20250801 abner emmeans.Rmd

2025-08-01

```
# First, fit your model and store it
model <- glm.nb(</pre>
    is.referenced.by.count ~ da_factor + log(age.in.months) + container.title +
       container.title*da_factor + log(age.in.months)*da_factor +
       container.title*log(age.in.months) +
       log(age.in.months) * da_factor * container.title,
   data = my_data,
   link = "log"
# Define the age values you want to examine (in months)
age_values <- c(12, 36, 60, 120) # Adjust these as needed
# Get emmeans on the link scale for all combinations
emm <- emmeans(model, ~ da_factor + age.in.months | container.title,
       at = list(age.in.months = age_values), CIs = TRUE,
       type = "response")
# Get pairwise comparisons (differences) between da_factor levels
differences <- contrast(</pre>
   emm, by = c("age.in.months", "container.title"),
   method = "revpairwise",
   ratios = TRUE, CIs = TRUE
)
# See the contrasts
summary(differences)
## age.in.months = 12, container.title = Antimicrobial Agents and Chemotherapy:
                       SE df null z.ratio p.value
## contrast ratio
## Yes / No 0.552 0.0623 Inf
                                 1 -5.265 <.0001
## age.in.months = 36, container.title = Antimicrobial Agents and Chemotherapy:
## contrast ratio
                       SE df null z.ratio p.value
## Yes / No 0.826 0.0515 Inf
                                 1 -3.069 0.0021
##
## age.in.months = 60, container.title = Antimicrobial Agents and Chemotherapy:
## contrast ratio
                       SE df null z.ratio p.value
## Yes / No 0.996 0.0448 Inf
                               1 -0.081 0.9355
##
## age.in.months = 120, container.title = Antimicrobial Agents and Chemotherapy:
## contrast ratio
                       SE df null z.ratio p.value
## Yes / No 1.285 0.0545 Inf
                               1 5.925 <.0001
##
## age.in.months = 12, container.title = Applied and Environmental Microbiology:
## contrast ratio
                       SE df null z.ratio p.value
## Yes / No 0.863 0.0593 Inf
                                 1 -2.150 0.0316
##
```

```
## age.in.months = 36, container.title = Applied and Environmental Microbiology:
                      SE df null z.ratio p.value
## contrast ratio
## Yes / No 1.072 0.0431 Inf
                             1 1.727 0.0842
##
## age.in.months = 60, container.title = Applied and Environmental Microbiology:
## contrast ratio
                     SE df null z.ratio p.value
## Yes / No 1.186 0.0347 Inf 1 5.826 <.0001
##
## age.in.months = 120, container.title = Applied and Environmental Microbiology:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.360 0.0311 Inf
                              1 13.440 <.0001
## age.in.months = 12, container.title = Genome Announcements:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.126 0.7950 Inf
                             1 0.169 0.8662
##
## age.in.months = 36, container.title = Genome Announcements:
## contrast ratio SE df null z.ratio p.value
## Yes / No 1.096 0.4030 Inf
                             1 0.251 0.8020
##
## age.in.months = 60, container.title = Genome Announcements:
## contrast ratio
                     SE df null z.ratio p.value
## Yes / No 1.083 0.2290 Inf
                             1 0.376 0.7068
## age.in.months = 120, container.title = Genome Announcements:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.065 0.0567 Inf
                             1 1.175 0.2399
## age.in.months = 12, container.title = Infection and Immunity:
## contrast ratio SE df null z.ratio p.value
## Yes / No 0.901 0.1580 Inf 1 -0.599 0.5494
##
## age.in.months = 36, container.title = Infection and Immunity:
## contrast ratio
                   SE df null z.ratio p.value
## Yes / No 1.037 0.1070 Inf 1 0.350 0.7267
## age.in.months = 60, container.title = Infection and Immunity:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.107 0.0856 Inf 1 1.315 0.1883
##
## age.in.months = 120, container.title = Infection and Immunity:
                      SE df null z.ratio p.value
## contrast ratio
## Yes / No 1.210 0.0772 Inf
                             1 2.989 0.0028
##
## age.in.months = 12, container.title = Journal of Bacteriology:
## contrast ratio SE df null z.ratio p.value
## Yes / No 0.923 0.1300 Inf 1 -0.565 0.5719
##
## age.in.months = 36, container.title = Journal of Bacteriology:
                   SE df null z.ratio p.value
## contrast ratio
## Yes / No 0.885 0.0739 Inf 1 -1.469 0.1419
## age.in.months = 60, container.title = Journal of Bacteriology:
## contrast ratio SE df null z.ratio p.value
```

```
## Yes / No 0.867 0.0508 Inf 1 -2.438 0.0147
##
## age.in.months = 120, container.title = Journal of Bacteriology:
                    SE df null z.ratio p.value
## contrast ratio
## Yes / No 0.844 0.0276 Inf 1 -5.193 <.0001
##
## age.in.months = 12, container.title = Journal of Clinical Microbiology:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 0.930 0.1230 Inf
                                1 -0.549 0.5831
##
## age.in.months = 36, container.title = Journal of Clinical Microbiology:
                      SE df null z.ratio p.value
## contrast ratio
## Yes / No 1.232 0.0944 Inf
                              1 2.721 0.0065
##
## age.in.months = 60, container.title = Journal of Clinical Microbiology:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.404 0.0786 Inf 1 6.058 <.0001
##
## age.in.months = 120, container.title = Journal of Clinical Microbiology:
## contrast ratio
                     SE df null z.ratio p.value
## Yes / No 1.676 0.0783 Inf
                               1 11.064 <.0001
## age.in.months = 12, container.title = Journal of Microbiology & Diology Education:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No nonEst
                      NA NA
                                1
