Grafos IV

Joaquim Madeira 17/06/2021

Sumário

- Recap
- Determinação da Árvore Geradora de Custo Mínimo (MST "Minimum Spanning Tree)
- O Algoritmo de Kruskal
- O Algoritmo de Prim
- Determinação de Circuitos Eulerianos ("Euler Tour")
- O Algoritmo de Fleury
- Sugestões de leitura

Recapitulação

Caminho mais curto entre s e t

- Problema de otimização combinatória
- De todas as soluções possíveis, determinar a de menor custo/distância
- Podem existir soluções ótimas alternativas
 - Caminhos distintos com o mesmo custo/distância total
- Grafo / Grafo Orientado : contar o nº de arestas do caminho
- Rede : somar o valor de distância associado a cada aresta do caminho

Árvore dos caminhos mais curtos de s para t

- Associar um rótulo ("label") a cada vértice : (dist[v], pred[v])
- No final do algoritmo o que representa?
- pred[v]: o predecessor no caminho mais curto a partir de s
- dist[v]: o custo/distância associado ao caminho mais curto a partir de s
- Fazer o "traceback" do caminho mais curto !!

Inicialização dos rótulos

Para cada vértice v ≠ s

$$dist[v] = +\infty$$

$$pred[v] = -1$$

• Para o vértice s

$$dist[s] = 0$$

$$pred[s] = -1$$

Quando não há custos associados às arestas

```
queue = Criar FILA vazia
Enqueue(queue, s)
Enquanto Não Vazia (queue) fazer
      v = Dequeue(queue)
      Para cada vértice w adjacente a v
            Se dist[w] == +\infty
            Então Enqueue (queue, w)
                   dist[w] = dist[v] + 1
                   pred[w] = v
```

Fizeram?

- Qual é o caminho mais curto entre v1 e v5?
- E o caminho mais curto entre v1 e v6?
- Há caminhos ótimos alternativos ?
- De que depende a sua escolha ?

Algoritmo de Bellman-Ford

```
Inicializar os rótulos dos vértices
                                              // (V-1) vezes
Para i = 1 até (numVértices – 1) fazer
      Para cada aresta (u, v) fazer
           Se dist[u] + peso(u,v) < dist[v] // Alternativa
                                              // Atualizar
           Então
                 dist[v] = dist[u] + peso(u,v)
                 pred[v] = u
```

Fizeram?

[Wikipedia]

Como melhorar?

• Em que condição pode o ciclo externo ser executado menos vezes ?

 A partir do instante em que há a certeza de que nenhum rótulo poderá vir a ser melhorado!!

Como verificar ? -> Usar uma flag !!

Ordem de complexidade

Nº de comparações

Pior Caso: O(V x E)

Melhor Caso: O(V)

Como melhorar ?

Algoritmo usando QUEUE ou STACK

Inicializar os rótulos dos vértices

```
conjCandidatos = { s };
Enquanto conjCandidatos ≠ { } fazer
       u = próximoElemento(conjCandidatos);
                                                        // Depende da EDados
       conjCandidatos = conjCandidatos - \{v\};
       Para cada vértice v adjacente a u
              Se dist[u] + peso(u,v) < dist[v]
                                                        // Alternativa
              Então dist[v] = dist[u] + peso(u,v);
                                                        // Atualizar
                     pred[v] = u;
               Se v não pertence conjCandidatos
                     Então conjCandidatos = conjCandidatos U { v };
```

Fizeram?

[Wikipedia]

Algoritmo de Dijkstra – Estratégia "greedy"

Inicializar os rótulos dos vértices conjCandidatos = { s }; Enquanto conjCandidatos ≠ { } fazer u = removerMenor(conjCandidatos); // Reordenação implícita Para cada vértice v adjacente a u que ainda não pertence à solução Se dist[u] + peso(u,v) < dist[v]Então dist[v] = dist[u] + peso(u,v); pred[v] = u;Se v não pertence conjCandidatos Então conjCandidatos = conjCandidatos U { v }; Senão reposicionar v no conjunto ordenado de candidatos

Estrutura de dados

- Como manter ordenado o conjunto dos vértices candidatos?
- Ordem parcial vs Ordem total
- Usar um MIN-HEAP / PRIORITY QUEUE
- Obter o próximo vértice candidato sem grande esforço computacional
- Há outras estruturas de dados que se podem usar
- A ordem de complexidade do algoritmo depende da estrutura de dados escolhida

Priority Queue

```
// CREATE/DESTROY
PriorityQueue* PriorityQueueCreate(int capacity, compFunc compF, printFunc printF);
void PriorityQueueDestroy(PriorityQueue** pph) ;
  MODIFY
void PriorityQueueInsert(PriorityQueue* ph, void* item) ;
void PriorityQueueRemoveMin(PriorityQueue* ph) ;
void PriorityQueueDecreasePriority(PriorityQueue* ph, void* item)
```


Ordem de complexidade – MIN-HEAP binária

Nº de comparações

Pior Caso : O(E log V)

Casos típicos : O(E log V)

Fizeram?

