1. Вывести все директории в виде:

ID, Название, Путь до корня

```
with r(id, name, parent_id, file_size, type, path) as (
    select id, name, parent_id, file_size, type, '/' || name from file_system where parent_id is null
    union all
    select f.id, f.name, f.parent_id, f.file_size, f.type, r.path || '/' || f.name
    from file_system f inner join r on (f.parent_id = r.id)
)
select * from r;
```

	id	name	parent_id	file_size	type	path
1	0	java	(null)	4096	DIR	/java
2	29627	Python27.zip	0	26421121	FILE	/java/Python27.zip
3	29628	Python37-32	0	4096	DIR	/java/Python37-32
4	25271	putty	0	4096	DIR	/java/putty
5	25282	Python27	0	4096	DIR	/java/Python27
6	20929	old_datamodelers	0	0	DIR	/java/old_datam
7	65954	sqldeveloper	0	4096	DIR	/java/sqldeveloper

2. Для каждой директории посчитать объем занимаемого места на диске (с учетом всех вложенных папок) ID, Название, Путь до корня, total_size

```
with r1(id, name, parent id, file size, path) as (
   select id, name, parent_id, file_size, '/' || name from file system where parent_id is null
   union all
   select f.id, f.name, f.parent id, f.file size, r1.path || '/' || f.name
  from file_system f inner join r1 on (f.parent_id = r1.id)
),
r2(id, name, parent id, file size, type, size) as (
   select id, name, parent id, file size, type, 0 + file size from file system where type = 'FILE'
   union all
   select f.id, f.name, f.parent id, f.file size, f.type, r2.size + f.file size
   from file system f inner join r2 on (f.id = r2.parent id)
),
step3 as (
   select id, name, sum(size ) total size
   from r2
   group by id, name
select s3.id, s3.name, s3.total size, r1.path
from step3 s3 inner join r1 on (s3.id = r1.id);
```

	id	name	total_size	path
1	626	icu4j-localespi-4	48070	/java/Ataccama DQ Analyzer 11/configuration/org.eclipse.osgi/30/0/.cp/libs/icu4j-localespi-4.2.1.jar
2	629	serializer-2.7.1.jar	285924	/java/Ataccama DQ Analyzer 11/configuration/org.eclipse.osgi/30/0/.cp/libs/serializer-2.7.1.jar
3	656	perspective.png	379	/java/Ataccama DQ Analyzer 11/configuration/org.eclipse.osgi/4/0/.cp/images/icons/perspective.png
4	683	icu4j-charsets-4	2508455	/java/Ataccama DQ Analyzer 11/configuration/org.eclipse.osgi/5/0/.cp/libs/icu4j-charsets-4.2.1.jar
5	691	xalan-2.7.1.jar	1810608	/java/Ataccama DQ Analyzer 11/configuration/org.eclipse.osgi/5/0/.cp/libs/xalan-2.7.1.jar
6	698	checked_flat.png	192	/java/Ataccama DQ Analyzer 11/configuration/org.eclipse.osgi/7/0/.cp/images/checkbox/checked_flat.png
7	751	commons-loggin	62050	/java/Ataccama DQ Analyzer 11/configuration/org.eclipse.osgi/8/0/.cp/libs/commons-logging-1.1.3.jar

3. Добавить в запрос: сколько процентов директория занимает места относительно всех среди своих соседей (siblings) ID, Название, Путь до корня, total_size, ratio

```
with r1(id, name, parent id, type, path) as (
   select id, name, parent id, type, '/' || name from file system where parent id is null
   union all
   select f.id, f.name, f.parent id, f.type, r1.path || '/' || f.name
   from file system f inner join r1 on (f.parent_id = r1.id)
),
r2(id, parent_id, file_size, type, size_) as (
   select id, parent id, file size, type, 1 + file size from file system where type = 'FILE'
   union all
   select f.id, f.parent id, f.file size, f.type, r2.size + f.file size
   from file system f inner join r2 on (f.id = r2.parent id)
),
step3 as (
   select id, sum(size ) total size
   from r2
   group by id
),
step4 as (
   select s3.id, r1.parent id, r1.name, s3.total size, r1.path, r1.type
   from step3 s3 inner join r1 on (s3.id = r1.id)
),
step5 as (
   select id, parent_id, name, path, type, total size, sum(total size) over (partition by parent id) parent_size
   from step4
select id, name, path, total size, round(total size / parent size * 100, 2) ratio
from step5;
```

	id	name path		total_size	ratio
1	29627	Python27.zip	/java/Python27.zip	26421122	0.14
2	1	apache-maven-3	/java/apache-ma	13686493	0.07
3	68519	winutils-master	/java/winutils-ma	28469851	0.15
4	13080	jdk-17.0.1	/java/jdk-17.0.1	317844097	1.72
5	65954	sqldeveloper	/java/sqldeveloper	1009718969	5.46
6	16275	nodejs-14	/java/nodejs-14	457514541	2.47
7	117	apache-maven-3	/java/apache-ma	13663524	0.07

4. Проанализировать план выполнения последнего запроса и предложить вариант оптимизации.

