Single Cell RNA-seq Clustering

Ahmed Mahfouz

Leiden Computational Biology Center, LUMC Delft Bioinformtaics Lab, TU Delft

Cell Identity

Environmental stimuli

Cell development

Cell cycle

Spatial context

How can we identify cell populations?

Outline

- Feature selection
- Introduction to clustering
 - Hierarchical clustering
 - *k*-Means clustering
 - Graph-based clustering
- scRNA-seq clustering
 - Single Cell Consensus Clustering (SC3)
 - Seurat
- Validation

Feature selection

Curse of dimensionality:

More features (genes) -> smaller distances between samples (cells)

- Remove genes which only exhibit technical noise
 - Increase the signal:noise ratio
 - Reduce the computational complexity

Feature selection

Highly Variable Genes (HVG)

•
$$CV = \frac{var}{mean} = \frac{\sigma}{\mu}$$

 Fit a gamma generalized linear model

• No ERCCs?

-> estimate technical noise based on all genes

Feature selection

M3Drop: Dropout-based feature selection

• Reverse transcription is an enzyme reaction thus can be modelled using the Michaelis-Menten equation:

$$P_{dropout} = 1 - \frac{S}{K_M + S}$$

S: average expression

 K_M : Michaelis-Menten constant

Dealing with confounders

- Confounding factors:
 - number of detected molecules
 - number of expressing genes
 - mitochondrial gene expression
 - cell cycle
 - ...

• Solution: use a linear model to regress them out

Selecting principal components

- To overcome the extensive technical noise in scRNA-seq data, it is common to cluster cells based on their PCA scores
- Each PC represents a 'metagene' that (linearly) combines information across a correlated gene set

Scree/Elbow plot

Many clustering approaches

Hierarchical Clustering

Mean shift clustering

Graph-based clustering

Gaussian mixture modeling

k-means clustering

Many clustering approaches

Gaussian mixture modeling

Clustering

Clustering

- Structure when:
- 1) Samples within cluster resemble each other (within variance, $\sigma_w(i)$)
- 2) Clusters deviate from each other (between variance, σ_B)

Group samples such that:

$$\min \left(\frac{\sum_{\text{Volusters}} \sigma_{W}(i)}{\sigma_{B}} \right) \rightarrow \sigma_{W}: \text{small 8}$$

$$\sigma_{B}: \text{large}$$

Find most similar objects (genes) and group them

dendrogram

These are: objects 4 and 2 Again, find most similar objects (genes or clusters) and group them

dendrogram

These are: objects 5 and 8

Repeat finding most similar objects (genes or clusters) and grouping them

dendrogram

Join object 3 and cluster 1 Repeat process

Join [object 7 and cluster 1] -> [cluster 1] Repeat process

Join [object 1 and cluster 2] -> [cluster 2] Repeat process

dendrogram

Join [object 6 and cluster 2] -> [cluster 2] Repeat process

Join [cluster 1 and cluster 2] -> [cluster 1] All in one cluster: FINISHED!

dendrogram

data ordered on similarity

dendrogram

Need to know:

- Similarity between objects
- Similarity between clusters

Similarity between clusters

• Single linkage: Closest objects

Complete linkage: Furthest objects

Average linkage: Average dissimilarity

- Single linkage -> long and "loose" clusters
- Complete linkage -> compact clusters

Similarity between objects

Euclidean distance

$$d(g_i, g_j) = \sqrt{(\sum ((x_i - x_j)^2))}$$

Pearson correlation

$$1-\rho_{ij}$$

Mixed Pearson correlation

$$1-|\rho_{ij}|$$

$$d(0,0) \approx d(0,0)$$

 $d(0,0) \approx d(0,0)$
 $d(0,0) << d(0,0)$

Match exact shape

Ignore amplitude

Ignore amplitude and sign

Choose randomly 2 prototypes

Assign objects to closest prototype

Blue area: cluster 1

White area: cluster 2

Calculate new cluster prototypes
By averaging objects

Re-assign objects to closest prototype

Blue area: cluster 1

White area: cluster 2

k-Means clustering

Re-calculate new cluster prototypes

k-Means clustering

Re-assign objects to closest prototype
If no objects change cluster then finished

k-Means clustering

Establish clusters

Limitations of *k*-Means

World contains more than circles

- May take forever to converge
- Need to specify K

Graph-based clustering

Nodes -> cells Edges -> similarity

Graph Types

k-Nearest Neighbor (kNN) graph

A graph in which two vertices p and q are connected by an edge, if the distance between p and q is among the k-th smallest distances from p to other objects from p.

