Week 3 Review

a) How do you write the number 78 as an 8-bit binary number?

b) What is the two's complement of 01101101?

10010011

c) What is the sum of 01101101 and 01101101?

 $1101\overline{1010}$

• What groupings are in the K-map on the right?

	<u>C</u> · <u>D</u>	C · <u>D</u>	C ·D	<u>C</u> ∙D
$\overline{A} \cdot \overline{B}$	1	1	X	1
A·B	X	0	X	1
A·B	1	X	X	1
Ā·B	1	X	0	X

What logic equations do these groupings represent?

$$\overline{A} \cdot \overline{B} + \overline{C}$$

How would you implement the A>B output of the 2-bit comparator below out of 1-bit comparators and a minimal number of gates?

Consider the implementation of the A==B signal:

■ The A>B signal follows the same idea:

