

Report No:CCIS15110096603

FCC REPORT

(WIFI)

Applicant: Grand Electronics, INC

Address of Applicant: 11650 Brentcross Dr Tomball, TX 77377, United States

Equipment Under Test (EUT)

Product Name: tablet

Model No.: Air7, A7, Air7s, Air7pro, Air7ultra, X7s

Trade mark: NeuTab

FCC ID: 2AGNKAIR7

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 15 Dec., 2015

Date of Test: 15 Dec., to 30 Dec., 2015

Date of report issued: 31 Dec., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	31 Dec., 2015	Original

Tested by: Steven Liu Date: 31 Dec., 2015

Test Engineer

Reviewed by: One Date: 31 Dec., 2015

Project[√]Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	G. 014000 Emicolo14	
	6.7. 6.7.		
	• • • • • • • • • • • • • • • • • • • •		
7	TES	ST SETUP PHOTO	67
8	EUT	CONSTRUCTIONAL DETAILS	68

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Grand Electronics, INC
Address of Applicant:	11650 BrentcrossDr Tomball, TX 77377,United States
Manufacturer:	GRAND ELECTRI-TECH GLOBAL TRADING LIMITED
Address of Manufacturer:	UNIT 04, 7/F, BRIGHT WAY TOWER, NO. 33 MONG KOK ROAD, KOWLOON, HK.
Factory:	SHENZHEN CHAOMING INDUSTRIAL CO.,LTD.
Address of Factory:	Fl.4, Block 1, Yu Jing Tai Industrial Park, Huarong Rd., Dalang, Longhua, Bao'an District, Shenzhen

5.2 General Description of E.U.T.

Product Name:	tablet
Model No.:	Air7, A7, Air7s, Air7pro, Air7ultra, X7s
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
AC adapter:	Model: HT-003-050200 Input:100-240V AC,50/60Hz Output:5V DC MAX2000mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-3000mAh
Remark:	The model No.: Air7, A7, Air7s, Air7pro, Air7ultra, X7swere identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model name.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15110096603

5.3 Test environment andmode

Operating Environment:	Operating Environment:				
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFiantenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is1.0dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4: 2009	ANSI C63.4: 2009				
TestFrequencyRange:	150kHz to 30MHz					
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Fraguency range (MHz)	Limit (c	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power a line impedance stabilization network (L.I.S.N.), whichproves 50ohm/50uH coupling impedance for the measuring equipmed. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impediate with 50ohm termination. (Please refer to the block diagram test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the repositions of equipment and all of the interface cables must changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
		-				

Measurement Data

Project No.:CCIS151100966RF

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

Model : Air7
Test Mode : WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: STEVEN
Remarb : EUT : Tablet

Kemark	•								
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark	
_	MHz	dBu∇	<u>d</u> B		dBu√	dBu∇	<u>d</u> B		
1	0.155	31.83	0.25	10.78	42.86	65.74	-22.88	QP	
1 2 3 4 5 6 7 8	0.170	15.07	0.25	10.77	26.09	54.94	-28.85	Average	
3	0.205	29.34	0.25	10.76	40.35	63.40	-23.05	QP	
4	0.226	9.69	0.25	10.75	20.69	52.61	-31.92	Average	
5	2.435	24.94	0.29	10.94	36.17	56.00	-19.83	QP	
6	2.435	9.62	0.29	10.94	20.85	46.00	-25.15	Average	
7	3.454	27.52	0.29	10.91	38.72	56.00	-17.28	QP	
8	3.454	9.00	0.29	10.91	20.20	46.00	-25.80	Average	
9	10.676	23.42	0.25	10.93	34.60	60.00	-25.40	QP	
10	10.733	12.30	0.25	10.93	23.48	50.00	-26.52	Average	
11	17.849	24.18	0.26	10.90	35.34	60.00	-24.66	QP	
12	17.944	12.38	0.26	10.90	23.54	50.00	-26.46	Average	

