Practical No 01 - Locus

Let A = (-15, 0), B = (15, 0). Let P(x, y) be a point on the locus. Then I(PA) - I(PB) = 241.

$$\sqrt{(x+15)^2 + (y-0)^2} - \sqrt{(x-15)^2 + (y-0)^2} = 24$$

$$\sqrt{(x+15)^2 + (y-0)^2} = 24 + \sqrt{(x-15)^2 + (y-0)^2}$$

$$\sqrt{(x+15)^2 + y^2} = 24 + \sqrt{(x-15)^2 + y^2}$$

$$(x+15)^2 + y^2 = 576 + 48\sqrt{(x-15)^2 + y^2} + (x-15)^2 + y^2$$

$$x^2 + 30x + 225 + y^2 = 576 + 48\sqrt{(x-15)^2 + y^2} + x^2 - 30x + 225 + y^2$$

$$60x = 576 + 48\sqrt{(x-15)^2 + y^2}$$

$$5x = 48 + 4\sqrt{(x-15)^2 + y^2}$$

$$(5x - 48)^2 = 16(x - 15)^2 + 16y^2$$

$$25x^2 - 480x + 2304 = 16x^2 - 480x + 3600 + 16y^2$$

$$25x^2 - 480x + 2304 = 16x^2 - 480x + 3600 + 16y^2$$

$$9x^2 - 16y^2 = 1296$$

$$\frac{x^2}{144} - \frac{y^2}{81} = 1$$

If origin is shifted to $(h, k) \equiv (-3, 1)$, new 2. co-ordinates are (X, Y) and old co-ordinates are (x, y) then

$$x = X + h$$
, $y = Y + k$
i.e $x = X - 3$, $y = Y + 1$

Putting this in the given locus eqn,

$$x^{2} + 3y^{2} + 6x + 10 = 0$$

$$(X - 3)^{2} + 3(Y + 1)^{2} + 6(X - 3) + 10$$

$$X^{2} + 3Y^{2} + 6Y + 4 = 0$$

i.e
$$x^2 + 3y^2 + 6y + 4 = 0$$

Practical No. 02 - Logarithums

1. Let
$$x = \frac{12.49 \times 0.6872}{(4.232)^2}$$
 = $\overline{1}.6807$
 $= 1.0966 + \overline{1}.8371 - 2(0.6265)$ = 0.4794

Let $x = \frac{23.8 \times (7.3)^2}{}$ 2. = 3.1463 $\sqrt{0.82}$ $\log x = \log (23.8) + 2\log (7.3) \frac{1}{2}\log(0.82)$ x = antilog 3.1463= 1401 $\frac{1}{2}(\overline{1}.9138)$ = 1.3766 + 2(0.8633) -

Practical No. 03 - Applications of Determinants

1.
$$\frac{1}{2} \begin{vmatrix} 3 & -5 & 1 \\ -2 & k & 1 \\ 1 & 4 & 1 \end{vmatrix} = \pm \frac{33}{2}$$

$$\begin{vmatrix} 3k - 12 - 15 - 8 - k = \pm 33 \\ 2k - 35 = \pm 33 & i.e. \ 2k = \pm 33 + 35 \\ 2k = 68 \text{ or } 2 & k = 34 \text{ or } 1 \end{vmatrix}$$

We rewrite the eqns as ... 2.

Practical No. 04 - Complex Numbers

1. Let
$$x + yi = \sqrt{-2i}$$

 $\therefore (x + yi)^2 = -2i$
 $\therefore x^2 + 2xyi + y^2i^2 = -2i$
 $\therefore x^2 + 2xyi + y^2(-1) = -2i$
 $\therefore (x^2 - y^2) + (2xy)i = 0 + (-2)i$
Equating real and imaginary parts,
 $x^2 - y^2 = 0$ --- (1)
 $2xy = -2$
 $xy = -1$ --- (2)
From (2), $y = \frac{-1}{x}$
Substituting in (1),
 $x^2 - \left(\frac{-1}{x}\right)^2 = 0$

