ByShard: Sharding in Byzantine Environment

By Jelle Hellings and Mohammad Sadoghi

Presenters: Manjunath Jakaraddi, Rohith Raj Srinivasan, Abrar Syed & Mohammed Asim

Table of Contents

- Introduction
- 2. ByShard Framework
- 3. OEM model
- 4. Orchestrate
- 5. Execute
- 6. Performance Evaluation
- 7. Q&A

Typical Blockchain Inspired System

Data Distribution after Sharding

Sharding

Merits of Sharding

Merits of Sharding

Latency in PBFT

Cluster Sending Protocol

Definition

A cluster-sending protocol provides reliable communication between resilient clusters S1 and S2. To enable S1 to send a value ν to S2, cluster sending protocols provide the following guarantees:

- (1) S1 is able to send v to S2 only if there is agreement on sendingv among the non-faulty replicas in S1;
- (2) all non-faulty replicas in S2 will receive the value v; and
- (3) all non-faulty replicas in S1 obtain confirmation of receipt.

Banking Example

- Consider a banking system transactions
 - \circ τ_1 = "add \$500 to **Ana**"
 - \circ τ_2 = "add \$200 to **Bo** and \$300 to **Elisa**"
 - \circ τ_3 = "move \$30 from **Ana** to **Elisa**"
 - \circ τ_{A} = "remove \$70 from **Elisa**"

Banking Example

Multi shard transaction execution in a Byzantine Environment

OEM Model

We process multi-shard transaction using the **orchestrate-execute model (OEM)**.

OEM model's components:

- Orchestration: replicates transactions among all replicas in all involved shards and reach an atomic decision.
- Execution: executes operations of a shard step.

Multishard Transaction Example

Each of the accounts are in different shards:

Ana
$$\rightarrow$$
 Shard A (S_a)

$$\mathbf{Bo} \to \mathbf{Shard} \; \mathbf{B} \; (S_{b})$$

Elisa
$$\rightarrow$$
 Shard E (S_e)

 τ = "if **Ana** has \$500 and **Bo** has \$200, then

move \$400 from Ana to Elisa; move \$100 from Bo to Elisa"

Multishard Transaction

- σ_1 \to "if Ana has \$500, then remove \$400 from Ana; \Rightarrow S_b(σ_2) else \Rightarrow send failure to c"
- σ_2 \rightarrow "if Bo has \$200, then remove \$100 from Bo; \Rightarrow S_e (σ 3) else \Rightarrow Sa (σ 4)"
- $\sigma_3 \rightarrow$ "add \$500 to Elisa and \Rightarrow send success to c"
- $\sigma_{A} \rightarrow$ "add \$400 to Ana and \Rightarrow send failure to c"

Where σ is the shard step and \Rightarrow is the cluster sending step

Types of Shard Steps

- Vote Step (σ_1 and σ_2)
 - verifies constraints and vote to commit or not.
- Commit Step (σ_3)
 - \circ performs operation to finalize the transaction $oldsymbol{ au}$
- Abort Step (σ_4)
 - Abort the operation and rollback all the changes

Types of Orchestration

- Linear orchestration
- 2. Centralized orchestration
- 3. Distributed orchestration

Linear orchestration

= Consensus= Cluster-sending step

 S^1 , S^2 , S^3 , $S^4 o$ Vote-steps S^2 , S^5 , $S^6 o$ Commit-steps $S^3 o$ Abort-step

of steps:

Consecutive consensus steps = $n_v + 1$ Consensus steps = $n_v + n_c$ Cluster-sending steps = $n_v + n_c - 1$

Linear orchestration

$$S^1$$
, S^2 , S^3 , $S^4 o$ Vote-steps S^2 , S^5 , $S^6 o$ Commit-steps $S^3 o$ Abort-step

of steps:

Consecutive consensus steps = $\mathbf{n_v} + \mathbf{1}$ Consensus steps = $\mathbf{n_v} + \mathbf{n_a}$ Cluster-sending steps = $\mathbf{n_v} + \mathbf{n_a} - \mathbf{1}$

Merits:

- 1. Simplicity
- 2. Abort-fast ability

Limitations:

Consecutive consensus steps (worst-case) = $|shards(\tau)| + 1$

Centralized orchestration

of steps:

Consecutive consensus steps = **4**

Consensus steps = 1 + $(n_v - 1) + 1 + n_c = n_v + n_c + 1$ Cluster-sending steps = $(n_v - 1) + (n_v - 1) + n_c = 2(n_v - 1) + n_c$

$$S^1$$
, S^2 , S^3 , $S^4 o Vote-steps$
 S^2 , S^5 , $S^6 o Commit-steps$
 $S^3 o Abort-step$

Centralized orchestration

of steps:

Consecutive consensus steps = **4**

Consensus steps = 1 + $(n_v - 1) + 1 + n_a = n_v + n_a + 1$ Cluster-sending steps = $(n_v - 1) + (n_v - 1) + n_a = 2(n_v - 1) + n_a$

$$S^1$$
, S^2 , S^3 , $S^4 o Vote-steps$
 S^2 , S^5 , $S^6 o Commit-steps
 $S^3 o Abort-step$$

Distributed orchestration

of steps:

 $= n_v(n_a + n_c) + (n_v - 1)$

Consecutive consensus steps = **3** Consensus steps = $1 + (n_v - 1) + n_c = n_v + n_c$ Cluster-sending steps = $(n_v - 1) + (n_a + n_c) + (n_v - 1)*(n_a + n_c)$

$$S^1$$
, S^2 , S^3 , S^4 \rightarrow Vote-steps S^2 , S^5 , S^6 \rightarrow Commit-steps \rightarrow Abort-step

Distributed orchestration

of steps:

 $= n_v(n_a + n_c) + (n_v - 1)$

Consecutive consensus steps = **3** Consensus steps = $1 + (n_v - 1) + n_a = n_v + n_a$ Cluster-sending steps = $(n_v - 1) + (n_a + n_c) + (n_v - 1)*(n_a + n_c)$

$$S^1$$
, S^2 , S^3 , S^4 \rightarrow Vote-steps S^2 , S^5 , S^6 \rightarrow Commit-steps \rightarrow Abort-step

Summary of Orchestration

	Linear	Centralized	Distributed		
Consecutive consensus steps	n _v + 1	4	3		
Consensus steps	$n_v + n_c$	n _v + n _c + 1	n _v + n _c		
Cluster-sending steps	n _v + n _c - 1	2(n _v - 1) + n _c	$n_v(n_a + n_c) + (n_v - 1)$		

Execute

- Single Shard steps are ordered via consensus and executed sequentially at shard level.
- Multi-shard transactions can have several shard steps.
- Transactions can interleave while executing.
- Isolation necessary in some form of concurrency control.

Degrees of Isolation

- Isolation free execution (Degree 0)
- Read uncommitted execution (Degree 1)
- Read committed execution (Degree 2)
- Serializable execution (Degree 3)

Isolation Level Performance increasing increasing

NOTE: Stronger Isolation levels prevent more anomalies at the cost of performance.

Constraint and Modification model

We assume that each transaction τ is a pair (C, M) in which C is a set of constraints of the form

Con(X,y) = "the balance of X is at least y"

and M a set of modifications of the form

Mod(X,y) ="add y to the balance of X"

The system commits to τ only if all constraints in C hold, in which case all modifications in M are applied to the system

Example

Considering the sharded banking example from before. And assuming the system does **not allow negative** accounts balances and consider transactions.

 au_1 = Con(A, 100), Con(B, 700), Mod(A, 400), Mod(B, -400); Transfer 400 from B to A if A has 100 and B has 700 au_2 = Con(A, 500), Mod(A, -300), Mod(E, 300); Transfer 300 from A to E if A has 500

Example

Considering the sharded banking example from before. And assuming the system does **not allow negative** accounts balances and consider transactions.

 au_1 = Con(A, 100), Con(B, 700), Mod(A, 400), Mod(B, -400); Transfer 400 from B to A if A has 100 and B has 700 au_2 = Con(A, 500), Mod(A, -300), Mod(E, 300); Transfer 300 from A to E if A has 500

Let, $\tau = (C, M)$ **Isolation free direct execution** $S \in \text{shards}(\tau)$ $Abort(S) = \{Mod(X,-y) \mid Mod(X,y) \in M(S)\}$ **START** Constraints (S)=Vote Step (σ) in C(S)**Abort Vote** No No hold? ϕ^{γ} Yes **Abort Step** ABORT (S) **Commit Step** Yes RollBack **Executes STOP** Make modifications M(S)

