Bruno Scherrer, bruno.scherrer@inria.fr, February 9, 2023.

Consider a parity game G between EVEN (or Player 0) and ODD (or Player 1) on a state space $X = \{1, \ldots, n\}$ with priority function $\Omega: X \to \{1, \ldots, d\}$. On infinite plays, ODD wants that among the priorities that appears infinitely often, the maximal one is odd, while EVEN wants it to be even.

Consider the lexicographic order relation on \mathbb{N}^2 :

$$(a,b) < (a',b') \Leftrightarrow a < a' \text{ or } (a=a' \text{ and } b < b'),$$

the corresponding $\min/\max/+/-$ operators.

Consider the cost functions:

$$g_p = \mathbb{1}_{\Omega(x)=p} * (-1)^{\Omega(x)}.$$

Consider the following Bellman operators:

$$T_{p,\mu,\nu}(v,w) = (v, g_p + P_{\mu,\nu}w)$$

 $T_p(v,w) = \max_{\mu} \min_{\nu} T_{p,\mu,\nu}(v,w)$

Start with v = (0, 0, ..., 0).

- While there exists x such that v(x) = 0, do
 - let A = X.
 - Repeat:
 - * Consider the game reduced to A and the highest priority p.
 - * Compute

$$B = \{x ; [(T_p)^n(v,0)](x) = (0,0)\}$$

* If $B = \emptyset$, then set

$$\forall x \in A, \ v(x) = p * (-1)^p$$

and break the repeat loop

- * Otherwise, let $A \leftarrow B$.
- \bullet Return v

Idea: Consider priority p belonging to Player $i = p \mod 2$ and a play on the sub-game A_p . There exists of policy for Player i such that the only possibility for Player 1-i to avoid losing with priority p on A_p is to reach A_{p-1} and stay in it forever. When this set is empty, it means that Player i wins (with that policy) with priority p on the set A_p , so we update the value consequently. When this set is non-empty, we know that Player 1-i has a policy such that Player i cannot escape A_{p-1} , on which Player i cannot win with priority p (so from A_{p-1} , this is what Player 1-i wants to do).

Decouple v and w (only useful on the first step) ?: Consider the following operators:

$$\begin{split} T_{p,\mu,\nu}w &= g_p + P_{\mu,\nu}w \\ T_pw &= \max_{\mu} \min_{\nu} T_{p,\mu,\nu}w \\ U_{\mu,\nu}v &= P_{\mu,\nu}v \\ Uv &= \max_{\mu} \min_{\nu} U_{\mu,\nu}v. \end{split}$$

Start with v = (0, 0, ..., 0).

- Compute $w = U^n v$.
 - Let

$$A = \{x ; w(x) = 0\}.$$

If $A = \emptyset$, return w.

- Repeat:
 - * Consider the game reduced to A and the highest priority p in it.
 - * Compute

$$B = \{x ; [(T_p)^n 0)](x) = 0\}$$

* If $B = \emptyset$, then set

$$\forall x \in A, \ v(x) = p * (-1)^p$$

and break the repeat loop

* Otherwise, let $A \leftarrow B$ and iterate.