Math 381 - Fall 2021

Jay Newby

University of Alberta

Week 13

Last Time

1 Eigenvalue problem: introduction

Today

- ① Conditioning of eigenvalue problems
- Example of an iill conditioned eigenvalue problem
- Schur factorization
- Two phase strategy for computing eigenvalues

Eigenvalue problems

Diagonalizable matrix
$$A = V L V^{-1} \qquad A V = V L$$

Eigenvalues and eigenvectors

For square matrices A, an eigenvalue λ and eigenvector ν satisfy

$$Av = \lambda v$$
.

Characteristic equation

Eigenvalues of A are the roots of the characteristic polynomial; that is, they satisfy

$$\det(A - \lambda I) = 0.$$

[0]
$$\lambda=1$$
 algebraic mult 2
 $r=[b]$ geometric mult 2
 $r_2=[p]$

Conditioning of the eigenvalue problem (simple eigenvalues)

Let λ_0 be a simple eigenvalue of the matrix A_0 . Consider

$$(A_0 + \epsilon A_1)r = \lambda, \quad 0 < \epsilon \ll 1.$$

We showed that $\lambda \sim \lambda_0 + \epsilon \frac{l_0^* A_1 r_0}{l_0^* r_0}$.

Assuming that $||r_0|| = ||l_0|| = 1$ we have

$$|\lambda - \lambda_0| \le \frac{\epsilon ||A_1||}{|I_0^* r_0|}.$$

Condition number of an eigenvalue

Let r and l be a right and left eigenvector of A (respectively) corresponding to the simple eigenvalue λ . The condition number of λ is

$$\kappa(\lambda) = \frac{\|r\| \|I\|}{|I^*r|}.$$

Ill conditioned eigenvalue problems: eigenvalues with degenerate eigenspaces are ill conditioned

Example:
$$A = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$$

Unperturbed problem

 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$
 $A_0 = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$

perturbed problem
$$(1-\lambda)^{2}-\varepsilon=0$$

$$\mu=1-\lambda$$

$$\lambda^{2}=\varepsilon$$

$$\lambda=\pm\sqrt{\varepsilon}$$

$$\lambda=1+\sqrt{\varepsilon}$$

$$\lambda=$$

General eigenvalue solvers must be iterative

Theorem: Abel 1824

For any $n \geq 5$, there is a polynomial p(z) of degree n with rational coefficients that has a real root p(r) = 0 with the property that r cannot be written using any expression involving rational numbers, addition, subtraction, multiplication, division, and kth roots.

Daily Linear Algebra

Definition: similar matrix

A matrix $A \in \mathbb{C}^{n \times n}$ is similar to a matrix $B \in \mathbb{C}^{n \times n}$ if there exists a nonsingular $S \in \mathbb{C}^{n \times n}$ such that

$$A = SBS^{-1}$$

$$A = V \perp V^{-1} \qquad A = b \qquad b = V^{-1}b$$

$$V' \times = 2 \qquad V^{-1}A \lor 2 = V^{-1}b$$

$$V' \times = 2 \qquad V^{-1}A \lor 2 = V^{-1}b$$

$$V' \times = 2 \qquad V^{-1}A \lor 2 = V^{-1}b$$

Daily Linear Algebra

Claim:

If $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$ are similar, then they have the same eigenvalues. A = SBS

Proof:

Ar = Ar
$$Sy = \Gamma \Rightarrow y = S' \Gamma$$

 $Ar = Ar = SBS' \Gamma$
 $Ar = BS' \Gamma$
 $Ar = BS' \Gamma$

Eigenvalue revealing decompositions

- **1** Diagonalization $A = X\Lambda X^{-1}$ (only if the matrix is diagonalizable)
- **2** Unitary diagonalization $A = Q\Lambda Q^*$ (only normal matrices $A^T A = AA^T$)
- **3** Schur factorization $A = QTQ^*$ (all square matrices)

Theorem: Schur factorization

Every Square matrix A has a Schur factorization such that

DE DED

$$A = QRQ^* = \zeta \widetilde{R}$$

where Q is unitary and R is upper triangular.

The two phases of computing eigenvalues

Can we use Householder reflections to compute Schur decomposition birectly? NO!

Phase 1

The matrix A is converted to a similar upper Hessenberg matrix

Phase 2

The similar upper Hessenberg matrix is iteratively converted into a similar triangular matrix