..
$$x^2 - \frac{1}{x^2} = 0$$

.. $(x^2)^2 - 1 = 0$
.. $(x^2 - 1)(x^2 + 1) = 0$
.. $x^2 = 1$ or $x^2 = -1$
Since x is real, only $x^2 = 1$ is valid $x = \pm 1$
For $x = 1$, (2) gives $y = -1$
For $x = -1$, (2) gives $y = 1$
Hence the square root is $1 - i$ or $-1 + i$
i.e $\pm (1 - i)$

2.
$$(1 + \omega - \omega^2)^6$$
 = $(-\omega^2 - \omega^2)^6$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 + \omega}$ Since $\frac{1 + \omega}{1 + \omega} = \frac{1 + \omega}{1 +$

Since
$$1 + \omega + \omega^2 = 0$$

 $1 + \omega = -\omega^2$

Practical No. 05 - Algebra of Matrices

1.
$$A(B + C)$$

= $\begin{bmatrix} 1 & -4 \\ -2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} -1 & 6 \\ 3 & -2 \end{bmatrix} + \begin{bmatrix} 4 & -5 \\ 2 & 1 \end{bmatrix} \end{pmatrix}$
= $\begin{bmatrix} 1 & -4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}$
= $\begin{bmatrix} -17 & 5 \\ 9 & -5 \end{bmatrix}$
= $AB + AC$
= $\begin{bmatrix} 1 & -4 \\ 11 & -18 \end{bmatrix} + \begin{bmatrix} 1 & -4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 4 & -5 \\ 2 & 1 \end{bmatrix}$
= $\begin{bmatrix} -13 & 14 \\ 11 & -18 \end{bmatrix} + \begin{bmatrix} -4 & -9 \\ -2 & 13 \end{bmatrix}$
= $\begin{bmatrix} -17 & 5 \\ 9 & -5 \end{bmatrix}$ \therefore $A(B + C) = AB + AC$

2.
$$AB = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 5 & 7 \end{bmatrix}$$
 $BA = \begin{bmatrix} -1 & 4 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ $= \begin{bmatrix} -2 + 5 & 8 + 7 \\ -5 + 15 & 16 + 21 \end{bmatrix}$ $= \begin{bmatrix} 3 & 15 \\ 11 & 37 \end{bmatrix}$ $= \begin{bmatrix} 14 & 11 \\ 38 & 26 \end{bmatrix}$

Hence AB ≠ BA From this we conlude that matrix multiplication is not commutative.

Practical No. 06 - Special Series

1.

We have
$$\sum_{r=1}^{n} (6r^2 - 2r + 6)$$

$$= 6 \sum_{r=1}^{n} r^2 - 2 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 6$$

$$= \cancel{n(n+1)(2n+1)} - \cancel{2} \frac{n(n+1)}{\cancel{2}} + 6n$$

$$= n(n+1) [(2n+1) - 1] + 6n$$

$$= n(n+1)(2n) - 6n$$

$$= 2n(n^2 + n + 3)$$
Taking $n(n+1)$ common

Taking $2n$ common

2. Repd Sum is
$$\sum_{r=1}^{n} r(r+1)(r+2) = \sum_{r=1}^{n} (r^3 + 3r^2 + 2r)$$

$$= \sum_{r=1}^{n} r^3 + 3 \sum_{r=1}^{n} r^2 + 2 \sum_{r=1}^{n} r$$

$$= \frac{n^2(n+1)^2}{4} + \frac{3n(n+1)(2n+1)}{6} + \frac{2n(n+1)}{2}$$

$$= n(n+1) \left[\frac{n(n+1) + 4n + 2 + 4}{4} \right]$$

$$= \frac{n(n+1)}{4} \left[n^2 + 5n + 6 \right]$$

$$= \frac{n(n+1)(n+2)(n+3)}{4}$$

Practical No. 07 - Applications of Vectors

1. Given
$$\bar{a} = 4\bar{i} + \bar{j} + 3\bar{k}$$
, $\bar{b} = \bar{i} + 3\bar{j} + 2\bar{k}$,
 $\bar{c} = 2\bar{i} + 7\bar{k}$
 $\bar{AB} = \bar{b} - \bar{a}$
 $= (1 - 4)\bar{i} + (3 - 1)\bar{j} + (2 - 3)\bar{k}$
 $= -3\bar{i} + 2\bar{j} - \bar{k}$

