E4 Visualization

Marissa Lee

September 26, 2014

ruename: e4_vis_ma.kma
A. This code needs the following files:
 'e4_potData.txt' in 'e4DataPackage_092614' folder 'e4_potData_dictionary.txt' in 'e4DataPackage_092614' folder 'e4_cleanCode.R' in 'e4CodePackage_100614' folder 'e4_calcsiCode.R' in 'e4CodePackage_100614' folder
B. This code does the following things:
 Clean raw dataset (run external code) Plot
 Fig2. Mv density treatment vs plant biomass Fig3. Monoculture type vs soil meas at harvest (s1) Fig4. Mixture plant biomass vs soil meas (s1) or soil meas diff relative to the baseline (s1s0)
3. Fit models
 A. To predict s1s0 using mivi biomass, compabund, and total B. To predict s1 using mivi biomass, compabund, and total
C. This code produces the following items:
1. NA

1. Clean raw dataset (run external code)

```
source('e4CodePackage_100614/e4_cleanCode.R')
#str(data)
```

2. Plot

• Load libraries

```
library(ggplot2)
library(reshape2)
```

Fig2. Mv density treatment vs plant biomass

- Remove unnecessary cols
- Reshape so that plant biomass values are all in one column (biomval), with an identifier column to identify what type of biomass that value represents (biommeas)
- Plot Mv treatment vs biomass measures

Fig3. Monoculture type vs soil measure at harvset (s1)

- Remove unnecessary cols
- Reshape so that plant biomass values are all in one column (biomval), with an identifier column to identify what type of biomass that value represents (biommeas)
- Plot monoculture type vs soil measures (s1)

Fig4. Mixture plant biomass vs soil measure (s1) or soil measure difference relative to the baseline (s1s0)

• Calculate 'Si', the soil property impact in response to the presence of Mv and create a new dataframe with this info (run external code)

```
source('e4CodePackage_100614/e4_calcsiCode.R')
```

```
## Warning: number of columns of result is not a multiple of vector length
## (arg 340)
```

#str(datas)

- Remove unnecessary cols
- Reshape so that plant biomass values are all in one column (biomval), with an identifier column to identify what type of biomass that value represents (biommeas)
- Plots where y = S1-S0

• Plots where y = S1

3. Fit models

A. To predict s1s0 using mivi biomass, compabund, and total

• Set up model fxns (run external code)

```
source('e4CodePackage_100614/e4_fitmodCode.R')
#ModFxn1
#ModFxn2
#ModFxn3
```

- Set up generic fxn to pull out info from each fitted model
- Fit the models
- Organize fitted model results into tables; view the fitted model results
- Significant model terms

```
Model 1. s1s0 = (mivi * beta)
## $pval2
## [1] "soilmoi_N 0.0601"
Model 2. s1s0 = (mivi * beta) + (compabund * beta2) + ((mivi * compabund) * beta3)
## $pval2
## [1] "nodi_P 0.0934"
                           "totdi_P 0.0588"
                                               "soilmoi_N 0.0601"
##
## $pval3
## [1] "nhdi_S 0.0777"
                            "nodi_P 0.0536"
                                                 "totdi_P 0.0433"
## [4] "ammonifd_S 0.0979" "nitrifd_S 0.0293" "minzd_S 0.0347"
## [7] "minzd_P 0.0777"
##
## $pval4
## character(0)
Model 3. s1s0 = (total * beta)
## $pval2
                            "ammonifd_S 0.0235" "nitrifd_S 0.0015"
## [1] "nhdi S 0.0153"
## [4] "minzd_S 0.0018"
                            "soilmoi_N 0.0601"
```

B. To predict s1 using mivi biomass, compabund, and total

• Set up model fxns (run external code)

```
# source('e4CodePackage_100614/e4_fitmodCode.R') #this was already loaded above... #ModFxn1 #ModFxn2 #ModFxn3
```

- Set up generic fxn to pull out info from each fitted model
- Fit the models
- Organize fitted model results into tables; view the fitted model results
- Significant model terms

```
Model 1. s1s0 = (mivi * beta)
## $pval2
## [1] "soilmoi_N 0.0601"
Model \ 2. \ s1s0 = (mivi * beta) + (compabund * beta2) + ((mivi * compabund) * beta3)
## $pval2
## [1] "nodi_P 0.0934"
                           "totdi_P 0.0588"
                                               "soilmoi_N 0.0601"
##
## $pval3
## [1] "nhdi_S 0.0777"
                            "nodi_P 0.0536"
                                                  "totdi_P 0.0433"
                                                 "minzd_S 0.0347"
## [4] "ammonifd_S 0.0979" "nitrifd_S 0.0293"
## [7] "minzd_P 0.0777"
##
## $pval4
## character(0)
Model 3. s1s0 = (total * beta)
## $pval2
## [1] "nhdi_S 0.0153"
                            "ammonifd_S 0.0235" "nitrifd_S 0.0015"
## [4] "minzd_S 0.0018"
                            "soilmoi_N 0.0601"
```