Structured Data Assignment – Akaike By Kavibarathi K

Problem Statement:

Drugs are generally administered/prescribed by the physicians for a certain period of time or they are administered at regular intervals, but for various reasons patients might stop taking the Let's say you get a throat infection, the physician prescribes you an antibiotic for 10 days, but you stop taking the treatment after 3 days because of some adverse events. In the above example ideal treatment duration is 10 days but patients stopped taking treatment after 3 days due to adverse events. Patients stopping a treatment is called drop-off.

We want to study drop-off for "Target Drug", the aim is to generate insights on what events lead to patients stopping on "Target Drug". Assume ideal treatment duration for "Target Drug" is 1 year, come up with analysis showing how drop-off rate is, drop-off rate is defined as number of patients dropping off each month. Then come up with analysis to generate insights on what events are driving a patient to stop taking "Target Drug".

Necessary Libraries:

Python libraries that are necessary for performing desired functions.

```
# import necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
```

Reading the dataset:

0	a0db1e73-1c7c-11ec-ae39-16262ee38c7f	2019-03-09	PRIMARY_DIAGNOSIS
1	a0dc93f2-1c7c-11ec-9cd2-16262ee38c7f	2015-05-16	PRIMARY_DIAGNOSIS
3	a0dc94c6-1c7c-11ec-a3a0-16262ee38c7f	2018-01-30	SYMPTOM_TYPE_0
4	a0dc950b-1c7c-11ec-b6ec-16262ee38c7f	2015-04-22	DRUG_TYPE_0
8	a0dc9543-1c7c-11ec-bb63-16262ee38c7f	2016-06-18	DRUG_TYPE_1
29080886	a0ee9f75-1c7c-11ec-94c7-16262ee38c7f	2018-07-06	DRUG_TYPE_6
29080897	a0ee1284-1c7c-11ec-a3d5-16262ee38c7f	2017-12-29	DRUG_TYPE_6
29080900	a0ee9b26-1c7c-11ec-8a40-16262ee38c7f	2018-10-18	DRUG_TYPE_10
29080903	a0ee1a92-1c7c-11ec-8341-16262ee38c7f	2015-09-18	DRUG_TYPE_6
29080911	a0ee146e-1c7c-11ec-baee-16262ee38c7f	2018-10-05	DRUG_TYPE_1
3220868 rd	ows × 3 columns		

Finding out number of drop-offs per month for one year period:

This will help us to identify the month where patients are stopped taking their prescriptions.

finding number of dropoff's per month for a period of one year

```
# creating dropoff object and getting the unique values from it
dropoff_rates = target.groupby('Month')['Patient-Uid'].nunique()
dropoff_rates
 Month
        3882
 1
 2
        3681
 3
        3975
 4
        4442
 5
        4834
 6
        4887
 7
        5171
 8
        5050
 9
        3457
 10
        3719
 11
        3590
 12
        3662
 Name: Patient-Uid, dtype: int64
: # visualizing the dropoff rates for better understanding
  plt.figure(figsize = (8, 5))
dropoff.plot()
plt.xlabel("Month")
plt.ylabel("Propoff_numbers")
  plt.title("DROP-OFF RATES FOR EVERY MONTH FOR TARGET DRUG")
  plt.show
```


Reason for drop-off's:

This particular step's is very helpful in finding out that what event or incident that leads to the dropping off the prescribed drugs.

<pre># reasons that lead to drop off drop reasons = drop reasons[drop reasons['Incident'] != 'TARGET DRU</pre>				
drop_reasons				
	Patient-Uid	Date	Incident	
8	a0e9c384-1c7c-11ec-81a0-16262ee38c7f	2018-02-22	SYMPTOM_TYPE_6	
22	a0e9c3b3-1c7c-11ec-ae8e-16262ee38c7f	2018-02-21	SYMPTOM_TYPE_6	
23	a0e9c3e3-1c7c-11ec-a8b9-16262ee38c7f	2017-05-11	SYMPTOM_TYPE_10	
29	a0e9c414-1c7c-11ec-889a-16262ee38c7f	2019-11-22	PRIMARY_DIAGNOSIS	
32	a0e9c443-1c7c-11ec-9eb0-16262ee38c7f	2020-01-28	PRIMARY_DIAGNOSIS	
29080886	a0ee9f75-1c7c-11ec-94c7-16262ee38c7f	2018-07-06	DRUG_TYPE_6	
29080897	a0ee1284-1c7c-11ec-a3d5-16262ee38c7f	2017-12-29	DRUG_TYPE_6	
29080900	a0ee9b26-1c7c-11ec-8a40-16262ee38c7f	2018-10-18	DRUG_TYPE_10	
29080903	a0ee1a92-1c7c-11ec-8341-16262ee38c7f	2015-09-18	DRUG_TYPE_6	
29080911	a0ee146e-1c7c-11ec-baee-16262ee38c7f	2018-10-05	DRUG_TYPE_1	
1358355 r	ows × 3 columns			

Frequency of symptoms:

The frequency of symptoms played a major role in dropping off the prescribed drugs.

```
# to calculate the frequency of each event leading to drop-off
event_frequency = drop_reasons['Incident'].value_counts()
event_frequency
Incident
PRIMARY_DIAGNOSIS
                              237455
DRUG_TYPE_6
                              201366
DRUG_TYPE_1
DRUG_TYPE_2
DRUG_TYPE_7
                              160903
                              146560
                              116819
DRUG_TYPE_0
                              111912
                              72745
43289
DRUG_TYPE_3
DRUG_TYPE_8
TEST_TYPE_1
DRUG_TYPE_9
                               42246
                               38383
DRUG_TYPE_11
                               25627
SYMPTOM_TYPE_0
DRUG_TYPE_5
                               24475
                               15196
SYMPTOM_TYPE_6
                               14507
TEST_TYPE_0
                               12642
DRUG_TYPE_10
SYMPTOM_TYPE_7
                               12349
10098
DRUG TYPE 14
                                9901
DRUG_TYPE_13
                                 6344
TEST_TYPE_3
DRUG_TYPE_12
                                 5359
                                4958
SYMPTOM TYPE 1
                                4511
TEST_TYPE_2
                                 4199
SYMPTOM_TYPE_2
                                 3887
SYMPTOM_TYPE_5
SYMPTOM_TYPE_15
                                 3602
                                 3515
SYMPTOM_TYPE_14
                                 3302
SYMPTOM_TYPE_8
```

Visualization of frequency of drop-off's:

