CH 6: Fixed, Random, and Mixed Models

6.1 Introduction

- Level of Factor: Fixed or Random (Decided before running the experiments)

Fixed: the results to be judged for these levels only

← Temperature, Time, or Pressure (near Extremes and some Intermediate Points)

Random: the results may be extended to more levels

← Operators, Days, or Batches (small Sample of All Possible Population)

Factors: Temperature (25 \rightarrow 55), Altitude (0 K \rightarrow 3 K)

6.2 Single-Factor Models

- **Model:** $Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$, with $\varepsilon_{ij} \sim NID(0, \sigma_{\varepsilon}^2)$

- Comparison between Fixed and Random Models

		Fixed Mo	odels	Random Models				
Assumptions	$\sum\nolimits_{j=1}^{k}$	$\tau_j = \sum_{j=1}^k ($	$(\mu_j - \mu) = 0$	$\tau_j \sim NID(0, \ \sigma_\tau^2)$				
Analysis		Shown in	CH 3	S	Same as Fixed models			
	Source	df	EMS	Source	df	EMS		
EMS	$ au_{j}$	k-1	$\sigma_{\varepsilon}^2 + n\phi_{\tau}$	$ au_{j}$	k-1	$\sigma_{\varepsilon}^2 + n\sigma_{\tau}^2$		
	${\cal E}_{ij}$	k(n-1)	$\sigma_{arepsilon}^2$	${\cal E}_{ij}$	k(n-1)	$\sigma_{arepsilon}^2$		
Hypothesis	H_0	$: \tau_j = 0; j$	$=1,\cdots,k$	$H_0: \sigma_\tau^2 = 0$				
11, podrebis	F:	$=MS_{treatment}$	MS_{error}	I	$F = MS_{treatment} / MS_{error}$			

Where
$$\phi_{\tau} = \frac{\sum_{j} \tau_{j}^{2}}{n-1}$$

6.3 Two-Factor Models

- **Model:** $Y_{iik} = \mu + A_i + B_i + AB_{ii} + \varepsilon_{k(ii)}$ With $i = 1, \dots, a$ $j = 1, \dots, b$ $k = 1, \dots, n$
- **EMS**

Fixed Random Mixed (A fixed, B Random) 1. Assumptions

 A_i 's are **Fixed** constants

$$\sum_{i=1}^{a} A_i = 0$$

$$A_i \sim NID(0, \sigma_A^2)$$

$$\sum_{i=1}^{a} A_i = 0$$

 B_i 's are **Random**

 A_i 's are **Fixed** constants

 B_i 's are **Fixed** constants

$$\sum_{j=1}^{b} B_j = 0$$

$$\sum_{j=1}^{b} B_j = 0 \qquad B_j \sim NID(0, \ \sigma_B^2)$$

$$B_i \sim NID(0, \ \sigma_B^2)$$

 AB_{ii} 's are **Fixed** constants

$$\sum_{i=1}^{a} AB_{ij} = 0$$

$$AB_{ij} \sim NID(0, \ \sigma_{AB}^2)$$

$$\sum_{i=1}^{a} AB_{ij} = 0$$

 $AB_{ii} \sim NID(0, \sigma_{AB}^2)$ but

$$\sum_{i=1}^{b} AB_{ij} = 0$$

$$\left(\sum_{i=1}^{b} AB_{ij} \neq 0\right)$$

2. Analysis Procedures (CH5 for Sum of Squares)

Same

Same

Same

3. EMS

Course	<i>J C</i>	EMS								
Source	d.f.	Fixed	Random	Mixed						
A_{i}	a-1	$\sigma_{\varepsilon}^{2} + nb\phi_{A}$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2 + nb\sigma_A^2$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2 + nb\phi_A$						
B_{j}	b-1	$\sigma_{\varepsilon}^2 + na\phi_B$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2 + na\sigma_B^2$	$\sigma_{\varepsilon}^2 + na\sigma_B^2$						
AB_{ij}	(a-1)(b-1)	$\sigma_{\varepsilon}^2 + n\phi_{AB}$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2$						
$\mathcal{E}_{k(ij)}$	ab(n-1)	$\sigma_{arepsilon}^{2}$	$\sigma_{arepsilon}^{2}$	$\sigma_{arepsilon}^{2}$						

