

Nom:		
Prénom :		
Groupe :		

EA4 – Éléments d'algorithmique Partiel du 22 mars 2017 – Sujet A

 $Dur\'{e}e: 1h45$

Aucun document autorisé Appareils électroniques éteints et rangés

Cet énoncé comporte 7 exercices indépendants. Ils ne sont absolument pas classés par ordre de difficulté, n'hésitez pas à les traiter dans l'ordre de votre choix. Les mentions de temps ne sont que des indications... mais devraient refléter à la fois les durées relatives des exercices et leur barème. Gardez du temps pour le dernier exercice!

Exercice 1: (5 min)

Compléter le tableau ci-dessous avec les ordres de grandeur des complexités en temps des différents algorithmes de tri étudiés en cours, en fonction du nombre n d'éléments à trier.

	pire cas	meilleur cas	en moyenne
tri par sélection			
tri par fusion			
tri à bulles			
tri par insertion			
tri rapide			

Exercice 2: (10 min)

Cocher *toutes* les assertions exactes.

		$f\in\Omega(g)$	$f\in O(g)$	$f\in\Theta(g)$	$f\not\in\Theta(g)$
$f = 3(n^2 - 1)^2$	$g = 4n^3 + 5n$				
$f = \log(3(n^2 - 1)^2)$	$g = \log(4n^3 + 5n)$				
$f = 4n^3$	$g = 3^{(n+4)}$				
$f = \log(4n^3)$	$g = 4(\log n)^3$				
$f = 3^{(n+4)}$	$g = 3^n$				
$f = 3^{(n+4)}$	$g = 3^{(4n)}$				
$f = \log(n^4)$	$g = \sqrt[3]{n}$				
$f = \log(4^n)$	$g = \sqrt[3]{n}$				

(note : log désigne le logarithme en base 2)

Exercice 3: (10-15 min)

Pour chacun des algorithmes suivants, donner une relation de récurrence satisfaite par le nombre $A_i(n)$ d'additions effectuées pour une entrée de taille n, et en déduire (sans démonstration) l'ordre de grandeur de $A_i(n)$.

```
def somme_1(T) :
  if len(T) == 0 : return 0
  else : return T[0] + somme_1(T[1:])
def somme_2(T) :
 if len(T) \le 1 : return 1
 else :
   m = len(T)//2
   return somme_2(T[:m]) + somme_2(T[m:])
def somme_3(T) :
 if len(T) \le 2 : return 1
  else :
   m = len(T)//3
   return somme_3(T[:m]) + 1
def somme_4(T) :
 if len(T) \le 1 : return 1
  else :
   tmp = somme_4(T[:-1])
   for elt in T : tmp = tmp + elt
   return tmp
```

def somme_5(T) :
if len(T) <= 1 : return 1
else :
m = len(T)//2
$tmp = somme_5(T[:m]) + somme_5(T[m:])$
for elt in T : $tmp = tmp + elt$
return tmp

Exercice 4: (10-15 min)

On considère la suite définie de la manière suivante :

$$F_n = \begin{cases} 1 & \text{si } n < 3 \\ 3F_{n-1} + 2F_{n-3} & \text{sinon.} \end{cases}$$

Proposer un algorithme efficace pour calculer le terme d'ordre n de la suite.

Combien d'opérations arithmétiques sur des entiers cet algorithme effectue-t-il pour calculer F_n ?

Est-ce une mesure pertinente de sa complexité en temps?

Exercice 5: (15-20 min)
Soit T le tableau suivant : $81 \ 141 \ 145 \ 41 \ 123 \ 117 \ 27 \ 83$ Appliquer l'algorithme de tri fusion ($MergeSort$) à T. Combien de comparaisons d'éléments sont
effectuées (exactement)?
Déterminer l'élément de rang 5 dans T en appliquant l'algorithme de sélection rapide (QuickSe lect), dans sa version avec T[0] comme pivot. Combien de comparaisons d'éléments sont effectuées (exactement)?

Appliquer l'algorithme de tri par base ($RadixSort$) à T (en raisonnant en base 10).					
Exercice 6 : (15 min) On s'intéresse au problème suivant : étant donné une liste L de nombres (non nécessairent entiers) de longueur n, déterminer le vainqueur de L, i.e. l'élément de L qui y apparaît le plu fois (ou l'un quelconque d'entre eux, en cas d'égalité).					
Décrire un algorithme naïf permettant de résoudre ce problème sans modifier la liste L.					
Quel est l'ordre de grandeur de la complexité (en temps) de cet algorithme?					

Comment résoudre ce problème avec une complexité en temps strictement meilleure? Laquelle?
Exercice 7: (20 min) On dit qu'un tableau T de n entiers est une $montagne$ s'il est constitué d'une première partie strictement croissante, suivie d'une deuxième strictement décroissante, chacune pouvant éventuellement être vide; autrement dit, T est une montagne s'il est strictement croissant ou décroissant ou s'il existe un certain $m \in [\![1,n-2]\!]$ tel que : $ T[0] < T[1] < \ldots < T[m] \text{et} T[m] > T[m+1] > \ldots > T[n-1]. $
Proposer un algorithme est_une_montagne(T) de complexité optimale 1 qui teste si T est une montagne. Justifier rapidement sa correction et sa complexité.

^{1.} c'est-à-dire l'algorithme qui vous semble le plus efficace ; il ne vous est pas demandé de prouver son optimalité.

On suppose maintenant que T est une montagne.
Proposer un algorithme pied(T) de complexité optimale ¹ qui renvoie le plus petit élément de Tustifier sa correction et sa complexité.
Étant donné une position i de T, comment tester en $temps$ $constant$ si $i < m$, où m est la position (inconnue a $priori$) du maximum de T?
En déduire un algorithme sommet (T) de complexité optimale 1 qui renvoie le plus grand élémen de T. Justifier rapidement sa correction et sa complexité.

Proposer un algorithme nivelle(T) de complexité optimale ¹ qui renvoie un tableau trié con nant les mêmes éléments que T. Justifier rapidement sa correction et sa complexité.						
onus) Justifie	r l'optimalité	des algorit	thmes propo	sés.		
onus) Justifie	r l'optimalité	e des algorit	thmes propo	sés.		
onus) Justifie	r l'optimalité	des algorit	thmes propo	sés.		
onus) Justifie	r l'optimalité	e des algorit	thmes propo	sés.		
onus) Justifie	r l'optimalité	e des algorit	thmes propo	osés.		
onus) Justifie	r l'optimalité	des algorit	thmes propo	osés.		
onus) Justifie	r l'optimalité	e des algorit	thmes propo	osés.		
onus) Justifie	r l'optimalité	e des algorit	thmes propo	sés.		
onus) Justifie	r l'optimalité	des algorit	thmes propo	sés.		
onus) Justifie	r l'optimalité	des algorit	thmes propo	osés.		
oonus) Justifie	r l'optimalité	e des algorit	thmes propo	osés.		
oonus) Justifie	r l'optimalité	e des algorit	thmes propo	osés.		
ponus) Justifie	r l'optimalité	e des algorit	thmes propo	osés.		