પ્રશ્ન 1(અ) [03 ગુણ]

કલાઇન્ટ સર્વર અને પીઅર ટૂ પીઅર નેટવર્કનો તફાવત લખો.

જવાબ:

પેરામીટર	Client-Server Network	Peer-to-Peer Network		
આર્કિટેક્ચર	કેન્દ્રિય સર્વર સાથે	વિકેન્દ્રિત, બધા નોડ્સ સમાન		
ખર્ચ સર્વર હાર્ડવેરને કારણે વધુ		ઓછો, હાલના કમ્પ્યુટર્સનો ઉપયોગ		
સિક્યોરિટી વધુ, કેન્દ્રિય નિયંત્રણ		ઓછી, વિતરિત નિયંત્રણ		
સ્કેલેબિલિટી	સર્વરની ક્ષમતાથી મર્યાદિત	વધુ સારી, નોડ્સ સાથે સંસાધનો વધે		

મેમરી ટ્રીક: "CSS-P: Client-Server = કેન્દ્રિય સિક્યોરિટી, P2P = પીઅર પાવર"

પ્રશ્ન 1(બ) [04 ગુણ]

ARP પ્રોટોકોલ તેની વર્કિંગ સાથે સમજાવો.

જવાબ:

ARP (Address Resolution Protocol) લોકલ નેટવર્કમાં IP એડ્રેસને MAC એડ્રેસ સાથે જોડે છે.

વર્કિંગ પ્રોસેસ:

• **બ્રોડકાસ્ટ રિકવેસ્ટ**: હોસ્ટ ટાર્ગેટ IP સાથે ARP રિક્વેસ્ટ બ્રોડકાસ્ટ કરે

• **કેશ ચેક**: રિસીવિંગ હોસ્ટ્સ તપાસે કે IP મેચ થાય છે કે નહીં

• **રિપ્લાય જનરેશન**: ટાર્ગેટ હોસ્ટ MAC એડ્રેસ સાથે ARP રિપ્લાય મોકલે

• **કેશ અપડેટ**: રિક્વેસ્ટિંગ હોસ્ટ ARP ટેબલ અપડેટ કરે

ARP ટેબલ ઉદાહરણ:

IP Address	MAC Address	\mathtt{TTL}
192.168.1.1	00:1A:2B:3C:4D:5E	300s

મેમરી ટ્રીક: "BCRU: બ્રોડકાસ્ટ, કેશ, રિપ્લાય, અપડેટ"

પ્રશ્ન 1(ક) [07 ગુણ]

OSI મોડેલ આકૃતિ સાથે સમજાવો.

જવાબ:

OSI (Open Systems Interconnection) મોડેલમાં નેટવર્ક કમ્યુનિકેશન માટે 7 લેચર્સ છે.

લેયર ફંક્શન્સ:

• Physical: ફિઝિકલ મીડિયમ પર બિટ ટ્રાન્સમિશન

• Data Link: ફ્રેમ ટ્રાન્સમિશન, એરર ડિટેક્શન

• Network: રાઉટિંગ, IP એડ્રેસિંગ

• Transport: એન્ડ-ટુ-એન્ડ ડિલિવરી, TCP/UDP

• Session: કનેક્શન મેનેજમેન્ટ

• **Presentation**: ડેટા એન્ક્રિપ્શન, કોમ્પ્રેશન

• Application: યુઝર ઇન્ટરફેસ, ઇમેઇલ, વેબ

મેમરી ટ્રીક: "All People Seem To Need Data Processing"

પ્રશ્ન 1(ક OR) [07 ગુણ]

કન્જેશન શું છે? કન્જેશન કંટ્રોલ સમજાવો.

જવાબ:

કન્જેશન ત્યારે થાય છે જ્યારે નેટવર્ક ટ્રાફિક ઉપલબ્ધ બેન્ડવિડ્થ કરતાં વધી જાય, જેથી પેકેટ ડિલે અને લોસ થાય.

કન્જેશન કંટોલના પ્રકારો:

эвг	મેથડ	વર્ણન
Open-Loop	પ્રિવેન્શન	કન્જેશન પહેલાં ટ્રાફિક શેપિંગ
Closed-Loop	રિએક્શન	ફીડબેક આદ્યારિત એડજસ્ટમેન્ટ

કન્જેશન કંટ્રોલ ટેકનિક્સ:

• ટાકિક શેપિંગ: ડેટા ટ્રાન્સમિશન રેટ નિયંત્રિત કરો

• એડમિશન કંટ્રોલ: કન્જેશન દરમિયાન નવા કનેક્શન્સ મર્યાદિત કરો

• લોડ શેડિંગ: બફર્સ ભરાઈ જાય ત્યારે પેકેટસ ડ્રોપ કરો

• બેકપ્રેશર: અપસ્ટ્રીમ કન્જેશન સિગ્નલ્સ મોકલો

મેમરી ટ્રીક: "TALB: ટ્રાફિક, એડમિશન, લોડ, બેકપ્રેશર"

પ્રશ્ન 2(અ) [03 ગુણ]

એડહોક નેટવર્ક શું છે? તે સમજાવો.

જવાબ:

એડહોક નેટવર્ક એક વાયરલેસ નેટવર્ક છે જેમાં કોઈ નિશ્ચિત ઇન્ફ્રાસ્ટ્રક્ચર વગર નોડ્સ સીધો કમ્યુનિકેટ કરે છે.