## age.in.months = 36, container.title = Journal of Microbiology & Diology Education:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No nonEst
                      NA NA
                                1
                                       NA
##
## age.in.months = 60, container.title = Journal of Microbiology & Diology Education:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No nonEst
                      NA NA
                                1
                                      NA
##
## age.in.months = 120, container.title = Journal of Microbiology & Diology Education:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No nonEst
                      NA NA
                                1
                                      NA
##
## age.in.months = 12, container.title = Journal of Virology:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 0.798 0.0725 Inf
                                1 -2.482 0.0131
##
## age.in.months = 36, container.title = Journal of Virology:
                      SE df null z.ratio p.value
## contrast ratio
## Yes / No 0.987 0.0500 Inf
                                1 -0.255 0.7988
##
## age.in.months = 60, container.title = Journal of Virology:
                      SE df null z.ratio p.value
## contrast ratio
## Yes / No 1.090 0.0409 Inf
                              1 2.291 0.0220
## age.in.months = 120, container.title = Journal of Virology:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.246 0.0459 Inf
                                1 5.974 <.0001
##
```

```
## age.in.months = 12, container.title = mBio:
## contrast ratio SE df null z.ratio p.value
## Yes / No 1.024 0.0891 Inf
                             1 0.278 0.7813
##
## age.in.months = 36, container.title = mBio:
## contrast ratio
                     SE df null z.ratio p.value
## Yes / No 1.213 0.0530 Inf
                             1 4.411 <.0001
##
## age.in.months = 60, container.title = mBio:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.311 0.0486 Inf
                             1 7.311 <.0001
## age.in.months = 120, container.title = mBio:
                      SE df null z.ratio p.value
## contrast ratio
## Yes / No 1.458 0.0769 Inf
                             1 7.161 <.0001
##
## age.in.months = 12, container.title = Microbiology Resource Announcements:
## contrast ratio
                   SE df null z.ratio p.value
## Yes / No 0.557 0.3020 Inf
                             1 -1.080 0.2800
## age.in.months = 36, container.title = Microbiology Resource Announcements:
## contrast ratio
                    SE df null z.ratio p.value
## Yes / No 0.637 0.1410 Inf
                               1 -2.033 0.0421
## age.in.months = 60, container.title = Microbiology Resource Announcements:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 0.678 0.1380 Inf
                               1 -1.910 0.0562
## age.in.months = 120, container.title = Microbiology Resource Announcements:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 0.738 0.2740 Inf 1 -0.818 0.4134
##
## age.in.months = 12, container.title = Microbiology Spectrum:
## contrast ratio SE df null z.ratio p.value
## Yes / No 1.053 0.0812 Inf 1 0.664 0.5064
## age.in.months = 36, container.title = Microbiology Spectrum:
## contrast ratio
                     SE df null z.ratio p.value
## Yes / No 1.332 0.0819 Inf
                             1 4.657 <.0001
##
## age.in.months = 60, container.title = Microbiology Spectrum:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.486 0.1550 Inf
                             1 3.798 0.0001
##
## age.in.months = 120, container.title = Microbiology Spectrum:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.724 0.2920 Inf 1 3.214 0.0013
##
## age.in.months = 12, container.title = mSphere:
## contrast ratio
                   SE df null z.ratio p.value
## Yes / No 1.045 0.1650 Inf 1 0.276 0.7823
## age.in.months = 36, container.title = mSphere:
## contrast ratio SE df null z.ratio p.value
```

```
## Yes / No 1.134 0.0815 Inf 1 1.753 0.0797
##
## age.in.months = 60, container.title = mSphere:
                    SE df null z.ratio p.value
## contrast ratio
## Yes / No 1.178 0.0776 Inf
                                1
                                    2.492 0.0127
##
## age.in.months = 120, container.title = mSphere:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.241 0.1340 Inf
                                1
                                    1.998 0.0458
##
## age.in.months = 12, container.title = mSystems:
                      SE df null z.ratio p.value
## contrast ratio
## Yes / No 0.890 0.1340 Inf
                                1 -0.773 0.4394
##
## age.in.months = 36, container.title = mSystems:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.115 0.0853 Inf
                                1 1.424 0.1546
##
## age.in.months = 60, container.title = mSystems:
## contrast ratio
                      SE df null z.ratio p.value
## Yes / No 1.238 0.1090 Inf
                                1
                                    2.439 0.0147
## age.in.months = 120, container.title = mSystems:
## contrast ratio
                       SE df null z.ratio p.value
## Yes / No 1.428 0.2020 Inf
                                    2.519 0.0118
                                1
## Tests are performed on the log scale
# Plot the contrasts
plot(differences, ratios = TRUE)
## Warning: Removed 4 rows containing missing values or values outside the scale range
## ('geom_point()').
## Warning: Removed 4 rows containing missing values or values outside the scale range
## ('geom_segment()').
## Warning: Removed 4 rows containing missing values or values outside the scale range
## ('geom point()').
```

```
tsetinoo

tsetimate

tsetimate
```

```
# # working on plotting better
ratio_data <- tibble(emmip(differences, ~ age.in.months | container.title, CIs = TRUE, plotit = FALSE)</pre>
```

