INTRODUCTION

- 1. **Exploratory Data Analysis (EDA)**: Analyzing and understanding the dataset to identify patterns, trends, and key features related to the landing outcome.
- 2. **Data Preparation**: Preprocessing the data, standardizing it, and splitting it into training and testing sets.
- 3. **Model Building**: Training and evaluating multiple machine learning models, including Logistic Regression, Support Vector Machines, Decision Trees, and K-Nearest Neighbors.
- 4. **Model Evaluation**: Assessing the models' performance choosing the best accuracy.

We will now perform some Exploratory Data Analysis (EDA) to find some patterns in the data

1. SQL Queries

Objectives

- Understand the Spacex DataSet
- Load the dataset into the corresponding table in a Db2 database
- Execute SQL queries to answer assignment questions

Display the names of the unique launch sites in the space mission

select distinct Launch_Site FROM SPACEXTABLE

In [36]:
Print the result for the query
print_querry[1]

Out[36]:

	LAUNCH_SITE
0	CCAFS LC-40
1	CCAFS SLC-40
2	KSC LC-39A
3	VAFB SLC-4E

Query 2: Display 5 records where launch sites begin with the string

select * from SPACEXTABLE where Launch_Site LIKE 'CCA%' limit 5

In [37]:
Print the result for the query
print_querry[2]

Out[37]:

	D AT E	TIME_ _UTC_	BOOSTER _VERSION	LAUNC H_SITE	PAYL OAD	PAYLOAD_ MASSKG_	OR BI T	CUST OMER	MISSION_ OUTCOME	LANDING OUTCOME
0	20 10- 06- 04	18:45:0 0	F9 v1.0 B0003	CCAFS LC-40	Drago n Space craft Qualif ication Unit	0	LE O	Space X	Success	Failure (parachute)
1	20 10- 12- 08	15:43:0 0	F9 v1.0 B0004	CCAFS LC-40	Drago n demo flight C1, two CubeS ats, barrel of	0	LE O (IS S)	NASA (COTS) NRO	Success	Failure (parachute)
2	20 12- 05- 22	07:44:0 0	F9 v1.0 B0005	CCAFS LC-40	Drago n demo flight C2	525	LE O (IS S)	NASA (COTS)	Success	No attempt
3	20 12- 10- 08	00:35:0 0	F9 v1.0 B0006	CCAFS LC-40	Space X CRS-1	500	LE O (IS S)	NASA (CRS)	Success	No attempt
4	20 13- 03- 01	15:10:0 0	F9 v1.0 B0007	CCAFS LC-40	Space X CRS-2	677	LE O (IS S)	NASA (CRS)	Success	No attempt

```
Query 3: Display the total payload mass carried by boosters launched by NASA (CRS)
select sum(PAYLOAD_MASS__KG_) from SPACEXTABLE where customer = 'NASA (CRS)'
In [38]:
# Print the result for the query
print_querry[3]
Out[38]:
    1
   45596
Query 4: Display mass carried by booster version F9 v1.1
select avg(PAYLOAD_MASS__KG_) from SPACEXTABLE where Booster_Version = 'F9 v1.1'
In [39]:
# Print the result for the query
print_querry[4]
Out[39]:
   2928
Query 5: List the date when the first succesful landing outcome in ground pad was
acheived
select min(Date) from SPACEXTABLE where Landing_Outcome = 'Success (ground pad)'
In [40]:
# Print the result for the query
print_querry[5]
Out[40]:
```

Query 6: List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

2015-12-22

select distinct Booster_Version from SPACEXTABLE where Landing_Outcome = 'Success
(drone ship)' and PAYLOAD_MASS__KG_ > 4000 and PAYLOAD_MASS__KG_ < 6000</pre>

In [41]:
Print the result for the query
print_querry[6]

Out[41]:

out	[41].
	BOOSTER_VERSION
0	F9 FT B1021.2
1	F9 FT B1031.2
2	F9 FT B1022
3	F9 FT B1026

Query 7: List the total number of successful and failure mission outcomes

select distinct Mission_Outcome, count(*) from SPACEXTABLE group by
Mission_Outcome

In [42]:
Print the result for the query
print_querry[7]

Out[42]:

ouc	[74].	
	MISSION_OUTCOME	2
0	Failure (in flight)	1
1	Success	99
2	Success (payload status unclear)	1

