## The normal distribution

yaniv

March 3

#### The normal distribution

Much of statistics is based off of the normal distribution.

y tho??





You may have heard much about this before... What do you know about the normal distribution?

#### Worksheet / check in

#### Sums are Normally Distributed

Most quantitative variables are sums of a bunch of things.

#### For example:

- Human height is realized as the addition of lot of genetic effects and a lot of environmental factors.
- The distance a seed moves is the sum of a lot of wind currents.

# Consequently, Many Biological Variables Are (Approximately) Normally Distributed

### **Human Birth Weight**

Birth weight is (roughly) normally distributed

The distribution of human birth weight



Data from Pethybridge, Ashford, and Fryer 1974

#### **Human Body Temp**

Body temp is (roughly) normally distributed



Data from Shoemaker 1996

#### Egg Number

egg number (roughly) normally distributed

The distribution of fly egg number



Data from Paaby, Bergland, Behrman and Schmidt 2014, data link

## The Normal Distribution: Definitions and Properties

#### Probability Density of A Normal Dist.



$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

#### A Normal Dist. Has Two Params: $\mu \& \sigma$

 $\mathcal{N}(\mu,\sigma)$  – These parameters fully specify a normal distribution

#### Two normal distributions



### A Normal Distribution is Symmetric

A normal distribution is symmetric & centered around its mean.



### $\approx 66\%$ of a Normal is Within $\mu \pm \sigma$

$$\int_{\mu-\sigma}^{\mu+\sigma} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \approx 2/3$$



#### $\approx 95\%$ of a Normal is Within $\mu \pm 2\sigma$

$$\int_{\mu-2\sigma}^{\mu+2\sigma} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \approx 0.95$$



#### R Exercises: Pick $\mu$ & $\sigma$

Simulate a normal with rnorm(), and convince yourself that

- · A normal distribution is symmetric around its mean.
- About 66% of draws are between  $\mu \sigma$  and  $\mu + \sigma$ .
- About 95% of draws are between  $\mu 2\sigma$  and  $\mu + 2\sigma$ .

Show that dnorm() returns  $(1/\sqrt{2\pi\sigma^2})e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 

Use pnorm() to find the proportion of your normal  $<\mu-2\sigma$ 

Use pnorm() to find the proportion of your normal  $> \mu + 2\sigma$ 

Use qnorm() to find the cutoff for the lower 2.5% tail

Explain the difference between & usage of q p r and d norm()

#### R Exercises: 1. Symmetry

A normal distribution is symmetric around its mean.

```
mu <- 8; sigma <- 1; X <- 7

sim <- tibble(x = rnorm(n = 100000, mean = mu, sd = sigma))
```



sim %>% summarise(mean(x>mu)) %>% pull() # How much is greater than mu

## [1] 0.49934

## R Exercises: 2. Within one or two $\sigma$ s by simulation

#### R Exercises: 3. dnorm() returns

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

```
(1/sqrt(2 * pi * sigma^2)) * exp(-(X-mu)^2/(2*sigma^2)) # math

## [1] 0.2419707

dnorm(x = X, mean = mu, sd = sigma) # dnorm()

## [1] 0.2419707
```

## R Exercises: 4. Within one or two $\sigma$ s by pnorm()

Use pnorm() to find the proportion of your normal  $< \mu - \sigma$ 

```
pnorm(q = mu - sigma, mean = mu, sd = sigma) # A bit less than 0.33/2
```

## [1] 0.1586553

Use pnorm() to find the proportion of your normal  $> \mu - 2\sigma$ 

```
pnorm(q = mu - 2 * sigma, mean = mu, sd = sigma) # A bit less than 0.025
```

## [1] 0.02275013

#### R Exercises: 5. Critical value qnorm()

Use qnorm() to find the cutoff for the lower 2.5% tail

```
critical.val <- qnorm(p = .025, mean = mu, sd = sigma); critical.val

## [1] 6.040036

(critical.val - mu) / sigma # In units of sigma from mean

## [1] -1.959964</pre>
```

R Exercises: 6. 
$$\sigma_{\bar{\chi}} = \sigma / \sqrt{(n)}$$
?

