Weekly report Week 2 (29/5/2023 - 2/6/2023)

This week I did more classifiers to find feature importance for this dataset. I divided the dataset into 3 cases to find the best feature for the dataset and since the dataset is verylarge if I combined all 3 together so I decided to use only one file which is from

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-44/ . First case is follow the research paper(Cyber Attack Detection thanks to Machine Learning Algorithms | Papers With Code) for numerical data, I normalized all the dataset into mean,median, std, sum and max. Moreover, for categorical data, I changed it to unique occurrence in subgroup and normalized subgroup using entropy as a result

These are the best Feature for using Pearson Correlation

for heatmap correlation it's almost the same because DstAddr_nuique and Dport_RU have the highest rank for the feature importance

Then for the feature selection the code are still running

For case 2, I change the label into binary which are 0 and 1 and change all data in dataset into numerical and used classifier to find the feature importance and got the result as below

1. Correlation Heatmap

2. decision Tree

3. Random Forest

```
Feature
                 Importance
      srcaddr 3.133962e-01
      dstaddr 1.912804e-01
        dport 1.150874e-01
    tot_bytes 7.920005e-02
       state 7.358981e-02
    src_bytes 5.876134e-02
   starttime 4.640918e-02
        dur 3.719657e-02
sport 2.986211e-02
8
   tot_pkts 2.836823e-02
dir 1.523658e-02
9
10
        proto 1.161214e-02
11
         stos 1.485770e-12
dtos 0.000000e+00
12
13
```


4. logistic regression

```
Feature
                Importance
       state 2.943818e-02
        dur 1.000914e-03
1
    tot_pkts 1.000729e-03
2
        dir 6.190468e-04
       proto 5.409738e-04
   tot_bytes 4.157962e-04
5
   src_bytes 3.291808e-04
6
       dport 1.167373e-04
8
       sport 1.066408e-04
9
   starttime 8.932052e-05
   srcaddr 3.630971e-05
10
11
     dstaddr 1.131974e-05
        stos 6.609884e-07
12
        dtos 2.255553e-07
```


5. Lasso Logistic Regression

```
Feature
               Importance
0
       state 2.902901e-02
    tot_pkts 1.477215e-03
1
       proto 9.856483e-04
2
         dir 7.919819e-04
   tot_bytes 4.990482e-04
4
5
   src_bytes 4.942588e-04
         dur 3.657647e-04
   starttime 2.789779e-04
8
       dport 1.220673e-04
9
       sport 1.072745e-04
    srcaddr 3.433103e-05
10
     dstaddr 1.363853e-05
11
12
        stos 8.140254e-07
        dtos 3.156339e-07
13
```

Important features of Logistic Regression with L2 Regularization to predict CTU13

6. Pearson Correlation

	Feature	Correlation
8	state	0.064218
5	dir	0.038969
7	dport	0.034142
4	sport	0.030876
2	proto	0.027693
0	starttime	0.013588
6	dstaddr	0.013211
3	srcaddr	0.009935
1	dur	0.001815
9	stos	0.000542
10	dtos	0.000254
12	tot_bytes	0.000155
11	tot_pkts	0.000151
13	src_bytes	0.000057

7. Random Forest RFE

	Feature	Importance
0	dir	14
1	sport	13
2	dport	12
3	tot_bytes	11
4	src_bytes	10
5	dstaddr	9
6	srcaddr	8
7	proto	7
8	stos	6
9	dtos	5
10	dur	4
11	starttime	3
12	tot_pkts	2
13	state	1

8. Gradient Boosting

```
Feature Importance
0 dstaddr 7.730102c-01
1 state 2.255046e-01
2 dport 1.263104e-03
3 srcaddr 1.650472e-04
4 dir 5.685737e-05
5 dur 2.339720e-07
6 sport 3.578923e-09
7 starttime 0.000000e+00
8 proto 0.000000e+00
9 stos 0.000000e+00
10 dtos 0.000000e+00
11 tot_pkts 0.000000e+00
12 tot_bytes 0.000000e+00
13 src_bytes 0.000000e+00
```


9. SVM

	Feature	Importance
0	tot_pkts	256.810805
1	starttime	196.007531
2	state	141.167798
3	dir	78.070944
4	proto	27.559701
5	dur	7.311818
6	tot_bytes	4.978978
7	src_bytes	2,362930
8	sport	0.493921
9	dport	0.446116
10	srcaddr	0.296564
11	dstaddr	0.075567
12	stos	0.000000
13	dtos	0.000000

As a result for this case state and dir

have the highest rank

For the final case, case 3 I change label into polynomial so I can see that if I make data more complex will it affect anything, I used the same classifier as case 2 which are

1. Correlation Heatmap

- -0.7

dir 0.570130
state 0.484801
srcaddr 0.471480
dport 0.453442
proto 0.429283
dstaddr 0.346466
sport 0.340477
dur 0.279530
starttime 0.115607
stos 0.023043
dtos 0.011431
tot_pkts 0.008630
tot_bytes 0.003408

2. Decision Tree

	Feature	Importance
0	dstaddr	0.942468
1	srcaddr	0.037736
2	tot_bytes	0.017535
3	dur	0.001610
4	dport	0.000651
5	starttime	0.000000
6	proto	0.000000
7	sport	0.000000
8	dir	0.000000
9	state	0.000000
10	stos	0.000000
11	dtos	0.000000
12	tot_pkts	0.000000
13	src_bytes	0.000000

3. Random Forest

4. Logistic Regression

5. Lasso Logistic Regression

6. Ridge Logistic Regression

7. Pearson Correlation

8. Random Forest RFE

9. Gradient Boosting

For SVM for case 3 ,the code is still running(Session died for 2 times this will be the last time to run it if it not complete I will cut the svm off) So this is what I have done so far in this week, on next week I will go back to read where the dataset came from to have a fully clear visual of this dataset as Prof. Parinya assign me because I still have not get all the idea from this dataset and it will be hard to move on to next step, also will be prepare for the upcoming presentation.