TALLER # 2

ESTUDIANTES JULIAN ANDRES PERDOMO REINOSO MIGUEL ANGEL RIVERA JUAN MARTIN LOZANO MOTTA KALEL RENÉ MONTEALEGRE TAMAYO

TUTOR BRAINER NAVARRO TAMA

UNIVERSIDAD DEL TOLIMA
INGENIERIA DE SISTEMAS
CALCULO III

2025

Contenido

14.6 ESQUEMATICE LA GRAFICA EN TRES DIMENSIONES DE LA ECUACION E DENTIFIQUE LA SUPERFICIE	
Ejercicio 3 : $4y2 + 9z2 = 36$	
Ejercicio 6: $x^2 - 4y = 0$	
Ejercicio 9: $4x - 3y = 12$	
Ejercicio 12: $z = log x$	
Ejercicio 15: $16x2 + 100y2 - 25z2 = 400$	
Ejercicio 18: $4x^2 + y^2 = 9z^2$	
Ejercicio 21: $9x2 + 4y2 + z2 = 36$	
Ejercicio 24 : $36x = 9y2 + z2$	
Ejercicio 27 : $4y2 + 25z2 + 100x = 0$	
Ejercicio 30 : $4y2 + 9z2 = 9x2$	
EJERCICIOS 14.7	
ENUNCIADO 1	
ENUNCIADO 2	
ENUNCIADO 3	
ENUNCIADO 4	
ENUNCIADO 5	
ENUNCIADO 6	
15.1 Definiciones y curvas en el espacio	20
Ejercicio 2 — enunciado	20
Ejercicio 4 — enunciado	20
Ejercicio 6 — enunciado	20
Ejercicio 8 — enunciado	20
Ejercicio 10 — enunciado	21
Ejercicio 12 — enunciado	21
Ejercicio 14 — enunciado	21
Ejercicio 16 (longitud) — enunciado	22
Ejercicio 18 (longitud) — enunciado	22

Ejercicio 20 (longitud) — enunciado	22
15.2 Límites, derivadas e integrales	22
Ejercicio 2 — enunciado	22
Ejercicio 4 — enunciado	23
Ejercicio 6 — enunciado	23
Ejercicio 8 — enunciado	23
Ejercicio 10 — enunciado	23
Ejercicio 12 — enunciado	24
Ejercicio 14 — enunciado	24
Ejercicio 16 — enunciado	24
Ejercicio 17 — enunciado	24
Ejercicio 18 — enunciado	25
Ejercicio 19 — enunciado	25
Ejercicio 20 — enunciado	25
Ejercicio 27 — enunciado	25
Ejercicio 28 — enunciado	26
Ejercicio 29 — enunciado	26
Ejercicio 30 — enunciado	26
15.3 El movimiento	26
Ejercicio 2 — enunciado	26
Ejercicio 4 — enunciado	27
Ejercicio 6 — enunciado	27
Ejercicio 8 — enunciado	27
Ejercicio 10 — enunciado	27
Ejercicio 12 — enunciado	28
Ejercicio 14 — enunciado	28
Ejercicio 16 — enunciado	28
Resultado fina Ejercicios 15.4	29
Curvaturas de líneas — Soluciones detalladas paso a paso	29

	Fórmulas útiles	29
	Ejercicio 8 — y = x^4, P(1,1)	29
	Ejercicio 10 — y = ln(x-1), P(2,0)	30
	Ejercicio 12 — y = sec x, $P(\pi/3,2)$	30
	Ejercicio 14 — x=t+1, y=t^2+4t+3, P(1,3)	31
	Ejercicio 16 — x=t-sen t, y=1-cos t, $P(\pi/2-1,1)$	31
	Ejercicio 18 — x=cos^3 t, y=sen^3 t, $P(\sqrt{2}/4, \sqrt{2}/4)$	32
Cál	culo con Geometría Analítica — Ejercicios 15.5	34
	Ejercicio 1	34
	Ejercicio 2	34
	Ejercicio 3	34
	Ejercicio 4	35
	Ejercicio 5	35
	Ejercicio 6	36
	Ejercicio 7	36
	Ejercicio 8	37

14.6 ESQUEMATICE LA GRAFICA EN TRES DIMENSIONES DE LA ECUACION E IDENTIFIQUE LA SUPERFICIE

Ejercicio 3: $4y^2 + 9z^2 = 36$

Ejercicio 6: $x^2 - 4y = 0$

Ejercicio 9: 4x - 3y = 12

Ejercicio 9 4x	-3y =	12						
y = 4 x -	4							
3								
4x + 3y + 0z =	: 12							
ejcx =) = 0,1								
eye) = x = 0,	J = +P							
eje? = poralelo a	7							

Ejercicio 12: z = log x

Ejercicio 15: $16x^2 + 100y^2 - 25z^2 = 400$

Ejercicio 18: $4x^2 + y^2 = 9z^2$

Ejercicio 21: $9x^2 + 4y^2 + z^2 = 36$

Ejercicio 24: $36x = 9y^2 + z^2$

Ejercicio 27: $4y^2 + 25z^2 + 100x = 0$

EJERCICIOS 14.7

ENUNCIADO 1

Ejercicios 14.7

- 1. Cambie las coordenadas cilíndricas dadas a coordenadas rectangulares.
- (a) $(5, \pi/2, 3)$
- (b) $(6, \pi/3, -5)$

14.
$$+$$
 . $+$.

2. Cambie las coordenadas esféricas dadas a coordenadas rectangulares.

(a)
$$(4, \pi/6, \pi/2)$$

(b)
$$(1, 3\pi/4, 2\pi/3)$$

3. Cambie las coordenadas rectangulares dadas a coordenadas esféricas.

(a)
$$(1, 1, \sqrt{2})$$

(b)
$$(1, \sqrt{3}, 0)$$

4. Cambie las coordenadas rectangulares dadas a coordenadas cilíndricas.

(a)
$$(2\sqrt{3}, 2, -2)$$

(b)
$$(\sqrt{2}, -\sqrt{2}, 1)$$

ENUNCIADO 5

5. Convierta las coordenadas esféricas dadas a coordenadas cilíndricas.

(a)
$$(4, \pi/3, \pi/3)$$

(b)
$$(2, 5\pi/6, \pi/4)$$

5. a)
$$(3, \pi/4, \pi/3)$$

 $Y = 3 \text{ Sen } (\frac{\pi}{3}) = 3 \cdot \sqrt{2} = 3\sqrt{2}$
 $0 = \pi/4$
 $0 = \pi$

6. Convierta las coordenadas cilíndricas dadas a coordenadas esféricas.

(a)
$$(\sqrt{2}, \, \pi/4, \, 1)$$

(b)
$$(2, \pi/3, 1)$$

15.1 Definiciones y curvas en el espacio

Instrucciones: Resolver ejercicios 1–20 múltiplo de 2. Para cada curva se identifica su ecuación en coordenadas, su tipo (recta, circunferencia, parábola, hipérbola, elipse), y se justifican las transformaciones algebraicas usadas.

