■瑜珈姿勢檢測 Yoga Pose Detection

Yoga Master

Team Leader: 047

047 劉建宏

Team Members:

014 陳亭均

015 梁毓琳

025 毛彥文

051 于復申

046 邵文綺

Agenda

- Objective & Motivation
- Why Yoga Master
- Technical & Structure
- Optimization Evaluation
- Conclusion
- Reference

Objective & Motivation 緣起

歷經了三年新冠疫情,由於公共場所(如健身房等)因隔離政策暫時關閉的緣故,瑜珈成為愈來愈多人調整身心靈的運動方式。

Yoga Master的創立目的便是希望能推廣瑜珈運動,

利用 "動作行為辨識" + "檢測人體關鍵點"不需去瑜珈教室也能有效地調整自己的瑜珈姿勢。

Yoga Master會針對下列五種瑜珈姿勢,進行辨認並讓使用者知悉自己的瑜珈姿勢的正確率。

Yoga Pose

About Yoga

瑜珈姿勢說明

下犬式-瑜伽動作的基本起始動作之一, 做的時候身體會呈現一個倒 V 字型,可以用非常和緩的方式來伸展背部和腿部的肌肉,同時也可以順便訓練腹部和手臂肌肉,並幫助肩頸的放鬆 。

女神式-雙腳打開。身體下蹲,將膝蓋彎曲,雙手打開往上伸直。

平板式-從下犬式開始,身體往前移動。雙腳往後退一小步,保持核心用力,完成平板式。

樹式-山式,雙腳併攏站立,雙腳內側相互觸碰,身體重量均勻地放在雙腳全腳掌上。雙膝併攏,大腿內側收緊,臀部收緊。收腹,挺胸,整條脊柱向上伸展拉長,頭、頸端正。雙肩下沉,手臂向下伸展。保持身體在這種狀態上不動。

勇士二式-腳掌踩地,身體抬起,臀部向上提起,身體呈現倒三角形。左腳向前跨置於雙手之間,右腳尖向外旋轉90度踩穩。雙臂打開與肩膀呈水平,左手向前延伸,右手向後延伸。左腳成弓箭步站姿,右腳膝蓋伸直,上身保持挺直。

— Why Yoga Master

相關技術

Yoga Master的優勢

現存的解決方案

- 捲積神經網路對瑜珈動作分類
- 瑜珈動作的關鍵點檢測

現有方案的缺點及瓶頸

尚未有結合瑜珈動作分類與關鍵點檢測的模型

本專題的優勢

透過結合瑜珈動作分類&關鍵點檢測來對使用者的姿勢進行標準度判斷

系統架構及技術

yogamaster.ipynb

https://github.com/quilty1012/NYMCU/blob/main/yogamaster.ipynb

— Technical **&** Structure 系統架構及技術

資料蒐集

- https://www.kaggle.com/datasets/niharika41298/yogaposes-dataset
- 使用者可自行拍照

──Technical & Structure 系統架構及技術

資料前處理[資料格式統一]

- 224X224 color_mode='rgb'
- · 圖檔載入統一縮放為尺寸為 224x224 pixel

——Technical & Structure 系統架構及技術

資料前處理[資料增強]

test_datagen =

train_datagen = ImageDataGenerator(width_shift_range = 0.1,
horizontal_flip = True, shear_range = 0.2,
zoom_range = 0.2, rescale = 1./255,
validation_split = 0.2)

ImageDataGenerator(rescale = 1./255, validation_split = 0.2)

利用水平位移、水平位移、左右翻轉、推移、放大縮小來增加訓練集資料量[資料增強]

