Solutions to the book: Friedeberg, Insel and Spence, Linear Algebra, 3rd edition

Meng-Gen Tsai plover@gmail.com

July 20, 2021

Contents

Chapter 1: Vector Spaces	3
Section 1.2: Vector Spaces	3
Exercise 1.2.2	3
Exercise 1.2.3	3
Exercise 1.2.22	3
Section 1.6: Bases and Dimension	3
Exercise 1.6.19.	3
Chapter 2: Linear Transformations and Matrices	5
Section 2.4: Invertibility and Isomorphisms	5
Exercise 2.4.8	5
Section 2.7: Homogeneous Linear Differential Equations with Constant	
Coefficients	6
Exercise 2.7.3	6
Exercise 2.7.4	7
Exercise 2.7.5	7
Chapter 4: Determinants	8
Section 4.1: Determinants of Order 2	8
Exercise 4.1.1	8
Exercise 4.1.2	9
Exercise 4.1.3	9
	10
	11
	11
	12
	12
	12

Exercise 4.1.10	13
Exercise 4.1.11	14
Exercise 4.1.12	17
Section 4.2: Determinants of Order $n \dots \dots \dots \dots$	18
Exercise 4.2.2	18
Exercise 4.2.26	18
Section 4.3: Properties of Determinants	18
Exercise 4.3.9	18
Exercise 4.3.11	19
Exercise 4.3.14	19
Chapter 6: Inner Product Spaces	20
Section 6.1: Inner Products and Norms	20
Exercise 6.1.6	20

Chapter 1: Vector Spaces

Section 1.2: Vector Spaces

Exercise 1.2.2.

Write the zero vector of $M_{3\times4}(F)$.

Exercise 1.2.3.

If
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 what are M_{13}, M_{21}, M_{22} ?

Proof. Since $M_{ij} = 3(i-1) + j$, $M_{13} = 3$, $M_{21} = 4$ and $M_{22} = 5$. \square

Exercise 1.2.22.

How many elements are there in the vector space $\mathsf{M}_{m\times n}(\mathbb{Z}/2\mathbb{Z})$?

Proof. 2^{mn} . \square

Section 1.6: Bases and Dimension

Exercise 1.6.19.

Let V be a vector space having dimension n, and let S be a subset of V that generates V.

- (a) Prove that there is a subset of S that is a basis for V. (Be careful not to assume that S is finite.)
- (b) Prove that S contains at least n elements.

Proof of (a). Similar to the argument in Theorem 1.9.

(1) If $S=\varnothing$ or $S=\{0\},$ then $\mathsf{V}=\{0\}$ and \varnothing is a subset of S that is a basis for $\mathsf{V}.$

(2)	Otherwise S contains a nonzero element u_1 . $\{u_1\}$ is a linearly independent
	set. Continue, if possible, choosing elements $u_2,, u_k$ in S such that
	$\{u_1, u_2,, u_k\}$ is linearly independent. By the Replacement Theorem
	(Theorem 1.10), we must eventually reach a stage at which $\beta = \{u_1, u_2,, u_k\}$
	is a linearly independent subset of S with $k \leq n$.

(3)	β generates β	S by the	construction	of β , and S	S generates V .	Therefore, β
	generates V ((and thus	k = n by th	e definition	of dimension)	

Therefore, there is a subset of S that is a basis for $\mathsf{V}.$

Proof of (b). By (a), there is a subset $\beta \subseteq S$ of size n that is a basis for V. So S contains at least n elements of β . \square

Chapter 2: Linear Transformations and Matrices

Section 2.4: Invertibility and Isomorphisms

Exercise 2.4.8.

Let A and B be $n \times n$ matrices such that $AB = I_n$. Prove

- (a) A and B are invertible.
- (b) $A = B^{-1}$ (and hence $B = A^{-1}$). (We are in effect saying that for square matrices, a "one-sided" inverse is a "two-sided" inverse.)
- (c) State and prove analogous results for linear transformations defined on finite-dimensional vector spaces.

