VANISHING AT INFINITY ON HOMOGENEOUS SPACES OF REDUCTIVE TYPE

BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

ABSTRACT. Let G be a real reductive group and Z = G/H a unimodular homogeneous G space. The space Z is said to satisfy VAI if all smooth vectors in the Banach representations $L^p(Z)$ vanish at infinity, $1 \leq p < \infty$. For H connected we show that Z satisfies VAI if and only if it is of reductive type.

Date: September 10, 2012.

2000 Mathematics Subject Classification. 22F30, 22E46, 53C35.

The second author was partially supported by ISF grant N. 1138/10.

1. Introduction

In many applications of harmonic analysis of Lie groups it is important to study the decay of functions on the group. For example for a simple Lie group G, the fundamental discovery of Howe and Moore ([8], Thm. 5.1), that the matrix coefficients of non-trivial irreducible unitary representations vanish at infinity, is often seen to play an important role. In a more general context it is of interest to study matrix coefficients formed by a smooth vector and a distribution vector. If the distribution vector is fixed by some closed subgroup H of G, these generalized matrix coefficients will be smooth functions on the quotient manifold G/H. This leads to the question which is studied in the present paper, the decay of smooth functions on homogeneous spaces. More precisely, we are concerned with the decay of smooth L^p -functions on G/H.

Let G be a real Lie group and $H \subset G$ a closed subgroup. Consider the homogenous space Z = G/H and assume that it is unimodular, that is, it carries a G-invariant measure μ_Z . Note that such a measure is unique up to a scalar multiple.

For a Banach representation (π, E) of G we denote by E^{∞} the space of smooth vectors. In the special case of the left regular representation of G on $E = L^p(Z)$ with $1 \leq p < \infty$, it follows from the local Sobolev lemma that E^{∞} is the space of smooth functions on Z, all of whose derivatives belong to $L^p(Z)$ (see [13], Thm. 5.1). Let $C_0^{\infty}(Z)$ be the space of smooth functions on Z that vanish at infinity. Motivated by the decay of eigenfunctions on symmetric spaces ([15]), the following definition was taken in [10]:

Definition 1.1. We say Z has the property VAI (vanishing at infinity) if for all $1 \le p < \infty$ we have

$$L^p(Z)^{\infty} \subset C_0^{\infty}(Z).$$

By a result of [13], Z = G has the VAI property for G unimodular and $H = \{1\}$. The main result of [10] establishes that all reductive symmetric spaces admit VAI. On the other hand, it is easy to find examples of homogeneous spaces without this property. For example, it is clear that a non-compact homogeneous space with finite volume cannot have VAI.

Definition 1.2. Let G be a real reductive group. We say that H is a reductive subgroup and that Z is of reductive type (or just reductive), if H is real reductive and the adjoint representation of H in the Lie algebra \mathfrak{g} of G is completely reducible.

Note that Z is unimodular in that case. The main result of this article is as follows.

Theorem 1.3. Let G be a connected real reductive group and $H \subset G$ a closed connected subgroup such that Z = G/H is unimodular. Then VAI holds for Z if and only if it is of reductive type.

The direction 'if' is proved in Proposition 4.1. If Z is of reductive type and $B \subset G$ is a compact ball we provide essentially sharp lower and upper bounds for the volume $\operatorname{vol}_Z(Bz)$ with respect to μ_Z , where $z \in Z$ moves off to infinity (Section 3.2). These results generalize and simplify previous approaches in [11] and [9]. The lower bounds in particular imply that Z has VAI.

The converse implication is established in Proposition 5.1. The main lemma shows that in the non-reductive case the volume of the above mentioned sets Bz can be made exponentially small.

2. The invariant measure

In this section we provide a suitable framework for a discussion of the invariant measure on Z. Throughout G is a connected real reductive group and $H \subset G$ is a closed connected subgroup such that Z := G/H is unimodular.

Let \mathfrak{g} be the Lie algebra of G. We fix a Cartan involution θ of G. The derived involution $\mathfrak{g} \to \mathfrak{g}$ will also be called θ . The fixed point set of θ determines a maximal compact subgroup K of G whose Lie algebra will be denoted \mathfrak{k} . Let \mathfrak{p} denote the -1-eigenspace of θ on \mathfrak{g} , then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Let κ be a non-degenerate invariant symmetric bilinear form on \mathfrak{g} such that

$$\kappa|_{\mathfrak{p}}>0, \quad \kappa|_{\mathfrak{k}}<0, \quad \mathfrak{k}\perp\mathfrak{p}.$$

Having chosen κ we define an inner product on \mathfrak{g} by

$$\langle X, Y \rangle = -\kappa(\theta(X), Y).$$

We denote by \mathfrak{h} the Lie algebra of H and by \mathfrak{q} be its orthogonal complement in \mathfrak{g} .

Remark 2.1. Let Z be of reductive type. In this case the Cartan involution will be chosen such that it preserves H (see [7] Exercise VI A8 or [16] Thm. 12.1.4). It follows easily that then $[\mathfrak{h},\mathfrak{q}] \subset \mathfrak{q}$. Moreover one has $[\mathfrak{q},\mathfrak{q}] \subset \mathfrak{h}$ if and only if the pair $(\mathfrak{g},\mathfrak{h})$ is symmetric, that is, if and only if

$$\mathfrak{h} = \{ X \in \mathfrak{g} \mid \sigma(X) = X \}$$

for an involution σ of \mathfrak{g} . Then

$$\mathfrak{q} = \{ X \in \mathfrak{g} \mid \sigma(X) = -X \}.$$

2.1. Construction of the invariant measure. The differential geometric way to obtain an invariant measure on Z is by defining an invariant differential form of top degree. Let us briefly recall this construction.

For every $g \in G$ we denote by

$$\tau_a: Z \to Z, xH \mapsto qxH$$

the diffeomorphic left displacement by g on Z. Let $z_0 = H \in Z$ be the base point. Given $g \in G$ we shall identify the tangent space $T_{gz_0}Z$ of Z at the point gz_0 with $\mathfrak{g}/\mathfrak{h}$ via the map

(2.1)
$$\mathfrak{g}/\mathfrak{h} \to T_{az_0}Z, \quad X + \mathfrak{h} \mapsto d\tau_a(z_0)X.$$

Let us emphasize that if $gz_0 = g'z_0$, then g = g'h for some $h \in H$ and the two identifications differ by the automorphism $\mathrm{Ad}(h)|_{\mathfrak{g}/\mathfrak{h}}$. The assumption that an invariant measure exists on Z implies that the determinant of this automorphism is 1.

Let $Y_1, ..., Y_s$ be a basis of $\mathfrak{g}/\mathfrak{h}$ and $\omega_1, ..., \omega_s$ the corresponding dual basis in $(\mathfrak{g}/\mathfrak{h})^* \subset \mathfrak{g}^*$. We define the *H*-invariant volume form on $\mathfrak{g}/\mathfrak{h}$ by

$$\omega = \omega_1 \wedge \omega_2 \wedge \dots \wedge \omega_s \in \bigwedge^s (\mathfrak{g}/\mathfrak{h})^*.$$

As ω is Ad(H)-invariant we can extend ω to a G-invariant volume form ω_Z on Z. The measure μ_Z corresponding to ω_Z is then a Haar measure on Z.