Ejercicio 2 — enunciado

$$r(t) = (1 - t^2) i + t j, t \ge 0$$

Desarrollo:

Desarrollo: Escribimos $x=1-t^2$, y=t. Sustituimos t=y, obteniendo $x=1-y^2$. Interpretación geométrica: relación entre x e y equivale a una parábola en el plano xy con

Como $t \ge 0$, tomamos la rama con $y \ge 0$ (semiparábola).

Resultado final: Resultado: La curva es la semiparábola $x = 1 - y^2$, $y \ge 0$; vértice (1,0).

Ejercicio 4 — enunciado

$$r(t) = (2 + \cos t) i - (3 - \sin t) j, 0 \le t \le 2\pi$$

eje paralelo a x, vértice en (1,0).

Desarrollo:

Desarrollo: $x = 2 + \cos t$, $y = -3 + \sin t$.

Calcule $(x - 2)^2 + (y + 3)^2 = \cos^2 t + \sin^2 t = 1$.

Conclusión: ecuación de una circunferencia de radio 1 y centro (2,-3).

Resultado final: Resultado: Circunferencia de radio 1 con centro en (2,-3).

Ejercicio 6 — enunciado

$$r(t) = 2 \cosh t i + 3 \sinh t j, t \in R$$

Desarrollo:

Desarrollo: $x = 2 \cosh t$, z? (aquí solo i y j) => analizar relación entre x y y.

Calcule $(x/2)^2 - (y/3)^2 = \cosh^2 t - \sinh^2 t = 1$.

Conclusión: hipérbola con ejes escalados, ecuación $(x/2)^2 - (y/3)^2 = 1$.

Resultado final: Resultado: Hipérbola $(x/2)^2 - (y/3)^2 = 1$.

Ejercicio 8 — enunciado

$$r(t) = \tan t i + \sec t j + 2 k$$
, $-\pi/2 < t < \pi/2$

Desarrollo: $x = \tan t$, $y = \sec t \Rightarrow \sec^2 t - \tan^2 t = 1 \Rightarrow y^2 - x^2 = 1$.

La componente k = 2 indica que la curva está en el plano z = 2.

Por dominio $-\pi/2 < t < \pi/2$ se toma la rama con sec t > 0.

Resultado final: Resultado: Hipérbola $y^2 - x^2 = 1$ en el plano z = 2, con y > 0.

Ejercicio 10 — enunciado

$$r(t) = t^3 i + t^2 j + t k, 0 \le t \le 4$$

Desarrollo:

Desarrollo: $x = t^3$, $y = t^2$. Relación entre x e y: $x = (y)^{3/2}$ con signo según t.

Interpretación: curva espacial de tipo cúbica; proyección en xy es parábola transformada en relación implícita.

Se indican puntos: $t=0 \to (0,0,0)$, $t=1 \to (1,1,1)$, etc.

Resultado final: Resultado: Curva cúbica espacial. Proyección en xy cumple $x = y^{3/2}$ para $y \ge 0$.

Ejercicio 12 — enunciado

$$r(t) = 6 \sin t i + 4 j + 25 \cos t k$$
, $-2\pi \le t \le 2\pi$

Desarrollo:

Desarrollo: $x = 6 \sin t$, $z = 25 \cos t$. Calcule $(x/6)^2 + (z/25)^2 = \sin^2 t + \cos^2 t = 1$.

La componente y = 4 fija plano paralelo al plano xz.

Conclusión: elipse en el plano y = 4 con semiejes 6 y 25.

Resultado final: Resultado: Elipse en y = 4 con ejes de longitud 12 y 50 (semiejes 6 y 25).

Ejercicio 14 — enunciado

$$r(t) = t i + 2t j + e^{t} k, t \in R$$

Desarrollo:

Desarrollo: x = t, y = 2t, $z = e^t$. Proyección en xy es recta con relación y = 2x.

En z la función crece exponencialmente; la curva es una curva espacial que sube rápidamente.

No hay conica simple; se describe parametrizada.

Resultado final: Resultado: Curva espacial con proyección recta y = 2x y componente vertical exponencial.

Ejercicio 16 (longitud) — enunciado

$$x = t^2, y = t \sin t, z = t \cos t, 0 \le t \le 1$$

Desarrollo:

Desarrollo paso a paso:

- 1) Calcular derivadas: x' = 2t; $y' = \sin t + t \cos t$; $z' = \cos t t \sin t$.
- 2) Calcular $|\mathbf{r}'(t)|^2 = (2t)^2 + (\sin t + t \cos t)^2 + (\cos t t \sin t)^2$.
- 3) Expandir y simplificar: observe que $(\sin+t\cos)^2+(\cos-t\sin)^2=1+t^2$.
- 4) Por tanto $|\mathbf{r}'| = \operatorname{sqrt}(4t^2 + 1 + t^2) = \operatorname{sqrt}(1 + 5t^2)$.
- 5) Integrar $L = \int_{-0}^{1} \sqrt{1 + 5t^2} dt$. Usar sustitución hiperbólica $u = \sqrt{5} t$ o fórmula cerrada.
- 6) Resultado expresado en funciones hiperbólicas inversas.

Resultado final: Resultado: $L = (1/2)\sqrt{6} + (1/(2\sqrt{5}))$ asinh $(\sqrt{5})$.

