.132323E+03	0.8843816+03 0.6141036+03 0.1542976+03	0.955346E+03 0.686717E+33 0.157459E+03	0.103316E+01 0.763451E+03 0.172685E+03	0.111505E+31 0.346421E+33 0.177134E+03	0.120444E+31 0.934381F+03 0.131404E+03	0.129923E+01 0.102374E+01 0.192573E+CJ	0.1397316+31 0.1127846+31 0.1803776+03	0.153197E+31 0.123197E+31 0.179831E+03	0.1823016+31 0.1823016+01 0.1823016+03	0.172356F+31 0.145410E+31 0.183709E+03	0.194779E+01 0.157132E+01 0.169353E+03

PROGRAM JIHA CASE NO. NACA		LUGLAS AIRCRAFT LONG BEACH MONDAY, MAR	CRAFT CCMPANY H DIVISION MAR 28, 1977		PAGE	142.
	FOUR STRIP NACA SWEPT UNIFORM ONSET FLOW = (SYM.	16. 30 SOURCE 1 0.143106E+00		
X/C BETA	ROJC ALPHAI ALPHAI	IIa F Oa	Dom Dom	M UE PE	SOUIG	
196142E+31 169159E+31 131326E+00	-0.121788F+00 0.0 0.0	000	0.221790E+03 0.125868E-01 0.0	0.0 0.370033E-06 0.0	0.0 0.0 0.141216E-05	
2384876+31 1815526+31 8667336-31	-3.117424E+00	0000	0.222703E+03 0.444245E-02 0.0	0.0 0.3700335-06 0.0	0.0 0.0 0.152500E-05	
.221745E+71 .194123E+91 .490500E-31	-0.111595E+00 0.0 0.0	0000	0.223227E+03 -0.247002E-03 0.0	0.0 0.370033E-06	0.0 0.0 0.164021E-05	
.233740E+01 .206336E+01 .972242E-32	-0.104647E+00	000	0.223458E+03 -0.232029E-02 0.0	0.0 0.370033E-06	0.0 0.0 0.175691E-05	
.246434E+31 .219606E+01 .322713E-01	-3.965014E-01	000	0.223370E+03 -0.153160E-02 0.0	0.0 0.370033E-06	0.0 0.0 0.187417E-05	
259181E+01 232735E+01 716595E-01	-0.974937E-01	000.0	0.223009E+03 0.170702E-02 0.0	0.0 0.370033E-06	0.0 0.0 0.199094E-05	
.2717276+31 .2449186+01 .1129246+03	-0.779077E-01	000	0.222442E+03 0.678033E-02 0.0	0.0 0.370033E-06	0.0 0.0 0.210613E-05	
.234036F+31 .257238E+31 .161200E+03	-0.678486E-01	0000	0.221656E+03 0.137827E-01 0.0	0.0 0.370033E-06 0.0	0.0 0.0 0.221857E-05	
. 29 53 9 5 E + 31 . 26 9 1 6 9 E + 31 . 20 6 7 4 0 E + 33	-3.578706E-01	000	0.225386E-01	0.0 0.370033E-06	0.0 0.0 0.232702E-05	
307253E+31 237569E+31 272550E+03	-3.480602E-01	000	0.219588E+03 0.320972E-01 0.0	0.0 0.370033E-06	0.0 0.0 0.243016E-05	
. 31 7 3 2 E + 01 . 29 1 28 9 E + 31 . 38 5 2 5 4 E + 33	-3.387209E-01	000	0.2182335+03 0.4400935-01 0.0	0.0 0.370033E-06	0.0 0.0 0.252662E-05	
.3277726+31 .3311656+31 .5125176+03	-3.301625E-01 0.0 3.3	0.00	0.216551E+03 0.586847E-01 0.0	0.0 0.370033E-06	0.0 0.0 0.261487E-05	

PROGRAM JIHA CASE NO. NACA		LCNG LCNG MOND	LCNG BEACH DIVISION MAN 28, 1977	>	PAGE	143
	FOUR STRIP NACA	SWEPT WING. A=8	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK.	WING. 30 SOURCE 1	WK.	
	UNIFORM ONSET FLO	ONSET FLCW = (0.989707E+00. 0.0	E+00. 0.0	0.143106E+00	•	
X/C S BETA	RO/C ALPHAI ALPHA2	334 FOX	E C C E	¥ UE €	FPW	
0.336593E+01 0.310)24E+01 -0.645365F+0)	-0.224642E-01	000	0.214730E+03 0.744546E-01	0.0 0.370033E-06	0.0 0.0 0.269339E-05	
0.317677E+01 0.317677E+01 -0.793326E+03	-0.157413E-01 0.0 0.0	000	0.212851E+03 0.905836E-01 0.0	0.0 0.370033E-06	0.0 0.0 0.276064E-05	
0.3234216+01 0.3234216+01 -0.9037986+01	-3.102055E-01	000	0.211106F+03 0.105429E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.281504E-05	
0.358542E+01 0.328541E+01 -0.563342E+03	-0.508301E-02 0.0 3.0	000	0.209697E+03 0.117330E+00 0.0	0.0 0.370033E-06 0.0	0.0 0.0 0.285499E-05	

TRANSITION HAS CCCURRED AT STATICA 41

TURBULENT FLOW STARTED WITH NTR = 41

14 9.	ETAINF	6.710110	11.357721	6.713110	6.710110	6.710110	7.654526	7.654526	7.654526	7.654526	7.654526	7.654526	7.654526	7.654526	7.654526	7.654526
P AGE																
K.	N: S	, 0 , 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00
NG. 30 SOURCE 1 0.143106E+CJ	H GP W	0.1233176+01	0.1233176+01	0.1079016+01	0.898063E+00 0.0	0.710921E+00 0.0	0.615172E+00	0.601978E+00	0.600014E+00	0.6063596+00	0.613000E+00	0.6224335+00	0.630298E+00	0.6380855+00	0.642089E+00	0.641632E+00
A E	CF A	00	0.189147E-01 0.554700E-02	0.860217E-02 0.400453E-02	0.502039E-02 0.354010F-02	0.315490E-02 0.315015E-02	0.231038F-02 0.276900E-02	0.197838E-02 0.244896E-02	0.1758596-02	0.160329F-02 0.198556F-02	0.1472865-02	0.136545F-02 0.166850E-02	0.126651E-02 0.154093E-02	0.117715E-02 0.142874E-02	0.1089556-02	0.1003125-02
LJGLAS AIRCRAFT LONG BEACH MONDAY, MAR SWEPT WING. A=8.22. 1 PL. W = (0.989707E+00, 0.	DELS	0.0	0.371086E-04 0.222148E+01	0.459944E-04	0.603307E-04 0.234390E+01	0.832853E-04 0.244516E+01	0.106859E-03 0.251313E+01	0.125043E-03 0.251362E+01	0.140693E-03 0.250584E+01	0.154919F-03 0.249324E+01	0.168569E-03 0.248202F+01	0.181843E-03	0.195234E-03 0.246034E+01	0.2451836+01	0.223374E-03 0.254695E+01	0.239152F-03 0.244642F+01
FOUR STRIP NACA SI UNIFORM ONSET FLOW	RTHETA	00	0.167044E-04 0.380321E+02	0.202430E-04	0.257395E-04 0.121373E+03	0.340612F-04 0.166995F+03	0.425203F-04 J.210497F+03	0.497461E-04 0.248678F+03	0.283485E+03	0.317010E+03	0.579161E-04 0.357354E+03	0.384250E+03	0.793524E-04 0.419324E+03	0.852067F-04 0.456084F+03	0.312869E-04 0.495067F+03	0.917559F-04 0.536954F+03
PROGRAM JIHA CASE NO. NACA	w.x	00	0.746774E-32 0.170023F+05	0.149651E-01 0.576137E+35	0.225639E-31	0.303704E-01 0.148399F+35	0.385379F-CL	0.472574E-01 0.236237E+03	0.567424E-11 0.286495E+05	0.343317E+05	0.437537E+0.	0.923266F-JL 0.481995E+JS	0.107512E+03 0.568129E+05	0.124369E+0) 0.668382E+36	0.1447166+0)	0.167375E+03
109	z	279972	285995	3,52220	98709	305589	113136	321509	330819	341137	352562	365562	340465	397569	141111	19464

.151.	IMAX	8.731161	8.731161	8.731161	8.731161	8.731161	8.731161	8.731161	8.731161	8.731161	8.731161	16.844162	24.972534	24.972534	19.207336	28.473679
PAGE 15																
* ~	SP	00	00	000	000	00	00	00	00	00	00	000	00	000	00	00
MPANY CN 77 BLOWING. 30 SOURCE 1 0.143106E+00	# 600 8 4 4	0.663990E+00 0.0	0.6642196+00	0.665817E+00	0.667384E+00 0.0	0.662417E+00	0.6447946+00	0.618095E+00	0.589661E+00 0.0	0.560163E+00 0.0	0.527222E+00 0.0	0.715582E+01	0.902261E+01	0.775882E+01	0.831944E+01	0.7682376+01
DIVISI 28, 19 SYM.	CF CFA	0.364858E-03 0.535926E-03	0.347827E-03 0.518216E-03	0.332921E-03 0.501900E-03	0.319254E-03 0.486886E-03	0.303737E-03 0.472954E-03	0.283945E-03 0.459704E-03	0.261924E-03 0.446768E-03	0.240940E-03 0.434024E-03	0.221154E-03 0.421518E-03	0.201532E-03 0.409283E-03	0.265391F-02 0.465103E-03	0.325346F-02 0.592519E-03	0.272593E-02 0.706066E-03	0.285398E-02 0.796280E-03	0.257889F-02 0.871385E-03
COUGLAS LONG BE MONDAY. MEPT WING. A=8.22	DELS	0.574974E-03 0.242565E+01	0.597370E-03 0.242586E+01	0.619523E-03	0.641266E-03 0.242432E+01	0.654582E-03	0.692307E-03	0.727084E-03 0.246294E+01	0.765593E-03 0.249860E+01	0.807315E-03 0.251652F+01	0.853204F-03 0.254885E+01	0.623483E-03	0.832478E-03 0.134852E+01	0.109100E-02 0.134919E+01	0.131971E-02 0.133555E+01	0.154886E-02 0.133418E+01
FOUR STRIP NACA STUIFORM ONSET FLOW	RTHETA	0.237040E-03	0.246251E-03 0.159034E+04	0.255449E-03 0.156348E+04	3.264514E-03 3.173666F+04	0.273742F-03 0.181115E+04	0.233830F-03 0.188966E+04	0.1973516-03 0.197351F+04	0.307640F-03 J.206144E+04	0.320806F-03 J.215189E+04	0.334741E-03 0.224448E+04	0.426717E-03 0.285656E+04	0.617325E-03 0.412203F+04	0.534036F+04	J. 988135F-03 J. 654546F+04	J.116091F-02 J.765221F+04
PRIGRAM JIHA CASE NO. NACA	ν×	0.1127846+01	0.1231976+01	0-134384E+01 0-873155E+C7	0.145410E+JL 0.954683E+O7	0.1571326+01	0.1691996+31	0.181552F+01 0.121369E+03	0.194123E+01 0.130379E+03	0.206336F+01 0.139741E+03	3.219506F+01 0.147249E+03	0.232335E+01 0.155531E+03	0.244718E+31 0.163537E+03	0.257238E+31 0.171157E+63	0.269158E+31 0.178298F+03	0.230568E+01).184939E+03
111	2×	397307	32 501433	33 6 10304	34,723558	35,0782	35,1420	37,084867	38 210459	39,7401	464937	\$1815	; 2 ; 17273	340064	58946	,5,72526

152.		ETAINF	28.473679	28.473679	37.015076	53 32.464981	42.202179	42.202179		
PAGE		31-								
	¥ ~	SOM	00	000	00	00	000	00		
>	BLCWING. 30 SOURCE 1	M d d d d	0.811608E+01	0.762577E+01 0.0	0.791700E+01	0.7570675+01	0.771567E+01 0.0	0.759263E+01 0.0	DEL (1)	0.22754500 0.22754500 0.22754500 0.22754500 0.52175450 0.52175450 0.52175450 0.5217410 0.5237416 0.2317416 0.2317416 0.231760 0.231760 0.231760 0.231760 0.231760 0.231760 0.231760 0.231760 0.231760 0.231760
AIRCRAFT COMPANY SEACH DIVISION , MAR 28, 1977	1 PL. SYM.	A A	0.267197E-02 0.932304E-03	0.246782E-02 0.981750E-03	0.252445E-02 0.102030E-02	0.238444E-02 0.105000E-02	0.240651E-02 0.107143E-02	0.235150E-02 0.108610E-02	VB (I)	0.00 0.728941E+00 0.764277E+00 0.9127798E+00 0.947798E+00 0.943938E+00 0.997838E+00 0.997838E+00 0.997838E+00 0.997838E+00 0.997838E+00 0.997838E+00 0.997838E+00
LUGLAS AIRCRAFT	SWEPT WING. A=8.22. CW = (0.989707E+00	DELS	0.176304E-02 0.132773E+01	0.198113F-02 0.132886E+01	0.2182896-02	0.237812E-02 0.132852E+01	0.254434E-02 0.132826E+01	0.267961E-02 0.133103E+01	SM (1)	0.0 0.1057251 0.1057051 0.1057
	FOUR STRIP NACA S UNIFORM ONSET FLOW	RTHETA	0.132786E-02 0.869870E+04	0.149085E-02 0.969113F+04	0.164589E-02	0.179035E-02 0.114372F+05	0.191554E-02 0.121387E+05	0.201317F-02 0.126723E+05	-	
PROGRAM JIHA CASE NO. NACA		ν×	0.291288E+01 0.190820E+03	0.331165E+01	0.310024E+01	0.317677E+CL 0.232974E+C3	0.323921F+01 0.205268E+03	0.328541F+01 0.206306F+03		
•		20	93322	77720	8	42205	04398	50422		112

PAGE 153.	.135495E-01	4162655 2671946 5671946 5719356 1019356 101937	-1	00000000000000000000000000000000000000
1 WK.	0- = 02		× ×	
G. 30 SOURCE 0.143106E+1 UP S = 4	.235006E+00	00000000000000000000000000000000000000	- X	00000000000000000000000000000000000000
AFT COMPANY AR 28, 1977 PL. SYM. BLOWIN 0.0 SUBROUTINE SET	2E+00 YO = 0.	-0.135495E-0 10.3779E-0 10.384729E-0 10.581982E-0 10.581982E-0 10.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0 0.126436E-0	K) SK	00000000000000000000000000000000000000
JGLAS AIRCR LONG BEACH NG. A=8.22. 1 .989707E+00, DIATE PRINT IN	x0 = 0.27997	00.2350056E+000 00.2350056E+000 00.2350016+E+000 00.2350006E+000 00.2350009E+000 00.2350009E+000 00.2350009E+000 00.2350009E+000 00.2350000000000000000000000000000000000	7 X .	
NACA SWEPT W ET FLOW = (INTERM SECTION NO. =	N POINT = 14	2749472 27494868 327494868 327494868 32749568 3774918 3774918 3774918 3774918 3714178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178 3715178	×	20000000000000000000000000000000000000
FOUR STRIP	4 STAGNATION C. POINT	10W4W0V8W0UVW4W0V	PCHORD	00000000000000000000000000000000000000
PROGRAM JIHA CASE NO. NACA	STRIP NO. =	กลกลกลกลกลกลกลกลก	×	

```
FOLLOWS
PUT
      001
      PROGRAM
BOUNDARY
```

			S/C	20000000000000000000000000000000000000
SOURCE 1 WK.				Nadadadada00000000000000000
SLOWING. 30			s	00000000000000000000000000000000000000
ACH DIVIS MAR 28, 1	SHORTP =1	18 10000 TRY DATA	*	0.2799972189999999999999999999999999999999
LONG LONG NACA SWEPT WING. T FLCW = (0.989	TVC =0	SPECIFIED AT STATION SECHETRY	3//	-0.878891 -0.8778496 0.15724845186 0.15724845186 0.3205755996 0.320575996 0.356443986 0.53765138986 0.53765138986 0.53765138986 0.53765138986 0.53766138986 0.53766138986 0.53766138986 0.53766138986 0.53766138986 0.53766138986 0.53766138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.5376138986 0.537618986 0.537613888 0.537618986 0.537618986 0.537618986 0.537618986 0.537618986 0.537618986 0.537618986 0.537618986 0.537618986 0.537618986 0.537618986 0.55761
FOUR STRI	TRINT =0	TAANSITION S	3/2	2.277.99 2.277.99 2.277.99 2.277.99 2.227.99 2.328.20 2.3
PROGRAM JIHA CASE NO. NACA	TRFLAG = 1		×	10m4500000000000000000000000000000000000
	-			115

PAGE	S/C	0.1707891E+01 0.1832581E+01 0.29594581E+01 0.2216706E+01 0.2345186E+01 0.2545186E+01 0.2545186E+01 0.25465186E+01 0.2946056E+01 0.3039960E+01 0.312938E+01 0.312938E+01 0.3266652E+01						
1 WK.	•	00000000000000000000000000000000000000		00		0.31570746+07	000	0.1995391E+00
MPANY CN 77 BLOWING. 30 SOURCE 1 , 0.143106E+00		1707891 1832581 1832581 1832581 1832581 1832581 1832581 1832581 183258 183258 183268 1		0.72000	0.0	0.3157	519.000	0.199
· ·	S	12000000000000000000000000000000000000		11	"	"	"	"
		000000000000000	PARAMETERS	PRO	SWEED	Ŧ	TREF	MREF
LUGLAS AIRCRAFT CC LUNG BEACH DIVISI MONDAY, MAR 28, 19 WING. A=8.22. 1 PL. SYM. 0.989707E+00, 0.0	*	0.20710650 0.20710650 0.21259820 0.21259820 0.2552679820 0.2552793 0.2552793 0.29533857 0.317583 0.317585 0.317585 0.32751576 0.35751576 0.3561785	AND CONTROL	0.1000000E+01	0.1110765E-01	0.3700334E-06	0.2231995E+03	0.67000005+07
GLA ONG G.		000000000000000000000000000000000000000	QUANTITIES	0	0	0	0	0
		48868464864486644664446444444444444444	ANTI	11	11	"	11	11
ICA SWEPT	4/C	0.11222114E+00 0.11798586+00 0.105313786+00 0.98153366+00 0.688633466+00 0.68863346-01 0.58845346-01 0.30385356-01 0.105831556-01 0.105831556-01	REFERENCE QUA	v	RHUREF	MUREF	VREF	REY
FOUR STRIP NA	×/c	1946450 2217124260 2217124260 2217124260 221712420 22171240 221712	α	5 30	000		0.41999996-02	
JIHA NACA		2222222222222		0.00530	1.14000	0.0	0.43	
2 0	¥	\$\mapsilon\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		"	"	"	"	
PROGRAM JIHA CASE NO. NACA				Ŧ	¥	×	EP S1	

DO	
1144	NACA
MA	2
73RAN	SE NO.

