

# Techniques for Successfully Using ANSYS Contact Elements





#### Presented by:

Rich Bothmann IMPACT Engineering Solutions, Inc.

Brookfield, WI

Tel: 847-265-4140

www.impactengsol.com



#### **Analysis Services Group**

- Advanced FE Project Support and Education
- Local and International Recognition for Educational Offerings
  - Vince Adams & Rich Bothmann
- Over 25 Years Experience in Use, Training, and Support of FEA
- Active in Leadership of Local, National and International User's Groups







#### Analysis Capabilities and Expertise

- ⋄ ANSYS
  - Extensive experience in linear, nonlinear, and dynamics
  - Certified instructor for local reseller
  - In conjunction with ANSYS, founding Midwest ANSYS UG
- LS-DYNA Drop and Crash Testing
- ⋄ MSC.NASTRAN
- ComosWorks & CosmosMotion
- FE-Fatigue (nCode) Durability Analysis
- FEMAP Pre & Post-Processing
- ⋄ Pro/MECHANICA

Extensive combined engineering analysis experience in a variety of materials and industries





#### What is Nonlinear Behavior...

- A Structure Is Nonlinear If the Loading Causes Significant Change in Stiffness
  - Strains Beyond Elastic Limit
  - Large Deflections (Fishing Pole)
  - Contact Between Two Bodies



### Types of Nonlinearities...

#### **Nonlinear Analysis**

| Material                              | Geometric                                       | Boundary        |
|---------------------------------------|-------------------------------------------------|-----------------|
| Nonlinear Elastic                     | Large Displacement                              | Contact         |
| Plastic                               | • Small Rotation/Small Strain                   | Follower Forces |
| Hyperelastic                          | <ul> <li>Large Rotation/Small Strain</li> </ul> |                 |
| , , , , , , , , , , , , , , , , , , , | • Large Strain                                  |                 |
|                                       | • Geometrically Instable                        |                 |
|                                       | or Multi-Stable                                 |                 |
|                                       |                                                 |                 |



#### Linear vs. Nonlinear Behavior...

Linear structure obeys this linear relationship



 Many problems do not have a linear relationship and instead the displacement varies with force





#### Solving Nonlinear Problems...

♦ Newton-Raphson method iterates to a solution using the equation:

using the equation:

$$[K^T]{\Delta u} = {F} - {F^{nr}}$$
  
where:

 $[K^T]$  = Tangent Stiffness Matrix  $\{\Delta u\}$  = Displacement Increment

 $\{F\}$  = Applied Force Vector

$${F^{nr}}$$
 = Internal Force Vector (sum of element stresses)





#### 170 Series Contact Element

- Conta171/172 2D/3D 4 Node (surface to surface)
- Conta173/174 2D/3D 4 Node (surface to surface)
- Conta175 Node to Surface (line/point to surface)
- Conta178 Node to Node



### Primary Contact Algorithms (Keyopt 2)

- Penalty: penalty springs
- Augmented Lagrangian: penalty springs + pressure dofs
- Lagrangian: zero penetration enforced
- Penalty/Lagrangian: zero penetration normal / penalty spring tangential