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : Tablet Model : Air7 Test Mode : WIFI mode

Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: STEVEN

Remark

.emark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu∇	dBu∇	<u>dB</u>	
1	0.160	30.68	0.27	10.78	41.73	65.47	-23.74	QP
2	0.170	11.81	0.27	10.77	22.85	54.94	-32.09	Average
3	0.185	27.30	0.28	10.77	38.35	64.24	-25.89	QP
1 2 3 4 5	0.226	9.21	0.27	10.75	20.23	52.61	-32.38	Average
5	0.339	9.78	0.27	10.73	20.78	49.22	-28.44	Average
6	3.190	23.80	0.27	10.91	34.98	56.00	-21.02	QP
7 8 9	3.364	11.71	0.27	10.91	22.89	46.00	-23.11	Average
8	3.472	24.69	0.28	10.91	35.88	56.00	-20.12	QP
	10.452	21.75	0.31	10.94	33.00	60.00	-27.00	QP
10	10.452	8.87	0.31	10.94	20.12	50.00	-29.88	Average
11	15.970	22.97	0.32	10.91	34.20	60.00	-25.80	QP
12	16.573	11.02	0.33	10.91	22.26	50.00	-27.74	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit
Lowest	16.57	14.53	14.41	12.28		
Middle	16.56	15.74	15.74	15.54	30.00	Pass
Highest	16.76	14.51	14.49	12.55		

Test plot as follows:

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Middle channel

Highest channel

Test mode:802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iZ)	Rosult
Lowest	10.24	15.68	17.36	35.68		
Middle	10.24	15.92	17.44	35.84	>500	Pass
Highest	10.24	16.00	17.20	36.00		

Test CH		99%Occupy	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	result
Lowest	13.12	16.48	17.60	35.84		
Middle	12.96	16.48	17.60	36.16	N/A	N/A
Highest	12.96	16.48	17.60	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 9.DEC.2015 19:40:23

Lowest channel

Date: 9.DEC.2015 19:42:12

Middle channel

Date: 9.DEC.2015 19:43:26

Test mode: 802.11g

Date: 9.DEC.2015 19:46:49

Lowest channel

Date: 9.DEC.2015 19:49:37

Middle channel

Date: 9.DEC.2015 19:51:41

Highest channel

Date: 30.DEC.2015 15:15:26

Lowest channel

Date: 30.DEC.2015 15:17:26

Middle channel

Date: 9.DEC.2015 19:59:33

Highest channel

Test mode: 802.11n(H40)

Date: 9.DEC.2015 20:02:38

Lowest channel

Date: 9.DEC.2015 20:04:05

Middle channel

Date: 9.DEC.2015 20:05:36

99% OBW

Test mode: 802.11b

Date: 9.DEC.2015 20:15:37

Lowest channel

Date: 9.DEC.2015 20:16:04

Middle channel

Date: 9.DEC.2015 20:16:31

Test mode: 802.11g

Date: 9.DEC.2015 20:21:01

Lowest channel

Date: 9.DEC.2015 20:21:22

Middle channel

Date: 9.DEC.2015 20:21:45

Test mode: 802.11n(H20)

Date: 9.DEC.2015 20:22:33

Lowest channel

Date: 9.DEC.2015 20:23:00

Middle channel

Date: 9.DEC.2015 20:23:20

Highest channel

Test mode: 802.11n(H40)

Date: 9.DEC.2015 20:24:05

Lowest channel

Date: 9.DEC.2015 20:24:37

Middle channel

Date: 9.DEC.2015 20:24:58

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Power Spectral Density (dBm)				Limit(dBm)	Result
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit
Lowest	7.19	2.21	2.24	-3.10		
Middle	7.27	3.46	3.50	0.52	8.00	Pass
Highest	7.73	2.63	2.56	-3.02		

Test plot as follows:

