NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

DTIC QUALITY INSPECTED &

THESIS

ANALYSIS OF STEAM AND HYDRONIC COMPARTMENT HEATING SYSTEMS ABOARD U.S. COAST GUARD 140 FOOT WTGB CLASS CUTTERS

by

James Thomas Hurley

June, 1996

Thesis Advisor:

Ashok Gopinath

Approved for public release; distribution is unlimited.

19961001 037

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	REPORT D	OCUM	ENTATION PA	GE		Form Ap	pproved OMB No. 0704-0188
data s or any Opera	reporting burden for this collection of ources, gathering and maintaining the rother aspect of this collection of inf tions and Reports, 1215 Jefferson Da tion Project (0704-0188) Washingto	data needed, ormation, incluvis Highway,	and completing and reviewing uding suggestions for reducing	the collection this this burden	on of information , to Washington	i. Send commen Headquarters Se	ts regarding this burden estimate ervices, Directorate for Information
1.	AGENCY USE ONLY (Lea		2. REPORT DATE	E			ND DATES COVERED
			June 1996			er's Thesi	
4.	ANALYSIS OF STEAM AN SYSTEMS ABOARD U.S. C	OAST GU				5. FUN	DING NUMBERS
6.	AUTHOR(S) James T. H						
7.	PERFORMING ORGANIZA		ME(S) AND ADDRES	SS(ES)			FORMING
	Naval Postgraduate Sch						ANIZATION ORT NUMBER
	Monterey CA 93943-5		OTTATION TO THE	DDDEGG	(DO)		
9.	SPONSORING/MONITORI					AGE	SORING/MONITORING NCY REPORT NUMBER
11.							
12-	the official policy or po	DSILION OF	TEMENT	Detens	e or the O		RIBUTION CODE
12a.	Approved for public rel			d		120. DIST	RIBUTION CODE
12	ABSTRACT (maximum 200				vetem on 1	he IIS C	oast Guard's
13.	Icebreaking Tug (WTG						
	characteristics of existing						
	Characterizations such						
	coefficients, and Effecti						
	conservative definitions						
	provided on average se						
	Improvements to the hy	dronic s	ystem were shown	to incre	ase heat ex	changer p	erformance
	parameters by an avera	ge of ten	percent. It was no	table tha	at the adde	d heat tran	sfer available from
	steam is not due to a pr						
	the increase in entering						
	described conservative						
	exchangers in a hydron			i Courto a	re basea, a	se or earre	meny mountained near
	exchangers in a nyuron	ic system	is a viable option.				
							l l
	•						
14.	SUBJECT TERMS						15. NUMBE R OF
	Heat Transfer						PAGES 156
							16. PRICE CODE
17.			URITY		CURITY		20. LIMITATION OF
	CLASSIFICATION OF		SSIFICATION OF		LASSIFICAT	ION OF	ABSTRACT
	REPORT		S PAGE		BSTRACT		UL
	Unclassified	Unc	lassified	1 0	nclassified		

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

•

ii

Approved for public release; distribution is unlimited

ANALYSIS OF STEAM AND HYDRONIC COMPARTMENT HEATING SYSTEMS ABOARD U.S. COAST GUARD 140 FOOT WTGB CLASS CUTTERS

James T. Hurley Lieutenant, United States Coast Guard B.S., Western New England College, 1984

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June, 1996

10

Author:	James J. Karray	
	James T. Hurley	
Approved by:	Adadela	
	Ashok Gopinath, Thesis Advisor	
	SNMSULL	
	Terry R. McNelley, Chairman	
	Denartment of Mechanical Engineering	

iv

ABSTRACT

The compartment heating system on the U.S. Coast Guard's Icebreaking Tug (WTGB) class cutter was studied to determine heat transfer performance characteristics of existing heat exchangers when used with circulating hot water vice steam.

Characterizations such as Reynolds number vs. Colburn j factor plots, convection coefficients, overall coefficients, and Effectiveness-NTU relations were generated. Initial analysis with acknowledged conservative definitions of air side convection coefficients determined that the hydronic system provided on average seventy percent of the heat transfer capabilities available with the steam system. Improvements to the hydronic system were shown to increase heat exchanger performance parameters by an average of ten percent. It was notable that the added heat transfer available from steam is not due to a property of steam itself such as latent phase change effects, but is due solely to the increase in entering tube side temperature. Judging by heat transfer capabilities alone, with the described conservative assumptions on which these results are based, use of currently installed heat exchangers in a hydronic system is a viable option.

TABLE OF CONTENTS

I.	INTRO	DDUCTION	. 1		
	A.	CUTTER OPERATIONS	. 1		
	B.	COMPARTMENT HEATING SYSTEM	. 1		
Π.	HEAT	EXCHANGER DESCRIPTIONS	. 5		
	A.	SYSTEM OVERVIEW	. 5		
	B.	HEAT EXCHANGERS	. 5		
	C.	HEAT EXCHANGER DESIGN CONSIDERATIONS	. 8		
Ш.	HEAT	EXCHANGER ANALYSIS	13		
	A.	STANDARD PRESENTATION OF PERFORMANCE DATA AND			
		THE REYNOLDS ANALOGY	13		
	B.	MANUFACTURER'S DATA	15		
	C.	ANALYSIS MODEL	16		
	D.	COMPUTATIONS AND RESULTS	16		
IV.	HYDRONIC SYSTEM ANALYSIS				
	A.	APPROACH			
	B.	OVERALL HEAT TRANSFER COEFFICIENT	29		
	C.	THE EFFECTIVENESS-NTU METHOD	41		
V.	SYSTE	EM COMPARISONS AND DISCUSSION			
	A.	OUTLINE	49		
	В.	FURTHER EXAMINATION OF STEAM SYSTEM			
		CAPABILITIES	49		
	C.	COMPARISONS OF HYDRONIC AND STEAM SYSTEMS			
	D.	IMPROVING PERFORMANCE OF HYDRONIC SYSTEM	53		
	E.	KEY FACTORS IN HEAT EXCHANGER PERFORMANCE	66		
	F.	OPTIMIZATION OF WATER FLOW RATES	68		
VI.	CONC	LUSIONS AND RECOMMENDATIONS			
	A.	SYNOPSIS	75		
		PROPOSED HYDRONIC SYSTEM			
	C.	FURTHER STUDY	76		
		ERENCES			
		A. WTGB CLASS CUTTER ILLUSTRATION	81		
APPE	NDIX B	B. HEAT EXCHANGER DIMENSIONS AND MATERIAL			
		8			
		C. FORTRAN COMPUTER CODES AND OUTPUTS			
		D. EFFECTIVENESS-NTU ANALYSIS TABULAR RESULTS 1	129		
		. MANUFACTURER'S DATA FOR LARGER CAPACITY FANS			
		E WITH B25 UNIT HEATERS	137		
		COMPUTATIONS OF AIR SIDE CONVECTION COEFFICIENT			
		UFACTURER'S DATA			
INITLA	AL DIST	TRIBUTION LIST	145		

LIST OF SYMBOLS

A_c	= Cross sectional area
$A_{f\!f}$	= Heat exchanger free flow area
A_{fr}	= Heat exchanger frontal area
A_s	= Surface area*
$c_p^{}$	= Constant pressure specific heat
$\overset{\cdot}{C}$	= Heat capacity rate
C_f	= Friction coefficient
C_r	= Heat capacity ratio
d_{i}	= Tube inner diameter
d_o	= Tube outer diameter
D_h	= Flow passage hydraulic diameter
f	= Friction factor
\boldsymbol{G}	= Mass velocity
h	= Convection heat transfer coefficient
h_{fg}	= Enthalpy difference due to condensation
$j_H^{}$	= Colburn j factor
\boldsymbol{k}	= Thermal conductivity
L	= Length in direction of flow
$L_{\it fin}$	= Fin length
L_{fin_c}	= Fin corrected length
m	= Mass flow rate
NTU	= Number of transfer units
Nu	= Nusselt number
\boldsymbol{P}	= Fin perimeter
Pr	= Prandtl number
$q_{ m max}$	= Fin maximum possible heat transfer rate
q_t	= Fin total heat transfer rate
$\dot{\mathcal{Q}}$	= Heat transfer rate
Re	= Reynolds number

LIST OF SYMBOLS (continued)

 R_f = Fouling factor

 R_{\star} = Thermal resistance

 R_{wall} = Tube wall conduction resistance

St = Stanton number

t = Specified component thickness

 T_1 = Air side inlet temperature

 T_2 = Air side outlet temperature

 T_3 = Tube side inlet temperature

 T_4 = Tube side outlet temperature

 T_{∞} = Ambient air temperature

 T_{base} = Fin base temperature

 T_{M} = Mean air temperature

 T_s = Heat exchanger surface temperature

 ΔT = Change in temperature

U = Overall heat transfer coefficient

V = Velocity w_{fin} = Fin width

 α = Heat exchanger area density

 ϵ = Effectiveness

 η_f = Single fin efficiency η_o = Overall fin efficiency

μ = Dynamic viscosityν = Kinematic viscosity

 ρ = Density

I. INTRODUCTION

A. CUTTER OPERATIONS

The United States Coast Guard operates nine Icebreaking Tug (WTGB) class cutters. Stationed in the northeast United States and on the Great Lakes, these cutters are primarily used for domestic icebreaking, but also routinely perform other missions such as search and rescue, pollution response, law enforcement, and aids to navigation support. The cutters are 140 feet long, have a beam of 37.5 feet, displace 662 tons, and are typically crewed by 17 personnel (see Appendix A for cutter illustration). The twin diesel-electric propulsion plant has a cruising range of 4,000 miles, maximum speed of 14.7 knots, and provides sufficient power for the hull to break through 18 to 20 inches of ice. A very capable and versatile platform, these cutters and crews make vital contributions to the overall service the Coast Guard provides to the public.

B. COMPARTMENT HEATING SYSTEM

1. Purpose

The primary purpose of the compartment heating system is to uphold the cutter's overall mission readiness, keeping on board personnel physically fit and mentally alert by providing an atmosphere of suitable air for breathing under conditions that will enable the body to maintain a proper heat balance. A secondary purpose of the system is provide suitable temperature and humidity conditions for the preservation of stores and equipment. [Ref. 1]

2. Description of Present Configuration

Compartment heating is accomplished either by duct heaters in the supply air ventilation system or by unit heaters mounted in the compartments themselves. These duct and unit heaters are either steam or electric. The scope of this thesis includes study of the steam duct and unit heaters only.

Heating of ventilation supply air is accomplished in two stages; first by a preheater and then by a reheater. Preheaters are usually located near supply air ventilation inlets, and heat incoming air sufficiently to prevent condensation in ventilation ducts.

Reheaters are located in the compartments being heated, and further heat the air to a set room temperature. Unit heaters are installed in compartments which require a spot source of heat. [Ref. 1]

3. Deficiencies of Present Configuration

The present steam system in recent years has become very maintenance intensive, particularly with the auxiliary boilers. The current boilers are over 15 years old, are "water tube" type, and are difficult and expensive to procure spare parts for. With many cutters operating in demanding harsh winter conditions, reduction of heating equipment down time is a priority. The steam heating system equipment is also non-standard compared to other ship classes in the fleet, leading to support and maintenance difficulties.

4. Considerations for a Replacement System

The search for a suitable replacement for the boilers has led to consideration of a hydronic (circulating water in a closed piping system) compartment heating system to replace the current steam system. Major factors in choosing a replacement system are ease of installation and affordability. A way to ease the installation and decrease the cost of a new system is to leave in place and utilize as much of the equipment from the old system as possible. There is therefore considerable motivation to determine the heat transfer characteristics of the presently installed heat exchangers when used with circulating hot water.

4

.

II. HEAT EXCHANGER DESCRIPTIONS

A. SYSTEM OVERVIEW

The compartment heating system consists of a steam generation plant and various heat exchangers. Included in the steam generation plant are two auxiliary boilers, feedwater, chemical, and condensate tanks, and associated pumps, controls, piping, and valves. The boilers are rated at 620 pounds of saturated steam per hour at a working pressure of 35 psi with feedwater entering at 210 degrees F. A functional diagram of the steam heating system is shown in Figure 1.

B. HEAT EXCHANGERS

1. General

The heat exchangers installed on board the WTGB cutter class fall into two categories: unit heaters and duct heaters. Unit heaters consist of a coil, fan, motor, and casing assembly. They are installed in machinery and work spaces throughout the cutter. Duct heaters, as implied, are coils installed within the supply ventilation ducting, with separate ventilation fans installed upstream of coils. Duct heaters provide heat to the cutter's living spaces.

2. Unit Heaters

a. Dimensions

Unit heaters are manufactured by the New York Blower Company of Willowbrook, Illinois. Two models are employed: Model B-25 (quantity two) and Model

Figure 1. Steam Heating System Functional Diagram [Ref. 1]

B-70 (quantity five). Dimensions and material properties of unit heater coils and assemblies are shown in Appendix B. [Refs. 2-3]

b. Heating Capacities

Unit heaters are sized to operate with steam at 240 degrees F and 25 psig. For each unit heater, the location, air flow rate, and heat transfer rate stated on the ship's prints are shown in Table 1. [Refs. 4-7]

Heater	Location	Туре	Air Flow (CFM)	Heat Transfer Stated on Prints (BTU/hr)
2-8-0	Paint Locker	B-70	1,505	5,294
2-40-1	Engine Room	B-70	1,505	64,860
2-40-2	Engine Room	B-70	1,505	64,860
2-60-1	Engine Room	B-70	1,505	64,860
2-60-2	Engine Room	B-70	1,505	64,860
2-73-1	Motor Room	B-25	400	33,120
2-80-1	Steering Gear	B-25	400	7,747

Table 1. Unit Heater Operating Parameters

3. Duct Heaters

a. Dimensions

Duct heaters are manufactured by two manufacturers: Colmac Coil

Manufacturing Incorporated of Colville, Washington (quantity four) and Carrier

Corporation of Farmington, Connecticut (quantity one). Duct heater dimensions and material properties are shown in Appendix B. [Refs. 8-9]

b. Heating Capacities

Duct heaters are also sized to operate with steam at 240 degrees F and 25 psig. For each duct heater, the supply ventilation system, location, air flow rate, heat transfer rate, and air temperature rise stated on the ship's prints are shown in Table 2.

[Refs. 4-7]

Heater	System	Location	Air Flow (CFM)	Heat Transfer Stated on Prints (BTU/hr)	Air Temp. Rise Stated on Prints (°F)
01-24-1	S 01-24-1	Fan Room	3,680	51,600	62 to 75
01-50-0	S 01-49-0	Exhst. Uptake	750	60,750	-30 to 45
01-25-1	S 01-27-1	Fan Room	1,400	113,400	-30 to 45
2-25-1	S 01-27-1	Aux. Mach. 1	1,050	45,360	40 to 80
2-16-1	S 01-27-1	Anchor Gear	350	20,034	45 to 98

Table 2. Duct Heater Operating Parameters

C. HEAT EXCHANGER DESIGN CONSIDERATIONS

1. Conventional Heat Exchangers

The design of a heat exchanger involves consideration of both the heat transfer rates between the fluids and the mechanical pumping power expended to overcome fluid friction. First examining heat transfer rates, there is a marked difference in heat exchanger performance depending on whether the fluids involved are gases or liquids.

The convection heat transfer coefficient, h, for gases is generally one or two orders of magnitude less than that for liquids. Correspondingly a gas heat exchanger's convective thermal resistance, R_r , defined as the inverse of the product of h and heat exchanger surface area, A_s , (i.e. $R_t = 1/hA_s$) is one or two orders of magnitude greater than that for a liquid heat exchanger. It is therefore evident that for the heat transfer rate of a gas heat exchanger to be equivalent to that of a liquid heat exchanger, the heat transfer surface area for a gas heat exchanger needs to be much larger than the heat transfer surface area for a liquid heat exchanger. [Refs. 10-11]

Examining the power required to overcome fluid - heat exchanger friction, conventional (e.g. concentric tube or shell and tube) heat exchangers operating with high density fluids have lesser frictional losses compared to heat exchangers operating with low density fluids. The pumping power required to move high density fluid (e.g. liquid) over a given heat exchanger is considerably less than the pumping power required to move low density fluid over the same heat exchanger. There can therefore be an equipment operating cost benefit to using a liquid heat exchanger system rather than a gas heat exchanger system.

Heat exchangers where at least one fluid is required to be a gas therefore need an improved design to make up for inherent drawbacks. The heat transfer obtained per unit of heat exchanger surface area can be increased by increasing the fluid flow velocity. This however is not a desirable method to increase heat transfer since the friction power expended to increase fluid flow velocity increases by as much as the cube of velocity. Minimizing friction power leads to limiting flow velocities, and this combined with the

relatively low thermal conductivity of most gases, results in low heat transfer rate per unit of heat exchanger surface area. There is therefore, in a conventional heat exchanger using gases, poor heat transfer performance at low flow velocities and an uneconomical, less than acceptable trade-off for increasing heat transfer per unit surface area by increasing flow velocities.

2. Compact Heat Exchangers

The development of compact heat exchangers is in response to the need to attain higher heat transfer rates with minimum space and power requirements. Large but compact surface areas are a typical characteristic of gas heat exchangers. Heat exchangers used on the WTGB cutter class heating system are one style of compact heat exchanger that incorporates large gas-side surface areas with dense arrays of continuous fins.

It is first noted that compactness itself leads to high performance. A compact surface has small flow passages and the heat transfer coefficient, h, varies as a negative power of the flow passage size. A customary expression for the size of a non-circular flow passage is the *hydraulic diameter*, D_h , equaling four times the cross-sectional area divided by the wetted perimeter. It is also true that a smaller hydraulic diameter increases friction power, but the benefits that compactness has on the heat transfer coefficient generally outweigh the detrimental influence of small hydraulic diameter on friction power. [Ref. 10]

In addition to the influence of small hydraulic diameter, increases in heat exchanger performance can be obtained by any modification of the surface geometry that

results in a higher heat transfer coefficient at a given flow velocity. One widely accepted modification is use of extended surfaces or fins so that in addition to providing increased heat transfer surface area, the interrupted surface prevents thickening boundary layers from reducing heat transfer. Finned surfaces also increase friction power and thermal resistance due to conduction, but a small improvement in the heat transfer coefficient can more than offset these negative factors. [Ref. 10]

Other methods of obtaining increased performance by change of flow surface geometry include the use of curved, corrugated, or wavy passages, in which boundary layer separation and turbulence (promoters of heat transfer) are induced. Such surfaces are incorporated in the duct heaters, but not in the unit heaters being studied.

A common descriptor of compact heat exchangers is the *area density*, α , which is the ratio of heat transfer surface area to heat exchanger volume. A conventional cutoff for labeling a heat exchanger as compact is an area density value greater than 700 square meters per cubic meter (or 213 square feet per cubic feet). This is not a staunch rule however, as many heat exchangers have been grouped into the compact category with lesser area densities [Ref. 10].

Compact heat exchanger designs provide the benefits of high heat transfer rate with minimum volume and thus are very well suited for duct heater applications. In shipboard systems where volume savings are invariably sought, use of compact heat exchangers is very common.

III. HEAT EXCHANGER ANALYSIS

A. STANDARD PRESENTATION OF PERFORMANCE DATA AND THE REYNOLDS ANALOGY

In engineering practice, it is often desirable to use a common presentation of performance data so as to avoid confusion associated with many arbitrarily defined parameters. In the study of heat transfer and flow-friction, commonality in data presentation is found using the *Reynolds Analogy*. As presented by Incropera and Dewitt [Ref. 11], and also Kays and Crawford [Ref. 12], with certain restrictions (noted shortly), relations that govern velocity boundary layer behavior are the same as those that govern the thermal boundary layer. From this it is known that non-dimensional friction and heat transfer relations for a particular geometry are closely related. Specifically, the *Reynolds number*, Re, the velocity boundary layer's *friction coefficient*, C_f , and the heat transfer boundary layer's *Nusselt number*, Nu, are related as follows:

$$C_f \frac{Re_L}{2} = Nu_L$$
 (1) where: $Re_L = \frac{\rho VL}{\mu}$ (2)

$$Nu_L = \frac{hL}{k} \qquad (3)$$

Replacing Nu by the Stanton number, St and introducing the Prandtl number, Pr:

$$St = \frac{Nu_L}{Re_L Pr}$$
 (4) where: $St = \frac{h}{\rho V c_p}$ (5)
$$Pr = \frac{c_p \mu}{h}$$
 (6)

The relation, assuming the pressure drop in the flow direction is zero and that Pr = 1 (true for most gases), now takes the form:

$$\frac{C_f}{2} = St \qquad (7)$$

This expression, known as the *Reynolds analogy*, relates key parameters of the velocity and thermal boundary layers. The accuracy of this expression depends on the noted restrictions, that the pressure gradient in the flow direction is zero and the Prandtl number equals one. It has been shown that the analogy may be applied over a wide range of Prandtl numbers if a correction is added. With this correction arises the *modified Reynolds*, or *Chilton-Colburn* analogy, shown as follows:

$$\frac{C_f}{2} = St \, Pr^{2/3} = j_H \qquad \qquad 0.6 < Pr < 60 \qquad (8)$$

where j_H is the *Colburn j factor*. For laminar flow, the modified Reynolds analogy is again only appropriate when the pressure drop in the flow direction is zero. In turbulent flow, conditions are less sensitive to the effect of pressure gradients and the equation remains valid for small pressure drops.

The benefits of this analogy lie in the ability to deduce heat transfer information from skin friction information and vice versa. A wide variety of compact heat exchanger performance data was compiled by Kays and London [Ref. 10] by way of plots of Colburn *j* factor and friction factor versus Reynolds number. The scope of this thesis includes presentation of Colburn *j* factor versus Reynolds number and does not include study of friction factor. In using this standard presentation, future correlation of friction factors in this standardized form is possible.

B. MANUFACTURER'S DATA

Plots of Colburn j factor versus Reynolds number, or any related information; were sought from the each of the heat exchanger manufacturers with no success. It was evident that in order to see desired heat exchanger performance characteristics, more commonly available information such as that shown in Figure 2 would have to be recast to the accepted non-dimensional j_H and Re forms.

Air Temperature Rise at 5 PSIG, 0° EDB (WF or WR Alum. Fins) Face Velocity, SFPM							
Row Fin	200	400	600	800	1000	1200	
104	49.7	37.6	31.8	27.8	25.3	23.2	
106	68.1	51.1	42.9	37.7	34.1	31.5	
108	85.2	63.6	52.6	45.8	41.2	38.0	
110	101.1	74.9	61.3	53.4	47.7	43.1	
112	114.9	84.7	69.7	60.0	53.1	48.0	
206	115.8	90.8	77.4	69.0	62.7	58.1	
208	138.5	109.0	93.1	82.9	74.9	69.0	
210	156.9	124.9	106.7	94.3	85.2	78.6	
212	171.5	138.1	118.1	104.2	93.9	86.3	

Figure 2. Typical Manufacturer's Heat Exchanger Performance Data

C. **ANALYSIS MODEL**

The heat exchangers studied are represented in Figure 3:

Figure 3. Heat Exchanger Representative Model

where:

 $T_1 = Air (cold fluid) inlet temperature$

 T_2 = Air (cold fluid) outlet temperature T_3 = Steam (hot fluid) inlet temperature T_4 = Steam (hot fluid) outlet temperature

D. **COMPUTATIONS AND RESULTS**

1. **Relation Definitions**

Relations used in the steam system heat exchanger computations are defined as follows:

Mean air temperature:

$$T_M = \frac{(T_1 + T_2)}{2} \tag{9}$$

Air mass flow rate:

$$\dot{m}_{air} = \rho_{air} * A_{fr} * V_{air}$$
 (10)

Air side heat transfer rate:

$$\dot{Q}_{air} = \dot{m}_{air} * c_{p_{air}} * (T_2 - T_1)$$
 (11)

Air side convection coefficient:

$$h_{air} = \frac{\dot{Q}_{air}}{(T_S - T_1) * A_{s_{air}}}$$
 (12)

Mass velocity:

$$G = \frac{\dot{m}_{air}}{A_{ff}} \tag{13}$$

Reynolds number:

$$Re_{air} = \frac{G * D_h}{\mu} \tag{14}$$

Prandtl number:

$$Pr = \frac{c_p * \mu}{k} \tag{15}$$

Stanton number:

$$St = \frac{h}{G * c_p} \tag{16}$$

Colburn j factor:

$$j_H = St * Pr^{2/3} \tag{17}$$

2. Sequence of Computations

Computations for the steam system heat exchanger analyses were performed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxair.f", shown as part of Appendix C, is summarized in Figure 4. Manufacturer's data for each heat exchanger similar to that shown in Figure 2 were input to the program. Dimensional characteristics of the heat exchangers input to the program were determined from manufacturer's drawings (see Appendix B for a tabular summary of all pertinent dimensions).

