MINE4201- SR - Laboratorio 1

Exploración modelos KNN

Vamos a utilizar las siguientes librerias en el laboratorio

```
!pip install numpy
!pip install scikit-surprise
!pip install pandas
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>.
     Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (1.21.6)
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>.
     Collecting scikit-surprise
       Downloading scikit-surprise-1.1.3.tar.gz (771 kB)
                                                 - 772.0/772.0 KB 12.2 MB/s eta 0:00:00
       Preparing metadata (setup.py) ... done
     Requirement already satisfied: joblib>=1.0.0 in /usr/local/lib/python3.8/dist-packages (
     Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.8/dist-packages (
     Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.8/dist-packages (1
     Building wheels for collected packages: scikit-surprise
       Building wheel for scikit-surprise (setup.py) ... done
       Created wheel for scikit-surprise: filename=scikit surprise-1.1.3-cp38-cp38-linux x86
       Stored in directory: /root/.cache/pip/wheels/af/db/86/2c18183a80ba05da35bf0fb7417aac5c
     Successfully built scikit-surprise
     Installing collected packages: scikit-surprise
     Successfully installed scikit-surprise-1.1.3
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>.
     Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (1.3.5)
     Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (1
     Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-r
     Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.8/dist-packages (
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from
pwd
     '/content'
import os
import numpy as np
import pandas as pd
from surprise import Reader
```

from surprise.model selection import train test split

from surprise import Dataset

from surprise import KNNBasic

```
from surprise import accuracy
import random

#Para garantizar reproducibilidad en resultados
seed = 10
random.seed(seed)
np.random.seed(seed)
```

Suba al servidor los archivos u.data y u.item que se encuentran en el dataset descargado, en la pestaña files

Verifique que los ratings y los items hayan sido cargados correctamente

```
#ratings.rating=ratings.rating.astype('category')
ratings.head()
```

	user_id	item_id	rating	timestamp
0	196	242	3	881250949
1	186	302	3	891717742
2	22	377	1	878887116
3	244	51	2	880606923
4	166	346	1	886397596

```
print(ratings.item_id.value_counts().tail(141))
print('----')
print(len(ratings.item_id.value_counts()))
    1673
    599
          1
    1648
          1
    1309 1
    1581
          1
    852
          1
    1505
          1
    1653
    1452
    1641
    Name: item_id, Length: 141, dtype: int64
    1682
```

items.head()

	movie id	movie title	release date	video release date	IMDb URL	unknown	Action	Adventure
0	1	Toy Story (1995)	01-Jan- 1995	NaN	http://us.imdb.com/M/title-exact?Toy%20Story%2	0	0	0
1	2	GoldenEye (1995)	01-Jan- 1995	NaN	http://us.imdb.com/M/title-exact?GoldenEye%20(0	1	1
2	3	Four Rooms (1995)	01-Jan- 1995	NaN	http://us.imdb.com/M/title- exact? Four%20Rooms%	0	0	0
3	4	Get Shorty (1995)	01-Jan- 1995	NaN	http://us.imdb.com/M/title-exact?Get%20Shorty%	0	1	0
4	5	Copycat (1995)	01-Jan- 1995	NaN	http://us.imdb.com/M/title- exact? Copycat%20(1995)	0	0	0

5 rows × 24 columns

Visualice la distribución de ratings, ¿Qué puede decir al respecto?

ratings.rating.hist(density=1, bins=5, alpha=1, stacked=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f7f3a322fd0>

import seaborn as sns
sns.histplot(ratings.rating, stat='probability')

Se identifica que hay una asimetría hacia los valores de rating positivos, esto se podría deber a alguna de las siguientes razones:

- Si la información proviene de algún sitio para calificar películas, puede ser que los usuarios hayan calificado películas que hayan visto porque les apareció como recomendada en alguan plataforma, en cuyo caso, el SR de la plataforma funciona relativamente bien
- Los usuarios vieron las películas que calificaron por voluntad propia y sin intervención de algún SR, por lo que, al ser una película de su interés, les haya terminado gustando.

En la siguiente celda se esta calculando el número de ratings por usuario y el promedio de sus calificaciones, el dataframe esta ordenado por el número de calificaciones

ratings.groupby('user_id')['rating'].agg({'count', 'mean'}).sort_values(by='count', ascending=

	count	mean
user_id		
405	737	1.834464
655	685	2.908029
13	636	3.097484
450	540	3.864815
276	518	3.465251
•••		
685	20	2.050000
475	20	3.600000
36	20	3.800000
732	20	3.700000
596	20	3.600000

943 rows × 2 columns

r_dist = ratings.groupby('user_id')['rating'].mean().reset_index()
r_dist

Utilice las siguientes celdas para encontrar respuesta a las siguientes preguntas

¿Cómo es la distribución del número de ratings por usuario?

Se identifica que más del 37% de usuarios no supera los 50 ratings y son relativamente pocos los que superan los 100 ratings, por lo que la matriz de utilidad, a crear sería dispersa, que concuerda con lo visto en clase

¿Cómo es la distribución del promedio de calificación por usuario?

