NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

MVSV

MODEL AERODYNAMIC TEST RESULTS FOR TWO VARIABLE CYCLE ENGINE COANNULAR EXHAUST SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS

COMPREHENSIVE DATA REPORT VOLUME III GRAPHICAL DATA BOOK 1

By D.P. Nelson

Commercial Products Division Pratt & Whitney Aircraft Group United Technologies Corporation

(NASA-CR-159819-VOL-3-BR-1) MODEL AERODYNAMIC TEST RESULTS FOR TWO VARIABLE CYCLE ENGINE COANNULAR EXHAUST SYSTEMS AT SIMULATED TAKEOFF AND CRUISE CONDITIONS. COMPREHENSIVE (Pratt and whitney Aircraft

I

N81-17J85

Unclas G3/07 41401

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under
Contract NAS3-20061

1 Report No (R=150810	2 Government Accession No.		f Hermonit's Enteloy	Nis		
4 Table and Subtate Model Aerodynamic Test Results for Two Variable Cycle Engine Coannular Exhaust Systems at Takeoff and Cruise Conditions - Comprehesive Data Report			5 Resent Pate January 1981			
			b. Performing Organization Code			
7 Authoris)			8 Performing Organiz PWA-5550-50			
D.P. Neison			10 Werk Unit No			
9 Performing Drugorustion Namy and Address Pratt & Whitney Aircraft (iroup					
Commercial Products Division			11 Contract or Grant No			
United Technologies Corporation			NAS3-20061			
Fast Hartford, Connecticut 06108			13 Type of Report and Period Covered			
12 Sponsoring Agency Name and Address			Contractor Report			
NASA Lewis Research Center	•		14 Sponsoring Agency	Cude		
Cleveland, Ohio 44135						
15 Supplementary Notes		<u></u>				
		, -				
Project Manager: A. G. Po	Project Manager: A. G. Powers, NASA Lewis Research Center					
16 Abstract						
advanced coannular exhaust nozzle for a future supersonic propulsion system. Tests were conducted with two test configurations: 1) a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and 2) an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take-off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.						
17 Key Words (Suggested by A hor(st) Short Fiap Ejector Iris Flap Ejector Coannular Exhaust Nozzle	18 C.strib	ution Statement	(
Inverted Velocity Profile						
19 Security Classif (of this report)	20 Security Classif (of this page)		21 No of Pages	22 Price*		
Unclassified	Unclassified		2220			

FOREWORD

This report documents the work performed during the Nozzle Performance Tests (Task III) of Contract NAS3-20061. Because of the large amount of information, this report is presented in three Volumes to facilitate its use.

Volume I contains the design layouts and detailed design drawings of the nozzle models.

Volume II contains the tabular aerodynamic data generated in this program.

Volume III contains a graphical presentation of the data.

A complete description of the test hardware and test facilities is contained in the companion Task III Final Report, CR-159818. Significant test results and conclusions are also included in the Final Report.

TABLE OF CONTENTS

		Page
۱.	Introduction	٩٧
2.	Graphical Data Guide	٧
3.	Graphica: Data	1

INTRODUCTION

This volume contains a graphical presentation of the aerodynamic data acquired during the scale model nozzle performance wind tunnel test.

Section 2 contains an organization guide that can be used to locate the data plots obtained during this program.

Section 3 contains the graphical data and includes plots of:

- Nozzle thrust coefficient parameters
- Nozzle discharge coefficients Static pressure distributions 0
- 0

2. Graphical Data Guide

The graphical data have been organized by test configuration for ease of comparison. The data are presented in the same configuration order as listed in the data matrix guide, Table 2-I Volume II. For each configuration, the data are organized by ascending run number.

The graphical data presented consist of plots of nozzle gross thrust coefficient (CFP1), fan nozzle discharge coefficient (CDF) and primary nozzle discharge coefficient (CDP). Normalized model component static pressure distributions are presented as a function of primary total pressure (P1/Ptp), fan total pressure (P1/Ptf) and ambient static pressure (P1/Po) for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency (ETA1 INT) and secondary-to-fan total pressure pumping characteristic (PTS/PTF).

For each run the nozzle performance parameter plots are presented first, followed by the static pressure distribution plots. Each performance plot is identified in the upper left corner of the page by reading (RDG) number sequence, configuration and run (RUN) number. Wind tunnel and nozzle operating conditions are also defined at the top of the page. Each static pressure distribution plot is identified by run (RUN) number and reading (RDG) number in the upper right corner of the page, followed by a heading that identifies the configuration, model component for which the distribution was measured. The second line of the heading defines the wind tunnel and nozzle operating conditions associated with the reading number.

3. GRAPHICAL DATA

CONFIGURATION C₁
SHORT FLAP NOZZLE
SUPERSONIC CRUISE

ROG. 1039-1070

RDG. 1039-1070

RPG 1039-1070

RDG, 1039-1070

ROG. 1039-1070 CI SUPERSONIC CRUISE RUN 14 Mo =1.96 w = .888 RATIO, PTS/PTF **.**855 .858 SECONDARY TO FAN TOTAL-PRESSURE .845 図 EN .848 **.**Ø35 .øsø .Ø25 .Ø2Ø └ 8 I 28 55 24 26 28 ЗØ 32

ORIGINAL PAGE IS OF POOR QUALITY

FAN NOZZLE PRESSURE RATIO, PTF/PO

ROG. 1071-1102

RO'G 1071-1102

RD'G. 1071-1102

RD'G. 1103-1144

ROG. 1103 - 1144

Roc. 1103 - 1144

CONFIGURATION A₁
IRIS FLAP NOZZLE
SUPERSONIC CRUISE

Rog. 1155-1184

Rog. 1155-1184

RnG. 1155-1184

RDG. 1155-1184

37

PRESSURE TAP AXIAL LOCATION: */dmax

RUN 18

RDG 1205-1235

RDG . 1204 - 1235

ROG. 1205-1235

ROG. 1205-1235

RUN 19

RPG 1248-1277

ROG. 1248 -1277

ROG 1248-1277

RUN 20

CONFIGURATION C₂
SHORT FLAP NOZZLE
SUBSONIC CRUISE

ROG 1685-1717

RUN 29

	7.89 1.8	SPLITTER Ptr/P	o=	3.58	37	Ptr	/P + p=		NJ 17	1 300	20,410	
	1.02	EJECTOR CLAMSHEL	NLE1 POS	POS SITIO	TION	3 - MII	WAY	<u> </u>	PRI	MARY	PLUG	
	Ø.9			·		····		<u></u>	FLO	W SPL	TIFR	I.D.
pi/prp	Ø.8							······································				
	Ø.7											
PRESSURE,	Ø.6											
101AL	Ø.5				m0	М						
	Ø . 4					<u> </u>		,				
IU PRIMARY	ø.3		0							····		······································
21 W	ø.2			······								
	ؕ1					-						
LUCAL	g.g		3.4		• 6		.8		· 8		•2	1

RDG=1696 C2 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION $M = \emptyset.89$ Ptr/Ptp=1.97 AT SUBSONIC CRUISE Ptr/Po= 3.507 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 13 □ FOREBODY INLET

Δ 2Ø SHROUD LOCATION

◆ 8Ø SHROUD LOCATION 1.2 P1/Po 1.1 \Diamond RATIO. 1.0 STATIC PRESSURE Ø.9 Ø.8 LOCAL TO AMBIENT Ø.7 سئل 8.6 Ø.5 L 1.2 1.4 8.4 8.6 Ø.8 1.8 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 29

RUN 29 RDG=1697 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 Ptr/Po= 4.456 Ptr/Ptp=1.97 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 13 A FLOW SPLITTER 0.0. Ø.9 ø.8 PRESSURE, PIZPIF 8.7 8.6 Ø.5 FAN TOTAL Ø.4 Δ Ø.3 LOCAL STATIC TO Ø.2 8.1 8.8 1.2 1.4 8.4 8.6 8.8 1.8

PRESSURE TAP AXIAL LOCATION, x/dmax

PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 29

RUN 29 RDG=1699

RUN 29

8.5

8.4

RDG=1700

1.2

1.4

CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 1.8 Ptr/Po= 6.986 Ptr/Ptp=1.97 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 13 PRIMARY FLUG 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 8.7 8.6 ø.5 8.4 Ø.3 (1) П 8.2 8.1

PRESSURE TAP AXIAL LOCATION = */dmax

Ø.8

1.8

8.6

= {	7.89 1.8		7 r/P			•98				=1.97	y			
		CLA	CTOR MSHEL	NL P	ET F OSIT	1204	TION 1	3 • M I	WAY	٨	E. J	M CDI	ITTER	n . n .
	ؕ9			+-								776	-	0.0.
	ø.8					•								
	Ø.7							·						
T N L 3 3 0 N L	Ø.6									1				
-	Ø.5			-										
	ؕ4									······································				
	Ø.3		·											
	ø.2			-										
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ø.i						Δ					•		····
5	3.Z 8.													

RDG=1700 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 Ptr/Ptp=1.97 AT SUBSONIC CRUISE =09/719 6.986 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 13 ☐ FOREBODY INLET

△ 20 *SHRQUD LOCATION

◆ 80 *SHRQUD LOCATION 1.2 1.1 RATIO. 1.8 PRESSURE Ø.9 STATIC Ø.8 AMBIENT Ø.7 10 8.6 LOCAL Ø.5 L Ø.6 Ø.8 1.0 Đ.4 PRESSURE TAP AXIAL LOCATION, x/dmax

RDG. 1718 - 1751

C2 RDG = 173Ø PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.9Ø PTF/PTP=1.96 PTC/Po= 3.508 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 D PRIMARY FLUG D FLOW SPITTER 8.9 PRESSURE, PIZPTP Ø.8 **3.7** 8.6 PRIMARY TOTAL Ø.5 8.4 Ø.3 10 LOCAL STATIC **3.2** 8.1 ø.ø.2 8.4 8.6 Ø.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION, */dmax

RUN 30

CS		CDI ITTED	CTAT1	0 00		DICTO	.nu=t.o	NC A	5 6110		DG=1	
	9.9Ø	SPLITTER Ptr/Pa		4.58		17/Ptp		NS H	1 508	SOMIC	CRUI	52
11-	1.8	EJECTOR CLAMSHEL							-,,	T		
		CLAMSHEL	POS	ITION	17	•	ΞE	PRIM	IARY I	l ALUG		
	Ø.9		<u> </u>				<u> </u>	FLOW	SPI	TTER	1-0-	
٥												
Ptx	Ø.8		 									
PI/Ptp											1	
	Ø.7											
PRESSURE.												!
188	Ø,6											l
P ሕ	8.0											
	-										1	
TOTAL	2.5				<u> </u>		 					
-			П			_					1	
PRIMARY	ؕ4] 						
% I W			0									
	Ø.3											
10				П	0							
) I	ø.2		<u> </u>					 		 		
TAT						ļ						
LOGAL STATIC	ø. 1							 	· · · · · · · · · · · · · · · · · · ·	 		
CAL						I						
۲0	ø.2		<u> </u>							<u></u>]	
	Ø	• 2 ន	. 4	A	. 6	Ø.8	1	• Ø	1	.2	1 •	, 4
		-PRESS	URE T	AP AX	IAL LO	CATION	, ×/dn	na×				
1												

87

PRESSURE TAP AXIAL LOCATION: */dmax

FUN 30

RUN 30

	g. 9g	SPLITTER Pir/1		1C PR			RIBUTIO: p=1.97	NS AT	SUBSO		G=17 :RUI
	1.2	EJECTOR CLAMSHE	NLET LL POS	POSI	TION 17	AHDHA.		PRIMA	RY AL	ug	
	Ø.9				7		<u>_</u>	FLOW	SPL IT	IFR_I	<u>م∏م</u>
PIZPIP	ø.8										
	Ø.7										_
PRESSURE.	Ø.6										
TOTAL	ø.5										
PRIMARY 1	Ø.4										
TO PRIM	Ø.3		0								
LOCAL STATIC	ø.2				0						_
	Ø.1										
707	g.g	.2	Ø.+	Ø	• 6	Ø.8	1	.ø	1.2		1.

RDG=1732 CS TWIG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE =ؕ9Ø 1•Ø PTF/81p=1,97 5.238 EJECTOR INLET POSITION HIGHAY CLAMSHELL POSITION 17. A | FLOW SPLITTER O.D. 8.9 3.8 LOCAL STATIC TO FAN TOTAL PRESSURE, PIZPIT 8.7 Ø.6 Ø.5 8.4 Δ Ø.3 ø.2 Λ 8.1 ø.g._ 8.2 1.2 1.4 Ø.6 Ø.8 1.2 PRESSURE TAP AXIAL LOCATION: x/dmax

C-2

RDG=1732 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =9.98 Ptr/Ptp=1.97 AT SUBSONIC CRUISE PIC/Po= 5.238 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 ☐ FOREBODY INLET

△ 20 SHROUD LOCATION

◆ 80 SHROUD LOCATION 1.2 STATIC PRESSURE RATIG. PIZPS 1.1 1.8 8.9 Ш 8.8 TO AMBIENT B.7 \Diamond Ø.6 LOCAL 8.5 L 8.6 Ø.4 8.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 30

		SPLITTER						NS AT	SUBS	R	DG=17 CRUIS	
Мо	=3.98 1.8	PTC/PS EJECTOR CLAMSHEL		.985 OS TI	ON MI	DWAY		DDIMA	DV D	1 116		
	ø.9				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>ē</u>	PRIMA F! DW	SPI T	ĪĬĔŖ	InDa	
P1/P12	ؕ8											
	ø.7									<u>₩</u>		
PRESSURE.	8.6											
TOTAL	ø.5				<u></u>							
PRIMARY 1	9.4								,			
TO PRIM	ø.3		0		<u> </u>	V						
Α̈́	ø.2				<u> </u>							
AL STAÏ	3. 1											
LOCAL	8.B 8	.2 8	. 4	8.6	·	8.8	1	.8	1 -	.5	1.	4 -
		PRESS	URE TAP	AXIA	L LOCA	TION.	× pd dm	×				

CS	AND	SPLITTER	STATIC	PRE	SSURF	nistrii	BUTIO	NS AT	SUB	£	~ 2~_ 20G=1 CRUT	733
Mo =	g.9g	P+r/Pe		985		r/Ptp=		.,.			0	
	1.8	EJECTOR CLAMSHEL	NLET POSIT	OS I	TION N	YAWDII	A	ELON	CD1 !	TTER	0 0	
	g.9		<u> </u>					FLOW	376	I I E R		
				İ								
	8.8			-					<u></u>			
PI/PTF	Ø.7								, <u>, , , , , , , , , , , , , , , , , , </u>			
PRESSURE,	Ø.6											
PRES	ø . 5											
TOTAL	3. 4		Δ									
TO FAN	ø.3				The thirt was to be a second of the second		ad Vindendrona de America de Amer					
STATIC 1	8.2								<u></u>			
LOCAL ST	ø. 1											
700	a.a	.s a	. +	Ø.6	5	8.8	1	.8	1	. 2	1.	. 4
		PRESSU	JRE TAP	AXI	AL LOC	ATION.	×gº⊲m	α×				

FJN 30

RUN 30

PLUG Mo ⊃£			rppe) I	6.91	35	PTC	.ptp=		NS A	T SU	BSON	IC CR	U I
	110	EJECT	OR HELI	NLE PO:	T POS SITIO	NOIF	7 - MIC	WAY	e	PRI	MARY	RLUG		
	g.9	- 					······································			FLÓ	MARY W_SPI	TIE	R I.	1
pi/pre	B.8	1788WR (SN) dag, andersallisterin	alpodor dada za Malajago					***************************************			Processor de processor (m. 2 a			-
	8.7	Policy College			·								······································	-
PRESSURE,	8.6	r. gerne Adolfstadd Errangsychol yn chonwy	14 14 1 4 14 14 14 14 14 14 14 14 14 14 14 14 14		- Colonia									
TOTAL	ø.5	MARKET PRINT CONTINUES AND												
	Ø.4		anasan salama		-									
TO PRIMARY	ø.3			0	eccanica, in Albanica, America	Ш	Ш-				and the second second			
STATIC	ø.2				<u> </u>	0	······································		A. Designation of the second				**************************************	
	ø.1				ingeraphing prior received						······································			
LOCAL	g.g g	. 2	3	• 4	3		8	.8	1	.8		1.2	***************************************	1 .

