INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

PROBABILITY AND STATISTICS QUESTION BANK

1	Department	COMPUT	COMPUTER SCIENCE AND ENGINEERING			
2	Course Title	PROBAB	PROBABILITY AND STATISTICS			
3	Course Code	AHSD02	AHSD02			
4	Program	B.Tech				
5	Semester	III				
6	Regulation	BT-23				
			Theory			Practical
7	Structure of the course	Lecture	Tutorials	Credits	Lab	Credits
		3	1	4	-	-
	Type of course	Core	Professional	Open	VAC	MOOCs
8	(Tick type of course)	Corc	Elective	Elective	VAC	MOOOS
		✓	×	×	×	×
9	Course Offered	Odd Semest	er 🗸	Even Semes	ter ×	
	Total lecture, tutorial	and practic	cal hours for	this course		
10	(16 weeks of teaching	per semeste	er)			
	Lectures: 48 hours		Tutorials:	16 hours	Practical:	0 hours
11	Course Instructor	Dr. G SRIN	IIVASU			
12	Date Approved by BOS	23/08/2023				
13	Course Webpage	www.iare.ac	e.in/			
1.4		Level	Course Code	Semester	Prerequisi	ites
14	Course Prerequistes	B.Tech	AHSD02 AHSD08	I/ II	Matrices an	nd Calculus / DEVC

15. COURSE OBJECTIVES:

The students will try to learn:

I	The theory of probability, conditional probability, Bayes theorem and their applications.
II	The theory of random variables, basic random variate distributions and their applications.
III	The role of Binomial, Poisson and Normal distributions in solving the real-life problems.
IV	The methods and techniques for quantifying the degree of closeness among two or more variables by using coefficient of correlation and the concept of linear regression analysis.

V The Estimation theory and hypothesis testing in statistics play a vital role in the assessment of the quality of the materials, products and ensuring the standards of the engineering process.

16. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Define the axioms of the probability, conditional probability and by using these concepts, establish the elementary theorems on probability. Explain the role of Bayes theorem in solving the typical uncertain problems in probability.	Understand
CO 2	Explain the role of random variables and types of random variables, expected values of the discrete and continuous random variables under randomized probabilistic conditions.	Understand
CO 3	Interpret the parameters of descrete random variate Probability distributions such as Binomial, Poisson distributions by using their probability functions, expectation and variance.	Understand
CO 4	Apply the Normal distribution for the problems defined under continuous random variables to find probabilities.	Apply
CO 5	Identify Bivariate Regression as well as Correlation Analysi for statistical forecasting	Apply
CO 6	Identify the role of statistical hypotheses, confidence intervals, the tests of hypotheses for large samples and small samples in making decisions over statistical claims in hypothesis testing	Apply

QUESTION BANK:

Q.No	QUESTION	Taxonomy	How does this subsume the level	CO's		
		MODULE I				
	PROBABILITY THEORY					
PAR	T A-PROBLEM SOLVING	AND CRITI	CAL THINKING QUES	STIONS		
1	A committee consists of 9 students 2 of which are from 1st year, 3 from second year and 4 from third year. Three students are to be removed at random. What is the chance that (i) The three students belong to different classes. (ii) Two belong to the same class and third to the different class. (iii) The three belong to the same class.	Understand	Learner to recall the concept of a theory of probability and use it to calculate the required solutions.	CO 1		
2	Out of $(2n+1)$ tickets consecutively numbered, three tickets are drawn at random. find the probability that the numbers on them are in Arithmetical Progression (A.P).	Understand	Learner to recall the concept of a theory of probability and use it to calculate the required solutions.	CO 1		
3	State and prove Law of addition of probability for two events	Understand	Learner to recall the concept of axioms of probability and use it to prove the theorem.	CO 1		
4	Define conditional probability and state and prove the multiplication theorem on probability	Understand	Learner to recall the concept of conditional probability and use it to prove the theorem.	CO 1		
5	If A and B are two independent events then show that (i) \bar{A} and B (ii) A and \bar{B} (iii) \bar{A} and \bar{B} are also independent.	Understand	Learner to recall the concept of independent events and use it to prove the theorem.	CO 1		
6	For any two events A and B , prove that $P(A \cap B) \leq P(A) \leq P(A \cup B) \leq P(A) + P(B).$	Understand	Learner to recall the concept of theory of probability and use it to prove the theorem.	CO 1		

7	If two dice are thrown, what is the probability that the sum is (i) greater than 8 and (ii) neither 7 nor 11.	Understand	Learner to recall the concept of theory of probability and addition theorem to find the solution.	CO 1
8	Why does it pay to bet consistently on seeing 6 at least once in 4 throws of a die, but not on seeing a double six at least once in 24 throws with two dice.	Understand	Learner to recall the concept of theory of probability to find the solution.	CO 1
9	A problem in statistics is given to the three students A, B and C whose chances of solving it or $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently.	Understand	Learner to recall the concept of theory of probability to find the solution.	CO 1
10	Three boxes contains: 3 red, 4 white and 1 blue; 1 red, 2 white and 3 blue balls; 4 red, 3 white, and 2 blue balls. One box is chosen at random and a ball is withdrawn it happens to be red. What is the probability that it come from box two.	Understand	Learner to recall the concept of Bayes theorem to find the solution.	CO 1
	PART-B LON	G ANSWER	QUESTIONS	
1	A has one share in a lottery in which there is one prize and two blanks; B has three shares in a lottery in which there are three prizes and six blanks compare the probability of A's success to that of B's success.	Understand	Learner to recall the concept of theorem of probability to find the solution.	CO 1
2	A bag contains 5 red and 10 black balls. 8 of them are placed in another box. What is the chance that the later box contains 2 red and 6 black balls.	Understand	Learner to recall the concept of theorem of probability to find the solution.	CO 1

3	Let A and B be two events such that $P(A) = 3/4$ and P(B) = 5/8, show that $(i)P(A \cup B) \ge 3/4$ $(ii)3/8 \le p(A \cap B) \le 5/8$.	Understand	Learner to recall the concept of theorem of probability to find the solution.	CO 1
4	A bag contains 10 gold and 8 silver coins. Two successive drawings of 4 coins are made such that (i) coins are replaced before the second trial. (ii) the coins are not replaced before the second trial. Find the probability that the first drawing will give 4 gold and the 4 silver coins.	Understand	Learner to recall the concept of theorem of probability to find the solution.	CO 1
5	If A, B, C are mutually independent events then prove that $A \cup B$ and C are also independent.	Understand	Learner to recall the axioms of probability to find the solution.	CO 1
6	A box contains 6 red, 4 white and 5 black balls. A person draws 4 balls at random from the box. Find the probability that among the balls drawn there is at least 1 ball of each colour.	Understand	Learner to recall the concepts of theorem of probability to find the solution.	CO 1
7	A box contains 4 tickets numbered 1, 2, 3, 4 and another box contains 6 tickets numbered 2, 4, 6, 7, 8, 9. If one of the two boxes is chosen at random and a ticket is drawn random from the chosen box. find the probabilities that the ticket drawn bears the number (i) 2 or 4 (ii) 3 (iii) 1 or 9.	Understand	Learner to recall the concepts of theorem of probability to find the solution.	CO 1
8	A and B throw alternatively with a pair of ordinary dice. A wins if he throws 6 before B throws 7 and B wins if he throws 7 before A throws 6. If A begins show that his chance of wining is 30/61.	Understand	Learner to recall the concepts of theorem of probability to find the solution.	CO 1

