

Page 1 of 69

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Lightcomm Technology Co., Ltd.

Portable Bluetooth Speaker
Model No.: BTD15-E, NS-SPBTWAVE2,
NS-SPBTWAVE2-XX (XX=A-Z, a-z, 0-9,or blank) XX represents different color

FCC ID: XMF-SPBTWAVE2

Prepared for : Lightcomm Technology Co., Ltd.

Address : RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS. 26-28 AU

PUI WAN STREET FO TAN SHATIN NEW TERRITORIES

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science & Industry

Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20180327

Date of Test : Feb. 7--Mar. 1, 2018

Date of Report : Mar. 8, 2018

Page 2 of 69

TABLE OF CONTENTS

Descrip	ption	Page
Test Re	eport Certification	
	ENERAL INFORMATION	A
1.1.	Description of Device (EUT)	
1.2.	Carrier Frequency of Channels	
1.3.	Special Accessory and Auxiliary Equipment	
1.4.	Description of Test Facility	
1.5.	Measurement Uncertainty	
	EASURING DEVICE AND TEST EQUIPMENT	
3. OP	PERATION OF EUT DURING TESTING	
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
4. TE	ST PROCEDURES AND RESULTS	10
5. PO	WER LINE CONDUCTED MEASUREMENT	11
5.1.	Block Diagram of Test Setup	
5.2.	Test System Setup	
5.3.	Power Line Conducted Emission Measurement Limits	
5.4. 5.5.	Configuration of EUT on Measurement Operating Condition of EUT	
5.6.	Test Procedure	
5.7.	Data Sample	
5.8.	Power Line Conducted Emission Measurement Results	
6. 6D	B BANDWIDTH MEASUREMENT	17
6.1.	Block Diagram of Test Setup	17
6.2.	The Requirement For Section 15.247(a)(2)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT Test Procedure	
6.5. 6.6.	Test Result	
	AXIMUM PEAK OUTPUT POWER	
7.1.	Block Diagram of Test Setup	
7.1.	The Requirement For Section 15.247(b)(3)	
7.3.	EUT Configuration on Measurement	
7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	
	WER SPECTRAL DENSITY MEASUREMENT	
8.1.	Block Diagram of Test Setup	
8.2. 8.3.	The Requirement For Section 15.247(e) EUT Configuration on Measurement	
8.3. 8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
9. BA	ND EDGE COMPLIANCE TEST	27

Page 3 of 69

9.1.	Block Diagram of Test Setup	27
9.2.	The Requirement For Section 15.247(d)	
9.3.	EUT Configuration on Measurement	
9.4.	Operating Condition of EUT	27
9.5.	Test Procedure	28
9.6.	Test Result	28
10. RA	ADIATED SPURIOUS EMISSION TEST	34
10.1.	Block Diagram of Test Setup	34
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	36
10.5.	Operating Condition of EUT	
10.6.	Test Procedure	
10.7.	Data Sample	38
10.8.	The Field Strength of Radiation Emission Measurement Results	38
11. CC	ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	66
11.1.	Block Diagram of Test Setup	66
11.2.	The Requirement For Section 15.247(d)	
11.3.	EUT Configuration on Measurement	
11.4.	Operating Condition of EUT	66
11.5.	Test Procedure	
11.6.	Test Result	67
12. AN	TENNA REQUIREMENT	69
12.1.	The Requirement	69
12.2.	Antenna Construction	

Page 4 of 69

Test Report Certification

Applicant : Lightcomm Technology Co., Ltd.

Address : RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS. 26-28 AU PUI WAN

STREET FO TAN SHATIN NEW TERRITORIES

Manufacturer : Lightcomm Technology Co., Ltd.

Address : RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS. 26-28 AU PUI WAN

STREET FO TAN SHATIN NEW TERRITORIES

Product : Portable Bluetooth Speaker

Model No. : BTD15-E, NS-SPBTWAVE2,

NS-SPBTWAVE2-XX (XX=A-Z, a-z, 0-9,or blank) XX represents different color

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB558074 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements.

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Shenzhen Accurate Technology Co., Ltd.

Date of Test:	Feb. 7Mar. 1, 2018
Date of Report:	Mar. 8, 2018
Prepared by :	(S YAR FOR IN er)
Approved & Authorized Signer :	(Sean Liu, Manager)

Page 5 of 69

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Portable Bluetooth Speaker

Model Number : BTD15-E, NS-SPBTWAVE2, NS-SPBTWAVE2-XX

(XX=A-Z, a-z, 0-9,or blank) XX represents different color (Note: Above models are identical in schematic, structure and critical

components except for model name, So we prepare

NS-SPBTWAVE2-BK for test.)