Ejercicio 18 (longitud) — enunciado

$$x = 2t$$
, $y = 4 \sin 3t$, $z = 4 \cos 3t$, $0 \le t \le 2\pi$

Desarrollo:

Desarrollo: derivadas: x' = 2, $y' = 12 \cos 3t$, $z' = -12 \sin 3t$.

Calcular $|\mathbf{r}'|^2 = 4 + 144(\cos^2 3t + \sin^2 3t) = 4 + 144 = 148$.

Así $|\mathbf{r}'| = 2 \operatorname{sqrt}(37)$, constante. Integrar $L = \int 0^{2\pi} 2 \operatorname{sqrt}(37) dt = 4\pi \operatorname{sqrt}(37)$.

Resultado final: Resultado: L = 4\pi\sqrt{37}.

Ejercicio 20 (longitud) — enunciado

$$x = 1 - 2t^2, y = 4t, z = 3 + 2t^2, 0 \le t \le 2$$

Desarrollo:

Desarrollo: derivadas: x' = -4t, y' = 4, z' = 4t.

Calcule
$$|\mathbf{r}'|^2 = 16t^2 + 16 + 16t^2 = 32t^2 + 16 = 16(2t^2 + 1)$$
.

$$|\mathbf{r}'| = 4 \operatorname{sqrt}(2t^2+1)$$
. Integrar L = $4 \int_{-\infty}^{\infty} 0^2 \operatorname{sqrt}(2t^2+1) dt$.

Resolver integral por sustitución trig o hiperbólica para obtener resultado exacto.

Resultado final: Resultado: L = $12 + \sqrt{2}$ asinh $(2\sqrt{2})$.

15.2 Límites, derivadas e integrales

Instrucciones: ejercicios 1–20 múltiplos de 2; 17–20; 27–30. Para cada ejercicio se indica dominio, derivadas, segundas derivadas, trazas y solución de integrales vectoriales.

Ejercicio 2 — enunciado

$$r(t) = 1/t i + \sin(3t) i$$

Desarrollo:

Dominio: $t \in R \setminus \{0\}$ (porque 1/t no definida en 0).

$$r'(t) = <-1/t^2, 3 \cos(3t)>.$$

$$r''(t) = \langle 2/t^3, -9 \sin(3t) \rangle$$
.

Continuidad: continua en su dominio.

Resultado final: Resultado: Dominio $R\setminus\{0\}$, r' y r'' como arriba.

Ejercicio 4 — enunciado

$$r(t) = e^{2t} i + \arcsin(t) j$$

Desarrollo:

Dominio: $\arcsin(t)$ requiere $-1 \le t \le 1 \rightarrow \text{dominio}[-1,1]$.

$$r'(t) = \langle 2 e^{2t}, 1/\sqrt{(1-t^2)} \rangle$$
.

$$r''(t) = \langle 4 e^{2t}, t(1-t^2)^{-3/2} \rangle$$
.

Resultado final: Resultado: Dominio [-1,1], derivadas indicadas.

Ejercicio 6 — enunciado

$$r(t) = e^{2t} i + e^{-4t} j, t = 0$$

Desarrollo:

$$r'(t) = \langle 2 e^{2t}, -4 e^{-4t} \rangle \rightarrow r'(0) = \langle 2, -4 \rangle.$$

$$r''(t) = \langle 4 e^{2t} \rangle, 16 e^{-4t} \rangle \rightarrow r''(0) = \langle 4, 16 \rangle.$$

Resultado final: Resultado: r'(0) = <2,-4>, r''(0) = <4,16>.

Ejercicio 8 — enunciado

$$r(t) = 2 \sec t i + 3 \tan t j, t = \pi/4$$

Desarrollo:

$$r'(t) = \langle 2 \sec t \tan t, 3 \sec^2 t \rangle \rightarrow r'(\pi/4) = \langle 2\sqrt{2}, 6 \rangle$$
.

r"(t) calcular por derivación de productos
$$\rightarrow$$
 r"($\pi/4$) = $<6\sqrt{2}$, 12>.

Resultado final: Resultado: $r'(\pi/4) = <2\sqrt{2}, 6>$, $r''(\pi/4) = <6\sqrt{2}, 12>$.

Ejercicio 10 — enunciado

$$r(t) = t^2 i + t^3 j, t = -1$$

$$r'(t) = \langle 2t, 3t^2 \rangle \rightarrow r'(-1) = \langle -2, 3 \rangle$$
.

$$r''(t) = \langle 2, 6t \rangle \rightarrow r''(-1) = \langle 2, -6 \rangle$$
.

Ejercicio 12 — enunciado

$$r(t) = 5 i + t^3 j, t = 2$$

Desarrollo:

$$r'(t) = <0, 3t^2> \rightarrow r'(2) = <0, 12>.$$

$$r''(t) = <0, 6t> \rightarrow r''(2) = <0, 12>.$$

Resultado final: Resultado: r'(2) = <0,12>, r''(2) = <0,12>.

Ejercicio 14 — enunciado

$$r(t) = \sqrt{t} i + 1/t j + e^{-t} k$$

Desarrollo:

Dominio: t > 0.

$$r'(t) = \langle 1/(2\sqrt{t}), -1/t^2, -e^{-t} \rangle$$
.

$$r''(t) = <-1/(4 t^{3/2}), 2/t^{3}, e^{-t}>.$$

Resultado final: Resultado: Dominio $(0,\infty)$, derivadas indicadas.

Ejercicio 16 — enunciado

$$r(t) = \ln(1-t) i + \sin t j + t^2 k$$

Desarrollo:

Dominio: 1 - $t > 0 \rightarrow t < 1 \Rightarrow$ dominio $(-\infty, 1)$.

$$r'(t) = <-1/(1-t)$$
, cos t, 2t>.

$$r''(t) = <1/(1-t)^2$$
, -sin t, 2>.

Resultado final: Resultado: Dominio $(-\infty,1)$, derivadas indicadas.

Ejercicio 17 — enunciado

$$x = 2 t^3 - 1$$
, $y = -5 t^2 + 3$, $z = 8 t + 2$; $P(1,-2,10)$

Desarrollo:

Encontrar t0: $z = 8 t + 2 = 10 \Rightarrow t0 = 1$.

Calcular $r'(t) = <6t^2, -10t, 8> \Rightarrow r'(1) = <6, -10, 8>$.

Ecuación recta tangente: R(s) = P + s r'(1).

