7.1. Consider $\mathbf{x}, \mathbf{y} \in \text{conv}(S)$. We can write

$$\mathbf{x} = \sum_{i=1}^k \lambda_k \mathbf{x}_i$$

Name: HUNG HO

Email: hqdhftw@uchicago.edu

$$\mathbf{y} = \sum_{i=1}^{l} \gamma_i \mathbf{y}_i.$$

Where $\sum_{i=1}^{k} \lambda_i = \sum_{i=1}^{l} \gamma_i = 1$, and $\mathbf{x}_i, \mathbf{y}_i \in S$ for all i. For any $\lambda \in (0, 1)$, we have

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} = \sum_{i=1}^{k+l} \theta_i \mathbf{z}_i.$$

where $\theta_i = \lambda \lambda_i$ for $i \le k$, $\theta_i = (1 - \lambda)\gamma_{i-k}$ for $k + 1 \le i \le k + l$, $\mathbf{z}_i = \mathbf{x}_i$ for $i \le k$ and $\mathbf{z}_i = \mathbf{y}_{i-k}$ for $k + 1 \le i \le k + l$. Since $\mathbf{z}_i \in S$ for all i, we deduce that $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \text{conv}(S)$, thus conv(S) is convex.

7.2.

(i) Let $H = \{ \mathbf{x} \mid \langle \mathbf{a}, \mathbf{x} \rangle = \mathbf{b} \}$ be a hyperplane. For $\mathbf{x}, \mathbf{y} \in H$ and $\lambda \in (0, 1)$, we have

$$\langle a, \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \rangle = \lambda \langle a, \mathbf{x} \rangle + (1 - \lambda) \langle a, \mathbf{y} \rangle = \lambda \mathbf{b} + (1 - \lambda) \mathbf{b} = \mathbf{b}.$$

This shows that $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in H$ for all $\mathbf{x}, \mathbf{y} \in H, \lambda \in (0, 1)$, and therefore H is convex.

(ii) The proof is completely similar to that of part (i), except that we change every "=" into "\le ".

7.4.

(i) Note that since $C \subseteq \mathbb{R}^n$, we have $\langle \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{b}, \mathbf{a} \rangle$ for all \mathbf{a}, \mathbf{b} , and thus

$$\|\mathbf{a} + \mathbf{b}\|^2 = \langle \mathbf{a} + \mathbf{b}, \mathbf{a} + \mathbf{b} \rangle = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + 2\langle \mathbf{a}, \mathbf{b} \rangle.$$

Choose $\mathbf{a} = \mathbf{x} - \mathbf{p}, \mathbf{b} = \mathbf{p} - \mathbf{y}$, then we have the desired result.

(ii) Using part (i), we know that

$$\|\mathbf{x} - \mathbf{y}\|^2 \ge \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2$$

This show that if (7.14) holds, then unless $\|\mathbf{p} - \mathbf{y}\| = 0$, or $\mathbf{p} = \mathbf{y}$, we have $\|\mathbf{x} - \mathbf{y}\| > \|\mathbf{x} - \mathbf{p}\|$.

(iii) Using part (i) and the fact that $\mathbf{p} - \mathbf{z} = \lambda(\mathbf{y} - \mathbf{z})$, we have

$$\|\mathbf{x} - \mathbf{z}\|^{2} = \|\mathbf{x} - \mathbf{p}\|^{2} + \|\mathbf{p} - \mathbf{z}\|^{2} + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{z}\rangle$$

= $\|\mathbf{x} - \mathbf{p}\|^{2} + \lambda^{2} \|\mathbf{y} - \mathbf{p}\|^{2} + 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y}\rangle$.

(iv) Since **p** is a projection of **x** onto *C*, we know that $\|\mathbf{x} - \mathbf{p}\|^2 \le \|\mathbf{x} - \mathbf{z}\|^2$. This means that for all $\lambda \in (0,1)$, we have

$$\lambda \|\mathbf{y} - \mathbf{p}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \ge 0.$$

If there exists \mathbf{y} such that $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle < 0$, then we can choose λ small enough such that $\lambda \|\mathbf{y} - \mathbf{p}\|^2 + 2 \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle < 0$, a contradiction, hence $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \geq 0$ for all \mathbf{y} .

