

10/532784

DT01 Rec'd PCT/PTC 25 APR 2005

DIALOG(R)File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.

011100459 **Image available**

WPI Acc No: 1997-078384/199708

XRPX Acc No: N97-065021

Hill holding method for vehicle on inclines - linking hydraulic braking system to regulator that applies control action to maintain stable vehicle position

Patent Assignee: ITT AUTOMOTIVE EURO GMBH (INTT); CONTINENTAL TEVES & CO OHG AG (TEVE); CONTINENTAL TEVES AG & CO OHG (TEVE); ITT MFG ENTERPRISES INC (INTT)

Inventor: BUSCHMANN G; HAUPT K; KUZEL T

Number of Countries: 018 Number of Patents: 007

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 19525552	A1	19970116	DE 1025552	A	19950713	199708 B
WO 9702969	A1	19970130	WO 96EP2910	A	19960703	199711
EP 837800	A1	19980429	EP 96924863	A	19960703	199821
			WO 96EP2910	A	19960703	
JP 11508516	W	19990727	WO 96EP2910	A	19960703	199940
			JP 97505478	A	19960703	
EP 837800	B1	20000315	EP 96924863	A	19960703	200018
			WO 96EP2910	A	19960703	
DE 59604694	G	20000420	DE 504694	A	19960703	200026
			EP 96924863	A	19960703	
			WO 96EP2910	A	19960703	
US 6086515	A	20000711	WO 96EP2910	A	19960703	200037
			US 9829321	A	19980427	

Priority Applications (No Type Date): DE 1025552 A 19950713

Cited Patents: DE 3618532; DE 3909907; EP 111778; US 4629043

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 19525552 A1 6 B60T-008/00

WO 9702969 A1 G 20 B60T-007/12

Designated States (National): JP US

Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

EP 837800 A1 G B60T-007/12 Based on patent WO 9702969

Designated States (Regional): DE FR GB

JP 11508516 W 14 B60T-007/12 Based on patent WO 9702969

EP 837800 B1 G B60T-007/12 Based on patent WO 9702969

Designated States (Regional): DE FR GB

DE 59604694 G B60T-007/12 Based on patent EP 837800

Based on patent WO 9702969

US 6086515 A B60T-007/12 Based on patent WO 9702969

Abstract (Basic): DE 19525552 A

The method uses a braking control system that has a hydraulic braking circuit (I) for the front wheels and a second circuit (II) for the rear wheels. Manual input command to the system is by a hydraulic servo assisted foot pedal actuated unit (1,2).

The circuits have separate pumps (12) and the system is based upon solenoid actuated directional flow control valves (3-10,15,16) and accumulators (13,14). In order to hold the vehicle in a stable position

10/532784

01 Rec'd PCT/PTO 25 APR 2005

the regulator controlling the valves use measured vehicle speed, brake pedal actuation, torque and drive motor status signals.

USE/ADVANTAGE - 'Hill holder' brake system for vehicle. Simplifies operation of brakes for driver.

Dwg.1/2

Title Terms: HILL; HOLD; METHOD; VEHICLE; INCLINE; LINK; HYDRAULIC; BRAKE; SYSTEM; REGULATE; APPLY; CONTROL; ACTION; MAINTAIN; STABILISED; VEHICLE; POSITION

Derwent Class: Q13; Q18; W05; X22

International Patent Class (Main): B60T-007/12; B60T-008/00

International Patent Class (Additional): B60K-028/16; B60K-041/20;
B60T-007/02; B60T-008/32; B60T-017/22; G08B-007/00

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): W05-A02; X22-C02D2; X22-E

?

