CHROMAN DERIVATIVES

Publication number: KR20000023843 (A)

Publication date:	2000-04-25	4471111140 FIRE CATO	US6066631 (A)
Inventor(s):	TANIKAWA KEIZO [JP]; OHRAI I MASAYUKI [JP]; YAMASHITA TO KAZUFUMI [JP]	RAZUHIKO [JP]; SATO DRU [JP]; YANAGIHARA	ZA9706654 (A) TW491844 (B) SK7599 (A3)
Applicant(s):	NISSAN CHEMICAL IND LTD [JF	P]	SK7599 (A3)
Classification:			112333070 (A)
- international:	C07D311/68; C07D311/70; C07E C07D407/12; C07D409/12; C07E C07D405/00; C07D407/00; C07E 7): C07D311/68	7/18; C07D311/00;	more >>
- European:	C07D405/04; C07D311/70; C07D C07D409/12; C07F7/18C4D4D	9405/12; C07D407/12;	
Application number	: KR19997000359 19990118		
Priority number(s):	JP19960197819 19960726		
are useful for treatm mammals including effect by reducing in Chroman derivatives formula (I): wherein halogen atom, a C1-group, a C3-6 alkox; R not 4 are indepenalky! group, etc.; R r 6 alkylcarbonyloxyl with R not 5; R not 6 bond together with F independently a hyd a C3-6 cycloalkyl grorn integer of 1, 2 etc.; X is C=O, CH2 which R not 17 is a group, a phenyl grorpresents CH2 or h	an derivatives are provided which then of cardiac insufficiency for human, and have bradycardia in heart rate. CONSTITUTION: are represented by general R not 1 is a hydrogen atom, a 6-alkyl group, a C1-6 alkoxy ymethyl group, etc.; R not 3 and dently a hydrogen atom, a C1-6 tot 5 is a hydrogen atom or forms a c1-group or forms a bond together 6 is a hydrogen atom or forms a R not 5; R not 7 and R not 8 are irrogen atom, a C1-6 alkyl group, oup, a phenyl group, etc.; n is 0, 3, or 4; W is a phenyl group, , SO2, etc.; Y is NR not 17 (in hydrogen atom, a C1-4 alkyl up, etc.), etc.; Z does not exist or NR not 18 (R not 18 is a 1-4 alkyl group, or a phenyl	W—(CH _{21a} —X———————————————————————————————————	R ^N R ³ R ³ R ³ R ³ R ³

Also published as:

Data supplied from the esp@cenet database — Worldwide

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51)	Int.	CI.º
C07D	311	/68

(11) 공개번호 특2000-0023843 (43) 공개일자 2000년04월25일

(21) 출원번호 (22) 출원일자	10-1999-7000359 1999년01월 18일
(30) 우선권주장 (71) 출원인	96-197819 1996년07월26일 일본(JP) 닛산 가가쿠 고교 가부시키 가이샤 도쿠시마 히데이치
(72) 발명자	일본 도쿄도지요다구 간다니시키쵸 3쵸메 7반지1 다니가와게이조
	일본국지바켄후나바시시쓰보이죠722-1닛산가가쿠고교가부시키가이샤중앙연구 소내
	오라이가즈히코
	일본국지바켄후나바시시쓰보이죠722-1닛산가가쿠고교가부시키가이샤중앙연구 소내
	사토마사유키
	일본국지바켄후나바시시쓰보이죠722~1닛산가가쿠고교가부시키가이샤중앙연구 소내
	야마시타도루
	일본국사이다마켄미나미사이다마군시라오카죠오아자시라오카1470닛산가가쿠 고교가부시키가이샤시라오카생물학연구소내
	야나기하라가즈후미
	일본국지바켄후나바시시쓰보이죠722-1닛산가가쿠고교가부시키가이샤중앙연구 소내
(74) 대리인	최재철, 김기종, 권동용
실사청구 : 없음	

(54) 크로만 유도체

82

본 발명은 아래의 일반 구조식 (1)의 크로만 유도체 또는 이들의 염에 관한 것이다.

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{8}, R^{7}$$

$$R^{6}$$

$$R^{4}$$

$$R^{3}$$

$$R^{1}$$

$$(1)$$

위의 식에서 R^1 은 수소원자, 할로겐 원자, C_{1-6} 알킬기, C_{1-6} 알콕시기, C_{3-6} 알콕시메틸기 등을 나타내고, R^3 및 R^4 는 각각 독립하여 수소원자, C_{1-6} 알킬기 등을 나타내며, R^5 는 히드록실기 또는 C_{1-6} 알킬카르보닐옥시기를 나타내거나 R^5 와 더불어 결합을 형성하고, R^6 는 수소원자를 나타내거나 R^5 와 더불어 결합을 형성하고, R^7 및 R^8 은 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{3-6} 시클로알킬기, 페닐기 등을 나타내며, C_{1-6} 인 또는 1, 2, 3 또는 4의 정수이고, W는 페닐기 등을 나타내며, X는 C_{1-6} 인 C_{1-6} 사람내고, Y는 C_{1-6} 인 C_{1-6}

BAIN

刀盒是明

본 발명은 서맥 (徐脈)(bradycardia) 작용을 가지며 인간을 포함한 포유동물에 있어서의 심기능 부전 (cardiac insufficiency)을 치료하는데 사용되는 크로만 유도체에 관한 것이다.

畑智刀金

일본국 특허공개 소51-1477호, 일본국 특허공개 소56-57785호, 일본국 특허공개 소56-57786호 및 유럽 특 허공고 제157843호 (EP-A 157843)에는 벤조피란 유도체를 사용하여 고혈압을 치료했다고 보고하고 있다. 일본국 특허공개 평5-1059호에서는 벤조피란 유도체를 사용하여 소화성 궤양을 치료했다고 보고하고 있다. 그러나 이들중 어느 것이라도 벤조피란 유도체가 심기능 부전 병변을 치료할 수 있는 가능성에 대 해서는 전혀 언급하지 않고 있다.

심기능 부전은 심장의 불충분한 기능 상태인데 심장근육의 수축저하에 의한 질환이다. 그 치료를 위해서는 심장근육의 수축을 강화하는 의약이 임상적으로 사용되고 있다. 그러나 이들 의약은 심박동수가 증가함에 따라 심장근육 에너지가 과도하게 소모된다는 문제를 가지고 있으므로 이들 의약을 장기간 투여한후에 수명회복을 개선하는 효과에 대하여 해결해야 할 문제를 가지고 있다. 따라서 심박동수를 강소시킴으로써 심장근육 에너지의 소모에 대한 부담을 줄일 수 있는 의약의 개발을 필요로 하고 있다.

활명의 상세한 설명

본 발명자들은 크로만 유도체에 대하여 철저한 연구와 조사를 한 결과, 아래의 구조식 (I)의 화합물들이 심박동수를 감소시켜 강한 서맥작용을 가지며, 심기능 부전을 치료하는 의약으로서 유용하다는 것을 발견 하여 본 발명을 완성하였다.

본 발명은 아래의 구조식 (١)의 크로만 유도체 또는 이들의 염에 관한 것이다.

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{8}$$

$$R^{6}$$

$$R^{6}$$

$$R^{4}$$

$$R^{3}$$

$$(1)$$

위의 식에 있어서,

 $R^{'}$ 은 수소원자, 할로겐 원자, C_{1-6} 알킬기 $\{$ 상기 알킬기는 할로겐 원자, 카르복실기, C_{1-6} 알콕시기, C_{2-6} 알 콕시카르보닐기, 히드록실기, 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, C₁₋₆ 알 콕시기 {상기 알콕시기는 할로겐 원자, 카르복실기, C₂-6 알콕시카르보닐기, 히드록실기, 페닐기 [상기 페 닐기는 R^{z} (R^{z} 는 할로겐 원자, 히드록실기, C_{1-4} 알킬기 또는 C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임], 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, C₃₋₆ 시클로알킬기 {상기 시큘로알킬기는 할로겐 원자, 카르복실기, C_{2-6} 알콕시카르보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 (상 기 페닐기는 R²에 의하여 치환되거나 비치환임), 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, 나트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포름아미도기, 시안아미드기, 아미 노기, C₁₋₆ 알킬아미노기, 디 C₁₋₆ 알킬아미노기 {상기 알킬아미노기 및 디 C₁₋₆ 알킬아미노기는 할로겐 원 자, 카르복실기, $\mathbb{C}_{2\text{-}6}$ 알콕시카르보닐기, 히드록실기, 포르밀기, 시아노기 또는 니트로기에 의하여 치환되 거나 비치환임}, C_{1-6} 알킬카르보닐아미노기, C_{1-6} 알킬술포닐아미노기, 아미노카르보닐기, C_{1-6} 알킬아미노 카르보닐기, \Box C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬카르보닐기, C_{1-6} 알콕시카르보닐기, C_{1-6} 알킬카르보 닐옥시기, C_{1-6} 알킬우레아기, C_{1-6} 알킬티오우레아기, 아릴 C_{1-6} 알킬아미노기, 디(아릴 C_{1-6} 알킬)아미노기, 아릴카르보닐아미노기, 아릴 C_{1+6} 알킬카르보닐아미노기, 아릴술포닐아미노기, 아릴 C_{1+6} 알킬술포닐아미노기, 아릴 C_{1-6} 알킬아미노카르보닐기, 디(아릴 C_{1-6} 알킬)아미노카르보닐기, 아릴카르보닐 기, 아릴 C₁₋₆ 알킬카르보닐기, 아릴옥시카르보닐기, 아릴 C₁₋₆ 알킬옥시카르보닐기, 아릴카르보닐옥시기, 아릴 C_{1-6} 알킬카르보닐옥시기, 아릴우레아기, 아릴 C_{1-6} 알킬우레아기, 아릴티오우레아기 또는 아릴 C_{1-6} 알킬티오우레아기 $\{$ 상기 아릴 C_{1-6} 알킬아미노기, 디(아릴 C_{1-6} 알킬)아미노기, 아릴카르보닐아미노기, 아 릴 C_{1-6} 알킬카르보닐아미노기, 아릴술포닐아미노기, 아릴 C_{1-6} 알킬술포닐아미노기, 아릴 C_{1-6} 알킬아미노 카로보닐기, 디(아릴 C_{1-6} 알킬)아미노카르보닐기, 아릴카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, 아릴옥시카 르보닐기, 아릴 C_{1-6} 알킬옥시카르보닐기, 아릴카르보닐옥시기, 아릴 C_{1-6} 알킬카르보닐옥시기, 아릴우레아 기, 아릴 C_{1-6} 알킬우레아기, 아릴티오우레아기 및 아릴 C_{1-6} 알킬티오우레아기 각각은 R^{19} (상기 R^{19} 는 할 로겐 원자, 카르복실기, C_{2-6} 알콕시카르보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 포르밀기, 시아노기 또는 니트로기를 나타냄)에 의하여 치환되거나 비치환 임} 률 나타내고,

 R^3 및 R^4 은 각각 독립하여 수소원자 또는 C_{1-6} 알킬기 {상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 히 드록실기에 의하여 치환되거나 비치환임} 를 나타내거나, 혹은 R^2 및 R^3 은 이들이 결합되어 있는 탄소원자 와 더불어 C_{3-6} 시클로알킬기를 형성하며,

R⁵는 히드록실기 또는 C₁-6 알콕시카르보닐기를 나타내거나 R⁶와 더불어 하나의 결합을 형성하고,

R⁶는 수소원자 또는 R⁵와 더불어 하나의 결합을 형성하며,

 R^7 및 R^8 은 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알키닐기, C_{3-6} 시클로알킬기 {상기 알킬기, 알케닐기, 알키닐기 및 시클로알킬기는 각각 R^{19} 에 의하여 치환되거나 비치환임}, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), $C(=Y^1)Z^1R^{10}$ 또는 $C(=Y^1)R^{10}$ {Y¹은 산소원자, 황원자 또는 R^{11} (R^{11} 은 수소원자, 시아노기, 니트로기, C_{1-6} 알킬기 또는 C_{1-6} 알콕시기를 나타내의을 나타내고, Z^1 은 산소원자, 황원자 또는 R^{13} (R^{13} 은 R^{10} 에서 정의한 바와 동일한 뜻을 가짐) 을 나타내며, R^{10} 은 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{3-6} 알케닐기, C_{3-6} 시클로알킬기 (상기 알킬기, 알케닐기, 알키닐기 및 시클로알킬기는 각각 R^{19} 에 의하여 치환되거나 비치환임) 또는 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치 환임) 를 나타내거나, 혹은

 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌 {삼기 부틸렌기 및 펜틸렌기는 각각 C_{1-4} 알킬기, 페닐기 (삼기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C_{1-4} 알콕시기 또는 C_{1-6} 알퀼카르보닐옥시기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂),X¹(CH₂), (여기서 I 및 p는 각각 1, 2 또는 3을 나타내는 반면, 이들의 함은 3, 4 또 는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁₋₄ 알킬기 또는 페닐기 (상기 페닐기는 R² 에 의하여 치환 또는 비치환됨)를 나타냄]를 나타냄)을 형성하거나, 혹은

 R^{7} 및 R^{8} 은 함께 $(CH_{2})_{q}Z^{1}C(=Y^{1})$ 또는 $(CH_{2})_{q}C(=Y^{1})$ (q는 2, 3 또는 4를 나타내고, Z^{1} 및 Y^{1} 은 위에서 정의한 바와 동일한 정의를 가짐) 를 형성하거나, 혹은

R⁷ 및 R⁸은 이들이 결합되어 있는 질소원자와 함께 피를릴기, 피라줄릴기, 이미다졸릴기, 1,2,3-트리아즐 릴기, 1,2,4-트리아졸릴기 또는 1,2,3,4-테트라졸릴기 [이들은 모두가 R¹⁵ (R¹⁵는 R¹⁰에서 정의한 바와 동 일한 정의를 가짐)에 의하여 치환되거나 비치환임] 를 형성하며,

n은 0 이거나 또는 1 내지 4의 정수이고,

X는 C=0, CH₂, SO₂ 또는 NR¹⁶ (R¹⁶은 R¹⁴에서 정의한 바와 동일한 정의를 가짐) 를 나타내며,

Y는 X가 C=0, CH₂ 또는 SO₂ 를 나타낼 때는 NR 17 (R 17 은 R 14 에서 정의한 바와 동일한 정의를 가짐) 를 나타내고, X가 NR 16 일 때는 C=0를 나타내고,

Z는 없거나 혹은 CH₂ 또는 NR¹⁸ (R¹⁸은 R¹⁴에서 정의한 바와 동일한 정의를 가짐) 를 나타내며, W는 아래의 기들을 타나낸다.

$$(R^{9})_{m} \stackrel{\text{!!}}{\longrightarrow} , \qquad (R^{9})_{m} \stackrel{\text{!!}}{\longrightarrow} , \qquad$$

122-3

(위의 식에서 R^9 는 수소원자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자 또는 C_{1-6} 알콕시기에 의하여 치환되거나 비치환임), C₁₋₆ 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환

임), 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 하드록실기, 니트로기, 시아노기, 포르밀 기, 포롬아미드기, 아미노기, C₁₋₆ 알킬아미노기, 디 C₁₋₆ 알킬아미노기, C₁₋₆ 알킬카르보닐아미노기, C₁₋₆ 알킬술포닐아미노기, 아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬카르보닐기, C_{1-6} 알콕시카르보닐기, 아미노술포닐기, C_{1-6} 알킬술포닐기, 카르복실기 또는 아릴카르보 닐기를 나타내고,

m은 1 내지 3의 정수이고.

R¹²는 C₁₋₄ 알킬기를 나타낸다.)

본 발명의 화합물은 심박동수에 대해 강력한 작용을 가지며 심장기능을 개선하는데 유용하므로 심기능 부 전 치료용 의약으로서 사용할 수 있다.

구조식 (I)의 화합물의 치환기들에 대하여 아래에서 더욱 상세히 설명한다.

본 명세서에서 "n"은 노르말 (normal), "i" 이소 (iso), "s"는 2차, "t"는 3차, "c"는 시클로 (cyclo), "o"는 오르토 (ortho), "m"은 메타 (metha), 그리고 "p"는 파라 (para)를 각각 의미한다.

할로겐 원자로서는 플루오르 원자, 염소원자, 브롬원자 및 요오드 원자를 들 수 있고, 바람직한 것은 플 루오르 원자, 염소원자 및 브롬원자이다.

C₁₋₆ 알킬기로서는 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, 1-펜틸, 2-펜틸, 3-펜틸, i-펜틸, 네오펜틸, 2,2-디메틸프로필, 1-헥실, 2-헥실, 3-헥실, 1-메틸-n-펜틸, 1,1,2-트리메틸-n-프로필, 1,2,2-트리메틸-n-프로필, 3,3-디메틸-n-부틸, 트리플루오로메틸, 트리플루오로메틸, 펜타플루 프로필 및 n-부틸이다.

C₁₋₆ 알콕시기로서는 메톡시, 트리플루오로메톡시, 메톡시, n-프로폭시, i-프로폭시, n-부톡시, i-부톡시, s-부톡시, t-부톡시, 1-펜틸옥시, 2-펜틸옥시, 3-펜틸옥시, i-펜틸옥시, 네오펜틸옥시, 2,2-디메틸프로폭 시, 1-헥실옥시, 2-헥실옥시, 3-헥실옥시, 1-메틸-n-펜틸옥시, 1,1,2-트리메틸-n-프로폭시, 1,2,2-트리메 틸-n-프로폭시, 3,3-디메틸-n-부톡시 등을 듈 수 있다. 바람직한 것들로서는 메톡시, 메톡시 및 i-프로폭

아릴기로서는 페닐, 비페닐릴, 나프틸, 안트릴 및 페난트릴 등을 들 수 있다. 바람직한 것들로서는 페닐, 비페닐릴 및 나프틸이다.

 C_{3-6} 시클로알킬기로서는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시큘로헵틸 및 시클로옥틸 등을 들 수 있다. 바람직한 것들로서는 시클로프로필, 시클로부틸 및 시클로헥실이다.

 C_{1-6} 알킬아미노기로서는 메틸아미노, 메틸아미노, n-프로필아미노, i-프로필아미노, c-시클로포로필아미 노, n-부틸아미노, i-부틸아미노, s-부틸아미노, t-부틸아미노, c-부틸아미노, 1-펜틸아미노, 2-펜틸아미 노, 3-펜틸아미노, i-펜틸아미노, 네오펜틸아미노, t-펜틸아미노, c-펜틸아미노, 1-헥실아미노, 2-헥실아 미노, 3-헥실아미노, c-헥실아미노, 1-메틸-n-펜틸아미노, 1,1,2-트리메틸-n-프로필아미노, 1,2,2-트리메틸-n-프로필아미노, 3,3-디메틸-n-부틸아미노 등을 들 수 있다. 바람직한 것들로서는 메틸아미노, 에틸아 미노, n-프로필아미노, i-프로필아미노 및 n-부틸아미노이다.

디 C 1-6 알킬아미노기로서는 디메틸아미노, 디메틸아미노, 디-n-프로필아미노, 디-i-프로필아미노, 디c-시클로프로필아미노, 디-n-부틸아미노, 디-i-부틸아미노, 디-s-부틸아미노, 디-t-부틸아미노, 디-c-부 틸아미노, 디-1-펜틸아미노, 디-2-펜틸아미노, 디-3-펜틸아미노, 디-i-펜틸아미노, 디-네오펜틸아미노, 디-t-펜틸아미노, 디-c-펜틸아미노, 디-1-헥실아미노, 디-2-헥실아미노, 디-3-핵실아미노, 디-c-헥실아미 노, 디-(1-메틸-n-펜틸)아미노, 디-(1,1,2-트리메틸-n-프로필)아미노, 디-(1,2,2-트리메틸-n-프로필)아미 노, 디-(3,3-디메틸-n-부틸)아미노, 메틸(에틸)아미노, 메틸(n-프로필)아미노, 메틸(i-프로필)아미노, 메 틸(c-프로필)아미노, 메틸(n-부틸)아미노, 메틸(i-부틸)아미노, (s-부틸)아미노, 메틸(t-부틸)아미노, 틸(c-부틸)아미노, 에틸(n-프로필)아미노, 에틸(i-프로필)아미노, 에팅(c-프로필)아미노, 에틸(n-부틸)아 교(c-무물)이미노, 에물(l-무물)이미노, 에탈(t-부탈)이미노, 에틸(c-부탈)이미노, 메틸(c-부탈)이미노, n-프로필(i-무로필)이미노, n-프로필(c-프로필)이미노, n-프로필(n-부탈)이미노, n-프로필(i-부탈)이미노, n-프로필 (s-부틸)아미노, n-프로필(t-부틸)아미노, n-프로필(c-부틸)아미노, i-프로필(c-프로필)아미노, i-프로필 (n-부틸)아미노, i-프로필(i-부틸)아미노, i-프로필(s-부틸)아미노, i-프로필(t-부틸)아미노, i-프로필 (c-부틸)아미노, c-프로필(n-부틸)아미노, c-프로필(i-부틸)아미노, c-프로필(s-부틸)아미노, c-프로필(s-부틸)아미노, c-프로필 (t-부틸)아미노, c-프로필(c-부틸)아미노, n-부틸(i-부틸)아미노, n-부틸(s-부틸)아미노, n-부틸(t-부틸)아미노, n-부틸(c-부틸)아미노, i-부틸(c-부틸)아미노, i-부틸(c-부틸)아미노, s-부틸(t-부틸)아미노, s-부틸(c-부틸)아미노 및 t-부틸(c-부틸)아미노 등을 돌 수 있다. 바람직한 것들 은 디메틸아미노, 디메틸아미노, 디-n-프로필아미노 및 디-i-프로필아미노이다.

아릴 C₁₋₆ 알킬아미노기로서는 벤질아미노, o-메틸벤질아미노, m-메틸벤질아미노, p-메틸벤질아미노, o-클 로로벤질아미노, m-클로로벤질아미노, p-클로로벤질아미노, o-플루오로벤질아미노

p-플루오로벤질아미노, o-메톡시벤질아미노, p-메톡시벤질아미노, p-니트로벤질아미노, p-시아노벤질아미

P 클 구 포 프 클 아이노, O-메 즉시 프 클 아이노, P -메 즉시 프 클 아이노, P -데 크 포 프 글 아이노, P -제 아오랜들 아미노, M -메 틸페네틸아미노, P -메 틸페네틸아미노, O-플로로페네틸아미노, M -클로로페네틸아미노, P -플루오 - 로페네틸아미노, M -플로로페네틸아미노, P -메 톡시페네틸아미노, P -니트로페네틸아미노, P -시아노페네틸아 로페네틸아미노, O-메톡시페네틸아미노, D -시아노페네틸아

미노, 페닐프로필아미노, 페닐부틸아미노, 페닐펜틸아미노, 페닐헥실아미노, 나프틸아미노, 비페닐릴아미노, 안트릴아미노 및 페난트릴아미노 등을 듈 수 있다. 바람직한 것들은 벤질아미노, p-메틸벤질아미노, 페네틸아미노, p-메톡시페네틸아미노 및 페닐프로필아미노이다.

C₁₋₆ 알킬카르보닐아미노기로서는 메틸카르보닐아미노, 에틸카르보닐아미노, n-프로필카르보닐아미노, i-프로필카르보닐아미노, n-부틸카르보닐아미노, i-부틸카르보닐아미노, s-부틸카르보닐아미노, t-부틸카르보닐아미노, 1-펜틸카르보닐아미노, 1-펜틸카르보닐아미노, 1-펜틸카르보닐아미노, i-펜틸카르보닐아미노, i-펜틸카르보닐아미노, 네오펜틸카르보닐아미노, t-펜틸카르보닐아미노, 1-헥실카르보닐아미노, 2-헥실카르보닐아미노, B을 들 수 있다. 바람직한 것들은 메틸카르보닐아미노, 메틸카르보닐아미노, 매플카르보닐아미노, n-프로필카르보닐아미노, n-부틸카르보닐아미노이다.

아릴카르보닐아미노기로서는 벤조일아미노, 1-나프팅카르보닐아미노, 2-나프틸카르보닐아미노, o-메틸벤조일아미노, m-메틸벤조일아미노, p-메틸벤조일아미노, o-클로로벤조일아미노, p-클로로벤조일아미노, o-플루오로벤조일아미노, p-플루오로벤조일아미노, p-네트로벤조일아미노, p-네아노벤조일아미노, p-네트로벤조일아미노, p-시아노벤조일아미노 및 p-페닐벤조일아미노 등을 들 수 있다. 바람직한 것들은 벤조일아미노와 p-플루오로벤조일아미노이다.

아릴 C₁₋₆ 알킬카르보닐아미노기로서는 페닐아세틸아미노, o-메틸페닐아세틸아미노, m-메틸페닐아세틸아미노, p-페틸페닐아세틸아미노, p-플루오로페닐아세틸아미노, p-플루오로페닐아세틸아미노, p-메틸페닐아세틸아미노, p-플루오로페닐아세틸아미노, b-미톡시페닐아세틸아미노, p-니트로페닐아세夏아미노, p-시아노페닐아세틸아미노, 2-페닐에퇼카르보닐아미노, 3-페닐프로필카르보닐아미노, 4-페닐부틸카르보닐아미노, 5-페닐펜틸카르보닐아미노 및 6-페닐헥실카르보닐아미노 등을 듈 수 있다. 바람직한 것들은 페닐아세틸아미노 안 2-페닐에틸카르보닐아미노이다.

C1-6 알킬술포닐아미노기로서는 메틸술포닐아미노, 메틸술포닐아미노, n-프로필술포닐아미노, i-프로필술 포닐아미노, n-부틸술포닐아미노, i-부틸술포닐아미노, s-부틸술포닐아미노, t-부틸술포닐아미노, 1-펜틸 술포닐아미노, 2-펜틸술포닐아미노, 3-펜틸술포닐아미노, i-펜틸술포닐아미노, 네오펜틸술포닐아미노, t-펜틸술포닐아미노, 1-헥실술포닐아미노, 2-헥실술포닐아미노 및 3-헥실술포닐아미노 등을 들 수 있다. 바 람직한 것들은 메틸술포닐아미노, 메틸술포닐아미노, n-프로필술포닐아미노, i-프로필술포닐아미노 및 n-부팅술포닐아미노이다.

아릴술포닐아미노기로서는 벤젠술포닐아미노 및 p-톨루엔술포닐아미노를 들 수 있다.

C₁₋₆ 알킬아미노카르보닐기로서는 메틸아미노카르보닐, 메틸아미노카르보닐, n-프로필아미노카르보닐, i-프로필아미노카르보닐, n-부틸아미노카르보닐, i-무틸아미노카르보닐, s-부팅아미노카르보닐, t-부틸아미노카르보닐, t-부틸아미노카르보닐, t-펜틸아미노카르보닐, t-펜틸아미노카르보닐, i-펜틸아미노카르보닐, i-펜틸아미노카르보닐, l-헥실아미노카르보닐, 2-헥실아미노카르보닐, b-프로필아미노카르보닐, n-프로필아미노카르보닐, 에틸아미노카르보닐, n-프로필아미노카르보닐, i-프로필아미노카르보닐 및 n-부틸아미노카르보닐이다.

디 C₁₋₆ 알킬아미노카르보닐기로서는 디메틸아미노카르보닐, 디에틸아미노카르보닐, 디-n-프로필아미노카르보닐, 디-i-프로필아미노카르보닐, 디-c-프로필아미노카르보닐, 디-n-부틸아미노카르보닐, 디-i-부틸아미노카르보닐, 디-s-부틸아미노카르보닐, 디-1-벤틸아미노카르보닐, 디-c-벤틸아미노카르보닐, 디-1-벤틸아미노카르보닐, 디-1-프로필아미노카르보닐, 디-I-프로필아미노카르보닐, 디-c-프로필아미노카르보닐 및 디-n-부틸아미노카르보닐이다.

아릴 C₁₋₆ 알킬아미노카르보닐기로서는 벤질아미노카르보닐, o-메틸벤질아미노카르보닐, m-메틸벤질아미노 카르보닐, p-메틸벤질아미노카르보닐, o-클로로벤질아미노카르보닐, p-클로로벤질아미노카르보닐, o-플루 오로벤질아미노카르보닐, p-플루오로벤질아미노카르보닐, o-메톡시벤질아미노카르보닐, p-메톡시벤질아미 노카르보닐, p-니트로벤질아미노카르보닐, p-시아노벤질아미노카르보닐, 페네틸아미노카르보닐, 페네틸아 미노카르보닐, p-메틸페네틸아미노카르보닐, p-클로로페네틸아미노카르보닐, p-시아노페네틸아미노카르보 닐, 페네틸아미노카르보닐, 3-페닐프로필아미노카르보닐, 4-페닐부틸아미노카르보닐, 5-페닐펜틸아미노카 르보닐 및 6-페닐렉실아미노카르보닐 등을 들 수 있다. 바람직한 것들은 벤질아미노카르보닐, p-메틸벤질 아미노카르보닐, p-클로로벤질아미노카르보닐, p-플루오로벤질아미노카르보닐 및 페네틸아미노카르보닐이

C₁₋₆ 알킬카르보닐기로서는 메틸카르보닐, 메틸카르보닐, n-프로필카르보닐, i-프로필카르보닐, n-부틸카르보닐, i-부틸카르보닐, s-부틸카르보닐, t-부틸카르보닐, 1-펜틸카르보닐, 2-펜탈카르보닐, 3-펜틸카르보닐, i-펜틸카르보닐, i-펜틸카르보닐, 네오펜틸카르보닐, t-펜틸카르보닐, 1-헥실카르보닐, 2-헥실카르보닐 및 3-헥실카르보닐 등을 들 수 있다. 바람직한 것들은 메틸카르보닐, 에틸카르보닐, n-프로필카르보닐, i-프로필카르보닐, n-부틸카르보닐이다.

아릴카르보닐기로서는 벤조일, p-메틸벤조일, p-t-부틸벤조일, p-메톡시벤조일, p-클로로벤조일, p-니트로벤조일 및 p-시아노벤조일 등을 들 수 있다. 바람직한 것들은 벤조일, p-니트로벤조일 및 p-시아노벤조익이다

아릴 C₁₋₆ 알킬카르보닐기로서는 페닐아세틸, p-메틸페닐아세틸, p-t-부틸페닐아세틸,

p-메톡시페닐아세틸, p-클로로페닐아세틸, p-니트로페닐아세틸, p-시아노페닐아세털, 페네틸카르보닐, 3-페닐프로필, 4-페닐부틸, 5-페닐펜틸 및 6-페닐핵실 등용 들 수 있다. 바람직한 것들은 페닐아세틸 및 페네틸카르보닐이다.

C₁₋₆ 알콕시카르보닐기로서는 메톡시카르보닐, 에톡시카르보닐, n-프로폭시카르보닐, i-프로폭시카르보닐, n-부톡시카르보닐, i-부톡시카르보닐, s-부톡시카르보닐, t-부톡시카르보닐, 1-펜틸옥시카르보닐, 2-펜틸옥시카르보닐, i-펜틸옥시카르보닐, t-펜틸옥시카르보닐, n-부톡시카르보닐, n-부톡시카르보닐, n-부톡시카르보닐, s-부톡시카르보닐, g-부톡시카르보닐, s-부톡시카르보닐 및 t-부톡시카르보닐이다.

아릴옥시카르보닐기로서는 페녹시카르보닐, o-메틸페녹시카르보닐, p-메틸페녹시카르보닐, p-클로로페녹 시카르보닐, p-퓰루오로페녹시카르보닐, p-메톡시페녹시카르보닐, p-니트로페녹시카르보닐, p-시아노페녹 시카르보닐, 1-나프록시카르보닐 및 2-나프톡시카르보닐을 둘 수 있다.

아릴 C₁₋₆ 알킬옥시카르보닐기로서는 벤질옥시카르보닐, o-메틸벤질옥시카르보닐, p-메틸벤질옥시카르보닐, p-큫로로벤질옥시카르보닐, p-플루오로벤질옥시카르보닐, p-메톡시벤질옥시카르 보닐, p-니트로벤질옥시카르보닐, p-시아노벤질옥시카르보닐, 1-나프톡시벤질옥시카르보닐, 2-나프톡시벤

모일, p-디트노벤일록시가르모일, p 서에모덴골록세가르모임. 질옥시카르보일 및 피리딜메틸옥시카르보일 등을 들 수 있다.

C₁₋₆ 알킬카르보닐옥시기로서는 메틸카르보닐옥시, 메틸카르보닐옥시, n-프로필카르보닐옥시, i-프로필카르보닐옥시, n-부틸카르보닐옥시, i-프로필카르보닐옥시, t-부틸카르보닐옥시, 1-펜틸 르보닐옥시, n-부틸카르보닐옥시, i-부틸카르보닐옥시, s-벤틸카르보닐옥시, t-벤틸카르보닐옥시, 네오펜틸카르보닐옥시, t-펜틸카르보닐옥시, 1-헥실카르보닐옥시, 2-헥실카르보닐옥시, 3-헥실카르보닐옥시, 1-메틸-n-펜틸카르보 닐옥시, 1,1,2-트리메틸-n-프로필카르보닐옥시, 1,2,2-트리메틸-n-프로필카르보닐옥시 및 3,3-디메틸n-부틸카르보닐옥시 등을 들 수 있다. 바람직한 것들은 메틸카르보닐옥시, 메틸카르보닐옥시, n-프로필카 르보닐옥시, i-프로필카르보닐옥시, n-부틸카르보닐옥시 및 t-부틸카르보닐옥시이다.

아릴카르보닐옥시기로서는 벤조일옥시, o-메틸벤조일옥시, p-메틸벤조일옥시, p-클로로벤조일옥시, p-플 루오로벤조일옥시, p-메톡시벤조일옥시, p-니트로벤조일옥시, p-시아노벤조일옥시, 1-나프틸벤조일옥시 및 2-나프틸벤조일옥시 등을 들 수 있다.

아릴 C₁₋₆ 알킬카르보닐옥시기로서는 벤질카르보닐옥시, o-메틸벤질카르보닐옥시,

p-메틸벤질카르보닐옥시, p-클로로벤질카르보닐옥시, p-플루오로벤질카르보닐옥시, p-메톡시벤질카르보닐옥시, p-니트로벤질카르보닐옥시, p-시아노벤질카르보닐옥시, 1-나프톡시메틸카르보닐옥시, 2-나프톡시메틸카르보닐옥시 및 피리딜메틸옥시카르보닐옥시 등을 들 수 있다.

C_{I-6} 알킬우레아기로서는 메틸우레아, 메틸우레아, n-프로필우레아, i-프로필우레아, n-부틸우레아, i-부 틸우레아, s-부틸우레아, t-부틸우레아, 1-펜틸우레아, 2-펜틸우레아, 3-펜틸우레아, i-펜틸우레아, 네오 펜틸우레아, t-펜틸우레아, 1-헥실우레아, 2-헥실우레아, 3-헥실우레아, 1-메틸-n-펜틸우레아, 1,1,2-트 리메틸-n-프로필우레아, 1,2,2-트리메틸-n-프로필우레아 및 3,3-디메틸-n-부틸우레아 등을 들 수 있다.

아릴우레아기로서는 페닐우레아, o-메틸페닐우레야, p-메틸페닐우레아, p-클로로페닐우레아, p-플루오로페닐우레아, p-메톡시페닐우레아, p-니트로페닐우레아, p-시아노페닐우레아, 1-나프틸우레아 및 2-나프틸우레아 등을 들 수 있다.

아릴 C_{I-6} 알킬우레아기로서는 벤질우레아, o-메틸벤질우레아, p-메틸벤질우레아, p-클로로벤질우레아, p-블루오로벤질우레아, p-네트로벤질우레아, p-시아노벤질우레아, 1-나프틸메틸우레아, 2-나프틸메틸우레아 및 피리딜메틸우레아 등을 둘 수 있다.

C₁₋₆ 알킬티오우레아기로서는 메틸티오우레아, 메틸티오우레아, n-프로필티오우레아, i-프로필티오우레아, n-부틸티오우레아, i-부틸티오우레아, s-부틸티오우레아, t-부틸티오우레아, 1-펜틸티오우레아, 2-펜틸티오우레아, 3-펜틸티오우레아, i-펜틸티오우레아, 네오펜틸티오우레아, t-펜틸티오우레아, 1-헥실티오우레아, 2-헥실티오우레아, 3-핵실티오우레아, 1-메틸-n-펜틸티오우레아, 1,1,2-트리메틸-n-프로필티오우레아, 1,2,2-트리메틸-n-프로필티오우레아 및 3,3-디메틸-n-부틸티오우레아 등을 들 수 있다.

아릴티오우레아기로서는 페닐티오우레아, o-메틸페닐티오우레아, p-메틸페닐티오우레아, p-클로로페닐티오우레아, p-플루오로페닐티오우레아, p-메톡시페닐티오우레아, p-니트로페닐티오우레아, p-시아노페닐티오우레아, 1-나프틸티오우레아 및 2-나프틸티오우레아 등을 둘 수 있다.

아릴 C₁₋₆ 알킬티오우레아기로서는 벤질티오우레아, o-메틸벤질티오우레아, p-메틸벤질티오우레아, p-클로로벤질티오우레아, p-플루오로벤질티오우레아, p-메톡시벤질티오우레아, p-니트로벤질티오우레아, p-시아노벤질티오우레아, 1-나프틸메틸티오우레아, 2-나프틸메틸티오우레아 및 피리딜메틸티오우레아 등을 들소 있다.

본 발명에서 사용되는 바람직한 화합물로서는 아래의 화합물들을 들 수 있다.

- (1) 구조식 (I)에 있어서, 크로만환의 R¹의 치환위치가 7 위치 또는 8 위치이고, 크로만환의 Z의 치환위치가 7 위치 또는 8 위치이고, 크로만환의 Z의 치환위치가 6 위치이며, -X-Y-Z-의 조합이 -C(0)-NH-, -C(0)-NMe-, -C(0)-NH-CH₂-, -CH₂-NH-, -CH₂-NH-- CH₂-NH-- CH₂-, -SO₂-NH- 또는 -NH-C(0)-NH-인 크로만 유도체 또는 이들의 염.
- (2) 상기 (1)항에 있어서, R^3 및 R^4 가 모두 C_{1-6} 알킬기 {상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 히드록실기에 의하여 치환되거나 비치환임} 를 나타내는 크로만 유도체 또는 이들의 염.
- (3) 상기 (2)항에 있어서, R^5 가 히드록실기를 나타내거나, 혹은 R^6 와 함께 하나의 결합을 형성하는 크로만 유도체 또는 이들의 염.

(4) 상기 (1)함에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{3-6} 시클로알킬기 {상기 알킬기, 알케닐기, 알케닐기 및 시클로알킬기는 각각 할로겐 원자, 카르복실기, C_{2-6} 알콕시카르보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 [상기 페닐기는 R^2 (R^2 는 할로겐 원자, 히드록실기, C_{1-4} 알킬기 또는 C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임], 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임), 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임)를 나타내거나,

 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌 {상기 부틸렌기 및 펜틸렌기는 각각 C_{1-4} 알킬기, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C_{1-4} 알콕시기 또는 C_{1-6} 알킬카르보닐옥시기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂),X¹(CH₂), {여기서 I 및 p는 각각 1, 2 또는 3을 나타내는 반면, 이들의 합은 3, 4 또는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁₋₄ 알킬기 또는 페닐기 (상기 페닐기는 R²에 의하여 치환되거나 비치환임)에 의하여 치환되거나 비치환임)를 나타냄}을 형성하거나, 혹은

R⁷ 및 R⁸은 이들이 결합되어 있는 질소원자와 함께 피를릴기, 피라졸릴기, 이미다졸릴기, 1,2,3-트리아졸 릴기, 1,2,4-트리아졸릴기 또는 1,2,3,4-테트라졸릴기 [이들은 모두가 R¹⁵ (R¹⁵는 R¹⁰에서 정의한 바와 동 일한 정의를 가짐)에 의하여 치환되거나 비치환임] 를 형성하는 크로만 유도체 또는 이들의 염.

