Sharpened CG Iteration Bound for Schwarz-preconditioned High-contrast Heterogeneous Scalar Elliptic PDEs

Going Beyond Condition Number

P. Soliman¹

EEMCS-DIAM Numerical Analysis MSc. Thesis Presentation, April, 2025

¹ Delft University of Technology

Opening Darcy Problem

Opening

Conjugate Gradient Method

Opening

Condition Number

Opening Preconditioners

Opening Research Gap

Structure

- Research Questions
- Mathematical Background
- Related Work
- Preliminary Results
- Outlook

Structure

- Research Questions
- Mathematical Background
- Related Work
- Preliminary Results
- Outlook

Research Questions

Main Research Question

How can we refine the CG iteration bound for Schwarz-preconditioned high-contrast heterogeneous elliptic problems beyond the classical condition number-based bound?

Research Questions

Subsidiary Research Questions

- Q1 What other spectral characteristics like the condition number can we consider?
- Q2 How to estimate the characteristics from Q1?
- Q3 Given a toy eigenspectrum, how can we sharpen the CG iteration bound?
- Q4 How does the sharpened bound from Q3 compare to the classical CG bound?
- Q5 How does the performance described in Q4 depend on the characteristics found in Q1?
- Q6 Can the sharpened bound from Q3 distinguish between preconditioners?

Structure

- Research Questions
- Mathematical Background
- Related Work
- Preliminary Results
- Outlook

Conjugate gradient method

Algorithm Conjugate Gradient Method 1

$$\begin{array}{l} \mathbf{r}_0 = \mathbf{b} - A\mathbf{u}_0, \, \mathbf{p}_0 = \mathbf{r}_0, \, \beta_0 = 0 \\ \mathbf{for} \, j = 0, \, 1, \, 2, \, \dots, \, m \, \, \mathbf{do} \\ \alpha_j = (\mathbf{r}_j, \, \mathbf{r}_j)/(A\mathbf{p}_j, \, \mathbf{p}_j) \\ \mathbf{u}_{j+1} = \mathbf{u}_j + \alpha_j \mathbf{p}_j \\ \mathbf{r}_{j+1} = \mathbf{r}_j - \alpha_j A\mathbf{p}_j \\ \beta_j = (\mathbf{r}_{j+1}, \, \mathbf{r}_{j+1})/(\mathbf{r}_j, \, \mathbf{r}_j) \\ \mathbf{p}_{j+1} = \mathbf{r}_{j+1} + \beta_j \mathbf{p}_j \\ \mathbf{end} \, \, \mathbf{for} \end{array}$$

¹Y. Saad. *Iterative Methods for Sparse Linear Systems*. Second. Society for Industrial and Applied Mathematics, 2003. DOI: 10.1137/1.9780898718003. eprint: https://epubs.siam.org/doi/book/10.1137/1.9780898718003

Conjugate gradient method

Iterative, projection method onto a Krylov subspace $\mathcal{K}_m(A_0, \mathbf{r}_0)$ given by

span
$$\{\mathbf{r}_0, A\mathbf{r}_0, A^2\mathbf{r}_0, \dots, A^{m-1}\mathbf{r}_0\}$$

Conjugate gradient method

Iterative, projection method onto a Krylov subspace $\mathcal{K}_m(A_0, \mathbf{r}_0)$ given by

span
$$\{\mathbf{r}_0, A\mathbf{r}_0, A^2\mathbf{r}_0, \dots, A^{m-1}\mathbf{r}_0\}$$

 Approximate solution can be expressed as

$$\mathbf{u}_m = \mathbf{u}_0 + \sum_{i=0}^{m-1} c_i A^i \mathbf{r}_0 = \mathbf{u}_0 + q_{m-1}(A) \mathbf{r}_0$$

Conjugate gradient method

Iterative, projection method onto a Krylov subspace $\mathcal{K}_m(A_0, \mathbf{r}_0)$ given by

$$span\{\mathbf{r}_0, A\mathbf{r}_0, A^2\mathbf{r}_0, \dots, A^{m-1}\mathbf{r}_0\}$$

 Approximate solution can be expressed as

$$\mathbf{u}_m = \mathbf{u}_0 + \sum_{i=0}^{m-1} c_i A^i \mathbf{r}_0 = \mathbf{u}_0 + \mathbf{q}_{m-1}(A) \mathbf{r}_0$$

Figure: Residual polynomial $r_m(\lambda) = 1 - \lambda q_{m-1}(\lambda)$

Conjugate gradient method

Iterative, projection method onto a Krylov subspace $\mathcal{K}_m(A_0, \mathbf{r}_0)$ given by

$$span\{r_0, Ar_0, A^2r_0, \dots, A^{m-1}r_0\}$$

 Approximate solution can be expressed as

$$\mathbf{u}_{m} = \mathbf{u}_{0} + \sum_{i=0}^{m-1} c_{i} A^{i} \mathbf{r}_{0} = \mathbf{u}_{0} + q_{m-1}(A) \mathbf{r}_{0}$$

Minimize residual polynomial on eigenvalues of A

Figure: Residual polynomial $r_m(\lambda) = 1 - \lambda q_{m-1}(\lambda)$

Conjugate gradient method

Classical (condition number) convergence bound:

Theorem

The error of the mth iterate of the CG algorithm is bounded by

$$||\mathbf{e}_m|| \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^m ||\mathbf{e}_0||_A,$$

where $\kappa = \lambda_{max}/\lambda_{min}$ is the condition number of (symmetric matrix) A.

