PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-348179

(43) Date of publication of application: 21.12.1999

(51)Int.CI.

B32B 15/08 H05K 3/00

(21)Application number: 10-153409

(71)Applicant: MITSUI CHEM INC

(22)Date of filing:

02.06.1998

(72)Inventor: SHIMA KENJI

MASUDA YOSHIAKI

(54) PRODUCTION OF METAL MEMBRANE SUBSTRATE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a printed wiring board capable of simply and certainly bonding desired circuit element at a desired position strongly without using a special adhesive or mechanical means or bonding the same itself to a desired member and capable of easily forming a fine circuit and a metal membrane substrate capable of being utilized in the production of the printed wiring board.

SOLUTION: A copper membrane substrate 10 is constituted by a molten adhesive layer 14 comprising a thermoplastic polyimide resin on the single surface of a main body layer composed of a heat-resistant insulating base material 11 and forming a copper membrane layer 12 on the other main surface of the main body layer as a first layer by a sputtering method and forming a copper thick surface layer 13 on the copper membrane layer 12 as a second layer by an electroplating method and a metal foil layer 15 is superposed on the copper membrane substrate 10 on the molten adhesive layer side thereof and bonded thereto under heating and pressure to produce a metal membrane substrate. This substrate 10 is used to produce a printed wiring board.

LEGAL STATUS

[Date of request for examination]

07.07.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-348179

(43)公開日 平成11年(1999)12月21日

(51) Int.Cl.⁶

說別配号

FΙ

B32B 15/08

R

B32B 15/08 H05K 3/00

H05K 3/00

R

審査請求 未請求 請求項の数7 OL (全 5 頁)

(21)出顯番号

(22)出願日

特度平10-153409

平成10年(1998) 6月2日

(71)出額人 000005887

三井化学株式会社

東京都千代田区麓が関三丁目2番5号

(72)発明者 志摩 健二

神奈川県横浜市栄区笠間町1190番地 三井

化学株式会社内

(72)発明者 増田 義昭

東京都千代田区霞が関三丁目2番5号 三

井化学株式会社内

(54) 【発明の名称】 金属薄膜基板の製造法

(57)【要約】

【課題】特別な接着剤や機械的手段を用いる事なく、簡 単確実に所望の位置に所望の回路要素を強力に接着した り、またそれ自身を所望の部材に接着したりでき、さら に微細回路を容易に形成し得るブリント配線板およびブ リント配線板の製造に利用し得る金属薄膜基板を提供す

【解決手段】耐熱性絶縁基材からなる主体層の片面に、 熱可塑性ポリイミド樹脂からなる溶融接着層ともう一方 の主面上に第一層としてスパッタリング法で形成した銅 薄膜層と、該銅薄膜層上に第二層として電気メッキ法で 形成した銅厚層とから成る銅薄膜基板の溶融接着層側に 金属箔層を重ね合わせ、加熱圧着することによって金属 薄膜基板を製造する。さらにその金属薄膜基板を用いて プリント配線板を製造する。

【特許請求の範囲】

【請求項1】耐熱性絶縁基材からなる主体層の一方の主 面に、熱可塑性ポリイミド樹脂からなる溶融接着層と他 方の主面上に第一層としてスパッタリング法で形成した 銅薄膜層と、該銅薄膜層上に第二層として電気メッキ法 で形成した銅厚層とから成る銅薄膜基板の溶融接着層側 に金属箔層を重ね合わせ、加熱圧着することによって製 造されることを特徴とする金属薄膜基板の製造法。

【請求項2】耐熱性絶縁基材からなる主体層の一方の主 面に、熱可塑性ポリイミド樹脂からなる溶融接着層と他 10 方の主面上にスパッタリング法で形成した銅薄膜層とか ら成る銅薄膜基板の溶融接着層側に金属箔層を重ね合わ せ、加熱圧着することによって製造されることを特徴と する金属薄膜基板の製造法。

【請求項3】スパッタリング法で形成する銅薄膜層の銅 厚が、1 μm以下であることを特徴とする請求項1また は2のいずれかに記載の金属薄膜基板の製造法。

【請求項4】電気メッキ法で形成する銅厚層の銅厚が、 1μm以上、18μm以下であることを特徴とする請求 項1に記載の金属薄膜基板の製造法。

【請求項5】耐熱性絶縁基材が、非熱可塑性ポリイミド フィルムであることを特徴とする請求項1~4のいずれ かに記載の金属薄膜基板の製造法。

【請求項6】金属箔の種類として、銅、鉄、ニッケル、 クロム、モリブデン、ステンレス、アルミニウムまたは これらを主体とする合金からなる金属箔であることを特 徴とする請求項1~5のいずれかに記載の金属薄膜基板 の製造法。