4. Hypothesis

$$egin{aligned} H_0: A_i &= 0 & \text{for all } i & H_0: \sigma_A^2 &= 0 & H_0: A_i &= 0 & \text{for all } i \\ H_0: B_j &= 0 & \text{for all } j & H_0: \sigma_B^2 &= 0 & H_0: \sigma_B^2 &= 0 \\ H_0: AB_{ij} &= 0 & \text{for all } i, j & H_0: \sigma_{AB}^2 &= 0 & H_0: \sigma_{AB}^2 &= 0 \end{aligned}$$

Course	<i>J C</i>	EMS								
Source	d.f.	Fixed	Random	Mixed						
A_{i}	a-1	$\sigma_{\varepsilon}^2 + nb\phi_{A}$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2 + nb\sigma_A^2$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2 + nb\phi_A$						
B_{j}	b-1	$\sigma_{\varepsilon}^2 + na\phi_B$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2 + na\sigma_B^2$	$\sigma_{\varepsilon}^2 + na\sigma_B^2$						
AB_{ij}	(a-1)(b-1)	$\sigma_{\varepsilon}^2 + n\phi_{AB}$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2$						
$\mathcal{E}_{k(ij)}$	ab(n-1)	$\sigma_arepsilon^2$	$\sigma_arepsilon^2$	$\sigma_{arepsilon}^2$						

Saumas	Test Statistics								
Source	Fixed	Random	Mixed						
A_i	MS_A / MS_E	MS_A / MS_{AB}	MS_A / MS_{AB}						
B_{j}	MS_B / MS_E	MS_B / MS_{AB}	MS_B / MS_E						
AB_{ij}	MS_{AB} / MS_{E}	MS_{AB} / MS_{E}	MS_{AB} / MS_{E}						

6.4 EMS Rules

- A Simple Method of determining EMS for the Balanced Case
- Determination of EMS:

Example)
$$Y_{ijk} = \mu + A_i + B_j + AB_{ij} + \varepsilon_{k(ij)}$$
 (Fixed A, Random B)

Step 0: 모형의 Factor들을 표의 행에 나열. 표의 열에는 첨자를 기준으로 해당 Factor의 (1) 수준 수 (2) 종류(For R), (3) 첨자(i, j, k 등)를 기록 (단, 반복은 random으로 간주)

Factor	a F i	b R j	n R k	
A_{i}				
B_{j}				
AB_{ij}				
${\cal E}_{k(ij)}$				

- Step 1: 각 행에서, 행의 첨자와 <u>다른</u> 첨자의 열과 만나는 Cell에

 열의 수준(또는 반복) 수를 적는다.
- Step 2: 행에 있는 첨자 중에서 괄호 속에 있는 것이 있으면, 그 행에 서 괄호 속과 같은 첨자의 열을 찾아 만나는 곳에 1을 적는다.

Step 3: 나머지 빈 Cell에 대해, 해당 열의 첨자가 고정 요인이면 0, 랜덤 요인이면 1을 기록

Factor	a F i	b R j	n R k
A_{i}	30	1 b	① n
B_{i}	① a ③ 0	31	① n
AB_{ij}	30	③ 1	① n
$\mathcal{E}_{k(ij)}$	21	21	31

Step 4: 작성된 표를 이용하여 각 요인의 E(MS) 계산

- i) 각 행에서, 괄호 밖에 있는 첨자와 같은 첨자의 열을 가리고 ii) 의 방식으로 EMS를 계산. (예로, A_i 요인의 EMS 계산 시 i 첨자 열을 제외하고, $\varepsilon_{k(ii)}$ 의 EMS 계산 시 k 첨자 열을 제외)
- ii) 각 요인의 EMS는 그 행의 첨자가 포함된 행을 대상으로, 남은 열의 숫자 (문자)와 그 행의 산포 측도 $(\phi_{\tau}$ 또는 σ_{τ}^2)의 곱들을 합한다.

