A.A. 2021-2022

Elementi di Elettronica (INF) Prof. Paolo Crippa

L'Amplificatore Operazionale

Amplificatori Operazionali di Tensione

Rappresentano circuiti amplificatori con ingresso differenziale che approssimano il comportamento dell'amplificatore ideale di tensione

Sono realizzati in forma integrata (20-30 transistori)

Simbolo

Con le alimentazioni evidenziate

Vengono sempre utilizzati in retroazione connettendo elementi passivi tra il nodo di uscita e il nodo di ingresso invertente

L' Amplificatore Operazionale Reale

L' Amplificatore Operazionale Ideale

- 1. $Z_i = \infty$ ai due terminali 1,2 $(i_1 = i_2 = 0)$;
- 2. Accoppiamento in continua in ingresso;
- 3. Amplifica la differenza $v_2 v_1$,

$$v_O = A(v_2 - v_1) \quad ;$$

4. Ignora i segnali di modo comune:

$$v_2 = v_1 \implies v_O = 0$$
;

questa proprietà è detta <u>reazione di modo</u>
<u>comune (CMRR)</u>: è importante per eliminare
l'effetto del rumore in ingresso;

- 5. $Z_O = 0$ (molto piccola);
- 6. $A = \infty$ (amplificatore ideale di tensione);
- 7. Dinamica di uscita infinita;
- 8. Guadagno indipendente dalla frequenza;
- 9. Viene utilizzato sempre in retroazione.

L' Amplificatore Operazionale Ideale: Modello

$$i_{-} = 0$$

$$i_{+} = 0$$

$$v_{O} = \begin{cases} V_{+} & v_{d} > 0 \\ V_{-} & v_{d} < 0 \end{cases}$$

$$v_{d} = 0 \qquad V_{-} < v_{O} < V_{+}$$

Semplici Applicazioni dell' OP-AMP

Configurazione Invertente

OP-AMP: Configurazione Invertente

$$v_2 - v_1 = \frac{v_O}{A} \cong 0$$
 (Poiché $A = \infty$)

- I nodi 1, 2 sono circa allo stesso potenziale $v_2 \cong v_1 \cong 0$
- Il nodo 1 è virtualmente a massa (massa virtuale)

$$i = 0$$
 \Rightarrow $i_1 = \frac{v_I}{R_1} = i_2 = -\frac{v_O}{R_2}$ \Rightarrow $\frac{v_O}{v_I} = -\frac{R_2}{R_1}$

- Il guadagno dipende solo dalla rete $\emph{R}_{\scriptscriptstyle 1}$, $\emph{R}_{\scriptscriptstyle 2}$

$$R_i = R_1$$
 , $R_o = 0$

A.A. 2021-22

OP-AMP: Configurazione Invertente (con Modello)

Utilizzando il modello:

a)
$$V_{-} < v_{O} < V_{+}$$
 $v_{d} = 0$

$$v_d = 0$$

$$\frac{V_O}{V_I} = -\frac{R_2}{R_1}$$

$$\frac{v_{O}}{v_{I}} = -\frac{R_{2}}{R_{1}} \qquad v_{O} = -\frac{R_{2}}{R_{1}} v_{I}$$

È valida solo per:
$$V_{-} < -\frac{R_2}{R} v_I < V_{+}$$

$$-\frac{R_{1}}{R_{2}} V_{-} > v_{I} > -\frac{R_{1}}{R_{2}} V_{+}$$
 ZONA LINEARE

b)
$$v_d > 0$$
 $v_O = V_+$

$$v_O = V_+$$

$$=\frac{v_I-V_+}{P_+}=\frac{v_I+v_d}{P_-}$$

È valida solo per:
$$i = \frac{v_I - V_+}{R_1 + R_2} = \frac{v_I + v_d}{R_1}$$
 $(v_I - V_+)R_1 = (v_I + v_d)(R_1 + R_2)$

$$\frac{-R_2 v_I - V_+ R_1}{R_1 + R_2} = v_d > 0$$

$$v_I < -\frac{R_1}{R_2} V_+$$

OP-AMP: Configurazione Invertente (con Modello)

c)
$$v_d < 0$$
 $v_O = V_-$

È valida solo per:
$$i = \frac{v_I - V_-}{R_1 + R_2} = \frac{v_I + v_d}{R_1}$$
 $(v_I - V_-)R_1 = (v_I + v_d)(R_1 + R_2)$

$$\frac{-R_2 v_I - V_- R_1}{R_1 + R_2} = v_d < 0 \qquad v_I > -\frac{R_1}{R_2} V_-$$

