Statistical Inference

Statistics is the method by which data are analyzed in whose generation chance is involved in some way.

Two main topics of statistics:

- 1. Estimation
- 2. Hypothesis testing

Statistical model:

- observed data $x = (x_1, \dots, x_n)$
- x is a realization of the random variable $X = (X_1, \ldots, X_n)$
- \mathcal{X} is the *sample space*, i.e., the set of possible observed data
- $\psi (\in \mathbb{R}^p)$ is a *parameter* which determines the distribution of X
- $\Psi(\subset \mathbb{R}^p)$ is the *parameter space*, i.e., the set of possible parameters ψ

Statistical Inference: Estimation

An *estimator* $\widehat{\psi}$ of the parameter ψ is some function of the random variable (X_1, \ldots, X_n) , i.e.,

$$\widehat{\psi}:\mathcal{X}
ightarrow\Psi$$

For observed data x, $\widehat{\psi}(x)$ is called the *estimate* of Ψ .

Example (Coin tossing):

Suppose a coin is flipped n times. Let $X_i=1$ (or 0), if trial i results in a head (or tail). Then, $X\in\{0,1\}^n=:\mathcal{X}$. Let p denote the probability that trial i results in a head. Under the assumption that the trials are independent, p determines the distribution of \mathcal{X} , i.e., p is the parameter and $\Psi=[0,1]$. Therefore, any function $\widehat{p}:\{0,1\}^n\to[0,1]$ is an estimator of p.

How to find a "good" estimator?

Likelihood $L(\psi \mid x)$

For given $x \in \mathcal{X}$, the likelihood function $L: \Psi \to \mathbb{R}$ is defined by $L(\psi \mid x) = P_{\psi}(X = x) \text{ in case that the distribution of } X \text{ is discrete or by } \\ L(\psi \mid x) = f_{\psi}(x) \text{ in case that the distribution of } X \text{ is continuous with } \\ \text{probability density } f_{\psi}.$

If X_1, \ldots, X_n are independent and identically distributed (i.i.d.), it follows that

$$L(\psi \mid x) = \begin{cases} \prod_{i=1}^{n} P_{\psi}(X_i = x_i) & \text{if } X_i \text{ are discrete r.v.'s} \\ \prod_{i=1}^{n} f_{\psi}(x_i) & \text{if } X_i \text{ are continuous r.v.'s} \end{cases}$$

Example (Coin tossing): Since $P_p(X_i = 1) = p$, it follows that

$$L(p \mid x) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^r (1-p)^{n-r}$$

with $r := \sum_{i=1}^{n} x_i$.

Maximum likelihood estimator (MLE)

The maximum likelihood estimator is defined as

$$x \to \hat{\psi}(x) := \arg \max_{\psi \in \Psi} L(\psi \mid x),$$

i.e., the estimate of ψ on the basis of observation x is the value of ψ which maximizes the likelihood.

Remark: It is often more convenient to maximize $\ln L(\psi \mid x)$ instead of $L(\psi \mid x)$. Since \ln is a strict monotone function, the result is identical.

Example (Coin tossing):

$$\frac{d \ln L(p \mid x)}{dp} = \frac{r}{p} - \frac{n-r}{1-p} = 0 \iff r \cdot (1-p) - (n-r) \cdot p = 0$$
$$\Leftrightarrow p = \frac{r}{n}$$

 \Rightarrow The MLE of p is the observed relative frequency of heads.

MLE: Multinomial distribution

 X_1,\ldots,X_n i.i.d. with $P(X_i=z_j)=p_j$ for $1\leq j\leq k$ and $\sum_{j=1}^k p_j=1$.

Then, $\mathcal{X} = \{z_1, \dots, z_k\}^n$, $\psi = (p_1, \dots, p_{k-1})$ and

$$\Psi = \{(p_1, \dots, p_{k-1}) : 0 \le p_j \le 1, \sum_{j=1}^{k-1} p_j \le 1\}.$$

The likelihood function $L: \Psi \to \mathbb{R}$ is given by

$$L(p_1, \dots, p_{k-1} \mid x) = \left(\prod_{j=1}^{k-1} p_j^{r_j}\right) \cdot \left(\underbrace{1 - \sum_{j=1}^{k-1} p_j}\right)^{r_k}$$

with $r_j := \sum_{i=1}^n 1_{(X_i = z_j)}$. Therefore,

$$\frac{d \ln L(p_1, \dots, p_{k-1} \mid x)}{dp_s} = \frac{r_s}{p_s} - \frac{r_k}{1 - \sum_{j=1}^{k-1} p_j} = 0 \text{ for } 1 \le s \le k - 1$$

$$\Leftrightarrow p_s = \frac{r_s}{n} \text{ for } 1 \le s \le k - 1$$

MLE: Normal distribution

 X_1,\dots,X_n i.i.d. $N(\mu,\sigma^2)$ -distributed, i.e., $f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$ is the density of the distribution of X_i . Then, $\mathcal{X}=\mathbb{R}^n$, $\psi=(\mu,\sigma^2)$, and $\Psi=\mathbb{R}\times\mathbb{R}^+$. The likelihood function $L:\Psi\to\mathbb{R}$ is given by $L(\mu,\sigma^2\mid x)=\prod_{i=1}^n f(x_i)$.

