

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 1月22日

出 願 番 号 Application Number:

特願2003-013492

[ST. 10/C]:

Applicant(s):

[JP2003-013492]

出 願 人

株式会社デンソー

特許庁長官

Commissioner, Japan Patent Office 2003年10月20日

今井康

【書類名】

特許願

【整理番号】

N020906

【提出日】

平成15年 1月22日

【あて先】

特許庁長官殿

【国際特許分類】

H03M 1/08

G06J 3/00

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】

伊藤 健治

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】

原田 卓哉

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】

磯村 博文

【特許出願人】

【識別番号】

000004260

【氏名又は名称】

株式会社デンソー

【代理人】

【識別番号】

100071135

【住所又は居所】

名古屋市中区栄四丁目6番15号 名古屋あおば生命ビ

ル

【弁理士】

【氏名又は名称】

佐藤 強

【電話番号】

052-251-2707

【選任した代理人】

【識別番号】

100119769

【弁理士】

【氏名又は名称】 小川 清

【手数料の表示】

 $\dot{)}$

【予納台帳番号】 008925

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9200169

【包括委任状番号】 0217337

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 半導体集積回路装置

【特許請求の範囲】

【請求項1】 半導体チップ上に、サンプリング信号に同期してアナログ電圧をサンプリングし該電圧を処理するアナログ電圧処理部と、デジタル処理に基づいてPWM駆動信号を生成し該信号を被駆動部に与えるPWM駆動部とが形成された半導体集積回路装置において、

前記PWM駆動信号のレベルが変化してから前記被駆動部の通電状態が実際に変化するまでの遅延時間 t dが、少なくとも前記PWM駆動信号の第2レベルの最小時間幅よりも小さいことを条件として、前記PWM駆動信号の周期開始時点である第1レベルから第2レベルへの変化時点を取得し、当該周期開始時点よりも前記遅延時間 t d だけ経過した後の一定時点において前記アナログ電圧処理部に対してサンプリング信号を与えるサンプリング信号生成回路を備えたことを特徴とする半導体集積回路装置。

【請求項2】 前記サンプリング信号生成回路は、余裕時間をta(>0) とした場合、遅延時間tdが(第2レベルの最小時間幅-余裕時間ta)よりも小さいことを条件として、前記PWM駆動信号の周期開始時点よりも(遅延時間td+余裕時間ta)だけ経過した時点において前記アナログ電圧処理部に対してサンプリング信号を与えることを特徴とする請求項1記載の半導体集積回路装置。

【請求項3】 前記PWM駆動部は、前記PWM駆動信号の各周期について、前記周期開始時点を出力するように構成されていることを特徴とする請求項1または2記載の半導体集積回路装置。

【請求項4】 半導体チップ上に、サンプリング信号に同期してアナログ電圧をサンプリングし該電圧を処理するアナログ電圧処理部と、デジタル処理に基づいてPWM駆動信号を生成し該信号を被駆動部に与えるPWM駆動部とが形成された半導体集積回路装置において、

前記PWM駆動信号のレベルが変化してから前記被駆動部の通電状態が実際に変化するまでの遅延時間を t d として、

遅延時間 t d < 基準時間 t s \leq (PWM駆動信号の周期-遅延時間 <math>t d) なる条件を満たす基準時間 t s を予め設定し、前記 PWM駆動信号の周期開始時点である第 <math>1 レベルから第 2 レベルへの変化時点と当該周期における第 2 レベルの時間幅とを取得し、前記基準時間 t s が前記第 2 レベルの時間幅よりも大きい場合には前記周期開始時点から(基準時間 t s t + 遅延時間 t d t) が経過した時点で前記アナログ電圧処理部に対してサンプリング信号を与え、前記基準時間 t s が前記第 t 2 レベルの時間幅以下である場合には前記周期開始時点から前記基準時間 t s が経過した時点で前記アナログ電圧処理部に対してサンプリング信号を与えるサンプリング信号生成回路を備えたことを特徴とする半導体集積回路装置。