Factor	a F i	b R j	n R k	산포	EMS
A_{i}	0	b	n	$\phi_{\!\scriptscriptstyle A}$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2 + nb\phi_A$
B_{j}	a	1	n	$\sigma_{\scriptscriptstyle B}^{\scriptscriptstyle 2}$	$\sigma_{\varepsilon}^2 + na\sigma_B^2$
AB_{ij}	0	1	n	$\sigma_{{\scriptscriptstyle AB}}^{\scriptscriptstyle 2}$	$\sigma_{\varepsilon}^2 + n\sigma_{AB}^2$
$\mathcal{E}_{k(ij)}$	1	1	1	$\sigma_arepsilon^2$	$\sigma_{\scriptscriptstyle \mathcal{E}}^2$

☐ Example (Table 6.3: page 175)

Response: Time required to position and assemble mating parts

Treatment: Operators (6; **Random**): O_i

Angles (4 levels; **Fixed**) \rightarrow (0°, 30°, 60°, 90°): A_j

Clearances (5 levels; Fixed): C_k Locations (2 levels; Fixed): L_m

Replications: q

i) Step 1:

Source		DF	6 R i	4 F j	5 F k	2 F m	6 R q	EMS
O_i	σ_o^2	5	1	4	5	2	6	
A_{j}	$\phi_{\!\scriptscriptstyle A}$	3	6	0	5	2	6	
OA_{ij}	$\sigma_{\scriptscriptstyle O\!A}^{\scriptscriptstyle 2}$	15	1	0	5	2	6	
C_k	$\phi_{\scriptscriptstyle C}$	4	6	4	0	2	6	
OC_{ik}	σ_{oc}^{2}	20	1	4	0	2	6	
AC_{jk}	ϕ_{AC}	12	6	0	0	2	6	
OAC_{ijk}	$\sigma_{\scriptscriptstyle O\!AC}^{\scriptscriptstyle 2}$	60	1	0	0	2	6	
L_{m}	$\phi_{\!\scriptscriptstyle L}$	1	6	4	5	0	6	
OL_{im}	$\sigma_{\scriptscriptstyle OL}^{\scriptscriptstyle 2}$	5	1	4	5	0	6	
$AL_{_{jm}}$	$\phi_{\scriptscriptstyle AL}$	3	6	0	5	0	6	
OAL_{ijm}	$\sigma_{\scriptscriptstyle O\!A\!L}^{\scriptscriptstyle 2}$	15	1	0	5	0	6	
$\mathit{CL}_{\mathit{km}}$	$\phi_{\scriptscriptstyle CL}$	4	6	4	0	0	6	
$\mathit{OCL}_{\mathit{ikm}}$	σ_{ocl}^{2}	20	1	4	0	0	6	
ACL_{jkm}	$\phi_{\scriptscriptstyle ACL}$	12	6	0	0	0	6	
$OACL_{ijkm}$	$\sigma_{\scriptscriptstyle O\!ACL}^{\scriptscriptstyle 2}$	60	1	0	0	0	6	
$\mathcal{E}_{q(ijkm)}$	$\sigma_{arepsilon}^{2}$	1200	1	1	1	1	1	

ii) Step 2 and Step 3:

		6	4	5	2	6	
Source		R	F	F	\boldsymbol{F}	R	EMS
		i	j	k	m	q	
O_i	σ_o^2	1	4	5	2	6	$\sigma_{\varepsilon}^2 + 240\sigma_o^2$
A_{j}	$\phi_{\!\scriptscriptstyle A}$	6	0	5	2	6	
OA_{ij}	$\sigma_{\scriptscriptstyle O\!A}^{\scriptscriptstyle 2}$	1	0	5	2	6	
C_k	$\phi_{\scriptscriptstyle C}$	6	4	0	2	6	
OC_{ik}	σ_{oc}^{2}	1	4	0	2	6	
AC_{jk}	ϕ_{AC}	6	0	0	2	6	
OAC_{ijk}	$\sigma_{\scriptscriptstyle O\!AC}^{\scriptscriptstyle 2}$	1	0	0	2	6	
$L_{\scriptscriptstyle m}$	$\phi_{\!\scriptscriptstyle L}$	6	4	5	0	6	
OL_{im}	$\sigma_{\scriptscriptstyle OL}^{\scriptscriptstyle 2}$	1	4	5	0	6	
AL_{jm}	$\phi_{\scriptscriptstyle AL}$	6	0	5	0	6	
OAL_{ijm}	$\sigma_{\scriptscriptstyle O\!A\!L}^{\scriptscriptstyle 2}$	1	0	5	0	6	
$\mathit{CL}_{\mathit{km}}$	$\phi_{\scriptscriptstyle CL}$	6	4	0	0	6	
OCL_{ikm}	σ_{ocl}^2	1	4	0	0	6	
ACL_{jkm}	$\phi_{\scriptscriptstyle ACL}$	6	0	0	0	6	
$OACL_{ijkm}$	$\sigma_{\scriptscriptstyle O\!ACL}^2$	1	0	0	0	6	
$\mathcal{E}_{q(ijkm)}$	$\sigma_arepsilon^2$	1	1	1	1	1	

