

第6章 无线网安全性Part I

第6章 内容概要

- 6.1 无线通信和802.11 无线局域网标准
- 6.2 有线等价隐私协议
- 6.3 Wi-Fi 访问保护协议
- 6.4 IEEE 802.11i/WPA2
- 6.5 蓝牙安全机制
- 6.6 无线网状网的安全性

概论

- 无线电通信
- 攻击者,有一个无线的传送和接受装置,与要攻击的无线网使用相同的无线频率,可以做到:
 - □ 拦截无线网数据
 - □ 将其计算机连接到一个近处的无线网
 - □ 对一个现有的无线网络插入数据包
 - □ 用无线电干扰设备对特定无线网通道实施干扰
- 保密措施
 - □ 在数据链接层实施加密算法,身份验证算法和完整性检验算法
 - 提供类似有线网媒体访问的隐私保护
 - 高层通信协议和网络应用程序(有线和无线)都无需更改可以照常使用

无线局域网体系结构

- 两种体系结构
 - □ 固定无线局域网: 可与有线网相连
 - □ 特定无线局域网(点对点): 不与任何固定的有线网相连
- 含有无线通信设备的装置通常称为移动站STA
 - □ 根据 IEEE 802.11通信标准,每台STA由一个48比特MAC地址唯一确定
- 无线接入点 (AP)
 - □ 一端:与一个有线局域网建立连接
 - □ 另一端: 在AP和STAs之间建立无线的收、发联系,实现通信
 - □ 时分复用技术允许多台STA相连
 - □ 每个AP由一个服务集标识符(SSID)唯一确定,定时向外发送信标

固定局域无线网示意图

- 信标发送:它定时对外公布其SSID及其他信息,为进入其覆盖范围内的STA与 其建立连接之用
- 信标扫描: 等待信标发送,确定与哪个AP相连,然后对其发出连接请求,继 而建立与无线局域网的连接

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

特定无线局域网

- 不与任何固定的网络基础设施相连
- 不包含APs
- 允许不同的STA直接通信
- 若目标STA不再通信范围内,可根据情况使用 若干其他STA作为中转站建立通信路径

802.11 概述

- 802.11是无线局域网通信标准,对应于 802.3 (Ethernet)
 和802.5 (Token Ring)通信标准
- 它规定了无线局域网在MAC 子层和物理层的通信及安全保护机制
- MAC子层使用媒体访问方式:载波侦听多路访问回避冲 突(CSMA/CA)方法
- 通用的子层协议:
 - 802.11a: 5 Ghz
 - □ 802.11b: 2.4 Ghz, 11Mbps, 室外35m, 室内110m, WEP
 - □ 802.11g: 2.4 Ghz, 54Mbps,室外35m, 室内110m
 - 802.11i: WPA2
 - □ 802.11n: 支持 MIMO(多重输入/多重输出)

《计算机网络安全的理论与实践(第2版)》.【美】王杰, 高等教育出版社, 2011年

802局域网通信标准示意图

IEEE 802局域网通信标准示意图

无线通信的安全性弱点

- 无线通信更易于被侦听
- 无线信号比有线信号更容易受干扰,且在无线媒体中更容易注入无线信号
- 无线计算装置和嵌入式系统的计算功能和电池能源有限,不足以执行复杂运算

无线通信的安全性弱点

- 易遭受的安全攻击
 - □ 窃听攻击
 - □ 服务阻断攻击
 - □ 消息重放攻击
 - □ STA-诈骗攻击
 - □ AP-诈骗攻击

- 6.1 无线通信和802.11 无线局域网标准
- 6.2 有线等价隐私协议
- 6.3 Wi-Fi 访问保护协议
- 6.4 IEEE 802.11i/WPA2
- 6.5 蓝牙安全机制
- 6.6 无线网状网的安全性

WEP 概述(Wired Equivalent Privacy)

- 发布于1999, WEP是802.11b无线通信标准在数据链接层 使用的安全协议
- 要求:同一无线局域网中所有的 STA's和AP's都共享同一个密钥 K (称之为 WEP 密钥)
- WEP 密钥:
 - □ 40-bit, 104-bit (最通用的), 232-bit
 - □ WLAN 设备可以共享多个 WEP密钥, 每个WEP密钥通过一个字 节长度的ID唯一表示出来,这个ID成为密钥ID
 - □ WEP 密钥常常有管理员选取(WEP没有规定密钥如何产生和传递)
 - □ 一般情况下一旦选定, WEP密钥不可改变