【請求項7】請求項1~6のいずれかに記載の金属薄膜 基板を使用して回路が形成されることを特徴とするブリ ント配線板の製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、微細回路(通常、 導体幅50μm以下、導体間50μm以下を言う)を有 するプリント配線板あるいは半導体分野で使用する電子 部品のデバイス、センサー等を製造するのに用いられる 金属薄膜基板に関するものである。

樹脂等の接着剤を用いて、ポリイミドフィルムと金属箔 と貼り合わせることにより製造されているために耐熱性 ・耐薬品性・電気特性等の特性は、使用されている接着 剤の特性に支配され、ボリイミドの優れた諸特性が十分 に活かされず、特に耐熱性の点でも十分なものでなかっ た。また、銅箔については、18μm、35μmのもの が使用されており。近年の高密度化及び高性能化に伴う 微細な回路形成に十分対応できるものではない。そこ で、銅箔の薄膜化は、真空蒸着法、スパッタリング法、 イオンプレーティング法、無電解メッキ法等により、耐 50 【0006】

熱性絶縁基材に銅の薄膜層を形成する事によって製造が 試みられているが、種々の問題があり、微細な回路を有 するブリント配線板の製造に適するものはない。有機物 の接着剤層を有せず且つ可能な限り薄い銅層を有する金 属薄膜基板が要求されている。

[0003]

【発明が解決しようとする課題】本発明は、上述の問題 を解決しようとするものであり、具体的には、本発明の 目的は、特別な接着剤を用意する必要がなく、簡単確実 に所望の位置に所望の回路要素を強力に接着したり、ま たそれ自身を所望の部材に接着したりできる。さらに微 細回路を容易に形成し得るプリント配線板およびブリン ト配線板の製造に利用し得る金属薄膜基板を提供すると とにある。

[0004]

30

【課題を解決するための手段】本発明の目的は、耐熱性 絶縁基材からなる主体層の一方の表面に、熱可塑性ポリ イミド樹脂からなる溶融接着層ともう一方の主面上に第 一層としてスパッタリング法で形成した銅薄膜層と、該 20 銅薄膜層上に第二層として電気メッキ法で形成した銅厚 層とから成る銅薄膜基板によって達成される。

【0005】本発明は、(1)耐熱性絶縁基材からなる 主体層の一方の主面に、熱可塑性ポリイミド樹脂からな る溶融接着層と他方の主面上に第一層としてスパッタリ ング法で形成した銅薄膜層と、該銅薄膜層上に第二層と して電気メッキ法で形成した銅厚層とから成る銅薄膜基 板の溶融接着層側に金属箔層を重ね合わせ、加熱圧着す ることによって製造されることを特徴とする金属薄膜基 板の製造法であり、(2)耐熱性絶縁基材からなる主体 層の一方の主面に、熱可塑性ポリイミド樹脂からなる溶 融接着層と他方の主面上に第一層としてスパッタリング 法で形成した銅薄膜層とから成る銅薄膜基板の溶融接着 層側に金属箔層を重ね合わせ、加熱圧着するととによっ て製造されることを特徴とする金属薄膜基板の製造法で あり、(3)スパッタリング法で形成する第一層の銅薄 膜層の銅厚が、1μm以下であることを特徴とする、

(1)または(2)のいずれかに記載の金属薄膜基板で あり、(4)第二層の電気メッキ法で形成する銅厚層の 銅厚が、1μm以上、18μm以下であることを特徴と 【従来の技術】従来のフレキシブル回路基板はエポキシ 40 する(1)に記載の金属薄膜基板であり、(5)耐熱性 絶縁基材が、非熱可塑性ポリイミドフィルムであること を特徴とする(1)~(4)のいずれかに記載の金属薄 膜基板であり、(6)金属箔の種類として、銅、鉄、ニ ッケル、クロム、モリブデン、アルミニウムまたはこれ らを主体とする合金からなる金属箔であることを特徴と する(1)~(5)のいずれかに記載の金属薄膜基板で あり、(7)(1)~(6)のいずれかに記載の金属薄 膜基板を使用して回路が形成されることを特徴とするブ リント配線板の製造法である。

10

【発明の実施の形態】スパッタリング法による銅薄膜層 の形成方法は種々有るが、特に限定される条件はない。 形成すべき薄膜に対応させて適宜ターゲットを選択して 用いることは当業者の理解するところである。スパッタ リングの方式にも限定される条件はなく、DCマグネト ロンスパッタリング、髙周波マグネトロンスパッタリン グ、イオンビームスパッタリング等の方式が有利に用い

