Software Systems Verification and Validation

Assoc. Prof. Andreea Vescan

Babeș-Bolyai University

Cluj-Napoca

2018-2019

Lecture 6: Correctness

Having fun learning about testing

Easter eggs – in testing

- For students that participated in Lecture 05.
- 25 XP for each student

- Each student presents 1 real example of Easter egg in testing.
- Present 1 page information in Lecture 6 in printed format.
 - Definition/description
 - Example
 - Interesting fact(s)

Sales paradigm - SSVV

Motivate the STUDENT - what you will learn!

http://www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation/

Outline

- Correctness
- Floyd's Method -Inductive assertions, Partial correctness, Termination
- Hoare Logic, Semantics of Hoare triples, Partial correctness, Total correctness
- Dijkstra's Language, Guarded commands, Nondeterminacy, Formal Derivation of Programs
- Developing correct programs from specification, Refinement, Rules of Refinement, Examples
- Static analysis, JML- Java Modeling Language, ESC/Java2- Extended Static Checker for Java
- Questions
- Next lecture
 - EVOZON Presentation, topic: Test automation
 - When: Friday, April 12, 2019, hours 14:00-16:00;
 - Where: Room A2 (FSEGA Building)

Program verification methods - Correctness

- Lecture 1 Verification and Validation
 - Verification/Validation
 - reviews products to ensure their quality → correctness
 - static and dynamic analysis techniques
 - A correct program is one that does exactly what it is intended to do, no more and no less.
 - A formally correct program is one whose correctness can be proved mathematically.
 - This requires a language for specifying precisely what the program is intended to do.
 - Specification languages are based in mathematical logic.
 - Until recently, correctness has been an academic exercise. Now it is a key element of critical software systems.

Program verification - correctness

- 1. proof-based, computer-assisted, program-verification approach, mainly used for programs which we expect to terminate and produce a result
- 2. model-based, automatic, property-verification approach, mainly used for concurrent, reactive systems (originally used in a post-development stage) model checking (Lecture 8, Lecture 9)
- 3. Developing correct algorithms from specification (Carroll Morgan, "Programming from Specification)

Correctness-by-Construction.

Originally intended as a mere means of programming algorithms that are correct by construction - -Dijkstra (1968), Hoare (1971),

the approach found its way into commercial development processes of complex systems - Hall (2002), Hall and Chapman (2002)

2012, The Correctness-by-Construction Approach to Programming, Authors: Kourie, Derrick G., Watson, Bruce W.

2015, Experience with correctness-by-construction, B.W. Watson a, D.G. Kourie b, L. Cleophas b,*

2016, Correctness-by-Construction and Post-hoc Verification: Friends or Foes?, Maurice H. ter Beek1(B), Reiner H"ahnle2, and Ina Schaefer3

Correctness Tools

- Theorem provers (PVS), Modeling languages (UML and OCL), Specification languages (JML), Programming language support (Eiffel, Java, Spark/Ada), Specification Methodology (Design by contract)
- Methods for prooving program correctness
 - Floyd's Method Inductive assertions
 - Hoare Semantics of Hoare triples
 - Dijkstra's Language- Guarded commands, Nondeterminacy and Formal Derivation of Programs

Surprise!

Grading Gamifying Education

Quizzes (Heroic Quests) 300 XP

Today - Quiz1

6 questions * 25 XP = 150 XP

6-10 minutes.

Outline

- Correctness
- Floyd's Method -Inductive assertions, Partial correctness, Termination
- Hoare Logic, Semantics of Hoare triples, Partial correctness, Total correctness
- Dijkstra's Language, Guarded commands, Nondeterminacy, Formal Derivation of Programs
- Developing correct programs from specification, Refinement, Rules of Refinement, Examples
- Static analysis, JML- Java Modeling Language, ESC/Java2- Extended Static Checker for Java
- Questions
- Next lecture
 - EVOZON Presentation, topic: Test automation
 - When: Friday, April 12, 2019, hours 14:00-16:00;
 - Where: Room A2 (FSEGA Building)

Aplicability

- Partial correctness of the program
- Termination of the program
- Total correctness = Partial correctness + Termination of the program

Uses

- The condition satisfied by the initial values of the program.
- The condition to be satisfied by the output of the program.
- Source code of the program.

