\$ Cusin	
41 X1+a12 X2++Olin Xn = b1.	du a12 din 161
mi Xi +am2Xn+··+amn Xn=bm	ami amzamn! bm
ညာ vos:	
ενας πίνακας είναι της ορθοχώνιας εοί Αξροπαι σοιχεία του πίνακο.	Sicrafo apolhion. Or apolhoi
<u>X:</u>	·
$\begin{bmatrix} 2 & 3 & 4 & 4 \\ 2 & 3 & 1 & 4 \\ 1 & 3 & 1 & 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 & 1 & 3 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 \times 4 & 4 \\ 4 & 4 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 & 1 \end{bmatrix}$	2324],[5]
n. Ta mn aëzovan Sinainses to	ουπλες λέμε ότι είναι πίναχ ου πίναχα.
mxn[Q]: Minaxas mxn fredorxera Vioroixa opiforan Umxn(R), U	Aman (C),
a ocoixera orphosiforal fre al	20 oundn.
$ \begin{array}{c} $	

11/09

Opiolios:
Evas nivaras degerai responsarios av (m = n. Hrópia Scapiovios anozedeirai ano za oconxela ons xópias propios air.
EMOCEURICAL OLIO EX OLOIXETA SUR XODIAS HODANS ONO.
an diz ain
a21 a22 a2n
ani anz chnn.
κίσρια διαχώνισς.
Opiolios (robantas):
$\Delta \dot{o}$ o nivayes elyan (00) an exopy as \dot{i} 8185 \dot{o} 1000 \dot{o} 1001-
xeia, 878 zia A=(aij), B=(bij)
A=B Daij=bij, Yi.j
123 987 Sia oroixeia azzá Siago
4 5 6 7 6 5 4 peruen dean aparol
789 321 Mivakes Ewai Siappoe.
THORES END DIALOGO.
VI 12
1 pajes nivakov:
(A) 1 poster Kait Againer:
· + +B = (aij) + (bij) = (aij+bij)
Δλδ προσθέτουμε στο χείο προς ασιχείο.
·A-B=(aij)-bij)=(aij-bij)
Ass are soils soils soils
Δαδ αφαιρούτε στοιχείο πρως στοιχείο.
Moro de Minares 181 my Plancia Eury.
$\overline{\Pi X}$
2103 -4351
$A = -1 0 2 4 B = 2 2 0 -1 C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$
4-270 3200 [22]
5 2 -4 5]

, AtC -> SEN opifexai

$$-1+2=1$$
 , $0+2=2$, $2+0=2$, $4-1=3$

$$A - B = -3 - 2 2 5$$

$$1 - 4 11 - 5$$

$$-1-2=-3$$
, $0-2=-2$, $2-0=2$, $4+1=5$

$$4-3=1$$
, $-2-2=-4$, $7+4=11$, $0-5=-5$

. For set over som short from BED

Π·X:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 1 \end{bmatrix}$$

$$-2.A - \begin{bmatrix} 4 & 6 & 8 \\ 2 & 6 & 2 \end{bmatrix}$$
 $2 \times 2 = 4$, $2 \times 3 = 6$, $2 \times 4 = 8$
 $2 \times 1 = 2$, $2 \times 3 = 6$, $2 \times 1 = 2$

$$-A = \begin{bmatrix} -2 & -3 & -4 \\ -1 & -3 & -1 \end{bmatrix}$$

18iègnes Dés Benne
Biornes Poutewr
1) $A+B=B+A$
2) A+(B+C)=(A+B)+C
3) A(BC) = (AB) C
4) A(B±C)=AB ±AC
$5)(B\pm C)A = BA\pm CA$
6) $\partial \cdot (B \pm C) = \partial B \pm \partial C$ ($\partial \in \mathbb{R}$)
$(3, \mu \in \mathbb{R})$
8) $\partial (AB) = (\partial A)B = A(\partial B) (\partial ER)$ $\partial A = 0 <=> \partial = 0 $ $A = 0$
9) 2(hA) = (2h)A (2, hER)
Maparaphores-Eow 2 nivoxes AB
Laxa rescipia xia no 2/5/10°
(1) Eivai Milouov va poiferai o AB Kai oxio BA.
λακά σερώρια για πολίσμος ① Είνοι πιθουόν να ορίfεται ο AB και όχιο BA π.χ. Α:2x3, Β:3x4
AB: 2X4, BA->SEN OpifETCU.
- VUOX3
2) Eivai Milavoir or AB, BA va opiforar addita Exour Brago petities Stadrasses.
peteres diagrastes.
n.x: A: 2x3, B: 3x2.
AB: 2x2, BA:3x3
3 Eivai Filosopi oi AB, BA vo opiforai, va exouvi Sies Sia-
- 1001/16 10013 DU 0660 2130670
$\frac{\pi \cdot x}{23} = \frac{10}{2x^2} = \frac{12}{30}$

AB-[-1-2] + BA-[3-6]
5 0

In Seniros Minaras:
Omxn=Tivaras mxn Le óda za ocoixeia =0.
Taurourios Mixaras: Imxn = In.
Eivaro νχη τεπραγωνικός Λίνακοις με στοιχεία χυρίως διαγωνιών $= 1 \text{ και όλα τοι νπόδοι παι στοιχεία } 0.$ $1 \text{ λαχ} = 10 \text{ λαχ} = 0 \text{ λαχ}$ $1 \text{ λαχ} = 0 \text{ λαχ}$
1 Signates:
1) $A+D=D+A=A$:: Osapidros 2) $A-D=A$:: Osapidros 3) $A-A=A+(-A)=0$:: Osapidros 4) $DA=D$:: $A=D$:: Osapidros 5) $AV A=D$:: $A=D$:: $A=$
Tapazin pnon: (gra 20 grapheno)
Eivai Mulavov xia Six nivakes AB, A +0 mai B +0 evis AB=0
$\frac{\mathbf{D} \mathbf{X}}{\mathbf{A}} = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 3 & 7 \\ 0 & 0 \end{pmatrix}$
$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $(1,1) = 0.3+1.0=0$ $(1,2) = 0.7+1.0=0$ $(2,2) = 0.7+0.2=0.$