【請求項5】 前記サンプリング信号生成回路は、余裕時間をta(>0) として、

(遅延時間 t d + 余裕時間 t a) <基準時間 t s

≦ (PWM駆動信号の周期ー遅延時間 t d 一余裕時間 t a) なる条件を満たす基準時間 t s を予め設定し、前記基準時間 t s が前記第 2 レベルの時間幅よりも大きい場合には前記周期開始時点から(基準時間 t s +遅延時間 t d +余裕時間 t a) が経過した時点で前記アナログ電圧処理部に対してサンプリング信号を与えることを特徴とする請求項 4 記載の半導体集積回路装置。

【請求項6】 前記PWM駆動部は、前記PWM駆動信号の各周期について、前記周期開始時点と第2レベルの時間幅とを出力するように構成されていることを特徴とする請求項4または5記載の半導体集積回路装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、半導体チップ上に、アナログ電圧をサンプリングし該電圧を処理するアナログ電圧処理部と、デジタル処理に基づいてPWM駆動信号を生成するPWM駆動部とが形成された半導体集積回路装置に関する。

[0002]

【従来の技術】

デジタルアナログ混載ICであって、アナログ回路に含まれるサンプリング処

理部のサンプリング時間を決めるタイミング信号が、デジタル回路において他のデジタル回路と共通のマスタークロックを使って生成されているものを対象として、デジタル回路で発生するパルスノイズの影響がアナログ回路のサンプリング処理に及ばないようにする技術がある(特許文献1参照)。これは、タイミング信号の反転タイミングを、マスタークロックの立ち上がりまたは立ち下がりに対し、デジタル回路のゲート1段あたりの遅延時間よりも十分大きな一定時間以上の時間差を持つように設定することにより実現されている。

[0003]

【特許文献1】

特開平9-153802号公報

[0004]

【発明が解決しようとする課題】

この技術は、マスタークロックのように常に一定波形を持つノイズ発生源に対しては有効であり、上記タイミング信号の反転タイミングとマスタークロックの立ち上がりまたは立ち下がりとの時間差を一定時間に設定することができる。しかしながら、例えばパワー素子をPWM駆動する場合のPWM駆動信号のように、周期は一定であってもデューティ比が絶えず変化するような場合には、PWM駆動信号の立ち下がり(または立ち上がり)のタイミングが変動するため適用することができない。

[0005]

PWM駆動されるパワー素子に流れる電流は、そのPWM駆動信号に応じて急峻に通断電されるため、たとえ半導体集積回路装置(IC)内にパワー素子が搭載されていなくても、パワー素子とICとが電源を共通にするなどの事情がある場合には、ノイズが電源ラインを通して当該IC内のアナログ電圧処理部に入り込む。特に、PWM駆動により制御されるモータやソレノイドなどは、比較的大きい電流容量を持つため、例えば車載機器などバッテリを共通の電源として使用せざるを得ない機器では、アナログ電圧処理部へのノイズの侵入が深刻な問題となっている。

[0006]

本発明は上記事情に鑑みてなされたもので、その目的は、アナログ回路とデジタル回路が混載された半導体集積回路装置において、PWM駆動部の動作に伴って発生するノイズのアナログ電圧処理部への影響を極力低減可能な半導体集積回路装置を提供することにある。

[0007]

【課題を解決するための手段】

請求項1に記載した手段によれば、PWM駆動部が生成するPWM駆動信号のレベル変化に対応して、PWM駆動部から出力される被駆動部(パワー素子など)の駆動電流(ゲート駆動電流、ベース駆動電流など)が変化し、あるいは被駆動部自体の通電電流が変化する。従って、半導体集積回路装置にPWM駆動部が設けられていると、被駆動部が半導体集積回路装置に内蔵されているか外部に設けられるかに関わらず、PWM駆動部においてPWM駆動信号のレベル変化時点あるいは被駆動部の通電状態変化時点でパルス状のノイズが発生する。