2. Given
$$\overline{a} = 2\overline{i} - \overline{j} + 3\overline{k}$$
 and $\overline{b} = 3\overline{i} + \overline{j} - 4\overline{k}$

$$\therefore \overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & -1 & 3 \\ 3 & 1 & -4 \end{vmatrix}$$

$$= \overline{i}(4 - 3) - \overline{j}(-8 - 9) + \overline{k}(2 + 3)$$

$$= \overline{i} + 17\overline{i} + 5\overline{k}$$
(Oct '96)

 $\overline{AC} = \overline{c} - \overline{a}$ = $(2 - 4)\overline{i} + (0 - 1)\overline{j} + (7 - 3)\overline{k}$ = $-2\overline{i} - \overline{j} + 4\overline{k}$ $\overline{AB} \cdot \overline{AC} = (-3)(-2) + (2)(-1) + (-1)(4) = 0$ $\angle A = 90^{\circ} \quad \triangle \quad \triangle ABC \text{ is a right angled } \triangle.$

$$\begin{array}{ll} \therefore & |\overline{a} \times \overline{b}| & = \sqrt{1^2 + 17^2 + 5^2} = \sqrt{315} \\ \text{Hence the unit vector } \bot^r \text{ to } \overline{a} \& \overline{b} \text{ is} \\ & \pm \frac{\overline{a} \times \overline{b}}{|\overline{a} \times \overline{b}|} = \pm \frac{\overline{i} + 17\overline{j} + 5\overline{k}}{\sqrt{315}} \\ \end{array}$$

Practical No. 08 - Limits

1.
$$\lim_{X \to a} \frac{\sin x - \sin a}{x - a}$$

$$= \lim_{X \to a} \frac{2 \cos \left(\frac{x + a}{2}\right) \sin \left(\frac{x - a}{2}\right)}{x - a}$$

$$= \lim_{X \to a} \cos \left(\frac{x + a}{2}\right) \times \lim_{X \to a} \frac{\sin \left(\frac{x - a}{2}\right)}{\frac{x - a}{2}}$$

$$= \lim_{X \to a} \cos \left(\frac{x + a}{2}\right) \times \lim_{X \to a} \frac{\sin \left(\frac{x - a}{2}\right)}{\frac{x - a}{2}}$$

$$= \cos a \times 1$$

$$= \cos a$$

2.
$$\lim_{x\to 0} \frac{10^{x} - 2^{x} - 5^{x} + 1}{x \sin 2x}$$

$$= \lim_{x\to 0} \frac{10^{x} - 2^{x} - 5^{x} + 1}{x^{2}} \times \frac{x^{2}}{x \sin 2x}$$

$$= \lim_{x\to 0} \frac{2^{x} 5^{x} - 2^{x} - 5^{x} + 1}{x^{2}} \times \lim_{x\to 0} \frac{x}{\sin 2x}$$

$$= \lim_{x\to 0} \frac{2^{x} (5^{x} - 1) - (5^{x} - 1)}{x^{2}} \times 2$$

$$= \frac{1}{2} \lim_{x\to 0} \frac{(2^{x} - 1)(5^{x} - 1)}{x^{2}}$$

$$= \frac{1}{2} \lim_{x\to 0} \frac{2^{x} - 1}{x} \times \lim_{x\to 0} \frac{5^{x} - 1}{x}$$

$$= \frac{1}{2} (\log 2) (\log 5)$$

$$\lim_{x \to 0} \frac{x}{\sin 2x} = \lim_{x \to 0} \left(\frac{\sin 2x}{x}\right)^{-1}$$

