CURS I

NOȚIUNI PRELIMINARE

§ 1. MULŢIMI

Prin *mulțime* înțelegem o colecție de obiecte care se numesc elementele mulțimii. Vom nota cu litere mari mulțimile, iar cu litere mici elementele lor. Dacă A este o mulțime și x un element al său, vom scrie $x \in A$ și vom citi "x aparține lui A". Dacă x nu se găsește în A, atunci vom scrie $x \notin A$ și vom citi "x nu aparține lui A".

Există două moduri de definire (de determinare) a unei mulțimi:

- i) Numind individual elementele sale. În acest caz mulțimea se specifică scriind între acolade elementele sale $\{x, y, z, ...\}$. De exemplu, $A = \{0, 1, 2, 3\}$, adică mulțimea formată din primele patru numere naturale; $B = \{a, b, c, d, e\}$, adică mulțimea formată din primele cinci litere ale alfabetului latin.
- ii) Specificând o proprietate pe care o au elementele sale și nu le au alte elemente. Mai precis, dată o proprietate se poate vorbi de mulțimea acelor obiecte pentru care proprietatea respectivă are loc. Mulțimile definite în acest mod se vor nota prin $A = \{x \mid P(x)\}$, adică mulțimea acelor obiecte x pentru care are loc P(x).

De exemplu, să considerăm proprietatea "a fi număr natural par": în acest caz mulțimea A va fi mulțimea numerelor naturale pare.

Pentru câteva mulțimi care vor fi des utilizate avem notații speciale: cu \mathbf{N} vom nota mulțimea numerelor naturale, adică $\mathbf{N} = \{0, 1, 2, 3, ...\}$. Cu \mathbf{N}^* vom nota mulțimea numerelor naturale nenule, adică $\mathbf{N}^* = \{1, 2, 3, ...\}$. Cu \mathbf{Z} vom nota mulțimea numerelor întregi, cu \mathbf{Q} mulțimea numerelor raționale, cu \mathbf{R} mulțimea numerelor reale, iar cu \mathbf{C} mulțimea numerelor complexe.

În teoria mulțimilor se admite existența unei mulțimi care nu are nici un element. Aceasta se numește $mulțimea\ vidă\$ și se notează cu simbolul \varnothing .

Dacă A şi B sunt două mulțimi, vom spune că A este o *submulțime* a lui B (sau A este *conținută*, respectiv *inclusă* în B) şi vom scrie $A \subseteq B$ dacă orice element al mulțimii A este și element al mulțimii B. Simbolic scriem astfel: $\forall x, x \in A \Rightarrow x \in B$. Dacă incluziunea este strictă, adică există elemente în B care nu sunt în A, scriem $A \subseteq B$.

Mulţimea vidă este submulţime a oricărei mulţimi. Între mulţimile de numere considerate mai înainte avem incluziunile: $N^* \subset N \subset Z \subset Q \subset R \subset C$.

Două mulțimi A și B sunt *egale* dacă au aceleași elemente, adică $A = B \Leftrightarrow A \subseteq B$ și $B \subset A$ (" \Leftrightarrow " înseamnă "dacă și numai dacă").

Relația de incluziune (resp. relația de egalitate) între mulțimi are proprietățile următoare:

- a) este <u>reflexivă</u>, adică $A \subseteq A$ (resp. A = A);
- b) este <u>antisimetrică</u>, adică din $A \subseteq B$ și $B \subseteq A$ rezultă A = B (resp. este <u>simetrică</u> adică $A = B \Rightarrow B = A$);
- c) este <u>tranzitivă</u>, adică $A\subseteq B$ și $B\subseteq C \implies A\subseteq C$ (resp. A=B și $B=C \implies A=C$).

Cu mulțimi se fac următoarele operații:

• intersecția a două mulțimi A și B înseamnă mulțimea

$$A \cap B = \{x \mid x \in A \text{ si } x \in B\};$$

• reuniunea mulțimilor A și B înseamnă mulțimea

$$A \cup B = \{x \mid x \in A \text{ sau } x \in B\}.$$

În cazul când A \cap B = \emptyset spunem că mulțimile A și B sunt *disjuncte*.