PRESSURE TAP AXIAL LOCATION: x/dmax

8.8

1.8

1.2

1.4

8.6

8.4

RUN 30

RDG. 1752-1785

ROG. 1752-1785

100

RON 31

C2 RDG=1763

PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =3.98 P: P/Po= 3.497 Ptr/Ptp=1.95 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 21 PRIMARY FLUG 2.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PL/Ptp 8.8 3.7 8.6 Ø.5 3.4 **3.3** 8.2 Ø.1 8.8 1.0 1.2 1.4 Ø.4 8.6 Ø.8

PRESSURE TAP AXIAL LOCATION: */dmax

B.9 BICTOR NLET POSITION MIDWAY S.9 B.8			STATIC PR	ESSURE DI	STRIBUTIO	NS AT SUB	غ سردر RDG=170 SONIC CRUIS
SOUR SPLITTER O.D. S.9 S.8 S.8 S.6 S.6 S.6 S.7	Mo =Ø.9Ø	P+C/Pe				·	·
8.8 8.7 8.6 8.5		EJECTOR CLAMSHELI	INLET POS L POSITIO	TION WIL			
8.8 8.7 8.6 8.6 8.5	σο				Δ	FLOW SPL	TTER 0.0.
8.6 8.6 8.5	2.1						
8.6 8.6 8.5							}
8.6 8.5 8.5							·
8.6 8.5 8.5	ģ.						
8.6 8.5 8.5	<u>\$.7</u>						
	8.6						
	SS						
	8.5 d.		<u> </u>				
6 8.4			. 4				
	Ø.4				\		
			Δ				
N P S S S S S S S S S S S S S S S S S S	F 8.3						
				Δ			
		,		•			
TI VI	ATI						
LOGAL STATIC	ST						
A ""	AL.						
90	007						
3.2 8.4 8.6 8.8 1.8 1.2 1.4	— 9.8°	.2 8.	4 8.	6 2	8 1.	8 1.	2 1.4

, PUN 31

	JECT		NLET AND	SHROUD	STAT	IC PRES	SURE	DIST	RIBU.	TION		RDG=1	.763
Мс	= Ø	7.9Ø 1.3	Ptr/P		8.497		/P + p =	1.95	AT	SUBSO	NIC	CRUIS	E
			EJECTOR CLAMSHEL	NLET P L POSIT	OSITI	21 - MIE	WAY	□ 4	20 *9	BODY SHROUE SHROUE	INLE LOC LOC	ET CATION CATION	
		1.2											
	р. С	1.1									Ĭ		
	RATIU.	1.0											
<u>.</u>	PRESSURE	Ø.9				<	<u> </u>						
ď	STATIC P	Ø.8											
	AMBIENT S	Ø.7					♦						
(}	10	Ø.6						•				·····	
	LOCAL	ø.5 ø	.2 £	8. 4	ؕ6	<u> </u>	1.8	1	•8	1	•\$	1	.4

RUN31

	ANG	SPLITTER P+r/P		C PRI			TRIBU Tp=1		NS A	AT SUE		RDG=1 CRU!	764
110 -	1.2	EJECTOR CLAMSHEL				MIDI			001				
	8.9				4.000,		parations to bear 18 females	9	FIG	W SPI	ALUG TITER	LaDa	
PL/PTP	Ø.8				***************************************		CONTRACTOR			3		· · · · · · · · · · · · · · · · · · ·	
	3.7						** <u>***</u> ***						
PRESSURE,	Ø.6	**************************************			•					Ton All The State Control			
TOTAL	ø . 5						·					manage skietika	
PRIMARY IO	3. 4				[***************************************						
10 PRI	g.3		0				***************************************			······································			
STATIC	ø.2	an er allt ammelli i Passenplesty desalleri (an annet Ymas i till finansen											
LOCAL STA	Ø.1				**************************************								
F 0	g.g	.2 8	. 4	Ð.	6	g.8	owner, ad pace	1 .	B		1.2	1 .	. 4
		PRESSI	JRE TA	P AX	IAL LO	OCATI	0N• ×	/dm	a×				

104

FUN 31

RDG=1764 CS EJECTOR INLET AND SHROUD STATES PRESSURE DISTRIBUTION Mo =3.89 Ptr/Po= 4.51. Ptr/Ptp=1.99 AT SUBSONIC CRUISE EJECTOR INLET POST . MIDWAY CLAMSHELL POSITION 21 FOREBODY INLET 28 SHROUD LOCATION 88 SHROUD LOCATION 40 1.2 P1/Po 1.1 RATIO 1.8 PRESSURE g.9 Ш STATIC 8.8 TO AMBIENT 9.7 0 CITY TO 8.6 LOCAL B.5 L 8.4 8.6 8.8 1.8 1.2 1.4

PRESSURE TAP AVIAL LOCATION . * dmax

RUN 31

		SPLITTER							IS AT	SUB		RDG=1	765
Me =	Ø.89	PIC/PO EJECTOR CLAMSHEL		POSI TION		MIDV			PRIM	ARY I	LUG		
	8.9							0	FLUW.	SPL	LIFR	Lalla	
P1/P1P	₽.8								10° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 11.00° 1				
ш °	ø.7												
PRESSURE	Ø . 6												
TOTAL	ø.5												
	ø.4	The state of the s											
TO PRIMARY	ø . 3		0		Ш								
	Ø.2		[0				·	<u></u>	-		-
LOCAL STATIC	Ø. 1						Annilla 8 (A)			-,			
T 0 (g.g	·5 &	. 4	8.	. 6	ø.	3	1 .	.8	<u> </u>	• 2	1	•4
		PRESSU	JRE TAI	P AX	IAL LO	CAT	10N: ×/	'dm	₫×				

RUN 31

CS RDG=1765 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 Ptr/Po= 5.243 Ptr/Ptp=1.97 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 21 FOREBODY INLET 20°SHROUD LOCATION 80°SHROUD LOCATION $\overline{\Delta}$ 1.2 Pi/Po 1.1 RAT10, 1.8 STATIC PRESSURE 8.9 8.8 AMBIENT 8.7 \Diamond U LOCAL TO 8.6 8.5 L 1.4 8.4 Ø.6 8.8 1.0 1.2 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 31

	AND 8.98	SPLITT	ER r/Pa		IC PR				BUT1		AT	SUB	SONIC	CRU!
	1.8	EJECT						DWAY					1	
	g.9					ļ			<u>.</u>	S E	UM (Tun	SPI	PLUG TIFR	L.D.
PL/PTP	ø•8						none/ENTERPRISE (Consissions)		naj ^{a 1990} ^{Politi} an di distribution de la constanta de la c			************************************		
	8.7			•	··					+				
PRESSURE,	8.6										<u></u>	***************************************		-
TOTAL	ؕ5									-		**************************************		
PRIMARY .	ؕ4													
TO PRI	8,3			0						-				
STATIC 1	8.2			:		0								/
LOCAL ST	ø.1													
707	g.g	. 2	8.	<u> </u>	Ø	.6	Ø	.8		1.8		1	•5	1.

RUN 31

C2 PLUG	AND	SPLITTER	STATIC (PRESSUR	E DISTR	IBUTIO	NS AT	SUBS	F	DG=176 CRUISE
Mo =	Ø.9Ø	Ptr/Pa		ØØ5	Ptr/Pt	p=1.96				
	1 . 25	EJECTOR CLAMSHEL	NLET PO POSITI	S TION ON 2	MIDWAY		FLOW	SPLI	TTER	0.0.
	ø.9									
	Ø.8									
p1/p1r	Ø.7									
PRESSURE.	8.6									
PRES	ø.5									
TOTAL	ø . 4		Δ							
TO FAN	Ø.3					· · · · · · · · · · · · · · · · · · ·				
STATIC	8.2			\triangle						
	Ø.1									
LOCAL	8.8 8	.s &	.4	Ø.6	ø.8	1	.Ø	1 .	.2	1.4
		PRESSI	JRE TAP	AXIAL L	OCATION	ļ, ×∕dm	۵×			

RUN 31

cs													RDG=1	766
	ECTOR													
Mo	=Ø.9Ø 1.3		TOD		6.02			WAY	1.96	AT	SUBSU	NIC	CRUIS	E 1
		CLAM	SHELI	POS	11101	TION 2	1 - 11	MA I		FOR	EBODY SHROU(SHROU(INL	ET CATION CATION	
	1.2	<u> </u>		,						0.0	האטטונים	1 20	CHISUN	
00/10	1.1													
DATIO	1.8						^						,	
101122100	3 2 2 3 3 4 8.9						◆	>					A	
STATI			7 				,	Paraghinining y aming quadr					and the second seco	
AMRIENT C							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\Diamond	•					
Ţ	Ø.6										- 1, ,, , , , ,			
1400	8.2 0 0	.2	Ø	.4	Ø	.6	Ø	.8	1	ø	1	.2	1	• 4
1			RESSU	JRE T	AP AX	CIAL L	OCAT	ION,	×/dm	a×				ļ

RUN 31

C2 PLUG AI	סא	SPLITTER	STAT	IC PR	ESSURI	E DISTR	IBUTIO	NS AT S	SUBSOMIC	RDG=1767 CRUISE
Mo =Ø.	9Ø 1.8	Ptr./ EJECTOR CLAMSHE		6.93 POS		PTC/PT				
£	ð.9	CLAMSHE	LL PUS		21		<u>0</u>	PRIMAR FIOW S	RY FLUG	I.D.
P. P	ð.8			<u> </u>						
	g.7									
PRESSURE.	8.6						·····			
	8.5						1			
	ø.4									
TO PRIMARY	ø.3		0			-	ANTONIA WALLES			
	g.2				0					
1	ø. 1									
LOCAL	8.8 8.	.2	Ø.4	ø	. 6	Ø.8	1	.g	1.2	1.4

RUN 31

CS												ļ	ROG=17
PLUG Mo =		SPLIT	TER r/Pa		IC PR			STRIB /Ptp=		NS AT	SUB	SONIC	CRUI
110 -	1.8							WAY	1.70			T	
		EJECT CLAMS	HEL	Pos	SITIO	TION	1 - "	*****	•	EL OU	cn:	TTER	
	g.9					ļ				FLON	3FL	IIICK	0.0
	<i>2</i> 78												
ر	25 11 43						-						
PRESSURE, PL/P1r		ļ											
7	8.7	<u> </u>							·····				
•													
URE	Ø.6					 						 	
SS		<u> </u>								İ			
PRE	gr e					ļ	***************************************				*****	<u> </u>	
							•						
TOTAL	8.4	,							~				
					⚠		:						
FAN	ø.3												
10 F	8.3												
110	8.2											 	
STATIC					△					}			
	8.1					<u> </u>	······································		 			 	
LOCAL													
L 0	g.g 8	<u></u>		<u> </u>								<u></u>	
	B	• 2	Ø	. 4	æ	• 6	Ø.	. 8	1	. Ø	1	•5	1.

RUN 31

206.1786-1828

Rog. 1786-1828

ROG 1786-1828

C2 PLUG	AND	SPLITTER	STAT	IC PR	ESSURE	DISTRI	BUTIO	NS AT SI	1	ROG=178 CRUISE
Mo ≖	9.81 1.8	Ptc/(FJFCIOR		3.49 T POS		retq√nte MUMINIM		yangan ka mananan ka manana ka manana ka manana ka manana ka manana ka manana ka manana ka manana ka manana ka		
		EJECTOR CLAMSHE	LL PÕ	SITIO	21	•		PRIMARY	FLUG	
	ø.9				<u> </u>		(1)	FINW SE	TIFR	_1_0
P1/P1P	8.9								-	
	8.7									
PRESSURE,	¥•6			Carla berkata - maiat s (mai						
ſAĹ	ø.5									
PRIHARY TOTAL	3. 4	Adal Talahan di Amerika da Amerika da Amerika da Amerika da Amerika da Amerika da Amerika da Amerika da Amerika				20				
98	g.3	ewzz-Thumiz hizhinekilikkilikkilik (2004)	0	-1-1			o e posta de como de la composición de la composición de la composición de la composición de la composición de			
10	8.2				0			e Addiscontinuqui est como como. Forestencia		
AL STATIC	ø. 1			To the second se			æ2 / ; *********************************			
LOCAL	0.3 8	2	8.4	Ĩ	. 6,	g.8	1	.8	1.2	1.4

RUN 32

RUN 32

RUN 32

RDG=1787 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø3 PTC/Po= 4.486 Ptr/Ptp=1.98 EJECTOR NLET POSITION MINIMUM CLAMSHELL POSITION 21 PRIMARY FLUG 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 8.7 8.6 Ø.5 П 8.4 **D** ø.3 (1) Т 8.2 8.1 8.8 L 1.4 8.4 8.6 Ø.8 1.8 1.2 PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 32

CS RDG=1787 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø3 8.1 4.486 Ptr/Ptp=1.98 EJECTOR NET POSITION MINIMUM CLAMSHELL POSITION 21 A FLOW SPLITTER O.D. 8.9 Ø.8 LOCAL STATIC TO FAN TOTAL PRESSURE, PIZPIT Ø.7 Ø.6 Ø.5 8.4 Δ Ø.3 Ø.2 8.1 8.8 L 8.4 1.2 8.6 Ø.8 1.8 1.4 PRESSURE TAP AXIAL LOCATION: */dmax

RUN 32

RUN 32

	ND 0.05		TER		IC PR			TRIB Ptp=1		NS AT	SUB		RDG≖17 CRUI
	1.8					NOIT!				FLOW	SPL	TTER	0.0
	Ø.9				······································								
,	ø.8												
P1/P1F	ؕ7	*	: 					4-1					
PRESSURE.	ؕ6				······································				<u>.</u>				
PRES	Ø.5				····	·							
FAN TOTAL	Ø• 4				Δ				•				
TO FAN	Ø.3				······································								
	ø.2							<u> </u>			······································		
LOCAL STATIC	Ø.1	,			···				····				
T 0 C	8.8	2	a	•4		6	ø.	8	1	.ø	1	•2	1.

RDG=1788 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo = Ø. Ø5 1.3 Ptr/Po= 5.255 Ptr/Ptp=1.98 AT SUBSONIC CRUISE EJECTOR INLET POSITION MINIMUM CLAMSHELL POSITION 21 ☐ FOREBODY INLET

△ 20 SHROUD LOCATION

◆ 80 SHROUD LOCATION 1.2 RATIO. PLZPo 1.1 1.8 PRESSURE Ø.9 STATIC Ø.8 **AMBIENT** Ø.7 10 Ø.6 LOCAL Ø.5 L 1.2 1.4 Ø.4 Ø.6 Ø.8 1.8

PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 32

RUN 32

	C2 PLUG	AND	SPLITTE							IS AT	SUB		RDG = 1 CRU1	
	Mo =£	1.8	P+C/ EJECTOR CLAMSHE		5.91 T POS			TP=1.9						
		ø.9								FLOW	SPL	TTER	0.0.	
		ø.8												
	P1/p1r	Ø.7			· · · · · · · · · · · · · · · · · · ·					····				
	PRESSURE.	Ø.6												
	PRES	ø.5												
	TOTAL	Ø.4			Δ									
	TO FAN	ø.3			<u> </u>						·			
	STATIC T	ø.2				Δ								
		ø. 1							_					
	LOGAL	ø.8	. 2	Ø.4	Ø	. 6	Ø.8		1.	8	1	.2	1 -	i • 4
1			ppro	SUDE	TAP AX	TAL IO	CATIO	1M/	dmi	a~				

PRESSURE TAP AXIAL LOCATION: x/dmax

02 RDG=179Ø FLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE 08.8= om Ptr/Po= 5.931 Ptr/Ptp=1.97 EJECTOR INLET POSITION MINIMUM CLAMSHELL POSITION 21 PRIMARY FLUG 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 8.6 Ø.5 Ø.4 Ø.3 П 8.2 9.1 8.8 8.4 8.6 Ø.8 1.2 1.2 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 32

RUN 32

RUN 32

RUN 32

RUN 32

												KUN	34
	22										. ,	RDG≖1	814
		ΑΝΠ	SPLITTER	STATIC	PRE	ESSURE	011	STRIBU	TIO	NS AT SUE			
			Ptr/Pc		51			Ptp=1				· · · · ·	
•	•	Ø.89									T		
			EJECTOR CLAMSHEL	POSIT	ION	21	•	,	CD	DDIMADA	4		
		Ø.9							0	PRIMARY ELOW SPL	TIFR	Lona	
		201			1								
	Ω												
	φ	Ø.8											
	Pl/PTP												
	Æ,	8.7											
	505												
	PRESSURE,	Ø.6										i	
	PR												
	ΤA	Ø.5			\neg								
	10			Ш									
	PRIMARY TOTAL	Ø.4				[П						
	MA				- 1								
	R 1			\bigcirc									
		Ø.3			\dashv	П					 		
	T 0				.	<u> </u>							
	ပ	ø.2				0							
	<u> </u>	212		ĺ						•			
	STATIC												
		Ø.1								•	-		
	LOCAL												
	L 0	ส.ส									1		
		8.B 8	•5 &	• 4	ø.	6	ø.	8	1 -	.8	1.2	1.	. 4
ı						• • • •		• • • •					1
			PRESSU	JRE TAP	ΑX	IAL LO	UCAT	10N » >	:/dm	a×			

RUN 32

PLUG Mo =1		Ptr	/Po×	ATIC PR 4.E1	1	ISTRI etq\ntq		NS AT	SUB	SONIC	CRUI
	1 • 13	EJECTO! CLAMSH!	ELL I	ET POST POSITION	T10N 21	MINIMUN		FLOW	SPL	TTER	0.0.
	8.9										
,	8.8										
P1/P1r	8.7										
PRESSURE,	8.6						and the state of t		•		
	ø.5										
TOTAL	Ø.4			Δ					·		
TO FAN	ø.3										
	ø.2				Δ						
LOCAL STATIC	ø. 1										
00 T	8.8 8.	.2	8.4	8.	. 6	8.8	1	.ន	1	2	1.

RDG=1814 **C2** EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 Ptc/Ptp=1.98 Ptr/Po= 4.511 AT SUBSONIC CRUISE EJECTOR INLET POSITION MINIMUM CLAMSHELL POSITION 21 □ FOREBODY INLET

Δ 20 SHROUD LOCATION

♦ 80 SHROUD LOCATION 1.2 LOGAL TO AMBIENT STATIC PRESSURE RATIO, PIZPO 1.1 1.8 Ø.9 \Diamond Ø.8 8.7 Ø.6 8.5 L 8.6 8.8 1.8 1.2 8.4

PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 32

o =	Ø.89 1.8	P+r/F		5.25		P+C/P++ MINIMU		Γ			
		EJECTOR CLAMSHE	LL"PÖ	SITIO	TION 21	•		PRIMA FLOW	RY F	r në	
	8.9							FLUW	SPL	TTER	<u>lalla</u>
PIZPTP	8.8										
URE, I	ؕ7										
PRESSURE,	ؕ6						ny frantsa kaominina dia mpikambana 1984				
TOTAL	ø . 5			· · · · · · · · · · · · · · · · · · ·							
	Ø . 4					<u> </u>			·		
LOCAL STATIC TO PRIMARY	ø . 3		0								
	ø•2				0						
	8. 1										
707	g.g	2	8.4	a	•6	Ø.8	1	.8	1	.2	1 .