$$= \left(2 \lim_{x \to 0} \frac{\sin 2x}{2x}\right)^{-1}$$

$$= 2^{-1} \left(\lim_{x \to 0} \frac{\sin 2x}{2x}\right)^{-1}$$

$$= \frac{1}{2}$$

$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \log a$$

Practical No. 09 - Family of Lines

$$(x - y - 5) + k(2x - y - 8) = 0$$

$$(1 + 2k)x - (1 + k)y + (-5 - 8k) = 0$$

$$\therefore \text{ Slope of this line is } \frac{1+2k}{1+k}$$

Slope of the parallel line x + 3y = a is -1/3

$$\frac{1+2k}{1+k} = -\frac{1}{3}$$
 $k = -\frac{4}{7}$

Practical No. 10 - Permutations and Combination

- (a) There are 2 girls. Considering these 2 girls as 1. as one girl, we have 7 persons in all. They can be arragend amongst themseleves in 7! ways Further two girls can themselves be seated in 2! different ways, the req. is $\underline{7! \times 2! = 10080}$
 - The two girls can occupy the two end seats in 2! different ways. Having occupied the end seats by two girls, the remaining 6 seats can be occupied the remaining 6 persons in 6! different ways Hence the required answer is $2! \times 6! = 1440$

2. 3 boys can be selected from 6 in ⁶C₃ different ways. Also 2 girls can be selected from 5 in ${}^5\mathrm{C}_2$ ways. Hence by the fundmental principle the ans. is ${}^{6}C_{3} \times {}^{5}C_{2} = 20 \times 10 = \underline{200}$

Practical No. 11 - Circle

1. The centre is
$$(3, 1)$$
 and $8x - 15y + 25 = 0$ is tangent to the circle. Therefore

Dist from the centre = Radius

$$\frac{8(3) - 15(1) + 25}{\sqrt{(8)^2 + (-15)^2}} = r \text{ (Radius)}$$

$$\frac{34}{17} = r$$

Let C(h,k) be the centre :: $CP^2 = CQ^2$:: $(h+2)^2 + (k-6)^2 = (h-5)^2 + (k+1)^2$:: h-1k+1=0 ---(1) -2h + 1k + 1 = 0Solving (1) & (2) we get, h = 2 and k = 3

Hence the required eqn is $(x-y-5) - \frac{4}{7}(2x-y-8) = 0$

7x - 7y - 35 - 8x + 4y + 32 = 0

-x - 3y - 3 = 0

x + 3y + 3 = 0

Hence the equation of the circle is

$$(x - h)^{2} + (y - k)^{2} = r^{2}$$
i.e
$$(x - 3)^{2} + (y - 1)^{2} = 2^{2}$$
i.e
$$x^{2} + y^{2} - 6x - 2y + 6 = 0 \quad --- \text{Ans}$$

Now
$$r = \sqrt{(-2 - 2)^2 + (6 - 3)^2}$$

= $\sqrt{25}$

By the Centre-Radius form,

$$(x-2)^2 + (y-3)^2 = 25$$

 $x^2 + y^2 - 4x - 6y - 12 = 0$

$$x^2 + y^2 - 4x - 6y - 12 = 0$$

Practical No. 12 - Binomial Theorem

1.
$$(\sqrt{3}+1)^4 - (\sqrt{3}-1)^4 = {}^{4}C_0(\sqrt{3})^{4-0}(1)^0 + {}^{4}C_1(\sqrt{3})^{4-1}(1)^1 + \cdots + {}^{4}C_4(\sqrt{3})^{4-4}(1)^4 - {}^{4}C_0(\sqrt{3})^{4-0}(-1)^0 + {}^{4}C_1(\sqrt{3})^{4-1}(-1)^1 + \cdots + {}^{4}C_4(\sqrt{3})^{4-4}(-1)^4 = 2 \left[{}^{4}C_1(\sqrt{3})^{4-1}(1)^1 + {}^{4}C_3(\sqrt{3})^{4-3}(1)^3 \right] = 2 \left[{}^{4}(3\sqrt{3}) + 4\sqrt{3} \right] = 32\sqrt{3} - -- Ans$$

$$(2+\sqrt{5})^5 + (2-\sqrt{5})^5 = {}^{5}C_0(2)^{5-0}(\sqrt{5})^0 + {}^{5}C_1(2)^{5-1}(\sqrt{5})^1 + \cdots + {}^{5}C_5(2)^{5-5}(\sqrt{5})^5 + {}^{5}C_0(2)^{5-0}(-\sqrt{5})^0 + {}^{5}C_1(2)^{5-1}(-\sqrt{5})^1 + \cdots + {}^{5}C_5(2)^{5-5}(-\sqrt{5})^5 = 2 \left[{}^{5}C_0(2)^{5-0}(\sqrt{5})^1 + {}^{5}C_2(2)^{5-2}(\sqrt{5})^2 + {}^{5}C_4(2)^{5-4}(\sqrt{5})^4 \right] = 2 \left[(1)(32) + 10(40) + 5(2)(25) \right] = 1364 - -- Ans$$

