Exercices du Cours d'Analyse 1 Filière SMIA Suites numériques et Fonctions

> Mme S. AMRAOUI 2018 / 2019

Table des matières

Ι	Enoncés des exercices	5
1	Nombres réels	7
2	Suites numériques	11
3	Continuité et dérivabilité des fonctions numériques d'une variable réelle	15
II	Corrigé des exercices	19
4	Nombres réels	21
5	Suites numériques	33
6	Continuité et dérivabilité des fonctions numériques d'une variable réelle	45

Première partie

Enoncés des exercices

Chapitre 1 NOMBRES RÉELS

Exercice 1.

- 1. Montrer que $\sqrt{6}$ est un nombre irrationnel.
- 2. Montrer qu' un entier naturel q tel que q^2 soit un multiple de 3 est aussi un multiple de 3. En déduire que $\sqrt{3}$ est irrationnel.
- 3. Soient a, b et c trois entiers relatifs tels que $a+b\sqrt{2}+c\sqrt{3}=0$. Montrer que a=b=c=0.

Exercice 2. Montrer que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.

Exercice 3.

- 1. Montrer que si $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$, alors que $x + y \notin \mathbb{Q}$.
- 2. Montrer que si $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$, alors que $xy \notin \mathbb{Q}$.
- 3. La somme de deux nombres irrationnels est -il toujours un nombre irrationnel?

Même question pour le produit.

Exercice $\frac{4}{5}$. Résoudre sur \mathbb{R} le système d'inéquations

$$|x+1| < \frac{5}{2}$$
 et $\sqrt{x^2 + x - 2} > 1 + \frac{x}{2}$

Exercice 5. Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$\mathbf{A} = [0, 1] \cap \mathbb{Q}, \ \mathbf{B} =]0, 1[\cap \mathbb{Q}, \ \mathbf{C} = \left\{ (-1)^n + \frac{1}{n^2} / n \in \mathbb{N}^* \right\}.$$

Exercice 6.

Soient a, b deux réels strictement positifs. Les parties suivantes sont-elles majorées, minorées? Si oui, déterminer leurs bornes supérieures, inférieures.

1.
$$A = \{a + (-1)^n b; n \in \mathbb{N}\}, 2.$$
 $B = \{a + \frac{b}{n}; n \in \mathbb{N}^*\},$
3. $C = \{(-1)^n a + \frac{b}{n}; n \in \mathbb{N}^*\}$ et 4. $D = \{a + (-1)^n \frac{b}{n}; n \in \mathbb{N}^*\}.$

Exercice 7.

Soit $n \in \mathbb{N}^*$ et soit a_1, \ldots, a_n des réels.

1. Exprimer $\sum_{k=1}^{n} (1-a_k)^2$ en fonction de $\sum_{k=1}^{n} a_k$ et de $\sum_{k=1}^{n} a_k^2$.

2. Soit

$$E_n = \left\{ x \in \mathbb{N}; \ \exists \ (a_k)_{k \in \{1, \dots, n\}} \in \mathbb{R}^n; \ x = \sum_{k=1}^n a_k = \sum_{k=1}^n a_k^2. \right\}$$

 E_n est-il majoré? E_n est-il minoré? Possède-t-il un plus grand élément? Un plus petit élément?

Exercice 8.

Soient A et B deux parties bornées de \mathbb{R} .

On note

$$A + B = \{a + b \mid a \in A, b \in B\}$$

- 1. Montrer que sup $A + \sup B$ est un majorant de A + B.
- 2. Montrer que $\sup (A + B) = \sup A + \sup B$.

Exercice 9.

Soient A et B deux parties non vides et bornées de \mathbb{R} telles que $A \subset B$. Comparer inf A, sup A, inf B et sup B.

Exercice 10.

- I. Soient A et B deux parties non-vides bornées de \mathbb{R} et $x \in \mathbb{R}$. On note $-A = \{-a \mid a \in A\}$, $A+B = \{a+b \mid a \in A, b \in B\}$, $x+A = \{x+a \mid a \in A\}$ et $AB = \{ab \mid a \in A, b \in B\}$.
 - 1. Montrer que $\sup(-A) = -\inf(A)$.
 - 2. Montrer que sup $(A + B) = \sup A + \sup B$.
 - 3. Montrer que $\sup(x+A) = x + \sup(A)$.
 - 4. a) Montrer que $\sup(AB) = \sup(A) \times \sup(B)$ si $A \subset \mathbb{R}^+$ et $B \subset \mathbb{R}^+$.
- b) A-t-on toujours $\sup(AB) = \sup(A) \times \sup(B)$ si A et B des parties quelqonques de \mathbb{R} .

II. On suppose que A est une partie de \mathbb{R}^+ et que B est une partie de \mathbb{R}^{+*} . On note A/B l'ensemble des quotients d'un élément de A par un élément de B. Soit $A/B = \left\{ \frac{a}{b}, a \in A, b \in B \right\}$.

- 1. Montrer que si m est un minorant de A et M un majorant de B alors $\frac{m}{M}$ est un minorant de A/B.
 - 2. Montrer que si B n'est pas majorée alors : $\forall \varepsilon > 0, \exists x \in A/B; x < \varepsilon$.
 - 3. En déduire que si B n'est pas majorée, alors inf (A/B) = 0.
 - 4. Montrer que si $A \neq \{0\}$ et si inf(B) = 0 alors A/B n'est pas majoré.

Exercice 11.

Soit A une partie de \mathbb{R} majorée et on note $M = \sup A$. On suppose que $M \notin A$. Montrer que, pour tout $\varepsilon > 0$, l'intervalle $|M - \varepsilon, M|$ contient une infinité d'éléments de A.

Exercice 12 Soient a et b deux nombres réels donnés. Démontrer les équivalences:

$$\begin{aligned} &1.\ a \leq b \Leftrightarrow (\forall \varepsilon > 0\ , a \leq b + \varepsilon) \\ &2.\ a = 0 \Leftrightarrow (\forall \varepsilon > 0\ , |a| \leq \varepsilon)\,. \end{aligned}$$

2.
$$a = 0 \Leftrightarrow (\forall \varepsilon > 0, |a| \le \varepsilon)$$
.

Exercice 13.

1. Montrer que pour tout entier $n \geq 1$ on a l'encadrement :

$$2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - .\sqrt{n-1})$$

- 2. En déduire un encadrement de la somme $\sum_{n=1}^{p} \frac{1}{\sqrt{n}}$ pour tout $p \in \mathbb{N}^*$ 3. Quelle est la partie entière de $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{10000}}$?

Exercice 14.

Soit $n \in \mathbb{N}^*$. Vérifier que $(2+\sqrt{3})^n+(2-\sqrt{3})^n$ est un entier pair. En déduire que la partie entière de $(2+\sqrt{3})^n$ est un entier impair.

Exercice 15.

Soit x,y des réels. Montrer que

1.
$$x \le y \Rightarrow E(x) \le E(y)$$
.

2.
$$E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1$$
.

$$3. \forall a \in \mathbb{Z}, E(x+a) = E(x) + a.$$

4.
$$E(x) + E(x + y) + E(y) \le E(2x) + E(2y)$$
.

Exercice 16.

Soit $n \in \mathbb{N}^*, x \in \mathbb{R}$. Montrer que : $E(\frac{E(nx)}{n}) = E(x)$.

Exercice 17

1. Montrer que : $\forall x \in \mathbb{R}$,

$$E(x) + E(-x) = -1$$
 si $x \notin Z$ et $E(x) + E(-x) = 0$ si $x \in Z$.

2. En déduire que si p et q sont deux entiers naturels premier entre eux alors :

$$\sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = \frac{(p-1)(q-1)}{2}.$$

Exercice 18.

Soit x un nombre réel.

Montrer que $E(x) + E(x + \frac{1}{2}) = E(2x)$. Plus généralement, montrer que pour tout $n \ge 2$

$$\sum_{k=0}^{n-1} E\left(x + \frac{k}{n}\right) = E(nx).$$

Exercice 19.

Calculer

$$\sum_{k=1}^{2010} E\left(\sqrt{k}\right)$$

Exercice 20.

Montrer que l'ensemble $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Chapitre 2 SUITES NUMÉRIQUES

Exercice 1.

Les propositions suivantes sont-elles vraies ou fausses? Justifier votre réponse. Soit (u_n) une suite réelle.

- 1. Si $\lim_{n\to+\infty}u_n=1$ et, si pour tout $n\in\mathbb{N}$, on a $u_n\geq 1$, alors la suite (u_n) est décroissante à partir d'un certain rang.
 - 2. Si $\lim_{n\to+\infty} u_n = 1$, alors il existe $n_0 \in \mathbb{N}$, tel que $u_n \ge 0$ pour tout $n \ge n_0$.

 - 3. Si $\lim_{n \to +\infty}^{n \to +\infty} u_n = l$, alors Si $\lim_{n \to +\infty} u_{n+1} u_n = 0$. 4. Si la suite $(u_{n+1} u_n)$ converge vers 0, alors (u_n) possède une limite finie.
 - 5. Si la suite (u_n) ne tend pas vers l'infini, alors elle est bornée.

Soient (u_n) et (v_n) deux suites convergentes. Etudier la convergence de la suite (w_n) définie par $w_n = \max(u_n, v_n)$.

Exercice 3.

- 1. Montrer qu'une suite d'entiers relatifs (u_n) converge si et seulement si elle est stationnaire.
- 2. Soit (u_n) une suite d'entiers naturels deux à deux distincts. Montrer $\lim_{n\to+\infty}u_n=$ $+\infty$.

Exercice 4. Soit (u_n) une suite qui tend vers $l \in \mathbb{R}$.

1. Montrer que si $l = \pm \infty$, alors $(E(u_n))$ tend vers l.

On suppose dans la suite que $l \in \mathbb{R}$.

- 2. Montrer que si $l \notin \mathbb{Z}$, alors $(E(u_n))$ converge vers E(l).
- 3. On suppose que $l \in \mathbb{Z}$.
- a) On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que $n \geq n_0 \Rightarrow u_n \geq l$, alors $(E(u_n))$ converge vers l.
- b) On suppose qu'il existe $n_1 \in \mathbb{N}$ tel que $n \geq n_1 \Rightarrow u_n < l$, alors $(E(u_n))$ converge vers l-1.

c) On suppose que a) et b) ne sont pas réalisées, c'est à dire que pour tout $N \in \mathbb{N}$, il existe $n_0 \geq N$ et $n_1 \geq N$ tel que $u_{n_0} < l$ et $u_{n_0} \geq l$. Montrer que la suite $(E(u_n))$ est divergente.

Exercice 5. Soit $x \in \mathbb{R}$ Montrer que la suite (u_n) définie par $u_n =$ $\frac{1}{n^2}\sum_{k=1}^n E(kx)$ converge et calculer sa limite.

Exercice 6.

12

Soit (u_n) une suite de réels strictement positifs. On suppose que

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l.$$

 $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l.$ 1. Montrer que si l < 1 alors $\lim_{n \to +\infty} u_n = 0.$ 2. Montrer que si l > 1 alors $\lim_{n \to +\infty} u_n = +\infty$

3. Montrer que si l=1, On ne peut rien conclure.

Exercice 7. Moyenne de Cesaro:

Soient (u_n) une suite réelle et (v_n) la suite définie par : $v_n = \frac{u_1 + ... + u_n}{n}$ 1. Montrer que si la suite (u_n) converge vers un réel l, la suite (v_n) converge et a pour limite l. A t'on la réciproque?

2. Montrer que si la suite (u_n) est bornée, la suite (v_n) est bornée. A t'on la réciproque?

3. Montrer que si la suite (u_n) est croissante alors la suite (v_n) l'est aussi.

Exercice 8. Soit
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
.

1. Montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$.

2. En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$.

3. Déterminer la limite de (H_n) .

4. Montrer que la suite (u_n) définie par $u_n = H_n - \ln(n)$ est décroissante.

5. En déduire que la suite (u_n) est convergente.

Exercice 9.

Montrer que les suites suivantes sont convergentes et déterminer leurs limites :

1. (u_n) définie par : $u_n = \frac{2n+1}{3n^2+1} + \frac{2n+1}{3n^2+2} + \frac{2n+1}{3n^2+n}$ 2. (v_n) définie par : $v_n = \frac{1 \times 3 \times \ldots \times (2n+1)}{3 \times 6 \times \ldots \times (3n+3)}$

3. (w_n) définie par : $w_n = \left(1 + \frac{1}{n}\right)^n$

Suites numériques 13

Exercice 10.

Soit α et β deux réels tels que $0 < \alpha < \beta$. On définit les suites (a_n) et (b_n) par

$$a_0 = \alpha$$
, $b_0 = \beta$ et, pour tout entier $n \ge 0$, les relations $a_{n+1} = \frac{2a_nb_n}{a_n + b_n}$; $b_{n+1} = \frac{1}{2}(a_n + b_n)$

1. Montrer que les suites (a_n) et (b_n) sont convergentes et ont la même limite l que l'on calculera en fonction de α et de β .

2. Montrer que pour tout
$$n \ge 0$$
, $0 \le b_{n+1} - a_{n+1} \le \frac{(b_n - a_n)^2}{4\alpha}$

3. En déduire que
$$0 \le b_n - a_n \le 4\alpha \left(\frac{\beta - \alpha}{4\alpha}\right)^{2^n}$$
.

4. Trouver une valeur approchée de $\sqrt{2}$ à 10^{-4} près.

Exercice 11.

Soit (u_n) une suite de réels décroissante et de limite nulle.

Pour tout
$$n \in \mathbb{N}$$
, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

Exercice 12.

Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent. Montrer que (u_{2n}) et (u_{2n+1}) convergent vers la même limite En déduire que (u_n) converge.

Exercice 13. Justifier que la suite (u_n) définie par $u_n = \sin n$ diverge.

Exercice 14.

Soit la suite de terme général $u_n = \sqrt{n} - E(\sqrt{n})$.

- 1. Montrer que les suites extraites (u_{n^2}) et (u_{n^2+2n}) convergent et determiner leurs limites
 - 2. En déduire que la suite (u_n) est divergente.

Exercice 15. Soient a et b deux réels, a < b. On considère la fonction $f:[a,b] \to [a,b]$ supposée continue et une suite récurrente (u_n) définie par :

$$\begin{cases} u_0 \in [a, b] & et \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

- 1. On suppose ici que f est croissante. Montrer que (u_n) est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.
 - 2. Application. Calculer la limite de la suite définie par :

$$\begin{cases} u_0 = 4 & et \\ u_{n+1} = \frac{4u_n + 5}{u_n + 3} \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

3. On suppose maintenant que f est décroissante. Montrer que les suites (u_{2n}) et (u_{2n+1}) sont monotones et convergentes.

4. Application. Soit (u_n) la suite définie par

$$\begin{cases} u_0 = \frac{1}{2} \ et \\ u_{n+1} = (1 - u_n)^2 \ \text{pour tout } n \in \mathbb{N}. \end{cases}$$
Calculer les limites des suites (u_{2n}) et (u_{2n+1}) .

Exercice 16.

Soit (u_n) une suite réelle convergente de limite let soit (v_n) la suite définie $par v_n = \sup u_p$

Montrons que la suite (v_n) est convergente de limite l. Gilliform

Chapitre 3

CONTINUITÉ ET DÉRIVABILITÉ DES FONCTIONS NUMÉRIQUES D'UNE VARIABLE RÉELLE

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f \circ f$ est croissante et que $f \circ f \circ f$ est strictement décroissante.

Montrer que f est strictement décroissante.

Exercice 2. Déterminer les limites suivantes, lorsque celles-ci existent :

- 1. $\lim_{x\to 0} \left(\frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}\right)$ avec m et n des entiers positifs, 2. $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$, 3. $\lim_{x\to +\infty} \frac{E(\ln \sqrt{x})}{\sqrt{x}}$, 4. $\lim_{x\to 0} xE\left(x-\frac{1}{x}\right)$.