[0008]

サンプリング信号生成回路は、PWM駆動信号の周期開始時点である第1レベル(例えば被駆動部の断電状態に対応)から第2レベル(例えば被駆動部の通電状態に対応)への変化時点を取得し、当該時点から実際に被駆動部の通電状態が変化するまでの遅延時間 t dが経過じた後の一定時点にアナログ電圧処理部に対してサンプリング信号を与える。つまり、本手段によれば、PWM駆動信号が第2レベルにある期間内にサンプリング信号を与えることができるので、PWM駆動信号の変化により生じるノイズとサンプリング信号とが時間的に重なり合うことがなくなる。また、サンプリング信号を等間隔で発生させることができる。従って、アナログ電圧処理部は、ノイズに影響されることなく、入力されるアナログ電圧を一定間隔で正確にサンプリングすることができる。

[0009]

ただし、上記手段によりサンプリング信号を発生させると、PWM駆動信号の第2レベルの時間幅が小さくなって上記遅延時間 t d以下となった場合に、PWM駆動信号の第2レベルから第1レベルへの変化とサンプリング信号とが重なる虞が生じる。従って、本手段は、遅延時間 t dが少なくともPWM駆動信号の第

2レベルの最小時間幅よりも小さいことを条件として適用可能となる。

[0010]

請求項2に記載した手段によれば、請求項1記載の手段に対して余裕時間taが考慮され、被駆動部の通電状態が変化してからサンプリング信号が発生するまでの間に少なくとも余裕時間taが確保されることになる。この余裕時間taは正の値であって、被駆動部に流れる電流が変化するのに要する時間等を考慮して、ノイズとサンプリング信号とが重ならないように適宜設定される。

$[0\ 0\ 1\ 1]$

請求項3に記載した手段によれば、サンプリング信号生成回路は、PWM駆動部から、PWM駆動信号の各周期について周期開始時点を取得することができる

$[0\ 0\ 1\ 2]$

請求項4に記載した手段によれば、サンプリング信号生成回路は、基準時間tsを予め設定し、その基準時間tsとPWM駆動信号の第2レベルの時間幅との大小関係に応じてサンプリング信号を生成する。具体的には、①基準時間tsが第2レベルの時間幅よりも大きい場合には周期開始時点から(基準時間tsが第2レベルの時間幅よりも大きい場合には周期開始時点から(基準時間tsが第2レベルの時間幅以下である場合には周期開始時点から基準時間tsが終2レベルの時間幅以下である場合には周期開始時点から基準時間tsが経過した時点でサンプリング信号を出力する。

[0013]

本手段によれば、サンプリング信号生成回路は、デューティ比が刻々と変化するPWM駆動信号において、第2レベルから第1レベルへの変化時点を避けるようにしてサンプリング信号を生成することができるので、PWM駆動信号の変化により生じるノイズとサンプリング信号とが時間的に重なり合うことがなくなる。また、基準時間 tsと第2レベルの時間幅との大小関係によってサンプリング信号の発生タイミングは僅かに遅延時間 tdだけ異なるだけなので、サンプリング信号をほぼ等間隔で発生させることができる。従って、アナログ電圧処理部は、ノイズに影響されることなく、入力されるアナログ電圧をほぼ一定間隔で正確にサンプリングすることができる。

[0014]

ただし、基準時間 t s を極端に小さく設定すると、PWM駆動信号の第1レベルから第2レベルへの変化とサンプリング信号とが重なる虞が生じ、また極端に大きく設定すると、サンプリング信号を当該PWM周期内に発生させることができない虞が生じる。そこで、基準時間 t s は、

遅延時間 t d < 基準時間 t s ≤ (PWM駆動信号の周期-遅延時間 t d) なる条件を満たすように設定される。

[0015]

