Simulating FaaS Applications at the Edge for IoT Workloads:

Energy-Aware Scaling Strategies in Heterogeneous Computing Environments

Mahfoud Abd el Ali SAYAH

Academic Year 2024-2025

Contents

1	General Introduction						
	1.1	Introd	duction	. 3			
	1.2	Object	ctive	. 3			
	1.3	Disser	rtation Structure	. 3			
2	Bas	ic Con	ncepts	4			
	2.1	Introd	duction	. 4			
	2.2	Edge (Computing Fundamentals	. 4			
	2.3	Server	rless Computing and FaaS	. 4			
	2.4	FaaS a	at the Edge	. 4			
	2.5	Hetero	rogeneous Edge Devices	. 5			
	2.6	Energy	gy Models and Optimization				
	2.7	Autoso	scaling and Resource Management	. 5			
	2.8	IoT A	Applications and Smart Cities	. 5			
	2.9		lusion				
3	Stat	te of th	the Art	6			
	3.1	Introd	duction	. 6			
	3.2		Computing Simulation Tools				
	3.3		Simulation Frameworks				
	3.4		-FaaS Simulation Tools				
	3.5		gy-Aware Computing Approaches				
	3.6		arch Gap Analysis				
	3.7	Frame	ework Selection Justification	. 7			
	3.8		lusion				
4	Our	Conti	cribution	8			
	4.1	Introd	duction				
	4.2	Frame	ework Architecture and Extensions				
		4.2.1	faas-sim Framework Analysis				
		4.2.2	Energy Model Integration				
	4.3	Hetero	rogeneous Edge Device Modeling				
		4.3.1	Device Distribution Strategy	. 8			
		4.3.2	Power Consumption Implementation				
	4.4		gy-Aware Scaling Strategies				
		4.4.1	Base Autoscaler Framework				
		4.4.2	High Performance Short Time (HPST)				
		4.4.3	Low Power Long Time (LPLT)				
		4 4 4	,	10			

		4.4.5	Standard First Fit (Baseline)	10
	4.5	Smart	City Use Case Implementation	10
		4.5.1	IoT Traffic Monitoring Scenario	10
		4.5.2	Function Deployment Configuration	10
	4.6	Implem	nentation and Development	10
		4.6.1	Development Environment	10
		4.6.2	Simulation Configuration	11
	4.7	Evalua	tion Methodology	11
		4.7.1	Experimental Design	11
		4.7.2	Evaluation Metrics	11
	4.8	Result	s and Analysis	11
		4.8.1	Energy Consumption Results	11
		4.8.2	Performance Analysis	12
		4.8.3	Device Utilization Patterns	12
	4.9	Discus	sion	12
		4.9.1	Key Findings	12
		4.9.2	Practical Implications	12
		4.9.3	Limitations	12
	4.10	Conclu	sion	12
5	Con	clusion	1	13
	5.1	Summ	ary of Work	13
	5.2		ontributions	13
	5.3	Resear	ch Impact	13
	5.4	Future	Work	14
	5.5		Remarks	14
\mathbf{A}	Imp	lement	tation Details	15
В	Exp	erimer	ntal Data	16
Pa	ige D	istribu	ıtion	17
$R\epsilon$	esear	ch Flo	$oldsymbol{w}$	18

General Introduction

(8-10 pages)

1.1 Introduction

- Context of serverless computing growth and FaaS popularity
- Edge computing paradigm and resource-constrained environments
- Convergence opportunity: FaaS at the edge for IoT applications
- Main challenge: shortage of simulation tools for edge FaaS deployments

1.2 Objective

Primary Goal: Develop energy-aware scaling framework for FaaS applications in edge computing environments through simulation

Specific Objectives:

- 1. Conduct state-of-the-art analysis on edge computing simulators and FaaS tools
- 2. Identify suitable simulation framework and extend with energy modeling
- 3. Implement energy-aware scaling strategies for heterogeneous edge devices
- 4. Validate framework through IoT smart city use case and comparative evaluation
- 5. Provide deployment recommendations for edge-native serverless computing

1.3 Dissertation Structure

- Chapter 1: Research context, objectives, and methodology overview
- Chapter 2: Foundational concepts in edge computing, FaaS, and energy optimization
- Chapter 3: State-of-the-art analysis and simulation framework selection
- Chapter 4: Implementation, experiments, and results analysis

Basic Concepts

(18-22 pages)

2.1 Introduction

2.2 Edge Computing Fundamentals

- Definition and key characteristics
- Edge vs. cloud computing paradigms
- Resource constraints and deployment challenges
- Heterogeneous device ecosystems

