Chapter 14: Integer, Nonlinear, and Advanced Optimization Methods

Statistics, Data Analysis, and Decision Modeling, Fifth Edition James R. Evans

Integer Optimization Models

- Integer linear optimization model (integer program): some or all decision variables are restricted to integer values
 - If only a subset of variables are integer, we have a mixed integer model

Nonlinear Optimization Models

- The objective function and/or constraint functions are nonlinear functions of the decision variables
 - Terms cannot be written as a constant times a variable

Example: Cutting Stock **Problem**

Suppose that a company makes standard 110-inch-wide rolls of thin sheet metal, and slits them into smaller rolls to meet customer orders for widths of 12, 15, and 30 inches. The demands for these widths vary from week to week. Demands this week are 500 12" rolls, 715 15" rolls,

and 630 30" rolls.

Cutting patterns:

	Size of End Item								
Pattern 12" 15" 30" Scra									
1	0	7	0	5"					
2	0	1	3	5"					
3	1	0	3	8"					
4	9	0	0	2"					
5	2	1	2	11"					
6	7	1	0	11"					

IP Model

Define Xi to be the number of 110" rolls to cut using cutting pattern i, for i = 1,...,6.

Min
$$5X1 + 5X2 + 8X3 + 2X4 + 11X5 + 11X6$$

 $0X1 + 0X2 + 1X3 + 9X4 + 2X5 + 7X6 \ge 500$ (12" rolls)
 $7X1 + 1X2 + 0X3 + 0X4 + 1X5 + 1X6 \ge 715$ (15" rolls)
 $0X1 + 3X2 + 3X3 + 0X4 + 2X5 + 0X6 \ge 630$ (30" rolls)
 $Xi \ge 0$ and integer

Spreadsheet and *Solver*Models

- 4	A	В	С	D	Е
1	Cutting Stock Problem				
2					
3	Data				
4	Pattern	12-in rolls	15-in rolls	30-in rolls	
5	1	0	7	0	5
6	2	0	1	3	5
7	3	1	0	3	8
8	4	9	0	0	2
9	5	2	1	2	11
10	6	7	1	0	11
11	Demand	500	715	630	
12					
13	Model				
14		No. of rolls			
15	Pattern 1	72.14			
16	Pattern 2	210.00			
17	Pattern 3	0.00			
18	Pattern 4	55.56			
19	Pattern 5	0.00			
20	Pattern 6	0.00			
21					
22		12-in rolls	15-in rolls	30-in rolls	
23	Number produced	500	715	630	
24					
25		Total			
26	Scrap	1521.8254			
27					

Adding Integer Restrictions in Solver

Optimal Integer Solution

1	Α	В	С	D	Е	
1	Cutting Stock Problem					
2						
3	Data					
4	Pattern	12-in rolls	15-in rolls	30-in rolls	Scrap	
5	1	0	7	0		5
6	2	0	1	3		5
7	3	1	0	3		8
8	4	9	0	0		2
9	5	2	1	2		11
10	6	7	1	0		11
11	Demand	500	715	630		
12						
13	Model					
14		No. of rolls				
15	Pattern 1	73.00				
16	Pattern 2	210.00				
17	Pattern 3	0.00				
18	Pattern 4	56.00				
19	Pattern 5	0.00				
20	Pattern 6	0.00				
21						
22		12-in rolls	15-in rolls	30-in rolls		
23	Number produced	504	721	630		
24						
25		Total				
26	Scrap	1527				

A binary variable x is simply a general integer variable that is restricted to being between 0 and 1:

$$0 \le x \le 1$$
 and integer

We usually just write this as

$$x = 0 \text{ or } 1$$

Example: Project Selection

TABLE 14.1 Project Selection Data

	Project 1	Project 2	Project 3	Project 4	Project 5	Available Resources
Expected return (NPV)	\$180,000	\$220,000	\$150,000	\$140,000	\$200,000	
Cash requirements	\$55,000	\$83,000	\$24,000	\$49,000	\$61,000	\$150,000
Personnel requirements	5	3	2	5	3	12

Maximize $$180,000x_1 + $220,000x_2 + $150,000x_3 + $140,000x_4 + $200,000x_5$

 $$55,000x_1 + $83,000x_2 + $24,000x_3 + $49,000x_4 + $61,000x_5 \le $150,000$ (cash limitation)

