Optimisation Non linèaire

Par

Professeur Abdellatif El Afia

Chapitre 7

Dualité lagrangienne

Professor Abdellatif El Afia

Dualité lagrangienne

Primal
$$\begin{cases} Min & f(x) \\ s.t & f_i(x) \le 0 \ i = 1, ..., m \\ x \in X \subseteq \mathbb{R}^n \end{cases}$$

• $D_R = \{x \in X \subseteq \mathbb{R}^n : f_i(x) \le 0 \ i = 1, ..., m\}$

Définition

Le problème dual lagrangien associé au problème primal relativement au D_R , s'écrit :

Dual
$$\begin{cases} Max & g(\lambda) = \inf_{x \in \mathbb{R}^n} \left\{ f(x) + \sum_{i=1}^m \lambda_i f_i(x) \right\} \\ s.t & \lambda \in \Lambda \end{cases}$$

- $g(\lambda) = \inf_{x \in X} \{f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)\}\$ est la fonction objective du dual
- $\Lambda = \{\lambda \in \mathbb{R}^m : \lambda \ge 0\}$ est l'ensemble des contraintes du dual problème

Dualité lagrangienne: Exemple

Soit le problème quadratique convexe suivant :

$$\begin{cases} Min & \frac{1}{2}x^TQx + c^Tx \\ s.t & Ax \ge b \\ x \in X \subseteq \mathbb{R}^n \end{cases}$$

Où Q est symétrique et définie positive.

Pour construire le problème dual, on commence par réécrire les contraintes d'inégalité comme

suit
$$b - Ax \le 0$$
, en suite nous construisons le Lagrangien :
$$L(x,\lambda) = \frac{1}{2}x^TQx + c^Tx + \lambda^T(b - Ax) = \lambda^Tb + (c^T - A^T\lambda)^Tx + \frac{1}{2}x^TQx$$

La fonction duale est :

$$g(\lambda) = \min_{x \in \mathbb{R}^n} L(x, \lambda) = \min_{x \in \mathbb{R}^n} \lambda^T b + (c^T - A^T \lambda)^T x + \frac{1}{2} x^T Q x$$
$$= \lambda^T b + \min_{x \in \mathbb{R}^n} (c^T - A^T \lambda)^T x + \frac{1}{2} x^T Q x$$

Dualité lagrangienne: Exemple

Pour une valeur de λ quelconque, soit x^* la valeur optimale de $\min_{x \in \mathbb{R}^n} (c^T - A^T \lambda)^T x + \frac{1}{2} x^T Q x$

Comme cette expression est une fonction quadratique convexe le gradient du lagrangien en x^* est nul :

$$\nabla_{x}L(x^{*},\lambda) = (c - A^{T}\lambda) + Qx^{*} = 0$$

L'expression de x^* est alors donnée par : $x^* = -Q^{-1}(c - A^T \lambda)$

La fonction duale devient alors : $g(\lambda) = L(x^*, \lambda) = \lambda^T b - \frac{1}{2}(c - A^T \lambda)^T Q^{-1}(c - A^T \lambda)$

Comme le problème dual est définit par : $\max_{\lambda>0} g(\lambda)$

Le dual du problème quadratique convexe est donc donné par :

$$\begin{cases} Max & \lambda^T b - \frac{1}{2}(c - A^T \lambda)^T Q^{-1}(c - A^T \lambda) \\ s.t & \lambda \ge 0 \\ \lambda \in \mathbb{R}^m \end{cases}$$

Optimisation non lineaire-Abdellatif El Afia

Dualité lagrangienne

Théorème

La fonction objective du dual $g(\lambda)$ est une fonction concave sur l'ensemble Λ pour toutes fonctions f et f_i

Preuve

Soient $\lambda_1 \in \Lambda$, $\lambda_2 \in \Lambda$ alors $\lambda_1 \ge 0$ et $\lambda_2 \ge 0$, et soit $\lambda = \theta \lambda_1 + (1 - \theta) \lambda_2 \in \Lambda$ avec $\theta \in [0,1]$ alors