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Offenlegungsschrift**
(10) **DE 195 25 552 A 1**

(21) Aktenzeichen: 195 25 552.6
(22) Anmeldetag: 13. 7. 95
(43) Offenlegungstag: 16. 1. 97

(51) Int. Cl. 6:

B 60 T 8/00

B 60 T 8/32

B 60 T 17/22

B 60 K 28/18

B 60 K 41/20

G 08 B 7/00

B 60 T 7/12

B 60 T 7/02

DE 195 25 552 A 1

(71) Anmelder:

ITT Automotive Europe GmbH, 60488 Frankfurt, DE

(72) Erfinder:

Buschmann, Gunther, 65510 Idstein, DE; Haupt, Karlheinz, 55435 Gau-Algesheim, DE; Kuzel, Thomas, 63457 Hanau, DE

(56) Für die Beurteilung der Patentfähigkeit
in Betracht zu ziehende Druckschriften:

DE 44 46 823 C1
DE 36 42 874 C2
DE 38 21 078 C2
DE 38 18 532 C2
DE 38 18 532 C2
DE 34 39 087 C2
DE 31 46 099 C2
DE 44 21 088 A1
DE 42 36 240 A1
DE 42 18 717 A1
DE 41 12 141 A1
DE 36 42 874 A1
DD 2 63 025 A1
US 51 37 127

(54) Verfahren und Anordnung zum Halten eines Fahrzeugs auf geneigter Fahrbahn

(57) Zum Halten eines Fahrzeugs beim Anfahren am Berg werden die Fahrzeuggeschwindigkeit (VREF), die Bremspedalbetätigung (BLS), das Anfahrmoment (AM), der Betriebszustand des Fahrzeugmotors (MO), das Betätigen einer Feststellbremse (FB) und das Aktivieren des Haltesystems (EAS) ermittelt. Wenn das Haltesystem aktiviert ist und die Fahrzeuggeschwindigkeit unter einem Grenzwert liegt (VREF = 0) wird die Bremskraft bzw. der Bremsdruck aufrechterhalten (Fall A), wenn das Bremspedal betätigt ist und kein Anfahrmoment sensiert wird; es wird die Bremskraft erhöht (Fall B), wenn bei ausgeschaltetem Antriebsmotor (MO = 0) weder das Bremspedal (BLS = 0), noch die Feststellbremse (FB = 0) betätigt werden oder wenn bei eingeschaltetem Motor (MO = 1) weder eine Bremspedalbetätigung (BLS = 0), noch ein Anfahrmoment (AM = 0) festgestellt werden. Die Bremskraft wird abgebaut (Fall C), wenn bei ausgeschaltetem Motor (MO = 0) und nicht betätigtem Bremspedal (BLS = 0) die Feststellbremse angezogen ist (FB = 1) oder bei eingeschaltetem Motor (MO = 1) ein Anfahrmoment (AM = 1) sensiert wird. Beim Überschreiten der Fahrzeuggeschwindigkeitsschwelle (VREF = 1) und/oder beim Betätigen des Ausschalters (EAS = 0) das Haltesystem außer Funktion gesetzt wird (Fall D).

Mit Hilfe eines Türkontaktes (Tk) und/oder eines Sitzkontakte (Sk) kann ein Warnsignal (WN) ausgelöst werden.

DE 195 25 552 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 11.98 602 083/338

8/31

BEST AVAILABLE COPY

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zum Halten eines Fahrzeugs auf geneigter Fahrbahn und beim Anfahren am Berg, bei dem unter Berücksichtigung der Fahrzeuggeschwindigkeit und der Bremspedalbetätigung oder entsprechender Kriterien Bremskraft an einzelnen oder an mehreren Fahrzeugrädern, insbesondere an den Rädern einer Achse, aufgebracht wird, d. h. aufrechterhalten, erhöht und wieder abgebaut wird. Anordnungen zum Durchführen des Verfahrens gehören ebenfalls zur Erfindung.

Durch solche Haltehilfen oder Haltesysteme, die auch als "Hill-Holder" bezeichnet werden, wird das unbeabsichtigte Rollen eines Fahrzeugs auf geneigter Fahrbahn verhindert und das Anfahren am Berg, auch für den Ungeübten, erleichtert. Haltesysteme dieser Art erhöhen also den Komfort und verhindern Karambolagen durch Unachtsamkeit, Kupplungsschäden durch Bedienungsfehler etc.

