

Image Processing

(Year III, 2-nd semester)

Lecture 2: Camera Model

Introduction

Purpose

Principles of digital image formation

Sensors

Video signal

The basic elements of an imaging device

The aperture is a hole or an opening through which light is admitted. It is implemented through a device, called diaphragm, allowing for different size openings.

Image formation process

Pinhole or perspective camera model

Derived using similar triangles

Pinhole or perspective camera model

- Common to draw image plane in front of the focal point
- Moving the image plane merely scales the image.

$$\begin{cases} z \\ y' = f \frac{y}{z} \end{cases}$$

Weak perspective camera model

The relative distance along the optical axis, between two scene points δz is much smaller then the average distance z_{AV} between the camera and these points.

$$\delta z < z_{AV}/20 \tag{1}$$

The fundamental equation of the weak perspective camera are:

$$x'=-m^*x$$

 $y'=-m^*y$ $m=-f/z_{AV}=$ magnification

Week perspective camera model

Equations describe a sequence of two transformations:

- -an orthographic projection, in which points are projected along rays parallel to the optical axis (x'=x; y'=y);
- -an isotropic scaling by the factor f/z_{AV}

Aperture size problem

Aperture size problem

Shrinking aperture size

- Rays are mixed up

-Why the aperture cannot be too small?

- -Less light passes through
- -Diffraction effect

Adding lenses!

Camera and lenses

Camera and lenses

Laws of geometric optics

- Light travels in straight lines in homogeneous medium
- Reflection upon a surface: incoming ray, surface normal, and reflection are co-planar
- Refraction: when a ray passes from one medium to another

Snell's law

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

α₁ = incident angle α₂ = refraction angle n_i = index of refraction

The "thin lens" camera model

- 1. Any ray entering the lens parallel to the optical axis on one side goes through the focus on the other side.
- 2. Any ray entering the lens from the focus on one side emerges parallel to the optical axis on the other size.
- 3. The ray going through the lens center, O, named *principal ray*, goes through point p un-deflected.

The fundamental equations of thin lenses: $Z \cdot z = f^2$ (1). Setting $S_0 = Z + f$ and $S_i = z + f$ equation (1) can be reduced to the fundamental equations of thin lenses:

$$\frac{1}{S_o} + \frac{1}{S_i} = \frac{1}{f}$$
 (2) $f = \frac{R}{2(n-1)}$ (3)

n - index of refraction of the lens materialR- radii of the curvature of the lens surfaces

A lens can be considered a **thin lens** if $d << R_1$ or $d << R_2$. Technical University of Cluj Napoca

Image focusing

Image is in focus: all rays coming from a single scene point P must converge onto a single point on the image plain p -> sharp image Image is not in focus: the image of P is spread over a circle -> blurred image

Obtaining a focused image

- pinhole camera/aperture
- optical system (lens)

Measures

- Circle-of-confusion (c) its projection on the image plane < 1 pixel (focused image)
- Depth of field distance (D₁) around the FOP within the diameter of the projection of the circle of confusion(c) on the image remains less than 1 pixel

Apertures

Field of view (FOV)

The **f_number** of an optical system is the ratio of the system's focal length to the diameter of the entrance pupil

$$f_number = \frac{Focal\ Length}{Diameter}$$

Focal Length/ f_number pairs

$$FOV=2*\alpha = 2 * \arctan(\frac{Imager\ size}{2*Focal\ Length})$$

The perspective camera model (pinhole)

- The most common geometric model of an imaging camera.
- Each point in the object space is projected by a straight line through the projection center (pinhole/lens center) into the image plane.

The fundamental equations of the perspective camera model are: $[X_C, Y_C, Z_C]$ are the coordinates of point P in the camera coordinate system

$$\begin{cases} x = f \cdot \frac{X_C}{Z_C} \\ y = f \cdot \frac{Y_C}{Z_C} \end{cases}$$

Physical camera parameters

Intrinsic parameters := internal camera geometrical and optical characteristics (those that specify the camera itself).