Exercice 3. Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = xE\left(x - \frac{1}{x}\right)$. Montrer que f admet une limite en 0 et déterminer cette limite.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction paire. On suppose que f admet comme limite $l \in \mathbb{R}$ en $+\infty$. Montrer que f admet pour limite l en $-\infty$.

Exercice 5. Soit $f: \mathbb{R} \setminus \{5\} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{3x-1}{x-5}$. En utilisant la définition, montrer que f est continue en tout point $x_0 \in \mathbb{R} \setminus \{5\}$.

Exercice 6. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = E(x) + \sqrt{x - E(x)}$. Étudier la continuité de f sur \mathbb{R} .

Exercice 7. Les fonctions suivantes sont-elles prolongeables par continuité $\operatorname{sur} \mathbb{R}$?

1.
$$f(x) = \sin x \sin\left(\frac{1}{x}\right)$$
, 2. $g(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$.

Exercice 8

- 1. Montrer que la fonction $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .
- 2. Montrons que la fonction $x \mapsto \ln x$ n'est pas uniformément continue sur \mathbb{R}^{+*} .

Exercice 9. Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction continue, qui tend vers 0 quand x tend vers $+\infty$.

- 1. Montrer que f est bornée et atteint sa borne supérieure.
- 2. Atteint-elle toujours sa borne inférieure?

Exercice 10. Montrer que les seules applications continues de \mathbb{R} vers \mathbb{Z} sont les fonctions constantes. (On pourra utiliser le théorème de la valeur intermédiaire).

Exercice 11

- 1. Soit $f:[a,b] \to [a,b]$ une fonction continue. Montrer qu'il existe $x_0 \in [a,b]$ tel que $f(x_0) = x_0$.
- 2. Montrer que l'équation $\cos x = x$ admet une solution comprise entre 0 et 1.
- 3. Donner un exemple de fonction continue $g:]0,1[\to]0,1[$ qui n'admet pas et fixe. **Exercice 12.** Soit $f: \mathbb{R}^* \to \mathbb{R}$, la fonction définie par $: f(x) = x^2 \sin \frac{1}{x}$. de point fixe.

Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 13. Sur quelles parties de \mathbb{R} , la fonction définie par f(x) = x|x|est elle continues, dérivable?

Exercice 14. Soit
$$f:\left[0,\frac{\pi}{2}\right]\to\mathbb{R}$$
 définie par $f\left(x\right)=\sqrt{\sin x}+x.$

Montrer que f réalise une bijection de $\left[0,\frac{\pi}{2}\right]$ sur un intevalle, que l'on déterminera. Montrer que la bijection réciproque, est continue et dérivable sur cet intervalle.

Exercice 15. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction définie continue telle que $\lim_{x\to +\infty}f\left(x\right) =\lim_{x\to -\infty}f\left(x\right) =+\infty.$ Montrer que f admet un minimum absolu.

Exercice 16.

1. Montrer que si un polynôme P a n racines réelles simples $\alpha_1, ..., \alpha_n$ telles que $\alpha_1 < ... < \alpha_n$ alors le polynôme P' a n-1 racines réelles simples $\beta_1, ..., \beta_n$ telles que $\alpha_1 < \beta_1 < \alpha_2 < ... < \alpha_i < \beta_{i+1} < ... < \beta_{n-1} < \alpha_n$.

- 2. Montrer que si P est un polynôme de degré impaire, l'équation $P\left(x\right)=0$ admet au moins une solution réelle.
- 3. Application : Soient p et q deux nombres réels , n un entier strictement positif et P le polynôme définie par $P(x) = x^n + px + q$.
- a) Montrer que si n est pair, le polynôme ne peut avoir plus de deux racines réelles.
- b) Montrer que si n est impair, le polynôme ne peut avoir plus de trois racines réelles.
- c) On suppose que n=5. Discuter le % n=1 nombre de solutions de P en fonction de p.

Exercice 17. Soit p un entier, $p \ge 2$.

- 1. Montrer qu'il existe un réel $c \in]0,1[$ tel que : $\ln(\ln(p+1)) \ln(\ln(p)) = \frac{1}{(p+c)\ln(p+c)}$.
 - 2. En déduire l'inégalité : $\ln(\ln(p+1)) \ln(\ln(p)) < \frac{1}{p \ln(p)}$.
 - 3. En déduire que $\lim_{n \to +\infty} \left(\frac{1}{2\ln(2)} + \frac{1}{3\ln(3)} + \dots + \frac{1}{n\ln(n)} \right) = +\infty.$

Exercice 18. Dans l'application du théorème des accroissements finis à la fonction f définie par $f(x) = \alpha x^2 + \beta x + \gamma$ sur l'intervalle [a, b] préciser le nombre "c" de [a, b]. Donner une interprétation géométrique.

Exercice 19. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que, pour tous $x, y \in \mathbb{R}$, $|f(x) - f(y)| \le |\sin x - \sin y|$.

- 1. Montrer que f est 2π -périodique (c'est-à-dire que $f(x+2\pi)=f(x)$ pour tout $x\in\mathbb{R}.$
 - 2. Montrer que f est continue sur \mathbb{R} .
 - 3. Montrer que f est dérivable en $\frac{\pi}{2}$ et calculer $f'\left(\frac{\pi}{2}\right)$.

Exercice 20.

Etablir les relations

$$\arccos(x) + \arcsin(x) = \frac{\pi}{2};$$

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{x}{|x|}\frac{\pi}{2} \text{ pour } x \neq 0;$$

$$\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}};$$

$$\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}} \text{ et}$$

$$\sin(2 \arcsin x) = 2x\sqrt{1-x^2}$$

Exercice 21.

Calculer les limites suivantes en utilisant la règle de l'Hospital après avoir vérifié sa validité :

$$\lim_{x \to 0} \frac{x}{\sqrt{1 + x^2} - \sqrt{1 + x}}; \lim_{x \to -\infty} \frac{2ch^2x - sh(2x)}{x - \ln(chx) - \ln(2)} \text{ et } \lim_{x \to 1^-} \frac{\arccos x}{\sqrt{1 - x^2}}.$$

Exercice 22. Soit $f:[0,1] \to [0,1]$ une fonction croissante. Montrer que f admet un point fixe (c'est à dire qu'il existe $\alpha \in [0,1]$ tel que $f(\alpha) = \alpha$.)

Exercice 23.

- 1. Soit $g:\mathbb{R}\to\mathbb{R}$ une fonction périodique convergeant en $+\infty$. Montrer que g est constante.
- 2. Soient $f,g:\mathbb{R}\to\mathbb{R}$ telles que f
 converge en $+\infty$, g périodique et f+g croissante. Montrer que g
 est constante.

Exercice 24. Soit f une fonction croissante définie sur [0,1] à valeurs dans [0,1].

- 1. Montrer que s'il existe $x \in [0,1]$ et $k \in \mathbb{N}$ tels que $f^k(x) = x$ alors x est un point fixe pour f.
 - b) Montrer que f admet un point fixe.

Exercice 25. Soient $f, g : [a, b] \to \mathbb{R}$ continues telles que f(x) > g(x) pour tout $x \in [a, b]$.

Montrer qu'il existe $\eta > 0$ tel que $f(x) \ge g(x) + \eta$ pour tout $x \in [a, b]$. On suppose de plus que g(x) > 0 pour tout $x \in [a, b]$. Montrer qu'il existe k > 1 tel que $f(x) \ge kg(x)$ pour tout $x \in [a, b]$.

Deuxième partie

Corrigé des exercices

Chapitre 4

NOMBRES RÉELS

Exercice 1.

1. Montrons que $\sqrt{6}$ est un nombre irrationnel.

Supposons que $\sqrt{6} = \frac{p}{q}, q \neq 0$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, p et q premiers entre eux.

On a alors $p^2 = 6q^2$. Par conséquent, p^2 est pair, donc p l'est aussi et ainsi p = 2k. D'où $p^2 = 4k^2 = 6q^2$ et $2k^2 = 3q^2$. Par suite q est pair. Ce qui contredit le fait que p et q sont premiers entre eux.

2. Supposons que q^2 soit un multiple de 3 et q n'est pas un multiple de 3.

On a alors q = 3k + 1 ou q = 3k + 2. Si q = 3k + 1, alors $q^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. Donc q^2 ne serait

pas un multiple de 3. Si q=3k+2, alors $q^2=9k^2+12k+4=3\left(3k^2+4k+1\right)+1$. Donc q^2 ne serait pas un multiple de 3.

Application

Supposons que $\sqrt{3} = \frac{p}{q}, q \neq 0$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, p et q premiers entre eux. Alors $3q^2 = p^2$ et donc p^2 est un multiple de 3 et donc p est aussi un multiple de 3, c'est à dire p = 3k. D'où $p^2 = 9k^2 = 3q^2$, donc $q^2 = 3k$.

Par suite q est un multiple de 3. Ce qui contredit le fait que p et q sont premiers entre eux.

3. Supposons que a, b et c trois entiers relatifs tels que $a + b\sqrt{2} + c\sqrt{3} = 0$ et $a \neq 0, b \neq 0$ ou $c \neq 0$.

On a $a + b\sqrt{2} + c\sqrt{3} = 0 \Rightarrow a = -b\sqrt{2} - c\sqrt{3} \Rightarrow a^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a = -b\sqrt{2} - c\sqrt{3} \Rightarrow a = -b\sqrt{2} + 2bc\sqrt{6} + 3c^2 \Rightarrow a = -b\sqrt{2} - c\sqrt{3} \Rightarrow a$ $a^2 - 2b^2 - 3c^2 = 2bc\sqrt{6}.$

■ Si $b \neq 0$ et $c \neq 0$ alors $\sqrt{6} = \frac{a^2 - 2b^2 - 3c^2}{2bc}$.

Ce qui n'est pas possible car $\sqrt{6} \notin \mathbb{Q}$ et $\frac{a^2 - 2b^2 - 3c^2}{2bc} \in \mathbb{Q}$.

■ Si b=0 et $c\neq 0$ alors $a-c\sqrt{3}=0$, d'où $\sqrt{3}=\frac{a}{c}$

Ce qui n'est pas possible car $\sqrt{3} \notin \mathbb{Q}$ et $\frac{a}{a} \in \mathbb{Q}$.

■ De même si $b \neq 0$ et c = 0 alors $\sqrt{2} = \frac{a}{b}$ Ce qui n'est pas possible car $\sqrt{2} \notin \mathbb{Q}$ et $\frac{a}{b} \in \mathbb{Q}$.

Par conséquent b=0 et c=0. Par suite a=0.

Exercice 2.

Montrons que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.

Supposons que $\sqrt{2} + \sqrt{3} \in \mathbb{Q}$. Alors $\sqrt{2} - \sqrt{3} \in \mathbb{Q}$ car $\sqrt{2} - \sqrt{3} = \frac{-1}{\sqrt{2} + \sqrt{3}}$. Or $\sqrt{2} = \frac{1}{2} \left(\left(\sqrt{2} + \sqrt{3} \right) + \left(\sqrt{2} - \sqrt{3} \right) \right)$ On aurait donc aussi $\sqrt{2} \in \mathbb{Q}$.

Exercice 3.

1. Montrons que si $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$, alors que $x + y \notin \mathbb{Q}$.

Soit $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$. Par l'absurde : Si $z = x + y \in \mathbb{Q}$, alors par différence de deux nombres rationnels $y = z - x \in \mathbb{Q}$

Or y est irrationnel donc $x + y \notin \mathbb{Q}$.

2. Montrons que si $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$, alors que $xy \notin \mathbb{Q}$. Soit $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$. Par l'absurde : Si $z = xy \in \mathbb{Q}$, alors par quotient de deux nombres rationnels $y = \frac{z}{x} \in \mathbb{Q}$

Or y est irrationnel $xy \notin \mathbb{Q}$.

3. La somme et le produit de deux nombres irrationnels ne sont pas toujours un nombre irrationnel.

Exemple: $x = \sqrt{2} \notin \mathbb{Q}$ et $y = -\sqrt{2} \notin \mathbb{Q}$ alors que $x + y = 0 \in \mathbb{Q}$ et $xy = -2 \in \mathbb{Q}.$

Exercise 4 . On a
$$|x+1| < \frac{5}{2} \Leftrightarrow -\frac{5}{2} < x+1 < \frac{5}{2} \Leftrightarrow -\frac{3}{2} < x < 3 \Leftrightarrow x \in \left] -\frac{3}{2}, 3 \right[.$$

$$\sqrt{x^2+x-2} > 1 + \frac{x}{2} \Leftrightarrow \left\{ \begin{array}{c} x^2+x-2 > \left(1+\frac{x}{2}\right)^2 \\ x^2+x-2 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x^2+x-2 > \frac{x^2}{4} + x + 1 \\ x^2+x-2 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x^2+x-2 > \frac{x^2}{4} + x + 1 \\ x^2+x-2 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x^2+x-2 > \frac{x}{4} + x + 1 \\ x^2+x-2 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \end{aligned} \right. \Leftrightarrow \left\{ \begin{array}{c} x \in \left[-\infty, -2\right] \cup \left[2, +\infty\right] \\ x \in \left[-\infty, -2\right] \cup$$

Exercice 5.

Les majorants de $\mathbf{A} = [0,1] \cap \mathbb{Q}$ sont $[1,+\infty[$ et ses minorants sont $]-\infty,0]$, donc sa borne supérieure est 1, sa borne inférieure est 0, son plus grand élément est 1 et son plus petit élément est 0.

Les majorants de $\mathbf{B} =]0,1[\cap \mathbb{Q} \text{ sont }]1,+\infty[$ et ses minorants sont $]-\infty,0[$, donc sa borne supérieure est 1, sa borne inférieure est 0, B n'admet pas de plus grand élément ni de plus petit élément.

Les majorants de $\mathbf{C} = \left\{ (-1)^n + \frac{1}{n^2} \ / \ n \in \mathbb{N}^* \right\}$ sont $\left[\frac{5}{4}, +\infty \right[$ et ses minorants sont $]-\infty, -1]$, donc sa borne supérieure est $\frac{5}{4}$, sa borne inférieure est -1, son plus grand élément est $\frac{5}{4}$, mais n'a pas de plus petit élément .

Exercice 6.

Soient a,b deux réels strictement positifs. Les parties suivantes sont-elles majorées, minorées? Si oui, déterminer leurs bornes supérieures, inférieures.

1.
$$A = \{a + (-1)^n b; n \in \mathbb{N}\}, 2.$$
 $B = \{a + \frac{b}{n}; n \in \mathbb{N}^*\},$
3. $C = \{(-1)^n a + \frac{b}{n}; n \in \mathbb{N}^*\}$ et 4. $D = \{a + (-1)^n \frac{b}{n}; n \in \mathbb{N}^*\}.$

- 1. Si n est pair, $a + (-1)^n b = a + b$ et si n est impair, $a + (-1)^n b = a b$. L'ensemble est donc constitué des deux élements a + b et a b. Il est donc majoré, minoré, avec $\sup(A) = a + b$ et $\inf(A) = a b$.
- 2. Pour tout $n \in \mathbb{N}^*$, $a < a + \frac{b}{n} < a + b$. B est donc majoré par a + b et que B est minoré par a. De plus, a + b est élément de B, et donc $\sup(B) = a + b$. Enfin, prouvons que a est la borne inférieure de B. Si c est un minorant de B strictement supérieur à a, alors pour tout $n \in \mathbb{N}^*$, on a $a + \frac{b}{n} \ge c \Leftrightarrow n \le \frac{b}{c-a}$.

Comme $\mathbb N$ n'est pas majoré, c
 n'est pas un minorant de B. a est donc le plus grand des minorants de $\mathbb C$, c'est sa borne inférieure.