Bluetooth version : BT V4.1 LE

Frequency Range : 2402MHz-2480MHz

Number of Channels : 40

Antenna Gain : 0dBi

Antenna type : PCB Antenna

Modulation mode : GFSK

Power Supply : DC 3.7V (Powered by Lithium battery) or

DC 5V (Powered by USB port)

Trade Name : n.a

Applicant : Lightcomm Technology Co., Ltd.

Address : RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS.

26-28 AU PUI WAN STREET FO TAN SHATIN NEW

TERRITORIES

Manufacturer : Lightcomm Technology Co., Ltd.

Address : RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS.

26-28 AU PUI WAN STREET FO TAN SHATIN NEW

TERRITORIES

Date of sample received: Feb. 24, 2018

Date of Test : Feb. 7--Mar. 1, 2018

Page 6 of 69

1.2. Carrier Frequency of Channels

Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channe 1	Frequeeny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.3. Special Accessory and Auxiliary Equipment

Notebook PC: Manufacturer: Lenovo

M/N: ThinkPad X240

S/N:n.a

Page 7 of 69

1.4.Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : Shenzhen Accurate Technology Co., Ltd.

Site Location : 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

Page 8 of 69

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 06, 2018	Jan. 05, 2019
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 06, 2018	Jan. 05, 2019
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 06, 2018	Jan. 05, 2019
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 06, 2018	Jan. 05, 2019
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 06, 2018	Jan. 05, 2019
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 12, 2018	Jan. 11, 2019
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 12, 2018	Jan. 11, 2019
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 12, 2018	Jan. 11, 2019
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 12, 2018	Jan. 11, 2019
Open Switch and Control Unit	Rohde&Schwarz	OSP120 + OSP-B157	101244 + 100866	Jan. 06, 2018	Jan. 05, 2019
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 06, 2018	Jan. 05, 2019
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 06, 2018	Jan. 05, 2019
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 06, 2018	Jan. 05, 2019
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 06, 2018	Jan. 05, 2019

Page 9 of 69

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: BLE Transmitting mode

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals

EUT

Figure 1 Setup: Transmitting mode

Page 10 of 69

4. TEST PROCEDURES AND RESULTS

FCC&IC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: The RF module of the product is the same as the report ATE20180324, Part of the report's test data reference to report ATE20180324.

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: Portable Bluetooth Speaker)

5.2. Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page 12 of 69

5.3. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	Β(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.4. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.5. Operating Condition of EUT

- 5.5.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.5.2. Turn on the power of all equipment.
- 5.5.3. Let the EUT work in test mode and measure it.

5.6.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.7.Data Sample

Freque	QuasiP	Averag	Transd	QuasiPe	Averag	QuasiP	Averag	QuasiPe	Average	Remark
ncy	eak	e	ucer	ak	e	eak	e	ak	Margin	(Pass/Fail)
(MHz)	Level	Level	value	Result	Result	Limit	Limit	Margin	(dB)	
	(dBµv)	(dBµv)	(dB)	(dBµv)	(dBµv)	(dBµv)	(dBµv)	(dB)		
X.XX	29.4	18.3	11.1	40.5	29.4	56.0	56.0	15.5	16.6	Pass

Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard

Calculation Formula:

Margin = Limit - Reading level value - Transducer value

5.8. Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150kHz to 30MHz is checked.

Test mode : BT Communication Test Voltage: 120V/60Hz								
MEASUREMENT		"TUV-	0227-0	3_fin"				
2/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	- Margin dB	Detector	Line	PE	
0.150000 0.480000 4.520000	39.60	10.7	56		QР	L1 L1 L1	GND GND GND	
MEASUREMENT	RESULT:	"TUV-	0227-0	3_fin2	,,			
2/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
	26.90			9.0 19.1 27.9	AV	L1 L1 L1	GND GND GND	

Report No.: ATE20180327 Page 14 of 69

MEASUREMENT	RESULT:	"TUV-	0227-0	4_fin"							
2/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
0.170000 0.485000 3.660000	49.00 40.30 30.80	10.5 10.7 11.1		16.0 16.0 25.2	QP QP QP	N N N	GND GND GND				
MEASUREMENT RESULT: "TUV-0227-04_fin2"											
2/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
0.490000 2.130000 17.380000	36.90 26.90 17.10	10.7 11.0 11.4	46 46 50	9.3 19.1 32.9	AV AV AV	N N N	GND GND GND				

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

Page 15 of 69

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Lightcomm Technology Co., Ltd. Manufacturer:

Operating Condition: BT Communication Test Site: 1#Shielding Room

WADE Operator: Test Specification: L 120V/60Hz Comment: Mains port 2/27/2018 /

Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: SU _SUB_STD_VTERM2 1.70

IF Start Step Stop Detector Meas. Transducer Frequency Frequency Width Time Bandw.