- Focal length := the distance between the optical center of the lens and the image plane: f [mm] or [pixels].
- Effective pixel size (dpx, dpy) [mm];
- Principal point := location of the image center in pixel coordinates: (u0,v0)
- Distortion coefficients of the lens: radial (k1, k2) and tangential (p1, p2).

Extrinsic parameters := the 3-D position and orientation of the camera frame relative to a certain

world coordinate system:

Rotation vector $\mathbf{r} = [Rx, Ry, Rz]^T$ or its equivalent rotation matrix R

Translation vector T = [Tx, Ty, Tz]^T;

In multi-camera (stereo) systems, the extrinsic parameters also describe the relationship between the cameras

Physical camera parameters

Intrinsic parameters := internal camera geometrical and optical characteristics (those that specify the camera itself).

- Focal length := the distance between the optical center of the lens and the image plane: f [mm] or [pixels].
- Effective pixel size (dpx, dpy) [mm];
- Principal point := location of the image center in pixel coordinates: (u0,v0)
- Distortion coefficients of the lens: radial (k1, k2) and tangential (p1, p2).

Extrinsic parameters := the 3-D position and orientation of the camera frame relative to a certain

world coordinate system:

Rotation vector $\mathbf{r} = [Rx, Ry, Rz]^T$ or its equivalent rotation matrix R

Translation vector T = [Tx, Ty, Tz]^T;

In multi-camera (stereo) systems, the extrinsic parameters also describe the relationship between the cameras

Camera frame ↔ image plane transformation

Camera frame ⇒ image plane transformation

(projection / normalization) : $P = [X_C, Y_C, Z_C]^T$ [metric units] $\Rightarrow p = [u, v]^T$ [pixels]

1. Transform $P = [X_C, Y_C, Z_C]^T \Rightarrow p = [x, y, -f]^T$

Fundamental equations of the *perspective camera model* normalized with 1/Z:

$$\begin{bmatrix} x \\ y \end{bmatrix} = f \begin{bmatrix} X_c / Z_c \\ Y_c / Z_c \end{bmatrix} = f \begin{bmatrix} x_N \\ y_N \end{bmatrix}$$
 f – focal distance [metric units]

2. Transform **p** [x, y]^T [metric units] \Rightarrow image coordinates [u, v]^T [pixels]

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} D_u \cdot x \\ D_v \cdot y \end{bmatrix} + \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}$$

 $\begin{vmatrix} u \\ v \end{vmatrix} = \begin{vmatrix} D_u \cdot x \\ D_v \cdot y \end{vmatrix} + \begin{vmatrix} u_0 \\ v_0 \end{vmatrix}$ Du, Dv - coefficients needed to transform metric units to pixels: Du = 1 / dpx; Dv = 1 / dpy

1 + 2
$$\Rightarrow$$
 projection equation: $\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = A \cdot \begin{bmatrix} x_N \\ y_N \\ 1 \end{bmatrix}$ $A = \begin{bmatrix} f_X & 0 & u_0 \\ 0 & f_Y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} f_X & 0 & u_0 \\ 0 & f_Y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

A – is the camera matrix:

 $f_X = f \cdot D_u = \frac{f}{dpx}$

 f_x – is the focal distance expressed in units of horizontal pixels:

 $f_{\scriptscriptstyle Y} = f \cdot D_{\scriptscriptstyle {\scriptscriptstyle V}} = rac{f}{d p v}$ Technical University of Cluj Napoca Computer Science Department

f_y – is the focal distance expressed in units of vertical pixels:

Camera frame ↔ image plane transformation

Image plane transformation ⇒ camera frame

(reconstruction): $p = [u, v]^T$ [pixels] $\Rightarrow P = [X_C, Y_C, Z_C]^T$ [metric units]

$$\begin{bmatrix} x_N \\ y_N \\ 1 \end{bmatrix} = A^{-1} \cdot \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Notes:

With one camera we cannot measure depth (Z). We can determine only the projection equation / normalized coordinates:

$$\begin{bmatrix} x_N \\ y_N \end{bmatrix} = \begin{bmatrix} X_C / Z_C \\ Y_C / Z_C \end{bmatrix}$$

