Sparse Graph Obfuscation

October 5, 2023

Preliminaries 1

Bounded Functional Encryption

We will use the notation of static, bounded functional encryption as presented in [GGLW22].

Security

We will slightly weaken the security notion such that the adversary does not choose which circuits it can learn the functional secret key for. Indeed, this is a weaker notion of functional encryption which fixes the adversary's output circuit. We will assume that we get circuit C_1, \ldots, C_d .

For completeness, we have the original security definition of [GGLW22] below:

less, we have the original security definition of [GGLW22] below
$$\begin{cases} \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{MPK,MSK})} \leftarrow \text{Setup}\,(1^n,1^q) \\ & & \\ \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(MPK,MSK)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{CT}} \leftarrow \text{Enc(MPK},m) \end{cases} \\ \begin{cases} \mathcal{A}^{\text{Sim}_3^{U_m(\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}}{\text{MPK}} \leftarrow \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & & \\ \text{CT},\mathbf{st}_2) \leftarrow \text{Sim}_2(\mathbf{st}_1,\Pi^m) \end{cases} \\ \\ \lambda \in \mathbb{N} \end{cases}$$

whenever the following admissibility constraints and properties are satisfied:

- Sim_1, Sim_3 are stateful in that after each invocation, they updated their states $\mathbf{st}_1, \mathbf{st}_3$ respectively which is carried over to the next invocation.
- Π^m contains a list of functions f_i queried by \mathcal{A} in the pre-challenge phase along with their output on the challenge message m. That is, if f_i is the i-th function queried by A to oracle Sim_1 and $q_{[re]}$ be the number of queries A makes before outputting m, then $\Pi^m =$ $((f_1, f_1(m)), \ldots, (f_{q_{pre}}, f_{q_{pre}}(m))).$
- A makes at most q queries combined tote key generation oracle in both games.
- Sim₃ for eac queried function f_i , in the post challenge phase, makes a single query to its message oracle U_m on the same f_i itself.

Our modified security definition is as follows:

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{KeyGen(MSK,\{inner_1,...,inner_d\})}}(\text{CT}) & \stackrel{(1^n,1^q)}{\longleftarrow} \mathcal{A}^{(1)} \\
\mathcal{M}^{\text{KK,MSK}} \leftarrow \text{Setup}(1^n,1^q) \\
m \leftarrow \mathcal{A}(\text{MPK,SK}_{C_1},...,\text{SK}_{C_d}) \\
\text{CT} \leftarrow \text{Enc}(\text{MPK},m)
\end{array}\right\}_{\lambda \in \mathbb{N}}$$

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{Sim}_3^{U_m(\{inner_1,...,inner_d\})}}(\text{CT}) & \stackrel{(1^n,1^q)}{\longleftarrow} \mathcal{A}^{(1^{\lambda})} \\
\mathcal{M}^{\text{PK,st}_0} \leftarrow \mathcal{A}^{(1^{\lambda})} \\
m \leftarrow \mathcal{A}^{S_1(\text{st}_0)}(\text{MPK},C_1,...,C_d) \\
(\text{CT,st}_2) \leftarrow \text{Sim}_2(\text{st}_1,\Pi^m)
\end{array}\right\}_{\lambda \in \mathbb{N}}$$
(1)

where the admissibility constraints remain the same.

1.2 Non-malleable Bounded FE

Here, we introduce the notion of non-malleable bounded functional encryption.

We define non-malleable security of bounded functional encryption in almost the exact notion of [Pas06] for public key encryption. First, let $NM(m_1, \ldots, m_q, A)$ be a game as follows for $q = \text{poly}(\lambda)$:

- 1. $(MPK, MSK) \leftarrow FE.Setup(1^{\lambda})$
- 2. $CT_1, \ldots, CT_q \leftarrow FE.Enc(MPK, m_1), \ldots FE.Enc(MPK, m_q)$
- 3. $CT'_1, \ldots, CT'_{\ell} \leftarrow \mathcal{A}(MPK, CT_1, \ldots, CT_q, 1^{|m|})$
- 4. $m_i' \leftarrow \bot$ is $CT_i = CT_j'$ for any $i \in [q], j \in [\ell]$ and $FE.Dec(SK_{identity}, c_i)$ otherwise.