RUN 32

RUN 32

RUN 32

	Ø.89	SPLITT Ptr	ςκ '∕₽α		6.81			/Ptp=)		43 n	11 300	201410	CKUI
	1.8	EJECTO CLAMSI	OR HELL	NLE:	POS SITION		1-MIN	MUM	m	PRI	MARY	FL LIG	
	Ø.9								<u> </u>	F! O	W SPI	FLUG	I-D-
P1/P1P	ؕ8	Paragraph and and the state of			A de la companya de l								
URE.	Ø.7												
PRESSURE.	ؕ6	,											
ΓAL	ø . 5				•		· , · · ·						
PRIMARY TOTAL	ؕ4				The state of the s						Miller of the section was compared		
PRI	ø.3			0									
LOCAL STATIC TO PR	ø.2					0	, Q						
	1 •1		•	•									
700	8.8 8			.4		.6		.8		.8		1.2	1.

RUN 32

RDG=1816 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE M- =Ø.89 Ptr/Ptp=1.98 Ptr/Po= 6.812 EJECTOR INLET POSITION MINIMUM CLAMSHELL POSITION 21 A FLOW SPLITTER O.D. 8.9 Ø.8 LOCAL STATIC TO FAN TOTAL PRESSURE, PIZPIT 2.7 8.6 Ø.5 8.4 \triangle Ø.3 8.2 Δ 8.1 8.gL 1.4 8.4 8.6 8.8 1.2 1.2 PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 32

	AND Ø.89	SPLITTER P*r/Pe		PRE		DISTRIE		NS AT SU		CRUIS
•	1.8	EJECTOR CLAMSHELI				MINIMUM		PRIMARY	FLUG	
	Ø.9							PRIMARY FLOW SPI	TTFR	I-D-
P1/PTP	ؕ8									
ZE,	8.7									
PRESSURE.	ؕ6				v					
TOTAL	ø.5									
PRIMARY TO	8. 4									
TO PRI	g.3		0							
	8.2		[0					
AL STATIC	8.1						residential de la companie de la companie de la companie de la companie de la companie de la companie de la co			
LOCAL	g.g	· 5 &	. 4	ø.	.6	Ø.8	1	•8	1.2	1.4

2UN 32

	AND ؕ89	SPLITTER Ptr/F	o x	7.81	5 1	otr/Ptp=		NS AT	SUB	SONIC	CRUI
	1.00	EJECTOR CLAMSHE	NLE PO	T POSI SITION	LION 51	WINIMUM	Δ	FLOW	SPL	TTER	0.0.
	ؕ9						-				
,	8.8		-								
P1/P1r	Ø.7										
PRESSURE.	ؕ6			;					-,-,-,-,-,-,-,-,-		
PRE:	8.5			······································							
TOTAL	ؕ4			Δ	· · · · · · · · · · · · · · · · · · ·						
TO FAN	ø.3]	<u></u>		
	8.2										
AL STATIC	B•1				Δ		ng diamang ng ng Tri inse				
LOCAL	8.8 8	• 2	8.4	æ	. 6	g.8	1	•8	1	•5	1.

RDG 2224-2264

RDG. 2224-2264

ROG 2224-2264

CS RDG=2224 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø2 Ptr/Po= 3.573 Ptr/Ptp=1.96 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 17 PRIMARY FLUG OF OW SPLITTER Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 2.6 Ø.5 8.4 ø.3 0 8.2 Ø.1 8.8 L 1.4 8.4 8.6 Ø.8 1.0 1.2

PRESSURE TAP AXIAL LOCATION: x/dmax

AUN 45

PRESSURE TAP AXIAL LOCATION: x/dmax

	4NU 3.83 1.8	SPLITTER PTC/P	o= "	+.55	5 F	Ptr/Ptp=		10 CM	300.	SONIC	
	1 • 25	EJECTOR CLAMSHEL	NLET POSI	POSI TION	TION 17°	YAWDIM	Δ	FLOW	SPL	TTER	0.0.
	ø.9										
,	Ø.8										
Pt/Ptr	8.7				404.00(7) 0(1.4		Age to the Wasse				
PRESISURE,	Ø.6								1 have 1 have 1		
	ø . 5				·						
TOTAL	ؕ4										
TO FAN	ø.3		\triangle	•	·		<u></u>				
	ø.2		-								
LOCAL STATIC	Ø. i										
1,00	g.g 8	.2	8.4	Ø.	. 6	ؕ8	1	• 8	1	•2	1.

CS RDG=2225 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Ptr/Po= 4.555 Ptr/Ptp=1.96 AT SUBSONIC CRUISE EJECTOR NIET POSITION MIDWAY CLAMSHELL POSITION 17 FOREBODY INLET 20°SHROUD LOCATION 80°SHROUD LOCATION $\Delta \Phi$ 1.2 P1/Po 1.1 LOCAL TO AMBIENT STATIC PRESSURE RATIO, 1.8 8.9 Ø.8 Ø.7 2.6 Ø.5 L. 1.4 1.2 8.4 8.6 Ø.8 1.8

PRESSURE TAP AXIAL LOCATION: */dmax

RUN 45

CS										10× 45
	3 AND 8.04	SPLITTER PIC/Pa		C PR		DISTR tr/Pti		NS AT SU	BSONIC	CRUISE
,,,,	E. 1	EJECTOR			TION 17				<u> </u>	
		CLAMSHEL	. POS	LIDA	17		П	PRIMARY	FLUG .	
	ؕ9							FIUM SP		
P1/0/19	Ø.8				<u> </u>		······································	e istrati		
	Ø.7						,			
PRESSURE,	Ø.6			-						
TOTAL	ø.5									
PRIMARY I	ø.4	<u> </u>					× • •			
TO PRIM	ø.3		0							
STATIC T	ø.2				0					
AL ST	Ø.1	•								
LOCAL	g.g	•5 &	.4	Ø.	.6	ؕ8	1	.Ø	1.2	1.4
		PRESSI	JRE T	AP AX	(IAL LO	CATION	, ×/dm	۵×		

CS											RDG=2	226
1	IG AND	SPLITTER	STATIC F	PRESSUR	E DIS	STRIBU	TIO	NS AT	SUB			
Mo	=Ø.Ø.	P+r/Pe		326		Ptp=1	.98			,		ı
		EJECTOR CLAMSHELI	INLET PO POSITI	SITION ON 1	7 - MIO	WAY						
	ø.9						Δ	FLOW	SPLI	TTER	0.D.	
	2.7											
	ø.8											
ر	200		ļ.									
PL/PTC	Ø.7											
	~											
PRESSURE.	Ø.6											
SUF					·	,						ĺ
RES	ø.5											
TOTAL	ؕ4									ļ		
FAN	Ø . 3		Δ_							ļ		
10												
	ø.2			 								ļ
STATIC												
	Ø.1											
LOCAL												
0 7			. 4	Ø.6	8.			.ø		• 2	1	<u> </u> • 4
•	מ	.2 Ø	• T	D • O	13	. 0	1	• <i>1</i> 2	1	• 6	1.	• T
		PRESS	URE TAP	AXIAL	LOCAT	ION:	×/dn	a Z				

RDG=2226

PRESSURE TAP AXIAL LOCATION, x/dmax

RDG=2227 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø5 Ptr/Po= 6.078 Ptr/Ptp=1.97 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 PRIMARY ALUG OFIOW SPITTER I.D. 8.9 PRESSURE, PIZPTP Ø.8 8.7 8.6 LOCAL STATIC TO PRIMARY TOTAL Ø.5 8.4 \bigcirc П Ø.3 (1) Ø.2 Ø. 1 g.g. 8.4 B.6 8.8 1.3 1.2 1.4

PRESSURE TAP AXIAL LOCATION: x/dmax

CS RDG=2227 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø5 Ptr/Po= 6.078 Ptr/Ptp=1.97 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 A FLOW SPLITTER O.D. Ø.9 ø.8 LOCAL STATIC TO FAN TOTAL PRESSURE, PIZPIT Ø.7 Ø.6 **3.**5 Ø.4 Δ Ø.3 Ø.2 Δ **3.**1 ø.g L_ 1.2 1.4 8.4 8.6 Ø.8 1.8

PRESSURE TAP AXIAL LOCATION, x/dmax

C2 PLUG	. AND	SPLITTER	STATIO	C PRI	ESSURE DI	STR I BUT-I	ONS AT SU	م <i>ن جر</i> FDG=2 BSONIC CRU	2228
Mo =	Ø.Ø5	911/9		6.21		/Ptp=1.9	7		
		EJECTOR CLAMSHEL	NLET	POS!	TION MI	DWAY			1
	~ ~				•••		PRIMARY	HLUG TITER I.O.	
	Ø.9						<u> </u>		1
۵									
PIZPIP	Ø.8								1
ď									
ه. اننا	8.7				····	ļ			┨
PRESSURE.									
ES:	8.6								
				[
TOTAL	Ø.5								
T0.1									
· -	ؕ4								
MAR	ؕT								
PRIMARY			\bigcirc						
	Ø.3								
10		·	[יו וי	O				
1 I C	Ø.2		,						1
STATIC									
	B.1							1	-
LOCAL	į			ł					
	8.B	2 ~	1,				1]
	2 3 •	.2 Ø.	• T	8.	o Ø	• 8	1.8	1.2	• 4

CS RDG=2228 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Ptr/Po= 6.216 Ptr/Ptp=1.97 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 17 AIFLOW SPLITTER O.D. Ø.9 Ø.8 PRESSURE, PIZPIF 8.7 8.6 Ø.5 TO FAN TOTAL 8.4 8.3 LOCAL STATIC ø.2 Δ Ø.1 a.a __ 2.4 B.6 ø.8 :.8 1.2 PRESSURE TAP AXIAL LOCATION: x/dmax

RDG=2228

	7.95 1.8	P+r/P	o ≖	5.32	!3	P	=1.97	NS AT SUB	T	
		EJECTOR CLAMSHEL	Pos	ITIO	17	MIDWAY	9	PRIMARY	g <u>rug</u>	
	ؕ9						<u> </u>	FLUW SPI	I I FR 1 a F	4
ri/hr	Ø.8									-
	Ø.7		<u> </u>	20)						4
AL PRESSURE.										
	8.6		 							\dashv
PRIMARY TOTAL P	ؕ5		 					,		1
	~ "									
	Ø.4]				7
	ø.3		0							
<u> </u>										
	ø.2				0					4
31.41.5										
ا س	ؕ1							7-7		+
LUCAL										}

RUN 45

PLUG Mo =1			r/P	> x	5.	32	3	Ptr/	/P + p =	BUT10 =1.97	NS AT	SUB	SONIC	CRUI
		EJEC1 CLAMS	OR	NLE PO	T PO SITI	01	TION 17	-MIC	WAY	Δ	FLOW	SPL	TTER	0.0.
	Ø.9													
ن	8.8					-								
P1/P1r	Ø.7									•				
PRESSURE.	Ø.6				1									
	Ø.5				<u>,</u>		·	ì						
TOTAL	ؕ4		 In 1 											
TO FAN	ø.3	-			Δ					· · · · · · · · · · · · · · · · · · ·				
STATIC	ø.2					Δ								
LOCAL ST	Ø.1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		<u> </u>					
)0 T	ø.ø.	2	ø.	.4	•	ø.	6	ø.	8	1	.ø	1.	. 2	1.4

RDG=2232 C2 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.95 Ptr/Po= 5.323 PIC/PIP=1.97 AT SUBSONIC CRUISE EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 17 □ FOREBODY INLET

Δ 20 SHROUD LOCATION

♦ 80 SHROUD LOCATION 1.2 P1/Po 1.1 RATIO. 1.8 PRESSURE Ø.9 STATIC Ø.8 LOCAL TO AMBIENT Ø.7 Ø.6 8.5 L Ø.4 Ø.6 Ø.8 1.8 1.2 1.4

PRESSURE TAP AXIAL LOCATION, x/dmax

KUN 45

O =	Ø.89 1.8	Ptr EJECTO CLAMSH	/Pa		3.5			/Ptp=	1.94		 	T	
	ø.9	CLAMSH	1ELL	PUS			.7 -		Ee	PRIM FLOW	ARY I	LUG	Læ
PIZPTP	ؕ8			rdusen, juli- filliona					Williams Assessible				
PRESSURE,	8.7			-									
PRESS	Ø.6			P									
TOTAL	ؕ5					mp		,					
PRIMARY	Øei	 					Managaran ang Panggaran at						
TO PRI	ø.3	,	_	<u> </u>									
STATIC	ø.2						·				···		•
	Ø.1						**************************************				 		
LOCAL	8.8 8.	2	8.			F. 6		.8	•	ø	•	.2	1

RUN 45

RDG=2236 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 Ptr/Po= 3.571 Ptr/Ptp=1.94 AT SUBSONIC CRUISE EJECTOR INLET POSÍTION MIDWAY CLAMSHELL POSITION 17 FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION 凹 $\Delta \Phi$ 1.2 PI/Po 1.1 RATIO. Ш 1.8 LOCAL TO AMBIENT STATIC PRESSURE Ø.9 8.8 8.7 8.6 Ø.5 L Ø.4 8.6 Ø.8 1.0 1.4 1.2

RUN 45

C2 PLUG Mo = £	7.87	SPLITTER PTC/Pc		PRE			TRIBU Ptp=1		NS AT	SUB		S≖SOS IURO IURO	SE
	1.8	EJECTOR CLAMSHEL	NLET I	POSI	TION 17	, MID	WAY	0	PRIMA	ARY F	LUG		
	Ø.9							_0	FLOW	SPL	TTER	LaDa	
pi/prs	Ø.8		,										
URE,	Ø.7												
PRESSURE,	Ø.6												
TOTAL	Ø.5				··· + 	וח	<u>-</u>		\	· · · · · · · · · · · · · · · · · · ·			
PRIMARY	Ø.4												
TO PRI	ؕ3		0				 	- # V ₋				· · · · · · · · · · · · · · · · · · ·	
STATIC 1	ø.2			<u> </u>	0				•				
	Ø.1								,				
LOCAL	ø.ø	· 5 &	.4	ø.	6	ø.	8	1 .	æ	1	.2	1 .	4

RUN 45

RDG=2238 02 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 Ptr/Po= Ptr/Ptp=1.97 5.304 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 M PRIMARY FLUG OFLOW SPLITTER 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP 8.8 8.7 8.6 ø., 5 8.4 ø.3 П 0 8.2 8.1 ø.ø ∟ Ø.2 1.1 8.4 8.6 ø.8 1.8 1.2

C2 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 1.8 Ptr/Po= 5.384 Ptr/Ptp=1.97 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 17 A FLOW SPLITTER O.D. 8.9 Ø.8 PRESSURE, PIZPIF Ø.7 8.6 Ø.5 TOTAL Ø.4 LOCAL STATIC TO FAN Ø.3 9.2 \triangle Λ 8.1 8.8 L 1.2 8.4 8.6 Ø.8 1.8 1.4

. RUN 45

C2	G AND	SPLITTER	STATIC	PRFS	SUPF DI	STRIBII	TIN	NS AT	SUR	R		239
	=Ø.89 1.8	P+r/P	o= 6	.Ø82	Ptr	/Ptp=1		1		1	 1	
	8. 9	EJECTOR CLAMSHEL	POSIT	ION	17 -		98	PRIMA FLOW	RY I	LUG TITER	LaDa	
ρ	77.											:
P1/Ptp	Ø.8											
	ؕ7		,						WF 1117.111			
PRESSURE,	8. 6											
	Ø.5											ı
Y TOTAL												
PRIMARY	ؕ4		\cap		М							
TO PR	Ø.3		<u> </u>				· , , , , , - · ·					
STATIC	ø•2				<u>O</u>				······································			
	ؕ1											
LOCAL	ด.ต				····							
	3. 8	.2 8	. 4	ؕ6	Ø	. 8	1 .	æ	1	• 2	1 •	4
		PRESSU	IRE TAP	AXIA	L LOCAT	ION: ×	/dm	₫×	-			

RUN 45

	AND 8.89	SPLITTER Ptr/P	0= 6	.Ø82	2 P	t r/ Ptp		NS AT	SUB	20 Å I C	CRUIS
		EJECTOR CLAMSHEL	NLET F POSIT	CSI	TION 1	YAWDIN	Δ	FLOW	SPL	TTER	0.0.
	Ø.9										
٤.	ø.8										
Parker	8.7										
PRESSURE.	Ø.6						·				
PRE	ø.5			-							
TOTAL	ø.4			_					,		
TO FAN	ø.3		. 🛆								
STATIC 1	ø.2				Δ						
	ø. i			4							
LOCAL	8.8 8.	.2 1	3.4	8.0	<u> </u>	8.8	1.	.ø	1	.2	1.4