Test mode: 802.11b

Date: 9.DEC.2015 20:28:47

Lowest channel

Date: 9.DEC.2015 20:29:21

Middle channel

Date: 9.DEC.2015 20:30:01

Highest channel

Date: 9.DEC.2015 20:32:15

Lowest channel

Date: 9.DEC.2015 20:32:58

Middle channel

Date: 9.DEC.2015 20:33:39

Test mode: 802.11n(H20)

Date: 9.DEC.2015 20:34:34

Lowest channel

Date: 9.DEC.2015 20:35:10

Middle channel

Date: 9.DEC.2015 20:37:34

Test mode: 802.11n(H40)

Date: 9.DEC.2015 20:38:46

Lowest channel

Date: 9.DEC.2015 20:39:25

Middle channel

Date: 9.DEC.2015 20:40:06

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 9.DEC.2015 20:53:49

Lowest channel

Date: 9.DEC.2015 20:52:15

Highest channel

802.11g

Date: 9.DEC.2015 20:55:55

Lowest channel

Date: 9.DRC.2015 20:50:38

Highest channel

802.11n(H20)

Date: 9.DEC.2015 20:58:03

Lowest channel

Highest channel

Date: 9.DEC.2015 20:59:28

802.11n(H40)

Date: 9.DEC.2015 21:01:32

Lowest channel

Date: 9.DRC.2015 21:02:59

Highest channel

6.6.2 Radiated Emission Method

0.0.2	Nadiated Lilission We	a Emission Method									
	Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
	Test Method:	ANSI C63.10: 2009and KDB 558074v03r03 section 12.1									
	TestFrequencyRange:	2.3GHz to 2.5GHz									
	Test site:	Measurement Distance: 3m									
	Receiver setup:										
		Frequency Detector RBW VBW Remark Peak 1MHz 3MHz Peak Value									
		Above 1GHz RMS 1MHz 3MHz Average Value									
	Limit:										
		Frequency Limit (dBuV/m @3m) Remark									
		Above 1GHz 54.00 Average Value									
	Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above									
	Toot cotup:	 the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet. 									
	Test setup:	Horn Antenna Tower Ground Reference Plane Test Receiver									
	Test Instruments:	Refer to section 5.6 for details									
	Test mode:	Refer to section 5.3 for details									
	Test results: Passed										
_											

802.11b

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet : Air7 Model Test mode : B-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven Remark :

.emar	2000		Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	−dBuV	— <u>d</u> B/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000					57.45 45.62			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Tablet Model : Air7 Test mode : B-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

Remark

II K	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
			27.58 27.58		0.00 0.00				Peak Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet Model : Air7 Test mode : B-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

Remark

CTT 1									
	Freq		Antenna Factor						
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT Model : Air7 Test mode : B-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

Rema

ar.	k :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	—dBu₹	dB/m	<u>ab</u>	<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500	24.18	27.52	6.85	0.00	58.55	74.00	-15.45	Peak
	2483, 500	11.80	27, 52	6, 85	0.00	46, 17	54,00	-7.83	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Tablet Model : Air7 Test mode : G-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

Remark

Freq		Antenna Factor					Over Limit	
MHz	—dBu∀	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000				0.00 0.00				

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet EUT Model : Air7 Test mode : G-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

Remark

 	Read	Ant enna	Cable	Preamn		Limit	Over		
Freq		Factor						Remark	
MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
2390.000 2390.000		F00000117 000001000010		0.00 0.00					

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet EUT Model : Air7
Test mode : G-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: steven

Remark

mari	100	Antenna Factor			
-	MHz	 <u>d</u> B/π	 	 	
	2483,500 2483,500				

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet Model : Air7 Test mode : G-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven Remark :

	- 180 A		Ant enna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹	dB/m	₫₿	<u>dB</u>	dBuV/m	dBuV/m	dB		
	2483, 500 2483, 500			·					S150/150/5000000000000000000000000000000	

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

EUT Model : Air7 Test mode : n20-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: steven

Remark

•	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
390.000 390.000								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet Model : Air7 : n20-L mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven Remark :

