INSTALLATION RESTORATION PROGRAM

REMEDIAL INVESTIGATION REPORT ADDENDUM FOR IRP SITE NO. 6

VOLUME II APPENDIX A-I

161st AIR REFUELING GROUP ARIZONA AIR NATIONAL GUARD SKY HARBOR INTERNATIONAL AIRPORT PHOENIX, ARIZONA

HQ ANG/CEVR ANDREWS AFB, MARYLAND

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMS No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22282-4382, and to the Office of Management and Budget, Paperwork Reduction Project (8704-6188), Washington, DC 28583.

1. AGENCY USE ONLY (Leave b	lank)	2. REP RATIO 6 MAY 1996	3. Repetier in a	-	
Relifedian on Westigation Re	port A	THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED I	No 6 Volume II	S. FUND	DING NUMBERS
Arizona National Guard, 1					
International Airport, Pho			,		
6. AUTHOR(S)				1	
NA		•		I	
7. PERFORMING ORGANIZATION		S) AND ADORESS(ES)			ORMING ORGANIZATION
Operational Technologies (REPO	RT NUMBER
4100 N.W. Loop 410, Suite San Antonio, TX 78229-42					
		•			eng tika maka terperakan kananan kanan di sebagai di sebagai di sebagai di sebagai di sebagai di sebagai di se Tagan 1981 - September Sebagai di
च् रण है अर					n in makeuren Die koren bilde er se
9. SPONSORING/MONITORING A	GENCY	NAME(S) AND ADDRESS(E	s)		ISORING/MONITORING
ANG/CEVR			4 pt - 2 f	AGEI	NCY REPORT NUMBER
3500 Fetchet Avenue			•	1.5	and the second second second second second
Andrews AFB MD 20762-5	5157				
					10 7 10 10 12 35
11. SUPPLEMENTARY NOTES				į	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
AL PORTUGAN	•	•		*	
12a. DISTRIBUTION/AVAILABILIT	-	EMENT		126. DIS	TRIBUTION CODE
Approved for public release					
distribution is unlimited					1
					5 % 10 2 5 E 1 4
				<u> </u>	
13. ABSTRACT (Maximum 200 wo					
Remedial Investigation Rep	port A	ddendum for IRP Site	No. 6, Arizona Nation	ial Guard	d, 161st Air
Refueling Group, Sky Harb volume addendum to the R	or Int	ernational Airport, Pho	oenix, Arizona. This	s the sec	cond volume of a two
investigated under the Inst	emeur tallatio	on Restoration Program	t, May 1996. Site 6 -	POL rac	oles were collected
and analyzed. Remedial Ac					
This volume contains the a	nalviti	cal data field notes an	od OA/OC dogumentos	Hàn	
Tims volume contains the a	iiaiy ti	car data, nela notes, an	d dry do documenta		and the first of takens of the first of the second
				:	
				1	
					in the second se
				1	
					THE RESERVE OF THE PROPERTY OF
14. SUBJECT TERMS					
Installation Restoration Pro					15. NUMBER OF PAGES
Compensation and Liability			ıl Guard; Remedial		16. PRICE COOE
Investigation, Arizona Air N	Vation	al Guard, Phoenix, AZ		:	
17. SECURITY CLASSIFICATION OF REPORT	18. S	ECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	CATION	20. LIMITATION OF ABSTRACT
Unclassified	ľ	THIS DAGE	Of Unitial Shifted	,	None
			I		

INSTALLATION RESTORATION PROGRAM

REMEDIAL INVESTIGATION REPORT ADDENDUM FOR IRP SITE NO. 6

VOLUME II APPENDICES A-I

161st AIR REFUELING GROUP ARIZONA AIR NATIONAL GUARD SKY HARBOR INTERNATIONAL AIRPORT PHOENIX, ARIZONA

MAY 1996

Prepared For
HQ ANG/CEVR
ANDREWS AFB, MARYLAND

Prepared By
Operational Technologies Corporation
4100 N.W. Loop 410, Suite 230
San Antonio, Texas 78229-4253
(210) 731-0000

APPENDIX A
BORING LOGS

SECTION A INTRODUCTION

Boring log diagrams have been compiled for each borehole and monitoring well location drilled during this study. Diagrams are presented in numerical order. The borehole identification is keyed to the borehole (BH) or monitoring well designation (MW) and number (i.e., 06-016BH or 06-018MW). The diagrams combine in one page both a verbal and graphical illustration of the lithology encountered during drilling, water level data encountered during drilling and surveyed elevation of the ground surface at the borehole location.

The sample description includes the color, texture, mineralogy, moisture and consistency for each sample collected. The proportions of sand, gravel, and fines are visually estimated and described using the following semi-quantitative adjectives:

Adjective	Estimated Percent of Total Sample
Trace	0 - 5
Few	5 - 10
Little	15 - 25
Some	30 - 45
Mostly	50 - 100

Proportional adjectives precede the lithology, such as little gravel (15 - 25% gravel) and trace of silt (0 - 5% silt).

Lithologic symbols are derived and generalized from the Unified Soil Classification System shown in Figure A.1.

In the boring logs that follow, the column headings have the following meanings:

Depth:	Depth in feet below land surface.
Blows/6 in.:	The number of blow required to drive a split-spoon sampler each of the 6-inch intervals.
Field Screening:	The reading of photoionization compounds detected in soil sample by a photoionization detector.

Sampled: The interval of sample cored below land surface.

Percent Recovery: The percentage of sample recovered in the split-spoon sampler per

sampling run.

\mathbf{E}

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-016BH

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American Gabby Rodriguez

Driller: **Date Drilled:**

06/27/95

Depth Drilled:

Split Spoon

55 ft.

Depth To Water:

Sampling Method:

NA

Date Measured:

NA

Surface Elevation:

1,115.08 ft.

Drilling M			0/2//93 ual Wal	l Percussion	Surface Elevation:	1,115.08 II.			
				i i ci cussion		FI	ELD SC	REENII	NG
Depth (ft.) Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID (ppm)	ATHA (ppm)	-	-
5 — 100 — 10	100 50			Gravel, sandy; gravel (65%) is 1/2" to 6", lo reddish-brown; sand (35%) is fine-grained to sorted, brown. Wet at 54 ft. Boring Termin Note: Grouted with bentonite	ated at 55 ft.				

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-018MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller: Date Drilled: Gabby Rodriguez

06/28/95

Sampling Method: Depth Drilled:

N/A 92 ft.

Depth To Water:

56.02 ft. BTOC

Date Measured:

Surface Elevation:

07/13/95 1109.04 ft.

DESCRIPTION OF MATERIALS FIELD SCREENING PID ATHA BTEX Benzene (ppm) (ppm) (ppb) (ppb) Gravel, sandy; gravel (70%) is 1/2" to 6", loose, poorly sorted, gray, reddish brown, and off white, dry; sand (30%) is fine-grained to coarse-grained, poorly sorted, brown.	Dual Wall Percussion TOC Elevation: 1108.78 ft.	1108.78 ft	11	TOC Elevation:	l Percussion	ual Wall	D	ethod:	ing Me	Drilli
Gravel, sandy; gravel (70%) is 1/2" to 6", loose, poorly sorted, gray, reddish brown, and off white, dry; sand (30%) is fine-grained to coarse-grained, poorly sorted, brown.	FIELD SCREENING	FIELD SC	FI			ic	es	'ery	9	ft.)
Gravel, sandy; gravel (70%) is 1/2" to 6", loose, poorly sorted, gray, reddish brown, and off white, dry; sand (30%) is fine-grained to coarse-grained, poorly sorted, brown.	DESCRIPTION OF MATERIALS PID ATHA BTEX Benzene	ID ATHA	PID	ATERIALS	DESCRIPTION OF M	raph	dun	tecov	/swo	pth (
Gravel, sandy; gravel (70%) is 1/2" to 6", loose, poorly sorted, gray, reddish brown, and off white, dry; sand (30%) is fine-grained to coarse-grained, poorly sorted, brown.	(ppm) (ppm) (ppb) (ppb)	om) (ppm)	(ppm)			5	Š	% F	B	De
30	Gravel, sandy; gravel (70%) is 1/2" to 6", loose, poorly sorted, gray, reddish brown, and off white, dry; sand (30%) is fine-grained to coarse-grained	om) (ppm)	(ppm)		sand (30%) is fine-grained to			%		5 — 10 — 15 — 20 — 30 — 35 — 35 — 35 — 35 — 35 — 35 — 3

161st ARG, PHOENIX, ARIZONA

$\mathbf{E} \mathbf{C}$

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-018MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller:

Gabby Rodriguez

Date Drilled:

06/28/95

Sampling Method:

N/A

Depth Drilled:

92 ft.

Depth To Water:

56.02 ft. BTOC

Date Measured:

07/13/95

Surface Elevation:

1109.04 ft.

Drill	ing Me	thod:	D	ual Wal	l Percussion	TOC Elevation:		09.04 ft 08.78 ft			
								ELD SC		NG	gu
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MA	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
å	В	%	S	9			(ppm)	(ppm)	(ppb)	(ppb)	Moi
55 —					- wet at 54 ft.						
65 —				0 0 0 0 0	Sand, gravelly; sand (60%) is medium-graine coarse-grained, poorly sorted gravel (40%) is 1/2" to 2", gr	d to very , brown; ray, loose.	-	-	-	-	
70					Gravel, sandy; gravel (70%) is 1/2" to 6", lo off-white, poorly sorted; sand (30%) is fine-grained to poorly sorted, loose, brown. Boring Terminated a	coarse-grained,			-	-	
95		1									_

161st ARG, PHOENIX, ARIZONA

PTEC

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-019MW

Project No.: Sampling Method: 1315-227 N/A Logged By: Michael A. Giles Depth Drilled: 92 ft.

Drilling Co.: North American Depth To Water: 59.41 ft. BTOC Driller:

Date Measured: Gabby Rodriguez 07/13/95 Date Drilled: 06/28/95 **Surface Elevation:** 1110.01 ft.

Drilling Method Dual Wall Paraussian TOC Floretions 1111 0/ ft

Drilli	ng Me	thod:	D	ual Wal	I Percussion	TOC Elevation:	11	11.94 ft			
(;	F_	ery	S	၁			FI	ELD SC	REENI	NG	Bu
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID (ppm)	ATHA (ppm)	BTEX (ppb)	Benzene (ppb)	Monitoring
10 — 10 — 15 — 20 — 30 — 40 — 45 — 50 —					Gravel, sandy; gravel (70%) is 1/2" to 6", 1 sorted, gray, off-white, and dry; sand (30%) is medium-graincoarse-grained, moderately sbrown, dry. Sand, slightly gravelly; sand (70%) is very coarse-grained, poorly sorted, 1 gravel (30) is 1/2" to 2", loo sorted, subangular, gray to rdry. Gravel, sandy; gravel (70%) is 1/2" to 6", 1 sorted, gray, off-white, and sand (30%) is fine-grained to coarse-grained, loose, brown	rained to loose, gray; se, poorly eddish-brown,			-		

PTECH

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-019MW

Project No.: 1315-227 Sampling Method: N/A Logged By: Michael A. Giles Depth Drilled: 92 ft.

Drilling Co.: North American Depth To Water: 59.41 ft. BTOC Driller: Gabby Rodriguez Date Measured: 07/13/95

Date Drill	ed:		6/28/95	out iguez	Surface Elevation		10.01 ft.			
Drilling M	lethod:	D	ual Wal	l Percussion	TOC Elevation:	11	11.94 ft	•		
G =	J.	re	.,			FI	ELD SC	REENI	NG	<u>8</u>
Depth (ft.) Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
Q H	%					(ppm)	(ppm)	(ppb)	(ppb)	M
555 — 60 — 65 — 70 — 75 — 80 — 95 — 100 — 1				Sand, gravelly; sand (60%) is medium-graine coarse-grained, poorly sorted wet; gravel (40%) is 1/2" to 2", I sorted, gray to reddish-brow. Gravel, sandy; gravel (70%) is 1/2" to 4", I sorted, gray to reddish-brow sand (30%) is fine-grained to poorly sorted, brown. Boring Terminated	d, loose, brown, cose, poorly n. cose, poorly n, wet; o coarse-grained,					

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-020MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller:

Gabby Rodriguez

Date Drilled:

Drilling Method

06/26/95

Dual Wall Percussion

Sampling Method:

Depth Drilled:

N/A 92 ft.

Depth To Water:

55.50 ft. BTOC

Date Measured:

07/13/95

Surface Elevation:

1114.09 ft.

TOC Floration

1 116 57 ft

San San San Cr.	ono	ene	Benzene	BTEX	АТНА	PID	TION OF MATERIALS	aphic	nples	covery	9/s^	ı (ft.)
Gravel, sandy; gravel (70%) is 1/2" to 4", loose, dry, reddish-brown to gray, subrounded to subangular; sand (30%) is fine-grained to coarse-grained, poorly sorted, brown. Sand, gravelly; sand (60%) is coarse-grained, well sorted, loose, brown, dry; gravel (40%) is 1/2" to 4", subrounded to subangular, gray, reddish-brown, or white. Gravel, sandy; gravel (70%) is 1/2" to 4", poorly sorted, loose, gray, off-white, and reddish-brown, dry; sand (30%) is fine-grained to coarse-grained,	Monitor	ene b)					TION OF MATERIALS	aph:	ldu	cov	/S/) (
Gravel, sandy; gravel (70%) is 1/2" to 4", loose, dry, reddish-brown to gray, subrounded to subangular; sand (30%) is fine-grained to coarse-grained, poorly sorted, brown. Sand, gravelly; sand (60%) is coarse-grained, well sorted, loose, brown, dry; gravel (40%) is 1/2" to 4", subrounded to subangular, gray, reddish-brown, or white. Gravel, sandy; gravel (70%) is 1/2" to 4", poorly sorted, loose, gray, off-white, and reddish-brown, dry; sand (30%) is fine-grained to coarse-grained,	Mo	b) 3	(ppb)	(ppb)	(ppm)			_ _ =	au	Se	0	ptł
gravel (70%) is 1/2" to 4", loose, dry, reddish-brown to gray, subrounded to subangular; sand (30%) is fine-grained to coarse-grained, poorly sorted, brown. Sand, gravelly; sand (60%) is coarse-grained, well sorted, loose, brown, dry; gravel (40%) is 1/2" to 4", subrounded to subangular, gray, reddish-brown, or white. Gravel, sandy; gravel (70%) is 1/2" to 4", poorly sorted, loose, gray, off-white, and reddish-brown, dry; sand (30%) is fine-grained to coarse-grained,		N.	_			(ppm)		9	Ś	% 1	8	De
25 — 30 — 35 — 40 — 45 —				-		-	o gray, subrounded to ne-grained to coarse-grained, rown. parse-grained, well sorted, ry; 1/2" to 4", subrounded to r, reddish-brown, or white.			6		10

161st ARG, PHOENIX, ARIZONA

E

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-020MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller:

Gabby Rodriguez

Date Drilled:

06/26/95

Sampling Method:

N/A

Depth Drilled: Depth To Water: 92 ft.

Date Measured:

55.50 ft. BTOC

07/13/95

Surface Elevation:

1114.09 ft.

	na Mot			0/20/95 wal XVal	I Domovonion	TOC Floredian		14.09 ft			
DUIII	ng Met	noa:	ע	uai Wal	l Percussion	TOC Elevation:		116.57 f			****
£.	l	ery	Š	ည			FI	ELD SC	REENI	NG	gu
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	ATHA	BTEX	Benzene	Monitoring Well
Dept	Blo	6 Re	Sar	Ğ							loni W
		6					(ppm)	(ppm)	(ppb)	(ppb)	Z
				5.5.5	- wet at 53 ft.						
55 -	_										
_				• • •							
60 —	_										
_											
				::::							
65 —	-										
_				• • • •							
70 -											
/0 -											
_				• • •							
75 —	-										
_				.1.1.							
80 —	-										
_											
85 —	_										
_											
90 -	-								,		
				•;•;•	Don't Transit 1	100 5					
					Boring Terminated	at 92 ft.					-
95 —	-										_
											-
100											-
100 —	_										-
							!			I .	

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-021MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller: Date Drilled: Gabby Rodriguez

06/23/95

Sampling Method:

Depth Drilled:

Depth To Water:

92 ft. 56.10 ft. BTOC

N/A

Date Measured: **Surface Elevation:** 07/13/95

1114.52 ft.

Drilli	ing Me	thod:	D	ual Wal	l Percussion	TOC Elevation:	11	14.31 ft	•		
⊋	=_	ery .	S	ပ			FI	ELD SC	REEND	NG	gu
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
Dep	Blc	% R	Sa	Ğ			(ppm)	(ppm)	(ppb)	(ppb)	Mor
10 - 15 - 10 - 15 - 15 - 15 - 15 - 15 -					Gravel, sandy; gravel (80%) is 1/4" to 6", plarge gravel more rounded, rigray, to off-white, dry; sand (20%) is medium-graine coarse-grained, poorly sorted	eddish-brown to ed to i, brown.					

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-021MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller:

Gabby Rodriguez

Sampling Method:

Depth Drilled:

N/A 92 ft.

Depth To Water:

Date Measured:

56.10 ft. BTOC

07/13/95

Date Drilled:	06/23/95	our iguez	Date Measured:		/13/95		**	
Drilling Method:		l Percussion	Surface Elevatio		14.52 ft			
	Dual Wal	1 Fercussion	TOC Elevation:	11	14.31 ft	•		
ft.) 6" ery	တ္ထု ည			FI	ELD SC	REENI	NG	50
Depth (ft.) Blows/6" % Recovery	Samples Graphic	DESCRIPTION OF MA	ATERIALS	PID	АТНА	Darres	D	Monitoring Well
Dep Blo	Sar		TERIALS	TID	AIHA	BTEX	Benzene	We
1 %				(ppm)	(ppm)	(ppb)	(ppb)	M
55		- wet at 61 ft. Gravel, clayey; gravel (60%) is 1" to 6", poor clay (40%) is sandy, brown, 1s Gravel, sandy; gravel (80%) is 1/4" to 6", poor loose, sand is clayey, brown, very sand is clayey.	orly sorted, wet.					

161st ARG, PHOENIX, ARIZONA

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-022MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller:

Gabby Rodriguez

Date Drilled:

06/25/95

Drilling Method: Dual Wall Percussion

Sampling Method:

N/A

Depth Drilled:

92 ft.

Depth To Water:

54.06 ft. BTOC

Date Measured:

07/13/95

Surface Elevation:

1114.93 ft.

TOC Elevation:

1114.21 ft.

Drilling M	ctirou.	v	uai Trai	l Percussion	TOC Elevation:	tion: 1114.21 ft.					
(t.)	ery	S	ຸຍ			FI	ELD SC	REENI	NG	Bu	
Depth (ft.) Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring	Well
De	1 %	Š	9			(ppm)	(ppm)	(ppb)	(ppb)	Mo	
5 — 10 — 15 — 20 — 25 — 30 — 35 — 40 — 45 — 50 — 50 — 50				Sand, gravelly; sand (50%) is fine-grained to loose, poorly sorted, brown, gravel (50%) is 1/2" to 6", 1 reddish-brown, subrounded. Gravel, sandy; gravel (70%) is 1/2" to 6", 1 reddish-brown to gray, subro	oose.		-	-			

161st ARG, PHOENIX, ARIZONA

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-022MW

Project No.: 1315-227

Logged By: Michael A. Giles

Drilling Co.: North American
Driller: Gabby Rodriguez

Date Drilled: 06/25/95

Sampling Method: N/A

Depth Drilled: 92 ft.

Depth To Water: 54.06 ft. BTOC

Date Measured: 07/13/95 Surface Elevation: 1114.93 ft.

Date Drilled: 06/25/95			Surface Elevation		14.93 ft					
Drilling Me	thod:	D	ual Wal	l Percussion	TOC Elevation:	11	14.21 ft	•		
ft.) 6"	'ery	es	ic			FI	ing			
Depth (ft.) Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
De	1 %	S	9			(ppm)	(ppm)	(ppb)	(ppb)	Moi
55				- wet at 55 ft.						
60 —										
-										
65 —										
								:		
70 —										
			: : : : : : : : : : : : : : : : : : :							
75 —										
	·									
80 —										
			• • •							
85 —										
90 —										
			• , • , •	Boring Terminated	at 92 ft.					
95 —										_
										-
100 —										-
-										-

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-023MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller: Date Drilled: Gabby Rodriguez

Gravel, sand;

sorted, brown.

gravel (70%) is 1/2" to 6", loose, gray and reddish-brown, fragmented, subangular; sand is coarse-grained to fine-grained, poorly

06/20/95

Drilling Method: Dual Wall Percussion

Depth Drilled:

N/A 92 ft.

Depth To Water:

Sampling Method:

55.73 ft. BTOC

Date Measured:

07/13/95

Surface Elevation:

1114.79 ft.

TOC Elevation: 1114.42 ft.

:	F_	ery	S	ပ	DESCRIPTION OF MATERIALS		FIELD SCREENING				
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic			ATHA (ppm)	BTEX (ppb)	Benzene (ppb)	Monitori Well	
5					Sand, gravelly; sand (90%) is fine-grained to medium-grained, poorly sorted, loose, light brown, dry; gravel (10%) is 1/2" to 6", subangular to subrounded.		-	-	-		
15 —	_			0 0	Sand, gravelly; sand (80%) is fine-grained to medium-grained, moderately sorted, loose, reddish-brown; gravel (20%) is 1/2" to 3", subangular to subrounded. Sand, gravelly; sand (90%) is fine-grained to coarse-grained, poorly sorted, loose, light brown; gravel is 1/2" to 3", subangular to subrounded.	-	-	-	-		

OPTECH

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-023MW

Project No.: 1315-227 Sampling Method: N/A
Logged By: Michael A. Giles Depth Drilled: 92 ft.

Drilling Co.: North American

Depth To Water: 55.73 ft. BTOC

Driller: Gabby Rodriguez

Date Measured: 07/13/95

Date Drilled: 06/20/95 Surface Elevation: 1114.79 ft.

Drilling Method: Dual Wall Percussion TOC Elevation: 1114.42 ft

Drilling Meth			nal Wal	l Percussion	TOC Elevation:		14.79 ft 14.42 ft			
				7 0. 0433301	TOC Bicvation.	1	ELD SC		NG.	
Depth (ft.) Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MA	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
Q H	%					(ppm)	(ppm)	(ppb)	(ppb)	Mc
55 — 60 — 65 — 70 — 75 — 80 — 90 — 95 — 100 — 10				- wet at 56 ft. Sand, coarse-grained, well-so subangular to subrounded. Gravel, sandy; gravel (60%) is 1/2" to 6", lo reddish-brown, fragmented; sand (40%) is fine-grained to poorly sorted, brown. Boring Terminated at 92 ft.	oose, gray to	-	- -	- -	-	

PTECH

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

Split-spoon Sampler

LOG OF BORING 06-024MW

Project No.:

1315-227

Logged By:

Michael A. Giles North American

Drilling Co.: Driller:

Gabby Rodriguez

Date Drilled: Duilling Mathada

06/24/95

Sampling Method:

Depth Drilled:

92 ft.

Depth To Water:

55.39 ft. BTOC 07/13/95

Date Measured: **Surface Elevation:**

1115.62 ft.

Drilling Method: Dual Wall Percussion		TOC Elevation: 1115.12 ft.						
					ELD SC		NG ·	gı
Depth (ft.) Blows/6" % Recovery	Samples	DESCRIPTION OF M		PID (ppm)	ATHA (ppm)	BTEX (ppb)	Benzene (ppb)	Monitoring Well
5 — 10 — 15 — 15 —		Sand, gravelly; sand (70%) is fine-grained to poorly sorted, brown, dry; gravel (30%) is 1/4" to 2", g off-white.	coarse-grained,	n/a	n/a	-	-	
20		Gravel, sandy; gravel is (60%), 1/2" to 6" p loose, subrounded, fragment subangular, red, green, gray sand (40%) is fine-grained to poorly sorted, brown.	ed pieces are . reddish-brown:					
30								
45 —								

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-024MW

Project No.: Logged By:

1315-227

Michael A. Giles

Drilling Co.: Driller:

North American Gabby Rodriguez

Date Drilled:

06/24/95

Drilling Method:

Dual Wall Percussion

Sampling Method:

Depth Drilled:

92 ft.

Depth To Water:

55.39 ft. BTOC

Split-spoon Sampler

Date Measured:

07/13/95

Surface Elevation:

1115.62 ft.

OC	Elevation:	1115.12 ft.

Drill	ing Me	thod:	D	ual Wal	l Percussion	TOC Elevation:	ation: 1115.12 ft.				
t.)	,,	ery	S	၁			FIELD SCREENING			gu	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MA	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
Del	BI	% B	S	Ö			(ppm)	(ppm)	(ppb)	(ppb)	Mo
_	80	80					n/a	n/a			
55 -	_										
_				0 0	Sand, gravelly; sand (75%) is fine-grained to	coarse-grained,					
60 -				0 0	moderately sorted, brown, lo gravel (25%) is 1/4" to 2", lo - odor at 60 ft.	ose; oose.	10	15	-	-	
65 -				0 0	- wet at 64 ft.		10.5	110			
				6			10.5	112	-	-	
70 –				0 0			154	187	-	-	
				0 0							
75 —				0 0			14	28	_	_	
_				0.0							
80 —				0. 0.			12	19	-	-	
85 -	_			0 0			0.3	0.5	_	_	
-				0 6							
90 - -	_			0 0	Boring Terminated at 92 ft.						
95 —					Doring Terminated at 92 It.						_
_]										_
100 -	_										_
	1	!	!				1	I		ļ	!

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-025MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller: **Date Drilled:**

06/21/95

Gabby Rodriguez

Sampling Method:

N/A

Depth Drilled:

92 ft.

Depth To Water:

55.07 ft. BTOC

Date Measured:

07/13/95

Surface Elevation:

1115.94 ft.

Drilli	ng Met	thod:	D	ual Wal	l Percussion	TOC Elevation:	on: 1115.56 ft.						
$\overline{\cdot}$	=	ıry	SO.	బ		FIEL				FIELD SCREENING		NG	gu
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS			ATHA (ppm)	BTEX (ppb)	Benzene (ppb)	Monitoring Well		
5 —					Gravel, sandy; gravel (60%) is 1/2" to 4", le reddish-brown to gray, subar sand (40%) is fine-grained to poorly sorted, brown.	ngular;	-	-	-				
15	_				Sand, gravelly; sand (80%) is coarse-grained subangular, loose, reddish-bi gravel (20%) is 1/2" to 2", s subangular, white, reddish-b - medium-grained sand 2 moderately sorted.	rown, dry; ubrounded to rown, gray.	-	-	-				
25			· an idah dalam menangan kan		Gravel, sandy; gravel (70%) is 1/2" to 4", p loose, off-white to brown, su subangular; sand (30%) is fine-grained to medium-grained, moderately	brounded to		-	-				
35 —													
45 — — — 50 —									7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-025MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.: Driller:

North American Gabby Rodriguez Sampling Method:

Depth Drilled:

N/A 92 ft.

Depth To Water:

55.07 ft. BTOC

Date Measured:

07/13/95

Drill	Drilled			6/21/95	odriguez Date Measured Surface Elevati			/13/95 15 04 64			
	ing Met				l Percussion	TOC Elevation:		15.94 ft 15.56 ft			
	9 1.10			11411	A C. CUSSION	TOC Elevation:	1				
Depth (ft.)	,,9/	% Recovery	les	nic			FI	ELD SC	LD SCREENING		
ŧ,	Biows/6"	seco	Samples	Graphic	DESCRIPTION OF M	DESCRIPTION OF MATERIALS		ATHA	BTEX	Benzene	Monitoring Well
Del	B	% F	Š	5			(ppm)	(ppm)	(ppb)	(ppb)	Mor
55 — 60 — 65 — 70 — 80 — 95 — 95 — 100 — 1		6			Sand, gravelly; sand (60%) is medium-graine coarse-grained, moderately subrounded; gravel (40%) is 1/2" to 2", pwet. - water at 55 ft. to 60 ft. Gravel, sandy; gravel (60%) is 1/2" to 3", psubangular, brown; sand (40%) is medium-graine coarse-grained, moderately substitute. Boring Terminated	poorly sorted, coorly sorted, coorly sorted, ed to orted, brown.	(ppm)	- -	- -	- -	

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 06-026MW

Project No.: Logged By:

1315-227

Michael A. Giles North American

Drilling Co.: Driller:

Gabby Rodriguez

Date Drilled:

06/22/95

Sampling Method:

Split-spoon Sampler

Depth Drilled:

92 ft.

Depth To Water:

55.50 ft. BTOC

Date Measured:

07/13/95

Surface Elevation:

1116.14 ft.

Date Drilled:	00/22/95 Dual Wall	1 Demoussion	TOC Elevation:						
Drilling Method:	Duai Wai	l Percussion	TOC Elevation:	EVEL D. CODEENIDIO					
ft.) 6" 'ery	es			FIELD SCREENING			NG	ing	
Depth (ft.) Blows/6" % Recovery	Samples Graphic	DESCRIPTION OF M	ATERIALS	PID	ATHA	BTEX	Benzene	nitori Well	
Depth (ft.) Blows/6" % Recovery	Sa			(ppm)	(ppm)	(ppb)	(ppb)	Monitoring Well	
		Fill, concrete pieces, clay, so	ome sand.						
	_								
5 - 60+ 0				n/a	n/a	-	-		
50+ 0							İ		
	* 1 * 1 *	Gravel, sandy;	1						
1060+ 0	\cong	gravel (75%) is 1/2" to 4", le sorted, small size is subangu	lar, large size is			:			
		subrounded, off-white, gray, green;	red, some						
15 - 70+ 0		sand (25%) is medium-grain coarse-grained, poorly sorted	ed to						
70+ 0		dry.	i, ioose, brown,						
70+ 0									
20 - 10+ 0	6,6,6								
		·							
25 -70+ 0									
	• ; • ; •								
30 -70+ 0									
	5 5								
35 80+ 0					:				
40 - 70+ 0	× 5 ; 5 ; 5			1					
45	≥ ; ; ;								
50 -60+ 0	Z								
30				1		!	ı		

OPTECH

161st ARG, PHOENIX, ARIZONA

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 06-026MW

Project No.:

1315-227

Logged By:

Michael A. Giles

Drilling Co.:

North American

Driller:

Gabby Rodriguez

Date Drilled:

06/22/95

Sampling Method:

Split-spoon Sampler

Depth Drilled:

92 ft.

Depth To Water:

55.50 ft. BTOC

Date Measured:

07/13/95

Surface Elevation:

1116.14 ft.

Date Drilled: 06/22/95 Surface Elevation: 1116.14 ft.										
Drilling Me	thod:	D	ual Wal	l Percussion	TOC Elevation:		15.55 ft			
3 =	ıry	S	ပ			FI	ELD SC	REENI	NG	gu
Depth (ft.) Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF M.	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
De	% I	Š	6			(ppm)	(ppm)	(ppb)	(ppb)	Mo
55 —										
60 +										
65										
70 —										
75				·						
80 =		A STATE OF THE STA								
85 —		•								
90 —										
			5 ; 5 ; 5	Boring Terminated	at 92 ft.	_				
95 —										
100 —										-

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

WELL CONSTRUCTION LOGS

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION B INTRODUCTION

Well construction logs have been completed for each monitoring well installed as part of the Remedial Investigation Addendum. Diagrams are presented in numerical order. The diagrams include water level data and well construction information for each individual well. Well construction information includes an outline of the wellbore, depth of the borehole, the screened interval, and the sand packed and bentonite seal interval.

THIS PAGE INTENTIONALLY LEFT BLANK

Project: Sky Harbor RI Addendum Date Installed: June 28, 1995 Town/City: Phoenix Drilling Contractor: North American County: <u>Maricopa</u> State: <u>Arizona</u> Drilling Method: AP-1000 Percussion TOC Elev: 1108.78 9" Borehole Diameter: Ground Elev.: 1109.04' Development Technique: ____Pumping Water Level: ____56.02 feet below TOC Total Well Depth: _____92'

MONITORING WELL CONSTRUCTION LOG Well No. <u>06-018MW</u>

Not To Scale

SKYHARBO\FMON-LOG

Project: Sky Harbor RI Addendum June 28-29, 1995 Date Installed: Town/City: Phoenix Drilling Contractor: North American County: <u>Maricopa</u> State: <u>Arizona</u> Drilling Method: AP-1000 Percussion 1111.94' TOC Elev: Borehole Diameter: Ground Elev.: 1110.01 Development Technique: Pumping Water Level: 59.41 feet below TOC

Total Well Depth: 92'

Not To Scale

MONITORING WELL CONSTRUCTION LOG Well No. 06-019MW

Project: _Sky Harbor RI Addendum Date Installed: June 26, 1995 Town/City: Phoenix Drilling Contractor: North American County: <u>Maricopa</u> State: <u>Arizona</u> Drilling Method: AP-1000 Percussion TOC Elev: 1116.57 Borehole Diameter: Ground Elev.: 1114.09' Development Technique: Pumping 55.5 feet below TOC Water Level: Total Well Depth: 92' Not To Scale

MONITORING WELL CONSTRUCTION LOG Well No. 06-020MW

Project: Sky Harbor RI Addendum

Town/City: Phoenix

County:

<u>Maricopa</u> State: <u>Arizona</u>

TOC Elev:

1114.31

Ground Elev.: 1114.52'

Water Level: 56.1 feet below TOC

Total Well Depth: 92'

Date Installed:

June 23, 1995

Drilling Contractor: North American

Drilling Method:

AP-1000 Percussion

Borehole Diameter: 9"

Development Technique: Pumping

Not To Scale

MONITORING WELL CONSTRUCTION LOG Well No. 06-021MW

AUGUST 1995

SKYHARBO\FMON-LOG

Project: _Sky Harbor RI Addendum Date Installed: June 25-26, 1995 Town/City: Phoenix Drilling Contractor: North American County: <u>Maricopa</u> State: <u>Arizona</u> Drilling Method: AP-1000 Percussion 1114.21 TOC Elev: Borehole Diameter: 9" Ground Elev.: <u>1114.93'</u> Development Technique: Pumping Water Level: 54.06 feet below TOC Total Well Depth: 92' Not To Scale

MONITORING WELL CONSTRUCTION LOG Well No. 06-022MW

OPTECH OPERATIONAL TECHNOLOGIES

AUGUST 1995

SKYHAREO\FMON-LOG

Project: Sky Harbor RI Addendum

Town/City: Phoenix

County:

<u>Maricopa</u> State: <u>Arizona</u>

TOC Elev:

1114.42

Ground Elev.: 1114.79'

Water Level: 55.73 feet below TOC

Total Well Depth: 92'

Date Installed:

June 20, 1995

Drilling Contractor: North American

Drilling Method:

AP-1000 Percussion

Borehole Diameter: 9"

Development Technique: Pumping

Not To Scale

MONITORING WELL CONSTRUCTION LOG Well No. 06-023MW

Project: Sky Harbor RI Addendum Town/City: Phoenix County: <u>Maricopa</u> State: <u>Arizona</u> TOC Elev: 1115.12 Ground Elev.: _____1115.62'

55.39 feet below TOC Water Level:

Total Well Depth: 92'

Date Installed:

June 24, 1995

Drilling Contractor: North American

Drilling Method:

AP-1000 Percussion

Borehole Diameter: 9"

Development Technique: Pumping

Not To Scale

MONITORING WELL CONSTRUCTION LOG Well No. __06-024MW

AUGUST 1995

SKYHAREO\FMON-LOG

Project: Sky Harbor RI Addendum Date Installed: June 21, 1995 Town/City: Phoenix Drilling Contractor: North American County: <u>Maricopa</u> State: <u>Arizona</u> Drilling Method: AP-1000 Percussion TOC Elev: 1115.56' Borehole Diameter: _____9" Ground Elev.: 1115.94' Development Technique: Pumping Water Level: 55.07 feet below TOC

Total Well Depth: 92'

MONITORING WELL CONSTRUCTION LOG Well No. 06-025MW

Not To Scale

Project: Sky Harbor RI Addendum Date Installed: June 22, 1995 Town/City: Phoenix Drilling Contractor: North American <u>Maricopa</u> State: <u>Arizona</u> Drilling Method: County: AP-1000 Percussion 1115.55 TOC Elev: Borehole Diameter: Ground Elev.: 1116.14' Development Technique: Pumping Water Level: 55.5 feet below TOC Total Well Depth: 92' Not To Scale

MONITORING WELL CONSTRUCTION LOG Well No. 06-026MW

OPTECH OPERATIONAL TECHNOLOGIES CORPORATION

AUGUST 1995

SKYHARBO\FMON-LOG

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

RESULTS OF MICROBIOLOGICAL STUDIES

THIS PAGE INTENTIONALLY LEFT BLANK

17631 N. 25th Avenue. • Phoenix, Arizona 85023 (602) 942 8220 • FAX (602) 942 1050

24 July 1995

Mr. John Morris Operational Technologies Inc. 4100 NW Loop 410, Suite 230 San Antonio, TX 78229

Deliverables for Sky Harbor Project #1315-227 Re:

Dear John:

On June 27 1995, Bolin Laboratories received 2 soil samples to be analyzed for Heterotrophic Plate Count, Hydrocarbon Plate Count, Nitrate, Nitrite, pH, Total Kjeldahl Nitrogen, Total Phosphorous, and Moisture. The samples were analyzed on a standard turn around time of 10 working days.

Attached, please find analytical reports, quality control results, raw data from our laboratory notebooks, and a carbon copy of the original chain of custody form. No difficulties were encountered during sample analysis. All Quality Control data was within the acceptable limits. There are 12 pages in the package.

If I can be of further assistance or if you have any questions, please call me at (602) 942-8220.

Sincerely,

BOLIN LABORATORIES INC.

Jennifer MacSweeney

Director of Client Services

17631 N. 25th Avenue. • Phoenix, Arizona 85023 (602) 942 8220 • FAX (602) 942 1050

Operational Technologies Corp. 4100 NW Loop 410, Suite 230 San Antonio, TX 78229

Received: Reported:

6/27/95 7/13/95

Invoice No:

011819

Attn: John H. Morris

Project Name: Project No.:

Sky Harbor

1315-227

DATE **ANALYZED**

PARAMETER

METHOD

RESULTS

UNITS PQL

Sample No: Sample ID:

9506-06109-1

Date Sampled: 6/27/95

Matrix:

06-016 BH 50-51

Time Sampled: 14:00

Soil

Matrix: 0011					
Heterotrophic Plate Count	SM 9215 B	30.		10	6/29/95
Hydrocarbon plate count		< 10.	CFU/g		6/29/95
Nitrate in Soil	EPA 353.3	0.44	mg/kg	1	6/28/95
Nitrite in Soil	EPA 345.1	< 1.	mg/kg	1.	6/28/95
рН	EPA 150.1	9.0	Std Unit	1	6/28/95
Nitrogen, Total Kjeldahl	EPA 351.3	43.1	mg/L	0.1	7/06/95
Phosphorus, Total	EPA 365.3	0.95	mg/kg	0.05	6/09/95
Moisture	EPA 160.3	1.7	%	0.5	6/29/95

NOTES:

TKN analyzed by Aerotech Labs, Phoenix, AZ. #AZ0477.

Laboratory Director

ADHS License No.: AZ0004

17631 N. 25th Avenue. • Phoenix, Arizona 85023 (602) 942 8220 • FAX (602) 942 1050

Operational Technologies Corp. 4100 NW Loop 410, Suite 230 San Antonio, TX 78229

Received: Reported: 6/27/95

Invoice No:

7/13/95 011819

Attn: John H. Morris

Project Name: Project No.:

Sky Harbor

1315-227

PARAMETER

METHOD

RESULTS

UNITS PQL

DATE **ANALYZED**

Sample No: Sample ID:

9506-06109-2

Date Sampled: 6/27/95

Matrix:

06-016 BH 46-47.5 Soil

Time Sampled: 14:00

6/29/95

6/29/95

6/28/95

6/28/95

6/28/95

7/06/95

6/09/95

6/29/95

Heterotrophic Plate Count SM 9215 B < 10. CFU/g 10 Hydrocarbon plate count CFU/g < 10. Nitrate in Soil EPA 353.3 0.77 mg/kg 1 Nitrite in Soil EPA 345.1 < 1. ma/ka 1. EPA 150.1 9.7 Std Unit 1 Nitrogen, Total Kjeldahl EPA 351.3 73.0 mg/L 0.1 Phosphorus, Total EPA 365.3 0.39 0.05 mg/kg Moisture EPA 160.3 4.9 % 0.5

TKN analyzed by Aerotech Labs, Phoenix, AZ. #AZ0477.

Laboratory Director

ADHS License No.: AZ0004

17631 N. 25th Avenue. • Phoenix, Arizona 85023 (602) 942 8220 • FAX (602) 942 1050

QUALITY CONTROL DATA REPORT

Client Bolin Sample ID

Operational Technologies Corp. 9506-6109-1&2

ANALYTE	EPA	DATE	CONC. SPK	MS	MSD	RPD	BLK	CVS 1	CVS 2
	METHOD	ANALYZED	mg/kg	% REC	% REC			% REC	% REC
Nitrite in Soil	345.1	6/28/95	0.05	92	89	3.31	< 0.01	92	89
Nitrate in Soil	353.3	6/28/95	0.33	84	84	0	< 0.05	114	114
Moisture	160.3	6/29/95							
рН	150.1	6/28/95						101	101
Phosphorus, Total	365.3	6/29/95	0.5	97	94	3.14	< 0.05	91	84

CVS is a Calibration Verification Standard.

MS is Matrix Spike

MSD is a Matrix Spike Duplicate.

RPD is Relative Percent Difference

BLK is a Blank

HETEROTROPHIC PLATE COUNT FOR SOILS

DATE: 6/29/95

		1	1		7	_	_		-					_
BFB LOT #	[RZVA	266	-	4										
MEAN		30.		7 1/2							C	1200	1000	アクラ
RESULT	30.	30.												
COUNTED	OM	, ,												_
PLATED BY	MC.	-		_\										
10														
0							-					-		
8										1.	-		+	
7	0	0	0						+					1
9	0	0	0	0			T	\top						-
2	0	0	67	0										
4	0	0	0	0		*								
3	0	0	0	0						-				
2	-	0	0	0										
-	8	0									Ú	0	0	
SAMPLE NUMBER			9506-6109-2A	2							Pipet/Dilution Blank (Media Blank		Agar Lombi
		j	<u> </u>					4.			۵.	2	۷	

PERCENT MOISTURE LOSS

WEIGHT OF PETRI DISH	BEFORE INCU	BATION	AFTER INCUBATION	VOITA	% Moisture
	WT. DISH + MEDIA	WT. MEDIA	WT. DISH + MFDIA	WT MENIA	
1/2				יייי יייובטוא	LUSS
15,8	78.4	12.6	0 5.0	(i)	10 1 11
		100	2 3	<i>(</i>)	ري - ا
. % Moisture Loss = wt.	% Moisture Loss = wt. media before incubation - wt. media after incubation	n - wt. media a	offer incubation 9 CELV:	1112	
	The state of the s		\	The state of the s	•

HETEROTROPHIC PLATE COUNT FOR SOILS

Hydrocarbon

SAMPLE NUMBER	1	2	3	4	ಬ	9	7	80	6	10	PLATED BY	COUNTED BY	RESULT	BFB MEAN LOT #	BFB LOT #
95cb-6109-1A	0	0	0	0							MIC	Nan	Q	07.7	13305
B	0	\circ	0	0								10	Ö	2/7	3-96
19500 -6109-2A	0	\mathcal{C}	0	Q									() ·		-
B	C	\mathbb{C}	Ó	Û								1	0	7. /C)	1
															4
															377.77%
Pipet/Dilution Blank	0													Red	
Media Blank	Ċ													Rich	
Air Blank	\bigcirc													1200	
Agar Temp: 43 °C															

PERCENT MOISTURE LOSS

WEIGHT OF PETRI DISH	BEFORE INCUBATION	ATION	AFTER INCUBATION	ATION	% Moisture
	WT. DISH + MEDIA	WT. MEDIA	WT. DISH + MEDIA	WT. MEDIA Loss	Loss
15.7	35.7	9.5	4.56	1.1	194
1. % Moisture Loss = $\overline{\mathbf{w}}$	t. media before incubatio	ın - wt. media	% Moisture Loss = wt. media before incubation - wt. media after incubation 2. CFU/g = CFU x 225 mL	$l/g = CFU \times 225$	mL
	wt. contents before incubation	re incubation		mL 25g	forms/hpcs.suz

NITRATE (EPA 353.3)

Date: 6/3///

Calibration Correlation: <u>0909</u>

SAMPLE NUMBER	QC ID/TARGET	DILUTION FACTOR	ABS READING	SAMPLE CONC. (mg/L)	QC RECOVERY
8			0.025		
2.0452			0.054		
~ //3			0.07/		
0.246			0.103		
0.45.2			0.216		
1904			0.401		
& C	17,5		0.119	0.23/02	1149+
6/00-/			0.043	0.044 = 0.44 m	1,0
6109-2			0.058	0.080 - 0.77mg	THE STATE OF THE S
6037-1			0201	0.325	
6037-2			13.305	2724	
6079-1		2.5	0.160	074625-174	
603-1		1.16	6.33/	1 700×11=739	
6076-1			0.074	0.119	
6050-1		1:10	0.33/	p.739×10-739	68
6057-1		1.5	0.164	·	
4077-1	0.27			0.28/0.33	8490
10077-15	0.33		0.140	0.25/0.33	D49
6677-150	0.33		0.119	0.83/0.2	1148
&C	0.2	+	6.11	,,,,,	
D					-
D.					

1	C K	
		(

Checked by:

Date: _____

NO3.suz

JMX + 2.76 + 96m + 0.292 110 0.0452 + 0522 -0618 = 0.33

Page No. 38

NITRITE (EPA 345.1)

Analyst:	j~		
Calibration Correlation:	D.	999	(c/f/as)

Date: 6/38/95

SAMPLE NUMBER	QC ID/TARGET	DILUTION FACTOR	ABS READING	SAMPLE CONC. (mg/L)	QC RECOVERY
BARNE			0.003	1.0.01	
QC.	0.15		0.510	0.13/0.15	93/2
6109-1			0.004	20.01	
1.140-1			0022	20.01	
6109-2			0.030	2001	
1.009-15	0.05		0.156	0.46/2.05	932
6109-15 6109-15D	0.05		0.180	0.644/0.05	F92-
ac	0.15		0.494	0.133/0.15	£9%
			·		
				,	
				·	·
			-		

Checked by:	Date:
NO2.suz 45M2 × 5M2 × 0.5 50 + 50 = 7.05	Page No.

nalyst:	Juan	
l	9749	

Date: 4/28/95

SAMPLE NUMBER	pH-1	pH-2	pH-3	AVERAGE pH (Std Units)
				9.99
10				4.0;
4				7.05
R.C.T		-		8.99
9506-6109-1 6109-2 807		-		9.67 7.05
6/09.2				7.05
607				

Checked by:

Date: _____

Page No. <u>89</u>

pH.Suz

8

TOTAL KJELDAHL NITROGEN

	1 ht
ANALYST: SB	REVIEWED:
DATE: 7/6/95	DATE:
INITIAL RESULT: 2554-1A = 44.4	SPIKE RESULT: 4.8
DUPLICATE RESULT: 2554-18 = 41.8	SPIKE CONC.: 4.4
RPD: (a	% RECOVERY: 92
CONTROL RESULT: //8	CONTROL RESULT: 11.4
TRUE VALUE: //. 6	TRUE VALUE: (1.6
% RECOVERY: /O/.	% RECOVERY: (00

SAMPLE ID	mis SAMPLE	mls 0.02 N H ₂ SO ₄	INITIAL (mg/L)	TKN (mg/L)	
Blank	300	0		0	
Control	100	4.2		11.8	
95-2414	150	25.3		47.2	
2553-1	250	1.45		1.6	
- 2554-1A	5.049	0.8		44,4	昭1
255418	5.039	0.75		41.8	
2554-2	5.18	1.35	·	73.0	<u> </u>
2565-1	256	22.65		25.4	
2589-1	50	5.35	,	299.6	1
2590-1.	250	1.75		2.0	1
: 2591-1		1.50		1.7	-
2592-1		0.65		0.7	1
2607-1		1.20		1.3	_
2606-1	1	19.50		21.8	1
Control Z	100	4.15		11.6	
2553-1+100c	250	6.05		4.84	7
				/	Д
				1 (,11	
OOC EVENTS / COMM	ENTS / CALCUL	ATIONS			

9.

PHOSPHORUS, TOTAL (EPA 365.3)

Analyst:	200			
Calibration Correlation:	0	997	(4/8/95)	

Date: 6/29/95

SAMPLE NUMBER	QC ID/TARGET	DILUTION FACTOR	ABS READING	SAMPLE CONC (mg/L)	QC RECOVERY
BLANK			0.009	20.05	
OC.	0.3		0.147	-0000 0.27/0.3	9/26
6109-1	7.5029	75 p	0-130.06	0.099-0.003=	0.096 -09
MDL1			0.045	0.056	
Z			0.046	0058	
3			0.041	0.048	
4			0.046	0000	
5			0.042	0.050	
6			0.039	0.044	
7			0.044	0.054	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P			0.043	0.052	
9			0.041	0.048	
6/09-2	7.50/2/4	. L	0.037	0.039 =	0.39 mg/
6109-25	0.5		0.247	048/0.5	972
6109-ZSD	0.5		0.240	0.4//0.5	9410
OC	6.3		0.138	0.25/0.3	84%
				Topi Affi	1.44
				કુ કે	
					· ·

Checked by:	
	+ 5ML 20.039
phos.suz 100	10.
	1=1.502

Date:

Page No. 55

MOISTURE

	(m
Analyst:	

Date: 4/21/95

0F30

506-

1230

C	11 50				
SAMPLE NUMBER	DISH NO.	WT. DISH A	WT. DISH + SPL. B	WT. DISH + SOLIDS C	% MOISTURE
6109-1	7	1.3/90	9.7704	9.6272	1.7
6109-3	52	1.3299	9.7764 10.7768	10-3300	7,4.7
6109-1 6109-2 6109-2D	3/	1.3347	11.6291	10.5439 (4.9	5.0
		, , , , ,			
			٠		·
				. 7	
		,			
		,			
			•		
				:	
	·			·	
				·	
				<u> </u>	·
				· · ·	
· ·					,

% Moisture = $(B - C) \times 100$ (B - A)

Checked by:

Date: _____

Page No. 2

moist.suz

11.

	CHAIN OF CUSTOUTY RECORD	
LIENT A	PROJ. NAME	
Colubs	Shy Haber	Bolin Laboratories Inc.
DDREESS	C PROJ. NO.	
677 CEMONY Vallux KIS	1318-22+	4 17631 N. 25th Ave., Phoenix AZ 850
ITY, STATE, ZIP	PROJ. MGR.	(602) 942-8220 • Fax (602) 942-105
CAR 12 1/2. 37830	John Morris	
	CONTACT	☐ 355 S. Euclid #107A, Tucson AZ 857
515-4K3-K020	(10/10/11)	(602) 628-4321 • Fax (602) 792-253
AX	P.O. NO.	Z.
018-483-2800		
	V	
-ABORATORY AUTHORIZATION F	ABORATORY AUTHORIZATION REQUIRED FOR RUSH REQUESTED (W/	SAMPLE TYPE
	ANAYSE	

	,															
Bolin Laboratories Inc.	文 17631 N. 25th Ave., Phoenix AZ 85023	(00Z) 94Z-0ZZU TAX (00Z) 84Z-103U	☐ 355 S. Euclid #107A, Tucson AZ 85719 (602) 628-4321 • Fax (602) 792-2539	Sme	SAMPLE TYPE CODES	DW = DRINKING WATER	T = TRAVEL BLANK C = COII		101-6109-01086	20 - 1			9. Winto - 80	College Per M. Giles	in well as rub	-Hour out Journal
Dotales Sky Hober	677 (Embry Valley R) & 1315-227	104 M. 57830	615-483-8020	615 - 483 - 2800	LABORATORY AUTHORIZATION REQUIRED FOR RUSH REQUESTED ON CONTRACTORY	DE NEBS NDE	YT 31	CLIENT'S SAMPLE IDENTIFICATION DATE TIME S S S S S S S S S S S S S S S S S S S	- Ob-016 RH 50-51 6/17 1400 5 2 XXXX	106-010 BH 46-47.5 6/27 1415 5.8 XXXX		32				

V RECEIPT	e	P10)	(N) Y	7	(N / X	PINK - CEMENT
SAMPLE CONDITION ON RECEIPT	NTAINERS	URE	SEALS	ACT	D.	YELLOW - LAB
SAMPLE	NO. OF CONTAINERS	TEMPERATURE	CUSTODY SEALS	SEALS INTACT	PRESERVED	WHITE LAB

SAMPLED AND RELINQUISHED BY	ED BY	SAMPLES RECEIVED BY	*
Signature	Date 6/27	Signature December Dexi	Pate 7 /1
Printed Name Printed Name	Time (Ku)	Printed Name $(2) / (2) $	Theoph
SAMPLED AND RELINQUISHED BY	ED BY	SAMPLES RECEIVED BY	Α
Signature	Date	Signature	Date
Printed Name	Time	Printed Name	Time

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

RESULTS OF GEOTECHNICAL AND PERCOLATION STUDIES

THIS PAGE INTENTIONALLY LEFT BLANK

CORE LABORATORIES

SOIL ANALYSIS TEST PROGRAM

FINAL REPORT

Performed for:

OPERATIONAL TECHNOLOGIES CORPORATION 677 EMORY VALLEY ROAD, SUITE C

OAK RIDGE, TN 37830

August 7, 1995

Performed by:

CORE LABORATORIES, INC.
Rock Properties Laboratory
Dallas Advanced Technology Center
1875 Monetary Drive
Carrollton, Texas 75006

PETROLEUM SERVICES

August 7, 1995

Operational Technologies Corporation 677 Emory Valley Road, Suite C Oak Ridge, TN 37830

Attention: Mr. Michael A. Giles

Subject:

Final Report

Soil Analysis Test Program

06-023MW 39.0-40.0, 06-024MW 50.0-50.5

File: DAL-95163

Dear Mr. Giles:

A testing program to determine particle size distribution, intrinsic permeability (hydraulic conductivity), and effective porosity of the subject samples has been completed for Operational Technologies Corporation (OPTECH). This study was authorized by Mr. Michael Giles of OPTECH in a letter to Core Laboratories dated July 21, 1995. Final results of all testing are presented herein.

Two canisters identified as 06-023MW 39.0-40.0 and one canister identified as 06-024MW were received on July 24. For each sample, the soil was removed from the canister(s) and dried to a stable weight in a vacuum oven. Particle size distribution then was determined on each sample by the dry sieve method, see Page ii. Following the particle size analyses, a core plug sample was formed by placing representative portions of the supplied samples (excluding cobble-sized particles) into a metal sleeve fitted with steel end screens. Permeability to liquid measurements and effective porosity measurements were performed on the plug samples as described on Pages iii and iv.