Query 8: List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

select Booster_Version from SPACEXTABLE where PAYLOAD_MASS__KG_ = (select
max(PAYLOAD_MASS__KG_) from SPACEXTABLE)

In [43]:
Print the result for the query
print_querry[8]

Out[43]:

Out[[43]:
	BOOSTER_VERSION
0	F9 B5 B1048.4
1	F9 B5 B1049.4
2	F9 B5 B1051.3
3	F9 B5 B1056.4
4	F9 B5 B1048.5
5	F9 B5 B1051.4
6	F9 B5 B1049.5
7	F9 B5 B1060.2
8	F9 B5 B1058.3
9	F9 B5 B1051.6

	BOOSTER_VERSION
10	F9 B5 B1060.3
11	F9 B5 B1049.7

Query 9: List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

select substr(Date, 6,2) as Month, Landing_Outcome, Booster_Version, Launch_Site
from SPACEXTABLE where Landing_Outcome = 'Failure (drone ship)' and
substr(Date,0,5) = '2015'

or

select month(Date) as Month, Landing_Outcome, Booster_Version, Launch_Site from SPACEXTABLE where Landing_Outcome = 'Failure (drone ship)' and year(Date) = '2015'

In [44]:
Print the result for the query
print_querry[9]

Out[44]:

	MONTH	LANDING_OUTCOME	BOOSTER_VERSION	LAUNCH_SITE
0	1	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
1	4	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Query 10: Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

select Landing_Outcome, count(*) as 'Count' from SPACEXTABLE where Date between '2010-06-04' and '2017-03-20' group by Landing_Outcome order by Count desc

```
In [45]:
# Print the result for the query
print_querry[10]
Out[45]:
```

	LANDING_OUTCOME	COUNT
0	No attempt	10
1	Failure (drone ship)	5
2	Success (drone ship)	5
3	Controlled (ocean)	3
4	Success (ground pad)	3
5	Failure (parachute)	2
6	Uncontrolled (ocean)	2
7	Precluded (drone ship)	1

Data Visualization

Objectives

Perform exploratory Data Analysis and Feature Engineering using Pandas and Matplotlib

- Exploratory Data Analysis
- Preparing Data Feature Engineering

```
In [46]:
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [47]:
df=pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IB
M-DS0321EN-SkillsNetwork/datasets/dataset_part_2.csv")
In [48]:
```

```
sns.catplot(y="PayloadMass", x="FlightNumber", hue="Class", data=df, aspect = 5)
plt.xlabel("Flight Number", fontsize=20)
plt.ylabel("Pay load Mass (kg)",fontsize=20)
plt.show()
Flight Number vs Launch Site
In [49]:
\# Plot a scatter point chart with x axis to be Flight Number and y axis to be the lau
nch site, and hue to be the class value
sns.catplot(y='LaunchSite', x='FlightNumber', hue='Class', data=df, aspect=5)
plt.xlabel("Flight Number", fontsize=20)
plt.ylabel("Launch Site)",fontsize=20)
plt.show()
Payload vs Launch Site
In [50]:
# Plot a scatter point chart with x axis to be Pay Load Mass (kg) and y axis to be th
e launch site, and hue to be the class value
sns.catplot(y='LaunchSite', x='PayloadMass', hue='Class', data=df, aspect=5)
plt.xlabel("Pay Load Mass (Kg)",fontsize=20)
plt.ylabel("Launch Site)", fontsize=20)
plt.show()
Success Rate vs Orbit Type
.In [51]:
orbit success =
df.groupby(['Orbit'])['Class'].aggregate(np.average).reset_index().sort_values(['Clas
s','Orbit'], ascending=False)
orbit_success['Class'] = np.round(orbit_success['Class']*100, 2)
sns.barplot(x='Orbit', y='Class', data=orbit_success)
plt.ylabel("Success Rate (%)",fontsize=20)
plt.xlabel("Orbit Type", fontsize=20)
plt.show()
.FlightNumber vs Orbit Type
In [52]:
\# Plot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbi
t, and hue to be the class value
sns.catplot(x='FlightNumber', y='Orbit', hue='Class', data=df, aspect=5)
plt.xlabel("Flight Number", fontsize=20)
plt.ylabel("Orbit Type",fontsize=20)
plt.show()
Payload vs Orbit Type
In [53]:
# Plot a scatter point chart with x axis to be Payload and y axis to be the Orbit, an
d hue to be the class value
sns.catplot(x='PayloadMass', y='Orbit', hue='Class', data=df, aspect=5)
```

```
plt.xlabel("Pay Load Mass (Kg)",fontsize=20)
plt.ylabel("Orbit Type",fontsize=20)
plt.show()

Launch Success Yearly Trend

In [54]:
# Plot a Line chart with x axis to be the extracted year and y axis to be the success rate

df['Year'] = [i.split("-")[0] for i in df["Date"]]
yearly_success = df.groupby(['Year'])['Class'].aggregate(np.average).reset_index().so
rt_values('Year')
yearly_success['Class'] = np.round(yearly_success['Class']*100, 2)

sns.lineplot(x='Year',y='Class', data=yearly_success)
plt.xlabel("Year",fontsize=20)
plt.ylabel("Success Rate (%)",fontsize=20)
plt.show()
```