લક્ષણો:

• સ્વ-આચોજિત: ઓટોમેટિક નેટવર્ક ફોર્મેશન

• ડાયનેમિક ટોપોલોજી: નોડ્સ મુક્તપણે જોડાઈ/છૂટી શકે

• મલ્ટિ-હોપ રાઉટિંગ: મેસેજ્સ મધ્યવર્તી નોડ્સ દ્વારા રિલે થાય

• વિતરિત નિયંત્રણ: કોઈ કેન્દ્રિય સત્તા નહીં

એપ્લિકેશન્સ:

• ઇમર્જન્સી રિસ્પોન્સ, મિલિટરી ઓપરેશન્સ, સેન્સર નેટવર્ક્સ

મેમરી ટ્રીક: "SDMD: સ્વ-આયોજિત, ડાયનેમિક, મલ્ટિ-હોપ, વિતરિત"

પ્રશ્ન 2(બ) [04 ગુણ]

મોબાઈલ IP માં હેન્ડઓવર મેનેજમેન્ટ સમજાવો.

જવાબ:

હેન્ડઓવર એ પ્રક્રિયા છે જ્યારે મોબાઈલ નોડ નેટવર્ક્સ વચ્ચે ખસે ત્યારે કનેક્ટિવિટી જાળવી રાખવાની.

હેન્ડઓવર પ્રક્રિયા:

પ્રકારો:

• **હાર્ડ હેન્ડઓવર**: બ્રેક-બિફોર-મેક કનેક્શન

• સોફ્ટ હેન્ડઓવર: મેક-બિફોર-બ્રેક કનેક્શન

મેમરી ટ્રીક: "DARU: ડિસ્કવરી, એડવર્ટાઇઝમેન્ટ, રજિસ્ટ્રેશન, અપડેટ"

પ્રશ્ન 2(ક) [07 ગુણ]

મોબાઈલ કમ્પ્યુટિંગનું થ્રી ટાયર આર્કિટેક્ચર આકૃતિ સાથે સમજાવો.

જવાબ:

થ્રી-ટાયર આર્કિટેક્ચર મોબાઈલ એપ્લિકેશન્સને પ્રેઝન્ટેશન, એપ્લિકેશન લોજિક અને ડેટા લેચર્સમાં વિભાજિત કરે છે.

લેયર ફંક્શન્સ:

• પ્રેઝન્ટેશન: યુઝર ઇન્ટરફેસ, મોબાઈલ એપ્સ

• એપ્લિકેશન: બિઝનેસ લોજિક, મિડલવેર સર્વિસેસ

• ડેટા: ડેટાબેસ મેનેજમેન્ટ, સ્ટોરેજ સિસ્ટમ્સ

ફાયદા:

• સ્કેલેબિલિટી: સ્વતંત્ર લેયર સ્કેલિંગ

• મેન્ટેનેબિલિટી: અલગ ચિંતાવાળા વિષયો

• લવચીકતા: ટેકનોલોજી સ્વતંત્રતા

મેમરી ટ્રીક: "PAD: પ્રેઝન્ટેશન, એપ્લિકેશન, ડેટા"

પ્રશ્ન 2(અ OR) [03 ગુણ]

વાયરલેસ નેટવર્કની જરૂરિયાત સમજાવો.

જવાબ:

વાયરલેસ નેટવર્ક્સ ફિઝિકલ કેબલ્સ વગર કનેક્ટિવિટી પ્રદાન કરે છે.

જરૂરિયાતો:

• મોબિલિટી: યુઝર્સ કનેક્ટેડ રહીને મુક્તપણે ફરી શકે

• લવચીકતા: સરળ નેટવર્ક વિસ્તરણ અને પુનઃ રૂપરેખાંકન

• ખર્ચ-અસરકારક: કેબલિંગ ઇન્ફ્રાસ્ટ્રક્ચર ખર્ચ ઘટાડો

• પહોંચ: દૂરના વિસ્તારોમાં ઇન્ટરનેટ એક્સેસ

એપ્લિકેશન્સ:

• મોબાઈલ કમ્યુનિકેશન્સ, WiFi હોટસ્પોટ્સ, IoT ડિવાઇસ

મેમરી ટ્રીક: "MFCA: મોબિલિટી, લવચીકતા, ખર્ચ, પહોંચ"

પ્રશ્ન 2(બ OR) [04 ગુણ]

મોબાઈલ IP માં રજિસ્ટ્રેશન, ટનલિંગ અને ઇન્કેપ્સુલેશન સમજાવો.

જવાબ:

મોબાઈલ IP કોમ્પોનન્ટ્સ:

પ્રક્રિયા	વર્ણન	હેતુ
રજિસ્ટ્રેશન	મોબાઈલ નોડ હોમ એજન્ટ સાથે રજિસ્ટર થાય	લોકેશન અપડેટ
ટનલિંગ	એજન્ટ્સ વચ્ચે વર્ચ્યુઅલ પાથ બનાવે	પેકેટ્સ રૂટ કરવા
ઇન્કેપ્સુલેશન	મૂળ પેકેટને નવા હેડરમાં લપેટે	એડ્રેસ ટ્રાન્સલેશન

પ્રક્રિયા ફ્લો:

મૂળ પેકેટ → ઇન્કેપ્સુલેશન → ટનલ → ડીકેપ્સુલેશન → ડેસ્ટિનેશન

રજિસ્ટ્રેશન સ્તરો:

- મોબાઈલ નોડ ફોરેન એજન્ટ શોધે
- હોમ એજન્ટને રજિસ્ટ્રેશન રિક્વેસ્ટ મોકલે
- હોમ એજન્ટ લોકેશન બાઇન્ડિંગ અપડેટ કરે

મેમરી ટ્રીક: "RTE: રજિસ્ટ્રેશન, ટનલિંગ, ઇન્કેપ્સુલેશન"

પ્રશ્ન 2(s OR) [07 ગુણ]

મિડલવેર શું છે? મિડલવેરના ઉદાહરણો લખો અને તેમાંથી કોઈ પણ એકને વિગતે સમજાવો.

