Class 14: RNASeq Mini Project

Irene Hsieh (A16197563)

Run a complete RNASeq analysis workflow from counts to enriched genesets...

Data import

```
Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min
```

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,

```
rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  # Import metadata and take a peak
  metadata <- read.csv("GSE37704_metadata.csv")</pre>
  counts <- read.csv("GSE37704_featurecounts.csv", row.names =1)</pre>
```

Data Exploration

head(counts, 3)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				

```
head(metadata)
         id
                condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369
                 hoxa1_kd
                 hoxa1_kd
5 SRR493370
6 SRR493371
                 hoxa1_kd
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
```

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

metadata\$id

- [1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
 - Q. Complete the code below to remove the troublesome first column from count-Data

```
countdata <- counts [, -1]
head(countdata)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0

ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all(colnames(countdata) == metadata$id)
```

[1] TRUE

```
head(countdata,3)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

```
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res <- results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))</pre>
  head(res)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                              lfcSE
                                                           stat
                                                                     pvalue
                <numeric>
                                <numeric> <numeric> <numeric>
                                                                  <numeric>
ENSG00000279457
                  29.9136
                                0.1792571 0.3248216
                                                      0.551863 5.81042e-01
ENSG00000187634 183.2296
                                0.4264571 0.1402658
                                                      3.040350 2.36304e-03
ENSG00000188976 1651.1881
                               -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                                0.7297556 0.1318599
                                                      5.534326 3.12428e-08
ENSG00000187583
                  47.2551
                                0.0405765 0.2718928
                                                      0.149237 8.81366e-01
ENSG00000187642
                                0.5428105 0.5215599
                                                      1.040744 2.97994e-01
                  11.9798
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
     Q. Call the summary() function on your results to get a sense of how many genes
     are up or down-regulated at the default 0.1 p-value cutoff.
  summary(res)
```

```
out of 15975 with nonzero total read count adjusted p-value < 0.1 LFC > 0 (up) : 4349, 27\%
```

```
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

plot( res$log2FoldChange, -log(res$padj) )</pre>
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01 ) & (abs(res$log2FoldChange) > 2 )
```



```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
               mapIds(org.Hs.eg.db,
  res$name =
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                  baseMean log2FoldChange
                                              lfcSE
                                                          stat
                                                                    pvalue
                 <numeric>
                                <numeric> <numeric> <numeric>
                                                                 <numeric>
                 29.913579
                                0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000279457
ENSG00000187634 183.229650
                               0.4264571 0.1402658
                                                      3.040350 2.36304e-03
                               -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000188976 1651.188076
ENSG00000187961 209.637938
                           0.7297556 0.1318599 5.534326 3.12428e-08
```