 $5x_1 + 3x_2 + 2x_3 + 5x_4 + 3x_5 \le 12$ (personnel limitation)

Spreadsheet and Solver Models

4	А	В	С	D	Е	F	G
1	Project Selection Model						
2							
3	Data						
4		Project 1	Project 2	Project 3	Project 4	Project 5	Available
5	Expected Return (NPV)	\$180,000	\$220,000	\$150,000	\$140,000	\$200,000	Resources
6	Cash requirements	\$ 55,000	\$ 83,000	\$ 24,000	\$ 49,000	\$ 61,000	\$ 150,000
7	Personnel requirements	5	3	2	5	3	12
8							
9	Model						
10							
11	Project selection decisions	1	0	1	0	1	Total
12	Cash Used	\$ 55,000	\$ -	\$ 24,000	\$ -	\$ 61,000	\$ 140,000
13	Personnel Used	5	0	2	0	3	10
14	Return	\$180,000	\$ -	\$150,000	\$ -	\$200,000	\$ 530,000

Site Location Model

Response times from fire stations to

districts

From/To	1	2	3	4	5	6	7
1	0	2	10	6	12	5	8
2	2	0	6	9	11	7	10
3	10	6	0	5	5	12	6
4	6	9	5	0	9	4	3
5	12	11	5	9	0	10	8
6	5	7	12	4	10	0	6
7	8	10	6	3	8	6	0

Find best location to reach all districts within 8 minutes

4

IP Model

- Min X1 + X2 + X3 + X4 + X5 + X6 + X7
- Meet response time requirement for each district:

■
$$X1 + X2 + X4 + X6 + X7 \ge 1$$

$$X1 + X2 + X3 + X6 ≥ 1$$

■
$$X2 + X3 + X4 + X5 + X7 \ge 1$$

$$X1 + X3 + X4 + X6 + X7 \ge 1$$

■
$$X1 + X2 + X4 + X6 + X7 \ge 1$$

$$X1 + X3 + X4 + X5 + X6 + X7 ≥ 1$$

Spreadsheet Model

4	Α	В	С	D	E	F	G	Н	1	J
1	Fire Statio	on Location	n Model							
2										
3	Data									
4										
5	Response	time	8							
6	· ·									
7	Response	Times								
8	From/To	1	2	3	4	5	6	7		
9	1	0	2	10	6	12	5	8		
10	2	2	0	6	9	11	7	10		
11	3	10	6	0	5	5	12	6		
12	4	6	9	5	0	9	4	3		
13	5	12	11	5	9	0	10	8		
14	6	5	7	12	4	10	0	6		
15	7	8	10	6	3	8	6	0		
16										
17	Model									
18										
19	From/To	1	2	3	4	5	6	7	Covered?	Requirement
20	1	1	1	0	1	0	1	1	1	
21	2	1	1	1	0	0	1	0	1	
22	3	0	1	1	1	1	0	1	2	
23	4	1	0	1	1	0	1	1	2	
24	5	0	0	1	0	1	0	1	2	
25	6	1	1	0	1	0	1	1	1	
26	7	1	0	1	1	1	1	1	2	•
27									Total	
	Location	0	0	1	0	0	0	1	2	

Solver Model

4

Modeling Logical Conditions

TABLE 14.2 Modeling Logical Conditions Using Binary Variables

Logical Condition	Constraint Model Form
If A, then B	$B \ge A \text{ or } B - A \ge 0$
If not A, then B	$B \ge 1 - A \text{ or } A + B \ge 1$
If A, then not B	$B \le 1 - A \text{ or } B + A \le 1$
At most one of A and B	$A + B \leq 1$
If A, then B and C	$(B \ge A \text{ and } C \ge A) \text{ or } B + C \ge 2A$
If A and B, then C	$C \ge A + B - 1 \text{ or } A + B - C \le 1$

Supply Chain Facility Location

- $X_{ij} = 1$ if customer zone j is assigned to DC i, and 0 if not, and $Y_i = 1$ if CD i is chosen from among a set of k potential locations.
- C_{ij} = the total cost of satisfying the demand in customer zone j from DC i.