0.0 0.0 0.356881E-08 0.0 0.0 0.116401E-07 0.0 0.0 0.430642E-07 0.0 0.0 0.549022E-07 0.0 0.0 0.970929E-07 0.0 0.0 0.213112E-07 0.0 0.0 0.319191E-07 0.0 0.0 0.676972E-07 0.0 0.0 0.816988E-07 0.0 0.0 0.114029E-06 PAGE FPW 000 FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK. 0.143106E+00) 0.0 0.370033E-06 0.0 0.370033E-06 0.0 0.370033E-06 0.0 0.370033E-06 0.0 0.0 0.370033E-06 0.0 0.370033E-06 0.0 0.370033E-06 0.0 0.370033E-06 0.0 0.370033E-06 0.0 0.0 0.370033E-06 0.0 0.370033E-06 MUE LCNG BEACH DIVISION MONDAY, MAR 28, 1977 0.288594E+03 -0.671820E+00 0.0 0.328162F+03 -0.116167E+01 0.0 0.326309F+03 -0.113733E+01 0.0 0.301535E+03 -0.825113E+00 0.0 0.100000E+01 0.230376E+03 0.325169E+03 -0.112242E+01 0.0 0.329642E+03 -0.118121E+01 0.0 0.323983E+03 -0.110696E+01 0.319438E+03 -0.104827E+01 0.0 0.311144E+03 -0.943277E+00 COP 0.0 UNIFORM ONSET FLOW = (0.989707E+00, STATION DATA 33X 000 000 000 000 000 000 000 000 000 -3.878918E-02 0.774284E-02 3.192654E-01 0.0 3.0 0.386359E-01 0.237995E-01 0.9 0.0 3.323434E-01 0.354484E-01 0.0 0.0 3.141290E-01 0.280579E-01 -0.135495E-01 0.0 0.0 -0.857815E-03 RO/C ALPHAI ALPHAZ 0.292493E+ 1) 0.477716E-01 -0.567109E-01 0.279972E+03 0.0 0.100000E+01 0.753793E+00 0.753793E-02 0.100000E+01 0.233333E+3) 0.389071E-31 -0.378132E-31 0.2737665+30 0.1510576-31 0.4244356+03 3.227730E-31 0.264500E+03 0.278030E+33 0.306353E-01 0.289166E-31 0.3116586+C) 0.6785465-01 -0.2165076+03 0.323097E+03 0.737436E-01 -3.344435F+03 0.3363166+01 0.3319446-01 -0.3513906+00 0.302733E+0.) 0.572757E-31 -0.10395;E+33 X/C RETA 8 CA

PROSRAM JIHA		LUGLAS AIRCRAFT LONG BEACH MONDAY, MAR	CCRAFT COMPANY CH DIVISION MAR 28, 1977		PAGE	157
	FOUR STRIP NACA SWEPT		SYM.	NG. 30 SOURCE 1	WK.	
	UNIFORM ONSET FLOW	= (0.989707E+00	0.0	, 0.143106E+00		
X / C	RO/C ALPHA1 ALPHA2	338 FO2	MC UE	MUE TE	SOUIG	
0.351240E+03 0.108522E+03 -0.262853E+03	0.422838E-01 0.0 0.0	000	0.295128E+03 -0.748378E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.132824E-06	
0.358338F+00 0.126342F+00 -0.226983F+00	3.460613E-01 0.5 0.0	000	0.290199E+03 -0.690461E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.153899E-06	
0.388333E+03 0.146376F+03 -0.216336E+03	0.498167E-01 0.0 0.0	000	0.285683E+03 -0.638252F+00	0.0 0.370033E-06	0.0 0.0 0.177609E-06	
0.410593E+33 0.168949F+33 -0.235373F+03	0.537149E-01 0.0 0.0	000	0.281573E+03 -0.591464E+00	0.0 0.370033E-06	0.0 0.0 0.204273E-06	
0.1342564E+0) 0.134935E+0) -0.189230E+0)	3.580376E-01 0.0 0.0	000	0.277750E+03 -0.548542E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.234201E-06	
0.465446F+00 0.224503E+00 -0.156535E+00	0.624489E-01	000	0.274594E+03 -0.513542E+00	0.0 0.370033E-06	0.0 0.0 0.267707E-06	
0.4984735+00 0.257315E+00 -0.124244F+00	0.668547E-01 0.0 0.0	000	0.272187E+03 -0.487129E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.305140E-06	
0.295223E+01 -0.113371E+00	3.713298E-01 0.0 0.0	000	0.270299E+03 -0.466563E+00 0.0	0.0 0.370033E-06	0.0 0.3 0.346844E-06	
0.5771546+0) 0.337)126+0) -0.1243216+0)	0.760911E-01 0.0 0.0	000	0.268297E+03 -0.444924E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.393099E-06	
0.623335+00 0.333436E+00 -0.116967E+00	0.910489E-01	000	0.266182E+03 -0.422235E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.444092E-06	
0.674378E+C) 0.434743E+33 -3.852532E-31	0.858582E-01 0.0 0.0	0000	0.264623F+03 -0.405622E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.500057E-06	
3.730593E+03 0.471136E+03 -0.637463E-01	0.305109E-01	000	0.263568E+03 -0.394440E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.561275E-06	

158.													
PAGE WK.	FPW	0.0 0.0 0.627983E-06	0.0 0.0 0.700336E-06	0.0 0.0 0.778365E-06	0.0 0.0 0.862073E-06	0.0 0.0 0.951501E-06	0.0 0.0 0.104661E-05	0.0 0.0 0.114730E-05	0.0 0.0 0.125338E-05	0.0 0.0 0.136466E-05	0.0 0.0 0.148080F-05	0.0 0.0 0.160129E-05	0.0 0.0 0.172553E-05
MPANY CN 77 BLOWING. 30 SOURCE 1 , 0.143106E+00	MUĘ.	0.0 0.370033E-06	0.0 0.370033E-06 0.0	0.0 0.370033E-06	0.0 0.3 70033E-06	0.0 0.3 0.0 0.0	0.0 0.370033E-06						
DIVISI 28, 19 SYM.	D O S	0.262835E+03 -0.386683E+00 0.0	0.262052E+03 -0.278438E+00 0.0	0.260994E+03 -0.367334E+00 0.0	0.260134F+03 -0.358332F+00 0.0	0.259452E+03 -0.351228E+00 0.0	0.258868E+03 -0.345146E+00 0.0	0.258259E+03 -0.338823E+00 0.0	0.257777E+03 -0.333832E+00 0.0	0.257391F+03 -0.329843E+00 0.0	0.256861E+03 -0.324366E+00 0.0	0.256002E+03 -0.315533E+00	0.254923E+03 -0.304461E+00 0.0
L_JGL4S LONG MOND MEPT WING. A=8	REE	000	000	000	000	000	000	000	000	000	000	000	000
FOUR STRIP NACA SWEPT UNIFORM ONSET FLOW = (RO/C ALPHA1 ALPHA2	3.950716F-01 0.0 3.3	0.997107E-01	0.104507E+00	3.109095E+00 0.0 0.0	0.11336 6E+00 0.0 0.0	0.117232E+00 0.0 0.0	0.120613E+00 0.0 0.0	0.123374E+60 0.0 0.0	0.125344E+00 0.0 0.0	0.126353E+00 0.0 0.0	0.126245E+00 0.3 3.3	3.124904E+00 0.0 0.0
PROGRAM JIHA CASE NO. NACA	X/C SETA	0.792136E+03 0.552300E+03 -0.519147E-01	0.859733E+03 0.619375E+03 -0.547982E-01	0.931459E+03 0.692465E+03 -0.714327E-01	0.100949E+31 3.770527E+03 -0.594330E-01	0.1273146+71 0.9543776+01 -0.5343335-31	0.118236E+01 0.943654E+01 -0.492543E-01	0.1277335+01 0.1333415+31 -0.472537E-31	0.137733E+01 0.113844E+71 -0.397313E-01	0.148213F+01 0.124355F+01 -0.424545E+01	0.1592)3E+01 0.135344[+01 -0.670501E-01	0.170534E+01 0.146776E+01 -0.586977E-01	0.132467E+01 0.158599E+01 -0.131094E+03

PRIGRAM JIHA CASE NO. NACA		LCNG BEACH MONDAY, MAR	AIRCRAFT COMPANY EACH DIVISION MAR 28, 1977	>	PAGE	159
	FOUR STRIP NACA SWEPT UNIFORM ONSET FLOW = (WEPT WING. A=8.22.	1 PL. SYM.	IG. 30 SOURCE 1 0.143106E+00	. ¥K.	
X/C S BETA	RO/C ALPHAI ALPHAZ	TRA HOW	AC U	MUE	FP FP SQUIG	
0.194645E+31 0.170789E+31 -0.174310E+63	0.122211E+00 0.0 0.0	000	0.253561E+03 -0.290555E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.185281E-05	
0.207106E+01 0.183258E+01 -0.225794E+0)	0.117986E+00 0.0 0.0	000	0.251851E+03 -0.273217E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.198233E-05	
0.219734F+01 0.195949E+01 -0.278452E+03	0.112233E+00 0.0 0.0	000	0.249820E+03 -0.252759E+00 0.0	0.0 0.370033F-06	0.0 0.0 0.211316E-05	
0.232598E+31 3.238731E+31 -0.332667E+00	0.105318E+00 0.0 0.0	000	0.247536E+03 -0.229959E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.224432E-05	
0.245452F+31 0.221570E+31 -0.393744E+03	3.971935F-01 0.0 0.0	000	0.245018E+03 -0.205060E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.237479E-05	
0.258273E+31 0.234519E+31 -0.464194E+03	0.881531E-01 0.0 0.0	000	0.242272E+03 -0.178202E+00	0.0 0.370033E-06	0.0 0.0 0.250346E-05	
0.2773446+01 0.2472206+01 -0.5427366+01	0.785314E-01 0.0 0.0	000	0.239306E+03 -0.149532E+00 0.0	0.0 0.370033E-06	0.0 0.0 0.262916E-05	
0.293333E+01 0.259455E+11 -0.612151E+01	0.584053F-01 0.0 0.0	000	0.236177E+03 -0.119667F+00 0.0	0.0 0.370033E-06	0.0 0.0 0.275068E-05	
0.235339E+31 0.271599E+31 -0.662637E+03	0.583434E-01 0.0 0.0	000	0.233064F+03 -0.903473E-01 0.0	0.370033E-06	0.0 0.0 0.286681E-05	
0.306303E+01 0.283205E+01 -0.734669E+01	0.484522E-01 0.0 0.0	000	0.230100E+03 -0.627899F-01 0.0	0.0 0.370033E-06	0.0 0.0 0.297634E-05	
3.317592E+01 0.294724E+01 -0.827245E+01	0.0 0.0 0.0	000	0.227082E+03 -0.350904E-01 0.0	0.0 0.370033E-06	0.0 0.0 0.307801E-05	
0.327516E+71 3.333996E+Ji -3.937541E+0J	0.303853E-01	0000	0.224188E+03 -0.887871E-02 0.0	0.0 0.370033E-06	0.0 0.0 0.317047E-05	

PAGE 160.							
PAGE	w.	-	SOUIG	0.0 0.0 0.325235E-05	0.0 0.0 0.332200E-05	0.0 0.0 0.337779E-05	0.0 0.0 0.341833E-05
>	WING. 30 SOURCE 1	· 0.143106E+00)	M UP E E	0.0 0.370033E-06	0.3700335-06	0.0 0.370033E-06	0.0 0.370033E-06
LUJGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MAN 28, 1977	IP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 WK.	F+00. 0.0	B C SE	0.221335E+03 0.166376E-01 0.0	0.217462E+03 0.507497E-01 0.0	0.213274E+03 0.869575E-01 0.0	0.209648E+03 0.117739E+00 0.0
LUGLAS LONG MOND	SWEPT WING. A=8	1 = (0.989707	F Gα F Gα	000	000	000	000
	FOUR STRIP NACA	UNIFORM ONSET FLOW = (0.9897076+00, 0.0	RO/C ALPHA1 ALPHA2	0.226162E-01 0.0 0.0	0.0 0.0 0.0	0.102442E-01 0.0 0.0	0.608301E-02
PROGRAM JIHA CASE NO. NACA			X/C S BETA	0.336424E+01 0.312938E+01 -0.134673E+01	0.344119E+31 0.329653F+31 -3.232376E+61	0.350337E+01 0.326965E+01 -0.263547E+01	0.355742E+01 0.331529F+01 -0.294202E+01

LAMINAR SEPARATION OCCURRED AT S = 0.093177
TURBULENT FLOW STARTED WITH NTR = 11

	ETAINF	6.710110	11.357721	6.710110	6.710110	5.881675	7.654526	7.654526	7.654526	6.710110	7.654526	8.731161	19.207336	19.207336	21.901352	21.901352
166.																
PAGE																
¥ -	ST	00	00	00	00.00	00.00	00	00	00.00	00.00	000	00	00	00	00	000
AFT CCMPANY AR 28, 1977 PL. SYM. BLOWING. 30 SOURCE 1 0.0	M 4 6 5 L	0.123317E+01 0.0	0.1233176+01	0.936949E+00 0.0	0.7797376+00	0.625982E+00	0.5132336+00	0.4772156+00	0.419194E+00	0.316938E+00	0.1288146+00 0.0	0.2122105+01	0.2971655+01	0.2736506+01	0.282055E+01 0.0	0.284991E+01 0.0
ΩII ~	A A	00	0.108023E-01 -0.375123E-02	0.454457E-02 -0.181954E-02	0.279512F-02 -0.462755E-02	0.183355E-02 -0.170520E-01	0.129423E-02	0.106580F-02 0.602750E-02	0.843112F-03 0.429704E-02	0.580258E-03 0.344009E-02	0.216334E-03 0.274341E-02	0.329862E-02 0.285317E-02	0.426693F-02 0.366524F-02	0.365034E-02 0.427477E-02	0.350233E-02 0.458083E-02	0.329975E-02 0.473867E-02
L JGLAS AIRCRAFT LCNG BEACH MONDAY, MAR SWEPT WING. A=8.22. 1 PL. DW = (0.989707E+00, 0.	DELS	0.0	0.213922E-04 0.222148E+01	0.364760E-04 0.222969E+01	0.498321E-04 0.240497E+01	0.672918F-04 0.249751E+01	0.871086F-04 0.260137E+01	0.104223E-03 0.263348E+01	0.123137E-03 0.269441E+01	0.149879E-03 0.283354E+01	0.201218E-03 0.323065E+01	0.139411E-03 0.166463F+01	0.174824E-03 0.144585E+01	0.238124E-03 0.145200E+01	0.209725E-03 0.142859F+01	0.368416E-03 0.141518E+01
FOUR STRIP NACA SY UNIFORM ONSET FLOW CUTPUT	THETA	0.0	0.962972E-05	0.156570F-04 0.135637F+03	0.207205F-04	0.269435E-04 0.266611E+03	3.334856F-04 0.329859F+03	0.3557628-04	0.457011F-04 0.444457E+03	0.528945F-04 0.507199F+03	0.622842E-04	0.837488E-04 0.758051E+03	0.120915F-03 0.107120F+04	0.163997E-03 0.142961E+04	0. 209804F-03	0.220039E+04
PRIGRAM JIHA CASE NO. NACA	~~	000	0.753793E-02	0.151357E-31	0.2222356+05	0.305558E-31	0.3830316-31	0.4777156-01	0.557223E+01	0.678646F-31 0.650746E+30	0.7447976+35 0.7447976+35	0.931944E-01 0.843548E+35	0.1085226+03	0.126342E+03	0.146076F+0)	0.158949E+03
123	~ <	19972	74838	33966	75446	78000	83883	02493	02038	9 11698	23097	191896	\$1240	38338	88030	5 10593

	ETAINF	32.464981	24.972534	28.473679	37.015076	32.464981	42.202179	37.015076	48.115479	42.202179	48.115479	48.115479	54.856644	54.856644	54.856644	58 62.541580
167.																
PAGE																
¥ -	ST	00	00	00	00	00	000	000	00	00	00	00	00	00	00	00
MP ANY CON 77 BL CW ING. 30 SOURCE 1 , 0.143106E+00	N d d d	0.296623E+01 0.0	0.3044685+01	0.318974E+01	0.329928E+01	0.3442146+01	0.3562116+01	0.371932E+01	0.387424E+01	0.404091E+01	0.419611E+01	0.4349365+01	0.451091E+01 0.0	0.467161E+01	0.484127E+01 0.0	0.0
DIVISI 28, 19 SYM.	CF A A	0.320749E-02 0.479952E-02	0.307941E-02 0.480178E-02	0.3021785-02	0.293162E-02 0.471389E-02	0.287298E-02 0.464562F-02	0.279722E-02 0.456754E-02	0.275239E-02 0.448415E-02	0.270617E-02 0.440145E-02	0.266846E-02 0.432163E-02	0.262391E-02 0.424500E-02	0.257982E-02 0.417021F-02	0.254242E-02 0.409753E-02	0.250621E-02 0.402780E-02	0.247640F-02 0.396166E-02	0.244278E-02 0.389890E-02
CUUGLAS AIRCRAFT LCNG BEACH MAR WEPT WING. A=8.22. 1 PL. = (0.9897076+00, 0.	OELS	0.442778E-03 0.140197E+01	0.522825E-03 0.139209E+01	0.605966E-03 0.138120E+01	0.6947646-03	0.791906E-03 0.136474E+01	0.878872E-03 0.135860E+01	0.100918E-02 0.135140F+01	0.112220E-02 0.134460E+01	0.123932E-02 0.133792E+01	0.136612F-02 0.133268E+01	0.150445E-02 0.132806E+01	0.164942F-02 0.132385E+01	0.1319476+01	0.195377E-02 0.131543E+01	0.211620F-02 0.131177E+01
FOUR STRIP NACA SW	RTHETA	0.315825E-03	0.375568E-03 0.309572E+04	0.438723E-03 0.353459F+04	0.506109F-03 0.410647E+04	0.590251E-03 0.467326E+04	0.6616186-03	3.593187F+04	0.834600F-03 0.660317E+04	0.726302F-03 0.730830E+04	0-102509F-02 0-906364E+04	0.113282E-02 0.837506E+04	0.124593E-02 0.972504E+04	0.1363125-02	0.148527E-02 0.115415E+05	0.125064F+05
PROGRAM JIMA CASE NO. NACA	~×	0.194985E+00	0.2245035+03 0.185032E+07	0.2578155+0)	0.295236+03	0.3370126+03	0.393436F+00 0.316375E+07	0.434740E+0) 0.345333E+C?	0.388576E+0J	0.552800E+C3 0.436146E+37	3.487613E+03	0.692465E+0) 0.542513E+07	0.5017585+07	0.6554036+01	3.943668F+03 0.733295F+07	0.1034416+31
124	25	36264	65446	98473	35631	77154	23303	24378	30593	90126.	59033	31459	06460	93143	932359	77034

	ETAINF	62.541580	62.541580	71.302399	71.302399	71.302399	71.302399	81.289734	81.289734	81.289734	81.289734	81.289734	92.675308	92.675308	92.675308	92.675308
168.		•	9	_	7	7	7	60	€	60	∞	•	6	6	6	0
PAGE																
¥ ~	ST	00	00	00	00	00	00	00	00	00	00.0	00	00	00	00	00.0
MPANY CN 77 BLOWING. 30 SOURCE 1 , 0.143106E+00	33 dd d	0.516987E+01	0.5327836+01	0.548624E+01	0.561734E+01	0.5750046+01	0.585771E+01	0.596276E+01 0.0	0.606815E+01	0.614361E+01 0.0	0.6167135+01	0.6219586+01	0.621654E+01	0.623585E+01 0.0	0.621947E+01	0.6204795+01
DIV 151 28, 19 54M.	CFA	0.241654E-02 0.383947E-02	0.238668E-02	0.235930E-02 0.373031E-02	0.232301E-02 0.367902E-02	0.229068E-02 0.362869E-02	0.225199E-02	0.221623F-02 0.352915E-02	0.2184476-02 0.347958E-02	0.214603E-02 0.343000F-02	0.209424F-02 0.337982E-02	0.332938F-02	0.2006306-02	0.196758E-02 0.322937F-02	0.192225E-02 0.318090E-02	0.188209E-02 0.313432E-02
LUGLAS AIRCRAFT LONG BEACH MAR MEPT WING. A=8.22. 1 PL. = (0.989707E+00, 0.	DELS	0.228319E-02 0.130831E+01	0.245506E-02 0.130505E+01	0.253840E-02 0.130255E+01	0.283864E-02 0.130092E+01	0.305517E-02 0.129989E+01	0.1299466+01	0.354822E-02 0.129973E+01	0.383053E-02 0.130097E+01	0.413910E-02 0.130352E+01	0.447137E-02 0.130637E+01	0.482860E-02 0.130930E+01	0.521487E-02 0.131292E+01	0.562621E-02 0.131675E+01	0.605247E-02 0.132079E+01	0.648436F-02 0.132460E+01
FOUR STRIP NACA SI	ATHETA ATHETA	0.174514E-02 0.135038E+05	0.199119F-02 0.145348E+05	0.202557F-02 0.156180F+05	0.218203F-02 0.167682F+05	0.235034F-02 0.179854E+05	0.193712E-02	0.272997E-02 0.206387E+05	0.294437F-02 0.220801E+05	0.317532F-02 0.235943F+05	0.3422746-02 0.2517406+05	0.368793E-02 0.268205F+05	0.285326E+05	0.427280E-02 0.302922E+05	0.458247E-02 0.320595F+05	J.489533F-02 J.333127E+05
PROSRAM JIHA CASE NO. NACA	ς, αχ	0.113944E+31 3.880918E+07	0.124355E+01 0.560809E+07	0.1353445+01	0.146776E+01 0.112793F+03	0.158509E+01	0.170789E+31 0.129994E+03	0.193258F+71 0.13954E+03	0.195948E+01 0.146943E+03	0.208781E+31 0.155135E+C3	0.221670E+01 0.153037E+03	9.27.5196+31	0.2472236+31	3.259655E+31 0.184334E+03	0.271699E+31 0.190783E+03	0.283205E+31 0.195614E+03
125	>×	377031	32,	392027	34, 106345	35,4671	36450	371362	97843	28652	54620	182793	. 39437	33385	53335	58034

PAGE 169.	T ETAINF	92.675308	92.675308	92.675308	92.675308	92.675308	92.675308		
ž -	ST	00	00	00	00	00	00		
MPANY ON 77 BLOWING. 30 SOURCE 1 , 0.143106E+00	33 dd d0 U	0.618638E+01	0.6124296+01	0.602765E+01 0.0	0.569411E+01	0.5386476+01	0.5111396+01	DEL (1)	0.128999100.000.000.000.000.000.000.000.000.0
DIVISI 28. 19 SYM.	OF FA	0.184526E-02 0.309042E-02	0.1799905-02	0.174906E-02 0.301269E-02	0.1634866-02	0.153371E-02 0.294991E-02	0.1446735-02	VB (I)	0.0 0.457966E+0 0.1457966E+0 0.133184E+0 0.173786E+0 0.117378E+0 0.117378E+0 0.117378E+0 0.117378E+0 0.117378E+0 0.117376E+0 0.117376E+0 0.111737E+0 0.104851E+0 0.104851E+0 0.9378E+0
LCNG BEACH MONDAY, MAR SWEPT WING. A=8.22. 1 PL. CM = (0.989707E+00, 0.00.989707E+00, 0.00.989707E+00, 0.00.989707E+00, 0.00.00.00.00.00.00.00.00.00.00.00.00.0	DELS	0.693160E-02 0.132898E+01	0.738680E-02 0.133391E+01	0.789164F-02 0.134146E+01	0.854577E-02 0.135391E+01	0.930031F-02 0.136980E+01	0.1000105-01	SM (1)	0.00 0.4162659 0.26718460 0.181487600 0.181487600 0.181487600 0.181878000 0.181878000 0.181878000 0.181878000 0.181878000 0.181878000 0.181878000 0.181878000 0.181878000 0.1818780000 0.18187800000000000000000000000000000000
FOUR STRIP NACA	THETA	0.521573E-02 0.355532E+05	3.553769F-02 3.372669F+05	0.588286F-02	0.531189E-02	0.678955E-02 0.434671E+05	0.7221235-02		12m455786012m4597
PROSRAM JITA CASE NO. NACA	ν× ν×	0.294326E+31	0.3039965+01	0.3129386+01	0.3206636+01	0.3263656.01	3.331529F+31		
126	70	46 175834	275157	48 364243	441188	53965	550422		

