TEMA 2: Estadística descriptiva bidimensional

- Distribución conjunta de dos variables estadísticas. Tablas y representaciones gráficas.
- Distribuciones marginales.
- Distribuciones condicionadas.
- Dependencia funcional. Dependencia e independencia estadística.
- Momentos bidimensionales.
- Regresión y correlación:
 - Ajuste de funciones por mínimos cuadrados. Curvas y rectas de regresión.
 - Razón de correlación. Correlación lineal.

DISTRIBUCIÓN CONJUNTA DE DOS CARACTERES

Consideramos una población formada por n individuos en la que se estudian simultáneamente dos variables (atributos), X e Y, con valores (modalidades) x_1, \dots, x_k e y_1, \dots, y_p , respectivamente.

• Frecuencia absoluta del par (x_i, y_i) :

 n_{ij} = número de individuos de la población que presentan simultáneamente los valores (modalidades) x_i de X e y_j de Y.

Distribución de frecuencias absolutas: $\{((x_i, y_j), n_{ij}); i = 1, ..., k, j = 1, ..., p\}$

$$\sum_{i=1}^{k} \sum_{j=1}^{p} n_{ij} = n.$$

• Frecuencia relativa del par (x_i, y_j) :

 f_{ij} = proporción de individuos de la población que presentan simultáneamente los valores (modalidades) x_i de X e y_j de Y \longrightarrow $f_{ij} = \frac{n_{ij}}{n}$.

Distribución de frecuencias relativas: $\{((x_i, y_j), f_{ij}); i = 1, ..., k, j = 1, ..., p\}$

$$\sum_{i=1}^{k} \sum_{j=1}^{p} f_{ij} = 1.$$

Tabla de frecuencias bidimensionales

$X \setminus Y$	y_1	• • •	y_j	• • •	y_p
x_1	n_{11}	• • •	n_{1j}	• • •	n_{1p}
÷	:		:		•••
x_i	n_{i1}	• • •	n_{ij}	• • •	n_{ip}
÷	:		:		:
x_k	n_{k1}	• • •	n_{kj}	• • •	n_{kp}

REPRESENTACIONES GRÁFICAS

■ Diagrama de dispersión o nube de puntos (datos cuantitativos): Se representa cada par de observaciones (o marcas de clase, si los datos están agrupados en intervalos) (x_i, y_j) en un sistema de ejes cartesianos. Si un par tiene frecuencia mayor que uno, ésta puede indicarse al lado del punto correspondiente:

- Estereograma: gráfico tridimensional formado por barras o prismas según los casos:
 - *Variables discretas*: barras verticales de longitudes iguales (o proporcionales) a las frecuencias de cada par de valores, que se representan en el plano base.
 - Caracteres cualitativos: prismas con base común y alturas iguales (o proporcionales) a las frecuencias de cada par de modalidades, representadas en el plano base.
 - *Variables continuas*: prismas con bases definidas por cada par de intervalos y alturas iguales (o proporcionales) a las *densidades de frecuencia*, de forma que el volumen de cada prisma es igual (o proporcional) a la frecuencia de la pareja de intervalos correspondiente.

DISTRIBUCIONES MARGINALES

$$\{((x_i, y_j), n_{ij}); i = 1, \dots, k, j = 1, \dots, p\}, \quad n = \sum_{i=1}^k \sum_{j=1}^p n_{ij}, \quad f_{ij} = \frac{n_{ij}}{n}\}$$

Frecuencia absoluta del valor (modalidad) x_i del carácter X: número de individuos que presentan dicho valor (sin tener en cuenta el que presentan en Y):

$$n_{i.} = \sum_{i=1}^{p} n_{ij} \; ; \quad i = 1, 2, \dots, k \longrightarrow \sum_{i=1}^{k} n_{i.} = n$$

Frecuencia relativa del valor (modalidad) x_i del carácter X: proporción de individuos que presentan dicho valor (sin tener en cuenta el que presentan en Y):

$$f_{i.} = \frac{n_{i.}}{n} = \sum_{j=1}^{p} f_{ij} \; ; \quad i = 1, 2, \dots, k \longrightarrow \sum_{i=1}^{k} f_{i.} = 1$$

