# Assignment Project Exam. Help probability theory

https://powcoder.com

Add WeChat2powcoder

#### Reinterpret regression and classification probabilistically

ullet Softmax regression: Predict high probability of correct label c for data point x

## Assign high receipt of the Proping o

- regularisation needed
- Linear regression: Predict output  $\hat{y}$  given input x to make  $r^2=(y-\hat{y})^2$  small  $\frac{1}{1}$ 
  - Given family of functions  $\hat{y} = f(x; w)$
  - ullet lowering  ${
    m r}^2$  achieved by complex  ${
    m f}$  with  $\|{m w}\|^2$  large
  - · Acristing ditting noise in Catal regularisation needed coder
- Classification already in probabilistic language
- $\bullet$  Interpret regression as finding model  $f(\cdot; \boldsymbol{w})$  that makes large  $r^2$  predictions improbable
- Regularisation by weight penalty viewed as imposing improbability of complex or large  $\|w\|^2$  models even before data is seen

#### Outline: mostly about probability and statistics

### Assignment Project Exam Help

- Basic probability theory and statistics
- Bivar netstansis !co/apowwedo deen.com
- Bivariate continuous distributions
- Use linear dependence between two Gaussian random variables to motivate the form of the biviriate Gaussian distribution WCOCET

#### Basic definitions from probability theory: random variable, event/sample space

### Assignment Problem Exam Help

- X variable, x value (specific event)
- Probability mass function (pmf) P(X = x): quantifies how likely each possible trong is / power = x | power

$$P(X = x) = P_X(x) = P(x)$$
  

$$P(A) = P(x \in A) = \sum_{x \in A} P(X = x)$$

- $P(A) = P(x \in A) = \sum_{x \in A} P(X = x)$  Joint distribution PAC ... It is possible to events  $a_i$  and  $b_i$  occur.
- If events A, B independent,  $P(A = a_i, B = b_i) = P(A = a_i)P(B = b_i)$ : joint factorises into product of marginals
- Conditional probability,  $P(A = a_i | B = b_i)$  is the probability that event  $\alpha_{i}$  occurs given that event  $b_{i}$  has occurred: information update.

#### Bayes' rule for inference and inverse problems

- A Subary probability in the probability of hypotheses  $h_i \in \mathcal{H}$  that explains data. Help
  - Equality of expressing joint in terms of conditionals:

Leads to Bayes' rule:

$$Add \underset{P(B)}{\text{WeCh}} = \underbrace{\text{hat-powcoder}}_{P(A=a)}$$

- $\bullet$   $P(X|h_j)$  for each  $h_j \in \mathcal{H}$  known; a generative mechanism:  $h_j \to X$
- Inverse problem: given data X, find  $P(h_i|X)$ .

Expectation and variance characterise mean value of random variable and its dispersion.

## Assignment of the property of

- Collect data:  $\mathfrak{X} := \{x_1, x_2, \dots, x_N\}$ , mean of sample
- If P(1) known, Expectation: E(X) = \( \sum\_{P}(X) = \sum\_{P}(X) = \sum\_{P}(X) = \sum\_{P}(X) = \sum\_{P}(X) = \sum\_{P}(X) = \( \sum\_{P}(X) = \
- Expectation of a function of a random variable:

### Add Wechat powcoder

- Moments= expectation of power of X:  $M_k = \mathbb{E}X^k$
- Variance: Average (squared) fluctuation from the mean

$$Var(X) = \mathbb{E}(X - \mathbb{E}X)^2$$
 (1)

$$= \mathbb{E}X^2 - (\mathbb{E}X)^2 = M_2 - M_1^2 \tag{2}$$

Bivariate distributions characterise systems of 2 observables.

### Assignment Project Exam Help

- Joint distribution: P(X = x, Y = y), a list of probabilities of all possible pairs of objervations //powcoder.com
- Conditional distribution:  $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(u = u)}$
- $\bullet \ \ X|Y \ \text{hadist in tion} \ \ X|X|X \ \text{ald chartables of two subsets} \ \ \mathcal{F}(X|Y) = y)$

#### Statistics of multivariate distributions:

Conditional distributions are just distributions which have a (conditional)

ssignment, Projectva Exam Help value of X?".

- $\mathbb{E}(X,Y)=\sum_{x,y}P(X=x,Y=y)(x,y)=(\mathbb{E}(X),\mathbb{E}(Y))$  Covariant is the expected value of the production (deviations from mean):

$$cov(X,Y) = E((X-EX)(Y-EY)) = EXY-EXEY$$

Add powcoder

- In finite sample,  $\langle (X,Y) \rangle = (1/N) \sum_{n=1}^{N} (x_n, y_n)$
- Sample covariance  $\sigma_{XY} = (1/N) \sum_{n=1}^{N} (x_n \langle X \rangle) (y_n \langle Y \rangle).$
- Slope of regression line:

$$w_1 = \frac{\sigma_{XY}}{\sigma_{XX}}$$
.