0.249396F-03 0.319733F-02 0.211927E-02	0008	0.237167 0.2191167 0.1923997097 0.1923997097 0.10551967 0.26923987 0.26923987 0.26923987 0.366279987 0.366279987 0.366279987 0.366279987 0.366279 0		0.364276E-03 0.265429E-02 0.2654729E-02 0.3633857E-03 0.364729E-02 0.192030E-02 0.5746E-03 0.59362E-02
1 WK. 0) 0.282248E-03 0.28201F-02	DEL	1.22		0.2990903 0.263159090 0.263159090 0.31113742 0.1297444 0.129747 0.335771 0.335771 0.335771 0.335771 0.335771 0.32976 0
NG. 30 SDURCE 0.143106E+0 -0.106619E-03 0.181338E-02		232648844 2344884484844844844844844848484848484848		0.2989836 0.2989836 0.29622816 0.29622816 0.21922816 0.21922816 0.21922816 0.2599376 0.2599376 0.2599376 0.2599376 0.2599376
CRAFT COMPANY HAR 28, 1977 1 PL. SYM. RLOWI 0.0 - HAND SIDE 0.749296E-03 0.123489E-02 0.217530E-02		75.25	- HAND SIDE	0.200145E-03 0.200145E-03 0.5982880E-02 0.3381836E-03 0.277289E-03 0.240908E-02 0.353350E-02 0.353350E-03 0.353366-02
LUGLAS AIRC LONG BEACH MING. A=8.22. 0.989707E+00. THE NEW RIGHT -		20000000000000000000000000000000000000	THE NEW RIGHT	0.205386F-03 0.356316F-03 0.356354F-02 0.266058F-03 0.266058F-03 0.268468F-02 0.275388F-02 0.275388F-03 0.275388F-03
NACA SWEPT T FLOW = (198597E-02 534990E-03 344652E-02		######################################		0.512835F-03 0.550590E-03 0.467765F-03 0.649565F-03 0.180692F-02 0.566972F-02 0.314193F-02 0.237167-03
FGUR STRIP UNIFORM CNSE 2191906-02 627226-03 637226-03 637226-03		00000000000000000000000000000000000000		2557 251751100 25175100 251751100 251751100 251751100 251751100 251751100 251751100 25
CASE NO. NAC CASE NO. NAC 37167E-02 69210E-03 877332E-02	NO. C. POI	1111111111111111111111111111111111111		672119 672119 672119 672119 672119 633720 633740 63
0000	1 0 1	127		000000000000000000000000000000000000000

8.2.3 Final Output (Blowing Method)

3 -1		
0.110509E-01		-0.4822816 -0.4822816 -0.4822816 -0.4841646 -0.1265346 -0.1265346 -0.1265346 -0.1265346 -0.1265346 -0.2666406 -0.266
TLY IN*******MINUTES.		-0.4768988E-03 -0.4766988E-03 -0.788152E-03 -0.1084942E-02 -0.193493E-02 -0.193493E-02 -0.193493E-02 -0.171719E-02 -0.17185E-03 -0.17635E-03
0.309011E-02 0.407872E-02 RIGHT SIDES WAS SOLVED DIF AFTER COLSOL	•	-0.554659 -0.5542089 -0.542089 -0.542089 -0.5453089 -0.54689 -0.54689 -0.557147 -0.557447 -0.557447 -0.557447 -0.55747 -
		-0.8071467EF-03 -0.10312467EF-03 -0.8733257EF-03 -0.8733257EF-03 -0.872377EF-03 -0.872377F-03 -0.872377F-03 -0.571377F-03 -0.571377F-03 -0.571377F-03
-02 0.272091E-02 x WI IADDITIONAL SOLUTIONS OBTAINED	FLCW NO.	-0.901516E-03 0.169658E-02 0.1674958E-02 0.0511437E-03 0.841882E-03 0.841882E-03 0.107486E-03 0.107486E-03 0.107486E-03 0.107486E-03 0.107486E-03 0.107486E-03
2 0.239048E-02 LARIZED MATRIX WITS	!	-0.1223160 -0.12453603 -0.12453603 -0.12453603 -0.12453603 -0.554632 -0.554632 -0.554632 -0.55463 -0.55463 -0.55463 -0.5566 -0
3331 E-02 0.211927E-02 0.239048E-02 74E 120 x 120TRIANGULARIZED MATRIX WITSOLUT		100.8038 100
0.193331 E-02 THE 120		-0.0550532 -0.0109747576 -0.0109747576 -0.0109747576 -0.0109747576 -0.0109746

THECKING THE SIGNAS AFTER 3. LAYER LINK.

	-0.8371846-00 0.34558306-00 0.34558306-00 0.34558306-00 0.15339206-00 0.15339206-00 0.15339206-00 0.15466-00 0		-0.10701788957899999999999999999999999999999999	
	0.106714E+00 0.127643E+00 0.602270E+00 0.602270E+00 0.119774E+00 0.255468E+00 0.255468E+00 0.118117E+00 0.118117E+00 0.10882E+00 0.10882E+00 0.10882E+00 0.10882E+00 0.10882E+00		0.105996 0.1271676 0.1271676 0.1271676 0.1189878 0.1189888 0.118988 0.118988 0.118988 0.118988 0.118988 0.118988 0.11898	
	00112383E+00 126302E+00 10526611E+000 119152F+00 119152F+00 117952E+00 117952F+00 1170637F+00 1170637F+00 1016		0.1115466 -0.12574886 -0.5201257486 -0.52012576 -0.1183396 -0.1183396 -0.3646886 -0.3646886 -0.36468 -0.364686 -0.364686 -0.364686 -0.364686 -0.364686 -0.364686 -0.364686 -0.364686 -0.36	
	0.126234E+00 -0.127817E+00 -0.306588E+000 0.121376E+00 -0.127832E+00 0.641330E+00 -0.66326E+00 -0.166722E+00 0.27296E+00 0.27296E+00 0.27296E+00 0.27296E+00 0.27296E+00		0.125426E+00 -0.127092F+00 -0.303785E+00 0.127498E+00 0.127498F+00 0.633120E+00 0.633120E+00 0.633120E+00 0.633120E+00 0.63566F+00 0.275617E-01	
	0.152402F+00 -0.126548E+00 -0.1315724E+00 0.12708E+00 -0.12708E+00 -0.15868E+00 -0.15868E+00 -0.15869E+00 -0.15869E+00 -0.15868E+00 -0.15869E+00 -0.15869E+00 -0.15869E+00 -0.158669E+00 -0.158669E+00 -0.15866E+00 -0.15866E+00 -0.15866E+00		0.151600E+00 -0.125787E+00 -0.12634E+00 0.12657E+00 -0.12657E+00 -0.12657E+00 -0.12657E+00 -0.12657E+00 -0.12657E+00 -0.128615E+00 -0.128615E+00 -0.128615E+00 -0.128615E+00 -0.128615E+00 -0.128615E+00 -0.128615E+00 -0.128615E+00 -0.128615E+00	20
_	0.1234478+00 -0.167488F-01 -0.167488F-00 -0.1290748+00 -0.1290748+00 -0.129078+00 -0.129078+00 -0.129078+00 -0.12908+00 -0.129	NO. 1	0.201133F+00 10.22583F+00 10.66628F+00 0.128418F+00 0.128	16-02-0.717365-02
THE UNIFICA FLOW NJ.	12000000000000000000000000000000000000	UNIFURM FLOW	-0.1175.54.00 -0.1175.54.00 -0.1177.55.60 -0.1177.55.60 -0.1177.55.60 -0.1177.65 -0.1177.65 -0.1	71265-32-0.7560
SIGNAS OF THE UN	0.11292999999999999999999999999999999999	SIGMAS OF THE NEW	0.5074574 -0.11095044+00 -0.12745494+00 0.12745204+00 -0.48745204+00 -0.1954356+00 0.11954366+00 0.11954366+00 0.11954366+00 0.11954366+00 0.11954366+00 0.11716476+00 0.11716476+00	.0.68027E-02-0.77126E-02-0.75601E-02-0.7

PROGRAM JIHA CASE NO. NACA

UDUGLAS AIRCRAFT COMPANY LCNG BEACH DIVISION MONDAY, MAR 28, 1977

171.

PAGE

MUNDAY, MAR 28, 1977 FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK.

UNIFORM ONSET FLOW = (0.989707E+00, 0.0 , 0.143106E+00)

FINAL OUTPUT FOR THE FOLLOWING ANGLE OF ATTACK

0.989707, 0.0 , 0.143106)

A	4
J.H	NAC
I	ZO.
GRA	Z.
0	S
BB	CA

PAGE

IHA IACA			LUGLAS	LJGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977	COMPANY Ser 1977		PAC
	FOI	FOUR STRIP NACA SWEPT	WING.	A=8.22. 1 PL.	SYM. BLOWING	PL. SYM. BLOWING. 30 SOURCE 1 WK.	¥K.
	170	UNIFORM ONSET FLOW		0.989707E+00, 0.0		0.143106E+00	•
			ON - 80DY	PCINTS FINAL	AL CUTPUT		
z	Σ	000 **~	× > > > > > > > > > > > > > > > > > > >	0 4 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X	XXX	SIG VN AREA
-	-	58.584885 25.776428 -0.054459	0.919316 0.071722 0.075897	0.925228 0.856046 0.143954	0.993611 0.077518 0.082030	0.090204 -0.062060 -0.993988	6731 0303 5244
	7	57.372711 25.776474 -0.162476	0.941312 0.062533 0.076023	0.946445 0.895757 0.104243	0.994577 0.066071 0.080325	0.087012 -0.059807 -0.994410	0.068409 0.002568 12.288094
	6	55.494370 25.776413 -0.326453	0.960121 0.059697 0.078063	0.965137 0.931490 0.068510	0.994803 0.061854 0.080883	0.086719 -0.059595 -0.994449	0.068701 0.002073 25.419083
	4	52.906448 25.776428 -0.550439	0.979508 0.061003 0.078505	0.984541 0.969320 0.030680	0.994888 0.061961 0.079738	0.085462-0.058637	0.068102 0.002052 26.528748
	2	50.203033 25.776443 -0.768573	0.994812 0.064954 0.071014	0.999457 0.998914 0.001086	0.995353 0.064990 0.071052	0.075367 -0.050544 -0.995874	0.068833 0.000973 27.697723
	9	47.375092	1.006530	1.010463	0.996108	0.057853	0.0011791

0.000165	0.017818 0.000448 30.266739	0.087651 0.000350 31.723709	0.099668 0.000365 33.389236	0.115419 0.000418 35.214935	0.129360
-0.035784	0.031566 -0.012516 -0.999423	-0.002927 0.013534 -0.999805	-0.031933 0.047821 -0.998346	-0.067104 0.083824 -0.994219	0.131340
0.068791	0.996646 0.076115 0.030083	0.995541	0.992530	0.983670	0.960609
-0.021035	1.027617	1.002507	0.980042 0.960483 0.039517	0.928426 C.861975 O.138025	0.865064
0.059511	1.010314 0.077159 0.030495	0.998037	0.972721 0.116733 -0.025887	0.913200 0.163267 -0.048543	0.830988
25.776443	44.413589 25.776413 -1.088724	41.309601 25.776459 -1.131930	38.051025 25.776428 -1.073872	34.627487 25.776413 -0.902095	31.951624

2

=

JIHA	NACA
RAM	0 N
ROG	ASE

	E.	-
	-	9
	SOURCE	310KE+C
	30	1.6
10 NA 11	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. BLOWING. 30 SOURCE I WK.	1 0.143106E+00 1
28, 19	SYM.	
A A	٩.	c
SIZ	-	
LOGLAS AIRCKAF! CUMPANT LONG REACH DIVISION MONDAY, MAR 28, 1977	A=8.22.	O O SOUTH THE TOTAL TO SOUTH THE TOTAL TO MOUTH
LONG	MING.	080
	SWEPT	1 30
	NACA	TEL
	STRIP	N ONCE
	FOUR	01 314

			LONG	BEACH MAR	DIVISION 28. 1977		
	FOUR	STRIP NACA	SWEPT WING. A	.22. 1 PL.	4. BLOWING	. 30 SOURCE 1	WK.
	UNIF	JRM ONSET FLO	7689.0) = K	07E+00, 0.0		0.143106E+00	•
			ON - 800Y	PCINTS FINAL	CUTPUT		
2	x	000 7 × ×	×>~ >>>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X > 2000	X > N	SIG
-	71	30.585846 25.776443 -0.499731	0.727929 0.339289 -0.057120	0.805146 0.648260 0.351740	0.904096	-0.162682 0.187935 -0.968615	0.138981 0.000670 9.554810
	13	29.886734 25.776428 -0.364409	0.598476 0.481161 -0.013886	0.768038 0.589882 0.410118	0.779227 9.626480 -0.018079	-0.228777 0.261541 -0.937659	0.144189 0.001993
	±	29.510330 25.776535 -0.254440	0.432023 0.666581 0.117961	0.803050 0.644889 0.355111	0.537978 0.830062 0.146891	-0.324309 0.368814 -0.871091	0.144415
	51	29.274643 25.776428 -0.100966	0.216528 0.907098 0.859990	1.268579	0.170685 0.715050 0.677916	-0.562733 0.637013 -0.526826	0.139859 0.002921 3.581857
	91	29.274643 25.776428 0.100966	1.193110 -0.199189 1.520700	1.943120	0.614018 -0.102510 0.782607	-0.562733 0.637013 0.526826	-0.025143 0.002855 3.581857
	11	29.510330 25.776535 0.254440	1.479164 -0.524146 0.777564	1.751359 3.067250 -2.067260	0.844581 -0.299280 0.443977	-0.324309 0.368814 0.871091	-0.093294 0.004310 3.232257
	81	29.886734 25.776428 0.364409	1.402972 -0.438915 0.471370	1.543750 2.383164 -1.383164	0.908808 -0.284317 0.305341	-0.228777 0.261641 0.937659	-0.106344 0.006178 5.013977
	61	30.585846 25.776443 0.499731	1,323040 -0:348795 0.294720	1.399626 1.958951 -0.958951	0.945231 -0.249206 0.210570	-0.162682 0.187935 0.968615	-0.111254 0.004684 9.554810
	70	31.961624 25.775474 0.680659	1.254023 -0.269160 0.181152	1.295312	0.968124 -0.207795 0.139852	-0.111305 0.131340 0.585069	-0.109860 0.003515 18.485550
	21	34.627487 25.776413 0.902095	1.199583 -0.200958 0.100753	1.220465 1.489533 -0.489533	0.982890 -0.164657 0.082553	-0.067104 0.083824 0.994219	-0.103119 0.002830 35.214935
	22	38.051025 25.776428 1.073872	1.150944 -0.147024 0.046433	1.161224 1.348441 -0.348441	0.991147 -0.126611 0.039996	-0.031933 0.047821 0.598346	-0.092722 0.002573 33.389236

	SOURCE 1 WK. 43106E+00)	NYN NY NZ NZ NZ	.002927 -0.085100 .019534 0.002508 .999805 31.723709	.031615 -0.082001 .012546 0.002656 .999421 30.266861	.057801 -0.080850 .035725 0.002831 .997689 28.938934	.050544 0.002979 .050544 0.002979 .995874 27.697723	.05462 -0.081443 .054637 0.003016 .994615 26.528748	.059555 -0.081718 .059555 0.003530 .994449 25.419083	.059807 -0.08983 .059807 0.005986 .994410 12.288094	.090204 -0.079503 .062060 0.008606 .993988 12.052448	***	7E+02 0.101575E+03 6E+04 0.810928E+03	*******	.090204 0.077198
28. 1977	YM. BLOWING. 30	0000 0004 0004	0.993934 -0. -0.109741 0. 0.007284 0.	0.994931 -0.095916 -0.030239	0.994982 -0.091617 -0.057882	0.994839 -0.067486 -0.075796	0.994906 -0.053278 -0.085583	0.995494 -0.040805 -0.085598	0.996199 -0.027926 -0.082508	0.996599 -0.010489 -0.081736		13E+02 0.151837 18E+04 -0.355516		0.992773 0.
LONG BEACH D	NG. A=8.22. 1 PL. S .989707E+00, 0.0 BODY PGINTS FINAL	> > > > > > > > > > > > > > > > > > >	1.124444 1.264375 -0.264375	1.090226 1.188594 -0.188594	1.057122 1.117507 -0.117507	1.025653 1.051965 -0.051965	0.995815 0.991647 0.008353	0.970757 0.942370 0.057630	0.949497 0.901544 0.098456	0.925039 0.855808 0.144192	*******	E -0.130913E RE 0.261118E	********	0.933173
SNO 1	SWEPT WI	×>>>	1.117623 -0.123398 0.008191	1.084700 -0.104570 -0.032968	1.051818 -0.086279 -0.061189	1.020360 -0.069197 -0.077741	0.990742 -0.052055 -0.085225	0.966383 -0.039612 -0.083095	0.945888 -0.026516 -0.078341	0,921953 -0,009703 -0,075614		THIS STRIP AR		0.926429
	R STRIP NA	000	41.309601 25.775459 1.131930	44.413605 25.776428 1.088651	47.375076 25.776428 0.956930	50.203033 25.776443 0.768573	52.906448 25.776428 0.550439	55.494370 25.776413 0.326453	57.372711 25.776474 0.162476	58.584885 25.776428 0.054459	*****	COMPONENTS OF	***	52.210648
NACA	FOU UAIF	z	1 23	54	52	56	27	28	29	30	****	THE FORCE CO THE MOMENT C	***	7 2
CASE NO. NACA												t t		

LUGLAS AIRCRAFT CON	MONDAY. MAR 2
JIHA	VACA
ROGRAM	CASE NO. VACA

PAGE			263	91 53	41 32 62	97	36 36 36	31 03 03	95	62	117	65 30 71	848
	, ×	SIG	0.0765 0.0023 11.7313	0.0752 0.0070 24.2617	0.0727	0.0715	0.0727 -0.0001 27.6280	0.0769	0.0847	0.0944	0.1079	0.1208	0.1305
	G. 30 SOURCE 1 0.143106E+00	XXX ZZZ	0.087014 -0.059713 -0.994416	0.086720 -0.059500 -0.994455	0.085462 -0.055542 -0.994620	0.075367 -0.050458 -0.995879	0.057854 -0.035710 -0.997686	0.031566 -0.012456 -0.999424	-0.002927 0.019580 -0.999804	-0.031933 0.047858 -0.998344	-0.067103 0.083854 -0.994216	-0.111308 0.131372 -0.985065	-0.162686
IVISION 8, 1977	SYM. BLOWING	250 000 000 000 000 000 000	0.994095 0.073186 0.080116	0.994864 0.060709 0.080994	0.995515 0.049424 0.080661	0.996507 0.041105 0.072687	0.997758	0.998837	0.998474	0.995753	0.986484 0.154713	0.964356	0.912747
AIRCRAFT BEACH 10AY, MAR 2	=8.22. 1 PL. 07E+00, 0.0 POINTS FINA	0 4 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.952097 0.906488 0.093512	0.969899 0.940704 0.059296	0.986375 0.972935 0.027065	0.997575 0.995157 0.004843	1.003910 1.007836 -0.107836	1.001110	0.982692 0.965683 0.034317	0.954464 0.911002 0.088998	0.906700 0.822105 0.177895	0.852548 0.726838 0.273162	0.797407
LCNG LCNG	SWEPT WING. A: OM = (0.9897	×>~ >>>	0.946475 0.069680 0.076279	0.964.918 0.053882 0.078556	0.981951 0.048751 0.079562	0.994091 0.041006 0.072511	1.001659 0.035606 0.056994	0.999946 0.037191 0.030783	0.981192 0.054235 -0.002104	0.950411 0.083717 -0.026695	0.894445 0.140279 -0.048931	0.822160 0.216141 -0.064613	0.727831
	UR STRIP NACA FORM ONSET FL	0 × × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	50.834076 16.623062 -0.184512	48.701050 16.623077 -0.370727	45.762115 16.623062 -0.625091	42.692001 16.623047 -0.872811	39.480560 16.623077 -1.086797	36.117416 15.623062 -1.236382	32.592407 16.623062 -1.285449	28.831937 16.623062 -1.219516	25.004059 16.623062 -1.024441	21.976593 16.623077 -0.772973	20.414337
	0.75	z	7	6	+	2	٠	-	∞	•	10	=	12
1HA ACA		2	~										

176.												
PAGE	SIG N N A REA	0.136299 0.001799 4.787437	0.137190 0.002652 3.085860	0.134912 0.002762 3.419737	-0.020327 0.004326 3.419737	-0.086341 0.004503 3.085860	-0.098897 0.002951 4.787437	-0.102755 0.004308 9.121888	-0.101187 0.003281 17.648071	-0.095440 0.002619 33.620605	0.002339	-0.083101 0.002342 30.286697
5. 30 SOURCE 1 0.143106E+00	×> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-0.229752 0.261651 -0.937663	-0.324310 -0.358867 -0.871068	-0.562718 0.637079 -0.526762	-0.562718 0.637079 0.526762	-0.324310 0.363867 0.871068	-0.229752 0.261651 0.937663	-0.162686 0.187972 0.968607	-0.111308 0.131372 0.985065	-0.067103 0.083854 0.994216	-0.031933 0.047858 0.998344	-0.002926 0.019580 0.999804
DIVISION 28, 1977 SYM. BLOWING 10	00CX	0.798269 0.601583 -0.029405	0.572127 0.810387 0.126271	0.193601 0.722958 0.663213	0.619090 -0.094203 0.779650	0.846808	0.910520	0.945520 -0.248566 0.210258	0.967072	0.980427 -0.178360 0.083367	0.987612	0.990630 -0.136362 0.007605
AS BEACH MAR MAR A=8.22. 1 PL. 9707E+00. 0.	> > > > > > > > > > > > > > > > > > >	0.758903 0.575933 0.424067	0.782624 0.612500 0.387500	1.209410	1.879153 3.531216 -2.531216	1.715655 2.943472 -1.943472	1.519937 2.310208 -1.310208	1.384920 1.918003 -0.918003	1.290211	1.224449 1.499275 -0.499275	1.178577 1.389045	1.151187 1.325232 -0.325232
SWEPT WING.	×>~ >>>	0.605808 0.454543 -0.022315	0.447760 0.634228 0.098823	0.234143 0.874352 0.802096	1.163364 -0.177023 1.465081	1.452830 -0.505147 0.759990	1.383932 -0.427975 0.460195	1.309469 -0.344243 0.291190	1,247726 -0,274061 0,180368	1.200483 -0.218393 0.102078	1.163977 -0.178570 0.048132	1.140401 -0.156978 0.008754
FOUR STRIP NACA UNIFORM ONSET FL	000 ×××	19.620255 16.622971 -0.413832	19.192657 16.623016 -0.289950	18.925339 16.623154 -0.114660	18.925339 16.623154 0.114660	19.192657 16.623016 0.288950	19.620255 16.622971 0.413832	20.414337 16.623093 0.567506	21.976593 16.623077 0.772973	25.004059 16.623062 1.024441	28.891937 16.623062 1.219516	32.592407 16.623062 1.235449
5	I	2 13	77	21	16	11	18	61	50	77	22	23
J144	i											
PRUGRAM CASE NO.												