જવાબ:

મિડલવેર એ સોફ્ટવેર છે જે વિતરિત સિસ્ટમ્સમાં વિવિધ એપ્લિકેશન્સ અને સેવાઓને જોડે છે.

મિડલવેરના ઉદાહરણો:

- Message-Oriented Middleware (MOM)
- Remote Procedure Call (RPC)
- Object Request Broker (ORB)
- ડેટાબેસ મિડલવેર
- વેબ સર્વિસ

Message-Oriented Middleware (MOM) - વિગતવાર:

આર્કિટેક્ચર:

લક્ષણો:

- અસિંકોનસ કમ્યુનિકેશન: નોન-બ્લોકિંગ મેસેજ એક્સચેન્જ
- વિશ્વસનીયતા: મેસેજ પર્સિસ્ટન્સ અને ડિલિવરી ગેરંટી
- સ્કેલેબિલિટી: મલ્ટિપલ કોન્કરન્ટ કનેક્શન્સ હેન્ડલ કરે
- પ્લેટફોર્મ સ્વતંત્રતા: ક્રોસ-પ્લેટફોર્મ કમ્યુનિકેશન

ફાયદા:

- એપ્લિકેશન્સ વચ્ચે લૂઝ કપલિંગ
- સિસ્ટમ વિશ્વસનીયતામાં સુધારો
- વધુ સારી ફોલ્ટ ટોલરન્સ

મેમરી ટ્રીક: "ARSP: અસિંકોનસ, વિશ્વસનીય, સ્કેલેબલ, પ્લેટફોર્મ-સ્વતંત્ર"

પ્રશ્ન 3(અ) [03 ગુણ]

'www' નું ફુલ ફોર્મ આપો અને તે સમજાવો.

જવાબ:

WWW = World Wide Web

સમજાવટ:

- ગ્લોબલ ઇન્ફોર્મેશન સિસ્ટમ: ડોક્યુમેન્ટ્સનો પરસ્પર જોડાયેલો જાળો
- **HTTP પ્રોટોકોલ**: HyperText Transfer Protocol નો ઉપયોગ કરે
- **URL એડ્રેસિંગ**: યુનિક રિસોર્સ લોકેટર્સ
- હાયપરલિંક્સ: વેબ પેજો વચ્ચે નેવિગેટ કરવા

કોમ્પોનન્ટ્સ:

• વેબ સર્વર્સ, બ્રાઉઝર્સ, HTML ડોક્યુમેન્ટ્સ, URL

મેમરી ટ્રીક: "GHUH: ગ્લોબલ, HTTP, URL, હાયપરલિંક્સ"

પ્રશ્ન 3(બ) [04 ગુણ]

મોબાઈલ કમ્પ્યુટિંગની ઉપયોગિતા સમજાવો.

જવાબ:

મોબાઈલ કમ્પ્યુટિંગ એપ્લિકેશન્સ:

કેટેગરી	એપ્લિકેશન્સ	ફાયદા	
બિઝનેસ	ઇમેઇલ, CRM, સેલ્સ	પ્રોડક્ટિવિટી, રિયલ-ટાઇમ એક્સેસ	
હેલ્થકેર	પેશન્ટ મોનિટરિંગ, ટેલિમેડિસિન	રિમોટ કેર, ઇમર્જન્સી રિસ્પોન્સ	
એજ્યુકેશન	ઇ-લર્નિંગ, ડિજિટલ લાઇબ્રેરી	લવચીક લર્નિંગ, રિસોર્સ એક્સેસ	
મનોરંજન	ગેમિંગ, સ્ટ્રીમિંગ, સોશિયલ મીડિયા	ઓન-ડિમાન્ડ કન્ટેન્ટ, કનેક્ટિવિટી	

મુખ્ય લક્ષણો:

• **લોકેશન-બેઝ્ડ સર્વિસ**: GPS નેવિગેશન, લોકલ સર્ચ

• મોબાઈલ પેમેન્ટ્સ: ડિજિટલ વોલેટ, કોન્ટેક્ટલેસ ટ્રાન્ઝેક્શન્સ

• **IoT ઇન્ટીગ્રેશન**: સ્માર્ટ હોમ, વેરેબલ ડિવાઇસેસ

મેમરી ટ્રીક: "BHEE: બિઝનેસ, હેલ્થકેર, એજ્યુકેશન, મનોરંજન"

પ્રશ્ન 3(ક) [07 ગુણ]

DHCP નું વર્કિંગ આકૃતિ સાથે સમજાવો અને તેના ફાયદા સમજાવો.

જવાબ:

DHCP (Dynamic Host Configuration Protocol) નેટવર્ક ડિવાઇસેસને ઓટોમેટિક IP એડ્રેસ આપે છે. DHCP પ્રક્રિયા (DORA):

પ્રદાન કરેલી કોન્ફિગરેશન માહિતી:

- IP એડ્રેસ અને સબનેટ માસ્ક
- ડિફોલ્ટ ગેટવે એડ્રેસ

- DNS સર્વર એડ્રેસેસ
- લીઝ અવધિ

ફાયદા:

- **ઓટોમેટિક કોન્ફિંગરેશન**: મેન્યુઅલ IP અસાઇનમેન્ટ નહીં
- કેન્દ્રિત મેનેજમેન્ટ: એક જ નિયંત્રણ બિંદૂ
- કાર્યક્ષમ IP ઉપયોગ: ડાયનેમિક એલોકેશન બગાડ અટકાવે
- ભૂલો ઘટાડો: મેન્યુઅલ કોન્ફિગરેશન ભૂલો દૂર કરે
- સરળ મેન્ટેનન્સ: સરળ નેટવર્ક ફેરફારો

DHCP મેસેજ પ્રકારો:

• DISCOVER, OFFER, REQUEST, ACK, NAK, RELEASE, RENEW

મેમરી ટ્રીક: "DORA: ડિસ્કવર, ઓફર, રિક્વેસ્ટ, એકનોલેજ"

પ્રશ્ન 3(અ OR) [03 ગુણ]

HTTPS નું મહત્વ લખો.