系統架構及技術

模型設計

瑜珈姿勢預測模型 CNN

https://github.com/quilty1012/NYMCU/blob/main/yoga%20pose.ipynb

關鍵點檢測模型 MOVEMENT檢測模型

https://github.com/quilty1012/NYMCU/blob/main/difference.jpynb

yogamaster.ipynb

https://github.com/quilty1012/NYMCU/blob/main/yogamaster.ipynb

——Technical & Structure 系統架構及技術

模型的訓練過程

- optimizer = Adam(learning_rate=0.001)
 model.compile(loss = "categorical_crossentropy", optimizer = optimizer, metrics
 = ['accuracy'])
- 多類別、單標籤(分類), loss function: categorical_crossentropy
- optimizer: "遇事不決用 Adam
- early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
 - history = model.fit(train_generator, epochs = epochs, validation_data = validation_generator,callbacks = [early_stopping])
- 設定validation loss 連續5次無法降低,停止訓練並使用先前較好的權重

— Technical & Structure 系統架構及技術

分類

Input Data

— Technical & Structure 系統架構及技術

Downward dog 下犬式

系統架構及技術

Goddess 女神式

— Technical & Structure 系統架構及技術

Plank

平板式

——Technical & Structure 系統架構及技術

Tree

樹式

——Technical & Structure 系統架構及技術

Warrior2 勇士二式

系統架構及技術

準確率

Prediction Result

— Technical & Structure 系統架構及技術

評估目標的瑜珈姿勢類型

Predicted Class: warrior2

Predicted Class: goddess

Predicted Class: tree

Predicted Class: downdog

──Technical & Structure 系統架構及技術

人體關鍵點檢測模型

- Next-Generation Pose Detection with MoveNet and TensorFlow.js
- https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflow].

系統架構及技術

瑜珈姿勢關鍵點檢測

系統架構及技術

身體的關鍵點 INDEX

```
KEYPOINT_DICT= {'nose':0,
                     'left_eye':1,
                     'right_eye':2,
                     'left_ear':3,
                     'right_ear':4,
                     'left_shoulder':5,
                     'right_shoulder':6,
                     'left_elbow':7,
                     'right_elbow':8,
                     'left_wrist':9,
                     'right_wrist':10,
                     'left_hip':11,
                     'right_hip':12,
                     'left_knee':13,
                     'right_knee':14,
                     'left_ankle':15,
                     'right_ankle':16 }
```


系統架構及技術

目標對象姿勢與標準姿勢差異比較

left side of body:

left_wrist to	left_elbow
left_elbow to	left_shoulder
left_ear to le	eft_shoulder
left_shoulder	to left_hip
left_hip to le	eft_knee
left_knee to	left_ankle

right side of body:

right_wrist to right_elbow
right_elbow to right_shoulder
right_ear to right_shoulder
right_shoulder to right_hip
right_hip to right_knee right_knee to right_ankle
right_knee to right_ankle

A 目標對象 左膝至左腳踝之角度為: 33.942974 度 B 標準姿勢 左膝至左腳踝之角度為: 58.406986 度

A - B = -24.464012 度

start_keypoint	end_keypoint	angle difference
9	7	-8. 440210
7	5	-3. 792137
3	5	2.797974
5	11	12. 588238
11	13	27. 397408
13	15	-24. 464012

	start_keypoint	end_keypoint	angle difference
	10	8	-9. 263792
r	8	6	-1. 297108
	4	6	7. 727936
	6	12	10.690731
	12	14	24. 915279
	14	16	-29. 538383

系統架構及技術

目標對象姿勢與標準姿勢差異比較

left side:

	start_keypoint	end_keypoint	angle difference
left_wrist to left_elbow	9	7	-65. 143356
left_elbow to left_shoulder	7	5	-20 <u>5</u> . <u>076050</u>
left_ear to left_shoulder	3	5	-0.753609
left_shoulder to left_hip	5	11	-1.015976
left_hip to left_knee	11	13	3. 092125
left_knee to left_ankle	13	15	0.942223

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	59. 378387
right_elbow to right_shoulder	8	6	-14 <u>0</u> . 871124
right_ear to right_shoulder	4	6	1.608948
right_shoulder to right_hip	6	12	-6. 757362
right_hip to right_knee	12	14	0. 949799
right_knee to right_ankle	14	16	-9. 435909