PAGE														
, K	SIG	-0.082333 0.002585 28.896103	-0.083015 0.002852 27.628036	-0.084464 0.003091 26.443405	-0.086623 0.003228 25.327362	-0.088512 0.003894 24.267700	-0.088955 0.004687 11.731304	-0.089330 0.009652 11.506591	******	0.1114536+03	0.4450405+03	*****	0.075915 0.002388 10.241095	0.073466 0.002198 10.441466
3. 30 SOURCE 1 0.143106E+00	X>N ZZZ	0.031566	0.057854 -0.035710 3.997686	0.075347 -0.050458 0.995879	0.085462 -0.058542 0.994620	0.086720 -0.059500 0.994455	0.087014	0.090204	****	.128092E+02	298619E+04	****	0.090205	0.087011 -0.059699 -0.994417
COMPANY 28, 1977 SYM. BLOWING 10	000 000 000 000 000 000 000	0.992391 -0.110292 -0.030521	0.993264 -0.099999 -0.058543	0.993852	0.994489	0.995429 -0.042776 -0.085394	0.996263 -0.027617 -0.081840	0.996713 -0.008449 -0.080571		.108191E+02 0.	495E+04 -0.		0.993243 0.081632 0.082486	0.994562 0.065754 0.080760
AIRCRAF BEACH MAR NY. MAR 122. I PL 1400. O	V T S Q C C P C C P C P C P C P C P C P C P C	1.119832 1.254024 -0.254024	1.085351 1.177986 -0.177986	1.050561 1.103679 -0.103679	1.032748 -0.032748	0.986328 0.972844 0.027156	0.951478 0.924439 0.075561	0.933012 0.870512 0.129488	****	0-	tE 0.184	*********	0.937401 0.878721 0.121279	0.953956 0.910032 0.089968
CA SWEPT WING. A=8. FLCW = (0.989707E	×>~ >>>	1.111311 -0.133587 -0.034178	1.078040 -0.108534 -0.063539	1.044102 -0.084278 -0.080183	1.010642 -0.061231 -0.087197	0.981820 -0.042191 -0.084227	0.957884 -0.026553 -0.078687	0.929946 -0.007883 -0.075173		THIS STRIP ARE	THIS STRIP AR		0.931067 0.076522 0.077322	0.948769 0.062727 0.077041
JUR STRIP NA FORM ONSET	00°C	36.117416 16.623062 1.236382	39.480560 16.623077 1.086797	42.692001 16.623047 0.872811	45.762115 16.623062 0.625091	48.701050 16.623077 0.370727	50.834076 16.623062 0.184512	52.210648 16.623062 0.061845	*****	COMPONENTS OF	COMPONENTS OF	***	46.944550 9.054117 -0.067963	45.431732 9.054082 -0.202767
7 7	-	24	52	97	27	28	59	30	** **	THE FJRCE C	THE MOMENT	****	-	~
JIHA NACA	7	7								E FJ	Ē. ≧			
PROGRAM JIHA CASE NO. VACA										Ŧ	£			

178.												
PAGE.	S V C C C C C C C C C C C C C C C C C C	0.070896 0.001982 21.598490	0.066977 0.001911 22.541809	0.064631 0.000655 23.535599	0.064608 -0.000172 24.589462	0.067573 0.000311 25.713033	0.073403 0.000272 26.956055	0.081754 0.000288 28.371597	0.093064 0.030376 29.923050	0.104529 0.030529	0.113659 0.000678 8.118799	0.119573 0.001507 4.2560993
6. 30 SNURCE 1 0.143106E+00	X > N Z Z Z	0.086721 -0.059489 -0.994456	0.085462 -0.058531 -0.994621	0.075366	0.057854 -0.035700 -0.997687	0.031566 -0.012444	-0.002927 0.019593 -0.999804	-0.031933 0.047874 -0.998343	-0.067103 0.083475 -0.994214	-0.111308 0.131399 -0.985061	-0.162684 0.189008 -0.968601	-0.228748 0.261698 -0.937650
COMPANY 28, 1977 SYM. BLOWING 0 '	×>000 000 000	0.995436 0.049117 0.081815	0.996091 0.033686 0.081656	0.997026 0.022695 0.073643	0.998219 0.015932 0.057487	0.999369	0.999402 0.034498 -0.002528	0.997431 0.065478 -0.029067	0.127986 0.127986 -0.056450	0.972717	0.933968 0.345670 -0.090641	0.848532 0.525444 -0.062470
BEACH HAR BEACH HAR B.22. I PL. D7E+00. 0.	> > C 6 9 9	0.942085 0.057915	0.985395 0.971004 0.028996	0.995391 0.990802 0.009198	1.000621	0.996976 0.993941 0.006039	0.978413 0.957291 0.042709	0.950494 0.903438 0.096562	0.905498 0.819926 0.180074	0.857274 0.734919 0.265081	0.805459 0.648764 0.351236	0.76335 0.578111 0.421889
SWEPT WING. OM = (0.989	×>~ >>>	0.766181 0.047674 0.079411	0.981543 0.033194 0.080464	0.992431 0.022591 0.073303	0.998839 0.015942 0.057523	0.996347	0.977827	0.948051 0.062236 -0.027628	0.896595 0:115891 -0.051115	0.833885 0.186186 -0.069927	0.752273 0.278423 -0.073008	0.645170 0.399514 -0.047498
FOUR STRIP NACA U41FJRM ONSET FL	200	43.087692 9.054122 -0.407406	39.858017 9.054117 -0.636936	36.484177 9.054108 -0.959164	32.954941 9.054112 -1.194322	29.259109 9.054119 -1.358706	25.385345 9.054112 -1.412629	21.319771	17.046234 9.054118 -1.125796	13.719223 9.054111 -0.849448	12.002323 9.054082 -0.623654	11.129966 9.054173 -0.454774
_		e	4	5	•	-	80	6	01	=	71	ខា
J1 14	2	3										
CASE NO.												

.179.												
PAGE.	SIG VN AREA	0.121667 0.002284 2.746725	0.123988 0.002841 3.043907	-0.010193 0.003764 3.043809	-0.071089 0.003600 2.746725	-0.082438 0.002605 4.260993	-0.085901 0.003895 8.118799	-0.084736 0.002938 15.707233	-0.080522 0.002401 29.923050	-0.075294 0.002142 28.371597	-0.072489 0.002152 26.956055	-0.073318 0.002396 25.718033
. 30 SOURCE 1 0.143106E+00	×>~ 222	-0.324282 0.369903 -0.871064	-0.562690 0.637163 -0.526691	-0.562690 0.637163 0.526691	-0.324282 0.369903 0.871064	-0.228749 0.261698 0.937650	-0.162684 0.183008 0.568601	-0.111308 0.131399 0.985061	-0.067103 0.083875 0.994214	-0.031933 0.047874 0.998343	-0.002926 0.019593 0.999804	0.031566-0.312444
COMPANY 28, 1977 SYM. BLOWING 0 '	00CX 00CX	0.667721 0.741817 0.062109	0.267942 0.745366 0.610441	0.639674 -0.064769 0.765912	0.859060 -0.268221 0.435975	0.919639 -0.256128 0.297763	0.952035 -0.225611 0.206712	-0.192912 -0.137922	0.983176 -0.163159 0.082127	0.989236 -0.140703 0.040218	0.991646 -0.128783 0.007291	0.992857 -0.115307 -0.030671
BEACH HAR BEACH HAR BEACH HAR BEACH HAR BEACH HAR DITE OF UPCINTS FIN	VISO	0.754346 0.569038 0.430962	1.077179	1.716526 2.946461 -1.946461	1.608903 2.588570 -1.588570	1.444368 2.986200 -1.086200	1.332206	1.255347	1.204823 1.451598 -0.451598	1.375917	1.154185	1.274535
SWEPT WING. ON - BODY	×>~ >>>	0.503692 0.559587 0.046851	0.288621 0.802892 0.657554	1.098318	1.382144 -0.431542 0.701442	1.323298 -0.369944 0.430080	1.268307 -0.300560 0.275382	1.219538 -0.242172 0.173140	1.184553 -0:196577 0.098948	1.160368 -0.165044 0.047175	1.144544 -0.148639 0.003415	1.120389 -0.130177 -0.034626
FOUR STRIP NACA UNIFORM ONSET FLO	000	10.659925 9.054097 -0.317537	10.365980 9.054114 -0.126004	10.365980 9.054114 0.126004	10.659924 9.054096 0.317537	11.129966 9.054173 0.454774	12.002323 9.054092 0.623654	13.719223 9.054111 0.849448	17.046234 9.054118 1.125796	21.318771 9.054121 1.340171	25.385345 9.054112 1.412£?7	29.259109 9.054119 1.358706
9 170	x	7	15	2	11	18	61	50	77	22	23	54
AM JIHA	2	3										
PROGRAM CASE NO.				,	39							

PROGRAM	J144			L L MONDA	ATRCRAFT BEACH 17. MAR	COMPANY DIVISION 28, 1977		PAGE	3E 180.	
		5	COUR STRIP NACA SI UNIFORM ONSET FLOW	# (0.989 ON - BCDY	A=8.22. 1 PL. S 7707E+00. 0.0 PCINTS FINAL	SYM. BLOWING	. 30 SOURC 0.143106E	E 1 WK.		
	7	*	000	×>~ >>>	> > > > > > > > > > > > > > > > > > > >	000 000 000 000	XXX	S S S S S S S S S S S S S S S S S S S		
		\$2	32.954941 9.054112 1.194321	1.090409	1.097754	0.993309	0.057854 -0.035700 0.997687	-0.075318 0.002688 24.585478		
		9 2	36.484177 9.054108 0.959164	1.056993 -0.087703 -0.081426	1.063745 1.131554 -0.131554	0.993652	0.075366 -0.050445 0.595879	-0.077945 0.002996 23.535599		
		23	39.853017 9.054117 0.686936	1.022157 -0.065831 -0.088448	1.028786 1.056960 -0.056960	0.994233	0.085462 -0.058531 0.994621	-0.081232 0.003237 22.541809		
		28	43.087692	0.990615 -0.046152 -0.085176	0.995340 0.990702 0.039298	0.995252 -0.046368 -0.085575	0.086721 -0.059489 0.994456	-0.084371 0.003949 21.598480		
•		62	45.431732 9.054032 0.202767	0.964861 -0.029626 -0.079304	0.968567 0.938123 0.061877	0.996173 -0.030587 -0.081878	0.087011	-0.086069 0.906861 10.441466		
		30	46.944550 9.054117 0.067963	0.934151 -0.009490 -0.075301	0.937229 0.878398 0.121602	0.996716 -0.010125 -0.080344	0.090205 -0.061949 0.993995	-0.088164 0.010004 10.241095		
		* * *	** *** * * * * * * * * * * * * * * * * *		******		***	******		
	THE FJ	JRCE	FORCE COMPONENTS OF	THIS STRIP AR	E -0.691	670E+01 0.	.838728E+01	0.966357E+02		
	THE 40	40 YENT	COMPONENTS OF	THIS STRIP AL	RE 0.868	231E+03 -0,	.193099E+04	0.165875E+03		
		* * *	***		***		***	*****		
	4	-	42.605057 2.827108 -0.072976	0.936358 0.062983 0.078659	0.941765 0.986921 0.113079	0.994259 0.066878 0.083523	0.090205	0.072403 0.002370 9.222164		
		7	40.980225 2.820111 -0.217782	0.953731 0.049746 0.078263	0.958228 0.918202 0.081798	0.995306 0.051915 0.081674	0.087009 -0.759790 -0.994412	0.067749 0.002184 9.402838		
		•	38.462585 2.820112 -0.437574	0.972828 0.036813 0.080642	0.976858 0.954252 0.045748	0.995874 0.037685 0.082552	0.086721-0.059572-0.094451	0.063519 0.001978 19.449326		

CASE NO.

-												
PAGE.	SIG VN AREA	0.107291 0.002814 2.740273	0.004120 0.003211 2.740273	-0.049306 0.001981 2.473024	-0.058972 0.001681 3.836897	-0.062323 0.003503 7.310487	-0.062613 0.002675 14.144726	-0.061549 0.002175 26.945343	-0.059778 0.001946 25.548492	-0.059387 0.001936 24.273834	-0.061838 0.002124 23.159317	-0.064984 0.002393 22.142944
5. 30 SOURCE 1 0.143106E+00	ZZZ	-0.562828 0.636981 -0.526885	-0.562828 0.636881 0.526885	-0.324336 0.369706 0.871127	-0.228757 0.261520 0.537698	-0.162695 0.187881 0.963623	-0.111305 0.131290 0.585076	-0.067104 0.083793 0.994222	-0.031933 0.047804 0.998346	-0.002927 0.019528 0.9998805	0.031566	0.057854 -0.035769 0.997684
COMPANY 28, 1977 SYM. BLOWING 0 '	X X X X X X X X X X X X X X X X X X X	0.400786 0.769920 0.496582	0.673761 -0.012399 0.738845	0.877911	0.933357 -0.213463 0.288582	0.961837 -0.186140 0.200554	0.978436 -0.157364 0.133792	0.988450 -0.129051 0.079458	0.993364 -0.108327 0.038647	0.995167 -0.097982 0.006513	0.995588 -0.088680 -0.030680	0.995169 -0.078944 -0.058376
S AIRCRAFT ONDAY, A=8.22. 1 PL. 707E+00, 0. PRINTS FIN	0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.878196 0.806757 0.193243	1.474307 2.173582 -1.173582	1.446096 2.091195 -1.091195	1.327600 1.762524 -0.762524	1.249610 1.561525 -0.561525	1.200015	1.171226	1.156756 1.336466	1.319562	1.133059	1.109374 1.230710 -0.230710
L-JGLAS LONG SWEPT WING. C CN = (0.989	× > > > > > > > > > > > > > > > > > > >	0.357984 0.691540 0.446028	0.993331 -0.018280 1.089285	1.269545	1.239125 -0.283393 0.383121	1.201921	1.174138 -0.188839 0.150552	1.157698 -0.151148 0.093063	1.148385 -0:125232 0.044678	1.142737	1.128059 -0.100480 -0.034762	1.104014 -0.087579 -0.064761
FOUR STRIP NACA U41FORM ONSET FL	000 XX0 X00	3.317806 2.820056 -0.135334	3.317806 2.820056 0.135334	3.633697 2.820199 0.341050	4.138274 2.820052 0.488451	5.075466 2.820173 0.669835	6.919363 2.820075 0.912350	10.492810 2.820112 1.279161	15.081688 2.823166 1.439410	19.449387 2.820113 1.517232	23.609935 2.820098 1.459319	27.579529 2.820107 1.282760
9 1	=	15	16	17	18	61	50	12	2.5	23	54	55
J14A NACA	7	*										
PROGRAM JIHA CASE NO. NACA					142							

J1-4A	NACA
RAM	NO
PROGRAM	CACE

LUJGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977

183.

PAGE

FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 MK. , 0.143106E+00) UNIFORM ONSET FLOW = (0.989707E+00, 0.0

=	
=	
=	
UTPU	
0	
7	
2	
INAL	
u	
2	
7	
CINT	
C	
۵	
>	
BODY	
C	
8	
•	
0	
0	

7		×0 ×00 ×00 ×00 ×00	>>> ×>K	0 ST >	X > 7 0000	XXX	SIG VN A REA
4	92	31.370087 2.820125 1.033189	1.074295 -0.075070 -0.082376	1.080060 1.166530 -0.166530	0.994662 -0.069506 -0.076270	0.075367 -0.050523 0.995876	-0.068573 0.002723 21.193649
	7.2	34.993744 2.820097 0.737803	1.040253	1.094386 1.094387 -0.094087	0.994519	0.085462 -0.058613 0.994616	-0.072867 0.003092 20.299210
	28	38.462585 2.820112 0.437574	1.005703	1.021469	0.995078 -0.049773 -0.085696	0.086721 -0.059572 0.994451	-0.077332 0.004082 19.449326
	53	40.980225 2.820111 0.217782	0.974965	0.978976 0.958393 0.041607	0.995903 -0.038554 -0.031795	0.087789	-0.030529 0.007459 9.402838
	30	42.605057 2.820108 0.072996	0.938443	0.941594 0.986591 0.113419	0.996664 -0.017476 -0.079721	0.090205	-0.084757 0.011059 9.222164
	*	****		****		***	***

0.805770F+02 0.258051E+02 -0.283281E+01 0.377376E+01 -0.120236F+04 0.221930E+03 THE 43 YENT COMPONENTS OF THIS STRIP ARE THE FORCE CUMPONENTS OF THIS STRIP ARE

*** **** *** **** *** ****

0.401539E+02 0.390241E+03 0.144765E+04 0.554629E+04 -0.967470E+04 -0.336599E+02 THE MIMENT COMPONENTS OF THE SECTION ARE THE FURCE COMPONENTS OF THE SECTION ARE

0.390241E+03 0.144765E+04 *** 0.401539F+02 -0.967470E+04 THE MIMENT CIMPONENTS OF THE ENTIRE BODY ARE 0.554629E+04 THE FURCE COMPONENTS OF THE ENTIRE BODY ARE -0.336599E+02 *** ***

· 安全存存存存 与专业 经通过 一种 电影 医多种 经分割 计

PAGE 18					
PAGE					
	16. 30 SOURCE 1 WK.	. 0.143106E+00 1			***
LONG BEACH DIVISION MAR 28, 1977	PL. SYM. BLOWIN		B (STRIP)	-0.680271E-02 -0.771260E-02 -0.756008E-02	***
UN UGLAS AIRC LONG BEACH	STRIP NACA SWEPT WING. A*8.22. 1 PL. SYM. BLOWING. 30 SOURCE 1 MK.	JUIFORM ONSET FLOW = (0.989707E+00, 0.0	STRIP NO.	-0.64	***
	FOUR STRIP NAC.	UNIFORM ONSET F			****
PROGRAM JIHA CASE NO. NACA					*

TOTAL RUN TIME FOR THIS CASE WAS 0.58883 MINUTES.

