STA250 Probability and Statistics

Chapter 11 Notes

Hypothesis Testing 2

Asst. Prof. Abdullah YALÇINKAYA

Ankara University, Faculty of Science, Department of Statistics

Hypothesis Testing for the Mean (σ Unknown)

Convert sample result (x̄) to a t test statistic

Hypothesis Testing for the Mean (σ Unknown)

(continued)

For a two-tailed test:

Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

(Assume the population is normal, and the population variance is unknown)

The decision rule is:

$$\text{Reject H}_0 \text{ if } \boxed{t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} < -t_{n\text{-}1,\,\alpha/2}} \text{ or if } \boxed{t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n\text{-}1,\,\alpha/2}}$$

$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1, \alpha/2}$$

Example: Two-Tail Test

The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in \bar{x} = \$172.50 and s = \$15.40. Test at the

 H_0 : $\mu = 168$

 H_1 : µ ≠ 168

 $\alpha = 0.05$ level.

(Assume the population distribution is normal)

Example Solution:

$$H_0$$
: $\mu = 168$

 H_1 : $\mu \neq 168$

$$\alpha = 0.05$$

- σ is unknown, so use a t statistic
- Critical Value:

$$t_{24,.025} = \pm 2.0639$$

$$t_{n-1} = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$$

Do not reject H₀: not sufficient evidence that true mean cost is different than \$168

- Involves categorical variables
- Two possible outcomes
 - "Success" (a certain characteristic is present)
 - "Failure" (the characteristic is not present)
- Fraction or proportion of the population in the "success" category is denoted by P
- Assume sample size is large

(continued)

 Sample proportion in the success category is denoted by p̂

$$\hat{p} = \frac{x}{n} = \frac{\text{number of successes in sample}}{\text{sample size}}$$

 When nP(1 – P) > 9, p̂ can be approximated by a normal distribution with mean and standard deviation

$$\mu_{\hat{p}} = P$$

$$\sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}}$$

The sampling distribution of p̂ is approximately normal, so the test statistic is a z value:

The sampling distribution of p̂ is approximately normal, so the test statistic is a z value:

Example:

A marketing company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the $\alpha = .05$ significance level.

Solution:

$$H_0$$
: P = .08

$$H_1$$
: P ≠ .08

$$\alpha = .05$$

$$n = 500, \hat{p} = .05$$

Test Statistic:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1 - .08)}{500}}} = \frac{-2.47}{1}$$

Critical Values: ± 1.96

Decision:

Reject H_0 at α = .05

Conclusion:

There is sufficient evidence to reject the company's claim of 8% response rate.

p-value Solution:

(continued)

Calculate the p-value and compare to α

(For a two sided test the p-value is always two sided)

Reject H_0 since p-value = .0136 < α = .05

Type II Error

Assume the population is normal and the population variance is known. Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

The decision rule is:

Reject
$$H_0$$
 if $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha}$ or Reject H_0 if $\overline{x} = \overline{x}_c > \mu_0 + Z_{\alpha} \sigma / \sqrt{n}$

If the null hypothesis is false and the true mean is μ^* , then the probability of type II error is

$$\beta = P(\overline{x} < \overline{x}_c \mid \mu = \mu^*) = P\left(z < \frac{\overline{x}_c - \mu^*}{\sigma / \sqrt{n}}\right)$$

Type II Error Example:

 Type II error is the probability of failing to reject a false H₀

Suppose we fail to reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu^* = 50$

Type II Error Example:

(continued)

■ Suppose we do not reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu^* = 50$

Type II Error Example:

(continued)

Suppose we do not reject H₀: µ ≥ 52 when in fact the true mean is µ* = 50

Calculating β

• Suppose n = 64 , σ = 6 , and α = .05

Calculating β

(continued)

• Suppose n = 64 , σ = 6 , and α = .05

Calculating power of the Test Example

If the true mean is $\mu^* = 50$,

- The probability of Type II Error = β = 0.1539
- The power of the test = $1 \beta = 1 0.1539 = 0.8461$

Next Lesson

Hypothesis Testing-3

See you@