To measure the depth (Z) a stereo system (2 cameras) is needed

Modeling the lens distortions

Radial lens distortion

Causes the actual image point to be displaced radially in the image plane

$$\begin{bmatrix} \partial x^r \\ \partial y^r \end{bmatrix} = \begin{bmatrix} x \cdot (k_1 \cdot r^2 + k_2 \cdot r^4 + \dots) \\ y \cdot (k_1 \cdot r^2 + k_2 \cdot r^4 + \dots) \end{bmatrix}$$

$$r^2 = x^2 + y^2$$
;

k₁, k₂, ... - radial distortion coefficients

Tangential distortion

Appears if the centers of curvature of the lenses' surfaces are not strictly collinear

$$\begin{bmatrix} \partial x^t \\ \partial y^t \end{bmatrix} = \begin{bmatrix} 2p_1 \cdot xy + p_2(r^2 + 2x^2) \\ p_1(r^2 + 2y^2) + 2p_2 \cdot xy \end{bmatrix}$$
 p₁, p₂ – tangential distortion coefficients

Transform $\mathbf{p}[\mathbf{x}, \mathbf{y}]\mathsf{T}[\mathsf{metric units}] \Rightarrow \mathsf{image coordinates}[\mathbf{u}, \mathbf{v}]\mathsf{T}[\mathsf{pixels}]$:

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} D_u \cdot (x + \partial x^r + \partial x^t) \\ D_v \cdot (y + \partial y^r + \partial y^t) \end{bmatrix} + \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}$$
 \Rightarrow The projection equations become non-linear Solution: perform distortion correction on image a

Solution: perform distortion correction on image and VAGE PROCES afterwards linear projection Technical University of Cluj Napoca

Distortion correction algorithm

Evaluate the distortion coefficients: k₁, k₂, p₁, p₂

Use calibration tools: http://www.vision.caltech.edu/bouguetj/calib_doc/

- Camera Calibration Toolbox for Matlab

The principle behind the distortion correction algorithm is the existence of a bivalent correspondence between the distorted image pixels (x', y') and the undistorted image pixels (x, y)

The correction algorithm

For each pixel (u, v) from the corrected image D:

- compute the (x, y) coordinates (1)
- compute the (x', y') coordinates in the distorted image S (2)
- compute the (u', v') coordinates in the distorted image S (3)
- -D(u, v)=S(u', v')

Distortion correction algorithm

$$\begin{cases} x = \frac{u - u_0}{f_x} \\ y = \frac{v - v_0}{f_y} \end{cases}$$
 (1)

$$(x', y') = (x + \delta x, y + \delta y)$$
 (2)

$$\begin{cases} u' = u_0 + x' f_x \\ v' = v_0 + y' f_y \end{cases}$$
 (3)

Distortion correction algorithm

$$u_0$$
=int(u');
 v_0 =int(v');

$$u_1 = u_0 + 1;$$

 $v_1 = v_0 + 1;$

$$I_0 = S(u_0, v_0) \cdot (u_1 - u') + S(u_1, v_0) \cdot (u' - v_0);$$

$$I_1 = S(u_0, v_1) \cdot (u_1 - u') + S(u_1, v_1) \cdot (u' - v_0);$$

$$D(u,v)=I_0\cdot(v_1-v')+I_1\cdot(v'-v_0);$$

Bilinear interpolation of the destination pixel Intensity D(u, v) starting from the floating point coordinates of the source pixel (u', v')

Lenses distortion correction

8.5 mm lens, CCD camera

Difference image

IMAGE PROCESSING

Lenses distortion correction

16 mm lens, CCD camera

Undistorted image

Camera frame ↔ world reference frame transformation

Direct mapping (world ⇒ camera)

 $\mathbf{XX}_{W} = [X_{W}, Y_{W}, Z_{W}]^{T}$ (world coordinate system - WRF) $\Rightarrow \mathbf{XX}_{C} = [X_{C}, Y_{C}, Z_{C}]^{T}$ (camera coordinate system - CRF)

$$\mathbf{XX}_{C} = \mathbf{R}_{WC} \cdot \mathbf{XX}_{W} + \mathbf{T}_{WC}$$

where:

 $\mathbf{T}_{WC} = [\mathsf{Tx}, \mathsf{Ty}, \mathsf{Tz}]^\mathsf{T} - \mathsf{world}$ to camera translation vector; $\mathbf{R}_{WC} - \mathsf{world}$ to camera rotation matrix:

Camera frame ↔ world reference frame transformation

Inverse mapping (camera ⇒ world)

 $\mathbf{XX}_{C} = [X_{C}, Y_{C}, Z_{C}]^{T}$ (camera coordinate system – CRF) $\Rightarrow \mathbf{XX}_{W} = [X_{W}, Y_{W}, Z_{W}]^{T}$ (world coordinate system - WRF)

$$\mathbf{XX}_{W} = \mathbf{R}_{WC}^{-1} \cdot (\mathbf{XX}_{C} - \mathbf{T}_{WC})$$

Rotation matrix is orthogonal [Trucco1998]:

$$\mathbf{R} \cdot \mathbf{R}^T = \mathbf{R}^T \cdot \mathbf{R} = 1 \Longrightarrow \mathbf{R}^T = \mathbf{R}^{-1}$$

$$\mathbf{X}\mathbf{X}_{W} = \mathbf{R}_{WC}^{T} \cdot (\mathbf{X}\mathbf{X}_{C} - \mathbf{T}_{WC}) = \mathbf{R}_{CW} \cdot (\mathbf{X}\mathbf{X}_{C} + \mathbf{T}_{CW})$$

where:

$$\mathbf{T}_{CW} = [\mathbf{T}_{X} \, \mathbf{T}_{Y} \, \mathbf{T}_{Z}]^{T} - \text{camera to world translation vector}$$

$$T_{CW} = -T_{WC}$$

$$R_{CW} = R_{WC}^{T}$$

Rotation Matrix

World-to-camera

$$\mathbf{R}_{WC} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{n}^{XW} & \mathbf{n}^{YW} & \mathbf{n}^{ZW} \end{bmatrix} = \begin{bmatrix} n_X^{XW} & n_X^{YW} & n_X^{ZW} \\ n_Y^{XW} & n_Y^{YW} & n_Y^{YW} \\ n_Z^{XW} & n_Z^{YW} & n_Z^{YW} \end{bmatrix}$$

$$\mathbf{n}^{xw} = \begin{bmatrix} n_x^{xw} & n_y^{xw} & n_z^{xw} \end{bmatrix}^T$$
 - normal vector of \mathbf{OX}_W axis in the CRF

$$\mathbf{n}^{YW} = \begin{bmatrix} n_X^{YW} & n_Y^{YW} & n_Z^{YW} \end{bmatrix}^T$$
 - normal vector of \mathbf{OY}_W axis in the CRF

$$\mathbf{n}^{ZW} = \begin{bmatrix} n_X^{ZW} & n_Y^{ZW} & n_Z^{ZW} \end{bmatrix}^T$$
 - normal vector of \mathbf{OZ}_W axis in the CRF

Camera-to-world

$$\mathbf{R}_{CW} = \mathbf{R}_{WC}^{T} = \begin{bmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{n}^{XC} & \mathbf{n}^{YC} & \mathbf{n}^{ZC} \end{bmatrix} = \begin{bmatrix} n_{X}^{XC} & n_{X}^{YC} & n_{X}^{YC} \\ n_{X}^{XC} & n_{Y}^{YC} & n_{Y}^{YC} \\ n_{Z}^{XC} & n_{Z}^{YC} & n_{Z}^{YC} \end{bmatrix}$$

$$\mathbf{n}^{XC} = \begin{bmatrix} n_X^{XC} & n_Y^{XC} & n_Z^{XC} \end{bmatrix}^T$$
 — normal vector of \mathbf{OX}_C axis in the WRF

$$\mathbf{n}^{YC} = \begin{bmatrix} n_X^{YC} & n_Y^{YC} & n_Z^{YC} \end{bmatrix}^{YT}$$
 — normal vector of \mathbf{OY}_C axis in the WRF

$$\mathbf{n}^{ZC} = \begin{bmatrix} n_X^{ZC} & n_Y^{ZC} & n_Z^{ZC} \end{bmatrix}^T$$
 — normal vector of \mathbf{OZ}_C axis in the WRF