(5) 상기 (3)항에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{3-6} 시클로알킬기 {상기 알킬기, 알케닐기, 알케닐기 및 시클로알킬기는 각각 할로겐 원자, 카르복실기, C_{2-6} 알콕시카르보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 [상기 페닐기는 R^2 (R^2 는 할로겐 원자, 히드록실기, C_{1-4} 알킬기 또는 C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임], 포르밀기, 시아노기 또는 나트로기에 의하여 치환되거나 비치환임), 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임)를 나타내거나,

R⁷ 및 R⁸은 함께 1,4-부틸렌 또는 1,5-펜틸렌 {상기 부틸렌기 및 펜틸렌기는 각각 C₁₋₄ 알킬기, 페닐기 (상 기 페닐기는 R²에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C₁₋₄ 알콕시기 또는 C₁₋₄ 알킬카 르보닐옥사기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂)₁X¹(CH₂)_p {여기서 I 및 p는 각각 1, 2 또는 3을 나타내는 반면, 이들의 합은 3, 4 또는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁₋₄ 알킬기 또는 페닐기 (상기 페닐기는 R²에 의하여 치환되거나 비치환임)를 나타냄]를 나타냄}을 형성하거나, 혹은

 R^{7} 및 R^{8} 은 이들이 결합되어 있는 질소원자와 함께 피를릴기, 피라졸릴기, 이미다졸릴기, 1,2,3-트리아졸 릴기, 1,2,4-트리아졸릴기 또는 1,2,3,4-테트라졸릴기 [이들은 모두가 R^{15} (R^{15} 는 앞서 정의한 바와 동일한 정의를 가짐)에 의하여 치환되거나 비치환임] 를 형성하는 크로만 유도체 또는 이들의 염.

- (6) 상기 (1)항에 있어서, R^1 은 수소원자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 히드록실기에 의하여 치환되거나 비치환임), C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), C_{3-6} 시클로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포름아미도기, 시안아미드기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, 아릴카르보닐이미노기, 아릴 C_{1-6} 알킬카르보닐아미노기, 아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 디 C_{1-6} 알킬아미노카르보닐기, 디 C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기, 아릴 C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기 또는 아릴 C_{1-6} 알킬카르보닐아미노기를 나타내는 크로만 유도체 또는 이들의 염.
- (7) 상기 (4)항에 있어서, R¹은 수소원자, 할로겐 원자, C₁₋₆ 알킬기 (상기 알킬기는 할로겐 원자, C₁₋₆ 알콕시기 또는 히드록실기에 의하여 치환되거나 비치환임), C₁₋₆ 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), C₃₋₆ 시큘로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포름아미도기, 시안아미드기, 아미노기, C₁₋₆ 알킬아미노기, 디 C₁₋₆ 알킬아미노기, C₁₋₆ 알킬아미노기, 다 C₁₋₆ 알킬아미노기, C₁₋₆ 알킬아미노기, 아리카르보닐기, C₁₋₆ 알킬아미노카르보닐기, 다 C₁₋₆ 알킬아미노카르보닐기, 다 C₁₋₆ 알킬아미노카르보닐기, 다 C₁₋₆ 알킬아미노카르보닐기, 다 (아릴 C₁₋₆ 알킬아미노카르보닐기, 다 (아릴 C₁₋₆ 알킬아미노카르보닐기, C₁₋₆ 알킬아미노카르보닐기, C₁₋₆ 알킬카르보닐기, 아릴욱시카르보닐기, 아릴 C₁₋₆ 알킬카르보닐아미노기, 아릴카르보닐아미노기 또는 아릴 C₁₋₆ 알킬카르보닐아미노기를 나타내는 크로만 유도체 또는 이들의 영.

(8) 상기 (5)항에 있어서, R^1 은 수소원자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 히드록실기에 의하여 치환되거나 비치환임), C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), C_{3-6} 시클로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포륨아미도기, 시안아미드기, 아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기 또는 아릴 C_{1-6} 알킬카르보닐아미노기를 나타내는 크로만 유도체 또는 이들의 염.

(9) 상기 (6)항에 있어서, R⁹는 수소원자, 할로겐 원자, C₁₋₆ 알킬기, C₁₋₆ 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), 히드록실기, 니트로기, 시아노기, 포르밀기, 아미노기, C₁₋₆ 알킬아미노기, 디 C₁₋₆ 알킬아미노기, C₁₋₆ 알킬아미노기, C₁₋₆ 알킬아미노기, C₁₋₆ 알킬아미노카르보닐기, C₁₋₆ 알킬승포닐기 또는 카르복실기를 나타내는 크로만 유도체 또는 이들의 염.

(10) 상기 (7)항에 있어서, R^9 는 수소뭔자, 할로겐 원자, C_{1-6} 알킬기, C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), 히드록실기, 니트로기, 시아노기, 포르밀기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬승포날기 또는 카르복실기를 나타내는 크로만 유도체 또는 이들의 염.

(11) 상기 (8)항에 있어서, R^9 는 수소원자, 할로겐 원자, C_{1-6} 알킬기, C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), 히드록실기, 니트로기, 시아노기, 포르밀기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노카르보실기, C_{1-6} 알킬수포실기 또는 카르복실기를 나타내는 크로만 유도체 또는 이들의 염.

(12) 상기 (9)항에 있어서, R³ 및 R⁴가 모두 메틸기를 나타내는 크로만 유도체 또는 이들의 염.

(13) 상기 (10)항에 있어서, R³ 및 R⁴가 모두 메틸기를 나타내는 크로만 유도체 또는 이들의 염.

(14) 상기 (11)항에 있어서, R³ 및 R⁴가 모두 메틸기를 나타내는 크로만 유도체 또는 이들의 염.

(15) 상기 (14)항에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-8} 알킬기, C_{3-8} 시클로알킬기 {상기 알킬기 및 시클로알킬기는 각각 할로겐 원자, 카르복실기, C_{2-8} 알콕시카르보닐기, 히드록실기, C_{1-8} 알콕시기를 나타냄) 기, 페닐기 [상기 페닐기는 R^2 (R^2 는 할로겐 원자, 히드록실기, C_{1-4} 알킬기 또는 C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임], 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임)를 나타내거나,

 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌 {상기 부틸렌기 및 펜틸렌기는 각각 C_{1-4} 알킬기, 페닐기 (상 기 페닐기는 R^7 에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C_{1-4} 알콕시기 또는 C_{1-6} 알킬카르보닐옥시기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂),X¹(CH₂), {여기서 I 및 p는 각각 1, 2 또는 3을 나타내는 반면, 이들의 함은 3, 4 또 는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁₋₄ 알킬기 또는 페닐기 (상기 페닐기는 R² 에 의하여 치환되거나 비치환임)를 나타냄]를 나타냄}을 형성하거나, 혹은

 R^{7} 및 R^{8} 은 이들이 결합되어 있는 질소원자와 함께 피를릴기, 피라졸릴기 또는 이미다졸릴기 [이들은 모두 가 R^{15} (R^{15} 는 R^{10} 에서 정의한 바와 동일한 정의를 가짐)에 의하여 치환되거나 비치환임] 를 형성하고,

$$(R^9)_m$$
 $\stackrel{[i]}{=}$ $(R^9)_m$ $\stackrel{[i]}{=}$

[위의 식에서 R^9 는 수소원자, 할로겐 원자, C_{1-6} 알칼기, C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 히드록실기, 니트로기, 시아노기, 포르밀기, 포름아미도기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬

카르보닐아미노기, C_{1-6} 알킬술포닐아미노기, 아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 디 C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬카르보닐기, C_{1-6} 알콕시카르보닐기, 아미노술포닐기, C_{1-6} 알킬술포닐기 또는 카르복실기 나타냉.] 을 타나내는 크로만 유도체 또는 이톨의 염.

- (16) 상기 (15)항에 있어서, R^1 은 수소원자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자에 의하여 치환되거나 비치환임), C_{3-6} 시클로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포름아미도기, 아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, 아릴카르보닐아미노기, 아리노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기 또는 C_{1-6} 알콕시카르보닐기를 나타내는 크로만 유도체 또는 이들의 영.
- (17) 상기 (16)항에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{3-6} 시클로알킬기를 나타내거나, 혹은 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌을 형성하거나, 혹은 R^7 및 R^8 은 함께 (CH_2), X^1 (CH_2), X^1 (CH_2), X^1 (CH_3), X^2 (CH_3), X^2 (CH_3), X^3 (X^3), X^3 (X^3
- (18) 상기 (17)항에 있어서, X-Y-Z의 조합이 -C(0)-NH-, -C(0)-NMe- 또는 -NH-C(0)-NH-인 크로만 유도체 또는 이동의 염.
- (19) 상기 (18)항에 있어서, R^1 은 수소원자, 니트로기, 시아노기, 카르복실기, 아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬카르보닐아미노기, 아릴 C_{1-6} 알킬카르보닐아미노기 또는 C_{1-6} 알킬카르보닐아미노기 또는 C_{1-6} 알콕시카르보닐기를 나타내는 크로만 유도체 또는 이들의 염.
- (20) 상기 (19)항에 있어서, R¹은 니트로기 또는 시아노기를 나타내는 크로만 유도체 또는 이들의 염.
- (21) 상기 (20)항에 있어서, R^7 은 C_{1-6} 알킬기 또는 C_{3-6} 시큘로알킬기를 나타내고, R^8 은 수소원자를 나타내며, R^7 및 R^8 은 함께 1,4-부틸렌을 나타내거나, 혹은 R^7 및 R^8 은 이들이 결합해 있는 질소원자와 더불어 피롱기를 형성하는 크로만 유도체 또는 이들의 염.
- (22) 상기 (21)항에 있어서, R^1 은 니트로기를 나타내고, R^7 및 R^8 은 이들이 결합해 있는 질소원자와 더불어 피룡기를 형성하며, X-Y-Z의 조합이 -C(0)-NH- 이고, R^9 는 수소원자 또는 C_{1-6} 알콕시기를 나타내는 크로만 유도체 또는 이들의 염.
- (23) 상기 (21)항에 있어서, R^1 은 니트로기를 나타내고, R^2 및 R^8 은 함께 1,4-부틸렌기를 나타내며, R^9 는 수소원자, 플루오르 원자, 염소원자, 메틸기, 메톡시기, 에톡시기 또는 니트로기를 나타내는 크로만 유도체 또는 이들의 염.
- (24) 상기 (21)항에 있어서, R^1 은 니트로기를 나타내고, R^7 은 시클로프로필기를 나타내며, R^8 는 수소원자를 나타내고, R^9 는 수소원자, 메톡시기, 에톡시기, 페닐기, 니트로기, 하드록실기, 메틸아미노기, 디메틸아미노기 또는 아세트아미도기를 나타내며, X-Y-Z의 조합이 -C(0)-NH-인 크로만 유도체 또는 이들의 염.
- (25) 상기 (21)항에 있어서, R^1 은 니트로기를 나타내고, R^2 은 메틸기 또는 이소프로필기를 나타내며, R^3 는 수소원자를 나타내고, R^3 는 수소원자, 메톡시기, 페닐기, 니트로기 또는 아세트아미도기를 나타내는 크로만 유도체 또는 이들의 염.
- 본 발명에서 사용할 수 있는 화합물들의 구체적인 예는 아래의 표에 나와 있다. 그러나 본 발명은 이들에 의하여 한정되는 것은 아니다. 본 명세서에서 "Me" 메틸기를, "Et" 메틸기를, "Pr" 프로필기를, "Bu" 부 틸기름, "Ac" 아세틸기 (COCH₃)를, 그리고 "-"는 결합을 각각 의미한다.

$$\begin{array}{c|c}
 & R^8 & R^7 \\
 & R^6 & R^5 \\
 & R^4 & R^3
\end{array}$$

					П		U	П		
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	х	Υ	Z
Н	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
F.	Me	Me	OH	Н	-(Cł	12)4-	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH	12)4-	1	CO	NH	-
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH	12)4-	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(Cl	H ₂) ₄ -	1	CO	NH	•
C ₂ F ₅	Me	Me	결합		Me	Н	1	CO	NH	-
OMe	Me	Me	OН	Н	-(CI	H ₂) ₄ -	2	CO	NH	•
OCF ₃	Me	Me	OH	Н	-	H ₂) ₄ -	1	CO	NH	-
CH ₂ OMe	Me	Me	OH	Н	-(Cl	H ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	OH	Н		H ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	-
CN	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	•
CHO	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂	NH	-
CO ₂ H	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	~L
ОH	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	결합			H ₂) ₄ -	1	CO	NH	- NILI
NHCHO	Me	Me	OH	H		$H_2)_4$ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н		r H	1	CO	NH	-
NH ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	
NHÇOMe	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	•
CONH ₂	Me	Me	OH	Н		H ₂) ₄ -	4	CO	NH	-
CONHMe	Me	Me	ОН	Н		H ₂) ₄ -		CO	NH	•
CONMe ₂	Me	Me	OH	Н		H ₂) ₄ -		CO	NH	•
COMe	Me	Me	ОН	Н	Et	Н	1	CO	NH	•
CO ₂ Me	Me	Me	ОН	Н	Me		1	CO	NH	•
CO ₂ Ph	Me	Me	OAc	Н	Ac		1	CO	NH	•
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-(0	CH ₂) ₄ -	1	CO	NH	•

R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Y	Z
н	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	•
F	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	•
Br	n-Pr	n-Pr	ОН	Н	-(CH	12)4-	1	CO	NH	-
Me	Me	Me	OH	Н	Et	Н	1	CO	NH	•
CF ₃	Me	Et	OH	Н	-(CH		2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(CH	1 ₂) ₄ -	1	CO	NH	•
C ₂ F ₅	Me	Me	결합		Me	Н	1	CO	NH	•
OMe	Me	Me	OH	Н		12)4-	2	CO	NH	-
OCF ₃	Me	Me	OH	Н	·-(Cł		1	CO	NH	•
CH ₂ OMe	Me	Me	OH	Н		12)4-	1	CO	NH	-
c-Pr	Me	Me	OH	Н		12)4-	3	CO	NH	-
NO ₂	Me	Me	ОН	Н		12)4-	1	CO	NH	•
CN	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	-
CHO	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂	NH	-
CO ₂ H	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	-
ОH	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂		CH ₂
CH ₂ OH	Me	Me	결합		-	H ₂) ₄ -	1	CO	NH	- NII I
NHCHO	Me	Me	OH	Н		H ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н		r H	1	CO	NH	-
NH ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	-
NMe ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	-
NHCOMe	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	CH₂
NHSO₂Me	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	•
CONH ₂	Me	Me	OH	Н		H ₂) ₄ -	4	CO	NH	•
CONHMe	Me	Me	ОН	Н		H ₂) ₄ -	3	CO	NH	•
CONMe ₂	Me	Me	ОН	Н		H ₂) ₄ -		CO	NH	•
COMe	Me	Me	OH	Н	Et	Н	1	CO	NH	•
CO ₂ Me	Me	Me	ОН	Н	Ме		1	CO	NH	•
CO ₂ Ph	Me	Me	OAc	Н	Ac	Н	1	CO	NH	•
CO ₂ CH ₂ Ph	Me	Ме	OH	Н	-(C	CH ₂) ₄ -	1	CO	NH	•

$$(CH_2)_n - X - Y - Z$$

$$R^{8} N - R^{7}$$

$$R^{6} R^{5}$$

$$R^{4}$$

$$R^{3}$$

R ¹	R³	R⁴	R⁵	R ⁶	R ⁷ R ⁸	n	X	Y	Z
Н	Me	Me	ОН	н	-(CH ₂) ₄ -	1	CO	NH	•
F	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	•
Me	Me	Me	ОН	Н	Et H	1	CO	NH	•
CF ₃	Me	Et	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
C ₂ F ₅	Me	Me	결합		Me H	1	CO	NH	-
OMe	Me	Me	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	•
OCF ₃	Me	Ме	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CH ₂ OMe	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	•
c-Pr	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	•
NO ₂	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	•
CN	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	•
CHO	Me	Me	ОН	Н	-(CH ₂) ₄ -		CH ₂	NH	•
CO₂H	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	С П
ОН	Me	Me	ОН	Н	-(CH ₂) ₄ -		CH₂	NH	CH ₂
CH ₂ OH	Me	Me	결합		-(CH ₂) ₄ -		CO	NH	- NILI
инсно	Me	Me	ОН	Н	-(CH ₂) ₄ -		NH	CO	NH
NHCN	Me	Мө	ОН	Н	c-Pr H	1	CO	NH	•
NH ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -		CO	NH	-
NHMe	Me	Me	OAc	Н	-(CH ₂) ₄ -		CO	NH	•
NMe ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -		CO	NH	-
NHCOMe	Me	Me	OH	Н	-(CH ₂) ₄ ·		CO	NH	CH ₂
NHSO ₂ Me	Me	Me	ОН	Н	-(CH ₂) ₄ ·		CO	NH	-
CONH ₂	Me	Me	ОН	Н	-(CH ₂) ₄ ·		CO	NH	•
CONHMe	Me	Me	OH	Н	-(CH ₂) ₄		CO	NH	•
CONMe ₂	Me	Me	OH	Н	-(CH ₂) ₄		CO	NH	•
COMe	Me	Me	OH	Н	Et H	1	CO	NH	•
CO ₂ Me	Me	Me	OH	Н	Me H	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	Ac H		CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	OH	Н	-(CH ₂) ₄	- 1	CO	NH	-

$$(CH_2)_n - X - Y - Z$$

$$R^{1}$$

$$O$$

$$R^{6}$$

$$R^{5}$$

$$R^{4}$$

$$R^{3}$$

					H	_	U	n		
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Υ	Z
Н	Me	Me	ОН	н	-(Cl	12)4-	1	CO	NH	-
F	Me	Me	ОН	Н	-(Cl	12)4-	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н		12)4-	1	CO	NH	-
Me	Me	Ме	ОН	н	Et	Н	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CI	H ₂) ₄ -	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	ОН	Н	-(Cl	H ₂) ₄ -	1	CO	NH	•
C ₂ F ₅	Me	Me	결합		Me	Н	1	CO	NH	•
OMe	Me	Me	ОН	Н	-(C	H ₂) ₄ -	2	CO	NH	•
OCF ₃	Me	Me	ОН	Н	-(G	H ₂) ₄ -	1	CO	NH	-
CH ₂ OMe	Me	Me	ОН	Н	-(C	H ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	ОН	Н	-(C	H ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	ОН	Н	-(C	H ₂) ₄ -	1	CO	NH	-
CN	Me	Me	OH	Н	-(C	H ₂) ₄ -	1	CO	NH	-
CHO	Ме	Me	ОН	Н	-(C	H ₂) ₄ -	1	CH ₂	NH	•
CO ₂ H	Me	Me	ОН	Н	-(C	H ₂) ₄ -	1	CO	NH	-
OH	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	결합			H ₂) ₄ -	1	CO	NH	- NII 1
NHCHO	Me	Me	OH	Н	-(C	H ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н	c-F	r H	1	CO	NH	-
NH ₂	Me	Me	OAc	Н	-(C	CH ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н	-(C	CH ₂) ₄ -	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н	-(0	CH ₂) ₄ -	1	CO	NH	-
NHCOMe	Me	Me	ОН	Н	-(0	CH ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Ме	ОН	Н	-(0	CH ₂) ₄ -	1	CO	NH	-
CONH ₂	Me	Me	ОН	Н		CH ₂) ₄ -		CO	NH	-
CONHMe	Me	Ме	ОН	Н		CH ₂) ₄ -		CO	NH	•
CONMe ₂	Ме	Me	ОН	Н	-(0	CH ₂) ₄ ·		CO	NH	-
COMe	Me	Me	OH	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me	Ме	ОН	Н	M		1	CO		-
CO ₂ Ph	Me	Ме	OAc	Н	Ad		1	CO		•
CO ₂ CH ₂ Ph	Me	Ме	OH	Н	-(CH ₂) ₄	- 1	CO	NH	•

R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Υ	Z
H	Me	Me	ОН	Н	-(Cl	12)4-	1	CO	NH	-
F	Me	Me	OH	Н	-(Cł	12)4-	1	CO	NH	•
Br	n-Pr	ก-Pr	OH	Н	-(Cł	12)4-	1	CO	NH	•
Me	Me	Me	OH	Н	Et	Н	1	CO	NH	•
CF ₃	Me	Et	OH	Н		H ₂) ₄ -	2	CO	NH	CH ₂
CH₂CF₃	Et	Ме	OH	Н	-(CI	H ₂) ₄ -	1	CO	NH	-
C_2F_5	Me	Me	결합		Me	Н	1	CO	NH	-
OMe	Me	Me	OH	Н	-	H ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	OH	Н		H ₂) ₄ -	1 ,	CO	ИН	•
CH ₂ OMe	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	•
c-Pr	Me	Me	OH	Н	•	H ₂) ₄ -	3	CO	NH	•
NO ₂	Me	Me	OH	Н	•	H ₂) ₄ -	1	CO	NH NH	•
CN	Me	Me	OH	Н		$H_2)_4$ -	1	CO	NH	-
CHO	Me	Me	ОН	Н		$H_2)_4$ -	1	CH ₂	NH	-
CO₂H	Me	Me	OH	Н		$H_2)_4$ -	1	CO		CH ₂
ОН	Me	Me	ОН	Н		H ₂) ₄ -	1	CH ₂ CO	NH	OH ₂
CH ₂ OH	Me	Me	결합			H ₂) ₄ -	1	NH	CO	NH
NHCHO	Me	Me	OH	Н		H ₂) ₄ -	1		NH	1311
NHCN	Me	Me	OH	Н		r H	1	CO	NH	_
NH ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	
NHMe	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	
NMe ₂	Me	Me	OAc	Н	•	H ₂) ₄ -	1	CO	NH	CH:
NHCOMe	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	را ان -
NHSO₂Me	Me	Me	OH	Н		CH ₂) ₄ -		co	NH	_
CONH ₂	Me	Me	OH	Н		CH ₂) ₄ -			NH	-
CONHMe	Me	Me	OH	Н		CH ₂) ₄ -		CO		-
CONMe ₂	Me	Me	ОН	Н		CH ₂) ₄ -		CO		-
COMe	Me	Me	ОН	Н	Et	Н	1	CO		_
CO ₂ Me	Me		ОН	Н	Me		1	CO		•
CO ₂ Ph	Me		OAc		Ac		1	CO		
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-(CH ₂) ₄	- 1			

$$\begin{array}{c|c}
 & R^8 N^2 R^7 \\
 & R^6 R^5 \\
 & R^4 \\
 & R^3
\end{array}$$

					• • • • • • • • • • • • • • • • • • • •		_			
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
Н	Me	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	•
F	Me	Me	ОН	Н	-(Ci	12)4-	1	CO	NH	•
Br		n-Pr	ОН	Н	-(CI	12)4-	1	CO	NH	•
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	
CF ₃	Me	Et	ОН	Н	-(Cl	H ₂) ₄ -	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Ме	OH	Н	-(C	H ₂) ₄ -	1	CO	NH	•
C ₂ F ₅	Me	Me	결합		Ме	Н	1	CO	NH	•
OMe	Me	Me	OH	Н		H ₂) ₄ -	2	CO	NH	•
OCF ₃	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	-
CH₂OMe	Me	Me	OH	Н		$H_2)_4$ -	· 1	CO	NH	•
c-Pr	Me	Me	OH	Н		H ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-	H ₂) ₄ -	1	CO	NH	-
CN	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	-
CHO	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂		•
CO ₂ H	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	CH ₂
ОĤ	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂		UH ₂
CH ₂ OH	Me	Me	결합			CH ₂) ₄ -	1	CO	NH	NILI
NHCHO	Me	Me	OH	Н	-(C	CH ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н		r H	1	CO	NH	-
NH ₂	Me	Me	OAc	Н	-(0	CH ₂) ₄ -	1	CO	NH	-
NHMe	Me	Me	OAc	Н		CH ₂) ₄ -		CO	NH	•
NMe ₂	Me	Me	OAc	Н	-(0	CH ₂) ₄ -	. 1	CO	NH	-
NHCOMe	Me	Me	ОН	Н	-(0	CH ₂) ₄ -	. 1	CO	NH	CH
NHSO ₂ Me	Me	Me	OH	н	-((CH ₂) ₄ ·	. 1	CO		•
CONH ₂	Me	Me	ОН	Н	-(6	CH ₂) ₄ ·	- 4	CO		-
CONHMe	Me	Me	ОН	Н	-(CH ₂) ₄	- 3	CO		-
CONMe ₂	Me	Me	ОН	Н	-(CH ₂) ₄	- 2	CO		-
COMe	Me	Ме		н	Et			CO		-
CO ₂ Me	Me	Me		н	М	e H	1	CO		-
CO ₂ Ph	Me			. н	A	с Н	1	CC		•
CO ₂ CH ₂ Ph					-((CH ₂)	- 1	CC) NH	•

$$\begin{array}{c|c}
 & R^{8} N^{R^{7}} \\
 & R^{6} R^{5} \\
 & R^{4} \\
 & R^{3}
\end{array}$$

R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Υ	Z
н	Me	Me	ОН	Н	-(Cl	12)4-	1	co .	NH	-
F	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	•
Br	n-Pr	n-Pr	ОН	Н	-(Cł	12)4-	1	CO	NH	•
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	•
CF ₃	Me	Et	OH	Н	-(Cł	12)4-	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(Cl	12)4-	1	CO	NH	-
C ₂ F ₅	Me	Me	결합		Me	Н	1	CO	NH	-
OMe	Me	Me	OH	Н		H ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	-
CH ₂ OMe	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	OH	Н		H ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	-
CN	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	•
CHO	Me	Me	ОН	Н		H ₂) ₄ -	1	CH ₂	NH NH	•
CO ₂ H	Me	Me	ОН	Н		H ₂) ₄ -	1	CH ₂		CH₂
ОН	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	O1 12
CH ₂ OH	Me	Me	결합			H ₂) ₄ -	1	NH	CO	NH
инсно	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	
NHCN	Me	Me	ОН	Н		r H	1	CO	NH	
NH ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	
NHMe	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	
NMe ₂	Me	Me	OAc	Н	-	H ₂) ₄ -	1	CO	NH	CH ₂
NHCOMe	Me	Ме	ОН	Н		H ₂)₄-	1	CO	NH	2
NHSO ₂ Me	Me	Me	OH	Н		H ₂) ₄ -		co	NH	-
CONH ₂	Me	Me	ОН	Н		H ₂) ₄ -		CO	NH	
CONHMe	Me	Me	OH	Н		CH ₂) ₄ -		CO	NH	
CONMe ₂	Me	Me	OH	Н		CH ₂) ₄ -		CO	NH	
COMe	Me	Me	ОН	Н	Et	Н	1	CO		
CO₂Me	Me		OH	Н	Me		1	co		_
CO ₂ Ph	Me		OAc		Ac		1	CO		
CO ₂ CH ₂ Ph	Me	Me	OH	Н	-(0		- 1		(41)	

$$(CH_{2})_{n}-X-Y-Z$$

$$R^{8}_{N}-R^{7}_{R^{6}}$$

$$R^{6}_{R^{5}}$$

$$R^{4}_{R^{3}}$$

					R'	•	O'	'R'		
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷ F	8	ก	Х	Υ	Z
Н	Me	Me	ОН	Н	-(CH ₂).	4-	1	CO	NH	•
F	Me	Me	ОН	Н	-(CH ₂).	4	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH ₂)	4-	1	CO	NH	-
Me	Me	Me	ОН	Н	Et F		1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH ₂)	4"	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	н	-(CH ₂)	4"	1	CO	NH	•
C ₂ F ₅	Me	Me	결합		Me h	4	1	CO	NH	-
OMe	Me	Me	OH	Н	-(CH ₂)	4-	2	CO	NH	-
OCF ₃	Me	Me	OH	Н	-(CH ₂)	4-	1	CO	NH	-
CH ₂ OMe	Me	Me	OH	Н	-(CH ₂)	4-	1	CO	NH	-
c-Pr	Me	Me	OН	Н	-(CH ₂)	4-	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-(CH ₂)		1	CO	NH	-
CN	Me	Me	OH	Н	-(CH ₂)	4-	1	CO	NH	•
CHO	Me	Me	ОН	Н	-(CH ₂)		1	CH ₂	NH	•
CO ₂ H	Me	Me	ОН	Н	-(CH ₂		1	CO	NH	-
OH	Me	Me	ОН	Н	-(CH ₂)4-	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	결합		-(CH ₂)4-	1	CO	NH	-
NHCHO	Me	Me	ОН	н	-(CH ₂)4-	1	NH	CO	NH
NHCN	Me	Me	ОН	Н	c-Pr	Н	1	CO	NH	•
NH ₂	Ме	Me	OAc	Н	-(CH ₂)4-	1	CO	NH	-
NHMe	Me	Me	OAc	Н	-(CH ₂	2)4-	1	CO	NH	•
NMe ₂	Me	Ме	OAc	Н	-(CH ₂)4-	1	CO	NH	
NHCOMe	Me	Me	ОН	Н	-(CH ₂	2)4-	1	CO	NH	CH;
NHSO ₂ Me	Me	Me	ОН	Н	-(CH ₂	2)4-	1	CO	NH	-
CONH ₂	Me	Me	ОН	н	-(CH	2)4-	4	CO	NH	-
CONHMe	Me	Ме	ОН	Н	-(CH	2)4-	3	CO	NH	•
CONMe ₂	Me	Me	ОН	Н	-(CH	2)4-	2	CO	NH	•
COMe	Me		OH	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me		ОН	н	Мө	Н	1	CO	NH	•
CO ₂ Ph	Ме		OAc	Н	Ac	Н	1	CO	NH	-
CO ₂ CH ₂ Ph			ОН	Н	-(CH	2)4-	1	CO	NH	-

					H.	•	O	п		
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	х	Υ	Z
Н	Me	Ме	ОН	н	-(CI	H ₂) ₄ -	1	CO	NH	•
F	Me	Me	ОН	Н	-(CI	H ₂) ₄ -	1	CO	NH	•
Br	n-Pr	n-Pr	OH	Н	-(C	H ₂) ₄ -	1	CO	NH	-
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	•
CF ₃	Me	Et	ОН	Н	-(C	H ₂) ₄ -	2	CO	NH	CH ₂
CH₂CF₃	Et	Me	ОН	Н	-(C	H ₂) ₄ -	1	CO	NH	-
C ₂ F ₅	Me	Me	결합		Me	Н	1	CO	NH	- ·
OMe	Me	Me	OH	Н		H ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	OH	Н	-	H ₂) ₄ -	1	CO	NH	-
CH₂OMe	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	OH	Н		H ₂) ₄ -	3	CO	NH	•
NO ₂	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	•
CN	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	•
CHO	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂	NH	•
CO₂H	Me	Мө	OH	Н		H ₂) ₄ -	1	CO	NH	- -
ОН	Me	Me	OH	Н		H ₂) ₄ -	· 1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	결합			H ₂) ₄ -	1	CO	NH	- NILI
NHCHO	Me	Me	OH	Н		H ₂) ₄ -	1 0	NH	CO	NH
NHCN	Me	Мө	OH	Н		r H	1	CO	NH	•
NH ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н		CH ₂) ₄ -	1	CO	NH	OH.
NHCOMe	Me	Me	OH	Н		CH ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	OH	Н		CH ₂) ₄ -	1	CO	NH	•
CONH ₂	Me	Me	ОН	Н		CH ₂) ₄ -		CO	NH	-
CONHMe	Me	Me	OH	Н		CH ₂) ₄ -		CO	NH	•
CONMe ₂	Me	Me	OH	H		CH ₂) ₄ -		CO	NH	-
COMe	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me	Me	OH	Н	Me		1	CO	NH	•
CO ₂ Ph	Me	Me	OAc	Н	Ac		1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-((CH ₂) ₄ -	. 1	co	NH	-

$$(CH_{2})_{n}-X-Y-Z$$

$$R^{8}N^{2}R^{7}$$

$$R^{6}R^{5}$$

$$R^{4}$$

$$R^{3}$$

	~				R' V	Ō	H		
R ¹	R ³	R⁴	R⁵	R ⁶	R ⁷ R ⁸	n	X	Y	Z
Н	Me	Me	ОН	н	-(CH ₂) ₄ -	1	CO	NH	` •
F	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
Br	n-Pr	n-Pr	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
Me	Me	Me	ОН	Н	Et H	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
C ₂ F ₅	Me	Me	결합		Me H	1	CO	NH	-
OMe	Me	Me	OH	Н	-(CH ₂) ₄ -	2	· CO	NH	-
OCF ₃	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CH₂OMe	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	OH	Н	-(CH ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	•
CN	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	•
CHO	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	•
CO₂H	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	- -
OH	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	결합		-(CH ₂) ₄ -	1	CO	NH	NH
NHCHO	Me	Me	OH	Н	-(CH ₂)₄-	1	NH	CO	INFL
NHCN	Me	Me	OH	Н	c-Pr H	. 1	CO	NH	•
NH ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH NH	_
NMe ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -		CO	NH	CH ₂
NHCOMe	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	OF 12
NHSO ₂ Me	Me	Me	ОН	Н	-(CH ₂) ₄ -		CO	NH	_
CONH ₂	Me	Me	OH	Н	-(CH ₂) ₄ -		CO		-
CONHMe	Me	Me	ОН	Н	-(CH ₂) ₄ -		CO	NH	-
CONMe ₂	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	-
COMe	Me	Me	OH	Н	Et H	1	CO	NH	-
CO ₂ Me	Me	Ме	ОН	Н	Me H	1	CO	NH	-
CO ₂ Ph	Me	Me			Ac H	1	CO	NH	•
CO ₂ CH ₂ Ph	Me	Ме	OH	Н	-(CH ₂) ₄	- 1	CO	NH	

$$N = N - (CH_2)_n - X - Y - Z + R^8 N^{-R^7}$$

$$R^6 R^5$$

$$R^4$$

$$R^3$$

R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Y	Z
Н	Me	Me	ОН	н	-(CH	12)4-	1	co	NH	•
F	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	•
Br	n-Pr	n-Pr	ОН	Н	-(CH	12)4-	1	CO	NH	-
Me	Me	Me	OH	Н	Et	Н	1	CO	NH	•
CF ₃	Me	Et	OH	Н		12)4-	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(Cl	12)4-	1	CO	NH	•
C ₂ F ₅	Me	Me	결합		Me	Н	1	CO	NH	-
OMe	Me	Me	ОН	Н		H ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Ме	ОН	Н		12)4-	1	CO	NH	-
CH ₂ OMe	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	•
c-Pr	Me	Me	ОН	H ·		H ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-	H ₂) ₄ -	1	CO	NH	•
CN	Me	Me	OH	Н		$H_2)_4$ -	1	CO	NH	-
CHO	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂	NH	•
CO ₂ H	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	-
ОĤ	Me	Me	ОН	H		H ₂) ₄ -	1.	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	결합		-(C	H ₂) ₄ -	1	CO	NH	•
NHCHO	Me	Me	ОН	Н	-(C	H ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н	c-P	r H	1	CO	NH	-
NH ₂	Me	Me	OAc	Н	-(C	H ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н	-(C	H ₂) ₄ -	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н	-(C	H ₂) ₄ -	1	CO	NH	•
NHCOMe	Me	Ме	ОН	Н	-(C	H ₂) ₄ -	1	CO	NH	CH
NHSO ₂ Me	Me	Me	ОН	Н	-(C	H ₂) ₄ -	1	CO	NH	-
CONH ₂	Me	Ме	OH	Н	-(C	H ₂) ₄ -	4	CO	NH	-
CONHMe	Me	Ме	ОН	Н	-(C	H ₂) ₄ -	3	CO	NH	•
CONMe ₂	Me	Me	ОН	Н	-(C	H ₂) ₄ -	2	CO	NH	•
COMe	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Ме	Me	ОН	н	Me	Н	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	Ac	Н	1	CO	NH	-
CO ₂ CH ₂ Ph		Me	ОН	Н	-(C	H ₂) ₄ -	1	CO	NH	-

R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷ R ⁸ n	×	Y	Z
н	Et	Et	ОН	Н	-(CH ₂) ₄ - 1	CO	NH	-
F	Me	Me	ОН	Н	Et H 1	CO	NH	-
Br	Me	Ме	ОН	Н	-(CH ₂) ₄ - 2	CO	NH	-
Me	Me	Me	OH	Н	-(CH ₂) ₄ - 1	CO	NH	-
CF ₃	Me	Me	OH	Н	-(CH ₂) ₄ - 2		NH	-
CH ₂ CF ₃	Me	Me	OH .	H	-(CH ₂) ₄ - 1	CO	NH	-
C ₂ F ₅	Ме	Me	OAc	Н	-(CH ₂) ₄ - 1	CO	NH	-
OMe	Me	Me	OH	H	-(CH ₂) ₄ - 1		NH	CH ₂
OCF ₃	Me	Me	OH	Н	-(CH ₂) ₄ - 1		NH	-
CH ₂ OMe	Me	Me	OH	Н	-(CH ₂) ₄ - 1		NH	-
c-Pr	Me	Me	OAc	Н	-(CH ₂) ₄ - 1		NH	-
NO ₂	Me	Me	OH	Н	-(CH ₂) ₄ - 1		CO	NH
CN	Me	Me	OH	Н	-(CH ₂) ₄ - 1		NH	-
CHO	Me	Me	OH	н	Et H 1		NH	•
CO ₂ H	Me	Me	OH	Н	-(CH ₂) ₄ - 1		NH	-
OH	n-Bu	n-Bu	OH	Н	Me H 1		NH	-
CH ₂ OH	Me	Me	OH	Н	-(CH ₂) ₄ - 2	2 CO	NH	-
NHCHO	Me	Me	OH	Н	-(CH ₂) ₄ - 3	3 CO	NH	•
NHCN	Me	Me	OAc	Н	-(CH ₂) ₄ -	1 CO	NH	•
NH ₂	Me	Me	OH	Н	c-Pr H	1 CO	NH	-
NHMe	Me	Me	ОН	н	-(CH ₂) ₄ -	4 CO	NH	•
NMe ₂	Me	Me	ОН	Н		1 NH	CO	NH
NHCOMe	Me	Me	ОН	Н		1 CO	NH	-
NHSO ₂ Me		Me	ОН	н		1 CH		CH
CONH ₂	Et	Et	ОН	н		1 CO		-
CONHMe				Н	-(CH ₂) ₄ -	1 CO		-
CONMe ₂	Ме	Ме	ОН	Н	n-Bu H	1 CO		-
COMe	Ме	Me	ОН	н	-(CH ₂) ₄ -	1 CO		•
CO ₂ Me	Me	Me	ОН	Н	-(CH ₂) ₄ -	1 CO		•
CO ₂ Ph	Me	Me	결합		-(CH ₂) ₄ -	1 00		-
CO ₂ CH ₂ P		Me	ОН	Н	-(CH ₂) ₄ -	1 00	NH	-

