Some notes on LAPW

Kristjan Haule

Department of Physics, Rutgers University, Piscataway, NJ 08854, USA (Dated: July 18, 2014)

PACS numbers: 71.27.+a,71.30.+h

The LAPW basis takes the form:

$$\chi_{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i(\mathbf{k}+\mathbf{K})\mathbf{r}} = \frac{4\pi i^l}{\sqrt{V}} e^{i(\mathbf{k}+\mathbf{K})\mathbf{r}_{\alpha}} Y_{lm}^* (R(\hat{\mathbf{k}}+\hat{\mathbf{K}})) j_l(|\mathbf{k}+\mathbf{K}||\mathbf{r}-\mathbf{r}_{\alpha}|) Y_{lm}(R(\mathbf{r}-\mathbf{r}_{\alpha})) \qquad interstitial (1)$$

$$\chi_{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = (a_{lm}u_l(|\mathbf{r} - \mathbf{r}_{\alpha}|) + b_{lm}\dot{u}_l(|\mathbf{r} - \mathbf{r}_{\alpha}|))Y_{lm}(R(\hat{\mathbf{r}} - \hat{\mathbf{r}_{\alpha}})) \qquad MT - sphere$$
(2)

The matching condition at the MT-sphere S gives

$$\begin{pmatrix} u_l(S) & \dot{u}_l(S) \\ \frac{d}{dr}u_l(S) & \frac{d}{dr}\dot{u}_l(S) \end{pmatrix} \begin{pmatrix} a_{lm} \\ b_{lm} \end{pmatrix} = \frac{4\pi i^l}{\sqrt{V}} e^{i(\mathbf{k} + \mathbf{K})\mathbf{r}_{\alpha}} Y_{lm}^* (R(\hat{\mathbf{k}} + \hat{\mathbf{K}})) \begin{pmatrix} j_l(|\mathbf{k} + \mathbf{K}|S) \\ \frac{d}{dr}j_l(|\mathbf{k} + \mathbf{K}|S) \end{pmatrix}$$
(3)

with the solution

$$\begin{pmatrix} a_{lm} \\ b_{lm} \end{pmatrix} = \frac{4\pi i^l}{\sqrt{V}} e^{i(\mathbf{k} + \mathbf{K})\mathbf{r}_{\alpha}} Y_{lm}^* (R(\hat{\mathbf{k}} + \hat{\mathbf{K}})) \begin{pmatrix} \frac{d}{dr} \dot{u}_l(S) & -\dot{u}_l(S) \\ -\frac{d}{dr} u_l(S) & u_l(S) \end{pmatrix} \frac{1}{u_l(S) \frac{d}{dr} \dot{u}_l(S) - \dot{u}_l(S) \frac{d}{dr} u_l(S)} \begin{pmatrix} j_l(|\mathbf{k} + \mathbf{K}|S) \\ \frac{d}{dr} j_l(|\mathbf{k} + \mathbf{K}|S) \end{pmatrix} (4)$$

The two solutions satisfy the following equations

$$\left(-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V_{KS}(r) - \varepsilon\right) r u_l(r) = 0$$
(5)

$$\left(-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V_{KS}(r) - \varepsilon\right)r\dot{u}_l(r) = ru_l(r)$$
(6)

We multiply the first equation by $r\dot{u}_l(r)$ and the second by $ru_l(r)$ to obtain

$$\int_0^S dr \left\{ r \dot{u}_l(r) \left(-\frac{d^2}{dr^2} \right) r u_l(r) - r u_l(r) \left(-\frac{d^2}{dr^2} \right) r \dot{u}_l(r) \right\} = -\int_0^S dr r^2 u_l(r) u_l(r) \tag{7}$$

Integration by parts gives

$$\left[-r\dot{u}_l(r)\frac{d}{dr}\left(ru_l(r)\right) + ru_l(r)\frac{d}{dr}\left(r\dot{u}_l(r)\right) \right]_0^S = -1$$
(8)

which finally leads to

$$\dot{u}_l(S)\frac{d}{dr}u_l(S) - u_l(S)\frac{d}{dr}\dot{u}_l(S) = \frac{1}{S^2}$$
(9)

