Lecture 9: Synthetic Control Methods

James Sears*
AFRE 891 SS 24
Michigan State University

*Parts of these slides are adapted from <u>"Econometrics III"</u> by Ed Rubin.

Table of Contents

- 1. Prologue
- 2. Matching
- 3. Canonical Synthetic Control
- 4. Synthetic Difference-in-Difference
- 5. Partially Pooled SCM

Prologue

Prologue

This lecture is focusing on **Synthetic Control Methods**, which will let us solve several of the issues that can affect methods we discussed last lecture.

Part 1

- The Fundamental Problem of Causal Inference
- Matching
- Canonical Synthetic Control

Part 2

- Synthetic Diff-in-Diff
 - Uniform Adoption
 - Staggered Adoption
- Partially Pooled Synthetic Control

Prologue

Packages we'll use today:

```
# If not installed, add in packages from GitHub not on CRAN
if (!require("augsynth")) remotes::install_github("ebenmichael/augsynth")

if (!require("pacman")) install.packages("pacman")
pacman::p_load(augsynth, fixest, synthdid, tidysynth, tidyverse)
```

As well, let's load the event study data from <u>Sears et al. (2023)</u> we finished last lecture with:

```
sah ← readRDS("data/sah_es.rds")
```

Let's chat about the **fundamental problem of causal inference** for a moment.

Consider unit i's **potential outcomes:**

- ullet Y_{1i} : the outcome for unit i under the treatment
 - \circ Treatment assignment $D_i=1$
- ullet Y_{0i} : the outcome for unit i absent the treatment
 - \circ Treatment assignment $D_i=0$
- 1. We want/need to know $au_i = \mathrm{Y}_{1i} \mathrm{Y}_{0i}$.
- 2. We cannot simultaneously observe both Y_{1i} and Y_{0i} .

Most (all?) empirical strategies boil to estimating Y_{0i} for treated individuals — the **unobservable counterfactual** for the treatment group.

Last lecture gave an overview of regression methods that make different assumptions about that **unobservable counterfactual**.

1. RCT + Random Assignment

- The average in the control group is what the average in the treatment group would have been absent the treatment
- Regress outcome on treatment dummy and you're good to go
 - Maybe add some control variables to improve precision of estimator

2. Difference-in-Differences + Event Study

• The **change over time** in the control group is what the change in the treatment group would have been absent the treatment

All of these estimates are identified under a variation of the **Conditional Independence Assumption (CIA)**[†]

$$\{\mathbf{Y}_{0i},\,\mathbf{Y}_{1i}\}\perp \mathbf{D}_i\mid \mathbf{X}_i$$

Conditional on X_i^1 , potential outcomes (Y_{0i}, Y_{1i}) are independent of treatment status (D_i) .

[†] AKA "selection on observables".

^{1.} Or it if we're in a panel setting

But there are times when CIA fails².

In the case of Diff-in-Diff and Event Study, this is often due to a failure of **parallel trends**.

For example, recall the event study for mobility responses to stay-at-home mandates from last lecture:

In this case, the states that never adopted stay-at-home mandates might not be *valid counterfactuals* for the states that did adopt.

However, there might be a way to *construct* a valid counterfactual from the set of control units...

... but before we get into that, let's chat briefly about matching estimators.

Matching

Matching

Matching Estimators provide an alternate way of coming up with the unobservable counterfactual for the treatment group.

The gist:

- ullet Match untreated observations to treated observations using ${f X}_i$
 - \circ *i.e.* calculate a \widehat{Y}_{0i} for each Y_{1i} , based upon "matched" untreated individuals with (nearly) identical values of X_i
- ullet If CIA holds, then we can just calculate a bunch of treatment effects conditional on \mathbf{X}_i
 - ∘ i.e.

$$au(x) = E[\mathrm{Y}_{1i} - \mathrm{Y}_{0i} \mid \mathrm{X}_i = x]$$

Matching

More formally:

We want to construct a counterfactual for each individual with $\mathbf{D}_i=1$.

CIA: The counterfactual for i should only use individuals that match \mathbf{X}_i .

Let there be N_T treated individuals and N_C control individuals. We want

- ullet N_T sets of weights
- ullet with N_C weights in each set:

$$w_i(j) \; (i=1,\,\ldots,\,N_T;\, j=1,\,\ldots,\,N_C)$$

Assume $\sum_{j} w_i(j) = 1$. Our estimate for the counterfactual of treated i is

$$\widehat{\mathrm{Y}_{0i}} = \sum_{j \in (D=0)} w_i(j) \mathrm{Y}_j$$

Weight for it

So all we need is those weights and we're done.

