

Физтех-школа аэрокосмических технологий 15 марта 2024 года

Лабораторная работа 2.1.6

ЭФФЕКТ ДЖОУЛЯ-ТОМСОНА Зайцев Александр Б03-305

Цель работы: определение изменения температуры углекислого газа при протекании через слабопроницаемую перегородку при разных начальных значениях давления и температуры; вычисление коэффициентов Ван-дер-Ваальса.

В работе используются: трубка с пористой перегородкой, труба Дьюара, термостат, термометры, дифференциальная термопара; микровольтметр, балластный баллон, манометр.

Модель Ван-дер-Ваальса.

Уравнение состояния реального газа:

$$(P + \frac{a}{V^2})(V - b) = RT \tag{1}$$

Коэффициент Джоуля-Томсона:

$$\mu = \frac{1}{C_p} \left(\frac{2a}{RT} - b \right) \tag{2}$$

Модель Бертло.

Уравнение состояния реального газа:

$$(P + \frac{a}{TV^2})(V - b) = RT \tag{3}$$

Коэффициент Джоуля-Томсона:

$$\mu = \frac{1}{C_n} \left(\frac{3a}{RT^2} - b \right) \tag{4}$$

Экспериментальная установка.

Рис. 1 Экспериментальная установка

Схема установки для исследования эффекта Джоуля-Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d = 3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l = 5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P = 4$ атм (расход газа составляет около 10 см3/с); при этом в результате эффекта Джоуля-Томсона создается достаточная разность температур. Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{_{\mathrm{B}}}$, помещенным в термостате. температура воды устанавливается и поддерживается эксперимента при помощи контактного термометра $T_{_{\!\scriptscriptstyle K}}$. Давление газа в трубке измеряется манометром М и регулируется вентилем В (при открывании вентиля В, т. е. при повороте ручки против часовой стрелки, давление $P_{_1}$ повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как

углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$. Разность до перегородки нее температур газа И после измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла проволоку столь малого сечения пренебрежимо мал. уменьшения теплоотвода трубка с пористой перегородкой помещена в Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

Ход работы.

Измерения в соответствии с инструкцией записаны в таблицу. Погрешности измерительных приборов:

$$\sigma_{_{\! P}}=\,$$
 0, 1 бар $\sigma_{_{\! T}}=\,$ 0, 01 K $\sigma_{_{\! E}}=\,$ 1 мкВ

Класс точности манометра 1. Температура в комнате на момент начала регистрации данных 21,7°C.

Таблица 1. Результаты измерений

№	T_{rep} ,°C	Е, мкВ	$\frac{dV}{dT}$, мкВ/°С	ΔT ,°C	ΔP , бар
1		125		3,07	4,05
2		104		2,56	3,60
3	20,00	81	40,7	1,99	3,00
4		61		1,5	2,50
5		42		1,03	2,00
6		26		0,64	1,55
7		124		2,99	4,00
8		97		2,34	3,60
9	35,00	70	41,5	1,69	3,00
10		51		1,23	2,50
11		44		1,06	2,20
12		29		0,7	1,70
13		101		2,38	4,00
14		85		2	3,50
15	45,00	64	42,4	1,51	3,00
16		49		1,16	2,50
17		34		0,8	2,00
18		25		0,59	1,65
19		97		2,25	4,00
20		78		1,81	3,50
21	55,00	54	43,2	1,25	2,80
22		40		0,93	2,30
23		24		0,56	1,80
24		16		0,37	1,50

Графики зависимости разности температур ΔT от перепада давлений ΔP на одних координатных осях для всех четырех значений температуры термостата приведены на рисунке 2.

Рис. 2 Графики зависимостей

Угловые коэффициенты прямой это коэффициенты Джоуля-Томсона:

$$T = 20^{\circ}C$$
 \rightarrow μ = 0,97 ± 0,01 K/бар $T = 35^{\circ}C$ \rightarrow μ = 0,98 ± 0,06 K/бар $T = 45^{\circ}C$ \rightarrow μ = 0,77 ± 0,02 K/бар $T = 55^{\circ}C$ \rightarrow μ = 0,75 ± 0,02 K/бар

Погрешность коэффициентов Джоуля-Томсона находится по формуле

$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
 (5)

Табличные значения коэффициентов Джоуля-Томсона для некоторых температур:

$$T=20^{\circ}C \rightarrow \mu_{tab}=1,09$$
 К/бар
$$T=40^{\circ}C \rightarrow \mu_{tab}=0,95$$
 К/бар
$$T=50^{\circ}C \rightarrow \mu_{tab}=0,83$$
 К/бар

Модель Ван-дер-Ваальса.