QuasiPeak 1.0 s 9.0 kHz 150.0 kHz 100.0 Hz 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "TUV-0227-03 fin"

2/27/2018							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	53.40	10.5	66	12.6	QP	L1	GND
0.480000	39.60	10.7	56	16.7	QP	L1	GND
4.520000	33.50	11.1	56	22.5	QP	L1	GND

MEASUREMENT RESULT: "TUV-0227-03 fin2"

2/27/2018							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.495000	37.10	10.7	46	9.0	AV	L1	GND
2.120000	26.90	11.0	46	19.1	AV	L1	GND
23.995000	22.10	11.5	50	27.9	AV	L1	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: WADE

Test Specification: N 120V/60Hz Comment: Mains port Start of Test: 2/27/2018 /

SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description: Start Stop Step Detector Meas. IF Transducer Bandw. Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

MEASUREMENT RESULT: "TUV-0227-04 fin"

2	2/27/2018							
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.170000	49.00	10.5	65	16.0	QP	N	GND
	0.485000	40.30	10.7	56	16.0	QP	N	GND
	3.660000	30.80	11.1	56	25.2	QP	N	GND

MEASUREMENT RESULT: "TUV-0227-04 fin2"

2/27/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.490000	36.90	10.7	46	9.3	AV	N	GND
2.130000	26.90	11.0	46	19.1	AV	N	GND
17.380000	17.10	11.4	50	32.9	AV	N	GND

Page 17 of 69

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

(EUT: Portable Bluetooth Speaker)

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 6.5.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

6.6.Test Result

Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	PASS/FAIL
0	2402	0.755	0.5	PASS
19	2440	0.755	0.5	PASS
39	2480	0.760	0.5	PASS

Note: The RF module of the product is the same as the report ATE20180324, so the data Reference to report is ATE20180324.

The spectrum analyzer plots are attached as below.

Date: 7.FEB.2018 15:19:35

Page 19 of 69

Date: 7.FEB.2018 15:21:22

Date: 7.FEB.2018 15:22:57

Page 20 of 69

7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

(EUT:Portable Bluetooth Speaker)

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 1 MHz and VBW to 3MHz.
- 7.5.3.Measurement the maximum peak output power.

7.6.Test Result

Channel	Frequency (MHz)	Peak Power Output (dBm)	Antenna gain (dBi)	E.I.P.R. (dBm)	Peak Power Limit (dBm)	Pass / Fail
0	2402	3.55	0	3.55	30	PASS
19	2440	4.34	0	4.34	30	PASS
39	2480	4.80	0	4.80	30	PASS

Note: The RF module of the product is the same as the report ATE20180324, so the data Reference to report is ATE20180324.

The spectrum analyzer plots are attached as below.

channel 0

Date: 7.FEB.2018 15:35:15

channel 19

Date: 7.FEB.2018 15:36:08

channel 39

Date: 7.FEB.2018 15:36:43

Page 23 of 69

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

(EUT:Portable Bluetooth Speaker)

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Measurement Procedure PKPSD:
- 8.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3kHz) and repeat.
- 8.5.4. Measurement the maximum power spectral density.

8.6.Test Result

CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3kHz)	LIMIT (dBm/3kHz)	PASS/FAIL
0	2402	-11.79	8	PASS
19	2440	-11.69	8	PASS
39	2480	-10.33	8	PASS

Note: The RF module of the product is the same as the report ATE20180324, so the data Reference to report is ATE20180324.

The spectrum analyzer plots are attached as below.

Page 25 of 69

channel 0

Date: 7.FEB.2018 15:38:35

channel 19

Date: 7.FEB.2018 15:38:08

channel 39

Date: 7.FEB.2018 15:37:31

Page 27 of 69

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

(EUT:Portable Bluetooth Speaker)

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

Page 28 of 69

9.5. Test Procedure

Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4.The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 9.5.5. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 9.5.8.RBW=1MHz, VBW=1MHz
- 9.5.9. The band edges was measured and recorded.