OP-AMP: Configurazione Invertente

$$\frac{v_O}{v_I} = -\frac{Z_2}{Z_1}$$

Integratore (di Miller)

$$i_1(t) = \frac{v_I(t)}{R} = -C\frac{dv_O(t)}{dt}$$

$$v_O(t) = v_O(0) - \frac{1}{RC} \int_0^t v_I(t) dt$$

$$R_i = R$$
 , $R_o = 0$

$$Z_1 = R Z_2 = \frac{1}{j\omega C}$$

$$\frac{V_o}{V_i} = -\frac{1}{j\omega RC}$$

Derivatore

$$Z_1 = \frac{1}{i\omega C} \qquad Z_2 = R$$

$$\frac{V_o}{V_i} = -j\omega RC$$

$$i(t) = C \frac{dv_I(t)}{dt} = -\frac{v_O(t)}{R}$$

$$v_O(t) = -RC \frac{dv_I(t)}{dt}$$

$$Z_i = \frac{1}{i\omega C} , \qquad R_o = 0$$

Sommatore Pesato

$$i_1 = \frac{v_1}{R_1}$$
, $i_2 = \frac{v_2}{R_2}$, ..., $i_n = \frac{v_n}{R_n}$

$$i = i_1 + i_2 + \dots + i_n = -\frac{v_0}{R_f}$$

$$v_0 = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \dots + \frac{R_f}{R_n}v_n\right)$$

Somma Pesata

OP-AMP: Configurazione Non - Invertente

Configurazione non – invertente: il generatore di segnale (tensione) è applicato al terminale non invertente dell'amplificatore operazionale

OP-AMP: Configurazione Non - Invertente

Configurazione non – invertente: il generatore di segnale (tensione) è applicato al terminale non invertente dell'amplificatore operazionale

OP-AMP: Configurazione Non - Invertente

$$v_2 - v_1 = \frac{v_O}{A} \cong 0$$
 (Poiché $A = \infty$)

- I nodi 1, 2 sono circa allo stesso potenziale $v_2 \cong v_1 \cong v_I$

$$i = \frac{v_O}{R_1 + R_2}$$
 \Rightarrow $v_I \cong R_1$ $i = \frac{R_1}{R_1 + R_2} v_O$ \Rightarrow $\frac{v_O}{v_I} = 1 + \frac{R_2}{R_1}$

- Il guadagno dipende solo dalla rete R_1 , R_2

$$R_i = \infty$$
 , $R_o = 0$

Buffer a Guadagno Unitario (Inseguitore di Tensione)

$$\frac{v_O}{v_I} = 1 + \frac{R_2}{R_1}$$
 \Rightarrow per $R_1 = \infty$, $R_2 = 0$ \Rightarrow $\frac{v_O}{v_I} \cong 1$

$$R_i = \infty$$
 , $R_o = 0$

Amplificatore differenziale: fornisce un segnale di uscita che dipende dalla differenza di due segnali di ingresso

Dalla sovrapposizione degli effetti: $v_O = v_{O1}(v_{I1}) + v_{O2}(v_{I2})$

$$v_{I2} = 0 \quad \Rightarrow \quad i_p = 0 \quad \Rightarrow \quad v_{O1} = -\frac{R_2}{R_1} v_{I1}$$

Dalla sovrapposizione degli effetti: $v_O = v_{O1}(v_{I1}) + v_{O2}(v_{I2})$

$$v_{I1} = 0 \implies v_p = \frac{v_{O2}}{R_1 + R_2} R_1 \qquad v_p = \frac{v_{I2}}{R_2 + R_4} R_4$$

$$v_{O2} = \left(1 + \frac{R_2}{R_1}\right) \frac{R_4}{R_3 + R_4} v_{I2}$$

Dalla sovrapposizione degli effetti:

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \frac{R_{4}}{R_{3} + R_{4}} v_{I2} - \frac{R_{2}}{R_{1}} v_{I1}$$

$$R_{i1} = R_1$$
 $R_{i2} = R_3 + R_4$

$$R_o = 0$$

se
$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \frac{\frac{R_{4}}{R_{3}}}{1 + \frac{R_{4}}{R_{2}}} v_{I2} - \frac{R_{2}}{R_{1}} v_{I1}$$

$$v_{O} = \frac{R_{2}}{R_{1}} (v_{I2} - v_{I1})$$

$$v_O = \frac{R_2}{R_1} (v_{I2} - v_{I1})$$

Resistenza differenziale:

$$R_{id} = \frac{v_{Id}}{i_I} = 2R_1$$

Amplificatore differenziale: fornisce un segnale di uscita che dipende dalla differenza di due segnali di ingresso

Dalla sovrapposizione degli effetti: $v_O = v_{O1}(v_{I1}) + v_{O2}(v_{I2})$

$$v_{I2} = 0 \quad \Rightarrow \quad i_p = 0 \quad \Rightarrow \quad v_{O1} = -\frac{R_2}{R_1} v_{I1}$$

Dalla sovrapposizione degli effetti: $v_O = v_{O1}(v_{I1}) + v_{O2}(v_{I2})$

$$v_{I1} = 0 \implies v_p = \frac{v_{O2}}{R_1 + R_2} R_1 \qquad v_p = \frac{v_{I2}}{R_2 + R_4} R_4$$

$$v_{O2} = \left(1 + \frac{R_2}{R_1}\right) \frac{R_4}{R_3 + R_4} v_{I2}$$

Dalla sovrapposizione degli effetti:

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \frac{R_{4}}{R_{3} + R_{4}} v_{I2} - \frac{R_{2}}{R_{1}} v_{I1}$$

$$R_{i1} = R_1$$
 $R_{i2} = R_3 + R_4$

$$R_o = 0$$

se
$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \frac{\frac{R_{4}}{R_{3}}}{1 + \frac{R_{4}}{R_{2}}} v_{I2} - \frac{R_{2}}{R_{1}} v_{I1}$$

$$v_{O} = \frac{R_{2}}{R_{1}} (v_{I2} - v_{I1})$$

$$v_O = \frac{R_2}{R_1} (v_{I2} - v_{I1})$$

Resistenza differenziale:

$$R_{id} = \frac{v_{Id}}{i_I} = 2R_1$$

Amplificatore per Strumentazione

Amplificatore per Strumentazione

Amplificatori Operazionali NON IDEALI

Negli Amplificatori Operazionali Reali:

$$A < +\infty$$
, $Z_i < \infty$, $Z_o > 0$, $f_t < \infty$, dinamica $< \infty$

Amplificatori Operazionali NON IDEALI

La funzione di trasferimento è ad un solo polo dominante

$$A(j\omega) = \frac{A_0}{1 + j\omega/\omega_b}$$

per
$$\omega \gg \omega_b$$

$$A(j\omega) = \frac{A_0\omega_b}{j\omega}$$

$$|A(j\omega_t)| = 1 \implies \omega_t = A_0\omega_b$$

$$\omega_t = A_0 \omega_b$$

Frequenza a guadagno unitario

Struttura Interna di un OP-AMP

transconduttanza

di tensione

unitario

Funzionamento per Grandi Segnali: Saturazione in Uscita

Dinamica in Uscita

E' limitata dall'alimentazione (V_{CC} , V_{EE})

$$V_{EE} < V^- \le v_0 \le V^+ < V_{CC}$$

Ad esempio: $V_{CC} = -V_{EE} = 15 \text{ V} \implies V^+ \cong -V^- \cong 12 \text{ V}$

Funzionamento per Grandi Segnali: Saturazione in Uscita

Se
$$V^{+} \cong -V^{-} \cong 12 \text{ V}$$
 e $\frac{dv_0}{dv_i} \sim 10^5$

$$\frac{dv_o}{dv_i} \cong \frac{\Delta v_o}{\Delta v_i} = \frac{V^+ - V^-}{\Delta v_i} = 10^5 \implies \Delta v_i = \frac{V^+ - V^-}{10^5} = 24 \cdot 10^{-5} \text{ V}$$

