

Banco de Dados

Profa. Patrícia R. Oliveira EACH - USP

Álgebra Relacional

slides parcialmente basedos em material de aula dos Profs. José Eduardo Ferreira (IME-USP) e Cristina Ciferri (ICMC-USP)

Definição

- Álgebra Relacional: conjunto básico de operações para o Modelo Relacional.
- Essas operações permitem ao usuário especificar as solicitações básicas de recuperação.
- O resultado de uma operação será uma nova relação.
 - a nova relação pode ser formada a partir de uma ou mais relações.

Importância

- Provê um fundamento formal para operações do Modelo Relacional.
- É usada como base para implementar e otimizar as consultas em SGBD's relacionais.
- Alguns de seus conceitos são incorporados na linguagem de consulta padrão SQL para os SGBD's relacionais.

Grupos de operações

- Operações da Teoria dos Conjuntos:
 - União
 - Intersecção
 - Diferença de conjuntos
 - Produto cartesiano
- Operações específicas para BD's relacionais:
 - Seleção
 - Projeção
 - Junção

Classificação das operações

- Operações unárias: operam sobre uma única relação.
 - Seleção
 - Projeção
 - Renomear

Classificação das operações

- Operações binárias: operam sobre duas relações.
 - Produto cartesiano
 - União
 - Diferença de conjuntos
 - Intersecção
 - Junção
 - Divisão

MR Empresa

Operação Seleção - σ (Select)

- Utilizada para selecionar, segundo alguma condição, tuplas de uma relação.
- Exemplos:
 - Selecionar os empregados que trabalham para o departamento 4.

$$\sigma_{DNO=4}$$
 (EMPREGADO)

 Selecionar os empregados que recebam salário maior que 30000.

 $\sigma_{SALARIO > 3000}$ (EMPREGADO)

Operação Seleção - σ (Select)

A operação Seleção é indicada por:

$$\sigma_{\text{condicao de selecao}}(R)$$

- O símbolo σ (sigma) é usado para indicar o operador Seleção.
- A condição de seleção é uma expressão booleana, especificadas nos atributos da relação R.
- R é uma expressão de álgebra relacional cujo resultado é uma relação.
 - no caso mais simples é o nome de uma relação no BD.

Operação Seleção - σ (Select)

A expressão booleana na condição de seleção é composta por cláusulas da forma:

<nome atributo> <op comparacao> <valor constante> ou

<nome atributo> <op comparacao> <nome atributo>

- Operadores de comparação: =, <, >, ≤, ≥, ≠.
- As cláusulas podem ser conectadas pelos <u>operadores</u> <u>booleanos</u> AND, OR, ou NOT.

Exemplo

Selecionar os empregados que trabalham no departamento 4 e ganham mais que 2500 ou aqueles que trabalham no departamento 5 e ganham mais do que 3000.

PNOME	MNOME	SNOME	NSS	DATANASC	ENDEREÇO	SEXO	SALARIO	NSSSUPER	DNUM
John	В	Smith	123456789	09-JAN-55	R. A, 1	М	3000	333445555	5
Franklin	Т	Wong	333445555	08-DEZ-45	R. B, 2	М	4000	888665555	5
Alícia	J	Zelaya	999887777	19-JUL-58	Av. C, 3	F	2500	987654321	4
Jennifer	S	Wallace	987654321	20-JUN-31	Trav. D, 4	F	4300	888665555	4
Ramesh	K	Narayan	666884444	15-SET-52	R. E, 5	М	3800	333445555	5
Joyce	Α	English	453453453	31-JUL-62	R. F, 6	F	2500	333445555	5
Ahmad	V	Jabbar	987987987	29-MAR-59	Av G, 7	M	2500	987654321	4
James	E	Borg	888665555	10-NOV-27	Av H, 8	M	5500	null	3

Exemplo

Consulta:

 $\sigma_{\text{(DNO=4 AND SALARIO > 2500) OR (DNO=5 AND SALARIO > 3000)}}$ (EMPREGADO)

Resultado:

PNOME	MNOME	SNOME	NSS	DATANASC ENDEREÇO	SEXO	SALARIO	NSSSUPER	NDEP
Franklin	T	Wong	333445555	08-DEZ-45 R. B, 2	М	4000	888665555	5
Jennifer	S	Wallace	987654321	20-JUN-31 Trav. D, 4	F	4300	888665555	4
Ramesh	K	Narayan	666884444	15-SET-52 R. E, 5	М	3800	333445555	5

Características e propriedades da Seleção

- É um operador unário
 - seleciona tuplas de apenas uma relação.
- O grau da relação resultante é o mesmo da relação original.
- É comutativa:

$$\sigma_{< cond1>} (\sigma_{< cond2>}(R)) = \sigma_{< cond2>} (\sigma_{< cond1>}(R))$$

Características e propriedades da Seleção

É possível combinar uma propagação de operações Seleção em uma única operação Seleção, usando um operador booleano AND:

$$\sigma_{<\text{cond1}>}(\sigma_{<\text{cond2}>}(...\sigma_{<\text{condn}>}(R))...)) =$$
 $\sigma_{<\text{cond1}> \text{ AND } <\text{cond2}> \text{ AND } ... \text{ AND } <\text{condn}>}(R)$

Operação Projeção - π (*Project*)

- Enquanto o operador Seleção seleciona tuplas de uma relação, o operador Projeção seleciona colunas de uma relação.
- <u>Exemplo</u>: selecionar os atributos SNOME, PNOME e SALARIO da relação EMPREGADO.

PNOME	MNOME	SNOME	NSS	DATANASC ENDEREÇO	SEXO	SALARIO	NSSSUPER	NDEP
John	В	Smith	123456789	09-JAN-55 R. A, 1	M	3000	333445555	5
Franklin	Т	Wong	333445555	08-DEZ-45 R. B, 2	M	4000	888665555	5
Alícia	J	Zelaya	999887777	19-JUL-58 Av. C, 3	F	2500	987654321	4
Jennifer	S	Wallace	987654321	20-JUN-31 Trav. D, 4	F	4300	888665555	4
Ramesh	K	Narayan	666884444	15-SET-52 R. E, 5	M	3800	333445555	5
Joyce	Α	English	453453453	31-JUL-62 R. F, 6	F	2500	333445555	5
Ahmad	V	Jabbar	987987987	29-MAR-59 Av G, 7	M	2500	987654321	4
James	E	Borg	888665555	10-NOV-27 Av H, 8	M	5500	null	3

Exemplo

Consulta:

 $\pi_{\,\text{(SNOME, PNOME, SALARIO)}}$ (EMPREGADO)

Resultado:

PNOME	SNOME	SALARIO
John	Smith	3000
Franklin	Wong	4000
Alícia	Zelaya	2500
Jennifer	Wallace	4300
Ramesh	Narayan	3800
Joyce	English	2500
Ahmad	Jabbar	2500
James	Borg	5500

Operação Projeção - π (*Project*)

A operação Projeção é indicada por:

$$\pi_{\text{}}(R)$$

- O símbolo π (pi) é usado para indicar o operador Projeção.
- O resultado da operação tem apenas os atributos especificados na lista de atributos, na mesma ordem em que aparecem.

Características e propriedades da Projeção

- É um operador unário
 - seleciona atributos de apenas uma relação.
- O grau da relação resultante é igual ao número de atributos na lista de atributos>.
- Não é comutativa!
 - Exercício: verifique essa afirmação.

Relações intermediárias

- É possível aplicar diversas operações de álgebra relacional, uma após a outra.
- Isso pode ser feito de duas formas:
 - escreve-se as operações como uma <u>única</u>
 <u>expressão</u> da álgebra relacional;
 - aplica-se uma operação por vez e cria-se relações (resultados) intermediárias.

