

Model Development Phase Template

Date	17 JULY 2024
TeamID	740083
Project Title	SENTIMENTAL ANALYSIS OF COMMODITY NEWS (GOLD)
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Theinitialmodeltrainingcodewillbeshowcasedinthefuturethroughascreenshot. Themodel validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model TrainingCode:

```
In [15]: #the updated text here
df['Cleaned_News'] = pd.DataFrame(df.News.apply(Cleaned_News))
df.head(10)
Out[15]:
```

	News	Price Sentiment	Cleaned_News
0	april gold down 20 cents to settle at \$1,116.1	negative	april gold down cents to settle at
1	gold suffers third straight daily decline	negative	gold suffers third straight daily decline
2	Gold futures edge up after two-session decline	positive	gold futures edge up after twosession decline
3	dent research : is gold's day in the sun comin	none	dent research is golds day in the sun coming
4	Gold snaps three-day rally as Trump, lawmakers	negative	gold snaps threeday rally as trump lawmakers r
5	Dec. gold climbs \$9.40, or 0.7%, to settle at \dots	positive	dec gold climbs or to settle at
6	gold falls by rs 25 on sluggish demand, global	negative	gold falls by rs on sluggish demand global cues
7	Gold futures fall for the session, but gain fo	positive	gold futures fall for the session but gain for
8	Gold struggles; silver slides, base metals falter	neutral	gold struggles silver slides base metals falter
9	april gold holds slight gain, up \$2.50, or 0.2	positive	april gold holds slight gain up or at

Model building with Logistic Regression

Model building with SVM ¶


```
In [24]: #Logistic Regression
              from sklearn.metrics import accuracy_score
print("Accuracy_test : ", accuracy_score(predictions, y_test))
print("Accuracy_train : ", accuracy_score(pred_train, y_train))
              Accuracy_test: 0.8831598864711447
Accuracy_train: 0.9331835383159887
In [25]: #SVM
              #from sklearn.metrics import accuracy_score
print("Accuracy_test: ", accuracy_score(predictions2, y_test))
print("Accuracy_train : ", accuracy_score(pred2_train, y_train))
              Accuracy_test: 0.8831598864711447
Accuracy_train : 0.9331835383159887
In [26]: example = ["gold to trade in 28670-29160 range: achiievers equities"]
result = model.predict(example)
              print(result)
              ['neutral']
In [27]: example = ["gold to trade in 28670-29160 range: achiievers equities"]
result = model2.predict(example)
              print(result)
              ['neutral']
In [28]: example = ["can investment in gold, sensex & ppfs give the same returns?"]
result = model.predict(example)
              print(result)
              ['none']
In [29]: example = ["can investment in gold, sensex & ppfs give the same returns?"]
              result = model2.predict(example)
             print(result)
              ['none']
```

ModelValidationandEvaluationReport:

Model		C	lassif	ïcatio	on Report	F1 Scor e	Confusion Matrix confusion_matrix(predictions, y_test)	
	#for Logistic from sklearn. # assume y_tr print(classif	metrics impo ain and pred	train ar	e your true	e and predicted labels, respectivel	y		
DECISI		precision	recall	f1-score	support	000/	appay/[[701 15 26 20]	
ONT	negative	0.91	0.91	0.91	769	88%	array([[701, 15, 26, 29],	
ON	neutral	0.93	0.56	0.70	89		[4 [0 4 2]	
	none	0.79	0.84	0.82	391		[1, 50, 1, 2],	
TREE	positive	0.90	0.91	0.91	865		[31, 9, 330, 48],	
	accuracy			0.88	2114		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	macro avg	0.88	0.81	0.83	2114		[36 45 34 706]] dtuno_int(4)	
	weighted avg	0.88	0.88	0.88	2114		[36, 15, 34, 786]], dtype=int64)	

SUPPORT	#for SVM from sklearn. # assume y_tr print(classif	ain and pred	2_train a	are your tr	ue and predicted La		0004	confusion_matrix(predictions2, y_test)
VECTOR		precision	recall	f1-score	support	8	38%	array([[701, 15, 26, 29], [1, 50, 1, 2],
MACHINE	negative	0.92	0.90	0.91	769			[31, 9, 330, 48],
MACHINE	neutral	0.81	0.64	0.72	89			[36, 15, 34, 786]], dtype=int64)
	none	0.79	0.85	0.82	391			
	positive	0.90	0.90	0.90	865			
	accuracy			0.88	2114			
	macro avg	0.86	0.82	0.84	2114			
	weighted avg	0.88	0.88	0.88	2114			