請求項5に記載した手段によれば、請求項4記載の手段に対して余裕時間taが考慮される。すなわち、上記①の場合、PWM駆動信号の第2レベルから第1レベルへの変化に対応して被駆動部の通電状態が変化してからサンプリング信号が発生するまでの間に少なくとも余裕時間taが確保されることになる。また、上記②の場合には、サンプリング信号が発生してから被駆動部の通電状態が変化するまでの間に少なくとも遅延時間tdの余裕時間が確保されている。さらに、PWM駆動信号の第1レベルから第2レベルへの変化に対しても余裕時間taが確保される。余裕時間taは正の値であって、被駆動部に流れる電流が変化するのに要する時間等を考慮して、ノイズとサンプリング信号とが重ならないように適宜設定される。

[0016]

請求項6に記載した手段によれば、サンプリング信号生成回路は、PWM駆動部から、PWM駆動信号の各周期について周期開始時点と第2レベルの時間幅とを取得することができる。

[0017]

【発明の実施の形態】

(第1の実施形態)

以下、本発明を車載モータ制御用のIC(半導体集積回路装置)に適用した第 1の実施形態について図1ないし図3を参照しながら説明する。

図1は、モータ駆動装置の電気的構成を示している。このモータ駆動装置1は 、車両に搭載されたブラシ付きの直流モータ2の近傍に設置されており、図示し ないECU(Electronic Control Unit) からの指令信号Smに従ってモータ2を回転駆動するものである。モータ駆動装置1は、バッテリ(図示せず)から電源電圧の供給を受けて動作するが、バッテリ電圧VBが変動してもモータ印加電圧が一定となるように、モータ2の両端電圧をフィードバック制御するようになっている。ここで、端子3、4は電源端子、端子5は信号入力端子、端子6p、6nはモータ接続端子である。

[0018]

モータ駆動装置1は、制御用のIC7、パワー部8、モータ2の端子間電圧を検出する電圧検出回路9、および端子3と装置内の電源線11との間に挿入されたフィルタ10とから構成されている。パワー部8は、ハイサイドスイッチの形態に接続されたPチャネル型パワーMOSFET(図示せず)から構成されており、該パワーMOSFETは、IC7から出力されるPWM信号SPWM2によってオンオフ動作するようになっている。電圧検出回路9は、例えば抵抗分圧回路から構成されている。なお、端子6pと6nとの間には、電流還流用のダイオード(図示せず)が接続されている。

$[0\ 0\ 1\ 9]$

IC7には、フィルタ10を通過した後のバッテリ電圧VBが電源線11を通して供給されている。図示しないが、IC7は電源回路を備えており、バッテリ電圧VBに基づいて制御用の電源電圧Vcc(例えば5V)を生成するようになっている。

[0020]

このIC7はモノリシックICであって、一つの半導体チップ上にアナログ回路部12とデジタル回路部13とが形成されている。両回路部12、13は、半導体チップ上で分離して配置されているが、電源を共用しているためにデジタル回路部13の動作により生じるノイズがIC内部の電源線等を通してアナログ回路部12に侵入する虞がある。また、IC7とパワー部8は電源線11を共用しているため、パワー部8のオンオフ動作により生じるノイズがIC7に侵入する虞もある。

[0021]

8/

IC7のアナログ回路部12は、フィルタ回路14、A/D変換器15および基準電圧発生回路16から構成されている。このうちフィルタ回路14は、電圧検出回路9から出力される矩形状の信号電圧を平均化処理し、モータ2に印加される平均電圧を出力するようになっている。A/D変換器15(アナログ電圧処理部に相当)は、後述するサンプリング信号Stに同期して入力電圧Vin(モータ印加電圧)をサンプル・ホールドし、そのホールドされたサンプリング電圧をA/D変換してデジタルデータDmを出力するものである。その際に必要となる基準電圧Vrefは、例えばバンドギャップレギュレータからなる基準電圧発生回路16で生成される。なお、基準電圧発生回路16は、バッテリ電圧VBの下で動作するようになっている。

