SOFTWARE DESIGN DOCUMENT (SDD)

FOR THE

C3 (Crafting Cost Calculator)

Prepared for: **Dr Nur Atiqah Sia Binti Abdullah**

Prepared by:

Name	Student Id
 Alif Muqri Bin Hazmi Nurul Farhanah Binti Fazid Syakir Zufayri Bin Azhar Mohammad Amirul Luqman Bin Shamshi 	2018413956 2018439772 2018223854 2018298154

AUTHORIZED BY:	Mohammad Amirul Luqman Bin Shamshi	APPROVED BY:	Dr Nur Atiqah Sia Binti Abdullah
Date:	14/6/2020	Date:	14/6/2020

DOCUMENT APPROVAL

REVISION	NAME	DATE
Verified By: <u>AlifMuqri</u> PROJECT LEADER	Alif Muqri Bin Hazmi	14/6/2020
Authenticated By: <u>Amirul Cuqman</u> PROJECT MANAGER	Mohammad Amirul Luqman Bin Shamshi Nurul Farhanah Binti Fazid Syakir Zufayri Bin Azhar	14/6/2020
Approved By: Client	Dr Nur Atiqah Sia Binti Abdullah	14/6/2020

Software : Google Document

Archiving Place: /C³/Software Engineering/SDD

Copies Available: DOC and PDF

TABLE OF CONTENT

DOCUMENT APPROVAL	1
1 SCOPE	4
1.1 Identification	4
1.2 System Overview	4
1.3 Document Overview	5
2 REFERENCED MATERIAL	5
3 PRELIMINARY DESIGN	6
3.0 C3 Overview	6
3.1 Sequence Diagram	6
3.2 Class diagram	11
4 DETAILED DESIGN	12
4.1 C3 Structural Diagram	12
4.1.1 5userInput()	12
4.1.2 verifyInputs()	12
4.1.3 displayError()	13
4.1.4 rateGSC()	13
4.1.5 calcUFP()	14
4.1.6 verifyInputs()	14
4.1.7 displayError()	15
4.1.8 calcAFP()	15
4.1.9 calcFP(AFP, UFP)	15
4.1.10 verify()	16
4.1.11 displayError()	16
4.1.12 getLanguage()	16
4.1.13 calcKLOC(FP)	17
4.1.14 verify()	17
4.1.15 displayError()	18
4.1.16 getType()	18
4.1.17 verifyInputs()	18
4.1.18 displayError()	19
4.1.19 getSalary()	19
4.1.20 calcEffort(appType, kloc)	19
4.1.21 calcTimeDev(effort,AppType)	20
4.1.22 calcNumStaffMonth(effort,timedev)	20
4.1.23 calcNumStaffWhole(staffmonth,timedev)	20

4.1.24 calcCostEstimation(salary,staffwhole,timedev)	21
4.1.25 displayResults(fp,effort,timedev,staffmonth,staffwhole,cost)	21
4.1.26 saveCalculations(result)	21
5 DATA	22
5.1 Data input	22
5.1.1 userInputs[3] for UnadjustedFunctionPoint	22
5.1.2 userOutputs[3] for UnadjustedFunctionPoint	22
5.1.3 userInquiries[3] for UnadjustedFunctionPoint	22
5.1.4 internalFiles[3] for UnadjustedFunctionPoint	22
5.1.5 externalFiles[3] for UnadjustedFunctionPoint	22
5.1.6 GSC[14] for AdjustedFunctionPoint	22
5.1.7 language for selectLanguage	22
5.1.8 appType for appType	22
5.2 Data Output	23
5.2.1 Function point	23
5.2.2 Effort	23
5.2.3 Time development	23
5.2.4 Number of staff for a month	23
5.2.5 Number of staff for whole project	23
5.2.6 Cost estimation	23
6 REQUIREMENT TRACEARILITY	24

1 SCOPE

This section shall be divided into the following paragraphs:

1.1 Identification

System Number

System Name : Crafting Cost Calculator

System Abbreviation: C³

C³ Number : N/A C³ Name : N/A C³ Abbreviation : N/A

1.2 System Overview

Purpose of the system:

The system name is "Crafting Cost Calculator(C3).C3 was developed for everyone who is working on a project that requires a number of months and cost estimations to deliver a complete project. It can calculate the cost of the production required to make the project and the duration of the project to be done. Other than that, it also will estimate the number of people that are required to develop the project.

