REC'D 0 4 JAN 2005

WIPO

PCT

10.11.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 7月14日

出 願 番 号 Application Number:

特願2004-207273

[ST. 10/C]:

[JP2004-207273]

出 願 人
Applicant(s):

キヤノン株式会社

PRIORITY DOCUMENT

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月17日

特許願 【書類名】 【整理番号】 0004599-01 平成16年 7月14日 【提出日】 特許庁長官殿 【あて先】 H04N 5/00 【国際特許分類】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 石井 孝昌 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 森下 正和 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 望月 千織 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 渡辺 実 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 野村 慶一 【氏名】 【特許出願人】 【識別番号】 000001007 キヤノン株式会社 【氏名又は名称】 【代理人】 100090273 【識別番号】 【弁理士】 國分 孝悦 【氏名又は名称】 03-3590-8901 【電話番号】 【先の出願に基づく優先権主張】 特願2003-392725 【出願番号】 平成15年11月21日 【出願日】 【手数料の表示】 035493 【予納台帳番号】 16,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】

図面 1

要約書 1

9705348

【物件名】

【物件名】

【包括委任状番号】

【審類名】特許請求の範囲

【請求項1】

入射した放射線を電荷に変換する少なくとも1つの光電変換素子を含み構成される画素が、マトリクス状に複数配設されてなるとともに、前記画素からの信号を出力するための信号出力回路を備えた放射線撮像装置であって、

前記画素と前記信号出力回路とを接続する信号読出用配線が、1つの前記画素に対応して複数本設けられていることを特徴とする放射線撮像装置。

【請求項2】

前記光電変換素子は、入射した放射線を波長変換する波長変換体を有することを特徴と する請求項1に記載の放射線撮像装置。

【請求項3】

前記各画素は、前記各信号読出用配線と接続された半導体素子をそれぞれ有しており、 前記各信号読出用配線は、前記半導体素子の作動により選択自在とされてなることを特徴 とする請求項1又は2に記載の放射線撮像装置。

【請求項4】

前記各半導体素子のうちの少なくとも1つは、ソースフォロワであることを特徴とする 請求項3に記載の放射線撮像装置。

【請求項5】

前記各信号読出用配線には、前記画素からの信号を読み出すための信号読出回路がそれ ぞれ設けられていることを特徴とする請求項1~4のいずれか1項に記載の放射線撮像装 置。

【請求項6】

複数の前記信号読出用配線には、前記画素からの信号を読み出すための信号読出回路が 共通に設けられていることを特徴とする請求項1~4のいずれか1項に記載の放射線撮像 装置。

【請求項7】

前記信号出力回路を2つ備えてなることを特徴とする請求項1~6のいずれか1項に記載の放射線撮像装置。

【請求項8】

入射した放射線を電荷に変換する少なくとも1つの光電変換素子を含み構成される画素が、マトリクス状に複数配設されてなるとともに、前記画素からの信号を出力するための信号出力回路を備えた装置を用いた放射線撮像方法であって、

1つの前記画素について当該画素と前記信号出力回路とを接続する複数の信号読出用配線のうち、撮影形態に応じて1つの前記信号読出用配線を選択して使用することを特徴とする放射線撮像方法。

【請求項9】

前記光電変換素子は、入射した放射線を波長変換した後、電荷に変換することを特徴と する請求項8に記載の放射線撮像方法。

【請求項10】

放射線量の多少に応じて前記信号読出用配線を選択することを特徴とする請求項8又は 9に記載の放射線撮像方法。

【請求項11】

前記各画素は、前記各信号読出用配線と接続された半導体素子をそれぞれ有しており、 前記各半導体素子のうちの少なくとも1つがソースフォロワであり、

放射線量が少ない前記撮影形態の場合に、前記ソースフォロワを有する前記各信号読出 用配線を選択することを特徴とする請求項9に記載の放射線撮像方法。

【請求項12】

請求項1~7のいずれか1項に記載の放射線撮像装置と、

放射線を照射する放射線発生手段と、

放射線量の多少に応じて、前記放射線撮像装置における前記複数の信号読出用配線のう

ちの1つを選択する選択手段と、

前記選択手段による選択に基づいて、前記放射線発生手段による放射線の照射及び前記 放射線撮像装置の駆動を制御する制御手段と

を含むことを特徴とする放射線撮像システム。

【請求項13】

操作者の入力に基づき前記各信号読出用配線をそれぞれ選択自在とされた撮像スイッチを含み、

【請求項14】

前記撮像スイッチは、前記信号読出用配線の数に応じた複数の段階に押下するように構成されており、前記各段階が昇順で放射線量の増加に対応していることを特徴とする請求項13に記載の放射線撮像システム。

【曹類名】明細曹

【発明の名称】放射線撮像装置及び方法、並びに放射線撮像システム

【技術分野】

[0001]

