Genentech

A Member of the Roche Group

Adding Conditional Control to Diffusion Models with Reinforcement Learning

Yulai Zhao¹*, Masatoshi Uehara²*, Gabriele Scalia², Tommaso Biancalani², Sergey Levine³, Ehsan Hajiramezanali² ¹Princeton University, ²Genentech, ³University of California, Berkeley

Background

- A pre-trained conditional diffusion model excels at modeling p(x|c).
- For example, in Stable Diffusion, c∈C is a prompt, and $x \in X$ is the image generated according to this prompt.
- Many tailored DMs are able to generate biological sequences (e.g., DDSM).
- In practice, we are often interested in adding new controls into pre-trained diffusion models, e.g.
 - Stable Diffusion.
 - existing condition: prompts
 - new condition: certain layouts or backgrounds.
 - DDSM that generates DNA enhancers.
 - existing condition: activity level in HepG2
 - new condition: activity level in other cell lines such as K562.

Settings

- Given the pre-trained model, which enables us to sample from p^{pre} (x|c): $C \mapsto \Delta(X)$.
- Our goal is to add new conditional controls y∈Y such that we can sample from p(x|c,y).
- Assume we can access to offline data:

 $D = \{(c^{(i)}, x^{(i)}, y^{(i)})\}_{i=1}^{n}.$

We denote the conditional distribution by $p^{\circ}(y|x,c)$.

Target Distribution

our goal is to obtain a diffusion model such that we can sample

 $p_{\nu}(\cdot|c,y) \propto (p^{\nu}(y|\cdot,c))^{\nu} p^{\text{pre}}(\cdot|c)$ where γ represents the strength of the additional guidance.

Theoretical justification (incomplete)

Advantage: leverage conditional independency

Experimental Results

Example 1: Compressibility

(a) Training curve

0.45

1.0

CTRL (Ours)

Example 2: Compressibility & Aestheticness

Experimental Details

Settings

Experiments

Extension: continuous condition

Conclusions & Future Work

- We introduce an RL-based fine-tuning approach for conditioning pre-trained diffusion models on new additional labels.
- Compared to classifier-free guidance, our proposed method allows for leveraging the conditional independence, thereby greatly simplifying the construction of the offline dataset.
- We also theoretically justify our approach and build the connection with classifier-based guidance.
- We are working on extending this work to **DNA enhancers** and **RNA 5'UTR** design.
- The goal is achieve cell-specific promoters design!

