Álgebra A

Folha 3 de exercícios

csaba@mat.ufmg.br

- 1. Seja $n = (a_k \cdots a_0)_{10}$ um número escrito na base 10. Demonstre as seguintes afirmações.
 - (1) $2 \mid n$ se e somente se $2 \mid a_0$;
 - (2) $3 \mid n$ se e somente se $3 \mid (a_k + \cdots + a_0)$;
 - (3) $4 \mid n$ se e somente se $4 \mid (a_1 a_0)_{10}$;
 - (4) $5 \mid n$ se e somente se $5 \mid a_0$;
 - (5) $7 \mid n$ se e somente se $7 \mid [(a_k \cdots a_2 a_1)_{10} 2a_0];$
 - (6) $8 \mid n \text{ se e somente se } 8 \mid (a_2 a_1 a_0)_{10};$
 - (7) $9 \mid n \text{ se e somente se } 9 \mid (a_k + \cdots + a_0);$
 - (8) 11 | n se e somente se 11 | $((-1)^k a_k + \cdots a_1 + a_0)$.
- **2.** Seja $b \ge 2$ e assuma que o número n está escrito como $(a_k \cdots a_0)_b$ na base b. Mostre que $(b-1) \mid n$ se e somente se $(b-1) \mid (a_k + \cdots + a_0)$.
- 3. Utilize o algoritmo de Euclides para calcular d = mdc(a, b) e inteiros u, v tais que ua + vb = d, sendo
 - (1) a = 232, b = 136;
 - (2) a = 187, b = 221;
 - (3) a = -25, b = 5;
 - (4) a = -39, b = 17.
- **4.** Mostre para todo $k \in \mathbb{Z}$ que mdc(4k+3, 5k+4) = 1.
- **5.** Seja F_n a sequência de Fibonacci definida como $F_0 = F_1 = 1$, e depois $F_{n+2} = F_n + F_{n+1}$ para $n \ge 2$. Mostre, para $n \ge 0$, que $F_n \ge \varphi^{n-1}$ onde $\varphi = (1 + \sqrt{5})/2$.
- **6.** Sejam $a \in b$ números com três algarismos na base decimal tal que a > b.
 - (1) No máximo, quantos passos o algoritmo de Euclídes vai precisar para terminar se for executado para os números a e b?
 - (2) Ache dois números a e b com três algarismos na base decimal tais que a computação de mdc(a, b) precisa do número maximal dos passos entre todos os números com três algarismos.