3. Tabular and Graphical Results

Program output, shown in tabular form in Appendix C, included the Colburn j factor and Reynolds numbers needed for further analysis of a hydronic system in a subsequent chapter. Plots of j_H vs. Re for each heat exchanger studied are shown in Figures 5 through 11.

4. Comparison with Established Results

Results obtained from the steam system analysis were compared with the established results of Kays and London [Ref. 10]. For a similarly configured heat exchanger, a Colburn *j* factor versus Reynolds number plot is shown in Figure 12. It is evident that orders of magnitude of Colburn *j* factors at respective Reynolds numbers and overall trends of data for this analysis compare favorably with previously established results.

Figure 4. Steam System Computations Flow Chart

Figure 5. Colburn j Factor vs. Reynolds Number - Unit Heater B25

Figure 6. Colburn j Factor vs. Reynolds Number - Unit Heater B70

Figure 7. Colburn j Factor vs. Reynolds Number - Duct Heater 01-24-1

Figure 8. Colburn j Factor vs. Reynolds Number - Duct Heater 01-25-1

Figure 9. Colburn j Factor vs. Reynolds Number - Duct Heater 01-50-0

Figure 10. Colburn j Factor vs. Reynolds Number - Duct Heater 2-25-1

Figure 11. Colburn j Factor vs. Reynolds Number - Duct Heater 2-16-1

Tube outside diameter = 0.402 in = 10.2×10^{-3} m

Fin pitch = 8.0 per in = 315 per m

Flow passage hydraulic diameter, $4r_h = 0.01192$ ft = 3.632×10^{-3} m

Fin thickness = 0.013 in = 0.33×10^{-3} m

Free-flow area/frontal area, $\sigma = 0.534$

Heat transfer area/total volume, $\alpha = 179 \text{ ft}^2/\text{ft}^3 = 587 \text{ m}^2/\text{m}^3$

Fin area/total area = 0.913

Note: Minimum free-flow area in spaces transverse to flow.

Figure 12. Established Colburn j Factor vs. Reynolds Number Relation [After Ref. 10]

IV. HYDRONIC SYSTEM ANALYSIS

A. APPROACH

To analyze the compartment heating system as a hydronic (circulating water) system, the Effectiveness - NTU Method is utilized. Required for this method are determinations of heat exchanger overall heat transfer coefficients, which entails computing other parameters such as air and water convection coefficients, fin efficiencies, wall conduction resistances, and fouling resistances. Results from the previous chapter are an integral part of this analysis, and are used specifically to determine air side convection coefficients at specified fan operating conditions.

B. OVERALL HEAT TRANSFER COEFFICIENT

1. Newton's Law of Cooling

A standard measure of a heat exchanger's total thermal resistance to heat transfer between two fluids separated by a heat exchanger structure is the *overall heat transfer* coefficient, U. In an expression analogous to Newton's Law of Cooling, the heat transfer between two fluids separated by one or more thermal resistances, R_n is:

$$\dot{Q} = \frac{\Delta T}{\sum R_t} = U A_s \Delta T \tag{18}$$

The result apparent from the above expression, that $1/\sum R_t = UA_s$, is applicable to clean, unfinned surfaces only, but can be used as the basis for determining a heat exchanger's overall heat transfer coefficient with additional factors considered such as the

effects of fins on the air side surfaces, the presence of fouling on both air and water sides, and tube wall conduction.

2. Overall Coefficient Elements

a. Air Side Convection Coefficients

The air side convection coefficients, h_{air} , are determined using the Reynolds number vs. Colburn j Factor plots, generated as part of the steam system analysis in the previous chapter. The utility of presenting data in non-dimensional form is now very apparent, as the performance characteristics of each heat exchanger formulated with steam now is relevant to the hydronic analysis.

An actual operating condition of the fan supplying air to a particular heat exchanger, in the form of a quantity of cubic feet per minute of air at a specified air temperature (taken from manufacture's data) is used to compute the air flow's mass flow rate, \dot{m}_{air} , then mass velocity, G, then Reynolds number, Re. Entering the Re vs. j_H graph with the computed Reynolds number, a value for j_H is obtained, from which h_{air} is computed using the Stanton number and Colburn j factor relations, simplified into the following:

$$h_{air} = \frac{j_H G c_p}{P r^{2/3}}$$
 (19)

Computations of the air side convection coefficient for each of the system's heat exchangers are shown in Table 3. Note that model B-25 unit heaters (i.e. 2-8-0 and 2-73-1) and model B-70 unit heaters (2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2)

each have one type fan and thus a common volumetric flow rate of air ("CFM of Air @ 70°F"), and were each grouped into one row in the table.

Heater Number	CFM of air @ 70°F	<i>m</i> (lbm/hr)	G (lbm/ft²-sec)	Re	$j_{ m H}$	h _{air} (BTU/hr-ft²-R)
Type B-25*	400	1,798	1.16	2,981	0.0048	6.0
Type B-70**	1,505	6,763	2.25	5,795	0.0037	9.0
01-24-1	3,680	16,538	1.63	2,762	0.0040	7.0
01-25-1	1,400	6,292	1.62	1,691	0.0047	8.2
01-50-0	750	3,371	1.16	1,211	0.0056	7.0
2-25-1	1,050	4,719	1.73	3,654	0.0054	10.1
2-16-1	350	1,573	0.82	851	0.0062	5.4

Type B-25 includes unit heaters 2-8-0 and 2-73-1.

Table 3. Air Side Convection Coefficient Computations

b. Water Side Convection Coefficients

The water side convection coefficients, h_{wtr} , are computed based on internal flow relations presented by Incropera and DeWitt [Ref. 11]. Initial computations of water side convection coefficients are based on a manufacturer's recommended maximum water flow rate of ten gallon per minute. These initial water side convection coefficients will be modified in some cases based on an optimized water mass flow rate, as will be shown in a later section. It is also noted, as it was in the previous chapter, that the water side convection coefficient is generally one or two orders of magnitude higher

^{**} Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

than the gas side convection coefficient. The water side convection thermal resistance (R_t = 1/hA) will therefore be one or two orders of magnitude lower than that of the air side, and a relatively small contributor to the sum of thermal resistances used to compute the overall heat transfer coefficient, U, as will be shown in a following section.

(1) Reynolds Number for Internal Flow. The Reynolds number for internal flows can be computed using the following relation, where the *hydraulic* diameter, $D_h = 4A_c/P$.

$$Re_D = \frac{4\dot{m}_{wtr}}{\pi D_h \mu_{wtr}} \tag{20}$$

(2) Nusselt Number. The Nusselt Number, Nu_D , relations for internal laminar flow ($Re_D \le 2,300$) and internal turbulent flow

 $(Re_D > 2,300 - Gnielinski Correlation)$ are then utilized to solve for h_{wir} :

$$Nu_D = \frac{h_{wtr} D_h}{k}$$
 (21)
$$= 4.36 Re_D \le 2300, \ circular \ duct \ heater \ tubes$$

$$= 6.49 Re_D \le 2300, \ rectangular \ unit \ heater \ tubes$$

$$= \frac{(f/8) (Re_D - 1000) Pr}{1 + 12.7 (f/8)^{1/2} (Pr^{2/3} - 1)} Re_D > 2300, \ duct \ heater \ and \ unit \ heater \ tubes$$

$$where: f = (0.79 \ln Re_D - 1.64)^{-2}$$

(3) Sequence of Computations. Computations of the water side convection coefficients for each of the system's heat exchangers were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxwtr.f", shown as part of Appendix C, is summarized in Figure 13. Dimensional characteristics of the heat exchangers input to the program were determined from manufacturer's drawings (see Appendix B for a tabular summary of all pertinent dimensions).

(4) Tabular Results. Excerpts from program output is shown in Tables 4 through 6. Note that the water tubing dimensions for type B-25 and B-70 unit heaters are identical, and thus these results are grouped into Table 4. Similarly, tubing dimensions for all duct heaters with the exception of heater 01-24-1 are identical and these results are grouped into Table 5. Results for heater 01-24-1, with its own unique tubing dimensions are shown in Table 6. Complete program output is shown in Appendix C.

c. Extended Surfaces (Fins)

As discussed in the previous chapter, extended surfaces or fins are often added to heat exchanger surfaces to decrease thermal resistance to convection heat transfer. A representative fin array for the heat exchangers being analyzed is shown in Figure 14. Expressions for fin efficiencies are as presented by Incropera and DeWitt [Ref. 11].

Figure 13. Water Side Convection Coefficient Computations Flow Chart

Flow Mass (lbm/hr)	Rates Volume (gal/min)	Re _D	Nu _D	h _{wtr} (BTU/hr-ft²-R)
48.8	0.100	1482.9	6.49	53.4
97.5	0.200	2965.8	15.13	124.4
146.3	0.300	4448.7	23.88	196.4
780.2	1.600	23726.5	107.45	883.6
828.9	1.700	25209.4	113.04	929.6
4876.0	10.00	148290.7	492.92	4053.2

Table 4. Unit Heater Water Side Convection Coefficient Computations

Flow Mass (lbm/hr)	Rates Volume (gal/min)	Re _D	Nu _D	h _{wtr} (BTU/hr-ft²-R)
48.8	0.100	1505.1	4.36	36.4
97.5	0.200	3010.2	15.41	128.6
146.3	0.300	4515.3	24.25	202.4
780.2	1.600	24081.5	108.80	908.0
828.9	1.700	25586.6	114.46	955.3
4876.0	10.00	150509.5	499.06	4165.2

Table 5. Duct Heater Water Side Convection Coefficient Computations (with exception of heater 01-24-1)

Flow Mass (lbm/hr)	Rates Volume (gal/min)	Re _D	Nu _D	h _{wtr} (BTU/hr-ft²-R)
48.8	0.100	807.1	4.36	19.5
97.5	0.200	1614.2	4.36	19.5
146.3	0.300	2421.2	11.55	51.7
780.2	1.600	12913.3	64.15	287.1
828.9	1.700	13720.4	67.58	302.5
4876.0	10.00	80708.0	297.17	1329.9

Table 6. Duct Heater 01-24-1 Water Side Convection Coefficient Computations

(1) Single Fin Efficiency. The single fin efficiency, η_f , is given by the expression:

$$\eta_f = \frac{\tanh mL_{fin_c}}{mL_{fin_c}}$$
 (22)

where:

$$m = \sqrt{\frac{h_{air}P}{k_{fin}A_{c_{fin}}}}$$
 (23)

$$L_{fin_c} = L_{fin} + \frac{t_{fin}}{2} \tag{24}$$

Figure 14. Representative Fin Array

(2) Fin Overall Surface Efficiency. Characterizing the performance of an array of fins is done with the expression *fin overall surface efficiency*, η_o , where:

$$\eta_o = \frac{q_t}{q_{\text{max}}} = \frac{q_t}{hA_{s_{all}}(T_{base} - T_{\infty})}$$
 (25)

Breaking down the total heat transfer into contributions from the finned and unfinned (base) surfaces and noting that $A_{s_{air}} = A_{s_{fin}} + A_{base}$, this expression can be further simplified yielding:

$$\eta_o = 1 - \frac{A_{s_{fin}}}{A_{s_{gir}}} (1 - \eta_f)$$
(26)

(3) Sequence of Computations. Computations of single and overall fin efficiencies for each of the system's heat exchangers were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code

titled "hxU.f", shown as part of Appendix C, is summarized in Figure 15. Dimensional characteristics of the heat exchangers input to the program were determined from manufacturer's drawings (see Appendix B for a tabular summary of all pertinent dimensions).

(4) Tabular Results. A summary of program output for each of the system's heat exchangers is shown in Table 7. Efficiencies were computed using operating conditions and air side convection coefficients of Table 3. Complete program output is shown in Appendix C.

Heater	η_{ℓ}	η_o
B-25* Unit Heaters	0.87	0.89
B-70** Unit Heaters	0.82	0.84
01-24-1 Duct Heater	0.92	0.93
01-25-1 Duct Heater	0.90	0.90
01-50-0 Duct Heater	0.91	0.92
2-25-1 Duct Heater	0.92	0.92
2-16-1 Duct Heater	0.93	0.93

Table 7. Heater Single Fin and Overall Fin Efficiencies

d. Fouling Resistance

During normal heat exchanger operation, surfaces are often subject to fouling by fluid impurities, rust or scale formation, and other reactions between the fluid

and the wall material. Depositions such as these can greatly increase the resistance to heat transfer between the fluids. This effect can be treated by introducing an additional thermal resistance, termed the *fouling factor*, R_f , the value of which depends on the operating temperature, fluid velocity, and length of service of the heat exchanger. Fouling factors recommended by the Tubular Exchanger Manufacturer's Association are shown below in Table 8. The shaded fouling factors are those used for the heating system analyzed in this thesis.

e. Tube Wall Conduction

Derivations of the tube wall conduction resistance, R_{wall} by Incropera and

Fluid	Fouling Factor	(hr-ft²-°F/BTU)
	Below 125 °F	Above 125 °F
Seawater	0.0005	0.001
Distilled Water	0.0005	0.0005
Treated Boiler Feedwater	0.001	0.001
City or Well Water	0.001	0.002
Hard Water	0.003	0.005
Air	0.002	0.002
Diesel Exhaust	0.01	0.01
Clean Steam	0.0005	0.0005

Table 8. Typical Fouling Factors

DeWitt [Ref. 11] produce the following expressions for duct heater tubes (cylindrical) and unit heater tubes (modeled as plane wall).

$$R_{wall} = \frac{\ln\left(\frac{d_o}{d_i}\right)}{(2\pi L k)_{tube}} \tag{27}$$

(cylindrical tube wall conduction resistance)

$$R_{wall} = \left(\frac{t}{kA_s}\right)_{tube} \tag{28}$$

(plane wall tube conduction resistance)

3. Summation of Elements

The summation of thermal resistances including effects of air side convection with fins, water side convection without fins, fouling on both air and water sides, and tube wall conduction yields the following:

$$\frac{1}{UA_{s}} = \frac{1}{U_{air}A_{s_{air}}} = \frac{1}{U_{wtr}A_{s_{wtr}}}$$

$$= \frac{1}{(\eta_{o}hA_{s})_{air}} + \frac{R_{f_{air}}}{(\eta_{o}A_{s})_{air}} + R_{wall} + \frac{R_{f_{wtr}}}{A_{s}} + \frac{1}{(hA_{s})_{wtr}}$$
(29)

The calculation of the UA_s product does not require designation of the air side or water side, i.e. $UA_s = U_{air}A_{s_{air}} = U_{wtr}A_{s_{wtr}}$. However, the calculation of an overall coefficient, U, does depend on whether it is based on the air side or the water side surface area since $U_{air} \neq U_{wtr}$ if $A_{s_{air}} \neq A_{s_{wtr}}$. As mentioned previously, the convection

coefficient for the air side is generally much smaller than that for the water side, and thus dominates determination of the overall coefficient.

4. Overall Coefficient Computations and Results

a. Sequence of Computations

Computations of the overall coefficients for each of the system's heat exchangers were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxU.f", shown as part of Appendix C, is summarized in Figure 15. Program inputs are the previously computed values of h_{air} , h_{wir} , tabulated values of $R_{f_{air}}$ and $R_{f_{wir}}$, and dimensional and material characteristics (see Appendix B for a tabular summary of all pertinent dimensions).

b. Tabular Results

A summary of program output for each of the system's heat exchangers is shown in Table 9. Complete program output is shown in Appendix C.

C. THE EFFECTIVENESS - NTU METHOD

1. Applicability

The *Effectiveness - NTU* analysis method is used to take the overall heat transfer coefficient parameter and determine heat exchanger heat transfer performance characteristics. This method is chosen over the *log-mean temperature difference* method based on a detailed comparison between the two methods presented by Kays and London [Ref. 10]. In the comparison, steps for each method are evaluated for a variety of

Figure 15. Fin Efficiency and Overall Coefficient Computations Flow Chart

Heater	U _{air} (BTU/hr-ft²-R)
B-25 Unit Heaters*	4.9
B-70 Unit Heaters**	6.7
01-24-1 Duct Heater	5.7
01-25-1 Duct Heater	6.4
01-50-0 Duct Heater	5.6
2-25-1 Duct Heater	8.3
2-16-1 Duct Heater	4.5

Type B-25 include unit heaters 2-8-0 and 2-73-1.

Table 9. Heat Exchanger Overall Coefficient Results

analysis starting points. For this analysis, where only the inlet hot and cold fluid temperatures are known, the Effectiveness - NTU method is more straightforward, eliminating a tedious, iterative procedure where outlet temperatures would be estimated and then adjusted until the heat transfer rate corresponds to the inlet/outlet temperature difference. In the Effectiveness - NTU (abbreviation for "number of transfer units") approach, from knowledge of the heat exchanger type, size, and fluid flow rate, the NTU, maximum heat transfer rate, $\dot{Q}_{\rm max}$, and effectiveness, ϵ (both defined shortly) are used to determine the actual heat transfer rate.

^{**} Type B-70 include unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

2. Maximum Possible Heat Transfer Rate

The maximum possible heat transfer rate for a given heat exchanger is achieved when, by definition, the entering cold air temperature is raised to equal its highest possible value, i.e., that of the entering hot water temperature. Referring to Figure 3, entering air would rise in temperature by the quantity $(T_3 - T_1)$. Using a relationship for the heat transfer rate similar to that presented earlier:

$$\dot{Q} = \dot{m}c_p(T_3 - T_1)$$
 (30)

where the term $\dot{m}c_p$ is defined as the *heat capacity rate*, C, and will be either based on the mass flow rate, \dot{m} , and specific heat, c_p , for air or for water. As developed by Incropera and DeWitt [Ref. 11], the *maximum heat transfer rate*, $\dot{Q}_{\rm max}$, is then:

$$\dot{Q}_{\text{max}} = C_{\text{min}} (T_3 - T_1)$$
 (31)

where C_{\min} is equal to either C_{air} or C_{wtr} , whichever is smaller.

3. Effectiveness

The *effectiveness*, ϵ , is defined as the ratio of the actual heat transfer rate for a heat exchanger to the maximum possible heat transfer rate.

$$\epsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} \tag{32}$$

The effectiveness, which is dimensionless, must be in the range $0 \le \epsilon \le 1$. It is

useful because, if ϵ , T_3 , and T_1 are known, the actual heat transfer rate may be determined from the expression:

$$\dot{Q} = \epsilon \dot{Q}_{\text{max}} = \epsilon C_{\text{min}} (T_3 - T_1) \tag{33}$$

4. Number of Transfer Units

The *number of transfer units*, *NTU*, is a dimensionless parameter that is widely used for heat exchanger analysis and is defined as:

$$NTU = \frac{UA_s}{C_{\min}}$$
 (34)

5. Effectiveness - NTU Relations

The Effectiveness - NTU relationship for the type heat exchangers being analyzed, i.e. a single pass cross flow heat exchanger with both fluids unmixed is:

$$\epsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right)(NTU)^{0.22}\left\{\exp\left[-C_r(NTU)^{0.78}\right] - 1\right\}\right]$$
 (35)

where:

$$C_r = \frac{C_{\min}}{C_{\max}}$$
 (36)

The NTU, ϵ , C_r relation may be represented graphically as shown in Figure 16.

6. Computations and Results

a. Sequence of Computations

Computations involving the Effectiveness - NTU analysis of the system's

heat exchangers were completed utilizing a spreadsheet format, shown in Appendix D. Inputs are heat exchanger dimensions, water and air inlet temperatures T_1 and T_3 respectively, air and water volumetric flow rates, and previously determined values of j_H ,

Figure 16. NTU, ϵ , C, Relation of a Single-Pass Cross Flow Heat Exchanger with Both Fluids Unmixed

 h_{air} , h_{wir} and U_{air} . Using relations defined in Sections IV-C-2 through IV-C-5, NTU-effectiveness parameters were computed and finally the heat transfer rate and outlet air and water temperatures T_2 and T_4 were determined.

b. Tabular Results

Effectiveness - NTU analysis results for the hydronic system are shown in Table 10.

			Air F	Air Flow Parameters	meters			Water I	Water Flow Parameters	meters								
Heater	CFM	m.	G	Re	$J_{ m H}$	h	ပ	·#	ų	Ü		$\dot{\mathcal{Q}}_{max}$	NTN	Ç	(.ō	F	E
		(hr	(ft² sec)			$\left(rac{ ext{BTU}}{ ext{hr ft}^2 ext{R}} ight)$	(BTU)	(hr)	$\left(\frac{BTU}{hr\ ft^2\ R}\right)$	$\left(\frac{BTU}{hr R}\right)$	$\left(\frac{BTU}{hr \ ft^2 \ R} \right)$	$\left(\frac{\mathrm{BTU}}{\mathrm{hr}}\right)$		5	ע	(BTU)	(°F)	14 (°F)
B-25	400	1798	1.16	2981	0.0048	6.0	431	4876	4053	4886	4.9	58095	0.24	60.0	0.21	11713	87	188
B-70	1505	6763	2.25	5795	0.0037	0.6	1623	4876	4053	4886	6.7	211020	0.15	0.33	0.13	28214	77	184
01-24-1	3680	16538	1.63	2762	0.0040	7.0	3969	4876	4053	4886	5.7	508045	0.18	0.81	0.15	74778	81	175
01-25-1	1400	6292	1.62	1691	0.0047	8.2	1510	4876	4053	4886	6.4	332196	0.23	0.31	0.20	66393	14	176
01-50-0	750	3371	1.16	1211	0.0056	7.0	608	4876	4053	4886	5.6	177962	0.29	0.17	0.24	43215	23	181
2-25-1	1050	4719	1.73	3654	0.0054	10.1	1132	4876	4053	4886	8.3	169873	0.15	0.23	0.13	22526	09	185
2-16-1	350	1573	0.82	851	0.0062	5.4	377	4876	4053	4886	4.5	54737	0.33	80.0	0.28	15152	85	187

Table 10: Effectiveness - NTU Analysis Results - Hydronic System

V. SYSTEM COMPARISONS AND DISCUSSION

A. OUTLINE

The hydronic system heat exchanger performance data generated in the previous chapter will be compared with steam system performance parameters. Specifically, the heat rate outputs (\dot{Q}) and the final air temperatures (T_2) of the hydronic system will be compared with those of the steam system. In cases where the hydronic system performance matches or exceeds steam system performance parameters stated on the ship's prints, water flow rates will be optimized. In instances where the hydronic system performance falls short of that of the steam system, further analysis will be conducted to attempt to increase hydronic system heat transfer.

B. FURTHER EXAMINATION OF STEAM SYSTEM CAPABILITIES

1. Modifications to Effectiveness-NTU Method

Steam system heat exchanger heat transfer performance data is essential in order to assess the capabilities of the hydronic system. To compute steam system performance parameters, the Effectiveness-NTU analysis method is again used, modified for steam as follows:

The convection coefficient for steam is taken to be very large (on the order of 10⁴), thereby decreasing the air side thermal resistance, contributing negligibly to the overall heat transfer coefficient.

- 2. The specific heat for a substance undergoing a phase change, such as steam condensing, is infinite. The heat capacity rate for steam, C_{steam} , is therefore also infinite, yielding a heat capacity ratio, C_r , effectively equal to zero.
- 3. In the case of $C_r = 0$, the effectiveness, $\epsilon = 1 \exp(-NTU)$.
- 4. The inlet air and steam temperatures are as stated previously in Chapter II.
- 5. The steam mass flow rate, $\vec{m}_{steam} = \vec{Q}/(h_{fg})$, where h_{fg} is the enthalpy difference due to condensation from saturated steam to saturated water.

2. Sequence of Computations

Computations involving the Effectiveness-NTU analysis of the system's heat exchangers were completed utilizing a spreadsheet format shown in Appendix D. Inputs are heat exchanger dimensions, steam and air inlet temperatures, T_1 and T_3 respectively, as well as air volumetric flow rates, and previously determined values of j_H , h_{air} , and U_{air} . Using relations defined in Chapter III, Effectiveness-NTU parameters were computed and finally the heat transfer rate and outlet air temperature T_2 for each heat exchanger were determined.

3. Tabular Results

Effectiveness-NTU analysis results for the steam system are shown in Table 11.