# Contact Nonlinearities & the Penalty Approach

Contact Problems are Usually Hardening Structures

More Difficult to Analyze

 Prone to Slow or Unsuccessful Convergence



Displacement





More Force is Required to Move the Sphere



Contact Nonlinearities & the Penalty Approach





#### Penalty vs. Augmented Lagrangian,



Penalty Method 74 Iterations 0.00233 in of penetration



Augmented Lagrangian
Method
88 Iterations
0.00064 in of penetration



#### Penalty vs. Augmented Lagrangian

```
ANSYS 8.1 Output Window
                                                                            _ | D | X |
     LINE SEARCH PARAMETER =
                                         SCALED MAX DOF INC = -0.4152E-04
                              0.7173
     2D CONTACT ELEMENTS:
                             1 CONTACT POINTS HAVE TOO MUCH PENETRATION
     FORCE CONVERGENCE VALUE
                             = 0.3438
                                            CRITERION= 0.5957E-01
                               NEW TRIANG MATRIX. MAX DOF INC= 0.3620E-03
    EQUIL ITER 20 COMPLETED.
                                         SCALED MAX DOF INC = 0.1518E-03
     LINE SEARCH PARAMETER =
                              0.4193
     2D CONTACT ELEMENTS:
                             1 CONTACT POINTS HAVE TOO MUCH PENETRATION
     FORCE CONVERGENCE VALUE
                             = 0.5053E-01 CRITERION= 0.5895E-01 <<< CONVERGED
                               NEW TRIANG MATRIX. MAX DOF INC= -0.9026E-06
    EQUIL ITER 21 COMPLETED.
                                         SCALED MAX DOF INC = -0.9026E-06
     LINE SEARCH PARAMETER =
     2D CONTACT ELEMENTS:
                             1 CONTACT POINTS HAVE TOO MUCH PENETRATION
     FORCE CONVERGENCE VALUE = 0.1123
                                            CRITERION= 0.5892E-01
                            862 %ops Done= 4.49
 CurEan=
             40 TotEan=
                               NEW TRIANG MATRIX. MAX DOF INC= -0.7875E-04
    EQUIL ITER 22 COMPLETED.
     LINE SEARCH PARAMETER =
                               1.000
                                         SCALED MAX DOF INC = -0.7875E-04
     2D CONTACT ELEMENTS:
                             1 CONTACT POINTS HAVE TOO MUCH PENETRATION
     FORCE CONVERGENCE VALUE
                             = 0.8835E-01 CRITERION= 0.5924E-01
    EQUIL ITER 23 COMPLETED.
                               NEW TRIANG MATRIX. MAX DOF INC= -0.6467E-04
     LINE SEARCH PARAMETER =
                                         SCALED MAX DOF INC = -0.6467E-04
     2D CONTACT ELEMENTS:
                             1 CONTACT POINTS HAVE TOO MUCH PENETRATION
     FORCE CONVERGENCE VALUE
                            = 0.6863E-01 CRITERION= 0.5952E-01
    EQUIL ITER 24 COMPLETED.
                               NEW TRIANG MATRIX. MAX DOF INC= -0.5039E-04
     LINE SEARCH PARAMETER =
                                         SCALED MAX DOF INC = -0.5039E-04
                               1.000
     FORCE CONVERGENCE VALUE
                              = 0.2163E-01 CRITERION= 0.5974E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 24
 *** LOAD STEP
                       SUBSTEP
                                                    CUM ITER =
                                                                   92
                                   4 COMPLETED.
 *** TIME = 0.236906E-01
                              TIME\ INC = 0.112813E-02
 *** AUTO TIME STEP: NEXT TIME INC = 0.84609E-03 DECREASED (FACTOR = 0.7500)
```



## Pure Lagrange



Pure Lagrange Never Converged >230 iterations, Distorted Element Errors



#### Dealing with Convergence Issues

- Penalty Stiffness (FKN)
  - Default=1, Start with something small
  - Stiffness Update (KEYOPT 10)
    - □ 0, each load step
    - □ 1, each substep
    - □ 2, each iteration
- Penetration Tolerance (FTOLN)
  - If penalty stiffness decreased, consider increasing FTOLN



#### Stress vs. FKN

| FKN   | Iterations      | Max Stress | Contact Pressure |
|-------|-----------------|------------|------------------|
| 0.001 | 426             | 19217      | 4160             |
| 0.01  | 74              | 19173      | 3880             |
| 0.1   | 213             | 19527      | 4886             |
| 1     | Didn't Converge |            |                  |





# Stiffness Update vs. Iterations

| Keyopt 10 | Description                        | Iterations |
|-----------|------------------------------------|------------|
| 0         | Update Each Loadstep (old default) | 155        |
| 1         | Update Each Substep (new default)  | 74         |
| 2         | Update Each Iteration              | 75         |





#### Other Convergence Issues...

- Too much initial penetration
  - KEYOPT 9 = 1, excludes initial penetration
    - = 2, ramps initial penetration
- Rigid Motion
  - Parts not initially touching
  - Relying on contact to hold parts together usually results in convergence problems
  - Many Techniques to deal with this issue, sometimes problems requires more than one method.



