Logika és számításelmélet

I. rész Logika

Elérhetőségek

Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu

Tankönyv

Tartalom

Bevezető fogalmak

```
Ítéletlogika leíró nyelve – Ábécé
Ítéletlogika leíró nyelve – Szintaxis
```

Alapfogalmak

Halmazok direktszorzata

A és B tetszőleges halmazok direkt vagy Descartes szorzata $A\times B$ az összes olyan (a,b) párok hamaza, ahol $a\in A$ és $b\in B$.

 U^n -nel jelöljük U-nak önmagával vett n-szeres direktszorzatát, ami az U elemeiből képezhető összes n elemű sorozatok halmaza $(U^2=U\times U)$.

Függvény

Legyenek D és R (nem feltétlenül különböző) halmazok. Függvénynek nevezünk egy $D \to R$ (D halmaz minden eleméhez egy R-beli elemet rendelő) leképezést. D a leképezés értelmezési tartománya, R az értékkészlete.

Alapfogalmak

Függvény fajtái

Legyen D a függvény értelmezési tartománya, R az értékkészlete. Valamint legyen U egy tetszőleges (individuum)halmaz.

- ullet Ha D=U, akkor a függvény egyváltozós,
- ha $D = U^n \ (n > 1)$, akkor n változós,
- ha $R = \mathbb{N}$, akkor a függvény egészértékű,
- ha $R=\{i,h\}$, akkor a függvény logikai függvény, más néven reláció,
- ha $D=R^n$ (azaz a függvény általános alakja: $U^n \to U$), akkor a függvény matematikai függvény, más néven művelet,
- az $\{i,h\}^n \to \{i,h\}$ alakú függvény logikai művelet.

Logikai műveletek igazságtáblája

A lehetséges kétváltozós logikai műveletek közös igazságtáblája.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X	Y	X∧Y	XVY	X⊃Y	X↔Y	→	7^	¬∨	ŋ	70	X⊂Y	¬X	¬Y	X	Y	i	h
i	i	i	i	i	i	h	h	h	h	h	i	h	h	i	i	i	h
i	h	h	i	h	h	i	i	h	i	h	i	h	i	i	h	i	h
h	i	h	i	i	h	i	i	h	h	i	h	i	h	h	i	i	h
h	h	h	h	i	i	h	i	i	h	h	i	i	i	h	h	i	h

A táblázat tartalmazza a 16 db 2-változós műveletet (a 4 db 1- és a 2 db 0-változós művelet is köztük van). Ezekből a logika tárgyalásánál a $\neg, \land, \lor, \supset$ műveleteket használjuk csak.

Nyelvdefiníció

$$\mathsf{Nyelv} = \mathsf{\acute{A}b\acute{e}c\acute{e}} + \mathsf{Szintaxis} + \mathsf{Szemantika}$$

Rekúrzió/Indukció

Szerkezeti rekurzió

- definíciós módszer
- alaplépés + rekurzív lépés
- példa: logikai formulákon értelmezett függvények definíciója

Szerkezeti indukció

- bizonyítási módszer rekurzívan definiált struktúrák tulajdonságairól
- alaplépés + indukciós lépés
- speciális példa: teljes indukció
- példa: logikai formulák tulajdonságainak bizonyítása

Logika tárgya/célja

- A logika tárgya az emberi gondolkodás vizsgálata.
- A logika célkitűzése.
 Gondolkodási folyamatok vizsgálata során a helyes következtetés törvényeinek feltárása, újabb helyes következtetési módszerek kidolgozása.

Következtetésforma

Gondolkodásforma vagy következtetésforma

Egy $F = \{A_1, A_2, \dots, A_n\}$ állításhalmazból és egy A állításból álló (F,A) pár.

Helyes következtetésforma

Egy $F = \{A_1, A_2, \ldots, A_n\}$ állításhalmazból és egy A állításból álló (F,A) pár, ha létezik olyan eset, hogy az F állításhalmazban szereplő mindegyik állítás igaz és minden ilyen esetben az A állítás is igaz.