Resultado final: Resultado: R(s) = <1,-2,10> + s<6,-10,8>.

Ejercicio 18 — enunciado

$$x = 4 \sqrt{t}$$
, $y = t^2 - 10$, $z = 4/t$; $P(8,6,1)$

Desarrollo:

Resolver t: $4 \sqrt{t} = 8 \Rightarrow \sqrt{t} = 2 \Rightarrow t = 4$.

$$r'(t) = \langle 2/\sqrt{t}, 2t, -4/t^2 \rangle \Rightarrow r'(4) = \langle 1, 8, -1/4 \rangle.$$

Recta tangente: R(s) = <8,6,1> + s<1,8,-1/4>.

Resultado final: Resultado: R(s) = <8,6,1>+s<1,8,-1/4>.

Ejercicio 19 — enunciado

$$x = e^t$$
, $y = t e^t$, $z = t^2 + 4$; $P(1,0,4)$

Desarrollo:

Encontrar t0: $e^{t0} = 1 \Rightarrow t0 = 0$.

$$r'(t) = \langle e^{t}, (1+t)e^{t}, 2t \rangle \Rightarrow r'(0) = \langle 1, 1, 0 \rangle.$$

Recta: R(s) = <1,0,4> + s<1,1,0>.

Resultado final: Resultado: R(s) = <1,0,4> + s<1,1,0>.

Ejercicio 20 — enunciado

$$x = t \sin t$$
, $y = t \cos t$, $z = -t$; $P(\pi/2, 0, \pi/2)$

Desarrollo:

Determinar t0: $z = -t0 = \pi/2 \Rightarrow t0 = -\pi/2$.

$$r'(t) = \langle \sin t + t \cos t, \cos t - t \sin t, -1 \rangle \Rightarrow r'(-\pi/2) = \langle -1, -\pi/2, -1 \rangle$$
.

Recta: $R(s) = \langle \pi/2, 0, \pi/2 \rangle + s \langle -1, -\pi/2, -1 \rangle$.

Resultado final: Resultado: R(s) = $<\pi/2,0,\pi/2> + s<-1,-\pi/2,-1>$.

Ejercicio 27 — enunciado

Integrar
$$\int 0^2 (6 t^2 i - 4 t j + 3 k) dt$$

Desarrollo:

Integración componente a componente:

$$\int_{0^2} 6 t^2 dt = 6 [t^3/3]_{0^2} = 6*(8/3) = 16.$$

$$\int_{0^2 -4} t dt = -4 [t^2/2]_{0^2} = -4*(2) = -8.$$

$$\int_{0}^{2} 0^2 3 dt = 3 [t]_{0}^{2} = 6.$$

Resultado final: Resultado vectorial: 16i - 8j + 6k.

Ejercicio 28 — enunciado

Integrar $\int_{-1}^{1} (-5 t i + 8 t^3 j - 3 t^2 k) dt$

Desarrollo:

Observación de paridad: integrandos impares o pares.

$$\int_{-}^{-1}^{1} -5 t dt = 0$$
 (función impar).

$$\int_{-1}^{1} 4 \, dt = 0$$
 (impar).

$$\int \{-1\}^{1} -3 t^{2} dt = -3 [t^{3}/3] \{-1\}^{1} = -2.$$

Resultado final: Resultado: -2 k.

Ejercicio 29 — enunciado

Integrar $\int_0^{\pi/4} (\sin t i - \cos t j + \tan t k) dt$

Desarrollo:

Integrar: $\int \sin t \, dt = -\cos t$; $\int -\cos t \, dt = -\sin t$; $\int \tan t \, dt = -\ln \cos t$.

Evaluar en los límites 0 a $\pi/4$:

i:
$$(-\cos(\pi/4) + \cos 0) = (-\sqrt{2}/2 + 1) = 1 - \sqrt{2}/2$$
.

j:
$$(-\sin(\pi/4) + \sin 0)$$
 with sign $\rightarrow -\sqrt{2}/2$.

k:
$$-\ln \cos t = -\ln(\sqrt{2}/2) = \ln(\sqrt{2})$$
.

Resultado final: Resultado: $(1-\sqrt{2/2})$ i - $\sqrt{2/2}$ j + $ln(\sqrt{2})$ k.

Ejercicio 30 — enunciado

Integrar
$$\int_0^1 [t e^{t^2} i + \sqrt{t} j + (t^2+1)^{-1} k] dt$$

Desarrollo:

i: usar sustitución $u = t^2 \Rightarrow du = 2t dt \Rightarrow \int_0^1 t e^{t^2} dt = (1/2)(e^{t^2})|_0^1 = (e-1)/2.$

$$j: \int 0^1 dt dt = \int 0^1 t^{1/2} dt = [2/3 t^{3/2}] 0^1 = 2/3.$$

k:
$$\int_{0}^{1} (t^2+1)^{-1} dt = \arctan t \int_{0}^{1} \pi/4$$
.

Resultado final: Resultado: $((e-1)/2)i + (2/3)j + (\pi/4)k$.

15.3 El movimiento

Instrucciones: ejercicios 1–16 múltiplo de 2. Para cada caso se calcula velocidad, aceleración y rapidez (norma de la velocidad).

Ejercicio 2 — enunciado

$$r(t) = (4 - 9 t^2) i + 3 t j, t = 1$$

Calcular
$$v = r'(t) = <-18 t$$
, $3> \Rightarrow v(1) = <-18$, $3>$.
Calcular $a = r''(t) = <-18$, $0>$.
Rapidez = $||v|| = sqrt((-18)^2 + 3^2) = 3 sqrt(37)$.
Resultado final: Resultado: $v(1) = <-18,3>$, $a(1) = <-18,0>$, rapidez= $3\sqrt{37}$.

Ejercicio 4 — enunciado

$$r(t) = \sqrt{t} i + (1 + \sqrt{t}) j, t = 4$$

Desarrollo:

$$v = <1/(2\sqrt{t}), \ 1/(2\sqrt{t})> \Rightarrow v(4) = <1/4, \ 1/4>.$$
 $a = <-1/(4\ t^{3/2}), \ -1/(4\ t^{3/2})> \Rightarrow a(4) = <-1/32, \ -1/32>.$
Rapidez = sqrt((1/4)^2 + (1/4)^2) = 1/(2\sqrt{2}).