Interactive map

Objectives

Mark all launch sites on a Folium map

```
In [55]:
!pip3 install folium
!pip3 install wget
import folium
import wget
# Import folium MarkerCluster plugin
from folium.plugins import MarkerCluster
# Import folium MousePosition plugin
from folium.plugins import MousePosition
# Import folium DivIcon plugin
from folium.features import DivIcon
Requirement already satisfied: folium in /opt/conda/lib/python3.10/site-packages
(0.14.0)
Requirement already satisfied: branca>=0.6.0 in /opt/conda/lib/python3.10/site-pa
ckages (from folium) (0.6.0)
Requirement already satisfied: jinja2>=2.9 in /opt/conda/lib/python3.10/site-pack
ages (from folium) (3.1.2)
Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (
from folium) (1.23.5)
Requirement already satisfied: requests in /opt/conda/lib/python3.10/site-package
s (from folium) (2.31.0)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-
packages (from jinja2>=2.9->folium) (2.1.3)
Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3
.10/site-packages (from requests->folium) (3.1.0)
```

```
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-pac
kages (from requests->folium) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/si
te-packages (from requests->folium) (1.26.15)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/si
te-packages (from requests->folium) (2023.7.22)
Collecting wget
  Downloading wget-3.2.zip (10 kB)
  Preparing metadata (setup.py) ... done
Building wheels for collected packages: wget
  Building wheel for wget (setup.py) ... - done
  Created wheel for wget: filename=wget-3.2-py3-none-any.whl size=9657 sha256=067
c97b79c775427484b7516255f87d9c0744714ee710f964f12b9b652e0d05f
  Stored in directory: /root/.cache/pip/wheels/8b/f1/7f/5c94f0a7a505ca1c81cd1d920
8ae2064675d97582078e6c769
Successfully built wget
Installing collected packages: wget
Successfully installed wget-3.2
Marking all launch sites on a Folium map
In [56]:
spacex_csv_file = wget.download('https://cf-courses-data.s3.us.cloud-object-storage.a
ppdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/spacex_launch_geo.csv')
spacex_df=pd.read_csv(spacex_csv_file)
In [57]:
# Select relevant sub-columns: `Launch Site`, `Lat(Latitude)`, `Long(Longitude)`, `cl
ass`
spacex_df = spacex_df[['Launch Site', 'Lat', 'Long', 'class']]
launch sites df = spacex df.groupby(['Launch Site'], as index=False).first()
launch sites df = launch sites df[['Launch Site', 'Lat', 'Long']]
launch sites df
Out[57]:
    Launch Site
                 Lat
                          Long
   CCAFS LC-40
                 28.562302
                          -80.577356
   CCAFS SLC-40
                 28.563197
                          -80.576820
   KSC LC-39A
                 28.573255
                          -80.646895
    VAFB SLC-4E
                 34.632834
                          -120.610745
```

```
In [58]:
# Create a folium `Map` object, with an initial center location to be NASA Johnson Sp
ace Center at Houston, Texas
nasa coordinate = [29.559684888503615, -95.0830971930759]
site map = folium.Map(location=nasa coordinate, zoom start=10)
In [59]:
# Create a blue circle at NASA Johnson Space Center's coordinate with a popup label s
howing its name
circle = folium.Circle(nasa coordinate, radius=1000, color='#d35400', fill=True).add
child(folium.Popup('NASA Johnson Space Center'))
# Create a blue circle at NASA Johnson Space Center's coordinate with a icon showing
its name
marker = folium.map.Marker(
    nasa coordinate,
    # Create an icon as a text label
    icon=DivIcon(
        icon size=(20,20),
        icon anchor=(0,0),
        html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % 'NASA JSC
    )
site map.add child(circle)
site_map.add_child(marker)
Out[59]:
In [60]:
Circle object based on its coordinate (Lat, Long) values.
for i, row in launch sites df.iterrows():
    coordinate = [row['Lat'], row['Long']]
    # In addition, add Launch site name as a popup label
    circle = folium.Circle(coordinate, radius=1000, color='#d35400', fill=True).add_c
hild(folium.Popup(row['Launch Site']))
    marker = folium.map.Marker(coordinate, icon=DivIcon(icon size=(20,20),icon anchor
=(0,0), html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % row['Laun
ch Site'], ))
    site map.add child(circle)
    site map.add child(marker)
site_map
NB: If a launch was successful (class=1), then we use a green marker and if a launch was failed,
we use a red marker (class=0)
In [61]:
# Create a `MarkerCluster` object
marker_cluster = MarkerCluster()
In [62]:
# Assign color to launch outcome
def assign_marker_color(launch_outcome):
    # If class=1, marker color value will be green
    if launch outcome == 1:
```

```
return 'green'
# If class=0, marker_color value will be red
else:
    return 'red'

spacex_df['marker_color'] = spacex_df['class'].apply(assign_marker_color)
spacex_df.tail(10)
```

