# Tutorial on Compressed Sensing (or Compressive Sampling, or Linear Sketching)

Piotr Indyk MIT

## **Linear Compression**

#### Setup:

- Data/signal in n-dimensional space : x
   E.g., x is an 1000x1000 image ⇒ n=1000,000
- Goal: compress x into a "sketch" Ax ,
   where A is a carefully designed m x n matrix, m << n</li>
- Requirements:
  - Plan A: want to recover x from Ax
    - · Impossible: undetermined system of equations
  - Plan B: want to recover an "approximation" x\* of x
    - Sparsity parameter k
    - Want  $x^*$  such that  $||x^*-x||_p \le C(k) \min_{x'} ||x'-x||_q$   $(||I_p/I_q|)$  over all x' that are k-sparse (at most k non-zero entries)
    - The best x\* contains k coordinates of x with the largest abs value
      - $\Rightarrow$  if x itself is k-sparse, we have exact recovery:  $x=x^*$
- Want:
  - Good compression (small m)
  - Efficient algorithms for encoding and recovery
- Why linear compression?







## Applications of Linear Compression

- Streaming algorithms, e.g., for network monitoring
  - Would like to maintain a traffic matrix x[.,.]
    - Given a (src,dst) packet, increment x<sub>src,dst</sub>
  - We can maintain sketch Ax under increments to x, since  $A(x+\Delta) = Ax + A\Delta$
- Single pixel camera [Wakin, Laska, Duarte, Baron, Sarvotham, Takhar, Kelly, Baraniuk'06]
- Pooling microarray experiments (talk by Anna Gilbert)





#### Types of matrices A

- Choose encoding matrix A at random
  - Sparse matrices:
    - Data stream algorithms
    - Coding theory (LDPCs)
  - Dense matrices:
    - Compressed sensing
    - Complexity theory (Fourier)



- Tradeoffs:
  - Sparse: computationally more efficient, explicit
  - Dense: shorter sketches

#### **Parameters**

- Given: dimension n, sparsity k
- Parameters:
  - Sketch length m
  - Time to compute/update Ax
  - Time to recover x\* from Ax
  - Matrix type:
    - Deterministic (one A that works for all x)
    - Randomized (random A that works for a fixed x w.h.p.)
  - Measurement noise, universality, ...

#### Result Table

| Paper                              | Rand.<br>/ Det. | Sketch<br>length             | Encode time          | Sparsity/<br>Update time | Recovery time         | Apprx   |
|------------------------------------|-----------------|------------------------------|----------------------|--------------------------|-----------------------|---------|
| [CCF'02],<br>[CM'06]               | R               | k log n                      | n log n              | log n                    | n log n               | 12 / 12 |
|                                    | R               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n       | k log <sup>c</sup> n  | 12 / 12 |
| [CM'04]                            | R               | k log n                      | n log n              | log n                    | n log n               | l1 / l1 |
|                                    | R               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n       | k log <sup>c</sup> n  | l1 / l1 |
| [CRT'04]<br>[RV'05]                | D               | k log(n/k)                   | nk log(n/k)          | k log(n/k)               | nc                    | 12 / 11 |
|                                    | D               | k log <sup>c</sup> n         | n log n              | k log <sup>c</sup> n     | n <sup>c</sup>        | 12 / 11 |
| [GSTV'06]<br>[GSTV'07]             | D               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n       | k log <sup>c</sup> n  | I1 / I1 |
|                                    | D               | k log <sup>c</sup> n         | n log <sup>c</sup> n | k log <sup>c</sup> n     | k² log <sup>c</sup> n | 12 / 11 |
| [BGIKS'08]                         | D               | k log(n/k)                   | n log(n/k)           | log(n/k)                 | n <sup>c</sup>        | l1 / l1 |
| [GLR'08]                           | D               | k logn <sup>logloglogn</sup> | kn <sup>1-a</sup>    | n <sup>1-a</sup>         | n <sup>c</sup>        | 12 / 11 |
| [NV'07], [DM'08],<br>[NT'08,BM'08] | D               | k log(n/k)                   | nk log(n/k)          | k log(n/k)               | nk log(n/k) * T       | 12 / 11 |
|                                    | D               | k log <sup>c</sup> n         | n log n              | k log <sup>c</sup> n     | n log n * T           | 12 / 11 |
| [IR'08, BIR'08]                    | D               | k log(n/k)                   | n log(n/k)           | log(n/k)                 | n log(n/k)            | I1 / I1 |
| [BIR'08]                           | D               | k log(n/k)                   | n log(n/k)           | log(n/k)                 | n log(n/k) *T         | I1 / I1 |

#### Legend:

- n=dimension of x
- m=dimension of Ax
- k=sparsity of x\*
- T = #iterations

#### Approx guarantee:

- |2/|2:  $||x-x^*||_2 \le C||x-x'||_2$
- |1/|1:  $||x-x^*||_1 \le C||x-x'||_1$
- $|2/|1: ||x-x^*||_2 \le C||x-x'||_1/k^{1/2}$