Tartalom

Bevezető fogalmak

Ítéletlogika

Ítéletlogika leíró nyelve – Ábécé

Ítéletlogika leíró nyelve – Szintaxis

Ítéletlogika leíró nyelve – Szemantika

Ítéletlogika vagy állításlogika

Tárgya az egyszerű állítások és a belőlük logikai műveletekkel kapott összetett állítások vizsgálata.

Egyszerű állítás

Egy olyan kijelentés, amelynek tartalmáról eldönthető, hogy igaz-e vagy nem. Egy állításhoz hozzárendeljük az igazságértékét: az i vagy h értéket.

Összetett állítás

Egy egyszerű állításokból álló összetett mondat, amelynek az igazságértéke csak az egyszerű állítások igazságértékeitől függ. Az összetett állítások csak olyan nyelvtani összekötőszavakat tartalmazhatnak amelyek logikai műveleteknek feleltethetők meg.

Tartalom

Ítéletlogika

Ítéletlogika leíró nyelve – Ábécé

Ítéletlogika leíró nyelve – Szintaxis

Ítéletlogika leíró nyelve – Szemantika

Az ítéletlogika leíró nyelvének ábécéje (V_0)

Az ítéletlogika leíró nyelvének ábécéje (V_0)

- Ítéletváltozók (V_v): X,Y,X_i,\ldots
- Unér és binér logikai műveleti jelek: ¬, ∧, ∨, ⊃
- Elválasztójelek: ()

Tartalom

Ítéletlogika

Ítéletlogika leíró nyelve – Ábécé

Ítéletlogika leíró nyelve – Szintaxis

Ítéletlogika leíró nyelve – Szemantika

Az ítéletlogika leíró nyelvének szintaxisa (\mathcal{L}_0)

Ítéletlogikai formula (Tk.4.1.2 def.)

- (alaplépés) Minden ítéletváltozó ítéletlogikai formula. (prímformula)
- 2 (rekurziós lépés)
 - Ha A ítéletlogikai formula, akkor $\neg A$ is az.
 - Ha A és B ítéletlogikai formulák, akkor $(A \circ B)$ is ítéletlogikai formula " \circ " a három binér művelet bármelyike.
- 3 Minden ítéletlogikai formula az 1, 2 szabályok véges sokszori alkalmazásával áll elő.

Formulaszerkezet

Ítéletlogikában a következő formulaszerkezeteket különböztetjük meg:

- $\neg A$ negációs
- $A \wedge B$ konjukciós
- $A \lor B$ diszjunkciós
- $A\supset B$ implikációs

Formulaszerkezet vizsgálata

Közvetlen részformula (Tk.4.1.6. def.)

- 1 Prímformulának nincs közvetlen részformulája.
- $\mathbf{2} \neg A$ közvetlen részformulája az A formula.
- 3 Az $(A \circ B)$ közvetlen részformulái az A (baloldali) és a B (jobboldali).

Példa

A $(\neg(Z\supset \neg X)\lor Y)$ formula baloldali részformulája: $\neg(Z\supset \neg X)$, jobboldali részformulája: Y.

Szerkezeti fa

Szerkezeti fa (Tk. 49.o)

Egy adott formulához tartozó szerkezeti fa egy olyan fa, melynek gyökere a formula, minden csúcs gyerekei a csúcshoz tartozó formula közvetlen részformulái, a fa levelei pedig ítéletváltozók.

Szerkezeti fa

Szerkezeti fa egy példa formulához:

$$(((X \supset Y) \land (Y \supset Z)) \supset (\neg X \lor Z))$$

$$((X \supset Y) \land (Y \supset Z)) \qquad (\neg X \lor Z)$$

$$(X \supset Y) \qquad (Y \supset Z) \qquad \neg X \qquad Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \qquad Y \qquad Y \qquad Z \qquad X$$

Zárójelelhagyás

A teljesen zárójelezett formulákat kevesebb zárójellel írhatjuk fel, ha bevezetjük a műveletek prioritását: \neg , \land , \lor , \supset (csökkenő sorrend).

