Probability and Random Processes

Problems

Branching Processes. Distributions with random parameters.

1. (Midterm exam November 2013) Consider a branching process with one ancestor. Suppose that the probability function of the offspring distribution is

$$P(X = 0) = \frac{1}{4}, \quad P(X = 1) = \frac{1}{2}, \quad P(X = 2) = \frac{1}{8}, \quad P(X = 3) = \frac{1}{8}.$$

What is the probability

- (a) that the process is extinct in generation number 2 (i.e., the ancestor does not have any grandchildren)?
- (b) of extinction?

Answer:

- (a) $197/512 \approx 0.385$
- (b) $-1 + \sqrt{3} \approx 0.732$

2. (Midterm exam October 2014) At each unit of time a cell either dies with probability p or subdivides with probability 1 - p. Let X_n be the number of cells at time n.

(a) If $X_0 = 1$, what is the maximum value of p for which the probability of extinction is at most 1/4.

(b) If $X_0 = k$ and p = 1/4, what is the minimum value of k such that the probability of extinction is at most 1/4.

Answer:

- (a) $p \le 1/5$
- (b) $k \ge 2$

3. (Final exam January 2015) Consider a branching process with one ancestor. The generating function of the offspring distribution is

$$G(s) = \frac{1}{2 - s^2}.$$

- (a) What is the probability that the first generation has 4 individuals.
- (b) Compute the probability of extinction.
- (c) Compute the probability that the process is extinct in the third generation.

Answer:

- (a) 1/8
- (b) $(-1 + \sqrt{5})/2 \approx 0.618$
- (c) $49/82 \approx 0.598$

4. (A. Gut's book) Consider a branching process with one ancestor. Suppose that the generating function of the offspring distribution is

1

$$G(s) = \frac{p^2}{(1 - qs)^2},$$

where 0 . What is the probability

- (a) of extinction?
- (b) that the process is extinct in generation number 2 (i.e., the ancestor does not have any grandchildren)?

Answer:

(a) If
$$0 , then $d = \frac{1}{q} - \frac{1}{2} - \sqrt{\frac{1}{q} - \frac{3}{4}}$. If $p \ge 2/3$, then $d = 1$ (b) $d_2 = p^2/(1 - p^2q)^2$$$

(b)
$$d_2 = p^2/(1 - p^2q)^2$$

- 5. (A. Gut's book) The following model can be used to describe the number of women (mothers and daughters) in a given area. The number of mothers is a random variable $X \sim Po(\lambda)$. Independently of the others, every mother gives birth to a $Po(\mu)$ -distributed number of daughters. Let Y be the total number of daughters and hence Z = X + Y be the total number of women in the area.
 - (a) Find the generating function of Z.
 - (b) Compute E(Z) and Var(Z).

Answer:

(a)
$$G_Z(s) = \exp\left(\lambda \left(se^{\mu(s-1)} - 1\right)\right)$$

(a)
$$G_Z(s) = \exp\left(\lambda \left(se^{\mu(s-1)} - 1\right)\right)$$

(b) $E(Z) = \lambda(1 + \mu); Var(Z) = \lambda(1 + 3\mu + \mu^2)$

- 6. (A. Gut's book) Suppose that the offspring distribution in a branching process is the Ge(p)-distribution (i.e. $P(X=k)=q^k p, k=0,1,2,\ldots$), and let X(n) be the number of individuals in generation n, $n = 0, 1, 2, \dots$
 - (a) What is the probability of extinction?

Now suppose that p = 1/2 and set $G_n(s) = G_{X(n)}(s)$.

(b) Show that

$$G_n(s) = \frac{n - (n-1)s}{(n+1) - ns}, \quad n = 1, 2, \dots$$

(c) Show that

$$P(X(n) = k) = \begin{cases} \frac{n}{n+1} & \text{for } k = 0\\ \\ \frac{n^{k-1}}{(n+1)^{k+1}} & \text{for } k = 1, 2, \dots \end{cases}$$

(d) Calculate $P(X(n) = k \mid X(n) > 0)$.

Finally, suppose that the population becomes extinct at generation number N.

(e) Show that

$$P(N = n) = G_{n-1}\left(\frac{1}{2}\right) - G_{n-1}(0), \quad n = 1, 2...$$

- (f) Show that P(N=n)=1/(n(n+1)), n=1,2,... (and hence that $P(N<\infty)=1$, i.e., the probability of ultimate extinction is 1).
- (g) Compute E(N).

(a) If
$$p < q$$
 then $d = p/q < 1$. If $p \ge q$, then $d = 1$

(d)
$$(1/(n+1))(n/(n+1))^{k-1}$$
, $k = 1, 2, ...$

(g)
$$E(N) = \infty$$

- 7. Let M be an exponential random variable with parameter 1. We know that X given $\{M=m\}$ follows the Poisson distribution with parameter m. Compute the moment generating function of X and deduce that $P(X=k)=(1/2)^{k+1}, k=0,1,2,\ldots$
- 8. (A. Gut's book) Let X be the number of coin tosses until heads is obtained. Suppose that the probability of heads is unknown in the sense that we consider it to be a random variable $Y \sim \mathsf{U}(0,1)$. Find the distribution of X.

$$Answer \colon \mathbf{P}(X=k) = \frac{1}{k(k+1)}$$

- 9. (Midterm exam November 2015) At each time unit a virus replicates X copies of itself where $\Pr(X = k) = p^k$, $k \ge 1$, 0 . (So the probability of no replica is <math>1 p/q, q = 1 p.) Assume that at time 0 there is a single originating virus.
 - (a) Prove that the probability generating function of X is $G_X(s) = 1/(1-ps) (p/q)$.
 - (b) Show that the probability of extinction is 1/p 1/q if $p > (3 \sqrt{5})/2$ and 1 otherwise.
 - (c) If p = 1/4, what is the expected total number of viruses at the end?

Answer: (c) 9/5