Method:

- Cut the loops
- Find an appropriate set of inductive assertions.
- Construct the verification/termination conditions.
- **Theorem**: If all verification conditions are true, then the program is partially correct, i.e., whenever it terminates the result is correct.
- Remark. The method is useful when it is combined with termination.

Robert W Floyd (June 8, 1936 - September 25, 2001)

Partial correctness - steps

- Cutting points are chosen inside the algorithm
 - 1 point at the beginning of the algorithm, 1 point at the end;
 - 2 At least 1 point for each *loop* statement
- For each cutting point an assertion (invariant predicate) is chosen.
 - Intry point $\varphi(X)$;
 - 2 Ending point $\psi(X, Z)$.
- Construction of the verification conditions
 - Path from i to $j \alpha$;
 - P_i and P_j are assertions in i and j;
 - $R_{\alpha}(X,Y)$ predicate that gives the condition for path α ;
 - \P $r_{\alpha}(X,Y)$ function that gives the transformations of the variables Y from path α ;
- Theorem: If all the verification conditions are true then *P* is partial correct.

Robert W Floyd (June 8, 1936 - September 25, 2001)

Partial correctness - example

```
• Algorithm for z=x^y z:=1;\ u:=x;\ v:=y; A: \varphi(X)::=(v>0 \land (y\geq 0)) While (v>0) execute B: \eta(X,Y)::=z*u^v=x^y If (v \text{ is even}) then u:=u*u;\ v:=v/2; else v:=v-1;\ z:=z*u; endIf endWhile endAlg; C: \psi(X,Z)::=z=x^y
```


Robert W Floyd (June 8, 1936 - September 25, 2001)

Termination - steps

- Cut the loops and find "good" inductive assertions.
- Choose a well-formed set M (i.e., an ordered set without infinite strictly decreasing sequences)
- To demonstrate that some termination conditions hold: passing from one cutting point to another the values of some functions in the well-ordered set decrease.
- In point i a function is chosen $u_i: D_X \times D_Y \to M$ and the termination condition on α is: $\forall X \forall Y (\varphi(X) \land R_{\alpha}(X,Y) \to (u_i(X,Y) > u_i(X,r_{\alpha}(X,Y))))$.
- **Remark**. If partial correctness was demonstrated then the termination condition can be: $\forall X \forall Y (P_i(X) \land R_{\alpha}(X,Y) \rightarrow (u_i(X,Y) > u_i(X,r_{\alpha}(X,Y))))$.
- Theorem: If all the termination conditions hold then the program *P* terminates.

Robert W Floyd (June 8, 1936 - September 25, 2001)

Termination - example

```
• Algorithm for z=x^y z:=1;\ u:=x;\ v:=y; A: \varphi(X)::=(v>0 \land (y\geq 0)) While (v>0) execute B: \eta(X,Y)::=z*u^v=x^y If (v \text{ is even}) then u:=u*u;\ v:=v/2; else v:=v-1;\ z:=z*u; end If end While end Alg; C: \psi(X,Z)::=z=x^y
```


Robert W Floyd (June 8, 1936 - September 25, 2001)

Surprise!

Floyd's Method

- Inductive assertions, Partial correctness, Termination

3-5 minutes

Formative Assessment

Anonymous voting

Outline

- Correctness
- Floyd's Method -Inductive assertions, Partial correctness, Termination
- Hoare Logic, Semantics of Hoare triples, Partial correctness, Total correctness
- Dijkstra's Language, Guarded commands, Nondeterminacy, Formal Derivation of Programs
- Developing correct programs from specification, Refinement, Rules of Refinement, Examples
- Static analysis, JML- Java Modeling Language, ESC/Java2- Extended Static Checker for Java
- Questions
- Next lecture
 - EVOZON Presentation, topic: Test automation
 - When: Friday, April 12, 2019, hours 14:00-16:00;
 - Where: Room A2 (FSEGA Building)

- The meaning of a statement is described by a triple
 - $\{\varphi\}$ P $\{\psi\}$, where φ is called the precondition and ψ is called the postcondition.

