

# Introduction à l'apprentissage statistique - 1

Florence d'Alché, florence.dalche@telecom-paristech.fr

CES Data Scientist, TPT, Paris, France

#### Des données au Machine Learning Programme

Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références





#### Des données au Machine Learning

2/63



Introduction à l'apprentissage statistique - 1

#### Des données au Machine Learning

Programme Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références



#### Motivation







#### Des données au Machine Learning

Programme
Un exemple de classifieur supervisé: le détecteur de spams
Approche statistique de la classification supervisée
Références

#### TELECOM Evolution

#### Data everywhere!



Programme
Un exemple de classifieur supervisé: le détecteur de spams
Approche statistique de la classification supervisée
Références





- Vectorial data (ex: explanatory variables to describe a client)
- Unstructured data (ex: texts, images)
- Structured data such XML pages, molecules (graphs), sequences
- Heteregoneous data
- Incomplete data
- Noisy data

4/63



#### Des données au Machine Learning

Programme
Un exemple de classifieur supervisé: le détecteur de spams
Approche statistique de la classification supervisée
Références







Programme Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références



## Machine Learning everywhere!

#### Main applications

- Search engine, text-mining
- Social networks analytics
- Recommendation systems
- Diagnosis, Fault detection
- Predictive Maintenance, monitoring
- Business analytics
- Pattern recognition
- Robotics

5/63



Introduction à l'apprentissage statistique - 1

Approche statistique de la classification supervisée

TELECOM Evolution



Références

A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T , as measured by P, improves with experience E.





## **Experience**, tasks and performance measure

- **Experience**: data provided off-line or on-line
- ► **Tasks**: pattern recognition, diagnostic, complex system modelling, game player, robot learning,...
- ▶ Performance measure : accuracy on new data, ability to generalize





#### Influences of various domains

- Statistical Inference
- Computer Science
- Artificial intelligence
- Mathematical programming
- Neurophysiology (neural nets)
- ► Theory of approximation
- Statistical physics
- ► Even Philosophy of inference and modelling



#### Des données au Machine Learning

Programme

Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références



## **Machine Learning**

#### Statistics

- Statistical inference
- Consistency of the estimator
- True risk estimation



#### Optimization

- Objective function
- constraints/penalties
- convergence / optimum



#### Computer science

- Algorithmics
- Complexity in time and memory
- Implementation issues





Programme
Un exemple de classifieur supervisé: le détecteur de spams
Approche statistique de la classification supervisée



## **E**xample 1: a robot that learns

Robot endowed with a set of sensors and a online learning algorithm:



- ► Sense the environment, act and measure the effect of action
- ► Goal: play football



Programme
Un exemple de classifieur supervisé: le détecteur de spams
Approche statistique de la classification supervisée



#### Example 2 : object recognition in an image



- Read a data file
- ► Recognize if parts of the target object are present
- ▶ **Goal**: say if an object is present or not in the image.



Programme Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références



## Two kinds of learning 1/2

**Online learning:** the learning algorithm keeps on interacting with the environment

- robotics
- predictive maintenance
- security in cloud servers
- personalized advertising
- autonomous cars
- personalized healthcare
- security systems



Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références



## Two kinds of learning 2/2

Offline or batch learning: the learning algorithm gets a datafile and outputs some function that can be used in turn to new data

- pattern recognition (a wide panel of applications)
- diagnosis (health, plants)
- ► link prediction in networks
- data-mining
- social networks analytics



Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références



## Supervised versus unsupervised learning

- Supervised Learning (classification, regression):
  - ► Goal: Learn a function f to predict a variable y from an individual x.
  - ▶ Data: Learning set  $(x_i, y_i)$
- Unsupervised Learning (clustering, graphical model):
  - ▶ Goal: Discover a structure within a set of of individuals  $\{x_i\}$ .
  - ▶ Data: Training set {x<sub>i</sub>}
- First case is better posed.
- Supervised Learning: modules 1, 4 and 5 lecture)
- ▶ Note: most of these algorithms can be implemented offline or online.