				П		•	•
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n
NO ₂	Me	Me	ОН	н	-(Cł	12)4-	0
NO ₂	Me	Me	결합		-(Cł	12)4-	1
NO ₂	Me	Me	ОН	Н	-(Cl	12)4-	2
NO ₂	Me	Me	ОН	Н	Et	Н	3
NO ₂	Me	Me	ОН	Н	l-Pr	Н	4
NO ₂	Me	Me	ОН	Н		Վ ₂) ₃ -	1
NO ₂	Me	Me	ОН	Н		12)5-	1
CN	Me	Me	OH	Н		H ₂) ₄ -	0
CN	Me	Me	결합		-	H ₂) ₄ -	1
CN	Me	Me	OH	Н	-(C	H ₂) ₄ -	2
CN	Me	Me	OH	Н	Et	Н	3
CN	Me	Me	ОH	Н	i-Pr		4
NO ₂	-(CH	2)2-	OH	Н		H ₂) ₄ -	1
NO ₂	-(CH		OH	Н		H ₂) ₄ -	1
NO ₂	-(CH	2)4-	ОН	Н		H ₂) ₄ -	1
NO ₂	-(CH	2)5-	OH	Н		H ₂) ₄ -	1
NO ₂	Et	Et	OH	Н		r H	0
NO ₂	Et	Et	OH	Н		$H_2)_4$ -	1
NO ₂	Et	Et	ОН	Н		H ₂) ₄ -	2
NO ₂	Et	Et	OH	Н		$H_2)_4$ -	3
NO ₂	Et	Et	OH	Н		H ₂) ₄ -	4
CN	Et	Et	OH			H ₂) ₄ -	1
NO ₂	n-Pr	n-Pr	OH	Н		H ₂) ₄ -	1
CN	n-Pr	n-Pr				H ₂) ₄ -	1
NO ₂	i-Pr	i-Pr	OH	ΙН		H ₂) ₄ -	1
CN	i-Pr	i-Pr	OH	н н		CH ₂) ₄ -	1
NO ₂	n-Bu	n-Bu				CH ₂) ₄ -	1
NO ₂	i-Bu	i-Bu	OF	Н		CH ₂) ₄ -	- 1
NO ₂	t-Bu	t-Bu	OF			CH ₂) ₄ -	1
NO ₂	n-Pe			н н		CH ₂) ₄ -	1
NO ₂	n-He	k n-He	x Of	1 H	-(0	CH ₂) ₄ -	1

								·		
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Υ	Z
Н	Me	Me	ОН	Н	-(Cł	12)4-	2	CO	NH	CH ₂
F	Me	Me	ОН	Н	-(Cł	12)4-	2	CO	NH	CH ₂
Br	Me	Ме	ОН	Н	Et	н	2	CO	NH	CH ₂
Me	Et	Et	ОН	Н	-(Cł	12)4-	1	CO	NH	CH ₂
CF ₃	Me	Me	ОН	Н		12)4-	1	CO	NH	-
CH ₂ CF ₃	Me	Me	결합		-(Cł	12)4-	1	CO	NH	CH ₂
C ₂ F ₅	Me	Me	OH	Н		12)4-	1	CO	NH	CH ₂
OMe	Me	Me	ОН	Н	-(CI	H ₂) ₄ -	1	CO	NH	CH ₂
OCF ₃	Me	Me	ОН	Н	-(CI	H ₂) ₄ -	1	CO	NH	CH ₂
CH₂OMe	Me	Me	ОН	Н	-(Cl	$H_2)_4$ -	1	CH ₂	NH	-
c-Pr	Me	Me	ОН	Н	n-P	r H	1	CH ₂	NH	-
NO ₂	Me	Me	OH	Н	-(C	H ₂) ₄ -	1	CH ₂	NH	-
CN	Me	Me	OH	Н		H ₂) ₄ -	1	CH ₂	NH	-
CHO	Me	Me	OH	Н	-(C	H ₂) ₄ -	1	CH ₂	NH	•
CO ₂ H	Me	Me	OH	Н	-(C	H ₂) ₄ -	. 1	CH ₂	NH	-
OH	Me	Me	ОН	Н	-(C	H ₂) ₄ -	· 1	CO	NH	
CH ₂ OH	Me	Me	ОН	Н	c-P	r H	1	CH₂	NH	CH ₂
NHCHO	Me	Me	OH	Н	-(C	H ₂) ₄ -	2	CH ₂	NH	CH ₂
NHCN	Me	Me	ОН	Н	n-B	u H	2	CH ₂	NH	CH ₂
NH ₂	Me	Me	ОН	Н	-(C	H ₂) ₄ -	4	CH ₂	NH	CH ₂
NHMe	Me	Me	OН	H	-(C	H ₂) ₄ -	3	CH ₂	NH	CH ₂
NMe ₂	Me	Me	ОН	н	-(C	H ₂) ₄ -	· 2	SO ₂	NH	-
NHCOMe	Et	Eţ	ОН	Н	-(C	H ₂) ₄ -	1	SO ₂	NH	-
NHSO ₂ Me	Me	Me	ОН	н	Ac	H	1	SO ₂	NH	-
CONH ₂	Me	Ме	결합	}	-(C	H ₂) ₄ -	1	SO ₂	NH	-
CONHMe	Me	Me	OA		-(C	H ₂) ₄ -	1	SO ₂		-
CONMe ₂	Me	Me	ОН			H ₂) ₄ -	1	SO ₂		•
COMe	Me	Me	OH			CH ₂) ₄ -	1	NH	CO	NH
CO₂Me	Me	Me	OF			CH ₂) ₄ -	1	NH	CO	NH
CO ₂ Ph	Me	Me	OH			CH ₂) ₄ -	1	NH	CO	NH
CO ₂ CH ₂ Ph	Me	Me	OH			CH ₂) ₄ -	1	NH	CO	NH

			• •		•			
R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	х	Υ	Z
Н	ОН	н	Н	Н	1	CO	NH	CH ₂
F	OH	Н	Ph	Н	1	CO	NH	CH ₂
Br	결합		Me	Н	2	CO	NH	CH ₂
Me	OH	Н	Et	Н	2	CO	NH	CH ₂
CF ₃	ОН	Н	n-Pr	Н	1	CO	NH	CH₂
CH₂CF₃	ОН	Н	i-Pr	Н	1	CO	NH	CH ₂
C ₂ F ₅	ОН	Н	n-Bu	Н	1	CO	NH	CH ₂
OMe	ОН	Н	t-Bu	Н	1	CH₂	NH	-
OCF ₃	OH	Н	CH=CH ₂	Н	1	CH₂	NH	-
CH₂OMe	OH	Н	CH ₂ CCH	Н	1	CH ₂	NH	-
c-Pr	ОН	Н	c-Pr	Н	1	CH ₂	NH	•
NO ₂	ОН	Н	Et	Н	1	CH ₂	NH	-
CN	OH	Н	i-Pr	H	1	CH ₂	NH	-
CHO	ОН	Н	p-MeOPh	Н	1	CH ₂	NH	-
CO₂H	OH	Н	C- 펜틸	Н	1	CH ₂	NH	•
ОH	ОН	Н	Ac	Н	4	CH ₂	NH	CH ₂
CH ₂ OH	ОН	Н	COEt	Н	2	CH ₂	NH	CH ₂
NHCHO	ОН	Н	CO-n-Bu	Н	1	CH ₂	NH	CH ₂
NHCN	ОН	Н	COCH2CH2OH	Н	լ1	CH ₂	NH	CH ₂
NH ₂	결합		COPh	Н	1	CH ₂	NH	CH ₂
NHMe	결합		-(CH ₂) ₅		1	SO ₂	NH	-
NMe ₂	OH	Н	-(CH ₂) ₂ O(CH ₂	2)2-	1	SO ₂	NH	-
NHCOMe	ОН	Н	-(CH ₂) ₂ NH(CH		1	SO ₂	NH	-
NHSO ₂ Me	ОН	Н	-(CH ₂) ₃ CO-		1	SO ₂	NH	-
CONH ₂	ОН	Н	-(CH ₂) ₄ CO-		1	SO2	NH	-
CONHMe	ОН	Н	Me	Н	1	NH	CO	NH
CONMe ₂	ОН	Н	Et	Н	1	NH	CO	NH
COMe	ОН	н	n-Pr	Н	1	NH	CO	NH
CO ₂ Me	ОН	н	i-Pr	н	1	NH	CO	NH
CO ₂ Ph	ОН	Н	c-Pr	Н	1	NH	CO	NH
CO ₂ CH ₂ Ph	ОН	Н	i-Bu	Н	1	NH	CO	NH

$$(CH_{2})_{n}-X-Y-Z$$

$$R^{8}N^{-}R^{7}$$

$$R^{6}R^{5}$$

			n		J			
R ¹	R⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	н	Н	н	0	NH	CO	NH
F	ОН	Н	Ph	Н	2	CO	NH	•
Br	결합	• •	Me	Н	2	CO	NH	-
Me -	ОН	н	Et	н	3	CO	NH	-
CF ₃	ОН	Н	n-Pr	Н	4	CO	NH	-
CH ₂ CF ₃	ОН	н	i-Pr	Н	3	CO	NH	•
C ₂ F ₅	ОН	Н	n-Bu	Н	4	CO	NH	-
OMe	ОН	Н	t-Bu	Н	0	CO	NH	•
OCF ₃	ОН	Н	CH=CH ₂	Н	2	CO	NH	-
CH ₂ OMe	ОН	Н	CH₂CCH	Н	2	CO	NH	-
c-Pr	ОН	Н	c-Pr	Н	0	CO	NH	•
NO ₂	ОН	Н	Et	н	2	CO	NH	-
CN	ОН	н	i-Pr	Н	2	CO	NH	-
CHO	ОН	Н	p-MeOPh	Н	3	CO	NH	-
CO ₂ H	ОН	Н	C-펜틸	Н	4	CO	NH	-
ОН	ОН	н	Ac	Н	3	CO	NH	-
CH ₂ OH	ОН	Н	COEt	Н	2	CO	NH	-
NHCHO	ОН	Н	CO-n-Bu	Н	2	CO	NH	•
NHCN	OH	н	COCH ₂ CH ₂ OH	Н	2	CO	NH	-
NH ₂	결합		COPh	Н	3	CO	NH	, -
NHMe	결합		-(CH ₂) ₅ -		2	CO	NH	•
NMe ₂	ОН	Н	-(CH ₂) ₂ O(CH	2)2-	2	CO	NH	•
NHCOMe	ОН	н	-(CH ₂) ₂ NH(CH	2)2-	3	CO	NH	•
NHSO ₂ Me	ОН	Н	-(CH ₂) ₃ CO-		2	CO	NH	-
CONH ₂	ОН	Н	-(CH ₂) ₄ CO-		2	CO	NH	•
CONHMe	ОН	Н	Me	Н	2	CO	NH	•
CONMe ₂	ОН	н	Et	Н	2	CO	NH	•
COMe	ОН	н	n-Pr	Н	2	CO	NH	-
CO ₂ Me	ОН	Н	i-Pr	Н	2	CO	NH	•
CO ₂ Ph	ОН	Н	c-Pr	Н	2	CO	NH	
CO ₂ CH ₂ Ph		Н	i-Bu	н	2	CO	NH	-

$$(CH_2)_n - X - Y - Z$$
 R^5
 R^5
 R^5

R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	Н	CH=CH ₂	Н	1	CO	NH	-
F.	ОН	Н	CH₂CCH	Н	1	CO	NH	-
Br	결합		c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	ИН	-
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	•
C ₂ F ₅	ОН	Н	C-펜틸	Н	1	CO	NH	-
OMe	ОН	Н	Ac	Н	1	CO	NH	-
OCF ₃	ОН	Н	COEt	Н	1	CO	NH	•
CH ₂ OMe	ОН	Н	CO-n-Bu	Н	1	CO	NH	-
c-Pr	ОН	Н	COCH2CH2OH	Н	1	CO	NH	-
NO ₂	ОН	Н	COPh	Н	1	CO	NH	-
CN	ОН	н	Me	Н	1	CO	NH	-
CHO	ОН	н	Et	н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
OH	ОН	Н	i-Pr	Н	1	NH	CO	NI
CH ₂ OH	ОН	н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	•
NHCN	OH	Н	Н	Н	1	CO	NH	-
NH ₂	결합		Ph	Н	1	CH ₂	NH	•
NHMe	결합		Me	н	1	CH ₂	NH	-
NMe ₂	OH	н	Et	н	1	CH ₂	NH	-
NHCOMe	ОН	н	n-Pr	Н	1	CH ₂	NH	-
	ОН	н	i-Pr	н	1	CH ₂	NH	-
NHSO ₂ Me CONH ₂	OH	Н	n-Bu	н	1	CO	NH	-
CONH ₂	ОН	н	t-Bu	н	1	CO	NH	-
	ОН	н	-(CH ₂) ₅ -		1	CO	NH	-
_	OH	H	-(CH ₂) ₂ O(CH	2)2-	1	CO	NH	-
COMe	OH	Н	-(CH ₂) ₂ NH(Ch		1	CO	NH	•
CO ₂ Me	ОН	Н	-(CH ₂) ₃ CO		1	CO	NH	-
CO ₂ Ph CO ₂ CH ₂ Ph		н	-(CH ₂) ₄ CO		1	ÇO	NH	-

$$N = (CH_2)_n - X - Y - Z + R^8 N R^7 R^5$$

			, ,		•			
R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	н	CH=CH₂	Н	1	CO	NH	-
F	ОН	Н	CH₂CCH	Н	1	CO	NH	-
Br	결합		c-Pr	н	1	CO	NH	•
Me	ОН	Н	Et	н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	C- 펜틸	Н	1	CO	NH	-
OMe	ОН	н	Ac	Н	1	CO	NH	-
OCF ₃	ОН	Н	COEt	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	CO-n-Bu	Н	1	CO	NH	•
c-Pr	ОН	Н	COCH2CH2OH	Н	1	CO	NH	-
NO ₂	ОН	Н	COPh	Н	1	CO	NH	-
CN	ОН	Н	Me	H	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	NH	•
CO₂H	ОН	Н	n-Pr	H	-1	CO	NH	-
OH	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	н	c-Pr	Н	1	CO	NH	•
NHCHO	ОН	Н	i-Bu	н	1	CO	NH	•
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂	결합	• •	Ph	Н	1	CH ₂		•
NHMe	결합		Me	Н	1	CH ₂	-	•
NMe ₂	OH	Н	Et	Н	1	CH ₂	-	-
NHCOMe	ОН	Н	n-Pr	н	1	CH	-	-
NHSO₂Me		Н	i-Pr	н	1,	CH ₂	_	•
	ОН	H	n-Bu	н	1	CO	NH	•
	ОН	H	t-Bu	н	1	CO	NH	•
	ОН	н	-(CH ₂) ₅ -		1	CO		•
COMe	ОН	н	-(CH ₂) ₂ O(Cl	1 ₂) ₂ -	1	CO		•
	ОН	н	-(CH ₂) ₂ NH(Cl		1	CO		-
CO₂Me	ОН	H	-(CH ₂) ₃ CC		1	CC		-
CO₂Ph		Н	-(CH ₂) ₄ CC		1	CC	NH	-
CO ₂ CH ₂ PI	, Un	• • •	(32/400	-				

				• •		_			
_	R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	х	Υ	Z
	Н	ОН	н	CH=CH ₂	н	1	CO	NH	-
	F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
	Br	결합		c-Pr	H	1	CO	ИН	-
	Me	OH	Н	Et	Н	2	CO	NH	-
	CF ₃	OH	Н	i-Pr	Н	2	CO	NH	-
	CH ₂ CF ₃	OH	Н	p-MeOPh	Н	2	CO	NH	-
	C ₂ F ₅	OH	Н	C- 펜틸	Н	1	CO	NH	•
	OMe	OH	Н	Ac	Н	1	CO	NH	•
	OCF ₃	OH	Н	COEt	Н	1	CO	NH	-
	CH ₂ OMe	ОН	Н	CO-n-Bu	Н	1	CO	ИН	-
	c-Pr	OH	Н	COCH ₂ CH ₂ OH	Н	1	CO	ИН	-
	NO ₂	OH	H	COPh	Н	1	CO	NH	-
	CN	OH	Н	Me	Н	1	CO	ИН	-
	CHO	ОН	Н	Et	Н	1	CO	NH	-
	CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
	оĤ	ОН	Н	i-Pr	Н	1	NH	CO	NH
	CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	•
	NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
	NHCN	ОН	Н	Н	Н	1	CO	NH	-
	NH ₂	결합		Ph	Н	1	CH ₂	NH	-
	NHMe	결합		Ме	н	1	CH ₂	NH	-
	NMe ₂	ОН	Н	Et	Н	1	CH ₂	NH	-
	NHCOMe	OH	Н	n-Pr	Н	1	CH ₂	NH	-
	NHSO ₂ Me	OH	Н	i-Pr	Н	1	CH ₂	NH	-
	CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	-
	CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
	CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	-
	COMe	ОН	Н	-(CH ₂) ₂ O(CH ₂)2-	1	CO	NH	-
	CO ₂ Me	ОН	н	-(CH ₂) ₂ NH(CH ₂		1	CO	NH	-
	CO ₂ Ph	ОН	н	-(CH ₂) ₃ CO-		1	CO	NH	-
	CO ₂ CH ₂ Ph	ОН	н	-(CH ₂)₄CO-		1	co	NH	-

$$R^8$$
 R^7 R^6 R^5 R^6 R^5

			• • •		•			
R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Y	z
н	ОН	Н	CH=CH ₂	н	1	CO	NH	-
F	ОН	Н	CH₂CCH	Н	1	CO	NH	-
Br	결합		c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	•
C ₂ F ₅	ОН	Н	C-펜틸	Н	1	CO	NH	•
OMe	OH	Н	Ac	Н	1	CO	NH	-
OCF ₃	OH	Н	COEt	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	CO-n-Bu	Н	1	CO	NH	-
c-Pr	ОН	Н	COCH ₂ CH ₂ OH	Н	1	CO	NH	-
NO ₂	OH	Н	COPh	Н	1	CO	NH	•
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	OH	Н	Et	H	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
ΟĤ	OH	Н	i-Pr	Н	1	NH	CO	NI
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	H	Н	1	CO	NH	-
NH ₂	결합		Ph	Н	1	CH ₂	NH	-
NHMe	결합		Me	Н	1	CH ₂		•
NMe ₂	ОН	Н	Et	н	1	CH ₂		٠
NHCOMe	ОН	н	n-Pr	Н	1	CH ₂		-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂		•
CONH ₂	ОН	Н	n-Bu	н	1	CO	NH	•
CONHMe	ОН	Н	t-Bu	н	1	CO	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	-
COMe	ОН	H	-(CH ₂) ₂ O(CH	12)2-	1	CO	NH	•
CO ₂ Me	ОН	н	-(CH ₂) ₂ NH(Ch		1	CO	NH	-
CO ₂ Nie	ОН	н	-(CH ₂) ₃ CO		1	CO	NH	•
CO ₂ CH ₂ Ph		н	-(CH ₂) ₄ CO		1	CO	NH	-

$$\begin{array}{c|c}
 & R^{8} N^{R^{7}} \\
 & R^{6} R^{5}
\end{array}$$

$$\begin{array}{c|c}
 & R^{6} \\
 & R^{5}
\end{array}$$

					_			
R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	z
н	ОН	н	CH=CH₂	н	1	CO	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	•
Br	<u>결합</u>	••	c-Pr	Н	1	CO	NH	-
Me	OH	н	Et	Н	2	CO	NH	-
CF ₃	ОН	н	i-Pr	Н	2	CO	NH	•
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	ИН	•
C ₂ F ₅	ОН	н	C-펜틸	Н	1	CO	NH	-
OMe	ОН	Н	Ac	Н	1	CO	NH	-
OCF ₃	ОН	Н	COEt	Н	1	CO	NH	•
CH ₂ OMe	ОН	Н	CO-n-Bu	Н	1	CO	NH	-
c-Pr	ОН	Н	COCH ₂ CH ₂ OH	Н	1	CO	NH	-
NO ₂	ОН	Н	COPh	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	NH	•
CHO	ОН	н	Et	Н	1	CO	NH	•
CO₂H	ОН	Н	n-Pr	Н	1	CO	NH	-
OH	ОН	Н	i-Pr	Н	1	NH	CO	N
CH ₂ OH	ОН	н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	Н	H	1	CO	NH	•
NH ₂	결합		Ph	н	1	CH ₂		•
NHMe	결합		Me	Н	1	CH ₂		-
NMe ₂	ОН	н	Et	н	1	CH2	•	•
NHCOMe	ОН	н	n-Pr	Н	1	CH2		-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1.	CH ₂	_	-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	н	-(CH ₂) ₅ -		1	CO	NH	•
COMe	ОН	Н	-(CH ₂) ₂ O(CH	12)2-	1	CO		-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(CI		1	CO		-
CO ₂ Ph	ОН	Н	-(CH ₂) ₃ CC		1	CO		-
CO ₂ CH ₂ Pl		Н	-(CH ₂) ₄ CC		1	CO	NH	-

R ¹	R⁵	R ⁶	R ⁷	R ⁸	n	×	Υ	Z
Н	ОН	н	CH=CH ₂	Н	1	CO	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br	결합		c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	•
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	C- 펜틸	Н	1	CO	NH	•
OMe	ОН	Н	Ac	Н	1	CO	NH	-
OCF ₃	ОН	Н	COEt	Н	1	CO	NH	-
CH ₂ OMe	ОН	н	CO-n-Bu	Н	1	CO	NH	-
c-Pr	ОН	н	COCH2CH2OH	Н	1	CO	NH	•
NO ₂	ОН	Н	COPh	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	ИН	-
CHO	ОН	Н	Et	Н	1	CO	NH	•
CO₂H	ОН	Н	n-Pr	н	1.	CO	NH	-
OH	ОН	Н	i-Pr	Н	11	ИН	CO	NH
CH ₂ OH	ОН	н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	н	Н	Н	1	CO	NH	-
NH ₂	결합	••	Ph	н	1	CH ₂	NH	•
NHMe	결합		Me	Н	1	CH ₂	NH	-
NMe ₂	OH	н	Et	Н	1	CH ₂	NH	-
NHCOMe	ОН	н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Ή.	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	•
	ОН	Н	-(CH ₂) ₅ -	••	1	CO	NH	-
_	ОН	Н	-(CH ₂) ₂ O(CH	la)a-	1	CO	NH	-
COMe	OH	Н	-(CH ₂) ₂ NH(Cl		1	CO	NH	-
CO₂Me	OH	Н	-(CH ₂) ₃ CO		1	CO	NH	-
CO ₂ Ph		Н	-(CH ₂)₄CO-		1	CO	NH	-
CO ₂ CH ₂ Pt	, Un	1.1	-(01 12/400					

$$S = (CH_2)_n - X - Y - Z$$

$$R^8 N R^7$$

$$R^6 R^5$$

		,						
R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
н	ОН	н	CH=CH ₂	Н	1	co	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br	결합		c-Pr	Н	1	CO	NH	-
Me	OH	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	OH	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	C- 펜틸	Н	1	CO	NH	-
OMe	ОН	Н	Ac	Н	1	CO	NH	•
OCF ₃	OH	Н	COEt	Н	1	CO	ИН	•
CH ₂ OMe	OH	н	CO-n-Bu	Н	1	CO	NH	•
c-Pr	ОН	Н	COCH ₂ CH ₂ OH	Н	1	CO	NH	-
NO ₂	ОН	Н	COPh	Н	1	CO	NH	•
CN	OH	Н	Me	Н	1	CO	NH	•
CHO	OH	H	Et	Н	1	CO	NH	-
CO₂H	OH	Н	n-Pr	Н	1	CO	NH	•
ОН	OH	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	OH	Н	c-Pr	Н	1	CO	NH	•
NHCHO	ОН	н	i-Bu	Н	1	CO	NH	-
NHCN	OH	н	Н	Н	1	CO	NH	•
NH ₂	결합		Ph	н	1	CH ₂	NH	• ,
NHMe	결합		Me	н	.1	CH ₂	NH	-
NMe ₂	OH	Н	Et	Н	1	CH ₂	NH	•
NHCOMe	ОН	Н	n-Pr	Н	· 1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH	ОН	н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	н	-(CH ₂) ₅ -	• •	1	CO	NH	-
COMe	ОН	Н	-(CH ₂) ₂ O(CH ₂)	1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(CH ₂		1	CO	NH	-
CO₂Ph	ОН	Н	-(CH ₂) ₃ CO-	C E	1	CO	NH	<u>.</u> .
CO ₂ CH ₂ Ph	ОН	н	-(CH ₂)4CO-		1_	CO	NH.	-

$$\begin{array}{c|c}
 & R^8 \\
 & R^7 \\
 & R^6 \\
 & R^5
\end{array}$$

R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Y	Z
Н	ОН	Н	CH=CH ₂	н	1	co	NH	-
F	ОН	н	CH₂CCH	Н	1	CO	NH	-
Br	결합		c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	•
C ₂ F ₅	ОН	Н	C-펜틸	Н	1	CO	NH	-
OMe	ОН	Н	Ac	Н	1	CO	NH	•
OCF ₃	ОН	Н	COEt	Н	1	CO	NH	-
CH ₂ OMe	OH	н	CO-n-Bu	Н	1	CO	ИН	-
c-Pr	ОН	Н	COCH ₂ CH ₂ OH	н	1	CO	NH	-
NO ₂	ОН	н	COPh	н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
ОН	ОН	Н	i-Pr	Н	1	NH	CO	N
CH ₂ OH	ОН	Н	c-Pr	н	1	CO	NH	-
NHCHO	ОН	н	i-Bu	Н	1	CO	NH	•
NHCN	OH	Н	Н	Н	1	CO	NH	-
NH ₂	결합		Ph	Н	1	CH ₂		-
NHMe	결합		Me	Н	1	CH ₂		-
NMe ₂	ОН	Н	Et	Н	1	CH ₂		-
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂		•
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂		•
CONH ₂	OH	Н	n-Bu	Н	1	CO	NH	•
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	•
COMe	ОН	н	-(CH ₂) ₂ O(CH	12)2-	1	CO	NH	•
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(CH		1	CO	NH	-
CO ₂ Ph	ОН	Н	-(CH ₂) ₃ CO		1	CO	NH	-
CO ₂ CH ₂ Ph		Н	-(CH ₂) ₄ CO-		1	CO	NH	-

$$\begin{array}{c|c}
R^8 & R^7 \\
HN & CCH_2)_n - X - Y - Z & R^6 \\
R^1 & C & R^5
\end{array}$$

			n	•	U			
R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Υ	Z
Н	ОН	н	CH=CH ₂	н	1	CO	NH	-
F	ОН	Н	CH₂CCH	Н	1	CO	NH	-
Br	결합		c-Pr	Н	1	CO	NH	•
Me	OH	Н	Et	Н	2	CO	NH	•
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH₂CF₃	OH	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	C- 펜틸	Ή	1	CO	NH	-
OMe	ОН	Н	Ac	Н	1	CO	NH	-
OCF ₃	ОН	Н	COEt	Н	1	CO	NH	-
CH₂OMe	ОН	Н	CO-n-Bu	Н	1	CO	NH	-
c-Pr	ОН	Н	COCH2CH2OH	Н	1	CO	NH	-
NO ₂	ОН	Н	COPh	н	1	CO	NH	-
CN	OH	Н	Me	н	1	CO	NH	•
CHO	ОН	н	Et	Н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
OH	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	•
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	•
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂	결합		Ph	Н	1	CH ₂	NH	-
NHMe	결합		Me	н	1	CH ₂	NH	-
NMe ₂	OH	Н	Et	н	1	CH ₂	NH	•
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	•
CONHMe	ОН	н	t-Bu	Н	1	CO	NH	•
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	-
COMe	ОН	н	-(CH ₂) ₂ O(CH ₂	2)2-	1	CO	NH	-
CO ₂ Me	ОН	н	-(CH ₂) ₂ NH(CH		1	CO	NH	-
CO ₂ Nie CO ₂ Ph	ОН	н	-(CH ₂) ₃ CO-		1	CO	NH	•
CO ₂ CH ₂ Ph	ОН	Н	-(CH ₂) ₄ CO-		1	CO	NH	•

$$\begin{array}{c}
H \\
N \\
N \\
N \\
N \\
N \\
R^{7} \\
R^{6} \\
R^{5}
\end{array}$$

			• • • • • • • • • • • • • • • • • • • •		_			
R ¹	R ⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
н	ОН	Н	CH=CH₂	н	1	CO	NH	
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br	결합		c-Pr	H	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	OH	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	OH	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	C- 팬틸	Н	1	CO	NH	-
OMe	ОН	Н	Ac	Н	1	CO	NH	• ·
OCF ₃	OH	Н	COEt	Н	1	CO	NH	-
CH₂OMe	ОН	Н	CO-n-Bu	Н	1	CO	NH	•
c-Pr	OH	Н	COCH2CH2OH	Н	1	CO	NH	-
NO ₂	ОН	Н	COPh	Н	1	CO	NH	•
CN	QН	Н	Me	Н	1	CO	NH	•
CHO	OH	Н	Et	Н	1	CO	NH	• .
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	•
ОH	OH	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	OH	Н	c-Pr	Н	1	CO	NH	•
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	•
NHCN	ОН	Н	Н	Н	1	CO	NH	•
NH ₂	결합		Ph	Н	1	CH ₂	NH	
NHMe	결합		Me	Н	1	CH ₂	NH.	-
NMe ₂	ОН	Н	Et	Н	1	CH ₂		•
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	•
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂		•
CONH	OH	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	•
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	-
COMe	ОН	н	-(CH ₂) ₂ O(CH	2)2-	1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(CH		1	CO	NH	-
CO ₂ Ph	ОН	н	-(CH ₂) ₃ CO		1	CO	NH	•
CO ₂ CH ₂ Ph		н	-(CH ₂)4CO		1	CO	NH	-

$$N = N - (CH_2)_n - X - Y - Z + R^8 N^{-R^7} R^6 R^5$$

			n	•	U			
R ¹	R⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
н	ОН	н	CH=CH₂	Н	1	co	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br	결합		c-Pr	н	1	CO	NH	-
Ме	ОН	Н	Et	Н	2	CO	NH	-
CF₃	ОН	Н	i-Pr	Н	2	CO	NH	•
CH ₂ CF ₃	ОН	Н	p-MeOPh	H	2	CO	NH	•
C ₂ F ₅	ОН	Н	C-펜틸	Н	1	CO	NH	-
OMe	OH	н	Ac	Н	1	CO	NH	•
OCF ₃	OH	Н	COEt	Н	1	CO	NH	•
CH ₂ OMe	OH	Н	CO-n-Bu	Н	1	CO	NH	•
c-Pr	OH	H	COCH ₂ CH ₂ OH	Н	1	CO	NH	-
NO ₂	ОН	Н	COPh	Н	1	CO	NH	•
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	OH	H.	Et	Н	1	CO	NH	-
CO ₂ H	OH	Н	n-Pr	Н	1	CO	NH	-
ОН	ОН	Н	i-Pr	н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	•
NHCN	OH	Н	Н	Н	1	CO	NH	-
NH ₂	결합		Ph	Н	1	CH ₂	NH	-
NHMe	결합		Me	H	1	CH₂	NH	•
NMe ₂	OH	Н	Et	Н	1	CH ₂	NH	•
NHCOMe	OH	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	OH	H	i-Pr	Н	1	CH ₂	NH	•
CONH ₂	OH	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	•
CONMe ₂	OH	Н	-(CH ₂) ₅ -		1	CO	NH	•
COMe	ОН	Н	-(CH ₂) ₂ O(CH ₂	2)2-	1	CO	NH	•
CO₂Me	ОН	н	-(CH ₂) ₂ NH(CH ₂		1 1	CO	NH	-
CO ₂ Ph	ОН	Н	-(CH ₂) ₃ CO-	-	1	CO	NH	•
CO ₂ CH ₂ Ph	ОН	Н	-(CH ₂) ₄ CO-		1	CO	NH	•

$$(CH_{2})_{n} - C - N + R^{8} + R^{7} + R^{7} + R^{6} + R^{5} + R^{5}$$

R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n
NO ₂	Me	Me	ОН	Н	-(CH		0
NO ₂	Me	Me	결합		-(CH		1
NO ₂	Me	Me	ОН	Н	-(CH		2
NO ₂	Me	Me	OH	Н	-(CH		3
NO ₂	Me	Me	ОН	Н	-(CH		4
NO ₂	Me	Me	ОН	Н	-(CH		1
NO ₂	Me	Me	ОН	Н	-(CF		1
CN	Me	Me	OH	Н	-(CH		0
CN	Me	Me	결합		-(CH		1
CN	Me	Me	OH	Н	-(CH		2
CN	Me	Me	ОН	Н	-(CF		3
CN	Me	Me	OH	Н	-(CH		4
NO ₂	-(CH		OH	Н	-(CF		1
NO ₂	-(CH	2)3-	OH	Н		12)4-	1
NO ₂	·-(CH		OH	Н		12)4-	1
NO ₂	-(CH	l ₂) ₅ -	OH	Н		12)4-	1
NO ₂	Et	Et	OH	Н		12)4-	0
NO ₂	Et	Et	OH	Н		12)4-	1
NO ₂	Et	Et	OH	Н		12)4-	2
NO ₂	Et	Et	OH	Н		12)4-	3
NO ₂	Et	Et	OH	Н		12)4-	4
CN	Et	Et	OH	Н	-	H ₂) ₄ -	1
NO ₂	n-Pr	n-Pr	ОН	H	•	H ₂) ₄ -	1
CN	n-Pr	n-Pr	ОН	Н		H ₂) ₄ -	1
NO ₂	i-Pr	i-Pr	OH	Н		H ₂) ₄ -	1
CN	i-Pr	i-Pr	OH	Н		H ₂) ₄ -	1
NO ₂	n-Bu	n-Bu	OH	Н		H ₂) ₄ -	1
NO ₂	i-Bu	i-Bu	OH	Н		H ₂) ₄ -	1
NO ₂	t-Bu	t-Bu	OH	Н		H ₂) ₄ -	1
NO ₂	n-Pe	n-Pe	OH	Н		H ₂) ₄ -	1
NO ₂	n-Hex	n-Hex	ОН	Н	-(C	H ₂) ₄ -	1

$$(CH_{2})_{n}-X-Y-Z \xrightarrow{R^{8}} R^{7}$$

$$O_{2}N \xrightarrow{R^{6}} R^{5}$$

$$R^{3}$$

				_					
R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Υ	Z
Me	Me	ОН	Н	Н	н	4	CO	NH	•
Me	Me	결합		Ph	Н	3	CO	NH	•
Me	Ме	ОН	Н	Мө	Н	1	CO	NH	-
Me	Me	ОН	Н	Ме	Me	1	CO	NH	-
Me	Me	ОН	Н	Et	Н	2	CO	NH	•
Me	Me	OH	Н	Et	Et	1	CO	NH	•
Me	Me	OH	Н	n-Pr	Н	1	CO	NH	•
Me	Me	OH	Н	n-Pr	n-Pr	1	CH ₂	NH	-
Me	Me	결합		i-Pr	Н	1	CO	ИН	•
Me	Me	OH	Н	i-Pr	i-Pr	1	CO	ИН	+
Me	Me	OH	Н	c-Pr	Н	1	CO	NH	•
Et	Et	OH	Н	n-Bu	Н	1	CO	NH	-
Me	Me	OH	Н	t-Bu	Н	2	CO	NH	•
Me	Ме	OH	Н	CH=CH ₂	Н	1	CO	NH	CH ₂
Me	Me	OH	Н	CH ₂ CCH	Н	1	CO	NH	-
Me	Me	ОН	Н	n-펜틸	Н	1	CO	NH	•
Me	Мө	OH	Н	C-펜틸	н	1	CO	NH	-
Me	Me	OH	Н	n-핵실	Н	1	CO	NH	•
Me	Me	ОН	Н	p-MeOPh	Н	1	CO	NH	•
Me	Ме	OH	Н	Ac	Н	2	CO	NH	-
Me	Ме	ОН	Н	Ac	Me	1	CO	NH	•
Ме	Ме	ОН	Н	Ac	Et	0	CO	NH	•
Me	Ме	ОН	Н	COEt	Н	1	CO	NH	-
Me	Me	ОН	H	CO-n-Bu	н	1	CO	NH	•
Me	Ме	ОН	Н	COCH2CH2OH	Н	1	CO	NH	-
Me	Ме	ОН	Н	COPh	Н	1	NH	CO	NH
Me	Me	ОН	Н	COCH ₂ Ph	Н	1	CO	NH	-
Ме	Me	ОН	Н	-(CH ₂) ₂ O(CH ₂		1	CO	NH	-
Me	Me	ОН	н	-(CH ₂) ₂ NH(CH		1	CO	NH	-
n-Pr	n-Pi		н	-(CH ₂) ₃ CO-		1	CO	NH	-
Me	Ме	ОН	Н	-(CH ₂) ₄ CO-		1	CO	NH	-

$$(CH_2)_n - X - Y - Z$$

$$R^1 \qquad O \qquad R^4$$

$$R^3$$

						•				
R ¹	R ³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
CN	Me	Me	ОН	н	н	Н	1	co	NH	CH ₂
NO ₂	Me	Me	결합	••	-(CH ₂),		1	CO	NH	CH ₂
NO ₂	Me	Me	OH	Н	Me	` н	1	CO	NH	CH ₂
NO ₂	Н	Н	ОН	н	Me	Me	2	CO	ŅΗ	CH ₂
NO ₂	Me	Me	ОН	Н	Et	Н	1	CO	NH	CH ₂
NO ₂	Me	Me	ОН	Н	Et	Et	1	CO	NH	CH₂
NO ₂	Me	Me	ОН	Н	n-Pr	Н	1	CO	NH	CH ₂
NO ₂	Me	Me	ОН	Н	i-Pr	н	1	CO	NH	CH ₂
NO ₂	Me	Me	결합	••	Me	Me	1	CH ₂	NH	-
NO ₂	Me	Me	ОН	н	-(CH ₂)		1	CH ₂	NH	-
NO ₂	Me	Me	ОН	н	Me (S.2)	Н	1	CH ₂	NH	-
NO ₂	Me	Ме	ОН	Н	Et	н	1	CH ₂	NH	-
NO ₂	Me	Me	ОН	н	n-Pr	н	1	CH ₂	NH	-
NO ₂	Me	Me	ОН	Н	i-Pr	н	1	CH ₂	NH	•
CN	Н	Н	ОН	Н	Et	Et	1	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	-(CH ₂)		1	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	Me	Н	1	CH ₂	NH	CH₂
CN	Me	Me	ОН	н	Et	Н	2	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	n-Pr	н	2	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	i-Pr	Н	2	CH ₂	NH	CH ₂
NO ₂	Me	Me	ОН	Н	Me	Me	1	SO ₂	NH	-
NO ₂	Me		ОН	Н	-(CH ₂) ₄ -	1	SO ₂	NH	-
NO ₂	Me	Ме		Н	Me	. н	1	SO ₂	NH	-
NO ₂	Me	Me		Н	Et	Н	1	SO ₂	NH	-
NO ₂	Me	Me		н	n-Pr	Н	1	SO ₂	NH	-
NO ₂		Me		н	i-Pr	Н	1	SO ₂	NH	•
NO ₂		Me		Н	-(CH ₂)4-	0	NH	CO	NH
NO ₂		Me		Н	Me	Н	1	NH	CO	NH
NO ₂		Me		н	Et	н	1	NH	CO	NH
NO ₂		Me		н	n-Pr	Н	1	NH	CO	NH
NO ₂		Me		Н	i-Pr	н	1	NH	CO	ИН
.,02										