Rotation Matrix ↔ **Rotation Vector**

Rotation vector – Rotation matrix

$$\mathbf{r} = [\theta, \psi, \gamma]^T \qquad \mathbf{R} = \begin{vmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{vmatrix}$$

$$\mathbf{R}x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \qquad \mathbf{R}y = \begin{pmatrix} \cos\psi & 0 & \sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi \end{pmatrix} \qquad \mathbf{R}z = \begin{pmatrix} \cos\gamma & -\sin\gamma & 0 \\ \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R} = \mathbf{R} x \mathbf{R} y \mathbf{R} z$$

Rotation Matrix ↔ **Rotation Vector**

Rotation vector

$$\mathbf{r}_{WC} = [R_X R_Y R_Z]^T \quad (R_X - \text{pitch}, R_Y - \text{yaw}, R_Z - \text{tilt / roll})$$

$r_{WC} \Rightarrow R_{WC}$ transform:

$$\begin{split} r_{11} &= \cos(R_Y) \cos(R_Z) \\ r_{12} &= \sin(R_X) \sin(R_Y) \cos(R_Z) - \cos(R_X) \sin(R_Z) \\ r_{13} &= \cos(R_X) \sin(R_Y) \cos(R_Z) + \sin(R_X) \sin(R_Z) \\ r_{21} &= \cos(R_Y) \sin(R_Z) \\ r_{22} &= \sin(R_X) \sin(R_Y) \sin(R_Z) + \cos(R_X) \cos(R_Z) \\ r_{23} &= \cos(R_X) \sin(R_Y) \sin(R_Z) - \sin(R_X) \cos(R_Z) \\ r_{31} &= -\sin(R_Y) \\ r_{32} &= \sin(R_X) \cos(R_Y) \\ r_{33} &= \cos(R_X) \cos(R_Y) \end{split}$$

$R_{WC} \Rightarrow r_{WC}$ transform:

$$R_{Y} = \arcsin(r_{31})$$

If
$$cos(R_{\gamma}) \neq 0$$
:

$$R_X = \operatorname{atan2}\left(-\frac{r_{32}}{\cos(R_Y)}, \frac{r_{33}}{\cos(R_Y)}\right)$$

$$R_Z = -\operatorname{atan2}\left(-\frac{\mathrm{r}_{21}}{\cos(\mathrm{R}_{\mathrm{Y}})}, \frac{\mathrm{r}_{11}}{\cos(\mathrm{R}_{\mathrm{Y}})}\right)$$

If
$$cos(R_{\gamma}) = 0$$
:

$$R_X = \operatorname{atan2}(\mathbf{r}_{12}, \mathbf{r}_{22})$$

$$R_Z = 0$$

3D (world) ⇒ 2D (image) mapping using the Projection Matrix

Projection matrix

$$\mathbf{P} = \mathbf{A} \cdot \left[\mathbf{R}_{WC} \mid \mathbf{T}_{WC} \right]$$

The projection equation of a 3D world point [X_W , Y_W , Z_W] expressed in normalized coordinates :

$$s \cdot \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} x_S \\ y_S \\ z_S \end{bmatrix} = \mathbf{P} \cdot \begin{bmatrix} X_W \\ Y_W \\ Z_W \\ 1 \end{bmatrix}$$
 s=z_S - scaling factor

Obtaining the 2D image coordinates from normalized coordinate

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} x_S / z_S \\ y_S / z_S \end{bmatrix}$$

Sensor types

IMAGE PROCESSING

Technical University of Cluj Napoca

Computer Science Department

Sensor types

CMOS

CMOS vs. CCD

TABLE 1

Comparison of CCD and CMOS Image Sensor Features

CCD

Smallest pixel size

Lowest noise

Lowest dark current

~100% fill factor for full-frame CCD

Established technology market base

Highest sensitivity

Electronic shutter without artifacts

CMOS

Single power supply

Single master clock

Low power consumption

X, Y addressing and subsampling

Smallest system size

Easy integration of circuitry

Color imagers

http://www.siliconimaging.com/RGB%20Bayer.htm http://www.zeiss.de/c1256b5e0047ff3f/Contents-Frame/c89621c93e2600cac125706800463c66

a) Bayer mask

For color photos, the majority of commercial digital color cameras use pixels covered with special color filters in the three primary colors red, green and blue.

