Review of binary number representation

Number systems and bases

A given number in a β -system is represented as

$$(a_n \dots a_2 a_1 a_0 \dots b_1 b_2 b_3 \dots)_{\beta} = \sum_{k=0}^n a_k \beta^k + \sum_{k=1}^\infty b_k \beta^{-k}$$

Examples:

• Decimal base:

$$(426.97)_{10} = 4 \times 10^2 + 2 \times 10^1 + 6 \times 10^0 + 9 \times 10^{-1} + 7 \times 10^{-2}$$

• Binary base:

$$(1011.001)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

Integer numbers in a computer

From decimal to binary: $(39)_{10}$

Method 1:

#/2	Quotient	Remainder
39/2	19	1
19/2	9	1
9/2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

Method 2:

	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
	64	32	16	8	4	2	1
39	39	7	7	7	3	1	0
#	0	1	0	0	1	1	1

$$(39)_{10} = (100111)_2$$

Integer numbers in a computer

From binary to decimal: $(10111)_2$

$$(10111)_2 = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \end{bmatrix}$$

$$= 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1 = 23$$

$$(10111)_2 = (23)_{10}$$

Practice questions

Convert $(110101)_2$ to decimal number

- A) 43
- B) 53
- C) 42
- D) 52

Convert $(175)_{10}$ to binary number

- A) $(01111101)_2$
- B) $(10111110)_2$
- C) $(11110101)_2$
- D) (10101111)₂

Real numbers in a computer

Real numbers add an extra level of complexity. Not only do they have a leading integer, they also have a fractional part.

From decimal to binary: $(39.6875)_{10}$

Method 1:

Same as before for the integer part

 $(39)_{10} = (100111)_2$

For the decimal part, use the following table:

$$(39.6875)_{10} = (100111.1011)_2$$

#×2	Integer part	Fractional part
1.375	1	0.375
0.75	0	0.75
1.5	1	0.5
1.0	1	0

Method 2:

	2 ⁵	24	23	2 ²	21	20	2-1	2-2	2-3	2^{-4}
	32	16	8	4	2	1	0.5	0.25	0.125	0.0625
#	1	0	0	1	1	1	1	0	1	1
39.6875	7.6875	7.6875	7.6875	3.6875	1.6875	0.6875	0.1875	0.1875	0.0625	0

Real numbers in a computer

From binary to decimal: $(101101.101)_2$

$$(101101.101)_{2} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & 2^{-1} & 2^{-2} & 2^{-3} \end{bmatrix}$$

$$= 1 \times 32 + 0 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$(101101.101)_2 = (45.625)_{10}$$

Practice questions

Convert $(11101.11)_2$ to decimal number

- A) 19.75
- B) 25.75
- C) 23.75
- D) 29.75

Convert $(67.125)_{10}$ to binary number

- A) $(1000011.001)_2$
- B) $(1100001.001)_2$
- C) $(1100001.01)_2$
- D) $(1000011.01)_2$

Convert $(23.3)_{10}$ to binary number

	24	2 ³	2 ²	21	2 ⁰	2-1	2-2	2-3	2-4	2 ⁻⁵
	16	8	4	2	1	0.5	0.25	0.125	0.0625	0.03125
#	1	0	1	1	1	0	1	0	0	1
23.3	7.3	7.3	3.3	1.3	0.3	0.3	0.05	0.05	0.05	0.01875

	2^{-6}	2^{-7}	2-8	2^{-9}	2 ⁻¹⁰	
	0.015625	0.0078125	0.00390625	0.00195313	0.000976563	
#	1	0	0	1	1	
0.01875	0.003125	0.003125	0.003125	0.00117188	0.000195313	

$$(10111.010011001)_2 = (23.2998046875)_{10}$$

$$(a_n \dots a_2 a_1 a_0 \dots b_1 b_2 b_3 \dots)_{\beta} = \sum_{k=0}^n a_k \beta^k + \sum_{k=1}^{\infty} b_k \beta^{-k}$$

Looks like 23.3 is represented by an infinite series in the binary base!

Tips for conversion using Python:

There are more ways to do this! You can use your own favorite method.

Decimal Fraction (less than 1) to Binary

```
def decfrac_to_binary(fdec,n=23):
    f = ''
    dig = 0
    while ((fdec > 0) & (dig<n)):
        fdec = fdec*2
        temp_int = int(fdec)
        fdec = fdec - temp_int
        f += str(temp_int)
        dig += 1
    return f</pre>
decfrac_to_binary(0.42891717890,n=6)
```

Binary to Decimal

binary is normalized

```
def binary_to_decimal(f,m):
    decimal = 1
    for i,digit in enumerate(f):
        decimal += int(digit)*2**(-(i+1))
    decimal *= 2**(m)
    return decimal
```

```
binary_to_decimal('00010101',8)
277.0
```

Integer to Binary

'100100100101'

Much simpler method to convert integer to binary

Decimal Integer to Binary

```
bin(2341)[2:]
'100100100101'
```

Conversion of other systems (for example, ternary), can be obtained with a simple modification of these code snippets.