Este se centra entre 3 y 4, con alrededor del 75% de usuarios ubicados en este rango, esto puede ser causado las siguientes razones:

- Los usuarios pueden tener una tendencia a calificar las películas hacia los extremos, es decir,
 5 para gusto y 1 para disgusto o similar, vemos que este puede ser el caso para algunos usuarios puesto que el histograma de calificaciones en general sí muestra que estas áreas no están vacías. Lo que al final causa que el promedio sea cercano a la mediana.
- Por otro lado, otros usuarios, que según el histograma de calificaciones, son la mayoría, tienen la tendencia a no dar ratings cercanos a extremos, sino más bien neutrales, esto se confirma ya que alrededor del 60% de las calificaciones de películas son 3 o 4.

r_dist.rating.hist()

dis_ratings_usuario = ratings.groupby('user_id')['rating'].agg({'count', 'mean'}).sort_values(
dis_ratings_usuario['count'].hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f7f31ff62e0>

En la siguiente celda se esta calculando el número de ratings por items, el promedio de sus calificaciones y la varianza de sus calificaciones.

ratings.groupby('item_id')['rating'].agg({'count', 'mean', 'var'}).join(items['movie title'], h

	count	var	mean	movie title
item_id				
1	452	0.860992	3.878319	GoldenEye (1995)
2	131	0.934116	3.206107	Four Rooms (1995)
3	90	1.470787	3.033333	Get Shorty (1995)
4	209	0.931358	3.550239	Copycat (1995)
5	86	0.895759	3.302326	Shanghai Triad (Yao a yao yao dao waipo qiao)
1678	1	NaN	1.000000	B. Monkey (1998)
1679	1	NaN	3.000000	Sliding Doors (1998)
1680	1	NaN	2.000000	You So Crazy (1994)
1681	1	NaN	3.000000	Scream of Stone (Schrei aus Stein) (1991)
1682	1	NaN	3.000000	NaN

1682 rows × 4 columns

mt

Utilice las siguientes celdas para encontrar la respuesta a las siguientes preguntas

¿Cuáles son los items con más calificaciones?

Nombre	Cantidad de calificaciones
Legends of the Fall (1994)	583
George of the Jungle (1997)	509
Heavy Metal (1981)	508
GoodFellas (1990)	507
Breakdown (1997)	485
Marvin's Room (1996)	481
Evita (1996)	478
GoldenEye (1995)	452
In & Out (1997)	431
Cable Guy, The (1996)	429

¿Se puede observar el fenomeno de cola larga en este dataset?

• Sí se puede observar una cola larga porque cerca del 47% de calificaciones ocurren únicamente en las 300 películas con mas ratings, con el 15% centrado en el top 100

```
mt=ratings.groupby('item_id')['rating'].agg({'count','mean','var'}).join(items['movie title']
```

2/17/23, 8:55 PM Lab1_09_a_garcia13_fj_correa10_ce_rozob.ipynb - Colaboratory count movie title var mean item id 150 0 060000 2 070210 ColdonEva (1005) mt.hist() array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f7f31f73940>, <matplotlib.axes._subplots.AxesSubplot object at 0x7f7f31f1beb0>], [<matplotlib.axes._subplots.AxesSubplot object at 0x7f7f31ed5310>, <matplotlib.axes._subplots.AxesSubplot object at 0x7f7f31f04730>]], dtype=object) count var 1000 1000 500 500 ²⁰⁰mean⁴⁰⁰ 600 0.0 2.5 5.0 7.5 400 200

```
mt['count'][0:4].sum()
     882
mt['count'][0:100].sum()
     14892
mt['count'][0:300].sum()
     47063
mt.sort values(by='count', ascending=False)
```

	count	var	mean	movie title
item_id				
50	583	0.776762	4.358491	Legends of the Fall (1994)
258	509	0.988885	3.803536	George of the Jungle (1997)
100	508	0.952100	4.155512	Heavy Metal (1981)
181	507	0.853693	4.007890	GoodFellas (1990)
294	485	1.206799	3.156701	Breakdown (1997)
1576	1	NaN	1.000000	Death in the Garden (Mort en ce jardin, La) (1

Creación de listas de recomendación no personalizadas

Genere inicialmente una lista de recomendación de tamaño 10 no personalizada con los items con mejor promedio, en teoría estos son los mejores items del dataset.

¿Qué problemas tiene generar una lista no personalizada solamente con el promedio?

 No se tienen en cuenta la cantidad de calificaciones, por lo que items con pocas pero buenas calificaciones terminan siendo los recomendados.

¿Es posible generar una mejor lista de recomendación teniendo en cuenta que tanto el número de ratings del item como su promedio?

Sí, usando el score Wilson para un parámetro de Bernoulli tal cual lo menciona el enlace #1

Ver:

http://www.evanmiller.org/how-not-to-sort-by-average-rating.html

https://es.wikipedia.org/wiki/Intervalo_de_confianza

```
list_no_per = mt.sort_values(by='mean', ascending=False)
list_no_per.pop('var')
list_no_per[0:10].sort_values(by='count', ascending=False)
```

	count	mean	movie title
item_id			
1293	3	5.0	Ayn Rand: A Sense of Life (1997)
1189	3	5.0	That Old Feeling (1997)
1500	2	5.0	Prisoner of the Mountains (Kavkazsky Plennik)
1467	2	5.0	Cure, The (1995)
814	1	5.0	One Fine Day (1996)
ratings[rating	s.item_	_id ==	3].count()
user_id item_id rating timestamp dtype: in			
1536	1	5 0	Cosi (1996)
ratings[rating	s.item_	_id ==	3].rating.mean()

3.033333333333333

genera nueva columna de ratings positivos, para aquellos > 3
ratings['pos'] = ratings.rating.apply(lambda x: True if x > 3 else False)
ratings

	user_id	item_id	rating	timestamp	pos
0	196	242	3	881250949	False
1	186	302	3	891717742	False
2	22	377	1	878887116	False
3	244	51	2	880606923	False
4	166	346	1	886397596	False
99995	880	476	3	880175444	False
99996	716	204	5	879795543	True
99997	276	1090	1	874795795	False
99998	13	225	2	882399156	False
99999	12	203	3	879959583	False