9	In a bolt factory machines A, B, C manufactured 20%, 30% and 50% of the total. Of their output 6%, 3% and 2% are defective. A bolt is withdrawn at random and found to be defective. find the probabilities that it is manufactured from (i) Machine A (ii) Machine B (iii) Machine C .	Understand	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
10	A business man goes to hotels $X,Y,Z,20\%,50\%,30\%$ of the time respectively. It is known that $5\%,4\%,8\%$ of the rooms in X,Y,Z hotels have faulty plumbings. What is the probability that business man's room having faulty plumbing id assigned to hotel Z	Understand	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
11	If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{5}$, then find $(i)P(A \cup B)$ $(ii)P(\bar{A} \cap B)$ (iii) $P(A \cap \bar{B})$ (iv) $P(\bar{A} \cap \bar{B})$	Understand	Learner to recall the concepts of theory of probability to find the solution.	CO 1
12	From six gentle men and four ladies, a committee of five is to be formed. Find the probability that this can be done so as to always include at least one lady.	Understand	Learner to recall the concepts of theory of probability to find the solution.	CO 1
13	Frind the probability that in a random arrangement of the letters of the word UNIVERSITY, the two I's do not come together.	Understand	Learner to recall the concepts of theory of probability to find the solution.	CO 1
14	Six boys and six girls sit in a row at random .What is the probability that a) The six girls sit together b)Boys and girls sit alternately.	Understand	Learner to recall the concepts of theory of probability to find the solution.	CO 1

15	A,B and C in order toss a coin .The first one to toss head wins the game.what are the probabilities of winning ,assuming that the game may continue indefinitely.	Understand	Learner to recall the concepts of theory of probability to find the solution.	CO 1
16	In a class there are 10 boys and 5 girls. A committee of 4 students are to be selected from the class. Find the probability for the committee to contain at least three girls.	Understand	Learner to recall the concepts of theory of probability to find the solution.	CO 1
17	Suppose 5 men out of 100 and 25 women out of 10,000 are color blind. A color blind person is chosen at random. What is the probability of the person being a male.	Understand	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
18	In a certain college, 4% of men and 1% of women are taller than 1.8m. further more 60% of the students are women.Now,if a student is selected at random and is taller than 1.8m., What is the probability that the student is a women?	Understand	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
19	A can hit a target 3 times in 5 shots,B can hit a target 2 times in 5 shots and C ,3 times in 4 shots . Find the probability of the target being hit ,when all of them try .	Understand	Learner to recall the concepts of addition theorem to find the solution.	CO 1
20	Three men A,B and C hit a target with the respective probabilities 1/3,1/4 and 1/5. Each one of them shoots once at the target. a) What is the probability that one of them misses the target? b) If only one misses the target, then what is the probability that it is the second man?	Understand	Learner to recall the concepts of multiplication theorem to find the solution.	CO 1

	PART-C SHOP	RT ANSWEF	R QUESTIONS	
1	State the classical definition of probability?	Understand	_	CO 1
2	What is the chance that a leap-year selected at random contains 53 sundays.	Understand	_	CO 1
3	If a coin is tossed twice then find probability of getting at least one head.	Understand	_	CO 1
4	A bag contains three red balls, 4 white balls and 7 black balls. Find the probability of drawing red or black ball.	Understand		CO 1
5	A coin is tossed n times then the probability that the head will present itself an odd number of times.	Understand		CO 1
6	Two cards are drawn at random from a pack of 52 cards. Find the pprobability of these two being aces.	Understand		CO 1
7	Define conditional probability.	Understand	_	CO 1
8	State multiplication theorem on probability for three events.	Understand	_	CO 1
9	State addition theorem on probability for three events.	Understand	_	CO 1
10	Six boys and six girls sit round a table randomly. Find the probability that all the six girls sit together.	Understand	_	CO 1
11	Find the chance that a non leap-year contains 53 Mondays.	Understand	_	CO 1
12	State Bayes Theorem	Understand	_	CO 1
13	Define Random Experiment with an example.	Understand	_	CO 1
14	Define exhaustive outcomes in an experiment with two examples.	Understand		CO 1
15	Define Mutually exclusive events with an example.	Understand	_	CO 1

16	Define simple and complex events with examples.	Understand		CO 1
17	State the classical definition of probability. If a fair coin is tossed six times. Calculate the probability of getting four heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 6 times.	CO 1
18	State the limitations of classical definition of probability.	Understand	_	CO 1
19	Outline the classical definition of probability. A coin is tossed 9 times. Calculate the probability of getting 5 heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 9 times.	CO 1
20	State the axioms of probability.	Understand	_	CO 1
		MODULE II		
		OOM VARIA		
	RT A-PROBLEM SOLVING	1	-	
1	The probability density function of a random variable X is Calculate the value of $f(x) = \begin{cases} 3x^2, 0 < x < 1 \\ 0, otherwise \end{cases}$ calculate the value a, if $P(a \le x \le 1) = \frac{19}{81}$	Understand	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2

		TT 1 . 1	7	
2	The daily consumption of electric power (in millions of kW-hours) is a random variable having the probability density function $f(x) = \begin{cases} \frac{1}{9}xe^{\frac{-x}{3}}, x > 0\\ 0, otherwise \end{cases}$ If the total production is 12 million kW-hours, determine the probability that there is a power cut on a given day.	Understand	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
3	A fair coin is tossed until a head or five tails occurs. Find the expected number E of tosses of the coin.	Understand	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
4	A fair die is tossed. Let the random variable X denote the twice the number appearing on the die:(i) construct the probability distribution of X hence find Mean and Variance.	Understand	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
5	If $f(x) = k e^{ -x }$ is probability density function in the interval, x is a real, then evaluate ii) Mean iii) Variance iv) $P(0 < X < 4)$. By finding k.	Understand	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2

random variable and use it to calculate the continuous range probabilities, expected values. 7 The density function of a random variable X is $f(x) = \begin{cases} e^{-x}, x \geq 0 \\ 0, otherwise \end{cases}$ Understand Learner to recall the concept of a continuous random variable and explain the properties of	CO 2
random variable X is concept of a continuous	
evaluate $E[X]$, $E(X^2)$, $V(X)$. evaluate $E[X]$, $E(X^2)$, $V(X)$. explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
8 If $E[X] = 10$, $V(X)=1$, then Calculate $E(2X(X+10))$. Understand Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the expected values.	CO 2
A discrete random variable X has the following probability distribution. Calculate (i) k (ii) $P(X < 3)$ (iii) $P(X > 5)$. Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
x 1 2 3 4 5 6 7 8 P(X) 2k 4k 6k 8k 10k 12k 14k 4k	

10	For the continuous revariable X whose prodensity function is general $f(x) = \begin{cases} cx(2-x), 0 \le 0, otherwise \end{cases}$ Calculate c, mean an variance of X.	obability iven by $\leq x \leq 2$		Unders	stand	ran exp pro fun ran it t com	dom dom dann te dom dom dom te	to recall the of a continuous variable and the properties of ity density of a continuous variable and use culate the us range ities, expected	CO 2
	PART	r-B LO	NG	ANS	WEF	l QU	EST	IONS	
1	Let X denotes the most the two numbers of appear when a pair of dice is thrown once. the (i) Discrete probability distribution (ii) Exp. (iii) Variance.	that of fair calcular ability	ze	Unders	stand	con ran exp pro of a var cald	dom dann tallan	to recall the of a discrete variable and the properties of ity mass function rete random and use it to the discrete obabilities, values.	CO 2
2	Let X denotes the mean heads in a single took coins. Determine P(1 P(1 < X ≤ 3)	ir	Unders	stand	con ran exp pro of a var cald	dom dann tallan	to recall the of a discrete variable and the properties of ity mass function rete random and use it to the discrete obabilities, values.	CO 2	
3	A random variable X following probability function. Calculate (Expectation (ii) vari Standard deviation.		Unders	stand	con ran exp pro of a var cald	dom dan te dan t	to recall the of a discrete variable and the properties of ity mass function rete random and use it to the discrete obabilities, l values.	CO 2	
		X	-1	0	1	2	3		
		P(X)	0.3	0.1	0.1	0.3	0.2		

