Goéland: A Concurrent Tableau-Based ATP that Produces Machine-Checkable Proofs

EuroProofNet School on Natural Formal Mathematics

Julie Cailler June 3, 2025

VeriDis Team University of Lorraine CNRS, Inria, LORIA

Computer-Assisted Proofs

Automated Theorem Proving

- Click-and-prove software
- Autonomous search
- Statement or proof-like trace

Interactive Theorem Proving

- Proof assistants
- Guided search
- Machine-checkable proofs

Yes/No answer Proof Certificate

Trust Scale

Big Picture

Big Picture

1. Preliminary Notions

1.1. Context

1.2. Tableaux Proof & Proof-Search

Context

First-Order Logic (FOL)

- Expressivity: elements and properties about them
- Semi-decidable
- Efficient reasoning methods

Tableaux: Origin & Strengths

- Beth and Hintikka
- Extended by Smullyan and Fitting
- Unaltered original formula
- Output a proof

Method of Analytic Tableaux

Principle

- A set of axioms and one conjecture
- Refutation
- Syntactic rules: $\odot, \alpha, \delta, \beta, \gamma$
- Close all the branches

$$\frac{\neg(\exists x. \ P(x) \Rightarrow (P(a) \land P(b)))}{\neg(P(a) \Rightarrow (P(a) \land P(b)))} \gamma_{\neg \exists}$$

$$\frac{\neg(P(a) \Rightarrow (P(a) \land P(b)))}{P(a), \neg(P(a) \land P(b))} \alpha_{\neg \Rightarrow}$$

$$\frac{\neg P(a)}{\neg P(b)} \odot \frac{\neg P(b)}{\neg(P(b) \Rightarrow (P(a) \land P(b)))} \gamma_{\neg \exists}$$

$$\frac{\neg P(b)}{\neg(P(b) \Rightarrow (P(a) \land P(b)))} \alpha_{\neg \Rightarrow}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{Human(Socrates), \neg Human(Socrates)}{\bigcirc}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

Tableaux in AR

- Free variables
- Substitutions (local & global)

Human(Socrates) $\forall x. \neg Human(x)$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{Human(Socrates)}{\forall x. \ \neg Human(x)} \gamma_{\forall}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{Human(Socrates)}{\forall x. \ \neg Human(x)} \gamma_{\forall}$$
$$\frac{\neg Human(Socrates)}{\sigma = \{X \mapsto Socrates\}} \odot_{\sigma}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\forall x. \ P(x)$$
$$\neg P(a) \lor \neg P(b)$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{\neg P(a) \lor \neg P(b)}{P(X)} \uparrow_{\mathcal{H}}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{\neg P(a) \lor \neg P(b)}{\neg P(a)} \gamma_{\forall}$$

$$\frac{\neg P(a) \lor \neg P(b)}{\neg P(b)} \beta_{\forall}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{\neg P(a) \lor \neg P(b)}{\neg P(a)} \gamma_{\forall}$$

$$\frac{\neg P(a) \lor \neg P(b)}{\neg P(b)} \gamma_{\forall}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{ \frac{\forall x. \ P(x)}{\neg P(a) \lor \neg P(b)} }{P(X)} \gamma_{\forall} \\
\frac{ \frac{\neg P(a)}{\neg P(b)} }{\neg P(b)} \beta_{\lor}$$

$$\frac{\neg P(a)}{\sigma = \{X \mapsto a\}} \odot_{\sigma}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{ \frac{\forall x. \ P(x)}{\neg P(a) \lor \neg P(b)} }{P(a)} \gamma_{\forall} \frac{}{\neg P(a)} \frac{}{\neg P(b)} \beta_{\lor}$$

$$\frac{\neg P(a)}{\sigma = \{X \mapsto a\}} \odot_{\sigma}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{ \frac{\forall x. \ P(x)}{\neg P(a) \lor \neg P(b)} \ \gamma_{\forall}}{P(a)} \frac{\neg P(a)}{\neg P(a)} \frac{\neg P(b)}{\neg P(X_2)} \beta_{\forall}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{ \frac{\forall x. \ P(x)}{\neg P(a) \lor \neg P(b)} }{P(a)} \gamma_{\forall}$$

$$\frac{\neg P(a)}{\sigma = \{X \mapsto a\}} \odot_{\sigma} \frac{\neg P(b)}{P(X_2)} \gamma_{\forall}$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{ \frac{\forall x. \ P(x)}{\neg P(a) \lor \neg P(b)} \ \gamma_{\forall}}{P(a)} \qquad \frac{\neg P(a)}{\neg P(a)} \qquad \frac{\neg P(b)}{\neg P(X_2)} \qquad \beta_{\lor} \qquad \frac{\neg P(b)}{\neg P(X_2)} \qquad \gamma_{\forall} \qquad \frac{\neg P(b)}{\neg P(X_2)} \qquad \frac{\neg P(b)}{\neg P(b)} \qquad \frac{\neg P(b)}{\neg P$$

Rules

- ⊙: Closure rule
- α, β : Expand the tree
- γ : Free variables
- δ : Skolemization