Operațiile de intersecție și reuniune au următoarele proprietăți:

$$A \cup \varnothing = A; A \cap \varnothing = \varnothing$$

$$A \cup B = B \cup A; A \cap B = B \cap A \text{ (comutativitate)}$$

$$A \cup (B \cup C) = (A \cup B) \cup C; A \cap (B \cap C) = (A \cap B) \cap C \text{ (asociativitate)}$$

$$A \cup A = A; A \cap A = A \text{ (idempotență)}$$

 $A \subseteq B$ dacă și numai dacă $A \cup B = B$; $A \subseteq B$ dacă și numai dacă $A \cap B = A$

Operațiile de intersecție și reuniune satisfac egalitățile:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

numite distributivitatea intersecției (resp. reuniunii) față de reuniune (resp. intersecție). Prin diferența mulțimilor B și A înțelegem mulțimea

$$B \setminus A = \{x \in B \mid x \notin A\}.$$

Să observăm că $A \subset B$ dacă și numai dacă $A \setminus B = \emptyset$.

Dacă A este o submulțime a lui B, atunci diferența B \ A se numește *complementa-ra* mulțimii A în B și se notează cu C_BA . De exemplu $C_B\varnothing = B$, iar $C_BB = \varnothing$. De asemenea, $A \cup C_BA = B$, iar $A \cap C_BA = \varnothing$, adică A si C_BA sunt disjuncte.

Dacă A şi A' sunt două submulțimi ale mulțimii B au loc egalitățile:

$$C_B(A \cup A') = (C_BA) \cap (C_BA')$$

 $C_B(A \cap A') = (C_BA) \cup (C_BA')$

numite formulele lui De Morgan.

Relația de incluziune ne permite să definim *mulțimea părților* unei mulțimi T notată cu $\mathcal{P}(T)$, adică $\mathcal{P}(T)$ are ca elemente toate submulțimile mulțimii T.

Fie A şi B două mulțimi arbitrare. Dacă $a \in A$ şi $b \in B$, atunci putem forma perechea ordonată (a, b), adică perechea formată din elementele a şi b unde este stabilită o anumită ordine în sensul că a este primul element iar b este al doilea element în această pereche. Rezultă că două perechi (a₁, b₁) şi (a₂, b₂) sunt egale dacă şi numai dacă a₁ = a₂ si b₁ = b₂. Prin produsul cartezian al mulțimilor A și B înțelegem mulțimea

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Când A = B, notăm $A^2 = A \times A$.

Se observă că dacă $A = \emptyset$ sau $B = \emptyset$, atunci $A \times B = \emptyset$. În plus, dacă A are m elemente iar B are n elemente, atunci mulțimea $A \times B$ are mn elemente.

§ 2. FUNCȚII

Fiind date mulțimile A și B, prin <u>funcție</u> (sau <u>aplicație</u>) definită pe mulțimea A cu valori în mulțimea B se înțelege o "lege" f în baza căreia oricărui element $a \in A$ i se asociază un unic element, notat f(a), din B.

Mulţimea A se numeşte domeniul de definiție al funcției f, iar mulţimea B se numeşte domeniul valorilor funcției f (sau codomeniul funcției f).

O funcție f este determinată atunci când se dă domeniul de definiție, codomeniul său și modul cum acționează f. O funcție f definită pe mulțimea A cu valori în B se notează $f: A \to B$.

Fie $f: A \to B$ o funcție. Prin graficul lui f se înțelege mulțimea $G_f = \{(a, b) \mid a \in A, b \in B \text{ si } b = f(a)\}$. Evident $G_f \subseteq A$ x B. Dacă știm graficul unei funcții, atunci putem identifica domeniul, codomeniul și "legea" funcției. De aceea este mult mai riguros să definim o funcție ca un triplet (A, B, G) format din trei mulțimi A, B și $G \subseteq A$ x B cu proprietatea că $\forall a \in A \exists ! b \in B$ astfel încât $(a, b) \in G$.

Dacă A și B sunt două mulțimi oarecare, vom nota cu $B^A = \{f : A \to B \mid f \text{ funcție}\}\$, adică mulțimea tuturor funcțiilor definite pe A cu valori în B.

Dacă A este o mulțime oarecare, funcția $1_A: A \to A$, unde $1_A(a) = a$ oricare ar fi a $\in A$ se numește *funcția identică* a mulțimii A.

Dacă $A \subseteq B$, atunci funcția $i : A \to B$, unde i(a) = a oricare ar fi $a \in A$ se numește *funcția incluziune* a submulțimii A a lui B.