7.6. Consider any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ such that $f(\mathbf{x}), f(\mathbf{y}) \leq c$. We have

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \le \lambda c + (1 - \lambda)c = c.$$

This shows that $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le c$, and thus $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S = {\mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \le c}$, or S is convex.

7.7. Consider $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\lambda \in [0, 1]$. We have

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \sum_{i=1}^{k} \lambda_i f_i(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$$

$$\leq \sum_{i=1}^{k} [\lambda \lambda_i f_i(\mathbf{x}) + (1 - \lambda)\lambda_i f_i(\mathbf{y})]$$

$$= \lambda \sum_{i=1}^{k} \lambda_i f_i(\mathbf{x}) + (1 - \lambda) \sum_{i=1}^{k} \lambda_i f_i(\mathbf{y})$$

$$= \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y}).$$

This shows that f is convex.

7.13. Suppose there exist \mathbf{x} , \mathbf{y} suh that $f(\mathbf{x}) > f(\mathbf{y})$. Suppose further that f is bounded above by a. We have:

$$f(\mathbf{y}) < f(\mathbf{x}) \leq \lambda f\left(\frac{\mathbf{x} - (1 - \lambda)\mathbf{y}}{\lambda}\right) + (1 - \lambda)f(\mathbf{y}) \leq \lambda a + (1 - \lambda)f(\mathbf{y}).$$

This means $f(\mathbf{y}) < \lambda a + (1 - \lambda)f(\mathbf{y})$ for all $\lambda \in [0, 1]$. Let $\lambda \to 0^+$, we have a contradiction, thus f is not abounded above.

7.20. Since f and -f are convex, we have

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$
$$-f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le -\lambda f(\mathbf{x}) - (1 - \lambda)f(\mathbf{y}).$$

Therefore,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}). \quad (1)$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \lambda \in [0, 1]$. Denote $f(\mathbf{0}) = \mathbf{c}$ and $L(\mathbf{x}) = f(\mathbf{x}) - \mathbf{c}$. Choose $\mathbf{y} = 0$. We know that $L(\lambda \mathbf{x}) = \lambda L(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n, \lambda \in [0, 1]$. Again, change \mathbf{x} to $\frac{\mathbf{x}}{\lambda}$, we deduce that $L(\mathbf{x}) = \lambda L\left(\frac{\mathbf{x}}{\lambda}\right)$. Since $\frac{1}{\lambda}$ can take any values on $[1, +\infty]$ for $\lambda \in [0, 1]$, we deduce that $L(a\mathbf{x}) = aL(\mathbf{x})$ for all $a \in [0, +\infty]$.

Next, from substitute $L = f + \mathbf{c}$ into (1), we also have $L(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \lambda L(\mathbf{x}) + (1 - \lambda)L(\mathbf{y})$. Now change \mathbf{y} to $\frac{\lambda \mathbf{y}}{1 - \lambda}$, we deduce that

$$L(\lambda \mathbf{x} + \lambda \mathbf{y}) = \lambda L(\mathbf{x}) + (1 - \lambda)L(\lambda \frac{\mathbf{y}}{1 - \lambda}).$$

Using the fact that $L(a\mathbf{y}) = aL(\mathbf{y})$ for all $a \ge 0$, and divide both sides by λ , we deduce that

$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}). \quad (2)$$

Now it remains to show that $L(a\mathbf{x}) = aL(\mathbf{x})$ for all a < 0. From (2), let $\mathbf{y} = -\mathbf{x}$, we have $L(-\mathbf{x}) = L(\mathbf{0}) - L(\mathbf{x}) = -L(\mathbf{x})$. Hence, for a < 0, so that -a > 0, we have

$$L(a\mathbf{x}) = -L(-a\mathbf{x}) = -aL(\mathbf{x}).$$

Therefore, L is a linear transformation, thus f is affine.

7.21. \mathbf{x}^* is a local minimizer of $\phi \circ f$ if and only if $\phi(f(\mathbf{x}^*)) \leq \phi(f(\mathbf{x}))$ for all \mathbf{x} in a neighborhood of \mathbf{x}^* . Since ϕ is strictly increasing, this is also equivalent to $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all \mathbf{x} in a neighborhood of \mathbf{x}^* , or \mathbf{x}^* is a local minimizer of f (subject to the same constraints).