TEA-010 Matemática Aplicada I

Prof. Nelson Luís Dias (Lemma, Centro Politécnico, 3320-2025) nldias@ufpr.br

Ensalamento e Horário 2as 4as 6as sala PM-2 07:30--09:10

Objetivos Didáticos

A Disciplina TEA010 tem por objetivo aprofundar o domínio pelo aluno de modelos matemáticos analíticos e numéricos aplicáveis à Engenharia Ambiental. A disciplina incluirá aplicações de: álgebra linear, equações diferenciais ordinárias, técnicas de transformadas, campos escalares e vetoriais, teoremas vetoriais, a problemas de Mecânica dos Fluidos, Hidrologia, Meteorologia, Química Ambiental e Ecologia, devendo enfatizar a capacidade de formular e de resolver alguns problemas típicos (dispersão,reações químicas, dinâmica de populações, etc.) de importância em Engenharia Ambiental.

Unidades Didáticas

1	Análise Dimensional e Ferramentas Computacionais		
2	Solução numérica de Polinômios, Integrais, Séries e EDO's		
3	Geometria & Álgebra		
4	Solução de Sistemas de Equações Lineares		
5	Funções no R ⁿ		
6	Equações Diferenciais Ordinárias		
7	Variáveis Complexas		
8	Soluções de EDO's em Séries de Potências		
9	Transformada de Laplace e Teoria de Distribuições		

Programa

Aula	Data	Conitule	Conteúdo Previsto	Conteúdo Realizado
		Capítulo		Conteuto Realizado
1	seg 20/fev	3	Apresentação do Curso. Ferramentas computacionais.	
2	qua 22/fev	3	Ferramentas computacionais	
3	sex 24/fev	4	Polinômios e integrais.	
x	seg 27/fev	х	Feriado: Carnaval	
x	qua 01/mar	х	Feriado: Carnaval	
4	sex 03/mar	4	Integrais. Séries.	
5	seg 06/mar	4	Solução numérica de eq dif Euler.	
6	qua 08/mar	4	* Solução numérica de eq dif Runge-Kutta.	
7	sex 10/mar	4	* Solução numérica de eq dif Aplicações.	
8	seg 13/mar	1	Análise dimensional	
9	qua 15/mar	1	Análise dimensional	
10	sex 17/mar	5	Vetores e Álgebra Linear. Data limite para a escolha da proposta do TC.	
11	seg 20/mar	5	Vetores e Álg Lin (cont.)	
12	qua 22/mar	5	Aplicações Geométricas.	
13	sex 24/mar	5	Determinantes e hipervolumes.	
14	seg 27/mar	5	Sistemas de equações lineares.	
15	qua 29/mar	5	Sistemas de eqs lineares; rotações.	
16	sex 31/mar		P1	
17	seg 03/abr	5	* Teorema dos Pi's.	
18	qua 05/abr	5	* Autovalores e autovetores. Transformações simétricas.	
19	sex 07/abr	5	* Transformações simétricas.	
20	seg 10/abr	7	Funções no R ⁿ . Teorema da função implícita.	
21	qua 12/abr	7	Teorema da função implícita (continuação).	
x	sex 14/abr	x	Feriado: Sexta-Feira da Paixão.	
22	seg 17/abr	7	Integrais de linha e de superfície.	
23	qua 19/abr	7	Integral de Volume. Operadores diferenciais: divergente, gradiente, rotacional.	
x	sex 21/abr	x	Feriado: Tiradentes.	
24	seg 24/abr	7	Teoremas integrais e aplicações.	
25	qua 26/abr	7	Teoremas integrais e aplicações.	
26	sex 28/abr		P2. Data limite para a entrega do TC.	
x	seg 01/mai	x	Feriado: Dia do Trabalho.	
27	qua 03/mai	8	EDO's: classificação, ordem 1.	
28	sex 05/mai	8	EDO's: Coeficientes constantes, ordem 2, Euler.	
29	seg 08/mai	8	EDO's: revisão.	
30	qua 10/mai	2	Números complexos, raízes da equação $z=a^{1/n}$,	
	1		Numeros complexos, raizes da equação $z=a$, fórmula de Euler.	
31	sex 12/mai	9	Funções plurívocas.	
32	seg 15/mai	9	Sequências e séries: teoremas de convergência. Funções analíticas e condições de Cauchy- Riemman.	
33	qua 17/mai	9	Séries de Taylor e de Laurent.	
34	sex 19/mai	9	Séries de Taylor e de Laurent.	
35	seg 22/mai	9	Teorema dos resíduos.	
	1	1	I .	_1

36	qua 24/mai	9	Teorema dos resíduos. Aplicações.
37	sex 26/mai	10	Solução de EDOs em séries de potências. Método de Frobenius: Introdução.
38	seg 29/mai	10	Método de Frobenius: casos i e ii
39	qua 31/mai	10	Método de Frobenius: caso iii
40	sex 02/jun		P3
41	seg 05/jun	11	Transformada de Laplace: definição, propriedades, inversão.
42	qua 07/jun	11	Transformadas de Laplace: convolução, mudança de origem.
43	sex 09/jun	11	Transformadas de Laplace: aplicações.
44	seg 12/jun	11	Transformadas de Laplace: solução de EDO's.
45	qua 14/jun	11	Solução de uma equação diferencial parcial de difusão-advecção com decaimento.
46	sex 16/jun	12	Delta de Dirac $\delta(x)$ e distribuições. $H(x)$ e o Cálculo com distribuições.
47	seg 19/jun	12	Aplicações da Teoria de distribuições.
48	qua 21/jun	12	Aplicações da Teoria de distribuições.
49	sex 23/jun		P4
50	seg 03/jul		F