100000 rows × 5 columns

```
ratings_pos = ratings.groupby('item_id').pos.sum()
```

```
ratings_pos
```

```
item id
1
        321
2
         51
3
         34
4
        122
5
         39
1678
1679
1680
1681
          0
          0
1682
Name: pos, Length: 1682, dtype: int64
```

mr_pos = ratings.groupby('item_id')['rating'].agg({'count', 'mean', 'var'}).join(ratings_pos, h

mr_pos

	count	var	mean	pos	movie title
item_id					
1	452	0.860992	3.878319	321	GoldenEye (1995)
2	131	0.934116	3.206107	51	Four Rooms (1995)
3	90	1.470787	3.033333	34	Get Shorty (1995)
4	209	0.931358	3.550239	122	Copycat (1995)
5	86	0.895759	3.302326	39	Shanghai Triad (Yao a yao yao dao waipo qiao)
1678	1	NaN	1.000000	0	B. Monkey (1998)
1679	1	NaN	3.000000	0	Sliding Doors (1998)
1680	1	NaN	2.000000	0	You So Crazy (1994)
1681	1	NaN	3.000000	0	Scream of Stone (Schrei aus Stein) (1991)
1682	1	NaN	3.000000	0	NaN

1682 rows × 5 columns

```
# crea lower_bound que es el rating mínimo @95% de confianza
def low_bound(x):
   z = 1.96
   pos = x['pos']
```

```
n = x['count']
phat = pos/n
a = phat*(1-phat)
b = z**2/(4*n)
sqrt = np.sqrt((a + b)/n)
lb = (phat + z**2/(2*n) - z*sqrt)/(1+z**2/n)
return lb

mr_pos['low_bound'] = mr_pos.apply(low_bound, axis=1)
```

	count	var	mean	pos	movie title	low_b
item_id						
1	452	0.860992	3.878319	321	GoldenEye (1995)	0.66
2	131	0.934116	3.206107	51	Four Rooms (1995)	0.31
3	90	1.470787	3.033333	34	Get Shorty (1995)	0.28
4	209	0.931358	3.550239	122	Copycat (1995)	0.51
5	86	0.895759	3.302326	39	Shanghai Triad (Yao a yao yao dao waipo qiao)	0.35
1678	1	NaN	1.000000	0	B. Monkey (1998)	0.00
1679	1	NaN	3.000000	0	Sliding Doors (1998)	0.00
1680	1	NaN	2.000000	0	You So Crazy (1994)	0.00
1681	1	NaN	3.000000	0	Scream of Stone (Schrei aus Stein) (1991)	0.00
1682	1	NaN	3.000000	0	NaN	0.00

1682 rows × 6 columns

```
rec_lb = mr_pos.sort_values(by='low_bound', ascending=False)
rec_lb.pop('var')
rec_lb[0:10]
```

	count	mean	pos	movie title	low_bound
item_i	.d				
64	283	4.445230	255	What's Eating Gilbert Grape (1993)	0.860720
479	179	4.251397	162	North by Northwest (1959)	0.853178
318	298	4.466443	265	Everyone Says I Love You (1996)	0.848560
98	390	4.289744	344	Snow White and the Seven Dwarfs (1937)	0.846252
483	243	4.456790	216	Maltese Falcon, The (1941)	0.843166

rec_lb

	count	mean	pos	movie title	low_bound
item_id					
64	283	4.445230	255	What's Eating Gilbert Grape (1993)	8.607198e-01
479	179	4.251397	162	North by Northwest (1959)	8.531785e-01
318	298	4.466443	265	Everyone Says I Love You (1996)	8.485604e-01
98	390	4.289744	344	Snow White and the Seven Dwarfs (1937)	8.462516e-01
483	243	4.456790	216	Maltese Falcon, The (1941)	8.431665e-01
788	3	1.666667	0	Swimming with Sharks (1995)	0.000000e+00
1408	3	1.000000	0	Swan Princess, The (1994)	0.000000e+00
1407	20	2.250000	0	Gordy (1995)	0.000000e+00
1682	1	3.000000	0	NaN	0.000000e+00
103	15	1.866667	0	Theodore Rex (1995)	-2.209651e-17

1682 rows × 5 columns

Creación del dataset de entrenamiento y prueba

El próximo paso es cargar los datos a surprise, para esto vamos a inicializar un modelo de datos de surprise con la información de los ratings cargados en el dataframe

```
reader = Reader( rating_scale = ( 1, 5 ) )
#Se crea el dataset a partir del dataframe
surprise_dataset = Dataset.load_from_df( ratings[ [ 'user_id', 'item_id', 'rating' ] ], reade
```

Se divide el dataset en entrenamiento y test. El dataset de entrenamiento será presentado al algoritmo de recomendación y el dataset de test nos servirá para medir qué tan buenas fueron las predicciones del sistema de recomendación. El conjunto de test generado es una lista con los ratings de prueba

```
train_set, test_set= train_test_split(surprise_dataset, test_size=.2)

train_set.n_ratings
    80000

len(test_set)
    20000

#Este es el primer elemento del dataset de prueba (usuario 154, pelicula 302, rating 4)
test_set[0]
    (154, 302, 4.0)
```

Creación de modelo de filtrado colaborativo basado en similitud con usuarios o items cercanos

Surprise cuenta con la implementación de los modelos colaborativos dentro de la clase <u>KNNBasic</u> El modelo recibe los siguientes parámetros:

- k: El máximo número de vecinos con el que se hará la extrapolación
- min_k : El mínimo número de vecinos con el que se extrapolará un rating
- sim_options: Opciones de similitud pasadas como un diccionario de python, aqui se le
 configura al modelo el tipo de similitud a usar para encontrar los vecinos y si la extrapolación
 debe hacerse usando usuarios o items similares. Revise el formato y similitudes disponibles
 en surprise en este link

```
#Se le pasa la matriz de utilidad al algoritmo
algo.fit(trainset=train set)
```

#Verifique la propiedad est de la predicción

```
Computing the cosine similarity matrix...

Done computing similarity matrix.

<surprise.prediction algorithms.knns.KNNBasic at 0x7f7f31db1a00>
```

Una vez cargados los ratings al modelo, se puede realizar una predicción para un usuario, en este caso vamos a calcular la predicción que el modelo esta realizando para la primera entrada del dataset de test la predicción para el usuario con id 154 y el item con id 302, que corresponde a la película L.A. Confidential (1997)

```
algo.predict(154,302)
Prediction(uid=154, iid=302, r ui=None, est=4.249202065377386, details={'actual k': 20,
```

items[items['movie id']==302]

'was impossible': False})

	movie id	movie title	release date	video release date	IMDb URL	unknown	Action	Advent
301	302	L.A. Confidential (1997)	01-Jan- 1997	NaN	http://us.imdb.com/M/title- exact? L%2EA%2E+Conf	0	0	

¹ rows × 24 columns

Como podemos ver, la predicción (4.24) del modelo no esta alejada de lo que realmente opinó el usuario (4.0)

Para medir la calidad de la predicción para todos los usuarios e items del dataset de prueba, vamos a comparar lo que dice el modelo de predicción vs lo que dice el conjunto de prueba, para esto vamos a usar la métrica RMSE

Inicialmente calculamos la predicción para todos los elementos del conjunto de test

```
test_predictions=algo.test(test_set)
#5 primeras predicciones
test predictions[0:5]
```

```
[Prediction(uid=154, iid=302, r_ui=4.0, est=4.249202065377386, details={'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=896, iid=484, r_ui=4.0, est=2.8976616922320964, details={'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=230, iid=371, r_ui=4.0, est=4.1968378983432535, details={'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=234, iid=294, r_ui=3.0, est=3.0978778071364186, details={'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=25, iid=729, r_ui=4.0, est=4.148885433441103, details={'actual_k': 20, 'was_impossible': False})]
```

Ahora se mide el RMSE de las predicciones vs el valor del dataset

```
# En promedio, el sistema encuentra ratings que estan una estrella por encima o por debajo de
accuracy.rmse( test_predictions, verbose = True )
```

```
RMSE: 1.0453
1.0453343976192102
```

Utilice las siguientes celdas para encontrar la respuesta a las siguientes preguntas

¿Cuál es el RMSE de un modelo usuario-usuario con los mismos parámetros de similitud?

```
# se crea un modelo knnbasic user-user con similitud coseno
sim user user = {'name': 'cosine',
               'user based': True
algo_user = KNNBasic(k=20, min_k=2, sim_options=sim_options)
#Se le pasa la matriz de utilidad al algoritmo
algo_user.fit(trainset=train set)
     Computing the cosine similarity matrix...
     Done computing similarity matrix.
     <surprise.prediction algorithms.knns.KNNBasic at 0x7f7f320b34c0>
test predictions user=algo user.test(test set)
#5 primeras predicciones
test predictions[0:5]
     [Prediction(uid=154, iid=302, r ui=4.0, est=4.249202065377386, details={ 'actual k': 20,
     'was impossible': False}),
      Prediction(uid=896, iid=484, r ui=4.0, est=2.8976616922320964, details={'actual k':
     20, 'was impossible': False}),
```

```
Prediction(uid=230, iid=371, r_ui=4.0, est=4.1968378983432535, details={'actual_k':
    20, 'was_impossible': False}),
    Prediction(uid=234, iid=294, r_ui=3.0, est=3.0978778071364186, details={'actual_k':
    20, 'was_impossible': False}),
    Prediction(uid=25, iid=729, r_ui=4.0, est=4.148885433441103, details={'actual_k': 20, 'was_impossible': False})]

accuracy.rmse( test_predictions_user, verbose = True )

RMSE: 1.0453
    1.0453343976192102
```

 La predicción con usuario-usuario y mismos parámetros es relativamente acertada, 4.35 vs valor real de 4