Aus der DE 34 39 067 C2 (P 5674) ist bereits eine Anordnung zum Feststellen einer druckmittelbetätigten Radbremse bekannt, bei der zum Halten des Fahrzeugs von Komponenten der Bremsanlage, die an sich zur Blockierschutzregelung vorgesehen sind, Gebrauch gemacht wird. Beim Freigeben des Bremspedals wird bei dieser bekannten Anordnung der Bremsdruck nur bis zu einem vorgegebenen, zum Halten des Fahrzeugs ausreichenden Restdruck abgebaut. Zur Lösen der Radbremse wird ein Mehrwegeventil, das im Druckmittelweg eingefügt ist, durch ein vom Fahrer ausgelöstes oder durch ein vom Fahrverhalten des Fahrzeugs oder dem Drehverhalten der Räder abhängiges Signal auf Durchlaß geschaltet.

Eine Anordnung zum Halten eines Fahrzeugs beim Anfahren am Berg, die einen elektrisch betätigbar, über ein Gestänge oder ein Seilzug auf die Feststellbremse des Fahrzeugs wirkenden Aktuator besitzt, ist in der DE 40 23 705 A1 (P 7000) beschrieben. Die zugehörige Elektronik zur Steuerung des Aktuators erhält Eingangssignale von Radsensoren und von Schaltern, die mit dem Gaspedal, dem Getriebe, der Kupplung usw. gekoppelt sind.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zu entwickeln, das in den unterschiedlichen Situationen dem Fahrer das Halten des Fahrzeugs und das Anfahren am Berg erleichtert. Das Verfahren soll je nach Situation in der geeigneten Weise in das Bremsensystem eingreifen.

Es hat sich herausgestellt, daß diese Aufgabe durch das im Anspruch 1 beschriebene Verfahren zu lösen ist. Die Besonderheit der Erfindung besteht darin, daß die Bremskraft in Abhängigkeit von der jeweiligen Situation bzw. in Anpassung an die jeweiligen Gegebenheiten aufrecht- bzw. konstantgehalten, erhöht oder abgebaut wird. Als Kriterium für die jeweilige Situation und für den Fahrerwunsch werden folgende Eingangsinformationen gewonnen und ausgewertet:

Fahrzeug(referenz)geschwindigkeit,

Bremspedalbetätigung,

Anfahrmoment (oder Kupplungs- und Fahrpedalbetätigung),

Betriebszustand (an/aus) des Antriebsmotors oder Einschaltung der Zündung,

Betätigung der Feststellbremse und

Schaltzustand (ein/aus) des Haltesystems.

Durch logische Verknüpfung und Auswertung der Eingangssignale wird auf den Fahrerwunsch geschlos-

sen und der Druck in der geeigneten Weise moduliert. Beim Überschreiten einer Fahrzeuggeschwindigkeitschwelle oder beim Betätigen eines Ausschalters wird das Haltesystem außer Funktion gesetzt.

Aus sicherheitstechnischen Überlegungen wird gemäß einem vorteilhaften Ausführungsbeispiel der Erfindung mit Hilfe eines Türkontaktes bei aktiviertem Haltesystem ein Warnsignal ausgelöst, sobald die Fahrertür geöffnet wird. Vorteilhaft kann es außerdem sein, statt des Türkontaktes oder zusätzlich einen Sitzkontakt vorzusehen, der bei aktiviertem Haltesystem ein Warnsignal hervorruft, sobald der Fahrersitz entlastet wird.

Eine Anordnung zur Durchführung des erfindungsgemäßen Verfahrens besteht darin, daß diese in Form von oder als Bestandteil einer hydraulischen Bremsanlage, insbesondere als Bestandteil einer mit einem Antriebsschlupfregelungssystem ausgerüsteten Bremsanlage, ausgebildet ist und daß zur Aufbringung und Steuerung der Bremskraft Druck in die Radbremsen eingesteuert und moduliert wird.

