Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2019

CS3CO27 / IT3CO17 Compiler Design

Programme: B.Tech. Branch/Specialisation: CS/IT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. A grammar that produces more than one parse tree for some sentence 1 is called
 - (a) Ambiguous
- (b) Unambiguous

(c) Regular

- (d) None of these
- i. A finite automata recognizes
 - (a) Any Language
- (b) Context Sensitive Language
- (c) Context free Language
- (d) Regular Language
- iii. The symbol table implementation is based on the property of locality 1 of reference is
 - (a) Linear list
- (b) Search tree
- (c) Hash Table
- (d) Self Organisation
- iv. A system program that combines separately compiled modules of a 1 program into a form suitable for execution is
 - (a) Assembler
- (b) Linking loader
- (c) Cross compiler
- (d) None of these
- v. Which of the following describes a handle (as applicable to LR- 1 parsing) appropriately?
 - (a) It is the position in a sentential form where the next shift or reduce operation will occur
 - (b) It is non-terminal whose production will be used for reduction in the next step
 - (c) It is a production that may be used for reduction in a future step along with a position in the sentential form where the next shift or reduce operation will occur
 - (d) It is the production p that will be used for reduction in the next step along with a position in the sentential form where the righthand side of the production may be found

P.T.O.

1

	vi.	Which of the following production rule does not satisfy the property of operator grammar?	1		
		(a) $A \rightarrow BC$ (b) $A \rightarrow \in$			
		(c) Both (a) and (b) (d) None of these			
	vii.	Which of the following is not an intermediate code form?	1		
	, 111	(a) Three address code (b) Postfix	_		
		(c) Prefix (d) None of these			
	viii.	Consider the following Syntax Directed Translation Scheme (SDTS),	1		
		with non-terminals {S, A} and terminals {a, b}			
		$S \rightarrow aAb \{ print"1" \}$			
		$A \rightarrow aAb \{print''2''\}$			
		$A \rightarrow \in \{\text{print } 2\}$			
		Using the above SDTS, the output printed by a top down parser for			
		the input anabbb is			
		(a) 321 (b) 3221 (c) 1223 (d) None of these			
	ix.	The specific task storage manager performs	1		
	171.	(a) Allocation/ deallocation of programs	_		
		(b) Protection of storage area assigned to the program			
		(c) Both (a) and (b)			
		(d) None of these			
	х.	The method which merges the bodies of two loops is	1		
		(a) Loop rolling (b) Loop jamming			
		(c) Constant folding (d) None of these			
Q.2		Attempt any two:			
	i.	Construct finite automata that will accept set of all strings of zeros and	5		
		ones that contain even numbers of zeros and odd numbers of ones.			
	ii.	Construct a minimal state DFA for the following regular expression:	5		
		(alb)* (ab) *b a * (bb) *			
	iii.	Construct finite automata that accept all possible strings of zeros and	5		
		ones that do not contain 011 as a substring.			
Q.3	i.	What do you mean by token and lexeme?	2		
	ii.	What is bootstrapping? Explain with a suitable example?	3		
	iii.	Draw and explain various phases of compiler.	5		
OR	iv.	What are error recovery actions in lexical analysis phase?	5		
Q.4	i.	Compare the top-down and bottom-up parsing techniques.	3		
<. ,		compact the top do in and contour up paroing techniques.	_		

	ii.	Test whether the grammar is LL(1) or not and construct predictive parsing table for it- $S \rightarrow AaAb \mid BbBa$ $A \rightarrow \epsilon$ $B \rightarrow \epsilon$	7
OR	iii.	Construct the LALR(1) parsing table for the following grammar- S -> Aa bAc dc bda A -> d	7
Q.5	i.	Give a brief introduction of Syntax Directed Translation Scheme.	4
	ii.	What is attributed grammar? Explain synthesized and inherited attributed grammar with the help of suitable example.	6
OR	iii.	Generate the three-address code for the following program fragment-	6
		while $(A < C \text{ and } B > D)$ do	
		if $A = 1$ then	
		C := C + 1	
		else	
		while $A < = D$ do	
		A := A + 3	
Q.6		Attempt any two:	
	i.	What is activation record? Give the general activation record field and their purpose.	5
	ii.	Write shot note on Basic Blocks.	5
	iii.	Compare various symbol table management techniques.	5