Un exemple de classifieur supervisé: le détecteur de spams Approche statistique de la classification supervisée Références





Des données au Machine Learning

#### Programme

Un exemple de classifieur supervisé: le détecteur de spams

Approche statistique de la classification supervisée

Références



#### **Programme CES Data Science**

- Algorithmes "classiques" pour la classification
   Analyse discriminante linéaire et régression logistique
   Les "plus proches voisins" et variantes
   Méthodes de partitionnement l'algorithme CART
   Le perceptron mono-couche
- Sélection de Modèles
   Planification expérimentale Validation Croisée -Minimisation Structurelle du Risque - Bootstrap
- Algorithmes "avancés" pour la classification
  - Boosting
  - Random Forest
  - SVM Noyaux
  - Réseaux de neurones et deep learning

## **Programme CES Data Science**

D'autres problèmes supervisés

Convexification Classification multi-label Régression ordinale et Régression (Lasso) Ranking

Programme CES Data Science
 Clustering
 Analyse en Variables Latentes (kernel PCA, ICA, NMF)
 Minimum Volume Set

► HMM - Modèles graphiques

#### **Programme CES Data Science**

- Apprentissage et optimisation distribués
   Programmation MapReduce
- Graph-Mining
   Clustering spectral
   Détection de communautés
   Visualisation
- ► Apprentissage en ligne
- ▶ Moteurs de recommandation Filtrage collaboratif





Des données au Machine Learning

Programme

Un exemple de classifieur supervisé: le détecteur de spams

Approche statistique de la classification supervisée

Références







Des données au Machine Learning

Programme

Un exemple de classifieur supervisé: le détecteur de spams

Approche statistique de la classification supervisée

Références



Introduction à l'apprentissage statistique - 1



## Objectif: détecteur de spams

Références







#### Construire un ensemble d'apprentissage



Par exemple, pendant une semaine je trie mon courrier et je stocke les fichiers des emails et je leur associe une étiquette de classe +1 s'ils me paraissent pertinents, -1 s'ils ne le sont pas.





## Pre-processing et codage des données

Une étape essentielle ...



Quelles sont les variables explicatives qui vont coder les messages ?

Présence de certains mots....Quelles parties du message
garde-t-on? Comment faire pour coder un message avec des fautes





## Apprendre à classer des messages



Algorithme d'apprentissage

Classifieur h

Ensemble d'apprentissage





## Classer un nouveau message







#### Evaluer le détecteur de SPAM

► Mesurer le nombre d'erreurs commises par *h* sur un ensemble de messages jamais vus par l'algorithme d'apprentissage







#### Des données au classifieur

- 1. Etiquetage des documents (supervision), codage des documents, stockage des documents étiquetés
- 2. Application d'un algorithme d'apprentissage aux données d'apprentissage: fournit un classifieur
- 3. Application du résultat de l'apprentissage, c'est-à dire du classifieur à des nouvelles données
- 4. Evaluation : calcul du nombre d'erreurs commises par le classifieur





#### Des données au classifieur

- 1. Etiquetage des documents (supervision), codage des documents, stockage des documents étiquetés
- 2. Application d'un algorithme d'apprentissage aux données d'apprentissage: fournit un classifieur
- 3. Application du classifieur à des nouvelles données : fournit des prédictions de classe
- Evaluation : fournit une mesure d'erreur





#### Données et classifieur : visualisation

- ▶ Document : un vecteur x dans  $\mathbb{R}^p$
- ► Classifieur: une fonction à valeurs discrètes de  $\mathbb{R}^p$  dans  $\{-1, +1\}$
- Interpétation géométrique: un classifeur définit une frontière de séparation entre les données
- ► Exemple : classifieur linéaire







