

# UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION

Aldo Lamarre <sup>1</sup> Matthew C. Scicluna <sup>2</sup>

Feb 21 2018

<sup>1</sup>Département d'Informatique et de Recherche Opérationnelle Université de Montréal

<sup>2</sup>Montréal Institute of Learning Algorithms Université de Montréal

# **Table of contents**

- 1. Introduction
- 2. Background
- 3. Results
- 4. Technical dive
- 5. Discussion

Introduction

# Questions

#### **Main Question**

What distinguishes Neural Networks that generalize well from those that don't?

- Capacity ?
- Regularization ?
- How we train the model?

## Questions



Figure 1: Traditional view of generalization. Image taken from [1]

## **Motivation**

Why do we care about the problem?

- Make neural networks more interpretable
- May lead to more principled and reliable model architecture design

Background

# **Previous Approaches**

Statistical Learning Theory gives bounds on the Generalization Error using:

- VC Dimension
- Rademacher Complexity
- Uniform Stability

Theory suggests that some regularization helps (including Early Stopping)

#### **Related Work**

In 2016 Hardt et al. gives an Upper bound on Generalization error on model using SGD using uniform stability [2]

#### **BUT**

Uniform stability is a property of a learning algorithm and is not affected by the labelling of the training data.

#### Limitations

#### Main Message

Statistical Learning Theory is insufficient in that it cannot distinguish between neural networks with dramatically different generalization performance.

This is demonstrated in the paper [3]. The central finding:

Deep neural networks easily fit random labels

# Results

# **Experiment**

**Setup**: trained several standard architectures on the data with various modifications:

- 1. True labels  $\rightarrow$  No modifications
- 2. Random labels  $\rightarrow$  randomly changed some labels
- 3. shuffled pixels  $\rightarrow$  apply some fixed permutation of pixels to all images
- 4. Random pixels  $\rightarrow$  apply some random permutation of pixels to all images
- 5. Gaussian  $\rightarrow$  Generate pixels for all images from a Gaussian

#### **Main Results**



Figure 2: Fitting random labels and random pixels on CIFAR10.

#### Results

In most cases, the training error went to zero while test error was high

#### **Notice:**

the model capacity, hyperparameters, and the optimizer remained the same!

#### Results

Explicit regularization may improve generalization performance, but is neither necessary nor by itself sufficient for controlling generalization error

Table 4: Results on fitting random labels on the CIFAR10 dataset with weight decay and data augmentation.

| Model                                          | Regularizer                                               | Training Accuracy                            |
|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|
| Inception<br>Alexnet<br>MLP 3x512<br>MLP 1x512 | Weight decay                                              | 100%<br>Failed to converge<br>100%<br>99.21% |
| Inception                                      | Random Cropping <sup>1</sup><br>Augmentation <sup>2</sup> | 99.93%<br>99.28%                             |

**Technical dive** 

# Finite-sample expressivity

#### **Theorem**

There exists a two-layer neural network with ReLU activations and 2n + d weights that can represent any function on a sample of size n in d dimensions.

#### Lemma 1

For any two interleaving sequences of n real numbers  $b_1 < x_1 < b_2 < x_2 \cdots < b_n < x_n$ , the  $n \times n$  matrix  $A = [\max\{x_i - b_j, 0\}]_{ij}$  has full rank. Its smallest eigenvalue is  $\min_i \{x_i - b_i\}$ 

For weight vectors  $w,b\in R^n$  and  $a\in R^d$ , consider the function  $c:R^n\to R$ ,  $c(x)=\sum_{j=1}w_j\max\{a^Tx-bj,0\}$ 

For weight vectors  $w, b \in R^n$  and  $a \in R^d$ , consider the function  $c: R^n \to R$ ,

$$c(x) = \sum_{j=1} w_j \max\{a^T x - bj, 0\}$$

• This can be done trivially with a depth 2 neural network with relu.

For weight vectors  $w, b \in R^n$  and  $a \in R^d$ , consider the function  $c : R^n \to R$ ,

$$c(x) = \sum_{j=1} w_j \max\{a^T x - bj, 0\}$$

• Now, fixing a sample  $S=z_1,\ldots,z_n$  of size n and a target vector  $y\in R_n$ . We need to find weights a,b,w so that  $y_i=c(z_i)$  for all  $i\in\{1,\ldots,n\}$ 

For weight vectors  $w, b \in \mathbb{R}^n$  and  $a \in \mathbb{R}^d$ , consider the function  $c : \mathbb{R}^n \to \mathbb{R}$ ,

$$c(x) = \sum_{j=1} w_j \max\{a^T x - bj, 0\}$$

First, choose a and b such that with x<sub>i</sub> = a<sub>i</sub><sup>T</sup> z<sub>i</sub> we have the interleaving property b<sub>1</sub> < x<sub>1</sub> < b<sub>2</sub> < ··· < b<sub>n</sub> < x<sub>n</sub> Next, consider the set of n equations in the n unknowns w,

$$y_i = c(z_i), i \in \{1, \ldots, n\}$$

We have  $c(z_i) = Aw$ , where  $A = [max\{x_ib_i, 0\}]_{ij}$  is the matrix of Lemma 1.

For weight vectors  $w, b \in R^n$  and  $a \in R^d$ , consider the function  $c : R^n \to R$ ,

$$c(x) = \sum_{j=1} w_j \max\{a^T x - bj, 0\}$$

- Now, fixing a sample  $S=z_1,\ldots,z_n$  of size n and a target vector  $y\in R_n$ . We need to find weights a,b,w so that  $y_i=c(z_i)$  for all  $i\in\{1,\ldots,n\}$
- We chose a and b so that the lemma applies and hence A has full rank. We can now solve the linear system y = Aw to find suitable weights w.

# **Discussion**

# Some Thoughts...

- 1. Our favourite papers are the ones that shed light on truths that are taken for granted.
- 2. Its obvious that randomizing the labels would eliminate generalizability, but finding precise mathematical statements about this is not!
- 3. The paper doesn't really make many conclusions of its own.
- 4. Models used in practice have the capability of memorizing the training data. Is it somehow easier not to?
- 5. The interplay between generalization and ease of optimization seems like an interesting thing to explore...

#### References



D. Sowinski, "What is generalization in machine learning?." Post.



M. Hardt, B. Recht, and Y. Singer, "Train faster, generalize better: Stability of stochastic gradient descent," *CoRR*, vol. abs/1509.01240, 2015.



C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, "Understanding deep learning requires rethinking generalization," *CoRR*, vol. abs/1611.03530, 2016.