Distribución marginal de X: $\{(x_i, n_i), i = 1, 2, \dots, k\} \equiv \{(x_i, f_i), i = 1, 2, \dots, k\}$

Frecuencia absoluta del valor (modalidad) y_j del carácter Y: número de individuos que presentan dicho valor (sin tener en cuenta el que presentan en X):

$$n_{.j} = \sum_{i=1}^{k} n_{ij} \; ; \; j = 1, 2, \dots, p \longrightarrow \sum_{j=1}^{p} n_{.j} = n$$

Frecuencia relativa del valor (modalidad) y_j del carácter Y: proporción de individuos que presentan dicho valor (sin tener en cuenta el que presentan en X):

$$f_{.j} = \frac{n_{.j}}{n} = \sum_{i=1}^{k} f_{ij} \; ; \quad j = 1, 2, \dots, p \longrightarrow \sum_{j=1}^{p} f_{.j} = 1$$

Distribución marginal de Y: $\{(y_j, n_{.j}), j = 1, 2, \dots, p\} \equiv \{(y_j, f_{.j}), j = 1, 2, \dots, p\}$

$X \setminus Y$	y_1	• • •	y_j	• • •	y_p	Sumas
$\overline{x_1}$	n_{11}		n_{1j}		n_{1p}	n _{1.}
:	:		:		:	:
x_i	n_{i1}		n_{ij}	• • •	n_{ip}	$\mathbf{n_{i.}}$
÷	:		:		:	:
x_k	n_{k1}		n_{kj}		n_{kp}	$\mathbf{n}_{\mathbf{k}.}$
Sumas	n.1	• • •	$\mathbf{n}_{.\mathbf{j}}$	• • •	$\mathbf{n}_{.\mathbf{p}}$	n

$$\overline{x} = \sum_{i=1}^{k} f_{i.} x_{i}, \quad \sigma_{x}^{2} = \sum_{i=1}^{k} f_{i.} (x_{i} - \overline{x})^{2}$$

$$\overline{y} = \sum_{j=1}^{p} f_{.j} y_j, \quad \sigma_y^2 = \sum_{j=1}^{p} f_{.j} (y_j - \overline{y})^2$$

DISTRIBUCIONES CONDICIONADAS

$X \setminus Y$	y_1		y_j		$ y_p $	$n_{i.}$
x_1	n_{11}		n_{1j}		n_{1p}	$n_{1.}$
:	:		:		:	:
x_i	n_{i1}		n_{ij}		n_{ip}	$n_{i.}$
:	:		:		:	:
x_k	n_{k1}	• • •	n_{kj}	• • •	n_{kp}	$n_{k.}$
$n_{.j}$	n.1		$n_{.j}$		$n_{.p}$	n

Distribución condicionada de X a $Y = y_j; j = 1, ... p$

Sólo se consideran los $n_{,j}$ individuos que presentan el valor (o modalidad) y_j en el carácter Y (columna j-ésima).

- Frecuencia absoluta de x_i en los individuos tales que $Y = y_j \longrightarrow n_{ij}, i = 1, \dots k$.
- Frecuencia relativa de x_i en los individuos tales que $Y = y_j \longrightarrow f_{i/j} = \frac{n_{ij}}{n_{.i}}, i = 1, ... k$.

