Tema 3

2.1 Definición. Sea A un conjunto no vacío. Una sucesión de elementos de A es una **aplicación** del conjunto \mathbb{N} de los números naturales en A. En particular, una sucesión de números reales es una **aplicación** del conjunto \mathbb{N} de los números naturales en el conjunto \mathbb{R} de los números reales.

Por ejemplo, en el principio de los intervalos encajados se consideró, sin nombrarla, una sucesión de intervalos (en este caso el conjunto A de la definición anterior sería el conjunto de todos los intervalos de \mathbb{R}). En todo lo que sigue solamente consideraremos sucesiones de números reales por lo que, a veces, nos referiremos a ellas simplemente como "sucesiones".

Dada una sucesión $\varphi : \mathbb{N} \to \mathbb{R}$ suele emplearse una notación especial para representarla. Para $n \in \mathbb{N}$ suele notarse el número real $\varphi(n)$ en la forma $x_n = \varphi(n)$ (naturalmente la letra "x" nada tiene de especial y puede sustituirse por cualquier otra). La sucesión misma se representa por $\varphi = \{x_n\}_{n \in \mathbb{N}}$, es decir, el símbolo $\{x_n\}_{n \in \mathbb{N}}$ debe interpretarse como la **aplicación** que a cada $n \in \mathbb{N}$ hace corresponder el número real x_n . Cuando no hay posibilidad de confusión escribimos simplemente $\{x_n\}$ en vez de $\{x_n\}_{n \in \mathbb{N}}$. El número x_n se llama *término n-ésimo* de la sucesión; para n = 1, 2, 3 se habla respectivamente de primero, segundo, tercer término de la sucesión.

Dos sucesiones $\{x_n\}$ e $\{y_n\}$ son iguales cuando para todo $n \in \mathbb{N}$ se verifica que $x_n = y_n$.

No hay que confundir la sucesión $\{x_n\}$, que es una aplicación, con su *conjunto imagen*, que es el subconjunto de \mathbb{R} formado por todos los números x_n , el cual se representa por $\{x_n : n \in \mathbb{N}\}$. Por ejemplo, $\{(-1)^n\}$ y $\{(-1)^{n+1}\}$ son sucesiones distintas con el mismo conjunto imagen: $\{(-1)^n : n \in \mathbb{N}\} = \{(-1)^{n+1} : n \in \mathbb{N}\} = \{-1, 1\}$.

Si α es un número real, la sucesión constante cuyos términos son todos iguales a α se representa por $\{\alpha\}_{n\in\mathbb{N}}$.

En todo lo que sigue las letras m, n, p, q, con o sin subíndices, representarán números naturales.

2.2 Definición. Se dice que una sucesión $\{x_n\}$ converge a un número real x si, dado cualquier número real $\varepsilon > 0$, existe un número natural m_{ε} tal que si n es cualquier número natural mayor o igual que m_{ε} se cumple que $|x_n - x| < \varepsilon$.

Se dice también que el número x es **límite** de la sucesión $\{x_n\}$ y se escribe $\lim_{n\to\infty} \{x_n\} = x$ o, simplemente, $\lim_{n\to\infty} \{x_n\} = x$ e incluso, si no hay posibilidad de confusión, $\{x_n\} \to x$.

Teniendo en cuenta que

$$|x_n - x| < \varepsilon \iff x - \varepsilon < x_n < x + \varepsilon \iff x_n \in]x - \varepsilon, x + \varepsilon[$$

resulta que $\{x_n\}$ converge a x si dado cualquier número $\varepsilon > 0$ se verifica que todos los términos de la sucesión a partir de uno en adelante están en el intervalo $]x - \varepsilon, x + \varepsilon[$.

También podemos reformular la definición dada considerando para cada $\varepsilon > 0$ el conjunto de números naturales $A_{\varepsilon} = \{n \in \mathbb{N} : |x_n - x| \geqslant \varepsilon\}$. Tenemos entonces que:

$$\left[\lim\{x_n\} = x \iff \left[\forall \varepsilon > 0 \text{ el conjunto } A_{\varepsilon} = \{n \in \mathbb{N} : |x_n - x| \geqslant \varepsilon\} \text{ es finito }\right]\right]$$
 (2.1)

Esta forma de expresar la convergencia puede ser útil para probar que una sucesión dada, $\{x_n\}$ no converge a x. Para ello basta encontrar un número $\varepsilon > 0$ tal que el conjunto A_{ε} sea infinito.