[Wikipedia]

MST - Minimum Spanning Tree

Árvore Geradora

- Dado: um grafo não orientado e conexo G(V,E), com custos positivos associados às arestas
- Definição: uma árvore geradora de G é um seu subgrafo conexo e acíclico, com V vértices e (V – 1) arestas

[Sedgewick & Wayne]

Árvore Geradora de Custo Mínimo

- Problema de otimização combinatória
- Determinar a (uma) árvore geradora de custo total mínimo
 - Soma dos pesos associados às arestas da árvore
 - Assegurar a conectividade entre qualquer par de nós com o menor custo

[Sedgewick & Wayne]

Exemplo

[Weiss]

Outro exemplo

[Sedgewick & Wayne]

Soluções ótimas alternativas

- A solução é única se cada um das arestas de G tiver um custo distinto
- Se todas as arestas tiverem o mesmo custo, cada uma das árvores geradoras é ótima
- Soluções ótimas alternativas: mais do que uma árvore geradora de custo mínimo

25

[Wikipedia]

Aplicações

- Projeto de redes de comunicações, elétricas, etc.
- Encaminhamento em redes de computadores
- Deteção de redes viárias em imagens de satélite
- Registo e segmentação de imagens
- Verificação facial em tempo-real
- Modelação de mercados financeiros

•

Como fazer?

- Estratégia exaustiva : gerar todas as possíveis árvores geradoras escolher a (uma) árvore de custo mínimo
- Para um dado grafo G(V, E), quantas árvores geradoras existem?
- Ordem de complexidade ?

- Alternativas ?
- Usar uma estratégia voraz ("greedy")!!

[Adam Sheffer]

O Algoritmo de Kruskal

Algoritmo de Kruskal

- Começar com uma floresta de árvores, cada uma com um só vértice
- Sucessivamente adicionar uma aresta de menor custo que não origina um ciclo
 - Reunião de duas árvores
 - Como verificar que não se forma um ciclo ?
- Pré-processamento : construir a lista ordenada de arestas
 - O(E log E)
- Ordem de complexidade : O(E log E) + ? = ?

Exemplo – Distância Euclideana

[Wikipedia]

UA - Algoritmos e Complexidade Joaquim Madeira 30

Exemplo

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

[Weiss]

31

Outro exemplo

[Sedgewick & Wayne]

Tarefa: aplicar o algoritmo de Kruskal

Qual é a solução ?

Como verificar que não se forma um ciclo?

Adicionar a aresta (v, w) forma um ciclo ?

[Sedgewick & Wayne]

- Ver se w é alcançável a partir de v, na árvore T que contém v
- Executar a travessia em profundidade !!
- T tem, quando muito, V vértices

-> O(V)

A estrutura de dados UNION-FIND

- Alternativa mais eficiente!!
- Usar a estrutura de dados UNION-FIND
 - Rápida reunião de conjuntos de elementos
 - Fácil verificação da pertença
- Manter um conjunto de vértices para cada árvore da floresta
- Se v e w pertencem ao mesmo conjunto, não considerar a aresta!!
- Se pertencem a conjuntos distintos, efetuar a sua reunião!!

A estrutura de dados UNION-FIND

[Sedgewick & Wayne]

Esforço computacional

- [Sedgewick & Wayne]
- Usar uma PRIORITY-QUEUE para manter o conjunto de arestas
- O algoritmo de Kruskal determina a MST em O(E log E)
- Se as arestas já estiverem ordenadas, obtém-se O(E log V)

O Algoritmo de Prim

38

Algoritmo de Prim

- Começar com uma árvore T, com um só vértice de G
- Sucessivamente adicionar uma aresta a T : a aresta mais curta com (apenas) um dos seus vértices em T
 - Não se cria um ciclo!!
- Manter o conjunto de arestas candidatas
- Usar uma PRIORITY-QUEUE
- Semelhanças com o Algoritmo de Dijkstra ?