#### Coder les documents

## Codage Term-Frequency-Inverse Document Frequency (TF-IDF)

- ▶ une collection *C* de messages (documents)
- ▶ un mot = un terme
- ▶ à définir : un dictionnaire D de p termes apparaissant dans C
- ▶ un message (document)  $x \rightarrow$  un ensemble de termes avec leur occurrence (bag of words)
- ► C: a collection of N documents
- ►  $TF(t,x) = \frac{\text{nb d'occurrence de t dans } \times}{\text{nb de termes dans } \times}$
- ►  $IDF(t, C) = \log \frac{N}{\text{nb de documents de } C \text{ où t apparaît}}$





## Espace de représentation des messages

#### Codage TF-IDF d'un message x

- un vecteur x de dimension p
- $x_i = TF(t_i, x).IDF(t_i, C), i = 1, ..., p$
- ▶ à chaque donnée d'entrée x; est associée une étiquette de classe  $v_i \in \{-1, +1\}$
- ightharpoonup On prend :  $C = S_{app}$ , documents de l'ensemble d'apprentissage

N.B: la dimension p peut être trs grande (jusqu'à 30 000 mots), même en réduisant, on obtiendra des vecteurs trs creux, c'est-à dire avec beaucoup de zeros.



31/63



#### Classe des fonctions de classification

#### Au programme pendant ces deux jours

- 1. Classifieur linéaire : analyse discriminante linéaire, régression logistique linéaire, perceptron
- 2. Classification non linéaire : k- plus-proches voisins





## Algorithme d'apprentissage

▶ 
$$A: (\{(x_i, y_i), i = 1, ..., n\}) \to h \in \mathcal{H}$$

#### N.B:

- 1. Il s'agit bien d'un algorithme et il doit être implémenté dans un langage informatique (en scikitlearn, classifier.fit(...))
- 2. En apprentissage statistique, l'algorithme réalise une estimation à partir des données







Une fois ses paramètres définis, et pour une nouvelle donnée d'entrée, le classifieur fournit une prédiction (en scikitlearn classifier.predict(...))





# Approche statistique de l'apprentissage

- ▶ Dans la suite de ce cours, nous introduisons l'approche statistique de l'apprentissage automatique qui est la plus performante et la plus utilisée
- ▶ Il est bon de savoir qu'il existe une autre approche symbolique et logique qui s'intéresse à construire des formules logiques qui décrivent les classes. Ces approches bien que trs interprétables présentent deux inconvénients majeurs: elles sont peu robustes au bruit et elles souffrent d'un problème de transition de phase lors de l'apprentissage







Approche statistique de la classification supervisée





# Classification binaire supervisée

#### Cadre probabiliste : pas encore de données !

- Soit X un vecteur aléatoire de  $\mathcal{X} = \mathbb{R}^p$
- ▶ X décrit ici les caractéristiques ("features") d'un message ou document
- $\triangleright$  Y une variable aléatoire discrète  $\mathcal{Y} = \{-1, 1\}$
- ► Soit P la loi de probabilitéé jointe de (X,Y)





# Classifieur, perte et risque

#### Cadre probabiliste : pas encore de données !

- ▶ Soit  $\ell$  :  $\{-1, +1\} \times \{-1, +1\} \rightarrow \mathbb{R}$  une fonction de perte ou coût
- $\triangleright$  Par exemple, la fonction de perte 0-1 ou coût de prédiction est définie par  $\ell_{0-1}(y,y')=1$  si  $y\neq y'$ , 0 sinon.
- ▶ Soit  $h: \mathbb{R}^p \to \{-1, +1\}$  une fonction de classification binaire ou classifieur binaire
- ▶ on définit le risque de h par:
  - $ightharpoonup R(h) = \mathbb{E}_P[\ell(Y, h(X))]$
- ▶ Dans le cas de la perte 0-1,  $R(h) = \mathbb{P}(h(X) \neq Y)$  est la probabilité que h se trompe - sous-entendu sur des (x,y)distribués selon P.