Particle size distribution data are provided in tabular and graphic form on Pages 1 through 3. A summary of test results is presented on Page 4. Permeability to liquid and hydraulic conductivity calculations follow on Pages 5 and 6, respectively. Thank you for this opportunity to be of service. Please contact us if you have any questions concerning the enclosed information.

Very truly yours,

Brian E. Stevens

Rock Properties Laboratory

Dallas Advanced Technical Center

3 copies: Addressee

Operational Technologies Corporation File: DAL-95163

PROJECT PARTICIPANTS

Particle Size Analyses Permeability to Liquid

Project Coordinator Report Preparation

Final Review

Melanie F. Dunn

File: DAL-95163

EXPERIMENTAL PROCEDURES

Particle Size Analyses

- 1. Total weights of the dry samples (Wtinitial) were recorded.
- 2. Cobble-sized particles were removed from each sample by visual inspection and their weights recorded.
- 3. Each sample then was successively sieved through a series of U.S. standard mesh screens corresponding to classifications of the Wentworth size scale and the weight of sample retained on each screen (Wt_{fraction}) recorded.
- 4. The final classification (silt/clay) was determined based on the weight of sample which passed through the smallest (400 mesh) screen.
- 5. For each sample, the weight of each fraction was summed to obtain a final dry weight (Wtfinal).
- 6. Weight percentages of each classification were determined as follows:

(Wtfraction/Wtfinal) * 100

7. Analysis yield was calculated as follows:

(Wtfinal/Wtinitial) * 100

Operational Technologies Corporation

File: DAL-95163

Permeability to Liquid Measurement

1. The length and diameter of each sample was measured to the nearest 0.01 cm using digital calipers. Corrected length and cross-sectional area were calculated as follows:

L =
$$(I - C_1)$$

A = $((D - C_2)/2)^2 * pi$

where:

I = Gross sample length, cm

L = Corrected sample length, cm

A = Cross-sectional area, cm²

D = Gross sample diameter, cm

pi = 3.14159

C₁ = Metal sleeve and screen length correction, cm

C₂ = Metal sleeve diameter correction, cm

- 2. The samples were briefly evacuated of air and saturated with tap water. The plugs were then installed in hydrostatic coreholders and 100 psi net confining stress was applied.
- 3. Tap water, which had been previously evacuated of air, was injected at a constant upstream pressure. Flow pressure was monitored using a calibrated differential pressure transducer. Tap water viscosity was measured with a calibrated Canon-Fenske glass capillary viscometer. Tap water density was determined using a pycnometer.
- 4. The produced rate was monitored as a function of time using calibrated glassware until the relative percent difference in incremental produced rate (measured over a one minute period) was less than 10 percent over a 8 hour period.
- 5a. Permeability to liquid in millidarcys was calculated from the observed data using the following equation (Darcy's law):

$$K = (C_1 * C_2 * \mu * V L) / (P * A * T)$$

where:

K = permeability to liquid, millidarcys

C₁ = constant, psi/atm = 14.7

C₂ = constant, millidarcys/darcy = 1000

μ = viscosity of liquid, centipoise

V = incremental produced volume, ml

L = length, cm

P = differential pressure, psi

A = cross-sectional area, cm²

= incremental time, sec

5b. Permeability in cm² was calculated from this value using the conversion factor:

$$cm^2$$
 = millidarcys x 9.869E-12

Operational Technologies Corporation

File: DAL-95163

6a. Hydraulic conductivity in meters per second was calculated from the observed data using the following equation:

$$k = (V * L) / (A * T * P)$$

where:

k = Hydraulic conductivity, m/sec

V = Incremental produced volume, m³

L = Length, m

P = Differential pressure, m H₂O A = Cross-sectional area, m² T = Incremental time, sec

6b. Hydraulic conductivity in meters per year was calculated from this value using the conversion factor:

meters per year = meters per sec * 31,536,600

Effective Porosity Determination

- Effective porosity was measured on each sample following the permeability to liquid determination.
- 2. Effective porosity is defined to be the fluid saturated pore volume divided by the bulk volume of the sample and is presented as percent bulk volume.
- 3. Bulk volume was calculated from the measured length and area of the sample as follows:

$$BV = L * A$$

where:

BV = Bulk Volume, cc

L = Length, cm A = Area, cm²

4. The fluid saturated pore volume was determined gravimetrically as follows. After permeability testing the sample was weighed and the weight recorded. The sample was dried to a constant weight in a vacuum oven at 220°F. The weight difference was used to calculate the saturated pore volume as follows:

PV =
$$(W_{saturated} - W_{dry}) / \rho_{fluid}$$

where:

PV = Pore volume, cc

W_{saturated} = Saturated weight, grams

W_{drv} = Dry weight, grams

ρ_{fluid} = Saturant fluid density, grams/cc

5. Effective porosity (Ø) was calculated by the following equation:

$$\varnothing = PV/BV * 100$$

where:

Ø = Effective porosity, percent

PV = Pore volume, cc BV = Bulk volume, cc

SUMMARY OF PARTICLE SIZE ANALYSES Dry Sieve Method

Operational Technologies Corporation

				Δ.	article Size	Particle Size Distribution, weight percent	veight percer	ıt			
Size Class	Cobble	Pebble	Granule	V Crs Sand	Crs Sand	Med Sand	Fn Sand	V Fn Sand	Crs Silt	Silt/Clay	
Size, mm	256-64	64-4.0	4.0-2.0	2.0-1.0	1.0-0.50	0.50-0.25	0.25-0.125	0.25-0.125 0.125-0.062 0.062-0.031	0.062-0.031	<0.031	Yield,
U.S. Sieve			8	16	35	60	120	230	400		percent
				-	-						
					06-024MW 50.0-50.5	50.0-50.5					
Incremental	46.6	46.7	2.0	1.1	6.0	9.0	0.9	0.7	0.2	0.3	7.66
Cumulative	46.6	93.3	95.3	96.4	97.3	97.9	98.8	99.5	99.7	100.0	ŀ
					06-023MW 39.0-40.0	39.0-40.0					
Incremental	1	86.0	2.9	7.1	2.6	0.8	0.5	0.1	0.0	0.0	6.66
Cumulative	•	86.0	88.9	96.0	98.6	99.4	99.9	100.0	100.0	100.0	,

Core Laboratories

SUMMARY OF SOILS TEST PROGRAM RESULTS

	ť	•
	2	
	•	
•	•	
	7	
	ζ	Ţ
	1	
	ť	•
	3	Z
	1	-
	١	
	•	•
4	,	7
ı	L	
	_	_
	•	,
	3	•
	ţ	ı
•	•	-
	¢	
	7	÷
	•	۰
•	7	
	5	•
	٤	
	7	=
	ż	
	c	
	ï	1
	٠	٠
ı	-	
۰		
۰		
	C	۲
	è	è
	٠	٠
	C	
	٠	7
	t	τ
	i	•
	;	ï
	ì	i
	٢	
	ï	-

				Effective	Moisture	Bulk	Total Organic
 Permeability	to Liquid,	Hydraulic C	c Conductivity,	Porosity,	Content,	Density,	Carbon,
millidarcys	cm²	u/sec	m/year	percent	20/22	a/cc	g/g

06-024MW	4.43E+00	4.37E-11	4.42E-08	1.39E+00	31.5	ı	ı	•
50.0-50.5								
06-023MW	9.76E+00	9.63E-11	9.73E-08	3.07E+00	21.2	ı	ı	•
39.0-40.0								

SUMMARY OF PERMEABILITY TO LIQUID TEST RESULTS

Fluid: Tap Water

Operational Technologies Corporation

Differential Incremental Incremental

quid,	cm²	4.37E-11	3.63E-11
Permeability to Liquid,		4.3	9.6
Permeat	millidarcys	4.43E+00	9.76E+00
Time,	sec	.09	.09
Volume,	ш	0.133	0.330
Pressure,	psi	6.0	5.7
Viscosity.	cb	76.0	0.97
Area.	cm²	4.08	4.57
Length.	cm	3.43	3.24
Sample	I.D.	06-024MW	50.0-50.5 06-023MW 39.0-40.0

Core Laboratories

SUMMARY OF HYDRAULIC CONDUCTIVITY CALCULATIONS

Fluid: Tap Water

File: DAL-95163

Operational Technologies Corporation

1.39E+00 3.07E+00 m/year Hydraulic Conductivity, 4.42E-08 9.73E-08 m/sec Incremental 6.00E+01 6.00E+01 Time, sec 1.33E-07 3.30E-07 of Flow, Quantity m³ Differential 4.22E+00 4.01E+00 Pressure, m H20 Viscosity, 9.70E-01 9.70E-01 ф 4.08E-04 4.57E-04 Area, m² 3.24E-02 3.43E-02 Length, Ε 06-024MW 06-023MW Sample I.D. 50.0-50.5 39.0-40.0

Reference Linearity Scale factor Offset Delay mSEC Step 0 06/24 Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200	al Logger 7:44 Test 0 el (F) TOC 100.000 0.050 10.020 0.030 50.000 17:41:57 INPUT 1 82.041 82.045 82.045 82.045 82.045 82.045 82.045	0.203 0.210 0.213 0.213 0.216 0.223 0.223 0.233 0.233 0.233 0.233 0.240 0.253 0.256 0.256 0.266 0.273 0.273 0.273	6 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.057 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060 8 82.060
0.0233 0.0266 0.0333 0.0333 0.03466 0.03433 0.04466 0.05560 0.05660 0.06633 0.06660 0.06633 0.06660 0.06660 0.06660 0.06660 0.06660 0.06660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.1233 0.12660 0.12660 0.12660 0.12660 0.12660 0.12660 0.12660 0.12660 0.12660 0.12660 0.12660 0.12660	82.048 82.048 82.048 82.048 82.048 82.051 82.055 82		82.964 82.964 82.964 82.964 82.964 82.964 82.964 82.964 82.964 82.964

1.46000000000000000000000000000000000000	82.105 82.115 82.127 82.150 82.150 82.172 82.172 82.172 82.194 82.299 82.229 82.242 82.264 82.264 82.3347 82.3347 82.357 82.357 82.379 82.379 82.4414 82.4427 82.4439 82.4431 82.4494 82.45519 82.564 82.564 82.564 82.564 82.564 82.564 82.564 82.564 82.564 82.564 82.576 82.576 82.576 82.576 82.621 82.621 82.621 82.621 82.621 82.621 82.622 82.623 82.621 82.623 82.621 82.623 82.621 82.623 82.623 82.621 82.623 82.621 82.623 82.621 82.623		80.0000 81.0000 81.0000 81.0000 81.0000 91.0000	86.173 86.265 86.365 86.455 86.545 86.637 86.917 87.114 88.026 89.927 91.929 91.929 91.929 91.929 91.929 91.929 91.929 91.931 91
24.0000 26.0000 28.0000 39.0000 32.0000 34.0000 36.0000	83.392 83.497 83.602 83.707 83.812 83.917 84.019		780.000 300.000 END	99.946

APPENDIX E

ANALYTICAL RESULTS FOR GROUNDWATER AND
COMPOSITE SOIL SAMPLES
AND
ANALYTICAL RESULTS FOR QUALITY ASSURANCE/
QUALITY CONTROL SAMPLES

THIS PAGE INTENTIONALLY LEFT BLANK

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1

Sample Sampl	Sample	Benzene	Toluene	Ethyl- benzene	M,P- Xylenes	O- Xylene	TCE	DCE	PCE	Chloro- form	MHL	YZL.	Dibromo chloro methane	Styrene
Tagamay .	o de la constanta de la consta	(4,8,1)	(Tight)	(Jagan)	(7/8#)	(ag/L)	(rr/girl)	(ugn)	(ragin)	(T/g#)	(a/gir)	(m/g/n)	(Jagar)	(T/8#)
	- 2	53	0.1	0.7	2.3	2.4	<0.2	<0.2	< 0.2	6.0	<0.2	<0.2	<0.2	c.u>
	. 2	- 91	<0.5	213	1.4	<0.5	<0.4	< 0.4	0.4	<0.4	<0.4	< 0.4	<0.4	<0.5
	3	<0.5	1.0	<0.5	2.0	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
MWS-01	4	9.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
10-5	5	<0.03	<0.06	<0.03	<0.06	<0.03	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	<0.08	<0.23
	9	4	0.4B	8	4B	4B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	2	2.0	1.8	0.8	1.7	7.0	0.8	<0.2	1.8	<0.2	<0.2	<0.2	<0.2	<0.5
	3	21	0.5	50	3.7	10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	10
MWS-02	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
	5	< 0.03	< 0.06	< 0.03	<0.06	<0.03	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
MWS-02 (QA)	5	<0.03	<0.06	< 0.03	<0.09	<0.09	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	< 0.08	<0.23
MWS-02	, 6	<0.03	< 0.06	<0.03	<0.09	<0.09	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	< 0.08	<0.23
	1	SN	NS	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	NS
	2	0.4J	1.0	7:0	1,6	1.5J	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	>
MWS-03	3	1.6	<0.5	<0.5	0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	. 4	1.7	<0.5	2.3	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MWS-03 Dup	4	2.8	<0.5	3.8	1.2	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
MWS-03	5	<0.03	<0.06	<0.03	>0.06	<0.03	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	<0.08	<0.23
	9	8	0.2B	12	· 2B	2B	<0.32	<0.27	<0.33	0.15	<0.11	<0.15	<0.08	<0.23
MWS-04	j	15,000	<125	2,100	200	<125	<50	<50	<50	<50	<50	<50	<50	. <125
06-001FD	1	21,000D	<125	2,600	260	<125	<50	<50	<50	<50	<50	<50	<50	<125
	2	17,000	<50	2,900J	200	<50	<40	<40	<40	< 40	<40	<40	<40	<50
	3	7,000	<50	2,800	<50	95C	<20	<20	<20	<20	<20	<20	<20	95C
MWS-04	4	15,000	<250	2,600	400	<250	<250	<250	<250	<250	<250	300	<250	<250

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

D D Number	Sample Round	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	M,P- Xylenes (μg/L)	O- Xylene (μg/L)	TCE (µg/L)	DCE (#g/L)	PCE (#g/L)	Chloro- form (µg/L)	THM (µg/L)	TCA (µg/L)	Dibromo chloro methane (µg/L)	Styrene (µg/L)
	5	11,000	<1.50	2,100	<1.50	<0.75	<8.0	<6.75	<8.25	<3.75	<2.75	<3.75	<2.0	23
	9	4,200	2B	500	19B	19B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	3
MWS-04 Dup	6	4,000	3B	480	20B	20B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<4.6
	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	2	· 1	<1	<1	<1	<1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1
	3	4.1	<0.5	9.0	0.7	0.8C	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.8C
MW1-02	4	2.1	<0.5	9.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.8C
3	5	NS	NS	NS	NS	NS	SN	NS	SN	SN	SN	NS	NS	NS
	9	NS	NS	NS	SN	NS	NS	NS	NS	NS	SN	NS	NS	NS
	1	<0.5	<0.5	<0.5	6.0	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	2	<1	<	<1	<1	<1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1
	3	2.0	<0.5	<0.5	0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
MW2-02	4	1.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1	5	NS	NS	NS	SN	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9	NS	NS	NS	NS	NS	SN	NS	NS	NS	NS	NS	NS	NS
	ī	1.7	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	2	4.8	7	< 0.5	<10	<10	I>	· 1	<1	<1	<1	-	<1	<0.5
	3	43	<5	<5	<5	<5	<2	<2	<2	<2	<2	<2	<2	<5
	4	066	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
MW3-01	5	NS	SN	SN	SN	NS	SN	NS	NS	SN	NS	NS	NS	SN
	4	O.V.	NG	014				1						

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

Sample ID Number	Sample Round	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	M.P. Xylenes (µg/L)	O- Xylene (µg/L)	TCE (µg/L)	DCE (4g/L)	PCE (µg/L)	Chloro- form (µg/L)	THM (ug/L)	TCA (#g/L)	Dibromo chloro methane (µg/L)	Styrene (µg/L)
	1	NS	SN	NS	NS	NS	SN	SN	NS	NS	SN	NS	NS	NS
	2	<0.5	<	<0.5	< 10	<10	, ,	\ \	~	- - -	- -	-	I>	<0.5
	3	4.0	9.0	8.0	1.0	10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	10
	4	4.9	0.5	1.2	0.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
MW3-02	5	<0.03	<0.06	<0.03	<0.06	< 0.03	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
	9	15	0.4B	16	3B	3В	<0.32	0.3	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
1	2	Ē	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.5
MW5-01	3	23	<0.5	54	4.8	1.7C	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.7C
MW5-01 Dup	3	9.5	<0.5	43	2.0	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW5-01	5	<0.03	<0.06	<0.03	<0.06	<0.03	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	< 0.08	<0.23
	9	9	0.3B	6	2B	2B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
MW5-01 Dup	9	7	0.2B	8	2B	2B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
		23	<0.5	2.4	<0.5	<0.5	<0.2	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.5
	2	1:1	<0.5	<0.5	<0.5	<0.5	<0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	<0,2	<0.5
	3	490	<10	<10	> 10	< 10	4>	4 >	4 >	4>	4>	4>	4 >	< 10
	4	11	<0.5	4.2	1.4	0.5C	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5C
PS-()2	5	SN	NS	NS	NS	NS	NS	SN	NS	NS	NS	SN	NS	NS
	9	SN	SN	SN	SN	SN	NS	NS	NS	SN	NS	SN	NS	NS
	-1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-001MW	2	640	< 50	1,120	700	87	< 20	<20	<20	<20	<20	< 20	<20	<50
06-012FD	7	610	28	1,100	029	76	<20	<20	<20	<20	<20	<20	< 20	<50

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

Sample ID Number	Sample Round	Benzene (µg/L)	Toluene (#g/L)	Ethyl- benzene (#g/L)	M,P. Xylenes (µg/L)	O- Xylene (µg/L)	TCE (µg/L)	DCE (#g/L)	PCE (µg/L)	Chloro- form (ug/L)	THM (4/8/L)	TCA (mo/L)	Dibromo chloro methane	Styrene (1.071)
	3	1,000	<50	2,000	250	<50	<20	<20	<20	<20	<20	<20	(#6/£) <20	(AB(12))
	4	800	<50	1,300	390	90C	<50	<50	<50	<50	<50	<50	< 50	209
06-001MW	5	NS	NS	NS	NS	NS	NS	NS	SN	NS	SN	NS	NS	NS
	9	NS	NS	NS	NS	NS	NS	SN	SN	SN	NS	NS	NS	NS
	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	N.	NE	NE
	2	3.9	0.9	6.0	7.5	6.5J	<0.2	<0.2	1.0	0.3	0.4	<0.2	9:0	~
	3	220	< 10	220	53	<10	< 4>	<4	<4	4>	4>	*	<4	<10
06-002MW	4	4.5	<2.5	36	12	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
	5	NS	NS	NS	NS	NS	SN	NS	NS	SN	SN	SN	NS	NS
	9	NS	NS	NS	NS	NS	NS	NS	SN	SN	SN	NS	NS	NS
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	Ÿ	\ 1	$\bar{\mathbf{v}}$	-	V	<0.4	<0.4	<0.4	>0.4	<0.4	<0.4	<0.4	Ī
	3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	4	3.3	9.0	2.5	2.0	D9:0	9.0	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	0.60
06-003MW	5	<0.03	>0.06	<0.03	< 0.06	<0.03	T	_	1	<0.15	<0.11	<0.15	<0.08	<0.23
	9	19	0.5B	21	3B	3B	<0.32	<0.27	<0.33	0.2	<0.11	<0.15	<0.08	<0.23
	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
00-004MW	2	3,000	<250	1,800	<250	<250	< 200	<200	< 200	<200	< 200	< 200	< 200	<250
06-011FD	2	3,200	16	2,300,	87	93	<4	<4	^	4>	>4	<4	>4	< > 5
	3	2,800	<25	2,600	55	<25	> 10	<10	<10	< 10	> 0I >	<10	< 10	<25
00-004MW	4	5,100	<250	2,500	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250
06-004MW Dup	4	5,500	<250	2,800	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250
06-004MW	5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9	NS	NS	NS	NS	NS	NS	SN	NS	SN	NS	SN	NS	NS

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

Sample ID Number	Sample Round	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	M,P- Xylenes (μg/L)	O- Xylene (µg/L)	TCE (µg/L)	DCE (µg/L)	PCE (µg/L)	Chloro- form (µg/L)	THM (µg/L)	TCA (µg/L)	Dibromo chloro methane (µg/L)	Styrene (#g/L)
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	35	<0.5	<0.5	-<1	\ 1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	~
	3	<0.5	2.0	9.0	2	10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	10
WM200-90	4	8.9	1.7	5.2	2.6	1.10	<0.5	<0.5	<0.5	4.0	6.0	<0.5	<0.5	1.10
W 181000-00	5	<0.03	< 0.06	<0.03	>0.06	< 0.03	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	<0.08	<0.23
	9	9.0	< 0.06	-		-	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	< 0.08	<0.23
06-005MW Dup	6	1	< 0.06	3	2	2	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	< 0.08	<0.23
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	4,000	< 100	1,500	920	<100	<40	<40	<40	<40	<40	<40	<40	< 100
	3	6,000	<50	1,900	430	130C	<20	<20	<20	<20	<20	<20	<20	130C
06.006MW	4	8,500	<250	1,400	500	<250	<250	<250	<250	<250	<250	<250	<250	<250
	5	SN	NS	NS	NS	NS	NS	SN	NS	NS	SN	NS	NS	NS
	9	NS	NS	NS	NS	NS	NS	NS	NS	NS	SN	NS	NS	NS
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
·	2	3.3	4.9	4.3	7.2	6.4J	1.0	7.5	6.0	0.7	0.3	<0.2	0.3	
· · · · · · ·	3	5.1	<0.5	5.4	9.0	<0.5	2.5	3.3C	<0.2	1.1	<0.2	<0.2	<0.2	<0.5
WM700-90	4	16	1.7	4.7	3.8	1.4C	1.4	4.2	<0.5	3.4	2.1	<0.5	1.1	1.4C
	5	SN	NS	NS	NS	NS	NS	SN	NS	NS	NS	SN	NS	NS
	9	NS	SN	SN	NS	NS	SN	SN	SN	SN	NS	NS	NS	NS
	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	ÿ	<u>^</u>	Ÿ	ī	v	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	⊽
	3	21	<0.5	1.8	1.2	<0.5	<0.2	<0.2	<0.2	9.6	<0.2	<0.2	<0.2	<0.5
	4	2.1	<0.5	9.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06-008MW	5	SN	NS	NS	SN	NS	NS	NS	NS	NS	SZ	NS	NS	SN

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

Dibromo chloro methane Styrene (ug/L) (ug/L)	NS NS	NE NE	<0.4 <1	<0.2 <0.5	<0.5 <0.5	NS NS	NS NS	NE NE	<0.2	<0.2 <0.5	<5 <5	NS NS	NS NS	NE NE	<0.2	<10 <25	<25 <25	NS NS	NS NS	NE NE	<0.5 <0.5	<0.2 1.0C	<0.5 <0.5	
TCA (Ag/L)	NS	NE	<0.4	<0.2	6.0	NS	NS	NE	< 0.2	<0.2	<5	NS	NS	NE	<0.2	<10	<25	SN	NS	NE	<0.5	<0.2	<0.5	
THM (#g/L)	SN	NE	<0.4	<0.2	<0.5	SN	NS	NE	<0.2	<0.2	<5	NS	NS	NE	< 0.2	<10	<25	SN	NS	NE	<0.5	<0.2	<0.5	
Chloro- form (µg/L)	NS	NE	<0.4	<0.2	<0.5	NS	NS	NE	< 0.2	<0.2	<5	NS	NS	NE	<0.2	<10	<25	SN	NS	NE	<0.5	<0.2	<0.5	
PCE (ug/L)	SN	NE	<0.4	<0.2	<0.5	NS	NS	NE	< 0.2	<0.2	<5	NS	NS	NE	0.5	<10	<25	NS	NS	NE	<0.5	<0.2	<0.5	
DCE (ag/L)	NS	NE	<0.4	<0.2	<0.5	SN	SN	NE	<0.2	<0.2	<5	SN	SN	NE	<0.2	<10	<25	SN	SN	NE	<0.5	<0.2	<0.5	
TCE (µg/L)	NS	NE	<0.4	<0.2	<0.5	SN	NS	NE	<0.2	<0.2	<5	NS	NS	NE	<0.2	<10	<25	SN	SN	NE	<0.5	<0.2	<0.5	
O- Xylene (ug/L)	NS	NE	<1	<0.5	<0.5	SN	SN	NE	1.13	<0.5	<5>	NS	NS	NE	3.9J	<25	<25	NS	NS	NE	3.7	1.0C	<0.5	
M.P. Xylenes (µg/L)	NS	NE	<1	9.0	<0.5	NS	NS	NE	1.7	1.7	24	NS	SN	NE	5.0	10	<25	NS	NS	NE	4.9	0.7	<0.5	
Ethyl- benzene (µg/L)	NS	NE	<1	<0.5	0.7	NS	NS	NE	1.7	5.3	69	NS	NS	NE	3.1	51	<25	SN	NS	NE	1.2	1.0	<0.5	
Toluene (µg/L)	NS	NE	<1	<0.5	<0.5	NS	NS	NE	2.3	<0.5	<-5	NS	NS	NE	2.7	<25	<25	NS	NS	NE	<0.5	0.4	<0.5	
Benzene (ug/L)	NS	NE	<1	2.0	0.7	NS	NS	NE	3,7	1.0	28	NS	NS	NE	1.3	3100	0086	SN	NS	NE	<0.5	23	<0.5	
Sample Round	9	1	2	3	4	5	9	1	2	3	4	5	9	1	2	3	4	5	9	1	2	. 8	4	
Sample ID Number						06-009MW					ANY WOLO SO	06-010M W				·		MW110-90					06-012MW	

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

Sample ID Number	Sample Round	Benzene (µg/L)	Toluene (ug/L)	Ethyl- benzene (µg/L)	M.P. Xylenes (µg/L)	O- Xylene (µg/L)	TCE (µg/L)	DCE (µg/L)	PCE (µg/L)	Chloro- form (µg/L)	THM (µg/L)	TCA (μg/L)	Dibromo chloro methane (µg/L)	Styrene (#g/L)
06-012MW (QA)	5	<0.03	>0.06	<0.03	>0.06	<0.03	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
06-012MW	9	29	0.6B	26	3В	3B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	1.9	1.3	<0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	в	630	2.0	4.0	2.0	2.0C	<2.0	<2.0	<2.0	< 2.0	<2.0	<2.0	< 2.0	2.0C
06-013WW	4	3,700	<25	26	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
	5	09	< 0.06	< 0.03	<0.06	< 0.03	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	<0.08	<0.23
06-013MW Dup	4	4,000	<25	201	<25	<25	<25	<25	<25	< 25	<25	<25	<25	<25
06-013MW	9	670	0.7B	41	4B	4B	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	< 0.08	<0.23
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
- Control of the Cont	2	~	<0.5	<0.5	1	7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
	3	37	2.0	8.0	2.0	< 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
	4	1.0	0.0	1.5	1.4	0.8C	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	< 0.5	0.8C
06-014MW	5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9	NS	NS	NS	NS	NS	NS	NS	NS	SN	SN	SN	NS	SN
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	V	<0.5	<0.5	^ 1	Ÿ	< 0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	ī
	3	1.0	2.0	1.0	4.0	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
06-015MW	4	2.2	6.0	2.6	1.5	0.8C	<0.5	<0.5	<0.5	2.3	9.0	<0.5	<0.5	0.8C
	5	<0.03	<0.06	<0.03	>0.06	<0.03	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
	9	74	0.4B	55	4B	4B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.23
	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	V	<0.5	<0.5	<1	^	2.4	<0.2	< 0.2	<0.2	< 0.2	<0.2	< 0.2	⊽
06-016MW	В	1.0	3.0	<0.5	3.0	1.0C	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1C

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

Sample ID Number	Sample Round	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	M,P. Xylenes (µg/L)	O. Xylene (μg/L)	TCE (µg/L)	DCE (Æ/L)	PCE (µg/L)	Chloro- form (µg/L)	THM (ag/L)	TCA (µg/L)	Dibromo chloro methane (µg/L)	Styrene (µg/L)
	4	<0.5	0.7	<0.5	0.7	<0.5	2.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	<0.03	>0.06	<0.03	>0.06	< 0.03	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	<0.08	<0.23
	6	<0.03	<0.06	0.4	0.4	0.4	7	<0.27	<0.33	<0.15	<0.11	<0.15	< 0.08	<0.23
	I	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	ī	<0.5	ſ.2	4.4	4.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<
06-017MW	3	19	0.0	2.0	1.0	3C	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	3C
06-031FD	3	61	0.8	2.0	1.0	1.0C	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	110
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5
	5	<0.03	<0.06	< 0.03	< 0.06	< 0.03	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	< 0.08	<0.23
06-017MW	9	0.2	<0.06	8.0	0.8B	0.8B	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	< 0.08	<0.23
,	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
•	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-018MW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	9	1	9	3	3	<0.32	0.4	<0.33	0.2	<0.11	<0.15	<0.08	<0.23
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
-	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-019WW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	S	1	4	3	3	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	9.0

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Continued)

Sample ID Number	Sample Round	Benzene (µg/L)	Toluene (µg/L)	Ethyl- beuzene (µg/L)	M,P. Xylenes (µg/L)	O- Xylene (µg/L)	TCE (µg/L)	DCE (µg/L)	PCE (rg/L)	Chloro- form (µg/L)	THM (µg/L)	TCA (µg/L)	Dibromo chloro methane (µg/L)	Styrene (ng/L)
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	æ	NE	NE	NE	NE	ï.	NE	NE	NE	ΞŽ	NIS	NE	NE:	NE.
	4	NE	NE	NE	NE	NE	NE	NE	NE	N E	NE	NE	NE	NE
06-020MW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	36	4	29	29	29	0.5	0.4	<0.33	0.3	<0.11	<0.15	<0.08	<0.23
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-021MW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	1,800	<3	750	150	150	<16	<13.5	<16.5	<7.5	<5.5	<7.5	<4	20
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-022M W	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	S	NE	NE	ΞÏΖ	NE	NE	NI:	NE	NE	ΞZ	Σi.	ïZ	N C	NE
	9	1,400	13	120	33	33	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	2
············	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
1	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-023MW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	1,200	2	150	23	23	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	3

Primary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.1 (Concluded)

Sample ID Number	Sample Round	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	M,P. Xylenes (µg/L)	O- Xylene (µg/L)	TCE (µg/L)	DCE (µg/L)	PCE (µg/L)	Chloro- form (µg/L)	THM (µg/L)	TCA (µg/L)	Dibromo chloro methane (µg/L)	Styrene (µg/L)
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-024MW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	096	64	220	200	200	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	< 0.08	<0.33
06-024MW Dup	6	890	63	200	180	180	<0.32	<0.27	<0.33	< 0.15	<0.11	<0.15	<0.08	<0.33
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-025MW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	15	1	7	4	4	< 0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.33
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-026MW	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	24	-	38	13	13	<0.32	<0.27	<0.33	<0.15	<0.11	<0.15	<0.08	<0.33
ADEQ Cleanup Levels	'els	5	1,000	700	10,000	00	s	70	5	001	100	200	100	100

μg/L – micrograms per liter. M.P-Xylenes – Meta, Para-Xylene (Total). O-Xylene - Ortho-Xylene. TCE - Trichloroethylene.

Shaded rows delineate audited data. TCA - 1,1,1-Trichloroethane.

Dup - Duplicate.

J - Value is estimated and below reporting limits. DCE - Cis-1,2-Dichloroethylene. C - Two Compounds Coelute.

D - Diluted Due to High Concentrations. THM - Bromodichloromethane. PCE - Tetrachloroethylene.

VOCs - Volatile Organic Compounds.

IRP - Installation Restoration Program. MWS and MW - Monitoring Well.

FD - Field Duplicate. NS - Not Sampled.

NE - Not Existing During First Round of Sampling.

ADEQ - Arizona Department of Environmental

Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.2

Sample ID Number	Sample Round	2,2- Dichloro propane (ug/L)	Methylene Chloride (μg/L)	Isopropyl- benzene (µg/L)	N. Propyl- benzene (µg/L)	1,3,5- Trimethyl- berzene (µg/L)	1,2,4- Trimethyl- benzene (µg/L)	Tert- butyl- benzene (µg/L)	Sec-butyl benzene (µg/L)	P. Isopropyl- toluene (μg/L)	N-Butyl- benzene (µg/L)	Naph- thatene (µg/L)	1,2,3- Trichloro- benzene (µg/L)
	1	<0.2	<2	<2	\ 	<1	<0.5	2.4	<0.5	<0.5	< 0.5	<1	<0.5
	2	< 0.4	4 >	<2	<u>~</u>	<	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1
MWS-01	3	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
	5	<0.18	<1.0	<0.1	<0.04	<0.03	<0.05	<0.14	< 0.06	<0.1	<0.12	<0.12	<0.35
	₁ 9	<0.18	<1.0	0.9	1	0.5	< 0.05	<0.14	< 0.06	<0.1	<0.12	2B	<0.35
	1	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	~	<0.5
	2	<0.2	<2	<2	-	<1	<0.5	<0.5	<0.5	<0.5	<0.5	⊽	<0.5
MWS-02	3	<0.2	<2	<2	\ \	<1	<0.5	< 0.5	<0.5	<0.5	<0.5	\ 	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	<0.18	<1.0	<0.1	<0.04	< 0.03	< 0.05	<0.14	<0.06	<0.1	<0.12	<0.12	<0.35
MWS-02 QA	5	<0.18	<1.0	<0.1	<0.04	< 0.03	<0.05	<0.14	>0.06	<0.1	<0.12	<0.12	< 0.35
	9	<0.18	<1.0	<0.1	<0.04	< 0.03	< 0.05	<0.14	>0.06	< 0.1	<0.12	<0.12	<0.35
	-	NS	NS	NS	NS	SN	NS	NS	SN	NS	NS	SN	SN
MWc.03	2	<0.2	4>	<2	\ \ -	0.2	1.6	0.7	<0.5	<0.5	1.4	0.4J	<1
CO-5 ++ TAI	3	<0.2	<2	<2	~	\ \	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	0.4J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MWS-03 Dup	4	<0.5	<0.5	<0.5	<0.5	<0.5	8.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MWS-03	5	<0.18	<1.0	<0.1	< 0.04	<0.03	<0.05	<0.14	<0.06	<0.1	<0.12	< 0.12	<0.35
	9	<0.18	<1.0	_	-	<0.03	2	<0.14	<0.06	<0.1	0.3	5B ´	<0.35
MWS-04	1	<50	<500	< 500	<250	<250	<125	<125	<125	<125	<125	<250	<125
06-001FD	1	<50	< 500	< 500	<250	<250	<125	<125	<125	<125	<125	<250	<125
	2	<40	<400	< 200	< 100	< 100	< 50	< 50	< 50	<50	< 50	> 100	< 100
MWS-04	3	<20	<200	<200	< 100	< 100	<50	<50	<50	<50	< 50	< 100	<50
	4	<250	<250	<250	300	400	009	<250	1,200	<250	2,600	2,100	<250

Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.2 (Continued)

Sample ID Number	Sample Round	2,2- Dichloro propane (µg/L)	Methylene Chloride (µg/L)	Isopropyl- benzene (\mu g(L)	N- Propyl- benzene (µg/L)	1,3,5- Trimethyl- benzene (µg/L)	1,2,4- Trimethyl- benzene (µg/L)	Tert- butyl- benzene (µg/L)	Sec-butyl benzene (µg/L)	P. Isopropyl- toluene (µg/L)	N-Butyl- benzene (µg/L)	Naph- thalene (µg/L)	1,2,3- Trichloro- benzene (µg/L)
	5	<4.5	<25	110	130	<0.75	94	<3.5	14	<2.5	38	140	<8.75
	9	<0.18	<25	25	28	1	<0.05	<0.14	3	6.0	9	<0.12	<0.35
MWS-04 Dup	9	<0.18	<25	25	28	2	<0.05	<0.14	3	0.9	9	58B	<0.35
	-	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
	2	< 0.4	<4	<4	<2	<2	I>	<1	->	-	<1	<2	I>
MW1-02	3	<0.2	<2	<2	^ \	~	<0.5	<0.5	<0.5	< 0.5	<0.5	<1	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
	5	NS	NS	SN	NS	NS	NS	NS	NS	NS	SN	NS	SN
	9	NS	NS	SN	NS	SN	SN	SN	SN	SN	SN	SN	SN
	1	<0.2	<2	<2>	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
	2	<0.4	<4	<4	<2	<2	- - -	<1	<1	ī	<1	<2	12
MW2-02	3	<0.2	<2	<2	< 1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	NS	NS	SN	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
	2	<1	<10	<2	<1	<1	<0.5	<0.5	<0.5	< 0.5	<0.5	⊽	<2.5
MW3-01	3	<2	<20	<20	<10	<10	<5	<5	<5	<5	<5	<10	<5
·	4	<25	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
	S	SN	NS	SN	NS	SN	NS	SN	SN	NS	NS	NS	NS
	6	NS	NS	NS	NS	NS	NS	NS	NS	SN	NS	NS	NS
	1	NS	NS	NS	NS	SN	SN	NS	SN	SN	SN	SN	NS
MW3-02	2	<1	<10	<2	1>	1>	<0.5	<0.5	<0.5	<0.5	<0.5	-	<2.5
	3	<0.2	<2	<2	\ \ 	\ 1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5

Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.2 (Continued)

Sample ID Number	Sample Round	2,2- Dichloro propane (µg/L)	Methylene Chloride (μg/L)	Isopropyl- benzene (µg/L)	N- Propyl- benzene (αg/L)	1,3,5- Trimethyl- benzene (µg/L)	1,2,4- Trimethyl- benzene (µg/L)	Tert- butyl- benzene (#g/L)	Sec-butyl benzene (µg/L)	P- Isopropyl- toluene (μg/L)	N-Butyl- benzene (#g/L)	Naph- thalene (µg/L)	1,2,3- Trichloro- benzene (\pmg(L)
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	<0.18	<1.0	<0.1	<0.04	<0.03	<0.05	<0.14	<0.06	<0.1	<0.12	<0.12	<0.35
	9	<0.18	<25	2	2	0.3	<0.05	<0.14	<0.06	<0.1	0.3	2B	<0.35
	1	<0.2	<2	<2	< 1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
MW5-01	2	<0.4	<4	<2	<1	v	<0.5	<0.5	<0.5	<0.5	<0.5	V	-
	3	<0.2	<2	<2	\ 		<0.5	<0.5	<0.5	<0.5	<0.5	- -	<0.5
MW5-01 Dup	3	<0.2	<2	<2	> 1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	> 1	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
10-cwW	5	<0.18	<1.0	<0.1	< 0.04	<0.03	< 0.05	<0.14	>0.06	<0.1	<0.12	<0.12	<0.35
	9	<0.18	<25	6.0	6.0	< 0.03	1	<0.14	>0.06	<0.1	<0.12	2B	<0.35
MW5-01 Dup	9	< 0.18	<25	8.0	6.0	< 0.03	1	<0.14	< 0.06	<0.1	<0.12	2B	< 0.35
	1	< 0.2	<2	<2	< 1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
	2	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	0.8	<1	<0.5
PS-02	3	4 >	<40	<40	<20	<20	<10	<10	<10	<10	<10	<20	< 10
	4	<0.5	<0.5	2.0	1.3	<0.5	1.8	<0.5	<0.5	<0.5	<0.5	9.0	<0.5
	8	SN	NS	NS	SN	NS	NS	NS	SN	NS	NS	SN	NS
	9	NS	NS	NS	NS	NS	NS	SN	NS	NS	NS	NS	NS
06-001MW	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-012FD	2	<20	< 200	<200	< 100	<100	<50	<50	<50	<50	<50	<100	<50
1	7	<20	<200	<200	< 100	< 100	<50	<50	<50	<50	<50	< 100	<50
111111111111111111111111111111111111111	3	<20	<200	<200	< 100	< 100	<50	<50	<50	<50	<50	< 100	<50
M M 100-00	4	<50	<50	140	170	<50	300	<50	<50	<50	<50	70	<50
	5	SN	NS	NS	NS	SN	NS	NS	SN	NS	SN	SN	NS
	9	SN	SN	SN	SN	NS	SN	SN	SN	SN	NS	SN	NS

Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.2 (Continued)

Tert- butyl- betrzene betrzene (ng/L) (ng/L) Tert- P. N-Butyl- Naph- Trichloro- benzene benzene (ng/L) (ng/L) (ng/L) Trichloro- benzene benzene (ng/L) (ng/L)	NE NE NE NE	3,4 1.7 0.7 1.8 2.5 <1	<10 <10 <10 <10 <10 <10	<2.5 3.0 <2.5 4.0 <2.5 <2.5	NS NS NS NS NS	NS NS NS NS NS	NE NE NE NE NE	<-1 <-1 <-1 <-1 <-1	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.14 <0.06 <0.1 <0.12 <0.12 <0.35	<0.14 0.2 <0.1 0.4 3B <0.35	NE NE NE NE	<250 <250 <250 <500	5 <5 12 27 <10 <10	<25 <25 <25 <25 <25 <50 <25	<250 <250 <250 220J <250	<250 <250 <250 <250 <250 <250	NS NS NS NS NS	NS NS NS NS NS	NE NE NE NE	<0.5 <0.5 <0.5 <0.5 <0.5 <1 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5
1,2,4. Trimethyl- bu benzene bet (µg/L) (µ	NE	7.1	< 10	> 15.0	NS I	NS I	NE	<1	> 6.5	> 1.2	< 0.05	< 0.05	NE	<250 <	<5 <	<25	450 <	> 0550 <	NS	NS	NE N	<0.5	<0.5
1,3,5- Trimethyl- benzene (#g/L)	NE	<1	<20	<2.5	SN	NS	NE	<2	-	<0.5	< 0.03	0.3	NE	<500	<10	<50	<250	<250	NS	NS	NE	<1	
N- Propyl- benzene (µg/L)	NE	Ÿ	<20	8.5	SN	NS	NE	<2	<1	<0.5	< 0.04	2	NE	<500	<10	< 50	2203	250	NS	NS	NE	<1	· · ·
Isopropyl- benzene (µg/L)	NE	2.9	<40	10.0	NS	NS	NE	<4	<2	<0.5	<0.1	2	NE	<1000	<20	< 100	<250	<250	SN	SN	NE	<2	<2
Methylene Chloride (µg/L)	NE	<4	<40	<2.5	NS	NS	NE	<4	<2	<0.5	<1.0	< 1.0	NE	<2000	<40	< 100	<250	<250	SN	SN	NE	<2	<2
2,2- Dichloro propane (µg/L)	NE	<0.2	<4	<2.5	NS	NS	NE	<4	< 0.2	<0.5	<0.18	<0.18	NE	< 200	<4	<10	<250	<250	NS	NS	NE	<0.2	<0.2
Sample Round	1	2	3	4	5	9	1	2	3	4	5	9	1	2	2	3	4	4	5	9	1	2	3
Sample ID Number		4,	06-002MW					06-003MW						06-004MW	06-011FD		06-004MW	06-004MW Dup	06-004MW				06-005MW

Table E.2 (Continued)
Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6
161st ARG, Arizona ANG, Phoenix, Arizona

Sample ID Number	Sample Round	2,2- Dichloro propane (µg/L)	Methylene Chloride (µg/L)	Lsopropyl- benzene (μg/L)	N- Propyl- benzene (µg/L)	1,3,5- Trimethyl- benzene (µg/L)	1,2,4- Trimethyl- benzene (µg/L)	Tert- butyl- benzene (µg/L)	Sec-butyl benzene (µg/L)	P- Isopropyl- toluene (µg/L)	N-Butyl- benzene (µg/L)	Naph- thalene (µg/L)	1,2,3- Trichloro- benzene (µg/L)
	5	<0.18	<1.0	<0.1	< 0.04	<0.03	<0.05	<0.14	>0.06	<0.1	<0.12	<0.12	<0.35
	9	<0.18	<1.0	<0.1	< 0.04	<0.03	9.0	<0.14	<0.06	<0.1	<0.12	1	<0.35
06-005MW Dup	9	0.18	<1.0	0.3	0.3	0.2	0.7	<0.14	90.0	<0.1	<0.12	1	<0.35
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	< 40	< 400	<400	< 200	<200	< 100	< 100	< 100	< 100	< 100	< 200	<100
06-006MW	3	<20	<200	< 200	< 100	<100	<50	<50	<50	<50	< 50	<100	<50
	4	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250
	5	SN	SN	NS	NS	NS	NS	NS	NS	NS	SN	NS	NS
	9	NS	SN	NS	NS	SN	NS	NS	NS	NS	NS	SN	NS
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-007MW	2	<0.2	<4	1.83	<1	4.8	6.7	3.9	<0.5	<0.5	1.9	<1	1.6
	3	3.3	<2	<2	1	~	<0.5	<0.5	<0.5	<0.5	<0.5	\ 	<0.5
	4	1.2	<0.5	0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<0.5	6.0	<0.5
	5 !	NS	SN	NS	NS	SN	NS	NS	SN	NS	NS	NS	NS
	9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	< 0.4	4	4	<2	<2	<1	V	V	7	7	<2	⊽
06-008MW	3	<0.2	<2	<2	^	~	<0.5	<0.5	<0.5	<0.5	<0.5	~	<0.5
	4	<0.5	<0.5	7.0	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.5
	5	NS	NS	NS	SN	SN	NS	SN	SN	NS	NS	NS	NS
	9	SN	SN	NS	SN	NS	NS	SN	NS	NS	NS	NS	NS
	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MW600-90	2	<0.4	Å.	, 4	<2	<2	V	^	V	<1	- V	<2	- - -
	3	<0.2	<2	<2	<1	> 1	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5

Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.2 (Continued)

Sample ID Number	Sample Round	2,2- Dichloro propane (#g/L)	Methylene Chloride (µg/L)	Isopropyl- benzene (µg/L)	N- Propyl- benzene (µg/L)	1,3,5- Trimethyl- benzene (μg/L)	1,2,4- Trimethyl- benzene (µg/L)	Tert- butyl- benzene (µg/L)	Sec-butyl benzene (µg/L)	P. Isopropyl- toluene (μg/L)	N-Butyl- benzene (µg/L)	Naph- thalene (µg/L)	1,2,3- Trichloro- benzene (µg/L)
	4	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	<0.5	6.0	<0.5	<0.5	<0.5	<0.5
	5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	SN
	9	SN	NS	SN	NS	NS	NS	NS	SN	NS	NS	NS	NS
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	<0.2	4	0.73	0.3C,J	0.3C,J	2.3	1.2	<0.5	<0.5	1.3	0.53	1
06-010MW	3	<0.2	<2	<2	~	\ 	<0.5	<0.5	<0.5	<0.5	<0.5	· ·	<0.5
	4	<5	<5	45	31	<5	22	<5	12	<5	0.6	5.0	<\$
	\$	SN	SN	NS	SN	SN	NS	NS	NS	NS	SN	NS	SN
	9	NS	NS	NS	NS	NS	NS	NS	NS	NS	SN	NS	NS
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	<0.2	<4	1.51	1.2C,J	1.2C,J	5.0	2.9	9'0	0.7	2.1	0.4J	< 1
06-011MW	3	< 10	< 100	< 100	<50	<50	<25	<25	<25	<25	<25	<50	<25
	4	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
	5	NS	SN	NS	NS	NS	SN	SN	SN	NS	SN	NS	SN
	9	SN	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	<0.5	<2	<2	\ - 1	<1	<0.5	<0.5	<0.5	< 0.5	<0.5	l>	<0.5
06-012MW	3	<0.2	<2	<2	\ \	~	<0.5	<0.5	<0.5	<0.5	<0.5	\ 	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	<0.18	<1.0	<0.1	<0.04	<0.03	<0.05	<0.14	<0.06	<0.1	<0.12	<0.12	<0.35
06-012MW QA	5	<0.18	<1.0	<0.1	<0.04	< 0.03	<0.05	<0.14	<0.06	<0.1	<0.12	<0.12	<0.35
06-012MW	9	<0.18	<1.0	3	2	0.3	<0.05	<0.14	0.3	<0.1	0.4	3B	<0.35
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
00-013MW	2	<0.5	<2	<2	v	~	<0.5	< 0.5	<0.5	<0.5	- 0 ×	ī	¥ 0 \

Table E.2 (Continued)
Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona

Sample ID Number	Sample Round	2,2- Dichloro propane (µg/L)	Methylene Chloride (µg/L)	Isopropyl- benzene (µg/L)	N- Propyl- benzene (µg/L)	1,3,5- Trimethyl- benzene (µg/L)	1,2,4. Trimethyl- benzene (µg/L)	Tert- butyl- benzene (µg/L)	Sec-butyl benzene (µg/L)	P- Isopropyl- toluene (µg/L)	N-Butyl- benzene (µg/L)	Naph- thalene (µg/L)	1,2;3- Trichloro- benzene (µg/L)
	3	<2	<20	<20	<10	<10	<5	<5	<5	<5>	<.5	<10	<5
	4	<25	<25	110	84	<25	<25	<25	<25	<25	<25	45	<25
06-013MW Dup	4	<25	<25	100	75	<25	<25	<25	<25	<25	<25	40	<25
06-013MW	5	<0.18	<1.0	3	< 0.04	<0.03	< 0.05	<0.14	>0.06	<0.1	<0.12	<0.12	<0.35
	9	<0.18	<1.0	18	10	0.8	< 0.05	<0.14	2	<0.1	2	86	< 0.35
		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	<0.2	<2	<2	Ÿ	⊽	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
06-014MW	3	<0.2	<2	<2	\ 	1>	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	NS	NS	NS	NS	NS	SN	NS	NS	NS	NS	NS	NS
	9	NS	NS	SN	NS	NS	NS	NS	NS	NS	NS	NS	NS
	-	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	<0.2	<2	<2	V	7	<0.5	<0.5	<0.5	<0.5	<0.5	1>	<0.5
06-015MW	3	< 0.2	<2	<2	\ \ !	~	<0.5	<0.5	<0.5	<0.5	<0.5	4	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	<0.18	<1.0	<0.1	<0.04	<0.03	<0.05	<0.14	<0.06	<0.1	<0.12	< 0.12	<0.35
	9	<0.18	<1.0	4	4	0.5	< 0.05	<0.14	0.3	<0.1	0.5	<0.12	<0.35
I	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	<0.2	<2	<2	⊽		<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
06-016MW	3	<0.2	<2	<2	~	^ \	<0.5	<0.5	<0.5	<0.5	<0.5	0.1	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	5	< 0.18	<1.0	<0.1	<0.04	< 0.03	<0.05	<0.14	>0.06	<0.1	<0.12	<0.12	<0.35
	, 9	<0.18	< 1.0	<0.1	<0.04	<0.03	0.3	<0.14	>0.06	<0.1	<0.12	2	<0.35
06-017MW		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.2 (Continued)

Sample ID Number	Sample Round	2,2- Dichloro propane (µg/L)	Methylene Chloride (μg/L)	Isopropyl- benzene (#g/L)	N- Propyl- benzene (µg/L)	1,3,5- Trimethyl- benzene (µg/L)	1,2,4- Trimethyl- benzene (µg/L)	Tert- butyl- benzene (µg/L)	Sec-butyl benzene (µg/L)	P- Isopropyl- toluene (μg/L)	N-Butyl- benzene (pg/L)	Naph- thalene (µg/L)	1,2,3- Trichloro- benzene (µg/L)
	2	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	7	<0.5
	3	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	~	<0.5
06-031FD	3	<0.2	<2	<2	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5
	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06-017MW	5	<0.18	<1.0	<0.1	<0.04	< 0.03	< 0.05	<0.14	<0.06	<0.1	<0.12	<0.12	<0.35
	9	< 0.18	<1.0	<0.1	< 0.04	< 0.03	<0.05	<0.14	<0.06	<0.1	<0.12	<0.12	<0.35
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	BN	NE	NE	NE	NE	NE	NE	NE	NE
06-018MW	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	<0.18	<1.0	7.0	2.0	0.4	1	0.14	<0.06	<0.1	0.5	2	<0.35
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
00-019MW	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	<0.18	<1.0	0.7	0.7	0.4	1	<0.14	< 0.06	< 0.1	0.4	4	<0.35
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
06-020MW	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	<0.18	<1.0	2	-	2	<0.05	<0.14	0.2	0.2	-	4	<0.35

Table E.2 (Continued)
Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6
161st ARG, Arizona ANG, Phoenix, Arizona

Sample ID Number	Sample Round	2,2- Dichloro propane (µg/L)	Methylene Chloride (μg/L)	Isopropyl- benzene (µg/L)	N- Propyl- benzene (µg/L)	1,3,5. Trimethyl- benzene (µg/L)	1,2,4- Trimethyl- benzene (µg/L)	Tert- butyl- benzene (µg/L)	Sec-butyl berzene (µg/L)	P. Isopropyl- toluene (µg/L)	N-Butyl- benzene (µg/L)	Naph- thalene (µg/L)	1,2,3- Trichloro- benzene (µg/L)
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MATE OF SO	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
00-021M W	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	6>	<25	51	56	15	110	<7	<3	<5	21	120	<17.5
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
111111111111111111111111111111111111111	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
W M220-00	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	<0.18	<1.0	18	21	9	<0.05	<0.14	3	2	6	58	<0.35
	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MACCO 30	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
W INC20-00	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	<0.18	<1.0	30	27	3	<0.05	<0.14	4	0.4	4	17	<0.35
- !	1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
!	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
WANTO 20	3	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
W 14170-00	4	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
1	5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	9	<0.18	<1.0	22	18	15	61	<0.14	3	1	7	30	<0.35

Secondary List of VOCs Detected in Groundwater Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.2 (Concluded)

3- oro- ene L)	35	T=3	127	[*)	F=)	F-3	35	7-3	1-2	f=3			35
1,2,3- Trichlorobenzene (µg/L)	<0.35	NE	NE	NE	NE	NE	<0.35	N	NE	NE	NE	NE	< 0.35
Naph- thalene (µg/L)	27	NE	NE	NE	NE	NE	2	NE	NE	NE	NE	NE	9
N-Butyl- benzene (µg/L)	17	NE	NE	NE	NE	NE	9	NE	NE	NE	NE	NE	< 0.12
P. Isopropyl- toluene (μg/L)	1	NE	NE	NE	NE	NE	0.3	NE	NE	NE	NE	NE	0.4
Sec-butyl benzene (µg/L)	3	NE	NE	NE	NE	NE	2	NE	NE	NE	NE	NE	0.4
Tert- butyl- benzene (µg/L)	<0.14	NE	NE	NE	NE	NE	<0.14	NE	NE	NE	NE	NE	<0.14
1,2,4- Trimethyl- benzene (µg/L)	61	NE	NE	NE	NE	NE	2	NE	NE	NE	NE	NE	< 0.05
1,3,5- Trimethyl- benzene (µg/L)	16	NE	NE	NE	NE	NE	0.5	NE	NE	NE	NE	NE	2
N- Propyl- benzene (µg/L)	18	NE	NE	NE	NE	NE	1	NE	NE	NE	NE	NE	4
Isopropyl- benzene (µg/L)	21	NE	NE	NE	NE	NE	1	NE	NE	NE	NE	NE	ć.
Methylene Chloride (μg/L)	<1.0	NE	NE	NE	NE	NE	<1.0	NE	NE	NE	NE	NE	< 1.0
2,2- Dichloro propane (µg/L)	<0.18	NE	NE	NE	NE	NE	< 0.18	NE	NE	NE	NE	NE	< 0.18
Sample Round	9	1	2	3	4	5	9	-	2	3	4	5	9
Sample ID Number	06-024MW Dup				06-023MW						00-026MW		

pg/L — micrograms per liter.