系統架構及技術

目標對象姿勢與標準姿勢差異比較

left side:

left_wrist to left_elbow
<pre>left_elbow to left_shoulder</pre>
left_ear to left_shoulder
left_shoulder to left_hip
left_hip to left_knee
left_knee to left_ankle

A目標對象	左手腕至左手肘的角度為:	-154.33853度
B 標準姿勢	左手腕到左手肘的角度為:	177.61024度

A - B = -331.9488 度

start_keypoint	end_keypoint	angle difference
9	7	-331. 948792
7	5	15. 192474
3	5	-4. 412685
5	11	-13. 519119
11	13	1. 377876
13	15	0. 572403

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	-19. 415665
right_elbow to right_shoulder	8	6	-13. 110435
right_ear to right_shoulder	4	6	-6. 132851
right_shoulder to right_hip	6	12	-10.899956
right_hip to right_knee	12	14	-1.004547
right_knee to right_ankle	14	16	-9. 308151

系統架構及技術

B = 57.840782 度

A 目標對象 左手腕到左手肘的角度為: 64.01941度 B 標準姿勢 左手腕到左手肘的角度為: 6.1786265度

目標對象姿勢與標準姿勢差異比較

left side:

	start_keypoint	end_keypoint	angle difference
left_wrist to left_elbow	9	7	57.840782
<pre>left_elbow to left_shoulder</pre>	7	5	20. 713463
left_ear to left_shoulder	3	5	5. 261414
left_shoulder to left_hip	5	11	0.688614
left_hip to left_knee	11	13	-12. 239449
left_knee to left_ankle	13	15	-3. 059662

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	-42. 960648
right_elbow to right_shoulder	8	6	-37. 291786
right_ear to right_shoulder	4	6	1. 007690
right_shoulder to right_hip	6	12	4. 029533
right_hip to right_knee	12	14	17. 498779
right_knee to right_ankle	14	16	10. 414352

系統架構及技術

start barraint and barraint angle difference

目標對象姿勢與標準姿勢差異比較

left side:

Start_Keypoint	ena_keypoint	angle difference
9	7	26. 815895
7	5	27. 640854
3	5	-4. 336105
5	11	-27. 296547
11	13	-54. 277096
13	15	29. 548500
	9 7 3 5 11	11 13

		start_keypoint	end_keypoint	angle difference
right_wri	st to right_elbow	10	8	31.734306
right_elb	ow to right_shoulder	8	6	16. 934258
right_ear	to right_shoulder	4	6	-15. 564301
right_sho	ulder to right_hip	6	12	-27.836884
right_hip	to right_knee	12	14	-9. 325287
right_kne	e to right_ankle	14	16	-4. 154968

系統架構及技術

stant barnaint and barnaint angle difference

目標對象姿勢與標準姿勢差異比較

Predicted Class: tree

left side:

	start_keypoint	ena_keypoint	angle difference
left_wrist to left_elbow	9	7	1. 797142
left_elbow to left_shoulder	7	5	9. 325912
left_ear to left_shoulder	3	5	2. 235481
left_shoulder to left_hip	5	11	3. 968666
left_hip to left_knee	11	13	14. 776613
left_knee to left_ankle	13	15	7. 262375

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	18. 196579
right_elbow to right_shoulder	8	6	-2. 228691
right_ear to right_shoulder	4	6	-4. 746422
right_shoulder to right_hip	6	12	1. 045639
right_hip to right_knee	12	14	2. 923149
right_knee to right_ankle	14	16	-4. 443985

— Conclusion

結論

•技術REVIEW

•STEP1:以CNN模型作為分類器,辨識目標照片屬於哪一類瑜珈姿勢。

•STEP2:以MoveNet關鍵點檢測,確認動作準確度。

●優勢

•CNN模型:可以自動萃取特徵,辨識由線、面、角,構成複雜的形狀,因此在影像識別方面的威力非常強大,可獲得高度準確率。

•MoveNet:可以檢測人體的17個關鍵點。模型輕量化,能減少運算負擔,並加快姿態檢測的速度。

•Yoga Master : 高效、快速、準確。即時執行瑜珈姿態檢測,清爽無負擔。

●感想

•解決問題,要先問對問題

— Industry Case Sharing

產學界案例分享

視覺式體操動作辨識系統

Vision-based Gymnastics Motion Recognition System

圖六、六種不同體操動作所對應之MEI圖[13]

