Porte d'entrée	Porte d'oubli	Porte de sortie	Porte
Écrire?	Supprimer?	A quel point révéler?	Combien écrire?

□ LSTM –Un réseau de long court terme (en anglais long sort-term memory, LSTM) est un type de modèle RNN qui empêche le phénomène de vanishing gradient en ajoutant des portes d'oubli.

3.4 Reinforcement Learning

Le but du reinforcement learning est pour un agent d'apprendre comment évoluer dans un environnement.

- \square Processus de décision markovien Un processus de décision markovien (MDP) est décrite par 5 quantités $(S,A,\{P_{sa}\},\gamma,R)$, où :
 - -- \mathcal{S} est l'ensemble des états
 - A est l'ensemble des actions
 - $\{P_{sa}\}$ sont les probabilités d'états de transition pour $s \in \mathcal{S}$ et $a \in \mathcal{A}$
 - $\gamma \in [0,1]$ est le taux d'actualisation (en anglais discount factor)
 - $R: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R}$ ou $R: \mathcal{S} \longrightarrow \mathbb{R}$ est la fonction de récompense que l'algorithme veut maximiser
- \square Politique Une politique π est une fonction $\pi: \mathcal{S} \longrightarrow \mathcal{A}$ qui lie les états aux actions.

Remarque : on dit que l'on effectue une politique donnée π si étant donné un état s, on prend l'action $a=\pi(s)$.

 \square Fonction de valeurs – Pour une politique donnée π et un état donné s, on définit la fonction de valeurs V^π comme suit :

$$V^{\pi}(s) = E\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... | s_0 = s, \pi\right]$$

□ Équation de Bellman – Les équations de Bellman optimales caractérisent la fonction de valeurs V^{π^*} de la politique optimale π^* :

$$V^{\pi^*}(s) = R(s) + \max_{a \in \mathcal{A}} \gamma \sum_{s' \in S} P_{sa}(s') V^{\pi^*}(s')$$

Remarque : on note que la politique optimale π^* pour un état donné s est tel que :

$$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P_{sa}(s') V^*(s')$$

- $\hfill \square$ Algorithme d'itération sur la valeur L'algorithme d'itération sur la valeur est faite de deux étapes :
 - On initialise la valeur :

$$V_0(s) = 0$$