

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Ryals, John
Delaney, Terry
Friedrich, Leslie
Weymann, Kristianna
Lawton, Kay
Ellis, Daniel
Uknes, Scott
Jesse, Taco
Vos, Pieter

(ii) TITLE OF INVENTION: GENE ENCODING A PROTEIN INVOLVED IN THE SIGNAL TRANSDUCTION CASCADE LEADING TO SYSTEMIC ACQUIRED RESISTANCE IN PLANTS

(iii) NUMBER OF SEQUENCES: 17

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Novartis Corporation
- (B) STREET: 520 White Plains Road, P.O. Box 2005
- (C) CITY: Tarrytown
- (D) STATE: New York
- (E) COUNTRY: USA
- (F) ZIP: 10591

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Meigs, J. Timothy
- (B) REGISTRATION NUMBER: 38,241
- (C) REFERENCE/DOCKET NUMBER: CGC 1909

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (919) 541-8587
- (B) TELEFAX: (919) 541-8689

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9919 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGATCATGAA TTGCGTGTAG GGTTGTGTT TAAAGATAGG GATGAGCTGA AGAAGGCGGT 60
GGACTGGTGT TCCATTAGAG GGCAGCAAAA GTGTGTAGTA CAAGAGATG AGAAGGACGA 120
GTATAACGTTT AAATGCATCA GATGGAAATG CAATTGGTCG CGTCGGGCAG ATTGAATAGA 180
AGAACATGGA CTTGTTAAGA TAACTAAGTG TAGTTGGTCC ACATACTTGT TGTTCTATTA 240
AGCCGGAAAA CTTCAACTTG TAATTTGCAG CAGAAGAGAT TGAGTGTCTG ATCAGGGTAC 300
AACCCACTCT AACAGCAGAG TTGAAAAGTT TGGTGACATG CTTAAAACCTT CAAAGCTGCG 360
GGCAGCAGAA CAGGAAGTAA TCAAAGATCA GAGTTTCAGA GTATTGCCA AACTAATTGG 420
CTGCATTCA CTCATCTAAT GGGCTACTTG TGGACTGCAA TATGAGCTTT TCCCTAATCC 480
TGAATTGCA TCCTTCGGTG GCGCGTTTG GGCCTTCCA CAGTCCATTG AAGGGTTCA 540
ACACTGTAGA CCTCTGATCA TAGTGGATTG AAAAGACTTG AACGGCAAGT ACCCTATGAA 600
ATTGATGATT TCCTCAGGAC TCGACGCTGA TGATTGCTTT TTCCCGCTTG CCTTTCCGCT 660
TACCAAAGAA GTGTCCACTG ATAGTTGGCG TTGGTTTCTC ACTAATATCA GAGAGAAGGT 720
AACACAAAGG AAAGACGTTT GCCTCGTCTC CAGTCCTCAC CCGGACATAG TTGCTGTTAT 780
TAACGAACCC GGATCACTGT GGCAAGAACC TTGGGTCTAT CACAGGTTCT GTCTGGATTG 840
TTTTGCTTA CAATTCCATG ATATTTTGG AGACTACAAC CTGGTGAGCC TTGTGAAGCA 900
GGCTGGATCC ACAAGTCAGA AGGAAGAATT TGATTCCCTAC ATAAAGGACA TCAAAAAGAA 960
GGACTCAGAA GCTCGAAAT GGTTAGCCCA ATTCCCTCAA AATCAGTGGG CTCTGGCTCA 1020
TGACCAGTGG TCGGAGATAT GGAGTCATGA CGATAGAAC AGAAGATTG AGGGCAATT 1080
GTGAAAGCTT TCAGTCTCTT GGTCTATCAG TGACAGCGAA CGCACCTGCA CATGTGGGAA 1140
GTTTCAATCG AAGAAGTTTC CATGTATGCA CCCAGAAATG GTGCAAAGGA TTGTTAACCTT 1200
GTGTCATTCA CAAATGTTGG ATGCAATGGA GCTGACTAGG AGAATGCACC TTACACGCC 1260
ACTCAGTGTGTT CTCTTATCTC TAGACCTGAA ACTAACTTGC TGTGTAATTG GAGTTACAAA 1320
AGGTTAAAGG AAGAATTAGG AAGATACATA TAACATGAAT GTGCCAGAA GTTCAGGGAA 1380
CTTGAATATT CTTTGTTGAA ATATCCAACA GATGAACAAT TTGACATTAT 1440
TTCACACTTT GATTCTAGCA ACTCTGTAAC ACCATCATGG GTTATTGTTG ATGTACATAA 1500
ATATATATTA CAAATCTGTA TACCATTGGT TCAAATTGTT ACAACATTG TTTGAAGCAC 1560
ACCTGCAGCA ATAATACACA GGATGCAAAA CGAAGAGCGA AACTATATGA CGCCAACGAT 1620
AGACATAAAC AGTTACAGTC ATCATGAAAA CAGAATTATA TGGTACAGCA AAAATTACAC 1680
TAAGAGGCAA GAGTCTCACC GACGACGATG AGAGAGTTA CGGTTAGACC TCTTCCACC 1740
GGTTGATTTC GATGTGGAAG AAGTCGAATC TGTCAGGGAC GAATTTCTA ATTCAAATT 1800
GTCCTCACTA AAGGCCTTCT TTAGTGTCTC TTGTATTCC ATGTACCTTT GCTTCTTTG 1860

