Topic Modeling: Latent Dirichlet Allocation

Team 11

Fatima-Zahra Banani Mohamed Kleit Robert Chamoun

Introduction

- Topic Modeling aims at discovering hidden themes in a collection of documents and annotating them according to these topics.
- Latent Dirichlet Allocation (LDA) is a generative probabilistic model of document collections that tries to capture the intution that documents exhibit multiple topics.
- It thus has a corresponding generative process from which each document is assumed to be generated.

Graphical Model

LDA is a three-level hierarchical Bayesian model as depicted below:

Figure 1:Graphical model representation of LDA

$$p(\theta_d, Z_d, W_d | \alpha, \beta) = p(\theta_d | \alpha) \prod_{n=1}^{N} p(z_n | \theta_d) p(w_n | z_n, \beta)$$

 α : topic proportions parameter

 β : KxV matrix representing each topic k as a distribution over the vocabulary V, where $\beta_{k,v}=p(w^v=1|z^k=1)$

 θ_d : topic proportions for document d

 Z_d : topic assignments for document d

 W_d : observed words for document d

Generative Process

Each document d is assumed to be generated by the following process:

- Draw distribution over topics $\theta_d \sim Dirichlet(\alpha)$
- For each word n:
- Draw a topic from distribution over topics $z_{d,n} \sim Mult(\theta_d)$
- Draw a word from the corresponding topic $w_{d,n} \sim Mult(\beta_{z_{d,n}})$

Goal

Find:

$$\alpha^*, \beta^* = \operatorname{argmax} \log p(D|\alpha, \beta)$$
$$= \operatorname{argmax} \sum_{d=1}^{M} \log p(W_d|\alpha, \beta)$$

Parameter Estimation

• $p(\theta_d, Z_d | W_d, \alpha, \beta)$ is intractable \Rightarrow Variational EM.

Figure 2:Graphical Model representation of variational distribution

$$q(\theta_d, Z_d \mid \gamma_d, \phi_d) = q(\theta_d \mid \gamma_d) \prod_{n=1}^{N} q(z_n \mid \phi_d^n)$$

$$\log p(W_d|\alpha,\beta) = L(\gamma_d,\phi_d,\alpha,\beta) + D(q(\theta_d,Z_d|\gamma_d,\phi_d)||p(\theta_d,Z_d|W_d,\alpha,\beta))$$

Variational E Step:

For each document d:

$$\gamma_d^{*t+1}, \phi_d^{*t+1} = argmin D(q(\theta_d, Z_d | \gamma_d, \phi_d) | | p(\theta_d, Z_d | W_d, \alpha^{*t}, \beta^{*t}))$$

Variational M Step:

$$egin{align*} {lpha^*}^{t+1}, {eta^*}^{t+1} &= argmaxL({\gamma^*}^{t+1}, {\phi^*}^{t+1}, lpha, eta) \ &= argmax\sum_{d=1}^{M}L({\gamma^*_d}^{t+1}, {\phi^*_d}^{t+1}, lpha, eta) \end{aligned}$$

Implementation and Results

Reproduced results from paper with our own implementation:

- Documents: 2247

• Topics: 100

Topic Sample						
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5		
club	new	child	ago	american		
year	percent	people	africa	states		
york	yen	having	leaders	union		
old	economy	report	france	told		
building	rate	education	people	political		
business	rates	aids	african	leaders		
years	said	children	french	conference		
new	prices	said	south	president		
city	market	care	police	said		
said	dollar	health	said	soviet		

Tested our implementations on scribe notes:

Documents: 17

Topics: 8

Topic Sample						
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5		
inference	number	problem	constraints	sufficient		
structure	possible	passing	uniform	moments		
active	beta	running	hessian	divergence		
parents	equal	vector	point	likelihood		
treewidth	parameters	latent	constant	principle		
elimination	information	following	lagrange	inference		
eliminate	posteriori	inference	equality	optimization		
graphs	priori	regression	constraint	proof		
property	posterior	property	family	information		
ordering	case	matrix	stationary	general		

References

[1] Michael I. Jordan David M. Blei, Andrew Y. Ng.
Latent dirichlet allocation.

Journal of Machine Learning Research, (3):993--1022, 2003.