3. Reductive Spaces

In this section Z = G/H is of reductive type. Our goal is to establish uniform bounds for the invariant measure and deduce VAI for these spaces. As Z is of reductive type we can and will identify $\mathfrak{g}/\mathfrak{h}$ with \mathfrak{q} in an H-equivariant way (see Remark 2.1). Note that \mathfrak{q} is θ -stable and in particular $\mathfrak{q} = \mathfrak{q} \cap \mathfrak{k} + \mathfrak{q} \cap \mathfrak{p}$. We denote by $\operatorname{pr}_{\mathfrak{q}} : \mathfrak{g} \to \mathfrak{q}$ the orthogonal projection.

The characterization of infinity on Z is obtained by the polar decomposition which asserts that the polar map

(3.1)
$$\pi: K \times_{H \cap K} (\mathfrak{q} \cap \mathfrak{p}) \to Z, [k, Y] \mapsto k \exp(Y) z_0$$

is a homeomorphism (see [12] or [2], p. 74). Then a function $f \in C(Z)$ vanishes at infinity if and only if

$$\lim_{Y \to \infty \atop Y \in \mathfrak{q} \cap \mathfrak{p}} \sup_{k \in K} |f(\pi(k, Y))| = 0.$$

3.1. Local coordinates. The objective of this subsection is to provide some useful local coordinates on Z and to give a uniform estimate of the invariant measure in terms of these local coordinates.

Let $U_R = \{X \in \mathfrak{g} : ||X|| < R\}$ for R > 0 and $U_{R,\mathfrak{q}} = U_R \cap \mathfrak{q}$. Note that when R is sufficiently small then $\exp|_{U_R}$ is diffeomorphic onto its image in G. We define for all R > 0 a 'ball' in G by $B_{R,\mathfrak{g}} = \exp(U_R)$. Likewise we define $B_{R,\mathfrak{q}} = \exp(U_{R,\mathfrak{q}}) \subset G$.

Let $g \in G$ and define a map ϕ_g by

$$\phi_g: U_{R,\mathfrak{q}} \to Z, \quad Y \mapsto \exp(Y)gz_0.$$

Observe that

$$\operatorname{vol}_{Z}(B_{R,\mathfrak{g}}gz_{0}) \ge \operatorname{vol}_{Z}(B_{R,\mathfrak{q}}gz_{0}) = \int_{U_{R,\mathfrak{q}}} \phi_{g}^{*}\omega_{Z}$$

with the last equality holding if ϕ_g is diffeomorphic onto its image.

We will now show that ϕ_g is a coordinate chart with a Jacobian uniformly bounded from below provided $g = \exp(X)$ with $X \in \mathfrak{p} \cap \mathfrak{q}$ sufficiently large. We shall identify $T_{\exp(Y)gz_0}Z$ with \mathfrak{q} as in (2.1). A standard computation yields for all $Y \in U_{\mathfrak{q},R}$:

(3.2)
$$d\phi_g(Y): X \mapsto \operatorname{pr}_{\mathfrak{q}}\left(\operatorname{Ad}(g^{-1})\left(\frac{1 - e^{-\operatorname{ad}Y}}{\operatorname{ad}Y}X\right)\right),$$
$$\mathfrak{q} \to T_{\exp(Y)gz_0}Z = \mathfrak{q}$$

For $Y \in U_{\mathfrak{q},R}$ we shall denote by

$$J_g(Y) = |\det d\phi_g(Y)|$$

the Jacobian of ϕ_g at Y.

Lemma 3.1. There exists a neighborhood $U \subset \mathfrak{q}$ of 0 and constants C, d > 0 such that

$$(3.3) J_{\exp(X)}(Y) \ge d$$

for all $X \in \mathfrak{p} \cap \mathfrak{q}$ with $||X|| \geq C$, and all $Y \in U$. In particular, the map

$$\phi_{\exp X}:U\to Z$$

is then diffeomorphic onto its image.

Proof. We may assume that the basis Y_1, \ldots, Y_s of $\mathfrak{g}/\mathfrak{h}$ is an orthonormal basis of \mathfrak{q} . It then follows from (3.2) that

$$(3.4) J_{\exp X}(Y) = |\det\left(\langle e^{-\operatorname{ad} X} \circ \left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Y_i, Y_j \rangle_{1 \le i, j \le s}\right)|.$$

Since $\theta(X) = -X$ we can rewrite the matrix elements in (3.4) as

(3.5)
$$\left\langle \left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Y_i, e^{-\operatorname{ad} X} Y_j \right\rangle.$$

Observe that ad X is real semisimple and let V_1, \ldots, V_n be an orthonormal basis for \mathfrak{g} of eigenvectors, with corresponding real eigenvalues $\lambda_1, \ldots, \lambda_n$. Let

$$b_{ik} = \langle \left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Y_i, V_k \rangle, \qquad c_{kj} = \langle V_k, Y_j \rangle,$$

then (3.5) equals $\sum_{k=1}^{n} b_{ik} c_{kj} e^{-\lambda_k}$. The determinant in (3.4) is a sum of products of such expressions.

We replace X by tX for $t \in \mathbb{R}$ and set

$$p(t) = p_{X,Y}(t) := \det\left(\left\langle \left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Y_i, e^{-\operatorname{ad} tX} Y_j \right\rangle_{1 \le i, j \le s}\right).$$

Then it follows from the reasoning above that p is a linear combination of exponential functions $e^{-\lambda t}$ with exponents $\lambda \in \mathbb{R}$ which are sums of eigenvalues $-\lambda_k$. We observe that the exponents depend on X in a way which can be arranged to be locally uniform, and likewise for the dependence of the coefficients on X and Y.

For Y=0 we have $p_{X,0}(-t)=p_{X,0}(t)$ for all t and all X, since $\theta(X)=-X$ and \mathfrak{q} is θ -invariant. Thus $e^{\lambda t}$ and $e^{-\lambda t}$ will occur with the same coefficients in the expansion of $p_{X,0}$. If we denote by λ_X the maximal exponent λ such that $e^{\lambda t}$ occurs in $p_{X,0}(t)$ with a non-zero coefficient, then we conclude that $\lambda_X \geq 0$. By compactness and local uniformity it follows that there exists a compact neighborhood $U \subset \mathfrak{q}$ of 0 such that $e^{\lambda_X t}$ occurs in the expansion of $p_{X,Y}(t)$ with non-zero coefficient for all $Y \in U$ and any unit vector $X \in \mathfrak{p} \cap \mathfrak{q}$.