Proof of (a). Regard $V = M_{n \times n}(F)$ as a finite-dimensional vector space over F. Given $X \in M_{n \times n}(F)$, consider the subset V_X of V defined by

$$V_X = \{XY : Y \in \mathsf{M}_{n \times n}(F)\}.$$

- (1) $V_0 = 0$.
- (2) $V_{I_n} = V$. In general, $V_X = V$ for any invertible matrix $X \in M_{n \times n}(F)$.
- (3) V_X is a subspace of V for any $X \in M_{n \times n}(F)$.
- (4) There is a descending sequence of subspaces

$$V \supseteq V_X \supseteq \cdots \supseteq V_{X^k} \supseteq \cdots$$

This sequence must be stationary since V is finite-dimensional, that is,

$$\mathsf{V}_{X^k}=\mathsf{V}_{X^{k+1}}=\cdots$$

for some k. (Descending chain condition.) In particular, $B^k = B^{k+1}C$ for some $C \in V$. Multiply with A^k on the left to get $I_n = BC$. $(A^k B^k = A^{k-1}(AB)B^{k-1} = A^{k-1}B^{k-1} = \cdots = I_n.)$

(4) Since $AB = I_n$ and $BC = I_n$, $A = AI_n = A(BC) = (AB)C = I_nC = C$, or $AB = BA = I_n$. By definition of invertibility, A and B are invertible.

Proof of (b). By (a), $A = B^{-1}$ and $B = A^{-1}$. \square

Proof of (c). Let V be a finite-dimensional vector space, and let $S, T : V \to V$ be linear such that ST is invertible. Show that S and T are invertible. Let

$$\beta = \{\beta_1, ..., \beta_n\}$$

be an ordered basis for V where $n = \dim(V)$. Let $A = [S]_{\beta}$ and $B = [T]_{\beta}$. So

$$AB = [S]_{\beta}[T]_{\beta} = [ST]_{\beta} = [I_{V}]_{\beta} = I_{n}$$

(Theorem 2.11). By (a), $A=[S]_\beta$ and $B=[T]_\beta$ are invertible, or S and T are invertible (Theorem 2.18). \square

Section 2.7: Homogeneous Linear Differential Equations with Constant Coefficients

Exercise 2.7.3.

Find a basis for the solution space of each of the following differential equations

- (a) y'' + 2y' + y = 0
- (b) y''' = y'
- (c) $y^{(4)} 2y^{(2)} + y = 0$
- (d) y'' + 2y' + y = 0
- (e) $y^{(3)} y^{(2)} + 3y^{(1)} + 5y = 0.$

Use Theorem 2.35.

Proof of (a). The auxiliary polynomial is $t^2 + ty + 1 = (t+1)^2$. $\{e^{-t}, te^{-t}\}$ is a basis for the solution space. \square

Proof of (b). The auxiliary polynomial is $t^3 - t = t(t-1)(t+1)$. $\{1, e^t, e^{-t}\}$ is a basis for the solution space. \square

Proof of (c). The auxiliary polynomial is $t^4 - 2t^2 + 1 = (t-1)^2(t+1)^2$. $\{e^t, te^t, e^{-t}, te^{-t}\}$ is a basis for the solution space. \square

Proof of (d). Same as (a). \square

Proof of (e). The auxiliary polynomial is

$$t^3 - t^2 + 3t + 5 = (t+1)(t-1-2i)(t-1+2i).$$

 $\{e^{-t},e^{(1+2i)t},e^{(1-2i)t}\}$, or $\{e^{-t},e^t\cos(2t),e^t\sin(2t)\}$ is a basis for the solution space. \square

Exercise 2.7.4.

Find a basis for each of the following subspaces of C^{∞} .