Conjugate gradient method

Classical (condition number) convergence bound:

Theorem

The error of the mth iterate of the CG algorithm is bounded by

$$||\mathbf{e}_m|| \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^m ||\mathbf{e}_0||_A,$$

where $\kappa = \lambda_{max}/\lambda_{min}$ is the condition number of (symmetric matrix) A.

Only sharp for uniform eigenvalue distributions!

$$||\mathbf{e}_{m}||_{A} \leq \min_{r \in \mathcal{P}_{m-1}, r(0) = 1} \max_{\lambda \in [\lambda_{\min}, \lambda_{\max}]} |r(\lambda)|||\mathbf{e}_{0}||_{A} = \frac{\|\mathbf{e}_{0}\|}{C_{m}\left(\frac{\kappa+1}{\kappa-1}\right)}$$
EEMCS-DIAM-NA MSc. Thesis April, 2025

Conjugate gradient method

Setting $\lambda_{min} = 0.1$ and $\lambda_{max} = 0.9$ gives $m_{classical} = 26$. Worst case distribution:

Figure: CG convergence for uniform spectrum.

Conjugate gradient method

Setting $\lambda_{min} = 0.1$ and $\lambda_{max} = 0.9$ gives $m_{classical} = 26$. Best case distribution:

Figure: CG convergence for spectrum with two distinct eigenvalues.

Schwarz preconditioners

 Derived from the Alternating Schwarz method²

Figure: Domain decomposition with overlapping subdomains.

EEMCS-DIAM-NA MSc. Thesis April, 2025 21

²V. Dolean, P. Jolivet, and F. Nataf. *An Introduction to Domain Decomposition Methods*. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015. DOI: 10.1137/1.9781611974065. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611974065

Schwarz preconditioners

- Derived from the Alternating Schwarz method²
- Convergence rate depends on the overlap δ and the wave number of eigenmodes k

2D Alternating Schwarz Example

Let
$$\Omega_1=(-\infty,\delta)\times\mathbb{R}$$
, $\Omega_2=(\delta,\infty)\times\mathbb{R}$

$$-(\eta-\Delta)u=f$$
 in \mathbb{R}^2 , u bounded at infinity.

Then the convergence rate is given by

$$ho_{2D}(k;\eta,\delta) = e^{-\delta\sqrt{\eta+k^2}}$$

Schwarz preconditioners

- Derived from the Alternating Schwarz method²
- Convergence rate depends on the overlap δ and the wave number of eigenmodes k

2D Alternating Schwarz Example

Let
$$\Omega_1=(-\infty,\delta)\times\mathbb{R}$$
, $\Omega_2=(\delta,\infty)\times\mathbb{R}$

$$-(\eta-\Delta)u=f$$
 in \mathbb{R}^2 , u bounded at infinity.

Then the convergence rate is given by

$$\rho_{\text{2D}}(k;\eta,\delta) = e^{-\delta\sqrt{\eta+k^2}}$$

Schwarz preconditioners

- Derived from the Alternating Schwarz method²
- Convergence rate depends on the overlap δ and the wave number of eigenmodes k
- As a preconditioner $M_{\text{ASM}} = \sum_{i=1}^{N_{\text{sub}}} R_i^T A_i^{-1} R_i$

Ω_1	Ω_2	Ω_3
Ω_4	Ω_5	Ω_6
Ω_7	Ω_8	Ω_9

Figure: Domain decomposition with N_{sub} subdomains.

Schwarz preconditioners

- Derived from the Alternating Schwarz method²
- Convergence rate depends on the overlap δ and the wave number of eigenmodes k
- As a preconditioner $M_{\mathsf{ASM}} = \sum_{i=1}^{N_{\mathsf{sub}}} R_i^\mathsf{T} A_i^{-1} R_i$
- Need a coarse space R_0 to counter slowly converging modes

Ω_1	Ω_2	Ω_3
Ω_4	Ω_5	Ω_6
Ω_7	Ω_8	Ω_9

Figure: Domain decomposition with N_{sub} subdomains.

Schwarz preconditioners

- Derived from the Alternating Schwarz method²
- Convergence rate depends on the overlap δ and the wave number of eigenmodes k
- As a preconditioner $M_{\mathsf{ASM}} = \sum_{i=1}^{N_{\mathsf{sub}}} R_i^\mathsf{T} A_i^{-1} R_i$
- Need a coarse space R₀ to counter slowly converging modes

2-level Additive Schwarz Preconditioner

$$\mathbf{M}_{\mathsf{ASM},2} = \mathbf{R_0}^\mathsf{T} \mathbf{A_0^{-1}} \mathbf{R_0} + \mathbf{M}_{\mathsf{ASM}}$$

Structure

- Research Questions
- Mathematical Background
- Related Work
- Preliminary Results
- Outlook

Related Work

Tailored Coarse Spaces for High-Contrast Problems

Related Work

CG convergence in case of non-uniform spectra

Structure

- Research Questions
- Mathematical Background
- Related Work
- Preliminary Results
- Outlook

Preliminary Results

Two-cluster case

Preliminary Results

Generalization to multiple clusters

Preliminary Results

Numerical example

Structure

- Research Questions
- Mathematical Background
- Related Work
- Preliminary Results
- Outlook

Research Question 1 answered

Research question 3 answered

Next steps

• Work on answering research questions 4, 5, and 6.

Open Challenge

How to answer research question 2?