Exemplo – Distância euclideana

UA - Algoritmos e Complexidade Joaquim Madeira 40

[Wikipedia]

Exemplo

ν	known	d√	pν
v_1	T	0	0
ν ₂	T	2	v_1
v ₃	T	2	ν ₄
V4	T	1	v_1
V ₅	T	6	ν ₇
v_6	T	1	ν ₇
ν ₇	T	4	ν4

[Weiss]

Outro exemplo

[Sedgewick & Wayne]

Tarefa: aplicar o algoritmo de Prim

Qual é a solução ?

Como encontrar a próxima aresta?

Aresta (v, w) de menor custo com um vértice em T?

[Sedgewick & Wayne]

44

- Verificar todas as arestas?
- Usar uma PRIORITY-QUEUE

-> O(log E)

Esforço computacional

operation	frequency	binary heap	
delete min	E log E		
insert	E	log E	

[Sedgewick & Wayne]

- Usar uma PRIORITY-QUEUE para manter o conjunto de arestas
- O algoritmo de Prim determina a MST em O(E log E)

Alternativa : conjunto de vértices candidatos

- Começar com uma árvore T, com um só vértice de G
- Sucessivamente adicionar um novo vértice e uma nova aresta a T : o vértice mais próximo de qualquer um dos vértices em T
 - Não se cria um ciclo!!
- Manter o conjunto de vértices candidatos
- Usar uma PRIORITY-QUEUE
 - Que custo associar a cada vértice ?
- Semelhanças com o Algoritmo de Dijkstra?

Estratégia alternativa

4 4-5 0.35

5 5-7 0.28

6 6-2 0.40

7 0-7 0.16

[Sedgewick & Wayne]

Esforço computacional

PQ implementation	insert	delete-min	decrease-key	total
array	1	V	1	V ²
binary heap	log V	log V	log V	E log V

[Sedgewick & Wayne]

• Grafo denso: array

• Grafo esparso : heap binária

Prim ou Kruskal?

[Sedgewick & Wayne]

Kruskal

Prim ou Kruskal?

Prim

[Sedgewick & Wayne]

Tarefa

Analisar os exemplos nos ficheiros adicionais

Caminhos e Circuitos Eulerianos

Desenhar sem levantar a ponta do lápis?

[Weiss]

Problema das Pontes de Koenigsberg (1736)

[Wikipedia]

Caminho Euleriano / Circuito Euleriano

- Grafo / Grafo orientado
- Caminho que contém uma única vez cada uma das arestas de um grafo
- Circuito que contém uma única vez cada uma das arestas de um grafo
- Qual é a sequência de arestas ?

- Há algum caminho Euleriano ?
- Há algum circuito Euleriano ?

[Wikipedia]

Propriedades – Tarefa: arranjar exemplos!

Grafo conexo

- Um grafo tem um circuito Euleriano sse cada vértice for um vértice de grau par
- Um grafo tem um caminho Euleriano sse exatamente zero ou dois vértices tiverem grau impar

Propriedades – Tarefa: arranjar exemplos!

- Grafo orientado fortemente conexo
- Um grafo orientado tem um circuito Euleriano sse cada vértice tiver o mesmo in-degree e out-degree
- Um grafo orientado tem um caminho Euleriano sse quando muito um vérice tem out-degree – in-degree = 1, quando muito um vértice tem in-degree – out-degree = 1, e cada um dos outros vértices tem o mesmo in-degree e out-degree

Aplicações

- Projeto de circuitos CMOS
- Reconstrução de sequências de ADN

• ...

Circuitos Eulerianos – O Algoritmo de Fleury

Algoritmo de Fleury (1883)

Assegurar que cada vértice tem grau par

- v = escolher um qualquer vértice inicial
- Em v, escolher a próxima aresta (v, w) da solução

Condição: a escolha de (v, w) não torna o grafo desconexo, a menos que seja a única escolha possível – ponte / istmo?

Adicionar (v, w) à solução

V = W

Apagar (v, w)

Apagar v, se é agora um vértice isolado

Problemas?

- Trabalhar sobre uma cópia do grafo dado
- Como verificar se uma aresta é um istmo / ponte e não pode ser apagada sem tornar o grafo desconexo ?
- Remover tentativamente a aresta e verificar se os outros vértices continuam a ser alcançáveis
 - Sucessivas travessias em profundidade, por exemplo
- O(E x E)
- Há algoritmos alternativos mais eficientes...

Tarefa: aplicar o algoritmo

[Weiss]

Sugestões de Leitura

Sugestões de leitura

- M. A. Weiss, "Data Structures and Algorithm Analysis in C++", 4th. Ed., Pearson, 2014
 - Chapter 9
- R. Sedgewick and K. Wayne, "Algorithms", 4th. Ed., Addison-Wesley, 2011
 - Chapter 4

64