4	Find the mean and of the uniform prodistribution given 1/n for x=1,2,3,		Under	rstand	con ran exp pro of a	cept of dom valain the bability discre	recall the a discrete ariable and e properties of mass function te random and use it to	CO 2	
5	A random variable	X has t	he	Under	rstand	ran exp	ge probected v	he discrete pabilities, ralues. recall the	CO 2
	following probabili function. Calculate Expectation (ii) va Standard deviation			ran exp pro of a var cale	dom valain the bability discressible are culate t	a discrete criable and e properties of mass function te random and use it to he discrete pabilities, values.			
		x P(X)	8 1/8	12	16 3/8	$\frac{20}{1/4}$	24 1/12		
6	The length of time minutes) that a cespeaks on the telep found to be randor phenomenon, with probability function by the function of $f(x) = \begin{cases} Ae^{\frac{-x}{5}}, x \ge 0 \\ 0, otherwis \end{cases}$ Calculate the value makes $f(x)$ a probability function. (calculate the probability function.) (calculate the probability function.)	e (in rtain lad phone is m a n specific e of A the ability ii) ability the che phon	y eed at		rstand	Lea con ran exp pro fun ran it t	rner to cept of dom valain the bability ction of dom valous tinuous babiliti	recall the a continuous riable and e properties of density f a continuous riable and use late the s range es, expected	CO 2

7	If X denote the su two numbers that when a pair of fai	appear			Unde	rstan	.d	conce	pt of a	recall the a discrete riable and	СО	2
	tossed. Estimate Distribution funct Mean and (iii) Va					proba of a d	bility iscrete	properties of mass function e random d use it to				
						calcul	ate th proba	e discrete abilities,				
8	Is the function defollows a density of $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ If so, estimate the that the variate had density will fall in interval $(1, 2)$? Cumulative proba	1	Unde	rstan	d	Learn conce rando explai proba functi rando it to contin	er to a pt of a property of a property on of a property on of a property on our output of the property of a proper	recall the a continuous iable and properties of density a continuous iable and use ate the	СО	2		
9	If probability density function . $f(x) = \begin{cases} kx^3, 0 \le x \le 3 \\ 0, otherwise \end{cases}$ Calculate the value of K and Calculate the probability between $x=1/2$ and $x=3/2$.					rstan	d	concerando explair proba function rando it to continuo co	pt of a m var in the bility on of m var calcula nuous bilitie	recall the a continuous riable and properties of density a continuous riable and use ate the range s, expected	CO	2
10	A random variable x has the following probability function: Calculate (i) k (ii) P(x<6) (iii) P(X≥6)				Unde	rstan	d	concerando explai proba of a d varial calcul	pt of a m var in the bility iscrete ble and ate th proba	recall the a discrete riable and properties of mass function e random d use it to the discrete abilities, alues.	СО	2
		x P(X)		1 k	2 2k	3 2k	4 3k	$\frac{5}{k^2}$	$\frac{6}{2k^2}$			

11	Let X denotes the minimum of the two numbers that appear when a pair of fair dice is thrown once. calculate the (i) Discrete probability distribution (ii) Expectation (iii) Variance.	Understand	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
12	A random variable X has the following probability function: Then Calculate (i) k (ii) mean (iii) variance.	Understand	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
		-2 -1 0 0.1 k 0.2	1 2 3 2k 0.4 2k	
13	A continuous random variable has the probability density function $f(x) = \begin{cases} kxe^{-\lambda x}, for x \ge 0, \\ \lambda > 0 \\ 0, otherwise \end{cases}$ Evaluate (i) Mean (ii) Variance by finding k.	Understand	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
14	If the Probability density function of random variable is $f(x) = k(1 - x^2)$, $0 < x < 1$, then Calculate (i) k (ii) $P(0.1 < x < 0.2)$ (iii) $P(x > 0.5)$.	Understand	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2

15	A random variable X has the following probability function. Calculate (i) Expectation (ii) variance (iii) Standard deviation.			lersta	nd	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.				
		X	4	5	6	8				
		P(X)	0.1	0.3	0.4	0.2				
16	If X is a Continuous random variable whose density function is $ \begin{cases} x, if & 0 < x < 1 \\ (2-x), 1 \le x < 2, \\ 0 & elsewhere \end{cases} $ Evaluate $E(25X^2+30X-5)$.			lersta	nd	concept rando: explain probability function rando: it to continuous continuous continuous concept rando: explain probability rando: explain r	er to recall the pt of a continuous m variable and n the properties of bility density on of a continuous m variable and use calculate the nuous range bilities, expected .	CO 2		
17	The cumulative distribution function for a continuous random variable X is $f(x) = \begin{cases} 1 - e^{-2x}, & \text{if } x \geq 0 \\ 0, & x < 0 \end{cases}$ Evaluate (i) density function $f(x)$ (ii) Mean and (iii) Variance of the density function.			lersta	nd	concept rando explair probability function rando explair to continuous continuous continuous concept rando explair rando explair to continuous	er to recall the pt of a continuous m variable and n the properties of bility distributive on of a continuous m variable and use calculate the nuous range bilities, expected .	CO 2		
18		Two coins are tossed simultaneously. Let X denotes the number of heads then Calculate $E[X]$, $E[x^2]$,			nd	concept rando explair probation of a divariable calcular range	er to recall the ot of a discrete m variable and n the properties of bility mass function iscrete random ale and use it to ate the discrete probabilities, ted values.	CO 2		

19	Is the function defined by $f(x) = \begin{cases} 0, if & x < 2 \\ \frac{(2x+3)}{18}, 2 \le x \le 4, & \text{a} \\ 0, & x > 4 \end{cases}$ probability density function? Estimate the probability that a variate having $f(x)$ as density function will fall in the interval $2 \le x \le 3$.	Understand	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
20	The probability density function of a random variable X is $f(x) = \frac{k}{x^2+1}, -\infty < x < \infty$ Calculate K and the distribution function F(x).	Understand	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
	PART-C SHOP	RT ANSWER	QUESTIONS	
1	State the classical definition of probability?	Understand	_	CO 2
2	If $E(X) = 6$ and $E(X^2) = 100$ find the variance.	Understand	_	CO 2
3	If three coins are thrown at a time and X denotes the random variable which is defined as $X(x) = no$ of heads, write its probability distribution table.	Understand		CO 2
4	If $E(X) = 7$, $E(X^2) = 40$, find the value of $E(5X^2 - 11x + 8)$	Understand	_	CO 2
5	State the definitions of discrete and continuous random variables with a suitable example.	Understand	_	CO 2
6	List out the important Properties of probability density function.	Understand	_	CO 2

7	Find the probability distribution of getting number tails if we toss three coins calculate mean.	Understand		CO 2
8	State the definition of mathematical expectation of a probability distribution function	Understand	_	CO 2
9	State the definition of the Mean and Variance of a probability mass function.	Understand	_	CO 2
10	State the definition of the Mean and Variance of a probability density function.	Understand	_	CO 2
11	Find the probability distribution for sum of scores on dice if we throw two dice.	Understand	_	CO 2
12	Out of 24 mangoes, 6 mangoes are rotten. If two mangoes drawn at random, obtain probability distribution of number of rotten mangoes that can be drawn. also find the expectation	Understand		CO 2
13	If X is a random variable then show that $E[X+K]=E(X)+K$ where 'K' constant.	Understand	Learner to Explain the concept of random variable and Prove E [X+K]=E(X)+K, where 'K' constant.	CO 2
14	Show that $\sigma^2 = E(X^2) - \mu^2$.	Understand	Learner to Explain the concept of variance of a random variable and Prove	CO 2
15	State the definitions of the probability mass function and probability density of random variables.	Understand		CO 2
16	If X is Discrete Random variable then show that $V[aX+b]=a^2 V(X)$.	Understand	Learner to Explain the concept of variance of a random variable and Prove that $V[aX+b]=a^2$ $V(X)$.	CO 2

