國立交通大學資訊工程學系 資訊專題競賽報告

基於深度學習之醫療影像分析-息肉影像分割

(Medical Image Segmentation by Deep-Learning - Polyp Segmentation)

專題題目說明、價值與貢獻自評(限100字內):

在本項專題中,目標建立出能預測出腫瘤位置的AI模型、尋找優化預測效果的訓練方式(比如各種augumentation手法),並將模型整合至網頁應用,針對使用者輸入圖像、影片等進行預測,以供需要的人(如醫師)使用。

專題隊員:

學號	姓名	手機	E-mail	負責項目說明	專題內貢獻度(%)
0816125	張紀睿	0933775101	jerryyyyy708@g mail.com	資料前處理 模型訓練 程式撰寫與整合 文獻閱讀 結果分析	100%

本專題如有下列情況則請說明:

1.為累積之成果(含論文及專利)	、2.有研究生參與提供成果	、3.為大型研究之一部份。
------------------	---------------	---------------

相關研究生資料 (無則免填):

級別年級	姓名	提供之貢獻	專題內貢獻度(%)		

【說明】上述二表格之專題內貢獻度累計需等於100%。

指導教授簡述及簡評:

					上道业	拉ダ力 。		
					拍导教	授簽名:		
H	兹	R	田	 	_	午	Ħ	

一、 關鍵詞

人工智慧、機器學習、深度學習(Deep Learning)、卷積神經網路(Convolutional Neural Network)、資料增強(Data Augmentation)、醫療影像(Medical Image)、圖像分割(Image Segmentation)

二、 專題研究動機與目的

醫療影像 AI 的訓練常常需要大量資料,然而醫療影像的資料集在取得上較為困難,並且使用大量訓練資料需要消耗許多運算資源以及訓練時間,大幅提高了開發的門檻。因此,在本次專題中希望利用有限的訓練資料(息肉影像資料集 Kvasir-SEG[1] 1000 張圖片中的 900 張圖片,如圖 1),透過進一步的資料增強、模型預訓練等方式,訓練出息肉影像分割的 AI 模型,克服醫療影像 AI 開發門檻較高的困境。

圖 1. Kvasir 資料及範例影像與其標註

另外,為了減少使用者(如醫生)在 AI 操作上可能會遇到的困難,專題最後將把模型串接至網頁應用,提供更方便的操作介面。使用網頁應用也能使整個預測過程更輕量化,使用者不須額外安裝應用程式就能有效利用模型,減少整體儲存空間的消耗。

三、 現有相關研究概況及比較

醫療影像一直都是 AI 常常應用的領域。在分類任務上,有肺部 CT 圖的癌症預測 [2];物件偵測任務上,有超音波影像的疾病偵測[3]。而在本次專題中,則專注於影像分割的任務,並且著重在息肉影像。在現有的息肉影像分割研究中,許多研究都有著不錯的表現。舉例而言,在此論文[4]中利用 PraNet 架構與 Multi-Scale 的方式訓練模型;另一項研究,Polyp-PVT[5],則是針對腫瘤影像分割訓練了 Transformer 模型。而本次專題研究以 UNet[6]及 DoubleUNet[7]架構為基礎,結合影像增強與預訓練 Encoder 的方式,嘗試利用現有資料集提升模型的預測效果。

四、 專題重要貢獻

本次專題的三項主要貢獻為: 1. 針對息肉影像分割,嘗試了許多資料增強的方法,進而尋找有效提升預測效果的策略。2. 針對 UNet 的 Encoder 進行了不同的預訓練方式,並找出能提升整體表現的方法。3. 將 AI 模型串接至網頁應用,提供輕量化且易操作的介面使用 AI 模型協助診斷。

五、 團隊合作方式

本次專題由我獨立完成。專題初期每兩周與教授開會一次,確認研究方向與進度狀況,根據教授的建議、文獻搜尋與結果分析來訂定後續的工作項目並將其實作。模型研究部分告一段落後,再自行進行網頁應用的架設。

六、 設計原理、研究方法與步驟

1. 主要模型架構

專題中使用了兩種 CNN 模型架構,分別為 UNet 以及 Double-UNet(如表 1),以下分別對其選擇做詳細的說明。

表 1. 模型架構圖

1.1 UNet:

UNet 在醫療影像分割上有很好的表現,由於其架構會將不同層的 feature map 經過 up-sample 後連接起來,可以有效的對不同尺度的特徵進行預測。而在息肉影像資料集中,不同的拍攝角度、息肉的生長程度等等,都會造成特徵有些許的不同,因此

