Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 4 - Linear Regression - Probabilistic
Interpretation and Regularization

Recap: Linear Regression is not Naively Linear

- Need to determine **w** for the linear function $f(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} w_i \phi_i(\mathbf{x_j}) = \mathbf{\Phi} \mathbf{w}$ which minimizes our error function $E(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$
- Owing to basis function ϕ , "Linear Regression" is *linear* in **w** but NOT in **x** (which could be arbitrarily non-linear)!

$$\Phi = \begin{bmatrix} \phi_1(\mathbf{x_1}) & \phi_2(\mathbf{x_1}) & \dots & \phi_p(\mathbf{x_1}) \\ \vdots & & & & \\ \phi_1(\mathbf{x_m}) & \phi_2(\mathbf{x_m}) & \dots & \phi_n(\mathbf{x_m}) \end{bmatrix}$$
(1)

Recap: Linear Regression is **not Naively Linear**

- Need to determine w for the linear function $f(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} w_i \phi_i(\mathbf{x_i}) = \mathbf{\Phi} \mathbf{w}$ which minimizes our error function $E(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$
- Owing to basis function ϕ , "Linear Regression" is *linear* in **w** but NOT in \mathbf{x} (which could be arbitrarily non-linear)!

$$\Phi = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_p(\mathbf{x}_1) \\ \vdots & & & & \\ \phi_1(\mathbf{x}_m) & \phi_2(\mathbf{x}_m) & \dots & \phi_n(\mathbf{x}_m) \end{bmatrix}$$
(1)

Least Squares error and corresponding estimates:

$$E^* = \min_{\mathbf{w}} E(\mathbf{w}, \mathcal{D}) = \min_{\mathbf{w}} \left(\mathbf{w}^\mathsf{T} \mathbf{\Phi}^\mathsf{T} \mathbf{\Phi} \mathbf{w} - 2 \mathbf{y}^\mathsf{T} \mathbf{\Phi} \mathbf{w} + \mathbf{y}^\mathsf{T} \mathbf{y} \right) \ (2)$$

$$\mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j \right)^2 \right\} \quad \text{and} \quad \mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j \right)^2 \right\} \quad \text{and} \quad \mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j \right)^2 \right\} \right\} \quad \text{and} \quad \mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j \right)^2 \right\} \right\} \quad \text{and} \quad \mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j \right)^2 \right\} \right\} \quad \text{and} \quad \mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j \right)^2 \right\} \right\} \quad \text{and} \quad \mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i=1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j \right) \right\} \right\} \quad \text{and} \quad \mathbf{w}^* = \mathop{\text{arg\,min}}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \mathop{\text{arg\,min}}_{\mathbf{w}}$$

Recap: Geometric Interpretation of Least Square Solution

- Let \mathbf{y}^* be a solution in the column space of Φ
- The least squares solution is such that the distance between
 y* and y is minimized
- Therefore, the line joining \mathbf{y}^* to \mathbf{y} should be orthogonal to the column space of $\Phi \Rightarrow$

$$\mathbf{w} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y} \tag{4}$$

 \bullet Here $\Phi^{\mathcal{T}}\Phi$ is invertible only if Φ has full column rank

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
- How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Probabilistic Modeling of Linear Regression

• Linear Model: Y is a linear function of $\phi(x)$, subject to a random noise variable ε which we believe is 'mostly' bounded by some threshold σ :

$$Y = w^{T} \phi(x) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^{2})$$

- Motivation: $\mathcal{N}(\mu, \sigma^2)$, has maximum entropy among all real-valued distributions with a specified variance σ^2
- $3-\sigma$ rule: About 68% of values drawn from $\mathcal{N}(\mu,\sigma^2)$ are within one standard deviation σ away from the mean μ ; about 95% of the values lie within 2σ ; and about 99.7% are within 3σ .

Figure 1: $3-\sigma$ rule: About 68% of values drawn from $\mathcal{N}(\mu,\sigma^2)$ are within one standard deviation σ away from the mean μ ; about 95% of the values lie within 2σ ; and about 99.7% are within 3σ . Source: https://en.wikipedia.org/wiki/Normal_distribution

Probabilistic Modeling of Linear Regression

• Linear Model: Y is a linear function of $\phi(\mathbf{x})$, subject to a random noise variable ε which we believe is 'mostly' around some threshold σ :

$$Y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

This allows for the Probabilistic model

$$P(y_j|\mathbf{w}, \mathbf{x}_j, \sigma^2) = \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}_j), \sigma^2)$$
$$P(y|\mathbf{w}, \mathbf{x}_j, \sigma^2) = \prod_{j=1}^m P(y_j|\mathbf{w}, \mathbf{x}_j, \sigma^2)$$

• Another motivation: $E[Y(\mathbf{w}, \mathbf{x}_i)] =$

Probabilistic Modeling of Linear Regression

• Linear Model: Y is a linear function of $\phi(\mathbf{x})$, subject to a random noise variable ε which we believe is 'mostly' around some threshold σ :

$$Y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

This allows for the Probabilistic model

$$P(y_j|\mathbf{w}, \mathbf{x}_j, \sigma^2) = \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}_j), \sigma^2)$$
$$P(y|\mathbf{w}, \mathbf{x}_j, \sigma^2) = \prod_{i=1}^m P(y_j|\mathbf{w}, \mathbf{x}_j, \sigma^2)$$

