

RVP 1: PE56

MOTORISATION INSTRUMENTE

EQUIPE:

DE LEON Rafael

DE SOUSA BEGHIN Ludovic

EMERIQUE Clément

PILLIS Manon

PRORIOL Maxime

TANCHON Paco

Année 2017-2018 20/12/17

SOMMAIRE

 –	NTRO	ODUCTION ET CONTEXTE	.3
1	1	Cadre général	.3
1	2	Formula Student	.4
	1.2	.1 Historique	.4
	1.2	.2 Déroulement	.4
	1.2	.3 Epreuves statiques	.4
	1.2	.4 Epreuves dynamiques	.5
1	3	Objectifs globaux	.6
II -	МОТ	ORISATION INSTRUMENTE	.7
2	2.1 Ré	partition des taches	.7
2	.2 Co	omposition détaillée	.8
2	2.3 Ca	hier des charges	.9
2	.4 Bu	ıdget2	10
2	.5 Pla	anification	11
III –	-sou	S SYSTEMES	12
3	3.1 Ré	ecupérateurs de fluides / Catch-Cans	12
3	.2 Ciı	rcuits carburant / Fuel System	13
3	3.3 M	aquette FabLab2	14
3	.4 Pé	dalier / Pedal Box	15
IV -	- CON	ICLUSION	17

I – INTRODUCTION ET CONTEXTE

1.1 Cadre général

Notre Projet d'Etude n°56, intitulé « Motorisation instrumentée », s'inscrit dans un projet de l'Ecurie Piston Sport Auto (EPSA). L'EPSA est une association d'élèves-ingénieurs de l'Ecole Centrale de Lyon ayant pour objectif général de promouvoir et de développer les sports mécaniques et l'ingénierie automobile au sein de l'école. Son projet est de construire au bout de 2 ans un véhicule de course à moteur thermique qui participera à plusieurs compétitions. Ce projet d'étude a donc vocation à se poursuivre sur le projet d'application en seconde année.

Le véhicule de compétition alors conçu est destiné à concourir dans une compétit ion internationale d'ingénierie automobile appelée le Formula Student qui rassemble des universités du monde entier (Etats-Unis, Brésil, Australie, Japon, Angleterre, Allemagne, Italie, etc...). Les véhicules, qui doivent tous respecter un règlement très strict formulé et revisité chaque année par la SAE, sont donc assez semblables et doivent passer 2 types d'épreuves : les épreuves statiques et les épreuves dynamiques. Pendant les épreuves statiques nous sommes jugés sur des critères techniques, le respect du règlement et sur la justification des choix de conception. Ceci est accompagné d'une présentation d'un dossier démontrant l'intérêt pour un éventuel investisseur de produire notre véhicule en série. Les épreuves dynamiques s'appuient sur des critères de performances dans différentes épreuves tel que l'accélération, le freinage, et l'endurance.

À partir de cette année, l'écurie mènera ce projet en intergénérationnel en rassemblant une quarantaine d'élèves-ingénieurs de l'Ecole Centrale de Lyon réparties au sein de 3 PE ou PA (Motorisation instrumentée, Liaison au sol mécatronique et Châssis et cockpit électronique). Le travail intergénérationnel, nouvelle dynamique de l'écurie, est notamment possible grâce à des boites de connaissances telles qu'EPSABOX et le forum EPSAC. La première partie de l'année correspond à la préparation à l'excellence dans le cycle « V-racine carré ». Son objectif est d'accélérer l'acquisition de connaissances et de savoirs faire de nous, élèves ingénieurs de premières année. S'en suit la phase de conception sur un intervalle de temps plus court mais plus efficace grâce à la préparation à l'excellence précédente. Enfin, la réalisation des différentes pièces est assurée en collaboration avec de nombreux partenaires pédagogiques recherchés entre autres par les élèves.