Demonstrate that the standard deviation of the sampling distribution of your normal is roughly  $\sigma/\sqrt{n}$  with rnorm()

| n   | sd(estimate) | prediction |
|-----|--------------|------------|
| 5   | 0.44631      | 0.44721    |
| 10  | 0.31117      | 0.31623    |
| 20  | 0.22566      | 0.22361    |
| 50  | 0.14419      | 0.14142    |
| 100 | 0.09663      | 0.10000    |
| 500 | 0.04543      | 0.04472    |

#### Our sims and math match!

### Central limit theorem

#### Central limit theorem

The sum or mean of a large number of measurements randomly sampled from ANY population is approximately normally distributed.

#### Button Pushing Example [1/3]

Imagine that 20000 people are asked to press a button.



#### Button Pushing Example [2/3]

Imagine that 20000 people are asked to press a button.

- Half are anxious & do this quickly  $\mathcal{N}(10,1)$
- Half are not & do this slowly  $\mathcal{N}(70, 15)$

This is not normally distributed



#### Button Pushing Example [3/3]

The sampling distribution becomes normal as n gets large.





#### sample means: n = 4



sample means: n = 18



sample means: n = 36



#### Normal Approximation to the Binomial

The central limit theorem provides a simple way to estiamte binomial probabilities.

When number of trials (n) is large and probability of success (p) is not too close to 0 or 1

We can approximate the binomial by a normal distribution with  $\mu = np$  and  $\sigma = \sqrt{np(1-p)}$ 

## The binomial dist. approaches a normal dist. as n gets larger

0.4

0.6

8.0

1.0



This is an example of the Central Limit Theorem in action

## Normal approximation to the binomial distribution

Pr[number of successes 
$$\geq X$$
]=  $Pr[Z > \frac{X-np}{\sqrt{np(1-p)}}]$ 

## The Standard Normal Distribution

#### One Normal Distribution To Rule Them

- Of the infinite normal distributinos, the  $\mathcal{N}(\mu=0,\sigma=1)$  is particularly useful.
- We can easily tansform any normal distribution into the standard normal distribution.

#### The standard normal distribution





#### The Standard Normal Table [1/2]

 Gives the probability of getting a random draw from a standard normal distribution greater than a given value

#### The standard normal distribution



#### The Standard Normal Table [2/2]

This is available in the back of the text.

|     | 0     | 0.01  | 0.02  | 0.03  | 0.04  | 0.05  | 0.06  | 0.07  | 0.08  | 0.09  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0   | 0.500 | 0.496 | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 |
| 0.1 | 0.460 | 0.456 | 0.452 | 0.448 | 0.444 | 0.440 | 0.436 | 0.433 | 0.429 | 0.425 |
| 0.2 | 0.421 | 0.417 | 0.413 | 0.409 | 0.405 | 0.401 | 0.397 | 0.394 | 0.390 | 0.386 |
| 0.3 | 0.382 | 0.378 | 0.374 | 0.371 | 0.367 | 0.363 | 0.359 | 0.356 | 0.352 | 0.348 |
| 0.4 | 0.345 | 0.341 | 0.337 | 0.334 | 0.330 | 0.326 | 0.323 | 0.319 | 0.316 | 0.312 |
| 0.5 | 0.309 | 0.305 | 0.302 | 0.298 | 0.295 | 0.291 | 0.288 | 0.284 | 0.281 | 0.278 |
| 0.6 | 0.274 | 0.271 | 0.268 | 0.264 | 0.261 | 0.258 | 0.255 | 0.251 | 0.248 | 0.245 |
| 0.7 | 0.242 | 0.239 | 0.236 | 0.233 | 0.230 | 0.227 | 0.224 | 0.221 | 0.218 | 0.215 |
| 0.8 | 0.212 | 0.209 | 0.206 | 0.203 | 0.200 | 0.198 | 0.195 | 0.192 | 0.189 | 0.187 |
| 0.9 | 0.184 | 0.181 | 0.179 | 0.176 | 0.174 | 0.171 | 0.169 | 0.166 | 0.164 | 0.161 |

