Wstęp do logiki i teorii mnogości. Zbiory

- **1** $A = \{x \in Z : |x 4| \le 2\};$
- $A = \{1, \{1\}, 2, \{2\}\};$

- **1** $A = \{x \in Z : |x 4| \le 2\};$

- **1** $A = \{x \in Z : |x 4| \le 2\};$
- **2** $A = \{1, \{1\}, 2, \{2\}\};$

Zbiory $A = \{1, 4, 7, 10\}, B = \{1, 2, 3, 4, 5\} i C = \{2, 4, 6, 8\}$ są podzbiorami przestrzeni $X = \{1, 2, 3, \dots, 10\}$. Wyznaczyć zbiory:

- \bullet $A \cup B$:
- $\mathbf{Q} A B$;
- \bullet B-C;
- \triangle $A \cap C$:
- \bullet A':
- **1** X':

- $O \subset \cap \emptyset$:
- **1** B ∪ ∅:
- \bullet $B' \cup (C A)'; \bullet A \triangle B;$
- $\bullet \hspace{0.1cm} B \cup X; \hspace{0.1cm} \bullet \hspace{0.1cm} A \triangle A;$
- $\bigcirc (A \cup B) C; \bigcirc X \triangle B.$

- \bullet $(A \cap B)' \cup C$;

Naszkicować diagram Venna i na nim zacieniować zbiór:

- \bullet $A \cap B'$:
- **2** A' B:

- \bullet $B' \cap (A \cup C);$
- **⑤** $(A' B) \cap (A \cup C')$;
- **3** $(A \cup B) B$; **6** $((A \cap B) (C A)') \cap C$.

Dane są podzbiory $A=\langle 1;5\rangle$, B=(3;7) i $C=(-\infty;2)$ przestrzeni $\mathbb R$. Wyznaczyć zbiory:

- \bullet $A \cup B$;
- \bigcirc $A \cap B$;
- \bullet A-B;

- \bullet A-C;
- B ∩ C;

- **②** $A \cap (B C)$;
- **③** $(C A) \cap B$;
- A △ B;
- \bigcirc $A \triangle C$.

Podać warunki konieczne i dostateczne na to, aby dla podzbiorów A i B przestrzeni X zachodziła każda z następujących zależności z osobna:

- **5** $A \cup B' = A$;

2 $A \cup B = A$;

- $\bullet A \cap B' = A;$
- \bullet $A \subseteq A \cap B$;

Dane są zbiory $A = \{1, 2, 3\}$, $B = \{a, b\}$ i $C = \{x, y\}$. Wyznaczyć iloczyny kartezjańskie:

 \mathbf{Q} $C \times B$;

Wyznaczyć iloczyny kartezjańskie:

1 $\{0,\{1\}\} \times \emptyset;$

- $\{0,1\}^3$;

W płaszczyźnie \mathbb{R}^2 zaznaczyć zbiory $A \times B$, $B \times A$ i $A \times A$, gdy:

- **1** $A = \{x \in \mathbb{R} : 1 \le x \le 2\}, B = \{x \in \mathbb{R} : 1 < x < 3\};$
- **2** $A = \{x \in \mathbb{R} : x \ge 2\}, B = \{x \in \mathbb{R} : 1 \le x \le 3\};$
- **3** $A = \{x \in \mathbb{R}: 1 \le x \le 2 \text{ lub } 3 < x < 4\}, B = \{x \in \mathbb{R}: 2 \le x \le 3 \text{ lub } 4 < x < 5\}.$

Dany jest zbiór $A = \{1, 2, 3, 4\}$. Określić liczbę elementów zbioru:

- **1** $\mathcal{P}(A)$; **3** $\mathcal{P}(A \times \mathcal{P}(A))$; **5** $\mathcal{P}(A \times \mathcal{P}(A)) \cap A$.
- $\mathbf{Q} A \times \mathcal{P}(A); \quad \mathbf{Q} \mathcal{P}(A \times \mathcal{P}(A)) A;$