3. Pour tout $n \in \mathbb{N}^*$, $(-1)^n a + \frac{b}{n} > (-1)^n a > -a$. -a est donc un minorant de C,

Si c est un minorant de C strictement supérieur à -a, alors pour tout $n \in \mathbb{N}^*$, $(-1)^n a + \frac{b}{n} \ge c$. Si n est impair , on aura $-a + \frac{b}{n} \ge c \Leftrightarrow n \le \frac{b}{c+a}$.

Comme \mathbb{N} n'est pas majoré, c n'est pas un minorant de C. -a est donc le plus grand des minorants de \mathbb{C} , c'est sa borne inférieure.

Pour tout entier n impair, on a $(-1)^n a + \frac{b}{n} = -a + \frac{b}{n} \le -a + b$ et pour tout entier n pair , on a $(-1)^n a + \frac{b}{n} = a + \frac{b}{n} \le a + \frac{b}{2}$. $\max(-a + b, a + \frac{b}{2})$ est donc un majorant de C. C'est aussi un élément de C, donc c'est sa borne supérieure.

4. Pour tout $n \in \mathbb{N}^*$, $a - b \le a + (-1)^n \frac{b}{n} \le a + \frac{b}{2}$. a - b est un minorant de D et que $a + \frac{b}{2}$ est un majorant de D. Comme ils sont tous les deux élements de D, ce sont respectivement la borne inférieure et la borne supérieure de D.

Exercice 7.

Soit $n \in \mathbb{N}^*$ et soit a_1, \ldots, a_n des réels.

1. Il suffit de développer la somme. On trouve que

$$\sum_{k=1}^{n} (1 - a_k)^2 = \sum_{k=1}^{n} (1 - 2a_k + a_k^2) = n - 2\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} a_k^2.$$

2. On remarque d'abord que tout élément de E_n est positif comme somme de carrés, donc E_n est minoré par 0. De plus, 0 est élément de E_n (si tous les a_k sont nuls). On en déduit donc que 0 est le plus petit élément de E_n .

Prenons ensuite $x \in E_n$ et a_1, \dots, a_n la suite associée. D'après la question précédente, on a

$$0 \le \sum_{k=1}^n (1-a_k)^2 = n-2\sum_{k=1}^n a_k + \sum_{k=1}^n a_k^2 = n-2x+x=n-x.$$

On en déduit que $n-x \ge 0$, donc $x \le n$. Ainsi, E_n est majoré par n. De plus,

On en déduit que $n-x \geq 0$, donc $x \leq n$. Ainsi, E_n est majoré par n. De plus, n appartient à E_n (il suffit de choisir tous les a_i égal à 1). Ainsi, n est le plus grand élément de E_n .

Exercice 8.

Soient A et B deux parties bornées de \mathbb{R} . On note

$$A + B = \{a + b \mid a \in A, b \in B\}$$

1. $\sup A$ est un majorant de A , donc pour tout $a\in A, a\leq \sup A.$ De même, pour tout $b\in B, b\leq \sup B.$

 $x \in A+B$, il existe alors $a \in A$ et $b \in B$ tel que x=a+b, d'où $x \leq \sup A + \sup B$?

C'est à dire que $\sup A + \sup B$ est un majorant de A + B.

2. Soit $\varepsilon>0,$ $\exists a\in A$ et $b\in B$ tel que $\sup A-\frac{\varepsilon}{2}< a\leq \sup A$ et $\sup B-\frac{\varepsilon}{2}< b\leq \sup B$

d'où $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup B$

On a donc : $\sup A + \sup B$ est un majorant de A + B et $\forall \varepsilon > 0$, $\exists x = a + b \in A + B$ tel que $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup B$.

D'après la caractérisation de la borne supérieure sup $(A + B) = \sup A + \sup B$.

Exercice 9.

A et B sont des parties non vides et bornées de $\mathbb R$ donc les bornes sup et inf considérées existent.

Pour tout $a \in A$, on a $a \in B$ donc $a \le \sup B$, donc $\sup B$ majore A. Comme $\sup A$ est le plus petit des majorants de A, on a $\sup A \le \sup B$.

Pour tout $a \in A$, on a $a \in B$ donc inf $B \le a$, donc inf B minore A. Comme inf B est le plus grand des majorants de B, on a inf $B \le \inf A$.

Enfin, puisque $A \neq \emptyset$, inf $A \leq \sup A$.

En conclusion On a inf $B \leq \inf A \leq \sup A \leq \sup B$.

Exercice 10.

I. Soient A et B deux parties non-vides et bornées de \mathbb{R} , et $x \in \mathbb{R}$. On note $-A = \{-a \mid a \in A\}$, $A+B = \{a+b \mid a \in A, b \in B\}$, $x+A = \{x+a \mid a \in A\}$ et $AB = \{ab \mid a \in A, b \in B\}$.

1. Montrer que $\sup(-A) = -\inf(A)$.

Soit $m = \inf(A)$ et notons M = -m. Pour tout $a \in A$, on a $m \le a$ ce qui implique $-a \le M$. Par conséquent M est un majorant de -A.

De plus, soit $\varepsilon>0$, $\exists a\in A$ tel que $m\leq a\leq m+\varepsilon$. Multipliant cette inégalité par -1, on trouve que

$$M - \varepsilon \le -a \le M$$
.

Ce qui prouve que $M = \sup(-A)$.

2. Montrer que $\sup (A + B) = \sup A + \sup B$.

 $\sup A$ est un majorant de A , donc pour tout $a\in A, a\leq \sup A.$ De même, pour tout $b\in B, b\leq \sup B.$

 $x \in A + B$, il existe alors $a \in A$ et $b \in B$ tel que x = a + b, d'où $x \le \sup A + \sup B$.

C'est à dire que $\sup A + \sup B$ est un majorant de A + B.

Soit $\varepsilon > 0$, $\exists a \in A$ et $b \in B$ tel que $\sup A - \frac{\varepsilon}{2} < a \le \sup A$ et $\sup B - \frac{\varepsilon}{2} < b \le \sup B$

d'où $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup B$

On a donc : $\sup A + \sup B$ est un majorant de A + B et $\forall \varepsilon > 0$, $\exists x = a + b \in A + B$ tel que $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup B$.

D'après la caractérisation de la borne supérieure sup $(A + B) = \sup A + \sup B$.

3. Montrer que $\sup(x+A) = x + \sup(A)$.

On peut appliquer le résultat précédent avec $B = \{x\}$ ou bien on peut reprendre le raisonnement précédent.

4. a) Montrer que $\sup(AB) = \sup(A) \times \sup(B)$ si $A \subset \mathbb{R}^+$ et $B \subset \mathbb{R}^+$.

 $\sup A$ est un majorant de $A \subset \mathbb{R}^+$, donc pour tout $a \in 0 \le a \le \sup A$. De même, pour tout $b \in B \subset \mathbb{R}^+, 0 \le b \le \sup B$.

 $x\in AB$, il existe alors $a\in A\subset \mathbb{R}^+$ et $b\in B\subset \mathbb{R}^+$ tel que x=ab, d'où $x\leq \sup A\sup B$.

C'est à dire que $\sup A \sup B$ est un majorant de AB.

Soit $\varepsilon>0,\,\exists a\in A$ et $b\in B$ tel que $\sup A-\sqrt{\varepsilon}< a\leq \sup A$ et $\sup B-\sqrt{\varepsilon}< b\leq \sup B$

d'où $\sup A \sup B - \varepsilon < ab \le \sup A \sup B$

On a donc : $\sup A \sup B$ est un majorant de AB.

Pour tout $\gamma > 0$, $\gamma < \min(\sup A, \sup B)$, il existe $a \in A$ et $b \in B$ tel que $\sup A - \gamma < a \le \sup A$ et $\sup B - \gamma < b \le \sup B$.

Or $(\sup A - \gamma) (\sup B - \gamma) = \sup A \sup B - \gamma (\sup A + \sup B) + \gamma^2 > \sup A \sup B - \gamma (\sup A + \sup B) > \sup A \sup B - \varepsilon$

$$si \gamma < \frac{\varepsilon}{\sup A + \sup B}.$$

Pour tout $\varepsilon>0$, On choisit donc , $\gamma=\min\left(\sup A,\sup B,\frac{\varepsilon}{\sup A+\sup B}\right)>0$ et on aura

 $\exists x = ab \in AB \text{ tel que sup } A \sup B - \varepsilon < a + b \le \sup A \sup B.$

D'après la caractérisation de la borne supérieure sup $(AB) = \sup A \sup B$.

b) A-t-on toujours $\sup(AB) = \sup(A) \times \sup(B)$ si A et B des parties quelqonques de \mathbb{R} .

Le résultat est faux en général car le produit de deux nombres négatifs est un nombre positif. Prenons par exemple $A = \{-3,1\}$ et $B = \{-1,0\}$. Alors $AB = \{-1,3,0\}$ et $\sup(AB) = 3 \neq \sup(A) \times \sup(B) = 0$.

Autre exemple :. Par exemple, si $A=B=]-\infty,0]$, alors $\sup(A)=\sup(B)=0$, $AB=[0,+\infty[$ et $\sup(AB)$ n'existe pas dans $\mathbb R$.

- II. On suppose que A est une partie non vide de \mathbb{R}^+ et B est une partie non vide de \mathbb{R}^{+*} . On note A/B l'ensemble des quotients d'un élément de A par un élément de B. Soit $A/B = \left\{ \frac{a}{b}, a \in A, b \in B \right\}$.
- 1. Montrer que si m est un minorant de A et M un majorant de B alors $\frac{m}{M}$ est un minorant de A/B.

Comme $B \subset \mathbb{R}^{+*}$, M est strictement positif.

Si m < 0, alors, $\frac{m}{M} < 0$. Or $A/B \subset \mathbb{R}^+$, donc $\frac{m}{M}$ est un minorant de A/B.

Supposons que $m \geq 0$.

Pour tout $y \in B,\, 0 < y \le M,\, {\rm donc}\ 0 < \frac{1}{M} \le \frac{1}{y}$ et $0 \le \frac{x}{M} \le \frac{x}{y}.$ De plus pour tout $x \in A, 0 \le m \le x$

tout $x \in A, 0 \le m \le x$ et alors : $\forall x \in A, \forall y \in B, \frac{m}{M} \le \frac{x}{y}$.

Donc $\frac{m}{M}$ est un minorant de A/B.

2. Montrer que si B n'est pas majorée alors : $\forall \varepsilon > 0, \exists x \in A/B; x < \varepsilon$.

Soit $\varepsilon > 0$ et soit a un élément quelconque de A. Comme B n'est pas majoré, il existe $y \in B$ tel que $y > \frac{a}{\varepsilon} > 0$. Donc $x = \frac{a}{y} < \varepsilon$, on a bien $x \in A/B$ et $x < \varepsilon$.

3. En déduire que si B n'est pas majorée, alors $\inf (A/B) = 0$.

Par hypothèse, tout élément de A/B est positif ou nul. Donc 0 est un minorant de A/B. D'après la question précédente, pour tout $\varepsilon > 0$, ε n'est pas un minorant de A/B. Donc 0 est le plus grand des minorants de A/B.

(On peut aussi dire que $\begin{cases} 0 \text{ est un minorant de } A/B \text{ et} \\ \forall \varepsilon > 0, \exists x \in A/B; 0 \leq x < 0 + \varepsilon. \end{cases}$ Donc d'après la caractérisation de la borne inférieure dans \mathbb{R} , inf (A/B) = 0).

4. Montrer que si $A \neq \{0\}$ et si $\inf(B) = 0$ alors A/B n'est pas majoré.

Par hypothèse, A contient un réel strictement positif. Si inf (B)=0 alors pour $\varepsilon>0$, il existe $y\in B$ tel que $0< y<\varepsilon$. Soit M un réel strictement positif quelconque. Soit $y\in B$ tel que $0< y<\frac{a}{M}$. Alors $\frac{a}{y}\in A/B$ et $\frac{a}{y}>M$. Donc A/B n'est pas majoré.

Exercice 11.

Soit A une partie de \mathbb{R} majorée et on note $M=\sup A$. On suppose que $M\notin A$. Montrer que, pour tout $\varepsilon>0$, l'intervalle $]M-\varepsilon,M[$ contient une infinité d'éléments de A.

On raisonne par l'absurde, et on suppose que $]M - \varepsilon, M[\cap A$ est fini. Soit $\{a_1, \ldots, a_p\} =]M - \varepsilon, M[$. Posons $a = \max(a_1, \ldots, a_p)$. Alors a < M. On pose $\alpha = M - a$. On a $\alpha > 0$, donc il existe $a_{p+1} \in A$ tel que $M - \alpha < a_{p+1} \leq M$. On a même $a_{p+1} < M$ car $M \notin A$. De plus, $a_{p+1} > M - \alpha = a \geq M - \varepsilon$. On en déduit que $a_{p+1} \in]M - \varepsilon, M[$ et que $a_{p+1} \neq a_i, i = 1, \ldots, p$. Ceci contredit l'hypothèse initiale.

Exercice 12

1.
$$a \le b \Leftrightarrow (\forall \varepsilon > 0, a \le b + \varepsilon)$$

$$\Rightarrow$$
) $a \le b \Rightarrow a \le b + \varepsilon, \forall \varepsilon > 0$

 \Leftarrow) Supposons que $\forall \varepsilon > 0$, $a \leq b + \varepsilon$ et a > b.

Pour $\varepsilon = \frac{a-b}{2} > 0$, on aurait $a \le b + \frac{a-b}{2}$, D'où $(a-b) - \left(\frac{a-b}{2}\right) \le 0$ et par suite $a - b \le 0$.

2.
$$a = 0 \Leftrightarrow (\forall \varepsilon > 0, |a| \le \varepsilon)$$
.

⇒) immédiat

 \Leftarrow) Supposons que $\forall \varepsilon > 0 \ , |a| \le \varepsilon$ et $a \ne 0.$

Pour $\varepsilon = \frac{|a|}{2} > 0$, on aurait $|a| \le \frac{|a|}{2}$, d'où a = 0.

Exercice 13.

1. Montrons que pour tout entier $n \ge 1$, l'encadrement :

$$2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - \sqrt{n-1}).$$

On a:
$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}$$
.

De même

$$\sqrt{n} - \sqrt{n-1} = \frac{1}{\sqrt{n} + \sqrt{n-1}} > \frac{1}{2\sqrt{n}}.$$

2. Encadrement de la somme
$$\sum_{n=1}^{p} \frac{1}{\sqrt{n}}$$
 pour tout $p \in \mathbb{N}^*$.
On écrit $\sum_{n=1}^{p} \frac{1}{\sqrt{n}} = 1 + \sum_{n=2}^{p} \frac{1}{\sqrt{n}}$.
Or $2\sqrt{2} - 2 < 1 = 2 - 1$ (1)

et

$$\sum_{n=2}^{p} (\sqrt{n+1} - \sqrt{n}) = -\sum_{n=2}^{p} (\sqrt{n} - \sqrt{n+1})$$

$$= -\left(\left(\sqrt{2} - \sqrt{3}\right) + \left(\sqrt{3} - \sqrt{4}\right) + \dots + \left(\sqrt{p} - \sqrt{p+1}\right)\right)$$

$$= \sqrt{p+1} - \sqrt{2}$$

De même

$$\sum_{n=2}^{p} \left(\sqrt{n} - \sqrt{n-1} \right) = -\sum_{n=2}^{p} \left(\sqrt{n-1} - \sqrt{n} \right)$$

$$= -\left(\left(\sqrt{1} - \sqrt{2} \right) + \left(\sqrt{2} - \sqrt{3} \right) + \dots + \left(\sqrt{p-1} - \sqrt{p} \right) \right)$$

$$= \sqrt{p} - 1$$

Ainsi

$$2\sqrt{p+1} - 2\sqrt{2} \le \sum_{n=2}^{p} \frac{1}{\sqrt{n}} \le 2\sqrt{p} - 2 \quad (2)$$

On additionnant membre à membre (1) et (2), on obtient

$$2\sqrt{p+1} - 2 \le \sum_{n=1}^{p} \frac{1}{\sqrt{n}} \le 2\sqrt{p} - 1$$

3. Pour p = 10000, on a

$$2\sqrt{10001} - 2 \le \sum_{n=1}^{10000} \frac{1}{\sqrt{n}} \le 2\sqrt{10000} - 1$$

Or $2\sqrt{10000} - 1 = 199$ et $2\sqrt{10001} - 2 = 198,0099 > 198$, Donc

$$198 \le \sum_{n=1}^{10000} \frac{1}{\sqrt{n}} \le 199$$

et par suite $E\left(\sum_{n=1}^{10000} \frac{1}{\sqrt{n}}\right) = 198.$

Exercice 14.

