Pre-training an Efficient Tokenization-Free Encoder for Language Representation

Jon Clark, **Dan Garrette**, Iulia Turc, John Wieting

Google Research

Spelling variation:

"color" vs "colour"

Typos / capitalization changes:

Queen Elizabeth → Queen Elizabeth

Queeen elizabeth → Que ##een eli ##za ##beth

Domain shifts / newly coined terms:

 $COVID-19 \rightarrow CO \#VI \#D - 19$

Morphological inflection

```
English take → taking
       bet → betting
Kiswahili isambazayo → isam ##ba ##za ##yo
       usambazaji → usa ##mba ##zaj ##i
Arabic k-t-b → kataba
Finnish saapua → saavuin
       jumittua → jumituin
```

Some languages don't use whitespace:

Chinese, Japanese, Thai, Khmer, Lao, Burmese, ...

Vietnamese is typically written with spaces between *syllables*.

Tokenization is Hard: Skip it!

Classic NLP pipeline

Current standard

Our approach

Token-Free Approach

Token-Free Approach

No Tokenizer

Operate directly on characters.

No Vocabulary

- Full Unicode codespace (0–10FFFF_{hex})
 - All 1.1M current and future Unicode characters. (No OOV.)

Token-Free Approach

Preprocessing implementation (Python):

```
ids = [ord(c) for c in text]
```

Multi-Hash Embedding

How to embed all 1.1M codepoint values?

Model

Baseline: BERT

Baseline: BERT, but characters (10x slower)

Character embeddings

Contextualized characters

Character embeddings

Downsampled

Contextualized characters

Character embeddings

Downsampled

Contextualized characters

Character embeddings

Upsampled Output for classification Deep Transformer < residual (12 layers) Downsampled Contextualized characters Character embeddings Input characters cls T h i s is a n e x a m p l e

Outputs for sequence tasks Upsampled Output for classification Deep Transformer < residual (12 layers) Downsampled Contextualized characters Character embeddings Input characters cls T h i s is a n e x a m p l e

Pre-training

MLM Pre-training

Auto-regressively predict each masked character (shuffled order, not left-to-right).

Model	Input	MLM	Examples /sec	Params	TyDi QA: Passage F1	TyDi QA: MinSpan F1
mBERT (retrained)	Subwords	Subwords	9000	179M	63.2	51.2

Model	Input	MLM	Examples /sec	Params	TyDi QA: Passage F1	TyDi QA: MinSpan F1
mBERT (retrained)	Subwords	Subwords	9000	179M	63.2	51.2
	Chars	Single chars	925	127M	59.5 (-3.7)	43.7 (-7.5)

Model	Input	MLM	Examples /sec	Params	TyDi QA: Passage F1	TyDi QA: MinSpan F1
mBERT (retrained)	Subwords	Subwords	9000	179M	63.2	51.2
	Chars	Single chars	925	127M	59.5 (-3.7)	43.7 (-7.5)
	Chars	Subwords	900	127M	63.8 (+0.6)	50.2 (-1.0)

Model	Input	MLM	Examples /sec	Params	TyDi QA: Passage F1	TyDi QA: MinSpan F1
mBERT (retrained)	Subwords	Subwords	9000	179M	63.2	51.2
	Chars	Single chars	925	127M	59.5 (-3.7)	43.7 (-7.5)
	Chars	Subwords	900	127M	63.8 (+0.6)	50.2 (-1.0)
CANINE-S	Chars	Subwords	6400	127M	66.0 (+2.8)	52.5 (+1.3)

Model	Input	MLM	Examples /sec	Params	TyDi QA: Passage F1	TyDi QA: MinSpan F1
mBERT (retrained)	Subwords	Subwords	9000	179M	63.2	51.2
	Chars	Single chars	925	127M	59.5 (-3.7)	43.7 (-7.5)
	Chars	Subwords	900	127M	63.8 (+0.6)	50.2 (-1.0)
CANINE-S	Chars	Subwords	6400	127M	66.0 (+2.8)	52.5 (+1.3)
CANINE-C	Chars	Auto-reg. chars	6000	127M	65.7 (+2.5)	53.0 (+1.8)

Model	Input	MLM	Examples /sec	Params	TyDi QA: Passage F1	TyDi QA: MinSpan F1
mBERT (retrained)	Subwords	Subwords	9000	179M	63.2	51.2
	Chars	Single chars	925	127M	59.5 (-3.7)	43.7 (-7.5)
	Chars	Subwords	900	127M	63.8 (+0.6)	50.2 (-1.0)
CANINE-S	Chars	Subwords	6400	127M	66.0 (+2.8)	52.5 (+1.3)
CANINE-C	Chars	Auto-reg. chars	6000	127M	65.7 (+2.5)	53.0 (+1.8)
CANINE-C + n-grams	Chars	Auto-reg. chars	5600	167M	68.1 (+4.9)	57.0 (+5.7)

	TyDi QA:	TyDi QA:
	Passage F1	MinSpan F1
(English)	+2.4	+5.8
Arabic	+2.0	+2.3
Bengali	+7.5	+9.8
Finnish	+6.3	+6.0
Indonesian	+4.6	+4.6
Japanese	+5.0	+5.9
Korean	+0.4	+3.1
Russian	+6.3	+5.9
Swahili	+8.4	+9.8
Telugu	+3.6	+4.1
Thai	+4.7	+5.8
Macro Avg	+4.9	+5.7

Conclusion

Conclusion

- CANINE: Tokenization-free encoder.
 - Operates directly on input characters.
 - Higher quality than comparable subword-based model across a variety of languages.
 - Downsampling architecture mitigates slowdown from increased sequence length.
- Models and code available for download, and in HuggingFace Transformers.
- On-going work with ByT5 authors to explore new token-free approaches.