Manual de Usuario - GuateRiegos 2.0

Sistema de Riego Automatizado con Simulación

Introducción

GuateRiegos 2.0 es un sistema avanzado de simulación para sistemas de riego automatizado que permite modelar y optimizar el riego de invernaderos utilizando drones. El sistema proporciona visualizaciones detalladas, reportes completos y análisis de eficiencia para la toma de decisiones en agricultura de precisión.

Características Principales

- V Simulación realista de sistemas de riego con drones
- Visualización interactiva de estructuras de datos (TDAs)
- Reportes HTML detallados con estadísticas
- Interfaz web intuitiva y responsiva
- Z Exportación de datos en múltiples formatos
- Análisis de eficiencia por dron y por hilera

Requisitos del Sistema

Requisitos Mínimos

- Sistema Operativo: Windows 10/11, macOS 10.14+, Linux Ubuntu 18.04+
- Python: Versión 3.8 o superior
- RAM: 4 GB mínimo (8 GB recomendado)
- Espacio en Disco: 500 MB libres
- Navegador Web: Chrome 90+, Firefox 88+, Safari 14+

Dependencias de Software

- Flask 2.0+
- Graphviz (opcional, para generación de gráficos PNG)
- Navegador web moderno con soporte JavaScript

Instalación

Paso 1: Clonar o Descargar el Proyecto

git clone https://github.com/usuario/IPC2_Proyecto2_202303204.git
cd IPC2 Proyecto2 202303204

Paso 2: Instalar Dependencias

pip install -r requirements.txt

Paso 3: Instalar Graphviz (Opcional)

Windows:

- Descargar desde: https://graphviz.org/download/
- Agregar al PATH del sistema

macOS:

brew install graphviz

Linux:

sudo apt-get install graphviz

Paso 4: Ejecutar la Aplicación

python app.py

Paso 5: Acceder a la Interfaz Web

Abrir navegador en: http://localhost:5000

Interfaz de Usuario

Página Principal

La página principal proporciona acceso a todas las funcionalidades del sistema:

- Inicio: Información general y estado del sistema
- Cargar Archivo: Subir configuración XML de invernaderos
- Simulación: Ejecutar y controlar simulaciones
- Visualización: Ver gráficos y reportes generados
- Ayuda: Documentación y soporte

Navegación

- Menú Superior: Navegación principal entre secciones
- Botones de Acción: Controles específicos en cada página
- Notificaciones: Mensajes de estado y alertas
- Breadcrumbs: Indicador de ubicación actual

Configuración Inicial

1. Preparar Archivo de Configuración

El sistema requiere un archivo XML con la siguiente estructura:

```
<?xml version="1.0" encoding="UTF-8"?>
<configuracion>
<invernaderos>
<invernadero nombre="Invernadero San Marcos">
<hileras>
<hilera id="H1">
 <planta id="P1" agua="10" fertilizante="5"
tipo="Tomate"/>
           <planta id="P2" agua="8" fertilizante="3"</pre>
tipo="Lechuga"/>
</hilera>
 </hileras>
<planes>
<plan nombre="Plan Basico">H1-P1,H1-P2</plan>
</planes>
</invernadero>
</invernaderos>
<drones>
<dron id="DRON1" capacidad="50"/>
<dron id="DRON2" capacidad="50"/>
</drones>
</configuracion>
```

2. Cargar Configuración

1. Ir a la sección "Cargar Archivo"

- 2. Hacer clic en "Seleccionar Archivo"
- 3. Elegir el archivo XML de configuración
- 4. Hacer clic en "Cargar Configuración"
- 5. Verificar que aparezca el mensaje de confirmación

3. Validación

El sistema validará automáticamente:

- Z Estructura XML correcta
- Consistencia de datos
- Referencias válidas entre elementos
- V Formatos de datos apropiados

Ejecutar Simulaciones

Paso 1: Seleccionar Invernadero

- 1. Ir a la sección "Simulación"
- 2. Seleccionar invernadero del menú desplegable
- 3. Seleccionar plan de riego (se actualiza automáticamente)

Paso 2: Configurar Simulación

- Verificar que los datos mostrados sean correctos
- Revisar el número de hileras, drones y plantas
- Confirmar el plan de riego seleccionado

Paso 3: Ejecutar

- 1. Hacer clic en "Ejecutar Simulación"
- 2. Esperar a que termine el procesamiento
- 3. Revisar los resultados mostrados

Indicadores de Progreso

- Spinner de carga: Indica simulación en proceso
- Barra de progreso: Muestra avance (si disponible)
- Mensajes de estado: Información del proceso actual

Visualización de Resultados

Panel de Estadísticas

Después de ejecutar una simulación, se mostrarán:

- Tiempo Total: Duración de la simulación en segundos
- Agua Total: Cantidad total de agua utilizada (litros)
- Fertilizante Total: Cantidad de fertilizante aplicado (gramos)

Tabla de Eficiencia por Dron

Dron	Agua Utilizada (L)	Fertilizante (g)	Eficienci a
DRON 1	25.5	15.2	85.3%
DRON 2	30.1	18.7	91.2%

Visualización de TDAs en Tiempo

- 1. Hacer clic en "Ver Gráficos TDA"
- 2. Usar el slider para seleccionar momento específico
- 3. Hacer clic en "Actualizar Gráficos"
- 4. Seleccionar visualización:
 - Plan de Riego (HTML): Estado del plan de riego
 - Cola de Riego (HTML): Cola de tareas pendientes
 - Estado Drones (HTML): Posición y estado de drones
 - o Estado Sistema Tiempo t (HTML): Vista completa del sistema

Controles de Tiempo

- Slider temporal: Navegar entre diferentes momentos
- Botones de reproducción: Avanzar/retroceder automáticamente
- Entrada manual: Especificar tiempo exacto