			Air Fl	Air Flow Parameters	neters			Steam F	Steam Flow Parameters	meters								
	CFM	m.	Ð	Re	$J_{ m H}$	ч	C	· m	h	C		Q max	ILL	ر	ų	.ō	[-	[-
Heater		(hr)	(ft² sec)			$\left(\frac{BTU}{hr\ ft^2\ R} \right)$	(BTU)	(hr	$\left(\frac{BTU}{hr\ ft^2\ R} \right)$	(BTU)	BTU (hr ft² R)	BTU)		<u>ٽ</u>	J.	(BTU)	(°F)	(°F)
B-25	400	1798	1.16	2981	0.0048	6.0	431	17.6	0<<	8	5.0	77656	0.24	0.00	0.22	16722	66	240
B-70	1505	6763	2.25	5795	0.0037	0.6	1623	42.5	0<<	8	6.7	292182	0.15	0.00	0.14	40445	85	240
01-24-1	3680	16538	1.63	2762	0.0040	7.0	3969	127.7	0<<	8	6.1	706500	0.19	0.00	0.17	121615	93	240
01-25-1	1400	6292	1.62	1691	0.0047	8.2	1510	6.19	0<<	8	9.9	407696	0.24	0.00	0.21	87498	28	240
01-50-0	750	3371	1.16	1211	0.0056	7.0	809	59.0	0<<	8	5.8	218408	0.30	0.00	0.26	56155	39	240
2-25-1	1050	4719	1.73	3654	0.0054	10.1	1132	33.0	0<<	8	8.5	226498	0.15	0.00	0.14	31449	89	240
2-16-1	350	1573	0.82	851	0.0062	5.4	377	22.5	0<<	8	4.7	73612	0.34	0.00	0.29	21428	102	240

Table 11: Effectiveness-NTU Analysis Results - Steam System

C. COMPARISONS OF HYDRONIC AND STEAM SYSTEMS

1. Tabular Results

Comparisons of the hydronic and steam systems' heat transfer performances are shown in Tables 12 and 13.

Heater	$\dot{\mathcal{Q}}_{hydronic}$ (BTU/hr)	$\dot{\mathcal{Q}}_{steam}$ (BTU/hr)	$rac{\dot{\mathcal{Q}}_{hydronic}}{\dot{\mathcal{Q}}_{steam}}$
B-25	11,713	16,722	0.70
B-70	28,214	40,445	0.70

Table 12: Unit Heater Hydronic vs. Steam Performance Data

Heater	$\dot{\mathcal{Q}}_{hydronic}$ (BTU/hr)	$\Delta T_{air_{hydronic}}$ (°F)	$\dot{\mathcal{Q}}_{steam}$ (BTU/hr)	ΔT _{air_{steam}} (°F)	$rac{\dot{\mathcal{Q}}_{hydronic}}{\dot{\mathcal{Q}}_{steam}}$	$\frac{\Delta T_{air_{hydrontc}}}{\Delta T_{air_{steam}}}$
01-24-1	74,778	19	121,615	31	0.61	0.61
01-25-1	66,393	44	87,498	58	0.76	0.76
01-50-0	43,215	53	56,155	69	0.77	0.77
2-25-1	22,526	20	31,449	28	0.71	0.71
2-16-1	15,152	40	21,428	57	0.70	0.70

Table 13: Duct Heater Hydronic vs. Steam Performance Data

2. Comparison Trends

Comparisons between hydronic and steam system results bear some consistencies.

Notably, the ratio of the hydronic to steam heat performance values average approximately 70 percent. This is a performance difference which warrants examination to determine what the possibilities are for improved performances and what are the causes for the shortfalls.

D. IMPROVING PERFORMANCE OF HYDRONIC SYSTEM

1. Altering Air Mass Flow Rate

a. Analysis Method

The Effectiveness-NTU analysis makes very apparent that the air-water heat exchangers studied are "air side limited". This can be explained qualitatively by examining, for given heat exchanger dimensions and flow conditions, the relative magnitudes of the contributors to the basic relations used in the analysis. The inverse relationships of thermal resistances in the computation of overall coefficient, U, heavily skews the resulting value of U to the lower convection coefficient in the equation , in this case h_{air} . The number of transfer units, NTU, is directly proportional to U, thus a lower value of U results in a lower NTU. Examining the graphical representation of the NTU- ϵ -C, relation (see Figure 16), lower values of NTU yield lower values of effectiveness ϵ . The heat transfer rate, \dot{Q} , is then the product of \dot{Q}_{max} and ϵ .

A means to increase the air side convection coefficient, h_{air} , and thereby increasing the overall coefficient and the heat transfer rate, is to increase the rate of air

flow passing over the heat exchanger. A change in the air side convection coefficient with increasing air flow rate can be predicted by examining the plots of Colburn j factor vs. Reynolds number and the relation from which h_{air} is derived, i.e. $h_{air} = (j_H G c_p)/(Pr^{2/3})$. The negative slope of the plots indicate that j_H decreases with increasing Reynolds number, but it is also true that the mass velocity, G, increases with increasing Reynolds number. The greatest increases in h_{air} will be realized when Re and therefore G increase with minimal decrease in j_H . This leads to the qualitative deduction that increases in h_{air} are more profound if the plot of Colburn j factor vs. Reynolds

b. Analysis Results

number is nearer to horizontal.

The net effects on h_{air} of the counteracting trends of j_H and G, and the effects of the plot's slope can best be seen with sample computations. Results of Effectiveness-NTU analysis computations at air flow rates of up to twice the original flow rates for duct heater B-25 are shown in Table 14. Computations for the remaining heat exchangers are shown in tables in Appendix D. Plots of heat transfer rate vs. air flow rate for each heat exchanger are shown in Figures 17 through 23.

c. Air Temperature Rise Considerations

The increased heat transfer rate at increased air flow rate produces a decrease in the rise in air temperature. This can be explained by examining the relationship between the heat transfer rate and the change in air temperature presented in a previous chapter, i.e. $T_2 = T_1 + (\dot{Q}/C_{air})$. The heat transfer rate, \dot{Q} , increases but the

		Air F	Air Flow Parameters	neters			Water I	Water Flow Parameters	ımeters								
CFM	'n.	Ü	Re	$J_{\rm H}$	ħ	C	m	h	C)— }	$\dot{\varrho}_{\scriptscriptstyle \sf max}$	N	ر	(· <i>o</i>	E	ŀ
	(hr)	$\left(\frac{1bm}{ft^2sec}\right)$		Ď	(BTU (hr ft² R)	(BTU)	(hr	$\left(\frac{BTU}{hr~ft^2~R}\right)$	(BTU)	Sair BTU (hr ft² R)	$\left(\frac{\mathrm{BTU}}{\mathrm{hr}}\right)$		5	ע	(BTU)	(°F)	'°F)
400	1798	1.16	2981	0.0048	0.9	431	4876	4053	4886	4.9	56085	0.24	0.09	0.21	11713	87	188
200	2247	1.45	3726	0.0045	7.0	539	4876	4053	4886	5.6	70106	0.22	0.11	0.19	13487	85	187
009	2696	1.74	4471	0.0042	6.7	647	4876	4053	4886	6.1	84128	0.20	0.13	0.18	14807	83	187
700	3146	2.03	5217	0.0038	8.3	755	4876	4053	4886	6.4	98149	0.18	0.15	0.16	15663	81	187
800	3595	2.32	5965	0.0035	8.7	863	4876	4053	4886	9.9	112170	0.16 0.18	0.18	0.15	16270	79	187

Table 14: Effectiveness-NTU Analysis Results - B-25 Unit Heater with Increasing Air Flow Rate

Figure 17. Heat Transfer Rate vs. Air Flow Rate - Unit Heater B25

Figure 18. Heat Transfer Rate vs. Air Flow Rate - Unit Heater B70

Figure 19. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 01-24-1

Figure 20. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 01-25-1

Figure 21. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 01-50-0

Figure 22. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 2-25-1

Figure 23. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 2-16-1

air's heat capacity, C_{air} , also increases with larger air flow rates, resulting in a net reduction in air temperature rise.

The reason for providing heat to a particular volume of air needs to be considered to determine whether a decrease in ΔT_{air} is acceptable at a higher \dot{Q} . If the purpose of providing heat to a volume of air is solely to increase the air temperature of potentially very cold air, as is the case with duct preheaters, then the decrease in ΔT_{air} at a higher \dot{Q} would not be acceptable. If the purpose of providing heat to a space is to provide incident heat to surfaces in the space, with the air temperature already at reasonably comfortable level, (e.g. 60°F), as could be the case with unit heaters, then the decrease in ΔT_{air} at a higher \dot{Q} would be acceptable. In the latter case, the air provided to the space at an increased \dot{Q} has increased enthalpy, thereby able to increase the enthalpy of a volume of 'unheated' air to a proportionally higher value.

d. Practicality

Increasing the flow rate of air passing over the duct heaters, if involving the replacement of existing fans with larger fans, is not seemingly a practical endeavor.

The expense, effort, and potential ramifications of duct fan replacement make this course of action, at an initial evaluation, not viable.

Increasing the flow rate of air passing over the unit heaters, due to much better accessibility and smaller scale of the project, is seemingly a practical endeavor. An initial review of fans available from the unit heater manufacturer, New York Blower

Company, indicates that fans with larger flow rates having similar dimensions as those presently installed are available. An excerpt from a New York Blower technical publication showing various size/flow rate fans is included in Appendix E.

2. Increasing Entering Water Temperature

a. Analysis Method

The hydronic system analysis performed thus far was done assuming an entering water temperature, T_3 , of 190°F, an industry accepted hydronic system operating temperature. It should be noted that a non-pressurized water system will never match the heat transfer performance of a steam system with all other system parameters equal. This is due to the difference in the water's and steam's entering temperature, which as was shown previously, directly affects the Effectiveness-NTU computation of the maximum heat transfer rate, \dot{Q}_{max} which in turn affects the heat transfer rate, \dot{Q} , (recall that

$$\dot{Q}_{\text{max}} = C_{\text{min}}(T_3 - T_1)$$
 and $\dot{Q} = \epsilon Q_{\text{max}}$.

b. Analysis Results

The effects of increasing the inlet water temperature from 190°F to 205°F are shown in Tables 15 and 16.

c. Practicality

The means to provide an increased water temperature are available from many commercial sources. An engineering judgement needs to be made as to whether the energy put into additionally heating the water is worth the energy received in the form of

Heater	$\dot{Q}_{T_3=190^{\circ}F}$ (BTU/hr)	$\dot{Q}_{T_3 = 205 {}^\circ \! F}$ (BTU/hr)	$\frac{\dot{Q}_{T_3=205^{\circ}F}}{\dot{Q}_{T_3=190^{\circ}F}}$
B-25	11,713	13,064	1.11
B-70	28,214	31,469	1.11

^{*} Type B-25 include unit heaters 2-8-0 and 2-73-1.

Table 15: Unit Heater Hydronic Performance Data with Increased Entering Water Temp.

Heater	$\dot{Q}_{T_3=190^{\circ}F}$ (BTU/hr)	ΔT _{air_{T3=190°F}} (°F)	<i>Q</i> _{T₃=205°F} (BTU/hr)	Δ <i>T</i> _{air_{T3}=205°F} (°F)	$\frac{\dot{Q}_{T_3=205^{\circ}F}}{\dot{Q}_{T_3=190^{\circ}F}}$	$\frac{\Delta T_{air_{T_3=205°F}}}{\Delta T_{air_{T_3=190°F}}}$
01-24-1	74,778	19	83,541	21	1.11	1.11
01-25-1	66,393	44	70,920	47	1.07	1.07
01-50-0	43,215	53	46,162	57	1.07	1.07
2-25-1	22,526	20	24,779	22	1.10	1.10
2-16-1	15,152	40	16,720	44	1.10	1.10

Table 16: Duct Heater Hydronic Performance Data with Increased Entering Water Temp.

heated air. A control system that would allow water temperatures to be easily adjusted to higher temperatures in colder weather is desirable. To minimally impact a hot water heating system on the whole, local electrical booster heaters could be installed

Type B-70 include unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

near heat exchanger water inlets. This could be a desirable means to provide hotter water to the duct preheaters, which directly heat weather-intake air.

E. KEY FACTORS IN HEAT EXCHANGER PERFORMANCE

1. Dependence on Air Side Convection Coefficient

Results of Effectiveness-NTU analysis for both the hydronic and steam system heat exchangers are dependent on the air side convection coefficient, h_{air} . Retracing the path in obtaining heat transfer rates and air temperature rises from the Effectiveness-NTU analysis, it was discerned that the most influential characteristic of a given heat exchanger was the air side convection coefficient. Due to the its relatively small magnitude, the value of h_{air} dominated computation of the overall coefficient, U_{air} . From U_{air} was determined the number of transfer units, NTU. Larger values of NTU yielded larger efficiencies, ϵ , which when multiplied by the maximum heat transfer rate, \dot{Q}_{max} , yielded increased heat transfer rates, \dot{Q} .

Gas-liquid heat exchanger performance is thus regarded as air side limited, with the air side convection coefficient the key parameter. The manner in which h_{air} is computed is worth revisiting to determine influencing factors. Recalling from Chapter III:

$$h_{air} = \frac{\dot{Q}}{(T_S - T_1) * A_s}$$
 (37)

In this expression, the use of T_1 (inlet air temperature, the lowest temperature in the system) results in the largest difference when subtracted from T_S , thus giving the most conservative (lowest) values of h_{air} . Carrying this conservative value of h_{air} through the analysis as described above results in conservative values for heat transfer performance.

2. Manufacturer's Stated Heat Transfer Performance

Using a manufacturer's air temperature rise table, such as the on shown in Figure 2, the steam system heat transfer rate can be solved for directly (i.e. $\dot{Q} = \dot{m} c_p [T_2 - T_1]$). Proceeding to solve for ϵ , NTU, U_{air} , and h_{air} (neglecting all thermal resistances but air side convective resistance for simplification, i.e. $1/UA = 1/(\eta_o hA)_{air}$) will give an indication of what T_I equivalent a manufacturer's h_{air} and resulting heat transfer rates/air temperature rises are based on.

Looking at manufacturer's information presented in Figure 2, and considering the case of a single row, 12 fin per inch heat exchanger, with an air flow velocity of 500 FPM, the temperature rise from $0^{\circ}F$ is 77.2°F. Solving for h_{air} and then the T_I equivalent as outlined above yields a value of T_I equal to $58^{\circ}F$ (see Appendix F for computation details). This is in contrast to the value of $0^{\circ}F$ used for computations of h_{air} in the analysis done in Chapter III (see output for Fortran computer code "hxair" I Appendix B). This demonstrates that values of h_{air} that manufacturer's heat transfer rates are based on are significantly higher than values that were used in this thesis, leading to differences in heat exchanger performance values.

The difference in the analysis starting point of T_I outlined above indicates that magnitudes of heat exchanger performance data found in this thesis are conservative by approximately 15-20 percent when compared to manufacture's data. The percent difference between the hydronic and steam system heat transfer performance will however still be consistent with the results of this thesis - compared data will have larger magnitudes but with approximately the same percent differences. The only true verification of any prediction of the complex heat transfer involved in a compact gasliquid heat exchanger is through controlled measurements under known conditions. By experimental verification, predictions to cover similar geometries are then able to be made with more certainty.

F. OPTIMIZATION OF WATER FLOW RATES

1. Optimization Candidates

Heat exchangers that meet or exceed the heat transfer rates air temperature rises as stated in the ship's prints (heat exchangers 2-8-0, 2-80-1, and 01-24-1) can be further analyzed to determine an optimal water flow rate. With the air flow rate in this view of system operation fixed at the manufacturer's/print values, the water mass flow rate can be adjusted to lesser values to obtain an optimal value at which the minimum heat delivery rate and air temperature rise can be achieved. The objective in this optimization is to achieve the minimum water pumping power required to meet stated system heat transfer performance parameters.

2. Effectiveness-NTU Analysis Method Readapted

The Effectiveness-NTU analysis method can be used once again with the intention of solving for the heat exchanger surface area for a given heat transfer rate. The heat exchanger surface area can be solved for using a relation presented in Chapter III, i.e.

$$A_{s_{air}} = \frac{(NTU)(C_{\min})}{U_{air}}$$
 (38)

where, for instances of $(\dot{m} c_p)_{wtr} < (\dot{m} c_p)_{air}$:

$$C_{\min} = (\dot{m} c_p)_{wtr} \tag{39}$$

Thus, for a given heat exchanger with known air flow rate, air side convection coefficient, estimated water side coefficient, and stated heat transfer rate, the air side surface area can be computed and compared with the known value. This optimization procedure is continued until the computed surface area is less than or equal to the known surface area.

Once an optimal water mass flow rate is found, the accompanying water side convection coefficient is adjusted to match the value used in the computation of the overall coefficient. This is not too onerous of a task since as was described in the water side convection computation section of Chapter III (results shown in Appendix C), the water side convection coefficients at low water flow rates (i.e. 0.5 gpm) are already an order of magnitude above the air side convection coefficients and thus have little effect on the overall coefficient.

a. Sequence of Computations

Computations involving the optimizations of water flow rates using the Effectiveness-NTU analysis were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxNTUOPT.f", shown as part of Appendix C, is summarized in Figure 24. Program inputs are the previously computed estimated values of U_{air} , water inlet and outlet temperatures T_1 and T_3 respectively, air volumetric flow rates, heat exchanger air side surface areas $A_{s_{air}}$, and the stated design heat rates $\dot{\mathcal{Q}}_{prints}$.

b. Tabular Results

An example of Effectiveness-NTU water mass flow rate optimization program output for heater 2-80-1 is shown in Table 17. Program outputs for other optimized heat exchangers 2-8-0 and 01-24-1 are shown in Appendix C. The shaded last row represents the final optimized parameters.

A summary of optimized water mass flow rates for unit heaters 2-8-0, 2-80-1, and duct heater 01-24-1 are shown in Table 18.

c. Low Optimal Flow Rates

As shown in Table 18, for heat exchangers 2-8-0 and 2-80-1, the minimum water mass flow rate are very low compared to the value of 10 gpm used for other heat exchangers in the system. It is apparent that these two heat exchangers could have much less heat transfer surface area on both the water and tube sides at the expense of an

Input water and air inlet temperatures, overall coefficient, air flow rate, air side surface area, and heat transfer rate. Compute air mass flow rate and heat capacity rate. Begin DO loop to compute Effectiveness-NTU parameters at water mass flow rates iterated up to 4,876 lbm/hr (10 gpm). Compute water heat capacity rate Cwtr, and compare with air heat capacity rate C_{air} . If $C_{air} < C_{wtr}$, proceed with $C_{min} = C_{air}$. If $C_{wtr} < C_{air}$, proceed with $C_{min} =$ Compute heat exchanger air side surface area and compare with actual air side surface area. If computed value is less than actual value, print results to output file. If computed air side surface area is greater than

actual, continue DO loop until solution is found or end program at water mass flow rate of 4,876 lbm/hr (10 gpm).

Figure 24. Effectiveness-NTU Computations Flow Chart

increased water mass flow rate and still provide heat transfer rates stated on the prints. This can be seen from the results in Table 17, where the increase in water mass flow rate corresponds to a decrease in air side surface area. Water flow rates as low as those obtained for heat exchangers 2-8-0 and 2-80-1 delivering heat transfer rates stated on the ship's prints indicates that the heat exchangers are oversized for the application. This apparent oversizing is also evident when it is noted that the same size unit heater (B-70) is used to deliver heat transfer rates varying from 5,294 to 64,860 BTU/hr. Selections of apparently oversized heat exchangers for a particular heat load was most likely based on other sound reasoning, not solely on heat transfer capacity.

$\dot{m}_{_{wtr}}$ (lbm/hr)	$\dot{V}_{_{wtr}}$ (gpm)	C min (BT	C max U/ hr- R)	C_{r}	€	NTU	Computed $A_{s_{air}}$ (in^2)
59	0.12	59.6	431.6	0.14	1.00	5.00	10,216
69	0.14	69.6	431.6	0.16	0.86	2.16	5,156
79	0.16	79.6	431.6	0.18	0.75	1.52	4,150
89	0.18	89.7	431.6	0.21	0.66	1.20	3,689
99	0.20	99.7	431.6	0.23	0.60	1.00	3,418
109	0.22	109.7	.431.6	0.25	0.54	0.86	3,235
119	0.24	119.7	431.6	0.28	0.50	0.75	3,079
129	0.27	129.8	431.6	0.30	0.46	0.67	2,981

Table 17. Results of Water Mass Flow Rate Optimization Using Effectiveness-NTU Analysis for Heater 2-80-1. Actual $A_{s_{qir}} = 3,013$ in 2 and $\dot{Q}_{prints} = 7,747$ BTU/hr.

Heater Number	\mathcal{Q}_{prints} (BTU/hr)	Actual $A_{s_{atr}}$ (in^2)	Water Flow $A_{s_{air}}(computed)$ (lbm/hr)	
2-8-0	7,747	3,013	129	0.27
2-80-1	5,294	5,198	51	0.10
01-24-1	51,600	17,700	812	1.67

Table 18. Summary of Effectiveness-NTU Optimization Analysis Results

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SYNOPSIS

This thesis successfully analyzed heat transfer performance aspects of a set of heat exchangers installed on the U.S. Coast Guard's WTGB Icebreaking Tug class cutters. Initial analysis with acknowledged conservative definitions of air side convection coefficients determined that the hydronic system provided on average seventy percent of the heat transfer capabilities available with the steam system. Practical improvements to the hydronic system were shown to increase heat exchanger performance parameters by an average of ten percent. It was notable that the added heat transfer available from steam is not due to a property of steam itself such as latent phase change effects, but is due solely to the increase in entering tube side temperature. Judging by heat transfer capabilities alone, with the described conservative assumptions on which these results are based, use of currently installed heat exchangers in a hydronic system is a viable option.

B. PROPOSED HYDRONIC SYSTEM

A hydronic system circulating water at 10 gallons per minute and 190 degrees F, will provide at minimum the heat transfer and air temperature rises shown in Table 10. These performance parameters were arrived at considering the entire thermal circuit involved and with conservative assumptions (when compared to manufacturer's methods) for air side convective resistance determinations. Hydronic system performance parameters can be improved through the practical methods outlined. Considering heat

transfer capabilities, use of the currently installed heat exchangers as part of a hydronic system is plausible.

Use of a pressurized water system, where system pressure would allow the circulating water temperature to equal or exceed that of steam (240°F) is another approach to the hydronic system design that could be explored.

C. FURTHER STUDY

There are numerous issues to examine further in order to take into account all aspects of using presently installed heat exchangers as part of a hydronic system. Issues remaining are related to the hardware involved as well as further analysis/design work.

One hardware issue remaining is the internal heat exchanger component's compatibilities with circulating hot water as opposed to steam. In steam heat exchangers, there is typically a strip of shaped metal which distributes the flow, insuring that the fluid passes nearly equally through all tubes. The erosion effects of water on this and other internal elements designed for use with steam should be examined.

A hardware issue on the external side of the heat exchanger is the relative location of water vs. steam inlet and outlet piping. One manufacturer's information indicated that for a steam heat exchanger, inlet piping is above the outlet to allow for condensate drainage. Conversely for circulating water, the inlet is below the outlet to help prevent air in the system from inhibiting water flow. The effort involved in possibly reversing inlet and outlet piping when switching from a steam to hydronic system thus needs to be examined.

Further design and analysis work includes among other matters, the hydronic system design to provide water at either 10 gallons per minute or the optimized values to the respective heat exchangers. Pressure drops across each heat exchanger and across other system components need to be accurately gauged to arrive at a required pumping head. Air side pressure drops also need to be examined if any of the heat transfer enhancements involving increases in air flow rate are adopted, to insure fans remain properly sized.