### From linear regression - minimise $(\tilde{y}_n - w_1 \tilde{x}_n)^2$

Assigniting entra Profine through a oints Help



#### From linear regression - covariance as dot product

### Assignment Project Exam Help

Closed form solution to linear regression weights in terms of vector products

· L(whttps://powcoder.com

• Exercise: 
$$\ln L(w) = aw^2 + bw + c$$
, show

• 
$$a = (1/N)[x_1^2 + x_2^2 + \dots + x_N^2]$$

 $b = A_{2} \underbrace{\partial L(w)}_{\partial w} \Big|_{w=w^{*}} + W + \underbrace{e C_{N} y hat}_{x^{T} x} pow \underbrace{coe}_{x^{T} x}$   $b = A_{2} \underbrace{\partial L(w)}_{\partial w} \Big|_{w=w^{*}} + W + \underbrace{e C_{N} y hat}_{x^{T} x} pow \underbrace{coe}_{x^{T} x}$ 

$$0 = \frac{\partial L(w)}{\partial w} \bigg|_{w=w^*} \implies w^* = -b/(2a) = \frac{\mathbf{x}^\mathsf{T} \mathbf{y}}{\mathbf{x}^\mathsf{T} \mathbf{x}}$$



#### Continuous random variables

## A random variable X is continuous if its sample space X is uncountable. As Stigmment Portolect Exam Help

• If  $p_X(x)$  is a probability density function for X, then

### https://pow-codef\*\*com

- The cumulative distribution function is  $F_X(x) = P(X < x)$ . We have that • If A is an event, then

$$\begin{array}{lcl} P(A) & = & P(X \in A) = \int_{x \in A} p(x) dx \\ P(\Omega) & = & P(X \in \Omega) = \int_{x \in \Omega} p(x) dx = 1 \end{array}$$

Probability density function (pdf) and cumulative distribution function (cdf)

### Assignment Project Exam Help

- CDF(https://bowcoder.com
  - Shaded area  $\blacksquare$  value of the integral, CDF(x = 1)
- Red dashed line is value of the hat poweoder integral of the 1 We Chat poweoder

Continuous distributions: Mean, variance, conditionals have integrals, not sums

### Assignment Project Exam Help

- Mean:  $\mathbb{E}X = \int_{\mathcal{X}} x \cdot p(x) dx$
- Variance:  $Var(X) = \mathbb{E}X^2 (\mathbb{E}X)^2$  Example Unit of Experimental WCOder. Com
- If X has pdf p(x), then  $X|(X \in A)$  (restricted to domain A) has pdf

• Only makes sense if P(A) > 0!

#### Univariate Gaussian (Normal), $\mathcal{N}(\mu, \sigma)$

• Pdf of gaussian:

Assignment 
$$\Pr_{p(x)} = \Pr_{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}} \left( \frac{E_{x}}{\sigma} \right)$$
 Help

• Statisfics-population/pean u\_variance  $\sigma^2$  er. Com  $\mathbb{E}(X) = \int_{-\infty}^{\infty} x p(x) dx = \mu$   $\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 p(x) dx = \mu^2 + \sigma^2$ 

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x p(x) dx = \mu$$

$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 p(x) dx = \mu^2 + \sigma^2$$

### Add We€hat powcoder

• Standard normal  $\mathcal{N}(0,1)$  has mean 0 and  $\sigma=1$ :  $p(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$ 

$$\int_{-\infty}^{\infty} p(z)dz = 1, \int_{-\infty}^{\infty} zp(z)dz = 0, \int_{-\infty}^{\infty} z^2p(z)dz = 1.$$

#### Bivariate continuous distributions: Marginalisation, Conditioning and Independence

### Assignment Project Exam Help

- $p_{X,Y}(x,y)$ , joint probablity density function of X and Y
- $\int_{x} \int_{y} p(x,y) dx dy / p Qwcoder.com$
- Conditional distribution:

### Add WeChat powcoder

Independence: X and Y are independent if  $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ 

#### Two dimensional Gaussian distributions

Assignment Project Exam Help



#### Changing the covariance matrix of Gaussian - contour plots



#### Covariance matrix of X, Y linearly dependent Gaussian random variables

### A set in a real part of two independent Gaussian real places x = 0, y = 0. Introduce 2 r. v.s $x = n_x$ and y = 1, $x + n_y$ , a real; x = 0, x = 0.