2. The general term is

$$^{12}C_r (2x)^{12-r} \left(\frac{-y}{2}\right)^r$$

For the 3^{rd} term, r = 2

Hence the required term is

Practical No. 13 - Applications of Conics - 1

Given Ellipse is

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

:
$$a = 5$$
 and $b = 3$ $(a > b)$

Length of major axis =
$$2a = 2(5) = \underline{10}$$

From the given data it follows that the required 2. parabola is a stdard parabola with vertex at the origin. So let $y^2 = 4ax$ be the required equation. Since the parabola passes through (2, -4),

$$(-4)^2 = 4a(2)$$
$$a = 2$$

Consequently, the required eqn of the parabola is $y^2 = 4(2)x$ i.e $y^2 = 8x$

Practical No. 14 - Mathematical Induction

Let $P(n): 3^{2n} + 7$ is divisible by 8 For n = 1, $3^2 + 7 = 16$, is divisible by 8 P(1) is true.

Let P(k) be true.

$$3^{2k} + 7$$
 is divisible by 8 ---- (1)

Now
$$3^{2(k+1)} + 7 = 3^{2k+2} + 7$$

= $3^{2k}3^2 + 7$
= $9 \cdot 3^{2k} + 7$

Let P(n): $1 + 3 + 5 + \cdots + 2n - 1 = n^2$

For n = 1, $1 = 1^2$ P(1) is true.

Let P(k) be true.

$$1 + 3 + 5 + \cdots + 2k - 1 = k^2$$

For n = k + 1, we have

$$1+3+5++\cdots+(2k-1)+(2k+1)$$
 --- (1

Practical No. 15 - Applications of Conics - 2

Given Ellipse is

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

$$a = 5$$
 and $b = 3$ $(a > b)$

a = 5 and b = 3 (a > b)

$$e^{2} = \frac{a^{2} - b^{2}}{a^{2}} = \frac{25 - 9}{25} = \frac{16}{25}$$

Given hyperbola is $\frac{x^2}{4} - \frac{y^2}{36} = 1$

$$a = \sqrt{4} = 2$$
 and $b = \sqrt{36} = 6$

$$e = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{4 + 36}{4}} = \sqrt{10}$$

Practical No. 16 - Differentiation

$$= {}^{12}C_2 (2x)^{12-2} \left(\frac{-y}{2}\right)^2$$
$$= {}^{12}C_2 \times 2^{10} \times x^{10} \times \frac{y^2}{2^2}$$
$$= 16896x^{10}y^2$$

Length of minor axis = $2b = 2(3) = \underline{6}$

$$e^2 = \frac{a^2 - b^2}{a^2} = \frac{25 - 9}{25} = \frac{16}{25}$$

$$\therefore e = \frac{4}{5}$$

$$= 9(3^{2k} + 7) - 56$$

But
$$9(3^{2k} + 7)$$
 is divisible by 8, by (1)

Also 56 is divisible by 8. Hence $9(3^{2k} + 7) - 56$ is divisible by 8

 $3^{2(k+1)} + 7$ is divisible by 8

P(k+1) is true.

Hence the result by induction.

$$= k2 + (2k + 1) , by (1)$$

= $(k + 1)2$

This shows that P(k + 1) is true.

