### 統計学(基礎)

第5回 対応のあるデータとマクネマーの検定 (対応のある  $\chi^2$  検定) 統計学(基礎)

ごめんなさい、積み残しです

#### 2×2より大きいx²乗検定

2/43

### Health Habits(健康習慣)

- ・ データライブラリ 5. Frequencies Health Hbits
- ・1,184人の学生における身体活動量と果物の摂取量
- 変数:
  - Physical Activity 参加者の身体活動量(Low=低い、Moderate=中程度、 Vigorous=高い)
  - Fruit Consumption 参加者の果物摂取量(Low=少ない、Medium=中程度、High=多い)

### 3×3のクロス集計(順序) JASP



4/43

# 3×3のクロス集計(順序) jamovi



# 標準化残差(standardized residual)

- 各セルの「観測度数 期待度数」がどの程度大きいか を標準偏差単位で示した値
- これをさらに分割表全体の分散構造を考慮して補正したのが「調整済み標準化残差(adjusted standardized residual)」
  - 「調整済みピアソン」とも言う

# 標準化残差(standardized residual)

| 絶対値     | 解釈      | 備考     |
|---------|---------|--------|
| 約1以下    | 偶然の範囲   | 特に偏りなし |
| 約1.96以上 | 5%水準で有意 | 有意な偏り  |
| 約2.58以上 | 1%水準で有意 | 強い偏り   |

#### 分割表▼

|                   |                                 | Fruit Consumption |                 |                |         |
|-------------------|---------------------------------|-------------------|-----------------|----------------|---------|
| Physical Activity |                                 | Low               | Medium          | High           | 合計      |
| Low               | Count                           | 69.00             | 25.00           | 14.00          | 108.0   |
|                   | Standardized residuals          | 3.45              | -0.97           | -2.99          |         |
| Moderate          | Count<br>Standardized residuals | 206.00<br>-0.83   | 126.00<br>0.80  | 111.00<br>0.14 | 443.0   |
| Vigorous          | Count<br>Standardized residuals | 294.00<br>-1.19   | 170.00<br>-0.21 | 169.00<br>1.59 | 633.0   |
| 合計                | Count                           | 569.00            | 321.00          | 294.00         | 1,184.0 |

# グッドマン=クラスカルのガンマ (Goodman-Kruskal's γ)

- ・順序カテゴリ間の関係(クロス表)を評価するための指標
- 2つの順序変数の一致(C:concordant pairs)・不一致の組(D:discordant pairs)の差に基づく。

```
\gamma = 1 \rightarrow 完全に一致(すべてのペアが同じ方向)
```

$$\gamma = -1 \rightarrow$$
 完全に逆方向

$$\gamma = 0 \rightarrow -$$
致と不一致が同じくらい(関係なし)

# ケンドールの順位相関係数 (Kendall's τ)

- グッドマン=クラスカルのガンマと似ているが同順位も 考慮
  - より厳密になる
  - グッドマン=クラスカルの方が値が大きめ
  - -1~1 の範囲
    - ±0.3 くらい:弱い関係
    - ±0.5 前後:中程度
    - ±0.7 以上:強い関係

# グッドマン=クラスカルのγと ケンドールの順位相関(τb)

- γ は「クロス表で傾向をざっくり見る」ためのもの
- ・ τ は「順位データの一致度を精密に見る」ためのもの
- ・γは単純な方向一致率、τは同順位も含めた厳密な一 致度を表す

# グッドマン=クラスカルのγと ケンドールの順位相関(τb)

・ χ<sup>2</sup>乗検定で有意確率がある程度小さい(標準化残差の 大きいところがある)けど、γやτが低い

→行列の間に関係性はあるけど、一貫した関係性(順序性 や上昇・下降傾向)はない

# 「分割が多いクロス表」は扱いにくい

- ・期待度数が小さくなりやすい
  - セルが増えると、1セルあたりのデータ数が減る
  - その結果、「期待度数<5」のセルが増えて、x²検定の前提 (大標本近似)が崩れる
  - フィッシャー検定でも、分割が大きくなると計算が膨大(ほぼ 不可能)になる
    - ・JASPは2×2まで。jamoviはそれ以上でもやるけど途中で止まる

## 「分割が多いクロス表」は扱いにくい

- •「どこに差があるか」が直感的に見えない
  - 2×2なら「多いか少ないか」がすぐわかる
  - 3×4とかになると、全体で有意でも「どのセルが寄与しているのか」が読みにくい
  - 標準化残差で見るにしても、±1.96以上のセルが点在していて、説明しにくい(順序変数だけど順序性がない場合の説明をどうするか)

