

jún 2025 github.com/OkoliePracovnehoBodu/KUT MT

KUTdev250624

Náučný príklad: meranie prevodovej charakteristiky dynamického systému LMOT

Cielom textu je opis laboratórneho dynamického systému LMOT z hľadiska jeho statických vlastností.

1 Opis dynamického systému LMOT

LMOT je laboratórne zariadenie predstavujúce reálny dynamický systém. Pozostáva z malého jednosmerného motora, tachodynama, ktoré je na spoločnom hriadeli s motorom, a z elektronických obvodov, ktoré zabezpečujú napájanie motora. Elektronickymi obvodmi sú tiež dané dominantné statické a dynamické vlastnosti výsledného systému. Do istej miery je možné tieto vlastnosti meniť manuálnym nastavením príslušného potenciometra.

Systém má jeden vstupný signál a jeden výstupný signál. Výstupný signál je priamo úmerný uhlovej rýchlosti jednosmerného motora, ktorá je snímaná tachodynamom. Vstupný signál ovláda napájanie motora.

Polohou potenciometra je v podstate daná prevádzková podmienka zariadenia. K dispozícii je signál zodpovedajúci polohe potenciometra a teda tým je k dispozícii informácia o prevádzkovej podmienke systému.

LMOT (čítaj *elmot*) je akronym pre "laboratórny motorček", prípadne pre "little motor".

2 Návrh merania

Z opisu predmetného dynamického systému vyplýva, že systém má jeden výstupný signál, jeden vstupný signál a manuálne nastaviteľnú prevádzkovú podmienku.

Rozsahy a jednotky signálov

Vstupný a výstupný signál nadobúdajú hodnoty v rozsahu 0 až 10 pričom ide o napäťové signály vo voltoch [V].

Prevádzková podmienka systému sa nastavuje manuálne otáčaním potenciometra. Signál o polohe potenciometra nadobúda hodnoty v rozsahu 0 [V] až 10 [V].

Voľba ustálených hodnôt vstupov

O predmetnom systéme je známe, že výstup systému sa ustáli vždy ak sú vstupy systému ustálené. Pre vyšetrovanie ustálených stavov je teda možné využiť celý rozsah vstupného signálu a celý rozsah prevádzkových podmienok.

Návrh uvažuje ustálené hodnoty vstupného signálu uvedené v tabuľke 1 a zároveň ustálené hodnoty reprezentujúce prevádzkové podmienky podľa tabuľky 2.

Tabuľka 1: Ustálené hodnoty vstupného signálu [V	Tabuľka 1	Ustálené h	odnoty ystui	oného	signálu	[V]
--	-----------	------------	--------------	-------	---------	-----

0 1 2 3 4 5 6 7	8	9	10
-----------------	---	---	----

	Tabull	(a 2: Us	tálené h	odnoty s	signálu c	prevádl	kových p	odmien	kach [V]	
0	1	2	3	4	5	6	7	8	9	10

Voľba časového intervalu pre ustálenie výstupu systému

Empirické skúsenosti so systémom ukazujú, že z praktického hľadiska sa systém ustáli do 15 sekúnd po zmene na vstupe systému. Ukazuje sa však aj náchylnosť systému k poruchám spôsobeným zväčša mechanickými nedostatkami a vibráciami zrejme spôsobujúcimi zmeny trenia v mechanických častiach systému. Pre pozorovanie a vyhodnotenie vplyvu týchto porúch v ustálenom stave je časový interval pre ustálenie zvolený na 120 sekúnd.

Postup merania

Vzhľadom na uvedené voľby ustálených hodnôt a časového intervalu návrh predpokladá nasledovný postup.

- 1. Manuálne nastavenie prevádzkových podmienok na hodnotu z tabuľky 2.
- 2. Postupná zmena vstupného signálu na hodnoty z tabuľky 1 so zvoleným časovým intervalom. Takúto postupnú zmenu vyjadruje nasledujúca tabuľka 3.

Tabuľka 3: Postupná zmena vstupného signálu

	1 0
Čas zmeny vstupného signálu [s]	$\operatorname{Hodnota}$ vstupného signál $[V]$
0	0
120	1
240	2
360	3
480	4
600	5
720	6
840	7
960	8
1080	9
1200	10

Celková dĺžka merania je teda 1200+120=1320 sekúnd a počas tejto doby sú prevádzkové podmienky konštantné.

3 Získané dáta

Príklad získaných dát podľa uvedeného postupu je znázornený na nasledujúcom obrázku.

Obr. 1: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 0 [V].

Získané dáta pre ostatné prevádzkové podmienky sú uvedené v prílohách tohto textu. Vizualizované sú tu tak dáta pre všetky prevádzkové podmienky, ktoré sú v tabuľke 2.

4 Spracovanie dát

Obr. 2: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke $0 \ [V]$.

5 Prílohy

Meranie ustálených hodnôt pri prevádkovej podmienke 1 [V]

Obr. 3: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 1 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 2 [V]

Obr. 4: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 2 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 3 [V]

Obr. 5: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 3 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 4 [V]

Obr. 6: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 4 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 5 [V]

Obr. 7: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 5 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 6 [V]

Obr. 8: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 6 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 7 [V]

Obr. 9: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 7 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 8 [V]

Obr. 10: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 8 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke g [V]

Obr. 11: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 9 [V].

Meranie ustálených hodnôt pri prevádkovej podmienke 10 [V]

Obr. 12: Získané dáta pre vstupný signál a výstupný signál systému LMOT pri manuálne nastavenej prevádzkovej podmienke 10 [V].