LIST OF REFERENCES

- 1. "Heating Systems," U.S. Coast Guard Technical Publication for WTGB Class Cutters, Chapter 4
- 2. "Steelfin Coils," New York Blower Company, Bulletin 841, February, 1984
- 3. "Unit Heaters," New York Blower Company, Bulletin 824, November, 1986
- 4. "Steam Heating System Diagram," U.S. Coast Guard Drawing 101 WYTM 535-001, Revision M
- 5. "Steam Heating System Arrangements and Details," U.S. Coast Guard Drawing 101 WYTM 535-002, Revision M
- 6. "Heating, Ventilation and Air Conditioning System Diagram," U.S. Coast Guard Drawing 101 WYTM 514-001, Revision N
- 7. "Heating, Ventilation and Air Conditioning System Arrangements and Details," U.S. Coast Guard Drawing 101 WYTM 514-002, Revision V
- 8. "Steam Heating Coils 5/8" OD Tube," Colmac Coil Manufacturing, Inc., Bulletin 5070A, November 1, 1995 Revised
- 9. "Central Station Air-Handling Units," Carrier Corporation Publication 39B, 1975
- 10. Kays, W. M. and London, A. L., Compact Heat Exchangers, McGraw-Hill, Inc., 1984
- 11. Incroperra, F. P. and DeWitt, D. P., *Introduction to Heat Transfer*, John Wiley and Sons, Inc., 1990
- 12. Kays, W.M. and Crawford, M. E., Convective Heat and Mass Transfer, McGraw-Hill, Inc., 1993
- 13. Irvine, T. F., Steam and Gas Tables with Computer Equations, Academic Press, Inc., 1984
- 14. White, F. M., Fluid Mechanics, McGraw-Hill, Inc., 1994

APPENDIX A. WTGB CLASS CUTTER ILLUSTRATION

United States Coast Guard Cutter Bristol Bay (WTGB-102)

APPENDIX B. HEAT EXCHANGER DIMENSIONS AND MATERIAL PROPERTIES

Area Density α (ft ² /ft ³)	06	83	163	256	256	134	256
Hydraulic Diameter D_h (in)	0.38	0.38	0.25	0.154	0.154	0.312	0.154
Fin Area to Air Side Surface Area Ratio $A_f/A_{s_{atr}}$	0.85	0.85	0.91	96.0	96.0	0.92	96.0
Air Side Surface Area $A_{s_{air}}$ (in ²)	3,013	5,198	17,700	7,959	5,969	2,868	3,979
Free Flow Area A_{ff} (in ²)	62	120	405	155	116	109	77
Frontal Area A_{fr} (in ²)	100	185	693	288	216	198	144
Fins per Inch	5	5	8	12	12	9	12
Coil Dimensions (in)	10 x 10 x 4.25	13.5 x 13.875 x 4.125	20.5 x 34 x 1.88	12 x 24 x 1.299	12 x 18 x 1.299	12 x 16.5 x 1.299	12 x 12 x 1.299
Heater	B-25*	B-70*	01-24-1	01-25-1	01-50-0	2-25-1	2-16-1

Table B-1. Heat Exchanger Dimensions and Material Properties

^{*} Type B-25 includes unit heaters 2-8-0 and 2-73-1.

** Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

Heater	Tube Material	Number of Tubes	Tube Dimensions (in)	Tube Wall Thickness t_{tube} (in)	Tube Thermal Conductivity $k_{tube} = \frac{BTU}{hr \cdot ft \cdot R}$	Tube Side Surface Area $A_{s_{mr}}$ (in ²)
B-25*	Steel	7	A = 0.31 B = 3.08	090:0	26	465
B-70*	Steel	6	A = 0.31 B = 3.08	0.060	26	807
01-24-1	Copper	12	A = 1.035 B = 1.035	0.045	221	1326
01-25-1	Copper	8	A = 0.555 B = 0.555	0.035	221	335
01-50-0	Copper	8	A = 0.555 B = 0.555	0.035	221	251
2-25-1	Copper	8	A = 0.555 B = 0.555	0.035	221	230
2-16-1	Copper	8	A = 0.555 B = 0.555	0.035	221	167

Table B-2. Heat Exchanger Dimensions and Material Properties

^{*} Type B-25 includes unit heaters 2-8-0 and 2-73-1. ** Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

Heater	Fin Material	Fin Length L_{fin} (in)	Fin Width w_{fin} (in)	Fin Thickness t_{fin} (in)	Fin Thermal Conductivity $k_{fin} = \frac{BTU}{hr \cdot fr \cdot R}$
B-25*	Steel	0.460	3.51	0.018	26
B-70*	Steel	0.460	3.51	0.018	26
01-24-1	Aluminum	0.450	1.88	0.0083	118
01-25-1	Aluminum	0.438	1.299	0.0065	118
01-50-0	Aluminum	0.438	1.299	0.0065	118
2-25-1	Aluminum	0.438	1.299	0.010	118
2-16-1	Aluminum	0.438	1.299	0.0065	118

* Type B-25 includes unit heaters 2-8-0 and 2-73-1.
** Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

Table B-3. Heat Exchanger Dimensions and Material Properties

New York Blower

7660 QUINCY STREET-WILLOWBROOK, ILLINOIS 60521

DIMENSIONS (INCHES)

Size	Coil Face Area	Α	В	D _.
2 ,	.70	13	10	10
46	.96	13%	111/2	113/4
812 **	1.29	15%	131/2	13%
1420	1.88	191/4	161/2	161/4
1824	2.78	221/8	20	20
4256	4.92	31	27	261/4

× 3·25 × × β-70

DIMENSIONS [INCHES]

А	В	C max.	D	(FPT)	Wheel dia.	Approx.* weight [lbs.]
12	131/4	201/8	143/4	11/2	8	65
13¾	13%	201/8	15⅓	11/2	10	75
15¾	161/8	201/2	17%	11/2	12	115
181/4	191/2	201/2	21	2	14	145
22	231/8	241/4	24%	2	18	180 180 200
28¼	311/4	243/8	32¾	21/2	24	305 305 305 310
	12 13¾ 15¾ 18¼ 22	12 13¼ 13¾ 13⅓ 15¾ 16⅓ 18¼ 19½ 22 23⅓	12 13¼ 20⅓ 13¾ 13⅓ 20⅓ 15¾ 16⅓ 20⅓ 15¾ 16⅓ 20⅓ 20⅓ 22 23⅓ 24⅓	12 13¼ 20⅓ 14¼ 13¾ 13⅓ 20⅓ 15⅓ 15¾ 16⅓ 20⅓ 15⅓ 18¼ 19⅓ 20⅓ 21 22 23⅓ 24¼ 24⅓	Max. Unit [FPT] 12 13¼ 20% 14¾ 1½ 13¾ 13% 20% 15% 1½ 15¾ 16% 20½ 17% 1½ 18¼ 19½ 20½ 21 2 22 23% 24¼ 24% 2	12 13¼ 20½ 14¾ 1½ 8 13¾ 13¾ 20½ 15½ 1½ 10 15¾ 16½ 20½ 17½ 1½ 12 18¼ 19½ 20½ 21½ 1½ 12 18¼ 19½ 20½ 21 2 14 22 23½ 24¾ 24½ 2 18

*Weights will vary with motor specifications. Tolerance: ±1/8"

STEAM HEATING COILS 5/8" OD TUBE

Dimensions For Steam Coils

5/8" Basic, Heavy Duty Steam Heating Coil

12-72 FIN LENGTH 73-120 FINNED LENGTH

A SUPPLY RETURN A SUPPLY RETURN
10 1/4 1 1/2 HPT 1 1 1/4 HPT 10 1/4 2 HPT 1 1/2 HPT
10 1/4 1 1/2 HPT 1 1/4 HPT 10 1/4 2 HPT 1 1/2 HPT SUPPLY RETURN
1 1/4 HPT 1 HPT A SUPPLY RETURN 7 3/4 1 1/2 MPT 1 1/4 MPT 9-18 6-12 21-30 14-21 7 3/4 1 1/2 33-45 22-30 8 3/4 2 1 1/2 61" - 102"

FINNED LENGTH DIN'S B PLUS C 12' - 30' 3 1/8 3 3/4

1

- NDTE: 1. 5/16' DIA HOLES DN 3' CTRS FROM CENTERLINE DF CASING.
 - 2. CDIL PITCHED IN CASING TOWARD RETURN END 1/4" PER FOOT OF FINNED LENGTH.
 B DIM PLUS C DIM PLUS FIN HEIGHT EQUALS H.

Carrier

AIR QUANTITY (Cfm) Face Velocity (fpm) 400 Face Velocity (fpm) 400 Soon 1076 1255 600 1291 1882 1507 12196 1507 12196 (H & V units only) 900 1935 2826 1100 2150 3140 1200 2365 3454 HEATING COILS Face Area (sq ft) U-Bend Steam Distributing Tube 1.73 1.73 2.72	060 F () () () () () () () () () (
Solution Solution	2142 2677 3213 3749 4288 4824 5360 5896
Soo	2677 3213 3749 4288 4824 5360 5896
1291 1882 1507 2196 1882 1507 2196 1882 1507 2196 1882 1507 2196 1720 2512 1720 1720 2512 1720	3213 3749 4288 4824 5360 5896
Face Velocity (fpm) 800 1720 2512 (H & V units only) 900 1935 2826 1000 2150 3140 1100 2365 3454 1200 2580 3768 HEATING COILS Face Area (sq ft) U-Bend 2150 3.14 Sream Distributing Tube 1.73 3.14 HUMIDIFIER CONN.	3749 4288 4824 5360 5896
Face Velocity (fpm) 800 1720 2512	4288 4824 5360 5896
1935 2826 1000 2150 3140 1100 2365 3454 1200 2580 3768	4824 5360 5896
1000 2150 3140	5360 5896
1100 2365 3454 1200 2580 3768 HEATING COILS	5896
HEATING COILS 2580 3768	
HEATING COILS	6432
U-Bend	
Steam Distributing Tube 2.15 3.14 HUMIDIFIER CONN. 2.72	
HUMIDIFIER CONN.	
HUMIDIFIER CONN. 2.72	5.36
	4.81
(no size)	
Atomi zing Spray	
Steam Grid	11/2
Supply (in. OD)	*****
Drdin (in. Op)	11%
OFERATING WT (Ib)	11/2
FACE AND BYPASS	750
DAMPER APEAS (4)	
MIXING BOX	11.0
DAMPER AREAS (sq ft) 5.9	
FANS (no. wheelsno. outlets)	10.4
Diom** (in.)	11
Theel Length (in.) 72 10%	12%
	9%
and Critical Speed (en-)	43
mus Operating Speed (see)	1700
Fan Sheave Bore (in.) 2040	1360
2	17/16
BASE UNIT AND ACCESSORY DUESTON	5
FAN & COIL SECTION L 46% 34% 19% 40% 53% 130% 17M 137% 17M 17M	B Type DIH & V
W 38% 38% 200 400 200 200 200 33% 67% 495	28% 42
H 34V 34V 383 424 383 384 424 44V 44V	
MIXING BOX SECTION 1204 30% 57% 1214 42	70 29%
W 36% 36% 36% 24% 24% 24% 24% 24% 130% 130%	303/ 1 303/
W 36% 36% 36% 36% 36% 36% 36% 36% 36% 36%	
W 36% 36% 36% 36% 36% 36% 36% 36% 36% 36%	44% 44%
W 36% 36% 36% 36% 36% 36% 36% 36% 36% 36%	44½ 44½ 37¾ 37½
W 36% 36% 36% 36% 36% 36% 36% 36% 36% 36%	44½ 44½ 37¾ 37¾ 4½ 4½
W 36%	44¼ 44¼ 37¾ 37½ 4½ 4½ 44¼ 44¼
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44½ 44½ 29½ 29½
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44½ 44½ 29½ 29½
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44½ 44½ 29½ 29½ 9 44½ -
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44½ 44½ 29½ 29½ 9 - 44½ - 29½ -
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44½ 44½ 29½ 29½ 9 - 44½ - 29½ - 9 -
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44¼ 44½ 29½ 29½ 9
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44½ 44½ 29½ 29½ 9 - 44½ - 29½ -
W 36%	44½ 44½ 37½ 37½ 4½ 4½ 44¼ 44½ 29½ 29½ 9

L - Length

H - Height

H & V - Heating and Ventilating

APPENDIX C. FORTRAN COMPUTER CODES AND OUTPUTS

```
+"indicated:
                                                                                                                                 +T8, "TS = +T8, "AFR = +T8, "AFF = +T8, "ASAIR = +T8, "DH = +T1, "VAIR
                                                                                                                                                                                                                                        +T1, " (FPM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                KAIR =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RETURN
                                   က မ
                                                                                                                                                                                                                                                                         7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               24
                                                                                                                                                                                                                                                                                                                             0 0 0 0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        υ
              Jim Hurley
Naval Postgraduate School
Spring 1996
                                                                                                                                                                                                      Input heat exchanger dimensional characteristics, air flow inlet temperature, air velocities, and array of corresponding outlet air temperatures.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  compute parameters
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Begin DO loop to compute flow parameters at each flow velocity.
                                                                                                                                                                                                                                                                                                                                          *)"Heat exchanger surface temperature (degrees F):
                                                                                                                                                                                                                                                                                                                                                                                                               *) "Heat exchanger free flow area (square inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                              *) "Total air side surface area (square inches):"
                                                                                                                                                                                                                                                                                                                                                                           *)"Heat exchanger frontal area (square inches):"
                                                                                                                 REAL CPAIR, TSTD, T1, TS, AFR, AFF, ASAIR, DH, VAIRL, VAIRU, VAIR, +TZ (200; 1.1200), TM, MDOTAIR, QDOTAIR, HAIR, G, RE, PR, ST, JH, DAIR, HWIAIR, KAIR, PATM, R, MUO, TO, S, C (0:6), N, VAIRINC
DATA CPAIR, TSTD/0.24, 70.0/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FORMAT(//,"***HEAT EXCHANGER MODEL - AIR SIDE****",//,
                                                                                                                                                                                                                                                                                                         *) "Air flow entering temperature (degrees F):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Compute mean air temperature to determine transport properties with FUNCTION subroutines.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 *) "Flow passage hydraulic diameter (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE(55,7) VAIR, T2 (VAIR), MDOTAIR, QDOTAIR, HAIR, RE, JH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               *)"Coil face velocity lower value (FPM):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ((*,*)"Coil face velocity upper value (FPM):"
*,VAIRU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Using relations defined in Section III-D-1, oc
MDOTAIR, QDOTAIR, HAIR, G, RE, PR, ST, and JH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    *) "Coil face velocity increment (FPM):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             MDOTAIR = DAIR(TSTD)*(AFR/144.0)*(VAIR*60.0)
QDOTAIR = MDOTAIR*(SEXIR*(T2(VAIR)-T1))
HAIR = QDOTAIR*((TS-T1)*(ASAIR/144.0))
G = (MDOTAIR*144.0) ((3600.0*AFF))
RE = G*(DH/12.0)/MUAIR(TM)
PR = CPAIR*WOLAR(TM)
ST = HAIR*(3600.0*G*CPAIR)
JH = ST*PR**(2.0/3.0)
                                                                                 PROGRAM HEAT EXCHANGER MODEL AIR SIDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0 20 VAIR = VAIRL, VAIRU, VAIRINC
WRITE(*,5)T1,VAIR
READ *,T2(VAIR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DO 21 VAIR = VAIRL, VAIRU, VAIRINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE (55, 6) T1, TS, AFR, AFF, ASAIR, DH
                                                                                                                                                                                                                                                                           OPEN(55, FILE = 'RESULTS.HXAIR')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Print results to output file.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Continue DO loop to completion.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TM = (T2(VAIR) + T1)/2.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   *, VAIRINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ASAIR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                READ *, VAIRE WRITE(*, *) "C
                                                                                                                                                                                                                                                                                                                                                                                              * AFR
                                                                                                                                                                                                                                                                                                                                                              READ * , TS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      WRITE (*,
                                                                                                                                                                                                                                                                                                                                                                             WRITE (*
                                                                                                                                                                                                                                                                                                                                                                                                               WRITE (*
                                                                                                                                                                                                                                                                                                                                                                                                                                                  WRITE (*
                                                                                                                                                                                                                                                                                                                                              WRITE (*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 WRITE (*
                                                                                                                                                                                                                                                                                                                                                                                                                                 READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  READ
                                                                                                                                                                                                                                                                                                                             READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0000 0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        UUU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                000
0 0 0 0 0
                                                                                       υ
```

Page 2 JH",/, FUNCTION subroutines to compute temperature dependent transport FUNCTION MUAIR(TM) REAL MUAIR,TM,MUO,TO,S DATA MUO,TO,S/1.191E-5,491.67,198.72/ MUAIR = MUO*(((TM+459.67)/T0)**1.5)*((T0+S)/((TM+459.67)+S))) +'indicated:',/} FORMAT(/,"IZ at II = ".F5.1," F and VAIR = ".F5.0," FPM:") FORMAT(//,' +T25,"HEAT EXCHANGER MODEL - AIR SIDE",/, FORMAT(11,F5.0,T8,F5.1,T15,F6.0,T24,F7.0,T36,F6.1,T46,F6. +T55,F6.5) END ODOTAIR H-AIR RE (BTU/hr sqft R)",/, REAL KAIR, TW.C(0:6), N DATA C(0), C(1), C(2), C(3), C(4), C(5), C(6)/ DATA C(0), C(1), C(2), C(3), C(4), C(5), C(6)/ +2.2756501E-3,1.259448E-4,-1.4815235E-7,1.73550646E-10, +1.066578-13,2.47663035E-17,0.0/ KAIR = 0.0 DO 24 N = 0.0, 6.0, 1.0 CAIR = C(N)*(((TM+459.67)*0.5556)**N) + KAIR +"Enter the following parameters in the units",/, hxair.f +T5; "Heat exchanger number:",///, +T8; "T1 = ".F5.1, " degrees F",/, +T8 "T8 = ".F5.1, " square inches",/, +T8 "AFF = ".F5.1, square inches",/, +T8 "ASAIR = ".F5.1, square inches",/, +T8 "ASAIR = ".F5.1, square inches",/, +T8 "ASAIR = ".F5.1, inches",/, FUNCTION DAIR (TSTD) REAL DAIR, TSTD, PARM, R DAIR, PERK, R/14, 7, 53, 34, DAIR = (PAIM*144,0)/(R*(TSTD+459.67)) (KAIR*0.57782)/3600.0 T2 MDOTAIR (F) (lbm/br) properties of air. FUNCTION KAIR (TM) Jun 6 1896 12:15:03

Page 1

hxair.f

Jun 6 1996 12:15:03

SIDE			Ħ	
- AIR	. 2-80-1)		RE R)	122 US 4 US
EXCHANGER MODEL	5 (2-73-1 and	es F es r e inches e inches are inches	H (BTU/h)	4 N Q Q L L L C Q Q
HEAT EXC	number: B-25	degrees F degrees F square incl square incl 0 square it	QDOTAIR (BTU/hr)	22069. 28456. 38456. 33986. 33233. 38076.
	exchanger num	= 227.0 c = 100.0 c = 61.7 s = 3013.0 c	MDOTAIR (1bm/hr)	11249 11249 11813 12813 12810 131810 131810 1484 6
	Heat exch	TI TS AFR AFF ASAIR DH	T2 (F)	IMMMOLOLNO
	Не		AIR FPM)	1200. 1100. 1200.

AIR SIDE	, 2-40-2, 2-60-1, 2-60-2)	RE JH 2111	
EXCHANGER MODEL - A	(2-8-0, 2-40-1, 2ss ss ches	H-AIR (BTU/hr sqft R) 7 26 4 31 7 7 7 7 1 8 8 1 4 2 8 8 7 6 5 9 8 8 7 6 6 4 8 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	
HEAT EXC	number: B-70 (2-8 0 degrees F 0 degrees F 0 square inches 0 square inches 1 inches 1 inches	QDOTAIR (BTU'hr) 3877 46365 46365 52144 58119 62873 70441 71356	
	nanger 0. 227. 185. 120. 519 120. 38	MDOTAIR (1bm/hr) 2310 2310 2310 2465 4043 4620 57198 6353 6930	
	Heat exch T1 TS AFR AFR ASAIR DH	5. E C C C C C C C C C C C C C C C C C C	
	π	(FPM) 400 500 500 700 800 1200 1200	

SIDE			H5	
- AIR SI			RE R)	1111 120 120 120 120 120 120 120 120 120
EXCHANGER MODEL	-1	oches nches inches	H-AIR (BTU/hr sgft	4 N N O O C C C R O G S G C C C C R
HEAT EXCI	number: 01-24	degrees F degrees F square inches square inches o.0 square inches inches	80	129391 1459301 1160440 1160440 1185674 197669 2217607 222551
	exchanger num	= 227.0 d = 693.0 s = 405.0 s = 17700.0	MDOTAIR (1bm/hr)	108154 108154 1151981. 1151981. 1173044. 119471. 233798. 233798.
	Heat exch	T1 TS AFR AFF ASAIR DH	T2 (F)	00004444688 0011740088 000000000000000000000000000000000
	Не			1200.

HEAT EXCHANGER MODEL - AIR SIDE ====================================	T1 = 0.0 degrees F TS = 227.0 degrees F AFR = 288.0 square inches AFF = 155.0 square inches ASAIR = 1755.0 square inches DH = 0.15 inches	T2 MDOTAIR QDOTAIR H-AIR RE (F) (lbm/hr) (BTU/hr) (BTU/hr sqft R)	114.9 1798. 694.7 3596. 60.0 7193. 48.0 10789.
Heat exc	T1 TS AFR AFF ASFI DH	T2	480004 440008

		i 400 t 0 m 0	
SIDE		JH	
- AIR		RE 499.	
MODE	es F es F e inches e inches are inches	H-AIR (BTU/hr saft 7.2 7.2 8.3 9.1 9.9	
E I	degrees F degrees F square inc square inc 9.0 square i	(BTU/hr) (BTU/hr) 37190. 54830. 67680. 77681. 85935. 93218.	
HE == exchanger number:	= 227. = 227. = 116. = 0.15	MDOTAIR (1bm/hr) 2697. 4046. 5395. 8092.	
Heat exch	T1 TS AFR ASAIR DH	(F)	
He		(FPM) (FPM) 200 400. 600. 1200.	,

NT EXCHANGER MODEL - AIR SIDE	s F ss F s inches inches inches	7AIR RE JH //hr) (BTU/hr sqft R) 205. 4.5 102300911 23. 6.7 207400684 85. 84 313300505 87. 11.2 525900452 776. 12.4 632500422	
-2 EX	0 degrees F 0 degrees F 0 square inches 0 square inches 8.0 square inches inches	R (BTU)	
HEAT ======HEAT Heat exchanger number: 2	T1 = 0.0 de TS = 227.0 de AFR = 198.0 sc AFF = 109.0 sc ASAIR = 2868.0 DH = 0.31 inc	T2 MDOTAIR (F) (lbm/hr) 68.1 1236. 51.1 2472. 42.9 3709. 37.7 4945. 34.1 6181. 31.5 7417.	

```
Page 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Begin DO loop to compute flow parameters at mass flow rates ranging from 0 to 4,876 lbm/hr (10 gpm) in increments of 48.76 lbm/hr.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Using relations defined in Section IV-B-2-b, compute parameters RE, F, NU, and HWTR.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HWTR",/,
(BTU/hr sqft R)",/,
                                                                 Jim Hurley
Naval Postgraduate School
Spring 1996
                                                                                                                                                                                                                                                                                                         OPEN(55, FILE = 'RESULTS.HXWTR')
WRITE(*,4)
WRITE(*,*)"A' dimension of tubing (inches):"
WRITE(*,*)"Note that for a circular tube, 'A' = tube diameter."
READ *,A
WRITE(*,*)"'B' dimension of tubing (inches):"
READ *,B
READ *,B
                                                                                                                                                                                                                                                                         Input tube dimensions considering tube may not be circular.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT(//,"****HEAT EXCHANGER MODEL - WATER SIDE****",//,
**Enter the following parameters in the units",/,
*"indicated:",/)
FORMAT(////,
                                                                                                                                                                               REAL PI, D, CP, MU, K, A, B, DH, PR, MDOTWTR, VDOTWTR, RE, F, NU, HWTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      VDOTWTR = MDOTWTR*7.481/(D*60.0)

RE = (4.0*MDOTWTR*12.0)/(3600.0*PI*DH*MU*32.174)

IF (RE .LE. 2300.0 .AND. A .EQ. B)NU = 4.36

IF (RE .CT. 2300.0) THEN

F = (0.79*LOG(RE) - 1.64)**-2.0

NU = ((F8.0) * (RE-1000.0) PFR)/

NU = ((F8.0) * (RE-1000.0) * PF)/

NU = ((F8.0) * (RE-1000.0) * PF)/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORMAT (T4, F6.1, T15, F6.3, T24, F8.1, T36, F6.2, T49, F6.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     +T25,"HEAT EXCHANGER MODEL - WATER SIDE",/,
+T25,"==============,///,
+T5,"Heat exchanger number:",//,
+T8,"A = ".F5.3," inches",/,
+T8,"B = ".F5.3," inches",/,
+T8,"PR = ".F5.3," inches",/,
+T8,"PR = ".F5.3," inches",/,
+T8,"PR = ".F5.3,"//,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (A .EQ. B)DH = A
IF (A .NE. B)DH = (4.0*A*B)/((2.0*A)+(2.0*B))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Nusselt
Number
hxwr.f
                                                                                                                                           PROGRAM HEAT EXCHANGER MODEL WATER SIDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   WRITE (55, 6) MDOTWTR, VDOTWTR, RE, NU, HWTR
                                                                                                                                                                                                                   DATA PI,D,CP,MU,K
+/3.14159,60.79,1.002,77.0E-7,0.386/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Compute hydraulic diameter of tube.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PR = (CP*MU*32.174*3600.0)/K
WRITE(55,5)A,B,DH,PR
DO 21 MDOTWTR = 0.0, 4876.0, 48.76
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Reynolds
Number
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Print results to output file.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Continue DO loop to completion.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Volume (gal/min)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HWTR = (NU*K*12.0)/DH
 Jun 6 1996 15:18:04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            " (1bm/hr)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            " Mass
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           υυυ
                                                                                                                                                         Ü
                                                                                                                                                                                               Ü
                                                                                                                                                                                                                                                       000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      συσυ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0 0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0 0 0
                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                              000
```

