Оглавление

0.1	Многочлены от оператора	1
0.2	Циклические подпространства	3
0.3	Минимальный многочлен оператора	5

0.1 Многочлены от оператора

Теорема 1 (ядро и образ многочлена от оператора). \mathcal{A} – оператор на V, p – многочлен, $\mathcal{B} = p(\mathcal{A})$ Тогда $\ker \mathcal{B}$ и $\operatorname{Im} \mathcal{B}$ – ивариантные подпространства относительно \mathcal{A}

Доказательство. По лемме,

$$\mathcal{A} \circ \mathcal{B} = \mathcal{B} \circ \mathcal{A} \tag{1}$$

• $\ker \mathcal{B}$

$$v \in \ker \mathcal{B} \implies \mathcal{B}(v) = 0 \implies \mathcal{A}\bigg(\mathcal{B}(v)\bigg) = 0 \underset{(1)}{\Longrightarrow} \mathcal{B}\bigg(\mathcal{A}(v)\bigg) = 0 \implies \mathcal{A}(v) \in \ker \mathcal{B}$$

Im B

$$v \in \operatorname{Im} \mathcal{B} \implies v = \mathcal{B}(w) \implies \mathcal{A}(v) = \mathcal{A}\bigg(\mathcal{B}(w)\bigg) \stackrel{=}{=} \mathcal{B}\bigg(\mathcal{A}(w)\bigg)$$

Определение 1. \mathcal{A} – оператор на V, $v \in V$

- Аннулятором v называется такой многочлен p, что p(A)(v) = 0
- ullet Минимальным аннулятором v называется многочлен наименьшей степени среди ненулевых аннуляторов

Замечание. Минимальный аннулятор задаётся с точностью до умножения на константу

Примеры.

1. v – с. в., соответствующие λ (т. е. $Av = \lambda v$)

$$\mathcal{B} = \mathcal{A} - \lambda \mathcal{E}$$
 $\mathcal{B}(v) = \mathcal{A}(v) - \lambda \mathcal{E}(v) = \lambda v - \lambda v = 0$

Найдём p, такой что $\mathcal{B} = p(\mathcal{A})$:

$$p(t) = t - \lambda$$

p(t) – минимальный аннулятор

2. $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$

$$A: x \mapsto Ax, \qquad A = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$

(а) Докажем, что $p(t) = (t-2)^2$ – аннулятор $\forall v$: Найдём матрицу оператора $p(\mathcal{A}) = (\mathcal{A} - \mathcal{E})^2$:

$$(A - 2E)^2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

(b) Возьмём теперь Q(t) = t - 2Найдём v, такие что Q(t) – аннулятор v:

$$(\mathcal{A} - 2\mathcal{E})(v) = 0$$

$$\mathcal{A}(v) = 2v$$

$$\begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$v = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

Свойства.

1. V — конечномерно. Тогда

(а) у любого вектора существует ненулевой аннулятор

(b) если P_0 – минимальный аннулятор, то $\deg P_0 \leq \dim V$

Доказательство. Пусть $n \coloneqq \dim V$

Докажем, что $\exists P : \deg P \leq n, P$ – аннулятор, $P \neq 0$

Возьмём

$$\underbrace{v_1 \mathcal{A}(v), \mathcal{A}^2(v), ..., \mathcal{A}^n(v)}_{n+1 \text{ BEKTOP}}$$

Они ЛЗ, т. к. их больше, чем размерность пространства. Значит,

 $\exists a_i$ не все равные $0: a_0v + a_1\mathcal{A}(v) + ... + a_n\mathcal{A}^n(v) = 0$

Подойдёт $P(t) = a_n t^n + ... + a_1 t + a_0$

2. $P_1,...,P_k$ – аннуляторы v Тогда

 \forall многочл. $Q_1,...,Q_k$ — многочлен $S(t)=Q_1(t)P_1(t)+...+Q_k(t)P_k(t)$ — аннулятор

Доказательство. Пусть $\mathcal{B}_i \coloneqq P_i(\mathcal{A}), \qquad \mathcal{C}_i = Q_i(\mathcal{A}), \qquad \mathcal{D} = S(\mathcal{A})$

$$\mathcal{D}(v) = \mathcal{C}_1\left(\underbrace{\mathcal{B}_1(v)}_{-0}\right) + \dots + \mathcal{C}_k\left(\underbrace{\mathcal{B}_k(v)}_{-0}\right) = \mathcal{C}_1(0) + \dots + \mathcal{C}_k(0) = 0$$

3. $P_0(t)$ – минимальный аннулятор. Тогда

$$P(t)$$
 – аннулятор $\iff P(t) : P_0(t)$

Доказательство. Поделим с остатком:

$$P(t) = Q(t)P_0(t) + R(t), \qquad \deg R < \deg P_0$$

• =

$$R(t)=0, \qquad P(t)=\underbrace{P_0(t)}_{\text{аннулятор}}Q(t)$$
 – аннулятор (по (2.))