## クロス表作成上の注意

- あまり大きなクロス表は作らない
- クロス集計表はシンプルなほど関係が見えやすい
  - 直感的に結果が説明できる、2×2クロスがベスト
- 分割が増えると情報が増えても、期待度数が少なくなるので、結果の信頼性が下がる場合がある
- ・ 3×3以上は、基本的には、集約・再分類を検討した方がいい
  - できれば、2×2、せめて2×3くらいに整理して考えるのが基本

#### 対応のあるデータ

15/43

## 対応のあるデータ

- ・同じ対象で複数回のデータ
- ・前の回と後の回で解答傾向が同じか違うか
- ・違っているなら、前と後の間で何かがあったと考える

# 対応の無いデータ

#### ・クラスとおやつ

| No | クラス | おやつ    |
|----|-----|--------|
| 1  | きつね | きのこの里  |
| 2  | たぬき | きのこの里  |
| 3  | たぬき | きのこの里  |
| 4  | きつね | きのこの里  |
| 5  | きつね | たけのこの山 |
| 6  | たぬき | きのこの里  |
| 7  | きつね | たけのこの山 |
| 8  | たぬき | きのこの里  |

| ク       | ラス別の | おやつ   |        |    |
|---------|------|-------|--------|----|
| 希望するおやつ |      | きのこの里 | たけのこの山 | 計  |
| 7       | たぬき  | 20    | 10     | 30 |
|         | きつね  | 12    | 18     | 30 |
|         | 計    | 32    | 28     | 60 |

# 対応のあるデータ

#### ・就職前後で、朝食を食べている、食べていない

| 番号 | 就職前    | 就職後    |
|----|--------|--------|
| 1  | 食べている  | 食べている  |
| 2  | 食べている  | 食べていない |
| 3  | 食べている  | 食べている  |
| 4  | 食べている  | 食べていない |
| 5  | 食べていない | 食べている  |
| 6  | 食べている  | 食べている  |
| 7  | 食べている  | 食べていない |
| 8  | 食べている  | 食べていない |

|    |        | 就職後   |        |     |
|----|--------|-------|--------|-----|
|    |        | 食べている | 食べていない | 合計  |
| 就  | 食べている  | 35    | 25     | 60  |
| 職前 | 食べていない | 15    | 25     | 40  |
| 月リ | 合計     | 50    | 50     | 100 |

# 対応のない、ある

#### データを見る

| No | クラス | おやつ    |
|----|-----|--------|
| 1  | きつね | きのこの里  |
| 2  | たぬき | きのこの里  |
| 3  | たぬき | きのこの里  |
| 4  | きつね | きのこの里  |
| 5  | きつね | たけのこの山 |
| 6  | たぬき | きのこの里  |
| 7  | きつね | たけのこの山 |
| 8  | たぬき | きのこの里  |

| 番号 | 就職前    | 就職後    |
|----|--------|--------|
| 1  | 食べている  | 食べている  |
| 2  | 食べている  | 食べていない |
| 3  | 食べている  | 食べている  |
| 4  | 食べている  | 食べていない |
| 5  | 食べていない | 食べている  |
| 6  | 食べている  | 食べている  |
| 7  | 食べている  | 食べていない |
| 8  | 食べている  | 食べていない |

# 対応のない、ある

#### クロス集計では一見わかりにくい

| クラス別の       |     |       | おやつ    |    |  |
|-------------|-----|-------|--------|----|--|
| 希望するお<br>やつ |     | きのこの里 | たけのこの山 | 計  |  |
| ク           | たぬき | 20    | 10     | 30 |  |
| ラ           | きつね | 12    | 18     | 30 |  |
|             | 計   | 32    | 28     | 60 |  |

|     |        | 就職後   |        |     |
|-----|--------|-------|--------|-----|
|     |        | 食べている | 食べていない |     |
| 京先  | 食べている  | 35    | 25     | 60  |
| 就職前 | 食べていない | 15    | 25     | 40  |
| 同可  | 合計     | 50    | 50     | 100 |

統計学(基礎)

マクネマーの検定ともいいます

#### 対応のある x<sup>2</sup>検定

21/43

## 対応のあるデータ

・就職前後で、朝食を食べている、食べていない

| 番号 | 就職前    | 就職後    |
|----|--------|--------|
| 1  | 食べている  | 食べている  |
| 2  | 食べている  | 食べていない |
| 3  | 食べている  | 食べている  |
| 4  | 食べている  | 食べていない |
| 5  | 食べていない | 食べている  |
| 6  | 食べている  | 食べている  |
| 7  | 食べている  | 食べていない |
| 8  | 食べている  | 食べていない |

|   |        | 就職後   |        |     |
|---|--------|-------|--------|-----|
|   |        | 食べている | 食べていない | 合計  |
| 就 | 食べている  | 35    | 25     | 60  |
| 職 | 食べていない | 15    | 25     | 40  |
| 前 | 合計     | 50    | 50     | 100 |