Out[62]:

out	[62]:				
	Launch Site	Lat	Long	class	marker_color
46	KSC LC-39A	28.573255	-80.646895	1	green
47	KSC LC-39A	28.573255	-80.646895	1	green
48	KSC LC-39A	28.573255	-80.646895	1	green
49	CCAFS SLC-40	28.563197	-80.576820	1	green
50	CCAFS SLC-40	28.563197	-80.576820	1	green
51	CCAFS SLC-40	28.563197	-80.576820	0	red
52	CCAFS SLC-40	28.563197	-80.576820	0	red
53	CCAFS SLC-40	28.563197	-80.576820	0	red
54	CCAFS SLC-40	28.563197	-80.576820	1	green
55	CCAFS SLC-40	28.563197	-80.576820	0	red

In [63]:

Add marker_cluster to current site_map

```
site map.add child(marker cluster)
# Create Marker object with coordinate and customize icon property to indicate if thi
s launch was successed or failed
for i, row in spacex_df.iterrows():
    coordinate = [row['Lat'], row['Long']]
    marker = folium.map.Marker(coordinate, icon=folium.Icon(color='white',icon_color=
row['marker_color']))
    marker cluster.add child(marker)
site map
In [64]:
# Add Mouse Position to get the coordinate (Lat, Long) for a mouse over on the map
formatter = "function(num) {return L.Util.formatNum(num, 5);};"
mouse position = MousePosition(
    position='topright',
    separator=' Long: ',
    empty_string='NaN',
    lng_first=False,
    num_digits=20,
    prefix='Lat:',
    lat formatter=formatter,
    lng_formatter=formatter,
)
site_map.add_child(mouse_position)
site map
# Calculate the distance between two points on the map based on their `Lat` and `Long
 values
from math import sin, cos, sqrt, atan2, radians
def calculate_distance(lat1, lon1, lat2, lon2):
    # approximate radius of earth in km
    R = 6373.0
    lat1 = radians(lat1)
    lon1 = radians(lon1)
    lat2 = radians(lat2)
    lon2 = radians(lon2)
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = \sin(dlat / 2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon / 2)**2
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    distance = R * c
    return distance
# Mark down a point on the closest coastline using MousePosition and calculate the di
stance between the coastline point and the launch site:
```

```
launch site lat = launch sites df['Lat'][1]
launch_site_lon = launch_sites_df['Long'][1]
coastline lat = 28.56362
coastline lon = -80.56802
distance_coastline = calculate_distance(launch_site_lat, launch_site_lon, coastline_l
at, coastline_lon)
distance_coastline
Out[66]:
0.8609769661763733
In [67]:
# Create and add a folium.Marker on the selected closest coastline point on the map
# Display the distance between coastline point and launch site using the icon propert
coordinate = [coastline lat, coastline lon]
distance_marker = folium.Marker(
   coordinate,
   icon=DivIcon(
       icon size=(20,20),
       icon_anchor=(0,0),
       html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f}
KM".format(distance coastline),
)
site map.add child(distance marker)
# Create a `folium.PolyLine` object using the coastline coordinates and launch site c
oordinate
# lines=folium.PolyLine(locations=coordinates, weight=1)
line=folium.PolyLine(locations=[[launch_site_lat,launch_site_lon],[coastline_lat,coas
tline_lon]], weight=1)
site_map.add_child(line)
Out[67]:
In [68]:
# Create a marker with distance to a closest city, railway, highway, etc.
# Draw a line between the marker to the launch site
closest city = [28.0948, -80.6369]
closest_railway = [28.57203, -80.58525]
closest highway = [28.56416, -80.57086]
In [69]:
# Closest City
distance_closest_city = calculate_distance(launch_site_lat, launch_site_lon, closest_
city[0], closest_city[1])
```

```
city marker = folium.Marker(
   closest_city,
   icon=DivIcon(
       icon_size=(20,20),
       icon_anchor=(0,0),
       html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f}
KM".format(distance_closest_city),
)
city line = folium.PolyLine(locations=[[launch site lat, launch site lon], closest city
], weight=1)
site_map.add_child(city_marker)
site_map.add_child(city_line)
In [70]:
# Closest Railway
distance_closest_railway = calculate_distance(launch_site_lat, launch_site_lon, close
st_railway[0], closest_railway[1])
railway marker = folium.Marker(
   closest railway,
   icon=DivIcon(
       icon size=(20,20),
       icon_anchor=(0,0),
       html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f}
KM".format(distance_closest_railway),
    )
)
railway line = folium.PolyLine(locations=[[launch site lat,launch site lon],closest r
ailway], weight=1)
site_map.add_child(railway_marker)
site map.add child(railway line)
In [71]:
# Closest Highway
distance_closest_highway = calculate_distance(launch_site_lat, launch_site_lon, close
st_highway[0], closest_highway[1])
highway_marker = folium.Marker(
   closest_highway,
   icon=DivIcon(
       icon_size=(20,20),
       icon_anchor=(0,0),
       html='<div style="font-size: 12; color:#d35400;"><b>%s</b></div>' % "{:10.2f}
KM".format(distance closest highway),
    )
)
highway line = folium.PolyLine(locations=[[launch site lat,launch site lon],closest h
ighway], weight=1)
```

```
site_map.add_child(highway_marker)
site map.add child(highway line)
```