$X/Y = y_j$	n_{ij}	$\int f_{i/j}$	$\bullet \ f_{i/j} = \frac{n_{ij}}{n_{ij}} = \frac{f_{ij}}{f_{ij}} \longrightarrow f_{ij} = f_{i/j}f_{.j}, \ i = 1, \dots, k, j = 1, \dots, p.$
x_1	n_{1j}	$f_{1/j}$	· <i>y</i> • · <i>y</i>
:	:	:	Media condicionada: $\overline{x}_j = \sum_{i=1}^k f_{i/j} x_i$
x_i	n_{ij}	$f_{i/j}$	$m{k}$
:	:	:	Varianza condicionada: $\sigma_{x,j}^2 = \sum_{i=1}^{\infty} f_{i/j} (x_i - \overline{x}_j)^2$
$\underline{}$	n_{kj}	$f_{k/j}$	$oxed{\overline{x} =} \sum_{j=1}^p f_{.j} \overline{x}_j, \hspace{0.5cm} \sigma_x^2 = \sum_{j=1}^p f_{.j} \sigma_{x,j}^2 + \sum_{j=1}^p f_{.j} (\overline{x}_j - \overline{x})^2$
Sumas	$\mid n_{.j} \mid$	1	$\begin{vmatrix} w-\sum_{j=1}^{j} J.jwj, & o_x-\sum_{j=1}^{j} J.jo_{x,j} + \sum_{j=1}^{j} J.j(wj-w) \\ j=1 \end{vmatrix}$

Distribución condicionada de Y a $X=x_i; i=1,\ldots k$

Sólo se consideran los n_i individuos que presentan el valor (o modalidad) x_i en el carácter X (fila i-ésima).

- Frecuencia absoluta de y_j en los individuos tales que $X=x_i \longrightarrow n_{ij}, j=1,\ldots p$
- Frecuencia relativa de y_j en los individuos tales que $X=x_i \longrightarrow f_{j/i}=\frac{n_{ij}}{n_i}, \ j=1,\ldots p$

$Y/X = x_i$ y_1 \vdots x_j \vdots	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} f_{j/i} \\ \hline f_{1/i} \\ \vdots \\ f_{j/i} \\ \vdots \end{array}$	• $f_{j/i} = \frac{n_{ij}}{n_{i.}} = \frac{f_{ij}}{f_{i.}} \longrightarrow f_{ij} = f_{j/i}f_{i.}, i = 1,, k, j = 1,, p.$ Media condicionada: $\overline{y}_i = \sum_{j=1}^p f_{j/i}y_j$ Varianza condicionada: $\sigma_{y,i}^2 = \sum_{j=1}^p f_{j/i}(y_j - \overline{y}_i)^2$
$\frac{y_p}{\text{Sumas}}$	$egin{array}{c} : \\ n_{ip} \\ \hline n_{i.} \end{array}$	$\begin{array}{c} : \\ f_{p/i} \\ \hline 1 \end{array}$	$\overline{y} = \sum_{i=1}^{k} f_{i.} \overline{y}_{i}, \sigma_{y}^{2} = \sum_{i=1}^{k} f_{i.} \sigma_{y,i}^{2} + \sum_{i=1}^{k} f_{i.} (\overline{y}_{i} - \overline{y})^{2}$

DEPENDENCIA FUNCIONAL Y DEPENDENCIA ESTADÍSTICA

DEPENDENCIA FUNCIONAL

Un carácter X depende funcionalmente de un carácter Y si la modalidad que presenta cada individuo en Y determina la que presenta en X (para cada modalidad de Y sólo hay una modalidad de X con frecuencia no nula). Para caracteres cuantitativos, X = f(Y):

$X \setminus Y$	y_1	y_2	y_3	y_4	y_5
x_1	n_{11}	0	n_{13}	0	0
x_2	0	n_{22}	0	0	n_{25}
x_3	0	0	0	n_{34}	0

DEPENDENCIA ESTADÍSTICA

Un carácter X es estadísticamente dependiente de un carácter Y si el comportamiento de X es diferente según las modalidades de Y:

Un carácter X es estadísticamente independiente de un carácter Y si el comportamiento de X es el mismo para todas las modalidades de Y (propiedad recíproca). En tal caso, el diagrama de dispersión es un rectángulo (condición necesaria para la independencia):

INDEPENDENCIA ESTADÍSTICA

$$\left\{ ((x_i, y_j), n_{ij}); \ i = 1, \dots, k, \ j = 1, \dots, p \right\} \quad n = \sum_{i=1}^k \sum_{j=1}^p n_{ij}, \ f_{ij} = \frac{n_{ij}}{n}$$

$$n_{i.} = \sum_{j=1}^{p} n_{ij}, i = 1, \dots, k; \quad n_{.j} = \sum_{i=1}^{k} n_{ij}, j = 1, \dots, p$$

