FEUILLE D'EXERCICES N°7 Théorème du rang constant

Démonstrations de cours

Les exercices de cette section **ne seront pas** traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués **&** sont exigibles au partiel et à l'examen.

♣ Exercice 1 – Composition avec des difféomorphismes

Module A₄ – Proposition 1

Soient \mathcal{X} et \mathcal{Y} deux espaces de BANACH et \mathcal{U} , \mathcal{U}_0 deux ouverts de \mathcal{X} . Soit $f: \mathcal{U} \to \mathcal{Y}$ une application différentiable. Soient $\phi: \mathcal{U}_0 \to \mathcal{U}$ et $\psi: f(\mathcal{U}) \to \psi \circ f(\mathcal{U})$ deux difféomorphismes.

- (a) Justifier que l'application $g = \psi \circ f \circ \phi$ est différentiable sur \mathcal{U}_0 et calculer sa différentielle.
- (b) On suppose que f est une immersion. Justifier que $df(\phi(x))$ est injective pour tout $x \in \mathcal{U}_0$. Soient $x \in \mathcal{U}_0$ et $h \in \mathcal{X}$. Montrer que

$$dg(x) \cdot h = 0$$
 \iff $d\psi(f \circ \phi(x)) \circ df(\phi(x)) \circ d\phi(x) \cdot h = 0$

En déduire successivement que, si $dg(x) \cdot h = 0$, alors $df(\phi(x)) \circ d\phi(x) \cdot h = 0$ et que $d\phi(x) \cdot h = 0$. Démontrer alors que dg(x) est injective.

(c) On suppose que f est une submersion. Justifier que $df(\phi(x))$ est surjective pour tout $x \in \mathcal{U}_0$. Soient $x \in \mathcal{U}_0$ et $y \in \mathcal{Y}$. Justifier qu'il existe un (unique) $y_0 \in \mathcal{Y}$ tel que

$$d\psi(f \circ \phi(x)) \cdot y_0 = y$$

En déduire qu'il existe $x_0 \in \mathcal{X}$ tel que

$$df(\phi(x)) \cdot x_0 = y_0$$

puis qu'il existe $h \in \mathcal{X}$ tel que

$$d\phi(x) \cdot h = x_0$$

En déduire que dg(x) est surjective.

\clubsuit Exercice 2 – Rang de la différentielle d'une immersion et d'une submersion

Module A₄ – Proposition 2

Soient $(n, m) \in \mathbb{N}^*$, $U \subset \mathbb{R}^n$ un ouvert et $a \in U$. Soit $f : U \to \mathbb{R}^m$ une application de classe \mathcal{C}^1 . Soit $x \in U$. On note r(x) le rang de df(x).

(a) Montrer que

- $r(x) \le \min(n, m)$
- (b) On suppose que f est une immersion. Justifier que $n \leq m$ et vérifier que r(a) = n.
- (c) On suppose que f est une submersion. Justifier que $n \ge m$ et vérifier que r(a) = m.
- (d) En déduire que, si f est une immersion (resp. une submersion), alors $r(x) \le r(a)$.

Exercice 3 – Forme normale d'une immersion

Module A₄ – Proposition 3

Soit $U \subset \mathbb{R}^2$ ouvert contenant 0. Soit $f: U \to \mathbb{R}^3$ une immersion de classe \mathcal{C}^1 en 0 telle que f(0) = 0. On note $f = (f_1, f_2, f_3)$.

(a) Rappeler la définition de Jf(0). Justifier que la famille $\{\nabla f_1(0), \nabla f_2(0), \nabla f_3(0)\}$ génèrent \mathbb{R}^2 .

(b) On suppose à partir de cette question que $\nabla f_1(0)$ et $\nabla f_2(0)$ forment une famille libre. On s'intéresse alors à l'application suivante :

$$g: \left\{ \begin{array}{ccc} U \times \mathbb{R} & \to & \mathbb{R}^3 \\ (x,y) & \mapsto & (f_1(x), f_2(x), f_3(x) + y) \end{array} \right.$$

Justifier que g est de classe \mathcal{C}^1 sur $U \times \mathbb{R}$ et donner une expression de Jg(x,y) pour tout $(x,y) \in U \times \mathbb{R}$.