Exemplo

- Recuperar o primeiro nome, o último nome e o salário de todos os empregados que trabalham no departamento 5.
- 1) Única expressão

```
\pi_{\text{(PNOME, UNOME, SALARIO)}} (\sigma_{\text{DNO}=5}(\text{EMPREGADO})))
```

2) Relações intermediária e de resultado

DEP5_EMPS
$$\leftarrow \sigma_{DNO=5}$$
 (EMPREGADO)

RESULTADO $\leftarrow \pi_{(PNOME, UNOME, SALARIO)}$ (DEP5_EMPS)

Renomeando atributos

- É possível renomear os atributos nas relações intermediárias e de resultados.
- Isso pode ser feito listando os novos nomes dos atributos, entre parênteses.
- Exemplo:

RESULT		
NOME	SOBRENOME	SALÁRIO
John	Smith	3000
Franklin	Wong	4000
Ramesh	Narayan	3800
Joyce	English	2500

DEP5_EMPS $\leftarrow \sigma_{DNO=5}$ (EMPREGADO)

RESULT(NOME, SOBRENOME, SALARIO) $\leftarrow \pi_{\text{(PNOME, UNOME, SALARIO)}}$ (DEP5_EMPS)

Operação Renomear - ρ (*Rename*)

- Redefine:
 - o nome da relação
 - os nomes dos atributos
 - o nome da relação e os nomes dos atributos

Exemplo

Relação cliente:

```
cliente (<u>nro_cli</u>, nome_cli, end_cli, saldo, cod_vend)
```

ρ_{comprador} (cliente)

ρ_(código, nome, rua, saldo, vendedor) (cliente)

ρ_{comprador (código, nome, rua, saldo, vendedor)} (cliente)

Operações da Teoria dos Conjuntos

- Os operadores da Teoria dos Conjuntos aplicam-se ao modelo relacional pois uma relação é como um conjunto de tuplas.
- Ex: recuperar o SSN dos empregados que trabalham no departamento 5 ou que supervisionem empregados que trabalham no departamento 5.

```
DEP5_EMPS \leftarrow \sigma_{\text{DNO=5}} (EMPREGADO)

RESULT1 \leftarrow \pi_{\text{(SSN)}} (DEP5_EMPS)

RESULT2 \leftarrow \pi_{\text{(SUPERSSN)}} (DEP5_EMPS)

RESULT \leftarrow RESULT 1 \cup RESULT2
```


Operações da Teoria dos Conjuntos

- Os operadores são:
 - R ∪ S União (todas as tuplas de R e todas as tuplas de S). Obs: as duplicatas são automaticamente eliminadas.
 - R ∩ S − Intersecção (todas as tuplas comuns a R e S).
 - R S Diferença (todas as tuplas de R que não estão em S).
 - R x S Produto cartesiano (combinação das tuplas de R com as de S).

Compatibilidade de união

- As operações de União, Intersecção e Diferença precisam que R e S tenham o mesmo tipo de tuplas.
 - essa condição é chamada de compatibilidade de união.
- Duas relações R e S são ditas de união compatível se:
 - têm o mesmo número de atributos e
 - cada par correspondente de atributos tem o mesmo domínio.

 As tuplas da relação resultante são todas as relações de tuplas possíveis entre as relações participantes.

SNOME	<u>NSS</u>		<u>NSSEMP</u>	NOMEDEPENDENTE
Smith	123456789	Х	333445555	Alice
Wong	333445555	~	987654321	Abner
			123456789	Alice
			123456789	Elizabeth

SNOME	NSS	NSSEMP	NOMEDEPENDENTE
Smith	123456789	333445555	Alice
Smith	123456789	987654321	Abner
Smith	123456789	123456789	Alice
Smith	123456789	123456789	Elizabeth
Wong	333445555	333445555	Alice
Wong	333445555	987654321	Abner
Wong	333445555	123456789	Alice
Wong	333445555	123456789	Elizabeth

 Ex: recuperar, para cada empregado do sexo feminino, a lista de nomes de seus dependentes.