11	. к	Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	—dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet EUT Model : Air7 : N20-H mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: steven

Remark

ar.	к :						
	Freq	Antenna Factor				Remark	
	MHz	<u>dB</u> /m	 	 			-
	2483.500 2483.500				-11.43 -7.98		

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet EUT Model : Air7 Test mode : N20-H mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: steven

Remark

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor							
	MHz	—dBu∇	$-\overline{dB}/\overline{m}$	d <u>B</u>	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	d <u>B</u>		-
			27.52 27.52						Peak Average	

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet Model : Air7 : n40-L mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: steven

emar.	200		Antenna Factor					Over Limit	
	MHz	dBu₹	<u>d</u> B/m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	d <u>B</u>	
1 2	2390.000 2390.000						74.00 54.00		

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT Model : Air7 Test mode : n40-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven Remark :

emarı	κ :								
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2390.000 2390.000								

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet Model : Air7 Test mode : n40-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

Remark

J. 11. 11. 1			Antenna Factor							
_										00
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
	2483.500									
2	2483.500	11.31	27.52	6.85	0.00	45.68	54.00	-8.32	Average	

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT Model : Air7 : n40-H mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

Remark

	825		Antenna Factor				Over Limit	
-	MHz	dBu∇	<u>dB</u> /π	 	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
100	2483.500 2483.500							

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
	0.2011.00.00.00.00.00.00.00.00.00.00.00.00.						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 10.DEC.2015 19:30:08

30MHz~25GHz

Middle channel

Date: 10.DEC.2015 19:31:15

Highest channel

Date: 10.DEC.2015 19:32:51

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 10.DEC.2015 19:36:13

Middle channel

Date: 10.DEC.2015 19:37:14

30MHz~25GHz

Highest channel

Date: 10.DEC.2015 19:37:59

Test mode: 802.11n(H20) Lowest channel

Date: 10.DEC.2015 19:39:15

30MHz~25GHz

Middle channel

Date: 10.DEC.2015 19:40:24

Highest channel

Date: 10.DEC.2015 19:41:29

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 10.DEC.2015 19:43:32

Middle channel

Date: 10.DEC.2015 19:44:46

30MHz~25GHz

Highest channel

Date: 10.DEC.2015 19:45:36

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2009							
TestFrequencyRange:	9kHz to 25GHz							
Test site:	Measurement [Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 1G112	RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Remark			
	30MHz-8	8MHz	40.0)	Quasi-peak Value			
	88MHz-21	I6MHz	43.5	5	Quasi-peak Value			
	216MHz-9	60MHz	46.0)	Quasi-peak Value			
	960MHz-	1GHz	54.0		Quasi-peak Value			
	Above 1	GHz	54.0		Average Value			
			74.0		Peak Value			
Test Procedure:	the ground todetermin 2. The EUT vantenna, vantenna, vantenna, vanten the ground Both horiz make the range of the EUT have 10dE	dat a 3 meter let the position was set 3 met whichwas mo ma height is was to determine ontal and verneasurement suspected emberthe antered the rotatable maximum reserver systems and width with sion level of ecified, then wouldbe reparagin wou	chamber. The n of the highesters away from unted on the to raried from once the maximun tical polarization. The Europe was turned from the ewas turned from the EUT in peatesting could boorted. Otherwold bere-tested	table was rest radiation. In the interfer pop of a variate meter to fund value of the pop of the all T was arranged to heights from 0 degree old Mode. The pop of the all T was arranged to heights from 0 degree old Mode. The pop of the pop one of the pop	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to rom 1 meter to 4 res to 360 degrees Function and as 10dB lower than and the peak values ssions that did not using peak, quasi-ported in a data			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Tablet EUT Model : Air7 Test mode : wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