MWS and MW — Monitoring Well.

Shaded rows delineate audited data.

VOCs — Volatile Organic Compounds.

IRP — Installation Restoration Program.

FD — Field Duplicate.

NS — Not Sampled.

NE — Not Existing During First Round of Sampling.

C - Two Compounds Coelute. J - Value is estimated and below reporting limits.

Dup - Duplicate.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-05

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-01

PROJECT NO: 1315-227

MATRIX: WATER DATE SAMPLED: 07/13/95 17:00:00

DATE RECEIVED: 07/14/95

ANALYT	ICAL DA	ATA		
PARAMETER	RESU	JLTS	PQL*	UNITS
Dichlorodifluoromethane		ND	1.1	μg/L
Chloromethane		0.5	0.15	μg/L
Vinyl chloride		ND	0.21	μg/L
Bromomethane		ND	0.17	μg/L
Chloroethane		ND	0.18	μg/L
Trichlorofluoromethane		ND	0.34	μg/L
1,1-Dichloroethene		ND	0.19	μg/L
trans-1,2-Dichloroethene		ND	0.20	μg/L
1,1-Dichloroethane		ND	0.11	μg/L
2,2-Dichloropropane		ND	0.18	μg/L
cis-1,2-Dichloroethene		ND	0.27	μg/I.
Chloroform		ND	0.15	μg/L
Bromochloromethane		ND	0.11	μg/L
1,1,1-Trichloroethane		ND	0.15	μg/L
1,1-Dichloropropene		ND	0.33	μg/L
Carbon Tetrachloride		ND	0.11	μg/L
Benzene		4	0.03	μg/L
1,2-Dichloroethane		ND	0.38	μg/L
Trichloroethene		ND	0.32	μg/L
1,2-Dichloropropane		ND	0.17	μg/L
Bromodichloromethane		ND	0.11	μg/L
Dibromomethane		ND	0.12	μg/L
cis-1,3-Dichloropropene		ND	0.09	μg/L
Toluene	B	0.4	0.06	μg/L
trans-1,3-Dichloropropene		ND	0.11	μg/L
1,1,2-Trichloroethane		ND	0.21	μg/L
Tetrachloroethene		ND	0.33	μg/L
1,3-Dichloropropane		ND	0.25	μg/L
Dibromochloromethane		ND	0.08	μg/L
1,2-Dibromoethane		ND	0.06	μg/L
Chlorobenzene		ND	0.62	μg/L
Ethyl benzene		8	003	μg/L
1,1,1,2-Tetrachloroethane		ND	0.25	μg/L
Xylenes	В	4	0.09	μg/L
Styrene		ND	0.23	μg/L
Isopropylbenzene		0.9	0.10	μg/L
Bromoform		ND	0.12	μg/L
1,1,2,2-Tetrachloroethane		ND	0.27	μg/L

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-05

Operational Tech

SAMPLE ID: MWS-01

87

ANA	LYTICAL DATA (c	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μ g/L
n-Propyl benzene	1	0.04	$\mu g/L$
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	0.5	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	$\mu g/L$
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	$\mu g/L$
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	$\mu g/L$
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	B 2	0.12	μ g/L
1,2,3-Trichlorobenzene	ND	0.35	μ g/L
SURROGATES	% RE	COVERY	

ANALYZED BY: JZL DATE/TIME: 07/23/95 12:16:00

EXTRACTED BY:

DATE/TIME: METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-01

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 17:00:00

DATE RECEIVED: 07/14/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5 mg/L

METHOD 418.1* Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-06

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-02

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 17:30:00

DATE RECEIVED: 07/14/95

ANALYTIC	TAT, DATTA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	ND	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	ND	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	ND	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	$\mu g/L$
1,3-Dichloropropane	ND	0.25	$\mu g/L$
Dibromochloromethane	ND	0.08	$\mu g/L$
1,2-Dibromoethane	ND	0.06	$\mu g/L$
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	ND	0.03	μg/L
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L
Xylenes	ND	0.09	μg/L
Styrene	ND	0.23	μg/L
Isopropylbenzene	ND	0.10	$\mu g/L$
Bromoform	ND	0.12	μg/L
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L
			. =

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-06

Operational Tech

SAMPLE ID: MWS-02

DADAMEMEN	ANALYTICAL DATA (c	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	ND		
Bromobenzene	ND		μg/L
1,3,5-Trimethylbenzene	ND		μ g/L
2-Chlorotoluene			μ g/L
4-Chlorotoluene	ND		μ g/L
tert-Butylbenzene	ND		μ g/L
1 2 4 Trimothall	ND		μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND		
1,4-Dichlorobenzene	ND		μg/L
n-Butylbenzene	ND		μg/L
1,2-Dichlorobenzene	ND		μ g/L
1,2-Dibromo-3-chloropropa			μ g/L
1,2,4-Trichlorobenzene			μ g/L
Hexachlorobutadiene	ND		μ g/L
Naphthalene	ND		$\mu g/L$
	ND	0.12	$\mu g/L$
1,2,3-Trichlorobenzene	ND	0.35	$\mu g/L$
SURROGATES	% RE(3011777	
1-Chloro-2-Fluorobenzene	0 1121	COVERY	
=======================================	č	36	

ANALYZED BY: JZL

DATE/TIME: 07/23/95 01:28:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit

NA - Not Analyzed

ND - Not Detected

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 08/07/9

Certificate of Analysis No. H9-9507438-06

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-02

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 17:30:00

0.5

DATE RECEIVED: 07/14/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*
Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW5-03

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 18:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μg/L		
Chloromethane	2	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	$\mu g/L$		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	ND	0.15	μ g/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	ND	0.11	$\mu g/L$		
Benzene	8	0.03	μg/L		
1,2-Dichloroethane	ND	0.38	$\mu g/L$		
Trichloroethene	ND	0.32	μ g/L		
1,2-Dichloropropane	ND	0.17	μ g/L		
Bromodichloromethane	ND	0.11	μ g/L		
Dibromomethane	ND	0.12	μ g/L		
cis-1,3-Dichloropropene	ND	0.09	μ g/L		
Toluene	0.2	0.06	μ g/L		
trans-1,3-Dichloropropene	ND	0.11	μ g/L		
1,1,2-Trichloroethane	ND	0.21	μ g/L		
Tetrachloroethene	ND	0.33	μ g/L		
1,3-Dichloropropane	ND	0.25	μ g/L		
Dibromochloromethane	ND	0.08	μ g/L		
1,2-Dibromoethane	ND	0.06	μ g/L		
Chlorobenzene	ND	0.62	μ g/L		
Ethyl benzene	12	0.03	μ g/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μ g/L		
Xylenes	2	0.09	μ g/L		
Styrene	0.8	0.23	μ g/L		
Isopropylbenzene	1	0.10	μ g/L		
Bromoform	ND	0.12	μ g/L		
1,1,2,2-Tetrachloroethane	ND	0.27	μ g/L		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-01

Operational Tech

SAMPLE ID: MW5-03

94

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,2,3-Trichloropropane	ND	0.16	μg/L	
n-Propyl benzene	1	0.04	μg/L	
Bromobenzene	ND		μg/L	
1,3,5-Trimethylbenzene	ND	0.03	μg/L	
2-Chlorotoluene	ND		μg/L	
4-Chlorotoluene	ND		μg/L	
tert-Butylbenzene	ND		μg/L	
1,2,4-Trimethylbenzene	2	0.05	μg/L	
sec-Butylbenzene	ND	0.06	μg/L	
p-Isopropyltoluene	ND	0.10	μg/L	
1,3-Dichlorobenzene	ND	0.26	μg/L	
1,4-Dichlorobenzene	ND	0.30	μg/L	
n-Butylbenzene	0.3		μg/L	
1,2-Dichlorobenzene	ND	0.48	μg/L	
1,2-Dibromo-3-chloroprop		0.13	μg/L	
1,2,4-Trichlorobenzene	ND	0.09	μg/L	
Hexachlorobutadiene	ND	0.22	μg/L	
Naphthalene	5	0.12	μg/L	
1,2,3-Trichlorobenzene	ND	0.35	μg/L	
			, 5, -	
SURROGATES	% RE	COVERY		

ANALYZED BY: JZL DATE/TIME: 07/24/95 12:50:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW5-03

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 18:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

ND 0.5 mg/L

METHOD 418.1*
Analyzed by: BV

Petroleum extractables

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-04

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:00

DATE RECEIVED: 07/15/95

	FICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	3	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μq/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	4200	0.60	μg/L
1,2-Dichloroethane	0.4	0.38	μg/I
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	В 2	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	μg/L
Dibromochloromethane	ND	0.08	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	500	0.60	μg/L
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L
Xylenes	B 19	0.09	μg/L
Styrene	3	0.23	μg/L
Isopropylbenzene	25	0.10	μg/L
Bromoform	ND	0.12	μg/L
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-01

Operational Tech

SAMPLE ID: MWS-04

ANALYTICAL DATA (continued)			
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	
n-Propyl benzene	28		μg/L
Bromobenzene	ND		μg/L
1,3,5-Trimethylbenzene	1		μg/L
2-Chlorotoluene		0.03	μ g/L
4-Chlorotoluene	ND		μ g/L
tert-Butylbenzene	ND		μ g/L
1 2 4-Trimotherlhouse	ND		μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	3	0.06	μg/L
p-Isopropyltoluene	0.9	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND		μg/L
n-Butylbenzene	6	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	
1,2-Dibromo-3-chloropro	pane ND	0.13	μg/L
1,2,4-Trichlorobenzene			μ g/L
Hexachlorobutadiene	ND	0.09	$\mu g/L$
Naphthalene	ND	0.22	μ g/L
1,2,3-Trichlorobenzene	ND	0.12	μ g/L
1,2,3-111ch1ofopenzene	ND	0.35	μg/L
SURROGATES	% RE	COVERY	
1-Chloro-2-Fluorobenzene		96	
		20	

ANALYZED BY: JZL DATE/TIME: 07/25/95 04:23:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-04

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables 5 0.5 mg/I

METHOD 418.1*
Analyzed by: BV

Date: 07/26/95 14:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-04 Duplicate

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μg/L		
Chloromethane	3	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L:		
1,1-Dichloroethene	ND	0.19	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	ND	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	ND	0.11	μg/L		
Benzene	4000	0.60	$\mu { m g}/{ m L}$		
1,2-Dichloroethane	0.5	0.38	μ g/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μg/L		
Bromodichloromethane	ND	0.11	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	В 3	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μ g/L		
1,1,2-Trichloroethane	ND	0.21	μ g/L		
Tetrachloroethene	ND	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	μ g/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	480	0.60	μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	B 20	0.09	μg/L		
Styrene	ND	4.60	μg/L		
Isopropylbenzene	25	0.10	μ g/L		
Bromoform	ND	0.12	μg/L		
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-02

Operational Tech

SAMPLE ID: MWS-04 Duplicate

91

ANALYTICAL DATA (continued)			
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	28	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	2	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	3	0.06	μg/L
p-Isopropyltoluene	0.9	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	6	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloroprop	pane ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	B 58	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	μg/L
			F-3/ =
SURROGATES	% RE	COVERY	

ANALYZED BY: JZL DATE/TIME: 07/25/95 05:34:00 EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

B - Compound detected in associated method blank COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/10/95

mq/L

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MWS-04 Duplicate

PROJECT NO: 1315-227
MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

0.5

Petroleum extractables 2

METHOD 418.1*
Analyzed by: BV

Date: 07/26/95 14:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-09

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/9

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW3-02

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 15:50:0

DATE RECEIVED: 07/15/95

A	NALYTICAL DATA		
PARAMETER	RESULTS	DOT +	
Dichlorodifluoromethane	ND	PQL*	UNITS
Chloromethane	1	1.1	μ g/L
Vinyl chloride	ND	0.15	μ g/L
Bromomethane	ND	0.21	μ g/L
Chloroethane	ND ND	0.17	μg/L
Trichlorofluoromethane	ND ND	0.18	μg/L
1,1-Dichloroethene		0.34	μ g/L
trans-1,2-Dichloroethene	ND	0.19	μg/L
1,1-Dichloroethane	ND	0.20	μ g/L
2,2-Dichloropropane	ND	0.11	μg/L
cis-1,2-Dichloroethene	ND	0.18	μ g/L
Chloroform	0.3	0.27	μ g/L
Bromochloromethane	ND	0.15	μ g/L
1,1,1-Trichloroethane	ND	0.11	μ g/L
1,1-Dichloropropene	ND	0.15	μ g/L
Carbon Tetrachloride	ND	0.33	μ g/L
Benzene	ND	0.11	μ g/L
1,2-Dichloroethane	15 ND	0.03	μ g/L
Trichloroethene	ND ND	0.38	μ g/L
1,2-Dichloropropane	ND	0.32	μg/L
Bromodichloromethane	ND	0.17 0.11	μ g/L
Dibromomethane	ND		μg/L
cis-1,3-Dichloropropene	ND ND	0.12	μ g/L
Toluene	B 0.4	0.09	μ g/L
trans-1,3-Dichloropropene	ND	0.06	μ g/L
1,1,2-Trichloroethane	ND	0.11 0.21	μ g/L
Tetrachloroethene	ND		μ g/L
1,3-Dichloropropane	ND	0.33	μ g/L
Dibromochloromethane	ND	0.25	μ g/L
1,2-Dibromoethane	ND ND	0.08	μ g/L
Chlorobenzene	ND	0.06	μ g/L
Ethyl benzene	ND 16	0.62	μ g/L
1,1,1,2-Tetrachloroethane	- ND	0.03	μ g/L
Xylenes	В 3	0.25	μ g/L
Styrene	0.7	0.09	μg/L
Isopropylbenzene	2	0.23	μ g/L
Bromoform	ND	0.10	μ g/L
1,1,2,2-Tetrachloroethane	ND ND	0.12	μg/L
	מא	0.27	μ g/L

Certificate of Analysis No. H9-9507478-09

Operational Tech

SAMPLE ID: MW3-02

DADAMENTO	ANALYTICAL DATA (continued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	2	0.04	μg/L
Bromobenzene	ND		μg/L
1,3,5-Trimethylbenzene	0.3		
2-Chlorotoluene	ND		μg/L
4-Chlorotoluene			μg/L
tert-Butylbenzene		0.29	μ g/L
1,2,4-Trimethylbenzene	ND		μ g/L
aca Butulbensene	ND		μg/L
sec-Butylbenzene	ND		μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	$\mu g/L$
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	0.3	0.12	μg/L
1,2-Dichlorobenzene	ND		μg/L
1,2-Dibromo-3-chloropro	pane ND		μg/L
1,2,4-Trichlorobenzene	ND	— —	
Hexachlorobutadiene	ND		μg/L
Naphthalene			μ g/L
1,2,3-Trichlorobenzene		0.12	μg/L
1,2,3 illeniolobenzene	ND	0.35	μ g/L
SURROGATES	% RF	COVERY	
1-Chloro-2-Fluorobenzen		86	
= = 11d010Dc11Ze11		00	

ANALYZED BY: JZL DATE/TIME: 07/23/95 15:36:00

EXTRACTED BY:

METHOD: 502.2 - Drinking Water Volatiles

NOTES:

* - Practical Quantitation Limit ND - Not Detected

DATE/TIME:

NA - Not Analyzed

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-09

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/10/9

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW3-02

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 15:50:0

DATE RECEIVED: 07/15/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT 0.5

Petroleum extractables

METHOD 418.1*

Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW5-01

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA				
PARAMETER	RESULTS	PQL*	UNITS	
Dichlorodifluoromethane	ND	1.1	μg/L	
Chloromethane	ND	0.15	μg/L	
Vinyl chloride	ND	0.21	μg/L	
Bromomethane	ND	0.17	μg/L	
Chloroethane	ND	0.18	μg/L	
Trichlorofluoromethane	ND	0.34	μg/L	
1,1-Dichloroethene	ND	0.19	μg/L	
trans-1,2-Dichloroethene	ND	0.20	μg/L	
1,1-Dichloroethane	ND	0.11	$\mu g/L$	
2,2-Dichloropropane	ND	0.18	$\mu g/L$	
cis-1,2-Dichloroethene	ND	0.27	μg/L	
Chloroform	ND	0.15	μg/L	
Bromochloromethane	ND	0.11	μg/L	
1,1,1-Trichloroethane	ND	0.15	μg/L	
1,1-Dichloropropene	ND	0.33	μg/L	
Carbon Tetrachloride	ND	0.11	μg/L	
Benzene	6	0.03	μg/L	
1,2-Dichloroethane	ND	0.38	μg/L	
Trichloroethene	ND	0.32	μg/L	
1,2-Dichloropropane	ND	0.17	μg/L	
Bromodichloromethane	ND	0.11	μg/L	
Dibromomethane	ND	0.12	μ g/L	
cis-1,3-Dichloropropene	ND	0.09	μ g/L	
Toluene	B 0.3	0.06	μ g/L	
trans-1,3-Dichloropropene	ND	0.11	μg/L	
1,1,2-Trichloroethane	ND	0.21	μg/L	
Tetrachloroethene	ND	0.33	μ g/L	
1,3-Dichloropropane	ND	0.25	μg/L	
Dibromochloromethane	ND	0.08	μ g/L	
1,2-Dibromoethane	ND	0.06	μ g/L	
Chlorobenzene	ND	0.62	μg/L	
Ethyl benzene	9	0.03	μg/L	
1,1,1,2-Tetrachloroethane	ND	0.25	μ g/L	
Xylenes	B 2	0.09	μ g/L	
Styrene	0.6	0.23	μg/L	
Isopropylbenzene Bromoform	0.9	0.10	μg/L	
	ND	0.12	μg/L	
1,1,2,2-Tetrachloroethane	, ND	0.27	μg/L	

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-02

Operational Tech

SAMPLE ID: MW5-01

98

<u> </u>	ANALYTICAL DATA (c	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μ g/L
n-Propyl benzene	0.9	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	1	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	$\mu g/L$
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	$\mu g/L$
1,2-Dichlorobenzene	ND	0.48	$\mu g/L$
1,2-Dibromo-3-chloropropa	ane ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	В 2	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	$\mu { m g/L}$
SURROGATES	% RE	COVERY	

ANALYZED BY: JZL DATE/TIME: 07/23/95 16:45:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in associated method blank

Certificate of Analysis No. H9-9507479-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW5-01

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5 mg/L

METHOD 418.1* Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW5-01 Duplicate

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:00

DATE RECEIVED: 07/15/95

ANALY	TICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	0.4	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	7	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μq/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	B 0.2	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	μg/L
Dibromochloromethane	ND	0.08	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	8	0.03	μg/L
1,1,1,2-Tetrachloroethane	ND -	0.25	μg/L
Xylenes	B 2	0.09	μg/L
Styrene	0.4	0.23	μg/L
Isopropylbenzene	0.8	0.10	μg/L
Bromoform	ND	0.12	μg/L
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L
			F3/ -

Certificate of Analysis No. H9-9507479-03

Operational Tech

SAMPLE ID: MW5-01 Duplicate

	ANALYTICAL DATA (c	continued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	0.9		μg/L
Bromobenzene	ND		μg/L
1,3,5-Trimethylbenzene	ND		μg/L
2-Chlorotoluene	ND		μg/L μg/L
4-Chlorotoluene	ND		, 0
tert-Butylbenzene	ND		μg/L
1,2,4-Trimethylbenzene	1	0.05	μg/L
sec-Butylbenzene	ND		μg/L
p-Isopropyltoluene			μg/L
1,3-Dichlorobenzene	ND		μ g/L
1,4-Dichlorobenzene	ND		μ g/L
n-Butylbenzene	ND		$\mu g/L$
1,2-Dichlorobenzene	ND		μ g/L
1,2-Dichioropenzene	ND	- · - -	μ g/L
1,2-Dibromo-3-chloroprop		_	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	$\mu g/L$
Naphthalene	B 2	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	μg/L
SURROGATES	म ा ४	COVERY	
1-Chloro-2-Fluorobenzene		96	

ANALYZED BY: JZL DATE/TIME: 07/23/95 17:54:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: MW5-01 Duplicate

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:00

0.5

DATE RECEIVED: 07/15/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables METHOD 418.1*

Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9507478-08

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-003MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 14:30:00

DATE RECEIVED: 07/15/95

	ANALYTICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	2	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	0.2	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	19	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane Dibromomethane	ND	0.11	μg/L
	ND	0.12	μg/L
cis-1,3-Dichloropropene Toluene	ND	0.09	μg/L
	B 0.5	0.06	μg/L
trans-1,3-Dichloropropen 1,1,2-Trichloroethane		0.11	μg/L
Tetrachloroethene	ND	0.21	μg/L
1 3 Dichlemene	ND	0.33	μg/L
1,3-Dichloropropane Dibromochloromethane	ND	0.25	μg/L
1 2 Dibromother	ND	0.08	μg/L
1,2-Dibromoethane Chlorobenzene	ND	0.06	μg/L
Ethyl benzene	ND	0.62	μg/L
	21	0.03	μg/L
1,1,1,2-Tetrachloroethand Xylenes	112	0.25	μg/L
Styrene	В 3	0.09	μg/L
Isopropylbenzene	0.6	0.23	μg/L
Bromoform	2	0.10	μg/L
1,1,2,2-Tetrachloroethane	ND	0.12	μg/L
-/-/2/2 recraciiioroethane	ND	0.27	μ g/L

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-08

Operational Tech

SAMPLE ID: 06-003MW

86

Al	NALYTICAL DATA (c	continued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	0.9	0.16	$\mu { m g}/{ m L}$
n-Propyl benzene	2	0.04	μg/L
Bromobenzene	ND	0.22	$\mu g/L$
1,3,5-Trimethylbenzene	0.3	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	0.2	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	0.4	0.12	$\mu g/L$
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropar	ne ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	$\mu g/L$
Hexachlorobutadiene	ND	0.22	$\mu g/L$
Naphthalene	В 3	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	μg/L
SURROGATES	% RI	ECOVERY	

ANALYZED BY: JZL DATE/TIME: 07/23/95 14:26:00

EXTRACTED BY:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

DATE/TIME:

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-08

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/10/95

mg/L

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-003MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 14:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables ND 0.5

METHOD 418.1*
Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-005MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 15:00:00

DATE RECEIVED: 07/14/95

	TICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	0.4	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	0.2	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	0.6	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	ND	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	μg/L
Dibromochloromethane	ND	0.08	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	1	0.03	μg/L μg/L
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L
Xylenes	B 1	0.09	μg/L
Styrene	1	0.23	μg/L μg/L
Isopropylbenzene	ND	0.10	
Bromoform	ND	0.10	μg/L
1,1,2,2-Tetrachloroethane	ND	0.12	μg/L μg/L

Certificate of Analysis No. H9-9507438-02

Operational Tech

SAMPLE ID: 06-005MW

A	NALYTICAL DATA (c	continued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μ g/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	0.6	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	$\mu g/L$
1,2-Dibromo-3-chloropropa	ne ND	0.13	μ g/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	$\mu g/L$
Naphthalene	B 1	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	μ g/L
SURROGATES	% RE	COVERY	
1-Chloro-2-Fluorobenzene		86	

ANALYZED BY: JZL DATE/TIME: 07/22/95 04:05:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-005MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 15:00:00

DATE RECEIVED: 07/14/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5 mg/I

METHOD 418.1*
Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-005MW DUP

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 16:00:00

DATE RECEIVED: 07/14/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μ g/L		
Chloromethane	1	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	0.2	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	ND	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	ND	0.11	μg/L		
Benzene	1	0.03	μg/L		
1,2-Dichloroethane	ND	0.38	μ g/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μ g/L		
Bromodichloromethane	ND	0.11	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	ND	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	ND	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	μ g/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μ g/L		
Chlorobenzene	ND	0.62	μ g/L		
Ethyl benzene	3	0.03	-μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μ g/L		
Xylenes	B 2	0.09	μ g/L		
Styrene	1	0.23	μg/L		
Isopropylbenzene	0.3	0.10	μg/L		
Bromoform	ND	0.12	μg/L		
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-03

Operational Tech

SAMPLE ID: 06-005MW DUP

85

	ANALYTICAL DATA (continued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	0.3	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	0.2	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	0.7	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropa	ane ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	B 1	0.12	$\mu g/L$
1,2,3-Trichlorobenzene	ND	0.35	μg/L
SURROGATES	% R	ECOVERY	
7 (2) 7 0 77	0 10.		

ANALYZED BY: JZL DATE/TIME: 07/22/95 05:17:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit

ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in associated method blank

8980 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/07/95

mg/L

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-005MW DUP

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 16:00:00

DATE RECEIVED: 07/14/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5

METHOD 418.1*

Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-07

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-012MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 13:00:00

DATE RECEIVED: 07/15/95

	TICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	$\mu g/L$
Chloromethane	3	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	0.2	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L μg/L
Carbon Tetrachloride	ND	0.11	
Benzene	29	0.03	μg/L "~/T
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	0.6	0.09	μg/L
trans-1,3-Dichloropropene	ND	0.06	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND		μg/L
Dibromochloromethane	ND ND	0.25	μg/L
1,2-Dibromoethane		0.08	μg/L
Chlorobenzene	ND	0.06	μg/L
Ethyl benzene	ND	0.62	μ g/L
-	26	0.03	$\mu g/L$
1,1,1,2-Tetrachloroethane	ND	0.25	$\mu g/L$
Xylenes	3	0.09	$\mu g/L$
Styrene	1	0.23	μg/L
Isopropylbenzene	3	0.10	μg/L
Bromoform	ND	0.12	μ g/L
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L

Certificate of Analysis No. H9-9507478-07

Operational Tech

SAMPLE ID: 06-012MW

PARAMETER 1,2,3-Trichloropropane n-Propyl benzene Bromobenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloroprop 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	ANALYTICAL DATA (CIRESULTS ND 2 ND 0.3 ND	PQL* 0.16 0.04 0.22 0.03 0.26 0.29	UNITS ### ### ### ### ### ### ### ### ###
SURROGATES 1-Chloro-2-Fluorobenzene		COVERY 5	

ANALYZED BY: JZL

DATE/TIME: 07/25/95 12:49:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit

NA - Not Analyzed

ND - Not Detected

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-07

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-012MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 13:00:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

ND 0.5

01121

Petroleum extractables

METHOD 418.1*
Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9507478-06

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-013MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 11:40:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1			
Chloromethane	0.4	0.15	μg/L		
Vinyl chloride	ND	0.13	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.18	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
trans-1,2-Dichloroethene	ND	0.19	μg/L		
1,1-Dichloroethane	ND		μg/L		
2,2-Dichloropropane	ND	0.11	μ g/L		
cis-1,2-Dichloroethene		0.18	μ g/L		
Chloroform	ND	0.27	μ g/L		
Bromochloromethane	ND	0.15	μg/L		
1,1,1-Trichloroethane	ND	0.11	μg/L		
1,1-Dichloropropene	ND	0.15	μg/L		
Carbon Tetrachloride	ND	0.33	μg/L		
Benzene	ND	0.11	μ g/L		
	670	0.30	μg/L		
1,2-Dichloroethane	ND	0.38	μg/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μ g/L		
Bromodichloromethane	ND	0.11	μ g/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	B 0.7	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	ND	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	μg/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	41				
1,1,1,2-Tetrachloroethane					
Xylenes					
Styrene					
Bromoform					
1,1,2,2-Tetrachloroethane					
Xylenes Styrene Isopropylbenzene Bromoform	41 ND	0.03 0.25 0.09 0.23 0.10 0.12 0.27	μg/L μg/L μg/L μg/L μg/L μg/L μg/L		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-06

Operational Tech

SAMPLE ID: 06-013MW

ANAL	YTICAL DATA (CO	ntinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	10	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	0.8	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	
sec-Butylbenzene	2	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	2	0.12	μg/L
1,2-Dichlorobenzene	ND	0.12	μg/L
1,2-Dibromo-3-chloropropane	ND	0.48	μg/L
1,2,4-Trichlorobenzene	ND		μ g/L
Hexachlorobutadiene	ND ND	0.09	μg/L
Naphthalene		0.22	μg/L
1,2,3-Trichlorobenzene		0.12	μg/L
1,2,3 iffenitorobenzene	ND	0.35	μ g/L
SURROGATES	& DEG	OTTENT	
1 01 1 2 2 2	% REC	OVERY	

ANALYZED BY: JZL

DATE/TIME: 07/25/95 03:12:00

95

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit

ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-06

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/10/95

mg/L

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-013MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 11:40:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5

METHOD 418.1* Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/9

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-015MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 10:15:0

DATE RECEIVED: 07/15/95

ANALYTICAL DATA				
PARAMETER	RESULTS	PQL*	UNITS	
Dichlorodifluoromethane	ND	1.1	μg/L	
Chloromethane	2	0.15	μg/L	
Vinyl chloride	ND	0.21	μg/L	
Bromomethane	ND	0.17	μg/L	
Chloroethane	ND	0.18	μg/L	
Trichlorofluoromethane	ND	0.34	μg/L	
1,1-Dichloroethene	ND	0.19	μg/L	
trans-1,2-Dichloroethene	ND	0.20	μg/L	
1,1-Dichloroethane	ND	0.11	μg/L	
2,2-Dichloropropane	ND	0.18	μg/L	
cis-1,2-Dichloroethene	ND	0.27	μg/L	
Chloroform	0.2	0.15	μg/L	
Bromochloromethane	ND	0.11	μg/L	
1,1,1-Trichloroethane	ND	0.15	μg/L	
1,1-Dichloropropene	ND	0.33	μg/L	
Carbon Tetrachloride	ND	0.11	μg/L	
Benzene	74	0.03	μg/L	
1,2-Dichloroethane	ND	0.38	μg/L	
Trichloroethene	ND	0.32	μg/L	
1,2-Dichloropropane	ND	0.17	μg/L	
Bromodichloromethane	ND	0.11	μg/L	
Dibromomethane	ND	0.12	μg/L	
cis-1,3-Dichloropropene	ND	0.09	μg/L	
Toluene	B 0.4	0.06	μg/L	
trans-1,3-Dichloropropene	ND	0.11	μg/L	
1,1,2-Trichloroethane	ND	0.21	μg/L	
Tetrachloroethene	ND	0.33	μg/L	
1,3-Dichloropropane	ND	0.25	μg/L	
Dibromochloromethane	ND	0.08	μg/L	
1,2-Dibromoethane	ND	0.06	μg/L	
Ethyl benzene	55	0.03	μg/L	
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L	
Xylenes	B 4	0.09	μg/L	
Styrene	1	0.23	μg/L	
Isopropylbenzene	4	0.10	μg/L	
Bromoform	ND	0.12	μg/L	
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L	
1,2,3-Trichloropropane	0.5	0.16	μg/L	
			<i></i>	

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-05

Operational Tech

SAMPLE ID: 06-015MW

PARAMETER	ANAL	YTICAL DATA (co	ontinued)	
Bromobenzene	PARAMETER	RESULTS	PQL*	UNITS
ND		4	0.04	
1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene ND 0.26 µg/L 4-Chlorotoluene ND 0.29 µg/L tert-Butylbenzene ND 0.14 µg/L 1,2,4-Trimethylbenzene ND 0.05 µg/L sec-Butylbenzene ND 0.3 0.06 µg/L p-Isopropyltoluene ND 0.10 µg/L 1,3-Dichlorobenzene ND 0.26 µg/L 1,4-Dichlorobenzene ND 0.30 µg/L 1,2-Dichlorobenzene ND 0.48 µg/L 1,2-Dichlorobenzene ND 0.48 µg/L 1,2-Dibromo-3-chloropropane ND 0.13 µg/L 1,2,4-Trichlorobenzene ND 0.22 µg/L Naphthalene ND 0.22 µg/L Naphthalene ND 0.35 µg/L Ng/L Ng/L Ng/L Ng/L Ng/L Ng/L Ng/L N		ND		
2-Chlorotoluene 4-Chlorotoluene ND 0.26 μg/L 4-Chlorotoluene ND 0.29 μg/L tert-Butylbenzene ND 0.14 μg/L 1,2,4-Trimethylbenzene ND 0.05 μg/L sec-Butylbenzene 0.3 0.06 μg/L p-Isopropyltoluene ND 0.10 μg/L 1,3-Dichlorobenzene ND 0.26 μg/L 1,4-Dichlorobenzene ND 0.30 μg/L 1,2-Dichlorobenzene ND 0.30 μg/L 1,2-Dichlorobenzene ND 0.48 μg/L 1,2-Dibromo-3-chloropropane ND 0.13 μg/L 1,2,4-Trichlorobenzene ND 0.09 μg/L Naphthalene ND 0.22 μg/L Naphthalene ND 0.35 μg/L μg/L Naphthalene ND 0.35 μg/L να/L να/L να/L να/L να/L να/L να/L να	1,3,5-Trimethylbenzene	0.5		
4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Trichlorobenzene 1,2-Trichlorobenzene 1,2,4-Trichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,5-Dichlorobenzene 1,5-Dichlorobenzene 1,6-Dichlorobenzene 1,7-Dichlorobenzene 1,7-Dichlorobenzen				
tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene n-Butylbe	4-Chlorotoluene		- · - · -	
1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene n-Butylbenze	tert-Butylbenzene			
sec-Butylbenzene 0.3 0.06 μg/L p-Isopropyltoluene ND 0.10 μg/L 1,3-Dichlorobenzene ND 0.26 μg/L 1,4-Dichlorobenzene ND 0.30 μg/L n-Butylbenzene 0.5 0.12 μg/L 1,2-Dichlorobenzene ND 0.48 μg/L 1,2-Dibromo-3-chloropropane ND 0.13 μg/L 1,2,4-Trichlorobenzene ND 0.09 μg/L Hexachlorobutadiene ND 0.22 μg/L Naphthalene ND 0.35 μg/L 1,2,3-Trichlorobenzene ND 0.35 μg/L SURROGATES % RECOVERY				
p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 2, RECOVERY 3, RECOVERY				
1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 0.26 μg/L 1,4-Dichlorobenzene ND 0.30 μg/L 1,2-Dichlorobenzene ND 0.48 μg/L 1,2-Dibromo-3-chloropropane ND 0.13 μg/L 1,2,4-Trichlorobenzene ND 0.09 μg/L Naphthalene ND 0.22 μg/L Naphthalene ND 0.35 μg/L Ng/L ND 0.35 μg/L Ng/L ND 0.35				
1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene ND				
n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene ND				
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene 1,2,4-Trichlor				
1,2-Dibromo-3-chloropropane ND 0.13 μ g/L 1,2,4-Trichlorobenzene ND 0.09 μ g/L Hexachlorobutadiene ND 0.22 μ g/L Naphthalene ND 0.12 μ g/L 1,2,3-Trichlorobenzene ND 0.35 μ g/L SURROGATES % RECOVERY				
1,2,4-Trichlorobenzene ND 0.09 μ g/L Hexachlorobutadiene ND 0.22 μ g/L Naphthalene ND 0.12 μ g/L 1,2,3-Trichlorobenzene ND 0.35 μ g/L SURROGATES % RECOVERY	1,2-Dichiolopenzene			
Hexachlorobutadiene ND 0.22 μ g/L Naphthalene ND 0.12 μ g/L 1,2,3-Trichlorobenzene ND 0.35 μ g/L SURROGATES % RECOVERY				μ g/L
Naphthalene ND 0.12 $\mu g/L$ 1,2,3-Trichlorobenzene ND 0.35 $\mu g/L$ SURROGATES % RECOVERY			0.09	μ g/L
Naphthalene ND 0.12 μ g/L 1,2,3-Trichlorobenzene ND 0.35 μ g/L SURROGATES % RECOVERY			0.22	μ g/L
$\mu g/L$ SURROGATES % RECOVERY		ND	0.12	
SURROGATES % RECOVERY	1,2,3-Trichlorobenzene	ND	0.35	
1 Chlore 2 Bloomis	CUDDOGDETA			, 5.
1-Chloro-2-Fluorobenzene 94		% REC	COVERY	
	1-Chloro-2-Fluorobenzene	9	94	

ANALYZED BY: JZL DATE/TIME: 07/24/95 23:38:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/10/95

mq/I

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-015MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 10:15:00

0.5

DATE RECEIVED: 07/15/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*
Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-016MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 15:00:00

DATE RECEIVED: 07/14/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μg/L		
Chloromethane	2	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	1	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	0.2	0.11	μg/L		
Benzene	ND	0.03	μg/L		
1,2-Dichloroethane	ND	0.38	μ g/L		
Trichloroethene	7	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μg/L		
Bromodichloromethane	ND	0.11	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	ND	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	0.8	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	μg/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	0.4_	0.03	μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	B 0.4	0.09	μg/L		
Styrene	B 0.6	0.23	μg/L		
Isopropylbenzene	ND	0.10	μg/L		
Bromoform	ND	0.12	μq/L		
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L		
			, 5,		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-01

Operational Tech

SAMPLE ID: 06-016MW

	ANALYTICAL DATA (continued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	ND	0.04	. —
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	0.3	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND		μg/L
1,3-Dichlorobenzene	ND	0.10	μg/L
1,4-Dichlorobenzene		0.26	μ g/L
n-Butylbenzene	ND	0.30	μ g/L
1,2-Dichlorobenzene	ND	0.12	μ g/L
1,2-Dibromo-3-chloroprop	ND	0.48	μ g/L
1,2-Dibiomo-3-Chioroprop		0.13	μ g/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	0.3	0.22	$\mu { m g}/{ m L}$
Naphthalene	2	0.12	$\mu g/L$
1,2,3-Trichlorobenzene	B ND	0.35	μg/L
SURROGATES			, 3.
1 Chlore 2 Flavori	% RE	COVERY	

ANALYZED BY: JZL

DATE/TIME: 07/21/95 22:09:00

89

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit

ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in associated method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-016MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 15:00:00

DATE RECEIVED: 07/14/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5 mg/L

METHOD 418.1*
Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-04

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

08/07/9

PROJECT: Air National Guard

CITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-017MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 16:30:0

DATE RECEIVED: 07/14/95

4 172 T TP	TONE DIES		
PARAMETER	TICAL DATA RESULTS	DOI +	******
Dichlorodifluoromethane		PQL*	UNITS
Chloromethane	ND ND	1.1	μg/L
Vinyl chloride		0.15	μ g/L
Bromomethane	ND	0.21	$\mu g/L$
Chloroethane	ND	0.17	μg/L
	ND	0.18	μ g/L
Trichlorofluoromethane	ND	0.34	μ g/L
1,1-Dichloroethene	ND	0.19	μ g/L
trans-1,2-Dichloroethene	ND	0.20	μ g/L
1,1-Dichloroethane	ND	0.11	μ g/L
2,2-Dichloropropane	ND	0.18	μ g/L
cis-1,2-Dichloroethene	ND	0.27	$\mu { m g/L}$
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	0.2	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	ND	0.06	μg/L μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	, -
Dibromochloromethane	ND	0.23	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	0.8	0.62	μg/L
1,1,1,2-Tetrachloroethane	ND	0.03	μg/L
Xylenes			μg/L
Styrene	B 0.8	0.09	μg/L
Isopropylbenzene	ND	0.23	μg/L
Bromoform	ND	0.10	μg/L
	ND	0.12	μg/L
1,1,2,2-Tetrachloroethane	ND	0.27	μ g/L

Certificate of Analysis No. H9-9507438-04

Operational Tech

SAMPLE ID: 06-017MW

ANA	LYTICAL DATA (co	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	$\mu g/L$
n-Propyl benzene	0.2	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	$\mu g/L$
Naphthalene	ND	0.12	$\mu g/L$
1,2,3-Trichlorobenzene	ND	0.35	μ g/L
SURROGATES	% REC	COVERY	
1-Chloro-2-Fluorobenzene	8	36	

ANALYZED BY: JZL DATE/TIME: 07/22/95 23:05:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/07/95

ma/

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-017MW

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 16:30:00

0.5

DATE RECEIVED: 07/14/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables METHOD 418.1*

Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-01

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

08/22/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech SAMPLE ID: 06-018MW PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/09/95 08:45:00

DATE RECEIVED: 08/10/95

ANALYTICAL DATA						
	PARAMETER	RESULTS	PQL*	UNITS		
	Dichlorodifluoromethane	ND	1.1	$\mu { t g}/{ t L}$		
	Chloromethane	ND	0.15	μg/L		
	Vinyl chloride	ND	0.21	μg/L		
	Bromomethane	ND	0.17	μg/L		
	Chloroethane	ND	0.18	μg/L		
	Trichlorofluoromethane	ND	0.34	μg/L		
	1,1-Dichloroethene	ND	0.19	μg/L		
	Methylene Chloride	ND	1.0	μg/L		
	trans-1,2-Dichloroethene	ND	0.20	μg/L		
	1,1-Dichloroethane	ND	0.11	μg/L		
	2,2-Dichloropropane	ND	0.18	μg/L		
	cis-1,2-Dichloroethene	0.4	0.27	μg/L		
	Chloroform	0.2	0.15	μg/L		
	Bromochloromethane	ND	0.11	μg/L		
	1,1,1-Trichloroethane	ND	0.15	μg/L		
	1,1-Dichloropropene	ND	0.33	μg/L		
	Carbon Tetrachloride	ND	0.11	μg/L		
	Benzene	6	0.03	μg/L		
	1,2-Dichloroethane	ND	0.38	μg/L		
	Trichloroethene	ND	0.32	μg/L		
	1,2-Dichloropropane	ND	0.17	μg/L		
	Bromodichloromethane	ND	0.11	μg/L		
	Dibromomethane	ND	0.12	μg/L		
	cis-1,3-Dichloropropene	ND	0.09	μg/L		
	Toluene	1	0.06	μg/L		
	trans-1,3-Dichloropropene		0.11	μg/L		
	1,1,2-Trichloroethane	ND	0.21	μg/L		
	Tetrachloroethene	ND	0.33	μg/L		
	1,3-Dichloropropane	ND	0.25	μg/L		
	Dibromochloromethane	ND	0.08	μg/L		
	1,2-Dibromoethane	ND	0.06	μ g/L		
	Chlorobenzene	ND	0.62	μg/L		
	Ethyl benzene	5	0.03	μ g/L		
	1,1,1,2-Tetrachloroethane		0.25	μg/L		
	Xylenes	3	0.09	μg/L		
	Styrene	ND	0.23	μg/L μg/L		
	Isopropylbenzene	0.7	0.10	μ g/L		
	Bromoform	ND	0.12	μ g/L		
		ND	0.12	μ9/11		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-01

Operational Tech

SAMPLE ID: 06-018MW

ANALYTICAL DATA (continued)					
PARAMETER	RESULTS	PQL*	UNITS		
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L		
1,2,3-Trichloropropane	ND	0.16	μg/L		
n-Propyl benzene	0.7	0.04	μg/L		
Bromobenzene	ND	0.22	μg/L		
1,3,5-Trimethylbenzene	0.4	0.03	μg/L		
2-Chlorotoluene	ND	0.26	μg/L		
4-Chlorotoluene	ND	0.29	μg/L		
tert-Butylbenzene	ND	0.14	μg/L		
1,2,4-Trimethylbenzene	1	0.05	μg/L		
sec-Butylbenzene	ND	0.06	μg/L		
p-Isopropyltoluene	ND	0.10	μg/L		
1,3-Dichlorobenzene	ND	0.26	μg/L		
1,4-Dichlorobenzene	ND	0.30	μg/L		
n-Butylbenzene	0.5	0.12	μg/L		
1,2-Dichlorobenzene	ND	0.48	μg/L		
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L		
1,2,4-Trichlorobenzene	ND	0.09	μg/L		
Hexachlorobutadiene	ND	0.22	μg/L		
Naphthalene	B 2	0.12	μg/L		
1,2,3-Trichlorobenzene	ND	0.35	μg/L		
			45,4		
SURROGATES	% REC	OVERY			
1-Chloro-2-Fluorobenzene	9	4			

ANALYZED BY: JZL DATE/TIME: 08/10/95 17:49:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/22/95

mg/L

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-018MW

PROJECT NO: 1315-227

MATRIX: LIQUID

LIMIT

0.5

DATE SAMPLED: 08/09/95 08:45:00

DATE RECEIVED: 08/10/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*
Analyzed by: RN

Date: 08/15/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/22/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech SAMPLE ID: 06-019MW PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/09/95 11:00:00

DATE RECEIVED: 08/10/95

ANALY	TICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	ND	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
Methylene Chloride	ND	1.0	$\mu g/L$
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	5	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μq/L
Bromodichloromethane	ND	0.11	μq/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	1	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	μg/L
Dibromochloromethane	ND	0.08	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	4	0.03	μg/L
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L
Xylenes	3	0.09	$\mu g/L$
Styrene	0.6	0.23	μg/L
Isopropylbenzene	0.7	0.10	μ g/L
Bromoform	ND	0.12	μ g/L

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-02

Operational Tech

SAMPLE ID: 06-019MW

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,1,2,2-Tetrachloroethane	ND	$0.\tilde{27}$	μg/L	
1,2,3-Trichloropropane	ND	0.16	μg/L	
n-Propyl benzene	0.7	0.04	μg/L	
Bromobenzene	ND	0.22	μg/L	
1,3,5-Trimethylbenzene	0.4	0.03	μg/L	
2-Chlorotoluene	ND	0.26	μg/L	
4-Chlorotoluene	ND	0.29	$\mu g/L$	
tert-Butylbenzene	ND	0.14	μg/L	
1,2,4-Trimethylbenzene	1	0.05	μg/L	
sec-Butylbenzene	ND	0.06	μg/L	
p-Isopropyltoluene	ND	0.10	$\mu g/L$	
1,3-Dichlorobenzene	ND		$\mu g/L$	
1,4-Dichlorobenzene	ND	0.30	μg/L	
n-Butylbenzene	0.4		μ g/L	
1,2-Dichlorobenzene	ND	0.48	μ g/L	
1,2-Dibromo-3-chloropropane	ND		μ g/L	
1,2,4-Trichlorobenzene	ND	0.09	μ g/L	
Hexachlorobutadiene	ND	0.22	μ g/L	
Naphthalene	B 4	0.12	μ g/L	
1,2,3-Trichlorobenzene	ND	0.35	μ g/L	
SURROGATES	% REC	OVERY		
1-Chloro-2-Fluorobenzene		4		

ANALYZED BY: JZL DATE/TIME: 08/10/95 19:00:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/22/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech SAMPLE ID: 06-019MW

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/09/95 11:00:00

0.5

DATE RECEIVED: 08/10/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*
Analyzed by: RN

Date: 08/15/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-03

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

08/23/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech **SAMPLE ID: 06-020**

PROJECT NO: 1315-227

MATRIX: LIQUID DATE SAMPLED: 08/10/95 11:50:00

DATE RECEIVED: 08/11/95

ANALYTICAL DATA				
PARAMETER	RESULTS	PQL*	UNITS	
Dichlorodifluoromethane	ND	1.1	μ g/L	
Chloromethane	ND	0.15	μg/L	
Vinyl chloride	ND	0.21	μg/L	
Bromomethane	ND	0.17	μg/L	
Chloroethane	ND	0.18	μg/L	
Trichlorofluoromethane	ND	0.34	μg/L	
1,1-Dichloroethene	ND	0.19	μg/L	
Methylene Chloride	ND	1.0	μg/L	
trans-1,2-Dichloroethene	ND	0.20	μg/L	
1,1-Dichloroethane	ND	0.11	. —	
2,2-Dichloropropane	ND	0.18	μg/L	
cis-1,2-Dichloroethene	0.4	0.27	μg/L	
Chloroform	0.3	0.15	μg/L	
Bromochloromethane	ND	0.13	μg/L	
1,1,1-Trichloroethane	ND	0.15	μg/L	
1,1-Dichloropropene	ND	0.15	μg/L	
Carbon Tetrachloride			μ g/L	
Benzene	ND 36	0.11	μ g/L	
1,2-Dichloroethane		0.03	μg/L	
Trichloroethene	ND	0.38	μg/L	
1,2-Dichloropropane	0.5	0.32	μ g/L	
Bromodichloromethane	ND	0.17	μ g/L	
Dibromomethane	ND	0.11	μ g/L	
	ND	0.12	μ g/L	
cis-1,3-Dichloropropene Toluene	ND	0.09	μ g/L	
	4	0.06	μ g/L	
trans-1,3-Dichloropropene	ND	0.11	μ g/L	
1,1,2-Trichloroethane	ND	0.21	$\mu { t g}/{ t L}$	
Tetrachloroethene	ND	0.33	$\mu g/L$	
1,3-Dichloropropane	ND	0.25	$\mu g/L$	
Dibromochloromethane	ND	0.08	$\mu g/L$	
1,2-Dibromoethane	ND	0.06	μg/L	
Chlorobenzene	ND	0.62	μg/L	
Ethyl benzene	29	0.03	μg/L	
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L	
Xylenes	29	0.09	μg/L	
Styrene	ND	0.23	μg/L	
Isopropylbenzene	2	0.10	μg/L	
Bromoform	ND	0.12	μg/L	
			r3/4	

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-03

Operational Tech

SAMPLE ID: 06-020

104

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,1,2,2-Tetrachloroethane	ND	0.27	$\mu g/L$	
1,2,3-Trichloropropane	ND	0.16	μg/L	
n-Propyl benzene	2	0.04	μg/L	
Bromobenzene	ND	0.22	μg/L	
1,3,5-Trimethylbenzene	2	0.03	μg/L	
2-Chlorotoluene	ND	0.26	μg/L	
4-Chlorotoluene	ND	0.29	μg/L	
tert-Butylbenzene	ND	0.14	μg/L	
1,2,4-Trimethylbenzene	ND	0.05	$\mu g/L$	
sec-Butylbenzene	0.2	0.06	μg/L	
p-Isopropyltoluene	0.2	0.10	$\mu g/L$	
1,3-Dichlorobenzene	ND	0.26	μg/L	
1,4-Dichlorobenzene	ND	0.30	μg/L	
n-Butylbenzene	1	0.12	μg/L	
1,2-Dichlorobenzene	ND	0.48	μg/L	
1,2-Dibromo-3-chloropropa	ne ND	0.13	μ g/L	
1,2,4-Trichlorobenzene	ND	0.09	$\mu g/L$	
Hexachlorobutadiene	ND	0.22	$\mu g/L$	
Naphthalene	B 4	0.12	$\mu g/L$	
1,2,3-Trichlorobenzene	ND	0.35	$\mu g/L$	
SURROGATES	% RE	COVERY		

ANALYZED BY: JZL DATE/TIME: 08/12/95 08:29:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 08/23/95

Certificate of Analysis No. H9-9508458-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-020

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/10/95 11:50:00

DATE RECEIVED: 08/11/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5 mg/L

METHOD 418.1* Analyzed by: RN

Date: 08/15/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-03

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

08/22/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ SAMPLED BY: Optech SAMPLE ID: 06-021MW PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/09/95 13:10:00

DATE RECEIVED: 08/10/95

ANALYTICAL DATA					
PARAMETER	RESULTS	POL*	IDITEC		
Dichlorodifluoromethane	ND	55.0	UNITS		
Chloromethane	ND	7.50	μg/L		
Vinyl chloride	ND	10.50	μg/L		
Bromomethane	ND	8.50	μ g/L		
Chloroethane	ND	9.00	μg/L		
Trichlorofluoromethane	ND	17.00	μg/L		
1,1-Dichloroethene	ND	9.50	μg/L		
Methylene Chloride	ND	9.50 50	μ g/L		
trans-1,2-Dichloroethene	ND ND	10.0	μg/L		
1,1-Dichloroethane	ND ND	5.50	μg/L		
2,2-Dichloropropane	ND	9.00	μ g/L		
cis-1,2-Dichloroethene	ND	13.50	μ g/L		
Chloroform	ND ND	7.50	μ g/L		
Bromochloromethane	ND	7.50 5.50	μg/L		
1,1,1-Trichloroethane	ND	5.50 7.50	μ g/L		
1,1-Dichloropropene	ND		μg/L		
Carbon Tetrachloride	ND ND	16.50 5.50	μg/L		
Benzene	1800	1.50	μg/L		
1,2-Dichloroethane	ND	19.00	μ g/L		
Trichloroethene	ND ND	16.00	μ g/L		
1,2-Dichloropropane	ND ND	8.50	μg/L		
Bromodichloromethane	ND	5.50	μ g/L		
Dibromomethane	ND	6.00	μ g/L		
cis-1,3-Dichloropropene	ND		μ g/L		
Toluene	ND ND	4.50	μ g/L		
trans-1,3-Dichloropropene	ND ND	3.00	μ g/L		
1,1,2-Trichloroethane	ND ND	5.50	μ g/L		
Tetrachloroethene	ND ND	10.50	μ g/L		
1,3-Dichloropropane	ND ND	16.50	μ g/L		
Dibromochloromethane	ND ND	12.50	μ g/L		
1,2-Dibromoethane	ND ND	4.00	μ g/L		
Chlorobenzene	ND ND	3.00	μ g/L		
Ethyl benzene	750	31.00	μ g/L		
1,1,1,2-Tetrachloroethane	ND	1.50	μ g/L		
Xylenes		12.50	$\mu g/L$		
Styrene	150 20	4.50	μg/L		
Isopropylbenzene	51	11.50	μg/L		
Bromoform	ND	5.0	μ g/L		
	MD	6.00	μ g/L		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-03

Operational Tech

SAMPLE ID: 06-021MW

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,1,2,2-Tetrachloroethane	ND	13.50	μ g/L	
1,2,3-Trichloropropane	ND	8.00	μg/L	
n-Propyl benzene	56	2.00	μg/L	
Bromobenzene	ND	11.00	μg/L	
1,3,5-Trimethylbenzene	15	1.50	μg/L	
2-Chlorotoluene	ND	13.00	μg/L	
4-Chlorotoluene	ND	14.50	μg/L	
tert-Butylbenzene	ND	7.00	μg/L	
1,2,4-Trimethylbenzene	110	2.50	μg/L	
sec-Butylbenzene	ND	3.00	μ g/L	
p-Isopropyltoluene	ND	5.0	μg/L	
1,3-Dichlorobenzene	ND	13.00	μ g/L	
1,4-Dichlorobenzene	ND	15.0	μ g/L	
n-Butylbenzene	21	6.00	μg/L	
1,2-Dichlorobenzene	ND	24.00	μg/L	
1,2-Dibromo-3-chloropropane	ND	6.50	$\mu g/L$	
1,2,4-Trichlorobenzene	ND	4.50	μg/L	
Hexachlorobutadiene	ND	11.00	μg/L	
Naphthalene	B 120	6.00	μg/L	
1,2,3-Trichlorobenzene	ND	17.50	μg/L	
SURROGATES 1-Chloro-2-Fluorobenzene	% R	ECOVERY 97		

