به نام خدا

مجموعه تمارين نظريه اعداد جلسه چهارم دوره تابستاني المپياد رياضي ١۴٠١

مبحث تابع ν_p و لم دوخط

- $(x+y)^3 \mid x^n+y^n$ عددی خالی از مربع باشد. ثابت کنید اعداد $x,y\in\mathbb{N}$ موجود نیستند که $x,y\in\mathbb{N}$ و همچنین $x,y\in\mathbb{N}$
 - را بیابید به طوری که $p^x-y^p=1$ که در آن y عددی اول و فرد است. $x,y\in\mathbb{N}$ که در آن
 - $n \mid 2^n+1$ عامل اول وجود دارد به طوری که $n \in \mathbb{N}$ با دقیقاً ۲۰۰۰ عامل اول وجود دارد به طوری که $n \mid 2^n+1$.
- m=p کنید m>1 و $p\in\mathbb{P}$ عددی طبیعی باشد. همچنین فرض کنید m>1 موجودند به طوری که m>1 و $p\in\mathbb{P}$ عددی طبیعی باشد. همچنین فرض کنید m>1
 - $a,b\in\mathbb{Z}$ فرض کنید $a,b\in\mathbb{Z}$ اعدادی متمایز باشند به طوری که برای نامتناهی مقدار طبیعی a داشته باشیم: $a,b\in\mathbb{Z}$ اعدادی متمایز باشند به طوری که برای نامتناهی مقدار البیعی a داشته باشیم:
 - برقرار باشد. k>1 عددی طبیعی است. ثابت کنید نامتناهی $n\in\mathbb{N}$ موجود است به طوری که رابطه k>1 عددی طبیعی است.
 - ۷. تمام سه تایی های (x,y,p) را بیابید به طوری که \mathbb{P} و همچنین $x,y\in\mathbb{N},p\in\mathbb{P}$ هر دو توانی از y باشند.
 - $n^2 \mid a^n + b^n$ وجود داشته باشد که $n \in \mathbb{N}$ و تمام زوج های (a,b) از اعداد طبیعی را بیابید به طوری که تنها متناهی $n \in \mathbb{N}$
- برای هر R>0 عددی فرد باشد و a,b بیز اعدادی نسبت a,b از اعداد طبیعی در نظر بگیرید که a عددی فرد باشد و a,b نیز اعدادی نسبت به برای هر a,b مجموعه a را مجموعه تمام سه تایی های a را بیابید به طوری که a مجموعه ای متناهی باشد.
- د. در مجموعه مسائل باقیمانده چینی اثبات کردیم برای هر $n\in\mathbb{N}$ ، دنباله صعودی $a_1< a_2<\cdots< a_n$ موجود است به طوری که برای هر $a_1< a_2<\cdots< a_n$ موجود است به طوری که برای هر مقدار طبیعی $a_1> a_2<\cdots< a_n$ و هر دنباله $a_1=a_1>a_2<\cdots< a_n$ که در شرط فوق صادق است داشته باشیم $a_1> a_2$
- داد. (تعمیم لم دوخط) فرض کنید $p \in \mathbb{R}$ عددی اول و فرد باشد و $a,b \in \mathbb{Z}$ اعدادی صحیح باشند به طوری که $p \nmid ab, p \mid a-b$ برای هر $p \nmid ab, p \mid a-b$ حکم زیر را ثابت کنید. همچنین ثابت کنید درستی این قضیه، درستی لم دوخط را نیز نتیجه خواهد داد.

$$\frac{a^n - b^n}{a - b} \stackrel{\underline{p}^{\nu_p(n) + 1}}{=\!=\!=\!=} nb^{n-1}$$

- ۱۳. فرض کنید $k\in\mathbb{N}$ عددی طبیعی باشد. ثابت کنید $\mathbb{N}=n$ موجود است به طوری که $k\in[n,k]$ $+\cdots+(n,k)$ عامل اولی بزرگتر از $k\in\mathbb{N}$ عادت باشد.

تمارين اضافه

- اد. فرض کنید $a_i + \prod_{j \neq i} a_j$ اعدادی طبیعی و کوچکتر یا مساوی با n باشند به طوری که برای هر $i \leq k$ هر کنید $i \leq k$ اعدادی طبیعی و کوچکتر یا مساوی با $i \leq k$ است. $i \leq k \leq m$ که در آن $i \leq k \leq m$ تعداد اعداد اول کوچکتر یا مساوی با $i \leq k \leq m$ است.

 - a=b داشته باشیم : $a \in \mathbb{N}$ اعدادی طبیعی باشند به طوری که برای هر $p \in \mathbb{P}$ داشته باشیم : $a \in a \pmod p$ اعدادی طبیعی باشند به طوری که برای هر $a \in \mathbb{R}$
 - ۳. فرض کنید $p \in \mathbb{P}$ عددی اول است. احکام زیر را ثابت کنید :

$$p^2\mid A$$
 کنید $B\in\mathbb{N},\gcd(A,B)=1$ که در آن $1+rac{1}{1}+rac{1}{2}+rac{1}{3}+\cdots+rac{1}{p-1}=rac{A}{B}$ آنگاه ثابت کنید (آ)

$$p \mid A$$
 کی در آن $A, B \in \mathbb{N}, \gcd(A, B) = 1$ که در آن $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{(p-1)^2} = \frac{A}{B}$ آنگاه ثابت کنید $p \geq 5$ نیاد (ب)

$$p^2 \mid A$$
 کنید $A, B \in \mathbb{N}, \gcd(A, B) = 1$ که در آن $\frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \cdots + \frac{1}{(p-1)^3} = \frac{A}{B}$ که در آن $p > 5$ کنید و زن