PCT/EP/2007/000014

TAGTCGTTTC	TCAGCAGTGT	CGTCTTCTCC	GCAAGCCAGT	TGAGTCAGT	CCTCACAGTT	1920
CATAATCTGG	TCGAGCACTG	CCGAACAGCG	CGGGAAAGAAT	CGTTTCCCGA	GTTCCACTGA	1980
TGATAAAAAAA	AACAAGGTCA	GACAGCAAGT	AACAAAACCA	TGTTTAAAGA	TCATTAGTT	2040
TTGTTTTTG	TGATAAGGAG	TCCGATGAAG	TGGGTGAGAA	TCCATACCGG	TTTAGAAG	2100
CGCTTTAGT	CTACTTTGAT	GCTCTCTAG	GATTCTGAAA	GGTGCCTATCT	TTACACCCGG	2160
TGATGTTCTC	TTCGTACCG	TGAGACGGTC	AGGCTCGAGG	CTAGTCACTA	TGAACTCACA	2220
TGTTCCCTTC	ATTCGGCGA	TCTCCATTGC	AGCTTGTGCT	TCCGTTGGAA	AAAGACGTTG	2280
AGCAAGTGCA	ACTAAACAGT	GGACGACACA	AAGAATAGTT	ATCATTAGTT	CACTCAGTTT	2340
CCTAATAGAG	AGGACATAAA	TTTAATTCAA	ACATATAAGA	AATAAGACTT	GATAGATACC	2400
TCTATTTCA	AGATCGAGCA	GCGTCATCTT	CAATTCACTCG	GCCGCCACTG	CAAAGAGGG	2460
AGGAACATCT	CTAGGAATT	GTTCTCGTT	GTCTTCTTGC	TCTAGTATT	CTACACATAG	2520
TCGGCCTT	AGAGAATGCT	TGCATTGCTC	CGGGATATTA	TTACATTCAA	CCGCCATAGT	2580
GGCTTGT	GCGATCATGA	GTGCGGTTCT	ACCTTCCAAA	GTTGCTTCTG	ATGCACCTGC	2640
ACCTTTTCC	AATAGAGATA	GTATCAATTG	TGGCTCCTTC	CGCATCGCAG	CAACATGAAG	2700
CACCGTATAT	CCCCTCGGAT	TCCTATGGTT	GACATCGGCA	AGATCAAGTT	TTAAAAGATC	2760
TGTTGCGGTC	TTCACATTGC	AATATGCAAC	AGCGAAATGA	AGAGCACACG	CATCATCTAG	2820
ATTGGTGTGA	TCCTCTTCA	AAAGCAACTT	GACTAATCA	ATATCATCCG	AGTCAAGTGC	2880
CTTATGTACA	TTCGAGACAT	GTTCCTTAC	TTTAGGTACC	TCCAAACCAA	GCTCTTACG	2940
TCTATCAATT	ATCTCTTAA	CAAGCTCTTC	CGGCAATGAC	TTTCAAGAC	TAACCATATC	3000
TACATTAGAC	TTGACAATAA	TCTCTTACA	TCTATCCAAT	AGCTTCATAC	AAGCTTAC	3060
ACATATATTA	GCAAGCTTGA	GTATAACCAA	TGTGCTCT	ATAACAACTT	TGTCTACAA	3120
GTCCAATAAG	TGCCTCTGAA	ATACAAATAC	AAGTACTCAA	GTAAGAACAT	ATTCACTGAAT	3180
GTGTAACCAT	AGCTTAATGC	AGATGGTGT	TTACCTGATA	GAGAGTAATT	AATTCAAGGGA	3240
TCTTGAAGAT	GAAAGCCAAA	TAGAGAACCT	CCAACATGAA	ATCCACCGCC	GGCCGGCAAG	3300
CCACGTGGCA	GCAATTCTCG	TCTGCGCATT	CAGAAACTCC	TTTAGGCGGC	GGTCTCACTC	3360
TGCTGCTGTA	AACATAAGCC	AAAACAGTCA	CAACCGAATC	GAAACCGACT	TCGTAATCCT	3420
TGGCAATCTC	CTTAAGCTCG	AGCTTCACGG	CGGCGGTGTT	GTTGGAGTCT	TTCTCCTCT	3480
TAGCGGCGGC	TAAAGCGCTC	TTGAAGAAAG	AGCTTCTCGC	TGACAAAACG	CACCGGTGGA	3540
AAGAAACTTC	CCGGCCGTG	GAGAGAACAA	GCTTAGCGTC	GCTGTAGAAA	TCATCCGGCG	3600
AGTCAAAGAC	GGATTCGAAG	CTGTTGGAGA	GCAATTGCAG	AGCAGATACA	TCAGGTCCGG	3660
TGAGTACTTG	TTCGGCGGCC	AGATAAACAA	TAGAGGAGTC	GGTGTATCG	GTAGCGACGA	3720
AACTAGTGCT	GCTGATTCA	TAAGAATCGG	CGAATCCATC	AATGGTGGTG	TCCATCAACA	3780
GGTTCCGATG	AATTGAAATT	CACAAATTAA	AGAGATCTCT	GCTAATCAAC	GAAGAGACCT	3840

TATCAACTGG ATTTGGTTAA AGATCGAAGA TAACCATTGA CGAGCAGAGC CAAGTCAGT	3900
CAACGAGAGT GGTGGTGAGA TATGAAGAAG CATCCTCGTC CCACGGTTA CATTTCACCA	3960
AAACCGGTAA ATTTCCAGGA AAGGAATCTT TGTCAGAGAT CTTTTTAAA AAGATATAAC	4020
AGGAAGCTAA ACCGGTCGG GTTATAAATG TTAGTATTAA TACCGGAGAC ATTTTGTGTT	4080
GCTAATTCTT GTATATGAGA AGTTCAATCC GGTCGGTAA GCCCCTGAAC CAAACTAGAT	4140
TTGGAGATGA TATAAATATA TAAAATTAT TTTTCATCCG GTTCGTTATT TTCATATAAA	4200
TATATAAATA TTATTTTTA AATTAAAGAA TTAGATTTAC ATGTGAAAGT TACATTCTG	4260
TTTATTTCT TTGAAGTAAA ATGATAAAGG GAACGTATAT TAAGTTCAT GCTTTATTCA	4320
CATAAGTTT GTAATGTATA TTATTTTT CGTTTATTGA AAAAGTAATT TTCAGTGTTC	4380
AGCATGTTA CACTATAATT AAATCAAGTC GAATATTCC TGGAECTATT CTCCTGTTC	4440
TATAGCAAAT GAAAACGCTC TTCACAACAA AATCATTATA GATATAGGAA TAAATTACAT	4500
TAAAAACATG AAAGTCATAA TGAATATATT TTTTAATTA GGATTTGATT TAAAAACAAT	4560
TATTGTATAC ATATAAAAGA CTTCTTAGT TATTTGCCTT CAACTCTCG TTCTGAATCA	4620
TGCGATAAAAT CAGCTTTTC AATAACTACG ACGTAAAAGC AAATTCATAA CACGTCTAAA	4680
CAAATTGCG TCATCCTTCA CTTGATTGGT GTTTCCGGA CTCGATGTTG CTGGAAACTG	4740
AGAAGAAGAA GGAATCTGCA TAATCACCTC TTGGTTCCCTC ACCGGTAGAC TCATTGTT	4800
GGATCGAAAA CGATCGAGAT CAGAAATGA AAAGATAGGT TAAAGATGCC TATGAATACA	4860
ACAACGTAAG ATTATGTTGA ATAAACAGAG TACTTTATAT AGGAGTTATA ATAAGGTAAA	4920
TAAATTATTG CTTCCCGGT TTTTACTTT TGTATTTCTT AAATGATAAG TTAAATTAGG	4980
ATAAGATTTG TATGATTAA AGTAAATTTA CAATAACTCT CTATAACTCA ATAGCATCAC	5040
ATATTTAATT AATTTACTA ATTATCTTT GAACAATTAA ATGAAATAGT TTTCTTTAA	5100
TTAATTCTT AAAATGATAT ATTATAAAAT TTAATTGAAT CAATCTGATA TAATTTTTT	5160
ATCTTCTACC ATCTATTATA GTTGATAAAT ATTGTGATAA ACTTTAGATA AACACCCAAT	5220
TGCCAAATAT TTAATAAATT TTGTGTACCA TGCCTTTTT TTGGAGAATA TATATACGTG	5280
GACAGCATAAC CGTACATATA TTGTATAAAA GCTTATAAAA CATAGATACG GGTTATATTG	5340
GTAAGCTATA AATATATGTA ACAAATAGTA AGATATTACG TGTTGTGTCT AAATATGTGT	5400
TGCTTAGAT ATTATGTTA TCTAATATAT TAAATATCT TTTATTAAC TATATATTAT	5460
TTAAGAGAGA AAATTGGGAC ACTATTTCT ATACAGTAAC TGTTTCAAC TATAAACAGG	5520
AACCCTTGAT ATAATAAAAT AACTAGCCAA AAAATCAGAT TAAATATTCA TAAAACAATG	5580
TTGGTATTA TTACATAAAC CTAAGAAACA AAATTCAATA TTCCTTTTA CCTTATAAAA	5640
ACAATTAAA CATCACTAGA TATATTTATG CCCCACAAATG AGCGAGCCAA TTGAGACTTG	5700
AGACTTGAGA TCCTTGTCAA CTACGTTGC ATTTGTCGGC CCATTTTTT TATTTTTTT	5760