¿Cuál es el efecto de cambiar el número de vecinos en la calidad del modelo usuario-usuario?

```
# se crea un modelo knnbasic user-user con similitud coseno
sim user user = {'name': 'cosine',
               'user based': True
algo user = KNNBasic(k=5, min k=2, sim options=sim options)
#Se le pasa la matriz de utilidad al algoritmo
algo user.fit(trainset=train set)
     Computing the cosine similarity matrix...
     Done computing similarity matrix.
     <surprise.prediction_algorithms.knns.KNNBasic at 0x7f7f320d6d60>
test predictions user=algo user.test(test set)
#5 primeras predicciones
test predictions[0:5]
     [Prediction(uid=154, iid=302, r ui=4.0, est=4.249202065377386, details={'actual k': 20,
     'was impossible': False}),
     Prediction(uid=896, iid=484, r ui=4.0, est=2.8976616922320964, details={'actual k':
     20, 'was impossible': False}),
     Prediction(uid=230, iid=371, r ui=4.0, est=4.1968378983432535, details={'actual k':
     20, 'was impossible': False}),
     Prediction(uid=234, iid=294, r_ui=3.0, est=3.0978778071364186, details={'actual_k':
     20, 'was impossible': False}),
     Prediction(uid=25, iid=729, r_ui=4.0, est=4.148885433441103, details={'actual_k': 20,
     'was impossible': False})]
accuracy.rmse( test_predictions_user, verbose = True )
```

```
RMSE: 1.1726
     1.172646283763197
# se crea un modelo knnbasic user-user con similitud coseno
sim user user = {'name': 'cosine',
               'user based': True
algo_user = KNNBasic(k=40, min_k=2, sim_options=sim_options)
#Se le pasa la matriz de utilidad al algoritmo
algo user.fit(trainset=train set)
test predictions user=algo user.test(test set)
#5 primeras predicciones
test predictions[0:5]
     Computing the cosine similarity matrix...
     Done computing similarity matrix.
     [Prediction(uid=154, iid=302, r ui=4.0, est=4.249202065377386, details={'actual k': 20,
     'was impossible': False}),
     Prediction(uid=896, iid=484, r ui=4.0, est=2.8976616922320964, details={'actual k':
     20, 'was_impossible': False}),
      Prediction(uid=230, iid=371, r ui=4.0, est=4.1968378983432535, details={'actual k':
     20, 'was impossible': False}),
     Prediction(uid=234, iid=294, r ui=3.0, est=3.0978778071364186, details={'actual k':
     20, 'was impossible': False}),
     Prediction(uid=25, iid=729, r ui=4.0, est=4.148885433441103, details={'actual k': 20,
     'was impossible': False})]
accuracy.rmse( test predictions user, verbose = True )
     RMSE: 1.0233
     1.0233433210068106
```

• el RMSE mejoro aumentando el numero de vecinos, y empeoro disminuyendolo

Generando listas de predicciones para los usuarios

Retomemos nuestro modelo inicial y ajustémolo con todos los ratings disponibles

Para generar una lista de recomendación se debe crear un dataset de "test" con las entradas faltantes de la matriz utilidad para que el modelo cree las predicciones (terminar de llenar la matriz de utilidad)

```
#Se crea el dataset para modelo
rating_data=surprise_dataset.build_full_trainset()
# Se crea dataset de "prueba" con las entradas faltantes para generar las predicciones
test=rating_data.build_anti_testset()
```

```
# se crea el mismo modelo que el del ejemplo
sim options = {'name': 'cosine',
               'user based': False # calcule similitud item-item
algo = KNNBasic(k=20, min_k=2, sim_options=sim_options)
algo.fit(rating data)
predictions=algo.test(test)
     Computing the cosine similarity matrix...
     Done computing similarity matrix.
#10 primeras predicciones
predictions[0:10]
     [Prediction(uid=196, iid=302, r ui=3.52986, est=3.4998074068929244, details=
     {'actual_k': 20, 'was_impossible': False}).
     Prediction(uid=196, iid=377, r ui=3.52986, est=3.531852919263047, details={'actual k':
     20, 'was impossible': False}),
     Prediction(uid=196, iid=51, r ui=3.52986, est=3.59549677885145, details={'actual k':
     20, 'was_impossible': False}),
     Prediction(uid=196, iid=346, r ui=3.52986, est=3.5471070543165877, details=
     {'actual k': 20, 'was impossible': False}),
      Prediction(uid=196, iid=474, r ui=3.52986, est=3.7990088769026116, details=
     {'actual_k': 20, 'was_impossible': False}),
      Prediction(uid=196, iid=265, r ui=3.52986, est=3.4464297466659812, details=
     {'actual k': 20, 'was impossible': False}),
      Prediction(uid=196, iid=465, r ui=3.52986, est=3.5022156502733557, details=
     {'actual_k': 20, 'was_impossible': False}),
     Prediction(uid=196, iid=451, r ui=3.52986, est=3.6948301041629965, details=
     {'actual k': 20, 'was impossible': False}),
     Prediction(uid=196, iid=86, r ui=3.52986, est=3.750152492406962, details={'actual k':
     20, 'was impossible': False}),
     Prediction(uid=196, iid=1014, r ui=3.52986, est=3.345072753258412, details=
     {'actual k': 20, 'was impossible': False})]
#Predicciones para usuario 196
user predictions=list(filter(lambda x: x[0]==196,predictions))
#Ordenamos de mayor a menor estimación de relevancia
user predictions.sort(key=lambda x : x.est, reverse=True)
#tomamos las 10 primeras predicciones
user predictions=user predictions[0:10]
user predictions
     [Prediction(uid=196, iid=1309, r_ui=3.52986, est=4.5, details={'actual k': 4,
     'was impossible': False}),
      Prediction(uid=196, iid=1310, r ui=3.52986, est=4.5, details={'actual k': 4,
     'was impossible': False}),
```

```
Prediction(uid=196, iid=1676, r ui=3.52986, est=4.25, details={'actual k': 8,
     'was impossible': False}),
     Prediction(uid=196, iid=1675, r ui=3.52986, est=4.25, details={'actual k': 8,
     'was impossible': False}),
      Prediction(uid=196, iid=1289, r ui=3.52986, est=4.202435603862276, details=
    {'actual k': 20, 'was impossible': False}),
      Prediction(uid=196, iid=1643, r ui=3.52986, est=4.097225899300029, details=
     {'actual_k': 20, 'was_impossible': False}),
      Prediction(uid=196, iid=1593, r_ui=3.52986, est=4.090909090909091, details=
     {'actual_k': 11, 'was_impossible': False}),
     Prediction(uid=196, iid=935, r ui=3.52986, est=4.05136705364539, details={'actual k':
    20, 'was impossible': False}),
     Prediction(uid=196, iid=1216, r_ui=3.52986, est=4.0506920732628675, details=
    {'actual k': 20, 'was impossible': False}),
     Prediction(uid=196, iid=1312, r ui=3.52986, est=4.049246841254085, details=
    {'actual_k': 20, 'was_impossible': False})]
#Se convierte a dataframe
```

labels = ['movie id', 'estimation']
df_predictions = pd.DataFrame.from_records(list(map(lambda x: (x.iid, x.est) , user_predictio