{P} S {Q}

"when started in a state satisfying P, any terminating execution of S ends in a state satisfying Q"

- If P does not terminate, we make no guarantees.
 - Partial correctness
 - $\models_{par} \{\varphi\}P\{\psi\}$
 - only if P actually terminates.
 - Total correctness
 - $\models_{tot} \{\varphi\}P\{\psi\}$
 - the program P is guaranteed to terminate.

- The Grand Verification Challenge Hoare 2003
- Develop a compiler which verifies that the program is correct
- https://vimeo.com/39256698

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

An Advanced Study Institute of the NATO Security Through Science Committee

the Institut fĂ ¼r Informatik, Technische UniversitĤt MĂ ¼nchen, Germany,

Software System Reliability and Security

August 1 to August 13 2006

M. Broy (director)
O. Kupferman (director)
C.A.R. Hoare (co-director)
A. Pnueli (co-director)

Katharina Spies (secretary)

The Summer School is also substantially supported by the DAAD under the program "Deutsche Sommerakademie 2006" and the town and the county of Marktoberdorf

Partial correctness

Rules

- Assignment
- Sequencing
- Conditional
- Loop

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Partial correctness

Assignment

General Form: for any expression E

- $\{P\} \ X := E\{Q\} \ provided[P \Rightarrow \langle X \leftarrow E \rangle (Q)]$
 - Consider the triple $\{P\}X := Y + 2\{Q\}$
 - ullet Given predicate ${\sf Q}$, for what predicate ${\sf P}$ does this hold?
 - for any P such that $[P \Rightarrow \langle X \leftarrow Y + 2 \rangle (Q)]$
 - Examples
 - $\{P_0\} X := Y + 2 \{X \le Y + 2\}$ $P_0 \equiv true$
 - $\{P_1\} X := Y + 2 \{X < 0\}$ $P_1 \equiv (Y + 2 < 0)$
 - $\{P_2\} X := Y + 2 \{Y < 0\}$ $P_2 \equiv (Y < 0)$
 - $\{P_3\} X := X + 2 \{X \text{ is even}\}\$ $P_3 \equiv (X \text{ is even})$

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Partial correctness

Sequencing

We can conclude

$$\{P\}$$
 S; $T\{Q\}$
if we can find a predicate R such that $\{P\}$ S $\{R\}$ and $\{R\}$ $T\{Q\}$

Examples

- $\{P_0\} X := 2 * X; X := X + 1\{X > 0\}$ $P_0 \equiv (2 * X + 1 > 0)]$
- $\{P_1\} X := Y; Y := 3 \{X + Y < 5\}$ $\{P_1 \equiv (Y + 3 < 5)]$

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Partial correctness

Conditional

We can conclude

```
\{P\} IF (C) THEN S ELSE T END\{Q\} provided we can show \{P \land C\} S\{Q\} and \{P \land \neg C\} T\{Q\}
```

Examples

```
• {?} {((x > y) \Rightarrow Q_0) \land ((x \le y) \Rightarrow Q_1)}

IF (x > y) THEN Q_0 : \{(m|x - y) \land (m|y)\}

x := x - y

ELSE Q_1 : \{(m|x) \land (m|y - x)\}

y := y - x

END

Q : \{(m|x) \land (m|y)\}
```

4 11 1 4 4 4 1

• So our final proof obligations are $[(x > y) \Rightarrow (m|x - y) \land (m|y) \text{ and } [(x < y) \Rightarrow (m|x) \land (m|y - x)]$

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Partial correctness

Loop

- How can we conclude
 {P} WHILE (G) DO S END {Q}
 At the end of the loop (assuming it terminates), we know ¬G
 But in general we dont know how often S is executed...
- Suppose we have a predicate J that is preserved by S $\{J\}S\{J\}$ such a J is called a loop invariant Then, at the end of the loop, we can conclude $J \land \neg G$ To establish the postcondition, we need J such that $[J \land \neg G \Rightarrow Q]$
- We can conclude
 {P} WHILE (G) DO S END {Q}
 provided we can find a loop invariant J such that

$$[P \Rightarrow J]$$

$$[J \land \neg G \Rightarrow Q]$$

$$\{G \land J\}S\{J\}$$

J holds at loop entry
J establishes Q at loop exit
J is preserved by each iteration