Dans le cadre de notre PE, nous sommes dans un premier temps en charge du processus d'ingénierie système, ainsi que de la réalisation de système non critiques du véhicule de nos ainés, Vulcanix. Puis, nous serons en charge de de la conception et de l'ingénierie complète de la partie motorisation instrumentée du véhicule STUF2019, futur successeur de Vulcanix.

1.2 Formula Student

1.2.1 Historique

Le Formula Student est une compétition estudiantine fondée en 1981 par la Society of Automotive Engineers (SAE). Celle-ci rassemble des universités du monde entier autour d'épreuves visant à évaluer les performances de véhicules monoplaces (d type intermédiaire entre une Formule 1 et un véhicule de kart), la qualité de la conception mais aussi les compétences commerciales des écuries. Cette compétition, d'un niveau mondial, fait référence dans le milieu de la course automobile non professionnelle.

1.2.2 Déroulement

Toutes les compétitions du FSAE se déroulent selon le même schéma :

- Une phase de contrôle du règlement

Si le véhicule passe le contrôle technique, les juges lui autorisent la suite de la compétition

- Une phase composée d'épreuves dites « statiques »
- Une phase composée d'épreuves dites « dynamiques »

Ainsi, la bonne conformité du véhicule aux différents points du règlement FSAE/FSG est une priorité absolue pour l'EPSA. Tout au long de la phase d'ingénierie du véhicule, le règlement est constamment consulté, et la conformité de l'ensemble du véhicule est vérifiée de manière détaillée lors des nombreuses revues d'avancement que connait le véhicule, passage obligé de tout système issue d'une ingénierie collaborative

1.2.3 Epreuves statiques

Cost and Manufacturing :

L'équipe participante rend un livrable contenant l'ensemble des pièces et de leurs couts de production correspondants, qui permet un chiffrage détaillé et extrêmement précis du cout total du véhicule. La note attribué à cette épreuve est sur 100 points, et évalue la capacité de l'équipe d'ingénieurs à chiffrer avec rigueur leur réalisation, ainsi que leur maitrise des différents processus et méthodes de fabrications impliquées dans la production du véhicule.

Design:

Cette épreuve propose à l'équipe candidate de présenter et défendre son travail d'ingénierie face à un jury composé de spécialistes du secteur de l'automobile. Chaque partie du véhicule est examiné en détails, et l'équipe est évaluée sur la pertinence des choix de constructions et d'architecture qu'elle a réalisée, mais aussi sur la capacité de les justifier de manière pertinente et construite. Cette épreuve compte pour 150 points

• Présentation :

Dernière épreuve statique, la présentation consiste en un exposé oral de 10 minutes, durant lesquelles l'équipe doit proposer et défendre un projet de commercialisation fictif de la voiture conçue sur le marché des véhicules de compétition amateurs, devant un jury composé d'investisseurs. Cette épreuve, évaluée sur 75 points, évalue la capacité des élèves ingénieurs à vendre le produit qu'il ont conçu, et a convaincre des potentiels clients d'acheter ou d'investir dans leur prototype.

1.2.4 Epreuves dynamiques

Les épreuves dynamiques sont au nombre de 5 :

Accélération :

L'épreuve d'accélération consiste à la réalisation du meilleur temps possible sur 75 mètres en ligne droite, départ arrêté. Chaque équipe dispose de 4 essais, et peut changer de pilote entre chaque tentative. Seul le meilleur temps est retenu. Cette epreuve est noté sur 75 points

Skid-Pad :

Epreuve de nature antagoniste avec la précédente, l'épreuve de skid-pad évalue la performance de la voiture sur le critère de la maniabilité en régime stabilisé : un circuit en 8 doit être réalisé dans les meilleurs temps, qui sont alors traduit en points et noté sur 50.

Autocross:

Cette épreuve évalue la performance générale du véhicule. Accélération, freinage, maniabilité, tenue de route, comportement général en virage. Ici, c'est deux sessions de deux « runs » qui sont proposées, et les changements de pilotes sont autorisés entre deux tentatives. Cette épreuve consiste en deux tours d'un circuit cours, comportant de nombreux virages rapides et serrés. Elle est évaluée sur 150 points.