	R ¹	R ³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Y	Z
	CN	Me	Ме	ОН	н	Et	Н	2	co	NH	CH ₂
	CN	Me	Me	결합		-(CH	2)4-	2	CO	NH	CH ₂
	CN	Me	Me	ОН	Н	Ме	Н	2	CO	NH	CH ₂
	CN	Me	Me	ОН	Н	Me	Me	2	CO	NH	CH ₂
	CN	Me	Me	OH	Н	Et	Н	3	CO	NH	CH ₂
	CN	Me	Me	OH	Н	Et	Et	2	CO	NH	CH ₂
	CN	Me	Me	OH	Н	n-Pr	Н	2	CO	NH	CH ₂
	Н	Me	Me	OH	Н	i-Pr	Н	2	CO	NH	CH ₂
	NO ₂	Н	Н	결합		Me	Me ·	2	CH ₂	NH	-
	NO ₂	Me	Me	ОН	Н	-(CH	2)4-	2	CH ₂	NH	•
	NO ₂	Me	Me	OH	Н	Me	Н	2	CH ₂	NH	-
	NO ₂	Me	Me	OН	Н	Et	H	2	CH ₂	NH	•
	NO ₂	Me	Me	ОН	H	n-Pr	Н	2	CH ₂	NH	•
	NO ₂	Me	Me	OH	Н	i-Pr	Н	2	CH ₂	NH	•
	NO ₂	Н	Н	OH	Н	Et	Et	2	CH ₂	NH	CH ₂
	NO ₂	Me	Me	OH	Н	-(CH	l ₂) ₄ -	2	CH ₂	NH	CH ₂
	NO ₂	Me	Me	ОН	Н	Me	Н	2	CH ₂	NH	CH ₂
	NO ₂	Ме	Me	ОН	Н	Et	Н	1	CH ₂	NH	CH ₂
	NO ₂	Me	Me	ОН	Н	n-Pr	н	1	CH ₂	NH	CH ₂
	NO ₂	Me	Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	CH ₂
	NO ₂	Me	Me	OH	Н	Me	Me	2	SO ₂	NH	-
	NO ₂	Me	Me	ОН	Н	-(CH	12)4-	2	SO_2	NH	-
	NO ₂	Me	Ме	ОН	Н	Me	н	2	SO ₂	NH	-
	NO ₂	Me	Me	ОН	Н	Et	н	2	SO ₂	NH	• 0
	NO ₂	Me	Me	ОН	Н	n-Pr	Н	2	SO ₂	NH	-
	NO ₂	Me	Me	ОН	Н	i-Pr	Н	2	SO ₂	NH	•
	NO ₂	Me	Ме	OH	Н	-(CH	H ₂) ₄ -	2	NH	CO	NH
	NO ₂	Me	Me	ОН	Н	Me	Н	2	NH	CO	NH
	NO ₂	Me	Ме	ОН	Н	Et	н	2	NH	CO	NH
	NO ₂	Me	Ме	ОН	Н	n-Pr	Н	2	NH	CO	NH
	NO ₂	Me	Me	ОН	Н	i-Pr	Н	2	NH	CO	NH
_											

						• • •				
R ¹	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n	X	Υ	Z
NO ₂	Н	Н	ОН	н	i-Pr	Н	3	co	NH	CH ₂
NO ₂	Me	Me	결합		-(CH	2)4-	3	CO	NH	CH ₂
NO ₂	Me	Me	ОН	Н	Me	Н	3	CO	NH	CH ₂
CO ₂ Me	Me	Me	ОН	Н	Me	Me	3	CO	NH	CH ₂
NO ₂	Ме	Me	OH	Н	Et	Н	3	CO	NH	CH ₂
CO ₂ Me	Me	Me	ОН	Н	Et	Et	3	CO	NH	CH ₂
NO ₂	Me	Me	ОН	Н	n-Pr	Н	3	CO	NH	CH ₂
NO ₂	Me	Me	ОН	Н	i-Pr	н	3	CO	NH	CH ₂
CO ₂ Me	Me	Me	결합		Me	Me	3	CH ₂	NH	-
NO ₂	Me	Me	ОН	Н	-(CH	12)4-	3	CH ₂	NH	-
NO ₂	Me	Me	ОН	Н	Me	Н	3	CH ₂	NH	•
NO ₂	Me	Me	ОН	Н	Et	Н	3	CH ₂	NH	-
NO ₂	Me	Me	OH	Н	n-Pr	Н	3	CH ₂	ŅΗ	-
NO ₂	Me	Me	ОН	Н	i-Pr	н	3	CH ₂	NH .	- -
CO ₂ Me	Me	Me	OH	Н	Et	Et	4	CH ₂	NH	CH ₂
NO ₂	Me	Me	OH	Н	-(CH	12)4-	3	CH₂	NH	CH ₂
NO ₂	Me	Me	OH	Н	Me	Н	3	CH ₂	NH	CH₂ CH₂
NO ₂	Me	Me	OH	Н	Et	Н	3	CH₂	NH	CH ₂
NO ₂	Me	Me	OH	Н	n-Pr	Н	4	CH₂	NH	CH ₂
NO ₂	Me	Me	OH	Н	i-Pr	Н	3	CH₂	NH NH	Or12
NO ₂	Me	Me	OH	Н	Me	Me	3	SO ₂		•
CO ₂ Me	Me	Me	ОН	Н	-(CI	H ₂) ₄ -	3	SO ₂	NH	<u>-</u>
NO ₂	Me	Me	OH	Н	Me	, н	3	SO₂	NH	-
NO ₂	Me	Мө	ОН	Н	Et	н	3	SO ₂	NH	•
NO ₂	Me	Me	OH	Н	n-Pr	Н	4	SO ₂	NH	•
NO ₂	Me	Me	ОН	Н	i-Pr	н	3	SO ₂	NH	
NO ₂	Me	Me	ОН	Н	-(C	H ₂) ₄ -	3	NH	CO	NH
NO ₂	Ме	Me		Н	Me	Н	3	NH	CO	NH
NO ₂	Me	Me		н	Et	н	3	NH	CO	NH
CO ₂ Me	Me	Me	ОН	Н	n-Pr	Н	4	NH	CO	NH
NO ₂	Me	Me			i-Pr	Н	3	NH	co	NH

$$\begin{array}{c|c}
 & R^8 & R^7 \\
\hline
 & R^6 & R^5
\end{array}$$

$$\begin{array}{c|c}
 & R^6 & R^5
\end{array}$$

			<u>-</u>				
R ⁵	R ⁶	R ⁷	R ⁸	n	Х	Υ	Z
ОН	Н	c-Pr	н	1	CO	NH	-
결합		Ph	Н	0	CO	NH	•
OH	Н	Мө	Н	2	CO	NH	-
OH	Н	Ме	Me	2	CO	NH	•
OH	Н	Et	Н	2	CO	NH	•
OH	Н	Et	Et	2	CO	NH	-
OH	Н	n-Pr	Н	2	CO	NH	-
OH	Н	n-Pr	n-Pr	2	CO	NH	-
결합		i-Pr	н	2	CO	NH	•
ОН	Н	i-Pr	i-Pr	2	CO	NH	•
ОН	Н	c-Pr	Н	2	CO	NH	•
OH	Н	n-Bu	Н	2	CO	NH	-
OH	Н	t-Bu	Н	2	CO	NH	-
ОН	Н	CH=CH ₂	Н	2	CO	NH	•
OH	Н	CH ₂ CCH	Н	2	CO	NH	•
ОН	Н	n-펜틸	Н	2	CO	NH	•
ОН	Н	C-펜틸	H	3	CO	NH	•
ОН	Н	n-헥실	н	3	CO	NH	•
ОН	Н	p-MeOPh	Н	3	CO	NH	-
ОН	Н	Ac	Н	2	CO	NH	-
ОН	Н	Ac	Me	2	CO	NH	-
ОН	Н	Ac	Et	4	CO	NH	-
ОН	Н	COEt	H	2	CO	NH	-
ОН	Н	CO-n-Bu	Н	2	CO	NH	•
ОН	Н	COCH2CH2OH	н	2	CO	NH	-
ОН	Н	COPh	Н	3	CO	NH	-
ОН	Н	COCH₂Ph	Н	3	CO	NH	-
ОН	Н	-(CH ₂) ₂ O(CH ₂	2)2-	2	CO	NH	-
ОН	Н	-(CH ₂) ₂ NH(CH		2	CO	NH	-
ОН	Н	-(CH ₂) ₃ CO-		2	CO	NH	-
ОН	Н	-(CH ₂) ₄ CO-		3	CO	NH	-

$$\begin{array}{c|c}
 & R^8 & R^7 \\
 & R^6 & R^5 \\
 & NO_2
\end{array}$$

R ⁵ R ⁶ R ⁷ R ⁸ n X Y Z OH H H H H 3 CO NH CH ₂ 급합 -(CH ₂) ₄ - 1 CO NH CH ₂ OH H Me H 1 CO NH CH ₂ OH H Me Me 1 CO NH CH ₂ OH H Et H 1 CO NH CH ₂ OH H Et Et 3 CO NH CH ₂ OH H n-Pr H 1 CO NH CH ₂ OH H i-Pr H 1 CO NH CH ₂ ②합 Me Me 4 CH ₂ NH - OH H Me H 1 CH ₂ NH - OH H Me H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H Et Et I CH ₂ NH - OH H CH ₂
전함 -(CH ₂) ₄ - 1 CO NH CH ₂ OH H Me H 1 CO NH CH ₂ OH H Me Me 1 CO NH CH ₂ OH H Et H 1 CO NH CH ₂ OH H Et Et 3 CO NH CH ₂ OH H I-Pr H 1 CO NH CH ₂ OH H I-Pr H 1 CO NH CH ₂ 전함 Me Me 4 CH ₂ NH - OH H Me H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH CH ₂ OH H I-Pr H 1 CH ₂ NH CH ₂ OH H I-CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂
전함 -(CH ₂) ₄ - 1 CO NH CH ₂ OH H Me H 1 CO NH CH ₂ OH H Me Me 1 CO NH CH ₂ OH H Et H 1 CO NH CH ₂ OH H Et Et 3 CO NH CH ₂ OH H I-Pr H 1 CO NH CH ₂ OH H I-Pr H 1 CO NH CH ₂ 전한 Me Me 4 CH ₂ NH - OH H Me H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH - OH H I-Pr H 1 CH ₂ NH CH ₂ OH H I-Pr H 1 CH ₂ NH CH ₂ OH H I-Pr H 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂
OH H Me H 1 CO NH CH ₂ OH H Me Me 1 CO NH CH ₂ OH H Et H 1 CO NH CH ₂ OH H Et Et 3 CO NH CH ₂ OH H n-Pr H 1 CO NH CH ₂ OH H i-Pr H 1 CO NH CH ₂ 한 Me Me 4 CH ₂ NH - OH H Me H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H n-Pr H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H CH ₂ NH CH ₂
OH H Et H 1 CO NH CH2 OH H D-Pr H 1 CO NH CH2 OH H I-Pr H 1 CO NH CH2 OH H I-Pr H 1 CO NH CH2 OH H I-Pr H 1 CO NH CH2 OH H -(CH2)4- 1 CH2 NH - OH H Me H 1 CH2 NH - OH H D-Pr H 1 CH2 NH - OH H I-Pr H 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H ME H 1 CH2 NH CH2
OH H Et Et 3 CO NH CH2 OH H n-Pr H 1 CO NH CH2 OH H i-Pr H 1 CO NH CH2 전한 Me Me 4 CH2 NH - OH H -(CH2)4- 1 CH2 NH - OH H Et H 1 CH2 NH - OH H n-Pr H 1 CH2 NH - OH H i-Pr H 1 CH2 NH - OH H i-Pr H 1 CH2 NH - OH H Et Et 1 CH2 NH - OH H Et Et 1 CH2 NH CH2 OH H GH2 H 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H Et H 1 CH2 NH CH2
OH H
OH H i-Pr H 1 CO NH CH2 전한 Me Me 4 CH2 NH - OH H -(CH2)4- 1 CH2 NH - OH H Me H 1 CH2 NH - OH H Et H 1 CH2 NH - OH H n-Pr H 1 CH2 NH - OH H i-Pr H 1 CH2 NH - OH H Et Et 1 CH2 NH - OH H -(CH2)4- 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H Me H 1 CH2 NH CH2 OH H Et H 1 CH2 NH CH2
전함 Me Me 4 CH ₂ NH - OH H -(CH ₂) ₄ - 1 CH ₂ NH - OH H Me H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H n-Pr H 1 CH ₂ NH - OH H i-Pr H 1 CH ₂ NH - OH H Et Et 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
전한 Me Me 4 CH ₂ NH - OH H -(CH ₂) ₄ - 1 CH ₂ NH - OH H Me H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H n-Pr H 1 CH ₂ NH - OH H i-Pr H 1 CH ₂ NH - OH H Et Et 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H Me H 1 CH ₂ NH - OH H Et H 1 CH ₂ NH - OH H n-Pr H 1 CH ₂ NH - OH H i-Pr H 1 CH ₂ NH - OH H Et Et 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H Et H 1 CH ₂ NH - OH H n-Pr H 1 CH ₂ NH - OH H i-Pr H 1 CH ₂ NH - OH H Et Et 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H n-Pr H 1 CH ₂ NH - OH H i-Pr H 1 CH ₂ NH - OH H Et Et 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H
OH H I-Pr H 1 CH ₂ NH - OH H Et Et 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H Et Et 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H -(CH ₂) ₄ - 1 CH ₂ NH CH ₂ OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H Me H 1 CH ₂ NH CH ₂ OH H Et H 1 CH ₂ NH CH ₂
OH H Et H 1 CH2 NH CH2
OH H n-Pr H 1 CH ₂ NH CH ₂
OH H I-Pr H 1 CH2 NH CH2
OH H Me Me 1 SO ₂ NH -
OH H -(CH ₂) ₄ - 1 SO ₂ NH -
OH H Me H 1 SO ₂ NH -
OH H Et H 1 SO ₂ NH -
OH H n-Pr H 1 SO ₂ NH -
OH H I-Pr H 1 SO ₂ NH -
OH H -(CH ₂) ₄ - 1 NH CO NH
OH H Me H 1 NH CO NH
OH H Et H 1 NH CO NH
OH H n-Pr H 1 NH CO NH
OH H I-Pr H 1 NH CO NH

$$(R^{9})_{m}$$
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{3}
 CH_{4}
 CH_{5}
 CH_{5}
 CH_{5}
 CH_{5}

			<u></u>		
R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	m
ОН	Н	c-Pr	н	p-OEt	1
ОН	Н	-(CH ₂)4-	p-OMe	1
ОН	н	Me	Me	р-ОМе	1
OH	Н	Me	Me	$m,p-(OMe)_2$	2
OH	Н	Et	Н	р-ОМе	1
OH	Н	Et	Et	p-OMe	1
ОН	Н	c-Pr	Н	p-OMe	1
OH	Н	i-Pr	Н	p-OMe	1
ОН	Н	c-Pr	H	p-OMe	2
ОН	Н	-(CH ₂	2)4-	$m,p-(OMe)_2$	2
ОН	Н	Me	Н	p-F	1
ОН	Н	Et	Н	$m,p-(OMe)_2$	2
ОН	н	n-Pr	Н	р-ИНМе	1
OH	Н	i-Pr	Н	$m,p-(OMe)_2$	2
ОН	Н	c-Pr	Н	$m,p-(OMe)_2$	2
OH	Н	-(CH	2)4-	m-OMe	1
ОН	Н	c-Pr	Н	m-OMe	1
ОН	Н	Et	н	m-OMe	1
OH	н	c-Pr	Н	o-OMe	1
ОН	н	i-Pr	Н	m-OMe	1
ОН	Н	c-Pr	H	p-NO ₂	1
ОН	Н	-(CH	2)4-	p-CN	1
ОН	Н	Me	Н	p-NMe ₂	1
결합	ł	Et	Н	р-Ме	1
ОН	Н	c-Pr	Н	p-OH	1
ОН		i-Pr	н	p-Cl	1
ОН	Н	-(CH	12)4-	p-Ac	1
ОН		Me	Н	p-CO₂Me	1
ОН		Et	Н	p-NHAc	1
OH		c-Pr	Н	p-NHAc	1
Ol-		i-Pr	н	p-NHAc	1

$$(R^9)_m$$
 CH_2
 CH_2

				- 2				
R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	m	Х	Υ	Z
ОН	Н	Et	н	p-OMe	1	CO	NMe	-
ОН	н	c-Pr	Н	m,p-OCH ₂ O-	1	CO	NH	-
ОН	Н	Ме	Н	p-OMe	1	CO	NH	CH ₂
ОН	Н	Me	Me	p-F	1	CO	ИН	CH ₂
ОН	н	Et	Н	р-ОМе	1	CO	NH	CH ₂
ОН	Н	Et	Et	р-Ме	1	CO	NH	CH ₂
ОН	Н	n-Pr	Н	m,p-(OMe) ₂	2	CO	NH	CH ₂
ОН	Н	i-Pr	н	p-OMe	1	CO	NH	CH ₂
결합		Me	Me	p-Br	1	CH ₂	NH	•
ОН	н	-(CH ₂)	4-	$m,p-(OMe)_2$	2	CH ₂	NH	-
ОН	Н	Me	Н	m,p-Me ₃	3	CH ₂	NH	-
ОН	н	Et	Н	m,p-(OMe) ₂	2	CH ₂	NH	-
ОН	Н	n-Pr	Н	p-NMe ₂	1	CH ₂	NH	-
ОН	Н	c-Pr	Н	p-OMe	1	CH ₂	NH	-
ОН	н	Et	Et	p-NHMe	1	CH ₂	NH	CH ₂
ОН	Н	-(CH ₂)4-	m-OMe	1	CH ₂	NH	CH ₂
ОН	н	Me	н	p-NH ₂	1	CH ₂		CH ₂
ОН	Н	Et	н	p-NHCONH ₂	1	CH ₂		CH ₂
ОН	Н	n-Pr	Н	p-CN	1	CH ₂		CH ₂
ОН	Н	i-Pr	н	p-NO ₂	1	CH ₂		CH ₂
ОН	Н	Мө	Me	p-Ac	1	SO2		-
ОН	Н	-(CH ₂	2)4-	p-CO ₂ Me	1	SO ₂		-
ОН	Н	Me	Н	p-CONH₂	1	SO ₂		-
ОН		Et	Н	p-COPh	1	SO2		•
ОН		n-Pr	Н	p-NHAc	1	SO2		-
ОН	Н	i-Pr	Н	p-CF ₃	1	SO		A11.1
ОН	Н	-(CI	H ₂) ₄ -	p-OMe	1	NH		NH
ОН	ιн	Me	Н	р-ОМе	1	NH		NH
ОН	н	Et	Н	$m,p-(OMe)_2$	2	NH		NH
OH	H	n-Pr	Н	p-OCF ₃	1	NH		NH
OH	н н	i-Pr	H	р-ОМе	1	NH	CO	NH

				1102	
R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	m
ОН	Н	Н	н	p-Cl	1
결합		-(CH ₂) ₄		p-OMe	1
ОН	Н	Ме	Н	p-OMe	1
ОН	Н	Me	Me	m,p-(OMe) ₂	2
ОН	Н	Et	Н	p-OMe	1
ОН	Н	Et	Et	p-OMe	1
OH	Н	n-Pr	Н	p-OMe	1
OH	Н	i-Pr	Н	p-OMe	1
결합		Me	Me	p-OMe	1
OH	Н	-(CH ₂) ₄	i*	m_p -(OMe) ₂	2
OH	Н	Me	Н	p-F	1
OH	Н	Et	Н	m,p-(OMe) ₂	2
OH	Н	n-Pr	Н	p-NHMe	1
OH	Н	i-Pr	Н	$m,p-(OMe)_2$	2
ОН	Н	c-Pr	Н	$m,p-(OMe)_2$	2
OH	Н	-(CH ₂),	t-	m-OMe	1
OH	Н	Me	Н	m-OMe	1
ОН	Н	Et	Н	m-OMe	1
OH	Н	n-Pr	н	o-OMe	1
ОН	Н	i-Pr	Н	m-OMe	1
OH	Н	Me	Me	p-NO ₂	1
OH	Н	-(CH ₂),	4-	p-CN	1
ОН	Н	Me	Н	p-NMe ₂	1
ОН	Н	Et	Н	p-Me	1
ОН	Н	n-Pr	Н	p-Cl	1
ОН	Н	i-Pr	Н	p-Cl	1
ОН	Н	-(CH ₂)	4-	p-Ac	1
ОН	н	Me	Н	p-CO₂Me	1
OH	Н	Et	Н	p-NHCONH ₂	1
ОН	Н	n-Pr	Н	p-NHAc	1
ОН	Н	i-Pr	Н	p-NHCONH ₂	1

$$(R^{9})_{m} = (CH_{2})_{n} - C - N + R^{8} - R^{7}$$

$$O_{2}N = O_{2}N + R^{6}$$

$$O_{2}N = O_{2}N$$

				-		
R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	m	n
ОН	Н	Н	Н	p-Cl	1	2
결합		-(CH	l2)4-	p-OMe	1	2
ОН	Н	Me `	Н	p-OMe	1	2
ОН	Н	i-Pr	н	m,p-(OMe) ₂	2	1
ОН	Н	Et	Н	p-OMe	1	2
ОН	Н	c-Pr	н	p-OMe	1	2
ОН	.Н	-(CH	12)4-	p-OMe	1	2
ОН	Н	i-Pr	Н	p-OMe	1	2
결합		Me	Me	р-ОМе	1	2
ОН	Н	-(Ch	12)4-	m,p-(OMe) ₂	2	2
ОН	Н		12)4-	p-F	1	1
ОН	Н	Et	Н	m,p-(OMe) ₂	2	2
ОН	Н	n-Pr	Н	p-NHMe	1	2
ОН	Н	i-Pr	Н	$m,p-(OMe)_2$	2	2
ОН	Н	c-Pr	н	$m,p-(OMe)_2$	2	2
ОН	Н	-(CI	H ₂) ₄ -	m-OMe	1	2
ОН	Н	Me	Н	m-OMe	1	3
ОН	Н	Et	Н	m-OMe	1	2
ОН	Н	n-Pr	Н	o-OMe	1	4
ОН	Н	i-Pr	H	m-OMe	1	2
ОН	Н	-(C	H ₂) ₄ -	p-NO ₂	1	1
ОН	Н	-(C	H ₂) ₄ -	p-CN	1	2
ОН	Н	c-Pr	Н	p-NMe ₂	1	1
ОН	Н	-(C	H ₂) ₄ -	p-Me	1	1
ОН	Н	-(C	H ₂) ₄ -	p-Cl	1	1
ОН	Н	c-Pr	Н	p-Ph	1	1
ОН	Н	-(C	H ₂) ₄ -	p-Ac	1	4
ОН	Н	Me	Н	p-CO ₂ Me	1	2
ОН	Н	i-Pr	Н	p-NO ₂	1	1
ОН	Н	n-Pr	н	p-NHAc	1	2
ОН	Н	i-Pr	н	p-NHCONH₂	1	2

R ⁵ R ⁶ R ⁷ R ⁸ R ⁹ m X Y Z OH H H H H P-CI 1 CO NH CH ₂ 장함 -(CH ₂) ₄ - P-OMe 1 CO NH CH ₂ OH H Me H P-OMe 1 CO NH CH ₂ OH H Me Me P-F 1 CO NH CH ₂ OH H Et H P-OMe 1 CO NH CH ₂ OH H Et Et P-Me 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H I-Pr H P-OMe 1 CO NH CH ₂ OH H Me H M,P-(OMe) ₂ C CH ₂ NH - OH H Et H M,P-(OMe) ₂ C CH ₂ NH - OH H Et H M,P-(OMe) ₂ C CH ₂ NH - OH H I-Pr H P-NMe ₂ C CH ₂ NH - OH H I-Pr H P-NMe ₂ C CH ₂ NH - OH H I-Pr H P-NHMe C CH ₂ NH CH ₂ OH H I-Pr H P-NHMe C CH ₂ NH CH ₂ OH H I-Pr H P-OMe C CH ₂ NH CH ₂ OH H I-Pr H P-CN C CH ₂ NH CH ₂ OH H I-Pr H P-CN C CH ₂ NH CH ₂ OH H I-Pr H P-CO ₂ Me C CH ₂ NH CH ₂ OH H Me M P-AC C C CH ₂ NH CH ₂ OH H Me M P-CO ₂ Me C CH ₂ NH CH ₂ OH H Me M P-CO ₂ Me C CH ₂ NH CH ₂ OH H Me M P-CO ₂ Me C CO ₂ Me C CO ₂ MH C CH ₂ OH H Me M P-CO ₂ Me C CO ₂ MH C CH ₂ OH H Me M P-CO ₂ Me C CO ₂ MH C CH ₂ OH H Me M P-CO ₂ Me C CO ₂ MH C CO ₂ MH C CH ₂ OH H CH ₂ CO ₂ MH C					NC'	· ·	0. /		
전함 -(CH ₂) ₄ - p-OMe 1 CO NH CH ₂ OH H Me H p-OMe 1 CO NH CH ₂ OH H Me Me P-F 1 CO NH CH ₂ OH H Et H p-OMe 1 CO NH CH ₂ OH H Et Et p-Me 1 CO NH CH ₂ OH H n-Pr H m,p-(OMe) ₂ 2 CO NH CH ₂ OH H i-Pr H p-OMe 1 CO NH CH ₂ OH H i-Pr H p-OMe 1 CO NH CH ₂ OH H m,p-Pr H m,p-(OMe) ₂ 2 CH ₂ NH - OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 CH ₂ NH - OH H m,p-Pr H p-NMe ₂ 1 CH ₂ NH - OH H m,p-Pr H p-NMe ₂ 1 CH ₂ NH - OH H p-Pr H p-t-Bu 1 CH ₂ NH - OH H Et Et p-NHMe 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Et H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-NH ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-CN 1 CH ₂ NH CH ₂ OH H N-Pr H p-CN 1 CH ₂ NH CH ₂ OH H N-Pr H p-CO ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-CO ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-CO ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-CO ₂ NH - OH H SE H p-COPh 1 SO ₂ NH - OH H N-Pr H p-COPh 1 SO ₂ NH - OH H N-Pr H p-COPh 1 SO ₂ NH - OH H N-Pr H p-COPh 1 SO ₂ NH - OH H N-Pr H p-COPh 1 SO ₂ NH - OH H N-Pr H p-COPh 1 NH CO NH OH H N-Pr H p-COPh 1 NH CO NH OH H N-Pr H p-COF ₃ 1 NH CO NH OH H SE H m,p-(OMe) ₂ 2 NH CO NH OH H N-Pr H p-COF ₃ 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH	R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	m	Х	Υ	Z
전함 -(CH ₂) ₄ - p-OMe 1 CO NH CH ₂ OH H Me H p-OMe 1 CO NH CH ₂ OH H Me Me P-F 1 CO NH CH ₂ OH H Et H p-OMe 1 CO NH CH ₂ OH H Et Et p-Me 1 CO NH CH ₂ OH H n-Pr H m,p-(OMe) ₂ 2 CO NH CH ₂ OH H i-Pr H p-OMe 1 CO NH CH ₂ OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 CH ₂ NH - OH H Me H m,p-Me ₃ 3 CH ₂ NH - OH H Et H m,p-(OMe) ₂ 2 CH ₂ NH - OH H n-Pr H p-NMe ₂ 1 CH ₂ NH - OH H i-Pr H p-NMe ₂ 1 CH ₂ NH - OH H i-Pr H p-t-Bu 1 CH ₂ NH CH ₂ OH H i-Pr H p-t-Bu 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-CN 1 CH ₂ NH CH ₂ OH H N-Pr H p-CN 1 CH ₂ NH CH ₂ OH H N-Pr H p-CO ₂ 1 CH ₂ NH CH ₂ OH H N-Pr H p-CO ₂ 1 CH ₂ NH CH ₂ OH H Me Me P-AC 1 SO ₂ NH - OH H Me H p-CO ₂ 1 SO ₂ NH - OH H Me H p-CO ₃ 1 SO ₂ NH - OH H N-Pr H p-CO ₃ 1 SO ₂ NH - OH H N-Pr H p-CO ₃ 1 SO ₂ NH - OH H N-Pr H p-CO ₃ 1 SO ₂ NH - OH H N-Pr H p-CO ₃ 1 SO ₂ NH - OH H N-Pr H p-CO ₃ 1 SO ₂ NH - OH H N-Pr H p-CO ₃ 1 SO ₂ NH - OH H N-Pr H p-CO ₃ 1 NH CO NH OH H I-Pr H p-CO ₃ 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H Ret H m,p-(OMe) ₂ 2 NH CO NH OH H Ret H m,p-(OMe) ₂ 2 NH CO NH	ОН	Н	Н	Н	p-Cl	1			_
OH H Me H p-OMe 1 CO NH CH2 OH H Me Me p-F 1 CO NH CH2 OH H Et H p-OMe 1 CO NH CH2 OH H Et Et p-Me 1 CO NH CH2 OH H N-Pr H m,p-(OMe)2 2 CO NH CH2 OH H i-Pr H p-OMe 1 CO NH CH2 OH H -(CH2)4- m,p-(OMe)2 2 CH2 NH - OH H Me H m,p-Me3 3 CH2 NH - OH H n-Pr H p-NMe2 1 CH2 NH - OH H n-Pr H p-NMe2 1 CH2 NH - OH H Et Et p-NHMe 1 CH2 NH - OH H Et Et p-NHMe 1 CH2 NH CH2 OH H -(CH2)4- m-OMe 1 CH2 NH CH2 OH H -(CH2)4- m-OMe 1 CH2 NH CH2 OH H -(CH2)4- m-OMe 1 CH2 NH CH2 OH H Et H m-Pr H p-t-Bu 1 CH2 NH CH2 OH H Et H p-NHCONH2 1 CH2 NH CH2 OH H Me H p-NH2 1 CH2 NH CH2 OH H Me H p-NH2 1 CH2 NH CH2 OH H N-Pr H p-CN 1 CH2 NH CH2 OH H N-Pr H p-CN 1 CH2 NH CH2 OH H N-Pr H p-CO2 1 CH2 NH CH2 OH H N-Pr H p-CO2 1 CH2 NH CH2 OH H Me Me p-Ac 1 SO2 NH - OH H Me H p-CO9h 1 SO2 NH - OH H Me H p-COPh 1 SO2 NH - OH H N-Pr H p-NHAc 1 SO2 NH - OH H N-Pr H p-CF3 1 SO2 NH - OH H N-Pr H p-CF3 1 SO2 NH - OH H N-Pr H p-CF3 1 SO2 NH - OH H ME H P-OME 1 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H ME H P-OME 1 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H RET H m,p-(OMe)2 2 NH CO NH OH H RET H m,p-(OMe)2 2 NH CO NH OH H RET H m,p-(OMe)2 2 NH CO NH OH H RET H m,p-(OMe)2 2 NH CO NH	결합		-(CH ₂)	4-	p-OMe	1			
OH H Et H P-OMe 1 CO NH CH2 OH H Et Et p-Me 1 CO NH CH2 OH H n-Pr H m,p-(OMe)2 CO NH CH2 OH H i-Pr H P-OMe 1 CO NH CH2 OH H i-Pr H P-OMe 1 CH2 NH - OH H -(CH2)4- m,p-(OMe)2 CH2 NH - OH H Me H m,p-Me3 3 CH2 NH - OH H n-Pr H P-NMe2 1 CH2 NH - OH H n-Pr H P-NMe2 1 CH2 NH - OH H i-Pr H P-T-Bu 1 CH2 NH - OH H Et Et P-NHMe 1 CH2 NH CH2 OH H Me H P-NH2 1 CH2 NH CH2 OH H Me H P-NH2 1 CH2 NH CH2 OH H T-(CH2)4- m-OMe 1 CH2 NH CH2 OH H Et H P-NHCONH2 1 CH2 NH CH2 OH H N-Pr H P-CN 1 CH2 NH CH2 OH H I-Pr H P-CN 1 CH2 NH CH2 OH H I-Pr H P-CN 1 CH2 NH CH2 OH H I-Pr H P-CN 1 CH2 NH CH2 OH H Me M P-AC 1 SO2 NH - OH H Me M P-AC 1 SO2 NH - OH H Me M P-CONH2 1 SO2 NH - OH H Me M P-COPh 1 SO2 NH - OH H N-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 SO2 NH - OH H I-Pr H P-CF3 1 NH CO NH OH H I-Pr H P-CF3 1 NH CO NH OH H I-Pr H P-COME 1 NH CO NH OH H I-Pr H P-COF3 1 NH CO NH OH H I-Pr H P-COF3 1 NH CO NH OH H I-Pr H P-COF3 1 NH CO NH	ОН	н			p-OMe	1			
OH H Et Et p-Me 1 CO NH CH2 OH H n-Pr H m,p-(OMe)2 2 CO NH CH2 OH H i-Pr H p-OMe 1 CO NH CH2 이H H i-Pr H p-OMe 1 CH2 NH - OH H -(CH2)4- m,p-(OMe)2 2 CH2 NH - OH H Me H m,p-Me3 3 CH2 NH - OH H n-Pr H p-NMe2 1 CH2 NH - OH H i-Pr H p-t-Bu 1 CH2 NH - OH H i-Pr H p-t-Bu 1 CH2 NH - OH H i-Pr H p-t-Bu 1 CH2 NH CH2 OH H i-Pr H p-NMe2 1 CH2 NH CH2 OH H T-(CH2)4- m-OMe 1 CH2 NH CH2 OH H Et H p-NHCONH2 1 CH2 NH CH2 OH H n-Pr H p-CN 1 CH2 NH CH2 OH H n-Pr H p-CN 1 CH2 NH CH2 OH H i-Pr H p-NO2 1 CH2 NH CH2 OH H i-Pr H p-CON 1 CH2 NH CH2 OH H Me Me p-Ac 1 SO2 NH - OH H Me Me p-Ac 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-COPh 1 SO2 NH - OH H Me H p-COPh 1 SO2 NH - OH H I-Pr H p-COPh 1 SO2 NH - OH H I-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-COPh 1 NH CO NH OH H I-Pr H p-CF3 1 SO2 NH - OH H I-Pr H p-CF3 1 SO2 NH - OH H I-Pr H p-COPh 1 NH CO NH OH H I-Pr H p-COPh 1 NH CO NH OH H I-Pr H p-COPh 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H RET H m,p-(OMe)2 2 NH CO NH OH H RET H m,p-(OMe)2 2 NH CO NH OH H N-Pr H p-OCF3 1 NH CO NH	ОН	Н	Me	Me	p-F	1			
OH H Et Et p-Me 1 CO NH CH2 OH H n-Pr H m,p-(OMe)2 2 CO NH CH2 OH H i-Pr H p-OMe 1 CO NH CH2 이어 H i-Pr H p-OMe 1 CO NH CH2 이어 H -(CH2)4- m,p-(OMe)2 2 CH2 NH - OH H Me H m,p-Me3 3 CH2 NH - OH H Pr H p-NMe2 1 CH2 NH - OH H Pr H p-t-Bu 1 CH2 NH - OH H Et Et p-NHMe 1 CH2 NH CH2 OH H Me H p-NH2 1 CH2 NH CH2 OH H Me H p-NH2 1 CH2 NH CH2 OH H Pr H p-t-Bu 1 CH2 NH CH2 OH H -(CH2)4- m-OMe 1 CH2 NH CH2 OH H Me H p-NH2 1 CH2 NH CH2 OH H N-Pr H p-CN 1 CH2 NH CH2 OH H N-Pr H p-CN 1 CH2 NH CH2 OH H i-Pr H p-NO2 1 CH2 NH CH2 OH H Ne Me P-Ac 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-COPh 1 SO2 NH - OH H N-Pr H p-CF3 1 SO2 NH - OH H I-Pr H p-NHAc 1 SO2 NH - OH H I-Pr H p-CF3 1 SO2 NH - OH H I-Pr H p-CF3 1 SO2 NH - OH H I-Pr H p-CF3 1 SO2 NH - OH H I-Pr H p-CF3 1 SO2 NH - OH H ME H p-OMe 1 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH OH H Et H m,p-(OMe)2 2 NH CO NH	ОН	Н	Et	Н	p-OMe	1			
OH H i-Pr H p-OMe 1 CO NH CH2 취약 Me Me p-Br 1 CH2 NH - OH H -(CH2)4- m,p-(OMe)2 2 CH2 NH - OH H BE H m,p-(OMe)2 2 CH2 NH - OH H n-Pr H p-NMe3 3 CH2 NH - OH H I-Pr H p-1-Bu 1 CH2 NH - OH H EE ET p-NHMe 1 CH2 NH CH2 OH H -(CH2)4- m-OMe 1 CH2 NH CH2 OH H Me H p-NHCONH2 1 CH2 NH CH2 OH H ET H p-NHCONH2 1 CH2 NH CH2 OH H Me H p-NHCONH2 1 CH2 NH CH2 OH H n-Pr H p-CN 1 CH2 NH CH2 OH H i-Pr H p-CN 1 CH2 NH CH2 OH H Me Me p-Ac 1 SO2 NH - OH H Me M p-AC 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-COPh 1 SO2 NH - OH H N-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-NHAC 1 SO2 NH - OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH OH H I-Pr H p-OMe 1 NH CO NH		Н	Et	Et	p-Me	1			
Me Me p-Br 1 CH ₂ NH - OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 CH ₂ NH - OH H Me H m,p-Me ₃ 3 CH ₂ NH - OH H Et H m,p-(OMe) ₂ 2 CH ₂ NH - OH H n-Pr H p-NMe ₂ 1 CH ₂ NH - OH H i-Pr H p-t-Bu 1 CH ₂ NH - OH H -(CH ₂) ₄ - m-OMe 1 CH ₂ NH CH ₂ OH H m-Pr H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-CN 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H Me Me p-Ac 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Me H p-COPh 1 SO ₂ NH - OH H N-Pr H p-NHAC 1 SO ₂ NH - OH H n-Pr H p-NHAC 1 SO ₂ NH - OH H i-Pr H p-NHAC 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H m-Pr H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH	ОН	Н	n-Pr	Н	$m_p-(OMe)_2$	2			
OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 CH ₂ NH - OH H Me H m,p-Me ₃ 3 CH ₂ NH - OH H Et H m,p-(OMe) ₂ 2 CH ₂ NH - OH H n-Pr H p-NMe ₂ 1 CH ₂ NH - OH H i-Pr H p-t-Bu 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - m-OMe 1 CH ₂ NH CH ₂ OH H m-Pr H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H m-Pr H p-CN 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-CN 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H Me Me p-Ac 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Me H p-COPh 1 SO ₂ NH - OH H N-Pr H p-COPh 1 SO ₂ NH - OH H n-Pr H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H m-Pr H p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH	ОН	Н	i-Pr	Н	p-OMe	1			CH ₂
OH H Me H m,p-Me ₃ 3 CH ₂ NH - OH H Et H m,p-(OMe) ₂ 2 CH ₂ NH - OH H n-Pr H p-NMe ₂ 1 CH ₂ NH - OH H i-Pr H p-t-Bu 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - m-OMe 1 CH ₂ NH CH ₂ OH H m-Pr H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H m-Pr H p-CN 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-CN 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H m-Pr H p-COPh 1 SO ₂ NH - OH H m-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H n-Pr H p-CMe 1 NH CO NH OH H i-Pr H p-CMe 1 NH CO NH OH H i-Pr H p-CMe 1 NH CO NH OH H i-Pr H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH	결합		Me	Me	p-Br	1	_		-
OH H Et H m,p-(OMe) ₂ 2 CH ₂ NH - OH H n-Pr H p-NMe ₂ 1 CH ₂ NH - OH H i-Pr H p-t-Bu 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - m-OMe 1 CH ₂ NH CH ₂ OH H m-Pr H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H m-Pr H p-CN 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-NO ₂ 1 CH ₂ NH CH ₂ OH H i-Pr H p-NO ₂ 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H m-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H m-Pr H p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH	ОН	Н	-(CH ₂)4-	$m,p-(OMe)_2$	2	_		-
OH H n-Pr H p-NMe ₂ 1 CH ₂ NH - OH H i-Pr H p-t-Bu 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - m-OMe 1 CH ₂ NH CH ₂ OH H me H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-NO ₂ 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H me H p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OF ₃ 1 NH CO NH OH H n-Pr H p-OF ₃ 1 NH CO NH	ОН	Н	Me	Н	m,p-Me₃	-			-
OH H I-Pr H p-t-Bu 1 CH ₂ NH CH ₂ OH H Et Et p-NHMe 1 CH ₂ NH CH ₂ OH H -(CH ₂) ₄ - m-OMe 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Et H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-NO ₂ 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H Me H p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH		Н	Et	Н	m,p-(OMe) ₂				-
OH H Et Et p-NHMe 1 CH2 NH CH2 OH H -(CH2)4- m-OMe 1 CH2 NH CH2 OH H Me H p-NH2 1 CH2 NH CH2 OH H Et H p-NHCONH2 1 CH2 NH CH2 OH H n-Pr H p-CN 1 CH2 NH CH2 OH H i-Pr H p-NO2 1 CH2 NH CH2 OH H Me Me p-Ac 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Me H p-COPh 1 SO2 NH - OH H Et H p-COPh 1 SO2 NH - OH H i-Pr H p-NHAc 1 SO2 NH - OH H i-Pr H p-NHAc 1 SO2 NH - OH H i-Pr H p-CF3 1 SO2 NH - OH H i-Pr H p-CF3 1 SO2 NH - OH H Me H p-COMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m.p-(OMe)2 2 NH CO NH OH H Et H m.p-(OMe)2 2 NH CO NH	ОН	Н	n-Pr	Н		-			-
OH H -(CH ₂) ₄ - m-OMe 1 CH ₂ NH CH ₂ OH H Me H p-NH ₂ 1 CH ₂ NH CH ₂ OH H Et H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-NO ₂ 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Et H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m.p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH	ОН	Н	i-Pr	Н	p-t-Bu	1	_		-
OH H	ОН	Н	Et	Et	p-NHMe	1	_		
OH H Et H p-NHCONH ₂ 1 CH ₂ NH CH ₂ OH H n-Pr H p-CN 1 CH ₂ NH CH ₂ OH H i-Pr H p-NO ₂ 1 CH ₂ NH CH ₂ OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H Et H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OFF ₃ 1 NH CO NH	ОН	Н	-(CH ₂	2)4"	m-OMe	1			
OH H	ОН	Н	Me	Н	p-NH ₂	1			-
OH H I-PT H p-NO2 1 CH2 NH CH2 OH H Me Me p-Ac 1 SO2 NH - OH H -(CH2)4- p-CO2Me 1 SO2 NH - OH H Me H p-CONH2 1 SO2 NH - OH H Et H p-COPh 1 SO2 NH - OH H n-PT H p-NHAc 1 SO2 NH - OH H i-PT H p-CF3 1 SO2 NH - OH H -(CH2)4- p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H n-PT H p-OFF3 1 NH CO NH OH H n-PT H p-OFF3 1 NH CO NH		Н	Et	Н	p-NHCONH ₂	1			-
OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Et H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H RE H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH	ОН	Н	n-Pr	Н	p-CN		-		
OH H Me Me p-Ac 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Et H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH	ОН	н	i-Pr	Н	p-NO ₂	1	-		CH ₂
OH H -(CH ₂) ₄ - p-CO ₂ Me 1 SO ₂ NH - OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Et H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH		н	Me	Me	p-Ac	1	_		-
OH H Me H p-CONH ₂ 1 SO ₂ NH - OH H Et H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH		Н	-(CH	2)4-	p-CO ₂ Me	1	_		-
OH H Et H p-COPh 1 SO ₂ NH - OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH		Н	Me	Н	p-CONH ₂	1	_		-
OH H n-Pr H p-NHAc 1 SO ₂ NH - OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH		н	Et	Н	p-COPh	1	_		•
OH H i-Pr H p-CF ₃ 1 SO ₂ NH - OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH			n-Pr	Н	p-NHAc	1	_		-
OH H -(CH ₂) ₄ - p-OMe 1 NH CO NH OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH			i-Pr	Н	p-CF₃	1			-
OH H Me H p-OMe 1 NH CO NH OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH			-(CH	2)4-	р-ОМе	1			
OH H Et H m,p-(OMe) ₂ 2 NH CO NH OH H n-Pr H p-OCF ₃ 1 NH CO NH					p-OMe	1			
OH H n-Pr H p-OCF ₃ 1 NH CO NH				н	m,p-(OMe) ₂	2			
A NH CO NH			n-Pr	Н		1			
				Н	p-OMe	1	NH	CO	NH

