This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

TTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTACCCTAA
GGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTTTCAATTTGTCAGTTTGTGGATG
ATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCATATTCCCAA
TCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGCTGAACTGAGACA
AGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAACTCTGGTGAGGTCAT
TCTGGAGTGACATGATGGACTCCGC

CACACTGGCCGGATCTTTTAGAGTCCTTTGACCTTGACCAAGGGTCNGGAAAACAGCAACAAGCT
GAGCTGCTGTGACAGAGGGAACAAGATGGCGGCGCCGAAGGGAGCCTTTGGGTGAGGACCCAACT
GGGGCTCCCGCCGCTGCTGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTG
AAGCATTTGACTCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCC
TTGCACACCTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGGTTGCAGGCTGTTTTCAAT
TTGTCAGTTTGTGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTA
CAGAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTTGGTTGCCAGAATCAGCTGCCA
TTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCT
AACTCTGGTGAGGTCATTCTGGAGTGACATGATGAACTCCGC

GCGAGGTGGCGATCGCTGAGAGGCAGGAGGCCGAGGCGGGCCTGGGAGGCGGCCCGGAGGTGGG GCGCCGCTGGGGCCGGCCCGCACGGCTTCATCTGAGGGCGCACGGCCCGCGACCGAGCGTGCGG ACTGGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCAATGGGCCGCGGCTGGGGATTCTT GTTTGGCCTCCTGGGCGCCGTGTGGCTGCTCAGCTCGGGCCACGGAGAGGAGCAGCCCCCGGAGA CAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTTGGATGATGTTGTACCTGTGATGTTGAA ACCATTGATAGATTTAATAACTACAGGCTTTTCCCAAGACTACAAAAACTTCTTGAAAGTGACTA CTTTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTTCTGGAATGACATCAGCCAGTGTG GAAGAAGGGACTGTGCTGTCAAACCATGTCAATCTGATGAAGTTCCTGATGGAATTAAATCTGCG AGCTACAAGTATTCTGAAGAAGCCAATAATCTCATTGAAGAATGTGAACAAGCTGAACGACTTGG AGCAGTGGATGAATCTCTGAGTGAGGAAACACAGAAGGCTGTTCTTCAGTGGACCAAGCATGATG ATTCTTCAGATAACTTCTGTGAAGCTGATGACATTCAGTCCCCTGAAGCTGAATATGTAGATTTG CTTCTTAATCCTGAGCGCTACACTGGTTACAAGGGACCAGATGCTTGGAAAATATGGAATGTCAT CTACGAAGAAACTGTTTTAAGCCACAGACAATTAAAAGACCTTTAAATCCTTTGGCTTCTGGTC AAGGGACAAGTGAAGAACACTTTTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAGAGCA TTCTACAGACTTATATCTGGCCTACATGCAAGCATTAATGTGCATTTGAGTGCAAGATATCTTTT ACAAGAGACCTGGTTAGAAAAGAAATGGGGACACAACATTACAGAATTTCAACAGCGATTTGATG GAATTTTGACTGAAGGAGAAGGTCCAAGAAGGCTTAAGAACTTGTATTTTCTCTACTTAATAGAA CTAAGGGCTTTATCCAAAGTGTTACCATTCTTCGAGCGCCCAGATTTTCAACTCTTTACTGGAAA TAAAATTCAGGATGAGGAAAACAAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTTC CTTTGCATTTTGATGAGAATTCATTTTTTGCTGGGGATAAAAAAGAAGCACACAAACTAAAGGAG GACTTTCGACTGCATTTTAGAAATATTTCAAGAATTATGGATTGTTGTTTGGTTGTTTTAAATGTCG TCTGTGGGGAAAGCTTCAGACTCAGGGTTTGGGCACTGCTCTGAAGATCTTATTTTCTGAGAAAT TGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGAAATAGTA TCATTATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACTTCAGGAACTT GTTACAGAATATTCAT**TAA**AGAAAACAAGCTGATATGTGCCTGTTTCTGGACAATGGAGGCGAAA GAGTGGAATTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAAACATTTTATATAAAGT TGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTTAAAAAATTGTGTTAAGTCTA TGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTGGTACAAATTTTAAAGTTTAATA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974</pre>

<subunit 1 of 1, 468 aa, 1 stop

<MW: 54393, pI: 5.63, NX(S/T): 2

MGRGWGFLFGLLGAVWLLSSGHGEEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYRLFPRL
QKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEEANNLIEE
CEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLLNPERYTGYKGPD
AWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFYRLISGLHASINV
HLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRRLKNLYFLYLIELRALSKVLPFFERP
DFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDENSFFAGDKKEAHKLKEDFRLHFRNISRIMD
CVGCFKCRLWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFHLTRQEIVSLFNAFGRISTSVK
ELENFRNLLQNIH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 280-283 and 384-387

Amidation site.

amino acids 94-97

Glycosaminoglycan attachment site.

amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate

amino acids 216-222

Interleukin-7 proteins

amino acids 338-343

GAAGAAACAGAAAAGGAGAGGGCAGAGGCCAGAGGACTTCTCATACTGGACAGAAACCGATCA GGCATGAACTCCCCTTCGTCACTCACCTGTTCTTGCCCCTGGTGTTCCTGACAGGTCTCTGCTC CCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCAGGGCCACCAGAAGCTGAATTTGGAT CCTTCAGGCGACCGGAGGGGGACGTTTATCGCTGCCCTGTAGGGGGGGCCCACAATGCCCCATG TGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTCATCCTGCTGTGAATATGCACC TGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGATTCATGGTGAGC**TAA**GGAGAGGGTGGT GGCAGTGTCTCTGAAGGTCCATAAAAGAAAAAAGAGAAGTGTGGTAAGGGAAAATGGTCTGTGTG GCCTCCTTCAACTGGGAGCATGTTCTGAGGGTGCCCTCCCAAGCCTGGGAGTAACTATTTCCCCC ATCCCCAGGCCTGTGCCCCTCTCTGGTCTCGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATA ${\tt TGTGCCCGTGTGGATGCTTCATTCCAGCCTCAGGGAAGCCTGGCACCCACTGCCCAACGTGAGCC}$ GTATGATGCCTGGCAAAGGGCCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCT CCATGTTTCCTAACAGATTCAGACTCCTGGCCAGGTGTGGTGGCCCACACCTGTAATTCTAGCAC TTTGGGAGGCCAAGGTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGG TGAAACTCCATCTCTACTAAAAAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCATGCCT GTAATCTCATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTG CGGTGAGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCA AAAATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAAC TCATGCCTGTAATCCCAACATTTTGGGAGGCCAACGCAGGAGGATTGCTTGAGGTCTGGAGGTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039</pre>

><subunit 1 of 1, 124 aa, 1 stop

><MW: 13352, pI: 5.99, NX(S/T): 1

MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPWDGP SGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTGGGC AGAAAGGAGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACAATTCAG AGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCAA**ATG**CAGACTTT ATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGAAACAGTGTACTATTCTGTCGA ATACCAGGGGGAGTACGAGAGCCTGTACACGAGCCACATCTGGATCCCCAGCAGCTGGTGCTCAC TCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATCACGGCCACTGTGCCATACAACCTTCGT GTCAGGGCCACATTGGGCTCACAGACCTCAGCCTGGAGCATCCTGAAGCATCCCTTTAATAGAAA CTCAACCATCCTTACCCGACCTGGGATGGAGATCACCAAAGATGGCTTCCACCTGGTTATTGAGC GAACATGTCAAAATGGTGAGGAGTGGGGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGC TGCATACTGTGTAAGGCCCAGACATTCGTGAAGGCCATTGGGAGGTACAGCGCCTTCAGCCAGA CAGAATGTGTGGAGGTGCAAGGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGC TTCATGCTGATCCTTGTGGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTC CTGTTGCCCCGTGGTGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCA GCTGCAGAAGGGAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGG GCCTGGATCTCATAGGTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGG AAACCATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAAGTAGGAA GAGCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACACT GAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACCTACACAC CTGCTAAACACACACACAGAGTCTCTCTCTATATATACACACGTACACATAAATACACCCAGC CAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGTGGCTTGGAGAGCCCAC TTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGGTGTTGAGTTCACTTCAAGC CCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGTAGGTGACCTGGAGGAAGGTCAC AGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATCCATGAACTACTGTAAAGTGTTGACA GTGTGTGCACACTGCAGACAGCAGGTGAAATGTATGTGTGCAATGCGACGAGAATGCAGAAGTCA GTAACATGTGCATGTTTGTTGTCCTCTTTTTTCTGTTGGTAAAGTACAGAATTCAGCAAATAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033</pre>

<subunit 1 of 1, 311 aa, 1 stop

<MW: 35076, pI: 5.04, NX(S/T): 2

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGETVY YSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAWSILKHP FNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSGGIPVHLETM EPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILVVVPLFVWKMGRL LQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation site.

amino acids 40-43 and 134-137

Tissue factor proteins.

amino acids 92-119

Integrins alpha chain proteins

amino acids 232-262

GAAGAAGGAGAGAGGAGAAGAGCCAGGAGCTGGAAAGGAGAGGAGGAGGAGGAGGAGGAGATG CGGGATGGAGACCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAACGGAGAGGAGGTG TGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGGAGTAGGAAGATCAGGA GCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGAGAAAGACACAGAGAGACGG GAGAGAGAAGAGTGGGTTTGAAGGGCGGATCTCAGTCCCTGGCTGCTTTGGCATTTGGGGAA CTGGGACTCCCTGTGGGGAGGAGGGAAAGCTGGAAGTCCTGGAGGGACAGGGTCCCAGAAGGAG GGGACAGAGGGGCTGAGAGAGGGGGGCGCGTTGGGCAGGGGTCCCTCGGAGGCCTCCTGGGG **ATG**GGGGCTGCAGCTCGTCTGAGCGCCCCTCGAGCGCTGCTACTCTGGGCTGCACTGGGGGCAGC AGCTCACATCGGACCAGCACCTGACCCCGAGGACTGGTGGAGCTACAAGGATAATCTCCAGGGAA AAGCGGCAGAGCCCCGTGGATGTGGAGCTGAAGAGGGTTCTTTATGACCCCCTTTCTGCCCCCATT AAGGCTCAGCACTGGAGGAGAAGCTCCGGGGAACCTTGTACAACACCGGCCGACATGTCTCCT TCCTGCCTGCACCCGACCTGTGGTCAATGTGTCTGGAGGTCCCCTCCTTTACAGCCACCGACTC AGTGAACTGCGGCTGCTGTTTGGAGCTCGCGACGGAGCCGGCTCGGAACATCAGATCAACCACCA GGGCTTCTCTGCTGAGGTGCAGCTCATTCACTTCAACCAGGAACTCTACGGGAATTTCAGCGCTG CCTCCCGCGCCCCAATGCCTGGCCATTCTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAAC CCATTCCTCAGTCGCCTCCTTAACCGCGACACCATCACTCGCATCTCCTACAAGAATGATGCCTA CTTTCTTCAAGACCTGAGCCTGGAGCTCCTGTTCCCTGAATCCTTCGGCTTCATCACCTATCAGG GCTCTCTCAGCACCCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAAT ATCACCTCCCTTCAGATGCACTCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCTTCCA GAGCCTCAGCGGTAACAGCCGGCCCCTGCAGCCCTTGGCCCACAGGGCACTGAGGGCAACAGGG ACCCCGGCACCCCGAGAGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGATGTGTCCCC GGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353</pre>

<subunit 1 of 1, 328 aa, 1 stop</pre>

<MW: 36238, pI: 9.90, NX(S/T): 3

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLCAVG
KRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPLLYSHRL
SELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSLFVNVASTSN
PFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSETVTWILIDRALN
ITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPERRCRGPNYRLHVDGVP
HGR

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

amino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins

amino acids 222-270, 128-164 and 45-92

GGCGCCTGGTTCTGCGCGTACTGGCTGTACGGAGCAGGAGCAAGAGGTCGCCGCCAGCCTCCGCCGCCGAGCCTCGTT CGTGTCCCCGCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGCGCCCACCCTGGCAGACTAACGAAGCAGCT GGAGGCTCGCGTATTCCTGCAGTCAGCACCCACGTCGCCCCCGGACGCTCGGTGCTCAGGCCCTTCGCGAGCGGGGCT **ATG**AAGTGTACCGCGCGGGAGTGGCTCAGAGTAACCACAGTGCTGTTCATGGCTAGAGCAATTCCAGCCATGGTGGTT CCCAATGCCACTTTATTGGAGAAACTTTTGGAAAAATACATGGATGAGGATGGTGAGTGGTGGATAGCCAAACAACGA GGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCTTCATAATAAATTACGAAGTCAGGTGTATCCA ACAGCCTCTAATATGGGGTATATGACATGGGATGTAGAGCTGGAAAGATCTGCAGAATCCTGGGCTGAAAGTTGCTTG TGGGAACATGGACCTGCAAGCTTGCTTCCATCAATTGGACAGAATTTGGGAGCACACTGGGGAAGATATAGGCCCCCG ACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTTAGCTACCCATATGAACATGAATGCAACCCATATTGT CCATTCAGGTGTTCTGGCCCTGTATGTACACACTTATACACAGGTCGTGTGGGCAACTAGTAACAGAATCGGTTGTGCC ATTAATTTGTGTCATAACATGAACATCTGGGGGCAGATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCA AAGGGAAACTGGTGGGGCCATGCCCCTTACAAACATGGGCGGCCCTGTTCTGCTTGCCCACCTAGTTTTGGAGGGGGC TGTAGAGAAAATCTGTGCTACAAAGAAGGGTCAGACAGGTATTATCCCCCTCGAGAAGAGGGAAACAAATGAAATAGAA CGACAGCAGTCACAAGTCCATGACACCCATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATAAGCGCA CAGCAAATGTCCCAAATTGTTTCTTGTGAAGTAAGATTAAGAGATCAGTGCAAAGGAACAACCTGCAATAGGTACGAA TGTCCTGCTGGCTGTTTGGATAGTAAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATCCAGCATCTGTAGA GCTGCAATTCATTATGGTATAATAGACAATGATGGTGGCTGGGTAGATATCACTAGACAAGGAAGAAAGCATTATTTC ATCAAGTCCAATAGAAATGGTATTCAAACAATTGGCAAATATCAGTCTGCTAATTCCTTCACAGTCTCTAAAGTAACA GTTCAGGCTGTGACTTGTGAAACAACTGTGGAACAGCTCTGTCCATTTCATAAGCCTGCTTCACATTGCCCAAGAGTA TACTGTCCTCGTAACTGTATGCAAGCAAATCCACATTATGCTCGTGTAATTGGAACTCGAGTTTATTCTGATCTGTCC AGTATCTGCAGAGCAGCAGTACATGCTGGAGTGGTTCGAAATCACGGTGGTTATGTTGATGTAATGCCTGTGGACAAA AGAAAGACCTACATTGCTTCTTTTCAGAATGGAATCTTCTCAGAAAGTTTACAGAATCCTCCAGGAGGAAAGGCATTC AGAGTGTTTGCTGTTGTGAAACTGAATACTTGGAAGAGGACCATAAAGACTATTCCAAATGCAATATTTCTGAATT TTGTATAAAACTGTAACATTACTGTACAGAGTACATCAACTATTTTCAGCCCAAAAAGGTGCCAAATGCATATAAATCTTGATAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTTGGGAAAAGTAATGAAAATATAATGGTTTTAGAAA TCCTGTGTTAAATATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATTGTTCTACGTTTC ATATATTATGGTGCTTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATGGCCCTCAGAAAATCA TATTAAATTCTGATATTGCACTTCTTATTTATATAAAATAATCCTTTAATATCCAAATGAATCTGTTAAAATGTTTG ATTCCTTGGGAATGGCCTTAAAAATAAATGTAATAAAGTCAGAGTGGTGGTATGAAAACATTCCTAGTGATCATGTAG TAAATGTAGGGTTAAGCATGGACAGCCAGAGCTTTCTATGTACTGTTAAAATTGAGGTCACATATTTTCTTTTGTATC CTGGCAAATACTCCTGCAGGCCAGGAAGTATAATAGCAAAAAGTTGAACAAAGATGAACTAATGTATTACATTACCAT TGCCACTGATTTTTTTAAATGGTAAATGACCTTGTATATAAATATTTGCCATATCATGGTACCTATAATGGTGATATA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417
<subunit 1 of 1, 500 aa, 1 stop</pre>

<MW: 56888, pI: 8.53, NX(S/T): 2

MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDMQSI LDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNLGAHWGRYRPP TFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLCHNMNIWGQI WPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRYYPPREEETNEIE RQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNRYECPAGCLDSKAKVI GSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGIQTIGKYQSANSFTVSKVT VQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIGTRVYSDLSSICRAAVHAGVVR NHGGYVDVMPVDKRKTYIASFQNGIFSESLQNPPGGKAFRVFAVV

Important features:

Signal peptide:

amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site amino acids 28-31

GCGGAGACAAGCGCAGAGCGCACGGCCACAGACAGCCCTGGGCATCCACCGACGCGCAG CCGGAGCCAGCAGAGCCGGAAGGCGCCCCGGGCAGAGAAAGCCGAGCAGAGCTGGGTGGCGTC TCCGGGCCGCCGCTCCGACGGCCCAGCGCCCTCCCCATGTCCCTGCTCCCACGCCGCGCCCCTCC GGTCAGCATGAGGCTCCTGGCGGCCGCGCTGCTCCTGCTGCTGCTGCGCGCTGTACACCGCGCGTG TGGACGGTCCAAATGCAAGTGCTCCCGGAAGGGACCCAAGATCCGCTACAGCGACGTGAAGAAG CTGGAAATGAAGCCAAAGTACCCGCACTGCGAGGAGAAGATGGTTATCATCACCACCAAGAGCGT GTCCAGGTACCGAGGTCAGGAGCACTGCCTGCACCCCAAGCTGCAGAGCACCAAGCGCTTCATCA AGTGGTACAACGCCTGGAACGAGAAGCGCAGGGTCTACGAAGAATAGGGTGAAAAACCTCAGAAG AAAAAAAAAAAAAAAAAAAAAAAAAAGCCTTTCTTTCTCACAGGCATAAGACACAAATTATAT CCAGATGGGAGACCCATCTCTTGTGCTCCAGACTTCATCACAGGCTGCTTTTTATCAAAAAGG GGAAAACTCATGCCTTTCCTTTTTAAAAAATGCTTTTTTGTATTTGTCCATACGTCACTATACAT CTGAGCTTTATAAGCGCCCGGGAGGAACAATGAGCTTGGTGGACACATTTCATTGCAGTGTTGCT CCATTCCTAGCTTGGGAAGCTTCCGCTTAGAGGTCCTGGCGCCTCGGCACAGCTGCCACGGGCTC ${\tt TCCTGGGCTTATGGCCGGTCACAGCCTCAGTGTGACTCCACAGTGGCCCCTGTAGCCGGGCAAGC}$ AGGAGCAGGTCTCTCTGCATCTGTTCTCTGAGGAACTCAAGTTTGGTTGCCAGAAAAATGTGCTT CATTCCCCCCTGGTTAATTTTTACACACCCTAGGAAACATTTCCAAGATCCTGTGATGGCGAGAC AAATGATCCTTAAAGAAGGTGTGGGGTCTTTCCCAACCTGAGGATTTCTGAAAGGTTCACAGGTT CAATATTTAATGCTTCAGAAGCATGTGAGGTTCCCAACACTGTCAGCAAAAACCTTAGGAGAAAA CTTAAAAATATATGAATACATGCGCAATACACAGCTACAGACACACTTCTGTTGACAAGGGAAA ACCTTCAAAGCATGTTTCTTTCCCTCACCACAACAGAACATGCAGTACTAAAGCAATATATTTGT GATTCCCCATGTAATTCTTCAATGTTAAACAGTGCAGTCCTCTTTCGAAAGCTAAGATGACCATG CGCCCTTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCCCAGTATATGC

 ${\tt MSLLPRRAPPVSMRLLAAALLLLLLALYTARVDGSKCKCSRKGPKIRYSDVKKLEMKPKYPHCEE} \\ {\tt KMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE}$

