ON au-TILTING GRAPHS OF au-TILTING FINITE ALGEBRAS

CHANGJIAN FU, SHENGFEI GENG, AND PIN LIU

Dedicated to our teacher Liangang Peng on the occasion of his 65th Birthday

ABSTRACT. This note shows that the exchange graphs of support τ -tilting modules over τ -tilting finite algebras have the non-leaving-face property, namely, any geodesic connecting two vertices stays in the minimal face containing both.

1. Introduction

For a reasonably complete discussion of the history of abstract exchange graphs, see the introduction in [2]. Here, we just remark that the exchange graph of a cluster algebra encodes the combinatorics of cluster mutations and the exchange graphs stemming from representation theory such as exchange graphs of support τ -tilting modules over finite dimensional algebras play an important role in categorification of cluster algebras. In [11], along with Y. Zhou, we introduced the reachable-in-face property for abstract exchange graphs and showed that the exchange graph of support τ -tilting modules over a finite dimensional gentle algebra is connected and has the reachable-in-face property. The reachable-in-face property for exchange graphs of cluster algebras was conjectured by Fomin and Zelevinsky in 2003 and has been proved recently by Cao and Li [5, Theorem 10. Another interesting phenomenon called the non-leaving-face property first appeared in [14]. It has transpired since that it naturally appears in many different contexts; these include generalized associahedra of finite types [7, 15] and exchange graphs arising from marked surfaces [3]. It is also known that there are examples related to the associahedron which do not satisfy the non-leaving-face property (cf. [7]). The non-leaving-face property implies the reachable-in-face property, but the converse is not true. In [10], we proved that for any cluster algebra, the exchange graph has the non-leaving-face property.

This note continues our study of (abstract) exchange graphs in [11, 10]. Here we study τ -tilting finite algebras, that is, finite dimensional algebras with finitely many isomorphism classes of indecomposable τ -rigid modules (the terminology will be recalled later). The main contribution of this note is Theorem 3.8, in which we prove that for τ -tilting finite algebras, the exchange graphs of support τ -tilting modules have the

Date: January 5, 2023.

²⁰²⁰ Mathematics Subject Classification. 05E10, 16G60.

Key words and phrases. exchange graph, non-leaving-face property, τ -tilting theory.

Partially supported by the National Natural Science Foundation of China (Grant No. 11971326, 12071315, 12171397).

non-leaving-face property. As a consequence, we obtain a uniform proof for that W-permutahedron and W-associahedron have the non-leaving-face property, where W is a finite Weyl group.

2. Background on exchange graphs and τ -tilting theory

- 2.1. Background on exchange graphs and non-leaving-face property. As in [2], let V be a non-empty set with a reflexive and symmetric relation R. Two elements x and y of V are compatible if $(x, y) \in R$. Assume (V, R) satisfies the following conditions:
 - All maximal subsets of pairwise compatible elements are finite and have the same cardinality, say n. We refer the subsets *clusters*;
 - Any subset of n-1 pairwise compatible elements is contained in precisely two clusters.

The exchange graph \mathcal{H} of (V, R) is defined to be the graph whose vertices are the clusters and where two vertices are joined by an edge if and only if their intersection has cardinality n-1. In fact, the exchange graph \mathcal{H} has the structure of an abstract polytope. A face \mathcal{F} of \mathcal{H} is a full subgraph of \mathcal{H} such that

- there is a subset U of pairwise compatible elements;
- the vertices of \mathcal{F} are precisely the clusters containing U as a subset.

Clearly, \mathcal{F} is uniquely determined by U and we denote it by \mathcal{F}_U . The inclusion of sets induces a partial order on faces. Namely, we say $\mathcal{F}_U \leq \mathcal{F}_V$ if $V \subseteq U$.

For two cluster v_1 and v_2 , we write for $v_1 - v_2$ to indicate that they are linked by an edge. A path

$$v = v_1 - v_2 - \cdots - v_m = w$$

from v to w is a *geodesic* connecting vertices v and w, if the length of the path is minimal. We remark that the graph \mathcal{H} may not be connected.

We now recall non-leaving-face property from [7].

Definition 2.1. If any geodesic connecting two vertices in \mathcal{H} lies in the minimal face containing both, then we say that \mathcal{H} has non-leaving-face property.

The following definition is useful to investigate the non-leaving-face property (cf. [14, 7, 15, 3]).

Definition 2.2. Let \mathcal{H} be an exchange graph and \mathcal{F} a face of \mathcal{H} . We say a map $P: \mathcal{H} \to \mathcal{F}$ is a *projection* if the following conditions are satisfied:

- (P1) P(v) is a vertex in \mathcal{F} for each vertex $v \in \mathcal{H}$;
- (P2) P(v) = v whenever $v \in \mathcal{F}$;
- (P3) P sends edges in \mathcal{H} to edges or vertices in \mathcal{F} . Namely, if v w is an edge in \mathcal{H} , then either P(v) = P(w) or P(v) P(w) is an edge of \mathcal{F} ;
- (P4) if v w is an edge in \mathcal{H} such that $v \in \mathcal{F}$ but $w \notin \mathcal{F}$, then P(v) = P(w).

The following result is obvious.

Lemma 2.3. Let \mathcal{H} be an exchange graph. If there exists a projection for each face \mathcal{F} , then \mathcal{H} has non-leaving-face property.

2.2. Background on τ -tilting theory. We recall the basic definitions concerning τ -tilting theory. Almost all of this material can be found in [1]. Let k be a field. Let A be a finite-dimensional k-algebra and $\operatorname{mod} A$ the category of finitely generated right A-modules. For a module M in $\operatorname{mod} A$, the symbol |M| denotes the number of pairwise non-isomorphic indecomposable direct summands of M. We say that M is basic if the number of indecomposable direct summands of M equals |M|. For our purposes it is sufficient to consider basic modules unless otherwise stated.

Let τ be the Auslander-Reiten translation of $\mathbf{mod} A$. We say that M is τ -rigid if $\mathsf{Hom}_A(M, \tau M) = 0$. Let P be a projective A-module. We say that (M, P) is a τ -rigid pair if M is τ -rigid and $\mathsf{Hom}_A(P, M) = 0$. We call (M, P) a support τ -tilting pair (or simply, τ -tilting pair) if (M, P) is a τ -rigid pair and |M| + |P| = |A|. It is known that in this case P is uniquely determined by M and M is called a support τ -tilting A-module.

We say that a τ -rigid pair (M,P) is almost complete τ -tilting if |M|+|P|=|A|-1. In this case, for an indecomposable module X, we say that (X,0) (respectively, (0,X)) is a complement of (U,P) if $(U\oplus X,P)$ (respectively, $(U,P\oplus X)$) is a τ -tilting pair, which we call a completion of (U,P). It is well-known now that any almost complete τ -tilting pair has precisely two complements [1]. Suppose that (X,R) and (X',R') are just the two complements of an almost complete τ -tilting pair (U,P), denote by $(M,Q)=(U,P)\oplus (X,R)$ and $(M',Q')=(U,P)\oplus (X',R')$, (M,Q) and (M',Q') are called mutations of each other, written as $\mu_{(X,R)}(M,Q)=(M',Q')$. Since Q (resp. Q') is uniquely determined by M (resp. M'), we also call M and M' are mutations of each other, simply written as $\mu_{(X,R)}(M)=M'$.

We now introduce the following relation R_A on the set of indecomposable τ -rigid pairs:

• two τ -rigid pairs (X_1, Q_1) and (X_2, Q_2) have the relation R_A if they are both direct summands of the same support τ -tilting pair (M, P).

According to [1], as in Section 2.1, we can associate with the relation R_A an exchange graph \mathcal{H}_A whose vertices are basic support τ -tilting pairs and there is an edge between two non-isomorphic support τ -tilting pairs if and only if they are mutations of each other. Since each basic support τ -tilting pair is uniquely determined by the part of its support τ -tilting module, so the vertices of \mathcal{H}_A can be think as the support τ -tilting Λ -modules and there is an edge between two non-isomorphic support τ -tilting modules if and only if they are mutations of each other.