- $g(\lambda) = \inf_{x \in \mathbb{R}^n} \{ f(x) + \sum_{i=1}^m \lambda_i f_i(x) \}$
- $g(\lambda) = \inf_{x \in \mathbb{R}^n} \{ \theta (f(x) + \sum_{i=1}^m \lambda_{1i} f_i(x)) + (1 \theta) (f(x) + \sum_{i=1}^m \lambda_{2i} f_i(x)) \}$
- $\Rightarrow g(\lambda) \ge \theta \inf_{x \in \mathbb{R}^n} \{ f(x) + \sum_{i=1}^m \lambda_{i} f_i(x) \} + (1-\theta) \inf_{x \in \mathbb{R}^n} \{ f(x) + \sum_{i=1}^m \lambda_{i} f_i(x) \}$
- \Rightarrow $g(\lambda) \ge \theta g(\lambda_1) + (1 \theta)g(\lambda_2)$

D'où $g(\lambda)$ est une fonction concave sur l'ensemble Λ pour toutes fonctions f et f_i

Dualité lagrangienne

Théorème:

Soient $A \subset \mathbb{R}^n$ et $B \subset \mathbb{R}^m$.

Si

- A est convexe
- Pour toute valeur $b \in B$, $h(a,b): A \times B \to \mathbb{R}$ est convexe sur A,

alors

- l'ensemble $A^* = \{a \in A : l(a) = Sup_{b \in B}\{h(a, b)\} < \infty\}$ est convexe
- l est convexe sur A^*

Définition

- La valeur optimale du problème primal est le infinimum de la fonction f(x) sur D_R
- La valeur optimale du problème dual est le supremum de la fonction $g(\lambda)$ sur Λ
- Par convention, le infinimum (supremum) d'une fonction sur un ensemble vide est égal à ∞ ($-\infty$).

Interprétation géométrique du problème dual

Soit

•
$$x \in \mathbb{R}^n$$
, Posons $(s, z) = (s_1, ..., s_m, z) = (f_1(x), ..., f_m(x), z)$

•
$$I = \{(s,z) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n o ù z \ge f(x) \text{ et } s \ge (f_i(x)), i = 1, \dots, m\}$$

Cet ensemble est illustré par la figure

Proposition:

Si X est convexe et f et f_i , i = 1, ..., m sont convexes sur X alors I est aussi convexe.

Maintenant, on définit l'hyperplan

$$H_{\lambda,\alpha} := \{(s,z) \in \mathbb{R}^{m+1} : \lambda^T s + z = \alpha\}$$

On dit que $H_{\lambda,\alpha}$ est support inférieur de I si

$$\forall (s, z) \in I \ \lambda^T s + z \ge \alpha$$

On définit aussi la droite

Théorèmes de dualité

Pour le premier théorème de dualité faible, nous n'avons pas besoin d'hypothèses particulières sur X, ni sur les fonctions f et f_i , i = 1, ..., m.

Théorème de dualité faible

Si \bar{x} est une solution réalisable du primal et $\bar{\lambda}$ une solution réalisable du dual, alors $f(\bar{x}) \ge g(\bar{\lambda})$.

Preuve

Considérons la quantité $f(\bar{x}) + \sum_{i=1}^{m} \bar{\lambda}_i f_i(\bar{x}) \le f(\bar{x})$, Puisque $f_i(\bar{x}) \le 0$ et $\bar{\lambda}_i \ge 0$, i = 1, ..., m, D'autre part,

$$g(\bar{\lambda}) = \inf_{x \in X} \left\{ f(x) + \sum_{i=1}^{m} \bar{\lambda}_i f_i(x) \right\} \le f(\bar{x}) + \sum_{i=1}^{m} \bar{\lambda}_i f(\bar{x})$$

Puisque $\bar{x} \in X$

Donc
$$g(\bar{\lambda}) = \inf_{x \in X} \{f(x) + \sum_{i=1}^m \bar{\lambda}_i f_i(x)\} \le f(\bar{x}) + \sum_{i=1}^m \bar{\lambda}_i f_i(\bar{x}) \le f(\bar{x}).$$

Théorèmes de dualité

Définition: Point selle

 (x^*, λ^*) est dit point selle du Lagrangien $L(x, \lambda)$ si

- $x^* \in X \text{ et } \lambda^* \geq 0$
- $L(x^*, \lambda) \le L(x^*, \lambda^*) \le L(x, \lambda^*) \quad \forall x \in X, \forall \lambda \ge 0$

Théorème 1:

 (x^*, λ^*) est un point selle du Lagrangien si et seulement si les trois conditions suivantes sont vérifiées :

$$\begin{cases} \boldsymbol{C_1} \colon & L(x^*, \lambda^*) = g(\lambda^*) \\ \boldsymbol{C_2} \colon & F(x^*) \leq 0 \\ \boldsymbol{C_3} \colon & {\lambda^*}^T F(x^*) = 0 \end{cases}$$