In the expansion of p(t) the term with maximal exponent λ will dominate the others when $t \to \infty$. As we have just seen, this maximal exponent is ≥ 0 for all $Y \in U$ and all X. Hence there exist constants C, d > 0 such that $|p(t)| \geq d$ for t > C. Again by compactness, these constants can be chosen independently of $Y \in U$ and X with ||X|| = 1.

In general, the constant lower bound (3.3) is sharp. However, in many cases one can improve to an exponential lower bound. A particularly simple case is obtained when $(\mathfrak{g},\mathfrak{h})$ is a symmetric pair. Let $\operatorname{pr}_s:\mathfrak{q}\to\mathfrak{q}\cap[\mathfrak{g},\mathfrak{g}]$ denote the orthogonal projection of \mathfrak{q} to its semi-simple part, and let $X_s=\operatorname{pr}_s(X)$ for $X\in\mathfrak{q}$.

Lemma 3.2. Assume G/H is a symmetric space. Then there exists a neighborhood $U \subset \mathfrak{q}$ of 0 and constants $C, d, \delta > 0$ such that

$$J_{\exp(X)}(Y) \ge de^{\delta ||X_s||}$$

for all $X \in \mathfrak{p} \cap \mathfrak{q}$ with $||X|| \geq C$, and all $Y \in U$.

Proof. We denote by σ the involution of \mathfrak{g} associated with \mathfrak{h} (see Remark 2.1). Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} containing X and let Σ be the associated system of restricted roots. Root spaces in \mathfrak{g} are denoted \mathfrak{g}^{α} , where $\alpha \in \Sigma$. Let

$$\delta_X = \sum_{\alpha \in \Sigma, \alpha(X) > 0} \alpha(X)$$

(roots counted with multiplicities), then δ_X is independent of the choice of subspace \mathfrak{a} , and $\delta_X \geq \delta ||X_s||$ for some constant $\delta > 0$, independent of X. We claim that there exist U, C and d as above such that

$$(3.6) J_{\exp(X)}(Y) \ge de^{\delta_X}$$

for all $Y \in U$ and $||X|| \ge C$. Obviously this will imply the lemma.

Notice that the ad X-eigenspace for the eigenvalue $\lambda \in \mathbb{R}$ is given by $\mathfrak{g}_X^{\lambda} = \bigoplus_{\alpha \in \Sigma, \alpha(X) = \lambda} \mathfrak{g}^{\alpha}$. Note also that $V \in \mathfrak{g}_X^{\lambda}$ implies $\sigma(V) \in \mathfrak{g}_X^{-\lambda}$, since $\sigma(X) = -X$.

We follow the proof of Lemma 3.1. It suffices to prove that if λ_X is the maximal exponent in this proof then $\lambda_X t = \delta_{tX}$ for t > 0. It follows from the preceding paragraph that we can choose the orthonormal basis $(V_k)_{1,\dots,n}$ for \mathfrak{g} such that basis vectors with non-zero eigenvalues $\pm \lambda$ for ad X are mutually paired by σ , and that each root with $\alpha(X) > 0$ is represented by such pairs according to its multiplicity. The orthonormal basis $(Y_j)_{1,\dots,s}$ for \mathfrak{q} can then be chosen to consist of normalized multiples of the $V_k - \sigma(V_k)$ for each such pair, and additional vectors commuting with X. An elementary computation now shows that

$$p_{X,0}(t) = \prod_{\alpha \in \Sigma, \alpha(X) > 0} \cosh(\alpha(tX)),$$

from which the expression for the maximal exponent follows.

3.2. Volume bounds. We record the following corollaries.

Corollary 3.3. There exist a neighborhood $U \subset \mathfrak{q}$ of 0 and constants C, d > 0 such that the following holds for all $X \in \mathfrak{q} \cap \mathfrak{p}$ with ||X|| > C: For each R > 0 with $U_{R,\mathfrak{q}} \subset U$,

$$\operatorname{vol}_Z(B_{R,\mathfrak{q}}\exp(X)z_0) \ge d\operatorname{vol}_{\mathfrak{q}}(U_{R,\mathfrak{q}}).$$

When G/H is symmetric, the lower volume bound can be improved to $de^{\delta ||X_s||} \operatorname{vol}_{\mathfrak{q}}(U_{R,\mathfrak{q}})$ with $\delta > 0$ independent of X and R.

Remark 3.4. The proof of Lemma 3.1 also provides the following upper volume bound. There exist constants $D, \lambda > 0$ such that

$$\operatorname{vol}_{Z}(B_{R,\mathfrak{q}}\exp(X)z_{0}) \leq De^{\lambda \|X\|}\operatorname{vol}_{\mathfrak{q}}(U_{R,\mathfrak{q}})$$

for all $X \in \mathfrak{q} \cap \mathfrak{p}$. See [9] for such a bound in the literature.

Corollary 3.5. There exist constants $C, d, R_0 > 0$ such that

$$\operatorname{vol}_Z(B_{R,\mathfrak{q}}z) \ge dR^{\dim\mathfrak{q}}$$

for all $R \leq R_0$ and all $z = k \exp(X) z_0 \in Z$ with $k \in K$, $X \in \mathfrak{p} \cap \mathfrak{q}$ and ||X|| > C. Furthermore, in the symmetric case we have

$$\operatorname{vol}_Z(B_{R,\mathfrak{g}}z) \ge de^{\delta \|X_s\|} R^{\dim \mathfrak{q}}$$

with $\delta > 0$ independent of R and z.

Remark 3.6. For fixed R > 0 and G, H semisimple it was shown in [11] that there exists a constant c > 0 such that

$$\operatorname{vol}_Z(B_{R,\mathfrak{g}}z) > c$$

for all $z \in \mathbb{Z}$. Corollary 3.5 sharpens this bound.

In the case of Z a semisimple symmetric space, the wave front lemma, Theorem 3.1, of [6], shows that for each R > 0 there exists an open neighborhood V of z_0 such that $B_{R,\mathfrak{g}}z$ contains a G-translate of V, for all $z \in Z$. This of course also implies that $\operatorname{vol}_Z(B_{R,\mathfrak{g}}z)$ is bounded below.

4. Reductive Spaces are VAI

Proposition 4.1. Let Z be a homogeneous space of reductive type. Then

$$L^p(Z)^{\infty} \subset C_0^{\infty}(Z)$$

for each $1 \le p < \infty$, with continuous inclusion map. In particular, Z has the property VAI.

Proof. By applying the Sobolev inequality in local coordinates, we obtain the following for $1 \leq p < \infty$ and for each compact neighborhood B of e in G (see [13] Lemma 5.1 for details). There exist finitely many elements $v_i \in \mathcal{U}(\mathfrak{g})$ (of degree up to the smallest integer $> \dim Z/p$) in the enveloping algebra of \mathfrak{g} , and for each $z \in Z$ a constant D > 0 such that

$$(4.1) |f(z)| \le D \max ||(L_{v_i}f) \mathbf{1}_{Bz}||_p$$

for all $f \in L^p(Z)^{\infty}$. Here $\mathbf{1}_{Bz}$ denotes the characteristic function of $Bz \subset Z$. The constant D is locally uniform with respect to z.