Interactive Dashboard

```
!wget "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321E
N-SkillsNetwork/datasets/spacex_launch_dash.csv"
In [73]:
!pip install dash
In [74]:
# Import required libraries
import pandas as pd
import dash
from dash import html
from dash import dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
spacex_df['Launch Outcome'] = ['Success' if c == 1 else 'Failure' for c in spacex_df[
'class']]
max_payload = spacex_df['Payload Mass (kg)'].max()
min payload = spacex df['Payload Mass (kg)'].min()
# Create a dash application
app = dash.Dash( name )
# Create an app layout and CSS style
app.layout = html.Div(children = [
    html.H1('SpaceX Launch Records Dashboard',
            style = {'textAlign': 'center', 'color': '#503D36', 'font-size': 40}),
    # TASK 1: Add a dropdown list to enable Launch Site selection
    # The default select value is for ALL sites
    dcc.Dropdown(id = 'site-dropdown',
                options = [
                            {'label': 'All Sites',
                                 'value': 'ALL'},
                            {'label': 'CCAFS LC-40'
                                'value': 'CCAFS LC-40'},
                            {'label': 'CCAFS SLC-40',
                                 'value': 'CCAFS SLC-40'},
                            { 'label': 'KSC LC-39A',
                                 'value': 'KSC LC-39A'},
                            {'label': 'VAFB SLC-4E',
                                'value': 'VAFB SLC-4E'}],
                value = 'ALL',
placeholder = 'Launch Site:',
                searchable = True ),
    # TASK 2: Add a pie chart to show the total successful launches count for all sit
    # If a specific launch site was selected, show the Success vs. Failed counts for
the site
```

```
html.Div(dcc.Graph(id = 'success-pie-chart')),
    html.Br(),
    html.P("Payload range (Kg):"),
    # TASK 3: Add a slider to select payload range
    # dcc.RangeSlider(id='payload-slider',...)
    dcc.RangeSlider(id = 'payload-slider',
                    min = 0, max = 10000, step = 1000.
                    marks = \{0: '0',
                            1000: '1000',
                            2000: '2000',
                            3000: '3000',
                            4000: '4000',
                            5000: '5000',
                            6000: '6000',
                            7000: '7000',
                            8000: '8000',
                            9000: '9000',
                            10000: '10000'},
                    value = [min payload, max payload]),
    # TASK 4: Add a scatter chart to show the correlation between payload and launch
success
    html.Div(
        dcc.Graph(id = 'success-payload-scatter-chart')),
    ], style = {'height': '100vh'}
)
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
@app.callback(Output(component_id = 'success-pie-chart', component_property = 'figure
١),
              Input(component id = 'site-dropdown', component property = 'value'))
def get pie chart(entered site):
    filtered_df = spacex_df
    if entered site == 'ALL':
        fig = px.pie(filtered_df, values = 'class',
                     names = 'Launch Site',
                     title = 'SpaceX Launch Site Success Distribution (All Sites)')
        return fig
    else:
        # return the outcomes piechart for a selected site