PCT/US2012/024505

TTAAAGTGTGCGGCCGGTTGC TTCTTCGTT CAGATCAACC CTCTCGTAAT CAGAACAAAA	5820
CGGAAAACAA ACGAAAGAAC AATCAGATCC CTCTTTTTT GCATAAAACTA AATTCAACTT	5880
CTCTCGTTT ATGTTGTAGA GGCAACCACG ATCACTACTA CGAAACAATA CAACGTCGTT	5940
GCTTGGAGTC CACGTAATCA AATCTACTCC AATGCTTTA ATATCTTCA CTTAACCCA	6000
CGACTTTCA AAACTGCTCT TAAACACCA TAACTCGTGA ACATCTTCTT GATCTTGTT	6060
TGTCCACTGA CGAATAGCAC CTAGCTTCCC TTCGTATCTG ACTAATCCTG AGAAAACATC	6120
AGAGTTCGGA GTATGGAAGA AGGACCAAGT TTCGGTTTG AGACAAAACC GGATCACATT	6180
GTTGTTCCGT GATATCCAAT GCAAGAACCC CGAAACTTGT ATCGGGTTGG AAAAAATTAA	6240
TCTGTCTGTT TTTGGTAGAC GCAAATTTTC TAATCTTTC CAGGTAAACG AATCAGAAC	6300
GAAAACCTCG CACATAAAAG TTCTGTGATT CAAATGGTAG ATACCCCGAG ACATACACAT	6360
ACGCCGAGAC TGCGAAAGCC TTTGTATTAT ATACCGGAAA GGGTCAATC CGATTACCGC	6420
TAAACCCAAT GACATATCCC AACCCCTTCAC TTCTGGCTTT GGTATGACCT GATACTGTTT	6480
AGTGGTTGGT TTGAAGACTA TGTATCCACG TGATGGTTT GTATACTTAA CACAAAGCAA	6540
TATCCCATGA CTTGCATCAC AAGCTTCGAT CTTTATCATT CCGGGTGGCA GAAAGTCGAT	6600
GGAGACTCCA TTGTTTGTA AATCACTCCT CTCATGGACA AAACGGTTC GAAGTCGTG	6660
TCCTTTACT ATGTAGTGT GTATGAAGTA TCCCGAAATA CGATTGGTTC TAAGGAGATT	6720
AAGATTGACA AACCATGACT CGTAGCTTCT CTTGTTGCAC TCTTTATTCA GGAGCCTGAA	6780
TTTTCCGATT TTTGACGCCG GAAGATAAGA AAGAAATTCT TGGATCATGT CTTGATTAT	6840
CACCGGAGAA CTCATGATCC TGCGGAAAT AAAGAGATGA GCACGATCAC TGAATGAGAA	6900
ATGAAAAAAAT CAGGATCGGT AGAGAACAAAC TTATGATGAA TAAAGTGTGTT ATATATCCTT	6960
TCTTTGTTA AGGAAAGTAT CAAACATTGC CTTTTCTTC GCTAGTCCTA AAACAAACAA	7020
ATTAACCAAAGATAAAATC TTTCATGATT AATGTTACTT GTGATACCTT AAGCCAAAAC	7080
TTTATCTTTA GACTTTAAC CAAATCTACA GTAATTAAAT TGCTAGACTT AGGAAACAAAC	7140
TTTTTTTTT ACCCAACAAT CTTGGATT TAATTGTTT TTTTCTACT AATAGATTAA	7200
CAACTCATTA TATAATAATG TTTCTATCAT AATTGACAAT TCTTTCTTT TAATAAACAT	7260
CCAGCTGTA TAATAATCCA CAAGTCAAAT TCACCATTG GGCCAATTAA TTTCTTATA	7320
AAAATTAGCA CAAAAAAGAT TATCATTGTT TAGCAGATT AATTCTAAAT TAACTTACGT	7380
AATTCCATT TTCCATAGAT TTATCTTCT TTTTATTTC TTGTTATCT TAGTACTTTC	7440
TTAGTTCCCT TAGTAATTAAAG ATAATATATT GAAATTAAAAA GAAGAAAAAA	7500
AACTCTAGTT ATACTTTGT TAAATGTTTC ATCACACTAA CTAATAATT TTTTAGTTA	7560
AATTACAATA TATAAACACT GAAGAAAGTT TTTGGCCAC ACTTTTTGG GATCAATTAG	7620
TACTATAGTT AGGGGAAGAT TCTGATTAA AGGATACCAA AAATGACTAG TTAGGACATG	7680
AATGAAAAC TATAATCTCA ATAACATACA TACGTGTTAC TGAACAAATAG TAACATCTTA	7740

