

Генерация сочетаний в лексикографическом порядке

Порождение сочетаний

Сочетанием из n элементов по k называется неупорядоченная выборка k элементов из заданных n элементов.

Будем предполагать, что $A = \{1, 2, ..., n\}$. Произвольное сочетание из n по k удобно представить в виде конечной последовательности длины k из чисел, упорядоченных по возрастанию слева направо.

Порождение сочетаний

При n=5 и k=3 последовательность всех сочетаний в лексикографическом порядке следующая:

123, 124, 125, 134, 135, 145, 234, 235, 245, 345.

Начальное значение и остановка

ОСТАНОВКАПервый элемент в лексикографическом порядке есть сочетание

а последний

$$(n-k+1, n-k+2, ..., n-1, n)$$
.

Начальное значение и остановка

Определим по данному сочетанию $a=(a_1,...,a_k)$ вид непосредственно следующего сочетания $b=(b_1,...,b_k)$. Такое сочетание b получается в результате нахождения самого правого элемента a_m , который ещё не достиг своего возможного максимального значения, его увеличения на 1, а затем присвоения всем элементам справа от этого элемента новых возможных наименьших значений.

Трансформация текущего сочетания

Для этого необходимо найти самый правый элемент a_m такой, что чисел больших, чем a_m+1 найдётся по крайней мере k-m штук

Таким образом,

$$b = (a_1, ..., a_{m-1}, a_m + 1, a_m + 2, ..., a_m + k - m + 1),$$

где

$$m = \max\{i: a_i < n - k + i, 1 \le i \le k\}.$$

Порождение сочетаний

```
a_0 = -1;
for i = 1 to k do a_i = i;
m = 1;
while m \neq 0 do
begin
 write(a_1, ..., a_k);
 m=k;
 while a_m = n - k + m \text{ do } m = m - 1;
 a_m = a_m + 1;
 for i = m + 1 to k do a_i = a_{i-1} + 1;
end.
```

Порождение

размещений Так как размещения — это упорядоченные k-элементные подмножества множества из n элементов (упорядоченные сочетания из n по k), то алгоритм их порождения можно получить путем комбинации алгоритмов порождения сочетаний и перестановок.

Порождение подмножеств множества

Порождение подмножеств множества

$$\{a_1, ..., a_n\}$$

эквивалентно порождению n-разрядных двоичных наборов a_i , принадлежащих подмножеству, если и только если i-ый разряд равен единице. Таким образом, задача порождения всех подмножеств множества сводится к задаче порождения всех возможных двоичных последовательностей длины n.

Счёт в системе счисления с основанием 2

```
for i = 0 to n do b_i = 0;
while b_n \neq 1 do
begin
 write (b_{n-1}b_{n-2},...,b_0);
 i = 0;
 while b_i = 1 do
 begin
  b_i = 0;
  i = i + 1;
 end;
 b_i = 1;
end.
```

Порождений конфигураций с повторениями

Размещения с повторениями

Имеются предметы n различных видов $a_1, a_2, ..., a_n$. Из них составляют всевозможные расстановки длины k. Такие расстановки называются размещениями с повторениями из n по k (элементы одного вида могут повторяться).

Общее число размещений с повторениями из n по k равно

$$\overline{A_n^k} = n^k$$
.

Генерация размещений с повторениями

ПОВТОРЕНИЯМИ Порождение множества всех размещений с повторениями длины k из элементов

$$\{a_0, a_1, \dots, a_{n-1}\}$$

эквивалентно генерации множества k-разрядных чисел в системе счисления с основанием n: на r-м месте в размещении будет располагаться элемент a_i , если цифра в r-м разряде соответствующего числа равна i.

Генерация размещений с повторениями Например, для k = 2, n = 3 получаем

Например, для k=2, n=3 получаем 00, 01, 02, 10, 11, 12, 20, 21, 22 откуда имеем следующие подмножества $(a_0,a_0),(a_0,a_1),(a_0,a_2),(a_1,a_0),(a_1,a_1),(a_1,a_2),(a_2,a_0),(a_2,a_1),(a_2,a_2).$

Счёт в системе счисления с основанием n для порождения всех k-разрядных наборов

```
for i = 0 to k do b_i = 0;
while b_k \neq 1 do
begin
 write(b_{k-1}b_{k-2} \dots b_0);
  i = 0;
  while b_i = n - 1 do
  begin
   b_i = 0;
  i = i + 1;
 end;
 b_i = b_i + 1
end
```

Сочетания с повторениями

ПОВТОРЕНИЯМИ Имеются предметы n различных видов. Число элементов каждого вида неограниченно. Сколько существует расстановок длины k, если не принимать во внимание порядок элементов?