17	State the classical definition of probability. If a fair coin is tossed six times. Calculate the probability of getting four heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 6 times.	CO 2
18	State the definition of different types of random variables with example.	Understand		CO 2
19	Outline the classical definition of probability. A coin is tossed 9 times. Calculate the probability of getting 5 heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 9 times.	CO 2
20	State the definition of random variable with an example.	Understand	_	CO 2
		MODULE III		
DAR	T A-PROBLEM SOLVING	AND CRITI		TIONS
1	Show that the Poisson distribution is a limiting case of Binomial distribution.	Understand	Learner to recall the definitions of Binomial as well as Poisson distributions and outline the proof of the theorem that Poisson distribution is a limiting case of Binomial distribution.	CO 3
2	Derive the mean and variance of the Poisson distribution.	Apply	Learner to recall the definition of Poisson distribution and outline the proof of variance of Poisson distribution	CO 3
3	Explain the properties of Binomial distribution. Obtain the formula for mean of Binomial Distribution.	Understand	Learner to recall the definition of Binomial distribution and Outline the proof of mean of binomial distribution.	CO 3

5	The variance and mobinomial variable X parameters n and p 4. Calculate i) $P(X \ge 1)$ iii) $P(0 < 1)$ Calculate the expect frequencies of the B distribution to the findata	ad .	Unde		d	definidistril the property and usefinidistril the property and usefinite the property and us	tion cope nial see E la te cope tion cope nial see E la te cope la	or recall the of Binomial on and explain rities of distribution sinomial or calculate the orobabilities. Or recall the of Binomial on and explain rities of distribution sinomial or calculate the orequencies.	CO 3		
		1	2	3	4	5	6	requencies.			
		25	52	58	32	16	4				
					CII Unde:						
6	Explain the propert normal distribution the Mean of Norma distribution.	. O			definition of Normal distribution and Illustrate the properties of Normal curve and derive the mean of normal distribution.					on and the properties I curve and e mean of	CO 4
7	Explain the propert normal distribution Determine the Mod Normal distribution		Unde:	rstan		defini distril Illusti of No derive	tion outicate rma e the	o recall the of Normal on and the properties curve and mode of stribution.	CO 4		
8	Derive the median of Normal distribution Explain the propert normal distribution	an ies	d		Ap	ply		defini distril Illusti of No derive	tion outicate rma e the	o recall the of Normal on and the properties I curve and median of stribution.	CO 4

9	The marks obtained in Statistics in a certain examination found to be normally distributed. If 15% of the students greater than or equal to 60 marks, 40% less than 30 marks. Calculate the mean and standard deviation.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the mean and standard deviation.	CO 4
10	If 7% of the students scored marks less than 35 and 11% of the students scored above 63 marks calculate the mean and variance assuming normality.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the mean and standard deviation.	CO 4
	PART-B LON	G ANSWER	QUESTIONS	
1	Out of 20 tape recorders 5 are defective. Calculate the standard deviation of defective in the sample of 10 randomly chosen tape recorders. Calculate (i) P(X=0) (ii) P(X=1) (iii) P(X=2) (iv) P(0 <x<4).< td=""><td>Understand</td><td>Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.</td><td>CO 3</td></x<4).<>	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
2	A car-hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which there is no demand (ii) on which demand is refused.	Understand	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
3	The average number of phone calls per minute coming into a switch board between 2 P.M. and 4 P.M. is 2.5. Estimate the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls.	Understand	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3

4	In 1000 sets of trials per an event of small probability the frequencies the successes are given below. Calculate the expected frequencies Using Poisson.					de di th di Pe			Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required frequencies.			CO 3	
		X	0	1	2	3 4 5 6 7 Total							
5						Understand Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required frequencies.						CO 3	
6	Out of 800 families with 5 children each, calculate how many would you expect to have (i)3 boys (ii)5 girls (iii)either 2 or 3 boys? Assume equal probabilities for boys and girls.				U				Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.			CO 3	
7	If a Poisson distribution is such that then Calculate $P(x=1) = \frac{3}{2}P(x=3) \text{ then }$ calculate (i) $P(X \ge 1)$ (ii) $P(X \le 3)$ (ii) $P(2 \le X \le 5)$.					Understand			Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.			the sson explain Poisson use to	CO 3
8	Average number of accidents on any day on a national highway is 1.8. Calculate the probability that the number of accidents is (i) at least one (ii) at most one.				9	nders	stand	t c	lefin listr he p listr Poiss alcu	ition ibut prop ibut son i		explain Poisson use to	CO 3

9	A shipment of 20 tape recorders contains 5 defectives Calculate the standard deviation of the probability distribution of the number of defectives in a sample of 10 randomly chosen for inspection.	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
10	Calculate the expected frequencies Using Binomial Distribution to the following data	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required frequencies.	CO 3
11	Show that the recurrence relation for the Poisson distribution is $P(x) = \frac{\lambda}{X}$. $P(x-1)$	Understand	Learner to Define the Poisson distribution and explain its properties and use it to derive the recurrence relation.	CO 3
12	The probability that a man hitting a target is 1/3. If he fires 5 times, the probability that he fires (i) At most 3 times (ii) At least 2 times	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
		CIE-II		
13	For a normally distributed variate with mean 1 and standard deviation 3. Calculate $i)P(3.43 \le X \le 6.19)$ $ii)P(-1.43 \le X \le 6.19)$.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
14	If X is a normal variate with mean 30 and standard deviation 5. Calculate the probabilities that $i)P(26 \le x \le 40)$ $ii)P(X \ge 45)$.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4

15	The mean weight of 500 male students at a certain college is 75kg and the standard deviation is 7kg. Assuming that the weights are normally distributed Calculate how many students weight (i) Between 60 and 78 kg (ii) more than 92kg.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
16	The mean and standard deviation of the box obtained by 1000 students in an examination are respectively 34.5 and 16.5. Assuming the normality of the distribution. Calculate the approximate number of students expected to obtain marks between 30 and 60.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
17	If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs. Calculate How many students have masses (i) greater than 72 kg (ii) less than or equal to 64 kg (iii) between 65 and 71 kg inclusive.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
18	In a Normal distribution, 7% of the item are under 35 and 89% are under 63. Calculate the mean and standard deviation of the distribution.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the mean and variance.	CO 4

19	The life of electronic tubes of a certain type may be assumed to be normal distributed with mean 155 hours and standard deviation 19 hours. Calculate the probability that the life of a randomly chosen tube is (i) between 136 hours and 174 hours. (ii) less than 117 hours (iii) will be more than 195 hours	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
20	1000 students have written an examination with the mean of test is 35 and standard deviation is 5. Assuming the distribution to be normal Calculate i) How many students marks like between 25 and 40? ii) How many students get more than 40? iii) How many students get below 20? iv) How many students get below 20? iv) How many students get more than 50.	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4

	PART-C SHOP	RT ANSWER	R QUESTIONS	
1	20% of items produced from a goods factory are defective. If we choose 5 items randomly then Calculate the probability of non-defective item.	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
2	The probability if no misprint in a book is e^{-4} . Calculate probability that a page of book contains exactly two misprints.	Understand	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
3	Assume that 50% of all engineering students are good in Mathematics. Determine the probability that among 18 engineering students exactly 10 are good in Mathematics.	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
4	If the probability of a defective bolt is 0.2, Calculate (i) mean (ii) standard deviation for the bolts in a total of 400.	Understand	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
5	Interpret the properties of Binomial distribution.	Understand	Learner to Define the binomial distribution and explain its properties and parameters.	CO 3
6	If n=4, p=0.5 then Calculate standard deviation of the binomial distribution.	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3