*Resultado final: Resultado: $v(4) = <1/4, 1/4>, \ a(4) = <-1/32, -1/32>, \ rapidez = 1/(2\sqrt{2}).$

Ejercicio 6 — enunciado

$$r(t) = \cos^2 t i + 2 \sin t j$$
, $t = 3\pi/4$

Desarrollo:

$$v = <-2 \sin t \cos t$$
, $2 \cos t > \Rightarrow v(3\pi/4) = <1$, $-\sqrt{2} >$.
 $a = <-2 \cos 2t$, $-2 \sin t > \Rightarrow a(3\pi/4) = <0$, $-\sqrt{2} >$.
Rapidez = $sqrt(1 + 2) = \sqrt{3}$.
Resultado final: Resultado: $v = <1$, $-\sqrt{2} >$, $a = <0$, $-\sqrt{2} >$, rapidez $= \sqrt{3}$.

Ejercicio 8 — enunciado

$$r(t) = 2 t i + e^{-t^2} j, t = 1$$

Desarrollo:

$$v = \langle 2, -2 \text{ t e}^{-1} \rangle \Rightarrow v(1) = \langle 2, -2 \text{ e}^{-1} \rangle.$$

 $a = \langle 0, (-2 + 4 \text{ t}^2) \text{ e}^{-1} \rangle \Rightarrow a(1) = \langle 0, 2 \text{ e}^{-1} \rangle.$
Rapidez = 2 sqrt(1 + e^{-2}).
Resultado final: Resultado: $v = \langle 2, -2 \text{ e}^{-1} \rangle$, $a = \langle 0, 2 \text{ e$

Ejercicio 10 — enunciado

$$r(t) = t^2 i + t^3 j + t k$$

```
v = <2t, 3t^2, 1>, a = <2, 6t, 0>.
```

Evaluaciones: $t=0 \Rightarrow v=(0,0,1)$, a=(2,0,0), rapidez=1.

$$t=1 \Rightarrow v=(2,3,1)$$
, rapidez= $\sqrt{14}$.

$$t=2 \Rightarrow v=(4,12,1)$$
, rapidez= $\sqrt{161}$.

Resultado final: Resultado: ver cuerpo del desarrollo.

Ejercicio 12 — enunciado

$$r(t) = 4 \sin t i + 2 t j + 9 \cos t k$$

Desarrollo:

$$v = <4 \cos t$$
, 2, -9 sin t>, $a = <-4 \sin t$, 0, -9 cos t>.

$$t=0 \Rightarrow v=(4,2,0)$$
, rapidez= $2\sqrt{5}$. $t=\pi/2 \Rightarrow v=(0,2,-9)$, rapidez= $\sqrt{85}$.

Resultado final: Resultado: ver cuerpo del desarrollo.

Ejercicio 14 — enunciado

$$r(t) = t (\cos t i + \sin t j + k)$$

Desarrollo:

$$v = \langle \cos t - t \sin t, \sin t + t \cos t, 1 \rangle$$
.

$$a = <-2 \sin t - t \cos t$$
, $2 \cos t - t \sin t$, $0>$.

Rapidez =
$$sqrt(2 + t^2)$$
.

Resultado final: Resultado: v y a como arriba; rapide $z = \sqrt{(2 + t^2)}$.

Ejercicio 16 — enunciado

$$r(t) = 2 t i + j + 9 t^2 k$$

$$v = <2, 0, 18 t>, a = <0, 0, 18>.$$

$$t=0 \Rightarrow \text{rapidez} = 2$$
; $t=1 \Rightarrow \text{rapidez} = 2\sqrt{82}$; $t=2 \Rightarrow \text{rapidez} = 10\sqrt{13}$.

Resultado fina

Ejercicios 15.4

Curvaturas de líneas — Soluciones detalladas paso a paso

En este documento se muestran los pasos completos y las operaciones realizadas para calcular la curvatura κ en los puntos indicados de los ejercicios pares (8, 10, 12, 14, 16 y 18).

Fórmulas útiles

```
1) Para una curva dada por y = f(x):

\kappa(x) = |y''(x)| / (1 + (y'(x))^2)^{3/2}
```

2) Para una curva paramétrica
$$x = x(t)$$
, $y = y(t)$:
 $\kappa(t) = |x'(t) y''(t) - y'(t) x''(t)| / (x'(t)^2 + y'(t)^2)^{3/2}$

Ejercicio 8 —
$$y = x^4$$
, P(1,1)

Enunciado: $y = x^4$. Punto: P(1,1).

Lo que voy a hacer: aplicar la fórmula para y = f(x).

Paso 1 — derivadas:
$$y' = d/dx (x^4) = 4 x^3$$
. $y'' = d/dx (4 x^3) = 12 x^2$.

Paso 2 — evaluar en x = 1:
$$y'(1) = 4 * 1^3 = 4$$
. $y''(1) = 12 * 1^2 = 12$.

Paso 3 — sustituir en la fórmula:
$$\kappa(1) = |y''(1)| / (1 + (y'(1))^2)^{3/2} = 12 / (1 + 4^2)^{3/2}$$
.

Paso 4 — calcular el denominador: $1 + 4^2 = 1 + 16 = 17$. Entonces (17)^{3/2} = 17 * $\sqrt{17}$.

Resultado final: $\kappa(1) = 12 / 17^{3/2}$ (se puede dejar así o escribir $\kappa = 12 / (17 \cdot \sqrt{17})$).

$$K = \frac{12}{17\sqrt{17}}$$

Ejercicio 10 — y = ln(x-1), P(2,0)

Enunciado: y = ln(x - 1). Punto: P(2,0).

Lo que voy a hacer: aplicar la fórmula para y = f(x).

Paso 1 — derivadas: y' = d/dx [ln(x-1)] = 1/(x-1). $y'' = d/dx [1/(x-1)] = -1/(x-1)^2$.

Paso 2 — evaluar en x = 2: y'(2) = 1/(2-1) = 1. $y''(2) = -1/(2-1)^2 = -1$.

Paso 3 — sustituir en la fórmula: $\kappa(2) = |y''(2)| / (1 + (y'(2))^2)^{3/2} = |-1| / (1 + 1^2)^{3/2} = 1 / (2^3/2)$.

