Intelligent Charging Station

Bastian Berle Fabian Heidger Ron Holzapfel

Energie- & Transportsektor verantworten > 50% weltweiter CO2-Emissionen

Erreichung des **2 Grad Ziels** nur mit **disruptiven Lösungen** in beiden Sektoren

> **680 Tsd. E-Autos** in **DE** (5x mehr als 2020)

Verändertes Anforderungsprofil

Größere Batteriekapazitäten

Was, wenn **49 Mio**. **zugelassene E-Autos** in DE?

Grüner Transport, aber **schmutzige Energieversorgung**?

Weiterhin **Gewährleistung** von **Energie** auch in **anderen Bereichen**

Lademanagement & Netzinfrastruktur

Der Wissenschaftliche Beirat des **BMVI** identifizierte folgende Herausforderungen:

Aufladen während der **Stoßzeiten**

Ausbau der Netzinfrastruktur

Freie Mobilität gewährleisten

Erhöhte Nachfrage kann mit erneuerbaren Energiequellen schwer gedeckt werden

Bedarf und Organisationsmodelle für Ladeinfrastruktur prüfen

Netzstabilität:
Energieversorgung
auch in anderen
Bereichen
gewährleisten

Netzlimitationen berücksichtigen

Intelligent Charging System

Wie sieht der Zustand des Environments aus?

Was ist der Reward?

Welches Modell kann verwendet werden?

Wie wird das Modell trainiert?

Position n

Position 2

Position 1

Auf der Position befindet sich ein Fahrzeug (True/False)

Maximale Batteriekapazität [kWh]

Minimale & maximale Ladeleistung [kW]

Aktueller Batteriestand [kWh]

Anzahl der Zeitintervalle, die ein Fahrzeug an der Position bereits verweilt

Wie sieht der Zustand des Environments aus?

Was ist der Reward?

Welches Modell kann verwendet werden?

Agent erhält Umgebungszustand

Agent berechnet Ladeleistung für jede Position

> Umgebung aktualisiert den Zustand

Reward entspricht der Differenz aller Batteriekapazitäten zwischen den Zeitintervallen

Wie sieht der Zustand des Environments aus?

Was ist der Reward?

Welches Modell kann verwendet werden?

Klassische DQNs sind nicht in der Lage kontinuierliche Vorhersagen zu treffen ...

Deep Deterministic Policy Gradient

Actor

entscheidet, welche Aktion durchgeführt werden soll

Critic

bewertet die Aktion des Actors und gibt an, wie diese Aktion angepasst werden sollte

Wie sieht der Zustand des Environments aus?

Was ist der Reward?

Welches Modell kann verwendet werden?

Wie wird das Modell trainiert?

Mithilfe des **Epsilon-Greedy-Verfahren** wird im Training zunächst ein Grundschatz von Erfahrung gesammelt, bis nach und nach der Agent immer häufiger Entscheidungen trifft...

Entscheidungen werden temporär im **Replay Buffer (**Queue) gespeichert

Stabileres Lernen durch Target- und Train-Modelle

Produktarchitektur & Technologie-Stack

Ergebnisse

Fazit

Funktionierendes AI-System

Nutzbares Frontend

Potentiellen Investoren kann ein "funktionsfähiges" PoC vorgestellt werden

Kritische Würdigung

FCFS ist nicht der intelligenteste nicht-Al Algorithmus

Gewisser Bias durch geringe Variantenvielfalt während des Trainings

→ disruptive Techniken können unsere
 → Plattform unbenutzbar machen

Demo

https://coin2gether.de

Titel	Ansatz	Unterschied zu unserem Use Case
Intelligent Electric Vehicle Charging Recommendation Based on Multi-Agent Reinforcement Learning (Link)	 jede Ladestation entspricht einem eigenen RL-Agenten Berücksichtigung von weiteren Einflüssen wie Gebührenwettbewerb oder verzögerte Zugriffsstrategien Ergebnisse aus einem durchgeführten Experiment sind vielversprechend 	In dem Paper geht es primär um die Generierung von Empfehlungen hinsichtlich einer passenden Ladestation, das auf einem Pool von geografisch verteilten Ladestationen zurückgreift
Optimal Placement of Public Electric Vehicle Charging Stations Using Deep Reinforcement Learning (Link)	 Anhand des prognostizierten Ladebedarfs und der aktuellen Ladestationen einen optimalen Standort für neue Ladestationen zu finden Faktoren: Verkehrsdichte im Umkreis, die Registrierung von E-Fahrzeugen & Nähe zu bestimmten Arten von öffentlichen Gebäuden 	Es geht primär um die Findung von neuen Ladestationen
Smart charging of electric vehicles using reinforcement learning (Link)	 Problemstellung die behandelt werden soll ist die Sicherstellung von Netzstabilität unter Berücksichtigung des Ladeverhalten und der allgemeinen Kostenminimierung, welche sich durch Angebot und Nachfrage zusammensetzt Ein RL-Agent soll das Verbrauchsverhalten von Haushalten erlernen, der das Ziel der individuellen Wohlfahrtsmaximierung berücksichtigt Ergebnisse des Experiments sind vielversprechend und basieren auf statistischen Kundenmodelle Der Agent konnte die Energiepreise reduzieren und zugleich die allgemeine Auslastung inkl. Spitzenlasten im Netz reduzieren 	In unserem Anwendungsfall geht es nicht ausschließlich um die Senkung der Energiepreise, sondern um das intelligente Verteilen von Ressourcen