$$\Rightarrow$$

$$\ln L(\mu, \sigma^2 \mid x) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2},$$

$$\frac{d \ln L(\mu, \sigma^2 \mid x)}{d\mu} = \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2},$$

$$\frac{d \ln L(\mu, \sigma^2 \mid x)}{d\sigma^2} = -\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^4}$$

$$\Rightarrow$$
 $(\hat{\mu}, \hat{\sigma}^2) := \left(\frac{1}{n} \sum_{i=1}^n x_i, \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2\right)$ is MLE.

Bias and mean square error (MSE)

The *bias* of an estimator $\hat{\psi}$ is defined as $E_{\psi}\hat{\psi} - \psi$.

An estimator $\widehat{\psi}$ is called *unbiased* in case that $E_{\psi}\widehat{\psi} - \psi = 0$ for all $\psi \in \Psi$.

Example (Normal distribution):

It can be shown that $E_{(\mu,\sigma^2)}$ $\frac{1}{n}\sum_{i=1}^n (X_i - \hat{\mu})^2 = \frac{n-1}{n}\sigma^2$. Therefore, the MLE of σ^2 is biased, whereas the estimator $\tilde{\sigma}^2 := \frac{1}{n-1}\sum_{i=1}^n (x_i - \hat{\mu})^2$ is unbiased.

The mean square error (MSE) of an estimator is defined as

$$MSE(\widehat{\psi}) := E_{\psi}(\widehat{\psi} - \psi)^2$$
. Since

$$E_{\psi}(\widehat{\psi} - \psi)^2 = E_{\psi}(\widehat{\psi} - E_{\psi}\widehat{\psi} + E_{\psi}\widehat{\psi} - \psi)^2 = \operatorname{Var}_{\psi}(\widehat{\psi}) + \left(E_{\psi}\widehat{\psi} - \psi\right)^2,$$

the mean square error of an estimator is the sum of its variance and its squared bias.

Computing maximum likelihood estimates

Example:

n unrelated individuals have been genotyped for two diallelic loci $\{A,a\}$ and $\{B,b\}$. Let n_{ij} denote the observed number of individuals possessing i alleles A and j alleles B (0 $\leq i,j \leq$ 2):

	bb	bB	BB
aa	n_{00}	n_{01}	n ₀₂
aa	(ab/ab)	(ab/aB)	(aB/aB)
aA	n_{10}	n_{11}	n_{12}
	(ab/Ab)	(ab/AB or aB/Ab)	(aB/AB)
AA	n_{20}	n_{21}	n_{22}
	(Ab/Ab)	(Ab/AB)	(AB/AB)

Goal: Estimation of haplotype frequencies $p_{00} := P(ab)$, $p_{01} := P(aB)$, $p_{10} := P(Ab)$, and $p_{11} := P(AB)$ by the maximum likelihood method.

Computing maximum likelihood estimates

Example (continued):

$$\ln L(p_{00}, p_{01}, p_{10}, p_{11} \mid (n_{00}, \dots, n_{11}, \dots, n_{22}))$$

$$= (2n_{00} + n_{01} + n_{10}) \ln p_{00} + (n_{01} + 2n_{02} + n_{12}) \ln p_{01}$$

$$+ (n_{10} + 2n_{20} + n_{21}) \ln p_{10} + (n_{12} + n_{21} + 2n_{22}) \ln p_{11}$$

$$+ n_{11} \ln(p_{00} \cdot p_{11} + p_{01} \cdot p_{10}) + C$$

Let \tilde{n}_{11} denote the (unobserved) number of individuals with two-locus genotype ab/AB. In case that the "complete data" $(n_{00},\ldots,\tilde{n}_{11},n_{11}-\tilde{n}_{11},\ldots,n_{22})$ were available, determination of MLEs would be straightforward (c.f. multinomial distribution): $\hat{p}_{00} = \frac{2n_{00}+n_{01}+n_{10}+\tilde{n}_{11}}{2n}$ etc. On the other hand, if haplotype frequencies p_{ij} were known, the expected value of \tilde{n}_{11} , given n_{11} and p_{ij} , could easily be calculated: $E\tilde{n}_{11} = \frac{p_{00}\cdot p_{11}}{p_{00}\cdot p_{11}+p_{01}\cdot p_{10}}\cdot n_{11}$.

