Novo Espaço – Matemática A 11.º ano

Proposta de teste de avaliação [fevereiro - 2020]

1. Na figura está representado, num referencial o.n. *Oxy*, um hexágono regular.

Sabe-se que:

- . os pontos A e B pertencem ao semieixo positivo Ox;
- \cdot o ponto F pertence ao semieixo positivo Oy;
- $\overline{AB} = 2$

Determina:

- **1.1.** a equação reduzida da reta AF;
- **1.2.** o valor do produto escalar $\overrightarrow{AB} \cdot \overrightarrow{CB}$.

2. Na figura está representado, num referencial o.n. *Oxyz*, um cubo de aresta 4.

Sabe-se que:

- o ponto A pertence ao semieixo positivo Ox;
- . o ponto C pertence ao semieixo negativo Oy;
- \cdot o ponto D pertence ao semieixo positivo Oz;
- . o ponto H tem coordenadas (4,-4,3).

2.1. A interseção da esfera $x^2 + y^2 + (z-2)^2 \le 18$ com a aresta [AE] é um segmento de reta.

O comprimento desse segmento de reta é:

- (A) 2
- **(B)** $2\sqrt{3}$
- **(C)** $2\sqrt{2}$
- **(D)** $\sqrt{6}$
- **2.2.** Seja r a reta que passa em H e é paralela à reta BD. A reta r interseta a face [EDGF] do cubo no ponto T.

Determina as coordenadas do ponto *T*.

- **2.3.** Identifica o lugar geométrico dos pontos P, do espaço, que satisfazem a condição $\overrightarrow{PH} \cdot \overrightarrow{OH} = 0$ e define, por uma equação cartesiana, esse lugar geométrico.
- **2.4.** Seja α a amplitude, em radianos, do ângulo *OHC*.

O valor de α , arredondado às milésimas, é:

- **(A)** 38,660
- **(B)** 1,117
- **(C)**
- 0,675
- **(D)** 26,375

3. Na figura está representada uma pirâmide quadrangular regular.

Sabe-se que:

. a base da pirâmide está contida no plano α definido pela equação x-y+2z-1=0;

Determina as coordenadas do vértice V, sabendo que o volume da pirâmide é $24\sqrt{6}$ e a soma das coordenadas é um número negativo.

Seja $k \in \mathbb{R} \setminus \{0\}$ e (w_n) a sucessão de termos positivos definida por: 4.

$$\begin{cases} w_1 = k \\ w_{n+1} = w_n + k^2, \ \forall n \in \mathbb{N} \end{cases}$$

4.1. Qual é o valor de k se $w_2 = 6$?

- **(A)** -3
- **(B)** $\sqrt{6}$
- **(C)**
- **(D)**

2

Considera $k = \frac{1}{2}$. 4.2.

O termo geral da sucessão (w_n) é:

- (A) $\frac{n+1}{4}$ (B) $2n-\frac{3}{2}$ (C) $\frac{2n-1}{2}$ (D) $\frac{5n-3}{8}$

Considera duas sucessões (u_n) e (v_n) , tais que: 5.

$$varrow \forall n \in \mathbb{N}, \quad u_n = \frac{2n-3}{n+1}$$

.
$$\forall n \in \mathbb{N}$$
, $v_{n+1} - v_n = 2n^2 - n - 10$

- Mostra que a sucessão (u_n) é limitada. 5.1
- A sucessão (v_n) é monótona? **5.2** Justifica, de forma clara, a tua resposta.

- **6.** Considera a sucessão (u_n) de termo geral $u_n = 3\left(\frac{1}{2}\right)^{1-n}$.
- **6.1.** Mostra que (u_n) é uma progressão geométrica e indica a razão.
- **6.2.** Seja (v_n) uma progressão geométrica em que $v_1 = u_3$ e $v_2 = u_5$. Determina o termo geral da sucessão (v_n) .
- 7. A Joana e o Carlos escreveram duas sequências de números.
 - . A Joana escreveu uma sequência de múltiplos consecutivos de 5 a começar no número 15.
 - . O Carlos enviou por SMS uma sequência de múltiplos consecutivos de 3, sendo os primeiros quatro termos dessa sequência os indicados na figura.

Por coincidência, as sequências têm o mesmo número de termos e as somas dos respetivos termos são iguais.

Determina o último termo de cada uma das sequências.

FIM

Cotações															Total
Questões	1.1.	1.2.	2.1.	2.2.	2.3.	2.4.	3.	4.1.	4.2.	5.1.	5.2.	6.1.	6.2.	7.	
Pontos	15	15	11	15	15	11	18	11	11	15	15	15	15	18	200