ANALYZED BY: JZL DATE/TIME: 08/11/95 02:08:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/22/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech SAMPLE ID: 06-021MW

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/09/95 13:10:00

0.5

DATE RECEIVED: 08/10/95

2

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS LIMIT

Petroleum extractables

METHOD 418.1* Analyzed by: RN

Date: 08/15/95 09:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508337-02

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

08/22/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech SAMPLE ID: 06-022MW **PROJECT NO:** 1315-227 MATRIX: LIQUID

DATE SAMPLED: 08/08/95 14:50:00

DATE RECEIVED: 08/09/95

ANALYTICAL DATA					
PARAMETER	RESULTS	MDL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μg/L		
Chloromethane	ND	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
Methylene Chloride	ND	1.0	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	ND	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	ND	0.11	μg/L		
Benzene	1400	1.50	μg/L		
1,2-Dichloroethane	ND	0.38	μg/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μg/L		
Bromodichloromethane	ND	0.11	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	13	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	ND	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	μg/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	120	1.50	μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	33	0.09	μg/L		
Styrene	2	0.23	μg/L		
Isopropylbenzene	18	0.10	μg/L		
Bromoform	ND	0.12	μg/L		
		·	49/1		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508337-02

Operational Tech

SAMPLE ID: 06-022MW

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	MDL*	UNITS	
1,1,2,2-Tetrachloroethane	ND	0.27	μ g/L	
1,2,3-Trichloropropane	ND	0.16	μg/L	
n-Propyl benzene	21	0.04	$\mu g/L$	
Bromobenzene	ND	0.22	$\mu g/L$	
1,3,5-Trimethylbenzene	6	0.03	μg/L	
2-Chlorotoluene	ND	0.26	$\mu g/L$	
4-Chlorotoluene	ND	0.29	$\mu g/L$	
tert-Butylbenzene	ND	0.14	$\mu g/L$	
1,2,4-Trimethylbenzene	ND	0.05	μg/L	
sec-Butylbenzene	3	0.06	$\mu g/L$	
p-Isopropyltoluene	2	0.10	$\mu g/L$	
1,3-Dichlorobenzene	ND	0.26	$\mu g/L$	
1,4-Dichlorobenzene	ND	0.30	$\mu g/L$	
n-Butylbenzene	9	0.12	μg/L	
1,2-Dichlorobenzene	ND	0.48	μg/L	
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L	
1,2,4-Trichlorobenzene	ND	0.09	μg/L	
Hexachlorobutadiene	ND	0.22	μg/L	
Naphthalene	B 58	0.12	μg/L	
1,2,3-Trichlorobenzene	ND	0.35	μg/L	
			, 5	
SURROGATES	-	COVERY		
1-Chloro-2-Fluorobenzene		92		

ANALYZED BY: JZL DATE/TIME: 08/11/95 12:57:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Method Detection Limit ND - Not Detected

NA - Not Analyzed

COMMENTS: B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 08/22/95

Certificate of Analysis No. H9-9508337-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

PROJECT NO: 1315-227
MATRIX: LIQUID

DATE SAMPLED: 08/08/95 14:50:00

DATE RECEIVED: 08/09/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech SAMPLE ID: 06-022MW

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables 1 0.5 mg/L

METHOD 418.1*
Analyzed by: DR

Date: 08/11/95 09:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

08/22/95

Certificate of Analysis No. H9-9508337-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

PROJECT: Sky Harbor ANG
SITE: Phoenix, AZ

PROJECT NO: 1315-227
MATRIX: LIOUID

SITE: Phoenix, AZ

SAMPLED BY: Optech

MATRIX: LIQUID

DATE SAMPLED: 08/08/95 12:20:00

SAMPLE ID: 06-023MW DATE RECEIVED: 08/09/95

ANALYTICAL DATA					
PARAMETER	RESULTS	MDL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μg/L		
Chloromethane	ND	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
Methylene Chloride	ND	1.0	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	ND	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	$\mu g/L$		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	ND	0.11	μg/L		
Benzene	1200	1.50	$\mu g/L$		
1,2-Dichloroethane	ND	0.38	μg/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	$\mu g/L$		
Bromodichloromethane	ND	0.11	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	2	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	ND	0.33	$\mu g/L$		
1,3-Dichloropropane	ND	0.25	μg/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	150	1.50	μq/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	23	0.09	μg/L		
Styrene	3	0.23	μg/L		
Isopropylbenzene	30	0.10	μg/L		
Bromoform	ND	0.12	μg/L		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508337-01

Operational Tech

SAMPLE ID: 06-023MW

101

ANALYTICAL DATA (continued)					
PARAMETER	RESULTS	MDL*	UNITS		
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L		
1,2,3-Trichloropropane	ND	0.16	μg/L		
n-Propyl benzene	27	0.04	μg/L		
Bromobenzene	ND	0.22	μg/L		
1,3,5-Trimethylbenzene	3	0.03	μg/L		
2-Chlorotoluene	ND	0.26	μg/L		
4-Chlorotoluene	ND	0.29	μg/L		
tert-Butylbenzene	ND	0.14	μg/L		
1,2,4-Trimethylbenzene	ND	0.05	μg/L		
sec-Butylbenzene	4	0.06	μg/L		
p-Isopropyltoluene	0.4	0.10	μg/L		
1,3-Dichlorobenzene	ND	0.26	μg/L		
1,4-Dichlorobenzene	ND	0.30	μg/L		
n-Butylbenzene	4	0.12	μg/L		
1,2-Dichlorobenzene	ND	0.48	μg/L		
1,2-Dibromo-3-chloropropane	ND	0.13	$\mu g/L$		
1,2,4-Trichlorobenzene	ND	0.09	μg/L		
Hexachlorobutadiene	ND	0.22	μg/L		
Naphthalene	B 17	0.12	$\mu g/L$		
1,2,3-Trichlorobenzene	ND	0.35	μg/L		
SURROGATES	% RE	COVERY			

ANALYZED BY: JZL DATE/TIME: 08/10/95 23:46:00

EXTRACTED BY:

DATE/TIME: METHOD: 502.2 - Drinking Water Volatiles

* - Method Detection Limit ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508337-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/22/95

mq/

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-023MW

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/08/95 12:20:00

0.5

DATE RECEIVED: 08/09/95

1

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*
Analyzed by: DR

Date: 08/11/95 09:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/23/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech SAMPLE ID: 06-024MW PROJECT NO: 1315-227
MATRIX: LIQUID

DATE SAMPLED: 08/10/95 08:30:00

DATE RECEIVED: 08/11/95

A	NALYTICAL DATA				
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μq/L		
Chloromethane	ND	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μq/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	ND	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L μg/L		
1,1-Dichloropropene	ND	0.33	,		
Carbon Tetrachloride	ND	0.11	μg/L /T		
Benzene	960	1.50	μg/L /፲		
1,2-Dichloroethane	ND	0.38	μg/L /T		
Trichloroethene	ND	0.32	μg/L ::=/-		
1,2-Dichloropropane	ND	0.32	μg/L /T		
Bromodichloromethane	ND	0.17	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.12	μg/L		
Toluene	ND 64	0.09	μg/L		
trans-1,3-Dichloropropene	ND	0.08	$\mu g/L$		
1,1,2-Trichloroethane	ND	0.11	μg/L		
Tetrachloroethene	ND		$\mu g/L$		
1,3-Dichloropropane	ND	0.33	μ g/L		
Dibromochloromethane	ND ND	0.25	μg/L		
1,2-Dibromoethane	ND ND	0.08	μg/L		
Chlorobenzene		0.06	μg/L		
Ethyl benzene	ND	0.62	μg/L		
1,1,1,2-Tetrachloroethane	220	1.50	μg/L		
Xylenes	ND	0.25	μg/L		
Styrene	200	4.50	μg/L		
Isopropylbenzene	ND	0.23	μg/L		
Bromoform	22	0.10	μg/L		
DI OMOLOT III	ND	0.12	μ g/L		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-01

Operational Tech

SAMPLE ID: 06-024MW

ANALYTICAL DATA (continued)					
PARAMETER	RESULTS	5 P	QL*	UNITS	
1,1,2,2-Tetrachloroethane	I	1D 0.	27	$\mu g/L$	
1,2,3-Trichloropropane	1	1D 0.	16	$\mu g/L$	
n-Propyl benzene		L8 0.	04	$\mu g/L$	
Bromobenzene	I	1D 0.	22	$\mu g/L$	
1,3,5-Trimethylbenzene	:	L5 0.	03	μg/L	
2-Chlorotoluene	1	1D 0.	26	$\mu g/L$	
4-Chlorotoluene	I	1D 0.	29	μg/L	
tert-Butylbenzene	I	1D 0.	14	μg/L	
1,2,4-Trimethylbenzene	•	51 0.	05	$\mu g/L$	
sec-Butylbenzene		3 0.	06	μg/L	
p-Isopropyltoluene		1 0.	10	$\mu g/L$	
1,3-Dichlorobenzene	1	ND 0.	26	$\mu g/L$	
1,4-Dichlorobenzene	1	1D 0.	30	μg/L	
n-Butylbenzene		7 0.	12	μg/L	
1,2-Dichlorobenzene	1	1D 0.	48	$\mu g/L$	
1,2-Dibromo-3-chloropropane	1	1D 0.	13	μg/L	
1,2,4-Trichlorobenzene	1	1D 0.	09	$\mu g/L$	
Hexachlorobutadiene	1	ND 0.	22	$\mu g/L$	
Naphthalene	В 3	30 0.	12	$\mu g/L$	
1,2,3-Trichlorobenzene	1	ND 0.	35	μg/L	
SURROGATES	%	RECOVER	Y		
1-Chloro-2-Fluorobenzene		98	· -		

ANALYZED BY: JZL DATE/TIME: 08/12/95 09:40:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS: B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/23/95

mg/L

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-024MW

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/10/95 08:30:00

DATE RECEIVED: 08/11/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

0.7 0.5

Petroleum extractables

METHOD 418.1*
Analyzed by: RN

Date: 08/15/95 09:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 560-0901

Certificate of Analysis No. H9-9508458-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/23/

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-024MW Dup

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/10/95 08:35:

DATE RECEIVED: 08/11/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1	$\mu exttt{g/L}$ `		
Chloromethane	ND	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	$\mu { m g}/{ m L}$		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	$\mu g/L$		
Chloroform	ND	0.15	μg/L		
Bromochloromethane	ND	0.11	$\mu g/L$		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	$\mu g/L$		
Carbon Tetrachloride	ND	0.11	$\mu g/L$		
Benzene	890	1.50	μg/L		
1,2-Dichloroethane	ND	0.38	μg/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μg/L		
Bromodichloromethane	ND	0.11	$\mu { m g}/{ m L}$		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	63	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	$\mu g/L$		
Tetrachloroethene	ND	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	$\mu { m g}/{ m L}$		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	$\mu g/L$		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	200	1.50	μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	180	4.50	μg/L		
Styrene	ND	0.23	μg/L		
Isopropylbenzene	21	0.10	μg/L		
Bromoform					

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-02

Operational Tech

SAMPLE ID: 06-024MW Dup

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,1,2,2-Tetrachloroetha	ne ND	0.27	μg/L	
1,2,3-Trichloropropane	ND		μg/L	
n-Propyl benzene	18		μg/L	
Bromobenzene	ND		μg/L	
1,3,5-Trimethylbenzene		0.03	μg/L	
2-Chlorotoluene	ND		μg/L	
4-Chlorotoluene	ND	0.29	μg/L	
tert-Butylbenzene	ND		μg/L	
1,2,4-Trimethylbenzene	61	0.05	μg/L	
sec-Butylbenzene	3	0.06	μg/L	
p-Isopropyltoluene	1	0.10	μg/L	
1,3-Dichlorobenzene	ND		μg/L	
1,4-Dichlorobenzene	ND		μg/L	
n-Butylbenzene	7	0.12	μg/L	
1,2-Dichlorobenzene	ND	0.48	μg/L	
1,2-Dibromo-3-chloropro	pane ND	0.13	μg/L	
1,2,4-Trichlorobenzene	ND	0.09	μg/L	
Hexachlorobutadiene	ND	0.22	μg/L	
Naphthalene	B 27	0.12	μg/L	
1,2,3-Trichlorobenzene	ND	0.35	μg/L	
			F-37 —	
SURROGATES	% RI	ECOVERY		
1-Chloro-2-Fluorobenzene	е	97		

ANALYZED BY: JZL DATE/TIME: 08/12/95 13:15:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS: B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/23/9

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ SAMPLED BY: Optech

SAMPLE ID: 06-024MW Dup

PROJECT NO: 1315-227

MATRIX: LIQUID

LIMIT

0.5

DATE SAMPLED: 08/10/95 08:35:00

DATE RECEIVED: 08/11/95

ANALYTICAL DATA

PARAMETER

RESULTS

1

DETECTION

TINU

mg/L

Petroleum extractables

METHOD 418.1*

Analyzed by: RN

Date: 08/15/95 09:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

08/22/95

Certificate of Analysis No. H9-9508337-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

PROJECT: Sky Harbor ANG
SITE: Phoenix, AZ

PROJECT NO: 1315-227

MATRIX: LIQUID

SAMPLED BY: Optech

DATE SAMPLED: 08/08/95 17:00:00

SAMPLE ID: 06-025MW DATE RECEIVED: 08/09/95

ANALYTICAL DATA					
PARAMETER	RESULTS	MDL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μg/L		
Chloromethane	ND	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
Methylene Chloride	ND	1.0	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	ND	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	ND	0.11	μg/L		
Benzene	15	0.03	μg/L		
1,2-Dichloroethane	ND	0.38	μg/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μg/L		
Bromodichloromethane	ND	0.11	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	1	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	ND	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	μg/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	7	0.03	μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	4	0.09	μg/L		
Styrene	ND	0.23	μg/L		
Isopropylbenzene	1	0.10	μq/L		
Bromoform	ND	0.12	μg/L		
			r 37 -		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508337-03

Operational Tech

SAMPLE ID: 06-025MW

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	MDL*	UNITS	
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L	
1,2,3-Trichloropropane	ND	0.16	μg/L	
n-Propyl benzene	1	0.04	μg/L	
Bromobenzene	ND	0.22	μg/L	
1,3,5-Trimethylbenzene	0.5	0.03	μg/L	
2-Chlorotoluene	ND	0.26	$\mu g/L$	
4-Chlorotoluene	ND	0.29	μg/L	
tert-Butylbenzene	ND	0.14	$\mu g/L$	
1,2,4-Trimethylbenzene	2	0.05	$\mu g/L$	
sec-Butylbenzene	0.3	0.06	$\mu g/L$	
p-Isopropyltoluene	ND	0.10	$\mu g/L$	
1,3-Dichlorobenzene	ND	0.26	$\mu g/L$	
1,4-Dichlorobenzene	ND	0.30	$\mu g/L$	
n-Butylbenzene	0.6	0.12	$\mu g/L$	
1,2-Dichlorobenzene	ND	0.48	$\mu g/L$	
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L	
1,2,4-Trichlorobenzene	ND	0.09	μg/L	
Hexachlorobutadiene	ND	0.22	$\mu g/L$	
Naphthalene	B 2	0.12	$\mu g/L$	
1,2,3-Trichlorobenzene	ND	0.35	$\mu g/L$	

ANALYZED BY: JZL

SURROGATES

DATE/TIME: 08/09/95 22:52:00

% RECOVERY

100

EXTRACTED BY:

DATE/TIME:

EXILACIED DI.

METHOD: 502.2 - Drinking Water Volatiles

NOTES:

* - Method Detection Limit

ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS:B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 08/22/95

mg/L

Certificate of Analysis No. H9-9508337-03

Operational Tech 677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN:- Mike Giles

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-025MW

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/08/95 17:00:00

0.5

DATE RECEIVED: 08/09/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

ND

Petroleum extractables

METHOD 418.1*
Analyzed by: DR

Date: 08/11/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/22/9

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-026MW

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/09/95 15:50:

DATE RECEIVED: 08/10/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Dichlorodifluoromethane	ND	1.1	μ g/L		
Chloromethane	ND	0.15	μg/L		
Vinyl chloride	ND	0.21	μg/L		
Bromomethane	ND	0.17	μg/L		
Chloroethane	ND	0.18	μg/L		
Trichlorofluoromethane	ND	0.34	μg/L		
1,1-Dichloroethene	ND	0.19	μg/L		
Methylene Chloride	ND	1.0	μg/L		
trans-1,2-Dichloroethene	ND	0.20	μg/L		
1,1-Dichloroethane	ND	0.11	μg/L		
2,2-Dichloropropane	ND	0.18	μg/L		
cis-1,2-Dichloroethene	ND	0.27	μg/L		
Chloroform	0.2	0.15	μg/L		
Bromochloromethane	ND	0.11	μg/L		
1,1,1-Trichloroethane	ND	0.15	μg/L		
1,1-Dichloropropene	ND	0.33	μg/L		
Carbon Tetrachloride	ND	0.11	μg/L		
Benzene	24	0.03	μg/L		
1,2-Dichloroethane	ND	0.38	μg/L		
Trichloroethene	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μg/L		
Bromodichloromethane	ND	0.11	μg/L		
Dibromomethane	ND	0.12	μg/L		
cis-1,3-Dichloropropene	ND	0.09	μg/L		
Toluene	1	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	ND	0.33	μg/L		
1,3-Dichloropropane	ND	0.25	μg/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	38	0.03	μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	13	0.09	μg/L		
Styrene	0.8	0.23	μg/L		
Isopropylbenzene	3	0.10	μg/L		
Bromoform	ND	0.12	r-5, -		

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

Certificate of Analysis No. H9-9508405-04

Operational Tech

SAMPLE ID: 06-026MW

ANALYTICAL DATA (continued)					
PARAMETER	RESULTS	PQL*	UNITS		
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L		
1,2,3-Trichloropropane	ND	0.16	μg/L		
n-Propyl benzene	4	0.04	μg/L		
Bromobenzene	ND	0.22	μg/L		
1,3,5-Trimethylbenzene	2	0.03	μg/L		
2-Chlorotoluene	ND	0.26	μg/L		
4-Chlorotoluene	ND	0.29	μg/L		
tert-Butylbenzene	ND	0.14	μg/L		
1,2,4-Trimethylbenzene	ND	0.05	μg/L		
sec-Butylbenzene	0.4	0.06	μg/L		
p-Isopropyltoluene	0.4	0.10	μg/L		
1,3-Dichlorobenzene	ND	0.26	μg/L		
1,4-Dichlorobenzene	ND	0.30	μg/L		
n-Butylbenzene	ND	0.12	μg/L		
1,2-Dichlorobenzene	ND	0.48	μg/L		
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L		
1,2,4-Trichlorobenzene	ND	0.09	μg/L		
Hexachlorobutadiene	ND	0.22	μg/L		
Naphthalene	B 6	0.12	μg/L		
1,2,3-Trichlorobenzene	ND	0.35	μg/L		

SURROGATES % RECOVERY
1-Chloro-2-Fluorobenzene 98

ANALYZED BY: JZL DATE/TIME: 08/10/95 20:11:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/22/

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: 06-026MW

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/09/95 15:50:0

DATE RECEIVED: 08/10/95

ANALYTICAL DATA

PARAMETER

RESULTS

ND

DETECTION

LIMIT

0.5

UNIT

mg/I

Petroleum extractables

METHOD 418.1*

Analyzed by: RN

Date: 08/15/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-06

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/14/95

mg/Kg

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: 06-016 BH

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 07/14/95 21:00:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum Extractables 39 10

METHOD Mod. 418.1*

Analyzed by: DR

Date: 07/28/95 09:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIV HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

07/19

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-018 MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/28/95 DATE RECEIVED: 06/30/95

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Acetone	ND	100	ug/Kg		
Benzene	ND	5	ug/Kg		
Bromodichloromethane	ND	5	ug/Kg		
Bromoform	ND	5	ug/Kg		
Bromomethane	ND	10	ug/Kg		
2-Butanone	ND	20	ug/Kg		
Carbon Disulfide	ND	5	ug/Kg		
Carbon Tetrachloride	ND	5	ug/Kg		
Chlorobenzene	ND	5	ug/Kg		
Chloroethane	ND	10	ug/Kg		
2-Chloroethylvinylether	ND	10	ug/Kg		
Chloroform	ND	5	ug/Kg		
Chloromethane	ND	10	ug/Kg		
Dibromochloromethane	ND	5	ug/Kg		
1,1-Dichloroethane	ND	5	ug/Kg		
1,1-Dichloroethene	ND	5	ug/Kg		
1,2-Dichloroethane	ND	5 5 5	ug/Kg		
total-1,2-Dichloroethene	ND	5	ug/Kg		
1,2-Dichloropropane	ND	5	ug/Kg		
cis-1,3-Dichloropropene	ND	5	ug/Kg		
trans-1,3-Dichloropropene	ND	5	ug/Kg		
Ethylbenzene	ND	5	ug/Kg		
2-Hexanone	ND	10	ug/Kg		
Methylene Chloride	ND	5	ug/Kg		
4-Methyl-2-Pentanone	ND	10	ug/Kg		
Styrene	ND	5	ug/Kg		
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg		
Tetrachloroethene	ND	5 5	ug/Kg		
Toluene	ND	5	ug/Kg		
1,1,1-Trichloroethane	ND	5 5	ug/Kg		
1,1,2-Trichloroethane	ND	5	ug/Kg		
Trichloroethene	ND	5	ug/Kg		
Trichlorofluoromethane	ND	5	ug/Kg		
Vinyl Acetate	ND	10	ug/Kg		
Vinyl Chloride Xylenes (total)	ND	10	ug/Kg		
Ayrenes (COCar)	ND	5	ug/Kg		

METHOD: 8240, Volatile Organics - Soil (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-01

Operational Tech

SAMPLE ID: 06-018 MW Composite

SURROGATES	AMOUNT	%	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	50 ug/Kg	94	70	121
	50 ug/Kg	100	84	138
	50 ug/Kg	96	59	113

ANALYZED BY: HLW DATE/TIME: 06/30/95 12:44:00

METHOD: 8240, Volatile Organics - Soil

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVIS HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 07/19/

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-018 MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/28/95

DATE RECEIVED: 06/30/95

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Moisture METHOD CLP SOW Analyzed by: DSE Date: 07/11/95	10	LIMIT 1	wt.
Total Petroleum Hydrocarbons 418.1AZ Analyzed by: RS Date: 07/12/95 08:00:00	ND	20	mg/Kc

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th e

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9506C03-02

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/19/95_

PROJECT: Sky Harbor RI/FS Add SITE: 161 st ARG SAMPLED BY: Operational Technology SAMPLE ID: 06-019 MW Composite

MATRIX: SOIL
DATE SAMPLED: 06/28/95
DATE RECEIVED: 06/30/95

PROJECT NO: 1315-227

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Acetone	ND	100	ug/Kg		
Benzene	ND	5	ug/Kg		
Bromodichloromethane	ND	5	ug/Kg		
Bromoform	ND	5	ug/Kg		
Bromomethane	ND	10	ug/Kg		
2-Butanone	ND	20	ug/Kg		
Carbon Disulfide	ND	5	ug/Kg		
Carbon Tetrachloride	ND	5	ug/Kg		
Chlorobenzene	ND	5	ug/Kg		
Chloroethane	ND	10	ug/Kg		
2-Chloroethylvinylether	ND	10	ug/Kg		
Chloroform	ND	5	ug/Kg		
Chloromethane	ND	10	ug/Kg		
Dibromochloromethane	ND	5	ug/Kg		
1,1-Dichloroethane	ND	5	ug/Kg		
1,1-Dichloroethene	ND	5	ug/Kg		
1,2-Dichloroethane	ND	5	ug/Kg		
total-1,2-Dichloroethene	ND	5	ug/Kg		
1,2-Dichloropropane	ND	5	ug/Kg		
cis-1,3-Dichloropropene	ND	5	ug/Kg		
trans-1,3-Dichloropropene	ND	5	ug/Kg		
Ethylbenzene	ND	5	ug/Kg		
2-Hexanone	ND	10	ug/Kg		
Methylene Chloride	ND	5	ug/Kg		
4-Methyl-2-Pentanone	ND	10	ug/Kg		
Styrene	ND	5	ug/Kg		
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg		
Tetrachloroethene	ND	5	ug/Kg		
Toluene	ND	5	ug/Kg		
1,1,1-Trichloroethane	ND	5	ug/Kg		
1,1,2-Trichloroethane	ND	5	ug/Kg		
Trichloroethene	ND	5	ug/Kg		
Trichlorofluoromethane	ND	5	ug/Kg		
Vinyl Acetate	ND	10	ug/Kg		
Vinyl Chloride	ND	10	ug/Kg		
Xylenes (total)	ND	5	ug/Kg		

METHOD: 8240, Volatile Organics - Soil (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-02

Operational Tech

SAMPLE ID: 06-019 MW Composite

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	94	70	121
Toluene-d8	50 ug/Kg	98	84	138
4-Bromofluorobenzene	50 ug/Kg	96	59	113

ANALYZED BY: HLW DATE/TIME: 06/30/95 13:08:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 07/19/95

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-019 MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/28/95

DATE RECEIVED: 06/30/95

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Moisture METHOD CLP SOW Analyzed by: DSE Date: 07/11/95	4	LIMIT 1	wt. %
Total Petroleum Hydrocarbons 418.1AZ Analyzed by: RS Date: 07/12/95 08:00:00	ND	20	mg/Kg

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVA HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/17/

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-020MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/26/95

DATE RECEIVED: 06/27/95

ANALYTIC	יאד דיאיים		
PARAMETER	RESULTS	DOT #	
Acetone	ND	PQL* 100	UNITS
Benzene	ND	5	ug/Kg
Bromodichloromethane	ND		ug/Kg
Bromoform	ND ND	5 5	ug/Kg
Bromomethane	ND		ug/Kg
2-Butanone	ND	10	ug/Kg
Carbon Disulfide	ND	20	ug/Kg
Carbon Tetrachloride		5	ug/Kg
Chlorobenzene	ND	5	ug/Kg
Chloroethane	ND ND	5	ug/Kg
2-Chloroethylvinylether		10	ug/Kg
Chloroform	ND	10	ug/Kg
Chloromethane	ND	5	ug/Kg
Dibromochloromethane	ND	10	ug/Kg
1,1-Dichloroethane	ND	5	ug/Kg
1,1-Dichloroethene	ND	5	ug/Kg
1,2-Dichloroethane	ND	5	ug/Kg
total-1,2-Dichloroethene	ND	5	ug/Kg
1,2-Dichloropropane	ND	5	ug/Kg
cis-1,3-Dichloropropene	ND	5	ug/Kg
trans-1,3-Dichloropropene	ND	5	ug/Kg
Ethylbenzene	ND	5	ug/Kg
2-Hexanone	ND	5	ug/Kg
Methylene Chloride	ND	10	ug/Kg
4-Methyl-2-Pentanone	ND	5	ug/Kg
Styrene	ND	10	ug/Kg
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg
Tetrachloroethene	ND	5	ug/Kg
Toluene	ND	5	ug/Kg
1,1,1-Trichloroethane	ND	5	ug/Kg
	ND	5	ug/Kg
1,1,2-Trichloroethane Trichloroethene	ND	5	ug/Kg
	ND	5	ug/Kg
Trichlorofluoromethane	ND	5	ug/Kg
Vinyl Acetate	ND	10	ug/Kg
Vinyl Chloride	ND	10	ug/Kg
Xylenes (total)	ND	5	ug/Kg

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-05

Operational Tech

SAMPLE ID: 06-020MW Composite

SURROGATES 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	AMOUNT SPIKED 50 ug/Kg 50 ug/Kg 50 ug/Kg	% RECOVERY 96 102 98	LOWER LIMIT 70 84 59	UPPER LIMIT 121 138 113	
---	--	----------------------------------	----------------------------------	-------------------------------------	--

ANALYZED BY: HLW DATE/TIME: 06/28/95 18:32:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 07/17/9

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-020MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/26/95

DATE RECEIVED: 06/27/95

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Moisture METHOD CLP SOW Analyzed by: CM Date: 07/07/95	10	1	wt.
Total Petroleum Hydrocarbons 418.1AZ	ND	20	mg/Ko
Analyzed by: RS Date: 06/30/95 09:00:00			

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

Certificate of Analysis No. H9-9506A50-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/17/95

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-021MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/23/95 DATE RECEIVED: 06/27/95

ANALYTICA	L DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acetone	ND	100	ug/Kg
Benzene	16	5	ug/Kg
Bromodichloromethane	ND	5	ug/Kg
Bromoform	ND	5	ug/Kg
Bromomethane	ND	10	ug/Kg
2-Butanone	ND	20	ug/Kg
Carbon Disulfide	ND	5	ug/Kg
Carbon Tetrachloride	ND	5	ug/Kg
Chlorobenzene	ND	5	ug/Kg
Chloroethane	ND	10	ug/Kg
2-Chloroethylvinylether	ND	10	ug/Kg
Chloroform	ND	5	ug/Kg
Chloromethane	ND	10	ug/Kg
Dibromochloromethane	ND	5	ug/Kg
1,1-Dichloroethane	ND	5	ug/Kg
1,1-Dichloroethene	ND	5	ug/Kg
1,2-Dichloroethane	ND	5	ug/Kg
total-1,2-Dichloroethene	ND	5	ug/Kg
1,2-Dichloropropane	ND	5	ug/Kg
cis-1,3-Dichloropropene	ND	5	ug/Kg
trans-1,3-Dichloropropene	ND	5	ug/Kg
Ethylbenzene	78	5	ug/Kg
2-Hexanone	ND	10	ug/Kg
Methylene Chloride	ND	5	ug/Kg
4-Methyl-2-Pentanone	ND	10	ug/Kg
Styrene	ND	5	ug/Kg
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg
Tetrachloroethene	ND	5	ug/Kg
Toluene	ND	5	ug/Kg
1,1,1-Trichloroethane	ND	5	ug/Kg
1,1,2-Trichloroethane	ND	5	ug/Kg
Trichloroethene	ND	5	ug/Kg
Trichlorofluoromethane	ND	5	ug/Kg
Vinyl Acetate	ND	10	ug/Kg
Vinyl Chloride	ND	10	ug/Kg
Xylenes (total)	130	5	ug/Kg

8880 INTERCHANGE DRIV HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-01

Operational Tech

SAMPLE ID: 06-021MW Composite

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER
1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	50 ug/Kg 50 ug/Kg 50 ug/Kg	96 96 106	70 84 59	LIMIT 121 138 113

ANALYZED BY: HLW DATE/TIME: 06/28/95 16:53:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 07/17/95

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-021MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/23/95 DATE RECEIVED: 06/27/95

PARAMETER ANALYTICA	AL DATA RESULTS	DETECTION	UNITS
Mark and		LIMIT	0111111
Moisture METHOD CLP SOW Analyzed by: CM	19	1	wt. %
Date: 07/07/95			
Total Petroleum Hydrocarbons 418.1AZ	ND	20	mg/Kg
Analyzed by: RS Date: 06/30/95 09:00:00			

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/17/

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-022MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/25/95

DATE RECEIVED: 06/27/95

	LYTICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acetone	ND	100	ug/Kg
Benzene	82	5	ug/Kg
Bromodichloromethane	ND	5	ug/Kg
Bromoform	ND	5	ug/Kg
Bromomethane	ND	10	ug/Kg
2-Butanone	ND	20	ug/Kg
Carbon Disulfide	ND	5	ug/Kg
Carbon Tetrachloride	ND	5	ug/Kg
Chlorobenzene	ND	5	ug/Kg
Chloroethane	ND	10	ug/Kg
2-Chloroethylvinylether	ND	10	ug/Kg
Chloroform	ND	5	ug/Kq
Chloromethane	ND	10	ug/Kg
Dibromochloromethane	ND	5	ug/Kg
1,1-Dichloroethane	ND	5	ug/Kg
1,1-Dichloroethene	ND	5	ug/Kg
1,2-Dichloroethane	ND	5	ug/Kg
total-1,2-Dichloroethene	ND	5	ug/Kg
1,2-Dichloropropane	ND	5	ug/Kq
cis-1,3-Dichloropropene	ND	5	ug/Kg
trans-1,3-Dichloropropene	ND	5 5 5	ug/Kg
Ethylbenzene	100	5	ug/Kg
2-Hexanone	ND	10	ug/Kg
Methylene Chloride	ND	5	ug/Kg
4-Methyl-2-Pentanone	ND	10	ug/Kg
Styrene	ND	5	ug/Kg
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg
Tetrachloroethene	ND	5	ug/Kg
Toluene	ND	5	ug/Kg
1,1,1-Trichloroethane	ND	5	ug/Kg
1,1,2-Trichloroethane	ND	5	ug/Kg
Trichloroethene	ND	5	ug/Kg
Trichlorofluoromethane	ND	5	ug/Kg ug/Kg
Vinyl Acetate	ND	10	ug/Kg ug/Kg
Vinyl Chloride	ND	10	ug/Kg ug/Kg
Xylenes (total)	65	5	ug/Kg ug/Kg

Operational Tech

SAMPLE ID: 06-022MW Composite

SURROGATES	AMOUNT	%	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	96	70	121
Toluene-d8	50 ug/Kg	98	84	
4-Bromofluorobenzene	50 ug/Kg	106	59	113

ANALYZED BY: HLW DATE/TIME: 06/28/95 18:08:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 07/17/

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-022MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/25/95

DATE RECEIVED: 06/27/95

DATA RESULTS	DETECTION	UNIT
10	LIMIT 1	wt.
ND	20	mg/K
	RESULTS	RESULTS DETECTION LIMIT 10 1

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

Certificate of Analysis No. H9-9506A50-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/17/95

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-023MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/25/95 DATE RECEIVED: 06/27/95

ANALYTIC			
PARAMETER	RESULTS	PQL*	UNITS
Acetone	ND	100	ug/Kg
Benzene	ND	5	ug/Kg
Bromodichloromethane	ND	5	ug/Kg
Bromoform	ND	5	ug/Kg
Bromomethane	ND	10	ug/Kg
2-Butanone	ND	20	ug/Kg
Carbon Disulfide	ND	5	ug/Kg
Carbon Tetrachloride	ND	5	ug/Kg
Chlorobenzene	ND	5	ug/Kg
Chloroethane	ND	10	ug/Kg
2-Chloroethylvinylether	ND	10	ug/Kg
Chloroform	ND	5	ug/Kg
Chloromethane	ND	10	ug/Kg
Dibromochloromethane	ND	5	ug/Kg
1,1-Dichloroethane	ND	5	ug/Kg
1,1-Dichloroethene	ND	5	ug/Kg
1,2-Dichloroethane	ND	5	ug/Kg
total-1,2-Dichloroethene	ND	5	ug/Kg
1,2-Dichloropropane	ND	5	ug/Kg
cis-1,3-Dichloropropene	ND	5	ug/Kg
trans-1,3-Dichloropropene	ND	5	ug/Kg
Ethylbenzene	ND	5	ug/Kg
2-Hexanone	ND	10	ug/Kg
Methylene Chloride	ND	5	ug/Kg
4-Methyl-2-Pentanone	ND	10	ug/Kg
Styrene	ND	5	ug/Kg
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg
Tetrachloroethene	ND	5	ug/Kg
Toluene	ND	5	ug/Kg
1,1,1-Trichloroethane	ND	5	ug/Kg
1,1,2-Trichloroethane	ND	5	ug/Kg
Trichloroethene	ND	5	ug/Kg
Trichlorofluoromethane	ND	5	ug/Kg
Vinyl Acetate	ND	10	ug/Kg
Vinyl Chloride	ND	10	ug/Kg
Xylenes (total)	ND	5	ug/Kg

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-03

Operational Tech

SAMPLE ID: 06-023MW Composite

SURROGATES	AMOUNT	%	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	50 ug/Kg	96	70	121
	50 ug/Kg	102	84	138
	50 ug/Kg	102	59	113

ANALYZED BY: HLW DATE/TIME: 06/28/95 17:43:00

METHOD: 8240, Volatile Organics - Soil

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-03

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 07/17/95

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-023MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/25/95

DATE RECEIVED: 06/27/95

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Moisture METHOD CLP SOW Analyzed by: CM Date: 07/07/95	14	1	wt. %
Total Petroleum Hydrocarbons 418.1AZ Analyzed by: RS Date: 06/30/95 09:00:00	ND	20	mg/Kg

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/17/9

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-024MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/24/95

DATE RECEIVED: 06/27/95

ANALYTICA	AL DATA		
PARAMETER	RESULTS	PQL*	UNIT
Acetone	ND	100	ug/K
Benzene	50	5	ug/K
Bromodichloromethane	ND	5	ug/K
Bromoform	ND	5	ug/K
Bromomethane	ND	10	ug/K
2-Butanone	ND	20	ug/K
Carbon Disulfide	ND	5	ug/F
Carbon Tetrachloride	ND	5	ug/F
Chlorobenzene	ND	5	ug/F
Chloroethane	ND	10	ug/F
2-Chloroethylvinylether	ND	10	ug/F
Chloroform	ND	5	ug/I
Chloromethane	ND	10	ug/I
Dibromochloromethane	ND	5	ug/I
1,1-Dichloroethane	ND	5	ug/I
1,1-Dichloroethene	ND	5	ug/I
1,2-Dichloroethane	ND	5	ug/I
total-1,2-Dichloroethene	ND	5	ug/I
1,2-Dichloropropane	ND	5	ug/I
cis-1,3-Dichloropropene	ND	5	ug/I
trans-1,3-Dichloropropene	ND	5	ug/I
Ethylbenzene	110	5	ug/I
2-Hexanone	ND	10	ug/I
Methylene Chloride	ND	5	ug/F
4-Methyl-2-Pentanone	ND	10	ug/I
Styrene	ND	5	ug/I
1,1,2,2-Tetrachloroethane	ND	5	ug/F
Tetrachloroethene	ND	5	ug/F
Toluene	89	5	ug/K
1,1,1-Trichloroethane	ND	5	ug/K
1,1,2-Trichloroethane	ND	5 5 5	ug/K
Trichloroethene	ND	5	ug/K
Trichlorofluoromethane	ND	5	ug/K
Vinyl Acetate	ND	10	ug/K
Vinyl Chloride	ND	10	ug/K ug/K
Xylenes (total)	230	5	ug/K ug/K

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-02

Operational Tech

SAMPLE ID: 06-024MW Composite

SURROGATES	AMOUNT	%	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	94	70	121
Toluene-d8	50 ug/Kg	100	84	138
4-Bromofluorobenzene	50 ug/Kg	108	59	113

ANALYZED BY: HLW DATE/TIME: 06/28/95 17:18:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506A50-02

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 07/17/95

PROJECT: Sky Harbour RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-024MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/24/95

DATE RECEIVED: 06/27/95

	FICAL DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Moisture METHOD CLP SOW Analyzed by: CM Date: 07/07/95	23	LIMIT 1	wt. %
Total Petroleum Hydrocarbons 418.1AZ Analyzed by: RS Date: 06/30/95 09:00:00	ND	20	mg/Kg

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

Certificate of Analysis No. H9-9506934-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/17/95

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-025 MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/21/95

DATE RECEIVED: 06/23/95

ANALYTICA	T DAMA		
PARAMETER	RESULTS	PQL*	UNITS
Acetone	ND	100	ug/Kg
Benzene	ND	5	ug/Kg
Bromodichloromethane	ND	5	ug/Kg
Bromoform	ND	5	ug/Kg
Bromomethane	ND	10	ug/Kg
2-Butanone	ND	20	ug/Kg
Carbon Disulfide	ND	5	ug/Kg
Carbon Tetrachloride	ND	5	ug/Kg
Chlorobenzene	ND	5	ug/Kg
Chloroethane	ND	10	ug/Kg
2-Chloroethylvinylether	ND	10	ug/Kg
Chloroform	ND	5	ug/Kg
Chloromethane	ND	10	ug/Kg
Dibromochloromethane	ND	5	ug/Kg
1,1-Dichloroethane	ND	5	ug/Kg
1,1-Dichloroethene	ND	5	ug/Kg
1,2-Dichloroethane	ND	5	ug/Kg
total-1,2-Dichloroethene	ND	5	ug/Kg
1,2-Dichloropropane	ND	5	ug/Kg
cis-1,3-Dichloropropene	ND	5	ug/Kg
trans-1,3-Dichloropropene	ND	5	ug/Kg
Ethylbenzene	ND	5	ug/Kg
2-Hexanone	ND	10	ug/Kg
Methylene Chloride	ND	5	ug/Kg
4-Methyl-2-Pentanone	ND	10	ug/Kg
Styrene	ND	5	ug/Kg
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg
Tetrachloroethene Toluene	ND	5	ug/Kg
	ND	5	ug/Kg
1,1,1-Trichloroethane	ND	5	ug/Kg
1,1,2-Trichloroethane Trichloroethene	ND	5	ug/Kg
Trichlorofluoromethane	ND	5	ug/Kg
Vinyl Acetate	ND	5	ug/Kg
Vinyl Chloride	ND	10	ug/Kg
Xylenes (total)	ND	10	ug/Kg
"I Telles (cocal)	ND	5	ug/Kg

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-01

Operational Tech

SAMPLE ID: 06-025 MW Composite

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	94	70	121
Toluene-d8	50 ug/Kg	98	84	138
4-Bromofluorobenzene	50 ug/Kg	98	59	113

ANALYZED BY: HLW DATE/TIME: 06/23/95 15:19:00

METHOD: 8240, Volatile Organics - Soil
NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 07/17/95

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-025 MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/21/95

DATE RECEIVED: 06/23/95

ANALYTIC	AL DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Moisture METHOD CLP SOW Analyzed by: DSE Date: 06/29/95	19	1	wt. %
Total Petroleum Hydrocarbons 418.1AZ Analyzed by: RS Date: 06/30/95 09:00:00	ND	20	mg/Kg

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

SPL Arizona License # AZ0050

Certificate of Analysis No. H9-9506934-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

07/17/9

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-025 MW Composite-MS

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/21/95

DATE RECEIVED: 06/23/95

ANALYTIC	AL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acetone	ND	100	ug/Kg
Benzene	48	5	ug/Kg
Bromodichloromethane	46	5	ug/Kg
Bromoform	43	5	ug/Kg
Bromomethane	53	10	ug/Kg
2-Butanone	ND	20	ug/Kg
Carbon Disulfide	46	5	ug/Kg
Carbon Tetrachloride	44	5	ug/Kg
Chlorobenzene	47	5	ug/Kg
Chloroethane	51	10	ug/Kg
2-Chloroethylvinylether	48	10	ug/Kg
Chloroform	49	5	ug/Kg
Chloromethane	77	10	ug/Kg
Dibromochloromethane	45	5	ug/Kg
1,1-Dichloroethane	49	5	ug/Kg
1,1-Dichloroethene	49	5	ug/Kg
1,2-Dichloroethane	48	5	ug/Kg
total-1,2-Dichloroethene	96	5	ug/Kg
1,2-Dichloropropane	49	5	ug/Kg
cis-1,3-Dichloropropene	44	5	ug/Kg
trans-1,3-Dichloropropene	46	5	ug/Kg
Ethylbenzene	46	5	ug/Kg ug/Kg
2-Hexanone	16	10	ug/Kg ug/Kg
Methylene Chloride	52	5	ug/Kg
4-Methyl-2-Pentanone	35	10	
Styrene	48	5	ug/Kg
1,1,2,2-Tetrachloroethane	27	5	ug/Kg
Tetrachloroethene	42	5	ug/Kg
Toluene	49	5	ug/Kg
1,1,1-Trichloroethane	47		ug/Kg
1,1,2-Trichloroethane	48	5 5	ug/Kg
Trichloroethene		5	ug/Kg
Trichlorofluoromethane	50	5	ug/Kg
Vinyl Acetate	49	5	ug/Kg
Vinyl Chloride	30	10	ug/Kg
Xylenes (total)	49	10	ug/Kg
Ny Tenes (Cocal)	130	5	ug/Kg

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-02

Operational Tech

SAMPLE ID: 06-025 MW Composite-MS

SURROGATES	AMOUNT	%	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	92	70	121
Toluene-d8	50 ug/Kg	100	84	138
4-Bromofluorobenzene	50 ug/Kg	100	59	113

ANALYZED BY: HLW DATE/TIME: 06/23/95 15:43:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-02

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 07/17/9

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology SAMPLE ID: 06-025 MW Composite-MS

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/21/95 DATE RECEIVED: 06/23/95

PARAMETER	ANALYTICAL	DATA	RESULTS	DETECTION	UNITS
Total Petroleum Hydrocarbor 418.1AZ	ns		39	LIMIT 20	mg/Kg
Analyzed by: RS Date: 06/30/95 09:0	00:00				

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance. SPL Arizona License # AZ0050

Certificate of Analysis No. H9-9506934-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/17/95

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology SAMPLE ID: 06-025 MW Composite-MSD

PROJECT NO: 1315-227

MATRIX: SOIL
DATE SAMPLED: 06/21/95

DATE RECEIVED: 06/23/95

ANALYTICAL	DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acetone	ND	100	ug/Kg
Benzene	47	5	ug/Kg
Bromodichloromethane	46	5	ug/Kg
Bromoform	47	5	ug/Kg
Bromomethane	50	10	ug/Kg
2-Butanone	22	20	ug/Kg
Carbon Disulfide	46	5	ug/Kg
Carbon Tetrachloride	45	5	ug/Kg
Chlorobenzene	47	5	ug/Kg
Chloroethane	62	10	ug/Kg
2-Chloroethylvinylether	48	10	ug/Kg
Chloroform	48	5	ug/Kg
Chloromethane	48	10	ug/Kg
Dibromochloromethane	47	5	ug/Kg
1,1-Dichloroethane	48	5	ug/Kg
1,1-Dichloroethene	48	5	ug/Kg
1,2-Dichloroethane	48	5	ug/Kg
total-1,2-Dichloroethene	93	5	ug/Kg
1,2-Dichloropropane	47	5	ug/Kg
cis-1,3-Dichloropropene	45	5	ug/Kg
trans-1,3-Dichloropropene	47	5	ug/Kg
Ethylbenzene	46	5	ug/Kg
2-Hexanone	24	10	ug/Kg
Methylene Chloride	50	5	ug/Kg
4-Methyl-2-Pentanone	40	10	ug/Kg
Styrene	48	5	ug/Kg
1,1,2,2-Tetrachloroethane	37	5	ug/Kg
Tetrachloroethene	42	5	ug/Kg
Toluene	48	5	ug/Kg
1,1,1-Trichloroethane	46	5	ug/Kg
1,1,2-Trichloroethane	49	5	ug/Kg
Trichloroethene	49	5	ug/Kg
Trichlorofluoromethane	50	5	ug/Kg
Vinyl Acetate	40	10	ug/Kg
Vinyl Chloride	48	10	ug/Kg
Xylenes (total)	140	5	ug/Kg
		•	49/119

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-03

Operational Tech

SAMPLE ID: 06-025 MW Composite-MSD

SURROGATES	AMOUNT	%	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	100	70	121
Toluene-d8	50 ug/Kg	100	84	138
4-Bromofluorobenzene	50 ug/Kg	100	59	113

ANALYZED BY: HLW DATE/TIME: 06/23/95 16:08:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 07/17/95

mg/Kg

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

PROJECT NO: 1315-227
MATRIX: SOIL

DATE SAMPLED: 06/21/95

20

SAMPLE ID: 06-025 MW Composite-MSD

DATE RECEIVED: 06/23/95

39

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS LIMIT

Total Petroleum Hydrocarbons

418.1AZ

Analyzed by: RS

Date: 06/30/95 09:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

SPL Arizona License # AZ0050

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

07/17/95

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology SAMPLE ID: 06-026 MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/22/95
DATE RECEIVED: 06/23/95

	CAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acetone	ND	100	ug/Kg
Benzene	ND	5	ug/Kg
Bromodichloromethane	ND	5	ug/Kg
Bromoform	ND	5	ug/Kg
Bromomethane	ND	10	ug/Kg
2-Butanone	ND	20	ug/Kg
Carbon Disulfide	ND	5	ug/Kg
Carbon Tetrachloride	ND	5	ug/Kg
Chlorobenzene	ND	5	ug/Kg
Chloroethane	ND	10	ug/Kg
2-Chloroethylvinylether	ND	10	ug/Kg
Chloroform	ND	5	ug/Kg
Chloromethane	ND	10	ug/Kg
Dibromochloromethane	ND	5	ug/Kg
1,1-Dichloroethane	ND	5	ug/Kg
1,1-Dichloroethene	ND	5	ug/Kg
1,2-Dichloroethane	ND	5	ug/Kg
total-1,2-Dichloroethene	ND	5	ug/Kg
1,2-Dichloropropane	ND	5	ug/Kg
cis-1,3-Dichloropropene	ND	5	ug/Kg
trans-1,3-Dichloropropene	ND	5	ug/Kg
Ethylbenzene	ND	5	ug/Kg
2-Hexanone	ND	10	ug/Kg
Methylene Chloride	ND	5	ug/Kg
4-Methyl-2-Pentanone	ND	10	ug/Kg
Styrene	ND	5	ug/Kg
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg
Tetrachloroethene	ND	5	ug/Kg
Toluene	ND	5	ug/Kg
1,1,1-Trichloroethane	ND	5	ug/Kg
1,1,2-Trichloroethane	ND	5	ug/Kg
Trichloroethene	ND	5	ug/Kg
Trichlorofluoromethane	ND	5	ug/Kg
Vinyl Acetate	ND	10	ug/Kg
Vinyl Chloride	ND	10	ug/Kg
Xylenes (total)			
Xylenes (total)	ND	5	ug/l

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-04

Operational Tech

SAMPLE ID: 06-026 MW Composite

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER	UPPER LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	96	70	121
Toluene-d8	50 ug/Kg	100	84	138
4-Bromofluorobenzene	50 ug/Kg	98	59	113

ANALYZED BY: HLW DATE/TIME: 06/23/95 16:33:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 650-0901

Certificate of Analysis No. H9-9506934-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 07/17/

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-026 MW Composite

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/22/95

DATE RECEIVED: 06/23/95

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNIT
Moisture METHOD CLP SOW Analyzed by: DSE Date: 06/29/95	19	1	wt.
Total Petroleum Hydrocarbons 418.1AZ Analyzed by: RS Date: 06/30/95 09:00:00	ИD	20	mg/K

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9506934-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

07/17/95

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

Xylenes (total)

SAMPLED BY: Operational Technology SAMPLE ID: 06-026 MW Composite-DUP PROJECT NO: 1315-227 MATRIX: SOIL

DATE SAMPLED: 06/22/95 DATE RECEIVED: 06/23/95

	DATA		
	RESULTS	POL*	UNITS
Acetone	ND		ug/Kg
Benzene	ND		ug/Kg
	ND		ug/Kg
Bromoform	ND	5	ug/Kg
Bromomethane	ND	10	ug/Kg
	ND	20	ug/Kg
	ND		ug/Kg
2-Chloroethylvinylether	ND	10	ug/Kg
	ND	5	ug/Kg
	ND	10	ug/Kg
	ND	5	ug/Kg
	ND		ug/Kg
1,1-Dichloroethene	ND		ug/Kg
	ND	5	ug/Kg
total-1,2-Dichloroethene	ND	5	ug/Kg
1,2-Dichloropropane	ND		ug/Kg
cis-1,3-Dichloropropene	ND		ug/Kg
trans-1,3-Dichloropropene	ND		ug/Kg
	ND	5	ug/Kg
	ND	10	ug/Kg
Methylene Chloride	ND	5	ug/Kg
4-Methyl-2-Pentanone	ND	10	ug/Kg
	ND	5	ug/Kg
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg
	ND		ug/Kg
	ND		ug/Kg
	ND	5	ug/Kg
	ND	10	ug/Kg
Vinyl Chloride	ND	10	ug/Kg
	PARAMETER Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinylether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene Chloride 4-Methyl-2-Pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Trichlorofluoromethane Vinyl Acetate Vinyl Chloride	Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Dromomethane S-Butanone Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinylether Chloroform Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropene Cis-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene Chloride 4-Methyl-2-Pentanone Styrene 1,1,2-Trichloroethane ND Toluene 1,1,1-Trichloroethane ND Trichloroethene ND Trichlorofluoromethane ND Trichlorofluoromethane ND Trichlorofluoromethane ND Trichlorofluoromethane ND Trichlorofluoromethane ND Trichloroide	PARAMETER RESULTS PQL* Acetone ND 100 Benzene ND 5 Bromodichloromethane ND 5 Bromomethane ND 5 Bromomethane ND 5 Bromomethane ND 5 Bromomethane ND 10 2-Butanone ND 5 Carbon Disulfide ND 5 Carbon Tetrachloride ND 5 Chlorobenzene ND 5 Chlorobenzene ND 5 Chlorobethane ND 10 Chlorochthane ND 10 Chlorochthane ND 5 1,1-Dichlorocethane ND 5 1,2-Dichloropethane ND 5 1,2-Dichloropropane ND 5 cis-1,3-Dichloropropene ND 5 trans-1,3-Dichloropropene ND 5 Ethylbenzene ND 5 2-Hexanone

METHOD: 8240, Volatile Organics - Soil (continued on next page)

ND

ug/Kg

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-05

Operational Tech

SAMPLE ID: 06-026 MW Composite-DUP

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
1,2-Dichloroethane-d4	50 ug/Kg	94	70	121
Toluene-d8	50 ug/Kg	100	84	138
4-Bromofluorobenzene	50 ug/Kg	100	59	113

ANALYZED BY: HLW DATE/TIME: 06/23/95 16:57:00

METHOD: 8240, Volatile Organics - Soil

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506934-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 07/17/95

mg/Kg

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology SAMPLE ID: 06-026 MW Composite-DUP

PROJECT NO: 1315-227

MATRIX: SOIL

DATE SAMPLED: 06/22/95

DATE RECEIVED: 06/23/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

20

Total Petroleum Hydrocarbons

418.1AZ

Analyzed by: RS

Date: 06/30/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

SPL Arizona License # AZ0050

Primary List of VOCs Detected in Groundwater QA/QC Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.3

Sample ID Number	Date	Toluene (µg/L)	M,P-Xylenes (μg/L)	O-Xylene (μg/L)	Styrene (µg/L)
Trip Blank (1)	7/13/95	0.1	0.3B	0.3B	0.8B
Trip Blank (2)	7/13/95	0.1	0.3B	0.3B	0.8B
Trip Blank (3)	7/13/95	ND	0.1B	0.1B	ND
Trip Blank (4)	7/14/95	ND	ND	ND	0.8
Trip Blank (5)	7/14/95	ND	ND	ND	0.8
Trip Blank (6)	7/14/95	ND	ND	ND	ND
Trip Blank (7)	8/8/95	ND	0.2	0.2	ND
Trip Blank (8)	8/9/95	ND	0.1	0.1	ND
Trip Blank (9)	8/10/95	ND	0.1	0.1	ND
Trip Blank (10)	8/10/95	ND	ND	ND	ND
Equip Blank	7/14/95	ND	ND	ND	0.0
Equip Blank	7/14/95	QN	QN	ND	ND
Equip Blank	8/10/95	0.2	0.1	0.1	ND
Field Blank	7/14/95	ND	ND	ND	ND
Field Blank	7/14/95	ND	ND	ND	ND
Field Blank	8/10/95	0.2	0.1	0.1	ND

μg/L – micrograms per liter.
 M.P-Xylenes – Meta. Para-Xylene (Total).
 O-Xylene – Ortho-Xylene.