# 対応のある検定とは

- データ間に対応がある場合は別の計算方法を使う
- 対応のあるデータ(繰り返しのあるデータ)
  - 同じ対象に対して複数回データを取っている
- ・統計値の計算方法は異なるが、結果の分布は同じ
- 有意差がある場合は、その間に何かがあったと考える

# 対応のあるデータの検定の考え方

・前後で違いがあるかないか



違ってない? 前後で違うなら、その間 にあったことが影響してい ると考える

24/43

# 対応のあるデータの検定の考え方

- ・前後で違いがあるかないか
  - 標本が違うなら、もう同じ母集団とは言えない



25/43

# 対応がある場合の帰無仮説の考え方

- 棄却されたとき
  - 今回のサンプルからは両群が同じだと言うことは難しい (同じである確率は低い)→変化があった
- 棄却されなかったとき
  - 今回のサンプルからは両群が同じであると推定できる (同じである確率が高い)→変化がなかった

# 対応のある x 2検定

- 同じ人の繰り返しデータ
- ・変化があったのは緑色の部分
- その部分の影響がわかればよい

|     |        | 就職後   |        |     |  |
|-----|--------|-------|--------|-----|--|
|     |        | 食べている | 食べていない | 合計  |  |
| 就職前 | 食べている  | 35    | 25     | 60  |  |
|     | 食べていない | 15    | 25     | 40  |  |
| 刊   | 合計     | 50    | 50     | 100 |  |

27/43

# 対応のある x 2検定: マクネマーの検定

• (b-c)の2乗を(b+c)で割った値は自由度1の $\chi^2$ 分布に従う

$$Z = \frac{\left(b-c\right)^2}{\left(b+c\right)}$$

- 計算の仕方は違う(関数を使わない)けど、この値がχ<sup>2</sup>分布になる
- 期待度数表は作らない

|     |        | 就職後  |    |      |    |     |
|-----|--------|------|----|------|----|-----|
|     |        | 食べてい | る  | 食べてい | ない | 合計  |
| 就職前 | 食べている  | а    | 35 | b    | 25 | 60  |
|     | 食べていない | C    | 15 | d    | 25 | 40  |
| 月山  | 合計     |      | 50 |      | 50 | 100 |

# χ<sup>2</sup>検定の結果の判断(再)

- P値を直接計算できない場合
  - 右のような確率分布表を使う
    - 対応無くてもあっても同じ
  - 自由度と、主な有意確率の時のχ²値の表
    - ・自由度1でχ<sup>2</sup>値が3.84のとき有意確率は0.05
    - ・自由度1でχ<sup>2</sup>値が6.63のとき有意確率は0.01
    - ・自由度1でχ<sup>2</sup>値が10.83のとき有意確率は0.001

|     |    | 有意確率  |       |       |       |  |  |
|-----|----|-------|-------|-------|-------|--|--|
|     |    | 0.10  | 0.05  | 0.01  | 0.001 |  |  |
|     | 1  | 2.71  | 3.84  | 6.63  | 10.83 |  |  |
|     | 2  | 4.61  | 5.99  | 9.21  | 13.82 |  |  |
|     | 3  | 6.25  | 7.81  | 11.34 | 16.27 |  |  |
|     | 4  | 7.78  | 9.49  | 13.28 | 18.47 |  |  |
| 自由  | 5  | 9.24  | 11.07 | 15.09 | 20.52 |  |  |
| 自由度 | 6  | 10.64 | 12.59 | 16.81 | 22.46 |  |  |
|     | 7  | 12.02 | 14.07 | 18.48 | 24.32 |  |  |
|     | 8  | 13.36 | 15.51 | 20.09 | 26.12 |  |  |
|     | 9  | 14.68 | 16.92 | 21.67 | 27.88 |  |  |
|     | 10 | 15.99 | 18.31 | 23.21 | 29.59 |  |  |

# Excelで行う対応のある x<sup>2</sup>検定

- · χ<sup>2</sup>値
  - 式の計算で出せる
  - 期待度数表はいらない
  - CHISQ.TEST関数では出せない
- p值
  - =CHISQ.DIST.RT(χ²値,自由度)
    - $-\chi^2$ 値と自由度から、その $\chi^2$ 値に該当する確率値を算出
    - 自由度はクロス集計表から求めるのでこの場合は1