Jun 6 1996 15:18:04

Page 2

ቯ

					7.7										•								٠														•																		
5	35	7 6	4 6	ם מ	2427	46	20	10	7 5	64	68	72	75	79	83	9 0	2 4	97	01	04	08	7,	10	20	26	29	33	9 6	40	43	47	50	53	57	909	1 10	36	17	787	81	84	88	91	95	98	0	05								
2.2	, α η σ	0 11	0 7	# C	.24	77	29	20	100	23	89	12	55	97	200	8/1	2 4	91	26	61	94	7.7	0 0	0 0	48	76	03	29	54	79	03	26	48	69	90	2 0	2 4	7 7 7	200	8 6	13	28	42	26	89	80	92								
5	70	0 6	70	0 0	295.	99	04	2 0	15	22	26	31	35	39	4.	20.00	יי נ	61	99	70	74	9 5	200	0 0	9.5	00	5.0	60	13	17	22	26	30	34	38	1 5	# 1	U 2 1 1 1 1	50	63	89	72	76	80	84	88	92								
c	a n	n o	, 0 -	-	-	0	× 1	'n o	· -	. 4		0	e.		٠. و	· ·	, r		m	ė.	6	×.	n o	· -	. 4		, 0		່ທ		4	4	7	ö	'n.	'n o	· ·	i <		0	m	9	6	ä	ŝ	7	ó								
220	414	# 0	100	117	8007	156	304	707	0 0	897	045	194	342	90	538	/8/	2000	0232	0380	0528	9290	0825	1177	1270	1418	1566	1714	1863	2011	2159	2308	2456	2604	2753	2901	2004	7770	4070	3642	3791	3939	4087	4235	4384	532	4680	4829								
C	ů.	٠,	٠, د	4 c	.400	'n	١٠	٠. ٥	• •	. 0	٠.	ς.	m.	4.	w. ı	ء و	: a	. 0	٥.	۲.	ď	ښ <u>،</u>	ai n	. v		: α			:	. 2	'n	4	'n	œ.	٠, ۱	, c	ů.	٠, -	! ^	۳.	4	'n	œ.	۲.	œ	o.	٥.								
•	4' 15		., u		ט נט	ш1	ا ب	., .	. , 13	, w	· w	w	•		•			. •	.~			8	- (- [-			- 0.		, ω,	Ψ	Ψ	w	•	w (0		. 01		U	01	01	-	ψı	1(
					0.0																																																		
C	7	# 4	d n	กน	2633	ဖ	-	~ 0	o a	9 0	9	0	0	~	~ (NO	4 6	٦ (٢	4	4	S	s) v	oι	7 0	٠.	- α	σ	σ	0	0	0	0	-	~	$^{\circ}$	Nι	າຕ	7	* 4	'n	ın	9	9	7	7	∞	œ								

### ### ### ### #### #### ############	HEAT EXCHANGER MODEL - WATER SIDE ===================================	The state of the s					CONTRACTOR OF THE PROPERTY OF
HEAT EXCHANGER MODEL - WATER SIDE ====================================	HEAT EXCHANGER MODEL - WATER SIDE ***Changer number: B-25 (2-73-1 and 2-80-1) ***Inches*** ***Inc						
### Sexchanger number: B-25 (2-73-1 and 2-80-1) ### = 0.310 inches ## = 0.553 inches ### = 0.500 100	**************************************			HEAT EXCH		- WATER	
## = 0.310 inches ## = 0.360 inches ## = 0.563 inches ## Color Color Color Color ## Color Color Color ## Color Color Color ## Color	## = 0.310 inches ## = 0.531 inches ## = 0.563 inches ## Colume			: B-25 B-70	-73-1 -8-0,	2-80-1) -1, 2-40-2, 2-	-1, 2-60-
Thow Rates The gal min) The	Continue Reynolds Nusselt HWTR Cgal/min Number Number Number Cgal/min Number Number Cgal/min Cgal/min Number Number Cgal/min Cgal/m		0.310 3.080 0.563 2.315	0 0 0 0 0 0			
0.000 1482.9 6.49 53 0.100 2565.8 15.13 124 0.400 52931.6 31.80 5321 0.400 52931.6 6.49 125.13 0.500 4448.7 23.88 125.13 0.700 10380.4 45.20 33.21 0.700 11863.3 46.26 50.00 544 1.100 14829.1 72.24 53.04 436 1.100 14829.1 72.24 53.04 436 1.100 17312.0 65.00 594 1.100 17312.0 84.35 694 1.100 25224.0 101.00 8735 0.2200 23726.5 107.45 883 1.100 25629.4 118.04 9729 1.100 25629.4 118.04 9729 1.100 25629.4 118.04 9729 1.200 23726.5 107.45 883 1.200 23141.1 134.9 84.35 1020 2.200 2316.3 12.0 145.61 1108 2.200 33625.6 166.15 1108 2.200 33625.6 166.15 1108 2.200 44887.3 124.05 1125 1.200 44887.3 181.33 1129 4.200 57833.4 176.31 11491 6.200 57833.4 225.40 185.3 11734 4.200 62282.2 23.0 18 13.0 16.3 11734 4.200 62282.2 23.0 18 185.3 15.0 165.4 4 10.0 65282.2 23.0 184.4 1 2048 4.200 65282.2 23.0 18 185.3 15.0 16.1 1734 4.200 65282.2 23.0 18 12.0 1874 4.200 65282.2 23.0 18 12.0 208 4.200 65282.2 23.0 25.40 185.3 12.0 208 4.200 65282.2 23.2 39.6 53.12 244.4 1 2048	0.000 1482.9 6.49 53 0.100 24448.7 23.88 124 0.400 5931.6 31.80 261 0.400 7931.6 31.80 261 0.500 7414.5 39.21 382 0.700 10380.4 53.04 436 1.000 11863.3 45.04 436 1.000 13342.5 65 60 644 1.100 14829.1 72.24 53.04 436 1.100 19277.8 8435 644 1.100 22224.6 101.8 835 0.2224.0 19277.8 883 1.100 25629.4 118.04 9729 1.100 26629.4 118.0 1195 1.100 26629.7 1195 1.100 26629.7 1196 1.100 26629.7 1196 1.100 26629.7 1196 1.100 26629.7 1196 1.100 26629.7 1196 1.100 26639.7 1196 1.100 26639.7 1196 1.100 26639.7 1209	Flow Mass (lbm/hr)	Rates Vol	- ;	Nusselt Number	,	
2965.8 15.13 124 196 196 196 196 196 196 196 196 196 196	2965.8 15.13 124 0.200 2965.8 15.13 124 0.500 18897.5 46.26 39.21 0.500 18897.5 46.26 39.21 0.500 18897.5 46.26 39.21 0.500 18829.1 59.61 0.500 18829.1 76.26 0.500 18829.1 76.26 0.500 18829.1 76.26 0.500 18229.4 59.61 0.500 192794.9 84.35 69.64 0.500 192794.9 84.35 69.89 0.500 192794.9 84.41 10.20 0.500 192794.9 84.4		0		44	53.4	
3 0.300 \$448.7.5 23.88 21.38 25.68 6 0.500 1887.5 45.66 436 1 0.500 1887.5 45.04 490 1 0.500 1887.5 45.04 490 1 0.000 11865.3 59.61 436 1 0.000 11865.3 59.61 436 1 0.000 11865.3 59.61 436 1 0.000 11865.3 59.61 436 1 1.000 11865.3 59.61 436 1 1.000 11865.3 59.61 436 1 1.000 1324.3 56.06 488 1 1.000 22243.6 101.45 492 2 1.000 23726.5 107.45 975 3 1.000 23726.7 1020 325 4 1.000 23424.0 113.04 975 5 2.000 23410.9	3 0 300 9448 7 23.88 21 248 25.88 0 5.90 0 6.50 0 6		101		, – ,	124.4	
8 7414.5 39.21 38.21 6 0.500 1889.7 5.364 46.26 1 0.000 1889.7 5.364 450 1 0.000 1380.4 53.61 490 1 0.000 1346.2 66.00 542 1 1.000 13482.1 72.24 490 1 1.000 13482.1 72.24 490 1 1.000 13482.1 72.24 440 1 1.000 13482.1 72.44 490 2 1.000 19274.8 90.25 644 3 1.500 22243.6 101.80 883 4 1.500 23726.5 107.45 90.25 4 1.500 23658.2 107.45 90.25 5 2.000 23658.2 107.45 90.25 6 3.000 3264.0 145.43 1108 7 2.200 3480.6 90.25 <	8 7414.5 39.21 32.2 6 600 1889.7 5.24.2 4.6.26 1 0.000 1389.7 5.6.26 4.56 1 0.000 1386.3 59.61 4.56 1 0.000 1346.2 66.00 54.26 1 1.000 14829.1 72.24 490 1 1.000 14829.1 72.24 490 1 1.000 16312.0 78.35 644 1 1.000 19277.8 90.25 742.3 1 1.000 22243.6 101.80 883 2 1.000 23726.5 107.45 90.25 3 1.000 23726.6 101.80 883 4 1.000 23726.6 101.80 893 5 2.000 23658.2 107.45 975 6 2.000 23658.2 107.45 975 7 2.000 23624.0 145.43		w 4		∞ ∞	196.4 261.5	
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ימי		4	322.4	
1. 0.800 11863.3 59.61 490 11863.3 10.800 13346.2 56.00 1348.2 66.00 1348.2 66.00 1348.2 10.000 1348.2 66.00 1348.2 66.00 1348.2 10.000 1348.2 66.00 1348.3 66.00 1348.2 66.00 1348.3 69.2 10.000 19277.8 90.25 748.3 69.2 10.000 19277.8 90.25 10.2 10.000 19277.8 90.25 10.2 10.000 19277.8 90.25 10.2 10.000 19277.8 90.25 10.2 10.000 19277.8 90.25 10.000 19277.8 90.2 10.000 19277.8 90.2 10.000 19277.8 90.2 10.000 19277.8 90.2 10.000 19277.8 90.2 10.000 19277.8 90.2 10.000 19277.8 90.2 10.000 19277.8 90.2 10.000 19277.8 10.0000 1927	1. 0.800 11863.3 59.61 490 8 0.000 13346.2 56.00 542 1. 1.000 13346.2 56.00 542 1. 1.000 1374.9 84.35 66.00 1. 1.000 19277.8 90.25 742 1. 1.000 20760.7 96.06 8837 2. 1. 1.000 23726.5 107.45 8837 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		9.		N 0	436.1	
8 1.000 13346.2 66.00 542 4 1.100 14829.1 72.24 644 1 1.300 17774.9 90.25 7429 6 11.400 20760.7 96.06 84.35 644 1 1.500 22243.6 101.48 83.3 1 1.500 22243.6 107.48 83.3 1 1.500 22269.4 118.57 7489 1 1.500 22629.4 118.57 7489 2 2.000 29658.2 129.47 1054 2 2.000 29658.2 129.47 1054 2 2.000 32624.0 145.43 11052 2 2.000 32624.0 145.43 11052 2 2.000 32624.0 145.43 11052 3 3.000 44487.1 155.87 1281 8 2.500 3406.9 145.43 11052 3 3.000 44487.1 155.87 1281 8 3.000 44883.0 166.25 1673 1 3.300 44883.0 196.25 1673 4 4.000 53384.7 210.93 1574 4 4.000 53386.6 215.78 1813 4 4.000 52482.2 230.18 1892 4 4.000 65282.2 233.18 2088 4 4.000 65282.2 233.18 2088 4 4.000 65282.2 233.18 2088 4 4.000 65282.2 233.18 2088 2 258.47 2125	8 0.900 13346.2 56.00 542 4 1.100 14829.1 72.24 644 1 1.300 17794.9 96.06 644 1 1.400 20760.7 96.06 789 4 1.500 227243.6 101.48 837 1 1.500 227243.6 101.48 837 1 1.500 22529.4 118.57 7429 2 1.000 22658.2 1129.47 1059 2 2.000 29658.2 129.47 1059 2 2.000 29658.2 129.47 1059 2 2.000 29658.2 129.47 1059 2 2.000 32624.0 145.43 11052 2 2.000 32624.0 145.43 11052 3 2.000 32624.0 145.43 11052 2 2.000 32624.0 145.43 11052 3 2.000 3404.4 176.31 11953 3 3.000 44487.1 155.87 1281 8 2.000 44487.1 155.87 1281 8 3.000 44487.1 191.30 1573 4 4.000 55384.7 210.31 1653 4 4.000 55386.6 253.01 186.33 1573 4 4.000 55386.7 225.40 1813 4 4.000 65282.2 239.69 1970 4 4.000 65282.2 239.69 1970 4 4.000 65282.2 239.69 1970 4 4.000 65282.2 234.11 2048 4 4.000 65386.7 253.80 2125 2 201		. &		٠	490.1	
1.100 14312.0 78.75 644 15.00 14312.0 78.75 693 11.00 17794.9 84.35 693 11.00 17794.9 84.35 693 11.00 17794.9 84.35 693 11.00 17794.9 84.35 693 11.00 17794.9 84.35 693 11.00 17794.9 84.35 693 11.00 17794.9 84.35 10.10 11.00 17794.9 81.10 11.00 17794.9 81.10 11.00 17.00	1.100 14312.0 78.75 644 1 1.100 14312.0 78.75 644 1 1.100 17794.9 84.35 693 1 1.100 17794.9 84.35 698 1 1.100 17794.9 84.35 698 1 1.100 17794.9 84.35 698 1 1.100 17794.9 84.35 698 1 1.100 1.200 1.10		ن د		o, c	542.7	
1. 1. 200	1. 1. 200		o. ~		7 m	594.0 644.3	
9 1.300 19277.78 90.25 7482 1 1.500 22243.6 101.80 837 1 1.600 232243.6 101.80 837 1 1.600 232243.6 101.80 883 2 1.600 23224.6 113.46 975 3 1.000 28175.3 124.05 1020 2 1.000 28175.3 124.05 1020 2 1.000 28175.3 124.05 1020 2 1.000 28175.3 124.05 1020 3 2.000 34106.3 124.01 1152 2 2.00 34026.9 145.43 1158 3 2.00 34029.8 150.67 1239 4 2.00 44487.3 186.15 1408 8 3.00 44487.3 186.33 153 9 3.00 44487.3 186.33 153 1 3.00 44893.0 <td>9 1.300 1927.78 90.25 742 742 742 742 742 742 742 742 742 742</td> <td></td> <td>1 (%)</td> <td></td> <td>, m</td> <td>693.6</td> <td></td>	9 1.300 1927.78 90.25 742 742 742 742 742 742 742 742 742 742		1 (%)		, m	693.6	
4 1.500 22243.6 101.80 837 7 1.800 23726.5 107.45 883 7 1.800 28692.4 113.04 975 1 1.800 28175.3 124.05 1020 2 1.000 28175.3 124.05 1020 2 1.000 28175.3 124.05 1020 2 1.000 28175.3 124.05 1020 2 1.000 3141.1 134.83 1108 2 2.000 34106.9 145.43 118 3 2.000 34052.9 145.43 118 3 2.000 34052.1 140.16 1195 4 2.000 34072.7 155.87 1281 3 2.000 44487.3 186.13 1490 8 3.000 44487.3 181.33 1491 9 3.000 448936.0 196.25 1613 1 3.000 488947	4 1.500 22243.6 101.80 837 2 1.600 23726.5 107.45 883 3 1.700 28692.4 118.57 929 4 2.000 28658.4 118.57 975 2 1.000 28175.3 124.05 1064 2 1.000 28178.3 124.05 1069 2 1.000 28178.3 124.05 1069 2 1.000 3141.1 134.83 1108 2 2.000 34106.9 145.43 118 3 2.00 3406.9 145.43 118 3 2.00 3408.9 161.03 1281 3 2.00 40038.5 161.03 1281 3 2.00 44487.3 181.33 1491 8 3.00 44487.3 181.33 1491 9 3.00 44893.0 196.25 1613 1 3.00 48936.0		سٰ ⊿		20	789.9	
2 1 600 23726.5 107.45 883 7 1 800 28692.4 118.54 975 7 1 800 286592.4 118.57 975 0 2 100 28658.2 124.05 1062 0 2 100 28658.2 124.05 1062 0 2 100 3141.1 134.83 1108 0 2 100 34106.9 145.43 1152 0 2 600 34002.7 145.64 1239 0 2 600 3855.6 161.03 1284 0 2 600 3704.7 171.25 1449 0 2 600 44487.3 186.13 153 0 2 800 44487.3 186.13 153 0 2 100 44487.3 186.25 1449 0 2 10 4450.0 196.25	2 1 600 23726-5 107.45 883 7 1 800 28692.4 118.57 975 7 1 800 286592.4 118.57 975 0 2 100 28658.2 124.05 1062 0 2 100 28658.2 129.47 1062 0 2 100 34106.2 146.16 1152 0 2 200 34106.1 146.43 1153 0 2 600 37672.7 155.87 1281 0 2 600 37675.6 161.03 1366 0 2 600 3767.2 161.03 1366 0 2 600 3767.2 161.03 1366 0 2 800 44487.3 186.15 1449 0 2 800 44487.3 186.25 1449 0 2 800 44487.3 186.3<		'n		ω.	837.1	
4 1.800 26692.4 118.57 975 4 2.000 29155.3 124.05 1020 2 1.000 28155.3 124.05 1080 2 1.000 3141.1 134.83 1108 2 2.000 34106.9 145.43 1152 2 2.000 34106.9 145.43 1192 2 2.000 34002.7 145.43 1192 3 2.000 340038.5 161.03 1386 3 2.000 44487.3 181.33 1408 8 3.000 44487.3 186.13 153 8 3.000 44487.3 186.33 153 9 2.000 44487.3 186.33 153 1 3.000 48936.0 196.25 1613 1 3.000 48936.0 196.25 1613 1 3.000 5384.7 210.93 1734 4 3.00 5384.7<	4 1.800 26692.4 118.57 975 4 2.000 29658.2 124.05 1020 2 2.000 29658.2 124.05 1062 2 2.000 3141.1 134.83 1108 2 2.000 34106.9 145.43 1192 2 2.000 34106.9 145.43 1192 2 2.000 34002.7 155.87 123 3 2.000 3755.6 161.03 136 3 2.000 44487.3 181.33 1440 8 3.000 44487.3 181.33 1431 8 3.000 44487.3 186.33 153 8 3.000 44487.3 186.33 153 9 4.00 45487.3 186.33 1573 1 3.00 48936.0 196.25 1613 1 3.00 48936.0 196.25 1613 4 0.00 53384.7		9.		4.0	929.6	
4 1.900 28175.3 124.05 1020 2.100 29658.2 129.447 1068 2.200 32624.0 140.16 1152 2.200 34106.9 145.43 1108 2.200 34002.7 140.16 1152 2.400 34002.7 140.16 1153 3.200 40038.5 155.87 1231 3.200 44487.3 166.15 1366 3.200 44487.3 181.33 1491 8 3.000 44487.3 181.33 1491 8 3.000 448936.0 196.25 1613 1 3.300 48936.0 196.25 1613 4 3.600 519018 206.17 1534 4 3.600 53384.7 210.93 1734 4 3.000 54867.6 215.78 1734 4 4.00 53384.7 210.93 1734 4 4.00 53384.7 <	4 1.900 28175.3 124.05 1020 2 1.000 29568.2 129.447 1064 2 1.000 31441.1 134.83 1108 2 2.000 34106.9 145.43 1108 2 2.400 34106.9 145.43 1195 2 2.400 34002.7 155.87 1231 2 5.00 34072.7 161.03 1281 3 2.00 40038.5 161.03 1366 3 2.900 44487.3 181.33 1409 8 3.000 44487.3 181.33 1491 8 3.000 44487.3 181.33 1491 9 4.400 5190.1 47450.1 191.30 1573 1 3.500 48936.0 196.25 1613 1573 4 3.600 51901.8 206.06 1654 4 3.600 5334.7 210.93 1734 <td< td=""><td></td><td>- ∞</td><td></td><td>'n</td><td>975</td><td></td></td<>		- ∞		'n	975	
7 2.200 3141.1 134.83 1108 7 2.200 34106.9 140.16 1158 2 2.400 35589.8 150.67 1239 2 2.400 37072.7 155.87 1239 2 2.500 37072.7 155.87 1239 3 2.900 40038.5 166.15 1364 8 2.900 44487.3 181.33 1364 8 3.000 44487.3 181.33 1491 8 3.000 44487.3 181.33 1491 8 3.000 44887.0 196.25 1409 8 3.500 51918.9 206.17 1654 4 3.600 53384.7 210.93 1774 4 4.000 52382.2 230.18 1853 4 4.000 5248.9 225.40 1853 4 4.000 62282.2 239.69 1970 6 4.200 65248.0 249.11 2048 4 4.000 65248.0 253.80 6 4.000 65248.0 253.80 6 4.000 65248.0 253.80 6 4.000 65248.0 253.80 6 5000 65730.9 253.80	7 2.200 3141.1 134.83 1108 7 2.200 34106.9 140.16 1152 2 2.400 35589.8 150.67 1239 2 2.400 37072.7 155.87 1239 2 2.500 37072.7 155.87 1239 3 2.900 40038.5 166.15 1364 8 2.700 40038.5 166.15 1364 8 3.000 44487.3 181.33 1491 8 3.000 44487.3 181.33 1491 8 3.000 44887.0 196.25 1408 8 3.500 51918.9 206.17 1654 4 3.600 51918.9 206.17 1673 4 4.000 52782.2 239.69 181.34 4 4.000 62282.2 239.69 181.3 4 4.000 62282.2 239.69 181.3 4 4.000 65248.0 253.80 200 6 4.200 66730.9 253.80 200 6 4.200 66730.9 253.80 200 6 4.200 66730.9 253.80 200 6 4.000 65248.0 263.80 200 6 6730.9 253.80 200 6 775.7 200		9,0		0,5	020	
7 2.200 32624.0 140.16 1152 5 2.400 34106.9 145.43 11595 8 2.500 37072.7 155.87 1239 9 2.500 37072.7 155.87 1231 2.500 40038.5 166.15 1364 8 2.700 40038.5 166.15 1364 8 3.000 44487.3 181.33 1491 8 3.000 44487.3 181.33 1491 8 3.200 44487.3 181.33 1491 9 3.000 44936.0 196.25 1613 1 3.200 48936.0 196.25 1613 1 3.200 57834.7 210.93 1774 4 3.600 53384.7 215.78 1734 6 3.500 5783.4 225.40 1853 4 4.000 5248.7 5 220.60 1893 4 4.000 5248.7 5 220.60 1893 6 4.000 5248.7 5 220.60 1893 7 4.000 62282.2 239.63 1970 7 4.000 62282.2 239.63 1970 7 4.000 62282.2 239.63 209.83	7 2.200 32624.0 140.16 1152 5 2.400 34106.9 145.43 1155 0 2.500 37072.7 155.87 1239 2 2.600 38555.6 166.15 1364 3 2.900 44087.3 181.33 14091 8 3.000 44487.3 181.33 14091 8 3.000 44487.3 181.33 14091 8 3.000 45970.2 191.30 1573 1 3.200 48936.0 196.25 1613 8 3.600 51918.9 206.15 1613 4 3.600 51918.9 206.17 1613 4 4.000 52182.2 230.18 1853 4 4.000 52182.2 230.18 1853 4 4.000 65282.2 233.18 2041 4 4.000 65282.2 233.18 2041 6 4.000 65282.2 233.6 233.18 2041 7 4.000 65282.2 233.18 2041 7 4.000 65282.2 233.0 233.18 2041 7 4.000 65282.2 233.18 2041 7 4.000 65282.2 233.0 2233.0 2125.		? =		00	108	
2 2.400 35589.8 150.67 1239 2 2.600 37072.7 155.87 1231 3 2.900 40038.5 166.15 1346 8 2.700 40038.5 166.15 1346 8 3.000 44487.3 181.33 1491 8 3.200 44487.3 181.33 1491 8 3.200 45936.0 196.25 1653 1 3.300 48936.0 196.25 1673 1 3.300 51918.9 206.0 1674 4 3.600 53384.7 210.93 1734 6 3.500 5783.4 225.40 1853 6 4.000 52782.2 230.18 1853 6 4.000 62282.2 233.6 1814 7 4.400 65248.0 249.11 2048 6 4.500 66730.9 253.80	2 2.400 35589.8 150.67 1239 2 2.600 37072.7 155.87 1231 3 2 2.800 40038.5 166.15 1366 3 2 2.000 40038.5 166.15 1366 3 2 2.000 44487.3 181.33 14491 6 3 2.000 44487.3 181.33 1491 8 3 200 44487.1 191.33 1491 8 3 200 48936.0 196.25 1613 1 3 300 51918.9 206.17 1654 4 3 600 51918.9 206.11 1654 6 4 3.000 5783.4 7 210.93 1734 4 4 100 52382.2 230.18 1853 4 4 200 62282.2 233.6 1814 4 4 400 65248.0 249.11 2048 4 4 500 66730.9 253.80 6 4 2.00 65282.2 233.6 23 244 6 4 200 65282.2 233.8 233.8 234 7 4 4 600 65282.2 233.8 234 8 4 700 65282.2 233.8 228 8 7 700 65282.2 233.8 228 9 8 7 700 65282.2 233.8 228 1 1 2048 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4		4.4	152	
0 2.500 37072.7 155.87 1324 1 2.500 37072.7 155.87 1324 2 700 41521.4 171.25 1408 1 2.900 44487.3 181.33 1449 1 3.000 44487.3 181.33 1541 1 3.200 44487.3 181.33 1573 1 3.200 44570.2 186.33 1573 1 3.300 48936.0 196.25 1673 4 3.600 55190.1 201.17 1654 4 3.600 5190.1 206.0 1654 4 3.600 54867.6 215.78 1774 4 1.00 57816.3 225.40 1853 4 1.00 57816.3 230.18 1895 4 4.00 62282.2 234.4 209 4 4.00 65282.2 239.69 1970 4 4.00 65282.2	2.500 37072.7 155.87 1281 8 2.700 40038.5 166.15 1364 8 2.700 41521.4 171.25 1408 8 3.000 44487.3 181.33 1441 9 3.000 45970.2 186.33 1573 1 3.300 48936.0 196.25 1613 8 3.400 50418.9 201.17 1654 4 3.600 5194.7 210.93 1774 1 3.800 5783.4 225.40 1853 4 4.000 52782.2 230.18 1893 4 4.000 65282.2 233.18 1931 4 4.000 65282.2 233.18 1931 4 4.000 65282.2 234.4 2095 6 4.200 66730.9 253.80 7 4.200 66730.9 253.80 7 4.200 66730.9 253.80 8 4.000 65282.2 236.40 1853 8 4.000 65282.2 236.40 244.41 2048 4 4.000 65282.2 236.69 1970 6 4.200 66730.9 253.80 2125 7 4.200 66730.9 253.80 2125 7 4.200 66730.9 253.80 2125 7 4.200 66730.9 253.80 2125		J. 4		* 0	239	
8 2 7000 985555 6 165153 13248 2 800 44084 5 165153 14408 8 9 2 800 44487 3 181.33 14404 8 9 3 000 44487 3 181.33 14404 8 9 3 100 44487 3 181.33 14404 9 1 3 000 45970 2 186 3 3 1573 1 3 3 00 48936 0 196.25 16514 9 3 500 51901 8 206.06 16514 1 3 800 551801 8 206.06 16514 1 3 800 55180 5 225.40 1853 1 4 100 62282 2 230.18 1952 1 4 4 00 65248 0 244.11 2048 1 4 4 00 65248 0 243.11 2048 1 4 500 65248 0 253.80 1 5040 65248 0 253.80 1 5040 65248 0 253.80 1 5040 65248 0 253.80 1 5040 65248 0 253.80 1 5040 65248 0 253.80 1 5040 65248 0 253.80 1 5040 6526 0 253	8 2 700 38555 6 166.153 1324 3 2 800 44087 3 166.153 1408 8 3 000 44487 3 181.33 14491 8 3 100 45970 2 186.33 1572 3 3 100 45870 186.33 1573 1 3 300 48936 0 196.25 1613 8 3 400 50418 9 201.17 1654 4 3 600 53384 7 210.13 1734 1 3 800 56350 5 215.78 1734 4 4 100 59316 3 230.18 1853 4 4 200 62282 2 230.18 1892 4 4 4 00 65282 2 230.18 1970 4 4 4 00 65282 2 234.63 1970 4 4 60 66730 9 253 80 2087 4 4 60 66730 9 253 80 2087 6 4 500 66730 9 253 80 2087 7 4 700 66530 7 263.72 2163 8 4 700 66530 9 253 80 2087 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		'n,		00 0	281	
2 800 41521.4 171.25 1408 2 1408 2 2 800 43004.4 171.25 1408 2 2 800 44084.4 171.25 1408 2 2 800 44084.4 171.25 186.33 1408 2 2 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 800 41521.4 171.25 1408 3 200 4304.4 171.25 1408 3 200 44487.1 181.33 1542 3 3 200 44483.1 181.33 1573 3 3 200 47453.1 191.30 1573 4 8936.0 196.25 1613 4 3 600 53384.7 210.93 1734 4 3 600 53384.7 210.93 1734 5 3 200 5783.4 225.40 1812 6 4 200 62282.2 230.18 1892 4 4 000 62282.2 230.18 1892 4 4 4 000 65248.0 244.41 2048 4 4 600 65248.0 253.80 208 4 4 600 65248.0 253.80 208 5 4 200 66730.9 253.80 208 6 4 200 66730.9 253.80 208 7 4 600 66730.9 253.80 208 7 4 700 66730.9 253.80 2125 7 4 700 66730.9 253.80 2125 7 4 800 71179.6 267.75 220.16		9,5		٥.	366	
0 2 900 43004, 4 176,31 14419 6 3.100 44487.3 181.3 1532 3 3.200 47485.1 186,33 1532 6 3.400 50418.9 201,17 1653 6 3.500 51901.8 201,17 1654 6 3.500 51384.7 210,93 1734 1 3 700 54867.6 215,78 1734 9 3.900 5783.4 225,40 1853 4 4.00 59316.3 230,18 1892 4 4.00 62282.2 239,69 1970 7 4.500 66730.9 253,80 6 4.500 66730.9 253,80 6 4.700 65248.0 253,80 7 4.700 65281.3 244,41 2048 7 4.700 65281.3 224,41 2048 7 4.700 65281.3 224,41 2048 7 4.700 65281.3 233,18 234,41 2048 7 4.700 65281.3 225,40 226,40 2069	0 2 900 43004, 4 176,31 14419 6 3.100 44487.3 181.33 1532 3 3.200 47485.1 186,33 15532 8 3.400 4785.1 191.30 1573 8 3.400 50418.9 201.17 1654 6 3.500 51901.8 201.17 1654 1 3.700 54867.6 215.78 1774 1 3.700 54867.6 215.78 1774 1 3.700 5783.4 225.40 1853 4 4.000 59316.3 230.18 1892 4 4.000 65282.2 239.69 1970 7 4.400 66282.2 239.69 1970 7 4.600 66213.8 253.80 2012 7 4.700 66730.9 253.80 2125 7 4.700 66730.9 253.80 2125 7 4.700 66730.9 253.80 2125		. ∞.		10	408	
8 3.000 44487.5 181.33 1532 3 3.200 47453.1 191.30 1573 1 3.300 485976.0 196.25 1654 6 3.500 5548.9 201.17 1654 4 3.600 51901.8 206.06 1694 1 3.800 57834.7 210.93 1774 9 3.800 5783.4 225.40 1814 6 4.000 5783.4 225.40 1853 6 4.200 62282.2 239.69 1992 7 4.400 65248.0 244.11 2048 6 4.500 66730.9 253.80 2040 7 4.600 665213.8 255.41 2087 6 4.700 65248.0 244.11 2048	8 3.000 44487.2 186.3 1532 3 3.000 44487.1 191.30 1573 1 3.300 48536.0 196.25 1654 6 3.500 5548.9 201.17 1654 4 3.600 51901.8 206.06 1694 6 3.800 57384.7 210.93 1734 9 3.800 57386.5 220.60 1853 4 4.000 5738.4 225.40 1853 4 4.000 6739.3 234.55 1930 4 4.000 65248.0 249.11 2048 6 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 8 4.000 65248.0 249.11 2048 9 4.200 66730.9 253.80 2087 7 4.000 66730.9 253.80 2087 8 4.000 66730.9 253.80 2087		9,		w c	449	
3 3.200 47453.1 191.30 1573 1 3.300 48936.0 196.25 1654 6 3.500 551901.8 206.06 1694 1 3.600 51384.7 210.93 1734 1 3.800 55380.5 220.60 1814 2 4.000 57383.4 225.40 1853 4 4.400 65248.0 249.11 2048 4 4.400 65248.0 249.11 2048 4 500 66730.9 253.80 2087 6 4.700 65248.0 249.11 2048 4.700 69696.7 263.12 2125	3 3.200 47453.1 191.30 1573 1 3.300 48936.0 196.25 1654 6 3.500 55936.0 201.7 1654 4 3.600 51901.8 206.06 1694 9 3.800 5486.6 215.78 1734 1 3.700 5486.6 215.78 1734 4 4.000 5783.4 225.40 1853 4 4.000 5783.4 225.40 1853 4 4.000 6729.3 234.65 1930 7 4.400 65248.0 249.11 2048 4 500 66730 9 253.80 2087 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 66730.9 253.80 2087 7 4.000 66730.9 253.80 2087		2 -		J W	532	
1 3.300 48936.0 196.25 1654 6 3.500 55481.9 201.17 1654 1 3.600 55384.7 210.93 1734 1 3.800 55486.7 6 215.78 1734 1 3.800 55486.7 6 215.78 1734 6 3.900 5783.4 225.40 1813 6 4.000 5783.4 225.40 1853 7 4.200 6729.3 234.95 1930 7 4.400 65248.0 249.11 2048 1 4.600 66730.9 253.80 2087 1 4.600 66730.9 253.80 2087 1 4.600 66730.9 253.80 2087 1 4.700 69696.7 263.12 2125	1 3.300 48936.0 196.25 1654 6 3.500 48936.0 196.25 1654 6 3.500 51901.8 206.06 1694 1 3.600 51384.7 210.93 1734 1 3.800 55386.7 5 210.93 1734 2 4.000 55316.3 225.40 1853 4 4.000 6799.3 234.95 1931 7 4.000 62282.2 239.69 1930 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 253.80 2089 7 4.000 65248.0 249.11 2048 7 4.000 65248.0 253.80 2089 7 4.000 65248.0 253.80 2089 7 4.000 65248.0 253.80 2089 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		2		m	573	
4 3.500 51901.8 206.06 1694 3.600 53384.7 210.93 1734 1 3.800 54867.6 215.91 1714 4 4.000 59316.3 230.18 1893 4 4.200 62282.2 239.69 1970 4 4.400 65248.0 244.1 2048 4 4.600 65248.0 243.11 2048 4 4.600 65248.0 253.80 2087 4 4.600 65248.0 253.80 2087 4 700 69696.7 263.12 2125	4 3.500 51901.8 206.06 1694 1 3.700 54867.6 216.93 1734 1 3.800 55350.5 220.60 1814 2 4 000 55316.3 230.18 1853 4 1.00 67293.3 234.95 1930 4 2.00 62282.2 239.69 1970 4 4.400 65248.0 249.11 2048 4 500 66730.9 253.80 2048 4 500 66730.9 253.80 2048 2 4 500 66730.9 253.80 2088 2 4.700 69696.7 263.12 2087 3 4.800 71179.6 267.75 2201		w. ∠		W	613	
4 3.600 53384.7 210.93 1734 1 3.800 54867.6 215.78 1714 6 3.900 5783.4 225.40 1814 2 4.100 5793.3 234.18 1853 9 4.200 6729.2 239.69 1970 7 4.400 65248.0 249.11 2048 1 4.500 66730.9 253.80 2087 2 4.700 69696.7 263.12 2125	4 3.600 53384.7 210.93 1734 1 3.800 54867.6 215.78 1778 6 3.900 5783.4 225.40 1814 4 4.000 5783.3 225.40 1853 4 2.00 6799.3 234.55 1930 4 4.300 67795.1 234.65 1970 7 4.300 65248.0 249.11 2048 2 4.500 66730 9 253.80 2087 7 4.700 69696.7 263.12 2125 7 4.700 69696.7 263.12 2125 7 4.700 69696.7 263.12 2125 7 4.700 69696.7 263.12 2125 8 4.800 71179.6 267.75 2201		i i		0	694	
9 3.800 55350.5 220.60 1814 4 4.000 5783.4 225.40 1853 4 4.000 5783.4 225.40 1893 4 4.000 6799.3 234.95 1931 9 4.200 62282.2 239.69 1970 7 4.400 65248.0 244.41 2048 2 4.500 66730.9 253.80 2048 7 4.600 66731.8 258.47 2125 7 4.700 69696.7 263.12 245.3	9 3.800 55350.5 225.40 1814 4 4.000 5783.4 225.40 1853 4 4.000 5783.4 225.40 1895 9 4.100 6799.3 234.95 1931 7 4.200 62282.2 239.69 1970 8 4.300 63765.1 244.41 2048 2 4.400 65248.0 249.11 2048 2 4.500 66730.9 253.80 2087 7 4.700 69696.7 263.12 2125 7 4.700 69696.7 263.12 2163 8 8 8 7 263.12 263.13 9 4 8 7 7 4 7		9.		ט ג	774	
6 3 900 5783.4 225.40 1853 4 4.000 59316.3 230.18 1893 9 4.200 62282.2 239.69 1970 7 4.300 62765.1 244.41 2048 2 4.500 66730.9 253.80 2048 4.500 6673.9 253.80 2047 4.700 69696.7 263.12 2087	6 3 900 5783.4 225.40 1853 4 4.000 5783.4 225.40 1893 9 4.200 6799.3 234.55 1930 7 4.300 63765.1 244.41 2048 2 4.500 65248.0 249.11 2048 2 4.500 66730.9 253.80 2087 7 4.700 69696.7 263.12 2125 7 4.800 71179.6 267.75 2201				ω.	814	
2 4.100 60799.3 234.95 1931 4.200 62282.2 239.69 1970 4.300 63765.1 244.41 20048 4.400 65248.0 249.11 2048 2 4.500 66730.9 253.80 2087 4.700 69696.7 263.12 2125	2 4.100 60799.3 234.95 1931 4.200 62282.2 239.69 1970 4.4.300 63765.1 244.41 20048 2 4.500 66730.9 253.80 2087 7 4.700 69696.7 263.12 2125 7 4.700 69696.7 263.12 2125 8.800 71179.6 267.75 2201		ن د		4 -	853	
9 4.200 62282.2 239.69 1970 7 4.300 63765.1 244.41 2009 2 4.500 65248.0 249.11 2048 0 65213.9 253.80 2087 0 4.700 68213.8 258.47 2125 7 4.700 6826.7 263.12 2125	9 4.200 62282.2 239.69 1970 4 4.300 63765.1 244.41 2009 2 4.500 66730.9 253.80 2087 0 4.600 6813.8 258.80 2087 7 4.700 69696.7 263.1.2 2125 8.800 71179.6 267.75 2201		:		10	931	
4 4.400 65248.0 249.11 2048 2 4.500 66730.9 253.80 2087 0 4.600 68213.8 258.47 2125 7 4.700 69696.7 263.12 2163	4 4.400 65248.0 249.11 2048 2 4.500 66730.9 253.80 2087 0 4.500 68213.8 258.47 2125 7 4.700 69696.7 263.1.2 2163 5 4.800 71179.6 267.75 2201		ci u		9.4	970	
2 4.500 66730.9 253.80 2087 0 4.600 68213.8 258.47 2125 7 4.700 69696.7 263.12 2163	2 4 500 66730.9 253.80 2087 0 4.600 68213.8 258.47 2125 7 4.700 69696.7 263.1.2 2163 5 4.800 71179.6 267.75 2201		∡.		r et	048	
7 4.700 69696.7 263.12 2163	. 4.800 71179.6 267.75 2201 .5 4.800 71179.6 267.75 2201		ιņ		ω, <	087	
	5 4.800 71179.6 267.75 2201		0 5		* -	163	