La definición 2.2 es típica del Análisis pues en ella se está definiendo *una igualdad*, $\lim\{x_n\}=x$, en términos de *desigualdades*: $|x_n-x|<\varepsilon$ siempre que $n\geqslant m_\varepsilon$.

El número natural m_{ε} , cuya existencia se afirma en la definición anterior, cabe esperar que dependa del número $\varepsilon > 0$, lo que explica la notación empleada. Lo usual es que m_{ε} tenga que ser tanto más grande cuanto más pequeño sea el número $\varepsilon > 0$. Conviene observar que si p es un número natural tal que $p > m_{\varepsilon}$ entonces para p, al igual que para m_{ε} , se verifica que si p0 es cualquier número natural mayor o igual que p1 se cumple que p2. Es decir, si p3 converge a p4, entonces para cada p6 dado hay, de hecho, infinitos números naturales p6 para los que se satisface lo dicho en la defición anterior.

2.6 Proposición. Una sucesión convergente tiene un único límite.

Demostración. Sea $\{x_n\} \to x$ e $y \neq x$. Tomemos $\varepsilon > 0$ tal que $|x - \varepsilon, x + \varepsilon| \cap |y - \varepsilon, y + \varepsilon| = \emptyset$. Puesto que $\{x_n\} \to x$ el conjunto $A_{\varepsilon} = \{n \in \mathbb{N} : |x - x_n| \geq \varepsilon\}$ es finito. Puesto que si $|x - x_n| < \varepsilon$ entonces $|y - x_n| \geq \varepsilon$, tenemos que $B_{\varepsilon} = \{n \in \mathbb{N} : |y - x_n| \geq \varepsilon\} \supset \mathbb{N} \setminus A_{\varepsilon}$ y, por tanto, B_{ε} es infinito, lo que prueba que $\{x_n\}$ no converge a y.

2.7 Proposición. Supongamos que $\lim\{x_n\} = x$, $\lim\{y_n\} = y$ y que el conjunto de números naturales $A = \{n \in \mathbb{N} : x_n \leq y_n\}$ es infinito. Entonces se verifica que $x \leq y$.

Demostración. Sea $\varepsilon > 0$. Bastará probar que $x < y + \varepsilon$. Por hipótesis existen m_1, m_2 tales que

$$x - \varepsilon/2 < x_p < x + \varepsilon/2$$
 y $y - \varepsilon/2 < y_q < y + \varepsilon/2$ (2.2)

para todo $p \geqslant m_1$ y todo $q \geqslant m_2$. Puesto que el conjunto A del enunciado es un conjunto infinito de números naturales podemos asegurar que hay algún $m \in A$ tal que $m \geqslant \max\{m_1, m_2\}$. Por tanto las desigualdades 2.2 se cumplen para p = q = m, además como $m \in A$ se tiene que $x_m \leqslant y_m$. Deducimos que $x - \varepsilon/2 < x_m \leqslant y_m < y + \varepsilon/2$ y, por tanto, $x < y + \varepsilon$. \square

2.8 Proposición (Principio de las sucesiones encajadas). Supongamos que $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ son sucesiones tales que $\lim\{x_n\} = \lim\{z_n\} = \alpha$ y existe un número natural m_0 tal que para todo $n \ge m_0$ se verifica que $x_n \le y_n \le z_n$, entonces la sucesión $\{y_n\}$ es convergente y $\lim\{y_n\} = \alpha$.