 $\bullet \implies$

$$R(t) = \underbrace{P(t)}_{\text{аннул.}} - Q(t) \underbrace{P_0(t)}_{\text{аннул.}} -$$
аннулятор (по (2.))

Доказательство.

$$\exists P_1, P_2$$
 – мин. аннул. $\implies \underbrace{P_1}_{\text{аннул.}} : \underbrace{P_2}_{\text{мин. аннул.}}$

0.2 Циклические подпространства

Определение 2. \mathcal{A} – оператор на V, $v \in V$

Циклическим подпространством, порождённым v называется минимальное по включению инвариантное подпространство, содержащее v

Теорема 2 (базис циклического подпространства). $k \in \mathbb{N}$ такое, что:

1.
$$v, A(v), ..., A^{k-1}(v)$$
 ЛНЗ

2.
$$v, \mathcal{A}(v), ..., \mathcal{A}^{k-1}(v), \mathcal{A}^{k}(v)$$
 ЛЗ

 $ext{Тогда}$ первый набор является базисом цикического подпространства, порождённого v

Доказательство. Пусть U – циклическое, порождённое v

$$U$$
 – инвар. $\Longrightarrow v \in U \implies \mathcal{A}v \in U \implies \underbrace{\mathcal{A}^2 v}_{=\mathcal{A}(\mathcal{A}(v))} \in U \implies \dots$

$$v, \mathcal{A}v, ..., \mathcal{A}^{k-1}v \in U$$

Они ЛНЗ. Чтобы доказать, что это базис, надо доказать, что они прождают U: Положим $W=\langle v, \mathcal{A}v, ..., \mathcal{A}^{k-1}v \rangle$

Докажем, что W=U:

• Докажем, что W – инвар.: $\mathcal{A}^k v - \Pi K \ v, \mathcal{A} v, ..., \mathcal{A}^{k-1} v$

$$\begin{split} w \in W, \qquad w &= a_0 v + \ldots + a_{k-1} \mathcal{A}^{k-1} v \\ \mathcal{A}(w) &= a_0 \mathcal{A} v + \ldots + a_{k-2} \mathcal{A}^{k-1} v + \underbrace{a_{k+1} \mathcal{A}^k v}_{\mathrm{JIK} \ v, \ldots, \mathcal{A}^{k-1} v} \end{split}$$

Значит, w является ЛК $v,...,\mathcal{A}^{k-1}v$

• Докажем, что W — минимальное: Докажем, что если W_1 инвариантно и $v \in W_1$, то $W \subset W_1$:

$$\left. \begin{array}{c} W_1 \text{ инвар.} \\ v \in W_1 \end{array} \right\} \implies \mathcal{A}v \in W_1, \qquad \begin{array}{c} W_1 \text{ инвар.} \\ \mathcal{A}v \in W_1 \end{array} \right\} \implies \mathcal{A}^2v \in W_1, \qquad \ldots , \quad \underbrace{\mathcal{A}^i v}_{\text{порожд.}W} \in W_1 \implies \\ \Longrightarrow W_1 \subset W$$

Пример. $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$

$$\mathcal{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \\ z \end{pmatrix}$$
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad \mathcal{A}(v_1) = v_1$$

Циклическое подпространство – $\left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle$

$$v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathcal{A}(v_2) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathcal{A}^2(v_2) = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

Они все лежат в плоскости X, Y, 0, а их три штуки. Значит, они $\Pi 3$

Циклическое подпространство – $\langle v_2, \mathcal{A}(v_2) \rangle = \left\langle \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \right\rangle$

$$v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \mathcal{A}(v_3) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \qquad \mathcal{A}^2(v_3) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Они ЛНЗ. Размерность нашего пространства – 3, значит, если добавить четвёртый вектор, они будут ЛЗ

Циклическое подпространство – \mathbb{R}^3

Обозначение. $a_1,..,a_n \neq \bigcirc \iff$ не все они равны нулю

Теорема 3 (циклическое подпространство и минимальный аннулятор). V – конечномерное

 \mathcal{A} – оператор на $V, \qquad v \in V, \qquad U$ – цикл. подпр-во, порождённое v

 χ – хар. многочлен ${\cal A}$ на U

Тогда χ — минимальный аннулятор v

Доказательство. Пусть k такое, что

1.
$$v, Av, ..., A^{k-1}v$$
 ЛНЗ

2.
$$v, Av, ..., A^{k-1}v, A^kv$$
 ЛЗ

Путь a_i , не все равные нулю, такие, что

$$a_0v + a_1\mathcal{A}v + ... + a_{k-1}\mathcal{A}^{k-1}v + a_k\mathcal{A}^kv = 0$$