Computing MLEs: EM algorithm

Expectation-maximization (EM) algorithm:

0. Start with arbitrary values $p_{00}^{(0)}, \ldots, p_{11}^{(0)}$

For r = 1, 2, ..., repeat the following two steps

1. Expectation step: Calculate

$$E\tilde{n}_{11}^{(r)} = \frac{p_{00}^{(r-1)} \cdot p_{11}^{(r-1)}}{p_{00}^{(r-1)} \cdot p_{11}^{(r-1)} + p_{01}^{(r-1)} \cdot p_{10}^{(r-1)}} \cdot n_{11}$$

2. Maximization step: Calculate

$$p_{00}^{(r)} = \frac{2n_{00} + n_{01} + n_{10} + \tilde{n}_{11}^{(r)}}{2n}, \quad p_{01}^{(r)} = \frac{n_{01} + 2n_{02} + n_{12} + n_{11} - \tilde{n}_{11}^{(r)}}{2n},$$

$$p_{10}^{(r)} = \frac{n_{10} + 2n_{20} + n_{21} + n_{11} - \tilde{n}_{11}^{(r)}}{2n}, \quad p_{11}^{(r)} = \frac{n_{12} + n_{21} + 2n_{22} + \tilde{n}_{11}^{(r)}}{2n}$$

until convergence occurs (e.g. $\max_{i,j} |p_{ij}^{(r)} - p_{ij}^{(r-1)}| \leq \varepsilon$).

EM algorithm: Pros and Cons

Pro:

- Easy to implement
- $L(\hat{p}^{(r)} \mid x)$ is monotone increasing in r

Con:

- No guarantee that global (and not local) maximum is obtained
- Convergence can be rather slow

Statistical Inference: Hypothesis testing

- 1. Definition of hypotheses
- 2. Choosing the numerical value for the Type I error
- 3. Selection of a test statistic
- 4. Determination of the critical value
- 5. Conduction of the experiment, statistical analysis, decision

Statistical Inference: Definition of hypotheses

Test problem:

$$H_0: \psi \in \Psi_0(\subset \Psi)$$
 vs. $H_1: \psi \in \Psi_1:= \Psi \setminus \Psi_0$

(null hypothesis H_0 vs. alternative hypothesis H_1)

Examples (Coin tossing):

- $H_0: p = \frac{1}{2}$ vs. $H_1: p \neq \frac{1}{2}$ (two-sided hypothesis)
- $H_0: p \leq \frac{1}{2}$ vs. $H_1: p > \frac{1}{2}$ (one-sided hypothesis)

If the hypothesis consists of a single value, it is called a *simple hypothesis*. Hypotheses consisting of more than a single value are called *composite hypotheses*.

Statistical Inference: Type I and Type II error

Two types of errors:

- Type I error: rejection of H_0 when it is true
- Type II error: acceptance of H_0 when it is false

A procedure frequently adopted is to fix the numerical value α of the Type I error at some low level (e.g. 1% or 5%).

Example (Coin tossing):
$$H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$$

Let r denote the number of "heads" in n = 20 trials. Possible decision rule:

$$r$$
 $\begin{cases} \leq 6 \text{ or } \geq 14 \text{ : reject } H_0 \\ \in [7, 13] \text{ : accept } H_0 \end{cases}$

Type I error:
$$\sum_{r=0}^{6} {20 \choose r} \left(\frac{1}{2}\right)^{20} + \sum_{r=14}^{20} {20 \choose r} \left(\frac{1}{2}\right)^{20}$$

Type II error:
$$\sum_{r=7}^{13} {20 \choose r} \cdot p^r \cdot (1-p)^{20-r}$$

Statistical Inference: Type I and Type II error

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

Probability of rejection of H_0 (solid line) and probability of Type II error (dotted line) for the decision rule "Reject H_0 if $r \le 6$ or $r \ge 14$, otherwise accept H_0 ".

Statistical Inference: Test statistic

A *test statistic* $T: \mathcal{X} \to \mathbb{R}$ is the quantity calculated from the experimental data whose numerical value leads to acceptance or rejection of the null hypothesis.

Example (Coin tossing):

- T(x): number of heads
- T(x): maximum number of consecutive heads or tails

How to find a "good" test statistic? \rightarrow Mathematical statistics

Statistical Inference: Neyman-Pearson Lemma

Consider the test problem of two simple hypotheses, i.e.,

$$H_0: \psi = \psi_0$$
 vs. $H_1: \psi = \psi_1$.