CGTGTGTTGT	CCATATATTT	GTTGCTTATA	AATATATTCA	TATAACAATG	TTTGCATTAA	7800
GCTTTTAAGA	AGCACAAAAC	CATATAACAA	AATTAAATAT	TCCTATCCCT	ACCAAAAAAA	7860
AAAATTAAAT	ATTCCTACAG	CCTTGTGAT	TATTTATGC	CCTACGTTGA	GCCTTGTTGA	7920
CTAGTTGCA	TTTGTGGTC	CATTCTTCT	TCCGCCAGA	TCAACCCCTCT	CGTAATCAGA	7980
ACAAAAGGGG	AAACAAACGT	AAGAGGCAAA	ATCCTGTTT	GTATGAACTA	AGTTAACCTT	8040
CTCTGTGTTT	AAGTTGAGA	GGCAAACATG	ATCCCAACTA	GAAAGCATTA	CGACGTCGTT	8100
GCTTGGTATC	CACGTAATAT	GCTCTACTCC	AATGCTTCA	ATATCTTCA	CTTTTCCCA	8160
CGACTTTCA	AAACTGCTCT	TTAAAACCCA	TAATCTGTGA	ACATCTTCTT	GATTGTTGTT	8220
TATCCAGTGA	CGAATAACAC	CTAGCTTCCC	TTCGTAGCTG	ACTAACTCTG	GGAATAAACCC	8280
AACGTTTGGA	GTATGTAAGA	AAGACCAAGT	TTCGGTTTTG	GGACATAACC	GGATCACATT	8340
GTGGTTCCAT	GATCTCCAAT	GCAAGAACCC	TGAAGCTTGT	ACCGGGTTTG	AAAGAATTAG	8400
ACCGTCTGTT	CTCGGTAGAC	GCAAATTTTT	TAATCTCTTC	CACATAAACG	AATCGGAATC	8460
AAAAACTTCG	CACGAAAAG	TTCTGAGATT	CCGAGTCATA	CCAGGCGATT	TCGAAAGCCT	8520
AAATATTTA	TACCGGAAAG	GCTGCAATCC	GGTTACCGTT	AGACCTAATG	ACTTATCACA	8580
ACTCCTCACT	TTTGGGTTTG	GTATGATCTG	ATACTGTTTT	GTTGTTGGTT	TGCAGACTAT	8640
GTATTCCGGT	ATTGGTCTTG	TATCATTATA	ACAAAGCAAT	ATCCCATGAC	GTGCATCACA	8700
AGCTTGATC	TTTACCTCTC	CTTGTGGCAG	AAAATCGATG	GAGACTCCTT	TGTTATCCAA	8760
ATCTCTCCTC	TCATGGAAAA	AACTGGTATC	AAGTTGTAT	CCTCTTCGT	AGCGTTCTAG	8820
GAAGTATCCA	GAGATATTGT	TGGTCGATG	GAGATTAGG	TTGACAAACC	AAGACTCGTA	8880
GCTTCTCTTG	TTGCACTCTT	TATTGATGAG	CCTCAATTTC	CCGATTTGG	ACCCCCGAAG	8940
ATAAGAAAGA	ACCTCTTGGA	TCGTGTCCTG	ATTTATCACC	GGAGAACTCA	TGATCTTATT	9000
GGAAAAAAAGA	AAGAAAGAGA	TGAGCACGAT	CAGTGAATGA	GATATATAGA	AATCAGGATT	9060
GGTAGAGAAC	CGACGATGAT	GAATATACAA	GTGTTATAA	GTATCACAAA	TTGCCTTTTT	9120
CTTCGCTAGT	CCCAAAACAA	GCAAATTAAC	CAAAGATAAA	ATCTTCATTA	ATGTTTCCT	9180
TTTTCTTCGC	CAGTCCCAGA	TAAAAATATA	TATAAAATAT	TTCATTAGGT	TACTTGTAGT	9240
ACCTTGAGCC	CAAAGTTCT	CTTTGACTT	TTAACCAAAT	TAACAGTAAT	TTAATAGCTA	9300
GACTTAGAAA	ACAACATTTT	GTATATATAT	TCTTGACAT	CAAATTCAA	CAATCTTGG	9360
GTTTCTATAG	TGTTTTTTTT	CTTATTCTAA	TAGATTACCA	CTCATTATAT	CATATACAAA	9420
GTGTTTCCTT	TTCAATCAAC	ATCCATTTC	TTTAAAATT	AGCAAGTTG	TTCTTATATC	9480
ATCATTCAAGC	AGATTCTTA	ATTAAACTTA	GTGATTCCA	TTTGCACCT	ATATGTTCT	9540
CTTTCTTAGT	TTAGTACTTT	AAATTTCAT	ATATATAATT	TATTAAAATT	AAAAGTAAAA	9600
ACTCCAGTTT	AACTTATGTT	AAATGTTCA	TCACACTAAA	AGAGCATTAA	GTAATAAATA	9660

TTTTAGCTT ATGAAAAAAA ATATCAAATC ACTGAAGACA TTTGTTGGCC TATACTCTAT 9720
 TTTTATTG GCCAATTAGT AATAGACTAA TAGTAACCA TATGATATCT CTCTAATTCT 9780
 GGCGAACGA ATATTCTGAT TCTAAAGATA GTAAAATGA ATTTTGATGA AGGGAATACT 9840
 ATTCACACA CCTAGAAAGA GTAAGGTAGA AACCTTTTT TTTTGTTCA GATTCTTGTA 9900
 TCAAGAAGTT CTCATCGAT 9919

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5655 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(ix) FEATURE:
 (A) NAME/KEY: exon
 (B) LOCATION: 2787..3347
 (D) OTHER INFORMATION: /product= "1st exon of NIM1"

(ix) FEATURE:
 (A) NAME/KEY: exon
 (B) LOCATION: 3427..4162
 (D) OTHER INFORMATION: /product= "2nd exon of NIM1"

(ix) FEATURE:
 (A) NAME/KEY: exon
 (B) LOCATION: 4271..4474
 (D) OTHER INFORMATION: /product= "3rd exon of NIM1"

(ix) FEATURE:
 (A) NAME/KEY: exon
 (B) LOCATION: 4586..4866
 (D) OTHER INFORMATION: /product= "4th exon of NIM1"

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: join(2787..3347, 3427..4162, 4271..4474, 4586..4866)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TGTGATGCAA GTCATGGGAT ATTGCTTTGT GTTAAGTATA CAAAACCATC ACGTGGATAC 60
 ATAGTCTTCA AACCAACCAC TAAACAGTAT CAGGTCATAC CAAAGCCAGA AGTGAAGGGT 120
 TGGGATATGT CATTGGGTTT AGCGGTAATC GGATTGAACC CTTTCCGGTA TAAAATACAA 180
 AGGCTTCGCG AGTCTCGGCG TATGTGTATG TCTCGGGTA TCTACCATT GAATCACAGA 240
 ACTTTATGT GCGAAGTTTT CGATTCTGAT TCGTTACCT GGAAGAGATT AGAAAATTG 300
 CGTCTACCAA AAACAGACAG ATTAATTCTT TCCAACCCGA TACAAGTTTC GGGGTTCTTG 360
 CATTGGATAT CACGGAACAA CAATGTGATC CGGTTTGTC TCAAAACCGA AACTTGGTCC 420