Signal sequence:

amino acids 1-34

GCCCCAGGGACTGCTATGGCTTCCTTTGTTGTTCACCCCGGTCTGCGTCATGTTAAACTCCAATGTCCTCCTGTGGTT AACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCAAGCACAGTATCCAGTTGTCAACACAAATTATGGCAAAAT $\tt CCGGGGCCTAAGAACACCGTTACCCAATGAGATCTTGGGTCCAGTGGAGCAGTACTTAGGGGTCCCCTATGCCTCACC$ CCCCACTGGAGAGAGGCGGTTTCAGCCCCCAGAACCCCCGTCCTCCTGGACTGGCATCCGAAATACTACTCAGTTTGC TGCTGTGTGCCCCCAGCACCTGGATGAGAGATCCTTACTGCATGACATGCTGCCCATCTGGTTTACCGCCAATTTGGA TACTTTGATGACCTATGTTCAAGATCAAAATGAAGACTGCCTTTACTTAAACATCTACGTGCCCACGGAAGATGGAGC CAACACAAAGAAAACGCAGATGATATAACGAGTAATGACCGTGGTGAAGACGAAGATATTCATGATCAGAACAGTAA GAAGCCCGTCATGGTCTATATCCATGGGGGATCTTACATGGAGGGCACCGGCAACATGATTGACGGCAGCATTTTTGGC AAGCTACGGAAACGTCATCGTGATCACCATTAACTACCGTCTGGGAATACTAGGGTTTTTAAGTACCGGTGACCAGGC AGCAAAAGGCAACTATGGGCTCCTGGATCAGATTCAAGCACTGCGGTGGATTGAGGAGAATGTGGGAGCCTTTGGCGG GGACCCCAAGAGAGTGACCATCTTTGGCTCGGGGGCTGGGGCCTCCTGTGTCAGCCTGTTGACCCTGTCCCACTACTC AGAAGGTCTCTTCCAGAAGGCCATCATTCAGAGCGGCACCGCCCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAA GTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACATGCTGGACACCACGGACATGGTAGAATGCCTGCGGAACAA GAACTACAAGGAGCTCATCCAGCAGACCATCACCCCGGCCACCTACCACATAGCCTTCGGGCCGGTGATCGACGGCGA CGTCATCCCAGACGACCCCCAGATCCTGATGGAGCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCA AGGGGAAGGCCTGAAGTTCGTGGACGGCATCGTGGATAACGAGGACGGTGTGACGCCCAACGACTTTGACTTCTCCGT GTCCAACTTCGTGGACAACCTTTACGGCTACCCTGAAGGGAAAGACACTTTGCGGGAGACTATCAAGTTCATGTACAC $\tt CCCCGCCGTGGCCGCCGACCTGCACGCGCAGTACGGCTCCCCCACCTACTCTATGCCTTCTATCATCACTGCCAAAG$ CGAAATGAAGCCCAGCTGGGCAGATTCGGCCCATGGTGATGAGGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCC CACCGAGCTCTTCAGTTGTAACTTTTCCAAGAACGACGTCATGCTCAGCGCCGTGGTCATGACCTACTGGACGAACTT AGTGGCCTGGTCCAAGTATAATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAACCCAGAGTGAGAGATCACTA ${\tt CCGGGCAACGAAGTGGCTTTCTGGTTGGAACTCGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTC}$ AACAACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCCTATGGCACCCGGCGATCTCCCGCCAAGATATGGCC AACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCTGAGGA CAÇAACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTCGCTCCT $\tt CTTCCTCAACATCTTAGCTTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCCATGAGACTCACAGGCGCCCCAG$ TCCCCAGAGAAACACCACAAATGATATCGCTCACATCCAGAACGAAGAGATCATGTCTCTGCAGATGAAGCAGCTGGA ACACGATCACGAGTGTGAGTCGCTGCAGGCACACGACACTGAGGCTCACCTGCCCGCCAGACTACACCCTCACGCT GCGCCGGTCGCCAGATGACATCCCACTTATGACGCCAAACACCATCACCATGATTCCAAACACACTGACGGGGATGCA GCCTTTGCACACTTTTAACACCTTCAGTGGAGGACAAAACAGTACAAATTTACCCCACGGACATTCCACCACTAGAGT GAAAGAGAGAGAAAGAAAGTCTCCAGACCAGGAATGTTTTTGTCCCACTGACTTAAGACAAAAAATGCAAAAAAGGCA GTCATCCCATCCCGGCAGACCCTTATCGTTGGTGTTTTCCAGTATTACAAGATCAACTTCTGACCCTGTGAAATGTGA CATTTCAAGGCCCGGGTGTTTCCAACGTCATGGAAGCAGCTGACACTTCTGAAACTCAGCCAAGGACACTTGATATT ATGAGATTTTGCCCAGCACATGGAGCTGTAATCCAGAGAGAAACGTAGAAATTTATTATTAAAAAGAATGGACTG TGCAGCGAAATCTGTACGGTTCTGTGCAAAGAGGTGTTTTGCCAGCCTGAACTATATTTAAGAGACTTTGT

MLNSNVLLWLTALAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASPPTG
ERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQNEDCLYL
NIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMIDGSILASYG
NVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKRVTIFGSGAGASC
VSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNMLDTTDMVECLRNKNYK
ELIQQTITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLNYDIMLGVNQGEGLKFVDGIVDNEDG
VTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENPETRRKTLVALFTDHQWVAPAV
AADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYVFGIPMIGPTELFSCNFSKNDVMLS
AVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVAWSKYNPKDQLYLHIGLKPRVRDHYRAT
KVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTSFPYGTRRSPAKIWPTTKRPAITPANNPKHS
KDPHKTGPEDTTVLIETKRDYSTELSVTIAVGASLLFLNILAFAALYYKKDKRRHETHRRPSPQR
NTTNDIAHIQNEEIMSLQMKQLEHDHECESLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTIT
MIPNTLTGMQPLHTFNTFSGGQNSTNLPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

 $\tt GGGAAAG \underline{\textbf{ATG}} GCGGCGACTCTGGGACCCCTTGGGTCGTGGCAGCAGTGGCGGCGATGTTTGTCGG$ CTCGGGATGGGTCCAGGATGTTACTCCTTCTTCTTTTGTTGGGGTCTGGGCAGGGGCCACAGCAA GTCGGGGCGGTCAAACGTTCGAGTACTTGAAACGGGAGCACTCGCTGTCGAAGCCCTACCAGGG TGTGGGCACAGGCAGTTCCTCACTGTGGAATCTGATGGCCAATGCCATGGTGATGACCCAGTATA TCCGCCTTACCCCAGATATGCAAAGTAAACAGGGTGCCTTGTGGAACCGGGTGCCATGTTTCCTG AGAGACTGGGAGTTGCAGGTGCACTTCAAAATCCATGGACAAGGAAAGAAGAATCTGCATGGGGA TGGCTTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGCCTGTGTTTTGGAAACATGGACA AATTTGTGGGGCTGGGAGTATTTGTAGACACCTACCCCAATGAGGAGAAGCAGCAAGAGCGGGTA TTCCCCTACATCTCAGCCATGGTGAACAACGGCTCCCTCAGCTATGATCATGAGCGGGATGGGCG GCCTACAGAGCTGGGAGGCTGCACAGCCATTGTCCGCAATCTTCATTACGACACCTTCCTGGTGA TTCGCTACGTCAAGAGGCATTTGACGATAATGATGGATATTGATGGCAAGCATGAGTGGAGGGAC TGCATTGAAGTGCCCGGAGTCCGCCTGCCCCGCGGCTACTACTTCGGCACCTCCTCCATCACTGG GGATCTCTCAGATAATCATGATGTCATTTCCTTGAAGTTGTTTGAACTGACAGTGGAGAGAACCC CAGAAGAGGAAAAGCTCCATCGAGATGTGTTCTTGCCCTCAGTGGACAATATGAAGCTGCCTGAG ATGACAGCTCCACTGCCCCCTGAGTGGCCTGGCCCTCTTCCTCATCGTCTTTTTCTCCCTGGT GTTTTCTGTATTTGCCATAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCGAA AGCGCTTCTACTGAGCCCTCCTGCTGCCACCACTTTTGTGACTGTCACCCATGAGGTATGGAAGG AGCAGGCACTGGCCTGAGCATGCAGCCTGGAGAGTGTTCTTGTCTCTAGCAGCTGGTTGGGGACT ATATTCTGTCACTGGAGTTTTGAATGCAGGGACCCCGCATTCCCATGGTTGTGCATGGGGACATC TAACTCTGGTCTGGGAAGCCACCCACCCAGGGCAATGCTGCTGTGATGTGCCTTTCCCTGCAGT CCTTCCATGTGGGAGCAGAGGTGTGAAGAGAATTTACGTGGTTGTGATGCCAAAATCACAGAACA GAATTTCATAGCCCAGGCTGCCGTGTTGTTTGACTCAGAAGGCCCTTCTACTTCAGTTTTGAATC TGACCCAACCCTCTGCCTACCTGAGGAGCTTTCTTTGGAAACCAGGATGGAAACTTCTTCCCTGC CTTACCTTCCTTTCACTCCATTCATTGTCCTCTGTGTGCAACCTGAGCTGGGAAAGGCATTTG GATGCCTCTCTGTTGGGGCCTGGGGCTGCAGAACACACCTGCGTTTCACTGGCCTTCATTAGGTG GCCCTAGGGAGATGGCTTTCTGCTTTGGATCACTGTTCCCTAGCATGGGTCTTGGGTCTATTGGC ATGTCCATGGCCTTCCCAATCAAGTCTCTTCAGGCCCTCAGTGAAGTTTGGCTAAAGGTTGGTGT AAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATGGATTAGCTGTGCAACTGACCAGCTC CAGGTTTGATCAAACCAAAAGCAACATTTGTCATGTGGTCTGACCATGTGGAGATGTTTCTGGAC TTGCTAGAGCCTGCTTAGCTGCATGTTTTGTAGTTACGATTTTTGGAATCCCACTTTGAGTGCTG AAAGTGTAAGGAAGCTTTCTTCTTACACCTTGGGCTTGGATATTGCCCAGAGAAGAAATTTGGCT TTTTTTTTTTTTAATGGACAAGAGACAGTTGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACC CTCATCATCTGTGCCTGGAAGAGTTCACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGT CAACCCTTATTCCACTGCCTTATTTGACAAGGGGTTACATGCTGCTCACCTTACTGCCCTGGGAT TAAATCAGTTACAGGCCAGAGTCTCCTTGGAGGGCCTGGAACTCTGAGTCCTCCTATGAACCTCT GACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGCTTGGCCGCCATGG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911</pre>

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39711, pI: 8.70, NX(S/T): 1

MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQGVG TGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKNLHGDGL AIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSYDHERDGRPT ELGGCTAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGVRLPRGYYFGTSSITGDL SDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPPLSGLALFLIVFFSLVFS VFAIVIGIILYNKWQEQSRKRFY

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

CCGATTTGAGGTGAAACCATGAAGAGAAAATAGAATACTTAATAATGCTTTTCCGCAACCGCTTCTTGCTGCTGCTGG ${\tt CCCTGGCTGCGCTGCTGGCCTTTGTGAGCCTCAGCCTGCAGTTC\overline{TTC}CACCTGATCCCGGTGTCGACTCCTAAGAATG}$ GAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCTGTGACAGACCCCGTTTATGAAG CTCTTTTGTACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTCATGCCCCGCATCATTTTAAGCTGGTCT CAGTGCATGTGTTCATTCGCCACGGAGACAGGTACCCACTGTATGTCATTCCCAAAACAAAGCGACCAGAAATTGACT GCACTCTGGTGGCTAACAGGAAACCGTATCACCCAAAACTGGAAGCTTTCATTAGTCACATGTCAAAAAGGATCCGGAG CCTCTTTCGAAAGCCCCTTGAACTCCTTGCCTCTTTACCCAAATCACCCATTGTGTGAGATGGGAGAGCTCACACAGA ATTGGTCTGCAGACCAGCTCTATTTAGAGACCACTGGGAAAAGCCGGACCCTACAAAGTGGGCTGGCCTTGCTTTATG GCTTTCTCCCAGATTTTGACTGGAAGAAGATTTATTTCAGGCACCAGCCAAGTGCGCTGTTCTGCTCTGGAAGCTGCT AGAAGACCTACGGGGAGATGGCCAAGATCGTGGATGTCCCCACCAAGCAGCTTAGAGCTGCCAACCCCATAGACTCCA TGCTCTGCCACTTCTGCCACAATGTCAGCTTTCCCTGTACCAGAAATGGCTGTGTTGACATGGAGCACTTCAAGGTAA TTAAGACCCATCAGATCGAGGATGAAAGGGAAAGACGGGAGAAGAATTGTACTTCGGGTATTCTCTCCTGGGTGCCC ACCCCATCCTGAACCAAACCATCGGCCGGATGCAGCGTGCCACCGAGGGCAGGAAAGAAGAGCTCTTTGCCCTCTACT CTGCTCATGATGTCACTCTGTCACCAGTTCTCAGTGCCTTGGGCCTTTCAGAAGCCAGGTTCCCAAGGTTTGCAGCCA TCACATTCCACACCTCTTTCTGCCAAGACCACCACAAGCGTTCTCCCAAGCCCATGTGCCCGCTTGAAAACTTGGTCC GCTTTGTGAAAAGGGACATGTTTGTAGCCCTGGGTGGCAGTGGTACAAATTATTATGATGCATGTCACAGGGAAGGAT TCTAAAAGGTATGCAGTACAGCAGTATAGAATCCATGCCAATACAGAGCATAGGGAAAGGTCCACTTCTAGTTTTGTC AGTAAGCACATTGCTGCAATGTGGTACGTGAATTGCTTGGTACAAAATGGCCAGTTCACAGAGGAATAGAAGGTACTT TATCATAGCCAGACTTCGCTTAGAATGCCAGAATAATATAGTTCAAGACCTGAAGTTGCCAATCCAAGTTTGCACTCT TCTGGCCTGCCCCATGTTACTATGTGATGGAACCAGCACACCTCAACCAAAATTTTTTTAATCTTAGACATTTTTACC TTGTCCTTGTTAAGAATTTCTTGAAGTGATTTATCTAAAATAAAGGTTGGCAAACTTTTTCTGTAAAGGGCCAGATTG TAAATATTTCAGACTGTGTGGACCAAAAGGCCACATACAGTCTCTGTCATAACTACTCAACTCTGTTTCTGAAGCAGG AAAGCCACCAGACAGTACATAAAGGAATATGTGTAGCTGGGTTCCCAGGCCAGACAAAACAGATGGTGACCAGACT TGGCCCCTGGGCTGTAGTTTGCTGACCCCTCATCTAAAAAATAGGCTATACTACAATTGCACTTCCAGCACTTTGAGA ACGAGTTGAATACCAAGAATTATTCAATGGTTCCTCCAGTAACTTCTGCTAGAAACACAGAATTTGGTCTGTATCTGA TTTATGATGATTGTGGTACAAGATAGTTTTAAGTATGTTCTAAATATTTGTCTGCTGTAGTCTATTTGCTGTATATGC ${\tt TGAAATTTTTGTATGCCATTTAGTATTTTATAGTTTAGGAAAATATTTTCTAAGACCAGTTTTAGATGACTCTTATT}$ CCTGTAGTAATATTCAATTTGCTGTACCTGCTTGGTGGTTAGAAGGAGGCTAGAAGATGAATTCAGGCACTTTCTTCC AATAAAACTAATTATGGCTCATTCCCTTTGACAAGCTGTAGAACTGGATTCATTTTTAAACCATTTTCATCAGTTTCA AATGGTAAATTCTGATTGATTTTAAATGCGTTTTTGGAAGAACTTTGCTATTAGGTAGTTTACAGATCTTTATAAGG TGTTTTATATATAGAAGCAATTATAATTACATCTGTGATTTCTGAACTAATGGTGCTAATTCAGAGAAATGGAAAGT GAAAGTGAGATTCTCTGTTGTCATCGGCATTCCAACTTTTTCTCTTTTGTTTTTTTCTCAGTGTTGCATTTGAATATGTC TGTTTCTATAAATAAATTTTTTTAAGAATAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329

><subunit 1 of 1, 480 aa, 1 stop

><MW: 55240, pI: 9.30, NX(S/T): 2

MLFRNRFLLLLALAALLAFVSLSLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVYEAL
LYCNIPSVAERSMEGHAPHHFKLVSVHVFIRHGDRYPLYVIPKTKRPEIDCTLVANRKPYHPKLE
AFISHMSKGSGASFESPLNSLPLYPNHPLCEMGELTQTGVVQHLQNGQLLRDIYLKKHKLLPNDW
SADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSGSCYCPVRNQYLEKEQRR
QYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPCTRNGCVDMEHFKVIK
THQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELFALYSAHDVTLSPVLSALG
LSEARFPRFAARLIFELWQDREKPSEHSVRILYNGVDVTFHTSFCQDHHKRSPKPMCPLENLVRF
VKRDMFVALGGSGTNYYDACHREGF

Signal sequence:

amino acids 1-18

AAAAAAGCTCACTAAAGTTTCTATTAGAGCGAATACGGTAGATTTCCATCCCCTTTTGAAGAACAGTACTGTGGAGCT ATTTAAGAGATAAAAACGAAATATCCTTTCTGGGAGTTCAAGATTGTGCAGTAATTGGTTAGGACTCTGAGCGCCCCT GTTCACCAATCGGGGAGAGAAAAGCGGAGATCCTGCTCGCCTTGCACGCGCCCTGAAGCACAAAGCAGATAGCTAGGAA TGAACCATCCCTGGGAGTATGTGGAAACAACGGAGGAGCTCTGACTTCCCAACTGTCCCATTCTATGGGCGAAGGAAC TGCTCCTGACTTCAGTGGTTAAGGGCAGAATTGAAAATAATTCTGGAGGAAGATAAGA**ATG**ATTCCTGCGCGACTGCA ${\tt CCGGGACTACAAAGGGCTTGTCCTGCTGGGAATCCTCCTGGGGACTCTGTGGGAGACCGGATGCACCCAGATACGCTA}$ TTCAGTTCCGGAAGAGCTGGAGAAAGGCTCTAGGGTGGGCGACATCTCCAGGGACCTGGGGCTGGAGCCCCGGGAGCT CGCGGAGCGCGGAGTCCGCATCATCCCCAGAGGTAGGACGCAGCTTTTCGCCCTGAATCCGCGCAGCGGCAGCTTGGT GGATAAAGTGAAAATATATGGAGTAGAAGTAGAAGTAAGGGACATTAACGACAATGCGCCTTACTTTCGTGAAAGTGA ATTAGAAATAAAAATTAGTGAAAATGCAGCCACTGAGATGCGGTTCCCTCTACCCCACGCCTGGGATCCGGATATCGG TAAGTACCCCGAATTGGTGCTGAAACGCGCCCTGGACCGCGAAGAAAAGGCTGCTCACCACCTGGTCCTTACGGCCTC CGACGGGGGCGACCGGTGCGCACAGGCACCGCGCGCATCCGCGTGATGGTTCTGGATGCGAACGACGACCACCAGC GTTTGCTCAGCCCGAGTACCGCGCGCGAGCGTTCCGGAGAATCTGGCCTTGGGCACGCAGCTGCTTGTAGTCAACGCTAC ACTAGATTGTAATTCAGGGACAATATCAACAATAGGGGAGTTGGACCACGAGGAGTCAGGATTCTACCAGATGGAAGT GCAAGCAATGGATAATGCAGGATATTCTGCGCGAGCCAAAGTCCTGATCACTGTTCTGGACGTGAACGACAATGCCCC AGAAGTGGTCCTCACCTCTCTCGCCAGCTCGGTTCCCGAAAACTCTCCCCAGAGGGACATTAATTGCCCTTTTAAATGT TTACGGAAATTACTATAGTTTAGTCACAGACATAGTCTTGGATAGGGAACAGGTTCCTAGCTACAACATCACAGTGAC CGCCACTGACCGGGGAACCCCGCCCCTATCCACGGAAACTCATATCTCGCTGAACGTGGCAGACACCAACGACAACCC GCCGGTCTTCCCTCAGGCCTCCTATTCCGCTTATATCCCAGAGAACAATCCCAGAGGAGTTTCCCTCGTCTCTGTGAC CGCCCACGACCCCGACTGTGAAGAGAACGCCCAGATCACTTATTCCCTGGCTGAGAACACCATCCAAGGGGCAAGCCT ATCGTCCTACGTGTCCATCAACTCCGACACTGGGGTACTGTATGCGCTGAGCTCCTTCGACTACGAGCAGTTCCGAGA CTTGCAAGTGAAAGTGATGGCGCGGGACAACGGGCACCCGCCCCTCAGCAACGTGTCGTTGAGCCTGTTCGTGCT $\tt CCGCTCCGCAGAGCCCGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACAGAGACTCCGGCCAGAACGCCTGGCTGTC$ CCTGCTGGACAGAGACGCGCTCAAGCAGAGCCTCGTAGTGGCCGTCCAGGACCACGGCCAGCCCCTCTCTCCGCCAC TGTCACGCTCACCGTGGCCGTGGCCGACAGCATCCCCCAAGTCCTGGCGGACCTCGGCAGCCTCGAGTCTCCAGCTAA $\tt CTCTGAAACCTCAGACCTCACTCTGTACCTGGTGGTAGCGGTGGCCGCGGTCTCCTGCGTCTTCCTGGCCTTCGTCAT$ CTTGCTGCTGCGCCTCAGGCTGCGCGCTGGCACAAGTCACGCCTGCTGCAGGCTTCAGGAGGCGGCTTGACAGGAGC GCCGGCGTCGCACTTTGTGGGCGTGGACGGGTGCAGGCTTTCCTGCAGACCTATTCCCACGAGGTTTCCCTCACCAC GGACTCGCGGAAGAGTCACCTGATCTTCCCCCAGCCCAACTATGCAGACATGCTCGTCAGCCAGGAGAGCTTTGAAAA ${\tt AAGCGAGCCCCTTTTGCTGTCAGGTGATTCGGTATTTCTAAAGACAGTCATGGGTTAATTGAGGTGAGTTTATATCA}$ AATCTTCTTTCTTTTTTTTTTTAATTGCTCTGTCTCCCAAGCTGGAGTGCAGCGGTACGATCATAGCTCACTGCGGCC ${\tt TCAAACTCCTAGGCTCAAGCAATTATCCCACCTTTGCCTCCGGTGTAACAGGGACTACAGGTGCAAGCCACCTACTGT}$ TCTCACGCCTGTAATCCCAGTACTTTGGGAGGCCGAGGCGGGTGGATCACCTGAGGTTGGGAGTTTGAGACCAGCCTG ${f A}$ CCAACATGGAGAAACCCCGTCTATACTAAAAAAATACAAAATTAGCCGGGCGTGGTGGTGCATGTCTGTAATCCC ${f A}{f G}$ $\overline{ extsf{C}}$ TACTTGGGAGGCTGAGTCAGGAGATTGCTTTAACCTGGGAGGTGGAGGTTGCAATGAGCTGAGATTGTGCCATTGC ACTCCAGCCTGGGCAACAAGAGTGAAACTCTATCTCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306

><subunit 1 of 1, 916 aa, 1 stop

><MW: 100204, pI: 4.92, NX(S/T): 4

MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAERGVR

IIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVRDINDNA

PYFRESELEIKISENAATEMRFPLPHAWDPDIGKNSLQSYELSPNTHFSLIVQNGADGSKYPELV

LKRALDREEKAAHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFAQPEYRASVPENLALGTQ

LLVVNATDPDEGVNAEVRYSFRYVDDKAAQVFKLDCNSGTISTIGELDHEESGFYQMEVQAMDNA

GYSARAKVLITVLDVNDNAPEVVLTSLASSVPENSPRGTLIALLNVNDQDSEENGQVICFIQGNL

PFKLEKSYGNYYSLVTDIVLDREQVPSYNITVTATDRGTPPLSTETHISLNVADTNDNPPVFPQA

SYSAYIPENNPRGVSLVSVTAHDPDCEENAQITYSLAENTIQGASLSSYVSINSDTGVLYALSSF

DYEQFRDLQVKVMARDNGHPPLSSNVSLSLFVLDQNDNAPEILYPALPTDGSTGVELAPRSAEPG

YLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVGLHTGEVRTARALLDRDALKQSLVVAVQDHG

