

every net has a universal subnet

 ${\bf Canonical\ name} \quad {\bf Every Net Has AUniversal Subnet}$

Date of creation 2013-03-22 17:25:16 Last modified on 2013-03-22 17:25:16 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 8

Author asteroid (17536)

Entry type Theorem Classification msc 54A20

Synonym Kelley's theorem

Related topic Ultranet

Theorem - (Kelley's theorem) - Let X be a non-empty set. Every net $(x_{\alpha})_{\alpha \in \mathcal{A}}$ in X has a http://planetmath.org/Ultranetuniversal subnet. That is, there is a subnet such that for every $E \subseteq X$ either the subnet is eventually in E or eventually in X - E.

Proof: Let \mathcal{F} be a section filter for the net $(x_{\alpha})_{\alpha \in \mathcal{A}}$.

Let $\mathcal{D} = \{(\alpha, U) : \alpha \in \mathcal{A}, U \in \mathcal{F}, x_{\alpha} \in U\}$. \mathcal{D} is a directed set under the order relation given by

$$(\alpha, U) \le (\beta, V) \Longleftrightarrow \begin{cases} \alpha \le \beta \\ V \subseteq U \end{cases}$$

The map $f: \mathcal{D} \longrightarrow \mathcal{A}$ defined by $f(\alpha, U) := \alpha$ is order preserving and cofinal. Therefore there is a subnet $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ of $(x_{\alpha})_{\alpha\in\mathcal{A}}$ associated with the map f (that is, $y_{(\alpha,U)} = x_{\alpha}$).

We now prove that $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ is a net.

Let $E \subseteq X$. We have that $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ is frequently in E or frequently in X-E.

Suppose $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ is frequently in E.

Let $A \in \mathcal{F}$ and $S(\alpha) := \{x_{\beta} : \alpha \leq \beta\}$. We have that $S(\alpha) \in \mathcal{F}$ by definition of section filter.

As \mathcal{F} is a filter, $A \cap S(\alpha) \neq \emptyset$ and so there exists β with $\alpha \leq \beta$ such that $x_{\beta} \in A$. Hence, $(\beta, A) \in \mathcal{D}$.

As $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ is frequently in E, there exists $(\gamma,B)\in\mathcal{D}$ with $(\beta,A)\leq (\gamma,B)$ such that $y_{(\gamma,B)}\in E$.

Also, $y_{(\gamma,B)}$ is in B, and therefore, in A. So $A \cap E \neq \emptyset$.

We conclude that $E \cap A \neq \emptyset$ for every $A \in \mathcal{F}$. Therefore, $\mathcal{F} \cup \{E\}$ a filter in X. As \mathcal{F} is a maximal filter we conclude that $E \in \mathcal{F}$, and consequently, $(\gamma, E) \in \mathcal{D}$.

We can now see that for every (δ, C) with $(\gamma, E) \leq (\delta, C)$, $y_{(\delta, C)}$ is in C and so is in E. Therefore, $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ is eventually in E.

Remark: If $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ is frequently in X-E, by an analogous we can conclude that it is eventually in X-E.

This proves that $(y_{(\alpha,U)})_{(\alpha,U)\in\mathcal{D}}$ is a subnet of $(x_{\alpha})_{\alpha\in\mathcal{A}}$. \square