本発明は、入射した放射線を撮像する放射線撮像装置及び方法、並びに放射線撮像システムに関し、医療用画像診断装置、非破壊検査装置、放射線を用いた分析装置などに応用されるものである。なお、本明細書では、可視光等の電磁波やX線、 α 線、 β 線、 γ 線なども、放射線に含まれるものとする。

【背景技術】

[0002]

近年、TFTを用いた液晶パネルの製造技術の発展や、半導体変換素子を有するエリアセンサの各分野への利用(例えば医療用X線撮像装置)の進展により、医療用放射線撮像装置においても大面積化、かつディジタル化が達成されている。医療用の放射線撮像装置は、液晶パネル等とは異なり、微小信号をディジタル変換して画像出力するという特徴を持っており、放射線画像を瞬時に読み取り、瞬時にディスプレイ上に表示できるものである。現在のところ、このような放射線撮像装置としては、静止画撮影用のものが製品化されている。

[0003]

図11は、従来の放射線撮像装置の一例を模式的に示す概略平面図であり、図12はこの放射線撮像装置の等価回路図、更に図13はこの放射線撮像装置における1画素及び信号読出回路の等価回路図である(例えば、特許文献1参照)。ここでは、放射線としてX線を撮像する場合について述べる。

[0004]

従来の放射線撮像装置は、図11に示すように、光電変換機能を有する複数の画素が設けられてなるセンサ基板101と、画素を走査するための走査回路102と、画素からの信号と出力するための信号出力回路103と、センサ基板101と走査回路102とを接続するIC104と、センサ基板101と信号出力回路103とを接続するIC105とを備えて構成される。

[0005]

図12に示すように、センサ基板101においては、複数の画素106がマトリクス状に配設されている。なお、図12では便宜上、画素エリアに 3×4 個の画素を図示しているが、実際には例えば 1000×2000 個の多数の画素が配置される。また、同様に便宜上、走査回路のICの図示を省略する。

[0006]

各画素106は、図12及び図13に示すように、入射したX線を電荷に変換する半導体素子である光電変換素子111と、この電荷を読み出すためのスイッチング素子として機能する薄膜トランジスタ(TFT:Thin Film Transistor)112とを含み構成されている。

[0007]

各画素106は、光電変換素子111において全画素共通のバイアス線110により信号出力回路103と接続されており、信号出力回路103から一定のバイアスが印加される。また、各画素106は、TFT112のゲート電極においてマトリクスの各行毎に共通のゲート線113により不図示のIC104を介して走査回路102と接続されており、走査回路102がTFT112の動作(オン/オフ)を制御する。また、各画素106は、TFT112のソース電極又はドレイン電極においてマトリクスの各列毎に共通の信号読出用配線(信号線)114によりIC105を介して信号出力回路103と接続されている。

[0008]

IC105は、図12及び図13に示すように、信号読出回路となるアンプ115を有し、アンプ115の一入力端子が信号線114と接続され、他入力端子が電源116と接

続されている。更にアンプ115には、キャパシタCf1, Cf2, Cf3を有する利得切 替回路117が接続されており、キャパシタCf1, Cf2, Cf3の組み合わせによりゲ インの切替えができる。

[0009]

ここで、図13に示すように、光電変換素子111の容量をC1、信号線114の寄生 容量をC2、アンプ115の容量をCfとする。被検体に向けて曝射されたX線は、被検 体により減衰を受けて透過し、ここでは不図示の蛍光体層(波長変換体)で可視光に波長 変換され、この可視光が光電変換素子111に入射し、電荷Qに変換される。

[0010]

続いて、TFT112をオンすることにより、アンプ115に1/Cf倍のゲインがか かり、結果的に、出力Voutは、

 $V \circ u \ t = -Q/C \ f$ となり、この信号が信号出力回路 $1 \ 0 \ 3$ により外部に読み出され る。信号読み出し後は、共通のバイアス線110の電位変化により、光電変換素子111 で発生し転送されきれなかった電荷が除去される。

$[0\ 0\ 1\ 1\]$

【特許文献1】特開平8-116044号公報

【発明の開示】

【発明が解決しようとする課題】

[0012]

しかしながら、上述した従来の放射線撮像装置は、主に静止画撮影を目的としており、 感度(S/N)が一定に固定されている。従って、撮影形態によってはS/Nに不足を来 すことになる。即ち従来の放射線撮像装置では、例えば被検体によるX線の減衰の違い、 または静止画撮影と動画撮影のようにX線の曝射量が大きく異なる場合などに対する許容 幅が小さいという問題がある。

[0013]

そこで本発明は、上記の課題を解決するためになされたものであり、撮影の状況、目的 に応じて感度切換えを自在とし、柔軟な対応を可能とする、即ち放射線の曝射量が大きく 異なり要求される感度も相違する例えば静止画撮影及び動画撮影の双方を、その要求を満 たすように実行することを可能とする安価で高性能の放射線撮像装置及び方法、並びに放 射線撮像システムを提供することを目的とする。

【課題を解決するための手段】

[0014]