The system shall:

- Accept the number of user input and outputs, user inquiries number of internal files and number of external files.
- Accept the rate entered by user for 14 General System Characteristic(GSC)
- Calculate the Unadjusted Function Points (UFP), Adjusted Function Point (AFP) and Function Points(FP) based on the user rating for the General System Characteristic(GSC).
- Accept the language chosen by the user.
- Calculate KLOC based on language chosen and effort.
- Accept the application type chosen by the user.
- Calculate the effort and time development required based on the chosen type of application.
- Calculate the number of staff required for a month and the number of staff required for the whole project based on the effort and time development of the project.
- Calculate the cost estimation for the project.
- Display the result of all the calculations for the user.
- Save the result of the calculation in a file

1.3 Document Overview

This document describes the interaction between the actors with the C³. Analysis of the requirement applying to C³ relies on ODAD UML notation using the WhiteStar UML tool and Star UML tool. Certain elements resulting from this analysis are presented in this document.

Chapter 1 Describe the Scope, identification, system overview, document overview.

Chapter 2 Describe the Referenced documents, government documents and non-government documents

Chapter 3 Describe the Preliminary Design

Chapter 4 Describe the Detail Design

Chapter 5 Describe the Data

Chapter 6 Describe Requirement Traceability

2 REFERENCED MATERIAL

- https://eusmartcities.eu/sites/default/files/201709/EIP_RequirementsSpecification GLA %20V2-5.pdf
- http://groups.umd.umich.edu/cis/course.des/cis375/projects/fp99/main.html
- https://www.javatpoint.com/cocomo-model
- https://ufuture.uitm.edu.my

3 PRELIMINARY DESIGN

3.0 C³ Overview

3.1 Sequence Diagram

3.1.1 User Inputs Unadjusted Function Point

3.1.2 Calculation of Function Point

3.1.3 Select Language and Calculate KLOC

3.1.4 Select Application Type

3.1.5 Enter Salary

3.1.6 Perform Calculation

3.1.7 Display Results of Calculations

3.1.8 User inputs Adjusted Function Point

3.2 Class diagram

4 DETAILED DESIGN

4.1 C³ Structural Diagram

4.1.1 5userInput()

Methods purpose: To receive value in unadjusted function point input by user

Argument: None
Return value: None
Algorithm: BEGIN

INPUT user inputs number for userInputs STORE the user input in userInputs[] variable

INPUT user inputs userOutputs

STORE the user input in userOutputs[] variable

INPUT user inputs userInquiries

STORE the user input in userInquiries[] variable

INPUT user inputs internalFiles

STORE the user input in internalFiles[] variable

INPUT user inputs externalFiles

STORE the user input in externalFiles[] variable

END

4.1.2 verifyInputs()

Methods purpose: To check existence value in unadjusted function point input by user

Argument: None Return value: None Algorithm: BEGIN

Set check to true

FOR A IN 0 to 2

IF userInputs[A] IS NULL
Set check to false

END IF

END FOR

FOR A IN 0 to 2

IF userOutputs[A] IS NULL

Set check to false

END IF

END FOR

FOR A IN 0 to 2

IF userInquiries[A] IS NULL

Set check to false

END IF

END FOR

FOR A IN 0 to 2

IF internalFiles[A] IS NULL

Set check to false

END IF

END FOR

FOR A IN 0 to 2

IF externalFiles[A] IS NULL
Set check to false

END IF

END FOR

IF check IS false

Call function displayError()

END IF

END

4.1.3 displayError()

Method purpose: To display error message for unadjusted function point existence if user does

not enter required inputs

Argument: None
Return value: None
Algorithm: BEGIN

Display "Please input value for unadjusted function point"

END

4.1.4 rateGSC()

