Analyse — CM: 6

Par Lorenzo

10 octobre 2024

Propriétés 0.1.

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, tel que $\lim_{n\to+\infty}v_n=+\infty$

$$\lim_{n \to +\infty} \frac{1}{v_n} = 0$$

 $Si(u_n)_{n\in\mathbb{N}}$ est minorée, alors

$$\lim_{n \to +\infty} (u_n + v_n) = +\infty$$

 $Si(u_n)_{n\in\mathbb{N}}$ est minorée par un réel strictement positif, alors

$$\lim_{n \to +\infty} (u_n \times v_n) = +\infty$$

 $Si \lim_{n \to +\infty} u_n = 0 \ et \ \forall n \in \mathbb{N}, u_n > 0, \ alors$

$$\lim_{n \to +\infty} \frac{1}{u_n} = +\infty$$

Théorème 0.1. Toute suite convergente est bornée.

Démonstration 0.1.

Soit une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers l.

$$\lim_{n \to +\infty} u_n = l \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge N, |u_n - l| < \varepsilon$$

On écrit $u_n = u_n - l + l$ ainsi $|u_n| = |(u_n - l) + l| \le |u_n - l| + |l|$

En outre $\forall n \geq N, |u_n| \leq \varepsilon + |l|$

De plus $\forall n < N, |u_n| \le \max(u_0, u_1, ..., u_{n-1})$

Finalement $\forall n \in \mathbb{N}, |u_n| \leq \max(u_0, u_1, ..., u_{n-1}, \varepsilon + |l|)$

Corollaire 0.1. Si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et $\lim_{n\to\infty}v_n=0$ alors $\lim_{n\to\infty}(u_n\times v_n)=0$

0.0.1 Formes indéterminées

On parle de formes indéterminées, lorsque à priori on ne peut rien dire sur la limite. Il s'agit de limite de type:

- $+\infty \infty$
- $0 \times \infty$
- $\frac{\infty}{\infty}$, $\frac{0}{0}$, a^{∞}

Dans ce cas il faut étudier plus précisement la suite. Par exemple en utilisant les croissances comparées

0.0.2 Quelques innégalités

Propriétés 0.2.

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que $\forall n\in\mathbb{N}, u_n\leq v_n$,

$$\lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n$$

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $\forall n\in\mathbb{N}, u_n\leq v_n$,

$$\lim_{n \to +\infty} u_n = +\infty \implies \lim_{n \to +\infty} v_n = +\infty$$