•
$$f_{i.} = \frac{n_{i.}}{n}, \ i = 1, \dots, k; \quad f_{.j} = \frac{n_{.j}}{n}, \ j = 1, \dots, p$$

•
$$f_{i/j} = \frac{n_{ij}}{n_{.j}} = \frac{f_{ij}}{f_{.j}};$$
 $f_{j/i} = \frac{n_{ij}}{n_{i.}} = \frac{f_{ij}}{f_{i.}},$ $i = 1, \dots, k, \ j = 1, \dots, p$

• El carácter X es (estadísticamente) independiente del carácter Y si las distribuciones de X condicionadas a cada modalidad de Y coinciden:

$$\forall i = 1, ..., k, f_{i/j} \text{ no depende de } j \ (f_{i/1} = f_{i/2} = \cdots = f_{i/p}, \ \forall i = 1, ..., k).$$

• Similarmente, Y es (estadísticamente) independiente de X si las distribuciones de Y condicionadas a cada modalidad de X coinciden:

$$\forall j = 1, ..., p, f_{j/i} \text{ no depende de } i (f_{j/1} = f_{j/2} = \cdots = f_{j/k}, \forall j = 1, ..., p).$$

Caracterizaciones de independencia:

■ X es independiente de Y si y sólo si la distribución condicionada de X a cualquier modalidad de Y coincide con la distribución marginal de X:

Xes independiente de
$$Y \Leftrightarrow f_{i/j} = f_i$$
, $\forall i = 1, ..., k$, $\forall j = 1, ..., p$.

- lacktriangledown X es independiente de Y si y sólo si Y es independiente de X.
- $X \ e \ Y \ son \ independentes \Leftrightarrow f_{ij} = f_{i.}f_{.j}, \ \forall i = 1, ..., k, \ \forall j = 1, ..., p$ $\Leftrightarrow n_{ij} = \frac{n_{i.}n_{.j}}{n}, \ \forall i = 1, ..., k, \ \forall j = 1, ..., p.$

MOMENTOS BIDIMENSIONALES

$$\left\{ ((x_i, y_j), n_{ij}); \ i = 1, \dots, k, \ j = 1, \dots, p \right\} \quad n = \sum_{i=1}^k \sum_{j=1}^p n_{ij}, \ f_{ij} = \frac{n_{ij}}{n}$$

Valores numéricos o marcas de clase

Momentos conjuntos no centrados

(centrados en el origen)

$$m_{rs} = \sum_{i=1}^{k} \sum_{j=1}^{p} f_{ij} x_i^r \ y_j^s, \quad r, s \in \mathbb{N} \cup \{0\} \ \overset{(*)}{\smile}$$

Momentos conjuntos centrados

(centrados en medias)

$$m_{rs} = \sum_{i=1}^{k} \sum_{j=1}^{p} f_{ij} x_{i}^{r} y_{j}^{s}, \quad r, s \in \mathbb{N} \cup \{0\} \text{ (*)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Momentos \text{ no centrados marginales:}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Momentos \text{ centrados marginales:}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Momentos \text{ centrados marginales:}$$

- $\mu_{r0} = \sum_{i=1}^{k} f_{i.} (x_i \overline{x})^r$ $\mu_{0s} = \sum_{i=1}^{k} f_{i.j} (y_j \overline{y})^s$

Momentos de primer y segundo orden:

- Medias marginales: $m_{10} = \overline{x}$, $m_{01} = \overline{y}$.
- Varianzas marginales: $\mu_{20} = \sigma_x^2$, $\mu_{02} = \sigma_y^2$.
- Covarianza de las variables X e Y: $\mu_{11} = \sigma_{xy} = \text{Cov}(X, Y)$.