Endurance:

Cette épreuve permet de tester l'endurance du véhicule, et sa fiabilité, c'est-à-dire la stabilité de ses performances dans le temps. Il s'agit d'une course chronométrée de 22km, avec un changement de pilote imposé au bout de 11km. Cette épreuve est évaluée sur 300 points, et constitue traditionnellement la partie la plus « dure » du FSAE, tant la terminer représente un challenge important que seul une petite moitié des équipes arrive à relever.

Efficiency:

La dernière épreuve est couplée à celle d'endurance. Elle consiste en une note attribuée au véhicule sur 100 points à partir des données relevées sur l'épreuve d'endurance. Elle favorise les véhicules qui ont le meilleur ratio performance/consomation

1.3 Objectifs globaux

Comme chaque année, l'EPSA suit une ligne directrice qui lui impose une amélioration de « 20% » annuelle. Cette année marque le début de l'organisation en « V racine carré », modèle managérial nouveau à l'EPSA, mis en place pour maximiser le transfert de connaissances, ainsi que pour favoriser le travail intergénérationnel. L'objectif principal de l'écurie est bien entendu une amélioration globale des performances, et donc du score obtenu au FSAE. Mais aussi, et ce pour la première fois, une optimisation de l'acquisition de connaissances, via un travail plus intergénérationnel, des formations plus régulières, dans l'objectif général de rationaliser et d'optimiser la conception des véhicules. Ces changements, prometteurs sur le papier, permettrons, s'ils sont bien mis en œuvre, de garantir une nette amélioration du travail produit par l'EPSA.

Modèle managérial « full intergénérationnel » V Racine Carrée Top Top Top Top Top Top Top qoT Top PΕ SFF v0.5 Appro v1.0 Copeau Moteur Compet v2.0 Valid A Bis de l'Excellence Desir Conception Design Juillet Oct Avril Avril Oct Janv N+1 N+1 N+2 N+2 N+2 Force Alpha 1A Force Bêta 1A Force Gamma 2A Force Delta 2A

6

II - MOTORISATION INSTRUMENTE

2.1 Répartition des taches

Organigramme du PE56:

Répartition des tâches :

Cette année étant la première en intergénérationnel à l'EPSA, nous avons dû modifier la répartition des tâches de chaque membre du pôle motorisation. En effet, plutôt que de travailler dès la première année sur des éléments critiques du pôle, nous avons travaillé (seul ou par binôme) sur un sous-système non critique du véhicule Vulcanix v1.0.

Voici ci-dessous le détail des sous-systèmes sur lesquels les membres du PE56 ont travaillé cette année.

Admission:

• Choix et commande de papillons adaptés à la motorisation 4 cylindres en lignes Honda 600 CBR RR. (Raphel DE LEON)

Catch-cans:

• Conception des deux récupérateurs de fluides (huile et liquide de refroidissement) en optimisant leur volume par rapport aux fluides perdus. (Manon PILLIS)

Fuel System:

- Conception du réservoir de carburant. (Maxime PRORIOL)
- Choix des sous-systèmes relatif au circuit de carburant (pompe, rampe de carburant, régulateur de pression). (Ludovic DE SOUSA BEGHIN)

Maquette Fablab:

- Design du cahier des charges (Paco TANCHON)
- Simplification géométrique de la maquette (Paco TANCHON)
- Contrôle et production au FabLab (Paco TANCHON)

Pédalier:

• Conception du pédalier en optimisant l'ouverture du papillon et la rotation de la pédale d'accélérateur. (Clément EMERIQUE)

2.2 Composition détaillée

La motorisation instrumentée d'un véhicule EPSA s'articule suivant le modèle défini sur le schéma suivant :

Le travail sur l'**admission** consiste à optimiser les performances moteur en optimisant les flux d'air entrant dans les cylindres et ce en modifiant la forme de l'arrivée d'air. Cette partie du pôle comporte beaucoup de modélisation notamment avec le logiciel GTPower.