જવાબ:

HTTPS (HyperText Transfer Protocol Secure) સુરક્ષિત વેબ કમ્યુનિકેશન પ્રદાન કરે છે.

HTTPS નું મહત્વ:

- **ડેટા એન્ક્રિપ્શન**: SSL/TLS નો ઉપયોગ કરીને ટ્રાન્ઝિટમાં ડેટાને સુરક્ષિત કરે
- ઓથેન્ટિકેશન: સર્ટિફિકેટ્સ સાથે સર્વર આઇડેન્ટિટી વેરિફાઇ કરે
- ડેટા ઇન્ટેગ્રિટી: ટ્રાન્સમિશન દરમિયાન ડેટા ટેમ્પરિંગ અટકાવે
- વિશ્વાસ નિર્માણ: વેબસાઇટ્સમાં યુઝર કોન્ફિડન્સ વધારે

સિક્યોરિટી લાલો:

• ઇવ્સડ્રોપિંગ અને મેન-ઇન-ધ-મિડલ એટેક સામે રક્ષણ

મેમરી ટ્રીક: "EADT: એન્ક્રિપ્શન, ઓથેન્ટિકેશન, ઇન્ટેગ્રિટી, વિશ્વાસ"

પ્રશ્ન 3(બ OR) [04 ગુણ]

બેરર નેટવર્ક શું છે? તે વિગતે સમજાવો.

જવાબ:

બેરર નેટવર્ક એ અંતર્ગત નેટવર્ક ઇન્ફ્રાસ્ટ્રક્ચર છે જે એન્ડપોઇન્ટ્સ વચ્ચે ડેટા ટ્રાફિક વહન કરે છે.

બેરર નેટવર્ક્સના પ્રકારો:

પ્રકાર	ટેકનોલોજી	લક્ષણો		
Circuit-Switched	પરંપરાગત ટેલિફોની	સમર્પિત પાથ, ગેરંટીડ બેન્ડવિડ્થ		
Packet-Switched	ઇન્ટરનેટ, IP networks	શેર્ડ રિસોર્સ, વેરિએબલ બેન્ડવિડ્થ		
વાયરલેસ	સેલ્યુલર, WiFi	મોબાઇલ કનેક્ટિવિટી, એર ઇન્ટરફેસ		

ફંક્શન્સ:

• ડેટા ટ્રાન્સપોર્ટ: યુઝર ડેટા અને સિગ્નલિંગ વહન કરે

• Quality of Service: બેન્ડવિડ્થ અને લેટન્સી મેનેજ કરે

• રાઉટિંગ: નેટવર્ક્સ વચ્ચે ટ્રાફિક ડાયરેક્ટ કરે

• નેટવર્ક મેનેજમેન્ટ: ટ્રાફિક મોનિટર અને કંટ્રોલ કરે

ઉદાહરણો:

• PSTN, ઇન્ટરનેટ બેકબોન, 4G/5G સેલ્યુલર નેટવર્ક્સ

મેમરી ટ્રીક: "DQRN: ડેટા ટ્રાન્સપોર્ટ, QoS, રાઉટિંગ, નેટવર્ક મેનેજમેન્ટ"

પ્રશ્ન 3(s OR) [07 ગુણ]

TCP ના પ્રકાર લિસ્ટ કરો અને તેમાંથી કોઈ પણ એક સમજાવો.

જવાબ:

TCP ના પ્રકારો:

- स्टान्डाई TCP (TCP Tahoe)
- TCP Reno
- TCP New Reno
- TCP Vegas
- TCP SACK (Selective Acknowledgment)
- TCP Cubic

TCP Reno - વિગતવાર સમજાવટ:

લક્ષણો:

• ફાસ્ટ રિટ્રાન્સમિટ: ખોવાયેલા પેકેટ્સ ઝડપથી ફરીથી મોકલે

• ફાસ્ટ રિકવરી: ફાસ્ટ રિટ્રાન્સમિટ પછી સ્લો સ્ટાર્ટ ટાળે

• કન્જેશન એવોઇડન્સ: કન્જેશન વિન્ડોમાં લિનિયર વધારો

• **ડુપ્લિકેટ ACK ડિટેક્શન**: પેકેટ લોસ ઓળખે

કન્જેશન કંટોલ અલ્ગોરિધમ:

ફાયદા:

• વધુ સારી પર્ફોર્મન્સ: પેકેટ લોસથી ઝડપી રિકવરી

• કાર્યક્ષમતા: ઉચ્ચ થ્રુપુટ જાળવે

• ન્યાયીપણું: સમાન બેન્ડવિડ્થ વહેંચણી

વિન્ડો મેનેજમેન્ટ:

• સ્લો સ્ટાર્ટમાં એક્સપોનેન્શિયલ વૃદ્ધિ

• કન્જેશન એવોઇડન્સમાં લિનિયર વૃદ્ધિ

મેમરી ટ્રીક: "FFCE: ફાસ્ટ રિટ્રાન્સમિટ, ફાસ્ટ રિકવરી, કન્જેશન એવોઇડન્સ, કાર્યક્ષમતા"

પ્રશ્ન 4(અ) [03 ગુણ]

WLAN વ્યાખ્યાયિત કરો. WLAN ના પ્રકારો લિસ્ટ કરો.

જવાબ:

WLAN (Wireless Local Area Network) મર્યાદિત વિસ્તારમાં વાયરલેસ કનેક્ટિવિટી પ્રદાન કરે છે.