Q: Where does one find these handy weights?

A: You've got options, but you need to choose carefully/responsibly.

E.g. if $w_i(j)=rac{1}{N_C}$ for all (i,j), then we're back to a difference in means. This weighting doesn't abide by our conditional independence assumption.

The plan: choose weights $w_i(j)$ that indicate **how close** X_j is to X_i .

Weight for it

Some common choice of weights:

• Nearest neighbor:

$$\mathrm{d}_{i,j} = \left(\mathrm{X}_i - \mathrm{X}_j
ight)' \left(\mathrm{X}_i - \mathrm{X}_j
ight)$$

• **Kernel Matching** for **bandwidth** h and **kernel function** $K(\cdot)$:

$$w_i(j) = rac{\mathit{K}\!\!\left(rac{\mathrm{X}_j - \mathrm{X}_i}{h}
ight)}{\sum\limits_{j \in (D=0)} \mathit{K}\!\!\left(rac{\mathrm{X}_j - \mathrm{X}_i}{h}
ight)}$$

For example, the Epanechnikov kernel is defined as

$$K(z)=rac{3}{4}ig(1-z^2ig) imes \mathbb{I}(|z|<1)$$

And the triangular kernel can be expressed as

$$K(z) = (1-|z|) imes \mathbb{I}(|z| < 1)$$

And the *uniform kernel* with $K(z) = rac{1}{2} imes \mathbb{I}(|z| < 1)$

Or the Gaussian kernel $K(z) = \left(2\pi
ight)^{-1/2} \expig(-z^2/2ig)$

Aside on Kernels

Kernel functions are good for more than just matching.

You will most commonly see/use them smoothing out densities—providing a smooth, moving-window average.

E.g. R's (ggplot2's) smooth, density-plotting function geom_density().

geom_density() defaults to kernel = "gaussian", but you can specify many
other kernel functions (including "epanechnikov").

You can also change the bandwidth argument. The default is a bandwidth-choosing function called bw.nrd0().

The **canonical synthetic control method** feels a lot like if **event study** and a **matching estimator** got together and had a kid.

- Originated in <u>Abadie and Gardeazabal (2003) AER</u>, refined and extended in <u>Abadie, Diamond, and Hainmueller (2010) JASA</u>
- Developed for comparative case studies: one aggregate unit exposed to treatment/intervention

The gist: compare post-treatment outcome evolution in treated group to a synthetic control unit constructed to match on

- ullet Pre-trends in the outcome variable \mathbf{Y}_i
- ullet Covariates \mathbf{X}_i or \mathbf{X}_{it}

Synthetic control overcomes one of the key issues of studying aggregate units: **few, poor-counterfactual controls**

- Policy interventions often happen at an aggregate level (i.e. state, country)
- Aggregate/macro data are often easy to obtain

However,

- Finding a valid counterfactual with coarse, aggregate units can be difficult
- Control group selection is ad hoc, leading to researcher degrees of freedom

Formally:

- ullet Suppose you have data for J+1 units
 - \circ Treated unit: j=1
 - \circ "Donor Pool": all $j=2,\ldots,J+1$ units
- ullet Data span T periods, with T_0 periods prior to treatment

For each unit, we observe

- 1. The outcome of interest Y_{it}
- 2. A set of k predictors of the outcome, X_{1j},\ldots,X_{kj}
 - \circ May include pre-intervention values of Y_{jt}
 - Must be unaffected by the intervention

Formally:

For each unit j, let Y_{jt}^N be the potential response without intervention, with Y_{1t}^I the potential response under intervention for the exposed unit

ullet For unit "one" with $t>T_0$, we have $Y_{1t}=Y_{1t}^I$

Under this setup, the effect of the policy in period $oldsymbol{t}$ is given by

$$au_{1t} = Y_{1t}^I - Y_{1t}^N$$

Policy Evaluation Challenge: how to estimate Y_{1t}^N , the unobserved counterfactual?

A: Construct a **synthetic control** as a weighted average of units in the donor pool.

Let $W=(\omega_2,\ldots,\omega_{J+1})'$ be a J imes 1 vector of weights.

For a given W, the synthetic control counterfactual is

$${\hat{Y}}_{1t}^N = \sum_{j=1}^{J+1} \omega_j Y_{jt}$$

and

$$\hat{m{ au}}_{1t} = Y_{1t}^I - {\hat{Y}}_{1t}^N$$

Choosing Weights

Weights are designed to avoid extrapolation

- $ullet egin{array}{ll} ullet & \omega_j \geq 0 \;\; orall \; j \ ullet & \sum\limits_{j=1}^{J+1} \omega_j = 1 \end{array}$
- Ensures synthetic control is located within the convex hull of donor units (based purely on observed data)

We will choose the ω_j so that the synthetic control best matches **pre-intervention values for the treated unit of predictors for the outcome variable**.

