情報とネットワーク:その2

情報科学の世界 2 2021 年度前期 佐賀大学理工学部 只木進一

情報科学の世界 2 1/19

- ① 今日のテーマ:インターネットの仕組み
- ② 情報通信における階層化と抽象化
- ③ カプセル化とパケット: capsulation and packetization
- 4 TCP/IP 階層モデル
- 5 課題

情報科学の世界 2 2/19

今日のテーマ:インターネットの仕組み

- パケット通信
 - データを packet という小さな塊で送る
 - 各 packet には、送信元、送信先などの情報
 - 回線を占有しない
- 通信の要素物理的媒体である通信路、情報の転送の制御、プロトコル
- 階層構造を持ったプロトコル
 - 多数の構成要素: 必然的にマルチベンダー (multi-vendor)
 - 障害への対応: 障害が発生した階層を特定しやすく
 - 多様な利用、アプリケーションを可能に
- アドレス空間

情報科学の世界 2 3/19

packet

- a small paper or cardboard container in which goods are packed for selling
- a small object wrapped in paper or put into a thick envelope so that it can be sent by mail, carried easily or given as a present

情報科学の世界 2 4/19

情報通信における抽象化

- モデル化:実際に起こっていることを抽象化して捉える
- 情報通信の操作・手順を抽象化
 - 通信相手の指定
 - 通信路の確保
 - データの送信
 - 例:有線 LAN と無線 LAN も同じようにインターネット媒体として 操作
- 操作・手順を適切な大きさの塊に分割
- 操作方法とその実装を分離
 - 実装方法が変化しても操作が不変
 - インターネットは多数の部品で構成され、多数の組織、個人が関わっている。
 - 技術変化の速度が非常に速い

情報科学の世界 2 5/19

情報通信における階層化

- 通信には多様な部品・機能が関与
 - 物理的回線、電子機器、制御ソフトウェアなどなど
- 必然的にマルチベンダー (multi-vendor) 化
 - 様々な企業が関与
 - 適切に階層化して役割を定める ソフトウェア (通信のコア部分、アプリケーション) ハードウェア (コンピュータ本体、通信機器)

情報科学の世界 2 6/19

機能の階層化と抽象化

- 物理的通信(信号処理)
 - 媒体の選択、接続手順
- データ送受信
 - 論理的接続手順
 - データ形式
- データ処理
 - 通信制御プログラム
 - アプリケーション

情報科学の世界 2 7/19

コミュニケーションの階層モデル:情報技術の観点

情報科学の世界 2 8/19

会話の階層化

- 物理媒体: 音波
- 知覚・感覚層
 - 口、喉、鼻を使った発音
 - 耳による聴音
- 形式層: 言語と知覚・感覚の連携
 - 発話する: 単語や文を発声
 - 聞く: 音から単語や文を取り出す。
 - 母語は無意識だが、外国語は意識が必要
- 意味・意図層
 - 発話の意味・意図
 - 聞いた音から意味・意図を取り出す
- 情報通信では、形式層と知覚・感覚層が、通信装置・通信ソフトウェアに相当

情報科学の世界 2 9/19

階層化と通信プロトコル

- 各層が自律して必要な機能を果たす
 - 通信制御サービス:データ通信と制御
- 各層がそれぞれの上位層・下位層の機能を信頼する
- インターフェイスを定義

情報科学の世界 2 10/19

階層化の利点

- 上位層(例えばアプリケーション)は、下位層(ネットワーク)が 正しく動作していることを前提とする。
- 下位層は、定められた機能のみを実装し、上位層が何をしようとしているかに関知しない。
- 各層の機能要件を明確にできる。

カプセル化: capsulation

- データを封筒に入れて表書きを付ける
- データの先頭にヘッダを付ける
- 表書き・ヘッダにデータ制御情報を

ヘッダ	データ
header	data

各階層に対応した形式

情報科学の世界 2 12/19

パケット化: packetization

- 送信時にトランスポート層で、データパケット化
- 受信時に、トランスポート層で、パットからデータを復元
- パケットに附番し、管理
- 再送手順を定義
- MTU (Maximum Transmission Unit)
 イーサーネットでは 1500Byte が標準

情報科学の世界 2 13/19

パケット通信の利点

- 回線を占有しない
- 細い回線でもデータを送ることが可能
- パケットサイズが大きすぎると
 - 送信失敗時にやり直しコストが大きい
 - 回線占有になる

情報科学の世界 2 14/19

TCP/IP 階層モデル

- TCP: Transmission Control Protocol
- IP: Internet Protocol
- ネットワークの物理実装になるべく依存せず、各コンピュータ・通信装置が稼働するように設計

アプリケーション層	
トランスポート層	
インターネット層	
ネットワーク IF 層	

情報科学の世界 2 15/19

層	説明	例
アプリケーション層	個々のアプリケーション	SMTP, HTTP
トランスポート層	データのパケット化	TCP, UDP
インターネット層	パケットの配送	IP
インターネット IF 層	通信の物理実装対応	ethernet

TCP/IP の基本アプリケーション

- TCP/IP では、基本アプリケーション機能が標準化されて普及
- プロトコルは公開
- Open Source ソフトウェアが普及

情報科学の世界 2 17/19

TCP/IP の基本プロトコル

- SMTP (Simple Mail Transfer Protocol)
- FTP (File Transfer Protocol)
- TELNET (Telecommunication Network Protocol)
- HTTP (Hypertext Transfer Protocol)
- NTP (Network Time Protocol)

情報科学の世界 2 18/19

課題

災害時に電話が繋がりにくくなる理由、災害時でも SNS は利用できる理由を考えなさい。