- Free variables
- Substitutions (local & global)

$$\frac{ \frac{\forall x. \ P(x)}{\neg P(a) \lor \neg P(b)} }{P(a)} \gamma_{\forall}
\frac{ \frac{\neg P(a)}{\neg P(a)} \odot_{\sigma} }{\sigma = \{X \mapsto a\}} \circ_{\sigma} \frac{ \frac{\neg P(b)}{\neg P(b)} \gamma_{\forall}}{\sigma = \{X_2 \mapsto b\}} \circ_{\sigma}$$

2. Fairness Management in Tableau Proof-Search Procedure: a Concurrent Approach

2.1. Fairness Challenges in Tableaux

2.2. A Concurrent Proof-Search Procedure

Fairness Management

Unfairness Sources

- The selection of a branch B
- ullet Determining whether B should be closed or expanded
- If *B* is to be closed, the choice of a pair of complementary literals and thus a closing substitution
- If B is to be expanded, the selection of a formula to which an expansion rule is applied

Fairness Management

Unfairness Sources

- The selection of a branch B
- Determining whether B should be closed or expanded
- If *B* is to be closed, the choice of a pair of complementary literals and thus a closing substitution
- If B is to be expanded, the selection of a formula to which an expansion rule is applied

State-of-the-Art Answers & Heuristics

- ullet Limit the number of application of γ -rules
- Iterative deepening
- Rules ordering $(\odot \prec \alpha \prec \delta \prec \beta \prec \gamma)$

$$\neg P(a)$$

$$\neg Q(b)$$

$$\neg S(c)$$

$$\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))$$

$$\begin{array}{c} \neg P(a) \\ \neg Q(b) \\ \neg S(c) \\ \hline \forall x. \; ((P(x) \vee Q(x)) \wedge \forall y. \; S(x)) \\ \hline P(X) \vee Q(X) \\ \forall y. \; S(X) \end{array} \quad \gamma_\forall + \alpha_\wedge$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\neg S(c)$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(X) \lor Q(X)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(X)}{P(X)} \quad Q(X)$$

$$\forall y. S(X) \quad \forall y. S(X)$$

$$\begin{array}{c|c} \neg P(a) \\ \neg Q(b) \\ \neg S(c) \\ \hline \\ \frac{\forall x. \left((P(x) \lor Q(x)) \land \forall y. \ S(x) \right)}{P(X) \lor Q(X)} \quad \gamma_{\forall} + \alpha_{\land} \\ \hline \\ \frac{\forall y. \ S(X)}{P(X)} \quad \qquad Q(X) \\ \hline \\ \frac{\forall y. \ S(X)}{\sigma = \{X \mapsto a\}} \quad \odot_{\sigma} \end{array}$$

$$\begin{array}{c} \neg P(a) \\ \neg Q(b) \\ \neg S(c) \\ \\ \frac{\forall x. \ ((P(x) \lor Q(x)) \land \forall y. \ S(x))}{P(a) \lor Q(a)} \quad \gamma_{\forall} + \alpha_{\land} \\ \\ \frac{\forall y. \ S(a)}{P(a)} \quad \qquad Q(a) \\ \hline \gamma_{\forall} \cdot S(a) \quad \qquad \forall y. \ S(a) \\ \hline \sigma = \{X \mapsto a\} \end{array}$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\neg S(c)$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(a) \lor Q(a)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(a)}{\neg G = \{X \mapsto a\}} \quad \bigcirc_{\sigma}$$

$$\frac{\neg P(a)}{\neg G(a)} \quad \frac{\neg Q(a)}{\neg G(a)} \quad \gamma_{\forall}$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\neg S(c)$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(a) \lor Q(a)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(a)}{\neg P(a)} \quad Q(a)$$

$$\frac{\forall y. S(a)}{\sigma = \{X \mapsto a\}} \quad \odot_{\sigma}$$

$$\frac{\forall y. S(a)}{\neg P(X_2) \lor Q(X_2)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(X_2)}{\neg P(X_2)} \quad (X_2)$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\neg S(c)$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(a) \lor Q(a)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(a)}{\sigma = \{X \mapsto a\}} \quad \odot_{\sigma}$$

$$\frac{\forall y. S(a)}{S(a)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(a)}{S(a)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(a)}{P(X_2) \lor Q(X_2)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(X_2)}{P(X_2)} \quad \varphi_{\forall} \cdot S(X_2)$$

$$\forall y. S(X_2) \quad \forall y. S(X_2)$$

Motivating Example — A Better Heuristic

$$\neg P(a)$$

$$\neg Q(b)$$

$$\neg S(c)$$

$$\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))$$

$$\neg P(a)$$

$$\neg Q(b)$$

$$\neg S(c)$$

$$\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))$$

$$P(X) \lor Q(X)$$

$$\forall y. S(X)$$

$$P(X) \qquad Q(X)$$

$$\forall y. S(X) \qquad \forall y. S(X)$$

$$\forall y. S(X) \qquad \forall y. S(X)$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\neg S(c)$$

$$\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))$$

$$\frac{P(X) \lor Q(X)}{\forall y. S(X)}$$

$$\frac{\forall y. S(X)}{Q(X)}$$

$$\frac{\forall y. S(X)}{S(X)}$$

$$\gamma \forall y. S(X)$$

$$\frac{\forall y. S(X)}{S(X)}$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\frac{\neg S(c)}{\neg S(c)}$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(X) \lor Q(X)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(X)}{\neg P(X)} \quad Q(X) \quad \forall y. S(X)$$