7	Explain the properties of Poisson distribution.	Understand	Learner to Define the Poisson distribution and explain its properties and parameters.	CO 3
8	Build the binomial distribution for which the mean is 4 and variance 3	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required parameters.	CO 3
9	If X is Poisson variate such that $P(X=1) = 24P(X=3)$ then Calculate the mean.	Understand	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the mean.	CO 3
10	Interpret the properties of Binomial distribution. Derive the recurrence relation for binomial distribution.	Understand	Learner to Define the binomial distribution and explain its properties and use it to derive the recurrence relation.	CO 3
11	The mean and variance of a binomial distribution are 4 and 4/3 respectively. Then Calculate P(x=1).	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
12	In eight throws of a die 5 or 6 is considered a success. Calculate the mean number of success	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3

13	If a bank received on the average 6 bad cheques per day, Calculate the probability that it will receive 4 bad cheques on any given day.	Understand	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
14	State the formulae of Mean, Variance of Poisson distribution	Understand		CO 3
15	State the formulae of mode of a Binomial distribution.	Understand		CO 3
16	State the formulae of mean, variance of Binomial distribution.	Understand	_	CO 3
17	Explain the properties of Poisson distribution. Derive the recurrence relation for the Poisson distribution.	Understand	Learner to Define the Poisson distribution and explain its properties and use it to derive the recurrence relation.	CO 3
		CIE-II		
18	Illustrate the properties of the Normal curve.	Understand	Learner to recall the definition of Normal distribution and Illustrate the properties of Normal curve.	CO 4
19	Explain the properties of normal distribution.	Understand	Learner to Define the Normal distribution and explain its properties and parameters.	CO 4
20	If X is normally distributed with mean 2 and variance 0.1, then Calculate $P(x-2 \ge 0.01)$?	Understand	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4

					I	MO	DUI	Œ	\overline{IV}	-					
			COR	RE	LAT	ION	AN	ID	$\mathbf{R}\mathbf{I}$	EGF	RESS	SION	J		
PAR	T A-PROB	LEI	M SC)LV	ING	AN	D C	RI	\mathbf{TI}	CA	L TI	HIN	KIN	G QUE	STIONS
1	Calculate correlation for the follo	betw	veen 2	X an	d Y		App	ly		con the bet var Pea	arner leept relati degr ween iable arson relati	CO 5			
				X	10	12	18	2	$\overline{4}$	23	27				
				Y	13	18	12	2	5	30	10				
2	Ten compet test were ra judges A, B following or correlation: which pair of nearest app likings in m	hree nk nate the		10 4	3 7	2 10	con ran Inte clos give usin coe	k conerpresents when sense two senses the sense two senses the sense the sen	of correlate the second variation of the second variat	oeffiction and degramme degram	ient of and ree of	CO 5			
		R	ank C	6	4	9	9 8 1 2 3 10 5 7								
3	Interpret the rank correlation of the coefficient for data.	tion rank	coefl corr	ficier elati	nt. on		App	ly		ran Inte clos give usin	k cor erpre senes en tw ng sp	of correlate the second variation of the second variat	efficion a degramme de dederamme de degramme de degramme de degramme de degramme de degram	ient of and ree of	CO 5
		X	68	75	50	64	8	0	75	40	55	64			
		62	68	45	81	6	\bigcup	68	48	50	70				
4	Show that to correlation and 1.				App	ly		con the tha	relati proc t coe	of color and of if the officies on li	oeffict nd or he th nt of	ient of utline neorem	CO 5		

5	The ranks of the 15 students in two subjects A and B are given below, the two numbers within the brackets denoting the ranks of the same student in A and B respectively. (1,10), (2,7), (3,2), (4,6), (5,4), (6,8), (7,3), (8,1), (9,11), (10,15), (11,9), (12,5), (13,14), (14,12), (15,13) Use Spearman's formula to Calculate the rank correlation coefficient.	Apply	Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using spearman's rank coefficient of correlation.	CO 5
6	Outline the proof of the formula for angle between two regression lines.	Apply	Learner to recall the concept of regression lines and Interpret the angle between the given regression lines by using coefficient of correlation and regression coefficients.	CO 5
7	If $\sigma_x = \sigma_y = \sigma$ and the angle between the regression lines are $\theta = Tan^{-1}(3)$. Outline the formula of angle between two regression lines. Obtain r.	Apply	Learner to recall the concept of regression lines and Interpret the angle between the given regression lines by using coefficient of correlation and regression coefficients.	CO 5
8	If θ is the angle between two regression lines and S.D. of Y is twice the S.D. of X and r = 0.25, Calculate $\tan \theta$.	Apply	Learner to recall the concept of regression lines and Interpret the angle between the given regression lines by using coefficient of correlation and regression coefficients.	CO 5
9	Outline the formulae of regression lines. Calculate the value of y when $x = 12$ from the following data:	Apply	Learner to recall the formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.	CO 5

									X		Y			
				Av	vera	ge			7.	6 3	14.8			
			St	andar	d de	eviat	ion		3.	6	2.5			
			Coef	ficient	of o	corre	latio	n	0.9	9	-			
10	Construct th	e regi	essio	n		An	ply		Le	earne	r to	recall	the	CO 5
	equation of Y	_				1	1 /				ession			
	data given be										te the			
	deviations from			_					in	herei	nt rel	ation	between	
	of X and Y.	Estim	ate t	he					th	e giv	en tv	vo va	riables in	
	likely deman	likely demand when the pric							to	a m	ather	$_{ m matic}$	al	
	is Rs. 20.						fu	nctic	n by	using	g linear			
		D: (D)							Re	egres	sion.			
			Price	(Rs.)		10	1:	2	13	12	16	15		
		Amo	ount d	leman	ded	40	38	3	43	45	37	43		
	L	PA]	RT-E	LON	1G	AN	\mathbf{SW}	$\overline{\mathbf{E}}\mathbf{R}$	\mathbf{Q}^{\dagger}	UES	TIO	NS		
1	A random sa						ply					recall	the	CO 5
-	students is se	•		_		1-	P-J						cient of	
	grades in ma					rank correlation and								
	statistics are									terpi				
	Calculate Sp	earma	an's r	ank							n the			
	correlation co								gi	ven t	wo v	ariab	les by	
									us	ing s	spear	man's	s rank	
									co	effici	ient c	of cor	relation.	
						1	2		3	4	5		•	
			Mat	hemat	ics	85	60	-	73	40	90			
			St	atistic	9	93	75	-	35	50	80			
			ausuc	D .						-				
2	Calculate the	e coef									er to	recall	the	CO 5
2	Calculate the		ficient	of			ply	,	Le	earne		recall coeffic		CO 5
2	Calculate the correlation fr		ficient	of						earne ncep	t of o	coeffic	cient of	CO 5
2	correlation fr		ficient	of						earne ncep rrela	t of o	coefficand I	cient of nterpret	CO 5
2	correlation fr		ficient	of					Le co	earne ncep rrela e de	t of ottion	coefficand I	cient of	CO 5
2	correlation fr		ficient	of					Le co co th	earne ncep rrela e deg	ot of ottion gree on the	coefficand I	cient of nterpret seness n two	CO 5
2	correlation fr		ficient	of					Le co co th	earne ncep rrela e deg etwee riabl	ot of oution gree on the les by	coefficand I of close give usin	cient of nterpret seness n two	CO 5
2	correlation fr		ficient	of					Le co co the be va	earne ncep rrela e deg etwee riabl	ot of oution gree on the les by	coeffice and I of close give y usin oeffice	cient of nterpret seness n two	CO 5
2	correlation fr		ficient	of		Ap		11	Le co co the be va	earne orcep rrela e deg etwee riable earso orrela	ot of oution gree of the	coeffice and I of close give y usin oeffice	cient of nterpret seness n two	CO 5