本発明の放射線撮像装置は、入射した放射線を電荷に変換する少なくとも1つの光電変 換素子を含み構成される画素が、マトリクス状に複数配設されてなるとともに、前記画素 からの信号を出力するための信号出力回路を備えた放射線撮像装置であって、前記画素と 前記信号出力回路とを接続する信号読出用配線が、1つの前記画素に対応して複数本設け られている。

[0015]

本発明の放射線撮像装置の一態様では、前記光電変換素子は、入射した放射線を波長変 換する波長変換体を有する。

[0016]

本発明の放射線撮像装置の一態様では、前記各画素は、前記各信号読出用配線と接続さ れた半導体素子をそれぞれ有しており、前記各信号読出用配線は、前記半導体素子の作動 により選択自在とされてなる。

[0017]

本発明の放射線撮像装置の一態様では、前記各半導体素子のうちの少なくとも1つは、 ソースフォロワである。

[0018]

本発明の放射線撮像装置の一態様では、前記各信号読出用配線には、前記画素からの信 号を読み出すための信号読出回路がそれぞれ設けられている。

[0019]

本発明の放射線撮像装置の一態様では、複数の前記信号読出用配線には、前記画素から の信号を読み出すための信号読出回路が共通に設けられている。

[0020]

本発明の放射線撮像装置の一態様では、前記信号出力回路を2つ備えてなる。

[0.021]

本発明の放射線撮像方法は、入射した放射線を電荷に変換する少なくとも1つの光電変換素子を含み構成される画素が、マトリクス状に複数配設されてなるとともに、前記画素からの信号を出力するための信号出力回路を備えた装置を用いた放射線撮像方法であって、1つの前記画素について当該画素と前記信号出力回路とを接続する複数の信号読出用配線のうち、撮影形態に応じて1つの前記信号読出用配線を選択して使用する。

[0022]

本発明の放射線撮像方法の一態様では、前記光電変換素子は、入射した放射線を波長変換した後、電荷に変換する。

[0023]

本発明の放射線撮像方法の一態様では、放射線量の多少に応じて前記信号読出用配線を 選択する。

[0024]

本発明の放射線撮像方法の一態様では、前記各画素は、前記各信号読出用配線と接続された半導体素子をそれぞれ有しており、前記各半導体素子のうちの少なくとも1つがソースフォロワであり、放射線量が少ない前記撮影形態の場合に、前記ソースフォロワを有する前記各信号読出用配線を選択する。

[0025]

本発明の放射線撮像システムは、前記放射線撮像装置と、放射線を照射する放射線発生 手段と、放射線量の多少に応じて、前記放射線撮像装置における前記複数の信号読出用配 線のうちの1つを選択する選択手段と、前記選択手段による選択に基づいて、前記放射線 発生手段による放射線の照射及び前記放射線撮像装置の駆動を制御する制御手段とを含む

[0026]

本発明の放射線撮像システムの一態様では、操作者の入力に基づき前記各信号読出用配線をそれぞれ選択自在とされた撮像スイッチを含み、前記撮像スイッチの入力により、前記選択手段が前記信号読出用配線を選択する。

[0027]

本発明の放射線撮像システムの一態様では、前記撮像スイッチは、前記信号読出用配線の数に応じた複数の段階に押下するように構成されており、前記各段階が昇順で放射線量の増加に対応している。

[0028]

本発明者は、従来の放射線撮像装置が主に静止画撮影を目的とし、感度(S/N)が一定値とされていたことに鑑み、これを撮影形態に応じて拡張(例えば静止画撮影と動画撮影)すべく鋭意検討した。その結果、1画素につき信号読出用配線(信号配線)を複数本配置し、各信号配線に撮影形態に応じた構成の信号読出回路等を付与して、各信号配線を選択自在とすることに想到した。

[0029]

具体的には、例えば1 画素につき信号配線を2 本設け、一方の信号配線を静止画撮影用として構成する。静止画撮影は放射線曝射量の大きい撮影形態であり、要求される感度が比較的低いことから、画素内で電荷増幅を行わずに例えば当該信号配線に接続された信号読出回路で電荷増幅を実行する構成とする。これに対して、他方の信号配線を動画撮影用として構成する。動画撮影は放射線曝射量の小さい撮影形態であり、要求される感度が比較的高いことから、画素内で電荷増幅を行いノイズの発生を抑える構成とする。

【発明の効果】

[0030]

本発明によれば、撮影の状況、目的に応じて感度切換えを自在とし、柔軟な対応を可能とする、即ち放射線の曝射量が大きく異なり要求される感度も相違する例えば静止画撮影及び動画撮影の双方を、その要求を満たすように実行することを可能とする安価で高性能の放射線撮像装置及びシステムが実現する。

【発明を実施するための最良の形態】

[0031]

以下、本発明の諸実施形態を、図面を参照しつつ詳細に説明する。ここでは、放射線としてX線を撮像する場合について述べる。

[0032]

[第1の実施形態]