- $(\mathrm{a})\ \mathsf{N}(\mathsf{D}^2-\mathsf{D}-\mathsf{I})$
- (b) $N(D^3 3D^2 + 3D I)$
- (c) $N(D^3 6D^2 8D)$

Use Theorem 2.35.

Proof of (a). The auxiliary polynomial is

$$t^{2} - t - 1 = \left(t - \frac{1 + \sqrt{5}}{2}\right) \left(t - \frac{1 - \sqrt{5}}{2}\right).$$

 $\left\{e^{\frac{1+\sqrt{5}}{2}t},e^{\frac{1-\sqrt{5}}{2}t}\right\}$ is a basis for the solution space. \Box

Proof of (b). The auxiliary polynomial is $t^3 - 3t^2 + 3t - 1 = (t - 1)^3$. $\{e^t, te^t, t^2e^t\}$ is a basis for the solution space. \square

Proof of (c). The auxiliary polynomial is $t^3 + 6t^2 + 8t = t(t+2)(t+4)$. $\{1, e^{-2t}, e^{-4t}\}$ is a basis for the solution space. \square

Exercise 2.7.5.

Show that C^{∞} is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{C})$.

Proof.

- (1) $0 \in \mathcal{F}(\mathbb{R}, \mathbb{C})$ clearly.
- (2) Given any $f, g \in \mathsf{C}^\infty$. For any nonnegative k, $\mathsf{D}^k(f+g) = \mathsf{D}^k(f) + \mathsf{D}^k(g)$ holds. Thus $f+g \in \mathsf{C}^\infty$.
- (3) Given any $f \in \mathcal{F}(\mathbb{R}, \mathbb{C})$, $r \in \mathbb{C}$. For any nonnegative k, $\mathsf{D}^k(cf) = c\mathsf{D}^k(f)$ holds. Thus $cf \in \mathsf{C}^{\infty}$.

By Theorem 1.3, C^{∞} is a subspace. \square

Chapter 4: Determinants

Section 4.1: Determinants of Order 2

Exercise 4.1.1.

Label the following statements as being true or false.

- (a) The function $\det: M_{2\times 2}(F) \to F$ is a linear transformation.
- (b) The determinant of a 2×2 matrix is a linear function of each row of the matrix when the other row is held fixed.
- (c) If $A \in M_{2\times 2}(F)$ and det(A) = 0, then A is invertible.
- (d) If u and v are vectors in \mathbb{R}^2 emanating from the origin, then the area of the parallelogram having u and v as adjacent side is

$$\det \begin{pmatrix} u \\ v \end{pmatrix}$$
.

(e) A coordinate system is right-handed if and only if its orientation equals 1.

Proof of (a). False. Example 4.1.1, or take

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F) \text{ and } B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then $det(A + B) = det(I_2) = 1 \neq 0 = 0 + 0 = det(A) + det(B)$. \square

Proof of (b). True. Proposition 4.1. \square

Proof of (c). False. Proposition 4.2. \square

Proof of (d). False. The area should be

$$O\begin{pmatrix} u \\ v \end{pmatrix} \cdot \det \begin{pmatrix} u \\ v \end{pmatrix} = \left| \det \begin{pmatrix} u \\ v \end{pmatrix} \right|.$$

Proof of (e). True. See Exercise 4.1.12. \square

Exercise 4.1.2.

Compute the determinants of the following elements of $M_{2\times 2}(\mathbb{R}).$

$$(a) \begin{pmatrix} 6 & -3 \\ 2 & 4 \end{pmatrix}$$

$$(b) \begin{pmatrix} -5 & 2 \\ 6 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 8 & 0 \\ 3 & -1 \end{pmatrix}$$

Proof of (a).

$$\det \begin{pmatrix} 6 & -3 \\ 2 & 4 \end{pmatrix} = 6 \cdot 4 - (-3) \cdot 2 = 24 + 6 = 30.$$

Proof of (b).

$$\det \begin{pmatrix} -5 & 2 \\ 6 & 1 \end{pmatrix} = (-5) \cdot 1 - 2 \cdot 6 = -5 - 12 = -17.$$

Proof of (c).

$$\det \begin{pmatrix} 8 & 0 \\ 3 & -1 \end{pmatrix} = 8 \cdot (-1) - 0 \cdot 3 = -8.$$

Exercise 4.1.3.

