ROCO218: Control Engineering Dr Ian Howard

Tutorial 2

ROCO218 2016R Exam examples

Derive transfer function for electrical system

Q3: Canonical 2nd order form

Q4. The open-loop transfer function of a unity feedback closed-loop film transport system is given below

$$G(s) = \frac{K}{s(0.1s+1)}$$

(a) Determine the damping rate ζ when K=10;

(5 marks)

(b) Determine the natural frequency ω_n when K=10;

(5 marks)

(c) What affects the percentage overshoot σ^{0} response?

(5 marks)

(d) Explain the influence of the K on the response of the system.

(5 marks)

Q3: Canonical 2nd order form

The open loop function is

$$G(s) = \frac{K}{s(0.1s+1)}$$

Therefore the unity feedback closed loop transfer function is

$$CL(s) = \frac{G(s)}{1 + G(s)} = \frac{\frac{K}{s(0.1s+1)}}{1 + \frac{K}{s(0.1s+1)}} = \frac{K}{s(0.1s+1) + K}$$

$$\Rightarrow CL(s) = \frac{K}{0.1s^2 + s + K} = \frac{10K}{s^2 + 10s + 10K}$$
 Substituting in K=10

$$\Rightarrow CL(s) = \frac{100}{s^2 + 10s + 100}$$

Q3: Canonical 2nd order form

Comparing with canonical form

$$CL(s) = \frac{100}{s^2 + 10s + 100} \iff \frac{\omega_n^2}{s^2 + 2\xi\omega + \omega_n^2}$$

$$\omega_n^2 \iff 100 \implies \omega_n = 10$$

$$2\xi\omega_n \Leftrightarrow 10 \implies \xi = 0.5$$

The percentage overshoot is given

by
$$M_p = 100 \times e^{\frac{-\zeta \pi}{\sqrt{1-\xi^2}}} = 100 \times e^{\frac{-0.5\pi}{\sqrt{1-0.5^2}}} = 16.3\%$$
 Matlab 100*exp(-0.5*pi/(sqrt(1-0.5^2)))

Peak time T_p of the step response

$$T_p = \frac{\pi}{w_n \sqrt{1 - \xi^2}} = \frac{\pi}{10\sqrt{1 - 0.5^2}} = 0.3628s \quad \text{Matlab pi/(10 * sqrt(1-0.5^2))}$$

As K increases overshoot increases but peak time is not affected

ROCO218: Control Engineering Dr Ian Howard

Tutorial 2

2015 exam for ROCO316 Modern Control Solutions to relevant questions

Consider the following continuous-time nonlinear control system

$$\dot{x}_1(t) = x_1^3(t) - x_2(t) + 1 \tag{1}$$

$$\dot{x}_2(t) = e^{x_2(t)} + u(t)$$
 (2)

$$y(t) = -x_1(t) + u(t)$$
 (3)

(a) We assume a constant input $u(t) = \bar{u} = -1$, and we admit that the equilibrium state (\bar{x}_1, \bar{x}_2) for this constant input is (-1, 0). Determine the linearized system about this equilibrium state.

(5 marks)

(b) Write the linearized system in state-space form.

(5 marks)

(c) Determine the stability of the linearized system.

(5 marks)

(d) Determine the eigenvectors, and the solution of the linear system.

(5 marks)

Solution: Substituting in value of u(t) = -1 gives the equations

$$\dot{x}_1(t) = x_1^3(t) - x_2(t) + 1$$

$$\dot{x}_2(t) = e^{x_2(t)} - 1$$

$$y(t) = -x_1(t) - 1$$

To linearize we need to calculate the Jacobian matrix and evaluate it at the given equilibrium position (-1,0).

In general the Jacobian is given by

The by
$$J = \left(\frac{\partial f_1}{\partial x_j}\right) |_{X = x_{equilibrium}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & & \ddots & \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

Here we only have a 2x2 matrix

The corresponding functions we need f_1 and f_2 are given by the two state expressions

$$f_1 = \dot{x}_1(t) = x_1^3(t) - x_2(t) + 1$$

$$f_2 = \dot{x}_2(t) = e^{x_2(t)} - 1$$

Taking partial derivatives w.r.t. to the state variables

$$\Rightarrow \frac{\partial f_1}{\partial x_1} = 3x_1^2(t) \qquad \Rightarrow \frac{\partial f_1}{\partial x_2} = -1$$

$$\Rightarrow \frac{\partial f_2}{\partial x_1} = 0 \qquad \Rightarrow \frac{\partial f_2}{\partial x_2} = e^{x_2(t)}$$

The equilibrium point is given as (-1,0) so we evaluate the Jacobian matrix at this point

$$\Rightarrow J_{|(-1,0)} = \begin{bmatrix} 3x_1^2(t) & -1 \\ 0 & e^{x_2(t)} \end{bmatrix}_{|(-1,0)} = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$$

(b) Write the linearized system in state-space form.