• Another motivation: $E[Y(\mathbf{w}, \mathbf{x}_j)] = \mathbf{w}^T \phi(\mathbf{x}_j)$ = $\mathbf{w}_0^T + \mathbf{w}_1^T \phi_1(\mathbf{x}_j) + ... + \mathbf{w}_n^T \phi_n(\mathbf{x}_j)$

Estimating w: Maximum Likelihood

- If $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and $y = \mathbf{w}^\mathsf{T} \phi(\mathbf{x}) + \epsilon$ where $\mathbf{w}, \ \phi(\mathbf{x}) \in \mathbf{R}^{\mathbf{m}}$ then, given dataset \mathcal{D} , find the most likely \mathbf{w}_{MI}
- Recall: $\Pr(y_j|\mathbf{x}_j,\mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{(y_j \mathbf{w}^T\phi(\mathbf{x}_j))^2}{2\sigma^2}\right)$
- From Probability of data to Likelihood of parameters:

$$Pr(\mathcal{D}|\mathbf{w}) = Pr(\mathbf{y}|\mathbf{x}, \mathbf{w}) =$$

Estimating w: Maximum Likelihood

- If $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and $y = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + \epsilon$ where $\mathbf{w}, \ \phi(\mathbf{x}) \in \mathsf{R}^{\mathsf{m}}$ then, given dataset \mathcal{D} , find the most likely \mathbf{w}_{MI}
- Recall: $\Pr(y_j|\mathbf{x}_j,\mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{(y_j \mathbf{w}^T \phi(\mathbf{x}_j))^2}{2\sigma^2}\right)$
- From Probability of data to Likelihood of parameters:

$$\Pr(\mathcal{D}|\mathbf{w}) = \Pr(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \prod_{j=1}^{m} \Pr(y_j|\mathbf{x}_j, \mathbf{w}) = \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{(y_j - \mathbf{w}^T \phi(\mathbf{x}_j))^2}{2\sigma^2}\right)$$

• Maximum Likelihood Estimate $\hat{\mathbf{w}}_{ML} = \underset{\mathbf{w}}{\operatorname{argmax}} \Pr(\mathcal{D}|\mathbf{w}) = \Pr(\mathbf{y}|\mathbf{x}, \mathbf{w}) = L(\mathbf{w}|\mathcal{D})$

Optimization Trick

 Optimization Trick: Optimal point is invariant under monotonically increasing transformation (such as log)

Optimization Trick

 Optimization Trick: Optimal point is invariant under monotonically increasing transformation (such as log)

$$\begin{split} \bullet & \log L(\mathbf{w}|\mathcal{D}) = LL(\mathbf{w}|\mathcal{D}) = \\ & -\frac{m}{2} ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{j=1}^{m} (\mathbf{w}^\mathsf{T} \phi(\mathbf{x_j}) - \mathbf{y_j})^2 \\ \text{For a fixed } \sigma^2 \\ & \mathbf{w} \hat{\mathbf{m}}_L = \end{split}$$

Optimization Trick

 Optimization Trick: Optimal point is invariant under monotonically increasing transformation (such as log)

•
$$\log L(\mathbf{w}|\mathcal{D}) = LL(\mathbf{w}|\mathcal{D}) = -\frac{m}{2} ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{j=1}^{m} (\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_j) - \mathbf{y}_j)^2$$

For a fixed σ^2
 $\mathbf{w}_{ML}^2 = \operatorname{argmax} \ LL(y_1...y_m|\mathbf{x}_1...\mathbf{x}_m, \mathbf{w}, \sigma^2)$
 $= \operatorname{argmin} \ \sum_{j=1}^{m} (\mathbf{w}^T \phi(\mathbf{x}_j) - y_j)^2$

• Note that this is same as the Least square solution!!

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
- How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Redundant Φ and Overfitting

Figure 2: Root Mean Squared (RMS) errors on sample train and test datasets as a function of the degree *t* of the polynomial being fit

- Too many bends (t=9 onwards) in curve ≡ high values of some w_i's. Try plotting values of w_i's using applet at http://mste.illinois.edu/users/exner/java.f/leastsquares/#simulation
- Train and test errors differ significantly

Bayesian Linear Regression

- The Bayesian interpretation of probabilistic estimation is a logical extension that enables reasoning with uncertainty but in the light of some background belief
- Bayesian linear regression: A Bayesian alternative to Maximum Likelihood least squares regression
- Continue with Normally distributed errors
- Model the w using a prior distribution and use the posterior over w as the result
- Intuitive Prior:

Bayesian Linear Regression

- The Bayesian interpretation of probabilistic estimation is a logical extension that enables reasoning with uncertainty but in the light of some background belief
- Bayesian linear regression: A Bayesian alternative to Maximum Likelihood least squares regression
- Continue with Normally distributed errors
- Model the w using a prior distribution and use the posterior over w as the result
- Intuitive Prior: Components of w should not become too large!
- Next: Illustration of Bayesian Estimation on a simple Coin-tossing example