Einige vorteilhafte Ausführungsbeispiele des Verfahrens und der Anordnung nach der Erfindung sind in den Unteransprüchen beschrieben.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung gehen aus der folgenden Beschreibung anhand der beigefügten Abbildungen hervor.

Es zeigen

Fig. 1 in schematischer Darstellung die wesentlichen Komponenten einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens auf Basis einer Bremsanlage mit Blockierschutz- und Antriebsschlupfregelung und

Fig. 2 tabellarisch die logische Verknüpfung der nach einem Ausführungsbeispiel der Erfindung ausgewerten Schaltsignale.

Die Anordnung nach Fig. 1 dient in erster Linie zur Blockierschutzregelung und zur Antriebsschlupfregelung durch Bremseneingriff. Die Bremsanlage ist zweikreisig. An einem Bremskreis I sind die nichtangetriebenen Fahrzeugräder, hier der Räder der Hinterachse HA, an den Bremskreis II die Räder der Vorderachse VA angeschlossen.

Zu der Bremsanlage gehört ein Tandem-Hauptzylinder der 1, mit einem vorgeschalteten Unterdruckverstärker 2. Jedes Fahrzeugrad ist in der Ruhestellung auf Durchlaß geschaltetes Einlaßventil 3 bis 6 und ein in der Ruhestellung sperrendes Auslaßventil 7 bis 10 zugeordnet. Zur Rückförderung des über die Auslaßventile 7 bis 10 in der Druckabbauphase eines Regelungsvorgangs abfließenden Druckmittels ist eine zweikreisige Hydraulikpumpe 12 mit einem gemeinsamen Antriebsmotor 11 vorgesehen. Außerdem befindet sich in jedem Bremskreis I, II ein Niederdruckspeicher 13, 14, der in bekannter Weise in der Anfangsphase einer Blockierschutzregelung Druckmittel aufnimmt und dadurch den anfänglichen Druckabbau beschleunigt.

Der den Bremskreis II versorgende Zweig der Hydraulikpumpe 12 dient auch zur Bremsdruckerzeugung während eines Antriebsschlupf-Regelungsvorgangs. Ein im Druckmittelweg von dem Hauptzylinder 1 zu den Radbremsen der angetriebenen Räder eingefügtes Trennventil 15 wird zum Bremsdruckaufbau während eines Antriebsschlupf-Regelungsvorgangs benötigt. Über ein hydraulisch betätigtes 2/2-Wegeventil 16 wird in der Antriebsschlupf-Regelphase Druckmittel aus dem Hauptzylinder 1 zu der Saugseite der Hydraulikpumpe 12 des Hydraulikkreises II geleitet.

Ein Überdruckventil \bar{U} begrenzt den im ASR-Betrieb durch die Förderung der Pumpe 12 entstehenden Druck auf einen vorgegebenen Maximalwert.

Jedes Fahrzeugrad besitzt einen Radsensor S1 bis S4. Die Ausgangssignale dieser Sensoren werden den Eingängen E eines elektronischen Reglers 17 zugeführt, der die Signale auswertet und der über seine Ausgänge A Bremsdruck-Steuersignale zur Betätigung der Einlaß- und Auslaßventile 3 bis 6, 7 bis 10 und des Trennventils 15 sowie zum Ein- und Ausschalten des Pumpen-Antriebsmotors 11 liefert.