- Compute components of covariance matrix  $\Sigma = Cov(X, Y)$ :  $\mathbb{E}X^2$ ,  $\mathbb{E}XY$  and

- $\begin{array}{l} \bullet \ \mathbb{E} Y^2 = \mathbb{E} (a^2n_x^2 + 2an_xn_y + n_y^2) = a^2\sigma_x^2 + \sigma_y^2 \\ \bullet \ \text{Assemblying littler model} \end{array}$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{x}^{2} & a\sigma_{x}^{2} \\ a\sigma_{x}^{2} & a^{2}\sigma_{x}^{2} + \sigma_{y}^{2} \end{pmatrix}, \ \boldsymbol{\Sigma}^{-1} = \begin{pmatrix} \frac{1}{\sigma_{x}^{2}} + \frac{a^{2}}{\sigma_{y}^{2}} & -\frac{a}{\sigma_{y}^{2}} \\ -\frac{a}{\sigma_{y}^{2}} & \frac{a^{2}}{\sigma_{y}^{2}} \end{pmatrix}$$

#### Example of 2-dimensional Gaussian distribution

Given mean and covariance matrix of 2D Gaussian:

## Assignment Project Exam Help

compare cov. mat. with that of  $Y = aX + n_y$ ,  $X = n_x$  / POWCOGET.COM  $\Sigma = \begin{pmatrix} \sigma_x^2 & a\sigma_x^2 \\ a\sigma_x^2 & a^2\sigma_x^2 + \sigma_y^2 \end{pmatrix} \Longrightarrow \begin{cases} a = -1/3, \\ \sigma_x^2 = 6 \\ \sigma_y^2 = 1/3 \end{cases}$  Add WeChat powcoder

- Note negative slope, narrower distribution for y.
- How to set contour lines lines of equal probability (equal height)?
- Express exponent in Gaussian as  $e^{Q(x,y)}$
- Locus of pairs (x, y) so that Q(x, y) = constant. (Called level sets.)

Obtain quadratic form Q(x, y) from inverse covariance matrix for  $X = n_x$ ,  $Y = aX + n_u$ 

A Solid distribution (since 
$$\pi_x$$
 P are independent  $X$  and  $X$  and  $X$  are independent  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  are  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  and  $X$  are  $X$  are  $X$  and  $X$  a

• Consequent properties that 
$$COM$$

$$-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{(y - ax)^2}{\sigma_y^2}\right) = -\frac{1}{2}\left(\left(\frac{1}{\sigma_x^2} + \frac{a^2}{\sigma_y^2}\right)x^2 - 2\frac{a}{\sigma_y^2}xy + \frac{1}{\sigma_y^2}y^2\right)$$

• The exponent Q(W) has quadrate form Q(W) Q(Q) Q(

$$Q(x,y) = -\frac{1}{2}(x \ y) \left( \begin{array}{cc} \frac{1}{\sigma_x^2} + \frac{\alpha^2}{\sigma_y^2} & -\frac{\alpha}{\sigma_y^2} \\ -\frac{\alpha}{\sigma_y^2} & \frac{1}{\sigma_y^2} \end{array} \right) \left( \begin{array}{c} x \\ y \end{array} \right), \Lambda \text{ turns out} = \Sigma^{-1}.$$

#### Explicit form for 2-dimensional Gaussian distribution

To explicitly write the term in the exponent of

## Assignment Project Exam Help

$$\text{ss } (x-\mu) \overset{\mathsf{T}}{\underset{\overline{Z}}{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{Ep}}{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}{\mathsf{N}}} \overset{\mathsf{precision matrix}}{\underset{\mathsf{N}}{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}}} \overset{\mathsf{N}}{\underset{\mathsf{N}}} \overset{\mathsf{N}}} \overset{\mathsf{N}}{\overset$$

where the interest of the voyaga ce many has pen institled and is determinant = 2 is in the denominator. This evaluates to

$$\left(-\frac{x^2}{4} - xy + 2x - \frac{3y^2}{2} + 5y - \frac{9}{2}\right).$$

The normalisation factor is  $1/(2\sqrt{2}\pi)$ .

#### Conditionals on contour plot



#### General form for Gaussian distributions

Appendix plant and problem of the p

$$\underset{\mathfrak{p}(x)}{\text{https:/\!powcoder.com}}_{(2\pi)^{p/2}|\Sigma|^{1/2}} \underset{\text{exp}}{\text{exp}} \underbrace{\text{der.com}}_{2}(x-\mu) \Big),$$

$$x \sim \mathcal{N}(\mu, \Sigma)$$
.

#### Summary and looking ahead

## Assignment Soft of Education Education Predictive model

- Formalise probabilistic modelling
- Relat Ntats in St. d/syriptos Ave Camed Clinea Collina
- Interpreting 2-dimensional Gaussians
- Lab 3 and Chapter 2 of FCML addresses maximum likelihood estimation
- Next staps: regular varion to could of increase of leavined Weglindring
- Bayesian: priors shape expectations of data modelling in absence of data (domain understanding)