Then, we say that a bounded functional encryption scheme is non-malleable if for all PPT \mathcal{A} and every PPT \mathcal{D} , there exists a negligible function negl such that for all $\{m\}_0, \{m\}_1 \in \{0,1\}^{nq}$, we have

$$\left| \mathbf{Pr}[\mathcal{D}(NM(\{m\}_0, \mathcal{A})) = 1] - \mathbf{Pr}[\mathcal{D}(NM(\{m\}_1, \mathcal{A})) = 1] \right| \le \text{negl.}$$
 (2)

As outlined in [Pas06], we can equivalently define non-mall eability in terms of a PPT recognizable relation R such that

$$\left| \mathbf{Pr} \left[NM\left(m_1, \dots m_q, \mathcal{A}(z)\right) \in \bigcup_{m \in \{m\}} R(m) \right] - \right.$$

$$\left. \mathbf{Pr} \left[c \leftarrow \operatorname{Sim}_{NM}(1^n, z); m' = \operatorname{FE.Dec}(\operatorname{SK}_{\text{identity}}, c); m' \in \bigcup_{m \in \{m\}} R(m) \right] \right| \leq \operatorname{negl}(\lambda).$$
(3)

Note that in the above definition, we do not give the adversary access to any SK_{C_i} . We simply require that the scheme is public key (many message) non-malleable.

2 Randomized DAG Traversal Sketch

2.1 DAG Randomized Traversal

Say that we have a sparse, potentially exponentially sized, graph $\mathcal{G} = (V, E)$ and $\forall v \in V, \deg(v) = d$. We also require that \mathcal{G} is equipped with a neighbor function, Γ , which can be computed in polynomial time. We define a randomized and keyed labelling function $\phi : \{0, 1\}^{\lambda} \times V \to \{0, 1\}^{\operatorname{poly}(\lambda)}$ such that given, $\phi(K, v_0)$ for root v_0 , an adversary, \mathcal{A} , which does not know a path from v_0 to v,

$$\Pr[\mathcal{A}(C_{\Gamma}, v_0, v, \phi(K, v_0)) \in \phi(K, v)] \le \operatorname{negl}(\lambda) \tag{4}$$

for function C_{Γ} where $C_{\Gamma}(\phi(K, u)) \in \phi(K, \Gamma(u)_1), \dots, \phi(K, \Gamma(u)_d)$ if $\Gamma(u) \neq \emptyset$ and otherwise $\Gamma(u)$ returns a \bot string padded to length $d|\phi(K, \cdot)|$.

2.2 Instantiation

We define $\phi(K, v)$ to be as follows:

- 1. Let $r_1, r_2 \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda}$ or r_1, r_2 is drawn from a pseudorandom distribution.
- 2. Return FE.Enc(MPK, (K, v, r_2)) where encryption is done with randomness from r_1 .

We can now define, C_{Γ} .

Algorithm 1 The circuit for the neighbor function, C_{Γ} .

```
1: function INNER<sub>i</sub>(K, v, r)
 2:
         if \Gamma(v) = \emptyset then
              \mathbf{return} \perp
 3:
         u_1,\ldots,u_d=\Gamma(v)
 5:
         u = u_i
 6:
         r_1, r_2 = PRG(r)
         return FE.Enc(MPK, (u, K, r_2)) where we encrypt with randomness from r_1.
 7:
 8: function C_{\Gamma}(\phi(K,v))
         for i \in [d] do
 9:
              u_i = \mathtt{Dec}(\mathrm{SK}_{\mathtt{inner}_i}, \phi(K, v))
10:
         return (u_1,\ldots,u_d)
11:
```

Proof of eq. (4). We are going to use a series of indistinguishable hybrids and then use non-malleability of FE along with the last hybrid to show that eq. (4) holds.

- Hyb₀: In the first hybrid, the following game is played
 - 1. $K \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda'}$ and MPK, SK \leftarrow FE.Setup $(1^{\lambda'})$.
 - 2. The challenger generates $SK_{inner_i} \leftarrow FE.Keygen(MSK, inner_i)$ for $i \in [d]$ and gives these keys to A
 - 3. The challenger chooses a v and gives the adversary v in plaintext.
 - 4. The challenger picks random $r_1, r_2 \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda'}$ and generates $\phi(K, v_0) = \text{FE.Enc}(\text{MPK}, (K, v_0, r_2))$ using r_1 as the random coins and gives $\phi(K, v_0)$ to A.