QPPLSATVTLTVAVADSIPQVLADLGSLESPANSETSDLTLYLVVAVAAVSCVFLAFVILLLALR

LRRWHKSRLLQASGGGLTGAPASHFVGVDGVQAFLQTYSHEVSLTTDSRKSHLIFPQPNYADMLV

SQESFEKSEPLLLSGDSVFSKDSHGLIEVSLYQIFFLFFFNCSVSQAGVQRYDHSSLRPQTPRLK

QLSHLCLRCNRDYRCKPPTVCLSIYLSIYLSIYLSIYLLSCTDGSLTPVIPVLWEAEAGGSPEV

GSLRPA

Signal sequence:

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

CCCAGGCTCTAGTGCAGGAGGAGAAGGAGGAGGAGGAGGAGGTGGAGATTCCCAGTTAAAAGGCT CCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAATCAGTA GGTGACCCCGCCCTGGATTCTGGAAGACCTCACCATGGGACGCCCCGACCTCGTGCGGCCAAG ACGTGGATGTTCCTGCTCTTGCTGGGGGGAGCCTGGGCAGGACACTCCAGGGCACAGGAGGACAA GGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGGCCTTGTTCCAGGGCC AGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTTACAGCTGCCCACTGTAAA AAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAATAAAGATGGCCCAGAGCAAGA AATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACAGCAGCGATGTGGAGGACCACAACC ATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCCCTGGGGTCCAAAGTGAAGCCCATCAGC CTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTGCACCGTCTCAGGCTGGGGCACTGTCACCAG TCCCCGAGAGAATTTTCCTGACACTCTCAACTGTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGT CTGGGGCTCAGACCCCTGTGGGAGGTCCGACAAACCTGGCGTCTATACCAACATCTGCCGCTACC TGGACTGGATCAAGAAGATCATAGGCAGCAAGGGCTGATTCTAGGATAAGCACTAGATCTCCCTT AATAAACTCACAACTCTCTGGTTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336</pre>

<subunit 1 of 1, 260 aa, 1 stop

<MW: 28048, pI: 7.87, NX(S/T): 1

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVLVGG NWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLLQLRDQA SLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCEDAYPGQITDG MVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRYLDWIKKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site.

amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

GCGGGGGAACCGGGCGGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAACATTCATCCTCCC GGCGGCCCGCGCGAGCGCCCGCCAGTCCGCGCCGCCGCCCCCTCGCCCTGTGCGCCCTGC GCGCCTGCGCACCCGCGGCCCGAGCCAGCCAGAGCCGGGCGGAGCGGAGCGCGCCCGAGCCTCG TCCCGCGGCCGGGCCGGGCCGTAGCGGCGCCTGGATGCGGACCCGGCCGCGGGGAG ACGGGCGCCCGCCCGAAACGACTTTCAGTCCCCGACGCGCCCCGCCCAACCCCTACG**ATG**AAGA GGGCGTCCGCTGGAGGGAGCCGGCTGCTGGCATGGGTGCTGTGGCTGCAGGCCTGGCAGGTGGCA GCCCCATGCCCAGGTGCCTGCGTATGCTACAATGAGCCCAAGGTGACGACAAGCTGCCCCCAGCA GCATCTCGCATGTGCCAGCTGCCAGCTTCCGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCAC TCGAATGTGCTGGCCCGAATTGATGCGGCTGCCTTCACTGGCCTGGCCCTCCTGGAGCAGCTGGA CCTCAGCGATAATGCACAGCTCCGGTCTGTGGACCCTGCCACATTCCACGGCCTGGGCCGCCTAC ACACGCTGCACCTGGACCGCTGCGGCCTGCAGGAGCTGGGCCCGGGGCTGTTCCGCGGCCTGGCT GCCCTGCAGTACCTCTACCTGCAGGACAACGCGCTGCAGGCACTGCCTGATGACACCTTCCGCGA CCTGGGCAACCTCACACCTCTTCCTGCACGGCAACCGCATCTCCAGCGTGCCCGAGCGCCCT TCCGTGGGCTGCACAGCCTCGACCGTCTCCTACTGCACCAGAACCGCGTGGCCCATGTGCACCCG CATGCCTTCCGTGACCTTGGCCGCCTCATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCT GCCCACTGAGGCCCTGGCCCCCTGCGTGCCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGG TGTGTGACTGCCGGGCACGCCCACTCTGGGCCTGCCAGAAGTTCCGCGGCTCCTCCTCCGAG GTGCCTGCAGCCTCCGCAACGCCTGGCTGGCCGTGACCTCAAACGCCTAGCTGCCAATGACCT GCAGGGCTGCGCTGTGGCCACCGGCCCTTACCATCCCATCTGGACCGGCAGGGCCACCGATGAGG AGCCGCTGGGGCTTCCCAAGTGCTGCCAGCCAGATGCCGCTGACAAGGCCTCAGTACTGGAGCCT GGAAGACCAGCTTCGGCAGGCAATGCGCTGAAGGGACGCGTGCCGCCGGTGACAGCCCGCCGGG CAACGGCTCTGGCCCACGGCACATCAATGACTCACCCTTTGGGACTCTGCCTGGCTCTGCTGAGC CCCCGCTCACTGCAGTGCGGCCCGAGGGCTCCGAGCCACCAGGGTTCCCCACCTCGGGCCCTCGC CGGGGGTGGCGGACTGGTGACTCAGAAGGCTCAGGTGCCCTACCCAGCCTCACCTGCAGCCTCA CCCCCTGGGCCTGGCGCTGGTGCTGTGGACAGTGCTTGGGCCCTGC**TGA**CCCCCAGCGGACACA CCATCTCCACCCCATCATGTTTACAGGGTTCGGCGGCAGCGTTTGTTCCAGAACGCCGCCTCCCA CCCAGATCGCGGTATATAGAGATATGCATTTTATTTTACTTGTGTAAAAATATCGGACGACGTGG AATAAAGAGCTCTTTTCTTAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184</pre>

><subunit 1 of 1, 473 aa, 1 stop

>< MW: 50708, pI: 9.28, NX(S/T): 6

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRIFLH GNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPATFHGLG RLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLHGNRISSVPE RAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAPLRALQYLRLNDN PWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCAVATGPYHPIWTGRAT DEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGNGSGPRHINDSPFGTLPGS AEPPLTAVRPEGSEPPGFPTSGPRRPGCSRKNRTRSHCRLGQAGSGGGGTGDSEGSGALPSLTC SLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCCTCTGGAGAGGACTACTCA CTGGCATATTTCTGAGGTATCTGTAGAATAACCACAGCCTCAGATACTGGGGACTTTACAGTCCC ACAGAACCGTCCTCCCAGGAAGCTGAATCCAGCAAGAACA**ATG**GAGGCCAGCGGGAAGCTCATTT CCTAGAAGCTATTCTGTGGTGGAGGAAACTGAGGGCAGCTCCTTTGTCACCAATTTAGCAAAGGA CCTGGGTCTGGAGCAGAGGGAATTCTCCAGGCGGGGGGTTAGGGTTGTTTCCAGAGGGAACAAAC TACATTTGCAGCTCAATCAGGAGACCGCGGATTTGTTGCTAAATGAGAAATTGGACCGTGAGGAT CTGTGCGGTCACACAGAGCCCTGTGTGCTACGTTTCCAAGTGTTGCTAGAGAGTCCCTTCGAGTT TGTTGGTGAAAGTATCAGAGAGCAGTCCTCCTGGGACTACGTTTCCTCTGAAGAATGCCGAAGAC TTAGATGTAGGCCAAAACAATATTGAGAACTATATAATCAGCCCCAACTCCTATTTTCGGGTCCT CACCCGCAAACGCAGTGATGGCAGGAAATACCCAGAGCTGGTGCTGGACAAAGCGCTGGACCGAG AGGAAGAGCTGAGCTCAGGTTAACACTCACAGCACTGGATGGTGGCTCTCCGCCCAGATCTGGC ACTGCTCAGGTCTACATCGAAGTCCTGGATGTCAACGATAATGCCCCTGAATTTGAGCAGCCTTT CTATAGAGTGCAGATCTCTGAGGACAGTCCGGTAGGCTTCCTGGTTGTGAAGGTCTCTGCCACGG ATGTAGACACAGGAGTCAACGGAGAGATTTCCTATTCACTTTTCCAAGCTTCAGAAGAGATTGGC AAAACCTTTAAGATCAATCCCTTGACAGGAGAAATTGAACTAAAAAAACAACTCGATTTCGAAAA ACTTCAGTCCTATGAAGTCAATATTGAGGCAAGAGATGCTGGAACCTTTTCTGGAAAATGCACCG TTCTGATTCAAGTGATAGATGTGAACGACCATGCCCCAGAAGTTACCATGTCTGCATTTACCAGC CCAATACCTGAGAACGCGCCTGAAACTGTGGTTGCACTTTTCAGTGTTTTCAGATCTTGATTCAGG AGAAAATGGGAAAATTAGTTGCTCCATTCAGGAGGATCTACCCTTCCTCCTGAAATCCGCGGAAA ACTTTTACACCCTACTAACGGAGAGACCACTAGACAGAGAAAGCAGAGCGGAATACAACATCACT ATCACTGTCACTGACTTGGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGCTGATCGC CGATGTCAATGACAACGCTCCCGCCTTCACCCAAACCTCCTACACCCTGTTCGTCCGCGAGAACA GTCACCTACTCGCTGCCGCCCCAGGACCCGCACCTGCCCCTCACATCCCTGGTCTCCATCAA CGCGGACAACGGCCACCTGTTCGCCCTCAGGTCTCTGGACTACGAGGCCCTGCAGGGGTTCCAGT TCCGCGTGGGCGCTTCAGACCACGGCTCCCCGGCGCTGAGCAGCGAGGCGCTGGTGCGCGTGGTG GTGCTGGACGCCAACGACAACTCGCCCTTCGTGCTGTACCCGCTGCAGAACGGCTCCGCGCCCTG CACCGAGCTGGTGCCCCGGGCGGCCGAGCCGGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACG GCGACTCGGCCAGAACGCCTGGCTGTCGTACCAGCTGCTCAAGGCCACGGAGCTCGGTCTGTTC GCACAGGCTGGTGGTGGTCAAGGACAATGGCGAGCCTCCGCGCTCGGCCACCGCCACGCTGC ACGTGCTCCTGGTGGACGGCTTCTCCCAGCCCTACCTGCCTCTCCCGGAGGCGGCCCCGACCCAG GCTGCTTGGTGCCCGAGGGCCCCCTTCCAGGGCATCTTGTGGACATGAGCGGCACCAGGACCCTA TCCCAGAGCTACCAGTATGAGGTGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTTCCT TCCCCAATAACTTTGGGTTCAATATTCAGTGACCATAGTTGACTTTTACATTCCATAGGTATTTT TTTACTCTTGATTTTTCTCATGTTCTTCTCCCTTTGTTTTAAAGTGAACATTTACCTTTATTCC TGGTTCTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314</pre>

<subunit 1 of 1, 798 aa, 1 stop

<MW: 87552, pI: 4.84, NX(S/T): 5

MEASGKLICRQRQVLFSFLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSRRGV
RVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPCVLRFQVLLESPFEFFQAELQVIDINDH
SPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKRSDGRKYPEL
VLDKALDREEEAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFYRVQISEDSPVGF
LVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIELKKQLDFEKLQSYEVNIEARDA
GTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETVVALFSVSDLDSGENGKISCSIQEDL
PFLLKSAENFYTLLTERPLDRESRAEYNITITVTDLGTPMLITQLNMTVLIADVNDNAPAFTQTS
YTLFVRENNSPALHIRSVSATDRDSGTNAQVTYSLLPPQDPHLPLTSLVSINADNGHLFALRSLD
YEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNSPFVLYPLQNGSAPCTELVPRAAEPGYL
VTKVVAVDGDSGQNAWLSYQLLKATELGLFGVWAHNGEVRTARLLSERDAAKHRLVVLVKDNGEP
PRSATATLHVLLVDGFSQPYLPLPEAAPTQAQADLLTVYLVVALASVSSLFLFSVLLFVAVRLCR
RSRAASVGRCLVPEGPLPGHLVDMSGTRTLSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPQCPG
KEIQGNSTFPNNFGFNIQ

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

ACCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCCGCGTAGCCGTGCGCC GATTGCCTCTCGGCCTGGGCA**TG**GTCCCGGCTGCCGGTCGACGACCGCCCCGCGTCATGCGGCT CCTCGGCTGGTGGCAAGTATTGCTGTGGGTGCTGGGACTTCCCGTCCGCGGCGTGGAGGTTGCAG AGGAAAGTGGTCGCTTATGGTCAGAGGAGCAGCCTGCTCACCCTCTCCAGGTGGGGGGCTGTGTAC CTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGGCCAGGACAGGCCAGCAGAAGAGGCCAATGC AGGACAAAGTGAGTTCAGAGCCTAGCGGCGTCACCTGTGGTGCTGGAGGAGCGGAGGACTCAAGG TGCAACGTCCGAGAGAGCCTTTTCTCTCTGGATGGCGCTGGAGCACACTTCCCTGACAGAGAAGA GGAGTATTACACAGAGCCAGAAGTGGCGGAATCTGACGCAGCCCCGACAGAGGACTCCAATAACA CTGAAAGTCTGAAATCCCCAAAGGTGAACTGTGAGGAGAGAAACATTACAGGATTAGAAAATTTC ACTCTGAAAATTTTAAATATGTCACAGGACCTTATGGATTTTCTGAACCCAAACGGTAGTGACTG TACTCTAGTCCTGTTTTACACCCCGTGGTGCCGCTTTTCTGCCAGTTTGGCCCCTCACTTTAACT CTCTGCCCCGGGCATTTCCAGCTCTTCACTTTTTGGCACTGGATGCATCTCAGCACAGCAGCCTT TCTACCAGGTTTGGCACCGTAGCTGTTCCTAATATTTTATTATTTCAAGGAGCTAAACCAATGGC CAGATTTAATCATACAGATCGAACACTGGAAACACTGAAAATCTTCATTTTTAATCAGACAGGTA TAGAAGCCAAGAAGAATGTGGTGGTAACTCAAGCCGACCAAATAGGCCCTCTTCCCAGCACTTTG TACCATTCGAACTGAGAGTATTCGGTGGCTAATTCCAGGACAAGAGCAGGAACATGTGGAGTAGT GATGGTCTGAAAGAAGTTGGAAAGAGGAACTTCAATCCTTCGTTTCAGAAATTAGTGCTACAGTT TCATACATTTCTCCAGTGACGTGTTGACTTGAAACTTCAGGCAGATTAAAAGAATCATTTGTTG AACAACTGAATGTATAAAAAAATTATAAACTGGTGTTTTTAACTAGTATTGCAATAAGCAAATGCA AAAATATTCAATAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333</pre>

><subunit 1 of 1, 360 aa, 1 stop

><MW: 39885, pI: 4.79, NX(S/T): 7

MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEEQPAHPLQVGAVYLGEEELL HDPMGQDRAAEEANAVLGLDTQGDHMVMLSVIPGEAEDKVSSEPSGVTCGAGGAEDSRCNVRESL FSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCEERNITGLENFTLKILNM SQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFPALHFLALDASQHSSLSTRFGTV AVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQIGPLPSTLIKSVDWL LVFSLFFLISFIMYATIRTESIRWLIPGQEQEHVE

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281 and 293-296

Thioredoxin domain

amino acids 211-227

TGCTGCTGCTCTCCTCGCCTCGCACTGCTGCCTGGGCTCGGCGCGCGGGGCTCTTCCTCTTTGGC CAGCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAACCTGCAGCTGTGCCA CGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCATGAAGGAGGTGC TGGAGCAGGCCGCTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCGGACACCAAGAAGTTC CTGTGCTCGCTCTCGCCCCGTCTGCCTCGATGACCTAGACGAGACCATCCAGCCATGCCACTC GCTCTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCGCCTTCGGCTTCCCCTGGCCCG ACATGCTTGAGTGCGACCGTTTCCCCCAGGACAACGACCTTTGCATCCCCCTCGCTAGCAGCGAC CACCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATGTGAAGCCTGCAAAAATAAAAATGATGA TGACAACGACATAATGGAAACGCTTTGTAAAAATGATTTTGCACTGAAAATAAAAGTGAAGGAGA TAACCTACATCAACCGAGATACCAAAATCATCCTGGAGACCAAGAGCAAGACCATTTACAAGCTG AACGGTGTCCGAAAGGGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCAC CTGTGAGGAGATGAACGACATCAACGCGCCCTATCTGGTCATGGGACAGAAACAGGGTGGGGAGC $\tt ATCCGCAAGCTGCAGTGCTAGTCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGG$ CTGACCATTTCTGCTCCGGGATCTCAGCTCCCGTTCCCCAAGCACACTCCTAGCTGCTCCAGTCT CAGCCTGGGCAGCTTCCCCCTGCCTTTTGCACGTTTGCATCCCCAGCATTTCCTGAGTTATAAGG CCACAGGAGTGGATAGCTGTTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCA AACTAATAAAATCATGAATATTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920</pre>

><subunit 1 of 1, 295 aa, 1 stop

><MW: 33518, pI: 7.74, NX(S/T): 0

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRLPNLLG HETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDRCAPVMS AFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKNDDDNDIMETLCKNDFA LKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSLQCTCEEMNDINAPYLVM GQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus amino acids 6-153

GTGGAGGCCGCCGACGATGCCGGGGCCGACGGAGGCCGAGACGGGGTTGGCCGAGCCCCGGGCCC CTCAACTGCTCCAACGCCACGCTGTGGCTCAGCTTTGCACCTGTGGCTGACGTCATTGCTGAGGA CTTGGTCCTGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGGTATCCACCCCAT TTGGCGTGGCGGCCATCTGGATCCTGGACTCCGTCGGGCTCCGTGCGGCGACCATCCTGGGTGCG TGGCTGAACTTTGCCGGGAGTGTGCTACGCATGGTGCCCTGCATGGTTGTTGGGACCCAAAACCC ATTTGCCTTCCTCATGGGTGGCCAGAGCCTCTGTGCCCAGAGCCTGGTCATCTTCTCTC CAGCCAAGCTGGCTTGTGGTTCCCAGAGCACCAGCGAGCCACGGCCAACATGCTCGCCACC ATGTCGAACCCTCTGGGCGTCCTTGTGGCCAATGTGCTGTCCCCTGTGCTGGTCAAGAAGGGTGA TCTGCCTGTGGGAGAGTGTGCCCCCCCCCCCCCCTCTGCCGGGGCTGCCAGCTCCACCTCAGAG AAGTTCCTGGATGGGCTCAAGCTGCAGCTCATGTGGAACAAGGCCTATGTCATCCTGGCTGTGTG CTTGGGGGGAATGATCGGGATCTCTGCCAGCTTCTCAGCCCTCCTGGAGCAGATCCTCTGTGCAA GCGGCCACTCCAGTGGGTTTTCCGGCCTCTGTGGCGCTCTCTTCATCACGTTTGGGATCCTGGGG GCACTGGCTCTCGGCCCCTATGTGGACCGGACCAAGCACTTCACTGAGGCCACCAAGATTGGCCT GTGCCTGTTCTCTCTGGCCTGCGTGCCCTTTGCCCTGGTGTCCCAGCTGCAGGGACAGACCCTTG CCCTGGCTGCCACCTGCTCGCTCGGGCTGTTTTGGCTTCTCGGTGGGCCCCGTGGCCATGGAG CCTTGTCCACCTGCCAGCAGGGGGGGGGATCCACTTGACTGGACAGTGTCTCTGCTGCTGATGGCC GGCCTGTGCACCTTCTTCAGCTGCATCCTGGCGGTCTTCTTCCACACCCCATACCGGCGCCTGCA GGCCGAGTCTGGGGAGCCCCCTCCACCCGTAACGCCGTGGGCGGCGCAGACTCAGGGCCGGGTG TGGACCGAGGGGGCCAGGAAGGGCTGGGGTCCTGGGGCCCAGCACGCGACTCCGGAGTGCACG GGGTCCAAGCGTCCAGGTTTATTGACCCGGCTGGGTCTCACTCCTCCTCTCTCCCCGTGGGTG ATCACGTAGCTGAGCGCCTTGTAGTCCAGGTTGCCCGCCACATCGATGGAGGCGAACTGGAACAT CTGGTCCACCTGCGGCGGGGGGGAAAGGGCTCCTTGCGGGCTCCGGGAGCGAATTACAAGCGCG CACCTGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50988

><subunit 1 of 1, 560 aa, 1 stop

><MW: 58427, pI: 6.86, NX(S/T): 2

MAGPTEAETGLAEPRALCAQRGHRTYARRWVFLLAISLLNCSNATLWLSFAPVADVIAEDLVLSM
EQINWLSLVYLVVSTPFGVAAIWILDSVGLRAATILGAWLNFAGSVLRMVPCMVVGTQNPFAFLM
GGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLVKKGEDIPLM
LGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNKAYVILAVCLGGMI
GISASFSALLEQILCASGHSSGFSGLCGALFITFGILGALALGPYVDRTKHFTEATKIGLCLFSL
ACVPFALVSQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPVGEGAATGMIFVLGQAEGI
LIMLAMTALTVRRSEPSLSTCQQGEDPLDWTVSLLLMAGLCTFFSCILAVFFHTPYRRLQAESGE
PPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARGASLEDPRGPGSPHPACHRATPRAQ
GPAATDAPSRPGRLAGRVQASRFIDPAGSHSSFSSPWVIT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268, 280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