3. Non-leaving-face property for τ -tilting finite algebras

3.1. τ -perpendicular categories and torsion classes. We retain all the notation of the preceding section. Recall that for any M in $\mathbf{mod} A$, we have a torsion class (that is, a subcategory closed under extensions, factor modules and isomorphisms)

$$^{\perp}M = \{ X \in \mathbf{mod}A | \operatorname{Hom}(X, M) = 0 \},$$

and a torsionfree class (that is, a subcategory closed under extensions, submodules and isomorphisms)

$$M^{\perp} = \{ X \in \mathbf{mod}A | \operatorname{Hom}(M, X) = 0 \}.$$

Let $\mathbf{Fac}\ M$ (respectively, $\mathbf{Sub}\ M$) denote the subcategory of $\mathbf{mod}\ A$ consisting of factor modules (respectively, submodules) of direct sums of copies of M. Recall that, for torsion classes \mathcal{T} , being functorially finite is equivalent to the existence of M in $\mathbf{mod}\ A$ such that $\mathcal{T} = \mathbf{Fac}\ M$. We say that an A-module $M \in \mathcal{T}$ is \mathbf{Ext} -projective in \mathcal{T} if for all $N \in \mathcal{T}$ we have $\mathbf{Ext}_A^1(M,N) = 0$. We denote the full subcategory of $\mathbf{mod}\ A$ consisting of all modules which are direct sums of direct summands of M by $\mathbf{add}\ M$. It is well-known that for a functorially finite torsion class \mathcal{T} , there is a basic A-module $P(\mathcal{T}) \in \mathcal{T}$ such that $\mathbf{Fac}\ P(\mathcal{T}) = \mathcal{T}$ and $\mathbf{add}\ P(\mathcal{T})$ coincides with the class of \mathbf{Ext} -projective A-modules in \mathcal{T} . We refer to $P(\mathcal{T})$ as the \mathbf{Ext} -progenerator of \mathcal{T} . By [1], $P(\mathcal{T})$ is a support τ -tilting A-module. Now one can introduce a partial order in the set of support τ -tilting modules. Namely, if M and N are support τ -tilting A-modules, then

• $M \leq N$ if and only if $\mathbf{Fac} M \subseteq \mathbf{Fac} N$.

In particular, if M is a mutation of N, by [1], we either have $M \leq N$ or $N \leq M$. Let (U,Q) be a basic τ -rigid pair of A-modules. We associate to (U,Q) a subcategory $\mathcal{W}_{(U,Q)}$ of $\mathbf{mod} A$ given by

$$\begin{split} \mathcal{W}_{(U,Q)} &= U^\perp \cap^\perp \tau U \cap Q^\perp \\ &= \{X \in \mathbf{mod} A | \operatorname{Hom}(U,X) = 0, \operatorname{Hom}(X,\tau U) = 0, \operatorname{Hom}(Q,X) = 0\}. \end{split}$$

We refer to $W_{(U,Q)}$ as the τ -perpendicular category of (U,Q). It is easy to get that $W_{(U,Q)}$ has the following basic property (cf. [13]).

Lemma 3.1. Let $0 \to X \to Y \to Z \to 0$ be an exact sequence in **mod**A. If any two of X, Y and Z belong to $W_{(U,Q)}$, then so does the third one.

Note that $W_{(U,Q)}$ is closed under extensions in $\mathbf{mod}\ A$, Lemma 3.1 implies that $W_{(U,Q)}$ admits a natural structure of exact category such that admissible epimorphisms (respectively, admissible monomorphisms) in $W_{(U,Q)}$ are exactly epimorphisms (respectively, monomorphisms) in $\mathbf{mod}\ A$ between modules in $W_{(U,Q)}$. As in [13, Definition 3.9], a full subcategory \mathcal{G} is called a torsion class in $W_{(U,Q)}$ if for any admissible exact sequence $0 \to X \to Y \to Z \to 0$ in $W_{(U,Q)}$, it satisfies the following conditions:

• $X, Z \in \mathcal{G}$ implies that $Y \in \mathcal{G}$.

• $Y \in \mathcal{G}$ implies that $Z \in \mathcal{G}$.

The following lemma is easy.

