PRA-UAS PEMROGRAMAN WEB IEE3032

PERTEMUAN KE-15 Nathanael Hansen [202000424]

INTERNET OF THINGS AND ELECTRICAL ENGINEERING CALVIN INSTITUTE OF TECHNOLOGY 2023

DAFTAR ISI

1.	UMI	UM	3
2.	Lap	oran Kemajuan Proyek	4
	·	Penjelasan Kemajuan Proyek	
		Apa saja yang telah dikerjakan selama ini?	
		2 Kendala – Solusi	
	2.2	Tautan-Tautan	4
		Referensi	
7	l am	nniran	6

1. UMUM

Judul Proyek : Laporan Proyek Pra-UAS

Semester / Tahun : Genap / 2022-2023

Judul Tugas : Sistem Monitoring Industri dengan Django

2. Laporan Kemajuan Proyek

2.1 Penjelasan Kemajuan Proyek

2.1.1 Apa saja yang telah dikerjakan selama ini?

- Membuat daftar sistem, subsistem, dan sensor-sensor yang akan digunakan dalam setiap pabrik. Lalu membuat flow node-red sesuai dengan detail-detail yang telah ditentukan tersebut.
- Membuat venv baru dari proyek PraUAS, Membuat struktur dasar proyek Django, Membuat aplikasi sensor pada proyek Django
- Mengambil setiap data sensor di node-red ke dalam django dan membuat fungsi machine learning pada setiap subsistem untuk menentukan nilai aktuator.
- Membuat training data dengan file csv dan menjalankan program machine learning untuk predict output dari masukan data sensor.
- Membuat halaman dashboard pada Django UI dan menampilkan data-data dari sensor pada dashboard.
- Menampilkan data-data aktuator hasil prediksi machine learning pada dashboard Django UI dan juga grafiknya.

2.1.2 Kendala – Solusi

- Menentukan 27 sensor: riset lebih lanjut mengenai parameter yang diperhatikan dalam kondisi setiap sistem.
- Menentukan range untuk setiap sensor: mengintegrasikan pengalaman dan pengamatan pada kondisi-kondisi yang dialami sehari-hari dan juga data dari internet.
- Mengambil data dari 27 sensor: mengalokasikan waktu yang lebih banyak untuk menyelesaikannya.
- Mengubah setiap fungsi secara independen untuk setiap sensor: mencoba mencari fungsi lain yang dapat digunakan lebih fleksibel, sehingga tidak perlu membuat 27 fungsi.
- Flow node-red tidak sengaja terhapus: membuat ulang flow dan berusaha membuat backupnya agar tidak terulang di kemudian hari.
- Perlu membuat 27 script machine learning juga untuk setiap sensor yang memakan waktu: dibuat suatu fungsi khusus untuk menjalankan ke-27 machine learning secara bersamaan.
- Untuk automatisasi masih belum menemukan cara paling efisien: running script satu persatu

2.2 Tautan-Tautan

- Github: https://github.com/simbokkece/IEE3032 PraUAS
- Zip Google Drive

2.3 Referensi

- https://www.django-rest-framework.org/api-guide/views/
- https://www.w3schools.com/python/ref response.asp
- https://stackabuse.com/remove-element-from-an-array-in-python/
- https://stackoverflow.com/questions/42889621/converting-numpy-array-values-into-integers
- https://plotly.com/javascript/streaming/
- https://www.w3schools.com/ai/ai_plotly.asp
- https://github.com/CalvinPhang/PraUAS

3. Lampiran

1. Flow Sistem

2. Dashboard Node-RED

3. Dashboard Django UI

Sistem Pabrik Pintar

Nathanael Hansen - 202000424

Scroll sampai bawah untuk bacaan sensor

Profit: 43.599465805527956

Sistem Smart Farm

Monitoring Susu dan Telur

Sensor Kadar Protein (%)	47
Sensor Omega 3 (mL)	57
Sensor Salmonella (L)	89

Monitoring Daging Merah

Sensor Muscle (ph)	43
Sensor Kadar Darah (mL)	80
Sensor Gas Metana (°C)	94

Monitoring Daging Putih

Sensor E.coli (bpm)	94
Sensor Warna (mmHg)	86
Sensor Amonia (mmHg)	11

Sistem Smart Plantation

Monitoring Sumber Karbohidrat

Sensor Volume (%)	84
Sensor Kelembaban (mL)	98
Sensor Kadar Oksigen (L)	55

Sensor Urea Tanah (ph)	47
Sensor Cahaya (mL)	54
Sensor Temperature (°C)	83

Monitoring Buah-Buahan

Sensor Pestisida (mg)	81
Sensor Ukuran (mm)	761
Sensor Berat (Kg)	4998

Sistem Smart Restaurant

Monitoring Musim

Sensor Kecepatan Angin (mph)	94
Sensor Kadar Listrik (mV)	589
Sensor Barometer (psi)	4134

Monitoring Penjualan

Sensor Barcode (pcs)	100
Sensor Cashflow (Rp)	413
Sensor Infrared (cm)	3891

Monitoring Pengunjung

Sensor Ultrasonic (m)	84
Sensor Kamera (unit)	756
Sensor Lidar (cm)	3084