- 5. A outputs guess g and wins if $g \in \phi(K, v)$
- Hyb₁: We replace MPK with its simulated counterpart using Sim_0 , $\phi(K, v_0)$ with a simulated cipher-text using the simulator Sim_2 , and SK_{inner_i} with its simulated counterpart using Sim_3 as defined in eq. (1).
- Hyb_{2a}: For any input into Sim₂ via $\Pi^{K,w,r}$ where $w \in V$ and r is random, we replace the output of inner_i with inner'_i which uses true randomness r_1^*, r_2^* instead of r_1, r_2 . For any call to $C_{\Gamma}(\phi(K,w))$ by \mathcal{A} for $w \in V$, we replace the output of inner_i with inner'_i which uses true randomness r_1^*, r_2^* instead of r_1, r_2 . This is equivalent to changing Π^m to $\Pi^{m'}$ in eq. (1) where $\Pi^{m'}$ is the list (inner₁, inner'₁(·), ..., inner_d, inner'_d(·)). Note that this gives us that inner'_i(K, w, r) = $\phi(K, u)$ = FE.Enc(MPK, (K, u, r_2*)) where $u = \Gamma(w)_i$.
- Hyb_{2b}: For any call by \mathcal{A} to inner'_i $(K, w, r) = \operatorname{CT}$, we replace CT with CT' where CT' is the output of Sim₂ with input $\Pi^{(K,u,r)'}$ where $u = \Gamma(w)_i$.
 - Note that the replacement of Hyb_{2a} and Hyb_{2b} are repeated multiple times. Specifically, these replacements are repeated at most α times where α is the number of unique times $\mathcal A$ runs $\mathrm{FE.Dec}(\mathrm{SK}_{\mathtt{inner}_i}, \phi(K, w))$.
- Hyb₃: Let \mathcal{P} be the set of all paths from v_0 to v. For each path $P \in \mathcal{P}$ where P is an ordered list of connected vertices, we have that the adversary does not know some part of P. We can note that this implies that \mathcal{A} never queries $\mathsf{inner}_i(w^u)$ where $u = \Gamma(w^u)_i$ for some $u \in P$ and the adversary knows a path from v_0 to w. We can see this because if there is no $u \in P$ such that \mathcal{A} never queries $\mathsf{inner}_i(w^u)$, then the adversary knows and queries a path from v_0 to v. Define $\mathsf{Suff}(P)$ to be the path which starts at u, ends at v, and is a suffix of P. We now inductively build up a series of hybrids to show that a hybrid distribution which "erases" $\phi(K,v)$ from inner_i is indistinguishable from the above hybrid.
 - For the base case, let $U = \bigcup_{P \in \mathcal{P}} \{ \operatorname{Suff}(P)_1 \}$ where $\operatorname{Suff}(P)_1$ is the first vertex in P such that \mathcal{A} never queries $\operatorname{inner}_i(w^u)$ as defined above. Then, replace $\operatorname{inner}_i'(\cdot)$ with $\operatorname{inner}_i^1(\cdot)$ in Π_m such that $\operatorname{inner}_i^1(w) = \operatorname{inner}_i'(w)$ if $w \neq w^u$ for $u \in U$ and otherwise $\operatorname{inner}_i^1(w^u) = \bot$. We can note that this hybrid is indistinguishable as inner_i' only changes for input ciphertexts which the adversary never queries.
 - For the ℓ -th inductive step where $1 \leq \ell < \max_{P \in \mathcal{P}}(|\operatorname{Suff}(P)|)$, we are going to assume that we are given a hybrid such that $\operatorname{inner}_i^\ell \operatorname{where inner}_i^\ell(w^u) = \bot$ for $u \in U^\ell$ where $U^\ell = \bigcup_{P \in \mathcal{P}} \operatorname{Suff}(P)_1, \ldots, \operatorname{Suff}(P)_\ell$ and otherwise $\operatorname{inner}_i^\ell(\cdot) = \operatorname{inner}_i'(\cdot)$. We now show that if \mathcal{A} can distinguish between a hybrid with $\operatorname{inner}_i^\ell(\cdot)$ and $\operatorname{inner}_i^{\ell+1}(\cdot)$, then the adversary can break the non-malleability of the FE scheme. We defer this proof to lemma 2.2.