-	D J	Acceptance of	C-11-	D		Timbe	A		
T									
rreq	rever	ractor	LOSS	ractor	rever	Line	Limit	Kemark	
MHz	₫₿u₹	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	dB		
87.725	54.49	11.18	0.90	29.58	36.99	40.00	-3.01	QP	
93.440	52.15	12.58	0.92	29.56	36.09	43.50	-7.41	QP	
101.644	46.59	13.02	0.98	29.52	31.07	43.50	-12.43	QP	
150.538	53.38	8.29	1.32	29.22	33.77	43.50	-9.73	QP	
175.652	53.51	9.36	1.35	29.01	35.21	43.50	-8.29	QP	
268.485	40.51	12.34	1.68	28.51	26.02	46.00	-19.98	QP	
	MHz 87. 725 93. 440 101. 644 150. 538 175. 652	Freq Level MHz dBuV 87.725 54.49 93.440 52.15 101.644 46.59 150.538 53.38 175.652 53.51	### Revel Factor MHz dBuV dB/m 87.725 54.49 11.18 93.440 52.15 12.58 101.644 46.59 13.02 150.538 53.38 8.29 175.652 53.51 9.36	MHz dBuV dB/m dB 87.725 54.49 11.18 0.90 93.440 52.15 12.58 0.92 101.644 46.59 13.02 0.98 150.538 53.38 8.29 1.32 175.652 53.51 9.36 1.35	MHz dBuV dB/m dB dB 87.725 54.49 11.18 0.90 29.58 93.440 52.15 12.58 0.92 29.56 101.644 46.59 13.02 0.98 29.52 150.538 53.38 8.29 1.32 29.22 175.652 53.51 9.36 1.35 29.01	MHz dBuV dB/m dB dB dBuV/m 87.725 54.49 11.18 0.90 29.58 36.99 93.440 52.15 12.58 0.92 29.56 36.09 101.644 46.59 13.02 0.98 29.52 31.07 150.538 53.38 8.29 1.32 29.22 33.77 175.652 53.51 9.36 1.35 29.01 35.21	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 87.725 54.49 11.18 0.90 29.58 36.99 40.00 93.440 52.15 12.58 0.92 29.56 36.09 43.50 101.644 46.59 13.02 0.98 29.52 31.07 43.50 150.538 53.38 8.29 1.32 29.22 33.77 43.50 175.652 53.51 9.36 1.35 29.01 35.21 43.50	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 87.725 54.49 11.18 0.90 29.58 36.99 40.00 -3.01 93.440 52.15 12.58 0.92 29.56 36.09 43.50 -7.41 101.644 46.59 13.02 0.98 29.52 31.07 43.50 -12.43 150.538 53.38 8.29 1.32 29.22 33.77 43.50 -9.73 175.652 53.51 9.36 1.35 29.01 35.21 43.50 -8.29 36.75 47.75 43.50 -8.29 47.75 47.75 47.75 47.75 47.75 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.29 48.75 48.75 -8.25	MHz dBuV dB/m dB dB dBuV/m dBuV/m dB dBuV/m <

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

EUT : Tablet Model : Air7 Test mode : wifi mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: steven

	Freq		Antenna Factor						Remark
	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	87.725	48.02	11.18	0.90	29.58	30.52	40.00	-9.48	QP
2	131.758	48.73	8.82	1.21	29.32	29.44	43.50	-14.06	QP
3	135.506	48.71	8.51	1.23	29.30	29.15	43.50	-14.35	QP
3	148.963	44.33	8.26	1.31	29.23	24.67	43.50	-18.83	QP
5	174.424	43.65	9.29	1.35	29.02	25.27	43.50	-18.23	QP
6	293.084	36.69	12.92	1.75	28.46	22.90	46.00	-23.10	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Folal.	
4824.00	45.11	31.54	10.58	40.22	47.01	74.00	-26.99	Vertical	
4824.00	44.70	31.54	10.58	40.22	46.60	74.00	-27.40	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.59	31.54	10.58	40.22	38.49	54.00	-15.51	Vertical	
4824.00	35.70	31.54	10.58	40.22	37.60	54.00	-16.40	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.35	31.57	10.64	40.15	46.41	74.00	-27.59	Vertical
4874.00	44.11	31.57	10.64	40.15	46.17	74.00	-27.83	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.29	31.57	10.64	40.15	38.35	54.00	-15.65	Vertical
4874.00	36.26	31.57	10.64	40.15	38.32	54.00	-15.68	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	43.95	31.61	10.70	40.08	46.18	74.00	-27.82	Vertical
4924.00	44.87	31.61	10.70	40.08	47.10	74.00	-26.90	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	35.25	31.61	10.70	40.08	37.48	54.00	-16.52	Vertical
4924.00	36.55	31.61	10.70	40.08	38.78	54.00	-15.22	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.38	31.54	10.58	40.22	46.28	74.00	-27.72	Vertical	
4824.00	43.25	31.54	10.58	40.22	45.15	74.00	-28.85	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	35.24	31.54	10.58	40.22	37.14	54.00	-16.86	Vertical	
4824.00	36.48	31.54	10.58	40.22	38.38	54.00	-15.62	Horizontal	