Shared Nearest Neighbor (SNN) graph

A graph in which weights define proximity, or similarity between two nodes in terms of the number of neighbors (i.e., directly connected nodes) they have in common.

Graphs, adjacency and weight matrices

$$A = A \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ B & 1 & 0 & 1 & 1 & 0 & 0 \\ C & 1 & 1 & 0 & 0 & 1 & 0 \\ D & 0 & 1 & 0 & 0 & 1 & 1 \\ E & 0 & 0 & 1 & 1 & 0 & 1 \\ F & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Graph clustering (Community detection)

• Communities (clusters): groups of nodes with higher probability of being connected to each other than to members of other groups

• Community detection: find a group (community) of nodes with more edges inside the group than edges linking nodes of the group with the rest of the graph.

Graph cuts

- Graph cut partitions a graph into subgraphs
- Cut size is the number of cut edges
- Clustering by graph cuts: find the smallest cut that bi-partitions the graph
- The smallest cut is not always the best cut

Normalized cut

- The following way provides a good measure for the quality of a cut:
 - Denote vol(S) the number of nodes in (sub)graph S
 - Denote cut(S,T) the number of edges that connects nodes in S with those in T
 - The normalized cut value is:

$$Ncut(S,T) = \frac{cut(S,T)}{vol(S)} + \frac{cut(S,T)}{vol(T)}$$

The normalized cut dislikes cuts that generate very small subgraphs

Normalized cut (example)

•
$$cut(S,T) = 0.1 + 0.2 = 0.3$$

•
$$vol(S) = 0.3 + 0.6 + 0.8 + 0.8 = 2.5$$

- vol(T) = 0.3 + 0.8 + 0.8 + 0.6 = 2.5
- Ncut(S,T) = 0.3/2.5 + 0.3/2.5 = 0.24

- vol(S) = 3.0 + 0.1 = 3.1
- vol(T) = 3.0 + 0.8 + 0.2 + 0.6 = 4.6
- Ncut(S,T) = 3.0/3.1 + 3.0/4.6 = 1.62

Normalized cut

Searching for the best normalized cut is NP-hard

- We need a heuristic method to solve the problem:
 - Spectral clustering
 - Louvain
 - Markov clustering
 - ...

scRNA-seq clustering methods

6				
Name	Year	Method type	Strengths	Limitations
scanpy ⁴	2018	PCA+graph-based	Very scalable	May not be accurate for small data sets
Seurat (latest) ³	2016			
PhenoGraph ³²	2015			
SC3 (REF. ²²)	2017	PCA+k-means	High accuracy through consensus, provides estimation of \boldsymbol{k}	High complexity, not scalable
SIMLR ²⁴	2017	Data-driven dimensionality reduction $+k$ -means	Concurrent training of the distance metric improves sensitivity in noisy data sets	Adjusting the distance metric to make cells fit the clusters may artificially inflate quality measures
CIDR ²⁵	2017	PCA+hierarchical	Implicitly imputes dropouts when calculating distances	
GiniClust ⁷⁵	2016	DBSCAN	Sensitive to rare cell types	Not effective for the detection of large clusters
pcaReduce ²⁷	2016	PCA+k-means+hierarchical	Provides hierarchy of solutions	Very stochastic, does not provide a stable result
Tasic et al. ²⁸	2016	PCA + hierarchical	Cross validation used to perform fuzzy clustering	High complexity, no software package available
TSCAN ⁴¹	2016	PCA+Gaussian mixture model	Combines clustering and pseudotime analysis	Assumes clusters follow multivariate normal distribution
mpath ⁴⁵	2016	Hierarchical	Combines clustering and pseudotime analysis	Uses empirically defined thresholds and a priori knowledge
BackSPIN ²⁶	2015	Biclustering (hierarchical)	Multiple rounds of feature selection improve clustering resolution	Tends to over-partition the data
RacelD ²³ , RacelD2 (REF. ¹¹⁵), RacelD3	2015	k-Means	Detects rare cell types, provides estimation of \boldsymbol{k}	Performs poorly when there are no rare cell types
SINCERA ⁵	2015	Hierarchical	Method is intuitively easy to understand	Simple hierarchical clustering is used, may not be appropriate for very noisy data
SNN-Cliq ⁸⁰	2015	Graph-based	Provides estimation of k	High complexity, not scalable

scRNA-seq clustering methods

Single Cell Consensus Clustering – SC3

Single Cell Consensus Clustering – SC3

- 1) Gene filtering rare and ubiquitous genes
- 2) Distance matrices (DM) Euklidean, Spearman, Pearson
- 3) Transformation of DM with PCA or Laplacian
- 4) K-means clustering with first *d* eigenvectors
- 5) Consensus clustering distance 1/0 for cells in same/different clusters -> hierarchical clustering on average distances.