選用 UNet 作為主要模型架構,以針對這些特徵學習。另外, UNet 對於物體的邊緣也能有效地預測,此特性對框選出息肉有很好的幫助。

1.2 Double-UNet:

Double-UNet為 UNet 模型的延伸版本,結合了兩個 UNet,將第一個 UNet 的輸出與原輸入圖片相乘後,輸入至第二個 UNet,對第一個模型的預測結果再次精煉,以獲得更準確的特徵,並連結兩個 UNet 的 Encoder 以及自身 Decoder 的 feature map,得到更豐富的資訊,以改進單一 UNet 的預測結果。使用 Double UNet 架構會需要更多的訓練時間,但模型的預測效果也會有所進步,為了能更準確地預測出息肉的細節位置,因此後續也採用了這個模型。

2. 資料增強

由於訓練時只採用資料集中900張圖片,為了豐富訓練資料以增進模型訓練效果,採用了以下方法進行資料增強。

2.1 基本圖像轉換

首先,將圖片進行隨機的角度旋轉,並隨機進行水平或垂直翻轉,再透過放大、縮小等方式模擬出鏡頭從不同角度、距離拍攝的圖片,並對圖片顏色做些微的隨機震盪,以及不同程度的高斯模糊,藉此營造出不同光線及拍攝狀態的圖片,將原本的900 張訓練圖片透過資料增強擴增到 2700 張。

圖 2. 基本圖像轉換增強範例

2.2 息肉圖像剪貼

由於訓練模型時,發覺模型對於一張圖片中有多個息肉位置時預測的效果較差,因此設計了以下圖像增強流程:第一步,隨機選取一張訓練圖片,並找出其不含息肉的位置。第二步,隨機選取另一張訓練圖片,將其息肉部分裁切下來。第三步,將第二步裁切下的息肉圖片黏貼到第一步的位置。以此流程增強資料集,使模型能針對單張圖片多個息肉去做訓練,將資料及數量再從2700擴增到3000張。

圖 3. 息肉圖像剪貼範例

3. Encoder 預訓練方式

本章節的預訓練主要針對 UNet 的 Encoder 進行改良。在專題期間,一共嘗試了三種模型預訓練方法,首先是偵測圖片旋轉角度的 self-supervise learning,但此預訓練並沒有顯著的效果。之後嘗試了 Momentum contrastive learning[8],也因為資料集規模不大而無法有效幫助模型訓練。最終,嘗試了在 UNet 的 Encoder 部分加入一層 fully-connected layer,並將每張圖片裁切成含有息肉的部份以及不含息肉的部分,輸入 Encoder 做 Classification 分辨圖片中是否包含息肉的方式,使模型 Encoder 能更有效地分辨息肉的特徵。此方法得到了不錯的效果,可針對圖片中容易被搞混的部分讓模型學習,因此選定此方式預訓練模型。

4. 模型訓練

完成 Encoder 的預訓練以及圖像增強後,即可將資料輸入模型進行預測,並由預測結果與 Ground Truth 比較計算 loss 來讓模型學習。Loss Function 選用 IOU Loss,針對預測出有腫瘤的部份與 Ground Truth 中腫瘤的實際部分重疊度去計算,避免學習到太多背景的資訊。訓練完成並確認預測效果後,即可得到最終的模型。

$$IOULoss = 1 - \frac{TP}{TP + FN + FP}$$

5. 網頁應用

完成模型訓練後,將訓練好的模型串接至網路應用。首先,在 server 端載入預測模型,而網頁端有兩個介面,分別提供使用者輸入欲進行預測的圖片或影片。使用者輸入的檔案會被上傳到 server 端的模型內進行預測。若輸入檔案為圖片,輸入的圖片與預測結果會被顯示在同一列以做比對;若輸入檔案為影片,則會將預測結果與原影片結合後顯示在影片窗格中,使用者可以從輸出影片看到即時的預測結果。

七、 系統實現與實驗

本章將分為模型訓練與網頁應用兩部分,針對前者說明實驗上設定的細節以及整 體流程;後者則專注於系統實現的部分。

7.1 模型訓練

圖 4 為模型訓練的完整流程圖。在本次專題中,使用 PyTorch 實現模型的建立與訓練,並分別對 UNet、Double-UNet 以下幾種訓練設定:

模型	訓練設定
	原始資料集(900 張訓練影像)
UNet	增強資料集(900+2100 張訓練影像)
UNEL	預訓練 Encoder+原始資料集
	預訓練 Encoder+增強資料集
Double-UNet	原始資料集(900 張訓練影像)
Double-one t	增強資料集(900+2100 張訓練影像)

