26 октомври 2020 г. / групи 4,5

Задача 5. Дадени са две партиди от съответно 12 и 10 изделия. Във всяка има по едно дефектно. По случаен начин се избира изделие от първата партида и се прехвърля във втората, след което избираме случайно изделие от втората партида. Каква е вероятността то да е дефектно?

Решение:

Ще използваме формулата за пълна вероятност и за това ще дефинираме няколко събития. Нека

А = {избираме дефектно изделие от първата партида}

В = {избираме дефектно от втората партида}

Следователно

$$\mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|\overline{A})\mathbb{P}(\overline{A}) = \frac{2}{11} \times \frac{1}{12} + \frac{11}{12} \times \frac{1}{11} = 0,0(95)\dots$$

Задача 6. Разполагаме с три стандартни зара и един, чийто страни са само шестици. По случаен начин избираме три от заровете и ги хвърляме. Да се определи вероятността да се паднат

- 1. три шестици;
- 2. различни цифри;
- 3. последователни цифри?

Решение:

Нека $H = \{$ изтеглили сме трите стандартни зара $\}$, тогава $\overline{H} = \{$ изтеглили сме два стандартни + суперзара (само с 6-ци) $\}$.

Нека означим с A, B, C множествата от 1., 2. и 3. съответно.

Вероятността да изтеглим трите стандартни зара е $\mathbb{P}(H) = \frac{1}{\binom{4}{3}} = \frac{1}{4}$.

Разбиваме по първото теглене и прилагаме формулата за пълна вероятност:

1)
$$\mathbb{P}(A) = \mathbb{P}(A|H)\mathbb{P}(H) + \mathbb{P}(A|\overline{H})\mathbb{P}(\overline{H}) = \frac{1}{6^3} \times \frac{1}{4} + \frac{1}{6^2} \times \frac{3}{4};$$

$$\mathbb{P}(B) = \mathbb{P}(B \mid H)\mathbb{P}(H) + \mathbb{P}(B \mid \overline{H})\mathbb{P}(\overline{H}) = \frac{6 \times 5 \times 4}{6^3} \times \frac{1}{4} + \frac{5 \times 4}{6^2} \times \frac{3}{4};$$

3)
$$\mathbb{P}(C) = \mathbb{P}(C|H)\mathbb{P}(H) + \mathbb{P}(C|\overline{H})\mathbb{P}(\overline{H}) = \frac{4.3!}{6^3} \cdot \frac{1}{4} + \frac{2!}{6^2} \cdot \frac{3}{4}$$

Пояснение за 3):

Ако сме изтеглили трите обикновени зара възможностите да изтеглим три последователни числа са $\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,6\}$ и техните пермутации. А ако сме изтеглили два обикновени зара и суперзара, тогава възможностите са само $\{4,5\},\{5,4\}.$

Задача 7. Дадени са n урни, всяка от тях има m бели и k черни топки. От първата урна се тегли топка и се прехвърля във втората, след това от втората урна една топка се прехвърля в третата и т.н. Каква е вероятността от последната урна да бъде изтеглена бяла топка?

Нека $U_i = \{$ избрали сме бяла топка от i-тата урна $\}$. Търси се U_n .

$$\mathbb{P}(U_1) = \frac{m}{m+k} \Rightarrow \mathbb{P}(\overline{U_1}) = \frac{k}{m+k}.$$

Разбиваме по първото вадене на топка от първата урна и прилагаме формулата за пълна вероятност:

$$\begin{split} \mathbb{P}(U_2) &= \mathbb{P}(U_2 \mid U_1) \mathbb{P}(U_1) + \mathbb{P}(U_2 \mid \overline{U_1}) \mathbb{P}(\overline{U_1}) = \\ &= \frac{m+1}{m+k+1} \times \frac{m}{m+k} + \frac{m}{m+k+1} \times \frac{k}{m+k} = \\ &= \frac{m(m+k+1)}{(m+k+1)(m+k)} = \frac{m}{m+k} \end{split}$$

Полученият резултат $\mathbb{P}(U_1)=\mathbb{P}(U_2)$ ни навежда на мисълта, че $\mathbb{P}(U_i)=\frac{m}{m+k}$ за всяко $i=\overline{1,n}$.