Die zusätzlichen Schaltkreise, Funktionen oder Programmteile zur Durchführung des erfindungsgemäßen Verfahrens sind durch gestrichelte Abtrennung eines Teils 18 des Reglers 17 symbolisch dargestellt. Zu diesem Reglerteil oder Programmteil 18 führen durch Pfeile dargestellte Signalleitungen EAS, MO, AM, FB und BLS, die nur oder in erster Linie zum Halten des Fahrzeugs bzw. zum Durchführen des erfindungsgemäßen Verfahrens benötigt werden; das Ausgangssignal eines Schalters "BLS" (eines Bremslichtschalters) wird allerdings in den meisten Fällen auch für ein reines Blockierschutz- und/oder Antriebsschlupfregelungssystem verwendet. Mit "EAS" ist der Ein/Ausschalter des Haltesystems, mit "MO" ein dem Betriebszustand des Fahrzeug-Antriebsmotors oder das Einschalten der Zündung signalisierender Schalter bezeichnet. Das Signal "AM" zeigt an, ob ein Anfahrmoment vorhanden ist; das Einrücken der Fahrzeugkupplung bei gleichzeitiger Betätigung des Fahrpedals kann ebenfalls als "Anfahrmoment" ($AM = 1$) bewertet werden. Über den Eingang "FB" wird das Betätigen oder Anziehen der Feststellbremse des Fahrzeugs ($FB = 1$) gemeldet.

Ferner ist in dem hier dargestellten Ausführungsbeispiel der Erfindung der für das Haltesystem zuständige Reglerteil oder Programmteil 18 über Signalleitungen mit einem Türkontakteinschalter Tk und einem Sitzkontakteinschalter Sk verbunden. Mit Hilfe dieser Kontakte lassen sich Sicherheitsfunktionen unterschiedlicher Art verwirklichen.

Schließlich ist in Fig. 1 noch eine zu einer Warnlampe WL und/oder zu einem akustischen Signalgeber führende Signalleitung wiedergegeben, über die in bestimmten Situationen das Haltesystem ein Warnsignal abgibt.

Die Blockierschutzregelung wird in bekannter Weise mit Hilfe der Einlaßventile 3 bis 6 und der Auslaßventile 7 bis 10 durchgeführt. Die Pumpe 12 fördert das über die Auslaßventile abgeleitete Druckmittel in die Bremskreise I, II bzw. in den Hauptzylinder 1 zurück. Das Trennventil 15 ist im Antriebsschlupfregel-Modus auf Durchlaß geschaltet, damit in dieser Situation, in der der Hauptzylinder 1 drucklos ist, Druckmittel mit Hilfe der Pumpe 12 in die Vorderradbremsen eingesteuert werden kann.

Die Wirkungsweise des erfindungsgemäßen Verfahrens veranschaulicht Fig. 2. Dargestellt sind die "möglichen" Signalkombinationen, die die unterschiedlichen Situationen wieder gibt, auf die das erfindungsgemäße Haltesystem in der geeigneten Weise reagiert. Die nicht dargestellten Signalkombinationen sind physikalisch nicht möglich oder für das erfindungsgemäße Verfahren ohne Bedeutung.

"0" und "1" sind die beiden Schaltpositionen der verwendeten Signale. "VREF" symbolisiert die Fahreug(referenz)geschwindigkeit. Die übrigen Schalter-Symbole sind mit den zu dem Reglerteil 18 (siehe Fig. 1) führenden Eingangssignalen identisch.

Wie Fig. 2 zu entnehmen ist, sind für das Haltesystem

nur Situationen von Interesse, in denen die Fahrzeug(referenz)geschwindigkeit VREF unter einem Grenzwert liegt ($VREF = 0$) und das Haltesystem aktiviert ist ($EAS = 1$).

In dieser Situation wird der Bremsdruck "gehalten" (Fall A), wenn kein Motormoment sensiert wird ($AM = 0$), jedoch die Betriebsbremse betätigt wird ($BLS = 1$). Wie zuvor erwähnt, kann auch eine eingerückte Kupplung bei gleichzeitiger Fahrpedalbetätigung als Signal für das Vorhandensein von Antriebsmoment gewertet werden; dies ist hier nicht näher dargestellt.

Die Bremskraft bzw. der Bremsdruck wird "erhöht" (Fall B), wenn bei ausgeschaltetem Antriebsmotor weder das Bremspedal, noch die Feststellbremse betätigt werden und kein Antriebsmoment sensiert wird, also bei

$MO, AM, BLS, FB = 0$,

oder wenn bei eingeschaltetem Antriebsmotor weder eine Bremspedalbetätigung noch ein Anfahrmoment sensiert werden, also bei

$MO = 1, BLS = 0, AM = 0$.

