PIPELINED ADC

Area of Project:

- Project work is in the area of Analog and VLSI Design focussing on data converters.
- Our project deals with ADC.

INTRODUCTION TO ADCs

- Converts analog signals to digital signals.
- Used to establish an interface between analog and digital worlds.

Types of ADCs:

Comparison of various ADCs:

	FLASH ADC	SIGMA DELTA ADC	PIPELINED ADC
Resolution	Low	High	Moderate
Speed	High	Low	High

Objective of the project:

 This project aims at designing 10-bit Pipelined ADC with high speed (100MHz) and moderate (10 bit) resolution.

<u>Introduction to pipelined ADC:</u>

- The Pipelined ADC uses the concept of pipelining.
- Pipelining is a method of speeding up high volume processes.

Specifications:

Stages	5
Resolution	10
No.of bits per stage	3
Sampling Frequency (f ₅)	100 MHz

Block diagram of Pipelined ADC:

Sub-ADC (Flash):

- Also known as a fully parallel architecture.
- An n-bit flash ADC consists of an array of 2⁽ⁿ⁾-1 comparators and a set of 2⁽ⁿ⁾-1 reference values.
- The set of 2[^](n)-1 comparator outputs that result is referred to as a thermometer code.
- The encoder converts the thermometer code produced by the comparators to a binary code as shown in the truth table .

3-BIT FLASH ADC

Input/Output table of Flash ADC:

	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C_1	B ₂	B _l	B_0
V _I <0.125V _R	0	0	0	0	0	0	0	0	0	0
$0.125V_R \le V_I \le 0.25V_R$	0	0	0	0	0	0	1	0	0	1
$0.25V_R \le V_I \le 0.375V_R$	0	0	0	0	0	1	1	0	1	0
$0.375V_R \le V_I \le 0.50V_R$	0	0	0	0	1	1	1	0	1	1
$0.50V_R \le V_I \le 0.625V_R$	0	0	0	1	1	1	1	1	0	0
$0.625V_R \le V_I \le 0.75V_R$	0	0	1	1	1	1	1	1	0	1
$0.75V_R \le V_I \le 0.875V_R$	0	1	1	1	1	1	1	1	1	0
V _I >0.875V _R	1	1	1	1	1	1	1	1	1	1

Digital Correction Logic:

- Consists of shift registers for time alignment.
- It corrects the over ranging problems due to offset and interstage amplifier errors.

Multiplying DAC:

The function of this circuit is threefold:

- To sample and hold the input signal.
- To generate a residue that is the difference between the input and sub-DAC output.
- To amplify this residue.

Sub-DAC:

• Converts the intermediate digital outputs available at every stage into its equivalent analog output.

Block Diagram of Sub-DAC

- Inputs for the Sub DAC are the output of Sub ADC (B2, B1, B0), reference voltage (V_{ref}).
- Encoder is used to encode the outputs of the sub-ADC output into the required sequence.

Actual DAC Input B2 B1 B0	Encoded Sequence	DAC Output		
1 1 0	1 1 1	V _r		
1 0 1	1 1 0	2Vr/3		
1 0 0	1 0 1	Vr/3		
0 1 1	0 0 0	0		
0 1 0	0 0 1	- <u>Vr</u> /3		
0 0 1	0 1 0	-2Vr/3		
0 0 0	0 1 1	-Vr		

Input/output Table of Sub-DAC

- To get the required DAC output for the encoded sequence, a capacitive circuit is used.
- It consists of 3 capacitors as shown fig C1, C2 and C3 of values 2C, C and 3C respectively.
- Two LSB bits C1 and Co are the inputs for the two capacitances and the MSB bit C2 is used for the sign.

Example:

- If C₁=0 and C₀=0 then the output is 0, because the capacitors are not charged.
- If C₁=0 and C₀=1 then

Voutp =
$$\frac{C2}{C1 + C2 + C3} = \frac{C}{6C} = \frac{1}{6} \text{Vref}$$

Similarly,
$$Voutn = -\frac{1}{6}Vref$$

It implies

$$Vout = Voutp - Voutn = \frac{1}{3}Vref$$

Operational Transconductance Amplifier:

- It is an operational amplifier with high input and output resistance.
- It operates at high frequencies.

Types of OTAs:

- Telescopic OTA
- Folded Cascode OTA
- Gain Boosted OTA

Telescopic OTA:

- Fastest possible architecture.
- High voltage gain.
- Large bandwidth.
- Good phase margin.
- Low power consumption.
- Low output swing.

Telescopic OTA.

Folded cascode OTA:

- They are of two types namely-
- Folded cascode top
- Folded cascode bottom
- Used as auxiliary amplifier.
- Commonly used op-amp architecture .
- Provides a larger output swing.
- Lower voltage gain than that of Telescopic OTA.
- More power dissipation.

Gain Boosted Op-amp:

- The two folded cascode auxiliary amplifiers and the telescopic amplifier are integrated together to form the gain boosted OTA.
- The outputs of two folded cascode OTA are connected to the telescopic OTA to provide the bias and the required gain boosting.
- Higher speed operation.
- Higher power efficiency and lower noise factor.

Simulation Results:

Response of sub-ADC to a ramp input

Digital output of 10-bit pipelined ADC for a ramp input

Applications:

- The commonly used applications of Pipeline ADCs are high quality video systems, Radio base stations and high performance digital communication system etc.
- Applications of pipelined ADC based on its resolution are:

Resolution	Applications
8	Lab instrumentationMedical ImagingRadar
10	Flat Panel DisplaysCCD imaging
14	MilitaryAerospace

References:

- Thomas Byunghak Cho, Student Member, IEEE, and Paul R. Gray, Fellow, IEEE, "A 10 b, 20 Msample/s, 35 mW Pipeline A/D Converter", IEEE J. Solid-State Circuits, Vol.30, No.3, March 1995.
- 2. Mark Ferriss, Joshua Kang, "A 10-Bit 100-MHz Pipeline ADC", University of Michigan, 598 design project, 2004.
- 3. Stephen H. Lewis, H.Scott Fetterman, George F. Gross, R. Ramachandran and T. R. Viswanathan, "A 10-b 20-Msample/s Analog-to-Digital Converter", *IEEE J*.
- 4. Permatasari, Siti Intan, Mervin T. Hutabarat, Adiseno, "Design of 12-Bit, 40 MS/s Pipeline ADC for Application in WiMAX Transceiver," 2011 International Conference on Electrical Engineering and formatics 17-19 July 2011, Bandung, Indonesia.
- 5. http://www.maximintegrated.com/app-notes/index.mvp/id/1023
- 6. http://www.iadc.ca/Pipeline_ADC_tutorial.htm
- 7. Digital Gain error correction technique for 8-bit pipelined ADC by Khalid Javeed