[0022]

一方、デジタル回路部13は、電源電圧Vccの下で動作する演算・制御部17、PWM信号生成回路18、サンプリング信号生成回路20と、バッテリ電圧VBの下で動作するレベルシフト回路19とから構成されている。このうち演算・制御部17は、例えばゲートアレイを用いて構成されるもので、モータ印加電圧が一定となるように上記デジタルデータDmを基にPI制御演算等を実行するようになっている。なお、ハードウェアによる構成に替えて、CPUを利用してソフトウェア処理する構成としても良い。

[0023]

PWM信号生成回路18は、演算・制御部17から出力された演算結果に基づいてPWM信号SPWM1を生成するものである。PWM信号SPWM1のLレベル(第1レベルに相当)、Hレベル(第2レベルに相当)は、それぞれパワー部8を構成するパワーMOSFETのオフ状態、オン状態に相当し、そのLレベルからHレベルの変化時点がPWM周期の開始時点となっている。レベルシフト回路19は、5V系のPWM信号SPWM1を電圧VB系のPWM信号SPWM2にレベル変換するもので、パワーMOSFETを駆動するだけの電流出力能力を備えている。さらに、PWM信号生成回路18は、サンプリング信号生成回路20に対して、上述の周期開始時点を示すパルス状のスタート信号Sp(図3(f)参照)を出力するようになっている。なお、PWM信号生成回路18とレベルシフト回路19

は、一体として本発明でいうPWM駆動部に相当する。

[0024]

サンプリング信号生成回路 2 0 は、上記スタート信号 S p、遅延時間 t d および余裕時間 t a に基づいてサンプリング信号 S t を生成するもので、具体的には図 2 に示す構成となっている。ここで、遅延時間 t d とは、P W M 信号 S P W M I のレベルが変化してからパワー部 8 の通電電流が実際に変化するまでの遅れ時間であり、余裕時間 t a とは、サンプリング信号 S t と後述する P W M ノイズとの間の余裕時間である。

[0025]

タイマとして機能するカウンタ21は、スタート信号Spによりカウント値を 0にリセットし、リセット解除後は基準クロックをカウントしたNビットのデジ タルデータDtを出力するようになっている。一方、時間tc(=遅延時間td +余裕時間ta)もNビットのデジタルデータDcとして表されており、コンパ レータ22は、デジタルデータDtとDcとを比較してDt=Dcとなった時点 でパルス状のサンプリング信号Stを出力するようになっている。

[0026]

次に、本実施形態の動作について図3も参照しながら説明する。

図3は、PWMに関する各信号のタイミング並びに電圧波形を示すもので、PWMのデューティ比が急激に増大している場合を示している。各波形は、上から順に、(a)信号SPWM1、(b)信号SPWM2、(c)パワー部8の出力電圧(モータ印加電圧)、(d)電源線11の電圧、(e)基準電圧Vref、(f)スタート信号Sp、(g)サンプリング信号Stを表している。

[0027]

モータ駆動装置1がECUから駆動開始の指令信号Smを入力すると、IC7内部では、モータ印加電圧が一定となるように演算・制御部17がPI制御演算を実行し、PWM信号生成回路18はその演算結果に基づいてPWM信号SPWM(図3(a)参照)を生成する。レベルシフト回路19は、このPWM信号SPW MIのレベル変換を行いPWM信号SPWM(図3(b)参照)としてパワー部8に出力する。この場合、PWM信号SPWM1のレベルが変化すると、レベルシフト回

路19にはパワーMOSFETのゲート電荷を充放電するための急峻なゲート駆動電流が流れる。この電流は、電源線11からIC7内部の電源線に流れるため、これら電源線に存在するインダクタンス成分によりパルス状の電圧ノイズが発生することになる。

[0028]

