

Julie's matchmaker is at it again. What's the probability that a man will be at least 5 inches taller than a woman?

In Statsville, the height of men in inches is distributed as N(71, 20.25), and the height of women in inches is distributed as N(64, 16).

Let's use \times to represent the height of the men and \vee to represent the height of the women. This means that $\times N(71, 20.25)$ and $\vee N(64, 16)$.

We need to find the probability that a man is at least 5 inshes taller than a woman. This means we need to find P(X > Y + 5)

ok

To find the mean and variance of X-Y, we take the mean of Y from the mean of X, and add the variances together. This gives us

$$X - Y \sim N(7, 36.25)$$

We need to find the standard score of 5 inches

$$z = (x - y) - \mu$$

$$C$$

$$= \frac{5 - 7}{6.02}$$

$$= -0.33 \text{ (to 2 decimal places)}$$

We can use this to find P(X - Y > 5).

$$P(X - Y > 5) = 1 - P(X - Y < 5)$$

= 1 - 0.3707
= 0.6293