Methods purpose: To receive value in adjusted function point input by user

Argument: None Return value: None Algorithm: BEGIN

INPUT user rate number for GSC

STORE the user input in GSC[] variable

4.1.5 calcUFP()

Method purpose: To calculate unadjusted function point

Argument: None

Return value: double ufp Algorithm: BEGIN

El=(userInputs[0]*3)+(userInputs[1]*4)+(userInputs[2]*6)
EO=(userOutputs[0]*4)+(userOutputs[1]*5)+(userOutputs[2]*7)
EQ=(userInquiries[0]*3)+(userInquiries[1]*4)+(userInquiries[2]*6)
ILF=(internalFiles[0]*7)+(internalFiles[1]*10)+(internalFiles[2]*15)
EIF=(externalFiles[0]*5)+(externalFiles[1]*7)+(externalFiles[2]*10)

ufp=EI+EO+EQ+ILF+EIF

RETURN ufp

END

4.1.6 verifyInputs()

Methods purpose: To check existence value in adjusted function point input by user

Argument: None Return value: None Algorithm: BEGIN

Set check to true FOR A IN 0 to 13

IF GSC[A] IS NULL AND GSC[A] >=0 AND GSC[A] <=5

Set check to false

END IF

END FOR

IF check IS false

Call function displayError()

END IF

4.1.7 displayError()

Method purpose: To display error message for adjusted function point existence if user does not

enter required inputs

Argument: None Return value: None **BEGIN** Algorithm:

Display "Please rate General System Characteristic(GSC)"

END

4.1.8 calcAFP()

Method purpose: To calculate Adjusted Function Point

Argument : None Return value : double afp **BEGIN** Algorithm

> Set total to zero FOR A IN 0 to 13

> > total+=GSC[A]

END FOR

afp=0.65+(0.01*total)

RETURN afp

END

4.1.9 calcFP(AFP, UFP)

Method purpose: To calculate Function Point

Argument: afp:double from calcAFP() while ufp:double from calcUFP()

Return value: double fp Algorithm: **BEGIN**

fp= AFP * UFP

RETURN fp

4.1.10 verify()

Method purpose: To verify existence choice of language input by user.

Argument: None Return value: None Algorithm: BEGIN

Set check to true
IF language IS NULL
Set check to false

END IF

IF check IS false

Call function displayError()

END IF

END

4.1.11 displayError()

Method purpose: To display error message for language existence if user does not enter

required inputs
Argument: None
Return value: None
Algorithm: BEGIN

Display "Choose Language"

END

4.1.12 getLanguage()

Method purpose: To get language from user input

Argument: None

Return value: String language

Algorithm: BEGIN

ENTER language RETURN language

4.1.13 calcKLOC(FP)

Method purpose: To calculate KLOC based on selected language

Argument: FP:int from calcFP(AFP,UFP)

Return value: int kloc Algorithm: BEGIN

CASE language OF

: loc = 38Access : loc = 107Basic С : loc = 128C++ : loc = 53COBOL : loc = 107Delphi : loc = 29: loc = 53Java Machine Language : loc = 640

Visual Basic 5 : loc = 29

ENDCASE

kloc= FP*loc/1000 RETURN kloc

END

4.1.14 verify()

Method purpose: To verify existence choice of application type by user.

Argument: None Return value: None Algorithm: BEGIN

Set check to true
IF appType IS NULL
Set check to false

END IF

IF check IS false

Call function displayError()

END IF

4.1.15 displayError()

Method purpose: To display error message for language existence if user does not enter

required inputs
Argument: None
Return value: None
Algorithm: BEGIN

Display "Choose Application Type"

END

4.1.16 getType()

Method purpose: To get application type from user input

Argument: None

Return value: String appType

Algorithm: BEGIN

ENTER appType RETURN appType

END

4.1.17 verifyInputs()

Methods purpose: To check existence value for salary input by user

Argument: None Return value: None Algorithm: BEGIN

Set check to true
IF empSalary IS NULL
Set check to false

END IF

IF check IS false

Call function displayError()

END IF

4.1.18 displayError()

Method purpose: To display error message for empSalary existence if user does not enter

required inputs
Argument: None
Return value: None
Algorithm: BEGIN

Display "Please enter the salary for each employee"

END

4.1.19 getSalary()

Method purpose: To get language from user input

Argument: None

Return value: double empSalary

Algorithm: BEGIN

ENTER empSalary RETURN empSalary

END

4.1.20 calcEffort(appType, kloc)

Method purpose: To calculate the effort for the project based on the type of application.