iii) Step 4: Computation of EMS

e.g.) O_i 의 EMS 계산

Source		6 <i>R</i>	4 <i>F</i>	5 <i>F</i>	2 <i>F</i>	6 <i>R</i>	EMS
		i	j	k	m	q	
O_i	σ_o^2	1	4	5	2	6	$\sigma_{\varepsilon}^2 + 240\sigma_0^2$
A_{j}	$\phi_{\!\scriptscriptstyle A}$	6	0	5	2	6	
OA_{ij}	$\sigma_{o\!\scriptscriptstyle A}^2$	1	0	5	2	6	
C_k	$\phi_{\scriptscriptstyle C}$	6	4	0	2	6	
OC_{ik}	σ_{oc}^{2}	1	4	0	2	6	
AC_{jk}	$\phi_{\!\scriptscriptstyle AC}$	6	0	0	2	6	
OAC_{ijk}	$\sigma_{O\!AC}^2$	1	0	0	2	6	
$L_{\scriptscriptstyle m}$	$\phi_{\!\scriptscriptstyle L}$	6	4	5	0	6	
OL_{im}	$\sigma_{o\scriptscriptstyle L}^2$	1	4	5	0	6	
AL_{jm}	$\phi_{\scriptscriptstyle\! AL}$	6	0	5	0	6	
OAL_{ijm}	$\sigma_{\scriptscriptstyle O\!A\!L}^{\scriptscriptstyle 2}$	1	0	5	0	6	
$\mathit{CL}_{\mathit{km}}$	$\phi_{\scriptscriptstyle CL}$	6	4	0	0	6	
OCL_{ikm}	σ_{ocl}^2	1	4	0	0	6	
ACL_{jkm}	$\phi_{\scriptscriptstyle ACL}$	6	0	0	0	6	
$OACL_{ijkm}$	$\sigma_{\scriptscriptstyle OACL}^2$	1	0	0	0	6	
${\cal E}_{q(ijkm)}$	$\sigma_{arepsilon}^{2}$	1	1	1	1	1	

$$E[MS_{o}] = 4 \cdot 5 \cdot 2 \cdot 6\sigma_{o}^{2} + 0 \cdot 5 \cdot 2 \cdot 6\sigma_{oA}^{2} + 4 \cdot 0 \cdot 2 \cdot 6\sigma_{oC}^{2} + 0 \cdot 0 \cdot 2 \cdot 6\sigma_{oAC}^{2}$$

$$+4 \cdot 5 \cdot 0 \cdot 6\sigma_{oL}^{2} + 0 \cdot 5 \cdot 0 \cdot 6\sigma_{oAL}^{2} + 4 \cdot 0 \cdot 0 \cdot 6\sigma_{oCL}^{2} + 0 \cdot 0 \cdot 0 \cdot 6\sigma_{oACL}^{2} + \sigma_{\varepsilon}^{2}$$