- (c) Montrer que Jg(0) est inversible.
- (d) En utilisant le théorème d'inversion locale, montrer qu'il existe un voisinage ouvert de $U_0 \subset \mathbb{R}^3$ de 0 tel que g soit un difféomorphisme de U_0 sur $g(U_0)$. En déduire que g est bijective et g^{-1} est de classe \mathcal{C}^1 sur $g(U_0)$.
- (e) Montrer que pour (x, y) voisin de (0, 0)

$$(x,y) = g^{-1} \circ g(x,y) = g^{-1} (f(x) + (0,y))$$

- (f) En déduire que pour x voisin de 0, $g^{-1} \circ f(x) = (x, 0)$
- (g) On se place à présent dans le cas général. Justifier qu'il existe $i, j \in \{1, 2, 3\}$ tels que $\nabla f_i(0)$ et $\nabla f_j(0)$ forment une famille libre. On note k l'unique indice tel que $\{i, j, k\} = \{1, 2, 3\}$.
- (h) On s'intéresse à l'application $\phi: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ (y_1, y_2, y_3) & \mapsto & (y_i, y_j, y_k) \end{array} \right.$

Montrer que ϕ est un difféomorphisme sur \mathbb{R}^3 .

(i) En appliquant les questions (b)-(f) à la fonction $\tilde{f} = \phi \circ f$, montrer qu'il existe $U_0, V_0 \subset \mathbb{R}^3$ deux ouverts et $\tilde{g}: U_0 \to V_0$ un difféomorphisme tel que pour x voisin de 0,

$$\tilde{g}^{-1} \circ \tilde{f}(x) = (x,0)$$

(j) En déduire que $\tilde{g}^{-1} \circ \phi \circ f(x) = (x,0)$ pour x voisin de 0.

Exercice 4 - Forme normale d'une submersion

Module A₄ – Proposition ₄

Soit $(m,n) \in \mathbb{N}^2$. Soit $U \subset \mathbb{R}^n$ ouvert contenant 0. Soit $f: U \to \mathbb{R}^m$ une submersion en 0 telle que f(0) = 0.

- (a) Justifier que les n vecteurs colonnes de Jf(0) génèrent \mathbb{R}^m . En déduire qu'il est possible d'en extraire une sous-famille de m colonnes telles que la sous-matrice carrée constituée de ces m colonnes soit inversible.
- (b) On suppose à partir de cette question que les colonnes en question sont les m premières colonnes de Jf(0). On s'intéresse à l'application suivante :

$$h: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R}^n \\ x & \mapsto & (f_1(x), \dots, f_m(x), x_{m+1}, \dots, x_n) \end{array} \right.$$

Justifier que h est de classe \mathcal{C}^1 sur U. Calculer sa matrice jacobienne et vérifier que

$$Jh(x) = \begin{pmatrix} \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{\substack{1 \le i \le m \\ 1 \le j \le m}} & \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{\substack{1 \le i \le m \\ m+1 \le j \le n}} \\ 0 & I_{n-m} \end{pmatrix} \in \mathcal{M}_{n,n}(\mathbb{R})$$

- (c) Montrer que Jh(0) est inversible. En déduire qu'il existe un voisinage ouvert de $U_0 \subset \mathbb{R}^n$ de 0 tel que h soit un difféomorphisme de U_0 sur $h(U_0)$.
- (d) Justifier que pour x voisin de 0

$$x = h \circ h^{-1}(x) = (f_1 \circ h^{-1}(x), \dots, f_m \circ h^{-1}(x), (h^{-1}(x))_{m+1}, \dots, (h^{-1}(x))_n)$$