GTCCCACATCCTGCTCAACTGGGTCAGGTCCCTCTTAGACCAGCTCTTGTCCATCATTTGCTGAAGTGGACCAACTAG TTCCCCAGTAGGGGGTCTCCCCTGGCAATTCTTGATCGGCGTTTGGACATCTCAGATCGCTTCCAATGAAGATGGCCT TGCCTTGGGGTCCTGCTTGTTTCATAATCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTCTGGGGGAAGGAGCAC GGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTTGTCCAGCCTTGAAAGAACTCTAGTGGTTTCTGAATCTAGC CCACTTGGCGGTAAGCATGATGCAACTTCTGCAACTTCTGCTGGGGCTTTTTGGGGCCCAGGTGGCTACTTATTTCTTTT ${\tt AGGGGATTGTCAGGAGGTGACCACTCTCACGGTGAAATACCAAGTGTCAGAGGAAGTGCCATCTGGTACAGTGATCGG}$ GAAGCTGTCCCAGGAACTGGGCCGGGAGGAGAGGCGGAGGCAAGCTGGGCCGCCTTCCAGGTGTTGCAGCTGCCTCA ACAGTGGGATCCCTGCTTGCTTTGATGTGCTTGCCACAGGGGATTTGGCTCTGATCCATGTGGAGATCCAAGT GCTGGACATCAATGACCACCAGCCACGGTTTCCCAAAGGCGAGCAGGAGCTGGAAATCTCTGAGAGCGCCTCTCTGCG AACCCGGATCCCCTGGACAGAGCTCTTGACCCAGACACAGGCCCTAACACCTGCACACCTACACTCTGTCTCCCAG TGAGCACTTTGCCTTGGATGTCATTGTGGGCCCTGATGAGACCAAACATGCAGAACTCATAGTGGTGAAGGAGCTGGA CAGGGAAATCCATTCATTTTTGATCTGGTGTTAACTGCCTATGACAATGGGAACCCCCCCAAGTCAGGTACCAGCTT GGTCAAGGTCAACGTCTTGGACTCCAATGACAATAGCCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGA AGATGCTGCACCTGGTACGCTTCTCATAAAACTGACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTT CTTCCTCAGTAAGCACATGCCTCCAGAGGTGCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCG TCGACCTCTAGACTATGAAAAGAACCCTGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCC AGCCCATTGCAAAGTTCTCATCAAGGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCA GCCATCACTGGTGTCAGAAGCTCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACA GTTGCTAACCAATGCCACACTGGACAGAGAGCAGTGGCCCAAATATACCCTCACTCTGTTAGCCCAAGACCAAGGACT CAGGTATGAAGTCTCCACGCGGGAAAACAACTTACCCTCTCTCACCTCATTACCATCAAGGCTCATGATGCAGACTT GGGCATTAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGG AGAGGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCAATGATAATGCCCCAGAGGTGGTCCA GCCTGTGCTCAGCGATGGAAAAGCCAGCCTCTCCGTGCTTGTGAATGCCTCCACAGGCCACCTGCTGGTGCCCATCGA AACCATTGTGGCAAGAGTGCAGACTCGGGGGCAAATGGAGAGCCCCTCTACAGCATCCGCAATGGAAATGAAGCCCA GGAGCTGGAGATAGTAGTAGAGGACCAGGGAAGCCCCCCTTACAGACCCCGAGCCCTGTTGAGGGTCATGTTTGTCAC CAGTGTGGACCACCTGAGGGACTCAGCCCGCAAGCCTGGGGCCTTGAGCATGTCGATGCTGACGGTGATCTGCCTGGC TGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCGGACAGAAAAGAAGGACAACAGGGC CTACAACTGTCGGGAGGCCGAGTCCACCTACCGCCAGCAGCCCAAGAGGCCCCAGAAACACATTCAGAAGGCAGACAT CCACCTCGTGCCTGTGCTCAGGGGTCAGGCAGGTGAGCCTTGTGAAGTCGGGCAGTCCCACAAAGATGTGGACAAGGA GGCGATGATGGAAGCAGGCTGGGACCCCTGCCTGCAGGCCCCCTTCCACCCCGACCCTGTACAGGACGCTGCG TAATCAAGGCAACCAGGGAGCCCGGCGGAGAGCCGAGAGGTGCTGCAAGACACGGTCAACCTCCTTTTCAACCATCC TCTGAAGGTTGCAGGCAGCCCCACAGGGAGGCTGGCTGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGC $\tt CCTGCGGAGCCTGGTCCGGCTGTCTGTGGCTGCCTTCGCCGAGCGGAACCCCGTGGAGGAGCTCACTGTGGATTCTCC$ TCCTGTTCAGCAAATCTCCCAGCTGCTGTCCTTGCTGCATCAGGGCCAATTCCAGCCCAAACCAAACCACCGAGGAAA TAAGTACTTGGCCAAGCCAGGAGGCAGCAGGAGTGCAATCCCAGACACAGATGGCCCAAGTGCAAGGGCTGGAGGCCA GACAGACCCAGAACAGGAGGAGGACCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGGCT GTCAAGTCTGCTGGACCCCAGCACAGGTCTGGCCCTGGACCGGCTGAGCCCCCTGACCCGGCCTGGATGCGAGACT CTCTTTGCCCCTCACCACCAACTACCGTGACAATGTGATCTCCCCGGATGCTGCAGCCACGGAGGAGCCGAGGACCTT CCAGACGTTCGGCAAGGCAGAGCCAGAGCTGAGCCCAACAGGCACGAGGCTGGCCAGCACCTTTGTCTCGGAGAT GAGCTCACTGCTGGAGATGCTGCTGGAACAGCGCTCCAGCATGCCCGTGGAGGCCGCCTCCGAGGCGCTGCGGCGGCT CTCGGTCTGCGGGAGGACCCTCAGTTTAGACTTGGCCACCAGTGCAGCCTCAGGCATGAAAGTGCAAGGGGACCCAGG TGGAAAGACGGGGACTGAGGGCAAGAGCAGGGGCAGCAGCAGCAGCAGGTGCCTGTGAACATACCTCAGACGCCT ${\tt AAGCAGCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTTTCCTGGCAA}$ TCTTGGGTAGCAGGAGTCAGGGGGCTGTACCCTGGGGGTGCCAGGAAATGCTCTCTGACCTATCAATAAAGGAAAAGC AGTAAAAAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331</pre>

<subunit 1 of 1, 1184 aa, 1 stop

<MW: 129022, pI: 5.20, NX(S/T): 5

MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSQELGREERRRQAGAA FOVLOLPOALPIOVDSEEGLLSTGRRLDREOLCROWDPCLVSFDVLATGDLALIHVEIQVLDIND HOPRFPKGEOELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIVGPDETKHAE LIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESSLALEIQEDAAPG TLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPLDYEKNPAYEVDVQAR DLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASOPSLVSEALPKDSFIALVMADDLDSGHNGLVH CWLSOELGHFRLKRTNGNTYMLLTNATLDREOWPKYTLTLLAODOGLOPLSAKKOLSIOISDIND NAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVSYRIQDSPVAHLVAIDSNTGEVTAQ RSLNYEEMAGFEFOVIAEDSGOPMLASSVSVWVSLLDANDNAPEVVOPVLSDGKASLSVLVNAST GHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTTIVARDADSGANGEPLYSIRNGNEAHLFILN PHTGQLFVNVTNASSLIGSEWELEIVVEDQGSPPLQTRALLRVMFVTSVDHLRDSARKPGALSMS MLTVICLAVLLGIFGLILALFMSICRTEKKDNRAYNCREAESTYROOPKRPOKHIOKADIHLVPV LRGQAGEPCEVGQSHKDVDKEAMMEAGWDPCLQAPFHLTPTLYRTLRNQGNQGAPAESREVLQDT VNLLFNHPRQRNASRENLNLPEPQPATGQPRSRPLKVAGSPTGRLAGDQGSEEAPQRPPASSATL RRORHLNGKVSPEKESGPROILRSLVRLSVAAFAERNPVEELTVDSPPVOOISQLLSLLHOGOFO PKPNHRGNKYLAKPGGSRSAIPDTDGPSARAGGOTDPEOEEGPLDPEEDLSVKOLLEEELSSLLD PSTGLALDRLSAPDPAWMARLSLPLTTNYRDNVISPDAAATEEPRTFOTFGKAEAPELSPTGTRL ASTFVSEMSSLLEMLLEORSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVOGDPGGKTGT EGKSRGSSSSSRCL

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860

Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

CGGACGCGTGGGCGGACGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGGCAG ACCGTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAGGCAGGA GCCTTCCTTACACTTCGCCATGAGTTTCCTCATCGACTCCAGCATCATGATTACCTCCCAGATAC TATTTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAG TATGTTGTACAGGTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCAT CTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTG TAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATC CGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTTATGGCTGACCTTTATGTATTTCTT CTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAAAACATGGGATCTTATCCATAGAACAGC TCATCAGCCGGGTTGGTGTGATTGGAGTGACTCTCATGGCTCTTCTTCTGGATTTGGTGCTGTC GGAACGCGACTGCTGCAAACCATGGATATGATCATAAGCAAAAAGAAAAGGATGGCAATGGCAC GGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACAAACCATCAGGTTTCTGGGGAATGATAAAA AGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTACTCTTATTCAACAGGAAGTGGATGCTTT GGAAGAATTAAGCAGCAGCTTTTTCTGGAAACAGCTGATCTATATGCTACCAAGGAGAAATAG AATACTCCAAAACCTTCAAGGGGAAATATTTTAATTTTCTTGGTTACTTTTTCTCTATTTACTGT GTTTGGAAAATTTTCATGGCTACCATCAATATTGTTTTTGATCGAGTTGGGAAAACGGATCCTGT CACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGTGAAGTTTTGGTCCC CTTACCAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTGCTATTAGC ACAGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTTAGAAT ACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTGAT GTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACC AGAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTTCAAAA TGGTAGCATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAG CATCAGCCAGAACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTG GATATGAGGCTGGTAGAGGCGGAGAGGAGCCAAGAAACTAAAGGTGAAAAATACACTGGAACT .CTGGGGCAAGACATGTCTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACAT AAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAAC TTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWKLGDP
FPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLLAQIMGMY
FVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

CATGGGAAGTGGAGCCGGAGCCTTCCTTACACTCGCCATGAGTTTCCTCATCGACTCCAGCATCA
TGATTACCTCCCNGANACTATTTTTTGGATTTGGGTGGCTTTTCTTCNGCGCCAATGTTTAAAGA
CTATGAGATACGTCAGTATGTTGTACNGGTGATCTTCTCCGTGACGTTTGCCATTTCTTGCACCA
TGTTTGAGCTCATCATCTTTGAAATCTTNGGAGTATTGAATAGCAGCTCCCGTTATTTTCACTGG
AAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTTTTTACATTGGCTGAT
TATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTTATGGCTGA
CCTTTATGTATTTCCAG

GTGTTGCCCTTGGGGAGGGAAGGGGAGCCNGGCCCTTTCCTAAAATTTGGCCAAGGGTTTCTTT
NTTGAATTCCGGGTTNNGNATACCTTCCCAGAAAATATTTTTTTGGATTTGGGGTAGNTTTTTTTC
ATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAGGTGATNTTNTCCGTGAC
GTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATNTTTGAAATNTTAGGAGTATTGAATAGCA
GCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTG
CCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTT
TTCCTGTCTNTTATGGCTGACCTTTATGTATTTNTTNTGGAAANTAGGAGATCCCTTTCCCATTC
TC

 $\tt CTCGCGCAGGGATCGTCCC{\color{red} \underline{\textbf{ATG}}} GCCGGGGCTCGGAGCCGCGACCCTTGGGGGGCCTCCGGGATTTGCTACCTTTTTGG$ CTCCCTGCTCGTACTGCTCTTCTCACGGGCTGTCGCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAAGGAGGG GGGTGCTCCCCAGGCCCTGGCTCTTCCTGGGCAGCAGCGGAATCGCACTGGAGGCCTCTTCGCTTGCCCGTTGAGCCT GGAGGAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAAGGAAACCAGTGGTT GGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTACCTGTGCACACCGATATGAGGCAAGGCAGCGAGT GGACCAGATCCTGGAGACGCGGGATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCTGGCCATCCGGGATGAGTT GGATGGTGGGGAATGGAAGTTCTGTGAGGGACGCCCCCAAGGCCATGAACAATTTGGGTTCTGCCAGCAGGGCACAGC TGCCGCCTTCTCCCCTGATAGCCACTACCTCCTCTTTGGGGCCCCAGGAACCTATAATTGGAAGGGCACGGCCAGGGT GGAGCTCTGTGCACAGGGCTCAGCGGACCTGGCACACCTGGACGACGGTCCCTACGAGGCGGGGGGAGAAGGAGCA AGAAGAGCTGAGCTTTGTGGCTGGAGCCCCCCGCGCCAACCACAAGGGTGCTGTGGTCATCCTGCGCAAGGACAGCGC CAGTCGCCTGGTGCCCGAGGTTATGCTGTCTGGGGAGCGCCTGACCTCCGGCTTTGGCTACTCACTGGCTGTGGCTGA CCTCAACAGTGATGGCTGGCCAGACCTGATAGTGGGTGCCCCCTACTTCTTTGAGCGCCAAGAAGAGCTGGGGGGTGC TGTGTATGTGTACTTGAACCAGGGGGGTCACTGGGCTGGGATCTCCCCTCTCCGGCTCTGCGGCTCCCCTGACTCCAT GTTCGGGATCAGCCTGGCTGTCCTGGGGGACCTCAACCAAGATGGCTTTCCAGATATTGCAGTGGGTGCCCCCTTTGA TGGTGATGGGAAAGTCTTCATCTACCATGGGAGCAGCCTGGGGGTTGTCGCCAAACCTTCACAGGTGCTGGAGGGCGA ${\tt GGTGGGCTCCCTGGCTGACACCGCAGTGCTCTTCAGGGCCAGACCCATCCTCCATGTCTCCCATGAGGTCTCTATTGC}$ TCCACGAAGCATCGACCTGGAGCAGCCCAACTGTGCTGGCGGCCACTCGGTCTGTGTGGACCTAAGGGTCTGTTTCAG $\tt CCGGGGCCAGGTTCCCGTGTGACGTTCCTGAGCCGTAACCTGGAAGAACCCAAGCACCAGGCCTCGGGCACCGTGTG$ GCTGAAGCACCAGCATGACCGAGTCTGTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTCGGGC CATTGTAGTGACCTTGTCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCCTGGCCAGGGGCTGCCTCCAGT GGCCCCATCCTCAATGCCCACCAGCCCAGCACCAGCGGGGGAGAGATCCACTTCCTGAAGCAAGGCTGTGGTGAAGA CAAGATCTGCCAGAGCAATCTGCAGCTGGTCCACGCCCGCTTCTGTACCCGGGTCAGCGACACGGAATTCCAACCTCT GCCCATGGATGTGGATGGAACAACAGCCCTGTTTGCACTGAGTGGGCAGCCAGTCATTGGCCTGGAGCTGATGGTCAC CAACCTGCCATCGGACCCAGCCCCAGGCTGATGGGGATGATGCCCATGAAGCCCAGCTCCTGGTCATGCTTCC TGACTCACTGCACTACTCAGGGGTCCGGGCCCTGGACCCTGCGGAGAAGCCACTCTGCCTGTCCAATGAGAATGCCTC $\tt CCATGTTGAGTGTGAGCTGGGGAACCCCATGAAGAGAGGTGCCCAGGTCACCTTCTACCTCATCCTTAGCACCTCCGG$ GATCAGCATTGAGACCACGGAACTGGAGGTAGAGCTGCTGTTGGCCACGATCAGTGAGCAGGAGCTGCATCCAGTCTC TGCACGAGCCCGTGTCTTCATTGAGCTGCCACTGTCCATTGCAGGAATGGCCATTCCCCAGCAACTCTTCTTCTCTGG TGTGGTGAGGGGCGAGAGAGCCATGCAGTCTGAGCGGGATGTGGGCAGCAAGGTCAAGTATGAGGTCACGGTTTCCAA CCAAGGCCAGTCGCTCAGAACCCTGGGCTCTGCCTTCCTCAACATCATGTGGCCTCATGAGATTGCCAATGGGAAGTG GTTGCTGTACCCAATGCAGGTTGAGCTGGAGGGCGGGCAGGGGCCTGGGCAGAAAGGGCTTTGCTCTCCCAGGCCCAA GCGGCAGGAGCCCAGCATGTCCTGGTGGCCAGTGTCCTCTGCTGAGAAGAAGAAAAACATCACCCTGGACTGCGCCCG GGGCACGGCCAACTGTGTGGTGTTCAGCTGCCCACTCTACAGCTTTGACCGCGCGGCTGTGCTGCATGTCTGGGGCCG GAAGTCCTCCATAAAGAACTTGATGCTCCGAGATGCCTCCACAGTGATCCCAGTGATGGTATACTTGGACCCCATGGC GCTGCTCCTGTGGAAGATGGGATTCTTCAAACGGCCGAGCCACCCGAGGCCACCGTGCCCCAGTACCATGCGGTGAA GATTCCTCGGGAAGACCGACAGCAGTTCAAGGAGGAGAAGACGGGCACCATCCTGAGGAACAACTGGGGCAGCCCCCG GCGGGAGGGCCCGGATGCACACCCCATCCTGGCTGCTGACGGGCATCCCGAGCTGGGCCCCGATGGGCATCCAGGGCC ${\tt TGAAGAGGGT\overline{AGA}GTGGGCTGCTGGTGTCGCATCAAGATTTGGCAGGATCGGCTTCCTCAGGGGCACAGACCTCTCCCC}$ ACCCACAAGAACTCCTCCCACCCAACTTCCCCTTAGAGTGCTGTGAGATGAGAGTGGGTAAATCAGGGACAGGCCAT ${\tt GGGGTAGGGTGAGAGGGCAGGGGTGTCCTGATGCAAAGGTGGGGAGAAGGGATCCTAATCCCTTCCTCTCCCATTCA}$ CCCTGTGTAACAGGACCCCAAGGACCTGCCTCCCGGAAGTGCCTTAACCTAGAGGGTCGGGGAGGAGGTTGTGTCAC TGACTCAGGCTGCTCCTTCTCTAGTTTCCCCTCTCATCTGACCTTAGTTTGCTGCCATCAGTCTAGTGGTTTCGTGGT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pI: 5.82, NX(S/T): 5

MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHROLOPR PQSWLLVGAPQALALPGQQANRTGGLFACPLSLEETDCYRVDIDQGADMQKESKENQWLGVSVRS QGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFCEGRPQGHEQFG FCOOGTAAAFSPDSHYLLFGAPGTYNWKGTARVELCAOGSADLAHLDDGPYEAGGEKEODPRLIP VPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLVPEVMLSGERLTSGFG YSLAVADLNSDGWPDLIVGAPYFFERQEELGGAVYVYLNQGGHWAGISPLRLCGSPDSMFGISLA VLGDLNODGFPDIAVGAPFDGDGKVFIYHGSSLGVVAKPSOVLEGEAVGIKSFGYSLSGSLDMDG NQYPDLLVGSLADTAVLFRARPILHVSHEVSIAPRSIDLEQPNCAGGHSVCVDLRVCFSYIAVPS SYSPTVALDYVLDADTDRRLRGQVPRVTFLSRNLEEPKHQASGTVWLKHQHDRVCGDAMFQLQEN VKDKLRAIVVTLSYSLQTPRLRRQAPGQGLPPVAPILNAHQPSTQRAEIHFLKQGCGEDKICQSN LQLVHARFCTRVSDTEFQPLPMDVDGTTALFALSGQPVIGLELMVTNLPSDPAQPQADGDDAHEA QLLVMLPDSLHYSGVRALDPAEKPLCLSNENASHVECELGNPMKRGAQVTFYLILSTSGISIETT ELEVELLLATISEOELHPVSARARVFIELPLSIAGMAIPOOLFFSGVVRGERAMQSERDVGSKVK YEVTVSNQGQSLRTLGSAFLNIMWPHEIANGKWLLYPMQVELEGGQGPGQKGLCSPRPNILHLDV DSRDRRRRELEPPEQQEPGERQEPSMSWWPVSSAEKKKNITLDCARGTANCVVFSCPLYSFDRAA VLHVWGRLWNSTFLEEYSAVKSLEVIVRANITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGV PWWVILLAVLAGLLVLALLVLLLWKMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILR NNWGSPRREGPDAHPILAADGHPELGPDGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408 and 1031-1047

CAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCTCACAAC AATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAACAAATTCCGAGACGAA GTAGAGGATGATTATTTCCGCACTTGGAGTCCAGGAAAACCCTTCGATCAGGCTTTAGATCCAGC TAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTATGCATTGCTCAAGATTCTCAGA CTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATGAAAGAAGCAGGAGTAGACCATAGG CAGTGGAGGGTCCCATATTATCCACCTGCAAGCAGTGCCCAGTGGTCTATCCCAGCCCTGTTTG TGGTTCAGATGGTCATACCTACTCTTTTCAGTGCAAACTAGAATATCAGGCATGTGTCTTAGGAA AACAGATCTCAGTCAAATGTGAAGGACATTGCCCATGTCCTTCAGATAAGCCCACCAGTACAAGC AGAAATGTTAAGAGAGCATGCAGTGACCTGGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTG GTTCAAGGCCCTTCATGAAAGTGGAAGTCAAAACAAGAAGACAAAAACATTGCTGAGGCCTGAGA GAAGCAGATTCGATACCAGCATCTTGCCAATTTGCAAGGACTCACTTGGCTGGATGTTTAACAGA CTTGATACAACTATGACCTGCTATTGGACCAGTCAGAGCTCAGAAGCATTTACCTTGATAAGAA TGAACAGTGTACCAAGGCATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATA ATGAGTGGTGCTACTGCTTCCAGAGACAGCCAGCCTTGCCAGACTGAGCTCAGCAATATT CAGAAGCGGCAAGGGTAAAGAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTA AAGTCATGGGATCCAGAATAAATGGTGTTGCAGATTGTGCTATAGATTTTGAGATCTCCGGAGAT ATGTATACATT**TGA**TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTTACAAAAAT GATAGCCTATTTAAAATTATCTTCTTCCCCAATAACAAAATGATTCTAAACCTCACATATATTTT GTATAATTATTTGAAAAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAATAAGAATCATTTGC TTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTAGTCAGACAAAATAAAG TTTTGAAGTGCTACTATAATAATTTTTCACGAGAACAACTTTGTAAATCTTCCATAAGCAAAA TGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAGATAATTCTAAGTGAAATTTAAA TTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAGGATAACAGAGAGATACCACATGACTCCA AAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829</pre>