Argument: appType:String from getType() and kloc:int from calcKLOC(fp)

Return value: double effort

Algorithm: BEGIN

CASE appType OF

Organic : a = 2.4Semidetached : a = 3.0Embedded : a = 3.6

ENDCASE

CASE appType OF

Organic : b = 1.05Semidetached : b = 1.12Embedded : b = 1.20

ENDCASE

effort= a(kloc) ^ b

RETURN effort

4.1.21 calcTimeDev(effort,AppType)

Method purpose: To calculate the time development based on the type of application

Argument: effort:double from calcEffort(appType,kloc)

Return value: double timedev

Algorithm: BEGIN

CASE appType OF

Organic : c = 2.5Semidetached : c = 2.5Embedded : c = 2.5

ENDCASE

CASE appType OF

Organic : d = 0.38Semidetached : d = 0.35Embedded : d = 0.32

ENDCASE

timedev= c(effort) ^d

RETURN timedev

END

4.1.22 calcNumStaffMonth(effort,timedev)

Method purpose: To calculate the number of staff required in a month.

Argument: effort:double from calcEffort(appType,kloc) and timedev:double from

calcTimeDev(effort,appType)
Return value: double staffmonth

Algorithm: BEGIN

staffmonth= effort / timedev

RETURN staffmonth

END

4.1.23 calcNumStaffWhole(staffmonth,timedev)

Method purpose: To calculate the number of staff required for the whole project.

Argument: staffmonth:double from calcStaffMonth(effort,timedev) and timedev:double from

calcTimeDev(effort,appType)
Return value: double staffwhole

Algorithm: BEGIN

staffwhole= staffmonth / timedev

RETURN staffwhole

4.1.24 calcCostEstimation(salary,staffwhole,timedev)

Method purpose: To calculate the number of staff required for the whole project.

Argument:salary:double from getSalary(), staffwhole:double from

calcStaffWhole(staffmonth,timedev) and timedev:double from calcTimeDev(effort,appType)

Return value: double cost Algorithm: BEGIN

cost=salary*staffwhole*timedev

RETURN cost

END

4.1.25 displayResults(fp,effort,timedev,staffmonth,staffwhole,cost)

Method purpose: To display the results of the calculation

Argument: fp:double from calcFP(AFP,UFP) ,salary:double from getSalary(), staffwhole:double

from calcStaffWhole(staffmonth,timedev),staffwhole:double from

calcStaffWhole(staffmonth,timedev),timedev:double from calcTimeDev(effort,appType) and

cost:double from calcCostEstimation(salary,staffwhole,timedev).

Return value: double cost

Return value: None Algorithm: BEGIN

Display fp, effort ,salary, timedev,staffmonth,staffwhole ,cost

END

4.1.26 saveCalculations(result)

Method purpose: To save all the calculations done by the user.

Argument: result from displayResults(fp,effort,timedev,staffmonthstaffwhole,cost)

Return value: None Algorithm: BEGIN

SAVE result in file

5 DATA

5.1 Data input

5.1.1 userInputs[3] for UnadjustedFunctionPoint

- Number start from 0
- Operator include multiplication and addition

5.1.2 userOutputs[3] for UnadjustedFunctionPoint

- Number start from 0
- Operator include multiplication and addition

5.1.3 userInquiries[3] for UnadjustedFunctionPoint

- Number start from 0
- Operator include multiplication and addition

5.1.4 internalFiles[3] for UnadjustedFunctionPoint

- Number start from 0
- Operator include multiplication and addition

5.1.5 externalFiles[3] for UnadjustedFunctionPoint

- Number start from 0
- Operator include multiplication and addition

5.1.6 GSC[14] for AdjustedFunctionPoint

- Number from 0 to 5
- Operator include multiplication and addition

5.1.7 language for selectLanguage

- Choose the language between Access, Basic, C, C++, COBOL, Delphi, Java, Machine Language and Visual Basic 5