Soit $n \in \mathbb{N}^*$. Vérifier que $(2+\sqrt{3})^n+(2-\sqrt{3})^n$ est un entier pair. En déduire

que la partie entière de $(2+\sqrt{3})^n$ est un entier impair. Calculons $S=(2+\sqrt{3})^n+(2-\sqrt{3})^n$ à l'aide de la formule du binôme de

Newton. On trouve
$$S = \sum_{k=0}^{n} C_n^k 2^{n-k} \sqrt{3}^k + \sum_{k=0}^{n} C_n^k 2^{n-k} (-1)^k \sqrt{3}^k = \sum_{k=0}^{n} C_n^k 2^{n-k} \left(1 + (-1)^k\right) \sqrt{3}^k.$$

Maintenant, si k=2p est pair, alors $\left(1+(-1)^k\right)\sqrt{3}^k=2.3^p$ est un entier pair, et si k est impair, $(1+(-1)^k)\sqrt{3}^k=0$. On en déduit que S est bien un entier pair, comme somme d'entiers pairs. De plus, on a $0 < 2 - \sqrt{3} < 1$ et donc $0 < \left(2 - \sqrt{3}\right)^n < 1$. On en déduit que $\left(2 + \sqrt{3}\right)^n < S < 1 + \left(2 + \sqrt{3}\right)^n$

D'où
$$S - 1 \le (2 + \sqrt{3})^n < S$$

ce qui prouve que la partie entière de $\left(2+\sqrt{3}\right)^n$ est S-1. C'est donc un entier impair.

Exercice 15.

i) Montrons que $x \leq y \Rightarrow E(x) \leq E(y)$ $x \le y \Rightarrow E(x) \le x \le y$.

Donc E(x) est un entier relatif inférieur ou égal à y, Comme E(y) est le plus grand entier relatif inférieur ou égal à y, on a donc $E(x) \leq E(y)$.

$$ii) \ \forall x \in \mathbb{R} - \mathbb{Z}, E(-x) = -E(x) - 1.$$

Soit
$$f(x) = E(x) + E(-x)$$

On a
$$f(x+1) = E(x+1) + E(-x-1) = E(x) + 1 + E(-x) - 1 = f(x)$$
.

Donc la fonction f est périodique de période 1.

Or si $x \in (0, 1)$, on a f(x) = -1 et f(0) = 0.

$$iii) \ \forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, E(x+a) = E(x) + a.$$

On traite d'abords le cas a = 1

$$E(x) \le x < E(x) + 1 \Rightarrow E(x) + 1 \le x + 1 < (E(x) + 1) + 1$$

Donc E(x + 1) = E(x) + 1

Si
$$a \in \mathbb{N}$$
, $E(x+a) = E(x+(a-1)) + 1 = E(x+(a-2)) + 2 = \dots = E(x) + a$.

Si
$$a < 0, E(x) = E((x+a) - a) = E(x+a)$$
 (puisque $-a > 0$)

Exercice 16

Soit $n \in \mathbb{N}^*, x \in \mathbb{R}$.

On a

$$E(x) \leq x < E(x) + 1 \Rightarrow nE(x) \leq nx < nE(x) + n$$

$$\Rightarrow nE(x) \leq nx < nE(x) + n \Rightarrow nE(x) \leq E(nx) < nE(x) + n$$

$$\Rightarrow E(x) \leq \frac{E(nx)}{n} < E(x) + 1$$

Donc
$$E(\frac{E(nx)}{n}) = E(x)$$
.

Exercice 17

1. Montrons que : $\forall x \in \mathbb{R}$,

$$E(x) + E(-x) = -1$$
 si $x \notin Z$ et $E(x) + E(-x) = 0$ si $x \in Z$.

Soit f(x) = E(x) + E(-x)

On a
$$f(x+1) = E(x+1) + E(-x-1) = E(x) + 1 + E(-x) - 1 = f(x)$$
.

Donc la fonction f est périodique de période 1.

Or si $x \in]0,1[$, on a f(x) = -1 et f(0) = 0.

2. En déduire que si p et q sont deux entiers naturels premier entre eux alors :

$$\sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = \sum_{k=1}^{q-1} E\left((q-k)\frac{p}{q}\right) = \sum_{k=1}^{q-1} E\left(p-k\frac{p}{q}\right)$$

$$= \sum_{k=1}^{q-1} E\left(-k\frac{p}{q}\right) + p = \sum_{k=1}^{q-1} \left(-E\left(k\frac{p}{q}\right) - 1\right) + p$$

$$= -\sum_{k=1}^{q-1} E\left(k\frac{p}{q}\right) + (p-1)(q-1)$$

Ainsi

$$2 \sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = (p-1)(q-1).$$

Exercice 18.

Soit x un nombre réel.

Montrons que $E(x) + E(x + \frac{1}{2}) = E(2x)$.

Notons k = E(x)et distinguons deux cas :

 1^{er} cas: $k \le x < k + \frac{1}{2}$.

Dans ce cas, $k + \frac{1}{2} \le x + \frac{1}{2} < k + 1$ et $2k \le 2x < 2k + 1$ ce qui prouve que $E(x + \frac{1}{2}) = k$ et E(2x) = 2k.

Ainsi, on a bien $E(x)+E(x+\frac{1}{2})=E(2x)$. Dans ce cas, la formule demandée est bien prouvée. $1^{i\grave{e}me} \text{ cas}: \ k+\frac{1}{2} \leq x < k+1.$

Dans ce cas, $k + 1 \le x + \frac{1}{2} < k + 1 + \frac{1}{2}$ et $2k + 1 \le 2x < 2k + 1 + 1$ ce qui prouve que

 $E(x + \frac{1}{2}) = k + 1$ et E(2x) = 2k + 1.

Dans ce cas également, on a $E(x) + E(x + \frac{1}{2}) = E(2x)$.

Plus généralement, montrons que pour tout $n \geq 2$

$$\sum_{k=0}^{n-1} E\left(x + \frac{k}{n}\right) = E(nx).$$

On pourrait procéder de la même façon, en encadrant x entre $k + \frac{p}{n}$ et $k + \frac{p+1}{n}$.

Voici une autre démonstration : Posons $f(x) = \sum_{k=0}^{n-1} E\left(x + \frac{k}{n}\right) - E(nx)$.

La fonction f est périodique de période $\frac{1}{n}$. En effet,

$$f(x + \frac{1}{n}) = \sum_{k=0}^{n-1} E\left(x + \frac{k+1}{n}\right) - E(nx+1)$$

$$= E\left(x + \frac{1}{n}\right) + E\left(x + \frac{2}{n}\right) + \dots E\left(x + \frac{n-1}{n}\right) + E\left(x + \frac{n}{n}\right) - E(nx+1)$$

$$= \sum_{k=1}^{n-1} E\left(x + \frac{k}{n}\right) + E(x+1) - E(nx+1)$$

$$= \sum_{k=1}^{n-1} E\left(x + \frac{k}{n}\right) + (E(x)+1) - (E(nx+1)-1)$$

$$= \sum_{k=0}^{n-1} E\left(x + \frac{k}{n}\right) - E(nx) = f(x).$$

De plus, si x est dans l'intervalle $\left[0,\frac{1}{n}\right]$, alors on peut vérifier que f est nulle

(toutes les parties entières intervenant dans sa définition le sont). Par périodicité, f est identiquement nulle sur \mathbb{R} .

Exercice 19. Calculons
$$\sum_{k=1}^{2010} E\left(\sqrt{k}\right).$$

Si E(k) = n alors $n^2 \le k < (n+1)^2$. De plus, entre deux carrés parfaits consécutifs, il y a exactement $(n+1)^2 - n^2 = 2n + 1$ entiers. Enfin, le plus grand carré inférieur ou égal à 2010 est $44^2 = 1936$. On a donc

$$\sum_{k=1}^{2010} E\left(\sqrt{k}\right) = \sum_{n=1}^{43} \sum_{k=n^2}^{(n+1)^2} E\left(\sqrt{k}\right) + E\left(\sqrt{k}\right) = \sum_{n=1}^{43} n(2n+1) + (2010 - 1936 + 100) = \sum_{k=1}^{43} n(2n+1) + (2010 - 100) = \sum_{k=1}^{43} n(2n+1) = \sum_{k=1}$$

1) × 44. On calcule ces sommes, sachant que $\sum_{n=1}^{p} n^2 = \frac{p(p+1)(2p+1)}{6}$ et on trouve finalement que la somme fait 59114.

Exercice 20. Montreons que l'ensemble $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Soient x un réel et ε un réel strictement positif. On a $\sqrt[3]{x} < \sqrt[3]{x+\varepsilon}$. Puisque

 \mathbb{Q} est dense dans \mathbb{R} , il existe un rationnel r tel que $\sqrt[3]{x} < r < \sqrt[3]{x+\varepsilon}$ et donc tel que $x < r^3 < x + \varepsilon$, par stricte croissance de la fonction $t \mapsto t^3$ sur \mathbb{R} . On a montré que

 $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R}

Chapitre 5 SUITES NUMÉRIQUES

Exercice 1.

Soit (u_n) une suite réelle.

1. Si $\lim_{n\to+\infty}u_n=1$ et, si pour tout $n\in\mathbb{N}$, on a $u_n\geq 1$, alors la suite (u_n) est décroissante à partir d'un certain rang.

FAUX : Soit la suite définie par $u_n = 1 + \frac{1 + (-1)^n}{n}$. On a $|u_n - 1| \le \frac{2}{n}$, et il résulte du théorème d'encadrement que (u_n) converge vers 1. Par ailleurs

 $u_{2n+1}=1$ et $u_{2n}=1+\frac{2}{n}$, donc, pour tout entier $n\geq 0$, on a $u_n\geq 1$. Enfin, pour tout entier $n\geq 0$,

$$u_{2n+1} - u_{2n+2} = -\frac{2}{n+1} < 0 ,$$

2. Si $\lim_{n \to +\infty} u_n = 1$, alors il existe $n_0 \in \mathbb{N}$, tel que $u_n \ge 0$ pour tout $n \ge n_0$.

VRAI Soit $\varepsilon = \frac{1}{2}$, il existe $n_0 \in \mathbb{N}$ tel que $\left(n \ge n_0 \Rightarrow |u_n - 1| < \frac{1}{2}\right)$, ce qui implique

$$u_n - 1 > -\frac{1}{2}$$
, donc $u_n > \frac{1}{2} > 0$.

3. Si $\lim_{n\to+\infty} u_n = l$, alors Si $\lim_{n\to+\infty} u_{n+1} - u_n = 0$.

VRAI (u_{n+1}) a aussi pour limite l . donc $(u_{n+1} - u_n)$ converge vers l - l = 0.

4. Si la suite $(u_{n+1} - u_n)$ converge vers 0, alors (u_n) possède une limite finie.

FAUX Si
$$u_n=\sqrt{n}$$
 , la suite (u_n) n'a pas de limite finie, mais
$$u_{n+1}-u_n=\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}-\sqrt{n}},$$

et $(u_{n+1} - u_n)$ converge vers 0.

5. Si la suite (u_n) ne tend pas vers l'infini, alors elle est bornée.

FAUX Si $u_n=(-1)^n n$, alors $u_{2n}=n$ et $u_{2n+1}=n$, donc (u_n) n'a pas de limite, mais elle n'est pas bornée.

Exercice 2.

On pose
$$\lim_{n \to +\infty} (u_n) = l$$
 et $\lim_{n \to +\infty} (v_n) = l'$
On sait que $\max(a, b) = \frac{1}{2} ((a + b) + |a - b|)$
donc $\max(u_n, v_n) = \frac{1}{2} ((u_n + v_n) + |u_n - u_n|) \xrightarrow{s} \frac{1}{2} ((l + l') + |l - l'|) = \max(l, l').$

Exercice 3.

1. Montrons qu'une suite d'entiers (u_n) converge si et seulement si elle est stationnaire.

Si (u_n) est stationnaire, il est clair que cette suite converge.

Réciproquement, supposons que (u_n) est une suite d'entiers convergente et notons l sa limite. Montrons que $l \in \mathbb{Z}$. Par l'absurde, si $l \notin \mathbb{Z}$ alors E(l) < l < E(l) + 1 donc à partir d'un certain rang $E(l) < u_n < E(l) + 1$. Ce qui est en contradiction avec $u_n \in \mathbb{Z}$. Ainsi $l \in \mathbb{Z}$.

Puisque $u_n \to l$ et l-1 < l < l+1, à partir d'un certain rang $l-1 < u_n < l+1$. Or $u_n \in \mathbb{Z}$ et $l \in \mathbb{Z}$ donc $u_n = l$.

2. Soit $A \in \mathbb{R}^+$ et soit $E = \{n \in \mathbb{N}, u_n < A\}$. L'ensemble E est fini car il contient au plus E(A) + 1 éléments. Par suite il possède un plus grand élément N et alors $\forall n \geq N + 1, u_n \notin A$, donc $u_n \geq A$. Par suite $u_n \to +\infty$.

Exercice 4.

Soit (u_n) une suite qui tend vers $l \in \overline{\mathbb{R}}$.

1. On suppose que $l = \pm \infty$. Montrer que $(E(u_n))$ tends vers l.

On a $E(u_n) \le u_n < E(u_n) + 1$, donc $u_n - 1 < E(u_n) \le u_n$

Si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} u_n - 1 = +\infty$ et puisque $E(u_n) > u_n - 1$, $\lim_{n \to +\infty} E(u_n) = +\infty$.

De même si
$$\lim_{n\to+\infty} u_n = -\infty$$
, puisque $E(u_n) \le u_n$, $\lim_{n\to+\infty} E(u_n) = -\infty$.

On suppose dans la suite que $l \in \mathbb{R}$.

2. On suppose que l n'est pas un entier. Montrer que $(E(u_n))$ converge vers E(l).

Montrons d'abord que $E(l) < u_n < E(l) + 1$ à partir d'un certain rang.

On a
$$E(l) \le l < E(l) + 1$$

Or $\lim_{n \to +\infty} u_n = l \Leftrightarrow \forall \varepsilon > 0, \exists N \ / \ (n > N \Rightarrow l - \varepsilon < u_n < l + \varepsilon)$

Suites numériques 35

D'où $\forall \varepsilon > 0, \exists N / n > N \Rightarrow E(l) - \varepsilon < u_n < E(l) + 1 + \varepsilon$

Ainsi $E(l) < u_n < E(l) + 1$ à partir d'un certain rang.

Du fait que $E(l) < u_n < E(l) + 1$, on a $E(E(l)) \le E(u_n) < E(E(l) + 1)$

Ainsi $E(l) \leq E(u_n) < E(l) + 1$

Or $E(u_n)$ étant un entier, donc $E(u_n) = E(l)$, c'est à dire que la suite $(E(u_n))$ est une suite d'entiers stationnaire à partir d'un certain rang, donc $(E(u_n))$ converge (exercice 1).

