Weighting methods for Nonresponse

Week 8 (8.5)

Stat 260, St. Clair

Assume MAR mechanism

Missing at Random given covariates (MAR)

• ϕ_i depends on x_i but not y_i (given x_i)

$$\phi_i(x_i) = P(R_i = 1 \mid x_i) = P(R_i = 1 \mid x_i, y_i)$$

- $\mathit{ignorable}$ nonresponse: "Model" ϕ given x, then nonresponse can be ignored

Weighting methods for nonresponse

Weighting class adjustment

- use known covariates from the selected sample
- e.g. urban/rural status of all selected units

Poststratification

- use known covariates from the population
- e.g. urban/rural proportions in the population

Covariates

- measurable variables we think are associated with nonresponse
- here: must be categorical variables
- within each combination of covariates:
 - $\circ \phi_i$ is the same
 - \circ respondents and nonrespondents have similar responses y_i

Weighting class adjustment

Basic idea:

- ullet $w_i=1/\pi_i$ is the sampling weight
 - $\circ \,$ based on full sample of $n=n_R+n_M$ units
- Probability a unit is selected AND responds:

Weighting class adjustment

Basic idea:

- ullet $w_i=1/\pi_i$ is the sampling weight
 - $\circ \,$ based on full sample of $n=n_R+n_M$ units
- The weighting class adjusted weights: -> Ar respondents

$$ilde{w}_i = rac{1}{\pi_i \phi_i} = rac{w_i}{\phi_i}$$

Weighting class adjusted estimates

$$\hat{t}_{wc} = \sum_{ ext{respondents}} ilde{w}_i y_i, \qquad \hat{ar{y}}_{wc} = rac{\sum_{ ext{respondents}} ilde{w}_i y_i}{\sum_{ ext{respondents}} ilde{w}_i}$$

est of A

Weighting class adjustment

Estimating the nonresponse probability

- Divide entire sample into known classes based on x covariates
- For all responding units in class c

nding units in class
$$c$$

$$\hat{\phi}_c = \frac{\sum_i w_i \text{ for responding units in class } c}{\sum_i w_i \text{ for all sampled units in class } c} = \frac{\hat{N}_{\text{RC}}}{\hat{N}_{\text{C}}}$$

ullet Weight for all responding units i in class c

$$ilde{w}_i = rac{w_i}{\hat{\phi}_c}$$

Example: Weighting class adjustment

- SRS of n=100 likely voters from a population of N=1000
- Response: Trump voter
- Parameter *p*: proportion for Trump
- Covariate: Education (college grad or not)
- Assume: nonresponse only depends on education

Example: Weighting class adjustment

 $W_{i} = \frac{N}{N} = \frac{1000}{100} = \frac{1}{100}$ SRS

class	n	n_R	\hat{p}	$\hat{\phi}_c$	$1/\hat{\phi}_c$	$ ilde{w}_c$
college	34	17	0.35	42	2	20
not	66	18	0.50	.27	3.7	36.67
all	100	35	0.43			

What are the weighting class adjusted weights?

$$\frac{\text{Collark}}{\hat{\varphi}_{\text{coll}}} = \frac{\sum_{\text{coll},R} \omega_{\text{i}}}{\sum_{\text{coll}} |Q|} = \frac{17 \times 10}{34 \times 10} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{\sum_{\text{coll}} |Q|}{\sum_{\text{coll}} |Q|} = \frac{17 \times 10}{34 \times 10} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{\sum_{\text{coll}} |Q|}{\sum_{\text{coll}} |Q|} = \frac{17 \times 10}{34 \times 10} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{\sum_{\text{coll}} |Q|}{\sum_{\text{coll}} |Q|} = \frac{17 \times 10}{34 \times 10} = \frac{1}{2} = \frac{1}{$$

From $\frac{8 \times 10}{8 \times 10} = \frac{18 \times 10}{16 \times 1$

Example: Weighting class adjustment $\hat{p}_{wc} = \frac{\sum_{k} \omega_{k}}{\sum_{k} \omega_{k}}$

$$\hat{p}_{wc} = \frac{\sum_{k} w_{i} y_{k}}{\sum_{k} w_{i}}$$

class	n	n_R	\hat{p}	$\hat{\phi}_c$	$1/\hat{\phi}_c$	$ ilde{w}_c$
college	34	17	0.35	0.5	2	20
not	66	18	0.50	0.27	3.7	36.67
all	100	35	0.43			

What is the weighting class adjusted proportion?

$$\Sigma \omega_{i} y_{i} = \Sigma 20 y_{i} + \Sigma 36.67 y_{i} = 20(6) + 36.67(9) = 480$$
 $R \omega_{i} y_{i} = \int R (35) \approx 6$
 $R \omega_{i} y_{i} = \int R (8(\frac{1}{2}) = 9)$
 $R \omega_{i} = \int R (35) \approx 6$
 $R \omega_{i} y_{i} = \int R (8(\frac{1}{2}) = 9)$
 $R \omega_{i} = \int R (35) \approx 6$
 $R \omega_{i} = \int R (35) \approx 6$

Exercise 5.15: Weighting class adjustment

- Exercise 15: Treated a one-stage sample of teachers as two-stage design due to nonresponse.
- ullet One stage sample of size n from N clusters.
- Due to nonresponse, we only have m_i respondents from the M_i units in cluster i
- What are the weighting class adjusted weights?

Ohestaga:
$$W_{ij} = N$$

| Cluster i

 $V_{ij} = N$

| $V_{ij} = N$

| $V_{ij} = N$

| $V_{ij} = N$

| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} = N$
| $V_{ij} =$

weighting class adjustment = two-stage cluster stage

Poststratification

Basic idea:

- Only consider respondents
- ullet w_i are sampling weight
 - could be weight class adjusted, or
- \checkmark Divide population into poststratum of size N_h
 - For unit *i* in poststratum *h*:

$$w_{i}^{*} = \frac{w_{i}}{\sum_{i \in \text{stratum } h} w_{i} / N_{h}}$$

$$\frac{\text{Righ}}{\text{Nh}} = \frac{\hat{N}_{Rh}}{\text{Nh}} = \frac{1}{2}$$

$$\frac{1}{N_{h}}$$

$$w_{i}^{*} = \frac{w_{i}}{\sum_{i \in \text{stratum } h} w_{i} / N_{h}}$$

$$w_{i}^{*} = \frac{1}{2} w_{i}$$

Poststratification

$$w_i^* = rac{w_i}{\sum_{i \in \operatorname{stratum} h} w_i / N_h}$$

• What will $\sum_{i \in \text{stratum } h} w_i/N_h$ be if nonresponse is *not* related to the poststratification covariates?

• What will $\sum_{i \in \operatorname{stratum} h} w_i/N_h$ be if nonresponse in stratum h is larger than in other stratum?

than in other stratum?

$$\sum_{k,k} \omega_{i}$$
 $\sum_{k',k'} < 1 \quad \Rightarrow \quad \omega_{i}^{k'} > \omega_{i}$

Poststratification

$$w_i^* = rac{w_i}{\sum_{i \in ext{stratum } h} w_i/N_h}$$

What is w_i^* for a SRS? $W_i = \frac{N}{N_R}$ N_R N_R

$$W_i = \frac{N/n_R}{\frac{N_R}{N_R}} = \frac{N_R}{\frac{N_R}{N_R}} = \frac{N_R}{N_R} =$$

Other methods for nonresponse

- Weighting methods can get complex very fast, depending on the number of classes/poststrata
 - concern when sample sizes are small or weights really big
- · Other methods include
 - Raking
 - Regression modeling