R ¹	R ⁵	R ⁶	R ⁷	R ⁸	R ⁹	m	n
NO ₂	ОН	Н	c-Pr	н	m-Ph	1	1
CO ₂ Me	결합		-(CH ₂)4-	p-OMe	1	2
CO ₂ Me	ОН	Н	Me	Н	p-OMe	1	1
CO ₂ Et	ОН	Н	Me	Me	p-F	1	1
CO ₂ Me	ОН	Н	Et	Н	p-OMe	1	1
NO ₂	ОН	Н	c-Pr	Н	o-Ph	1	1
CO ₂ Me	ОН	Н	n-Pr	Н	m,p-(OMe) ₂	2	1
CO ₂ Me	ОН	Н	i-Pr	Н	p-OMe	1	1
NO ₂	ОН	Н	Et	Н	p-NO ₂	1	1
CO ₂ Et	ОН	Н	-(CH	2)4-	$m_p-(OMe)_2$	2	1
CO ₂ Me	ОН	Н	Me	H	m,p-Me ₃	3	1
CO ₂ Me	ОН	Н	Et	Н	m,p-(OMe) ₂	2	1
CO ₂ Et	OH	Н	n-Pr	Н	p-NMe ₂	1	1
CO ₂ Et	ОН	Н	i-Pr	Н	p-t-Bu	1	2
CO ₂ Et	OH	Н	Et	Et	p-NHMe	1	1
CO ₂ H	OH	Н	-(CH₂	1)4-	m-OMe	1	1
CO ₂ H	OH	Н	Me	Н	p-NH ₂	1	1
CO ₂ H	OH	Н	Et	Н	p-NHCONH ₂	1	1
Ac	OH	Н	n-Pr	Н	p-CN	1	1
CO ₂ H	OH	Н	i-Pr	Н	p-NO ₂	1	1
CO ₂ H	ОН	Н	Me	Ме	p-Ac	1	3
Ac	ОН	Н	-(CH ₂	2)4-	p-CO ₂ Me	1	1
Ac	ОН	Н	Me	Н	p-CONH ₂	1	1
Ac	ОН	Н	Et	Н	p-COPh	1	1
Ac	ОН	Н	n-Pr	Н	p-NHAc	1	1
Ac	ОН	Н	i-Pr	Н	p-CF ₃	1	4
Ac	ОН	Н	-(CH	2)4-	р-ОМе	1	1
CO ₂ Me	OH	Н	Me	Н	p-OMe	1	1
CO ₂ Me	ОН	Н	Et	Н	m,p-(OMe) ₂	2	1
CO ₂ Me	ОН	Н	n-Pr	Н	p-OCF ₃	1	1
CO ₂ Me	ОН	Н	i-Pr	Н	p-OMe	1	1

$$R^{8}$$
 $N^{-}R^{7}$
 R^{6}
 R^{5}
 R^{5}

			_				
R⁵	R ⁶	R ⁷	R ⁸	n	Х	Y	Z
ОН	Н	c-Pr	Н	1	CO	NH	-
결합		Ph	Н	0	CO	NH	•
ОН	Н	i-Pr	н	1	CO	NH	-
ОН	Н	Me	Me	1	CO	NH	•
ОН	Н	Et	Н	1	CO	NH	-
ОН	Н	Et	Et	1	CO	NH	-
ОН	Н	n-Pr	Н	1	CO	NH	-
OH	Н	n-Pr	n-Pr	1	CO	NH	-
결합		i-Pr	Н	1	CO	NH	-
ОН	H	i-Pr	i-Pr	1	CO	NH	-
ОН	Н	c-Pr	Н	2	CO	NH	•
ОН	Н	n-Bu	Н	1	CO	NH	-
ОН	Н	t-Bu	Н	1	CO	NH	-
ОН	Н	CH=CH ₂	Н	1	CO	NH	-
ОН	н	CH ₂ CCH	Н	1	CO	NH	•
ОН	Н	n-펜틸	Н	2	CO	NH	-
ОН	Н	C-펜틸	Н	3	CO	NH	-
ОН	Н	n-핵실	H	3	CO	NH	•
ОН	Н	p-MeOPh	Н	3	CO	NH	-
ОН	Н	Ac	Н	2	CO	NH	-
ОН	Н	Ac	Me	2	CO	NH	-
OH	н	Ac	Et	4	CO	NH	-
OH	Н	COEt	Н	2	CO	NH	•
ОН	Н	CO-n-Bu	Н	2	CO	NH	-
ОН	Н	COCH2CH2OH	Н	2	CO	NH	-
ОН	Н	COPh	H	3	CO	NH	-
ОН	Н	COCH₂Ph	Н	3	CO	ИН	-
ОН	Н	-(CH ₂) ₂ O(CH ₂	2)2-	2	CO	NH	-
ОН	Н	-(CH ₂) ₂ NH(CH		2	CO	NH	-
ОН	Н	-(CH ₂) ₃ CO-		2	CO	NH	•
ОН	Н	-(CH ₂) ₄ CO-		3	CO	NH	-

$$(CH_{2})_{n} - X - Y - Z$$

$$O_{2}N$$

$$O_{3}N$$

$$O_{4}N$$

$$O_{5}N$$

			_				
R ⁵	R ⁶	R ⁷	R ⁸	п	Х	Y	Z
ОН	Н	c-Pr	Н	1	co	NH	-
On 결합	•	Ph	Н	0	CO	NH	•
OH	н	i-Pr	Н	1	CO	NH	•
ОН	Н	Ме	Me	1	CO	NH	-
ОН	Н	Et	Н	1	CO	NH	-
ОН	Н	Et	Et	1	CO	NH	-
ОН	Н	n-Pr	Н	1	CO	NH	-
ОН	Н	n-Pr	n-Pr	1	CO	NH	-
결합		i-Pr	Н	1	CO	NH	•
ОН	Н	i-Pr	i-Pr	1	CO	NH	-
ОН	Н	c-Pr	Н	2	CO	NH	•
ОН	Н	n-Bu	Н	1	CO	NH	-
ОН	н	t-Bu	Н	1	CO	NH	-
ОН	н	CH=CH ₂	н	1	CO	NH	-
ОН	Н	CH₂CCH	Н	1"	CO	NH	-
ОН	Н	n-펜틸	Н	2	CO	NH	•
ОН	Н	C-펜틸	Н	3	CO	NH	-
ОН	Н	n-핵실	Н	3	CO	NH	•
ОН	Н	p-MeOPh	н	3	CO	NH	-
OH	Н	Ac	Н	2	CO	NH	-
ОН	н	Ac	Me	2	CO	NH	-
OH	Н	Ac	Et	4	CO	NH	•
ОН	Н	COEt	Н	2	CO	NH	-
OH	н	CO-n-Bu	Н	2	CO	NH	-
OH	н	COCH2CH2OH	Н	2	CO	NH	-
OH		COPh	Н	3	CO	NH	•
ОН		COCH ₂ Ph	н	3	CO	NH	-
ОН	٠		2)2-	2	CO	NH	-
ОН	٠			2	CO	NH	-
OH	٠			2	CO	NH	-
OH OH		`		3	CO	NH	-
	1 '	(0.1.2/40-					

본 발명의 화합물은 피란환의 3위치와 4위치에 비대칭 탄소원자를 가지기 때문에 비대칭 탄소원자에 의한 광학 활성 화합물을 포함하고 있다. 이러한 광학활성 화합물도 라세미체와 마찬가지로 본 발명에서 사용 할 수 있다. 더욱이 피란환의 3위치와 4위치에서의 입체구조에 따른 시스 이성체 또는 트란스 이성체도 포함되는데, 트란스 이성체를 사용하는 것이 바람직하다. 이들 화합물이 염을 형성하면, 이들의 약제학적 으로 허용되는 염들을 본 발명의 유효성분으로 사용할 수 있다.

본 발명의 화합물의 제조방법에 대하여 설명한다.

구조식 (I)의 화합물중에서 R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{3-6} 의케닐기, C_{3-6} 시클로알킬기 또는 페닐기를 나타내거나, 혹은 R^7 및 R^8 이 함께 1,4-부틸렌 또는 1,5-펜틸렌을 형성하거나, 혹은 R^7 및 R^8 이 함께 (CH_2), X^1 (CH_2),를 나타내는 화합물은 아래의 반응 스킴 (reaction scheme)에 나온 바와 같이 구조식 (2)의 화합물과 구조식 (3)의 화합물을 비활성 용매중에서 반응시켜 제조한다.

$$W-(CH2)n-X-Y-Z$$

$$R1$$

$$(2)$$

$$W-(CH_{2})_{n}-X-Y-Z \longrightarrow 0H$$

$$R^{8} \times R^{7}$$

$$R^{4} \times R^{3}$$

$$R^{1} \times R^{3}$$

$$(1)$$

구조식 (2)의 화합물과 구조식 (3)의 화합물의 반응에 사용되는 용매의 예를 들면 아래와 같다.

이러한 용매들은 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포콤아마드, 디메틸아세 트아미드), 에테르계 용매 (예: 에틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화 용매 (예: 디 클로로메탄, 클로로포홈 및 디큘로로에탄) 및 알코올 용매 (예: 메탄올, 에탄올 또는 프로판올)이다. 또 한, 반응을 용매 부재하에 실시할 수도 있다. 이들중에서 알코올 용매가 바람직하다.

이 반응에서의 반응온도는 통상적으로 -20℃ 내지 사용되는 반응용매의 환류온도, 바람직하게는 60℃~100℃이다.

각 반응 물질의 물비에 대하여는 화합물 (3)/화합물 (2)의 비가 $0.5{\sim}4.0$ 의 범위내, 바람직하게는 $1.0{\sim}2.0$ 의 범위내이다.

R⁷ 및 R⁸이 모두 수소원자가 아닌 화합물은 화합물 (5) (이 화합물 (5)는 문헌 [예컨대, J. M. Evans et al., J. Med. Chem. 1984, 27, 1127, J. Med. Chem. 1986, 29, 2194, J. T. North et al., J. Org. Chem. 1995, 60, 3397, 일본국 특허공개 소 56-57785호, 일본국 특허공개 소 56-57786호 및 일본국 특허공개 소 58-188880호]에 기재된 공지의 방법으로 합성할 수 있음)의 아세틸기를 탈보호하여 얻게되는 화합물(6)과 산 영화물(7)을 염기 존재하에 반응시켜 제조하거나, 혹은 화합물 (6)과 카르복시산 (8)을 축합제를 사용하여 반응시켜 제조할 수 있다.

$$\begin{array}{c} O \\ W-(CH_2)_n-C-NH \\ \hline \\ R^1 \\ \hline \\ (I) \end{array}$$

구조식 (2)의 화합물중에서 X가 C=0룔 나타내고, Y가 NH를 나타내며, Z가 결합을 나타내는 화합물 (12)는 문헌 (J. M. Evans et al., J. Med. Chem. 1984, 27, 1127, J. Med. Chem. 1986, 29, 2194, J. T. North et al., Org. Chem. 1995, 60, 3397, 일본국 특허공개 소 56-57785호, 일본국 특허공개 소 56-57786호 및 일본국 특허공개 소 58-188880호)에 기재된 공지의 방법으로 합성할 수 있다.

즉, 화함물(12)는, 화합물 (9)와 산 영화물 (7)을 염기 존재하에 반응시키거나 화합물 (9)와 카르복시산 (8)을 축합제를 사용하여 반응시켜 화합물 (10)을 얻은 다음, 이 화합물 (10)을 N-브로모숙신산 이미드로 처리하여 브로모하드린 (11)을 얻은 후, 이 브로모하드린을 염기 존재하에 에폭시화 하는 방법에 의해 제조할 수 있다.

$$W-(CH_2)_n-C-NH$$
 R^4
 R^3

$$W-(CH_2)_n-C-NH$$

$$R^4$$

$$R^3$$

$$(12)$$

또한, 화합물 (12)는, 화합물 (4)의 아세틸기를 염기를 사용하여 탈보호하고, 보호기가 제거된 화합물을 염기 존재하에 산 염화물 (7)과 반응시키거나 축합제를 사용하여 카르복시산 (8)과 반응시키는 방법에 의 해 제조할 수 있다.

구조식 (2)의 화합물중에서 X가 CH₂를 나타내고, Y가 NH를 나타내며, Z가 결합을 나타내는 화합물 (14)는. 화합물 (10)을 환원제에 의해 환원해서 얻게되는 화합물 (13)을 위에 나온 바와 동일한 방법으로 처리하 여 제조한다. 또한, 화합물 (13)은, 화합물 (9)와 화합물 (15)를 염기 존재하에 반응시키거나 화합물 (17)을 적당한 환원제에 의해 환원시킴으로써 제조한다.

$$W-(CH_2)_n-CH_2Hal(15)$$

R³ (Hal= Cl, Br, I)

$$W-(CH2)n-C-NHH2R1$$
(13)

구조식 (2)의 화합물중에서 X가 SO₂를 나타내고 Y가 NH를 나타내며 Z가 결합을 나타내는 화합물 (20)은 화합물 (9)와 화합물 (18)을 염기 존재하에 반응시켜 얻게 되는 화합물 (19)을 위에 나온 바와 동일한 방법으로 처리하여 제조한다.

구조식 (2)의 화합물중에서 X가 NH를 나타내고 Y가 C=0를 나타내며 Z가 NH를 나타내는 화합물(23)은 화합물 (9)와 화합물 (21)을 반응시켜 얻게되는 화합물 (22)를 위에 나온 바와 동일한 방법으로 처리하여 제조한다.

$$H_2N$$
 R^4
 R^3

$$\begin{array}{c} W-(CH_{2})_{n}-NCO \\ \hline & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\$$

아래의 반응 스킴에 나온 바와 같이 구조식 (I)의 화합물중에서 R^7 및 R^8 이 각각 독립하여 수소원자 또는 $C(=Y^1)Z^1R^{10}$ 을 나타내는 화합물 (26)은, 구조식 (2)의 화합물을 암모니아로 처리하여 얻게 되는 구조식 (24)의 화합물 [구조식 (2)의 화합물의 구조식 (24)의 화합물로의 전환은 공지되어 있으며, 이러한 전환은, 예컨대 일본국 특허공개 소 58-67683 호, 같은 소 58-188880호 및 같은 소 58-201776호에 의하여 달성할 수 있음]을 구조식(25)의 화합물과 비활성 용매중에서 염기 존재하에 반응시켜 제조한다.

$$W-(CH_2)_n-X-Y-Z$$
 R^4
 R^3

화합물 (24)는 화합물 (2)와 암모니아룔 비활성 용매중에서 반응시켜 제조한다.

이 반응에 사용되는 용매들은 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포름아미드, 디메틸아세트아미드), 에테르계 용매 (예: 에틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화 용 매 (예: 디클로로메탄, 클로로포퓸 및 디클로로에탄) 및 알코올 용매 (예: 메탄올, 에탄올)이다. 이들중 에서 알코올 용매가 바람직하다.

이 반응에서의 반응온도는 통상적으로 빙냉 온도 내지 사용되는 반응용매의 환류온도, 바람직하게는 40℃~80℃이다.

이 반응을 고압 유리관 또는 오토큘레이브중에서 실시하는 것이 바람직하다.

구조식 (24)의 화합물과 구조식 (25)의 화합물의 반응에 사용되는 용매들은 술푹시드 용매 (예: 디메틸술 폭시드), 아미드 용매 (예: 디메틸포롬아미드, 디메틸아세트아미드), 에테르계 용매 (예: 에틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화 용매 (예: 디클로로메탄, 큘로로포름 및 디클로로에탄) 및 알코올 용매(예: 메탄올, 에탄올 또는 프로판올)이다. 또한, 반응을 용매 부재하에 실시할 수도 있다. 이 들중에서 할로겐화 용매가 바람직하다.

이 반응에 사용되는 염기로서는, 예컨대 트리알킬아민 (예: 트리에틸아민, 메틸디이소프로필아민), 피리딘아민 (예: 피리딘, 2,6-루티딘, 2,6-디-t-부틸피리딘, 2,6-디-t-부틸-4-메틸피리딘) 등이 있는데, 트리에틸아민, 메틸디이소프로필아민 및 피리딘이 바람직하다.

이 반응에서의 반응온도는 통상적으로 -20℃ 내지 사용된 반응용매의 환류온도, 바람직하게는 0℃~60℃이다.

반응물질의 물비에 대해서는 염기/화합물 (25)의 비가 $0.5\sim2.0$ 의 범위내, 바람직하게는 $1.0\sim1.5$ 의 범위 내이다

반응 물질의 물비에 대해서는 화합물 (25)/화합물 (24)의 비가 $0.5\sim2.0$ 의 범위내, 바람직하게는 $1.0\sim2.0$ 의 범위내이다.

구조식 (|)의 화합물중에서 R⁷ 및 R⁸이 함께 (CH₂)qZ¹C(=Y¹)을 나타내는 화합물 (28)은 아래의 반응 스킴에 나온 바와 같이 비활성 용매중에서 염기 존재하에 구조식 (27)의 화합물을 반응시켜 제조한다.

구조식 (27)의 화합물과 염기의 반응에 사용되는 용매로서는 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포름아미드, 디메틸아세트아미드), 에테르계 용매 (예: 에틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화 용매 (예: 디클로로메탄, 클로로포롬, 디클로로메탄), 알코올 용매 (예: 메탄올, 에탄올, 프로판올)를 들 수 있다. 반응을 용매 부재하에 실시할 수도 있다. 바람직한 용매는 술폭시드 용매 및 아미드 용매이다.

영기로서 수소화 나트롬, 수소화 칼롬, 알콕시화 칼롬 (예: 포타슘-t-부록시드), 알콕시화 나트륨 (예: 메톡시화 나트륨, 예톡시화 나트륨), 수산화 테트라알킬앙모늄 (예: 수산화 테트라메틸앙모늄, 수산화 테트라메틸앙모늄), 후로겐화 4차 앙모늄 (예: 브롬화 트리메틸벤질암모늄), 무기 알칼리 금속염 (예: 탄산 칼롬, 탄산수소 칼롬, 수산화 칼롬, 탄산 나트롬, 탄산수소 나트륨, 수산화 나트륨) 등을 들 수 있다. 바람직한 것들은 알콕시화 나트륨과 수산화 테트라알킬-암모늄이다.

이 반응에서의 반응온도는 통상적으로 -20℃ 내지 반응에 사용된 반응용매의 환류온도인데, 바람직하게는 0℃ 내지 60℃이다.

반응물질의 물비에 관해서는 염기 / 화합물 (27)의 비가 0.5~2.0, 바람직하게는 1.0~1.5이다.

구조식 (I)의 화합물중에서 R^7 및 R^8 이 이들이 결합해 있는 질소원자와 더불어 피를기를 형성하는 화합물 (30)을 아래의 반응 스킴에 나온 바와 같이 화합물 (24)로부터 합성한다.

$$W-(CH2)n-X-Y-Z NH2 OH R4$$

$$R1$$
(24)

MeO O OMe
$$W-(CH_2)_n-X-Y-Z$$
 OH R^4 R^3 (30)

화합물 (30)은 화합물 (24)와 화합물 (29)를 비활성 용매중에서 산성촉매 존재하에 반용시켜 제조한다.

이 반응에 사용되는 용매로서는 술푹시드 용매 (예: 디메틸술푹시드), 아미드 용매 (예: 디메틸포콤아미드, 디메틸아세트아미드), 에테르계 용매 (예: 메틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디클로로메탄, 클로로포룜, 디클로로메탄)를 들 수 있다. 반응을 용매 부재하에 실시할 수도있다. 산성촉매를 그대로 용매로서 사용할 수 있다.

이 반응에서의 반응온도는 통상적으로 빙냉온도 (ice-cooled temperature) 내지 반응에 사용된 반응용매의 환류온도인데, 바람직하게는 환류온도이다.

반응물질의 물비에 관해서는 화합물 (29) / 화합물 (24)의 비가 0.5~4.0, 바람직하게는 1.0~2.0이다.

산성촉매로서는 염산, 황산, 포룜산, 아세트산 및 프로피온산을 들 수 있다.

구조식 (I)의 화합물중에서 R^7 및 R^8 이 이들이 결합해 있는 질소원자와 더불어 피라졸릴기를 형성하는 화합물 (33) 및 화합물 (34)를 아래의 반응 스킴에 나온바와 같이 화합물 (2)로부터 2단계로 합성한다.

$$W-(CH_{2})_{n}-X-Y-Z \longrightarrow Q \longrightarrow R^{4} \longrightarrow NH_{2}NH_{2}\cdot H_{2}O \longrightarrow R^{17} \longrightarrow R^{17}$$

화합물 (31)은 화합물 (2)를 비활성 용매중에서 히드라진 1수화물과 반응시켜 제조한다.

이 반응에 사용되는 용매로서는 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포롬아미드, 디메틸아세트아미드), 에테르계 용매 (예: 에틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디클로로메탄, 클로로포롬, 디클로로에탄), 알코올 용매 (예: 메탄올, 에탄올)를 들 수 있다. 바람직한 용매는 알코올류이다.

이 반응에서의 반응온도는 통상적으로 빙냉온도 (氷冷溫度) 내지 반응에 사용된 반응용매의 환류온도인데, 바람직하게는 40℃ 내지 80℃이다.

반응물질의 몰비에 관해서는 히드라진 1수화물 / 화합물 (2)의 비가 $0.5\sim10.0$, 바람직하게는 $1.0\sim2.00$ 다.

화합물 (33) 및 화합물 (34)은 비활성 용매중에서 화합물 (31)과 화합물 (32)를 반응시켜 제조한다.

아 반응에 사용되는 용매로서는 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포룜아미드, 디메틸아세트아미드), 에테르계 용매 (예: 메틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디클로로메탄, 클로로포룜, 디클로로에탄), 알코올 용매 (예: 메탄올, 메탄올)를 들 수 있다. 바람직한 용매는 알코올류이다. 반응을 용매 부재하에 실시할 수도 있다.

이 반응에서의 반응온도는 통상적으로 통상적으로 빙냉온도 내지 반응에 사용된 반응용매의 환류온도이다.

반응물질의 올비에 관해서는 화합물 (32) / 화합물 (31)의 비가 0.5~5.0, 바람직하게는 1.0~2.0이다.

화합물 (33) 및 화합물 (34)을 유기화학에서의 공지의 방법, 예컨대 재결정 또는 칼럼 크로마토그래피에 의하여 분리한다.

구조식 (I)의 화합물중에서 R¹ 및 R⁸이 이들이 결합해 있는 질소원자와 더불어 아미다졸릴기를 형성하는 화합물 (36)을 아래의 반응 스킴에 나온 바와 같이 화합물 (2)와 화합물 (35)를 비활성 용매중에서 수소 화 나트륨 존재하에 반응시켜 제조한다. 18-크라운-6 등의 상전달 촉매를 공존시키는 것이 바람직하다.

$$W-(CH_2)_n-X-Y-Z$$

$$R^4$$

$$(2)$$

이 반응에 사용되는 용매로서는 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포륨아미드, 디메틸아세트아미드), 에테르계 용매 (예: 에틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디클로로메탄, 클로로포롬, 디클로로에탄), 및 방향족 용매 (예: 벤젠, 톨루엔)를 들 수 있고, 바람직한 용매는 방향족 용매이다.

이 반용에서의 반응온도는 통상적으로 빙냉온도 내지 반응에 사용된 반응용매의 환류온도이다.

반응물질의 물비에 관해서는 화합물 (35) / 화합묳 (2)의 비가 0.5~5.0, 바람직하게는 1.0~2.0이다.

구조식 (I)의 화합물중에서 R^7 및 R^8 이 이들이 결합해 있는 질소원자와 더불어 1,2,4-트리아졸릴기를 형성하는 화합물 (38)을 아래의 반응 스킴에 나온 바와 같이 화합물 (2)와 화합물 (37)을 비활성 용매중에서 수소화 나트륨 존재하에 반응시켜 제조한다. 18-크라운-6 등의 상전달 촉매를 공존시키는 것이 바람직하다.

이 반응에 사용되는 용매로서는 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포룜아미드, 디메틸아세트아미드), 에테르계 용매 (예: 메틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디클로로메탄, 클로로포룜, 디클로로에탄), 및 방향족 용매 (예: 벤젠, 톨루엔)를 들 수 있고, 방향족 용매가 바람직하다.

이 반응에서의 반용온도는 통상적으로 빙냉온도 내지 반응에 사용된 반응용매의 환류온도이다.

반응물질의 몰비에 관해서는 화합물 (37) / 화합물 (2)의 비가 0.5~5.0, 바람직하게는 1.0~2.0이다.

구조식 (I)의 화합물중에서 R⁷ 및 R⁸이 이들이 결합해 있는 질소원자와 더불어 1,2,3-트리아졸릴기를 형성하는 화합물 (40)을 아래의 반응 스킴에 나온바와 같이 화합물 (2)와 화합물 (39)를 비활성 용매중에서 수소화 나트룡 존재하에 반응시켜 제조한다. 18-크라운-6 등의 상전달 촉매를 공존시키는 것이 바람직하다.

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{1}$$

$$(2)$$

$$W-(CH_{2})_{n}-X-Y-Z$$

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{1}$$

$$(40)$$

이 반응에 사용되는 용매로서는 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포룜아미드, 디메틸아세트아미드), 에테르계 용매 (예: 에탈 예테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디클로로메탄, 클로로포롬, 디클로로에탄), 및 방향족 용매 (예: 벤젠, 톨루엔)를 들 수 있고, 방향족 용매가 바람직하다.

이 반응에서의 반응온도는 통상적으로 빙냉온도 내지 반응에 사용된 반응용매의 환류온도이다. 반용물질의 몰비에 관해서는 화합물 (39) / 화합물 (2)의 비가 0.5~5.0, 바람직하게는 1.0~2.0이다. 화합물 (40)은 아래의 반응 스킴에 나온 바와 같이 화합물 (2)로부터 2단계로 합성할 수 있다.

화합물 (41)은 화합물 (2)를, 예컨대 소디움 아지드, 리튬 아지드 및 트리메틸실릴 아지드 등의 아지도 화합물과 비활성 용매중에서 반응시켜 제조한다.

이 반응에 사용되는 용매로서는 숲폭시드 용매 (예: 디메탈술폭시드), 아미드 용매 (예: 디메틸포름아미드, 디메틸아세트아미드), 에테르계 용매 (예: 메틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디클로로메탄, 클로로포룸, 디클로로에탄), 및 방향족 용매 (예: 벤젠, 톨루엔)를 들 수 있고, 방향족 용매가 바람직하다.

이 반응에서의 반응온도는 통상적으로 빙냉온도 내지 반응에 사용된 반응용매의 환류온도이다.

반응물질의 몰비에 관해서는 아지도 화합물 / 화합물 (2)의 비가 0.5~5.0, 바람직하게는 1.0~2.0이다.

화합물 (40)은 화합물 (41)과 화합물 (42)를 비활성 용매중에서 반응시켜 제조한다.

이 반응에 사용되는 용매로서는 숲곡시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포륨아미드, 디메틸아세트아미드), 에테르계 용매 (예: 에틸 에테르, 디메톡시에탄, 테트라히드로푸란), 할로겐화용매 (예: 디쿨로로메탄, 클로로포룸, 디쿨로로에탄), 및 방향족 용매 (예: 벤젠, 톨루엔)를 들 수 있고, 방향족 용매가 바람직하다.

이 반응에서의 반응온도는 통상적으로 5℃ 내지 140℃, 바람직하게는 80℃ 내지 120℃이다.

반응물질의 몰비에 관해서는 화합물 (42) / 화합물 (41)의 비가 0.5~5.0, 바람직하게는 1.0~2.0이다.

이 반응을 고압 유리관 또는 오토클레이브중에서 실시하는 것이 바람직하다.

구조식 (I)의 화합물중에서 R^5 가 C_{1-8} 알킬카르보닐목시기를 나타내는 화합물 (43)은 화합물 (1)과 아실화 제를 적당한 영기 존재하에 비활성 용매중에서 반응시켜 합성할 수 있다.

이 반응에 사용되는 용매로서는 술폭시드 용매 (예: 디메틸술폭시드), 아미드 용매 (예: 디메틸포롱아미드, 디메틸아세트아미드), 에테르계 용매 (예: 메틸 에테르, 디메톡시에탄, 테트라히드로푸란), 및 할로 겐화 용매 (예: 디쿨로로메탄, 클로로포룸, 디큘로로메탄)를 들 수 있고, 이 반응을 용매 부재하에서도 실시할 수 있다.

이 반응에서의 반용온도는 통상적으로 빙냉온도 내지 반응에 사용된 반응용매의 환류온도이다.

이 반응에 사용되는 염기로서는 트리에틸아민, 피리딘, 디이소프로필에틸아민 및 DBU (디아자비시클로운데센)를 들 수 있다.

아실화제로서는 산 영화물 및 산 브롬화뮬 등의 산 할로겐화물을 들 수 있다.

반응물질의 율비에 관해서는 화합물 (1) / 아실화제의 비가 0.5~4.0, 바람직하게는 1.0~2.0이다.

구조식 (I)의 화합물중에서 R^7 및 R^8 이 함께 하나의 결합을 형성하는 화합물 (44)는, 화합물 (1)을 비활성용매중에서 탄산 칼롬, 수산화 나트롬, 수산화 칼롬 및 수소화 나트롬 등의 무기염기 또는 수산화 테트라 알킬암모늄 등의 유기영기 존재하에 반응시킴으로써 제조한다.

구조식 (!)의 화합물들 중에서 광학활성 이성체들은, 예컨대 라세미체의 광학분할법에 의하여 재조할 수 있다 (일본국 특허공개 평 3-141286호, 미합중국 특허 제 5,097,037호 및 EP-A-409 165 참조). 구조식 (6) 및 (24)의 화합물의 광학활성 이성체들은 비대칭 합성법에 의하여 제조함 수 있다 [일본국 특허공개 평 5-507645호, 일본국 특허공개 평 5-301878호, 일본국 특허공개 평 7-285983호, EP-A-535 377 및 미합 중국 특허 제 5.420,314호 참조).

위에서 설명한 바와 같이 본 발명에서는 구조식 (I)의 화합물들이 심박동수 감소작용이 강력함을 발견하였다. 본 발명의 화합물들은 심장기능 지연작용은 없으나 심박동수 감소작용을 가지고 있으므로 강심작용을 발현하는데 필요한 것과 동일한 양을 투여하더라도 심장근육의 수축을 향상시키는 작용을 발휘한다. 이들의 작용으로 인하여 본 발명의 화합물은 심장근육이 소비하는 산소량을 감소시키므로 심장근육의 운동 부하를 감소키며 항협심 작용 (anti-stenocardiac activity)을 발휘한다고 생각하고 있다. 더욱이 이들은 유효 치료불응 기간을 길게하는 작용이 있기 때문에 항부정액 작용을 나타낸다. 따라서 본 발명의화합물은 심장운동에 의하여 일어나는 산소 소모, 에너지 소모 또는 대사를 고려하여 심장혈관 장해를 치료하고, 또한 심박동수를 감소시키는 화합물의 작용을 고려하여 기타의 심장 장해를 치료하는데 유용하다. 예컨대 본 발명의화합물은 인간을 비롯한 포유동물의 심기능 부전 강료용 의약으로서, 또한이들의 심기능 부전을 유발하는 심장혈관 장해 치료용 의약, 예컨대 국소빈혈성 심장병 치료용 의약, 고혈압 치료용 의약, 심장유체 정체 치료용 의약, 폐순환 승압 치료용 의약, 판막염 치료제, 선천성 심장장해 치료제, 심근 장해 치료제, 폐부종 치료제, 협심증 치료제, 심근경색 치료제, 부정맥 치료제 및 심방성 세동 (atrial fibrillation) 치료제로서 유용하다.

본 발명은 이들 각종 질환을 치료하기 위하여 구조식 (I)의 화합물을 유효량 함유한 의약 조성물을 제공 한다

본 발명의 화합물의 투여방식으로서는 주사제 (피하주사, 정맥주사, 근육주사 또는 복강내 주사), 연고제, 좌제 또는 에어로졸제 등에 의한 비경구 투여 또는 정제, 캡슐제, 입제, 환제, 시럽제, 액제, 에 얼젼제 또는 현탁제 등의 제형에 의한 경구투여를 들 수 있다.

본 발명의 상기한 약리학적 조성물 또는 동물용 조성물은 조성물 총중량에 대하여 상기한 본 발명의 화합물을 약 0.01~99.5 중량 %, 바람직하게는 약 0.1~30 중량 %를 함유한다.

본 발명의 화합물에, 혹은 본 발명의 화합물을 함유한 조성물에 기타의 약리학적 유효성분 혹은 동물용 유효성분을 청가해도 좋다. 또한, 본 발명의 조성물에는 본 발명의 화합물을 복수종 함유해도 좋다.

본 발명의 화합물의 임상적인 투여량은 환자의 연령, 체중, 민감성, 증상 등에 따라 달라지는데, 일반적으로 성인 1인당 1일 유효 용량은 통상적으로 약 0.003~1.5 g, 바람직하게는 약 0.01~0.6 g이다. 필요한 경우, 상기한 범위밖의 양물 사용해도 좋다.

본 발명의 화합물을 투여방식에 따라 의약 제제 제조시에 종래부터 사용되고 있는 방법에 의하여 각종 적당한 제형으로 제제화할 수 있다.

즉, 정제, 캡슐제, 입제 또는 환제 등의 경구용 제제는 백당, 락토오스, 수크로오스, 글루코오스, 전분 또는 만니톨 등의 부형제; 히드록시프로필 셀룰로오스, 시럽류, 아라비아 검, 젤라틴, 소르비톨, 트라가 칸트 검, 메틸 셀룰로오스 또는 폴리비닐피롤리돈 등의 바인더; 전분, 카르복시메틸 셀룰로오스 (CMC) 또 는 그 칼슘염, 결정 셀룰로오스 분말 또는 폴리에틸렌 글리콜 (PEG) 등의 붕해제; 탈크, 마그네슘 또는 칼슘 스테아레이트, 실리카 등의 윤활제; 및 소디움 락테이트, 글리세를 등의 평활제를 사용하여 제조할 수 있다.