$$\frac{\forall y. S(X)}{\neg S(X)} \quad \gamma_{\forall}$$

$$\frac{\forall y. S(X)}{\neg S(X)} \quad \nabla_{\sigma}$$

$$\begin{array}{c} \neg P(a) \\ \neg Q(b) \\ \neg S(c) \\ \hline \\ \frac{\forall x. \left((P(x) \lor Q(x)) \land \forall y. \ S(x) \right)}{P(c) \lor Q(c)} \\ \gamma_{\forall} + \alpha_{\land} \\ \hline \\ \frac{P(c)}{P(c)} \\ \frac{\forall y. \ S(c)}{Q(c)} \\ \frac{\forall y. \ S(c)}{S(c)} \\ \hline \\ \sigma = \{X \mapsto c\} \end{array}$$

$$\begin{array}{c} \neg P(a) \\ \neg Q(b) \\ \neg S(c) \\ \hline \\ \frac{\forall x. \left((P(x) \lor Q(x)) \land \forall y. \ S(x) \right)}{P(c) \lor Q(c)} \quad \gamma_\forall + \alpha_\land \\ \hline \\ \frac{\forall y. \ S(c)}{P(c)} \quad \qquad Q(c) \\ \hline \\ \frac{\forall y. \ S(c)}{S(c)} \quad \gamma_\forall \\ \hline \\ \sigma = \{X \mapsto c\} \end{array} \begin{array}{c} \neg P(a) \\ \hline \\ \frac{\forall y. \ S(c)}{S(c)} \quad \gamma_\forall \\ \hline \\ S(c) \end{array}$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\frac{\neg S(c)}{\neg S(c)}$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(c) \lor Q(c)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(c)}{\neg P(c)} \quad Q(c) \quad \beta_{\lor}$$

$$\frac{\forall y. S(c)}{\neg S(c)} \quad \gamma_{\forall}$$

$$\frac{\forall y. S(c)}{\neg S(c)} \quad \gamma_{\forall}$$

$$\frac{\forall y. S(c)}{\neg S(c)} \quad \gamma_{\forall}$$

$$\frac{\neg Q(c)}{\neg S(c)} \quad \gamma_{\forall}$$

Exploring Branches in Parallel?

Approach

- Each branch searches for a local solution
- Management of multiple solutions with successive attempts and backtracking
- Forbid previously tried solutions
- ullet Iterative deepening, limit of γ -rule and rules ordering

Exploring Branches in Parallel?

Approach

- Each branch searches for a local solution
- Management of multiple solutions with successive attempts and backtracking
- Forbid previously tried solutions
- \bullet Iterative deepening, limit of $\gamma\text{-rule}$ and rules ordering

New Challenges

- Free variable dependency
- Communication between branches

$$\neg P(a)$$

$$\neg Q(b)$$

$$\neg S(c)$$

$$\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))$$

$$\neg P(a)$$

$$\neg Q(b)$$

$$\neg S(c)$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(X) \lor Q(X)} \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(X)}{P(X)} Q(X)$$

$$\frac{\forall y. S(X)}{\odot} \odot_{\sigma} \frac{\forall y. S(X)}{\odot} \odot_{\sigma}$$

$$\sigma = \{X \mapsto a\} \qquad \sigma = \{X \mapsto b\}$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\neg S(c)$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(X) \lor Q(X)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(X)}{P(X)} \quad Q(X) \quad \beta_{\lor}$$

$$\frac{\forall y. S(X)}{\odot} \quad \forall y. S(X) \quad \odot_{\sigma}$$

$$\sigma = \{X \mapsto a\} \qquad \sigma = \{X \mapsto b\}$$

$$\begin{array}{c} \neg P(a) \\ \neg Q(b) \\ \neg S(c) \\ \hline \\ \forall x. \ ((P(x) \lor Q(x)) \land \forall y. \ S(x)) \\ \hline P(X) \lor Q(X) \\ \hline \\ \forall y. \ S(X) \\ \hline \\ P(a) \\ \hline \\ \forall y. \ S(a) \\ \hline \\ \sigma = \{X \mapsto a\} \\ \end{array} \begin{array}{c} \neg P(a) \\ \forall y. \ S(a) \\ \hline \\ \sigma = \{X \mapsto a\} \\ \end{array}$$

$$\begin{array}{c}
\neg P(a) \\
\neg Q(b) \\
\neg S(c) \\
\hline
\forall x. \left((P(x) \lor Q(x)) \land \forall y. S(x) \right) \\
\hline
P(X) \lor Q(X) \\
\hline
\forall y. S(X) \\
\hline
P(a) Q(a) \\
\hline
\psi y. S(a) \\
\hline
\odot \sigma \qquad \frac{\forall y. S(a)}{S(a)} \gamma_{\forall}
\end{array}$$

$$\neg P(a)$$

$$\neg Q(b)$$

$$\neg S(c)$$

$$\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))$$

$$P(X) \lor Q(X)$$

$$\forall y. S(X)$$

$$P(b)$$

$$\forall y. S(b)$$

$$\forall y. S(b)$$

$$\forall y. S(b)$$

$$\sigma = \{X \mapsto b\}$$

$$\sigma = \{X \mapsto b\}$$

$$\frac{\neg P(a)}{\neg Q(b)}$$

$$\neg S(c)$$

$$\frac{\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))}{P(X) \lor Q(X)} \quad \gamma_{\forall} + \alpha_{\land}$$