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Exponentiation using multiplication

•
$$\{(A > 0) \land (B \ge 0)\}\$$
 S $\{R = A^B\}$
 $\{(A > 0) \land (B \ge 0)\}$

```
R := ?; b := 0 R := 1

WHILE (b \neq B) DO J : R = A^b

R := ?; R := R * A;
b := b + 1

END
\{R = A^B\}
```

- The meaning of a statement is described by a triple
 - $\{\varphi\}$ P $\{\psi\}$, where φ is called the precondition and ψ is called the postcondition.

{P} S {Q}

"when started in a state satisfying P, any terminating execution of S ends in a state satisfying Q"

• If P does not terminate, we make no guarantees.

- Partial correctness
 - $\bullet \models_{par} \{\varphi\}P\{\psi\}$
 - only if P actually terminates.
- Total correctness
 - $\models_{tot} \{\varphi\}P\{\psi\}$
 - the program P is guaranteed to terminate.
- The "total correctness" interpretation also requires termination
 - "when started in a state satisfying P, any execution of S must terminate in a state satisfying Q "

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Termination

Rules

- Assignment
- Sequencing
- Conditional
- Loop
- Assignment $\{P\} \ X := E \ \{Q\} \ provided \ [P \Rightarrow \langle X \leftarrow E \rangle(Q)]$
- Sequencing $\{P\}$ S; $T\{Q\}$ provided $\{P\}$ S $\{R\}$ and $\{R\}$ T $\{Q\}$ for some R
- Conditional $\{P\}$ IF (G) THEN S ELSE T END $\{Q\}$ provided $\{P \land G\}$ S $\{Q\}$ and $\{P \land \neg G\}$ T $\{Q\}$
- Note: Same as the rules for partial correctness!

Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

- Total correctness rule for loops
- Consider{P} WHILE (G) DO S END {Q}
- How do we show that the loop terminates?
- One method find an integer expression V such that the value of V is nonnegative (that is $V \geq 0$), and the value of V (strictly) decreases in every iteration that is, $\{V = K\}$ S $\{V < K\}$
- Such an expression is called a "loop variant"

Termination

Exponentiation using multiplication

```
• \{(A > 0) \land (B \ge 0)\}\ S \{R = A^B\}
```

```
• Recall loop invariant J: R = A^b \land (B \ge b);
  \{(A > 0) \land (B \ge 0)\}
  R := 1; b := 0
  WHILE (b \neq B) DO J: R = A^b \land (B \geq b);
  R := R * A;
  b := b + 1
  END
  {R = A^B}
```


Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Surprise!

Formative Assessment

Hoare triples

Doodle map

Hoare Logic, Semantics of Hoare triples, Partial correctness, Total correctness

3-5 minutes

Outline

- Correctness
- Floyd's Method -Inductive assertions, Partial correctness, Termination
- Hoare Logic, Semantics of Hoare triples, Partial correctness, Total correctness
- Dijkstra's Language, Guarded commands, Nondeterminacy, Formal Derivation of Programs
- Developing correct programs from specification, Refinement, Rules of Refinement, Examples
- Static analysis, JML- Java Modeling Language, ESC/Java2- Extended Static Checker for Java
- Questions
- Next lecture
 - EVOZON Presentation, topic: Test automation
 - When: Friday, April 12, 2019, hours 14:00-16:00;
 - Where: Room A2 (FSEGA Building)

Edsger Wybe Dijkstra [Dij75]

Guarded command

- "guarded command" a statement list prefixed by a boolean expression: only when this boolean expression is initially true, is the statement list eligible for execution
- ullet < guarded command >::=< guard >o< guarded list >
- < guard >::=< boolean expression >
- \bullet < guarded list >::=< statement > {;< statement >}
- < guarded command set >::= < guarded command > $\{\Box < guarded \ command > \}$
- ullet < alternative construct >::= if < guarded command set > fi
- ullet < repetitive construct >::= do < guarded command set > do
- < statement >::=< alternative construct > |
 < repetitive construct > | "other statements"

