Protein modelling using dynamic programming and constraints

Maryana Wånggren¹ Martin Billeter² Graham J.L. Kemp¹

¹Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

 $^2{\rm Department}$ of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden

22 May 2017

Overview

- Aims of the project
- Protein structure basics
- Types of constraints
- Zipping and assembly method (dynamic programming) for generating solutions
- Results
- Conclusions and to-do list

Overview

- Aims of the project
- Protein structure basics
- Types of constraints
- Zipping and assembly method (dynamic programming) for generating solutions
- Results
- Conclusions and to-do list

Aims of the project

Practical side:

protein modelling using a limited set of constraints for reducing the cost of expensive and time-consuming experiments

Technical side:

- combination of zipping and assembly method with easy-to-obtain distance and angle constraints
- use Prolog for generating distance and angle constraints

Overview

- Aims of the project
- Protein structure basics
- Types of constraints
- Zipping and assembly method (dynamic programming) for generating solutions
- Results
- Conclusions and to-do list

Protein primary structure

 $[By\ National\ Human\ Genome\ Research\ Institute\ [Public\ domain],\ via\ Wikimedia\ Commons]$

Protein main chain model

Torsion angles

ϕ and ψ torsion angles from a library of proteins from the Protein Data Bank

Overview

- Aims of the project
- Protein structure basics
- Types of constraints
- Zipping and assembly method (dynamic programming) for generating solutions
- Results
- Conclusions and to-do list

Protein modelling: what information is used?

- Angle constraints
 - ightharpoonup range limits on ϕ and ψ
- Distance constraints
 - upper and lower bounds on the distances between pairs of atoms

Overview

- Aims of the project
- Protein structure basics
- Types of constraints
- Zipping and assembly method (dynamic programming) for generating solutions
- Results
- Conclusions and to-do list

Zipping and assembly of a protein with 10 residues (single residues)

Second level of ZAM

Zipping and assembly of a protein with 10 residues (3 residues)

Zipping and assembly of a protein with 10 residues (4 residues)

Zipping and assembly of a protein with 10 residues (5 residues)

Zipping and assembly of a protein with 10 residues (6 residues)

Zipping and assembly of a protein with 10 residues (7 residues)

Zipping and assembly of a protein with 10 residues (8 residues)

Zipping and assembly of a protein with 10 residues (9 residues)

Zipping and assembly of a protein with 10 residues (10 residues)

Overview

- Aims of the project
- Protein structure basics
- Types of constraints
- Zipping and assembly method (dynamic programming) for generating solutions
- Examples
- Conclusions and to-do list

human p8MTCP1 [PDB entry: 2HP8]

Constraints used in modelling human p8MTCP

Disulphide bond distance constraints Alpha-helix constraints Proline phi angle constraints

Best model and experimental structure ($C\alpha$ RMSD: 2.6 Å)

Actual cells used for constructing 1 protein model

Actual cells used for constructing 50 protein model

Constraints used in modelling human p8MTCP

Disulphide bond distance constraints Alpha-helix constraints Proline phi angle constraints

Constraints used in modelling 2LWL

Constraints used in modelling 2LRD

Constraints used in modelling 1EI0

Constraints used in modelling 1EIG

Constraints used in modelling 5CKA

Overview

- Aims of the project
- Protein structure basics
- Types of constraints
- Zipping and assembly method (dynamic programming) for generating solutions
- Examples
- Conclusions and to-do list

Conclusion and to-do list

Conclusion:

- Our program is able to produce protein models
- ▶ Not all the cells contribute to the final structures

► To-do list:

- Use longer fragments
- Make better use of memory
- Use scoring function for filtering and ranking

Acknowledgements

We are grateful for support from Vetenskapsrådet