A **zárójelelhagyás**¹ célja egy formulából a legtöbb zárójel elhagyása a formula szerkezetének megtartása mellett.

¹Tk. 52. o.

Zárójelelhagyás

Lépései:

- 1 A formula külső zárójel párjának elhagyása (ha még van ilyen).
- 2 Egy binér logikai összekötő hatáskörébe eső részformulák külső zárójelei akkor hagyhatók el, ha a részformula fő logikai összekötőjele nagyobb prioritású nála.

Példa

$$(((X\supset Y)\land (Y\supset Z))\supset (\neg X\lor Z))$$
 a zárójelelhagyás után: $(X\supset Y)\land (Y\supset Z)\supset \neg X\lor Z$

Láncformulák

- Konjunkciós: $A_1 \wedge A_2 \wedge \ldots \wedge A_n$ (tetszőlegesen zárójelezhető)
- **Diszjunkciós**: $A_1 \lor A_2 \lor \ldots \lor A_n$ (tetszőlegesen zárójelezhető)
- Implikációs: $A_1 \supset A_2 \supset \ldots \supset A_n$ (default zárójelezése jobbról-balra) $A_1 \supset (A_2 \supset \ldots (A_{n-1} \supset A_n) \ldots)$

Láncformulák

Literál

Ha X ítéletváltozó, akkor az X és a $\neg X$ formulákat literálnak nevezzük. Az ítéletváltozó a literál alapja. (X és $\neg X$ azonos alapú literálok.)

Elemi konjunkció

Különböző literálok konjunkciója.

PI.: $X \wedge \neg Y \wedge \neg W \wedge Z$

Elemi diszjunkció

Különböző literálok diszjunkciója.

 $\mathsf{PI.:}\ \neg X \lor Y \lor \neg W \lor \neg Z$

Formula logikai összetettsége

Egy A formula **logikai összetettsége**: $\ell(A)$

Szerkezeti rekurziót alkalmazó definíció (Tk.4.1.12)

Alaplépés

• Ha A ítéletváltozó, akkor $\ell(A) = 0$

Rekurziós lépések

- $\ell(\neg A) = \ell(A) + 1$
- $\ell(A \circ B) = \ell(A) + \ell(B) + 1$

Logikai műveletek hatásköre

Definíció (Tk.4.1.17.)

Logikai műveletek hatásköre a formula részformulái közül az a legkisebb logikai összetettségű, amelyben az adott logikai összekötőjel előfordul.

Példa

A $(X \supset Y) \land (Y \supset Z) \supset \neg X \lor Z$ formula \land műveletet tartalmazó részformulái:

- $\ell[(X\supset Y)\land (Y\supset Z)]=3$

Ezek közül a 2. formula az ∧ hatásköre. Egy művelet hatáskörébe eső formulák egyben *közvetlen komponensek* is.

Definíció (Tk.4.1.18.)

Egy formula **fő logikai összekötőjele** az az összekötőjel, amelynek a hatásköre maga a formula.

Tartalom

Ítéletlogika

Ítéletlogika leíró nyelve – Ábécé

Ítéletlogika leíró nyelve – Szintaxis

Ítéletlogika leíró nyelve – Szemantika

Szemantika

A nyelv ábécéjének értelmezése (interpretációja - modellezése).

Az ítéletlogika ábécéjében már csak az ítéletváltozókat kell interpretálni. Az ítéletváltozók befutják az állítások halmazát. Ha megmondjuk melyik ítéletváltozó melyik állítást jelenti, akkor a változó igazságértékét adtuk meg. Annak rögzítését melyik ítéletváltozó $i(\mathsf{gaz})$ és melyik $h(\mathsf{amis})$ igazságértékű **interpretáció**nak nevezzük.