En déduire que

$$\forall i \in [1; m], \quad f_i \circ h^{-1}(x) = x_i$$

puis que

$$f \circ h^{-1}(x) = (x_1, \dots, x_m)$$

(e) On se place dans le cas général. En considérant une permutation adaptée, démontrer qu'il existe $V \subset \mathbb{R}^n$ un ouvert contenant 0 et $\phi: V \to \mathbb{R}^n$ un \mathcal{C}^1 -difféomorphisme tel que $\phi(0) = 0$ et, pour $x \in \mathbb{R}^n$ voisin de 0,

$$f \circ \phi(x_1, \dots, x_n) = (x_1, \dots, x_m)$$

♣ Exercice 5 – Théorème du rang constant : cas d'une immersion et d'une submersion

Module A₄ – Théorème ₃

Soit $(m,n) \in \mathbb{N}^2$. Soit $U \subset \mathbb{R}^n$ ouvert contenant a. Soit $f: U \to \mathbb{R}^m$ une application de classe \mathcal{C}^1 . On suppose dans un premier temps que a = 0 et que f(a) = 0.

(a) On suppose que f est une immersion en 0. Justifier qu'il existe $\tilde{\psi}: \mathbb{R}^m \to \mathbb{R}^m$ et $\tilde{\phi}: \mathbb{R}^n \to \mathbb{R}^n$ deux applications linéaires inversibles telles que

$$\forall x \in \mathbb{R}^n, \quad \tilde{\psi} \circ df(0) \circ \tilde{\phi}(x) = (x_1, \dots, x_n, 0, \dots, 0)$$

puis, à l'aide de la Proposition 3, qu'il existe $W \subset \mathbb{R}^m$ un ouvert contenant 0 et $\psi : W \to \mathbb{R}^m$ un \mathcal{C}^1 difféomorphisme tel que, pour x voisin de 0,

$$\tilde{\psi}^{-1} \circ \psi \circ f \circ \phi^{-1}(x) = df(0) \cdot x$$

(b) On suppose que f est une submersion en 0. Justifier qu'il existe $\tilde{\psi}: \mathbb{R}^m \to \mathbb{R}^m$ et $\tilde{\phi}: \mathbb{R}^n \to \mathbb{R}^n$ deux applications linéaires inversibles telles que

$$\forall x \in \mathbb{R}^n, \quad \tilde{\psi} \circ df(0) \circ \tilde{\phi}(x) = (x_1, \dots, x_m)$$

puis, à l'aide de la Proposition 4, qu'il existe $V \subset \mathbb{R}^n$ un ouvert contenant 0 et $\phi : V \to \mathbb{R}^n$ un \mathcal{C}^1 difféomorphisme tel que, pour x voisin de 0,

$$\tilde{\psi}^{-1} \circ f \circ \phi \circ \phi^{-1}(x) = df(0) \cdot x$$

(c) On revient au cas général où $a \neq 0$ ou $f(a) \neq 0$. Montrer que si f est une immersion ou une submersion en a, alors il existe $V \subset \mathbb{R}^n$ un ouvert contenant $0, W \subset \mathbb{R}^m$ un ouvert contenant f(a), deux difféomorphismes $\phi: V \to \mathbb{R}^n$ et $\psi: W \to \mathbb{R}^m$ tels que $\phi(V)$ contient a et, pour x voisin de a,

$$\psi \circ f \circ \phi(x) = df(a) \cdot x$$

Exercices fondamentaux

Exercice 6 – Rang de la différentielle Pour les applications suivantes, déterminer le rang de la différentielle en tout point où f est différentiable :

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & 2x^2 - x - 6y^2 \end{array} \right.$$

(b)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x,y) & \mapsto & (2x^2 + 6y^2, x^2 - y^2, x + y) \end{array} \right.$$

Exercice 7 – Formes normales d'une immersion Montrer que chacune des applications suivantes est une immersion, puis expliciter l'expression du difféomorphisme ψ apparaissant dans la forme normale de f au voisinage de 0.