Lemma 3.2. If \mathcal{T} is a torsion class in $\operatorname{mod} A$, then $\mathcal{T} \cap \mathcal{W}_{(U,Q)}$ is a torsion class in $\mathcal{W}_{(U,Q)}$.

We denote by **tors** A the set of torsion classes in **mod** A and by **tors** $W_{(U,Q)}$ the set of torsion classes in $W_{(U,Q)}$. If \mathcal{X} and \mathcal{Y} are two subcategories of **mod** A, then we denote by $\mathcal{X} * \mathcal{Y}$ the full subcategory of **mod** A given by all A-modules A such that there exist $X \in \mathcal{X}, Y \in \mathcal{Y}$ and a short exact sequence

$$0 \to X \to M \to Y \to 0$$
.

Lemma 3.3. If \mathcal{G} is a torsion class in $\mathcal{W}_{(U,Q)}$, then $(\mathbf{Fac}\,U) * \mathcal{G}$ is a torsion class in $\mathbf{mod}\,A$ such that $\mathbf{Fac}\,U \subseteq (\mathbf{Fac}\,U) * \mathcal{G} \subseteq {}^{\perp}\tau U \cap Q^{\perp}$. Moreover, there is an order-preserving bijection

$$\operatorname{red}: \{ \mathcal{T} \in \operatorname{tors} A \mid \operatorname{Fac} U \subseteq \mathcal{T} \subseteq {}^{\perp} \tau U \cap Q^{\perp} \} \to \operatorname{tors} \mathcal{W}_{(U,Q)},$$

where red is given by $\operatorname{red}(\mathcal{T}) := \mathcal{T} \cap U^{\perp}$ with inverse $\operatorname{red}^{-1}(\mathcal{G}) := (\operatorname{Fac} U) * \mathcal{G}$.

Proof. Note that Q is a projective module, the same argument given for [13, Proposition 3.26, Theorem 3.12] also applies here.

Remark 3.4. Let (U,Q) be a basic τ -rigid pair of A-modules and \mathcal{T} a functorially finite torsion class in $\operatorname{mod} A$. Note that $P(\mathcal{T})$ is a support τ -tilting A-module. We refer to $(P(\mathcal{T}), Q')$ as the associated basic τ -tilting pair of \mathcal{T} . Then $\operatorname{Fac} U \subseteq \mathcal{T} \subseteq {}^{\perp}\tau U \cap Q^{\perp}$ if and only if (U,Q) is a direct summand of $(P(\mathcal{T}), Q')$.

3.2. Main results. In this section we consider τ -tilting finite algebras. First recall that a finite dimensional algebra A is τ -tilting finite if there are only finitely many isomorphism classes of basic τ -tilting A-modules ([8, Definition 1.1]). The most important thing for us is that according to [8, Theorem 3.8], any torsion class in $\operatorname{mod} A$ is functorially finite whence A is τ -tilting finite.

Let (U, Q) be a basic τ -rigid pair, let $\mathcal{F} = \mathcal{F}_{(U,Q)}$ be a face determined (U, Q), that is, a subgraph of \mathcal{H}_A consisting of support τ -tilting A-pairs that contain (U, Q) as a direct summand. Define a map $P_{(U,Q)} : \mathcal{H}_A \to \mathcal{F}_{(U,Q)}$ given by

(3.1)
$$M \mapsto P((\mathbf{Fac}\,U) * ((\mathbf{Fac}\,M) \cap \mathcal{W}_{(U,Q)}))$$

where $P(\mathcal{T})$ is the Ext-progenerator of a torsion class \mathcal{T} .

Lemma 3.5. If
$$M \in \mathcal{F}_{(U,Q)}$$
, then $P_{(U,Q)}(M) = M$.