Quindi

$$\Delta v_i \cong 0 \text{ V}$$

L'amplificatore non può essere utilizzato ad anello aperto poiché risulterebbe sempre saturo (comportamento non lineare)

Funzionamento per Grandi Segnali: Slew Rate

Elementi di Elettronica (INF) A.A. 2021-22

Risposta al gradino nella configurazione ad inseguitore

In realtà la risposta cresce quasi linearmente

Per minimizzare la prontezza di risposta al gradino si definisce lo **slew rate**:

$$SR = \frac{dv_O}{dt}\bigg|_{max}$$

Pendenza = SR-

Funzionamento per Grandi Segnali: Slew Rate

• La risposta $v_O\left(t\right)$ è limitata dalla corrente massima che può erogare il primo stadio che satura a causa del gradino di ingresso

• C si carica a corrente costante I_{max}

$$I_{\text{max}} = C \frac{dv_O}{dt}$$

$$SR = \frac{I_{\text{max}}}{C}$$

Funzionamento per Grandi Segnali: Slew Rate

Elementi di Elettronica (INF) A.A. 2021-22

Full Power Bandwidth

A causa dello slew-rate $v_o(t)$ può risultare distorta

$$\frac{dv_I}{dt} = \omega \hat{V_i} \cos \omega t$$
se

$$\frac{dv_I}{dt} > SR = \frac{dv_O}{dt}$$

 $\omega \hat{V_i} > SR$ il segnale risulta distorto

Funzionamento per Grandi Segnali: Slew Rate

$$f_{\scriptscriptstyle M}$$
 : full-power bandwidth -> è la frequenza alla quale una sinusoide di ampiezza pari alla dinamica di uscita ($V_{o\,{\rm max}}$) comincia a presentare distorsione

$$\omega_{M} V_{O \max} = SR \quad \Rightarrow \quad f_{M} = \frac{SR}{2\pi V_{O \max}}$$

se $V_O < V_{O \max}$ si può arrivare a frequenze più elevate

$$V_O = V_{O \max} \left(\frac{\omega_M}{\omega} \right)$$

Reiezione di Modo Comune

Reazione di modo comune

Gli amplificatori operazionali hanno un guadagno di modo comune diverso da zero

Se si applica un segnale v_{icm} si ottiene un segnale di uscita $v_O \neq 0$

Reiezione di Modo Comune

Nel caso ideale

$$v_O = A(v_2 - v_1) = Av_2 - Av_1 = A_2v_2 + A_1v_1$$

con

$$A_2 = -A_1$$

In generale:

$$v_{o} = A_{1}v_{1} + A_{2}v_{2}$$

con

$$-A_1 \neq A_2$$

si definisca

$$v_{id} = v_2 - v_1$$

$$v_{id} = v_2 - v_1$$
 $v_{icm} = \frac{v_2 + v_1}{2}$

$$v_1 = v_{icm} - \frac{v_{id}}{2}$$

$$v_1 = v_{icm} - \frac{v_{id}}{2}$$
 $v_2 = v_{icm} + \frac{v_{id}}{2}$

$$v_{O} = A_{1} \left(v_{icm} - \frac{v_{id}}{2} \right) + A_{2} \left(v_{icm} + \frac{v_{id}}{2} \right) = \left(A_{1} + A_{2} \right) v_{icm} + \left(A_{2} - A_{1} \right) v_{id}$$

$$v_O = A_{cm} v_{icm} + A_d \frac{v_{id}}{2}$$
 se $-A_1 \neq A_2 \implies A_{cm} \neq 0$

se
$$-A_1 \neq A_2 \implies A_{cm} \neq 0$$

Reiezione di Modo Comune

Si avvicina al caso ideale tanto più $A_{cm} \rightarrow 0$

 CMRR (Common Mode Rejection Ratio): rapporto di reiezione di modo comune

$$CMRR = \frac{|A|}{|A_{cm}|} \qquad \qquad \left(CMRR \Big|_{dB} = 20 \log \frac{|A|}{|A_{cm}|} \right)$$