3	Explain the rank correla The following marks in obstudents in statistics. Unumber, A: statistics. Coefficient of	ation ng d otain acco Wher acco	ata great coefficients at a great countains at a gr	ficient ives the 10 ncy ar roll ncy, S the	ne nd		App	ly	ran Inte	rner to cept of k cornerpret seness en two fficien	CO 5		
	coemcient c	R	rreiat 1	$\frac{1011.}{2}$	3	4	5	6	7	8	9 1	0	
		A S	45 35	70	65 70	30 40	90 95	40	50 80		85 6 80 5	0	
4	Calculate to coefficient of the following wages and	of con	rrelat ta. V	ion fro Vhere	om W:		App	ly	con the bet var Pea	rner to cept of cept o	CO 5		
		W	100	101	10		102	100	99	97		96	
		С	98	99	9		97	95	92	95		90	
5	Explain the rank correlation of the following Fertilizer us Productivity	suit of con g da sed(t y (to	able able rrelat ta: V cones)	ficient ion fo Vhere	r F: P:		Арр		con the bet var Pea cor	cept of relation degree ween iables	on and se of cl the giv by usi s coeffi on.	Interpret oseness ren two	CO 5
		F		_	20	_	24	30	35	40	50		
6	The following distribution population totally part them. Calcust is any relational and blindred intervals, Northousands appresons.	are ng re e		05 App	120 ly	con the bet var Pea	cept of relation degree ween iables	on and se of cl the giv by usi s coeffi	Interpret oseness ren two	CO 5			

		A	0-1	0 1	0-20	20	-30	30	-40	40)-50	50-	60	60-	70	70	-80		
		N	100)	60	4	0	3	36	2	24	1	1	6			3		
		В	55		40	4	:0	4	10	:	36	2	2	18	3	1	15		
7	Inter	pret	the	prop	ertie	s of			App	oly		Learı	ner	to re	call	l the	Э		CO 5
	rank											conce	•						
	Follo	-	_									rank correlation and							
	obtai		-									Interpret the degree of closeness between the							
	two s	_																	
	Math what						of					given							
	the s					_						coeffi	_						
	is rel			111 0 00	o su	ojeco	3					COCIII	CICI	10 01	COI	rcia	01011	.	
			-		S 1	2	3	4	5	6	7	8	9	10					
				-	$M = \frac{1}{2}$		$\frac{1}{1}$	5	3	9	7	10	6	8					
8	The	rank	s of	16 st	uder	$\frac{1}{\text{nts in}}$			App	olv		Leari	ner	to re	call	l the		Т	CO 5
	Math								rr	J		conce							
	are a	s fol	lows	(1,1)), (2	,10),						rank	cor	relati	ion	and	l		
	(3,3)	, (4, 4)	4), (5,5),	(6,7)),						Inter	pret	the	deg	gree	of		
	(7,2)	•			(10,1)	1),						close							
	(11,1)	, .		, .	- 10'							given							
	(13,1)											using	_						
	$\begin{pmatrix} (16,1) \\ \text{corre} \end{pmatrix}$,						coefficient of correlation						UlOII	٠				
	profi						in												
	math				_	_	111												
9	A sa								App	olv		Learı	ner	to re	call	l the			CO 5
	their	_						Apply				Learner to recall the concept of coefficient of							
	follov	wing	data	a abo	out t	heir						rank	cor	relati	ion	and	ł		
	elder											Inter	-		•	_			
	coeff											close							
	Whe											given					by		
	inche inche		ıa s:	Son's	s neig	gnt ii	1					using coeffi					tion		
	IIICIIC	·o.	F	65	63	67	64	6	Q	62	70	66	68			$\frac{761a}{71}$	1011	•	
			S	68	66	68	65	_		66	68	65	71		_	70			
10	Expl	00		App			Leari	<u> </u>						CO 5					
10	rank			чħГ	,1 y		conce							000					
	Follo											rank	_						
	obtai	-	_									Inter							
	two s		-									close	_		-	_			
	Math											given					-		
	what					_						using	_						
	the s			in tw	o su	bject	S					coeffi	cier	nt of	cor	rela	tion	.	
	are r	elate	ed?																

		40	9	16	16	(65 24 16 57								
		S	13	13	24	6 15 4 20 9 6 19									
11	Outline the regression lithe regressio best fit to t	ines. on eq	Calcı uatio	ılate n wh			App	CO 5							
			У	10		_			$\frac{17}{29}$	33					
12	In the follow weight of Powhich will of grams. Of was an equation S=mT+b bleast square relation to or T=50°. T 0 2 S 54 6	2	Apply Learner to recall the formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.							CO 5					
13	Interpret the regression of a sample of observation quantities with $\sum X = 11.3$ $\sum X^2 = 12.5$ $\sum Y^2 = 84.5$ $\sum XY = 22$ above data Calculate the equation	oeffic 200 p the f vere c 34,\sum .16, 96, 2.13, show he coo	pairs follow calcul $Y = \frac{1}{2}$ From how efficies	m,		App	ly		formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.					CO 5	
14	Outline the between two If $\sigma_x = \sigma_y = \sigma$ between the is $\theta = Tan^{-1}$	es. es		App	ly		con line ang regr coet and	cept s angle be ression fficie	of red Intervetor of the officer of	egres terpro en then nes b		CO 5			

15	regression both regular best fit	the formulae on lines. Calc gression lines to the followifind y when a	culat whi	ich data		-	Apply	y	forn line	rner nulae s and erent give	CO 5		
		when $y = 11.5$							to a	mat ction ressi			
			x v	2	4	6	8	10	12 11	14 12			
16	regression army period of weight of the correction of the correcti	the propert on coefficients or sonal the rest of kidneys of heart (X) is 6.394 and the on of weight of kidneys 2Y+2.461. Celation coefficients	of or 2 ssion on = eart	0		Apply	y	Lea cond line degr bety vari coef and coef	rner cept s and ree o ween ables flicien flicien	to recall the of regression I Interpret the following the given two by using the following the follo	ne 70	CO 5	
17	regression the most corresponding	the formulae on lines. Calc t likely produ- onding to a ra- e following da	culat actic	on	0	-	Apply	y	forn lines inhe the to a fund	nulae s anc erent	he ween les in	CO 5	
							Rair	n fall	(X)	Pro	oduction(Y)		
		Standard	erag Lde		on			$\frac{30}{5}$			500Kgs 100 Kgs	<u> </u> 	
		Coefficient				on		0.8			-	1	
18	regression of moth given in From the regression expected daughted the mot Where I inches a	the formulae on lines. The ers and daug the following the two tables on estimate the daverage height when the her is 64.5 in F: Mother's hand D: Daugh in inches.	ghts are ble. of at of s. nt in	е		Apply		rand Inte	cept k cor erpre eness en tw ng Pe	to recall the of coefficient relation and the degree is between the ovariables bearson's at of correlations.	of e py	CO 5	

		M	62	63		64	64	6	5	66	68	7	0		
		D	64	65	(61	69	6	7	68	71	6	5		
19	Explain the property rank correlations A panel of two Q graded sever performances independently marks as follows. The eight performich judge Q attend, was awards by judge had also been calculate how would be expensely been awarded eighth perform		Apply				Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using spearman's rank coefficient of correlation.					CO 5			
	eignen periorii	Perfor	man	ce	1		2	3	$\frac{1}{4}$		5	6	7		
		Marks			46	_	_	44	4(_	3	41	45	-	
		Marks		_	40	3	8	36	35	5 3	9	37	41	-	
20	Given the bi-variate data Using regression lines i) find y when $x=10.ii$) find x when y=2.5						Apply				rne nul s a ere giv a m ctic gres	CO 5			
			X	1	5	3	2	1	1	T .	3	\neg			1
			Y	6	1	0	0	1	2	2 1	5	5			
	I	PART	-C S	SHO	\mathbf{R}'	ΓΑ	NS	W	ER	QU	JES	STI	ON	S	
1	State the definition of correlation coefficient.					Apply									CO 5
2	List out the types of correlation.					Apply				_					CO 5
3	Given $n = 12, \sigma_x = 2.5$ and $\sigma_y = 3.6$ sum of the product of deviation from the mean of X and Y is 64 Calculate the correlation co-efficient.					Apply				Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.					CO 5