주사제, 액제 (액체), 에멀젼제, 현탁액제, 시럽제 또는 에어로졸 등은 물, 에털 알코올, 야소프로필 알 코올, 프로필렌 글리콜, 1,3-부틸렌 글리콜 또는 폴리에틸렌 글리콜 등의 유효성분용의 용매; 수소청가 피마자유의 폴리옥시에틸렌 에테르, 소르비탄 지방산 에스테르, 폴리옥시에틸렌 소르비탄 지방산 에스테 르, 폴리옥시에틸렌 지방산 에스테르, 레시틴 등의 계면 활성제; 트라가칸트 검 또는 아라비아 검 등의 천면 고무 혹은 메틸 셀룰로오스 등의 카르복시메틸 셀룰로오스 유도체의 나트륨염 등과 같은 셀룰로오스 등의 현탁화제; 또는 파라히드록시벤조산, 벤즈알코늄 클로라이드, 소르브산의 영 등의 보존제를 사용하 여 제조할 수 있다.

피부에 바르는 제제인 연고는, 예컨대 백색 와셀린, 유동 파라핀, 고급 알코올, 마크로골 (Macrogol) 연고, 친수성 연고 베이스 또는 하이드로겔 베이스 등을 사용하여 제조할 수 있다.

좌제는, 예컨대 카카오 버터, 폴리에틸렌 글리콜, 라놓린, 지방산 트리글리세리드, 코코넛 오일, 폴리소르베이트 등을 사용하여 제조할 수 있다.

[실시예]

이하, 본 발명을 각 실시예를 참조하여 설명하지만, 본 발명은 이들 실시예에 한정되는 것은 아니다.

합성여

참고예 1: 6-(벤조일아미노)-2,2-디메틸-7-니트로-2H-1-벤조피란 (IV-1)의 합성

벤조일 클로라이드 (0.55 mL, 1.5 eq.)을 6-아미노-2,2-디메틸-7-니트로-2H-1-벤조피란 (Evans, J. M. et al., J. Med. Chem. 1984, 27, 1127의 방법에 의하여 합성하였음) (700 mg, 3.18 mmol) 및 트리에틸아민 (0.58 mL, 1.3 eq)의 클로로포름 (10 mL) 용액에 0℃에서 가하고, 이 혼합물을 0℃에서 3 시간 교반한후, 실온에서 1.5 시간 교반하였다. 수득한 혼합물에 영화 암모늄 포화 수용액을 가한후 이 혼합물을 클로로포름으로 추출하고 무수 황산 나트륨으로 건조하였다. 용매를 증류하여 제거한 후 수득한 잔류물을실리카 겔 칼럼 크로마토그래피 (핵산 : 에틸 아세테이트 = 5 : 1)를 통하여 정제함으로써 오렌지색 고체

의 목적 생성물을 얻었다 (570 mg, 55%).

'H NMR (CDC1,) δ : 1.45 (s, 6H), 5.87 (d, J = 10 Hz, 1H), 6.40 (d, J = 10 Hz, 1H),

7.40-8.05 (m, 7H), 8.56 (s, 1H).

벤조일 클로라이드 대신에 화합물 IV-2 내지 IV-21에 대응하는 각각의 산 영화물 (시약급으로 시판되고 있는 것을 입수하거나 티오닐 클로라이드를 사용하여 대응하는 카르복시산으로부터 합성할 수 있음)을 사 용하여 참고에 1과 동일한 방법으로 아래의 화합물을 제조하였다.

$$R^{\theta}$$
 $(CH_2)_n$
 $-X-Y-Z$
 O_2N

화함물	R ⁹	n	x	Υ	z
IV-2	н	1	co	NH	
IV-3	н	2	CO	NH	_
IV -4	$m, p - (OMe)_2$	1	CO	NH	_
1V - 5	pOMe	1	CO	NH	
IV-6	р-Ме	1	CO	NH	_
IV-7	p-Cl	1	CO	NH	•••
IV - 8	н	0	NH	CO	NH
IV -9	p–F	1	CO	NH	_
IV-10	p-NO ₂	1	CO	NH	_
IV-11	$m, p - (OMe)_2$	2	CO	NH	_
IV-12	p–OMe	2	CO	NH	-
IV-13	m-OMe	1	CO	NH	_
IV-14	o-OMe	1	CO	NH	_
IV-15	p–Ph	1	CO	NH	_
IV-16	p-OEt	1	CO	NH	_
IV-17	p–Br	1	CO	NH	_
IV-18	o-Ph	1	CO	NH	_
IV-19	m-Ph	1	CO	NH	
IV-20	p-NHAc	1	CO	NH	_
IV-21	р-ОН	1	co	NH	

```
<u>화합물 IV-2</u>
```

```
<sup>1</sup>H NMR (CDC1, ) \delta: 1.41 (s, 6H), 3.73 (s, 2H),
                        5.79 (d, J = 10Hz, 1H),
                        6.29 (d, J = 10Hz, 1H),
                        7.04-7.36 (m, 5H), 7.42 (s, 1H)
                        8.29 (s, 1H), 9.97 (bs, 1H).
MS (FAB) m/z: 157, 339[M+H]*.
<u>화합물 IV-3</u>
 <sup>1</sup>H NMR (CDC1<sub>3</sub>) \delta: 1.42 (s, 6H), 2.52-3.22 (m, 4H),
```

5.78 (d, J = 9Hz, 1H),6.30 (d, J = 9Hz, 1H),7.14 (s, 5H), 7.43 (s, 1H) 8.34 (s, 1H), 10.09 (bs, 1H). MS (FAB) m/z: 157(bp), 353[M+H].

<u>화합물 IV-4</u>

```
<sup>1</sup>H NMR (CDCl<sub>1</sub>) \delta: 1.44 (s, 6H), 3.69 (s, 2H), 3.87 (s, 6H),
                      5.80 (d, J = 9Hz, 1H),
                      6.31 (d, J = 9Hz, 1H),
                      6.83 (s, 3H), 7.47 (s, 1H)
                      8.29 (s, 1H), 10.04 (bs, 1H).
MS (FAB) m/z: 151(bp), 399[M+H].
```

<u>화합물 IV-5</u>

```
<sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.39 (s, 6H), 3.63 (s, 2H), 3.72 (s, 3H),
                     5.75 (d, J = 9Hz, 1H),
                     6.23 (d, J = 9Hz, 1H),
                     6.61-7.21 (m, 4H), 7.39 (s, 1H)
                      8.25 (s, 1H), 9.94 (bs, 1H).
MS (FAB) m/z: 121(bp), 369[M+H].
```

```
<u>화합물 IV-6</u>
```

```
<sup>1</sup>H NMR (CDCl<sub>2</sub>) \delta: 1.44 (s, 6H), 2.35 (s, 3H), 3.73 (s, 2H),
                      5.79 (d, J = 10Hz, 1H),
                      6.29 (d, J = 10Hz, 1H),
                      7.14 (s, 4H), 7.46 (s, 1H)
                      8.31 (s, 1H), 10.02 (bs, 1H).
MS (FAB) m/z: 105, 353[M+H]* (bp).
<u>화합물 IV-7</u>
'H NMR (CDC1:) \delta: 1.40 (s, 6H), 3.73 (s, 2H),
                      5.79 (d, J = 9Hz, 1H),
                      6.28 (d, J = 9Hz, 1H),
                      7.26 (s, 4H), 7.47 (s, 1H)
                      8.28 (s, 1H), 10.10 (bs, 1H).
MS (FAB) m/z: 125(bp), 373[M+H].
<u>화합물 IV-8</u>
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta : 1.41 (s, 6H),
                      5.78 (d, J = 10Hz, 1H),
                      6.25 (d, J = 10Hz, 1H),
                      6.90-7.54 (m, 7H), 8.16 (s, 1H)
                    9.69 (bs, 1H).
 MS (FAB) m/z: 157(bp), 340[M+H].
<u>화합물 IV-9</u>
 <sup>1</sup>H NMR (CDCl<sub>1</sub>) \delta: 1.41 (s, 6H), 3.67 (s, 2H),
                       5.75 (d, J = 10Hz, 1H),
                       6.25 (d, J = 10Hz, 1H),
                       6.77-7.37 (m, 4H), 7.40 (s, 1H)
                       8.13 (s, 1H), 9.95 (bs, 1H).
 MS (FAB) m/z: 109(bp), 357[M+H], mp. 160-162°C.
```

<u>화합물 IV-10</u>

```
<sup>1</sup>H NMR (CDC1<sub>2</sub>) \delta: 1.47 (s, 6H), 3.89 (s, 2H),
                        5.87 (d, J = 9Hz, 1H),
                        6.32 (d, J = 9Hz, 1H),
                        7.29-7.62 (m, 3H),
                        7.99-8.34 (m, 3H), 10.18 (bs, 1H).
MS (EI) m/z: 322(bp), 383[M+], mp. 188-191 ^{\circ}C .
<u>화합물 IV-11</u>
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.44 (s, 6H), 2.53-3.20 (m, 4H),
                        3.80 (s, 6H),
                        5.80 (d, J = 10Hz, 1H),
                        6.29 (d, J = 10Hz, 1H),
                        6.70 (s, 3H), 7.46 (s, 3H)
```

8.27 (s, 1H), 10.00 (bs, 1H).

<u>화합물 IV-12</u>

'H NMR (CDC1,) δ : 1.45 (s, 6H), 2.48-3.18 (m, 4H), 3.74 (s, 3H), 5.82 (d, J = 10Hz, 1H),6.32 (d, J = 10Hz, 1H), 6.66-7.28 (m, 4H), 7.49 (s, 3H) 8.31 (s, 1H), 10.05 (bs, 1H). MS (FAB) m/z: 121(bp) , 383[M+H] , mp. 100-102 $^{\circ}$.

MS (FAB) m/z: 96(bp), 413[M+H].

<u>화합물 IV-13</u>

```
<sup>1</sup>H NMR (CDC1, ) \delta: 1.41 (s, 6H), 3.69 (s, 2H),
                      3.76 (s, 3H),
                      5.76 (d, J = 10Hz, 1H),
                      6.28 (d, J = 10Hz, 1H),
```

```
6.64-6.96 (m, 3H), 7.08-7.36 (m, 1H)
                      7.41 (s, 1H), 8.27 (s, 1H), 9.99 (bs, 1H).
MS (FAB) m/z: 121(bp), 369[M+H], mp. 82-83 °C.
<u>화합물 IV-14</u>
^{1}H NMR (CDCl<sub>2</sub>) \delta: 1.41 (s, 6H), 3.72 (s, 2H), 3.94 (s, 3H),
                      5.79 (d, J = 10Hz, 1H),
                      6.30 (d, J = 10Hz, 1H),
                      6.74-7.36 (m, 4H), 7.44 (s, 1H)
                      8.30 (s, 1H), 10.13 (bs, 1H).
MS (FAB) m/z: 185(bp), 369[M+H], mp. 103-104°.
<u>화합물 IV-15</u>
 'H NMR (CDC1,) \delta: 1.40 (s, 6H), 3.76 (s, 2H),
                      5.79 (d, J = 10Hz, 1H),
                      6.30 (d, J = 10Hz, 1H),
                      7.15-7.75 (m, 10H),
                      8.33 (s, 1H), 10.11 (bs, 1H).
 MS (FAB) m/z: 167(bp), 415[M+H], mp. 103-105°C.
화합물 IV-16
 <sup>1</sup>H NMR (CDC1<sub>4</sub>) \delta: 1.40 (t, J = 7Hz, 3H), 1.44 (s, 6H),
                      3.69 (s, 2H), 4.01 (q, J = 7Hz, 2H),
                      5.81 (d, J = 10Hz, 1H),
                      6.33 \cdot (d, J = 10Hz, 1H),
                      6.77-7.39 (m, 4H), 7.48 (s, 1H),
                      8.34 (s, 1H), 10.04 (bs, 1H).
 MS (FAB) m/z: 135(bp), 383[M+H], mp. 102-104°C.
화합물 IV-17
 <sup>1</sup>H NMR (CDC1<sub>3</sub>) \delta: 1.42 (s, 6H), 3.69 (s, 2H),
```

```
5.80 (d, J = 11Hz, 1H),
                       6.30 (d, J = 11Hz, 1H), 7.09-7.52 (m, 5H),
                       8.28 (s, 1H) 10.10 (bs, 1H).
MS (EI) m/z: 90(bp), 416[M-1]
<u>화합물 IV-18</u>
<sup>1</sup> H NMR (CDCl<sub>2</sub>) \delta: 1.43 (s, 6H), 3.77 (s, 2H),
                       5.87 (d, J = 10Hz, 1H),
                       6.34 (d, J = 10Hz, 1H),
                       7.26-7.43 (m, 9H), 7.53 (s, 1H)
                       8.33 (s, 1H), 9.95 (bs, 1H).
MS (EI) m/z: 205(bp), 415[M+1]
화함물 IV-19
<sup>1</sup>H NMR (CDC1,) \delta: 1.43 (s, 6H), 3.85 (s, 2H),
                       5.88 (d, J = 10Hz, 1H),
                       6.37 (d, J = 10Hz, 1H),
                       7.26-7.62 (m, 10H), 8.41 (s, 1H)
                       10.21 (bs, 1H).
MS (EI) m/z: 353(bp), 415[M+1]
<u>화합물 IV-20</u>
 ^{1}\,H NMR (CDCl<sub>2</sub>) \delta : 1.40 (s, 6H), 2.10 (s, 3H), 3.71 (s, 2H),
                       5.83 (d, J = 10Hz, 1H),
                       6.32 (d, J = 10Hz, 1H),
                       7.13-7.80 (m, 6H), 8.30 (s, 1H)
                       10.01 (bs, 1H).
 MS (EI) m/z: 106(bp), 395[M<sup>+</sup>]
<u>화합물 IV-21</u>
 'H NMR (CDCl<sub>2</sub>) \delta : 1.43 (s, 6H), 3.67 (s, 2H), 5.49 (s, 1H),
```

5.81 (d, J = 10Hz, 1H), 6.14 (d, J = 10Hz, 1H), 6.29 (d, J = 8Hz, 2H), 7.15 (d, J = 8Hz, 2H), 7.47 (s, 1H) 8.39 (s, 1H), 10.04 (bs, 1H). MS (EI) m/z: 77(bp), 354[M*]

<u>화합물 IV-22</u>

H NMR (CDCl₃) δ : 1.43 (s, 6H), 3.66 (s, 2H), 5.91 (s, 2H), 5.84 (d, J = 10Hz, 1H), 6.33 (d, J = 10Hz, 1H), 6.78 (s, 3H), 7.49 (s, 1H), 8.33 (s, 1H), 10.10 (bs, 1H). MS (FAB) m/z: 135(bp), 383[M+H]², mp. 136-138 $^{\circ}$ C.

화함물 IV-23

¹ H NMR (CDC1,) δ : 1.40 (s, 6H), 1.60 (d, J = 7Hz, 3H), 3.71 (q, J = 7Hz, 1H), 5.74 (d, J = 10Hz, 1H), 6.23 (d, J = 10Hz, 1H),

7.06-7.36 (m, 5H), 7.40 (s, 1H), 8.31 (s, 1H), 10.03 (bs, 1H).

MS (EI) m/z: 58(bp), 352[M+]

<u>화합물 IV-24</u>

¹ H NMR (CDC1,) δ : 1.39 (s, 6H), 4.19 (s, 2H), 5.78 (d, J = 10Hz, 1H), 6.29 (d, J = 10Hz, 1H), 7.35-8.15 (m, 8H), 8.34 (s, 1H), 10.05 (bs, 1H). MS (FAB) m/z: 141(bp), 389[M+H]*, mp. 111-114 ∇ .

화합물 IV-25

'H NMR (CDCl,) δ : 1.40 (s, 6H), 3.90 (s, 2H), 5.79 (d, J = 10Hz, 1H), 6.30 (d, J = 10Hz, 1H), 7.30-8.00 (m, 8H), 8.33 (s, 1H), 10.15 (bs, 1H). MS (FAB) m/z: 141(bp), 389[M+H], mp. 152-155 °C.

화합물 1V-26

60% 수소화 나트륨 (77 mg, 1.2 eq.)을 화합물 IV-5 (1.0 g, 2.7 mmol)의 DMF (5 mL) 용액에 0℃에서 가하고, 이 혼합물을 0℃에서 10분 교반하였다. 이 혼합물에 요오드화 메틸 (0.19 mL, 1.1 eq.)을 0℃에서 가하고 0℃ 및 실온에서 1시간 교반하였다. 수득한 혼합물을 물로 희석한 다음, 에틸 아세테이트로 추출하고 무수 황산 나트륨에서 건조하였다. 용매를 증류하여 제거한 추 수득한 잔류물을 실리카 겔 칼럼 크로마토그래피 (핵산: 에틸 아세테이트 = 2 : 1)를 통하여 정제함으로써 담갈색 기름상의 목적 생성물율얻었다 (0.63 g, 61%).

¹ H NMR (CDC1,) δ : 1.50 (s, 6H), 3.15 (s, 3H), 3.31 (s, 2H), 3.72 (s, 3H), 5.79 (d, J = 11Hz, 1H), 6.27 (d, J = 11Hz, 1H), 6.60-7.33 (m, 6H).

MS (FAB) m/z: 121(bp), 383[M+H].

화합물 IV-27

6-아미노-2,2-디메틸-7-니트로-2H-1-벤조피란 (1.3 g, 6.0 mmol), 60% 수소화 나트룜 (0.20 g, 1.4 eq.) 및 2-(4'-메톡시페닐)에탄 요오다이드의 DMF (13 mL) 용액율 100℃에서 13 시간 교반하고 환류하에 3 시간 가열하였다. 용매룔 증류하여 제거하고 이 용액에 물을 가한후 수득한 용액을 에틸 아세테이트로 추출하고 무수 황산 나트룜에서 건조하였다. 용매를 증류하여 제거한 후 수득한 잔류물을 실리카 겔 칼럼 크로마토그래피 (핵산 : 에틸 아세테이트 = 9 : 1)를 통하여 정제함으로써 적색 기름상의 목적 생성물을 얻었다 (0.58 g, 27%).

¹H NMR (CDCl₁) δ : 1.41 (s, 6H), 2.95 (t, J = 7Hz, 2H), 3.47-3.52 (m, 2H), 3.80 (s, 3H), 5.95 (d, J = 10Hz, 1H), 6.31 (d, J = 10Hz, 1H), 6.45 (s, 1H), 6.87 (d, J = 9Hz, 2H), 7.18 (d, J = 9Hz, 2H), 7.59 (s, 1H), 7.99 (bs, 1H).

MS (EI) m/z: 355[M+1](bp).

<u>화합물 IV-28</u>

TBDMSO
$$O_{2N}$$

6-(4'-히드록시벤조일)아미노-2,2-디메틸-7-니트로-2H-벤조피란 (IV-21) (0.10 g, 0.28 mmol), t-부틸-디메틸실릴 큘로라이드 (89 mg, 2.1 eq.) 및 이미다졸 (75 mg, 4.0 eq.)의 DMF (1.0 mL) 용액을 실온에서 5시간 교반하고, 용매를 증류하여 제거한후 수독한 용액에 물을 가하고 에틸 아세테이트로 추출하여 무수황산 나트륨에서 건조하였다. 수독한 생성물로부터 용매를 증류제거함으로써 당갈색 기름상의 목적 생성물을 얻었다 (0.13 g, 96%).

H NMR (CDC1,) δ : 0.22 (s, 6H), 0.99 (s, 9H), 1.41 (s, 6H), 3.27 (s, 2H), 5.88 (d, J = 9Hz, 1H), 6.37 (d, J = 10Hz, 1H), 6.86 (d, J = 8Hz, 2H), 7.21 (d, J = 8Hz, 2H), 7.46 (s, 1H), 8.33 (s, 1H), 10.02 (bs, 1H). MS (EI) m/z: 181(bp), 469[M*].

화합물 IV-29

δ-발레로락탕 (63 mg, 0.64 mmol)의 DMF (0.4 mL) 용액에 60% 수소화 나트롬 (31 mg, 1.2 eq.)을 실온에서 가하고 65℃에서 2.5 시간 교반하였다. 이 혼합물에 DMF 0.5 ml을 가하고 0℃로 냉각한 다음, 이 혼합물에 6-(클로로아세틸아미노)-2,2-디메틸-7-니트로-2H-벤조피란 (48 mg, 0.16 mmol)의 DMF (0.5 ml) 용액을 가하고 실온에서 4 시간 교반하였다. 수독한 혼합물에 물을 가한후 이 혼합물을 에틸 아세테이트로 추출하고 무수 황산 나트롬에서 건조하였다. 용매를 증류제거한 후에 수독한 용액을 실리카 겔 박층 크로마토그래피를 통하여 정제함으로써 담갈색 기름상의 목적 생성물을 얻었다 (51 mg, 89%).

MS (EI) m/z: 139(bp), 359[M⁺].

참고예 2: 6-(벤조일아미노)-3-브로모-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란-4-올 (III-1)의합성

6-(벤조일아미노)-2,2-디메틸-7-니트로-2H-1-벤조피란 (IV-1) (570 mg, 1.76 mmom)을 용해한 물 (1.2 mL) 및 디메틸슐폭시드 (DMSO) (15 mL)의 혼합액에 N-브로모숙신산 이미드 (688 mg, 2.2 eq.)를 가하고 실온에서 23 시간 교반하였다. 수독한 혼합물에 물을 혼합하고 에틸 아세테이트로 추출한 후에 유기층을 염화나트륨 포화 수용액으로 세척하고 무수 황산 나트륨에서 건조하였다. 용매를 증류제거한 후에 수독한 생성물을 실리카 겔 칼럼 크로마토그래피 (핵산 : 에틸 아세테이트 = 3 : 1)를 통하여 정제함으로써 황색비결정상의 목적 생성물을 얻었다 (223 mg, 30%).

¹ H NMR (CDCl₃)
$$\delta$$
: 1.40 (s, 3H), 1.59 (s, 3H), 4.11 (d, J = 9Hz, 1H), 4.19 (bs, 1H), 4.97 (d, J = 9Hz, 1H), 7.34-8.04 (m, 6H), 8.95 (s, 1H), 10.84 (bs, 1H).

MS (FAB) m/z: 71(bp), 421[M+H].

화합물 IV-1 대신에 화합물 IV-2 내지 화합물 IV-13을 사용하여 참고예 2의 방법으로 아래의 화합물들을 제조하였다.

$$R^{\theta}$$
 $(CH_2)_n$ $-X-Y-Z$ O_2N O

화합물	R ⁹	n	X	Y	Z
111-2	Н	1	co	NH	_
111–3	Н	2	CO	NH	_
111-4	$m, p - (OMe)_2$	1	CO	NH	_
111–5	р-ОМе	1.	CO	NH	_
III 6	p–Me	1	CO	NH	_
111-7	p-CI	1	CO	NH	_
III - 8	H	0	NH	CO	NH
III -9	F	1	CO	NH	-
111-10	NO ₂	1	CO	NH	-
III – 11	$m, p - (OMe)_2$	2	CO	NH	-
III – 12	pOMe	2	CO	NH	-
III-13	m-OMe	1	CO	NH	_

<u>화합물 III-2</u>

```
"H NMR (CDC1<sub>1</sub>) \delta: 1.39 (s, 3H), 1.59 (s, 3H), 3.36 (d, J = 5Hz, 1H), 3.77 (s, 2H), 4.07 (d, J = 9Hz, 1H), 4.89 (dd, J = 9Hz, 5Hz, 1H), 7.19-7.34 (m, 5H), 7.46 (s, 1H), 8.70 (s, 1H), 9.74 (bs, 1H).

MS (FAB) m/z: 71(bp), 435[M+H]*.
```

화합물 111-3

```
<sup>1</sup> H NMR (CDC1<sub>a</sub>) δ: 1.37 (s, 3H), 1.58 (s, 3H),
2.51-3.26 (m, 4H),
4.09 (d, J = 10Hz, 1H),
4.20 (d, J = 5Hz, 1H),
4.87 (dd, J = 10Hz, 5Hz, 1H),
7.16 (s, 5H), 7.48 (s, 1H),
8.66 (s, 1H), 9.75 (bs, 1H).

MS (FAB) m/z: 105(bp), 449[M+H]*.
```

<u>화합물 III-4</u>

```
"H NMR (CDC1,) δ: 1.39 (s, 3H), 1.59 (s, 3H),
3.70 (s, 2H), 3.84 (s, 7H),
4.08 (d, J = 9Hz, 1H),
4.88 (dd, J = 9Hz, 5Hz, 1H),
6.80 (m, 3H), 7.48 (s, 1H),
8.70 (bs, 1H), 9.78 (bs, 1H).

MS (FAB) m/z: 151(bp), 495[M+H]*.
```

<u>화합물 III-5</u>

```
<sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.38 (s, 3H), 1.59 (s, 3H), 3.70 (s, 2H), 3.78 (s, 3H),
```

```
4.06 (d, J = 9Hz, 1H), 4.31 (bs, 1H),
                     4.98 (d, J = 9Hz, 1H),
                     6.17-7.31 (m, 4H), 7.45 (s, 1H)
                     8.70 (s, 1H), 9.76 (bs, 1H).
MS (FAB) m/z: 121(bp), 465[M+H].
<u>화합물 III-6</u>
<sup>1</sup>H NMR (CDC1,) \delta: 1.21 (s, 3H), 1.42 (s, 3H),
                     2.18 (s, 3H), 3.54 (s, 3H),
                     3.90 (d, J = 9Hz, 1H),
                     4.73 (d, J = 9Hz, 1H),
                     7.00 (s, 4H), 7.33 (s, 1H)
                     8.58 (s, 1H), 9.62 (bs, 1H).
MS (FAB) m/z: 105(bp), 449[M+H].
<u>화합물 III-7</u>
 <sup>1</sup>H NMR (CDCl<sub>1</sub>) \delta: 1.48 (s, 3H), 1.69 (s, 3H), 3.81 (s, 2H),
                      4.16 (d, J = 10Hz, 1H),
                      5.00 (d, J = 10Hz, 1H),
                      7.35 (s, 4H), 7.60 (s, 1H)
                      8.80 (s, 1H), 9.92 (bs, 1H).
 MS (FAB) m/z: 125(bp), 469[M+H].
화합물 111-8
 'H NMR (CDC1.) \delta: 1.31 (s, 3H), 1.55 (s, 3H),
                      3.99 (d, J = 9Hz, 1H),
                      4.73 (d, J = 9Hz, 1H),
                      6.96-7.71 (m, 7H), 8.55 (s, 1H),
                      9.40 (bs, 1H).
 MS (FAB) m/z: 71, 319, 436[M+H] (bp).
```

<u>화합물 III-9</u>

```
TH NMR (CDC1,) δ: 1.38 (s, 3H), 1.58 (s, 3H), 3.74 (s, 2H), 4.07 (d, J = 9Hz, 1H), 4.17 (d, J = 5Hz, 1H), 4.88 (dd, J = 5Hz, 9Hz, 1H), 6.84-7.45 (m, 4H), 7.49 (s, 1H), 8.72 (s, 1H), 9.84 (bs, 1H). MS (FAB) m/z: 109(bp), 453[M+H]*, mp. 153-156 °C.
```

<u>화합물 III-10</u>

```
"H NMR (CDC1,) \delta: 1.39 (s, 3H), 1.60 (s, 3H), 3.25 (d, J = 5Hz, 1H), 3.87 (s, 2H), 4.08 (d, J = 10Hz, 1H), 4.89 (dd, J = 5Hz, 10Hz, 1H), 7.35-7.68 (m, 3H), 8.03-8.35 (m, 2H), 8.70 (s, 1H), 9.95 (bs, 1H).

MS (EI) m/z: 136(bp), 479[M+H]<sup>+</sup>, mp. 171-174 ^{\circ}C.
```

<u>화함물 III-11</u>

```
"H NMR (CDCl<sub>1</sub>) \delta: 1.39 (s, 3H), 1.59 (s, 3H), 2.50-3.17 (m, 4H), 3.80 (s, 6H), 3.87 (bs, 1H), 4.08 (d, J = 10Hz, 1H), 4.90 (dd, J = 4Hz, 10Hz, 1H), 6.69 (s, 3H), 7.50 (s, 1H), 8.66 (s, 1H), 9.73 (bs, 1H). MS (FAB) m/z: 185(bp), 508[M+H]*.
```

화함물 III-12

```
<sup>1</sup>H NMR (CDC1<sub>3</sub>) \delta: 1.40 (s, 3H), 1.60 (s, 3H), 2.50-3.20 (m, 4H), 3.74 (s, 3H), 4.10 (d, J = 9Hz, 1H), 4.30 (bs, 1H),
```

4.90 (dd, J = 4Hz, 9Hz, 1H), 6.65-7.25 (m, 4H), 7.52 (s, 1H), 8.70 (s, 1H), 9.78 (bs, 1H).

MS (FAB) m/z: 121(bp), 479[M+H], mp. 169-171 °C.

화합물 III-13

'H NMR (CDC1_s) δ : 1.34 (s, 3H), 1.54 (s, 3H), 3.72 (s, 2H), 3.75 (s, 3H), 4.03 (d, J = 9Hz, 1H), 4.32 (d, J = 5Hz, 1H), 4.85 (dd, J = 5Hz, 9Hz, 1H), 6.65-6.97 (m, 3H), 7.09-7.42 (m, 1H), 7.44 (s, 1H), 8.71 (s, 1H), 9.80 (bs, 1H).

MS (FAB) m/z: 121(bp), 465[M+H], mp. 141-142 $^{\circ}$.

참고예 3: 6-(벤조일아미노)-3,4-에폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란 (II-1)의 합성

6-(벤조일아미노)-3-브로모-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란-4-올 (III-1) (223 mg, 0.53 mmol)을 용해한 물 (2.5 mL) 및 1,4-디옥산 (5 mL)의 혼합액에 수산화 나트륨 (25.5 mg, 1.2 eq.)을 가하고 실온에서 1 시간 교반하였다. 이 용액을 물로 희석한후, 수득한 혼합물을 메틸 아세테이트로 추출하고, 유기층을 영화 나트륨 포화 수용액으로 세척하고 무수 황산 나트륨에서 건조하였다. 용매를 증류제 거한 후에 수득한 잔류물을 실리카 갤 칼럼 크로마토그래피 (헥산: 메틸 아세테이트 = 4:1)를 통하여 정제함으로써 황색 고체의 목적 생성물을 얻었다 (147 mg, 81%).

¹ H NMR (CDC1,) δ : 1.29 (s, 3H), 1.60 (s, 3H), 3.05 (d, J = 4Hz, 1H), 3.98 (d, J = 4Hz, 1H), 7.40-8.10 (m, 6H), 8.97 (s, 1H).

MS (FAB) m/z: 105(bp), 341[M+H].

화합물 |||-1 대신에 화합물 |||-2 내지 화합물 |||-13을 사용하여 참고예 3의 방법으로 아래의 화합물들을 제조하였다.

$$\begin{array}{c} R^9 \\ \\ \\ O_2 N \end{array}$$

화합물	R ⁹	n	X	Y	z
11–2	Н	1	CO	NH	_
11–3	н	2	CO	NH	-
11-4	$m, p - (OMe)_2$	1	CO	NH	-
11-5	р-ОМе	1	CO	NH	-
11–6	р-Ме	1	CO	NH	_
11-7	p-Cl	1	CO	NH .	-
11-8	н	0	NH	CO	NH
11–9	F	1	CO	NH	-
II10	NO ₂	1	CO	NH	-
II11	$m, p - (OMe)_2$	2	CO	NH	-
11-12	р-ОМе	2	CO	NH	-
II-13	m-OMe	1	co	NH	_

화함물 11-2

MS (FAB) m/z: 237(bp), 355[M+H].

화합물 II-3

"H NMR (CDC1,) δ : 1.25 (s, 3H), 1.35 (s, 3H), 2.53-3.25 (m, 4H), 3.46 (d, J = 4Hz, 1H), 3.87 (d, J = 4Hz, 1H), 7.15 (s, 5H), 7.48 (s, 1H) 8.66 (s, 1H), 9.85 (bs, 1H). MS (FAB) m/z: 105(bp), 369[M+H]*.

<u>화함물 II-4</u>

화합물 II-5

¹H NMR (CDC1_a) δ : 1.21 (s, 3H), 1.54 (s, 3H), 3.47 (d, J = 4Hz, 1H), 3.67 (s, 2H), 3.75-3.98 (m, 7H), 6.78 (s, 3H), 7.41 (s, 1H) 8.65 (s, 1H), 9.87 (bs, 1H). MS (FAB) m/z: 151(bp), 415[M+H]*.

¹H NMR (CDC1,) δ : 1.21 (s, 3H), 1.53 (s, 3H), 3.50 (d, J = 4Hz, 1H), 3.68 (s, 2H), 3.74 (s, 3H), 3.90 (d, J = 4Hz, 1H), 6.77-7.37 (m, 4H), 7.49 (s, 1H), 8.72 (s, 1H), 9.93 (bs, 1H). MS (FAB) m/z: 121(bp), 385[M+H].

<u>화합물 II-6</u>

¹H NMR (CDCl_s) δ : 1.22 (s, 3H), 1.56 (s, 3H),

```
2.33 (s, 3H), 3.47 (d, J = 4 Hz, 1H),
                      3.72 (s, 2H), 3.90 (d, J = 4Hz, 1H),
                      7.18 (s, 4H), 7.50 (s, 1H),
                      8.74 (s, 1H), 9.95 (bs, 1H).
MS (FAB) m/z: 105(bp), 369[M+H].
<u>화합물 11-7</u>
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.21 (s, 3H), 1.54 (s, 3H),
                      3.47 (d, J = 4Hz, 1H), 3.71 (s, 2H),
                      3.88 (d, J = 4Hz, 1H),
                      7.23 (s, 4H), 7.48 (s, 1H)
                      8.67 (s, 1H), 9.92 (bs, 1H).
MS (FAB) m/z: 125(bp), 389[M+H]*.
<u>화합물 II-8</u>
MS (FAB) m/z: 237(bp), 356[M+H].
<u>화합물 II-9</u>
'H NMR (CDCl<sub>3</sub>) \delta : 1.24 (s, 3H), 1.55 (s, 3H),
                      3.50 (d, J = 4Hz, 1H),
                      3.74 (s, 2H), 3.88 (d, J = 4Hz, 1H),
                      6.80-7.45 (m, 4H), 7.48 (s, 1H),
                      8.69 (s, 1H), 9.94 (bs, 1H).
MS (FAB) m/z: 109(bp), 373[M+H]*.
화합물 II-10
<sup>1</sup>H NMR (CDC1<sub>1</sub>) \delta: 1.35 (s, 3H), 1.55 (s, 3H),
                      3.50 (d, J = 5Hz, 1H),
                      3.87-3.93 (m, 3H), 7.40-8.70 (m, 6H),
                      10.15 (bs, 1H).
MS (EI) m/z: 83(bp), 399[M<sup>*</sup>].
```

화합물 II-11

"H NMR (CDC1,) δ : 1.24 (s, 3H), 1.55 (s, 3H), 2.53-3.18 (m, 4H), 3.48 (d, J = 4Hz, 1H), 3.82 (s, 6H), 3.89 (d, J = 4Hz, 1H), 6.71 (s, 3H), 7.49 (s, 1H), 8.67 (s, 1H), 9.87 (bs, 1H). MS (FAB) m/z: 151(bp), 429[M+H]*, mp. 93-95 °C.

화합물 II-12

¹H NMR (CDC1;) δ : 1.23 (s, 3H), 1.54 (s, 3H), 2.47-3.17 (m, 4H), 3.46 (d, J = 4Hz, 1H), 3.61 (s, 3H), 3.87 (d, J = 4Hz, 1H), 6.57-7.22 (m, 4H), 7.47 (s, 1H), 8.66 (s, 1H), 9.82 (bs, 1H).

MS (FAB) m/z: 71(bp), 399[M+H], mp. 136-137 $^{\circ}$.

화합물 11-13

¹H NMR (CDC1₁) δ : 1.21 (s, 3H), 1.54 (s, 3H), 3.48 (d, J = 4Hz, 1H), 3.76 (s, 3H), 3.88 (d, J = 4Hz, 1H), 6.60-6.98 (m, 3H), 7.08-7.40 (m, 1H), 7.42 (s, 1H), 8.68 (s, 1H), 9.90 (bs, 1H).

MS (FAB) m/z: 121(bp), 385[M+H].

참고예 4: 6-(4'-페닐페닐아세틸아미노)-3,4-에폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란(II-14)의 합성

화합물 IV-15 (1.6 g, 3.86 mmol)의 클로로포름 (10 mL) 용액에 3-클로로과벤조산 (1.46 g, 2.2 eq.)을 0 ℃에서 가하고 0℃에서 1 시간, 그리고 실온에서 24 시간 교반하였다. 이 혼합물에 탄산수소 나트롬의 포 화 수용액을 가한후 이 혼합물을 클로로포름으로 추출하고, 무수 황산 나트롬에서 건조하였다. 용매를 증 류제거한 후에 수독한 잔류물을 실리카 겔 칼럼 크로마토그래피 (핵산 : 에틸 아세테이트 = 3 : 1)를 통 하여 정제함으로써 담황색 고체의 목적 생성물을 얻었다 (1.47 g, 89%).

¹H NMR (CDCl₂) δ : 1.24 (s, 3H), 1.59 (s, 3H), 3.47 (d, J = 4Hz, 1H), 3.79 (s, 2H), 3.89 (d, J = 4Hz, 1H), 7.19-7.74 (m, 10H), 8.75 (s, 1H), 9.92 (bs, 1H).

MS (FAB) m/z: 167(bp), 430[M^{*}], mp. 171-174 °C.

화합물 IV-15 대신에 화합물 IV-14 내지 화합물 IV-20율 사용하여 참고예 4의 방법으로 아래의 화합물들 을 제조하였다.

$$\begin{array}{c|c} R^{\theta} & & \\ \hline \\ O_2N & & \\ \end{array}$$

화합물	R ⁹	n	x	Υ	z
II-15	оОМе	1	CO	NH	_
II-16	p-NHAc	1	CO	NH	_

<u>화합물 II-15</u>

¹ H NMR (CDC1_s) δ : 1.21 (s, 3H), 1.54 (s, 3H), 3.45 (d, J = 4Hz, 1H), 3.75 (s, 2H), 3.85 (s, 3H), 3.87 (d, J = 4Hz, 1H), 6.73-7.43 (m, 4H), 7.45 (s, 1H),

MS (FAB) m/z: 121(bp), 385[M+H] $^{\circ}$, mp. 134-135 $^{\circ}$ C .

<u>화합물 II-16</u>

¹ H NMR (CDC1₃) δ : 1.24 (s, 3H), 1.58 (s, 3H), 2.19 (s, 3H), 3.53 (d, J = 4Hz, 1H), 3.77 (s, 2H), 3.95 (d, J = 4Hz, 1H), 7.20 (bs, 1H), 7.31 (d, J = 8Hz, 2H), 7.56-7.59 (m, 3H), 8.82 (s, 1H), 10.04 (bs, 1H).

8.71 (s, 1H), 10.05 (bs, 1H).

MS (FAB) m/z: 106(bp), 412[M+H]*.

화합물 IV-15 대신에 화합물 IV-22를 사용하여 참고예 4의 방법으로 아래의 화합물들을 제조하였다. <u>화합물 II-17</u>

"H NMR (CDCl_a) δ : 1.22 (s, 3H), 1.54 (s, 3H), 3.45 (d, J = 4Hz, 1H), 3.64 (s, 2H), 3.88 (d, J = 4Hz, 1H), 5.91 (s, 2H), 6.73 (s, 3H), 7.50 (s, 1H), 8.72 (s, 1H), 9.96 (bs, 1H). MS (FAB) m/z: 135(bp), 399[M+H]⁺, mp. 146-147 °C. 화합물 IV-15 대신에 화합물 IV-23을 사용하여 참고예 4의 방법으로 아래의 화합물들을 제조하였다.