P(k) is true $\Rightarrow P(k+1)$ is true

P(n) is true $\forall n \in N$.

$$\therefore e = \frac{4}{5}$$

:.
$$e = \frac{4}{5}$$

Now, foci are $(\pm ae, 0) = (\pm 4, 0)$

directrices are
$$x = \pm \frac{a}{e}$$

i.e
$$x = \pm \frac{2}{4}$$

Latus rectum is
$$\frac{2b^2}{a} = \frac{2(36)}{2} = 36$$
 units

and the foci are

$$(\pm ae, 0) = (\pm 2\sqrt{10}, 0)$$

1. By definition
$$f'(x)$$
 is
$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\log [(x+h) + 7] - \log (x+7)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \log \left(\frac{x+7+h}{x+7}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \log \left(1 + \frac{h}{x+7}\right)$$

2. Let
$$y = \frac{x^4 e^x}{\sin x + 1}$$
 $\frac{dy}{dx}$

$$= \frac{(\sin x + 1) \frac{d}{dx} (x^4 e^x) - (x^4 e^x)}{(\sin x + 1)^2} = \frac{(\sin x + 1)(x^4 e^x + 4x^3 e^x) - (x^4 e^x)(\cos x)}{(\sin x + 1)^2}$$

$$= \frac{x^3 e^x (\sin x + 1)(x + 4) - x^4 e^x \cos x}{(\sin x + 1)^2}$$

Practical No. 17 - Linear Equations

1. Consider
$$4x + 3y = 12$$

$$\begin{array}{c|cccc}
x & 0 & 3 \\
\hline
y & 4 & 0 \\
\hline
(x, y) & (0, 4) & (3, 0)
\end{array}$$

$$A = (0, 4) \text{ and } B = (3, 0)$$

For $x = y = 0$, $4(0) + 3(0) = 0$ ≤ 12

 \therefore Origin side is the solution set

Consider		3x + 5y = 15		
	X	0	5	
	у	3	0	
	(x, y)	(0, 3)	(5, 0)	

D =
$$(0, 3)$$
 and C = $(5, 0)$
For x = y = 0, $3(0) + 5(0) = 0$ ≤ 15

- :. Origin side is the solution set
- 2. Consider 3x + 2y = 6 $\begin{array}{c|cccc}
 x & 0 & 2 \\
 y & 3 & 0 \\
 \hline
 (x, y) & (0, 3) & (2, 0)
 \end{array}$

$$A = (0, 3)$$
 and $B = (2, 0)$
For $x = y = 0$, $3(0) + 2(0) = 0$ ≥ 6 (absurd)

 $\mathrel{\dot{.}.}$ Non-origin side is the solution set

Consider $x + y = 2$				
x	0	2		
У	2	0		
(x, y)	(0, 2)	(2, 0)		

$$C = (0, 2) \text{ and } B = (2, 0)$$

For $x = y = 0, 0 - 0 = 0 \le 2$

:. Origin side is the solution set

- Y
 A 4x + 3y = 12B
 C -2 -1 0 1 2 3x + 5y = 15
- :. Bounded shaded portion OBED is the common solution set

 $= \lim_{h \to 0} \log \left(1 + \frac{h}{x+7}\right)^{\frac{1}{h}}$ $= \lim_{h \to 0} \log \left[\left(1 + \frac{h}{x+7}\right)^{\frac{x+7}{h}}\right]^{\frac{1}{x+7}}$

 $= \log \left\{ \left[\lim_{h \to 0} \left(1 + \frac{h}{x+7} \right)^{\frac{x+7}{h}} \right]^{\frac{1}{x+7}} \right\}$

 $= \log e^{\frac{1}{x+7}} = \frac{1}{x+7}$ --- Ans

:. Bounded shaded portion CAB is the common solution set

Practical No. 18 - Integration

1.
$$\int \frac{15}{\sqrt{2x+11}} dx$$

$$= \int \frac{15}{\sqrt{2x+11}} + \sqrt{2x-4} dx$$

$$= \int \frac{15}{\sqrt{2x+11}} + \sqrt{2x-4} \times \frac{\sqrt{2x+11}}{\sqrt{2x+11}} - \sqrt{2x-4} dx$$

$$= 15 \int \frac{\sqrt{2x+11}}{2x+11} - \sqrt{2x-4} dx$$

$$= 15 \int \frac{\sqrt{2x+11}}{2x+11} - \sqrt{2x+4} dx$$

$$= 15 \int \frac{\sqrt{2x+11}}{2x+11} - \sqrt{2x+4} dx$$

$$= 15 \int \frac{\sqrt{2x+11}}{\sqrt{2x+11}} - \sqrt{2x+4} dx$$

$$= 15 \int \frac{\sqrt{2x+11}}{\sqrt{2x+11}} - \sqrt{2x+4} dx$$

2.
$$I = \int \sqrt{1 - \sin x} dx$$
$$= \int \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2} dx$$
$$= \int \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right) dx$$