Сочетания с повторениями

ПОВТОРЕНИЯМИ Такие расстановки называют сочетаниями с повторениями.

Количество сочетаниями с повторениями равно

$$\overline{C_n^k} = C_{n+k-1}^{k-1}.$$

Генерация сочетаний с повторениями

Перестановки с повторениями

```
Задача формулируется следующим образом. Имеются предметы k различных видов. Сколько существует перестановок из n_1 элементов первого типа, n_2 элементов второго типа, ... n_k элементов k-то типа?
```

Генерация перестановок с

ПОВТОРЕНИЯМИ
$$\alpha_1 = (1, 1, 1, 2, 3, 3, 4, 4, 4, 4)$$
 $\alpha_2 = (1, 1, 1, 2, 3, 4, 3, 4, 4, 4)$
 $\alpha_3 = (1, 1, 1, 2, 3, 4, 4, 3, 4, 4)$
 $\alpha_4 = (1, 1, 1, 2, 3, 4, 4, 4, 3, 4)$
 $\alpha_5 = (1, 1, 1, 2, 3, 4, 4, 4, 4, 3)$
 $\alpha_6 = (1, 1, 1, 2, 3, 4, 3, 3, 4, 4, 4, 4)$

 $\alpha_7 = (1, 1, 1, 2, 4, 3, 4, 3, 4, 4)$

$$\alpha'_{1} = (1, 1, 1, 2, 3, 4, 4, 4, 4, 3)$$
 $\alpha'_{2} = (1, 1, 1, 2, 3, 4, 4, 4, 4, 3)$
 $\alpha'_{3} = (1, 1, 1, 2, 3, 4, 4, 4, 4, 3)$
 $\alpha'_{4} = (1, 1, 1, 2, 3, 4, 4, 4, 4, 3, 3)$
 $\alpha'_{5} = (1, 1, 1, 2, 4, 4, 4, 4, 3, 3)$
 $\alpha'_{4} = (1, 1, 1, 2, 4, 3, 4, 4, 4, 3, 3)$

Лабораторная работа 1

1.2. [# 25] Задача о назначении. Для выполнения проекта необходим набор навыков *S*. Есть группа людей, каждый из которых владеет некоторыми из этих навыков. Необходимо сформировать наименьшую подгруппу, достаточную для выполнения задания, т.е. включающую в себя носителей всех необходимых навыков.

Задача о назначении

Требуется написать функцию

bool NextCombinations(size_t dim, std::vector<size_t>& state)

преобразующую текущий вектор сочетаний state в вектор сочетаний следующий в лексикографическом порядке.

Функция должна возвращать true, если следующее в лексикографическом порядке сочетание существует и false – в противном случае.

Лабораторная работа 1

1.2. [# 25] Задача об укладке рюкзака. Есть n различных предметов. Каждый предмет с номером i, где i=1,...,n, имеет заданный положительный вес w_i и стоимость c_i . Нужно уложить рюкзак так, чтобы общая стоимость предметов в нём была наибольшей, а вес — меньше заданного числа $W_{\rm max}$. Форма предметов значения не имеет.

Задача об укладке рюкзака

Требуется написать функцию bool NextOccurrence(std::vector<size_t>& occurrence) преобразующий текущий индикаторный вектор в следующий. Функция должна возвращать true, если следующий вектор размерности occurrence.size() существует и false – в противном случае.

Понижающие коэффициенты

Сдача работы без тестов – коэффициент 0.5.

К задачам с графами необходимы изображения графов для каждого теста.

Тесты не покрывают всевозможные ситуации от 0.5 до 1.0.

Сдача в течении недели после выдачи – коэффициент 1.0.

Сдача в течении двух недель после выдачи – коэффициент 0.8.

Сдача через две недели после выдачи – коэффициент 0.6.