We can than simplify the solution for a_{lm} and b_{lm} to

$$\begin{pmatrix} a_{lm} \\ b_{lm} \end{pmatrix} = \frac{4\pi i^l}{S^2 \sqrt{V}} e^{i(\mathbf{k} + \mathbf{K})\mathbf{r}_{\alpha}} Y_{lm}^* (R(\hat{\mathbf{k}} + \hat{\mathbf{K}})) \begin{pmatrix} \dot{u}_l(S) \frac{d}{dr} j_l(|\mathbf{k} + \mathbf{K}|S) - \frac{d}{dr} \dot{u}_l(S) j_l(|\mathbf{k} + \mathbf{K}|S) \\ \frac{d}{dr} u_l(S) j_l(|\mathbf{k} + \mathbf{K}|S) - u_l(S) \frac{d}{dr} j_l(|\mathbf{k} + \mathbf{K}|S) \end{pmatrix}$$
(10)

This equation is implemented in Wien2k, and also in both dmft1 and dmft2 steps.

To compute the projector, we need the overlap between a localized function $\phi(r)Y_L(\mathbf{r})$, and Kohn-Sham states

$$\mathcal{U}_{i,m}^{\mathbf{k},\mathbf{r}_{\alpha}} = \langle \phi_{l} Y_{lm} | \psi_{\mathbf{k}i} \rangle = \sum_{\mathbf{k}} C_{i\mathbf{K}}^{\mathbf{k}} \langle \phi_{l}(|\mathbf{r} - \mathbf{r}_{\alpha}|) Y_{lm} (R(\hat{\mathbf{r}} - \hat{\mathbf{r}}_{\alpha})) | \chi_{\mathbf{k} + \mathbf{K}}(\mathbf{r}) \rangle$$
(11)

If function $\phi(r)$ extends sufficiently outside its MT-sphere, the overlap $\mathcal{U}_{i,m}^{\mathbf{k},\mathbf{r}_{\alpha}}$ will have non-zero contribution from all other MT-spheres. However, we will use only the envelope function outside its center sphere, because the increased charge in the neighboring spheres really should not be counted here as charge contribution to $\phi(r)$ function.

Therefore we have only two contributions. Inside MT-sphere we have

$$\langle \phi_l(|\mathbf{r} - \mathbf{r}_{\alpha}|) Y_{lm}(\hat{\mathbf{r}} - \hat{\mathbf{r}}_{\alpha}) | \chi_{\mathbf{k} + \mathbf{K}}(\mathbf{r}) \rangle = \sum_{\kappa} a_{lm}^{\kappa} \int_0^S \phi(r) u_l^{\kappa}(r) r^2 dr$$
(12)

and outside MT-sphere we get

$$\langle \phi_l(|\mathbf{r} - \mathbf{r}_{\alpha}|) Y_{lm}(R(\hat{\mathbf{r}} - \hat{\mathbf{r}}_{\alpha})) | \chi_{\mathbf{k} + \mathbf{K}}(\mathbf{r}) \rangle = \frac{4\pi i^l}{\sqrt{V}} e^{i(\mathbf{k} + \mathbf{K})\mathbf{r}_{\alpha}} Y_{lm}^*(R(\hat{\mathbf{k}} + \hat{\mathbf{K}})) \int_S^{S_2} \phi_l(r) j_l(|\mathbf{k} + \mathbf{K}|r) r^2 dr$$
(13)

I. FREE ENERGY AND TOTAL ENERGY

The equation for the total energy is

$$E = \text{Tr}(H_0 G) + \frac{1}{2} \text{Tr}(\Sigma G) - \Phi^{DC}[n_{loc}] + \Phi^{H}[\rho] + \Phi^{xc}[\rho]$$
(14)

where

$$H_0 = -\nabla^2 + \delta(\mathbf{r} - \mathbf{r}')V_{ext}(\mathbf{r})$$

We typically evaluate it in the following way

$$E = \text{Tr}((-\nabla^2 + V_{ext} + V_H + V_{xc})G) + \frac{1}{2}\text{Tr}(\Sigma G) - \Phi^{DC}[\rho_{loc}] - \text{Tr}((V_H + V_{xc})\rho) + \Phi^H[\rho] + \Phi^{xc}[\rho]$$
 (15)

Namely, we use the Green's function of the solid to evaluate:

$$E_1 = \text{Tr}((-\nabla^2 + V_{ext} + V_H + V_{xc})G) - \text{Tr}((V_H + V_{xc})\rho) + \Phi^H[\rho] + \Phi^{xc}[\rho]$$
(16)

and the impurity to evaluate

$$E_2 = \frac{1}{2} \text{Tr}(\Sigma_{imp} G_{imp}) - \Phi^{DC}[\rho_{imp}]$$
(17)