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69]

Nondeterminacy

• Example 1
if
$$x \ge y \to m := x$$

 $\Box y \ge x \to m := y$
fi

• Example 2 - compute k s.t. for fixed value n and fixed function f(i) (defined for $0 \le i < n$), k will eventually satisfy $0 \le k < n$ and $(\forall i : 0 \le i < n : f(k) \ge f(i))$.

$$k := 0; j := 1;$$

do $j \neq n \rightarrow \mathbf{if} \ f(j) \leq f(k) \rightarrow j := j + 1$
 $\Box f(j) \geq f(k) \rightarrow k := j; \ j := j + 1$
fi

od

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69]

Weakest pre-conditions

- Hoare introduced sufficient pre-conditions such that the mechanism will not produce the wrong result but may fail to terminate.
- Dijkstra introduced necessary and sufficient pre-conditions
 such that the mechanism are guaranteed to produce the right result.
 = weakest pre-conditions
- wp(S, R), where S denotes a statement list, R some condition on the state of the system.
- wp called a "predicate transformer" because it associates a pre-condition to any post-condition R.

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69]Properties of wp

- 1 Law of the Excluded Miracle For any S, for all states: wp(S, F) = F
- ② For any S and any two post-conditions, such that for all states $P \Rightarrow Q$, for all states:

$$wp(S, P) \Rightarrow wp(S, Q)$$

- To For any S and any two post-conditions P and Q, for all states: wp(S, P) and wp(S, Q) = wp(S, P) and wp(S, Q)
- For any deterministic S and any post-conditions P and Q, for all states:

$$(wp(S, P) \text{ or } wp(S, Q)) \Rightarrow wp(S, P \text{ or } Q)$$

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69]

Assignment and concatenation operator

Assignment

The semantics of x := E are given by: $wp("x := E", R) = R_E^x$, R_E^x -denotes a copy of the predicate defining R in which each occurrence of the variable x is replaced by E.

• Concatenation operator; The semantics of the; operator are given by: wp("S1; S2", R) = wp(S1, wp(S2, R)).

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69] The Alternative Construct

- Let IF denote: **if** $B_1 o SL_1 \square ... \square B_n o SL_n$ **fi** Let BB denote: $(\exists i : 1 \le i \le n : B_i)$, then, by definition $wp(IF, R) = (BB \text{ and } (\forall i : 1 \le i \le n : B_i \Rightarrow wp(SL_i, R)))$.
- Theorem 1 From $(\forall i : 1 \le i \le n : (Q \text{ and } B_i) \Rightarrow wp(SL_i, R)$ for all states we can conclude that $(Q \text{ and } BB) \Rightarrow wp(IF, R)$ holds for all states.)
- Let t denote some integer function, and wdec(S, t)
- Theorem 2 From $(\forall i : 1 \le i \le n : (Q \text{ and } B_i) \Rightarrow wdec(SL_i, t))$ for all states we can conclude that $(Q \text{ and } BB) \Rightarrow wdec(IF, t)$ hold for all states.
- By definition, $wdec(S, t) = (tmin(X) \le t(X) 1) = (tmin(X) < t(X)).$

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69] The Alternative Construct - example

- The formal requirements for performing m := max(x, y) is: $R : (m = x \text{ or } m = y) \text{ and } m \ge x \text{ and } m \ge y.$
- Assignment m := x for m = x? $wp("m := x", R) = (x = x \text{ or } x = y) \text{ and } x \ge x \text{ and } x \ge y = x \ge y$
- Theorem 1: $\mathbf{if} x \geq y \rightarrow m := x\mathbf{fi}$
- But $B \neq T$, so we weakening BB means looking for alternatives which might introduce new guards.
- Alternative: "m := y" that introduces the new guard $wp("m" := y, R) = y \ge x$ if $x \ge y \to m := x$ $\Box y \ge x \to m := y$ f:

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69]