(5 marks)

From the Jacobian

$$J = \left[\begin{array}{cc} 3 & -1 \\ 0 & 1 \end{array} \right]$$

we can directly write

$$\Rightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \dot{x}_1 = 3x_1 - x_2$$

$$\Rightarrow \dot{x}_2 = x_2$$

- (c) Determine the stability of the linearized system.
- To determine the stability of the system we need to calculate the eigenvalues of Jacobian matrix J which is now our system matrix A

$$A = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$$

The eigenvalues of matrix A must satisfy the equation

$$AX = \lambda X$$

$$\Rightarrow AX - \lambda X = 0$$

$$\Rightarrow (A - \lambda I)X = 0$$
Where X is the state vector $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$\Rightarrow (A - \lambda I)X = 0$$
Where I is the identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

 This equation has a non-zero solution X if and only if the determinant of the matrix (A-I)=0

$$\Rightarrow |A - \lambda I| = 0$$
 Where straight bracket signifies the determinant

• Substituting A and I into the expression $|A - \lambda I| = 0$

$$\Rightarrow \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0 \qquad \Rightarrow \begin{bmatrix} 3 - \lambda & -1 \\ 0 & 1 - \lambda \end{bmatrix} = 0$$

For a 2x2 matrix the determinant is given by

$$\det(A) = \left| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right| = \left(ad - bc\right)$$

$$\Rightarrow (3 - \lambda)(1 - \lambda) - (-1) \times 0 = 0$$

$$\Rightarrow (3 - \lambda)(1 - \lambda) = 0$$

$$\Rightarrow \lambda = 3, \lambda = 1$$

Note also that since the A matrix is of triangular form, its leading diagonal values indicate the eigenvalues of 3 and 1 directly. However we calculated the values for thoroughness of methodology since this will not always be the case

 Both eigenvalues are strictly positive and therefore the linearized system is unstable

(d) Determine the eigenvectors

The eigenvalues of a matrix A satisfy the equation

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- The values of X gives the eigenvector
- When λ=1

$$\begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow 3x_1 - x_2 = x_1 \\ \Rightarrow x_2 = x_2 \Rightarrow 2x_1 = x_2 \Rightarrow x_{\lambda=1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

• When $\lambda=3$

$$\begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow 3x_1 - x_2 = 3x_1 \Rightarrow x_2 = 0 \\ \Rightarrow x_2 = 3x_2 \Rightarrow x_1 = x_1 \Rightarrow x_{1} = x_1 \end{bmatrix}$$

ROCO218: Control Engineering Dr Ian Howard

Tutorial 2

2016R exam for ROCO319 Modern Control Solutions to relevant questions

Q3: State space analysis

Consider a simple model for cruise control as shown in Figure (2). The model is constructed as follows. The car is a rigid body of $mass\ m$, onto which a force (control) u applies. The car moves with a speed v and acceleration a. The resistance of the road and due to the wind is gathered in a counter-acting force proportional to the speed of the car: bv. The equation of system is given as follows:

$$m\dot{v} + bv = u \tag{3}$$

Figure 2: One-dimensional model of cruise control in a car.

(a) Assume the car weighs $m=1000{\rm kg}$ and $b=50{\rm N}$ sec/m. Design a state feedback u(t)=-kv(t) so that the closed-loop eigenvalues are placed at -1.

(10 marks)

Q3: State space analysis

Dynamic equation is

$$m\dot{v} + bv = u$$

Which can be rewritten as

$$\dot{v} = -\frac{b}{m}v + \frac{1}{m}u$$

State space equations take the form

$$\dot{X} = AX + BU$$
 $Y = CX + DU$

Representing the single state by x, the system state space equation is

$$\left[\dot{x}\right] = -\left[\frac{b}{m}\right]\left[x\right] + \left[\frac{1}{m}\right]U$$

Substituting in values

$$\Rightarrow \left[\dot{x}\right] = -\left[\frac{50}{1000}\right] \left[x\right] + \left[\frac{1}{1000}\right] U$$