EMPREGADO	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
-	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

DEPENDENTE	ESSN	NOME_DEPENDENTE	SEXO	DATANASC	PARENTESCO
	333445555	Alice	F	1986-04-05	FILHA
	333445555	Theodore	М	1983-10-25	FILHO
	333445555	Joy	F	1958-05-03	CÔNJUGE
	987654321	Abner	М	1942-02-28	CÔNJUGE
	123456789	Michael	М	1988-01-04	FILHO
	123456789	Alice	F	1988-12-30	FILHA
	123456789	Elizabeth	F	1967-05-05	CÔNJUGE

■ 10 passo: EMPS_FEM $\leftarrow \sigma_{SEXO = 'F'}$ (EMPREGADO)

EMPS _FEM	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle,Spring,TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665555	4
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

■ 20 passo: NOMESEMP $\leftarrow \pi_{(PNOME, UNOME, SSN)}$ (EMPS_FEM)

EMPS _FEM	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665555	4
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

NOMESEMP	PNOME	UNOME	SSN
	Alicia	Zelaya	999887777
	Jennifer	Wallace	987654321
	Joyce	English	453453453

NOMESEMP	PNOME	UNOME	SSN
	Alicia	Zelaya	999887777
	Jennifer	Wallace	987654321
	Joyce	English	453453453

DEPENDENTE	<u>ESSN</u>	SSN NOME_DEPENDENTE		DATANASC	PARENTESCO
	333445555	Alice	F	1986-04-05	FILHA
	333445555	Theodore	M	1983-10-25	FILHO
	333445555	Joy	F	1958-05-03	CÔNJUGE
	987654321	Abner	М	1942-02-28	CÔNJUGE
	123456789	Michael	M	1988-01-04	FILHO
	123456789	Alice	F	1988-12-30	FILHA
	123456789	Elizabeth	F	1967-05-05	CÔNJUGE

■ 3o passo: DEPENDENTES_EMP ← NOMESEMP X DEPENDENTE

DEPENDENTES_EMP	PNOME	UNOME	SSN	ESSN	NOME_DEPENDENTE	SEXO	DATANASC	
	Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
	Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
	Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
	Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
	Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
	Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
	Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
	Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
	Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	
	Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
	Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	
	Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
	Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
	Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
	Joyce	English	453453453	333445555	Alice	F	1986-04-05	
	Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
	Joyce	English	453453453	333445555	Joy	F	1958-05-03	
	Joyce	English	453453453	987654321	Abner	М	1942-02-28	
	Joyce	English	453453453	123456789	Michael	М	1988-01-04	
	Joyce	English	453453453	123456789	Alice	F	1988-12-30	
	Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

DEPENDENTES_EMP	PNOME	UNOME	SSN	ESSN	NOME_DEPENDENTE	SEXO	DATANASC	• • •
	Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
	Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
	Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
	Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
	Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
	Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
	Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
	Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
	Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	
	Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
	Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	
	Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
	Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
	Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
	Joyce	English	453453453	333445555	Alice	F	1986-04-05	
	Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
	Joyce	English	453453453	333445555	Joy	F	1958-05-03	
	Joyce	English	453453453	987654321	Abner	М	1942-02-28	
	Joyce	English	453453453	123456789	Michael	М	1988-01-04	
	Joyce	English	453453453	123456789	Alice	F	1988-12-30	
	Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

4o passo:

DEPENDENTES_REAIS $\leftarrow \sigma_{SSN = ESSN}$ (DEPENDENTES_EMP)

DEPENDENTES_REAIS	PNOME	UNOME	SSN	ESSN	NOME_DEPENDENTE	SEXO	DATANASC	• • •
	Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	• • •

50 passo:

RESULTADO $\leftarrow \pi_{(PNOME, UNOME, NOME_DEPENDENTE)}$ (DEPENDENTES_REAIS)

DEPENDENTES_REAIS	PNOME	UNOME	SSN	ESSN	NOME_DEPENDENTE	SEXO	DATANASC	• • •
	Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	• • •

