

Destination Reachable:

- What ICMPv6 Error Messages Reveal
- About Their Sources

Sending a request to every IPv4 address takes less than an hour

Scanning every address not feasible in IPv6

ICMPv6 error messages are still returned, even when targeting a random address inside a network

Тур	Error Message	Codes	Level
1	Destination Unreachable	7	SHOULD
2	Packet Too Big	1	MUST
3	Time Exceeded	2	MUST
4	Parameter Problem	3	SHOULD

Code	Description
0	No route to destination
1	Communication with destination administratively prohibited
2	Beyond scope of source address
3	Address unreachable
4	Port unreachable
5	Source address failed ingress/egress policy
6	Reject route to destination

Тур	Error Message	Codes	Level
1	Destination Unreachable	7	SHOULD
2	Packet Too Big	1	MUST
3	Time Exceeded	2	MUST
4	Parameter Problem	3	SHOULD

Error Messages in Measurements

- Edgy (Rye, 2020)
 - 64.8M Last-Hop Routers
- XMap (Li, 2021)
 - 52M Routers + User
 Equipment (15 ISP ranges)
- Periphery can include your:
 - Home Router
 - Smartphone

Our Goal:

Analyze ICMPv6 error messages beyond their source addresses

Our Contribution:

- 1. **Verification** of error message **type & code usage** and **classification** of error messages for **11 Billion** IPv6 prefixes
- 2. ICMPv6 error message **rate-limiting** measurements of **1.4M routers show vendor defaults** & **kernel versions**

What Do ICMPv6 Error Messages Reveal About Their Sources?

1. Networks

2. Routers

 Controlled Environment 2. Verification in the IPv6 Internet

3. IPv6-wide Measurements

- Collect error messages under six different routing scenarios
- Find error messages that are returned only for active/inactive networks

Router Lab

Тур	Router / Router OS
1	Cisco XRv, IOS-XE, IOS
2	Juniper Junos
3	Huawei NetEngine
4	HPE VSR
5	Arista
6	VyOs
7	Mikrotik (2 Versions)
8	OpenWRT (2 Versions)
9	Aruba

Тур	Firewall
1	PfSense
2	Fortigate

11 Vendors,

15 Appliances,

Result I: Router Lab Mikrotik

Scenario	1	2	3	4	5	6		
Description	Active Network	Inactive Network	Active Netw. ACL	Inactive Netw. ACL	Null Route	Routing Loop	Classification	
No Route (S2)	00	• 14	• 1	• 2	• 2	00	Ambiguous	
Admin. Prohib. (S3,S4)	00	00	• 4	• 5	• 3 00		Ambiguous	
Addr. Unreach. (S1)	• 14	00	00	00	• 1	00	Ambiguous	
Port Unreach. ()	00	00	• 3	• 2	00	00	Ambiguous	
Failed Policy (S3,S4)	00	• 1	• 1	• 2	00	00	Ambiguous	
Reject Route (S5)	00	00	00	00	• 2	00	Inactive	
Time Exceeded (S6)	00	00	00	00	00	• 15	Inactive	
Ø	• 1	00	• 4	• 3	• 9	00		

Result I: Router Lab

Juniper

Scenario	o 1 2 3 4 5		6					
Description	Active Network	Inactive Network	Active Netw. ACL			Routing Loop	Classification	
No Route (S2)	00	• 14	• 1	• 2	• 2	00	Ambiguous	
Admin. Prohib. (S3,S4)	00	00	• 4	● 5	• 5		Ambiguous	
Addr. Unreach. (S1)	• 14	00	00	00	• 1	00	Ambiguous	
Port Unreach. ()	00	00	• 3	• 2	00	00	Ambiguous	
Failed Policy (S3,S4)	00	• 1	• 1	• 2	00	00	Ambiguous	
Reject Route (S5)	00	00	00	00	• 2	00	Inactive	
Time Exceeded (S6)	00	00	00	00	0 00 • 15		Inactive	
Ø	• 1	00	• 4	• 3	• 9	00		

Solution: RTTs! AU in S1 shows delays of 2, 3 and 18 seconds, in S5 it is returned immediately

Result I: Router Lab

Scenario	1	2	3	4	5	6		
Description	cription Active Network		Active Netw. ACL	Inactive Netw. ACL	Null Route	Routing Loop	Classification	
No Route (S2)	00	• 14	• 1	• 2	• 2	00	Ambiguous	
Admin. Prohib. (S3,S4)	00	00	• 4	• 5	● 3	00	Ambiguous	
Addr. Unreach. _{RTT≥1sec}	• 14	00	00	00	00	00	Active	
Addr. Unreach. _{RTT<1sec}	00	00	00	00	• 1	00	Inactive	
Port Unreach. ()	00	00	● 3	• 2	00	00	Ambiguous	
Failed Policy (S3,S4)	00	• 1	• 1	• 2	00	00	Ambiguous	
Reject Route (S5)	00	00	00	00	• 2	00	Inactive	
Time Exceeded (S6)	00	00	00	00	00	• 15	Inactive	
Ø	• 1	00	• 4	• 3	• 9	00		

