Optimal Parenthesization for Matrix Chain Product

Given a chain of N matrices A_1, A_2, \cdots, A_N , where for $i = \{1, 2, \cdots, N\}$ matrix A_i has dimension $d_{i-l} \times d_i$, your task is to fully parenthesize the product $A_1 \times A_2 \times \cdots \times A_n$ in a way that minimizes the number of scalar multiplications required to evaluate this expression. Note that evaluating $A_1 \times A_2$ requires $d_0 \times d_1 \times d_2$ scalar multiplications.

For example, the matrix chain product $A_1 \times A_2 \times A_3$ can be parenthesized and evaluated in two possible ways:

- 1. $((A_1 \times A_2) \times A_3)$ requiring $d_0 \times d_1 \times d_2 + d_0 \times d_2 \times d_3$ scalar multiplications,
- 2. $(A_1 \times (A_2 \times A_3))$ requiring $d_0 \times d_1 \times d_3 + d_1 \times d_2 \times d_3$ scalar multiplications.

Question 1: Given a list d which represents the chain of matrices such that matrix A_i is of dimension d[i-1] by d[i], write a function, OPTPRODUCT, to solve this problem using a top-down dynamic programming approach. **Hint**: in each step, guess what should be outermost multiplication. Then write the base case and the recursive relation.