Plant Location Model

TABLE 14.3 Plant Location Data

Plant	Cleveland	Baltimore	Chicago	Phoenix	Capacity
Marietta	\$12.60	\$14.35	\$11.52	\$17.58	1,200
Minneapolis	\$9.75	\$16.26	\$8.11	\$17.92	800
Fayetteville	\$10.41	\$11.54	\$9.87	\$11.64	1,500
Chico	\$13.88	\$16.95	\$12.51	\$8.32	1,500
Demand	300	500	700	1,800	

Select a new plant from among Fayetteville and Chico

IP Model

 $\begin{array}{l} \text{Minimize } 12.60 \textbf{X}_{11} + 14.35 \textbf{X}_{12} + 11.52 \textbf{X}_{13} + 17.58 \textbf{X}_{14} + 9.75 \textbf{X}_{21} + 16.26 \textbf{X}_{22} \\ + 8.11 \textbf{X}_{23} + 17.92 \textbf{X}_{24} + 10.41 \textbf{X}_{31} + 11.54 \textbf{X}_{32} + 9.87 \textbf{X}_{33} + 11.64 \textbf{X}_{34} + 13.88 \textbf{X}_{41} \\ + 16.95 \textbf{X}_{42} + 12.51 \textbf{X}_{43} + 8.32 \textbf{X}_{44} \end{array}$

$$X_{11} + X_{12} + X_{13} + X_{14} \le 1200$$

 $X_{21} + X_{22} + X_{23} + X_{24} \le 800$
 $X_{31} + X_{32} + X_{33} + X_{34} \le 1500 Y_1$
 $X_{41} + X_{42} + X_{43} + X_{44} \le 1500 Y_2$
 $X_{11} + X_{21} + X_{31} + X_{41} = 300$
 $X_{12} + X_{22} + X_{32} + X_{42} = 500$
 $X_{13} + X_{23} + X_{33} + X_{43} = 700$
 $X_{14} + X_{24} + X_{34} + X_{44} = 1800$
 $Y_1 + Y_2 = 1$
 $X_{ij} \ge 0$, for all i and j
 $Y_1, Y_2 = 0,1$

Ensures that exactly one DC is selected. Y₁ corresponds to Fayetteville; Y₂ corresponds to Chico

Spreadsheet Model

1	A	В	С	D	Е	F	G	Н	I	J	
1	Plant Location Model										
2											
3	Data										
4			Distribution	n Center							
5	Plant	Cleveland	Baltimore	Chicago	Phoenix	Capacity					
6	Marietta	\$ 12.60	\$ 14.35	\$11.52	\$17.58	1200					
7	Minneapolis	\$ 9.75	\$ 16.26	\$ 8.11	\$17.92	800					
8	Fayetteville	\$ 10.41	\$ 11.54	\$ 9.87	\$11.64	1500					
9	Chico	\$ 13.88	\$ 16.95	\$12.51	\$ 8.32	1500					
10	Demand	300	500	700	1800						
11											
12	Model										
13											
14	Amount Shipped		Distribution	n Center							
15	Plant	Cleveland	Baltimore	Chicago	Phoenix	Total shipped			New Plant Chosen	Surplus Capacity	
16	Marietta	200	500	0	300	1000		Fayetteville	0		0
17	Minneapolis	100	0	700	0	800		Chico	1		0
18	Fayetteville	0	0	0	0	0		Total	1		
19	Chico	0	0	0	1500	1500					
20	Demand met	300	500	700	1800						
21											
22	Total cost										
23	\$ 34,101										

Solver Model

Modeling Fixed Costs

- Multiperiod Production Planning Model
 - $Y_A = 1$ if production occurs during the Autumn, and 0 if not
 - $Y_W = 1$ if production occurs during the Winter, and 0 if not
 - Y_S = 1 if production occurs during the Spring, and 0 if not

Minimize
$$11P_A + 14P_W + 12.50P_S + 1.20I_A + 1.20I_W + 1.20I_S + 65(Y_A + Y_W + Y_S)$$

$$P_A - I_A = 150$$

 $P_W + I_A - I_W = 400$
 $P_S + I_W - I_S = 50$
 $P_A \le 600Y_A$
 $P_W \le 600Y_S$

Spreadsheet Implementation

Δ	Α		В	С		D		
1	Kristin's Kreations	s Fixe	ed Cost	Mo	del			
2								
3	Cost	Quar	ter 1	Qυ	arter 2	Qυ	arter 3	
4	Production	\$	11.00	\$	14.00	\$	12.50	
5	Inventory	\$	1.20	\$	1.20	\$	1.20	
6	Demand		150		400		50	
7	Fixed cost	\$	65.00	\$	65.00	\$	65.00	
8								
9		Quar	ter 1	Qυ	arter 2	Qυ	arter 3	
10	Production		600		0	0		
11	Inventory		450		50	0		
12	Binary		1		0		(
13								
14	Binary constraints		600		0		(
15	Net production		150		400		50	
16								
17		Cost						
18	Total	\$ 7	,265.00					