Finally, we can note that if $Hyb_0 \stackrel{c}{\approx} Hyb_3$,

$$\mathbf{Pr}[\mathcal{A}(C_{\Gamma}, v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))] \overset{c}{\approx} \mathbf{Pr}[\mathcal{A}(C_{\Gamma}', v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))]$$

where C'_{Γ} is C_{Γ} except that C'_{Γ} uses $\operatorname{inner}_{i}^{p}$ where $p = \max_{P \in \mathcal{P}} |P|$. We can note that C'_{Γ} returns \bot for any query on $\phi(K, w^{v})$ where $w^{v} \in \Gamma^{-1}(v)$. Using lemma 2.3 and the fact that $C'_{\Gamma}(u)_{i}$ returns \bot for all $u \in V$ and $i \in [d]$ where $v = \Gamma(u)_{i}$, we have that

$$\Pr[\mathcal{A}(C'_{\Gamma}, v_0, v, \phi(K, v_0)) \in \operatorname{Image}(\phi(K, v))] \leq \operatorname{negl}(\lambda).$$

Lemma 2.1. $Hyb_0 \stackrel{c}{\approx} Hyb_{2b}$.

Proof. First we show that $\mathrm{Hyb}_0 \stackrel{c}{\approx} \mathrm{Hyb}_1$. Note that if \mathcal{A} can distinguish between Hyb_0 and Hyb_1 then an adversary can distinguish between an FE scheme and its simulated counterpart where m is fixed to (K, v_0, r) . We can see this as Hyb_1 is direct simulation of the FE scheme.

Then, if \mathcal{A} can distinguish Hyb_1 and Hyb_{2a} , then we can break the security of the PRG used in line 6 of algorithm 1. We can create an adversary \mathcal{B} which, for some fixed K, distinguishes between $\mathrm{FE.Enc}(\mathrm{MPK},(K,u,r_2))$ with random coins r_1 where $r_1,r_2=\mathrm{PRG}(r)$ and $\mathrm{FE.Enc}(\mathrm{MPK},(K,u,r_1^*))$ encrypted with random coins r_2^* where r_1^*,r_2^* are truly random.

Then, if \mathcal{A} can distinguish any transformation from Hyb_{2a} to Hyb_{2b} , then we can break the security of the FE scheme. We can see this by noting that if we fix m=(K,w,r) for random r and K, then $\mathcal{A}^{\mathrm{Sim}_3^{U_m(\cdot)}}(\mathrm{CT})$ is distinguishable and $\mathcal{A}^{\mathrm{Sim}_3^{u_m(\cdot)}}(\mathrm{CT}')$ where CT is the real cipher-text and CT' is simulated. We can then note that if the above are distinguishable, then $\mathcal{A}^{\mathrm{KeyGen}(\mathrm{MSK},\{\,\mathrm{inner}_1,\ldots\,\mathrm{inner}_d\,\})}(\mathrm{CT})$ and $\mathcal{A}^{\mathrm{Sim}_3^{u_m(\cdot)}}(\mathrm{CT}')$ are distinguishable as $\mathcal{A}^{\mathrm{KeyGen}(\mathrm{MSK},\{\,\mathrm{inner}_1,\ldots\,\mathrm{inner}_d\,\})}$ can simply simulate $\mathcal{A}^{\mathrm{Sim}_3^{U_m(\cdot)}}(\mathrm{CT})$.

Then, if \mathcal{A} can distinguish any transformation from \mathtt{Hyb}_{2b} to \mathtt{Hyb}_{2a} , then we can break the security of a PRG in the same manner as distinguishing \mathtt{Hyb}_1 and \mathtt{Hyb}_{2a} .

By the chain rule, we get that Hyb_0 and Hyb_{2b} are indistinguishable even after a repeated number of sequential invocations of the transformation in Hyb_{2a} and Hyb_{2b} .

Lemma 2.2. Let A be a PPT adversary and assume that we have a non-malleable and simulation secure FE scheme. Then, we have that the inductive step of Hyb₃ holds.