#Lo unimos con el dataframe de películas
df predictions.merge(items[['movie id','movie title','IMDb URL ']], how='left', on='movie id'

ΙΙ	movie title	estimation	movie id	
http://us.imdb.com/M/title-exact?Very%20l	Very Natural Thing, A (1974)	4.500000	1309	0
http://us.imdb.com/M/title-exact?Walk%20i	Walk in the Sun, A (1945)	4.500000	1310	1
http://us.imdb.com/M/title-exact?War%20at%	War at Home, The (1996)	4.250000	1676	2
http://us.imdb.com/M/title-exact?Sunchase	Sunchaser, The (1996)	4.250000	1675	3
http://us.imdb.com/M/title-exact?Jack%20an	Jack and Sarah (1995)	4.202436	1289	4
http://us.imdb.com/Title?Angel+Baby+	Angel Baby (1995)	4.097226	1643	5
http://us.imdb.com/M/title-exact?Death%20	Death in Brunswick (1991)	4.090909	1593	6
http://us.imdb.com/M/title-exact?Paradise%	Paradise Road (1997)	4.051367	935	7
http://us.imdb.com/M/title-exact?Kissed%20	Kissed (1996)	4.050692	1216	8
http://us.imdb.com/M/title-exact?Pompatus	Pompatus of Love, The (1996)	4.049247	1312	9

Utilice las siguientes celdas para encontrar la respuesta a las siguientes preguntas

Cree al menos 2 usuarios (al primero asígnele el id 944) y cree para cada usuario ratings nuevos (puede hacerlo haciendo a traves del <u>dataframe</u>, o añadiendo líneas al archivo). Asigne a un usuario

preferencias de un segmento popular (mainstream) y a otro preferencias de un nicho.

¿Que tan bien cree que el sistema esta respondiendo a los gustos del usuario?

¿Que tan bien cree que el sistema esta respondiendo al objetivo de buscar items para el usuario dentro de la cola larga?

```
ratings['user id'].max()+1
     944
num_items_rated = ratings.groupby('user_id')['item_id'].nunique()
num items rated
     user id
            272
     2
             62
     3
             54
     4
             24
     5
            175
     939
            49
     940
            107
     941
            22
             79
     942
     943
            168
     Name: item id, Length: 943, dtype: int64
num items rated.mean()
     106.04453870625663
item counts = ratings['item id'].value counts()
median count = item counts.median()
mainstream_items = []
niche items = []
for item, count in item counts.iteritems():
    if count >= median count:
        mainstream items.append(item)
    else:
        niche items.append(item)
print("Mainstream items:", len(mainstream items))
print("Niche items:", len(niche_items))
     Mainstream items: 844
     Niche items: 838
```

$\stackrel{\textstyle \square}{\rightarrow}$		item_id	count	mean	pos	movie title	low_bound
	0	64	283	4.445230	255	What's Eating Gilbert Grape (1993)	8.607198e-01
	1	479	179	4.251397	162	North by Northwest (1959)	8.531785e-01
	2	318	298	4.466443	265	Everyone Says I Love You (1996)	8.485604e-01
	3	98	390	4.289744	344	Snow White and the Seven Dwarfs (1937)	8.462516e-01
	4	483	243	4.456790	216	Maltese Falcon, The (1941)	8.431665e-01
							•••
	1677	788	3	1.666667	0	Swimming with Sharks (1995)	0.000000e+00
	1678	1408	3	1.000000	0	Swan Princess, The (1994)	0.000000e+00
	1679	1407	20	2.250000	0	Gordy (1995)	0.000000e+00
	1680	1682	1	3.000000	0	NaN	0.000000e+00
	1681	103	15	1.866667	0	Theodore Rex (1995)	-2.209651e-17

1682 rows × 6 columns

	user_id	item_id	rating
0	944	50	4
1	944	258	4
2	944	100	4

updated_rating_df = pd.concat([ratings, new_user_df], ignore_index=True)
updated_rating_df.shape

(100106, 5)

updated_rating_df.tail(106)

	user_id	item_id	rating	timestamp	pos
100000	944	50	4	NaN	NaN
100001	944	258	4	NaN	NaN
100002	944	100	4	NaN	NaN
100003	944	181	4	NaN	NaN
100004	944	294	3	NaN	NaN
100101	944	435	4	NaN	NaN
100102	944	508	4	NaN	NaN
100103	944	88	4	NaN	NaN
100104	944	215	4	NaN	NaN
100105	944	271	3	NaN	NaN

106 rows × 5 columns

```
ratings['user_id'].max()+2
```

import random

945

random_niche_items = random.sample(niche_items, math.floor(num_items_rated.mean()))

new_user_df = pd.DataFrame(new_user_data_2)
new_user_df

	user_id	item_id	rating
0	945	1623	4
1	945	704	3
2	945	1383	2
3	945	1496	3
4	945	1357	3
101	945	1501	3
102	945	1145	3
103	945	733	3
104	945	1550	3
105	945	913	2