Notice that $\frac{1}{2}\text{Tr}(\Sigma_{imp}G_{imp})$ is not evaluated as a Matsubara sum, but we rather compute it from probabilities of atomic states, i.e.,

$$\frac{1}{2}\text{Tr}(\Sigma_{imp}G_{imp}) = \sum_{m} P_{m}E_{m} - \sum_{\alpha} \varepsilon_{imp}^{\alpha} n_{imp}^{\alpha}$$
(18)

The free energy functional is

$$\Gamma[G] = \text{Tr}\log G - \text{Tr}\log((G_0^{-1} - G^{-1})G) + \Phi^H[\rho] + \Phi^{xc}[\rho] + \Phi^{DMFT}[G_{loc}] - \Phi^{DC}[\rho_{loc}]$$
(19)

hence stationarity gives

$$G^{-1} - G_0^{-1} + V_H + V_{xc} + \Sigma_{DMFT} - V_{dc} = 0 (20)$$

and hence

$$F = \operatorname{Tr} \log G - \operatorname{Tr}(\Sigma G) + \operatorname{Tr}(V_{dc}\rho_{loc}) + \Phi^{DMFT}[G_{loc}] - \Phi^{DC}[\rho_{loc}] - \operatorname{Tr}((V_H + V_{xc})\rho) + \Phi^H[\rho] + \Phi^{xc}[\rho]$$
 (21)

Since F_{imp} contains Φ^{DMFT} , i.e,

$$F_{imp} = \text{Tr}\log G_{imp} - \text{Tr}(\Sigma_{imp}G_{imp}) + \Phi^{DMFT}[G_{imp}]$$
(22)

we can write

$$F = \operatorname{Tr}\log(G) - \operatorname{Tr}\log(G_{loc}) + F_{imp} + \operatorname{Tr}(V_{dc}\rho_{loc}) - \Phi^{DC}[\rho_{loc}] - \operatorname{Tr}((V_H + V_{xc})\rho) + \Phi^H[\rho] + \Phi^{xc}[\rho]$$
(23)

where

$$F_{imp} = E_{imp} - TS_{imp}$$

and

$$E_{imp} = \text{Tr}((\Delta + \varepsilon_{imp} - \omega_n \frac{\partial \Delta}{\partial \omega_n})G_{imp}) + \frac{1}{2}\text{Tr}(\Sigma_{imp}G_{imp}) - TS_{imp}$$

Hence

$$F + TS_{imp} = \text{Tr}\log(G) - \text{Tr}\log(G_{loc}) + \text{Tr}((\Delta + \varepsilon_{imp} - \omega_n \frac{\partial \Delta}{\partial \omega_n})G_{imp}) + \frac{1}{2}\text{Tr}(\Sigma_{imp}G_{imp}) + \text{Tr}(V_{dc}\rho_{loc}) - \Phi^{DC}[\rho_{loc}] - \text{Tr}((V_H + V_{xc})\rho) + \Phi^H[\rho] + \Phi^{xc}[\rho]$$

which can also be cast into the form

$$F + TS_{imp} = \text{Tr}\log(G) - \text{Tr}\log(G_{loc}) + \text{Tr}((\Delta - \omega_n \frac{\partial \Delta}{\partial \omega_n} + \varepsilon_{imp} + V_{dc})G_{loc}) + \frac{1}{2}\text{Tr}(\Sigma_{imp}G_{imp}) - \Phi^{DC}[\rho_{imp}] - \text{Tr}((V_H + V_{xc})\rho) + \Phi^H[\rho] + \Phi^{xc}[\rho]$$
(25)

We thus compute the following quantities with the Green's function of the solid:

$$F_1 = \operatorname{Tr}\log(G) - \operatorname{Tr}\log(G_{loc}) + \operatorname{Tr}((\Delta - \omega_n \frac{\partial \Delta}{\partial \omega_n} + \varepsilon_{imp} + V_{dc})G_{loc}) - \operatorname{Tr}((V_H + V_{xc})\rho) + \Phi^H[\rho] + \Phi^{xc}[\rho]$$
 (26)

and the following with the impurity:

$$F_2 = \frac{1}{2} \text{Tr}(\Sigma_{imp} G_{imp}) - \Phi^{DC}[\rho_{imp}] - TS_{imp}$$

$$\tag{27}$$

Notice that F_2 is similar to E_2 (except for the entropy term), hence E_{solid} and F_{solid} contain exactly the same Monte Carlo noise.