Proof. We construct an adversary $\mathcal B$ that can break NM security using $\mathcal A$ if $\mathcal A$ can distinguish between the hybrids in the inductive step. Note that in order to distinguish between the hybrids, $\mathcal A$ must have queried inner_i^ℓ or $\mathsf{inner}_{i+1}^\ell$ on $\phi(K, w^u)$ where $u \in \{ \operatorname{Suff}(P)_{\ell+1} \mid P \in \mathcal P \}$ as this is the only difference between the hybrids. Thus, we see that $\mathcal A$ is able to produce $\operatorname{CT} \in \phi(K, w^u)$. By definition of inner_i^ℓ though, we know that $\mathsf{inner}_i^\ell(\phi(k,q)) \neq \phi(K, w^u)$ for any $q \in V$ as we define $\mathsf{inner}_i^\ell(K,q) = \bot$ if $\mathsf{inner}_i'(K,q) = \phi(K,w^u)$. Thus, the adversary has to be able to produce $\operatorname{CT} \in \phi(K,w^u)$ without calling C_Γ^ℓ where C_Γ^ℓ uses inner_i^ℓ instead of inner_i .

Thus, if $\mathcal{A}(w^u, v_0, C_{\Gamma}, \phi(K, v_0))$ can produce $\operatorname{CT} \in \phi(K, w^u)$, we can have $\mathcal{B}(\phi(K, v_0), \phi(K, q_1), \dots, \phi(K, q_{\operatorname{poly}(\lambda)}))$ produce $\phi(K, w^u)$ where $q_1, \dots, q_{\operatorname{poly}(\lambda)}$ are all the vertices that \mathcal{A} has queried C_{Γ} on. \mathcal{B} simply has to invoke Sim_3 to create a simulated function key for $\operatorname{SK}'_{\operatorname{inner}_i}$ and thus a simulated C'_{Γ} . \mathcal{B} then gives $\mathcal{A}(w^u, v_0, C'_{\Gamma}, \phi(K, v_0))$. \mathcal{B} then breaks eq. (3) (the relational notion of non-malleability) as \mathcal{A} is able to create an encryption of $\phi(K, w^u)$ with non-negligible probability while the simulator in eq. (3) cannot.

Lemma 2.3. Define C'_{Γ} where C'_{Γ} is defined as in algorithm 1 except that for some set $U \subset V$, $C_{\Gamma}(w^u)_i = \bot$ for all $w^u \in V$ such that $u = \Gamma(w^u)_i$ for some $u \in U$. In words, the parent of all $u \in U$ do not return $\phi(K, u)$ when queried on C'_{Γ} . Then, assuming the non-malleability and simulation security of FE, we have that for all PPT A and all $u \in U$,

$$\mathbf{Pr}[\mathcal{A}(C'_{\Gamma}, v_0, u, U, \phi(K, v_0)) \in Image(\phi(K, u))] \le negl(\lambda). \tag{5}$$

Proof. Almost identically to lemma 2.2, we construct an adversary \mathcal{B} that can break NM security using \mathcal{A} if \mathcal{A} can produce $CT \in \phi(K, u)$ for some $u \in U$.

If $\mathcal{A}(w^u, v_0, C'_{\Gamma}, u, \phi(K, v_0))$ can produce $CT \in \phi(K, u)$, we can have $\mathcal{B}(\phi(K, v_0), \phi(K, q_1), \dots, \phi(K, q_{\text{poly}(\lambda)}))$ produce $\phi(K, u)$ where $q_1, \dots, q_{\text{poly}(\lambda)}$ are all the vertices that \mathcal{A} has queried C'_{Γ} on.

 \mathcal{B} simply has to invoke Sim₃ to create a simulated set of function keys for inner'_i for all $i \in [d]$ and can then simulate C'_{Γ} with these function keys.

We can then have \mathcal{B} invoke Sim_3 to create a simulated function key for $\operatorname{SK}'_{\operatorname{inner}_i}$ and thus a simulated C_{Γ}^* . \mathcal{B} then gives \mathcal{A} ($w^u, v_0, C_{\Gamma}^*, \phi(K, v_0)$). If we define the relation R to break in eq. (3) to be $R(K, v_0, r) = \{(K, v, r*) : \forall r^* \leftarrow \{0, 1\}^{\lambda}\}$, we can then break eq. (3) (the relational notion of security for non-malleability). We can see this as \mathcal{A} is able to create an encryption of $\phi(K, w^u)$ given encryptions of $\phi(K, q_1), \ldots, \phi(K, q_{\operatorname{poly}(\lambda)})$ with non-negligible probability while the simulator in eq. (3) cannot.

Abstract

References

- [GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded functional encryption from identity-based encryption. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 736–763. Springer, 2022. 1.1, 1.1
- [Pas06] Rafael Pass. Lecture 16: Non-mall eability and public key encryption, October 2006. 1.2, 1.2