Based on Lemma 3.1, we can improve the local estimate (4.1), such that for G/H of reductive type it holds with D independent of z. Let $U \subset \mathfrak{q}$ and C, d > 0 be as in Lemma 3.1, and fix R > 0 such that $U_{R,\mathfrak{q}} \subset U$. It follows that

(4.2)
$$||(f \circ \phi_{\exp X}) \mathbf{1}_{U_{R,q}}||_p \le d^{-1/p} ||f \mathbf{1}_{B_{R,q} \exp(X)z_0}||_p$$

for $f \in L^p(Z)$ and $X \in \mathfrak{p} \cap \mathfrak{q}$ with ||X|| > C. By the Sobolev inequality for $\mathbb{R}^{\dim \mathfrak{q}}$, the value $|f \circ \phi_{\exp X}(0)|$ is estimated above by the *p*-norms, over any neighborhood of 0, of the derivatives of $f \circ \phi_{\exp X}$. Hence if $f \in L^p(Z)^{\infty}$ and ||X|| > C, we obtain an upper bound

$$|f(\exp(X)z_0)| \le D \max ||(L_v f) \mathbf{1}_{B_{R,\mathfrak{q}} \exp(X)z_0}||_p$$

with derivatives as before by finitely many elements in $\mathcal{U}(\mathfrak{g})$, and with a constant D independent of f and X. After conjugation by $k \in K$ we conclude that (4.1) holds at $z = k \exp(X)z_0$, with $B = B_{R,\mathfrak{g}}$ and with a uniform constant D. As the set of elements $k \exp(X)z_0$ with $||X|| \leq C$ is compact, the inequality is finally obtained for all $z \in Z$.

The proposition is a straightforward consequence of the uniform version of (4.1).

For G/H symmetric we obtain a stronger decay on the semisimple part of G by replacing the use of Lemma 3.1 by Lemma 3.2 in the estimate (4.2), while following the preceding proof:

Proposition 4.2. Let Z = G/H be symmetric. There exists a constant $\delta > 0$ with the following property. Let $f \in L^p(Z)^{\infty}$ where $1 \leq p < \infty$. Then for each $\epsilon > 0$ there exists C > 0 such that

$$|f(k\exp(X)z_0)| \le \epsilon e^{-\delta||X_s||}$$

for all $z = k \exp(X)z_0$, where $X \in \mathfrak{p} \cap \mathfrak{q}$, ||X|| > C and $k \in K$.

5. Non-reductive spaces are not VAI

In this section we prove that VAI does not hold on any homogeneous space Z = G/H of G, which is not of reductive type. We maintain the assumption that G is a connected real reductive group and establish the following result.

Proposition 5.1. Assume that $H \subset G$ is a closed connected subgroup such that Z = G/H is unimodular and not of reductive type. Then for all $1 \leq p < \infty$ there exists an unbounded function $f \in L^p(Z)^{\infty}$. In particular, VAI does not hold.

The idea is to show that there is a compact ball $B \subset G$ and a sequence $(g_n)_{n \in \mathbb{N}}$ such that

- $Bg_nz_0 \cap Bg_mz_0 = \emptyset$ for $n \neq m$.
- $\operatorname{vol}_Z(Bg_nz_0) \leq e^{-n}$ for all $n \in \mathbb{N}$.

Out of these data it is straightforward to construct a smooth L^p function which does not vanish at infinity.

Before we give a general proof we first discuss the case of unipotent subgroups. The argument in the general case, although more technical, will be modeled after that.

5.1. Unipotent subgroups. Let H = N be a unipotent subgroup, that is, $\mathfrak{n} := \mathfrak{h}$ is an ad-nilpotent subalgebra of $[\mathfrak{g}, \mathfrak{g}]$. Now, the situation where \mathfrak{n} is normalized by a particular semi-simple element is fairly straightforward and we shall begin with a discussion of that case.

If $X \in \mathfrak{g}$ is a real semi-simple element, i.e., $\operatorname{ad} X$ is semi-simple with real spectrum, then we denote by $\mathfrak{g}_X^{\lambda} \subset \mathfrak{g}$ its eigenspace for the eigenvalue $\lambda \in \mathbb{R}$, and by \mathfrak{g}_X^{\pm} the sum of these eigenspaces for λ positive/negative. We record the triangular decomposition

$$\mathfrak{g} = \mathfrak{g}_X^+ + \mathfrak{z}_{\mathfrak{g}}(X) + \mathfrak{g}_X^-.$$

Here $\mathfrak{z}_{\mathfrak{g}}(X) =: \mathfrak{g}_X^0$ is the centralizer of X in \mathfrak{g} .

Lemma 5.2. Assume that \mathfrak{n} is normalized by a non-zero real semisimple element $X \in \mathfrak{g}$ such that $\mathfrak{n} \subset \mathfrak{g}_X^+$. Set $a_t := \exp(tX)$ for all $t \in \mathbb{R}$. Let $B \subset G$ be a compact ball around $\mathbf{1}$. Then there exists c > 0 and $\gamma > 0$ such that

$$\operatorname{vol}_Z(Ba_tz_0) = c \cdot e^{t\gamma} \qquad (t \in \mathbb{R})$$

Proof. Let $A = \exp \mathbb{R}X$ and note that A normalizes N. Thus for all $a \in A$ the prescription

$$\mu_{Z,a}(Bz_0) := \mu_Z(Baz_0)$$
 $(B \subset G \text{ measurable})$

defines a G-invariant measure on Z. By the uniqueness of the Haar measure we obtain that

$$\mu_{Z,a} = J(a)\mu_Z$$

where $J: A \to \mathbb{R}_0^+$ is the group homomorphism $J(a) = \det \operatorname{Ad}(a)|_{\mathfrak{n}}$. The assertion follows.

Having obtained this volume bound we can proceed as follows. Let us denote by χ_k the characteristic function of $Ba_{-k}z_0 \subset Z$. We claim that the non-negative function

(5.1)
$$\chi := \sum_{k \in \mathbb{N}} k \chi_k$$

lies in $L^p(G/H)$. In fact

$$\|\chi\|_p \le \sum_{k \in \mathbb{N}} k \|\chi_k\|_p \le c \sum_{k \in \mathbb{N}} k e^{-\gamma k/p}.$$

Finally we have to smoothen χ : For that let $\phi \in C_c(G)^{\infty}$ with $\phi \geq 0$, $\int_G \phi = 1$ and supp $\phi \subset B$. Then $\tilde{\chi} := \phi * \chi \in L^p(Z)^{\infty}$ with $\tilde{\chi}(a_{-k}z_0) \geq k$. Hence $\tilde{\chi}$ is unbounded.