圖七 三種不同動作所對應之 MHI 圖[13]

本計畫設計一套以電腦視覺為基礎偵測 人體全身肢體動作之系統,將連續之體 操運動影像輸入電腦後做肢體動作判斷 辨識其動作種類或發出錯誤動作訊息。

 以motion-energy images (MEI) motionhistory images(MHI) 做為比對的依據

— Industry Case Sharing

產學界案例分享

Johnson@Mirror 新概念健身魔鏡

— Industry Case Sharing

產學界案例分享

Hong Kong Univisual Intelligent Technology (HKUIT)

透過物體偵測、物體追踪及人體姿勢分析,自動識別人體13個關節節點並作出分析。公司開發了兩項產品,分別是人工智能游泳安全及泳姿分析系統,以及人體姿勢分析開發套件(SDK),前者應用於室內泳池內,後者則供開發商設計不同運動分析方案如瑜珈應用程式。

在泳池內不同位置包括水底、天花、 池邊等安裝多個網絡攝影機,以及以 太網絡(Ethernet),收集及分析泳客泳 姿影像數據,例如游泳頻率、幅度、 撥水速度、手腳協調度等,救生員透 過平板電腦辯識遇溺者,游泳教練則 可協助泳手改善技術。

https://www.hkuit.com/

—分工表

Organization Chart

組員姓名/ 工作類別	組長: 047 劉建宏	組員: 014 陳亭均	組員: 015 梁毓琳	組員: 025 毛彥文	組員: 051 于復申	組員: 046 邵文綺
主題綱要	V					
程式修正	V		V			
文字編排	V	V		V	V	V
資料尋找/提供	V	V	V	V	V	V
上台發表	V	V	V	V	V	V

Reference

參考文獻

- 喬山健康科技 (n.d)。Johnson@Mirror 新概念健身魔鏡。*Johnson@Mirror 新概念健身魔鏡- JOHNSON喬山健康科技-跑步機、按摩椅*。https://www.johnsonfitness.com.tw/prod/?q=MIRROR
- 顏羽君(2008年)。*視覺式體操動作辨識系統 Vision-based Gymnastics Motion Recognition System*。國立臺灣師範大學。
- HKUIT。(2023, 5月10日)。【 人工智能】港大研AI偵測技術 分析人體動作實時警報溺水跌倒等意外。TOPick。
 <a href="https://www.it-square.hk/archives/15362/ai%E5%88%86%E6%9E%90%E8%82%A2%E9%AB%94%E5%8B%95%E4%BD%9C-%E6%B8%9B%E4%BD%8E%E9%81%87%E6%BA%BA%E6%94%B9%E5%96%84%E9%81%8B%E5%8B%95%E5%A7%BF%E5%8B%A2/
- Suradech Kongkiatpaiboon, Burq Latif.(2021, November 23). 03_keypoint_movenet_v2. https://www.kaggle.com/code/suradechk/03-keypoint-movenet-v2
- Aayush Mishra. (2021, June 03). Yoga Pose Detection. https://www.kaggle.com/code/aayushmishra1512/yoga-pose-detection/notebook
- Ronny Votel, Na Li. (2021, May 17). Next-Generation Pose Detection with MoveNet and TensorFlow.js.
 https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
- Aayush Mishra. (2021, June 03). YogaNet VGG19
 https://www.kaggle.com/code/aayushmishra1512/yoganet-vgg19
- VK. (2022, Feb 21). Pose_Prediction|Generate_CSV_Keypoints|MediaPipe <u>https://www.kaggle.com/code/venkatkumar001/pose-prediction-generate-csv-keypoints-mediapipe</u>
- OXXO.STUDIO.(2023, Aug 01). Mediapipe 姿勢偵測 (Pose). https://steam.oxxostudio.tw/category/python/ai/ai-