<u>화합물 II-18</u>

¹H NMR (CDC1,) δ : 1.21 (s, 3H), 1.55 (s, 3H),

1.61 (d, J = 7Hz, 3H),

3.46 (d, J = 4Hz, 1H),

3.78 (q, J = 7Hz, 1H),

3.85 (d, J = 4Hz, 1H),

7.18-7.41 (m, 5H), 7.44 (s, 1H),

8.70 (s, 1H), 9.94 (bs, 1H).

MS (EI) m/z: 105(bp), 368[M'].

화합물 IV-15 대신에 화합물 IV-26을 사용하여 참고예 4의 방법으로 아래의 화합물들을 제조하였다.

화합물 II-19

¹H NMR (CDCl₃) δ : 1.32 (s, 3H), 1.63 (s, 3H),

3.21 (s, 3H), 3.24-3.81 (m, 7H),

6.76-6.87 (m, 2H), 6.87-6.91 (m, 2H),

7.02 (s, 1H), 7.42 (s, 1H).

MS (EI) m/z: 352(bp), 398[M⁺].

창고예 5: 6-(4'-메록시페닐아세틸아미노)-3,4-예폭시-3,4-다히드로-2,2-디메틸-7-니트로-2H-1-벤조피란(II-20)의 합성

화합물 IV-5 (3.5 g, 9.5 mmol)의 에틸 아세테이트 (180 mL) 용액에 망간 착화합물 (화합물 45) (492.1 mg, 5 mol%) 및 4-페닐피리던 N-옥사이드 (162.7 mg, 10 mol%) 을 가하고, 온도를 0℃로 냉각한후, 이 흔합물에 하이포아염소산 나트룜 (1.645 mol/l) 용액 (6.35 ml, 1.1 eq.)을 가하고 이 흔합물을 0℃에서 1시간 교반하였다. 이 흔합물에 물을 가하여 에틸 아세테이트로 추출하였다. 추출된 유기층을 합쳐 포화식염수로 세척하고, 수독한 생성물을 무수 황산 나트륨에서 건조하였다. 용매를 증류제거한 후에 수독한 잔류물을 실리카 겔 칼럼 크로마토그래피 (헥산 : 에틸 아세테이트 = 3 : 1)를 통하여 정제함으로써 황색결정의 목적 생성물을 얻었다 (2.69 g, 74%).

스펙트럼 데이타는 화합물 11-5의 것들과 완전히 일치하였다.

화합물 IV-5 대신에 화합물 IV-16을 사용하여 참고예 4의 방법으로 아래의 화합물들을 제조하였다.

R ⁹	(CH ₂) _n -		-z D ₂ N		<
화합물	R ⁹	n	X	Y	z
II-21	p-OEt	1	co	NH	•
11-22	p-OTBDMS	1	CO	NH	-
11-23	o-Ph	1	CO	NH	-
II-24	m-Ph	1	CO	NH	

TBDMS: tert-부틸디메틸실릴

<u>화합물 II-21</u>

```
<sup>1</sup> H NMR (CDC1<sub>3</sub>) \delta: 1.24 (s, 3H), 1.40 (t, J = 7Hz, 3H), 1.58 (s, 3H), 3.48 (d, J = 4Hz, 1H), 3.69 (s, 2H), 3.90 (d, J = 4Hz, 1H), 4.00 (q, J = 7Hz, 2H), 6.77-7.36 (m, 4H), 7.50 (s, 1H), 8.74 (s, 1H), 9.94 (bs, 1H).
```

MS (EI) m/z: 107(bp), 398[M^{*}], mp. 101-103 $^{\circ}$.

화합물 IV-5 대신에 화합물 IV-28을 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다. <u>화합물 II-22</u>

화합물 IV-5 대신에 화합물 IV-18물 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다. 화합물 II-23

¹ H NMR (CDC1₁) δ : 1.24 (s, 3H), 1.57 (s, 3H), 3.52 (d, J = 4Hz, 1H), 3.80 (s, 2H), 3.91 (d, J = 4Hz, 1H), 7.26-7.44 (m, 9H), 7.57 (s, 1H), 8.74 (s, 1H), 9.85 (bs, 1H).

MS (EI) m/z: 167(bp), 430[M⁺].

화합물 IV-5 대신에 화합물 IV-19를 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다.

화합물 11-24

¹ H NMR (CDCl_s) δ : 1.23 (s, 3H), 1.57 (s, 3H), 3.52 (d, J = 4Hz, 1H), 3.87 (s, 2H), 3.94 (d, J = 4Hz, 1H), 7.52-7.62 (m, 10H), 8.83 (s, 1H), 10.11 (bs, 1H).

MS (EI) m/z: 167(bp), 431[M+1].

화합물 IV-5 대신에 화합물 IV-22를 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다.

<u>화합물 11-25</u>

¹ H NMR (CDC1₂) δ : 1.25 (s, 3H), 1.58 (s, 3H), 3.50 (d, J = 4Hz, 1H), 3.68 (s, 2H), 3.92 (d, J = 4Hz, 1H), 5.95 (s, 2H), 6.78 (s, 3H), 7.53 (s, 1H), 8.77 (s, 1H), 9.99 (bs, 1H).

MS (EI) m/z: 135(bp), 398[M^{*}], mp. 135~138 ℃ . 화합물 IV-5 대신에 화합물 IV-24를 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다.

화합물 11-26

¹ H NMR (CDC1,) δ : 1.21 (s, 3H), 1.57 (s, 3H), 3.48 (d, J = 4Hz, 1H), 3.90 (d, J = 4Hz, 1H), 4.26 (s, 2H), 7.38-8.09 (m, 8H), 8.78 (s, 1H), 9.96 (bs, 1H). MS (EI) m/z: 141(bp), 404[M⁺].

122-89

화합물 IV-5 대신에 화합물 IV-25를 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다. <u>화합물 II-27</u>

'H NMR (CDC1,) δ : 1.20 (s, 3H), 1.55 (s, 3H), 3.45 (d, J = 4Hz, 1H), 3.87 (d, J = 4Hz, 1H), 3.91 (s, 2H), 7.17-7.97 (m, 8H), 8.74 (s, 1H), 10.02 (bs, 1H).

MS (EI) m/z: 141(bp), 404[M^{*}], mp. 140-142 °C.

화합물 IV-5 대신에 화합물 IV-27물 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다.

<u>화합물 II-28</u>

¹H NMR (CDC1,) δ: 1.21 (s, 3H), 1.56 (s, 3H),
2.96 (t, J = 7Hz, 2H),
3.49 (d, J = 4Hz, 1H),
3.51-3.53 (m, 2H), 3.79 (s, 3H),
3.84 (d, J = 4Hz, 1H),
6.83-6.88 (m, 2H),
7.18 (d, J = 8Hz, 2H), 7.62 (s, 1H),
7.87 (bs, 1H).

MS (EI) m/z: 370[M⁺](bp).

화합물 IV-5 대신에 화합물 IV-29를 사용하여 참고예 5의 방법으로 아래의 화합물들을 제조하였다.

<u>화합물 II-29</u>

¹ H NMR (CDCl₃) δ : 1.22 (s, 3H), 1.54 (s, 3H), 1.80-2.00 (m, 4H), 2.40-2.60 (m, 2H), 3.32-3.45 (m, 2H), 3.50 (d, J = 4.2Hz, 1H), 3.92 (d, J = 4.2Hz, 1H), 4.17 (s, 2H), 7.51 (s, 1H), 8.71 (s, 1H), 10.40 (bs, 1H).

MS (EI) m/z: 140(bp), 375[M^{*}].

참고예 6

화합물 II-30

6-(4-(t-부틸-디메틸실록시)벤조일)아미노-3,4-메폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란 (II-22) (39 mg, 0.080 mmol)의 테트라히드로푸란 (0.39 mL) 용액과 테트라부틸암모늄 플루오라이드 1.0 M 테트라히드로푸란 용액 (0.12 mL, 1.5 eq.)을 0°에서 1 시간 교반한 다음 실은에서 1 시간 교반하였다. 이 혼합물에 물을 가하여 희석하고 에틸 아세테이트로 추출하였다. 용매를 증류제거한 후에 수득한 잔류물을 실리카 겔 박층 크로마토그래피 (헥산: 에틸 아세테이트 = 3: 1)를 통하여 정제함으로 써 황색 기름의 목적 생성물을 얻었다 (24 mg, 81%).

¹ H NMR (CDC1,) δ : 1.24 (s, 3H), 1.57 (s, 3H), 3.53 (d, J = 4Hz, 1H), 3.74 (s, 2H), 3.94 (d, J = 4Hz, 1H), 6.88 (d, J = 8Hz, 2H), 7.20 (d, J = 8Hz, 2H), 7.58 (s, 1H), 8.79 (s, 1H), 10.04 (bs, 1H).

MS (EI) m/z: 370[M'](bp). [α]²⁰ +3.8 ° (CHCl₂).

참고예 7

화합물 11-31

6-아세트아미도-3,4-에폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란 (Evans, J. M. et al., J. Med. Chem. 1984, 27, 1127의 방법에 의하여 합성하였음) (7.6 mg, 27 mmol) 및 수산화 나트룜 (5.6 g, 5.0 eq.)을 용해한 물 (76 mL)과 1,4-디옥산 (152 mL)의 흔합액을 실온에서 4 시간 교반하였다. 이 흔합물에 영산을 가하여 중화하고 수독한 생성물을 포화 식염수로 희석한 다음, 에틸 아세테이트로 추출한 후

에 무수 황산 나트룜에서 건조하였다. 용매룔 중류제거한 후에 수득한 생성물을 에탄올과 핵산의 혼합액으로부터 재결정하여 6-아미노-3,4-에폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란 (1.4 g, 22%)을 오렌지색 결정으로 얻었다.

4-디메틸아미노페닐아세트산 (0.10 g, 0.56 mmol)과 DMF (0.01 mL)의 디클로로메탄 (1.0 mL) 용액에 0℃에서 티오닐 큘로라이드 (0.07 g, 1 eq.)를 가하고 0℃에서 2 시간 교반하였다. 이 혼합물에 0℃에서 트리메틸아민 (0.08 mL, 1 eq.)을 가하고 0℃에서 10분간 교반하였다. 이어서 6-아미노-3,4-에폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란 (66 mg, 0.28 mmol)과 60% 수소화 나트롬 (12 mg, 0.31 mmol)의 DMF (0.7 mL) 용액을 상기 교반용액에 방울씩 가한 다음, 0℃에서 10분간 교반하고, 이어서 0℃에서 2 시간 교반하였다. 물을 첨가한후 유기총을 추출하고 황산 나트롬에서 건조하였다. 용매를 증류제거한후에 수독한 잔류물을 실리카 겔 박총 크로마토그래피 (헥산: 메틸 아세테이트 = 3 : 1)를 통하여 정제함으로써 당갈색 기름상의 목적 생성물을 얻었다 (25 mg, 22%).

'H NMR (CDC1,) δ : 1.24 (s, 3H), 1.58 (s, 3H), 2.97 (s, 6H), 3.53 (d, J = 4Hz, 1H), 3.70 (s, 2H), 3.95 (d, J = 4Hz, 1H), 6.77 (d, J = 7Hz, 2H), 7.20 (d, J = 7Hz, 2H), 7.58 (s, 1H), 8.82 (s, 1H), 10.03 (bs, 1H).

MS (EI) m/z: 397[M'](bp).

참고예 8

화합물 11-32

6-(4-N,N-디메틸아미노페닐아세틸아미노)-3,4-에폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란(II-31) (30 mg, 0.075 mmol) 및 산화 칼륨 (36 mg, 8.5 gq.)의 THF (0.24 mL)-메탄올 (0.18 mL) 흔합액에 요오드 (43 mg, 2.3 eq.)의 THF (0.04 ml) 용액을 0°C에서 가하고 0°C에서 6 시간 교반하였다. 이 혼합물에 디클로로메탄 (5 mL)을 가한후 불용물을 여과하고, 수득한 여액에 15% 티오황산 나트륨 수용액을 가하여 디클로로메탄으로 추출한 후에 무수 황산 나트롬에서 건조하였다. 용매를 증류제거한 후에 수득한 잔류물을 실리카 겔 박층 크로마토그래피를 통하여 정제함으로써 황색 기름상의 목적 생성물을 얻었다 (13 mg, 45%).

¹ H NMR (CDCl_{*}) δ : 1.24 (s, 3H), 1.58 (s, 3H), 2.85 (s, 3H), 3.53 (d, J = 4Hz, 1H), 3.69 (s, 2H), 3.95 (d, J = 4Hz, 1H), 6.66 (d, J = 7Hz, 2H), 7.16 (d, J = 7Hz, 2H), 7.58 (s, 1H), 8.82 (s, 1H), 10.03 (bs, 1H).

MS (EI) m/z: 120(bp), 383[M'].

 $[a]^{25} -6.0^{\circ}$ (CHCl₂).

실시예 I-1: 트란스-6-(벤조일아미노)-3,4-디히드로-2,2-디메틸-7-니트로-4-(1-피롤리디닐)-2H-1-벤조피 란 -3-올의 합성

6-(벤조일아머노)-3,4-에폭시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란 (II-1) (147 mg, 0.43 mmol)의 에탄을 (5 mL) 용액에 피를리딘 (0.07 mL)을 가하고 2 시간 동안 가열환류하였다. 이 혼합물을 실온으로 냉각한후 농축하고, 수득한 잔류물을 실리카 겔 칼럼 크로마토그래피 (헥산 : 에틸 아세테이트 = 3 : 1)를 통하여 정제함으로써 갈색 고체의 목적 생성물을 얻었다 (40.3 mg, 23%).

¹ H NMR (CDCl₁) δ : 1.25 (s, 3H), 1.53 (s, 3H), 1.79-2.14 (m, 4H), 2.84-3.29 (m, 5H), 3.57 (d, J = 10Hz, 1H), 4.04 (d, J = 10Hz, 1H), 7.34-8.03 (m, 6H), 8.88 (s, 1H), 11.08 (bs, 1H).

MS (FAB) m/z: 105(bp), 412[M+H].

실시예 I-2: 트란스-6-(페닐아세틸아미노)-3,4-디히드로-2,2-디메틸-7-니트로-4-(1-피를리디닐)-2H-1-벤조피란 -3-올의 합성

화합물 II-2 (100 mg, 0.28 mmol)의 에탄을 (3 mL) 용액에 피롭리딘을 가하고 45분간 가열환류하였다. 이혼합물을 실온으로 냉각한후 농축하고, 수득한 잔류물을 실리카 겔 칼럼 크로마토그래피 (핵산 : 에틸 아세테이트 = 2 : 1)를 통하여 정제함으로써 황색 분말의 목적 생성물을 얻었다 (47.8 mg, 40%).

¹H NMR (CDCl₃) δ : 1.27 (s, 3H), 1.57 (s, 3H), 1.85-2.20 (m, 4H), 2.90-3.30 (m, 5H), 3.59 (d, J = 10Hz, 1H), 3.83 (s, 2H), 4.03 (d, J = 10Hz, 1H), 7.23 (s, 1H), 7.35 (s, 5H),

7.54 (s, 1H), 8.70 (bs, 1H).

MS (FAB) m/z: 95(bp), 426[M+H].

화합물 II-2 대신에 화합물 II-2 내지 II-13을 사용하여 아래의 화합물들을 제조하였다.

$$R^{\theta}$$
 $(CH_2)_n$
 $X-Y-Z$
 O_2N
 OH

화함물	R ⁹	n	х	Υ	z	R ⁷	R ⁸
I-3	m, p-(OMe) ₂	1	CO	NH	•	-(CH	2)4-
I-4	Н	1	CO	NH	-	Q1	Н
1-5	m, p-(OMe) ₂	1	CO	NH	-	Et	Н
1-6	Н	2	CO	NH	-	-(CH	2)4-
I-7	Н	2	CO	NH	-	Et	Н
1-8	н	0	NH	CO	ни	-(CH	2)4-
1-9	р-ОМе	1	CO	NH	-	-(CH	2)4-
I-10	p-OMe	1	CO	NH	-	Et	Н
I-11	m, p-($OMe)_2$	1	CO	NH	-	i-Pr	Н
I-12	m, p-(OMe) ₂	1	CO	NH	-	c-Pr	Н
I-13	р-Мө	1.	CO	NH	-	-(CH	
I - 14	p-Cl	1	CO	NH	-	-(CH	
I-15	p-F	1	CO	NH	-	-(CH	2)4-
I-16	m, p-(OMe) ₂	2	CO	NH =	-	Et	Н
I - 17	p-OMe	2	CO	NH	-	Et	Н
I-18	p-OMe	2	CO	NH	-	i-Pr	Η.
I-19	p-OMe	2	CO	NH	-	-(CH	2)4-
I-20	p-OMe	1	CO	NH	•	i-Pr	Н
I-21	p-OMe	1	CO	NH	-	c-Pr	Н
1-22	p-OMe	1	CO	NH	-	Me	Me
1-23	m-OMe	1	CO	NH	-	-(CH	l ₂) ₄ -
1-24	m-OMe	1	CO	NH	-	Et	Н
I-25	m-OMe	1	CO	NH	-	c-Pr	Н

```
<u>화합물 1-3</u>
 ^{1} H NMR (CDCl<sub>a</sub>) \delta : 1.20 (s, 3H), 1.50 (s, 3H),
                      1.80-2.10 (m, 4H),
                      2.80-3.26 (m, 4H),
                      3.01 (d, J = 10Hz, 1H),
                      3.17 (s, 2H), 3.83 (s, 6H),
                      3.95 (d, J = 10Hz, 1H),
                      6.80 (s, 3H), 7.48 (s, 1H),
                      8.60 (s, 1H), 9.87 (bs, 1H).
MS (FAB) m/z: 151(bp), 486[M+H]*.
화합물 1-4
 'H NMR (CDCl<sub>1</sub>) \delta: 1.15 (s, 3H), 1.46 (s, 3H),
                      2.24-3.12 (m, 6H),
                      3.42 (d, J = 10Hz, 1H),
                      3.66 (d, J = 10Hz, 1H),
                      3.74 (s, 2H), 3.80 (s, 6H),
                      6.69 (s, 3H), 7.30 (s, 5H),
                      7.47 (s, 1H), 8.56 (s, 1H),
```

MS (FAB) m/z: 85(bp), 536[M+H].

화합물 I-5

```
'H NMR (CDCl<sub>2</sub>) \delta : 0.99-1.39 (m, 6H),
                    1.49 (s, 3H), 2.28-2.95 (m, 4H),
                     3.50-4.07 (m, 10H),
                     6.69-6.89 (m, 3H),
                     7.45 (s, 1H), 8.55 (bs, 1H),
                     9.95 (bs, 1H).
MS (FAB) m/z: 151(bp), 460[M+H].
```

9.82 (bs, 1H).

```
<u>화합물 I-6</u>
```

```
<sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.21 (s, 3H), 1.49 (s, 3H),
                      1.72-2.07 (m, 4H), 2.47-3.27 (m, 9H),
                      3.52 (d, J = 10Hz, 1H),
                      3.96 (d, J = 10Hz, 1H),
                      7.13 (s, 5H), 7.51 (s, 1H),
                      8.58 (s, 1H), 9.82 (bs, 1H),
MS (FAB) m/z: 105(bp), 440[M+H].
<u>화합물 1-7</u>
 <sup>1</sup>H NMR (CDC1<sub>2</sub>) \delta: 1.16 (t, J = 7Hz, 3H), 1.20 (s, 3H),
                      1.50 (s, 3H), 2.25-3.31 (m, 8H),
                      3.46 (d, J = 10Hz, 1H),
                      3.67 (d, J = 10Hz, 1H),
                      7.17 (s, 5H), 7.50 (s, 1H),
                      8.60 (s, 1H), 9.87 (bs, 1H),
 MS (FAB) m/z: 105(bp), 414[M+H]*.
화합물 I-8
 'H NMR (CDCl<sub>3</sub>) \delta: 1.18 (s, 3H), 1.48 (s, 3H),
                       2.62-3.31 (m, 5H),
                       3.51 (d, J = 10Hz),
                       3.90 (d, J = 10Hz),
                       6.75-7.74 (m, 7H), 8.41 (s, 1H),
                       9.42 (bs, 1H),
 MS (FAB) m/z: 96, 427[M+H] (bp).
화합물 1-9
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.20 (s, 3H), 1.50 (s, 3H),
                       1.79-2.12 (m, 4H), 2.69-3.25 (m, 5H),
                       3.53 (d, J = 10Hz, 1H), 3.70 (s, 2H),
```

```
3.80 (s, 3H), 2.96 (d, J = 10Hz, 1H),
                      6.80-7.38 (m, 4H), 7.54 (s, 1H),
                      8.71 (s, 1H), 9.92 (bs, 1H),
MS (FAB) m/z: 121(bp), 456[M+H]*.
<u>화합물 I-10</u>
 <sup>1</sup>H NMR (CDCl<sub>a</sub>) \delta: 1.16 (t, J = 7Hz, 3H),
                      1.19 (s, 3H), 1.50 (s, 3H),
                      2.25-3.02 (m, 4H),
                      3.47 (d, J = 10Hz, 1H),
                      3.70 (d, J = 10Hz, 1H),
                      3.70 (s, 2H), 3.79 (s, 3H),
                      6.79-7.38 (m, 4H), 7.53 (s, 1H),
                      8.69 (s, 1H), 9.93 (bs, 1H),
 MS (FAB) m/z: 121(bp), 430[M+H].
화함물 I-11
 <sup>1</sup>H NMR (CDC1<sub>2</sub>) \delta: 0.99-1.40 (m, 9H),
                       1.47 (s, 3H), 2.14-2.68 (m, 2H),
                      3.04-3.61 (m, 3H), 3.68 (s, 2H),
                      3.85 (s, 6H), 6.83 (s, 3H),
                       7.46 (s, 1H), 8.75 (s, 1H),
                       9.94 (bs, 1H),
 MS (FAB) m/z: 151(bp), 474[M+H].
화합물 I-12
 <sup>1</sup>H NMR (CDC1<sub>3</sub>) \delta: 0.25-0.68 (m, 4H),
                       1.21 (s, 3H), 1.51 (s, 3H),
                       1.99-2.98 (m, 3H),
                       3.56 (d, J = 10Hz, 1H), 3.70 (s, 2H),
                       3.74 (d, J = 10Hz, 1H),
```

```
3.86 (s, 6H), 6.83 (s, 3H),
                      7.49 (s, 1H), 8.76 (s, 1H),
                      9.91 (bs, 1H).
 MS (FAB) m/z: 151(bp), 472[M+H].
화합물 I-13
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.19 (s, 3H), 1.48 (s, 3H),
                      1.75-2.10 (m, 4H), 2.32 (s, 3H),
                      2.75-3.25 (m, 5H),
                      3.49 (d, J = 10Hz, 1H),
                      3.67 (s, 2H), 3.91 (d, J = 10Hz, 1H),
                      7.11 (s, 4H), 7.46 (s, 1H),
                      8.62 (s, 1H), 9.83 (bs, 1H).
 MS (FAB) m/z: 105(bp), 440[M+H].
<u>화합물 1-14</u>
 <sup>1</sup>H NMR (CDCl<sub>s</sub>) \delta : 1.21 (s, 3H), 1.50 (s, 3H),
                      1.75-2.17 (m, 4H), 2.72-3.22 (m, 5H),
                      3.52 (d, J = 10Hz, 1H), 3.72 (s, 2H),
                      4.00 (d, J = 10Hz, 1H),
                      7.04-7.44 (m, 4H), 7.52 (s, 1H),
                      8.63 (s, 1H), 9.92 (bs, 1H).
 MS (FAB) m/z: 125(bp), 460[M+H].
화합물 I-15
 <sup>1</sup>H NMR (CDCl<sub>1</sub>) \delta: 1.22 (s, 3H), 1.51 (s, 3H),
                      1.78-2.10 (m, 4H), 2.70-2.85 (m, 5H),
                      3.54 (d, J = 10Hz, 1H), 3.74 (s, 2H),
                      3.97 (d, J = 10Hz, 1H),
                      6.85-7.50 (m, 4H), 7.54 (s, 1H),
                      8.67 (s, 1H), 9.95 (bs, 1H).
```

MS (FAB) m/z: 185, 444[M+H]*.

```
화합물 I-16
```

¹ H NMR (CDC1_s) δ : 1.18 (t, J = 7Hz, 3H), 1.21 (s, 3H), 1.50 (s, 3H), 2.35-3.22 (m, 8H), 3.40-4.00 (m, 8H), 6.71 (s, 3H), 7.51 (s, 1H), 8.62 (s, 1H), 9.89 (bs, 1H).

MS (FAB) m/z: 151, 474[M+H].

화합물 I-17

¹H NMR (CDCl₃) δ : 1.28 (t, J = 7Hz, 3H), 1.21 (s, 3H), 1.51 (s, 3H), 2.39-3.19 (m, 7H), 3.40-3.87 (m, 5H), 6.67-7.28 (m, 4H), 7.53 (s, 1H), 8.64 (s, 1H), 9.88 (bs, 1H).

MS (FAB) m/z: 121(bp), 444[M+H].

<u>화합물 1-18</u>

"H NMR (CDC1,) δ : 1.08-1.32 (m, 9H), 1.48 (s, 3H), 2.16-3.61 (m, 8H), 3.73 (s, 3H), 6.63-7.26 (m, 4H), 7.48 (s, 1H), 8.72 (s, 1H), 9.86 (bs, 1H), MS (FAB) m/z: 121(bp), 458[M+H], mp. 109-111 $^{\circ}$ C.

<u>화합물 I-19</u>

¹ H NMR (CDCl₂) δ : 1.27 (s, 3H), 1.54 (s, 3H), 1.80-2.20 (m, 4H), 2.50-3.35 (m, 9H), 3.57 (d, J = 10Hz, 1H), 3.78 (s, 3H), 4.00 (d, J = 10Hz, 1H), 6.66-7.30 (m, 4H), 7.55 (s, 1H),

```
8.65 (s, 1H), 9.89 (bs, 1H).
MS (FAB) m/z: 121(bp), 470[M+H].
화합물 1-20
'H NMR (CDC1.) \delta: 1.08-1.33 (m, 9H), 1.48 (s, 3H),
                     2.14-2.70 (m, 2H), 3.06-3.64 (m, 3H),
                     3.72 (s, 2H), 3.79 (s, 3H),
                     6.81-7.42 (m, 4H),
                     7.52 (s, 1H), 8.55 (s, 1H),
                     9.97 (bs, 1H).
MS (FAB) m/z: 121(bp), 444[M+H], mp. 115-117 °C.
화합물 I-21
<sup>1</sup>H NMR (CDC1<sub>s</sub>) \delta: 0.25-0.65 (m, 4H), 1.20 (s, 3H),
                     1.50 (s, 3H), 2.07-2.95 (m, 3H),
                      3.68 (m, 2H), 3.73 (s, 3H),
                      3.81 (s, 3H), 6.77-7.45 (m, 4H),
                      7.56 (s, 1H), 8.55 (s, 1H),
                      9.97 (bs, 1H).
MS (FAB) m/z: 121(bp), 442[M+H].
<u>화함물 1-22</u>
 <sup>1</sup>H NMR (CDC1, ) \delta: 1.19 (s, 3H), 1.50 (s, 3H),
                      2.50 (s, 6H), 2.97 (bs, 1H),
```

"H NMR (CDC1,) δ : 1.19 (s, 3H), 1.50 (s, 3H), 2.50 (s, 6H), 2.97 (bs, 1H), 3.59-3.94 (m, 7H), 6.81-7.44 (m, 4H), 7.58 (s, 1H), 8.79 (s, 1H), 9.97 (bs, 1H). MS (FAB) m/z: 121(bp), 430[M+H]*, mp. 156-158 $^{\circ}$ C.

화합물 I-23

```
'H NMR (CDC1<sub>s</sub>) δ: 1.20 (s, 3H), 1.50 (s, 3H),

1.76-2.10 (m, 4H), 2.50-3.22 (m, 5H),

3.51 (d, J = 10Hz, 1H), 3.72 (s, 2H),

3.80 (s, 3H), 3.96 (d, J = 10Hz, 1H),

6.70-7.00 (m, 3H), 7.12-7.48 (m, 1H),

7.50 (s, 1H), 8.67 (s, 1H), 9.90 (bs, 1H).

MS (FAB) m/z: 121(bp), 456[M+H]*.
```

화합물 I-24

```
"H NMR (CDC1.) \delta: 1.15 (t, J = 7Hz, 3H), 1.18 (s, 3H), 1.50 (s, 3H), 2.36-2.96 (m, 4H), 3.55-3.91 (m, 7H), 6.66-7.01 (m, 3H), 7.14-7.46 (m, 1H), 7.51 (s, 1H), 8.66 (s, 1H), 9.91 (bs, 1H). MS (FAB) m/z: 121(bp), 430[M+H]*, mp. 106-109 °C.
```

화합물 1-25

```
'H NMR (CDC1,) δ: 0.32-0.66 (m, 4H), 1.20 (s, 3H),
1.49 (s, 3H), 2.08-2.82 (m, 3H),
3.62-3.92 (m, 2H), 3.72 (s, 2H),
3.79 (s, 3H), 6.67-6.97 (m, 3H),
7.12-7.32 (m, 1H), 7.48 (s, 1H),
8.67 (s, 1H), 9.90 (bs, 1H).

MS (FAB) m/z: 185(bp), 442[M+H]*.
```

화합물 II-2 대신에 화합물 II-10 및 II-14 내지 II-16을 사용하여 아래의 화합물들을 제조하였다.

$$R^{\theta}$$
 $(CH_2)_n$
 $-X-Y-Z$
 O_2N
 O
 O

화합물	R ⁹	n	×	Y	Z	R ⁷	R ⁸
I-26	о-ОМе	1	СО	NH	-	c-Pr	Н
1-27	p-Ph	1	CO	NH	-	c-Pr	Н
1-28	p-NO ₂	1	CO	NH	-	-(CH	2)4-
1-29	p-NO ₂	1	CO	NH	•	Et	Н
1-30	p-NO ₂	1	CO	NH	•	c-Pr	Н
I-31	p-NO ₂	1	CO	NH	-	i-Pr	Н
1-32	p-NHAc	1	CO	NH	-	c-Pr	Н
1-33	p-NHAc	1	co	NH	-	Et	н

화합물 1-26

¹H NMR (CDC1_s) δ: 0.20-0.67 (m, 4H), 1.19 (s, 3H),
1.49 (s, 3H), 2.17-2.94 (m, 3H),
3.64 (m, 2H), 3.75 (s, 2H), 3.86 (s, 3H),
6.73-7.44 (m, 3H), 7.48 (s, 1H),
8.78 (s, 1H), 10.02 (bs, 1H).

MS (FAB) m/z: 121(bp), 442[M+H].

화합물 1-27

¹H NMR (CDCl_s) δ : 0.30-0.62 (m, 4H), 1.19 (s, 3H),

```
1.50 (s, 3H), 2.15-2.70 (m, 3H),
                      3.62 (m, 2H), 3.79 (s, 2H),
                      7.15-7.70 (m, 10H), 8.80 (s, 1H),
                      9.99 (bs, 1H).
MS (FAB) m/z: 109(bp), 524[M+H]*.
<u>화합물 1-28</u>
 'H NMR (CDCl<sub>1</sub>) \delta: 1.21 (s, 3H), 1.51 (s, 3H),
                      1.19-1.96 (m, 4H), 2.92-2.94 (m, 2H),
                      3.07-3.11 (m, 2H), 3.22 (s, 1H),
                      3.57 (d, J = 10Hz, 1H), 3.89 (s, 2H),
                      3.98 (d, J = 10Hz, 1H),
                      7.55 (d, J = 8Hz, 2H), 7.63 (s, 1H),
                      8.27 (d, J = 8Hz, 2H),
                      8.70 (s, 1H), 10.15 (bs, 1H).
 MS (FAB) m/z: 471[M<sup>+</sup>] (bp).
화합물 I-29
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.22 (t, J = 7Hz, 3H), 1.26 (s, 3H),
                      1.58 (s, 3H), 2.67-2.76 (m, 2H),
                      3.61 (d, J = 10Hz, 1H),
                      3.75 (d, J = 10Hz, 1H), 3.97 (s, 2H),
                      7.33 (s, 1H), 7.61 (d, J = 8Hz, 2H),
                      8.33 (d, J = 8Hz, 2H), 8.75 (s, 1H),
                      10.23 (bs, 1H).
 MS (FAB) m/z: 445[M+H] (bp).
 <u>화함물 1-30</u>
 ^{1}H NMR (CDCl<sub>s</sub>) \delta: 0.41-0.53 (m, 4H), 1.20 (s, 3H),
                      1.52 (s, 3H), 2.33-2.36 (m, 1H),
                      3.65 (d, J = 10Hz, 1H),
```

```
3.72 (d, J = 10Hz, 1H), 3.91 (s, 2H),
                       7.55 (d, J = 9Hz, 2H),
                       7.64 (s, 1H), 8.28 (d, J = 9Hz, 2H),
                       8.84 (s, 1H), 10.20 (bs, 1H).
 MS (FAB) m/z: 90(bp), 457[M+H].
 <u>화합물 1-31</u>
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 1.15 (s, 3H), 1.24-1.26 (m, 6H),
                       1.50 (s, 3H), 3.27-3.35 (m, 2H),
                       3.60 (d, J = 9Hz, 1H), 3.90 (s, 2H),
                       7.55 (d, J = 9Hz, 2H), 7.60 (s, 1H),
                       8.25-8.28 (m, 2H), 8.82 (s, 1H),
                       10.18 (bs, 1H).
 MS (FAB) m/z: 185(bp), 459[M+H].
화합물 1-32
 <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 0.41-0.54 (m, 4H), 1.20 (s, 3H), 1.51 (s,
                       3H), 2.19 (s, 3H), 2.35-2.37 (m, 1H),
                       2.92 (s, 1H), 3.64 (d, J = 9Hz, 1H),
                       3.71 (d, J = 10Hz, 1H), 3.77 (s, 2H),
                       7.19 (bs, 1H), 7.30-7.32 (m, 2H),
                       7.55-7.59 (m, 3H), 8.97 (s, 1H),
                       10.01 (bs, 1H).
 MS (FAB) m/z: 106(bp), 469[M+H].
 <u>화합물 I-33</u>
 <sup>1</sup>H NMR (CDC1<sub>a</sub>) \delta: 1.13-1.17 (m, 3H), 1.19 (s, 3H),
                       1.50 (s, 3H), 2.18 (s, 3H),
                       2.62-2.77 (m. 2H).
                     3.55 (d, J = 10Hz, 1H),
                     3.79 (d, J = 10Hz, 1H), 3.75 (s, 2H),
                     7.26-7.31 (m, 3H), 7.55-7.57 (m, 3H),
                     8.70 (s, 1H), 9.98 (bs, 1H).
MS (FAB) m/z: 457[M<sup>+</sup>] (bp).
```

화합물 11-2 대신에 화합물 11-17을 사용하여 아래의 화합물들을 제조하였다.

<u>화합물 I-34</u>

¹ H NMR (CDC1,) δ : 0.32-0.67 (m, 4H), 1.19 (s, 3H), 1.50 (s, 3H), 2.16-2.82 (m, 3H), 3.56-3.77 (m, 4H), 5.90 (s, 2H), 6.76 (s, 3H), 7.50 (s, 1H), 8.79 (s, 1H), 9.96 (bs, 1H).

MS (FAB) m/z: 135(bp), 456[M+K]⁺, mp. 140-142 ℃. 화합물 II-2 대신에 화합물 II-18을 사용하여 아래의 화합물들을 제조하였다.

화함물 I-35

'H NMR (CDC1₃) δ : 0.28-0.65 (m, 4H), 1.18 (s, 3H), 1.48 (s, 3H), 1.62 (d, J = 7Hz, 3H), 2.15-2.90 (m, 3H), 3.47-4.03 (m, 3H), 7.10-7.40 (m, 5H), 7.47 (s, 1H), 8.80 (s, 1H), 9.95 (bs, 1H).

MS (FAB) m/z: 105(bp), 426[M+H].

화합물 II-2 대신에 화합물 II-19를 사용하여 아래의 화합물들을 제조하였다.

화합물 I-36

¹H NMR (CDCl_x) δ : 1.50 (t, J = 7Hz, 3H), 1.25 (s, 3H), 1.51 (s, 3H), 2.05-2.93 (m, 2H), 3.25-3.65 (m, 10H), 3.71 (s, 3H), 6.60-7.40 (m, 6H).

MS (FAB) m/z: 121(bp), 444[M⁺].