Paso 4 — simplificar $2^{3/2}$: $2^{3/2} = (\sqrt{2})^3 = 2 \cdot \sqrt{2}$. Entonces $\kappa = 1 / (2 \cdot \sqrt{2})$.

Paso 5 — forma racionalizada (opcional): multiplicamos numerador y denominador por $\sqrt{2} \rightarrow (\sqrt{2})$ / $(2 \cdot 2) = \sqrt{2}$ / 4.

Resultado final: $\kappa(2) = 1 / (2^{3/2}) = 1/(2 \cdot \sqrt{2})$

$$K = \frac{1}{2\sqrt{2}}$$

Ejercicio 12 — y = sec x, $P(\pi/3,2)$

Enunciado: y = sec x. Punto: $P(\pi/3, 2)$ (nota: $sec(\pi/3) = 2 \rightarrow y = 2$).

Lo que voy a hacer: aplicar la fórmula para y = f(x).

Paso 1 — derivadas: $y' = d/dx(\sec x) = \sec x \cdot \tan x$.

 $y'' = d/dx(\sec x \cdot \tan x) = (\sec x \tan x)' = (\sec x)' \cdot \tan x + \sec x \cdot (\tan x)'$

= $\sec x \cdot \tan x \cdot \tan x + \sec x \cdot \sec^2 x = \sec x \cdot \tan^2 x + \sec^3 x$.

Paso 2 — evaluar en x = π/3: cos(π/3)=1/2 → sec=2; tan(π/3)=√3.

y'(π/3) = sec·tan = 2·
$$\sqrt{3}$$
 = 2 $\sqrt{3}$.

$$y''(\pi/3) = \sec \cdot \tan^2 + \sec^3 = 2 \cdot (\sqrt{3})^2 + 2^3 = 2 \cdot 3 + 8 = 6 + 8 = 14$$
.

Paso 3 — sustituir en la fórmula: $\kappa(\pi/3) = |y''| / (1 + (y')^2)^{3/2} = 14 / (1 + (2√3)^2)^{3/2}$.

Paso 4 — calcular $(2\sqrt{3})^2 = 4\cdot 3 = 12$. Entonces 1 + 12 = 13. Denominador = 13³(3/2).

Resultado final: $\kappa(\pi/3) = 14 / 13^{3/2}$.

$$k = \frac{14}{13\sqrt{13}}$$

Ejercicio 14 — x=t+1, y=t^2+4t+3, P(1,3)

Enunciado (paramétrica): x = t + 1, $y = t^2 + 4t + 3$. Punto: P(1,3).

Lo que voy a hacer: usar la fórmula paramétrica $\kappa(t) = |x'y'' - y'x''| / (x'^2 + y'^2)^{3/2}$.

Paso 1 — encontrar t en el punto P: $x = t + 1 = 1 \Rightarrow t = 0$. Comprobación: $y(0) = 0^2 + 4 \cdot 0 + 3 = 3 \rightarrow OK$.

Paso 2 — derivadas: x' = 1, x'' = 0. y' = 2t + 4, y'' = 2.

Paso 3 — evaluar en t = 0: x'(0)=1, x''(0)=0, $y'(0)=2\cdot 0 + 4 = 4$, y''(0)=2.

Paso 4 — calcular numerador: x'y'' - y'x'' = 1.2 - 4.0 = 2.

Paso 5 — calcular denominador: $x'^2 + y'^2 = 1^2 + 4^2 = 1 + 16 = 17 \rightarrow (17)^{3/2}$.

Resultado final: $\kappa(0) = 2 / 17^{3/2}$.

$$k = \frac{2}{17\sqrt{17}}$$

Ejercicio 16 — x=t-sen t, y=1-cos t, $P(\pi/2-1,1)$

Enunciado (paramétrica): x = t - sen t, y = 1 - cos t. Punto: $P(\pi/2 - 1, 1) \rightarrow corresponde a <math>t = \pi/2$.

Lo que voy a hacer: usar la fórmula paramétrica $\kappa(t) = |x'y'' - y'x''| / (x'^2 + y'^2)^{3/2}$.

Paso 1 — derivadas:

$$x' = d/dt (t - \sin t) = 1 - \cos t.$$

$$x'' = d/dt (1 - \cos t) = \sin t.$$

$$y' = d/dt (1 - \cos t) = \sin t$$
.

$$y'' = d/dt (sin t) = cos t.$$

Paso 2 — calcular numerador simbólicamente:

$$x'y'' - y'x'' = (1 - \cos t) \cdot \cos t - (\sin t) \cdot (\sin t) = \cos t - \cos^2 t - \sin^2 t$$

Usamos sin^2 t + cos^2 t = 1 \rightarrow cos^2 t + sin^2 t = 1, así que la expresión queda cos t - 1 = -(1 - cos t).

Tomando valor absoluto: $|\cos t - 1| = 1 - \cos t$ (ya que $\cos t \le 1$ siempre).

Paso 3 — calcular denominador simbólicamente:

$$x'^2 + y'^2 = (1 - \cos t)^2 + (\sin t)^2 = 1 - 2\cos t + \cos^2 t + \sin^2 t = 2 - 2\cos t = 2(1 - \cos t).$$

$$(x'^2 + y'^2)^{3/2} = [2(1 - \cos t)]^{3/2} = 2^{3/2}(1 - \cos t)^{3/2}.$$

Paso 4 — simplificar $\kappa(t)$:

$$\kappa(t) = (1 - \cos t) / [2^{3/2}(1 - \cos t)^{3/2}] = 1 / [2^{3/2}(1 - \cos t)^{1/2}].$$

Paso 5 — evaluar en t = $\pi/2$: $\cos(\pi/2) = 0 \rightarrow 1 - \cos t = 1$.

$$\kappa(\pi/2) = 1 / 2^{3/2} = 1 / (2 \cdot \sqrt{2}) = \sqrt{2} / 4$$
 (forma racionalizada).

Resultado final: $\kappa(\pi/2) = 1/2^{3/2}$

$$k = \frac{1}{2\sqrt{2}}$$

Ejercicio 18 — x=cos^3 t, y=sen^3 t, $P(\sqrt{2/4},\sqrt{2/4})$

Enunciado (paramétrica): $x = \cos^3 t$, $y = \sin^3 t$. Punto: $P(\sqrt{2}/4, \sqrt{2}/4) \rightarrow \cos^3 t$ corresponde a $t = \pi/4$.