$$\frac{\forall y. S(X)}{P(X)} \quad Q(X)$$

$$\frac{\forall y. S(X)}{S(X)} \quad \gamma_{\forall} \quad \frac{\forall y. S(X)}{S(X)} \quad \gamma_{\forall}$$

$$\begin{array}{c} \neg P(a) \\ \neg Q(b) \\ \hline \neg S(c) \\ \hline \\ \frac{\forall x. \ ((P(x) \lor Q(x)) \land \forall y. \ S(x))}{P(X) \lor Q(X)} \ \gamma_{\forall} + \alpha_{\land} \\ \hline \\ \frac{\forall y. \ S(X)}{P(X)} \ \gamma_{\forall} \\ \hline \\ \frac{\forall y. \ S(X)}{\odot} \ \odot_{\sigma} \\ \hline \\ \sigma = \{X \mapsto c\} \\ \end{array}$$

$$\neg P(a)$$

$$\neg Q(b)$$

$$\neg S(c)$$

$$\forall x. ((P(x) \lor Q(x)) \land \forall y. S(x))$$

$$P(c) \lor Q(c)$$

$$\frac{\forall y. S(c)}{P(c)} \qquad Q(c)$$

$$\frac{\forall y. S(c)}{S(c)} \qquad \forall y. S(c)$$

$$\frac{\forall y. S(c)}{S(c)} \qquad \forall y. S(c)$$

$$\frac{\forall y. S(c)}{S(c)} \qquad \sigma$$

$$\sigma = \{X \mapsto c\}$$

$$\sigma = \{X \mapsto c\}$$

Contributions

- A tableau-based proof-search procedure
- Concurrent exploration of branches
- Tackle fairness challenges
- Eager closure
- Backtrack and forbidden substitutions
- Completeness proof of the procedure
- Implemented into a tool: Goéland

3. The Goéland Automated Theorem Prover

- 3.1. Goéland
- 3.2. Theory Reasoning
- 3.3. Experiments and Analysis

The Goéland Tool

Proof-Search Procedure

- Concurrent proof-search procedure
- Eager closure
- Completeness proof

Additional Functionnalities

- Equality reasoning
- Deduction modulo theory
- Polymorphic types
- Alternative modes: incomplete, interactive, shared memory, ...
- Outputs: Rocq, LambdaPi, Lisa and SC-TPTP

The Goéland Tool

Implementation

- 40 000 lines of code
- Go programming language
- Designed for concurrency
- Goroutines: N:M lightweight threads

Theory Reasoning

Motivation and Challenges

- Reason within specific contexts (arithmetic, industrial problems, ...)
- Deal with a large number of axioms
- Handle multiple theories

Background Reasoners

- Equality
- Deduction modulo theory (DMT)

Deduction Modulo Theory

Principle

- Turns axioms into rewrite rules
- Triggers only relevant axioms
- Produces shorter proof
- Not limited to one theory

Main Heuristic

 $(\forall \vec{x}.) \ A \Leftrightarrow F \text{ where:}$

- A is an atomic formula
- F is a non-atomic formula

Polarized DMT

 $(\forall \vec{x}.) \ A \Rightarrow F \text{ where:}$

- A is an atomic formula
- F is a non-atomic formula

Axiom: $\forall x. \ P(x) \Leftrightarrow \forall y. \ Q(x,y) \land S(x,y)$ Rule: $P(X) \rightarrow \forall y. \ Q(X,y) \land S(X,y)$

Protocol of the Experiments

- Thousand of Problems for Theorem Provers (TPTP) library (v8.1.2)
- Syntactic (SYN) and set theory (SET) categories
- First-order logic (FOL)
- Goéland and its variants, Zenon (+ modulo), Princess,
 Vampire and E
- 300 seconds of timeout
- Intel Xeon E5-2680 v4 2.4GHz 2×14-core processor with 128GB

Goéland Variants over SYN and SET

	SYN (288 problems)		SET (464 problems)	
Goéland	209	(1.2 s)	124	(18.6 s)
Goéland+EQ	213	(0.3 s)	101	(15.6 s)
Goéland+DMT	209	(1.3 s)	217	(5.9 s)
Goéland+DMT+EQ	213	(0.5 s)	192	(10.2 s)
Goéland+DMT	202	(0.3 s)	164	(1.5 s)
+Polarized				

All Provers on FOF

	FOF (5396 problems)	
Goéland	613 (10 482 s — 17.1 s)	
Goéland+DMT	770 (6 935 s — 9 s)	
Goéland+DMT+EQ	801 (10 060 s — 12.5 s)	
Zenon	1382 (9 026 s — 6.5 s)	
Zenon Modulo	1 389 (10 028 s — 7.2 s)	
Princess	1 621 (23 200 s — 14.3 s)	
Vampire	3 342 (42 873 s — 12.8 s)	
E	3 939 (39 638 s — 10.1 s)	

Analysis

Promising Results and Features

- Deduction modulo theory
- Output proofs

Performances Issues

- Less problems solved than other ATP
- Memory management
- Equality reasoner
- Proof size

4. Production of Proof Certificate

4.1. Skolemization and Translation

4.2. A Deskolemization Strategy

- δ -rule
- ∃ and ¬∀
- Introduces a fresh Skolem symbol
- The symbol is parametrized by the free variables of the branch

