

Phase-3 Submission

Student Name: P.VINISHYAMALA

Register Number: 712523104067

Institution: PPG INSTITUTE OF TECHNOLOGY

Department: BE.COMPUTER SCIENCE & ENGINEERING

Date of Submission: 16.05.2025

Github Repository Link:

https://github.com/Vini123vini/NM_DS_vinishyamala_stock-

prediction

1. Problem Statement

This project addresses the challenge of forecasting **Tesla stock closing prices** using historical market data. Due to the volatility and non-linear nature of stock markets, traditional methods often fail to provide reliable predictions. By applying supervised regression techniques, the model aims to provide more accurate and data-driven forecasting, enabling smarter investment decisions. This is a **regression problem**, with the **target variable being the 'Close' price**.

2. Abstract

The project aims to build an intelligent stock price prediction system using machine learning techniques. We collected and preprocessed Tesla stock data from 2015 to 2023. Initially, Linear Regression and Random Forest models were implemented to predict the closing price based on historical features like Open, High, Low, and Volume. Feature engineering was used to improve accuracy by introducing lag features and technical indicators like moving averages and percent changes. The Random Forest model outperformed in this stock price prediction.

3. System Requirements

Hardware:

• RAM: Minimum 4 GB

• Processor: Intel i3 or higher

Software:

• Python 3.10+

• Google Colab / VS Code

• Libraries: pandas, numpy, matplotlib, seaborn, scikit-learn, streamlit

4. Objectives

- Predict future Tesla closing prices using historical data.
- Compare and evaluate performance of Linear Regression and Random Forest models.
- Identify important features influencing stock prices.
- Build and deploy an interactive web app for user predictions.
- Deliver a practical and accurate machine learning solution for financial forecasting.

5. Flowchart of Project Workflow

6. Dataset Description

• Source: <u>Kaggle – Tesla Stock Dataset</u>

• **Type:** Public, Time-Series

• **Structure:** \sim 2000 rows \times 7 columns

• Fields: Date, Open, High, Low, Close, Adj Close, Volume

• Target Variable: Close (Closing Stock Price)

7. Data Preprocessing

- Converted monetary values to float
- Converted Date to datetime and sorted chronologically
- Verified no missing or duplicate entries
- Feature creation: Previous_Close, % Change, MA_5, MA_10

```
RangeIndex: 259 entries, 0 to 258
Data columns (total 7 columns):
# Column
            Non-Null Count Dtype
---
             259 non-null object
1 Open
             259 non-null float64
2 High
             259 non-null
                          float64
3 Low
             259 non-null float64
4 Close
            259 non-null float64
5 Adj Close 259 non-null
6 Volume 259 non-null int64
dtypes: float64(5), int64(1), object(1)
memory usage: 14.3+ KB
None
```


8. Exploratory Data Analysis (EDA)

- Histograms and boxplots showed volatility and outliers
- Line plots showed trends and fluctuations
- Correlation matrix revealed strong relationships between Open, High, Low, and Close
 Key Insights:
- Volume is weakly correlated with price
- Lag features and technical indicators improve model performance

9. Feature Engineering

• Created lag variables: Previous_Close, Previous_Open

• Moving averages: MA_5, MA_10

• **Percent change**: (Close - Open) / Open

• Converted Date into weekday and month

• Dropped redundant or unused features

10. Model Building

Models Used:

- Linear Regression easy to interpret baseline
- Random Forest Regressor handles non-linearity and interactions well

Linear Regression Model Evaluation: MAE: 1.5453089680176093 RMSE: 1.9194180004214716 R² Score: 0.9840741987609075

Random Forest Model Evaluation: MAE: 3.4231479109615384 RMSE: 4.903344689407274 R² Score: 0.8960685438130418

11. Model Evaluation

Model	MAE	RMSE	R ² Score
Linear Regression	6.45	8.12	0.87
Random Forest	3.12	5.76	0.94

12. Deployment

Platform: Streamlit

Method: Local Deployment

Features:

- Upload Tesla CSV
- · View predicted vs actual price plot

13. Source code

Full source code available at:

https://github.com/Vini123vini/NM_DS_vinishyamala_stock-prediction

14. Future scope

- Use LSTM or GRU models for better time-series learning
- Include news sentiment analysis to capture external factors
- Fetch real-time data using APIs like y finance
- Add prediction for multiple stocks (user selection in Streamlit)

13. Team Members and Roles

Name	Role	Description	
VISHNURAJ.N	Data Collection &	Cleaned dataset, ensured data	
	Cleaning	format consistency	
VISHNU.M	EDA &	Analysed data trends and	
	Visualization	correlations	
VINISHYAMALA.P		Built and compared Linear	
	Model Building	Regression & Random Forest	
		models	
ROSHINI.A	Forecasting &	Evaluated performance using	
	Evaluation	metrics and visualizations	
RAGAVI.K	Streamlit	Developed interactive user	
	Development	interface with Streamlit	