8.2.4 Final Output (Displacement Method)

CASE NO. NACA	1HA ACA			DOUGLAS A	LONG BEACH DIVISION MONDAY, MAR 28, 1977	COMPANY S ION 1977		PAGE	171.
		FOUR STRIP	NACA SWEPT	WING. A=8.22	. 1 PL. SYM.	DISPMNT . 3	FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. DISPMNT. 30 SOURCE 1 WK.		
		UNIFORM ONSE	T FLOW = (NSET FLOW = (0.989707E+00, 0.0	0.0 .0	. 0	0.143106E+00)		
×	1 ×				DEL	DEL STAR			
_	_	0.30245 0.00045 0.00009 0.00429	0.00210 0.00036 0.00024 0.00509	0.00170 0.00027 0.00048 0.00594	0.00121 0.00020 0.00086 0.00676	0.00072 0.0016 0.00145 0.00757	0.00076 0.00004 0.00218 0.00860	0.00062 0.00003 0.00284 0.00860	0.00054 0.00005 0.00354
~	2	0.00237	0.00202 0.00040 0.00022 0.00529	0.000159 0.00029 0.00628	0.00108 0.00021 0.00086 0.00728	0.00056 0.00016 0.00828	0.00075 0.00004 0.00221 0.00957	0.00064 0.00033 0.00286 0.00957	0.00057
	m	0.00250 0.00052 0.00015 0.00435	0.00215 0.00042 0.00021 0.00527	0.00170 0.00031 0.00046 0.00631	0.00115 0.00022 0.00086 0.00742	0.00059 0.00016 0.00148 0.00851	0.00078 0.00006 0.000220 0.00997	0.00068	0.00060 0.00005 0.00354
4	4	0.00268 0.00013 0.00407	0.00231 0.00045 0.00015 0.00492	0.00032 0.00032 0.00592 0.00592	0.00124 0.00023 0.00079 0.00706	0.01063 0.00116 0.00140 0.00829	0.00079 0.00337 0.00238 0.01030	0.00069 0.03001 0.00269 0.01000	0.00062 0.00006 0.00006

AGMOD	LONG BEACH DIVISION	The second secon
	28,	
PAF	MAR	i
ATR	EACH	•
	DAY	,
VA	NON MON	
000	LO	
		0.00
AHIL	NACA	
2	ON	
PROGRAM JIHA	CASE NO. NACA	

FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. DISPMNT. 30 SOURCE I WK. ANA

172.

PAGE

0.143106E+00) UNIFORM ONSET FLOW = (0.989707E+00, 0.0

34.585 SEC. TIME IS BEGIN THE SUBROUTINE DINPUT .

147

PAGE 173.	TYPE OF ELEMENT	4 LIFT	7	J	-114	411	J	211	11.5	1112	211	112	v-
RCE 1 WK. 6E+00)	0-4	1.5365E-04 1.2912E+01 1.2052E+01	1.5767E-0 1.3041E+0 1.2289E+0	1.5494E-0. 1.4112E+0 2.5419E+0	1.7551E-0. 1.4465E+0 2.6530E+0	1.90796-0. 1.48466+0. 2.77006+0	1.4819E-0 1.5254E+0 2.8942E+0	7.6175E-0 1.5692E+0 3.0271E+0	5.3465E-0 1.6163E+0 3.1728E+0	4.5354E-0 1.6673E+0 3.3393E+0	2.9450E-0 1.7217E+0 3.5219E+0	1.92875-0 1.61835+0 1.8489E+0	1.8233E-0
NY PMNT . 30 SDUR . 0.143106	000 ×××0	58.587616 25.774582 -0.085490	57.374847 25.774933 -0.187082	55.496048 25.775223 -0.346118	52.907593 25.775574 -0.564482	50.203735 25.775925 -0.778408	47.375519 25.776123 -0.965432	44.413788 25.776291 -1.396384	41.309555 25.776535 -1.133454	38.050827 25.776657 -1.079350	34.627167 25.776749 -0.906475	31.961243 25.776886 -0.683963	30.585403
RAFT COMPA MAR 28, 1977 PL. SYM. DIS 0.0	X X X X	0.083317	0.083317 -0.057217 -0.994879	0.084616	0.083237 -0.056978 -0.994990	0.074450 -0.049861 -0.995977	-0.057744 -0.035715 -0.997693	0.031150 -0.012130 -0.999441	0.019859	-0.032248 0.048158 -0.098319	-0.067417 0.084173 -0.994168	-0.111837 0.131932 -0.984930	-0.163382 0.188720
OUGLAS AIRC LONG BEACH MONDAY, MING A=8.22. 1	**~	55.833115 20.898010 -0.035249	54.545517 20.898331 -0.143409	53.232559 20.898621 -0.253697	50.516891 20.898972 -0.485036	47.682129 20.899353 -0.722579	44.718979 20.899612 -0.944473	41.617630 20.899750 -1.124274	38.348149 20.879979 -1.225708	34.961151 20.900162 -1.214739	31.386493 20.930299 -1.099159	27.619690 20.930360 -0.844180	25.663757
CA SWEPT V	*>~	54.545517 20.898391 -0.143409	53.232559 20.898621 -0.253697	50.516891 20.898972 -0.485036	47.682129 20.899353 -0.722579	44.718979 20.899612 -0.944473	41.617630 20.899753 -1.174274	38.368149 20.899979 -1.235708	34.961151 20.903162 -1.214739	31.380493 20.900249 -1.099159	27.619690 20.900369 -0.844130	25.663757 20.990391 -0.622113	20.903436
FOUR STRIP NA	**~	61.603180 30.898285 -0.127787	60.471329 30.898590 -0.222275	58.130447 30.898911 -0.421110	55.686905 30.899323 -0.625217	53.132629 30.899567 -0.815781	50.459213 30.899734 -0.570221	47.658249 30.899.963 -1.057371	44.721359 30.900146 -1.047718	41.634903 30.900253 -0.947925	38.391214 30.910345 -0.128033	36.707153 30.900375 -0.536539	35.850220
JIHA NACA	**~	62.713120 30.897595 -0.035126	61.603190 30.898285 -0.127787	60.471329 30.898590 -0.222275	58.130447 30.893911 -0.421110	55.686905 30.899323 -0.625217	53.112629 30.899567 -0.815781	50.459213 30.899734 -0.970221	47.658249 30.899563 -1.057371	44.721359 30.930146 -1.047718	41.634903	38.391234 30.900345 -0.728033	36.707153
PROGRAM CASE NO	7	-	7	m	4	2	9	~	c c	0	10	=	12
a 0	2	-											

PROGRAM CASE NO	NO.	JIHA NACA FI	FOUR STRIP NAC	D A SWEPT H	LAS AIRC NG BFACH MONDAY. • A=8.22. 1 89707E+00.	MAR 28, 1977 PL. SYM. DISPM	NT. 30 SOURC 0.143106E	E 1 WK.	PAGE 174.
-	z .	*>~	***	×≻N	×>~	NZ X	000 ××0 7	OF4	TYPE OF
-	E	35.850220 30.900421 -0.391912	35.415070 20.900284 -0.284756	24.164749 20.900299 -0.330201	24.669617 20.900436 -0.454412	-0.2530611 0.263697 -0.936634	29.886307 25.776764 -0.365988	2.5962E-05 1.5380E+01 5.0164E+00	LIFT
-	4 ww.i	35.415073 30.900284 -0.284756	35.154465 30.900146 -0.186924	23.862457 20.900162 -0.216806	24.164749 20.900299 -0.330201	-0.326396 0.371161 -0.869313	29.510147 25.776855 -0.255135	1.5280E+01 3.2358E+00	
-	ωω. 1	35.154465 30.900146 0.136924	34.979691 30.990238 0.000052	23.659698 20.900253 0.100055	23.862457 20.900162 -0.216806	-0.562865 0.637163 -0.526533	29.274490 25.776733 -0.101091	4.1658E-06 1.5237E+01 3.5873E+00	
2	93	34.979691 30.900238 0.001052	35.154327 30.970330 0.187222	23.862259 20.500391 0.217266	23.659698 20.900253 0.000055	-0.563408 0.637782 0.525172	29.274185 25.776642 0.101335	1.8060E-05 1.5237E+01 3.5887E+00	
11	m.m	35.154327 30.900330 0.187222	35.414841 30.900513 0.285474	24.164493 20.970574 0.331000	23.862259 20.900391 0.217266	-0.327376 0.372276 0.868467	29.509979 25.777130 0.255706	5.7042E-05 1.5280E+01 3.2377E+00	
=	88	35.414841 30.900513 0.285474	35.849854 30.900879 0.394010	24.669266 20.900848 0.455358	24.164490 20.900574 0.331000	-0.232958 0.266318 0.935310	29.886078 25.777176 0.367376	1.3764E-04 1.5383E+01 5.0201E+30	
-	6	35.849854 30.900379 0.394010	36.706482 30.501169 0.541669	25.663101 20.901169 0.637119	24.669266 20.900848 0.456358	-0.166486 0.192145 0.967141	30.584930 25.777496 0.535702	1.5253E-04 1.5653E+01 9.5631E+00	
20		36.706432 30.901169 0.541669	38.392410 30.901382 0.738011	27.618896 20.901367 0.854086	25.663101 20.901169 0.627119	-0.114424 0.134737 0.984253	31.960510 25.777786 0.691465	1.8445E-04 1.6188E+01 1.8493E+01	
21	m m	38.392410 30.901382 0.738311	41.634155 30.501306 0.964786	31.379745 20.901306 1.115956	27.619896 20.901367 0.854086	-0.069351 0.086195 0.993862	34.626389 25.777802 0.919860	2.7966F-04 1.7217=+01 3.5230E+01	
22	3 4	1.634155 30.901306 0.964786	44.723993 30.960925 1.071942	34.96.0785 20.900909 1.238858	31.379745 20.901306 1.115955	-0.034432 0.050332 0.998139	38.050308 25.777588 1.099849	3.24825-04 1.66735+01 3.34055+01	
2	3 4	30.900925 1.071942	47.654783 30.9(CC09 1.089663	38.368668 20.903024 1.2570	34.960785 20.910909 1.238858	0.005493	41.309692 25.776978 1.166196	2.7993F-04 1.6163F+01 3.1745E+01	
24	4 m	1.658783	50.460999	41.619415	38.368668	0.028694	44.414978	2.2787E-04 1.5693E+01	

PAGE 175.	TYPE OF ELEMENT	LIFT						MA KE	LIFT				
1 WK.	CHA	2.6485E-04 1.5254E+01 2.8958E+01	2.1110E-04 1.4846E+01 2.7712E+01	1.4529E-04 1.4466E+01 2.6535E+01	1.0787E-04 1.4112E+01 2.5420E+01	9.3849E-05 1.3041E+01 1.2292E+01	9.1846E-05 1.2912E+01 1.2054E+01	5.5879E-09 1.2799E+01 1.1983E+01	9.4905E-05 1.1069E+01 1.1536E+01	9.7364E-05 1.1185E+01 1.1732E+01	6.87546-05 1.2390E+01 2.4268E+01	6.89776-05 1.27246+01 2.53286+01	1.2982F-04
Y MNT. 30 SOURCE • 0.143106E+	00 X X X	47.378067 25.774612 1.008795	50.207642 25.773346 0.830222	52.912460 25.772263 0.622349	55.501465 25.771469 0.408707	57.380905 25.770813 0.255693	58.594437 25.769928 0.161129	59.795380 25.769516 0.114308	52.213409 16.621246 -0.093088	50.836182 16.621552 -0.208981	49.702682 16.621887 -0.393081	45.753214 16.622269 -0.638545	42.692657
AFT COMPANY AR 28, 1977 PL. SYM. DISPM	XXX	0.054512	0.071682 -0.047386 0.996301	0.081533	0.082674	0.052597	0.077540	0.0	0.083750	0.083701 -0.057319 -0.994841	0.034779	0.083408 -0.056984 -0.994885	0.074665
LAS AIRCR NG BEACH MONDAY, M . A=8.22. I 89707E+00,	* × × ~	41.619415 20.898758 1.163253	44.722321 20.897461 0.993190	47.686722 20.896225 0.779422	50.522232 20.895309 0.546760	53.238434 20.894623 0.320810	54.552200 20.893753 0.218255	55.840622 20.892883 0.117679	50.063187 12.498013 -0.036146	48.625946 12.498333 -0.157278	47.160385 12.498642 -0.280793	44.129059 12.498997 -0.539310	40.964767
D A SWEPT N	××N	44. 722321 20.897461 0.9931.90	47.686722 20.896225 0.779422	50.522232 20.895309 0.546760	53.238434 20.894623 0.320810	54.552200 20.893753 0.213256	55.840622 20.892883 0.117679	57.127396 20.892883 0.147679	48.625946 12.498333 -0.157278	47.160385 12.498642 -0.290793	44.129059 12.498997 -0.539310	40.964767 12.459409 -0.804752	37.65713
FOUR STRIP NAC	×>~	53.135834 30.897491 0.863045	55.691299 30.896317 0.679553	58.135529 30.895432 0.479536	60.476807 30.894836 0.285180	61.609360 30.894028 0.197122	62.719986 30.893250 3.110766	63.829163 30.893250 0.110766	20.898331 -0.143409	53.232559 20.898621 -0.253697	50.516991 20.898972 -0.495036	47.687129 20.899353 -0.722579	44.713979
JIHA .	*>~	50.4609°9 30.398773 1.008662	53.135834 30.897491 0.863045	55.691299 30.896317 0.679553	58.135529 30.895432 0.479536	60.476807 30.894436 0.285180	61.609367 30.894728 0.197122	62.719986 30.893250 6.110766	55.833115 20.893110 -0.035249	54.545517 20.898331 -0.143409	53.232559 20.899621 -0.253697	50.516891 20.898972 -0.485036	47.682129
PROGRAM CASE NO	7	1 25	56	27	28	59	30	31	2 1	2	6	4	~

PRUC	RUGRAM	JIHA		0000	OUGLAS AIRCR LONG REACH	CRAFT COMPANY H DIVISION HAR 28, 1977			PAGE 176
			FOUR STRIP NAC	A SWEPT WING	. A=8.22.	SYM. DIS	PMNT. 30 SOURC	E 1 WK.	
			UNIFORM ONSET F	10W = (0.	989707F+00.	0.0	. 0.143106E+0	1 00+	
z	Σ. !	**~	**~	×>~	×>~	×××	000	0-4	TYPE OF
2	•	44.71897 20.89961 -0.94447	1.61763 0.85975 1.12427	34.195328 12.499763 -1.254255	2.40	0.057924	39.480942 16.622772 -1.095089	1.3380E-04 1.3469E+01 2.763JE+01	LIFT
	_	41.61763(20.89975(-1.12427	20.38.368149 0.20.394979 41.225708	30.558176 12.499992 -1.367726	34.195328 12.499763 -1.254255	0.031233	36.117630 16.622955 -1.244234	5.9732E-05 1.3882E+01 2.8900E+01	
	60	38.36814 20.89997 -1.22570	9 23-961151 9 23-900162 8 -1.214739	26.765030 12.500187 -1.355647	30.568176 12.499992 -1.367726	0.003195 0.019880 0.999797	32.592377 16.623138 -1.292250	3.9607E-05 1.4325E+01 3.0290E+01	
	6	34.95115	1 31.380493 2 20.500255 3 -1.099159	22.768066 12.500324 -1.226755	26.765030 12.500187 -1.355547	-0.032206 0.048179 -0.998320	28.891708 16.623322 -1.225304	2.9638E-05 1.48065+01 3.1881E+01	
	01	31.38049 20.90029 -1.09915	3 27.619590 9 20.900360 9 -0.844180	18.573053 12.500416 -0.942173	22.768066 12.500324 -1.226755	-0.067397 0.084206 -0.994167	25.003708 16.623428 -1.029099	9.1195F-06 1.532)E+01 3.3624E+01	
	=	27.61969 20.93334 -0.84418	0 25.653757 0 20.530391 0 -0.622119	16.386749 12.500462 -0.694284	18.573053 12.530416 -0.942173	-0.111822 0.131960 -0.984927	21.976151 16.623489 -0.776467	2.3693F-06 1.4027F+01 1.7651F+01	
	71	25.66375 20.93339 -0.62211	7 24.669617 70.500434 9 -0.454412	15.277130 12.500473 -0.597070	16.386749 12.500462 -0.694284	-0.163363 0.188738 -0.968344	23.413879 16.623550 -0.570042	5.8115E-06 1.3359E+01 9.1248E+00	
	13	24.66961 20.90043 -0.45441	24-164749 6 20-960299 2 -0-330201	14.713440 12.500336 -0.368533	12.500473	-0.230398 0.263502 -0.936741	19.619843 16.623367 -0.415471	3.2231F-05 1.3027F+01 4.7897E+00	
	41	24.16474 20.90020 -0.33020	23.862457 20.530162 1 -0.216806	12.530198 12.530198 -0.242033	14.713440 12.500336 -0.368533	-0.326193 0.370993 -0.869461	19.192398 16.623306 -0.289685	2.0142E-05 1.2899E+01 3.0883E+00	
	15	23.86245 20.90015 -0.216806	23.659698 2 20.900253 6 0.010055	14.149670 12.500290 0.0000067	14.375965 12.500198 -0.242033	-0.562849 0.637232 -0.526437	18.925303 16.623337 -0.114794	1.3903E-05 1.2843E+01 3.4248E+00	
	16	23.659698 20.90925 0.00905	8 23.862259 3 20.900391 5 0.217246	14.375702 12.509507 0.242639	14-149670 12-500290 0-000067	-0.563509 0.637986 0.524816	18.924820 16.623413 0.115117	3.3617E-05 1.2845F+01 3.4267F+00	
	11	23.86225	24.164490	14.713171	14.375702	-0.376816	19.192154	75.7578F-05	

PAGE 177.	TYPE OF TELEMENT	761E-04 LIFT 027E+01 928E+00	662E-05 359E+01 287E+00	669E-04 027E+01 658E+01	957E-04 320E+01 633E+01	076E-04 80.7E+01 891E+01	386E-04 325E+01 305E+01	453E-04 882E+01 916E+01	136E-04 469E+01 645E+01	992E-05 93E+01 456E+01	2005-05 7246+01 3336+01	344E-04 390E+01 269E+01	8455-04 1858-01
SOURCE 1 WK	000	9568 1.1 3718 1.3 6796 4.7	3422 7.9 4146 1.3 3411 9.1	5449 1.2 4374 1.4 3817 1.7	2960 2.0 4435 1.5 2337 3.3	1174 2.6 4191 1.4 5600 3.1	2468 2.4 3566 1.4 9770 3.0	8790 1.8 2513 1.3 9269 2.8	3566 1.6 1216 1.3 9165 2.7	6686 5.9 9888 1.3 5657 2.6	8295 4.2 8790 1.2 9211 2.5	8466 1.0 7935 1.2 6489 3.4	7.68
MPANY ON DISPMNT . 30	××~	71 19.61 62 16.62 03 0.41	01 20-41 47 16-62 87 0.57	16 21.97 32 16.62 30 0.78	93 25-00 58 16-62 30 11-64	05 28.89 38 16.62 65 1.24	85 32.59 26 16.62 51 1.31	48 36.11 75 16.62 30 1.27	86 39.48 13 16.62 52 1.13	64 42.69 45 16.61 86 0.93	06 45.76 51 16.61 32 0.69	80 48.70 34 16.61 00	30 50.84 72 16.61
CH DIVISI CH MAR 28, 19 1 PL SYM.	XXX	7 -0.2320 5 0.2653 7 0.9358	0 -0.1561 9 0.1917 8 0.9672	4 -0.1141 3 0.1344 5 0.9843	5 -0.069) 0 0.0859 7 0.9939	4 -0.0341 3 0.0500 3 0.9981	2 0.00517 0.0217	0.0289	4 0.0547 9 -0.0330 4 0.9979	0.0718 0.0474 0.09962	9 0.0816 9 0.0552	9 0.0826 0 -0.0550 7	0.0774
UGLAS BEA LONG BEA MONDAY. NG. A=8.22.		14.71317 12.50064 0.36934	15.27681 12.50083 0.50881	16.38612 12.50118 0.69907	18.56927 12.50140 0.95188	22.76733 12.50134 1.24330	26.76466 12.50094 1.37938	30.56868 12.50005 1.39864	34.19714 12.49877 1.29317	37.66053 12.49744 1.10267	40.96957	44.13468 12.49514 0.60426	47.16664
D CA SWEPT W FLOW = (*>~	15.276810 12.500889 0.508818	16.386124 12.501183 0.699075	18.569275 12.501400 0.951887	22.767334 12.501343 1.243303	26.764664 12.500942 1.379380	30.568680 12.500050 1.398641	34.197144 12.498779 1.293174	37.660538 12.697440 1.102670	40.969574 12.496159 0.863799	44.134689 12.495140 0.604267	47.166641 12.494350 0.352452	48.633151
FOUR STRIP NAU	***	24.669266 20.900848 0.456358	25.663101 20.931169 0.627119	27.618896 20.901367 0.854086	31.379745	34.960785 20.90909 1.238858	38.368668 20.303024 1.257042	41.619415 20.858758 1.163253	44.722321 20.897461 0.993190	47.686722 20.896225 0.779422	50.82232 20.835309 0.545769	53.23 434 20.894623 0.320910	54.552200
JIHA NACA	**~	24.164490 20.930574 0.331000	24.669266 20.900848 0.456358	25.663101 20.931169 0.627119	27.618396 20.901367 0.854086	31.379745 20.931306 1.115956	34.950795 20.903939 1.239858	38.363668 20.930024 1.257042	41.619415 20.898758 1.163253	44.722371 20.897461 0.993190	47.686722 20.896225 0.779422	50.522232 20.895309 0.546760	53.238434
PROGRAM CASE NO	7	2 18	19	20	21	22	23	54	25	56	2.7	28	53