移动设备认证和访问控制

- WEP运用挑战与响应的方式认证移动STA
- 为了和AP连网, STA 必须执行以下步骤:
 - 1. 请求: STA向AP发连接请求
 - 2. 挑战: AP收到请求后,即产生128位的随机数字符串*cha* 并且发送给 STA

cha = $a_1 a_2 ... a_{16}$ (where each a_i is an 8-bit string)

- 3. 响应: STA产生一个24位初始向量 IV,并对 *cha*用 RC4序列加密 算法和密钥 *V||K*加密,如下计算出 r_i, res,并将 res发送给 AP r_i = a_i⊕ k_i, for i = 1,2,...,16 res = V || r₁r₂...r₁₆
- 4. 核实: AP 也对V||K 用RC4 产生相同的子钥序列,并计算 a_i '= $r_i \oplus k_i$ 同时核实是否有 a_i ' = a_i 其中, i = 1,2,...,16, 如果是,则STA 被认可为合法用户,并与其相连

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

数据完整性验证

- 目标: 为了确保分组信息没有被修改或没有被非法的STAs侵入
- WEP 用 CRC-32 验证数据完整性,称之为*完整性校验值ICV*
 - □ CRC-32是一种通用的检测传输错误的技术
- CRC 的简单算法是用 ⊕ 运算和位移操作
 - □ 可由芯片简单实现
- 获取一个k位的CRC值:
 - □ *M*: n位的二进制字符串
 - □ P: k阶二元多项式, 其系数序列为一个(k+1)位二进制字符串
 - □ 用生成多项式(<u>二进制数</u>)除以P,得到k位的 $CRC_k(M)$
- $如果M||CRC_k(M)$ 不能被P除, 意味着M 已被篡改

LLC 网帧加密

- 加密实施在MAC 层,将LLC 网帧加密,分为三个过程
 - □ 令 *M* 为一个 LLC网帧:

$$M \parallel \operatorname{CRC}_{32}(M) = m_1 m_2 \dots m_l$$

D 发送方产生一个24位初始向量 V, 用到RC4序列加密算法,以 V//K为输入以产生一个8位的子钥序列:

$$c_i = m_i \oplus k_i$$

□ 发送方将MAC 子层增加了载荷文件后发送给接收方

$$V \parallel \text{KeyID} \parallel c_1 c_2 \dots c_l$$

□ 通用加密形式如下:

$$C = ((M \parallel \operatorname{CRC}_{32}(M)) \oplus \operatorname{RC4}(V \parallel K))$$

WEP的安全缺陷

认证缺陷:

- 由于WEP采用的挑战-应答机制是一个简单的异或运算,因此很容易 受到明文攻击
- 例如:
 - □ 在AP和合法的STA之间恶意的拦截 (cha, res)信息对.
 - □ 计算 $k_i = c_i \oplus r_i$ for i = 1, 2, ..., 16
 - □ 发送连接请求给 AP并等待其发出的挑战信息 cha'
 - □ 用计算出的子钥序列ki和挑战信息运算,产生一个应答信息*res',*将此信息和截获的*IV一起发给AP*
 - 基于WEP协议, AP 用 RC4 和 IV $\parallel K$, 产生子钥序列 k_1 , k_2 , k_3 , ... k_{16} , 证实 $k_i \oplus res' = cha'$, 由此,AP认证了攻击者的非法设备,准予其连网

WEP的安全缺陷

完整性校验缺陷:

- CRC 弱点
 - □ CRC具有线性运算性质: CRC $(x \oplus y) = \text{CRC}(x) \oplus \text{CRC}(y)$
 - □ 这种线性特征使得攻击者容易篡改数据而不改变CRC值
 - □ CRC 没有任何密钥,使得攻击者容易向网络注入新的网包
 - 篡改数据
 - 注入信息
 - 碎片攻击

完整性校验缺陷

消息干扰(篡改数据):