        filtered_df = spacex_df[spacex_df['Launch Site'] == entered_site]
        filtered_df = filtered_df.groupby(['Launch Site', 'class']).size().reset_inde
x(name = 'class count')
        fig = px.pie(filtered_df, values = 'class_count', names = filtered_df['class'
].map({1: "Success", 0: "Failure"}),
                     title = f"SpaceX Success Rate of {entered_site} Launch Site")
        fig.update traces(marker = dict(colors=['red', 'green']))
        return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `succes
s-payload-scatter-chart` as output
```

```
@app.callback(Output(component id = 'success-payload-scatter-chart', component proper
ty = 'figure'),
              [Input(component_id = 'site-dropdown', component_property = 'value'),
               Input(component id = 'payload-slider', component property = 'value')])
def get_scatter_chart(entered_site, payload):
    filtered df = spacex df[spacex df['Payload Mass (kg)'].between(
        payload[0], payload[1])]
    if entered site == 'ALL':
        fig = px.scatter(filtered_df, x = 'Payload Mass (kg)', y = 'Launch Outcome',
                         color = 'Booster Version Category', title = 'Success vs. Fai
lure for Payload Mass and Launch Sites (All Sites)')
        return fig
    else:
        fig = px.scatter(filtered_df[filtered_df['Launch Site'] == entered_site], x =
'Payload Mass (kg)', y = 'Launch Outcome',
                         color = 'Booster Version Category', title = f"Success vs. Fa
ilure for Payload Mass and Launch Site {entered_site}")
        return fig
```

PREDICTIVE ANALYSIS

```
In [75]:
from sklearn import preprocessing
from sklearn.model selection import train test split
from sklearn.model selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
In [76]:
def plot_confusion_matrix(y,y_predict):
    "this function plots the confusion matrix"
    from sklearn.metrics import confusion matrix
    cm = confusion matrix(y, y predict)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, ax = ax); # annot=True to annotate cells
    ax.set_xlabel('Predicted labels')
    ax.set_ylabel('True labels')
    ax.set title('Confusion Matrix');
    ax.xaxis.set ticklabels(['did not land', 'land']); ax.yaxis.set ticklabels(['did
not land', 'landed'])
In [77]:
data = pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.clou
d/IBM-DS0321EN-SkillsNetwork/datasets/dataset part 2.csv")
data.head()
Out[77]:
```

	Fligh tNu mber	D at e	Boost erVer sion	Payl oad Mas s	O r bi t	Lau nch Site	Ou tco me	Fl ig ht s	Gri dFi ns	Re us ed	L e g s	Lan ding Pad	B lo c k	Reus edC ount	Se ri al	Lon gitu de	Lati tud e	C la ss
0	1	2 0 1 0- 0 6- 0 4	Falco n 9	6104 .959 412	L E O	CC AF S SL C 40	No ne No ne	1	Fal se	Fa lse	F al s e	Na N	1. 0	0	B 00 03	- 80.5 773 66	28. 561 857	0
1	2	2 0 1 2- 0 5- 2 2	Falco n 9	525. 0000 00	L E O	CC AF S SL C 40	No ne No ne	1	Fal se	Fa lse	F al s e	Na N	1. 0	0	B 00 05	- 80.5 773 66	28. 561 857	0
2	3	2 0 1 3- 0 3- 0	Falco n 9	677. 0000 00	I S S	CC AF S SL C 40	No ne No ne	1	Fal se	Fa lse	F al s e	Na N	1. 0	0	B 00 07	- 80.5 773 66	28. 561 857	0
3	4	2 0 1 3- 0 9- 2	Falco n 9	500. 0000 00	PO	VA FB SL C 4E	Fal se Oc ean	1	Fal se	Fa lse	F al s e	Na N	1. 0	0	B 10 03	- 120. 610 829	34. 632 093	0
4	5	2 0 1 3- 1 2-	Falco n 9	3170 .000 000	G T O	CC AF S SL	No ne No ne	1	Fal se	Fa lse	F al s e	Na N	1. 0	0	B 10 04	- 80.5 773 66	28. 561 857	0