Propiedades de los momentos:

- $\sigma_{xy} = \mu_{11} = m_{11} m_{10}m_{01}.$
- $\blacksquare \ X \ \text{e } Y \ \text{estad} \\ \text{isticamente independientes} \Longrightarrow \left\{ \begin{array}{l} m_{rs}=m_{r0}m_{0s} \\ \\ \mu_{rs}=\mu_{r0}\mu_{0s} \\ \\ Cov(X,Y)=\sigma_{xy}=0. \end{array} \right.$
 - (*) Convenio: $0^0 = 1$

PROBLEMA DE REGRESIÓN

$$\left\{ ((x_i, y_j), n_{ij}); \ i = 1, \dots, k, \ j = 1, \dots, p \right\} \quad n = \sum_{i=1}^k \sum_{j=1}^p n_{ij}, \ f_{ij} = \frac{n_{ij}}{n}$$

Valores numéricos o marcas de clase

REGRESIÓN DE Y SOBRE X

Determinar una función, f, que permita aproximar, con el menor error posible, los valores de la variable Y a partir de los valores de X, mediante la variable f(X).

 ${\color{blue} \bullet} \ Y$: variable dependiente, explicada, endógena o respuesta

 \bullet X: variable independiente, explicativa, exógena o regresora

CRITERIO DE MÍNIMOS CUADRADOS

Error cuadrático medio asociado a
$$f \longrightarrow ECM(f) = \sum_{i=1}^k \sum_{j=1}^p f_{ij} \ (r_{ij}^y)^2 = \sum_{i=1}^k \sum_{j=1}^p f_{ij} \ (y_j - f(x_i))^2$$

Regresión mínimo cuadrática \longrightarrow Buscar f tal que ECM(f) es mínimo.

CURVAS DE REGRESIÓN MÍNIMO CUADRÁTICAS

La curva de regresión (mínimo cuadrática) de Y sobre X (similarmente, la de X sobre Y) es la que minimiza el error cuadrático medio asociado:

$$Y/X \to f(x_1), \dots, f(x_k) / \sum_{i=1}^k \sum_{j=1}^p f_{ij} (y_j - f(x_i))^2 \text{ es mínimo} \Longrightarrow f(x_i) = \overline{y}_i = \sum_{j=1}^p f_{j/i} y_j, \ i = 1, \dots, k.$$

$$X/Y \to g(y_1), \dots, g(y_p) / \sum_{i=1}^k \sum_{j=1}^p f_{ij} (x_i - g(y_j))^2 \text{ es mínimo} \Longrightarrow g(y_j) = \overline{x}_j = \sum_{i=1}^k f_{i/j} x_i, \ j = 1, \dots, p.$$

CURVA DE REGRESIÓN DE Y SOBRE X

Puntos:
$$(x_1, \overline{y}_1)$$
 ... (x_k, \overline{y}_k)

$$\downarrow \qquad \qquad \downarrow$$
Frecuencias: n_1 ... n_k

Residuos mínimo cuadráticos $r_{ij}^{y} = y_{j} - \overline{y}_{i}, \ i = 1, \dots, k; \ j = 1, \dots, p$

CURVA DE REGRESIÓN DE X SOBRE Y

Residuos mínimo cuadráticos $r_{ij}^x = x_i - \overline{x}_j, \ i = 1, \dots, k; \ j = 1, \dots, p$

Propiedades de las curvas de regresión mínimo cuadráticas (Y/X)

■ La media de los valores ajustados, $\{(\overline{y}_i, n_{i.}); i = 1, ..., k\}$, coincide con la media de los valores observados:

$$\sum_{i=1}^{k} f_{i.} \overline{y}_{i} = \overline{y}.$$

■ Los residuos mínimo cuadráticos, $\{(r_{ij}^y, n_{ij}); i = 1, ..., k, j = 1, ..., p\}$, tienen media cero y, por tanto, su varianza es el error cuadrático medio asociado a la curva de regresión, que coincide con la media de las varianzas condicionadas:

$$\overline{r}^y = \sum_{i=1}^k \sum_{j=1}^p f_{ij} r_{ij}^y = 0$$

$$\sigma_{ry}^2 = \sum_{i=1}^k \sum_{j=1}^p f_{ij}(r_{ij}^y)^2 = \sum_{i=1}^k f_{i} \sigma_{y,i}^2 \longrightarrow ECM \text{ asociado a la curva.}$$