VOCs - Volatile Organic Compounds.

IRP – Installation Restoration Program.

MWS and MW – Monitoring Well.

ADEQ - Arizona Department of Environmental Quality.

Secondary List of VOCs Detected in Groundwater QA/QC Samples at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona Table E.4

Sample ID Number	Date	1,2,4- Trimethyl benzene (ag/L)	N-Butyl-benzene (ug/L)	1,2- Dictorobenzene	Naphthalene (#g/L)	Hexachlorobut adiene	1,2,3- Tricloropropane	1,2,3. Triclorobenzene	Chloromethane
Trip Blank (1)	7/13/95	0.3	0.2	0.5	2.0B	9.0	ND	9.0	ND
Trip Blank (2)	7/13/95	0.3	0.2	0.5	2.0B	9.0	ND	9:0	ND
Trip Blank (3)	7/13/95	ND	ND	ND	ND	ND	ND	ND	ND
Trip Blank (4)	7/14/95	ND	ND	ND	QN	QN	ND	QN	QN
Trip Blank (5)	7/14/95	ND	ND	ND	QN	QN	ND	QN	ND
Trip Blank (6)	7/14/95	ND	ND	ND	ND	ND	ND	ND	QN
Trip Blank (7)	56/8/8	ND	0.2	ND	ND	QN	ND	ND	ND
Trip Blank (8)	8/9/95	ND	ND	ND	QN	ND	ND	ND	ND
Trip Blank (9)	8/10/95	ND	ND	ND	ND	QN	ND	ND	QN
Trip Blank (10)	8/10/95	ND	ND	ND	ND	QN	ND	ND	ND
Equip Blank	7/14/95	ND	ND	ND	ND	QN	ND	ND	ND
Equip Blank	7/14/95	ND	ND	ND	QN	ND	0.2	QN	ND
Equip Blank	8/10/95	ND	ND	ND	ND	QN	ND	ND	ND
Field Blank	7/14/95	ND	ND	ND	UN	ND	0.3	ND	2
Field Blank	7/14/95	ND	ND	ND	QN	ND	0.8	ND	2
Field Blank	8/10/95	ND	ND	ND	ND	ND	QN	ND	0.5

μg/L – micrograms per liter.
 MWS and MW – Monitoring Well.
 VOCs – Volatile Organic Compounds.

$$\begin{split} IRP &= Installation \ Restoration \ Program. \\ Dup &= Duplicate. \end{split}$$

SECTION E ANALYTICAL RESULTS FOR GROUNDWATER AND COMPOSITE SOIL SAMPLES AND ANALYTICAL RESULTS FOR QUALITY ASSURANCE/ QUALITY CONTROL SAMPLES

Low concentrations of six compounds were detect in Trip Blanks from 13 July 1995. However, with the exception of monitoring well 06-005MW, all monitoring wells sampled on 13 July 1995 were resampled in August 1995. In addition, low levels xylenes, styrenes, and naphthalene were detected in the trip blanks from 13 July 1995 and were also detected in laboratory blanks indicating these compounds were laboratory contamination. Therefore, the naphthalene and styrene detected in 06-005MW may be laboratory contamination.

Low concentrations of xylenes were detected in the trip blanks from the August 1995 resampling of monitoring wells 06-018MW through 06-026MW. The levels of xylenes detected in the trip blanks are orders of magnitude below any action levels and do not impact the sampling results. Low concentrations of xylenes, toluene, styrenes, 1,2,3-Triclorobenzene, and chloromethane were detected in the trip blanks and equipment blanks from the August 1995 resampling of monitoring wells 06-018MW through 06-026MW. These levels detected in the equipment blanks are orders of magnitude below any action levels and do not impact the sampling results.

VOC surrogate recoveries for groundwater samples from the first round ranged from 85% to 104% for 1-chloro-2-fluorobenzene.

VOC surrogate recoveries for SOIL samples Ranged from 70% to 121% for 1,2-dichloroethane, 84% to 138% for toluene d8, and 59% to 113% for Bromofluorobenzene. ALL were in of range.

THIS PAGE INTENTIONALLY LEFT BLANK

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-09

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles 08/07/9

PROJECT: Air National Guard
SITE: Phoenix, AZ

PROJECT NO: 1315-227
MATRIX: WATER

SAMPLED BY: Provided by SPL

DATE SAMPLED: 07/07/95
SAMPLE ID: Trip Blank

DATE RECEIVED: 07/14/95

ANALYTIC	TAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	ND	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	ND	0.03	μg/L
1,2-Dichloroethane	ND	0.38	$\mu g/L$
Trichloroethene	ND	0.32	$\mu g/L$
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	$\mu g/L$
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	ND	0.06	$\mu { m g}/{ m L}$
trans-1,3-Dichloropropene	ND	0.11	$\mu g/L$
1,1,2-Trichloroethane	ND	0.21	μ g/L
Tetrachloroethene	ND	0.33	μ g/L
1,3-Dichloropropane	ND	0.25	μ g/L
Dibromochloromethane	ND '	0.08	μ g/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μ g/L
Ethyl benzene	ND	0.03	μ g/L
1,1,1,2-Tetrachloroethane	ND	0.25	μ g/L
Xylenes	0.1	0.09	μ g/L
Styrene	ND	0.23	$\mu { t g}/{ t L}$
Isopropylbenzene	ND	0.10	μg/L
Bromoform	ND	0.12	$\mu g/L$
1,1,2,2-Tetrachloroethane	ND	0.27	μ g/L

METHOD: 502.2 - Drinking Water Volatiles (continued on next page)

Certificate of Analysis No. H9-9507438-09

Operational Tech

SAMPLE ID: Trip Blank

2	NALYTICAL DATA (C	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μ g/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	$\mu g/L$
sec-Butylbenzene	ND	0.06	$\mu g/L$
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropa	ane ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	$\mu \mathrm{g}/\mathrm{L}$
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	ND	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	μ g/L
SURROGATES	% RE	COVERY	
1-Chloro-2-Fluorobenzene		85	

ANALYZED BY: JZL DATE/TIME: 07/22/95 18:20:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

SPL Arizona License # AZ0050

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-08

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

08/07/99

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Equipt Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 16:00:00

DATE RECEIVED: 07/14/95

ANA	LYTICAL DATA		
PARAMETER	RESULTS	PQL*	IDITEG
Dichlorodifluoromethane	ND	1.1	UNITS
Chloromethane	1	0.15	μg/L
Vinyl chloride	ND	0.13	μg/L
Bromomethane	ND	0.21	μg/L
Chloroethane	ND	0.17	μg/L
Trichlorofluoromethane	ND	0.18	μg/L
1,1-Dichloroethene	ND ND	0.19	μ g/L
trans-1,2-Dichloroethene	ND ND	0.19	μg/L
1,1-Dichloroethane	ND	0.20	$\mu g/L$
2,2-Dichloropropane	ND	0.11	μg/L
cis-1,2-Dichloroethene	ND ND	0.18	μ g/L
Chloroform	ND ND	0.27	μ g/L
Bromochloromethane	ND ND	0.15	μ g/L
1,1,1-Trichloroethane	ND ND		μ g/L
1,1-Dichloropropene	ND	0.15	μ g/L
Carbon Tetrachloride	ND ND	0.33	μ g/L
Benzene	ND ND	0.11	μ g/L
1,2-Dichloroethane	ND	0.03 0.38	μ g/L
Trichloroethene	ND		μ g/L
1,2-Dichloropropane	ND ND	0.32	μ g/L
Bromodichloromethane	ND ND	0.17	μ g/L
Dibromomethane	ND ND	0.11 0.12	μ g/L
cis-1,3-Dichloropropene	ND	0.12	μ g/L
Toluene	ND	0.06	μ g/L
trans-1,3-Dichloropropene	ND	0.06	μ g/L
1,1,2-Trichloroethane	ND	0.11	μ g/L
Tetrachloroethene	ND	0.21	$\mu g/I_i$
1,3-Dichloropropane	ND	0.33	μg/L
Dibromochloromethane	ND	0.25	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND ND	0.62	μg/L
Ethyl benzene	ND	0.62	μg/L
1,1,1,2-Tetrachloroethane	ND ND	0.03	μg/L
Xylenes	ND	0.25	μg/L
Styrene	ND	0.09	μ g/L
Isopropylbenzene	ND ND		μg/L
Bromoform	ND ND	0.10 0.12	μg/L
1,1,2,2-Tetrachloroethane	ND ND	0.12	μ g/L
	עוו	0.27	μg/L

Operational Tech

SAMPLE ID: Equipt Blank

	ANALYTICAL DATA (C	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μ g/L
n-Propyl benzene	ND		μg/L
Bromobenzene	ND		μg/L
1,3,5-Trimethylbenzene	ND		μg/L
2-Chlorotoluene	ND		μg/L
4-Chlorotoluene	ND		
tert-Butylbenzene	ND		μg/L
1,2,4-Trimethylbenzene	ND		μg/L
sec-Butylbenzene	ND	· · · · · ·	μg/L
p-Isopropyltoluene	ND ND		μg/L
1,3-Dichlorobenzene	ND ND		μg/L
1,4-Dichlorobenzene	ND		μg/L
n-Butylbenzene	ND ND		μg/L
1,2-Dichlorobenzene	ND		μg/L
1,2-Dibromo-3-chloroprop	pane ND		μg/L
1,2,4-Trichlorobenzene	ND ND		μg/L
Hexachlorobutadiene	ND ND		μg/L
Naphthalene	ND ND		μg/L
1,2,3-Trichlorobenzene	ND ND		μg/L
	ND	0.35	μ g/L
SURROGATES	% ፑፑ	COVERY	
1-Chloro-2-Fluorobenzene		·	
		89	

ANALYZED BY: JZL DATE/TIME: 07/22/95 19:31:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-08

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/07/9

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Equipt Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 16:00:00

0.5

DATE RECEIVED: 07/14/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*
Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-07

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/07/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/13/95 16:00:00

DATE RECEIVED: 07/14/95

7	ANALYTICAL DATA		
PARAMETER	RESULTS	2021	
Dichlorodifluoromethane		PQL*	UNITS
Chloromethane	ND 0.3	1.1	μ g/L
Vinyl chloride	ND	0.15	μ g/L
Bromomethane	ND ND	0.21	μg/L
Chloroethane	ND ND	0.17	μ g/L
Trichlorofluoromethane		0.18	μ g/L
1,1-Dichloroethene	ND	0.34	μ g/L
trans-1,2-Dichloroethene	ND ND	0.19	μ g/L
1,1-Dichloroethane		0.20	μ g/L
2,2-Dichloropropane	ND ND	0.11	μ g/L
cis-1,2-Dichloroethene		0.18	μ g/L
Chloroform	ND	0.27	μ g/L
Bromochloromethane	ND	0.15	μ g/L
1,1,1-Trichloroethane	ND	0.11	μg/L
1,1-Dichloropropene	ND	0.15	μg/L
Carbon Tetrachloride	ND	0.33	μ g/L
Benzene	ND	0.11	μ g/L
1,2-Dichloroethane	ND	0.03	μ g/L
Trichloroethene	ND	0.38	μg/L
1,2-Dichloropropane	ND	0.32	μ g/L
Bromodichloromethane	ND	0.17	μ g/L
Dibromomethane	ND	0.11	μ g/L
cis-1,3-Dichloropropene	ND	0.12	μ g/L
Toluene	ND	0.09	μg/L
trans-1,3-Dichloropropene	ND	0.06	μ g/L
1,1,2-Trichloroethane	ND	0.11	μg/L
Tetrachloroethene	ND	0.21	μg/L
1,3-Dichloropropane	ND	0.33	μ g/L
Dibromochloromethane	ND	0.25	μg/L
1,2-Dibromoethane	ND	0.08	μ g/L
Chlorobenzene	ND	0.06	μ g/L
Ethyl benzene	ND	0.62	μ g/L
1,1,1,2-Tetrachloroethane	ND	0.03	μ g/L
Xylenes	ND	0.25	μ g/L
Styrene	ND	0.09	μg/L
Isopropylbenzene	ND	0.23	μg/L
Bromoform	ND	0.10	μg/I
1,1,2,2-Tetrachloroethane	ND	0.12	μ g/L
, , = ================================	ND	0.27	μg/L

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507438-07

Operational Tech

SAMPLE ID: Field Blank

	ANALYTICAL DATA (C	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND	0.22	
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND		μ g/L
tert-Butylbenzene		0.29	μ g/L
1,2,4-Trimethylbenzene	ND	0.14	μ g/L
sec-Butylbenzene	ND	0.05	μ g/L
p-Isopropyltoluene	ND	0.06	μ g/L
	ND	0.10	$\mu g/I$
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloroprop	oane ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	ND	0.12	
1,2,3-Trichlorobenzene	ND	0.35	μg/L
	ND	0.33	μ g/L
SURROGATES	% RE	COVERY	
1-Chloro-2-Fluorobenzene	·		
	•	31	

ANALYZED BY: JZL

DATE/TIME: 07/22/95 20:42:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit

ND - Not Detected

NA - Not Analyzed

COMMENTS:

Certificate of Analysis No. H9-9507438-07

Operational Tech 677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/07/95

mg/L

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: WATER

LIMIT

0.5

DATE SAMPLED: 07/13/95 16:00:00

DATE RECEIVED: 07/14/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*

Analyzed by: SW

Date: 07/25/95 12:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-07

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Trip Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 DATE RECEIVED: 07/15/95

ANALYT	ICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	ND	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	ND	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	ND	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	μg/L
Dibromochloromethane	ND	0.08	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	ND	0.03	μg/L
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L
Xylenes	ND	0.09	μg/L
Styrene	ND	0.23	μg/L
Isopropylbenzene	ND	0.10	μg/L
Bromoform	ND	0.12	μg/L
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L
			· -

Certificate of Analysis No. H9-9507479-07

Operational Tech

SAMPLE ID: Trip Blank

PARAMETER	ANALYTICAL DATA (C	continued) PQL*	
1,2,3-Trichloropropane n-Propyl benzene Bromobenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	ND N	0.16 0.04 0.22 0.03 0.26 0.29 0.14 0.05 0.06 0.10	UNITS
SURROGATES 1-Chloro-2-Fluorobenzene		COVERY 90	

ANALYZED BY: JZL

DATE/TIME: 07/24/95 06:53:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/14/

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:

DATE RECEIVED: 07/15/95

ANALYTICAL DATA				
PARAMETER	RESULTS	PQL*	UNITS	
Dichlorodifluoromethane	ND	1.1	$\mu g/L$	
Chloromethane	2	0.15	μg/L	
Vinyl chloride	ND	0.21	μg/L	
Bromomethane	ND	0.17	μg/L	
Chloroethane	ND	0.18	μg/L	
Trichlorofluoromethane	ND	0.34	μg/L	
1,1-Dichloroethene	ND	0.19	μg/L	
trans-1,2-Dichloroethene	ND	0.20	μg/L	
1,1-Dichloroethane	ND	0.11	μg/L	
2,2-Dichloropropane	ND	0.18	μg/L	
cis-1,2-Dichloroethene	ND	0.27	μg/L	
Chloroform	ND	0.15	μg/L	
Bromochloromethane	ND	0.11	μg/L	
1,1,1-Trichloroethane	ND	0.15	μg/L	
1,1-Dichloropropene	ND	0.33	μg/L	
Carbon Tetrachloride	ND	0.11	μg/L	
Benzene	ND	0.03	μg/L	
1,2-Dichloroethane	ND	0.38	μg/L	
Trichloroethene	ND	0.32	μg/L	
1,2-Dichloropropane	ND	0.17	μg/L	
Bromodichloromethane	ND	0.11	μg/L	
Dibromomethane	ND	0.12	μg/L	
cis-1,3-Dichloropropene	ND	0.09	μg/L	
Toluene	ND	0.06	μg/L	
trans-1,3-Dichloropropene	ND	0.11	μg/L	
1,1,2-Trichloroethane	ND	0.21	μg/L	
Tetrachloroethene	ND	0.33	μg/L	
1,3-Dichloropropane	ND	0.25	μg/L	
Dibromochloromethane	ND	0.08	μg/L	
1,2-Dibromoethane	ND	0.06	μg/L	
Chlorobenzene	ND	0.62	μg/L	
Ethyl benzene	ND	0.03	μg/L	
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L	
Xylenes	ND	0.09	μg/L	
Styrene	ND	0.23	μg/L	
Isopropylbenzene	ND	0.10	μg/L	
Bromoform	ND	0.12	μg/L	
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L	
, , , = = = = = = = = = = = = = = = = =	115	- · • ·	M3/11	

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-04

Operational Tech

SAMPLE ID: Field Blank

A	NALYTICAL DATA (c	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	0.3	0.16	μg/L
n-Propyl benzene	ND	0.04	
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND		μg/L
2-Chlorotoluene	ND		μ g/L
4-Chlorotoluene		0.26	μg/L
tert-Butylbenzene	ND		μg/L
1,2,4-Trimethylbenzene	ND		μ g/L
sec-Butylbenzene	ND		μ g/L
	ND	0.06	$\mu { t g}/{ t L}$
p-Isopropyltoluene	ND	0.10	$\mu g/L$
1,3-Dichlorobenzene	ND	0.26	$\mu g/L$
1,4-Dichlorobenzene	ND	0.30	$\mu g/L$
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropar	ne ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	ND		μg/L
1,2,3-Trichlorobenzene			μ g/L
, , , = ==============================	ND	0.35	μ g/L
SURROGATES	° DT	aa	
1-Chloro-2-Fluorobenzene		COVERY	
- siloto z i idolobelizene		95	

ANALYZED BY: JZL DATE/TIME: 07/24/95 11:39:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/14/

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:

DATE RECEIVED: 07/15/95

ND

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION LIMIT

0.5

UNITS

Petroleum extractables

METHOD 418.1*

Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9507479-05

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830

ATTN: Mike Giles

08/14/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Equipment Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:00

DATE RECEIVED: 07/15/95

ANAL	YTICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	3	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	ND	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	ND	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	$\mu { m g}/{ m L}$
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	μg/L
Dibromochloromethane	ND	0.08	μg/L
1,2-Dibromoethane	ND	0.06	μg/L
Chlorobenzene	ND	0.62	μg/L
Ethyl benzene	ND	0.03	μg/L
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L
Xylenes	ND	0.09	μg/L
Styrene	ND	0.23	μg/L
Isopropylbenzene	ND	0.10	μg/L
Bromoform	ND	0.12	μg/L
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L
			F-3/ -

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-05

Operational Tech

SAMPLE ID: Equipment Blank

2	ANALYTICAL DATA (c	continued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	0.2	0.16	μg/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	, ND	0.48	μg/L
1,2-Dibromo-3-chloropropa	ne ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	ND	0.12	$\mu g/L$
1,2,3-Trichlorobenzene	ND	0.35	μ g/L
SURROGATES	% RE	COVERY	
1-Chloro-2-Fluorobenzene		91	

ANALYZED BY: JZL DATE/TIME: 07/24/95 09:16:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507479-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/14/95

mg/L

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Equipment Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 20:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Petroleum extractables ND 0.5

METHOD 418.1* Analyzed by: VM

Date: 07/28/95 15:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-10

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Trip Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95

DATE RECEIVED: 07/15/95

	TICAL DATA		
PARAMETER	RESULTS	PQL*	UNIT
Dichlorodifluoromethane	ND	1.1	μg/:
Chloromethane	ND	0.15	μg/:
Vinyl chloride	ND	0.21	μg/
Bromomethane	ND	0.17	μg/
Chloroethane	ND	0.18	μg/
Trichlorofluoromethane	ND	0.34	μg/
1,1-Dichloroethene	ND	0.19	μg/
trans-1,2-Dichloroethene	ND	0.20	μg/
1,1-Dichloroethane	ND	0.11	μg/
2,2-Dichloropropane	ND	0.18	μg/
cis-1,2-Dichloroethene	ND	0.27	μg/
Chloroform	ND	0.15	μg/
Bromochloromethane	ND	0.11	μg/
1,1,1-Trichloroethane	ND	0.15	μg/
1,1-Dichloropropene	ND	0.33	μg/
Carbon Tetrachloride	ND	0.11	μg/
Benzene	ND	0.03	μg/
1,2-Dichloroethane	ND	0.38	μα/
Trichloroethene	ND	0.32	μg/
1,2-Dichloropropane	ND	0.17	μg/
Bromodichloromethane	ND	0.11	μg/
Dibromomethane	ND	0.12	μg/
cis-1,3-Dichloropropene	ND	0.09	μg/
Toluene	ND	0.06	μg/
trans-1,3-Dichloropropene	ND	0.11	μg/
1,1,2-Trichloroethane	ND	0.21	μg/
Tetrachloroethene	ND	0.33	μg/
1,3-Dichloropropane	ND	0.25	μg/
Dibromochloromethane	ND	0.08	μg/
1,2-Dibromoethane	ND	0.06	μg/
Chlorobenzene	ND	0.62	μg/
Ethyl benzene	ND	0.03	μg/
1,1,1,2-Tetrachloroethane	ND	0.25	μg/
Xylenes	ND	0.25	μg/ μg/
Styrene	0.8	0.09	, -
Isopropylbenzene	ND	0.10	μg/.
Bromoform	ND ND	0.10	μg/:
1,1,2,2-Tetrachloroethane	ND ND	0.12	μg/] μg/]

Certificate of Analysis No. H9-9507478-10

Operational Tech

SAMPLE ID: Trip Blank

7777777	ANALYTICAL DATA (C	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND		μg/L
1,3,5-Trimethylbenzene	ND		μg/L
2-Chlorotoluene	ND		
4-Chlorotoluene	ND		μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND		μg/L
1,3-Dichlorobenzene	ND		μg/L
1,4-Dichlorobenzene	ND		μg/L
n-Butylbenzene	ND		μg/L
1,2-Dichlorobenzene		0.12	μg/L
1,2-Dibromo-3-chloroprop	ND ND	0.48	μg/L
1,2,4-Trichlorobenzene		0.13	μg/L
Hexachlorobutadiene	ND	0.09	$\mu { m g}/{ m L}$
Naphthalene	ND	0.22	$\mu exttt{g/L}$
	ND	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	$\mu g/L$
SURROGATES	2		
1-Chloro-2-Fluorobenzene		COVERY	
		91	

ANALYZED BY: JZL DATE/TIME: 07/24/95 04:31:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:

DATE RECEIVED: 07/15/95

ANALY	TICAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/I
Chloromethane	2	0.15	μg/I
Vinyl chloride	ND	0.21	μ9/Ι
Bromomethane	ND	0.17	μg/I
Chloroethane	ND	0.18	μg/I
Trichlorofluoromethane	ND	0.34	μg/I
1,1-Dichloroethene	ND	0.19	μg/I
trans-1,2-Dichloroethene	ND	0.20	μg/I μg/I
1,1-Dichloroethane	ND	0.11	μg/I μg/I
2,2-Dichloropropane	ND	0.18	μ9/I μ9/I
cis-1,2-Dichloroethene	ND	0.27	μg/I μg/I
Chloroform	ND	0.15	μg/]
Bromochloromethane	ND	0.13	μ9/1 μg/1
1,1,1-Trichloroethane	ND	0.15	
1,1-Dichloropropene	ND	0.33	μg/1
Carbon Tetrachloride	ND	0.11	μg/]
Benzene	ND	0.03	μg/1
1,2-Dichloroethane	ND	0.38	. μg/1
Trichloroethene	ND	0.32	μg/1
1,2-Dichloropropane	ND	0.17	μg/:
Bromodichloromethane	ND	0.11	μg/:
Dibromomethane	ND	0.12	μg/1
cis-1,3-Dichloropropene	ND	0.09	μg/1
Toluene	ND	0.06	μg/]
trans-1,3-Dichloropropene	ND		μg/1
1,1,2-Trichloroethane	ND ND	0.11	μg/]
Tetrachloroethene	ND	0.21	μg/]
1,3-Dichloropropane		0.33	μg/]
Dibromochloromethane	ND	0.25	μg/]
1,2-Dibromoethane	ND	0.08	μg/]
Chlorobenzene	ND	0.06	μg/1
Ethyl benzene	ND	0.62	μg/]
	ND	0.03	μg/]
1,1,1,2-Tetrachloroethane	ND	0.25	μg/]
Xylenes	ND	0.09	μg/]
Styrene	ND	0.23	μg/I
Isopropylbenzene	ND	0.10	μg/I
Bromoform	ND	0.12	μg/I
1,1,2,2-Tetrachloroethane	ND	0.27	μg/I

Certificate of Analysis No. H9-9507478-03

Operational Tech

SAMPLE ID: Field Blank

	ANALYTICAL DATA (C	ontinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	0.8	0.16	μg/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND		μg/L
1,3,5-Trimethylbenzene	ND		μg/L
2-Chlorotoluene	ND		μg/L
4-Chlorotoluene	ND		μg/L
tert-Butylbenzene	ND		μg/L
1,2,4-Trimethylbenzene	ND		μg/L
sec-Butylbenzene	ND		μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND		μg/L μg/L
1,4-Dichlorobenzene	ND	0.30	, .
n-Butylbenzene	ND		μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropa	ane ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND ND		μg/L
Hexachlorobutadiene		0.09	μ g/L
Naphthalene	ND	0.22	μ g/L
1,2,3-Trichlorobenzene	ND	0.12	μ g/L
1,2,5°111Ciliotobelizelle	ND	0.35	μ g/L
SURROGATES	% RE	COVERY	
1-Chloro-2-Fluorobenzene	0 -1-	88	

ANALYZED BY: JZL DATE/TIME: 07/24/95 10:27:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

DATE: 08/10/9

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:0

DATE RECEIVED: 07/15/95

ND

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION

LIMIT

0.5

UNITS

Petroleum extractables

METHOD 418.1*

Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9507478-04

Operational Tech

677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

08/10/95

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Equipment Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:00

DATE RECEIVED: 07/15/95

ANALYTIC	AL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	2	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L ··-/T
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND		μg/L
cis-1,2-Dichloroethene	ND	0.18 0.27	μg/L
Chloroform	ND	0.27	μg/L
Bromochloromethane	ND		μg/L
1,1,1-Trichloroethane	ND	0.11 0.15	μg/L
1,1-Dichloropropene	ND	0.15	μ g/L
Carbon Tetrachloride	ND		μ g/L
Benzene	ND	0.11	μ g/L
1,2-Dichloroethane	ND	0.03	μ g/L
Trichloroethene	. ND	0.38	μ g/L
1,2-Dichloropropane		0.32	μ g/L
Bromodichloromethane	ND	0.17	μ g/L
Dibromomethane	ND	0.11	μ g/L
cis-1,3-Dichloropropene	ND	0.12	μ g/L
Toluene	ND	0.09	μ g/L
trans-1,3-Dichloropropene	ND	0.06	μ g/L
1,1,2-Trichloroethane	ND	0.11	μ g/L
Tetrachloroethene	ND	0.21	μ g/L
1,3-Dichloropropane	ND	0.33	μ g/L
Dibromochloromethane	ND	0.25	μg/L
1,2-Dibromoethane	ND	0.08	μg/L
Chlorobenzene	ND	0.06	μ g/L
Ethyl benzene	ND	0.62	μg/L
1,1,1,2-Tetrachloroethane	ND	0.03	μ g/L
Xylenes	ND	0.25	μ g/L
Styrene	ND	0.09	μ g/L
Isopropylbenzene	0.9	0.23	μ g/L
Bromoform	ND	0.10	μg/L
	ND	0.12	μg/L
1,1,2,2-Tetrachloroethane	ND	0.27	μ g/L

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-04

Operational Tech

SAMPLE ID: Equipment Blank

ANALYTICAL DATA (continued)			
PARAMETER	RESULTS	PQL*	UNITS
1,2,3-Trichloropropane	0.5	0.16	μg/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	·ND	0.48	μg/L
1,2-Dibromo-3-chloroprop	ane ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	2	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	μg/L
SURROGATES	ያ ከመ	COVERY	
1-Chloro-2-Fluorobenzene			
		84	

ANALYZED BY: JZL DATE/TIME: 07/24/95 08:05:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9507478-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 08/10/95

mg/L

PROJECT: Air National Guard

SITE: Phoenix, AZ

SAMPLED BY: Operational Technology

SAMPLE ID: Equipment Blank

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 07/14/95 08:30:00

DATE RECEIVED: 07/15/95

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables ND 0.5

METHOD 418.1*
Analyzed by: BV

Date: 07/26/95 14:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-05

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/22/

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Provided by SPL

SAMPLE ID: Trip Blank

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/04/95

DATE RECEIVED: 08/10/95

ANALYTICAL DATA			
PARAMETER	RESULTS	PQL*	UNIT
Dichlorodifluoromethane	ND	1.1	μg/
Chloromethane	ND	0.15	μg/
Vinyl chloride	ND	0.21	μg/
Bromomethane	ND	0.17	μg/
Chloroethane	ND	0.18	μg/
Trichlorofluoromethane	ND	0.34	μg/
1,1-Dichloroethene	ND	0.19	μg/
Methylene Chloride	ND	1.0	μg/
trans-1,2-Dichloroethene	ND	0.20	μg/
1,1-Dichloroethane	ND	0.11	μg/
2,2-Dichloropropane	ND	0.18	μg/
cis-1,2-Dichloroethene	ND	0.27	μg/
Chloroform	ND	0.15	μg/
Bromochloromethane	ND	0.11	μg/
1,1,1-Trichloroethane	ND	0.15	μg/
1,1-Dichloropropene	ND	0.33	μg/
Carbon Tetrachloride	ND	0.11	μg/
Benzene	ND	0.03	μg/
1,2-Dichloroethane	ND	0.38	μg/
Trichloroethene	ND	0.32	μg/
1,2-Dichloropropane	ND	0.17	μg/
Bromodichloromethane	ND	0.11	μg/
Dibromomethane	ND	0.12	μg/
cis-1,3-Dichloropropene	ND	0.09	μg/
Toluene	ND	0.06	μg/
trans-1,3-Dichloropropene	ND	0.11	μg/
1,1,2-Trichloroethane	ND	0.21	μg/
Tetrachloroethene	ND	0.33	μg/
1,3-Dichloropropane	ND	0.25	μg/
Dibromochloromethane	ND	0.08	μg/
1,2-Dibromoethane	ND	0.06	μg/
Chlorobenzene	ND	0.62	μg/
Ethyl benzene	ND	0.03	μg/
1,1,1,2-Tetrachloroethane	ND	0.25	μg/
Xylenes	0.1	0.09	μg/
Styrene	ND	0.23	μg/
Isopropylbenzene	ND	0.10	μg/
Bromoform	ND	0.12	μg/

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508405-05

Operational Tech

SAMPLE ID: Trip Blank

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,1,2,2-Tetrachloroethan	ne ND	0.27	μg/L	
1,2,3-Trichloropropane	ND	0.16	μg/L	
n-Propyl benzene	ND		μg/L	
Bromobenzene	ND		μg/L	
1,3,5-Trimethylbenzene	ND		μg/L	
2-Chlorotoluene	ND		μg/L	
4-Chlorotoluene	ND	0.29	μg/L	
tert-Butylbenzene	ND	0.14	μg/L	
1,2,4-Trimethylbenzene	ND	0.05	μg/L	
sec-Butylbenzene	ND	0.06	μg/L	
p-Isopropyltoluene	ND	0.10	$\mu g/L$	
1,3-Dichlorobenzene	ND	0.26	μg/L	
1,4-Dichlorobenzene	ND	0.30	μg/L	
n-Butylbenzene	ND	0.12	μg/L	
1,2-Dichlorobenzene	ND	0.48	μg/L	
1,2-Dibromo-3-chloroprop	pane ND	0.13	μg/L	
1,2,4-Trichlorobenzene	ND	0.09	μg/L	
Hexachlorobutadiene	ND	0.22	μg/L	
Naphthalene	ND	0.12	μg/L	
1,2,3-Trichlorobenzene	ND	0.35	μg/L	
G1777 C G G G G G G G G G G G G G G G G G			, 3.	
SURROGATES	% RE	ECOVERY		
1-Chloro-2-Fluorobenzene	2	95		

ANALYZED BY: JZL DATE/TIME: 08/10/95 15:29:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508337-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/22/9

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Provided by SPL

SAMPLE ID: Trip Blank

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/04/95
DATE RECEIVED: 08/09/95

ANALYTIC	AL DATA		
PARAMETER	RESULTS	MDL*	UNITS
Dichlorodifluoromethane	ND	1.1	μg/L
Chloromethane	ND	0.15	μg/L
Vinyl chloride	ND	0.21	μg/L
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
Methylene Chloride	ND	1.0	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	$\mu g/L$
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μ g/L
Carbon Tetrachloride	ND	0.11	μ g/L
Benzene	ND	0.03	μ g/L
1,2-Dichloroethane	ND	0.38	μ g/L
Trichloroethene	ND	0.32	μ g/L
1,2-Dichloropropane	ND	0.17	μ g/L
Bromodichloromethane	ND	0.11	μ g/L
Dibromomethane	ND	0.12	μ g/L
cis-1,3-Dichloropropene	ND	0.09	μ g/L
Toluene	ND	0.06	$\mu exttt{g/L}$
trans-1,3-Dichloropropene	ND	0.11	μ g/L
1,1,2-Trichloroethane	ND	0.21	μ g/L
Tetrachloroethene	ND	0.33	μ g/L
1,3-Dichloropropane	ND	0.25	μ g/L
Dibromochloromethane	ND	0.08	μ g/L
1,2-Dibromoethane	ND	0.06	μ g/L
Chlorobenzene	ND	0.62	μ g/L
Ethyl benzene	ND	0.03	μ g/L
1,1,1,2-Tetrachloroethane	ND	0.25	μ g/L
Xylenes	0.2	0.09	μg/L
Styrene	ND	0.23	μg/L
Isopropylbenzene Bromoform	ND	0.10	μg/L
BLOMOTORM	ND	0.12	μ g/L

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508337-04

Operational Tech

SAMPLE ID: Trip Blank

A	NALYTICAL DATA (c	continued	1)
PARAMETER	RESULTS	MDL*	
1,1,2,2-Tetrachloroethane	ND	0.27	μg/I
1,2,3-Trichloropropane	ND	0.16	μg/I
n-Propyl benzene	ND	0.04	μg/I
Bromobenzene	ND		μg/I
1,3,5-Trimethylbenzene	ND	0.03	μg/I
2-Chlorotoluene	ND		μg/I
4-Chlorotoluene	ND		μg/L
tert-Butylbenzene	ND	0.14	μg/I
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	0.2	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropa	ne ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	N D	0.22	μg/L
Naphthalene	ND	0.12	μg/L
1,2,3-Trichlorobenzene	ND	0.35	μg/L
			F-57-
SURROGATES	% RE	COVERY	
1-Chloro-2-Fluorobenzene	1	.00	•

ANALYZED BY: JZL DATE/TIME: 08/09/95 21:41:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

* - Method Detection Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508460-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

08/23/9

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Provided by SPL

SAMPLE ID: Trip Blank

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/04/95
DATE RECEIVED: 08/11/95

PARAMETER	TICAL DATA RESULTS	DOT +	IDITEC
Dichlorodifluoromethane		PQL* 1.1	UNITS
Chloromethane	ND ND	0.15	μg/L
Vinyl chloride	ND	0.15	μg/L
Bromomethane	ND	0.21	μg/L
Chloroethane			μg/L
Trichlorofluoromethane	ND	0.18	μg/L
	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μ g/L
Benzene	ND	0.03	μg/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μ g/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μ g/L
cis-1,3-Dichloropropene	ND	0.09	μ g/L
Toluene	ND	0.06	μ g/L
trans-1,3-Dichloropropene	ND	0.11	μ g/L
1,1,2-Trichloroethane	ND	0.21	μ g/L
Tetrachloroethene	ND	0.33	μg/L
1,3-Dichloropropane	ND	0.25	μ g/L
Dibromochloromethane	ND	0.08	μ g/L
1,2-Dibromoethane	ND	0.06	μ g/L
Chlorobenzene	ND	0.62	μ g/L
Ethyl benzene	ND	0.03	μ g/L
1,1,1,2-Tetrachloroethane	ND	0.25	μ g/L
Xylenes	ND	0.09	μ g/L
Styrene	ND	0.23	μg/L
Isopropylbenzene	ND	0.10	μg/L
Bromoform	ND	0.12	μ g/L

Certificate of Analysis No. H9-9508460-03

Operational Tech

SAMPLE ID: Trip Blank

ANALYTI	CAL DATA (co	ntinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L
1,2,3-Trichloropropane	ND	0.16	μg/L
n-Propyl benzene	ND	0.04	μg/L
Bromobenzene	ND	0.22	μg/L
1,3,5-Trimethylbenzene	ND	0.03	μg/L
2-Chlorotoluene	ND	0.26	μg/L
4-Chlorotoluene	ND	0.29	μg/L
tert-Butylbenzene	ND	0.14	μg/L
1,2,4-Trimethylbenzene	ND	0.05	μg/L
sec-Butylbenzene	ND	0.06	μg/L
p-Isopropyltoluene	ND	0.10	μg/L
1,3-Dichlorobenzene	ND	0.26	μg/L
1,4-Dichlorobenzene	ND	0.30	μg/L
n-Butylbenzene	ND	0.12	μg/L
1,2-Dichlorobenzene	ND	0.48	μg/L
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L
1,2,4-Trichlorobenzene	ND	0.09	μg/L
Hexachlorobutadiene	ND	0.22	μg/L
Naphthalene	ND	0.12	μg/L μg/L
1,2,3-Trichlorobenzene	ND	0.35	μg/L μg/L
	112	0.55	μ9/ц
SURROGATES	% REC	OVERY	
1-Chloro-2-Eluorobenzeno	o REC		

1-Chloro-2-Fluorobenzene

95

ANALYZED BY: JZL

DATE/TIME: 08/12/95 03:44:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES:

* - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508458-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/23/9

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Provided by SPL

SAMPLE ID: Trip Blank

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/04/95

DATE RECEIVED: 08/11/95

ANALYTIC	CAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Dichlorodifluoromethane	ND	1.1	$\mu g/L$
Chloromethane	ND	0.15	μg/L
Vinyl chloride	ND	0.21	$\mu g/L$
Bromomethane	ND	0.17	μg/L
Chloroethane	ND	0.18	μg/L
Trichlorofluoromethane	ND	0.34	μg/L
1,1-Dichloroethene	ND	0.19	μg/L
trans-1,2-Dichloroethene	ND	0.20	μg/L
1,1-Dichloroethane	ND	0.11	μg/L
2,2-Dichloropropane	ND	0.18	μg/L
cis-1,2-Dichloroethene	ND	0.27	μg/L
Chloroform	ND	0.15	μg/L
Bromochloromethane	ND	0.11	μg/L
1,1,1-Trichloroethane	ND	0.15	μg/L
1,1-Dichloropropene	ND	0.33	μg/L
Carbon Tetrachloride	ND	0.11	μg/L
Benzene	ND	0.03	μq/L
1,2-Dichloroethane	ND	0.38	μg/L
Trichloroethene	ND	0.32	μg/L
1,2-Dichloropropane	ND	0.17	μg/L
Bromodichloromethane	ND	0.11	μg/L
Dibromomethane	ND	0.12	μg/L
cis-1,3-Dichloropropene	ND	0.09	μg/L
Toluene	ND	0.06	μg/L
trans-1,3-Dichloropropene	ND	0.11	μg/L
1,1,2-Trichloroethane	ND	0.21	μg/L
Tetrachloroethene	ND	0.33	$\mu g/L$
1,3-Dichloropropane	ND	0.25	μg/L
Dibromochloromethane	ND	0.08	μg/L
1,2-Dibromoethane	ND	0.06	$\mu g/L$
Chlorobenzene	ND	0.62	$\mu g/L$
Ethyl benzene	ND	0.03	$\mu g/L$
1,1,1,2-Tetrachloroethane	ND	0.25	$\mu g/L$
Xylenes	0.1	0.09	$\mu { m g}/{ m L}$
Styrene	ND	0.23	μg/L
Isopropylbenzene	ND	0.10	μg/L
Bromoform	ND	0.12	μg/L
			,

Certificate of Analysis No. H9-9508458-04

Operational Tech

SAMPLE ID: Trip Blank

87

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,1,2,2-Tetrachloroethane	ND	0.27	μg/L	
1,2,3-Trichloropropane	ND	0.16	μg/L	
n-Propyl benzene	ND	0.04	μg/L	
Bromobenzene	ND	0.22	μg/L	
1,3,5-Trimethylbenzene	ND	0.03	μg/L	
2-Chlorotoluene	ND	0.26	μg/L	
4-Chlorotoluene	ND	0.29	μg/L	
tert-Butylbenzene	ND	0.14	μg/L	
1,2,4-Trimethylbenzene	ND	0.05	μg/L	
sec-Butylbenzene	ND	0.06	μg/L	
p-Isopropyltoluene	ND	0.10	μg/L	
1,3-Dichlorobenzene	ND	0.26	μg/L	
1,4-Dichlorobenzene	ND	0.30	$\mu g/L$	
n-Butylbenzene	ND	0.12	μg/L	
1,2-Dichlorobenzene	ND	0.48	μg/L	
1,2-Dibromo-3-chloropropane	ND	0.13	μg/L	
1,2,4-Trichlorobenzene	ND	0.09	μg/L	
Hexachlorobutadiene	ND	0.22	$\mu g/L$	
Naphthalene	B 2	0.12	$\mu g/L$	
1,2,3-Trichlorobenzene	ND	0.35	μ g/L	
SURROGATES	% REC	COVERY		

ANALYZED BY: JZL DATE/TIME: 08/12/95 02:32:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

* - Practical Quantitation Limit ND - Not Detected NOTES:

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508460-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

08/23/9

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: Equipment Blank

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/10/95 07:45:0

DATE RECEIVED: 08/11/95

ANALYTICAL DATA						
PARAMETER	RESULTS	PQL*	UNITS			
Dichlorodifluoromethane	ND	1.1	μg/L			
Chloromethane	0.6	0.15	μg/L			
Vinyl chloride	ND	0.21	μg/L			
Bromomethane	ND	0.17	μg/L			
Chloroethane	ND	0.18	μg/L			
Trichlorofluoromethane	ND	0.34	μg/L			
1,1-Dichloroethene	ND	0.19	μg/L			
trans-1,2-Dichloroethene	ND	0.20	μg/L			
1,1-Dichloroethane	ND	0.11	μg/L			
2,2-Dichloropropane	ND	0.18	μq/L			
cis-1,2-Dichloroethene	ND	0.27	μg/L			
Chloroform	ND	0.15	μg/L			
Bromochloromethane	ND	0.11	μg/L			
1,1,1-Trichloroethane	ND	0.15	μg/L			
1,1-Dichloropropene	ND	0.33	μq/L			
Carbon Tetrachloride	ND	0.11	μg/L			
Benzene	ND	0.03	μg/L			
1,2-Dichloroethane	ND	0.38	μg/L			
Trichloroethene	ND	0.32	μg/L			
1,2-Dichloropropane	ND	0.17	μg/L			
Bromodichloromethane	ND	0.11	μg/L			
Dibromomethane	ND	0.12	μg/L			
cis-1,3-Dichloropropene	ND	0.09	μg/L			
Toluene	0.2	0.06	μg/L			
trans-1,3-Dichloropropene	ND	0.11	μg/L			
1,1,2-Trichloroethane	ND	0.21	μg/L			
Tetrachloroethene	ND	0.33	μg/L			
1,3-Dichloropropane	ND	0.25	μg/L			
Dibromochloromethane	ND	0.08	μg/L			
1,2-Dibromoethane	ND	0.06	μg/L			
Chlorobenzene	ND	0.62	μg/L			
Ethyl benzene	ND	0.03	μg/L			
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L			
Xylenes	0.1	0.09	μg/L			
Styrene	ND	0.23	μg/L			
Isopropylbenzene	ND	0.10	μg/L			
Bromoform	ND	0.12	$\mu { t g}/{ t L}$			

Certificate of Analysis No. H9-9508460-01

Operational Tech

SAMPLE ID: Equipment Blank

ANALYTICAL DATA (continued)						
PARAMETER	RESULTS	PQL*	UNITS			
1,1,2,2-Tetrachloroethane	ND	$0.\bar{27}$	μg/L			
1,2,3-Trichloropropane	ND	0.16	μg/L			
n-Propyl benzene	ND	0.04	μg/L			
Bromobenzene	ND		μg/L			
1,3,5-Trimethylbenzene	ND		μg/L			
2-Chlorotoluene	ND	0.26	μg/L			
4-Chlorotoluene	ND		μg/L			
tert-Butylbenzene	ND	0.14	μg/L			
1,2,4-Trimethylbenzene	ND	0.05	μg/L			
sec-Butylbenzene	ND	0.06	μg/L			
p-Isopropyltoluene	ND		μg/L			
1,3-Dichlorobenzene	ND	0.10	μg/L			
1,4-Dichlorobenzene	ND	0.30	μg/L			
n-Butylbenzene	ND	0.12	μg/L μg/L			
1,2-Dichlorobenzene	ND	0.48	μg/L			
1,2-Dibromo-3-chloropropane	ND	0.13				
1,2,4-Trichlorobenzene	ND	0.09	μg/L			
Hexachlorobutadiene	ND	0.22	μg/L			
Naphthalene	ND	0.12	μg/L			
1,2,3-Trichlorobenzene	ND	0.35	μg/L			
	ND	0.55	μ g/L			
SURROGATES	% RE	% RECOVERY				
1-Chloro-2-Fluorobenzene		86				

ANALYZED BY: JZL

DATE/TIME: 08/12/95 06:06:00

EXTRACTED BY:

DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 08/23

Certificate of Analysis No. H9-9508460-01

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/10/95 07:45:0

DATE RECEIVED: 08/11/95

ND

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: Equipment Blank

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION LIMIT

0.5

UNITS

mg/

Petroleum extractables

METHOD 418.1*

Analyzed by: RN

Date: 08/15/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9508460-02

Operational Tech 677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

08/23/95

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: LIQUID

DATE SAMPLED: 08/10/95 07:40:00

DATE RECEIVED: 08/11/95

ANALYTICAL DATA					
PARAMETER	RESULTS	DOT 1			
Dichlorodifluoromethane		PQL*	UNITS		
Chloromethane	ND	1.1	μ g/L		
Vinyl chloride	0.5	0.15	μg/L		
Bromomethane	ND	0.21	μ g/L		
Chloroethane	ND	0.17	μ g/L		
Trichlorofluoromethane	ND	0.18	μ g/L		
1,1-Dichloroethene	ND	0.34	μ g/L		
trans-1,2-Dichloroethene	ND	0.19	μ g/L		
1,1-Dichloroethane	ND	0.20	μ g/L		
2,2-Dichloropropane	ND	0.11	μ g/L		
cis-1,2-Dichloroethene	ND	0.18	μ g/L		
Chloroform	ND	0.27	μ g/L		
Bromochloromethane	ND	0.15	μ g/L		
1,1,1-Trichloroethane	ND	0.11	μ g/L		
1,1-Dichloropropene	ND	0.15	μg/L		
Carbon Tetrachloride	ND	0.33	μg/L		
Benzene	ND	0.11	μ g/L		
1,2-Dichloroethane	ND	0.03	μg/L		
Trichloroethene	ND	0.38	μg/L		
1 2 Diablement	ND	0.32	μg/L		
1,2-Dichloropropane	ND	0.17	μ g/L		
Bromodichloromethane Dibromomethane	ND	0.11	μ g/L		
	ND	0.12	$\mu { m g}/{ m L}$		
cis-1,3-Dichloropropene Toluene	ND	0.09	μg/L		
	0.2	0.06	μg/L		
trans-1,3-Dichloropropene	ND	0.11	μg/L		
1,1,2-Trichloroethane	ND	0.21	μg/L		
Tetrachloroethene	ND	0.33	$\mu { m g}/{ m L}$		
1,3-Dichloropropane	ND	0.25	μg/L		
Dibromochloromethane	ND	0.08	μg/L		
1,2-Dibromoethane	ND	0.06	μg/L		
Chlorobenzene	ND	0.62	μg/L		
Ethyl benzene	ND	0.03	μg/L		
1,1,1,2-Tetrachloroethane	ND	0.25	μg/L		
Xylenes	0.1	0.09	μg/L		
Styrene	ND	0.23	μg/L		
Isopropylbenzene	ND	0.10	μg/L		
Bromoform	ND	0.12	μg/L		
			r'3/ 		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9508460-02

Operational Tech

SAMPLE ID: Field Blank

94

ANALYTICAL DATA (continued)						
PARAMETER	RESULTS	PQL*	UNITS			
1,1,2,2-Tetrachloroethane	ND	0.27	μ g/L			
1,2,3-Trichloropropane	ND	0.16	μg/L			
n-Propyl benzene	ND	0.04	μg/L			
Bromobenzene	ND	0.22	μg/L			
1,3,5-Trimethylbenzene	ND	0.03	$\mu g/L$			
2-Chlorotoluene	ND	0.26	$\mu g/L$			
4-Chlorotoluene	ND	0.29	μg/L			
tert-Butylbenzene	ND	0.14	μg/L			
1,2,4-Trimethylbenzene	ND	0.05	$\mu g/L$			
sec-Butylbenzene	ND	0.06	μg/L			
p-Isopropyltoluene	ND	0.10	μg/L			
1,3-Dichlorobenzene	ND	0.26	$\mu g/L$			
1,4-Dichlorobenzene	ND	0.30	$\mu g/L$			
n-Butylbenzene	ND	0.12	μg/L			
1,2-Dichlorobenzene	ND	0.48	μg/L			
1,2-Dibromo-3-chloropropane	ND	0.13	$\mu g/L$			
1,2,4-Trichlorobenzene	ND	0.09	$\mu g/L$			
Hexachlorobutadiene	ND	0.22	$\mu g/L$			
Naphthalene	B 2	0.12	$\mu g/L$			
1,2,3-Trichlorobenzene	ND	0.35	μg/L			
SURROGATES	% REC	OVERY				

ANALYZED BY: JZL DATE/TIME: 08/12/95 04:55:00

EXTRACTED BY: DATE/TIME:

METHOD: 502.2 - Drinking Water Volatiles

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

1-Chloro-2-Fluorobenzene

COMMENTS: B - Compound detected in method blank

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 08/23/95

mg/L

Certificate of Analysis No. H9-9508460-02

Operational Tech 677 Emory Valley Rd. Suite C Oak Ridge, TN 37830 ATTN: Mike Giles

PROJECT: Sky Harbor ANG

SITE: Phoenix, AZ

SAMPLED BY: Optech

SAMPLE ID: Field Blank

PROJECT NO: 1315-227

MATRIX: LIQUID

LIMIT

0.5

DATE SAMPLED: 08/10/95 07:40:00

DATE RECEIVED: 08/11/95

ND

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Petroleum extractables

METHOD 418.1*

Analyzed by: RN

Date: 08/15/95 09:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 17th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

HOUSTON LABORATORY

8880 INTERCHANGE DRIV HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-03

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/19/

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Provided by SPL

SAMPLE ID: 06-062 TB

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 06/16/95

DATE RECEIVED: 06/30/95

ANALYTIC	אַד. די אַיייאַ		
PARAMETER ANALYTIC	AL DATA RESULTS	PQL*	UNIT
Acetone	ND	100	ug/
Benzene	ND	5	ug/
Bromodichloromethane	ND	5	ug/ ug/
Bromoform	ND	5	ug/ ug/
Bromomethane	ND	10	
2-Butanone	35	20	ug,
Carbon Disulfide	ND	5	ug,
Carbon Tetrachloride	ND ND	5	ug, ug,
Chlorobenzene	ND	5	
Chloroethane	ND	10	ug,
2-Chloroethylvinylether	ND	10	ug,
Chloroform	ND	5	ug,
Chloromethane	ND	10	ug,
Dibromochloromethane	ND	5	ug, ug,
1,1-Dichloroethane	ND	5 5	ug, ug,
1,1-Dichloroethene	ND ND	5	ug,
1,2-Dichloroethane	ND	5	ug, ug,
total-1,2-Dichloroethene	ND	5	ug, ug,
1,2-Dichloropropane	ND	5	ug,
cis-1,3-Dichloropropene	ND	5	ug/ ug/
trans-1,3-Dichloropropene	ND	5	ug,
Ethylbenzene	ND	5	ug, ug,
2-Hexanone	ND	10	ug, ug,
Methylene Chloride	ND	5	ug,
4-Methyl-2-Pentanone	ND	10	ug, ug,
Styrene	ND	5	ug, ug,
1,1,2,2-Tetrachloroethane	ND	5	ug,
Tetrachloroethene	ND	5	ug, ug,
Toluene	ND	5	ug/ ug/
1,1,1-Trichloroethane	ND	5	ug/ ug/
1,1,2-Trichloroethane	ND	5	ug/ ug/
Trichloroethene	ND	5	ug/ ug/
Trichlorofluoromethane	ND	5	ug/ ug/
Vinyl Acetate	ND	10	ug/ ug/
Vinyl Chloride	ND	10	ug/ ug/
Xylenes (total)	ND	5	ug/

METHOD: 8240, Volatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-03

Operational Tech

SAMPLE ID: 06-062 TB

SURROGATES	AMOUNT	%	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	50 ug/L 50 ug/L 50 ug/L	94 100 100	76	- 114 110 115

ANALYZED BY: GT DATE/TIME: 07/06/95 20:07:00

METHOD: 8240, Volatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

SPL Arizona License # AZ0050

HOUSTON LABORATORY

8880 INTERCHANGE DRIV HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830 ATTN: Mike Giles

07/19/

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-062 FB

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 06/29/95

DATE RECEIVED: 06/30/95

ANALYTICA			
PARAMETER	RESULTS	PQL*	UNIT
Acetone	ND	100	ug/
Benzene	ND	5	ug/
Bromodichloromethane	ND	5	ug/
Bromoform	ND	5	ug/
Bromomethane	ND	10	ug/
2-Butanone	ND	20	ug/
Carbon Disulfide	ND	5	ug
Carbon Tetrachloride	ND	5	ug,
Chlorobenzene	ND	5	ug,
Chloroethane	ND	10	ug
2-Chloroethylvinylether	ND	10	ug,
Chloroform	ND	5	ug/
Chloromethane	ND	10	ug,
Dibromochloromethane	ND	5	ug,
1,1-Dichloroethane	ND	5	ug
1,1-Dichloroethene	ND	5	ug/
1,2-Dichloroethane	ND	5	ug/
total-1,2-Dichloroethene	ND	5	ug/
1,2-Dichloropropane	ND	5	ug,
cis-1,3-Dichloropropene	ND	5	uq/
trans-1,3-Dichloropropene	ND	5	ug/
Ethylbenzene	ND	5	ug/
2-Hexanone	ND	10	ug/ ug/
Methylene Chloride	ND	5	ug/ ug/
4-Methyl-2-Pentanone	ND	10	ug/
Styrene	ND	5	ug/ ug/
1,1,2,2-Tetrachloroethane	ND	5	ug/
Tetrachloroethene	ND	5	ug/
Toluene	ND	5	ug/
1,1,1-Trichloroethane	ND	5	ug/
1,1,2-Trichloroethane	ND	5	ug/
Trichloroethene	ND	5	ug/
Trichlorofluoromethane	ND	5	ug/
Vinyl Acetate	ND	10	ug/
Vinyl Chloride	ND	10	ug/
Xylenes (total)	ND	5	ug/

METHOD: 8240, Volatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-04

Operational Tech

SAMPLE ID: 06-062 FB

SURROGATES 1,2-Dichloroethane-d4 Toluene-d8	AMOUNT SPIKED 50 ug/L 50 ug/L	% RECOVERY 92 100	LOWER LIMIT 76 88	UPPER LIMIT 114
4-Bromofluorobenzene	50 ug/L	100	88 86	110 115

ANALYZED BY: GT DATE/TIME: 07/06/95 20:36:00

METHOD: 8240, Volatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

SPL Arizona License # AZ0050

HOUSTON LABORATOR

8880 INTERCHANGE DRIV(HOUSTON, TEXAS 77054) PHONE (713) 660-0901

Certificate of Analysis No. H9-9506C03-04

Operational Tech

677 Emory Valley Rd. Suite C

Oak Ridge, TN 37830

ATTN: Mike Giles

DATE: 07/19/

PROJECT: Sky Harbor RI/FS Add

SITE: 161 st ARG

SAMPLED BY: Operational Technology

SAMPLE ID: 06-062 FB

PROJECT NO: 1315-227

MATRIX: WATER

DATE SAMPLED: 06/29/95

DATE RECEIVED: 06/30/95

ANALYTICAL DATA

PARAMETER

RESULTS

ND

DETECTION LIMIT

0.5

UNITE

mq/

Petroleum extractables

METHOD 418.1*
Analyzed by: MF

Date: 07/11/95 15:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 17th ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

SPL Arizona License # AZ0050

APPENDIX F

DRUM DISPOSAL CRITERIA

THIS PAGE INTENTIONALLY LEFT BLANK

VOC surrogate recoveries for groundwater samples from the first round ranged from 85% to 104% for 1-chloro-2-fluorobenzene.

