

Ultimate tensorization: compressing convolutional and FC layers alike

Timur Garipov¹

Dmitry Podoprikhin^{1,2}

Alexander Novikov³ Dmitry Vetrov^{2,3}

Motivation

- Convolutional neural networks are powerful but too large for smartphones.
- ullet Fitting the network into on-chip SRAM cache can save battery $10\times$.
- We focus on compressing convolutional layers, since
 - several modern architectures (Inception, ResNet) lack FC layers;
 - we can compress FC layers to move the bottleneck into convolutional layers.

Summary

- We factorize the convolutional kernel via the Tensor Train decomposition a compact format for tensors (=multidimensional arrays).
- We compressed a network that consisted only of convolutions up to $4\times$ with 2% accuracy decrease.
- We combine the proposed approach with the FC layers compression of [1]. Compressing both convolutional and fully-connected layers of a network yielded $82\times$ network compression rate with 1% accuracy drop.
- TensorFlow code: https://github.com/timgaripov/TensorNet-TF

Tensor Train

• Tensor Train decomposition [2]: reshape a matrix W to a tensor (=multidimensional array) and use the following format:

$$W(t,\ell) = W(i_1,\ldots,i_d;\ j_1,\ldots,j_d) = \underbrace{G_1[i_1,j_1]}_{1\times r}\underbrace{G_2[i_2,j_2]}_{r\times r}\ldots\underbrace{G_d[i_d,j_d]}_{r\times 1}$$

- The number *r* is called TT-rank.
- An illustration of the TT-format for a $3 \times 4 \times 4 \times 3$ tensor ${\cal A}$ with the TT-rank equal 3

Tensor Train properties

- Any matrix can be represented in TT-format with sufficient TT-rank r.
- The TT-format is efficient when the TT-rank r is small.
- The TT-format allows to perform linear algebra operations (such as sum of two matrices) efficiently and get the result in the TT-format.
- The TT-format allows to efficiently factorize a given matrix.
- MATLAB and Python libraries for these operations are available online.

Convolution via matrix multiplication

A convolution of the input ${\mathcal X}$ with the kernel ${\mathcal K}$

Why direct TT-decomposition of K is bad?

- Direct TT-decomposition of kernel tensor with 1 imes 1 filters coincides with the matrix low-rank decomposition.
- Matrix low-rank proved to be less efficient than matrix TT-format for neural networks [1].

Main idea

- ullet We apply TT-decomposition to the matrix $oldsymbol{K}$ instead of the tensor $oldsymbol{\mathcal{K}}$.
- ullet We treat 3-dim input and output tensors ${\mathcal X}$ and ${\mathcal Y}$ tensors as tensors of higher-order (e.g. 5-dimensional as in the example below).
- $\mathcal{X}(x, y, \mathbf{c}) \xrightarrow{\mathsf{reshape}} \widetilde{\mathcal{X}}(x, y, c_1, c_2, c_3)$ $\mathcal{Y}(x,y,\mathbf{s}) \xrightarrow{\mathsf{reshape}} \widetilde{\mathcal{Y}}(x,y,s_1,s_2,s_3)$ $\mathcal{K}(x,y,\mathbf{c},\mathbf{s}) \xrightarrow{\mathsf{reshape}} K(x+\ell(y-1)+\ell^2(\mathbf{c}-1),\mathbf{s}) \xrightarrow{\mathsf{TT-format}}$ $G_0[x, y]G_1[c_1, s_1]G_2[c_2, s_2]G_3[c_3, s_3]$
- TT-convolution

$$\widetilde{\mathcal{Y}}(x,y,s_1,s_2,s_3) = \sum_{i=1}^\ell \sum_{j=1}^\ell \sum_{c_1,c_2,c_3} \widetilde{\mathcal{X}}(i+x-1,j+y-1,c_1,c_2,c_3) \cdot G_0[i,j]G_1[c_1,s_1]G_2[c_2,s_2]G_3[c_3,s_3]$$

Learning

- Instead of K optimize w.r.t. $\{G_k\}_{k=1}^d$ with stochastic gradient descend.
- Compute the necessary gradients with automatic differentiation implemented in TensorFlow.
- Initialize $\{G_k\}_{k=1}^d$ with gaussian noise.
- Apply BatchNormalization after each TT-conv and TT-fc layer.

Experiments

- Experiments on CIFAR-10 dataset.
- We used two baseline networks:
 - fully convolution network (557 thousand of parameters, 6 convolutional layers);
- 2. convolution network with FC layers (14 millions of parameters, 6 convolutional and 3 FC layers).
- Different rows with the same model name in the tables below correspond to different choices of the TT-ranks.

Convolutional network

Model	top-1 accuracy	compression
conv (baseline)	90.7	1
TT-conv	89.9	2.02
TT-conv	89.2	2.53
TT-conv	89.3	3.23
TT-conv	88.7	4.02
TT-conv (naive)	88.3	2.02
TT-conv (naive)	87.6	2.90

'TT-conv': the proposed compression method; **'TT-conv (naive)**': direct application of the TT-decomposition to convolutional kernels

Network with convolutional and FC layers

Model	top-1 accuracy	compression
conv-fc (baseline)	90.5	1
conv-TT-fc	90.3	10.72
conv-TT-fc	89.8	19.38
conv-TT-fc	89.8	21.01
TT-conv-TT-fc	90.1	9.69
TT-conv-TT-fc	89.7	41.65
TT-conv-TT-fc	89.4	82.87

'conv-TT-fc': only the fully-connected part of the network is compressed; 'TT-conv-TT-fc': fully-connected and convolutional parts are compressed.

Future work

- Provide experiments with modern architectures (ResNet, Inception, VGG-16) on ImageNet dataset.
- Provide a strategy to select ranks and modes.
- Compare with other works.

References

- [1] Alexander Novikov et al. "Tensorizing neural networks". In: Advances in Neural Information Processing *Systems*. 2015, pp. 442–450
- [2] Ivan V Oseledets. "Tensor-train decomposition". In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2295–2317

