Cryptography – Homework 4

冯诗伟 161220039

1

Assume that the adversary A can break 1% of \mathbb{Z}_N^* (a specific subset) with probability of 1 and break the other 99% with probability of 0.

We can construct \mathcal{A}' as follows:

- 1. Given $y = x^e \mod N$.
- 2. Uniformly choose $r \in \mathbb{Z}_N^*$ and r^{-1} such that $r \cdot r^{-1} = 1 \mod N$.
- 3. Feed $y \cdot r^e$ to \mathcal{A} and get $z = \mathcal{A}(y \cdot r^e \mod N)$.
- 4. Compute $x' = z \cdot r^{-1} \mod N$. Check whether $(x')^e = y \mod N$ holds.
- 5. Repeat step 1 to 4 for XXX times. Denote the x', y in the i-th round as x'_i, y_i . If $(x'_i)^e = y_i \mod N$ for some i, output x'_i and stop. If this did not occur after XXX rounds, output x'_1 .

Let me explain it in detail.

Step1 and Step2 are trival.

In Step3, the equation, $z = (y \cdot r^e)^{1/e} = y^{1/e} \cdot r \mod N$, holds with probability of 0.01 since \mathcal{A} succeeds with probability of 0.01.

In Step4, if $\mathcal A$ called by $\mathcal A'$ succeeds in Step3, we can get $x'=y^{1/e}\cdot r\cdot r^{-1}=y^{1/e}$ mod N, which means $(x')^e=y$ mod N.

In Step5, intuition is that the more times \mathcal{A}' tries, the more likely \mathcal{A}' will succeeds. So we want to know the least k that satisfy the following inequation:

$$1 - (1 - 0.01)^k \ge 0.99$$

which means after trying k times A' will succeeds with a probability not less than 0.99. So we have:

As to the running time t', Step1 and Step4 is $\mathcal{O}(1)$. Step2 is $\mathcal{O}(\log N)$ and Step3 is $\mathcal{O}(t)$. So running time t' of \mathcal{A}' is polynomial in t and ||N||.

2

Additional