Scale: Excellent Very Good Good Fair

#### Result Table

| Paper                              | Rand.<br>/ Det. | Sketch<br>length             | Encode time          | Sparsity/<br>Update time | Recovery time         | Apprx   | Legend:                        |
|------------------------------------|-----------------|------------------------------|----------------------|--------------------------|-----------------------|---------|--------------------------------|
| [CCF'02],<br>[CM'06]               | R               | k log n                      | n log n              | log n                    | n log n               | 12 / 12 | • n=dimension                  |
|                                    | R               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n       | k log <sup>c</sup> n  | 12 / 12 | • m=dimensi                    |
| [CM'04]                            | R               | k log n                      | n log n              | log n                    | n log n               | l1 / l1 | • k=sparsity                   |
|                                    | R               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n       | k log <sup>c</sup> n  | l1 / l1 |                                |
| [CRT'04]<br>[RV'05]                | D               | k log(n/k)                   | nk log(n/k)          | k log(n/k)               | n <sup>c</sup>        | 12 / 11 | • T = #iterati                 |
|                                    | D               | k log <sup>c</sup> n         | n log n              | k log <sup>c</sup> n     | n <sup>c</sup>        | 12 / 11 |                                |
| [GSTV'06]<br>[GSTV'07]             | D               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n       | k log <sup>c</sup> n  | I1 / I1 | Approx guar                    |
|                                    | D               | k log <sup>c</sup> n         | n log <sup>c</sup> n | k log <sup>c</sup> n     | k² log <sup>c</sup> n | 12 / 11 | •  2/ 2:   x-x*   <sub>2</sub> |
| [BGIKS'08]                         | D               | k log(n/k)                   | n log(n/k)           | log(n/k)                 | n <sup>c</sup>        | I1 / I1 | •  1/ 1:   x-x*   <sub>1</sub> |
| [GLR'08]                           | D               | k logn <sup>logloglogn</sup> | kn <sup>1-a</sup>    | n <sup>1-a</sup>         | n <sup>c</sup>        | 12 / 11 | •  2/ 1:   x-x*   <sub>2</sub> |
| [NV'07], [DM'08],<br>[NT'08,BM'08] | D               | k log(n/k)                   | nk log(n/k)          | k log(n/k)               | nk log(n/k) * T       | l2 / l1 |                                |
|                                    | D               | k log <sup>c</sup> n         | n log n              | k log <sup>c</sup> n     | n log n * T           | 12 / 11 |                                |
| [IR'08, BIR'08]                    | D               | k log(n/k)                   | n log(n/k)           | log(n/k)                 | n log(n/k)            | l1 / l1 |                                |
| [BIR'08]                           | D               | k log(n/k)                   | n log(n/k)           | log(n/k)                 | n log(n/k) *T         | I1 / I1 |                                |
| [CDD'07]                           | D               | Ω(n)                         |                      |                          |                       | 12 / 12 |                                |

- ion of x
- sion of Ax
- of x\*
- tions

rantee:

- $|_2 \le C||x-x'||_2$
- $_1 \leq C||x-x'||_1$
- $_2 \le C||x-x'||_1/k^{1/2}$

Caveats: (1) all bounds up to O() factors; (2) only results for general vectors x are shown; (3) most "dominated" algorithms not shown; (4) specific matrix type often matters (Fourier, sparse, etc); (5) Ignore universality, explicitness, etc

#### Plan

- Classification+intuition:
  - Matrices: sparse / dense
  - Matrix properties that guarantee recovery
  - Recovery algorithms
- Result table (again)
- Sparse Matching Pursuit
- Conclusions

#### Matrix Properties

- - Random Gaussian/Bernoulli: m=O(k log (n/k))
  - Random Fourier: m=O(k log<sup>O(1)</sup> n)
- k-neighborly polytopes [Donoho-Tanner]: only for exact recovery
- Euclidean sections of I<sub>1</sub> / width property [Kashin,...,Donoho,Kashin-Temlakov]: for all vectors x such that Ax=0, we have

$$||x||_2 \le C' /m^{1/2} ||x||_1$$

- Random Gaussian/Bernoulli: C'=C In(en/m)<sup>1/2</sup>
- RIP-1 property [Berinde-Gilbert-Indyk-Karlof-Strauss]: for all k-sparse vectors x

$$(1-\epsilon)d||x||_1 \le ||Ax||_1 \le d||x||_1$$

Holds if (and only if\*) A is an adjacency matrix of a (k,  $d(1-\epsilon/2)$ )-expander with left degree d

- Randomized: m=O(k log (n/k)); Explicit: m=k quasipolylog n
- Expansion/randomness extraction property of the graph defined by A [Xu-Hassibi, Indyk]: originally for exact recovery

