How Much Event Data Is Enough?

A Statistical Framework for Process Model Discovery

Martin Bauer, Arik Senderovich, Avigdor Gal, Lars Grunske, Matthias Weidlich

Processes and Events

Automated control of business processes

Recording of process execution information

Event logs:

- Timestamps
- Case IDs
- Activity IDs

-

The Question of Process Discovery

Efficiency of process discovery becomes increasingly important

- Pervasiveness of data sensing/logging
 Large-scale event logs
- Tuning a large range of parameters of discovery algorithms
 => Repeated, exploratory analysis
- Software-as-a-Service solutions for process discovery
 => Online handling of event logs

A View on Related Work

Plethora of discovery algorithms [Augusto et al. 2017]

Striving for scalability

- By divide-and-conquer: Decompose the discovery problem [van der Aalst & Verbeek 2015]
- By parallelization and distribution [Wang et al. 2015, Evermann 2016]

Recently: Idea of sampling event data [Busany & Maoz 2016]

Daring the Gap

How to determine how much of an event log to use to discover a process model?

Agenda

Background and Related Work on Process Discovery

A Statistical Framework for Process Discovery

- Log sampling
- Framework definition

Instantiating the Framework

- For control-flow discovery
- For performance discovery

Experimental Results

Log Sampling

TODO: Discovery sufficiency etc

Minimum Sample Size

TODO: how to determine N Include example

Framework

TODO: main steps of the algorithm

Agenda

Background and Related Work on Process Discovery

A Statistical Framework for Process Discovery

- Log sampling
- Framework definition

Instantiating the Framework

- For control-flow discovery
- For performance discovery

Experimental Results

Control-Flow Perspective

A notion of "new control-flow information"

- New activity
- New directly-follows dependency
- New initial or final activity

TODO: EXAMPLE

What about frequencies?

- Determine on sample (no guarantee on δ -similarity)
- Changes in relative frequencies are "new information"

Performance Perspective

Focus on cycle time of a process, a fine-grained numerical value

A notion of "new cycle-time information"

- Cycle time is more than \(\epsilon\)-different
- Measuring granularity:
 - Per complete process
 - Per individual activities

TODO: EXAMPLE

Agenda

Background and Related Work on Process Discovery

A Statistical Framework for Process Discovery

- Log sampling
- Framework definition

Instantiating the Framework

- For control-flow discovery
- For performance discovery

Experimental Results

Setup

Datasets

- BPI Challenge 2012
 - Loan/overdraft applications
 - >262k events of >13k traces
- BPI Challenge 2014
 - Incident management at Rabobank Group ICT,
 - >343k events of >46 traces

Discovery algorithm

- Inductive Miner Infrequent [Leemans et al. 2013]
- Noise threshold set to 20%

Measures

- Pre-processing effectiveness: #traces sampled
- Actual efficiency: runtime, memory footprint
- Discovery effectiveness: fitness, approximated cycle time

Pre-Processing Effectiveness

Drastic reduction of number of traces considered for discovery

Trend is consistent for different datasets

Runtime and Memory Footprint

Pre-processing is efficient

Significant reduction of overall resource utilisation

Discovery Effectiveness

Negligible degradation of discovery quality

- For control-flow fitness
- For the cycle time approximation

Conclusions

Framework for statistical process discovery

- Sample an event log
- Guarantees on the introduced error

Instantiation for control-flow and performance aspects

Next: Additional model perspectives

Thank you!

INTUITION