><subunit 1 of 1, 436 aa, 1 stop

><MW: 49429, pI: 4.80, NX(S/T): 0

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFRDEV EDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEAGVDHRQ WRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCPCPSDKPTSTSR NVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPICKDSLGWMFNRL DTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQRQQDPPCQTELSNIQ KRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGSRINGVADCAIDFEISGDF ASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI

Important features:

Signal peptide:

amino acids 1-16 ·

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

CAGACTCCAGATTTCCCTGTCAACCACGAGGGTCCAGAGGGGAAACGCGGAGCGGAGCAACAGTACCTGACGCCTC TTTCAGCCCGGGATCGCCCCAGCAGGGATGGCCGACAAGATCTGGCTGCCCTTCCCCGTGCTCCTTCTGGCCGCTCTG ${\tt CCTCCGGTGCTGCCTGGGGCGGCCGGCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTTCCCGCCGGC}$ CAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTAGATGGAGCAGGA TTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTGAACAAAGAAAATCAGATGGAGTTCAC ACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATTTCTGAGAAGGTGATTTTC TTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAGAATATATTACTGGCACAGAT ATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCCAGACTAAGCAAAAGTGGGCACATA CAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGCAACTTTGATAGAGTCAATTTCTGGTCT ATGGTTAATTTAGTGGTCATGGTGGTGGTGTCAGCCATTCAAGTTTATATGCTGAAGAGTCTGTTTGAAGATAAGAGG AAAAGTAGAACTTAAAACTCCAAACTAGAGTACGTAACATTGAAAAATGAGGCATAAAAATGCAATAAACTGTTACAG ${ t TCAAGACCATTA} \overline{ t ATG} { t GTCTCTCCAAAATATTTTGAGATATAAAAGTAGGAAACAGGTATAATTTTAATGTGAAAATT$ AAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAGTTGTACTTAAGTGTGTAACAGGAATATTTTGCAGAATAT AGGTTTAACTGAATGAAGCCATATTAATAACTGCATTTTCCTAACTTTGAAAAATTTTGCAAATGTCTTAGGTGATTT AAATAAATGAGTATTGGGCCTAATTGCAACACCAGTCTGTTTTTAACAGGTTCTATTACCCAGAACTTTTTTGTAAAT GCGGCAGTTACAAATTAACTGTGGAAGTTTTCAGTTTTAAGTTATAAATCACCTGAGAATTACCTAATGATGGATTGA ATAAATCTTTAGACTACAAAAGCCCAACTTTTCTCTATTTACATATGCATCTCTCTATAATGTAAATAGAATAATAG CTTTGAAATACAATTAGGTTTTTGAGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGT CTTTGTACTTTGCTTACATTCCCAAAAGCTGACATTTTCACGATTCTTAAAAAACACAAAGTTACACTTACTAAAATTA GGACATGTTTTCTCTTTGAAATGAAGAATATGTTTAAAAGCTTCCTCCTCCATAGGGACACATTTTCTCTAACCCTT AACTAAAGTGTAGGATTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCT GTCAACAGTTAATAATCATGTTATGTTAATTTTAACATGATTGCTGACTTGGATAATTCATTATTACCAGCAGTTATG AGAATCTGACTGGCTCATCATGACATCCTACTCATAACATAAATCAAAGGAGATGATTAATTTCCAGTTAGCTGGAAG AAACTTTGGCTGTAGGTTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTTGTAAGCAGGTACATTTTATAAAA GGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAAACATAGACTCCCAAGTTTTAAACACCTAAAT GTGAATAACCCATATATACAACAAAGTTTCTGCCATCTAGCTTTTTGAAGTCTATGGGGGTCTTACTCAAGTACTAGT AATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTATGACTACATTGTGAGT TAGAAACAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATTCTTGATGAGCAATAATGA TAACCAGAGAGTGATTTCATTTACACTCATAGTAGTATAAAAAAGAGATACATTTCCCTCTTAGGCCCCTGGGAGAAGA GCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTATATGATCAATTACCTTAATTGGCCA AGAAAATGCTTCAGGTGTCTAGGGGTATCCTCTGCAACACTTGCAGAACAAAGGTCAATAAGATCCTTGCCTATGAAT ACCCCTCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACAGTACCATAACTAATAAAGCAGGGTACAGAT ATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTACCTCTCCTGTATGGCTGTTACTGTACTGTACTC TCTGACTCCTTACCTAACAATGAATTTGTTACATAATCTTCTACATGTATGATTTGTGCCACTGATCTTAAACCTATG ATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTTTATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATT TTTATAGACAAAGTAAAAAGACAGATATTTAAGAGGCATAACCAAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTT TAATATTTCTAAAGACATACTGTTTATCTGCTTCATATGCTTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTT ATGCTAAATTGAGTAAGCTGTTTATCACTTAACAGCTCATTTTGTCTTTTTCAATATACAAATTTTAAAAATACTACA ATATTTAACTAAGGCCCAACCGATTTCCATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCT CTGATATGCATTTGGATGATTAATGTTATGCTGTTCTTTCATGTGAATGTCAAGACATGGAGGGTGTTTGTAATTTTA TGGTAAAATTAATCCTTCTTACACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCT CAAATGAAGATTCTTTATGTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAAT GCACAATCAGTGTTGCTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATA TGTATATAATAAAATTATCAAAGGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196</pre>

><subunit 1 of 1, 229 aa, 1 stop

><MW: 26017, pI: 4.73, NX(S/T): 0

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEYQVL DGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFELILDNMG EQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRNIQESNFDRV NFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965</pre>

<subunit 1 of 1, 175 aa, 1 stop

<MW: 19330, pI: 7.25, NX(S/T): 1

 $\label{thm:locality} $$ MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWMDAD$$ LACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSSTDVMNY FAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD$

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405</pre>

<subunit 1 of 1, 125 aa, 1 stop</pre>

<MW: 13115, pI: 5.90, NX(S/T): 1

MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTTLYSREIVYPFQG DSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation site.

amino acids 46-49

CTGCAGTCAGGACTCTGGGACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCCGAACCGGCACG TTCTGAGATGATGGCTCTGGGCGCAGCGGGAGCTACCCGGGTCTTTGTCGCGATGGTAGCGGCGG CTCTCGGCGCCCCCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTCAATTCCAACGCT GCCGGGAATCCTGTACCCGGGCGGAATAAGTACCAGACCATTGACAACTACCAGCCGTACCCGT GCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGTCCCACCCGCGGAGGGGACGCA GGCGTGCAAATCTGTCTCGCCTGCAGGAAGCGCCGAAAACGCTGCATGCGTCACGCTATGTGCTG CCCCGGAATTACTGCAAAAATGGAATATGTGTGTCTTCTGATCAAAATCATTTCCGAGGAGAAA TTGAGGAAACCATCACTGAAAGCTTTGGTAATGATCATAGCACCTTGGATGGGTATTCCAGAAGA ACCACCTTGTCTTCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTTTGTCTCCGGTCATC AGACTGTGCCTCAGGATTGTGTTGTGCTAGACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGA AAGAAGGTCAAGTGTGTACCAAGCATAGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGT TGTTACTGTGGAGAAGGTCTGTCTTGCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTC TAGGCTTCACACTTGTCAGAGACACTAAACCAGCTATCCAAATGCAGTGAACTCCTTTTATATAA TAGATGCTATGAAAACCTTTTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGG TTTCAGTTAAGCATTCCAATAACACCTTCCAAAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATG GAACTCCCCTGTGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAA TGCAATGAAACTTTTAATTATTTTTCTAAAGGTGCTGCACTGCCTATTTTTCCTCTTGTTATGTA AATTTTTGTACACATTGATTGTTATCTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCA TTTCAGCTTATAGTTCTTAAAAGCATAACCCTTTACCCCATTTAATTCTAGAGTCTAGAACGCAA GGATCTCTTGGAATGACAAATGATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATTTTCT GAAATGTACTATCTTAATGCTTAAATTATATTTCCCTTTAGGCTGTGATAGTTTTTGAAATAAAA TTTAACATTTAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530</pre>

<subunit 1 of 1, 266 aa, 1 stop

<MW: 28672, pI: 8.85, NX(S/T): 1

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSAAPG
ILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRKRCMRHAMCCPG
NYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRSSDC
ASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQKDHHQASNSSRL
HTCQRH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain amino acids 110-126

GAGGAACCTACCGGTACCGGCCGCGCGCTGGTAGTCGCCGGTGTGGCTCCACCTCACCAATCCCGTGCGCCGCGGCTG GGCCGTCGGAGAGTGCGTGTGCTTCTCTCCTGCACGCGGTGCTTGGGCTCGGCCAGGCGGGGTCCGCCAGGGTTT GAGGATGGGGGAGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTTGTGGAATGAAAAGGAAGTATTAGA AATGAGCTGAAGACCATTCACAGATTAATATTTTTGGGGACAGATTTGTGATGCTTGATTCACCCCTTGAAGTAATGTA GACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCACTTAAATCAGAACTTG CATAAGAAAGAGAATGGGAGTCTGGTTAAATAAAGATGACTATATCAGAGACTTGAAAAAGGATCATTCTCTGTTTTCT GATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGGAGTGTCCAAAACTGCAAGCAG TAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAAAAACCCGAATAACCCAAATGCACA TGGCGATTTTTTAAAAATAAATAGAGCATATGAAGTACTCAAAGATGAAGATCTACGGAAAAAGTATGACAAATATGG AGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAACTATTATCGTTATGATTTTGGTATTTATGA TGATGATCCTGAAATCATAACATTGGAAAGAAGAAGAATTTGATGCTGCTGTTAATTCTGGAGAACTGTGGTTTGTAAA TTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCCCACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTT ACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAATGCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCT $\tt CTTCATTTTTCGGTCTGGAATGGCCCCAGTGAAATATCATGGAGACAGATCAAAGGAGAGTTTAGTGAGTTTTGCAAT$ GCAGCATGTTAGAAGTACAGTGACAGAACTTTGGACAGGAAATTTTGTCAACTCCATACAAACTGCTTTTGCTGCTGG TATTGGCTGGCTGATCACTTTTTGTTCAAAAGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCAT GGCAAACACACTAGAGGATCGTTTGGCTCATCATCGGTGGCTGTTATTTTTTCATTTTGGAAAAAATGAAAATTCAAA TGATCCTGAGCTGAAAAAACTAAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGC ACCAGACATCTGTAGTAATCTGTATGTTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACAAGGAACCAAAGAATATGA TGGACCTCAAAATTTTCCTGCCAATGACAAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCG AGCTTTACTACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGT TCATGAGGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGA GTATGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTGGTG TCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGGCAGTAT AGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTTTCCCCCAAA ATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAATCTGGGGTCTAGG ATTTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGGGAAAAATCATTGGGT GATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTTGAGCTCTTGGCTAGGATGATTAA AGGAAAAGTGAAAGCTGGAAAAGTAGACTGTCAGGCTTATGCTCAGACATGCCAGAAAGCTGGGATCAGGGCCTATCC AACTGTTAAGTTTTATTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCAGATAAATACCAGAGATGCAAAAGC AATCGCTGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAAGAGGAATAAGGATGAACTTTGATAATG TTGAAGATGAAGAAAAGTTTAAAAGAAATTCTGACAGATGACATCAGAAGACACCTATTTAGAATGTTACATTTATG ATGGGAATGAATGAACATTATCTTAGACTTGCAGTTGTACTGCCAGAATTATCTACAGCACTGGTGTAAAAGAAGGGT AACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCTTTTAACAACCTTTAAAAAAATATTAAAAACGATTCTTAGCT CAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATGGACCATAGATTGCTGTCCCCCTCGACGGACTTATAATGTTTC AGGTGGCTGGCTTGAACATGAGTCTGCTGTGCTATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCAC GTTTTTTGGCTGACCTGAAAAGAGGTAACTTAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATA CTTCATTGTTTTCTTTCCTTCTCA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439</pre>

<subunit 1 of 1, 747 aa, 1 stop

<MW: 86127, pI: 7.46, NX(S/T): 2

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKLHPD
KNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGIYDDDPE
IITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNCGDDRMLCRM
KGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNSIQTAFAAGIGWL
ITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSANTLEDRLAHHRWLLFF
HFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQPSLAVFKGQGTKEYEIHHG
KKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWCPPCRALLPELRRASNLLYGQL
KFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHSAEQILEFIEDLMNPSVVSLTPTTF
NELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMARTLTGLINVGSIDCQQYHSFCAQENVQRY
PEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLGFLPQVSTDLTPQTFSEKVLQGKNHWVIDFY
APWCGPCQNFAPEFELLARMIKGKVKAGKVDCQAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEE
QINTRDAKAIAALISEKLETLRNQGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.

amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

ATGAACATCATCCTAGAAATCCTTCTGCTTCTGATCACCATCATCTACTCCTACTTGGAGTCGTT GGTGAAGTTTTTCATTCCTCAGAGGAGAAAATCTGTGGCTGGGGAGATTGTTCTCATTACTGGAG CTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTTGCAAAACGACAGAGCATATTGGTTCTG TGGGATATTAATAAGCGCGGTGTGGAGGAAACTGCAGCTGAGTGCCGAAAACTAGGCGTCACTGC GCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCTCTCTAAATCAGGTGAAGA AAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGGACAGTATATCCAGCCGATCTTCTC AGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAACATCCTAGGACATTTTTGGATCAC AAAAGCACTTCTTCCATCGATGATGGAGAGAAATCATGGCCACATCGTCACAGTGGCTTCAGTGT GCGGCCACGAAGGGATTCCTTACCTCATCCCATATTGTTCCAGCAAATTTGCCGCTGTTGGCTTT CACAGAGGTCTGACATCAGAACTTCAGGCCTTGGGAAAAACTGGTATCAAAACCTCATGTCTCTG CCCAGTTTTTGTGAATACTGGGTTCACCAAAAATCCAAGCACAAGATTATGGCCTGTATTGGAGA CAGATGAAGTCGTAAGAAGTCTGATAGATGGAATACTTACCAATAAGAAAATGATTTTTGTTCCA TCGTATATCAATATCTTTCTGAGACTACAGAAGTTTCTTCCTGAACGCGCCTCAGCGATTTTAAA TCGTATGCAGAATATTCAATTTGAAGCAGTGGTTGGCCACAAAATCAAAATGAAA**TGA**ATAAATA AGCTCCAGCCAGAGATGTATGCATGATAATGATATGAATAGTTTCGAATCAATGCTGCAAAGCTT TATTTCACATTTTTCAGTCCTGATAATATTAAAAACATTGGTTTGGCACTAGCAGCAGTCAAAC GAACAAGATTAATTACCTGTCTTCCTGTTTCTCAAGAATATTTACGTAGTTTTTCATAGGTCTGT TTTTCCTTTCATGCCTCTTAAAAACTTCTGTGCTTACATAAACATACTTAAAAGGTÍTTCTTTAA GATATTTTATTTTCCATTTAAAGGTGGACAAAAGCTACCTCCCTAAAAGTAAATACAAAGAGAA CTTATTTACACAGGGAAGGTTTAAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAGA CAACCTGGACATATTTTAAGATTCAGCATTTGAAAGATTTCCCTAGCCTCTTCCTTTTTCATTAG CCCAAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTCTGTATAACTCTGAAG TCCACCAAAAGTGGACCCTCTATATTTCCTCCCTTTTTATAGTCTTATAAGATACATTATGAAAG GTGACCGACTCTATTTTAAATCTCAGAATTTTAAGTTCTAGCCCCATGATAACCTTTTTCTTTGT AATTTATGCTTTCATATATCCTTGGTCCCAGAGATGTTTAGACAATTTTAGGCTCAAAAATTAAA GCTAACACAGGAAAAGGAACTGTACTGGCTATTACATAAGAAACAATGGACCCAAGAGAAGAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409</pre>

<subunit 1 of 1, 300 aa, 1 stop</pre>

<MW: 33655, pI: 9.31, NX(S/T): 1

MNIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSILVL WDINKRGVEETAAECRKLGVTAHAYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAGTVYPADLL STKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCGHEGIPYLIPYCSSKFAAVGF HRGLTSELQALGKTGIKTSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLIDGILTNKKMIFVP SYINIFLRLQKFLPERASAILNRMQNIQFEAVVGHKIKMK

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein amino acids 165-202, 37-49, 112-122 and 210-219

CGGCGGCGCGCGGGGCGCGAGGTGAGGGGCGCGAGGTTCCCAGCAGGATG ACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGTGCTGGGTCTTCATGATCCTGCTGATCAT CGGGGCCGCCGCCCACGCCCGGGCCGGACAGGGACAGGGAGCTCACGGCCGACTCCGATGTC GACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGACCTTCCCAGAAAGGAGAC GGAGCAGCCGCCTGCGCCGGGGAGCATGGAGGAGAGCGTGAGAGGCTACGACTGGTCCCCGCGCG ACGCCCGGCGCAGCCCAGACCAGGCCGGCAGCAGGCGGAGCGGAGCGTGCTGCGGGGCTTC TGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCGCGCATTCGACGACATCCCCAACTCGGA GCTGAGCCACCTGATCGTGGACGACCGGCACGGGCCATCTACTGCTACGTGCCCAAGGTGGCCT GCACCAACTGGAAGCGCGTGATGATCGTGCTGAGCGGAAGCCTGCTGCACCGCGGTGCGCCCTAC CGCGACCCGCTGCGCATCCCGCGCGAGCACGTGCACAACGCCAGCGCGCACCTGACCTTCAACAA GTTCTGGCGCCGCTACGGGAAGCTCTCCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCA AGTTCCTCTTCGTGCGCGACCCCTTCGTGCGCCTGATCTCCGCCTTCCGCAGCAAGTTCGAGCTG GAGAACGAGGAGTTCTACCGCAAGTTCGCCGTGCCCATGCTGCGGCTGTACGCCAACCACACCAC $\tt CCTGCCGGCTCGGCGCGAGGCCTTCCGCGCTGGCCTCAAGGTGTCCTTCGCCAACTTCATCC$ AGTACCTGCTGGACCCGCACACGGAGAAGCTGGCGCCCTTCAACGAGCACTGGCGGCAGGTGTAC CGCCTCTGCCACCCGTGCCAGATCGACTACGACTTCGTGGGGAAGCTGGAGACTCTGGACGAGGA CGCCGCGCAGCTGCAGCTACTCCAGGTGGACCGGCAGCTCCGCTTCCCCCCGAGCTACCGGA ACAGGACCGCCAGCAGCTGGGAGGAGGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAG CTGTATAAACTCTACGAGGCCGACTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCCG TTTTTATGACCTACGATTTTGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCCATTGAGT ACTGTATCGATATTGTTTTTTAAGATTAATATTTTCAGGTATTTAATACGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112</pre>

<subunit 1 of 1, 414 aa, 1 stop

<MW: 48414, pI: 9.54, NX(S/T): 4

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTADSD VDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAERRSVLRG FCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLSGSLLHRGAP YRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPFVRLISAFRSKFE LENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDPHTEKLAPFNEHWRQV YRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRTASSWEEDWFAKIPLAWRQ OLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein amino acids 329-332

TCGGGCCAGAATTCGGCACGAGGCGGCACGAGGCGCCTCACGGGGCTTTGGAGGTGAAAG AGGCCCAGAGTAGAGAGAGAGAGAGACCGACGTACACGGGATGCTACGGGAACGCGCTATGCCG GGAAGGTGGTGGTCGTGACCGGGGGCGGGCGCGCATCGGAGCTGGGATCGTGCGCGCCTTCGTG AACAGCGGGGCCCGAGTGGTTATCTGCGACAAGGATGAGTCTGGGGGCCGGGCCCTGGAGCAGGA GCTCCCTGGAGCTGTCTTTATCCTCTGTGATGTGACTCAGGAAGATGATGTGAAGACCCTGGTTT CCACAGAGGCCTGAGGAGACCTCTGCCCAGGGATTCCGCCAGCTGCTGGAGCTGAACCTACTGGG GACGTACACCTTGACCAAGCTCGCCCTCCCCTACCTGCGGAAGAGTCAAGGGAATGTCATCAACA TCTCCAGCCTGGTGGGGGCAATCGGCCAGGCCCAGGCAGTTCCCTATGTGGCCACCAAGGGGGCA GTAACAGCCATGACCAAAGCTTTGGCCCTGGATGAAAGTCCATATGGTGTCCGAGTCAACTGTAT CTCCCCAGGAAACATCTGGACCCCGCTGTGGGAGGAGCTGGCAGCCTTAATGCCAGACCCTAGGG CCACAATCCGAGAGGGCATGCTGGCCCAGCCACTGGGCCGCATGGGCCCGCTGAGGTCGGG GCTGCGGCAGTGTTCCTGGCCTCCGAAGCCAACTTCTGCACGGGCATTGAACTGCTCGTGACGGG GGGTGCAGAGCTGGGGTACGGGTGCAAGGCCAGTCGGAGCACCCCCGTGGACGCCCCCGATATCC $\tt CTTCCTGATTTCTCTCATTTCTACTTGGGGCCCCCTTCCTAGGACTCTCCCACCCCAAACTCCAA$ CCTGTATCAGATGCAGCCCCCAAGCCCTTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGGTCACC CTGCAGGTTCCCATAAAAACGATTTGCAGCC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045
<subunit 1 of 1, 270 aa, 1 stop
<MW: 28317, pI: 6.00, NX(S/T): 1

MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNSGARVVICDKDESGGRALEQELPGAVFILCDVTQ
EDDVKTLVSETIRRFGRLDCVVNNAGHHPPPQRPEETSAQGFRQLLELNLLGTYTLTKLALPYLR
KSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGNIWTPLWEEL
AALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGGAELGYGCKASRS
TPVDAPDIPS</pre>

Important features: N-glycosylation site. amino acids 138-141

Short-chain alcohol dehydrogenase family protein amino acids 10-22, 81-91, 134-171 and 176-185

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294</pre>

<subunit 1 of 1, 180 aa, 1 stop

<MW: 20437, pI: 9.58, NX(S/T): 1

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEYERN IEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCLGCVNPF TMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

Important features:
Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17 amino acids 96-180.