5.1.8 appType for appType

Choose the appType between Organic, Semidetached and Embedded

5.1.9 empSalary for Salary

Number start from 0

5.2 Data Output

5.2.1 Function point

- The answer calculated after performing multiplication of ufp and afp

5.2.2 Effort

- The answer calculated after performing multiplication and exponent of KLOC, value of a and b based on appType

5.2.3 Time development

- The answer calculated after performing multiplication of effort, value of a and b based on appType

5.2.4 Number of staff for a month

- The answer calculated after performing division between effort and time development

5.2.5 Number of staff for whole project

 The answer calculated after performing division between number of staff in a month and time development

5.2.6 Cost estimation

- The answer calculated after performing multiplication of salary, number of staff for the whole project and time development.

6 REQUIREMENT TRACEABILITY

REQUIREMENT

Source	Allocated	Description
Lecture Notes of StarUML using UML	SRS_REQ_1	Enter inputs for unadjusted function point(ufp)
Lecture Notes of StarUML using UML	SRS_REQ_2 SRS_REQ_2_1 SRS_REQ_2_2 SRS_REQ_2_3 SRS_REQ_2_4 SRS_REQ_2_5 SRS_REQ_2_5 SRS_REQ_2_6 SRS_REQ_2_7 SRS_REQ_2_7 SRS_REQ_2_9 SRS_REQ_2_9 SRS_REQ_2_10 SRS_REQ_2_11 SRS_REQ_2_12	Enter inputs for adjusted function point(afp)
Lecture Notes of StarUML using UML	SRS_REQ_3	Calculate for unadjusted function point(ufp)

	• SRS_REQ_3_16	
Lecture Notes of StarUML using UML	SRS_REQ_4 • SRS_REQ_4_1	Calculate for adjusted function point(afp)
Lecture Notes of StarUML using UML	SRS_REQ_5 • SRS_REQ_5_1	Calculate for function point(fp)
Lecture Notes of StarUML using UML	SRS_REQ_6 • SRS_REQ_6_1	Select language
Lecture Notes of StarUML using UML	SRS_REQ_7 • SRS_REQ_7_1	Calculate KLOC
Lecture Notes of StarUML using UML	SRS_REQ_8 • SRS_REQ_8_1	Select application type
Lecture Notes of StarUML using UML	SRS_REQ_9 • SRS_REQ_9_1	Calculate effort based on type of application
Lecture Notes of StarUML using UML	SRS_REQ_10 • SRS_REQ_10_1	Calculate time development based on type of application
Lecture Notes of StarUML using UML	SRS_REQ_11 • SRS_REQ_11_1	Calculate number of staff required in a month
Lecture Notes of StarUML using UML	SRS_REQ_12 • SRS_REQ_12_1	Enter salary for a person per month
Lecture Notes of StarUML using UML	SRS_REQ_13 • SRS_REQ_13_1	Calculate number of staff required in the project
Lecture Notes of StarUML using UML	SRS_REQ_14 • SRS_REQ_14_1	Calculate cost estimation for the project
Lecture Notes of StarUML using UML	SRS_REQ_15 • SRS_REQ_15_1	Display result of calculation of the project for user
Lecture Notes of StarUML using UML	SRS_REQ_16 • SRS_REQ_16_1	Save result of calculations for user in file

DESIGN

Source	Allocated	Description
Lecture Notes of StarUML using UML	SRS_DES_1	Enter inputs for unadjusted function point(ufp)
Lecture Notes of StarUML using UML	SRS_DES_2 SRS_DES_2_1 SRS_DES_2_2 SRS_DES_2_3 SRS_DES_2_4 SRS_DES_2_5 SRS_DES_2_6 SRS_DES_2_6 SRS_DES_2_7 SRS_DES_2_7 SRS_DES_2_8 SRS_DES_2_9 SRS_DES_2_10 SRS_DES_2_11 SRS_DES_2_12	Enter inputs for adjusted function point(afp)
Lecture Notes of StarUML using UML	SRS_DES_3	Calculate for unadjusted function point(ufp)
Lecture Notes of StarUML using UML	SRS_DES_4 • SRS_DES_4_1	Calculate for adjusted function point(afp)

