```
Preconditioned Conjugate Gradient Iteration
for Kohn-Sham Orbitals
                                                                                                9/28/03
Gram-Schmidt: |\psi_n\rangle \leftarrow |\psi_n\rangle - \sum_{m=1}^{m-1} |\psi_m\rangle \langle \psi_m|\psi_n\rangle
normalize: 12/2> - 12/2/ / (2/4/2/2) >> HPP
initial gradient: R(ir) \leftarrow -\hat{R} \psi_n(ir) + \langle \psi_n | \hat{R} | \psi_n \rangle \psi_n(ir)
do icy = 1, Icgmax
    Preconditioning: solve \left[-\frac{1}{2}\nabla^2 + v(\mathbf{r})\right]Z(\mathbf{r}) = R(\mathbf{r})
    Y_1 = \langle R|Z \rangle
    if icg = 1
         Y(Ir) = Z(Ir)
    else Y(Ir) \leftarrow Z(Ir) + \frac{7}{7}Y(Ir)
     endif
    Gram-Schmidt: |Y\rangle \leftarrow |Y\rangle - \sum_{m=1}^{n} |\psi_m\rangle \langle \psi_m|Y\rangle
    normalize: |Y\rangle \leftarrow |Y\rangle/\overline{\langle Y|Y\rangle}

Calculate h_{PX} = 2\langle \psi_{h}|\hat{h}|Y\rangle

h_{PSI}

HPSI
      \cos 2\theta_{min} = \frac{h_{pp} - h_{yy}}{\sqrt{(h_{pp} - h_{yy})^2 + h_{py}^2}}; \quad \sin 2\theta_{min} = \frac{h_{py}}{\sqrt{(h_{pp} - h_{yy})^2 + h_{py}^2}}

\cos \theta_{\text{min}} = \sqrt{\frac{1 + \cos 2\theta_{\text{min}}}{2}}
; \sin \theta_{\text{min}} = \frac{\sin 2\theta_{\text{min}}}{2\cos \theta_{\text{min}}}
      Emin = hpp + hyy = \sqrt{(hpp - hyy)^2 + h^2py}
       \Delta = (E_{min} - h_{pp})/[h_{pp}]
```

| . r |                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------|
|     | if $\Delta > 0$                                                                                              |
|     | exit // discard the attempt, keep the old 4n & hpp                                                           |
|     | else // accept the attempt, update 4n & hpp                                                                  |
|     | $\psi_n(\mathbf{r}) \leftarrow \cos\theta_{min}, \psi_n(\mathbf{r}) + \sin\theta_{min} \Upsilon(\mathbf{r})$ |
|     | $R(ir) \leftarrow -\hat{R}(ir) + \langle \psi_n(ir) + \langle \psi_n(\hat{R}) \psi_n(ir) \rangle$            |
|     | if $ \Delta  < \epsilon$ exit                                                                                |
|     | endif                                                                                                        |
|     | $\gamma_0 \leftarrow \gamma_1$                                                                               |
|     | enddo                                                                                                        |
|     | $\epsilon_n \leftarrow hpp$                                                                                  |
|     | residuen ← <rir></rir>                                                                                       |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |

A S

| ************************************** | Multigrid Preconditioning 9/30/03                                                                                                                                                                          | ?   |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                        | Error vector                                                                                                                                                                                               | (1) |
|                                        | $[-\frac{1}{2}\nabla^{2} + V(n)] \psi^{*}(n) - \langle \psi^{*}  \hat{k}   \psi^{*} \rangle \psi^{*}(n) = 0$ $-)$                                                                                          | (2) |
|                                        | $\left[-\frac{1}{2}\nabla^2 + \mathcal{V}(\mathbf{ir})\right] \left[\mathcal{V}(\mathbf{ir}) - \mathcal{V}(\mathbf{ir})\right] - C^*\mathcal{V}(\mathbf{ir}) + C\mathcal{V}(\mathbf{ir}) = g(\mathbf{ir})$ | (3) |
|                                        |                                                                                                                                                                                                            | (4) |
|                                        | :. 4(1r) ← 4(1r) + Z(1r)                                                                                                                                                                                   | (5) |
|                                        | where the error vector Z(r) is                                                                                                                                                                             |     |
|                                        | $\left[-\frac{1}{2}\nabla^{2}+V(lr)-(\psi \hat{R} \psi)\right]\mathcal{Z}(lr)=g(lr)$ $\text{HPP}\qquad \mathcal{Z}V\qquad RV$                                                                              | (6) |
|                                        | Relaxation $\frac{\partial Z(\mathbf{r})}{\partial t} = -\left[-\frac{1}{2}\nabla^2 + V_{mg}(\mathbf{r})\right] Z(\mathbf{r}) + g(\mathbf{r})$                                                             | (₹) |
|                                        | Lets discretize $Z(r) \rightarrow Z(i\Delta_x, j\Delta_y, Z\Delta_z)$                                                                                                                                      |     |
|                                        |                                                                                                                                                                                                            |     |
|                                        |                                                                                                                                                                                                            |     |