Proof. The condition $M \in \mathcal{F}_{(U,Q)}$ implies that M is a support τ -tilting A-module which contains U as a direct summand and $\mathsf{Hom}(Q,M) = 0$. An easy check shows that

(3.2)
$$\operatorname{Fac} U \subseteq \operatorname{Fac} M \subseteq {}^{\perp}\tau U \cap Q^{\perp}.$$

Then by Lemma 3.3,

$$\begin{split} P_{(U,Q)}(M) &= P((\mathbf{Fac}\,U) * (\mathbf{Fac}\,M \cap \mathcal{W}_{(U,Q)})) \\ &= P((\mathbf{Fac}\,U) * (\mathbf{Fac}\,M \cap U^{\perp})) \\ &= P((\mathbf{Fac}\,U) * (\mathbf{red}(\mathbf{Fac}\,M))) \\ &= P(\mathbf{red}^{-1}(\mathbf{red}(\mathbf{Fac}\,M))) \\ &= P(\mathbf{Fac}\,M) = M. \end{split}$$

Lemma 3.6. If $M \longrightarrow M'$ is an edge in \mathcal{H}_A , then either $P_{(U,Q)}(M) = P_{(U,Q)}(M')$ or $P_{(U,Q)}(M) \longrightarrow P_{(U,Q)}(M')$ is an edge in $\mathcal{F}_{(U,Q)}$.

Proof. We recall from [8, Example 3.5] that if M - M' is an edge in \mathcal{H}_A , then there are no torsion classes in $\operatorname{mod} A$ between $\operatorname{Fac} M'$ and $\operatorname{Fac} M$. Without loss of generality, we assume that M' < M. Recall that $\mathcal{W}_{(U,Q)} = U^{\perp} \cap^{\perp} \tau U \cap Q^{\perp}$ is the τ -perpendicular category of (U,Q). An easy check shows that there is no other torsion class $\mathcal{N} \in \operatorname{tors} \mathcal{W}_{(U,Q)}$ such that

(3.3)
$$(\mathbf{Fac}\,M') \cap \mathcal{W}_{(U,Q)} \subsetneq \mathcal{N} \subsetneq (\mathbf{Fac}\,M) \cap \mathcal{W}_{(U,Q)}.$$

As in [8, Theorem 3.1], if neither $P_{(U,Q)}(M) = P_{(U,Q)}(M')$ nor $P_{(U,Q)}(M) \longrightarrow P_{(U,Q)}(M')$ is an edge in $\mathcal{F}_{(U,Q)}$, there exists some torsion class \mathcal{T} such that

$$\operatorname{Fac} P_{(U,Q)}(M') \subsetneq \mathcal{T} \subsetneq \operatorname{Fac} P_{(U,Q)}(M).$$

So $\mathbf{Fac} U \subseteq \mathcal{T} \subseteq \tau U^{\perp} \cap Q^{\perp}$ and $\mathbf{red} (\mathcal{T}) = \mathcal{T} \cap U^{\perp} = \mathcal{T} \cap \mathcal{W}_{(U,Q)}$. By Lemma 3.3 the bijection \mathbf{red} is order-preserving, we have

(3.4)
$$\operatorname{red}(\operatorname{Fac} P_{(U,Q)}(M')) \subsetneq \operatorname{red}(\mathcal{T}) \subsetneq \operatorname{red}(\operatorname{Fac} P_{(U,Q)}(M)).$$

Note that

$$\begin{split} \mathbf{red}(\mathbf{Fac}\,P_{(U,Q)}(M')) &= \mathbf{red}((\mathbf{Fac}\,U) * ((\mathbf{Fac}\,M') \cap \mathcal{W}_{(U,Q)})) \\ &= \mathbf{red}(\mathbf{red}^{-1}((\mathbf{Fac}\,M') \cap \mathcal{W}_{(U,Q)})) \\ &= (\mathbf{Fac}\,M') \cap \mathcal{W}_{(U,Q)}, \end{split}$$

(3.4) implies that

$$(3.5) (\mathbf{Fac}\,M') \cap \mathcal{W}_{(U,Q)} \subsetneq \mathcal{T} \cap \mathcal{W}_{(U,Q)} \subsetneq (\mathbf{Fac}\,M) \cap \mathcal{W}_{(U,Q)},$$

which contradicts (3.3).

Lemma 3.7. If $M \in \mathcal{F}_{(U,Q)}$ and (X,R) is an indecomposable direct summand of (U,Q), then $P_{(U,Q)}(\mu_{(X,R)}(M)) = M$.