En plus, (x^*, λ^*) est point selle pour $L(x, \lambda)$ si et seulement si les deux conditions suivantes sont vérifiées :

- i. (x^*, λ^*) est respectivement, solution optimale du problème primal et dual
- ii. Il n'y a pas de saut de dualité, c'est-à-dire que $f(x^*) = g(\lambda^*)$

Théorèmes de dualité

Théorème 2:

Supposons $X = \mathbb{R}^n$ et $f(x), f_1(x), ..., f_m(x)$ sont convexes et différentiables, et (x^*, λ^*) satisfait les conditions de **K.K.T** alors x^* et λ^* sont solution du problème primal et dual sans saut de dualité.

 (x^*, λ^*) satisfait les conditions de **K.K.T** :

$$\begin{cases} \nabla f(x^*) + \lambda^{*T} \nabla F(x^*) = 0 \\ F(x^*) \le 0 \\ \lambda^* \ge 0 \\ \lambda^{*T} F(x^*) = 0 \end{cases}$$

Théorème 3:

Si (x^*, λ^*) est un point selle de L alors

$$g^* = \sup_{\lambda \ge 0} \inf_{x \in X} L(x, \lambda) = L(x^*, \lambda^*) = \inf_{x \in X} \sup_{\lambda \ge 0} L(x, \lambda) = f^*$$

Définition:

Un problème de programmation convexe est un problème d'optimisation sous la forme

$$(P) \begin{cases} Min & f_0(x) \\ s.t & f_i(x) \le 0 \quad i \in I_1 \\ h_i(x) = a_i^T x + b_i = 0 \quad i \in I_2 \\ x \in \mathbb{R}^n \end{cases}$$

Où $f_0(x)$, $\{f_i(x)\}_{i\in I_1}$ sont des fonctions convexes continues sur \mathbb{R}^d et $\{h_i(x)\}_{i\in I_2}$ sont des fonctions linéaires

Théorème:

- Le domaine réalisable, D_F , est convexe $D_F = \{x \in \mathbb{R}^d \big| f_i(x) \le 0 \mid i \in I_1, h_i(x) = 0 \mid i \in I_2\}$
- L'ensemble solution de (P) est un ensemble fermé convexe
- Si x^* est la solution locale de (P) alors x^* est aussi la solution globale
- Si la fonction objectif $f_0(x)$ est strictement convexe alors la solution de (P) est unique

Definition: (Problème de programmation quadratique (QP))

$$(QP)\begin{cases} Min & \frac{1}{2}x^{T}Qx + c^{T}x \\ s.t & \bar{A}x - \bar{b} \leq 0 \\ & Ax - b = 0 \\ & x \in \mathbf{QP} \end{cases}$$

Où $Q \in \mathbb{R}^{n \times n}$ $c \in \mathbb{R}^n$, $\overline{A} \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$, $\overline{b} \in \mathbb{R}^m$, $b \in \mathbb{R}^p$ Si Q est semi-défini positif, alors le problème QP est une programmation convexe

Théorème:

- L'ensemble $D_F = \{x \in \mathbb{R}^d | \bar{A}x \bar{b} \le 0, Ax b = 0\}$ est convexe
- L'ensemble solution de (QP) est un ensemble fermé convexe
- Si x^* est la solution locale de(QP)alors x^* est aussi la solution globale
- Si Q est définie positive alors La solution de (QP) est unique

Définition:

Considérons le problème de programmation convexe (P) avec la variable x étant partitionné sous la forme $x = (x_1, x_2) \in \mathbb{R}^n$.

 $x_1^* \in \mathbb{R}^{m_1}$ est appelé sa solution par rapport à (w.r.t) x_1 s'il existe un $x_2^* \in \mathbb{R}^{n-m_1}$ tel que $x^* = (x_1^*, x_2^*)$ est sa solution. L'ensemble de toutes les solutions par rapport à x_1 est appelé l'ensemble de solutions par rapport à x_1

Théorème:

Si le problème de programmation convexe (P) avec la variable $x=(x_1,x_2)\in\mathbb{R}^n$, alors

- son ensemble solution par rapport à x_1 est un ensemble fermé convexe
- Si $f_0(x) = F_1(x_1) + F_2(x_2)$ où est strictement convexe de la variable x_1 alors la solution de (P) par rapport à x_1 est unique lorsqu'elle a une solution

