Fri 3 Nov

- · Hmwk 8 ductoday
- Agenda - Prove Ford-Fulkerson - Start Ch7 Extremal Theory
- Two Weeks to Mid 2.

 Should we schedule the Fairbanks
 Midterm on Thus from 2:30-4:30?
- · Monday before Thanksgiving will be a Zoom lecture.

Thm 6.2.2 Ford-Fulkerson

Given
$$N = (G, S, t, C)$$
 network. Let f represent a flow on N .

max $|f| = \min_{M \in \mathcal{L}(S, S)} g$

f flowon $g \in V$
 $g = \sup_{M \in \mathcal{L}(S, S)} g$

Pf: • It is sufficient to construct f and f ind g

so that $|f| = \mathcal{L}(g, S)$.

• Our construction implies f is integral.

• Sppse we have flows
$$f_0, f_1, ..., f_k$$
 so that $|f_i| + 1 \le |f_{i+1}|$

How to construct
$$f_{k+1}$$
?

odef: $W = x_s \vec{e}_s \times_1 \vec{e}_s \times_2 ... \times_{k-1} \vec{e}_{k-1} \times_k$ a good walk

if $x_s = A_s \times_k = 0$ and $f = 1 \le i \le k-1$ c(\vec{e}_i) > $f(\vec{e}_k)$
 $f(\vec{e}_i) = (e_i, x_i, x_i)$

Pf: Ja good At path in N.

$$f_{k,i}(\vec{e}) = \begin{cases} f_{k}(\vec{e}) + \epsilon & \text{if } \vec{e} = \vec{e}_{i} \\ f_{k}(\vec{e}) - \epsilon & \text{if } \vec{e} = \vec{e}_{i} \end{cases}$$

$$f_{k}(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i}, \epsilon_{i} \end{cases}$$

$$f(\vec{e}) = -f(\vec{e}) \quad \text{and}$$

$$f(\vec{e}) = -f(\vec{e}) \quad \text{and}$$

$$f(\vec{e}) = f(\vec{e}) = c(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i}, \epsilon_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) = c(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i}, \epsilon_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i}, \epsilon_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{i} \end{cases}$$

$$f(\vec{e}) = f(\vec{e}) \quad \text{for } r \in V - \hat{\epsilon}_{$$

Obs: This incrementing process must terminate bla capacities are finite.

$$|f| = c(S_k, \overline{S_k})$$

bolc

otherise y & Sk.

How many edges in graph on n vertices that fails to contain a K. Sppse n>r

n=50 r=7 avoiding k7

a turán graph.