Lo que voy a hacer: usar la fórmula paramétrica $\kappa(t) = |x' y'' - y' x''| / (x'^2 + y'^2)^{3/2} y$ simplificar con identidades trigonométricas.

Paso 1 — derivadas (calcular cuidadosamente):

$$x = \cos^3 t \rightarrow x' = 3 \cos^2 t \cdot (-\sin t) = -3 \cos^2 t \sin t$$
.

$$x'' = d/dt(-3\cos^2 t \sin t) = -3\cdot[(-2\cos t \sin t)\cdot \sin t + \cos^2 t \cdot \cos t]$$

$$= -3\cdot[-2\cos t\sin^2 t + \cos^3 t] = 6\cos t\sin^2 t - 3\cos^3 t$$
.

 $y = \sin^3 t \rightarrow y' = 3 \sin^2 t \cos t$.

$$y'' = d/dt(3 \sin^2 t \cos t) = 3 \cdot [(2 \sin t \cos t) \cdot \cos t + \sin^2 t \cdot (-\sin t)]$$

$$= 3 \cdot [2 \sin t \cos^2 t - \sin^3 t] = 6 \sin t \cos^2 t - 3 \sin^3 t.$$

Paso 2 — calcular el numerador: x' y'' – y' x''. Haciendo las multiplicaciones y factorizando se obtiene:

Después de expandir y agrupar términos se llega a x' y" - y' x" = -9 cos 2 t sin 2 t.

Tomando valor absoluto \Rightarrow |x' y" - y' x"| = 9 cos^2 t sin^2 t.

(En el documento de trabajo esto se muestra desarrollando los términos; aquí se resume el factor común final).

Paso 3 — calcular $x'^2 + y'^2$:

 $x'^2 + y'^2 = 9 \cos^4 t \sin^2 t + 9 \sin^4 t \cos^2 t = 9 \cos^2 t \sin^2 t (\cos^2 t + \sin^2 t) = 9 \cos^2 t \sin^2 t$.

Entonces $(x'^2 + y'^2)^{3/2} = (9 \cos^2 t \sin^2 t)^{3/2} = 27 \cos^3 t \sin^3 t$ (tomando cos t, sin t ≥ 0 en t = $\pi/4$).

Paso 4 — formar $\kappa(t)$: $\kappa(t) = [9 \cos^2 t \sin^2 t] / [27 \cos^3 t \sin^3 t] = (9/27) \cdot 1/(\cos t \sin t) = (1/3) \cdot 1/(\cos t \sin t)$.

Paso 5 — evaluar en t = $\pi/4$: $\cos(\pi/4) = \sin(\pi/4) = 1/\sqrt{2} \Rightarrow \cos t \sin t = (1/\sqrt{2}) \cdot (1/\sqrt{2}) = 1/2$.

 $\kappa(\pi/4) = (1/3) \cdot 1/(1/2) = (1/3) \cdot 2 = 2/3.$

Resultado final: $\kappa(\pi/4) = \frac{2}{3}$

Cálculo con Geometría Analítica — Ejercicios 15.5

Ejercicio 1

$$r(t) = t^2i + (3t + 2)j$$

Paso 1 — v = <2t, 3>, a = <2, 0>.

Paso 2 — $||v|| = \sqrt{(4t^2+9)}$.

Paso 3 — $v \cdot a = 4t$.

Paso 4 — $a_T = \frac{4t}{\sqrt{4t^2+9}}$

Paso 5 — |a| = 2, $a_N = \sqrt{4 - \frac{16t^2}{4t^2 + 9}} = \frac{6}{\sqrt{4t^2 + 9}}$

Resultado:. $a_T = \frac{4t}{\sqrt{4t^2+9}}$, $a_N = \frac{6}{\sqrt{4t^2+9}}$

Ejercicio 2

 $r(t) = (2t^2 - 1)i + 5tj.$

Paso 1 — v = <4t, 5>, a = <4, 0>.

Paso 2 — $|v| = \sqrt{16t^2 + 25}$

Paso $3 - v \cdot a = 16t$.

Paso 4 — $a_T = \frac{16t}{\sqrt{16t^2 + 25}}$

Paso 5 — ||a||=4, entonces a_N = $\sqrt{(16 - (256t^2)/(16t^2+25))}$ = $20/\sqrt{(16t^2+25)}$.

Resultado: a_T = $16t/\sqrt{(16t^2+25)}$, a_N = $20/\sqrt{(16t^2+25)}$.

Ejercicio 3

 $r(t) = 3t i + t^3 j + 3t^2 k$.

Paso 1 — v = <3, $3t^2$, 6t, a = <0, 6t, 6.

Paso 2 — $||v|| = 3\sqrt{(t^4+4t^2+1)}$.

Paso 3 —
$$v \cdot a = 18t^3 + 36t = 18t(t^2 + 2)$$
.

Paso 4 — a_T =
$$(18t(t^2+2))/(3\sqrt{(t^4+4t^2+1)}) = 6t(t^2+2)/\sqrt{(t^4+4t^2+1)}$$
.

Paso 5 —
$$||v \times a|| = 18\sqrt{(t^4+t^2+1)}$$
.

Paso 6 — a_N =
$$(||v \times a||)/||v|| = 6\sqrt{(t^4+t^2+1)}/\sqrt{(t^4+4t^2+1)}$$
.

Resultado:
$$a_T = \frac{16t}{\sqrt{16t^2 + 25}}$$
, $a_N = \frac{20}{\sqrt{16t^2 + 25}}$

Ejercicio 4

$$r(t) = 4t i + t^2 j + 2t^2 k$$
.

Paso 1 —
$$v = <4$$
, 2t, 4t>, $a = <0$, 2, 4>.

Paso 2 —
$$|v| = \sqrt{16 + 4t^2 + 16t^2} = \sqrt{20t^2 + 16} = 2\sqrt{5t^2 + 4}$$

Paso 3 —
$$v \cdot a = 4*0 + 2t*2 + 4t*4 = 4t+16t = 20t$$
.