ROGASE	N NO.	J1HA NACA FO	FOUR STRIP NAC	A SWEPT W	LONG BEACH MCNDAY, MING. A=8.22. 1	AFT COMPAN AR 28, 1977 PL. SYM. DISP	MNT. 30 SOURC	E 1 WK.	PAGE 178
		INI	UNIFORM ONSET F	6.0) = WOJ:	89707E+00.	0.0	• 0.143106E	(00+	
1	7 1	**~	**~	×>~		XXX	000 ×××	OF4	TYPE OF ELEMENT
3	30 5	4.552200 0.893753 0.218256	55.840622 20.892883 0.117679	50.071442 12.492336 0.127146	48.633194 12.493332 0.238720	0.077430-0.052093	52.220856 16.616165 0.175587	1.6469E-04 1.1069E+01 1.1508E+01	LIFT
2	2 2	000		51.507843 12.492336 0.127146	50.071442 12.492336 0.127146	0.001127	53.584671 16.615677 0.122500	2.7940E-09 1.0971E+01 1.1438E+01	WAKE
	1 5	0.063187 2.498013 0.036146	48.625946 12.498333 -0.157278	43.834900 5.698239 -0.170080	45.393417 5.697910 -0.038600	0.083874	46.947418 9.052237 -0.100577	3.0980E-05 9.2221E+00 1.0240E+01	LIFT
	2 4	8.625946 2.498333 0.157278	47.166385	42.745636 5.698571 -0.304154	43.834930 5.658239 -0.170080	0.083875	45.433929 9.052535 -0.223198	3.1650E-05 9.3256E+00 1.0442E+01	
	3-1-1	7.160385 2.498642 0.280793	44.129059 12.498997 -0.535310	38.958572 5.698950 -0.584584	42.245636 5.698571 -0.304154	0.084840	43.089371 9.052909 -0.427442	2.4498E-05 1.0658E+01 2.1599E+01	
	4-1	4.129759 2.49897 0.539210	40.964767 12.499409 -0.804759	35.527313 5.699393 -0.872515	38.958572 5.698950 -0.584584	0.083456 -0.056834 -0.994889	39.859131 9.053311 -0.700673	2.1368E-35 1.0970E+01 2.2542E+01	
	5 4	0.964767 2.499409 0.804759	37.657150 12.499638 -1.052994	31.940598 5.699644 -1.141529	35.527313 5.699393 -0.872515	0.074718	36.484818 9.053637 -0.968476	4.04576-05 1.13046+01 2.35376+01	
	6 3	7.657150 2.499638 1.052°94	34.195328 12.499763 -1.254255	28.186661 5.699777 -1.359658	31.940598 5.699644 -1.141529	0.057985 -0.035765 -0.997677	32.955368 9.053822 -1.202763	2.6872E-05 1.1653E+01 2.4591E+01	
	7 3	4.195328 2.499763 1.254265	30.568176 12.499992 -1.367726	24.253464 5.700019 -1.482820	28.186661 5.699777 -1.359658	0.031281	29.259323 9.054305 -1.366858	2.78506-05 1.20476+01 2.57216+01	
	8 3	0.568176 2.499992 1.357776	26.765030 12.500187 -1.355647	20.129425 5.700222 -1.469813	24.253464 5.700019 -1.482820	-0.003163 0.019866 -0.999798	25.385330 9.054224 -1.419774	2.2575E-05 1.2459E+01 2.6959E+01	
	9 2	6.765030 2.500187 1.355647	22.768066 12.500324 -1.226755	15.795284 5.700369 -1.330122	20.129425 5.700222 -1.469813	-0.032183 0.048172 -0.998321	21.318527 9.054403 -1.346317	1.2996E+01 2.8374E+01	
-	0 2 1	2.500324	18.570053	11.243095	15.795284	0.067389	17.045883	1-3383E+01	

3E 179.	TYPE OF ELEMENT	LIFT											
PAGE 1 WK.	OFA	2.5034E-06 1.1843E+01 1.5710E+01	7.3314E-06 1.1055E+01 8.1211E+00	3.2276E-05 1.0666E+01 4.2629E+30	3.0175E-06 1.0514E+01 2.7490E+00	1.0639E-05 1.0446E+01 3.0485E+00	2.2396E-05 1.0446E+01 3.0494E+00	7.19736-05 1.05145+01 2.75025+00	6.5669E-05 1.0666E+01 4.2652E+00	8.4445E-05 1.1055E+01 8.1241E+00	1.3621E-04 1.1843E+01 1.5715E+01	1.33835+01 2.99335+01	7.2580E-04
NT. 30 SOURC	00 × × 00 × 00 × 00 × 00 × 00 × 00 × 0	13.718788 9.054577 -0.853157	12.001877 9.054564 -0.626292	11.129565 9.054607 -0.456475	10.659674 9.054425 -0.318335	10.355694 9.054336 -0.126150	10.365811 9.054705 0.126504	10.659453 9.054711 0.318924	11.129348 9.054922 0.457572	12.001476 9.055100 0.629323	13.718136 9.055408 0.863394	17.045151 9.055490 1.143484	21.318008
AFT COMPANY AR 28. 1977 PL. SYM. DISPM	X Z Z	-0.111825 0.131990 -0.984923	-0.163388 0.188802 -0.968328	-0.230200 0.263331 -0.936838	-0.326067 0.370919 -0.869540	-0.562870 0.637364 -0.526255	-0.563488 0.638059 0.524749	-0.326227 0.371065 0.869417	-0.231506 0.264734 0.936120	-0.165823 0.191430 0.967397	-0.113883 0.134139 0.984397	-0.048970 0.035681 0.353938	-0.033862
A A B A B A B A B A B A B A B A B A B A	*	11.243099 5.700465 -1.021563	8.875557 5.700500 -0.752752	7.672251 5.700502 -0.549697	7.061039 5.700397 -0.399609	6.695097 5.700222 -0.262470	6.449730 5.730285 0.030110	6.694845 5.730511 0.262948	7.060873 5.700585 0.403097	7.672016 5.700774 0.551042	8.875008 5.701140 0.757006	11.242350 5.701373 1.030572	15.794375
SWEPT OW = (×>~	8.875557 5.700500 -0.752752	7.672251 5.700502 -0.549697	7.061039 5.700397 -0.393609	6.695097 5.700222 -0.262470	6.449730. 5.700285 0.300113	6.694845 5.700511 0.262948	7.060873 5.700585 0.400097	7.672016 5.700774 0.551042	8.875008 5.701140 0.757606	11.242350 5.701373 1.030572	15.794575 5.701335 1.34573	20.12901. 5.700935
FOUR STRIP NACA UNIFORM ONSET FL	×××	16.386749 12.500462 -0.694284	15.277130 12.500473 -0.507070	14.713440 12.500336 -0.368533	14.375965 12.500198 -0.242033	14.147670 12.580290 0.006067	14.375702 12.590507 0.242615	14.713177 12.500645 0.369347	15.276810 12.500839 0.508818	16.386124 12.501183 0.699375	18.559275 12.501400 0.951887	22.767334 12.501343 1.243303	26.764664 12.503942
JIHA NACA FI	*>~	18.573053 12.500416 -0.942173	16.336749 12.500462 -0.694784	15.277130	14.713440 12.500336 -0.368533	14.375965 12.537198 -0.242033	14.149473 12.590299 0.003367	14.375732 12.590507 0.242615	14.713177 12.590645 0.369347	15.276919 12.500839 0.508818	16.386124 12.501183 0.699075	18.569275 12.501400 0.951847	22.767334
PROGRAM CASE NO.	2	3 11	12	13	41	15	16	11	18	19	20	21	22

183.	TYPE OF ELEMENT	LIFT							MAKE	LIFT		
PAGE	⊢m i											
CE 1 WK.	OF4	2.4690E-04 1.2459E+01 2.6970E+01 2.9478E-04	.5734E+ .0412E- .1663E+ .46.13E+	.6572E-0 .1304E+0 .3545E+0	1.4390E-04 1.0970E+01 2.2546E+01	1.6764E-05 1.0558E+01 2.1599E+01	1.7542E-04 9.3256E+00 1.0444E+01	1.7077E-04 9.2221E+00 1.0242F+01	1.7462E-10 9.1393E+00 1.0180E+01	3.3036E-05 7.9774E+00 9.2214E+30	3.2768E-05 8.0719E+00 4.0.4033E+00	9.5250E+10
NT. 30 SOUR	0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	25.385406 9.054636 1.446403 29.260468	.40088 .95790 .05228 .05294	.48881 .05099 .02148	39.864227 9.049850 0.761199	43.095215 9.048912 0.494481	45.440613 9.047919 0.304094	46.955215 9.046903 0.186968	48.453995 9.046373 0.128977	42.6)8078 2.818149 -0.107303	40.982529 2.818480 -0.244506	38.464355
RCRAFT COMPANY ACH DIVISION MAR 28, 1977 I PL. SYM. DISPM	XXX ZZZ	0.004927 0.021343 0.999760 0.029211	.99951 .03505 .03355	07205	0.081568	0.082599	0.076963	0.076964	0.000531	0.083953 -0.057455 -0.994812	0.083954-0.057433-0.094813	0.084882
LAS AI NG BE/ MONDAY. • A=8.22. 89707E+0G	×>~	20.129074 5.700935 1.492344 24.253937 5.700066	.51219 .18835 .69883 .39660	94380	35.531831 5.696308 0.928654	38.963943 5.695264 0.646631	42.251678 5.694403 0.373683	43.842133 5.693274 0.251034	45.401779 5.692168 0.130759	41.473572 -0.002166 -0.040128	39.813812 -0.001825 -0.180282	38.121292
CA SWEPT !	***	24.253937 5.700066 1.512195 28.188354	.39660 .94380 .69755	53189 69630 92865	38.963943 5.695264 0.646631	42.251673 5.694403 0.373683	43.842133 5.693274 0.251034	45.401779 5.692168 0.130759	46.959366 5.692168 0.130759	39.813812 -0.001825 -0.180282	38.121292 -0.001478 -0.323204	34.620726
FOUR STRIP NA	***	30.569680 12.500050 1.398641 34.197144	7.66053 2.49744 1.10267	96957	44.134689 12.495140 0.604267	47.166641 12.494350 0.352488	43.63194 12.492332 0.238720	50.071442 12.492336 0.127146	51.507843 12.492336 0.127146	43.834700 5.698239 -0.173680	42.245636 5.698571 -0.334154	38.558572
JIHA	**~	26.764664 12.570342 1.379380 30.568680	1.39864 4.19714 2.49877 1.29317	.66053 .49744 .10267	40.969574	44.134689 12.495140 0.604267	47.165641 12.494350 0.352488	48.633194 12.493332 0.239720	50.071442 12.492336 0.127146	45.393417 5.697910 -0.038600	43.814900 5.698239 -0.171080	42.245636
PROGRAM CASE NO.	,	23	25	92	2.7	28	53	30	31	-	2	3
0 D	z	•								4		

CASE NO.	. NACA FE	FOUR STRIP NAC	D A SWEPT h LOW = (OUGLAS AIRCR LONG REACH MONDAY, M IING. A=8.22. I 0.989707E+00,	AFT COMPA DIVISION AR 28, 1977 PL. SYM. DIS U.0	NY PMNT. 30 SOURC , 0.143106E	E 1 WK.	PAGE 181.
x 1	*>~	×>~	×>~	×>~	XXX	0000	OF4	TYPE OF ELEMENT
4	38.958572 5.698950 -0.584584	35.527313 5.699393 -0.872515	30.966476 -0.000628 -0.928904	34.620728 -0.001085 -0.622035	0.083508	34.994919 2.819253 -0.752254	5.4896E-05 9.8223F+00 2.03309E+01	LIFT
5	35.527313 5.699393 -0.872515	31.940598 5.699644 -1.141529	27.146820 -0.000362 -1.215317	30.966476 -0.000628 -0.928904	0.074686 -0.049913 -0.995958	31.370773 2.819635 -1.339907	1.5873E-05 1.0141E+91 2.1195E+01	
9	31.940598 5.699644 -1.141529	28.186661 5.699777 -1.35658	23.148972 -0.000222 -1.447509	27.146820 -0.000362 -1.215317	0.057956 -0.035836 -0.997676	27.579971 2.819817 -1.291426	2.5526E-05 1.0482E+01 2.2145E+01	
1	28.186661 5.699777 -1.359658	24.253464 5.700019 -1.482820	18.960159 0.000020 -1.578773	23.148972 -0.000222 -1.447509	0.031307 -0.012257 -0.599435	23.610199 2.819999 -1.467670	2.4721F-05 1.0847E+01 2.3162E+01	
5 0	24.253464 5.700019 -1.482820	20.129425 5.700222 -1.463813	14.568249 0.0000230 -1.565011	18.960159 0.000020 -1.578773	-0.003142 0.019756 -0.999800	19.449356 2.820237 -1.524605	2.1650E-05 1.1238E+01 2.4276E+01	
6	20.129425 5.700222 -1.469813	15.795284 5.730369 -1.330122	9.952503 0.000382 -1.415315	14.568249 0.030230 -1.565311	-0.032167 0.048063 -0.798326	15.081448 2.820410 -1.445789	1.8365E-05 1.1664E+01 2.5551E+01	
10	15.795284 5.700369 -1.333122	11.243399 5.700465 -1.021563	5.104603 0.000480 -1.097770	9.952503 0.000382 -1.416315	-3.067380 0.084107 -0.994176	10.492461 2.820537 -1.214341	1.4260E-05 1.2118F+01 2.6948F+01	
::	11.243099 5.700465 -1.021563	8.875557 5.703500 -0.752752	2.58316F 0.000511 -0.801524	5.104603 0.070480 -1.087770	-0.111821 0.131867 -0.984940	6.918997 2.820584 -0.916203	9.3430E-06 1.0370E+01 1.4147E+01	
12	8.875557 5.700500 -0.752752	7.672251 5.70502 -0.549697	1.301757	2.583161 0.000511 -0.801524	-0.163406 0.188675 -0.968350	5.075012 2.820645 -0.672537	8.9407E-08 9.4805E+00 7.3129E+00	
13	7.672251 5.700502 -0.545697	7.061039 5.700397 -0.3996609	0.650739 0.000413 -0.425515	1.301757 0.000506 -0.585292	-0.233059 -0.233059 -0.936971	4.137869 2.820507 -0.490189	2.0742E-05 9.0448E+00 3.8387E+00	
41	7.061039 5.700397 -0.199619	6. 695997 5.700222 -0.262470	0.261109	0.650739 0.000413 -0.425515	-0.326063 0.370650 -0.869656	3.633449 2.820537 0.341892	3.0845E-06 8.8739E+00 2.4747E+00	
15	6.695097	6.449730	0.000272	0.261109	-0.563069	3.317585	8.7969E+00	

CAS	CASE NO.	JIHA		01 9000	OUGLAS AIRCE LONG BEACH MCNDAY.	RAFT COMPANY I DIVISION MAR 28, 1977			PAGE 192
		כ	FOUR STRIP NAC	LOW = (0.9	. A=8.22. 1 89707E+00,	PL. SYM. DISP	PMNT. 30 SOURCE	E 1 MK.	
7	z	×>~	×>~	×>~	×>~	XXX	007 ××2	OFA	TYPE OF
4	16	6.44973 5.70028 0.00011	6.694845 5.700511 0.262948	0.260855 0.000500 0.279938	-0.000229 0.000272 0.000144	-0.563535 0.637673 0.525168	3.317599 2.820574 0.135830	2.4766E-05 8.7969E+00 2.7443E+00	LIFT
	11	6.694845 5.700511 0.262948	7.060873 5.730585 0.400097	0.650649	0.260855	-0.325726 0.370241 0.869956	3.633260 2.820754 0.342293	5.7980E-05 8.8739E+00 2.4758E+00	
	82	7.060873 5.700585 0.400097		1.301594 0.000696 0.586282	0.650649 0.330515 0.425742	-0.231173 0.264167 0.936363	4.137738 2.820723 0.490950	5.5075E-05 9.0448E+00 3.8402E+00	
	19	7.672016 5.730774 0.551042	8.8750 5.7011 0.7570	2.582577 0.001080 0.805315	1.301594 0.030696 0.586282	-0.165595 0.191028 0.967516	5.074684 2.821110 0.675129	6.6474E-05 9.4805E+00 7.3146E+00	
	50	8.875038 5.701140 0.757006	11.242350 5.701373 1.030572	5.103908. 0.001324 1.096193	2.582577 0.001080 0.805315	-0.113679 0.133796 0.984467	6.918338 2.821313 0.922570	1.1507E-04 1.0370E+01 1.4151E+01	
	21	11.242350 5.701373 1.030572	-	9.951834 0.001299 1.431185	5.103978 0.001324 1.096193	0.085423	10.491757 2.821451 1.226317	1.5503E-04 1.2118E+01 2.6953E+01	
	22	15.794575 5.701235 1.345737	20.129074 5.710935 1.492344	14.567917 0.303913 1.596620	9.951834 0.001299 1.431185	-0.633681 0.049429 0.998210	15.080944 2.821235 1.464442	1.6795E-04 1.1665E+01 2.5557E+01	
	23	20.129174 5.703935 1.492344	24.253937 5.733366 1.512195	18.960617 0.000064 1.606591	14.567917 0.030913 1.586620	0.004717	19.449432 2.820621 1.550032	1.84895-04 1.1239E+01 2.4285E+01	
	54	24.253937 5.700066 1.512195	28.188354 5.498837 1.396605	23.150620 -0.001123 1.482943	18.960617 0.030364 1.606991	0.029478	23.611267 2.819572 1.500157	2.2962E-04 1.0848E+01 2.3172E+01	
	25	28.133354 5.698337 1.396605	31.943802 5.697553 1.183775	27.149887 -0.002355 1.260544	23.150620 -0.001123 1.482943	0.055352	27.582382 2.818346 1.332630	2.5964E-04 1.0482E+01 2.2154E+01	
	28	31.943232 5.497533 1.188775	35.531891 5.696308 0.928654	30.970825 -0.003573 0.98246;	27.149887 -0.002365 1.250544	0.072351 -0.048401 0.996204	31.374573 2.817116 1.090433	2.64295-04 1.01415+01 -2.12026+01	
	27	35.531891 5.696308	38.963043	34.62585.	30.970325	0.081872	34.999786	2.0953F-04 9.8224E+00	

PAGE 183.	TYPE OF ELEMENT	LIFT			MAKE	
.00 J	٥٢٩	8.8066E-05 9.5250E+00 1.9450E+01	2.22185-05 8.0725+30 9.4054E+00	2.1324E-05 7.9775E+00 9.2233E+00	3.49255-10 7.9053E+00 9.1668E+00	**
DOUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977 FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. DISPMNT. 30 SOURCE 1 WK NIFORM ONSET FLOW = (0.989707E+00, 0.0 , 0.143106E+00)	000 ××0	38.469955 2.815001 0.523068	40.989090 2.813983 0.318709	42.615829 2.812835 0.193305	44.225616 2.812255 0.131216	* * *
CRAFT COMPANY HAR 28, 1977 I PL. SYM. DISPM 0.0	× × × ×	0.082640 -0.055887 0.994955	0.076717	0.076718 -0.052608 0.995664	0.000159	*
LONG BEACH MAR MONDAY, MAR	*>~	34.625854 -0.004604 0.631235	38.127136 -0.005499 0.390190	39.820908 -0.006698 0.259664	41.481857 -0.307874 0.131664	***
DOUGLAS LONG CA SWEPT WING. A FLOW = (0.9897	×>~	38.127136 -0.005499 0.390190	39.820908 -0.006698 0.259664	41.481857 -0.007874 0.131664	43.147656 -0.307874 0.131664	
FOUR STRIP NACA SWEPT UNIFORM ONSET FLOW = (*>~	42.251678 5.694403 0.373683	43.842133 5.693274 0.251034	45.401779 5.692168 0.130759	46.959366 5.692168 0.130759	***
D D	*>~	38.963943 5.695264 0.646631	42.251678 5.694403 0.373683	43.842133 5.693274 0.251034	45.401779 5.492168 0.130759	* * * * *
PROGRAM JIHA CASE NO. NACA	x z	4 28	53	30	31	

PAGE 184.			
PAGE			
DOUGLAS AIRCRAFT COMPANY LCMG REACH DIVISION MONDAY, MAR 28, 1977	FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. DISPMNT. 30 SOURCE I WK.	UNIFORM DNSFT FLOW = (0.9897076+00, 0.0 , 0.143106E+00)	
JIHA NACA			
CASE NO. NACA			

	WAKE ELEMENTS IN THE STRIP			
	SOURCE ELEMENTS IN THE STRIP	0000 0000	124	35.743 SEC.
TABLE OF INPUT INFORMATION	STRIPS STRIP	-084	INPUT =	TIME IS
INPUT		0	ELEMENTS	. TUGN
TABLE OF	TOTAL NO. OF ELEMENTS IN EACH SECTION	124	TOTAL NO. OF ELEMENTS INPUT = 124	OF THE SUBROUTINE INPUT . TIME IS
	SECTION	-		END
	SECTION NO.	-		

TOTAL INDICES SAVED FOR P. KUTTA = 8 THEY ARE 1 30 31 60 61 90 91120

JIHA	NACA
PRUGRAM	CASE NO. N

DOUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977

185.

PAGE

FOUR STRIP NACA SWEPT WING. A=8.22. I PL. SYM. DISPMNT. 30 SOURCE I WK.

