Комбинаторика в тервере

В этом уроке мы свяжем вычисления из предыдущего урока с нахождением вероятностей событий. Делать мы это будем, решая задачи.

Странные у вас задачки какие-то. Где они мне понадобятся?

- Такие задачи иногда встречаются на собеседованиях. В качестве общей проверки математической грамотности.
- По работе задачки с таким же принципом решения редко, но встречаются.
- Такие задачки встречаются во многих настольных и карточных играх (покер: какова вероятность роял флеша при условии, что у вас на руках такие-то карты?)

А ещё эти задачи помогут лучше прочувствовать связь между теорией вероятности и событиями из реального мира.

Как решать комбинаторные задачи про вероятность

Давайте посмотрим на пример комбинаторной задачи про вероятность.

Пример. Мы одну за другой вытягиваем из колоды 4 карты. Какова вероятность, что все эти карты имеют разные масти?

Принцип решения. Чаще всего такие задачи решаются по одному и тому же принципу. Вот так:

- Посчитать суммарное количество вариантов (число способов вытянуть из колоды 4 карты одну за другой). Это будет количество возможных исходов, то есть $|\Omega|$
- Обозначим за A событие, которое нас интересует ("все карты имеют разные масти"). Нужно посчитать суммарное количество вариантов, которые подходят под описание этого события. Это будет количество возможных исходов в A, то есть число |A|.
- Так как мы считаем все исходы равновероятными, мы получаем $P(A) = \frac{|A|}{|\Omega|}$ (по <u>задаче</u> про вероятность события в пространстве с равновероятными исходами)

На следующих трёх шагах мы разберём, как этот принцип работает на примере про карты и других примерах.

Пример 1

Мы одну за другой вытягиваем из колоды 4 карты. Какова вероятность, что все эти карты имеют разные масти?

Решение. Построим такое вероятностное пространство. Каждый исход это упорядоченный набор из четырёх не повторяющихся карт. Любой такой набор можно построить следующим способом:

- Мы вытягиваем первую карту (есть 52 варианта)
- ullet Мы вытягиваем вторую карту (карта не может совпадать с первой, поэтому есть 52-1=51 вариант)
- ullet Мы вытягиваем третью карту (карта не может совпадать с первыми двумя, поэтому есть 52-2=50 вариантов)
- ullet Мы вытягиваем четвёртую карту (карта не может совпадать с первыми тремя, поэтому есть 52-3=49 вариантов)

Итого количество исходов в нашем вероятностном пространстве это $|\Omega| = 52 \cdot 51 \cdot 50 \cdot 49$.

Теперь найдём количество исходов, в которых все карты имеют разную масть. Множество таких исходов мы обозначаем за A. Любой исход из A можно построить следующим способом.

- Мы вытягиваем первую карту. Есть 52 варианта.
- Мы вытягиваем вторую карту. Это может быть любая карта, у которой масть не совпадает с мастью первой карты. Всего в колоде есть 52-13=39 карт, у которых масть не совпадает с мастью первой карты.
- Мы вытягиваем третью карту. Это может быть любая карта, у которой масть не совпадает с мастями первых двух карт. Всего в колоде есть 52-13-13=26 карт, у которых масть не совпадает с мастями первых двух карт.
- Мы вытягиваем четвёртую карту. Это может быть любая карта, у которой масть не совпадает с мастями первых трёх карт. Всего в колоде есть 52-13-13-13=13 карт, у которых масть не совпадает с мастями первых трёх карт.

Значит, $|A| = 52 \cdot 39 \cdot 26 \cdot 13$.

Следовательно, искомая вероятность P(A) находится так:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{52 \cdot 39 \cdot 26 \cdot 13}{52 \cdot 51 \cdot 50 \cdot 49},$$

(по задаче про вероятность события в пространстве с равновероятными исходами)

Пример 2

В классе есть 15 человек. Из них случайным образом выбирают старосту и помощника старосты. В классе учатся Вася и Маша, которые не хотят попасть на организационные должности. Какова вероятность того, что среди старосты и помощника старосты не будет ни Васи, ни Маши?