TTCTTCCATA CTCCGAACTC TGATGTTTC TCAGGATTAG TCAGATACGA AGGGAAGCTA	480
GGTGCCTATTG GTCAGTGGAC AAACAAAGAT CAAGAAGATG TTCACGAGTT ATGGGTTTA	540
AAGAGCAGTT TTGAAAAGTC GTGGGTTAAA GTGAAAGATA TTAAAAGCAT TGGAGTAGAT	600
TTGATTACGT GGACTCCAAG CAACGACGTT GTATTGTTTC GTAGTAGTGA TCGTGGTTGC	660
CTCTACAACA TAAACGCAGA GAAGTTGAAT TTAGTTTATG CAAAAAAAGA GGGATCTGAT	720
TGTTCTTCG TTTGTTTCC GTTTGTTCT GATTACGAGA GGGTTGATCT GAACGGAAGA	780
AGCAACGGGC CGACACTTTA AAAAAAAAT AAAAAAAATG GGCGACAAA TGCAAACGTA	840
GTTGACAAGG ATCTCAAGTC TCAAGTCTCA ATTGGCTCGC TCATTGTGGG GCATAAAATAT	900
ATCTAGTGAT GTTTAATTGT TTTTTATAAG GTAAAAAGGA ATATTGAATT TTGTTTCTTA	960
GGTTTATGTA ATAATACCAA ACATTGTTT ATGAATATTT AATCTGATTT TTTGGCTAGT	1020
TATTTTATTA TATCAAGGGT CCCTGTTAT AGTGAAAAC AGTTACTGTA TAGAAAATAG	1080
TGTCCCAATT TTCTCTCTTA AATAATATAT TAGTTAATAA AAGATATTTT AATATATTAG	1140
ATATACATAA TATCTAAAGC AACACATATT TAGACACAAC ACGTAATATC TTACTATTGT	1200
TTACATATAT TTATAGCTTA CCAATATAAC CCGTATCTAT GTTTTATAAG CTTTTATACA	1260
ATATATGTAC GGTATGCTGT CCACGTATAT ATATTCTCCA AAAAAAACGC ATGGTACACA	1320
AAATTTATTA AATATTGGC AATTGGGTGT TTATCTAAAG TTTATCACAA TATTTATCAA	1380
CTATAATAGA TGGTAGAAGA TAAAAAAATT ATATCAGATT GATTCAATTA AATTTATCAA	1440
TATATCATT TAAAAAAATTA ATTAAAAGAA AACTATTC AAAAATTGTT CAAAAGATAA	1500
TTAGTAAAAT TAATTAAATA TGTGATGCTA TTGAGTTATA GAGAGTTATT GTAAATTTAC	1560
TTAAAATCAT ACAAACTTTA TCCTAATTAA ACTTATCATT TAAGAAATAC AAAAGAAAA	1620
AACGCGGAAA GCAATAATTG ATTTACCTTA TTATAACTCC TATATAAAGT ACTCTGTTA	1680
TTCAACATAA TCTTACGTTG TTGTATTCTAT AGGCATCTTT AACCTATCTT TTCATTTCT	1740
GATCTCGATC GTTTTCGATC CAACAAAATG AGTCTACCGG TGAGGAACCA AGAGGTGATT	1800
ATGCAGATTC CTTCTTCTTC TCAGTTCCA GCAACATCGA GTCCGGAAAA CACCAATCAA	1860
GTGAAGGATG AGCCAAATTG GTTTAGACGT GTTATGAATT TGCTTTACG TCGTAGTTAT	1920
TGAAAAAGCT GATTTATCGC ATGATTCAAGA ACGAGAAGTT GAAGGCAAAT AACTAAAGAA	1980
GTCTTTATA TGTATACAAT AATTGTTTTT AAATCAAATC CTAATTAAAA AAATATATTC	2040
ATTATGACTT TCATGTTTTT AATGTAATTG ATTCTATAT CTATAATGAT TTTGTGTGA	2100
AGAGCGTTTT CATTGCTAT AGAACAAAGGA GAATAGTTCC AGGAAATATT CGACTTGATT	2160
TAATTATAGT GTAAACATGC TGAACACTGA AAATTACTTT TTCAATAAAC GAAAAATATA	2220
ATATACATTA CAAAACCTTAT GTGAATAAAC CATGAAACTT AATATACGTT CCCTTATCA	2280
TTTTACTTCA AAGAAAATAA ACAGAAATGT AACTTCACA TGTAAATCTA ATTCTTAAAT	2340