VOC surrogate recoveries for groundwater samples from the second round ranged from 56% to 145% for 1-chloro-2-fluorobenzene (PID) and 27% to 141% for 1-chloro-2-fluorobenzene. Both were out of range for the most samples due to the re-integrated data. SVOC surrogate recoveries ranged from 80% to 92% for nitrobenzene-d5, from 74% to 89% for 2-fluorobiphenyl, 89% to 100% for terphenyl-d14, 55% to 67% for phenol-d5, 60% to 61% for 2-fluorophenol, and 74% to 85% for 2,4,6-tribromophenol.

Table F.1
IRP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

Highest Level of Total Petroluem	Hydrocarbons, Benzene, Toluene, Ethylbenzene, Total Xylenes, or Trichloroethylene	06-025MW S Non-Detect Dispose On-Site	06-025MW S&W Reduce Below ARARs	06-025MW S&W 15 μg/L Benzene Reduce Below ARARs	06-025MW S&W Reduce Below ARARs	06-026MW S Non-Detect Dispose On-Site	06-026MW S Non-Detect Dispose On-Site	06-026MW S Non-Detect Dispose On-Site	06-026MW S Non-Detect	06-026MW S Non-Detect Dispose On-Site	06-026MW S Non-Detect Dispose On-Site	06-026MW S&W Reduce Below ARARs	06-026MW S&W Reduce Below ARARs								
	Boring/M	06-025MV	06-025MV	06-025Mv	06-025MV	06-025MV	06-025MW	06-025MW	06-025MW	06-025MW	06-025MW	06-025MW	06-026MW	06-026MW	06-026MW	06-026MW	06-026MW	06-026MW	06-026MW 5	06-026MW \$	
	Drum No.	200	501	502	503	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	

Table F.1 (Continued)
IRP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

		Highest Level of Total Petroluem Hydrocarbons, Benzene, Toluene,	
Drum No.	Boring/MW	Ethylbenzene, Total Xylenes, or Trichloroethylene	Recommendation
520	06-026MW S&W	24 μg/L Benzene	Reduce Below ARARs
521	06-026MW S&W	24 μg/L Benzene	Reduce Below ARARs
522	06-026MW S&W	24 μg/L Benzene	Reduce Below ARARs
523	06-021MW S	16 µg/kg Benzene	Dispose On-Site
524	06-021MW S	16 μg/kg Benzene	Dispose On-Site
525	06-025MW S	16 μg/kg Benzene	Dispose On-Site
526	06-021MW S&W	1,800 µg/kg Benzene	Reduce Below ARARs
527	06-021MW S&W	1,800 µg/kg Benzene	Reduce Below ARARs
528	06-021MW S	16 μg/kg Benzene	Dispose On-Site
529	06-021MW S	16 μg/kg Benzene	Dispose On-Site
530	06-021MW S	16 µg/kg Benzene	Dispose On-Site
531	06-024MW S	50 μg/kg Benzene	Dispose On-Site
532	06-024MW S	50 μg/kg Benzene	Dispose On-Site
533	06-024MW S&W	960 µg/kg Benzene	Reduce Below ARARs
534	06-024MW S	50 μg/kg Benzene	Dispose On-Site
535	06-024MW S	50 μg/kg Benzene	Dispose On-Site
536	06-024MW S	50 μg/kg Benzene	Dispose On-Site
537	06-024MW S&W	960 µg/kg Benzene	Reduce Below ARARs
538	Empty		

Table F.1 (Continued)
IRP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

Drum No.	Boring/MW	Highest Level of Total Petroluem Hydrocarbons, Benzene, Toluene, Ethylbenzene, Total Xylenes, or Trichloroethylene	Recommendation
539	06-023MW S	Non-Detect	Dispose On-Site
540	06-023MW S	Non-Detect	Dispose On-Site
541	06-023MW S	Non-Detect	Dispose On-Site
542	06-023MW S	Non-Detect	Dispose On-Site
543	06-023MW S&W	1,200 μg/L Benzene	Reduce Below ARARs
544	06-023MW S&W	1,200 μg/L Benzene	Reduce Below ARARs
545	06-023MW S	Non-Detect	Dispose On-Site
546	06-023MW S	Non-Detect	Dispose On-Site
547	06-022MW S	82 µg/kg	Dispose On-Site
548	06-022MW S&W	1,400 µg/kg	Reduce Below ARARs
549	06-022MW S	82 µg/kg	Dispose On-Site
550	06-022MW S	82 µg/kg	Dispose On-Site
551	06-022MW S	82 µg/kg	Dispose On-Site
552	06-022MW S	82 μg/kg	Dispose On-Site
553	06-022MW S	82 μg/kg	Dispose On-Site
554	06-016BH S	6,000 µg/kg	Reduce Below ARARs
555	06-016BH S	6,000 µg/kg	Reduce Below ARARs
556	06-016BH S	6,000 µg/kg	Reduce Below ARARs
557	S H8910-90	6,000 µg/kg	Reduce Below ARARs

Table F.1 (Continued)
IRP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

e, Recommendation	Dispose On-Site	Dispose On-Site	Dispose On-Site	Reduce Below ARARs	Dispose On-Site	Dispose On-Site	Reduce Below ARARs	Dispose On-Site	Reduce Below ARARs	Reduce Below ARARs	Reduce Below ARARs	Dispose On-Site	Dispose On-Site	Capase On-Site	Dispose On-Site				
Recommendation	Dispose On-Site	Dispose On-Site	Dispose On-Site	Reduce Below ARARs	Dispose On-Site	Dispose On-Site	Reduce Below ARARs	Dispose On-Site	Reduce Below ARARs	Reduce Below ARARs	Reduce Below ARARs	Dispose On-Site	Dispose On-Site	On-Site	Dispose On-Site				
Highest Level of Total Petroluem Hydrocarbons, Benzene, Toluene, Ethylbenzene, Total Xylenes, or Trichloroethylene	Non-Detect	Non-Detect	Non-Detect	6 μg/L Benzene	Non-Detect	Non-Detect	6 μg/L Benzene	Non-Detect	Non-Detect	Non-Detect	Non-Detect	Non-Detect	5 μg/L Benzene	5 μg/L Benzene	5 μg/L Benzene	Non-Detect	Non-Detect	Non-Detect	Non-Detect
Boring/MW	06-018MW S	06-018MW S	06-018MW S	06-018MW S&W	06-018MW S	06-018MW S	06-018MW W	06-019WW S	S WM610-90	S MW610-90	06-019MW S	06-019MW S	06-019MW S&W	06-019MW S&W	06-019MW S&W	06-020MW S	06-020MW S	06-020MW S	06-020MW S
Drum No.	558	559	995	561	562	563	564	565	995	567	568	569	570	571	572	573	574	575	576

Table F.1 (Continued)
IRP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

Recommendation	Dispose On-Site	Dispose On-Site	Dispose On-Site	Dispose On-Site	Dispose of in a Proper Landfill	Reduce Below ARARs													
Highest Level of Total Petroluem Hydrocarbons, Benzene, Toluene, Ethylbenzene, Total Xylenes, or Trichloroethylene	Non-Detect	Non-Detect	Non-Detect	Non-Detect								6 μg/L Benzene	6 μg/L Benzene	5 μg/L Benzene	5 μg/L Benzene	1,400 µg/L Benzene	1,400 μg/L Benzene	960 µg/L Benzene	960 µg/L Benzene
Boring/MW	06-020MW S	06-020MW S	06-020MW S	06-020MW S	ASPHALT	06-018MW DW	06-018MW DW	06-019MW DW	06-019MW DW	06-022MW DW	06-022MW DW	06-024MW DW	06-024MW DW						
Drum No.	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595

Table F.1 (Continued)
IRP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

Recommendation	Reduce Below ARARs	Dispose On-Site	Dispose On-Site	Reduce Below ARARs															
Highest Level of Total Petroluem Hydrocarbons, Benzene, Toluene, Ethylbenzene, Total Xylenes, or Trichloroethylene	1,200 μg/L Benzene	1,200 μg/L Benzene	1,800 μg/L Benzene	1,800 μg/L Benzene	15 µg/L Benzene	15 µg/L Benzene	24 µg/L Benzene	24 µg/L Benzene	36 µg/L Benzene	36 µg/L Benzene	Non-Detect	Non-Detect	4 μg/L Benzene	4 μg/L Benzene	Non-Detect	Non-Detect	0.6 µg/L Benzene	0.6 µg/L Benzene	7 μg/L TCE
Boring/MW	06-023MW DW	06-023MW DW	06-021MW DW	06-021MW DW	06-025MW DW	06-025MW DW	06-026MW DW	06-026MW DW	06-020MW DW	06-020MW DW	MWS-02 PW	MWS-02 PW	MWS-01 PW	MWS-01 PW	06-017MW PW	Md MML10-90	06-005MW PW	06-005MW PW	06-016MW PW
Drum No.	969	597	865	599	009	601	602	603	604	605	909	607	809	609	610	611	612	613	614

Table F.1 (Continued)
IRP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

		-	,					_											
Recommendation	Reduce Below ARARs																		
Highest Level of Total Petroluem Hydrocarbons, Benzene, Toluene, Ethylbenzene, Total Xylenes, or Trichloroethylene	7 µg/L TCE	4,200 μg/L Benzene	4,200 μg/L Benzene	74 μg/L Benzene	74 µg/L Benzene	60 μg/L Benzene	60 μg/L Benzene	29 μg/L Benzene	29 μg/L Benzene	19 μg/L Benzene	19 μg/L Benzene	15 μg/L Benzene	15 μg/L Benzene	8 µg/L Benzene	8 µg/L Benzene	6 μg/L Benzene	6 μg/L Benzene	1,200 µg/L Benzene	1,200 µg/L Benzene
Boring/MW	06-016MW PW	MWS-04 PW	MWS-04 PW	06-015MW PW	06-015MW PW	06-013MW PW	06-013MW PW	06-012MW PW	06-012MW PW	06-003MW PW	06-003MW PW	MW3-02 PW	MW3-02 PW	MWS-03 PW	MWS-03 PW	MW5-01 PW	MW5-01 PW	06-023MW PW	06-023MW PW
Drum No.	615	616	617	618	619	620	621	622	623	624	625	979	627	628	629	630	631	632	633

Table F.1 (Concluded)
RP Site No. 6 Drum Status
161st ARG, Arizona ANG, Phoenix, Arizona

		Highest Level of Total Petroluem Hydrocarbons, Benzene, Toluene, Ethylbenzene, Total Xylenes.	
Drum No.	Boring/MW	or Trichloroethylene	Recommendation
634	06-022MW PW	1,400 μ g/L Benzene	Reduce Below ARARs
635	06-022MW PW	1,400 μ g/L Benzene	Reduce Below ARARs
636	06-025MW PW	15 μg/L Benzene	Reduce Below ARARs
637	06-025MW PW	15 µg/L Benzene	Reduce Below ARARs
638	06-018MW PW	6 μg/L Benzene	Reduce Below ARARs
639	06-018MW PW	6 μg/L Benzene	Reduce Below ARARs
640	06-019MW PW	5 μg/L Benzene	Reduce Below ARARs
641	06-019MW PW	5 μg/L Benzene	Reduce Below ARARs
642	06-021MW PW	1,800 µg/L Benzene	Reduce Below ARARs
643	06-021MW PW	1,800 μg/L Benzene	Reduce Below ARARs
644	06-026MW PW	24 μg/L Benzene	Reduce Below ARARs
645	06-026MW PW	24 μg/L Benzene	Reduce Below ARARs
646	06-024MW PW	960 µg/L Benzene	Reduce Below ARARs
647	06-024MW PW	960 µg/L Benzene	Reduce Below ARARs
648	06-020MW PW	36 μg/L Benzene	Reduce Below ARARs
649	06-020MW PW	36 µg/L Benzene	Reduce Below ARARs

MW - Monitoring Well. S&W - Soil and Water. S - Soil. DW - Development Water.

PW — Purge Water. $\mu g/L = \text{micrograms per Liter.}$ ARARs — Applicable or Relevant and Appropriate Requirement.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX G

GROUNDWATER RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

Table G.1 Groundwater Level Measurement Data at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona

Well Number and Elevation of TOC (feet above MSL)	Measurement Date	Depth to Water from TOC	Groundwater Elevation (MSL)
	9/8/93	49.54	1,068.86
	12/9/93	52.18	1,066.22
MWS-01	2/10/94	56.90	1,061.50
	4/5/94	58.80	1,059.60
1,118.4	7/29/94	64.20	1,054.20
	1/12/95	62.64	1,055.76
	7/13/95	57.29	1,061.11
	9/8/93	48.84	1,066.77
	12/10/93	50.15	1,065.46
MWS-02	2/10/94	55.38	1,060.23
	4/8/94	57.25	1,058.36
1,115.61	7/29/94	62.45	1,053.16
	1/12/95	60.86	1,054.75
	7/13/95	55.37	1,060.24
	9/8/93	NM	NM
	12/18/93	51.95	1,063.89
MWS-03	2/10/94	55.91	1,059.93
	4/7/94	57.65	1,058.19
1,115.84	7/29/94	62.78	1,053.06
	1/12/95	60.96	1,054.88
	7/14/95	55.98	1,059.86
	9/8/93	50.57	1,064.10
	12/9/93	52.64	1,062.03
MWS-04	2/10/94	56.58	1,058.09
	4/7/94	58.15	1,056.55
1,114.67	7/30/94	63.09	1,051.58
	1/12/95	61.85	1,052.82
· · · · · · · · · · · · · · · · · · ·	7/14/95	56.68	1,057.99
	9/8/93	51.91	1,064.13
MW1-02	12/9/93	54.00	1,062.04
1V1 VV 1-UZ	2/10/94	57.74	1,058.30
1,116.04	4/7/94	59.45	1,056.59
1,110.04	7/29/94	64.50	1,051.54
	1/13/95	62.87	1,053.17
	9/8/93	50.38	1,063.82
MW2-02	12/9/93	52.49	1,061.71
171 77 2-02	2/10/94	56.14	1,058.06
1,114.20	4/7/94	57.85	1,056.35
1,117.20	7/28/94	62.89	1,051.31
	1/12/95	NM	NM

Table G.1 (Continued)
Groundwater Level Measurement Data at IRP Site No. 6
161st ARG, Arizona ANG, Phoenix, Arizona

Well Number and Elevation of TOC (feet above MSL)	Measurement Date	Depth to Water from TOC	Groundwater Elevation (MSL)
	9/8/93	49.98	1,064.79
MW3-01	12/10/93	52.05	1,062.72
IVI W 3-01	2/10/94	55.81	1,058.96
1,114.77	4/6/94	57.50	1,057.27
1,114.//	7/28/94	62.68	1,052.09
-	1/12/95	NM	NM
	9/8/93	NM	NM
	12/10/93	51.50	1,060.64
MW3-02	2/10/94	54.89	1,057.25
171773 02	4/6/94	56.40	1,057.25
1,112.14	7/28/94	61.58	
1,112.14	1/10/95	61.58	1,050.56
	7/14/95	55.5	1,050.56 1,056.64
	9/8/93	50.09	1,066.71
MW5 01	12/9/93	52.20	1,064.60
MW5-01	2/10/94	56.63	1,060.17
1 116 00	4/8/94	58.52	1,058.28
1,116.80	7/29/94	63.76	1,053.04
	1/10/95	63.02	1,053.78
	7/14/95	57.12	1,059.68
	9/8/93	48.32	1,065.54
PS-02	12/10/93	49.10	1,064.76
15-02	2/10/94	54.72	1,059.14
1,113.86	4/7/94	57.64	1,056.22
1,113.00	7/30/94	61.89	1,051.97
	1/12/95	NM	NM
	12/10/93	50.45	1,064.69
	12/10/93	50.50	1,064.64
06-001MW	2/9/94	54.93	1,060.21
	2/10/94	54.91	1,060.23
1,115.86	4/7/94	56.75	1,058.39
	7/29/94	61.93	1,053.21
	1/12/95	NM	NM
	12/17/93	51.11	1,064.65
	12/18/93	55.44	1,060.32
06-002MW	2/9/94	55.46	1,060.30
	2/10/93	55.44	1,060.32
1,115.76	4/8/94	57.28	1,058.48
-,	7/29/94	62.48	1,053.28
	1/12/95	NM	NM

Table G.1 (Continued)
Groundwater Level Measurement Data at IRP Site No. 6
161st ARG, Arizona ANG, Phoenix, Arizona

Well Number and Elevation of TOC (feet above MSL)	Measurement Date	Depth to Water from TOC	Groundwater Elevation (MSL)
06-003MW 1,116.91 06-004MW 1,115.79	12/8/93 12/9/93 2/10/94 4/9/94 7/28/94 1/10/95 7/14/95 12/8/93 12/9/93 2/4/94 2/8/94	55.07 55.20 55.25 60.80 65.92 64.81 59.25 54.15 54.18 58.80 57.71 57.72	1,061.84 1,061.71 1,061.66 1,056.11 1,050.99 1,052.10 1,057.66 1,061.64 1,061.61 1,056.99 1,058.08 1,058.07
	4/8/94 7/26/94 1/12/95	59.50 64.11 NM	1,056.29 1,051.68 NM
06-005MW 1,108.46	2/2/94 2/3/94 2/7/93 2/10/94 4/5/94 7/26/94 1/11/95 7/13/95	55.30 55.35 55.45 55.45 56.78 61.78 61.74 56.29	1,053.16 1,053.11 1,053.01 1,053.01 1,051.68 1,046.68 1,046.72 1,052.17
06-006MW 1,115.63	12/8/93 12/9/93 2/8/94 2/9/94 2/10/94 4/8/94 7/27/94 1/13/95	54.84 54.95 58.35 58.55 58.59 60.00 64.72 65.40	1,060.79 1,060.68 1,057.28 1,057.08 1,057.04 1,055.63 1,050.91 1,050.23
06-007MW 1,115.67	12/17/93 12/18/93 2/8/94 2/10/94 4/9/94 7/28/94 1/12/95	55.65 55.66 59.70 59.72 61.40 66.40 NM	1,060.02 1,060.01 1,055.97 1,055.95 1,054.27 1,049.27 NM

Table G.1 (Continued)
Groundwater Level Measurement Data at IRP Site No. 6
161st ARG, Arizona ANG, Phoenix, Arizona

Well Number and Elevation of TOC (feet above MSL)	Measurement Date	Depth to Water from TOC	Groundwater Elevation (MSL)
06-008MW 1,116.14	12/8/93 12/9/93 2/2/94 2/9/94 2/10/94 4/9/94 7/27/94 1/12/95	54.04 55.10 58.39 58.70 58.69 60.34 65.20 NM	1,062.10 1,061.04 1,057.75 1,057.44 1,057.45 1,055.80 1,050.94 NM
06-009MW 1,114.89	12/8/93 12/9/93 2/9/94 2/10/94 4/7/94 7/30/94 1/12/95	51.14 55.56 55.56 55.55 57.20 62.50 NM	1,063.75 1,059.33 1,059.33 1,059.34 1,057.69 1,052.39 NM
06-010MW 1,115.37	12/17/93 12/18/93 2/9/94 2/10/94 4/8/94 7/26/94 1/12/95	51.15 51.22 55.05 55.07 56.90 62.04 NM	1,064.22 1,064.15 1,060.32 1,060.30 1,058.47 1,053.33 NM
06-011MW 1,113.67	12/17/93 12/18/93 2/8/94 2/9/94 2/10/94 4/6/94 7/27/94 1/12/95	52.65 52.71 58.01 58.24 58.27 59.64 64.65 NM	1,061.02 1,060.96 1,055.66 1,055.43 1,055.40 1,054.03 1,049.02 NM
06-012MW 1,113.87	12/18/93 12/19/93 2/7/94 2/9/94 2/10/94 4/6/94 7/27/94 1/11/95 7/14/95	52.75 52.88 58.14 58.41 58.42 59.78 64.85 64.67 58.85	1,061.12 1,060.99 1,055.73 1,055.46 1,055.45 1,054.09 1,049.02 1,049.20 1,055.02

Table G.1 (Continued)
Groundwater Level Measurement Data at IRP Site No. 6
161st ARG, Arizona ANG, Phoenix, Arizona

Well Number and Elevation of TOC (feet above MSL)	Measurement Date	Depth to Water from TOC	Groundwater Elevation (MSL)
06-013MW	12/22/93 12/23/93 2/8/94 2/9/94 2/10/94	52.98 53.04 57.63 57.93 57.98	1,060.87 1,060.81 1,056.22 1,055.92 1,055.87
1,113.85	4/6/94 7/27/94 1/11/95 7/13/95	59.30 64.16 63.84 57.87	1,054.55 1,049.69 1,050.01 1,055.98
06-014MW 1,112.41	2/2/94 2/3/94 2/7/94 2/9/94 2/10/94 4/5/94 7/27/94	58.02 58.12 58.16 58.43 58.45 59.60 64.74	1,054.39 1,055.73 1,054.25 1,053.98 1,053.96 1,052.81 1,047.67
06-015MW 1,113.46	2/2/94 2/3/94 2/7/94 2/10/94 4/5/94 7/26/94 1/11/95 7/14/95	59.26 59.23 59.33 59.34 60.72 65.75 65.56 60.06	1,054.20 1,054.23 1,054.13 1,054.12 1,052.74 1,047.71 1,047.90 1,053.40
06-016MW 1,111.86	2/2/94 2/3/94 2/7/94 2/10/94 4/5/94 7/26/94 1/11/95 7/13/95	58.66 58.75 58.87 58.90 60.20 65.25 64.98 59.6	1,053.20 1,053.11 1,052.99 1,052.96 1,051.66 1,046.61 1,046.88 1,052.26
06-017MW 1,111.86	2/2/94 2/3/94 2/7/94 2/10/94 4/6/94 7/27/94 1/11/95 7/13/95	55.30 57.35 57.45 57.50 58.97 64.13 64.22 58.45	1,056.56 1,054.51 1,054.41 1,054.36 1,052.89 1,047.73 1,047.64 1,053.41
06-018MW 1,108.78	7/13/95 8/9/95	56.02 57.58	1,052.76 1,051.20

Table G.1 (Concluded) Groundwater Level Measurement Data at IRP Site No. 6 161st ARG, Arizona ANG, Phoenix, Arizona

Well Number and Elevation of TOC (feet above MSL)	Measurement Date	Depth to Water from TOC	Groundwater Elevation (MSL)
06-019MW	7/13/95	59.41	1,052.53
1,111.94	8/9/95	61.09	1,050.85
06-020MW 1,116.57	7/13/95 8/10/95	55.5 57.79	1,061.07 1,058.78
06-021MW	7/13/95	56.1	1,058.21
1,114.31	8/8/95	58.02	1,056.29
06-022MW	7/13/95	54.06	1,060.15
1,114.21	8/8/95	56.15	1,058.06
06-023MW	7/13/95	55.73	1,058.69
1,114.42	8/8/95	57.83	1,056.57
06-024MW	7/13/95	55.39	1,059.73
1,115.12	8/10/95	57.74	1,057.38
06-025MW	7/13/95	55.07	1,060.49
1,115.56	8/8/95	57.09	1,058.47
06-026MW	7/13/95	55.5	1,060.05
1,115.55	8/9/95	57.27	1,058.28

TOC - Top of casing.

MSL - Mean sea level.

MW and MWS - Monitoring Well.

APPENDIX H

ADEQ HUMAN HEALTH-BASED GUIDANCE LEVELS FOR THE INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

THIS PAGE INTENTIONALLY LEFT BLANK

HUMAN HEALTH-BASED GUIDANCE LEVELS FOR THE INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

Arizona Department of Environmental Quality June 1992

NOTICE

The Health-Based Guidance Levels listed in this document are not to be construed as cleanup standards. Rather, they constitute a set of consistently derived health-based levels that may be useful for reference in environmental work.

The Arizona Department of Environmental Quality shall preserve, protect and enhance the environment and the public health and shall be a leader in the development of public policy to maintain and improve the quality of Arizona's air, land and water resources.

NOTICE

The Health-Based Guidance Levels listed in this document are not to be construed as cleanup standards. Rather, they constitute a set of consistently derived health-based levels that may be useful for reference in environmental work.

Suggestions or comments on this document may be sent to:

Charles Graf Arizona Department of Environmental Quality P. O. Box 600 Phoenix, AZ 85001-0600

KEY TO THE TABLE OF GUIDANCE LEVELS FOR THE INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

I. GENERAL INFORMATION

INTRODUCTION:

The accompanying table lists 268 chemicals for which there were sufficient data to develop health-based guidance levels (HBGLs) for drinking water. These data also served as the basis for calculating health-based guidance levels for ingestion of soils. The drinking water and soil HBGLs represent human ingestion levels that are unlikely to result in adverse health effects during long-term exposure; they are designed to protect against toxic doses of systemic toxicants and to limit to one-in-one-million (10-6) the excess cancer risk level for carcinogenic compounds.

The HBGLs were developed by the Office of Risk Assessment and Investigation, Arizona Department of Health Services (ADHS), using a consistent health-risk analysis methodology which is summarized in the following paragraphs and described more thoroughly in Appendix A. The toxicological data required for each chemical using this methodology are tabulated in Appendix B. It is emphasized that the HBGLs listed in the accompanying table apply only to ingestion of drinking water and soil. They do not reflect inhalation or direct contact risks, nor are they applicable to aquatic systems and wildlife. In addition, the soil ingestion HBGLs do not take into account each chemical's capability to leach to groundwater. Most importantly, the drinking water and soil HBGLs have not been subjected to the Arizona rule-making process. They therefore have no official status with respect to enforcement as cleanup standards. Rather, the HBGLs constitute a set of consistently-derived health-based levels that may be useful for reference in environmental work. However, the HBGLs are not intended, nor can they be relied upon, to create any rights enforceable by any party in litigation with the State of Arizona.

The HBGLs tabulated in this document were developed by the ADHS under contract to the Arizona Department of Environmental Quality (ADEQ). The following sources provided most of the information to the ADHS for developing the HBGLs: Environmental Protection Agency (EPA) data appearing in the Federal Register, EPA Health Effects Assessment Summary Tables (HEAST), EPA Integrated Risk Information System (IRIS), National Pesticide Information Retrieval System (NPIRS) and the National Academy of Science Drinking Water and Health series.

CHANGES FROM SEPTEMBER 1990 DRAFT:

Based on comments submitted to the ADEQ and ADHS on the original draft of this document (September 1990), numerous changes have been incorporated into this revision. The following list summarizes the most significant of these improvements:

- 1. This HBGL list includes 268 chemicals, up 38 from the September 1990 draft. Four chemicals on the previous list - aluminum, bendiocarb, cobalt, and δ hexachlorocyclohexane - were dropped from this list because toxicity data were judged by the ADHS to be insufficient to develop HBGLs. Many of the new chemicals on the list are polycyclic aromatic hydrocarbons (PAH). Because these specific PAH compounds (designated in the table) have been added, the generic entry included on the previous list, Polycyclic Aromatic Hydrocarbons, was removed from this list. HBGL values for many chemicals have changed since the September 1990 draft due to publication of more up-to-date toxicity data. Consistent with the September 1990 draft, there is no entry for Total Petroleum Hydrocarbons (TPH), because TPH is a variable mixture of chemicals having differing toxicities. However, several of the individual chemicals composing TPH are listed.
- The description of the methodology for calculating HBGLs (Appendix A) has been greatly expanded.
- 3. The toxicological data necessary to calculate HBGLs for each chemical are now tabulated in this document (Appendix B).
- More precise carcinogenicity and toxicity designations have been adopted for the Cancer Group column. These designations (A, B1, B2, C, etc.) are consistent with EPA use.
- 5. The method for calculating the Soil Ingestion HBGL has been modified. The calculations are now based on a 30-year exposure rather than a 70-year exposure (see Appendix A for details). This has resulted in Soil Ingestion HBGLs for most carcinogenic chemicals that are greater than the HBGLs indicated in the September 1990 draft and for most systemic toxicants that are less than the HBGLs indicated in the September 1990 draft.

6. In the September 1990 draft, data regarding laboratory analytical capabilities were provided in two columns, Lab Confidence Limit and Lab Detection Limit. In this document, the terminology Laboratory Level of Quantitation (LOQ) replaces Lab Confidence Limit. The second column of data, Lab Detection Limit, was dropped from this document. In its place, a more useful indicator of laboratory performance by Arizona laboratories is presented: Licensed Laboratory Range. More detailed definitions of these headings as well as the other headings appearing in the table are given below.

II. EXPLANATION OF TABULATED INFORMATION

A. GENERAL HEADINGS

CHEMICAL - Chemicals are listed by names in common use by the EPA and other agencies. Many of the chemicals have one or more synonyms or acronyms. Appendix C cross-references more common synonyms and acronyms. Standard chemical references may be needed to find less common synonyms and acronyms.

CAS NUMBER - The chemical abstract service registry number (CASRN) is provided as a means of verifying entries for chemicals having multiple names. CAS numbers can be found in standard chemistry references.

CANCER GROUP - Most chemicals in the table have been subjected to a weight-of-evidence assessment by the EPA to evaluate potential human carcinogenicity. Based on this evaluation, all chemicals have been placed in one of the following categories:

A Human carcinogen

B1 or B2 Probable human carcinogen

C Possible human carcinogen

D Not classifiable as to human carcino-

genicity

E Evidence of noncarcinogenicity in humans

ND Evaluation not done

HBGLs for known or probable human carcinogens (A, B1 or B2) were derived from a quantitative estimate of the chemical's carcinogenic potency. The HBGLs for carcinogens were calculated so that a 70-year exposure to the contaminant in drinking water or a 30-year exposure to the contaminant in soil results in a lifetime excess cancer risk below 10⁻⁶.

Chemicals in the remaining categories (C, D, E and ND) were considered systemic toxicants. HBGLs for these chemicals were derived according to EPA risk assessment methods using a reference dose, a drinking water equivalent, a safety factor, and a factor for relative source contribution. In general, an HBGL for a systemic toxicant

is an estimate of a daily exposure to the human population (including sensitive subgroups) that is unlikely to result in adverse effects during long-term exposure.

B. DRINKING WATER

INGESTION HBGL - Health-Based Guidance Level values for chemical contaminants in drinking water are expressed in µg/l (micrograms per liter) and were developed through the risk assessment process. The values presented in this column have not been altered or adjusted to account for factors such as laboratory methodology limits, economics or offsetting health benefits. The drinking water HBGLs have not been subjected to the Arizona rule-making process and therefore have no official status with respect to enforcement as cleanup standards. Rather, they constitute a set of consistently-derived healthbased levels that may be useful for reference in environmental work. However, the HBGLs are not intended, nor can they be relied upon, to create any rights enforceable by any party in litigation with the State of Arizona.

EPA MCL - Environmental Protection Agency Maximum Contaminant Level (MCL) values presented in this column are expressed in μ g/l and represent the current legal enforceable drinking water standards as promulgated by the EPA. MCLs are enforced in Arizona by the ADEQ. As specified by the EPA, state MCLs must be no less stringent than the MCLs established by the EPA. (To date all state-adopted MCLs are identical to EPA MCLs).

EPA MCLs listed in the table reflect consideration of certain risk management factors such as laboratory methodology limits, economics or offsetting health benefits. In some cases, the MCL may differ from the HBGL because of these factors or because the standard setting process lags behind the introduction and acceptance of new health-based data.

EPA PROPOSED MCL - Environmental Protection Agency Proposed Maximum Contaminant Level (PMCL) values presented in this column are expressed in $\mu g/L$ and were published by the EPA in the Federal Register. Some of these values will become MCLs for previously unregulated chemicals while others either reaffirm or modify existing MCLs.

STATE LAB LOQ - Laboratory Level of Quantitation values, presented for information purposes only, are expressed in $\mu g/l$ and reflect the most current data available for laboratory operating practices in the Office of Environmental and Analytical Chemistry at the State Laboratory. The LOQ is defined as the lowest level that can be reliably quantitated by the State Laboratory during routine laboratory operating conditions. Other laboratories may achieve different levels using different methods or equipment. A term similar to the LOQ is the Practical Quantitation Limit (PQL) used by the EPA. The PQL

expresses the same concept as the LOQ, but with the difference that the PQL assesses the performance of a sample of laboratories examined by the EPA. Laboratory detection levels achieved by the State Laboratory typically range from 0.1 to 1 times the LOQ. Listing of an HBGL value in this document does not imply that laboratories can or must attain corresponding levels of detection. The HBGL values are derived solely from toxicological data and do not take into account the achievability of such levels by laboratories.

LICENSED LABORATORY RANGE - This column lists the highest and lowest reporting values found in a survey of ten Arizona licensed laboratories in February, 1992. These are provided to illustrate the range of values that may be reported from several different laboratories for the same analyte. Where one value is reported, either all laboratories which perform that test used the same reporting level, or only one of the surveyed laboratories performs that test. The reporting values submitted by each surveyed laboratory may not necessarily be the same as the laboratory's corresponding LOQs.

C. SOIL

INGESTION HBGL - Ingestion Health-Based Guidance Level values for chemical contaminants in soil are expressed in mg/kg (milligrams per kilogram) and were based on an average daily ingestion of soil during a 30-year exposure. The average soil ingestion values suggested by the EPA are 0.2 g/d (grams per day) for children 1-6 years of age and 0.1 g/d for ages 7-70. The soil ingestion HBGLs for known or probable carcinogens (A, B1 or B2) are calculated so that a 30-year exposure to the contaminant in soil results in a lifetime excess cancer risk below 10-6. The soil ingestion HBGLs for chemicals in the remaining categories (C, D, E and ND) are calculated to result in the same daily dose of a contaminant as would be experienced as a consequence of ingesting 2 l/d (liters per day) of water containing the contaminant at the drinking water HBGL.

It is emphasized that the soil ingestion HBGLs do not reflect inhalation or direct contact risks, nor are they applicable to aquatic systems and wildlife. In addition, the soil ingestion HBGLs do not take into account each chemical's capability to leach to groundwater. They are therefore inappropriate to use as reference levels or guidelines if leaching to groundwater is a concern.

The soil ingestion HBGLs have not been subjected to the Arizona rule-making process and therefore have no official status with respect to enforcement as cleanup standards. Rather, the HBGLs constitute a set of consistently-derived health-based levels that may be useful for reference in environmental work. However, the HBGLs are not intended, nor can they be relied upon, to create any rights enforceable by any party in litigation with the State of Arizona.

If a soil ingestion guidance level for the "worst possible case" is desired (involving an individual prone to eating soil, such as a child with pica), this level may be calculated by dividing the tabulated soil ingestion HBGL by 100. At this level, an individual in the 1-6 year age range eating 10 g/d of soil would receive approximately the same daily exposure from soil ingestion as by drinking 2 l/d of water containing the contaminant at the drinking water HBGL.

The use of a consistent methodology for determining the soil ingestion HBGLs has led, in a few cases, to results that are not physically possible. (For example, the soil ingestion HBGL for trichlorotrifluoroethane is listed as 3,500,000 mg/kg). Nevertheless, these results have been included in the table, without modification, in order to provide a uniform set of numbers for comparison. Such a result merely indicates that the weight of soil ingested on a daily basis, even assuming unrealistically that the soil is composed entirely of pure chemical, is still too small to produce an excess exposure.

STATE LAB LOQ - Laboratory Level of Quantitation values, presented for information purposes only, are expressed in mg/kg and reflect the most current data available for laboratory operating practices in the Office of Environmental and Analytical Chemistry at the State Laboratory. The LOQ is defined as the lowest level that can be reliably quantitated by the State Laboratory during routine laboratory operating conditions. Other laboratories may achieve different levels using different methods or equipment. A term similar to the LOQ is the Practical Quantitation Limit (PQL) used by the EPA. The PQL expresses the same concept as the LOQ, but with the difference that the PQL assesses the performance of a sample of laboratories examined by the EPA. Laboratory detection levels achieved by the State Laboratory typically range from 0.1 to 1 times the LOQ. Listing of an HBGL value in this document does not imply that laboratories can or must attain corresponding levels of detection. The HBGL values are derived solely from toxicological data and do not take into account the achievability of such levels by laboratories.

LICENSED LABORATORY RANGE - This column lists the highest and lowest reporting values found in a survey of ten Arizona licensed laboratories in February, 1992. These are provided to illustrate the range of values that may be reported from several different laboratories for the same analyte. Where one value is reported, either all laboratories which perform that test used the same reporting level, or only one of the surveyed laboratories performs that test. The reporting values submitted by each surveyed laboratory may not necessarily be the same as the laboratory's corresponding LOQs.

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLs) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

			OBINKING HATER	LATED				;
	_	INGESTION	- EPA	STATE LAB	LICIAB	INGESTION	SOIL INGESTION STATE LAB	NC A A B
CHEMICAL	CAS CANCER ' NUMBER GROUP	HBGΓ (π3/Γ) (мс́ι рмс́ι (μg/L) (μg/L)	1/6π)	RANGE (µg/L)	HBGL (mg/kg)	LOQ (mg/kg)	LIC LAB RANGE (mg/kg)
33. BORON 34. BROMACIL 35. BROMODICHLOROMETHANE (THM) 36. BROMOFORM (THM) 37. BROMOMETHANE	7440-42-8 D 314-40-9 C 75-27-4 B2 75-25-2 B2 74-83-9 D	630 91 0.27 4.4 9.8	100	100 20 0.5 2.0 2.0	10-100 0.2-5.0 0.2-5.0 0.2-10	11000 1500 10 170 160	50 2.0	0.5-5 0.33 0.01-20 0.01-20 0.01-50
38. BROMOXYNIL 39. BUTYL BENZYL PHTHALATE 40. BUTYLATE	1689-84-5 D 85-68-7 C 2008-41-5 D	140 110 350	100	10 .5.0	5-50 20	2300 1900 5800	1.0	0.66
	7440-43-9 0 133-06-2 0 63-25-2 0 1563-66-2 E 75-15-0 0	3.5 910 700 35 700	5.0	1.0 30 1.0 1.0	0.2-50 50 10 10	58 15000 12000 580 12000	10 6.0 20 10	0.3-10 0.05-3.3 0.33-0.66 0.66-1.7 0.05-0.10
	56-23-5 82 5234-68-4 D 133-90-4 D 57-74-9 82 6164-98-3 82	0.27 700 110 0.03 0.03	5.0	0.5 10 1.0+ 0.5	0.2-5.0 20 10 0.5-1.5	10 12000 1800 1.0	1.0	0.01-30 1.3 0.66 0.05-0.5
51. CHLOROBENZENE 52. CHLOROFGRM (THM) 53. CHLOROMETHANE 54. 2-CHLOROPHENOL 55. CHLOROFHALONIL	108-90-7 D 67-66-3 B2 74-87-3 C 95-57-8 D 1897-45-6 B2	140 5.7 2.8 35	100	1.0 0.5 0.5 10	0.2-10 0.2-25 0.2-5.0 5-10 1.0	2300 220 47 580 470	0.25	0.01-40 0.01-50 0.01-40 0.3-0.83 0.05
56. o-CHLOROTOLUENE 57. CHLORPYRIFOS 58. CHLORSULFURON 59. CHROMIUM (TOTAL) 60. CHRYSENE (PAH)	95-49-8 D 2921-88-2 D 64902-72-3 D NA D 218-01-9 B2	140 21 350 100 ##	100 0.20	0.1.0	0.5-1.0	2300 350 5800 1700 0.11	1.0	0.05-0.1 0.05-1.0 0.5-25 0.17-0.3
61. COPPER 62. CRESOLS (TOTAL) 63. CYANAZINE 64. CYANIDE 65. CYROMAZINE	7440-50-8 D	1300 ## 350 14 150 53	77 200	10 10 20 *	10-100	22000 5800 230 2600 880	10 - 1.0 0.2 6.0	0.5-10
NOTES: TI Treatment Technology NA Not Available ND Not Determined THM Trihalomethane PAH Polycyclic Argustic	* not recovered from water in lab studies + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed	** no RfD; xx no Slop ## HBGL no	<pre>** no RfD; HBGL based on Slo xx no Slope Factor; HBGL bas ## HBGL not based on RfD or</pre>	Slope Factor based on RfD or Slope Factor	bivide indica obtain "worst ual prone to	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica)	sstion HBGL been involving	y 100 to y an individ- d with pica).

NA Not Available
ND Not Determined
IHM Trihalomethane
PAH Polycyclic Aromatic

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLS) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

							10.101	
CHEMICAL	CAS CANCER NUMBER GROUP	1NGESTION HBGL (µg/L)	HCL FPA PHCL (μg/L) (μg/L)	STATE LAB LOQ (µg/L)	LIC LAB RANGE (µg/L)	INGESTION HBGL (mg/kg)	STATE LAB LOQ (mg/kg)	LIC LAB RANGE (mg/kg)
A								
1. ACENAPHTHYLFUE (PAH)	208-96-8 D	420		10	0.3-10	7000	1.0	0.2-0.8
2. ACEPHATE	30560-19-1 C	2.8		*		. 25	2.0	9.0
		200		10	10-100	12000	ı	0.1-0.5
4. ACROLEIN		110		•	5-20	1800	,	
5. ACRYLAMIDE	79-06-1 82	0.008	ΙĬ	•	,	0.30	•	•
6 ACRYLONITRILE	107-13-1 81	0.07		ŧ	5-20	2.5	,	•
		0.43	2.0	10	25	17	1.0	
		9.1	3.0	1,0		150	1.0	•
		2.1	2.0	•	,	35	1.0	
	1646-87-3 0	9.1	0.4	1.0	1	150	1.0	
11. ALDRIN	309-00-2 82	0.002		0.05	0.5-1.0	0.08	0.05	0.005-0.2
		63		10	1.0	1100	1.0	0.1-1.3
		1400		•	•	23000	,	•
	120-12-7 D	2100		10	5-10	35000	1.0	0.17-0.2
15. ANTIMONY	7440-36-0 D	2.8	5.0/10	2.0	0.5-200	25	100	0.15-20
16. ARSENIC (INORGANIC)		## 05	50	10	4-100	840	100	0.1-20
		350		• ;	1 (5800	, (, ,
	1912-24-9 C	3.5	3.0	10	12	28	0.0	0.1-1.5
19. AZINPNOS-METHYL	80-30-0 E	9		o. o	001-00	067	0.	0.1-0.0
8								
	7440-39-3 D	5000 ##	2000	100	10-1000	33000	10	0.5-100
		350			: 0	5800	•	
22. BENIAZON	, U U-88-15052 , Ea E = E = E = E = E = E = E = E = E =	18	¢	+0.7	10	230	, c	0.00
		1.2	5.0	0.1	0.2-50	75	0.1	0.01-20
		0.0002	•	: (20-100	0.006	0.1	1.7
BENZO(a)PYRENE (PAH)		0.003	0.20	10	0.01-10	11.0	1.0	0.17-0.3
BENZO [b] FLUORANTHENE		0.003	0.20	200	0.01-10	0.11	0.0	0.17-0.66
ZG. BENZU[K]FLUUKANIHENE (PAH) 20. BENZYI ALCOHOL	100-51-4 NO	2100	0.40	2 €	2-10	35000	 	0.17-0.3
	- 1	2017		2	2	00000	۲	20.0
		0.008	1.0	0.5	5-100	0.32	10	0.3-10
31. BIS(2-CHLOROETHYL)ETHER 32. BIS(2-CHLOROISOPROPYL)ETHER	111-44-4 B2 39638-32-9 ND	0.03		0 1	5-10 5-50	4700	0.0	0.17-2.5
ł	-1							

NOTES: IT Treatment Technology
NA Not Available
ND Not Determined
TMM Trihalomethane
PAH Polycyclic Aromatic

Hydrocarbon

* not recovered from water in lab studies + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed

** no RfD; HBGL based on Slope Factor xx no Slope Factor; HBGL based on RfD ## HBGL not based on RfD or Slope Factor

Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica).

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLS) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

СНЕНІСАГ	CAS CANCER . NUMBER GROUP	INGESTION HBGL (µg/L)	MCL EPA — DKIN (Hg/L) (Hg	PHCL LOQ (#9/L) (#9/L)	(B LIC LAB RANGE (μg/L)	INGESTION HBGL (mg/kg)	SOIL INGESTION STATE LAB LOQ (mg/kg)	LIC LAB RANGE (mg/kg)
D 66. 2,4-D 67. DALAPON 68. DCPA 69. DDD 70. DDE	94-75-7 D 75-99-0 D 1861-32-1 D 72-54-8 B2 72-54-9 B2	70 210 3500 0.15 0.10	20 2	0.5 13+ 10 0.1	0.4 4.0-50 0.1-10 0.1-10	1200 3500 58000 5.7 4.0	0.5	0.4 3.3 0.01-0.1 0.01-0.2
71. DDT 72. DDT/DDD/DDE (TOTAL) 73. DTAZINON 74. D1BENZ[a,h]ANTHRACENE (PAH) 75. D1BROMOCHLOROMETHANE (THM)	50-29-3 82 NA 82 333-41-5 E 53-70-3 82 124-48-1 C	0.10 0.10 6.3 0.003	100	0.1 0.30 10 1.0	0.1-10 0.5-10 0.1-10 0.2-5	4.0 4.0 110 0.11 230	1.0	0.01-0.2 0.01 0.1-66 0.2-0.83 0.01-20
76. 1,2-DIBROMO-3-CHLOROPROPANE 77. DIBUTYL PHTHALATE 78. DICAMBA 79. DICHLOBENIL 80. 1,2-DICHLOROBENZENE	96-12-8 B2 84-74-2 D 1918-00-9 D 1194-65-6 D 95-50-1 D	0.03 700 210 3.5 620	0.20	0.01	0.005-5 5 3.0 - 0.5-10	1.2 12000 3500, 58 10000	1.0	0.003 0.3-1.6 0.04 0.05 0.05
81. 1,3-DICHLOROBENZENE 82. 1,4-DICHLOROBENZENE 83. 3,3'-DICHLOROBENZIDINE 84. DICHLORODIFLUOROMETHANE 85. 1,2-DICHLOROETHANE	541-73-1 0 106-46-7 C 91-94-1 B2 75-71-8 0 107-06-2 B2	620 70 0.08 1400 0.38	75	1.0 1.0 20 0.5 0.5	0.5-10 0.5-10 20 0.2-5.0	10000 1200 3.0 23000 15	1.0	0.02-20 0.025-20 0.34 0.010-50
86. 1,1-DICHLOROETHYLENE 87. cis-1,2-DICHLOROETHYLENE 88. trans-1,2-DICHLOROETHYLENE 89. 2,4-DICHLOROPHENOL 90. 1,2-DICHLOROPANE	75-35-4 C 156-59-2 D 156-60-5 D 120-83-2 D 78-87-5 B2	6.3 70 140 21 0.51	7.0 70 100 5.0	0.5 0.5 10 10 0.5	0.2-0.5 0.2-0.5 0.2 5-10 0.2-5.0	110 1200 2300 350 20		0.010-20 0.010-20 0.010-20 0.03-66 0.01-20
91. 1,3-DICHLOROPROPENE 92. DICLORAN 93. DICGFOL 94. DIELDRIN 95. DIETHYL PHTHALATE	542-75-6 B2 99-30-9 E 115-32-2 C 60-57-1 B2 84-66-2 D	0.19 180 0.08 ** 0.002 5600		0.5 10 20 0.1 10	0.1-10	7.6 2900 3.1 0.09 94000	2.0 2.0 0.1 1.0	0.01-20
96. DI(2-ETHYLHEXYL)ADIPATE 97. DI(2-ETHYLHEXYL)PHTHALATE	103-23-1 C 117-81-7 B2	490	5(500 10+ 4.0 10	10	8200 97	1.0	0.17
NOTES: IT Treatment Technology NA Not Available ND Not Determined THM Trihalomethane PAH Polycyclic Aromatic Hydrocarbon	* not recovered from water in lab stud + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed	es	no RfD; HBGL based on Slope Factor no Slope Factor; HBGL based on RfD HBGL not based on RfD or Slope Fac	** no RfD; HBGL based on Slope Factor XX no Slope Factor; HBGL based on RfD ## HBGL not based on RfD or Slope Factor		ated soil ing t possible car eating soil	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica)	' 100 to an individ- I with pica).