O funcție $f: A \to B$ se numește *restricție* a funcției $g: A' \to B$ dacă $A \subseteq A'$ și f(a) = g(a), oricare ar fi $a \in A$. (Să observăm că f = g o i, unde $i: A \to A'$ este funcția incluziune.) f se notează cu $g_{|A}$. În această situație g se numește *extindere* a lui f.

O funcție $f: A \to B$ se numește *corestricție* a funcției $g: A \to B'$ dacă Im $g \subseteq B \subseteq B'$ și f(a) = g(a), oricare ar fi $a \in A$.

Dacă A_1 și A_2 sunt două mulțimi oarecare, definim o funcție $p_1: A_1 \times A_2 \to A_1$ prin $p_1((a_1, a_2)) = a_1$ oricare ar fi $(a_1, a_2) \in A_1 \times A_2$. Această funcție se numește *proiecția pe prima componentă*. Analog definim o funcție $p_2: A_1 \times A_2 \to A_2$ prin $p_2((a_1, a_2)) = a_2$ oricare ar fi $(a_1, a_2) \in A_1 \times A_2$ și o numim *proiecția pe a doua componentă*.

Dacă A_1 , A_2 , B_1 , B_2 sunt mulțimi oarecare și $f_1: A_1 \to B_1$, $f_2: A_2 \to B_2$ sunt două funcții, atunci putem defini o funcție f_1 x $f_2: A_1$ x $A_2 \to B_1$ x B_2 prin $(f_1$ x $f_2)((a_1, a_2)) = (f_1(a_1), f_2(a_2))$ oricare ar fi $(a_1, a_2) \in A_1$ x A_2 . Această funcție se numește *produsul cartezian* al lui f_1 cu f_2 .

Dacă A şi T sunt două mulțimi şi A \subseteq T, definim o funcție χ_A : $T \to \{0, 1\}$ astfel: $\chi_A(t) = 1$ dacă $t \in A$, respectiv $\chi_A(t) = 0$ dacă $t \in T \setminus A$. Această funcție se numește funcția caracteristică a lui A.

Să observăm că dacă A şi A' sunt submulțimi ale lui T, atunci A=A' dacă şi numai dacă $\chi_A=\chi_{A'}$.

Exercițiu. Fie A și A' submulțimi ale lui T. Arătați că:

- 1) $\chi_{A \cap A'} = \chi_A \chi_{A'}$.
- 2) $\chi_{A \cup A'} = \chi_A + \chi_{A'} \chi_A \chi_{A'}$. În particular, dacă A și A' sunt disjuncte avem $\chi_{A \cup A'} = \chi_A + \chi_{A'}$.
- 3) $\chi_{A\setminus A'} = \chi_A(1-\chi_{A'})$.

Dacă $f: A \to B$ este o funcție și $A' \subseteq A$ este o submulțime a mulțimii A, notăm

$$f(A') = \{ f(a') \mid a' \in A' \}$$

numită <u>imaginea directă</u> a lui A' prin funcția f și este o submulțime a lui B. În cazul particular când A' = A, notăm f(A) = Im f și se numește *imaginea* funcției f.

Similar, dacă B' ⊂ B este o submulțime a lui B, atunci notăm

$$f^{-1}(B') = \{a \in A \mid f(a) \in B'\}.$$

Această submulțime se numește *imaginea inversă* a lui B' prin funcția f și este o submulțime a lui A.

Propoziția 2.1. Considerăm o funcție $f : A \rightarrow B$.

- a) Dacă $M \subseteq N \subseteq A$, atunci $f(M) \subseteq f(N)$.
- b) Dacă $M \subseteq A$ și $N \subseteq A$, atunci $f(M \cup N) = f(M) \cup f(N)$.
- c) Dacă $M \subset A$ și $N \subset A$, atunci $f(M \cap N) \subset f(M) \cap f(N)$.
- d) Dacă $M \subseteq A$, atunci $M \subseteq f^{-1}(f(M))$.
- e) Dacă $P \subset Q \subset B$, atunci $f^{-1}(P) \subset f^{-1}(Q)$.
- f) Dacă $P \subset B$ și $Q \subset B$, atunci $f^{-1}(P \cup Q) = f^{-1}(P) \cup f^{-1}(Q)$.
- g) Dacă $P\subseteq B$ și $Q\subseteq B$, atunci $f^{-1}(P\cap Q)=f^{-1}(P)\cap f^{-1}(Q)$.
- h) Dacă $P \subseteq B$, atunci $f(f^{-1}(P)) \subseteq P$.

Exerciții.