PCT/US2012/040470

TTAAAAAAATA ATATTATAT ATTATGAA AAATAACGAA CGGGATGAAA AATAAATTT	2400
ATATATTTAT ATCATCTCCA AATCTAGTTT GGTCAGGGG CTTACCGAAC CGGATTGAAC	2460
TTCTCATATA CAAAAATTAG CAACACAAAA TGTCTCCGGT ATAAATACTA ACATTATAA	2520
CCCGAACCGG TTTAGCTTCC TGTTATATCT TTTAAAAAA GATCTCTGAC AAAGATTCC	2580
TTCCTGGAAA TTTACCGGTT TTGGTGAAT GTAAACCGTG GGACGAGGAT GCTTCTTCAT	2640
ATCTCACCAC CACTCTCGTT GACTTGACTT GGCTCTGCTC GTCAATGGTT ATCTCGATC	2700
TTTAACCAA TCCAGTTGAT AAGGTCTCTT CGTTGATTAG CAGAGATCTC TTTAATTGT	2760
GAATTTCAT TCATCGGAAC CTGTTG ATG GAC ACC ATT GAT GGA TTC GCC Met Asp Thr Thr Ile Asp Gly Phe Ala	2813
1 5	
GAT TCT TAT GAA ATC AGC AGC ACT AGT TTC GTC GCT ACC GAT AAC ACC Asp Ser Tyr Glu Ile Ser Ser Thr Ser Phe Val Ala Thr Asp Asn Thr	2861
10 15 20 25	
GAC TCC TCT ATT GTT TAT CTG GCC GCC GAA CAA GTA CTC ACC GGA CCT Asp Ser Ser Ile Val Tyr Leu Ala Ala Glu Gln Val Leu Thr Gly Pro	2909
30 35 40	
GAT GTA TCT GCT CTG CAA TTG CTC TCC AAC AGC TTC GAA TCC GTC TTT Asp Val Ser Ala Leu Gln Leu Leu Ser Asn Ser Phe Glu Ser Val Phe	2957
45 50 55	
GAC TCG CCG GAT GAT TTC TAC AGC GAC GCT AAG CTT GTT CTC TCC GAC Asp Ser Pro Asp Asp Phe Tyr Ser Asp Ala Lys Leu Val Leu Ser Asp	3005
60 65 70	
GGC CGG GAA GTT TCT TTC CAC CGG TGC GTT TTG TCA GCG AGA AGC TCT Gly Arg Glu Val Ser Phe His Arg Cys Val Leu Ser Ala Arg Ser Ser	3053
75 80 85	
TTC TTC AAG AGC GCT TTA GCC GCC GCT AAG AAG GAG AAA GAC TCC AAC Phe Phe Lys Ser Ala Leu Ala Ala Lys Lys Glu Lys Asp Ser Asn	3101
90 95 100 105	
AAC ACC GCC GCC GTG AAG CTC GAG CTT AAG GAG ATT GCC AAG GAT TAC Asn Thr Ala Ala Val Lys Leu Glu Leu Lys Glu Ile Ala Lys Asp Tyr	3149
110 115 120	
GAA GTC GGT TTC GAT TCG GTT GTG ACT GTT TTG GCT TAT GTT TAC AGC Glu Val Gly Phe Asp Ser Val Val Thr Val Leu Ala Tyr Val Tyr Ser	3197
125 130 135	
AGC AGA GTG AGA CCG CCG CCT AAA GGA GTT TCT GAA TGC GCA GAC GAG Ser Arg Val Arg Pro Pro Lys Gly Val Ser Glu Cys Ala Asp Glu	3245
140 145 150	
AAT TGC TGC CAC GTG GCT TGC CGG CCG GCG GTG GAT TTC ATG TTG GAG Asn Cys Cys His Val Ala Cys Arg Pro Ala Val Asp Phe Met Leu Glu	3293
155 160 165	
GTG CTC TAT TTG GCT TTC ATC TTC AAG ATC CCT GAA TTA ATT ACT CTC Val Leu Tyr Leu Ala Phe Ile Phe Lys Ile Pro Glu Leu Ile Thr Leu	3341
170 175 180 185	
TAT CAG GTAAAACACC ATCTGCATTA AGCTATGGTT ACACATTCAT GAATATGTC Tyr Gln	3397

2006-06-20 10:00:00

TTACTTGAGT ACTTGTATTT GTATTCAG AGG CAC TTA TTG GAC GTT GTA GAC Arg His Leu Leu Asp Val Val Asp 190 195	3450
AAA GTT GTT ATA GAG GAC ACA TTG GTT ATA CTC AAG CTT GCT AAT ATA Lys Val Val Ile Glu Asp Thr Leu Val Ile Leu Lys Leu Ala Asn Ile 200 205 210	3498
TGT GGT AAA GCT TGT ATG AAG CTA TTG GAT AGA TGT AAA GAG ATT ATT Cys Gly Lys Ala Cys Met Lys Leu Leu Asp Arg Cys Lys Glu Ile Ile 215 220 225	3546
GTC AAG TCT AAT GTA GAT ATG GTT AGT CTT GAA AAG TCA TTG CCG GAA Val Lys Ser Asn Val Asp Met Val Ser Leu Glu Lys Ser Leu Pro Glu 230 235 240	3594
GAG CTT GTT AAA GAG ATA ATT GAT AGA CGT AAA GAG CTT GGT TTG GAG Glu Leu Val Lys Glu Ile Ile Asp Arg Arg Lys Glu Leu Gly Leu Glu 245 250 255	3642
GTA CCT AAA GTA AAG AAA CAT GTC TCG AAT GTA CAT AAG GCA CTT GAC Val Pro Lys Val Lys Lys His Val Ser Asn Val His Lys Ala Leu Asp 260 265 270 275	3690
TCG GAT GAT ATT GAG TTA GTC AAG TTG CTT TTG AAA GAG GAT CAC ACC Ser Asp Asp Ile Glu Leu Val Lys Leu Leu Lys Glu Asp His Thr 280 285 290	3738
AAT CTA GAT GAT GCG TGT GCT CTT CAT TTC GCT GTT GCA TAT TGC AAT Asn Leu Asp Asp Ala Cys Ala Leu His Phe Ala Val Ala Tyr Cys Asn 295 300 305	3786
GTG AAG ACC GCA ACA GAT CTT TTA AAA CTT GAT CTT GCC GAT GTC AAC Val Lys Thr Ala Thr Asp Leu Leu Lys Leu Asp Leu Ala Asp Val Asn 310 315 320	3834
CAT AGG AAT CCG AGG GGA TAT ACG GTG CTT CAT GTT GCT GCG ATG CGG His Arg Asn Pro Arg Gly Tyr Thr Val Leu His Val Ala Ala Met Arg 325 330 335	3882
AAG GAG CCA CAA TTG ATA CTA TCT CTA TTG GAA AAA GGT GCA AGT GCA Lys Glu Pro Gln Leu Ile Leu Ser Leu Leu Glu Lys Gly Ala Ser Ala 340 345 350 355	3930
TCA GAA GCA ACT TTG GAA GGT AGA ACC GCA CTC ATG ATC GCA AAA CAA Ser Glu Ala Thr Leu Glu Gly Arg Thr Ala Leu Met Ile Ala Lys Gln 360 365 370	3978
GCC ACT ATG GCG GTT GAA TGT AAT AAT ATC CCG GAG CAA TGC AAG CAT Ala Thr Met Ala Val Glu Cys Asn Asn Ile Pro Glu Gln Cys Lys His 375 380 385	4026
TCT CTC AAA GGC CGA CTA TGT GTA GAA ATA CTA GAG CAA GAA GAC AAA Ser Leu Lys Gly Arg Leu Cys Val Glu Ile Leu Glu Gln Glu Asp Lys 390 395 400	4074
CGA GAA CAA ATT CCT AGA GAT GTT CCT CCC TCT TTT GCA GTG GCG GCC Arg Glu Gln Ile Pro Arg Asp Val Pro Pro Ser Phe Ala Val Ala Ala 405 410 415	4122
GAT GAA TTG AAG ATG ACG CTG CTC GAT CTT GAA AAT AGA G Asp Glu Leu Lys Met Thr Leu Leu Asp Leu Glu Asn Arg 420 425 430	4162