GCGCCGCCAGGCGTAGGCGGGGGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGGCGA AACATGCCGGCTGCGCCCCGCAGCTAACGGCGCTCCTGGCCGCCTGGATCGCGGCTGT GGCGGCGACGCCCGAGGAGGCCGCGCTGCCGCGGAGCAGAGCCGGGTCCAGCCCATGA CCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGATGCTGAAATTTTACGCCCCATGGTGT CCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAATGGTGAAATACTTCAGAT CAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTGGCCGCTTCTTTGTCACCACTC TCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGTTATCGTGGCCCAGGAATCTTCGAA CCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTCTTTTTAGCATCTCTGGCAAGATATGGCATC TTCACAACTATTTCACAGTGACTCTTGGAATTCCTGCTTGGTGTTCTTATGTGTTTTTCGTCATA GCCACCTTGGTTTTTTGGCCTTTTTATGGGTCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGT GCCACTTCCAAGGCATTTATCTGAGCGTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAG CTGAACAGTTGCAGGATGCGGAGGAGAAAAAGATGATTCAAATGAAGAAGAAAACAAAGACAGC CTTGTAGATGAAGAAGAAGAAGAAGATCTTGGCGATGAGGATGAAGCAGAGGAAGAAGAAGA GGAGGACAACTTGGCTGCTGGTGGATGAGGAGAGAGTGAGGCCAATGATCAGGGGCCCCCAG GAGAGGACGTGTGACCCGGGAGGAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAA CCCTGCCCAGCTGACACAGAGGTGGTGGAAGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGA CAAGGGACTG**TAG**ATTTAATGATGCGTTTTCAAGAATACACACCAAAACAATATGTCAGCTTCCC TTTGGCCTGCAGTTTGTACCAAATCCTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATG CTCTCTAGTCATTTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGTG ACAATCAGGATATAGAAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAACAAG TTCATTTACTTAGGGGTCAGAGAGTCTCGACCAGAGGAGGCCATTCCCAGTCCTAATCAGCACCT TCCAGAGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCTCCTGAGCATC CAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAAATTGAAAGGGCCTTGG GTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTGTGCTATGTTTTATTTCTTA CCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCTCCACACTCTTCACTATTATCTC GGTTTAGATAATCAGTAACCCATAACCCCTGAAGCTGTGACTGCCAAACATCTCAAATGAAATGTT TCCAAAATATAGTTGTTGTTGATTTTTTTTTAAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGT CCTCTAAGTCTTGCCAGTACAAGGTAGTCTTGTGAAGAAAAGTTGAATACTGTTTTGTTTTCATC TCAAGGGGTTCCCTGGGTCTTGAACTACTTTAATAATAACTAAAAAACCACTTCTGATTTTCCTT CAGTGATGTGCTTTTGGTGAAAGAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTT GTTTCCATCTTCTGTAATCTTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACT GTAAGTACCCAGGGAGGCTAATTTCTTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433</pre>

<subunit 1 of 1, 349 aa, 1 stop

<MW: 38952, pI: 4.34, NX(S/T): 1

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAPWCP SCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRGPGIFED LQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAWCSYVFFVIA TLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEKDDSNEEENKDSL VDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTREEVEPEEAEEGISEQP CPADTEVVEDSLRQRKSQHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase) amino acids 56-72

Flavodoxin proteins

amino acids 173-187

ATCTGGTTGAACTACTTAAGCTTAATTTGTTAAACTCCGGTAAGTACCTAGCCCACATGATTTGA CTATATCTATTCAGGGGCTCTCAAGAACA**ATG**GAATATCATCCTGATTTAGAAAATTTGGATGAA GATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAGGATAGCTGTTGTTTCAGAGAA AGGATCGTGTGCTGCATCTCCTTCGTGGCGCCTCATTGCTGTAATTTTGGGAATCCTATGCTTGG TAATACTGGTGATAGCTGTGGTCCTGGGTACCATGGGGGTTCTTTCCAGCCCTTGTCCTCCTAAT TGGATTATATATGAGAAGAGCTGTTATCTATTCAGCATGTCACTAAATTCCTGGGATGGAAGTAA AAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAGACAGCTCAAATGAATTGGGATTTA TAGTAAAACAAGTGTCTTCCCAACCTGATAATTCATTTTGGATAGGCCTTTCTCGGCCCCAGACT GAGGTACCATGGCTCTGGGAGGATGGATCAACATTCTCTTCTAACTTATTTCAGATCAGAACCAC TGTGTAGTGTGCCCTCATATAGTATTTGTGAGAAGAAGTTTTCAATG**TAA**GAGGAAGGGTGGAGA AGGAGAGAAATATGTGAGGTAGTAAGGAGGACAGAAAACAGAACAGAAAAGAGTAACAGCTGA GGTCAAGATAAATGCAGAAAATGTTTAGAGAGCTTGGCCAACTGTAATCTTAACCAAGAAATTGA AGGGAGAGGCTGTGATTTCTGTATTTGTCGACCTACAGGTAGGCTAGTATTATTTTTCTAGTTAG TTGAGATAGGGTCTCACTTTGTTACCCAGGCTGGAGTGCAGTGGCACAATCTCGACTCACTGCAG CTATCTCTCGCCTCAGCCCCTCAAGTAGCTGGGACTACAGGTGCATGCCACCATGCCAGGCTAAT ${f TTTTGGTGTTTTTTGTAGAGACTGGGTTTTGCCATGTTGACCAAGCTGGTCTCTAACTCCTGGGC$ TTAAGTGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGATGTGAGCCACCACCTG GCCCCAAGCTTGAATTTTCATTCTGCCATTGACTTGGCATTTACCTTGGGTAAGCCATAAGCGAA TCTTAATTTCTGGCTCTATCAGAGTTGTTTCATGCTCAACAATGCCATTGAAGTGCACGGTGTGT TGCCACGATTTGACCCTCAACTTCTAGCAGTATATCAGTTATGAACTGAGGGTGAAATATATTTC TGAATAGCTAAATGAAGAAATGGGAAAAAATCTTCACCACAGTCAGAGCAATTTTATTATTTTCA TCAGTATGATCATATTATGATTATCATCTTAGTAAAAAGCAGGAACTCCTACTTTTTCTTTATC TTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAACGGCACGATCTCGGCTCACCGC AACCTCCGCCCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGT CAGGCACCACCACCCGGCTAATTTTGTATTTTTTTAGTAGAGACAGGGTTTCTCCATGTCGGT ACAGGCGTGAGCCACTGCACCCAGCCTAGAATCTTGTATAATATGTAATTGTAGGGAAACTGCTC TCATAGGAAAGTTTTCTGCTTTTTAAATACAAAAATACATAAAAATACATAAAATCTGATGATGA ATATAAAAAAGTAACCAACCTCATTGGAACAAGTATTAACATTTTGGAATATGTTTTATTAGTTT TGTGATGTACTGTTTTACAATTTTTACCATTTTTTCAGTAATTACTGTAAAATGGTATTATTGG AATGAAACTATATTTCCTCATGTGCTGATTTGTCTTATTTTTTTCATACTTTCCCACTGGTGCTA TTTTTATTTCCAATGGATATTTCTGTATTACTAGGGAGGCATTTACAGTCCTCTAATGTTGATTA ATATGTGAAAAGAAATTGTACCAATTTTACTAAATTATGCAGTTTAAAATGGATGATTTTATGTT AAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912</pre>

<subunit 1 of 1, 201 aa, 1 stop

<MW: 22563, pI: 4.87, NX(S/T): 1

MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAVVLG TMGVLSSPCPPNWIIYEKSCYLFSMSLNSWDGSKRQCWQLGSNLLKIDSSNELGFIVKQVSSQPD NSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQLCSVPSYSIC EKKFSM

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 197-200

N-myristoylation sites.

amino acids 35-40 and 151-156

Homologous region to LDL receptor amino acids 34-67 and 70-200.

GGAAGGGGAGGAGCAGGCCACACAGGCCAGGCCGGTGAGGGACCTGCCCAGACCTGGAGGGTCTCGCTCTGTCACAC AGGCTGGAGTGCAGTGTGTGATCTTGGCTCATCGTAACCTCCACCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCC TCCCGAGTAGCTGGGATTACAGGTGGTGACTTCCAAGAGTGACTCCGTCGGAGGAAAATGACTCCCCAGTCGCTGCTG $CAGACGACACTGTTCCTGCTGAGTCTGCTCTTCCTGGTCCAAGGTGCCCACGGCAGG\overline{GGC}CACAGGGAAGACTTTCGC$ TTCTGCAGCCAGCGGAACCAGACACACAGGAGCAGCCTCCACTACAAACCCACACCAGACCTGCGCATCTCCATCGAG AACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGATCCTTCCCTGACCCCAGG GGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTCTATGGCAAGCGTGACTTCTTG CTGAGTGACAAAGCCTCTAGCCTCTGCTTCCAGCACCAGGAGGAGAGCCTGGCTCAGGGCCCCCCGCTGTTAGCC ACTTCTGTCACCTCCTGGTGGAGCCCTCAGAACATCAGCCTGCCCAGTGCCGCCAGCTTCACCTTCTCCTTCCACAGT CCTCCCCACACGCCGCTCACAATGCCTCGGTGGACATGTGCGAGCTCAAAAGGGACCTCCAGCTGCTCAGCCAGTTC CTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAGGAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAG $\tt CCCACAGCCGGCCTCCAGGACCTGCACATCCACTCCCGGCAGGAGGAGGAGCAGAGCGAGATCATGGAGTACTCGGTG$ AGCAGCCAAGCCCTGTTCCAGGACAAGAATTCCAGCCAAGTCCTGGGTGAGAAGGTCTTGGGGATTGTGGTACAGAAC ACCAAAGTAGCCAACCTCACGGAGCCCGTGGTGCTCACTTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAA TGTGTGTTCTGGGTTGAAGACCCCACATTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCGTCAGGAGA GAAACCCAAACATCTGCTTCTGCAACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCC GCCTACCTCTGCTCCAGGGTGCCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTG CGACTCGTGGTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTAAGCTGAGCGCCATGGGCTGGGGCTTCCCC ATCTTTCTGGTGACGCTGGTGGCCCTGGTGGATGTGGACAACTATGGCCCCATCATCTTGGCTGTGCATAGGACTCCA GAGGGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGC CTGGTGTTTCTGTTCAACATGGCCATGCTAGCCACCATGGTGGTGCAGATCCTGCGGCTGCGCCCCCACACCCAAAAG TGGTCACATGTGCTGACACTGCTGGGCCTCAGCCTGGTCCTTGGCCTGGCCCTGGGCCTTGATCTTCTTCTCCTTTGCT TCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCATCACCTCCTTCCAAGGCTTCCTCATCTTCATCTGG TACTGGTCCATGCGGCTGCAGGCCCGGGGTGGCCCCTCCCCTCTGAAGAGCAACTCAGACAGCGCCAGGCTCCCCATC AGCTCGGGCAGCACCTCGTCCAGCCGCATCTAGGCCTCCAGCCCACCTGCCCATGTGATGAAGCAGAGATGCGGCCTC ${\tt GTCGCACACTGCCTGTGGCCCCGAGCCAGGCCCAGGCCCAGGCCAGACTTTGGAAAGCCCAACGACCCAGGCCCAGGCCAGACTTTGGAAAGCCCAACGACCCAGGCCAGGCCAGGCCAGACTTTGGAAAGCCCAACGACCCAGGCCAGGCCAGGCCAGACTTTGGAAAGCCCAACGACCA$ ATGGAGAGATGGGCCGTTGCCATGGTGGACGGACTCCCGGGCTGGGCTTTTGAATTGGCCTTGGGGACTACTCGGCTC TCACTCAGCTCCCACGGGACTCAGAAGTGCGCCGCCATGCTGCCTAGGGTACTGTCCCCACATCTGTCCCAACCCAGC TGGAGGCCTGGTCTCTCCTTACAACCCCTGGGCCCAGCCCTCATTGCTGGGGGCCAGGCCTTGGATCTTGAGGGTCTG GCACATCCTTAATCCTGTGCCCCTGCCTGGGACAGAAATGTGGCTCCAGTTGCTCTGTCTCTCGTGGTCACCCTGAGG GCACTCTGCATCCTCTGTCATTTTAACCTCAGGTGGCACCCAGGGCGAATGGGGCCCAGGGCAGACCTTCAGGGCCAG CTCAGCCCCCAGTCCTCCATCTTCCCTGGGGTTCTCCTCCTCCCAGGGCCTCCTTGCTCCTTCGTTCACAG CTGGGGGTCCCCGATTCCAATGCTGTTTTTTGGGGAGTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGT $\tt CTACTGCACAAGCCTCGGCCTGACCCAGGCTCGGTACCGATGCGTGGGCTGGGCTAGGTCCCTCTGTCCATC$ TGGGCCTTTGTATGAGCTGCATTGCCCTTGCTCACCCTGACCAAGCACGCCTCAGAGGGGCCCTCAGCCTCTCCTG AAGCCCTCTTGTGGCAAGAACTGTGGACCATGCCAGTCCCGTCTGGTTTCCATCCCACCACCACTCCAAGGACTGAGACTG ACCTCCTCTGGTGACACTGGCCTAGAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCG GGAGCTACAGGGACAGGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTT GACCTTGAAGATGGGAAGGATGTTCTTTTTACGTACCAATTCTTTTTGTCTTTTGATATTAAAAAGAAGTACATGTTCA TTGTAGAGAATTTGGAAACTGTAGAAGAGAATCAAGAAGAAAAATAAAAATCAGCTGTTGTAATCGCCTAGCAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921</pre>

<subunit 1 of 1, 693 aa, 1 stop</pre>

<MW: 77738, pI: 8.87, NX(S/T): 7

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSEEAL TVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQHQEESLA QGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLLSQFLKHPQK ASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQDLHIHSRQEEEQS EIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVANL TEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRETQTSCFCNHLTYFAVLMV SSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPCRRKPRDYTIKVHMNLLLAVFL LDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLEGYNLYRLVVEVFGTYVPGYLLKLS AMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIYPSMCWIRDSLVSYITNLGLFSLVFLFN MAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLGLPWALIFFSFASGTFQLVVLYLFSIITSFQ GFLIFIWYWSMRLQARGGPSPLKSNSDSARLPISSGSTSSSRI

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

CGGACGCGTGGGCGGACGCGTGGCCGGACGCGTGGCCGGCTGGTTCAGGTCCAGGTTTTGCTTTGATCC TTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCTGCGATT CTCTGCTGCCAGAGCAGGCTCGGCGCTTCCACCCCAGTGCAGCCTTCCCCTGGCGGTGGTGAAAGAGACTCGGGAGTC GCTGCTTCCAAAGTGCCCGCCGTGAGTGAGCTCTCACCCCAGTCAGCCAAATGAGCCTCTTCGGGCTTCTCCTGCTGA CATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCCAGTTTTCCAGCAACA AGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGTCTACTAATGGAAGTATTCACAGCCCAA GGTTTCCTCATACTTATCCAAGAAATACGGTCTTGGTATGGAGATTAGTAGCAGTAGAGGAAAATGTATGGATACAAC TTACGTTTGATGAAAGATTTGGGCTTGAAGACCCAGAAGATGACATATGCAAGTATGATTTTGTAGAAGTTGAGGAAC CCAGTGATGGAACTATATTAGGGCGCTGGTGTGGTTCTGGTACTGTACCAGGAAAACAGATTTCTAAAGGAAATCAAA TTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGTTCTGCATCCACTACAACATTGTCATGCCAC AATTCACAGAAGCTGTGAGTCCTTCAGTGCTACCCCCTTCAGCTTTGCCACTGGACCTGCTTAATAATGCTATAACTG CCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAGAGAGATGGCAGTTGGACTTAGAAGATCTATATAGGC CAACTTGGCAACTTCTTGGCAAGGCTTTTGTTTTTGGAAGAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGG AGGTAAGATTATACAGCTGCACACCTCGTAACTTCTCAGTGTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTT GTGTCCCAAGCAAAGTTACTAAAAAATACCACGAGGTCCTTCAGTTGAGACCAAAGACCGGTGTCAGGGGATTGCACA CCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAGACATCAAAC AGAATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGAGGCCTAAAGGACAGGAGAAAAGGTCTTCAATCGTGGAAAGAA AATTAAATGTTGTATTAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTAT TTCAGTTCTTTCGATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCC TCACATATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACT TGTGTCATGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAAGAACTACA TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTGTTT CATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCTATTTT ACCAAAGGTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTTAGCTTGGTAAATTTTTTCTAAACACAAT TGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCATTCTCGTATGGT GCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAAGACTTTTTGAAAATA ATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGAAAGTAGACATTCAGATCC AGCCATTACTAACCTATTCCTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACATAAAGCACCTTGAAAAAGACTT TTAAACTCTGTTCCATACACTTGTATAAATACATGGATATTTTTATGTACAGAAGTATGTCTCTTAACCAGTTCACTT ATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGTAAAATGCTTAATATNGTGCCTAGGTTATGT AAAAAAAAAAAGGTTTAGGGATAACAGGGTAATGCGGCC

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPRFPH
TYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWCGSGTVP
GKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLLNNAITAFST
LEDLIRYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLYSCTPRNFSVSIR
EELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQLRPKTGVRGLHKSLT
DVALEHHEECDCVCRGSTGG

Signal sequence:

amino acids 1-14

CCCATCTCAAGCTGATCTTGGCACCTCTCATGCTCTGCTCTTCAACCAGACCTCTACATTCCATTTTGGAAGAAGA CTAAAAATGGTGTTTCCAATGTGGACACTGAAGAGACAAATTCTTATCCTTTTTAACATAATCCTAATTTCCAAACTC TGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTCACCATTAACCAC ATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGATGCAACTGTGTACCT ATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGCTTTAGTGGACTCACTTAT TTAAAATCCCTTTACCTGGATGGAAACCAGCTACTAGAGATACCGCAGGGCCTCCCGCCTAGCTTACAGCTTCTCAGC CTTGAGGCCAACACATCTTTTCCATCAGAAAAGAGAATCTAACAGAACTGGCCAACATAGAAATACTCTACCTGGGC CAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAAGATGCCTTCCTAAACTTGACAAAGTTA AAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTTTTGCCATCTACTTTAACAGAACTATATCTC TACAACAACATGATTGCAAAAATCCAAGAAGATGATTTTAATAACCTCAACCAATTACAAATTCTTGACCTAAGTGGA AATTGCCCTCGTTGTTATAATGCCCCATTTCCTTGTGCGCCGTGTAAAAATAATTCTCCCCTACAGATCCCTGTAAAT GCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTACACAGTAACTCTCTTCAGCATGTGCCCCCCAAGATGGTTT AAGAACATCAACAAACTCCAGGAACTGGATCTGTCCCAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTG CATTTTCTCCCCAGCCTCATCCAATTGGATCTGTCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTA TCACAAGCATTTTCTTCACTGAAAAGCCTGAAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAGCTTT AACCTCTCGCCATTACATAATCTTCAAAATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTC AGCATGTTTAAACAATTTAAAAGACTGAAAGTCATAGATCTTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGT GAAGTTGGCTTCTGCTCAAATGCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTC AGATATGATAAGTATGCAAGGAGTTGCAGATTCAAAAACAAAGAGGCTTCTTTCATGTCTGTTAATGAAAGCTGCTAC CTCAAATGCCTGAATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTG AGATATTTGGACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTT CTGGATATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGAACCTAAAG ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGAGAGGTGATAACAGATACTTACAATTATTCAAGAAT $\tt CTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTGATGGTATGCCT$ CCAAATCTAAAGAATCTCTCTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAAACTCCAGTGTCTAAAGAAC CTGGAAACTTTGGACCTCAGCCACAACCAACTGACCACTGTCCCTGAGAGATTATCCAACTGTTCCAGAAGCCTCAAG **AATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTCCAGTTGCGATATCTG** GATCTCAGCTCAAATAAAATCCAGATGATCCAAAAGACCAGCTTCCCAGAAAATGTCCTCAACAATCTGAAGATGTTG CTTTTGCATCATAATCGGTTTCTGTGCACCTGTGATGCTGTGTGGTTGTCTGGTGGGTTAACCATACGGAGGTGACT ATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCAGGAGCACAAGGGCCAAAGTGTGATCTCCCTGGATCTG TACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATATCTGTATCTCTCTTTCTCATGGTGATG ATGACAGCAAGTCACCTCTATTTCTGGGATGTGTGGTATATTTACCATTTCTGTAAGGCCAAGATAAAGGGGTATCAG $\tt CGTCTAATATCACCAGACTGTTGCTATGATGCTTTTATTGTGTATGACACTAAAGACCCAGCTGTGACCGAGTGGGTT$ TTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAACATTTTAATTTATGTCTCGAGGAAAGGGACTGGTTA TATGCAAAGACTGAAAATTTTAAGATAGCATTTTACTTGTCCCATCAGAGGCTCATGGATGAAAAAGTTGATGTGATT ATCTTGATATTTCTTGAGAAGCCCTTTCAGAAGTCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTC CTTGAGTGGCCAACAACCCGCAAGCTCACCCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCAT GCCTGGC

MVFPMWTLKRQILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGGIPT NTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLQIKPRSFSGLTYLK SLYLDGNQLLEIPQGLPPSLQLLSLEANNIFSIRKENLTELANIEILYLGQNCYYRNPCYVSYSI EKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIQEDDFNNLNQLQILDLSGNC PRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSNSLQHVPPRWFKNINKLQELDLSQNF LAKEIGDAKFLHFLPSLIOLDLSFNFELOVYRASMNLSQAFSSLKSLKILRIRGYVFKELKSFNL SPLHNLONLEVLDLGTNF1K1ANLSMFKOFKRLKV1DLSVNK1SPSGDSSEVGFCSNARTSVESY EPOVLEOLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGQTLDLSKNSIFFVKSSDFQHLSFLK CLNLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGI THMLNFTKNLKVLOKLMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLL KLEELDISKNSLSFLPSGVFDGMPPNLKNLSLAKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVP ERLSNCSRSLKNLILKNNOIRSLTKYFLODAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLL HHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTNLILFSL SISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYORLISPDCCYDAFIVYDTKDPAVTEWVLA ELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTDKYAKTENFKIAFYLSH ORLMDEKVDVIILIFLEKPFOKSKFLOLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVA YSQVFKETV