パワー部8は、PWM信号SPWM2に従ってモータ2に流れる電流を通断電し、以ってモータ2への印加電圧が制御される(図3(c)参照)。しかし、PWM制御を行うと、パワー部8に繋がる電源線11の電流はPWM周期ごとに通電と断電とが繰り返されるので、それに対応して電源線11には上記ゲート駆動電流に対応したノイズよりも更に大きいパルス状の電圧ノイズが発生する(図3(d)参照)。

[0029]

また、基準電圧発生回路16はバッテリ電圧VBの供給を受けて動作するため、生成される基準電圧Vref にも同様のノイズが重畳し(図3(e)参照)、そのノイズがA/D変換器15に侵入する。

[0030]

[0031]

従って、パワー部8が通電状態に変化してノイズが発生する時点とサンプリング信号Stの発生時点とは少なくとも余裕時間taだけずれることになり、A/D変換器15は、サンプリング信号Stに従ってPWMノイズのない状態で入力電圧Vin(モータ印加電圧)をサンプリングすることができる。なお、余裕時間

t a は、パワー部 8 の通電電流が変化するのに要する時間等を考慮して、ノイズ とサンプリング信号 S t とが重ならないように適宜設定すれば良い。

[0032]

一方、このようなサンプリング信号Stを用いた場合、PWM信号SPWM1のHレベル時間幅が短くなると、PWM信号SPWM1がHレベルからLレベルに変化する時点とサンプリング信号Stの発生時点とが重なる虞が生じる。そこで、PWM信号SPWM1のHレベルの最小時間幅をtminとして、遅延時間tdが(最小時間幅tmin一余裕時間ta)よりも小さいことを条件として適用する。一般に、モータ印加電圧が小さくなるとモータ印加電圧と回転速度とのリニアリティが失われモータ2が停止してしまうため、PWM信号SPWM1のデューティ比に下限を設ける場合も多い。このような場合には、その下限デューティ比に対応した最小時間幅tminが上記条件式を満足することを確認して適用すれば良い。

[0033]

以上説明したように、本実施形態のモータ駆動装置1に用いられるPWM制御用のIC7は、A/D変換器15を含むアナログ回路部12とPWM信号生成回路18を含むデジタル回路部13とが混載されたICである。そして、IC7のサンプリング信号生成回路20は、A/D変換器15に対し、PWM信号SPWMがHレベルにある期間内にサンプリング信号Stを与えることができるので、PWM信号SPWM1およびパワー部8の通電状態の変化により生じるPWMノイズとサンプリング信号Stとが時間的に重なり合うことがなくなる。また、パワー部8の通電状態が変化してからサンプリング信号Stが発生するまでの間に少なくとも余裕時間taが確保されるので、A/D変換器15の電圧サンプリングに対するPWMノイズの影響を一層低減することができる。

[0034]

さらに、PWM周期開始時点からサンプリング信号Stが発生するまでの時間 tcは一定値に定められるため、サンプリング信号Stを等間隔で発生させることができる。従って、A/D変換器15は、ノイズに影響されることなく、入力されるアナログ電圧を一定間隔で正確にサンプリングすることができる。

[0035]

(第2の実施形態)

次に、本発明の第2の実施形態について図4および図5を参照しながら説明する。

本実施形態に係るモータ駆動装置は、第1の実施形態で説明したモータ駆動装置1と同様な機能を有しているが、サンプリング信号生成回路の構成が異なっている。また、PWM信号生成回路18(図1参照)は、サンプリング信号生成回路23(図4参照)に対して、スタート信号Spの他に各PWM周期についてのPWM信号SPWM1のデューティ比を出力するようになっている。ただし、実際にはデューティ比に代えてそれと実質的に等価であるPWM信号SPWM1のHレベル時間幅(パルス幅tp)のデジタルデータDpを出力するようになっている。このデジタルデータDpはNビット長であり、PWM周期T(一定値)を2Nに分割して0から(2N-1)のデータで表されている。