Id	Operation	Name	Rows	Bytes	TempSpc	Cost	(%CPU)	Time
0	SELECT STATEMENT	 	54	 160K		 1418	(1)	00:00:18
1	VIEW	l	54	160K		1418	(1)	00:00:18
2	WINDOW SORT	I	54	161K		1418	(1)	00:00:18
* 3	HASH JOIN	I	54	161K		1417	(1)	00:00:18
4	VIEW		54	159K		411	(1)	00:00:05
5	UNION ALL (RECURSIVE WITH) BREADTH FIRST	I		<u> </u>				
* 6	TABLE ACCESS FULL	FILE_SYSTEM	1	31		137	(1)	00:00:02
* 7	HASH JOIN	I	53	105K		274	(1)	00:00:04
8	RECURSIVE WITH PUMP	<u> </u>		<u> </u>				
9	TABLE ACCESS FULL	FILE_SYSTEM	76146	2305K		137	(1)	00:00:02
10	VIEW	l	76146	1933K		1005	(1)	00:00:13
11	HASH GROUP BY	I	76146	1264K	2104K	1005	(1)	00:00:13
12	VIEW	I	76146	1264K		582	(1)	00:00:07
13	UNION ALL (RECURSIVE WITH) BREADTH FIRST			<u> </u>				
* 14	TABLE ACCESS FULL	FILE_SYSTEM	38073	594K		137	(1)	00:00:02
* 15	HASH JOIN		38073	1561K	1416K	445	(1)	00:00:06
16	RECURSIVE WITH PUMP			<u> </u>				
17	TABLE ACCESS FULL	FILE_SYSTEM	76146	1189K		137	(1)	00:00:02

Видим четыре штуки table access full. Первое, что приходит в голову, повесить индекс на parent_id, да там может быть очень много одинаковых значений, но всё же:

CREATE INDEX fs_parent_id_ind ON file_system (parent_id);

Помогло: один из table access full превратился в table access by index rowid и показатель Rows стал 53, вместо 76 тысяч

 I	 Id	Operation	Name	Rows	Bytes	TempSpc	 Cost	(%CPU)	 Time
 I	0	SELECT STATEMENT	 I	 54	 160K	 	 1283	 3 (1)	00:00:16
1	1	VIEW	l	54	160K		1283	3 (1)	00:00:16
1	2	WINDOW SORT	l	54	161K		1283	3 (1)	00:00:16
*	3	HASH JOIN	l	54	161K		1282	2 (1)	00:00:16
1	4	VIEW	l	54	159K		277	7 (1)	00:00:04
1	5	UNION ALL (RECURSIVE WITH) BREADTH FIRST	l	I					
*	6	TABLE ACCESS FULL	FILE_SYSTEM	1	31		137	7 (1)	00:00:02
1	7	NESTED LOOPS	l	I					
1	8	NESTED LOOPS		53	105K		140	(1)	00:00:02
1	9	RECURSIVE WITH PUMP		l					
*	10	INDEX RANGE SCAN	FS_PARENT_ID_IND	53			1	(0)	00:00:01
1	11	TABLE ACCESS BY INDEX ROWID	FILE_SYSTEM	53	1643		3	3 (0)	00:00:01
1	12	VIEW	l	76146	1933K		1005	5 (1)	00:00:13
1	13	HASH GROUP BY	l	76146	1264K	2104K	1005	5 (1)	00:00:13
1	14	VIEW	l	76146	1264K		582	2 (1)	00:00:07
1	15	UNION ALL (RECURSIVE WITH) BREADTH FIRST	l						
*	16	TABLE ACCESS FULL	FILE_SYSTEM	38073	594K		137	7 (1)	00:00:02
*	17	HASH JOIN		38073	1561K	1416K	445	5 (1)	00:00:06
	18	RECURSIVE WITH PUMP							
	19	TABLE ACCESS FULL	FILE_SYSTEM	76146	1189K		137	7 (1)	00:00:02