P00049024020

GTATCTATCA AGTCTTATTT CTTATATGTT TGAATTAAAT TTATGTCCTC TCTATTAGGA	4222
AACTGAGTGA ACTAATGATA ACTATTCTTT GTGTCGTCCA CTGTTAG TT GCA CTT Val Ala Leu 435	4278
GCT CAA CGT CTT TTT CCA ACG GAA GCA CAA GCT GCA ATG GAG ATC GCC Ala Gln Arg Leu Phe Pro Thr Glu Ala Gln Ala Ala Met Glu Ile Ala 440 445 450	4326
GAA ATG AAG GGA ACA TGT GAG TTC ATA GTG ACT AGC CTC GAG CCT GAC Glu Met Lys Gly Thr Cys Glu Phe Ile Val Thr Ser Leu Glu Pro Asp 455 460 465	4374
CGT CTC ACT GGT ACG AAG AGA ACA TCA CCG GGT GTA AAG ATA GCA CCT Arg Leu Thr Gly Thr Lys Arg Thr Ser Pro Gly Val Lys Ile Ala Pro 470 475 480	4422
TTC AGA ATC CTA GAA GAG CAT CAA AGT AGA CTA AAA GCG CTT TCT AAA Phe Arg Ile Leu Glu His Gln Ser Arg Leu Lys Ala Leu Ser Lys 485 490 495	4470
ACC G GTATGGATTC TCACCCACTT CATCGGACTC CTTATCACAA AAAACAAAAC Thr 500	4524
TAAATGATCT TTAAACATGG TTTTGTTACT TGCTGTCTGA CCTTGTTTT TTTATCATCA	4584
G TG GAA CTC GGG AAA CGA TTC TTC CCG CGC TGT TCG GCA GTG CTC Val Glu Leu Gly Lys Arg Phe Pro Arg Cys Ser Ala Val Leu 505 510 515	4629
GAC CAG ATT ATG AAC TGT GAG GAC TTG ACT CAA CTG GCT TGC GGA GAA Asp Gln Ile Met Asn Cys Glu Asp Leu Thr Gln Leu Ala Cys Gly Glu 520 525 530	4677
GAC GAC ACT GCT GAG AAA CGA CTA CAA AAG CAA AGG TAC ATG GAA Asp Asp Thr Ala Glu Lys Arg Leu Gln Lys Gln Arg Tyr Met Glu 535 540 545	4725
ATA CAA GAG ACA CTA AAG AAG GCC TTT AGT GAG GAC AAT TTG GAA TTA Ile Gln Glu Thr Leu Lys Ala Phe Ser Glu Asp Asn Leu Glu Leu 550 555 560	4773
GGA AAT TCG TCC CTG ACA GAT TCG ACT TCT TCC ACA TCG AAA TCA ACC Gly Asn Ser Ser Leu Thr Asp Ser Thr Ser Ser Thr Ser Lys Ser Thr 565 570 575	4821
GGT GGA AAG AGG TCT AAC CGT AAA CTC TCT CAT CGT CGT CGG TGA Gly Gly Lys Arg Ser Asn Arg Lys Leu Ser His Arg Arg Arg * 580 585 590	4866
GAECTTGCCTCTTAGTGTA ATTTTGCTG TACCATATAA TTCTGTTTC ATGATGACTG	4926
TAACGTGTTA TGTCTATCGT TGGCGTCATA TAGTTCGCT CTTCGTTTG CATCCTGTGT	4986
ATTATTGCTG CAGGTGTGCT TCAAACAAAT GTTGTAAACAA TTTGAACCAA TGGTATACAG	5046
ATTTGTAATA TATATTATG TACATCAACA ATAACCCATG ATGGTGTAC AGAGTTGCTA	5106
GAATCAAAGT GTGAAATAAT GTCAAATTGT TCATCTGTTG GATATTTCC ACCAAGAAC	5166
AAAAGAATAT TCAAGTTCCC TGAACCTCTG GCAACATTCA TGTTATATGT ATCTTCCTAA	5226
TTCTTCCTT AACCTTTGT AACTCGAATT ACACAGCAAG TTAGTTTCAG GTCTAGAGAT	5286

AAGAGAACAC	TGAGTGGCG	TGTAAGGTGC	ATTCTCCTAG	TCAGCTCCAT	TGCATCCAAC	5346
ATTTGTGAAT	GACACAAGTT	AACAATCCTT	TGCACCATT	CTGGGTGCAT	ACATGGAAAC	5406
TTCTTCGATT	GAAACTTCCC	ACATGTGCAG	GTGCGTCGC	TGTCACTGAT	AGACCAAGAG	5466
ACTGAAAGCT	TTCACAAATT	GCCCTCAAAT	CTTCTGTTTC	TATCGTCATG	ACTCCATATC	5526
TCCGACCAC	GGTCATGAGC	CAGAGCCCAC	TGATTGAG	GGAATTGGC	TAACCATTTC	5586
CGAGCTTCTG	AGTCCTTCTT	TTTGATGTCC	TTTATGTAGG	AATCAAATT	TTCCTTCTGA	5646
CTTGTGGAT						5655

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 594 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met	Asp	Thr	Thr	Ile	Asp	Gly	Phe	Ala	Asp	Ser	Tyr	Glu	Ile	Ser	Ser
1				5					10				15		
Thr	Ser	Phe	Val	Ala	Thr	Asp	Asn	Thr	Asp	Ser	Ser	Ile	Val	Tyr	Leu
					20			25					30		
Ala	Ala	Glu	Gln	Val	Leu	Thr	Gly	Pro	Asp	Val	Ser	Ala	Leu	Gln	Leu
					35			40				45			
Leu	Ser	Asn	Ser	Phe	Glu	Ser	Val	Phe	Asp	Ser	Pro	Asp	Asp	Phe	Tyr
					50			55			60				
Ser	Asp	Ala	Lys	Leu	Val	Leu	Ser	Asp	Gly	Arg	Glu	Val	Ser	Phe	His
					65			70			75			80	
Arg	Cys	Val	Leu	Ser	Ala	Arg	Ser	Ser	Phe	Phe	Lys	Ser	Ala	Leu	Ala
					85			90				95			
Ala	Ala	Lys	Lys	Glu	Lys	Asp	Ser	Asn	Asn	Thr	Ala	Ala	Val	Lys	Leu
					100			105				110			
Glu	Leu	Lys	Glu	Ile	Ala	Lys	Asp	Tyr	Glu	Val	Gly	Phe	Asp	Ser	Val
					115			120				125			
Val	Thr	Val	Leu	Ala	Tyr	Val	Tyr	Ser	Ser	Arg	Val	Arg	Pro	Pro	Pro
					130			135			140				
Lys	Gly	Val	Ser	Glu	Cys	Ala	Asp	Glu	Asn	Cys	Cys	His	Val	Ala	Cys
					145			150			155			160	
Arg	Pro	Ala	Val	Asp	Phe	Met	Leu	Glu	Val	Leu	Tyr	Leu	Ala	Phe	Ile
					165			170				175			
Phe	Lys	Ile	Pro	Glu	Leu	Ile	Thr	Leu	Tyr	Gln	Arg	His	Leu	Leu	Asp
					180			185				190			
Val	Val	Asp	Lys	Val	Val	Ile	Glu	Asp	Thr	Leu	Val	Ile	Leu	Lys	Leu
					195			200				205			