C2 PLU	G AND	SPLITTER	STATIC	PRESSURE	: DISTRIE	BUTIO	NS AT SUB	RDG=2	
Мо	=Ø.89 1.8	PTC/PC EJECTOR CLAMSHEL		Ø85 DSITION ION 17	PTC/PTP=	1.97			1
	ø . 9	CLAMSHEL	PUSIT	10N 17		99	PRIMARY F! OW SPL	LUG TITER I.D.	
P1/P1P	ø.8								
	Ø.7							<u> </u>	
PRESSURE.	ؕ6								
TOTAL	ø . 5								-
PRIMARY	ؕ4								
TO PRII	ø . 3		(D)	_ `	ם	······································			_
STATIC	8.2					- , , , , , , , , , , , , , , , , , , ,			
LOCAL ST	ؕ1		-						
7	8.8 8	.2 8	. 4	Ø.6	8.8	1	.Ø 1	.2 1	.4
		PRESS	URE TAP	AXIAL L	OCATION.	×/dn	na×		

RUN 45

CS											<i>?∪N</i> ?DG≠22	
PLUG	AND	SPLITTER	STATIC	PRE				NS AT	SUB			
Mo =Ø	.89	P+r/Pc		285		/P t p = 1	.97			·		
		EJECTOR CLAMSHELI	NLET POSIT	OS I	TION MI	YAW						
	~ ^						Δ	FLOW	SPL	TTER	0.0	
	Ø.9											
	ø.8	<u>a</u>					······································					
P1/P1r												
Ž	Ø.7			-+								
											l	
JRE	8.6							<u> </u>	<u></u>			
รรเ				l							l	
PRESSURE	Ø.5		<u> </u>			ļ				 -		
TOTAL	Ø.4											
				}								
FAN	ø.3		Δ									
10 1	2.5											
												l
I	ø.2											
STATIC				\triangle	\triangle							
	3. 1					1	(ACC)					
LOCAL												
_	g.g 8	r.2 8	r. 4	ø.	. 6	Ø.8	1	•B	1	.2		• 4
		PRESS			IAL LOCA		_					

RUN 45

RDG=2247 C2 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.8Ø Ptr/Po= 5.33Ø Ptr/Ptp=1.96 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 A FLOW SPLITTER O.D. Ø.9 Ø.8 PRESSURE, PL/PIF Ø.7 8.6 Ø.5 TOTAL 8.4 LOCAL STATIC TO FAN \triangle ø.3 Ø.2 Ø.1 8.8 L 8.8 1.2 8.4 8.6 PRESSURE TAP AXIAL LOCATION, x/dmax

CS RDG=2247 SUBSTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION 1.3 =8.8Ø Ptr/Ptp=1.96 AT SUBSONIC CRUISE Ptr/Po= 5.33Ø EJECTOR INLET POSITION MIDWAY
C AMSHELL POSITION 17 FOREBODY INLET 20°5HROUD LOCATION 80°5HROUD LOCATION $\overline{\Delta}$ 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PL/Po 1.1 Ш 1.8 Ø.9 Ø.8 Ø.7 Ø.6 Ø.5 L 1.4 Ø.4 8.6 8.8 1.8 1.2 PRESSURE TAP AXIAL LOCATION: x/dmax

187

RUN 45

Ren 45

г									<i>a</i> 7077	
CS		111 mm mm							RDG=2	2251
	CTOR 1 =Ø•7Ø	NLET AND				URE DI: P†p≈1.9			NIO ODUIC	
110	1.3				MIDI		7 /	M) 50850	NIC CRUIS) E
		EJECTOR CLAMSHEL	NET PO	17	•''	••••	Ď	FOREBODY 28*SHROUD 88*SHROUD	INLET	
							Φ	88 *SHROUD	INLET LOCATION LOCATION	1
	1.2					**************************************				1
0										
P 1 / Po	1-1									
10										
RATIO.	1.0		四	_		Φ				4
					4	A				
PRESSURE			ПП	,	4					
ES	Ø.9									-
		L	$\mathbb{T}_{\mathbb{T}}$							
10	~ ^									
STATIC	B•8						-	estiministi ilikuwa kamana manana kata mana mana mana mana mana mana mana m	encing parameters and a branch and about the make	*
					ļ					
AMBIENT	ø.7									
8	,,,									
A										
10	B.6									4
ΑL									•	
LOCAL										
J	ø. 5	.2 &	• 4	8.6	Ø.8]	1.	Ei 1.	2 1	.4
i						•				
		PRESSI	JRE TAP A	XIAL LO	CATI	ON: ×/	dm	ä×		

•	C2	 AND	SPLITTER	STATI	ר פפו	FCCIIDF	nis	TDIBHTI	ı n k	IS AT	SHR		2DG≖2 tugo	
	Mo = Ø	.56	Ptr/Pa	*	5.35	4	Ptr/	Ptp=1.9						
		1.8	EJECTOR CLAMSHELU	NLET POS	POSI	TION 1 17	MIDI		0	PRIM	ARY F	LUG		
		Ø.9						The second Paris of the second	ō	FLOW	SPL	LUG	LaDa	
	рі/ртр	Ø.8												
	JRE.	8.7												
	PRESSURE.	Ø.6												
	TOTAL	ø.5			Parising Parising			***************************************	-					
		ؕ4				Г	$\frac{1}{\eta}$		-				:	
	TO PRIMARY	ø.3		0				····						
	STATIC T	ø.2				0								
	LOCAL STA	ø. i												
	707	g.g 0	.2 ø	• +	B	. 6	ø.	8	1.	.ø	1	•5	1	• 4
			PRESSI	JRE T	AP AX	IAL L	DCAT	ION. ×/	dm	æ×				

PUN 45

CS RDG=2257 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.56 Ptr/Po= 5.354 Ptr/Ptp=1.98 AT SUBSONIC CRUISE EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 17 FOREBODY 2Ø SHROUD 8Ø SHROUD INLET LOCATION LOCATION 4 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PI/P& 1.1 1.0 Δ B.9 Ø.8 A.7 8.6 8.5 L 8.4 Ø.6 Ø.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 45

RDG=2262 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.36 Ptr/Ptp=1.98 Ptr/Po= 5.367 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17. PRIMARY FLUG O FLOW SPITTER Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP 8.8 8.7 Ø.6 Ø.5 Ш 8.4 (1) Ø.3 0 Ø.2 Ø. 1 8.g 8.2 1.2 1.4 8.4 8.6 Ø.8

Γ	C5							RDG	=2262
				STATIC PR			NS AT SUB	SONIC CF	RUISE
	M• =Ø	• 36 1.8	Ptr/Pe			/PTP=1.98	1	T	 1
			EJECTOR CLAMSHELI	NLET POS	17		FLOW SPL	1775D 0	
		ø.9				£	FLUM SPL	TITER U.	
									1,
		ø.8							
	(_	2.0							
	P1/P1F	~ 4							
	P (8.7							
	«								
	PRESSURE.	Ø, 6							
	ESS								<u> </u>
	PR	ø.5						 	
	A L								
	TOTAL	ؕ4							
				Δ					
	FAN	ø.3							
	T 0								
	01	ø.2							
	STATIC				Δ				
		ø. 1			-				
	LOCAL								
	T 0 C	αα							
		8.8 8	. 2 Ø	.4 8	.6 Ø	.8 1	.Ø 1	•5	1.4
1									1

RDG=2262 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Ptr/Po= 5.367 Ptr/Ptp=1.98 AT SUBSONIC CRUISE EJECTOR INLET POSITION MICHAY CLAMSHELL POSITION 17 FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION 1.2 RATIO, FLZPo 1.1 1.8 TO AMBIENT STATIC PRESSURE П Ø.9 Ø.8 Ø.7 B.6 ø.5 ∟ 8.8 1.2 1.4 8.6 Ø.8 1.8

ROG. 2265-2292

Rog. 2265 - 2292

RUN 46

CS RDG=2273 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 3.572 Ptr/Ptp=1.94 AT SUBSONIC CRUISE EJECTOR INLET POSITION MICHAY CLAMSHELL POSITION FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION 日本の 1.2 1.1 STATIC PRESSURE RATIO. Ш 1.8 8.9 8.8 LOCAL TO AMBIENT 3.7 8.6 8.5 L 8.4 8.6 Ø.8 1.0 1.2 1.4

5 ≖∫	Ø.89 1.8	Pic/P			/Ptp=1.98		1
	~ 0	CLAMSHEL	INLET POS L POSITIO	N ŘEMOVÉČ	ì	PRIMARY I	LUG TTER I-D
	8.9						
P1/F19	8.8						
	8.7						
PRESSURE.	8.6						
TOTAL	ø . 5						
	Ø.4						
PRIMARY	ø.3		0				
10 10	8.2			0			
STATIC	ø. 1						
LOCAL							

RDG = 2275 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Ptr/Ptp=1.97 Ptr/Po= 5.336 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED PRIMARY FLUG Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 Ø.6 ø.5 8.4 M ø.3 (1) ø.2 8.1 g.g. 1.4 Ø.4 Ø.6 8.8 1.8 1.2 PRESSURE TAP AXIAL LOCATION: x/dmax

ORIGINAL PAGE IS OF POOR QUALITY

RDG=2275 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Ptr/Ptp=1.97 AT SUBSONIC CRUISE 5.336 EJECTOR INLET POSITION MIDWAY CLAMSHELL FOSITION REMOVED FOREBODY INLET 20 SHROUD LOCATION BO SHROUD LOCATION 日本 1.2 TO AMBIENT STATIC PRESSURE RATIO, PI/Po 1.1 Ш 1.8 8.9 Ø.8 Ш Ø.7 8.6 8.5 F 8.4 8.6 8.8 1.8 1.2 1.4

RDG=2276 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 Ptr/Ptp=1.96 Ptr/Po= 6.138 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED PRIMARY FLUG OFIOW SPITTER I.O. Ø.9 PRESSURE, PIZPTP Ø.8 Ø.7 8.6 TO PRIMARY TOTAL ø.5 8.4 Ш Ø.3 0 LOCAL STATIC Ø.2 ø.1 8.8 1.4 8.4 Ø.6 Ø.8 1.5 1.2

RDG=2276 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 Ptr/Po= P+r/P+p=1.96 AT SUBSONIC CRUISE 6.188 EJECTOR INLET POSITION MID CLAMSHELL POSITION REMOVED MIDWAY FOREBODY INLET
28 SHROUD LOCATION
88 SHROUD LOCATION Œ ΔΦ 1.2 RATIO, PL/Po 1.1 Ш 1.8 LOCAL TO AMBIENT STATIC PRESSURE 8.9 Ø.8 Ø.7 Ø.6 Ø.5 L Ø.8 1.8 1.2 1.4 8.4 8.6 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 46

	AND 0.90 1.0	SPLITTER Ptr/P		7.11		ISTRIBU] ~/P†p=1.		NS AT SUB	SONIC C	RUI
	1.2	EJECTOR CLAMSHEL	INLET POSI	POS!	TION M	DWAY	m	COIMAOV	di uc	
	Ø.9						_ <u></u> _6	PRIMARY FLOW SPL	TIFR I	م Ωم
PI/PIP	8. 8									_
	8.7									
PRESSURE	8.6									
101AL	ؕ5							, , , , , , , , , , , , , , , , , , , ,		
	ؕ4									
- PRIMARY	ø.3		0				·			_
211815	ø.2		[<u> </u>					
	ؕ1									
LUCAL	g.g	2	.4	ø.		7.8		.17 1	•5	

RUN 46

CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =8.98 Ptr/Po= 7.115 Ptr/Ptp=1.97 LIECTOR NET POSITION MIDWAY CLAMSHELL POSITION REMOVED A FLOW SPLITTER O.D. 8.9 Ø.8 PRESSURE, PIZPIF 8.7 Ø.6 Ø.5 LOCAL STATIC TO FAN TOTAL Ø.4 Ø.3 ø.2 \triangle Ø. 1 g.g L. 8.4 8.6 Ø.8· 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

_										,	
	CS									RDG=	2277
,			NLET AND								
	M= =Ø	1.3	Ptr/P				Ptp=1.	97	AT SUBSE	NIC CRUIS	7
			EJECTOR CLAMSHEL	NLET POS	DW KE	MOVED	MAT		FOREBODY	INLET	
								Δ	FOREBODY 2Ø SHROUI 8Ø SHROUI] LOCATION] LOCATION	
		1.2			_				()		4
	٥										
	P 1 / FO										
		1 - 1									1
	RATIO,					4					
	111			m		K	(⊕				
		1.8									1
	PRESSURE				1	į					
	รรเ	Ø.9		Γ			Zerony Communication of The Communication of Communication of Communication of Communication of Communication	,			
	R E	~.,			1.						
					1						
	STATIC	ø.8			_			····			-
	S T A										
	AMBIENT	8.7			-						-
	X			4							
	10	Ø.6			- 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1
	LOCAL										
	707	or c									
		ؕ5	.2 8	.4	8.6	æ.	8	1	Ø 1	.2 1	. 4
١			PRESSI	INE TAR A	.vtai i	በርላቸ	ION, ×/	در	*		1
1			r K E 3 3 (טאה וחה נ	ואותר ו	Luchi	TOM & XX	am	4 0		

RUN 47

F	C2 PLUG M• =£		SPLITTER Ptr/Pe		C PR		DISTRI		NS AT SI	UBSONI	RDG=2 C CRUI	279
		1.8	EJECTOR CLAMSHELI	NLET POS	POS	TION REMO	MIDMAY		PRIMARY	/ FLUG		
		g.9							FLOW SE	PLITTE	RIADA	
	P1/PTP	8.8					•					
	ů.	Ø.7						····				
	PRESSURE.	Ø . 6										
	AL	ø.5]	~~~~				
	PRIMARY TOTAL	ؕ4		<u> </u>				Western and the grown				
		ø•3		0								
	STATIC TO	8.2									7	
	L ST	ø. i										
	LOCAL	g.g	.2 æ	. 4	5	. 6	8-8	1	.Ø	1.2	1.	, 4
			PRESSI	JRE TA	KA GA	IAL LO	CATION.	×/dm	-C×			

RUN 47

12UN 47

CS RDG=228Ø PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø = 89 Ptr/Po= Ptr/Ptp=1.81 4.562 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED D PRIMARY FLUG O FLOW SPITTER Ø.9 TO PRIMARY TOTAL PRESSURE. PIZPTP 8.8 Ø.7 Ø.6 8.5 Ш 8.4 Ø.3 LOCAL STATIC 8.2 8.1 8.g L 2.4 8.6 ø.8 1.2 1.8 1.4 PRESSURE TAP AXIAL LOCATION . x/dmax

ORIGINAL STACE IS

RDG=228Ø CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE PTC/Ptp=1.81 M = Ø . 89 PTC/Pox 4.562 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED A | FLOW SPLITTER O.D. 8.9 Ø.8 LOCAL STATIC TO FAN TOTAL PRESSURE, PIZPIT 8.7 Ø.6 8.5 8.4 ø.3 ø.2 Ø.1 8.8 8.2 1.8 1.2 1.4 8.4 8.6 ø.8

220

RDG=2285 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 1.3 Ptr/Po= Ptr/Ptp=1.81 4.562 AT SUBSONIC CRUISE EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION REMOVED FOREBODY INLET 20 SHROUD LOCATION BO SHROUD LOCATION ΔΦ 1.2 P1/Po 1.1 RATIO, П 1.8 STATIC PRESSURE Ø. 9 Ø.8 TO AMBIENT П 8.7 8.6 Ø.5 └ Ø.4 ø.8 1.2 8.6 1.0

RUN 47

RDG=2281 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE. Mo =Ø.89 5.340 Ptr/Ptp=1.88 Ptr/Po= EJECTOR NLET POSITION MICHAY CLAMSHELL POSITION REMOVED PRIMARY FLUG Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 8.6 Ø.5 П 8.4 Ø.3 (1) g.2 8.1 8.g 8.2 1.2 8.4 8.6 Ø.8 1.8 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 47

C2 PLUG Mo =8		SPLITTER P+r/Pe		PRESSU 34Ø		STRIBU Ptp=1.		NS AT	SUB		 RDG=22 CRUIS
	้ เ.ฮ	EJECTOR CLAMSHEL	NLET PO					FLOW	SPL	TTER	0.0.
	Ø.9								## Land ## Co		
ر	Ø.8										
P1/P16	Ø.7										
PRESSURE.	Ø.6								·····		
	ø.5										
TOTAL	ؕ4										
TO FAN	ø.3		Δ								
STATIC	ø.2			Δ 4	2						
LOCAL ST	Ø.1										
۳0ر	g.g	.2 8	- 4	Ø.6	Ø	.8	1	.ø	1	.2	1 • 4

RUN 47

RUN 47

B.9 8.9 8.9 8.8 8.6 8.7 8.6 8.9 8.6 8.1 8.1 8.1 8.1 8.2 8.3	C2 PLUG AND Mo = Ø.89	RDG=228 SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISI PTC/Po= 6.899 PTC/PTp=1.81
8.8 B.5 B.5 B.5 B.5 B.5 B.5 B.5 B.5 B.5 B.5	1.8	EJECTOR INLET POSITION MICHAY
TO FAN TOTAL PRESSURE, P1/P17 8.8 4.8 7.8 7.8 7.8	Ø.9	,
TO FAN TOTAL PRESSURE. *** *** *** *** *** *** ***		
TOT A**		,
01	SSURE.	
NA NA NA NA NA NA NA NA NA NA NA NA NA N		5
01		
□ g.2		
	TAT I C	
STATICAL STATES	CAL S.	
	0 7 8.2	g 2 g.4 g.6 g.8 1.2 1.4

