$$S = \frac{1}{2} \int_{\alpha}^{\beta} f^{2}(\varphi) d\varphi$$
 нені есептейді?

arphi полярлық координата бойынша берілген $r=f(\varphi)$ қисығымен шенелген фигураның ауданын есептеу формуласы

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$
 ненің формуласы?

3) барлық n реттелген нақты сандар (x_1x_2, x_n) жүйелерінің жиыны қалай аталады?

 \sqrt{n} өлшемді нақты (арифметикалық) кеңістік

$$|x| = \sqrt{\sum_{j=1}^{n} x_{j}^{2}}$$
 ненің формуласы?

 $x = (x_1, x_2, ..., x_n)$ векторының ұзындығы немесе нормасы

$$|x-y| = \sqrt{\sum_{j=1}^{n} (x_j - y_j)^2}$$
 5) ненің формуласы? $x = (x_1, x_2, ..., x_n)$ пен $y = (y_1, y_2, ..., y_n)$ нүктелерінің ара қашықтығының формуласы

- 6) Егер f функциясы (x,y) нүктесінде дифференциалданса, онда оның осы нуктедегі өсімшесінің сызықты бас бөлігі f функциясының деп аталады да, dz деп белгіленеді

7) A=[0;1] және B=[1;3] жиындарының бірігуі:
$$\checkmark$$
 [0;7]

8) Бос жиынды көрсететін өрнек:

$$\checkmark$$
 ϕ және $A \setminus A$ және $A \cap \overline{A}$

9) Егер
$$f(x) = \sin \frac{1}{x}$$
 функциясы берілсе, онда:

10) $a \in E$ нүктесі $f : E \to R$ функциясының 2 текті үзіліс нүкте болуы үшін келесі шарттың орындалуы жеткілікті:

11)
$$y = 2 + x - x^2$$
 функциясының $y'(-10)$ мәні \emptyset 5

- 12) Егер y = f(x) функциясы қандай да бір (a;b) аралығында, ал f'(x) қандай да бір $x_0 \in (a;b)$ нүктесінде дифференциалданса, онда: \emptyset функция (a;b) аралығында үзіліссіз
- 13) $\lim_{x\to 0} \frac{\ln \cos x}{x}$ шегіне Лопиталь ережесін қолдансақ:

 ✓ 1
- 14) Келесі жиындар үшін sup A=3 \checkmark A=[0,3) және A=(- \circ ,3]
- 15) Келесі жиындар үшін іnf A=-2 \checkmark A=[-2,0) және A=(-2,1]
- 16) $\{x_n\}$ тізбегі ақырсыз үлкен болады, егер: \checkmark кез келген A>0 саны үшін N номер табылып, барлық n>N үшін $|x_n| < A$ теңсіздігі орындалса
- 17) $y = 2^x$ функциясының [-1,5] аралығындағы ең үлкен және ең кіші мәндерін табыңыз:

 \checkmark ең үлкен мәні у(5)= 2 және ең кіші мәні у(5)= ½ және ең кіші мәнін х= -1 нүктесінде қабылдайды

$$f(x) = \frac{arctgx}{x}$$
 функцияының қасиеттері:

19)
$$y = \frac{x^3}{x^2 - 4}$$
 функциясының қасиеттері:

 \forall у=х көлбеу асимптота; тақ функция; үзіліс нүктесі х=2, х=-2

20) $y = (x-1)(x-2)^2$ функциясының қасиеттері:

 \checkmark барлық сан түзуінде анықталған; функция жұпта емес, тақ та емес; үзіліс нүктесі жоқ

21) $A = \{4,5,6,7,8\}, B = \{4,5,6\}, C = \{7,8\}$ жиындары үшін қай тұжырым дұрыс:

$$\langle A \cap C = C \rangle$$

22) $A = \{3,4,5,6,7,8\}, B = \{3,4\}, C = \{4,6\}$ жиындары үшін қай тұжырым дұрыс:

23) A және B жиындарының қиылысуы $(A \cap B)$ дегеніміз:

 \mathcal{O}^A жиынында да B жиынында да жататын элементтерден құрылған жиын

24) ${x_n}$ тізбегі шенелмеген болады, егер:

 $\bigvee \lim_{n\to\infty} x_n = \infty$, кез келген A>0 саны үшін $|x_n|>A$ теңсіздігі орындалатындай тізбек мүшесі табылады

25) $y = e^x$ функциясының Маклорен формуласы бойынша жіктелуінің мүшелері:

$$\sqrt{x, \frac{x^2}{2!}}, 1$$

26) $y = \cos x$ функциясының Маклорен формуласы бойынша жіктелуінің мүшелері:

$$\sqrt{-\frac{x^2}{2!}}, 1, \frac{x^4}{4!}$$

 $f(x) = \frac{\sin x}{x}$ функциясының қасиеттері

 \checkmark функция жұп, графигі Оу осіне қарағанда симметриялы, x = 0 -үзіліссіз нүкте

28) x = 3 түзуі келесі функцияның тік асимптотасы:

$$y = x^3 - 27$$

29) $y = (x+1)(x-2)^2$ функциясының ойыс, дөнес аралықтары:

30)
$$y = 2x^3 - 6x^2 - 18x + 7$$
 функцияның экстремумы $y_{\text{max}} = y(0) = 2; y_{\text{min}} = y(1) = -2$

31) $\int R(x, \sqrt{ax^2 + bx + c}) dx$ интегралында Эйлер алмастырулары келесі жағдайда қолданылады:

 $\sqrt{c} > 0$, $ax^2 + bx + c$ -өрнегінің әр түрлі екі түбірі бар, a > 0

32) Дифференциалды бином $x^m(a+bx^n)^p$, мұндағы m,n,p-рационал сандар, келесі жағдайда интегралданады:

$$\lozenge p \in \mathbb{Z}, \frac{m+1}{n} \in \mathbb{Z}, \frac{m+1}{n} + p \in \mathbb{Z}$$

- 33) А саны f(x) функциясының $x \to a$ жағдайдағы шегі деп аталады, егер кез келген $\varepsilon > 0$ саны үшін $\delta = \delta(\varepsilon) > 0$ саны табылып мына $|f(x)| > \varepsilon$ теңсіздікті қанағаттандыратын барлық х үшін мына теңсіздік орындалса: $\sqrt{|f(x) A|} < \varepsilon$
- 34) А саны f(x) функциясының $x \to +\infty$ жағдайдағы шегі деп аталады, егер кез келген $\varepsilon > 0$ саны үшін $\delta = \delta(\varepsilon) > 0$ саны табылып мына $x > \delta$ теңсіздікті қанағаттандыратын барлық x үшін мына теңсіздік орындалса:

$$\lim_{x\to 3} \frac{x^{2}-5x+6}{x^{2}-9}$$
 шегінің мәні келесі аралықта жатыр: \emptyset $[0,3)$ және $(-\infty,2)$

36) $\delta = 4x^2 + 1$ функциясы келесі функцияның туындысы:

$$\sqrt[4]{\frac{4x^3}{3}} + \tilde{o} + 10, \frac{4x^3}{3} + \tilde{o} + 1$$

$$\delta = \frac{x}{(1-x^2)^2}$$
 функциясы асимптотасы: $v = 1$ вертикаль асимптота , $v = 0$ горизонталь асимптота

38)
$$f(x) = \frac{tgx}{x}$$
 функциясы қасиеттері:
 \checkmark функция жұп, графигі **О**у осіне қарағанда симметриялы, $x = 0$ үзіліс нүктесі

$$\delta = \left(\frac{1+x}{1-x}\right)^4$$
 функциясының ойыс, дөңес аралықтары: \oslash $(-\infty,-4)$ аралығында дөңес, $(-4,-1)$ аралығында ойыс болады; $(-1,1)$ U $(1,+\infty)$ аралығында ойыс болады

41)
$$A=\{4,5,6,7,8\}$$
, $B=\{4,5,6\}$, $C=\{7,8\}$ жиындары үшін келесі тұжырым дұрыс: $\sqrt[4]{A} \cap C=C$, $A \setminus B=N$

$$x_n = \frac{2n^2 - 1}{n^2 + 1} = \frac{2n^2 - 1}{n^2 + 1}$$
 тізбегінің мүшелері: $\sqrt{1/2}$, $7/5$

