Lab 4

Author: Benjamin Medicke

Topics: IPSec VPN

lab1 | lab2 | lab3 | lab4

- Lab 4.1 IPSec VPN
 - 4.1.1 Aktivieren von IPSec VPN
 - 4.1.2 Erstellen eines neuen Interoprable Devices
 - 4.1.3 Erstellen einer neuen Meshed VPN Community
 - 4.1.4 Neue Firewall Regel
 - 4.1.5 Gateway Objekt Eigentschaften anpassen
 - 4.1.7 Testen der Erreichbarkeit via VPN Tunnel
 - 4.1.8 Erlauben von SSH Traffic
 - 4.1.9 Log des Blades: VPN
 - 4.1.10 Verbinden mit der Firewall via SSH
 - Aufgetretene Probleme

Lab 4.1 IPSec VPN

4.1.1 Aktivieren von IPSec VPN

Network Security (4) Threat F
Access Control:
✓ Firewall
☑ IPSec VPN
Policy Server
Application Control
URL Filtering
☐ Identity Awareness
Content Awareness

"IPSec VPN" Blade aktiviert

4.1.2 Erstellen eines neuen Interoperable Devices

Anlegen eines neuen Interoperable Devices: 2 Interfaces

Objekt zur Abbildung des internen Partnersubnetzwerkes

VPN Domain —— O All IP Addresses b	pehind Gateway based on Topology information	
User defined	몹 Niko-DMZ .	View
Set Specific VPN Do	omain for Gateway Communities:	
Auswahl der V	'PN Domain	

4.1.3 Erstellen einer neuen Meshed VPN Community

Neues Meshed VPN Community Objekt

Festelegen eines Shared Secrets (PSK)

Deaktivieren von NAT innerhalb der VPN Community

4.1.4 Neue Firewall Regel

Diese neue Regel erlaubt den Traffic von der eigenen Linux Instanz auf die des Kollegen.

Bidirektionale Kommunikation zwischen den VPN Teilnehmern erlauben

4.1.5 Gateway Objekt Eigentschaften anpassen

Die Einstellungen waren bereits OK

4.1.7 Testen der Erreichbarkeit via VPN Tunnel

```
Cs20m027@linux-vm: ~

PING 192.168.15.50 (192.168.15.50) 56(84) bytes of data.

64 bytes from 192.168.15.50: icmp_seq=1 ttl=62 time=3912 ms

64 bytes from 192.168.15.50: icmp_seq=5 ttl=62 time=6.94 ms

64 bytes from 192.168.15.50: icmp_seq=6 ttl=62 time=2.81 ms

64 bytes from 192.168.15.50: icmp_seq=7 ttl=62 time=2.48 ms

64 bytes from 192.168.15.50: icmp_seq=8 ttl=62 time=2.72 ms

64 bytes from 192.168.15.50: icmp_seq=9 ttl=62 time=2.96 ms

64 bytes from 192.168.15.50: icmp_seq=10 ttl=62 time=2.42 ms

64 bytes from 192.168.15.50: icmp_seq=11 ttl=62 time=2.06 ms

64 bytes from 192.168.15.50: icmp_seq=11 ttl=62 time=2.76 ms

64 bytes from 192.168.15.50: icmp_seq=12 ttl=62 time=2.76 ms

64 bytes from 192.168.15.50: icmp_seq=13 ttl=62 time=3.02 ms
```

VPN Tunnel wird automatisch aufgebaut und funktioniert

4.1.8 Erlauben von SSH Traffic

```
cs20m027@linux-vm:~$ ssh cs20m001@l92.168.15.50

The authenticity of host '192.168.15.50 (192.168.15.50)' can't be established.

ECDSA key fingerprint is SHA256:BENtFoO9oxln6lm9ZZJz6KK+89BQ3WyBwZTdzbwCyGQ.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.15.50' (ECDSA) to the list of known hosts.

cs20m001@192.168.15.50: Permission denied (publickey).

cs20m027@linux-vm:~$
```

Der Tunnel ist funktionsfähig (SSH Verbindung scheitert nur an nicht vorhandenem Public Key)

```
cs20m027@linux-vm: ~
                                                                          X
cs20m027@linux-vm:~$ curl 192.168.15.50:1234
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/st</pre>
rict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Directory listing for /</title>
<body>
<hl>Directory listing for /</hl>
<hr>
<u1>
<hr>
</body>
</html>
cs20m027@linux-vm:~$
curl auf Python Webserver, der bei meinem Kollegen läuft ( python3 -m
http.server 1234 ) funktioniert
```

4.1.9 Log des Blades: VPN

4.1.10 Verbinden mit der Firewall via SSH

```
Peer 34.118.70.205 , niko-gw SAs:

IKE SA <03dce0d77dd5f884,67fbfc17d9ab28fe>
```

IKE Security Associations via vpn tu

```
SAs of all instances:

Peer 34.118.70.205 , niko-gw SAs:

IKE SA <03dce0d77dd5f884,67fbfc17d9ab28fe>
INBOUND:

1. 0x463c34b (i: 2)

OUTBOUND:

1. 0x95e0bcb2 (i: 2)
```

IPSec Security Associations via vpn tu

```
O
Deleting all IPsec+IKE SAs for ALL peers on ALL instances
Hit <Enter> key to continue ...
```

Neustart des Tunnels durch Löschen der Associations

a. Verbindungsaufbau

Sequence Number 1: IKE Phase 1 (AES-256 + Group 2, PSK)

Sequence Number 2: IKE Phase 2 (AES-128 + SHA1)

b. IPSec Parameterwahl

Welche IPSec Parameter haben Sie verwendet bzw. sind empfehlenswert?

Wir haben uns für die Standardeinstellungen entschieden, um eine hohe Kompatibilität zu gewährleisten. Zumindest SHA-1 ist allerdings nicht mehr zeitgerecht: Google konnte bei diesem Algorithmus eine Kollision hervorrufen, womit dieser als gebrochen anzusehen ist. Siehe: http://shattered.io/ (Es war Google möglich zwei PDF Dokumente mit unterschiedlichem Inhalt, aber gleichem SHA-1 Hash zu erzeugen, also eine Chosen-Plaintext Attack)

Aufgetretene Probleme

• Die SmartConsole ist nicht die ausgereifteste Software. Oft erscheinen Logs erst nach einem Neustart oder stark verzögert.