Circuit Theory

Chapter 9 Sinusoidal Steady-State Analysis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sinusoids and Phasor Chapter 9

- 9.1 Motivation
- 9.2 Sinusoids' features
- 9.3 Phasors
- 9.4 Phasor relationships for circuit elements
- 9.5 Impedance and admittance
- 9.6 Kirchhoff's laws in the frequency domain
- 9.7 Impedance combinations

9.1 Motivation (1)

How to determine *v(t)* and *i(t)*?

How can we apply what we have learned before to determine i(t) and v(t)?

9.2 Sinusoids (1)

- A sinusoid is a signal that has the form of the sine or cosine function.
- A general expression for the sinusoid,

$$v(t) = V_m \sin(\omega t + \varphi)$$

where

Vm = the **amplitude** of the sinusoid ω = the angular frequency in radians/s Φ = the phase

9.2 Sinusoids (2)

A <u>periodic function</u> is one that satisfies v(t) = v(t + nT), for all t and for all integers n.

- Only two sinusoidal values with the <u>same frequency</u> can be compared by their amplitude and phase difference.
- If phase difference is zero, they are in phase; if phase difference is not zero, they are out of phase.

9.2 Sinusoids (3)

Example 1

Given a sinusoid, $5\sin(4\pi t - 60^{\circ})$, calculate its amplitude, phase, angular frequency, period, and frequency.

Solution:

Amplitude = 5, phase = -60° , angular frequency = 4π rad/s, Period = 0.5 s, frequency = 2 Hz.

9.2 Sinusoids (4)

Example 2

Find the phase angle between $i_1 = -4\sin(377t + 25^\circ)$ and $i_2 = 5\cos(377t - 40^\circ)$, does i_1 lead or lag i_2 ?

Solution:

Since $sin(\omega t + 90^{\circ}) = cos \omega t$

$$i_2 = 5\sin(377t - 40^\circ + 90^\circ) = 5\sin(377t + 50^\circ)$$

$$i_1 = -4\sin(377t + 25^\circ) = 4\sin(377t + 180^\circ + 25^\circ) = 4\sin(377t + 205^\circ)$$

therefore, i₁ leads i₂ 155°.

9.3 Phasor (1)

- A phasor is a complex number that represents the amplitude and phase of a sinusoid.
- It can be represented in one of the following three forms:

a. Rectangular
$$z = x + jy = r(\cos \varphi + j \sin \varphi)$$

b. Polar
$$z = r \angle \varphi$$

c. Exponential
$$z = re^{j\varphi}$$

where
$$r = \sqrt{x^2 + y^2}$$

$$\varphi = \tan^{-1} \frac{y}{x}$$

9.3 Phasor (2)

Example 3

Evaluate the following complex numbers:

a.
$$[(5+j2)(-1+j4)-5 \angle 60^{\circ}]$$

b.
$$\frac{10+j5+3\angle 40^{\circ}}{-3+j4}+10\angle 30^{\circ}$$

Solution:

a.
$$-15.5 + j13.67$$

b.
$$8.293 + j2.2$$

9.3 Phasor (3)

Mathematic operation of complex number:

- 1. Addition
- 2. Subtraction
- 3. Multiplication
- 4. Division
- 5. Reciprocal
- 6. Square root
- 7. Complex conjugate
- 8. Euler's identity

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$$

$$z_1 z_2 = r_1 r_2 \angle \varphi_1 + \varphi_2$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$$

$$\frac{1}{z} = \frac{1}{r} \angle -\varphi$$

$$\sqrt{z} = \sqrt{r} \angle \varphi/2$$

$$z^* = x - jy = r \angle - \varphi = re^{-j\varphi}$$

$$e^{\pm j\varphi} = \cos \varphi \pm j \sin \varphi$$

9.3 Phasor (4)

 Transform a sinusoid to and from the time domain to the phasor domain:

$$v(t) = V_m \cos(\omega t + \varphi) \longrightarrow V = V_m \angle \varphi$$

(time domain) (phasor domain)

- Amplitude and phase difference are two principal concerns in the study of voltage and current sinusoids.
- Phasor will be defined from the <u>cosine function</u> in all our proceeding study. If a voltage or current expression is in the form of a sine, it will be changed to a cosine by subtracting from the phase.

9.3 Phasor (5)

Example 4

Transform the following sinusoids to phasors:

$$i = 6\cos(50t - 40^{\circ}) A$$

 $v = -4\sin(30t + 50^{\circ}) V$

Solution:

```
a. I = 6 \angle -40^{\circ} A
b. Since -\sin(A) = \cos(A+90^{\circ});
v(t) = 4\cos(30t+50^{\circ}+90^{\circ}) = 4\cos(30t+140^{\circ}) V
Transform to phasor => V_{=4 \angle 140^{\circ}} V
```

9.3 Phasor (6)

Example 5:

Transform the following phasors to sinusoids:

a.
$$V = -10 \angle 30^{\circ} V$$

b.
$$I = j(5 - j12) A$$

Solution:

a)
$$v(t) = 10\cos(\omega t + 210^{\circ}) \text{ V}$$

b) Since
$$I = 12 + j5 = \sqrt{12^2 + 5^2} \angle \tan^{-1}(\frac{5}{12}) = 13 \angle 22.62^\circ$$

 $i(t) = 13\cos(\omega t + 22.62^\circ) A$

9.3 Phasor (7)

The differences between v(t) and V:

- v(t) is instantaneous or <u>time-domain</u> representation
 V is the frequency or phasor-domain representation.
- v(t) is time dependent, V is not.
- v(t) is always real with no complex term, V is generally complex.

