Timeline:

Wash 4	Interesting to Date Competence / November Theory					
Week - 1	Introduction to Data Structures/ Number Theory					
	 Definition of data structures and abstract data types, Static and Dynamic implementations, Examples and real life applications; Searching Algorithms: Straight Sequential Search, Binary Search, Tertiary Search. Number theory and Mathematical Problems, based on base conversions, prime number and sieve, Divisibility and large numbers, Catalan numbers etc. 					
Week - 2 and 3	Recursion and structures/classes					
	 Introduction to recursion, Divide and Conquer Algorithm. Euler trees formation, and system-stack memory diagrams formations for recursive functions. Infix, postfix, prefix representation using recursion, Conversions, Applications. Introduction to structures and classes. And an introductory level of OOPS. 					
Week - 4	Queues, Lists and Stacks					
	 Definition and Array based implementation of Queues / Lists. Linked List implementation of Queues / Lists, The Stacks: Definition, Array based implementation of stacks, Linked List based implementation of stacks, Circular implementation of Queues and Singly linked Lists, Straight / circular implementation of doubly linked Queues / Lists, Priority Queues, Applications. 					
Week - 5	Running Time and Bit Manipulation					
	 e, AveTime Complexity and Big-oh-notation, Running Times, Best case, worst casrage Case, Factors depends on running time, Evaluating Time Complexity for recursive functions. Bit Manipulation: Introduction to bits and binary number system, and applications of bit Bitwise operators and logical operators using bits. Tricks and tips with bits, and important tactics. 					
Week - 6	Searching and Sorting					

	 Introduction, Searching Algorithms: Straight Sequential Search, Binary Search Sorting by exchange, selection, insertions: Bubble sort, Selection sort, Efficiency of these algorithms; Shell sort, Performance of shell sort, Merge sort, Merging of sorted arrays & Algorithms; Quick sort Algorithm analysis, sortHeap: Heap Construction, Heap sort, bottom – up, Top – down Heap sort approach.
Week - 7 and 8	 Definition of generic trees and Binary trees, Properties of Binary trees and generic trees, and their Implementation, Tree Traversal pre-order, post order, In- order traversal, Binary Searching over the trees. Heaps and their equivalence structure with trees, AVL Trees, Implementations of the above
Week - 8 and 9	 Graphs Definition of Undirected and Directed Graphs and Networks, The Array based implementation of graphs, Adjacency matrix and Adjacency list The Linked List representation of graphs, Graph Traversal – Breadth first Traversal, Depth first Traversal, Shortest path Algorithm, Examples: Dijkstra, Floyd Warshall and Bellman Ford. Minimum spanning trees, Examples: Prims and Kruskal +algorithm. Tables: Definition, Hash functions, Implementations and Applications of the above.
Week - 10 onwards	 Project Development Phase Started: Project Functioning and Strategy discussion Dividing the tasks, among the participants.
After the project, only if we still have time.	 Dynamic Programming DP: Introduction to dynamic programming, overlapping subproblems and optimal substructures. Approaches for dynamic programming: Memoization and Tabulation techniques.

40)	55	63	17	22	68	89	97	89	
0		1	2	3	4	5	6	7	8	<- Aı

<- Array Indices

Array Length = 9

First Index = 0

Last Index = 8