Pour l'échappement, le travail est similaire à celui de l'admission mais c'est le flux des gaz d'échappement qui est à optimiser. L'objectif est qu'il y est un minimum de gaz brûlé dans les cylindres à la fin d'un cycle, afin qu'un maximum d'air propre puisse entrer dans le moteur à la phase d'admission, pour par la suite comprimer de l'air facilement inflammable. Ce travail nécessite également l'utilisation de l'outil GTpower.

La partie **refroidissement** du pôle motorisation a pour but de laisser le moteur à une température de fonctionnement nominale. Ce travail consiste principalement à intégrer le radiateur dans le châssis et concevoir l'intégralité du circuit de refroidissement.

Enfin, pour la **transmission secondaire**, l'objectif est de faire pivoter l'axe de rotation du moteur de 90°. Pour ce faire, nous utilisons un différentiel. Cette partie compte également la réalisation des portes excentriques, qui doivent permettent le bon réglage de la tension de chaine, avec la meilleure résolution possible, tout en supportant les importantes contraintes qui lui sont appliquées.

2.3 Cahier des charges

Les objectifs du PE ainsi que les critères du cahier des charges sont définis par notre commanditaire (EPSA). En première année, l'équipe du PE 56 est chargée de la conception de soussystèmes non-critiques directement en lien avec la motorisation instrumentée du véhicule Vulcanix.

Afin de comprendre et respecter les contraintes associées à la conception du moteur, avons établi un cahier des charges global spécifique à la motorisation instrumentée.

Les niveaux de performances ainsi que la flexibilité des fonctions et contraintes de ce cahier des charges sont limités par le règlement FS.

Fonction principale ou contrainte	Critère fonctionnel	Niveau	Flexibilité
FP1 : Propulser la voiture	Avoir une puissance et un couple max	80 ch / >= couple transmissible par les pneus	Aucune
FP2 : Transformer l'energie chimique en energie mécanique	Carburant	Essence ou SP95	Aucune
FP3 : Répondre aux solicitations du pilote	Etre relié mécaniquement à la pédale d'accélérzteur	2 ressors sur le papillon	Aucune
FP4 : Etre robuste et fiable	Supporter sans panne la phase d'essai + le(s) FS	200h	Aucune
FP5 : Etre léger	Masse (sans transmission)	80kg	5kg
P6 : Etre efficace énergiquement	Consommation	< 16l/100km	11
P7: Passer les vitesses rapidement	Temps de passage de rapport	< 150 ms	50 ms
P8: Faciliter l'accès et l'entretient	Accès au moteur	Total	Aucune
C1 : Respecter la limite de cylindrée	Cylindrée max	<710	Aucune
C2 : Limiter l'émission du bruit	Niveau sonore (à 50cm et à 45° du pot d'échappement)	110dB	Aucune
C3 : Etre refoldit	Nature du liquide de refroidissement	Eau	Auncune
C4 : Protéger la chaîne	Protection de chaîne	3 fois la largeur de chaine	Aucune
C5 : Etanchéité	Résistance des tuyaux à la pression	> 8 bar	Aucune

Figure 1. CdCf du PE 56 – Motorisation instrumentée

2.4 Budget

Le budget prévisionnel pour la conception d'un véhicule de type FSAE est bien plus considérable que ceux des projets d'études en général et dépasse donc largement les 300€ accordés par l'école Centrale. L'EPSA est donc soutenue par de nombreux sponsors (ALPEN'TECH, VELAN, VOLVO Trucks...) qui aident à financer le projet.