Therefore the system matrices are

$$\Rightarrow A = -[0.05] \qquad \Rightarrow B = [0.001]$$

Q2: State space analysis

Given system matrix A

$$A = [-0.05]$$

We went asked to, but lets calculate the open loop stability first for practice The eigenvalues of matrix A must satisfy the equation

$$AX = \lambda X$$

Where X is the state vector

$$\Rightarrow AX - \lambda X = 0$$

$$\Rightarrow (A - \lambda I)X = 0$$

Where I is the identity matrix

This equation has a non-zero solution X if and only if the determinant of the matrix (A-I)=0

$$\Rightarrow |A - \lambda I| = 0$$
 $\Rightarrow |-0.05 - \lambda I| = 0$

$$\Rightarrow |-0.05 - \lambda| = 0 \Rightarrow (-0.05 - \lambda) = 0$$

$$\Rightarrow \lambda = -0.05$$

For a 1x1 matrix the determinant is given by

$$\det(A) = \left| \left(a \right) \right| = a$$

The eigenvalue has a negative real value Therefore the open loop system is stable

Q3: State space analysis

State space equations take the form

$$\dot{X} = AX + BU$$

Therefore when we apply state feedback

$$U = -KX$$

$$\dot{X} = AX - BKX$$
 $\Rightarrow \dot{X} = (A - BK)X$ Where $A = -[0.05]$

$$B = [0.001]$$

The stability is now determined by location of poles which are the eigenvalue of matrix (A-BK)

The eigenvalue λ of the closed loop system are thus given by

$$\det(A - BK - \lambda I) = 0 \implies |-0.05 - 0.001K - \lambda| = 0 \implies (-0.05 - 0.001K) = \lambda$$

To set the eigenvalue λ of the closed loop system to -1

$$-0.05 - 0.001K = -1$$
 $\Rightarrow -0.001K = 0.05 - 1$ $\Rightarrow K = \frac{0.05 - 1}{-0.001} = 950$

ROCO218: Control Engineering Dr Ian Howard

Tutorial 2

2016 exam for ROCO319 Modern Control Solutions to relevant questions

Consider the earth and a satellite as particles as shown in Figure (1) below:

Figure 1: Satelite.

The *normalized* equations of motion can be simplified to the following two-variable model:

$$\ddot{r} = r\dot{\theta}^2 - \frac{k}{r^2} + u_1, \tag{1}$$

$$\ddot{\theta} = -2\frac{\dot{\theta}\dot{r}}{r} + \frac{1}{r}u_2,\tag{2}$$

with u_1 , u_2 representing respectively the radial and tangential forces due to thrusters. The reference orbit with $u_1=u_2=0$ is circular with radius, $r(t)\equiv p$, and angular velocity $\theta(t)=\omega t$. From the first equation it follows that $p^3\omega^2=k$ (Kepler's law).

(a) Obtain the linearized equation about this orbit.

(10 marks)

(b) Write system (1)-(2) in state-space format.

(5 marks)

(c) Compute the stability of the uncontrolled system (i.e., when the control $\mathbf{u} = \begin{bmatrix} u_1 \\ \end{bmatrix} = 0$)

The differential equations that describe the system are

$$\ddot{r} = r\dot{\theta}^2 - \frac{k}{r^2} + u_1$$

$$\ddot{\theta} = -2\frac{\dot{\theta}\dot{r}}{r} + \frac{1}{r}u_2$$

 Choosing state variables, which will be lower order than highest order terms in the equations we have

$$x_{1} = \dot{r} \qquad x_{2} = r \qquad x_{3} = \dot{\theta} \qquad x_{4} = \theta$$

$$\Rightarrow \dot{x}_{2} = x_{1}$$

$$\ddot{r} = r\dot{\theta}^{2} - \frac{k}{r^{2}} + u_{1} \qquad \Rightarrow \dot{x}_{1} = x_{2}x_{3}^{2} - \frac{k}{x_{2}^{2}} + u_{1}$$

$$\ddot{\theta} = -2\frac{\dot{\theta}\dot{r}}{r} + \frac{1}{r}u_{2} \qquad \Rightarrow \dot{x}_{3} = -2\frac{x_{3}x_{1}}{x_{2}} + \frac{1}{x_{2}}u_{2}$$

So we now have 3 single order equations

So we can write the functions

$$f_1 = \dot{x}_1 = x_2 x_3^2 - \frac{k}{x_2^2} + u_1$$

$$f_2 = \dot{x}_2 = x_1$$

$$f_3 = \dot{x}_3 = -2 \frac{x_3 x_1}{x_2} + \frac{1}{x_2} u_2$$

To linearize the system we need to calculate the system Jacobian

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_3}{\partial x_3} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} \end{bmatrix}$$

