

BIRLA INSTITUTE OF TECHONOLOGY AND SCIENCE, PILANIPilani Campus

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part II)

Date: 03/08/2016

In addition to part I (General Handout for the course appends to the time table) this portion gives further specific details regarding course.

Course No. : CE G632

Course Title : Design of Foundations for Dynamic Loads

Instructor-in-charge : RAVI KANT MITTAL

1. Scope & Objective of the Course:

The main goal of this course is to provide an in-depth understanding regarding analysis and design of foundations systems for buildings, bridges substructure, industrial complexes, ports, harbors, and water tanks, storage tanks of industrial structure, transmission line towers, and machines subjected to static and dynamic loads. Complete design of foundation systems considering geotechnical as well structural (R.C.C.) design of foundation systems (spread footing, combined footing, raft foundation, ring foundation, pile foundations, pile cap, machine foundations, basements walls, retaining structures etc.). Emphasis will be given on complete coverage of Indian code of practice for various type of foundation. Latest advancement and practices followed in design office as per International code and standards will be covered.

Text Book:

- T1. Das B M and Luo Z. (2016) Principles of Soil Dynamics, Cengage Learning, 3rd edition.
- T2. Saran, S. (2016), "Soil Dynamics and Machine foundation" Galgotia Publisher, 3rd edition.

3. Reference Books:

- R1. Saran, S. (2012), "Analysis and design of foundations and retaining structures subjected to seismic loads" I K Lee Publishers.
- R2.Bhatia K G (2009) "Foundations for industrial machines" CRC Press, Taylor and Francis.
- R3. Saran, S. (2006) "Analysis and design of sub-structures" 2nd ed., Oxford & IBH Publishing . New Delhi R4. Relevant BIS codes and International code of practice

4. Course Plan

Learning Objective	Topics to be covered	No of	Ref. to Ch.
		Lec.	
Evaluation and	Static and Dynamic properties of soil, using laboratory	3	4, T1, 2R1, 1,
interpretation of soil	and field tests. Evaluation and interpretation of		2,3 R2,
properties	geotechnical reports, selecting foundation design		
	parameters from laboratory and field tests		
Foundations design -	General principles, concepts, requirement for satisfactory	3	IS 1904, IBC-
general requirement under	performance of foundations, Types of foundations and		2015
static and dynamic loads	their specific applications		
Bearing capacity and	Failure mechanism, generalized bearing capacity eqn,	3	IS6403, IS8009,
settlement of shallow	bearing capacity from field tests, consolidation, settlement		6,7,R3
foundations	calculations using field tests		
Analysis of Shallow	Effect of load eccentricity and inclination due to wind,	4	7R3, NOTES
Foundations subjected to	earthquake, pressure distribution, bearing capacity, tilt		
lateral loads and moments	and settlement, Proportioning of footings subjected to		
due to wind, earthquake.	combined vertical, moment and horizontal loads,		
	optimization.		
Seismic Bearing capacity,	Seismic bearing capacity, settlement and displacement of	3	6 T1, 4R1, Class
Settlement and	shallow foundation during earthquake, effect of		notes
displacement of shallow	liquefaction.		
foundations during			
earthquake.			
IS 456-2000 provisions on	Load combination, critical sections for shear and B.M.,	2	5-7R3, IS456,
RCC foundation design	development length, detailing requirements, additional		ACI 318-2014
	requirement during earthquake		

BIRLA INSTITUTE OF TECHONOLOGY AND SCIENCE, PILANIPilani Campus

ALC: NO.			
Design of shallow foundations	structural design of isolated footings, strip, rectangular and trapezoidal combined footings – strap – balanced footings	3	4,5,6,7,R3
Design of raft foundations	2	IS2950, 10,11, R3	
Design Circular and annular rafts subjected to dynamic loads	Analysis for wind and EQ loads, Optimum dimension, moments and shears in annular rafts using BIS Code and Chu & Afandi method	2	7R3
Pile Foundations	Types of Piles and their applications - Load capacity - Settlements - Group action	2	8, R4, IS2911
Laterally loaded Pile Foundations and seismic analysis	Different methods for estimating Lateral load capacity of piles, Computing static and dynamic stiffness of piles and pile group, dynamic analysis, seismic design consideration	4	7,T1, 7,R1,notes
Design of pile foundation	Design of piles, pile cap, under-ream piles, detailing.	2	16, 17T1, 13T2, R4
Machine Foundations- Design parameters	Types - General requirements and design criteria - General analysis of machine-foundations-soil system - Stiffness and damping parameters - Tests for design parameters -	1	1,5,6,7T2
Analysis and design of foundations for different type of machines.	Analysis and design of block and frame foundations for reciprocating engines, impact type machines, rotary type machines, turbo generator	4	8,9,10,11T2
Dynamic earth pressures theories, Design and construction of retaining walls and bridge abutment.	Various theories for computation of dynamic earth pressures, Basis of retaining wall design, stability condition, Seismic design consideration. Codal provisions.	4	8,T1,3,7,8,9,R1, 19 T2, IRC6- 2014, IS1893- part3-2014
Ground improvement techniques	Anti-liquefaction measures, In-situ densification, preloading, PVD, stone columns, geosynthetics, grouting and reinforcing techniques using waste and natural material. Successful case histories in structural design and construction.	2	IS codes and notes
	Total	45	

5. Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Venue	Remarks
Mid Term Test	90 min	25%	4/10, 4:00-5:30 PM		СВ
Assignment		10%	Continuous		OB
Literature review and Project		20%	Continuous	-	ОВ
Term paper		10%	Continuous		OB
Comprehensive	3 hrs	35%	5/12, AN		CB/OB

- 6. Chamber Consultation Hour: Wednesday, 4 PM
- 7. Reading assignments will be given whenever necessary.
- 7. Notice: Notices will be displayed on Civil Engg. Department Notice Board only.

Instructor-in-charge