Voici la part de budget empruntée par chaque pôle :

Figure 2. Budget total de la voiture

Et la répartition à l'intérieur du pôle motorisation :

Figure 3. Budget du PE 56 pour le pôle motorisation

2.5 Planification

A partir des tâches définies, nous avons construit un diagramme de GANTT de notre projet qui rassemble l'ensemble des grandes phases ainsi que les dates des évènements clés de la saison EPSA 2017/2018 :

Figure 4. Diagramme de GANTT du PE 56

III – SOUS SYSTEMES

3.1 Récupérateurs de fluides / Catch-Cans

Il existe deux types de récupérateurs de fluides (ou « catch-cans ») sur Vulcanix.

L'un est connecté au moteur, c'est le récupérateur d'huile. Il constitue un élément indispensable de l'admission directe car transforme (condense) et stocke les vapeurs d'huiles émises par le système de lubrification du moteur. Ainsi, le moteur aspire de l'air sans vapeur d'huile ce qui permet de limiter l'encrassement des soupapes et des chambres de combustion. On optimise alors les performances du moteur.

L'autre est directement connecté au circuit de refroidissement, c'est le récupérateur d'eau. Il permet d'éviter un éventuel trop plein d'eau dans le circuit.

Avant de se lancer dans la conception des catch-cans, il a d'abord fallu établir le cahier des charges de ce sous-système non critique. Ce dernier est principalement défini par les règles de la compétition FSAE.

Fonction	Critère	Niveau	Flexibilité	Articles du règlement
FT				
• FT1 - Contenir les fluides (huile/eau)	C11a - Contenance	10% du volume de fluide contenu ou 0,9L	OK si supérieur	T8.2.2
	C11b - Étanchéité	100%	0	T8.2.1
	C11c - Vidange	100%	0	
• FT2 - Collecter les fluides (huile/eau)				
FC				
• FC1 - Adapter la taille des catch-cans à leur emplacement dans le véhicule	C1a - Etre placé au bon endroit dans le véhicule	100%	0	
	C1b - Adaptation à la forme de la motorisation	100%	0	
• FC2 - Respecter le règlement du FS	C2a - Respecter le diamètre minimum interne du tuyau raccordant au système de refroidissement (=3mm)	Dimensions imposées	0	IC2.6 / IC2.7
	C2b - Respecter le volume minimum des catch-cans	10% du volume de fluide contenu ou 0,9L – le plus grand	0	T8.2.2
	C2c - Résister à la chaleur des fluides récupérés et contenus (eau bouillante) sans déformation	?	0	T.8.2.5

Nous avons pris, dans un souci de respect du CdCF, la décision d'acheter sur internet des bidons métalliques (en fer blanc) de volume 1L (capacité maximale 1,1L) plutôt que de les concevoir et de les produire nous-mêmes (cf. photo ci-dessous). Cela à l'avantage d'être plus économique (cf. budget) mais surtout plus léger.

Fig. 5 : Bidons métalliques qui serviront de base aux catch-cans

Concernant les fixations en aluminium, nous allons les faire faire sur-mesure chez un de nos partenaires. Les catch-cans seront fixées au fond plat du véhicule.

Fig. 6 : Capture d'écran des fixations des catch-cans intégrées au véhicule sur le logiciel CATIA

Budget prévisionnel : les boîtes sont à **5€ l'unité**, on estime le coût des fixations (plaque en aluminium + découpe + pliage) à 30€ l'unité + il faudra prendre en compte le coût des tuyaux dont on ne connaît pas encore le prix.

Total bidons + fixations : 100€

3.2 Circuits carburant / Fuel System

La fonction principale du circuit d'essence est d'alimenter le moteur en essence.

