Test Booklet

AP Topic Questions 5.2

- 1. Which of the following functions of x is guaranteed by the Extreme Value Theorem to have an absolute maximum on the interval $[0, 2\pi]$?
 - (A) $y = \frac{1}{1+\sin x}$
 - (B) $y = \frac{1}{x^2 + \pi}$
 - (C) $y = \frac{x^2 2\pi x + \pi^2}{x \pi}$
 - (D) $y = \frac{|x-\pi|}{x-\pi}$

Let f be a function with selected values given in the table above. Which of the following statements must be true?

- I. By the Intermediate Value Theorem, there is a value c in the interval (0,3) such that f(c)=10.
- II. By the Mean Value Theorem, there is a value c in the interval (0,3) such that f'(c)=-2.
- III. By the Extreme Value Theorem, there is a value c in the interval [0,3] such that $f(c) \leq f(x)$ for all x in the interval [0,3].
- (A) None
- (B) I only
- (C) II only
- (D) I, II, and III
- Let g be the function given by $g(x) = \sqrt{1 \sin^2 x}$. Which of the following statements could be false on the interval $0 \le x \le \pi$?
 - (A) By the Extreme Value Theorem, there is a value c such that $g(c) \leq g(x)$ for $0 \leq x \leq \pi$.
 - (B) By the Extreme Value Theorem, there is a value c such that $g(c) \geq g(x)$ for $0 \leq x \leq \pi$.
 - (C) By the Intermediate Value Theorem, there is a value c such that $g(c) = \frac{g(0) + g(\pi)}{2}$.
 - (D) By the Mean Value Theorem, there is a value c such that $g'(c) = \frac{g(\pi) g(0)}{\pi 0}$.

4.	x	0	1	2	3	
	f(x)	0	4	7	6	

Let f be a function with selected values given in the table above. Which of the following statements must be true?

- I. By the Intermediate Value Theorem, there is a value c in the interval (0,3) such that f(c)=2.
- II. By the Mean Value Theorem, there is a value c in the interval (0,3) such that f'(c)=2.
- III. By the Extreme Value Theorem, there is a value c in the interval [0,3] such that $f(c) \leq f(x)$ for all x in the interval [0,3].

AP Topic Questions 5.2

- (A) None
- (B) I only
- (C) II only
- (D) I, II, and III
- 5. Let g be the function given by $g(x)=\sqrt{1+\cos x}$. Which of the following statements could be false on the interval $\frac{\pi}{2} \leq x \leq \frac{7\pi}{4}$?
 - (A) By the Extreme Value Theorem, there is a value c such that $g(c) \leq g(x)$ for $\frac{\pi}{2} \leq x \leq \frac{7\pi}{4}$.
 - (B) By the Extreme Value Theorem, there is a value c such that $g(c) \geq g(x)$ for $\frac{\pi}{2} \leq x \leq \frac{7\pi}{4}$.
 - (C) By the Intermediate Value Theorem, there is a value c such that $g(c)=\frac{g(\frac{\pi}{2})+g(\frac{7\pi}{4})}{2}$.
 - (D) By the Mean Value Theorem, there is a value c such that $g'(c) = \frac{g(\frac{7\pi}{4}) g(\frac{\pi}{2})}{\frac{7\pi}{4} \frac{\pi}{2}}$.