Това може да се докаже с математическа индукция:

- 1. Индукционна база: За U_1 и U_2 е изпълнено: $\mathbb{P}(U_1) = \mathbb{P}(U_2) = \frac{m}{m+k}$;
- 2. Индукционна хипотеза: Нека допуснем, че е изпълнено и за $U_p, p \in \mathbb{N};$

3. Индукционен преход/стъпка: Ще покажем, че е изпулнено и за U_{p+1} . Разбиваме по ваденето на топка от предходната урна:

$$\begin{split} \mathbb{P}(U_{p+1}) &= \mathbb{P}(U_{p+1} \,|\, U_p) \mathbb{P}(U_p) + \mathbb{P}(U_{p+1} \,|\, \overline{U_p}) \mathbb{P}(\overline{U_p}) = \\ &= \frac{m+1}{m+k+1} \times \mathbb{P}(U_p) + \frac{m}{m+k+1} \times (1-\mathbb{P}(U_p)) = \frac{m}{m+k} \,. \end{split}$$

Задача 8. В кутия има 7 топки за тенис, от които 4 са нови. За първата игра по случаен начин се избират три топки, които след играта се връщат обратно в кутията. За втората игра също случайно се избират три топки. Каква е вероятността те да са нови?

Решение:

Нека $A_i = \{$ изтеглили сме i нови топки от първото теглене $\}.$

Нека $B = \{$ и трите топки изтеглени от втория път са нови $\}$.

Вероятността да изтеглим 3 топки от 7 е $\binom{7}{3}$.

$$\mathbb{P}(B) = \mathbb{P}(B|A_0)\mathbb{P}(A_0) + \mathbb{P}(B|A_1)\mathbb{P}(A_1) + \dots = \sum_{i=0}^{3} \mathbb{P}(B|A_i)\mathbb{P}(A_i) = \frac{\binom{4}{3}\binom{3}{3}}{\binom{7}{3}\binom{7}{3}} + \frac{\binom{3}{3}\binom{4}{1}\binom{3}{2}}{\binom{7}{3}\binom{7}{3}} = \frac{4+4\times3}{\binom{7}{3}^2} = \frac{16}{35^2}$$

Задача 10 (Kahneman, Thinking Fast and Slow). В град с две фирми за таксита, синя и зелена, през нощта се случва катастрофа с участието на такси, от която шофьорът на таксито бяга. Разполагате със следните данни:

- $85\,\%$ от всички таксита са зелени и $15\,\%$ са сини;
- свидетел дава показания. че таксито е било синьо:
- експертиза установява, че свидетелят определя правилно синьо/зелено в $80\,\%$ от случаите и греши в останалите $20\,\%$.

Каква е вероятността колата наистина да е била синя?

Решение:

Нека B={таксито от катастрофата е синьо}, S={свидетеля определя че таксито е синьо}.

Имаме, че:
$$\mathbb{P}(B)=15\,\%$$
 , $\mathbb{P}(\overline{B}\,)=85\,\%$, $\mathbb{P}(S\,|\,B)=80\,\%$, $\mathbb{P}(S\,|\,\overline{B}\,)=20\,\%$

Търси се $\mathbb{P}(B \mid S)$.

Имаме, че
$$\mathbb{P}(B \,|\, S) = \frac{\mathbb{P}(B \cap S)}{\mathbb{P}(S)} = \frac{\mathbb{P}(S \cap B)}{\mathbb{P}(S)}$$
, но от друга страна
$$\mathbb{P}(S \,|\, B) = \frac{\mathbb{P}(S \cap B)}{\mathbb{P}(B)} \Rightarrow \mathbb{P}(S \cap B) = \mathbb{P}(S \,|\, B)\mathbb{P}(B).$$

Заместваме втория резултат в първия и получаваме, че:

$$\mathbb{P}(B|S) = \frac{\mathbb{P}(S \cap B)}{\mathbb{P}(S)} = \frac{\mathbb{P}(S|B)\mathbb{P}(B)}{\mathbb{P}(S)} =$$

$$= \frac{\mathbb{P}(S|B)\mathbb{P}(B)}{\mathbb{P}(S|B)\mathbb{P}(B) + \mathbb{P}(S|\overline{B})\mathbb{P}(\overline{B})} = \frac{80\% \times 15\%}{80\% \times 15\% + 20\% \times 85\%} =$$

$$= \frac{8 \times 15}{8.15 + 2 \times 85} = \frac{4 \times 3}{4 \times 3 + 17} = \frac{12}{29} < \frac{1}{2}.$$