

$$\frac{\mathcal{E}_{xercico} \cdot \lambda}{|x_{x}|} = \frac{1}{|x_{y}|} \cdot |x_{y}| = \frac{1}{|x_{$$

$$Z_{0} = \frac{1}{140} ; |q_{0}| . \lambda$$

$$Z_{0} = q_{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$Q_{1} = 2 - \sum_{i=1}^{3} \langle 2q_{1}, 2; \rangle z_{i} = 2q_{1} - \langle 2q_{1}, 2; \rangle z_{1} - \langle 2q_{1}, 2; \rangle z_{2} - \langle 2q_{1}, 2; \rangle z_{2} - \langle 2q_{1}, 2; \rangle z_{1} - \langle 2q_{1}, 2; \rangle z_{2} - \langle 2q_{1}, 2; \rangle z_{1} - \langle 2q_{1}, 2; \rangle z_{2} - \langle 2q_{1}, 2; \rangle z_{1} - \langle 2q_{1}, 2; \rangle z_{2} - \langle 2q_{1}, 2; \rangle z_{2} - \langle 2q_{1}, 2; \rangle z_{1} - \langle 2q_{1}, 2; \rangle z_{2} - \langle 2q_{1}, 2; \rangle z_{1} - \langle 2q_{1}, 2; \rangle z_$$

$$Z_{3} = \frac{2}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$Z_{3} = \frac{2}{2} \times \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$Z_{2} = \frac{\sqrt{2}}{\sqrt{2}} \cdot X$$

53 = 1/2 × (X2 - 7)

5 = 15 - 315 X 2

$$x_3 = X^2 ; \quad y_3 = x_3 - \langle x_3, x_3 \rangle x_1 - \langle x_3, x_2 \rangle x_2$$

$$= X^2 - \frac{1}{2} \langle x^2, \lambda \rangle - \frac{3}{2} \langle x^2, x_3 \rangle x_3$$

$$= x^{2} - \frac{1}{4} < x^{2}, \lambda > - \frac{3}{2} < x^{2}, x > x$$

$$= x^{2} - \frac{1}{4} < x^{2}, \lambda > - \frac{3}{2} < x^{2}, x > x$$

$$= x^{2} - \frac{1}{4} < x^{2}, \lambda > - \frac{3}{2} < x^{2}, x > x$$

$$= x^{2} - \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} = 0$$

$$= x^{2} - \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} = 0$$

$$= x^{2} - \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} = 0$$

$$= x^{2} - \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} + \frac{1}{4} < x^{2} = 0$$

$$= x^{2} - \frac{1}{4} < x^{2} + \frac$$

$$= \sqrt{\left|\frac{t^2 - \frac{1}{3}t^4 - \frac$$

$$\frac{47}{12} : \int_{-1}^{1} (x_{1} - \frac{3}{4}) \frac{1}{4} dx$$

$$= \iint_{\mathbb{R}^{2}} \{t^{2} - \frac{1}{2}\}_{q} dt$$

$$\langle x^{3}, x \rangle = \int_{-1}^{1} t^{3} dt =$$

$$\langle x^2, x \rangle = \int_{-1}^{1} \frac{t^3 dt}{t^3} = \left[\frac{t^4}{4} \right]$$

$$\langle x^2, 1 \rangle = \int_{1}^{1} t^2 dt = \left[\frac{t^3}{3} \right]_{1}^{1} = \frac{2}{3}$$

$$\Rightarrow ; \langle X_1 \rangle = \int_{-1}^{1} t \, dt = \left[\frac{t^2}{2} \right]_{-1}^{1} = 0$$

$$|X_1| > = \int_{-1}^{1} t \, dt = \left[\frac{t^a}{a} \right]_{-1}^{1} = C$$

$$(x,1) = \int_{-1}^{1} t dt = \left[\frac{t^{2}}{2}\right]_{-1}^{1} = ($$

Exercise 3:

1. Mq {e1...en} bo.n.:

Comme les (ei) sont

untaire, et que pour le p. s.

On a alors
$$1 = \frac{1}{2} < e_i e_j^2$$

> conclure que $(e_i e_j^2) = 0$ st

irj

1. Mq {e1...en} base de E

pour mq dim(E) =n

Pour x dans E, mq x=y avec

y= $\sum_{i=1}^{n} < e_i e_j^2$

> A = $\sum_{i=1}^{n} < e_i e_j^2 = 0$, $e_i, ..., e_n$ est use tamble attrograble dense there.

