

PATENT Attorney Docket No. 207596

DHHS Ref: E-200-98/3

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Erickson et al.

Application No. 09/720,276

Filed: March 7, 2001

For: FITNESS ASSAY AND ASSOCIATED METHODS

Group Art Unit: 1648

Examiner: S. A. Foley

AMENDMENT AND RESPONSE TO RESTRICTION REQUIREMENT

Commissioner for Patents Washington, D.C. 20231

Dear Sir:

In response to the Office Action dated October 2, 2002, please enter the following amendments and consider the following remarks.

AMENDMENTS

Please replace claims 47 and 64-66 with the following:

47. (Amended) A method of preventing the development of drug resistance in an HIV-infected mammal, said method comprising administering to said HIV-infected mammal a drug resistance-inhibiting effective amount of a compound of the formula:

$$A^{-X} Q^{N} Q^{$$

OI R^3 (I),

or a pharmaceutically acceptable salt, a prodrug, or an ester thereof, or a pharmaceutically acceptable composition of said compound, said salt, said prodrug, or said ester thereof, wherein:

A is a group of the formula:

12/10/2002 NMOHAMM1 00000044 121216 09720276

01 FC:1252

400.00 CH

DEST AVAILABLE COPY

In re Erickson et al. Application No. 09/720,276

R¹ is H or an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkylalkyl, an aryl, an aralkyl, a heterocycloalkyl, a heterocycloalkylalkyl, a heteroaryl, or a heteroaralkyl, in which at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of OR⁷, SR⁷, CN, NO₂, N₃, and a halogen, wherein R⁷ is H, an unsubstituted alkyl, an unsubstituted alkenyl, or an unsubstituted alkynyl;

Y and Z are the same or different and [are independently] <u>each is</u> selected from the group consisting of CH₂, O, S, SO, SO₂, NR⁸, R⁸C(O)N, R⁸C(S)N, R⁸OC(O)N, R⁸OC(S)N, R⁸SC(O)N, R⁸R⁹NC(O)N, and R⁸R⁹NC(S)N, wherein R⁸ and R⁹ are each selected from the group consisting of H, an unsubstituted alkyl, an unsubstituted alkenyl, and an unsubstituted alkynyl;

n is an integer from 1 to 5;

X is a covalent bond, CHR¹⁰, CHR¹⁰CH₂, CH₂CHR¹⁰, O, NR¹⁰, or S, wherein R¹⁰ is H, an unsubstituted alkyl, an unsubstituted alkenyl, or an unsubstituted alkynyl;

Q is C(O), C(S), or SO_2 ;

R² is H, a C₁-C₆ alkyl, a C₂-C₆ alkenyl, or a C₂-C₆ alkynyl;

m is an integer from 0 to 6;

 R^3 is a cycloalkyl, a heterocycloalkyl, an aryl, or a heteroaryl in which at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of alkyl, $(CH_2)_pR^{11}$, OR^{12} , SR^{12} , CN, N_3 , NO_2 , $NR^{12}R^{13}$, $C(O)R^{12}$, $C(S)R^{12}$, CO_2R^{12} , $C(O)SR^{12}$, $C(O)NR^{12}R^{13}$, $C(S)NR^{12}R^{13}$, $NR^{12}C(O)R^{13}$, $NR^{12}C(S)R^{13}$, $NR^{12}CO_2R^{13}$, $NR^{12}CO_2R^{13}$, $NR^{12}CO_2R^{13}$, and a halogen, wherein:

p is an integer from 0 to 5;

R¹¹ is a cycloalkyl, a heterocycloalkyl, an aryl, or a heteroaryl in which at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of a halogen, OH, OCH₃, NH₂, NO₂, SH, and CN; and

 R^{12} and R^{13} are the same or different and each is selected from the group consisting of H, an unsubstituted alkyl, an unsubstituted alkenyl, and an unsubstituted alkynyl;

 R^4 is OH, =O (keto) or NH₂, wherein, when R^4 is OH, it is optionally in the form of a pharmaceutically acceptable ester or prodrug, and when R^4 is NH₂, it is optionally an amide,