Note: Phasor analysis applies only when frequency is constant; when it is applied to two or more sinusoid signals only if they have the same frequency.

9.3 Phasor (8)

Relationship between differential, integral operation in phasor listed as follow:

$$v(t) \longleftrightarrow V = V \angle \varphi$$

$$\frac{dv}{dt} \longleftrightarrow j\omega V$$

$$\int vdt \longleftrightarrow \frac{V}{j\omega}$$

9.3 Phasor (9)

Example 6

Use phasor approach, determine the current *i(t)* in a circuit described by the integro-differential equation.

$$4i + 8 \int idt - 3 \frac{di}{dt} = 50\cos(2t + 75^\circ)$$

Answer: $i(t) = 4.642\cos(2t + 143.2^{\circ}) A$

9.3 Phasor (10)

• In-class exercise for Unit 6a, we can derive the differential equations for the following circuit in order to solve for $v_o(t)$ in phase domain V_o .

$$\frac{d^2v_o}{dt^2} + \frac{5}{3}\frac{dv_o}{dt} + 20v_o = -\frac{400}{3}\sin(4t - 15^\circ)$$

However, the derivation may sometimes be very tedious.

Is there any quicker and more systematic methods to do it?

9.3 Phasor (11) The answer is YES!

Instead of first deriving the differential equation and then transforming it into phasor to solve for V_o , we can <u>transform all the RLC</u> <u>components into phasor first</u>, then apply the KCL laws and other theorems to set up a phasor equation involving V_o directly.

9.4 Phasor Relationships for Circuit Elements (1)

9.4 Phasor Relationships for Circuit Elements (2)

Summary of voltage-current relationship

Element	Time domain	Frequency domain
R	v = Ri	V = RI
L	$v = L \frac{di}{dt}$	$V = j\omega LI$
C	$i = C \frac{dv}{dt}$	$V = \frac{I}{j\omega C}$

9.4 Phasor Relationships for Circuit Elements (3)

Example 7

If voltage $v(t) = 6\cos(100t - 30^\circ)$ is applied to a 50 µF capacitor, calculate the current, i(t), through the capacitor.

Answer: $i(t) = 30 \cos(100t + 60^{\circ}) \text{ mA}$

9.5 Impedance and Admittance (1)

• The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, measured in ohms Ω .

$$Z = \frac{V}{I} = R + jX$$

where R = Re, Z is the resistance and X = Im, Z is the reactance. Positive X is for L and negative X is for C.

• The admittance Y is the <u>reciprocal</u> of impedance, measured in siemens (S).

$$Y = \frac{1}{Z} = \frac{I}{V}$$

9.5 Impedance and Admittance (2)

Impedances and admittances of passive elements

Element	Impedance	Admittance
R	Z = R	$Y = \frac{1}{R}$
L	$Z = j\omega L$	$Y = \frac{1}{j\omega L}$
C	$Z = \frac{1}{j\omega C}$	$Y = j\omega C$

9.5 Impedance and Admittance (3)

$$Z = j\omega L$$

$$\omega$$
 = 0; Z = 0

$$\omega \to \infty Z \to \infty$$

$$Z = \frac{1}{j\omega C}$$

$$\omega$$
 = 0; $Z \rightarrow \infty$

$$\omega \rightarrow \infty Z = 0$$

(b)

9.5 Impedance and Admittance (4)

After we know how to convert RLC components from time to phasor domain, we can transform a time domain circuit into a phasor/frequency domain circuit.

Hence, we can apply the KCL laws and other theorems to <u>directly</u> set up phasor equations involving our target variable(s) for solving.

9.5 Impedance and Admittance (5)

Example 8

Refer to Figure below, determine v(t) and i(t).

Answers: $i(t) = 1.118\cos(10t - 26.56^{\circ}) A; v(t) = 2.236\cos(10t + 63.43^{\circ}) V$

9.6 Kirchhoff's Laws in the Frequency Domain (1)

- Both KVL and KCL are hold in the <u>phasor</u> <u>domain</u> or more commonly called <u>frequency</u> <u>domain</u>.
- Moreover, the variables to be handled are <u>phasors</u>, which are <u>complex numbers</u>.
- All the mathematical operations involved are now in complex domain.

9.7 Impedance Combinations (1)

- The following principles used for DC circuit analysis all apply to AC circuit.
- For example:
 - a. voltage division
 - b. current division
 - c. circuit reduction
 - d. impedance equivalence
 - e. Y-Δ transformation

9.7 Impedance Combinations (2)

Example 9

Determine the input impedance of the circuit in figure below at $\omega = 10$ rad/s.

Answer: $Z_{in} = 32.38 - j73.76$

HW9 Ch9: 42, 49, 65, 85, 91