UNIFORM ONSET FLOW = (0.989707E+00, 0.0 , 0.143106E+00)

BEGINNING THE VEORM ROUTINE TIME IS 35.75 SEC

STRIPS NO . OF TOTAL NO. OF POINTS = 124 TYPE = 1 SECTION NO. =

BODY

31 TOTAL NO. OF ELEMENTS PER STRIP 30 NO. OF SOURCE ELEMENTS LIFTING SECTION NO. NO. OF WAKE ELEMENTS 1

TOTAL NO. OF CONTROL POINTS (INCL. OFF BODY POINTS) = 120

LIFTING STRIP NO. 1, NO. OF IGNORE ELEMENTS 0

LIFTING STRIP NO. 2, NO. OF IGNORE ELEMENTS O

LIFTING STRIP NO. 3, NO. OF IGNORE ELEMENTS O LIFTING STRIP NO. 4, NO. OF IGNORE ELEMENTS O

TOTAL NO. OF ELEMENTS IN THE LIFTING SECTION = 124

FAR ELEMENTS = 2228 NO. OF INTERMEDIATE ELEMENTS = 10301 NO. OF NEAR ELEMENTS = 17231 TIME FOR THE FORMATION OF THE LIFTING VFLOCITY MATRIX = 0.33MIN

T.

END OF THE VEORM ROUTINE TIME IS 55.46 SEC END OF THE AFORM ROUTINE TIME IS 55.76 SEC

5 RIGHT SIDES WAS SOLVED DIRECTLY IN 0.044MINUTES. 120 X 120 MATRIX WITH THE

50966F-02-0.69519E-02-0.68610E-02-0.65715E-02

160

CASE NO. NACA

DOUGLAS AIRCRAFT COMPANY LONG BEACH DIVISION MONDAY, MAR 28, 1977

186.

PAGE

FOUR STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. DISPMNT. 30 SOURCE 1 WK.

UNIFORM ONSET FLOW = (0.989707E+00, 0.0 , 0.143106E+00)

FINAL OUTPUT FOR THE FOLLOWING ANGLE OF ATTACK

0.989707, 0.0 , 0.143106 !

7.	ANGE NIE	FOUR	STRIP NACA M ONSET FL	MU SWEPT WING. A OW = (0.9897 ON - RODY	UNDAY, MAR 28, A=8.22. 1 PL. SY 707E+00, 0.0 PDINTS FINAL	YM. DISPMNT	. 30 SOURCE 1 0.143106E+00	
58.587616 0.922716 0.928154 0.0934141 0.059317 0.059317 0.059317 25.774582 0.068480 0.0861771 0.073781 -0.954875 12.201030 25.774582 0.0541813 0.918440 0.054156 0.054156 0.0587217 0.058899 26.114762 0.0541813 0.918440 0.054156 0.0587217 0.058899 25.77523 0.054832 0.9481160 0.058731 0.0587217 0.058731 25.77523 0.046837 0.048317 0.048787 0.0494719 0.077456 25.775243 0.046837 0.049577 0.058731 0.0587419 0.077450 25.775574 0.977844 0.049577 0.049577 0.049470 0.074450 25.775574 0.977844 0.013872 0.0495403 0.074450 0.07149 25.775574 0.977844 0.013872 0.058749 0.074450 0.074450 0.074450 25.7756123 0.0772251 0.013864 0.0587249 0.074450 0.074450 0.074460	,	Σ		× > ~	VTS 0 CP	×550	X X X	SIG
57.374847 0.954060 0.958561 0.9953217 0.0833317 0.0836221 0.0835217 0.0836221 0.0836221 0.08562217 0.0836221 0.08562217 0.0856221 0.0856221 0.0856221 0.0856221 0.0856221 0.0856221 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856217 0.0856218 0.0866189 0.0866189 0.0866189 0.0866189 0.0866189 0.0866189 0.0866189 0.0866189 0.0866189 0.09686189	-	~	.58761 .77458 .08549	.92271 .06848 .07332	.92815 .86147 .13852	.99414 .07378 .07900	0.08331	05531
55.496049 0.971632 0.976130 0.994392 0.084616 0.07260 25.775223 0.948337 0.956330 0.0958031 -0.9968195 -0.9968195 25.77523 0.048337 0.9754170 0.995630 -0.9968179 -0.9969179 25.775574 0.056214 0.947196 0.056530 -0.996917 0.0996917 26.775575 0.0762814 0.091804 0.0969418 -0.096919 -0.996919 26.775675 0.076281 0.012804 0.096943 -0.013872 -0.096949 26.776672 0.076281 0.012807 0.071755 -0.099691 -0.099691 26.776672 0.06634 0.012807 0.096478 0.099691 -0.00000 26.776673 0.06634 0.012864 0.056540 -0.0996769 -0.0996769 26.776673 0.066346 0.056540 -0.0996769 -0.0996769 -0.0996769 26.776679 0.066340 0.0964783 -0.0996769 -0.0996769 -0.0996769 26.776679 0.066340 0		2	.37484 .77493 .18708	95406 05191 07690	.95856 .91884 .08116	99530 05415 08023	0.08331 0.05721 0.99487	0.00000
52.9075¢3 0.993719 0.05053 -0.056978 -0.01000 25.77557 0.075214 0.9937195 -0.056978 -0.056978 -0.01000 5.564482 0.075284 0.066912 0.995963 -0.074450 26.52992 50.203735 1.002848 1.006912 0.995963 0.074450 0.071198 25.775925 0.054315 -0.013872 0.071755 -0.0995977 27.70037 47.27512 0.052312 1.015872 0.054248 -0.04941 27.70037 25.776123 0.056536 0.055608 -0.095774 -0.0995977 27.70037 25.776231 0.056536 0.0331718 0.055608 -0.0997693 29.70000 25.776531 0.056638 0.031718 0.056638 -0.03779 0.0995741 0.09997 25.776534 0.056638 0.031544 0.9956312 0.0996441 0.09997 25.776534 0.031544 0.9956312 0.031544 0.0999441 0.0999441 25.776537 0.0018613 0.031333		٤	.49504 .77522 .34611	97163 04883 07985	97613	.99539 05003 08183	0.08461 0.058J9	0.07260
50.703735 1.002848 1.006912 0.995963 0.074450 0.077450 25.775925 0.054315 1.013872 0.071755 -0.049461 -0.09090 47.27519 1.013383 1.016684 0.054276 -0.095774 0.07744 26.77537 0.056436 -0.033646 0.055420 -0.097746 -0.07415 26.776291 0.056762 0.055678 -0.097746 -0.097746 -0.097746 25.776291 0.067623 1.015970 1.018684 0.065828 -0.097746 -0.097746 25.776291 0.067623 1.0046644 0.096332 -0.097746 -0.097746 27.76539 0.067628 0.067638 -0.012130 -0.09000 27.76539 0.067665 1.005644 0.0946372 -0.0999441 30.27108 41.30755 1.002632 1.005644 0.9946372 -0.093249 -0.0999441 30.27108 25.776657 -0.0026326 -0.03778 -0.096733 -0.093248 -0.0999441 -0.099946 25.776657		4	90759	983021 05021 07988	.99357 .98719 .01280	.05053 .05053 .0804)	0.08323	0.001095
47.275519 1.013383 1.016684 0.058240 -0.0357744 -0.030000 26.776123 0.056326 -0.035715 -0.00000 4.4.13789 1.015970 1.018684 0.097336 -0.031153 -0.07946 25.776291 0.067623 1.018684 0.097336 -0.031153 -0.07946 25.776291 0.067623 1.018684 0.096322 -0.012133 -0.07946 41.30755 1.002593 1.006644 0.996372 -0.093249 -0.018863 25.776534 -0.001554 -0.013333 -0.01644 -0.996372 -0.09992 25.776657 -0.013333 -0.01644 0.998334 0.9983524 -0.032249 -0.09992 25.776657 -0.026326 -0.016441 0.988536 -0.032248 -0.09992 25.776657 -0.026326 -0.032248 -0.0998339 -0.0998319 33.39271 25.776657 -0.026326 -0.0994168 -0.0994168 35.21853 25.77667 -0.0264937 -0.132249 -0.0994168 35		Ŋ	0.20373 5.77592 0.77840	.00284 .05431 .07225	.00691 .01387 .01387	.99596 .05394 .07175	0.07445	0.00000 7.70037
44.413788 1.015970 1.018684 0.997336 0.031150 -0.007946 25.776291 0.067623 1.037718 0.056382 -0.012130 -0.007000 41.3095584 0.067623 1.005644 0.996372 -0.099441 30.27108 41.309555 1.002593 1.005644 0.996372 -0.093249 0.08863 25.776535 0.085565 1.013333 -0.085799 -0.019859 -0.019863 25.776657 0.977764 0.983634 0.983574 -0.09972 -0.019859 25.776657 0.9108613 0.983634 0.983524 -0.032248 31.72760 25.776657 0.108613 0.987535 -0.026764 -0.998319 33.39271 25.776657 0.918347 0.982265 -0.056747 0.064173 0.0044173 25.776674 0.9840102 0.16375 -0.0541173 0.16778 25.7766836 0.084172 0.994168 35.21853 25.7766836 0.084172 0.994168 35.21853 25.7766836		9	7.37551 5.77512 0.96543	. 11338 .05921 .05653	.03364 .03364 .03364	.05824 .05824 .055560	0.05774 0.03571 0.99769	0.000000
41.309555 1.002993 1.006644 0.996372 -0.003249 0.08863		,	4137 7762 0963	01597 06762 03084	.03771 .03771 .03771	.99733 .06638 .03028	0.03115	0.00000 0.27108
38.050827 0.977264 0.983634 0.993524 -0.032248 0.09992 25.776657 -0.026326 0.032465 -0.026753 -0.026764 -0.0998319 33.39271 34.627167 -0.026326 -0.032465 -0.026767 -0.026764 -0.000000 25.776749 0.152662 0.9869102 0.0163755 0.084173 -0.10000 -0.006475 -0.0640347 0.130898 -0.052933 -0.0994168 35.21853 25.776886 0.224492 0.754764 0.258401 0.11837 0.12785 25.776886 0.0264977 0.258401 0.094493 0.12785		œ	1.30955 5.77653 1.13845	08556 08556 00155	.00664 .01333 .01333	996	0.00324 0.01985 0.99979	0.08863 0.00000 1.72760
34.627167 0.918347 0.932257 0.985080 -0.067417 0.11479 25.776749 0.152662 0.869102 0.163755 0.084173 -0.30000 -0.905475 -0.049347 0.130898 -0.052933 -0.994168 35.21853 31.961243 0.836750 0.868772 0.963142 -0.111837 0.12785 25.776886 0.224492 0.754764 0.258401 0.131932 -0.30000		6	.05082 .77665 .07935	.10861 .02632	.98363 .96753 .03246	.99352 .11042 .02676	04815	0.000000
-961243 0.836750 0.868772 0.963142 -0.111837 0.12785 0.776476 0.258401 0.131932 -0.10000 0.245236 -0.074746 -0.984931, 18,48904		10	62716 77674 90547	91834 15266 04934	93225 86910 13089	.98508 .16375 .05293	.08417 .99416	0.11479
		11	96124	22449	.75477 .75476 .24523	25840 25840 07474	13193	0.12745

AUCHAM JIMA	DUNGLAS	AIRCRAFI
	LONG	LONG BEACH DIVISION

L HA			D DUGLAS LONG	BEACH MAR	DIV IS 10N		747
	F0 UP	P STPIP NACA	SWEPT WING. A	8.22. 1 PL.	SYM. DISPMNT	. 30 SOURCE 1	WK.
	UNIFO	RM ONSET FL	OW = (0.9897	POINTS FIN	O .	0.143106E+00	_
Z	r	0 C C C C C C C C C C C C C C C C C C C	×>~	1 > 1	200 200 200 200	× > ~ Z Z Z	SIG VN AREA
-	12	30.585403 25.776871 -0.502160	0.734987 0.339757 -0.059542	0.808177 0.653151 0.346849	0.909437	-0.163382 0.188720 -0.968345	3687 00000 5834
	13	25.386307 25.776764 -0.3659E8	0.606649 0.471457 -0.016624	0.768486 0.590571 0.409429	0.789408 0.613438 -0.021632	-0.230611 0.263697 -0.936634	0.141658 -0.0000008 5.016418
	14	29.510147 25.776855 -0.245135	0.444870 0.651630 0.111196	0.796803 0.634895 0.365105	0.558319 0.817805 0.139552	-0.326396 0.371161 -0.869313	0.141755
	115	29.274490 25.776733 -0.101091	0.230044 0.831440 0.832836	1.241491	0.185296 0.718039 0.670883	-0.562865 0.637163 -0.526503	0.137891 -0.000014 3.587296
	91	29.274185 25.776642 0.101335	1.180350 -0.185151 1.491103	1.910731 3.650895 -2.650895	0.617748 -0.095901 0.780383	-0.563403 0.637782 0.525172	-0.023277 -0.000018 3.588695
	11	29.509979 25.777130 0.255706	1.464159 -0.507622 0.769526	1.730206 2.993610 -1.993610	0.846234 -0.293338 0.444760	-0.327376 0.372276 0.868457	-0.090635 0.000002 3.237668
	13	29.886078 25.77.7176 0.35.7376	1.392914 -0.427855 0.468762	1.530637 2.343004 -1.343004	0.909992 -0.275518 0.306243	-0.232958 0.266318 0.935310	-0.103857 0.000003 5.020103
	61	30.584930 25.777494 0.505702	1.315224 -0.340259 0.294011	1.381976	0.946221 -0.244795 0.211523	-0.166486 0.192145 0.967141	-0.108986 0.000005 9.563118
	50	31.969510 25.7/7785 0.691465	1.247746 -0.262588 0.181009	1.287861 1.658586 -0.658586	0.968852 -0.203894 0.143550	-0.114424 0.134737 0.984253	-0.108190 0.300306 18.497513
	21	34.626389 25.777802 0.919860	1.193115 -0.195107 0.100183	1.213106	0.983521 -0.169832 0.082584	-0.069351 0.086195 0.993362	-0.102484 0.0000008 35.229919
	22	38.050303 25.177588 1.0°9849	1.145072 -0.142846 0.046410	1.154892	0.991497	-0.034432 0.050332 0.99813	-0.092989 0.000005 33.405425

	4 S	UNIFORM ONSET FLO	7686.0) = MO	7E+00, 0.0	Ž .	. 30 SOURCE 0.143106E+0	1 WK.
z	5	000 x x x 0	× × × × × × × × × × × × × × × × × × ×	0 4 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1	7200 2000 2000	XXX	SIG VN AREA
•	23	41.30°692 25.776978 1.166196	1.111901 -0.119618 0.008746	1.118351 1.250709 -0.250709	0.994233 -0.106960 0.007820	-0.005493 0.021992 0.999743	-0.386168 0.000005 31.745087
	54	44.414978 25.775879 1.1313999	1.078763 -0.100460 -0.031959	1.083930 1.174841 -0.174841	0.995260 -0.092684 -0.029485	0.028694	-0.083786 0.000002 30.290131
	25	47.378)67 25.774612 1.003755	1.045348 -0.081385 -0.059776	1.050214 1.102948 -0.102948	0.995367	0.054512 -0.032823 0.997974	-0.083365 0.000001 28.958450
	56	50.207642 25.773345 0.830222	1.013195 -0.063234 -0.075907	1.018333	0.995280 -0.062116 -0.074565	0.071682	-0.084043 -0.000003 27.711838
	27	52.912469 25.772263 0.622349	0.982629 -0.045590 -0.083058	0.987191 0.974546 0.025454	0.995379 -0.046283 -0.084136	0.081533	-0.085379 -0.000008 26.535172
	28	55.501465 25.771469 0.408707	0.955493 -0.030227 -0.081213	0.952387 0.922387 0.077613	0.995921 -0.031473 -0.084561	0.082674 -0.056275 0.994987	-0.085809 -0.001027 25.420090
	59	57.380905 25.773813 0.255693	0.937525 -0.017785 -0.073963	0.940606 0.884740 0.115260	0.996724 -0.016908 -0.078633	0.077540	-0.081231 -0.000006 12.291779
	30	58.594437 25.769928 0.161129	0.925237 -6.039017 -0.072532	0.928119 0.861405 0.138595	0.996894	0.077540	-0.067477 0.0000004 12.054405
	***	***		****		* * * *	****
THE FORCE COM THE MOMENT CO	JACF JMFNT	PONENTS OF MPONENTS OF	THIS STRIP ARE	-0.126444E+J	2 0 4	.146766E+02	0.932154E+02 0.783554E+03
	****	***	•	******		* *	* * * * * * * * * * * * * * * * * * * *
2	-	52.213409	0.929341	0.935391	0.993532	0.083700	0.065628

PO BIND	5 0	FOUR STRIP NACA S UNIFORM ONSET FLOW	DOUGLA LONG WEPT WING.	AIRCRAFT BEACH BAY, MAR B.22. 1 PL.	COMPANY IVISION 8, 1977 SYM. DISPMNT	. 30 SOURCE 1 0.143106E+00	PAGE WK.	190.
			ON - BODY	POINTS FIN	AL OUTPUT			
000 000 000 000 000 000 000 000 000 00	000 700 700 700		× > ~ > > > > >	VTSO	× × × × × × × × × × × × × × × × × × ×	X > N Z Z Z	SIG VN AREA	
2 50.836182 16.621552 -0.208981	151		0.960573 0.054520 0.077558	0.965355 0.931911 0.068089	0.995046 0.058549 0.080341	0.083701 -0.057319 -0.994841	0.079125 0.070004 11.731982	
3 48.702682 16.621887 -0.390081	000		0.978297 0.046347 0.080711	0.982715 0.965728 0.034272	0.095505 0.047162 0.082131	0.084779	0.081304 -0.000035 24.267883	
4 45.763214 16.622269 -0.638545	226		0.993341 0.037886 0.081118	0.997368 0.994742 0.005258	0.995963 0.037986 0.081332	0.083408 -0.056984 -0.994885	0.078508 -0.000009 25.328110	
5 42.692657 16.622574 -0.882073	265		1.003781 0.031704 0.073668	1.006979	0.996824 0.031484 0.073157	0.074665	0.076486 -0.030306 26.445557	
6 39.480942 16.622772 -1.095089	394		1.009867 0.027743 0.057641	1.023922	0.998010 0.027417 0.056963	0.057924 -0.035776 -0.997640	0.076694	
7 36.117630 16.622955 -1.244234	36.117630 16.622955 -1.244234		1.006653 0.030786 0.031087	1.007603 1.015263 -0.015263	0.999057 0.030553 0.030853	0.031233 -0.012119 -0.999439	0.080058 -0.000002 28.899780	
8 32.592377 16.623138 -1.292250	313		0.987009 0.048704 -0.002182	0.988212 0.975563 0.023437	0.049285 0.049285 -0.002208	-0.003195 0.019883 -0.999797	0.087126 -0.030304 30.290176	
9 28.891708 16.421322 -1.2253304	28.891708 16.423322 -1.225304		0.955727 0.073639 -0.027036	0.959335 0.920324 0.079676	0.996239 0.081941 -0.028182	-0.032206 0.048179 -0.998320	0.096013 -0.000003 31.880539	
10 25.003708 16.623428 -1.029099	342		0.134993	0.911211 0.833306 0.169694	0.987469 0.148144 -0.054392	-0.067397 0.084206 -0.994167	0.108532	
11 21.976151 16.623489 -0.776467	515 348 546		0.827274 0.211361 -0.065540	0.856293 0.733237 0.266763	0.246482 -0.076656	-0.111822 0.131950 -0.984927	0.120478 -0.000005 17.651047	
12 20.413879 16.623550 -0.570042	20.413879 16.623550 -0.570042		0.733593	0.803462 0.649740 0.359260	0.916462	-0.163363 0.188733 -0.968344	0.129503 -0.030005 9.124815	

AGE 191.												
¥ ~	SIG VN AREA	0.134702 -0.030008 4.789724	0.135434 -0.00000 3.088836	0.133559 -0.000311 3.424759	-0.019222 -0.000008 3.426737	-0.084649 0.000005 3.090252	-0.097162 0.100904 4.792842	-0.101645 0.330037 9.128746	-0.100709 0.000008 17.658157	-0.096114 0.000006 33.632965	-0.039446 0.030305 31.890930	-0.035496 0.100006 30.304611
. 30 SDURCE 1 0.143106E+00	× > ~ zzz	-0.230398 0.263502 -0.936741	-0.326193 0.370993 -0.869461	-0.562849 0.637232 -0.526437	-0.563539 0.637486 0.524816	-0.326815 0.3717J4 0.868923	-0.232071 0.265362 0.935803	-0.166101 0.191747 0.967287	-0.114116 0.134432 0.984330	-0.069093 0.085953 0.993900	-0.034105 0.050038 0.998165	-0.035185 0.021725 0.999751
DIVISION 28, 1977 SYM. DISPMNT 00 NAL DUTPUT	×300 ×300 ×300	0.806293 0.591642 -0.032157	0.587398 0.800196 0.121082	0.205426 0.724754 0.657671	0.672408 -0.089854 0.777518	0.848554 -0.289394 0.442954	0.911418 -0.276757 0.334505	0.946391	0.967832 -0.208584 0.140695	0.981210 -0.174049 0.083268	0.988251 -0.147200 0.041151	0.991256
BEACH MAR BONDAY, 1-8.22. 1 PL 107E+00, 0	0 5 T V V C P C P C P C P C P C P C P C P C P	0.760199 0.577903 0.422097	0.779151 0.637076 0.392924	1.197675	3.440545	1.698066 2.883428 -1.883428	1.508775 - 2.276402 -1.276402	1.377241 1.896794 -0.896794	1.283879 1.648347	1.217812 1.483055 -0.483065	1.172330	1.144603
DOUGLAS LONG CA SWEPT WING. A FLOW = (0.9897	× × × × × × × × × × × × × × × × × × ×	0.612943 0.449005 -0.024445	0.457664 0.623474 0.094341	0.244596 0.962946 0.783073	1.154487 -0.166668 1.442196	1.440900 -0.491410 0.752165	1.375124 -0.417565 0.459430	1.303409	1.242579 -0.261797 0.189637	1.194929 -0.211959 0.101405	1.158556 -0.172567 0.048242	1.134594 -0.150760 0.300°57
FOUR STRIP NACA UNIFORM ONSET FLU	0 × × × × × × × × × × × × × × × × × × ×	19.619843 16.623367 -0.415471	19.19.2398 16.623306 -0.289685	18.925003 16.623337 -0.114794	18.924820 16.623413 0.115117	19.192154 16.623566 0.290349	19.519568 16.623718 0.416796	20.413422 16.624146 0.573411	21.975449 16.624374 0.783817	25.002960 16.624435 1.042337	28.891174 16.624191 1.245400	32.592468 16.673566 1.319770
OH IND	۶	13	14	15	16	11	18	61	20	21	22	23
PROGRAM JIHA CASE NO. NACA	z	2										