m	~	7	21.0	oσ	-		40	7	m	יז ת	, 0	9	0	→ +	+ 0	000	, LC) (=1	7	C3 !	90	ν -	٦.	14	4	m	7	0	00 1	٠ ر <u>٠</u>	4 40	-	D.	ט ע	14	9	7	ر د	- [- 4	D 4	# C1							
34	37	417	456	4 50	571	2609.	684	722	760	۰ د د د	872	909	947	400	4 4 5	094	133	168	204	241	277	350	0 W	422	458	494	530	56	9	63	202	74	77	200	ວິໝ	92	95	800	70	0 0	ש ה	4165.							
41	90	69	no	υ 4	0	62	46	. 2	-	4 5	٠,	9	Η.	n o	υ 4	r cc	2	9	σ	സ	,	> <	* [· 0	'n	9	0	$^{\circ}$	ហ	∞ -	1 M	9	œι	٦,	າທ	~	σ,	40	א ני	U L	~ 0	0							
8	8	00 0	40	0 6	90	312	75	26	30	חס	47	48	53	2,5	9 9	202	75	12	83	88	9 5	2 5	3 6	200	14	18	22	27	31	3.5	44	48	52	2 4	65	69	73	28	2 0	9 9	9 4	66							
00	6.	٥,	4.0	y m	4.	ı.	0 1-	. 00	ω, α	ų c		.2	m.	ai n	n ve		- 00	۰	0.	. .	uj e		r ic	, 4	. 7	ω.	6.	0.	0.	ų, c	1 m	4	5.	0,0	. 00	6.	σ.	٥.	i٠	, r	J 4	įυ							
254	759	265	70	200	285	0 4	300	305	310	321	326	331	336	777	7 10	356	361	366	372	377	382	200	197	907	107	312	117	323	128	200	943	148	953	200	168	973	178	984	200	40	400	503							
													1	٦.		-	-	ı —	-	r-1 +	٦,	٦,-	- 1	+	١,	·	Н	Н			4 1-1	-	→ ·	٦,		Н	Η.	⊣ •	٦,	- +									
٥.	۲.	di	., .	# LC	۰.	5.701	9 0	0	ᅻ(i u	. J	ū	١٠	∵ º	. 0	. 0		12	۳.	4.	'nν	9.5	٠.	. 0	. 0	7	4	ų.	4.	ůκ		œ	σ,		. 7	ų.	4	in i	٠r	٠. ۵	0.0	; 0.							
-, 1		-, .	-, -						• `		. •	•	~	- 4	•	•	•	•	•			•	•	•	_		_	_	'				-									Ä							
0.8	8.9	5.5	4. c	9.0	9.0	ω. ω.		5.6	4.4	10	0.6	9.4	8.2	יי טיר	4.4	3.2	2.0	0.7	9.5	0.10	0.4	. ⊿ o r.		20.	8.0	9.6	8.3	7.1	ر س ر	9.6	2.1	6.0	9.6	10,0	. 0	4.7	3.4	2.5	7.0		7.0	376.0							
						277																																											

2262.4 2301.4
271.07 275.75
72244.6 73749.7
4.800
2340.5
the same of the sa

		HEAT EXCHANGER	MODE	L - WATER SIDE
Heat exc	exchanger number	er: 01-24-	ę.	
A B DH PR = =	1.035 inches 1.035 inches 1.035 inches 2.315	v3 v3 v3		
Flow Mass (1bm/hr)	Rates Volume (gal/min)	Reynolds Number	Nusselt Number	HWTR (BTU/hr sgft R)
	0	0.5	w w	
97.5	00.500	1614.2	4.36	19.5
	. ∡. ⊓	100 1	ח ביו נ	
32.	nφ	120	n O	16.
30.	£. 00	96.	w 4	35.
38	0,0	53.	4 6	72.
. 98	! (77.		06.
	. w.		ייים מ	
31.	4.10	9.0	76	71.
30.	٥٢.	20.	-i vi	87.
77.	α, σ,	27.	ס ה	32.
72.	.0.	-10	wo	67
72.	101		`~'	76.
70.	ناغة	9.6	40	0.5
19.	ri σ	77.	نون	33.
16.	Γ.α	95	0 ~	61.
77	ا م	. 2	101	75.
12.	ο ન	26	30	22.
000	vi.	929	uj r	16.
	الم		ن س ر	43.
	ທ. ທ	. 40	מ כי	56. 69.
4.		22	4	82.
1.	، ق	76.	100	
9 6	으ᅼ	993	ກັໝ	34.
17.	Sic	7.	w.u	47.
5 10	. 4. i	17	فتصن	32.
43.	υœ	. S	40	980
46	. 0	332	œ, u	11.
9	•	,	•	3

Havai Pecgraduate School PROGRAM HEAT EXCHANGER OA COEFFICIENT WATER REAL HARK[20], HARK REIN, LETN WEIN TETN ASAIR, ASWER, ASFASAIR, REALER, REALER, REVER, P. INTEGER FLAG, N.J.L. DATA REPAIR, REWITE, PIUBE, ODTUBE, IDVUBE, P. AX. M.LC, ETAF, ETAO, UNTEGER FLAG, N.J.L. DATA REPAIR, REWITE, PIUBE, ODTUBE, IDVUBE, P. AX. M.LC, ETAF, ETAO, UNTEGER FLAG, N.J.L. DATA REPAIR, REWITE, PIUBE, ODTUBE, IDVUBE, P. AX. M.LC, ETAF, ETAO, UNTEGER FLAG, N.J.L. DATA REPAIR, REWITE, PIUBE, ODTUBE, IDVUBE, P. AX. M.LC, ETAF, ETAO, UNTEGER FLAG, N.J.L. MRITE(***) *** MRITE(***) *		-			•	•			300				-						 				
REAL HAJ HATUBE THAN REAL HAJ HATAR REF INDEGER AG A UNITE (*) WRITE (*)	Jim Hurley Naval Postgraduate Schoo Spring 1996	PROGRAM HEAT EXCHANGER OA COEFFICIENT WATER	REAL HAIR(20), HWTR, KFIN, LFIN, WFIN, TFIN, ASAIR, ASWTR, ASFASAIR, +KTUBE, TTUBE, ATUBE, LTUBE, ODTUBE, IDTUBE, P, AX, M, LC, ETAF, ETAO, HUATR, RFWIR, PI INTEGER FLAG, N, J, L DATA RFAIR, RFWIR, PI/0.002, 0.0005, 3.14159/	water and air side convection sional characteristics. Classi cheater or a duct heater.	ULTS.HXU') n coefficient - water side	coefficients	D *,N 21 J = 1, N, RITE(*,5)J EAD *,HAIR(J)	icient -	AGAL ", AFIN WRITE (*, *) "Fin length (inches):" FRAD * IFIN	WRITE(*,*)"Fin width (inches):" READ * WRIN	WRITE(*,*) Fin thickness (inches):" WRITE(*,*) Fin thickness (inches):"	urface area	*,*) "Total water side surface area (sq.	*,*)"Fin surface area/total air side surface,ASFASAIR	.*) Enter '1' if unit heater or '2' if Prace	HEN Action coefficient	KEAD ",KIUBE NRTITE(*,*) "Tube thickness (inches):" DEAD ** memore	ter side surface area of one tube (sq. in.):	<pre>4G .EQ. 2)THEN IE(*,*)"Conduction coefficient - tube (BTU/hr ft R)</pre>	READ *,KTUBE WRITE(*,*,"Length of one tube (inches):"	READ *,LTUBE WRITE(*,"Tube outer diameter (inches):" RRAD * OPWTHE	WRITE (KTUBE,	Begin DO loop to compute parameters for each air side convection

COEFFICIENT			U-AIR (BTU/hr sqft R)	11 4 N N N N N
OVERALL	(2-73-1 and 2-80-1)	sqft R it R inches inches inches it R inches R/BTU	ETA OVERALL (BTU/hr	0.0000000000000000000000000000000000000
HEAT EXCHANGER	exchanger number: B-25	= 4053.0 BTU/hr sqft R = 26.0 BTU/hr ft R = 0.460 inches = 3.510 inches = 3.013 osquare inches = 465.0 square inches = 65.0 square inches = 0.060 inches = 67.0 square inches	ETA 1 FIN : R)	
	Heat exchang	H-WTR KFIN LFIN LFIN TFIN TFIN ASMIR ASWIR ATUBE TTUBE ATUBE ATUBE ATUBE	H-AIR (BTU/hr sqft	