화합물 II-2 대신에 화합물 II-20 내지 II-24 및 II-30 내지 II-32를 사용하여 아래의 화합물들을 제조하였다.

$$\mathbb{R}^{9} \xrightarrow{\text{(CH}_{2})_{n}} \mathbb{Q}_{2N} \mathbb{N}^{7} \longrightarrow \mathbb{Q}_{2N}$$

화합물	R ⁹	n	R ⁷	R ⁸
1-37	p-OMe	1	i-Pr	Н
1-38	p-OMe	1	c-Pr	н
1-39	p-OEt	1	c-Pr	Н
1-40	p-OTBDMS	1	c-Pr	Н
I-41	р-ОН	1	c-Pr	Н
I-42	p-NMe ₂	1	c-Pr	Н
I-43	p-OMe	2	c-Pr	Н
1-44	m-OMe	1	c-Pr	н
I-45	m,p-(OMe)2	2	c-Pr	Н
I-46	p-NO2	1	c-Pr	Н
1-47	o-Ph	1	c-Pr	Н
1-48	m-Ph	1	c-Pr	Н
I-49	p-NHMe	1	c-Pr	н

TBDMS: tert-부틸디메틸실릴

<u>화합물 II-37</u>

```
"H NMR (CDC1<sub>3</sub>) δ: 1.08-1.32 (m, 9H), 1.47 (s, 3H),
2.28-2.69 (m, 2H), 3.03-3.57 (m, 3H),
3.67 (s, 2H), 3.77 (s, 3H),
6.75-7.35 (m, 4H), 7.45 (s, 1H),
8.77 (s, 1H),
9.90 (bs, 1H).

MS (FAB) m/z: 121(bp), 444[M+H]*, mp. 117-118 ℃.

[α]** + 10.69* (CHC1<sub>3</sub>)
```

<u>화합물 II-38</u>

```
<sup>1</sup>H NMR (CDC1<sub>2</sub>) \delta: 0.32-0.65 (m, 4H), 1.19 (s, 3H),
                      1.49 (s, 3H), 2.10-2.82 (m, 3H),
                      3.64 (m, 2H), 3.68 (s, 2H),
                      3.77 (s, 3H), 6.75-7.37 (m, 4H),
                      7.52 (s, 1H), 8.80 (s, 1H),
                      9.91 (bs, 1H).
MS (FAB) m/z: 121(bp), 444[M+H]^{+}, mp. 103-104 ^{\circ}C.
[\alpha]^{**} -7.53 ° (CHCl<sub>*</sub>).
화합물 11-39
'H NMR (CDC1<sub>2</sub>) \delta: 0.35-0.60 (m, 4H), 1.19 (s, 3H),
                      1.40 (t, J = 7Hz, 3H),
                      1.50 (s, 3H), 2.18-2.80 (m, 3H),
                      3.68-3.85 (m, 4H),
                      4.08 (q, J = 7Hz, 2H),
                      6.78-7.39 (m, 4H), 7.52 (s, 1H),
                      8.81 (s, 1H), 9.92 (bs, 1H).
MS (FAB) m/z: 107(bp), 456[M+H].
<u>화합물 II-40</u>
<sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 0.24 (s, 6H), 0.48-0.58 (m, 4H),
                      1.00 (s, 9H), 1.20 (s, 3H),
                      1.51 (s, 3H), 2.50-2.60 (m, 1H),
                      3.65-3.71 (m, 4H),
                       6.80 (d, J = 9Hz, 2H),
                       7.15 (d, J = 9Hz, 2H),
                       7.75 (s, 1H), 8.80 (s, 1H),
                       9.88 (bs, 1H).
MS (EI) m/z: 524(bp), 542[M<sup>*</sup>].
```

화합물 11-41

```
<sup>1</sup>H NMR (CDCl<sub>2</sub>) \delta: 0.38-0.51 (m, 4H), 1.19 (s, 3H),
                       1.50 (s, 3H), 2.33-2.35 (m, 1H),
                       3.64-3.70 (m, 2H),
                       3.74 (s, 2H), 6.87 (m, 2H),
                       7.19 (d, J = 7Hz, 2H), 7.59 (s, 1H),
                       8.85 (s, 1H), 10.02 (bs, 1H).
MS (EI) m/z: 108(bp), 427[M<sup>*</sup>].
화합물 II-42
<sup>1</sup>H NMR (CDCl<sub>4</sub>) \delta: 0.38-0.58 (m, 4H), 1.19 (s, 3H),
                       1.50 (s, 3H), 2.36-2.37 (m, 1H),
                       2.96 (s, 6H), 3.62-3.69 (m, 4H),
                       6.76 (d, J = 6Hz, 2H),
                       7.20 (d, J = 6Hz, 2H),
                       7.58 (s, 1H), 8.88 (s, 1H),
                       10.01 (bs, 1H).
MS (EI) m/z: 122(bp), 455[M<sup>*</sup>].
<u>화함물 II-43</u>
 <sup>1</sup>H NMR (CDCl<sub>2</sub>) \delta: 0.36-0.53 (m, 4H), 1.18 (s, 3H),
                       1.48 (s, 3H), 2.32-2.37 (m, 1H),
                       2.70 (m, 2H), 2.98 (m, 2H),
                       3.62 (d; J = 10Hz, 1H),
                       3.70 (d, J = 10Hz, 1H),
                       6.80 (d, J = 9Hz, 2H),
                       7.12 (d, J = 9Hz, 2H), 7.58 (s, 1H),
                       8.81 (s, 1H), 9.96 (bs, 1H).
 MS (EI) m/z: 440(bp), 456[M<sup>+</sup>].
```

```
<u>화합물 II-44</u>
  [\alpha]^{20} -9.0 ° (CHCl<sub>2</sub>).
<u>화합물 II-45</u>
  'H NMR (CDC1.) \delta: 0.39-0.56 (m, 4H), 1.26 (s, 3H),
                         1.52 (s, 3H), 2.36-2.41 (m, 1H),
                         2.77 (t, J = 8Hz, 2H),
                         3.03 (t, J = 8Hz, 2H),
                         3.72 (d, J = 10Hz, 1H),
                         3.74 (d, J = 10Hz, 1H),
                         3.85 (s, 3H), 3.86 (s, 3H),
                         6.77-6.79 (m, 3H), 7.63 (s, 1H),
                         8.86 (s, 1H), 10.03 (bs, 1H).
 MS (EI) m/z: 469(bp), 486[M<sup>+</sup>].
<u>화합물 II-46</u>
 [\alpha]^{20} -9.8 ° (CHC1.).
<u>화합물 II-47</u>
  <sup>1</sup>H NMR (CDCl<sub>1</sub>) \delta: 0.37-0.53 (m, 4H), 1.19 (s, 3H),
                        1.50 (s, 3H), 2.29-2.34 (m, 1H),
                         3.64 (d, J = 10Hz, 1H),
                         3.69 (d, J = 10Hz, 1H),
                         3.79 (s, 2H), 7.25-7.43 (m, 9H),
                         7.58 (s, 1H), 8.79 (s, 1H),
                         9.81 (bs, 1H).
 MS (EI) m/z: 470(bp), 488[M<sup>*</sup>].
  [\alpha]^{25} -2.3 ° (CHCl<sub>3</sub>).
 화합물 1-48
  <sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta: 0.37-0.53 (m, 4H), 1.18 (s, 3H),
                        1.49 (s, 3H), 2.33-2.38 (m, 1H),
                       3.63 (d, J = 10Hz, 1H),
                       3.70 (d, J = 10Hz, 1H),
                       3.85 (s, 2H), 7.24-7.61 (m, 10H),
                       8.87 (s, 1H), 10.08 (bs, 1H).
MS (EI) m/z: 470(bp), 488[M<sup>*</sup>].
[\alpha]^{2}° -8.4° (CHCl<sub>s</sub>).
```

<u>화합물 II-49</u>

'H NMR (CDC1,) δ: 0.35-0.53 (m, 4H), 1.19 (s, 3H),
1.51 (s, 3H), 2.34-2.39 (m, 1H),
2.84 (s, 3H), 3.62-3.72 (m, 4H),
6.59-6.66 (m, 2H),
7.14-7.16 (m, 2H),
7.58 (s, 1H), 8.88 (s, 1H),
10.01 (bs, 1H).

MS (EI) m/z: 440[M'] (bp).

화합물 II-2 대신에 화합물 II-25를 사용하여 아래의 화합물들을 제조하였다. <u>화합물 II-50</u>

'H NMR (CDC1;) δ: 0.29-0.66 (m, 4H), 1.20 (s, 3H),

1.49 (s, 3H), 2.09-2.79 (m, 3H),

3.59-3.77 (m, 4H), 5.90 (s, 2H),

6.76 (s, 3H), 7.51 (s, 1H),

8.79 (s, 1H), 9.96 (bs, 1H).

MS (EI) m/z: 135(bp), 455[M⁺].

화합물 II-2 대신에 화합물 II-26월 사용하여 아래의 화합물들을 제조하였다. <u>화합물 II-51</u>

'H NMR (CDC1,) δ: 0.32-0.62 (m, 4H), 1.12 (s, 3H),

1.43 (s, 3H), 2.32 (m, 1H),

2.84 (m, 1H), 3.57 (m, 2H),

4.17 (s, 2H), 7.32-8.02 (m, 8H),

8.78 (s, 1H), 9.89 (bs, 1H).

MS (FAB) m/z: 141(bp), 462[M+H], mp. 185-188℃.

화합물 II-2 대신에 화합물 II-26을 사용하여 아래의 화합물들을 제조하였다. <u>화합물 II-52</u>

¹ H NMR (CDCl_a) δ : 1.08-1.33 (m, 9H), 1.45 (s, 3H), 2.21-2.66 (m, 2H), 3.01-3.71 (m, 3H) 4.18 (s, 2H), 7.24-8.14 (m, 8H), 8.77 (s, 1H), 9.86 (bs, 1H).

MS (EI) m/z: 141(bp), 463[M⁺].

화합물 II-2 대신에 화합물 II-27물 사용하여 아래의 화합물들을 제조하였다. <u>화합물 II-53</u>

¹ H NMR (CDCl₂) δ : 0.21-0.61 (m, 4H), 1.16 (s, 3H), 1.46 (s, 3H), 2.01-2.71 (m, 3H), 3.61 (m, 2H), 3.89 (s, 2H), 7.14-7.91 (m, 8H), 8.76 (s, 1H), 9.99 (bs, 1H).

MS (FAB) m/z: 141(bp), 462[M+H].

화합물 II-2 대신에 화합물 II-28을 사용하여 아래의 화합물들을 제조하였다. <u>화합물 II-54</u>

¹H NMR (CDC1₁) δ: 0.39-0.55 (m, 4H), 1.18 (s, 3H),
1.48 (s, 3H), 2.27-2.32 (m, 1H),
2.96 (t, J = 7Hz, 2H),
3.48-3.53 (m, 2H),
3.66 (d, J = 10Hz, 1H),
3.71 (d, J = 10Hz, 1H),
3.79 (s, 3H), 6.85-6.88 (m, 3H),
7.19 (d, J = 9Hz, 2H), 7.62 (s, 1H),
7.72-7.75 (m, 1H).

MS (EI) m/z: 428[M^{*}].

화합물 11-2 대신에 화합물 11-29를 사용하여 아래의 화합물들을 제조하였다.

<u>화합물 I-55</u>

¹H NMR (CDC1₁) δ: 0.44-0.54 (m, 4H), 1.20 (s, 3H), 1.49 (s, 3H), 1.85-2.05 (m, 4H), 2.35-2.65 (m, 3H), 3.35-3.55 (m, 2H), 3.66 (s, 2H), 4.20 (s, 2H), 7.54 (s, 1H), 8.78 (s, 1H), 10.37 (bs, 1H).

MS (EI) m/z: 113(bp), 432[M^{*}].

 $[\alpha]^{*6}$ -12.7 ° (CHCl_{*}).

화합물	R ⁹	n	R ⁷	R ⁸
I-56	р-ОМе	1	c-Pr	Н
1-57	p-OMe	1	i-Pr	H

<u>화합물 1-56</u>

 $[\alpha]^{35}$ +7.2° (CHCl₁).

<u>화합물 I-57</u>

 $[\alpha]^{**}$ -10.9 ° (CHCl.).

실시예 I-58: 트란스-6-(페닐아세틸아미노)-3,4-디히드로-2,2-디메틸-7-니트로-4-(1-피룔릴)-2H-1-벤조피란-3-올의 합성

6-(페닐아세틸아미노)-3,4-에퓩시-3,4-디히드로-2,2-디메틸-7-니트로-2H-1-벤조피란(II-2)율 6.9% 암모니아의 에탄올 (10 mL) 용액에 가하고 고압 유리관중에서 80℃에서 4 시간 동안 교반하였다. 용매를 증류하여 제거하여 아미노 알코올 (117 mg)을 갈색 기룡상태로 얻었다.

이어서 아미노 알코올 (117 mg)을 아세트산 (3 mL)중에 용해하고, 여기에 2,5-디메톡시테트라히드로푸란 (45 μL, 1.1 eq.)을 가하고 2.5 시간 가열환류하였다. 수득한 생성물의 온도를 실은까지 냉각하고 여기에 탄산수소 나트롬 포화 수용액을 가하여 에틸 아세테이트로 추출하였다. 유기층을 합쳐 물로 세척하고 무수 황산 나트륨에서 건조하였다. 용매를 증류제거한 후에 수득한 잔류물을 실리카 겔 칼럼 크로마토그

래피 (헥산 : 에틸 아세테이트 = 2 : 1)를 통하여 정제함으로써 오렌지색 결정의 목적 생성물을 얻었다 (약 50 mg). 이 결정을 클로로포뢈 / 에테르에서 재결정하여 오렌지색 분말 (39 mg, 29%, mp. 174-176 °C).

¹ H NMR (CDC1_a) δ : 1.26 (s, 3H), 1.51 (s, 3H), 2.46 (bs, 2H), 3.60 (s, 2H), 3.86 (d, J = 10Hz, 1H), 4.86 (d, 10Hz, 1H), 6.06-6.27 (m, 2H), 6.49-6.69 (m, 2H), 7.21 (s, 5H), 7.47 (s, 1H), 7.86 (s, 1H), 9.46 (bs, 1H).

MS (FAB) m/z: 422[M+H].

화합물 !!-2 대신에 화합물 II-5를 사용하여 실시예 !-58의 방법과 마찬가지로 하여 아래의 화합물들을 제조하였다.

$$\begin{array}{c|c} & O & H \\ & O & H \\ & & O_2N \end{array}$$

화함물	R ⁹	n
I-59	р-ОМе	1
1-60	p-OMe	2
I-61	m, p-(OMe) ₂	1

화합물 I-59

¹ H NMR (CDC1₂) δ : 1.26 (s, 3H), 1.51 (s, 3H), 2.47 (bs, 1H), 3.56 (s, 2H), 3.74 (s, 3H), 3.87 (d, J = 10Hz, 1H), 4.87 (d, J = 10Hz, 1H), 6.02-6.27 (m, 2H), 6.48-7.28 (m, 6H), 7.53 (s, 1H), 7.92 (s, 1H), 9.55 (bs, 1H).

MS (FAB) m/z: 121(bp), 452[M+H].

화합물 II-2 대신에 화합물 II-12를 사용하여 실시예 I-58의 방법과 마찬가지로 하여 아래의 화합물들을 제조하였다.

화합물 I-60

1 H NMR (CDC1₁) δ: 1.29 (s, 3H), 1.54 (s, 3H),
2.32-3.17 (m, 5H),
3.91 (d, J = 10Hz, 1H),
4.91 (d, J = 10Hz, 1H),
6.14-6.34 (m, 2H), 6.58-6.75 (m, 2H),
7.03-7.35 (m, 5H), 7.59 (s, 1H),
7.90 (s, 1H), 9.54 (bs, 1H).

MS (FAB) m/z: 96(bp), 436[M+H].

화합물 II-2 대신에 화합물 II-4를 사용하여 실시예 I-58의 방법과 마찬가지로 하여 아래의 화합물들을

제조하였다.

화합물 1-61

¹H NMR (CDCl₁) δ: 1.29 (s, 3H), 1.54 (s, 3H),
2.75 (bs, 1H), 3.59 (s, 2H),
3.87-4.07 (m, 7H),
4.96 (d, J = 9Hz, 1H),
6.17-6.32 (m, 2H), 6.62-6.92 (m, 5H),
7.60 (s, 1H), 7.97 (s, 1H),
9.67 (bs, 1H).

MS (FAB) m/z: 151(bp), 482[M+H].

제제예 1: 정제

화함물	100 a
락토오스	240 a
결정 셀룰로오스 분말	580 a
옥수수 전분	330 a
히드록시프로필 셀룰로오스	80 a
CMC-Ca	140 a
마그네슘 스테아레이트	30 a
Э	1500 a

상기한 각 성분을 통상의 방법으로 혼합한 다음, 타정하여 하나당 유효성분을 10 mg 함유한 당의정 10000 개를 제조하였다.

제제예 2: 캡슐제

화함물	100 g
락토오스	400 g
결정 셀룰로오스 분말	950 a
마그네슘 스테아레이트	50 a
Э	1500 g

상기한 각 성분을 통상의 방법으로 혼합한 다음, 젤라틴 캡슐속에 충전하여 하나당 유효성분을 10 mg 함 유한 캡슐제 10000개를 제조하였다.

제제예 3: 연질 캡슐제

화합물	100 a
PEG 400	444 a
포화 지방산 트리글리세리드	1445 a
폐퍼민트 오일	1 0
폴리소르베이트 (Polysorbate)	10 a
JI .	2000 a

상기한 각 성분을 통상의 방법으로 혼합하고 No.3 연질 젤라틴 캡슐속에 충전하여 하나당 유효성분을 10 mg 함유한 연질 캡슐제 10000개룡 제조하였다.

제제예 4: 연고

	······································
화함물	1.0 a
유동 파라핀	10.0 a
세탄을	20.0 a
백색 와셀린	68.4 g
에틸 파라벤	0.1 a
1-엔톨	0.5 a
Л	100.0 a

상기한 각 성분율 통상의 방법으로 혼합하여 연고 1 g을 제조하였다.

제제예 5: 좌제

화합물	10 a
위텝졸 (Witepsol) H15	475 g
위텝졸 (Witepsol) W35	514 g
폴리소르베이트	1.α_
Э	1000 g

(* 트리글리세리드 화합물의 상품명)

상기한 각 성분을 통상의 방법으로 용융혼합하여 좌제 용기속에 부어 넣은 다음, 냉각고화시켜 하나당 유효성분을 10 mg 함유한 중량 1 g의 좌제 1000개를 제조하였다.

제제예 6: 주사제

화합물	1_ma
주사용 증류수	5 ml

필요할 때마다 상기한 화합물을 증류수에 용해하여 제제를 제조한다.

약제학적 시험예

심박동수에 미치는 영향

보보

수컷 하아틀레이 기니아 피그를 도살하고 신속히 그 심장을 제거하여 심실(心室)로부터 우심방 (right atria)을 분리한 다음, 95% O₂/5% CO₂를 통기한 Krebbs-Henseleit액 함유의 31℃의 기관욕중에 심방을 부유시켰다. 확장기 장력을 1 g 가하고 발생된 장력을 힘 변위 변환기를 사용하여 등장성적으로 측정하였다. 액을 교체해 주면서 각 제제들을 액중에서 평형화하였다.

평형기가 경과한 후에 제제에 이소프로테레놀을 누적적으로 첨가하여 최대 응답을 구하였다. 이어서 심방을 새로운 액으로 교체하고 세척하여 60분간 평형화하였다. 그 후, 제제에다 각 화합물 (10, 30, 100 및 300 μM)을 누적적으로 첨가하였다. 데이타를 이전의 이소프로테레놀의 노출에 의하여 유발된 최대응답의백분율로 나타내었다.

격기

이들 화합물은 아래의 표에 나온바와 같이 농도 의존방식으로 네가티브적으로 변시적인 작용을 유발하였다.

丑

		% 심박동수 변	화	
화합물 '	10 μ M	30 μ M	100 μ M	300 μ M
I-2	-9.8	-28.1	-37.9	-41.2
I-3	-13.2	-21.5	-31.4	-41.3
I-5	-8.8	-16.9	-30.1	-44.1
I-6	-11.4	-17.5	-32.5	-74.1
I-7	-9.8	-22.9	-49.7	-73.9
I-8	-10.1	-25.6	-65.9	-87.6
1-9	-8.5	-14.6	-25.4	-65.4
I-10	-17.9	-29.2	-50.0	-59.4
I-11	-3.9	-7.9	-19.1	-38.2
I-17	-8.5	-11.9	-14.4	-19.5
I-18	-8.2	-15.8	-27.8	-34.8

발명의 효과

이둏 화합물은 네가티브적으로 변시적인 작용을 나타내기 때문에 심기능 부전증의 치료에 유용하다.

(57) 청구의 범위

청구항 1

아래의 구조식 (1)의 크로만 유도체 또는 이들의 염:

$$W-(CH_{2})_{n}-X-Y-Z \xrightarrow{R^{8} N^{7}R^{7}} R^{6}$$

$$R^{5}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

위의 식에 있어서.

 R^{1} 은 수소원자, 할로겐 원자, C_{1-6} 알킬기 $\{$ 상기 알킬기는 할로겐 원자, 카르복실기, C_{1-6} 알콕시기, C_{2-6} 알 콕시카르보닐기, 히드록실기, 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, C₁₋₆ 알 콕시기 {상기 알콕시기는 할로겐 원자, 카르복실기, C₂₋₆ 알콕시카르보닐기, 히드록실기, 페닐기 [상기 페 닐기는 R^2 (R^2 는 할로겐 원자, 히드록실기, C_{1-4} 알킬기 또는 C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임], 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, C₃₋₆ 시쿨로알킬기 {상기 시쿨로알킬기는 할로겐 원자, 카르복실기, C₂₋₆ 알콕시카르보닐기, 히드록실기, C₁₋₆ 알콕시기, 페닐기 (상 기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 포르밓기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포름아미도기, 시안아미드기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기 {상기 알킬아미노기 및 디 C_{1-6} 알킬아미노기는 할로겐 원 자, 카르복실기, C₂₋₆ 알콕시카르보닐기, 히드록실기, 포르밀기, 시아노기 또는 니트로기에 의하여 치환되 거나 비치환임}, C1-8 알킬카르보닐아미노기, C1-8 알킬술포닐아미노기, 아미노카르보닐기, C1-8 알킬아미노 카르보닐기, 디 C1-6 알킬아미노카르보닐기, C1-6 알킬카르보닐기, C1-6 알콕시카르보닐기, C1-8 알킬카르보 닐옥시기, C1-6 알킬우레아기, C1-6 알킬티오우레아기, 아릴 C1-6 알킬아미노기, 디 (아릴 C1-6 알킬)아미노 기, 아릴카르보닐아미노기, 아릴 C1-6 알킬카르보닐아미노기, 아릴술포닐아미노기, 아릴 C1-6 알킬술포닐아 미노기, 아릴 C₁₋₆ 알킬아미노카르보닐기, 디 (아릴 C₁₋₆ 알킬)아미노카르보닐기, 아릴카르보닐기, 아릴 C₁₋ 6 알킬카르보닐기, 아릴옥시카르보닐기, 아릴 C₁₋₆ 알킬옥시카르보닐기, 아릴카르보닐옥시기, 아릴 C₁₋₆ 알 킬카르보닐옥시기, 아릴우레아기, 아릴 C1-6 알킬우레아기, 아릴티오우레아기 또는 아릴 C1-6 알킬티오우레 아기 $\{$ 상기 아릴 C_{1-6} 알킬아미노기, 디 (아릴 C_{1-6} 알킬)아미노기, 아릴카르보닐아미노기, 아릴 C_{1-6} 알킬 카르보닐아미노기, 아릴술포닐아미노기, 아릴 Cing 알킬술포닐아미노기, 아릴 Cing 알킬아미노카로보닐기, 디 (아릴 C₁₋₆ 알킬)아미노카르보닐기, 아릴카르보닐기, 아릴 C₁₋₆ 알킬카르보닐기, 아릴옥시카르보닐기, 아릴 C₁₋₆ 알킬옥시카르보닐기, 아릴카르보닐옥시기, 아릴 C₁₋₆ 알킬카르보닐옥시기, 아릴우레아기, 아릴 C_{1-6} 알킬우레아기, 아릴티오우레아기 및 아릴 C_{1-6} 알킬티오우레아기 각각은 R^{19} (상기 R^{19} 는 할로겐 원자, 카르복실기, C_{2-6} 알콕시카르보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 (상기 페닐기는 R^2 에 의하여 치환 되거나 비치환임), 포르밀기, 시아노기 또는 니트로기를 나타냄)에 의하여 치환되거나 비치환임} 를 나타 내고,

 R^3 및 R^4 은 각각 독립하여 수소원자 또는 C_{1-6} 알킬기 {상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 히 드록실기에 의하여 치환되거나 비치환임}를 나타내거나, 혹은 R^2 및 R^3 은 이들이 결합되어 있는 탄소원자와 더불어 C_{3-6} 시클로알킬기를 형성하며,

R⁵는 히드록실기 또는 C₁₋₈ 알콕시카르보닐기를 나타내거나 R⁶와 더불어 하나의 결합을 형성하고.

P⁶는 수소원자 또는 P⁵와 더불어 하나의 결합을 형성하며,

 R^7 및 R^8 은 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{3-6} 시클로알킬기 {상기 알킬기, 알케닐기, 알케닐기 및 시클로알킬기는 각각 R^{19} 에 의하여 치환되거나 비치환임}, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), $C(=Y^1)Z^1R^{10}$ 또는 $C(=Y^1)R^{10}$ { Y^1 은 산소원자, 황원자 또는 NR^{11} (R^{11} 은 수소원자, 시아노기, 니트로기, C_{1-6} 알킬기 또는 C_{1-6} 알콕시기를 나타냄) 을 나타내고, Z^1 은 산소원자, 황원자 또는 NR^{13} (R^{13} 은 R^{10} 에서 정의한 바와 동일한 뜻을 가짐)을 나타내며, R^{10} 은 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{3-6} 시클로알킬기 (상기 알킬기, 알케닐기, 알키닐기 및 시클로알킬기는 각각 R^{19} 에 의하여 치환되거나 비치환임) 또는 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임) 를 나타내거나, 혹은

 R^{7} 및 R^{8} 은 함께 1.4-부틸렌 또는 1.5-펜틸렌 {상기 부틸렌기 및 펜틸렌기는 각각 C_{1-4} 알킬기, 페닐기 (상기 페닐기는 R^{7} 에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C_{1-4} 알콕시기 또는 C_{1-6} 알킬카

르보닐옥시기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂)₁X¹(CH₂)ρ (여기서 I 및 p는 각각 1, 2 또는 3을 나타내는 반면, 이들의 합은 3, 4 또는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁-₄ 알킬기 또는 페닐기 (상기 페닐기는 R²에 의하여 치환 또는 비치환됨)를 나타냄]를 나타냄)를 형성하거나, 혹은

 R^7 및 R^8 은 함께 $(CH_2)_q Z^1 C(=Y^1)$ 또는 $(CH_2)_q C(=Y^1)$ (q는 2, 3 또는 4를 나타내고, Z^1 및 Y^1 은 위에서 정의한 바와 동일한 정의를 가짐)를 형성하거나, 혹은

 R^7 및 R^8 은 이둏이 결합되어 있는 질소원자와 함께 피를릴기, 피라졸릴기, 이미다졸릴기, 1,2,3-트리아졸릴기, 1,2,4-트리아졸릴기 또는 1,2,3,4-테트라졸릴기 [이들은 모두가 R^{15} (R^{15} 는 R^{10} 에서 정의한 바와 동일한 정의를 가장)에 의하여 치환되거나 비치환임] 를 형성하며,

n은 0 이거나 또는 1 내지 4의 정수이고.

X는 C=0, CH₂, SO₂ 또는 NR¹⁶ (R¹⁶은 R¹⁴에서 정의한 바와 동일한 정의를 가짐)를 나타내며,

Y는 X가 C=0, CH₂ 또는 SO₂ 를 나타낼 때는 NR¹⁷ (R^{17} 은 R^{14} 에서 정의한 바와 동일한 정의를 가짐) 를 나타내고, X가 NR¹⁶일 때는 C=0를 나타내고.

Z는 없거나 혹은 CH_2 또는 NR^{18} (R^{18} 은 R^{14} 에서 정의한 바와 동일한 정의를 가짐) 를 나타내며, W는 아래의 기들을 나타낸다.

$$(R^{9})_{m} \stackrel{\text{!!}}{\longrightarrow} , \qquad (R^{9})_{m} \stackrel{\text{!!}}{\longrightarrow} , \qquad$$

(위의 식에서 R^9 는 수소원자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자 또는 C_{1-6} 알콕시기에 의하여 치환되거나 비치환임), C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 히드록실기, 니트로기, 시아노기, 포르밀기, 포름아미드기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 상미노술포닐기, C_{1-6} 알킬어미노카르보닐기, 또는 아릴카르보닐기를 나타내고,

m은 1 내지 3의 정수이고.

R¹²는 C₁₋₄ 알킬기를 나타낸다.)

청구함 2

제1항에 있어서, 크로만환의 R¹의 치환위치가 7 위치 또는 8 위치이고, 크로만환의 Z의 치환위치가 6 위치 이며, -X-Y-Z-의 조합이 -C(0)-NH-, -C(0)-NMe-, -C(0)-NH-CH₂-, -CH₂-NH-, -CH₃-NH---CH₃-, -SO₂-NH- 또는 -NH-C(0)-NH-인 크로만 유도체 또는 이들의 염.

청구항 3

제2항에 있어서, R^3 및 R^4 가 모두 C_{1-6} 알킬기 {상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 하드록실기에 의하여 치환되거나 비치환임}를 나타내는 크로만 유도체 또는 이들의 염.

청구함 4

제3항에 있어서, \mathbf{n}^5 가 히드록실기를 나타내거나, 혹은 \mathbf{n}^5 와 함께 하나의 결합을 형성하는 크로만 유도체 또는 이들의 염.

청구항 5

제2한에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{2-6} 알케닐기, C_{2-6} 알케닐기, C_{3-6} 시클로알킬기 {상기 알킬기, 알케닐기, 알케닐기 및 시클로알킬기는 각각 할로겐 원자, 카르복실기, C_{2-6} 알콕시카로보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 [상기 페닐기는 R^2 (R^2 는 할로겐 원자, 히드록실기, C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임], 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임), 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임)를 나타내거나,

 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌 {상기 부틸렌기 및 펜틸렌기는 각각 C_{1-4} 알킬기, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C_{1-4} 알콕시기 또는 C_{1-6} 알킬카르보닐옥시기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂)₁X¹(CH₂)ρ {여기서 | 및 p는 각각 1, 2 또는 3월 나타내는 반면, 이들의 함은 3, 4 또는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁-₄ 알킬기 또는 페닐기 (상기 페닐기는 R²에 의하여 치환되거나 비치환임)에 의하여 치환되거나 비치환임)를 나타냄}을 형성하거나, 혹은

 R^{1} 및 R^{8} 은 이들이 결합되어 있는 질소원자와 함께 피를릴기, 피라졸릴기, 이미다졸릴기, 1,2,3-트리아졸릴기, 1,2,4-트리아졸릴기 또는 1,2,3,4-테트라졸릴기 [이들은 모두가 R^{15} (R^{15} 는 R^{10} 에서 정의한 바와 동일한 정의를 가짐)에 의하여 치환되거나 비치환임] 를 형성하는 크로만 유도체 또는 이들의 염.

청구항 6

제4항에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-8} 알킬기, C_{2-8} 알케닐기, C_{2-8} 알케닐기, C_{2-8} 알키닐기, C_{3-8} 시클로알킬기 {상기 알킬기, 알케닐기, 알케닐기 및 시클로알킬기는 각각 할로겐 원자, 카르복실기, C_{2-6} 알콕시카르보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 [상기 페닐기는 R^2 (R^2 는 할로겐 원자, 히드록실기, C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임], 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임)를 나타내거나.

 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌 {상기 부틸렌기 및 펜틸렌기는 각각 C_{1-4} 알킬기, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C_{1-4} 알콕시기 또는 C_{1-4} 알킬카르보닐옥시기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂),X¹(CH₂), {여기서 I 및 p는 각각 1, 2 또는 3을 나타내는 반면, 이들의 합은 3, 4 또는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁₋₄ 알킬기 또는 페닐기 (상기 페닐기는 R²에 의하여 치환되거나 비치환임)를 나타냄}를 나타냄}을 형성하거나, 혹은

 $R^{'}$ 및 $R^{''}$ 은 이들이 결합되어 있는 질소원자와 함께 피를릴기, 피라졸릴기, 이미다졸릴기, 1,2,3-트리아졸 릴기, 1,2,4-트리아졸릴기 또는 1,2,3,4-테트라졸릴기 [이들은 모두가 $R^{'5}$ ($R^{''}$ 는 앞서 정의한 바와 동일한 정의를 가짐)에 의하여 치환되거나 비치환임] 를 형성하는 크로만 유도체 또는 이듈의 염.

청구함 7

제2항에 있어서, R^1 은 수소뭔자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 히드록실기에 의하여 치환되거나 비치환임), C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), C_{3-6} 시클로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포룸아미도기, 시안아미드기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기, 아리노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, C_{1-6} 알킬카르보닐기, C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬카르보닐기, C_{1-6} 알콕시카르보닐기,

아릴옥시카르보닐기, 아릴 C_{1-6} 알킬옥시카르보닐기, C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기 또는 아릴 C_{1-6} 알킬카르보닐아미노기를 나타내는 크로만 유도체 또는 이들의 염.

청구함 8

제5항에 있어서, R^1 은 수소원자, 항로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 항로겐 원자, C_{1-6} 알콕시기 또는 히드록실기에 의하여 치환되거나 비치환임), C_{1-6} 알콕시기 (상기 알콕시기는 항로겐 원자에 의하여 치환되거나 비치환임), C_{3-6} 시클로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포름아 미도기, 시안아미드기, 아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노기, C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기, 아리노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 아릴 C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬카르보닐기, 아릴우시카르보닐기, 아릴 C_{1-6} 알킬옥시카르보닐기, C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기 또는 아릴 C_{1-6} 알킬카르보닐아미노기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 9

제6항에 있어서, R^1 은 수소원자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자, C_{1-6} 알콕시기 또는 히드록실기에 의하여 치환되거나 비치환임), C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), C_{3-6} 시클로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포롱아미도기, 시안아미드기, 아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노기, C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기, 아릴 C_{1-6} 알킬카르보닐아미노기, 아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬카르보닐기, 아릴 C_{1-6} 알킬우시카르보닐기, C_{1-6} 알킬카르보닐아미노기, 아릴카르보닐아미노기 또는 아릴 C_{1-6} 알킬카르보닐아미노기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 10

제7항에 있어서, R^9 는 수소원자, 할로겐 원자, C_{1-6} 알킬기, C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), 히드록실기, 니트로기, 시아노기, 포르밀기, 아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 아미노술모닐기, C_{1-6} 알킬술포닐기 또는 카르복실기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 11

제8항에 있어서, R^9 는 수소원자, 할로겐 원자, C_{1-6} 알킬기, C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 차환되거나 비치환임), 히드록싶기, 니트로기, 시아노기, 포르밀기, 아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬카르보닐아미노기, C_{1-6} 알킬카르보닐기, 아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, 아미노울포닐기, C_{1-6} 알킬숟포닐기 또는 카르복실기를 나타내는 크로만 유도체 또는 이들의 염.

청구한 12

제9항에 있어서, R^9 는 수소원자, 할로겐 원자, C_{1-6} 알킬기, C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 차환되거나 비치환임), 히드록실기, 니트로기, 시아노기, 포르밀기, 아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬카르보닐아미노기, C_{1-6} 알킬카르보닐아미노기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬송포닐기 또는 카르복실기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 13

제10항에 있어서, R³ 및 R⁴가 모두 메틸기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 14

제11항에 있어서, R³ 및 R⁴가 모두 메틸기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 15

제12항에 있어서, R^3 및 R^4 가 모두 메틸기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 16

제15항에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-8} 알킬기, C_{3-6} 시클로알킬기 {상기 알킬기 및 사물로알킬기는 각각 할로겐 원자, 카르복실기, C_{2-6} 알콕시카르보닐기, 히드록실기, C_{1-6} 알콕시기, 페닐기 [상기 페닐기는 R^2 (R^2 는 할로겐 원자, 히드록실기, C_{1-4} 알킬기 또는 C_{1-4} 알콕시기를 나타냄)에 의하여 치환되거나 비치환임}, 포르밀기, 시아노기 또는 니트로기에 의하여 치환되거나 비치환임}, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임)를 나타내거나,

 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌 {상기 부틸렌기 및 펜틸렌기는 각각 C_{1-4} 알킬기, 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 할로겐 원자, 히드록실기, C_{1-4} 알콕시기 또는 C_{1-6} 알킬카르보닐옥시기에 의하여 치환되거나 비치환임} 을 형성하거나, 혹은

R⁷ 및 R⁸은 함께 (CH₂),X¹(CH₂), {여기서 I 및 p는 각각 1, 2 또는 3을 나타내는 반면, 이들의 합은 3, 4 또는 5이고, X¹은 산소원자, 황원자 또는 NR¹⁴ [R¹⁴ 는 수소원자, C₁₋₄ 알킬기 또는 페닐기 (상기 페닐기는 R²에 의하여 치환되거나 비치환임)를 나타냄]를 나타냄}을 형성하거나, 혹은

 R^7 및 R^8 은 이들이 결합되어 있는 질소원자와 함께 피룔릴기, 피라죨릴기 또는 이미다죨릴기 [이들은 모두 가 R^{15} (R^{15} 는 R^{10} 에서 정의한 바와 동일한 정의를 가짐)에 의하여 치환되거나 비치환임] 를 형성하고, W는

[위의 식에서 R^9 는 수소원자, 할로겐 원자, C_{1-6} 알킬기, C_{1-6} 알콕시기 (상기 알콕시기는 할로겐 원자에 의하여 치환되거나 비치환임), 페닐기 (상기 페닐기는 R^2 에 의하여 치환되거나 비치환임), 히드록실기, 니트로가, 시아노기, 포르밀기, 포륨아미도기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬아미노카르보닐기, C_{1-6} 알킬카르보닐기, C_{1-6} 알킬카르보닐기, 아미노술포닐기, C_{1-6} 알킬슬포닐기 또는카르복실기 나타냄.] 을 나타내는 크로만 유도체 또는 이들의 염.

청구항 17

제16항에 있어서, R^1 은 수소원자, 할로겐 원자, C_{1-6} 알킬기 (상기 알킬기는 할로겐 원자에 의하여 치환되거나 비치환임), C_{3-6} 시쿨로알킬기, 니트로기, 시아노기, 포르밀기, 카르복실기, 히드록실기, 포름아미도기, 아미노기, C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노기, 아릴 C_{1-6} 알킬아미노기, 다 C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기, 다 C_{1-6} 알킬아미노카르보닐기 또는 C_{1-6} 알콕시카르보닐기를 나타내는 크로만 유도체 또는 이들의 염.

청구한 18

제17항에 있어서, R^7 및 R^8 이 각각 독립하여 수소원자, C_{1-6} 알킬기, C_{3-6} 시클로알킬기를 나타내거나, 혹은 R^7 및 R^8 은 함께 1,4-부틸렌 또는 1,5-펜틸렌을 형성하거나, 혹은 R^7 및 R^8 은 함께 $(CH_2)_1$ X^1 $(CH_2)_2$ X^1 $(CH_2)_3$ X^1 $(CH_2)_4$ X^1 $(CH_2)_5$ X^1 $(CH_2)_5$ X^1 $(CH_2)_6$ X^1 $(CH_2)_6$ $(CH_2)_6$

청구항 19

제18항에 있어서, X-Y-Z의 조합이 -C(0)-NH-, -C(0)-NMe- 또는 -NH-C(0)-NH-인 크로만 유도체 또는 이들의 염.

청구항 20

제19항에 있어서, R^1 은 수소원자, 니트로기, 시아노기, 카르복실기, 아미노기, C_{1-6} 알킬아미노기, 디 C_{1-6} 알킬아미노기, C_{1-6} 알킬카르보닐아미노기, 아릴 C_{1-6} 알킬카르보닐아미노기 또는 C_{1-6} 알콕시카르보닐기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 21

제20항에 있어서, 위원 니트로기 또는 시아노기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 22

제21항에 있어서, R^7 은 C_{1-6} 알킬기 또는 C_{3-6} 시클로알킬기를 나타내고, R^8 은 수소원자를 나타내며, R^7 및 R^8 은 함께 1,4-부틸렌을 나타내거나, 혹은 R^7 및 R^8 은 이들이 결합해 있는 질소원자와 더불어 피름기를 형성하는 크로만 유도체 또는 이들의 염.

청구항 23

제22항에 있어서, R^1 은 니트로기를 나타내고, R^7 및 R^8 은 이들이 결합해 있는 질소원자와 더불어 피를기를 형성하며, X-Y-Z의 조합이 -C(0)-NH- 이고, R^9 는 수소원자 또는 C_{1-8} 알콕시기를 나타내는 크로만 유도체 또는 이들의 영.

청구함 24

제22항에 있어서, R^{I} 은 니트로기를 나타내고, R^{2} 및 R^{8} 은 함께 1,4-부틸렌기를 나타내며, R^{9} 는 수소원자, 플루오르 원자, 영소원자, 메틸기, 메톡시기, 에톡시기 또는 니트로기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 25

제22항에 있어서, R^1 은 니트로기를 나타내고, R^7 은 시클로프로필기를 나타내며, R^8 는 수소원자를 나타내고, R^9 는 수소원자, 메톡시기, 메톡시기, 페닐기, 니트로기, 히드록실기, 메틸아미노기, 디메틸아미노기 또는 아세트아미도기를 나타내며, X-Y-Z의 조합이 -C(0)-NH-인 크로만 유도체 또는 이들의 염.

청구항 26

제22항에 있어서, R^1 은 니트로기를 나타내고, R^7 은 메틸기 또는 이소프로필기를 나타내며, R^8 는 수소원자를 나타내고, R^9 는 수소원자, 메톡시기, 페닐기, 니트로기 또는 아세트아미도기를 나타내는 크로만 유도체 또는 이들의 염.

청구항 27

제1항에 의한 크로만 유도체 또는 이들의 염을 유효성분으로 함유하는 의약.

청구함 28

크로만 유도체 또는 이들의 염을 유효성분으로 함유하는 심기능 부전 치료용 의약.