9.6.Test Result

Pass

Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2.4GHz	35.92	20
39	2.4835GHz	42.51	20

Note: The RF module of the product is the same as the report ATE20180324, so the conduction Band Edge data Reference to report is ATE20180324.

The spectrum analyzer plots are attached as below.

Page 29 of 69

channel 0

Date: 7.FEB.2018 15:27:16

channel 39

Date: 7.FEB.2018 15:28:47

Radiated Band Edge Result

Report No.: ATE20180327 Page 30 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #466

Standard: FCC (Band Edge)
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Horizontal

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 31 of 69

Job No.: LGW2018 #465 Standard: FCC (Band Edge) Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Note: Bluetooth 4.0

Polarization: Vertical
Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 32 of 69

Job No.: LGW2018 #471
Standard: FCC (Band Edge)
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Horizontal

Distance: 3m

Note:

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 33 of 69

Polarization: Vertical

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

Job No.: LGW2018 #472 Standard: FCC (Band Edge)

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Note:

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Shenzhen Accurate Technology Co., Ltd.

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

10. RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

Page 35 of 69

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: ATE20180327 Page 36 of 69

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

²Above 38.6

Page 37 of 69

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.5.2. Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Page 38 of 69

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	$(dB\mu v/m)$	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain

Result($dB\mu v/m$) = Reading($dB\mu v$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8. The Field Strength of Radiation Emission Measurement Results PASS.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

The spectrum analyzer plots are attached as below.

Page 39 of 69

FCC PART15C(9K-30MHz)

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2402MHz
Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 3.7V
Comment: X

Start of Test: 2018-2-27 /

SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 40 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2402MHz
Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 3.7V
Comment: Y

Start of Test: 2018-2-27 /

SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 41 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK EUT:

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2402MHz Test Site: 2# Chamber Operator: WADE Test Specification: DC 3.7V

Comment: 2018-2-27 / Start of Test:

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

ΙF Start Stop Step Detector Meas. Transducer

Width Time Frequency Frequency Bandw.

150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 9.0 kHz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 42 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2440MHz
Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 3.7V

Comment: X
Start of Test: 2018-2-27 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 43 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2440MHz Test Site: 2# Chamber Test Site: Operator: WADE Test Specification: DC 3.7V

Comment:

2018-2-27 / Start of Test:

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

ΙF Start Stop Step Detector Meas. Transducer

Frequency Frequency Width Time Bandw.

200 Hz 1516M 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 44 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2440MHz
Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 3.7V

Comment: Z

Start of Test: 2018-2-27 /

SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 45 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2480MHz Test Site: 2# Chamber WADE Operator: Test Specification: DC 3.7V Comment:

2018-2-27 / Start of Test:

SCAN TABLE: "LFRE Fin"
Short Description:

_SUB_STD_VTERM2 1.70 Start IF

Stop Step Detector Meas. Transducer

Bandw. Frequency Frequency Width Time

100.0 Hz 9.0 kHz 150.0 kHz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 46 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2480MHz Test Site: 2# Chamber WADE Operator: Test Specification: DC 3.7V

Comment:

Start of Test: 2018-2-27 /

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

Start Stop ΙF Step Detector Meas. Transducer

Frequency Frequency Width Time Bandw.

150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 9.0 kHz 9 kHz 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 1516M

Page 47 of 69

ACCURATE TECHNOLOGY CO., LTD

FCC Class B 3M Radiated

EUT: Portable Bluetooth Speaker M/N:NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Operating Condition: TX 2480MHz
Test Site: 2# Chamber WADE Operator: Test Specification: DC 3.7V

Comment: 7.

Start of Test: 2018-2-27 /

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

ΙF Start Stop Step Detector Meas. Transducer

Frequency Frequency Width Time Bandw.

1516M 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

FCC PART15C(30MHz-1000MHz)

Report No.: ATE20180327 Page 48 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #485

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %
EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Time:

Engineer Signature: WADE

Power Source: DC 3.7V

Horizontal

Distance: 3m

Date: 18/02/09/

Polarization:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 49 of 69

Job No.: LGW2018 #486

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Vertical

Power Source: DC 3.7V

Date: 18/02/09/

Time:

Engineer Signature: WADE

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 50 of 69

Job No.: LGW2018 #488 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 18/02/09/

Temp.(C)/Hum.(%) 23 C / 48 % Time:

EUT: Portable Bluetooth Speaker Engineer Signature: WADE

Mode: TX 2440MHz Distance: 3m

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 51 of 69

Job No.: LGW2018 #487

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2440MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Vertical

Power Source: DC 3.7V

Date: 18/02/09/

Time:

Engineer Signature: WADE

Distance: 3m

Report No.: ATE20180327 Page 52 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Horizontal

Job No.: LGW2018 #489

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Portable Bluetooth Speaker

Mode:

Model: NS-SPBTWAVE2-BK

TX 2480MHz

Manufacturer: Lightcomm Technology Co., Ltd.

