2017-2018 春季 信息论与编码 期末试题

By 逸

July 8, 2018

Contents

1	信道容量	2
2	赛马	2
3	信道容量	3
4	编码	3
5	高斯信道	3
6	线性分组码	3
7	线性分组码	3
8	循环码	4
9	卷积码	4
10	点评	4

1 信道容量

(2) 求信道容量,以及达到容量时 X 的分布。

2 赛马

三匹马比赛, 获胜概率 $p_1=1/2$, $p_2=1/4$, $p_3=1/4$, $o_1=o_2=o_3=3$ 。

- (1) 最优投注 b_i ? 对应的增长速度 S_n ?
- (2) 比赛四场, 求马 3 获胜次数小于等于 2 的概率。

(3) 某马民 B 有额外信息 Y,联合分布见表。求出 I(X;Y),并计算马民 B 的 双倍率。

X & Y	1	2
1	1/8	3/8
2	1/8	1/8
3	1/4	0

3 信道容量

 $X \in \{-2,2\}, Y = X + Z,$ 其中 Z 对应 [-1,1] 上的均匀分布, $X \setminus Z$ 独立。 (1) 求 h(Y|X)。

(2) 求信道容量及对应 X 分布。

4 编码

X 有四种取值, 概率分别为 0.4、0.3、0.2、0.1。

- (1) 二进制变长即时码,求期望长度的最小值。
- (2) 对 X 采用 Shannon 编码,并计算期望长度。是不是最优的?

5 高斯信道

 $W=1~\mathrm{MHz}$ (低通),功率 $P=2~\mathrm{mW}$,双边功率谱密度为 $\frac{N_0}{2}=10^{-6}~\mathrm{mW/Hz}$ 。

- (1) 求信道容量。此时每秒发送多少个独立符号?
- (2) $\eta_B = \frac{R}{B} = 1 \text{ bps/Hz}$,求 $\frac{E_b}{N_0}$ 最小值。

6 线性分组码

线性分组码, 生成矩阵为:

$$G = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \tag{1}$$

- (1) 写出所有许用码组。
- (2) 最小汉明距? 能纠几个错?
- (3) 求系统码的生成矩阵。
- (4) 写出监督矩阵。

7 线性分组码

系统线性分组码 (n,k), 监督位的数目 m=6。(1)若 n=8,根据汉明界,确定最多纠错数目。

- (2) 如果是汉明码, 求 k。最小码距是多少?
- (3) 如果是扩展汉明码, m = 6, 求 n。码距是多少?

8 循环码

已知 $D^7+1=(D+1)(D^3+D+1)(D^3+D^2+1)$, 其中 D^3+D+1 和 D^3+D^2+1 均为本原多项式。

考虑一个 (7,4) 循环码, 生成多项式 $g(D) = D^3 + D + 1$ 。

- (1) 求监督多项式 h(D)。
- (2) 写出生成矩阵 G。
- (3) 错误图样 $E(D) = D^6$, 求校正子。
- (4) 对于 n=7, 有多少种不同的循环码码本?

9 卷积码

- (3,1,3) 卷积码,如图。
 - (1) 绘制树状图、网格图。

- (2) 求自由距。
- (3) Vertibi 译码,画出某一步的幸存路径,并找出译码的最终结果(图不记得了,掌握 Vertibi 的方法就好)。

10 点评

马老师的课是我在电子系上过的最水的专业课... 适合刷分,如果真的想学信息论建议移步王立威老师。Cover 的《信息论基础》我认为是一本非常好的书,可惜两学分的课能覆盖的内容太少了。

马老师人还是很好的,会给往年题,还会详细讲解。只不过他给我们的两套往年题都非常简单,然后考试的时候考了一些边缘知识点,让我怀疑他在给往年

题的时候有所保留。 于是乎,我考试的时候就把考题记下来了,给大家做参考。