- Alice 发消息给 Bob: *C* = (*M*|| CRC₃₂(*M*)) ⊕ RC4(*V*||*K*)
- 攻击者拦截并修改了消息C如下,用另一个网帧 Γ ,计算得到C':

$$C' = (\Gamma \parallel CRC_{32}(\Gamma) \oplus C$$

● Bob接收到一个被篡改的数据 $M' = \Gamma \oplus M$ 和正确的 $CRC_{32}(M')$ 的完整性校验值 ICV

```
C' = (\Gamma \parallel \operatorname{CRC}_{32}(\Gamma)) \oplus C
= [(\Gamma \parallel \operatorname{CRC}_{32}(\Gamma)) \oplus (M \parallel \operatorname{CRC}_{32}(M))] \oplus \operatorname{RC4}(V \parallel K)
= [(\Gamma \oplus M) \parallel (\operatorname{CRC}_{32}(\Gamma) \oplus \operatorname{CRC}_{32}(M))] \oplus \operatorname{RC4}(V \parallel K)
= [(\Gamma \oplus M) \parallel (\operatorname{CRC}_{32}(\Gamma \oplus M))] \oplus \operatorname{RC4}(V \parallel K)
= (M' \parallel \operatorname{CRC}_{32}(M')) \oplus \operatorname{RC4}(V \parallel K)
```

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

完整性校验缺陷

注入消息:

- 假定 明文-密文对(M,C) 已被获知, V 是一个为产生C的初始向量
- 注意 V 向量是经明文传输
- 然后($M \oplus C$)运算产生对M加密的子密钥序列, (子密钥产生于RC4(V||K)序列加密算法)
- 假定 Θ 为一个攻击者试图注入网络的信息,其字节长度 <=|M|-4
- 攻击者计算 $CRC_{32}(\Theta)$ 并将其注入公式,即用算出的子密钥序列来加密

 $V||(\Theta||\operatorname{CRC}_{32}(\Theta)) \oplus \operatorname{RC4}(V||K)$

并把它发给其他合法用户,那么以上消息会通过合法认证

完整性校验缺陷

碎片攻击:

- 利用攻击 LLC 网帧首部,将信息注入网络中
 - □ LLC 网帧首部8个字节为固定值,区分IP包和ARP包
 - □ 攻击者用XOR算法得到8个子密钥
- 攻击者阴谋:
 - □ 攻击者将 64字节长的 LLC网帧分割成 16个4字节长的片段
 - □ 用 IV 和前8个子钥 $k_1, k_2, ..., k_8$ 将4字节长的片段及4字节长的 完整性校验值加密
 - □ 将其封装在MAC包中注入网络,会获得合法认证

安全缺陷

保密缺陷

- 重复使用初始向量
 - □ 一个 24位初始向量 IV , 有16,777,216个不同的子密钥序列
 - □ 依据生日悖论,在处理 $1.24\sqrt{2^{24}} = 5102$ 个网帧后,至少有一个随机产生的初始向量在之前出现过的概率会 > ½
- 弱密钥
 - □ 获得初始置换即可破译RC4密码
 - □ 一些破解 WEP密码的软件工具即是根据FMS攻击原理 设计的

第六章 概要

- 6.1 无线通信和802.11 无线局域网标准
- 6.2 有线等价隐私协议
- 6.3 Wi-Fi 访问保护协议
- 6.4 IEEE 802.11i/WPA2
- 6.5 蓝牙安全机制
- 6.6 无线网状网的安全性

WPA 概论

- 由Wi-Fi 联盟于 2003提出
- 基于早期the IEEE 802.11i 标准(第三稿)而制定
- 三个主要目的:
 - □ 纠正所有已经发现的WEP中的安全弱点
 - □ 确保现有WEP硬件也同样能支持WPA
 - □ 确保WPA与802.11i标准兼容
- 采用 802.1X 协议认证用户设备
- Temporal Key Integrity Protocol (TKIP):
 - □ 用 Michael算法,一种特殊设计的完整性检查算法
 - □ 用一种新的密钥结构防止旧信重放并使之无法从RC4 密钥获取公有初始 向量

用户设备认证和存取控制

- 家庭小型办公组网 WPA:
 - □ 为家庭或小型办公室
 - □ 用WEP的预共享密钥
- 企业 WPA:
 - □ 安全公用的无线局域网
 - □ 用认证服务器 (AS)
 - □ 不同的用户与AS使用不同的预共享密钥
 - □ 预共享密钥以用户密码的形式出现
 - □ 采用802.1X端口网络访问控制协议认证用户设备STAs