先ず、第1の実施形態について説明する。

図1は、第1の実施形態による放射線撮像装置の一例を模式的に示す概略平面図であり、図2はこの等価回路図、図3はこの放射線撮像装置における1画素及び信号読出回路の 等価回路図である。

[0033]

この放射線撮像装置は、図1に示すように、光電変換機能を有する複数の画素が設けられてなるセンサ基板1と、画素を走査するための走査回路2と、画素からの信号を出力するための信号出力回路3と、センサ基板1と走査回路2とを接続するIC4と、センサ基板1と信号出力回路3とを接続するIC5とを備えて構成される。

[0034]

図2に示すように、センサ基板1においては、複数の画素6がマトリクス状に配設されている。なお、図2では便宜上、画素エリアに3×3個の画素を図示しているが、実際には例えば1000×2000個の多数の画素が配置される。また、同様に便宜上、走査回路のICの図示を省略する。

[0035]

本実施形態においては、各画素 6 は、図 2 及び図 3 に示すように、入射した X 線を電荷に変換する半導体素子である光電変換素子 1 1 と、この電荷を読み出すための半導体素子 (スイッチング素子) とを含み構成されている。このスイッチング素子は、薄膜トランジスタ (TFT) 2 1 と、ソースフォロワである TFT 2 2 とが選択自在に設けられてなる

[0036]

各画素 6 は、光電変換素子 1 1 において全画素共通のバイアス線 1 2 により信号出力回路 3 と接続されており、信号出力回路 3 から一定のバイアスが印加される。また、各画素 6 につき、マトリクスの各行毎に共通の 2 本のゲート線 1 3 a, 1 3 bが設けられている。ここで、ゲート線 1 3 a により T F T 2 1 のゲート電極と不図示の I C 4 を介して走査 回路 2 とが接続され、ゲート線 1 3 b により T F T 2 3 のゲート電極と不図示の I C 4 を介して走査回路 2 とが接続されており、走査回路 2 が T F T 2 1, 2 3(2 2)の各動作(オン/オフ)を制御する。更に、各画素 6 につき、マトリクスの各列毎に共通の 2 本の信号読出用配線(信号線) 1 4 a, 1 4 b が設けられている。ここで、信号線 1 4 a により T F T 2 1 のソース電極又はドレイン電極と I C 5 を介して信号出力回路 3 と接続されており、信号線 1 4 b により T F T 2 2 のソース電極又はドレイン電極と I C 5 を介して信号出力回路 3 と接続されており、各画素 6 につき、信号の読み出しに際して信号線 1 4 a, 1 4 b が選択自在とされている。

[0037]

IC5は、図2及び図3に示すように、信号読出回路となるアンプ15a及びTFT24,25と、信号読出回路となるアンプ(オペアンプ)15b及びTFT26,27とを有しており、アンプ15a及びTFT24,25が信号線14aと、アンプ15b及びTFT26,27が信号線14bとそれぞれ接続されている。ここで、アンプ15aの一入力端子が信号線14aと、他入力端子が電源16と接続されている。更にアンプ15aに

は、キャパシタC f 1, С f 2, С f 3を有する利得切替回路 1 7 が接続されており、キャ パシタ Cf_1 , Cf_2 , Cf_3 の組み合わせによりゲインの切替えができる。そして、アン プ15aの出力端子にはTFT28が、アンプ15bの出力端子にはTFT29が接続さ れ、信号出力がなされる。

[0038]

図4は、放射線撮像装置における光電変換素子11及びTFT21の概略断面図である

光電変換素子11及びTFT21は、以下のようにして構成される。

[0039]

先ず、TFT21について説明する。

基板201上にゲート電極となる電極層202がパターン形成され、この電極層202 を覆うように絶縁層203が堆積する。絶縁層203上にはシリコン等の半導体層204 がパターン形成され、この半導体層204の両側部に不純物が高濃度にイオン注入され、 ソース又はドレインとなる一対の不純物拡散層205,206が形成されている。そして 、各不純物拡散層205,206と接続するようにソース電極又はドレイン電極となる電 極層207,208がパターン形成され、TFT21が構成される。

[0040]

次に、光電変換素子11について説明する。

電極層202,207,208上を含む全面に絶縁層209が堆積し、この絶縁層20 9上でTFT21と隣接するように、シリコン等の半導体層210がパターン形成され、 この半導体層210の表層にn型不純物の高濃度領域となるn+半導体層211が形成さ れている。この n⁺半導体層 2 1 1 上にバイアス線 1 2 がパターン形成され、バイアス線 12上を含む n+半導体層 211上にバイアス線 12と接続するように電極層 212がパ ターン形成され、電極層212上及びTFT21側の絶縁層209上を含む全面に保護層 213が堆積する。更に、保護層213を覆い、表面が平坦化されてなる接着層214が 形成され、この接着層214上に波長変換体である蛍光体層215が形成されて、光電変 換素子11が構成される。なお、保護層213と接着層214の間にPI等の有機保護層 を配置しても良い。

[0041]