Les éléments qui composent le circuit d'essence sont le réservoir, la pompe, le régulateur de pression et la rampe d'injection. Il y a également des tubes et des connecteurs qui relient ces différents composants

Le cahier des charge de ce sous système est le suivant :

Fonction	Critère	Niveau	Flexibilité	Articles du règlement
FT1 - Alimenter la motorisation en carburant				
• FT11 - Contenir le carburant	C11a - Contenance	7L	3L	
	C11b - Étanchéité	100%	0	
	C11c - Vidange	100%	0	IC2.4.5
	C11d - Évacuation de l'air	100%	0	IC2.8.1 / IC28.2
· FT12 - Injecter la bonne quantité de carburant dans la phase d'admission	C12a - Adapter l'injection	100%	0	
	C12b - Pression de carburant	100%	0	
FC1 - Adapter la forme du réservoir en fonction des systèmes proches	C1a - Adaptation à la forme du chassis équipé	100%	0	
	C1b - Adaptation à la forme de la motorisation	100%	0	
FC2 - Résister aux conditions extérieures	C2a - Limiter le ballottement du carburant	60%	10%	
	C2b - Chaleur du moteur	100%	0	
	C2c - Conditions météorologiques	100%	0	
FC3 - Respecter le règlement du FS	C3a - Remplissage du réservoir	Dimensions imposées	0	IC2.6 / IC2.7
	C3b - Emplacement du réservoir	Dans le chassix	0	IC2.5
	C3c - Matière du circuit	Acier Inox	0	IC1.8.1 / IC1.9.1 / IC2.4.1&
	C3d - Fixations du système	Matériaux et emplacements	0	IC1.9.1

3.3 Maquette FabLab

Dans le cadre de l'objectif général de l'EPSA d'améliorer ses résultats dans les diverses épreuves du FSAE, mais également de gagner en efficacité et productivité lors de la phase de conception du véhicule, l'écurie a décidé de réaliser une maquette imprimée en 3D du véhicule Vulcanix.

Afin de maximiser les gains de ce que pourrai apporter cette innovation à l'écurie, il faut s'intéresser précisément aux objectifs que doit remplir cette maquette, ainsi que comment y arriver. Bien qu'il ne s'agisse que d'un produit connexe au véhicule, cette maquette représente un système à part entière dont la conception, bien que particulière, ne peut se dispenser de suivre un processus d'ingénierie système. Par la suite, celle-ci sera réalisée au travers d'un partenariat avec le FabLab de l'Ecole Centrale de Lyon, qui dispose des outils et des compétences pour assurer ce type de production. La conception de la maquette 3D à imprimer fait ainsi l'objet d'une concertation avec le FabLab, afin d'optimiser sa fabricabilité.

Ainsi, il a fallu définir ses objectifs, ainsi que son cahier des charges :

Fonction	Critère	Niveau	Flexibilité
FP0 : Être conforme au véhicule	C01 - Échelle de représentation 1:5	Précision 1mm	100µm
FC1 : Ne pas dépasser le budget	C11 - Prix	< 150€ HT	50€
FC2 : Être facile à manipuler	C21 - Masse	< 3kg	100g
	C22 - Démontage partiel	< 30 minutes	5 minutes
	C23 - Démontage total	Possible	n/a
FC3 : Etre robuste	C31 - Résistance à la flexion	Déformation < 10%	1%
	C32 - Résistance à la torsion	Déformation < 5%	1%
	C33 - Résistance à la fatigue	20 cycles testés par pièce	Aucune
FC4 : Etre évolutif	C41 - Systèmes de fixations	Remplaçable et standard	n/a

Figure 7. CdCF de la maquette FabLab échelle 1:5

3.4 Pédalier / Pedal Box

Pédale d'accélérateur :

<u>Fonction</u>: Transformer le mouvement d'appui sur la pédale par le conducteur en translation du câble d'accélérateur (course de 35mm, pour tirer le papillon d'arrivée d'air)

<u>Objectif</u>: Imaginer un montage à faible coût de fabrication puis dimensionner le système pour répondre au cahier des charges

<u>Travail réalisé</u>: Aide du 2A responsable du sous-système : idées de système permettant de réduire les coûts, mesures sur les anciens véhicules et choix d'évolution, dimensionnement de la pédale (largeur du cale-pied, hauteur de la tige par rapport au pivot).