■ La varianza de los valores observados es la suma de la varianza de los valores ajustados y la varianza de los residuos:

$$\sigma_y^2 = \sigma_{ey}^2 + \sigma_{ry}^2, \quad \sigma_{ey}^2 = \sum_{i=1}^k f_{i.}(\overline{y}_i - \overline{y})^2.$$

RECTAS DE REGRESIÓN MÍNIMO CUADRÁTICAS

La recta de regresión (mínimo cuadrática) de Y sobre X (y, análogamente, la de X sobre Y) es, entre todas las rectas, la que minimiza el error cuadrático medio:

$$Y/X \to y = ax + b / \psi(a, b) = \sum_{i=1}^{k} \sum_{j=1}^{p} f_{ij} [y_j - (ax_i + b)]^2$$
 es mínimo

$$\frac{\partial \psi(a,b)}{\partial a} = 0$$

$$\frac{\partial \psi(a,b)}{\partial b} = 0$$

$$Ecuaciones normales
 $m_{11} = am_{20} + bm_{10}$

$$m_{01} = am_{10} + b$$

$$\implies a = \frac{\sigma_{xy}}{\sigma_x^2}, \quad b = \overline{y} - \frac{\sigma_{xy}}{\sigma_x^2} \overline{x}.$$$$

$$X/Y \to x = cy + d / \sum_{i=1}^k \sum_{j=1}^p f_{ij} [x_i - (cy_j + d)]^2 \text{ es mínimo} \Longrightarrow c = \frac{\sigma_{xy}}{\sigma_y^2}, \quad d = \overline{x} - \frac{\sigma_{xy}}{\sigma_y^2} \overline{y}.$$

RECTA DE REGRESIÓN DE Y SOBRE X

$$y = \overline{y} + \frac{\sigma_{xy}}{\sigma_x^2} (x - \overline{x})$$

Coeficiente de regresión lineal: $\gamma_{y/x} = \frac{\sigma_{xy}}{\sigma_x^2}$

Residuos lineales mínimo cuadráticos $r_{ij}^{Ly} = y_j - (\overline{y} + \frac{\sigma_{xy}}{\sigma^2}(x_i - \overline{x}))$

RECTA DE REGRESIÓN DE X SOBRE Y

$$x = \overline{x} + \frac{\sigma_{xy}}{\sigma_y^2} (y - \overline{y})$$

Coeficiente de regresión lineal: $\gamma_{x/y} = \frac{\sigma_{xy}}{\sigma_y^2}$

Residuos lineales mínimo cuadráticos $r_{ij}^{Lx} = x_i - (\overline{x} + \frac{\sigma_{xy}}{\sigma_y^2}(y_j - \overline{y}))$

Propiedades de las rectas de regresión mínimo cuadráticas (Y/X)

- Ambas rectas pasan por el centro de gravedad de la distribución, $(\overline{x}, \overline{y})$.
- La media de los valores ajustados, $\{(\overline{y} + \frac{\sigma_{xy}}{\sigma_x^2}(x_i \overline{x}), n_{i.}); i = 1, ..., k\}$, coincide con la media de los valores observados:

$$\sum_{i=1}^{k} f_{i} \left(\overline{y} + \frac{\sigma_{xy}}{\sigma_x^2} (x_i - \overline{x}) \right) = \overline{y}.$$

■ Los residuos lineales mínimo cuadráticos, $\{(r_{ij}^{Ly}, n_{ij}); i = 1, ..., k, j = 1, ..., p\}$, tienen media cero y, por tanto, su varianza es el error cuadrático medio asociado a la recta:

$$\overline{r}^{Ly} = \sum_{i=1}^{k} \sum_{j=1}^{p} f_{ij} r_{ij}^{Ly} = 0 \Rightarrow \sigma_{ryL}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{p} f_{ij} (r_{ij}^{Ly})^{2} \equiv ECM \text{ asociado a la recta.}$$