ここで、放射線撮像装置に発生するノイズについて考察する。

画素 6 内で電荷増幅を行わない場合に発生するノイズは、kTC1ノイズ、信号線14 aの抵抗ノイズ、信号線14aの寄生容量ノイズ、及びアンプ15a(利得切替回路17 を含む)のノイズによって決まる。これに対して、ソースフォロア回路であるTFT22 を用い、画素 6 内で電荷増幅を行う場合に発生するノイズは、 k T C 1 ノイズ、及びソー スフォロア回路のノイズによって決まる。このとき、ソースフォロア回路のノイズは非常 に小さい。つまり、画素6内で電荷増幅を行わない場合に比べ、ソースフォロア回路を使 用し、画素 6 内で電荷増幅を行う場合の方が感度(S/N)が高い。

[0042]

そこで、本実施形態の放射線撮像装置では、各撮影形態で要求される感度に応じて信号 線を切り替えて撮影する。即ち、各画素 6 につき、信号の読み出しに際して信号線 1 4 a 14bが選択自在とされている。信号線14aを人体の静止画撮影又は非破壊検査のよ うにX線の曝射量が多い撮影形態に適用し、画素内では電荷増幅を行わない。他方、信号 線14bを人体の動画撮影のようにX線の曝射量が少ない撮影形態に適用し、ソースフォ ロア回路を用いて画素6内で電荷増幅を行う。

以下、各信号線を選択した場合の具体的な撮像方法について説明する。

[0043]

(1) 静止画撮影又は非破壊検査のようにX線の曝射量が多い撮影形態

この場合、以下のように信号線14aを選択し、画素6内で電荷増幅を行わず、信号線 14 a を介して当該画素 6 の出力信号を読み出す。ここで、光電変換素子 1 1 の容量を C 1、信号線 1 4 a の寄生容量をC2、アンプ 1 5 a のキャパシタ C f 1, C f 2及び C f 3に

よって決まる容量をCfとする。

[0044]

先ず、信号線14b側のTFT23, 26, 27, 29をオフにしておく。

[0045]

被検体に向けて曝射されたX線は、被検体により減衰を受けて透過し、図4に示す波長変換体である蛍光体層215で可視光に波長変換され、この可視光が光電変換素子11に入射し、電荷Qに変換される。

[0046]

続いて、信号線 1 4 a 側のTFT21,25をオンすることにより、アンプ 1 5 a に 1 ノC f 倍のゲインがかかり、結果的に、出力 V o u t は、

Vout=-Q/Cfとなる。そして、信号線 14a 側のTFT28 をオンすることにより、この信号が信号出力回路 3 により外部に読み出される。信号読み出し後は、信号線 14a 側のTFT24 により光電変換素子 11 の電荷を除去する。ここで、アンプ 15a では、 $Cf_1\sim Cf_3$ の組み合わせによりゲインの切換えができる。

[0047]

(2) 人体の動画撮影のようにX線の曝射量が少ない撮影形態

この場合、以下のように信号線14bを選択し、画素6内で電荷増幅を行い、信号線14bを介して当該画素6の出力信号を読み出す。ここで、ソースフォロワであるTFT22の閾値電圧をVthとする。

[0048]

先ず、信号線14a側のTFT21, 24, 25, 28をオフに、信号線14a側のTFT23をオンにしておく。

[0049]

被検体に向けて曝射されたX線は、静止画の場合と同様に、被検体により減衰を受けて透過し、図4に示す波長変換体である蛍光体層215で可視光に波長変換され、この可視光が光電変換素子11に入射し、電荷に変換される。この電荷は、TFT22のゲート電極に対し、光電変換素子11への入射光量に応じた電位変動Vine発生させる。この電位変動により、TFT22をオンにするとC点の電位はVin-Vthとなり、例えばVthが十分に小さければ、Vineとほぼ同等の信号となる。

[0050]

信号線14b側のTFT27,29をオンにすることで、この信号がアンプ15bを介して信号出力回路3により外部に読み出される。信号読み出し後は、信号線14b側のTFT26により光電変換素子11の電荷を除去する。

[0051]

なおここでは、光電変換素子11の電荷を除去する際、TFT24,26を使用したが、従来技術のようにバイアス線12を電位変化させる、若しくは電源16を電位変化させるようにしても良い。

[0052]

以上説明したように、本実施形態によれば、撮影の状況、目的に応じて感度切換えを自在とし、柔軟な対応を可能とする、即ちX線の曝射量が大きく異なり要求される感度も相違する例えば静止画撮影及び動画撮影の双方を、その要求を満たすように実行することを可能とする安価で高性能の放射線撮像装置が実現する。

[0053]

なお、本実施形態では、光電変換素子11をMIS型のものとしたが、PIN型であっても同様の効果が得られる。更に、放射線を蛍光体層215で可視光に変換し、この可視光が光電変換素子11で電荷に変換される間接型の放射線撮像装置を例示したが、放射線を直接電荷に変換できるアモルファスセレン等の材料を用いた直接型の放射線撮像装置に適用しても同様の効果が得られる。