Result I: Classification

Scenario	1	2	3	4	5	6		
Description	Active Network	Inactive Network	Active Netw. ACL	Inactive Netw. ACL	Null Route	Routing Loop	Classification	
No Route (S2)	00	• 14	• 1	• 2	• 2	00	Ambiguous	
Admin. Prohib. (S3,S4)	00	00	• 4	• 5	• 3	00	Ambiguous	
Addr. Unreach. _{RTT≥1sec}	• 14	00	00	00	00	00	Active	
Addr. Unreach. _{RTT<1sec}	00	00	00	00	• 1	00	Inactive	
Port Unreach. ()	00	00	• 3	• 2	00	00	Ambiguous	
Failed Policy (S3,S4)	00	• 1	• 1	• 2	00	00	Ambiguous	
Reject Route (S5)	00	00	00	00	• 2	00	Inactive	
Time Exceeded (S6)	00	00	00	00	00	• 15	Inactive	
Ø	• 1	00	• 4	• 3	• 9	00		

 Controlled Environment 2. Verification in the IPv6 Internet

3. IPv6-wide Measurements

- Goal: Collect error messages for IPv6 networks known to be active and inactive
- Problem: There is no such dataset
 - o Scanning random subnets?
 - Target network might not be suballocated
- BValue Steps = Border Values to the rescue

BValue Steps

- Input: Responsive IPv6 addresses in active network (Hitlist Service; Gasser, 2018)
- Randomize more and more of the target address (steps of 8 bits) up to the routed network border
- Detect changes in response behavior
 - Active = before change

Inactive

```
Original hitlist address:
           2001:db8:1234:abcd:1234:abcd:1234:0101
Generated addresses:
           <original bits>
                                         <random bits>
           2001: db8:1234: abcd:1234: abcd:1234:0100
B127
B120
           2001: db8:1234: abcd:1234: abcd:1234:01e8
           2001: db8:1234:abcd:1234:abcd:1234:6aa1
B112
           2001: db8:1234: abcd:1234: abcd:1221: f38d
B104
           2001: db8: abcd: 5276: d080: ccd6: 7fc3: 311c
B48
           2001: db8: ab3e: 3eb7: 4c66: 7f16: ade5: 2b3d
B40
           2001: db8: 7438: 221f: b244: 476c: 66bb: 8da5
B32
```

- Applied to one hitlist address/subnet per routed BGP prefix
- 47,923 pass ICMPv6 responsiveness check
- We are able separate active from inactive in 44% (17% are not suballocated, 38% unresponsive)

Result II: BValue Steps

Of error messages for active networks

	universität wien
Hanisa	VVICII

						BVa	alues				
				labeled	active		labeled inactive				
			Netw.	Netw. σ %				σ	%		
ſ	'e	ICMPv6	17,361	109	95.1%		471	11	4.6%		
ام	active	TCP	14,522	112	93.7%		620	12	7.4%		
ge	e	UDP	12,490	82	56.2%		3,687	35	32.0%		
Messages	ાં હ	ICMPv6	352	10	1.9%		1,645	12	15.9%		
≽	ambig.	TCP	566	10	3.7%		1,552	14	18.6%		
<u>-</u> 	<u>8</u>	UDP	9,377	91	42.2%		1,455	7	12.6%		
֡֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟֝֟֝֟֝֟֝֟	ive	ICMPv6	537	13	2.9%		8,230	34	79.5%		
_	inactive	TCP	405	8	2.6%		6,191	26	74.0%		
	ij	UDP	337	12	1.5%		6,396	49	55.4%		

NOTE: σ Standard deviation over five days. 18,250/21,070 Responsive 10,346/21,070 Responsive

Five days, Three protocols

True Negatives

95% labeled active networks returned AU_{RTT≥1sec}

80% labeled inactive networks returned $AU_{RTT<1sec}$, Reject Route, Time Exceeded; 16% Ambiguous (Higher share of No Route)

Controlled
 Environment

2. Verification in the IPv6 Internet

3. IPv6-wide Measurements

IPv6-wide measurements

YARRP (Beverly, 2016): Traceroutes to 5 Billion /48s:

Router Addr, Hop
Count & Destination IP
= Input for
Contribution 2

Result III: /64s Measurement

What Do ICMPv6 Error Messages Reveal About Their Sources?

1. Networks

2. Routers

 Controlled Environment

- Origination of ICMPv6 error messages must be rate limited
- Measure & detect rate limits that are unique to vendors

 Controlled Environment

- Origination of ICMPv6 error messages must be rate limited
- Measure & detect rate limits that are unique to vendors

- Origination of ICMPv6 error messages must be rate limited
- Measure & detect rate limits that are unique to vendors

 Controlled Environment

NR(10) ... Total error messages over timespan of 10 seconds T1, T2, T10 Number of error messages during 1st, 2nd, .. 10th second