106 rows × 3 columns

updated_rating_df = pd.concat([updated_rating_df, new_user_df], ignore_index=True)
updated_rating_df.shape

(100212, 5)

updated rating df.tail(106)

```
user id item_id rating timestamp
                                                   pos
      100106
                 945
                         1623
                                            NaN NaN
                                            reader = Reader( rating scale = ( 1, 5 ) )
#Se crea el dataset a partir del dataframe
surprise_dataset = Dataset.load_from_df( updated_rating_df[ [ 'user_id', 'item_id', 'rating'
train set, test set= train test split(surprise dataset, test size=.2)
print(train set.n ratings)
print(len(test set))
    80169
     20043
     100208
                 945
                         1145
                                    3
                                            Nan Nan
#Se crea el dataset para modelo
rating data=surprise dataset.build full trainset()
# Se crea dataset de "prueba" con las entradas faltantes para generar las predicciones
test=rating data.build anti testset()
# se crea el mismo modelo que el del ejemplo
sim_options = {'name': 'cosine',
               'user based': False # calcule similitud item-item
algo = KNNBasic(k=20, min_k=2, sim_options=sim_options)
algo.fit(rating data)
predictions=algo.test(test)
     Computing the cosine similarity matrix...
    Done computing similarity matrix.
#Predicciones para usuario 944
user_predictions=list(filter(lambda x: x[0]==944,predictions))
#Ordenamos de mayor a menor estimación de relevancia
user predictions.sort(key=lambda x : x.est, reverse=True)
#tomamos las 10 primeras predicciones
user_predictions=user_predictions[0:10]
user_predictions
     [Prediction(uid=196, iid=1309, r ui=3.5293477827006745, est=4.5, details={'actual k':
    4, 'was impossible': False}),
      Prediction(uid=196, iid=1310, r ui=3.5293477827006745, est=4.5, details={'actual k':
    4, 'was impossible': False}),
      Prediction(uid=196, iid=1676, r ui=3.5293477827006745, est=4.25, details={'actual k':
    8, 'was impossible': False}),
      Prediction(uid=196, iid=1675, r_ui=3.5293477827006745, est=4.25, details={'actual_k':
```

```
8, 'was_impossible': False}),
    Prediction(uid=196, iid=1289, r_ui=3.5293477827006745, est=4.202435603862276, details=
    {'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=196, iid=1643, r_ui=3.5293477827006745, est=4.097225899300029, details=
    {'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=196, iid=1593, r_ui=3.5293477827006745, est=4.090909090909091, details=
    {'actual_k': 11, 'was_impossible': False}),
    Prediction(uid=196, iid=935, r_ui=3.5293477827006745, est=4.05136705364539, details=
    {'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=196, iid=1216, r_ui=3.5293477827006745, est=4.0506920732628675,
    details={'actual_k': 20, 'was_impossible': False}),
    Prediction(uid=196, iid=1312, r_ui=3.5293477827006745, est=4.049246841254085, details=
    {'actual_k': 20, 'was_impossible': False})]
```

```
#Se convierte a dataframe
labels = ['movie id', 'estimation']
df_predictions = pd.DataFrame.from_records(list(map(lambda x: (x.iid, x.est) , user_prediction)
```

#Lo unimos con el dataframe de películas
df_predictions.merge(items[['movie id','movie title','IMDb URL ']], how='left', on='movie id'

IN	movie title	estimation	movie id	
http://us.imdb.com/M/title-exact?Very%201	Very Natural Thing, A (1974)	4.500000	1309	0
http://us.imdb.com/M/title-exact?Walk%20i	Walk in the Sun, A (1945)	4.500000	1310	1
http://us.imdb.com/M/title-exact?War%20at%	War at Home, The (1996)	4.250000	1676	2
http://us.imdb.com/M/title-exact?Sunchase	Sunchaser, The (1996)	4.250000	1675	3
http://us.imdb.com/M/title-exact?Jack%20ar	Jack and Sarah (1995)	4.202436	1289	4
http://us.imdb.com/Title?Angel+Baby+	Angel Baby (1995)	4.097226	1643	5
http://us.imdb.com/M/title-exact?Death%20	Death in Brunswick (1991)	4.090909	1593	6
http://us.imdb.com/M/title-exact?Paradise%	Paradise Road (1997)	4.051367	935	7
http://us.imdb.com/M/title-exact?Kissed%20	Kissed (1996)	4.050692	1216	8
http://us.imdb.com/M/title-exact?Pompatus	Pompatus of Love, The (1996)	4.049247	1312	9

```
#Predicciones para usuario 945
user_predictions=list(filter(lambda x: x[0]==945,predictions))
```

```
#Ordenamos de mayor a menor estimación de relevancia
user_predictions.sort(key=lambda x : x.est, reverse=True)
```