$$= \sigma_{\varepsilon}^{2} + 240\sigma_{o}^{2}$$

e.g.) AC_{jk} 의 EMS 계산

		6	4	5	2	6	
Source		R	F	F	F	R	EMS
		i	j	k	m	q	
O_i	σ_o^2	1	4	5	2	6	
A_{j}	$\phi_{\!\scriptscriptstyle A}$	6	0	5	2	6	
OA_{ij}	$\sigma_{\scriptscriptstyle O\!A}^{\scriptscriptstyle 2}$	1	0	5	2	6	
C_k	$\phi_{\scriptscriptstyle C}$	6	4	0	2	6	
OC_{ik}	σ_{oc}^{2}	1	4	0	2	6	
AC_{jk}	ϕ_{AC}	6	0	0	2	6	$72\phi_{AC} + 12\sigma_{OAC}^2 + \sigma_{\varepsilon}^2$
OAC_{ijk}	$\sigma_{o\!\scriptscriptstyle AC}^2$	1	0	0	2	6	
L_{m}	$\phi_{\!\scriptscriptstyle L}$	6	4	5	0	6	
OL_{im}	$\sigma_{\scriptscriptstyle OL}^{\scriptscriptstyle 2}$	1	4	5	0	6	
AL_{jm}	$\phi_{\scriptscriptstyle\! AL}$	6	0	5	0	6	
OAL_{ijm}	$\sigma_{\scriptscriptstyle O\!AL}^{\scriptscriptstyle 2}$	1	0	5	0	6	
CL_{km}	$\phi_{\scriptscriptstyle CL}$	6	4	0	0	6	
OCL_{ikm}	σ_{ocl}^2	1	4	0	0	6	
ACL_{jkm}	$\phi_{\scriptscriptstyle ACL}$	6	0	0	0	6	
$OACL_{ijkm}$	$\sigma_{\scriptscriptstyle O\!AC\!L}^2$	1	0	0	0	6	
${\cal E}_{q(ijkm)}$	$\sigma_{arepsilon}^2$	1	1	1	1	1	

$$\Rightarrow E[MS_o] = 6 \cdot 2 \cdot 6\phi_{AC} + 1 \cdot 2 \cdot 6\sigma_{OAC}^2 + 6 \cdot 0 \cdot 6\phi_{ACL} + 1 \cdot 0 \cdot 6\sigma_{OALC}^2 + \sigma_{\varepsilon}^2$$

6.5 EMS Derivations

☐ Two Factor Experiment

Model:
$$Y_{ijk} = \mu + A_i + B_j + AB_{ij} + \varepsilon_{k(ij)}$$
 (Example: Fixed A, Random B)

$$\Rightarrow SS_A = \sum_{i=1}^k nb(\overline{Y}_{L_i} - \overline{Y}_{L_i})^2$$

$$\overline{Y}_{L_i} = \sum_{j}^b \sum_{k}^n Y_{ijk} / nb = \sum_{j}^b \sum_{k}^n (\mu + A_i + B_j + AB_{ij} + \varepsilon_{k(ij)}) / nb$$

$$= \mu + A_i + \sum_{j}^b B_j / b + \sum_{j}^b AB_{ij} / b + \sum_{j}^b \sum_{k}^n \varepsilon_{k(ij)} / nb$$

$$\overline{Y}_{...} = \sum_{i}^a \sum_{j}^b \sum_{k}^n Y_{ijk} / nb = \sum_{i}^a \sum_{j}^b \sum_{k}^n (\mu + A_i + B_j + AB_{ij} + \varepsilon_{k(ij)}) / anb$$

$$= \mu + \sum_{i}^a A_i / a + \sum_{j}^b B_j / b + \sum_{i}^a \sum_{j}^b AB_{ij} / ab + \sum_{i}^a \sum_{j}^b \sum_{k}^n \varepsilon_{k(ij)} / anb$$

$$= \mu + \sum_{i}^a A_i / a + \sum_{j}^b B_j / b + \sum_{i}^a \sum_{j}^b AB_{ij} / ab + \sum_{i}^a \sum_{j}^b \sum_{k}^n \varepsilon_{k(ij)} / anb$$

$$= \mu + \sum_{i}^a A_i / a + \sum_{j}^b B_j / b + \sum_{i}^a \sum_{j}^b AB_{ij} / ab + \sum_{i}^a \sum_{j}^b AB_{ij} / ab$$