The Repetitive Construct

- Let DO denote: $\mathbf{do}B_1 \to SL_1 \square ... \square B_n \to SL_n \mathbf{do}$ Let $H_0 = (R \text{ and non } BB)$ and for k > 0, $H_k(R) = (wp(IF, H_{k-1}(R)))$ or $H_0(R)$ then, by definition: $wp(DO, R) = (\exists k : k \ge 0 : H_k(R))$.
- Theorem 3 If we have all the states $(P \text{ and } BB) \Rightarrow (wp(IF, P) \text{ and } wdec(IF, t) \text{ and } t \ge 0)$ we can conclude that we have for all states $P \Rightarrow wp(DO, P \text{ and non } BB)$
- T is the condition satisfied by all states, and wp(S, T) is the weakest pre-condition guaranteeing proper termination of S.
- Theorem 4 From $(P \text{ and } BB) \Rightarrow wp(IF, P)$ for all states, we can conclude that we have for all states $(P \text{ and } wp(DO, T) \Rightarrow wp(DO, P \text{ and non } BB))$

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Edsger Wybe Dijkstra [Hoa69]

The Repetitive Construct - example

- The greatest common divisor: x = gcd(X, Y)
- Choose an invariant relation and variant function.
 establish the relation P to be kept invariant
 do "decrease t as long as possible under variance of P" od
- invariant relation (established by x := X; y := Y): P : gcd(X, Y) = gcd(x, y) and x > 0 and y > 0
- $(P \text{ and } B) \Rightarrow wp("x, y : E1, E2", P))$ = (gcd(X, Y) = gcd(E1, E2) and E1 > 0 and E2 > 0).
 - gcd(X, Y) = gcd(E1, E2) is implied by P
 - invariant for (x, y): wp("x := x y, P) = (gcd(X, Y) = gcd(x y, y)and x y > 0 and y > 0), and guard x > y
 - decrease of the variant function t = x + y $wp("x := x - y", t \le t_0) = (x \le t_0)$ tmin = x, $wdec("x := x - y", t) = (x \le x + y) = y > 0$

Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

- x := X; y := Y**do** $x > y \to x := x - y$ **od**
- But P and BB are not allowed to conclude $x = \gcd(X, Y)$ the alternative y := y x requires a guard y > x
- x:=X; y:=Ydo $x > y \rightarrow x:=x-y$ $\Box y > x \rightarrow y := y - x$ od

Surprise!

Formative Assessment

Dijkstra's Language, Guarded commands, Nondeterminacy, Formal Derivation of Programs

3-2-1 count down exercise

- 3 things you didn't know before
- 2 things that surprised you about this topic
- 1 thing you want to start doing with what you've learned

Surprise!

Floyd, Dijkstra, Hoare (25XP)

- Robert Floyd OR Edsger Wybe Dijkstra OR Charles Antony Richard Hoare
- 1 page A4 information (electronic format and printed format)
 - short bio
 - profession
 - Institution
 - known by...
 - awards
 - interesting facts
- Feel free to select a format: plain text, mindmap, other
- Delivery: Lecture 8

Outline

- Correctness
- Floyd's Method -Inductive assertions, Partial correctness, Termination
- Hoare Logic, Semantics of Hoare triples, Partial correctness, Total correctness
- Dijkstra's Language, Guarded commands, Nondeterminacy, Formal Derivation of Programs
- Developing correct programs from specification, Refinement, Rules of Refinement, Examples Correctness-by-Construction.

Originally intended as a mere means of programming algorithms that are correct by construction - -Dijkstra (1968), Hoare (1971), the approach found its way into commercial development processes of complex systems - Hall (2002), Hall and Chapman (2002) 2012, The Correctness-by-Construction Approach to Programming, Authors: Kourie, Derrick G., Watson, Bruce W. 2015, Experience with correctness-by-construction, B.W. Watson a, D.G. Kourie b, L. Cleophas b, 2016, Correctness-by-Construction and Post-hoc Verification: Friends or Foes?, M. Beek, R. Hahnle,I. Schaefer 2016, Correctness-by-Construction and Post-hoc Verification: A Marriage of Convenience? B. Watson, D. Kourie, I. Schaefer, L. Cleophas

- Static analysis, JML- Java Modeling Language, ESC/Java2- Extended Static Checker for Java
- Questions
- Next lecture
 - EVOZON Presentation, topic: Test automation
 - When: Friday, April 12, 2019, hours 14:00-16:00;
 - Where: Room A2 (FSEGA Building)