Compute the determinants of the following elements of $\mathsf{M}_{2\times 2}(\mathbb{C}).$

(a)
$$\begin{pmatrix} -1+i & 1-4i \\ 3+2i & 2-3i \end{pmatrix}$$

(b)
$$\begin{pmatrix} 5-2i & 6+4i \\ -3+i & 7i \end{pmatrix}$$

$$(c) \begin{pmatrix} 2i & 3 \\ 4 & 6i \end{pmatrix}$$

Proof of (a).

$$\det \begin{pmatrix} -1+i & 1-4i \\ 3+2i & 2-3i \end{pmatrix} = (-1+i) \cdot (2-3i) - (1-4i) \cdot (3+2i)$$
$$= (1+5i) - (11-10i)$$
$$= -10+15i.$$

Proof of (b).

$$\det \begin{pmatrix} 5 - 2i & 6 + 4i \\ -3 + i & 7i \end{pmatrix} = (5 - 2i) \cdot (7i) - (6 + 4i) \cdot (-3 + i)$$
$$= (14 + 35i) - (-22 - 6i)$$
$$= 36 + 41i.$$

Proof of (c).

$$\det \begin{pmatrix} 2i & 3\\ 4 & 6i \end{pmatrix} = (2i) \cdot (6i) - 3 \cdot 4 = -12 - 12 = -24.$$

Exercise 4.1.4.

For each of the following pairs of vectors u and v in \mathbb{R}^2 , compute the area of the parallelogram determined by u and v.

(a)
$$u = (3, -2)$$
 and $v = (2, 5)$

(b)
$$u = (1,3)$$
 and $v = (-3,1)$

(c)
$$u = (4, -1)$$
 and $v = (-6, -2)$

(d)
$$u = (3,4)$$
 and $v = (2,-6)$

Proof of (a).

$$\left| \det \begin{pmatrix} 3 & -2 \\ 2 & 5 \end{pmatrix} \right| = |19| = 19.$$

Proof of (b).

$$\left| \det \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix} \right| = |10| = 10.$$

Proof of (c).

$$\left| \det \begin{pmatrix} 4 & -1 \\ -6 & -2 \end{pmatrix} \right| = \left| -14 \right| = 14.$$

Proof of (d).

$$\left| \det \begin{pmatrix} 3 & 4 \\ 2 & -6 \end{pmatrix} \right| = \left| -26 \right| = 26.$$

Exercise 4.1.5.

Prove that if B is the matrix obtained by interchanging the rows of a 2×2 matrix A, then det(B) = -det(A).

Proof. Write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then

$$B = \begin{pmatrix} c & d \\ a & b \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then $det(B) = cb - ad = -(ad - bc) = -\det(A)$. \square

Exercise 4.1.6.

Prove that if the two columns of $A \in M_{2\times 2}(F)$ are identical, then $\det(A) = 0$.

Proof. By assumption, write

$$A = \begin{pmatrix} a & a \\ c & c \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then det(A) = ac - ac = 0. \square

Exercise 4.1.7.

Prove that for any $A \in M_{2\times 2}(F)$, $det(A^t) = det(A)$.

Proof. Write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F),$$

then

$$A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

So $det(A) = ad - bc = ad - cb = det(A^t)$. \square

Exercise 4.1.8.

Prove that if $A \in M_{2\times 2}(F)$ is upper triangular, then det(A) equals the product of the diagonal entries of A.

Proof. Write

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F)$$

since A is upper triangular. Then $\det(A) = ad$, which is equal to the product of the diagonal entries, a and d, of A. \square

Exercise 4.1.9.