[0054]

(変形例)

本実施形態では、走査回路2及び信号出力回路3を、それぞれセンサ基板1の片側のみ に配置した構成を開示したが、図5に示すように、走査回路2及び信号出力回路3をそれ ぞれセンサ基板1の両側に配置しても良い。この場合、上記した本実施形態の効果に加え

、駆動速度が向上する等の効果を奏し、更に優れた放射線撮像装置が実現する。

[0055]

[第2の実施形態]

次に、第2の実施形態について説明する。

本実施形態の放射線撮像装置は、第1の実施形態のそれとほぼ同様の構成を有するが、 信号出力回路のICの構成が若干異なる点で相違する。

[0056]

図6は、第2の実施形態による放射線撮像装置の等価回路図であり、図7はこの放射線 撮像装置における1画素及び信号読出回路の等価回路図である。なお、第1の実施形態と 対応する構成部材等については、同符号を記す。

この放射線撮像装置の信号出力回路3のIC31は、第1の実施形態のIC5と同様に 信号線14a,14bにより画素6と接続されているが、第1の実施形態と異なり、アン プ15bを有さず、信号線14a,14bが共通のアンプ15aに接続されている。

[0057]

即ちIC31は、TFT24, 25が信号線14aに、TFT26, 27が信号線14 bにそれぞれ接続されており、信号線14aと信号線14bとがTFT32を介して結線 され、アンプ15aの一入力端子に接続され、他入力端子に電源16が接続され、更にア ンプ15aには、キャパシタCf1, Cf2, Cf3を有する利得切替回路17が接続され て構成されている。

[0058]

以下、この放射線撮像装置において、各信号線を選択した場合の具体的な撮像方法につ いて説明する。

[0059]

(1) 静止画撮影又は非破壊検査のように X線の曝射量が多い撮影形態

この場合、以下のように信号線14aを選択し、画素6内で電荷増幅を行わず、信号線 14 aを介して当該画素6の出力信号を読み出す。ここで、光電変換素子11の容量をC 1、信号線 1 4 a の寄生容量をC2、アンプ 1 5 a のキャパシタ C f 1, C f 2及び C f 3 に よって決まる容量をCfとする。

[0060]

先ず、信号線14b側のTFT23, 26, 27, 32をオフにしておく。

被検体に向けて曝射されたX線は、被検体により減衰を受けて透過し、図4に示す波長 変換体である蛍光体層215で可視光に波長変換され、この可視光が光電変換素子11に 入射し、電荷Qに変換される。

[0062]

続いて、信号線14a側のTFT21,25をオンすることにより、アンプ15aに1 / C f 倍のゲインがかかり、結果的に、出力 V o u t は、

Vout=-Q/Cfとなる。そして、この信号が信号出力回路3により外部に読み出 される。信号読み出し後は、信号線14a側のTFT24により光電変換素子11の電荷 を除去する。ここで、アンプ15aでは、Cf1~Cf3の組み合わせによりゲインの切換 えができる。

[0063]

(2) 人体の動画撮影のようにX線の曝射量が少ない撮影形態

この場合、以下のように信号線14bを選択し、画素6内で電荷増幅を行い、信号線1 4 bを介して当該画素6の出力信号を読み出す。ここで、信号線14b側のTFT22の 閾値電圧をVthとする。

[0064]

先ず、信号線14a側のTFT21,24,25をオフに、信号線14a側のTFT2 3をオンにしておく。

[0065]

被検体に向けて曝射されたX線は、静止画の場合と同様に、被検体により減衰を受けて 透過し、図4に示す波長変換体である蛍光体層215で可視光に波長変換され、この可視 光が光電変換素子11に入射し、電荷に変換される。この電荷Qは、TFT22のゲート 電極に対し、光電変換素子11への入射光量に応じた電位変動Vinを発生させる。この 電位変動により、TFT22をオンにするとC点の電位はVin-Vthとなり、例えば Vthが十分に小さければ、Vinとほぼ同等の信号となる。

[0066]

信号線14b側のTFT27をオンにすることによりキャパシタC3に電荷が蓄積され 、TFT32をオンにすると、アンプ15aに1/Cf倍のゲインがかかり、結果的に、 出力Voutは、

$V \circ u t = -Q/C f$

となり、この信号がアンプ15aを介して信号出力回路3により外部に読み出される。信 号読み出し後は、信号線14b側のTFT26により光電変換素子11の電荷を除去する

[0067]

本実施形態では、アンプ15aにおいてCf1~Cf3の組み合わせによりゲインの切 換えができるため、第1の実施形態において画素6内で電荷増幅を行う場合とは異なり、 出力信号の大きさも選択することができる。

[0068]

なお、光電変換素子11の電荷を除去する際、TFT24,26を使用したが、従来技 術のようにバイアス線12を電位変化させる、若しくは電源16を電位変化させるように しても良い。また、本実施形態においても第1の実施形態の変形例と同様に、走査回路2 及び信号出力回路3をそれぞれセンサ基板1の両側に配置しても好適である。