STOP

optimistically

Example

A	\$100	$ au_{\star}:S_{\star}$	A	\$500	τ_2 : S_a	A	\$200	$\tau_1:S_b$	A	\$200
B E	\$300 \$0	Con(A,100) Mod(A,400)	$egin{array}{c} B \ E \end{array}$	\$300 \$0	Con(A,500) Mod(A,-300)	$egin{array}{c} B \ E \end{array}$	\$300 \$0	Con(B,700)	B E	\$300 \$0

Safe Transaction

UnSafe Transaction

Safe Isolation Free Execution

Safe modifications are executed as part of Vote step

Unsafe modifications are executed as part of Commit Step

Lock Based Execution

- if τ ' where, τ ' ≠ τ, holds a write lock on D, then τ cannot obtain any locks on D.
- if τ' where, τ' ≠ τ, holds a read lock on D, then τ cannot obtain a write lock on D, but can obtain a read lock on D.
- Several transactions can hold a read lock on D at the same time, but write locks are exclusive.

Lock Based Execution

- Let τ = "if Ana has \$500 and Bo has \$300 then move \$200 from Ana to Ben".
- Assume shards are ordered as S_a,....,S_z, accounts are ordered on account holder name.
- Write lock on the account of Ana in S_a, write lock on the account of Ben in S_b, read lock on the account of Bo in S_b.

- Let $\tau = (C,M)$ be a transaction, let $S \in \text{shards}(\tau)$, and Accounts(S) = $\{X \mid \text{CON}(X, y) \in C(S) \mid V \mid \text{MOD}(X, y) \in M(S)\}$
- Steps involved:
 - Vote-step
 - Commit Step
 - Release step

$$\tau = (C,M)$$

S = shards(τ)
X_i=ACCOUNTS(S)

Vote Commit

• Vote Step: Success

 X_1

Modifications

 X_2

S

Acquire Lock Check Constraint X_3

X₄

 X_5

 $\tau = (C,M)$

 $S = shards(\tau)$

X_i=ACCOUNTS(S)

Release Locks

Commit Step

• Vote Step: Failure x_1

This constraint

does not satisfy

 $\tau = (C,M)$ S = shards(τ) X_i=ACCOUNTS(S)

 X_5

Vote abort, locks are released

Acquire Lock

Check Constraint

Transaction τ with $n = |shards(\tau)|$

= Consensus step= Cluster-sending step

Consensus Steps = n + (n-1) = 2n - 1Cluster-sending steps = (n-1) + (n-1) = 2n - 2

Lock Based Execution Can YES NO Wait VOTE(S) Continue VOTE(S) obtain lock (X)? Add to wait queue for each R $Q_{R1}(X) =$ [..., $(\tau, VOTE(S))$] R1 R2 R5 R3 R4

Protocols

We have **18 different protocols** that emerge from different configurations of the below three parameters:

- Linear, Centralized, and Distributed Orchestration
- Four Isolation Degrees in Execution
- Blocking and Non-blocking locks

Protocols

	Isolation-Fr	ee execution		Lock-based execution						
	(write uncommitted)		Read Uncommitted		Read Committed		Serializable		e	
	u nsafe	safe	b locking	non-blocking	b locking	non-blocking	b locking	n on- b locking		
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ★ - DIFu	LIFs - A- CIFs - DIFs	LRUB	LRUNB - A- CRUNB - DRUNB	→ LRCB	LRCNB - CRCNB - DRCNB	→ LSB	LSNB - A- CSNB - DSNB	··• AHL (reference committee)	

Experimental Setup

- Workload of 5000 transactions
- Each transaction affects 16 distinct accounts
 - Putting constraints on 8 accounts (read operations)
 - Removing balance from 4 accounts (write operations)
 - Adding balance to 4 accounts (write operations)
- Each account on each shard
 - Initial balance of 2000
 - Add or remove 500 balance per modification
- 64 shards and 8192 active accounts (128/shard)

Performance Evaluation: Results : Scalability

	Isolation-Fr	ee execution		Lock-based execution						
	(write uncommitted)		Read Uncommitted		Read Committed		S erializable			
	u nsafe	safe	b locking	non-blocking	b locking	non-blocking	b locking	n on- b locking		
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	— LRUB	- LRUNB - ▲- CRUNB - ■- DRUNB	─• LRСв	—— LRCnb — ← CRCnb — • DRCnb	—— LSB	- LSnb - ▲- CSnb - ■- DSnb	·· AHL (reference committee)	