Proof. We work with an edge $M - \mu_{(X,R)}(M)$ in \mathcal{H}_A . By Lemma 3.5, we just need to prove that $P_{(U,Q)}(\mu_{(X,R)}(M)) = P_{(U,Q)}(M)$.

We have either $\mu_{(X,R)}(M) < M$ or $M < \mu_{(X,R)}(M)$. Let's consider the former case first. Write $M = \bar{M} \oplus X$ and $\mu_{(X,R)}(M) = \bar{M} \oplus X'$. Clearly we have

$$(\operatorname{\mathbf{Fac}} \bar{M}) \cap \mathcal{W}_{(U,Q)} \subseteq (\operatorname{\mathbf{Fac}} M) \cap \mathcal{W}_{(U,Q)}.$$

Let Z be an object in $(\mathbf{Fac}\,M) \cap \mathcal{W}_{(U,Q)} = (\mathbf{Fac}\,M) \cap^{\perp} \tau U \cap U^{\perp} \cap Q^{\perp}$, then $Z \in \mathbf{Fac}\,M$ implies that there is a surjective map $(\bar{M} \oplus X)^r = M^r \twoheadrightarrow Z$. Note that X is a direct summand of U and $Z \in U^{\perp}$, we have $\mathsf{Hom}(X,Z) = 0$ and then a surjective map $\bar{M}^r \twoheadrightarrow Z$. That is, $Z \in (\mathbf{Fac}\,\bar{M}) \cap^{\perp} \tau U \cap U^{\perp} \cap Q^{\perp} = (\mathbf{Fac}\,\bar{M}) \cap \mathcal{W}_{(U,Q)}$. It follows that

$$(\mathbf{Fac}\,M)\cap\mathcal{W}_{(U,Q)}\subseteq(\mathbf{Fac}\,\bar{M})\cap\mathcal{W}_{(U,Q)},$$

and so

(3.6)
$$(\mathbf{Fac}\,M) \cap \mathcal{W}_{(U,Q)} = (\mathbf{Fac}\,\bar{M}) \cap \mathcal{W}_{(U,Q)}.$$

Note that $\mu_{(X,R)}(M) = \bar{M} \oplus X' < M$, we have

$$(\mathbf{Fac}\,\bar{M})\cap\mathcal{W}_{(U,Q)}\subseteq\mathbf{Fac}(\mu_{(X,R)}(M))\cap\mathcal{W}_{(U,Q)}\subseteq(\mathbf{Fac}\,M)\cap\mathcal{W}_{(U,Q)}.$$

Then (3.6) implies that

$$(\mathbf{Fac}\,M)\cap\mathcal{W}_{(U,O)}=\mathbf{Fac}(\mu_{(X,R)}(M))\cap\mathcal{W}_{(U,O)},$$

and so

$$P_{(U,Q)}(\mu_{(X,R)}(M)) = P_{(U,Q)}(M).$$

Now suppose that $M < \mu_{(X,R)}(M)$. Then

$$\operatorname{Fac} M \subseteq \operatorname{Fac}(\mu_{(X,R)}(M)).$$

Since $\operatorname{\mathbf{Fac}} M \subseteq {}^{\perp} \tau U \cap Q^{\perp}$, we have

(3.7)
$$\operatorname{\mathbf{Fac}} M \subseteq \operatorname{\mathbf{Fac}}(\mu_{(X,R)}(M)) \cap^{\perp} \tau U \cap Q^{\perp} \subseteq \operatorname{\mathbf{Fac}}(\mu_{(X,R)}(M)).$$

On the other hand, $\mu_{(X,R)}(M)$ is a mutation of M, there is no other torsion class between $\mathbf{Fac} M$ and $\mathbf{Fac}(\mu_{(X,R)}(M))$. Since the intersection of two torsion classes is a torsion class, it follows from (3.7) that either

Fac
$$M = \mathbf{Fac}(\mu_{(X,R)}(M)) \cap^{\perp} \tau U \cap Q^{\perp}$$

or

$$\mathbf{Fac}(\mu_{(X,R)}(M)) \cap^{\perp} \tau U \cap Q^{\perp} = \mathbf{Fac}(\mu_{(X,R)}(M)).$$