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \rightarrow & \mathbb{R}^2 \\ t & \mapsto & (0, 4t) \end{array} \right.$$

(b)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R}^3 \\ (x,y) & \mapsto & (0,2x,3y) \end{array} \right.$$

Exercice 8 – Formes normales d'une submersion Montrer que chacune des applications suivantes est une submersion, puis expliciter l'expression du difféomorphisme φ apparaissant dans la forme normale de g au voisinage de 0.

(a)
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^2 - y \end{array} \right.$$
 (b) $g: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x+y,x-y) \end{array} \right.$

Exercice 9 – Théorème du rang constant : un premier exemple On considère la fonction :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^2 - y \end{array} \right.$$

- (a) Montrer que f est différentiable et calculer sa différentielle.
- (b) Déterminer le rang de la différentielle de f.
- (c) On considère les deux applications suivantes :

$$\phi: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x,x^2-y) \end{array} \right. \quad \text{et} \qquad \psi: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & -t \end{array} \right.$$

Montrer que ϕ et ψ définissent deux \mathcal{C}^1 -difféomorphismes.

(d) Calculer $\psi \circ f \circ \phi$.

Exercice 10 – Submersion et gradients Soit $U \subset \mathbb{R}^n$ un ouvert. Soit $g_i : U \to \mathbb{R}$ une fonction différentiable pour tout $i \in [1, p]$. On pose

$$G: \left\{ \begin{array}{ccc} U & \rightarrow & \mathbb{R} \\ x & \mapsto & (g_1(x), \dots, g_p(x)) \end{array} \right.$$

Montrer que G est une submersion en $x \in U$ si et seulement si les $\nabla g_i(x)$ forment une famille libre.

Compléments

* Exercice 11 – Théorème du rang constant On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$f(x,y) = (\sqrt{x^2 + y^2}, x^2 + y^2)$$

- (a) Montrer que f est continue sur \mathbb{R}^2 et \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- (b) Calculer la différentielle de f en $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Quel est le rang de $d_{(x,y)}f$?
- (c) Soit (x,y)=(1,0). Calculer $d_{(1,0)}f$ et f(1,0). Montrer qu'il existe un voisinage V de (0,0), un voisinage W de (1,1) et $\phi:V\to\mathbb{R}^2$ et $\psi:W\to\mathbb{R}^2$ deux \mathcal{C}^1 -difféomorphismes tels que $\phi(V)$ contient (1,0) et, sur V,

$$\psi \circ f \circ \phi = d_{(1,0)}f$$

- (d) On se propose de calculer explicitement ϕ et ψ .
 - (i) Montrer que f est constante sur les cercles de centre (0,0).
 - (ii) En déduire que si on pose $\tilde{\phi}(r,\theta) = (r\cos\theta, r\sin\theta)$ pour r > 0 et $\theta \in]-\pi;\pi[$, alors

$$\forall (r,\theta) \in]0; +\infty[\times] -\pi; \pi[, \quad f \circ \tilde{\phi}(r,\theta) = (r,r^2)$$

(iii) Trouver un \mathcal{C}^1 -difféomorphisme $\tilde{\psi}:]0; +\infty[\times]0; +\infty[\to]0; +\infty[\times]0; +\infty[$ tel que

$$\forall r \in]0; +\infty[, \quad \tilde{\psi}(r, r^2) = (r, 2r)]$$

(iv) Montrer que $\tilde{\phi} \circ f \circ \tilde{\phi}$ est bien définie sur $]0; +\infty[\times] - \pi, \pi[$ et que

$$\forall (r,\theta) \in]0; +\infty[\times] -\pi; \pi[, \quad \tilde{\psi} \circ f \circ \tilde{\phi}(r,\theta) = (r,2r)$$

(v) En déduire un voisinage V de (0,0), un voisinage W de (1,1) et $\phi: V \to \mathbb{R}^2$ et $\psi: W \to \mathbb{R}^2$ deux \mathcal{C}^1 -difféomorphismes tels que $\phi(V)$ contient (1,0) et, sur V,

$$\psi \circ f \circ \phi = d_{(1,0)}f$$