WLAN ના પ્રકારો:

• ઇન્ફ્રાસ્ટ્રક્ચર મોડ: કનેક્ટિવિટી માટે એક્સેસ પોઇન્ટ્સનો ઉપયોગ

• એડ-હોક મોડ: સીધો ડિવાઇસ-ટુ-ડિવાઇસ કમ્યુનિકેશન

• મેશ નેટવર્ક્સ: મલ્ટિ-હોપ વાયરલેસ કનેક્ટિવિટી

• હાઇબ્રિડ નેટવર્ક્સ: ઇન્ફ્રાસ્ટ્રક્ચર અને એડ-હોકનું કોમ્બિનેશન

સ્ટાન્ડાર્ડ્સ:

• IEEE 802.11a/b/g/n/ac/ax (WiFi 6)

મેમરી ટ્રીક: "IAMH: ઇન્ફ્રાસ્ટ્રક્ચર, એડ-હોક, મેશ, હાઇબ્રિડ"

પ્રશ્ન 4(બ) [04 ગુણ]

રાઉટિંગ શું છે? રાઉટિંગના પ્રકાર સમજાવો.

જવાબ:

રાઉટિંગ એ નેટવર્ક્સ પર ડેટા પેકેટ્સ માટે પાથ સિલેક્ટ કરવાની પ્રક્રિયા છે.

રાઉટિંગના પ્રકારો:

увіч	મેથડ	લક્ષણો		
સ્ટેટિક રાઉટિંગ	મેન્યુઅલ કોન્ફિગરેશન	નિયત પાથ, કોઈ ઓટોમેટિક અપડેટ્સ નહીં		
ડાયનેમિક રાઉટિંગ	ઓટોમેટિક અપડેટ્સ	અનુકૂલનશીલ પાથ, રિયલ-ટાઇમ ફેરફારો		
ડિફોલ્ટ રાઉટિંગ	કેય-ઓલ રૂટ	જ્યારે કોઈ સ્પેસિફિક રૂટ અસ્તિત્વમાં ન હોય		
ડિસ્ટન્સ વેક્ટર	હોપ કાઉન્ટ આધારિત	RIP પ્રોટોક્રોલ, સરળ અમલીકરણ		
લિંક સ્ટેટ	નેટવર્ક ટોપોલોજી	OSPF પ્રોટોકોલ, ઝડપી કન્વર્જન્સ		

ડાયનેમિક રાઉટિંગના ફાયદા:

- **ઓટોમેટિક અનુકૂલન** નેટવર્ક ફેરફારો માટે
- લોડ બેલેન્સિંગ મલ્ટિપલ પાથ પર
- ફ્રોલ્ટ ટોલરન્સ વૈકલ્પિક રૂટ્સ સાથે

મેમરી ટ્રીક: "SDDL: સ્ટેટિક, ડાયનેમિક, ડિફોલ્ટ, લિંક-સ્ટેટ"

પ્રશ્ન 4(ક) [07 ગુણ]

WLAN નું આર્કિટેક્ચર સમજાવો.

જવાબ:

WLAN આર્કિટેક્ચર કોમ્પોનન્ટ્સ:

આર્કિટેક્ચર એલિમન્ટ્સ:

- સ્ટેશન (STA): વાયરલેસ ક્લાયન્ટ ડિવાઇસેસ
- **એક્સેસ પોઇન્ટ (AP)**: કેન્દ્રિય વાયરલેસ હબ
- **બેસિક સર્વિસ સેટ (BSS)**: સિંગલ AP કવરેજ એરિયા
- **એક્સટેન્ડેડ સર્વિસ સેટ (ESS)**: મલ્ટિપલ ઇન્ટરકનેક્ટેડ AP
- **ડિસ્ટ્રિબ્યુશન સિસ્ટમ (DS)**: AP ને જોડતું બેકએન્ડ નેટવર્ક

WLAN ટોપોલોજીઝ:

- **ઇન્ફ્રાસ્ટ્રક્ચર મોડ**: AP દ્વારા કેન્દ્રિત
- એડ-હોક મોડ: સીધો પીઅર-ટુ-પીઅર કમ્યુનિકેશન
- મેશ ટોપોલોજી: મલ્ટિ-હોપ વાયરલેસ કનેક્શન્સ

પ્રદાન કરેલી સેવાઓ:

- **એસોસિએશન**: AP સાથે ડિવાઇસ કનેક્શન
- ઓથેન્ટિકેશન: સિક્યોરિટી વેરિકિકેશન
- ડેટા ડિલિવરી: પેકેટ ટ્રાન્સમિશન
- **રોમિંગ**: AP વચ્ચે સીમલેસ મૂવમેન્ટ

ફ્રીક્વન્સી બેન્ડ્સ:

- 2.4 GHz (802.11b/g/n)
- 5 GHz (802.11a/n/ac/ax)

મેમરી ટ્રીક: "SABED: સ્ટેશન, એક્સેસ પોઇન્ટ, BSS, ESS, ડિસ્ટ્રિબ્યુશન સિસ્ટમ"

પ્રશ્ન 4(અ OR) [03 ગુણ]

WPAN વ્યાખ્યાયિત કરો. WPAN ની ઉપયોગિતા લિસ્ટ કરો.

જવાબ:

WPAN (Wireless Personal Area Network) વ્યક્તિગત જગ્યામાં ડિવાઇસેસ જોડે છે (સામાન્ય રીતે 10 મીટર).