Значит, $a_k \neq 0$ (т. к. $v..., \mathcal{A}^{k-1}v$ ЛНЗ)

Делим на a_k , НУО считаея что $a_k = 1$:

$$\mathcal{A}^k v + \dots + a_1 \mathcal{A} v + a_0 v = 0$$

Положим $P(t)\coloneqq t^k+a_{k-1}t^{k-1}+\ldots+a_1t+a_0\implies P(t)$ – аннулятор

Докажем, что P(t) – минимальныйю **Пусть это не так**:

$$\exists Q'(t) = b_m t^m + ... + t_0, \qquad Q \neq 0, \qquad Q$$
 – аннул., $m < k$

$$b_m \mathcal{A}^m v + \dots + b_0 v = 0$$

Докажем, что $P(t) = \pm \chi$:

Знаем, что

$$v, \dots, \mathcal{A}^{k-1}v$$
 – базис U

Матрица $\mathcal{A} \Big|_{U}$ в этом базисе:

$$A = \begin{pmatrix} v & \mathcal{A}v & \dots & \mathcal{A}^{k-2}v & \mathcal{A}^{k-1}v \\ 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & \cdot & -a_1 \\ 0 & 1 & \dots & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \dots & 0 & \cdot \\ 1 & 1 & \dots & 1 & -a_{k-1} \end{pmatrix}$$

В первом столбце (начиная со второй строки) – координаты $\mathcal{A}v=0\cdot v+1\cdot \mathcal{A}v+0\cdot \dots$ Во втором столбце – координаты \mathcal{A}^2v

В последнем столбце – координаты $\mathcal{A}^k v$

$$\chi_A(t) = \begin{vmatrix} -t & 0 & 0 & \dots & 0 & -a_0 \\ 1 & -t & 0 & \dots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{k-1} - t \end{vmatrix}$$

Прибавим ко 2-й строке 1-ю, умноженную на $\frac{1}{t}$ Прибавим к 3-й строке 2-ю, умноженную на $\frac{1}{t}$

$$\chi(t) = \begin{vmatrix} -t & 0 & 0 & \dots & 0 & & -a_1 \\ 0 & -t & 0 & \dots & 0 & & -a_1 - \frac{a_0}{t} \\ 0 & 0 & -t & \dots & 0 & & -a_2 - \frac{a_1}{t} - \frac{a_0}{t^2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & t - a_{k-1} - \frac{a_{k-2}}{t} - \dots - \frac{a_1}{t^{k-2}} - \frac{a_1}{t^{k-1}} \end{vmatrix}$$

Это будет $(-1)^k P(t)$

0.3 Минимальный многочлен оператора

Определение 3. Многочлен P(t) аннулирует \mathcal{A} , если $P(\mathcal{A}) = 0$

Замечание. Он является аннулятором для всех векторов

Пример. $\mathcal{A}: \mathbb{R}^2 o \mathbb{R}^2$

$$\mathcal{A}: X \mapsto \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} X$$

$$P(t) = (t-2)^2$$
 – аннулирует A

Q(t)=t-2 не аннулирует \mathcal{A} , т. к. $\left(Q(\mathcal{A})\right)=\begin{pmatrix}1\\0\end{pmatrix}
eq \begin{pmatrix}0\\0\end{pmatrix}$

Определение 4. Минимальным многочленом оператора ${\cal A}$ называется ненулевой многочлен наименьшей степени, аннулирующий ${\cal A}$

Свойства. \mathcal{A} – оператор на V

1. $P_1,...,P_k$ аннулируют \mathcal{A} Тогда для любых многочленов $Q_1,...,Q_k$ многочлен $S(t)=P_1(t)Q_1(t)+...+Pk(t)Q_k(t)$ аннулирует \mathcal{A}

Доказательство. $\forall v \mid P_i$ – аннулятор $v \Longrightarrow S(\mathcal{A})$ – аннулятор $v \Longrightarrow S$ аннулирует $\mathcal{A} \quad \Box$

2. P_0 – минимальный многочлен для \mathcal{A} . Тогда

P аннулирует $\mathcal{A} \iff P : P_0$

Доказательство. Пусть $P = P_0 Q + R$

- ullet Если P : P_0 , то $P=P_0Q \Longrightarrow P$ аннулирует ${\mathcal A}$
- ullet Если P аннулирует \mathcal{A} , то $R=P-P_0Q$ аннулирует $\mathcal{A} \Longrightarrow R=0 \Longrightarrow P \vdots P_0$

3. Минимальный многочлен $\mathcal A$ единственнен с точностью до ассоциирования