Ein "Abbau" des Bremsdruckes (Fall C) durch das erfindungsgemäße Haltesystem stellt sich ein, wenn bei ausgeschaltetem Antriebsmotor und freiem Bremspedal die Feststellbremse angezogen ist, also bei

$MO = 0, BLS = 0, FB = 1$

oder wenn bei eingeschaltetem Fahrzeugmotor ein Anfahrmoment sensiert wird, also in der Situation

$MO = 1, AM = 1$.

Fig. 2 läßt außerdem erkennen, daß immer dann (Fall D), wenn die Fahrzeug(referenz)geschwindigkeit den vorgegebenen Schwellwert überschreitet ($VREF = 1$) oder wenn das Haltesystem ausgeschaltet wird ($EAS = 0$), unabhängig von dem Pegel der übrigen Signale, ein "Ausstieg" aus der Regelung durch das erfindungsgemäße Haltesystem erfolgt.

Mit Hilfe des Türkontakteinschalters Tk und/oder des Sitzkontakteinschalters Sk — siehe Fig. 1 — wird in dem dargestellten Ausführungsbeispiel der Erfindung eine für das Haltesystem wichtige Information gewonnen.

Das Öffnen der Türe und damit das Betätigen des Türkontakteinschalters oder das Entlasten des Fahrersitzes läßt auf die Absicht des Fahrers schließen, das Fahrzeug zu verlassen. Bei aktiviertem Haltesystem ($EAS = 1$) wird in diesem Fall die Warnlampe WL angesteuert und/oder eine Sicherheitsfunktion ausgelöst. Es kann z. B. sinnvoll sein, die Funktion des Haltesystems durch Halten oder Erhöhen der Bremskraft bzw. des Bremsdruckes für eine bestimmte, vorgesehene Zeitspanne, die mit dem Aussteigen bzw. der Kontaktbetätigung beginnt, aufrechtzuhalten.

Es könnte auch vorteilhaft sein, den Bremsdruck nach dem Öffnen der Türe langsam, d. h. in wenigen Sekunden, abzubauen, um den Fahrer zu veranlassen, durch Betätigen der Feststellbremse oder auf andere Weise die Initiative zu ergreifen. Es sind sehr unterschiedliche Sicherheitsfunktionen mit Hilfe des erfindungsgemäßen Haltesystems bzw. durch logische Verknüpfung der beschriebenen Eingangssignale denkbar.

Der Vollständigkeit halber sei noch erwähnt, daß das erfindungsgemäße Verfahren und die beschriebene An-

ordnung auch in Verbindung mit Fahrzeugen, die automatische Getriebe oder automatische Kupplungen besitzen, verwendbar sind. Eine logische Verknüpfung mit noch anderen Eingangssignalen, die für das Halten des Fahrzeugs und für das Verhalten des Fahrer von Bedeutung sind, ist ebenfalls möglich.