WPAN ની ઉપયોગિતા:

- ડિવાઇસ સિંક્રોનાઇઝેશન: ફોનથી કમ્પ્યુટર ડેટા ટ્રાન્સફર
- ઓડિયો સ્ટ્રીમિંગ: વાયરલેસ હેડફોન્સ, સ્પીકર્સ
- ઇનપુટ ડિવાઇસેસ: વાયરલેસ કીબોર્ડ, માઉસ
- હેલ્થકેર: મેડિકલ સેન્સર્સ, ફિટનેસ ટેકર્સ
- સ્માર્ટ હોમ: IoT ડિવાઇસ કંટ્રોલ

ટેકનોલોજીઝ:

• Bluetooth, Zigbee, NFC, infrared

મેમરી ટ્રીક: "DSAHS: ડિવાઇસ સિંક, સ્ટ્રીમિંગ, ઓડિયો, હેલ્થકેર, સ્માર્ટ હોમ"

પ્રશ્ન 4(બ OR) [04 ગુણ]

IMAP પ્રોટોકોલનું વર્કિંગ સમજાવો.

જવાબ:

IMAP (Internet Message Access Protocol) મેઇલ સર્વર પર ઇમેઇલ મેનેજ કરે છે.

IMAP વર્કિંગ પ્રોસેસ:

સ્તર	ક્રિયા	વર્ણન		
કનેક્શન	ક્લાયન્ટ સર્વર સાથે કનેક્ટ થાય	પોર્ટ 143/993 પર TCP કનેક્શન સ્થાપિત કરે		
ઓથેન્ટિકેશન	લોગિન ક્રેડેન્શિયલ્સ	યુઝરનેમ/પાસવર્ડ વેરિફિકેશન		
મેઇલબોક્સ સિલેક્શન	ફોલ્ડર પસંદ કરો	INBOX અથવા અન્ય ફોલ્ડર્સ સિલેક્ટ કરો		
મેસેજ ઓપરેશન્સ	વાંચો/ડિલીટ/ફ્લેગ	સર્વર પર મેસેજ્સ મેનિપ્યુલેટ કરો		

IMAP vs POP3:

• સર્વર સ્ટોરેજ: મેસેજ્સ સર્વર પર રહે છે

• મલ્ટિ-ડિવાઇસ એક્સેસ: ડિવાઇસેસ પર સિંક

• ફોલ્ડર મેનેજમેન્ટ: સર્વર-સાઇડ ફોલ્ડર સ્ટ્રક્ચર

• પાર્શિયલ ડાઉનલોડ: પહેલા હેડર્સ, માંગ પર બોડી

IMAP કમાન્ડ્સ:

```
LOGIN user password

SELECT INBOX

FETCH 1 BODY[]

STORE 1 +FLAGS (\Deleted)
```

મેમરી ટ્રીક: "CAMS: કનેક્શન, ઓથેન્ટિકેશન, મેઇલબોક્સ, સ્ટોરેજ"

પ્રશ્ન 4(ક OR) [07 ગુણ]

બ્લૂટ્થ ટેકનોલોજી તેના પ્રોટોકોલ સ્ટેક સાથે સમજાવો.

જવાબ:

બ્લૂટ્ય એ પર્સનલ એરિયા નેટવર્ક્સ માટે શોર્ટ-રેન્જ વાયરલેસ કમ્યુનિકેશન ટેકનોલોજી છે.

બ્લૂટ્રથ પ્રોટોકોલ સ્ટેક:

લેયર ફંક્શન્સ:

• **રેડિયો લેયર**: 2.4 GHz ISM બેન્ડ, ફ્રીક્વન્સી હોપિંગ

• બેસબેન્ડ: ટાઇમિંગ, એક્સેસ કંટ્રોલ, પેકેટ ફોર્મેટ્સ

• LMP: લિંક સ્થાપના, સિક્યોરિટી, પાવર મેનેજમેન્ટ

• L2CAP: પેકેટ સેગમેન્ટેશન, પ્રોટોકોલ મલ્ટિપ્લેક્સિંગ

• **RFCOMM**: વાયરલેસ પર સીરિયલ પોર્ટ એમ્યુલેશન

• SDP: સર્વિસ ડિસ્કવરી પ્રોટોકોલ

• **એપ્લિકેશન્સ**: ફાઇલ ટ્રાન્સફર, ઓડિયો સ્ટ્રીમિંગ, HID

બ્લૂટ્રથ લક્ષણો:

• રેન્જ: 10 મીટર (Class 2 ડિવાઇસેસ)

• **ડેટા રેટ**: 1-3 Mbps (વર્ઝન આધારે)

• **ટોપોલોજી**: સ્ટાર નેટવર્ક (piconet)

• સિક્યોરિટી: ઓથેન્ટિકેશન, ઓથરાઇઝેશન, એન્ક્રિપ્શન

બ્લુટ્થ વર્ઝન્સ:

• ક્લાસિક બ્લૂટ્ટથ (BR/EDR)

• બ્લૂટ્રથ લો એનર્જી (BLE/LE)

• બ્લૂટથ 5.0+ (એન્હાન્સ્ક રેન્જ/સ્પીડ)

એપ્લિકેશન્સ:

• ઓડિયો ડિવાઇસેસ, કીબોર્ડ્સ, ફાઇલ ટ્રાન્સફર, IoT સેન્સર્સ

મેમરી ટ્રીક: "RBLSRA: રેડિયો, બેસબેન્ડ, LMP, SDP, RFCOMM, એપ્લિકેશન્સ"

પ્રશ્ન 5(અ) [03 ગુણ]

4G શું છે? 4G ના ફીચર્સ લિસ્ટ કરો.

જવાબ:

4G (Fourth Generation) એ હાઇ-સ્પીડ વાયરલેસ ઇન્ટરનેટ પ્રદાન કરતો મોબાઇલ કમ્યુનિકેશન સ્ટાન્ડાર્ડ છે.

