13. (*George and Joe*) Suppose we add a single symmetric entry to the top right and the bottom left corners to A. What is the graph of the resulting matrix? How much fill-in will be generated by Cholesky factorization? Assume that the resulting matrix is positive definite so that the Cholesky factorization exists.

In the original problem,
$$A_{ij} = \begin{cases} 1 & |i-j| \leq 1 \\ 0 & |i-j| > 1 \end{cases}$$
 is a "tridiagonal"

matrix. Note this corresponds to the graph G=(V,E) where $V=\{\{V_1,\dots,V_n\}\}$ and $V_{ij}\in E\iff |i-j|=1$, which is the graph P_n , the path graph on a serfices:

Adding on entry to the top light and bottom corners of A adds on edge between V_1 and V_2 , resulting in the cycle graph C_0 :

Note that performing our "delete and connect neighbors" operation on any vertex in C_n leaves the graph C_{n-1} :

Thus any ordering gives the same amount of fill-in; I new edge is created at each stage until we get to n=3, at which point the graph is complete (fully connected)

Thus the total process creates n-3 new edges, meaning 2(n-3): sour total amount of fill-in.