RUN 47

RUN 47

		SPLITTER							NS AT	SUBS		CRU1	
Mo =	Ø.89	P+r/Pe		·89			Ptp=1.	81			г		
		CLAMSHEL	NLET P	l i o i	REMO	ͻϔέἤʹ	in i	A	FINW	CD: 1	TTER	n and	
	Ø.9		 					_					
									: [
	8.8		-						! 				
<u>د</u>	-			Ì									
Pi/Pir	8.7		 								ļ		
PRESSURE.	8.6		-										
188 1													
PRE	ø.5		 								 		
													3
TOTAL	8.4		 			 -				 	 		
			Δ										
FAN	8.3		 								 		
10													
01 .	8.2		1				······································				 		
STATIC				Δ	Δ								
	ø. 1		-	-							 		
LOCAL								1					
Lí	a.a 8	- S	<u> </u>	<u> </u>	. 4	13.8			.ø	1	.z		4
1	_	-			_		'	•		·	-		
		PRESS	URE TAP	, YX	IAL LO)CATI	ON . ×/	/dm	a×				

RDG=2283 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION $M = \emptyset.89$ Ptr/Po= 7.894 Ptr/Ptp=1.81 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED ☐ FOREBODY INLET

△ 20 SHROUD LOCATION

◆ 80 SHROUD LOCATION 1.2 1.1 RATIO. A \sqcap 1.8 PRESSURE Ø.9 STATIC Ø.8 AMBIENT 8.7 10 Ø.6 LOCAL Ø.5 L 1.4 3.4 8.6 Ø.8 1.0 1.2

1.2

1.4

PRESSURE TAP AXIAL LOCATION, x/dmax

Ø.8

1.8

8.6

g.g L

8.4

EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION REMOVED 8.9 8.8 8.8 8.6 8.7 8.6 8.7 8.4 8.4 8.7 8.4 8.7	C2 PLUG AND Mo =Ø.89	SPLITTER PTC/PG			STRIBUTIO	NS AT SUB	RDG=2 SONIC CRU	
## ## ## ## ## ## ## ## ## ## ## ## ##	1.8				WAY	FLOW SPL	TTER O.D	
FAN TOTAL PRESSURE, P. P. P. P. P. P. P. P. P. P. P. P. P.	Ø.9				,			
8.8 8.5 A.4 A.9 A.9 A.9 A.9 A.9 A.9 A.9 A.9 A.9 A.9								-
A TOTAL W.4								_
A.4 W.4 W.4	SSURE.		•					1
¥ g.3 △								1
								4
			Δ					-
STATIC 8.5			Δ	Δ				
				•				-
8.2 8.4 8.6 8.8 1.8 1.2 1.	ე 7 g.g	.2 ø	. 4 Ø.	.6 g	.8 1	• <i>8</i> 1	.2 1	1.4

RDG=2284 CS EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 Ptr/Po= 5.354 Ptr/Ptp=1.80 AT SUBSONIC CRUISE EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION REMOVED FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION $\overline{\Delta}$ 1.2 P1/Po 1.1 LOCAL TO AMBIENT STATIC PRESSURE RATIO. Ш 1.8 Ø.9 凹 Ш Ø.8 Ø.7 Ø.6 ø.5 L 8.8 1.0 1.2 1.4 Ø.4 Ø.6

RUN 47

							KUN	
CS	S AND	SPI ITTED	STATIC DE	FSSUDE DI	CIPILIBIOTS	NC AT SHR	RDG≖2 SONIC CRUI	
	22	Ptr/Pa			/PTp=1.98	NJ BI JUD.	30410 000	136
	1.8	EJECTOR CLAMSHEL	NLET POS	TION MI	WAY			
	ؕ9					PRIMARY F	LUG	
	8.7							
ā	Ø.8			•				
P1/P1P	лео					-		
	Ø.7							
PRESSURE.						,		
E S S	Ø.6							
PR								
TOTAL	ø.5							
10								
RY	ø.+							
PRIMARY			m					
	ø.3							
10				0				
110	ؕ2							-
STATIC] ,				
	Ø.1							1
LOCAL								
nund	8.8 8	.2 8	.4 8	.6 Ø	-8 1.	.Ø 1.	.2 1.	• 4
		PRFSSI	IRF TAP A	CTAL LOCAT	ION: ×/dm	5 ×		
1								

RUN 47

RUN 47

RUN 47

	Ø.Ø4 1.8	P+r/F) o = 4,	.584	Ptr/Pt	p=1.97		BSONIC CR
		CLAMSHE	NLET P	OSITION ION RE	N MIDWA	ıY O	DOIMADA	DI UC
	Ø.9				·	<u> </u>	PRIMARY FLOW SPI	TITER 1 -C
d1//14	Ø.8					And the second s		
	Ø.7							
下なっている。	Ø.6							
- 0 I AL	ø.5							
	8. 4					-		
דאן בלאן דא	ø.3		Ð			***************************************		
01 711W1C	ø.2	,						
אר טימ	ؕ1				.			
LOCAL	8.8 8							

RUN 47 RDG=2287 CS PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø4 4.584 Ptr/Ptp=1.97 EJECTOR INLET POSITION MICHAY CLAMSHELL POSITION REMOVED A FLOW SPLITTER O.D. 8.9 8.8 LOCAL STATIC TO FAN TOTAL PRESSURE, PIZPIF 8.7 8.6 8.5 8.4 \triangle ø.3 8.2 8.1 8.8

8.8

1.8

1.2

Ø.4

8.6

RUN 47

ORIGINAL PAGE IS
OF POOR QUALITY

RUN 47

RUN 47

CS										?DG=2	
1	3 AND	SPLITTER	STATIC P	RESSUR	E DISTRI	BUTIC	NS AT	SUB			
Mo =	=Ø.Ø5	Ptr/Pe			Ptr/Ptp	=1.98	,		,		ı
	* *	EJECTOR CLAMSHELI	NLET POSITION	SITION ON REM	MIDWAY 10VED					_	
	ؕ9					Δ	FLOW	SPL	TER	0.0.	
		Į Ži									
	Ø.8						<u></u>				
د											
PL/PTF	ؕ7										
	2.										
PRESSURE.	Ø.6							المراجع المستحدد			
SUF	~••										
RES	ø . 5										
	unu										
TOTAL	ؕ4										
	# 4 €	•									
FAN	g.3		Δ								
T0 F	200										
	~ ^										
STATIC	8.5		,	Δ							
ST											
	Ø.1										
LOCAL											
-	ø.8	.2 ø	. 4	8.6	Ø.8	1	·8	1	• 2	1 .	. 4
1		DOECCI	URE TAP	AVTAL I	OCATION.						
		FRESSI	ו אונ באנ	nxine c	.066114191	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

32 RDG=2288 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø5 Ptr/Po= 5.342 Ptr/Ptp=1.98 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED FOREBODY INLET 20°5HROUD LOCATION 80°5HROUD LOCATION 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PI/Po 1.1 î.Ø Ø.9 Ø.8 2.7 Ø.6 Ø.5 L 1.2 8.4 Ø.6 Ø.8 1.0

CS RDG=2289 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø5 Ptr/Po= 6.181 Ptr/Ptp=1.97 1.8 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED D PRIMARY PLUG O FLOW SPITTER 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE. PIZPTP g.8 8.7 8.6 Ø.5 8.4 0 Ш Ø.3 0 2.2 8.1 g.g._ 8.4 Ø.6 Ø.8 1.8 1.2 1.4

RUN 47

RDG=2289 C5 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø5 Ptr/Ptp=1.97 AT SUBSONIC CRUISE Ptr/Po= 6.101 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED □ FOREBODY INLET
Δ 2Ø SHROUD LOCATION
♦ 8Ø SHROUD LOCATION 1.2 1.1 RATIO 1.0 PRESSURE Ø.9 STATIC Ø.8 AMBIENT Ø.7 Ø. 5 Ø.5 L 1.2 Ø.4 Ø.6 Ø.8 1.0 1.4 PRESSURE TAP AXIAL LOCATION , x/dmax

CONFIGURATION A₂

IRIS FLAP NOZZLE

SUBSONIC CRUISE

ROG. 1829-1863

ROG. 1829-1863

ROG. 1829-1863

ORIGINAL PAGE IS
OF POOR QUALITY

RUN 33

A2									RDG=	
	G AND	SPLITTER	STATIC	PRESS	SURE DI	STRIBUTI	ONS AT	SUBSO		
Mo	=Ø.89 1.8	P+r/p.		.584		/Ptp=1.9	 			_
		EJECTOR CLAMSHEL	NLET POSIT	LION	SI WI	WAY				
	8.9		-				PRIMA FLOW	SPI IT	JG IFR I.N	4
•										
P1/P12	Ø.8									_
P .										
П.	Ø.7									4
PRESSURE,					(
ZES:	8.6	****								-
				7 🗆						
ITAL	Ø.5		ļ				+			\dashv
1			[m							
PRIMARY TOTAL	ؕ4		1	_						-
RIM			Ø							
	ø.3						1			1
01 3		•								
STATIC	ø.2								N.	-
STA	أمسم									
AL	Ø. 1	M - 1 - 2 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2							,	
LOCAL	or ov									
	ø.8 8.	. S &	. 4	8.6	Ø	.8	.ø	1.2	1	4

RUN 33

=Ø	·89		OR		3.50 POSI		MIDWAY	=1.94	.		<u> </u>	
	~ ^	EJECT CLAMS	HEL	. POSI	TION	21	•	Δ	FLOW	SPL	TTER	0.0.
	Ø.9											
	Ø.8	•				<u> </u>						
	Ø.7											
	Ø.6							· · · · · · · · · · · · · · · · · · ·				
	Ø.5					Λ.						
	ؕ4				·	Δ			·			
	ø.3		······································			Δ						
	ø.2											····
	ø. i											
! }	ø.ø ø											

FUN 33

RDG=1842! **A2** PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE ! Mo =Ø.89 Ptr/Ptp=1.97 Ptr/Po= 4.497 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 21 D PRIMARY PLUG Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 8.6 (1) Ø.5 8.4 0 8.3 П 8.2 8.1 8.8 8.4 8.6 8.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 33

A2 PLUG Mo =1		SPLITTER Ptr/		TIC PR 4.49		DISTR:		NS AT	SUB		RDG≖1: CRUI
	1.5	EJECTOR CLAMSHE	NLE PO	T POS	TION 21	MIDWAY	Δ	FLOW	SPL	TTER	0.0.
	ؕ9	,		// // // // // // // // // // // // // 							
د	Ø.8	,,			, , , , , , , , , , , , , , , , , , ,						
P1/PTF	Ø.7										
PRESSURE,	2.6						.)				
	Ø.5		 		Δ				······································		
TOTAL	ؕ4										
TO FAN	ؕ3										
STATIC 1	ø.2			*	Δ						
LOCAL STA	ø. i							·	· · · · · · · · · · · · · · · · · · ·		
707	8.8 8	. 2	8.4	. B.	. 6	8.8	1	.ø	1	• s	1.

RUN 33

A2 Plug	AND	SPLITTER	STATIC	PRESSUR	E DISTRI	BUTIO	NS AT SUB		1843 JISE
M- =	Ø.89 1.8	PIC/PO EJECTOR CLAMSHELI		261 OSITION ION 2	PTC/PTP MIDWAY	=1.97			٦
	ø.9		PUSIT	1011 2		<u> </u>	PRIMARY I	LUG TTIFR L.O	لم
P L/P TP	ؕ8								7 .—
	ø.7					.,			
PRESSURE.	ؕ6								1
TOTAL	ø.5								1
PRIMARY	ؕ4				<u>'</u>		- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-
TO PRIM	ø.3		0						_
STATIC	8.2			1					1
	ø.i		•						-
LOCAL	ø.g 8	.2 Ø	. 4	8.6	ؕ8	1	.Ø 1	•2	1.4
		PRESSI	JRE TAP	AXIAL I	_OCATION:	, ×/dm	ā×	•	

RUN 33

A2 RDG=1843 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 PTC/Po= Ptr/Ptp=1.97 5.261 EJECTOR | NLET POSITION MIDWAY CLAMSHELL POSITION 21 A FLOW SPLITTER O.D. 8.9 Ø.8 PRESSURE, PIZPIF Ø.7 Ø.6 Ø.5 Δ FAN TOTAL Ø. 4 Ø.3 LOCAL STATIC TO 3.2 △ Ø.1 ø.ø.2 8.6 Ø.8 1.8 Ø.4 1.2 1.4 PRESSURE TAP AXIAL LOCATION; x/dmax

ORIGINAL PAGE TO

Aa						•								RDG=	1843
			INLET												
Me	o =Ø,	.89 1.3		tr/Po		5.26			/P + p = 1	1.97	AT	SUBSO	INIC	CRUIS	3E ¬
			CLAMS	SHELL	POS	ITIO	NOIT!	1 *	WAT	日本	FOR 2Ø	EBODY SHROUE SHROUE	INL	ET CATIO CATIO	N
		1.2				1		!		-	\		1		4
	P1/P0	1.1													
	RATIO.	1.2							Δ						
L C C C C C C C C C C C C C C C C C C C	PRESSURE	Ø.9	[→					V	
	STATIC	Ø.8												and the second s	
1	AMBIENT	Ø.7								· · · · · · · · · · · · · · · · · · ·				,	
(1	0	Ø.6	ļ		ļ		 	,	 				 		-
(LOCAL	ø.5 ø.	.2	8	.4	Ø	1.6	Ø	-8	1	28	1	•2		1.4
			Ьt	RESSI	JRE T	AP A)	XIAL 1	LOCAT	ION	×/dr	na×				

RUN 33

RUN 33

RDG=1844 **A2** EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION $Mo = \emptyset.89$ Ptr/Po= 6.823 Ptr/Ptp=1.96 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 21 □ FOREBODY INLET
Δ 2Ø SHROUD LOCATION
♦ 8Ø SHROUD LOCATION 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PL/Po 1.1 1.8 Ø.9 \Diamond Ø.8 Ø.7 Ø.6 Ø.5 L 8.4 Ø.6 ø.8 1.0 1.2 PRESSURE TAP AXIAL LOCATION, x/dmax

RDG=1845 A2 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.98 Ptr/Ptp=1.98 Ptr/Po= 7.842 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 21 PRIMARY PLUG OFLOW SPLITTER 8.9 PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 8.6 Ø.5 Ø.4 Ø.3 10 LOCAL STATIC Ø.2 Ø.1 g.g._ 1.2 1.0 Ø.8 8.4 Ø.6

PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 33

RUN 33

ORIGINAL PAGE IS OF POOR QUALITY

ROG. 2001-2058

Rog. 2001-2058

RPG. 2001-2058

209.2001 - 2058 **SA** U = Ø.8 H = Ø.98 Mo = SUBSONIC CRUISE RUN 38 MO=Ø . 9 Ptr/Ptp=1.97 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED Ø.995 PRIMARY-NOZZLE FLOW COEFFICIENT, CDP Ø.99Ø 田 图 Ø.985 逐 溟 Ø.98Ø Ø.975 四 8.978 М Ø.965 Ø.968 7 4 5 8

FAN NOZZLE PRESSURE RATIO, PTF/PO

RUN 3B

	7.9Ø 1.8	Ptr/Pa	3.5		/Ptn=1.94	•	1
		EJECTOR CLAMSHEL	INLET POS POSITIO	TTION MIN N REMOVE	WAY E	PRIMARY I	LUG
	8.9						
pi/pra	Ø.8			0			
•	ø.7						
PRESSURE.	Ø.6						
7. 2.	~**						
TOTAL	ø.5						
	3. 4						
PRIMARY	ø.3		0				
0	2000						
STATIC	ø.2				<u> </u>		
	Ø.1						
LOCAL	8.8 8						

A2 RDG=2012 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.9Ø Ptr/Po= 3.528 Ptr/Ptp=1.94 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHEL POSITION REMOVED FOREBODY INLET 20°SHROUD LOCATION 80°SHROUD LOCATION $\overline{\Delta}$ 1.2 Pt/Po 1.1 RATIOS 1.8 STATIC PRESSURE Ø.9 8 Ø.8 П TO AMBIENT Ø.7 Ø.6 LOCAL Ø.5 ∟ Ø.2 8.4 Ø.6 Ø.8 ۹. ۱ 1.2 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 38

RUN 38

RUN 38

=	Ø.89	Ptr/P			tr/Ptp=	1.98			
		CLAMSHEL	NLET POS POSITIO	REMO	VED	0	PRIMARY FLOW SP	ALUG	
	Ø.9						FLOW SP	LITTER	LaDa
	Ø.8			_				h	
	8.7								
7 N L C C C N L	Ø.6								
ם בי מר	Ø.5			1 0					
TKIMARY I	Ø.4								
	~ ^		b						
_ 	Ø.3			Ш					
STATIC	g.2					,	ļ		
ב כ									
LUCUL	Ø.1								
7 5	8.8 8								

RUN 3B

RDG=2Ø14 A2 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 1.3 Ptr/Po= 5.295 Ptr/Ptp=1.98 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION Δ 1.2 PI/Po 1.1 RATIO, 1.2 STATIC PRESSURE 8.9 Ø.8 **AMBIENT** Ø.7 1 OCAL. TO Ø.6 Ø.5 L Ø.4 Ø.6 Ø.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax Carried PAGE 18

RDG=2Ø15 **A2** PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 Ptr/Po= 6.Ø25 Ptr/Ptp=1.96 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED A FLOW SPLITTER O.D. 2.9 Ø.8 Δ PRESSURE, PIZPIF 8.7 8.0 Ø.5 Δ TOTAL Ø.4 FAN Ø.3 LOCAL STATIC TO Ø.2 Δ 8.1 ø.g._ 8.4 8.6 9.8 1.5 1.2 1.4 PRESSURE TAP AXIAL LOCATION: x/dmax

