CS-498 Data Science - Final Exam Review Study Guide

Final objectives since midterm:

- Regularization and overfitting
 - o Bias-variance tradeoff
 - Methods for regularization
- Unsupervised learning, clustering
 - o K-means
 - Methods for determining the optimal number of clusters
 - Hierarchical Agglomerative Clustering
 - o Linkage: single link, etc.
 - Data preprocessing and normalization
 - Measures of clustering quality
- Decision trees, Random Forests, Bagging
 - o Decision tree decision boundary
 - o Recursive binary splitting, Gini index, cross-entropy/info gain
 - o Overfitting
 - o Bagging/bootstrap aggregation
 - o Random Forests
- Gradient Boosting, boosted decision trees
 - o Gradient boosting concepts
 - XGBoost/boosted decision trees
 - o Overfitting
- Introduction to time-series
 - o Stationarity of time series Trend, seasonal, and cyclical
 - o Visual and statistical tests (Dickey-Fuller) tests for stationarity
 - Making a time-series stationary log, MA, exp MA, differencing, decomposition
 - o ARIMA forecasting
- Dimensionality reduction
 - o PCA
- Data Science process, class project

Midterm objectives:

- Data science concepts, process and objectives
 - o Technological convergence
 - o Scientific method
 - Data Science process
- Exploratory data analysis and visualization
 - o Data types numeric, categorical, ordinal
 - o Data manipulation (with NumPy stack)
 - o Principals of visualization
 - o Applying and interpreting visualization to augment numerical analysis
- Probability and statistical inference

Jay Urbain 1

- o Sampling, distributions
- o Measures of central tendency
- o Variance, standard deviation
- Linear regression, multivariate analysis
 - o Coefficient/factor analysis for linear regression
 - o Polynomial regression
 - o RSS, R^2, MSE, RMSE
- Machine learning, supervised learning
 - o Machine learning concepts
 - o KNN
 - o Logistic regression
 - o Cross-entropy loss
 - Odds, log odds, coefficient/factor analysis for logistic regression
- Classification model evaluation and metrics
 - Confusion matrix
 - o Accuracy, precision, recall/sensitivity, specificity
 - o TPR, FPR, ROC curve

Jay Urbain 2