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

GGGTACCATTCTGCGCTGCTGCAAGTTACGGAATGAAAAATTAGAACAACAGAAACATGGAAAACATGTTCCTTCAGT $CGTCAATGCTGACCTGCATTTTCCTGCTAATATCTGGTTCCTGTGAGTTATGCGCC\overline{GAA}GAAAATTTTTCTAGAAGCT$ ATCCTTGTGATGAGAAAAAGCAAAATGACTCAGTTATTGCAGAGTGCAGCAATCGTCGACTACAGGAAGTTCCCCAAA TGCAAAATCTCACTAAAATAAATCTAAACCACAACCCCAATGTACAGCACCAGAACGGAAATCCCGGTATACAATCAA ATGGCTTGAATATCACAGACGGGGCATTCCTCAACCTAAAAAACCTAAGGGAGTTACTGCTTGAAGACAACCAGTTAC CCCAAATACCCTCTGGTTTGCCAGAGTCTTTGACAGAACTTAGTCTAATTCAAAACAATATATACAACATAACTAAAG AGGGCATTTCAAGACTTATAAACTTGAAAAATCTCTATTTGGCCTGGAACTGCTATTTTAACAAAGTTTGCGAGAAAA CTAACATAGAAGATGGAGTATTTGAAACGCTGACAAATTTGGAGTTGCTATCACTATCTTTCAATTCTCTTTCACACG TGCCACCCAAACTGCCAAGCTCCCTACGCAAACTTTTTCTGAGCAACACCCCAGATCAAATACATTAGTGAAGAAGATT TCAAGGGATTGATAAATTTAACATTACTAGATTTAAGCGGGAACTGTCCGAGGTGCTTCAATGCCCCATTTCCATGCG TGCCTTGTGATGGTGGTGCTTCAATTAATATAGATCGTTTTGCTTTTCAAAACTTGACCCAACTTCGATACCTAAACC TCTCTAGCACTTCCCTCAGGAAGATTAATGCTGCCTGGTTTAAAAATATGCCTCATCTGAAGGTGCTGGATCTTGAAT TCAACTATTTAGTGGGAGAAATAGTCTCTGGGGCATTTTTAACGATGCTGCCCCGCTTAGAAATACTTGACTTGTCTT TTAACTATATAAAGGGGAGTTATCCACAGCATATTAATATTTCCAGAAACTTCTCTAAACTTTTGTCTCTACGGGCAT TGCATTTAAGAGGTTATGTGTTCCAGGAACTCAGAGAAGATGATTTCCAGCCCCTGATGCAGCTTCCAAACTTATCGA CTATCAACTTGGGTATTAATTTTATTAAGCAAATCGATTTCAAACTTTTCCAAAATTTCTCCAATCTGGAAATTATTT ACTTGTCAGAAAACAGAATATCACCGTTGGTAAAAGATACCCGGCAGAGTTATGCAAATAGTTCCTCTTTTCAACGTC ATATCCGGAAACGACGCTCAACAGATTTTGAGTTTGACCCACATTCGAACTTTTATCATTTCACCCGTCCTTTAATAA AGCCACAATGTGCTGCTTATGGAAAAGCCTTAGATTTAAGCCTCAACAGTATTTTCTTCATTGGGCCAAACCAATTTG AAAATCTTCCTGACATTGCCTGTTTAAATCTGTCTGCAAATAGCAATGCTCAAGTGTTAAGTGGAACTGAATTTTCAG ${\tt CCATTCCTCATGTCAAATATTTGGATTTGACAAACAATAGACTAGACTTTGATAATGCTAGTGCTCTTACTGAATTGT}$ CCGACTTGGAAGTTCTAGATCTCAGCTATAATTCACACTATTTCAGAATAGCAGGCGTAACACATCATCTAGAATTTA TTCAAAATTTCACAAATCTAAAAGTTTTAAACTTGAGCCACAACAACATTTATACTTTAACAGATAAGTATAACCTGG AAAGCAAGTCCCTGGTAGAATTAGTTTTCAGTGGCAATCGCCTTGACATTTTTGTGGAATGATGATGACAACAGGTATA TCTCCATTTTCAAAGGTCTCAAGAATCTGACACGTCTGGATTTATCCCTTAATAGGCTGAAGCACATCCCAAATGAAG CATTCCTTAATTTGCCAGCGAGTCTCACTGAACTACATATAAATGATAATATGTTAAAGTTTTTTAACTGGACATTAC GTAGTCTGAAGCACCTCGATTTAAGTTCCAATCTGCTAAAAACAATCAACAAATCCGCACTTGAAACTAAGACCACCA ATGAACATCTGAATGTCAAAATTCCCAGACTGGTAGATGTCATTTGTGCCAGTCCTGGGGATCAAAGAGGGAAGAGTA ${\tt TTGTGAGTCTGGAGCTAACAACTTGTGTTTCAGATGTCACTGCAGTGATATTATTTTTCTTCACGTTCTTTATCACCA}$ AGGTAAAAGGCTACAGGTCTCTTTCCACATCCCAAACTTTCTATGATGCTTACATTTCTTATGACACCAAAGATGCCT CTGTTACTGACTGGGTGATAAATGAGCTGCGCTACCACCTTGAAGAGAGCCGAGACAAAAACGTTCTCCTTTGTCTAG AGGAGAGGGATTGGGACCCGGGATTGGCCATCATCGACAACCTCATGCAGAGCATCAACCAAAGCAAGAAAACAGTAT TTGTTTTAACCAAAAAATATGCAAAAAGCTGGAACTTTAAAACAGCTTTTTACTTGGCTTTTGCAGAGGCTAATGGATG AGAACATGGATGTGATTATATTTATCCTGCTGGAGCCAGTGTTACAGCATTCTCAGTATTTGAGGCTACGGCAGCGGA TCTGTAAGAGCTCCATCCTCCAGTGGCCTGACAACCCGAAGGCAGAAGGCTTGTTTTGGCAAACTCTGAGAAATGTGG ATTTCGCGCCATAATAAAGATGCAAAGGAATGACATTTCTGTATTAGTTATCTATTGCTATGTAACAAATTATCCCAA AACTTAGTGGTTTAAAACAACACATTTGCTGGCCCACAGTTTTTGAGGGTCAGGAGTCCAGGCCCAGCATAACTGGGT CCTCTGCTCAGGGTGTCTCAGAGGCTGCAATGTAGGTGTTCACCAGAGACATAGGCATCACTGGGGTCACACTCATGT GGTTGTTTTCTGGATTCAATTCCTCCTGGGCTATTGGCCAAAGGCTATACTCATGTAAGCCATGCGAGCCTCTCCCAC AAGGCAGCTTGCTTCATCAGAGCTAGCAAAAAAGAGAGGTTGCTAGCAAGATGAAGTCACAATCTTTTGTAATCGAAT CAAAAAGTGATATCTCATCACTTTGGCCATATTCTATTTGTTAGAAGTAAACCACAGGTCCCACCAGCTCCATGGGA GTGACCACCTCAGTCCAGGGAAAACAGCTGAAGACCAAGATGGTGAGCTCTGATTGCTTCAGTTGGTCATCAACTATT ACCATCTTAGCAGTTGACCTAACACATCTTCTTTTCAATATCTAAGAACTTTTGCCACTGTGACTAATGGTCCTAATA CAGTTGCTTTTACAAATATTTGCTGTAACATTTGACTTCTAAGGTTTAGATGCCATTTAAGAACTGAGATGGATAGCT TTTAAAGCATCTTTTACTTCTTACCATTTTTTAAAAGTATGCAGCTAAATTCGAAGCTTTTGGTCTATATTGTTAATT

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQTVGKYV TELDLSDNFITHITNESFOGLONLTKINLNHNPNVOHONGNPGIOSNGLNITDGAFLNLKNLREL LLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKVCEKTNIEDG VFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTOIKYISEEDFKGLINLTLLDLSGNCPRC FNAPFPCVPCDGGASINIDRFAFQNLTQLRYLNLSSTSLRKINAAWFKNMPHLKVLDLEFNYLVG EIVSGAFLTMLPRLEILDLSFNYIKGSYPOHINISRNFSKLLSLRALHLRGYVFOELREDDFQPL MOLPNLSTINLGINFIKQIDFKLFQNFSNLEIIYLSENRISPLVKDTRQSYANSSSFQRHIRKRR STDFEFDPHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFIGPNQFENLPDIACLNLSANSNAQV LSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEVLDLSYNSHYFRIAGVTHHLEFIQNFTN LKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRLDILWNDDDNRYISIFKGLKNLTRLDLSLNR LKHIPNEAFLNLPASLTELHINDNMLKFFNWTLLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLR TLLLSHNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTTKLSMLELHGNPFECTCDI GDFRRWMDEHLNVKIPRLVDVICASPGDORGKSIVSLELTTCVSDVTAVILFFFTFFITTMVMLA ALAHHLFYWDVWFIYNVCLAKVKGYRSLSTSOTFYDAYISYDTKDASVTDWVINELRYHLEESRD KNVLLCLEERDWDPGLAIIDNLMQSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVI IFILLEPVLQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQ Y

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 826-848

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGA CCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGCTGCAAGGGAGGCTCCTGTGGACAGGCC AGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAG GGTCCATCTCCAGTCCCAGGACACAGCAGCGCCACCATGGCCACGCCTGGGCTCCAGCAGCATC AGCAGCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCGGAGGAGCAGCTCCTGCCCCT GTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGG CACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGC ACAGAGCACGCCTACCGGCCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTC CGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCA GCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCT CGCTACGCGTGCTGCCCCGGCTGGAAGAGGCCCAGCGGCCTTCCTGGGGCCTGTGGAGCAGCAAT ATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGCCGCTGCCGCTGCCCTGCAG GATGGCGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCC CAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGC AGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGG ACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTG $\tt CAGCTGGTGCTGGCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCC$ GGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCC TCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCT GGCTACCCCACCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAG AAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTT GGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTY RTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWR GDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSA MKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFL EEOLGSCSCKKDS

Signal sequence:

1-19

GCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGC TAGGGTCCATCTCCAGTCCCAGGACACAGCGCCCACCATGGCCACGCCTGGGCTCCAGCAGC ATCAGAGCAGCCCTGTGGTTGGCAGCAAAGTTCAGCTTGGCTGGGCCCGCTGTGAGGGGCTTCG CGCTACGCCCTGCGGTGTCCCGAGGGCTGAGGTCTCCTCATCTTCTCCCTAGCAGTGGATGAGCA ACCCAACGGGGGCCCGGGGAGGGAACTGGCCCCGAGGGAGAGGAACCCCAAAGCCACATCTGTA GCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGAGGCACAGGTGGCCCCCACCA CCCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGA GGAGAAGGCCACCCGCCTGGAGGCACAGGCC**ATG**AGGGGCTCTCAGGAGGTGCTGCTGATGTGG CCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCA $\tt CCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGC$ CCTGGGCTGGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCT CTGGCCGCTGCCGCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGC AGTGCTAGGAGGGGGGCTGTCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTG TTGGGAGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGCCCCCCAGGG GTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGC ACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCA TCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAA GACTCGTGACTGCCCAGCGCTCCAGGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGC CCTTCCTCCTCCTCCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGG GATCTTCTCTGTGAATCCACCCTGGCTACCCCACCCTGGCTACCCCAACGGCATCCCAAGGCC AGGTGGACCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGC CAGGCAGCCCGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAA **ATGAAACGTG**

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTY RTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWR GDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSA MKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFL EEQLGSCSCKKDS

Signal sequence:

1-19

GGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGGTCCATC TCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGCTCCAGCAGCATCAGCAGCCC CCAGGACCGGGGGGCACAGGTGGCCCCCACCACCGGAGGAGCAGCTCCTGCCCCTGTCĆGGGG GATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAAGGCCACCCCGCCTGGAGGCACAGGCC **ATG**AGGGGCTCTCAGGAGGTGCTGATGTGGCTTCTGGTGTTTGGCAGTGGGCGCACAGAGCA CGCCTACCGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGT TCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTAC CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGC GTGCTGCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGC CGCCATGCCGGAACGGAGGGAGCTGTCCCAGCCTGGCCGCTGCCCTGCCCTGCAGGATGGCGG CGTCAACACCGCCGCAGTTACTGGTGCCAGTGTTGGGAGGGCACAGCCTGTCTGCAGACGGTA CACTCTGTGTGCCCAAGGGAGGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCA ATGAAGGAAGAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGT GCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC GAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGAC TGAGCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAGAAGCCA CCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCTCCTCCTCCCCTTCCTCGGG AGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCC CCACCCTGGCTACCCCAACGCCAACGCCCAGGCCGGCCCTCAGCTGAGGGAAGGTACGAGC GGGGGCTGCTGACCCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTY RTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWR GDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSA MKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFL EEQLGSCSCKKDS

Signal sequence:

1-19

GGTTGCCACAGCTGGTTTAGGGCCCCGACCACTGGGGCCCCTTGTCAGGAGGAGACAGCCTCCCGGCCCGGGAGGAC GTCTCCGTGTTTCAGGCCGGCTCCCCTTCCTGGTCTCCCTTCTCCCGCTGGGCCGGTTTATCGGGAGAGATTGTCT TCCAGGGCTAGCAATTGGACTTTTGATGATGTTTGACCCAGCGCAGGAATAGCAGGCAACGTGATTTCAAAGCTGGG $\tt CTCAGCCTCTGTTTCTCTCTGTGTAATCGCAAAACCCATTTTGGAGCAGGAATTCCAATC \underline{ATG} \texttt{TCTGTGATGGTGG}$ $\tt CCCGGCAAAAGGGCATTTTCTACCTGACCCTTTTCCTCATCCTGGGGACATGTACACTCTTCTTCGCCTTTGAGTGCC$ GCTACCTGGCTGTTCAGCTGTCTCCTGCCATCCCTGTATTTGCTGCCATGCTCTTTCTCCATGGCTACACTGT TGAGGACCAGCTTCAGTGACCCTGGAGTGATTCCTCGGGCGCTACCAGATGAAGCAGCTTTCATAGAAATGGAGATAG AAGCTACCAATGGTGCGGTGCCCCAGGGCCAGCGACCACCGCCTCGTATCAAGAATTTCCAGATAAACAACCAGATTG TGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCCTCCCCGGGCCTCCCATTGCAGCATCTGTGACAACTGTG TGGAGCGCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTGGAAAGAGGAACTACCGCTACTTCTACCTCTTCA TCCTTTCTCTCTCCCTCACAATCTATGTCTTCGCCTTCAACATCGTCTATGTGGCCCTCAAATCTTTGAAAATTG GCTTCTTGGAGACATTGAAAGAAACTCCTGGAACTGTTCTAGAAGTCCTCATTTGCTTCTTTACACTCTGGTCCGTCG TGGGACTGACTGGATTTCATACTTTCCTCGTGGCTCTCAACCAGACAACCAATGAAGACATCAAAGGATCATGGACAG GGAAGAATCGCGTCCAGAATCCCTACAGCCATGGCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTGGCCCCCTTGC CCCCCAGTGTGCTGGATCGAAGGGGTATTTTGCCACTGGAGGAAAAGTGGAAGTCGACCTCCCAGTACTCAAGAGACCA GTAGCAGCCTCTTGCCACAGAGCCCAGCCCCCACAGAACACCTGAACTCAAATGAGATGCCGGAGGACAGCAGCACTC GAGACTTTTGTTTGTGTTTAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGAGCAAGTAAG CTGTCCCTTTTAACTGTTTTTCTTTGGTCTTTAGTCACCCAGTTGCACACTGGCATTTTCTTGCTGCAAGCTTTTTTA AATTTCTGAACTCAAGGCAGTGGCAGAAGATGTCAGTCACCTCTGATAACTGGAAAAATGGGTCTCTTGGGCCCTGGC ACTGGTTCTCCATGGCCTCAGCCACAGGGTCCCCTTGGACCCCCTCTCTTCCCTCCAGATCCCAGCCCTCCTGCTTGG ${\tt GGTCACTGGTCTCATTCTGGGGCTAAAAGTTTTTGAGACTGGCTCAAATCCTCCCAAGCTGCTGCACGTGCTGAGTCC}$ AGAGGCAGTCACAGAGACCTCTGGCCAGGGGATCCTAACTGGGTTCTTGGGGTCTTCAGGACTGAAGAGGAGGAGGAGAG ${\tt TGGGGTCAGAAGATTCTCCTGGCCACCAAGTGCCAGCATTGCCCACAAATCCTTTTAGGAATGGGACAGGTACCTTCC}$ ACTTGTTGTANNNNNNNNNNNNNNNNNNNNNNNNNTTGTTTTTCCTTTTGACTCCTGCTCCCATTAGGAGCAGGAA TGGCAGTAATAAAAGTCTGCACTTTGGTCATTTCTTTTCCTCAGAGGAAGCCCGAGTGCTCACTTAAACACTATCCCC TCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGGAAACCAAGGCACAGAGAGGCTCTCCTCTCC AAGCCCAGCACTGCTGCCCTCTCGGGTAACTCACCCTAAGGCCTCGGCCCACCTCTGGCTATGGTAACCACACTGGGG GCTTCCTCCAAGCCCCGCTCTTCCAGCACTTCCACCGGCAGAGTCCCAGAGCCACTTCACCCTGGGGGTGGGCTGTGG CCCCAGTCAGCTCTGCTCAGGACCTGCTCTATTTCAGGGAAGAAGATTTATGTATTATATGTGGCTATATTTCCTAG AGCACCTGTGTTTTCCTCTTTCTAAGCCAGGGTCCTGTCTGGATGACTTATGCGGTGGGGGGAGTGTAAACCGGAACTT TTCATCTATTTGAAGGCGATTAAACTGTGTCTAATGCA

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAVQLS
PAIPVFAAMLFLFSMATLLRTSFSDPGVIPRALPDEAAFIEMEIEATNGAVPQGQRPPPRIKNFQ
INNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNYRYFYLFILSLSLLT
IYVFAFNIVYVALKSLKIGFLETLKETPGTVLEVLICFFTLWSVVGLTGFHTFLVALNQTTNEDI
KGSWTGKNRVQNPYSHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSRPPSTQETSSSLLPQS
PAPTEHLNSNEMPEDSSTPEEMPPPEPPPQEAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

AAAACCCTGTATTTTTACAATGCAAATAGACAATNANCCTGGAGGTCTTTGAATTAGGTATTAT
AGGGATGGTGGGGTTGATTTTTTTCCTGGAGGCTTTTGGCTTTTGGACTCTCNCTTTCTCCCACA
GAGCNCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTTGGAAAGAGGAACTACCGCTANTT
CTACCTCTTCATCCTTTNTCTCTCCCNCCTCACAATCTATGTCTTCGCCTTCAACATCGT

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAATCT ATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCACGGGGCTGGC TGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCCCCAAAGCTATGG ACAACGTGACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTATTGACAACCGGGTCACC ${\tt CGGGTGGCCTGAAACCGCAGCACCATCCTCTATGCTGGGAATGACAAGTGGTGCCTGGATCC}$ TCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCGAGATCCAGAACGTGGATGTGT ATGACGAGGCCCTTACACCTGCTCGGTGCAGACAGACAACCACCCAAAGACCTCTAGGGTCCAC CTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTCTTCAGATATCTCCATTAATGAAGGGAA CAATATTAGCCTCACCTGCATAGCAACTGGTAGACCAGAGCCTACGGTTACTTGGAGACACATCT CAGTCAGGGGACTACGAGTGCCTCCAATGACGTGGCCGCCCCGTGGTACGGAGAGTAAA GGTCACCGTGAACTATCCACCATACATTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAA AGGGGACACTGCAGTGTGAAGCCTCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAAGAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCAT ACACCAATGCCAGCATCATGCTATTTGGTCCAGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCG AGGAGGCAGGCTGCGTCTGCTGCTCTCTTCTGGTCTTGCACCTGCTTCTCAAATTT**TGA**TG TGAGTGCCACTTCCCCACCCGGGAAAGGCTGCCGCCACCACCACCACCAACACACAGCAATGGC AACACCGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAACACAGCCTCATGGGACA GAAATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGAAAAGAGTTTTAAAAAAAGAAATTGAAA ATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGCACAC CCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAAGGGCTCA GCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCAAATTCAATCA GTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGGGCACTTTGGTAGA

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNRVTR VAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPKTSRVHL IVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYLEIQGITREQ SGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAVPSAEFQWYKDDK RLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIMLFGPGAVSEVSNGTSR RAGCVWLLPLLVLHLLLKF

Signal peptide:

amino acids 1-28

GAAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCACG
GGGCTGGCTGCTCTGTGTCTCTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCCCCAA
AGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTATTGACAACC
GGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGACAAGTGGTGC
CTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCCAGAACGT
GGATGTGTATGACGAGGGCCCTTACACCTGCTCGGTGCAGACAACCACCCAAAGACCTCTA
GGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTCTTCAGATATCTCCATTAAT
GAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGACCAGAG

ATGGCTGGTGACGGCGGGGCCGGGCAGGGGACCGGGGCCGGGCCCGGGAGCCGGGCCAGCTGCCGGGAGCCCTGAATC ACCGCCTGGCCCGACTCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAGAAGGGG CTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCATCCCACAGCACCTGCCTTACAGAGGCCTGCATT CGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCCTGTGAGGACTTTTACCAGTTCTCCTGTGGG GGCTGGATTCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAACCAG GCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCAGAAGACACAGCGCTTCTAC TGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACC TTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTGCTCACTGCCTATCTGGATTACATGGAG GAACTGGGGATGCTGGTGGGCGGCCCCACCTCCACGAGGGAGCAGATGCAGCAGGTGCTGGAGTTGGAGATACAG CCTGTGGTGGTGTATGGGATGGATTATTTGCAGCAGGTGTCAGAGCTCATCAACCGCACGGAACCAAGCATCCTGAAC AATTACCTGATCTGGAACCTGGTGCAAAAGACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAAGCTG $\tt CTGGAGACCCTCTATGGCACTAAGAAGTCCTGTGTGCCGAGGTGGCAGACCTGCATCTCCAACACGGATGACGCCCTT$ AAAGCAGATGCCATCTATGATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGAC GGGTACGAAATTTCTGAAGATTCTTTCTTCCAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGAC AATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGT GGCATCGGTGTGGTCATGGGCCATGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAAC $\tt CTGCGGCCCTGGTGGCAGATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAGTACAATCAA$ TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGGAGAACATTACTGACAACGGGGGGCTGAAGGCT GACCCCCACAGCCCTGCCCGCTTCCGCGTGCTGGGCACTCTCTCCAACTCCCGTGACTTCCTGCGGCACTTCGGCTGC GGCCAGTTCCCATAGGAAGGAGTCTGCC