Demostración. Sea $\varepsilon > 0$. Por hipótesis existen m_1, m_2 tales que

$$\alpha - \varepsilon < x_p < \alpha + \varepsilon \quad y \quad \alpha - \varepsilon < z_q < \alpha + \varepsilon$$
 (2.3)

para todo $p \ge m_1$ y todo $q \ge m_2$. Sea $m_3 = \max\{m_0, m_1, m_2\}$. Para todo $n \ge m_3$ las desigualdades 2.3 se cumplen para p = q = n, además como $n \ge m_0$ se tiene que $x_n \le y_n \le z_n$. Deducimos que, para todo $n \ge m_3$, se verifica que

$$\alpha - \varepsilon < x_n \le v_n \le z_n < \alpha + \varepsilon$$

y, por tanto, $\alpha - \varepsilon < y_n < \alpha + \varepsilon$, es decir, $\lim \{y_n\} = \alpha$. \square

Una consecuencia inmediata de la proposición 2.8 es que si cambiamos arbitrariamente un número finito de términos de una sucesión, la nueva sucesión así obtenida es convergente si lo era la de partida y con su mismo límite. Esto es lo que dice el siguiente resultado.

- **2.10 Corolario.** Sean $\{x_n\}$ e $\{y_n\}$ sucesiones cuyos términos son iguales a partir de uno en adelante, es decir, hay un número natural m_0 tal que para todo $n \ge m_0$ es $x_n = y_n$. Entonces $\{x_n\}$ converge si, y sólo si, $\{y_n\}$ converge en cuyo caso las dos sucesiones tienen igual límite.
- **2.11 Definición.** Una sucesión $\{x_n\}$ se dice que es:
- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente creciente si $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.
- **Decreciente** si $x_n \geqslant x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente decreciente si $x_n > x_{n+1}$ para todo $n \in \mathbb{N}$.
- Monótona si es creciente o decreciente.
- Estrictamente monótona si es estrictamente creciente o decreciente.

Nótese que si una sucesión $\{x_n\}$ es creciente (resp. decreciente) entonces se verifica que $x_m \le x_n$ (resp. $x_m \ge x_n$) siempre que $m \le n$.

2.12 Proposición. Toda sucesión convergente está acotada.

Demostración. Supongamos que $\lim\{x_n\} = x$. Todos los términos de $\{x_n\}$ a partir de uno en adelante estarán en el intervalo]x-1,x+1[, es decir, hay un número $m \in \mathbb{N}$ tal que para todo $n \ge m$ se verifica que $|x_n-x| < 1$, lo que implica que

$$|x_n| \leqslant |x_n - x| + |x| < 1 + |x|$$
 para todo $n \geqslant m$.

Tomando $M = \max\{1 + |x|, |x_1|, \dots, |x_m|\}$, máximo cuya existencia está garantizada por ser un conjunto finito, tenemos que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.

La proposición anterior es útil a veces para probar que una sucesión *no* es convergente: para ello basta probar que no está acotada.

- **2.14 Teorema.** Toda sucesión monótona y acotada es convergente. Más concretamente, si una sucesión $\{x_n\}$ es:
- i) creciente y mayorada, entonces $\lim \{x_n\} = \beta$ donde $\beta = \sup \{x_n : n \in \mathbb{N}\}$. Además se verifica que $x_n < \beta$ para todo $n \in \mathbb{N}$, o bien que todos los términos a partir de uno en adelante son iguales a β .
- ii) decreciente y minorada, entonces $\lim \{x_n\} = \alpha$ donde $\alpha = \inf \{x_n : n \in \mathbb{N}\}$. Además se verifica que $\alpha < x_n$ para todo $n \in \mathbb{N}$, o bien que todos los términos a partir de uno en adelante son iguales a α .

Demostración. Probaremos i) quedando la demostración de ii) como ejercicio. La hipótesis de que $\{x_n\}$ es mayorada garantiza, por el principio del supremo, la existencia del número real $\beta = \sup\{x_n : n \in \mathbb{N}\}$. Dado $\varepsilon > 0$, como $\beta - \varepsilon < \beta$, tiene que haber algún término x_m de la sucesión tal que $\beta - \varepsilon < x_m$. Puesto que la sucesión es creciente para todo $n \ge m$ se verificará que $x_m \le x_n$ y, por tanto $\beta - \varepsilon < x_n$. En consecuencia $\beta - \varepsilon < x_n < \beta + \varepsilon$ para todo $n \ge m$. Hemos probado así que $\lim\{x_n\} = \beta$. Finalmente, si hay algún término igual a β , $x_{m_0} = \beta$, entonces para todo $n \ge m_0$ tenemos que $\beta = x_{m_0} \le x_n \le \beta$ por lo que $x_n = \beta$.