Sarah Clapoft 120886385

EOS/PHYS 427 — Assignment 2

Due: Tuesday, January 31, 2023.

1. Given that Poisson's ratio can be related to the bulk and shear moduli as $\nu = \frac{3K - 2\mu}{6K + 2\mu}$ fill out the following table: (10 pts)

Material	(10^9 N/m^2)	(10^9 N/m^2)	$\rho \atop (kg/m^3)$	$\frac{lpha}{(\mathrm{m/s})}$	$_{ m (m/s)}^{eta}$	ν
Air	0.00010	0	1.0	0.010	0.0	0.20
Water	2.2	0	1000	0.047	0,0	0.50
Ice	8.0	3.9	920	0.12	0.065	0,29
Sandstone	24	17	2500	0,14	0.082	0,21
Limestone	38	22	2700	0.16	0,090	0.26
Granite	88	22	2600	0.21	0.092	0,38
Peridotite	140	58	3300	0.26	0,13	0.32

Derive an expussion for the natio of S- to P- wave velocity $\frac{B}{N}$ in terms of only Poisson's ratio, is. Using this expussion, what are the minimum and maximum values of β relative to N for normal materials? P-wave velocity.

S-wave velocity, Poisson's ratio, $N = \frac{1}{(1-N)}$ $N = \frac{E(1-N)}{P(1-2N)(1+N)}$ $N = \frac{E}{(1-N)}$ $N = \frac{E}{(1-N)}$ $N = \frac{E}{(1-N)}$ $N = \frac{E}{(1-N)(1+N)}$

$$K = \sqrt{\frac{E(1-\lambda)}{B(1-5\lambda)(1+\lambda)}}$$

$$\beta = \sqrt{\frac{\varepsilon}{29(1+\nu)}}$$

$$\frac{\beta}{X} = \sqrt{\frac{E}{28(1-2\nu)(1+\nu)}} = \sqrt{\frac{(1-2\nu)}{2(1-\nu)}} = \frac{\beta}{X}$$

For normal materials, the physical limits for v are 05 v 60.5.

→ Note: B is inversely proportional to 2, so Brax is at Vmin, and Brain is at Vmax.

$$\frac{\beta}{\lambda} = \sqrt{\frac{(1-2\omega)}{2(1-\omega)}} = \sqrt{\frac{1}{2}} \implies \beta_{\text{max}} = \sqrt{\frac{1}{2}} \lambda$$

$$\frac{\beta}{W} = \sqrt{\frac{1 - 2(0.5)}{2(1 - 0.5)}} = 0 \Rightarrow \beta_{min} = 0$$

Note: Brin = 0, as expected, for liquids + solids.

a) Starting w/ the scalar displacement potential for a plane P wowe, fill in the missing steps in the class notes (compute the gradient) to explicitely show that the particle motion associated w/ a plane P-wave is:

which indicates particle motion parallel to the propagation direction. Recall for a general vector displacement field, vi, it can be expressed as:

$$\vec{u} = \nabla \mathscr{O} + \nabla \times \vec{\mathcal{V}} = \vec{u}_p + \vec{u}_s$$
, $\Rightarrow \vec{u}_p = \nabla \mathscr{O}$, $\vec{u}_s = \nabla \times \vec{\mathcal{V}}$

For a plane P-wave, $(\overline{K}_{p},\overline{r}-\omega t)$ $\varnothing(\overline{r})=Ae^{i(K_{px}x+K_{py})+K_{py}}$, $K_{p}=\omega$, $K_{p}=(K_{px},K_{py},K_{py})$, $\overline{r}=(x,y,y)$ $=Ae^{i(K_{px}x+K_{py})+K_{py}}$

Also, since Ø(7) is a scalar function, the curl is undefined.

... Up = iAkpe i(kr. r. -wt)

So the motion is parallel to the propagation direction for a plane p-wave, as expected because p-waver have no rotational component.

b) Starting w/ the vector displacement potential for a plane S wave, explicitly show that the particle motion associated w/ a plane S-wave is given by

FOR S-waves, $V(\vec{r}) = \vec{B} e^{i(\vec{k}_s \cdot \vec{r} - \omega t)} = e^{i(\vec{k}_s \cdot \vec{r} - \omega t)} (B_x \hat{x} + B_y \hat{y} + B_z \hat{y})$, $K_S = \vec{B}$ The S-waves, $V(\vec{r}) = \vec{B} e^{i(\vec{k}_s \cdot \vec{r} - \omega t)} = e^{i(\vec{k}_s \cdot \vec{r} - \omega t)} (B_x \hat{x} + B_y \hat{y} + B_z \hat{y})$, $K_S = \vec{B}$

 $\widehat{u}_{s} = \nabla_{x} \widehat{\nabla} = \left(\frac{\partial V_{2}}{\partial y} - \frac{\partial V_{2}}{\partial y} \right) \widehat{x} + \left(\frac{\partial V_{2}}{\partial y} - \frac{\partial V_{2}}{\partial x} \right) \widehat{y} + \left(\frac{\partial V_{2}}{\partial x} - \frac{\partial V_{2}}{\partial y} \right) \widehat{y}$ = (BziKsyei(Ks·i-wt) - ByiKszei(Ks·i-wt)) x + iei(Ks·i-wt)(BxKsz - BzKsz)y + iei(Ks·i-wt)(ByKsx - BxKsy)z

= $ie^{i(\vec{k}\vec{s}\cdot\vec{r}-\omega t)}[\vec{B}_{3}k_{sy}-\vec{B}_{y}k_{sy}]\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sx})\hat{y}+(\vec{B}_{y}k_{sx}-\vec{B}_{x}k_{sy})\hat{y}]$ $=ie^{i(\vec{k}\vec{s}\cdot\vec{r}-\omega t)}[\vec{B}_{3}k_{sy}-\vec{B}_{y}k_{sy}]\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{sy}-\vec{B}_{y}k_{sy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{sy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{y}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy}-\vec{B}_{x}k_{xy})\hat{x}+(\vec{B}_{x}$