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSHSTC
LTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQAILKHLL
ENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDNFMEVLKAVA
GTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAYLDYMEELGMLLG
GRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAPSMDWLEFLSFLLSPL
ELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSLDRRFESAQEKLLETLYGT
KKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMISEIRTAFEEALGQLVWMDEKT
RQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSFFQNMLNLYNFSAKVMADQLRKPPS
RDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNHPKALNFGGIGVVMGHELTHAFDDQGRE
YDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQVNGERLNGRQTLGENITDNGGLKAAYNAYKA
WLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCSVRTPESSHEGLVTDPHSPARFRVLGTLSNSRDF
LRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain: amino acids 32-57

CCGGCCGGCCGCGCCCGGCCCAGAGCCCCCCGTGCTGCCCATCCGTTCTGAGAAGGAGCCGCTGCCCGTTCGGGG CGGGACCCGCGGGCAGCCCCCGGGGCGCACACGGCGCGAGCTGGGCAGCCGCCCCCAGCCAAGCCCGTCCCCGCAGG $\tt CTGCGTGCTGCGCGCGGGGCGCAGTGGGGTCGCCGTACCAGGGGCCCTGGCAGGGTCAGCTGCAAGAACATCAA$ ACCAGAGTGCCCAACCCCGGCCTGTGGGCAGCCGCCCAGCTGCCGGGACACTGCTGCCAGACCTGCCCCAGGACTT CGTGGCGCTGCTGACAGGGCCGAGGTCGCAGGCGGTGGCACGAGCCCGAGTCTCGCTGCTGCGCTCTAGCCTCCGCTT CCCTGCAGCCCCACCCAAGATGGCCTGGTCTGTGGGGGTGTGGCGGGCAGTGCCTCGGTTGTCTCTGCGGCTCCTTAG GGCCCTGTCCCCAGAGACCTTCAGTGCCATCCTGACTCTAGAAGGCCCCCACCAGCAGGGGCGTAGGGGGCATCACCCT $\tt CTTGAGGCTCCAGATTCTACACCAGGGGCAGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGAACCAGGCTT$ GGCAGGCAGGCCAGGGCTGCGCATCAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGTCCTGCAAAGTGTCCTTTG GATCCTCCAGGTGCAATTGGTAGGGACAACCAGTGAGGTGGTGGCCATGACACTGGAAACCAAGCCTCAGCGGAGGGA TCAGCCCACTGTCCTGTGCCACATGGCTGGCCTATCCTCCCCTGCCCCAGGCCGTGGGTATCTGCCCTGGGCTGGG TGCCCGAGGGGCTCATATGCTGCTGCAGAATGAGCTCTTCCTGAACGTGGGCACCAAGGACTTCCCAGACGGAGAGCT GCTACCCCCTGTGAAGAGCCAAGCAGCAGGGCACGCCTGGCTTTCCTTGGATACCCACTGTCACCTGCACTATGAAGT GCTGCTGGCTGGGCTTGGTGGCTCAGAACAAGGCACTGTCACTGCCCACCTCCTTGGGCCTCCTGGAACGCCAGGGCC TCGGCGGCTGCTGAAGGGATTCTATGGCTCAGAGGCCCAGGGTGTGGTGAAGGACCTGGAGCCGGAACTGCTGCGGCA CCTGGCAAAAGGCATGGCTTCCCTGATGATCACCACCAAGGTAGCCCCAGAGGGGAGCTCCGAGGGCAGCCTCTCCTC CCAGGTGCACATAGCCAACCAATGTGAGGTTGGCGGACTGCGCCTGGAGGCGGCCGGGGCCGAGGGGGTGCGGCCGC TCCTGGGCGGCCCCGAGACCCCAACACTGCTTCTTCGAGGGGCAGCAGCGCCCCCACGGGGCTCGCTGGGCGCCCAA GGGGGGCACTGGAGAGGTGCACTGTGAGAAGGTGCAGTGTCCCCGGCTGGCCTGTGCCCAGCCTGTGCGTGTCAACCC CACCGACTGCTGCAAACAGTGTCCAGGTGAGGCCCACCCCCAGCTGGGGGGACCCCATGCAGGCTGATGGGCCCCGGGG CTGCCGTTTTGCTGGGCAGTGGTTCCCAGAGAGTCAGAGCTGGCACCCCTCAGTGCCCCCGTTTGGAGAGATGAGCTG TATCACCTGCAGATGTGGGGTAAGTGGGGAGCAGAGGCTTGTGTGAGGTGGGTACTGGGAGCCTGGTCTGGAGTAGGG AGACCTTCCCAGGGAGGTCCCTGAAGAAGCTGAAGGTCACTGTGTCCCAGTGCCTCTGGGGGACACTCAGTGTCTGCT CTGTCTTGTACCAGGCAGGGGTGCCTCACTGTGAGCGGGATGACTGTTCACTGCCACTGTCCTGTGGCTCGGGGAAGG AGAGTCGATGCTGTTCCCGCTGCACGGCCCACCGGCGCGTAAGTGAGGGAGTCCAGGGTCAGCAGCTGTGAGTGGAG AGCTCAGAGAAATTAAGCAACGAGATGAAGGTCACCCAGCTGTGTGCACTGACCTGTTTAGAAAATACTGGCCTTTCT GGGACCAAGGCAGGGATGCTTTGCCCTGCCCTCTATGCCTCTCTGTGCCTCTCCACTCCCTCTCCCCTCCCAACAT AGCAGCCAGAGGGCCAAGTGACCAAGAGGATGGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTTGCATTC TCCTGTGGGAAGCCCAGTGCCTTTGCTCCTGTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAACCACAGCTC AAGGGCCCCGGACACTCCACTCCTGCTGCCCCTGAGCTGAGCAGAGTCATTATTGGAGAGTTTTGTATTAAAAAC ${\tt ATTTCTTTTCAGTCTTTGGGCATGAGGTTGGCTCTTTGTGGCCAGGAACCTGAGTGGGGCCTGGTGGAGAAGGGGCN}$ GAGAGTAGGAGGTGAGAGAGGAGGTCTGACACTTGGGGAGCTGAAAGAGACCTGGAGAGGCAGAGGATAGCGTGGC AAGTAGAAGCAGGATTTTGACTCAAGTTTAGTTTCCCACATCGCTGGCCTGTTTGCTGACTTCATGTTTGAAGTTGCT TCCCCTCCCCTCC

GGCCGAGCGGGGGTGCTGCGCGGCGGCCGTGATGGCTGGTGACGGCGGGGCCGGGCAGGGGACCG GGGCCGCGGCCCGGGGCCAGCTGCCGGGAGCCCTGAATCACCGCCTGGCCCGACTCCACC ATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAGAAGGGGACAAGACA TGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCATCCCACAGCACCTGC $\tt CTGTGAGGACTTTTACCAGTTCTCCTGTGGGGGCTGGATTCGGAGGAACCCCCTGCCCGATGGGC$ GTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAACCAGGCCATACTGAAGCACCTGCTT GAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCAGAAGACACAGCGCTTCTACCTATCTTG CCTACAGGTGGAGCGCATTGAGGAGCCTGGGAGCCCAGCCACTGAGAGACCTCATTGAGAAGATTG GTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAGGCAGTAGCA GGGACCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAG CAATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAA CTGCCAATGAGAAAGTAAGGAACATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGGCTG ${\tt ATCCCTGTTGACTTTTCCCTTTGCCAAGGGTCAGAGCAGGGAAGGTGAGCCTATCCTGTCACCTA}$ ${\tt CCTTCCTTCCTTCTTATTCTTCTAGTAGGTTTCATAGACACCTACTGTGTGCCAGGTCCAGT}$ GGGGGAATTCGGAGATATAAGTTTCCGAGCCATTGCCACAGGAAGCGTTCAGTGTCGATGGGTTC ${\tt ATGGACCTAGATAGGCTGATAACAAAGCTCACAAGAGGGTCCTGAGGATTCAGGAGAGACTTATG}$ GAGCCAGCAAAGTCTTCCTGAAGAGATTGCATTTGAGCCAGGTCCTGTAG

ATGCCTACTACCTTCCAACTAAGAATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTC TATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATCGGTGTGGTCATGGGCCATGAGTT GACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTGCGGCCCTGGTGGC CAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACATTGCTGACAACGGGGG GCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATGGGGAGGAGCAGCAACTGC CAGCCGTGGGGCTCACCAACCACCAGCTCTTCTTCGTGGGATTTGCCCAGGTGTGGTGCTCGGTC GCTGGGCACTCTCCCAACTCCCGTGACTTCCTGCGGCACTTCGGCTGCCCTGTCGGCTCCCCCA TGAACCCAGGGCAGCTGTGTGAGGTGTGGTAGACCTGGATCAGGGGAGAAATGGCCAGCTGTCAC CAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTTGGGTTGGGAGGAAGCAAATGCAAGC TGGGCTGGGTCTAGTCCCTCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACAT ${\tt TGTGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTT}$ GACTCAGCTCTGTCTGGCTCACCCTCACGGGCTACCCCCACCTCACCCTGTGCTCCTTGTGCCAC $\tt CCTCCTGCTGCCCACTGTTTCCCTGGGCTGAGAGGGGGAAGTGCATATGTGTAGCGGGTACTGGTT$ CCTGTGTCTTAGGGCACAAGCCTTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGA TAGAGCAGGGAAAAGGAAGAACAGAGTTTATTTTTACAGAAAAGAGGGTGGGAGGGTGTGGTCTT GGCCCTTATAGGACC

CCCACGCGTCCGAGCCCCCGAGAATTAGACACACTCCGGACGCGGCCAAAAGCAACCGAGAGGA AAATCCTGTGGCGCGCCCCCGGTTCCCGGGAAGACTCGCCAGCACCAGGGGGTGGGGGAGTGCG ${\tt AGCTGAAAGCTGCTGGAGAGTGAGCAGCCCTAGCAGGGATGGAC} {\color{red} {\bf ATG}} {\tt ATGCTGTTGGTGCAGGGT}$ CCTCCCGGCTGGACAGAGTGTGGACTTCCCCTGGGCGGCCGTGGACAACATGATGGTCAGAAAAG GGGACACGGCGTGCTTAGGTGTTATTTGGAAGATGGAGCTTCAAAGGGTGCCTGGCTGAACCGG TCAAGTATTATTTTTGCGGGAGGTGATAAGTGGTCAGTGGATCCTCGAGTTTCAATTTCAACATT GAATAAAAGGGACTACAGCCTCCAGATACAGAATGTAGATGTGACAGATGATGGCCCATACACGT GTTCTGTTCAGACTCAACATACACCCAGAACAATGCAGGTGCATCTAACTGTGCAAGTTCCTCCT ${\tt AAGATATGACATCTCAAATGATATGACCGTCAATGAAGGAACCAACGTCACTCTTACTTGTTT}$ GGCCACTGGGAAACCAGAGCCTTCCATTTCTTGGCGACACATCTCCCCATCAGCAAAACCATTTG AAAATGGACAATATTTGGACATTTATGGAATTACAAGGGACCAGGCTGGGGAATATGAATGCAGT TATTCAGGAAATTAAATCTGGCACCGTGACCCCCGGACGCAGTGGCCTGATAAGATGTGAAGGTG CAGGTGTGCCGCCTCCAGCCTTTGAATGGTACAAAGGAGAGAAGAAGCTCTTCAATGGCCAACAA GGAATTATTATTCAAAATTTTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCA ACCCTCCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTTTCTCCTGCTGGTAC $\tt CTTGTGTTGACACTGTCCTCTTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACAA{\color{red}{\textbf{TAA}}} AT$ $\overline{ ext{TCAAAGACCCATAAAAGGCTTTTAAGGATTCTCTGAAAGTGCTGATGGCTGGATCCAATC\overline{ ext{TGG}}}$ CAGTTTGTTAAAAGCAGCGTGGGATATAATCAGCAGTGCTTACATGGGGATGATCGCCTTCTGTA GAATTGCTCATTATGTAAATACTTTAATTCTACTCTTTTTTTGATTAGCTACATTACCTTGTGAAG CAGTACACATTGTCCTTTTTTTAAGACGTGAAAGCTCTGAAATTACTTTTAGAGGATATTAATTG TGATTTCATGTTTGTAATCTACAACTTTTCAAAAGCATTCAGTCATGGTCTGCTAGGTTGCAGGC TGTAGTTTACAAAAACGAATATTGCAGTGAATATGTGATTCTTTAAGGCTGCAATACAAGCATTC AAAGCAAATAATATTGCCTTCAGATTATTTCTTCAAAATATAACACATATCTAGATTTTTCTGCT TGCATGATATTCAGGTTTCAGGAATGAGCCTTGTAATATAACTGGCTGTGCAGCTCTGCTTCTCT ATAAAATGTTTTGCTAAATCTTACAATTTGAAAGTAAAAATAAACCAGAGTGATCAAGTTAAACC ${\tt ATACACTATCTCTAAGTAACGAAGGAGCTATTGGACTGTAAAAATCTCTTCCTGCACTGACAATG}$ GGGTTTGAGAATTTTGCCCCACACTAACTCAGTTCTTGTGATGAGAGACAATTTAATAACAGTAT AGTAAATATACCATATGATTTCTTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGAAATCATTC CCTTTAAAATGACAGCACAGTCCACTCAAAGGATTGCCTAGCAATACAGCATCTTTTCCTTTCAC TAGTCCAAGCCAAAAATTTTAAGATGATTTGTCAGAAAGGGCACAAAGTCCTATCACCTAATATT ACAAGAGTTGGTAAGCGCTCATCATTAATTTTATTTTGTGGCAGGTATTATGACAGTCGACCTGG ${\tt AGGGTATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCC}$ GCTACTCAGGAGGAAATTACAGAGACAATTATGACAACTGAAATGAGACATGCACATAATATAGA TACACAAGGAATAATTTCTGATCCAGGATCGTCCTTCCAAATGGCTGTATTTATAAAGGTTTTTG GAGCTGCACTGAAGCATCTTATTTTATAGTATATCAACCTTTTGTTTTTAAATTGACCTGCCAAG ${\tt GTAGCTGAAGACCTTTTAGACAGTTCCATCTTTTTTTTTAAATTTTTTCTGCCTATTTAAAGACA}$

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYLEDGAS
KGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTPRTMQVH
LTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYLDIYGITRDQ
AGEYECSAENAVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGVPPPAFEWYKGEK
KLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPLNPPSTAQYGITGSAD
VLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297, 302-308, 319-325

Myelin P0 protein:

amino acids 92-121

AGTGGTTCGATGGGAAGGATCTTTCTCCAAGTGGTTCCTCTTGAGGGGAGCATTTCTGCTGGCTC ${\tt CTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAATCAATGTTC}$ CAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGTGGTGGTCATCTACCTGATCCTG $\tt CTCACCGCTGGCGCTGGTGGTGGTCCAAGTTCTGAATCTGCAGGCGCGGCTCCGGGTCCT$ GGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGTCCTTCTCCTTGCTGCAGT CAGCACACCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTGCAAGTCCTGCAGGCCCAACTC GATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTCTTCAAGGTCACAAGGGGGCCATGGGCA TGCCTGGTGCCCCTGGCCCGGGGACCACCTGCTGAGAAGGGAGCCAAGGGGGCTATGGGACGA GATGGAGCAACAGGCCCCTCGGGACCCCAAGGCCCACCGGGAGTCAAGGGAGAGGCGGGCCTCCA AGGACCCCAGGGTGCTCCAGGGAAGCAAGGAGCCACTGGCACCCCAGGACCCCAAGGAGAAAGG GCAGCAAAGGCGATGGGGGTCTCATTGGCCCAAAAGGGGAAACTGGAACTAAGGGAGAAAAGGA GACCTGGGTCTCCCAGGAAGCAAAGGGGACAGGGGCATGAAAGGAGATGCAGGGGTCATGGGGCC ${\tt TCCTGGAGCCCAGGGGAGTAAAGGTGACTTCGGGAGGCCAGGCCCACCAGGTTTGGCTGGTTTTC}$ $\tt CTGGAGCTAAAGGAGATCAAGGACAACCTGGACTGCAGGGTGTTCCGGGCCCTCCTGGTGCAGTG$ GGACACCCAGGTGCCAAGGGTGAGCCTGGCAGTGCTGGCTCCCCTGGGCGAGCAGGACTTCCAGG GAGCCCCGGGAGTCCAGGAGCCACAGGCCTGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGAC CCAGGGCTGGCAGGTCCCAAGGGAGCCCCTGGACAAGCTGGCCAGAAGGGAGACCAGGGAGTGAA AGGATCTTCTGGGGAGCAAGGAGTAAAGGGAGAAAAAGGTGAAAGAGGTGAAAACTCAGTGTCCG ${\tt TCAGGATTGTCGGCAGTAGTAACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGGGACA}$ ${\tt ATTTGCGATGACGAGTGGCAAAATTCTGATGCCATTGTCTTCTGCCGCATGCTGGGTTACTCCAA}$ GGGGCACGGAGAGTACCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCATGACTGCAGCCAC ${\tt GAGGAGGACGCAGGCGTGGAGTGCAGCGTC} {\color{red}{\bf TGA}} {\tt CCCGGAAACCCTTTCACTTCTCTGCTCCCGAG}$ AGCCTCTGGAGAGGGGCCATTAATAAAGCTCAACATCATTGA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886

><subunit 1 of 1, 520 aa, 1 stop

><MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGLLVV QVLNLQARLRVLEMYFLNDTLAAEDSPSFSLLQSAHPGEHLAQGASRLQVLQAQLTWVRVSHEHL LQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRDGATGPSGPQ GPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGEKGDLGLPGSKGD RGMKGDAGVMGPPGAQGSKGDFGRPGPPGLAGFPGAKGDQGQPGLQGVPGPPGAVGHPGAKGEPG SAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPAGVKGEQGSPGLAGPKGAP GQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGRAEVYYSGTWGTICDDEWQNSD AIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLWSCTKNSWGHHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758
<subunit 1 of 1, 98 aa, 1 stop
<MW: 11081, pI: 6.68, NX(S/T): 1
MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDGKGC
EMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ</pre>

Important features:
Signal peptide:

amino acids 1-20

N-glycosylation site.
amino acids 72-76

Tyrosine kinase phosphorylation site. amino acids 63-71

CCCACGCGTCCGCGGACGCGTGGGCTGGACCCCAGGTCTGGAGCGAATTCCAGCCTGCAGGGCTG ATAAGCGAGGCATTAGTGAGATTGAGAGAGACTTTACCCCGCCGTGGTGGTTGGAGGGCGCGCAG AAGCTACTAACATTACTCCAAAGCATAATATGAAAGCATTTTTGGATGAATTGAAAGCTGAGAAC ATCAAGAAGTTCTTACATAATTTTACACAGATACCACATTTAGCAGGAACAGAACAAAACTTTCA GGAAATGAGATTTTCAACACATCATTATTTGAACCACCTCCTCCAGGATATGAAAATGTTTCGGA TATTGTACCACCTTTCAGTGCTTTCTCTCCTCAAGGAATGCCAGAGGGCGATCTAGTGTATGTTA ACTATGCACGAACTGAAGACTTCTTTAAATTGGAACGGGACATGAAAATCAATTGCTCTGGGAAA ATTGTAATTGCCAGATATGGGAAAGTTTTCAGAGGAAATAAGGTTAAAAATGCCCAGCTGGCAGG ${\tt GGCCAAAGGAGTCATTCTCTACTCCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATC}$ CAGACGGTTGGAATCTTCCTGGAGGTGGTGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCA GGAGACCCTCTCACACCAGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAGAGGC TGTTGGTCTTCCAAGTATTCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAAA AAATGGGTGGCTCAGCACCACCAGATAGCAGCTGGAGAGGAAGTCTCAAAGTGCCCTACAATGTT GGACCTGGCTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGA ${\tt TTCTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGTT}$ ATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCTATAGAAGGAAAC TACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTTGGTACACAACCTAACAAAAGAGCT GAAAAGCCCTGATGAAGGCTTTGAAGGCAAATCTCTTTATGAAAGTTGGACTAAAAAAAGTCCTT $\tt CCCCAGAGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGGAAATGATTTTGAGGTGTTC$ CAGCGGCTATCCACTGTATCACAGTGTCTATGAAACATATGAGTTGGTGGAAAAGTTTTATGATC CAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCGAGGAGGGATGGTGTTTGAGCTAGCCAAT TCCATAGTGCTCCCTTTTGATTGTCGAGATTATGCTGTAGTTTTAAGAAAGTATGCTGACAAAAT CTACAGTATTTCTATGAAACATCCACAGGAAATGAAGACATACAGTGTATCATTTGATTCACTTT TTTCTGCAGTAAAGAATTTTACAGAAATTGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGAC AAAAGCAACCCAATAGTATTAAGAATGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTAT TGATCCATTAGGGTTACCAGACAGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACA ACAAGTATGCAGGGGAGTCATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAGCAAAGTG ${\tt AGCTGCAGAGACTTTGAGTGAAGTAGCC} {\color{blue}{\textbf{TAA}}} {\color{blue}{\textbf{GAGGATTTTTTAGAGAATCCGTATTGAATTTGTG}}$ ATAAAGTTGAATATTATATATAA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756

><subunit 1 of 1, 750 aa, 1 stop

><MW: 84305, pI: 6.93, NX(S/T): 10

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFLDEL
KAENIKKFLHNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTHPNYISI
INEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKIN
CSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNLPGGGVQRGNILN
LNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKV
PYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQS
GAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYINADSS
IEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPEFSGMPRISKLGSGND
FEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVF
ELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERL
QDFDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFYRHVIYAPSSHNKYAGESFPGIYDALFDI
ESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340, 459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341, 360-366, 427-433, 529-535, 707-713

W:\DOCS\BGY\BGY-2104.DOC