Patentansprüche

1. Verfahren zum Halten eines Fahrzeugs auf geneigter Fahrbahn und beim Anfahren am Berg, bei dem unter Berücksichtigung der Fahrzeuggeschwindigkeit und der Bremspedalbetätigung oder entsprechender Kriterien Bremskraft an einzelnen oder an mehreren Fahrzeugrädern, insbesondere an den Rädern einer Achse, aufgebracht wird, d. h. aufrechterhalten, erhöht und wieder abgebaut wird, dadurch gekennzeichnet, daß zusätzlich zur Sensierung der Fahrzeuggeschwindigkeit (VREF) und Bremspedalbetätigung (BLS) das Anfahrmoment (AM) ermittelt wird, der Betriebszustand des Fahrzeugmotors (MO) oder die Einschaltung der Zündung bestimmt werden, das Betätigen einer Fahrzeug-Feststellbremse (FB) und das Aktivieren bzw. Einschalten des Haltesystems (EAS) festgestellt, und diese Daten logisch verknüpft sowie ausgewertet werden und daß, solange das Haltesystem aktiviert bzw. eingeschaltet (EAS) ist und die Fahrzeuggeschwindigkeit (VREF) unter einem Grenzwert liegt,
 - die Bremskraft aufrechterhalten (Fall A) wird, wenn das Bremspedal betätigt ist (BLS = 1) und kein Anfahrmoment (AM = 0) sensiert wird,
 - die Bremskraft erhöht wird (Fall B), wenn bei ausgeschaltetem Antriebsmotor (MO = 0) weder das Bremspedal (BLS = 0), noch die Feststellbremse (FB = 0) betätigt werden oder wenn bei eingeschaltetem Motor (MO = 1) weder eine Bremspedalbetätigung (BLS = 0) noch ein Anfahrmoment (AM = 0) festgestellt werden und
 - die Bremskraft abgebaut wird (Fall C), wenn bei ausgeschaltetem Motor (MO = 0) und nicht betätigtem Bremspedal (BLS = 0) die Feststellbremse (FB = 1) angezogen ist oder
 bei eingeschaltetem Motor (MO = 1) ein Anfahrmoment (AM = 1) sensiert wird,
 - und daß (Fall D) beim Überschreiten der Fahrzeuggeschwindigkeitsschwelle (VREF = 1) bzw. beim Sensieren von Fahrzeuggbewegung und/oder beim Betätigen des Ausschalters (EAS = 0) das Haltesystem außer Funktion gesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mit Hilfe eines Türkontaktes (Tk) bei aktiviertem Haltesystem (EAS = 1) ein Warnsignal (WL) ausgelöst wird, sobald die Fahrertür geöffnet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mit Hilfe eines Sitzkontakte (Sk) im Fahrersitz bei aktiviertem Haltesystem ein Warnsignal (WL) ausgelöst wird, sobald der Fahrersitz entlastet wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß beim Betätigen des Türkontaktes (Tk) und/oder des Sitzkontakte (Sk) das Halte-

system sofort oder nach einer vorgegebenen Verzögerung außer Funktion gesetzt wird.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Einrücken der Kupplung im Antriebsstrang des Fahrzeugs in Verbindung mit einer Fahrpedalbetätigung als Signal für das Vorhandensein von Anfahrmmoment (AM = 1) gewertet wird.

6. Anordnung zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß diese in Form von oder als Bestandteil einer hydraulischen Bremsanlage ausgebildet ist und daß zur Aufbringung und Steuerung der Bremskraft Druck in die Radbremsen eingesteuert und moduliert wird.
7. Anordnung nach Anspruch 6, dadurch gekennzeichnet, daß zur Erhöhung des Bremsdruckes ein Druckaufbau- oder Einlaßventil mit einer Pulsfolge ansteuerbar ist.
8. Anordnung nach Anspruch 6 oder 7, daß diese auf Basis eines Antriebsschlupfregelungssystems (ASR) ausgebildet ist, das durch zusätzliche Schaltkreise und/oder Programmeite (18), die für das Haltesystem erforderlich sind, erweitert ist.

Hierzu 2 Seite(n) Zeichnungen

Fig. 1

VREF	EAS	MO	AM	BLS	FB	Fall:	Reaktion
0	1	0	0	0	0	B	Druckaufbau
0	1	0	0	0	1	C	Druckabbau
0	1	0	0	1	0	A	Druck halten
0	1	1	0	0	0	B	Druckaufbau
0	1	0	0	1	1	A	Druck halten
0	1	1	0	0	1	B	Druckaufbau
0	1	1	0	1	0	A	Druck halten
0	1	1	1	0	0	C	Druckabbau
0	1	1	0	1	1	A	Druck halten
0	1	1	1	0	1	C	Druckabbau
0	1	1	1	1	0	C	Druckabbau
0	1	1	1	1	1	C	Druckabbau
1	0/1	0/1	0/1	0/1	0/1	D	Ausstieg
0/1	0	0/1	0/1	0/1	0/1	D	Ausstieg

Fig. 2