【0007】本発明においては、耐熱性絶縁基材と第一 層の銅薄膜層との間に、スパッタリング法で下地金属層 を形成させることが密着性の点から好ましい。下地金属 層は、コパルト、ニッケル、クロム、ニクロム、チタ ン、モリブデン、タングステン、亜鉛、錫、インジウ ム、インジウム錫、シリコン、モネルメタル等ならびに これらの酸化物、炭化物、窒化物等が有用である。下地 金属層の厚みは0.03~0.1μmで充分である。 0. 03μm未満では密着性の効果が充分でない、さら に、ビンホールの存在が認められる。0. 1 μ m を越え ると導電性の低下、エッチングによる回路加工性の低 下、コストの増加等の問題が顕在化してくる。

【0008】本発明の金属薄膜基板の第二層の銅厚層の 連続形成方法は、電気メッキ法によるもので、銅厚は、 1μm以上、18μm以下である。銅厚は、目的とする 微細な回路形成の種類により選択するが、10μm以下 の銅厚が一般的な傾向である。本発明によれば経済的に も実用性があるピンホール皆無の銅薄膜基板が得られ る。本発明の金属薄膜基板の第二層の任意の銅厚層を連 続形成する電気メッキ法は公知の方法によるものであ る。

【0009】本発明の金属薄膜基板に使用する耐熱性絶 30 縁基材は、各種ポリイミドフィルムであるが、例えば、 カプトンフィルム (東レ・デュポン(株)製)、アピカ ルフィルム (鐘淵化学工業(株)製)、ユービレックス フィルム (宇部興産(株)製)等で、厚みは25μm、 50 μmが実用的である。

【0010】本発明の金属薄膜基板に使用する熱可塑性 ポリイミドは、主鎖にイミド構造を有するポリマーであ って、ガラス転移温度が、好ましくは150℃~350 ℃の範囲内にあり、このガラス転移温度以上の温度領域 では、弾性率が急激に低下するものを言う。

【0011】本発明の金属薄膜基板に使用する金属箔の 種類には特に限定は無く、銅および銅合金、鉄、ニッケ ル、モリブデン、アルミニウム、ステンレス鋼、ベリリ ウム銅合金などが使用できる。

【0012】以下に、本発明の金属薄膜基板の製造につ いて記載する。使用目的に適した長尺ポリイミドフィル ムに熱可塑性ポリイミドを積層する。この熱可塑性ポリ イミドは、該ポリイミドあるいは該ポリイミドの前駆体 を溶媒に溶解した状態でポリイミドフィルム上に塗布 し、これをタックフリーの状態まで加熱することが好ま 50 ブトラクティブ法により微細な回路を有するプリント配

しい。塗布する方法には特に限定はなく、コンマコータ ー、ナイフコーター、ロールコーター、リバースコータ ー、ダイコーター、グラビアコーター、ワイヤーパー等 の公知の塗布装置を使用することができる。また加熱方 法には熱風、熱窒素、遠赤外線、高周波等公知の方法を 使用することができる。

【0013】所望のポリイミド層が形成された後、層中 の揮発成分を除去し、かつポリイミドの前駆体を塗布し た場合には縮合反応を完了するために、十分に加熱する ことが必要である。この場合の加熱方法も、上記に準じ た各種の公知の方法を使用することができる。加熱温度 は積層されるポリイミドのガラス転移温度以上の温度が 好ましい。

【0014】溶融接着材層を形成後、もう一方の面を銅 ターゲット側に位置するようにスパッタリング装置の繰 り出し部に設置する。規定のスパッタリング銅厚が形成 されるように予め定められた最適な条件下で銅薄膜層を 長尺連続形成し、樹脂製の管に巻き取り、第一層のスパ ッタリングによる銅薄膜層の形成を完了する。さらに、 20 銅薄膜層上に第二層として銅厚層を形成するには、第一 層のスパッタリングによる銅薄膜層が形成された長尺ポ リイミドフィルムを、第二層の電気メッキによる銅厚層 を形成するべく電気メッキ装置の繰り出し部に設置す る。規定の銅厚が形成されるように予め定められた最適 な条件下で銅厚層を形成し、樹脂製の管に巻き取り、第 二層の電気メッキによる銅厚層の形成を完了する。第一 層のスパッタリングによる銅薄膜層が形成された長尺ポ リイミドフィルムをいったん巻きとることなく、電気メ ッキ工程へ供給し、第二層の銅厚層の形成を連続工程で 行うことも可能である。上記の銅薄膜基板の製造は可能 な限りクリーンな環境下で進める事と電気メッキ液の管 理を厳重に行う事が好ましい。

【0015】上記のごとく得られた銅薄膜基板の熱融着 層側に金属箔を重ね合わせ、加熱圧着することにより金 属薄膜基板が完成する。との加熱圧着する方法は、熱口 ルを用いて熱ラミネートをする方法やホットプレス等 の公知の方法を適宜使用することが出来る。加熱条件 は、用いられる熱可塑性ポリイミドのガラス転移温度以 上、より好ましくはこの点より20℃以上あればよい。 40 加圧条件は、一般に1.96~14.7MPa/cm²の範 囲が用いられる。