Seurat

- Construct KNN (k-nearest neighbor) graph based on the euclidean distance in PCA space.
- Refine the edge weights between any two cells based on the shared overlap in their local neighborhoods (Jaccard distance).
- Cluster cells by optimizing for modularity (Louvain algorithm)

Comparing different clusterings

Adjusted Rand Index (ARI)

Given a set S of n elements, and two groupings or partitions (e.g. clusterings) of these elements $X = \{X_1, X_2, ..., X_r\}$ and $Y = \{Y_1, Y_2, ..., Y_r\}$

Confusion matrix/contingency table

$$\overbrace{ARI}^{\text{Adjusted Index}} = \underbrace{\frac{\sum_{ij} \binom{n_{ij}}{2} - \sum_{i} \binom{a_i}{2} \sum_{j} \binom{b_j}{2}]/\binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_i}{2} + \sum_{j} \binom{b_j}{2}\right] - \left[\sum_{i} \binom{a_i}{2} \sum_{j} \binom{b_j}{2}\right]/\binom{n}{2}}_{\text{Expected Index}} } _{\text{Expected Index}}$$

$$n_{ij} = |X_i \cap Y_j|$$

Benchmarking scRNA-seq clustering methods

Benchmarking scRNA-seq clustering methods

Clustering is subjective!

- Principle choices
 - Similarity measure
 - Algorithm
- Different choice leads to different results
 - Subjectivity becomes reality
- Cluster process
 - Validate, interpret (generate hypothesis), repeat steps

How many clusters do you really have?

• It is hard to know when to stop clustering – you can always split the cells more times.

• Can use:

- Do you get any/many significant DE genes from the next split?
- Some tools have automated predictions for number of clusters may not always be biologically relevant

Bootstrapping

 How confident can you be that the clusters you see are real?

 You can always take a random set of cells from the same cell type and manage to split them into clusters.

Always check QC data

 Is what your splitting mainly related to batches, qc-measures (especially detected genes)?

From clusters to cell identities

Using lists of DE genes and prior knowledge of the biology

 Using lists of DE genes and comparing to other scRNAseq data or sorted cell populations

Databases with celltype gene signatures

- PanglaoDB (https://panglaodb.se/)
 - Human: 295 samples, 72 tissues, 1.1 M cells
 - Mouse: 976 samples, 173 tissues, 4 M cells
 - Franzén et al (https://doi.org/10.1093/database/baz046)

- CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/)
 - Human: 13,605 cell markers of 467cell types in 158 tissues
 - Mouse: 9,148 cell makers of 389 cell types in 81 tissues
 - Zhang et al. (https://doi.org/10.1093/nar/gky900)

Challenges in clustering

What is a cell type?

• What is the number of clusters k?

• Scalability: in the last few years the number of cells in scRNA-seq experiments has grown by several orders of magnitude from $^{\sim}10^2$ to $^{\sim}10^6$

Cell identity

Environmental stimuli

Cell development

Cell cycle

Spatial context

Summary

Clustering practical

- Feature selection (HVG)
- Dimensionality reduction: select principal components
- Hierarchical clustering: distances and linkage methods
- tSNE + k-Means
- Graph-based clustering

Resources

• Kiselev et al. "Challenges in unsupervised clustering of single- cell RNA- seq data"

https://doi.org/10.1038/s41576-018-0088-9

• Duò et al. " A systematic performance evaluation of clustering methods for single-cell RNA-seq data"

https://doi.org/10.12688/f1000research.15666.2

Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/

Hemberg single cell course: Analysis of single cell RNA-seq data

https://scrnaseq-course.cog.sanger.ac.uk/website/index.html

• Slides Åsa Björklund (NBIS, SciLifeLab)

https://github.com/NBISweden/workshop-scRNAseq/tree/master/slides2019