Definition (Semicategory)

A semicategory **C** is specified by:

Constituents

- 1. Objects: A collection $Ob_{\mathbf{C}}$ whose elements are called *objects*.
- 2. Morphisms: For every pair of objects X, Y in $\mathsf{Ob}_{\mathbb{C}}$, there is a set $\mathsf{Hom}_{\mathbb{C}}(X;Y)$, elements of which are called *morphisms*. We write

$$f: X \rightarrow_{\mathbf{C}} Y$$

to indicate

$$f \in \operatorname{Hom}_{\mathbf{C}}(X; Y)$$
.

3. Composition operations: For every three objects X, Y, Z in $Ob_{\mathbb{C}}$ there is a composition map

$$\S_{X,Y,Z}$$
: $\operatorname{Hom}_{\mathbf{C}}(X;Y) \times \operatorname{Hom}_{\mathbf{C}}(Y;Z) \to \operatorname{Hom}_{\mathbf{C}}(X;Z)$.

We usually just write \S instead of $\S_{X,Y,Z}$:

$$f: X \to Y \quad g: Y \to Z$$

$$f \circ g: X \to Z$$

The morphism $f \circ g$ is called the *composition* of f and g.

Conditions

1. Associativity: it holds that

$$f: X \to Y \quad g: Y \to Z \quad h: Z \to U$$

$$(f \ g) \ h = f \ g(g \ h)$$