

Barrare una sola risposta per ogni domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

La forma canonica SP di una legge combinatoria RSS di È una lista di copertura ridondante R Moore È una lista di copertura non ridondante Non è una lista di copertura Data R rete seguenziale sincronizzata, il montaggio $x_3 + (x_2 \cdot \overline{x_1}) = (x_3 + x_2) \cdot (x_3 + \overline{x_1})$ della figura è certamente privo di anelli combinatori se Rè: Vero di Moore Falso di Mealy di Mealy ritardato In base 10, $\left|-37\right|_3$ è uguale a: In ogni caso 37 In una rete sequenziale sincronizzata siano X[j] e S[j] lo $|5|_{2}$ stato di ingresso ed interno presenti dopo il j-simo Non si può fare, perché -37 non è un numero naclock. La legge A() che aggiorna lo stato interno è: \Box S[j+1] = A(X[j],S[j])Nessuna delle precedenti $\Box S[j+1] = A(X[j+1],S[j])$ Affinché il quoziente della divisione tra due interi a e b sia rappresentabile sul numero di cifre richiesto: ☐ Nessuna delle precedenti, in quanto la risposta di-È sufficiente che lo sia il quoziente della divisione |a| diviso |b|pende dal tipo di rete (Moore, Mealy, Mealy ritar-È necessario che lo sia il quoziente della divisione |a| diviso |b|Dopo che il processore ha eseguito l'istruzione CLI, Nessuna delle precedenti una richiesta di interruzione inviata dal Controllore: □ Viene subito accettata ☐ E' considerata definitivamente persa ☐ Sarà accettata dopo che sarà stata eseguita l'istruzione STI □ Nessuna delle precedenti Dato il d-latch di figura, quando c passa da 1 a 0, Un'interfaccia che invia una richiesta di interruzione al l'uscita q: Controllore rimuove tale richiesta: Vale 0 ☐ Quando riceve la notifica dal Controllore che la ri-Vale 1 chiesta è stata accettata dal processore Assume un valore casuale ☐ Subito dopo averla inviata, perché (prima o poi) Oscilla sarà comunque accettata ☐ Quando un'istruzione del sottoprogramma di servi-Per scrivere la tabella di flusso di una rete sequenziale zio dell'interruzione accede ad un opportuno regiasincrona che riconosca una sequenza di K stati di instro dell'interfaccia gresso servono come minimo: □ Nessuna delle precedenti K stati interni 2K stati interni 2^K stati interni Nessuna delle precedenti

	Cognome e nome:		
	Matricola:		
•	Consegna: Sì	No 🗌	

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

Un'interfaccia mantiene la richiesta di interruzione che ha inviato al Controllore:

- ☐ Finché non riceve una notifica di accettazione dell'interruzione dal Controllore stesso
- ☐ Per pochi ns, il tempo necessario al Controllore a memorizzarla
- ☐ Finché il processore non setta *inta*
- ☐ Nessuna delle precedenti

Dato il d-flip-flop di figura, l'uscita q:

- ☐ Vale sempre 0
- ☐ Vale sempre 1
- ☐ Ha un comportamento non prevedibile a priori
- ☐ Oscilla con periodo pari a due clock

Nella figura, R è una rete sequenziale sincronizzata. Nel montaggio ci possono essere anelli combinatori se R è:

- ☐ di Moore
- □ di Mealy
- di Mealy ritardato
- ☐ In ogni caso

La lista degli implicanti principali di una legge combinatoria

- ☐ È una lista di copertura che può essere ridondante
- ☐ È una lista di copertura non ridondante
- □ Non è una lista di copertura

Siano X[j], S[j], Z[j] lo stato di ingresso, interno e di uscita presenti al j-simo fronte del clock di una rete sequenziale sincronizzata di Mealy ritardato. La legge B() che aggiorna Z è:

- $\Box Z[j+1] = B(X[j+1],S[j])$
- $\Box Z[j+1] = B(X[j],S[j+1])$
- \Box Z[j+1] = B(X[j],S[j])
- Nessuna delle precedenti

