Όνομα Άσκησης: Milking Cows

Πηγή: USACO 1.2

Εκφώνηση

Τρεις αγρότες σηκώνονται κάθε πρωί στις 5:00 και πηγαίνουν στο στάβλο για να αρμέξουν τρεις αγελάδες. Ο 1°ς αγρότης ξεκινά να αρμέγει την αγελάδα του στην ώρα 300 (σημαίνει 300 δευτερόλεπτα μετά τις 5:00) και τελειώνει την ώρα 1000. Ο 2°ς ξεκινά στην ώρα 700 και τελειώνει την ώρα 1200 ενώ ο 3°ς στην ώρα 1500 και 2100 αντίστοιχα. Ο μεγαλύτερος χρόνος συνεχούς αρμέγματος (δηλαδή υπήρχε τουλάχιστον ένας αγρότης που άρμεγε) ήταν 900 δευτερόλεπτα (300 με 1200). Αντιστοίχως ο μέγιστος χρόνος όπου καμιά αγελάδα δεν αρμεγόταν ήταν 300 (1500 πλην 1200).

Στόχος σας είναι να γράψετε ένα πρόγραμμα που θα δέχεται τους χρόνους N αγροτών (1 <= N <= 5000) που αρμέγουν N αγελάδες και θα τυπώνεται (σε δευτερόλεπτα):

- Το μέγιστο χρόνο συνεχούς αρμέγματος.
- Το μέγιστο χρόνο που καμιά αγελάδα δεν αρμεγόταν.

Δεδομένα Εισόδου

Στη γραμμή 1 υπάρχει ένας ακέραιος αριθμός που αντιστοιχεί στο Ν.

Στη συνέχεια υπάρχουν Ν ζευγάρια ακεραίων αριθμών που αντιστοιχούν στην έναρξη και τη λήξη του αρμέγματος για κάθε αγρότη. Οι αριθμοί είναι μικρότεροι του 1000000

Δεδομένα Εξόδου

Μια γραμμή που περιέχει 2 ακεραίους αριθμούς.

Παράδειγμα Εισόδου (milk2.in)

3 300 1000 700 1200 1500 2100

Παράδειγμα Εξόδου (milk2.out)

900 300

Επεξήγηση

Κάθε αγρότης αρμέγει μία αγελάδα, υπάρχουν όμως αγρότες που μπορεί να αρμέγουν τις αγελάδας τους ταυτόχρονα. Μπορεί επίσης να υπάρχει άρμεγμα των αγελάδων για σε όλο το διάστημα.

Hints

Ταξινομήστε. Όχι απαραίτητα παράλληλα.

Λύση

Το πρόβλημα λύνεται με ταξινόμηση. Αποθηκεύουμε τα ζευγάρια των αριθμών σε 2 μονοδιάστατους πίνακες (ή vectors) και τα ταξινομούμε. ΟΧΙ παράλληλη ταξινόμηση.

Για παράδειγμα

Είσοδος

4

100 150

20 200

300 700

600 620

Τα ταξινομημένα vectors (πίνακες) θα είναι ως εξής

Start	Finish
20	150
100	200
300	620
600	700

Ξεκινώ από τη 2^η θέση του πίνακα και ελέγχω αν ο χρόνος έναρξης στη θέση i είναι μικρότερος από τον χρόνο λήξης στη θέση i-1. Αν ισχύει αυτό τότε σημαίνει ότι υπάρχει οι 2 αγρότες δούλευαν ταυτόχρονα. Αν όχι υπολογίζω τους χρόνους και ελέγχω αν είναι μέγιστοι.

```
Κώδικας
```

```
#include<iostream>
#include<algorithm>
#include<vector>
#include<fstream>
using namespace std;
int main()
{
```

int N,i,checkAll=0;

```
long int x,y,startMax,max1,temp,max2=0;
vector< int > start,finish;
ifstream fin("milk2.in");
ofstream fout("milk2.out");
fin>>N;
//Αποθήκευση μεταβλητών στα 2 vectors
for(i=0;i<N;i++){
 fin>>x>>y;
 start.push_back(x);
 finish.push_back(y);
}
//Ταξινόμηση για το κάθε vector ξεχωριστά
sort(start.begin(), start.end());
sort(finish.begin(), finish.end());
//Αρχική ώρα για συνεχόμενο άρμεγμα
startMax=start[0];
//Αν είναι μόνο ένας τότε το μέγιστο άρμεγμα είναι η ώρα του 1ου αγρότη
max1=finish[0]-start[0];
for(i=1;i<N;i++){
  //έλεγχος για διακοπή αρμέγματος
  if(start[i]>finish[i-1]){
    temp=finish[i-1]-startMax;
    //έλεχγος αν αυτός ο χρόνος είναι μεγαλύτερος
    //από αυτόν που έχει καταχωρηθεί σαν μέγιστος
```

```
if(temp>max1)
      max1=temp;
    //εύρεση χρόνου που δεν υπάρχει άρμεγμα και
    //έλεγχος αν είναι μέγιστος
     temp=start[i]-finish[i-1];
     if(temp>max2)
      max2=temp;
     startMax=start[i];
     //λειτουργεί σαν flag ότι υπάρχει χρόνος μη αρμέγματος
     checkAll=1;
   }
 }
 //έλεγχος αν υπάρχει χρόνος μη αρμέγματος
if(checkAll==0)
 max1=finish[N-1]-start[0];
fout<<max1<<" "<<max2<<"\n";
return 0;
```

}