Equation (7) becomes Zijk - Zijk At  $=\frac{1}{2}\begin{bmatrix} z_{i+1jk}-2z_{ijk}+z_{i+1jk} & z_{i,j-1k}-2z_{ijk}+z_{ij+1k} & z_{i,jk-1}-2z_{ijk}+z_{ijk+1} \\ -2 & \Delta_{z}^{2} & \Delta_{z}^{2} & \Delta_{z}^{2} \end{bmatrix}$ Vijk Zijk + gijk Zijk + Zijk + (Zi-ijk - 2 Zijk + Zi-ijk) + St (Zij-1k - 2Zijk + Zij+1k) + 2/2 (Zijk-1 - 2 Zijk + Zijk+1) - At Vijk Zijk + At gijk > VDT (MSHSZ, MSHSZ, MSHSZ) LMG. (8)  $\Delta t = \frac{\alpha}{2} \min \left(\Delta_{x}^{2}, \Delta_{y}^{2}, \Delta_{z}^{2}\right)$   $\Delta t \quad \text{very big}$ on coarse grid? (9) (Coarsest solution) (1 + 1 + 1 ) Zzzz - Vzzz - Vzzz + 9zzz - 0  $\frac{3222}{222} = \frac{1}{\Delta_{x}^{2}} + \frac{1}{\Delta_{y}^{2}} + \frac{1}{\Delta_{z}^{2}} + \frac{1}{222}$ Z 並 dk (d, maxdpth) ろ(iv(maxdpth)) - eshft

Red-black Gaus-Seidel iteration 12345 start from X to propagate rigid wall bonday. Red: o i+j+k = oddBlack: X i+j+k = evendo K = 2, Nz-1 do j = 2, Ny-1 if  $(k+j) \mod 2 = 0$  if  $(k+j) \mod 2 = 0$ Ubgn = 2  $i_{bgn} = 3$ lend = Nx - 1 $iend = N_x - 2$ else else ib9n = 2 ibgn = 3 iend = Nx - 1iend = Nox-2 endif endif do i = ibgn, i end step 2 update Zijk enddo; enddo; enddob

| 0 - | Multigrid V cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | Hamiltonian at depth d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | $H_d Z_d - 9_d = -\delta_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (10) |
|     | $-) Hd Zd^* - 9d = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (11) |
|     | $H_d(z_d^*-z_d) = S_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | Ud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | $\vdots  Z_d^* \leftarrow Z_d + U_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (12) |
|     | where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     | $H_{d} U_{d} = \delta_{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     | a side of the side |      |
|     | (Single V cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     | Relax $H_d Z_d = 9d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     | Compute residual $S_d = -H_d Z_d + 9_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | Restrict $S_d \rightarrow S_{d+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|     | Solve Hd+1 Ud+1 = Sd+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | Interpolate Udti -> Ud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | $Z_d \leftarrow Z_d + U_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     | Relax $H_d Z_d = g_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     | ADKX JOHY DIEZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|     | $Sijk = + \begin{bmatrix} +\frac{Z_{i-1}jk-2Z_{ijk}+Z_{i+1}jk}{2\Delta_x^2} & \frac{Z_{ij-1}k-2Z_{ijk}+Z_{ij+1k}}{2\Delta_y^2} & \frac{Z_{ijk-1}-2Z_{ijk}+Z_{ijk+1}}{2\Delta_z^2} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     | Oijk - $\begin{bmatrix} 2\Delta_x^2 \\ 2\Delta_y^2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | $-(v_{ijk}-\epsilon)z_{ijk}+g_{ijk}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| i i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |





- Gaug-Seidel for 
$$\Delta_x = \Delta_y = \Delta_z = \Delta$$
,  $\alpha = 1$ 

$$z_{ijk} \leftarrow z_{ijk} + \frac{1}{6}(z_{i-1} - 2z + z_{i+1}) + \frac{1}{6}(z_{i-1} - 2z + z_{i+1})$$

$$-\frac{\Delta^2}{3}(v_{ijk}-h_{pp})+\frac{\Delta^2}{3}g_{ijk}$$

Presmoothening start with Zijk + 0

$$\therefore Z_{ijk} = -\frac{\Delta^2}{3}(v_{jik} - h_{pp}) + \frac{\Delta^2}{3}g_{ijk}$$

| eri<br>eri<br>era | 6                                                                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| 0 -               | MG avray size                                                                                                                |
|                   | For res, rhs, u, v                                                                                                           |
|                   |                                                                                                                              |
|                   | $M = 4 \stackrel{L}{\geq} \left[ (2^{l} + 1)^{3} + 1 \right]$ $4  \text{array size info}$                                    |
|                   | MENTEL                                                                                                                       |
|                   | $= 4 \sum_{l=1}^{L} (8^{l} + 3 \cdot 4^{l} + 3 \cdot 2^{l} + (1+1))$                                                         |
|                   | $= 4 \left[ \frac{8(8^{L}-1)}{8-1} + \frac{3}{3} + \frac{4(4^{L}-1)}{4} + \frac{3}{3} + \frac{2(2^{L}-1)}{2-1} + 2L \right]$ |
|                   | $= 4\left[\frac{8}{7}(8^{2}-1) + 4(4^{2}-1) + 6(2^{2}-1) + 2L\right]$                                                        |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |
|                   |                                                                                                                              |

Note on  $\Delta t$  for relaxation For coarser levels, min  $(\Delta_x^2, \Delta_y^2, \Delta_z^2)$  is large, and st(Vijk-hpp) may become to large! Experiment on 10/1/03 shows  $\alpha = 10^{-2}$  \$ NPRE=NPOST = 1000 very quickly converges to the answer! (Recipe)  $\Delta t = \int \min \left( \frac{1}{3} \min \left( \Delta_{x}^{2}, \Delta_{y}^{2}, \Delta_{z}^{2} \right), \max \left[ v_{ijk} - v_{ip} \right] \right)$   $\sum_{t=1}^{\infty} \min \left( \frac{1}{3} \min \left( \Delta_{x}^{2}, \Delta_{y}^{2}, \Delta_{z}^{2} \right), \max \left[ v_{ijk} - v_{ip} \right] \right)$ 

|                                                                                | $N_{x} = N_{y} = 1$   | $N_X = N_M = N_Z = 1$              |  |
|--------------------------------------------------------------------------------|-----------------------|------------------------------------|--|
| 0 copy rhs <sub>o</sub> <- u                                                   | ^                     | ^                                  |  |
| 0 u <sub>o</sub> <- 0                                                          | dpth                  | mesh                               |  |
| 0 relax u <- u & rhs & v                                                       | and the second second |                                    |  |
| 0 resid res <- u & rhs & v                                                     | 0                     | $1 \overrightarrow{x} = 2^{4} + 1$ |  |
| 1 rstrct rhs <- res(j-1)                                                       | 4                     | 0 - 3.                             |  |
| 1 u <- 0                                                                       | 1                     | $9 = 2^{2} + 1$                    |  |
| 1 relax u <- u & rhs & v                                                       | 9                     | C .                                |  |
| 1 resid res <sub>1</sub> <- u <sub>1</sub> & rhs <sub>1</sub> & v <sub>1</sub> | \                     | 5 = 22+1                           |  |
| 2 rstrct rhs_<- res(j-1) may                                                   | idpth = (3)           | 3 = 2+1                            |  |
| 2 u <sub>2</sub> <- 0                                                          |                       |                                    |  |
| 2 relax u₂<- u₂& rhs₂& v₂                                                      |                       |                                    |  |
| 2 resid resz<- u <sub>2</sub> & rhs <sub>2</sub> & v <sub>2</sub>              |                       |                                    |  |
| 3 rstrct rhs <- res(j-1)                                                       |                       |                                    |  |
| 3 slvsml u <sub>3</sub> <- rhs <sub>3</sub> & v <sub>3</sub>                   |                       |                                    |  |
| 2 addint u <sub>2</sub> <- u <sub>2</sub> + interp u(j+1)                      |                       |                                    |  |
| 2 relax uz<- uz& rhsz& vz                                                      | /                     |                                    |  |
| 1 addint u <- u + interp u(j+1)                                                |                       |                                    |  |
| 1 relax u <- u & rhs & v                                                       |                       |                                    |  |
| 0 addint u <sub>o</sub> <- u <sub>o</sub> + interp u(j+1)                      |                       |                                    |  |
| 0 relax u <- u & rhs & v                                                       |                       |                                    |  |
| 0 0                                                                            |                       |                                    |  |
|                                                                                |                       |                                    |  |