#### Interference Problems...

Set Keyopt 9 = 2







#### Eliminating Rigid Motion...

- Build Geometry so it is Just Touching
- Adjust Initial Contact Conditions
- Displacement Control
- Weak (or not so weak) Springs (or possibly FKOP)
- Include Friction
- Dynamics
- CNCHECK/ADJUST (New)



# Automated Adjustment of Initial Contact Conditions ...

- KEYOPT 5 = 1-3, Close Gap/Reduce Penetration (Auto CNOF)
  - = 4, Offset individual nodes to target surface (ICONT)
- CNCHECK/ADJUST: Use CNCHECK to determine if gap or penetration exists.



# Checking Contact Conditions... Issue CNCHECK to Determine Contact Status





### Using Auto CNOF...









#### Displacement Control...

- Very Robust and Most Used Method
- Use Alone or with Subsequent Force Control
  - Apply displacement control and obtain solution
  - Replace displacement with reaction load and obtain solution
  - Apply final load and obtain solution



#### Displacement Control Examples...



Click to Animate

Displacement Control Used for Crush Tests



#### Displacement Control Examples...



- 1. Apply UY
- 2. Replace UY with Reaction
- 3. Apply Final Load

Displacement Control Used in Conjunction with Force Control



#### Displacement Control Examples...



- 1. Apply RY
- 2. Replace RY with Reaction
- 3. Apply Final Moment

Displacement Control Used in Conjunction with Force Control



#### Weak Springs...

- Small amount of stiffness to prevent parts from flying off into space.
- Springs can attach parts to one another or to ground.
- Adjust stiffness values so that springs don't impact results.
- For complicated assemblies, consider using multiple real sets for different springs.



## Weak Spring Examples...





### Weak Spring Examples...



Weak springs attach housing and strap to ground

Weak springs attach lock bolt to housing

Different spring constants for all. Starting value 10N/mm

Friction was also used



#### Friction...

In some instances a small amount of friction (mu=0.1) can be used to control lateral sliding





#### Dynamics...

- Solving F=ma eliminates rigid motion issues.
- Use of "slow dynamics" to solve static problems can overcome rigid motion issues. Include density and damping and verify system comes to rest
- When performing true dynamic problems with contact, use Element Time Increment Control (keyopt 7=2, maintain reasonable). This keeps time step a fraction of the system's apparent frequency





## Dynamics Examples...

Click to Animate



## Dynamics Examples...

Click to Animate



#### Mesh Issues

- Finer Mesh on Contact surface/ Coarser on Target
- Faceting negatively affects curved contact surfaces
  - Use fine mesh
  - Exclude penetration (keyopt 9 = 1)
  - Auto CNOF/ICONT (keyopt 5)



#### Mesh Issues



Refined Mesh + keyopt 9 = 1 Eliminated Convergence Problems







#### Nonlinear Diagnostics...

20

21

</COLDATA>

#### Version 9.0 added contact pair based diagnostics



0.3443273E-02

0.1584254E-01

-0.7152241E-01

-0.964109SE-01

0.3443273E-02

0.2253283E-01

0.000000

0.000000

5294,488

8796.823

0.000000

0.000000

2,625

0.7319

3,110

3,34

5294,488

8796,823

0.000000

0.000000



#### Nonlinear Diagnostics...

Plotting Residual Norms can also help locate

problem contacts





# Other Methods of Dealing with Convergence...

- Increase Convergence Tolerance... Note this may simply allow you to converge to a wrong solution
- Specify a min ref convergence value
- Adjust Pinball Region



#### Summary...

- Try to converge using easy settings first then tighten settings to determine sensitivity
  - Small FKN
  - Large FTOLN
- Use displacement control whenever you can
- Get to know ANSYS' automatic methods for dealing with rigid motion
- In situations where auto methods don't work consider the application and apply springs, friction, etc.
- Setup NL Diagnostics and look at contact penetration to see how various contacts are behaving