1																	18
1 H hydrogène	2							r.				13	14	15	16	17	4 He hélium
7 3 Li lithium	9 Be béryllium	Nombre de masse Numéro atomique A X Symbole de l'élément nom									5 B bore	¹² C carbone	7 N azote	16 8 O axygéne	9 F fluor	10 Ne néon	
23 11 Na sodium	24 Mg 12 Mg magnésium	3	4	5	6	7	8	9	10	11	12	13 At aluminium	28 14 Si silicium	31 P 15 P phosphore	32 S 16 S soufre	17 CL chlore	⁴⁰ Ar argon
39 K potassium	40 Ca	45 21 SC scandium	48 Ti titane	51 V vanadium	52 24 Cr chrome	55 25 Mn manganèse	⁵⁶ Fe fer	59 27 Co cobalt	58 Ni 28 Ni nickel	63 29 Cu cuivre	64 30 Zn zinc	69 31 Ga gallium	⁷⁴ Ge germanium	75 33 As arsenic	Selénium	79 35 Br brome	36 Kr krypton
85 37 Rb rubidium	88 38 Sr strontium	89 39 Y	90 Zr zirconium	93 41 Nb niobium	98 Mo 42 Mo molybděne	98 Tc 43 Tc technétium	102 44 Ru ruthénium	103 45 Rh rhodium	106 46 Pd palladium	107 Ag 47 Ag argent	114 Cd 48 Cd cadmium	115 49 In Indium	120 50 Sn étain	121 51 Sb antimoine	130 Te tellure	127 53 lode	129 54 Xe xénon
133 55 Cs césium	138 56 Ba baryum		180 72 Hf hafnium	181 Ta	184 W 74 W tungstène	187 75 Re rhěnium	192 76 Os osmium	193 77 Ir iridium	195 78 Pt platine	¹⁹⁷ / ₇₉ Au	80 Hg	205 81 TL thallium	208 Pb 82 Pb plomb	83 Bi bismuth	210 84 Po polonium	85 At astate	86 Rn radon
223 87 Fr	226 88 Ra radium		261 104 Rf rutherfordium	262 105 Db dubnium	106 Sg seaborgium	- 107 Bh bohrium	108 Hs	109 Mt	110 Ds darmstadtium				114 FL flerovium	115 Mc moscovium	116 LV	117 Ts tennessine	118 Og oganesson

Trouve les particules élémentaires constituant les atomes de plomb, cadmium, potassium et azote. Précise pour chaque type de particule si elle fait partie du noyau de l'atome ou de sa périphérie.

Plomb: 82 protons (dans le noyau) et 126 neutrons (dans le noyau); 82 électrons (en périphérie).

Cadmium: 48 protons et 66 neutrons (dans le noyau);48 électrons (en périphérie).

Potassium: 19 protons et 20 neutrons (dans le noyau); 19 électrons (en périphérie).

Azote: 7 protons et 7 neutrons (dans le noyau); 7 électrons (en périphérie).

1. Constitution des ions

Le physicien anglais Michael Faraday introduit la notion d'ions qui signifie « qui va » en grec, du fait qu'ils sont responsables de la conduction électrique dans les solutions. Les ions sont des atomes (ou groupement d'atomes) dont les cortèges électroniques ont perdu ou gagné des électrons.

 L'ion chlorure possède le même nombre de charges positives que l'atome de chlore mais son cortège électronique possède un électron en plus. L'ion chlorure n'est pas électriquement neutre : il a une charge électrique négative.

 L'ion sodium possède le même nombres de charges positives que l'atome de sodium mais son cortège électronique possède un électron en moins. L'ion sodium n'est pas électriquement neutre : il a une charge électrique positive.