Engineer Signature: WADE Distance: 3m

Date: 18/02/09/

Time:

Polarization:

Power Source: DC 3.7V

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 53 of 69

Job No.: LGW2018 #490

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Vertical

Power Source: DC 3.7V

Date: 18/02/09/

Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	90.5374	27.52	-14.98	12.54	43.50	-30.96	QP			
2	457.5072	25.50	-5.22	20.28	46.00	-25.72	QP			
3	726.8052	26.87	-0.67	26.20	46.00	-19.80	QP			

FCC PART15C(1GHz-18GHz)

Report No.: ATE20180327
Page 54 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #463

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Horizontal

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

Page 55 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #464

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Date: 18/02/08/ Time:

Engineer Signature: WADE

Power Source: DC 3.7V

Vertical

Distance: 3m

Polarization:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 56 of 69

Job No.: LGW2018 #467

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2440MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Horizontal

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

Page 57 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #468

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2440MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Vertical Polarization:

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 58 of 69

Job No.: LGW2018 #470

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Note:

Polarization: Horizontal

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

ATC®

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 59 of 69

Job No.: LGW2018 #469

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Vertical

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

FCC PART15C(18GHz-26.5GHz)

Report No.: ATE20180327 Page 60 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

26500.0 MHz

Job No.: LGW2018 #474

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %
EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Note:

20

10

0.0

18000,000

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Horizontal

Power Source: DC 3.7V

Time:

Engineer Signature: WADE

Distance: 3m

Date: 18/02/08/

	dBuV/m						
						limit1:	
30			**********	**************			*******
70							
50			***********	***********	*************	*********	
50 50	-in-the last gradient in the last of the l	parana paran	* man manual		- water of the contract of the	الإدارة والمستحدث المستحدث المستحدث	and the second

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	20938.718	11.98	38.39	50.37	74.00	-23.63	peak		1177	
2	20938.718	2.13	38.39	40.52	54.00	-13.48	AVG	1	11_	

20000

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 61 of 69

Job No.: LGW2018 #473

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Vertical

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 62 of 69

Job No.: LGW2018 #475

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2440MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Horizontal

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

Page 63 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #476

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2440MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Vertical

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

ATC®

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180327

Page 64 of 69

Job No.: LGW2018 #478

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Polarization: Horizontal

Power Source: DC 3.7V

Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

Page 65 of 69

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #477

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: NS-SPBTWAVE2-BK

Manufacturer: Lightcomm Technology Co., Ltd.

Note:

Polarization: Vertical

Power Source: DC 3.7V Date: 18/02/08/

Time:

Engineer Signature: WADE

Distance: 3m

			1						limit1:	-
80								*******		
70										
60					*******					
50	- LANGE CONTRACTOR CONTRACTOR	romandone, soldones en en espera de la	No. of the Control of	Marked and a grant of the party of the second	1	Mary Bayer, agency	and the second	The second	And the second second	and and and
40					3					
			1							
30										
30										*********
30 20										
		.,								*********
20								*******		**********
20 10 0.0	18000.000		20000							26500.0 MHz
20 10 0.0		Reading (dBuV/m)	20000 Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	26500.0 MHz Remark
20 10 0.0	18000.000 Freq.	(dBuV/m)	Factor			Margin (dB) -24.19	Detector			26500.0 MHz Remark

Page 66 of 69

11. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Portable Bluetooth Speaker)

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

Page 67 of 69

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 11.5.3. The Conducted Spurious Emission was measured and recorded.

11.6.Test Result

Pass.

Note: The RF module of the product is the same as the report ATE20180324, so the data Reference to report is ATE20180324.

The spectrum analyzer plots are attached as below.

Date: 7.FEB.2018 15:33:48

Page 68 of 69

Date: 7.FEB.2018 15:32:56

Date: 7.FEB.2018 15:32:06

Page 69 of 69

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of FCC part 15C Section 15.203.

***** End of Test Report *****