Generación de Reportes

Reporte HTML Completo

- 1. Hacer clic en "Generar Reporte HTML"
- 2. Esperar la generación del reporte
- 3. Se abrirá automáticamente en nueva ventana

Contenido del Reporte

- Resumen ejecutivo con métricas clave
- Gráficos de rendimiento por dron
- Detalle de secuencia ejecutada
- Análisis de eficiencia del sistema
- Configuración utilizada

Exportar Datos XML

- Hacer clic en "Generar XML Salida"
- 2. El archivo se descargará automáticamente
- 3. Contiene: Resultados, estadísticas y configuración utilizada

Formatos Disponibles

- HTML: Reportes interactivos para navegador
- XML: Datos estructurados para procesamiento
- PNG: Imágenes de visualizaciones
- DOT: Código fuente de gráficos Graphviz

Solución de Problemas

Problemas Comunes

X Error: "No se puede cargar el archivo XML"

Solución:

- 1. Verificar que el archivo tenga extensión .xml
- 2. Comprobar que la estructura XML sea válida
- 3. Asegurar que el archivo no esté corrupto
- 4. Revisar que el tamaño no exceda 10MB
- X Error: "No hay invernaderos cargados"

Solución:

- 1. Cargar un archivo de configuración válido
- 2. Verificar que el XML contenga la sección <invernaderos>
- 3. Comprobar que haya al menos un invernadero definido

X Error: "Simulación falló"

Solución:

- 1. Verificar que hay drones disponibles
- 2. Comprobar que el plan de riego sea válido
- 3. Asegurar que las plantas tengan requerimientos válidos
- 4. Revisar logs del sistema para detalles

X Las visualizaciones no se cargan

Solución:

- 1. Verificar que Graphviz esté instalado (opcional)
- 2. Comprobar permisos de escritura en carpeta output
- 3. Refrescar la página y intentar nuevamente
- 4. Revisar la consola del navegador para errores JavaScript

Logs del Sistema

Los logs se almacenan en:

- Consola del navegador: Errores JavaScript
- Terminal de ejecución: Errores del servidor Python
- Archivo de logs: logs/sistema.log (si está configurado)

Contacto de Soporte

Para problemas no resueltos:

Email: soporte@guateriegos.gt

Teléfono: +502 1234-5678

Documentación: https://docs.guateriegos.gt

Preguntas Frecuentes

? ¿Qué navegadores son compatibles?

R: Chrome 90+, Firefox 88+, Safari 14+, Edge 90+. Se recomienda mantener el navegador actualizado.

? ¿Puedo usar el sistema sin Graphviz?

R: Sí, el sistema genera imágenes simuladas si Graphviz no está disponible, aunque las visualizaciones serán menos detalladas.

? ¿Cuál es el tamaño máximo de archivo XML?

R: 10MB máximo. Para archivos más grandes, considere dividir la configuración en múltiples invernaderos.

? ¿Los datos se guardan automáticamente?

R: Sí, todas las simulaciones y reportes se guardan en la carpeta output organizados por invernadero.

? ¿Puedo ejecutar múltiples simulaciones simultáneamente?

R: No, el sistema procesa una simulación a la vez para garantizar la integridad de los datos.

? ¿Cómo interpreto el porcentaje de eficiencia?

R: La eficiencia se calcula considerando el agua y fertilizante utilizado versus el tiempo transcurrido. Valores superiores al 80% son considerados eficientes.

? ¿Puedo personalizar los reportes?

R: Los reportes HTML son personalizables modificando las plantillas en la carpeta templates.

Anexos

■ Resultados de Simulacion

22

TIEMPO TOTAL (SEG)

15

AGUA TOTAL (L)

525

FERTILIZANTE (G)

Eficiencia por Dron

Dron	Agua Utilizada (L)	Fertilizante (g)	Eficiencia
1	4	100	22.7%
2	4	175	26.1%
3	4	100	22.7%
4	3	150	20.5%

Plan Ejecutado:

H2-P1, H4-P1, H1-P2, H3-P2, H2-P2, H4-P2, H1-P2, H3-P2, H2-P3, H4-P3

Reporte de Simulación - Invernadero San Marcos

Generado el: 28/09/2025 20:50:43

Información General				
Nombre:	Invernadero San Marcos			
Número de hileras:	4			
Drones asignados:	4			
Plan de riego:	H2-P1, H4-P1, H1-P2, H3-P2, H2-P2, H4-P2, H1-P2, H3-P2, H2-P3, H4-P3			

Configuración de Plantas

Hilera	Posición	Tipo de Planta	Agua (L)	Fertilizante (g)
H1	P1	matilisguate	3.0	200.0
H1	P2	ciprés	4.0	100.0
H1	P3	matilisguate	3.0	200.0
H2	P1	ciprés italiano	1.0	25.0
H2	P2	ciprés de tarout	2.0	125.0
H2	P3	ciprés italiano	1.0	25.0
H3	P1	matilisguate	3.0	200.0
H3	P2	ciprés	4.0	100.0
H3	P3	matilisguate	3.0	200.0
H4	P1	ciprés italiano	1.0	25.0

Información Adicional

Versión del Software

Versión: GuateRiegos 2.0.1

• Fecha de Lanzamiento: Septiembre 2025

Compatibilidad: Python 3.8-3.12

Créditos

Desarrollado por: Estudiante IPC2 - USAC

Carnet: 202303204

Curso: Introducción a la Programación y Computación 2

• Universidad: Universidad de San Carlos de Guatemala

Licencia

Este software es desarrollado con fines académicos bajo la supervisión de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

Última actualización: Septiembre 28, 2025