$$+ (\sum_{j}^b \sum_{k}^n \varepsilon_{k(ij)} / nb - \sum_{i}^a \sum_{j}^b AB_{ij} / ab)$$

$$+ (\sum_{j}^b \sum_{k}^n \varepsilon_{k(ij)} / nb - \sum_{i}^a \sum_{j}^b AB_{ij} / ab)$$

$$+ nb \sum_{i}^a (\sum_{j}^b \sum_{k}^n \varepsilon_{k(ij)} / nb - \sum_{i}^a \sum_{j}^b AB_{ij} / ab)^2$$

$$+ nb \sum_{i}^a (\sum_{j}^b \sum_{k}^n \varepsilon_{k(ij)} / nb - \sum_{i}^a \sum_{j}^b AB_{ij} / ab)$$
Since
$$\sum_{i}^a A_i = 0 \text{ and } \sum_{i}^a AB_{ij} = 0 \text{ but } \sum_{j}^b AB_{ij} / ab = \overline{AB}_{..} \sim N(0, \sigma_{AB}^2 / b),$$

$$\sum_{j}^b \sum_{k}^a \varepsilon_{k(ij)} / nb = \overline{\varepsilon}_{L..} \sim NID(0, \sigma_{AB}^2 / b), \sum_{i}^a \sum_{j}^b \sum_{k}^a \varepsilon_{k(ij)} / anb = \overline{\varepsilon}_{...} \sim N(0, \sigma_{AB}^2 / ab),$$

$$(E[\sum_{i}^a (\overline{AB}_{i.} - \overline{AB}_{..})^2] = (a - 1)Var[\overline{AB}_{i.}] = (a - 1)\sigma_{AB}^2 / b \text{ and}$$

$$E[SS_A] = nb \sum_{i}^a A_i^2 + nbE[\sum_{i}^a (\overline{AB}_{i.} - \overline{AB}_{..})^2] + nbE[\sum_{i}^a (\overline{\varepsilon}_{i...} - \overline{\varepsilon}_{...})^2]$$

$$= nb \sum_{i}^a A_i^2 + nb(a - 1)\sigma_{AB}^2 / b + nb(a - 1)\sigma_{\varepsilon}^2 / bn$$

$$= nb \sum_{i}^a A_i^2 + n(a - 1)\sigma_{AB}^2 / b + nb(a - 1)\sigma_{\varepsilon}^2 / bn$$

$$= nb \sum_{i}^a A_i^2 + n(a - 1)\sigma_{AB}^2 / b + nb(a - 1)\sigma_{\varepsilon}^2 / bn$$

$$= nb \sum_{i}^a A_i^2 + n(a - 1)\sigma_{AB}^2 / b + nb(a - 1)\sigma_{\varepsilon}^2 / bn$$

$$= nb \sum_{i}^a A_i^2 + n(a - 1)\sigma_{AB}^2 / b + nb(a - 1)\sigma_{\varepsilon}^2 / bn$$

$$= nb \sum_{i}^a A_i^2 + n(a - 1)\sigma_{AB}^2 / b + nb(a - 1$$

6.6 The Pseudo-F Test

☐ Cases of No Exact F-Test (Example 6.3)

- **Response:** Thickness of Dry-Film **Treatments:** Day (Random) – 2 levels Operators (Random) – 3 levels

Gate Settings (Fixed) – 3 levels

ANOVA Table

Source	DF	SS	MS	EMS
D	1	.0010	.0010	$\sigma_{\varepsilon}^2 + 6\sigma_{DO}^2 + 18\sigma_D^2$
О	2	.1121	.0560	$\sigma_{\varepsilon}^2 + 6\sigma_{DO}^2 + 12\sigma_O^2$
D*O	2	.0060	.0030	$\sigma_{\varepsilon}^2 + 6\sigma_{DO}^2$
G	2	1.573	.7866	$\sigma_{\varepsilon}^2 + 2\sigma_{DOG}^2 + 4\sigma_{OG}^2 + 6\sigma_{DG}^2 + 12\phi_G$
D*G	2	.0113	.0056	$\sigma_{\varepsilon}^2 + 2\sigma_{DOG}^2 + 6\sigma_{DG}^2$
O*G	4	.0428	.0107	$\sigma_{\varepsilon}^2 + 2\sigma_{DOG}^2 + 4\sigma_{OG}^2$
D*O*G	4	.0099	.0025	$\sigma_{\varepsilon}^2 + 2\sigma_{DOG}^2$
Error	18	.0059	.0003	$\sigma_{arepsilon}^2$
Total	35	1.7622		

Question: How to Test Gate Main Effect?