- 1) Dați exemple de funcții $f:A\to B$ cu proprietatea că există $M\subseteq A$ și $N\subseteq A$ astfel încât $f(M\cap N)\subset f(M)\cap f(N)$.
- 2) Dați exemple de funcții $f:A\to B$ cu proprietatea că există $M\subseteq A$ astfel încât $M\subset f^{-1}(f(M)).$
- 3) Dați exemple de funcții $f: A \to B$ cu proprietatea că există $P \subseteq B$ astfel încât $f(f^{-1}(P)) \subset P$.
- O funcție $f: A \to B$ se numește <u>injectivă</u> dacă oricare ar fi a, $a' \in A$ cu $a \ne a'$ rezultă $f(a) \ne f(a')$ sau echivalent, din egalitatea f(a) = f(a') rezultă a = a'.

Propoziția 2.2. (i) O funcție $f: A \to B$ este injectivă dacă și numai dacă $\forall M \subseteq A$ și $\forall N \subseteq A$, $f(M \cap N) = f(M) \cap f(N)$.

(ii) O funcție $f: A \to B$ este injectivă dacă și numai dacă $M = f^{-1}(f(M)) \ \forall \ M \subseteq A$

O funcție $f: A \to B$ se numește *surjectivă* dacă oricare ar fi $b \in B$ există $a \in A$ astfel încât f(a) = b sau echivalent, Im f = B.

Propoziția 2.3. O funcție $f: A \to B$ este surjectivă dacă și numai dacă $f(f^{-1}(P)) = P, \forall P \subset B.$

O funcție care este injectivă și surjectivă se numește bijectivă.

Fiind date funcțiile $f: A \to B$ și $g: B \to C$, funcția notată cu g o f, unde g o $f: A \to C$ și $(g \circ f)(a) = g(f(a))$ oricare ar fi $a \in A$, se numește *compunerea* funcțiilor f și g.

Dacă $f: A \rightarrow B$ este o funcție, atunci sunt evidente egalitățile:

$$1_B o f = f si f o 1_A = f$$
.

O proprietate importantă a compunerii funcțiilor este următoarea:

Teorema 2.4. Compunerea funcțiilor este asociativă, adică fiind date funcțiile $f: A \to B$, $g: B \to C$ și $h: C \to D$ are loc egalitatea

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Demonstrație. Într-adevăr, se vede mai întâi că funcțiile h o $(g \circ f)$ și $(h \circ g)$ o f au domeniul de definiție A, iar codomeniul D. Fie acum $a \in A$. Avem

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a))),$$

 $((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a))),$

de unde rezultă că h o $(g \circ f) = (h \circ g) \circ f$.

Propoziția 2.5. Fie funcțiile $f: A \rightarrow B$ și $g: B \rightarrow C$.

- a) Dacă f și g sunt injective, atunci g o f este injectivă.
- b) Dacă g o f este injectivă, atunci f este injectivă.
- c) Dacă f și g sunt surjective, atunci g o f este surjectivă.
- d) Dacă g o f este surjectivă, atunci g este surjectivă.
- e) Dacă f și g sunt bijective, atunci g o f este bijectivă.
- f) Dacă g o f este bijectivă, atunci f este injectivă, iar g este surjectivă.

Demonstrație. a) Fie a, a' \in A astfel încât (g o f)(a) = (g o f)(a'). Atunci avem că g(f(a)) = g(f(a')) și cum g este injectivă rezultă f(a) = f(a'), de unde obținem că a = a' deoarece f este injectivă.

- b) Fie a, $a' \in A$ astfel încât f(a) = f(a'). Atunci avem că g(f(a)) = g(f(a')), adică (g o f)(a) = (g o f)(a'), de unde obținem că a = a'. Deci f este o funcție injectivă.
- c) Fie $c \in C$. Deoarece g este surjectivă există $b \in B$ astfel încât g(b) = c. Pe de altă parte există $a \in A$ cu f(a) = b, deoarece f este surjectivă. Rezultă că $(g \circ f)(a) = c$, deci g o f este surjectivă.
- d) Fie acum $c \in C$ și $a \in A$ cu $(g \circ f)(a) = c$. Fie b = f(a). Atunci g(b) = c, ceea ce ne arată că g este surjectivă.
 - e), f) Rezultă din precedentele.

Exercițiu. Dați exemplu de funcții $f, g: N \to N$ cu proprietatea că g o $f = 1_N$, dar g nu este injectivă, iar f nu este surjectivă.