$$= \int \cos \frac{x}{2} dx - \int \sin \frac{x}{2} dx$$

$$= \frac{\sin (x/2)}{1/2} - \frac{[-\cos (x/2)]}{1/2} + c$$

$$= 2 \sin \frac{x}{2} + 2 \cos \frac{x}{2} + c$$

Practical No. 19 - Probability

Group of 4 can be selected from 7 (3 B, 4G) in ${}^{7}C_{4}$ different ways. 1.

$$\therefore n(S) = {}^{7}C_{4}$$

Let A be the event of selecting 3 boys and 1 girl.

$$\therefore n(A) = {}^{3}C_{3} \times {}^{4}C_{1}$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{{}^{3}C_{3} \times {}^{4}C_{1}}{{}^{7}C_{4}} = \frac{4}{35}$$

Let B be the event of selecting 1 boy and 3 girls.

$$\therefore n(B) = {}^{3}C_{1} \times {}^{4}C_{3} \qquad \therefore P(B) = \frac{n(B)}{n(S)} = \frac{{}^{3}C_{1} \times {}^{4}C_{3}}{{}^{7}C_{4}} = \frac{12}{35}$$

Since A and B are mutually exclusive, $P(A \cup B) = P(A) + P(B) = \frac{4}{35} + \frac{12}{35} = \frac{16}{35}$

Sample space $S = \{ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}$. $\therefore n(S) = 8$ 2. Let A: atleast two heads

$$A = \{HHT, HTH, THH, HHH\} \qquad n(A) = 4$$

$$n(A) \qquad 4 \qquad 1$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{4}{8} = \frac{1}{2}$$

Let B: all 3 coins show head.

$$B = \{HHH\}$$

$$\ln n(B) = 4$$

$$P(B) = \frac{n(B)}{n(S)} = \frac{1}{8}$$

$$A \cap B = \{HHH\}$$

$$n(A \cap B) = 1$$

$$n(A \cap B)$$

$$P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{8}$$

$$n(A) = 4$$

$$A \cap B = \{HHH\}$$

$$\therefore n(A \cap B) = 1$$

$$\therefore P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{8}$$

$$\therefore n(B) = 4$$

$$By conditional probability
$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{1/8}{1/2} = \frac{1}{4}$$$$

Practical No. 20 - Measures of Dispersion

1.

- I I		11
Class	Frequency	Cum. Freq
Intervals	f	< type
0 - 10	22	22
10 - 20	38	60
20 - 30	46	106
30 - 40	35	141
40 - 50	20	161

$$\frac{N}{4} = \frac{161}{4} = 40.25$$
 ... Q_1 lies in 10 - 20

$$L = 10$$
, $n = 10$, c.f. = 22 (p

$$Q_1 = L + \frac{h(\frac{N}{4} - c.f.)}{f}$$

We prepare cumulative frequency table (less than)
$$= 10 + \frac{10(40.25 - 22)}{38}$$
 Class Frequency Cum. Freq $= 14.802$

$$\frac{3N}{4} = \frac{3 \times 161}{4} = 120.75$$
 \therefore Q₃ lies in 30 - 40

$$L = 30$$
, $h = 10$, c.f. = 106 (prev)

$$Q_1 = L + \frac{h(\frac{3N}{4} - c.f.)}{f}$$
$$= 30 + \frac{10(120.75 - 106)}{38}$$

Q.D. =
$$\frac{Q_3 - Q_1}{2} = \frac{34.214 - 14.802}{2} = \underline{9.706}$$

Arranging in ascendinbg order

Here
$$n = 5$$
, $\frac{n+1}{2} = 3$

 3^{rd} Observation = 38 is the medan

Table to Calculate Median:

$$x_i$$
 $|x_i - M|$
23 15
29 09
38 00
41 03

15

Mean deviation about median = $\frac{\sum |x_i - M|}{n} = \frac{42}{5} = 8.4$

$$\frac{-\mathbf{M}|}{\mathbf{m}} = \frac{42}{5} = 8.4$$

--- End ---