Rozwiązywać będziemy równanie przewodnictwa cieplnego

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + f(x, t), \quad x \in [a, b], \quad t \in [0, t^*]$$
 (1)

z warunkami $u(x,0) = u_0(x)$, $u(a,t) = u_a(t)$ i $u(b,t) = u_b(t)$.

Równanie to można rozwiązać poprzez jego "dyskretyzację". Zastąpmy więc pochodne odpowiednimi ilorazami różnicowymi: $\frac{\partial u}{\partial t} = \frac{u_{i,j} - u_{i,j-1}}{k}$, $\frac{\partial^2 u}{\partial x^2} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$, gdzie $i=2,3,\ldots,n-1$ dla kolejnych $j=2,3,\ldots,m$. We wzorach tych h jest odległością pomiędzy każdą parą sąsiednich iksów, z których pierwszy $x_1=a$, a ostatni $x_n=b$ natomiast k jest krokiem czasu (podobnie jak dla zmiennej x – pierwszy t jest równy 0, a ostatni t^*).

Po wstawieniu do równania (1) ilorazów różnicowych i po prostym przekształceniu otrzymamy formułę:

$$w_1 u_{i-1,j} + w_2 u_{i,j} + w_1 u_{i+1,j} + w_3 u_{i,j-1} = w_4 f_{i,j}, \tag{2}$$

gdzie $w_1 = \alpha k$, $w_2 = -(2\alpha k + h^2)$, $w_3 = h^2$, $w_4 = -kh^2$, a $f_{i,j} = f(x_i, t_j)$. Wstawiając do równania (2) kolejne wartości $i = 2, 3, \ldots, n-1$ oraz $j = 2, 3, \ldots, m$, jeśli wewnątrz kolejnych wierszy przebiegać będziemy kolejne kolumny, to otrzymamy kwadratowy układ równań o nm - n - 2m + 2 wierszach, który będzie trójprzekątniowy z dodatkową "przekątną" wynikającą ze składowej $w_3 u_{i,j-1}$ równania (2). Pamiętajmy, że z warunków początkowych i brzegowych otrzymujemy cały pierwszy wiersz i pełne skrajne kolumny, więc do wektora wyrazów wolnych oprócz wartości $w_4 f_{i,j}$ wędrować będą odpowiednie składniki równania (2) (dla i = 2, i = n - 1 i j = 2). Rozwiązując tak otrzymany układ równań otrzymamy pozostałe, początkowo nieznane wartości $u_{i,j}$, $i = 2, 3, \ldots, n - 1$, $j = 2, 3, \ldots, m$. Dołączając do nich w odpowiednie miejsca znane wartości $u_{i,j}$, dla $i = 1, 2, \ldots, n$ i j = 1 (z funkcji u_0), $j = 2, 3, \ldots, m$ i i = 1 (z funkcji u_a) oraz $j = 2, 3, \ldots, m$ i i = n (z funkcji u_b) otrzymamy pełna "siatkę" wartości funkcji u(x, t).

Napisz program cieplo zależny od argumentów α , a, b, n, m, tg, f, u_0 , u_a , u_b i u (n jest ilością węzłów dla zmiennej x, m jest ilością węzłów dla zmiennej t, $tg = t^*$, a u jest rozwiązaniem dokładnym). Program ma zwracać dwa rysunki: na pierwszym znajdują się wykresy rozwiązania dokładnego i rozwiązania uzyskanego za pomocą tej metody (dyskretnego), na drugim znajduje się wykres błędów bezwzględnych tego odtworzenia. Program przetestuj dla danych: $\alpha = \frac{1}{9}$, a = 0, $b = \pi$, n = 35, m = 55, tg = 2, $f = \frac{xt}{10}$, $u_0 = 1 + \sin 3x$, $u_a = 1$, $u_b = 1 + \frac{\pi t^2}{20}$ i $u = e^{-t} \sin 3x + \frac{xt^2}{20} + 1$.

Rysunek 1: Rozwiązanie (powierzchnia) i odtworzenie (punkty) oraz błędy bezwzględne.