Fligh tNu mber	D at e	Boost erVer sion	Payl oad Mas s	O r bi t	Lau nch Site	Ou tco me	Fl ig ht s	Gri dFi ns	Re us ed	L e g s	Lan ding Pad	B lo c k	Reus edC ount	Se ri al	Lon gitu de	Lati tud e	C la ss
	0 3				C 40												

In [78]:

X = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/I BM-DS0321EN-SkillsNetwork/datasets/dataset_part_3.csv')

X.head()

Out[78]:

	·L··																			
	Fli ght Nu mb er	Pa yl oa d M as s	F li g h t s	B l o c k	Re us ed Co un t	O rb it E S-L 1	Or bit - G E O	Or bit - G T O	Or bit H E O	O rb it _I S S	Se ria l_ B1 05 8	Se ria l_ B1 05 9	Se ria l_ B1 06 0	Se ria l_ B1 06 2	Gri dFi ns_ Fal se	Gri dFi ns _T rue	Re us ed _F als e	Re us ed _T ru e	L eg s_ Fa ls e	L eg s_ Tr ue
0	1.0	61 04 .9 59 41 2	1 . 0	1 . 0	0.	0.	0.	0.	0.	0.	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.	1. 0	0.
1	2.0	52 5. 00 00 00	1 . 0	1 . 0	0.	0.	0.	0.	0.	0.	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.	1. 0	0.
2	3.0	67 7. 00 00 00	1 . 0	1 . 0	0.	0.	0.	0.	0.	1. 0	 0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.	1. 0	0.

	Fli ght Nu mb er	Pa yl oa d M as s	F li g h t s	B l o c k	Re us ed Co un t	O rb it — E S-L 1	Or bit - G E O	Or bit - G T O	Or bit - H E O	O rb it _I S S	Se ria l_ B1 05 8	Se ria l_ B1 05 9	Se ria l_ B1 06 0	Se ria l_ B1 06 2	Gri dFi ns_ Fal se	Gri dFi ns _T rue	Re us ed _F als e	Re us ed _T ru e	L eg s_ Fa ls e	L eg s_ Tr ue
3	4.0	50 0. 00 00 00	1 . 0	1 . 0	0. 0	0.	0.	0.	0.	0.	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.	1. 0	0.
4	5.0	31 70 .0 00 00 0	1 . 0	1 . 0	0.	0.	0.	1. 0	0.	0.	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.	1. 0	0.