But (U, Q) is not a direct summand of the basic τ -tilting pair associated with $\mathbf{Fac}\,\mu_{(X,R)}(M)$, then $\mathbf{Fac}(\mu_{(X,R)}(M)) \cap^{\perp} \tau U \cap Q^{\perp} \neq \mathbf{Fac}(\mu_{(X,R)}(M))$ (cf. Remark 3.4) and so

$$\mathbf{Fac}\,M = \mathbf{Fac}(\mu_{(X,R)}(M)) \cap^{\perp} \tau U \cap Q^{\perp}.$$

We have

$$(\mathbf{Fac}\,U) * (\mathbf{Fac}\,M \cap \mathcal{W}_{(U,Q)}) = (\mathbf{Fac}\,U) * (\mathbf{Fac}(\mu_{(X,R)}(M)) \cap^{\perp} \tau U \cap Q^{\perp} \cap \mathcal{W}_{(U,Q)})$$
$$= (\mathbf{Fac}\,U) * (\mathbf{Fac}(\mu_{(X,R)}(M)) \cap \mathcal{W}_{(U,Q)}).$$

That is,
$$P_{(U,Q)}(\mu_{(X,R)}(M)) = P_{(U,Q)}(M)$$
.

We are now ready to state the main result of this note.

Theorem 3.8. Let A be a τ -tilting finite algebra. Then the exchange graph \mathcal{H}_A of support τ -tilting A-modules has the non-leaving-face property.

Proof. Let (U, Q) be a basic τ -rigid pair, $\mathcal{F}_{(U,Q)}$ be a face determined by (U, Q). By Lemma 3.5, Lemma 3.6 and Lemma 3.7, the map $P_{(U,Q)}: \mathcal{H}_A \to \mathcal{F}_{(U,Q)}$ given by (3.1) is a projection required in Lemma 2.3, finishing the proof.

Remark 3.9. As in [10], the image $P_{(U,Q)}(M)$ under the projection $P_{(U,Q)}$ can be understood as the Bongartz completion of (U,Q) with respect to M. Indeed, a notion of relative Bongartz completion for τ -tilting theory has been introduced in [6] under a mild condition. In the case of τ -tilting finite algebras, $P_{(Q,U)}(M)$ is precisely the left Bongartz completion of (U,Q) with respect to M.

Remark 3.10. The relative (co)-Bongartz completions have been well-studied for 2-Calabi-Yau triangulated categories with cluster-tilting objects in [4]. Combining results in [4, Section 4] with Lemma 2.3 implies that for any 2-Calabi-Yau tilted algebra, the τ -tilting graph has the non-leaving-face property. Results in [4, Section 4] can be generalized to any 2-Calabi-Yau category along with the work [16]. In particular, this implies that the exchange graph of support τ -tilting modules over the endomorphism algebra of a basic maximal rigid object in a 2-Calabi-Yau category has the non-leaving-face property.

3.3. **Application.** Let C be an $n \times n$ Cartan matrix of Dynkin type and W the associated Weyl group. Denote by $S \subset W$ the set of simple reflections. There are two classic polytopes, the W-permutahedron $\mathbf{Perm}(W)$ and the W-associahedron $\mathbf{Asso}(W)$, assoicatied to (W, S). The W-permutahedron $\mathbf{Perm}(W)$ has vertices in bijection with elements $w \in W$ and its faces are parametrized by the coset W/W_T for $T \subseteq S$, where W_T is the subgroup of W generated by elements in T. The W-associahedron $\mathbf{Asso}(W)$ has many different realizations, we refer to [15] for a definition and only mention that $\mathbf{Asso}(W)$ coincides with the exchange graph of a cluster algebra of finite type. As an application of Theorem 3.8, we obtain a uniform proof of the following result.

Corollary 3.11. [15, Theorem 3.2, Theorem 4.7] W-permutahedra and W-associahedra have the non-leaving-face property.

Proof. It is known that the exchange graph of a cluster algebra of finite type is isomorphic to the exchange graph of support τ -tilting modules of a τ -tilting finite algebra A. We conclude that W-associahedra have the non-leaving-face property by Theorem 3.8.