### Standard normal is symmetric, so...

- Pr[Z > x] = Pr[Z < -x]
- Pr[Z < x] = 1 Pr[Z > x]

#### Using the Standard Normal Table

Finding the critical Z value for a two-sided test with  $\alpha = 0.05$ 

|     | 0     | 0.01  | 0.02  | 0.03  | 0.04  | 0.05  | 0.06  | 0.07  | 0.08  | 0.09  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0   | 0.500 | 0.496 | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 |
| 0.1 | 0.460 | 0.456 | 0.452 | 0.448 | 0.444 | 0.440 | 0.436 | 0.433 | 0.429 | 0.425 |
| 0.2 | 0.421 | 0.417 | 0.413 | 0.409 | 0.405 | 0.401 | 0.397 | 0.394 | 0.390 | 0.386 |
| 0.3 | 0.382 | 0.378 | 0.374 | 0.371 | 0.367 | 0.363 | 0.359 | 0.356 | 0.352 | 0.348 |
| 0.4 | 0.345 | 0.341 | 0.337 | 0.334 | 0.330 | 0.326 | 0.323 | 0.319 | 0.316 | 0.312 |
| 0.5 | 0.309 | 0.305 | 0.302 | 0.298 | 0.295 | 0.291 | 0.288 | 0.284 | 0.281 | 0.278 |
| 0.6 | 0.274 | 0.271 | 0.268 | 0.264 | 0.261 | 0.258 | 0.255 | 0.251 | 0.248 | 0.245 |
| 0.7 | 0.242 | 0.239 | 0.236 | 0.233 | 0.230 | 0.227 | 0.224 | 0.221 | 0.218 | 0.215 |
| 0.8 | 0.212 | 0.209 | 0.206 | 0.203 | 0.200 | 0.198 | 0.195 | 0.192 | 0.189 | 0.187 |
| 0.9 | 0.184 | 0.181 | 0.179 | 0.176 | 0.174 | 0.171 | 0.169 | 0.166 | 0.164 | 0.161 |

### **Other Normal Distributions**

#### What About Other Normals?

- Normal distributions can have distint values of  $\mu$  and  $\sigma$  but must have the same shape.
- Any normal distribution can be converted to a standard normal distribution, by a

$$Z = \frac{Y - \mu}{\sigma}$$

Z is called a "standard normal deviate"

#### Z = Distance Between Y & $\mu$ (in $\sigma$ units)

$$Z = \frac{Y - \mu}{\sigma}$$

The probability of getting a value greater than Y is the same as the probability of getting a value greater than Z from a standard normal distribution.

#### Solve This Example: British Spies

MI5 says males spies mut be < 180.3 cm tall.

Mean height of British men is  $\mathcal{N}(177.0 \text{ cm}, 7.1 \text{ cm})$ 

What proportion of British men are excluded from a career as a spy by this height criteria?



Bond heights

#### **British Spies Solution**

```
mu \leftarrow 177; X \leftarrow 180.3; sigma \leftarrow 7.1; Z \leftarrow (X - mu) / sigma
```

With these data directly, the proportion of men too tall to be spies is

With a Z-transform of these data, the proportion of men too tall to be spies is

$$pnorm(q = 0.465, mean = 0, sd = 1, lower.tail = FALSE) = 0.321$$



# Ths Sampling Distribution of Samples from a Normal Distribution

### Sample means are normally distributed

- (If the variable itself is normally distributed)
- The mean of the sample means is  $\mu$
- · The standard deviation of the sample means is  $\sigma_{\overline{Y}} = \frac{\sigma}{\sqrt{n}}$

#### Standard error

The standard error of an estimate of a mean is the standard deviation of the distribution of sample means.

$$\sigma_{\overline{Y}} = \frac{\sigma}{\sqrt{n}}$$

We can approximate this by 
$$SE_{\overline{Y}} = \frac{s}{\sqrt{n}}$$

### Distribution of Sample Means (n = 10)

#### distribution of sample means from a normal distribution



#### Law of Large Numbers

Larger samples make for tighter distributions & smaller standard errors

