Matematika 1 cvičení

0.1 Definiční obor

$$f(a) = \sqrt{\frac{x^2 - 4x + 3}{x + 4}}$$
$$\frac{x^2 - 4x + 3}{x + 4} \ge 0 \to \frac{(x - 3)(x - 1)}{x + 4}$$
$$D(f) = (-4; 1) \bigcup \langle 3; \infty \rangle$$

$$f(x) = \frac{\ln(x^2 - 1)}{\ln(x + 4)}$$

$$D(f) = (-4; -3) \left[\int (-3; -2) \left[\int (1; \infty) \right] \right]$$

0.2 Grafy funkcí

funkce
$$D$$
 H Vlasntnosti $f(x)=2x-1$ $D_x=R$ $H_x=R$ rostoucí, prostá, spojitá $g(x)=x^2+2x-8$ $D_x=R$ $H_x=(-9;\infty)$ — $h(x)=\frac{(x-1)^5}{32}-1$ $D_x=R$ $H_x=R$ — $(x)=\sqrt{2x-4}$ $D_x=(2;\infty)$ $H_x=(0;\infty)$ — $f(x)=\frac{3x+3}{3x+1}$ $D_x=(-\infty;-\frac{1}{3})\bigcup(-\frac{1}{3};\infty)$ $D_x=(-\infty;1)\bigcup(1;\infty)$ — $h(x)=(\frac{1}{3})^{x-2}-3$ $h(x)=R$ $h(x)=(-3;\infty)$ — $h(x)=$