Kapittel 7: Syrer og baser

- Syrer og baser
- Syrestyrke
- pH-skalaen
- Beregning av pH i sterke og svake syrer
- Baser
- Polyprotiske syrer
- Syre-base-egenskaper til salter
- H⁺-bidrag fra vann

www.ntnu.no

7.1 Syrer og baser

Brønsted-Lowry:

- En syre er et stoff som kan avgi protoner (H⁺)
- En base er et stoff som kan ta opp protoner
- Eks: $HCl(aq) + H_2O \rightarrow H_3O^+(aq) + Cl^-(aq)$ $NH_3(aq) + H_2O \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
- H₃O⁺: Oksoniumion, OH⁻: hydroksidion

$$HA(aq) + H_2O \Longrightarrow H_3O^+(aq) + A^-(aq)$$

syre base konjugert syre konjugert base

• Konkurranse mellom de to syrene (HA og H₃O⁺) og basene (H₂O og A⁻)

www.ntnu.no \ \ TMT4110 Kjemi

Amfolytter

- Amfotær forbindelse har både syre- og baseegenskaper og kalles amfolytter
- eks: Vann vannets egenprotolyse

$$H_2O + H_2O \longleftrightarrow H_3O^+(aq) + OH^-(aq)$$

$$K_{w} = [H^{+}] \cdot [OH^{-}] = 1.0 \cdot 10^{-14}$$

• eks: HSO4-, H₂PO4-, HCO₃-

www.ntnu.no

TMT4110 Kjemi

Kw ved 25°C!

7.2 Syrestyrke

- Sterk syre => likevekt forskjøvet langt mot høyre
- Svak syre => likevekt forskjøvet langt mot venstre

 K_a

- Svak syre har en relativt sterk konjugert base
- Sterk syre har en relativt svak konjugert base

Various Ways to Describe Acid Strength				
Property	Strong Acid	Weak Acid		
K _a value	K _a is large	K _a is small		
Position of the dissociation equilibrium	Far to the right	Far to the left		
Equilibrium concentration of H ⁺ compared with original con- centration of HA	$[H^+] \approx [HA]_0$	$[H^+] \ll [HA]_0$		
Strength of conjugate base com- pared with that of water	A ⁻ much weaker base than H ₂ O	A ⁻ much stronger base than H ₂ O		

NTNU Innovation and Creativity

www.ntnu.no \\ TMT4110 Kjemi

7.3 pH-skalaen

$$pH = -\log[H^+]$$
 $pOH = -\log[OH^-]$

- Konsentrasjoner i mol/L
- Rent vann:

$$[H^+] = 1.0 \cdot 10^{-7} \, mol/L$$
 => $pH = -\log[1.0 \cdot 10^{-7}] = 7$

- Sure løsninger: $[H^+] >> [OH^-]$ pH < 7Nøytrale løsninger: $[H^+] = [OH^-]$ pH = 7Basiske løsninger: $[H^+] << [OH^-]$ pH > 7
- pH + pOH = 14 fra $K_w = [H^+] \cdot [OH^-] = 1.0 \cdot 10^{-14}$ Innovation and Creativity

www.ntnu.no \ \ TMT4110 Kjemi

7.4 pH i sterke syrer

- Fullstendig dissosiert i vann, eks $HCl \longrightarrow H^+(aq) + Cl^-(aq)$
- Den svake korresponderende basen har en <u>meget svak</u> tendens til å knytte seg til H⁺
- $[HC1]_o = [H^+]$
- Sterke syrer: HCl, HNO₃, H₂SO₄ (første trinn)

www.ntnu.no

7.5 pH i svake syrer

- Identifiser hvilke specier som er tilstede, se hvilke som kan avgi H⁺ (eller ta opp for svake baser)
- eks: $HF \rightleftharpoons H^+(aq) + F^-(aq)$ $K_a = 7.2 \cdot 10^{-4}$ $H_2O \rightleftharpoons H^+(aq) + OH^-(aq)$ $K_w = 1.0 \cdot 10^{-14}$
- Kan vanligvis se bort fra vannets bidrag til H⁺ pga lav K

www.ntnu.no \ TMT4110 Kjemi

Blanding av svake syrer

• eks: $HCN + HNO_2$

$$\begin{aligned} & \text{HCN}(aq) & \Longrightarrow & \text{H}^+(aq) + \text{CN}^-(aq) & & K_a = 6.2 \times 10^{-10} \\ & \text{HNO}_2(aq) & \Longrightarrow & \text{H}^+(aq) + \text{NO}_2^-(aq) & & K_a = 4.0 \times 10^{-4} \\ & \text{H}_2\text{O}(l) & \Longrightarrow & \text{H}^+(aq) + \text{OH}^-(aq) & & K_w = 1.0 \times 10^{-14} \end{aligned}$$