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLs) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

		Į,	L			DRINKING WATER	ATER			SOIL INGESTION	NOI
	CHEMICAL	CAS CAN NUMBER GR	CANCER	INGESTION HBGL (μg/L)	EPA MCL (μg/L)	A PMCL (μg/L)	STATE LAB LOQ (µg/L)	LIC LAB RANGE (μg/L)	INGESTION HBGL (mg/kg)	STATE LAB LOQ (mg/kg)	LIC LAB RANGE (mg/kg)
98.	DIFENZOQUAT	43222-48-6	0 6	560					0076	,	,
100	DIMETHOATE		ے د	200			, ç	۱ (0076	, ,	, ,
101.	2,4-DINITROPHENOL	51-28-5	2 운	14			20 2	10-50	2,52	0.0	0.15-1.5
102.	2,4-DINITROTOLUENE	121-14-2	82	0.05			10	5-10	2.0	1.0	0.17-0.66
103.		88-85-7	. 0	7.0		7.0	0.5	0.2-20	120		0.05-0.66
. 104.		123-91-1	82	3.2			•	•	120	,	,
50.		957-51-7	٥	210			10	20	3500	1.0	1.3-2.0
100.	1,2-DIPHENTLHYDRAZINE	122-66-7	82	0.04				10-20	1.7		0.17
	Tallburg Lyon In	7-00-69	<u> </u>	()		70	•		260	ı	•
108.		298-04-4	ш	0.28			10	0.5-10	4.7	1.0	0.1-1.0
110	DIUKUN DDX-MA316	330-54-1	٥ :	14			20	4	230	2.0	0.17
		5-17-11761	€	15			1		1500		r
111	FUNDSHIFAN	4 CC T-4		L P							
112.		1-52-51	- c	140		100	0.2	0.1-10	5.8	0.2	0.01-0.2
113.		72-20-8	ш	2.1	0.20	2.0		0 1-10	0067	, ,	, ,
114.	EPICHLOROHYDRIN ETMEGHON		B2	3.5	i L) i	- ; ;	2 '	140		2.0-10.0
		166/2-87-0	۵	35			,	ı	580	,	,
116.	EPTC		0	180			10		2900	2.0	0.017
118.		100-41-4	D R2	7000	700		1.0	0.5-10	12000	0.25	0.025-40
119.				14000			2000	10.003-0.01	20.02	. (0.002
120.	ETHYLENE THIOUREA		82	76.0) '	2 1	38		5.0-1.0
121.	N-ETHYLTOLUENE SULFONAMIDE	26914-52-3	ON.	18			•		290		
			-								
122.	FENAMIPHOS		01	1.8			10	100	59	1.0	0.66
		51430-58-3	<u>S</u>	460			10	70	2600	1.0	2.6
			2 0	01			0 2	•	2900	1.0	•
			۵ ۵	280			10 20	0.03-10	1500	0 C	- 7 0 17-0 3
	10 4 4 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5									2	1.0
128.	FLUORIDE	86-73-7 7782-41-4	0 0	280	4000		10 200	0.04-10 50-200	4700 7000	1.0	0.17-0.3
MOTES:	WOTES: IT Treatment Technology MA Not Available ND Not Determined THM Trihalomethane PAH Polycyclic Aromatic	* not recovered from water in lab studies + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed	studies		** no RfD; HBGL based on XX no Slope Factor; HBGL ## HBGL not based on RfD	sed on Slope HBGL based on RfD or Sl	Slope Factor based on RfD or Slope Factor	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an indivual prone to eating soil (e.g., a child with pi	ated soil ing t possible ca eating soil	lestion HBGL se" involvir (e.g., a chi	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica).
	וולמו מכפו ממו										

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLS) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

									id- ca).
LIC LAB RANGE (mg/kg)	9.9	,	0.005-0.05 0.005-0.05 0.17-0.2 0.17-0.3	0.17-0.5		0.17-0.3	0.5-10 0.005-0.10 0.17	0.1-3.3	L by 100 to ing an indiv nild with pi
SOIL INGESTION STATE LAB LOQ (mg/kg)	1.0	,	0.05 0.05 1.0 1.0	0.05 0.05 1.0	1	1.0	50 0.05 10	1.0	gestion HBGI ase" involv (e.g., a ch
INGESTION HBGL (mg/kg)	9400 1200 230 180 35000	12000	0.30 0.15 12 0.85 23	0.22 0.76 0.76 820 7000 3900	5800	1500 29000 0.11 2300	84 3.5 23	2300 58000 3500	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica)
LIC LAB RANGE (μg/L)	100	1	0.05-10 0.05-10 10 5-70	<u>0</u> 1.28		- 0.03-10 10	2-150 0.05-0.10	0.5-50	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica).
ATER STATE LAB LOQ (μg/L)	1001	,	0.05 0.05 10 10	0.05 0.05 10 5.0		. 10 01	10 0.05 50	1.0	no RfD; HBGL based on Slope Factor no Slope Factor; HBGL based on RfD HBGL not based on RfD or Slope Factor
— DRINKING WATER EPA — STA PHCL (μg/L) (μ		700	1.0	50		0,40	~		based on Sic or; MBGL bas d on RfD or
HCL (µg/L)			0.40				11 0.20		** no RfD; HBGL based on XX no Slope Factor; HBGL ## HBGL not based on RfD
INGESTION HBGL (µg/L)	560 70 14 11 2100	200	0.008 0.004 0.70 0.02	0.006 0.02 ** 49 420 230	350	91 1800 0.003 140	5.0 ## 0.21 1.4	140 3500 210	* × #
-CAS CANCER NUMBER GROUP	59756-60-4 D 69409-94-5 D 944-22-9 D 23422-53-9 E 39148-24-8 C	1071-83-6 0	76-44-8 B2 1024-57-3 B2 67-72-1 C 118-74-1 B2 87-68-3 C	319-84-6 82 319-85-7 C 77-47-4 D 110-54-3 D 51235-04-2 D	2691-41-0 D	35554-44-0 D 81335-37-7 D 193-39-5 B2 78-59-1 C	7439-92-1 B2 58-89-9 C 330-55-2 C	121-75-5 0 123-33-1 D 8018-01-7 ND	* not recovered from water in lab studies + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed
CHEMICAL	FLURIDONE FLUVALINATE FONDFOS FORMETANATE HYDROCHLORIDE FOSETYL-AL	G GLYPHOSATE	H HEPTACHLOR HEPTACHLOR EPOXIDE HEXACHLOROETHANE HEXACHLOROBENZENE HEXACHLOROBUTAD IENE	NEXACHLOROCYCLOHEXANE (alpha-) NEXACHLOROCYCLOHEXANE (beta-) NEXACHLOROCYCLOPENTADIENE n-HEXANE NEXAZINONE	них	I IMAZALIL IMAZAQUIN INDENOPYRENE (PAH) ISOPHORONE	L LEAD LINDANE LINDRON	M MALATHION MALEIC HYDRAZIDE MANCOZEB	IT Treatment Technology NA Not Available ND Not Determined THM Trihalomethane PAH Polycyclic Aromatic Hydrocarbon
	129. 130. 131. 132.	134.	135. 136. 137. 138.	140. 141. 142. 143.	145.	146. 147. 148.	150. 151. 152.	153. 154. 155.	NOTES:

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLs) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

				DRINK	DRINKING WATER					
	CHEMICAL	CAS CANCER NUMBER GROUP	INGESTION HBGL	MCL PPMCL	STATE LAB	LIC LAB RANGE	. =	SOIL INGESTION STATE LAB LOQ	LIC LAB	
=		-	(188) E)	(H8/F) (H8/F)	(\mu \ge \lambda \lam	(μg/L)	(mg/kg)	(mg/kg)	(mg/kg)	
130.			35							
7 1	7. MANGANESE	7439-96-5 D	700		י כ	•	580	,		_
158.			2 2		00	10-50	12000	10	0.5-2.5	
159.			0.0		•	100-250	58	2.5+	7 7	
160.	 MERCURY (INORGANIC) 		2.1	2.0	, ,	, ,	3500	1	. 1	
171					0.0	0.1-2.0	35	0.25	0.001-0.25	
.101.		57837-19-1 D	027		ı					_
162.			220		0.0	•	2000	0,5	٠	_
163.		2022-45-7	7.0		¥		5.8	,	ı	
164.			0.0		1.0	,	150	1.0	,	_
165.	5. METHOXYCHLOR		100	:	1.0	•	2900		78.0	_
			35	40	0.5	0.5-25	580	0.5	0.05-0 66	_
166.		78-93-3 D	350							
107.		298-00-0) t		1 ,	10-100	5800		0.1-0.5	
168.			2 2		1.0	0.5-10	53	1.0	0.03-0.66	
169.			7 /	. (,	2.5-100	580	0.25		
1/0.	. METOLACHLOR		110	0.0	0.5	0.5-10	180	0.25	0.05-50	_
į			2		2.0	2.0	1800	1.0		
171.		21087-64-9 D	180							
176.		74223-64-6 D	1800		2 +		2900	1.0	•	
173.			7.0		e (29000	2.0	,	
4 7 7		6923-22-4 E	0.32		01	10-50	120	1000	10-25	
.63	. MUNUKON		4.9		k i	0 %	5.3	2.0	0.17-0.26	
176	MOMA (AS ADSERTE)					•	82			
177.	MYCLORITALI		20 ##	50	•		0.0			
		88671-89-0 ND	180		10		3000	,		
	*				2		0067	1.0	,	
178										
12			14				i			
180		91-20-3 D	28		· •	07-5.0	230		0.1-3.3	
181		15299-99-7 ND	200		2 5	01-05.0	470		0.2-0.83	
101.		7440-02-0 D	140	100	0 ,		12000			
187.	NITRATE		11000	10000	100	20-100	2300	10	0.5-10	
107					001	005-09	190000	•		
187	MITE/MILKILE (TOTAL)	NA D	2000	10000	00,					
* 10 *		14797-65-0 D	200	1000	001	09	120000		1	
185.			. V	200	001	90-100	12000			
9 5			200		10	5-10	58	1.0	0.17-0.3	
101	N-NIIROSOOIPHENYLAMINE		7.1		٠ ﴿		12000		}	
HOTTE					2	2-10	280	1.0	0.17-0.3	
MUIES	NOIES: Il Treatment Technology * not recovered from pater in lab	om traton in Jah attiti	1							

ES: IT Treatment Technology
NA Not Available
ND Not Determined
THM Trihalomethane
PAH Polycyclic Aromatic
Hydrocarbon

^{*} not recovered from water in lab studies + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed

^{**} no RfD; HBGL based on Slope Factor
xx no Slope Factor; HBGL based on RfD
HBGL not based on RfD or Slope Factor

Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individral prone to eating soil (e.g., a child with pica).

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLS) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

				DRINKING WAYER	YER			SOIL INGESTION	NO
	CAS CANCER	INGESTION	FPA MCL	PMCL	STATE LAB	LIC LAB RANGE	INGESTION	STATE LAB	LIC LAB
CHEMICAL	NUMBER GROUP		(μg/L)	(π ₉ /Γ)	(μg/L)	(πg/L)	(mg/kg)	(mg/kg)	(mg/kg)
188. N-NITROSOOI-n-PROPYLAMINE 189. N-NITROSOOIMETHYLAMINE 190. N-NITROSOPYRROLIDINE 191. NORFLURAZON	621-64-7 82 62-75-9 82 930-55-2 82 27314-13-2 D	0.005 0.0007 0.02 280			01 01 .	5-10 5-10 10	0.19 0.03 0.65 4700	1.0	0.17-0.5 0.17-0.3 0.17
O 192. ORYZALIN 193. OXAHYL 194. OXYDEWETON-METHYL	19044-88-3 C 23135-22-0 E 301-12-2 D	35 180 3.5		200	1:0		580 2900 58	1.0	0.83
P 195. PARAUAT 196. PARATHION 197. PEHDIHETHALIN 198. PENTACHLOROPHENOL	1910-42-5 C 56-38-2 C 40487-42-1 D 608-93-5 D 87-86-5 B2	3.2 4.2 280 5.6 0.29	1.0		1.0 10 -	0.5	53 70 4700 94 11	1.0	0.03-0.1
200. PERMETHRIN 201. PHENOL 202. PHORATE 203. PHOSNET 204. PHOSPHAMIDON	52645-53-1 D 108-95-2 D 298-02-2 E 732-11-6 D 13171-21-6 D	350 4200 3.5 140			5.0	0.04 5-20 0.5 -	5800 70000 58 2300 20	0.5 1.0 1.0 2.0	0.3-500
205. PICLORAM 206. POLYCHLORINATED BIPHENYLS (PCBs) 207. PROFENOFOS 208. PROFLURALIN 209. PROMETON	1918-02-1 D 1336-36-3 B2 41198-08-7 D 26399-36-0 ND 1610-18-0 D	490 0.005 0.35 42 110	0.50	500	5.0	0.4	8200 0.18 5.8 700 1800	5.0	0.2-1.0
210. PROMETRYN 211. PROUAMIDE 212. PROPACHLOR 213. PROPARGITE 214. PROPAZINE	7287-19-6 D 23950-58-5 C 1918-16-7 D 2312-35-8 ND 139-40-2 C	28 53 91 140 14			10 5.0 5.0+ -	2.0 10 5.0	470 880 1500 2300 230	1.0	0.66
215. PROPHAM 216. PROPLCONAZOLE 217. PROPOXUR 218. PYRENE (PAH)	122-42-9 D 60207-90-1 D 114-26-1 C 129-00-0 D	140 91 2.8 210			10+	. 0.04-10	2300 1500 47 3500	1.0	0.33
MOTES: IT Treatment Technology * n NA Not Available + E ND Not Determined - n THM Trihalomethane l PAH Polycyclic Aromatic	* not recovered from water in lab studi + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed	** **	** no RfD; HBGL based on xx no Slope Factor; HBGL ## HBGL not based on RfD	ed on Slop HBGL base n RfD or S	Slope Factor based on RfD or Slope Factor		Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica)	gestion HBGL ase" involvi (e.g., a ch	by 100 to ng an indivic ld with pica

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLS) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

				DRINKING UATER	TEP			0.101011 1100	
CHEMICAL	CAS CANCER NUMBER GROUP	INGESTION HBGL (µg/L)	МСL (µ9/L)	PMCL (μg/L)	STATE LAB LOQ (µg/L)	LIC LAB RANGE (μg/L)	INGESTION HBGL (mg/kg)	STATE LAB LOQ (mg/kg)	LIC LAB RANGE (mg/kg)
R 219. RDX	, 121-82-4 C	. 2.1					35		
S 220. SELENIUM 221. SETHOXYDIM 222. SILVER 223. SIHAZINE 224. STRONTIUM	7782-49-2 D 74051-80-2 D 7440-22-4 D 122-34-9 C 7440-24-6 D	50 ## 630 50 1.4 18000	50	1.0	5.0 10 1.0	2-100	840 11000 840 23 290000	200 1.0 10 2.0	0.1-10
225. STYRENE 226. SULFATE 227. SULPROFOS	100-42-5 C 14808-79-8 D 35400-43-2 E	140 400000 ## 18	100	400000	1.0 10000 10	0.5-2.5 300-5000 0.5	2300 6700000 290	1.0	0.05
228. 2,4,5-T 229. 2,3,7,8-TCDD 230. 2,4,5-TP 231. TEBUTHIURON 232. TERBACIL	93-76-5 D 1746-01-6 B2 93-72-1 D 34014-18-1 D 5902-51-2 E	70 0.0000002 56 490 91	20	0.00005	0.5 0.25 30 10	0.2 0.2-2.0 15 50	1200 0.000009 940 8200 1500	0.5 0.25 3.0 2.0	0.02
233. TERBUTRYN 234. TERBUTRYN 235. 1,2,4,5-TETRACHLOROBENZENE 236. 1,1,1,2-TETRACHLOROETHANE 237. 1,1,2,2-TETRACHLOROETHANE	13071-79-9 D 886-50-0 ND 95-94-3 D 630-20-6 C 79-34-5 C	0.70 7.0 2.1 21 0.18 **			5.0 10 0.5 0.5	20 3.0 10 0.5-2.5 0.2-5.0	12 120 35 350 6.8	2.0 2.0	1.3 0.1-0.66 0.05 0.05-20
238. TETRACHLOROETHYLENE (PCE) 239. TETRAETHYL LEAD 240. THALLIUM 241. THIOPHANATE-METHYL 242. THIRAM	127-18-4 B2 78-00-2 D 7440-28-0 ND 23564-05-8 D 137-26-8 D	0.70 0.0007 0.49 560 35	5.0	1.0/2.0	5.0	0.2-10 50 1-100	27 0.01 8.2 9400 580	0.25	0.01-20
243. TOLUENE 244. TOXAPHENE 245. TRIADIMEFON 246. TRICHLORFON 247. 1,2,4-TRICHLOROBENZENE	108-88-3 0 8001-35-2 82 43121-43-3 0 52-68-6 C 120-82-1 D	1400 0.03 210 8.8 9.1	1000 3.0	9.0	1.0 2.0 5.0	0.2-10 0.5-100 8.0 5-10	23000 1.2 3500 150 150	0.25 2.0 0.5	0.01-20
MOTES: IT Treatment Technology NA Not Available ND Not Determined THM Trihalomethane PAH Polycyclic Aromatic Hydrocarbon	* not recovered from water in lab studie + EPA established Limit - not analyzed by State Lab or the licensed labs surveyed	es ** no R xx no S ## IBGL	** no RfD; HBGL based on Slope Factor xx no Slope Factor; HBGL based on RfD ## HBGL not based on RfD or Slope Fac	ed on Slope HBGL based n RfD or Sl	Slope Factor based on RfD or Slope Factor	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica)	ted soil ing possible ca eating soil	estion HBGL b se" involving (e.g., a chil	/ 100 to an individ- 1 with pica).

HUMAN HEALTH BASED GUIDANCE LEVELS (HBGLs) FOR INGESTION OF CONTAMINANTS IN DRINKING WATER AND SOIL

			DRINKING UATER	VATER				;
CHEHICAL	CAS CANCER NUMBER GROUP	INGESTION HBGL (µg/L)	FPA HCL PHCL (μg/L)	SYATE LAB LOQ (µg/L)	LIC LAB RANGE (μg/L)	INGESTION HBGL (mg/kg)	SOIL INGESTION STATE LAB LOQ (mg/kg)	LIC LAB RANGE (mg/kg)
248. 1,1,1-TRICHLOROETHANE (TCA) 249. 1,1,2-TRICHLOROETHANE 250. TRICHLOROETHYLENE (TCE) 251. TRICHLOROFLUOROMETHANE 252. TRICLOPYR	71-55-6 D 79-00-5 C 79-01-6 B2 75-69-4 D 55335-06-3 E	200 2.8 3.2 2100 18	200 5.0	0.5 0.5 0.5 0.5	0.2-10 0.2-10 0.2-500 0.5-10	3300 47 120 35000	0.25 0.25 0.25	0.01-20 0.01-20 0.01-20 0.01-20
253. 2,4,5-TRICHLOROPHENOL 254. 2,4,6-TRICHLOROPHENOL 255. 1,2,3-TRICHLOROPROPANE 256. TRICHLOROTRIFLUOROETHANE 257. TRIFLURALIN	95-95-4 D 88-06-2 B2 96-18-4 D 76-13-1 D 1582-09-8 C	700 3.2 42 210000 5.3	·	50 10 0.5 0.5	5-50 5-10 0.5-2.5	12000 120 700 3500000 88	5.0	0.2-0.85 0.17-0.66 0.05 0.05
258. TRIFORINE 259. TRIHALOMETHANES (TOTAL THH) 260. 2,4,6-TRIHITROTOLUENE	26644-46-2 D HA NA 118-96-7 C	180 NA 0.35	100	5.0	. 4 .	2900 HA 5.8		
U 261. URANIUM	7440-61-1 A	21 xx	20	,	ŧ	350		
V 262. VANADIUM 263. VERHOLATE 264. VINCLOZOLIN 265. VINYL CHLORIDE	7440-62-2 0 1929-77-7 ND 50471-44-8 D 75-01-4 A	49 7.0 180 0.02	2.0	500 5.0 5.0	10-50 2.0	. 820 120 2900 0.77	50 2.0 0.5	0.5-25
X 266. XYLENES (TOTAL)	1330-20-7 D	14000	10000	3.0	0.2-10	230000	0.25	0.01-40
267. 21NC 268. 21NEB	7440-66-6 ND 12122-67-7 D	1400 350	•	50	0.5-500	23000 5800	10	0.025-10
NOTES: IT Treatment Technology NA Not Available NO Not Determined	* not recovered from water in lab studie + EPA established Limit	ies ** no R XX no S	** no RfD; HBGL based on Slope Factor xx no Slope Factor; HBGL based on RfD	ope Factor sed on RfD	Divide indicated soil ingestion HBGL by 100 to obtain "worst possible case" involving an individ-	ted soil ing	estion MBGL b	y 100 to

 not analyzed by State Lab or the licensed labs surveyed ND Not Determined
THM Trihalomethane
PAH Polycyclic Aromatic
Hydrocarbon

HBGL not based on RfD or Slope Factor

obtain "worst possible case" involving an individual prone to eating soil (e.g., a child with pica).

APPENDIX A DERIVATION OF HEALTH-BASED GUIDANCE LEVELS (HBGLs)

Introduction

For the purpose of developing HBGLs, all listed chemicals were considered either systemic toxicants or carcinogens. Systemic toxicants were defined as those chemicals in cancer groups C, D, E and ND. Carcinogens were defined as those chemicals in cancer groups A, B1 and B2. The toxicological methods used to derive the HBGLs were different for each category and are detailed in subsequent sections. The data used in these calculations were obtained from various federal sources. These data are tabulated in Appendix B.

Because of special properties of several listed chemicals, the HBGLs for these chemicals were not calculated according to either of the methodologies referred to above. The HBGLs for these substances were adopted from EPA MCLs or PMCLs using unique derivations. These exceptions are clearly identified in the main table and in Appendix B.

Systemic Toxicants

The HBGL for each systemic toxicant was based on an oral reference dose (RfD) and assumed a lifetime exposure, except for a few chemicals which cause the greatest risk under conditions of acute exposure. Whenever it was possible, the RfD, or the information needed to calculate the RfD, was obtained from a documented EPA source. Only rarely was it necessary to use data from a source other than an EPA document.

The RfD is a daily exposure level which, during a lifetime of a human, appears to be without appreciable risk on the basis of all facts known at the time. The RfD (formerly called the acceptable daily intake or ADI) is derived from an appropriate study. The RfD is obtained from the noobserved-adverse-effect level (NOAEL) by dividing by a safety factor. The NOAEL is that dose of chemical at which there are no statistically or biologically significant increases in frequency or severity of adverse effect seen between the exposed population and its appropriate control. Effects may be produced at this dose, but they are not considered to be adverse. An assumption is made that the oral RfD represents 100% exposure from all sources even though the number, in almost all cases, is derived from an oral ingestion study. Typically, the RfD is expressed in milligrams per kilogram per day (mg/kg/d). The RfD is converted to water units by multiplying it by 70 kilograms (weight of a standard adult) and dividing it by 2 liters (the assumed consumption of water per day). This number is known as the drinking water equivalent level (DWEL) and still represents 100% exposure through water.

For the final drinking water HBGL, it is necessary to allocate the 100% among all sources which can contribute to the total exposure of a human. Therefore, the DWEL is multiplied by an estimate of the relative source contribution (RSC) of a contaminant in water. In most cases, the RSC is 0.2. In this document, the final drinking water HBGL is calculated using the following equation and is expressed in micrograms per liter (μ g/l):

$$HBGL_{DW} = \frac{BW \times RfD}{I_{V}} \times RSC \times 1000 \text{ ug/mg}$$

Where:

HBGL_{DW} = health-based ingestion guidance level for drinking water (μg/l)
 BW = body weight (70 kg)
 RfD = reference dose (mg/kg/d)
 L_w = water ingestion rate (2 l/d)
 RSC = relative source contribution

For toxicants in cancer group C, an additional safety factor of 10 was used in the development of the drinking water HBGLs. This approach was adopted from the EPA method used in deriving PMCLs and MCLs for group C chemicals and adds a margin of prudence to the drinking water HBGLs for chemicals exhibiting only limited evidence of carcinogenicity in animals. The equation used to calculate the drinking water HBGL for a systemic toxicant in group C is as follows:

$$HBGL_{DH} = \frac{\frac{BW \times RfD}{I_{v}} \times RSC \times 1000 \text{ ug/mg}}{10}$$

Carcinogens

In this document, HBGLs for all chemicals in cancer groups A, B1 and B2 were derived on the basis of estimated cancer-causing risk rather than on the assurance of a safe daily dose. Chemicals in groups A and B are classified as known or probable human carcinogens, respectively. Evidence of carcinogenicity in humans comes primarily from two sources - long-term animal studies and epidemiological investigations. Results from these kinds of

studies are supplemented by other information from short-term, toxicological and pharmacokinetic studies. The evidence of carcinogenicity is evaluated in the framework of a weight-of-evidence judgement by the EPA. The weighing classifications are:

- Group A sufficient epidemiologic evidence in humans;
- Group B1 limited epidemiologic evidence in humans and either sufficient or insufficient evidence in animals;
- Group B2 sufficient evidence in animals but insufficient epidemiologic evidence in humans.

When sufficient data exist to support a dose-response relationship for a carcinogenic endpoint, the EPA calculates a slope factor (SF). The SF is expressed as the reciprocal of milligrams per kilogram per day [(mg/kg/d)⁻¹]. Using this value and assuming the ingestion of two liters of water per day by a 70 kilogram adult over a 70-year lifetime, the upper bound (95%) of the excess lifetime cancer risk can be calculated.

In this document, the drinking water HBGLs for carcinogens were derived by calculating the concentration in micrograms per liter ($\mu g/l$) that would result in an upper bound excess lifetime cancer risk of one in one million (10-6). The 10-6 upper bound was based on historic use in Arizona and the United States as a prudent level for protecting public health. The following equation was used in the calculations:

$$HBGL_{DW} = \frac{BW \times LRF}{SF \times I_{V}} \times 1000 \text{ ug/mg}$$

Where:

HBGL_{Dw} = health-based ingestion guidance level for drinking water (μg/l)

BW = body weight (70 kg)

LRF = lifetime risk factor (1 x 10.6) SF = slope factor [(mg/kg/d).1] L = water ingestion rate (2 1/d)

Soil Ingestion HBGLs

The soil ingestion HBGL for each chemical was derived in a manner that produced either an exposure dose or health risk, equivalent to that from ingesting water containing the chemical at the drinking water HBGL. The exposure dose criterion was used for systemic toxicants (cancer groups C, D, E and ND), and the health risk (excess cancer risk) criterion was used for carcinogens (cancer groups A, B1 and B2). Both cases assumed daily ingestion of equal amounts of soil over a 30-year period. This assumption is based on accepted EPA risk assessment practice.

In the case of systemic toxicants, it was assumed that a quantity of the chemical equal to that in two liters of water at the drinking water HBGL was ingested with soil each day. Assuming this exposure to occur over a 30-year period following birth, an intake of 0.2 g/d was used for six years and 0.1 g/d for the remaining 24 years, resulting in a mean daily intake of 0.12 g/d.

In this document, the soil ingestion HBGL values for systemic toxicants were derived by calculating the concentrations in milligrams per kilogram (mg/kg) that would result in a mean daily intake equivalent to that permitted from drinking water. The following equation was used in the calculations:

$$HBGL_{s} = \frac{I_{v} \times HBGL_{rw}}{I_{soo}} \times \frac{1000 \text{ g/kg}}{1000 \text{ ug/mg}}$$

Where:

HBGL_s = health-based ingestion guidance level

for soil (mg/kg)

I = water ingestion rate (2 1/d)

HBGL_{DW} = health-based ingestion guidance level

for drinking water $(\mu g/l)$

 I_{550} = soil ingestion rate during first 30 years

of life (0.12 g/d)

In the case of carcinogens, it was assumed that the lifetime excess cancer risk from a chemical in soil was the result of exposure to soil containing the chemical at the soil ingestion HBGL for the first 30 years of life and exposure to soil containing none of the chemical for the remaining 40 years of life. Based on the ingestion pattern described for systemic toxicants (0.2 g/d for 6 years and 0.1 g/d for remaining years), the mean daily intake during the first 30-year period would be 0.12 g/d.

In this document, the soil ingestion HBGL values for carcinogens were derived by calculating the concentration in milligrams per kilogram (mg/kg) that would result in an upper bound excess lifetime cancer risk of 10.6. The following equation was used in the calculations:

$$HBGL_3 = \frac{AT \times BW \times LRF}{I_{Slo} \times ED \times SF} \times 1000 \text{ mg/g}$$

Where:

HBGL_s = health-based ingestion guidance level

for soil (mg/kg)

BW = body weight (70 kg)

LRF = lifetime risk factor (1 x 10⁻⁶) SF = slope factor $[(mg/kg/d)^{-1}]$

 I_{500} = soil ingestion rate during the first 30

years of life (0.12 g/d)

AT = 70-year lifetime

ED = 30-year exposure duration

APPENDIX B TOXICOLOGICAL DATA FOR LISTED CHEMICALS

	CHEMICAL	CAS NUMBER	CANCER	RfD (mg/kg/d)	SLOPE FACTOR 1/(mg/kg/d)	SAFETY FACTOR	RSC
← ‹		208-96-8		90.0	. NA	NA	0.20
'n	ACEPHAIE ACEIONE	30560-19-1	ں ،	,00¢	NA	10	0.20
4.		107-02-8	م د	0.1	X S	¥¥ Y	0.20
5.		79-06-1	B2	NA	4.5	NA -0	NA NA
6.		107-13-1	B.1	NA	0.54	NA	NA
۲.		15972-60-8	82	NA	0.081	NA	ΝA
ဆံဝ	ALDICARB	116-06-3	ш	0.0013	NA	NA	0.20
10.		1646-88-4 1646-87-3	0 0	0.0003	NA NA	K K K	0.20
Ţ	ALDRIN	200-002	5		1		
12.		309-00-2 837-13-8	78	AA OOO	0.71	YY.	XX 30
13.		0-91-5222	ے د	, oo	A Y	Y Y	0.20
14.	-	120-12-7		0.3	AN AN	Y Y	0.50
15.		7440-36-0	ء م	0.0004	KA KA	NA	0.20
16.		7440-38-2	V	NA	NA	NA	MA
17.		3337-71-1	۵	0.05	NA	NA.	0.20
2 0	ATTHOROS METHY	1912-24-9	ن	0.005	NA	10	0.20
<u>.</u>		86-50-0	ш	0.0025	NA	NA	0.20
C							
20.	BARIUM	7440-39-3	G	NA	NA	NA	NA
22:	BENCH! C	17804-35-2	۵.	0.05	٨A	NA	0.20
23.	RENZ (a) ANTIRACEUE CRAUX	0-68-75057	۵,	0.0025	NA	NA	0.20
24.		71-43-2	A A	X X X	12.5	NA NA	۸۸
Ĺ					2:25/	VI	Y.
22.	BENZIDINE	92-87-5	¥	NA	230	NA	NA
27.	BENZOTAL FLUORANTHAND	50-32-8	B2	NA	12.5	KA	МА
. J.	BENZUIDJFLUOKANIHENE (PAH)	205-99-2	82	NA	12.5	NA	NA
20.	BENZULKJ FLUUKANINENE (PAN)	207-08-9	B2	NA	12.5	NA	HA
έλ.	DENZIL ALCUMUL	100-51-6	9	0.3	ИA	NA	07.0
		7440-41-7	B2	HA	4.3	NA	NA
		111-44-4	B2	NA	1.1	NA	NA
36.	BIS(2-CHLOROISOPROPYL)ETHER	9638-32-9	용	0.04	NA	NA.	0.20

ND Not Determined

NA Not Available

APPENDIX B TOXICOLOGICAL DATA FOR LISTED CHEMICALS

	CHEMICAL	CAS NUMBER	CANCER	RfD (mg/kg/d)	SLOPE FACTOR 1/(mg/kg/d)	SAFETY FACTOR	RSC
33. 34. 35. 36.	. BORON . BROMACIL . BROMODICHLOROMETHANE (THM) . BROMOFORM (THM) . BROMOMETHANE	7440-42-8 314-40-9 75-27-4 75-25-2 74-83-9	0 62 82 82 0	0.09 0.13 NA NA NA 0.0014	NA NA 0.13 0.0079 NA	NA 10 NA NA	0.20 0.20 NA NA
38. 39. 40.	BROMOXYNIL BUTYL BENZYL PHTIIALATE BUTYLATE	1689-84-5 85-68-7 2008-41-5	٥٥٥	0.02 0.16 0.05	NA NA NA	NA NA	0.20
41. 42. 43. 44.	CADMIUM CAPTAN CARBARYL CARBOFURAN CARBOH DISULFIDE	7440-43-9 133-06-2 63-25-2 1563-66-2 75-15-0	000 110	0.0005 0.13 0.1. 0.005	N N N N N N N N	NA NA NA NA	0.20 0.20 0.20 0.20 0.20
46. 47. 49. 50.	CARBON TETRACHLORIDE CARBOXIN CHLORAMBEN CHLORANE CHLORONE	56-23-5 5234-68-4 133-90-4 57-74-9 6164-98-3	82 0 0 82 82	NA 0.1 0.015 NA NA	0.13 NA NA 1.3	N N N N N N N N N N N N N N N N N N N	NA 0.20 0.20 NA
51. 52. 53. 54.	CHLOROBENZENE CHLOROFORM (THM) CHLOROMETHANE 2-CHLOROPHENOL CHLOROTHALONIL	108-90-7 67-66-3 74-87-3 95-57-8 1897-45-6	D 82 C 0 0	0.02 NA 0.004 0.005 NA	NA 0.0061 NA NA NA	NA NA 10 NA	0.20 NA 0.20 0.20
56. 57. 58. 59. 60.	o-CHLOROTOLUENE CHLORPYRIFOS CHLORSULFURON CHROMIUM (TOTAL) CHRYSENE (PAH)	95-49-8 2921-88-2 64902-72-3 NA 218-01-9	0 0 0 0 0 82	0.02 0.003 0.05 NA	NA HA KA KA HA .	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 NA NA
61. 62. 63. 64.	COPPER CRESOLS (TOTAL) CYANAZINE CYROMAZINE 666	7440-50-8 NA 21725-46-2 57-12-5 66215-27-8	0000	NA 0.05 0.002 0.022 0.0075	NA NA NA NA	NA NA NA NA	NA 0.20 0.20 0.20 0.20

ND Not Determined

NA Not Available

APPENDIX B TOXICOLOGICAL DATA FOR LISTED CHEMICALS

CHE	CHEMICAL	CAS C NUMBER G	CANCER GROUP	RfD (mg/kg/d)	SLOPE FACTOR 1/(mg/kg/d)	SAFETY FACTOR	RSC
66. 2,4-f 67. DALAF 68. DCPA 69. DDD 70. DDE	D 2,4-D DALAPON DOCPA DODD	94-75-7 75-99-0 1861-32-1 72-54-8	D D B2 82	0.01 0.03 0.5 NA	NA NA NA NA 0.24	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 NA
71. 00T 72. 00T 73. 01A 74. 018	DDT DDT/DDD/DDE (TOTAL) DIAZINON DIBENZ[a, h]ANTHRACENE (PAH)	50-29-3 NA 333-41-5 53-70-3 124-48-1	82 82 6 82 6 0	NA NA 0.0009 NA 0.02	0.34 0.34 NA 12.5 NA	NA N	NA NA 0.20 NA 0.20
76. 1,2 77. 0181 78. 0167 79. 0161 80. 1,2	1,2-DIBROMO-3-CHLOROPROPANE (DBCP) DIBUTYL PHTHALATE DICAMBA DICHLOBENIL 1,2-DICHLOROBENZENE	96-12-8 84-74-2 1918-00-9 1194-65-6 95-50-1	82 D D D	NA 0.1 0.03 0.0005 0.089	1.17 NA NA NA	NA N	NA 0.20 0.20 0.20 0.20
81. 1,3 82. 1,4 83. 3,3 84. 0101	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 3,3-DICHLOROBENZIDINE DICHLOROD IFLUOROMETHANE 1,2-DICHLOROETHANE	541-73-1 106-46-7 91-94-1 75-71-8 107-06-2	D C B D B2	0.089 0.1 NA 0.2 NA	NA NA 0.451 NA 0.091	N H N H N N N N N N N N N N N N N N N N	0.20 0.20 NA 0.20 NA
86. 1,1-87. cis-88. trar 89. 1,2-90. 2,4-	1,1-DICHLOROETHYLENE cis-1,2-DICHLOROETHYLENE trans-1,2-DICHLOROETHYLENE 1,2-DICHLOROPROPANE 2,4-DICHLOROPHENOL	75-35-4 156-59-2 156-60-5 78-87-5 120-83-2	C D D B B B D	0.009 0.01 0.02 NA 0.003	NA NA NA 0.068	10 NA NA NA	0.20 0.20 0.20 MA 0.20
91. 1,3- 92. DICL 93. DICC 94. DIEL 95. DIET	1,3-DICHLOROPROPENE DICLORAN DICOFOL DIELDRIN	542-75-6 99-30-9 115-32-2 60-57-1 84-66-2	82 E C C B B2	NA 0.025 ND NA NA 0.8	0.18 NA 0.44 16.0 NA	NA NA NA NA	NA 0.20 NA NA NA
96. 01(2	DI (2-ETHYLHEXYL)ADIPATE DI (2-ETHYLHEXYL)PHTHALATE	103-23-1 117-81-7	c B2	0.7 NA	NA 0.014	10 NA	0.20 NA

ND Not Determined

APPENDIX B TOXICOLOGICAL DATA FOR LISTED CHEMICALS

	CHEMICAL	CAS NUMBER	CANCER	RfD (mg/kg/d)	SLOPE FACTOR 1/(mg/kg/d)	SAFETY FACTOR	RSC
98. 99. 100. 101.	DIFENZOQUAT DIISOPROPYL METHYLPHOSPHONATE DIMETHOATE 2,4-DINITROPHENOL 2,4-DINITROTOLUENE	43222-48-6 1445-75-6 60-51-5 51-28-5 121-14-2	D D ND ND ND	0.08 0.08 0.0002 0.002 NA	NA NA NA NA O . 68	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 0.20
103. 104. 105. 106.	DINOSEB 1,4-DIOXANE DIPHENAMID 1,2-DIPHENYLHYDRAZINE DIQUAT DIBROMIDE	88-85-7 123-91-1 957-51-7 122-66-7 85-00-7	B2 B2 B2	0.001 NA 0.03 NA 0.0022	NA 0.011 NA 0.8 NA	N N N N N N N N N N N N N N N N N N N	0.20 NA 0.20 NA 0.20
108. 109. 110.	DISULFOTON DIURON DPX-MG316	298-04-4 330-54-1 79277-27-3	⊞ Q S	0.00004 0.002 0.013	NA NA NA	NA NA NA	0.20
111. 112. 114.	E E ENDOSUL FAN ENDOSUL FAN ENDOTIALL ENDRIN EPICHLOROHYDRIN	115-29-7 145-73-3 72-20-8 106-89-8	0 0 0 8 0	0.00005 0.02 0.003 NA 0.005	NA NA NA 0.0099 NA	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 NA NA
116. 117. 118. 119.	EPTC ETHYLBENZENE ETHYLENE DIBROMIDE (EDB) ETHYLENE GLYCOL ETHYLENE THIOUREA	759-94-4 100-41-4 106-93-4 107-21-1 96-45-7	D D B B D B B B	0.025 0.1 NA 2.0 NA	NA NA 85.0 NA 0.036	N N N N N N N N N N N N N N N N N N N	0.20 0.20 NA 0.20 NA
121.	N-ETHYLTOLUENE SULFONAMIDE	26914-52-3	Q.	0.0025	NA	NA	0.20
122. 123. 124. 125.	F FENAMIPHOS FENARIMOL FEUNALERATE FLUOMETURON FLUORANTHENE (PAH)	22224-92-6 60168-88-9 51630-58-1 2164-17-2 206-44-0	D KD D	0.00025 0.065 0.025 0.013 0.04	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 0.20
127. 128.	FLUORENE (PAH) FLUORIDE	86-73-7	۵۵	0.04	NA NA	NA NA	0.20
		NA		Not Available	ND Not	Not Determined	peu

APPENDIX B TOXICOLOGICAL DATA FOR LISTED CHEMICALS

	CHEMICAL	CAS NUMBER	CANCER	RfD (mg/kg/d)	SLOPE FACTOR 1/(mg/kg/d)	SAFETY FACTOR	RSC
129. 130. 131. 132.	FLURIDONE FLUVALINATE FONOFOS FORMETANATE HYDROCHLORIDE FOSETYL-AL	59756-60-4 69409-94-5 944-22-9 23422-53-9 39148-24-8	00000	0.08 0.01 0.002 0.0015 3.0	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 0.20 0.20
134.	G GLYPHOSATE	1071-83-6	۵	0.1	НА	ИA	0.20
135. 136. 137. 138.	H HEPTACHLOR HEPTACHLOR EPOXIDE HEXACHLOROETHANE HEXACHLOROBENZENE HEXACHLOROBUTADIENE	76-44-8 1024-57-3 67-72-1 118-74-1 87-68-3	82 6 6 82 6	NA NA 0.001 NA 0.002	4.5 9.1 1.6 NA	NA 10 10	ИА ИА 0.20 ИА 0.20
140. 141. 142. 143.	HEXACHLOROCYCLOHEXANE (alpha-) HEXACHLOROCYCLOHEXANE (beta-) HEXACHLOROCYCLOPENTADIENE n-HEXANE HEXAZINONE	319-84-6 319-85-7 77-47-4 110-54-3 51235-04-2	82 C D D	NA NA 0.007 0.06	6.3 1.8 NA NA	NA NA NA NA	NA NA 0.20 0.20 0.20
145.	НМХ	2691-41-0	۵	0.05	NA	NA	0.20
146. 147. 148. 149.	I IMAZALIL IMAZAQUIN INDENOPYRENE (PAH)	35554-44-0 81335-37-7 193-39-5 78-59-1	D D C	0.013 0.25 NA 0.2	ИА 12.5 НА	NA NA 10	0.20 0.20 NA 0.20
150. 151. 152.	L LEAD LINDANE LINURON	7439-92-1 58-89-9 330-55-2	82 C C	NA 0.0003 0.002	N N N N N N N N N N N N N N N N N N N	NA 10 10	NA 0.20 0.20
153. 154. 155.	M MALATHION MALEIC HYDRAZIDE MANCOZEB	121-75-5 123-33-1 8018-01-7	D N	0.02 0.5 0.03	NA NA NA	NA NA NA	0.20 0.20 0.20

ND Not Determined

NA Not Available

APPENDIX B TOXICOLOGICAL DATA FOR LISTED CHEMICALS

154.27 156. MANGANESE 157. MANGANESE 158. MCPA 159. MEPTQUAT CHLORIDE 160. MERCURY (INORGANIC) 161. METALAXYL 162. METHAMIDOPHOS 163. METHOWYL 164. METHOWYL 165. METHOXYCHLOR 165. METHYL ETHER (MIBE) 166. METHYL ETHER BUTYL ETHER (MIBE) 167. METHYL PARATHION 168. METHYL RET BUTYL ETHER (MIBE) 169. METHYL LORIDE 170. METCLACHLOR 171. METRIBUZIN 172. METSULFURON-METHYL 173. MOLYBDENUM 174. MONOGOTOPHOS 175. MOLYBDENUM 175. MOLYBDENUM 177. MONOGOTOPHOS 177. MOLYBDENUM 178. MOLYBDENUM 179. MOLYBDENUM 179. MOLYBDENUM 177. MONOGOTOPHOS 177. MONOGOTOPHOS 177. MOLYBDENUM 178. MONOGOTOPHOS 178. MOLYBDENUM 178. MONOGOTOPHOS 178. MOLYBDENUM 178. MONOGOTOPHOS 178. MOLYBDENUM 178. MONOGOTOPHOS 179. MONOGOTOPHOS 177. MO	12427-38-2 7439-96-5		(mg/kg/a)	I/(mg/kg/a)		
METALAXYL METHANIDOPHOS METHANIOCARB METHOCARB METHOXYCHLOR METHYL ETHYL KETONE METHYL PARATHION METHYL PARATHION METHYL TERT BUTYL ETHER (MTBE) METHYLENE CHLORIDE METOLEURON-METHYL MOLYBDENUM MOLYB	94-74-6 24307-26-4 7439-97-6	0000	0.005 0.1 0.0005 0.03 0.003	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 0.20 0.20
METHYL ETHYL KETONE METHYL PARATHION METHYL TERT BUTYL ETHER (MTBE) METHYLENE CHLORIDE METOLACHLOR METRIBUZIN METRIBUZIN MOLYBDENUM MOLYBDENUM MOLYBDENUM MOLYBDENUM MOLYBDENUM MOLYBDENUM MOLKBOTOPHIOS	57837-19-1 10265-92-6 2032-65-7 16752-77-5 72-43-5	00 30 0	0.06 0.00005 0.00125 0.025 0.005	N N N N N N N N N N N N N N N N N N N	KA KA KA KA	0.20 0.20 0.20 0.20 0.20
METRIBUZIN HETSULFURON-METHYL MOLYBDENUM MONOCROTOPHOS	78-93-3 298-00-0 1634-04-4 75-09-2 51218-45-2	D D B C C C	0.05 0.00025 0.005 NA 0.15	NA NA NA 0.0075	HA HA HA HA	0.20 0.20 0.20 NA NA
הטאטאטא	21087-64-9 74223-64-6 7439-98-7 6923-22-4 150-68-5	O O O U	0.025 0.25 0.001 0.000045 0.0007	N N N N N N N N N N N N N N N N N N N	NA NA NA NA	0.20 0.20 0.20 0.20 0.20
176. MSMA (AS ARSENIC) 2163- 177. MYCLOBUTANIL 88671-	2163-80-6 88671-89-0	A ND	NA 0.025	NA NA	NA NA	NA 0.20
178. NALED 300-179. NALED 91-179. NAPHTHALENE (PAH) 91-180. NAPROPAMIDE 75299-181. NICKEL 7440-182. NITRATE 14797-	300-76-5 91-20-3 15299-99-7 7440-02-0 14797-55-8	ON ON O	0.002 0.004 0.1 0.02	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 0.20
183. NITRATE/NITRITE (TOTAL) 184. NITRITE 185. NITROBENZENE 186. NITROGUANIDINE 187. N-NITROSODIPHENYLAMINE 86-	NA 14797-65-0 98-95-3 556-88-7 86-30-6	D D D D B2	1.0 0.1 0.0005 0.1 NA	NA NA NA NA NA NA	NA NA NA NA	0.20 0.20 0.20 0.20 NA

ND Not Determined

APPENDIX B
TOXICOLOGICAL DATA FOR LISTED CHEMICALS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACTIBER BROOM	(mg/kg/d)	1/(mg/kg/d)		RSC
OXYDEMETON-METHYL OXYDEMETON-METHYL PARAQUAT PARAQUAT PARATHION PENDEMETHALIN PENDEMETHALIN PENDEMETHALIN PENDEMETHALIN PENDEMETHALIN PENDEMETHALIN PENDEMETHALIN PENDEMETHALIN POLYCHICOROBENZENE PENDEMETHALIN PENDEMETHALIN S2645-53-1 D 108-05-2 D 298-02-2 E 732-11-6 D PHOSPHAMIDON PICLORAM POLYCHICORIMATED BIPHENYLS (PCBS) PROFEURALIN PROFEURALIN 1918-02-1 D 7287-19-6 D PROMETRYN 738-19-6 D PROMETRY	1	NA NA NA 0.04	7.0 51.0 2.1 NA	NA NA NA	NA NA NA NA
PARAGUAT PARATHION PARATHION PENDIMETHALIN PENDIMETHALIN PENTACHLOROBENZENE PENTACHLOROPHENOL PENTACHLOROPHENOL PENTACHLOROPHENOL PHORATE PHOR		0.05 0.025 0.0005	X X X A A A	10 NA NA	0.20 0.20 0.20
PERMETHRIN 52645-53-1 D PHENOL 108-95-2 D PHORATE 298-02-2 E PHOSMET 732-11-6 D PHOSPHAMIDON 13171-21-6 D PICCLORAM 1918-02-1 D PROFYCHLORINATED BIPHENYLS (PCBs) 41198-02-1 D PROFEURALIN 26399-36-0 ND PROFILURALIN 1610-18-0 D PROMETRYN 7287-19-6 D PROMETRYN 7287-19-6 D PROPACHLOR 1918-16-7 D PROPACHLOR 1918-16-7 D PROPACHLOR 1918-16-7 D		0.0045 0.006 0.004 0.008 NA	НА NA NA NA	10 10 NA NA	0.20 0.20 0.20 0.20
PICLORAM POLYCHLORIAMTED BIPHENYLS (PCBS) PROFENOFOS PROFEULURALIN PROMETRYN PROMETRYN PROMETRYN PROMETRYN PROMETRYN PROPACHLOR 1918-02-1 D 1356-36-3 B2 41198-08-7 D 26399-36-0 ND 1610-18-0 D 1610-18-0 D 1610-18-0 D 1610-18-0 D 1610-18-0 D 1610-18-10 D		0.05 0.0005 0.005 0.02 0.0017	A A A A A A	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 0.20 0.20
PROMETRYN 7287-19-6 D PRONAMIDE 23950-58-5 C PROPACHLOR 1918-16-7 D PROPARGITE 2373-25-9 US		0.07 NA 0.00005 0.006 0.015	ИА 7.7 ИА ИА ИА	NA N	0.20 NA 0.20 0.20 0.20
PROPAZINE 139-40-2 C		0.004 0.075 0.013 0.02 0.02	NA NA NA NA	NA 10 NA NA 10	0.20 0.20 0.20 0.20 0.20
215. PROPHAM 216. PROPICONAZOLE 217. PROPICONAZOLE 217. PROPOXUR 218. PYRENE (PAH) 219. 0.0		0.02 0.013 0.004 0.03	NA NA NA	NA 10 NA	0.20 0.20 0.20 0.20

ND · Not Determined

APPENDIX B TOXICOLOGICAL DATA FOR LISTED CHEMICALS

			٠			
CHEMICAL		CAS CANCER NUMBER GROUP	RfD (mg/kg/d)	SLOPE FACTOR 1/(mg/kg/d)	SAFETY FACTOR	RSC
R 219. RDX		121-82-4 C	0.003	NA	10	0.20
S 220. SELENIUM 221. SETHOXYDIM 222. SILVER 223. SIMAZINE 224. STRONTIUM		7782-49-2 D 74051-80-2 D 7440-22-4 D 122-34-9 C 7440-24-6 D	NA 0.09 NA 0.002 2.5	N N N N N N N N N N N N N N N N N N N	ИА ИА ИА ИА	NA 0.20 0.20 0.20 0.20
225. STYRENE 226. SULFATE 227. SULPROFOS		100-42-5 C 14808-79-8 D 35400-43-2 E	0.2 NA 0.0025	NA NA NA	10 NA NA	0.20 NA 0.20
T 228. 2,4,5-T 229. 2,3,7,8-TCDD 230. 2,4,5-TP 231. TEBUTHIURON 232. TERBACIL		93-76-5 D 1746-01-6 B2 93-72-1 D 34014-18-1 D 5902-51-2 E	0.01 NA 0.008 0.07 0.013		N N N N N N N N N N N N N N N N N N N	0.20 NA 0.20 0.20
233. TERBUFOS 234. TERBUTRYN 235. 1,2,4,5-TETR 236. 1,1,1,2-TETR 237. 1,1,2,2-TETR	FRBUFOS ERBUTRYN ,2,4,5-TETRACHLOROBENZENE ,1,1,2-TETRACHLOROETHANE ,1,2,2-TETRACHLOROETHANE	13071-79-9 D 886-50-0 ND 95-94-3 D 630-20-6 C 79-34-5 C	0.0001 0.001 0.003 0.03 NA	NA NA NA NA O.2	NA NA NA 10	0.20 0.20 0.20 0.20
238. TETRACHLOROETHYLE) 239. TETRAETHYL LEAD 240. THALLIUM 241. THIOPHANATE-METHYL	LЕИЕ (РСЕ) НҮL	127-18-4 B2 78-00-2 D 7440-28-0 ND 23564-05-8 D 137-26-8 D	NA 0.0000001 0.00007 0.08 0.005	0.05 NA NA NA NA		NA 0.20 0.20 0.20 0.20
243. TOLUENE 244. TOXAPHENE 245. TRIADIMEFON 246. TRICHLORFON 247. 1,2,4-TRICHLOROBENZENE	7	108-88-3 D 8001-35-2 B2 43121-43-3 D 52-68-6 C 120-82-1 D	0.2 NA 0.03 0.0125 0.0013	NA NA NA NA	NA NA NA 10 NA	0.20 NA 0.20 0.20 0.20

ND Not Determined

APPENDIX B
TOXICOLOGICAL DATA FOR LISTED CHEMICALS

CHEHICAL	. CAS CANCER NUMBER GROUP	RfD (mg/kg/d)	SLOPE FACTOR 1/(mg/kg/d)	SAFETY FACTOR	RSC
248. 1,1,1-TRICHLOROETHANE (TCA) 249. 1,1,2-TRICHLOROETHANE 250. TRICHLOROETHYLENE (TCE) 251. TRICHLOROFLUOROMETHANE 252. TRICLOPYR	71-55-6 D 79-00-5 C 79-01-6 B2 75-69-4 D 55335-06-3 E	.09 0.004 NA 0.3	NA NA 0.011 NA NA	NA 10 NA NA	NA 0.20 NA 0.20 0.20
253. 2,4,5-TRICHLOROPHENOL 254. 2,4,6-TRICHLOROPHENOL 255. 1,2,3-TRICHLOROPROPANE 256. TRICHLOROTRIFLUOROETHANE 257. TRIFLURALIN	95-95-4 D 88-06-2 B2 96-18-4 D 76-13-1 D 1582-09-8 C	0.1 NA 0.006 30.0	NA 0.011 NA NA NA	NA NA NA NA	0.20 NA 0.20 0.20 0.20
258. TRIFORINE 259. TRIHALOMETHANES (TOTAL THM) 260. 2,4,6-TRIHITROTOLUENE	26644-46-2 D NA NA 118-96-7 C	0.025 NA 0.0005	NA NA NA	NA NA 10	0.20 NA 0.20
U 261. URANIUM	7440-61-1 A	0.003	QX	NA	0.20
V 262. VANADIUM 263. VERNOLATE 264. VINCLOZOLIN 265. VINYL CILORIDE	7440-62-2 D 1929-77-7 ND 50471-44-8 D 75-01-4 A	0.007 0.001 0.025 NA	KA KA HA 1.9	N N N N N N N N N N N N N N N N N N N	0.20 0.20 0.20 NA
X 266. XYLENES (TOTAL)	1330-20-7 D	2.0	NA	НА	0.20
2 267. ZINC 268. ZINEB	7440-66-6 ND 12122-67-7 D	0.05	NA NA	NA NA	0.20

NO Not Determined

APPENDIX C

SELECTED SYNONYMS and ACRONYMS FOR TABULATED CHEMICALS

(* indicates trade or brand name)

SYNONYM

α-BHC α-HCH

α-Hydroxytoluene

B-BHC 8-HCH

β-Trichloroethane

y-BHC Y-HCH

-Methyl-2,4-dinitrobenzene

,1-DCE

,1-Dichloroethene 1,1,1-TCA

,1,2-TCA

,1,2-Trichloroethene ,1,2-Trichloro-

1,2,2-trifluoroethane ,1,1,2-PCA

,1,2,2-Tetrachloroethylene 1,1,2,2-PCA

,2-Benzacenapthene ,2-DCA

,2,2-Trichloroethene ,2-Dibromoethane

,2,2-Trichloroethane

,2,4-TCB

,4-Dioxane ,3-DCP

2-Chlorotoluene

2-Butanone

2-Hydroxyethanol 2-Cresol

2-Methoxy-2-methyl propane 2-Methyl-4-phenoxy-2-Hydroxytoluene

Methyl tert butyl ether

o-Methylphenol

2-Methylphenol

SYNONYM

NAME LISTED IN TABLE

Hexachlorocyclohexane(α-) Hexachlorocyclohexane(α-) -1exachlorocyclohexane(β -) dexachlorocyclohexane(\beta-)

Benzyl alcohol

,1,2-Trichloroethane

indane. indane

2-Propanone

2-Propenenitrile 2-Propenal

2-(2,4,5-Trichlorophenoxy)

2,3,7,8-Tetrachloropropionic acid

dibenzodioxin

2,4-DCP

2,4-Dichlorophenoxyacetic

acid

2,4-DNP 2,4-DNT

> ,1,1-Trichloroethane ,1,2-Trichloroethane

Frichloroethylene

,1-Dichloroethylene

,1-Dichloroethylene

2,4-Dinitrotoluene

2,4,5-TCP

2,4,5-Trichlorophenoxyacetic

acid

2,4,6-TCP

3-Cresol

3-Hydroxytoluene

,1,2,2-Tetrachloroethane ,1,1,2-Tetrachloroethane Trichlorotrifluoroethane

etrachloroethylene

-luoranthene

3-Methylphenol

AAtrex*

Accelerate*

Access*

Acephate-met Acrylaldehyde

Alfa-Tox* Afalon*

,2,4-Trichlorobenzene

,3-Dichloropropene

Methyl ethyl ketone

p-Dioxane

o-Chlorotoluene

Ethylene glycol

Cresols (Total)

Cresols (Total)

,1,2-Trichloroethane

Ethylene dibromide ,2-Dichloroethane

richloroethylene

Allisan* Ally*

alpha-HCH alpha-BHC

Amazine* Ambush*

Amiben*

Amidophos Ammate* AMS

NAME LISTED IN TABLE

Acrylonitrile Acetone Acrolein

2,4,5-TP

2,4-Dichlorophenol 2,3,7,8-TCDD

2,4-D

2,4-Dinitrotoluene 2,4-Dinitrophenol

2,4,5-Trichlorophenol

2,4,5-T

2,4,6-Trichlorophenol Cresol (Total)

m-Methylphenol Cresol (Total)

Atrazine

Endothall

Methamidophos Picloram

Acrolein

inuron

Diazinon Dicloran

-lexachlorocyclohexane(α -) Metsulfuron-Methyl

Hexachlorocyclohexane(α·) Simazine

Chloramben Permethrin

Ammonium Sulfamate Ammonium Sulfamate Methamidophos

NAME LISTED IN TABLE -lexachlorocyclohexane (β-) Hexachlorocyclohexane (β-) Di(2-ethylhexyl)phthalate N-Nitrosodiphenylamine Butyl benzyl phthalate ,1,2-Trichloroethane Benzo[b]fluoranthene Phiophanate-Methy! Benz[a]anthracene Ethylene dibromide Diquat Dibromide Diquat Dibromide Azinphos-Methyl Monocrotophos Fluoranthene Chlorothalonil Difenzoquat **Friadimeton** Fenvalerate richlorfon Permethrin Metolachlor Metalaxyl Parathion Bentazon Simazine Propoxur Chrysene Chrysene Cyanazine Alachlor Sulprofos Methomyl Acrolein Diazinon -enarimol Benomyl Atrazine Carbaryl Dicloran MSMA Thiram Acrolein Alachlor Alachlor Maneb Benz[e]acephenanthrylene Bis(2-ethylhexyl)phthalate Benzo[a]phenanthrene Benz[a]phenanthrene beta-Trichloroethane Benzo(a)anthracene Benzo[j,k]fluorene SYNONYM Big 10 Dust* Bromofume* Bran L Bait* Bravo C/M* Aquatate* Aquazine* Benzamine Basagran* Aqualin* Aqua 8* Bayleton* beta-BHC Anthon* Atroban* Avenge* beta-HCH Arasan* Azodrin* Basudin* Baygon* Apron" Banish* Banrot* Benfate* Asana* Ansar* Arena* Bayer* Biocide * Bronco* Bladex* Bolstar* Bicep* Botran* Bicep* Bullet * Bravo* Bloc*

SYNONYM

NAME LISTED IN TABLE

cormetanate Hydrochloride Dichlorodifluoromethane cis-1,2-Dichloroethylene cis-1,2-Dichloroethylene **Frichlorofluoromethane Frichlorotrifluoroethane** Dibromochloromethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dibromo-3-chloro-,3-Dichloropropene ,3-Dichloropropene Thiophanate-Methyl Carbon disulphide Pentachlorophenol Diquat Dibromide Epichlorohydrin Vinyl chloride Vinyl chloride Cresols (Total) Cresols (Total) Cresols (Total) Cresols (Total) Chlorothalonil Fluometuron **Dichlobenil** Syromazine Metolachlor Dimethoate Malathion Prometryn Profenofos Carbofuran Cyanazine Propargite Malathion Ferbufos Carbaryl Styrene Atrazine Acrolein Captan Phenol 2,4-D RDX RDX Syclotrimethylenetrinitramine cis-1,3-Dichloropropylene cis-1,3-Dichloropropene Chlorodibromomethane cis-1,2-Dichloroethene Chloromethyloxirane Carbon bisulphide Cresylic acid(m-) Cresylic acid(o-) Chloroethylene Carbolic acid Chloroethene Chlorothane* Chlorothene* Chlorophen* Chemathion cis-1,2-DCE Cinnamene Castaway * Cotton-Pro* Cercobin* Conquest* Conquest* Casoran* CFC-113 Cresol(m-) Curacron* Dacamine 1 Coastox* Counter* Cresol(o-) Captec* Cotoran* Citation* Crolean* Cyclonite CFC-11 Curaterr* Cythion* Carzol* CFC-12 Comite* Dacthal* Daconil * Cycle* Cygon* OBCP

propane

cis-1,2-Dichloroethylene

c-1,2-DCE

Japarol*

Prometryn

~	
Z	
$\overline{}$	
Ζ,	
$\overline{}$	
\sim	

SYNONYM	NAME LISTED IN TABLE	SYN
DBP	Dibutyl phthalate	2
DCMU	Diuron	DMN
DCNA -	Dicloran	DNP
De-Ruo-1*	1,3-Dichloropropene	TNG
DEHP	Carbaryl	DPN or [
DEP	Digthylhexyllphthalate	DPX-T63
Depend*	Dietnyl phthalate Beotszoo	Dragnet
Des-I-Cate*	Fodothall	Dual *
Devrinol*	Napropamide	Dursban
Di(2-chloroethyl)ether	Rie/2-chloroethullether	Dyfonate
Dibenzo[a,h]anthracene	Dibenzía blanthracene	Dylox*
Dibenzo(b,jk)fluorene	Benzofkliluoranthene	Ectiban
Dibrom*	Naled	EOR EOR
Dibromochloropropane	1,2-Dibromo-3-	EDC
Dichloran	chloropropane	Endocide
Dichlorobromomethane	Dictoran Bromodichlosomosthosos	Envy*
Dichlorobenzidine	3.3-Dichlorohandidae	Eptam*
Dichlorodiphenytdi-		Eradicane
chloroethane	000	Ethane te
Dichlorodiphenyldi-		Ethane he
chloroethylene	DDE	Ethre!
Dichlorodiphenyltri-		Ethyl or
chloroethane	DDT	Ethyl ding
Dichlosophogomore	Methylene chloride	Ethylene (
Dichlorodichlorom and	2,4-D	Ethylene
Dimate *	Dichlorodifluoromethane	ETU
Dimecron*	Dimethoate	Evercide
Dimethogon.	Phosphamidon Dimathosto	Evital*
Dimethyl ketone	Acetone	Expar*
Dimethylbenzene	XVIPOP (Total)	Extrazine*
DimethyInitrosoamine	N-Nitrosodimethylamina	Extrazine*
Dimethyl tetrachloro-		renoprop
terephthalate	DCPA	Figure
UI-n-butyl phthalate	Dibutyl phthalate	French HE
Dioxamyl	Oxamyl	Freen ME
DIOXIN	2,3,7,8-TCDD	French PCA
Diphenylnitrosamine	N-Nitrosodiphenylamine	Fred TE*
UlpropyInitrosamine Diatorox*	N-Nitrosodi-n-propylamine	Freon-11
Digitat	Trichlorfon	Freon-12*
Disyston*	Diquat Dibromide	Freon-113
Dithane*	Ulsulfoton Mancozeh	Fumazone*
Dithon*	Methyl Parathica	1
Dithon 63*	Parathing	Fundal*
Ditranil	Dicloran	Funginex*
		~

SYNONYM

NAME LISTED IN TABLE

N-Nitrosodi-n-propylamine ,1,2,2-Tetrachloroethane N-Nitrosodimethylamine Dichlorodifluoromethane Trichlorofluoromethane Trichlorofluoromethane **Frichlorotrifluoroethane** Trichlorotrifluoroethane Trichlorofluoromethane Trichlorofluoromethane **Frichlorotrifluoroethane** Metsulfuron-Methyl 1,2-Dibromo-3-chloro-Ethylene dibromide 1,2-Dichloroethane 2,4-Dinitrotoluene ,2-Dichloroethane 2,4-Dinitorphenol Hexachloroethane Ethylene thiourea Vinyl chloride Chlorpyrifos Chlorothalonil Metolachlor Fenvalerate Permethrin Trichlorfon Permethrin Endosulfan Fenvalerate Norflurazon Permethrin Acetone Cyanazine Fonofos Ethephon Parathion 2,4,5-TP Styrene Atrazine 2,4-D EPTC EPTC EPTC Ethyl dipropylthiocarbamate Ethylene monochloride Fluorotrichloromethane Ethane hexachloride Ethane tetrachloride Ethylene dichloride DMN or DMNA Ethenyl benzene DPN or DPNA Ethyl parathion DPX-T6376 Dyfonate* Eradicane* Dursban* Freen PCA * Dragnet* Endocide* Extrazine* Extrazine* Freon HE* Freon-MF* Freon-113 Fumazone* Ectiban * Freon TF* Freon-11* Freon-12* Fenoprop Dylox * Eptam* Evercide Forturf* Ectrin* Envy * Dual * Expar* Ethre!* Evital* DNP DNT EDC EDB ETU

propane

Chlordimeform

Triforine

NAME LISTED IN TABLE

Febuthiuron Carbofuran Methiocarb Prometryn Permethrin Simazine Paraquat Picloram Lindane indane -indane -indane Hexachlorocyclohexane(γ -) Hexahydro-1,3,5-trinitro-Gamma-Mean gamma-HCH gamma-BHC Gramoxone* Hard Hitter* Grandslam* Gesagard* Galecron* Geraslan* Gesapun* Guthion* Harmony * Furadan* Grazon* Fungo • Glean*

Indeno[1,2,3-cd]pyrene Hexachloroethylene Hydroxytoluene(m-) Hydroxytoluene(o-) 1,3,5-triazine Hydroxybenzene Indenopyren -lydrothol* Imidan* mage. Hyvar* م

Isoacetophorone IPC Propham Kelthane* Karmex *

Lannate* Krovar* Krovar* Kerb.

