EE2023 Signals & Systems Quiz Semester 1 AY2012/13

Date: 4 October 2012 Time Allowed: 1.5 hours

•	4	4 •		
In	ctri	ucti	and	•
	51.1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz.
- 3. Tables of Fourier transforms and trigonometric identities are given on Pages 11 and 12.
- 4. No programmable or graphic calculator is allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name :		 	
Matric #:		 	
Lecture Group	o#:		

For your information:

Group 1: A/Prof Loh Ai Poh Group 2: A/Prof Ng Chun Sum Group 3: A/Prof Tan Woei Wan Group 4: Prof Lawrence Wong

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q.1	(a)	Determine the ap	ppropriate s	ampling fr	equency for	r the signal	x(t)	given l	by
•	()			. 1 0				0	

$$x(t) = 2\sin(2\pi t)\sin(10\pi t) + 6\cos(6\pi t),$$

in order to be completely recoverable from its samples.

- (b) If x(t) above is sampled at 20π rad/s, sketch the amplitude spectrum of the sampled signal. Can x(t) be recovered from the samples? Explain your answer.
- (c) Is x(t) a power or energy signal? Explain your answer.

0.1	ANS	WER
\mathbf{O} . I	AND	WEN

Q.1 ANSWER ~ continued

- Q.2 Let $x(t) = \operatorname{sgn}(t) \sin(2\pi f_0 t)$ and $y(t) = \operatorname{sinc}(f_0 t)$ where $\operatorname{sgn}(t) = \begin{cases} +1; & t \ge 0 \\ -1; & t < 0 \end{cases}$ and f_0 is a non-zero positive constant.
 - (a) Find the Fourier transforms of x(t) and y(t). Your final answers should not contain any unsolved integrals and/or the convolution operator '*.
 - (b) With x(t) and y(t), we form the signal $z(t) = \int_{-\infty}^{\infty} x(\zeta)y(t-\zeta)d\zeta$. If z(t) is an energy signal, find its energy spectral density. If z(t) is a power signal, find its power spectral density. If z(t) is neither an energy nor a power signal, simply say so.

Q.2	ANS	WER

· L		

Q.2 ANSWER ~ continued

- Q.3 Consider the signal $x(t) = 5 + x_1(t) + x_2(3t) + e^{j2t}$, where $x_1(t) = 7\cos(8t)$ and $x_2(t) = \sin(2t)$.
 - (a) The discrete frequency amplitude spectrum for x(t) shown in Figure Q.3 contains errors. Identify any two unique/different errors in the plot and correct them.

Figure Q.3: Erroneous amplitude spectrum for x(t)

- (b) Does x(t) contain a 2nd harmonic component? Explain how you arrived at the conclusion.
- (c) What is the relationship between the amplitude spectrum of x(t) and x(t-0.05)?
- (d) Sketch the phase (in radians) versus the Fourier Series index, k, graph of x(t-0.05).

Q.3 ANSWER

Q.3 ANSWER ~ continued

Q.4. (a) Determine the Fourier transform of the signal x(t) shown in Figure Q.4(a).

(b) Using the Dirac- δ replication property, write the expression that shows the relationship between x(t) and the periodic signal $x_p(t)$ shown in Figure Q.4(b).

(c) Determine the Fourier transform of the periodic signal $x_p(t)$.

Q.4 ANSWER

Q.4 ANSWER ~ continued

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k \, t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k \, t/T) \end{cases}$$
Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)
Constant	K	$K\delta(f)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\bigg(\frac{f}{\beta}\bigg)$
Duality	X(t)	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$

TRIGONOMETRIC IDENTITIES	
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$
$\sin(\theta) = \frac{1}{j2} \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$
$\sin^2(\theta) + \cos^2(\theta) = 1$	$1 \mp \tan(\alpha) \tan(\beta)$
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)]$
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta) + \cos(\alpha+\beta)\right]$
$\sin^2(\theta) = \frac{1}{2} \left[1 - \cos(2\theta) \right]$	$\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$
$\cos^2(\theta) = \frac{1}{2} \Big[1 + \cos(2\theta) \Big]$	$\mathbf{C}\cos(\theta) - \mathbf{S}\sin(\theta) = \sqrt{\mathbf{C}^2 + \mathbf{S}^2}\cos\left[\theta + \tan^{-1}\left(\frac{\mathbf{S}}{\mathbf{C}}\right)\right]$