The group G is isomorphic to the group labelled by [16, 5] in the Small Groups library. Ordinary character table of $G \cong C8 \times C2$:

	1a	8 <i>a</i>	4a	8b	2a	8c	4b	8 <i>d</i>	2b	8e	4c	8 <i>f</i>	2c	8g	4d	8h
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
<i>χ</i> 3	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
χ_4	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
χ_5	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
χ_6	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
χ_7	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)
χ_8	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)
χ_9	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^3$
χ_{10}	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$
χ_{11}	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$
χ_{12}	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^3$
χ_{13}	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)
χ_{14}	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)
χ_{15}	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)
χ_{16}	1	$-E(8)^3$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)

Trivial source character table of $G \cong C8 \times C2$ at p = 2:

Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}
p-subgroups of G up to conjugacy in G				P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}
Representatives $n_j \in N_i$		1a	1 <i>a</i>								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16}$	16	0	0	0	0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}}$	8	8	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	8	0	8	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16}$	8	0	0	8	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	4	4	0	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	4	4	4	4	0	4	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	4	4	0	0	0	0	4	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	2	2	0	0	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	2	2	2	2	2	2	2	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	2	2	0	0	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	1	1	1	1	1	1	1	1	1	1	1

```
\begin{split} P_2 &= Group([(3,7)(4,8)(5,9)(6,10)]) \cong C2 \\ P_3 &= Group([(1,2)]) \cong C2 \\ P_4 &= Group([(1,2)(3,7)(4,8)(5,9)(6,10)]) \cong C2 \\ P_5 &= Group([(3,7)(4,8)(5,9)(6,10),(3,5,7,9)(4,6,8,10)]) \cong C4 \\ P_6 &= Group([(3,7)(4,8)(5,9)(6,10),(1,2)]) \cong C2 \times C2 \\ P_7 &= Group([(3,7)(4,8)(5,9)(6,10),(1,2)(3,5,7,9)(4,6,8,10)]) \cong C4 \\ P_8 &= Group([(3,7)(4,8)(5,9)(6,10),(3,5,7,9)(4,6,8,10),(3,4,5,6,7,8,9,10)]) \cong C8 \\ P_9 &= Group([(3,7)(4,8)(5,9)(6,10),(3,5,7,9)(4,6,8,10),(1,2)]) \cong C4 \times C2 \\ P_{10} &= Group([(3,7)(4,8)(5,9)(6,10),(3,5,7,9)(4,6,8,10),(1,2)(3,4,5,6,7,8,9,10)]) \cong C8 \\ P_{11} &= Group([(3,7)(4,8)(5,9)(6,10),(3,5,7,9)(4,6,8,10),(1,2)(3,4,5,6,7,8,9,10)]) \cong C8 \times C2 \end{split}
```

```
\begin{split} N_1 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_2 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_3 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_4 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_5 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_6 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_7 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_8 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_9 &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_{10} &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_{11} &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ N_{11} &= Group([(1,2),(3,4,5,6,7,8,9,10)]) \cong \operatorname{C8} \times \operatorname{C2} \\ \end{split}
```

 $P_1 = Group([()]) \cong 1$