Prove that for any $A, B \in M_{2\times 2}(F)$ we have $\det(AB) = \det(A) \cdot \det(B)$.

Proof. Write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F),$$

$$B = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

Then

$$AB = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \in \mathsf{M}_{2 \times 2}(F).$$

A direct calculation shows

$$\begin{aligned} \det(AB) &= (ae + bg)(cf + dh) - (af + bh)(ce + dg) \\ &= (acef + adeh + bcfg + bdgh) - (acef + adfg + bceh + bdgh) \\ &= adeh + bcfg - adfg - bceh \\ &= (ad - bc)(eh - fg) \\ &= \det(A)\det(B). \end{aligned}$$

Exercise 4.1.10.

The classical adjoint of a 2×2 matrix $A \in M_{2 \times 2}(F)$ is the matrix

$$C = \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}.$$

Prove

- (a) $CA = AC = [\det(A)]I$.
- (b) $\det(C) = \det(A)$.
- (c) The classical adjoint of A^t is C^t .
- (d) If A is invertible, then $A^{-1} = [\det(A)]^{-1}C$.

Note that

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

Proof of (a).

$$CA = \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{22}A_{11} - A_{12}A_{21} & A_{22}A_{12} - A_{12}A_{22} \\ -A_{21}A_{11} + A_{11}A_{21} & -A_{21}A_{12} + A_{11}A_{22} \end{pmatrix}$$

$$= \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix}$$

$$= [\det(A)]I.$$

$$AC = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11}A_{22} - A_{12}A_{21} & -A_{11}A_{12} + A_{12}A_{11} \\ A_{21}A_{22} - A_{22}A_{21} & -A_{21}A_{12} + A_{22}A_{11} \end{pmatrix}$$

$$= \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix}$$

$$= [\det(A)]I.$$

Proof of (b).

$$det(C) = A_{22}A_{11} - (-A_{12})(-A_{21})$$

$$= A_{11}A_{22} - A_{12}A_{21}$$

$$= det(A).$$

Proof of (c).

$$A^t = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}.$$

The classical adjoint of A^t is

$$\begin{pmatrix} A_{22} & -A_{21} \\ -A_{12} & A_{11} \end{pmatrix} = C^t.$$

Proof of (d). Proposition 4.2. \square

Exercise 4.1.11.

Let $\delta: M_{2\times 2}(F) \to F$ be a function with the following three properties.

- (i) δ is a linear function of each row of the matrix when the other row is held fixed.
- (ii) If the two rows of $A \in M_{2\times 2}(F)$ are identical, then $\delta(A) = 0$.
- (iii) If I is the 2×2 identity matrix, then $\delta(I) = 1$.

Prove that $\delta(A) = \det(A)$ for all $A \in \mathsf{M}_{2 \times 2}(F)$. (This result is generalized in Section 4.5.)

Proof. Write

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

(1) If u, v are elements of F^2 and k is a scalar, then

$$\delta \begin{pmatrix} u \\ v + ku \end{pmatrix} = \delta \begin{pmatrix} u + kv \\ v \end{pmatrix} = \delta \begin{pmatrix} u \\ v \end{pmatrix}.$$

In fact,

$$\delta \begin{pmatrix} u \\ v + ku \end{pmatrix} = \delta \begin{pmatrix} u \\ v \end{pmatrix} + \delta \begin{pmatrix} u \\ ku \end{pmatrix} \qquad \text{(Property (i))}$$

$$= \delta \begin{pmatrix} u \\ v \end{pmatrix} + k\delta \begin{pmatrix} u \\ u \end{pmatrix} \qquad \text{(Property (i))}$$

$$= \delta \begin{pmatrix} u \\ v \end{pmatrix}. \qquad \text{(Property (ii))}$$

Similarly, $\delta \begin{pmatrix} u + kv \\ v \end{pmatrix} = \delta \begin{pmatrix} u \\ v \end{pmatrix}$.