CALLE IS

RDG=2Ø15 45 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION H⇔ =Ø.89 1.3 Ptr/Po= Ptr/Ptp=1.96 AT SUBSONIC CRUISE 6.825 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED ☐ FOREBODY INLET

△ 20 SHROUD LOCATION

◆ 80 SHROUD LOCATION 1.2 PI/Po 1.1 **®** 1.5 PRESSURE 8.9 STATIC Ø.8 П AMBIENT 8.7 10 2.6 Ø.5 L 8.4 Ø.6 Ø.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION: */dmax

RDC=2Ø16 45 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.89 P#r/Ptp#1.98 Ptr/Po= 7.051 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED PRIMARY FLUG OFLOW SPITTER LOD 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 8.7 8.6 ø.5 8.4 Ø.3 8.2 Ø.1 8.8 8.4 8.6 Ø.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION: x/dmax

19UN 38

RUN 38

								^	100 3
A2	- • 1	ama mas					~ ~ ~	RDG	G=2Ø16
Mo =8.8	39	NLET ANU Ptr/Po	SHROUD ST F 7.Ø5		SSUR⊊ DIS ∕Ptp=1•9			NIC CRU	IISE
1.	~		NLET POS		DWAY	m FORE	BODY SHROUD SHROUD	INIFT	100
1 -	٠٤ -								\dashv
144	-1		wind in the state of the state						
RAT10.	.ø	MSSC-khappin-parker-typEcst-Shiningsaa		<u> </u>	\$ ☆				
PRESSURE	.9								
O I	.8		<u> </u>						
-	.7								
<u>С</u> в.	•6								
LOCAL	50.	2 8.	.4 8		·8	1.8	1.	.2	1.4
			JRE TAP AX	KIAL LOCAT	「ION』 ×∕<	dmax			

RDG=2Ø43 **A2** SW 3 SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Ft. 13 1.3 PTC/Ptp=1.97 Mes Ptr/Po= 3.532 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED PRIMARY FLUG 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPIP 8.8 B.7 8.6 Ш ø.5 Ø.4 **D** Ø.3 Ø.2 Ø.1 8.8 L 1.4 1.0 1.2 Ø.4 3.6 11.8 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 38

PRESSURE TAP AXIAL LOCATION, x/dmax

,5UN 38

RDG=2843 **A2** EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø3 Ptr/Po= Ptr/Ptp=1.97 AT SUBSONIC CRUISE 3.532 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION REMOVED FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION 1.2 P1/Po 1.1 RATIO, 1.8 STATIC PRESSURE 8.9 8.8 LOCAL TO AMBIENT 3.7 8.6 8.5 L 1.4 B.4 B.6 Ø.8 1.8 1.2 PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 38

	AND Ø.84 1.8	Ptr/Pa	× 4.5	28 Ptr.	/Ptp=1.94	NS AT SUB	SONIC CRUI
	1.8	EJESTOR CLAMSHELI	NLET POS POSITIO	TION MII		PRIMARY	FLUG
	Ø.9			<u> </u>	0	FLOW SPL	TTER L.D.
рі/ртр	ø.8						
2.	8.7						
PRESSURE.	8.6						
TOTAL	ø.5						
	8. 4						
O PRIMARY	ø.3		0				
STATIC TO	ø.2						
	Ø.1						
LOCAL	8.8 8	.2 8	.4	8.6 8	T.8 1	•8	.2 1.

RUN 38

Γ	A2	4 N D	COLITTED	CTATIO	neccune	DICTOI		NC AT	CUD	F	RDG = 2£	1
			SPLITTER Ptr/Pa			17/Ptp:		IN CN	208	SUNIC	CRUI	5E '
	M≎ =Ø	ĩ.B	EJECTOR CLAMSHELI	NIET POS			·····	FLOW	SPLI	TTER	0.0.	
		8.9										
		Ø.8										
	<u>(</u>											
	P.L/PTF	Ø.7					······································					
					1.							
	PRESSURE.	Ø.6										
	188				<u> </u>							
	PRE	Ø.5			\triangle					<u> </u>		
	TOTAL	ؕ4						ļ				
					1							
	FAN	ø.3			 							
	T0											
	3 I.	Ø.2							····	<u> </u>	—	
	TAT											
	S. J	Ø.1			-							
	LGCAL 'STATIC											
	コ	g.g	.2 Ø	. 4	ğ.6	ؕ8	1	.ø	1	.2	1.	4
ı												ł
			PRESSU	JRE TAP A	XIAL LO	CATION	×/dm	a×				

A2 RDG=2Ø44 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø4 1.3 = 09/719 4.528 Ptr/Ptp=1.94 AT SUBSONIC CRUISE NLET POSITION MIDWAY POSITION REMOVED EJECTOR CLAMSHEL FOREBODY 28 *SHROUD 88 *SHROUD INLET LOCATION LOCATION 1.2 P1/P0 1.1 RATIO. 1.8 **⊕** ♦ LOCAL TO AMBIENT STATIC PRESSURE 8.9 8.8 Ø.7 Ø.6 Ø.5 └ B.4 Ø.8 8.6 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION: x/dmax

A2								ROG	2N 38 3=2845
		SPLITTER Ptr/Pa		PRES .287		STRIBUTI(Ptp=1.93		BSONIC C	RUISE '
1,10	=Ø•Ø5 1•8	EJECTOR	NLET P		ION MID	WAY	<u></u>		
		CLAMSHEL	L POSIT	ION	REMOVED	ַ	PRIMARY DELOW SPI	HLUG	
	Ø.9						DIELOW SPI	TIFR L	-11-4
P1/P1P	ؕ8								
щ.	Ø.7								
PRESSURE,	Ø . 6								-
AL	Ø . 5								
TOTAL									
	Ø. 4							·	
PRIMARY				Į					
PRI	ø.3		0		0				
0				1 C]				
	8.2								
STATIC		ı							
	8.1								
LOCAL									
L 0	8.8 8	2 7	<u> </u> • 4		æ.	9	1 0	1.2	1.4
,	מ	•	• T	Ø.6	. ه	0	1.2	1 • 6	1 • T
		PRESSU	JRE TAP	AXI	AL LOCAT	ION: ×/d	māx		

A2 RDG=2Ø45 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø5 Ptr/Po= 5.287 Ptr/Ptp=1.93 AT SUBSONIC CRUISE EJECTOR INLET POSITION MICHAY CLAMSHELL POSITION REMOVED ☐ FOREBODY INLET △ 20 SHROUD LOCATION ◆ 80 SHROUD LOCATION 1.2 P1/Po 1.1 LOCAL TO AMBIENT STATIC PRESSURE RATIO. 1.8 Φ Ø.9 Ø.8 8.7 Ø.6 Ø.5 L Ø.4 Ø.6 Ø.8 1.4 1.0 1.2 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 38

A2									•	RDG=28
		SPLITTER					NS AT	SUB	SONIC	CRUIS
M- =Ø	1.8	PIC/PO EJECTOR CLAMSHEL			MIDWAY VEO					
	Ø.9			<u> </u>		Δ	FLOW	SPL	TTER	0.0.
	ø.8		·	ļ		· · · · · · · · · · · · · · · · · · ·				
P1/P1r	Ø.7									
PRESSURE,	Ø.6									
	ø.5									
TOTAL	Ø.4									
TO FAN	ø.3							and of principles, and		
STATIC	ø.2									
AL ST	Ø.1		^							
LOCAL	g.g g	.2 8	• 4	8.6	Ø.8	1	.8	1	.2	1 . 4
		PRESS	URE TAP A	XIAL LO	CATION,	×/d=	ıa× ·			

A2 RDG=2846 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø5 Ptr/Po= 6.236 Ptr/Ptp=1.95 AT SUBSONIC CRUISE EJECTOR INLET POSITION MITHAY CLAMSHELL POSITION REMOVE FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PIZPO 1.1 1.0 **♦** 8.9 Ø.8 Ø.7 Ø.6 Ø.5 L 8.4 8.6 Ø.8 1.8 1.2 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

209. 2059 - 2090

ROG 2059-2090

ORIGINAL PAGE IS
OF FOOR QUALITY

RDG 2059-2090

RUN 39

RUN 39

	r.9g	Ptr	/Po=	6.12		PT==1	.99				
		EJECTO CLAMSH	ELL PÖ	SITION	TION MS REMOV			•	SPL	TTER	0.0.
	8.9			•		Pr. De Armanacaman					
	8.8				*						
	8.7			Δ					n		
	8.6					·					
	₿•5			my karanja andrika angkaranana	Δ						
	Ø.4				and the second s						
	ឆ.3			***************************************					<u></u>		¢ lea
)	8.5				A				·····		
	ø.1				Δ.						
1 2 3	g.g							<u> </u>		•2	

RUN 39

RDG=2867 42 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Ptr/Ptp=1.99 AT SUBSONIC CRUISE Mo =Ø.9Ø Ptr/Po= 6.125 EJECTOR | NLET POSITION MODIFIED MINIMUM CLAMSHELL POSITION REMOVED D FOREBODY INLET A 28*SHROUD LOCATION & 88*SHROUD LOCATION 1.2 1.1 RATIO. 1.8 $\overline{\Diamond}$ LOCAL TO AMBIENT STATIC PRESSURE Ø.9 Щ П 9.8 8.7 8.6 Ø.5 L 8.8 1.2 1.4 8.4 B.6 1.8 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN39

						IONS AT SU		G=2868 RUISE
Me	=Ø•9Ø 1•8	PIC/PO EJECTOR CLAMSHELL			7/P+p=1.5 00		' FLUG	
	Ø.9					O FLUM SE	111111111111	
P1/PTP	ø.8							
	8.7						, , , , , , , , , , , , , , , , , , ,	
PRESSURE	ؕ6							
TOTÂL	Ø.5			0				
PRIMARY	ø.4							
TO PRI	8.3		р п					
21.	8.2						<u> </u>	
LOCAL STATIC	ؕ1							
07	8.8 8	.s &	• + 1	3.6	ø.8	1.8	1.2	1.4
			URE TAP A	XIAL LOCA	ATION: ×	/dmāx ~		1

302

RUN 39

RDG=2Ø68 12 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.9Ø AT SUBSONIC CRUISE Ptr/Ptp=1.97 Ptr/Po= .5.357 MODIFIED MINIMUM
OVED

D FOREBODY INLET

A 20 SHROUD LOCATION

BØ SHROUD LOCATION EJECTOR INLET POSITION CLAMSHELL POSITION REMO REMOVED 1.2 P1/Po 1.1 LOCAL TO AMBIENT STATIC PRESSURE RATIO. 1.8 $\overline{\Diamond}$ 由 Ø.9 П Ш Ø.8 Ø.7 Ø.6 Ø.5 L 1.2 1.4 Ø.4 Ø.6 ø.8 1.8

PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 39

SA RDG=2869 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE 1 Mo =Ø.9Ø Ptr/Po= 4.689 PTC/PTp=1.98 EJECTOR INLET POSITION MODIFIED MINIMUM CLAMSHELL POSITION REMOVED PRIMARY FLUG 8.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP 8.8 Ø.7 2.6 ø.5 П П 8.4 0 ø.3 Ø.2 Ø. 1 8.8 Ø.6 ¥.4 Ø.8 1.0 1.2

PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 39

RDG=2Ø69

PRESSURE TAP AXIAL LOCATION, x/dmax

AUN 39

	AND 8.98	SPLITTER PTC/P		C PR			STRIBUI		NS AT	SUB		CRUIS
	I • Ø	EJECTOR CLAMSHEL	NLET L POS	POSI ITION	TIJN RE	MOVEC	IFIED		IMUM PRIMA FLOW	RY F	LUG TTER	LaDa
	267											
p 1/P tp	8.8											
	8.7									······································		
SUR						פ						
PRESSURE.	8.6					М						
	~ -											
TOTAL	Ø.5	14. 811										
	Ø . 4									············		
PRIMARY												
	Ø.3		\sim									
10												
STATIC	8.2		†									
STA												
LOCAL	8.1	(), (₂ (2))										
ე0 1	8.8 8		<u> </u>							· · · · · · · · ·		
	8	.2 2	T. 4	Ø	• 6	Ø	.8	1	.8	1	•5	1 n

RUN39

LUG I• ≕A		_	r/Pe	. =	3.56	5 4	Ptr/P1	RIBUTIO P=1.94	•	SUB	SONIC	CRUI
	1.2	EJECT CLAMS	OR	NLE POS	r POS	TION REM	MODIF OVE		NIMUM FLOW	SDI 1	TTFD	0.0.
	Ø.9			-						J - C .		
,	ø.8											
P1/P1r	Ø.7											
PRESSURE, I	3. 6							······································				
	ؕ5											
TOTAL	ø.4											
TO FAN	ø.3											
STATIC	ø.2											
	Ø.1											
LOCAL	ø.8	.2	a	. 4	<u></u>	•6	Ø.8		.8	1	.2	1.

RDG=2878 **A2** EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.9Ø Ptr/Pa= 3.569 Ptr/Ptp=1.94 AT SUBSONIC CRUISE EJECTOR INLET POSITION MODIFIED MINIMUM CLAMSHELL POSITION REMOVED DIFORE □ FOREBODY INLET

Δ 28 SHROUD LOCATION

♦ 88 SHROUD LOCATION 1.2 P1/Po 1.1 RATIO 1.8 0 PRESSURE 8.9 T STATIC П Ø.8 AMBIENT Ø.7 10 8.6 LOCAL Ø.5 L 8.4 8.6 8.8 1.8 1.2 1.4

PRESSURE TAP AXIAL LOCATION: x/dmax

RDG 2171-2223

		C CRU.3E)tr/Ptp=1.9	2		Mo =	□ = Ø•Ø Δ = Ø•36 Φ = Ø•5ύ
	1.00	The same of the sa	LET POSITI		YAWD	ACCEPTANCE NAME OF THE PARTY OF	<u>♥ = Ø.7</u> Ø * = Ø.8Ø
	Ø.97						# = Ø.98 X = Ø.95
CFP1	Ø.94			0	◆ ★	_ O *	
	Ø.91	<u> </u>	<u> </u>			<u>¥</u>	
SOEFFICIENT.	Ø.88		<u> </u>	过		*	
	Ø. 95	*	其	X	<u> </u>		
THRUST	ø.82			X			
GROSS	E = 79	其	<u>×</u>				
NOZZLE	Ø.76						
S	Ø.73	X X					
	ø.7ø	4		,	6	7	8
		FAN N	OZZLE PRES	SURE RA	ATIO, PTF/		v

OF POOR QUALITY

Rog. 2171-2223

ROG 2171-2223

FAN NOZZLE PRESSURE RATIO, PTF/PO

RUNI 44

		SPLITTER Ptr/P		PRE 27:		STRIBU /Ptp=1		NS AT SUB	SONIC	CRUI
•	1.8	EJECTOR CLAMSHEL				DWAY		DDIMADY	1116	
	ؕ9						<u> </u>	PRIMARY I	TTER	LaDa
۲ کام م	s. 8									
N L	8.7									
PKESSURE.	ؕ6	energy phonographs . And in the control of the cont								
I O I AL	8.5	}			0					
PKIMAKY	ؕ4									
	ؕ3		0		Ш					
21A11C 10	Ø.2			<u>ן</u> כ		1				
	ؕ1									
LUCAL	8. <i>8</i> R	-2	3.4	ø.	6 £	r.8	i	.ø 1	•5	

LUG - =£		SPLITTER. Ptr/P) =	5.27	2 F	DISTRI TC/PTP		NS AT	SUBS	SONIC	CRUI
		EJECTOR CLAMSHEL	NLET POSI	POS!	TION 1 17°	MIDWAY	Δ	FLOW	SPLI	TTER	0.0.
	Ø . 9										
<u>د</u>	Ø.8			Δ							
PL/PTF	Ø.7							·			
PRESSURE.	Ø.6										
	Ø.5				Δ		· · · · · · · · · · · · · · · · · · ·				
V TOTAL	Ø.4										
TO FAN	Ø.3						, , , , , , , , , , , , , , , , , , , 				
	ؕ2				Δ				· · · · · · · · · · · · · · · · · · ·		
LOCAL STATIC	Ø. 1		-	. 4.							
L ₀	8.8 8	.s &	. 4	ø.	. 6	Ø.8	1	.ø	1 .	. 2	1.