PAGE 193			890	378	4~~	~*0	-6.8	-155	w4v	v 4m	æ v 4	992	α v v
	¥ -	SIG	0.07844	0.07399	0.07056-0.030000	0.06943	0.000000	0.076961 -0.0000005 26.958923	0.08401 -0.000000 28.37411	0.09441	0.10496	0.11345	0.118898
	. 30 SDURCE 1 0.143106E+00	×>N ZZZ	0.084840 -0.057894 -0.994712	0.083466 -0.056834 -0.994889	0.074718	0.057985 -0.035765 -0.997677	0.031281	-0.003163 0.019866 -0.999798	-0.032183 0.048172 -0.998321	-0.067389 0.084217 -0.994166	-0.111825 0.131990 -0.984923	-0.163343 0.188802 -0.968328	-0.233233 0.263331 -0.936834
COMPANY DIVISION 28, 1977	SYM. DISPMNT O	0CX 0CY 0CZ	0.595904 0.036184 0.082863	0.596322 0.024151 0.082214	0.997131 0.015850 0.074020	0.998277 0.011106 0.057627	0.999417 0.014065 0.031111	0.999481 0.032104 -0.002519	0.997573 0.063255 -0.029102	0.590550 0.124548 -0.056555	0.973462 0.213701 -0.081879	0.935578 0.341100 -0.091349	0.852058 0.519605 -0.063308
AIRCRAFT BEACH NDAY, MAR	=8.22. 1 PL. 07E+00. 0. POINTS FIN	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.983972 0.963201 0.031799	0.996785 0.993580 0.036420	1.004936 1.009896 -0.009896	1.008489 1.017049 -0.017049	1.003192 1.006393 -0.106393	0.983544 0.967359 0.032641	0.954975 0.911978 0.088022	0.939730 0.827509 0.172391	0.850584 0.740605 0.259395	0.853170 0.346830	0.762195 0.580942 0.419058
DOUGLAS LONG MOT	SWEPT WING. W = (0.989 ON - BODY	*>~	0.975942 0.035604 0.081535	0. 993119 0. 024074 0. 081950	1.002053 0.015928 0.074385	1.006751 0.011200 0.058116	1.002607 0.014110 0.031210	0.983034 0.031576 -0.002477	0.952658 0.066407 -0.027792	0.901134	0.837746 0.183508 -0.075464	0.754124 0.275673 -0.073827	0.849435
	FOUR STRIP NACA UNIFORM ONSET FLO	0 0 0 C Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	43.089371 9.052909 -0.427442	39.859131 9.053311 -0.700673	36.434818 9.053637 -0.968476	32.95368 9.053822 -1.202763	29.259323 9.054005 -1.366858	25.385330 9.054224 -1.419774	21.318527 9.054403 -1.346317	17.045883 9.054520 -1.130768	13.718788 9.034577 -0.853157	12.001377	11.129565 9.054607 -0.456475
	FOUNTE	×	F	4	5	•	~	80	6	10	::	12	13
JIHA		2	9										
CASE NO.					,	60							

PROGRAM JIHA	JIHA			POUGLAS LONG	S AIRCRAFT	COMPANY STATES		PAGE
		FOUR	STRIP NACA	SWEPT WING. W = (0.989	=8.22. 1 PL. S	TM. DISPMNT	. 30 SOURCE 1 0.143106E+00	
				ON - 800Y	POINTS FINAL	1U4 TU0		
	2	y	0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	× > > > > > > > > > > > > > > > > > > >	0 5 T V C P S C P	900 900 9002	× × × × × × × × × × × × × × × × × × ×	SIG VN AREA
		7	10.659674 9.054425 -0.318335	0.509382 0.554300 0.045442	0.754178 0.558784 0.431216	0.675414 0.734973 0.060254	-0.326067 0.370919 -0.869540	0.120736 -0.300006 2.749021
		15	10.355694 0.054336 -0.126150	0.296041 0.795552 0.646894	1.067246 1.139014 -0.139014	0.277387 0.745424 0.606134	-0.562870 0.637364 -0.526255	0.123091 -0.000008 3.048493
160		91	10.365811 9.054705 0.126504	1.092491 -0.103968 1.299587	1.700952 2.833272 -1.893272	0.642278 -0.061123 0.764031	-0.563488 0.638059 0.524749	-0.009665 0.000014 3.049436
		1.1	10.659453 9.054711 0.318924	1.374524 -0.421869 0.695816	1.597325 2.551448 -1.551448	0.860516 -0.264110 0.435613	-0.326227 0.371065 0.869417	-0.070439 0.000006 2.750227
		18	11.129348 9.054922 0.457572	1.322257 -0.361867 0.429341	1.436539 2.063643 -1.063643	0.920447	-0.231506 0.264734 0.936123	-0.081714 0.300006 4.265242
		61	12.001476 9.055100 0.629323	1.264195	1.326848 1.760526 -0.760526	0.952781	-0.165823 0.191430 0.967397	-0.085729 0.000007 8.124121
		20	13.718136 9.055408 0.860094	1.215921 -0.236371 0.177886	1.250690 1.554224 -0.554224	0.972201 -0.188992 0.138232	-0.113883 0.134139 0.984397	-0.085209 0.000008 15.715233
		21	17.045151 9.055457 1.143484	1.180271 -0.189794 0.098184	1.199458	0.984304	-0.068990 0.085681 0.993938	-0.082020 0.000006 29.932816
		22	21.318008 9.0°5271 1.355917	1.155947 -0.158278 0.047100	1.157682	0.989950 -0.135549 0.040337	-0.033362 0.049692 0.998193	-0.077655 0.000007 28.382263
		23	25.385406 9.054636 1.446403	1.139600 -0.141642 0.008645	1.148430	0.592337 -0.123338 0.007528	-0.004927 0.021343 0.999760	-0.075649 0.000005 26.970291
		54	29.260468 9.053576 1.400885	1.114990	1.259381	0.993556 -0.109251 -0.030181	0.029211 -0.019523 0.999518	-0.377281 0.090907 25.733673

CASE NO. NACA	JIHA			D DUGLAS LONG LONG MONDA	AIRCRAFT BEACH DIV	COMPANY VISION 1977		PAGE
		_	JE STRIP NAC	SWEPT WING. A	22. 1 PL.	YM. DISPMNT	30 SOURC	_
		5	UNIFORM ONSET FLO	1686.0) = M	POINTS FINAL	OUT PUT	0.143106E+00	
	i	Z	0 × × 0 × 0 × × 0 × 0 × 0 × × 0	×>~\ >>>	VTSQ 0 6 P	250 000 000 000	NN X	SIG VN A REA
		3 25	32.957901 9.052282 1.245944	1.083285 -0.100788 -0.063147	1.087794 1.187652 -0.187652	0.994027 -0.092483 -0.057944	0.055053	-0.080212 0.00005 24.602600
		26	36.48815 9.050°98 1.021482	1.048337	1.054263 1.111471 -0.111471	0.994379 -0.074248 -0.075499	0.072058 -0.048043 0.996243	-0.083913 0.0000005 23.545273
		27	39.864227 9.049850 0.761159	1.011734	1.016889 1.034062 -0.034062	0.994931 -0.054221 -0.084696	0.081668	-0.088282 0.000003 22.546005
		28	43.095215 9.048912 0.494481	0.977527 -0.033517 -0.083062	0.981672 0.963582 0.036418	0.995828 -0.034144 -0.084617	0.082599	-0.092093 -0.000005 21.599319
		62	45.440613 9.047919 0.304394	0.953983 -0.018492 -0.074708	0.957082 0.916006 0.083994	0.596762 -0.019322 -0.078058	0.076963	-0.090371 0.0000009 10.444393
		30	46.955215 9.046903 0.186968	0.936512 -0.007584 -0.072781	0.939366 0.882409 0.117591	0.996961 -0.008074 -0.077479	0.076964	-0.078495 0.000010 10.242451
		* * * *	***	*	***		* * * *	****
	1 HE	FORCE	THE FORCE COMPONENTS OF	THIS STRIP ARE	-0.68252	8E+01 0.8	26575E+01	0.890425E+02
	THE	THE MOMENT	T COMPONENTS OF	THIS STRIP ARE	0.79933	38E+03 -0.1	.69092E+04	0.1637546+03
		* * * *	****	•	****		* * *	***
		4	42.603078 2.818149 -0.107303	0.938689 0.055882 0.075938	0.943472 0.890139 0.109851	0.994931 0.060291 0.080438	0.083953	0.064970 -0.000006 9.221400
		2	40.982529 2.818490 -0.244506	0.96793 0.037376 0.079465	0.942980 0.942980 0.057020	0.995903 0.038489 0.081832	0.083954 -0.057433 -0.994813	0.073959
		3	38.464355 2.818853 -0.458642	0.985981 0.026359 0.08, 35	0.989787 0.979678 0.020322	0.996155 0.026631 0.083458	0.084382	0.072251 -0.000006 19.449631

CASE NO. NACA			SUDUCT SU	S AIRCRAFT DEACH DONDAY. MAR 2	COMPANY 1VISION 8, 1977		PAGE	196.
	LINI UNI	FOUR STRIP NACA UNIFORM ONSET FLO	SWEPT WING. 100 989	A=8.22. 1 PL. S 707E+00, 0.0 POINTS FINAL	YM. DISPMNT	. 30 SOURCE 1 0.143106E+00		
z	×	0 5 5 0	*>>	V V V V V V V V V V V V V V V V V V V	× 200 200 200 200	X	S I G	
4	4	34.994919 2.819253 -0.752254	0.997499 0.020547 0.082558	1.001120 1.002241 -0.002241	0.996383 0.020524 0.082465	0.083508 -0.056996 -0.994876	0.065723 -0.000006 20.299805	
	5	31.370773 2.819635 -1.030907	1.004136 0.016938 0.074453	1.007034	0.997122	0.074686	0.060709	
	•	27.579971 2.819817 -1.291426	1.006063 0.015478 0.057890	1.007845	0.998231 0.015357 0.057440	0.057956 -0.035836 -0.997676	0.058188	
	-	23.610159 2.510959 -1.467670	0.998865 0.019632 0.031054	0.999541 0.999081 0.000919	0.999324 0.019641 0.031068	0.031307	0.058697 -0.000006 23.162003	
	60	19.449356 2.820237 -1.524605	0.934529	0.977242	0.999373	-0.003142 0.019756 -0.999800	0.062354 -0.0000005 24.276352	
	6	15.081448 2.823410 -1.445789	0.945019 0.055856 -0.027756	0.947075 0.896951 0.103049	0.997829 0.058977 -0.029307	-0.032167 0.048063 -0.998326	0.067029	
	01	10.492461 2.820537 -1.214341	0.897961 0.094675 -0.052846	0.904484 0.813091 0.181909	0.992789	-0.067380 0.084107 -0.994176	0.074272	
	11	6.919097 2.823584 -0.916203	0.844708 0.147818 -0.076048	0.860419 0.740320 0.259680	0.981159 0.171798 -0.088385	-0.111821 0.131867 -0.984940	0.082152 -0.000005 14.146786	
	12	5.075012 2.820645 -0.672537	0.218237 -0.089047	0.814515 0.663435 0.336565	0.957225 0.267898 -0.109325	-0.163406 0.188675 -0.968350	0.089382 -0.000005 7.312872	
	13	4.137869 2.823537 -0.490189	0.693978 0.313174 -0.082492	0.765825 0.586483 0.413511	0.906183 0.408737 -0.107717	-0.230059 0.262979 -0.936971	0.094864	
	14	3.633449 2.820537 -0.341892	0.577549	0.729143 0.531649 0.468351	0.792093 0.609259 -0.037303	-0.326063 0.370650 -0.869656	0.098076 -0.0000007 2.474733	

JIHA	NACA
PROGRAM	NO
5	u
0	TASE
ox.	<
0	-

A A			D DUG LAS LONG LONG MOND/	AIRCRAFT BEACH DI	COMPANY VISION		PAGE
	FOUR	STRIP NAC	SWEPT WING.	.22. 1 PL. S	YM. DISPMNT	. 30 SOURC	w.
	UNIT	DRM ONSET FL	0N - RODY	POINTS FINAL	OUTPUT	0.143106E+00	-
2	x	×0 ×0 ×0 ×0	***	VTSQ CP	0CX 0CX 0CZ	X > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SIG VN AREA
4	15	3.317585 2.820305 -0.135480	0.365043 0.685961 0.439899	0.892922 0.797310 0.202690	0.408819	-0.563069 0.637148 -0.526304	0.106772
	16	3.317599 2.820574 0.135830	0.989752 -0.014184 1.079309	1.464486 2.144718 -1.144718	0.675836	-0.563535 0.637673 0.525168	0.004392 0.000014 2.744296
	1.1	3.623260 2.823754 0.342293	1.264050 -0.317524 0.608426	1.438341 2.063824 -1.068824	0.878825	-0.325726 0.370241 0.869956	-0.048968 0.000011 2.475772
	18	4.137738 2.820723 0.490950	1.234999 -0.273396 0.383448	1.322733 1.749757 -0.749757	0.933636 -0.210462 0.289880	-0.231173 0.264167 0.936363	-0.058692 0.100005 3.840194
	19	5.074684 2.821110 0.675129	1.199289	1.246388	0.962211 -0.183743 0.200971	-0.165595 0.191028 0.967516	-0.062623 0.000006 7.314640
	20	6.918333 2.821313 0.922570	1.171769 -0.184823 0.160433	1.197055	0.978877 -0.154398 0.134023	-0.113679 0.133796 0.984467	-0.063475 0.0300007 14.151157
	21	10.491757 2.821451 1.224317	1.154451 -0.145766 0.092374	1.167277	0.989312	-0.068747 0.085423 0.993970	-0.063252 0.030301 26.953278
	22	15.080944 2.821235 1.464442	1.144903 -0.119659 0.044560	1.152000	0.993839	-0.033681 0.049429 0.998210	-0.062211 0.000004 25.557236
	23	19.44.9432 2.820621 1.550032	1.138838 -0.106690 0.007625	1.143849 1.208391 -0.308391	0.995619 -0.093272 0.005666	-0.004717 0.021072 0.999767	-0.062567 0.0000004 24.285461
	54	23.611267 2.819572 1.560157	-3.094108 -0.034145	1.127747	0.996053 -0.083448 -0.030277	0.029478	-0.065848 0.000005 23.172119
	25	27.582382 2.818346 1.332630	1.098036 -0.080519 -0.062539	1.102821 1.216214 -0.216214	0.995661 -0.073012 -0.051705	0.055352 -0.033897 0.997892	-0.070013 0.000003 22.153613

PAG E 1 WK. +00 1	SIG VN AREA	51 -0.074859 01 0.000003 04 21.201508	20.080562 0.000003 0.00003	40 -0.086215 0.000004 55 19.450150	2 0.000009 9.405404	.8 -0.017338 0.030005 54 9.223297	**	0.747596E+02	0.2583196+02	***	***	0.359396E+03	0.140822E+04	***	0.359396E+03	0.140822E+04
NT. 30 SOURCE 1 0.143106E+00	XXX	0.0723	0.08187	0.0826	-0.05262	0.075718 -0.052608 0.995664	**	.373882E+01	.104239E+04	**	*	.391895E+02	56545E+04	* *	.391895E+02	.856545E+04
FT COMPANY B 28, 1977 L. SYM. DISPMNT 0.0 INAL DUTPUT	00°x	0.995195 -0.062578 -0.075316	0.995089 -0.051127 -0.084759	0.995625 -0.038969 -0.084920	0.996522 -0.028557 -0.078233	0.996859	*	816615+01 0	5375E+03 -0	*	*	-0.323505E+02 0	4 -0.8	45	.328505E+02 0	0.5094298+04 -0
AIRCRAF NDAY, MAR :8.22. 1 PL)7E+00. 0 POINTS FI	VT50 CP	1.148902	1.035704	0.997154 0.994315 0.005684	0.9361523	0.943397 0.8899999 0.110031	***	F -0.28	RE 0.205	***	***	RE -0.32	ARE 0.509429E+0	****	ARF -0	RODY ARE 0.50
SWEPT WIN	***	1.066718 -0.06.7075 -0.089729	1.030618 -0.052952 -0.087785	0.992792 -0.038858 -0.084678	0.964158 -0.027629 -0.075740	0.940435 -0.014766 -0.073237		THIS STRIP AR	THIS STRIP A			THE SECTION A	THE SECTION		THE ENTIRE BODY	THE ENTIRE
FOUR STRIP NACA	0 × × × × × × × × × × × × × × × × × × ×	31.374573	34.999786 2.815949 0.309973	38.469955 2.815001 0.523068	40.389090 2.813983 0.318709	42.615829 2.812835 0.193305	***	CEMPONENTS OF	COMPONENTS OF	***	***	COMPONENTS OF	COMPONENTS OF	**	COMPONENTS OF	COMPONENTS OF
	7 Z	4	27	28	53	30	* * *	THE FORCE	THE MOMENT	* * *	*	THE FURCE	THE MOMENT	*	THE FURCE	THE MOMENT
PROGRAM JIHA	1							THE	THE			THE	THE		THE	THE

193.

PAGE

PAGE		
DOUGLAS AIRCRAFT COMPANY LONG BFACH DIVISION MONDAY, MAR 28, 1977	JUP STRIP NACA SWEPT WING. A=8.22. 1 PL. SYM. DISPMNT. 30 SOURCE I WK.	FORM ONSET FLOW = (0.989707E+00, 0.0 , 0.143106E+00)
PROGRAM JIHA CASE NO. NACA	P.0	NO

1 -0.6096645-02 2 -0.66951915-02 4 -0.6571485-02

TOTAL RUN TIME FOR THIS CASE WAS 0.98728 MINUTES.

9.0 REFERENCES

- Hess, J.L.: Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies. Final Technical Report. Douglas Aircraft Company Report No. MDC J5679-01, October 1972.
- 2. Cebeci, T., Smith, A.M.O., and Wang, L.C.: A Finite-Difference Method for Calculating Compressible Laminar and Turbulent Boundary Layers.

 Douglas Aircraft Company Report No. DAC 67131, March 1969.
- 3. Keller, H.B. and Cebeci, T.: Simple Accurate Numerical Procedures for Boundary Layers. II. Two-Dimensional Turbulent Flows. AIAA Journal, Vol. 10, No. 9, September 1972.
- 4. Hess, J.L.: A Fully Automatic Combined Potential-Flow-Boundary-Layer Procedure for Calculating Viscous Effects on the Lifts and Pressure Distribution of Arbitrary Three-Dimensional Configurations. McDonnell Douglas Corp. Report MDC J7491, April 1977.
- Hess, J.L. and Smith, A.M.O.: Calculation of Nonlifting Potential Flow about Arbitrary Three-Dimensional Bodies. Douglas Aircraft Company Report No. ES 40622, March 1962.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
User's Manual for a Fully Automat sional Potential-Flow Calculation Viscous Correction by Two-Dimensi Layer Analysis	Method. Part 1.	5. Type of Report & Period Covered Final Technical Report October 1973 - March 1977 & Performing org. Report Number MDC J7644/01				
Mack, D un- Pok Schimke, Suzanne M.		N00014-74-C-0059				
Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, California 90846	SS	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
Naval Ship Research and Developme Bethesda, Maryland 20084	nt Center	1 August 1977 13 NUMBER OF PAGES				
14 MONITORING AGENCY NAME & ADDRESS(It differ	rent from Controlling Office)	175 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)						
17. DISTRIBUTION STATEMENT (of the abstract enter	ed in Block 20, if different fro	m Report)				
18 SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side II necessary Boundary-Layer Lifting Bo Computer Program Potential Input-Output Pressure D	dies Flow	Viscous Flow Vorticity Wing-Body				
Kutta Condition Three-Dime	nsional Flow					

CHRITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. Abstract (cont.)

available: 1) addition of the displacement thickness to the original shape, and 2) defining a surface blowing distribution on the body.

The computer program is written in Fortran IV for the IBM 370 systems. 16 temporary external units are used for storage. The region size needed to execute the program is about 360K bytes, but this is a direct function of the number of elements defining the configuration.

Also presented in this report is a detailed description of the program logic, complete instructions for executing the program, and a sample case. The basic description of the method, its background and capabilities is contained in McDonnell Douglas Report MDC J7491, "A Fully Automatic Combined Potential-Flow Boundary-Layer Procedure for Calculating Viscous Effects on the Lifts and Pressure Distributions of Arbitrary Three-Dimensional Configurations" by John L. Hess.