In base 10, $\left|-38\right|_{3}$ è uguale a:

- □ |5|_.
- \Box $|38|_3$
- ☐ Non si può fare, perché -38 non è un numero naturale
- ☐ Nessuna delle precedenti

Dopo che il processore ha eseguito l'istruzione CLI, una richiesta di interruzione inviata dal Controllore:

- ☐ Sarà accettata dopo che sarà stata eseguita l'istruzione STI
- ☐ Viene accettata immediatamente
- ☐ E' considerata definitivamente persa
- Nessuna delle precedenti

Affinché il quoziente della divisione tra due *interi a* e *b* sia rappresentabile sul numero di cifre richiesto:

- \Box è necessario che lo sia il quoziente della divisione |a| diviso |b|
- \Box è sufficiente che lo sia il quoziente della divisione |a| diviso |b|
- Nessuna delle precedenti

Per scrivere la tabella di flusso di una rete sequenziale asincrona che riconosca una sequenza di *K* stati di ingresso servono come minimo:

- ☐ *K* stati interni
- ☐ *K*+1 stati interni
- K+2 stati interni
- ☐ 2*K* stati interni

$$\overline{x_3} \cdot (\overline{x_2} + \overline{x_1}) = (\overline{x_3} \cdot \overline{x_2}) + (\overline{x_3} \cdot \overline{x_1})$$

- □ Vero
- ☐ Falso

	Cognome e nome:			
	Matricola:			
•	Consegna	: Sì	No 🗌	

☐ Nessuna delle precedenti

Barrare **una sola risposta** per domanda

Il punteggio finale è -1 \times (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

La sintesi SP di costo minimo di una rete combinatoria	
□ Non può contenere mintermini	R RSS di
☐ È sempre priva di alee statiche del primo ordine	Mealy
☐ Nessuna delle precedenti	clock
$x_3 \cdot \left(x_2 + \overline{x_1}\right) = \left(x_3 + x_2\right) \cdot \left(x_3 + \overline{x_1}\right)$	Data R rete sequenziale sincronizzata, il montaggio della figura è certamente privo di anelli combinatori se
□ Vero	R è:
□ Falso	☐ di Moore o di Mealy
1 diso	☐ di Mealy o di Mealy ritardato
In hace 10 40 è uguale au	☐ di Moore o di Mealy ritardato
In base 10, $ -40 _3$ è uguale a:	☐ In ogni caso
□ Non si può fare, perché -40 non è un numero na-	
turale	In una rete sequenziale sincronizzata siano X[j] e S[j] lo
$\Box 40 _3$	stato di ingresso ed interno presenti dopo il j-simo
	clock. La legge A() che aggiorna lo stato interno è:
\Box $ 8 _3$	$\Box S[j+1] = A(X[j+1],S[j])$
☐ Nessuna delle precedenti	•
	$\Box S[j+1] = A(X[j],S[j+1])$
Dati due interi a e b, rappresentati da A e B in CR su n	$\Box S[j+1] = A(X[j],S[j])$
e m cifre rispettivamente, e dato $p=a*b$, quale delle	
seguenti affermazioni è vera:	☐ Nessuna delle precedenti, in quanto la risposta di-
\Box p e p sono rappresentabili sullo stesso numero	pende dal tipo di rete (Moore, Mealy, Mealy ritar-
di cifre	dato)
□ p può non essere rappresentabile su n+m cifre	
\Box La rappresentazione di p è l'uscita di un moltipli-	Dopo che il processore ha eseguito l'istruzione CLI,
catore per naturali che ha in ingresso A e B	una richiesta di interruzione inviata dal Controllore:
□ Nessuna delle precedenti	☐ Sarà accettata dopo che sarà stata eseguita
·	l'istruzione STI
NOT	☐ Viene subito accettata
	☐ E' considerata definitivamente persa
$\Box \rightarrow D$ $Q \rightarrow q$	☐ Nessuna delle precedenti
	·
c _ n	Un'interfaccia che invia una richiesta di interruzione al
	Controllore rimuove tale richiesta:
Dato il d-latch di figura, quando c vale 1, l'uscita q:	☐ Quando riceve la notifica dal Controllore che la ri-
□ Vale 0	chiesta è stata accettata dal processore
□ Vale 1	 Quando un'istruzione del sottoprogramma di servi-
☐ Assume un valore casuale	zio dell'interruzione accede ad un opportuno regi-
□ Oscilla	stro dell'interfaccia
	☐ Subito dopo averla inviata, perché (prima o poi)
Sia data una rete sequenziale asincrona che imple-	sarà comunque accettata
menta un riconoscitore di sequenza. Se la sua tabella	□ Nessuna delle precedenti
di flusso ha K righe, la sequenza di stati di ingresso ri-	- Nessuna delle precedenti
conosciuta può essere lunga al massimo:	
□ <i>K</i>	
□ <i>K</i> +1	
□ K-1	