RDG=2173 **SA** EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.94 1.3 Ptr/Po= 5.272 Ptr/Ptp=1.97 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 FOREBODY I 20°SHROUD 80°SHROUD INLET LOCATION LOCATION A 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PL/Po 1.1 Ш 口 1.8 Ø.9 Ø.8 M Ø.7 8.6 Ø.5 L 1.2 B. 4 8.6 Ø.8 1.8 1.4

A2 PLUG	S AND	SPLITTER	STATI	C PR	ESSU				NS AT S	SUBS		2=209 CRU I	
Mo =	98 1.8	PTC/PO EJECTOR CLAMSHELL		3.53 POSI			PTP=1.	95					
	ø.9							ÐÐ	PRIMAR FLOW S	Y F	LUG	LaDa	
P1/PTP	Ø.8			N									
PRESSURE	Ø.7				(D							
PRES!	Ø.6					Ш							
TOTAL F	ø.5			Ш		<u> </u>							
	ø . 4					•		<u> </u>					
TO PRIMARY	ø.3		0										
STATIC	a•s											•	
	8.1			:									
LOCAL	8.8 8	.2 ø	.4	æ	•6		.8	1	.8	1	.2	1	.4
		PRESSI	JRE T	AP A>	CIAL	LOCAT	TION, ×	/dm	х				

	S AND =Ø.9Ø	SPLITTER Ptr/Pa			ISTRIBUTIO	NS AT SUB	RDG=;	
110	1.3	EJECTOR CLAMSHELL			DWAY	FLOW SPL	TTER O.D	
	8.9							
Ţ.	8.8		Δ					
P1/P1r	Ø.7							
PRESSURE,	Ø.6			377				
	Ø.5			Δ				
I TOTAL	ø.4							
TO FAN	ø.3			Δ				-
TATIC	ø.2							
LOCAL STATIC	Ø.1							-
	8.B	·5 &	<u> </u>	.6	7. 8 1	.Ø 1	.2 1	1.4
		PRESSI	JRE TAP AX	IAL LOCA	TION: ×/dm	nā×		

RDG=2184 42 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.9Ø Ptr/Po= 3.537 Ptr/Ptp=1.95 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 □ FOREBODY INLET

Δ 28 SHROUD LOCATION

♦ 88 SHROUD LOCATION 1.2 P1/Po 1.1 RATIO. Ш П 1.0 PRESSURE Ø.9 Ш STATIC Ø.8 TO AMBIENT 8.7 8.6 LOCAL Ø.5 L Ø.4 1.4 Ø.6 Ø.8 1.8 1.2

- =Ø		SPLITTER P+r/P	* 4	.524	- Pt	r/Ptp=		N3 A1 300	20410	UK 4,1
		EJECTOR CLAMSHEL	NLET P POSIT	051 101	TION M	YAWDI	۵	PRIMARY FLOW SPI	PLUG	
	Ø.9			\neg				FLOW SPI	TILER	lelle
414/14 414/14	ؕ8	, <u>, , , , , , , , , , , , , , , , , , </u>			M					
	Ø.7									
PKE SSUKE .	ؕ6				······································					
I O I AL	ø.5				0	•				
	ؕ4		□		四					
PKI MAKY	ø.3		0							
<u> </u>]						
S 1 A 1 L	8.2				**************************************					
	Ø.1									
LUCAL	ø.ø		• 4	ø.		Ø.8		.ø 1	•2	1.

RUN 44

=Ø	.98 1.8		r/Pe		4.52		Ptr/Pti		1		r	
		CLAMS	HEL	POS	ITIO	TION 17	MIDWAY		FLCW	SPL	TTER	0.0
	Ø.9										*	
	ø.8		***************************************		Δ						•	
	Ø.7											
	Ø.6											<u>.</u>
	ø.5		· · · · · · · · · · · · · · · · · · ·	,	· · · · · · · · · · · · · · · · · · ·	Δ						
	ؕ4											·
	ø.3				· · · · · · · · · · · · · · · · · · ·							
	ø.2											
	Ø.1							,				
	8.8 8.											

RUN 44

										\\ \(\)
A2 PLU	G AND	SPLITTER	STATIC	PRE	ESSURE DI	STRIBL	JT I OI	NS AT SI		RDG=218 CRUIS
	=0.90	P+r/Pa	• = 5	.26	9 Ptr	/Ptp=1		.,,		
	1.8	EJECTOR CLAMSHELI	NLET P	OSI	TION MI	QHAY				
			10511		• •		Ш	PRIMARY	֡֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	
	8.9	{						FIUM SE	1 1 1 FR	
PL/PTP	Ø.8	,,					·			
P						Ì				
<u>.</u> ய	8.7					<u> </u>				
SUR										
PRESSURE.	8.6									
g.										ļ
TOTAL	Ø.5					<u> </u>				
101					O					
≿	Ø.4						···			
MA										
PRIMARY	Ø.3		Ø							
10	~•5									
	8.5]						
114	Ð 4 C									7,
STATIC										ŀ
	Ø.1				- ,					
LOCAL										
ب	8.8 8	·S &	· +	ø.	6 1	1.8	1	•8	1.2	1.4
		PRESSU	JRE TAP	ΑX	IAL LOCA	TION,	×/dm	a a		

RDG=2186 **SA** PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =8.98 Ptr/Po= 5.269 Ptr/Ptp=1.97 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 17 A FLOW SPLITTER O.D. 8.9 ø.8 Δ LOCAL STATIC TO FAN TOTAL PRESSURE. PIZPIT 8.7 8.6 ø.5 Δ 8.4 ø.3 8.2 \triangle Ø.1 8.8 g.4 8.6 ø.8 1.8 1.2 1.4

45 RDG=2186 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.9Ø 1.3 Ptr/Ptp=1.97 Ptr/Po= 5,269 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 FOREBODY INLET 20°SHROUD LOCATION 80°SHROUD LOCATION $\overline{\Delta}$ 1.2 1.1 RATIO \triangle П П 1.0 PRESSURE B.9 STATIC Ø.8 AMBIENT Ø.7 ១ Ø.6 LOCAL Ø.5 L 8.4 8.6 Ø.8 1.0 1.2 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

ORIGINAL PAGE IS
FOOR QUALITY

RDG=2187 **A2** PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE 1 Mo =Ø.89 Ptr/Po= 6.848 PTF/PTP=1.96 EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17. D PRIMARY FLUG O FLOW SPLITTER Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 Ø.6 Ø.5 Ø.4 O Ø.3 1 Ø.2 Ø. 1 8.8 L 1.4 Ø.4 Ø.6 Ø.8 1.8 1.2 PRESSURE TAP AXIAL LOCATION, x/dmax

A2 PLUG AND Mo =8.89				ISTRIBUTI ~/Ptp=1.90		ROW 4 ROG=218 SONIC CRUIS
1.5	EJECTOR CLAMSHELI	NLET POS POSITIO	TION MI	DWAY	S FLOW SPL	TTER O.D.
3. 9)	elepanin manakan manakan panin (Japakya kan hidika ci dada hi			verver – versig vland kan aparasi gardigal ing halih ARRA (Ale Com BAC). Na	
s.s		Δ			and the state of t	
ā s.7	·	and because the second	One of the state o			
3. a.e		1		program a sininggrife to grave planeting systems. Audiosissis faut	Section 1. Control of the Section 1. Control	A STATE OF THE PARTY OF THE PAR
PRESSURE S.E.			Δ		The second secon	A SAN PER PRINCIPAL PRINCI
TOTAL	A CONTRACTOR OF THE PARTY OF TH					
10 FAN	}				aphaco da ango Ciberton Habino Nilayan Hati an Marko Cine y d	
			Δ			
LOGAL STATIC				The second secon		
9.1 0	J.2 B	.+ B	• 6	8.8	1.8	.2 1.4

RDG=2187 SA EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 1.3 PTC/Pe= 6.548 Ptr/Ptp=1.96 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDHAY CLAMSHELL POSITION 17 FOREBODY 28 SHROUD 88 SHROUD INLET LOCATION LOCATION O 1.2 Pi/Po 1.1 RATIO. ⋪ Ш Ш 1.8 STATIC PRESSURE 8.9 8.8 LOCAL TO AMBIENT 8.7 8.6 8.5 L 1.2 1.4 Ø.4 8.6 g.8 1.8 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 44

												11011	• /
	A2											2DG = 2	
			SPLITTER						NS AT	SUB	SONIC	CRUI	SE
	Mo = £	1.8	Ptr/Pa		7.84			tp=1.98	,				l
			EJECTOR CLAMSHEL	Pos	ITION	TION 17	· MI HMI						ĺ
							1	ЭВ	PRIMA FLOW	RYF	LUG	t.n.	
		Ø.9											ĺ
	Δ												
	P1/Ptp	Ø.8									ļ		
	<u> </u>												ĺ
												İ	
	RE.	Ø.7											
	SU			l									
	PRESSURE.	8.6								,	 		
	P.R			į Y									
	ᆛ	~ ~										Ī	ĺ
	TOTAL	ø.5											1
				[17]									
	PRIMARY	Ø.4							. <u></u>				ĺ
	Α					\sim							
	2R.1	Ø.3		0		0							ĺ
		D.3											ĺ
	10				П						-		ĺ
	10	ø.2											
	STATIC												l
		Ø.1											ĺ
	LOCAL	20 0 1											ĺ
	00				i								ĺ
		8.8 8	я	<u>.</u> 4	8.	L	Ø.8	1.	.8	1	•5	l . 1	• 4
			- -	- •	3.			• •	.	• '	- -		
			PRESSI	JRE TA	AP AX	IAL LO	CATIO	1N: ×/dm	a×-				,
1													

RUN 44

	Ø.8Ø	Ptr/Pa	> =	5.29	9 F	DISTRIE Tr/Ptp=		NS AT SUB	SONIC CRU
	1.8	EJECTOR CLAMSHEL	NLET POSI	POS: TION	TION 17	MIDWAY			
	ø.9						<u>e</u>	PRIMARY FLOW SPL	FLUG
P1/P1P	ø.8								
	Ø.7								
PRESSURE.	Ø.6				•				
101AL	ø.5								
PKIMAKY 10	5. 4				٥]			
х	ø.3		0				······		
SIA110 1U	ø.2		[<u> </u>	
LUCAL SIA	8.1								
ר ה	8.8 8.								

RDG=2197 42 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.8Ø Ptr/Po= 5.299 Ptr/Ptp=1.96 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION Δ 1.2 P1/Po 1.1 RAT10, Φ Ш 1.8 LOCAL TO AMBIENT STATIC PRESSURE П Ø.9 Ø.8 Ø.7 Ø.6 Ø.5 L 8.6 1.0 1.2 1.4

Ø.8

PRESSURE TAP AXIAL LOCATION, x/dmax

8.4

FUN 44

A2							RDG=22Ø
	=8.78	NLET AND	SHROUD ST		SURE DIST		NIC CRUISE
	i.3	EJECTOR CLAMSHELI	NLET POS		WAY Œ Φ	FOREBODY 28 *SHROU	INLET
	1.2						
P1/P0	1.1						
RATIO	1.8	To an and a second			♣		
PRESSURE	Ø . 9				>		
STATIC	ؕ8				Andrews of the second of the s		
AMBIENT	ø.7						5
10	8.6						
LOCAL	ø•5	.2 8	• 4 Ø	.6 ន	-6	1.8 1	.2 1.4
		PRESSI	URE TAP A	KIAL LOCA	TION, ×/d	mā×	

A2 PLU	JG AND	SPLITTER	STATIC	PRESSURI	E DISTRI	BUTIO	NS AT	SUBSONI	RDG=2211
	=Ø.56	PTC/P. EJECTOR CLAMSHEL	o= 5.	298 35 TION	Ptr/Ptp				
	2. 9	CLAMSHEL	POSIT	ION 17		<u></u>	PRIMA EL OW	RY FLUG	2 1 - 11 -
P1/P1P	Ø.3								
	3.7								
PRESSURE,	Ø . 6		3			·····			
TOTAL	Ø.5					**************************************			
PRIMARY TO									
TO PRIM			0						
LOCAL STATIC	7 1								
, 07	8.8	r.2	3.4	8.6	8.8	1	.8	1.2	1.4

RUN 44

RDG=2216 45 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.36 Ptr/Po= Ptr/Ptp=1.97 5.318 EJECTOR | NLET POSITION CLAMSHELL POSITION 17 MIDWAY PRIMARY PLUG Ø.9 PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 Ø.6 Ø.5 Ø.4 \odot ø.3 LOCAL STATIC TO 8.2 8.1 a.a._ B.4 1.2 1.4 8.6 8.8 1.0 PRESSURE TAP AXIAL LOCATION: x/dmax

ORTONAL PAGE TO

A2 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.36 Ptr/Po= 5.318 Ptr/Ptp=1.97 EJECTOR NLET POSITION MIDWAY CLAMSHELL POSITION 17 A FLOW SPLITTER O.D. 9.9 Ø.8 LOCAL STATIC TO FAN TOTAL PRESSURE, PIZPIT B.7 8.6 Ø.5 9.4 **3.3** 8.2 Δ ø.i 8.8 L Ø.4 8.6 Ø.8 1.8 1.2 1.4

RUN 44

				DISTRIBUT		RDG=23 BSONIC CRUI
Mo =Ø.Ø3 1.8	EJECTOR CLAMSHELI	NLET POS POSITIO			D PRIMARY O FLOW SPI	ALUG
Ø.9					O FLOW SP	LITIER L.D.
9.8						
PRESSURE.						
T0TAL						
PRIMARY						
TO PRI		0				
STATIC 1						
द्भा १						
LOCAL	1.2 8	·+ 8	1.6	ø.8	1.8	1.2 1.

RUN 44

RUN 44

	Ø.Ø3	SPLITTER PIC/P		C PRI			TRIBU?		VS 1T S	SUBS		DG=2 CRUI	
	1.8	EJECTOR CLAMSHEL	NLET POS	POSI ITION	TION 17	, MID	ΑΑΥ	90	PRIMAR FLOW S	Y F	řñë		
	Ø.9				,			·	FI_UWS	PL	LIER.		l
P1/Ptp	8.8					•							
u u	8.7											<u></u>	
PRESSURE.	ؕ6				, , <u>, , , , , , , , , , , , , , , , , </u>					•			
AL	ø . 5		ļ				···						ŀ
TOTAL													l
	Ø.4			•	 A								
PRIMARY													l
PRI	ø.3		0		- 								
10				_		l							
	Ø.2												l
STATIC													
	Ø.1		<u> </u>										· 1
LOCAL													
۲0	8.8 8		. 4	æ.	,				~				,
1	B	•c ນ	• T	2.	. 0	ø.	•	1.	D.	1 .	.2	1.	· T
		PRESSI	JRE TA	AP AX	IAL L	OCAT	ON , ×.	/dm	a×				

RUN 44

RDG=2228 **A2** EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø3 1.3 Ptr/Po= 4.529 Ptr/Ptp=1.97 AT SUBSONIC CRUISE EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 FOREBODY INLET 20 SHROUD LOCATION 80 SHROUD LOCATION \Box $\overline{\Delta}$ 1.2 P1/Po 1.1 RATIO 1.8 **♦ ⊗** PRESSURE Ø.9 STATIC Ø.8 TO AMBIENT Ø.7 Ø.6 Ø.5 L 1.4 Ø.4. Ø.8 1.2 Ø.6 1.8

RDG=2221 A2 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Ptr/Ptp=1.98 Mo =Ø.Ø5 1.8 5.285 Ptr/Po= EJECTOR INLET POSITION MIDWAY CLAMSHELL POSITION 17 D PRIMARY FLUG OF ON SPLITTER Ø.9 PRIMARY TOTAL PRESSURE, PL/Ptp 8.8 8.7 8.6 Ø.5 П 0 8.4 \odot 0.3 LOCAL STATIC TO 8.2 8.1 8.8 1.4 8.4 Ø.8 1.8 1.2 8.6

RUN 44

=Ø.	.85 1.8		C/P		5.2		PTC/PT		. 98			i	
		CLAMS	HEL	POS	SITIO	TION 17	•	•	Δ	FLOW	SPL	TTER	0.0.
	ø.9												
	ø.8												
• •	Ø.7							<u> </u>					
	Ø.6	_											
	٥.۵		,										
	Ø.5							<u> </u>	 .				
	Ø.4				it the same and protes								
	ø.3												
) •	8.2		· 										
	ø. 1				△				<u></u>				
	8.3												

AZ								RDG=	2221
	=Ø•Ø5	NLET AND PIC/P	SHROUD ST = 5.28		SSURE DI VP†p=1.º			NIC CRUIS	, c -
MO	1.3					70 [11 30830	NIC CKUI	7
		CLAMSHEL	NLET POS POSITIO	17-		U F	OREBODY	INLET	
						♦ 81 ♦ 81	Ø*SHROUD Ø*SHROUD	LOCATIO LOCATIO	N
	1.2								
Pt/Po									
مَ	1 - 1								-
RATIO.			·						
R A	1.8			h .	*				1
문				T	*				
PRESSURE	Ø . 9								_
RE	2.7								
	ı								
STATIC	ø.8				_				-
STA									
j									
AMB I EN	8.7								-
MB									
TO 4	~ .					-			
	Ø.6								7
LOCAL									
L 0	Ø.5 Ø.				1				
	Ø	.2 Ø	.4 2	r.6	3. 8	1.8	1	•2	1.4
		PRESSI	URE TAP A	XIAL LOCA	TION: ×/	'dma;	×		į

RUN 44

ROG. 2771-2820

Rog, 2771-2820

ORIGINAL PAGE IS

RUN 63

RUN 63

PUN 63

RUN 63

- =Ø		Ptr/P	-= 3.56	Ø Ptr	/P?p=1.94		SONIC CRUI
		EJECTOR	NLET POS	LITON SHI	OUD REMOV		
	Ø.9				0	PRIMARY F	LUG ITER I.D.
	D. 7						
4/14	Ø.8			0			
_`` `							
ı.	Ø.7	······································					
rki souki							
n V	Ø.6			 гп П			
ŗ X							
A L	Ø.5						
I U I AL							
	Ø.4						
PK BAKY	- •		(7)				
<u>x</u>	ø.3		0				
2	2.3	_					
	ø.2						
S I A I I C							
	ø. i						
LUCAL							
	ø.8	L	1.4 2	1.6 8	.8 1	.Ø 1	.2 1.

