Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №3 з дисципліни "Аналогова електроніка"

Виконала:

студентка гр. ДК-62

Гордієнко Я.О.

Перевірив:

доц. Короткий \in В.

Для вимірів та генерацій сигналів було використано плату Analog Discavery2 Транзистор 2N7000

1. Дослідження залежності Іс(Uзв) для n-канального польового МДН транзистора

В LTSpice була виконана симуляція згідно до завдання в режимі лінійного підвищення напруги 3В.

Також було визначено порогову напругу. Виміри робилися при струмі 3мА та 12мА, а напруги 1,789В та 1,984В.

$$U_{\pi} = 2 * 1,789 - 1,984 = 1,594B$$

Отримане значення порогової напруги відповідає графіку

Тепер можна знайти b з формули $I_c = \frac{b}{2} (U_{_{\mathrm{3B}}} - U_{_{\mathrm{II}}})^2$

b=0.157707

Вимірювання з реальним транзистором дали значно інші результати

	mA	U		
	3	1,424		
Розрахунок Ипорогового	o 12	1,61		
	1,2	1,238		
b	0,1734305			

Тому можу зробити висновок, що або модель не точна, допускаються похибки. При виконанні роботи був виявлений транзистор у якого порогова напруга складала всього 0.8В

Реальні значення транзистора. Характер залежності відповідає теорії.

3) Дослідження підсилювача з загальним витоком на польовому МДН транзисторі 2N7000

3.1) Компоненти розрахувані за формулами робочої точки. Робочу точку обрали трохи більшу за середнє арифметичне між U_{π} та U_{3B} .

3.2)Робоча точка

Для перевірки робочої точки напругу генератора сигналу виставили рівною нулю. Отримали такі параметри робочої точки спокою:

$$U_{_{3B0}} = 1,84B$$

$$U_{Bc0} = 3,55B$$

$$I_{c0} = 4.8 \text{mA}$$

3.3)

Отже Ки=226/20=11.3

3.4)Спотворення починаються приблизно при вхідній напрузі 100мВ

При 300мВ зовсім спотворений сигнал

3.5)В нас вже ϵ дані по робочій точці, тому, щоб визначити передаточну провідність ми замінили резистор R3 на 10кОм відповідно отримали нові дані по робочій точці спокою

$$U_{_{3B0}} = 1,9B$$

$$I_{c0} = 7,72 \text{mA}$$

$$g_m = \frac{\Delta I_c}{\Delta U_{_{3B}}} = \frac{2,92*10^{-3}}{0,06} = 48.67 \text{ MC}$$

Також можна визначити за іншою формулою gm=b·(Uзв0-Uп)=37.5мС. Значення вийшли доволі близькі, тому з урахуванням похибок все добре.

3.6) Ки яке використало розрахунок передаточної провідності за другою формулою виявилось однаковим з даними симуляції.

Все теж саме реалізовано на практичній схемі, але оскільки U_{π} в транзисторі $1.238 \mathrm{B}$ довелося зменшити робочу точку, відповідно змінились номінали компонентів схеми

$$R1 = 500 \text{ Om}$$

$$R2 = 300 кОм$$

$$R3 = 120 кОм$$

3.2)

раб точка					
Істока	3,2	mA			
UBC	3,2	V			
Uзв	1,3	V			

 $K_{\rm u}$ практичне=311/20=15.55, що трохи більше ніж в симуляції

3.4)Нижче зазначені вхідні напруги.

Початок спотворень 80мВ

спотворення при 100мВ

помітні спотворення при 120мВ

3.6 Визначення Ки та gm за формулою $g_m = \frac{\Delta I_c}{\Delta U_{\scriptscriptstyle \mathrm{3B}}}$

задание 3.5						
Істоку	0,0009	Α	0,0021	Α		
Uзв	1,32	V	1,39	V		
gm	0,017143					
kU	-8,571429					
	,					

Висновок

В даній лабораторній роботі провели експериментальне дослідження поведінки польового транзистору в різних режимах роботи: відзняли статичну вихідну та передавальну характеристики, розрахували коефіцієнт крутизни b, порівняли їх з даними симуляцій. Також було складено схему підсилювача з загальним витоком і досліджено його роботу при різних вхідних параметрах. Експериментально та теоретично визначили коефіцієнт підсилення та передавальну провідність.