-ock-on* Lexone* Lasso" LG-50* Lorox *

m-Dichlorobenzene m-Cresylic acid Lorsban* m-Cresol

m-Hydroxytoluene

Thiophanate-Methyl Chlordimeform Chlorsulfuron

Azinphos-Methyl DPX-M6316

-lexachloroethane

RDX

ndeno[1,2,3-cd]pyrene Hexachloroethane Cresols (Total) Cresols (Total) mazaquin Endothall Phosmet Bromacil Phenol

,3-Dichlorobenzene Cresols (Total) Cresols (Total) Chlorpyrifos Chlorpyrifos sophorone Pronamide Metribuzin Methomyl Diazinon **3romacil** Alachlor -inuron Dicofol Diuron Diuron

Veguvon* Vemacur*

SYNONYM

NAME LISTED IN TABLE

Captan Maneb Methyl chloroform MeCl (or MeCl₂) Methyl bromide Methyl chloride Wetasystox-R* Magnacide ' Metaspray* Walaspray ' Marksman Wanzate* Matadon* Marlate* Mesurol* Merpan* Manex* Manex* Mavrik*

MEK

Methyl chlorophenoxyacetic Methyl tribromide Methyl trichloride Methylbenzene Methyltoluene Meturon* acid MF-4 *

Monosodium methanearsenate MH Maleic hydrazide Monochloroethylene Monochloromethane Monochlorobenzene Milograd* Monitor* Morpafor MTBE **VDMA**

N,N'-Diphenylhydrazine o-Chlorophenol o-Cresylic acid Vemagon*

Nemex*

1,1,1-Trichloroethane Methyl ethyl ketone Oxydemeton-Methyl Methylene chloride Methyl Parathion Bromomethane Chloromethane Methoxychlor Fluvalinate Methiocarb Permethrin Mancozeb Mancozeb Malathion Atrazine Acrolein

Xylene (Total) Fluometuron Bromoform Chloroform Coluene Maneb MCPA

N-Nitrosodimethylamine Methyl tert butyl ether ,2-Dibromo-3-chloro-Methamidophos Chloromethane Chlorobenzene Vinyl chloride Fenamiphos Trichlorfon Propazine Sulprofos MSMA

,2-Diphenylhydrazine 1,3-Dichloropropene 1,2-Dichlorobenzene propane 2-Chlorophenol Cresols (Total) Cresols (Total) Myclobutanil Methomyl

o-Dichlorobenzene

Cresols (Total)

o-Cresol

Nudrin*

Nova*

		1
		-
		п
		1
_		J
	⋝	1
	_	٠
Š		1
٥	-	
-	-	١ĺ
4	\sim	. 1
	_	1
C	כ	Ц
_	Ξ.	ч
4	_	1
Ξ	_	7
?	-	١
7	~	.1
ζ	ŋ	1

Cresols (Total) Diazinon	HMX	Propargite	Propiconazole	Vinclozolin	Proparaite	Captan	Benzidine	1,4-Dichlorobenzene		DDD		DDE	TOO	Chlorovrifos	Parathion	Polychlorinated biphenyls	Cyanazine	Tetrachloroethylene	Pentachlorophenol	Metolachlor	Methyl Parathion	Mancozeb	Pendimethalin	Pentachlorophenol	Tetrachloroethylene	Hexachloroethane	Tetrachloroethylene	Carbon tetrachloride	Tetrachloroethylene	Permethrin	Benzyl alcohol	Benzyl alcohol	Styrene	Parathion	Phosmet	Carbofuran	DPX-M6316	Mepiquat chloride	Sethoxyadim	Permethrin	Prometon	Pendimethalin
o-Hydroxytoluene OC-50 • Octahydro-1,3,5,7-tetra- nitro-1,3,5,7-	tetrazocine	Omite*	Orbit -	Ornalin*	Ornamite*	Orthocide*	p-Diamodiphenyl	p-Dichlorobenzene	p,p'-Dichlorodiphenyl-	dichloroethane	p,p'-Dichlorodiphenyl-	aichloroethylene	trichloroethane	Pageant*	Parawet*	PCB	Payze*	PCE .	PCP	Pennant 5G*	Penncap-M*	Penncozeb*	Penoxyalin	Penta*	Perc (or Perk)	Perchloroethane	Perchloroethylene	Perchloromethane	rerciene*	rermanone.	Phenylcarbinol	Fhenylmethanol	Phenyl-ethylene	Phoskil*	Phthalophos	Pillarfuran	Pinnacle*	Pix *	Poast*	Pounce*	Pramitol*	Pre-M 60 DG*

NAME LISTED IN TABLE

NAME LISTED IN TABLE

Primatrol S* Princep* Prokil*

Prolate

Prolox*

Prometryne Pronone*

Propylene dichloride

Propyzamide Prowl*

Prozine* Prozine*

Pyraperm* Pydrin* Rally *

Rampart* Ramrod*

Regione* Ridomil*

Ridomil*

Ridomil Bravo 81W* Ronilan*

Roundup*

Rubigan* Ryzelan*

thiocarbamate S-Ethyl dipropyl-

Sarolex* Scepter* Scram*

Selecron Sencor*

Sevin*

Sinbar* Silvex

Sodium Bentazon Solicam* Sonar*

Spectracide* Spike* Stall*

Stand-Aid* Stomp* Strike*

Sumicide* Strobane* Subdue*

Simazine Simazine

Hexazinone Trichlorfon Prometryn Malathion Phosmet

Pendimethalin Pendimethalin Fenvalerate Pronamide Atrazine

1,2-Dichloropropane

Diquat Dibromide Myclobutanil Permethrin Propachlor Phorate

Chlorothalonil Vinclozolin Glyphosate Mancozeb Metalaxyl

Fenarimol Oryzalin

Imazaquin Diazinon EPTC

Profenofos Metribuzin Thiram

Carbaryl 2,4,5-TP

Norflurazon Bentazon Fluridone **Terbacil**

Tebuthiuron Disulfoton Diazinon Alachlor

Pendimethalin Triadimefon Foxaphene

Fenvalerate

sym-Trimethylenetrinitramine Sumicidin * Surpass* Surflan* Sutan* Swat *

Systec 1998* Systhane* t-1,2-DCE Tamaron* elone. Felar* TBME TCA CE 垣

Fetramethylene tetranitramine Thifensulfuron methyl **Tetrachloromethane** Tetrachloroethene Terraclor* ſhiodan* Temik* Fhimet* relvar⁴

Fhionspray * Thiosulfan* Thiophan* **Phioxamyl** . ∃: LVL

NAME LISTED IN TABLE

Fenvalerate

Vernolate

Butylate

Oryzalin

Thiophanate-Methyl,

Myclobutanil

Phosphamidon

RDX

trans-1,2-Dichloroethylene Methyl tert butyl ether ,1,1-Trichloroethane ,3-Dichloropropene **Trichloroethylene** Methamidophos etraethyl lead Chlorsulfuron

Disulfoton Monuron Aldicarb

Carbon tetrachloride Tetrachloroethylene DPX-M6316 HMX

Thiophanate-Methyl Endosulfan Endosulfan Parathion Phorate

Thiophanate-Methyl rinitrotoluene Propiconazole Profluralin Foluene

Oxamyl

Picloram

Fopsin*

Fordon*

olban*

Foluof

SYNONYM

trans-1,3-Dichloropropylene trans-1,3-Dichloropropene trans-1,2-Dichloroethene trans-1,2-DCE Treflan*

Trichloromethane **Frichloroethene** Trichloren* Tri-4*

Trichlorophenoxyacetic acid 'riclopyr, butoxyethyl ester propionic acid **Frichlorophenoxy** Tri-clene*

Frimethylcyclohexenone rigard* rilim.

Trimethylenetrinitramine Vinyl chloride monomer VC Vinyl chloride Vinyl benzene Vegetrol* Vernam* Velpar*

Vinylidene chloride Weedone* Vitavax⁴ Vydate* Waylay* Watrol*

Weedtrine* Yaltox* Xylol

Zorial *

Norflurazon

NAME LISTED IN TABLE

trans-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,3-Dichloropropene 1,3-Dichloropropene **Trichloroethylene** Trichloroethylene **Frichloroethylene** Chloroform Frifluralin **Trifluralin** 2,4,5-T

Frichloroethylene Cyromazine sophorone Trifluralin 2,4,5-TP Triclopyr RDX

1,1-Dichloroethylene Diquat Dibromide Diquat Dibromide Diquat Dibromide Jinyl chloride Kylene (Total) Vapropamide 4exazinone Carbofuran Vernolate Carboxin Styrene 0xamyl 2,4-D

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX I FIELD NOTES THIS PAGE INTENTIONALLY LEFT BLANK

-

North American Polaris II Dave Castro Andy Wallace (Home) SWE Bolin Peter Cand Murmann Sleve

22 302 - 9272 848 - 8503 841 - 2802 921 - 2802 921 - 9274 273 - 3466 273 - 3466

& Claril 95

0650 arvin @ Bar

0655 Anin @ Capt Pet Balgo's (ED) office 0735 aroun @ CE much with Dave Castron (DC) discuss activity. DC had the rund and on 4 april 95

0800 Pick we supplier at Supply, arrive at Pit 1 Truck have an site, Ray Charles operator. Start set up.

0815 5 tant cutter askalate. Pid calcibrated, 36 = 0.0 ppm 0830 Fired alab up, top of runden

ASHE 1501 and 01 and 11 almit

charker brown, Pid=0 0.3-1.2 Sand, grownelly, sand is 1.9 - 5.9 Sand, gravelly sand is 3.6 × 6.8 (3 Concrete another 1.55 - 1.9 ahyal clayty,

2 Samples @ 945

07- P.+ 1 (1.2-1.5) 67- P.+ 1 (2.2-24) 1015 More to Pit 2 between Building 46 and 35.

1045 07-031 Et collect

1150 Leave for lunch

1305 Back diagring.

1330 Dark stain layer, black a

P.1.7

0-4.8 Sand, chayry, brown

10.8 - 6. Gravel sandy brown,

6.0 - Bluell staining 07 - Pitz (6.0 - 6.2)

1346 Start Pit 3

1430 Duz the 6.8" no stuin sample @ 6.0-6.2 (07-0:13 (6.0-6.2))

0.0 - 5.0 Sandy, chyey, little groud

5.0 - 6.8 Gravel, sampy, 1" +08"

Coverey,

6/20/95

Arres Ol 40 arrivi @ Base

645 Mut with Dan (astro (DC)

650 Send Chad Frost (CF) and Juff Blund (JB) to get supplie

700 DC and I walk suty

730 Walk seter with Jenid CF

815 OpTul personnel get layed.

1000 Stent umpacking supply,

1230 Halby Rodning (GR) Al duller arrive with utilety dearers.

1240 Start cleaning utility, around

House of the result of the res

Baywipment

1345 - Take withing Locators on airport
property to Dean willish Source lime
property that will read to be demy

1430 Back of 00-023 MV rie settles

1530 Safety Bruff

15415 Start doubling on drumms.

1540 De informer Me tak the generalish

of the rie is intermed of an ownersyll is the
Roman They required. They we
move the all another Docation.

705 Riez stards morror

75 Lewre 5th

the to min of 10

0658 Dullers arriver, which gither the rieg reach

0715 Saftly meety

0721 Start drubly 01-028MN

0930 Reached 50 bls, stopping to cell DUR about permits

1010 Permits well be available @ 1300,

1015 Break unt 1300 call office, INSITU, and Blue Stake togethe them to clear utilities of Scener

1300 Start drilling

1450 110 0 911, Cleaning out hale

Screening going in the feel or 10/20 sand = 91 - 34,6 fine sur1 = 34.6-32, bentonit. = 32.9-27 screen = 90-40 1520

Drums 501-510

122 June 1995

0605 anim at ret, driller clowing

and unlied has back gall

0700 JB and CF of 01-025 MW

08 110 Support Truel 1

725 Screen going in the \$00 mg in the on-06 - v22025

40- Surface 10/20 sand fing sand

910 Jume

Scontinua in at 01.026 MW - www. ouse Drillen of M DC-02LMV. 23 Juna 1995 bendonile Cernent

1005 Start dully 01-021MW
1005 Start dully 01-021MW
1650 Screen goin in the hole
cuse = 40-surfau
fine sand = 92-18
fine sand = 32.1-30.9
bentonie = 30.9-24.8
listums = 523-530
drums = 523-530
Leather Sunmy, hot, 105+, Drug

24 June 1995

6600 aring up 06-021 MV

0715 Move ring own 06-024 MW

0732 JB and CF arowin

0748 Safety Bruff

0752 Start Inelle

0835 Chuk depth of 06-021 mm
P1D=182
TD=90.15

1110 Screen going in the holz

seveen 90-40 cus. 40-sork

16/21 sand 92-33. fin sand 33.6-29.

Of 00 aits, drublen about the drub.

Of 30 Shurt drublen

0858 screen going in

TB = 92

Screen = 85-39

Cusing - 39 - 32.9

fiv. sand - 92 - 32.9

fiv. sand 32.9 - 3.8

benfone - 29.1 - 25.0

cement 25.0 - 50rkee

Drums 539- 545

1050 Quanting up.

1205 Sathery up over

1330 Drillie,

TD on 06-024 MW Pid = 130

1530 @ 65'61s, no

more dreims

1600 Leave with

OLBO avien @ Caps Bulga's of Bring him up to roped on Rill program

6706 CF and JB owner

0800 Drillens would

OBIS Start doubly to firmit 06-022 MW 0930 sceen going in the

Screen 96 - 40 26 - 01

the agreement retroactor.

1100 Tolk to C about deally the She sould be talk to the love of the tolk to and the sould be talk to the sould be talk to me a and got a height (97A) and the about the sould know a fourthing personned our 1300 Met open it openium the sould be sound to sound the sould sould got to open it openium the sound our sould sou

16-10 screen Goingin OC-OZOMU

TD 12

Screen for 40

Lase 40-30.face
loho sand 92-34.0

fine sand 34.0-36.8

bentonite 30.8-25.4

cement 25.4-sorface

1800 heave site

22udh sunny hot, lost, brey in

0530 Call Mich Frey contracting well your world ga alread for optimal world in some man want to just in some more men in the motor of and him is motor of any wing. It have noted the motor of any way.

0540 Called Contracty (Catha).

0709 Operations open gate 0715 Call Operaturi to tell the me purell 0730 Drillers avour

0756 (F and JB arruni

0800 cl lean for CE to draw maps

1015 Settly up one 06-016BM, repaired

1130 Start dully

10 Stud semplus 06-016-475

Drums 554-557

obout the optioned man in the

Oberations to inform the that

0645 trave for site 75tg blesselmas

0645 armin d 06-019 much

0730 Hary Coffman (G.C.) until operations comes by to measure the destann him the lovinary to the destann Distann is 133; no problem

Sund to 12 - 34 charge sout 39 -

0435 TD@ 92

0450
4950
5 creen goin, in
800 TD = 92
5 cash, 40.0
cash, 40.0
to sand 92.35
fine sand 35-32.2
dentombe 32.2-5 orter
drvms 558-564

1030 D W pages me

1945 Talk to DW MF was slink, of root to the Jose the the the law of the the the law of the law of the location of the law of the law lad we had DU

1130 Day Coffee comes by and Necomment we have not our next crew go always the safety course 1200 Rig moun off of 06-01844

1205 Ruch in Bulding

1230 Move dreams of away plan

1300 Deconing and Broaking for bund.

1400 Morring over 04-019MM.

1500 the Paccol from Aleri, going to

TETOO Return, ring et 30' 615, (beach

Sand @ 40 DLS

1800 60 bls, stop for the day.

Wether: Summe had 105.

29 June 95

O600 Chruin @ Capit Bulgu's office of the Color Call Operation to Till thus we will be on airport properly O628 Rusun Drulley OC-019M

0805 TD 01-019WW

0823 screen going in the held

TD = 91

Screen 90-44

casing 40 - surfact

casing 40 - surfact

five sand 91-34.9

five sand 31.1-26.3

bentand 31.1-26.3

crown 26.3-surfact

drums 565-572

Part Control		
S H S		
	1877 1883	Children Seal
	100	11,112
	1.4.1	1.00
traffepolis	0.00	
creducing ferry	0.303	•
	9 280	
College.	1::1	•
The state of the state of	10,400	
	;	
	0.00 MG	
25,180,04	254 6	
**	1.27	
7 T E		

ALL ON MITTER WITHERS

						 11,111	¥	,	2.	0.00	164	4 1 2 2		2.	157.55	10 To 20 To	一、野人	14 F10
# # # # # # # # # # # # # # # # # # #	1		# 154 E								23.63	7.54.4	The control of the co	0770	(804)	2009	6627	57.08
les bres.	<u> </u>	*	# 15 T	1		1	15.7		F	- f	, 1/	ţ.	AN LONG TO A COMPANY OF THE PARK OF THE PA	72	· .		1.0	***

SIE Saker Chart Blunt
SIE Saker Charlogies
9/00 ml Logo 4/10, Suste 23/

Bartinoper, 29.523 port 8.174 grade (15.5)

. . . .

5Ky Habor 1315-227 Office has been been about the common of the horizontal model by sent the common of th

SIMILHOU

RUCCULICE

11 7/1

Q 10 - 5/1

HAZCO (800) 332-0435 Dr. Fisher (800) 634-7320 (210) 615-2020 HAPL (602) 757-1910 Brilington (210) 402-1212 Mike Gles (615) 481-8938

Sky Harbor Smites hest Town of Moenix As Sand Sover Land Ship England to 1910 Ship England to 1910 Ship England Sover to 1910 Ship England to 1910 Shi

commence In that III he to some the trible to be taken every 10 minutes, with deviations from the hove some of the 20 Time 2 her somanned tan program. Rey will he than the the west of who heat flag np (, heat heat speed who x is still L85. Acr -5/5/ Obid Armed of base.

Not Enry + Base personal,

Noether Hot Myskofilor.

No clouds no Mance on

No clouds no Mance on

So set up evenually tiest

230 1set Wesselman about

That het stress track. 20Jungs Flug reac flight line will above 85. (10-50 morrow 230 ha - Calibrate ODD+LEL (See Calibration 195) 420 Signing Salety Plum A affice softh biosing 15 DATHING GREATURE

burned of louths of smoke) when deem to the the low loves thely defected (dong w/ exhaust them the track and the more ted that we wike a that he 1 press 6 owing to 11/1 Ones USING LOSSINE Lambring of rums 50 the first 17/4me suspeedu (5/12 grs) Meather Stated 10 Libeling Of Holoughth 5 hy Burber 13/5-235 from the 200 183 56/21/9 1) Heat stores inter 75 1) Tem 80° (H19h 2, Mo be called 06 45 ontudon stoc. Heal Wet Sally oganics (0.0 pp.

Similar PTD read h.

Still offe a lot of PID realing Occassion 114 ead 195 Ig. Initial Wits 1-2 ppm - probably open, exhapted to an three in health + Safety by are given on the his 2550 C. 1, souther PID/LEL MW 5200-90 50.4 A lere [7]

been obsains for trains was the will solve the work of the will solve the work of the solve the work of the solve the work of the solve 1321 Milke Refinens tolk hin about Gray
1334 We hit Graynd Mater
1334 We hit Graynd Mater
1334 We hit Graynd Mater
1350 redfryst Left (readings
1445 Chad Felling Lyther Im
1445 Chad Felling Lyther Im
1455 Chad Felling Lyther Im
1455 Chad Felling Lyther Im
1555 Chad Felling Lyther I and has simply 21 Jun 95 exclusion gara Shy Harber 1315-227 Ministes aso on supply run.

Spis Milling up of sand by

Lane hist Soft and by

Ogo strike the last grannd as as

Were not quite they yet.

1030 Seek 411 1800 - whiting yer

pents. Cetting 5:00 lies t 1300 hB. San upst Stomach.

(315 Ched his an upst Stomach.

Condition is not relabel to government,

and the pared tangle of norths.) Says he feels bake.

Then then an how ago. He has not ago. He 21June 1995 Otto chad has yone (lath a few 1310 Beandrilling. M. Ke billes 1005 on site: tabby stocked that Mike to 18 him to start at soo Arive on site 5 Ky Har bor 1315-123

2/Jhn/35 0735 Rigs moving into place for drilling MW 06-026. 370 Anlight PID+ LEC realings 07 25 Tun 74. Experted to read 1040 to lay 1040 to lay 1 Chear + Sunny. 0550 Calibated but ptos + LEL. PID 35403-250 Willbe re-done in the field (tend (20 3ppm)). Re-called to-mentioned above. Tamp 1010 (Hadile) lenducted health the 1 sprons <s > ing AID rendings 1315-227 are nogative. 844 Harver 1315-227 21June 1995 in use poolins occassiond() 11 case porbter are heat rolated 2000 PIO (10. 1560 Coliborted 2000 PIO (10. 5804-35403-250) + took Original out of sice. Heat seems to be draining the batters + effecting the restort - had to recol. 1630 Supply Kin

5 rMCh7 contractate 30 MM 422-90 1350 Begin drilling 06-024 M 1300 PED GEODING / CLUGGING (TOWN) 8,2 to 38.5 fr 50/1 In In 1115. 182 Mansurements but has thisting was but not be conded in again regative, 530 depur 3,14, cur hegably. OKS Dilling formunges (206-02/M) [303 Noted for odons. Proposed to 1803 Noted for odons. Proposed to 1802 Noted for how beath, (Linch Ford down) Soil pro see as 19pm; (600 After 1 how beath, (Linch Ford down) Soil pro see as 19pm; (600 After 1 how beath, (Linch Ford down) Soil pro see as 19pm; (600 After 1 how beath, (Linch Ford down) Soil pro see as 19pm; (600 After 1 how beath, (Linch Ford down) Soil pro see as 19pm; (600 After 1 how beath, (Linch Ford down) Soil pro see as 19pm; 0940. Ohillers nove into position (Por Area) after dean yearsalures OFTO Conducted Satisfy Health OHIS Callinged PED/CEL Briefing,

OSCO Dirilling commences (541111 tat Use).
0810 Dirilling commences (541111 tat Use).
0817 Pro redired up to Upom
in soil in drums. 82 Pro 26 Jun 15 Newstrein soil realings at 0.0 ppm.
182 15 negative.
1820 temp 3 yoso nishing 06-020mm. 0850 Marpiox 814- high Ite.

reading on luminal soil (us

to 166 ppm) 37 Huchard JESS Jem, at 82°, especial, 10 go do 104. No winded this A12-5/87 25 346 25 1530 Temp is 107, but its a hours, howe of hids, No hear these thinking more of hids, 1530 50m FTD realitys in 82, contines in 82, 0300 Conhoded H+5 bn' Ghyseme crew, same formation
3900 Radio solates temps will
10 to vin (es same as pas oller. on sive 0530 Calibratul 00600 Amirch o Shy Western 51315-123

28 ma (3 0600 of At At CEL. Mellots 0630 STH Briefing, Inchilds 1315-227 5300 PTD/LEC Calibration
0900 StH brighing hope in tol yend. (Temp to go to 107° toolay); 1600 Bonny Dune 1820 October 8 Ac. E22-518/

5.th 1315-227 0570 641.bated PD-D-1666 0640 00/11/19 /ast well. 1300 chanchp.

FORMULAE FOR SOLVING RIGHT TRIANGLES

$$\sin A = \frac{a}{c} = \cos B \quad \cot A = \frac{b}{a} = \operatorname{Tan} B$$

$$\cos A = \frac{b}{c} = \sin B \quad \text{Sec } A = \frac{c}{b} = \text{Cosec } B$$

Tan
$$A = \frac{a}{b} = \text{Cot } B$$
 Cosec $A = \frac{c}{a} = \text{Sec } B$

Required Given

Given Required Solution

A, c
$$B$$
, a, b $B = 90^{\circ} - A$, $a = C \sin A$, $b = C \cos A$.

A, b B , a, c $B = 90^{\circ} - A$, $a = b \tan A$, $C = \frac{b}{\cos A}$.

A, a B , b, c $B = 90^{\circ} - A$, $b = a \cot A$, $C = \frac{a}{\sin A}$.

a, c A , B, b $\sin A = \frac{a}{c}$, $\cos B = \frac{a}{c}$, $b = \sqrt{(c + a) (c - a)}$.

a, b A , B, c $\tan A = \frac{a}{b}$, $\cot B = \frac{a}{b}$, $c = \sqrt{a^2 + b^2}$.

FORMULAE FOR SOLVING OBLIQUE TRIANGLES

Solution

A, a, b B, c
$$\sin B = \frac{b \sin A}{a}$$
, $c = \frac{a \sin C}{\sin A}$
A, B, a $b = \frac{a \sin B}{\sin A}$
a, b, c $A + B = 180^{\circ} - C$, $C = \frac{a \sin C}{\sin A}$
a, b, c Area $\sin \frac{a + b + c}{2}$, $area = \sqrt{s(s - a)(s - b)(s - c)}$
A, b, c Area $\arcsin \frac{bc \sin A}{2}$

(-)	-	· · · · · \		-
	-			
_		- 60	-	
		-/5		····t7·····
		. K		()
				~ C
•		Boenie		~ ~
e 0		<u> </u>	` '	
\mathcal{L}				
- ANG		-		٠. (٠٠٠
4.		1		
1				- (-
1				- -
			15	0
			-	1
€ :	~	0-		
€]	7	- 3		- <u>`</u> -
6 - B	7	3		0
tar by	2 2 7	13.00	, <u>, , , , , , , , , , , , , , , , , , </u>	0
Harbo	227	horden		0
	+227	Arrived	75007	0 4
		Arrived	Nsen's	10 4,
		Arrived	N. co. i.	D 14
		Arrived	1. 2. co. x.	ed in 70
SKY Hab	1315-227	15 Arrived	ST Nen's	ked in To
		195 Horida	Son's	ched in To
		195 Arrived	18 55 X Sen. 7.	hecked in To
		17/35 Arrided	18 15 Non's	The Ked in To
		17/95 Arrided	18 VST X 800. X	Checked in To
		8/7/95 Arrided	(2) 18 15 X Son;	Checked in To

LE phone of Faye Phossi to of ob oil Mu said ship of ob oil Mu LATA SPOKE WITH ME about Foling

LATA LES FR FDUP From 06-024MW

8 Plaing Voc's in Ziglec Biss,

10 Met Ross III for Brock fisst Sporte with Stave out of Copt Balza's office it Discussed out Plan For 0845-All Equiph Aribes vix Bulling And Aribes vix Bulling And Ar Express. I AD I Take face vix thy Dlan and importance 12 Se 14

A CONTRACTOR OF THE PARTY OF TH	Til Domine of Sulphy Bristons int.		And the second s	A STATE OF THE PROPERTY OF THE
(35) Fre ld Metrivities Commence on Sisse. (6-023 MW. (Strunge orbor this time) sewer	, eu	1 vol 2 vol 3vol 3vol 014- 7.85 7.89 7.89 10.66 10.52 10.66 10.72	Werk Sindy a First Becoming Clear (vory gray wester though out purze - 11553 - Strope of purze (75 Gals purzed) Dum mill the gray of our first	58:03 -01c Time (Tet 10, Br. 1c. 4) -84:03 -
		P.C.		

2 .		
Stare	12.	3
J -	1, 2	5 7, 00, 30
Lith Have	1 3 E	10 20 - 22 - 25
3 2 2 6	1 1 × ×	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	200	
SUT	10 7 3	2
5 5 No 3 S		11 0 7 6
\$ 3 KH Z 3 C	2 N. 5	5 3 2 6 5
2 3 3	33 9	3 40 00 1
× 664 7 5	00,30	
	2 1	N
3 9 3	4 3 6	3 3 6
2 4 3 1	7 7 3 0 0	
20327	\$ 5 5 5 6 5 6 C	4 3 2 3 3 3 3
3 2	7.9	3, 1, 1, 0, 0, 0, 0
	3 C Z C C C C C C C C C C C C C C C C C	
7	673 CV 27 0	3 + 5 6 5 2 15
	0 5 9 6	2 3
	N	

PL

1		1		1		
<u>೩</u> ಭಾಷವಿಗಳ ಕಾರ್ಯ					11 45) Settu	Aroung 106-021 HW
					2	Sumer FT / F10 S&7 ppm
					20.85 - CTA	. o 2 o f PSH
- Alexandra			:	:	TD- 89.73	
	/				31:68 week #4.	1007.02
		:			1) on Observed well	puze front away their hones
					P4 7.82	7.60 (PID-204) 7.87 (PID-117)
		;			Co. D. P. 65	6.70
		20	:		Temp 79.9	801
					0 C 1 or dy	173 4 most Clear obushs.
				-	Stopped puze	1245 6/70 Gels purged
2171 3	i				1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 620 - 1000 S
					thopiael to San	2
-					NOTW - 58.33	(Sheen only)
					1914 + 7.84 Cond - C.00	
					1 00	(5/0)
						3 600 5
					De-7, 27, 0	
				1	Z	

8/1/55 1320 De-Corep Edupt.	T S U M	67 = (U.)	714 - 8.82 8.79 8.79 6.96 70 35 pm 6.88 PiD. 12pp.	Drums # 18 9506-644 (9506-645)	1 (1550) 1 (1550) 2 (1550) 2 (1550) 3 vois 5 photover	
			20-			

dur jegi Simples (2) Fed Ex. the former mon yerex tech 53971592222 Dut have 5

3-1262 AD reading P10-93P 06-024mm

DECKING D 1730 DCC CICRANC-23 MW 330 5/30 009 1630

DISTANCES FROM SIDE STAKES FOR CROSS-SECTIONING

Roadway of any Width. Side Slopes 11/2 to 1.

In the figure below: opposite 7 under "Cut or Fill" and under .3 read 11.0, the distance out from the side stake at left. Also, opposite 11 under "Cut or Fill" and under .1 read 16.7, the distance out from the side stake at right.

SIDE STAKE

SLOPE STAKE

o tuc Fill		0	-	8	6	~	ည	9	7	œ	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	35	36	37	
6:		4.1	5.9	4.4	5.9	1.4	6.9	10.4	11.9	13.4	14.9	16.4	17.9	19.4	20.9	22.4	23.9	25.4	56.9	28.4	29.9	31.4	32.9	34.4	35.9	37.4	38.9	40.4	41.9	43.4	44.9	46.4	47.9	49.4	50.9	52.4	53.9	55.4	56.9	
6 0		1.2	2.7	4.2	5.7	7.2	8.7	10.2	11.7 ,	13.2	14.7	16.2	17.7	19.2	20.7	22.2	23.7	25.2	26.7	28.2	29.7	31.2	32.7	34.2	35.7	37.2	38.7	40.2	41.7	43.2	44.7	46.2	47.7	49.2	50.7	52.2	53.7	55.2	56.7	58.2
7.	nko	7	5.6	4.1	5.6	7.1	9.6	10.1	11.6	13.1	14.6	16.1	17.6	1.61	20.6	22.1	23.6	25.1	56.6	28.1	29.6	31.1	32.6	34.1	35.6	37.1	38.6	40.1	41.6	43.1	44.6	46.1	47.6	49.1	50.6	52.1	53.6	55.1	56.6	58
9.	Sulcor St	6.0	2.4	3.9	5.4	8 8	8.4	6.6	11.4	12.9	14.4	15.9	17.4	18.9	20.4	21.9	23.4	24.9	26.4	27.9	29.4	30.9	32.4	33.9	35.4	36.9	38.4	39.9	41.4	45.9	44.4	45.9	47.4	48.9	50.4	51.9	53.4	54.9	56.4	
	Side of She	9.0	2.3	3.8	5.3	0.0	8.3	9.8	11.3	12.8	14.3	15.8	17.3	18.8	20.3	21.8	23.3	24.8	26.3	27.8	29.3	30.8	32.3	33.8	35.3	36.8	38.3	39.8	41.3	42.8	44.3	45.8	47.3	48.8	50.3	51.8	53.3	54.8	56.3	7.8
		9.0	2.1	3.6	5.1	88	1.8	9.6	11.1	12.6	14.1	15.6	17.1	18.6	20.1	21.6	23.1	24.6	26.1	27.6	29.1	30.6	32.1	33.6	35.1	36.6	38.1	39.6	41.1	42.6	44.1	45.6	47.1	48.6	50.1	51.6	53.1	54.6	56.1	57.
е.	Distance out from	0.5	2.0	3.5	5.0	8.8	8.0	9.5	11.0	12.5	14.0	15.5	17.0	18.5	20.0	21.5	23.0	24.5	26.0	27.5	29.0	30.5	32.0	33.5	35.0	36.5	38.0	39.5	41.0	42.5	44.0	45.5	47.0	48.5	50.0	51.5	53.0	54.5	56.0	
.2	51(1	0.3	1.8	3.3	48	6.3	7.8	9.3	10.8	12.3	13.8	15.3	16.8	18.3	19.8	21.3	22.8	24.3	25.8	27.3	28.8	30.3	31.8	33.3	34.8	36.3	37.8	39.3	40.8	42.3	43.8	45.3	46.8	48.3	49.8	51.3	52.8	54.3	55.8	7.3
-		0.2	1.7	3.2	4.7	6.2	7.7	9.5	10.7	12.2	13.7	15.2	16.7	18.2	19.7	21.2	22.7	24.2	25.7	27.2	28.7	30.2	31.7	33.2	34.7	36.2	37.7	39.2	40.7	42.2	43.7	45.2	46.7	48.2	49.7	51.2	52.7	54.2	55.7	57.
0		0.0	5.	3.0	4.5	0.9	7.5	0.6	10.5	12.0	13.5	15.0	16.5	18.0	19.5	21.0	22.5	240	25.5	27.0	28.5	30.0	31.5	33.0	34.5	36.0	37.5	39.0	40.5	42.0	43.5	45.0	46.5	48.0	49.5	51.0	52.5	54.0	55.5	

ALL-WEATHER WRITING PAPER ...

Name Operational Technologies 4100 NW. Locp 410 Address

731-0000 Phone Project SKY Hacksr ANG

Co.ovaling for GW. Event 07/09/55 then 07, Copt. Podro Balza 1315-227

ated to shed water and to enhance the written image. Makes it "Rite in the Rain" -a unique all-weather writing surface crepossible to write sharp, legible field data in any kind of weather.

a product of

ACOMMA WA 98421-3696 USA

X . 65 = 22.02= 101 Flush mant well 4" DVC Compression 20 (NO LOCK) (PID) reading You pom 75 total Octo Developed No Portuet 75 Educi Culs removed Stry away From Well during Pinging. DTW-55.95' WT. Holist 2- 22.00 Strong Fresh Fuel Odocl We will 1.1 Flow 5 2 58.5 No oder Some Sed inent Set-up around Well # 11.28 De-Corell Equiphorat 9.67 83.1. WT 42,11- 34.05 X.65 りょう Well developed + 22,3 Gals = 1 yelune 9.53 8219" 02.28 15.65 -m41 9.43 Bott - 93.36 BOH - 89.83' Interface) DTP - 55.64 100 1 86 Pemp= 82,3 PH = 7.31 XION CONDE, 9.65 Jemp Buos col y 150. 5411 115 0211

	age among the second of the se						
		(5)		Sme			1 20
	RMITT.	Corsing En En	527	ساء المراد	82.1° 84 Well 06-23 MW	y" PVC casing	lo l
In the second of the second of	RMIIIT 4 (14)	PWC.	23.52 Govel F	15 rems 15 rems 12 rep 12 rg		" PVK C4S	77.
	De-cured Fampt. RMIII. RC. 1-60-11-16-16-10-10-10-10-10-10-10-10-10-10-10-10-10-	Slight Alydo corbon ador when we opened well PID= UD (intresting) Dru = 53.75 (No PSH)	BOH - 89.82 WT 14,34 35.87 x.65 23.52 = 1 Development starts (Good Flan	(1807) 11 the Sold ment He Fuel (1809) 1200 (1806) 1800 (1809) 1800 (1809) 1800 (1809)	Temp. 82° 82.5° Smple to Development De-conect Fquipt		32.41 x.65 - 21.10 12.1
7/11/18	by the Di	Corbe	× 13	Soct 3		8,1/2 - ND	, 41, ×
1/ /	2. C. L. L.	1/4 de 1	\$9.85 + 35.	1 6 69 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	* 822°	mount treding	44. 32.41.
.	Decement	Slight opened	BOH - 89.82 WT Hight 35.87 Developinent	Very 11 Smelt MA PA Cond	Tempo 82" Complete Deve	Flush mount well PID raxeling-ND DTW SS-60	Bott 8 Wester Ht.
	~ ~ × ×	广2007	ο _α ξ Ω			J L A 5	Bo
	1300 1305 1315	1330	1350	(001 X)	1455	1525	
-				×	7 2		
	!						
·		: :					
as adjustment of an ex-	-						
				20			. 1
			W. S. T.				
	: : : : : : : : : : : : : : : : : : : :					: :	
·							

ne bepech	
y of 9 now wells installed wer	
, Kak	
72.1.0	
most K wife K	
There He have to reach him throughton	
MG. Usey Kus Supporting officeined	ę P
Evening the forming him of have	3.1
(South Mile Ciles) this	
Braks allowid us 10 work	
cover From the Sun Hesse	
where each of 43 could to ke	
+ Arianih out the cloud Winkling	
Periodlic Breeks were laken	
(b) 42-	

Arrived to Base o Sou Cell haskell Pro);	7 . 7 . 8	0600 DTW - 55.26 PID/ ND BUH - 87.40 NO Dochuct incomback	When Dick Brien / Very 5:1/47 Clearing Mp. has 11:21 3:01 DH 7:22 7:24 7:25	liteld Development Call of 1120 Commenced aff equiphine	Well ob-off MW PID/ in Defect OB 30 DTW. 5951

	7/12/95
	12 de 11/4 6/1/1 / Clear
	1
	6.70- 6.80
	8.0.5
	1
	10 25 We will let this well all wells
	purged to day set till to more of an
334	For Simpling So we can have a bulk
2	Shipmen
) E	1135 Set-up Irguit 6 Doct 5 640
PC:	
	(om pkyed Decon (
	1050 X++4p Krounk Well 06-005 MW
	Tike our Drylight Somule, Field
	Black of Epropt Black Dwing our
	Sampling Round Tommerrow, Amythis we
	100 DTN- Stizz PID-(Non Detat
	Bott - 90.27 Interface pomber 100 Pst
	Weber Ht 34.05 x:65 = 22-13, = 1001
	Pit: 7.02 7.00 6.99
	Temp: \$1.5 82.0 81.7
	X100 (con 7.10 7.20 7.15

1245 Dovelped 20616m with rung	8	1400 Moved Dorums (6) 1455 Sporke with John Morris brut Our status Will need to Fin Copies Coll When Suples	1530 Back Discussion on What needed to	1840 Moved Drums with Lift Och Publes Checked 5 Drum tops micked 150	1900 Brke down For the Day Equiptonel 1930 Deputed ANG)
		3Kip Page			

6530cm Averished as Ame / Went Birethy to Story of To Set up somple Kits buttles lebtes ite. 180553	0630 Wet with Pete Balza Discussed one Sampling Program Today 0730 Fess had most of our Sample Bettles Labled Agragais 1/7.	0803 Wet Frye Two ise Stark of Az. Shewing felit semples Voc contrapors 2 voc vials For Hora NDTW- Stool (PDD ND)	Y 100 Chil-8085 Temp-76.5 Chaliton witer / Clear / Photo Taken Simples Solit with Fuyer Simples Solit with Fuyer Soft-Zinekul Shee) was with as also well # 06-19 MW
	St. Pr.3		

	(S)
	1100 Supled Well / collected 1 1. the 3 way
	11 Zo Decensed Brile To feet
	20.7 - HG V
	when chiked with Bailer.
	1155 I to I intertace probe ; Surple
	Stue (set) Kit for OF-005 MW
QÜ	12.55/1200 Catherd Samples for NW-06:23
1	(Messymult) WDTW PH confl Temp
.73	230 (c. plat) 59.60 7.02 6.99 80.5
3	Kay 1205 - Set up around (06-005 MW)
	wills next NDTW PH Cond Temo
	to exchlotler 56.29 7.25 7.60 79.76
	Rese fakes Instruments for his well
	(Par) each other break up/were northe
	1220 Sample Well 06-005 Duplier to
	ER is to were De pared live

••

Sb(E) r	7/13/95
NoTE: The recen we had to rush	(1240) Ross 1 I tid Soft up
ر م	NoTE: Steve & Ross we using Truck
TIME AS PESSI ble 1	Pump & Seme Kits, Zvehicks
12. Made some Calls to 6there	of new wells I'll G. Back
* Kay runs Milit with Sworyses	Mary 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
who he muchel Got with the	55.39 7.05 7.40 81.1° Aug.
	1305 Roy Sett up (2 Well 06 - 017 mm)
	1315 Ross Sets up (2 06-020,MW)
	(06-017m) - DTW- S8-45 (DID-ND)
	7.24 7.22

1420 Wales Clau 40 70 Gols punged 1420 Complete Punga / Riss to follow: Sump 1315 Ross takes Mersurmants : Singles	1400 Cond. Hon / Cleer H2 / Completes	1410 Ross Sete up oround Well. 0625 r. 1420 S55.07 7.30 9.75 80.6. 1420 Sempling Complete 1430 Ray Deces 5 Equipt. 1445 Setup to Ruze (MWS = 01)	Bott 97.29 PRD ND Bott 99.78 Wight 42.49, 27.42 Gals = 1 vs (Cond 6304 627e 6200 Tump 81.1 81.1 81.1 82.2 Tump 81.1 81.1 81.1 62.0

(14 15) Ross Breck 7/13/95 (8) 1435 Takes Messugments of MW 06-26,1W PID/WD	mp 81.5° Take Semples	1500 Kars Hickerd up more Ler 1530 Return O + Not no 10 1530 Return O + Not no 10 Mw-5 of + Witcheld Demp	ge Finishod	foss went to Set up fossingle 106-017 MW Interfer effer I set

(g) 7/13/455 [Well# MWS-02]	Box. 150.63 Box. 150.63 Land HT'- 444.64 x.iss 27.03 1401 24.1 5 v.1 5.14 Pms, h PH 7.47 7.42 7.44 Cond 8.17 8.73 8.70 Frange 81.3 82.4 82.5° Temp 81.3 82.4 82.5° Sampled MW de-oir mw Cond 8.17 9.35 Ling 82.7° Ph. 10. How Delay to my Prized well. Cond 9.35 Ting 82.7° Ting 82.7° Ph. 10. Ith 3 vors Catherd	1650 Ross Sets up to Simple
	SkyP 2/2 Pi	

(15) 5 5 (21) 7 (21) (21) (21) (21) (21) (21) (21) (21)	1900 Returned to Arice. 1855 hill to 1930 1935 hill street 1930 Depos foll ANG.	(13 hvs.) B.11,66	WITE. Evening C. 1/5 MG; July me Wills Thight to Help me Get thight to Help if we come Tosks sion on ough.	20 45 Ross i I Lebt Kits For Tommorous activities	Kensing Wills with they line and for they be the literature of some sould be started as Sengled right at the started started or some second	VoTE: Slow Physe is very effective. Themp Can almost from p 2 Gels

 (22)
0500 Purchased Ice Plenty 12" Cotonde
0530 Call bouter Instruments PID
8 Hy day Discussed (S. K. S. Chi)
Him in On our Plan to Finish
(it) fold him As many wells
as we reinsomple will be deliverable 1800
be shipped our the Contract Cate
in evening He Soid Good Luck.
be tough well Stry 65 6:01 65
Possible & Fut while we wik
(Koken Loseh) Christia
6700 Set up Kennel (Well MWS-04)
DTP - Sheen not massure ble
DTW - 56.68
Bolt - 99.83
DH. 43.15 K.65 = 28.05 = 1001
ch.21 72.51
76.9 76.5 The 5
sand I suadis

0815 (0.00 14/45 (17) Sugar	5.8.2 - 0.4	100 x (2016) 12.38 (EB & D. P. Hard) 100 (3 uses	Dicks "P.	05 45 Well # 06-015-1 PID 40 Pm	(T.P.:	Temp 83.7 83.5 84.1 (64 Gals)	1	NDTW 61.50 DH 7.66 Cond 9.20 Tamp 84.10 1.40 3 vox 5 (chilled)

2 429 7.82 10.73 83.6 Simples Dirty	11.35 Puzing Complete / Pay Deports 11.40 R-555 Simples Well Slight 11.40 R-555 Simples Well Slight 11.40 PH 7:78 PID 4PPIN Smell Cone 10.66	200
QL.		

1200 Well # 06 -012MW (25)	2	1230 Kay meets Poss bech as well Kit reading by the wis cher Ress said it was dirty a First 1255 Fare vangleted 75 6. 15 pursor	Key Breeks down equipt. Moves 1305 Singling Begins Well to 6-012mm	7.75 8.48 83.1°	1315 Kay Sets upla 06-003 MW Ross & Steve hills of Ray muss

1325 Well # 06-003 MW DTW-59.25 PID/ND BOH-93.19	Rey returns with Lines 1 001 2 001 7.90 7.83	Trup (75 6415 purged) Ray 726 5.39 1420 Phrying Complete Equipt to Drus, RESS properes Soy Singlish Strat 1430 D6-003 MW	715/103 142" very ch Photo Take	1440 King moves To MW3-02 & Ross 1445 Follow w/shur 1445 Well # MW3-02 DTW-55.50 DTW-55.50 Dout 99.2(

1950 Commerced Rivined Ray (500) This is the lest continued Rived. This is the lest continued River.	These hast 100 Drums. PH 7.65 7:70 7:63 Cond 1001 201 3001 Temp 83.7 83.5° 83.1° 1535 (Flust complete) (80 (18 pwyc.d) 1540 Temp 84.4015 (50 (18 pwyc.d) 1540 Temp 82.7° 82.5° 5 54.00 c/m.s.	1558 MW 3-02 PID / WD ND TW 56.33 H2 clec hs ado Cond 10.79 1 life 3.2 x 5 Tempo 84.3 chilled	(riveo) Ross empletes Sempling in Stut to Peck Semples I prepared C. O. C. S. r. (1640) Ray moves Last Drums

:	(\$30 Ray Ships out verninder	
ノ	Upon my aconte	
	propering A Semple Well.	3
	1830 MWS-03	:
	(1) (1) PID - 57.77 PID WID	
		, s , s , s , s , s , s , s , s , s , s
	Gre Ico Chot he Ship	ioct.
:	Area Noss Picks Samples	
	1965 We Set up @ [Well MW 5-01]	10-
	DTW-57-12	
	18.56 - 91	
- · · · · · · · · · · · · · · · · · · ·	Water 47 42.69 4.065 = 27.75) co / -
	86.6 26.6	
	61.8 L1.9 22.8 - Mas (1)	

1400	During this time has perpended 2020 Pure Complete Dums lebted son 2030 Proge Complete Dums lebted son	NDTED 58.03 NDTED 58.03 PUB 7.79 CONUTE 8.29 TEB : Field Blank CONUTE 82.90 Taken hove:	2100 Deported Basic For Holy I Want Well 2130 Spoke with Mike Giles & How I	MWS-03, MWS-01; Extens (soil Sample 06-016; Get thin Dil. by 1000 Am

