TEORIA KATEGORII

SERIA 4: KATEGORIE KARTEZJAŃSKO-DOMKNIĘTE

Problem 1. Niech \mathbb{C} będzie kategorią CCC. Pokazać, że $\tilde{f} = f^A \circ \eta$, gdzie dla $f: Z \times A \to B$ strzałka $\tilde{f}: Z \to B^A$ oznaca transpozycję, $f^A: (Z \times A)^A \to B^A$ oraz $\eta: Z \to (Z \times A)^A$ są zdefiniowane jak na wykładzie.

Problem 2. Pokazać, że w dowolnej kategorii, która jest CCC zachodzi:

- $(A \times B)^C \cong A^C \times B^C$, $(A^B)^C \cong A^{B \times C}$.

Problem 3. Czy kategoria Mon jest CCC?

Problem 4. Pokazać, że kategoria $\omega-CPO$ jest CCC, natomiast kategoria punktowych $\omega-CPO$ nie jest CCC.¹

Problem 5. Pokazać, że kategoria wszystkich małych kategorii i funktorów Cat jest CCC, gdzie $C^{D} = Fun(C, D).$

¹⁰ grudnia 2020

 $^{^1\}mathrm{Poset}\ (P,\leqslant)$ nazywamy $\omega-CPO$ jeśli każdy przeliczalny łańcuch $x_1\leqslant x_2\leqslant\dots$ ma supremum. Posety które spełniają własność $\omega-CPO$ tworzą kategorię $\omega-CPO$, w której morfizmami są te przekształcenia między posetami zachowujące porządek, które dodatkowo zachowują suprema przeliczalnych łańchuchów, i.e. $f(\bigvee_{i\in\mathbb{N}}x_i)=\bigvee_i f(x_i)$ dla każdego $x_1 \leqslant x_2 \leqslant \ldots \omega - CPO\left(P, \leqslant\right)$ nazywamy punktowym, jeśli istnieje w nim element najmniejszy $\bot \in P$. Punktowe $\omega-CPO$ tworzą kategorię w której strzałkami są wszystkie morfizmy z $\omega-CPO$, które dodatkowo zachowują element najmniejszy, tj. $f(\perp) = \perp$.