	А	В	С	D
1	Kristin's Kreations	_		_
2				
3	Cost	Quarter 1	Quarter 2	Quarter 3
4	Production	11	14	12.5
5	Inventory	1.2	1.2	1.2
6	Demand	150	400	50
7	Fixed cost	65	65	65
8				
9		Quarter 1	Quarter 2	Quarter 3
10	Production	600	0	0
11	Inventory	450	50	0
12	Binary	1	0	0
13				
14	Binary constraints	=600*B12	=600*C12	=600*D12
15	Net production	=B10-B11	=C10-C11+B11	=D10-D11+C11
16				
17		Cost		
18	Total	=SUMPRODUCT(B4:D5,B10:D11) + 65*(B12+C12+D12)		

Nonlinear Optimization

- Either objective function or constraint functions are not linear
- Models are unique in structure
- Solution techniques are different from linear and integer optimization

Hotel Pricing With Elastic Demand

A 450-room hotel has the following history:

Room Type	Rate	Daily Avg. No. Sold	Revenue
Standard	\$85	250	\$21,250
Gold	\$98	100	\$9,800
Platinum	\$139	50	\$6,950
		Total revenu	ıe \$38,000

Room Type	Price Elasticity of Demand
Standard	–1.5
Gold	–2.0
Platinum	–1.0

Model Development

- Projected number of rooms of a given type sold =
 (Historical Average Number of Rooms Sold) + (Elasticity)(New Price Current Price)(Historical Average Number of Rooms Sold)/(Current Price)
- Define S = price of a standard room, G = price of a gold room, and P = price of a platinum room.

```
Total Revenue = S(625 - 4.41176S) + G(300 - 2.04082G) + P(100 - 0.35971P)
```

 $= 625S + 300G + 100P - 4.41176S^{2} - 2.04082G^{2} - 0.35971P^{2}$

Model

Maximize $625S + 300G + 100P - 4.41176S^2 - 2.04082G^2 - 0.35971P^2$

 $70 \le S \le 90$ (price range restrictions)

 $90 \leq G \leq 110$

 $120 \le P \le 149$

 $(625 - 4.41176S) + (300 = 2.04082G) + (100 = 0.35971P) \le 450$

or $1025 - 4.41176S - 2.04082G - 0.35971P \le 450$ (room limitation)

Spreadsheet and Solver Model

A	Α		В		С		D	Е	F
1	1 Marquis Hotel								
2									
3	Data								
4		Cu	rrent	Αv	erage			Total Room	
5	Room type	Ra	te	Da	ily Sold	Ela	asticity	Capacity	
6	Standard	\$	85.00		250		-1.5	450	
7	Gold	\$	98.00		100		-2		
8	Platinum	\$	139.00		50		-1		
9									
10	Model							Projected	
11								Rooms	Projected
12	Room type	Ne	w Price		Price	Ra	inge	Sold	Revenue
13	Standard	\$	76.87	\$	70.00	\$	90.00	286	\$21,974.39
14	Gold	\$	90.00	\$	90.00	\$	110.00	116	\$10,469.39
15	Platinum	\$	145.04	\$	120.00	\$	149.00	48	\$ 6,936.87
16							Totals	450	\$39,380.65

Solving Nonlinear Models

- Select Standard GRG Nonlinear in Premium Solver as the solution procedure
- Sensitivity report is different for nonlinear models
 - Reduced gradient is analogous to reduced cost, but more difficult to interpret
 - Lagrange multipliers are similar to shadow prices, but give only approximate rates of change