RESULTADO	PNOME	UNOME	NOME_DEPENDENTE
	Jennifer	Wallace	Abner

 Ex: recuperar, para cada empregado do sexo feminino, a lista de nomes de seus dependentes.

```
\begin{split} & \mathsf{EMPS\_FEM} \leftarrow \sigma_{\,\,\mathsf{SEXO}\,=\,\,\mathsf{'F'}}(\mathsf{EMPREGADO}) \\ & \mathsf{NOMESEMP} \leftarrow \pi_{\,\,(\mathsf{PNOME},\,\,\mathsf{UNOME},\,\,\mathsf{SSN})} \,\,(\mathsf{EMPS\_FEM}) \\ & \mathsf{DEPENDENTES\_EMP} \leftarrow \mathsf{NOMESEMP}\,\,\mathsf{X}\,\,\mathsf{DEPENDENTE} \\ & \mathsf{DEPENDENTES\_REAIS} \leftarrow \sigma_{\,\,\mathsf{SSN}\,=\,\,\mathsf{ESSN}}(\mathsf{DEPENDENTES\_EMP}) \\ & \mathsf{RESULTADO} \leftarrow \pi_{\,\,(\mathsf{PNOME},\,\,\mathsf{UNOME},\,\,\mathsf{NOME\_DEPENDENTE})} \,(\mathsf{DEPENDENTES\_REAIS}) \end{split}
```

RESULTADO	PNOME	UNOME	NOME_DEPENDENTE
	Jennifer	Wallace	Abner

- A sequência "Produto cartesiano Seleção" é bastante usada para identificar tuplas relacionadas em duas relações.
- Uma operação especial chamada Junção (*Join*) foi criada para especificar essa sequência como uma operação única.

Operação Junção - ▷</br> (Join)

- O operador de junção (▷<) é um dos mais úteis da álgebra relacional.
- Normalmente a junção é utilizada para combinar informações de duas ou mais relações.
- A junção pode ser definida como um produto cartesiano seguido de uma seleção.

- Por exemplo, a consulta:
 - Recuperar os nomes de gerentes de cada departamento:

```
DEP_EMP \leftarrow DEPARTAMENTO X EMPREGADO
DEPT_GER \leftarrow \sigma <sub>GERSSN = SSN</sub> (DEP_EMP)
RESULT \leftarrow \pi <sub>PNOME</sub> (DEPT_GER)
```

Equivale à:

```
DEP_EMP \leftarrow DEPARTAMENTO \triangleright \lhd GERSSN = SSN EMPREGADO RESULT \leftarrow \pi_{PNOME} (DEP_EMP)
```


- Um outro exemplo:
- Recuperar, para cada empregado do sexo feminino, a lista de nomes de seus dependentes.

```
\begin{split} & \mathsf{EMPS\_FEM} \leftarrow \sigma_{\,\,\mathsf{SEXO}\,=\,\,\mathsf{'F'}}(\mathsf{EMPREGADO}) \\ & \mathsf{NOMESEMP} \leftarrow \pi_{\,\,(\mathsf{PNOME},\,\,\mathsf{UNOME},\,\,\mathsf{SSN})} \; (\mathsf{EMPS\_FEM}) \\ & \mathsf{DEPENDENTES\_EMP} \leftarrow \mathsf{NOMESEMP} \; \mathsf{X} \; \mathsf{DEPENDENTE} \\ & \mathsf{DEPENDENTES\_REAIS} \leftarrow \sigma_{\,\,\mathsf{SSN}\,=\,\,\mathsf{ESSN}} \; (\mathsf{DEPENDENTES\_EMP}) \\ & \mathsf{RESULTADO} \leftarrow \pi_{\,\,(\mathsf{PNOME},\,\,\mathsf{UNOME},\,\,\mathsf{NOME\_DEPENDENTE})} \; (\mathsf{DEPENDENTES\_REAIS}) \end{split}
```


- Um outro exemplo:
- Recuperar, para cada empregado do sexo feminino, a lista de nomes de seus dependentes.

```
EMPS_FEM \leftarrow \sigma_{\text{SEXO} = 'F'} (EMPREGADO)

NOMESEMP \leftarrow \pi_{\text{(PNOME, UNOME, SSN)}} (EMPS_FEM)
```

DEPENDENTES_REAIS ← NOMESEMP ▷ < | SSN = ESSN DEPENDENTES

RESULTADO $\leftarrow \pi_{(PNOME, UNOME, NOME_DEPENDENTE)}$ (DEPENDENTES_REAIS)

- Um outro exemplo:
 - Considere as relações Car e Boat, que listam modelos de carros e barcos e seus respectivos preços. Suponha que um cliente quer comprar um carro e um barco, mas não quer pagar mais pelo barco do que pelo carro.