- 3. On suppose $l \in \mathbb{Z}$.
- a) On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Rightarrow u_n \ge l$.

Dans ce cas $(E(u_n))$ stationne en 1; donc elle converge vers 1.

b) On suppose qu'il existe $n_1 \in \mathbb{N}$ tel que $n \geq n_1 \Rightarrow u_n < l$.

Dans ce cas $(E(u_n))$ stationne en l-1; donc elle converge vers l-1.

c) On suppose que a) et b) ne sont pas réalisées, c'est à dire que pour tout $N \in \mathbb{N}$, il existe $n_0 \geq N$ et $n_1 \geq N$ tel que $u_{n_0} < l$ et $u_{n_0} \geq l$.

La suite $(E(u_n))$ est divergente puisque elle aura une sous suite qui converge vers l et une sous suite qui converge vers l-1.

vers l et une sous suite qui converge vers
$$t-1$$
.

Exemple: $u_n = \frac{(-1)^n}{n+1}$

$$\frac{-1}{n+1} \le u_n \le \frac{1}{n+1}, \text{ donc } \lim_{n \to +\infty} u_n = 0 \in \mathbb{Z}. \text{ De plus, on a } \lim_{n \to +\infty} E(u_{2n}) = \lim_{n \to +\infty} E\left(\frac{1}{n+1}\right) = 0 \text{ et } \lim_{n \to +\infty} E(u_{2n+1}) = \lim_{n \to +\infty} E\left(\frac{-1}{n+1}\right) = -1$$

Exercice 5. Soit $x \in \mathbb{R}$ Montrer que la suite (u_n) définie par $u_n =$ $\frac{1}{n^2}\sum_{k=1}^{\infty}E(kx)$ converge et calculer sa limite.

On a pour tout entier k, $kx - 1 < E(kx) \le kx$.

En additionant ces inégalités pour k variant de 1 à n, on obtient

$$\sum_{k=1}^{n} (kx-1) < \sum_{k=1}^{n} E(kx) \le \sum_{k=1}^{n} kx$$
Or
$$\sum_{k=1}^{n} kx = x \frac{(n+1)n}{2} \text{ et } \sum_{k=1}^{n} (kx-1) = x \frac{(n+1)n}{2} - n$$
D'où
$$x \frac{(n+1)}{2n} - \frac{1}{n} < u_n \le x \frac{(n+1)}{2n}$$
Il résulte du théorème d'encadrement que la suite (u_n) converge et a pour

limite $\frac{x}{2}$.

Exercice 6

1. Si
$$l < 1$$
, on pose $\alpha = \frac{l+1}{2}$, alors $l < \alpha < 1$. Comme $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$, Pour

$$\varepsilon < \alpha - l$$
, il existe N tel que si $n > N$, $\frac{u_{n+1}}{u_n} < l + \varepsilon < \alpha$

$$\varepsilon < \alpha - l, \text{ il existe } N \text{ tel que si } n > N, \frac{u_{n+1}}{u_n} < l + \varepsilon < \alpha$$
On a alors $0 \le u_n = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \dots \times \frac{u_{N+1}}{u_N} \times u_N < \alpha^{n-N} u_N.$ Comme $\alpha < 1, \text{ donc } \lim_{n \to +\infty} \alpha^{n-N} = 0, \text{ donc } \lim_{n \to +\infty} u_n = 0.$

2. Si l > 1, on pose $\alpha = \frac{l+1}{2}$, alors $1 < \alpha < l$. Comme $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$, Pour

 $\varepsilon < \alpha + l, \text{ il existe } N \text{ tel que si } n > N, \frac{u_{n+1}}{u_n} > l - \varepsilon > \alpha$ On a alors $u_n = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \dots \times \frac{u_{N+1}}{u_N} \times u_N > \alpha^{n-N} u_N$. Comme $\alpha > 1$ $\lim_{n \to +\infty} \alpha^{n-N} = +\infty, \text{ donc } \lim_{n \to +\infty} u_n = +\infty.$

3. On prend par exemple $u_n = n$, on a $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\lim_{n \to +\infty} u_n = +\infty$.

Si on prend $u_n = 1$, on a $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\lim_{n \to +\infty} u_n = 1$.

Si on prend $u_n = \frac{1}{n}$, on a $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\lim_{n \to +\infty} u_n = 0$.

Exercice 7. Moyenne de Cesaro:

Soient (u_n) une suite réelle et (v_n) la suite définie par : $v_n = \frac{u_1 + ... + u_n}{r}$

1. Soit $\varepsilon > 0$. Il existe un entier naturel N tel que, si n > N alors $|u_n - l| < \frac{\varepsilon}{2}$

$$\begin{aligned} |v_n - l| &= \left| \frac{(u_1 + \ldots + u_n) - nl}{n} \right| \le \frac{1}{n} \left(|u_1 - l| + |u_2 - l| + \ldots + |u_n - l| \right) \\ &\le \frac{1}{n} \left(\sum_{k=1}^N |u_k - l| + \sum_{k=N+1}^n |u_k - l| \right) \\ &\le \frac{1}{n} \left(\sum_{k=1}^N |u_k - l| + \sum_{k=N+1}^n \frac{\varepsilon}{2} \right) \\ &\le \frac{1}{n} \sum_{k=1}^N |u_k - l| + \frac{1}{n} \sum_{k=1}^n \frac{\varepsilon}{2} \\ &\le \frac{1}{n} \sum_{k=1}^N |u_k - l| + \frac{\varepsilon}{2} \end{aligned}$$

Or $\sum_{k=1}^{N} |u_k - l|$ est une constante, donc $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{N} |u_k - l| = 0$.

Par suite, il existe un entier N' tel que si n > N' alors $\frac{1}{n} \sum_{k=1}^{N} |u_k - l| < \frac{\varepsilon}{2}$.

Par suite si $n > \max(N, N')$, alors $|v_n - l| < \varepsilon$

Ainsi si la suite (u_n) converge vers un réel l, la suite (v_n) converge et a pour limite 1.

La réciproque est fausse. Pour n dans N, posons $u_n = (-1)^n$. La suite (u_n) est divergente. D'autre part, $\sum_{k=0}^{n} (-1)^k$ vaut 0 ou 1 suivant la parité de n et donc, dans tous les cas, $|v_n| < \frac{1}{n}$. Par suite, la suite (v_n) converge et a pour limite 0.

2. Si la suite
$$(u_n)$$
 est bornée, il existe un réel M tel que, $|u_n| \le M$. On a alors $|v_n| \le \frac{1}{n} \sum_{k=1}^n |u_k| \le \frac{M \times n}{n} = M$.

La réciproque est fausse. Soit
$$(u_n)$$
 la suite définie par $u_n=(-1)^n E\left(\frac{n}{2}\right)=$
$$\begin{cases} p \text{ si } n=2p\\ -p \text{ si } n=2p+1 \end{cases}$$

La suite (u_n) n'est pas bornée car la suite extraite (u_{2n}) tend vers $+\infty$. Or, si n est impair, $v_n = 0$, et si n est pair, $v_n = \frac{n}{2n}$.

3. Si la suite (u_n) est croissante alors la suite (v_n) l'est aussi.

Soit
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
.

1. Montrons que
$$\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$$
.

On a pour tout
$$n > 0$$
, $\int_{n}^{n+1} \frac{dx}{x} = \ln(n+1) - \ln(n)$.
Or $n \le x \le n+1 \Rightarrow \frac{1}{n+1} \le \int_{n}^{n+1} \frac{dx}{x} \le \frac{1}{n}$.
Ainsi $\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$.

Ainsi
$$\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}.$$

2. Montrons que
$$\ln(n+1) \le H_n \le \ln(n) + 1$$
.

Comme pour tout k > 0, $\frac{1}{k+1} \le \ln(k+1) - \ln(k) \le \frac{1}{k}$, on a $\sum_{k=1}^{n} \frac{1}{k+1} \le \ln(k+1) - \ln(k)$

$$\sum_{k=1}^{n} (\ln (k+1) - \ln (k)) \le \sum_{k=1}^{n} \frac{1}{k} \text{ et}$$

$$\sum_{k=1}^{n-1} \frac{1}{k+1} \le \sum_{k=1}^{n-1} \left(\ln \left(k+1 \right) - \ln \left(k \right) \right) \le \sum_{k=1}^{n-1} \frac{1}{k}.$$

On en déduit que $\ln(n+1) \le H_n$ et $H_n - 1 \le \ln n$. Ainsi $\ln(n+1) \le H_n \le$ $\ln{(n)} + 1.$

3. Déterminons la limite de (H_n) .

Puisque
$$\ln(n+1) \le H_n \le \ln(n) + 1$$
 et $\lim_{n \to +\infty} \ln(n) = +\infty$.

4. Montrons que la suite
$$(u_n)$$
 définie par $u_n=H_n-\ln{(n)}$ est décroissante .
$$u_{n+1}-u_n=H_{n+1}-H_n+\ln{(n)}-\ln{(n+1)}=\frac{1}{n+1}+\ln{(n)}-\ln{(n+1)}\leq 0$$
 d'après la première question.

https://sigmoid.ma

37

5. En déduire que la suite (u_n) est convergente.

D'après la question 3, $H_n - \ln(n) \ge \ln(n+1) - \ln(n) \ge \frac{1}{n+1} > 0$.

La suite (u_n) est décroissante et minorée donc elle est convergente.

Exercice 9.

Montrer que les suites suivantes sont convergentes et déterminer leurs limites :

1.
$$(u_n)$$
 définie par : $u_n = \frac{2n+1}{3n^2+1} + \frac{2n+1}{3n^2+2} + \frac{2n+1}{3n^2+n}$

Pour
$$k = 1, ...n$$
, on a $\frac{1}{3n^2 + n} \le \frac{1}{3n^2 + k} \le \frac{1}{3n^2 + 1}$; donc $\frac{n(2n+1)}{3n^2 + n} \le u_n \le \frac{n(2n+1)}{3n^2 + 1}$.

Il en résulte que $\lim_{n\to+\infty} u_n = \frac{2}{3}$

2.
$$(v_n)$$
 définie par : $v_n = \frac{1 \times 3 \times \ldots \times (2n+1)}{3 \times 6 \times \ldots \times (3n+3)}$

Il est clair que $v_n > 0$, la suite est minorée, de plus le quotient $\frac{v_{n+1}}{v_n}$

$$\frac{2n+3}{3n+6} < \frac{2n+4}{3n+6} = \frac{2(n+2)}{3(n+2)} = \frac{2}{3} < 1.$$

Donc la suite (v_n) est décroissante et minorée donc elle converge. Soit l'sa limite. On a $v_{n+1} = \frac{2n+3}{3n+6}v_n$. l vérifie $l = \frac{2}{3}l$, donc l = 0.

3.
$$(w_n)$$
 définie par : $w_n = \left(1 + \frac{1}{n}\right)^n$

$$w_n = \left(1 + \frac{1}{n}\right)^n = e^{n\ln\left(1 + \frac{1}{n}\right)} = e^{\frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}}.$$

Il en résulte que $\lim_{n \to +\infty} w_n = e$.

Exercice 10.

Soit α et β deux réels tels que $0 < \alpha < \beta$. On définit les suites (a_n) et (b_n)

par

$$a_0 = \alpha$$
, $b_0 = \beta$ et, pour tout entier $n \ge 0$, les relations $a_{n+1} = \frac{2a_nb_n}{a_n + b_n}$; $b_{n+1} = \frac{1}{2}(a_n + b_n)$.

1. Montrons que les suites (a_n) et (b_n) sont convergentes :

On montre tout d'abord par récurrence, que pour tout entier n, les nombres a_n et b_n existent et sont strictement positifs. C'est vrai à l'ordre 0 par hypothèse. Si on suppose la propriété vraie à l'ordre n, alors $a_n + b_n$ et $a_n b_n$ sont strictement positifs, donc a_{n+1} et b_{n+1} existent et sont positifs.

Montrons que (a_n) est croissante et que (b_n) est décroissante :

$$a_{n+1} - a_n = \frac{a_n (b_n - a_n)}{a_n + b_n}$$
 et $b_{n+1} - b_n = \frac{1}{2} (a_n - b_n)$.

Etudiant le signe de $b_n - a_n$;

$$b_{n+1} - a_{n+1} = \frac{(b_n - a_n)^2}{2(a_n + b_n)}.$$

Il en résulte que $b_{n+1}-a_{n+1}$ est positif pour tout $n \geq 0$. Comme $b_0-a_0 = \beta-\alpha$ est positif par hypothèse, on en déduit que b_n-a_n est positif pour tout $n \geq 0$. Il en résulte que $a_{n+1}-a_n \geq 0$ et $b_{n+1}-b_n \leq 0$, la suite (a_n) est donc croissante, et la suite (b_n) est décroissante.

On a donc
$$0 < a_0 = \alpha \le \alpha \le a_n \le b_n \le b_0 = \beta$$
.

Il en résulte que (a_n) est une suite croissante majorée par β . Elle converge vers une limite l. De même la suite (b_n) est décroissante et minorée par α . Elle converge vers une limite l'. Mais en passant à la limite dans la relation

$$b_{n+1} = \frac{1}{2}(a_n + b_n)$$
, on obtient $l' = \frac{1}{2}(l + l')$, d'où $l = l'$. Cette limite l est positive.

Pour trouver cette limite, on remarque que pour tout entier n, $a_{n+1}b_{n+1}=a_nb_n$.

La suite $(a_n b_n)$ est donc constante, et sa limite est égale à son premier terme. On en déduit que $l^2 = \alpha \beta$, et donc, puisque l est positive, que $l = \sqrt{\alpha \beta}$.

2. Montrons que pour tout
$$n \ge 0$$
, $0 \le b_{n+1} - a_{n+1} \le \frac{(b_n - a_n)^2}{4\alpha}$

On a l'égalité
$$b_{n+1} - a_{n+1} = \frac{(b_n - a_n)^2}{2(a_n + b_n)}$$
, or $a_n \ge \alpha$ et $b_n \ge \alpha$, donc $0 \le b_{n+1} - a_{n+1} \le \frac{(b_n - a_n)^2}{4\alpha}$.

3. On démontre par récurrence la propriété suivante :
$$0 \le b_n - a_n \le 4\alpha \left(\frac{\beta - \alpha}{4\alpha}\right)^{2^n}$$
.

A l'ordre 0, on a une égalité :

$$0 \le b_0 - a_0 = \beta - \alpha = 4\alpha \left(\frac{\beta - \alpha}{4\alpha}\right)^{2^0}.$$

Supposons l'inégalité vraie à l'ordre n. On a
$$b_{n+1} - a_{n+1} \le \frac{(b_n - a_n)^2}{4\alpha}$$
,

donc en utilisant la relation à l'ordre n,

$$b_{n+1} - a_{n+1} \leq \frac{\left(4\alpha \left(\frac{\beta - \alpha}{4\alpha}\right)^{2^n}\right)^2}{4\alpha}$$
$$\leq 4\alpha \left(\frac{\beta - \alpha}{4\alpha}\right)^{2^{n+1}}$$

On obtient la relation à l'ordre n + 1. Elle est donc vraie pour tout $n \ge 0$.

4. Trouver une valeur approchée de $\sqrt{2}$ à 10^{-4} près.

Pour obtenir $l=\sqrt{2}$, il suffit de prendre $\beta=2$ et $\alpha=1$. Dans ce cas

$$0 \le \sqrt{2} - a_n \le b_n - a_n \le \left(\frac{1}{4^{2^n - 1}}\right).$$

Et de même

$$0 \le b_n - \sqrt{2} \le b_n - a_n \le \left(\frac{1}{4^{2^n - 1}}\right).$$

Si l'on veut rendre le membre de droite inférieur à 10^{-4} il suffit de prendre n=3. On calcule alors les premiers termes :

$$a_1 = \frac{4}{3}, b_1 = \frac{3}{2}, a_2 = \frac{24}{17}, b_2 = \frac{17}{12}, a_3 = \frac{816}{577}, b_3 = \frac{577}{408}.$$

Il en résulte que a_3 est une valeur approchée par défaut de $\sqrt{2}$ et que b_3 est une valeur approchée par excès de ce nombre.