 $\Rightarrow \frac{\partial f_3}{\partial x} = -2\frac{x_1}{x_2}$

Evaluating the partial derivates w.r.t. the state variables

$$\Rightarrow \frac{\partial f_1}{\partial x_1} = 0 \qquad \Rightarrow \frac{\partial f_1}{\partial x_2} = x_3^2 + 2\frac{k}{x_2^3} \qquad \Rightarrow \frac{\partial f_1}{\partial x_3} = x_2 2x_3$$

$$\Rightarrow \frac{\partial f_2}{\partial x_1} = 1 \qquad \Rightarrow \frac{\partial f_2}{\partial x_2} = 0 \qquad \Rightarrow \frac{\partial f_2}{\partial x_3} = 0$$

 $\Rightarrow \frac{\partial f_3}{\partial x_1} = -2\frac{x_3}{x_2} \qquad \Rightarrow \frac{\partial f_3}{\partial x_2} = 2\frac{x_1 x_3}{x_2^2} - \frac{u_2}{x_2^2}$

So we now have 3 single order equations

So we can write the functions

$$f_1 = \dot{x}_1 = x_2 x_3^2 - \frac{k}{x_2^2} + u_1$$

$$f_2 = \dot{x}_2 = x_1$$

$$f_3 = \dot{x}_3 = -2 \frac{x_3 x_1}{x_2} + \frac{1}{x_2} u_2$$

$$\Rightarrow J_A = \begin{bmatrix} 0 & x_3^2 + 2\frac{k}{x_2^3} & x_2 2x_3 \\ 1 & 0 & 0 \\ -2\frac{x_3}{x_2} & 2\frac{x_1 x_3}{x_2^2} - \frac{u_2}{x_2^2} & -2\frac{x_1}{x_2} \end{bmatrix}$$

Evaluating the partial derivates w.r.t. the state variables

 $\Rightarrow \frac{\partial f_1}{\partial x} = x_3^2 + 2\frac{k}{x^3}$

$$\Rightarrow \frac{\partial f_1}{\partial x_1} = 0$$

$$\Rightarrow \frac{\partial f_2}{\partial x_2} = 1$$

$$\Rightarrow \frac{\partial f_2}{\partial x_2} = 0$$

$$\Rightarrow \frac{\partial f_2}{\partial x_3} = 0$$

 $\Rightarrow \frac{\partial f_1}{\partial x_1} = x_2 2x_3$

$$\Rightarrow \frac{\partial f_3}{\partial x_1} = -2\frac{x_3}{x_2}$$

$$\Rightarrow \frac{\partial f_3}{\partial x_2} = 2 \frac{x_1 x_3}{x_2^2} - \frac{u_2}{x_2^2}$$

$$\Rightarrow \frac{\partial f_3}{\partial x_3} = -2\frac{x_1}{x_2}$$

Again using the function definitions

$$f_1 = \dot{x}_1 = x_2 x_3^2 - \frac{k}{x_2^2} + u_1$$

$$f_2 = \dot{x}_2 = x_1$$

$$f_3 = \dot{x}_3 = -2 \frac{x_3 x_1}{x_2} + \frac{1}{x_2} u_2$$

Evaluating the partial derivates w.r.t. the control variables

$$\Rightarrow \frac{\partial f_1}{\partial u_1} = 1 \qquad \Rightarrow \frac{\partial f_1}{\partial u_2} = 0$$

$$\Rightarrow \frac{\partial f_2}{\partial u_1} = 0 \qquad \Rightarrow \frac{\partial f_2}{\partial u_2} = 0$$

$$\Rightarrow \frac{\partial f_3}{\partial u_2} = 0 \qquad \Rightarrow \frac{\partial f_3}{\partial u_2} = \frac{1}{x_2}$$

To linearize the control input we need to calculate the control Jacobian

$$J_{U} = \begin{bmatrix} \frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} \\ \frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}} \\ \frac{\partial f_{3}}{\partial u_{1}} & \frac{\partial f_{3}}{\partial u_{2}} \end{bmatrix}$$

$$\Rightarrow J_U = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & \frac{1}{x_2} \end{bmatrix}$$

We need to evaluate the Jacobians at the equilibrium corresponding to the reference orbit using the values

$$u_1=0, u_2=0$$

 $x_1=0, x_2=p, x_3=\omega$
 $k=p^3\omega^2$

$$\Rightarrow J_A = \begin{bmatrix} 0 & x_3^2 + 2\frac{k}{x_2^3} & x_2 2x_3 \\ 1 & 0 & 0 \\ -2\frac{x_3}{x_2} & 2\frac{x_1 x_3}{x_2^2} - \frac{u_2}{x_2^2} & -2\frac{x_1}{x_2} \end{bmatrix} = \begin{bmatrix} 0 & \omega^2 + 2\frac{p^3 \omega^2}{p^3} & p2\omega \\ 1 & 0 & 0 \\ -2\frac{\omega}{p} & 0 & 0 \end{bmatrix}$$

$$J_U = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & \frac{1}{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & \frac{1}{p} \end{bmatrix}$$