Solver Answer Report

- A	АВ	С	D			E	F	G
11								
12	Target Ce	ell (Max)						
13	Cell	Name	Original	Value	Fina	al Value	_	
14	\$F\$16	Totals Revenue		0	393	380.65104	_	
15								
16								
17	Adjustabl							
18	Cell	Name	Original	Value		al Value		
19		Standard New Price	\$	-	\$	76.87	_	
20	\$B\$14	Gold New Price	\$	-	\$	90.00	_	
21	\$B\$15	Platinum New Price	\$	-	\$	145.04		
22								
23	Constrair	nts						
24	Cell	Name	Cell V	alue	Fo	rmula	Status	Slack
25	\$E\$16	Totals Sold	450.00	00004	\$E\$16	S<=\$E\$6	Binding	0
26	\$B\$13	Standard New Price	\$	76.87	\$B\$13	3>=\$C\$13	Not Binding	6.87476046
27	\$B\$14	Gold New Price	\$	90.00	\$B\$14	l>=\$C\$14	Binding	0
28	\$B\$15	Platinum New Price	\$ 1	45.04	\$B\$15	>=\$C\$15	Not Binding	25.0414271
29		Standard New Price		76.87		3<=\$D\$13		13.1252395
30	\$B\$14	Gold New Price	\$	90.00	\$B\$14	l<=\$D\$14	Not Binding	20
		DIE N. D.				- CDC4C	Not Binding	0.05057000
31	CDC1E	Platinum New Price	4 4	45.04	THE TE		NIOT HIDAIDA	2 UEQE / 300

Solver Sensitivity Report

	A B	С		D		E
4						
5	Target Ce	ll (Max)				
6	Cell	Name	Fir	nal Value		
7	\$F\$16	Totals Revenue	39	380.65104		
8						
9	Adjustable	e Cells				
10				Final	R	educed
11	Cell	Name		Value	G	radient
12	\$B\$13	Standard New Price	\$	76.87	\$	-
13	\$B\$14	Gold New Price	\$	90.00	\$	(42.69)
14	\$B\$15	Platinum New Price	\$	145.04	\$	-
15						
16	Constrain	ts				
17				Final	La	igrange
18	Cell	Name		Value	M	ultiplier
19	\$E\$16	Totals Sold	45	0.0000004	12.	08293216

Markowitz Portfolio Model

Select stocks to minimize portfolio variance

$$\sum_{i=1}^{k} s_i^2 x_i^2 + \sum_{i=1}^{k} \sum_{j>i} 2s_{ij} x_i x_j$$

and ensure a specified expected return

- s_i^2 = the sample variance in the return of stock i
- s_{ij} = the sample covariance between stocks
 i and j

Example

Variance-Covariance Matrix

	Stock 1	Stock 2	Stock 3
Stock 1	.025	.015	002
Stock 2		.030	.005
Stock 3			.004

Exp. return 10%

12%

7%

Minimize Variance =

$$.025 x_1^2 + .030 x_2^2 + .004 x_3^2 + 0.03 x_1 x_2 - 0.004 x_1 x_3 + 0.010 x_2 x_3$$

$$x_1 + x_2 + x_3 = 1$$

$$10x_1 + 12x_2 + 7x_3 \ge 10 \text{ (required return)}$$

$$x_1, x_2, x_3 \ge 0$$

Spreadsheet Model

	Α	В	С	D	Е	F	G
1	Markowitz Model						
2							
3	Data						
4		Expected			Variand	e-Covariance N	latrix
5		Return			Stock 1	Stock 2	Stock 3
6	Stock 1	10%		Stock 1	0.025	0.015	-0.002
7	Stock 2	12%		Stock 2		0.03	0.005
8	Stock 3	7%		Stock 3			0.004
9	Target Return	10%					
10							
11	Model						
12					Variance C	Calculations	
13		Allocation			Squared Terms	Cross-Products	
14	Stock 1	0.25			0.001579256	0.003387	
15	Stock 2	0.45			0.006053361	-0.000301067	
16	Stock 3	0.30			0.000358718	0.001345191	
17	Total	1					
18							
19							
20		Return	Variance				
21	Portfolio	10.0%	0.012				

Sensitivity Report

	АВ	С	D	Е
4				
5	Objective (Cell (Min)		
6	Cell	Name	Final Value	
7	\$C\$21	Portfolio Variance	0.01242246	
8				
9	Decision \	/ariable Cells		
10			Final	Reduced
11	Cell	Name	Value	Gradient
12	\$B\$14	Stock 1 Allocation	0.25	0.00
13	\$B\$15	Stock 2 Allocation	0.45	0.00
14	\$B\$16	Stock 3 Allocation	0.30 0.	
15				
16	Constraint	S		
17			Final	Lagrange
18	Cell	Name	Value	Multiplier
19	\$B\$17	Total Allocation	1	-0.038363637
20	\$B\$21	Portfolio Return	10.0%	63.2%

Risk versus Return Profile

Evolutionary Solver for Nonsmooth Optimization

- Used for difficult nonlinear problems and models using Excel functions such as IF, ABS, MIN, and MAX
- Evolutionary Solver uses heuristics intelligent rules for systematically searching among solutions—that remember the best solutions they find, then modifying or combining them in attempting to find better solutions.