[0069]

更に、第1及び第2の実施形態では、撮影形態として静止画撮影(非破壊検査)及び動 画撮影を考慮し、各画素 6 につき 2 本の信号線 1 4 a, 1 4 b を選択自在に設けた例を開 示したが、各画素につき3本以上の信号線を設け、更にきめ細かく各種の撮影形態に応じ た撮影に対処することも可能である。

[0070]

[第3の実施形態]

次に、第3の実施形態について説明する。

本実施形態では、第1又は第2の実施形態、ここでは第2の実施形態で説明した放射線 撮像装置を備えた放射線撮像システムを開示する。勿論、第1の実施形態で説明した放射 線撮像装置をこの放射線撮像システムに適用することも可能である。なお、第1及び第2 の実施形態と対応する構成部材等については、同符号を記す。

[0071]

図8は、第3の実施形態による放射線撮像システムの概略構成を示すブロック図であり 、図9は放射線撮像システムの動作を示すフローチャート、図10は放射線撮像システム を用いた撮像のタイミングチャートである。

[0072]

この放射線撮像システムは、図8に示すように、第2の実施形態で説明した放射線撮像 装置41と、放射線撮像装置41を駆動する駆動手段42と、被検体に放射線、ここでは X線を曝射するX線発生手段43と、操作者が信号線14a, 14bのいずれかを選択自 在とされてなる撮像スイッチ44と、撮像スイッチ44の入力に基づき、信号線14a, 14bのいずれかを選択する旨の電気信号を出力する撮影モード選択手段45と、撮影モ ード選択手段 4 5 からの電気信号に基づき、X線発生手段 4 3 及び駆動手段 4 2 の作動を 制御する制御手段46とを備えて構成されている。

[0073]

撮像スイッチ44は、撮影モードの選択が可能であり、信号線14a,14bの数、こ こでは2段階に押下するように構成されており、各段階が昇順で放射線量の増加に対応し ている。1段目44aを押下した状態が動画モード、2段目44bまで押下した状態が静 止画モードの選択となる。なお、2段目44bを押下するためには1段目44aも同時に 押下される構成とされている。撮影スイッチ44を押下し続けることにより撮影が繰り返 されるため、例えば動画撮影中に撮影スイッチ 4 4 を 2 段目 4 4 b まで押下することによ り、静止画撮影が可能である。撮影を終了するには、撮影スイッチをオフ(押下されてい ない状態)にすればよい。

[0074]

ここで、制御手段 4 6 による X 線発生手段 4 3 における X 線量の制御について説明する

静止画モードの場合、胸部レントゲンの静止画撮影等に使用される比較的高線量のX線 を発生させる。これに対して動画モードの場合、被検体(患者)に長時間X線を曝射する ため、ここでは低線量のX線をパルス状に発生させる。

[0075]

また、駆動手段46は、第2の実施形態で説明したように、放射線撮像装置41を静止 画撮影では画素内で電荷増幅を行わず、信号線14aを介して、また動画撮影では、ソー スフォロア回路を使用し、画素内で電荷増幅を行い、信号線14bを介して出力信号を読 み出すように制御する。

[0076]

本実施形態による放射線撮像システムにおいては、図9に示すように、先ず操作者によ り撮影モードが選択される(ステップS1)。即ち、撮影スイッチ44の1段目44a若 しくは2段目44 bが押されると、撮影モード選択手段45により撮影モードが選択され る。続いて制御手段46により、動画モードが選択された場合には、動画に応じたX線発 生手段43によるX線の曝射(ステップS2)、放射線撮像装置41の駆動手段42の制 御が開始され(ステップS3)、動画撮影が行なわれる(ステップS4)。一方、静止画 モードが選択された場合には、静止画に応じたX線発生手段43によるX線の曝射(ステ ップS5)、放射線撮像装置41の駆動手段42の制御が開始され(ステップS6)、静 止画撮影が行なわれる(ステップS7)。

[0077]

そして、ステップS8において、更に撮影を継続する場合、動画撮影では撮影スイッチ 44の1段目44aを押し続け、静止画撮影では撮影スイッチ44の2段目44bを押し 続ける。撮影を終了する場合には、撮影スイッチ44をオフにすれば良い。

[0078]

続いて、動画撮影から静止画撮影に移行する際の、放射線撮像装置の動作について、図 10を用いて説明する。

撮影スイッチ44の1段目44aが押下され、動画モードが選択されると、放射線撮像 装置41に撮影信号が入力される。続いて、駆動手段42によりTFT23がオンとなり 、ここでTFT26とTFT22をオンすることで、回路のリセットを行う。続いて、X 線発生手段43から被検体に向けて曝射されたX線が被検体により減衰を受けて透過し、 図4に示す波長変換体である蛍光体層215で可視光に波長変換され、この可視光が光電 変換素子11に入射し、電荷に変換される。この電荷Qは、TFT22のゲート電極に対 し、光電変換素子11への入射光量に応じた電位変動Vinを発生させる。この電位変動 によりTFT22がオンし、C2'に電荷が蓄積される。続いてTFT27をオンにする ことによりC3に電荷が蓄積され、TFT32をオンにするとアンプ15aを介して信号 出力回路3により外部に読み出される。そして、撮影スイッチ44の1段目44aが押下 されている間は、連続してこの動画撮影を繰り返す。