(2) If u, v are elements of F^2 , then

$$\delta \begin{pmatrix} u \\ v \end{pmatrix} = -\delta \begin{pmatrix} v \\ u \end{pmatrix}.$$

In fact,

$$0 = \delta \begin{pmatrix} u + v \\ u + v \end{pmatrix}$$
 (Property (ii))

$$= \delta \begin{pmatrix} u + v \\ u \end{pmatrix} + \delta \begin{pmatrix} u + v \\ v \end{pmatrix}$$
 (Property (i))

$$= \delta \begin{pmatrix} v \\ u \end{pmatrix} + \delta \begin{pmatrix} u \\ v \end{pmatrix}.$$
 ((1))

(3) If v is an element of F^2 , then

$$\delta \begin{pmatrix} 0 \\ v \end{pmatrix} = 0.$$

In fact,

$$\delta \begin{pmatrix} 0 \\ v \end{pmatrix} = \delta \begin{pmatrix} 0+0 \\ v \end{pmatrix}$$
$$= \delta \begin{pmatrix} 0 \\ v \end{pmatrix} + \delta \begin{pmatrix} 0 \\ v \end{pmatrix}.$$
(Property (i))

In particular, $\delta \begin{pmatrix} 0 \\ v \end{pmatrix} = 0 = \det \begin{pmatrix} 0 \\ v \end{pmatrix}$.

(4) To show $\delta(A) = \det(A)$, we consider three possible cases about the first row: $A_{11} \neq 0$, $A_{12} \neq 0$, or $A_{11} = A_{12} = 0$. The case $A_{11} = A_{12} = 0$ is proved in (3). We prove the rest two cases in (5) and (6). Write

$$u = (A_{11}, A_{12})$$
 and $v = (A_{21}, A_{22})$.

(5) Show that $\delta(A) = \det(A)$ if $A_{11} \neq 0$. So

$$\delta(A) = \delta \begin{pmatrix} u \\ v \end{pmatrix}$$

$$= \delta \begin{pmatrix} u \\ v - \frac{A_{21}}{A_{11}} u \end{pmatrix}$$

$$= \delta \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix}$$

$$= \begin{pmatrix} A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix} \delta \begin{pmatrix} A_{11} & A_{12} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix} \delta \begin{pmatrix} A_{11} & 0 \\ 0 & 1 \end{pmatrix}$$

$$= A_{11} \begin{pmatrix} A_{22} - \frac{A_{12}A_{21}}{A_{11}} \end{pmatrix} \delta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \det(A)\delta(I)$$

$$= \det(A).$$
(Property (iii))

(6) Show that $\delta(A) = \det(A)$ if $A_{12} \neq 0$. So

$$\delta(A) = \delta \begin{pmatrix} u \\ v - \frac{A_{22}}{A_{12}} u \end{pmatrix}$$

$$= \delta \begin{pmatrix} A_{11} & A_{12} \\ A_{21} - \frac{A_{22}A_{11}}{A_{12}} & 0 \end{pmatrix}$$

$$= \left(A_{21} - \frac{A_{22}A_{11}}{A_{12}} \right) \delta \begin{pmatrix} A_{11} & A_{12} \\ 1 & 0 \end{pmatrix}$$

$$= \left(A_{21} - \frac{A_{22}A_{11}}{A_{12}} \right) \delta \begin{pmatrix} 0 & A_{12} \\ 1 & 0 \end{pmatrix}$$

$$= A_{12} \left(A_{21} - \frac{A_{22}A_{11}}{A_{12}} \right) \delta \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= A_{12} \left(A_{21} - \frac{A_{22}A_{11}}{A_{12}} \right) \delta \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= -A_{12} \left(A_{21} - \frac{A_{22}A_{11}}{A_{12}} \right) \delta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \det(A)\delta(I)$$

$$= \det(A).$$
(Property (iii))

Exercise 4.1.12.