On remarque que $a_3=1,414211...$ et que $\sqrt{2}=1,414213....$ La valeur approchée obtenue est de l'ordre de $2\cdot 10^{-6}$.

Exercice 11.

Soit (u_n) une suite de réels décroissante et de limite nulle.

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

Montrons que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes :

 $S_{2(n+1)}-S_{2n}=S_{2n+2}-S_{2n}=u_{2n+2}-u_{2n+1}.$ Comme (u_n) est une suite de réels décroissante, $S_{2(n+1)}-S_{2n}\leq 0.$

Donc la suite (S_{2n}) est décroissante. De même $S_{2(n+1)+1} - S_{2n+1} = S_{2n+3} - S_{2n+1} = u_{2n+2} - u_{2n+3} \ge 0$, Donc la suite (S_{2n+1}) est décroissante.

De plus $\lim_{n \to +\infty} S_{2n+1} - S_{2n} = \lim_{n \to +\infty} -u_{2n+1} = 0.$

Il en résulte que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes. Elles sont donc convergentes et ont la même limite. On en déduit que (S_n) est convergente.

Exercice 12.

Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent. Montrons que (u_{2n}) et (u_{2n+1}) convergent vers la même limite Suites numériques 41

Supposons que $\lim_{n\to+\infty} u_{2n} = l$, $\lim_{n\to+\infty} u_{2n+1} = l'$ et $\lim_{n\to+\infty} u_{3n} = l''$.

La suite (u_{6n}) est extraite de (u_{2n}) et de (u_{3n}) , donc l = l''.

De même La suite (u_{6n+3}) est extraite de (u_{2n+1}) et de (u_{3n}) , donc l'=l''.

Ainsi l = l' = l''

Par conséquent (u_{2n}) et (u_{2n+1}) convergent vers la même limite.

Montrons alors que (u_n) converge.

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n} - l| < \varepsilon$ et Il existe $N' \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n+1} - l| < \varepsilon$.

donc si $m \in \mathbb{N}$, m est soit pair ou impair,

$$m > \max(N, N') \Rightarrow |u_m - l| < \varepsilon.$$

Exercice 13.

Par l'absurde, supposons $\lim_{n \to \infty} \sin n = l \in \mathbb{R}$.

On a $\sin(p) - \sin(q) = 2\sin\frac{p+q}{2}\cos\frac{p+q}{2}$

D'où $\sin(n+1) - \sin(n-1) = 2\sin 1 \cos n$

En passant à la limite, on obtient $\lim \cos n = 0$.

Or $\cos 2n = 2\cos^2 n - 1$, on aurait alors $\lim_{n \to +\infty} \cos 2n = -1$. Ce qui est absurde, donc la suite (u_n) définie par $u_n = \sin n$ diverge.

Exercice 14.

Soit la suite de terme général $u_n = \sqrt{n} - E(\sqrt{n})$.

1. Montrons que les suites extraites (u_{n^2}) et (u_{n^2+2n}) convergent et determiner leurs limites

On a $u_{n^2} = 0$, et la suite (u_{n^2}) converge vers 0. En utilisant le fait que, si n est un entier

$$n^2 \le n^2 + 2n < n^2 + 2n + 1$$
,

on en déduit que

$$n \leq \sqrt{n^2 + 2n} < n + 1$$
 ,

et donc que
$$E\left(\sqrt{n^2 + 2n}\right) = n$$

Alors
$$u_{n^2+2n} = \sqrt{n^2 + 2n} - n = \frac{2n}{\sqrt{n^2 + 2n} + n} = \frac{2}{\sqrt{1 + \frac{2}{n} + 1}},$$

Il en résulte que (u_{n^2+2n}) converge vers 1.

2. En déduire que la suite (u_n) est divergente.

Les deux suites extraites (u_{n^2}) et (u_{n^2+2n}) ont des limites différentes, la suite (u_n) n'a donc pas de limite.

Exercice 15. Soient a et b deux réels, a < b. On considère la fonction f: $[a,b] \rightarrow [a,b]$ supposée continue et une suite

récurrente (u_n) définie par : $\begin{cases} u_0 \in [a,b] & et \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}. \end{cases}$

1. On suppose ici que f est croissante. Montrer que (u_n) est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.

Si $u_0 < u_1$, Puisque f est croissante, on montre par récurrence que $u_n \le u_{n+1}$. Ainsi la suite (u_n) est croissante.

Comme f est à valeurs dans $[a,b],(u_n)$ est majorée par b. Donc (u_n) est convergente.

Si $u_0 > u_1$, Puisque f est croissante, on montre par récurrence que $u_n \ge u_{n+1}$. Ainsi la suite (u_n) est décroissante.

Comme f est à valeurs dans [a,b], (u_n) est minorée par a. Donc (u_n) est convergente.

Notons l la limite de (u_n) . Comme f est continue alors $(f(u_n))$ tend vers f(l). En passant à la limite dans l'expression $u_{n+1} = f(u_n)$, on obtient l'égalité l = f(l).

2. Application.

Soit $f(x) = \frac{4x+5}{x+3}$, f est continue, dérivable sur $]-3, +\infty[$. $f'(x) = \frac{7}{(x+3)^2} > 0$, donc f est strictement croissante sur $]-3, +\infty[$, de plus $]) \subset [0,4]$.

Comme $u_0 = 4$ et $u_1 = 2, 25$, la suite (u_n) est décroissante. Calculons la valeur de sa limite l. Elle est solution de l'équation f(x) = x. Soit 4x + 5 = x(x + 3) ou encore $x^2 - x - 5 = 0$. Or $u_n > 0$ pour tout n, donc l > 0. La seule solution positive de l'équation est $l = \frac{1 + \sqrt{21}}{2}$

3. Si f est décroissante alors $f \circ f$ est croissante . On applique alors la première 3. Si f est decroissante alois $f \circ f$ definie par $\begin{cases} u_0 \\ u_{2n+2} = f \circ f(u_{2n}) \end{cases}$ est monotone et convergente. De même pour la suite (u_{2n}) définie par $\begin{cases} u_1 \\ u_{2n+1} = f \circ f(u_{2n-1}) \end{cases}$.

4. La fonction f définie par $f(x) = (1-x)^2$ est continue et dérivable de [0,1]dans [0,1]. Elle est décroissante sur cet intervalle. Nous avons $u_0 = \frac{1}{2}, u_1 = \frac{1}{4}, u_2 = \frac{1}{4}$

 $\frac{9}{16}$, $u_3 = \left(\frac{15}{16}\right)^2 \simeq 0, 19,...$ Donc la suite (u_{2n}) est croissante et elle est convergente. Soit l
 sa limite, la suite (u_{2n+1}) est décroissante et elle est convergente. Soit
 l' sa limite.

Les limites l et l' sont des solutions de l'équation $f \circ f(x) = x$. Cette équation s'écrit $(1 - (1 - x)^2)^2 = x$.

Soit $x^2 (2-x)^2 = x$, ou encore $x^4 - 4x^3 + 4x^2 - x = 0$. If y a deux solutions évidentes 0 et 1. On factorise le

polynôme par x(x-1). On obtient alors $x(x-1)(x^2-3x+1)=0$

Suites numériques 43

$$(x^2 - 3x + 1) = 0 \Leftrightarrow x = \frac{3 - \sqrt{5}}{2} \simeq 0,38 \text{ ou } x = \frac{3 + \sqrt{5}}{2} > 1.$$

Comme (u_{2n}) est croissante et que $u_0 = \frac{1}{2}$, alors (u_{2n}) converge vers l = 1qui est le seul point fixe de [0,1] supérieur à $\frac{1}{2}$. Comme (u_{2n+1}) est décroissante et que $u_1 = \frac{1}{4}$ alors (u_{2n+1}) converge vers l' = 0 qui est le seul point fixe de [0,1]inférieur à $\frac{1}{4}$.

Exercice 16.

Soit (u_n) une suite réelle convergente de limite let soit (v_n) la suite définie $par v_n = \sup_{p \ge n} u_p$

Montrons que la suite (v_n) est convergente de limite 1.

La suite (u_n) est convergente donc (u_n) est bornée.

La suite (v_n) est donc bien définie et elle-même bornée.

On a $v_{n+1} \leq v_n$ donc (v_n) est décroissante et donc elle est convergente.

Posons $l = \lim_{n \to +\infty} u_n$ et $l' = \lim_{n \to +\infty} v_n$.

 $v_n \ge u_n$ donc à la limite $l' \ge l$. Si l' > l, alors $l' > \frac{l+l'}{2} > l$ A partir d'un certain rang $v_n > \frac{l+l'}{2}$ et $u_n < \frac{l+l'}{2}$. Ce qui est impossible. Par suite l' = l.

Suites numériques

Chapitre 6

CONTINUITÉ ET DÉRIVABILITÉ DES FONCTIONS NUMÉRIQUES D'UNE VARIABLE RÉELLE

Exercice 1 . Soient $x,y \in \mathbb{R}$ tel que x < y . On a $f(x) < f(y) \Rightarrow f \circ f \circ f(x) < f(y)$ $f \circ f \circ f(y) \Rightarrow y < x$

car $f \circ f$ est croissante et $f \circ f \circ f$ est strictement décroissante.

Par contraposée $x < y \Rightarrow f(y) < f(x)$ et donc f est strictement décroissante.

Exercice 2.

Exercise 2.

1. Soit
$$f(x) = \frac{\sqrt{1+x^m} - \sqrt{1+x^m}}{x^n} = \frac{2x^{m-n}}{\sqrt{1+x^m} + \sqrt{1+x^m}}$$
.

On a $\lim_{x\to 0} \left(\frac{2}{\sqrt{1+x^m} + \sqrt{1+x^m}}\right) = 1$.

Si $m > n$ alors $\lim_{x\to 0} x^{m-n} = 0$, et donc $\lim_{x\to 0} f(x) = 0$.

Si $m = n$ alors $\lim_{x\to 0} x^{m-n} = 1$, et donc $\lim_{x\to 0} f(x) = 1$.

Si $m < n$ alors a $\lim_{x\to 0} x^{m-n} = \frac{1}{x^{n-m}}, n-m > 0$. Si $n-m$ est pair alors les

On a
$$\lim_{x \to 0} \left(\frac{2}{\sqrt{1 + x^m} + \sqrt{1 + x^m}} \right) = 1$$
.

limites à droite et à gauche de $\frac{1}{x^{n-m}}$ sont $+\infty$. Pour n-m impair la limite à droite vaut $+\infty$ et la limite à gauche vaut $-\infty$.

D'où si n-m>0 impair f n'a pas de limite en 0 car les limites à droite et à gauche ne sont pas égales.

2.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{1}{x}\ln(1+x)} = e$$
,

3.
$$\lim_{x \to +\infty} \frac{E\left(\ln \sqrt{x}\right)}{\sqrt{x}} :$$

Pour tout $x \in \mathbb{R}^+$, $E(\ln(\sqrt{x})) \le \ln(\sqrt{x}) < E(\ln(\sqrt{x})) + 1$

Donc $\ln(\sqrt{x}) - 1 < E(\ln(\sqrt{x})) \le \ln(\sqrt{x})$

On divise par
$$\sqrt{x} > 0$$
, $\frac{\ln(\sqrt{x}) - 1}{\sqrt{x}} < \frac{E(\ln(\sqrt{x}))}{\sqrt{x}} \le \frac{\ln(\sqrt{x})}{\sqrt{x}}$

On pose
$$u = \sqrt{x}$$
, $u \to +\infty$ quand $x \to +\infty$
Ainsi $\lim_{x \to +\infty} \frac{\ln(\sqrt{x})}{\sqrt{x}} = \lim_{u \to +\infty} \frac{\ln(u)}{u} = 0$.

https://sigmoid.ma

et
$$\lim_{x \to +\infty} \frac{\ln(\sqrt{x}) - 1}{\sqrt{x}} = \lim_{u \to +\infty} \left(\frac{\ln(u)}{u} - \frac{1}{u}\right) = 0$$

Par conséquent $\lim_{x \to +\infty} \frac{E(\ln \sqrt{x})}{\sqrt{x}} = 0$

4. Supposons d'abord que x > 0.

On a
$$E\left(\frac{1}{x}\right) \le \frac{1}{x} < E\left(\frac{1}{x}\right) + 1$$

On pose
$$n = E\left(\frac{1}{x}\right)$$
. On a donc $n \le \frac{1}{x} < n + 1$

On déduit que
$$-n-1 < -\frac{1}{x} \le -n$$
 et $\frac{1}{n+1} < x \le \frac{1}{n}$

Donc
$$\frac{1}{n+1} - n - 1 < x - \frac{1}{x} \le \frac{1}{n} - n$$
. Ce qui équivant à $\frac{-n}{n+1} - n < x - \frac{1}{x} \le \frac{1}{n}$

$$\frac{1}{n}-n$$
.

D'où
$$E\left(\frac{-n}{n+1}-n\right) \le E\left(x-\frac{1}{x}\right) \le E\left(\frac{1}{n}-n\right)$$

Donc
$$E\left(x-\frac{1}{x}\right)=-n-1$$
 ou $-n$, ce qu'on peut écrire : $-n-1\le -\frac{1}{x}\le -n$.
On a alors $0\le n\le -E\left(x-\frac{1}{x}\right)\le n+1$, or $0\le \frac{1}{n+1}< x\le \frac{1}{n}$

$$E\left(x - \frac{1}{x}\right) \le -n.$$

On a alors
$$0 \le n \le -E\left(x - \frac{1}{x}\right) \le n + 1$$
, or $0 \le \frac{1}{n+1} < x \le \frac{1}{n}$

$$1 \le -xE\left(x - \frac{1}{x}\right) \le \frac{n+1}{n}, \text{ d'où } -\frac{n+1}{n} \le xE\left(x - \frac{1}{x}\right) \le -1.$$

On en déduit que
$$\lim_{x\to 0^+} xE\left(x-\frac{1}{x}\right)=-1$$
.

Supposons x < 0,

On sait que si y n'est pas un entier on a E(-y) = -E(-y) - 1

Donc
$$f(x) = xE\left(x - \frac{1}{x}\right) = x\left(-E\left(-x + \frac{1}{x}\right) - 1\right) = -xE\left(-x + \frac{1}{x}\right) - 1$$

$$x = f(-x) - x$$

Donc
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} f(-x) = -1.$$

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction paire. Soit $\varepsilon > 0$. Comme f admet comme limite $l \in \mathbb{R}$ en $+\infty$,

 $\exists A > 0 \text{ tel que } (x > A \Rightarrow |f(x) - l| < \varepsilon).$

Soit B = -A. Alors $x < B \Rightarrow -x > A \Rightarrow |f(-x) - l| < \varepsilon$. Or est une fonction paire, donc f(-x) = f(x). On déduit de ce qui précéde que $\exists B < 0$ tel que $(x < B \Rightarrow |f(x) - l| < \varepsilon)$. On a ainsi montré que f admet pour limite l en $-\infty$.