802.1X 概览

STA 向AP发连网请求. AP 向STA询问认证信息

STA 用其与AS共享的密钥给身份签名,向AP发送其身份和签名, AS 核实 STA签名告知AP, AP即可根据结果决定是否准许其登录

STA 被准予连网

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

TKIP 密钥产生

- AS首先产生一把不同的256位配对主密钥 (PMK),为每个 STA
 - □ AS 用AS和AP之间的预共享密钥加密后将PMK发送给AP
 - □ AP 用AP和STA之间的预共享密钥加密后发送PMK给STA
- 然后,基于PMK和其他信息,TKIP产生4把128位的临时 配对密钥(PTK),用途如下:
 - □ 数据加密密钥:数据加密用
 - □ 数据MIC密钥:数据完整性校验
 - □ *EAPoL*密钥: 局域网扩充认证协议
 - □ EAPoL MIC密钥: EAPoL完整性校验

4 向握手

- TKIP用4次握手完成一次交换临时密钥对 (PTK).
 - 1. AP 发送 ANonce 给STA Message₁ = (AMAC, Anonce, sn)
 - 2. STA 发送 SNonce 给 AP

 Message₂ = (SMAC,Snonce,sn) ||

 MIC(Snonce,sn) || RSNIE_{STA}
 - 3. AP 发送应答给STA.

 Message₃ = (AMAC, Anonce,sn+1) ||

 MIC(Anonce,sn+1) || RSNIE_{AP}
 - 4. STA 发送应答给AP Message₄ = (SMAC,sn+1) || MIC(sn+1)

TKIP 信息完整性码

- 它用到Michael算法产生信息完整 如果 F(I,r) 定义如下: 性代码(MIC)
- 用64位密钥生成一个 64位信息认 证码
- K: 将64位密钥K等分成两部分 K。 和 **K**₁
- Michael 算法用密钥K产生MIC:

$$(L_1,R_1) = (K_0,K_1),$$

 $(L_{i+1},R_{i+1}) = F(L_i \text{ XOR } M_i, R_i) \text{ } i = 1,2,...,n$
 $MIC = L_{n+1}R_{n+1}$
其中*F为* Feistel 替换函数

$$\begin{aligned} r_0 &= r. \\ l_0 &= l, \\ r_1 &= r_0 \text{ xor } (l_0 <<< 17) \\ l_1 &= l_0 \text{ xor}_{32} r_1, \\ r_2 &= r_1 \text{ xor XSWAP}(l_1), \\ l_2 &= l_1 \text{ xor}_{32} r_2, \\ r_3 &= r_2 \text{ xor } (l_2 <<< 3), \\ l_3 &= l_2 \text{ xor}_{32} r_3, \\ r_4 &= r_3 \text{ xor } (l_2 >>> 2), \\ l_4 &= l_3 \text{ xor}_{32} r_4, \\ F(l, r) &= (l_4, r_4) \end{aligned}$$

XSWAP(I) 将左边一半I和右边一半I互换

比CRC32更安全

Michael 算法的弱点

- 攻击者产生一个消息并且附上一个64位二进制字符串作为 MIC, 试图在不知道密钥的情况下找到正确的 MIC
 - □ 尝试所有 264种可能去找到正确的MIC
 - □ 用微分密码分析学,只需要尝试攻击 **2**²⁹次
- 问题解决途径:
 - □ STA 删除密钥并且解除与AP的连接,如果在一秒钟内有两次失败的连接尝试(消息认证失败),并等待1分钟后再连接

TKIP 密钥混合

- 密钥混合算法为每一个帧产生一个该帧的密钥。
 - □ 用一个 48比特位的初始向量 \mathbb{N} , 将其分割成3个16位的段 \mathbb{N}_2 , \mathbb{N}_1 , \mathbb{N}_0
 - □ 密钥混合运算由两部分组成

$$pk_1 = mix_1 (a^t, V_2 V_1, k^t),$$

 $pk_2 = mix_2 (pk_1, V_0, k^t),$

a^t表示发送端设备的48位 MAC地址, k^t 是发送端设备的128位数据加密算法密钥, pk₂ is a 128-bit per-frame key for RC4

