COMMENT LE MESURER? À QUELLES APPLICATIONS SERT-IL?

ne des façons les plus répandues de mesurer le champ magnétique est d'utiliser un teslamètre (un capteur semi-conducteur) à effet Hall, du nom de son inventeur. C'est ce dernier qui a établi le premier, en 1879, le lien existant entre le champ magnétique, le courant électrique et la tension. En mesurant la tension, on peut « remonter » au champ magnétique. Grâce à lui, on peut mesurer le courant sans contact. Pour le spatial, cette technique de calcul permet, entre autres, de vérifier le bon fonctionnement électrique de différentes pièces d'un satellite.

MAGNETIC FIELD

Measuring techniques and applications

A device often used to measure magnetic fields is a Hall-effect teslameter (a semiconductor sensor), named after the physicist Edwin Herbert Hall who discovered the effect in 1879, establishing relationship between a magnetic field, electric current and tage. Measuring the Hall voltage allows us to "retrace" the netic field and therefore develop contactless measuring nologies. In space, this technique is also used to check

<mark>fabriquer une « souris » virtuelle</mark>

Plutôt que d'avoir une sonde en mouvement qui vient mesurer une source émettrice comme on le fait souvent, on pourrait envisager de faire l'inverse : avoir une sonde fixe et un aimant qui se déplace. C'est ainsi qu'est née l'idée d'une souris virtuelle. Imaginons trois aimants se mouvant en trois dimensions. À proximité, un support électronique (un écran d'ordinateur, des lunettes 3D, etc.) enregistre, à tout moment, la position de cette source magnétique. En équipant un crayon de ces trois aimants, même sans contact avec un support, le crayon se transformerait en souris virtuelle! Alors plutôt qu'un crayon, on pourrait envisager que la main joue ce rôle (en l'équipant d'une bague avec un aimant). Pour « commander » son écran d'ordinateur, il suffirait de faire varier la position des doigts. La position normale correspondrait à la main avec les doigts pointés en direction de l'écran. Pour cliquer, il faudrait simplement plier le doigt! On imagine sans mal les atouts de cette souris virtuelle... toujours à portée de main!

BUILDING A VIRTUAL "MOUSE"

often the case, why not use a fixed sensor and a moving magnet? This is the idea behind something called a virtual mouse. Think of three magnets able to move in all three dimensions. As alacteoric desired. dimensions. An electronic device—for example, a computer screen or 3D goggles—records the position of the magnetic source at all times. A pen equipped with three magnets could thus function as a virtual mouse. Or, instead of a pen, the hand could play the same role by wearing a ring with a magnet. You could then control your computer screen with your fingers: the normal position would be with your fingers

SÉCURISER LES DISTRIBUTEURS AUTOMATIQUES DE BILLETS

Les distributeurs automatiques de billets ont un point faible : ne sachant pas vérifier les entrants, ils sont mal équipés pour lutter contre les tentatives frauduleuses. Par exemple la technique du « collet marseillais » consiste à introduire dans le distributeur un chewing-gum relié à un fil de fer pour piéger les cartes bleues. Pour l'éviter, il faudrait un clapet de protection qui ne s'ouvre qu'à l'approche d'une carte bleue et non d'un autre objet (tel que le chewing-gum). La sonde magnétique installée à l'intérieur du distributeur permettrait de détecter à distance la signature magnétique de la carte bleue. Une fois l'identification faite, l'accès serait autorisé et le retrait

MAKING AUTOMATIC TELLER MACHINES MORE SECURE

into them, a weak point that makes them ill-equipped to combat fraud. For example, criminals capture credit cards by pushing a piece of wire stuck to chewing gum into the machine. To foil this technique, the machine would need to have a protective flap that only opens when a credit card is detected.

A magnetic sensor inside the ATM could detect the card's magnetic signature

CALCULER LE CHAMP MAGNÉTIQUE :

Le CNES vient de déposer un brevet pour une sonde magnétique de très petite taille pour pouvoir s'approcher au plus près des objets à mesurer : la tête est grosse comme un ongle. Les capteurs se trouvent à son extrémité. La sonde « première génération », développée au CNES il y a cinq ans, était dotée de deux capteurs qui fournissaient deux mesures ; le différentiel entre les deux valeurs mesurait le champ magnétique étudié. Le système se perfectionna et une seconde sonde fut brevetée, pourvue cette fois de quatre capteurs, avec une efficacité maximale. Lors de la mesure, la tête est tellement proche de la source émettrice que le signal enregistré est très largement supérieur au bruit magnétique alentour. Plus on éloigne la sonde magnétique de la source, plus le **bruit** (champ magnétique résiduel dû aux champs d'objets émetteurs proches ou au champ terrestre) devient important. Ce calcul par double différentiel permet de ne tenir compte que du champ magnétique de la source étudiée, en « éliminant » le bruit ambiant. Quel que soit le format d'une sonde magnétique, miniature ou plus imposant, les applications sont multiples.