Introduction à l'apprentissage statistique - 1







Espérance du loi jointe mixte:

$$R(h) = \sum_{y=-1.1} P(Y = y) \int_{\mathbb{R}^p} \ell(y, h(x)) p(x|Y = y) dx$$

Introduction à l'apprentissage statistique - 1

Références





#### Meilleur classifieur

#### Existe-t-il un classifieur $h^*$ qui minimise R

▶ Etant donnée P(X, Y) la loi de probabilité jointe, existe-t-il un classifieur  $h^*$  tel que:

$$h^* = \arg\min_{h} R(h)? \tag{1}$$





### Réponse: oui, le classifieur de Bayes

#### Classifieur de Bayes

$$h_{Bayes}(x) = \arg\max_{y \in \{-1,+1\}} P(Y = y|x)$$

On utilise la formule de Bayes pour le définir:

$$P(Y = k|x) = \frac{p(x|Y=k)P(Y=k)}{p(x|Y=-1).P(Y=-1)+p(x|Y=1).P(Y=1)}$$





#### Formule de Bayes

$$P(Y = k|x) = \frac{p(x|Y=k)P(Y=k)}{p(x|Y=-1).P(Y=-1) + p(x|Y=1).P(Y=1)}$$





# Classifieur bayésien

#### Definition

$$h_{Bayes}(x) = argmax_{k=1,-1}P(Y = k|x)$$

Risque bavesien

$$R(h_{bay}) = \int_{R_1} P(h_{bay}(x) \neq 1) p(x) dx + \int_{R_{-1}} P(h_{bay}(x) \neq -1) p(x) dx$$

$$= \int_{R_1} P(y = -1|x) p(x) dx + \int_{R_{-1}} P(y = 1|x) p(x) dx$$
(3)

On démontre qu'il s'agit du meilleur classifieur .





# Exemple en 1D avec des lois conditionnelles gaussiennes et P(Y = +1) = P(Y = -1)







### Classifieur bayesien

Classes gaussiennes et 
$$P(Y = +1) = P(Y = -1)$$



Introduction à l'apprentissage statistique - 1



# Take-home message

- ▶ La fonction cible pour la perte 0-1 en classification supervisée est le classifieur de Bayes
- ▶ On ne peut pas obtenir un risque plus petit que le risque bayesien:  $R(h_{Bayes})$  qui est une caractéristique du problème
- NB : nous verrons plus tard qu'en régression, la fonction cible pour la perte quadratique est l'espérance conditionnelle  $h(x) = \mathbb{E}[Y|x]$





# Classification binaire supervisée

#### Cadre probabiliste et statistique: voici les données !

- Nous supposons que  $S_n = \{(x_i, y_i), i = 1, ..., n\}$  est un échantillon i.i.d. tiré de la loi de probabilité jointe P(X, Y)
- ▶ P est fixée mais inconnue
- ▶ A partir de  $S_n$ , déterminer la fonction  $h_n \in \mathcal{H}$  qui minimise le risque R(h) pour  $h \in \mathcal{H}$ , une classe de fonctions.



### Exemple en 2D







#### TELECOM Evolution

### Exemple en 2D







### En utilisant un ensemble d'apprentissage









### Apprentissage statistique - approches discriminantes

Pb: la loi jointe n'est pas connue : on ne peut pas calculer R(h)

#### Minimisation du risque empirique

A la place de l'espérance, on minimise la moyenne empirique, appelée risque empirique:

$$R_n(h) = \frac{1}{n} \sum_i \ell(x_i, y_i, h(x_i))$$





#### Erreur d'excès, erreur d'approximation et erreur d'estimation

Considérons ici la perte 0-1: Soit  $R^* = \inf_h R(h)$ , le risque de Bayes. Soit  $R_{\mathcal{H}} = \inf_{h \in \mathcal{H}} R(h)$ .

Supposons  $h_n \in \mathcal{H}$  est le classifieur estimé à partir des données  $S_n$ par minimisation du risque empirique ou par tout autre principe employant les données.