```
ENSG00000187583
                  47.255123
                                 0.0405765 0.2718928
                                                        0.149237 8.81366e-01
                                 0.5428105 0.5215599
                                                        1.040744 2.97994e-01
ENSG00000187642
                  11.979750
ENSG00000188290 108.922128
                                 2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000187608 350.716868
                                 0.2573837 0.1027266
                                                        2.505522 1.22271e-02
                                 0.3899088 0.0467163
ENSG00000188157 9128.439422
                                                        8.346304 7.04321e-17
ENSG00000237330
                                 0.7859552 4.0804729
                                                        0.192614 8.47261e-01
                   0.158192
                                 symbol
                       padj
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.86555e-01
                                     NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                             148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                              26155 NOC2 like nucleolar ..
                                  NOC2L
ENSG00000187961 1.13413e-07
                                             339451 kelch like family me..
                                 KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                              84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                              84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.30538e-24
                                   HES4
                                              57801 hes family bHLH tran..
                                  ISG15
ENSG00000187608 2.37452e-02
                                                9636 ISG15 ubiquitin like..
ENSG00000188157 4.21963e-16
                                   AGRN
                                             375790
                                                                      agrin
ENSG00000237330
                                 RNF223
                                             401934 ring finger protein ...
```

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                               "1549"
                                                                         "1551"
 [9] "1553"
               "1576"
                        "1577"
                                            "1807"
                                  "1806"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                     "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                           "54657"
                                                     "54658"
                                                               "54659"
                                                                         "54963"
[33] "574537" "64816"
                                            "7172"
                        "7083"
                                  "7084"
                                                     "7363"
                                                               "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                            "7378"
                                                     "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
                        "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                             "10622"
                                                      "10623"
                                                                "107"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                                                "112"
                                                                          "113"
                                   "111"
                                             "11128"
                                                      "11164"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                "158"
                                                                          "159"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                "205"
                                                                          "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                             "25885"
                                                      "2618"
                                                                "26289"
                                                                          "270"
                         "272"
                                             "2977"
 [41] "271"
                "27115"
                                   "2766"
                                                      "2982"
                                                                "2983"
                                                                          "2984"
                "2987"
                                                      "30834"
                                                                "318"
                                                                          "3251"
 [49] "2986"
                         "29922"
                                   "3000"
                                             "30833"
                "3614"
                         "3615"
                                   "3704"
                                                      "471"
                                                                "4830"
                                                                          "4831"
 [57] "353"
                                             "377841"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                      "4907"
                                                                "50484"
                                                                          "50940"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
                                                      "5138"
                                                                "5139"
                                                                          "5140"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                      "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                      "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                      "5431"
                                                                "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                      "5439"
                                                                "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                      "55703"
                                                                "55811"
                                                                          "55821"
                                                      "57804"
[129] "5631"
                "5634"
                         "56655"
                                   "56953"
                                             "56985"
                                                                "58497"
                                                                          "6240"
                "64425"
[137] "6241"
                         "646625" "654364" "661"
                                                      "7498"
                                                                "8382"
                                                                          "84172"
```

```
[145] "84265" "84284"
                        "84618"
                                 "8622"
                                           "8654"
                                                    "87178"
                                                             "8833"
                                                                      "9060"
[153] "9061"
                        "953"
                                 "9533"
                                           "954"
                                                    "955"
                                                             "956"
                                                                      "957"
               "93034"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                         1465
                                  51232
                                              2034
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
                                          p.geomean stat.mean
                                                                     p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
```

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04110.pathview.png
##A different PDF based output of the same data
  pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04110.pathview.pdf
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
```

```
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04330.pathview.png
    Q. Can you do the same procedure as above to plot the pathview figures for the
    top 5 down-regulated pathways?
  keggrespathways <- rownames(keggres$less)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
```

keggresids

```
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chia-chianhsieh/Desktop/BIMM 143 R/Class 14
Info: Writing image file hsa04114.pathview.png
```

Gene Oncology

```
data(go.sets.hs)
  data(go.subs.hs)
  # Focus on Biological Process subset of GO
  gobpsets = go.sets.hs[go.subs.hs$BP]
  gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
  lapply(gobpres, head)
$greater
                                             p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GD:0007610 behavior
                                          1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
                                                         113 8.519724e-05
GO:0007156 homophilic cell adhesion
                                          0.1952430
GO:0002009 morphogenesis of an epithelium 0.1952430
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1952430
                                                         424 1.432451e-04
GO:0007610 behavior
                                                         426 1.925222e-04
                                          0.1968058
GO:0060562 epithelial tube morphogenesis 0.3566193
                                                         257 5.932837e-04
GO:0035295 tube development
                                                         391 5.953254e-04
                                          0.3566193
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.843127e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.843127e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                                           352 4.286961e-15
                                         5.843127e-12
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                           362 1.169934e-14
```

1.659009e-08

1.178690e-07

142 2.028624e-11

84 1.729553e-10

GO:0007059 chromosome segregation

GO:0000236 mitotic prometaphase

```
$stats
```

```
stat.mean
                                                         exp1
GO:0007156 homophilic cell adhesion
                                            3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                            3.643242 3.643242
GO:0007610 behavior
                                            3.565432 3.565432
GO:0060562 epithelial tube morphogenesis 3.261376 3.261376
GO:0035295 tube development
                                            3.253665 3.253665
##Reactome Analysis
  sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
  print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"
  head(sig_genes)
ENSG00000117519 ENSG00000183508 ENSG00000159176 ENSG00000150938 ENSG00000116016
         "CNN3"
                       "TENT5C"
                                         "CSRP1"
                                                         "CRIM1"
                                                                          "EPAS1"
ENSG00000136068
         "FLNB"
We will write it in the text file:
  write.table(sig_genes, file="significant_genes.txt", row.names=FALSE,
              col.names=FALSE, quote=FALSE)
```

An example fig from reactome online

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

RHO GTPase cycle has the most significant "Entities p-values". The pathways listed match my previousKEGG results. The differences are that from the reactome website, you can see the data in a different interpretation of the pathways and idea of cell cycle.