2.3 Serverless Computing and FaaS

- Serverless computing evolution
- Function-as-a-Service model characteristics
- Event-driven execution and automatic scaling
- Benefits and limitations for edge deployment

2.4 FaaS at the Edge

- Opportunities and challenges
- Resource allocation considerations
- Cold start and warm start implications
- Network latency and bandwidth constraints

2.5 Heterogeneous Edge Devices

- Device taxonomy (RPi, Coral TPU, Jetson devices, Intel NUC)
- Performance and energy characteristics
- Specialized accelerators and general-purpose compute
- Real-world deployment distributions

2.6 Energy Models and Optimization

- Power consumption models (idle vs. dynamic)
- Energy efficiency metrics
- Performance vs. energy trade-offs
- Battery-powered device considerations

2.7 Autoscaling and Resource Management

- Traditional cloud scaling approaches
- Edge-specific scaling challenges
- Load balancing in heterogeneous environments
- Quality of Service requirements

2.8 IoT Applications and Smart Cities

- IoT application characteristics
- Smart city infrastructure requirements
- Traffic monitoring use case
- Real-time processing constraints

2.9 Conclusion

State of the Art

(15-18 pages)

3.1 Introduction

3.2 Edge Computing Simulation Tools

- CloudSim and EdgeCloudSim
- iFogSim and YAFS (Yet Another Fog Simulator)
- Limitations for FaaS workloads
- Gap analysis for serverless simulation

3.3 FaaS Simulation Frameworks

- SimFaaS: Performance simulator for serverless platforms
- CloudSim extensions for FaaS
- FAAS-Profiler and performance modeling
- Limitations for edge environments

3.4 Edge-FaaS Simulation Tools

- CloudSim extension for distributed functions
- HeroSim and existing solutions
- faas-sim framework identification and selection
- Requirements for energy modeling extension

3.5 Energy-Aware Computing Approaches

- Single-objective energy optimization
- Multi-objective optimization approaches
- Scaling strategies in literature

3.6 Research Gap Analysis

- Shortage of edge-FaaS simulation tools
- Lack of energy modeling in existing frameworks
- Missing scaling strategies for heterogeneous devices
- Limited IoT use case validation

3.7 Framework Selection Justification

- Multi-criteria evaluation of existing tools
- faas-sim selection rationale
- Extension requirements identification
- Energy model integration strategy

3.8 Conclusion

Our Contribution

(25-30 pages)

4.1 Introduction

Overview of research contributions and implementation approach

4.2 Framework Architecture and Extensions

4.2.1 faas-sim Framework Analysis

- Original framework capabilities and limitations
- Architecture analysis and extension points
- Energy modeling gap identification

4.2.2 Energy Model Integration

- Linear power consumption model implementation
- Device-specific energy profiles
- Dynamic vs. static power modeling
- Validation against manufacturer specifications

4.3 Heterogeneous Edge Device Modeling

4.3.1 Device Distribution Strategy

4.3.2 Power Consumption Implementation

- Device-specific power profiles
- Idle and maximum power consumption values
- Utilization-based dynamic power calculation

Table 4.1: Implemented Edge Device Distribution

Device Type	Percentage	Primary Use Case
Raspberry Pi	35%	IoT sensors, basic monitoring
RockPi	25%	General compute nodes
Coral TPU	15%	AI inference acceleration
Jetson Nano	12%	GPU-based inference
Jetson NX	8%	High-performance AI
Intel NUC	2.5%	Edge coordinators
Jetson TX2	2.5%	Specialized workloads

• Energy efficiency metrics calculation

4.4 Energy-Aware Scaling Strategies

4.4.1 Base Autoscaler Framework

- Template method pattern implementation
- Common scaling decision logic
- Metrics collection system
- Strategy interface design

4.4.2 High Performance Short Time (HPST)

- Philosophy: "high power Œ short time"
- Device prioritization hierarchy
- Implementation details and algorithm
- Use case: performance-critical applications

4.4.3 Low Power Long Time (LPLT)

- Philosophy: "low power Œ long time"
- Energy-first device selection
- Battery-aware considerations
- Use case: energy-constrained deployments

4.4.4 Kubernetes-Style First Fit

- Weighted scoring system implementation
- Device class matching logic
- Resource balancing approach
- Production baseline compatibility

4.4.5 Standard First Fit (Baseline)

- Resource-only allocation
- Comparison baseline implementation
- Traditional container orchestration approach

4.5 Smart City Use Case Implementation

4.5.1 IoT Traffic Monitoring Scenario

- Function types: resnet50-inference, speech-inference, etc.
- Initial deployment strategy (light deployment)
- Geographic distribution modeling
- Realistic workload patterns