Choosing Weights

That is, choose weights W^st that minimize

$$||X_1-X_0W||=(\sum_{h=1}^k
u_h(X_{h1}-\omega_2X_{h2}-\ldots-\omega_{J+1}X_{hJ+1})^2)^{1/2}$$

- Positive constants $u_1 \dots
 u_k$ reflect the **relative importance** put on predictors $1, \dots k$
- Abadie, Diamond, and Hainmueller (2010): select $\nu_1 \dots \nu_k$ to minimize mean square prediction error (MSPE) for some set of pre-intervention periods
- Abadie, Diamond, and Hainmueller (2015): select $u_1 \dots \nu_k$ via out-of-sample validation
 - 1. Divide pre-intervention period into .hi-medgrn[training] and .hi-purple[validation] periods
 - 2. Select a value of $V^*=
 u_1^*\dots
 u_k^*$ that yields a small MSPE in the validation period

Let's load in some state-by-year data on GDP and other economic conditions:

```
deu ← haven::read_dta("data/repgermany.dta") %>%
   mutate_at(vars(year, gdp, infrate, trade, schooling,
                   invest60, invest70, invest80,
                   industry),
               as.numeric) %>%
   mutate_at(vars(index, country), as.factor)
deu ← haven::read_dta("data/repgermany.dta") %>%
   mutate_at(vars(index, year, gdp, infrate, trade, schooling,
                   invest60, invest70, invest80,
                   industry),
               as.numeric) %>%
   mutate_at(vars(country), as.character)
head(deu)
```

```
## # A tibble: 6 × 11
## index country year gdp infrate trade schooling invest60 invest70<sup>30</sup>ih∜est
```

How did West Germany GDP compare to OECD countries prior to reunification?

• Spoiler: that gap looks to be growing

What if we construct a "synthetic" West Germany to match on preunification predictors of economic growth?

- GDP (average for 1980-1990)
- Trade openness: Exports + Imports as % of GDP (average for 1980-1990)
- Inflation Rate (average for 1980-1990)
- Industry share of value-added (average 1981-1989)
- Schooling: % of secondary school attained in the age 25+ population (average 1980 and 1985)
- Investment rate: ratio of real domestic investment (private + public) to real GDP (average 1980-84)

Let's use the **tidysynth** package to do this in a *tidy* workflow

First, let's set up the synthetic control object with synthetic_control()

```
synth_wg \( \to \text{deu %>%}
    synthetic_control(
    outcome = gdp,
    unit = country,
    time = year,
    i_unit = "West Germany", # treated unit
    i_time = 1990, # treatment year
    generate_placebos = T # whether to generate placebos for inference
)
```

Next, add the predictors with generate_predictor()

- Choose a time period for matching
- Choose the variables to use
- Choose the summary method

Next, generate weights with generate_weights()

```
wts 		 synth_wg %>%
    generate_weights(optimization_window = 1981:1990)

# get variable weights

wt_vec 		 wts[[7]][[1]] %>%
    select(weight) %>% as.vector() %>% unlist()
```

Finally, estimate the synthetic control and plot it

```
synth_control ← generate_control(wts)
plot_trends(synth_control)
```


Alternatively, extract the synthetic control + treated unit values for plotting:

```
grab_synthetic_control(synth_control) %>% head()
```

```
## # A tibble: 6 × 3
    time_unit real_y synth_y
###
        <dbl> <dbl>
                    <dbl>
###
## 1
         1960
              2284 2238.
## 2
         1961 2388 2319.
## 3
         1962 2527 2457.
         1963 2610 2565.
## 4
## 5
              2806
                      2751.
         1964
## 6
         1965
               3005
                      2918.
```

```
grab_synthetic_control(synth_control) %>%
  pivot_longer(cols = ends_with("y"), names_to = "var") %>%
  ggplot(aes(x = time_unit)) +
  geom_line(aes(y = value, linetype = var)) +
   geom_vline(aes(xintercept = 1990), linetype = "dashed") +
  theme_minimal()
```


Comparing to the raw mean of OECD countries:

Alernatively we can plot the **difference** between West Germany and its synthetic control:

plot_differences(synth_control)

