Ogloblin Ivan Semenovich

Study of the Effect of Noise on Efficient Quantum Search Algorithms

June 2022 course work

Scientific adviser: Tikhomirov Sergei Borisovich

Faculty of mathematics and computer science SPBU Specialty «modern programming»

Introduction

- The errors resulting from noisy quantum gates and decoherence make quantum devices far from perfect
- NISQ era algorithms strive for shallow depth to reduce the impact of noise from environment¹
- There are three different strategies to improve accuracy and efficiency of the Grover's search algorithm on the NISQ processors²

²Zhang, K., Rao, P., Yu, K., Lim, H., & Korepin, V. (2021)

¹Noisy intermediate-scale quantum (NISQ) algorithms

The problem

- 1. Implement the algorithm improvements described in the article
- 2. Create an environment for testing different variations of the algorithm with different noise models and different number of qubits
- 3. Conduct a series of experiments and explore noise impact on variations of the algorithm

Implementation

- Using Qiskit and IBMQ³
- Using thermal relaxation model⁴
- Error/coupling map on qubits as on the real device "Melbourne"
- Toffoli gate implementation through Qiskit function .mct()⁵

^{5.}mct() function

³public repository

⁴qiskit thermal relaxation noise model

Tests on 6 qubits⁶

5/12

Tests on 6 qubits: results

- Dm_iM6 stands for algoritm with local Grover operator applied i times
- We can see that some algorithms perform better than the others
- Some algorithms scale better with noise parameter. D6_2M6
 has lower expected depth than D4_1M2_D4_1M4 at low
 noise parameter values, but greater at large noise
 parameter values

Tests on 8 qubits

Tests on 8 qubits

Tests on 8 qubits: results

- the number of Grover operator calls for 8 qubits should be $\frac{\Pi\sqrt{2^8}}{4}\approx 12$
- With such a number of Grover operators it already takes a
 lot of time to test an algorithm. Not only because of it's
 depth, but also because of the large minimum of sufficient
 number of shots. And it is basically useless to test an
 algorithm with more than four Grover operators, because
 the result won't be much different from pure noise
- All tests were done on Intel i5 8th gen processor

Noise parameter

Noise parameter scales the constants T1 and T2 in thermal relaxation noise model⁷. This parameter describes the physical ability to store and apply operations on qubits without unnecessary noise. In order to find the minimum sufficient value for the noise parameter, we want to test algorithms on a different number of qubits and many extremely different values of noise parameter.

10 qubit tests

10 qubit tests: results

- There is a definite value of noise parameter, after which there is no visible decrease of expected depth. We want to know how this value scales with the number of qubits
- Unfortunately we only have so much processing power, it barely reaches the 10th qubit front. Further experiments should be carried out on processors more adapted for such quantum simulations

Summary

- We implemented a useful playground for tests with different noise models
- Conducted a set of experiments to show the limitations of efficient quantum search algorithms and the limitations of their quantum simulation on regular computer

Ivan Ogloblin studioshader2018@gmail.com github repository