D'où $\forall_i \neq k$ $< e_i, e_j^2 = 0$, $e_i, ..., e_n$ est use tamble attrograble dense there.

D'où $\forall_i \neq k$ $< e_i, e_j^2 = 0$, $e_i, ..., e_n$ est use tamble attrograble dense there.

D'où $\forall_i \neq k$ $< e_i, e_j^2 = 0$, $e_i, ..., e_n$ est use tamble attrograble dense there.

D'où $\forall_i \neq k$ $< e_i, e_j^2 = 0$, $e_i, ..., e_n$ est use tamble attrograble dense there.

D'où $\forall_i \neq k$ $< e_i, e_j^2 = 0$, $e_i, ..., e_n$ est use tamble attrograble dense there.

Calculer pour tout entier k dans [an, e_n, e_n] est use tamble agénicative de $e_i, ..., e_n$.

Calculer pour tout entier k dans [an, e_n] est use tamble agénicative de $e_i, ..., e_n$.

Soit $x \in E$ on Rose $y = \sum_{i=1}^{n} < x_i, e_i > e_i$ donc $y \in v$ excit $e_i, ..., e_n$.

Soit $x \in E$ on Rose $y = \sum_{i=1}^{n} < x_i, e_i > e_i$ donc $y \in v$ excit $e_i, ..., e_n$.

On vert $mq = x = y$

the ETI, n I, $e_i, e_i > e_i < \sum_{i=1}^{n} < x_i, e_i > e_i$ $e_i > e_i > e_i$ $e_i > e_$

Exercice 4:
4. U+V LO-V <=> <u+v, o-v="">=0 <=> <u,o>+ <o,-v>+ <v,o>- <v,v>=0</v,v></v,o></o,-v></u,o></u+v,>
<=> \(\overline{\psi} \end{array} = \(\cap \) <=> \(\overline{\psi} \end{array} = \(\overline{\psi} \overline{\psi} \overline{\psi} \end{array} = \(\overline{\psi} \overline{\psi} \overline{\psi} \overline{\psi} \end{array} = \(\overline{\psi} \o
&. + 2 € €, < f(x), f(x)>= 1 ² < x, x>; f(x) ² = 1 ² x ² Donc f(x) = 1 x
<=> 1. +(x,y) = 2 A= f(x+y) 2- f(x) 2- f(y) 1= < f(x+y), f(x+y)> - < f(x), f(x)> - < f(y), f(y)>
= & <4(x), \$(y)> (+ ext endo dour (miatre)
8. Comme + similitude: A = L2 x+y 1 - L2 x 1 - L2
lyll'= 212 < 2,y > . Dr 00 + 2,y , < 3(x), f(y)> = 12 < 2,y>
3. 2) On appose t similitude: take, 18(2) = 1/121
En particulier par se unitaire, alors Itivall = 1,00 (non whe, 3 se, that =0)
· Scient a et y to aly, on a < x,y>=0 avec la q.2, on a <t(x),t(y)>=0</t(x),t(y)>
donc flow) Lfly)
b) On suppose I est non whe et I conserve l'orthogonalité
(ey,,en) base orthonormale de E (orthogonale et vitaire).
₩ij <e;+eg, e;-ej=""> = ei ²- ej ²= /-/=0</e;+eg,>
Donc e, + e, Le, - e,.
Comme & conserve l'orthogonalik, alors f(e; +e;) Lf(e; -e;) =t(e;) +f(e;) Lf(e;)-f(e;)
D'après 1. f(e;) = f(e;) ti,;
, and the second
c) On a ti, les litleill sont Egaux, donc ti litleill-B 30
Mais \$40, car shon ti. If(ei)11=0; on avait flei)=0 or thon while.
On soit que (e1,,en) base, tree, x = 2 xie;
121

$$\|x\|^{2} = \|\sum_{i=1}^{n} x_{i}e_{i}\|^{2} = \sum_{i=1}^{n} \|x_{i}e_{i}\|^{2} \quad \text{car base orthogonale}$$