□ 用两个 S-匣子 S0 和S1 将一个16位二元字符串输入替换成另一个16 位字符串作为输出

$$S(X) = S_1(X_1) S_0(X_0)$$
,
其中 $X = X_1X_0$

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

WPA加密

MSDU

64-bit MIC key

《计算机网络安全的理论与实践(第2版)》. 【美】王杰, 高等教育出版社, 2011年

WPA 安全强度和弱点

- 优越于 WEP
- 对DoS攻击显得脆弱:
 - □ WPA计算M 的MIC并将其放入MAC网帧载荷,然后将M || ICV(M)分割成若干块 F₁, F₂, ...
 - □ 对每一个F_i, WPA 产生48位初始向量 IV,并产生WEP 密钥
 - □ 初始向量IV以明文传输,攻击者可能截获一个MAC网帧,并将所包含的初始向量用一个更大值的初始向量取代
 - □ 由于接收方不能正确的将其解码,只能被清除
 - □ 由于此初始向量已被使用,导致后面以此值为初始向量的合法网帧也 被清除

第6章无线网安全性Part II

第6章 内容概要

- 6.1 无线通信和802.11 无线局域网标准
- 6.2 有线等价隐私协议
- 6.3 Wi-Fi 访问保护协议
- 6.4 IEEE 802.11i/WPA2
- 6.5 蓝牙安全机制
- 6.6 无线网状网的安全性

WPA 2 概览

- WPA:
 - □ 为了解决WEP安全问题而仓促设计的安全协议
- WPA2:
 - □ 基于802.11i (官方版本)
 - 加密并验证MSDUs: 使用AES-128加密算法及计数器模式
 - 认证STAs: 802.1X
 - □ 没有必要使用明文初始向量去产生子密钥序列
 - □ 但大多数现有的 Wi-Fi WPA 卡不能在更新后支持 802.11i 标准

密钥生成

- 与WPA一样有分级密钥体系
 - □ 256位的配对的主密钥 (PMK)
 - □ 4把128位的临时配对密钥 (PTKs)
 - □ 每个阶段为CCMP产生一个384位的临时密钥
 - 根据SMAC, SNonce, AMAC, Anonce, 由伪随机数发生器产生出来
 - 基于四次握手协议交换信息
 - 密钥被分割为3个128位的临时密钥:
 - 两个用于 STA和AP建立连接
 - 另一个作为为会话密钥

CCMP 加密与MIC

• 加密:

$$Ctr = Ctr_0$$

$$C_i = \text{AES-128}_K (Ctr + 1) \oplus M_i$$

$$i = 1, 2, ..., k$$

• 身份认证与完整性检查:

$$C_i = 0^{128}$$

$$C_i = \text{AES-128}_K (C_{i-1} \oplus M_i)$$

$$i = 1, 2, ..., k$$

802.11i 安全强度和弱点

- 密码算法和安全机制均优越于 WPA 和 WEP
- 还是易于遭受DoS攻击:
 - □ 反转攻击
 - 为支持现有的WEP和WPA设备,802.11i允许RSN设备与没有 RSN功能的设备进行通信
 - 攻击者可诱使RSN设备停止使用RSN功能
 - 攻击者冒充合法RSN AP身份宣传自己是一个WEP AP
 - 冒充合法的RSN STA向AP 请求WEP连接

- □ RSN IE 投毒攻击
 - 针对四次握手协议
 - 攻击者可能会发起RSN IE投毒攻击,使得STA 和AP的连接遭受中断连接攻击
- □脱网攻击
 - 利用伪造的MAC子层管理网帧将STA和 AP之间已 建立的连接切断

第6章 内容概要

- 6.1 无线通信和802.11 无线局域网标准
- 6.2 有线等价隐私协议
- 6.3 Wi-Fi 访问保护协议
- 6.4 IEEE 802.11i/WPA2
- 6.5 蓝牙安全机制
- 6.6 无线网状网的安全性

概要

- 作为构造无线个人域网络标准,在 1998提出
- 小范围无线网通信技术,记为WPAN
- IEEE 802.15 标准基于蓝牙技术
- 无线设备支持:
 - □ 不同的通信设备在不同的操作平台上能够进行无线通信
 - □ 能耗低,计算量小,适合小型应用
 - □ 无线个人网络

