Задача А. Помогите, спасите!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка. Найдите для каждого её префикса количество различных подстрок в нём.

Формат входных данных

В единственной строке входных данных содержится непустая строка S, состоящая из N ($1 \le N \le 2 \cdot 10^5$) маленьких букв английского алфавита.

Формат выходных данных

Выведите N строк, в i-й строке должно содержаться количество различных подстрок в i-м префиксе строки S.

Примеры

стандартный ввод	стандартный вывод
aabab	1
	2
	5
	8
	11
atari	1
	3
	5
	9
	14

Задача В. Общие подстроки

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано K не обязательно различных строк из маленьких латинских букв, с суммарной длиной N. L_i определяется как максимальная длина строки, которая встречается как подстрока хотя бы у i строк из начального набора. Требуется для каждого $2 \le i \le K$ посчитать L_i .

Формат входных данных

В первой строке входных данных дано одно число L ($1 \le L \le 200/,000$) — число строк.

В следующих L строках даны сами строки из начального набора, по одной в строке. Гарантируется, что N — суммарная длина всех строк не превышает 200/,000.

Формат выходных данных

В k-1 строке выведите по одному числу – L_2, L_2, \ldots, L_K .

Пример

стандартный ввод	стандартный вывод
6	5
matter	3
animate	2
pattern	2
thermal	1
domain	
teammate	

Задача С. Ненокку

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Очень известный автор не менее известной книги решил написать продолжение своего произведения. Он писал все свои книги на компьютере, подключенном к интернету. Из-за такой неосторожности мальчику Ненокку удалось получить доступ к еще ненаписанной книге. Каждый вечер мальчик залазил на компьютер писателя и записывал на свой компьютер новые записи. Ненокку, записав на свой компьютер очередную главу, заинтересовался, а использовал ли хоть раз писатель слово "книга". Но он не любит читать книги (он лучше полазает в интернете), и поэтому он просит вас узнать есть ли то или иное слово в тексте произведения. Но естественно его интересует не только одно слово, а достаточно много.

Формат входных данных

В каждой строчке входного файла записана одна из двух записей.

- 1. ? **<слово>** (**<**слово> это набор не более 50 латинских символов): запрос проверки существования подстроки **<**слово> в произведении;
- 2. А **<текст>** (<текст> это набор не более 10^5 латинских символов): добавление в произведение <текст>.

Писатель только начал работать над произведением, поэтому он не мог написать более 10^5 символов. Суммарная длина всех запросов не превосходит 15 мегабайт плюс 12140 байт.

Формат выходных данных

Выведите на каждую строчку типа 1 "YES", если существует подстрока <слово>, и "NO" в противном случае. Не следует различать регистр букв.

Пример

стандартный ввод	стандартный вывод
? love	NO
? is	NO
A Loveis	YES
? love	NO
? WHO	YES
A Whoareyou	
? is	

Задача D. Циклический сдвиг

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Дана строка s, состоящая из маленьких латинских букв.

Назовем строку $t=t_1t_2\dots t_m\ (m>0)$ хорошей относительно строки s, если строка t и ее левый циклический сдвиг $t'=t_2\dots t_mt_1$ являются подстроками строки s.

Вам необходимо найти количество различных хороших строк t относительное заданной строки s.

Формат входных данных

В единственной строке входных данных записана строка s, состоящая из n ($1 \le n \le 300\,000$) маленьких латинских букв.

Формат выходных данных

Выведите единственное число — количество хороших строк t относительно заданной строки s.

Примеры

стандартный ввод	стандартный вывод
abaac	7
aaa	3

Замечание

В первом примере хорошими строками являются следующие: a, b, c, aa, ab, ba, aba.

Во втором примере хорошими являются только три строки: а, аа, ааа.

Задача Е. Словарь: перезагрузка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 1024 мегабайта

Словарь— это множество слов. Вы должны уметь обрабатывать запросы трех типов:

- «+ word» добавить слово word в словарь, если оно в нем не присутствует.
- «- word» удалить слово word из словаря, если оно там присутствует.
- «? text» вычислить суммарное количество вхождений всех слов из словаря в текст text, при этом, если слово входит в текст несколько раз, то необходимо учесть каждое вхождение.

Гарантируется, что любое слово или текст являются непустыми строками, состоящими из букв a, b и c, суммарная длина которых не превосходит L. Однако, для упрощения задачи перед выполнением каждого запроса необходимо поступить следующим образом: пусть x обозначает ответ на последний запрос ?, или 0, если таких запросов еще не было. Тогда необходимо очередную строку (word или text) циклически сдвинуть x раз. Напомним, что циклическим сдвигом строки $s = s_0 s_1 \dots s_{|s|}$ называется строка $s' = s_1 \dots s_{|s|} s_0$.

Формат входных данных

В первой строке дано одно число Q — число запросов. В следующих Q строках находятся запросы. Суммарная длина строк во всех запросах не превосходит L ($L \leqslant 5\,000\,000$)

Формат выходных данных

Для каждого запроса «?» выведите одно число — ответ на него.

Пример

стандартный ввод	стандартный вывод
11	0
+ a	6
+ a	5
- a	7
- ab	
? abca	
+ ab	
+ a	
? abaaabb	
? aaabbab	
+ baa	
? babaca	