#### Erreur d'excès, erreur d'approximation et erreur d'estimation

$$R(h_n) - R^* = R(h_n) - R_H + R_H - R^*$$

L'excès d'erreur que fait  $h_n$  pa rapport au risque de Bayes est égal à la somme de deux termes:

- $ightharpoonup R(h_n) R_H$ : l'erreur d'estimation, mesurant à quel point on s'approche de l'optimum dans  ${\cal H}$
- $ightharpoonup R_{H} R^*$ : l'erreur d'approximation, inhérente à la classe de fonctions choisie. par exemple, si la frontiere de séparation est non linéaire et que je me restreins à un classifieur linéaire.





# Consistance statistique

En statistique, on s'intéresse au comportement de l'algorithme d'apprentissage en tant que procédure d'estimation.  $h_n = \mathcal{A}(S_n)$ 





# Consistance statistique

#### Consistance en ${\mathcal H}$ par rapport à une loi P et une perte $\ell$

 $\mathcal{A}$  est consistant en  $\mathcal{H}$  par rapport à une loi P et une perte  $\ell$  si: pour tout  $\epsilon > 0$ ,

 $\mathbb{P}_{S_n}(\mathbb{E}_P[\ell(h_n(X),Y)] - R_H^{\ell} \ge \epsilon) \to 0$  quand n tend vers l'infini.

Lorsque  $\mathcal{A}$  est consistant pour toutes les distributions de probabilités P, on dit que  $\mathcal{A}$  est universellement consistant en  $\mathcal{H}$  par rapport à  $\ell$ . L'algorithme de minimisation du risque empirique est universellement consistant





# Néanmoins, attention au surapprentissage

A nombre *n* de donnés fixé:





#### Compromis biais /variance : comment choisir $\mathcal{H}$ ?



- $\triangleright$  Si la classe  $\mathcal{H}$  est trop petite, on ne peut pas atteindre la cible (biais large)
- $\triangleright$  Si la classe  $\mathcal{H}$  est trop grande, on ne peut pas réduire la variance de l'estimateur (variance petite)





# Comportement du risque empirique

#### Résultats de vapnik et Chervonenkis

- $\blacktriangleright$   $\forall \mathbb{P}, \mathcal{S}_n$  i.i.d from  $\mathbb{P}, \forall h \in \mathcal{H}, R(h) \leq R_n(h) + \mathcal{B}(d, n)$
- $\triangleright$  où d est une mesure de complexité de  $\mathcal{H}$
- $\triangleright$  si *n* augmente,  $\mathcal{B}(d,n)$  diminue
- $\triangleright$  si d augmente,  $\mathcal{B}(d, n)$  augmente





# Surapprentissage: minimisation du risque structurel pour l'éviter







# Surapprentissage : approcher par régularisation

#### Exemple de l'approche par régularisation

- $\triangleright$  A la place de R(h), on minimise la somme de deux termes:
- ▶ le risque empirique  $R_n(h) = \frac{1}{n} \sum_i \ell(y_i, h(x_i))$  et un terme régularisateur  $\Omega(h)$  qui mesure la *complexité* de h.
- On cherche :  $\hat{h} = \arg \min_{h \in \mathcal{H}} R_n(h) + \lambda \Omega(h)$





# **Surapprentissage**: approcher par régularisation

#### Exemple de l'approche par régularisation

- $\blacktriangleright$  A la place de R(h), on minimise la somme de deux termes:
- ▶ le risque empirique  $R_n(h) = \frac{1}{n} \sum_i \ell(y_i, h(x_i))$  et un terme régularisateur  $\Omega(h)$  qui mesure la complexité de h.
- On cherche :  $\hat{h} = \arg\min_{h \in \mathcal{H}} R_n(h) + \lambda \Omega(h)$

NB : on cherche à obtenir un compromis entre une bonne adéquation aux données et une complexité limitée :  $\Omega(h)$  est en général choisi pour renforcer la régularité de la fonction

Introduction à l'apprentissage statistique - 1







Références







- ▶ The elements of statistical learning, Hastie, Tibshirani, Friedman, Springer.
- ► Foundations of machine learning, Mohri, MIT press.

