CVE154 Exam 2, Part 2

prepared by Christian Cahig for classes of A.Y. 2024-2025 S1

2024-11-06

1 Blank space

Consider the linear system Ax = b of N equations and N unknowns.

- 1. If A is upper-triangular, x is directly obtained using ____ substitution.
- 2. The $\underline{\hspace{1cm}}$ matrix is formed by appending \boldsymbol{b} as a new column to \boldsymbol{A} .
- 3. The system has a unique solution if the determinant of \boldsymbol{A} is ____.
- 4. If A is lower-triangular, x is directly obtained using ____ substitution.
- 5. If the inverse of the coefficient matrix, A^{-1} , exists, then x is computed as ____.
- 6. A is well-conditioned if its condition number of A is not significantly greater than .

Consider direct methods for solving the above linear system.

- 7. ____ pivoting interchanges rows of the augmented matrix to find the pivot element.
- 8. ___ involves factoring A into a product of a lower- and an upper-triangular matrix, with the requirement that A is nonsingular.
- 9. The ___ method extends Gaussian elimination by transforming the system into an equivalent form Dx = d where D is diagonal.
- 10. In the ____ variant of LU decomposition, the lower-triangular factor of \boldsymbol{A} has 1s on the diagonal.
- 11. ____ pivoting looks for the pivot element across rows and columns of the augmented matrix.
- 12. In the ____ variant of LU decomposition, the diagonal elements of the upper-triangular factor of \boldsymbol{A} are 1s.
- 13. ____ involves factoring **A** as a product of a lower- and an upper-triangular matrix, each being a transpose of the other.

2 Million reasons

- **3 pt.** In the linear system Ax = b of N equations and N unknowns, the coefficient matrix has a determinant of -1709. Is the system solvable? Why do you think so?
- **4 pt.** Suppose for a physical problem you derived two equivalent linear system representations: Ax = a and By = b, where x and y are the vectors containing unknown quantities. A and B have condition numbers of 2.024 and 2024, respectively. Which linear system should you use?
- **5 pt.** Discuss how Gaussian elimination can be used to compute the inverse of a square, nonsingular matrix A.

3 Look at those cavemen go

10 pt. Say you have a robot equipped with distance sensors so that you can collect Cartesian coordinates of N points — i.e., (x_1, y_1, z_1) , (x_2, y_2, z_2) , ..., (x_N, y_N, z_N) — on the roof of a cave. Hoping to simplify the estimation of the cave's dimensions, you hypothesize that the cave is adequately modelled as a portion of a sphere $(x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 = \rho^2$. Here, the problem is determining from collected data the parameters α , β , γ , and ρ . Show that this problem can be modelled as a system of N linear equations in four unknowns.

Bonus

3 pt. Estimate the number of pedestrian crossings inside the campus. Explain your thought process.