Exercice 5. Soit $f: \mathbb{R} \setminus \{5\} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{3x-1}{x-5}$. Soit $x_0 \in \mathbb{R} \setminus \{5\}.$

Soit
$$\varepsilon > 0$$
. On a $|f(x) - f(x_0)| = \left| \frac{3x - 1}{x - 5} - \frac{3x_0 - 1}{x_0 - 5} \right| = \frac{14|x - x_0|}{|x - 5||x_0 - 5|}$
Pour $x \in \left] x_0 - \frac{|x_0 - 5|}{2}, x_0 + \frac{|x_0 - 5|}{2} \right[$, on a $|x - 5| > \frac{|x_0 - 5|}{2}$, et donc,
 $\forall x \in \left] x_0 - \frac{|x_0 - 5|}{2}, x_0 + \frac{|x_0 - 5|}{2} \right[$, $|f(x) - f(x_0)| < \frac{28}{(x_0 - 5)^2} |x - x_0|$.
Soit $\eta = \min\left(\frac{|x_0 - 5|}{2}, \frac{(x_0 - 5)^2}{28}\varepsilon\right)$. alors
$$|x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \frac{28}{(x_0 - 5)^2} |x - x_0| < \frac{28}{(x_0 - 5)^2} \frac{(x_0 - 5)^2}{28}\varepsilon = \frac{(x_0 - 5)^2}{28}\varepsilon$$

On a ainsi montré que $\forall \varepsilon > 0$; $\exists \eta > 0/\forall x \in \mathbb{R} \setminus \{5\}$, $(|x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon)$. f est donc continue sur $\mathbb{R} \setminus \{5\}$.

Exercice 6. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = E(x) + \sqrt{x - E(x)}$. Étudions la continuité de f sur \mathbb{R} .

Par somme et composé, f est continue sur chaque intervalle $I_k =]k, k+1[$ avec $k \in \mathbb{Z}$. Etudions la continuité en $a \in \mathbb{Z}$. $\lim_{x \to a^+} f(x) = a = f(a)$ et $\lim_{x \to a^-} f(x) = a - 1 + \sqrt{a - (a - 1)} = a = f(a)$. f est continue en a donc elle est continue à droite et à gauche. Finalement f est continue sur \mathbb{R} .

Exercice 7. Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

1.
$$f(x) = \sin x \sin\left(\frac{1}{x}\right)$$
,

 ε

f est définie et continue sur \mathbb{R}^* . En 0, $|f(x)| = \left|\sin x \sin\left(\frac{1}{x}\right)\right| \le |\sin x|$, donc $\lim_{x\to 0} f(x) = 0$. Par suite, f est prolongeable par continuité en 0 en posant f(0) = 0.

2.
$$g(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$$
.

g est définie et continue sur $\mathbb{R}\setminus\{-1,1\}$ et on a $g(x)=\frac{x-1}{1-x^2}=\frac{-1}{1+x}$. Par conséquent $\lim_{x\to 1}g(x)=-\frac{1}{2}$. Et donc en posant $g(1)=-\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R}\setminus\{-1\}$. En -1, la fonction g ne peut être prolongée par continuité, car en -1, g n'admet de limite finie.

Exercice 8

1. Montrons que la fonction $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Pour
$$y > x > 0$$
, $(\sqrt{y} - \sqrt{x})^2 = y + x - 2\sqrt{x}\sqrt{y} \le y - x$.
Donc $\sqrt{y} - \sqrt{x} \le \sqrt{y + x}$.

De même, par symétrie, si x > y > 0 $\sqrt{x} - \sqrt{y} \le \sqrt{x - y}$.

Ainsi $\forall x, y > 0$, $\left| \sqrt{x} - \sqrt{y} \right| \le \sqrt{|y - x|}$. Soit $\varepsilon > 0$ et soit $\eta = \varepsilon^2 > 0$.

Pour tout $x, y > 0, |y - x| \le \eta, |\sqrt{x} - \sqrt{y}| \le \varepsilon.$

Ainsi la fonction racine carrée est uniformément continue.

2. Montrons que la fonction $x \mapsto \ln x$ n'est pas uniformément continue sur \mathbb{R}^{+*} .

Supposons que la fonction $x \mapsto \ln x$ est uniformément continue sur \mathbb{R}^{+*} .

Pour $\varepsilon = 1$, il existe $\eta > 0$ tel que $\forall x, y > 0$, ($|x - y| \le \eta \Rightarrow |\ln x - \ln y| \le 1$)

Ainsi si
$$y = x + \eta$$
, $\ln\left(\frac{x + \eta}{x}\right) \le 1$.

Or
$$\lim_{x\to 0^+} \ln\left(\frac{x+\eta}{x}\right) = +\infty$$
, ce qui est en contradiction avec $\ln\left(\frac{x+\eta}{x}\right) \le 1$.

Exercice 9.

Soit $f:[0,+\infty[$ \to $[0,+\infty[$ une fonction continue, qui tend vers 0 quand x tend vers $+\infty$.

1. Montrons que f est bornée et atteint sa borne supérieure.

On distingue deux cas: ou bien f est la fonction nulle, dans ce cas il n'y a rien à montrer, ou bien f n'est pas toujours nulle, dans ce cas il existe $x_0 \in [0, +\infty[$ tel que $f(x_0) > 0$. D'autre part, on sait que f tend vers 0 quand x tend vers $+\infty$, donc en appliquant la définition de la limite avec $\varepsilon = \frac{f(x_0)}{2}$, on trouve qu'il existe un réel A > 0 tel que $\forall x \in [0, +\infty[, x \ge A \Rightarrow |f(x)| \le \frac{f(x_0)}{2}$

Comme f est à valeurs dans $[0, +\infty[$, on obtient : $\forall x \in [A, +\infty[$, $f(x) \leq \frac{f(x_0)}{2}$

Donc f est bornée sur l'intervalle $[A, +\infty[$. D'autre part, le théorème des bornes montre que f est bornée sur l'intervalle [0, A], plus précisément il existe des réels $0 \le m \le M$ tels que f([0,A]) = [m,M]. Il en résulte que f est majorée sur $[0,+\infty[$ par $\max\left(\frac{f(x_0)}{2},M\right)$. Or on constate que $x_0 \in [0,A]$ (sinon la propriété $\forall x \in [A,+\infty[$, $f(x) \leq \frac{f(x_0)}{2}$ serait contredite), donc $M \geq \frac{f(x_0)}{2}$. Il en résulte que f est majorée par M sur $[0, +\infty[$. Or, toujours d'après le théorème de bornes, il existe $c \in [0, A]$ tel que f(c) = M, donc f atteint sa borne supérieure.

2. Atteint-elle toujours sa borne inférieure?

La fonction $f: [0, +\infty[\to [0, +\infty[$ définie par $f(x) = \frac{1}{x+1}$ satisfait les hypothèses de l'énoncé, mais n'atteint pas sa borne inférieure (qui est 0).

Exercice 10. Montrons que les seules applications continues de \mathbb{R} vers \mathbb{Z} sont les fonctions constantes.

Soit $f: \mathbb{R} \to \mathbb{Z}$ continue.

Par l'absurde : Si f n'est pas constante alors il existe a < b tel que $f(a) \neq f(b)$. Soit y un nombre non entier compris entre f(a) et f(b).

Par le théorème des valeurs intermédiaires, il existe $x \in \mathbb{R}$ tel que y = f(x)et $f(x) \notin \mathbb{Z}$.

Exercice 11

1. Considérons la fonction $f:[a,b]\to\mathbb{R}$ définie par g(x)=f(x)-x.

Comme f est continue, g l'est aussi. Il est clair par construction de g que notre problème se ramène à montrer l'existence d'un réel $x_0 \in [a, b]$ tel que $g(x_0) = 0$. On a $f(a) \in [a, b]$, donc $f(a) \ge a$ et $f(b) \in [a, b]$, donc $f(b) \le b$. Donc $g(a) = f(a) - a \ge a$ 0 et $g(b) = f(b) - b \le 0$. D'après le théorème des valeurs intermédiaires, il existe

- donc $x_0 \in [a, b]$ tel que $g(x_0) = 0$. 2. Comme $\cos\left(\left[0, \frac{\pi}{2}\right]\right) = [0, 1]$ et que $[0, 1] \subset \left[0, \frac{\pi}{2}\right]$, on en déduit que $\cos\left([0,1]\right)\subset\left[0,1\right]$. Il suffit d'appliquer le résultat de la question précédente à la function $\cos: [0,1] \rightarrow [0,1]$.
 - 3. Il suffit de considérer la fonction $x \mapsto x^2$.

Exercice 12. On a $\left|\sin\frac{1}{x}\right| \le 1$, donc $\left|x^2\sin\frac{1}{x}\right| \le x^2$. On en déduit que $\lim_{x\to 0} f(x) = 0$, donc f est prolongeable par continuité en 0 en posant f(0) = 0

La fonction f est dérivable sur \mathbb{R}^* comme produit et composé de fonctions

dérivables sur
$$\mathbb{R}^*$$
. Sa dérivée est $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$
En $0: \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \operatorname{car} \left| x \sin \frac{1}{x} \right| \le x$. Ainsi f est dérivable sur \mathbb{R} et $f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

On a $\lim_{x\to 0} 2x \sin \frac{1}{x} = 0$ et $\lim_{x\to 0} \cos \frac{1}{x}$ n'existe pas, donc f' n'est pas continue en 0.

Exercice 13. Sur quelles parties de \mathbb{R} , la fonction définie par f(x) = x|x|est elle continues, dérivable?

La fonction f est continue sur \mathbb{R} par produit de fonctions continues. elle est

dérivables sur
$$\mathbb{R}^*$$
.

En 0 , $\lim_{x\to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x\to 0^+} x = 0$, donc f est dérivable à droite en 0 .

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} -x = 0.$$
 Par suite f est dérivable à gauche en 0.
De plus,
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x}$$
 est dérivable en 0.

De plus,
$$\lim_{x\to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x\to 0^-} \frac{f(x) - f(0)}{x}$$
 est dérivable en 0.

Exercice 14. Soit $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ définie par $f(x) = \sqrt{\sin x} + x$.

Montrons que f réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur un intevalle, que l'on déterminera.

La fonction f est continue. De plus les fonctions $x \mapsto \sqrt{\sin x}, x \mapsto x$ sont strictement croissantes sur $\left[0,\frac{\pi}{2}\right]$, La fonction f est donc strictement croissant sur $\left[0, \frac{\pi}{2}\right]$ à valeurs dans $f\left(\left[0, \frac{\pi}{2}\right]\right) = \left[0, 1 + \frac{\pi}{2}\right]$.

Ainsi étant donné que f est continue et strictement croissant sur $\left[0, \frac{\pi}{2}\right]$, réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[0, 1 + \frac{\pi}{2}\right]$.

Montrons que la bijection réciproque, est continue et dérivable sur l'intervalle $\left[0, 1 + \frac{\pi}{2}\right]$.

f est dérivable sur $\left[0, \frac{\pi}{2}\right]$, de dérivée $f'(x) = \frac{\cos x}{2\sqrt{\sin x}} + 1 > 0$ pour tout $x \in \left]0, \frac{\pi}{2}\right]$. Donc f^{-1} est dérivable sur $f\left(\left[0, \frac{\pi}{2}\right]\right) = \left]0, 1 + \frac{\pi}{2}\right]$. Etudions la dérivabilité de f^{-1} en 0:

En posant $x = f^{-1}(h)$, on a

$$\frac{f^{-1}(h) - f^{-1}(0)}{h} = \frac{x}{f(x)} = \frac{x}{\sqrt{\sin x} + x} = \frac{1}{\frac{\sqrt{\sin x} + 1}{x} + 1} = \frac{1}{\sqrt{\frac{1}{x}}\sqrt{\frac{\sin x}{x} + 1}}.$$

On en déduit que $\lim_{h\to 0}\frac{f^{-1}\left(h\right)-f^{-1}\left(0\right)}{h}=0$ et par suite $\left(f^{-1}\right)'\left(0\right)=0.$

Exercice 15. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction définie continue telle que $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = +\infty.$ Montrons que f admet un minimum absolu.

Soit $M \in \mathbb{R}$.

Comme $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$, il existe $A, B \in \mathbb{R}$ tels que $\forall x \leq A, \forall x \geq B, f(x) > M$. Ainsi f est minorée par M sur $]-\infty, A[\cup]B, +\infty[$

. De plus, f admet un minimum sur [A,B] en un point $a \in [A,B]$ car continue sur un segment. f est donc minorée sur R par min (M, f(a))

On choisit M de façon que f(0) < M. Soit par exemple M = f(0) + 1. On a alors $A \leq 0 \leq B$ car f(0) < M.

On a f(a) < f(0) car $0 \in [A, B]$ donc f(a) < M.

Pour tout $x \in]-\infty, A[\cup]B, +\infty[$, on a donc f(x) > M > f(a) et pour tout $x \in [A, B]$, on a f(x) > f(a).

Ainsi f admet un minimum absolu en a.

Exercice 16. 1. Le polynôme est définie continue sur $[\alpha_1, \alpha_2]$, dérivable sur $]\alpha_1, \alpha_2[$ et vérifie $P(\alpha_1) = P(\alpha_2)$. D'après le théorème de Rolle, il existe $\beta_1 \in]\alpha_1, \alpha_2[$ tel que $P'(\beta_1) = 0$.

On recommence cette démonstration pour tous les autres intervalles $[\alpha_i, \alpha_{i+1}]$ et on met en évidence n-1 racines réelles distinctes de P'.

Comme $\deg P = n - 1$, P'a au plus n - 1 racines réelles distinctes. .

- 2. Si n est impair, on a $\lim_{x\to -\infty} P(x) = -\infty$ et $\lim_{x\to +\infty} P(x) = +\infty$, de plus P est continue sur \mathbb{R} , donc d'après le théorème des valeurs intermédiaires l'équation P(x) = 0 admet au moins une solution réelle.
- 3. Application : a) Cas n pair : Supposons que le polynôme P admet trois racines réelles simples alors le polynôme P' admet 2 racines réelles simples . Or comme n-1 est impair et que $nx^{n-1}+p=0 \Leftrightarrow nx^{n-1}=-\frac{p}{n}$, l'équation P'(x)=0 n'admet qu'une unique solution
 - b) Cas n impair : dans ce cas n-1 est pair.

Supposons que le polynôme P admet quatre racines réelles simples, alors P' admet 3 racines réelles simples.

Si
$$p > 0$$
, on a

$$nx^{n-1} + p = 0 \Leftrightarrow x^{n-1} = -\frac{p}{n}$$

et l'équation $x^{n-1} = -\frac{p}{n}$ n'admet pas de solutions réelles.

si
$$p < 0$$
, On a $P''(x) = n(n-1)x^{n-2}$

Comme P'(x)=0 admet 3 solutions réelles simples , P''(x)=0 admet 2 solutions réelles simples , mais

$$P''(x) = 0 \Leftrightarrow n(n-1)x^{n-2} = 0 \Leftrightarrow x = 0$$

c'est à dire que P''(x) = 0 n'admet qu'une seule solution.

c) Dans ce cas $P(x) = x^5 + px + q$. et $P'(x) = 5x^4 + p$.

Si p > 0, l'équation P'(x) = 0, n'admet pas de solutions et alors l'équation P(x) = 0 admet une solution réelle.

Si
$$p < 0$$
,

$$P'(x) = 0 \Leftrightarrow x^4 = -\frac{p}{5} \Leftrightarrow x^2 = \sqrt{-\frac{p}{5}}$$

 $\Leftrightarrow x = \sqrt{\sqrt{-\frac{p}{5}}} \text{ ou } x = -\sqrt{\sqrt{-\frac{p}{5}}}.$

Ainsi P'(x) = 0 admet deux solutions réelles et alors l'équation P(x) = 0admet trois solutions réelles.

Exercice 17.