O funcție $\underline{f}: A \to B$ se numește *inversabilă* dacă există o funcție $g: B \to A$ astfel încât g o $f = 1_A$ și f o $g = 1_B$.

Să presupunem acum că funcția $f: A \to B$ este inversabilă. În acest caz funcția $g: B \to A$ cu proprietățile $g \circ f = 1_A$ și $f \circ g = 1_B$ este unic determinată. Într-adevăr, să presupunem că mai există o funcție $g': B \to A$ astfel încât $g' \circ f = 1_A$ și $f \circ g' = 1_B$. În acest caz avem $(g' \circ f) \circ g = 1_A \circ g = g$. Cum $(g' \circ f) \circ g = g' \circ (f \circ g) = g' \circ 1_B = g'$ rezultă g = g'. Funcția g fiind unică se notează cu f^{-1} și se numește *inversa* funcției f.

Teorema 2.6. 1) Dacă funcția $f: A \to B$ este inversabilă, atunci inversa sa $f^{-1}: B \to A$ este inversabilă și are loc egalitatea $(f^{-1})^{-1} = f$.

2) Dacă funcțiile $f: A \to B$ și $g: B \to C$ sunt inversabile, atunci și funcția $g \circ f: A \to C$ este inversabilă și are loc egalitatea

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Demonstrație. 1) Cum avem egalitățile f o $f^{-1} = 1_B$ și f^{-1} o $f = 1_A$ rezultă că și f^{-1} este inversabilă și inversa sa este f, adică $(f^{-1})^{-1} = f$.

2) Avem

şi

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ ((f \circ f^{-1}) \circ g^{-1}) = g \circ (1_B \circ g^{-1}) = g \circ g^{-1} = 1_C$$

$$(f^{-1}o\ g^{-1})\ o\ (g\ o\ f)=f^{-1}\ o\ ((g^{-1}\ o\ g)\ o\ f)=f^{-1}\ o\ (1_{B}\ o\ f)=f^{-1}\ o\ f=1_{A}.$$

Aceste egalități ne arată că g o f este inversabilă și inversa sa este f^{-1} o g^{-1} , adică $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Următoarea teoremă caracterizează funcțiile inversabile:

Teorema 2.7. Dacă $f: A \to B$ este o funcție, atunci f este inversabilă dacă și numai dacă f este bijectivă.

Demonstrație. Presupunem că f este inversabilă. Atunci există o funcție $g: B \to A$

astfel încât g o $f = 1_A$ și f o $g = 1_B$. Din Propoziția 2.5 b) rezultă că f este injectivă iar din Propoziția 2.5 d) rezultă că f este surjectivă, deci f este bijectivă.

Invers, presupunem că f este bijectivă. Fie $b \in B$ un element oarecare. Cum f este surjectivă există elementul $a_b \in A$ astfel încât $f(a_b) = b$. Cum f este injectivă, elementul a_b este unic determinat de b. Atunci definim funcția $g : B \to A$ astfel: $g(b) = a_b$. Se verifică imediat că g o $f = 1_A$ și f o $g = 1_B$.

Un rezultat foarte util în cele ce vor urma este următorul:

Teorema 2.8. Fie A o mulțime finită și $f: A \to A$ o funcție. Următoarele afirmații sunt echivalente:

- 1) f este bijectivă;
- 2) f este injectivă;
- 3) f este surjectivă.

Demonstrație. 1) \Rightarrow 2) și 1) \Rightarrow 3) sunt evidente.

2) \Rightarrow 1) Deoarece A este o multime finită, putem scrie că A = $\{a_1, a_2, ..., a_n\}$.

Cum f este injectivă, avem $f(A) = \{f(a_1), f(a_2), ..., f(a_n)\}$, unde $f(a_i) \neq f(a_j)$, oricare ar fi i \neq j. Deci f(A) are n elemente. Din $f(A) \subseteq A$ rezultă că f(A) = A și deci f este și surjectivă, adică bijectivă.

3) \Rightarrow 1) Fie b \in A și notăm cu f⁻¹(b) = {a \in A | f(a) = b}. Evident că f⁻¹(b) este o submulțime a lui A. Cum f este surjectivă, atunci f⁻¹(b) $\neq \emptyset$ oricare ar fi b \in A.

