

TD n°1 - Automates, Grammaires

Exercice 1. Soit l'alphabet $\Sigma = \{0, 1\}$. Déterminer une expression régulière et un automate déterministe reconnaissant chacun des langages suivants :

Q 1. $\mathcal{L}_1 = \{ w \in \Sigma^* \mid w \text{ représente un nombre pair en base 2} \}$

Q 2. $\mathcal{L}_2 = \{ w \in \Sigma^* \mid w \text{ contient un nombre impair d'occurrences de 1} \}$

Exercice 2. Soit l'expression régulière $a(a \mid b)$.

 ${f Q}$ 1. Quel est le langage ${\cal L}$ dénoté par cette expression régulière.

Q 2. Construire un automate qui reconnaît \mathcal{L} .

Q 3. Construire un automate qui reconnaît \mathcal{L}^* .

Exercice 3. Construire un automate qui reconnaisse le langage dénoté par l'expression régulière :

$$(ab+b^*a)^*$$

Exercice 4. Soit $\mathcal{A} = (\{a, b, c, d\}, \{0, 1\}, \delta, a, \{b, d\})$ l'automate défini par la table de transition suivante:

	0	1
a	$\{a,b\}$	$\{a,c\}$
b	$\{d\}$	Ø
c	Ø	$\{d\}$
d	$\{d\}$	$\{d\}$

Q 1. Dessiner le graphe de \mathcal{A} .

Q 2. Montrer que les mots 00 et 1111 sont reconnus par A.

Q 3. Utiliser l'algorithme de déterminisation pour construire un automate déterministe équivalent à l'automate \mathcal{A} .

Exercice 5. Soit l'automate A défini par le graphe suivant :

$$q_0$$
 q_1 q_2 q_2

 \mathbf{Q} 1. L'automate \mathcal{A} est-il déterministe? Justifiez votre réponse le plus précisément possible.

Q 2. Exprimez le langage $\mathcal{L}(\mathcal{A})$ sous la forme d'une expression régulière.

Exercice 6. Soit l'alphabet $\Sigma = \{a,b,c\}$. Construire un automate déterministe pour chacune des expressions régulières suivantes :

Q 1.
$$(b(a+b) + (a+c)a(a+b+c))^*$$

Q 1.
$$(b(a+b) + (a+c) a(a+b+c))^*$$

Q 2. $(ab + ba) (c(ab + ba) + abc)^*$

Exercice 7. Soit l'automate $\mathcal{A} = (\{s_0, s_1, s_2\}, \{a, b\}, \delta, s_0, \{s_0\})$ défini par la table de transition δ suivante:

	a	b
s_0	$\{s_1\}$	$\{s_2\}$
s_1	$\{s_1\}$	$\{s_0,s_2\}$
s_2	$\{s_2\}$	$\{s_0\}$

- **Q 1.** Dessinez le graphe de l'automate \mathcal{A} .
- **Q 2.** Montrez que les mots abbaab et bbaabaab sont reconnus par l'automate A.
- Q 3. Construisez et dessinez, en utilisant la méthode vue en cours, un automate déterministe \mathcal{A}' équivalent à l'automate A.

Exercice 8. Soit G la grammaire définie par les productions ci-dessous et $w = \mathbf{a} + \mathbf{a} * \mathbf{a}$:

$$S \rightarrow SAS \mid (S) \mid (-S) \mid \mathbf{a}$$

 $A \rightarrow + \mid *$

- \mathbf{Q} 1. Donner en partant de S une dérivation gauche pour w.
- \mathbf{Q} 2. Donner en partant de S une dérivation droite pour w.
- \mathbf{Q} 3. Montrer que G est ambigüe.
- **Q 4.** Montrer que le mot $((-\mathbf{a}) + (\mathbf{a} * \mathbf{a}))$ est une phrase de la grammaire G.

Exercice 9. Déterminer les langages engendrés par les grammaires dont les productions sont les suivantes:

- **Q** 1. $S \rightarrow \varepsilon \mid \mathbf{aaa}S$
- **Q 2.** $S \rightarrow \mathbf{b}S\mathbf{a} \mid R \qquad R \rightarrow \mathbf{a}R\mathbf{b} \mid \varepsilon$

Exercice 10. Construire une grammaire pour chacun des langages suivants :

Q 1. $\mathcal{L} = \{ w \ miroir(w) \mid w \ appartient à \{a,b\}^* \}$

Remarque: Soit w un mot. Si $w = e_1 e_2 \dots e_{n-1} e_n$ alors $miroir(w) = e_n e_{n-1} \dots e_2 e_1$.

- **Q** 2. $\mathcal{L}((ab)^*a^*)$
- **Q** 3. $\mathcal{L}(a \mid ba^*b)^*)$

Exercice 11. Soit la grammaire $\mathcal{G} = \{S, A, B, C, D\}, \{a, b, c\}, P, S > \text{avec } P \text{ l'ensemble des}$ productions suivantes:

$$S \rightarrow AB \mid CD$$

$$\begin{array}{ccc} A & \rightarrow & \mathbf{aAb} \mid \varepsilon \\ A & \rightarrow & \mathbf{cB} \mid \varepsilon \\ B & \rightarrow & \mathbf{cB} \mid \varepsilon \\ C & \rightarrow & \mathbf{a}C \mid \varepsilon \end{array}$$

$$B \rightarrow \mathbf{c}B \mid \varepsilon$$

$$C \rightarrow \mathbf{a}C \mid \varepsilon$$

$$D \rightarrow \mathbf{b}D\mathbf{c} \mid \varepsilon$$

Montrez que la grammaire \mathcal{G} est ambigüe.

Exercice 12. Déterminez sous forme d'expression régulière le langage engendré par la grammaire $\mathcal{G} =$ $\langle V, T, P, S \rangle$ avec $V = \{S, X, Y, Z\}, T = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}\$ et P l'ensemble des productions suivantes :

2

$$S \rightarrow \mathbf{a} X \mid \mathbf{a} Y$$

$$\begin{array}{ccc} X & \rightarrow & \mathbf{b} X \mid Z \\ Y & \rightarrow & \mathbf{c} Y \mid Z \end{array}$$

$$Y \rightarrow \mathbf{c} Y \mid Z$$

$$Z \rightarrow \mathbf{a} Z \mid \mathbf{a}$$

Exercice 13. Construire une grammaire pour chacun des langages suivants :

Q 1.
$$\mathcal{L} = \{ w \in \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}^* \mid \exists n \in \mathbb{N} \text{ tq } w = \mathbf{a}^n \mathbf{c} \mathbf{b}^{2n} \mathbf{c} \}.$$

Q 2.
$$\mathcal{L} = \{ w \in \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}^* \mid \exists n \in \mathbb{N} \text{ tq } w = \mathbf{a}^{n+1} \mathbf{c} \mathbf{b}^{n+1} \mathbf{c} \}.$$
s