Ingeniería Informática-CC. Matemáticas

ÁLGEBRA LINEAL Y GEOMETRÍA

Hoja 4. Espacios Euclídeos y Unitarios IV. Aplicaciones ortogonales y unitarias.

1. Consideramos \mathbb{R}^2 con el producto escalar habitual y $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ una aplicación lineal cuya matriz con respecto a la base $\mathcal{B} = \{(1,0),(1,1)\}$ es

$$M_1 = \frac{1}{2} \begin{pmatrix} 0 & 2\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix}$$
 $M_2 = \frac{1}{2} \begin{pmatrix} \sqrt{3} - 1 & -2 \\ 1 & 1 + \sqrt{3} \end{pmatrix}$.

Determina en qué caso f es ortogonal.

- **2.** Encuentra las ecuaciones de la simetría (ortogonal) respecto al plano 2x + y + z = 0 de \mathbb{R}^3 .
- 3. Encuentra la expresión analítica de las siguientes aplicaciones ortogonales de \mathbb{R}^2 :
 - a) La simetría respecto a la recta 2x + y = 0.
 - **b)** El giro de ángulo $\pi/3$.
- 4. Decide de manera razonada si los siguientes endomorfismos de \mathbb{R}^2 son aplicaciones ortogonales con el producto escalar usual y en caso afirmativo clasifícalos e indica sus elementos geométricos:

a)
$$\begin{cases} x' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y \\ y' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y; \end{cases}$$

b)
$$\begin{cases} x' = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \\ y' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y. \end{cases}$$

- **5.** Calcular la matriz en la base cannica de \mathbb{R}^3 de:
 - a) La simetría respecto del plano x = y;
 - **b)** La simetría respecto al plano 2x + y + z = 0;
 - c) Giro de amplitud $\pi/2$ con eje u=(0,1,1), con la orientación dada por el vector u.
- **6.** Decide de manera razonada si los siguientes endomorfismos de \mathbb{R}^3 son aplicaciones ortogonales con el producto escalar usual y en caso afirmativo clasifícalos e indica sus elementos geométricos:

a)
$$\begin{cases} x' = \frac{1}{2}x + \frac{\sqrt{2}}{2}y + \frac{1}{2}z \\ y' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}z \\ z' = \frac{1}{2}x - \frac{\sqrt{2}}{2}y + \frac{1}{2}z; \end{cases}$$

b)
$$\begin{cases} x' = z \\ y' = -y \\ z' = -x. \end{cases}$$

- 7. Usando el producto escalar usual en \mathbb{C}^3 :
- a) Encuentra la expresión en coordendas de la simetría ortogonal respecto a la recta $l = \{x iz = 0, y = 0\}$. ¿Es unitaria? ¿Es autoadjunta?
- b) Encuentra la expresión en coordendas de la proyección ortogonal sobre la recta $l = \{x (1+i)z = 0, y = 0\}$. ¿Es autoadjunta?

- 8. Sea $V=\mathbb{R}^2$. Decide de manera razonada el resultado de componer:
 - a) Dos rotaciones en V;
 - **b)** Dos simetrías en V;
 - c) Una rotación con una simetría.
- 9. Sea f la simetría respecto al eje $\langle (a, b, c) \rangle$ de \mathbb{R}^3 .
 - a) Demuestra que para todo $v \in \mathbb{R}^3$, f(v) + v es o bien $\vec{0}$ o bien un vector propio de valor propio 1.
 - b) Usa el apartado anterior para calcular la matriz de f en función de a, b, c.
- c) Usa el apartado anterior para hallar las ecuaciones de la rotación de ángulo π respecto al a recta intersección de los planos 3x-4y=0, z=0.
- 10. En \mathbb{R}^3 considera la simetría g respecto al plano de ecuación ax + by + cz = 0.
 - a) Demuestra que para todo $v \in \mathbb{R}^3$, g(v) v es ortogonal al plano de simetría.
 - b) Calcula la matriz de g en función de a, b, c.
 - c) Halla las ecuaciones de la simetría respecto al plano x + 2y 3z = 0.
- **11.** Sea V un espacio vectorial sobre $\mathbb R$ y sea $f:V\to V$ una función que conserva el producto escalar, i.e., para todo par de vectores $u,v\in V$ se tiene que $\langle u,v\rangle=\langle f(u),f(v)\rangle$. Demuestra que f es necesariamente lineal. Sugerencia: Basta probar que $\|f(u+v)-f(u)-f(v)\|^2=0$ y que $\|f(\lambda u)-\lambda f(u)\|^2=0$ para $\lambda\in\mathbb R$ y para todo par de vectores $u,v\in V$.
- 12. Sea V un espacio euclídeo (respectivamente, unitario) de dimensión n sobre $\mathbb{K} = \mathbb{R}, \mathbb{C}$ y sea

$$O(n, \mathbb{K}) := \{ f : V \to V : f \text{ es ortogonal (respectivamente unitaria)} \}.$$

- a) Demuestra que $O(n, \mathbb{K})$ es un conjunto no vacío;
- b) Demuestra que $O(n, \mathbb{K})$ es un grupo con la composición (que recibe el nombre de grupo ortogonal);
- c) Decide de manera razonada si $O(n, \mathbb{K})$ es un grupo abeliano;
- d) Definimos

$$SO(n, \mathbb{K}) := \{ f : V \to V : f \text{ es ortogonal (respectivamente unitaria): } \det(f) = 1 \}.$$

Demuestra que $SO(n, \mathbb{K})$ es un subgrupo de $O(n, \mathbb{K})$ (recibe el nombre de grupo ortogonal especial).

- 13. Consideramos \mathbb{R}^2 con el producto escalar usual y sea $h: \mathbb{R}^2 \to \mathbb{R}^2$ la rotación de ángulo α . Determina la adjunta de h. ¿Es h ortogonal?
- 14. Sea l una recta (un subespacio vectorial de dimensión 1) en \mathbb{R}^2 donde consideramos el producto escalar usual. Demuestra que la simetría ortogonal respecto a l es una aplicación ortogonal.
- **15.** Sea $W \subset V$ un subespacio no nulo de un vectorial euclídeo o unitario de un espacio V de dimensión $n \geq 1$. Sea $f: V \to V$ la simetría respecto a W con dirección un cierto subespacio W'. Demuestra que f es una aplicación ortogonal (o unitaria) si y sólo si la simetría es ortogonal. (i.e., f es ortogonal -o unitaria- si y sólo si $W' = W^{\perp}$).
- 16. Sea V un espacio vectorial de dimensión finita sobre un cuerpo \mathbb{K} . Fijada una base B de V se define la traza de f como la traza de la matriz $M_B(f)$. Demuestra que la traza de f no depende de la base B fijada. Sugerencia: Cualquier cambio de base es de la forma $M_{BB'}^{-1}M_B(f)M_{BB'}$. Ahora usa que para todo par de matrices cuadradas, A, C, de orden n, Traza(AC) = Traza(CA).