30/43

# 実は

- JASPにはマクネマー検定がありません
  - Rにはあるので、コマンドで実行は可能
  - 手計算でいけるのと、後述の理由でプライオリティが低いと 考えられている
- jamoviにはあります

# jamoviでやるマクネマー検定

data05\_01



# jamoviでやるマクネマー検定



# データの大きさの問題

#### 結果

#### 対応ありクロス集計表

#### クロス集計表

|        | 就     |        |     |
|--------|-------|--------|-----|
| 就職前    | 食べている | 食べていない | 全体  |
| 食べている  | 35    | 25     | 60  |
| 食べていない | 15    | 25     | 40  |
| 全体     | 50    | 50     | 100 |

#### マクニマー検定

|    | 値    | 自由度 | р     |
|----|------|-----|-------|
| χ² | 2.50 | 1   | 0.114 |
| N  | 100  |     |       |

#### 結果

#### 対応ありクロス集計表

#### クロス集計表

|        | 就     |        |     |
|--------|-------|--------|-----|
| 就職前    | 食べている | 食べていない | 全体  |
| 食べている  | 175   | 125    | 300 |
| 食べていない | 75    | 125    | 200 |
| 全体     | 250   | 250    | 500 |

#### マクニマー検定

|          | 値    | 自由度 | р      |
|----------|------|-----|--------|
| $\chi^2$ | 12.5 | 1   | < .001 |
| N        | 500  |     |        |

### 2×2より大きな繰り返し

- マクネマーではなくバウカー検定
  - Bowker's test:拡張マクネマー検定
- 3×3が限界かなあ
- 解釈に順序性が出てくるので、そこがうまく説明できる かどうか
- ・ 順序性を考えるならWilcoxon符号付順位検定
  - ノンパラで説明

### 大きな繰り返しのあるデータ

- jamoviだと、対応のある $\chi^2$ 検定が、 $3\times3$ 以上になると、自動でバウカー検定になる
  - そもそもマクネマー検定は2×2しかできない

# jamoviのバウカー検定 (マクネマーと同じ)

data05\_02



# jamoviのバウカー検定



## 大きな繰り返しのあるデータ

- あまり進めない理由
  - データがたくさん必要
  - バウカー検定は順序性は見ていない
  - カテゴリ数が多い場合、そのカテゴリは順序性があるのか?
    - そもそも前後の差を見るときに、変わったかどうかだけなのか、何らかの順序性を仮定しないのか
    - →分析手法では無くて、研究計画の問題

### クロス集計では無いのかも

- ・基本的に χ<sup>2</sup>検定は比率の差の検定(前回説明)
  - 厳密に言うと期待度数との乖離を見ている
  - なので、観測度数が多くなると、差が出る傾向がある
  - 順序性を考慮する場合は、グッドマン=クラスカルの $\gamma$ やケンドールの順位相関 $(\tau b)$ を見る
- ・ 対応がある場合(マクネマー、バウカー)は、対称性の検定
  - 変化無しを境にして、どちらかの変化が多いかを見ている
  - 方向性までは見ていない

# 対称性

- ・対称軸を境に同じ比率かどうかを見ているだけ
- 順序(方向)は見ていない

|    |    | 事後 |                 |     |    |
|----|----|----|-----------------|-----|----|
|    |    | 低  | 中               | 硘   | 合計 |
|    | 低  | A  | 8               | 8   | 20 |
| 事  | 中  | 3  | $\cancel{\phi}$ | 11  | 20 |
| 事前 | ョ  | 1  | 3               | 76/ | 20 |
|    | 合計 | 8  | 17              | 35  | 60 |

## カテゴリに順序性があるのなら

- クロス集計をしてマクネマーやバウカー検定はしない
  - ウィルコクソン符号付順位検定を選んだ方がいい
    - ・「10回目 ノンパラメトリック検定」で説明
    - ・対応のある順序変数の検定
- 順序性を考慮しなくてはいけないかどうかは、研究計画時点での問題

# カテゴリに順序性がある場合

- ・ 2値(はい・いいえ)の場合、変化=順序と見なせる
- ・ 3値だと、順序性があるかないかを考える必要がある
  - 大抵は「よい・ふつう・わるい」のように順序性がある場合が 多い
  - 同じ質的変数でも、名義尺度か順序尺度かはこういうときに 気をつけないといけない
  - どういうデータにするかは研究計画でちゃんと決める