Taller de Ingeniería Gastronómica

Unidad de Ingeniería Gastronómica Escuela de Ingeniería Pontificia Universidad Católica de Chile

El método científico en la cocina

La cocina: un gran espacio para la experimentación

- Muy antigua relación entre la cocina y la ciencia (especialmente a partir del siglo XIX).
- En el siglo XX adquiere mayor relevancia con la gastronomía molecular.
- Hoy en día, varios grandes chefs tienen sus laboratorios, colaboran con científicos o centros de investigación culinaria.
- **HIPÓTESIS**: Experimentar en la cocina se hace más racional y productivo si se tiene conocimiento de ciertos principios científicos básicos.

LA SCIENZA IN CUCINA

E L'ARTE DI MANGIAR BENE

MANUALE PRATICO PER LE FAMIGLIE
CONTRELATO DIA

PELLEGRINO ARTUSI

Un parelle bosson edia a maniferation
Mantangno Premo maiore.
Prigita il ciles con maiores.
Ibal dese regit di timber.

Terra ediadone correpta ed ampliata.

FIRENZE
ADRIANO SALANI, EDITORE

Las imprecisiones de una receta

SOUFFLE DE QUESO

Derrita sa mantequissa en un sartén de tamaño mediano a fuego medio.

Agregue harina, una pizca de sal y salsa picante y bata en forma constante por 1 min. La mezcla debiera burbujear pero no oscurecerse.

Gontinúe batiendo mientras agrega la leche lentamente en forma continua. Gocine hasta que espese, batiendo ocasionalmente, sin hervir. Agregue queso y remueva del fuego (el queso no debe estar totalmente derretido).

Bata sas csaras en un recipiente pequeño hasta que se formen puntas rígidas....etc

Sorteando las imprecisiones

Imprecisión	Solución
Tamaño mediano	Expresar en diámetro, volumen
Fuego medio	Medir temperatura con una termocupla
Batir en forma constante	Determinar los RPM de la batidora
no oscurecerse	Medir color con colorímetro
batiendo ocasionalmente	Tiempo e intensidad de la agitación
no debe estar totalmente derretido	Medir la viscosidad o consistencia
se formen puntas rígidas	Determinar la rigidez de la espuma

El método científico

- Es una manera racional de contestar preguntas o resolver problemas mediante la experimentación.
- En la práctica, es un modo ordenado y lógico de realizar experiencias.
- Se basa en la experimentación, la observación, la medición y el análisis de los resultados.
- Sacar conclusiones y hacer nuevas preguntas.

Curso de Ingeniería Gastronómica para la Innovación en Alimentos Programa de Difusión Tecnológica CORFO

OBSERVAR

Proyecto apoyado por

CORFO

La pregunta o el problema a abordar

- Proponga una pregunta a contestar o un problema a resolver.
- > Sea lo más específico posible.
- ➤ Soufflé: la temperatura del horno ¿afectará el volumen del soufflé?
- ➤ Otros ejemplos: ¿Cómo se afectará la viscosidad de una mermelada al reemplazar el azúcar por un edulcorante artificial (*Stevia*)? ¿Cómo se puede evitar la sedimentación de sólidos en un jugo natural envasado?

Curso de Ingeniería Gastronómica para la Innovación en Alimentos Programa de Difusión Tecnológica CORFO

CORFO

Recopilación de información

- ➤ Recopile la mayor cantidad de información relevante (¡No queremos reinvertar la rueda!).
- ➢ Hay mucha información disponible en revistas especializadas, patentes y en internet. Por ejemplo, "googlear" con palabras claves.
- > Haga un resumen de los resultados obtenidos.
- ➤ Identifique las variables importantes que podrían intervenir para resolver el problema.

Fuentes de referencias

> Motores de búsqueda

Google u otro buscador de internet

Bases de datos

Food Science and Technology Abstracts (FSTA); Science Direct (base de datos de Elsevier).

Revistas especializadas de alimentos (+ de 100!)

Journal of Food Science, Int. Journal of Food Science and Gastronomy, J. Food Engineering, Food Chemsitry, etc.

> Libros

McGee, H. 2008. La Cocina y los Alimentos. Debate, España. This, H. 2005. Tratado Elemental de Cocina. Ed. Acribia, Zaragoza.

Aguilera, J.M. 2011. *Ingeniería Gastronómica*. Ediciones UC.

Curso de Ingeniería Gastronómica para la Innovación en Alimentos

Programa de Difusión Tecnológica CORFO

Proponer una hipótesis

- La **hipótesis** es una buena suposición o "respuesta educada" para el fenómeno que se desea entender.
- Una hipótesis científica debe ser aprobada o rechazada por la experimentación, deducción u observación.
- Ejemplo clásico: *Hipótesis:* El sellado inicial de la carne permite retener más los jugos durante el horneo.

Equipo e instrumentación

- Las respuestas a algunas preguntas requieren de equipo especializado y previamente calibrado.
- Los equipos e instrumentos permiten **medir** cosas. Entre ellas, las **variables** seleccionadas (temperatura, volumen, tiempo, etc) o **propiedades** (viscosidad, color, textura, etc.).
- ➤ No utilice equipos "porque están ahí" (p.ej., microscopios electrónicos).

Materiales y reactivos

- > Seleccione las materias primas y los reactivos (ingredientes) a ser usados.
- ➤ Si son **perecibles** (frutas, flores, pescado, etc.), tipificarlos bien y mantenerlos en la mejor forma posible.
- ➤ Haga **análisis** que permiten identificar/ cuantificar compuestos (p. ej., razón ácido/azúcar en frutas) o parámetros relevantes (pH).
- Asegúrese que tiene una cantidad suficiente de materia prima **homogénea** para todos los experimentos.

Curso de Ingeniería Gastronómica para la Innovación en Alimentos Programa de Difusión Tecnológica CORFO

CORFO

Diseñar y llevar a cabo el experimento

- Planificar que se va a variar en el experimento y que se va a medir:
 - ☐ Variable(s) independiente(s) lo que se cambia.
 - Variables respuesta lo que se mide.
- ➤ Tener un **control** muestra que no es afectada por el fenómeno estudiado. De esta manera se aprecian los cambios solo por factores extraños.
- Hacer replicados de los experimentos y duplicados de las mediciones.

Documentar los resultados

- ➤ Usar un **libro de laboratorio** (permite "garabatear" y dibujar "monos") o documento word/Excel guardados en PC.
- > Registrar incluso los cálculos, ideas, etc.
- El libro de laboratorio debe ser **firmado** periódicamente por un testigo para poder patentar.
- La fotografía y los videos digitales son fundamentales para documentar/divulgar/ reproducir.

Analizar los datos

Mostrar los datos de los experimentos en forma de tablas o gráficos. Use Excel.

Calcular promedios y, si se atreve, las desviaciones estándar (dispersión de datos).

➤ Siéntese frente a los datos y **mírelos por un buen rato.** ¿Hacen sentido? Los duplicados/réplicas ¿son muy distintos? ¿qué significa?

➤ Si quiere hacer un diseño/análisis estadístico hable antes con un experto.

Resultados y conclusiones

- Resuma los principales resultados que se desprenden de los datos.
- > Se contestó la pregunta!!!!!
- ¿Cómo se comparan con los resultados de experiencias similares anteriores?
- ¿Es necesario repetir algunas experiencias?
- ¿Cúales son las tres principales conclusiones?
- Plantee nuevas hipótesis.

jmaguile@ing.puc.cl