$$= \sum_{i=1}^{n} x_{i}^{2} \|e_{i}\|^{2} = \sum_{i=1}^{n} x_{i} \quad \text{car b.o.n}$$

$$\|f(x_{i})\|^{2} = \|f(\sum_{i=1}^{n} x_{i}e_{i})\|^{2} = \|\sum_{i=1}^{n} x_{i}^{2} f(e_{i})\|^{2} \quad \text{car f.endo.}$$

$$= \sum_{i=1}^{n} x_{i}^{2} \|f(e_{i})\|^{2} \quad \text{car } (f(e_{i})) \text{ base orthogonale}$$

$$C = \sum_{i=1}^{n} x_{i}^{2} \|f(e_{i})\|^{2} \quad \text{car } (f(e_{i})) \text{ base orthogonale}$$

$$C = \sum_{i=1}^{n} x_{i}^{2} \|f(e_{i})\|^{2} \quad \text{car } (f(e_{i})) \text{ base orthogonale}$$

$$Q = \sum_{i=1}^{n} x_i^{i} \beta^{i} = \beta^{i} \sum_{i=1}^{N} x_i^{i} = \beta^{i} \|x\|^{i}$$

prop:
$$E = A \otimes A^{\perp}$$

($x, ..., x$) Where $y = \frac{x}{|y_{m}|}$; $x = \frac{y}{y} = \frac{y}{y}$.

 $y = \frac{x}{x}$. $\sum_{i=1}^{n} (x_{i}, x_{i}) > \frac{x}{|y_{m}|}$
 $y = \frac{x}{x}$. $\sum_{i=1}^{n} (x_{i}, x_{i}) > \frac{x}{|y_{m}|}$
 $y = \frac{x}{x}$. $\sum_{i=1}^{n} (y_{m})^{2}$ (x_{m}, y_{m}) by

($y, ..., y_{m}$) box cathogorale

($x_{m}, ..., y_{m}$) box cathogorale

($x_{m}, ..., y_{m}$)

Def. $E = A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A \otimes A^{\perp}$
 $A \otimes A \otimes A \otimes A^{\perp}$

A= { = E, tyeA, < 2, y>=0}

Gracia S:

$$w: \Gamma_{a,b} \rightarrow \mathbb{R}$$
 continue of $\forall t \in \Gamma_{a,b} \rightarrow \infty$, $w(t) > 0$
 $\forall (P,Q) \in \mathbb{C}^a : (P,Q) = \int_{P}^{P}(t)Q(t)w(t)dt$

1. Soit new, . On applique $\mathcal{G}.S.$ à partir du (a base canonique (1, X, X^2, X^2)

On note $(Q_0, ..., Q_n)$ be base dolerue.

On when motives per sec. $\forall y \in \Gamma_{0,n} \cap \Gamma$ deg $(Q_i) = i$
 $Q_0 = \frac{1}{|M|}$, done deg $(Q_0) = 0$
 $Q_0 = \frac{1}{|M|}$, done deg $(Q_0) = 0$
 $Q_0 = \frac{1}{|M|}$, done deg $(Q_0) = 0$
 $Q_0 = \frac{1}{|M|}$, done deg $(Q_0) = 0$
 $Q_0 = \frac{1}{|M|}$, done deg $(Q_0) = 0$
 $Q_0 = \frac{1}{|M|}$, done deg $(Q_0) = 0$
 $Q_0 = \frac{1}{|M|}$, done deg $(Q_0) = 0$
 $Q_0 = \frac{1}{|M|}$, $Q_0 = \frac{1}{|M|}$,