- Sammenlign syrekonstantene til likevektene
- Finn den som dominerer og som høyst sannsynlig bidrar mest til [H⁺]
- Prinsippet det samme ved blanding av svak syre og svak base

NTNU
Innovation and Creativit

www.ntnu.no

7.6 Baser

- Arrhenius: En base er en substans som produserer OH--ioner i en vandig løsning
- Brønsted-Lowry: En base er en proton akseptor
- Sterke baser: Fullstendig rx

Eks: $NaOH(s) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$

=> hydroksider av gruppe 1A og 2A (NB! Løselighetsprodukt!)

www.ntnu.no

pH i svake baser

- eks: $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
- Generelt:

$$B(aq) + H_2O(l) \rightleftharpoons BH^+(aq) + OH^-(aq)$$

base syre konjugert syre konjugert base

$$K_b = \frac{\left[BH^+\right]\!\left[OH^-\right]}{\left[B\right]}$$

- K_b refererer til en reaksjon mellom en base og vann slik at konjugert syre og hydroksidion dannes
- $\bullet \quad K_a \cdot K_b = 10^{-14}$
- pH beregninger som ved svake syrer

www.ntnu.no \ TMT4110 Kjemi

Hvordan vite om et stoff er en syre eller en base eller ingen av delene?

- Ikke nok om forbindelsen inneholder H-atomer eller OH-grupper
- eks: CH₄ → ingen syre
 CH₃OH → verken syre eller base
 CH₃COOH → bare H-atomet i -COOH kan avgis
- Bindingen H-X må være polar for at H⁺ skal kunne avgis!
 Dvs: X må være sterkt elektronegativt ion

www.ntnu.no

7.8 Syre-base egenskaper til salter

- · Salt: Ionisk forbindelse
- Noen av ionene kan ha syre- eller baseegenskaper

Nøytrale salter:

- Salter som inneholder kation av sterke baser eller anioner av sterke syrer har ingen effekt på [H⁺] når de løses i vann
- eks: KCl, NaCl, NaNO₃, LiI,
- korresponderende syrer til sterke baser korresponderende baser til sterke syrer

www.ntnu.no

Basiske salter:

• Ion i salt reagerer med vann og danner OH--ioner Eks: NaCH₃COO

$$CH_3COO^-(aq) + H_2O \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$$

Sure salter:

• Ion i salt reagerer med vann og danner H^+ -ioner Eks: NH_4Cl

$$NH_4^+(aq) + H_2O \Longrightarrow NH_3(aq) + H_3O^+(aq)$$

• Noen kationer kan gi sure løsninger; Al³⁺, Fe³⁺, Cr³⁺, Cu²⁺ Eks: Al³⁺: Omgitt av 6 vannmolekyler – polariserer O-H bindingene

$$Al(H_2O)_6^{3+}(aq) \Longrightarrow H^+(aq) + Al(OH)(H_2O)_5^{2+}(aq)$$

www.ntnu.no \ TMT4110 Kjemi

Type of Salt	rious Types of Salts	Comments	pH of Solution
	Examples		
Cation is from strong base; anion is from strong acid	KCl, KNO ₃ , NaCl, NaNO ₃	Acts as neither an acid nor a base	Neutral
Cation is from strong base; anion is from weak acid	NaC ₂ H ₃ O ₂ , KCN, NaF	Anion acts as a base; cation has no effect on pH	Basic
Cation is conjugate acid of weak base; anion is from strong acid	NH ₄ Cl, NH ₄ NO ₃	Cation acts as an acid; anion has no effect on pH	Acidic
Cation is conjugate acid of weak base; anion is conjugate base of weak acid	NH ₄ C ₂ H ₃ O ₂ , NH ₄ CN	Cation acts as an acid; anion acts as a base	Acidic if $K_a > K_b$, basic if $K_b > K_a$, neutral if $K_a = K_b$
Cation is highly charged metal ion; anion is from strong acid	Al(NO ₃) ₃ , FeCl ₃	Hydrated cation acts as an acid; anion has no effect on pH	Acidic
		TABLE 7.5	
 Hvis både surt og basisk ion: Størrelsen på K_a relativt til K_b avgjør 		Qualitative Prediction of pH for Solu- tions of Salts for Which Both Cation and Anion Have Acidic or Basic Properties	
		$K_a > K_b$ pH < 7 $K_b > K_a$ pH > 7	(acidic) (basic) T