Considérons le problème de programmation convexe

Primal (P)
$$\begin{cases} Min & f_0(x) \\ s.t & f_i(x) \le 0 \ i \in I_1 \\ h_i(x) = a_i^T x + b_i = 0 \ i \in I_2 \\ x \in \mathbb{R}^n \end{cases}$$

où $f_0(x) \in \mathcal{C}^2$, $\forall i \in I_1 f_i(x) \in \mathcal{C}^2$ et convexe dans \mathbb{R}^d ,

On part de l'estimation de sa valeur optimale

$$p^* = \inf\{f_0(x) | x \in D_F\} = \inf_{x \in D_F} f_0(x)$$

où $D_F = \{x \in \mathbb{R}^d \, \big| \, f_i(x) \le 0 \ i \in I_1, h_i(x) = 0 \ i \in I_2 \}$

Introduisons la fonction lagrangienne

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i \in I_1} \lambda_i f_i(x) + \sum_{i \in I_2} \mu_i h_i(x)$$

où $\lambda = (\lambda_1, ..., \lambda_m)^T$ et $\mu = (\mu_1, ..., \mu_p)^T$ sont des multiplers lagrangiens.

Problème de programmation convexe: : Conditions d'optimalité

Définition(Conditions de Karush-Kuhn-Tuker (KKT))

Considérons le problème principal de programmation convexe (P). x^* est dit satisfaire les conditions KKT s'il existe les multiplicateurs $\lambda^* = (\lambda_1^*, ..., \lambda_m^*)^T$ et $\mu^* = (\mu_1^*, ..., \mu_n^*)^T$ correspondant respectivement aux contraintes du problème primal (P), telles que la fonction lagrangienne (P)

$$L(x,\lambda,\mu) = f_0(x) + \sum_{i \in I_1} \lambda_i f_i(x) + \sum_{i \in I_2} \mu_i h_i(x) \Longrightarrow \nabla_x L(x,\lambda,\mu) = \nabla f_0(x) + \sum_{i \in I_1} \lambda_i \nabla f_i(x) + \sum_{i \in I_2} \mu_i \nabla h_i(x)$$

Satisfait

 $\text{KKT Conditions:} \begin{cases} \nabla_{x}L(x^{*},\lambda^{*},\mu^{*}) = \nabla f_{0}(x^{*}) + \sum_{i \in I_{1}} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i \in I_{2}} \mu_{i}^{*} \nabla h_{i}(x^{*}) = 0 \\ f_{i}(x^{*}) \leq 0 \quad i \in I_{1} : |I_{1}| = m \\ h_{i}(x^{*}) = a_{i}^{T}x^{*} + b_{i} = 0 \quad i \in I_{2} : |I_{2}| = p \\ \lambda_{i}^{*}f_{i}(x^{*}) = 0 \quad i \in I_{1} \\ \lambda_{i}^{*} \geq 0 \quad i \in I_{1} \end{cases}$

Optimisation non lineaire-Abdellatif El Afia

Problème de programmation convexe: Conditions d'optimalité

Définition (Condition de Slater)

On dit que le problème primal de programmation convexe (P) satisfait la condition de Slater s'il existe une solution réalisable x telle que:

$$\begin{cases} f_i(x) < 0 & i \in I_1 \\ h_i(x) = a_i^T x + b_i = 0 & i \in I_2 \end{cases}$$

Ou lorsque les premières contraintes d'inégalité de k sont des contraintes linéaires, il existe une solution réalisable x telle que :

$$\begin{cases} f_i(x) = a_i^T x + b_i \le 0 & i \in I_1^k \\ f_i(x) < 0 & i \in I_1^{m-k} \\ h_i(x) = a_i^T x + b_i = 0 & i \in I_2 \end{cases}$$

Théorème:

Considérons le problème primal de programmation convexe (P) satisfaisant la condition de Slater. Si x^* est une solution alors x^* satisfait aux conditions KKT.