Marking Scheme CS3CO27 / IT3CO17 Compiler Design

		1 3				
Q.1 i.	i.	A grammar that produces more than one parse tree for some sentence	1			
		is called				
	ii.	(a) Ambiguous A finite automata recognizes	1			
	11.	(d) Regular Language	1			
	iii.	The symbol table implementation is based on the property of locality	1			
	111.	of reference is	1			
		(c) Hash Table				
	iv.	A system program that combines separately compiled modules of a	1			
	1 V .	program into a form suitable for execution is	1			
		(b) Linking loader				
	v.	Which of the following describes a handle (as applicable to LR-	1			
	٧.	parsing) appropriately?	•			
		(d) It is the production p that will be used for reduction in the next				
		step along with a position in the sentential form where the right-				
		hand side of the production may be found				
	vi.	Which of the following production rule does not satisfy the property	1			
	, 2,	of operator grammar?				
		(c) Both (a) and (b)				
	vii.	Which of the following is not an intermediate code form?	1			
		(d) None of these				
	viii.	Consider the following Syntax Directed Translation Scheme (SDTS),	1			
VII		with non-terminals {S, A} and terminals {a, b}				
		(b) 3221				
	ix.	The specific task storage manager performs				
		(c) Both (a) and (b)				
	х.	The method which merges the bodies of two loops is				
		(b) Loop jamming				
Q.2		Attempt any two:				
	i.	Construct finite automata	5			
		For Correct steps 2 marks				
		For Correct diagram 5 marks				
	ii.	Construct a minimal state DFA	5			
		For each correct step 1 mark (1 mark * 5)				
	iii.	Construct finite automata	5			
		For each correct step 1 mark (1 mark * 5)				

Q.3	i.	Token	1 mark	2
		Lexeme	1 mark	
	ii.	Definition of bootstrapping	1 mark	3
		Explanation	1 mark	
		Example	1 mark	
	iii.	Various phases of compiler.		5
		Phases diagram	2 marks	
		0.5 mark for each phase explanation (0.5 mark * 6)	3 marks	
OR	iv.	Error recovery actions in lexical analysis phase		5
		1 mark for each action	(1 mark * 5)	
Q.4	i.	Compare the top-down and bottom-up parsing techn	niques	3
۷. ۱	1.	0.5 mark for each difference	(0.5 mark * 6)	U
	ii.	First and follow	2 marks	7
	11.	Predictive parsing table	4 marks	,
		Grammar is LL(1)	1 mark	
OR	iii.	Closer function	1 mark	7
OK	111.	Goto graph/ steps	3 marks	,
		LALR(1) parsing table	3 marks	
		LALK(1) paising table	3 marks	
Q.5	i.	Syntax Directed Translation Scheme		4
		Definition	1 mark	
		Introduction	2 marks	
		Example	1 mark	
	ii.	Attributed grammar	2 marks	6
		Synthesized attributed grammar	1 mark	
		Inherited attributed grammar	1 mark	
		Example	1 mark	
OR	iii.	Generate the three-address code		6
		Stepwise marking 1 mark for each step	(1 mark * 6)	
Q.6		Attempt any two:		
	i.	Activation record	1 mark	5
		Diagram	1 mark	
		Explanation and purpose of activation record field	3 marks	
	ii.	Basic Blocks	3 marks	5
		Example	2 marks	
	iii.	Each comparison between three different techniques	S	5
		1 mark for each comparison	(1 mark * 5)	