Ala Asn Ile Cys Gly Lys Ala Cys Met Lys Leu Leu Asp Arg Cys Lys
 210 215 220
 Glu Ile Ile Val Lys Ser Asn Val Asp Met Val Ser Leu Glu Lys Ser
 225 230 235 240
 Leu Pro Glu Glu Leu Val Lys Glu Ile Ile Asp Arg Arg Lys Glu Leu
 245 250 255
 Gly Leu Glu Val Pro Lys Val Lys His Val Ser Asn Val His Lys
 260 265 270
 Ala Leu Asp Ser Asp Asp Ile Glu Leu Val Lys Leu Leu Lys Glu
 275 280 285
 Asp His Thr Asn Leu Asp Asp Ala Cys Ala Leu His Phe Ala Val Ala
 290 295 300
 Tyr Cys Asn Val Lys Thr Ala Thr Asp Leu Leu Lys Leu Asp Leu Ala
 305 310 315 320
 Asp Val Asn His Arg Asn Pro Arg Gly Tyr Thr Val Leu His Val Ala
 325 330 335
 Ala Met Arg Lys Glu Pro Gln Leu Ile Leu Ser Leu Leu Glu Lys Gly
 340 345 350
 Ala Ser Ala Ser Glu Ala Thr Leu Glu Gly Arg Thr Ala Leu Met Ile
 355 360 365
 Ala Lys Gln Ala Thr Met Ala Val Glu Cys Asn Asn Ile Pro Glu Gln
 370 375 380
 Cys Lys His Ser Leu Lys Gly Arg Leu Cys Val Glu Ile Leu Glu Gln
 385 390 395 400
 Glu Asp Lys Arg Glu Gln Ile Pro Arg Asp Val Pro Pro Ser Phe Ala
 405 410 415
 Val Ala Ala Asp Glu Leu Lys Met Thr Leu Leu Asp Leu Glu Asn Arg
 420 425 430
 Val Ala Leu Ala Gln Arg Leu Phe Pro Thr Glu Ala Gln Ala Ala Met
 435 440 445
 Glu Ile Ala Glu Met Lys Gly Thr Cys Glu Phe Ile Val Thr Ser Leu
 450 455 460
 Glu Pro Asp Arg Leu Thr Gly Thr Lys Arg Thr Ser Pro Gly Val Lys
 465 470 475 480
 Ile Ala Pro Phe Arg Ile Leu Glu Glu His Gln Ser Arg Leu Lys Ala
 485 490 495
 Leu Ser Lys Thr Val Glu Leu Gly Lys Arg Phe Phe Pro Arg Cys Ser
 500 505 510
 Ala Val Leu Asp Gln Ile Met Asn Cys Glu Asp Leu Thr Gln Leu Ala
 515 520 525
 Cys Gly Glu Asp Asp Thr Ala Glu Lys Arg Leu Gln Lys Lys Gln Arg
 530 535 540
 Tyr Met Glu Ile Gln Glu Thr Leu Lys Ala Phe Ser Glu Asp Asn

545 550 555 560
Leu Glu Leu Gly Asn Ser Ser Leu Thr Asp Ser Thr Ser Ser Thr Ser
565 570 575
Lys Ser Thr Gly Gly Lys Arg Ser Asn Arg Lys Leu Ser His Arg Arg
580 585 590
Arg *

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val
1 5 10 15
Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala
20 25 30
Val His Tyr Ala Val Gln His Cys Asn
35 40

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 38 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Pro Thr Gly Lys Thr Ala Leu His Leu Ala Ala Glu Met Val Ser Pro
1 5 10 15
Asp Met Val Ser Val Leu Leu Asp His His Ala Asp Xaa Asn Phe Arg
20 25 30
Thr Xaa Asp Gly Val Thr
35

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant

PCT/GB2006/002120

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ile	Arg	Arg	Met	Arg	Arg	Ala	Leu	Asp	Ala	Ala	Asp	Ile	Glu	Leu	Val
1					5				10				15		
Lys	Leu	Met	Val	Met	Gly	Glu	Gly	Leu	Asp	Leu	Asp	Asp	Ala	Leu	Ala
					20			25					30		
Val	His	Tyr	Ala	Val	Gln	His	Cys	Asn							
					35			40							

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Arg	Arg	Pro	Asp	Ser	Lys	Thr	Ala	Leu	His	Leu	Ala	Ala	Glu	Met	Val
1					5				10				15		
Ser	Pro	Asp	Met	Val	Ser	Val	Leu	Leu	Asp	Gln					
				20			25								

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 41 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ile	Arg	Arg	Met	Arg	Arg	Ala	Leu	Asp	Ala	Ala	Asp	Ile	Glu	Leu	Val
1						5			10				15		
Lys	Leu	Met	Val	Met	Gly	Glu	Gly	Leu	Asp	Leu	Asp	Asp	Ala	Leu	Ala
					20			25					30		
Val	His	Tyr	Ala	Val	Gln	His	Cys	Asn							
					35			40							

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Arg	Arg	Pro	Asp	Ser	Lys	Thr	Ala	Leu	His	Leu	Ala	Ala	Glu	Met	Val
1				5				10					15		
Ser	Pro	Asp	Met	Val	Ser	Val	Leu	Leu	Asp	Gln					
	20					25									

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ile	Arg	Arg	Met	Arg	Arg	Ala	Leu	Asp	Ala	Ala	Asp	Ile	Glu	Leu	Val
1				5				10				15			
Lys	Leu	Met	Val	Met	Gly	Glu	Gly	Leu	Asp	Leu	Asp	Asp	Ala	Leu	Ala
	20					25						30			
Val	His	Tyr	Ala	Val	Gln	His	Cys	Asn							
	35					40									

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Pro	Thr	Gly	Lys	Thr	Ala	Leu	His	Leu	Ala	Ala	Glu	Met	Val	Ser	Pro
1				5				10				15			
Asp	Met	Val													

(2) INFORMATION FOR SEQ ID NO:12:

- 2006 PCT/US06/09007
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

AATTCTAAAG CATGCCGATC GG

22

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AATTCCGATC GGCATGCTTT A

21

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AATTCTAAC CATGGCGATC GG

22

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:415:

AATTCCGATC GCCATGGTTT A

21

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CCAGCTGGAA TTCCG

15

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "oligonucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CGGAATTCCA GCTGGCATG

19