Examenul național de bacalaureat 2025

Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_2 - a_1 = 6$, unde r este rația progresiei aritmetice	3 p
	$a_3 = a_2 + r = 15$	2p
2.	f(3)=4, $f(2)=1$, $f(0)=-5$	3 p
	f(3)+f(2)+f(0)=4+1-5=0	2p
3.	9x - 5 = 4	3 p
	x = 1, care convine	2p
4.	$x - \frac{30}{100} \cdot x = 56$, unde x este prețul înainte de ieftinire	3 p
	x=80 de lei	2p
5.	$AB = \sqrt{5^2 + 5^2} = 5\sqrt{2}$	2p
	$AC = \sqrt{7^2 + 1^2} = 5\sqrt{2}$, deci $AB = AC$	3p
6.	$\sin 30^\circ = \frac{1}{2}$, $\cos 60^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$	3 p
	$(\sin 30^{\circ} + 3\cos 60^{\circ}) \cdot (\sin 45^{\circ})^{2} = \left(\frac{1}{2} + \frac{3}{2}\right) \cdot \left(\frac{\sqrt{2}}{2}\right)^{2} = 2 \cdot \frac{1}{2} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot (-2) =$ $= 1 + 4 = 5$	3p 2p
		2p
b)	$A + 3I_2 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ -2 & 4 \end{pmatrix} =$	3р
	$=2\begin{pmatrix}2&1\\-1&2\end{pmatrix}=2B(1)$	2p
c)	$B(2x) = \begin{pmatrix} 2 & 2x \\ -1 & 4x \end{pmatrix}, B(x) \cdot A = \begin{pmatrix} 2 - 2x & 4 + x \\ -1 - 4x & -2 + 2x \end{pmatrix}, B(2x) - B(x) \cdot A = \begin{pmatrix} 2x & x - 4 \\ 4x & 2x + 2 \end{pmatrix}, \text{de}$	3p
	unde obținem $\det (B(2x) - B(x) \cdot A) = 20x$, pentru orice număr real x	
	$20x = x^2$, de unde obținem $x = 0$ sau $x = 20$	2p
2.a)	$0*1 = 0 \cdot 1 - 8 \cdot 0 - 8 \cdot 1 + 8 =$	3р
	=0-0-8+8=0	2p
b)	x*2 = -6x - 8, pentru orice număr real x	3p
	-6x-8=2x, de unde obtinem $x=-1$	2p

c)	(8+m)*(8+n) = mn - 56, pentru orice numere naturale m și n	2p
	$mn - 56 = 2 \Leftrightarrow mn = 58$ şi, cum m şi n sunt numere naturale, cu $m < n$, obținem perechile $(1,58)$ şi $(2,29)$	3 p

SUBIECTUL al III-lea (30 de puncte)

	` · ·	ĺ
1.a)	$f'(x) = \frac{4(x+4) - (4x+7)}{(x+4)^2} =$	3p
	$= \frac{4x+16-4x-7}{(x+4)^2} = \frac{9}{(x+4)^2}, \ x \in (-4,+\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4x+7}{x+4} = \lim_{x \to +\infty} \frac{4+\frac{7}{x}}{1+\frac{4}{x}} = 4$	3p
	Dreapta de ecuație $y = 4$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	J () -	2p
	$\frac{9}{\left(a+4\right)^2} = 1, \text{ deci } \left(a+4\right)^2 = 9 \text{ si, cum } a \in \left(-4,+\infty\right), \text{ obținem } a = -1$	3p
2.a)	$\int_{1}^{2} \left(f(x) - \sqrt{x+3} \right) dx = \int_{1}^{2} 2x dx = x^{2} \Big _{1}^{2} =$	3p
	=4-1=3	2p
b)	$\int_{1}^{6} \frac{1}{f(x) - 2x} dx = \int_{1}^{6} \frac{1}{\sqrt{x + 3}} dx = 2 \int_{1}^{6} \frac{(x + 3)'}{2\sqrt{x + 3}} dx = 2\sqrt{x + 3} \Big _{1}^{6} =$	3р
	=6-4=2	2p
c)	$g(x) = \frac{x}{\sqrt{x+3}}, \ x \in [0,6], \ \text{deci} \ V = \pi \int_0^6 (g(x))^2 dx = \pi \int_0^6 \frac{x^2}{x+3} dx =$	2p
	$= \pi \int_{0}^{6} \left(x - 3 + \frac{9}{x+3} \right) dx = \pi \left(\frac{x^{2}}{2} \Big _{0}^{6} - 3x \Big _{0}^{6} + 9\ln(x+3) \Big _{0}^{6} \right) = 9\pi \ln 3$	3р