HHU DÜSSELDORF MATH.-NAT. FAKULTÄT Prof. Dr. Nils Detering Dr. Nicole Hufnagel

Markov Chains

Problem sheet 2

random walks

Problems to be discussed (in parts) during the exercise sections:

Problem 1

Let $(S_n)_{n\geq 0}$ be a simple random walk starting at 0 $(S_0=0)$ and with p=0.4 and q=1-p=0.6. Compute the following probabilities:

- $\mathbb{P}(S_4 = 2, S_m \neq 3 \text{ for all } m = 1, 2, 3),$
- $\mathbb{P}(S_2=2, S_5=1),$
- $\mathbb{P}(S_2 = 2, S_4 = 3, S_5 = 1).$

Problem 2

Use the reflection principle to find the number of paths for a simple random walk from $S_0 = 2$ to $S_{10} = 6$ that hit the line y = 1

Problem 3

Let $(S_n)_{n\geq 0}$ be a simple symmetric random walk. Compute $\mathbb{P}(S_n = y | S_m = x)$ for the two cases n > m and n < m.

Problems to be handed in by:

Thursday, May 9th, 11:59 p.m., online via Ilias.

Problem 1 (12 points)

Let $(S_n)_{n\geq 0}$ be a simple random walk starting at 0 with p=0.4 and q=1-p=0.6. Compute the following probabilities:

- $\mathbb{P}(S_2=0, S_4=0, S_5=-1),$
- $\mathbb{P}(\{S_4 = 4\} \cup \{S_4 = -2\}),$
- $\mathbb{P}(M_{17} \le -5, S_7 = -5)$, where $M_{17} = \min_{0 \le i \le 17} S_i$.

Problem 2 (6 points)

For a simple symmetric random walk $(S_n)_{n=0,1,2,...}$ starting in 0 $(S_0 = 0)$, show that

$$\mathbb{P}(S_4=0)=\mathbb{P}(S_3=1).$$

Problem 3 (6 points)

Use the reflection principle to find the probability $\mathbb{P}(M_8 = 6)$, where $M_8 = \max_{0 \le i \le 8} S_i$ and $(S_n)_{n \ge 0}$ is a simple symmetric random walk starting in 0 $(S_0 = 0)$.

Problem 4 (6 points)

In an election candidate A receives 200 votes while candidate B only receives 100. Assume that the probability of getting a vote is identical (50% each) for A and B. What is the probability that A is always ahead throughout the count?