In general, given a unipotent subalgebra \mathfrak{n} , there does not necessarily exist a semisimple element which normalizes \mathfrak{n} . For example if $U \in \mathfrak{g} = \mathfrak{sl}(5,\mathbb{C})$ is a principal nilpotent element, then $\mathfrak{n} = \mathrm{span}\{U,U^2+U^3\}$ is a 2-dimensional abelian unipotent subalgebra which is not normalized by any semi-simple element of \mathfrak{g} . The next lemma offers a remedy out of this situation by finding an ideal $\mathfrak{n}_1 \triangleleft \mathfrak{n}$ which is normalized by a real semisimple element X with $\mathfrak{n} \subset \mathfrak{g}_X^+ + \mathfrak{g}_X^0$.

Lemma 5.3. Let $\mathfrak{n} \subset [\mathfrak{g}, \mathfrak{g}]$ be an ad-nilpotent subalgebra and let $0 \neq U \in \mathfrak{z}(\mathfrak{n})$. Then there exists a real semi-simple element $X \in \mathfrak{g}$ such that [X, U] = 2U and $\mathfrak{n} \subset \mathfrak{g}_X^+ + \mathfrak{g}_X^0$.

Proof. According to the Jacobson-Morozov theorem one finds elements $X, V \in \mathfrak{g}$ such that $\{X, U, V\}$ form an \mathfrak{sl}_2 -triple, i.e. satisfy the commutator relations [X, U] = 2U, [X, V] = -2V, [U, V] = X. Note that $\mathfrak{n} \subset \mathfrak{z}_{\mathfrak{g}}(U)$ and that $\mathfrak{z}_{\mathfrak{g}}(U)$ is ad X-stable. It is known and in fact easy to see that $\mathfrak{z}_{\mathfrak{g}}(U) \subset \mathfrak{g}_X^+ + \mathfrak{g}_X^0$. All assertions follow.

Within the notation of Lemma 5.3 we set $\mathfrak{n}_1 = \mathbb{R}U$ and $N_1 = \exp(\mathfrak{n}_1)$. Furthermore we set $Z_1 = G/N_1$ and consider the contractive averaging map

$$L^{1}(Z_{1}) \to L^{1}(Z), \quad f \mapsto \widehat{f}; \quad \widehat{f}(gN) = \int_{N/N_{1}} f(gnN_{1}) \ d(nN_{1}).$$

Let $B \subset G$ be a compact ball around $\mathbf{1}$, of sufficiently large size to be determined later, and let $B_1 = B \cdot B \subset G$. Let χ be the function on Z_1 constructed as in (5.1), using the element X from Lemma 5.3 and the compact set B_1 . Let $\widehat{\chi} \in L^1(Z)$ be the average of χ . We claim that $\widehat{\chi}(Ba_{-k}z_0) \geq k$ for all k. In fact let $Q \subset N/N_1$ be a compact neighborhood of $\mathbf{1}$ in N/N_1 with $\operatorname{vol}_{N/N_1}(Q) = 1$. Then for B large enough we have $a_{-k}Qa_k \subset B$ for all k (Lemma 5.3). Hence for $b \in B$,

$$\widehat{\chi}(ba_{-k}z_0) \ge \int_Q \chi(ba_{-k}nN_1) d(nN_1) \ge k,$$

proving our claim.

To continue we conclude that $f_p := (\widehat{\chi})^{\frac{1}{p}} \in L^p(Z)$ is a function with $f_p(Ba_{-k}z_0) \geq k$ for all k. Finally we smoothen f_p as before and conclude that VAI does not hold true.

5.2. The general case of a non-reductive unimodular space. Finally we shall prove Proposition 5.1 in the general situation where H is a closed and connected subgroup for which Z = G/H is unimodular and not of reductive type.

We fix a Levi-decomposition $\mathfrak{h} = \mathfrak{r} \rtimes \mathfrak{s}$ of \mathfrak{h} . As in Section 2 we fix a Cartan involution θ of \mathfrak{g} , and by Remark 2.1 we may assume that it restricts to a Cartan involution of \mathfrak{s} .

Proof of Proposition 5.1.

We will argue by induction on $\dim \mathfrak{g}$, the base of the induction being clear. We will perform a number of reduction steps (which may involve the induction hypothesis) that will lead us to a simplified situation which is described in Step 9 of the proof.

Step 1: \mathfrak{h} is not contained in any reductive proper subalgebra of \mathfrak{g} . Indeed, otherwise \mathfrak{h} is contained in a proper subalgebra $\tilde{\mathfrak{h}}$ of \mathfrak{g} , which is reductive in \mathfrak{g} . Then \mathfrak{h} is not reductive in $\tilde{\mathfrak{h}}$ ([4], §6.6 Cor. 2). By induction \tilde{H}/H is not VAI, in the strong sense that for every $1 \leq p < \infty$ there exists an unbounded function $f \in L^p(\tilde{H}/H)^\infty$. We claim that G/H is not VAI in the same strong sense. Let $\tilde{\mathfrak{q}} \subset \mathfrak{g}$ be the orthogonal complement to $\tilde{\mathfrak{h}}$ in \mathfrak{g} . Then for a small neighborhood $V \subset \tilde{\mathfrak{q}}$ of 0 the tubular map

$$V \times \tilde{H} \to G, \quad (X, h) \mapsto \exp(X)h$$

is diffeomorphic. The Haar measure on G is expressed by J(X)dXdh with J>0 a bounded positive function. Since \tilde{H} normalizes $\tilde{\mathfrak{q}}$, this allows us to extend smooth L^p -functions from \tilde{H}/H to G/H and we see that G/H is not VAI in the strict sense. Hence we may assume as stated in Step 1.

Step 2: \mathfrak{h} is contained in a maximal parabolic subalgebra \mathfrak{p}_0 .

Indeed, by the characterization of maximal subalgebras of \mathfrak{g} (see [5], Ch. 8, §10, Cor. 1), a maximal subalgebra is either a maximal parabolic subalgebra or it is a maximal reductive subalgebra. Hence it follows from Step 1 that \mathfrak{h} is contained in a maximal parabolic subalgebra \mathfrak{p}_0 .

Step 3: $\mathfrak{s} \subset \mathfrak{l}_0$, the Levi part of \mathfrak{p}_0

We write $\mathfrak{p}_0 = \mathfrak{n}_0 \rtimes \mathfrak{l}_0$ where \mathfrak{n}_0 is the unipotent radical of \mathfrak{p}_0 . Note that \mathfrak{l}_0 is reductive in \mathfrak{g} and hence \mathfrak{h} is not contained in \mathfrak{l}_0 . In addition we may assume that $\mathfrak{s} \subset \mathfrak{l}_0$ ([4] §6.8 Cor. 1).

Step 4: $\mathfrak{z}(\mathfrak{l}_0)$ is not contained in \mathfrak{h}

Since G/H is unimodular, $|\det \operatorname{Ad}(h)|_{\mathfrak{h}}| = 1$ for $h \in H$. If in addition $h \in Z(\mathfrak{l}_0)$, then h centralizes \mathfrak{s} and it follows that $|\det \operatorname{Ad}(h)|_{\mathfrak{r}}| = 1$. Hence $\mathfrak{z}(\mathfrak{l}_0) \cap \mathfrak{h}$ centralizes \mathfrak{r} as well. If $\mathfrak{z}(\mathfrak{l}_0)$ would be contained in \mathfrak{h} , and since \mathfrak{l}_0 is the centralizer of its center, then this would force $\mathfrak{h} \subset \mathfrak{l}_0$, contradicting Step 1.