1. Montrons qu'il existe un réel $c \in]0,1[$ tel que : $\ln(\ln(p+1)) - \ln(\ln(p)) =$ $\overline{(p+c)\ln(p+c)}$

$$0 \le x \le 1 \Leftrightarrow p \le x + p \le p + 1$$

Comme $p \ge 2$, $\ln(p) \ge \ln(2) > 0$, et donc $\ln(x + p) \ge \ln 2 > 0$

La fonction $x \mapsto \ln(\ln(p+x))$ est définie et continue sur [0, 1]et est dérivable sur [0,1], on lui applique le théorème des accroissements finis entre 0 et 1. Il existe donc $c \in [0, 1[$ tel que

$$\ln(\ln(p+1)) - \ln(\ln(p)) = \frac{1}{(p+c)\ln(p+c)}.$$

2. Montrons l'inégalité :
$$\ln(\ln(p+1)) - \ln(\ln(p)) < \frac{1}{pln(p)}$$
.
On a $\begin{cases} p+c > p > 0 \\ \ln(p+c) > \ln(p) > 0 \end{cases} \Rightarrow \frac{1}{(p+c)\ln(p+c)} < \frac{1}{pln(p)}$;
D'où $\ln(\ln(p+1)) - \ln(\ln(p)) < \frac{1}{pln(p)}$.
3. Montrons que $\lim_{n \to +\infty} \left(\frac{1}{2\ln(2)} + \frac{1}{3\ln(3)} + \dots + \frac{1}{n\ln(n)} \right) = +\infty$.
On a $\ln(\ln(3)) - \ln(\ln(2)) < \frac{1}{2ln(2)}$.

D'où
$$\ln(\ln(p+1)) - \ln(\ln(p)) < \frac{1}{pln(p)}$$
.

On a
$$\ln(\ln(3)) - \ln(\ln(2)) < \frac{1}{2ln(2)}$$

 $\ln(\ln(4)) - \ln(\ln(3)) < \frac{1}{2ln(2)}$

$$\ln(\ln(4)) - \ln(\ln(3)) < \frac{1}{3ln(3)}$$

$$\ln(\ln(n+1)) - \ln(\ln(n)) < \frac{1}{nln(n)}$$

En additionnant ces
$$n-1$$
 inégalités, on obtient
$$\frac{1}{2\ln(2)} + \frac{1}{3\ln(3)} + \dots + \frac{1}{n\ln(n)} > \ln(\ln(n+1)) - \ln(\ln(2))$$

$$\operatorname{Or} \lim_{n \to +\infty} \ln(\ln(n+1)) = +\infty, \operatorname{donc} \lim_{n \to +\infty} \left(\frac{1}{2\ln(2)} + \frac{1}{3\ln(3)} + \dots + \frac{1}{n\ln(n)} \right) =$$

 $+\infty$.

Exercice 18. La fonction f est continue et dérivable sur \mathbb{R} donc en particulier sur [a, b]. Le théorème des accroissements finis assure l'existence d'un nombre $c \in [a,b]$ tel que f(b) - f(a) = f'(c)(b-a). Pour cette fonction particulière nous pouvons expliciter ce c. En effet

$$f(b) - f(a) = f'(c)(b - a) \Leftrightarrow \alpha(b^2 - a^2) + \beta(b - a) = (2\alpha c + \beta)(b - a)$$

$$\Leftrightarrow (b + a) = 2c \Leftrightarrow c = \frac{a + b}{2}.$$

Géométriquement, le graphe \mathcal{P} de f est une parabole. Si l'on prend deux points $A=(a,f\left(a\right))$ et $B=(b,f\left(b\right))$ appartenant à cette parabole, alors la droite (AB) est parallèle à la tangente en \mathcal{P} qui passe en $M\left(\frac{a+b}{2},f\left(\frac{a+b}{2}\right)\right)$. L'abscisse de M étant le milieu des abscisses de A et B.

Exercice 19. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que, pour tous $x, y \in \mathbb{R}$, $|f(x) - f(y)| \le |\sin x - \sin y|$.

1. Montrons que f est 2π -périodique .

Pour tout $x \in \mathbb{R}$ on a, par hypothèse appliquée à $y = x + 2\pi$,

$$0 \le |f(x) - f(x + 2\pi)| \le |\sin x - \sin(x + 2\pi)| = 0$$
et donc $f(x + 2\pi) = f(x)$.

2. Montrons que f est continue sur \mathbb{R} .

Soit $x_0 \in \mathbb{R}$. On veut montrer que $\lim_{x \to x_0} f(x) = f(x_0)$. Soit $\varepsilon > 0$. Puisque sin est continue, il existe $\eta \ge 0$ tel que pour $|x - x_0| \le \eta$, $|\sin x - \sin x_0| \le \varepsilon$. Or, par hypothèse, pour tout $x \in \mathbb{R}$, $|f(x) - f(x_0)| \le |\sin x - \sin x_0|$.

Par conséquent, pour $|x-x_0| \le \eta$, $|f(x)-f(x_0)| \le \varepsilon$. Par définition de la limite, ceci montre que $\lim_{x\to x_0} f(x) = f(x_0)$.

3. Montrons que f est dérivable en $\frac{\pi}{2}$ et calculons $f'\left(\frac{\pi}{2}\right)$.

On veut montrer que $\lim_{x\to \frac{\pi}{2}} \frac{f(x)-f(\frac{\pi}{2})}{x-\frac{\pi}{2}}$ est un réel. Or on sait que la fonction

sin est dérivable en $\frac{\pi}{2}$ et $\sin'\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$. Donc $\lim_{x \to \frac{\pi}{2}} \frac{\sin x - \sin(\frac{\pi}{2})}{x - \frac{\pi}{2}} = 0$.

Et par l'hypothèse, pour tout $x \neq \frac{\pi}{2}$, $\left| \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}} \right|^{-\frac{\pi}{2}} \leq \left| \frac{\sin x - \sin(\frac{\pi}{2})}{x - \frac{\pi}{2}} \right|$

Donc par comparaison $\lim_{x \to \frac{\pi}{2}} \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}} = 0.$

Exercice 20. Etablir les relations

https://sigmoid.ma

On pose $f(x) = \arccos(x) + \arcsin(x)$ f est dérivable sur]-1,1[de dérivée $f'(x) = \frac{-1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}} = 0$

Ainsi f est constante sur]-1,1[, donc sur [-1,1] (car continue aux extrémités).

Or $f(0) = \arccos 0 + \arcsin(0) = \frac{\pi}{2}$,

Par conséquent $f(x) = \frac{\pi}{2}$ pour tout $x \in [-1, 1]$.

$$\blacksquare$$
 $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{x}{|x|} \frac{\pi}{2}$ pour $x \neq 0$.

On pose $g(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ g est définie dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$ de dérivée

$$g'(x) = \frac{1}{1+x^2} + \left(\frac{-1}{x^2}\right) \frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0.$$

donc g est constante sur chacun de ses intervalles de définition : $g(x) = c_1$ sur $]-\infty, 0[$ et $g(x) = c_2$ sur $]0, +\infty[$. Sachant $\arctan(1) = \frac{\pi}{4}$ et $\arctan(-1) = -\frac{\pi}{4}$, on obtient : $c_1 = \frac{\pi}{2}$ et $c_2 = -\frac{\pi}{2}$.

Pour rout $x \in \mathbb{R}$, on a

$$\cos^2\left(\arctan x\right) = \frac{1}{1+x^2}$$

d'où

$$\cos\left(\arctan x\right) = \pm \frac{1}{\sqrt{1+x^2}}$$

Or $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\cot \cos y \ge 0 \text{ si } y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \text{ donc} \right]$

$$\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$$

Pour rout $x \in \mathbb{R}$, on a

$$\sin^2(\arctan x) = 1 - \cos^2(\arctan x) = 1 - \frac{1}{1 + \tan^2(\arctan x)}$$
$$= 1 - \frac{1}{1 + x^2} = \frac{x^2}{1 + x^2}$$

D'où
$$|\sin(\arctan x)| = \frac{|x|}{\sqrt{1+x^2}}$$
.
Or $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } \sin y \text{ et du même signe que } y \text{ sur} \right] -\frac{\pi}{2}, \frac{\pi}{2} \left[\text{ , donc} \right]$

$$\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}}.$$

Pour rout $x \in [-1, 1]$, on a : $\sin(2 \arcsin x) = 2 \sin(\arcsin x) \cos(\arcsin x)$ Or $\sin(\arcsin x) = x$ et $\cos^2(\arcsin x) = 1 - \sin^2(\arcsin x) = 1 - x^2$, donc $\cos(\arcsin x) = \pm \sqrt{1 - x^2}$

 $\cos\left(\arcsin x\right) = \pm\sqrt{1-x^2}$ Mais $\arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\cos \ge 0$ sur cet intervalle, donc $\cos\left(\arcsin x\right) = \sqrt{1-x^2}$.

Ainsi $\sin(2 \arcsin x) = 2x\sqrt{1-x^2}$.

Exercice 21.

$$\lim_{x \to 0} \frac{x}{\sqrt{1+x^2} - \sqrt{1+x}} = \lim_{x \to 0} \frac{1}{\frac{x}{\sqrt{1+x^2}} - \frac{1}{2\sqrt{1+x}}} = \frac{1}{-\frac{1}{2}} = -2.$$

$$2ch^{2}x - sh(2x) = 2\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= \frac{e^{2x} + e^{-2x} + 2}{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= e^{-2x} + 1.$$

et

$$x - \ln(chx) - \ln(2) = x - \ln\left(\frac{e^x + e^{-x}}{2}\right) - \ln(2)$$
$$= x - \ln\left(e^x + e^{-x}\right) = x - \ln\left(e^x \left(1 + e^{-2x}\right)\right)$$
$$= x - \ln\left(e^x\right) - \ln\left(1 + e^{-2x}\right) = -\ln\left(1 + e^{-2x}\right)$$

Ainsi

$$\lim_{x \to -\infty} \frac{2ch^2x - sh(2x)}{x - \ln(chx) - \ln(2)} = \lim_{x \to -\infty} \frac{e^{-2x} + 1}{-\ln(1 + e^{-2x})} = \lim_{x \to -\infty} \frac{2e^{-2x}}{\frac{2e^{-2x}}{1 + e^{-2x}}}$$
$$= \lim_{x \to -\infty} 1 + e^{-2x} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^2}} = \lim_{x \to 1^{-}} \frac{\frac{-1}{\sqrt{1 - x^2}}}{\frac{-x}{\sqrt{1 - x^2}}} = \lim_{x \to 1^{-}} \frac{1}{x} = 1$$

Exercice 22.

Soit $A = \{x \in [0,1] / f(x) > x\}$.

 $0 \in A$ donc A est non vide, de plus A est majoré (par 1). Soit donc $\alpha = \sup A$

Pour tout $x > \alpha$, on a $f(x) \le x$ donc $f(\alpha) \le f(x) \le x$.

Puisque $f(\alpha) \leq x$ pour tout $x > \alpha$, on a aussi $f(\alpha) \leq \alpha$.

Pour tout $x < \alpha$, il existe $t \in]x, \alpha]$ tel que f(t) > t donc $f(\alpha) > f(t) > t > x$.

Puisque ceci est vrai pour tout $x < \alpha$, on a aussi $f(\alpha) > \alpha$.

Finalement $f(\alpha) = \alpha$.

Exercice 23.

1. Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction périodique convergeant en $+\infty$. Montrons que g est constante.

La fonction $g: \mathbb{R} \to \mathbb{R}$ est périodique, donc, si T > 0 est une période , on a g(x + nT) = g(x) pour tout $n \in \mathbb{N}^*$.

Or g converge en $+\infty$, donc il existe $l \in \mathbb{R}$ tel que $\lim_{x \to +\infty} g(x) = l$.

Puisque $\lim_{n \to +\infty} x + nT = +\infty$, on a alors $\lim_{n \to +\infty} g(x + nT) = l$.

De plus on a $\lim_{n\to +\infty} g\left(x\right)=g\left(x\right)$. Comme $g\left(x+nT\right)=g\left(x\right)$ et par unicité de la limite $g\left(x\right)=l$.

2. Soient $f,g:\mathbb{R}\to\mathbb{R}$ telles que f converge en $+\infty$, g périodique et f+g croissante. Montrer que g est constante.

La fonction f converge en $+\infty$, soit $l = \lim_{x \to +\infty} f(x)$. La fonction f + g étant croissante admet une limite $l' \in \mathbb{R} \cup \{+\infty\}$.

Si $l' \in \mathbb{R}$, la fonction g admet en $+\infty$, $l'' = l' - l \in \mathbb{R}$. D'après la question 1, g étant périodique est constante.

Si $l' = +\infty$, on aura forcément $\lim_{x \to +\infty} g(x) = +\infty$.

Montrons que ceci est impossible. En effet, Supposons que $\lim_{x \to +\infty} g(x) = .$

La fonction g est périodique, donc, si T>0 est une période , $g\left(x+nT\right)=g\left(x\right)$ pour tout $n\in\mathbb{N}^*.$ On aura alors

 $\lim_{n\to +\infty}g\left(x+nT\right)=+\infty=\lim_{n\to +\infty}g\left(x\right)=g\left(x\right), \text{ ce qui est impossible}.$

Exercice 24.

Soit f une fonction croissante définie sur [0,1] à valeurs dans [0,1].

1. Montrons que s'il existe $x \in [0,1]$ et $k \in \mathbb{N}$ tels que $f^k(x) = x$ alors x est un point fixe pour f.

Supposons que $f\left(x\right) > x$, alors puisque f est croissante $f^{k}\left(x\right) > f^{k-1}\left(x\right) > \ldots > f\left(x\right) > x$ ce qui est absurde. Une étude analogue contredit $f\left(x\right) < x$.

2. Montrons que f admet un point fixe.

On a $f(0) \ge 0$ et $f(1) \le 1$, On peut construire deux suites (a_n) et (b_n) telles que $f(a_n) \ge a_n$ et $f(b_n) \le b_n$. On pose $a_0 = 0$ et $b_0 = 1$. Une fois les termes a_n et b_n déterminés, on introduit $m = \frac{a_n + b_n}{2}$. Si $f(m) \ge m$, on pose $a_{n+1} = m$ et $b_{n+1} = b_n$. Sinon, on pose $a_{n+1} = a_n$ et $b_{n+1} = m$.

Les suites (a_n) et (b_n) ainsi déterminées sont adjacentes et convergent donc vers une limite commune l telle que $a_n \leq l \leq b_n$. Comme f est croissante $f(a_n) \leq f(l) \leq f(b_n)$ et donc $a_n \leq f(l) \leq b_n$. Or (a_n) et (b_n) convergent vers l donc par encadrement f(l) = l.

Exercice 25.

Soient $f, g : [a, b] \to \mathbb{R}$ continues telles que f(x) > g(x) pour tout $x \in [a, b]$. Montrons qu'il existe $\eta > 0$ tel que $f(x) \ge g(x) + \eta$ pour tout $x \in [a, b]$.

Soit h=f-g. Alors h est continue sur l'intervalle fermé borné [a,b] donc h est bornée et atteint sa borne inférieure . C'est à dire que : $\exists \ c \in [a,b]$ tel que pour tout $x \in [a,b]$, $h(c) \leq h(x)$. Or h(c) = f(c) - g(c) > 0, donc pour tout $x \in [a,b]$, $f(x) - g(x) \geq \eta$ avec $\eta = h(c)$.

On suppose de plus que g(x) > 0 pour tout $x \in [a, b]$. Montrons qu'il existe k > 1 tel que $f(x) \ge kg(x)$ pour tout $x \in [a, b]$.

On fait le même raisonnement que precedemment avec $h = \frac{f}{g}$. La fonction h est continue sur [a,b] et h(x) > 1 pour tout $x \in [a,b]$. $\exists \ c \in [a,b]$ tel que pour tout $x \in [a,b]$, $h(c) \le h(x)$. Or $h(c) = \frac{f(c)}{g(c)} > 1$, donc pour tout $x \in [a,b]$, $\frac{f(x)}{g(x)} \ge k$ avec k = h(c).