Optimizer 選用 SGD, 超參數的設定為 Batch Size:8, Learning Rate: 1e-2, 並訓練 60 個 epoch。

圖 4. 模型訓練流程圖

7.2 網頁應用

在本次專題中,運用 Python 模組 Flask 進行網頁應用的架設,後端會載入訓練好的模型,針對使用者輸入的圖片可直接預測,模型會將預測結果輸出至 server 端的資料夾,再透過網頁顯示結果。若是輸入影片,則會利用套件 opencv 將其拆分為多張圖片,並儲存影片的偵率,將圖片各自進行預測後,再重新與原圖結合為影片並顯示於前端,供使用者查看。透過網頁進行預測的範例見圖 5。

Upload new File

Upload new Video

圖 5. 網頁預測圖片、影片範例

八、 效能評估與成果

從實驗結果(表 2)看來,本次專題所使用的資料增強策略,無論對於哪種模型的訓練效果都有顯著的幫助。應用在 UNet 時,IOU 上升了 0.05,在 Double-UNet 的 IOU 也有 0.032 的提升。在原始資料量較少的情況下,選用這個策略是一個很好的選擇。而 UNet 的 Encoder 預訓練也同樣使其表現有所提升,同時使用預訓練 Encoder 與資料增強更能使表現再往上提升一些,雖然提升的幅度沒有如資料增強那麼明顯,但此種方法預訓練所耗費的時間很短,幾乎不影響訓練上的時間成本。表格中紅字部分為各模型之最好表現,由於是針對息肉位置的偵測,因此以 IOU 為主要評判標準。模型種類的比較上,Double-UNet 由於其模型複雜度較高,預測效果優於 UNet。UNet 經過Encoder 預訓練與資料增強後,表現雖仍不及 Double-UNet,但在計算資源較有限,無法負荷較複雜的 Double-UNet 時,也不失為一個好的辦法。

Model & Training Method	Accuracy	IOU	DICE
UNet 原始資料集	0.928626	0. 592346	0. 743991
UNet 增強資料集	0.940864	0.648868	0.787047
UNet 原始資料集 Pretrained Encoder	0.928806	0.604757	0.753705
UNet 增強資料集 Pretrained Encoder	0. 937552	0.653285	0.790288
Double-UNet 原始資料集	0. 944115	0.677014	0.807404
Double-UNet 增強資料集	0.950565	0.709908	0.830346

表 2. 模型預測結果

九、 結論

在本次專題中,試驗了能有效提升模型表現的資料增強與模型預訓練方法,並對不同模型進行實驗,以驗證此種方法的通用性。未來我將持續進行更多深入的研究,以精進模型的表現,找出更多可以幫助醫療影像 AI 模型訓練的方法。網頁應用架設

方面,讓使用者可以用更方便的方式進行預測,但礙於運算資源的限制,影片的預測速度會較為緩慢。未來也將試著使應用介面更加完善,並嘗試雲端運算等方法來解決運算速度的問題。經過這次的經驗,我對於醫療影像 AI 有了更多的認識,也看到了許多自己在 AI 領域可以持續努力學習的方向,使我有了許多的成長。

十、 參考文獻

- [1] Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen, Håvard D. Johansen. "Kvasir-SEG: A Segmented Polyp Dataset". In: arXiv:1911.07069.
- [2] Bhoj Raj Pandit, Abeer Alsadoon, P.W.C. Prasad, Sarmad Al Aloussi, Tarik A. Rashid, Omar Hisham Alsadoon, Oday D. Jerew."Deep Learning Neural Network for Lung Cancer Classification: Enhanced Optimization Function". In: arXiv:2208.06353.
- [3] Rodina Bassiouny, Adel Mohamed, Karthi Umapathy, Naimul Khan. "An Interpretable Object Detection-Based Model for the Diagnosis of Neonatal Lung Diseases using Ultrasound Images". In: arXiv:2105.10081.
- [4] Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing Shen and Ling Shao. "PraNet: Parallel Reverse Attention Network for Polyp Segmentation". In: arXiv:2006.11392v4.
- [5] Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, Ling Shao." Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers". In: arXiv:2108.06932v5.
- [6] Olaf Ronneberger, Philipp Fischer, Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation". In: arXiv:1505.04597.
- [7] Debesh Jha, Michael A. Riegler, Dag Johansen, Pål Halvorsen, Håvard D. Johansen. "DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation". In: arXiv:2006.04868.
- [8] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick. "Momentum Contrast for Unsupervised Visual Representation Learning". In: arXiv:1911.05722