- δ -rule
- \exists and $\neg \forall$
- Introduces a fresh Skolem symbol
- The symbol is parametrized by the free variables of the branch

$$\frac{\exists z. \ P(z)}{P(c)} \ \delta_{\Xi}$$

- δ -rule
- \exists and $\neg \forall$
- Introduces a fresh Skolem symbol
- The symbol is parametrized by the free variables of the branch

$$Q(X, Y)$$

$$\exists z. P(z)$$

- δ -rule
- \exists and $\neg \forall$
- Introduces a fresh Skolem symbol
- The symbol is parametrized by the free variables of the branch

$$\frac{Q(X, Y)}{\exists z. P(z)} \frac{\exists z. P(z)}{P(sko(X, Y))} \delta_{\exists}$$

Motivations

- Shorter proofs
- Faster proof search

- Extension of δ -rule
- Uses only the free variables of the formula
- Extensions: δ^{++} , δ^* , ...

$$Q(X, Y)$$

$$\exists z. \ P(z)$$

Motivations

- Shorter proofs
- Faster proof search

- Extension of δ -rule
- Uses only the free variables of the formula
- Extensions: δ^{++} , δ^* , ...

$$\frac{Q(X, Y)}{\exists z. \ P(z)} \delta_{\overline{z}}$$

Motivations

- Shorter proofs
- Faster proof search

- Extension of δ -rule
- Uses only the free variables of the formula
- Extensions: δ^{++} , δ^* , ...

$$Q(X, Y)$$

$$\exists z. \ P(z, X)$$

Motivations

- Shorter proofs
- Faster proof search

- Extension of δ -rule
- Uses only the free variables of the formula
- Extensions: δ^{++} , δ^* , ...

$$\frac{Q(X, Y)}{\exists z. \ P(z, X)} \delta_{\exists}^{+}$$

$$\frac{P(sko(X))}{}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{\neg(D(X), \neg(\forall y\ D(y))} \delta_{\neg \forall}$$

$$\frac{\neg(D(X_2) \Rightarrow \forall y\ D(y))}{\neg(D(X_2), \neg(\forall y\ D(y))} \alpha_{\neg \Rightarrow}$$

$$\frac{D(X_2), \neg(\forall y\ D(y))}{\sigma = \{X_2 \mapsto f(X)\}} {}^{\bigodot}\sigma$$

(a) Outer Skolemization tableau.

$$\frac{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y))}{\neg(D(X) \Rightarrow \forall y \ D(y))} \xrightarrow{\gamma_{\neg \exists}}
\frac{\neg(D(X), \neg(\forall y \ D(y))}{\sigma_{\neg \ominus}} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \xrightarrow{\odot_{\sigma}}$$

(b) Inner Skolemization tableau.

Translation to Machine-Checkable Proofs

Gentzen-Schütte Calculus (GS3)

- Equivalent to tableaux: 1-to-1 mapping between rules
- Easily translatable to proof assistants
- No free variables

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \begin{array}{c} \gamma_{\neg \exists} \\ \alpha_{\neg \Rightarrow} \\ \hline D(X), \neg(\forall y\ D(y)) \\ \hline \neg D(f(X)) \\ \hline \neg(D(X_2) \Rightarrow \forall y\ D(y)) \\ \hline \alpha_{\neg \Rightarrow} \\ \hline D(X_2), \neg(\forall y\ D(y)) \\ \hline \alpha = \{X_2 \mapsto f(X)\} \end{array}$$

$$\frac{ \ldots, \neg D(c'), D(c'), \neg (\forall y \ D(y)) \vdash}{ \ldots, \neg (D(c') \Rightarrow \forall y \ D(y)) \vdash} \stackrel{\text{dx}}{\neg \Rightarrow} \\ \frac{ \neg (\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \ldots, \neg D(c') \vdash}{ \ldots, D(c), \neg (\forall y \ D(y)) \vdash} \stackrel{\neg \exists}{\neg \Rightarrow} \\ \frac{ \ldots, \neg (D(c) \Rightarrow \forall y \ D(y)) \vdash}{ \neg (\exists x. \ D(x) \Rightarrow \forall y \ D(y)) \vdash} \stackrel{\neg \exists}{\neg \exists}$$

(a) Outer Skolemization tableau proof.

(b) Equivalent GS3.

Outer Skolemization Only 🕃

Why?

- δ -rule: the symbol has to be *fresh*
- \bullet γ -rule: must be instantiated by its final value
- Closure rule: unification with any term
- Problem: we use a term before its introduction

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \begin{array}{c} \gamma_{\neg \exists} \\ \neg(D(X) \Rightarrow \forall y\ D(y)) \\ \hline \frac{D(X), \neg(\forall y\ D(y))}{\sigma = \{X \mapsto c\}} \delta_{\neg \forall}^{+} \end{array}$$

$$\frac{ \dots, D(c), \neg(\forall y \ D(y)), \neg D(c) \vdash}{ \dots, D(c), \neg(\forall y \ D(y)) \vdash} \xrightarrow{\neg \forall} (\star)$$

$$\frac{ \dots, \neg(D(c), \neg(\forall y \ D(y)) \vdash}{ \dots, \neg(D(c) \Rightarrow \forall y \ D(y)) \vdash} \xrightarrow{\neg \exists}$$

(b) Incorrect equivalent GS3.