Performance Evaluation: Results : Scalability

	Isolation-Fr	ee execution		Lock-based execution						
	(write uncommitted)		Read Uncommitted		Read Committed		S erializable			
	u nsafe	safe	b locking	non-blocking	b locking	non-blocking	b locking	n on- b locking		
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	— LRUB	- LRUNB - ▲- CRUNB - ■- DRUNB	─• LRСв	—— LRCnb — ← CRCnb — • DRCnb	—— LSB	- LSnb - ▲- CSnb - ■- DSnb	·· AHL (reference committee)	

Performance Evaluation: Results : Scalability

	Isolation-Fr	ee execution		Lock-based execution						
	(write uncommitted)		Read Uncommitted		Read Committed		S erializable			
	u nsafe	safe	b locking	n on- b locking	b locking	n on- b locking	b locking	n on- b locking		
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs -	── LRUв	LRUNB CRUNB DRUNB	−• − LRСв	—— LRCnb — ▲— CRCnb — — DRCnb	—— LSB	LSNB - A- CSNB - B- DSNB	·· AHL (reference committee)	

Performance Evaluation: Results : Contention

	Isolation-Fr	ee execution		Lock-based execution						
	(write uncommitted)		Read Uncommitted		Read Committed		Serializable			
	u nsafe	safe	b locking	n on- b locking	b locking	n on- b locking	b locking	n on- b locking		
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	− •− LRUв	LRUNB - ▲- CRUNB DRUNB	−• − LRСв	—— LRCNB — ▲— CRCNB — ■— DRCNB	→ LSB	LSNB - A- CSNB - B- DSNB	··• AHL (reference committee)	

Performance Evaluation: Results : Contention

	Isolation-Fr	ee execution				Lock-based exec	ution		
	(write uncommitted)		Read Uncommitted		Read Committed		S erializable		
	u nsafe	safe	b locking	non-blocking	b locking	non-blocking	b locking	n on- b locking	
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	→ LRUB	- LRUNB - ▲- CRUNB - ■- DRUNB	─ - LRСв	- LRCnb - A- CRCnb - B- DRCnb	—— LSB	LSNB - A- CSNB - B- DSNB	··• AHL (reference committee)

Performance Evaluation: Results : Contention

	Isolation-Fr	ee execution				Lock-based exec	ution		
	(write uncommitted)		Read Uncommitted		Read Committed		S erializable		
	u nsafe	safe	b locking	non-blocking	b locking	n on- b locking	b locking	n on- b locking	
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	── LRUв	- LRUNB - ▲- CRUNB - ■- DRUNB	─• LRСв	- LRCNB - ▲- CRCNB - ■- DRCNB	—— LSB	- LSnb - ▲- CSnb - ■- DSnb	·· AHL (reference committee)

Performance Evaluation: Results: Factor-Scalability

	Isolation-Fr	ee execution		Lock-based execution						
	(write uncommitted)		Read Uncommitted		Read Committed		Serializable			
	u nsafe	safe	b locking	n on- b locking	b locking	n on- b locking	b locking	n on- b locking		
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	− •− LRUв	LRUNB - ▲- CRUNB DRUNB	−• − LRСв	—— LRCNB — ▲— CRCNB — ■— DRCNB	→ LSB	LSNB - A- CSNB - B- DSNB	··• AHL (reference committee)	

Performance Evaluation: Results: Factor-Scalability

	Isolation-Fr	ee execution				Lock-based exec	ution		
	(write uncommitted)		Read Uncommitted		Read Committed		S erializable		
	u nsafe	safe	b locking	non-blocking	b locking	non-blocking	b locking	n on- b locking	
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	── LRUв	LRUNB - ▲- CRUNB DRUNB	−• − LRСв	—— LRCnb — ← CRCnb — DRCnb	—— LSB	LSNB -	AHL (reference committee)

Performance Evaluation: Results : Factor-Scalability

	Isolation-Fr	ee execution				Lock-based exec	ution		
	(write uncommitted)		Read Uncommitted		Read Committed		Serializable		
	u nsafe	safe	b locking	non-blocking	b locking	non-blocking	b locking	n on- b locking	
Linear Centralized Distributed	- ← LIFu - ▲ - CIFu - ■ - DIFu	LIFs - LIFs - DIFs	── LRUв	- LRUNB - ▲- CRUNB - ■- DRUNB	─• LRСв	- LRCNB - ▲- CRCNB - ■- DRCNB	—— LSB	- LSnb - ▲- CSnb - ■- DSnb	·· AHL (reference committee)

THANK YOU!