#tomamos las 10 primeras predicciones
user_predictions=user_predictions[0:10]
user predictions

```
[Prediction(uid=945, iid=1656, r_ui=3.5293477827006745, est=4.0, details={'actual_k':
3, 'was impossible': False}),
 Prediction(uid=945, iid=1515, r ui=3.5293477827006745, est=4.0, details={'actual k':
3, 'was impossible': False}),
 Prediction(uid=945, iid=1536, r_ui=3.5293477827006745, est=3.666666666666665,
details={'actual k': 6, 'was impossible': False}),
 Prediction(uid=945, iid=1236, r_ui=3.5293477827006745, est=3.5293477827006745,
details={'was impossible': True, 'reason': 'Not enough neighbors.'}),
 Prediction(uid=945, iid=1533, r_ui=3.5293477827006745, est=3.5293477827006745,
details={'was impossible': True, 'reason': 'Not enough neighbors.'}),
 Prediction(uid=945, iid=1472, r ui=3.5293477827006745, est=3.5293477827006745,
details={'was_impossible': True, 'reason': 'Not enough neighbors.'}),
 Prediction(uid=945, iid=1235, r ui=3.5293477827006745, est=3.5293477827006745,
details={'was impossible': True, 'reason': 'Not enough neighbors.'}),
 Prediction(uid=945, iid=1526, r ui=3.5293477827006745, est=3.5293477827006745,
details={'was impossible': True, 'reason': 'Not enough neighbors.'}),
 Prediction(uid=945, iid=1596, r ui=3.5293477827006745, est=3.5293477827006745,
details={'was_impossible': True, 'reason': 'Not enough neighbors.'}),
Prediction(uid=945, iid=1414, r ui=3.5293477827006745, est=3.5293477827006745,
details={'was impossible': True, 'reason': 'Not enough neighbors.'})]
```

```
#Se convierte a dataframe
labels = ['movie id', 'estimation']
df_predictions = pd.DataFrame.from_records(list(map(lambda x: (x.iid, x.est) , user_prediction)
```

#Lo unimos con el dataframe de películas
df predictions.merge(items[['movie id','movie title','IMDb URL ']], how='left', on='movie id'

	movie title	estimation	movie id	
http://us.imdb.com/M	Little City (1998)	4.000000	1656	0
http://us.imdb.com/M/title-	Wings of Courage (1995)	4.000000	1515	1
http://us.imdb.com/M/title	Aiqing wansui (1994)	3.666667	1536	2
http://us.imdb.com/M	Other Voices, Other Rooms (1997)	3.529348	1236	3
http://us.imdb.com/M/title-e:	I Don't Want to Talk About It (De eso no se ha	3.529348	1533	4
http://us.imdb.com/M/t	Visitors, The (Visiteurs, Les) (1993)	3.529348	1472	5
http://us.imdb.com/M	Big Bang Theory, The (1994)	3.529348	1235	6
http://us.imdb.com/M/ti	Witness (1985)	3.529348	1526	7
http://us.imdb.com/M/title-	Nemesis 2: Nebula (1995)	3.529348	1596	8
http://us.imdb.com/M/title	Coldblooded (1995)	3.529348	1414	9

Experimentacion con lenskit

!pip install lenskit

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/publications</a>
Requirement already satisfied: lenskit in /usr/local/lib/python3.8/dist-packages (0.14.2
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (fr
Requirement already satisfied: numba<0.57,>=0.51 in /usr/local/lib/python3.8/dist-packas
Requirement already satisfied: binpickle>=0.3.2 in /usr/local/lib/python3.8/dist-package
Requirement already satisfied: csr>=0.3.1 in /usr/local/lib/python3.8/dist-packages (fro
Requirement already satisfied: seedbank>=0.1.0 in /usr/local/lib/python3.8/dist-packages
Requirement already satisfied: pandas==1.*,>=1.0 in /usr/local/lib/python3.8/dist-packas
Requirement already satisfied: cffi>=1.12.2 in /usr/local/lib/python3.8/dist-packages (1
Requirement already satisfied: scipy>=1.2 in /usr/local/lib/python3.8/dist-packages (fro
Requirement already satisfied: psutil>=5 in /usr/local/lib/python3.8/dist-packages (from
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-r
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (1
Requirement already satisfied: msgpack>=1.0 in /usr/local/lib/python3.8/dist-packages (1
Requirement already satisfied: pycparser in /usr/local/lib/python3.8/dist-packages (from
Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/python3.8/di
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.8/dist-packata
Requirement already satisfied: setuptools in /usr/local/lib/python3.8/dist-packages (from
Requirement already satisfied: anyconfig in /usr/local/lib/python3.8/dist-packages (from
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.8/dist-packages (from
```

```
import pandas as pd
import lenskit
from lenskit.algorithms import Recommender
from lenskit.algorithms.item knn import ItemItem
from lenskit.data import PandasRatingData
# load the ratings and items dataframes
ratings = pd.read_csv('/content/u.data', sep='\t', names=['user_id', 'item_id', 'rating', 'ti
items = pd.read csv('/content/u.item', sep='|', names=['item id', 'title', 'release date', 'v
# create the lenskit dataset
data = PandasRatingData(ratings, timestamp='timestamp')
# fit the model
algo = ItemItem(20)
algo.fit(ratings)
# generate recommendations for a user
user id = 1
user_items = ratings.loc[ratings['user_id'] == user_id, 'item_id']
```

recommendations = algo.recommend(user id, user items, n=10)

```
Lab1_09_a_garcia13_fj_correa10_ce_rozob.ipynb - Colaboratory
# print the recommended items
item names = items.set index('item id').loc[recommendations['item'], 'title']
print(item names)
     ImportError
                                                Traceback (most recent call last)
     <ipython-input-126-22ce84facba8> in <module>
           3 from lenskit.algorithms import Recommender
           4 from lenskit.algorithms.item knn import ItemItem
     ----> 5 from lenskit.data import PandasRatingData
           7 # load the ratings and items dataframes
     ImportError: cannot import name 'PandasRatingData' from 'lenskit.data' (/usr/local/lib/r
     NOTE: If your import is failing due to a missing package, you can
     manually install dependencies using either !pip or !apt.
     To view examples of installing some common dependencies, click the
     "Open Examples" button below.
```

OPEN EXAMPLES SEARCH STACK OVERFLOW