In re Erickson et al. Application No. 09/720,276

a hydroxylamino, a carbamate, a urea, an alkylamino, a dialkylamino, a protic salt thereof, or a tetraalkylammonium salt thereof;

 R^5 is H, a C_1 - C_6 alkyl radical, a C_2 - C_6 alkenyl radical, or $(CH_2)_qR^{14}$, wherein q is an integer form 0 to 5, and R^{14} is a cycloalkyl, a heterocycloalkyl, an aryl, or a heteroaryl radical in which at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of a halogen, OH, OCH₃, NH₂, NO₂, SH, and CN;

W is C(O), C(S), or SO₂; and

R⁶ is a cycloalkyl, heterocycloalkyl, aryl, or heteroaryl radical in which at least one hydrogen atom is optionally substituted with a substituent selected from the group consisting of a halogen, OR¹⁵, SR¹⁵, S(O)R¹⁵, SO₂R¹⁵, SO₂NR¹⁵R¹⁶, SO₂N(OH)R¹⁵, CN, CR¹⁵=NR¹⁶, $CR^{15}=N(OR^{16}), N_3, NO_2, NR^{15}R^{16}, N(OH)R^{15}, C(O)R^{15}, C(S)R^{15}, CO_2R^{15}, C(O)SR^{15},$ C(O)NR¹⁵R¹⁶, C(S)NR¹⁵R¹⁶, C(O)N(OH)R¹⁵, C(S)N(OH)R¹⁵, NR¹⁵C(O)R¹⁶, NR¹⁵C(S)R¹⁶, N(OH)C(O)R¹⁵, N(OH)C(S)R¹⁵, NR¹⁵CO₂R¹⁶, N(OH)CO₂R¹⁵, NR¹⁵C(O)SR¹⁶, NR¹⁵C(O)NR¹⁶R¹⁷, NR¹⁵C(S)NR¹⁶R¹⁷, N(OH)C(O)NR¹⁵R¹⁶, N(OH)C(S)NR¹⁵R¹⁶, $NR^{15}C(O)N(OH)R^{16}, NR^{15}C(S)N(OH)R^{16}, NR^{15}SO_2R^{16}, NHSO_2NR^{15}R^{16}, NR^{15}SO_2NHR^{16}, NR^$ P(O)(OR¹⁵)(OR¹⁶), an alkyl, an alkoxy, an alkylthio, an alkylamino, a cycloalkyl, a cycloalkylalkyl, a heterocycloalkyl, a heterocycloalkylalkyl, an aryl, an aryloxy, an arylamino, an arylthio, an aralkyl, an aryloxyalkyl, an arylaminoalkyl, an aralkoxy, an (aryloxy)alkoxy, an (arylamino)alkoxy, an (arylthio)alkoxy, an aralkylamino, an (aryloxy)alkylamino, an (arylamino)alkylamino, an (arylthio)alkylamino, an aralkylthio, an (aryloxy)alkylthio, an (arylamino)alkylthio, an (arylthio)alkylthio, a heteroaryl, a heteroaryloxy, a heteroarylamino, a heteroarylthio, a heteroaralkyl, a heteroaralkoxy, a heteroaralkylamino, and a heteroaralkylthio,

wherein R¹⁵, R¹⁶, and R¹⁷ are the same or different and each is H, an unsubstituted alkyl, or an unsubstituted alkenyl,

wherein, when at least one hydrogen atom of R^6 is substituted with a substituent other than a halogen, OR^{15} , SR^{15} , CN, N_3 , NO_2 , $NR^{15}R^{16}$, $C(O)R^{15}$, $C(S)R^{15}$, CO_2R^{15} , $C(O)SR^{15}$, $C(O)NR^{15}R^{16}$, $C(S)NR^{15}R^{16}$, $C(O)R^{16}$, $C(O)R^{15}$, C

wherein a mutant virus that is capable of evolving from the HIV virus infecting said mammal has lower fitness, relative to said HIV virus infecting said mammal, in the presence of said compound.