The state space equations are therefore

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & \omega^2 + 2\frac{p^3\omega^2}{p^3} & p2\omega \\ 1 & 0 & 0 \\ -2\frac{\omega}{p} & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & \frac{1}{p} \end{bmatrix} \begin{bmatrix} u_1 \\ u_{12} \end{bmatrix}$$

To determine stability of the uncontrolled system we need to examine the eigenvalues of the system matrix A

The eigenvalues of matrix A must satisfy the equation

$$AX = \lambda X \implies (A - \lambda I)X = 0 \implies |A - \lambda I| = 0$$

$$\Rightarrow \begin{bmatrix} 0 & \omega^2 + 2\frac{p^3\omega^2}{p^3} & p2\omega \\ 1 & 0 & 0 \\ -2\frac{\omega}{p} & 0 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0 \qquad \Rightarrow \begin{bmatrix} -\lambda & 3\omega^2 & p2\omega \\ 1 & -\lambda & 0 \\ -2\frac{\omega}{p} & 0 & -\lambda \end{bmatrix} = 0$$

The determinant of

$$\begin{bmatrix} -\lambda & 3\omega^2 & 2p\omega \\ 1 & -\lambda & 0 \\ -2\frac{\omega}{p} & 0 & -\lambda \end{bmatrix} = 0$$

Has the characteristic equation

3x3 matrix determinant

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

$$det(A) = a * \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b * \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c * \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Finally det(A) is:

$$det(A) = aei - afh - bdi + bfg + cdh - ceg$$

$$(-\lambda) \begin{vmatrix} -\lambda & 0 \\ 0 & -\lambda \end{vmatrix} - (3\omega^2) \begin{vmatrix} 1 & 0 \\ -2\frac{\omega}{p} & -\lambda \end{vmatrix} + (2p\omega) \begin{vmatrix} 1 & -\lambda \\ -2\frac{\omega}{p} & 0 \end{vmatrix} = 0$$

$$\Rightarrow (-\lambda)(-\lambda)(-\lambda) - (3\omega^2)(-\lambda) + -2p\omega(-\lambda)\left(2\frac{\omega}{p}\right) = 0 \quad \Rightarrow -\lambda^3 + \lambda\left(3\omega^2 - p2\omega 2\frac{\omega}{p}\right) = 0$$

$$\Rightarrow -\lambda^3 - \lambda\omega^2 = 0 \qquad \Rightarrow \lambda(-\omega^2 - \lambda^2) = 0 \qquad \Rightarrow -\lambda(\omega^2 + \lambda^2) = 0$$

So solutions are $\Rightarrow -\lambda = 0$

$$\Rightarrow \lambda^2 = -\omega^2 \Rightarrow \lambda = \pm j\omega$$

Eigenvalues λ =0, ±j ω

Given the linear time-invariant system:

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 3 & 2 \\ -3 & -1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \mathbf{u}$$

(a) Check the controllability using the controllability matrix.

(5 marks)

State space equations take the form

$$\dot{X} = AX + BU$$

The given system state space equations is

$$\begin{vmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{vmatrix} = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 3 & 2 \\ -3 & -1 & 0 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} U$$

Therefore the system matrices are

$$\Rightarrow A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 3 & 2 \\ -3 & -1 & 0 \end{bmatrix} \Rightarrow B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- The system matrix is 3x3
- Therefore the system will have a 3x3 system matrix

$$M_c = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$$

Our system will have a 3x3 system matrix

Calculating the AB term gives

$$AB = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 3 & 2 \\ -3 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -3 \end{bmatrix}$$

Calculating the A²B term gives

$$\Rightarrow M_c = \begin{vmatrix} 1 & 1 & 10 \\ 0 & 3 & 6 \\ 0 & -3 & -6 \end{vmatrix}$$

We now reduce the controllability matrix to echelon form

$$M_c = \begin{bmatrix} 1 & 1 & 10 \\ 0 & 3 & 6 \\ 0 & -3 & -6 \end{bmatrix}$$

$$M_{c}|R_{3} \rightarrow R_{2} + R_{3} = \begin{bmatrix} 1 & 1 & 10 \\ 0 & 3 & 6 \\ 0 & -3+3 & -6+6 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 10 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

- The controllability matrix thus has rank = 2, which is not full rank
- Therefore the system is not controllable