Problem

Show that P is closed under the star operation. (Hint: Use dynamic programming. On input $y = y_1 \cdots y_n$ for $y_i ? \sum$, build a table indicating for each $i \le j$ whether the substring $y_i \cdots y_j ? A^*$ for any A ? P.)

Step-by-step solution

Step 1 of 2

 $P = \bigcup_{L} \mathsf{TIME}\left(n^{k}\right)$

Class P: P is a class of languages that are decidable in polynomial time on a deterministic single tape Turing machine. That is

Comments (4)

Step 2 of 2

Now, prove that P is closed under star operation. Consider a language $A \in P$. The following procedure decides A^* :

 $M = "On input assume <math>y = y_1y_2...y_n \in \Sigma$.

- 1) if $y = \varepsilon$, output ACCEPT and halt.
- 2) Initialize the table T[i, j] = 0 for $i \le j$.
- 3) For i = 1 to n
 - a) Run M on y_i , if $y_i \in L$ then set T[i, i] = 1.
- 4) For k = 2 to n

For i = 1 to n - k + 1

- a) Assume j = i + k 1
- b) Run M on $y_i...y_j$, if $y_i...y_j \in L$ then set T[i, j] = 1.
- c) For l = i to j 1

Set
$$T[i, j] = 1$$
, if $T[i, l] = 1$ and $T[l, j] = 1$

5) Output ACCEPT if T[1, n] = 1; otherwise output REJECT.

The above algorithm is a polynomial time algorithm. Therefore, ${\it P}$ is closed under star operation.

Comments (2)