■ La varianza de los valores observados es la suma de la varianza de los valores ajustados, σ_{xy}^2/σ_x^2 , y la varianza de los residuos:

$$\sigma_y^2 = \sigma_{ey^L}^2 + \sigma_{ry^L}^2, \qquad \sigma_{ey^L}^2 = \sum_{i=1}^k f_{i.} \left(\frac{\sigma_{xy}}{\sigma_x^2} (x_i - \overline{x}) \right)^2 = \frac{\sigma_{xy}^2}{\sigma_x^2}.$$

OTROS AJUSTES MÍNIMO CUADRÁTICOS

• Ajuste de un polinomio de grado arbitrario: $y = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$

$$a_0, \dots, a_n / \psi(a_0, \dots, a_n) = \sum_{i=1}^k \sum_{j=1}^p f_{ij} [y_j - (a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n)]^2$$
 es mínimo

$$\frac{\partial \psi(a_0, \dots, a_n)}{\partial a_0} = 0$$

$$\frac{\partial \psi(a_0, \dots, a_n)}{\partial a_1} = 0$$

$$\vdots$$

$$\frac{\partial \psi(a_0, \dots, a_n)}{\partial a_n} = 0$$

$$\vdots$$

$$\frac{\partial \psi(a_0, \dots, a_n)}{\partial a_n} = 0$$

$$\vdots$$

$$m_{n1} = a_0 m_{10} + a_1 m_{20} + a_2 m_{30} + \dots + a_n m_{n+1,0}$$

$$\vdots$$

$$\vdots$$

$$m_{n1} = a_0 m_{n0} + a_1 m_{n+1,0} + a_2 m_{n+2,0} + \dots + a_n m_{n+n,0}.$$

• Ajuste de una hipérbola equilátera: y = a/x + b

Se invierten los valores de X, $x'_i = 1/x_i$; se ajusta una recta a los nuevos datos, y = ax' + b, y se deshace el cambio.

- Ajuste de una función potencial (X, Y > 0): $y = bx^a \rightarrow \log y = a \log x + \log b$ Se transforman los valores de X e Y tomando logaritmos, $x'_i = \log x_i$, $y'_j = \log y_j$; se ajusta una recta a los nuevos datos, y' = ax' + b', y se deshace el cambio.
- Ajuste de una función exponencial (Y > 0): $y = ba^x \rightarrow \log y = x \log a + \log b$ Se transforman los valores de Y tomando logaritmos, $y'_j = \log y_j$; se ajusta una recta a los nuevos datos, y' = a'x + b', y se deshace el cambio.

RAZONES DE CORRELACIÓN

Cuantifican el grado en que una variable depende de otra, midiendo el grado de ajuste de la correspondiente curva de regresión a la nube de puntos.

Razón de correlación Y/X

$$\eta_{y/x}^2 = \frac{\sigma_{ey}^2}{\sigma_y^2} = 1 - \frac{\sigma_{ry}^2}{\sigma_y^2}$$

•
$$\sigma_y^2 = \sigma_{ey}^2 + \sigma_{ry}^2 = \sum_{j=1}^p f_{.j} (y_j - \overline{y})^2$$

•
$$\sigma_{ey}^2 = \sum_{i=1}^k f_{i.}(\overline{y}_i - \overline{y})^2$$

•
$$\sigma_{ry}^2 = \sum_{i=1}^k \sum_{j=1}^p f_{ij} (y_j - \overline{y}_i)^2 = ECM(Y/X)$$

proporción de σ_y^2 debida a la regresión

$$\eta_{y/x}^2 = 1 - \frac{ECM(Y/X)}{\sigma_y^2}$$

$$ECM(Y/X) = \sigma_y^2(1 - \eta_{y/x}^2)$$

Razón de correlación X/Y

$$\eta_{x/y}^2 = \frac{\sigma_{ex}^2}{\sigma_x^2} = 1 - \frac{\sigma_{rx}^2}{\sigma_x^2}$$

•
$$\sigma_x^2 = \sigma_{ex}^2 + \sigma_{rx}^2 = \sum_{i=1}^k f_{i.}(x_i - \overline{x})^2$$

$$\bullet \ \sigma_{ex}^2 = \sum_{j=1}^p f_{.j} (\overline{x}_j - \overline{x})^2$$