4G ના ફીચર્સ:

• હાઇ ડેટા સ્પીડ: મોબાઇલ પર 100 Mbps, સ્ટેશનરી પર 1 Gbps સુધી

• **ઓલ-IP નેટવર્ક**: પેકેટ-સ્વિચ્ડ આર્કિટેક્ચર

• લો લેટન્સી: રિયલ-ટાઇમ એપ્લિકેશન્સ માટે ઓછો વિલંબ

• Quality of Service: ગેરંટીડ સર્વિસ લેવલ્સ

• ગ્લોબલ રોમિંગ: વિશ્વવ્યાપી સુસંગતતા

ટેકનોલોજીઝ:

• LTE (Long Term Evolution), WiMAX

મેમરી ટ્રીક: "HALQG: હાઇ-સ્પીડ, ઓલ-IP, લો લેટન્સી, QoS, ગ્લોબલ રોમિંગ"

પ્રશ્ન 5(બ) [04 ગુણ]

સેન્ટ્રલાઇઝ્ડ કમ્પ્યુટિંગ સમજાવો.

જવાબ:

સેન્ટ્રલાઇઝ્ડ કમ્પ્યુટિંગ કેન્દ્રિય સર્વર પર બધા ડેટા અને એપ્લિકેશન્સ પ્રોસેસ કરે છે.

આર્કિટેક્ચર:

લક્ષણો:

- સિંગલ પોઇન્ટ ઓક કંટોલ: કેન્દ્રિય સ્થાને બધી પ્રોસેસિંગ
- થિન ક્લાયન્ટ્સ: ન્યૂનતમ લોકલ પ્રોસેસિંગ ક્ષમતા
- શેર્ડ રિસોર્સ: CPU, મેમરી, સ્ટોરેજ કેન્દ્રિય રીતે મેનેજ
- નેટવર્ક ડિપેન્ડન્ટ: વિશ્વસનીય નેટવર્ક કનેક્ટિવિટી જરૂરી

કાયદા:

- સિક્યોરિટી: કેન્દ્રિત ડેટા પ્રોટેક્શન
- મેનેજમેન્ટ: સરળ સિસ્ટમ એડમિનિસ્ટેશન
- ખર્ચ: ક્લાયન્ટ-સાઇડ હાર્ડવેર ખર્ચ ઓછો

નુકસાનો:

- સિંગલ પોઇન્ટ ઓફ ફેઇલ્ચર: સર્વર ડાઉનટાઇમ બધા યુઝર્સને અસર કરે
- નેટવર્ક બોટલનેક: નેટવર્ક પર્કોર્મન્સ પર ભારે નિર્ભરતા

મેમરી ટ્રીક: "SSNG: સિંગલ કંટ્રોલ, શેર્ડ રિસોર્સ, નેટવર્ક ડિપેન્ડન્ટ, વધુ સિક્યોરિટી"

પ્રશ્ન 5(ક) [07 ગુણ]

IPv4 શું છે? IPv4 નું વર્કિંગ ડાયાગ્રામ સાથે સમજાવો.

જવાબ:

IPv4 (Internet Protocol version 4) નેટવર્ક ઓળખ માટે 32-બિટ એડ્રેસનો ઉપયોગ કરે છે.

IPv4 એડ્રેસ સ્ટ્રક્ચર:

IPv4 એડ્રેસ ક્લાસેસ:

ક્લાસ	રેન્જ	નેટવર્ક બિટ્સ	હોસ્ટ બિટ્સ	ડિફોલ્ટ સબનેટ માસ્ક
A	1-126	8	24	255.0.0.0
В	128-191	16	16	255.255.0.0
С	192-223	24	8	255.255.255.0
D	224-239	મલ્ટિકાસ્ટ	-	-
E	240-255	પ્રયોગાત્મક	-	-

IPv4 પેકેટ હેડર:

વર્કિંગ પ્રક્રિયા:

- **એડ્રેસ અસાઇનમેન્ટ**: નેટવર્ક એડમિનિસ્ટ્રેટર IP એડ્રેસ આપે
- **રાઉટિંગ ડિસિઝન**: રાઉટર ડેસ્ટિનેશન IP તપાસે
- સબનેટ ડિટર્મિનેશન: નેટવર્ક શોધવા સબનેટ માસ્ક લાગુ કરે
- પેકેટ ફોરવાર્ડિંગ: યોગ્ય નેટવર્ક ઇન્ટરફેસ પર રૂટ કરે

સ્પેશિયલ એડ્રેસેસ:

• **ผุนผ่ร**: 127.0.0.1 (localhost)

• **มเย่นะ**: 10.x.x.x, 172.16-31.x.x, 192.168.x.x

• **GISSIR2**: 255.255.255.255

મર્યાદાઓ:

• એડ્રેસ એક્ઝોશન: માત્ર 4.3 બિલિયન એડ્રેસ

• બિનકાર્યક્ષમ ફાળવણી: ક્લાસ-આધારિત બગાડ

મેમરી ટ્રીક: "ABCDE: એડ્રેસ ક્લાસ A, B, C, D મલ્ટિકાસ્ટ, E પ્રયોગાત્મક"

પ્રશ્ન 5(અ OR) [03 ગુણ]

5G શું છે? 5G ના ફીચર્સ લિસ્ટ કરો.

જવાબ:

5G (Fifth Generation) એ વધારેલી ક્ષમતાઓ સાથે નવીનતમ મોબાઇલ કમ્યુનિકેશન સ્ટાન્ડાર્ડ છે.