A Deskolemization Strategy

Idea

Perform all the Skolemization steps before the other rules, so the Skolem symbol is necessarily fresh.

Key Notion

- Formulas that depend on a Skolem symbol
- A formula F needs to be processed before another formula G iff G makes use of a Skolem symbol generated by F

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg\exists}} \gamma_{\neg\exists}$$

$$\frac{\neg(D(X), \neg(\forall y\ D(y))}{D(X), \neg(\forall y\ D(y))} \delta_{\neg\forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists}} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{D(X), \neg(\forall y\ D(y))} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)) \vdash$$

$$\begin{array}{c} \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)) \\ \hline \neg(D(X) \Rightarrow \forall y\; D(y)) \\ \hline \hline D(X), \neg(\forall y\; D(y)) \\ \hline \neg D(c) \\ \hline \sigma = \{X \mapsto c\} \end{array} \begin{matrix} \gamma_{\neg \exists} \\ \alpha_{\neg \Rightarrow} \\ \delta_{\neg \forall}^+ \end{matrix}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y))}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))} \neg_{\exists}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{D(X), \neg(\forall y\ D(y))} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y))}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))} \neg_{\exists}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists} \\ \frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{D(X), \neg(\forall y\ D(y))} \delta^+_{\neg \forall} \\ \frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), D(c), \neg(\forall y\ D(y)) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)) \vdash} \neg \exists$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg\exists}} \\ \frac{\neg(D(X), \neg(\forall y\ D(y))}{\neg D(c)} \alpha_{\neg\Rightarrow}}{\sigma = \{X \mapsto c\}}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), D(c), \neg(\forall y\ D(y)) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y))} \neg_{\exists} \neg_{\exists}$$

$$\frac{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y))}{\neg(D(X) \Rightarrow \forall y \ D(y))} \xrightarrow{\gamma_{\neg \exists}}
\frac{\neg(D(X) \Rightarrow \forall y \ D(y))}{\sigma_{\neg \ominus}} \xrightarrow{\delta_{\neg \forall}^{+}}
\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \xrightarrow{\circ_{\sigma}}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), D(c), \neg(\forall y\ D(y)) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y))} \neg_{\exists} \neg_{\exists}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{\neg(D(X), \neg(\forall y\ D(y)))} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(\forall y \ D(y)) \vdash}{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(D(c) \Rightarrow \forall y \ D(y)), D(c), \neg(\forall y \ D(y)) \vdash}{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(D(c) \Rightarrow \forall y \ D(y))} \xrightarrow{\neg \exists} W \times \Sigma$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists}} \\ \frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{\neg(D(X), \neg(\forall y\ D(y)))} \delta_{\neg \forall}^{+} \\ \frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists} \\ \frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{D(X), \neg(\forall y\ D(y))} \delta_{\neg \forall}^{+} \\ \frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x.\ D(x)\Rightarrow\forall y\ D(y)),\neg(\forall y\ D(y))\vdash}{\neg(\exists x.\ D(x)\Rightarrow\forall y\ D(y)),\neg(D(c)\Rightarrow\forall y\ D(y)),D(c),\neg(\forall y\ D(y))\vdash} \xrightarrow{\neg(\exists x.\ D(x)\Rightarrow\forall y\ D(y)),\neg(D(c)\Rightarrow\forall y\ D(y))\vdash} \neg\ni$$

$$\frac{\neg(\exists x.\ D(x)\Rightarrow\forall y\ D(y)),\neg(D(c)\Rightarrow\forall y\ D(y))\vdash}{\neg(\exists x.\ D(x)\Rightarrow\forall y\ D(y))} \xrightarrow{\neg\exists}$$

$$\frac{ \neg (\exists x. \ D(x) \Rightarrow \forall y \ D(y))}{ \neg (D(X) \Rightarrow \forall y \ D(y))} \underbrace{ \begin{array}{c} \gamma_{\neg \exists} \\ \gamma_{\neg \exists} \\ \hline \rho(X), \neg (\forall y \ D(y)) \\ \hline \frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \\ \end{array}}_{\sigma} \delta_{\neg \forall}^{+}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)), \neg D(c) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)) \vdash} \neg_{\forall} } \neg_{\forall} \\
\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), D(c), \neg(\forall y\ D(y)) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y))} \neg_{\exists} } \neg_{\exists}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{D(X), \neg(\forall y\ D(y))} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg (\exists x. \ D(x) \Rightarrow \forall y \ D(y))}{\neg (D(X) \Rightarrow \forall y \ D(y))} \alpha_{\neg \Rightarrow} \\ \frac{D(X), \neg (\forall y \ D(y))}{\neg D(c)} \delta_{\neg \forall}^{+} \\ \frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y))}{\neg(D(X) \Rightarrow \forall y \ D(y))} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y \ D(y))}{D(X), \neg(\forall y \ D(y))} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)), \neg D(c) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)), \neg(b(c) \vdash} \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)) \vdash} \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), \neg(b(c), \neg(\forall y\ D(y)) \vdash} \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(b(c) \Rightarrow \forall y\ D(y)) \vdash} \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))$$