Looking at the weights:

```
synth_control %>%
  plot_weights()
```


Checking balance of real West Germany vs. Synthetic West Germany vs. Mean of OECD Countries:

```
synth control %>%
  grab balance table()
## # A tibble: 6 × 4
###
   variable
                   West Germany synthetic_West Germany donor_sample
  <chr>
                            <dbl>
                                                    <dbl>
                                                                 < [db>
###
## 1 gdp 81 90
                         15809.
                                                 15800.
                                                             13669.
  2 infrate81 90
                             2.59
                                                     3.30
                                                                 7.62
  3 trade81 90
                            56.8
                                                    69.1
                                                                 59.8
  4 industry_71_80
                                                                36.9
                            43.9
                                                    37.1
  5 schooling 70 75
                            51.9
                                                                32.5
                                                    43.1
  6 invest 80
                            27.0
                                                    25.7
                                                                25.9
```

For inference, we repeat the same process as before with every unit in the donor pool.

```
synth_control %>%
plot_placebos(prune = FALSE)
```


By default, plot_placebos() hides the placebo controls with large MSPEs (here we only get 3)

```
synth_control %>%
plot_placebos()
```


Inference

Finally, looking at inference:

A tibble: 17 × 8

```
wg_inf ← synth_control %>%
  grab_significance()
wg_inf
```

```
##
     unit name
                           pre mspe post mspe mspe ratio rank fishers exact py
                   type
     <chr>
                   <chr>
                              <dbl>
                                        <dbl>
                                                   <dbl> <int>
##
##
    1 West Germany Treated
                             12771. 4474135.
                                                  350.
                                                                              0
                                                              1
                            583094. 42826838. 73.4
                                                              2
                                                                              0.
    2 Norway
                   Donor
###
    3 Australia
                                     2816702.
                                                  63.5
                                                              3
###
                   Donor
                         44373.
                                                                              0.
###
    4 USA
                   Donor
                            331001. 12654685.
                                                  38.2
                                                              4
                                                                              0.
##
    5 New Zealand
                   Donor
                            388407. 9052988.
                                                  23.3
                                                              5
                                                                              0.
                                     6625701.
                                                   16.1
##
    6 Greece
                   Donor
                            410485.
                                                              6
                                                                              0.
    7 Spain
                            122462.
                                     1569470.
                                                   12.8
                                                              7
                                                                              0.
##
                   Donor
    8 Italy
                            297045.
                                     2505509.
                                               8.43
                                                              8
                                                                              0
##
                   Donor
##
    9 Denmark
                   Donor
                             34078. 280217.
                                                   8.22
                                                              9
                                                                              0
   10 Switzerland Donor
###
                           1399771. 8117976.
                                                    5.80
                                                             10
                                                                              0.
                                                                         45 / 49 0
  11 Netherlands
###
                   Donor
                            230567.
                                     1094375.
                                                    4.75
                                                             11
```

Inference

```
colnames(wg_inf)

## [1] "unit_name" "type" "pre_mspe"

## [4] "post_mspe" "mspe_ratio" "rank"

## [7] "fishers_exact_pvalue" "z_score"
```

Inference with synthetic controls is based on the difference between pre and post-intervention MSPE values.

Idea: if the synthetic control fits the observed data well (low pre-intervention MSPE), and diverges in the post-period (high post-period MSPE), then the intervention had a meaningful effect.

- If the intervention had *no* effect, the pre and post-period MSPE should be similar, with a ratio around 1
- If placebos fit the data as well as the treated unit, we can't reject the null of no treatment effect

Inference

Fisher's exact P-value is generated by first ranking ratios then dividing the rank of the case over the total

```
unique_countries ← unique(deu$country) %>% length()
# Fisher's P calculated as rank/total, so for West Germany (rank 1):
1/unique_countries
```

```
## [1] 0.05882353
```

Z-score is then the standardized RMSE ratios for all cases.

 Captures degree to which a particular case's RMSE ratio deviates from the placebo distribution

Choice of Predictors

One challenge remaining for the researcher is the **definition of predictors**

- Which predictors to use
- Which years to match on

<u>Ferman, Pinto, and Possebom (2020)</u> go into great detail regarding how to properly select specifications of synthetic controls. Their punchline:

- Models including more pre-treatment outcome lags as predictors are better at controlling for unobserved confounders
- The possibilities for "specification searching" are higher with more pretreatment periods used for matching
- **Best:** present multiple results under common specifications
 - If the result is robust to these different predictor choices, then the preferred specification isn't cherry-picked!

Table of Contents

- 1. Prologue
- 2. Matching
- 3. Canonical Synthetic Control