The Fluxes and the Equations of Change

- §B.1 Newton's law of viscosity
- §B.2 Fourier's law of heat conduction
- §B.3 Fick's (first) law of binary diffusion
- §B.4 The equation of continuity
- §B.5 The equation of motion in terms of τ
- §B.6 The equation of motion for a Newtonian fluid with constant ρ and μ
- §B.7 The dissipation function Φ_v for Newtonian fluids
- §B.8 The equation of energy in terms of q
- §B.9 The equation of energy for pure Newtonian fluids with constant ρ and k
- §B.10 The equation of continuity for species α in terms of j_{α}

monatomic gases at low density, the dilatational viscosity κ is zero.

§B.11 The equation of continuity for species A in terms of ω_A for constant $\rho \mathfrak{D}_{AB}$

§B.1 NEWTON'S LAW OF VISCOSITY

$$[\mathbf{\tau} = -\mu(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\dagger}) + (\frac{2}{3}\mu - \kappa)(\nabla \cdot \mathbf{v})\mathbf{\delta}]$$

Cartesian coordinates (x, y, z):

$$\tau_{xx} = -\mu \left[2 \frac{\partial v_x}{\partial x} \right] + \left(\frac{2}{3}\mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-1)^a

$$\tau_{yy} = -\mu \left[2 \frac{\partial v_y}{\partial y} \right] + \left(\frac{2}{3}\mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-2)^a

$$\tau_{zz} = -\mu \left[2 \frac{\partial v_z}{\partial z} \right] + (\frac{2}{3}\mu - \kappa)(\nabla \cdot \mathbf{v})$$
 (B.1-3)^a

$$\tau_{xy} = \tau_{yx} = -\mu \left[\frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y} \right]$$
 (B.1-4)

$$\tau_{yz} = \tau_{zy} = -\mu \left[\frac{\partial v_z}{\partial y} + \frac{\partial v_y}{\partial z} \right]$$
 (B.1-5)

$$\tau_{zx} = \tau_{xz} = -\mu \left[\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right]$$
 (B.1-6)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$
 (B.1-7)

^a When the fluid is assumed to have constant density, the term containing $(\nabla \cdot \mathbf{v})$ may be omitted. For

844

§B.1 NEWTON'S LAW OF VISCOSITY (continued)

Cylindrical coordinates (r, θ, z) :

$$\tau_{rr} = -\mu \left[2 \frac{\partial v_r}{\partial r} \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-8)^a

$$\tau_{\theta\theta} = -\mu \left[2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-9)^a

$$\tau_{zz} = -\mu \left[2 \frac{\partial v_z}{\partial z} \right] + (\frac{2}{3}\mu - \kappa)(\nabla \cdot \mathbf{v})$$
 (B.1-10)^a

$$\tau_{r\theta} = \tau_{\theta r} = -\mu \left[r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$$
 (B.1-11)

$$\tau_{\theta z} = \tau_{z\theta} = -\mu \left[\frac{1}{r} \frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z} \right]$$
 (B.1-12)

$$\tau_{zr} = \tau_{rz} = -\mu \left[\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \right]$$
 (B.1-13)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z}$$
 (B.1-14)

Spherical coordinates (r, θ, ϕ) :

$$\tau_{rr} = -\mu \left[2 \frac{\partial v_r}{\partial r} \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla - \mathbf{v})$$
(B.1-15)^a

$$\tau_{\theta\theta} = -\mu \left[2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
(B.1-16)^a

$$\tau_{\phi\phi} = -\mu \left[2 \left(\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_r + v_{\theta} \cot \theta}{r} \right) \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-17)^a

$$\tau_{r\theta} = \tau_{\theta r} = -\mu \left[r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$$
 (B.1-18)

$$\tau_{\theta\phi} = \tau_{\phi\theta} = -\mu \left[\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{v_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} \right]$$
(B.1-19)

$$\tau_{\phi r} = \tau_{r\phi} = -\mu \left[\frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi} + r \frac{\partial}{\partial r} \left(\frac{v_\phi}{r} \right) \right]$$
 (B.1-20)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$
(B.1-21)

^a When the fluid is assumed to have constant density, the term containing ($\nabla \cdot \mathbf{v}$) may be omitted. For monatomic gases at low density, the dilatational viscosity κ is zero.

^a When the fluid is assumed to have constant density, the term containing ($\nabla \cdot \mathbf{v}$) may be omitted. For monatomic gases at low density, the dilatational viscosity κ is zero.