$$\frac{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y))}{\neg(D(X) \Rightarrow \forall y \ D(y))} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y \ D(y))}{D(X), \neg(\forall y \ D(y))} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\begin{array}{c} \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)), \neg(D(c) \Rightarrow \forall y\; D(y)), \neg(\forall y\; D(y)), \neg D(c) \vdash \\ \hline \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)), \neg(\forall y\; D(y)), \neg D(c) \vdash \\ \hline \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)), \neg(\forall y\; D(y)) \vdash \\ \hline \hline \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)), \neg(D(c) \Rightarrow \forall y\; D(y)), D(c), \neg(\forall y\; D(y)) \vdash \\ \hline \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)), \neg(D(c) \Rightarrow \forall y\; D(y)) \vdash \\ \hline \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)) \\ \hline \neg(\exists x.\; D(x) \Rightarrow \forall y\; D(y)) \end{array} \xrightarrow{\neg \exists}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \gamma_{\neg \exists}$$

$$\frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{D(X), \neg(\forall y\ D(y))} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \odot_{\sigma}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)), \neg D(c) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)), \neg(b) \vdash} \neg_{\exists}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(b(c) \Rightarrow \forall y\ D(y)), \neg(b(c), \neg(\forall y\ D(y)) \vdash}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(b(c) \Rightarrow \forall y\ D(y)) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(b(c) \Rightarrow \forall y\ D(y)) \vdash}{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}$$

$$\frac{\neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y))}{\neg(D(X) \Rightarrow \forall y\ D(y))} \underset{\alpha_{\neg \Rightarrow}}{\gamma_{\neg \exists}} \frac{\neg(D(X) \Rightarrow \forall y\ D(y))}{\alpha_{\neg \Rightarrow}} \underset{\alpha_{\neg \forall}}{\alpha_{\neg \Rightarrow}} \frac{\neg(D(c))}{\sigma = \{X \mapsto c\}} \underset{\alpha}{\circ} \sigma$$

$$\begin{array}{c} \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), \ D(c), \neg(\forall y\ D(y)), \neg D(c) \vdash \\ \hline \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)), \neg D(c) \vdash \\ \hline \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)), \neg(D(c) \vdash \\ \hline \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)) \vdash \\ \hline \hline \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)), \neg(\forall y\ D(y)) \vdash \\ \hline \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)), \neg(D(c) \Rightarrow \forall y\ D(y)) \vdash \\ \hline \neg(\exists x.\ D(x) \Rightarrow \forall y\ D(y)) \end{array} \xrightarrow{\neg \exists} \\ \end{array}$$

$$\frac{\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y))}{\neg(D(X) \Rightarrow \forall y \ D(y))} \xrightarrow{\gamma_{\neg \exists}}
\frac{\neg(D(X), \neg(\forall y \ D(y))}{\sigma_{\neg \ominus}} \delta_{\neg \forall}^{+}$$

$$\frac{\neg D(c)}{\sigma = \{X \mapsto c\}} \xrightarrow{\odot_{\sigma}}$$

$$\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(D(c) \Rightarrow \forall y \ D(y)), D(c), \neg(\forall y \ D(y)), \neg D(c) \vdash \\
\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(D(c) \Rightarrow \forall y \ D(y)), \neg(\forall y \ D(y)), \neg D(c) \vdash \\
\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(\forall y \ D(y)), \neg(D(c) \vdash \\
\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(\forall y \ D(y)) \vdash \\
\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(D(c) \Rightarrow \forall y \ D(y)) \vdash \\
\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y)), \neg(D(c) \Rightarrow \forall y \ D(y)) \vdash \\
\neg(\exists x. \ D(x) \Rightarrow \forall y \ D(y))$$

Experiments

Implementation

- δ , δ^+ and δ^{++} Skolemization strategies
- GS3 proofs
- Deskolemization algorithms

Evaluation Protocol

- Same setup as previous tests
- 3 Skolemization strategies + DMT
- Number of problems solved
- Rocq output
- Size of the proof (number of branches)

Results

	Problems	Percentage	Avg. Size	Max. Size
	Proved	Certified	Increase	Increase
Goéland	261	100 %	0 %	-
Goéland+ δ^+	272	100 %	8.1 %	5.3
Goéland+ δ^{+^+}	274	100 %	10.6 %	10.3
Goéland+DMT	363	100 %	0 %	-
${\it Go\'eland+DMT+}\delta^+$	375	100 %	4.5 %	3.9
Goéland+DMT+ δ^{+^+}	377	100 %	7.4 %	5.2

Contributions

- ullet An optimization of the deskolemization algorithm for δ^+
- ullet A deskolemization algorithm for δ^{++}
- Soundness proof for both translations
- Output of GS3 proof into Rocq, LambdaPi, Lisa and SC-TPTP
- Promising results
- 100% of the proofs are certified
- Far below the theoretical bound

Contributions

Goéland

- Fairness between branches managed by concurrency
- Completeness of the procedure
- Promising results (DMT)

Proof Certification

- A sound generic deskolemization algorithm
- Output of the proofs into Rocq, LambdaPi, Lisa and SC-TPTP

Future Work

Goéland

- Performance improvement (memory management, equality, Rust, ...)
- Heuristics, simulate "intuition" with learning methods, ...
- Modular and generic prover
- Non-classical logic & theories

