Några extra exempel

Övning 6

- **1.** $(U(\mathbb{Z}_8), \times)$ och $(U(\mathbb{Z}_{14}), \times)$ är grupper. $U(\mathbb{Z}_n)$ består av de inverterbara elementen i \mathbb{Z}_n . Undersök om någon av grupperna är cyklisk.
- **2.** Gruppen $(\mathbb{Z}_{13} \setminus \{0\}, \times)$ är cyklisk. Bestäm alla dess generatorer.
- 3. Minns att den direkta produkten av två grupper $(G_1, *_1)$ och $(G_2, *_2)$ definieras som gruppen $(G_1 \times G_2, \circ)$ där för $(g_1, g_2), (h_1, h_2) \in G_1 \times G_2$:

$$(g_1,g_2)\circ(h_1,h_2)=(g_1*_1h_1,g_2*_2h_2).$$

a. Låt $g_1 \in G_1$, $g_2 \in G_2$ ha ordningar $o(g_i) = m_i$.

Vad är ordningen för $(g_1, g_2) \in G_1 \times G_2$?

- **b.** För vilka $m, n \in \mathbb{Z}_+$ är $(\mathbb{Z}_m, +) \times (\mathbb{Z}_n, +) \approx (\mathbb{Z}_{mn}, +)$?
- **c.** Gäller för alla grupper G_1 och G_2 att $G_1 \times G_2 \approx G_2 \times G_1$?
- **d.** Om H_1 , H_2 är delgrupper till G_1 respektive G_2 , måste $H_1 \times H_2$ vara en delgrupp till $G_1 \times G_2$?
- **4.** En given grupp G har delgrupper H och K med 39 respektive 40 element. Bestäm m, det minsta möjliga värdet för |G|.

Konstruera också en grupp G med m element som har delgrupper med 39 resp. 40 element.

5. Visa att vidstående tabell inte kan fyllas i så att den blir en grupptabell.

*	$\mid a \mid$	b	c	d	f	g	h	i	k .
\overline{a}	a	b							
b	a b	a							
c									
d									
f									
h									
$egin{array}{c} g \\ h \\ i \\ k \end{array}$									
k									

- **6.** Låt G vara S_4 , gruppen av permutationer av $\{1, 2, 3, 4\}$, och $N \subset G$ ges av (med elementen i cykelform) $N = \{(1), (12)(34), (13)(24), (14)(23)\}$.
- a. Kalla hörnen i en regelbunden tetraeder för 1, 2, 3, 4. Elementen i G svarar då mot stela (dvs avståndsbevarande) avbildningar av rummet, vilka lämnar tetraedern invariant men permuterar hörnen.

Ange för varje konjugatklass i ${\cal G}$ hurdana avbildningar dess element motsvarar.

- **b.** Vilken typ av avbildning motsvarar jämna respektive udda permutationer i G?
- \mathbf{c}^* . Visa att N är en **normal** delgrupp till G och beskriv kvotgruppen G/N (dvs ange en känd grupp som är isomorf med G/N).