5 rows x 83 columns

```
In [79]:
# Create a NumPy array from the column Class
y = data['Class'].to_numpy()
У
Out[79]:
array([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1,
       1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
       1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1])
In [80]:
# Standardize the data in X
transform = preprocessing.StandardScaler()
X = transform.fit_transform(X)
Χ
Out[80]:
array([[-1.71291154e+00, -1.94814463e-16, -6.53912840e-01, ...,
        -8.35531692e-01, 1.93309133e+00, -1.93309133e+00],
       [-1.67441914e+00, -1.19523159e+00, -6.53912840e-01, ...,
        -8.35531692e-01, 1.93309133e+00, -1.93309133e+00],
       [-1.63592675e+00, -1.16267307e+00, -6.53912840e-01, ...,
        -8.35531692e-01, 1.93309133e+00, -1.93309133e+00],
       [ 1.63592675e+00, 1.99100483e+00, 3.49060516e+00, ...,
```

```
1.19684269e+00, -5.17306132e-01, 5.17306132e-01],
       [ 1.67441914e+00, 1.99100483e+00, 1.00389436e+00, ...,
         1.19684269e+00, -5.17306132e-01, 5.17306132e-01],
       [ 1.71291154e+00, -5.19213966e-01, -6.53912840e-01, ...,
        -8.35531692e-01, -5.17306132e-01, 5.17306132e-01]])
In [81]:
# Split the data X and Y into training and test data
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_stat
e=2)
y test.shape
Out[81]:
(18,)
Logistic Regression Model (LR)
In [82]:
parameters ={'C':[0.01,0.1,1],
             'penalty':['12'],
             'solver':['lbfgs']}
lr=LogisticRegression()
logreg cv = GridSearchCV(lr, parameters, cv=10).fit(X train, y train)
In [83]:
print("LR Tuned Hyperparameters (best parameters):",logreg_cv.best_params_)
print("LR Train Accuracy:",logreg cv.best score )
LR Tuned Hyperparameters (best parameters): {'C': 0.01, 'penalty': '12', 'solver'
: 'lbfgs'}
LR Train Accuracy: 0.8464285714285713
In [84]:
logreg_accuracy = logreg_cv.score(X_test, y_test)
print(logreg_accuracy)
0.8333333333333334
Plotting confusion matrix
In [85]:
yhat = logreg_cv.predict(X_test)
plot_confusion_matrix(y_test,yhat)
Support Vector Machine Model (SVM)
In [86]:
parameters = {'kernel':('linear', 'rbf', 'poly', 'rbf', 'sigmoid'),
              'C': np.logspace(-3, 3, 5),
              'gamma':np.logspace(-3, 3, 5)}
svm = SVC()
grid_search = GridSearchCV(svm, parameters, cv=10)
svm_cv = grid_search.fit(X_train, y_train)
In [87]:
print("SVM Tuned Hyperparameters (best parameters):",svm cv.best params )
print("SVM Train Accuracy:",svm_cv.best_score_)
```

```
SVM Tuned Hyperparameters (best parameters): {'C': 1.0, 'gamma': 0.03162277660168
379, 'kernel': 'sigmoid'}
SVM Train Accuracy: 0.8482142857142856
In [88]:
svm_accuracy = svm_cv.score(X_test, y_test)
print("SVM Test Accuracy:",svm_accuracy)
SVM Test Accuracy: 0.833333333333334
SVM Confusion Matrix
In [89]:
yhat=svm cv.predict(X test)
plot_confusion_matrix(y_test,yhat)
Decision Tree Model (DT)
In [90]:
parameters = {'criterion': ['gini', 'entropy'],
     'splitter': ['best', 'random'],
     'max depth': [2*n for n in range(1,10)],
     'max_features': ['auto','sqrt'],
     'min_samples_leaf': [1, 2, 4],
     'min_samples_split': [2, 5, 10]}
tree = DecisionTreeClassifier()
grid_search = GridSearchCV(tree, parameters, cv=10)
tree_cv = grid_search.fit(X_train, y_train)
In [91]:
print("DT Tuned Hyperparameters (best parameters):",tree_cv.best_params_)
print("DT Train Accuracy:",tree_cv.best_score_)
DT Tuned Hyperparameters (best parameters): {'criterion': 'entropy', 'max depth':
6, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 10, 'split
ter': 'random'}
DT Train Accuracy: 0.8892857142857145
tree_accuracy = tree_cv.score(X_test, y_test)
print("DT Test Accuracy:",tree_accuracy)
DT Test Accuracy: 0.8333333333333334
DT Confusion Matrix
In [93]:
yhat = tree_cv.predict(X_test)
plot confusion matrix(y test,yhat)
K-Nearest Neighbors Model (KNN)
parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
              'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
             'p': [1,2]}
```

```
KNN = KNeighborsClassifier()
grid_search = GridSearchCV(KNN, parameters, cv=10)
knn_cv = grid_search.fit(X_train, y_train)
print("KNN Tuned Hyperparameters (best parameters):",knn_cv.best_params_)
print("KNN Train Accuracy:",knn_cv.best_score_)
KNN Tuned Hyperparameters (best parameters): {'algorithm': 'auto', 'n_neighbors':
10, 'p': 1}
KNN Train Accuracy: 0.8482142857142858
In [96]:
knn_accuracy = knn_cv.score(X_test, y_test)
print("KNN Test Accuracy:",knn_accuracy)
KNN Test Accuracy: 0.833333333333333
Plot KNN Confusion Matrix
In [97]:
yhat = knn_cv.predict(X_test)
plot_confusion_matrix(y_test,yhat)
```