Step 5: Decomposition $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus (\mathfrak{h} + \mathfrak{n}_0)$. Indeed, define the subspace $\mathfrak{l}_1 \subset \mathfrak{l}_0$ by

$$\mathfrak{l}_1=\mathrm{pr}_{\mathfrak{l}_0}(\mathfrak{h})^\perp$$

where $\operatorname{pr}_{\mathfrak{l}_0}:\mathfrak{p}_0\to\mathfrak{l}_0$ is the projection along \mathfrak{n}_0 . Then $\mathfrak{l}_1\oplus(\mathfrak{h}+\mathfrak{n}_0)=\mathfrak{p}_0$.

Step 6: The case $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_0$.

In this case $\mathfrak{h} \cap \mathfrak{n}_0 = \{0\}$ and thus the projection $\operatorname{pr}_{\mathfrak{l}_0}|_{\mathfrak{h}} : \mathfrak{h} \to \mathfrak{l}_0$, which is a Lie-algebra homomorphism, is injective. Write \mathfrak{h}_0 for the homomorphic image of \mathfrak{h} in \mathfrak{l}_0 . The analysis will be separated in two subcases.

Case 6a: \mathfrak{h}_0 is not reductive in \mathfrak{l}_0 . Let H_0 and L_0 be the connected subgroups of G corresponding to \mathfrak{h}_0 and \mathfrak{l}_0 . As G/H is unimodular and H is homomorphic to H_0 , it follows that G/H_0 and thus L_0/H_0 is unimodular. By induction we find for every $1 \leq p < \infty$ an unbounded function $f \in L^p(L_0/H_0)^{\infty}$. As before in the case of \tilde{H}/H we extend f to a smooth vector in $L^p(G/H)$ (note that $P_0/H \to L_0/H_0$ is a fibre bundle, and we first extend f to a function on P_0/H and then to a function on G/H).

Case 6b: \mathfrak{h}_0 is reductive in \mathfrak{l}_0 . In particular it is a reductive Lie algebra, hence so is \mathfrak{h} . In the Levi decomposition $\mathfrak{h} = \mathfrak{s} \oplus \mathfrak{r}$ we now know that \mathfrak{r} is the center of \mathfrak{h} . Let \mathfrak{u} be the subalgebra of \mathfrak{g} generated by \mathfrak{r} and $\theta(\mathfrak{r})$, then $\mathfrak{s} + \mathfrak{u}$ is a direct Lie algebra sum. Moreover, $\mathfrak{s} + \mathfrak{u}$ is θ -invariant, hence reductive in \mathfrak{g} , and hence in fact $= \mathfrak{g}$ by our previous assumption on \mathfrak{h} . Thus \mathfrak{s} is an ideal in \mathfrak{g} which we may as well assume is 0. Now $\mathfrak{h} = \mathfrak{r}$ is an abelian subalgebra which together with $\theta(\mathfrak{r})$

generates \mathfrak{g} . We shall reduce to the case where \mathfrak{r} is nilpotent in \mathfrak{g} , which we already treated in Section 5.1.

Every element $X \in \mathfrak{r}$ has a Jordan decomposition $X_n + X_s$ (in \mathfrak{g}), and we let $\mathfrak{o}_1, \mathfrak{o}_2$ be the subalgebras generated by the X_n 's and X_s 's, respectively. Then $\mathfrak{o} = \mathfrak{o}_1 \oplus \mathfrak{o}_2$ is abelian and \mathfrak{o}_2 consists of semisimple elements. The centralizer of \mathfrak{o}_2 is reductive in \mathfrak{g} and contains \mathfrak{r} , hence equal to \mathfrak{g} . Hence \mathfrak{o}_2 is central in \mathfrak{g} , and we may assume that it is θ -stable. Let \mathfrak{g}_1 be the subalgebra of \mathfrak{g} generated by \mathfrak{o}_1 and $\theta(\mathfrak{o}_1)$. It is reductive in \mathfrak{g} , and $(\mathfrak{g}_1, \mathfrak{o}_1)$ is of the type already treated, hence not VAI. Since $\mathfrak{g} = \mathfrak{g}_1 + \mathfrak{o}_2$ we can now conclude that $(\mathfrak{g}, \mathfrak{r}) = (\mathfrak{g}, \mathfrak{h})$ is not VAI either.

Step 7: An element $X \in \mathfrak{z}(\mathfrak{l}_0)$.

Using the result of Step 4, there exists $X \in \mathfrak{z}(\mathfrak{l}_0) \setminus \mathfrak{h}$ such that $\mathfrak{n}_0 \subset \mathfrak{g}_X^+$. As before we set $a_t := \exp(tX)$ and observe that $a_t z_0 \to \infty$ in Z for $|t| \to \infty$ (this is because $a_t[L_0, L_0]N_0$ tends to infinity in $G/[L_0, L_0]N_0$.)

Step 8: A decomposition $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_1$

We construct an ad X-invariant subspace $\mathfrak{n}_1 \subset \mathfrak{n}_0$ such that $\mathfrak{h} + \mathfrak{n}_0 = \mathfrak{h} \oplus \mathfrak{n}_1$, as follows. If $\mathfrak{n}_0 \subset \mathfrak{h}$, then $\mathfrak{n}_1 = \{0\}$. Otherwise we choose an ad X-eigenvector, say Y_1 , in \mathfrak{n}_0 with largest possible eigenvalue, such that $\mathfrak{h} + \mathbb{R}Y_1$ is a direct sum. If this sum contains \mathfrak{n}_0 , we set $\mathfrak{n}_1 = \mathbb{R}Y_1$. Otherwise we continue that procedure until a complementary subspace is reached. Now $\mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_1 = \mathfrak{p}_0$ and by Step 6 we can assume $\mathfrak{n}_1 \subsetneq \mathfrak{n}_0$.

Step 9: We summarize the situation we have reduced to:

- $\mathfrak{h} = \mathfrak{r} \rtimes \mathfrak{s}$ is a Levi decomposition of \mathfrak{h} .
- $\mathfrak{h} \subset \mathfrak{p}_0 = \mathfrak{n}_0 \rtimes \mathfrak{l}_0$, a maximal parabolic subalgebra of \mathfrak{g} .
- $\mathfrak{s} \subset \mathfrak{l}_0$, the Levi part of \mathfrak{p}_0 .
- $\mathfrak{l}_1 := \operatorname{pr}_{\mathfrak{l}_0}(\mathfrak{h})^{\perp} \subset \mathfrak{l}_0$ with $\operatorname{pr}_{\mathfrak{l}_0} : \mathfrak{p}_0 \to \mathfrak{l}_0$ the projection along \mathfrak{n}_0 .
- $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_1$ with $\mathfrak{l}_1 \subset \mathfrak{l}_0$ and $\mathfrak{n}_1 \subsetneq \mathfrak{n}_0$.
- $X \in \mathfrak{z}(\mathfrak{l}_0)$ and
 - (1) $\mathfrak{n}_0 \subset \mathfrak{g}_X^+$.
 - (2) \mathfrak{n}_1 is invariant with respect to $\operatorname{ad}(X)$.
 - (3) With $a_t = \exp(tX)$ we have $a_t z_0 \to \infty$ in Z for $|t| \to \infty$.