【0016】本発明の金属薄膜基板のポリイミドフィル ムと銅薄膜層との接着強度及びピンホールの測定を以下 に記載する。接着強度の測定は、長尺の銅薄膜基板の両 端からサンプリングしたものにつき、IPC-TM-6 50-2.4.9に準じて行う。一方、ピンホールの測 定は、接着強度と同様にサンプリングしたものにつきラ イトテーブル上で下方からの光の通過を確認する。

【0017】次に、本発明の金属薄膜基板を用いて、サ

線板の製造を以下に記載する。先ず、必要に応じて銅面 を前処理した銅薄膜基板の銅面に液状フォトエッチング レジストインクを全面塗布するか、あるいはドライフィ ルムを全面に貼り付け、所望の回路パターンを有するフ ォトマスクを紫外線等の活性光線を通す事によってレジ スト材を露光し、現像して所望の回路パターンを形成す る。しかる後に、塩化第二鉄、塩化第二銅、過硫酸塩 類、アルカリエッチャント等のエッチング液により、回 路パターン以外の銅面を溶解除去し、所望の微細回路を 有するプリント配線板を得るのである。

【0018】以下に本発明の実施例を具体的に説明す る。

【実施例】実施例1

市販の長尺のポリミドフィルム(鐘淵化学工業(株)製 アピカルΝΡΙ、厚み25μm)に熱可塑性ポリイミ ドの前駆体であるポリアミド酸溶液(三井化学(株) 製、)を、塗工機によってポリイミドフィルムの主面に 塗布·乾燥して溶融接着層(厚み10μm)を得る。さ ちにもう一方の主面に連続スパッタリングにて0.25 厚層(5 μm)を形成することで、銅薄膜基板を得た。 この銅薄膜基板の銅薄膜層とポリイミドフィルムとの接 着強度は14.7N/cmであり、且つ、ピンホールは 皆無であった。

【0019】との銅薄膜基板の熱融着層側にステンレス 箔(日新製鋼製、SUS304H-TA 厚み20μm)を重ね合わ せ、熱ロールを用いて加熱圧着(加熱温度240°C)を行 い、所望の金属薄膜基板を得た。

【0020】信号線はこの導体層上に液状フォトエッチ ングレジストインクをロールコーターで全面塗布し、乾 30 【図2】本発明の金属薄膜基板の層構成の一例である。 燥して液状フォトエッチングレジストインクの皮膜を形 成した。次に所望の微細回路を有するフォトマスクを介 して回路パターン部分を露光し、回路皮膜を形成し、現 像して所望の回路バターンを得た。しかる後、塩化第二 鉄でエッチングし、回路パターン以外の導体層を溶解除 去し、回路パターン上の液状フォトエッチングレジスト インク被膜を除去して所望の微細回路を有するプリント

配線板を得た。得られたプリント配線板の導体幅(L) 及び導体間(S)は、L/S=15/15 μmの微細回 路であった。また半田耐熱試験後(300℃、10秒 間)の膨れ、剥がれ等の外観上の変化は観測されなかっ た。

【0021】実施例2

実施例1においてステンレス箔を用いる替わりに、ニッ ケル箔 (東洋製箔製、厚み20µm) を用いた以外は実施 例1と同様の手順でプリント配線板を製造した。

10 [0022]比較例1

実施例1において、電気メッキの銅厚層の厚みが20μ mである以外は、実施例1と同様の手順でプリント配線 板を製造した。得られた微細回路部(L/S=15/1 5 μm) を光学顕微鏡 (4 0倍) で観察した結果、短絡 部が多数観測され、微細回路の形成は不可能であった。 【0023】比較例2

実施例1において、溶融接着層に熱可塑性ポリイミドを 使用する代わりにエポキシ系接着剤(ニッカン工業 (株) NIKAFLEX) を用いる以外は、実施例1と μmの銅薄膜層を形成し、第二層として電気メッキで銅 20 同様の手順でプリント配線板を製造した。得られたプリ ント配線板の半田耐熱性試験(300℃、10秒間)を 行ったところ、接着剤層に膨れ剥がれが観測された。 [0024]

> 【発明の効果】本発明の金属薄膜基板を使用して、プリ ント配線板を製造するにあたり、特別な接着剤を使用す る必要がなく、さらに微細な回路形成が通常のサブスト ラクティブ法でも容易に且つ正確になった。

【図面の簡単な説明】

【図1】本発明の金属薄膜基板の層構成の一例である。 【符号の説明】

10、20 金属薄膜基板

11、21 耐熱性絶縁基材

12、22 銅薄膜層

13 銀厚層

14、24 溶融接着層

15、25 金属箔