[0036]

図4は、サンプリング信号生成回路23の構成であって、図2と同一構成部分には同一符号を付して示している。コンパレータ22は、PWM周期開始時点からの経過時間 t に対応するデジタルデータD t とセレクタ24の出力データD r とを比較し、D t = D r となった時点でパルス状のサンプリング信号S t を出力するようになっている。

[0037]

そのセレクタ24には2つのデジタルデータが入力されている。一つは、基準時間 t s に対応したデジタルデータ D s であり、他の一つは、加算器25を用いて得られた時間 t e (=基準時間 t s +遅延時間 t d +余裕時間 t a) に対応したデジタルデータ D e である。これらの時間とデジタルデータとの対応関係は、上述したパルス幅 t p とデジタルデータ D p との対応関係と同様である。ここで、基準時間 t s は、後述するようにサンプリング信号 S t の発生タイミングを決定するために予め設定される一定時間である。

[0038]

セレクタ24は、コンパレータ26の出力信号により切り替えられるようになっている。すなわち、コンパレータ26は、上記デジタルデータDpとDsとを

比較し、Ds>Dpの場合にはセレクタ24にデジタルデータDeを選択させ、 Ds≦Dpの場合にはセレクタ24にデジタルデータDsを選択させるようになっている。

[0039]

次に、本実施形態の動作について図5も参照しながら説明する。

図 5 は、PWMに関する各信号のタイミング並びに電圧波形を示すもので、PWMのデューティ比が急激に増大している場合を示している。この図 5 (a) ~ (f) に示される信号および電圧は、上述した図 3 (a) ~ (f) に示されるものと同じであり、図 5 (g) と (h) は、それぞれデジタルデータ (g) と (g)

[0040]

サンプリング信号生成回路 23 は、本実施形態で新たに導入した基準時間 tsが PWM信号SPWM1のHレベルパルス幅 <math>tp よりも大きいか否かによってサンプリング信号 St の出力タイミングを調整している。すなわち、基準時間 ts がパルス幅 tp よりも大きい場合には、PWM周期開始時点から時間 te (=基準時間 ts +遅延時間 td +余裕時間 ta) が経過した時点でサンプリング信号 St を出力する。

[0 0 4 1]

このようにすると、PWM信号SPWMIがHレベルからLレベルに変化したのに対応して実際にパワー部8がオフになり更に余裕時間 t a が経過した時点以降にサンプリング信号S t が発生する。従って、パワー部8が断電状態に変化してノイズが発生する時点とサンプリング信号S t の発生時点とは少なくとも余裕時間t a だけずれることになり、A/D変換器15は、サンプリング信号S t に従ってPWMノイズのない状態で入力電圧Vin(モータ印加電圧)をサンプリングすることができる。なお、余裕時間 t a は、第1の実施形態と同様の観点から適宜設定すれば良い。

[0042]

これに対し、基準時間 t s がパルス幅 t p 以下である場合には、P W M 周期開始時点から基準時間 t s が経過した時点でサンプリング信号 S t を出力する。こ

のようにすると、PWM信号SPWM1がHレベルにある期間内にサンプリング信号 Stを発生させることができる。ここで、基準時間tsとパルス幅tpとが等しい時にサンプリング信号Stとノイズ発生時点との時間余裕が最小となるが、この場合であってもPWM信号SPWM1からPWM信号SPWM2までの遅延時間あるいはPWM信号SPWM1からパワー部8の通電変化までの遅延時間tdだけの余裕は確保されている。従って、A/D変換器15は、PWMノイズのない状態でサンプリングすることができる。

[0043]

ところで、基準時間 t s を極端に小さく設定すると、PWM信号 SPWM1が L レベルから H レベルに変化する時点とサンプリング信号 S t の発生時点とが重なる 虞が生じる。そこで、(遅延時間 t d +余裕時間 t a) < 基準時間 t s なる関係 を満たす範囲内で基準時間 t s を設定することにより、両者間に余裕時間 t a を 確保することができる。