Let $T(x) := L(\psi_1 \mid x)/L(\psi_0 \mid x)$ denote the likelihood ratio. Let $c := \inf\{t : P_{\psi_0}(T > t) \le \alpha\}$ and let γ satisfy

$$P_{\psi_0}(T > c) + \gamma \cdot P_{\psi_0}(T = c) = \alpha.$$

Now, consider the test which

- rejects H_0 in case of T(x) > c,
- accepts H_0 in case of T(x) < c,
- rejects H_0 with probability γ in case of T(x) = c.

Obviously, the Type I error of this test is equal to α . Further, this test possesses the smallest Type II error probability of all tests of size α .

Example: Neyman-Pearson Lemma

Exercise (Coin tossing):

Suppose a coin is flipped n=10 times. Consider the test problem of two simple hypotheses, i.e.,

$$H_0: p = p_0 = 0.5$$
 vs. $H_1: p = p_1 = 0.7$.

Construct the test of size $\alpha = 0.05$ which possesses the smallest Type II error probability.

(Hint: Show that the likelihood ration $L(p_1 \mid x)/L(p_0 \mid x)$ is increasing in $r = \sum x_i$, i.e., $L(p_1 \mid x)/L(p_0 \mid x) < L(p_1 \mid \tilde{x})/L(p_0 \mid \tilde{x})$ if and only if $\sum x_i < \sum \tilde{x}_i$.)

Statistical Inference: Likelihood ratio test

Consider the general test problem of two hypotheses, i.e.,

$$H_0: \psi \in \Psi_0$$
 vs. $H_1: \psi \in \Psi_1$.

Let $T(x):=-2\ln\left(\sup_{\psi\in\Psi_0}L(\psi\mid x)/\sup_{\psi\in\Psi}L(\psi\mid x)\right)$ and consider the test which

- rejects H_0 in case of T(x) > c,
- accepts H_0 in case of $T(x) \leq c$.

This test is called the *likelihood ratio test* (LRT).

How to determine *c* ?

Statistical Inference: Critical value

Determination of the critical value requires to calculate the distribution of the test statistic under the null hypothesis. This can be achieved by the following methods:

- Exact calculation
- Approximate calculation
- Simulation (by computer)

Determination of critical value: Exact calculation

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

$$T(x) := \sum_{i=1}^{n} x_i$$

 $n = 20, \tilde{\alpha} = .0414$ $n = 200, \tilde{\alpha} = .0400$ $n = 2000, \tilde{\alpha} = .0466$

Let
$$T \sim \text{Bin}(n, p)$$
 and $T_s := \frac{T - \text{E}T}{\sqrt{\text{Var}T}} = \frac{T - n \cdot p}{\sqrt{n \cdot p \cdot (1 - p)}}$.

For sufficiently large n, the distribution of T_s can be approximated by N(0,1).

$$p = 0.5$$
:

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

Reject H_0 in case that $|T_s(x)| \ge u_{1-\alpha/2}$

 \Leftrightarrow

Reject H_0 in case that $T(x) \leq n \cdot p - u_{1-\alpha/2} \cdot \sqrt{n \cdot p \cdot (1-p)}$

or
$$T(x) \ge n \cdot p + u_{1-\alpha/2} \cdot \sqrt{n \cdot p \cdot (1-p)}$$
.

 $\alpha = 0.05$:

n	true Type I error rate				
20	.0414				
200	.0560				
2000	.0517				

$$p = 0.1$$
:

$$p = 0.01$$
:

Determination of critical value: Simulation

- 1. Draw x (under the null hypothesis).
- 2. Calculate T(x).
- 3. Perform m replicates of steps 1 and 2, and calculate the empirical null distribution of T(x).
- 4. Use this empirical distribution to obtain critical values.

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

n = 20, m = 100,000:

r	P(T(x) = r)	$\widehat{P}(T(x) = r)$		r	P(T(x) = r)	$\widehat{P}(T(x) = r)$
0	.00000	.00000	1	6	.00462	.00456
1	.00002	.00000	1	7	.00109	.00135
2	.00018	.00016	1	8	.00018	.00012
3	.00109	.00080	1	9	.00002	.00002
4	.00462	.00458	2	20	.00000	.00000

P-value

Instead of calculation of critical values:

The probability (under the null hypothesis) of obtaining the observed value of the test statistic or a more extreme value is called P-value. If the P-value is \leq than the chosen type I error rate α , the null hypothesis is rejected.

Example (Coin tossing):
$$H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$$

Assume that the observed number of "heads" out of n=20 trials is r=18. Then, the null probability

$$P(T \ge 18) = \sum_{r=18}^{20} {20 \choose r} \cdot (1/2)^{20} = .0002.$$

Since a two-sided alternative H_1 is considered, $P(T \le 2)$ has to be added.

$$\Rightarrow$$
 P-value corresponding to $r = 18$ is $P(T \ge 18) + P(T \le 2) = .0004$.