pH i en amfolytt

- Amfolytt kan opptre som både syre og base
- Gitt en to-protisk syre H₂A
 => H₂A er syre, HA⁻ er amfolytt, A²⁻ er base
- pH i en løsning av saltet NaHA?

$$K_{a,\mathbf{l}} = \frac{\left[H^{+}\right]\left[HA^{-}\right]}{\left[H_{2}A\right]} \qquad K_{a,2} = \frac{\left[H^{+}\right]\left[A^{2-}\right]}{\left[HA^{-}\right]} \qquad => K_{a,\mathbf{l}} \cdot K_{a,2} = \frac{\left[H^{+}\right]\left[HA^{-}\right]}{\left[H_{2}A\right]} \cdot \frac{\left[H^{+}\right]\left[A^{2-}\right]}{\left[HA^{-}\right]} = \frac{\left[H^{+}\right]^{2}\left[A^{2-}\right]}{\left[H_{2}A\right]} = \frac{$$

$$HA^{-}(aq) + HA^{-}(aq) \rightleftharpoons H_{2}A(aq) + A^{2-}(aq) => [A^{2-}] \approx [H_{2}A]$$

$$=>K_{a,\mathbf{1}}\cdot K_{a,2}\approx \left[H^{+}\right]^{2}$$

 $=> [H^+] = \sqrt{K_{a,1} \cdot K_{a,2}}$

$$pH = \frac{1}{2} \left\{ pK_{a,1} + pK_{a,2} \right\}$$

www.ntnu.no

7.9-7.10 Sure løsninger hvor vann bidrar til [H⁺]-konsentrasjonen

 Tidligere antatt at vann ikke bidrar til H⁺-konsentrasjonen og pH i løsningen

$$\left[H^+ \right] = \left[H^+ \right]_{HA} + \left[H^+ \right]_{H_2O} \approx \left[H^+ \right]_{HA}$$

- I f.eks. fortynnede løsninger vil også vannets egenprotolyse bidra til [H⁺] og tilnærmingen kan ikke gjøres
- I en syre HA: 4 ukjente specier: [H⁺], [OH⁻], [HA] og [A⁻] => Trenger 4 ligninger for å løse matematikken
 - 1. $K_a = [H^+] \cdot [A^-]/[HA]$
 - 2. $K_w = [H^+] \cdot [OH^-]$
 - 3. Massebalanse: $[HA]_0 = [HA] + [A^-] = konstant$
 - 4. Ladningsbalanse: $[H^+] = [OH^-] + [A^-]$

www.ntnu.no

Oppsummering

- En syre er et stoff som kan avgi protoner (H⁺)
- En base er et stoff som kan ta opp protoner
- · Amfolytter har både syre- og baseegenskaper
- pH angir $[H_3O^+]$ -konsentrasjon: $pH = -\log[H^+]$
- Sterke syrer/baser: Fullstendig dissosiasjon. Eks: [HA]₀ = [H⁺]
- Svake syrer/baser: Likevekt.
 pH beregnes fra likevektsuttrykket (før-etter-analyse)
- Polyprotiske syrer: Syrer som kan avgi mer enn ett proton
- Salter: Noen av ionene kan ha syre-base-egenskaper og påvirke pH
- Amfolytt-ligninga: $pH = \frac{1}{2} \{ pK_{a,1} + pK_{a,2} \}$
- pH-beregninger i fortynnede syreløsninger: Vannets egenprotolyse må inkluderes sammen med massebalanse og ladningsbalanse

www.ntnu.no `\ TMT4110 Kjemi