We will construct (for any $1 \leq p < \infty$) a smooth function χ in $L^p(Z)$ which does not decay. For this we need some auxiliary functions Φ_t which we now construct.

Let $\overline{\mathfrak{n}}_0$ be the nilradical of the parabolic opposite to \mathfrak{p}_0 and consider the ad X-invariant vector space

$$\mathfrak{v} := \overline{\mathfrak{n}}_0 \times \mathfrak{l}_1 \times \mathfrak{n}_1 \subset \mathfrak{q}$$

which is complementary to \mathfrak{h} . For fixed $t \in \mathbb{R}$ we define the differentiable map

$$\Phi = \Phi_t : \mathfrak{v} \to Z$$

by the formula

$$\Phi(Y^-, Y^0, Y^+) = \exp(Y^-) \exp(Y^0) \exp(Y^+) a_t z_0$$

The main property which we need of these functions is expressed in the following lemma. For $Y = (Y^-, Y^0, Y^+) \in \mathfrak{v}$ we put

$$y^{\pm,0} = \exp(Y^{\pm,0}) \in G$$

and $y = y^- y^0 y^+$, and we identify the tangent space $T_{\Phi_t(Y)} Z$ with \mathfrak{v} via the map

$$T_{\Phi_t(Y)}Z \to \mathfrak{v}, \quad d\tau_{ya_t}(z_0)(X+\mathfrak{h}) \mapsto \pi_{\mathfrak{v}}(X+\mathfrak{h}), \quad (X \in \mathfrak{g})$$

where $\pi_{\mathfrak{v}}: \mathfrak{g} \to \mathfrak{v}$ is the projection along \mathfrak{h} .

Lemma 5.4. For every sufficiently small compact neighborhood Q of 0 in \mathfrak{v} , there exist constants $c_Q, C_Q > 0$ such that

$$c_Q e^{t\gamma} \le \sup_{Y \in Q} |\det d\Phi_t(Y)| \le C_Q e^{t\gamma} \qquad (t \le 0).$$

In particular $\Phi_t|_Q$ is a chart for all $t \leq 0$.

The proof, which is computational, is postponed to the end of this section. The construction of the function χ is now easy to describe. Let $Q \subset \mathfrak{v}$ be as above. We fix a function $\psi \in C_c^{\infty}(Q)$ with $0 \leq \psi \leq 1$ and $\psi(0) = 1$. For all t < 0 define $\chi_t \in C_c^{\infty}(Z)$ by $\chi_t(z) = \psi(\Phi_t^{-1}(z))$ and set

$$\chi := \sum_{n \in \mathbb{N}} n \chi_{-n} .$$

It is clear that $\chi \in C^{\infty}(Z)$ and that χ is unbounded. We claim that $\chi \in L^p(Z)^{\infty}$.

It follows immediately from the definition that $\chi_t \in L^p(Z)$ for all $1 \leq p < \infty$ and $t \leq 0$, and it follows from the estimate of the differential of Φ in Lemma 5.4 that $\|\chi_t\|_p \leq Ce^{t\gamma/p}$ for some C > 0 not depending on t (but possibly on p). Hence

$$\chi = \sum_{n \in \mathbb{N}} n \chi_{-n} \in L^p(Z)$$

for all $1 \leq p < \infty$, and it only remains to be seen that also the derivatives of χ belong to $L^p(Z)$. The proof of this fact depends in addition on the following estimate, which will be proved together with Lemma 5.4.

Lemma 5.5. Define

$$M_t := \sup_{U \in \mathfrak{g}, \|U\| = 1} \|\operatorname{Ad}(a_t)\pi_{\mathfrak{v}}\operatorname{Ad}(a_t)^{-1}U\|$$

Then $\sup_{t<0}(M_t)<\infty$.

We now complete the proof of the Proposition 5.1 by proving that the left derivatives of χ by elements $U \in \mathfrak{g}$, up to all orders, belong to $L^p(Z)$.

We first show this for first order derivatives. Let $U \in \mathfrak{g}$ and consider the derivative $L(U)\chi_t$. At $z = \Phi_t(Y)$ this is given by

$$L(U)\chi_t(z) = d/ds|_{s=0} \chi_t(\exp(sU)ya_tz_0).$$

For Y in a compact set, we can replace U by its conjugate by y without loss of generality, and thus we may as well consider the derivatives of

$$\chi_t(y\exp(sU)a_tz_0).$$

We rewrite this as

$$\chi_t(ya_t \exp(s \operatorname{Ad}(a_t)^{-1}U)z_0)$$

and apply the projection along \mathfrak{h} . It follows that the derivative can be rewritten as

$$d/ds|_{s=0} \chi_t(ya_t \exp(s\pi_{\mathfrak{v}} \operatorname{Ad}(a_t)^{-1}U)z_0)$$

and then finally also as

$$d/ds|_{s=0} \chi_t(y \exp(s \operatorname{Ad}(a_t) \pi_{\mathfrak{v}} \operatorname{Ad}(a_t)^{-1} U) a_t z_0).$$

Note that $\operatorname{Ad}(a_t)\pi_{\mathfrak{v}}\operatorname{Ad}(a_t)^{-1}U\in\mathfrak{v}$. We conclude that the derivative is a linear combination of derivatives of ψ on Q, with coefficients that depend smoothly on Y. Furthermore, it follows from Lemma 5.5 that the coefficients are bounded for t<0. As before we conclude $L(U)\chi_t\in L^p(Z)$ for all $t\leq 0$, with exponentially decaying p-norms. It follows that $L(U)\chi\in L^p(Z)$.

By repeating the argument for higher derivatives we finally see that $\chi \in L^p(Z)^{\infty}$.

It remains to verify Lemmas 5.4 and 5.5. We first prove the latter.