4	State the formula of rank correlation coefficient.	Apply	_	CO 5
5	State the properties of correlation coefficient.	Apply	_	CO 5
6	If $\sum XY = 216$, $\sum X^2 = 102$, $\sum Y^2 = 471$ then Calculate correlation coefficient.	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
7	Given n=10, $\sigma_x = 5.4$ and $\sigma_y = 6.2$ sum of product of deviations from the mean of X and Y is 66 Calculate the correlation co-efficient.	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
8	State the properties of rank correlation coefficient.	Apply	_	CO 5
9	From the following data calculate (i) correlation coefficient (ii) standard deviation of y. $b_{xy} = 0.85$, $b_{yx} = 0.89$ and $\sigma_x = 3$	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
10	If N=8, $\sum X = 544$, $\sum Y = 552$, $\sum XY = 37560$ then Calculate COV (X, Y).	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the covariance for the given data.	CO 5

11	The equations of two regression lines are 7x-16y+9=0, 5y-4x-3=0. Calculate the coefficient of correlation.	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
12	State the formulae of normal equations for regression lines?	Apply	_	CO 5
13	State the formula of angle between two regression lines	Apply	_	CO 5
14	Find the means of X and Y variables from the following two regression equations: $2Y-X-50=0$, $3Y-2X-10=0$	Apply		CO 5
15	Find the coefficient of correlation between X and Y variables from the following two regression equations: 2Y-X-50 = 0 3Y-2X-10 = 0	Apply		CO 5
16	Find the means of X and Y variables from the following two regression equations: $4X-5Y+33=0$ $20X-9Y-107=0$	Apply		CO 5
17	Find the coefficient of correlation between X and Y variables from the following two regression equations: $4X-5Y+33=0\ 20X-9Y-107=0$	Apply		CO 5
18	State the properties of regression lines.	Remember	_	CO 5
19	List the differences between correlation and regression.	Apply		CO 5
20	$\sum X = 15, \sum Y = 25,$ $\sum X^2 = 55, \sum Y^2 = 135,$ $\sum XY = 83 \text{ and N} = 5 \text{ find}$ the regression coefficient of y on x.	Apply		CO 5

	MODULE V										
	TESTIN	G OF HYPO	THESIS								
PAR	T A-PROBLEM SOLVING	AND CRITI	CAL THINKING QUES	STIONS							
1	It is claimed that a random sample of 49 tires has a mean life of 15200 kms This sample was taken from population whose mean is 15150 kms and S.D is 1200 km Examine the truth value of the claim at 0.05 level of significant.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6							
2	A manufacturer claims that at least 95% of the equipment which he supplied to a factory confirmed to specifications. An examination of sample of 200 pieces of equipment received 18 were faulty Examine the truth value of the claim at 0.05 level.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6							
3	Among the items produced by a factory out of 500, 15 were defective. In another sample of 400, 20 were defective Examine whether there is any significant difference between two proportions at 5% level.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6							
4	A mechanist making engine parts with axle diameters of 0.700 inch. A random sample of 10 parts shows a mean diameter of 0.742 inch with a S.D of 0.040 inch. Compute the statistic you would use to Examine whether the work is meeting the specifications.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6							

5	To examine that the hintelligent investigate 9 couples at them a test. The result Where H: wife's I.Q. value of the	Арр	ply	pro hyp suit for calc valu	arner ocedure table mula culate ue wi ue to erence	CO 6							
	level of sig	gnifica H	ance o	f 0.05.	97	105	123	109	86	78	103	1	
		W	106	98	87		116	95	90	69	103	_	
6	Pumpkins were grown under two experimental conditions. Two random samples of 11 and 9 pumpkins. The sample standard deviation of their weights as 0.8 and 0.5 respectively. Assuming that the weight distributions are normal, Examine the truth value of hypothesis that the true variances are equal.					App	ply	Lea pro equ cald vali the dra	arner oceduments ality culate ue contabulate tabu	to re re of of va e test mpar llated e infe	ecall the F-test ariance statistic it we have been considered to be consid	es for es and stic ith e to	CO 6
7	From the calculate visignificant of taking state category	App	oly	pro squ ind attracted con tab	cedurare-to epend ributo t stat npare	re of est for dency es an istic it we do you	or y of d calc value rith th lue to	ulate e	CO 6				
	Soft drinks					Clerks	Teac	chers	offic	cers			1
	Pepsi					10	2	5	6	5			
				ımbs ı	ıp	15		0	6				
			I	Fanta		50	6	0	3	0			

	following	performance, t	ine			1	cc	11 •	1
		following results are				_	ure of C		
	abtained	Examine who	ath an				-test for ndency		
		rmance of the	etner			24.0			
	_	+				tes and atistic v		ite	
	machines not by us					re it wit			
	at 5% LO	test			_	ted valu		our.	
	at 570 LO	,b.				the infe		e to ar	aw
			No of	units insp	pected		f defecti	VO	
		Machine1	110 01	$\frac{375}{375}$, cctca	110 0	17	·VC	
		Machine2		450			22		
9	Comples	of students we	no	450 Appl		I as ma -	r to rec	all +bs	CO 6
9	_	on students we om two univers		Appi	У				
				_	ure of to	_			
		h their weights in hypothesis and select the suitable test statistic						the	
		own below formula and compare the					the		
	make a la					ted test	-		
		icance of differ					vith the		
		veen means. value to draw the							
						inference.			
			Mean	Standar	rd Dev	viation	Sampl	e Size	
		University A	55		10		10)	
		University B	57		15		20)	
10	The meas	surements of t	he	Appl	y	Learne	r to rec	all the	CO 6
	output of	two units have	<i>r</i> e	11			ure of F		or
	given the	following resu	ılts.			equalit	y of var	iances	and
	Assuming that both samples calculate tes		te test s	statistic	e				
	have been obtained from the					have been obtained from the value compare it		it with	ı
	normal po	10%			the tab	oulated [*]	value to	О	
	significan	ne			draw t	he infer	ence.		
	whether t								1
		same variance							
				1 10.1	14.7	13.7	14.0		