Developing correct programs from specification[Mor98]

Refinement

• Input data: X $\varphi(X)$ Output data: Z $\psi(X, Z)$

Abstract program

 $Z: [\varphi, \psi]$

Refinement

$$P_1 \prec P_2 \prec ... \prec P_{n-1} \prec P_n$$

- Rules of refinement
 - Assignment rule
 - Sequential composition rule
 - Alternation rule
 - Iteration rule

Carroll Morgan

https://my.cse .unsw.edu.au/ staff/staff_det ails.php?ID=ca rrollm

Developing correct programs from specification[Mor98]

Rules of Refinement

- Assignment rule: $[\varphi(v/e), \psi] \prec v := e$
- Sequential composition rule $(\gamma middlepredicate)$ $[\eta_1, \eta_2] \prec [\eta_1, \gamma]$ $[\gamma, \eta_2]$
- Alternation rule, $G = g_1 \vee g_2 \vee ... \vee g_n$ $[\eta_1, \eta_2] \prec$ if $g_1 \to [\eta_1 \wedge g_1, \eta_2]$ $\Box g_2 \to [\eta_1 \wedge g_2, \eta_2]$ \vdots $\Box g_n \to [\eta_1 \wedge g_n, \eta_2]$

```
• Iteration rule G = g_1 \vee g_2 \vee ... \vee g_n
[\eta, \eta \wedge \neg G] \prec
do g_1 \rightarrow [\eta \wedge g_1, \eta \wedge TC]
\Box g_2 \rightarrow [\eta \wedge g_2, \eta \wedge TC]
\vdots
\Box g_n \rightarrow [\eta \wedge g_n, \eta \wedge TC]
do
```

Developing correct programs from specification[Mor98]Examples

- See the file with the examples
 - One example is discussed during lecture.
- Book [Mor98]

Surprise!

Formative Assessment

Stop and Go

Outline

- Correctness
- Floyd's Method -Inductive assertions, Partial correctness, Termination
- Hoare Logic, Semantics of Hoare triples, Partial correctness, Total correctness
- Dijkstra's Language, Guarded commands, Nondeterminacy, Formal Derivation of Programs
- Developing correct programs from specification, Refinement, Rules of Refinement, Examples
- Static analysis, JML- Java Modeling Language, ESC/Java2- Extended Static Checker for Java
- Questions
- Next lecture
 - EVOZON Presentation, topic: Test automation
 - When: Friday, April 12, 2019, hours 14:00-16:00;
 - Where: Room A2 (FSEGA Building)

Program verification methods - Correctness

- Lecture 1 Verification and Validation
 - Verification
 - reviews products to ensure their quality → correctness
 - static and dynamic analysis techniques
 - A correct program is one that does exactly what it is intended to do, no more and no less.
 - A formally correct program is one whose correctness can be proved mathematically.
 - This requires a language for specifying precisely what the program is intended to do.
 - Specification languages are based in mathematical logic.
 - Until recently, correctness has been an academic exercise. Now it is a key element of critical software systems
- Program verification correctness
 - proof-based, computer-assisted, program-verification approach, mainly used for programs which we expect to terminate and produce a result
 - model-based, automatic, property-verification approach, mainly used for concurrent, reactive systems (originally used in a post-development stage) model checking (Lecture 8, Lecture 9)
- Correctness Tools
 - Theorem provers (PVS), Modeling languages (UML and OCL), Specification languages (JML), Programming language support (Eiffel, Java, Spark/Ada), Specification Methodology (Design by contract)
- Methods for prooving program correctness
 - Floyd's Method Inductive assertions
 - Hoare Semantics of Hoare triples
 - Dijkstra's Language- Guarded commands, Nondeterminacy and Formal Derivation of Programs

Program verification methods - Correctness

- Software engineering problem: building/maintaining correct systems.
 - How?
 - Specification
 - Tools
- Formal Methods in Software Engineering
 - Formal languages guarantee
 - Precision (no ambiguity)
 - Certainty (modeling errors)
 - Automation (automatic verification tools).

