Differential Expression Analysis Techniques for Single-Cell RNA-seq Experiments

for the Computational Biology Doctoral Seminar (CMPBIO 293), organized by N. Yosef & T. Ashuach, Spring 2018, UC Berkeley

Kevin Benac and Nima Hejazi

Group in Biostatistics, University of California, Berkeley

11 April 2018

Introduction Data (Kevin)

Objective (Nima)

Methodology

ZINB-WaVE (Kevin) DropLasso (Nima) Comparison

Conclusions

The Data: Single-Cell RNA-seq

The Data: Single-Cell RNA-seq

The Data: Single-Cell RNA-seq

Introduction

Data (Kevin)

Objective (Nima)

Methodology

ZINB-WaVE (Kevin)

DropLasso (Nima)

Comparison

Conclusions

The Objective: Differential Expression

- Why "differential"? The goal is to find a subset of relevant biomarkers with respect to a particular condition of interest (e.g., disease, tissue of origin).
- Many experimental settings seek to isolate a subset of biomarkers from the full (larger) assayed set in order to identify biological patterns and better inform future biological experiments.
- Since experimental costs are high and modern biotechnologies allow numerous biological targets (e.g., genes) to be assayed, the result is a very high-dimensional statistical problem.

The Objective: Differential Expression

► Regularized Linear Models:

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \mathcal{L}(w, x_i, y_i) + \lambda \Omega(w) \right\}$$

Lasso for continuous outcomes (squared-error loss):

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^d w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^d |w_j| \right\}$$

Introduction

Data (Kevin)
Objective (Nima)

Methodology

ZINB-WaVE (Kevin)

DropLasso (Nima)

Conclusions

ZINB-WaVE I

- - ...

ZINB-WaVE II

- - **...**

ZINB-WaVE III

- **...**

ZINB-WaVE IV

- - ...

Introduction

Data (Kevin)
Objective (Nima)

Methodology

ZINB-WaVE (Kevin)

DropLasso (Nima)

Comparison

Conclusions

DropLasso I

- Consider the following data structure:
 - $x_i \in \mathbb{R}^d$ design matrix of scRNA-seq counts
 - ▶ $y_i \in \mathbb{R}$ cell-level outcome of interest (e.g., tissue of origin)
 - ▶ $\delta_i \in \{0,1\}^d$ s.t. $\delta_i \sim Bern(p)^d$ random dropout mask
 - $\delta \odot x \in \mathbb{R}^d$ corrupted pattern for scRNA-seq dropout
 - ▶ $P(\delta_i = 1) = p$ probability of *not* being censored by dropout
- ► The DropLasso procedure seeks to identify differentially expressed genes based on cell-level differences while accounting for the dropout noise that masks scRNA data.

DropLasso II

▶ Introducing dropout $(\delta_i \sim Bern(p)^d)$:

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\delta_i} \mathcal{L}\left(w, \delta_i \odot \frac{x_i}{p}, y_i\right) + \lambda \|w\|_1 \right\}$$

Independence from p in expectation:

$$\mathbb{E}_{\delta_{i}} \sum_{j=1}^{d} w_{j} \left(\delta_{i} \odot \frac{x_{i}}{p} \right)_{j} = \sum_{j=1}^{d} \mathbb{E}_{\delta_{i}} w_{j} \delta_{i,j} \frac{x_{i,j}}{p}$$
$$= \sum_{j=1}^{d} w_{j} x_{i,j}$$

DropLasso III

- Introducing the dropout term δ amounts to censoring the observed data and adjusting (i.e., $\frac{x_p}{p}$) such that the effects of dropout noise are removed.
- ▶ This places a *statistical model* on the dropout noise i.e., $\delta_i \sim Bern(p)^d$
 - Dropout noise is independent across samples and genes. (Fine starting point but probably untrue scientifically.)
 - Modeling dropout noise in a more flexible manner could likely improve DropLasso performance and is identified as an item of future work.
- Merely introducing the simple dropout correction significantly improves performance under standard modeling metrics (e.g., AUC).

DropLasso IV

Dataset	Number of variables	LASSO	Dropout	Elastic net	DropLasso
EMTAB2805	100	0.95	0.94	0.966	0.964
	1 000	0.956	0.989	0.980	0.990 *
	10 000	0.764	0.961	0.817	0.961 *
	All (20 614)	0.72	0.928	0.796	0.946 **
GSE74596	100	0.997	0.996	0.994	0.998
	1 000	0.988	0.997	0.994	0.999
	10 000	0.769	0.960	0.909	0.990*
	All (14 172)	0.844	0.915	0.943	0.966
GSE45719	100	0.999	0.990	0.999	0.999
	1 000	0.997	0.999	0.999	1
	10 000	0.995	0.998	0.998	1 *
	All	0.990	0.999	0.999	1
GSE63818-GPL16791	100	0.94	0.977	0.984	0.998 *
	1 000	0.945	0.998	0.985	1 *
	10 000	0.951	0.995	0.987	0.998 *
	All	0.932	0.970	0.976	0.989
GSE48968-GPL13112	100	0.995	0.992	0.996	0.997
	1 000	0.962	0.992	0.996	0.997
	10 000	0.939	0.97	0.978	0.992 *
	All	0.948	0.962	0.96	0.987 *

Figure 1: Excerpt from table 3 of "DropLasso: A robust variant of Lasso for single cell RNA-seq data" Khalfaoui & Vert (2018)

Introduction

Data (Kevin)
Objective (Nima)

Methodology

ZINB-WaVE (Kevin) DropLasso (Nima) Comparison

Conclusions

ZINB-WaVE v. DropLasso I

- - ...

ZINB-WaVE v. DropLasso II

- - ...

ZINB-WaVE v. DropLasso III

- **...**
 - ...

Introduction

Data (Kevin)
Objective (Nima)

Methodology

ZINB-WaVE (Kevin) DropLasso (Nima) Comparison

Conclusions

- **•** ...
 - ...

References I

Beyrem Khalfaoui and Jean-Philippe Vert. DropLasso: A robust variant of Lasso for single-cell RNA-seq data. *arXiv preprint arXiv:1802.09381*, 2018.

Davide Risso, Fanny Perraudeau, Svetlana Gribkova, Sandrine Dudoit, and Jean-Philippe Vert. ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data. *bioRxiv*, 2017.