- If D*G Interaction Effects is assumed to be Zero, O*G can be applied
- If O*G Interaction Effects is assumed to be Zero, D*G can be applied
- If neither of these two interaction is significant: (by Satterthwaite)
 - → Consider constructing a Mean Square as a Linear Combination of other MS in the Experiment:

 $\sigma_{e}^{2} + 2\sigma_{DOG}^{2} + 4\sigma_{OG}^{2} + 6\sigma_{DG}^{2}$ can be expressed by the Linear Combination,

$$MS = MS_{DG} + MS_{OG} - MS_{DOG}$$
 (= 0.0138)

$$\leftarrow E[MS] = (\sigma_{\varepsilon}^2 + 2\sigma_{DOG}^2 + 4\sigma_{OG}^2) + (\sigma_{\varepsilon}^2 + 2\sigma_{DOG}^2 + 6\sigma_{DG}^2) - (\sigma_{\varepsilon}^2 + 2\sigma_{DOG}^2)$$

Degree of Freedom for MS

$$MS = a_1 MS_1 + a_2 MS_2 + \cdots \Rightarrow v = \frac{(MS)^2}{a_1^2 (MS_1)^2 / v_1 + a_2^2 (MS_2)^2 / v_2 + \cdots}$$

- **Example Data:** $a_1 = 1$, $a_2 = 1$, $a_3 = -1$ with $v_1 = 4$, $v_2 = 2$, $v_3 = 4$

$$\Rightarrow v = \frac{(0.0138)^2}{1^2(0.0107)^2/4 + 1^2(0.0056)^2/2 + (-1)^2(0.0025)^2/4} = 4.2$$

 \rightarrow $F' = MS_G / MS = 0.7866 / 0.0138 = 57.0$: Significant for $F_{2,4,2}$

6.8 Remarks (Single Observation per Cell)

- **Model:** $Y_{ijk} = \mu + A_i + B_j + AB_{ij} + \varepsilon_{ij}$

- ANOVA Table

Source	EMS	EMS	EMS
	Fixed	Random	Mixed
$egin{array}{c} A_i \ B_j \ AB_{ij} (ext{or } arepsilon_{ij}) \end{array}$	$\sigma_{arepsilon}^{2}+b\phi_{A} \ \sigma_{arepsilon}^{2}+a\phi_{B} \ \sigma_{arepsilon}^{2}+\phi_{AB}$	$\sigma_{\varepsilon}^{2} + \sigma_{AB}^{2} + b\sigma_{A}^{2}$ $\sigma_{\varepsilon}^{2} + \sigma_{AB}^{2} + a\sigma_{B}^{2}$ $\sigma_{\varepsilon}^{2} + \sigma_{AB}^{2}$	$\sigma_{\varepsilon}^{2} + \sigma_{AB}^{2} + b\phi_{A}$ $\sigma_{\varepsilon}^{2} + a\sigma_{B}^{2}$ $\sigma_{\varepsilon}^{2} + \sigma_{AB}^{2}$

- For the Fixed Model, There is No TEST for the main effects A and B \leftarrow If there is no interaction ($\phi_{AB} = 0$), the main effects can be tested
- For the Random Effect Model, both main effects A and B can be tested
- For the Mixed Model, the random main effects B can not be tested

☐ EMS For Non-Equal Replications

- For the Single-Factor Experiment

- EMS: Employing $n_0 = \frac{N^2 - \sum_{j=1}^k n_j^2}{(k-1)N}$, where $N = \sum_{j=1}^k n_j$

Fixed Effect: $\sigma_{\varepsilon}^2 + n_0 \phi_{\tau}$

Random Effect: $\sigma_{\varepsilon}^2 + n_0 \sigma_{\tau}^2$