EE 005 Circuits and Electronics

HOMEWORK 4

SOLUTIONS

Problem 1

Design a non-inverting amplifier that will boost the input voltage of $V_{\rm in} = 200$ mV to $V_{\rm out} = 3.3$ V.

Problem 2

Figure P2

Figure P2

Determine the output current v_o and current i_o in the circuit of Figure P2. Assume $R_s = 1.7 \text{ k}\Omega$, R_F = 5.1 k Ω , R_o = 2 k Ω , v_s = 5 V. Make sure to show the direction of current i_o .

Problem 3

Figure P3

Find v_1 in the circuits of **Figure P3 a)** and **b)**. In **Figure P3 a)** the resistor $3 \text{ k}\Omega$ "loads" the output; that is, v_1 is changed by attaching the $3 \text{ k}\Omega$ in parallel with the lower $6 \text{ k}\Omega$ resistor. However, in **Figure P3 b)** the voltage (isolation) buffer holds v_1 to $v_g/2$, regardless of the presence of the $3 \text{ k}\Omega$ resistor and its value!

Problem 4

In the op-amp circuit of Figure P4 the voltage v is applied to the non-inverting terminal of the op-amp. Assuming V_S , R_S and R_F are provided, determine the resulting output voltage v_o . Will the output change if we attach to the output any non-zero resistor R_L .