Let $\{u,v\}$ be an ordered basis for \mathbb{R}^2 . Prove that

$$O\binom{u}{v} = 1$$

if and only if $\{u,v\}$ forms a right-handed coordinate system. (Hint: Recall the definition of a rotation given in Example 2.1.2.)

If $\beta = \{u, v\}$ is an ordered basis for \mathbb{R}^2 , define the orientation of β as

$$O\binom{u}{v} = \frac{\det\binom{u}{v}}{\left|\det\binom{u}{v}\right|}.$$

A coordinate system $\{u,v\}$ is called right-handed if u can be rotated in a counterclockwise direction through an angle θ (0 < θ < π) to coincide with v.

Example 2.1.2. For any angle θ , define $\mathsf{T}_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$\mathsf{T}_{\theta}(a_1, a_2) = (a_1 \cos \theta - a_2 \sin \theta, a_1 \sin \theta + a_2 \cos \theta).$$

 T_{θ} is called the rotation by θ .

Proof.

- (1) By Example 2.1.2, for any coordinate system $\{u,v\}$, there is $0 < \theta < 2\pi$ and $\alpha > 0$ such that $v = \alpha \mathsf{T}_{\theta}(u)$. Write $u = (u_1, u_2) \in \mathbb{R}^2, v = (v_1, v_2) \in \mathbb{R}^2$.
- (2) Calculate $\det \begin{pmatrix} u \\ v \end{pmatrix}$.

$$\det \begin{pmatrix} u \\ v \end{pmatrix} = \det \begin{pmatrix} u \\ \alpha \mathsf{T}_{\theta}(u) \end{pmatrix}$$

$$= \alpha \det \begin{pmatrix} u \\ \mathsf{T}_{\theta}(u) \end{pmatrix}$$

$$= \alpha \det \begin{pmatrix} u_1 \\ u_1 \cos \theta - u_2 \sin \theta & u_1 \sin \theta + u_2 \cos \theta \end{pmatrix}$$

$$= \alpha (u_1^2 + u_2^2) \sin \theta.$$

$$\begin{split} O\begin{pmatrix} u \\ v \end{pmatrix} &= 1 \Longleftrightarrow \det \begin{pmatrix} u \\ v \end{pmatrix} = \alpha(u_1^2 + u_2^2) \sin \theta > 0 \\ &\iff \sin \theta > 0 \\ &\iff 0 < \theta < \pi \\ &\iff \{u,v\} \text{ is a right-handed coordinate system.} \end{split}$$

Section 4.2: Determinants of Order n

Exercise 4.2.2.

Find the value of k that satisfies the following equation.

$$\det \begin{pmatrix} 3a_1 & 3a_2 & 3a_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{pmatrix} = k \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

Proof (Exercise 4.2.25). By Exercise 4.2.25, $\det(3A) = 3^3 \det(A)$ for any $A \in \mathsf{M}_{3\times 3}(F)$, or $k = 3^3 = 27$. \square

Exercise 4.2.26.

Let $A \in M_{n \times n}(F)$. Under what conditions is $\det(-A) = \det(A)$?

Proof (Exercise 4.2.25). By Exercise 4.2.25, $\det(-A) = (-1)^n \det(A)$ for any $A \in \mathsf{M}_{n \times n}(F)$. That is, n is even if and only if $\det(-A) = \det(A)$. \square

Section 4.3: Properties of Determinants

Exercise 4.3.9.

A matrix $M \in \mathsf{M}_{n \times n}(\mathbb{C})$ is called nilpotent if, for some positive integer k, $M^k = O$, where O is the $n \times n$ zero matrix. Prove that if M is nilpotent, then $\det(M) = 0$.