[0079]

またこのとき、撮影スイッチ44を2段目44bまで押下すると、静止画撮影に移行す 出証特2004-3115788 る。静止画撮影では先ず、信号線14b側のTFT23,22,26,27,32をオフにしておく。但し、撮影スイッチは例えばX線曝射中、例えば出力信号の読み出し中など、様々なタイミングで押される可能性があるため、静止画撮影の直前にはTFT21及びTFT24をオンすることで、回路のリセットを行う。続いて、X線発生手段43から被検体に向けて曝射されたX線が被検体により減衰を受けて透過し、図4に示す波長変換体である蛍光体層215で可視光に波長変換され、この可視光が光電変換素子11に入射し、電荷に変換される。この電荷Qは、TFT21をオンすることにより、C2に蓄積される。続いてTFT25をオンすることにより、アンプ15aを介して信号出力回路3により外部に読み出される。なお、本来Vout=-Q/Cfとなるが、図10においてはVoutを反転させ、+表示としている。

[0800]

以上説明したように、本実施形態によれば、撮影の状況、目的に応じて感度切換えを自在とし、柔軟な対応を可能とする、即ちX線の曝射量が大きく異なり要求される感度も相違する例えば静止画撮影及び動画撮影の双方を、その要求を満たすように実行することを可能とする安価で高性能の放射線撮像システムが実現する。

【図面の簡単な説明】

[0081]

- 【図1】第1の実施形態による放射線撮像装置の一例を模式的に示す概略平面図である。
- 【図2】第1の実施形態による放射線撮像装置の等価回路図である。
- 【図3】第1の実施形態による放射線撮像装置における1画素及び信号読出回路の等 価回路図である。
- 【図4】第1の実施形態による放射線撮像装置における光電変換素子及びTFTの概略断面図である。
- 【図5】第1の実施形態による放射線撮像装置の変形例を模式的に示す概略平面図である。
- 【図6】第2の実施形態による放射線撮像装置の等価回路図である。
- 【図7】第2の実施形態による放射線撮像装置における1画素及び信号読出回路の等 価回路図である。
- 【図8】第3の実施形態による放射線撮像システムの一例を模式的に示す概略図である。
- 【図9】第3の実施形態による放射線撮像システムの動作を示すフローチャートである。
- 【図10】第3の実施形態による放射線撮像システムを用いた撮像のタイミングチャートである。
 - 【図11】従来例による放射線撮像装置の一例を模式的に示す概略平面図である。
- 【図12】従来例による放射線撮像装置の等価回路図である。
- 【図13】従来例による放射線撮像装置における1画素及び信号読出回路の等価回路 図である。

【符号の説明】

[0082]

- 1 センサ基板
- 2 走査回路
- 3 信号出力回路
- 4, 5, 31 IC
- 6 画素
- 11 光電変換素子
- 12 バイアス線
- 13a, 13b ゲート線
- 14a,14b 信号読出用配線(信号線)

- 15a, 15b アンプ
- 16 電源
- 17 利得切替回路
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 32 TFT
- 41 放射線撮像装置
- 4 2 駆動手段
- 43 X線発生手段
- 44 撮像スイッチ 44
- 45 撮影モード選択手段
- 46 制御手段

【曹類名】図面 【図1】

【図3】

【図5】

【図10】

【図11】

【図12】

【要約】

【課題】 撮影形態に応じて感度切換えを自在とし、放射線の曝射量が大きく異なり要求される感度も相違する例えば静止画撮影及び動画撮影の双方を、その要求を満たすように実行する。

【解決手段】 信号線14aによりTFT21のソース電極又はドレイン電極とIC5を介して信号出力回路3と接続され、信号線14bによりTFT23のソース/ドレインとIC5を介して信号出力回路3と接続されており、各画素6につき、信号の読み出しに際して信号線14a,14bが選択自在とされている。

【選択図】 図3

認定・付加情報

特許出願の番号

特願2004-207273

受付番号

50401190799

曹類名

特許願

担当官

第八担当上席

0097

作成日

平成16年 7月20日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000001007

【住所又は居所】

東京都大田区下丸子3丁目30番2号

【氏名又は名称】

キヤノン株式会社

【代理人】

申請人

【識別番号】

100090273

【住所又は居所】

東京都豊島区東池袋1丁目17番8号 池袋TG

ホーメストビル5階 國分特許事務所

【氏名又は名称】

國分 孝悦

特願2004-207273

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住所

東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社