COEFFICIENT			U-AIR (BTU/hr sqft R)	LUL044
EXCHANGER OVERALL	01-24-1	ft R ft R ft R re inches inches ft R ft R ft R/BTU	ETA OVERALL (00.93
HEAT EXC	exchanger number: 01-;	= 1330.0 BTU/hr sq = 118.0 BTU/hr ft = 0.450 inches = 1.880 inches = 1.7008 inches = 17700.0 square in = 1336.0 square in = 1316.0 BTU/hr ft = 221.0 BTU/hr ft = 34.0 inches = 1.125 inches = 1.050 hr sqft R	ETA 1 FIN R)	000000000000000000000000000000000000000
	Heat exchange	H-WTR KFIN LFIN WFIN TFIN ASAIN ASAIR ASVIR ASVIR OUTUBE OUTUBE IDTUBE IDTUBE RFAIR	H-AIR U/hr sgft	0

		•		
L COEFFICIENT			U-AIR (BTU/hr sqft R)	4 & & & 4 & & 0
HEAT EXCHANGER OVERALL COEFFICIENT	01-25-1	r sqft R ft R se inches e inches ft R ft R ft R/BTU	ETA OVERALL	00000 888000 84000
неат ех	exchanger number: 01-	= 4165.0 BTU/hr sqft R = 118.0 BTU/hr ft R = 0.438 inches = 1.299 inches = 0.0065 inches = 0.0065 inches = 335.0 square inches = 0.96 = 24.0 BTU/hr ft R = 24.0 inches = 0.655 inches = 0.655 inches = 0.655 inches = 0.655 inches = 0.655 inches = 0.655 inches	ETA 1 FIN R)	000000
	Heat exchange	H-WTR KFIN LFIN WFIN WFIN TEIN ASWIR ASWIR ASWIR ASWIR RTUBE ODTUBE IDTUBE IDTUBE IDTUBE IDTUBE REAIR	H-AIR (BTU/hr sqft	100.00 10

Har Exchanger number: 01-50-0 Har Exchanger number: 01-50-0	
---	--

FFICIENT		AIR sqft R)	3 4 1
RALL COEFFIC		U-7 (BTU/hr	
HEAT EXCHANGER OVERALL COEFFICIENT	U/hr sqft R /hr ft R hes hes ches ches quare inches /hr ft R hes hes sqft R/BTU	ETA OVERALL	0.0000000000000000000000000000000000000
питре	= 4165.0 BTU/hr sc = 118.0 BTU/hr ft = 0.438 inches = 0.438 inches = 0.0065 inches = 3979.0 square in = 0.96 BTU/hr ft = 221.0 BTU/hr ft = 12.0 inches = 0.555 inches = 0.555 inches = 0.555 inches = 0.555 inches	ETA 1 FIN R)	0.091
Heat exchanger	H-WTR KFIN LIFIN WFIN TFIN ASAIR ASWAR ASWAR ASFVBE LTUBE ODTUBE IDTUBE IDTUBE RFAIR	H-AIR (BTU/hr sgft	ı i

U-AIR",/,		
Air",/		
U- BTU/hr		
///, srall		
K, BTU", K, BTU", ETA OVI		
",F5.1," BTU/hr ft R",/, ",F5.3," inches",/, ",F5.3," inches",/, ",F6.4," hr sqft R/BTU",//, ",F6.4," hr sqft R/BTU",//, ETA 1 FIN ETA OVERALL [ft R] 1,T23,F4.2,T37,F4.2,T51,F4.1)		
11, BH 11, in 13, in 13, in 14, hr 14, hr 17, 1 17, 1		
E E E E E E E E E E E E E E E E E E E		
38 38 38 38 38 38 4 4 4 5 5 5 6 7 7 7 8 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8		
+T8 "KTUBE = "F5.1," BTU/hr ft R",/, +T8,"CTUBE = "F5.3," inches",/, +T8 "DTUBE = "F5.3," inches",/, +T8 "RAIR = "F5.3," inches",/, +T8 "RFAIR = "F6.4," hr sqft R/BTU",/,, +T8,"RFWTR = "F6.4," hr sqft R/BTU",//, +T5," (BTU/hr sqft R) +T5," (BTU/hr sqft R) FORMAT(T10,F4.1,T23,F4.2,T37,F4.2,T51,F4.1) END		
# 178. # 178. # 178. # 175. # 175. # 175. # 175.		

HEAT EXCHANGER OVERALL COEFFICIENT

Heat exchanger number: B-25 (2-73-1 and 2-80-1)

Y LARGE	26.0 BTU/hr ft R	0.460 inches	3.510 inches	0.0180 inches	3013.0 square inches	PA.	0.85	26.0 BTU/hr ft R	0.060 inches	67.0 square inches	0.0020 hr sqft R/BTU	0.0005 hr sqft R/BTU
18	II	п	II	Ħ	II	II	Ħ	11	11	II	N	II
H-STM	KFIN	LFIN	WFIN	TFIN	ASAIR	ASWTR	ASF/ASAIR	KTUBE	TTUBE	ATUBE	RFAIR	REWTR

8					
U-AIR (BTU/hr sqft	5.0	5.6	6.2	6.4	6 7
ETA OVERALL	68.0	0.87	98.0	0.85	200
ETA 1 FIN R)	٠ ،	0.85	0.83	0.83	0 82
AIR sqft	6.0	7.0	7.9	8.3	τ α

. COBFFICIENT	-1, 2-40-2, 2-60-1, 2-60-2)		U-AIR (BTU/hr sqft R)	
HEAT EXCHANGER OVERALL COEFFICIENT	(2-8-0, 2-40-1,	EBUTONE FE R inches inches of square inches square inches BUTONE FE R inches hr square inches hr sqft R/BTU	ETA OVERALL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HEAT EXC	number: B-70	26.0 0.460 0.0180 5198. 5198. 807.0 0.050 0.060 0.0020	ETA 1 FIN	0 . 82 0 . 80 0 . 80 0 . 79 0 . 79
3H	nanger	KFIN WFIN WFIN TEIN TEIN TEIN TEIN TEIN TEIN TEIN TE	H-AIR (BTU/hr sgft R)	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L COEFFICIENT			U-AIR (BTU/hr sqft R)	1.0.0.0 0.00
HEAT EXCHANGER OVERALL COEFFICIENT	01-24-1	ft R s re inches e inches ft R ft R/BTU	ETA OVERALL	000000
HEAT EX	number:	= VERY LARGE = 118.0 BTU/hr ft 0.450 inches = 0.0000 inches = 0.0000 inches = 1770.0 square i = 1736.0 square i = 0.91 = 221.0 BTU/hr ft = 34.0 inches = 1.125 inches = 1.125 inches = 1.135 inches = 1.135 inches = 1.135 inches = 1.135 inches = 0.0000 hr sqft F	ETA 1 FIN R)	000000000000000000000000000000000000000
	Heat exchanger	H-STM KFIN LFIN WFIN TFIN ASAIR ASWTR ASWTR ATUBE LTUBE ODTUBE IDTUBE IDTUBE RFAIR	H-AIR (BTU/hr sgft)	0, 1, 2, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,

May 25 1996 193954 RESULTS.HXU01251STEA Page 1
--

OVERALL COEFFICIENT			U-AIR (BTU/hr sqft R)	ळ फं क थ न ब ं
EXCHANGER OVERALI	01-50-0	ft R e inches inches ft R ft R Et R/BTU	ETA OVERALL	0.90 0.90 0.90 0.90 0.89 0.89
HEAT EXCHANGER	number:	UERY LARGE = 118.0 BTU/hr ft R = 0.438 inches = 0.0065 inches = 0.0655 inches = 251.0 square inches = 251.0 square inches = 251.0 square inches = 0.955 inches = 0.625 inches = 0.0020 hr sqft R/BTU = 0.0020 hr sqft R/BTU	ETA 1 FIN R)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Heat exchanger	H-STM KFIN LIFIN WFIN TFIN ASAIR ASWTR	H-AIR (BTU/hr sqft F	0,5,4,6,0,6

			14 D	រដ្ឋ រដ្ឋ ព្រំ
HEAT EXCHANGER OVERALL COEFFICIENT	1.	ft R inches inches ft R tt R/BTU	ETA OVERALL (1	000000
HEAT EXCHA	r number: 2-25-1	UERY LARGE 118.0 BTU/hr ft R 1.299 inches 1.299 inches 1.299 inches 1.290 inches 2.30.0 square inches 2.31.0 BTU/hr ft R 1.255 inches 1.255 inches 0.555 inches 0.555 inches 0.0020 hr sqft R/BTU	ETA 1 FIN R)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23H	Heat exchanger	H-STM KFIN LFIN LFIN TFIN ASMTR ASWTR ASF/ASAIR KTUBE ODTUBE IDTUBE IDTUBE REAIR	IR sqft	

OVERALL COEFFICIENT			U-AIR (BTU/hr sgft R)	4 N N N N N N N N N N N N N N N N N N N
	-1	ft R te inches inches ft R ft R tt R/BTU	ETA OVERALL	0.93 0.91 0.91 0.91 0.91
HEAT EXCHANGER	number: 2-16-1	VERY LARGE 118.0 BTU/hr ft 0.438 inches 1.299 inches 0.0065 inches 167.0 square ir 0.96 221.0 BTU/hr ft 12.0 inches 0.555 inches 0.655 inches 0.655 inches 0.655 inches	ETA 1 FIN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Heat exchanger number:	H-STM KFIN LEIN WFIN TFIN ASAIR ASWTR ASWTR ASWTR LTUBE LTUBE LTUBE IDTUBE IDTUBE IDTUBE RFAIR	H-AIR (BTU/hr sqft R)	

	and I will mit.	c
	olm muley Naval Postgraduate School Spring 1996	C If CWTR is less than
	PROGRAM HEAT EXCHANGER MODEL NTU ANALYSIS	IR(CWIR .LT. CAIR CMIN = CWIR
	REAL T3,T1,VDOTAIR,UAIR,ASAIR,QDOT,MDOTAIR,DAIR,T,PATM,R, +CAIR,CPAIR,MDOTWTR1,MDOTWTR,CWTR,CPWTR,QDOTWAX,CMIN,CMAX,CR, +EFF,WIUT,EFFT,NTU,ASAIRI,VDOTWTR,T2,T4,QDOTFINAL INTEGER FLAG DATA CPAIR,CPWTR,TSTD/0.24,1.0025,70.0/	Chax = CAIR FLAG = 2 PDOTMAX = CMIN* CR = CMIN/CWAX EFF = QDOT/QDOTMAX DO 21 NTUL = 0.1
0000	Input water and air inlet temperatures, overall coefficient, air flow rate, air side surface area, and heat transfer rate.	EFFI = 1.0 - 1 + (EXP(-CR*(NTU IF/ABS(EFFI-E
	OPEN(55, FILE = 'RESULTS.HXNTU') WRITE(*,4)	NTU = NTU T2 = T1 + T4 = T3 -
	WALLE(',') Water entering temperature (degrees r): READ * T3 WRITE(*,*) Air stream entering temperature (degrees F):"	C After computations C NTU, T2, and T4, pr
	READ *.T1 WRITE(*,*)"Air stream volumetric flow rate (CFM):" READ *.VDGTAIR	C GO TO 22
	WRITE(*,*)*Overall heat exchanger coefficient (BTU/hr sqft R):" READ *, UAIR READ *, UAIR	21 CO ENDI
	WALTE (',')"IOTAL ALF SIde SULTACE Area (Sq. ln.);" READ *, ASAIR WRITE (',')"Heat transfer rate required (BTU/hr);" READ *, QDOT	C Compute heat exchang C air side surface ar
UU	Compute air mass flow rate and heat capacity rate.	22 IF (NTU
	MDOTAIR = DAIR(TSTD)*VDOTAIR*60.0 CAIR = MDOTAIR*CPAIR WRITE(55,5)T3,T1,VDOTAIR,UAIR,ASAIR,QDOT,MDOTAIR,CAIR	ASAIKL = ((NUTCM, VDOTWIR = (NDOTWIR) QDOTFINAL = EFF*CI WRITE(55,6)MDOTWIR
U C	MDOTWTRI = QDOT/(CPWTR*(T3-T1))	
יטטנ	Begin DO loop to compute Effectiveness-NTU parameters at water mass flow rates iterated up to 4876 lbm/hr (10 gpm).	IN TA, TA, DUCTE INCL. IF (FLAG . EQ. 2); MDOTWTRI = CA.
13	DO 23 MDOTWIR = MDOTWIRI, 4876.0, 10.0 IF (MDOTWIR .GT. 4866.0)THEN WRITE(55,8) GO TO 99	A
טטט	ENDIF Compute water heat capacity rate, CWTR, and compare with air heat capacity rate, CAIR. If CAIR is less than CWTR, proceed with CMIN equal to CAIR.	
	CWTR = MDOTWTR*CFWTR IF(CAIR .IT. CWTR)THEN CMIN = CAIR CMAX = CAIR FLAG = 1 QDOTWAX = CMIN*(T3-T1) CR = CMIN/CMAX	UE the the ated: (//// EAT E
	LOUGH TO THE THE TO THE	T3 T1 VDOTAIR VAIR ASAIR QDOT
0000	After computations of heat capacity ratio, CR, effectiveness, EFF, NTU, T2, and T4, proceed to line 22.	+TB, "CAIR = ", F6. +T1," Mass Volume +T1," Flow Flow
	GO TO 22 ENDIF CONTINUE	+T1,"(Lbm/hr) (gpm) +T1,"

Page 1

* hxNTUOPT.t:

Jun. 7 1996 14:20;08

Page 2

ENDIF

C If CWTR is less than CAIR, proceed with CMIN equal to CWTR.

C IF (CWTR .LT. CAIR) THEN
CMAX = CAIR
FLAGG = 2
QDOTWAX = CMIN(**A)

CR = CMIN(**A)

EFF = QDOT/QDOTWAX

BO 21 NTU1 = 0.0, 5.5, 0.01

EFF = 10 - EXP((1.0/CR)*(NTU1**0.22)*

+ (EXP(-CR*(NTU1**0.78))-1.0))
IF (ABS (EFF1.EFF) .LT. 0.01) THEN
NTU = NTU
NTU = NTU
NTU = NTU
T = T1 + (QDOT/CAIR)
T4 = T3 - (QDOT/CMTR)

After computations of heat capacity ratio, CR, effectiveness, EFF, NTU, T2, and T4, proceed to line 22.

GO TO 22

ENDIF

CONTINUE

ENDIF

COMPUTE Heat exchanger air side surface area and compare with actual air side surface area. If computed value is less than actual value, print results to output file.

12 IF(NTU .LT. 1.0E-20)NTU=5.0

ASAIRI = ((NTU*CMIN)/UAIR)*144.0

VDOUWTR = (WDOUTFR7.4841) (60.8*60.0)

QDOTFINAL = EFF*CMIN*(T3-T1)

WRITE(55,6)MDOTWIR, VDOTWTR, CMIN, CMAX, CR. EFF, NTU, ASAIRI

IF(ASAIRI .LT. ASAIR)THEN

WRITE(55,7)MDOUTFINAL

T2,T4,QDOTFINAL

T2,T4,QDOTFINAL

RFRAG .EQ. 2)THEN

MDOTWATE = CAIR/CFWTR + 1.0

GO TO 19

ENDIF

If computed air side surface area is greater than actual, continue

Do loop until solution is found or end program at water mass flow rate

of 4,876 lbm/hr (10 gpm).

23 CONTINUE

```
| The property | The
```

Jun 7 1996 13:50:41 RESULTS.HXNTUOP01241 Page 2	602. 1.23 603.6 3970.4 0.15 0.67 1.17 21187.	612. 1.26 613.7 3970.4 0.15 0.66 1.14 20987.	622. 1.28 623.7 3970.4 0.16 0.65 1.10 20581.	632. 1.30 633.7 3970.4 0.16 0.64 1.07 20342.	642. 1.32 643.7 3970.4 0.16 0.63 1.05 20277.	652. 1.34 653.7 3970.4 0.16 0.62 1.02 20005.	662. 1.36 663.8 3970.4 0.17 0.61 0.99 19714.	672. 1.38 673.8 3970.4 0.17 0.60 0.97 19608.	682. 1.40 683.8 3970.4 0.17 0.59 0.94 19284.	692. 1.42 693.9 3970.4 0.17 0.58 0.92 19150.	702. 1.44 703.9 3970.4 0.18 0.57 0.90 19005.	712. 1.46 713.9 3970.4 0.18 0.56 0.88 18847.	722. 1.48 723.9 3970.4 0.18 0.56 0.86 18677.	732. 1.50 734.0 3970.4 0.18 0.55 0.84 18496.	742. 1.52 744.0 3970.4 0.19 0.54 0.83 18525.	752. 1.54 754.0 3970.4 0.19 0.53 0.81 18322.	762. 1.56 764.0 3970.4 0.19 0.53 0.79 18107.	772. 1.58 774.1 3970.4 0.19 0.52 0.78 18113.	782. 1.60 784.1 3970.4 0.20 0.51 0.76 17877.	792. 1.62 794.1 3970.4 0.20 0.51 0.75 17867.	802. 1.64 804.1 3970.4 0.20 0.50 0.74 17852.	812. 1.67 814.2 3970.4 0.21 0.50 0.72 17586.	SOLUTION! SOLUTION!	C CR Eff NTU HX	Flow Flow min max Area (1bm/hr) (gpm) (BfU/hr R) (sq. in.)	812. 1.67 814.2 3970.4 0.21 0.50 0.72 17586.	T2 = 75.0 degrees F T4 = 126.6 degrees F	QUOIFINAL = 51600.0 BIU/hr				3961. 8.12 3970.4 3971.4 1.00 0.10 0.11 13102.	SOLUTION! SOLUTION! SOLUTION! SOLUTION!	Mass Volume C CR Eff NTU Hx Surface	FLOW Flow min max Area (lbm/hr) (gpm) (ETU/hr R) (sq. in.)
Jun 7.1996 13:50:41 Page 1				HEAT EXCHANGER MODEL - NTU OPTIMIZATION ANALYSIS			Heat exchanger number: 01-24-1			8 "	11 13	MDOTAIR = 16543.2 lbm/hr CAIR = 3970.4 BTU/hr R			Mass Volume C C CR Eff NTU Hx Surface	(BTU/hr R)	402. 0.82 403.1 3970.4 0.10 1.00 5.00 60469.	. 0.85 413.2 3970.4 0.10 0.98 3.91	423.2 3970.4 0.11 0.95 3.26	2.86	. 0.91 443.2 3970.4 0.11 0.91 2.58	452. 0.93 453.2 3970.4 0.11 0.89 2.37 32226.	462. 0.95 463.3 3970.4 0.12 0.87 2.19 30437.	472. 0.97 473.3 3970.4 0.12 0.85 2.05 29108.	482. 0.99 483.3 3970.4 0.12 0.83 1.92 27839.		502. 1.03 503.4 3970.4 0.13 0.80 1.73 26125.	1 07 503 4 3000 4 0 13 0 17 1 51	1 00 E22 E 2000 A 212 0.17 1.37	. 1.11 543.5	0.73 1.39	562. 1.15 563.5 3970.4 0.14 0.72 1.34 22654.	572. 1.17 573.6 3970.4 0.14 0.70 1.29 22196.	582. 1.19 583.6 3970.4 0.15 0.69 1.25 21884.	592. 1.21 593.6 3970.4 0.15 0.68 1.21 21548.

UN (1990) 35004 | TESOLISTANIO OF U. 1. 3961. 8.12 3970.4 3971.4 1.00 0.10 0.11 13102. T2 = 75.0 degrees F T4 = 177.0 degrees F QDOTFINAL = 51600.0 BTU/hr

!!!!SOPUTION!!!!SOPUTION!!!!!SOPUTION!!!!!SOPUTION!!!!

125

フしょ

Page 2

RESULTS.HXNTU@P280

HEAT EXCHANGER MODEL - NTU OPTIMIZATION ANALYSIS	T3 = 190.0 degrees F T1 = 60.0 degrees F VDOTAIR = 1505.0 CFM UAIR = 3.7 BTU/hr sqft R ASAIR = 5198.0 square inches QDOT = 5294.0 BTU/hr MDOTAIR = 6765.6 lbm/hr CAIR = 1623.8 BTU/hr R	Mass Volume C CR Eff NTU Hx Surface Flow Flow min max (lbm/hr) (gpm) (BTU/hr R) (sq. in.) 41. 0.08 40.7 1623.8 0.03 1.00 4.81 7623. 51. 0.10 50.7 1623.8 0.03 0.80 1.61 3180.	1621. 3.32 1623.8 1624.8 1.00 0.03 0.02 1264.