Definisce la capacità di amplificare solo la differenza v_{id}

OP-AMP: Resistenze di Ingresso e di Uscita

Resistenze di ingresso e di uscita

Per simmetria R_{icm} è stata divisa in due resistenze

Effetti di Non-Idealità in DC: Tensione di Offset

Nell' amplificatore operazionale ideale:

Nell' amplificatore operazionale reale:

Modello:

 $V_{
m off}$: tensione di offset

Effetti:

$$\frac{v_O}{R_1 + R_2} R_1 = V_{\text{off}} \quad \Rightarrow \qquad v_O = V_{\text{off}} \left(1 + \frac{R_2}{R_1} \right)$$

Voff viene amplificata in uscita

Tecniche per il Bilanciamento della Tensione di Offset

Elementi di Elettronica (INF) A.A. 2021-22

Effetti di Non-Idealità in DC: Correnti di Polarizzazione in Ingresso

- Si noti la differenza con il modello per piccoli segnali in cui si considerano le resistenze di ingresso.
- Quando l'amplificatore operazionale è realizzato a BJT, le I_{B1}, I_{B2} corrispondono alle correnti di base di transistori di ingresso (nei MOSFET sono trascurabili).
- Generalmente viene specificata

$$I_B = \frac{I_{B1} + I_{B2}}{2}$$
 (valore medio)

• Corrente di off-set : $I_{off} = \left| I_{B1} - I_{B2} \right|$

(dipende dalla non perfetta simmetria)

• Valori tipici: $I_B = 100 \text{ nA}$ $I_{off} = 10 \text{ nA}$

Effetti di Non-Idealità in DC: Correnti di Polarizzazione in Ingresso

$$V_O = I_{B1} R_2 \simeq I_B R_2$$

Costituisce una limitazione per $\,R_{2}\,$, che può saturare l'amplificatore

Elementi di Elettronica (INF) A.A. 2021-22

Effetti di Non-Idealità in DC: Correnti di Polarizzazione in Ingresso

$$V_2 = -R_3 I_{B2} \simeq V_1$$
 \Rightarrow $I_1 = -\frac{V_1}{R_1} = \frac{I_{B2} R_3}{R_1}$

$$I_2 = I_{B1} - I_1 = I_{B1} - I_{B2} \frac{R_3}{R_1}$$

Effetti di Non-Idealità in DC: Correnti di Polarizzazione in Ingresso

$$V_O = -R_3 I_{B2} + R_2 \left(I_{B1} - I_{B2} \frac{R_3}{R_1} \right)$$

se
$$I_{off} = 0$$
 $I_{B1} = I_{B2} = I_{B}$

$$V_O = I_B \left[R_2 - R_3 \left(1 + \frac{R_2}{R_1} \right) \right]$$

se
$$R_3 = \frac{R_2}{\left(1 + \frac{R_2}{R_1}\right)} = \frac{R_1 R_2}{R_1 + R_2}$$
 \Rightarrow $V_O \approx 0$

Elementi di Elettronica (INF) A.A. 2021-22

Effetti di Non-Idealità in DC: Correnti di Polarizzazione in Ingresso

se
$$I_{off} \neq 0$$
 $I_{B1} = I_B + \frac{I_{off}}{2}$ $I_{B2} = I_B - \frac{I_{off}}{2}$

$$V_{O} = -I_{B2} \left(1 + \frac{R_{2}}{R_{1}} \right) R_{3} + I_{B1} R_{2}$$

$$= -\left(I_{B} - \frac{I_{off}}{2} \right) \left(1 + \frac{R_{2}}{R_{1}} \right) R_{3} + \left(I_{B} + \frac{I_{off}}{2} \right) R_{2}$$

$$= -I_{B} \left[R_{2} - R_{3} \left(1 + \frac{R_{2}}{R_{1}} \right) \right] + \frac{I_{off}}{2} \left[R_{2} + R_{3} \left(1 + \frac{R_{2}}{R_{1}} \right) \right]$$

$$V_{O} = I_{off} R_{2} < I_{B} R_{2}$$

consente di limitare l'effetto di non idealità