Avaliação

A disciplina é semestral. A avaliação da disciplina é contínua: haverá 4 exames parciais (P1, P2, P3, P4) aproximadamente mensais, e um trabalho computacional (TC), seguidos de um exame final F. O conteúdo de todos os exames é cumulativo. Os alunos poderão solicitar revisão de prova durante o período até a promulgação da nota do exame posterior. Após esse prazo, não será concedida nenhuma revisão. Os alunos que fizerem a revisão de prova devem comparecer à sala do professor com uma cópia impressa da solução da prova, devidamente estudada. As soluções são disponibilizadas eletronicamente em https://www.nldias.github.io, juntamente com as notas.

A média parcial, P, será a média ponderada de:

- P4 (obrigatoriamente): peso 1.
- As duas maiores notas entre P1, P2 e P3: peso 1 para cada uma das duas.
- TC (obrigatoriamente) peso 0,5.

A ausência na P4 obriga o aluno a fazer a F, que contará como substituta da P4 e, eventualmente, como a própria F. O resultado parcial é: Alunos com P < 40 estão reprovados. Alunos com P > 70 estão aprovados. Para os alunos aprovados nesta fase, a sua média final é M = P. Alunos com $40 \le P < 70$ farão o exame final F . Calcula-se a média final M = (P + F)/2. Alunos que obtiverem M > 50 estão aprovados. Alunos com M < 50 estão reprovados. Todas as contas são feitas com 2 algarismos significativos com arredondamento para cima. A sistemática dos exames é a seguinte: para cada prova, eu gero um mapa de prova aleatoriamente, com o nome e a posição dos alunos. Ao chegar à porta da sala de aula, verifique no mapa a sua posição durante a prova. O caderno de prova já estará distribuído, com seu número bem visível. Deixe todo o seu material junto ao quadro negro, e sente-se: tenha com você apenas um estojo contendo: caneta azul, lápis ou lapiseira, apontador, e borracha. Neste curso, não será permitido o uso de calculadoras, exceto quando explicitamente indicado antes de alguma prova. O mapa de prova torna o seu início muito rápido e confortável para você.

Trabalho Computacional (TC)

O trabalho computacional poderá ser feito em grupos de 4 (quatro) alunos. Cada grupo deverá escolher um trabalho de uma lista disponibilizada pelo professor.

O trabalho computacional deverá ser entregue na forma de um arquivo pdf, e de um programafonte em Python. O programa-fonte deverá gerar um arquivo de saída com extensão .dat contendo todos os dados que tiverem sido usados para fazer as figuas do TC.

É proibido usar telefones celulares durante a prova. É proibido usar bonés, turbantes, etc., durante a prova, exceto por motivos religiosos, e nesse caso o aluno/aluna fica proibido de retirar a cobertura durante a prova. É proibido deixar a sala após o início da prova. Portanto, vá ao banheiro antes, desligue o seu celular e deixe-o junto com o resto do material dentro de sua pasta ou mochila, verifique suas lentes de contato, óculos, etc.. Após o início da prova, você só se retirará após entregar a prova.

Textos para estudo

O texto adotado para este curso é a versão preliminar de: Dias [2015]: um original será disponibilizado em papel para cópia no início das aulas. Um bom material adicional para a UD 1 é Versteeg e Malalasekera [2007]. O livro de Michael Greenberg [Greenberg, 1998] permanece sendo, provavelmente, um dos melhores textos de matemática aplicada existentes, e é recomendado como material adicional. Além disso, nele você encontrará uma grande quantidade de exercícios adicionais que complementam os exercícios resolvidos e propostos no livro texto.

Estudo individual

Reserve pelo menos 6 horas semanais para o estudo em casa desta disciplina. Leia a teoria no livro, evitando pular direto para exemplos e exercícios. Digite e rode os exemplos computacionais; faça o trabalho computacional individualmente, e não deixe para a última hora. Entenda a teoria, principalmente as deduções. Essa é a única maneira de estudar e entender matemática. Evite estudar apenas pelo caderno. Procure depois fazer o maior número possível de problemas, mas cuidado: evite fazer problemas apenas sobre uma parte da matéria. Planeje cuidadosamente seu tempo de estudo para que você consiga fazer exercícios sobre toda a matéria.

Referências

Butkov, E. (1988). Física matemática. Guanabara Koogan, Rio de Janeiro.

Dias, N. L. (2015). Uma introdução aos métodos matemáticos para Engenharia. Disponível em https://nldias.github.io

Greenberg, M. D. (1998). Advanced engineering mathematics. Prentice Hall, Upper Saddle River, New Jersey 07458, 2a edição.

Versteeg, H. K. e Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. Pearson Prentice-Hall.