•
$$\sigma_{rx}^2 = \sum_{i=1}^k \sum_{j=1}^p f_{ij} (x_i - \overline{x}_j)^2 = ECM(X/Y)$$

proporción de σ_x^2 debida a la regresión

$$\eta_{x/y}^2 = 1 - \frac{ECM(X/Y)}{\sigma_x^2}$$

$$ECM(X/Y) = \sigma_x^2 (1 - \eta_{x/y}^2)$$

Propiedades:

• Medidas adimensionales, invariantes frente a cambios de escala y origen en la unidad de medida de la correspondiente variable:

$$\eta_{ay+b/x}^2 = \eta_{y/x}^2, \quad \eta_{ax+b/y}^2 = \eta_{x/y}^2.$$

- $0 \le \eta_{y/x}^2, \ \eta_{x/y}^2 \le 1.$
- $\eta_{y/x}^2 = 0 \Leftrightarrow \sigma_{ey}^2 = 0 \Leftrightarrow \sigma_{ry}^2 = \sigma_y^2 \Leftrightarrow \overline{y}_1 = \dots = \overline{y}_k = \overline{y}.$ $\eta_{x/y}^2 = 0 \Leftrightarrow \sigma_{ex}^2 = 0 \Leftrightarrow \sigma_{rx}^2 = \sigma_x^2 \Leftrightarrow \overline{x}_1 = \dots = \overline{x}_p = \overline{x}.$
- $\eta_{y/x}^2 = 1 \iff \sigma_{ey}^2 = \sigma_y^2 \iff \sigma_{ry}^2 = 0 \iff Y$ depende funcionalmente de X. $\eta_{x/y}^2 = 1 \iff \sigma_{ex}^2 = \sigma_x^2 \iff \sigma_{rx}^2 = 0 \iff X$ depende funcionalmente de Y.

MEDIDAS DE CORRELACIÓN LINEAL

Cuantifican el grado de relación lineal entre las variables, midiendo el grado de ajuste de las rectas de regresión a la nube de puntos.

Coeficiente de determinación lineal

$$R_{xy}^2 = \frac{\sigma_{xy}^2}{\sigma_x^2 \ \sigma_y^2}$$

$$R_{xy} = \frac{\sigma_{xy}}{\sigma_x \ \sigma_y}$$

proporción de σ_x^2 y de σ_y^2 debida a la regresión lineal

$$R_{xy}^2 = 1 - \frac{ECM^L(Y/X)}{\sigma_y^2} = 1 - \frac{ECM^L(X/Y)}{\sigma_x^2}$$

$$ECM^{L}(Y/X) = \sigma_{y}^{2}(1 - R_{x,y}^{2}); \quad ECM^{L}(X/Y) = \sigma_{x}^{2}(1 - R_{x,y}^{2}).$$

Propiedades:

- $R_{xy}^2 = \gamma_{y/x} \gamma_{x/y}.$
- Medidas adimensionales, invariantes frente a cambios de escala (salvo el signo de R_{xy}) y origen en la unidad de medida de cualquiera de las variables:

$$R_{ax+b,cy+d}^2 = R_{x,y}^2.$$

- $R_{xy}^2 \le \eta_{x/y}^2, \ R_{xy}^2 \le \eta_{y/x}^2.$
- $0 \le R_{xy}^2 \le 1, -1 \le R_{xy} \le 1.$
- $R_{xy}^2 = 0 \ (R_{xy} = 0) \Leftrightarrow \sigma_{xy} = 0 \Leftrightarrow \text{ las rectas de regresión son } y = \overline{y}, \ x = \overline{x}.$
- $R_{xy}^2=1$ $(R_{xy}=\pm 1)\Leftrightarrow$ existe dependencia lineal (recíproca) entre X e Y.
- $0 < R_{xy} \le 1 \longrightarrow \text{rectas de regresión crecientes.}$
- $-1 \le R_{xy} < 0 \longrightarrow \text{rectas de regresión decrecientes.}$

Coeficiente de correlación lineal