Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 5 Bases de Probabilités

Exercice 13 (Borel-Cantelli, le retour).

(a) Soit une suite $(A_n)_{n\geq 1}$ de \mathscr{F} . Montrer que

$$\mathbb{P}(\limsup_{n} A_n) = 1 - \lim_{n \to \infty} \mathbb{P}(\bigcap_{k \ge n} A_k^c).$$

(b) En déduire que si on a la condition d'indépendance suivante :

$$\mathbb{P}(\bigcap_{k\geq n} A_k^c) = \prod_{k\geq n} \mathbb{P}(A_k^c),$$

alors

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \qquad \Rightarrow \qquad \mathbb{P}(\limsup_{n} A_n) = 1.$$

(c) Soit $(X_i)_{i\geq 1}$ une suite i.i.d de loi exponentielle $\mathcal{E}(\theta)$ et $\alpha\geq 0$. Montrer que

$$\mathbb{P}(\max_{1 \le i \le n} X_i \ge \alpha \log n \text{ pour une infinit\'e de } n) = \begin{cases} 0 & \text{si } \alpha > 2/\theta \\ 1 & \text{si } \alpha \le 2/\theta \end{cases}.$$

(d) Soit X_n une suite de variables indépendantes où X_n est une variable de Bernoulli de paramètre 1/n. Montrer que $X_n \to 0$ en probabilité mais pas presque sûrement. Donner une sous-suite $(X_{\varphi(n)})$ qui converge p.s. vers zéro.

Exercice 14. (Lemme de Scheffé). Soit X_n une suite de variables à valeurs dans (E, \mathcal{T}) de densité f_n par rapport à une mesure de référence ν sur E. On suppose que $f_n \to f$ ν -p.p et que f est une densité, c'est-à-dire que f d $\nu = 1$ et $f \geq 0$.

- (a) Montrer que $\int |f_n f| d\nu \to 0$ quand $n \to \infty$.
- (b) En déduire que $X_n \to X$ en loi, où X est une variable de loi $f d\nu$, et qu'on a même la convergence uniforme :

$$\sup_{A \in \mathscr{T}} |\mathbb{P}(X_n \in A) - \mathbb{P}(X \in A)| \xrightarrow[n \to \infty]{} 0.$$

(c) Montrer que, si E est discret, alors $X_n \to X$ en loi si et seulement si,

$$\forall e \in E, \qquad \lim_{n \to \infty} \mathbb{P}(X_n = e) = \mathbb{P}(X = e).$$

(d) Montrer que, si X_n suit une loi de Student¹ de paramètre n, alors X_n convergence en loi vers une variable $\mathcal{N}(0,1)$ quand $n \to \infty$.

Exercice 15 (Convolution). Montrer que si X et Y à valeurs dans \mathbb{R}^d sont indépendantes de densité respectives f et g par rapport à Lebesgue, alors X + Y a une densité par rapport à Lebesgue donnée par le produit de convolution de f et g,

$$f * g(x) := \int f(x - y)g(y)dy.$$

Exercice 16 (Entropie relative). Soit μ et ν deux mesures de probabilité sur (E, \mathcal{T}) . L'entropie relative, ou divergence de Kullback-Leibler, de μ par rapport à ν est définie de la façon suivante :

$$H(\mu|\nu) := \begin{cases} \int \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \log \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \, \mathrm{d}\nu & \text{si } \mu \text{ est absolument continue par rapport à } \nu, \\ +\infty & \text{sinon.} \end{cases}$$

Si X et Y sont des variables aléatoires de lois μ et ν , on écrira aussi H(X|Y).

(a) Montrer qu'il existe une variable aléatoire $Z \geq 0$ telle que $\mathbb{E}[Z] = 1$ et

$$H(\mu|\nu) = \mathbb{E}[Z \log Z],$$

et en déduire que $H(\mu|\nu) \ge 0$.

- (b) En admettant qu'on a égalité dans l'inégalité de Jensen $\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$ si et seulement si, $\varphi(x) = Ax + B$ ou X est une constante p.s, montrer que $H(\mu|\nu) = 0$ si et seulement si $\mu = \nu$.
- (c) Si X et Y ont respectivement pour densité f et g par rapport à une mesure de référence η , exprimer H(X|Y) en terme de f et g.
- (d) Si $X_i \sim \mathcal{N}(m_i, \sigma_i^2)$ sont des gausiennes réelles, calculer $H(X_1|X_2)$.

¹Student de paramètre n veut dire de loi à densité $f_n(x) = \frac{1}{\sqrt{\pi n}} \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$ par rapport à la mesure de Lebesgue sur \mathbb{R} .