LECTURE 4 ROLE OF THE SYSTEMS ANALYST & DESIGN

Thanks to

Kendall and Kendall

Fifth Edition

Major Topics

- Information systems
- Phases of analysis and design (my notes)
 - Requirement Analysis, System Design, Implementation & Unit Testing
 - Integration & System Testing, Evaluation & Feedback
- System maintenance
- CASE tools (Nayyab's slides)
- Alternate methodologies

Information

- Information is an organizational resource which must be managed as carefully as other resources
 - Should keep in mind <u>information systems</u>.
- Costs are associated with information processing
 - Higher cost = more complex systems

Categories

- Information systems fall into one of the following eight categories:
 - Transaction processing systems (TPS)
 - Office automation systems (OAS)
 - Knowledge work systems (KWS)
 - Management information systems (MIS)
 - Decision support systems (DSS)
 - Expert systems (ES)
 - Group decision support systems (GDSS)
 - Executive support systems (EES)

New Technologies

- New technologies are being integrated into traditional systems
 - Ecommerce uses the Web to perform business activities
 - SEO-Crawler to sue all companies
 - Enterprise Resource Planning (ERP) has the goal of integrating many different information systems within the corporation
 - Production planning, marketing, sale, inventory management, shipping, payment
 - Wireless and handheld devices, including mobile commerce (m-com) Open source software

Nature of Analysis and Design

 System <u>analysis</u> and <u>design</u> is a systematic approach to identifying problems, opportunities, and objectives; analyzing the information flows in organizations; and designing computerized information systems to solve a problem

Systems analysts act as

- Consultants outside the businesses
- Supporting experts within a business
- As change agents
- Problem solvers, and require communication skills
- Ethical with users and customers

Systems Development Life Cycle

- The systems development life cycle is a systematic approach to solving business problems
- It is divided into seven phases
 - SDLC Phases or Software Processes
- Each phase has unique activities

- Identifying
 - Problems
 - Opportunities
 - Objectives
- Personnel involved
 - Analyst
 - User management
 - Systems management

- Determining information requirements
 - Interview management, operations personnel
 - Gather systems/operating documents
 - Use questionnaires
 - Observe the system and personnel involved
- Learn the who, what, where, when, and how, and the why for each of these

- Analyzing system needs
 - Create data flow diagrams
 - Document procedural logic for data flow diagram processes
 - Complete the data dictionary
 - Make semistructured decisions
 - Prepare and present the system proposal
 - Recommend the optimal solution to management

- Designing the recommended system
 - Design the user interface
 - Design Input/output
 - Design system controls
 - DFD, Algorithms etc
 - Design files and/or database
 - Produce program specifications
 - Produce decision trees or tables
 - Structure diagrams, sequence diagrams etc

- Developing and documenting software
 - Design computer programs using structure charts, Nassi-Schneiderman charts, and pseudocode
 - Walkthrough program design
 - Write computer programs
 - Document software with help files, procedure manuals, and Web sites with Frequently Asked Questions

- Testing and maintaining the system
 - Test and debug computer programs
 - Test the computer system
 - Enhance system

- Implementing and evaluating the system
 - Plan conversion
 - Train users
 - Purchase and install new equipment
 - Convert files
 - Install system
 - Review and evaluate system

System Maintenance

- System maintenance is
 - Removing undetected errors, and
 - Enhancing existing software
- Time spent on maintenance typically ranges from 48-60 percent of total time

System Enhancements

- Systems are enhanced for the following reasons:
 - Adding additional features to the system
 - Business and governmental requirements change over time
 - Technology, hardware, and software are rapidly changing

CASE Tools

- CASE tools are automated, microcomputer-based software packages for systems analysis and design
- Four reasons for using CASE tools are:
 - To increase analyst productivity
 - Facilitate communication among analysts and users
 - Providing continuity between life cycle phases
 - To assess the impact of maintenance

CASE Tool Categories

- CASE tools may be divided into several categories
 - Upper CASE (also called front-end CASE) tools, used to perform analysis and design
 - Lower CASE (also called back-end CASE). These tools generate computer language source code from CASE design
 - Integrated CASE, performing both upper and lower CASE functions

Upper CASE

- Upper CASE tools
 - Create and modify the system design
 - Store data in a project repository
 - The repository is a collection of records, elements, diagrams, screens, reports, and other project information
 - These CASE tools model organizational requirements and define system boundaries

Lower CASE

- Lower CASE tools generate computer source code from the CASE design
- Source code may usually be generated in several languages

Reverse Engineering

- Reverse engineering is generating the CASE design from computer program code
- Source code is examined, analyzed, and converted into repository entities
 - Definition: **Reverse engineering**, also called **back engineering**, is the process of extracting knowledge or design information from anything man-made and re-producing it or reproducing anything based on the extracted information. (wikipedia)

Advantages of Reverse Engineering

- It has the following advantages:
 - Reduced system maintenance time
 - Program documentation is produced for loosely documented programs
 - Structured programs may be generated from unstructured, older programs
 - Future system maintenance is easier to implement
 - Unused portions of programs may be eliminated

Object-Oriented Analysis and Design

- Object-oriented (O-O) analysis and design is used to build object-oriented programs
- This includes not only data but the instructions about operations that manipulate the data

Types of Object-Oriented Analysis and Design

- There are three types of object-oriented analysis and design:
 - Object-oriented analysis (OOA)
 - Object-oriented design (OOD)
 - The Unified Modeling Language (UML), a standardized objectoriented modeling language

Nature of Analysis and Design

- Structured analysis and design provides a systematic approach to developing systems and is cyclic in nature
- Analysis and design errors detected in the later phases of the systems development life cycle cost more to fix than if detected in earlier phases

Alternate Methodologies

- Alternate methodologies are available for analyzing systems
- These include
 - Prototyping
 - ETHICS
 - Project champions
 - Soft Systems Methodology
 - Multi-view