Proof of Lemma 5.5. For $U \in \mathfrak{v}$ we have

$$\operatorname{Ad}(a_t)\pi_{\mathfrak{v}}\operatorname{Ad}(a_t)^{-1}U=U,$$

hence we may assume $U \in \mathfrak{h}$. Since $\mathfrak{h} \subset \mathfrak{p}_0$ we can write U as a combination of an element $Y_0 \in \mathfrak{l}_0$ and possibly some ad X-eigenvectors Y_{λ} with eigenvalues $\lambda > 0$. Then

$$Ad(a_t)^{-1}U = Y_0 + \sum_{\lambda} e^{-\lambda t} Y_{\lambda} = U + \sum_{\lambda} (e^{-\lambda t} - 1) Y_{\lambda}$$

(possibly with an empty sum). If $Y_{\lambda} \in \mathfrak{n}_1$ then

$$\operatorname{Ad}(a_t)\pi_{\mathfrak{v}}(e^{-\lambda t}-1)Y_{\lambda}=(1-e^{\lambda t})Y_{\lambda}\to Y_{\lambda}$$

as $t \to -\infty$. On the other hand it follows from the definition of \mathfrak{n}_1 , that if Y_{λ} is not in \mathfrak{n}_1 then either it belongs to \mathfrak{h} or it is a sum of an element from \mathfrak{h} and some eigenvectors $V_{\mu} \in \mathfrak{n}_1$ with eigenvalues $\mu \geq \lambda$. Then

$$Ad(a_t)\pi_{\mathfrak{v}}(e^{-\lambda t}-1)Y_{\lambda} = \sum e^{\mu t}(e^{-\lambda t}-1)V_{\mu}$$

(possibly with an empty sum), which stays bounded for $t \to -\infty$. Our claim is thus established.

To prepare the proof of Lemma 5.4 we establish the following lemma. To simplify the main formula below we denote

$$\beta(T) = \frac{1 - e^{-\operatorname{ad} T}}{\operatorname{ad} T} \in \operatorname{End}(\mathfrak{g})$$

for $T \in \mathfrak{g}$. Note that $\beta(0) = 1$.

Lemma 5.6. Let $Y = (Y^-, Y^0, Y^+) \in \mathfrak{v}$.

(1) Let
$$X = (X^-, X^0, X^+) \in \mathfrak{v}$$
, then $d\Phi_t(Y)(X) \in \mathfrak{v}$ is given by
$$d\Phi_t(Y)(X) = \pi_{\mathfrak{v}} \circ \operatorname{Ad}(a_t)^{-1}(S_{YX})$$

where $S_{Y,X} \in \mathfrak{g}$ is the element

$$\operatorname{Ad}(y_0y^+)^{-1}\beta(Y^-)(X^-) + \operatorname{Ad}(y^+)^{-1}\beta(Y^0)(X^0) + \beta(Y^+)(X^+).$$

(2) There exists a linear map $L(Y): \mathfrak{v} \to \mathfrak{g}$ such that

$$d\Phi_t(Y) = \operatorname{Ad}(a_t)^{-1}(\mathbf{1}_{\mathfrak{v}} + \operatorname{Ad}(a_t)\pi_{\mathfrak{v}}\operatorname{Ad}(a_t)^{-1}L(Y))$$

for all $t \leq 0$, and such that $||L(Y)|| \to 0$ for $Y \to 0$.

Proof. We get for the differential of Φ :

$$d\Phi(Y^-, Y^0, Y^+)(X^-, X^0, X^+) = d\tau_{y^-y^0y^+a_t}(z_0) \circ \operatorname{Ad}(a_t)^{-1}(S_{Y,X})$$

with $S_{Y,X}$ as above. Using the identification of the tangent space with \mathfrak{v} this is exactly the statement of item (1).

Defining L(Y) by $L(Y)(X) = S_{Y,X} - X$ for $X \in \mathfrak{v}$, we obtain the expression in item (2). It is easily seen that $||L(Y)|| \to 0$ for $Y \to 0$. \square

Proof of Lemma 5.4. Finally, it follows from Lemma 5.5 that $\operatorname{Ad}(a_t)^{-1}\mathbf{1}_{\mathfrak{v}}$ dominates in the expression in item (2) above, for $Y \in \mathfrak{v}$ sufficiently small. Since \mathfrak{n}_1 is proper in \mathfrak{n} , we obtain Lemma 5.4.

- 18
- 5.3. **Final remarks. 1.** We did not address here the case where G is not reductive. One might expect for G and H algebraic and G general, that Z has VAI if and only if the nilradical of H is contained in the nilradical of G.
- 2. The following may be an alternative approach to Theorem 1.3 for algebraic groups G and H. To be more specific, assume G and H < G to be complex algebraic groups and Z = G/H to be unimodular and quasi-affine. Under these assumptions we expect that there is a rational G-module V, and an embedding $Z \to V$ such that the invariant measure μ_Z , via pull-back, defines a tempered distribution on V. Note that if Z is of reductive type, then there exists a V such that the image of $Z \to V$ is closed, and hence μ_Z defines a tempered distribution on V. If Z is not of reductive type, then by Matsushima's criterion ([3], Thm. 3.5) all images $Z \to V$ are non-closed and the expected embedding would imply that VAI does not hold. This is supported by a result of Deligne, established in [14], which asserts that for a reductive group G and $X \in \mathfrak{g} := \text{Lie}(G)$ the invariant measure on the adjoint orbit $Z := \operatorname{Ad}(G)(X) \subset \mathfrak{g}$ defines a tempered distribution on g. Various particular results in the theory of prehomogeneous vector spaces provide additional support (see [1]).

References

- [1] N. Bopp and H. Rubenthaler, Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Amer. Math. Soc. 174 (2005), no. 821.
- [2] A. Borel, Travaux de Mostow sur les espaces homogènes, Séminaire N. Bourbaki, 1956-1958, exp. n° 142, 73–84.
- [3] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Annals of Math 75 (1962), 485–535.
- [4] N. Bourbaki, "Groupes et algèbres de Lie", Chapitre 1, Hermann 1960.
- [5] N. Bourbaki, "Groupes et algèbres de Lie", Chapitre 7-8, Hermann 1975.
- [6] A. Eskin and C. Mcmullen, *Mixing, counting, and equidistribution in Lie groups*, Duke Math. J. **71** (1993), 181–209.
- [7] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces", Academic Press 1978.
- [8] R. Howe and C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal., **32** (1979), 72–96.
- [9] T. Kobayashi, Invariant measures on homogeneous manifolds of reductive type, J. Reine Angew. Math., 490 (1997), 37–53.
- [10] B. Krötz and H. Schlichtkrull, On function spaces on symmetric spaces, Representation theory, complex analysis, and integral geometry, 1–8, Birkhäuser/Springer, New York, 2012
- [11] N. Lohoué and S. Mustapha, Sur les transformées de Riesz sur les espaces homogènes des groupes de Lie semi-simples, Bull. Soc. Math. France 128 (4) (2000), 485–495.

- [12] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 14 (1955), 31–54.
- [13] N. S. Poulsen, On C^{∞} -vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal. 9 (1972), 87–120.
- [14] Ranga Rao, Orbital integrals in reductive groups, Ann. of Math. (2) 96 (1972), 505–510.
- [15] Z. Rudnick and H. Schlichtkrull, Decay of eigenfunctions on semisimple symmetric spaces, Duke Math. J. 64 (1991), 445-450.
- [16] J. Wolf, "Spaces of Constant Curvature", McGraw-Hill, 1967