[0044]

[0045]

以上説明したように、本実施形態のサンプリング信号生成回路23は、デューティ比が刻々と変化するPWM信号SPWM1において、HレベルからLレベルへの変化時点を避けるようにしてサンプリング信号Stを生成することができるので、PWM信号SPWM1およびパワー部8の通電状態の変化により生じるPWMノイズとサンプリング信号Stとが時間的に重なり合うことがなくなる。この場合、パワー部8の通電状態が変化してからサンプリング信号Stが発生するまでの間に少なくとも余裕時間taが確保される。また、基準時間tsに下限値を設けることにより、PWM信号SPWM1のLレベルからHレベルへの変化時点に対しても余裕時間taが確保される。従って、A/D変換器15の電圧サンプリングに対

するPWMノイズの影響を一層低減することができる。

[0046]

さらに、基準時間 t s t s t s t s t c

[0047]

(その他の実施形態)

なお、本発明は上記し且つ図面に示す各実施形態に限定されるものではなく、 例えば以下のように変形または拡張が可能である。

各実施形態について余裕時間 t a を設定したが、この余裕時間 t a は、例えばパワー部8における通電電流の変化時間が十分に短いような場合には0に設定できる場合もある。

サンプリング信号生成回路20、23は、ハードウェアによる構成に替えて、 CPUを利用してソフトウェア処理する構成としても良い。

IC7は、モータ駆動装置に限らず、一般にPWM制御が必要となる制御装置 例えばソレノイド制御装置、ランプ調光装置、インバータ装置などにも適用できる。また、モータ駆動装置1の対象モータは、ブラしレス直流モータや交流モータであっても良い。

[0048]

アナログ電圧処理部の代表例としてA/D変換器を有するICについて説明したが、サンプルホールド回路単体、コンパレータなどのように一般にノイズにより悪影響を受けるアナログ回路を含むICに対しても同様に適用できる。

パワー部8が内蔵されているICであっても作用は同じである。この構成では、IC内部でのPWMノイズが一層大きくなることが想定されるため、本発明を用いることにより一層大きな効果を得ることができるものと考えられる。

【図面の簡単な説明】

- 【図1】 本発明の第1の実施形態を示すモータ駆動装置の電気的構成図
- 【図2】 サンプリング信号生成回路の電気的構成図
- 【図3】 PWMに関する各信号のタイミング並びに各電圧波形を示す図
- 【図4】 本発明の第2の実施形態を示す図2相当図
- 【図5】 図3相当図

【符号の説明】

7はIC(半導体集積回路装置)、15はA/D変換器(アナログ電圧処理部)、18はPWM信号生成回路(PWM駆動部)、19はレベルシフト回路(PWM駆動部)、20、23はサンプリング信号生成回路である。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 アナログ/デジタル混載ICにおいて、PWM駆動部のPWMノイズがアナログ電圧処理部に及ぼす影響を極力低減する。

【解決手段】 サンプリング信号生成回路 2 0 は、PWM信号 SPWM1のレベルが変化してからパワー部 8 の通電状態が実際に変化するまでの遅延時間 t dが(信号 SPWM1のHレベル最小時間幅ー余裕時間 t a)よりも小さいことを条件として、信号 SPWM1の周期開始時点である Lから Hレベルへの変化時点を示すスタート信号 S p よりも(遅延時間 t d + 余裕時間 t a)だけ経過した時点においてA/D変換器 1 5 に対してサンプリング信号 S t を出力する。

【選択図】 図1

特願2003-013492

出願人履歴情報

識別番号

[000004260]

1. 変更年月日 [変更理由]

1996年10月 8日

[変史理田] 住 所 名称変更

住 所

愛知県刈谷市昭和町1丁目1番地

氏 名 株式会社デンソー