Théorème:

Considérons le problème primal de programmation convexe (P) satisfaisant la condition de Slater. Alors pour sa solution x^* , c'est une condition néssecaire et suffissante que x^* satisfait aux conditions KKT

Hard margin SVC

• Distance from one point to the Separator: $D(x) = \frac{|w^T x + b|}{\|w\|}$

$$D(x) = \frac{|w^T x + b|}{\|w\|}$$

Maximum margin before reaching the boundaries of both classes ($|\mathbf{w}^T \mathbf{x} + \mathbf{b}| = 1$): $m = \frac{1}{\| \mathbf{u} \cdot \mathbf{v} \|}$

$$m = \frac{1}{\|w\|}$$

• To maximize m is to minimize ||w|| while preserving the classification power:

$$SVC: \begin{cases} Min & ||w|| \\ s.t & y_i(w^Tx_i + b) \ge 1 \ i = 1,...,n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Hard margin SVC

SVC:
$$\begin{cases} Min & \frac{1}{2} ||w||^2 \\ s.t & y_i(w^T x_i + b) \ge 1 \ i = 1,...,n \\ & w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Theorem:

For a linearly seprable problem, there exists a solution unique (w^*, b^*) to optimization problem SVC and the solution satisfies:

- $w^* \neq 0$
- $\exists j \in \{i \in \{1, ..., n\} | y_i = 1\}$ such that $(w^*)^T x_j + b^* = 1$ $\exists k \in \{i \in \{1, ..., n\} | y_i = -1\}$ such that $(w^*)^T x_k + b^* = -1$

The SVC approach uses Lagrange multipliers for a simpler solution

$$L_H(w, b, \lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) - 1)$$

According to chapter 1, the dual problem should have a form of

$$Dual\ SVC \begin{cases} Max & g(\lambda) = \inf_{w \in \mathbb{R}^d, b \in \mathbb{R}} L_H(w, b, \lambda) \\ s.t & \lambda_i \ge 0 \ i = 1, ..., n \end{cases}$$

As $L_H(w, b, \lambda)$ is strictly convex quadratic function of w, its minimal value is achieved at w satisfying $\nabla_{w,b}L_H(w,b,\lambda) = 0$, then

•
$$\nabla_w L_H(w, b, \lambda) = w - \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^n \lambda_i y_i x_i$$

•
$$\nabla_b L_H(w, b, \lambda) = \sum_{i=1}^n \lambda_i y_i = 0$$

•
$$L_H(w, b, \lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) - 1)$$

•
$$w = \sum_{i=1}^{n} \lambda_i y_i x_i \Rightarrow$$

$$L_H(w, b, \lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i (x_j^T x_i) - b \sum_{i=1}^{n} \lambda_i y_i$$

One has by substitution in $L_H(w, b, \lambda)$:

$$\inf_{w \in \mathbb{R}^d, b \in \mathbb{R}} L_H(w, b, \lambda) = \begin{cases} \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i (x_j^T x_i) & \text{if } \sum_{i=1}^n \lambda_i y_i = 0 \\ -\infty & \text{if } \sum_{i=1}^n \lambda_i y_i \neq 0 \end{cases}$$
Optimisation non lineaire-Abdellatif EI Affa

$$D - SVC: \begin{cases} Max & g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i (x_j^T x_i) \\ \sum_{i=1}^{n} \lambda_i y_i = 0 \\ \lambda_i \ge 0 \ i = 1, ..., n \end{cases}$$

Theorem:

For separable problems,

- The DC SVC poblem is a Convex Quadratic Programming and has a solution λ^*
- For any solution $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$, there must be a nonzero component λ_j^* and the unique solution to the primal SVC can be obtained in the following way

$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i \quad and \quad b^* = \mathbf{y_j} - \sum_{i=1}^n \lambda_i^* y_i (\mathbf{x_j}^T x_i)$$

Geometric interpretation

- Only the points closest to the separation surface affect its definition
- There are theoretical limits for the misclassification of new data
 - The larger the margin, the smaller the limit
 - The smaller the number of SVC, the smaller the limit

Soft margin SVC(C - SVC)

$$C - SVC \begin{cases} Min & \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i \\ s.t & y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1,..., n \\ & \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

Theorem:

- There exists solutions to the C SVC problem w.r.t (w, b)
- The solution w^* of the C SVC problem (with respect to)w.r.t w is unique
- The solution set to the C SVC problem w.r.t b is a bounded close interval $[b_1, b_2]$ where $b_1 \le b_2$.