Lecture Notes of StarUML using UML	SRS_DES_5 • SRS_DES_5_1	Calculate for function point(fp)
Lecture Notes of StarUML using UML	SRS_DES_6 • SRS_DES_6_1	Select language
Lecture Notes of StarUML using UML	SRS_DES_7 • SRS_DES_7_1	Calculate KLOC
Lecture Notes of StarUML using UML	SRS_DES_8 • SRS_DES_8_1	Select application type
Lecture Notes of StarUML using UML	SRS_DES_9 • SRS_DES_9_1	Calculate effort based on type of application
Lecture Notes of StarUML using UML	SRS_DES_10 • SRS_DES_10_1	Calculate time development based on type of application
Lecture Notes of StarUML using UML	SRS_DES_11 • SRS_DES_11_1	Calculate number of staff required in a month
Lecture Notes of StarUML using UML	SRS_DES_12 • SRS_DES_12_1	Enter salary for a person per month
Lecture Notes of StarUML using UML	SRS_DES_13 • SRS_DES_13_1	Calculate number of staff required in the project
Lecture Notes of StarUML using UML	SRS_DES_14 • SRS_DES_14_1	Calculate cost estimation for the project
Lecture Notes of StarUML using UML	SRS_DES_15 • SRS_DES_15_1	Display result of calculation of the project for user
Lecture Notes of StarUML using UML	SRS_DES_16 • SRS_DES_16_1	Save result of calculations for user in file

TEST

Source	Allocated	Description
Lecture Notes of StarUML using UML	SRS_TEST_1	Enter inputs for unadjusted function point(ufp)
Lecture Notes of StarUML using UML	SRS_TEST_2 SRS_TEST_2_1 SRS_TEST_2_2 SRS_TEST_2_3 SRS_TEST_2_4 SRS_TEST_2_5 SRS_TEST_2_5 SRS_TEST_2_6 SRS_TEST_2_7 SRS_TEST_2_7 SRS_TEST_2_9 SRS_TEST_2_9 SRS_TEST_2_10 SRS_TEST_2_11 SRS_TEST_2_11	Enter inputs for adjusted function point(afp)
Lecture Notes of StarUML using UML	SRS_TEST_3	Calculate for unadjusted function point(ufp)
Lecture Notes of StarUML using UML	SRS_TEST_4 • SRS_TEST_4_1	Calculate for adjusted function point(afp)

Lecture Notes of StarUML using UML	SRS_TEST_5 • SRS_TEST_5_1	Calculate for function point(fp)
Lecture Notes of StarUML using UML	SRS_TEST_6 • SRS_TEST_6_1	Select language
Lecture Notes of StarUML using UML	SRS_TEST_7 • SRS_TEST_7_1	Calculate KLOC
Lecture Notes of StarUML using UML	SRS_TEST_8 • SRS_TEST_8_1	Select application type
Lecture Notes of StarUML using UML	SRS_TEST_9 • SRS_TEST_9_1	Calculate effort based on type of application
Lecture Notes of StarUML using UML	SRS_TEST_10 • SRS_TEST_10_1	Calculate time development based on type of application
Lecture Notes of StarUML using UML	SRS_TEST_11 • SRS_TEST_11_1	Calculate number of staff required in a month
Lecture Notes of StarUML using UML	SRS_TEST_12 • SRS_TEST_12_1	Enter salary for a person per month
Lecture Notes of StarUML using UML	SRS_TEST_13 • SRS_TEST_13_1	Calculate number of staff required in the project
Lecture Notes of StarUML using UML	SRS_TEST_14 • SRS_TEST_14_1	Calculate cost estimation for the project
Lecture Notes of StarUML using UML	SRS_TEST_15 • SRS_TEST_15_1	Display result of calculation of the project for user
Lecture Notes of StarUML using UML	SRS_TEST_16 • SRS_TEST_16_1	Save result of calculations for user in file