4.5.2 Function Deployment Configuration

- 16 initial function instances across 6 types
- Cold-start problem mitigation
- Performance requirements per function
- Resource allocation specifications

4.6 Implementation and Development

4.6.1 Development Environment

- Programming languages (Python, etc.)
- Framework modifications and extensions
- Code organization and architecture

4.6.2 Simulation Configuration

- Experimental parameters
- Device generation and deployment
- Workload simulation setup
- Metrics collection implementation

4.7 Evaluation Methodology

4.7.1 Experimental Design

- Comparative evaluation approach
- Multiple simulation runs
- Statistical analysis methods
- Performance vs. energy metrics

4.7.2 Evaluation Metrics

- Energy Efficiency Score: requests/joule
- Response time percentiles
- Resource utilization patterns
- Scaling decision frequency

4.8 Results and Analysis

4.8.1 Energy Consumption Results

Table 4.2: Energy Consumption Comparison

Strategy	Total Energy (kJ)	Energy/Request (J)	Improvement
LPLT	1,156	2.68	16.8%
HPST	1,245	2.89	10.2%
Kubernetes	1,298	3.01	6.4%
Standard FF	1,387	3.22	Baseline

4.8.2 Performance Analysis

- Response time comparison across strategies
- SLA compliance rates
- Throughput analysis
- Trade-off evaluation

4.8.3 Device Utilization Patterns

- Strategy-specific device preferences
- Resource utilization efficiency
- Energy consumption by device type
- Scaling behavior analysis

4.9 Discussion

4.9.1 Key Findings

- LPLT achieves best energy efficiency (16.8% savings)
- HPST provides optimal performance with energy benefits
- Heterogeneous device modeling enables optimization
- Smart city deployment feasibility demonstrated

4.9.2 Practical Implications

- Strategy selection guidelines
- Deployment recommendations
- Energy-performance trade-off insights
- Framework extensibility for future research

4.9.3 Limitations

- Simulation-based evaluation constraints
- Limited to traffic monitoring use case
- Power model based on specifications
- Network modeling simplifications

4.10 Conclusion

Conclusion

(4-6 pages)

5.1 Summary of Work

- Research problem and objectives revisited
- State-of-the-art analysis and framework selection
- faas-sim extension with energy modeling
- Four scaling strategies implementation and evaluation

5.2 Key Contributions

- Extended faas-sim with comprehensive energy modeling
- Implemented four distinct energy-aware scaling strategies
- Validated through realistic smart city IoT use case
- Demonstrated significant energy savings (up to 16.8%)
- Provided practical deployment guidelines

5.3 Research Impact

- Enhanced simulation capabilities for edge-FaaS research
- Energy-performance trade-off quantification
- Framework available for future research extensions
- Practical insights for edge computing deployments

5.4 Future Work

- Real-world testbed validation (Grid'5000 deployment)
- Extended use case scenarios beyond traffic monitoring
- Machine learning-based predictive scaling
- Integration with production FaaS platforms
- Advanced energy modeling with thermal considerations

5.5 Final Remarks

Appendix A

Implementation Details

- faas-sim framework modification details
- Key algorithm implementations
- Configuration files and parameters

Appendix B

Experimental Data

- Complete experimental results
- Statistical analysis details
- Additional performance charts

Estimated Page Distribution

Chapter	Pages
Chapter 1: General Introduction	8-10
Chapter 2: Basic Concepts	18-22
Chapter 3: State of the Art	15-18
Chapter 4: Our Contribution	25-30
Chapter 5: Conclusion	4-6
Appendices	8-12
Total	78-98 pages

Key Research Flow

Research Journey

- 1. Problem Identification: Shortage of FaaS simulation tools for edge environments
- 2. State-of-the-Art Survey: Analysis of existing simulators and frameworks
- 3. Framework Selection: Chose faas-sim as most suitable base framework
- 4. Gap Analysis: Identified missing energy modeling capability
- 5. **Energy Model Integration:** Extended framework with power consumption models
- 6. Scaling Strategy Implementation: Developed four energy-aware approaches
- 7. Use Case Validation: Smart city IoT traffic monitoring scenario
- 8. Comparative Evaluation: Energy-performance trade-off analysis
- 9. Results and Insights: Demonstrated significant energy savings potential

Technical Achievements

- Successfully extended faas-sim with realistic energy modeling
- Implemented comprehensive heterogeneous device modeling
- Developed four distinct scaling strategies with clear optimization objectives
- Validated framework through realistic smart city deployment scenario
- Achieved measurable energy improvements while maintaining performance