MATH: H104: Homework 11

William Guss 26793499 wguss@berkeley.edu

November 18, 2015

8.

9.

10.

13.

18.

22. Consider the following example.

Theorem 1. Let $f:[0,1] \to \mathbb{R}$ such that if $x \neq 0, x \mapsto x \sin\left(\frac{1}{x}\right)$ and $x \mapsto 0$ otherwise. Furthermore, let (g_n) be a family of functions such that $g_n:[0,1] \to \mathbb{R}$ such that

$$g_n(x) = \begin{cases} 0, \ \forall x \in [0, 1/n] \\ e^{\frac{1}{(x-1/n)^2}}, \ \forall x \in (1/n, 2/n) \\ 1, \ \forall x \in [2/n, 1] \end{cases}$$

If (f_n) is defined such that $f_n(x) = f(x)g_n(x)$, then the family (f_n) is smooth, equicontinuous, with unbounded derivatives.

Proof. Let $x \in (0,1], \gamma > 0$. Then there exists an N such that $2/n < x - \gamma$. In this case for all n > N $f_n(y) = f(y)$ for each and every $y \in (x - \gamma, x + \gamma)$. Then for every $\epsilon > 0$, the continuity of f gives that there is a $\delta < \gamma$ with $|f_n(y) - f_n(x)| = f(y) - f(x) < \epsilon$. Take the smallest delta for which all f_1, \ldots, f_N are satisfied and yield that this δ' gives equicontinuity. At x = 0, $|f_n(y)| \le y \sin(1/y) \le y$ for all $y \in [0, 1]$ and for all n > N. So $f_n(0)$ is equicontinuous. Then the compactness of [0, 1] implies uniform equicontinuity by the Arzela Ascoli theorem. Clearly f'(x) is unbounded as it approaches 0 so in every case the derivatives of f_n are unbounded by the product rule. Smoothness comes from the fact that $f_n = 0$ in [0, 1/n] and the derivatives at 0 are 0.