График зависимости коэффициентов Джоуля-Томсона от обратной температуры термостата для определения коэффициентов в модели реального газа Ван-дер-Ваальса (1):

Погрешность углового коэффициента была найдена по формуле (5). Погрешность свободного члена найдена по формуле

$$\sigma_m = \sigma_k \cdot \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{6}$$

Несовпадение прямой с крестами погрешностей и высокая погрешность углового коэффициента свидетельствует о том,

что модель Ван-дер-Ваальса слабо применима в условиях данного эксперимента. Его применение возможно лишь только для качественного описания изменений состояния реального газа. Тем не менее, пользуясь формулой (2) можно определить коэффициенты а и b в уравнении состояния реального газа, приняв $C_p = 36$, $5\frac{\text{Дж·моль}}{\text{кг}}$.

$$a = \frac{1}{2} R C_p k \cdot 10^{-5} \approx 1,05 \frac{\text{Дж·м}^3}{\text{моль}^2}$$

$$b = -C_p m \cdot 10^{-5} \approx 0,05 \cdot 10^{-6} \frac{\text{м}^3}{\text{моль}}$$

$$\sigma_a = a \frac{\sigma_k}{k} = 0,30 \frac{\text{Дж·м}^3}{\text{моль}^2}$$
 $\sigma_b = b \frac{\sigma_m}{m} = 0,01 \cdot 10^{-6} \frac{\text{м}^3}{\text{моль}}$

Табличные значения этих коэффициентов для углекислого газа:

$$a_{tab} = 0,365 \frac{\text{Дж·м}^3}{\text{моль}^2}$$

$$b_{tab} = 42,9 \cdot 10^{-6} \frac{\text{м}^3}{\text{моль}}$$

Температура инверсии по модели Ван-дер-Ваальса рассчитывается по формуле:

$$T_{_{\text{MHB}}} = \frac{2a}{Rb} \tag{7}$$

Найденные коэффициенты можно подставить в формулу (7). Получается

$$T_{_{\mathrm{HHB}}} = 5,11 \cdot 10^{6} \,\mathrm{K}$$

Табличное значение температуры инверсии:

$$T_{_{\text{MHR}}} = 2047,69 \text{ K}$$

Модель Бертло.

График зависимости коэффициентов Джоуля-Томсона от обратного квадрата температуры термостата для определения коэффициентов в модели реального газа Бертло (3):

Погрешности углового коэффициента и свободного члена определены по формулам (5) и (6) соответственно.

Несовпадение прямой с крестами погрешностей и высокая погрешность углового коэффициента свидетельствует о том,

что модель Ван-дер-Ваальса слабо применима в условиях данного эксперимента. Его применение возможно лишь только для качественного описания изменений состояния реального газа. Тем не менее, пользуясь формулой (4) можно определить коэффициенты а и b в уравнении состояния реального газа, приняв $C_p = 36$, $5\frac{\text{Дж·моль}}{\text{кг}}$.

$$a = \frac{1}{3}RC_{p}k \cdot 10^{-5} \approx 107 \frac{\text{Дж·К·м}^{3}}{\text{моль}^{2}}$$

$$b = -C_{p}m \cdot 10^{-5} \approx 0,83 \cdot 10^{-6} \frac{\text{м}^{3}}{\text{моль}}$$

$$\sigma_{a} = a \frac{\sigma_{k}}{k} = 31,79 \frac{\text{Дж·К·м}^{3}}{\text{моль}^{2}}$$

$$\sigma_{b} = b \frac{\sigma_{m}}{m} = 0,10 \cdot 10^{-6} \frac{\text{м}^{3}}{\text{моль}}$$

Табличные значения этих коэффициентов для углекислого газа:

$$a_{tab} = 110 \frac{\text{Дж·м}^3}{\text{моль}^2}$$
 $b_{tab} = 42, 7 \cdot 10^{-6} \frac{\text{м}^3}{\text{моль}}$

Вывод.

В модели газа Ван-дер-Ваальса сильно экспериментально полученные коэффициенты (в т.ч. температура инверсии) сильно не сошлись с табличными. Аналогичная ситуация в модели газа Бертло, где сошелся только коэффициент а, но при этом его погрешность составила целых 29%. Модель реального газа Ван-дер-Ваальса и модель реального газа Бертло имеют свои ограничения и ограниченную область применения. Экспериментально полученные коэффициенты а и в могут не совпадать с табличными из-за несовершенства самой модели или из-за неточностей в измерениях. Это может привести к искажению результатов и невозможности точного применения моделей на практике.

Таким образом, несмотря на то, что модели реального газа Ван-дер-Ваальса и Бертло имеют свою ценность в теоретических исследованиях, их применение в реальной жизни может быть ограничено из-за несовершенства и неточности.