Grundbegriffe

- Graph G = (V, E)
 - Paar der Menge der Knoten V und Menge der Kanten E
 - $E\subseteq (V,2)$
 - $\ast\,$ Menge von 2-elementrige Teilmengen von V
 - z.B. ungerichtete Graph

• gerichtete Graph (Digraph)

- Knoten A ist Nachbar von B, wenn verbunden durch Kante
- $\bullet\,$ Knoten ist isoliert, wenn er keine Nachbarn hat
- Schleife
 - Knoten mit sich selbst verbunden
- G_1 ist Teilgraph von G_2 , wenn
 - $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$
 - $V_1 \subseteq V_2$ und $E_1 \subseteq E_2$
- Teilgraph induziert(aufgespannt), wenn

Grad

- falls Knoten auf Kante liegt
 - V und E inzident
- falls e aus zwei unterschiedlichen Knoten v und w besteht
 - v und w sind adjazent/benachbart
- Graph ist vollständig, wenn je zwei Knoten benachbart
 - jeder Knoten ist mit jedem verbunden?

- Teilmenge von V und E sind unabhängig
 - wenn Elemente paarweise nicht benachbart sind

- Grad von Knoten = Anzahl von Nachbarn
 - $deg(V) = |N_G(V)|$
- Gradarten

 \bullet Summe aller Grade in Graph = doppelte Kantenanzahl

$$S(G) \leq J(G) \leq \Delta GG$$

$$J(G) |V| = \sum_{v \in V} J(v) \stackrel{!}{=} 2 |E|$$

• gerichteter Graph ==> Unterscheidung in Ausgangs- und Eingangsgrad

- Knoten mit Ausgangsgrad 0 heißt Senke
- Knoten mit Eingangsgrad 0 heißt Quelle

[[Diskrete Mathematik]] [[Graphs KR]]