- 1. (Jan-08.3): Let ϵ be a primitive 16th root of unity and $\alpha = \epsilon \sqrt{2}$, with $E = \mathbb{Q}[\epsilon]$ and $f(x) = x^8 + 16$; observe that $f(\alpha) = 0$.
 - (a) Show that $\sqrt{2} \in \mathbb{Q}[\epsilon^2]$.
 - (b) Show that f(x) splits in E[x].
 - (c) For $G = \operatorname{Gal}(E/\mathbb{Q})$, show that no nonidentity element of G fixes α . Conclude that f(x) is irreducible in $\mathbb{Q}[x]$.
- 2. (Jan-11.3): Let E/F be an extension of char-0 fields with $E = F[\alpha]$ for some α with $\alpha^p \in F$ and some prime p. Let $E^* = E[\epsilon]$ where ϵ is a primitive pth root of unity.
 - (a) Show that E^* is a Galois extension of F.
 - (b) If E is Galois over F, show E = F or $E = E^*$.
 - (c) Show by example that it is possible to have $E = E^*$ without having $\epsilon \in F$.
- 3. (Jan-14.5): Let L/K be a field extension of degree 4. We say K' is intermediate between K and L if K' properly contains K and is properly contained in L.
 - (a) Show that L/K has at most 3 intermediate fields.
 - (b) Give an explicit example to show that there can be 3 intermediate fields between L and K.
 - (c) Give an explicit example to show that there can be 0 intermediate fields between L and K.
- 4. (Aug-05.3): Let p, q be distinct primes and let $\mu = q^{1/p}$ and $\nu = p^{1/q}$.
 - (a) Let F be a subfield of \mathbb{R} not containing μ . If $\mu^n \in F$ for some n > 0, show that p|n.
 - (b) With F as in (a), show that $|F[\mu]:F|=p$.
 - (c) Show that $|\mathbb{Q}[\mu + \nu] : \mathbb{Q}| = pq$.
- 5. (Aug-06.3): Let $\mathbb{Q} \subseteq K \subseteq E \subseteq \mathbb{C}$ be fields with $E = \mathbb{Q}[\alpha]$ with $\alpha^n \in \mathbb{Q}$, and K is generated by all roots of unity in E. Assume E is Galois over \mathbb{Q} .
 - (a) Show that Gal(E/K) is cyclic.
 - (b) If the restriction τ of complex conjugation to E is in the center of $Gal(E/\mathbb{Q})$, prove that $|\alpha|^2 \in \mathbb{Q}$.
- 6. (Jan-05.3): Let F be a field and $f(x) \in F[x]$ be irreducible. Suppose E/F is an extension containing a root α of f(x) such that $f(\alpha^2) = 0$. Show that f splits over E.
- 7. (Aug-11.3): Let $K \subseteq F \subseteq E$ be fields with $E = F[\alpha]$, $\alpha^n \in F$ for some n, and K containing a primitive nth root of unity. Let L be a field with $K \subseteq L \subseteq E$ with $L \cap F = K$.
 - (a) If L is Galois over K, show that $L = K[\beta]$ for some β with $\beta^n \in K$.
 - (b) Show by example that L need not be Galois over K.