	PART-B LON	G ANSWER	QUESTIONS	
1	A sample of 400 items is taken from a population whose standard deviation is 10. The mean of sample is 40. Examine whether the sample has come from a population with mean 38 also calculate 95% confidence interval for the population.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
2	The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of S.D 2.5 inches?	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
3	An ambulance service claims that it takes on the average 8.9 minutes to reach its destination in emergency calls. To check on This claim the agency which issues license to Ambulance service has then timed on fifty emergency calls getting a mean of 9.2 minutes with 1.6 minutes. Examine the claim at 5% LOS	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
4	According to norms established for a mechanical aptitude test, the persons who are 18 years have an average weight of 73.2 with S.D 8.6 if 40 randomly selected persons have average 76.7 Examine the truth value of the hypothesis $H_0:\mu$ =73.2 against alternative hypothesis: $\mu > 73.2$.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6

bulbs promanufactories in the second	le of 100 electric coduced by cturer 'A' showed fe time of 1190 in of 90 hours A of 75 bulbs produfacturer 'B' Shalife time of 1230 ith s.d. of 120 late whether there we between the ites of the two brandificance level of	ed a hours duced howed o hrs. is any mean ands	Apply	proced hypoth suitabl formul calcula value v	er to recall the ure of testing onesis and select the test statistic a and compare ated test statist with the tabulate of draw the ace.	the the tic	CO 6
firm clar of cigare brand E that 42 200 smc and 18 of of 100 s B. Exan	ette manufactur ims that brand ettes outsells its 3 by 8%. if it is out of a sample okers prefer bran out of another s mokers prefer b nine whether 8% ce is a valid clai	A line s found e of nd A sample brand	Apply	proced hypoth suitabl formul calcula value v	er to recall the ure of testing of testing of testing of testing of testing and select test statistic and compare ated test statistic with the tabulation draw the ace.	the the tic	CO 6
rural are	t of 400 persons ea possessed 'ce while 120 out on area. Can it but that the properties in the rule of Urban area is Use 5% of level once.	ell' f 500 pe ortion ural same	Apply	proced hypoth suitabl formul calcula value v	er to recall the ure of testing of testing of testing of testing of testing and select test statistic and compare uted test statistic with the tabulation draw the uce.	the the tic	CO 6
8 Samples drawn from and from kilogram calculat make a the sign	s of students we rom two univers in their weights as mean and S.I ed and shown b large sample Ex- ificance of differ means.	sities in D are below kamine	Apply	proced hypoth suitabl formul calcula value v	er to recall the ture of testing of testing of testing of testing and select test statistic and compare ated test statistic with the tabulation draw the ace.	the the tic	CO 6
	Standard De 10 15	viation	Sample Size 400 100				

9	600 men w smokers. I informatio conclusion of men in smokers?	vere for Does T n supp that t This c	This port the the majority ity are	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
10	mean life of S.D of 20th manufactur mean life of Examine v	of 990 ars. The arer class of bulb whethe	bulbs gives a hours with he hours with he hims that the hims 1000 hrs. In the sample dard or not?	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
11	had the fo 70,120,110 98,107,100 support th population	llowing 1,101,8 . Do to the assument the true at 5%	8,83,95, he data mption of is I.Q of 100. th value of	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
12	Two rando the followi Examine v samples ca population	ng res whethe ame fro	ults. r the om the same	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
	Sample	size	Sample mean	Sum of squ	ares of deviations from mean	
	I 10 15				90	
	II	12	14		108	

13	Two independent samples of items are given respectively had the following values. Examine whether there is any significant difference between their means?						Apply Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.					CO 6				
		S	Sample	Ι	11	11	13		11	15	9	12	1	4		
		S	ample	II	9	11	10		13	9	8	10	-			
14	Time taken by workers in performing a job by method 1 and method 2 is given below. Does the data show that variances of time distribution from population which these samples are drawn do not differ significantly?						Apj	рту		pro equ cal val the	ocedualit cula cula ue de tal	lure by o ate f com ouls	f var test pare	riar sta sta it val	est for aces and tistic with ue to	CO 6
			Metho	od 1	20	1	6 2	27	23	22	2 2	26	_			
		ŀ	Metho	od 2	2 27	3	3 4	12	35	32	2 ;	34	38			
15	A die is thrown 264 times with the following results. Prove that the die is unbiased.						App	ply	•	squ und cal val the	ocediare bias cula lue de tal	ture-tes- ednate (com	pare	Chi and sta e it val	tistic with ue to	CO 6
		N	o appe	arec	d-on	die	1		2	3	4	5		6		
			Free		ncy		40	3	32	28	58	5		52		
16	200 digits were chosen at random from set of tables the frequency of the digits is Where d: digits and f: frequencies. Use chi square test to examine the correctness of the hypothesis that the digits are distributed in equal number in the table.						Ap	ply	,	free tes	aced uare que t st mpa oula	ure tes ncie atis re i ted	tic v t wit	Chi eq d c alu th t	lual alculate e	CO 6
		d	0	1	2	3	4		5	6	7		8	9		
		f	18	19	23	21	16		25	22	20	2	1	15		

17	The avera strength of specified to pounds. so were tested S.D obtain 1.955 responders result of endingers	of the stee to be 18.5 ample of ed. The maned were ectively. experiments?	l rods is thousan 14 rods ean and 17.85 an Is the t	d	Apply	prohy surforca va	arner to cocedure of pothesis itable test mula and leulated to lue with lue to drager of the content of the con	of testin and select statist d comparest state the tabu	g of ect the cic are the istic alated	CO 6
18	A group of with medi 39, 48, 60 group of 7 same hosp medicine 164, 68, 69 you agree medicine weigh sign	and 41 kg ratients bital treat B weigh 3 and 62 kg with the B increase inficantly?	eigh 42, gs. Secon from the ed with 8, 42, 56 gs. Do claim the es the	nd e S,	Apply	prohy surform care variant	arner to occedure of pothesis itable test mula and local local test itable to draw the formula test of the control of the cont	of testin and select t statist d compa- test stat the tabuaw the	g of ect the cic are the istic alated	CO 6
19	In one sar observation deviations values from 120 and in of 12 observamine difference level.	ons, the sum of the same sample on the other ervations in whether the same same same same same same same sam	im of the mple mean wer sample t was 31 he	ras e 4.	Apply	pre eq ca va the	arner to cocedure of uality of lculate te lue competabulate aw the in	of F-test variance est statis are it w ed value	es for es and stic ith e to	CO 6
20	The follow samples at the heat-p (in million ton) of sp from two Use the 0. significant whether it assume the two periods.	re measurer or oducing as of calor ecimens of calor ecimens of mines: .05 level of ec to Example is reason that the variance of the calor is reason to the c	7	Apply	pre eq ca va the	arner to cocedure of uality of lculate te lue completabulate aw the in	of F-test variance est statis are it w ed value	es for es and stic ith e to	CO 6	
		Mine 1	8,260	8,130		8,070				1
		Mine 2	7,950	1,890	7,900	8,140	7,920	7,840		

	PART-C SHOR	T ANSWE	R QUESTIONS	
1	State the definition of population? Give an example.	Apply		CO 6
2	State the definition of sample? Give an example.	Apply		CO 6
3	State the definition of parameter and statistic.	Apply	_	CO 6
4	State the definition of standard error of a statistic.	Apply	_	CO 6
5	In a manufacturing company out of 100 goods 25 are top quality. Find sample proportion.	Apply		CO 6
6	Find the confidence interval for single proportion if 18 goods are defective from a sample of 200 goods.	Apply	_	CO 6
7	Find the sample proportion in one day production of 400 articles only 50 are top quality.	Apply	_	CO 6
8	State the formula for difference of means in large samples.	Apply		CO 6
9	State the formula of test statistic for difference of proportions in large samples.	Apply	_	CO 6
10	If $\bar{x} = 47.5$, $\mu = 42.1$, s=8.4,n=24 then Find t.	Apply	_	CO 6
11	If $\bar{x} = 40$, $\mu = 25$, s=8.4,n=24 then Find t.	Apply	_	CO 6
12	State the definition of the statistic for t test for single mean?	Apply	_	CO 6
13	State the definition of degree of freedom.	Apply	_	CO 6
14	Find $F_{0.05}$ with $(7, 8)$ degrees of freedom.	Apply	_	CO 6
15	Find $t_{0.05}$ when 16 degrees of freedom.	Apply	_	CO 6
16	State the definition of the statistic for t test for difference of means?	Apply		CO 6

17	State the formula of the degree of freedom for t test for difference of means?	Apply	_	CO 6
18	State the definition of the statistic for F test?	Apply	<u> </u>	CO 6
19	State the formula of the degree of freedom for chi square test for contingency table of order 4x3?	Apply	_	CO 6
20	State the Formula of statistic for chi square test?	Apply	_	CO 6

Course Coordinator: Dr. G.Srinivasu, Associate Professor HOD