NOTE: Results may be misleading due to involvement in interactions

Ratio of daYes/daNo over time with 95% CI from emmip

Create Plot from Abner

- "Also, I think this result would be even clearer if you made a plot with age" in the horizontal axis, "predicted citations" in the vertical axis, and lines colored by "da_factor"." AHB
- These plots are each made with a different glm.nb model (one for each journal), which is why they are not combined into a faceted plot.

```
journal_data <-
 nsd_yes_metadata %>%
   filter(journal_abrev == journals[[j,1]]) %>%
   mutate(da_factor = factor(da))
 model <- two_term_glmnb(journal_data, journals[[j,1]])</pre>
 if(j == 3) \{ \#genomea = 5 \}
 p <- get_model_data(model = model, type = "pred", terms = c("da_factor", "age.in.months[84,120,144]"
 else if (j == 9) \{ \#Mra - 7 \}
  p <- get_model_data(model = model, type = "pred", terms = c("da_factor", "age.in.months[12,60,84]"
 else if (j == 10 | j == 11 ) { \#msphere, msystems 9 years
 p <- get_model_data(model = model, type = "pred", terms = c("da_factor", "age.in.months[12,60,84,108]
 else if (j == 12) {
  p <- get_model_data(model = model, type = "pred", terms = c("da_factor", "age.in.months[12,60,84,1
 else {
   p <- get_model_data(model = model, type = "pred", terms = c("da_factor", "age.in.months[12,60,84,
model_graph <-
 p %>%
 tibble(da_factor = ifelse(.$x == 1, "Data not available", "Data available"), predicted_citations = .
 ggplot(mapping = aes(x = age.in.months, y = predicted_citations,
                               color = da_factor)) +
  geom_point() +
  geom_linerange(aes(ymin = conf.low,
                   ymax = conf.high)) +
  geom_path(aes(x = age.in.months, y = predicted_citations, group = da_factor)) +
  labs(title = paste0("Predicted Number of citations for ", journals[[j,1]], "\nusing two term fixed G
       x = "Age in Months",
       y = "Predicted Number Citations",
       color = "Data availability with 95% CI")
assign(paste0(journals[[j,1]], "_plot"), model_graph)
print(model_graph)
```

Predicted Number of citations for aac using two term fixed GLM

Predicted Number of citations for aem using two term fixed GLM

Predicted Number of citations for genomea using two term fixed GLM

Predicted Number of citations for iai using two term fixed GLM

Predicted Number of citations for jcm using two term fixed GLM

Predicted Number of citations for mra using two term fixed GLM

Predicted Number of citations for msystems using two term fixed GLM

Predicted Number of citations for spectrum using two term fixed GLM


```
# plot_names <-
# journals %>%
# mutate(plot_name = pasteO(journal_abrev, "_plot")) %>%
# select(plot_name)
#
# plot_grid(plotlist = mget(pasteO(journals$journal_abrev, "_plot")))
```