

Project Initialization and Planning Phase

Date	11-07-2024
Team ID	740047
Project Title	SMOKE DETECTION USING IOT DATASET
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

A proportional solution for smoke detection typically refers to a system or method that provides a response proportional to the level of smoke present, rather than simply triggering an alarm based on a binary threshold (smoke/no smoke).

Project Overview		
Objective	The primary objective of this project is to develop an advanced smoke detection system using IoT devices and a comprehensive dataset. The system aims to achieve higher accuracy in detecting smoke, faster response times, and the ability to provide real-time alerts and data to users. This will be accomplished by leveraging machine learning algorithms to analyze the data collected from various IoT sensors	
Scope	Smoke detectors are employed to detect smoke in the surrounding environment. In case of a fire emergency, the system can trigger alarms and activate safety systems. The systems come in different types depending on the use and environment used, where both photoelectric and ionization detectors are effective smoke sensors. These systems are really important and are being employed in many commercial and residential areas.	
Problem Statement		
Description	Smoke alarms detect fires by sensing small particles in the air. Once they detect those particles above a certain level, they signal the alarm to sound so that you and your family can get to safety and call 911.	
Impact	A successful solution will enhance fire safety in buildings, potentially saving lives and reducing property damage. It will provide peace of mind to occupants and building managers, knowing that their smoke detection system is reliable and effective.	

Proposed Solution	
Approach	Employing machine learning techniques to analyze and predict whether smoke is present or not.
Key Features	-Implementation of a machine learning-based smoke detector modelsmoke detectors contain audible alarmsvisible alarms with LED's.

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU		
Memory	RAM specifications	8 GB		
Storage	Disk space for data, models, and logs	1 TB SSD		
Software				
Frameworks	Python frameworks	Flask		
Libraries	Additional libraries	scikit-learn, pandas, numpy, matplotlib, seaborn		
Development Environment	IDE, version control	Jupyter Notebook, Pycharm		
Data				
Data	Source, size, format	Kaggle dataset, 614, csv		