L'EXEMPLE D'UNE MINISONDE

CALCULATING THE MAGNETIC FIELD WITH A MINI-PROBE

larger than a fingernail—able to get really close to the object to be measured. The sensors are on the end of the probe. The "first-generation" probe developed at CNES five years ago featured two sensors to provide a differential measurement of the magnetic field. This protests of the magnetic field. This system was perfected and a second more effective probe was patented, this time with four sensors. Because the head can get really close to the field source, the signal recorded is much stronger than the surrounding magnetic noise. The further the magnetic probe is from the source, the higher the **noise** (residual magnetic field generated by nearby emitting objects or Earth's magnetic field). This double-differential measuring technique filters out the ambient noise and isolates the magnetic field from the source measured. Both miniature and larger magnetic probes have a wide range of applications.

ÉTUDIER UNE PARTIE DU CORPS HUMAIN

L'appareil d'IRM (imagerie par résonance magnétique) peut être comparé à un gros aimant, qui émet un champ magnétique constant, de 0,5 à 1,5 μT (microtesla) ; allongé sur le lit d'examen à l'intérieur de l'appareil en forme de tunnel, le patient est soumis à ce champ magnétique le temps de l'examen (5 à 20 minutes). Les protons de son corps émettent un signal qui varie selon le tissu étudié et dont l'intensité, reproduite point par point, va donner une image en coupe de la zone étudiée. Indolore et sans danger, l'IRM est particulièrement performant pour observer la moelle, le cerveau et les tissus mous.

SCANNING THE HUMAN BODY

A magnetic resonance imaging (MRI) scanner is a bit like a large magnet that emits a constant field of 0.5 to 1.5 microtesla (μT). The patient has to lie inside a tube and is subjected to a magnetic field for 5 to 20 minutes.

Protons inside the body emit a different signal depending on the kind of tissue scanned. The intensity of this signal, reproduced point by point, gives a cross-sectional image. MRI is safe, painless and particularly effective for

en bande S

MESURER LE CHAMP MAGNÉTIQUE TERRESTRE DEPUIS L'ESPACE

Vent solaire

DÉTECTER LES FAUX BILLETS

Chaque billet de banque porte une trame magnétique, différente selon qu'il s'agit d'un billet de 5 euros, de 10, de 20, etc. Pour reconnaître cette signature magnétique et s'assurer qu'il s'agit d'un billet de banque authentique et non d'un faux, il existe déjà des systèmes de vérification par infrarouge. Mais selon la qualité du billet (froissé, usé), cette technique commet parfois des erreurs. Le recours à une sonde magnétique permettrait de vérifier la signature magnétique des billets. Le <u>différentiel</u> (le différentiel est ici le champ magnétique réel du billet auquel on a déduit le champ magnétique environnant (terrestre, ordinateurs, etc.)) de champ magnétique obtenu permettrait en plus de contrecarrer les effets de l'environnement, par exemple la présence d'un ordinateur à proximité.

DETECTING COUNTERFEIT BANK NOTES

detection systems are used to read this magnetic signature and confirm that a bank note is genuine and not a counterfeit. However, this technique doesn't always work if the tal effects, for example those caused by a nearby computer.

ANALYSER LES PANNES SUR UN PANNEAU SOLAIRE DE SATELLITE

Sur un satellite, les panneaux solaires transforment la lumière du Soleil en courant électrique ; cette source d'énergie est essentielle à la plupart des satellites. Un panneau solaire se compose de séries de dizaine de dalles plus petites qu'une carte postale. Lorsque certaines dalles tombent en panne, le courant total du panneau solaire baisse. Il faut donc trouver la ou les dalles défaillantes. Déterminer précisément celles qui ne fonctionnent plus, sans avoir à multiplier les manipulations de ces panneaux solaires, peut se faire sans contact, en mesurant le champ magnétique induit au-dessus de chaque dalle. Ces analyses peuvent se faire au sol, avant lancement, afin de s'assurer de leur bon fonctionnement une fois le satellite en orbite.

ANALYSING FAILURES ON A SATELLITE'S SOLAR PANEL

La mission Swarm, dirigée par l'Esa, est composée de trois satellites identiques, dont le lancement est prévu en 2010. Son objectif : étudier le champ géomagnétique terrestre et son évolution dans le temps. L'astuce consiste à lancer ces satellites sur trois orbites différentes, ce qui permettra d'étudier avec précision le champ magnétique et d'isoler les différents composants pour mieux les comprendre. Ces données devraient éclairer les scientifiques sur notre connaissance du système terrestre en apportant un nouvel éclairage sur l'impact des particules solaires dans les processus d'interaction avec l'atmosphère et des éventuelles évolutions climatiques. Par ailleurs, les chercheurs ont constaté que le champ magnétique terrestre présentait des variations rapides lors des séismes. Une analyse de ces variations, notamment à l'aide du satellite Demeter, permettrait une compréhension plus fine de ces manifestations naturelles.

MEASURING EARTH'S MAGNETIC FIELD FROM SPACE

close detail and isolate its components. The data they collect should tell scientists more about the Earth system and shed new light on processes and climate change. Researchers have discovered sharp variations that occur in Earth's magnetic field during earthquakes. Analysing these variations, notably with the Demeter satellite, will enhance our understanding of these natural phenomena.