CarC

Car						
CarModel	CarPrice					
CarA	20'000					
CarB	30,000					
CarC	50'000					

Boat							
BoatModel	BoatPrice						
Boat1	10'000						
Boat2	40'000						
Boat3	60'000						

	~ ***							
$CarPrice \ge BoatPrice$								
CarModel	CarPrice	BoatModel	BoatPrice					
CarA	20'000	Boat1	10'000					
CarB	30,000	Boat1	10'000					
CarC	50'000	Boat1	10'000					

Boat2

 $Car \bowtie Boat$

Operação Equijunção (*Equijoin*)

- É comum encontrar operadores de junção (▷<) que tenham somente comparações de igualdade entre os atributos.
- Quando isso ocorre, o operador de junção é chamado de equijunção.
- No resultado de uma equijunção, haverá, sempre, um ou mais pares de atributos com valores idênticos.
 - ■DEP_GER ← DEPARTAMENTO ▷
 GERSSN = SSN EMPREGADO

DEPT_GER	DNOME	DNUMERO	GERSSN		PNOME	MINICIAL	UNOME	SSN	
	Research	5	333445555	• • •	Franklin	Т	Wong	333445555	• • •
	Administration	4	987654321		Jennifer	S	Wallace	987654321	
	Headquarters	1	888665555	• • •	James	E	Borg	888665555	• • •

Operação Junção Natural - * (Natural join)

- A junção natural é uma equijunção seguida da remoção dos atributos desnecessários.
- Forma geral:
 - \blacksquare Q \leftarrow R \ast (lista1), (lista2) S
 - lista1 especifica os atributos de R.
 - lista2 especifica os atributos de S.
- Na relação resultante, os atributos de lista2 não irão aparecer.

Operação Junção Natural - * (Natural join)

- Pode-se especificar o sinal de igualdade da condição, apesar de ser desnecessário.
 - DEPT_PROJ ← PROJETO * (DNUM = DNUMERO) DEPARTAMENTO
 ou
 - DEPT_PROJ ← PROJETO * (DNUM), (DNUMERO) DEPARTAMENTO

DEPARTAMENTO	DNOME	DNUMERO	GERSSN	GERDATAINICIO
	Pesquisa	5	333445555	1988-05-22
	Administração	4	987654321	1995-01-01
	Sede administrativa	1	888665555	1981-06-19

PROJETO	PJNOME	PNUMERO	PLOCALIZACAO	DNUM
	ProdutoX	1	Bellaire	5
	ProdutoY	2	Sugarland	5
	ProdutoZ	3	Houston	5
	Automatização	10	Stafford	4
	Reorganização	20	Houston	1
	Novos Benefícios	30	Stafford	4

Exemplo de consulta:

■ DEPT_PROJ ← PROJETO * (DNUM = DNUMERO) DEPARTAMENTO

DEPT_PROJ	PNOME	PNUMERO	PLOCALIZACAO	DNUM	DNOME	GERSSN	GERDATAINICIO
	ProdutoX	1	Bellaire	5	Research	333445555	1988-05-22
	ProdutoY	2	Sugarland	5	Research	333445555	1988-05-22
	ProdutoZ	3	Houston	5	Research	333445555	1988-05-22
	Automacao	10	Stafford	4	Administration	987654321	1995-01-01
	Reorganizacao	20	Houston	1	Headquarters	888665555	1981-06-19
	Novosbeneficios	30	Stafford	4	Administration	987654321	1995-01-01

Operação Junção Natural - * (Natural join)

- Pode-se omitir as listas de atributos
 - serão considerados os atributos que tiverem os mesmos nomes nas duas relações.
 - Exemplo:
 - DEPT_LOCS ← DEPARTAMENTO * LOCAIS_DEPTO

DEPT LOCALIZACOE	S	DNUMERO	DLOCALIZACAO
		1	Houston
- 2		4	Stafford
GERDATAINICIO		5	Bellaire
1988-05-22		5	Sugarland
1995-01-01			Houston