蓝牙: 个人网

- 自配置和自组织的动态无线网
- 允许新设备动态加入,网内设备动态离开
 - □ 支持8台设备使用同一频道通信
 - □ Pico网内设备都是对等的
 - □ 设备会动态选出一个设备作为主点
 - □ 其余设备称为仆点
 - □ 一个Pico网最多容纳255台设备
 - □ 节点状态:停泊,活跃,待命
 - □ 一个蓝牙设备在任何时刻只能加入一个pico网

散布网示意图: 重叠的 Pico网

Scatternet (散射网)

安全配对

- 在同一个pico网的节点分享相同的个人标识符PIN
- 节点产生并共享密钥,用于相互认证
 - □ 蓝牙设备基于用户的PIN码产生128位初始密钥
 - □ 蓝牙设备又产生一个128位链接密钥(也叫组合密钥),用以认证设备并产生加密算法密钥
- 使用一个称为 E_0 的序列加密算法为网包载荷加密
- 用一个 **SAFER+**分组加密算法 构造三个算法 E1, E21,和 E22去产生子钥和认证设备

SAFER+分组加密算法

- 认证蓝牙设备
- 是之前 SAFER的增强版 (安全与快速加密程序)
- 是分组大小为128比特位的一种 Fiestel密码体 系
- 两个主要成分:
 - □子密钥产生算法
 - □加密解密算法
 - 8轮相同运算(每轮运算两个子密钥)
 - 一个输出转换(一个子密钥)

SAFER+ 子密钥

- $K = k_0 k_1 ... k_{15}$, a 128位加密密钥. $k_{16} = k_0 \oplus k_1 \oplus ... \oplus k_{15}$
- 17 个128位的子密钥 K₁, K₂, ..., K₁₇:

```
\begin{split} &K_{1} \leftarrow k_{0}k_{2}k_{3}...k_{15} \\ &\text{for } j = 0,1,...,16 \text{ do} \\ &\quad k_{j} <- LS_{3} \left(k_{j}\right) \\ &K_{2} \leftarrow k_{1}k_{2}k_{3}...k_{16} \text{ xor}_{8} \text{ B}_{2} \\ &\text{for } i = 3,\,4,\,...,\,17 \text{ do} \\ &\quad \text{for } j = 0,1,...,16 \text{ do} \\ &\quad k_{j} \leftarrow LS_{3} \left(k_{j}\right) \\ &\quad K_{i} \leftarrow k_{i\text{-}1} \, k_{i} \, k_{i\text{+}1}...k_{16} \, k_{0} \, k_{1}...k_{i\text{-}3} \, \text{xor}_{8} \, \text{B}_{i\text{-}3} \end{split}
```

```
B<sub>i</sub>: 偏移向量
B<sub>i</sub> [j] = (45 <sup>45 17i+j+i mode 257</sup>)
mod 257) mod 256
j = 0,1,....,15,
```

$$B_i = B_i[0] B_i[1] ... B_i[15]$$

 $i = 2,3,....17,$

SAFER+ 子密钥产生序列图

SAFER+加密算法

加密算法轮运算

- $\Rightarrow X = x_1 x_2 ... x_{2k-1} x_{2k}, x_i$ 为字节
- Pseudo Hadamard Transform (PHT):

PHT(
$$X$$
) = PHT($x_{1,}x_{2}$)||...||PHT($x_{2k-1,}x_{2k}$)
PHT(x,y) = (2 $x+y$) mod 2⁸ || ($x+y$) mod 2⁸

Armenian Shuffles (ArS):

ArS
$$(X) = x_8 x_{11} x_{12} x_{15} x_2 x_1 x_6 x_5 x_{10} x_9 x_{14} x_{13} x_0 x_7 x_4 x_3$$
 X 是**16**字节字符串