Soft-margin C - SVC: Dual form

The C-SVC approach uses Lagrange multipliers for a simpler solution

$$L_{Soft}(w,\xi,b,\lambda,\mu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^n \mu_i \xi_i$$

$$= \frac{1}{2} ||w||^2 - \sum_{i=1}^n \lambda_i (y_i(w^T x_i + b) - 1)) - \sum_{i=1}^n (-C + \lambda_i + \mu_i) \xi_i$$

According to chapter 1, the dual problem should have a form of

$$Dual\ C - SVC \begin{cases} Max & g(\lambda, \mu) = \inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda, \mu) \\ s.t & \lambda_i \ge 0, \mu_i \ge 0 \quad i = 1, ..., n \end{cases}$$

As $L_{Soft}(w, \xi, b, \lambda, \mu)$ is strictly convex quadratic function of w, its minimal value is achieved at w satisfying

$$\nabla_{w,\xi,b} L_{soft}(w,\xi,b,\lambda,\mu) = 0$$
Optimisation non lineaire-Abdellatif El Africa

Soft-margin C - SVC: Dual form

Then

•
$$\nabla_w L_{Soft}(w, \xi, b, \lambda, \mu) = w - \sum_{i=1}^n \lambda_i y_i x_i = 0 \Longrightarrow \mathbf{w} = \sum_{i=1}^n \lambda_i y_i x_i$$

•
$$\nabla_{\xi} L_{Soft}(w, \xi, b, \lambda, \mu) = CI_{n \times n} - \lambda - \mu = 0$$

•
$$\nabla_b L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^n \lambda_i y_i = 0$$

One has by substitution in $L_{Soft}(w, \xi, b, \lambda, \mu)$:

$$L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \lambda_{i} y_{j} y_{i} (x_{j}^{T} x_{i}) - \frac{b}{b} \sum_{i=1}^{n} \lambda_{i} y_{i} - \sum_{i=1}^{n} (-C + \lambda_{i} + \mu_{i}) \xi_{i}$$

If
$$\sum_{i=1}^{n} \lambda_i y_i = 0$$
 and $CI_{n \times n} - \lambda - \mu = 0$ then

•
$$\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda, \mu) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_j \lambda_i y_j y_i (x_j^T x_i)$$

Else

• $\inf_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n, b \in \mathbb{R}} L_{Soft}(w, \xi, b, \lambda, \mu) = -\infty$

Soft-margin C - SVC: Dual form

$$Dual: C - SVC \begin{cases} Max & g(\lambda, \mu) = g(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_j \lambda_i y_j y_i (x_j^T x_i) \\ \sum_{i=1}^{n} \lambda_i y_i = 0 \end{cases}$$

$$C - \lambda_i - \mu_i = 0, i = 1, ..., n$$

$$\mu_i \ge 0, \lambda_i \ge 0 \ i = 1, ..., n$$

$$1 - n : C - \lambda_i - \mu_i = 0 \Leftrightarrow C - \lambda_i = \mu_i$$

- $\forall i = 1, ..., n : C \lambda_i \mu_i = 0 \iff C \lambda_i = \mu_i$
- $\mu_i \ge 0 \Leftrightarrow \mathcal{C} \lambda_i \ge 0 \Leftrightarrow \mathcal{C} \ge \lambda_i \text{ and } \lambda_i \ge 0 \Leftrightarrow \mathcal{C} \ge \lambda_i \ge 0$

Theorem:

- Dual C SVC poblem has a solution (λ^*, μ^*)
- Dual can simplified to a problem only for a single variable λ by eliminating the variable μ and then rewritten as a minimization problem Dual $(C SVC)_{\lambda}$

Soft-margin C - SVC: Dual $(C - SVC)_{\lambda}$ Form

$$Dual (C - SVC)_{\lambda}: \begin{cases} Max & L_{Soft}(\lambda) = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j} \lambda_{i} y_{j} y_{i} (x_{j}^{T} x_{i}) \\ \sum_{i=1}^{n} \lambda_{i} y_{i} = 0 \\ C \geq \lambda_{i} \geq 0 \ i = 1, ..., n \end{cases}$$

Theorem:

- The Dual $(C SVC)_{\lambda}$ poblem is a Convex Quadratic Programming and has a solution λ^*
- For any solution $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)$, If there exists a component of λ^*, λ_j^* , such that $\lambda_j^* \in (0, C)$ then a solution (w^*, b^*) to the primal problem C SVC w.r.t (w, b) can be obtained in by

$$w^* = \sum_{i=1}^n \lambda_i^* y_i x_i$$
 and $b^* = y_j - \sum_{i=1}^n \lambda_i^* y_i (x_j^T x_i)$