Intelligent Robotics - part 1 F2RO/F21RO

Nick Taylor N.K.Taylor@hw.ac.uk Room EM1.62

Industrial Robotics Course Content

- Manipulators
 - Geometries
 - Control
 - Programming
 - Kinematics
 - Kinetics
 - Path Control
- AGVs
 - Mapping
 - Navigation

Robot

• Term comes from -

"Rossum's Universal Robots" Karel Capek, 1923, Bohemia

"Robota" = "worker" in Slavic languages

Robotics

• Isaac Asimov claims to have created this term in the 1940s

Industrial Robot

• A programmable articulated arm with a range of end-effectors (grippers, welders, etc.)

Industrial Robot Architecture

- A Controller and a jointed Arm
- The Arm is often referred to as a Manipulator
- The Manipulator will normally have a Wrist mounted on the end of it
- Wrists can contain 1, 2 or 3 further joints
- End-effectors (also known as Tools) are mounted on the end of the wrist
- There is a notional point called the Tool Centre Point (TCP) where the robot's work takes place

Manipulator Geometry (I)

• Cartesian (or gantry)

3 orthogonal prismatic joints

- 1 translation along x axis
- 1 translation along y axis
- 1 translation along z axis

Manipulator Geometry (II)

- Cylindrical
 - 2 prismatic joints
 - 1 vertical translation
 - 1 radial translation

1 revolute joint

• rotation in horizontal plane

Manipulator Geometry (III)

• Polar (or spherical)

1 prismatic joint

• radial translation

2 revolute joints

- 1 rotation in horizontal plane
- 1 rotation in vertical plane

Manipulator Geometry (IV)

• SCARA (Selective Compliance Assembly Robot Arm)

1 prismatic joint

vertical translation

2 revolute joints

• 2 rotations in horizontal plane

Manipulator Geometry (V)

• Articulated (or revolute)

3 revolute joints

- Waist rotation in horizontal plane
- Shoulder rotation in vertical plane
- Elbow rotation in vertical plane

Wrist Geometry

- Wrist controls orientation of end effector
- Normally composed of revolute joints
- Up to 3 in number
 - Roll
 - Pitch
 - Yaw

Complete Arm Geometry

- Normally no more than 6 joints
- Described by degrees of freedom
 - N joints can be arranged to give less than N d.o.f. but never more than N

Actuators

- Electric
 - Stepping motors; DC motors
- Hydraulic
 - Liquid pressure
- Pneumatic
 - Gas pressure
- Accuracy decreases down the list
- Speed increases down the list

Controllers

- Limited sequence
 - Mechanical stops
- Servo control
 - Point-to-point
- Continuous path
 - Multi-point

Robot Programming (I)

- Physical Set-up
 - As in limited sequence control
 - Actually setting the stops

Robot Programming (II)

- Walk-through
 - Physically dragging the arm (or proxy training arm) through the required positions recording them a suitable places
 - The De Vilbiss Trallfa robot was advertised as learning the skills of your best operator on his best day

Robot Programming (III)

- Lead-through
 - Driving the arm remotely from a hand-held controller called a "Teach Pendant" recording positions as desired
 - 3 ways of doing the driving
 - (a). Individual joint direction
 - (b). Relative tool direction (up, down, etc.)
 - (c). Absolute tool direction (x,y,z,orientation)

 Easiest to implement is (a) and hardest is (c)

 But easiest to use is (c) and hardest is (a)

Robot Programming (IV)

- Off-line
 - Prepare and test a program of instructions off-line
 - Download to controller for execution
 - Preferable approach to programming but difficulties

Robot Programming Languages

- Robotic devices always incur errors
 - Not simply because of mechanical tolerances but also because of the kinetics of motion when loads are added to the end of the arm
 - Repeatability
 - Degree of error in repeating a previously taught sequence
 - Invariably very good
 - Accuracy
 - Degree of error in moving TCP (Tool Centre Point) to a position in space
 - Invariably poor
- So off-line programming not really fully automatic

