

KARATINA UNIVERSITY UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

FOURTH YEAR SPECIAL/ SUPPLIMENTARY EXAMINATION

FOR THE DEGREE OF

BACHELOR OF SCIENCE WITH EDUCATION,
BACHELOR OF EDUCATION SCIENCE & BACHELOR
OF SCIENCE

COURSE CODE: MAT 421

COURSE TITLE: COMPLEX ANALYSIS II

DATE: 17th JULY 2024 TIME: 12.00noon -2.00pm

INSTRUCTION TO CANDIDATES

SEE INSIDE

MAT 421 Page 1 of 4

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 marks)

- a) Show that the real part of the complex logarithm $\log z$ is given by $\frac{1}{2}\log(x^2+y^2)$ (3marks)
- b) Given the polynomial $u(x,y) = x^3 3xy^2 3x^2y^2 + y^3$, determine whether it satisfies the Laplace equation. (3marks)
- c) Show that $ph\sqrt{z} = \frac{1}{2}\theta$ where z is a complex number and θ is the phase of z (3marks)
- d) Determine whether the function $f(z) = \frac{1}{z^2}$ is harmonic. (3marks)
- e) Given the harmonic complex binomial $(z + 1)^n$ find an expression for the real and imaginary terms. (4marks)
- f) Show that the Joukowski map $\varsigma = \frac{1}{2}(z + \frac{1}{z})$ is conformal except at points $z = \pm 1$ (6 marks)
- g) Describe the analytic continuation of a function f. (3marks)
- h) Show that the function $f(x) = e^{x^2}$ is analytic and that it converges for all values of z. (5marks)

QUESTION TWO (20marks)

- a) Show that if $\prod_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 1$ (4marks)
- b) Show that the complex trigonometric function, cos(z) = cos(x) cosh(y) i sin(x) sinh(y). (6marks)
- c) Using the definition of a derivative of a complex function derive the Cauchy-Riemann equations. (10marks)

MAT 421 Page 2 of 4

QUESTION THREE (20 marks)

- a) Define any two types of singularities of a complex function f(z) (2marks)
- b) Determine whether the function $u(x,y) = lnz^2e^z$ has a complex derivative. (7marks)
- c) Consider the complex potential function $W(z) = \frac{1}{2}z^2$, determine the streamlines and equipotential lines. (5marks)
- d) Determine the harmonic conjugate to the harmonic polynomial

$$u(x,y) = x^3 - 3x^2y - 3xy^2 + y^3$$
 (6marks)

QUESTION FOUR (20marks)

- b) Determine the sum of the residues of the function $f(z) = \frac{e^z}{z^3 + 4z^2 11z 30}$ (8marks
- c) Use the residue theorem to integrate $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$ (7marks)

QUESTION FIVE (20marks)

a) Show that $w = f(z) = \frac{1}{\pi}(z^2 - 1)^{\frac{1}{2}} + \frac{1}{\pi}log(z + (z^2 - 1)^{\frac{1}{2}}) - i$ maps the upper half-plane onto the domain indicated in the Figure below. (8marks) Hint: Set $x_1 = -1$, $x_1 = 1$ and $w_1 = 0$, $w_1 = -i$.

MAT 421 Page 3 of 4

- b) Determine and classify the singular points of the function $f(z) = \frac{e^z}{z^3 z^2 5z 3}$ (5marks)
- c) State the Cauchy's Integral Formula, hence compute the integral $\oint_C \frac{e^z dz}{z^3 z^2 5z 3}$ around the circle of radius 2 centred at the origin. (7marks)

MAT 421 Page 4 of 4