Result I: Router Lab

Vendor Defaults

Kernel Defaults

	Router OS	iTTL	Delay]	Bucket Size	e		Refill Interval (σ)	Refill Size			# Error Messages			Per
		All	AU	TX	NR	AU	TX	NR	AU	TX	NR	AU	TX	NR	AU	Src
X	CiscoXRV9000	64	18	10	10	10	1,000	1,000	1,000	1	1	1	19	19	0 *	
	CiscoIOS 15.9	64	3	10	10	10	~100	~100	3,800★	1	1	10	~105	~105	22 [*]	
.U/NR/	CiscoCSR1000 17.03	64	3	10	10	10	~100	~100	3,000★	1	1	10	~105	~105	22 *	
AU	Juniper 17.1	64	2	52	12	12	~1,000	10,000	10,000	52	12	12	~520°	12	12	
Diff	HPE VSR1000	64	3	∞	∞	*	∞	∞	*	∞	∞	*	∞	∞	*	
	Huawei NE40	64	3	100-	8	/	1,000	1,000	/	100	8	/	1,000-	88	/	
				200									1,100			
	Arista 4.28	64	3		∞			∞			∞			∞		
XI	VyOS 1.3	64	3		6			250*			1			45*		✓
l Ä	Mikrotik 6.48	64,255	3		6			1000			1			15		✓
AU/NR/	Mikrotik 7.7	64	3		6			250*			1			45*		✓
	OpenWRT 19.07	64	3		6			250			1			45*		✓
f for	OpenWRT 21.02	64	3		6			250*			1			45*		✓
diff	ArubaOS 10.09	64	3		6			250^{*}			1			45^{*}		✓
ρÑ	Fortigate 7.2.0	255	3		6			10			1			1000		✓
	PfSense 2.6.0	64	3		100			1000			100			1000		

^{~ ...} Refill interval is less stable / ... The response type is not returned by the RUT. ★ ... Affected by the Neighbor Discovery Process. * ... /48 destination prefix; for other prefix sizes see Table 7 ∞ ... RUT is either not rate-limited or > scanrate (tested up to 10K pps). ♦ ... Juniper's Neighbor Discovery for hop limit 0 packets causes a 2-second delay also for TX.

Kernels: Linux , Wind River Linux and FreeBSD .

Result I: Changes in the Kernel

	Kernel Version	Release	IPv4	IPv6
Linux	2.6.26-1-2	2008	15	15
	3.16.0-4-6	2014	15	15
	4.9.0-3-13	2016	15	15
	4.19.0-5-21	2018	15	45
	5.10.0-8-22	2020	15	45
	6.1.0-9	2022	15	45
Freebsd	11.0	2016	2000	1000
Netbsd	8.2	2020	1000	1000

- Number of error messages over 10 seconds
- Static and dynamic testing of the Linux kernel shows a change for IPv6 in kernel version 4.

Three rate-limiting changes over time:

- Introduction of global rate
- Peer-based becomes adaptive to dest. prefix
- 3. Global bucket is randomized

2. Verification in the IPv6 Internet

- Our Goal:
 - 1) Validate collected defaults in the Internet
- 2) Extend defaults with new rate-limits for which the vendor is known (see Paper)
- Data Source:
 - Extract SNMPv3 vendor labels for 476K IPv6 routers (Albakour, 2021)
 - 50,952 match our tracerouting data, for which we can collect rate limit parameters
 - requires: destination behind router, hop limit

Result II: SNMPv3 Label Comparison

- Huawei labeled match lab default
- Cisco labeled match XRv and IOS lab defaults

- Majority of Juniper labeled is limited above measurement scannate of 200pps
- Mikrotik matches Linux kernel defaults

3. IPv6-wide Measurements

- We collected rate-limits for 1.4M of the IPv6 routers
 - o Split Routers based on Centrality Score:
 - Number of paths to a /48 destination a router is seen on
 - o **Distance-based matching** to known rate limiting paramters
 - Bin the number of responses for each second (T1,T2,..T10) and compute distance
 - Match rate limiting parameters (Bucket Size, Refill Interval, Refill Size) for rates within adaptive threshold (10 to 100 based on NR(10))
 - Measurement Parameters: 200 PPS, 10 seconds, Time
 Exceeded

Result III: Rate Limit Matching

- Routers on multiple paths (green), more distinguishable rate limits
 - E.g. Cisco (18% IOS, 4.2% XRv)
- Periphery (purple)
 - 83.4% Linux <4.9 or newer version with small dest. prefix sizes (less likely)
 - o 12.6% ≥4.19 with default route

Conclusion: What Do ICMPv6 Error Messages Reveal About Their Sources?

1. Networks

2. Routers

- + Active
 - O AU_{RTT≥ 1 sec}
- + Inactive
 - o RR, TX & AU_{RTT<1sec}

- + Centrality > 1:
 - o Vendors
- + Centrality = 1:
 - Kernel Version

Dipl.-Ing. Florian Holzbauer

PhD Candidate @University of Vienna

florian.holzbauer@univie.ac.at

Artifacts available:

sbaresearch/icmpv6-destination-reachable

Questions?

129,1,3

Traffic Class

Identifier

56

Sequence Number

Payload Length

```
| ... Please set Typ and Code accordingly :)
+-+-+-
```

Code

2001:db8:200:1000::ab

2001:db8:5ba::1