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.36	31.57	10.64	40.15	47.42	74.00	-26.58	Vertical	
4874.00	44.58	31.57	10.64	40.15	46.64	74.00	-27.36	Horizontal	
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.14	31.57	10.64	40.15	38.20	54.00	-15.80	Vertical	
4874.00	36.59	31.57	10.64	40.15	38.65	54.00	-15.35	Horizontal	

Test mode: 802.11g			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.69	31.61	10.70	40.08	46.92	74.00	-27.08	Vertical	
4924.00	45.16	31.61	10.70	40.08	47.39	74.00	-26.61	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.11	31.61	10.70	40.08	38.34	54.00	-15.66	Vertical	
4924.00	35.13	31.61	10.70	40.08	37.36	54.00	-16.64	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	LimitLine (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	43.69	31.54	10.58	40.22	45.59	74.00	-28.41	Vertical	
4824.00	44.58	31.54	10.58	40.22	46.48	74.00	-27.52	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.24	31.54	10.58	40.22	38.14	54.00	-15.86	Vertical	
4824.00	35.98	31.54	10.58	40.22	37.88	54.00	-16.12	Horizontal	

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.39	31.57	10.64	40.15	47.45	74.00	-26.55	Vertical	
4874.00	44.97	31.57	10.64	40.15	47.03	74.00	-26.97	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.54	31.57	10.64	40.15	38.60	54.00	-15.40	Vertical	
4874.00	36.21	31.57	10.64	40.15	38.27	54.00	-15.73	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.63	31.61	10.70	40.08	46.86	74.00	-27.14	Vertical	
4924.00	45.51	31.61	10.70	40.08	47.74	74.00	-26.26	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	35.98	31.61	10.70	40.08	38.21	54.00	-15.79	Vertical	
4924.00	36.23	31.61	10.70	40.08	38.46	54.00	-15.54	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	44.65	31.55	10.61	40.19	46.62	74.00	-27.38	Vertical	
4844.00	45.36	31.55	10.61	40.19	47.33	74.00	-26.67	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	35.26	31.55	10.61	40.19	37.23	54.00	-16.77	Vertical	
4844.00	35.98	31.55	10.61	40.19	37.95	54.00	-16.05	Horizontal	

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.21	31.57	10.64	40.15	48.27	74.00	-25.73	Vertical	
4874.00	45.67	31.57	10.64	40.15	47.73	74.00	-26.27	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.22	31.57	10.64	40.15	38.28	54.00	-15.72	Vertical	
4874.00	36.19	31.57	10.64	40.15	38.25	54.00	-15.75	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	45.06	31.59	10.67	40.10	47.22	74.00	-26.78	Vertical	
4904.00	44.65	31.59	10.67	40.10	46.81	74.00	-27.19	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	36.56	31.59	10.67	40.10	38.72	54.00	-15.28	Vertical	
4904.00	35.78	31.59	10.67	40.10	37.94	54.00	-16.06	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.