Sì 🗌	No 🗌	
	Sì 🗌	Sì No

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

Un'interfaccia mantiene la richiesta di interruzione che ha inviato al Controllore:

- ☐ Finché il processore non setta *inta*
- Per pochi ns, il tempo necessario al Controllore a memorizzaria
- ☐ Finché non riceve una notifica di accettazione dell'interruzione dal Controllore stesso
- ☐ Nessuna delle precedenti

Dato il d-flip-flop di figura, l'uscita q:

- Oscilla con periodo pari al tempo di attraversamento della porta NOT
- □ Vale sempre 1
- □ Vale sempre 0
- □ Nessuna delle precedenti

Nella figura, R è una rete sequenziale sincronizzata. Nel montaggio ci possono essere anelli combinatori se R è:

- ☐ di Mealy
- □ di Moore
- di Mealy ritardato
- ☐ In ogni caso

La lista degli implicanti principali *essenziali* di una legge combinatoria

- ☐ È sempre una lista di copertura, che può essere ridondante
- ☐ È sempre una lista di copertura non ridondante
- ☐ Può non essere una lista di copertura

Siano X[j], S[j], Z[j] lo stato di ingresso, interno e di uscita presenti al j-simo fronte del clock di una rete sequenziale sincronizzata di Moore. La legge B() che aggiorna Z è:

- $\Box Z[j+1] = B(X[j],S[j])$
- \Box Z[j+1] = B(S[j])
- \square Z[j+1] = B(S[j+1])
- □ Nessuna delle precedenti

In base 10, $\left|-38\right|_3$ è uguale a:

- □ Non si può fare, perché -38 non è un numero naturale
- \Box $|38|_{2}$
- \Box $|5|_3$
- Nessuna delle precedenti

Dopo che il processore ha eseguito l'istruzione CLI, una richiesta di interruzione inviata dal Controllore:

- ☐ Sarà accettata dopo che sarà stata eseguita l'istruzione STI
- ☐ Viene accettata immediatamente
- ☐ E' considerata definitivamente persa
- □ Nessuna delle precedenti

Dati due interi a e b, rappresentati da A e B in CR su n e m cifre rispettivamente, e dato p=a*b:

- □ p e |p| non sono rappresentabili sullo stesso numero di cifre
- \Box p può non essere rappresentabile su n+m cifre
- La rappresentazione di p è l'uscita di un moltiplicatore per naturali che ha in ingresso A e B
- Nessuna delle precedenti

Sia data una rete sequenziale asincrona che implementa un riconoscitore di sequenza. Se la sua tabella di flusso ha *K* righe, la sequenza di stati di ingresso riconosciuta può essere lunga al massimo:

- \Box K
- □ *K*+1
- □ 2*K*
- Nessuna delle precedenti

$$\overline{x_3} + (\overline{x_2} \cdot \overline{x_1}) = (\overline{x_3} + \overline{x_2}) \cdot (\overline{x_3} + \overline{x_1})$$

- □ Vero
- ☐ Falso

<u> </u>	Cognome e nome:			-
	Matricola:			
	Consegna:	Sì 🗌	No 🗌	