Interpretáció

Igazságkiértékelés, interpretáció (Tk.4.2.1.)

$$\mathcal{I} = V_v \to \{i, h\}$$

 $\mathcal{I}(x)$ jelöli az x ítéletváltozó értékét az \mathcal{I} interpretációban.

n db ítéletváltozó interpretációinak száma 2^n .

Megadása:

- Felsorolással
- Szemantikus fával
- Stb.

n=3 esetén legyenek az ítéletváltozók X,Y,Z. Ezen változók egy sorrendjét **bázis**nak nevezzük. Legyen most a bázis X,Y,Z. Ekkor az összes interpretációt megadhatjuk táblázatos felsorolással, vagy szemantikus fával is.

Interpretáció megadása táblázattal

X	Y	Z		
i	i	i		
i	i	h		
i	h	i		
i	h	h		
h	i	i		
h	i	h		
h	h	i		
h	h	h		

táblázat: Interpretáció megadása táblázattal X,Y,Z bázis esetén

Interpretáció megadása szemantikus fával

Szemantikus fa

Egy n-változós **szemantikus fa** egy n-szintű bináris fa, ahol a szintek a bázisbeli változóknak vannak megfeleltetve. Egy X változó szintjén a csúcsokból kiinduló élpárokhoz X, $\neg X$ címkéket rendelünk. X jelentése X igaz, $\neg X$ jelentése X hamis az élhez tartozó interpretációkban, így egy n-szintű szemantikus fa ágain az összes (2^n) lehetséges igazságkiértékelés (I) interpretáció(I) megjelenik.

Interpretáció megadása szemantikus fával

Szemantikus fa az X,Y,Z logikai változókra, mint bázisra:

Formula helyettesítési értéke

Formula helyettesítési értéke \mathcal{I} interpretációban: $\mathcal{B}_{\mathcal{I}}(C)$.

$\mathcal{B}_{\mathcal{I}}(C)$ definíciója szerkezeti rekurzióval (Tk.4.2.2.)

- **1** Ha C formula ítéletváltozó, akkor $\mathcal{B}_{\mathcal{I}}(C) = \mathcal{I}(C)$.
- **2** Ha C formula negációs, akkor $\mathcal{B}_{\mathcal{I}}(\neg A) = \neg \mathcal{B}_{\mathcal{I}}(A)$.
- $\textbf{3} \ \ \mathsf{Ha} \ \ C \ \ \mathsf{formula} \ \ (A \circ B) \ \ \mathsf{alak\acute{u}}, \ \ \mathsf{akkor} \\ \mathcal{B}_{\mathcal{I}}(A \circ B) = \mathcal{B}_{\mathcal{I}}(A) \circ \mathcal{B}_{\mathcal{I}}(B).$

Formula igazságtáblája

Formula igazságtáblája

Egy n-változós formula igazságtáblája egy olyan n+1 oszlopból és 2^n+1 sorból álló táblázat, ahol a fejlécben a bázis (a formula változói rögzített sorrendben) és a formula szerepel. A sorokban a változók alatt az interpretációk (a változók igazságkiértékelései), a formula alatt a formula helyettesítési értékei találhatók.

Formula igazságtáblája

Egy n-változós formula az igazságtáblájával megadott $\{i,h\}^n \to \{i,h\}$ n-változós logikai műveletet ír le.

X	Y	Z	
i	i	i	i
i	i	h	i
i	h	i	i
i	h	h	h
h	i	i	i
h	i	h	i
h	h	i	h
h	h	h	h

táblázat: A $(\neg(Z\supset \neg X)\vee Y)$ formula igazságtáblája

Egy formula **igazhalmaza** azon \mathcal{I} interpretációk halmaza, amelyekre a formula helyettesítési értéke igaz.

Egy formula **hamishalmaza** azon $\mathcal I$ interpretációk halmaza, amelyekre a formula helyettesítési értéke hamis.