Paso 4 —
$$a_T = 20t/(2\sqrt{(5t^2+4)}) = 10t/\sqrt{(5t^2+4)}$$
.

Paso 5 —
$$||a|| = \sqrt{(0^2+2^2+4^2)} = \sqrt{20} = 2\sqrt{5}$$
.

Paso 6 — a_N =
$$\sqrt{(||a||^2 - a_T^2)} = \sqrt{(20 - (100t^2)/(5t^2+4))}$$
.

Simplifico: a_N =
$$4\sqrt{(5)}/(\sqrt{(5t^2+4)})$$
.

Resultado:
$$a_T = 10t/\sqrt{(5t^2+4)}$$
, $a_N = 4\sqrt{5}/\sqrt{(5t^2+4)}$.

Ejercicio 5

$$r(t) = (\cos t) i + (\sin t) j$$
.

Paso 1 —
$$v = <-\sin t$$
, $\cos t>$, $a = <-\cos t$, $-\sin t>$.

Paso 2 —
$$||v|| = \sqrt{(\sin^2 t + \cos^2 t)} = 1$$
.

Paso
$$3 - v \cdot a = -sint(-cost) + cost(-sint) = 0$$
.

Paso 5 —
$$||a|| = \sqrt{(\cos^2 t + \sin^2 t)} = 1$$
.

Paso 6 —
$$a_N = \sqrt{(||a||^2 - a_T^2)} = 1.$$

Resultado: $a_T = 0$, $a_N = 1$

Ejercicio 6

$$r(t) = \cosh t \ i + \sinh t \ j$$

Paso 1 — $v = <\sinh t$, $\cosh t>$, $a = <\cosh t$, $\sinh t>$.

Paso 2 — $||v|| = \sqrt{(\sinh^2 + \cosh^2)} = \sqrt{(\cosh(2t))}$.

Paso 3 — $v \cdot a = \sinh t \cosh t + \cosh t \sinh t = 2 \sinh t \cosh t = \sinh(2t)$.

Paso 4 — $a_T = \sinh(2t)/\sqrt{\cosh(2t)}$.

Paso 5 —
$$||a|| = \sqrt{(\cos h^2 + \sin h^2)} = \sqrt{(\cosh(2t))}$$
.

Paso 6 —
$$a_N = \sqrt{(||a||^2 - a_T^2)}$$
. $Aqui||a||^2 = cosh(2t)$.

 $a_T^2 = \sinh^2(2t)/\cosh(2t)$.

Entonces
$$a_N^2 = \cosh(2t) - \frac{\sinh^2(2t)}{\cosh(2t)} = \frac{1}{\cosh(2t)}$$
, $a_N = \frac{1}{\sqrt{\cosh(2t)}} Resultado$: $a_T = \sinh(2t) / \sqrt{(\cosh(2t))}$, $a_N = 1 / \sqrt{(\cosh(2t))}$.

Ejercicio 7

$$r(t) = 4 \cos t i + 9 \sin t j + t k$$
.

Paso 1 — $v = < -4 \sin t$, $9 \cos t$, 1>, $a = < -4 \cos t$, $-9 \sin t$, 0>.

Paso 2 — $||v|| = \sqrt{(16 \sin^2 t + 81 \cos^2 t + 1)}$.

Paso 3 — $v \cdot a = (-4 \sin t)(-4 \cos t) + (9 \cos t)(-9 \sin t) + 1*0 = 16 \sin t \cos t - 81 \sin t \cos t$.

 $= (-65) \sin t \cos t.$

Paso 4 — $a_T = (-65 \sin t \cos t) / \sqrt{(16 \sin^2 t + 81 \cos^2 t + 1)}$.

Paso 5 —
$$||a||^2 = (-4\cos t)^2 + (-9\sin t)^2 = 16\cos^2 t + 81\sin^2 t$$
.

Paso 6 —
$$a_N = \sqrt{(|a||^2 - a_T^2)}$$
.

Resultado: $a_T = (-65sintcost)/\sqrt{(16sin^2t + 81cos^2t + 1)}$

$$a_N = \sqrt{\left(16cos^2t + 81sin^2t - (4225sin^2tcos^2t)/(16sin^2t + 81cos^2t + 1)\right)}.$$

Ejercicio 8

 $r(t) = e^t (sen t i + cos t j + k).$

Paso 1 — $r(t) = \langle e^t \sin t, e^t \cos t, e^t \rangle$.

Paso 2 — $v = (\sin t + \cos t)$, $e^t(\cos t - \sin t)$, $e^t>$.

Paso 3 - a = derivada de v:

 $x: d/dt[e^t(sint + cost)] = e^t(sint + cost) + e^t(cost - sint) = 2e^t cost.$ $y: d/dt[e^t(cost - sint)] = e^t(cost - sint) + e^t(-sint - cost) = -2e^t sint. z: d/dt[e^t] = e^t.$

Entonces $a = \langle 2e^t \cos t, -2e^t \sin t, e^t \rangle$.

Paso $4 - \left| |v| \right|^2 = e^{2t} [(sin + cos)^2 + (cos - sin)^2 + 1] = e^{2t} (2 + 1) = 3e^{2t}.$ $Portanto ||v|| = \sqrt{3}e^t.$

Paso 5 — $v \cdot a = e^{2t}[(sin + cos)(2cos) + (cos - sin)(-2sin) + 1] = e^{2t}(2sincos + 2cos^2 - 2cossin + 2sin^2 + 1) = e^{2t}(2(cos^2 + sin^2) + 1) = 3e^{2t}$.

Paso 6 — $a_T = (v \cdot a)/||v|| = 3e^{2t}/(\sqrt{3}e^t) = \sqrt{3}e^t$.

Paso 7 — $|a|^2 = (2e^t \cos t)^2 + (-2e^t \sin t)^2 + (e^t)^2 = 4e^{2t}(\cos^2 t + \sin^2 t) + e^{2t} = 5e^{2t}Paso8 - a_N = \sqrt{(|a||^2 - a_T^2)} = \sqrt{(5e^{2t} - 3e^{2t})} = \sqrt{(2e^{2t})} = \sqrt{2}e^t.$

Resultado: $a_T = \sqrt{3}e^t$, $a_N = \sqrt{2}e^t$.