Fixed Cost Model

The objective function in cell B16 is =SUMPRODUCT(B4:D5,B10:D11) + IF(B10>0,B7,0)+IF(C10>0,C7,0)+IF(D10>0,D7,0).

1	А		В		С		D
1	Kristin's Kreati	ons	Evolutio	ona	ary Sol	/er	Model
2							
3	Cost	Qua	rter 1	Qυ	ıarter 2	Qu	arter 3
4	Production	\$	11.00	\$	14.00	\$	12.50
5	Inventory	\$	1.20	\$	1.20	\$	1.20
6	Demand		150		400		50
7	Fixed cost	\$	65.00	\$	65.00	\$	65.00
8							
9		Qua	rter 1	Qυ	ıarter 2	Qu	arter 3
10	Production		550		0		50
11	Inventory		400		0		0
12							
13	Net production		150		400		50
14							
15		Cos	t				
16	Total	\$7,	285.00				

Location Model

 Locate a tool bin to minimize the weighted distance between the location coordinates and each production cell

Cell	X-coordinate	Y-coordinate	Demand
Fabrication	1	4	12
Paint	1	2	24
Subassembly 1	2.5	2	13
Subassembly 2	3	5	7
Assembly	4	4	17

Minimize
$$12(|X - 1| + |Y - 4|) + 24(|X - 1| + |Y - 2|) + 13(|X - 2.5| + |Y - 2|) + 7(|X - 3| + |Y - 5) + 17(|X - 4| + |Y - 4|)$$

Spreadsheet and *Solver*Models

4	Α	В	С	D
1	Edwards Manufa	cturing		
2				
3	Data			
4				
5	Cell	x-coordinate	y-coordinate	Demand
6	Fabrication	1	4	12
7	Paint	1	2	24
8	Subassembly 1	2.5	2	13
9	Subassembly 2	3	5	7
10	Assembly	4	4	17
11	Maximum	4	5	
12				
13	Model			
14	Tool bin location	2.499997179	2.489551412	
15				
16	Cell	Weighted Distance		
17	Fabrication	36.1253492		
18	Paint	47.7491662		
19	Subassembly 1	6.364205031		
20	Subassembly 2	21.07315986		
21	Assembly	51.17767394		
22	Total	162.4895542		

Job Sequencing

A custom manufacturing company has ten jobs waiting to be processed. Each job i has an estimated processing time (P_i) and a due date (D_i) that was requested by the customer, as shown in the table below:

Job	1	2	3	4	5	6	7	8	9	10
Time Due date					-					

Performance Measures

- Lateness (L_i) is the difference between the completion time and the due date (either positive or negative).
- Tardiness (T_i) is the amount of time by which the completion time exceeds the due date; thus tardiness is zero if a job is completed early.

Spreadsheet Model

	А	В	С	D	Е	F	G	Н	1	J	K
14		В	C	U	С	г	G	п		J	N
1	Job Sequencing										
2	D-4-										
3	Data		2	2		-		-			40
4	Job	1	2	3	4	5	6	7	8	9	10
5	Time	8	7	6	4	10	8	10	5	9	5
6	Due date	26	27	39	28	23	40	25	35	29	30
7											
8	Model										
9	Sequence	1	2	3	4	5	6	7	8	9	10
10	Job Assigned		7	1	2	4	9	10	8	3	6
11	Processing time	10	10	8	7	4	9	5	5	6	8
12	Completion time	10	20	28	35	39	48	53	58	64	72
13	Due Date	23	25	26	27	28	29	30	35	39	40
14	Lateness	-13	-5	2	8	11	19	23	23	25	32
15	Tardiness	0	0	2	8	11	19	23	23	25	32
16											
17	Average Completion Time	42.7									
18	Maximum Number Tardy	8									
19	Total Lateness	125									
20	Average Lateness	12.5									
21	Variance of Lateness	188.85									
22	Total Tardiness	143									
23	Average Tardiness	14.3									
24	Variance of Tardiness	121.21									