RUN 63

RUN 63

RUN 63

18UN 63

RUN 63 RDG=2778

A2 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 1.3 Ptr/Po= 4.55Ø Ptr/Ptp=1.97 AT SUBSONIC CRUISE EJECTUR NLET POSITION SHROUD REMOVED FOREBODY INLET 20°5HROUD LOCATION 80°5HROUD LOCATION 1.2 P1/Po 1.1 RATIO. ШШ 1.8 STATIC PRESSURE Ø.9 Δ 8.8 LOCAL TO AMBIENT Ø.7 Ø.6 Ø.5 L Ø.4 1.2 1.4 8.6 Ø - 8 1.8

RUN 63

	AND 1.89	SPLITTER P+r/P	o=	5.32	77	Ptr/	/P t p:	=1.95		SUB		RDG=2: CRUI
		EJECTOR	NLET	POS	TION	SHR	סטס					
	ø.9							Δ	FLOW	SPL	TTER	0.0
												į
	8.8		<u> </u>									
714/14	Ø.7			Δ		i						
	23.67					·						
PKESSUKE.	ؕ6							·····				
2 2 2 3												
	Ø.5			******	\triangle							
- - -	ؕ4									 >		
- 2 5												
<u> </u>	Ø.3			******								
	ø.2				14.5							
31 I I I S												
ר ט	Ø. 1			-								
רטטאר												
_	Ø.Ø	.2 8	<u>.</u> 4	Ø.	. 6	Ø.	8	1 .	Ø	1	.2	1.

A2 RDG=2779 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.89 5.307 Ptr/Po= Ptr/Ptp=1.95 AT SUBSONIC CRUISE SHROUD REMOVED

D FOREBODY INLET

A 20°SHROUD LOCATION

SB SHROUD LOCATION EJECTOR NLET POSITION 1.2 1.1 LOCAL TO AMBIENT STATIC PRESSURE RATIO. ПП 外办 1.8 Ø.9 Δ Ø.8 Ø.7 5.6 Ø.5 L 8.4 Ø.6 Ø.8 1.0 1.2 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

RUN 63

=Ø.	.89 1.8	P†r/		6.26				1.95	En.		1	
		EJECTO	RINLE	POS	ITUN	201	עטט	REMOV]	
	ø.9							0	EL O	MARY <u>W SPL</u>	FLUG TIFR	<u>ı</u> n.
	2.,											
	ø.8											
	Ø.7										1	
5		•										
7	Ø.6										 	
			i.									
-	Ø.5				m	П					-	
					C) —						
7 Y Z	Ø.4											
			b									
	ø.3								 			
2			ļ									
LUCAL SIA110	8.2					·		·			-	
<u> </u>												
٠,	Ø.1								 			
5												

RUN 63

RUN 63

RUN 63

A2		MET AND	0115011			2056		010=		T T G : :		RDG=2	781
		NLET AND PIC/P									u r A	001110	c
Mo =Ø.	1.3	EJECTOR	INLET	7.85				=1.97		SUBSO	NIU	CRUIS	ב ו
		ESCION	NLEI	PU5 !	IIUN	эпк	טטט	REMOV	FORE	EBODY	INLE	Т	
								Δ	28 *	SHROUD SHROUD		ATION	
	1.2								0.0			,,,,,	
p ı /p。								•	•				
Ž	1.1									·····			
10,													
RAT 10.	1.8					<u> </u>	2 O						
JRE			}										
186	ø.9												
PRESSURE	D • 7						Δ						
]	3									
STATIC	~ ^		ĺ										
[A]	Ø.8												
S					į								
r Z							' 1						
H	ؕ7					·		·				·····	1
AMBIENT													
					1		-		l				
10	8.6		1										
AL													
LOCAL							[
1	Ø.5	.2 9	<u> </u>	я	<u> </u>	pr	8	1	. <i>8</i>	1	•5	1] • 4
	***	~		~		~		•	11 447	•		•	- •
		PRESS	URE TA	PAX	CIAL L	OCAT	IONs	×/dm	a×				
			O., C.				20.17						

RUN 63

RUN 6:

RUN 63

P'UG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Ptr/Ptp=1.97 5.318 PTF/Po= SHROUD REMOVED INLET POSITION PRIMARY FLUG Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 Ø.6 口 Ø.5 9.4 Ø.3 ø.2 Ø.1 g.g ____ 1.2 Ø.8 8.6 PRESSURE TAP AXIAL LOCATION: >/dmax

ORIGINAL PAGE IS
OF POOR QUALITY

RDG=2791 A2 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Ptr/Po= 5.318 Ptr/Ptp=1.97 AT SUBSONIC CRUISE SHROUD REMOVED

D FOREBODY

A 20 SHROUD

B SHROUD EJECTOR INLET POSITION INLET LOCATION LOCATION 1.2 P1/Po 1.1 RATIO. لبالبا 1.0 LOCAL TO AMBIENT STATIC PRESSURE Ø.9 田 Ø.8 Ø.7 8.6 ø.5 L 8.4 Ø.6 Ø.8 1.8 1.4

RUN 63

	and 4.56 1.8	SPLIT'	rppo	3 3	5.31		Ptro	/Ptp:	#1.97 REMOV		5UB:	TONIC	CROIS
	,		UK.	1466.	1 00	1,0	3]			l	COL	1	2.5
	B. 9		Management and a second		<u></u>			<u> </u>	۵	FLUM	אר ו	TTER	0.0.
	8.8												
pi/prr	8. 7		non-tage parties to						Maybean arrandom agree 7, martin plan		riannian ain, paga an ain in agus an ain ain an ain an ain ain an ain ain		
	1. 6				sConggader de de de la conferencia del la conferencia del la conferencia de la conferencia del la conferencia de la conferencia de la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferencia del la conferenc				Magadaticative Apparatical Arteriore		иний при при при при при при при при при при		
PRESSURE,	1.5		sseriorius, quint, seriitiis sygner								MP The Advisor Magazine		
TOTAL	5. 4	-			tid, jaanneellussaan				National and Participated Administration		MERITALISMANIA SEMILANDOS SE		
TO FAM	g.3	AMONG PROMOTION NAMES AND	ACT QUICK TO ME SPECE		Mary plant 2 Million report for				angere Neralminationists		procedure desired desired described.		
STATIC I	1.2	August Mary and a second a second and a second and a second and a second and a second a second and ny tropic harborot impatra ly		тумцого посущина				eleverables/Phone social/Province	CONTRACTOR STANDARDS	иннуцијаций странски			
LOCAL STA	8.1	A STANSON AND A STANSON ASSESSMENT OF STANSO	general designation of the second	and the state of t	Δ				RECORDERATE CONTROL CO		THE THIS WHINGO PLANT CONCERN		
307	o.a	. 2	<u> </u>	r. 4	Control of the Contro	1.6	s	.8	1	<u>.s</u>		.2	

SA RDG=2799 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.56 5.314 Ptr/Ptp=1.97 Ptr/Po= EJESTOR INLET POSITION SHROUD REMOVED PRIMARY PLUG Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPIP Ø.8 8.7 8.6 Ø.5 Ш 8.4 0 \odot Ø.3 ø.2 8.1 8.8 L 8.4 E-6 Ø.8 1.0 1.2 1.4 PRESSURE TAP AXIAL LOCATION: x/dmax

RUN 63

RDG=28Ø4 A2 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Me =0.36 5.34Ø Ptr/Po= Ptr/Ptp=1.97 INLET POSITION SHROUD REMOVED EJECTOR PRIMARY PLUG Ø.9 LOCAL STATIC TO PRIMARY TOTAL PRESSURE, PIZPTP Ø.8 Ø.7 8.6 П Ø.5 Ø.4 (1) Ø.3 ø.2 Ø.1 8.8 L ø.8 1.4 8.4 8.6 1.8 1.2

RUN 63

RDG=28Ø4 **A2** EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Ptr/Ptp=1.97 AT SUBSONIC CRUISE Ptr/Po= 5.348 SHROUD REMOVED

D FOREBODY I

A 20 SHROUD

SHROUD INLET POSITION EJECTOR INLET LOCATION LOCATION 1.2 STATIC PRESSURE RATIO, PIZPO 1.1 1.8 8.9 **9.8** LOCAL TO AMBIENT 8.7 8.6 8.5 L 1.2 1.4 Ø.4 8.6 Ø.8 1.8

		SPLITTER Ptr/P						NS AT SUE	RDG= SSONIC CRU	
Mo ≠8	1.8	EJECTOR		3.55 POS			PTP=1.96	lED	1	7
	ø . 9							PRIMARY FLOW SPI	ALUG TITER 1-0	
q q	ø.8									
P1/PTP										
URE,	Ø.7									-
PRESSURE,	ؕ6				(D				-
TOTAL	ø.5									-
PRIMARY 1	ø.4									-
TO PRIM	ø.3	·	0							
	8.2									-
LOCAL STATIC	Ø. 1			***************************************			d Marting at his control of the state of the			
707	g.g	.2 8	4	8.	. 6	a .	.8 t	.g 1	•5]

ORIGINAL PAGE IS OF POOR QUALITY

42 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =Ø.Ø3 Ptr/Po= 3.554 Ptr/Ptp=1.96 INLET POSITION SHROUD REMOVED EJECTOR A FLOW SPLITTER 0.0. 8.9 Ø.8 LOGAL STATIC TO FAN TOTAL PRESSURE, PIZPIT Ø.7 8.6 Ø.5 Δ 8.4 Ø.3 ø.2 Ø.1 8.g 8.2 ø.8 1.2 8.6 PRESSURE TAP AXIAL LOCATION: x/dmax

RDG=2815 A2 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø3 Ptr/Po= 3.554 Ptr/Ptp=1.96 AT SUBSONIC CRUISE SHROUD REMOVED

D FOREBODY

A 28 SHROUD

SHROUD EJECTOR NLET POSITION INLET LOCATION LOCATION 1.2 P1/Po 1.1 RATIO 1.8 LOCAL TO AMBIENT STATIC PRESSURE 8.9 Ø.8 Ø.7 Ø.6 Ø.5 L 1.4 Ø.4 8.6 Ø.8 1.8 1.2

RUN 63

	AND 4.8.8	SPLITT#4 PTC/P	> *	4.54	-9	Ptr,	/Ptp	=1.96		T SUB	SONIC	CRU
	1.20	EJECTOR	WLET	. P 05	TIO	V SHE	ouo	REMOV	ED			
	ø.9							<u>0</u>	PRIN FLOW	IARY L SPL	LUG	I.D.
α	~ ^								ų.			,
41/74 4	3.8											· Province
	ؕ7			四								
PRESSURE.												
	Ø.6								<u> </u>	·	ļ	
ŗ. Ž												
	₽∙5				-							
OIAL						~						
					\	D						
РКІМАКҮ	Ø.4										 	
Ξ			\bigcirc									
	Ø.3											
2												
<u>ာ</u>	ø.2		<u> </u>						<u> </u>		 	
SIAIIC							! 					
	ø.i											
A L	~ 1											
LUCAL	a a											
	g.g	. 2 ø	. 4	Ø	• 6	Ø	. 8	1	.ø	1	•2	1.

	_ 2 LUG	AND	SPLITTE	R STATI	C PR	ESSUR	E DIS	STRI	BUTIO	NS AT	SUB		RDG=28 CRUI	
М	o =Ø	. 84 1.8	P+r/ EJECTOR		4.54 POS	9 TION			=1.96 REMOV	ED.		1		
		ø.9						-	Δ	FLOW	SPL	TTER	0.0.	
		ø.8						2- د مسلس						
	P1/P1r	ؕ7			<u> </u>									
	PRESSURE, P	Ø.6			•	Δ		<u></u>						
		Ø.5				Δ		****						
	TOTAL	ؕ4									<u>-</u>			
	TO FAN	ø.3			······································			<u></u>	***************************************		· · · · · · · · · · · · · · · · · · ·			
		ø.2									- 148 A			
	LOCAL STATIC	Ø.1												
	T 00	Ø.8 Ø	-2	2. 4	Ø	• 6	ø.	8	1	.8	1	•2	1.	4
i														

RDG=2816 42 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =Ø.Ø4 1.3 Ptr/Po= 4.549 Ptr/Ptp=1.96 AT SUBSONIC CRUISE SHROUD REMOVED

D FOREBODY INLET

A 28 SHROUD LOCATION

BB SHROUD LOCATION EJECTOR NLET POSITION 1.2 RATIO, PLZPO 1.1 1.8 STATIC PRESSURE Ø.9 Ø.8 LUCAL TO AMBIENT 8.7 Ø.6 8.5 L Ø.8 1.2 Ø.4 Ø.6 1.0

RUN 63

FUN 63

A 2 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Ptr/Ptp=1.97 Me = 3.95 5.307 PtroPo= EJECTOR INLET POSITION SHROUD REMOVED A FLOW SPLITTER O.D. 3.9 8.8 PRESSURE, PI/PIF 9.7 Ø . 6 Δ ø.5 Z LOCAL STATIC TO FAN TOTAL **3.** 4 ø.3 8.2 0.1 Δ a.a [3.4 3. b 8.8 1.0 1.2 1.4 PRESSURE TAP AXIAL LOCATION. * damax

RUN 63

RDG=2817 45 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Mo =8.85 5.307 Ptp=1.97 Ptr/Po= $\boldsymbol{p}_{(e_1, \cdots, e_n)}$ AT SUBSONIC CRUISE D REMOVED
D FOREBODY
A 28 SHROUD
& 88 SHROUD INLET POSITION EJECTOR INLET LOCATION LOCATION 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PIZPO 1.1 1.8 g.9 B.8 II.7 8.6 n.5 L.. 8.4 8.6 8.8 1.8 1.2 1.4

RUN 63

	AND 8.85	SPLITTE:	Pos	6.85	6	P+r/F	tp=	1.96		r sub	SONIC	CRUI
	1 0 11	EJECTOR	NLET	POSI	TION	SHRO	UO F	REMOV	ED			
	Ø.9							<u>O</u>	PRIM FLOW	ARY SPL	LUG	LO
P1/PTP	8.8											
	Ø.7											
PRESSURE,	Ø.6					1	- 			·		
TOTAL	ؕ5	,										
PRIMARY	8.4		0									
TO PRI	ø.3											
STATIC	8. 5									**************************************		
	8. 1	,										
LOCAL	8.8 8	•5	8.4		. 6	8.8		1	. ø	1	, 2	1.

RUN 63

RDG=2818 42 PLUG AND SPLITTER STATIC PRESSURE DISTRIBUTIONS AT SUBSONIC CRUISE Mo =0.05 Ptr/Po= Ptr/Ptp=1.96 6.856 INLET POSITION SHROUD REMOVED A FLOW SPLITTER O.D. 8.9 Ø.8 PRESSURE, PIZPIF 8.7 8.6 Ø.5 $\triangle \Delta$ LOCAL STATIC TO FAN TOTAL 8.4 Ø.3 ø.2 8.1 8.8 Ø. 4 8.6 Ø.8 1.8 1.2 * ~ 1.4 PRESSURE TAP AXIAL LOCATION, x/dmax

RDG=2818 45 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION AT SUBSONIC CRUISE Ptr/Po= Ptr/Ptp=1.96 6.856 SHROUD REMOVED

D FOREBODY

A 28 SHROUD

B SHROUD EJECTOR NLET POSITION INLET LOCATION LOCATION 1.2 1.ì TO AMBIENT STATIC PRESSURE RATIO. **企** 1.8 8.9 8.8 8.7 8.6 LOCAL 8.5 F 1.2 1.4 8.4 8.6 8.8 1.8

RUN 63

											900-20	
A2 PLU	G AND	SPLITTER	STATI	C PR	ESSL	IRE DI	STRIBU	TIO	NS AT SU		CRUI	
	=Ø.Ø5 1.ø	Ptr/Pe		6.36			/Ptp=1					
	1 . 10	EJECTOR	NLET	POS	TIO	N SH	000 26	MOV	ED			
								9	PRIMARY	FLUG	1.0	
	ؕ9			***************************************								
Φ.	ؕ8											
P1/P1P	n • 8											
	Ø.7											
PRESSURE.	2.7											
188	8.6							, <u></u>				
PRE	2.0											
	ø.5					**************************************						
TOTAL	200											
	ؕ4							·				
MAR			6									
PRIMARY	Ø.3				(<u>D</u>		·				
10												
	ø.2		<u> </u>		<u> </u>							
AT												
LOCAL STATIC	8.1		ļ		<u> </u>							
CAL												
L0	ø.ø 8		<u> </u>		<u> </u>				<u> </u>	<u></u>		
	Ø	.2 8	. 4	Ø	• 6	Ø	. 8	1	•₿	1.2	1 •	4
		PRESS	URE T	AP A	KIAL	LOCAT	ION, >	·/d=	a×			

RUN 63

	7.25 1.8	Pı	r/P	5 =	6.36		Ptr	Ptp:	=1.96				
	1 +2	EJEC	TOR	NLET	POS	TION	SHR	000	REMO	ED			
	Ø.9								Δ	FLOW	SPL	TTER	0.0
	8.8												
PKESSUKE: FIZFIF	ؕ7	- A - Market - A											······································
SUKE .	ø.6										<u></u>		
	ø.5					ΔΔ					···		
101AL	Ø.4				.								
200	ø.3		 										
	a. 5							<u>,</u>					
LUCAL SIMIIC	Ø.1				Δ								
	g.g g.												

RDG=2819 42 EJECTOR INLET AND SHROUD STATIC PRESSURE DISTRIBUTION Ptr/Po= 6.364 Ptr/Ptp=1.96 AT SUBSONIC CRUISE NLET POS TION SHROUD REMOVED

D FOREBODY

A 28 SHROUD

SE SHROUD EJECTOR INLET LOCATION LOCATION 1.2 LOCAL TO AMBIENT STATIC PRESSURE RATIO, PIZPO 1.1 1.8 **松松** Ø.9 Ø.8 8.7 Ø.6 Ø.5 L 1.4 Ø.4 Ø.5 Ø.8 1.2