□ 替换算法使用两个S-匣子 e和 l:

$$e(x) = (45^x \mod (2^8 + 1)) \mod 2^8$$

 $l \text{ is } e^{-1}$: $l(y) = x \text{ if } e(x) = y$

- □ ⊕ 和⊕。运算有两个子密钥
- \square SAFER+加密的第 i 轮运算:

$$\begin{split} Z_0 &= Y_i, \\ Z_1[2j-2] &= e(Z_0[2j-2] \oplus K_{2i-1}[2j-2]), \\ Z_1[2j-1] &= l(Z_0[2j-1] \oplus_8 K_{2i-1}[2j-1]), \\ Z_1[2j] &= l(Z_0[2j] \oplus_8 K_{2i-1}[2j]), \\ Z_1[2j+1] &= e(Z_0[2j+1] \oplus K_{2i-1}[2j+1]), \\ j &= 1,3,5,7. \\ Z_2[2j-2] &= l(Z_1[2j-2] \oplus_8 K_{2i}[2j-2]), \\ Z_2[2j-1] &= e(Z_1[2j-1] \oplus K_{2i}[2j-1]), \\ Z_2[2j] &= e(Z_1[2j] \oplus K_{2i}[2j]), \\ Z_2[2j+1] &= l(Z_1[2j+1] \oplus_8 K_{2i}[2j+1]), \\ j &= 1,3,5,7. \\ Y_{i+1} &= PHT \left(ArS \left(PHT \left(ArS \left(PHT \left(ArS \left(PHT \left(Z_2 \right) \right) \right) \right) \right) \right) \right). \end{split}$$

□ 经过8轮运算后,输出转换运算就像用密钥K_{2i-1}作用于Y_i一样,但不用到S- 匣子。即用密钥K₁₇应用于Y₉. 通过以下运算(输出转换运算)得到密文C

$$C[2j-2] = Y_9[2j-2] \oplus K_{17}[2j-2],$$

$$C[2j-1] = Y_9[2j-1] \oplus_8 K_{17}[2j-1],$$

$$C[2j] = Y_9[2j] \oplus_8 K_{17}[2j],$$

$$C[2j+1] = Y_9[2j+1] \oplus K_{17}[2j+1],$$

$$i = 1,3,5,7.$$

蓝牙算法 E₁

- E_1 将以下参数作为输入:
 - □ *K*: 128-位密钥
 - □ *ρ*: 128-位 随机字符串
 - □ *α*: 48-位地址

产生128-位字符串:

$$E_1(K, \rho, \alpha) = A'_r(\tilde{K}, [A_r(K, \rho) \oplus \rho] \oplus_8 E(\alpha))$$

- A_r 是初始 SAFER+加密算法
- A'_r 是修改后的SAFER+加密算法,它将第一轮的输入和第三轮的输入做运算,得到不可逆的算法
- 由密钥K,通过 \oplus 和 \oplus 8 运算产生 \tilde{K} (书 $\mathbf{P210}$)
- $E(\alpha) = \alpha // \alpha // \alpha[0:3]$

• E_{21} 将 ρ 和 α 作为输入:

$$E_{21}(\rho, \alpha) = A'_r(\rho', E(\alpha))$$

 $\rho' = \rho[0:14] || (\rho[15] \oplus 00000110)$

蓝牙算法E22

 E_{22} takes a 16-byte random string ρ , a 6-byte address α , and an ℓ -byte PIN code p as input, where $1 \leq \ell \leq 16$. Let

$$PIN' = \begin{cases} PIN \| \alpha[0] \| \cdots \| \alpha[\min\{5, 15 - \ell\}], & \text{if } \ell < 16, \\ PIN, & \text{if } \ell = 16. \end{cases}$$

Let $\ell' = \min\{16, \ell + 6\}$. Let

$$\kappa \ = \ \begin{cases} \text{PIN'} \parallel \text{PIN'} \parallel \text{PIN'}[0:1], & \text{if } \ell' = 7, \\ \text{PIN'} \parallel \text{PIN'}[0:15 - \ell'], & \text{if } 8 \leq \ell' < 16, \\ \rho, & \text{if } \ell' = 16, \end{cases}$$

$$\rho' \ = \ \rho[0:14] \parallel (\rho[15] \oplus b(\ell')),$$

where $b(\ell')$ denotes the 8-bit presentation of ℓ' . Then

$$E_{22}(\text{PIN}, \rho, \alpha) = A'_r(\kappa, \rho').$$

蓝牙认证

• 初始密钥:

$$K_{init} = E_{22}$$
 (PIN, In_RAND_A, BD_ADDR_B)

• D_A和 D_B产生链接密钥:

 D_A sends (LK_RAND_A \oplus K_{init}) to D_B

 D_B sends (LK_RAND_B $\oplus K_{init}$) to D_A

 $K_{AB} = E_{21}(LK_RAND_A, BD_ADDR_A) \oplus E_{21}(LK_RAND_B, BD_ADDR_B)$

D_A 认证D_B:

 D_A sends AU_RAND_A to D_B D_B sends $SRES_A$ to D_A where $SRES_A = E(K_{AB}, AU_RAND_A, BD_ADDR_B)$ [0:3] D_A verifies $SRES_A$

蓝牙设备认证示意图

PIN 码破译攻击

• 攻击者窃听设备D_A和D_B之间所有的配对和认证通信

message	source	destination	data	length	notes
1	D_A	D_B	$IN_{R}AND_{A}$	128 bits	plaintext
2	D_A	D_B	$LK_{\mathtt{RAND}_A} \oplus K_{init}$	128 bits	
3	D_B	D_A	$LK_{LRAND_B} \oplus K_{init}$	128 bits	
4	D_A	D_B	$AU_{-}RAND_{A}$	128 bits	plaintext
5	D_B	D_A	$SRES_A$	32 bits	plaintext
6	D_B	D_A	$AU_{-}RAND_{B}$	128 bits	plaintext
7	D_A	D_B	$SRES_B$	32 bits	plaintext

PIN 码破译攻击

攻击者采用蛮力攻击方法破译PIN码:

- 穷举所有248 种可能的PIN码
- 获取第一条信息中的IN_RAND_A 及设备D_B的地址 BD_ADDR_B , 计算初始密钥的候选者:

$$K'_{init} = E_{22}$$
 (PIN', In_RAND_A, BD_ADDR_B)

 用得到的K'_{init} 分别与第二条和第三条信息做异或运算,得到 LK_RAND'_A 和LK_RAND'_B. 然后计算

 $K'_{AB} = E_{21}(LK_RAND'_A, BD_ADDR_A) \oplus E_{21}(LK_RAND'_B, BD_ADDR_B)$

- 用第四条信息的AU_RAND_A, K'_{AB} , 和BD_ADDR_B 计算 SRES'_A = E_1 (AU_RAND_A, K'_{AB} , BD_ADDR_B) [0:3]
- 验证是否有 SRES'_A = SRES_A (SRES_A 来自第五条信息)
- 然后用第六条和第七条信息对此PIN码进行确认

蓝牙安全简单配对协议

- 为了提高安全性能的新的配对协议
- 安全简单配对协议 (SSP):
 - □ 用椭圆曲线Diffie-Hellman (ECDH) 交换算法取代PIN码
 - 抵御 PIN码破译攻击
 - □ 理想情况,用公钥证书认证公钥拥有者的身份.
 - 防范中间人攻击.
 - 蓝牙通信范围小,在Pico网内实施中间人攻击相对困难。

第六章 内容概要

- 6.1 无线通信和802.11 无线局域网标准
- 6.2 有线等价隐私协议
- 6.3 Wi-Fi 访问保护协议
- 6.4 IEEE 802.11i/WPA2
- 6.5 蓝牙安全机制
- 6.6 无线网状网的安全性

无线网状网(WMN)

- · 无线网状网中的AP 可与有线网相连
- 每一个 STA 均与一个 AP相连
- WMNs、WLANs比较:
 - □ WLANs: 星型网
 - □ WMNs: 多跳网络
- 区(region):
 - □ 一个AP 和所有与其相连的STAs
 - □ 可视为一个 WLAN
 - □ 可使用802.11i/WPA2 标准
- AP间也可用802.11i/WPA2保证通 信安全

WMNs安全漏洞

- 黑洞攻击
 - □ 假冒合法路由器,清除而不是中转网包
 - □引诱合法用户使用他的路由器
- 虫道攻击
 - □将网包改道传输
- 抢占攻击
 - □ 根据按需路由协议:
 - 每个路由器必须将第一次收到的路由请求包传播出去,但对之后收到的来自 同一设备的路由请求不予理睬,以减少拥堵
 - □ 抢在合理路由请求包发送之前,发出伪造路由请求,破坏通信
- 路径错误注入攻击
 - □ 向网络中注入伪造的路径错误包,从而切断通信路径