- JML- Java Modeling Language
 - Demo JML
- ESC/Java2- Extended Static Checker for Java
 - Demo ESCJava2

Remark. ESC/Java tool - Topic of Laboratory 6!

- Things to do:
 - 1) make a *formal model*
 - 2) specify properties for the model
 - 3) *verify/check* the properties

- Formal methods and JML (Java Modeling Language):
 - 1) formal model is *Java programming language*
 - 2) the properties are specified in JML
 - 3) Properties may be
 - Tested using jmlrac
 - Checked using ESC2Java

What is JML?

- Gary T. Leavens's JML group at the University of Central Florida
- http://www.eecs.ucf.edu/~leavens/JML//index.shtml
- a behavioral interface specification language
- used to specify the behavior of Java modules
- combines
 - design by contract approach
 - the model-based specification approach
 - some elements of the refinement calculus

Tools for using JML

- Runtime assertion checkers (e.g. jmlc/jmlrac)
- Static checkers (ESC2Java)

- Test generation (e.g. jmlunit)
- Formal verification tools (e.g. KeY)
- Design tools (e.g. AutoJML)

Tools for JML

Runtime assertion checking with jmlc/jmlrac

- Special compiler inserts runtime tests for all JML assertions. Any assertion violation results in a special exception.
- checks specs at run-time
- only tests correctness of specs.
- Find violations at runtime.

JML web page

 http://www.eecs.ucf.edu/~leave ns/JML//index.shtml

Extended static checking with ESC/Java

- Automatically tries to prove simple JML assertions at compile time.
- checks specs at compile-time
- proves correctness of specs.
- Warn about likely runtime exceptions and violations.

ESC/Java2 web page

http://www.kindsoftware.com/prod ucts/opensource/ESCJava2/downloa d.html

Design by contract

Contract?

Method contract

Precondition

Specifies "caller's responsibility"

- Constraints on parameter values and target object's state.
- Valid object's states, in which a method can be called.

Intuitively

• Expression that must hold at the entry to the method.

Postcondition

Specifies "implementation's responsibility"

- Constraints on the method's return value and side effects.
- Relation between initial and final state of the method.

Intuitively

• Expression that must hold at the exit from the method.

Class contract

Invariant

- Specifies caller's responsibility at the entry to a method and implementation's responsibility at the exit from a method.
- Valid states of class instances (values of fields).

Intuitively

• Expression that must hold at the entry and exit of each method in the class.

Tools for JML

Runtime assertion checking with jmlc/jmlrac

- Special compiler inserts runtime tests for all JML assertions. Any assertion violation results in a special exception.
- checks specs at run-time
- only tests correctness of specs.
- Find violations at runtime.

jmlc and *jmlrac* – by example

- Demo 01: Factorial
- Demo02: Integer sqrt

- Unsound?
- Incomplete?

Tools for JML

Extended static checking with ESC/Java

Automatically tries to prove simple JML assertions at compile time.

- checks specs at compile-time
- proves correctness of specs
- Warn about likely runtime exceptions and violations.

ESC/Java2 – by example

- Demo 01: Fast exponentiation
- Demo 02: MyArray
- Demo 03: MySet

Surprise!

Didactic - Lecture 6 - Teaching-Learning - Formative-Summative Assessment

No name required (only on paper). 25 XP

Next Lecture

- EVOZON Presentation, topic: Test automation
- When: Friday, April 12, 2019, hours 14:00-16:00;
- Where: Room A2 (FSEGA Building)

Questions

• Thank You For Your Attention!

References

- [Flo67] Robert W. Floyd, Assigning meanings to programs, In *Proceedings of Symposia in Applied Mathematics*, pages 19–32, 1967.
- [Hoa69] C. A. R. Hoare, An axiomatic basis for computer programming, *Commun. ACM*, 12(10):576–580, 1969.
- [Dij75] E. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs.
- CACM, 8(18):453–457, 1975.
- [Fre10] M. Frentiu, Verificarea si validarea sistemelor soft, Presa Universitara Clujeana, 2010.
- [Mor98] C. Morgan, Programming from Specifications, Prentice Hall International Series in Computing Science, 1998