DEPARTAMENTO	DNOME	DNUMERO	GERSSN	GERDATAINICIO
	Pesquisa	5	333445555	1988-05-22
	Administração	4	987654321	1995-01-01
	Sede administrativa	1	888665555	1981-06-19

- Exemplo de consulta:
 - DEPT_LOCS ← DEPARTAMENTO * LOCAIS_DEPTO

DEPT_LOCS	DNOME	DNUMERO	GERSSN	GERDATAINICIO	LOCALIZACAO
A	Sede Administrativa	1	888665555	1981-06-19	Houston
	Administracao	4	987654321	1995-01-01	Stafford
	Pesquisa	5	333445555	1988-05-22	Bellaire
	Pesquisa	5	333445555	1988-05-22	Sugarland
	Pesquisa	5	333445555	1988-05-22	Houston

Operação Divisão -(Division)

 A divisão de duas relações R ÷ S, onde $atributos(S) \subseteq atributos(R)$, resulta na relação T com $atributos(T) = {atributos(R) - }$

atributos(S)}.

Para cada tupla t que aparece no resultado T, os valores de t devem aparecer em R em combinação com toda tupla em S.

Operação Divisão - ÷ (*Division*)

 Quase sempre, a divisão é usada nas consultas em que há expressões do tipo "em todos".

Exemplo:

 recuperar os nomes dos empregados que trabalham em todos os projetos que 'John Smith' trabalha.

EMPREGADO	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

10 passo: recuperar os projetos onde 'John Smith' trabalha:

ESSN	PNO	HORAS
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	null

TRABALHA EM

- SMITH $\leftarrow \sigma_{PNOME = 'JOHN' AND UNOME = 'SMITH'}$ (EMPREGADO)
- SMITH_NRPS $\leftarrow \pi_{PNO}$ (TRABALHA_EM * $_{ESSN = SSN}$ SMITH)

EMPREGADO	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

Resultado do 1o passo:

SMITH_NRPS	NRP
	1
	2

И	ESSN	PNO	HORAS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	null

TRABALHA EN

- SMITH $\leftarrow \sigma_{PNOME = 'JOHN' AND UNOME = 'SMITH'}$ (EMPREGADO)
- SMITH_NRPS $\leftarrow \pi_{PNO}$ (TRABALHA_EM * $_{ESSN = SSN}$ SMITH)

TRABALHA_EM	ESSN	PNO	HORAS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	null

 2o passo: obter a relação com o SSN e o PNO dos empregados.

Resultado do 2o passo:

SSN_NRPS	ESSN	NRP
	123456789	1
	123456789	2
	666884444	3
	453453453	1
	453453453	2
	333445555	2
	333445555	3
	333445555	10
	333445555	20
	999887777	30
	999887777	10
	987987987	10

Consulta:

 $SSN_NRPS \leftarrow \pi_{ESSN, PNO} (TRABALHA_EM)$

Operação Divisão - ÷ (*Division*)

3o passo: finalmente aplicar a divisão.

SSSN ← SSN_NRPS ÷ SMITH_NRPS

SSN_NRPS	ESSN	NRP
	123456789	1
	123456789	2
	666884444	3
	453453453	1
	453453453	2
	333445555	2
	333445555	3
	333445555	10
	333445555	20
	999887777	30
	999887777	10
	987987987	10
	987987987	30
	987654321	30
	987654321	20
	888665555	20

SMITH_NRPS	NRP
	1
	2

Resultado final:

SSNS	SSN
	123456789
	453453453

Operação Divisão - ÷ (*Division*)

- Um outro exemplo:
 - Um professor mantém informações sobre tarefas atribuídas a seus alunos em várias disciplinas. Nesse momento, ele gostaria de saber quais alunos já completaram todas as tarefas da disciplina de Banco de Dados.

Completed			
Student	Task		
Fred	Database1		
Fred	Database2		
Fred	Compiler1		
Eugene	Database1		
Eugene	Compiler1		
Sara	Database1		
Sara	Database2		