Titel	Ansatz	Unterschied zu unserem Use Case
Deep reinforcement learning for energy management in a microgrid with flexible demand (Link)	 Optimierte Ressourcenverteilung innerhalb eines neuartigen Mikronetzmodell, das aus Windturbinen, Energiespeichersystemen, einer Reihe von thermostatisch gesteuerten Konsumenten, einer Reihe von preisabhängigen Konsumenten und einem Anschluss an das Hauptnetz besteht Innerhalb eines Experiments wurden mehrere DL-Ansätze getestet Die besten Ergebnisse erzielte ein "asynchronous advantage actor-critic"-Modell, das zusätzlichen auf eine "experience replay" zurückgreift 	 Im Fokus liegt erneut die Preiskomponente, die es in erster Linie gilt zu optimieren Elektrofahrzeuge stellen eine gewisse Herausforderung dar, weil sie jeder Zeit sich von dem Mikronetz trennen können → Elektrofahrzeuge wurde explizit nicht in dem Paper berücksichtigt
Applications of reinforcement learning in energy systems (Link)	 Paper ist eine Literaturübersicht über Reinforcement Learning, die Energiesysteme managen State-of-the-Art-Verfahren wie Actor-Critic wurden selten in Experimenten verwendet, was nach den Autoren, zu starken Performanceeinbußen führte Multi-Agent RL bieten zwar viel Potential, da sie Lösungen für komplexe Interaktionsprobleme zwischen mehreren Parteien finden → dennoch wurden bestimmte Verfahren aus diesem Gebiet nicht verwendet Fazit: RL hat viel Potential Energieverteilungsprobleme effizient zu lösen 	

Titel	Ansatz	Unterschied zu unserem Use Case
Deep Reinforcement Learning for Smart Home Energy Management (Link)	 Energiekostenminimierung für ein Smart Home ohne ein Modell der thermischen Dynamik des Gebäudes unter Berücksichtigung eines komfortablen Temperaturbereichs Energiebedingte Herausforderungen: Leistung der erneuerbaren Energien, nicht verschiebbarer Strombedarf, Außentemperatur und Strompreis Energiesystem besitzt Speicher, Konsumenten und Erzeuger Innerhalb eines Experiments wurde ein Markov-Entscheidungsprozess und ein Deep Deterministic Policy Gradients (DDPG) implementierung und miteinander verglichen DDPG ist nach den Autoren vergleichsweise wirksam und robust 	Konsumenten sind dauerhaft an das Stromnetz angeschlossen nicht wie Elektrofahrzeuge Kostenminimierung steht wieder im Vordergrund
Werbeflächen zu	vermieten – Hier könnte Ihre	Werbung stehen.
Smart Grid Optimization by Deep Reinforcement Learning over Discrete and Continuous Action Space (Link)	Vergleich von Verfahren für diskrete und kontinuierliche Aktionsräume, die das Zielverfolgen, den Energiebedarf mittels verschiedener Energieversorger (extern & intern) zu decken	 das Ziel von den Autoren vorgeschlagenen Modell ist es lediglich zu entscheiden, Energie zu kaufen oder zu verkaufen (im kontinuierlichen Aktionsraum: wie viel gekauft oder verkauft wird) → nicht kompatibel mit unserer Problemstellung

Titel	Ansatz	Unterschied zu unserem Use Case
Deep Reinforcement Learning for Optimal Energy Management of Multi-energy Smart Grids (Link)	 Deep Reinforcement Learning-Ansatz für die optimale Steuerung von Multi-Energie-Systemen in intelligenten Stromnetzen Das hier verwendete Multi-Energie-Wohnungsmikronetzmodell besteht aus Strom-, Wärme- und Kältespeicher sowie thermische Produktionssysteme und erneuerbarer Energieerzeugung Herausforderung: optimale Echtzeitsteuerung von Multi-Energie-Systemen mit mehreren gleichzeitigen kontinuierlichen Aktionsräumen In einem Experiment wurde ein DDPG-Algorithmus getestet Es wurde festgestellt, dass der DDPG-Agent kontinuierliche Zustands- und Aktionsräume gut handhaben kann 	Keine Berücksichtigung von Elektrofahrzeugen