מטלת מנחה 16 - אלגברה לינארית 1

328197462

31/01/2023

שאלה 1

סעיף א

$$A = egin{pmatrix} 0 & a & 1 \ a & 0 & -1 \ 0 & 0 & a \end{pmatrix}$$
 נביע באמצעות a את הפולינום האופייני של

$$p(t) = |tI - A| = \begin{vmatrix} t & -a & -1 \\ -a & t & 1 \\ 0 & 0 & t-a \end{vmatrix} \stackrel{R_3 \text{ 'einin be}}{=} (t-a) \begin{vmatrix} t & -a \\ -a & t \end{vmatrix} = (t-a)(t^2-a^2) = (t-a)^2(t+a)$$

הערכים העצמיים של המטריצה יהיו $\lambda=a$ בריבוי אלגברי 3 כאשר a=0, ובמקרה אחר יהיו $\lambda=a$ בריבוי אלגברי 2 בריבוי אלגברי 3 בריבוי אלגברי 1.

- A כדון בריבוי הגיאומטרי של $\lambda=0$ כאשר $\lambda=0$ כאשר $\lambda=0$ אוו ממד מרחב האפס של בריבוי הגיאומטרי של בריבוי $\lambda=0$

11.5.4 לפי 1.6.4 מסדר A נקבל A=0 נקבל פוי A=0 לפי הגיאומטרי של A=0 הריבוי הגיאומטרי של A=0 לפי 1.5.4 לפי a=0 המטריצה לא לכסינה כאשר

כעת נדון בריבויים הגיאומטריים של הערכים העצמיים של A במקרה הנוסף. הריבוי הגיאומטרי של הערכים העצמיים של A במקרה הנוסף. יש בממד העצמי וקטור שאינו וקטור האפס) ולכל היותר (לפי 11.5.3) כריבוי האלגברי - 1. נסיק כי בסך הכל הריבוי הגיאומטרי של

הריבוי הגיאומטרי של $aI-A=\begin{pmatrix} a&-a&-1\\-a&a&1\\0&0&0\end{pmatrix}$ מחשב את דרגת המטריצה: $aI-A=\begin{pmatrix} a&-a&-1\\-a&a&1\\0&0&0\end{pmatrix}$

$$\rho(aI - A) = \rho \begin{pmatrix} a & -a & -1 \\ -a & a & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \rho \begin{pmatrix} a & -a & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1$$

ושוב אווה האלגברי העצמיים הריבוי הגיאומטרי של $\lambda=a$ הוא 2. במקרה זה, קיבלנו שעבור כל הערכים העצמיים הריבוי האלגברי שווה $a \neq 0$ לכסינה עבור A לריבוי הגיאומטרי ולכן לפי 11.5.4 לפינה עבור

סעיף ב

 $\lambda=-1$ נקבל $\lambda=-1$ נקבל $\lambda=-1$ הערכים העצמיים של המטריצה $\lambda=1$ הם $\lambda=1$ בר"א ור"ג $\lambda=1$ הערכים העצמיים של המטריצה $\lambda=1$ בר"א ור"ג $\lambda=1$ בר"א ור"ג בר

$$D=egin{pmatrix}1&0&0\\0&-1&0\\0&0&-1\end{pmatrix}$$
 לכן, A לכסינה ודומה למטריצה

כמו כן, קיים במרחב העצמי של 1=1 וקטור השונה מאפס v_1 כך ש $v_1=v_1$, וקיימים במרחב העצמי של $\lambda=1$ שני וקטורים בלתי $Av_2 = -v_2, Av_3 = -v_3$ תלויים לינארית ושונים מאפס (כי ממד המרחב הוא v_2, v_3 (2 המקיימים

. הוקטור עצמיים שנה לא תלוי לינארית ב v_2,v_3 לפי 11.2.4 ולכן השלשה (v_1,v_2,v_3) בת"ל בת שלושה וקטורים עצמיים. $AD = P^{-1}AP$ 11.3.7 המטריצה $P = (v_1 \mid v_2 \mid v_3)$ הפיכה ומתקיים לפי נמצא ערכים מתאימים ל v_1 . עלינו למצוא פתרון לא טריוואלי v_1 למערכת ההומוגנית v_1 . עלינו למצוא פתרון לא טריוואלי v_1 למערכת ההומוגנית אימים ל

$$I - A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

-I-A פותר משוואה זו. באופן דומה נדרג את $v_1 = (-1,1,0)$ הוקטור

$$-I - A = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $.v_2=(1,1,0),v_3=(-1,0,1)$ נסמן $.v_2=(1,1,0),v_3=(-1,0,1)$ ויה פתרונות למשוואה. ניקח למשו

נמצא את המטריצה ההופכית P^{-1} . מציאתה תסייע לנו בחישוב.

$$(P|I) = \begin{pmatrix} -1 & 1 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_3} \begin{pmatrix} -1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{pmatrix} -1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \to \frac{R_1 \to R_1}{R_2 \to \frac{1}{2}R_2} \begin{pmatrix} 1 & -1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{pmatrix} 1 & 0 & 0 & -0.5 & 0.5 & -0.5 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (I|P^{-1})$$

(נקבל $A = PDP^{-1}$ נקבל $A = PDP^{-1}$ ולכן:

$$\begin{split} A^{2023} &= (PDP^{-1})^{2023} = (PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1}) \underset{\text{Tiching}}{=} PD(P^{-1}P)D(P^{-1}P) \cdots (P^{-1}P)DP^{-1} = PD^{2023}P^{-1} = \\ &= \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^{2023} \begin{pmatrix} -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \\ &= \begin{pmatrix} -1 & -1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \end{split}$$