Now let $\mathbf{Perm}(W)$ be the W-permutahedron assoicated to (W,S) and C is the $n \times n$ Cartan matrix. Let D be a symmetrizer of C. Denote by $\Pi(C,D)$ the generalized preprojective algebra associated with (C,D) introduced by Geiß, Leclerc and Schröer [12], which is τ -tilting finite. It has been proved in [9] that there is a bijection between W and the set of basic support τ -tilting $\Pi(C,D)$ -modules. For each $w \in W$, denote by I_w the corresponding support τ -tilting module. According to [9, Thoerem 5.6] and its proof, the map $w \mapsto I_{w^{-1}}$ induces an isomorphism of polytopes between $\mathbf{Perm}(W)$ and $\mathcal{H}_{\Pi(C,D)}$. It follows from Theorem 3.8 that the W-permutahedrom $\mathbf{Perm}(W)$ has the non-leaving-face property.

References

- [1] Takahide Adachi, Osamu Iyama, and Idun Reiten. τ -tilting theory. Compositio Mathematica, 150(3):415–452, 2014.
- [2] Thomas Brüstle and Dong Yang. Ordered exchange graphs. Advances in representation theory of algebras, EMS Ser. Congr. Rep.,:135–193, 2013.
- [3] Thomas Brüstle and Jie Zhang. Non-leaving-face property for marked surfaces. Front. Math. China, 14(3):521–534, 2019.
- [4] Peigen Cao. G-systems. Advances in Mathematics, 377(107500), 2021.
- [5] Peigen Cao and Fang Li. The enough g-pairs property and denominator vectors of cluster algebras. Mathematische Annalen, 377:1547–1572, 2020.
- [6] Peigen Cao, Yu Wang, and Houjun Zhang. Relative left bongartz completions and their compatibility with mutations. *preprint*, arXiv: 2209.01043, 2022.
- [7] Cesar Ceballos and Vincent Pilaud. The diameter of type d associahedra and the non-leaving-face property. European Journal of Combinatorics, 51:109–124, 2016.
- [8] Laurent Demonet, Osamu Iyama, and Gustavo Jasso. τ -tilting finite algebras, bricks, and g-vectors. International Mathematics Research Notices, 2019(3):852–892, 2019.
- [9] Changjian Fu and Shengfei Geng. Tilting modules and support τ -tilting modules over preprojective algebras associated with symmetrizable cartan matrices. Algebras and Representation Theory, 22(5):1239–1260, 2019.
- [10] Changjian Fu, Shengfei Geng, and Pin Liu. Exchange graphs of cluster algebras have the non-leaving face property. *preprint*, arXiv: 2207.05555, 2022.
- [11] Changjian Fu, Shengfei Geng, Pin Liu, and Yu Zhou. On support τ -tilting graphs of gentle algebras. preprint, arXiv: 2108.01925, 2021.
- [12] Christof Geiss, Bernard Leclerc, and Jan Schröer. Quivers with relations for symmetrizable Cartan matrices I: Foundations. *Inventiones mathematicae*, 209(1):61–158, 2017.
- [13] Gustavo Jasso. Reduction of τ -tilting modules and torsion pairs. International Mathematics Research Notices, 2015(16):7190–7237, 2015.
- [14] Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, triangulations, and hyperbolic geometry. *Journal of the American Mathematical Society*, 1(3):647–681, 1988.
- [15] Nathan Williams. W-associahedra have the non-leaving-face property. European Journal of Combinatorics, 62:272–285, 2017.

[16] Yu Zhou and Bin Zhu. Maximal rigid subcategories in 2-Calabi–Yau triangulated categories. *Journal of Algebra*, 348(1):49–60, 2011.

Changjian Fu, Department of Mathematics, SiChuan University, 610064 Chengdu, P.R.China

 $Email\ address: \verb|changjianfu@scu.edu.cn|$

Shengfei Geng, Department of Mathematics, SiChuan University, 610064 Chengdu, P.R.China

Email address: genshengfei@scu.edu.cn

Pin Liu, Department of Mathematics, Southwest Jiaotong University, 610031 Chengdu, P.R.China

 $Email\ address: {\tt pinliu@swjtu.edu.cn}$