Modeling Intervention Strategies for United States TB Control

Jessica Ginepro, Emma Hartman, Ryo Kimura, Matthew McDermott, Colin Pawlowski, & Dylan Shepardson Mathematical Modeling Group, Mount Holyoke College, South Hadley, MA, USA

Introduction

Epidemiological models offer insight into the structure of disease outbreaks and the merits of various interventions. Compartmental differential equation models are a common model in which populations move between various health states, or compartments, according to predetermined rates. This work is an extension of the Hill Model, a complex compartmental model of tuberculosis (TB) in the United States.

The Basic Hill Model

Populations:

- ► US Born (USB)
- ► Foreign Born (FB)
 Individuals also leave the model due to natural death.

Figure: The Hill Model schematic

- USB TB incidence rates are declining
- ► FB latent TB infection (LTBI) arrivals remain high
- ► TB elimination in total population not projected by 2100
- ► TB cases and costs dominated by FB LTBI individuals

Figure: Source population of US TB incidence

Analyzing US TB Reduction Strategies

- Implemented in R, with various numerical DE solvers
- ► Tracks US Health Care System (HCS) cost
- Tracks statistics about various health states

Intervention Analysis

Figure:
Incidence/million in
USB, FB, and total
populations, given 0%,
50%, 75%, or 100%
cure rate of incoming
LTBI

Figure:
Incidence/million in
USB, FB, and total
populations, given 0%,
100%, or 300%
successful LTBI
treatment increase

Economic Modeling

- ► Tracks treatment costs for various disease states
- Estimates implementation cost of intervention
- ► Assumed Mean Active TB Treatment Cost: \$14,015

Figure: Cumulative US
HCS savings from
averted Active TB
treatment costs given
intervention magnitude.
Does not include
savings from averted
LTBI treatment costs.

An Agent-Based Implementation

Agent-based models capture disease dynamics on the individual level and reflect stochasticity and granularity lost in compartmental models. Agent-based counterparts to the Hill model were implemented in Netlogo and C++.

Figure: Incidence/million for R and NetLogo models (12 runs, $\Delta t = 0.1$, popConst = 100)

Figure: Incidence/million for R and C++ models (2100 runs, $\Delta t = 0.01$, popConst = 1)

Stochastic Models as a Measure of Variability

Figure: USB and FB Incidence (c++) with fitted Normal curves (USB: $\mu=0.233, \sigma=0.016534$, FB: $\mu=98.6, \sigma=0.525294$)

Summary

- ► LTBI dominates US TB dynamics
- Reducing FB LTBI most cost effective
- Agent-based models effective for evaluating robustness

References & Acknowledgments

This research was supported via an NSF REU grant. [1] Hill, A. N., Becerra, J. E., & Castro, K. G. (2012). Modelling tuberculosis trends in the USA. Epidemiology and infection, 140(10), 1862.

HCS TB cost