Dorc Queri=kal
(Qu) othogonale, or note of polivitaire "porthogonale" à Qu
(Qo,, Qn); deg(Qi)=j; orthogonale
(Po,,Po): famille orthog. done libre done base de Ro[X]
V
e. 1>2, Pn+, -xpn othog. à Rn. [X].
a verting to e Rn [X] < Pn+1 - XPn, Q>0
QeRna[X]; Qest C.l de (Po,, Pn-2)
$Q = \sum_{i=0}^{n-1} \lambda_i P_i < P_{n-i+1} Q > = < P_{n-i+1} \sum_{i=0}^{n-2} \lambda_i P_i > = \sum_{i=0}^{n-2} \lambda_i < P_{n-i+1} P_i > = 0$ car $\forall i = 0,, n-2$
< Pm, P, >= 0
$\langle xP_n, Q \rangle = \begin{bmatrix} tP_n(t)Q(t)\omega(t)dt = \end{bmatrix} \begin{bmatrix} P_n(t) \cdot tQ(t)\omega(t)dt = \langle P_n, XQ \rangle \end{bmatrix}$
$XQ \in R_{n_n}(X)$ dence the sum, R_{n_n} d'as $\langle A_n, XQ \rangle = 0$
On 2 2081 < PAI, 0> - < xPA, Q>=0 < PAI, - xPA, Q>=0
3) Pny -xPn conne p; whice
Donc PAL-XPA EREXI I RAZ cl. de O 3 n-2
Donc 3 2, lan Pax - XR = 2, Pa + 6R4
Part = (X + 21). Pa+baPa-1

· Si p est use projection orthogonale, alors p.p=p

dons pest in projectour orthogonale.

· Si p est in projector (ic. endo, p-p=p); et soi Im(p)=ker(p) ,

Exercise 7:	Rappel:
P projectour de E;	 E = F ⊕ F ¹
P projectour orthogonale => tree , llp(x) < x	x = p(x) + p(x) - p(x)
	p(x) 1 x - p(x)
≥ Sat p projecteur attragard txeE, p(x) ∈ Im(p) = F	
= x - p(x) = x - p(x) 2 + p(x) 2 par orthogonalite	
Done $\ x\ ^2 \ge \ p(x)\ ^2$	
hypothise: treet, lipixill elixill et p projecteur.	
If restre a mg $Im(p) = ker(p)^{\perp}$.	
Soit seeker(p) ^{\perp} , on a : se- $p(x)$ \in ker(p).	
b(x-b(x)) = b(x) - 6.b(x) = b(x)- 4x)=0	
se et se-fix) sont orthogeneux.	
1 p(x) 1 = 1 p(x) - x - x 1 = 1 p(x) - x 1 = 1 x 2 p = arthogonalité	
$\frac{1}{(2\pi - \log n)} \frac{1}{(2\pi - \log n)} \frac{1}$	$nc x \in Im(p)$
On a per ailleurs: dim(E) = dim(Im(p)) + dim(ker(p))	()
$\dim(E) = \dim(\ker(p))^{\perp} + \dim(\ker(p)) \dim(\ker(p)^{\perp}) = \dim(\ker(p)^{\perp})$	
$C_n = \ker(\rho)^+ \subset I_m(\rho)$ et $\dim(\ker(\rho)^+) = \dim(I_m(\rho))$, $d'(\alpha)$	$ker(p)^- = Im(p)$

Exercice 11: B= (e, e, e, e, e) base exclidience de R'

$$\begin{pmatrix} z \\ t \end{pmatrix} \qquad \begin{pmatrix} z \\ z \end{pmatrix}, \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{4} \end{pmatrix} > = 0 \qquad (1)$$

$$\begin{pmatrix} z \\ \frac{3}{4} \\ -\frac{1}{4} \end{pmatrix}, \begin{pmatrix} \frac{3}{4} \\ -\frac{1}{4} \end{pmatrix} > = 0 \qquad (2)$$

$$\langle \begin{pmatrix} z \\ \frac{3}{4} \\ -\frac{1}{4} \end{pmatrix}, \begin{pmatrix} z \\ -\frac{1}{4} \\ -\frac{1}{4} \end{pmatrix} > = 0 \qquad (3)$$

$$\langle \begin{pmatrix} z \\ \frac{3}{4} \\ -\frac{1}{4} \end{pmatrix}, \begin{pmatrix} z \\ -\frac{1}{4} \\ -\frac{1}{4} \end{pmatrix} > = 0 \qquad (4)$$

$$\langle (1) + (2) : x + 5y = 0 \qquad (4)$$

 $x = \begin{pmatrix} x \\ 4 \\ 5 \\ 5 \end{pmatrix} \in E_{\tau} \quad c \Rightarrow \quad \begin{cases} x = -2\lambda + f \\ 5 = -2\lambda + f \end{cases} \quad x = \begin{pmatrix} -2\lambda + f \\ -2\lambda + f \\ 5 \end{pmatrix} \quad z = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \quad f \quad \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$

z= - 5g (2): z = -3y++