Proof Certification

- Reduce the number of branches by the use of lemmas
- Integration of theories
- SC-TPTP Utils and proof elaboration
- Framework for verification of tableau proofs: TableauxRocq

Thank you! ②

https://github.com/GoelandProver/Goeland https://github.com/SC-TPTP/sc-tptp

Reasoning Modulo Theory

Simple Set Theory

- A_1 : $\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b$ A_2 : $\forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a$ C: $\forall a. \ a \subseteq a$

$$A_1 \wedge A_2 \wedge \neg C$$

$$(\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b)$$
$$\wedge (\forall a, b. \ a = b \Leftrightarrow a \subseteq b \wedge b \subseteq a)$$
$$\wedge \neg (\forall a. \ a \subseteq a)$$

Reasoning Modulo Theory

$$(\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b) \land (\forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a) \\ \land \neg (\forall a. \ a \subseteq a)$$

$$\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b, \forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a, \\ \neg (\forall a. \ a \subseteq a)$$

$$\neg (a \subseteq a)$$

$$\neg$$

Reasoning Modulo Theory

$$(\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b) \land (\forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a)$$

$$\land \neg (\forall a. \ a \subseteq a)$$

$$\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b, \forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a,$$

$$\neg (\forall a. \ a \subseteq a)$$

$$\neg (a \subseteq a)$$

$$\forall b. \ A \subseteq b \Leftrightarrow \forall x. \ x \in A \Rightarrow x \in b$$

$$A \subseteq B \Leftrightarrow \forall x. \ x \in A \Rightarrow x \in B$$

$$\sigma = \{A \mapsto a, B \mapsto a\}$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (\forall x. \ x \in A \Rightarrow x \in B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

$$\neg (A \subseteq B), \neg (A \subseteq B), \neg (A \subseteq B)$$

Principle

Turns axioms into rewrite rules

Main Heuristic

 $(\forall \vec{x}.) \ A \Leftrightarrow F \text{ where:}$

- A is an atomic formula
- F is a non-atomic formula

Axiom: $\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b$ Rule: $A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$ Axiom: $\forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a$ Rule: $A = B \to A \subseteq B \land B \subseteq A$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\neg(\forall a.\ a\subseteq a)$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\neg(\forall x.\ x\in a\Rightarrow x\in a)}\to (A\mapsto a, B\mapsto a)$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\neg(\forall x.\ x\in a\Rightarrow x\in a)}\to (A\mapsto a, B\mapsto a)$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\frac{\neg(\forall x.\ x\in a\Rightarrow x\in a)}{\neg(s\in a\Rightarrow s\in a)}} \xrightarrow{\delta_{\neg\forall}} (A\mapsto a, B\mapsto a)$$

$$A\subseteq B \to \forall x. \ x\in A \Rightarrow x\in B$$

$$A=B\to A\subseteq B \land B\subseteq A$$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\frac{\neg(\forall x.\ x\in a\Rightarrow x\in a)}{\neg(s\in a\Rightarrow s\in a)}} \xrightarrow[\sigma,s]{} \delta_{\neg\forall}$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\frac{\neg(\forall x.\ x\in a\Rightarrow x\in a)}{\neg(s\in a\Rightarrow s\in a)}} \xrightarrow[\delta_{\neg\forall}]{} (A\mapsto a, B\mapsto a)$$

$$\frac{\frac{\neg(s\in a\Rightarrow s\in a)}{\neg(s\in a), (s\in a)}}{\frac{\neg(s\in a), (s\in a)}{\odot}} \xrightarrow[\delta]{} (A\mapsto a, B\mapsto a)$$

Benefits

- Avoid combinatorial explosion
- "Useless" axioms aren't triggered
- Shorter proof
- Not limited to one theory

Integration

- Triggered when a predicate is generated
- Backtrack if multiples rules are available
- Polarized extension to handle ⇒

Scale-Up Experimental Results (1)

	SYN (207 problems)	SET (113 problems)
2	1.5 s	20 s (+4)
4	0.6 s	15 s (+5)
8	0.4 s	12 s (+8)
16	0.8 s	8.7 s (+10)
28	0.3 s (+ 2)	8.7 s (+11)

Table 1: Scale-up experimental results of Goéland.

Scale-Up Experimental Results (2)

	SYN (207 problems)	SET (208 problems)
2	1.4 s (+ 1)	6.1 s (+ 5)
4	1.3 s	5.3 s (+ 8)
8	1.1 s	4.7 s (+ 7)
16	0.6 s (+ 1)	4.2 s (+ 9)
28	0.4 s (+ 2)	3.1 s (+ 9)

Table 2: Scale-up experimental results of Goéland+DMT.

Proof Tree and Segments

Figure 4: S is an initial segment, S' is a branch, and $S \sqsubseteq S'$.

Mapping

Figure 5: The branch B' is mapped to the initial segment m(B'), which means B' contains at least all the formulas of m(B').

Mapping Progression

Figure 6: m_2 is "more extended" than m_1

Proof

Key Ideas of the Proof

- We consider a proof (T,σ) for a formula F with a reintroduction limit l
- We consider the proof (T', σ') generated by **Goéland** with the same limit
- We build a mapping between T and T' and show that every branch is T is going to have at least all the formulas than the equivalent one in T

Critical Points

- The agreement mechanism terminates
- A "good" substitution cannot be forbidden