Self Organizing Maps on Million Song Dataset

Big Data Analytics Fall 2016

Chanakya Kumar, Aidan McConnell, Bhupesh Shetty, Sarah Gerard

Problem Statement

- Use Self-organizing maps to visualize Million song Data set.
- Use cluster and GPU to run experiments

Million Song Dataset

- The MSD contains audio features and metadata for a million contemporary popular music tracks. It contains:
- 280 GB of data
 - 1,000,000 songs
 - 44,745 unique artists
 - 7, 643 unique terms (Echo Nest tags)
 - 2, 321 unique music brainz tags
 - 43, 943 artists with at least one term
 - 515, 576 dated tracks starting from 1922

Issues with dataset

- Nested directories containing h5 files.
- Each H5 files represents a song.
- A total of million songs i.e. 1 million H5 files.
- Extracting features from H5 files.
- Getting the data in a usable text file format.

Preprocessing H5 files

- Extract song features from H5 files.
- 1 D arrays. Average and norms.
- 2 D arrays. Covariance, average. (segment timbre, segment pitches).
- Conversion to CSV.
- Finally 220 features.

Features

analysis_sample_rate artist_familiarity

artist_id

artist_location artist_mbid

artist_mbtags_count artist_playmeid artist_terms_freq

audio_md5 bars_start beats_start duration

energy

key_confidence

mode

 num_songs

release_7digitalid sections_start

segments_loudness_max

segments_loudness_start segments_start

similar_artists

song_id

tatums_confidence

tempo

 $time_signature_confidence$

track_7digitalid

year

artist_7digitalid artist_hotttnesss artist_latitude artist_longitude artist_mbtags artist_name

artist_terms artist_terms_weight bars_confidence

beats_confidence

danceability end_of_fade_in

key

loudness

mode_confidence

release

sections_confidence segments_confidence

segments_loudness_max_time

segments_pitches segments_timbre song_hotttnesss start_of_fade_out

tatums_start time_signature

title

track_id

Self Organizing Map

- Useful for visualizing high dimensional data in a low dimensional space
- Uses unsupervised learning to classify data
- SOM is a neural network
- The input data is linked and classified to a node in the network for visualization

Training

- Builds the map using input data
- Each neuron has weights associated with it
- Each data point is matched with a neuron based on the BMU
- Every time this process occurs, the weights are updated

Neighborhood Function

- Neighborhood shrinks iteratively
- Neuron weights adjust to become closer to input data
- The neurons closest to the BMU adjust more than those further away

$$\sigma(t) = \sigma_0 \exp(-\frac{t}{\lambda})$$

 σ_0 = the width of lattice at time zero

t = the current time step

 λ = the time constant

The value of λ depends on σ_0 and the chosen number of iterations for algorithm.

Size of the neighborhood around the BMU shrinks

$$v(t+1) = v(t) + \sigma(t)\alpha(t)(x(t) - v(t))$$

Visualization

- Choose number of neurons wisely
- Visualization of data should be useful and easy to analyze

Approaches

- Waited and cried a little!
- Decrease N/d
- Smart algebra (batch SOM and Gram matrix for distance calculation)
- Used Neon Cluster and GPU (kepler)

Software Platform

Language C++, Python

Parallel env OpenMP,MPI,CUDA for GPU

Package Somoclu

SOM Options

- Naïve implementation (On-line)
- Parallel with MPI
- Parallel with GPU

How is parallel possible (batch!)

Neighborhood function

$$\tilde{d}_k(t) = \|\mathbf{x}(t) - \mathbf{w}_k(t_0)\|^2$$

$$d_c(t) \equiv \min_k \tilde{d}_k(t) \leftarrow BMU$$

Runtime Comparison

100 epochs and 30*30 MAP Gaussian Neighborhood Learning rate 0.1 to 0.01 Full dataset

Methods	Runtime
Naïve (on-line)	53,800 seconds
Parallel without GPU	1,056 seconds
Parallel with GPU	402 seconds

Parameter Estimation

- Extremely difficult!
- Trial and error
- We used quantization error to estimate epochs

$$E_q = \frac{1}{N} \sum_{i=1}^{N} ||x_i - m_c||$$

Lattice dimension and No. of epochs

Experiments

- Selected epochs = 100
- Lattice dimension
 - 25 x 25
 - 30 x 30
 - 40 x 40
 - 50 x 50
 - 75 x 75
 - 100 x 100

SOM Hitmap

Hitmap: Number of songs with BMU at neuron.

SOM Unified Distance Matrix

0.40

U-Matrix: Average distance from a neuron to it's

neighbors.

SOM Component Planes

SOM Component Planes

SOM Component Planes

Genre Subset

SOM Unfolding

SOM Unfolding

K-Means Clustering

Clustered SOM neurons in the data space using final weights as features.

Faithful Projection?

Limitations and Opportunities

- More work on feature selection. Consult a music expert!
- Parameter estimation. We only considered square dimension.
- GPU memory issues.
- Implement another SOM method (Dot-product SOM?)
- Start very very early!!!!

Conclusions

- Implemented both on-line and parallel version of SOM on Million Song Dataset
- Compared the performance in terms of run time.
- GPU is lightning quick but had memory issues when increasing size of lattice.
- Developed visualization using SOM for million songs!