Demosaicing Bayer pattern: Bilinear interpolation

Incoming light

Filter layer

Sensor array

$$G = (G_n + G_w + G_e + G_s)/4$$

$$R_4 = (R_{nw} + R_{ne} + R_{se} + R_{sw})/4$$

$$R_{2c} = (R_n + R_s)/2$$

$$R_{2l} = (R_w + R_e)/2$$

IMAGE PROCESSING

Imager parameters

Imager (sensor) parameters

Standard camera sensor sizes

a. CCD chip

b. Image in memory/frame graber

Parameters of the imager and image in memory

Imager /image parameters

Sensor parameters:

Sx – width of the sensor chip [mm]

Sy – height of the sensor chip [mm]

Ncx – number of sensor elements in camera's x direction;

Ncy – number of sensor elements in camera's y direction;

dx – center to center distance between adjacent sensor elements in X (scan line) direction:

dx = Sx/Ncx;

dy - center to center distance between adjacent CCD sensor in the Y direction; dy = Sy/Ncy;

<u>Image parameters (related to the image in memory/framegrabber):</u>

Nfx – number of pixels in x direction as sampled by the computer;

Nfy – number of pixels in frame grabber's y direction

 $dpx - effective X dimension of pixel in frame grabber, <math>dpx = dx^* Ncx / Nfx$;

dpy – effective Y dimension of pixel in frame grabber, $dpy = dy^* Ncy / Nfy$;

Ncx / Nfx – uncertainty factor for scaling horizontal scanlines;

Image scanning

Scanning Techniques

- Determined by application area
- TV imposed the interlacing of two successive images read from a standard camera

2:1 Interlaced Scanning, shown here for the NTSC Video Format. PAL and SECAM Interlacing is similar, with the difference being the number of lines in each field

- Read/display all even-numbered lines (even field, half-size)
- Restart
- Read/display all odd-numbered lines (odd field, half-size)
- Stitch the even and odd fields together and form a single, full-size frame
- Output the full-size frame
- even and odd frames, full frames
- NTSC Video format: 30 frames/s (525 lines/frame)
- PAL Video format: 25 frames/s (625 lines/frame)

Video signals

Analog video signals

The incoming video signal conversion in individual pixel values for displaying

Analog video signal components

Standard monochrome signal

Analog standards

Format	Country	Mode	Signal Name	Frame Rate (frame/sec)	Vertical Line Resolution	Line Rate (lines/sec)	Image Size (WxH) pixels
NTSC	US, Japan	Mono	RS-170	30	525	15,750	640x480
		Color	NTSC Color	29.97	525	15,734	
PAL	Europe (except France)	Mono	CCIR	25	405	10,125	768x576
		Color	PAL Color	25	625	15,625	
SECAM	France, Eastern Europe	Mono		25	819	20,475	N/A
		Color		25	625	15,625	

Parameters of interest:

- # of lines/frame: 525 (this includes 485 lines for display; the rest are VSYNC lines for each

of the two fields)

- line frequency: 15.734 kHz

- line duration: 63.556 microsec.

- active horizontal duration: 52.66 microsec.

- # active pixels/line: 640

Digital video signals

Diagram 9: Equivalence between analog composite and digital video

Diagram 10: 8-bit digital video.

Digital transmission standards:

- Camera Link: 1.2Gbps (base) ...
 3.6Gbps (full)
- RS 422 / EIA-644 (LVDS): 655Mbps
- USB 2.0: 480 Mbps
- IEEE 1394: 400 Mbps
- USB 1.1: 12 Mbps