Jun 7.1896 13:52:02, RESULTS.HXNTUOP2801	C CR Eff NTU Hx Surface max hx R) (sq. in.) 432.6 1.00 0.14 0.16 2367.		SOLUTION						
RESUL	٠		IIIIISOTOLI						
3:52:02	c min (BTU/hr	78.0 degre 172.1 degre 7747.0 B	!!!!!solution						
Jun. 7. 1896 13	Mass Volume Flow Flow (lbm/hr) (gpm)	T2 T4 == QDOTFINAL ==	;;;;;solution;						

Page 1												•							
RESULTS.HXNTUOP2801	- NTU OPTIMIZATION ANALYSIS			Hx Surface Area (sq. in.)	10216.	5156.	4150.	3689.	3418.	3235.	3079.	2981.	TION!!!!	Hx Surface Area (sq. in.)	2981.		TION: !!!	2367.	TION::!!
XX	PTIMIZ			NTU	5.00	2.16	1.52	1.20	1.00	0.86	0.75	0.67	i i sort	NTU H	0.67		i i sorn	0.16	arios i i
TS:	NTU C			Eff	1.00	0.86	0.75	99.0	09.0	0.54	0.50	0.46	ioniii	Bff	0.46		i i i i i	0.14	ION:::
	- 11	-80-1	F F sqft R inches	8	0.14	0.16	0.18	0.21	0.23	0.25	0.28	0.30	SOLUT	R	0.30	٠	SOLUT	1.00	SOLUT
E	EXCHANGER MODEL	79	190.0 degrees F 60.0 degrees F 400.0 CFM 4.2 BTU/hr sqf: 3013.0 square in 7747.0 BTU/hr 1798.2 lbm/hr 431.6 BTU/hr R	G max r R)	431.6	431.6	431.6	431.6	431.6	431.6	431.6	431.6		G max r R)	431.6	rees F rees F BTU/hr	!!!!SOLUTION!!!!SOLUTION!!!!SOLUTION!!!!SOLUTION!!!!	432.6	!!!!SOLUTION!!!!SOLUTION!!!!!SOLUTION!!!!SOLUTION!!!!
52:02	HEAT EXC	exchanger number:	= 190.0 = 60.0 = 400.0 = 3013.0 = 1747 = 1798.	C C min max (BTU/hr R)	59.6	9.69	9.62	7.68	7.66	109.7	119.7	129.8	i i solut	C min r (BTU/hr	129.8	78.0 degrees F 130.3 degrees F 7747.0 BTU/hr	i i solut	431.6	i i solut
396 13;			T3 T1 VDOTAIR UAIR ASAIR QDOT MDOTAIR	Volume Flow (gpm)	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.27	JTION!!	Volume Flow (gpm)	0.27	0 0 0	JTION!!	0.88	UTION!!
Jun. 7 1996 13:52:02		Heat	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Mass Flow (lbm/hr)	59.	.69	79.	89.	. 66	109.	119.	129.	TOSIIII	Mass Flow (15m/hr)	129.	T2 T4 QDOTFINAL	SITIESOFI	431.	TOSIIII

APPENDIX D. EFFECTIVENESS - NTU ANALYSIS TABULAR RESULTS

UNIT HEA	TER B-25 (UNIT HEATER B-25 (2-73-1, 2-80-1)															
HYDRONIC	2																
COIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	S						
AFF	ASAIR	日	RHO	S	DW.	×	PR	Ţ	ප	13							
62	3013	0.38	0.0749	0.24	1.23E-05	0.0148	0.72	09	1.002	190							
SE	MDOTAIR	ဖျ	RE	티	H-AIR	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX	NTO	8	EPS	a	T2	7
400	1798	1.16	2981	0.0048	0.9	4053	4.9	431	4876	4886	58099	0.24	60.0	0.21	11713	87	188
200	2247	1.45	3726	0.0045	7.0	4053	5.6	539	4876	4886	70106	0.22	0.11	0.19	13487	85	187
900	2696	1.74	4471	0.0042	6.7	4053	6.1	647	4876	4886	84128	0.20	0.13	0.18	14807	83	187
200	3146	2.03	5217	0.0038	8.3	4053	6.4	755	4876	4886	98149	0.18	0.15	0.16	15663	81	187
800	3595	2.32	5962	0.0035	8.7	4053	9.9	863	4876	4886	112170	0.16	0.18	0.15	16270	79	187
HYDRON	C WITH VA	HYDRONIC WITH VARIATION OF 13															
T3																	
205																	
CFM	MDOTAIR	ଠା	RE	티	H-AIR	H-WTR	UAIR	CAIR	MDOTWT		QMAX	NTO	CR	EPS	ø	T2	T4
400	1798	1.16	2981	0.0048	0.0	4053	4.9	431	4876		62556	0.24	0.09	0.21	13064	06	202
STEAM																	
S	COIL DIMENSIONS	NS			AIR PROPE	RTIES			STEAM P	STEAM PROPERTIES	ဟ						
AFF	ASAIR	됩	RHO	ပြ	OM.	×Ι	씸	티	9	ត							
62	3013	0.38	0.0749	0.24	1.23E-05	0.0148	0.72	09	-NF	240	952						
CFM	MDOTAIR	g	RE	H	H-AIR	H-STM	UAIR	CAIR	MDOTST	MESS	OMAX	i Ex	85	S G H	c	1.5	
400	1798	1.16	2981	0.0048	0.9	× ×	5.0	431	17.6	NF.	77656	0.24	600	0.22	16722	2166	

HYDRONIC	2																
OIL DIN	COIL DIMENSIONS			AIR PROPERTIES	ERTIES	2	6	-	WATER	WATER PROPERTIES	S						
4 S	5198	0.38	0.0749	25	1.23E-05	0.0148	7.0 27.0	09	1.002	516							
				1													
CFM	MDOTAIR	O	꿆	딍	H-AIR	H-WTR	UAIR	CAIR	MDOTWT	+	QMAX	NTO	S	EPS	Ø	12	14
1505	6763	2.25	5795	0.0037	9.0	4053	6.7	1623	4876	4886	211020	0.15	0.33	0.13	28214	77	184
1800	8089	2.70	6931	0.0033	9.6	4053	7.0	1941	4876	4886	252383	0.13	0.40	0.12	29661	75	184
2100	9437	3.15	8086	0.0029	9.8	4053	7.1	2265	4876	4886	294447	0.11	0.46	0.10	30273	73	184
2400	10786	3.60	9241	0.0026	10.1	4053	7.2	2589	4876	4886	336511	0.10	0.53	0.09	30834	72	184
2700	12134	4.04	10396	0.0024	10.4	4053	4.7	2812	48/6	4880	3/82/2	0.09	0.60	0.08	31/5/		100
3000	13482	4.49	11551	0.0022	10.6	4053	7.5	3236	4876	4886	420638	0.08	0.66	0.08	32260	70	183
/DRON	VIC WITH VAI	HYDRONIC WITH VARIATION OF T3															
E F																	
202																	
CFM	MDOTAIR	တ	æ	H	H-AIR	H-WTR	UAIR	CAIR	TWTODM	-	QMAX	NTU	CR	EPS	a	T2	7
1505	6763	2.25	5795	0.0037	0.6	4053	6.7	1623	4876	4886	235369	0.15	0.33	0.13	31469	62	199
STEAM																	
S	COIL DIMENSIONS	NS			AIR PROPERTIES	RTIES			STEAM P	STEAM PROPERTIES	S						
AFF	ASAIR	티	RHO	ᆼ	⊋l	쏘	H.	디	심	ខា	H E						
120	5198	0.38	0.0749	0.24	1.23E-05	0.0148	0.72	09	NF.	240	952						
CFM	MDOTAIR	ဖျ	뀖	티	H-AIR	H-STM	UAIR	CAIR	MDOTST	CSTM	QMAX	UTN	R	EPS	аI	12	
1505	6763	2.25	5795	0.0037	9.0	Š Š	6.7	1623	42.5	-	292182	0.15	0.00	0.14	40445	85	İ

Cold Dimensions Cold Dimen	DUCT HE	DUCT HEATER 01-24-1	1															
RE																		
RHO CP MU																		
NATIONAL HYDRON	<u>_</u>																	
RHQ O24 MAIR HAMR HA		01000	A management			1				I I								
Name	OOL DIN	ASAIR	H	OHO	AIR PROP	MI	7	00	1	WAIEK	TS	2						
RE	405	17700	0.25	0.0749	0.24	1.23E-05	0.0148	0.72	62	1.002	190							
RE JH H-AIR H-WITE UAIR CAIR MDOTWT CWITE GMAX NTU CR EPS 33782 0.0036 7.7 4653 6.7 3869 4876 4886 6508ds 0.18 0.15 0																		
STREE JH HAND H	CFM	MDOTAIR	ဖျ	뾦	핅	H-AIR	H-WTR	UAIR	CAIR	MDOTWT		QMAX	NTO	S	EPS	a	T2	T4
Size 0.0033 6.7 4063 6.2 4864 4476 4886 622376 0.16 0.99 0.13 4729 0.0033 8.5 4063 7.0 6795 4876 4886 622376 0.19 0.65 5404 0.0028 9.6 4053 7.4 7766 4886 622376 0.19 0.63 0.16 5524 0.00275 9.7 4053 7.4 7766 4886 625376 0.19 0.62 0.16 5524 0.00276 9.7 4053 7.4 7793 4476 4886 625376 0.19 0.62 0.16 5524 0.00276 9.7 4053 7.4 7793 4476 4886 625376 0.19 0.62 0.16 5524 0.00276 9.7 4053 7.4 7938 4876 4886 625376 0.19 0.62 0.16 5524 0.00276 9.7 4053 7.4 7938 4876 4886 625376 0.19 0.62 0.16 5524 0.00276 7.0 4053 5.7 3969 4876 4886 567581 0.18 0.81 0.15 552 0.004 7.0 4053 5.7 3969 4876 4886 567581 0.18 0.81 0.15 552 0.004 7.0 4053 5.7 3969 4876 4886 567581 0.18 0.81 0.15 553 0.0048 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 554 0.0048 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 555 0.0048 7.0 7.0 7.0 6.1 3969 1277 NF 705500 0.19 0.17 0.17 555 0.0048 7.0 7.	3680	16538	1.63	2762	0.004	0.7	4053	5.7	3969	4876	4886	508045	0.18	0.81	0.15	74778	81	175
A1053 0.0033 0.5 4063 6.7 5824 4876 4866 625376 0.17 0.84 0.14 A4729 0.0033 9.0 4063 7.4 7766 4876 4886 625376 0.19 0.15 A4729 0.00275 9.7 4063 7.4 7766 4876 4886 625376 0.19 0.62 0.16 A10524 0.00275 9.7 4063 7.4 7786 4876 4886 625376 0.19 0.62 0.16 A10525	4500	20223	2.00	3378	0.0036	7.7	4053	6.2	4854	4876	4886	621251	0.16	0.99	0.13	81146	79	173
4729 0.0028 9.0 4053 7.4 7786 4876 4886 625376 0.19 0.15 5524	2400	24268	2.40	4053	0.0033	8.5	4053	6.7	5824	4876	4886	625376	0.17	0.84	0.14	88237	2.2	172
Section Sect	6300	28312	2.80	4729	0.003	0.6	4053	7.0	6795	4876	4886	625376	0.18	0.72	0.15	92857	92	171
S524 0.00276 9.7 4053 7.4 7938 4876 625376 0.19 0.62 0.16	7200	32357	3.20	5404	0.0028	9.6	4053	7.4	2766	4876	4886	625376	0.19	0.63	0.16	98424	75	170
RE	7360	33076	3.27	5524	0.00275	9.7	4053	7.4	7938	4876	4886	625376	0.19	0.62	0.16	98586	74	170
RE																		
RE																		
MDOTAIR G RE	HYDRON	IC WITH VA	RIATION OF T3															
MDOTAIR G RE																		
MDOTAIR G	ឧ																	
MDOTAIR G RE	205																	
MDOTAIR G																		
16538 1.63 2762 0.004 7.0 4063 5.7 3969 4876 4886 567581 0.18 0.15	CFM	MDOTAIR	9	RE	H	H-AIR	H-WTR	UAIR	CAIR	TWTODM		OMAX	ULL	S	EPS	0	T2	T4
DIMENSIONS	3680	16538	1.63	2762	0.004	7.0	4053	5.7	3969	4876		567581	0.18	0.81	0.15	83541	8	188
DIMENSIONS																		
DIMENSIONS																		
L DIMENSIONS	STEAM																	
ASAIR DH RHO CP MU K PR T1 CP T3 HFG T3 HFG T3 T3 T3 T3 T3 T3 T3 T	OS	L DIMENSIC	SNC			AIR PROPE	RTIES			STEAM P	ROPERTIE	S						
17700 0.25 0.0749 0.24 1.23E-05 0.0148 0.72 62 INF. 240 952	AFF	ASAIR	핌	RHO		M	×	PR	1	S	T3	1						
MDOTAIR G RE JH H-AIR H-STM UAIR CAIR MDOTST CSTM QMAX NTU CR EPS 1.63 2.762 0.0048 7.0 >>0 6.1 3969 127.7 INF. 706500 0.19 0.00 0.17	405	17700	0.25	0.0749		1.23E-05	0.0148	0.72	62	.HNI.	240	952						
MDOTAIR G RE JH H-AIR H-STM UAIR CAIR MDOTST CSTM QMAX NTU CR EPS CS58 1.63 2762 0.0048 7.0 >>0 6.1 3969 127.7 INF. 706500 0.19 0.00 0.17 0.00 0.17 0.00 0.17 0.00 0.17 0.00 0.17 0.00 0.10 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00																		
16538 1.63 2762 0.0048 7.0 >>0 6.1 3969 127.7 INF. 706500 0.19 0.00 0.17	CFM	MDOTAIR	ଠା	묎	픠	H-AIR	H-STM	UAIR	CAIR	MDOTST	CSTM	OMAX	D_LN	S	EPS	al	T2	
	3680	16538	1.63	2762	0.0048	7.0	^^	6.1	3969	127.7	INF.	706500	0.19	0.00	0.17	121615	93	

CTHE	DUCT HEATER 01-25-1	71															
HYDRONIC	<u> </u>																
IL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	S						Andreas de la constitución de la
AFF	ASAIR	티	RHO	임	M	×Ι	PR	디	ප ්	티그							
155	7959	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	-30	1.002	190							
CFM	MDOTAIR	ଠା	뀖	티	H-AIR	H-WTR	UAIR	CAIR	MDOTWI	CWTR	QMAX	UTN	띩	EPS	Ø	72	1
1400	6292	1.62	1691	0.0047	8.2	4053	6.4	1510	4876	4886	332196	0.23	0.31	0.20	66393	14	176
1700	7640	1.97	2054	0.0042	8.9	4053	6.8	1834	4876	4886	403381	0.20	0.38	0.18	71200	6	175
2000	8988	2.32	2416	0.0037	9.5	4053	6.9	2157	4876	4886	474566	0.18	0.44	0.15	73016	4	175
2300	10336	2.67	2779	0.0035	10.0	4053	7.4	2481	4876	4886	545751	0.16	0.51	0.14	78375	2	174
2600	11684	3.02	3141	0.0033	10.7	4053	7.8	2804	4876	4886	616936	0.15	0.57	0.13	82704	·-	173
2800	12583	3.25	3383	0.0032	11.2	4053	8.0	3020	4876	4886	664393	0.15	0.62	0.13	84919	-5	173
RONI	C WITH VA	HYDRONIC WITH VARIATION OF T3															,
티																	L. C.
505																	
Ε	MDOTAIR	9	RE	핅	H-AIR	H-WTR	UAIR	CAIR	MDOTWT		QMAX	NTC	띩	EPS	al	[12	14
1400	6292	1.62	1691	0.0047	8.2	4053	6.4	1510	4876	4886	354846	0.23	0.31	0.20	70920	17	190
STEAM																	
COL	COIL DIMENSIONS	NS			AIR PROPE	RTIES			STEAM	STEAM PROPERTIES	1						
AFF 155	ASAIR 7959	DH 0.154	0.0749	0.24 0.24	MU 1.23E-05	0.0148	PR 0.72	-30	ON.	T3 240	HFG 952						
CFM	MDOTAIR	01	RE	핅	H-AIR	H-STM	UAIR	CAIR	MDOTST		QMAX	NTC	8	EPS	al	12	
1400	6292	1.62	1691	0.0047	8.2	^ 0 ^	9.9	1510	91.9	_	407696	0.24	0.00	0.21	87498	28	

DUCT HE	DUCT HEATER 01-50-0	0-0															
CINCACVH	- 05																
COIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	S						
AFF	ASAIR	HO	RHO	СР	MU	¥	A.	1	S	T3							
116	5969	0.154	0.0749		1.23E-05	0.0148	0.72	90	1.002	190							
CFM	MDOTAIR	୭	RE	핑	H-AIR	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX	밁	띪	EPS	al	21	T4
750	3371	1.16	1211	0.0056	7.0	4053	5.6	808	4876	4886	177962	0.29	0.17	0.24	43215	23	181
900	4045	1.39	1453	0.0051	7.7	4053	6.1	971	4876	4886	213555	0.26	0.20	0.22	47509	19	180
1050	4719	1.63	1695	0.0047	8.2	4053	6.4	1132	4876	4886	249147	0.23	0.23	0.20	50341	14	180
1200	5393	1.86	1937	0.0043	8.6	4053	9.6	1294	4876	4886	284740	0.21	0.26	0.18	52374	10	179
1350	2909	2.09	2179	0.004	0.6	4053	8.9	1456	4876	4886	320332	0.19	0.30	0.17	54312	7	179
1500	6741	2.32	2421	0.0038	9.5	4053	7.1	1618	4876	4886	355925	0.18	0.33	0.16	56893	ın	178
HYDRON	NIC WITH VA	HYDRONIC WITH VARIATION OF T3															
입																	
205																	
CFM	MDOTAIR		RE	F	H-AIR	H-WTR	UAIR	CAIR	TWTODM	CWTR	QMAX	DIN	25	EPS	a	T2	T4
750	3371	1.16	1211	0.0056	7.0	4053	5.6	608	4876	4886	190096	0.29	0.17	0.24	46162	27	196
STEAM																	
8	COIL DIMENSIONS	SNC			AIR PROPE	ERTIES			STEAM F	STEAM PROPERTIES	S						
AFF	ASAIR	퓜	RHO	임	⊋	소	띪	FI	임	2	E S						
116	5969	0.154	0.0749		1.23E-05	0.0148	0.72	-30	INF.	240	952						
100	MOOTAID		l d	1	Q V D	TES T	9	diag	TOTOGE	1100	2000	E	6	C	(F	
Z 250		2 9	1211	0.0056	7.0	N 0 < <	5.8 5.8	809 809	59.0	S N	218408	030	5 8	0.26	56155	39	
	1																

OUCT HE	DUCT HEATER 2-25-1																
HYDRONIC	<u> </u>																
OIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	SE						
AFF	ASAIR	퓜	RHO	S	M	ΥI	PR	디	ଧ	티그							
109	2868	0.312	0.0749	0.24	1.23E-05	0.0148	0.72	40	1.002	190							
CFM	MDOTAIR	ଠା	RE	붜	H-AIR	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX	NTC	S	EPS	a	12	4
1050	4719	1.73	3654	0.0054	10.1	4053	8.3	1132	4876	4886	169873	0.15	0.23	0.13	22526	90	185
1250	5618	2.06	4351	0.005	1.1	4053	9.0	1348	4876	4886	202230	0.13	0.28	0.12	24515	28	185
1450	6516	2.39	5047	0.0047	12.1	4053	7.0	1364	48/6	4880	79657	0.12	0.32	- 6	27005	2/2	6 5
1850	8314	3.05	6439	0.0042	13.8	4053	10.7	1995	4876	4886	299300	0.11	0.41	0.10	29316	22	184
2100	9437	3.46	7309	0.0039	14.5	4053	11.1	2265	4876	4886	339746	0.10	0.46	0.09	30485	53	184
YDRON	IIC WITH VA	HYDRONIC WITH VARIATION OF T3															
T3																	
205																	
CFM	MDOTAIR	9	RE	뒤	H-AIR	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX	NTO	S	EPS	al	12	71
1050	4719	1.73	3654	0.0054	10.1	4053	8.3	1132	4876	4886	186861	0.15	0.23	0.13	24779	62	200
STEAM																	
COI	COIL DIMENSIONS	NS			AIR PROPERTIES	RTIES			STEAM P	STEAM PROPERTIES	1 1						
109	ASAIR 2868	0.312	0.0749	0.24	MU 1.23E-05	0.0148	0.72	T1 40	Q N	240	HFG 952						
CFM	MDOTAIR	O	RE	Ŧ	H-AIR	H-STM	UAIR	CAIR	MDOTST		QMAX	UTN	CR	EPS	a	12	
1050	4719	1.73	3654	0.0054	10.1	>>0	8.5	1132	33.0	İNF	226498	0.15	0.00	0.14	31449	99	

DUCT HE	DUCT HEATER 2-16-1	F															
HYDRONIC	<u></u>																
COIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	v						
AFF	ASAIR	H	RHO	S	Ω	¥	PR	F	g.	52							
11	3979	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	45	1.002	190							
CFM	MDOTAIR		묎	픠	H-AIR	H-WTR	UAIR	CAIR	MDOTWT		QMAX	OTN	S	EPS	a	T2	T4
350	1573	0.82	851	0.0062	5.4	4053	4.5	377	4876	4886	54737	0.33	90.0	0.28	15152	85	187
425	1910	0.99	1034	0.0058	6.2	4053	5.1	458	4876	4886	66466	0.31	60.0	0.26	17313	83	186
200	2247	1.17	1216	0.0056	7.0	4053	5.6	539	4876	4886	78196	0.29	0.11	0.25	19158	81	186
575	2584	1.34	1398	0.0051	7.4	4053	5.9	620	4876	4886	89925	0.26	0.13	0.23	20385	78	186
920	2921	1.52	1581	0.0048	7.8	4053	6.1	701	4876	4886	101654	0.24	0.14	0.21	21277	75	186
200	3146	1.63	1702	0.0046	8.1	4053	6.3	755	4876	4886	109474	0.23	0.15	0.20	22057	74	185
HYDRON	IIC WITH VA	HYDRONIC WITH VARIATION OF T3															
다.																	
83																	
	C. A.F.O.C.		Ĺ		2												
350	1573	0.82	851	0.0062	1-AIK	4053	4.5	377	4876 4876	4886	60399	0.33	0.08	0.28	<u>Q</u> 16720	89 12	202
STEAM											,						
Ö	COIL DIMENSIONS	SNC			AIR PROPERTIES	RTIES			STEAM P	STEAM PROPERTIES	S						
AFF	ASAIR	퓜	RHO	임	2	ᅩ	띪	티	임	T3	H						
77	3979	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	45	N.	240	952						
OFM	MOOTAIR		ш	1	H G	n eTM	QIVI.	givo	MOOTET	++	7440	F	ç	O.C.		C.	
350	1573	0.82	851	0.0062	5.4	0<<	7.4	377	22.5	NF.	73612	0.34	5.6	0.29	21428	102	
										ŀ							

APPENDIX E. MANUFACTURER'S DATA FOR LARGER CAPACITY FANS COMPATIBLE WITH B25 UNIT HEATERS

New York Blower

7660 QUINCY STREET-WILLOWBROOK, ILLINOIS 60521

Mo	DE	LSN			SUPP	YGU			
Model	HP	RPM			C	FM			Max*
no.			Free air	1/10" SP	1/8" SP	1/4" SP	3/8" SP	1/2* SP	BHP
SN82-H SN82-H-3	1/20 †1/20	1550 1550/1300/1100	442 442/371/314	316 316/265/224	270 270/226/192	=	_	_	
SN102-H SN102-H-3	1/20 †1/20	1550 1550/1300/1100	870 870/730/617	755 755/633/536	720 720/604/511	_	=	_	_
SN122-M SN122-H SN122-MH	1/12 1/4 1/4	1075 1725 1725/1140	1150 1815 1815/1200	920 1675 1675/1106	850 1650 1650/1090	1475 1475/975			
SN142-M SN142-H SN142-MH	1/12 1/4 1/4	1050 1725 1725/1140	1350 2100 2100/1390	1160 1990 1990/1315	1100 1960 1960/1295	 1840 1840/1216	 1680 1680/1110		=
SN162-M SN162-H SN162-MH	1/4 1/2 1/3	1140 1750 1725/1140	2000 2950 2900/1915	1800 2830 2790/1840	1750 2800 2760/1756	1450 2650 2600/1718	 2500 2440/1610		.45 .45
SN182-M SN182-H SN182-MH	1/4 1/2 1/2	1140 1725 1725/1140	2610 3920 3920/2590	2400 3750 3750/2480	2340 3700 3700/2440	1960 3490 3490/2305	3280 3280/2165	3000 3000/1980	 .57 .57
SN202-M SN202-H	1/4 3/4	1140 1725	3570 5300	3260 5100	3200 - 5000	2810 4820	4600	 4350	.92
SN242-L SN242-M SN242-H	1/4 1/2 *3/4	1140 1140 1140	4400 5380 6400	4150 5100 6100	4080 5030 6020	3700 4650 5600	4200 5120	 4480	

NOTE Static pressure rating on multispeed fans is at the higher speed. Low speed capacities are shown for the indentical system.

^{*} Maximum BHP over cataloged range. Motors are rated on internal temperature rise rather than nameplate HP.

[†] Shaded-pole motor. Three-speed capacities shown are obtainable with 3-speed switch furnished with unit.

[★] Available in 3-phase only.

MODEL N

DIRECT-DRIVE PROPELLER FANS EXHAUST OR SUPPLY

- Eight wheel diameters—8" through 24".
- 243 to 6420 CFM— up to 1/2" static pressure.
- Panels—square steel construction with streamlined venturi inlet...venturi is reversed in supply-fan panels...baked-green alkyd finish.
- Wheels—aluminum blades with steel hubs.
- Motor mounts—wire-guard-type motor mount [see photo at left] is standard on all direct-drive units...guard is zinc-plated steel.
- Motors—standard motors are totally enclosed air over with prelubricated ball bearings except 1/12 and 1/20 HP motors, which are shaded-pole totally enclosed permanently lubricated sleevebearing type.

Motors 1/4 HP and larger are suitable for either horizontal or vertical service...specify "for vertical mounting" to have wheel locked to motor shaft...1/20 and 1/12 HP motors are not suitable for vertical service.

† E and G based on longest motor used for each size fan. * Shipping weights shown are maximum and include totally enclosed motors and weight of packaging.

NOTE: Exhaust units are available with either automatic or motorized shutters. Supply units require motorized supply shutter.

When ordering, specify complete model number as shown on page 3. Dimensions not to be used for construction unless certified. Tolerance: ± ½6*

APPENDIX F. COMPUTATION OF AIR SIDE CONVECTION COEFFICIENT USING MANUFACTURER'S DATA

$$\Rightarrow V_{qir} = \frac{750 \, FT^2 / min}{Afr} = \frac{750 \, FT^2 / min}{(1 \times 1.5) \, FT^2} = 500 \, FT / min}$$

$$\hat{Q} = C_{AIR} \Delta T = \hat{m} c_{Poir} \Delta T = (P_{AFr} V C_{Poir} \Delta T)
= (0.0749^{15n}/f_{4}^{3}) (1.5 F7^{3}) (500 FT/mir) (0.24 \frac{8741}{15mF}) (77.2 F) (60mm/hr)
= 62449 BTW/hr$$

=>
$$\xi = \frac{\ddot{Q}}{\dot{Q}_{max}} = \frac{\dot{Q}}{C_{min}(T_{5}-T_{1})} = \frac{\dot{Q}}{C_{am}(T_{5}-T_{1})}$$

= $\frac{62449}{874/hr} \frac{B74/hr}{hrF} = 0.34$

=>
$$NTU = -ln(1-\epsilon)$$

= $-ln(1-0.34)$
= 0.42

= 58°F

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center
2.	Dudley Knox Library
3.	Mechanical Engineering Curricular Office, Code 34
4.	Assistant Professor Ashok Gopinath
5.	Commanding Officer
6.	LT James T. Hurley