<sup>\*</sup> for binary matrices and  $\epsilon$  small enough

#### Recovery algorithms

L1 minimization, a.k.a. Basis Pursuit [Donoho],[Candes-Romberg-Tao]:

```
minimize ||x^*||_1
subject to Ax^*=Ax
```

- Solvable in polynomial time using using linear programming
- Matching pursuit: OMP, ROMP, StOMP, CoSaMP, EMP, SMP,...
  - Basic outline:
    - Start from x\*=0
    - In each iteration
      - Compute an approximation  $\Delta$  to x-x\* from A(x-x\*)=Ax-Ax\*
      - Sparsify ∆, i.e., set all but t largest (in magnitude) coordinates to 0
         (t = parameter)
      - $x^* = x^* + \Delta$
  - Many variations

## Result Table (with techniques)

| Paper                              | Rand.<br>/ Det. | Sketch length                | Encode time          | Sparsity             | Recovery time         | Apprx   | Matrix<br>property      | Algo               |
|------------------------------------|-----------------|------------------------------|----------------------|----------------------|-----------------------|---------|-------------------------|--------------------|
| [CCF'02],<br>[CM'06]               | R               | k log n                      | n log n              | log n                | n log n               | 12 / 12 | sparse<br>+1/-1         | "one shot<br>MP" * |
|                                    | R               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n   | k log <sup>c</sup> n  | 12 / 12 |                         |                    |
| [CM'04]                            | R               | k log n                      | n log n              | log n                | n log n               | 11 / 11 | sparse<br>binary        | "one shot<br>MP" * |
|                                    | R               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n   | k log <sup>c</sup> n  | 11 / 11 |                         |                    |
| [CRT'04]<br>[RV'05]                | D               | k log(n/k)                   | nk log(n/k)          | k log(n/k)           | n <sup>c</sup>        | 12 / 11 | RIP2                    | BP                 |
|                                    | D               | k log <sup>c</sup> n         | n log n              | k log <sup>c</sup> n | n <sup>c</sup>        | 12 / 11 |                         |                    |
| [GSTV'06]<br>[GSTV'07]             | D               | k log <sup>c</sup> n         | n log <sup>c</sup> n | log <sup>c</sup> n   | k log <sup>c</sup> n  | 11 / 11 | augmented<br>RIP1/RIP2* | MP                 |
|                                    | D               | k log <sup>c</sup> n         | n log <sup>c</sup> n | k log <sup>c</sup> n | k² log <sup>c</sup> n | 12 / 11 |                         |                    |
| [BGIKS'08]                         | D               | k log(n/k)                   | n log(n/k)           | log(n/k)             | n <sup>c</sup>        | 11 / 11 | RIP1                    | BP                 |
| [GLR'08]                           | D               | k logn <sup>logloglogn</sup> | kn <sup>1-a</sup>    | n <sup>1-a</sup>     | n <sup>c</sup>        | 12 / 11 | I2 sections of I1       | BP                 |
| [NV'07], [DM'08],<br>[NT'08,BM'08] | D               | k log(n/k)                   | nk log(n/k)          | k log(n/k)           | nk log(n/k) * T       | 12 / 11 | RIP2                    | MP                 |
|                                    | D               | k log <sup>c</sup> n         | n log n              | k log <sup>c</sup> n | n log n * T           | 12 / 11 |                         |                    |
| [IR'08, BIR'08]                    | D               | k log(n/k)                   | n log(n/k)           | log(n/k)             | n log(n/k)            | 11 / 11 | RIP1/                   | MP                 |
| [BIR'08]                           | D               | k log(n/k)                   | n log(n/k)           | log(n/k)             | n log(n/k) *T         | 11 / 11 | expansion               |                    |

#### Sparse Matching Pursuit

[Berinde-Indyk-Ruzic'08]

- Algorithm:
  - $x^* = 0$
  - Repeat T times
    - Compute  $c=Ax-Ax^* = A(x-x^*)$
    - Compute  $\Delta$  such that  $\Delta_i$  is the median of its neighbors in c
    - Sparsify Δ
       (set all but 2k largest entries of Δ to 0)
    - x\*=x\*+∆
    - Sparsify x\*
       (set all but k largest entries of x\* to 0)
- After T=log() steps we have

$$||x-x^*||_1 \le C \min_{k-\text{sparse } x'} ||x-x'||_1$$



#### Conclusions

- Sparse approximation using sparse matrices
- State of the art: can do 2 out of 3:
  - Near-linear encoding/decoding
  - O(k log (n/k)) measurements
  - Approximation guarantee with respect to L2/L1 norm
- Open problems:
  - 3 out of 3?
  - Explicit constructions ?
    - RIP1: via expanders, quasipolylog m extra factor
    - I2 section of I1: quasipolylog m extra factor [GLR]
    - RIP2: extra factor of k [DeVore]

#### Experiments

- Probability of recovery of random k-sparse +1/-1 signals from m measurements
  - -Sparse matrices with d=10 1s per column
  - -Signal length n=20,000



## Running times