Pédale de frein :

<u>Fonction</u>: modifier la position du maître-cylindre pour serrer les freins à disque de chaque roue par pression hydraulique du liquide de frein.

<u>Objectif:</u> Proportionner la pédale pour qu'elle permette un freinage efficace, précis, et confortable à l'utilisateur. Régler le répartiteur de freinage afin d'avoir une répartition de freinage respectant le cahier des charges.

<u>Travail réalisé</u>: Choix de la force à appliquer pour bloquer les roues (par tests sur les anciens véhicules): choix de 48kg d'effort.

Intégration du pédalier dans le châssis :

Choix de la hauteur du pédalier par rapport au fond du baquet pour optimiser le confort de l'utilisateur.

Fonctions	Critères	Niveaux	Flexibilités	Articles règlement
FT1: Transmettre les commandes du pilote				
	C1-1a Débattement de la pédale d'accélérateur	20°	2°	1
FT1-1 au moteur	C1-1b Course maximale du câble d'accélérateur	35mm	0	1
r i i-i au illoteul	C1-1c Vidange	100%	0	/
	C1-1d Evacuation de l'air	100%	0	1
FT1-2 au freins	C1-2a Débattement de la pédale de freinage	0°	5°	
r i i-z au ii eiiis	C1-2b Répartition du freinage	64% à l'avant / 36% à l'arrière	2%	1
FT2: Pédalier confortable pour le pilote				
		5*	1°	/
		5° 5°	1°	1
FC1: Adapter la forme du pédalier en fonction des systèmes proches	C1-2b Position de la pédale de freinage au repos	5°	11	1
FC1: Adapter la forme du pédalier en fonction des systèmes proches			1°	/ /
	C1-2b Position de la pédale de freinage au repos	5°	11	
FC1: Adapter la forme du pédalier en fonction des systèmes proches FC2: Résister aux conditions extérieures	C1-2b Position de la pédale de freinage au repos C1a Adaptation à la forme du chassis équipé	100%	11	
	C1-2b Position de la pédale de freinage au repos	5°	11	

Figure 8. CdCF du pédalier

Budget: environ 3000euros

IV – CONCLUSION

Notre projet porte sur une partie essentielle du véhicule STUF 2018 dont le développement doit débuter au milieu du semestre prochain. En effet, la motorisation instrumentée est le véritable cœur de la voiture thermique que nous produirons : c'est donc un système particulièrement critique. L'ensemble des décisions d'ingénierie, des réponses que nous apporterons, auront ainsi un impact décisif sur les performances du véhicule final. Plus encore, à l'EPSA, de nombreux éléments laissent place à de l'amélioration, et très particulièrement sur l'ensemble des solutions de la motorisation instrumentée. Ainsi, il convient, plus que jamais dans le cadre d'un travail intergénérationnel apportant de la fiabilité et de la stabilité, de trouver le juste équilibre entre performance, risque, endurance, complexité, et coûts.

Le TOP copeau, important jalon que nous venons de franchir, marque le début de la remontée du cycle en « V » de chacun de nos sous-systèmes, et ainsi le début de l'apprentissage de la phase de fabrication. Le travail que nous avons mené, instructif et formateur, permettra de poser, dès le Roll-Out, les bases du véhicule STUF 2018, conformément aux objectifs ambitieux de performance auxquelles l'EPSA s'astreint chaque année. Cette année encore, l'enjeu principal sera de rentrer dans les délais, afin de proposer des performances et une fiabilité à la hauteur des changements opérés dans l'organisation de l'écurie.

Enfin, une attention toute particulière sera portée sur la justification de toutes les décisions prises concernant la partie motorisation, ainsi que sur une meilleure compréhension des phénomènes physiques intervenant dans cette partie du véhicule, conformément à la devise du FSAE :

« It's not only about going faster, it's more about getting smarter ».