Deoarece $A = \bigcup_{b \in A} f^{-1}(b)$ și mulțimile $f^{-1}(b)$ sunt disjuncte două câte două, rezultă că

 $f^{-1}(b)$ are un singur element, deoarece în caz contrar ar rezulta că $\bigcup_{b \in A} f^{-1}(b)$ ar avea un număr mai mare de elemente decât mulțimea A. Aceasta ne arată că f este neapărat o funcție injectivă.

§ 3. PRODUSUL CARTEZIAN AL UNEI FAMILII DE MULȚIMI

Fie I $\neq \emptyset$ și A o mulțime oarecare. O funcție φ : I \rightarrow A se mai numește <u>familie de elemente din A indexată după I.</u> Se notează

$$\varphi = (a_i)_{i \in I}$$
, unde $a_i = \varphi(i)$.

Dacă $I=\{1,\,2,\,\ldots\,,\,n\}$, atunci folosim notația $(a_i)_{i\in I}=(a_1,\,a_2,\,\ldots\,,\,a_n)$ și $(a_1,\,a_2,\,\ldots\,,\,a_n)$ se mai numește n-uplu.

Dacă elementele lui A sunt mulțimi (sau submulțimi ale unei mulțimi T) obținem noțiunea de familie de mulțimi (respectiv familie de submulțimi a lui T).

Fie $(A_i)_{i \in I}$ o familie de mulțimi. Atunci mulțimile

 $\bigcup_{i \in I} A_i = \{x \mid \exists i \in I, x \in A_i\}, \text{ respectiv } \bigcap_{i \in I} A_i = \{x \mid \forall i \in I, x \in A_i\}$ se numesc *reuniunea*, respectiv *intersecția* familiei $(A_i)_{i \in I}$.

Avem egalitățile:

$$A \cap (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (A \cap A_i)$$

$$A \cup (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (A \cup A_i)$$

Fie $(A_i)_{i \in I}$ o familie de mulțimi. Mulțimea

$$\prod_{i \in I} A_i = \{ \phi : I \to \bigcup_{i \in I} A_i | \phi(i) \in A_i, \forall i \in I \}$$

se numește produsul cartezian sau produsul direct al familiei $(A_i)_{i\in I}$.

Astfel, putem scrie:

$$\prod_{i\in I} A_i = \{(a_i)_{i\in I} | a_i \in A_i \ \forall \ i\in I\}.$$

Dacă $A_i = A$ oricare ar fi $i \in I$, atunci produsul cartezian nu este altcineva decât mulțimea $A^I = \{\phi: I \to A\}$, adică mulțimea funcțiilor definite pe I cu valori în A. Dacă $I = \{1, 2, ..., n\}$, atunci notăm $\prod_{i \in I} A_i$ cu A_1 x A_2 x ... x A_n . Deci A_1 x A_2 x ... x $A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, ..., a_n \in A_n\}$. În cazul n = 2 obținem produsul cartezian a două mulțimi introdus în §1. Dacă $A_1 = A_2 = ... = A_n = A$ vom nota $A^n = A_1$ x A_2 x ... x A_n .

Fie $j \in I$. Funcția $p_j : \prod_{i \in I} A_i \to A_j$, definită prin egalitatea $p_j(\phi) = \phi(j) \in A_j$, unde $\phi \in \prod_{i \in I} A_i$ (sau $p_j((a_i)_{i \in I}) = a_j$) se numește *j-proiecția canonică* a produsului cartezian pe mulțimea A_i . Aceasta este în mod evident o funcție surjectivă.

Fie $(A_i)_{i\in I}$, $(B_i)_{i\in I}$ două familii de mulțimi și $f_i:A_i\to B_i$ o familie de funcții. Definim o funcție $\prod_{i\in I}f_i:\prod_{i\in I}A_i\to\prod_{i\in I}B_i$ prin $(\prod_{i\in I}f_i)((a_i)_{i\in I})=(f_i(a_i))_{i\in I}$. Această funcție se numește *produsul cartezian* al familiei de funcții $(f_i)_{i\in I}$.

În teoria mulțimilor se admite următoarea axiomă:

Axioma alegerii. Dacă (Ai)ieI este o familie nevidă de mulțimi nevide, atunci

$$\prod_{i\in I} A_i \neq \emptyset.$$

Echivalentă cu axioma alegerii este următoarea afirmație: dacă S este o colecție nevidă de mulțimi nevide disjuncte două câte două, atunci există o mulțime A, numită mulțime selectivă, astfel încât $A \cap X$ este formată dintr-un singur element oricare ar fi $X \in S$.