5G ના કીચર્સ:

• **અલ્ટ્રા-હાઇ સ્પીડ**: 10 Gbps સુધીના ડેટા રેટ્સ

• **અલ્ટા-લો લેટન્સી**: 1ms કરતાં ઓછો રિસ્પોન્સ ટાઇમ

• મેસિવ કનેક્ટિવિટી: પ્રતિ km² 1 મિલિયન ડિવાઇસેસ

• નેટવર્ક સ્લાઇસિંગ: વર્ચ્યુઅલ ડેડિકેટેડ નેટવર્ક્સ

• એન્હાન્સ્ડ મોબાઇલ બ્રોડબેન્ડ: સુધારેલ યુઝર એક્સપિરિયન્સ

મુખ્ય ટેકનોલોજીઝ:

• મિલિમીટર વેવ, મેસિવ MIMO, બીમફોર્મિંગ

મેમરી ટ્રીક: "UUMNE: અલ્ટ્રા-સ્પીડ, અલ્ટ્રા-લો લેટન્સી, મેસિવ કનેક્ટિવિટી, નેટવર્ક સ્લાઇસિંગ, એન્હાન્સ્ક બ્રોડબેન્ડ"

પ્રશ્ન 5(બ OR) [04 ગુણ]

ડિસ્ટ્રિબ્યુટેડ કમ્પ્યુટિંગ સમજાવો.

જવાબ:

ડિસ્ટ્રિબ્યુટેડ કમ્પ્યુટિંગ મલ્ટિપલ ઇન્ટરકનેક્ટેડ કમ્પ્યુટર્સ પર પ્રોસેસિંગ વિતરિત કરે છે.

આર્કિટેક્ચર:

લક્ષણો:

• રિસોર્સ શેરિંગ: વિતરિત પ્રોસેસિંગ અને સ્ટોરેજ

• સ્કેલેબિલિટી: ક્ષમતા વધારવા વધુ નોડ્સ ઉમેરો

• ફોલ્ટ ટોલરન્સ: કેટલાક નોડ્સ ફેઇલ થાય તો સિસ્ટમ ચાલુ રહે

• લોકેશન ટ્રાન્સપેરન્સી: યુઝર્સને રિસોર્સ લોકેશનની જાણ નથી

ફાયદા:

• વિશ્વસનીયતા: કોઈ સિંગલ પોઇન્ટ ઓફ ફેઇલ્ચર નથી

• પર્ફોર્મન્સ: પેરેલલ પ્રોસેસિંગ ક્ષમતાઓ

• ખર્ચ-અસરકારકતા: કોમોડિટી હાર્ડવેરનો ઉપયોગ

ઉદાહરણો:

• ક્લાઉડ કમ્પ્યુટિંગ, પીઅર-ટુ-પીઅર નેટવર્ક્સ, ગ્રિડ કમ્પ્યુટિંગ

મેમરી ટ્રીક: "RSFL: રિસોર્સ શેરિંગ, સ્કેલેબિલિટી, ફોલ્ટ ટોલરન્સ, લોકેશન ટ્રાન્સપેરન્સી"

પ્રશ્ન 5(ક OR) [07 ગુણ]

ડેટા લિંક લેચર પ્રોટોકોલ સમજાવો.

જવાબ:

ડેટા લિંક લેચર અડીને આવેલા નેટવર્ક નોડ્સ વચ્ચે વિશ્વસનીય ડેટા ટ્રાન્સફર પ્રદાન કરે છે.

ફંક્શન્સ:

• ફ્રેમિંગ: બિટ્સને ફ્રેમ્સમાં ગોઠવો

• **એરર ડિટેક્શન**: ટ્રાન્સમિશન એરર્સ ઓળખો

• એરર કરેક્શન: શોધાયેલી એરર્સ સુધારો

• ફ્લો કંટ્રોલ: ડેટા ટ્રાન્સમિશન રેટ મેનેજ કરો

• એક્સેસ કંટોલ: શેર્ડ મીડિયા એક્સેસ કોઓર્ડિનેટ કરો

ફ્રેમ સ્ટ્રક્ચર:

++		·	+	+	_+
Start	Address	Control	Data	FCS	
Delimiter	Field	Field	Field	(CRC)	
++		·	+	+	-+

એરર ડિટેક્શન મેથડ્સ:

મેથડ	વર્ણન	क्षभता	
પેરિટી ચેક	સિંગલ બિટ ઉમેરો	સિંગલ-બિટ એરર્સ શોધો	
ચેકસમ અંકગણિત સરવાળો		મલ્ટિપલ એરર્સ શોધો	
CRC	પોલિનોમિયલ ડિવિઝન	બર્સ્ટ એરર્સ શોદ્યો	

ફ્લો કંટ્રોલ પ્રોટોકોલ્સ:

• **સ્ટોપ-એન્ડ-વેઇટ**: એક ફ્રેમ મોકલો, ACK ની રાહ જુઓ

• સ્લાઇડિંગ વિન્ડો: ટ્રાન્ઝિટમાં મલ્ટિપલ ફ્રેમ્સ

• સ્ટોપ-એન્ડ-વેઇટ ARQ: એસ્ટ રિકવરી ઉમેરો

• ગો-બેક-N ARQ: એરર પોઇન્ટથી રિટ્રાન્સમિટ

• સિલેક્ટિવ રિપીટ: માત્ર એરર ફ્રેમ્સ રિટ્રાન્સમિટ

એક્સેસ કંટ્રોલ મેથડ્સ:

• CSMA/CD: કેરિયર સેન્સ મલ્ટિપલ એક્સેસ વિથ કોલિઝન ડિટેક્શન

• CSMA/CA: કોલિઝન એવોઇડન્સ

• ટોકન પાસિંગ: ટોકનનો ઉપયોગ કરીને નિયંત્રિત એક્સેસ

પ્રોટોકોલ ઉદાહરણો:

• Ethernet, PPP, HDLC, LLC

વર્કિંગ પ્રક્રિયા:

મેમરી ટ્રીક: "FECFA: ફ્રેમિંગ, એરર ડિટેક્શન, કરેક્શન, ફ્લો કંટ્રોલ, એક્સેસ કંટ્રોલ"