Construction of Perturbed Initial Conditions

3. Ensemble prediction systems

Sources of Uncertainty:

- Initial Conditions
- Model Formulation

from R. Buizza

Ensemble assimilation and prediction

Generation of initial conditions for the ensemble:

$$AN_{pf} = AN_{Hres} \pm (EDA_i - \overline{EDA}) \pm SVPERT_j$$
 $i = 1...25$ $j = 1...25$

$$i = 1..25$$

 $j = 1..25$

Re-centre EDA-Distribution on Hres-Analysis

$$SVPERT_{j} = \sum_{l}^{NSET} \sum_{k}^{NSV_{l}} \alpha_{lk} SV_{lk}$$

random number drawn from **Truncated gaussian**

NSET: nhem, shem, TCs1-6

NSV: 50 for nhem and shem, 5 for TCs

Combine SVs to construct Perturbations:

SVPERT 1

SVPERT 2

Example:

Hres Analysis Temperature 500hPa

Member 1:

$$EDA_1 - \overline{EDA}$$

Member 2:

$$-(EDA_1 - \overline{EDA})$$

Member 1:

 AN_{pf1}

Member 2:

 AN_{pf2}

Thank You!

Chaos and weather prediction

The atmosphere is a chaotic system

- Small errors can grow to have major impact (butterfly effect)
- We can never perfectly measure the current state of the whole atmosphere
- This limits detailed weather prediction to a week or so ahead

Ensemble Forecasts

- Parallel set of forecasts from very slightly different initial conditions and model formulation
- Assess uncertainty of today's forecast

Starting the Medium-Range Forecast – the 'Analysis'

Analysis: 3 dimensional virtual image of the atmosphere at a given time.

- The short range forecast from the previous analysis is our 'first estimate' of the current state of the atmosphere.
- every 12 hours we process about 60 million observations
- Using 4-dimensional interpolation (space and time) temperature, wind and humidity observations are used to 'pull' the model state closer to reality
- This operation takes as much computer power as all the Slide

4D-Var assimilation

Operational schedule Early delivery suite introduced June 2004

from L. Isaksen