Proof. Given any nilpotent matrix $M \in \mathsf{M}_{n \times n}(\mathbb{C})$ such that $M^k = O$ for some $k \in \mathbb{Z}^+$.

$$M^k = O \Longrightarrow \det(M^k) = \det(O)$$

 $\Longleftrightarrow \det(M)^k = 0$ (Theorem 4.7)
 $\Longleftrightarrow \det(M) = 0.$

Exercise 4.3.11.

A matrix $Q \in \mathsf{M}_{n \times n}(\mathbb{R})$ is called orthogonal if $QQ^t = I$. Prove that if Q is orthogonal, then $\det(Q) = \pm 1$.

Proof. By the orthogonality of Q, $QQ^t = I$. So

$$QQ^{t} = I \Longrightarrow \det(QQ^{t}) = \det(I)$$

$$\iff \det(Q) \det(Q^{t}) = \det(I) \qquad (\text{Theorem 4.7})$$

$$\iff \det(Q) \det(Q) = \det(I) \qquad (\text{Theorem 4.8})$$

$$\iff \det(Q)^{2} = 1 \qquad (\text{Example 4.2.4})$$

$$\iff \det(Q) = \pm 1.$$

Exercise 4.3.14.

Prove that if $A, B \in M_{n \times n}(F)$ are similar, then det(A) = det(B).

Proof. Since A, B are similar, there exists an invertible matrix Q such that $B = Q^{-1}AQ$. So

$$\det(B) = \det(Q^{-1}AQ)$$

$$= \det(Q^{-1}) \det(A) \det(Q) \qquad (\text{Theorem 4.7})$$

$$= \det(Q) \det(Q^{-1}) \det(A) \qquad (F \text{ is field})$$

$$= \det(QQ^{-1}) \det(A) \qquad (\text{Theorem 4.7})$$

$$= \det(I) \det(A) \qquad (\text{Example 4.2.4})$$

$$= \det(A).$$

Chapter 6: Inner Product Spaces

Section 6.1: Inner Products and Norms

Exercise 6.1.6.

Complete the proof of Theorem 6.1.

Theorem 6.1 Let V be an inner product space. Then for $x, y, z \in V$ and $c \in F$

- (a) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$,
- (b) $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$,
- (c) $\langle x, x \rangle = 0$ if and only if x = 0,
- (d) if $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$, then y = z.

Proof of (a).

$$\begin{split} \langle x,y+z\rangle &= \overline{\langle y+z,x\rangle} \\ &= \overline{\langle y,x\rangle + \langle z,x\rangle} \\ &= \overline{\langle y,x\rangle + \overline{\langle z,x\rangle}} \\ &= \overline{\langle y,x\rangle + \langle x,z\rangle}. \end{split}$$

Proof of (b).

$$\begin{split} \langle x, cy \rangle &= \overline{\langle cy, x \rangle} \\ &= \overline{c \langle y, x \rangle} \\ &= \overline{c} \overline{\langle y, x \rangle} \\ &= \overline{c} \langle x, y \rangle. \end{split}$$

Proof of (c).

- (1) (\Longrightarrow) If x were nonzero, by the definition of the inner product, $\langle x, x \rangle > 0$, contrary to the assumption. Hence x = 0.
- (2) (\iff) Since 0 = 0 + 0, $\langle 0, 0 \rangle = \langle 0 + 0, 0 \rangle = \langle 0, 0 \rangle + \langle 0, 0 \rangle$. Thus $\langle 0, 0 \rangle = 0$.

Proof of (d).

$$\begin{split} \langle x,y\rangle &= \langle x,z\rangle \ \, \forall x \in \mathsf{V} \Longleftrightarrow 0 = \langle x,y\rangle - \langle x,z\rangle \ \, \forall x \in \mathsf{V} \\ &\iff 0 = \langle x,y-z\rangle \ \, \forall x \in \mathsf{V} \\ &\implies 0 = \langle y-z,y-z\rangle \\ &\iff y-z=0 \\ &\iff y=z. \end{split} \tag{(a)}$$