Solver Model with Alldifferent Constraint

Minimum Total Tardiness Solution Using *Evolutionary Solver*

4	А	В	С	D	Е	F	G	Н	1	J	K
1	Job Sequencing										
2	· · · · · · · · · · · · · · · · · · ·										
3	Data										
4	Job	1	2	3	4	5	6	7	8	9	10
5	Time	8	7	6	4	10	8	10	5	9	5
6	Due date	26	27	39	28	23	40	25	35	29	30
7											
8	Model										
9	Sequence	1	2	3	4	5	6	7	8	9	10
10	Job Assigned	2	5	1	4	10	8	3	6	9	7
11	Processing time	7	10	8	4	5	5	6	8	9	10
12	Completion time	7	17	25	29	34	39	45	53	62	72
13	Due Date	27	23	26	28	30	35	39	40	29	25
14	Lateness	-20	-6	-1	1	4	4	6	13	33	47
15	Tardiness	0	0	0	1	4	4	6	13	33	47
16											
17	Average Completion Time	38.3									
18	Maximum Number Tardy	7									
19	Total Lateness	81									
20	Average Lateness	8.1									
21	Variance of Lateness	331.69									
22	Total Tardiness	108									
23	Average Tardiness	10.8									
24	Variance of Tardiness	236.96									

Crystal Ball Results

Risk Analysis and Optimization

- Crystal Ball may be used to conduct post-optimality risk analysis to understand the impact of uncertainty of optimization model parameters.
- Example Hotel Pricing Model
 - Assume price-demand elasticities may vary by plus or minus 25%

Crystal Ball Results

Forecast Chart for a 10% Risk of Exceeding Capacity

Solver Solution for 443 Room Capacity

	Α		В		С		D	E	F
1	Marquis Ho	tel							
2									
3	Data								
4		Cu	rrent	Αv	erage			Total Room	
5	Room type	Ra	te	Da	ily Sold	Ela	sticity	Capacity	
6	Standard	\$	85.00		250		-1.5	443	
7	Gold	\$	98.00		100		-2		
8	Platinum	\$	139.00		50		-1		
9									
10	Model							Projected	
11								Rooms	Projected
12	Room type	Ne	w Price		Price	Ra	nge	Sold	Revenue
13	Standard	\$	78.34	\$	70.00	\$	90.00	279	\$21,886.69
14	Gold	\$	90.00	\$	90.00	\$	110.00	116	\$10,469.39
15	Platinum	\$	146.51	\$	120.00	\$	149.00	47	\$ 6,929.72
16							Totals	443	\$39,285.80

Crystal Ball Confirmation Run

OptQuest: Combining Optimization and Simulation

- OptQuest searches for optimal solutions within Crystal Ball simulation model spreadsheets.
- OptQuest is also designed to find solutions that satisfy a wide variety of constraints or a set of goals that you may define.

- 1. Create a Crystal Ball model of the decision problem.
- 2. Define the decision variables within Crystal Ball.
- 3. Run OptQuest from the Crystal Ball Tools group.
- 4. Specify objectives, decision variables, constraints, and other options as appropriate.
- 5. Solve the optimization problem.

Portfolio Allocation Model

	A	В		С		D	E	
1	Portfolio Allocation Model							
2		Annual					Risk facto	r
3	Investment	return	- 1	Minimum	Ma	aximum	per dolla	Г
4	Life Insurance	5.0%	\$	2,500.00	\$	5,000.00		-0.5
5	Bond mutual funds	7.0%	\$	30,000.00		none		1.8
6	Stock mutual funds	11.0%	\$	15,000.00		none		2.1
7	Savings Account	4.0%		none		none		-0.3
8	Total amount available	\$100,000				Limit	100,	000
9								
10		Amount					Total weigh	ted
11	Decision variables	invested					risk	
12	Life Insurance	\$ 5,000.00					146,000	.00
13	Bond mutual funds	\$ 50,000.00						
14	Stock mutual funds	\$ 30,000.00					Total expec	ted
15	Savings Account	\$ 15,000.00					return	
16	Total amount invested	\$ 100,000.00					\$ 7,650	.00

Define Decision Variable Dialog

OptQuest Objectives Screen

OptQuest Decision Variable Selection Screen

OptQuest Constraints Screen

OptQuest Options Screen

OptQuest Results

Crystal Ball Results

Adding a Requirement

OptQuest Results with Requirement