 $\sqrt{2}$ 1/5, 7/17

45) Егер
$$\lim_{x \to a} f(x) = A$$
, $\lim_{x \to a} g(x) = B$, онда $\lim_{x \to a} f(x) = A \lim_{x \to a} g(x) = B$ $\lim_{x \to a} (f(x) - g(x)) = A - B \lim_{x \to a} (f(x) - g(x)) = A - B$

46) А саны $f(x)^{f(x)}$ функциясының a нүктесіндегі сол жақ шегі деп аталады, егер кез келген $\varepsilon > 0$ $\varepsilon > 0$ саны үшін $\delta = \delta(\varepsilon) > 0$ $\delta = \delta(\varepsilon) > 0$ саны табылып $a - \delta < x < a$ теңсіздікті қанағаттандыратын барлық x үшін мына теңсіздік орындалса:

$$\langle f(x) - A | < \varepsilon | f(x) - A | < \varepsilon$$

47)
$$f(x) = \sqrt{x^2 + 5} + \sin 3x$$
 функциясы үшін(туынды):

$$f'(x) = \frac{x}{\sqrt{x^2 + 5}} + 3\cos 3x, \quad f'(x) = \left(\sqrt{x^2 + 5}\right)' + (\sin 3x)',$$

48)
$$f(x) = \cos 2x + \sin 2x f(x)$$
 функциясының $f'\left(\frac{\pi}{4}\right)$ мәні келесі аралықта жатыр: $(-\infty,3]$; $(-3,4)$

49)
$$f(x) = e^{2x}$$
, $g(x) = tg3x$ болса, онда $f'(x) = ?$, $g'(x) = ?$:

$$f'(x) = 2e^{2x}, \quad g'(x) = \frac{3}{\cos^2 3x}$$

50) $f(x) = \sqrt[3]{x} - x$ функциясы үшін Ролль теоремасының шарты орындалатын аралықтар:

51) $\int R(\sqrt{ax^2 + bx + c})dx \int R(\sqrt{ax^2 + bx + c})dx$ интегралында Эйлер алмастырулары келесі жағдайда қолданылады:

$$\sqrt{a}$$
 a>0, c>0, $ax^2 + bx + c$ өрнегінің әр түрлі екі түбірі бар

52) Дифференциалды бином $x^m(a+bx^n)^p$, мұндағы m,n,p-рационал сандар, келесі жағдайда интегралданады:

$$\swarrow \frac{m+1}{n} \in \mathbb{Z}, \quad \frac{m+1}{n} + p \in \mathbb{Z}, \quad p \in \mathbb{Z},$$

53) Анықталмаған интегралды есептеңіз: $\int \frac{xdx}{(x+1)(2x+1)}$

$$\sum_{n=1}^{\infty} \frac{x^n}{3^n}$$
 қатардың жинақтылық радиусы:

55)
$$z = \sqrt{x^2 + y^2 - 1}$$
 функциясының анықталу аймағын табындар? $\bigcirc D = \{(x,y) \mid x^2 + y^2 \ge 1\}$ **D** = $\{(\mathbf{x},\mathbf{y}) \mid \mathbf{x}^2 + \mathbf{y}^2 \ge 1\}$

$$\emptyset D = \{(x, y) \mid x^2 + y^2 \ge 1\} D = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}^2 + \mathbf{y}^2 \ge 1\}$$

56) Интегралды есепте:
$$\int \frac{dx}{\sqrt{3-2x}} \int \frac{dx}{\sqrt{3-2x}}$$

$$\sqrt{3-2x}+C$$

57) e^x функциясының Тейлор бойынша жіктелуі:

$$\swarrow \sum_{n=0}^{\infty} \frac{x^n}{n!} \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \frac{\mathbf{x}^{\mathbf{n}}}{\mathbf{n}!}$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
 Қатардың жинақтылық радиусы:

$$\sqrt{\hspace{-1em}/} \infty \infty$$

59)
$$2 - \frac{3}{2} + \dots + (-1)^{n+1} \frac{n+1}{n} + \dots$$
 берілген қатар қандай?