Решение. Построим такое вероятностное пространство. Каждый исход это упорядоченная пара людей – первый человек это староста, второй – помощник старосты. Любую такую пару можно построить следующим способом:

- сначала мы выбираем старосту (15 вариантов),
- ullet потом помощника (15-1=14 вариантов, потому что один человек уже староста)

Другими словами, всевозможные способы выбрать старосту и помощника старосты образуют наше вероятностное пространство.

Итого в нашем пространстве $15 \cdot 14$ элементарных исходов. При этом все исходы равновероятны (по условию задачи).

Обозначим за A событие "среди старосты и помощника старосты не будет ни Васи, ни Маши". Поймём, сколько исходов лежит в этом событии. Построить любой исход из A можно так:

- ullet сначала выбираем старосту среди всех учеников, кроме Васи и Маши (15-2=13 вариантов)
- ullet потом выбираем помощника старосты среди всех учеников, кроме старосты, Васи и Маши (15-3=12 вариантов)

Итого в A лежит $13 \cdot 12$ исходов.

Значит,

$$P(A) = \frac{|A|}{|\Omega|} = \frac{13 \cdot 12}{15 \cdot 14},$$

(по задаче про вероятность события в пространстве с равновероятными исходами)

Пример 3

В ресторан пришли 10 гостей. Каждый из них случайным образом заказывает себе блюдо x,y или z. Какова вероятность того, что никто не закажет блюдо z?

Решение.

Всего способов заказов блюд 3^{10} (у первого гостя 3 варианта, у второго гостя 3 варианта и т.д). Тем самым $|\Omega|=3^{10}$.

Способов заказать блюда так, чтобы никто из гостей не заказал z, есть ровно 2^{10} (у первого гостя два варианта – x или y, у второго гостя два варианта – x или y, и т.д.). Тем самым $|A|=2^{10}$.

Значит,

$$P(A) = \frac{|A|}{|\Omega|} = \frac{2^{10}}{3^{10}},$$

(по задаче про вероятность события в пространстве с равновероятными исходами)

У вас в квартире случайным образом раскиданы 10 красных, 10 синих и 10 зелёных носков. Вы находите первые попавшиеся два носка (сначала один, затем второй). Какова вероятность, что эти два носка будут одного цвета?

Ответ округлите до тысячных.

vk.com/cup_of_comics

Введите численный ответ

У вас есть чёрная и белая кошка. Вы поставили по кругу 10 мисок с едой. Кошки подошли к случайным мисками и стали есть (белая и чёрная кошка никогда не едят вместе из одной миски). Какова вероятность, что кошки едят из соседних мисок?

Ответ округлите до тысячных.

Введите численный ответ

иппа из 22 человек собирается поиграть в футбол. Для этого они хотят разделиться на две команды – фиолетовую и оранжевую. То 11 оранжевых футболок (с номерами от 1 до 11) и 11 фиолетовых футболок (с номерами от 1 до 11). Эти футболки раздаются ичайным образом.
кова вероятность, что Вика и Максим окажутся в разных командах?
вет округлите до тысячных.
вет округлите до тысячных.
ведите численный ответ

В штабе некоторого политика 20 человек. Нужно выбрать пресс-секретаря политика, руководителя штаба и координатора штаба.
Поскольку все члены штаба идейные и разносторонне развитые люди, каждый из них может претендовать на каждую из трех ролей.
Поэтому было решено назначить людей на эти роли случайно: сначала случайно равновероятно выбирается пресс-секретарь,
потом — руководитель штаба, потом — координатор.

Задача. Лена — сотрудница штаба. При описанной выше процедуре на какую роль Лена может претендовать с большей вероятностью?

Выберите один вариант из списка

пресс-секретарь недостаточно информации координатор вероятность получить каждую из 3 ролей одинаковая руководитель штаба

Задача с проверкой. Комбинаторика в тервере 1
В штабе некоторого политика 20 человек. Нужно выбрать пресс-секретаря политика, руководителя штаба и координатора штаба. Поскольку все члены штаба идейные и разносторонне развитые люди, каждый из них может претендовать на каждую из трех ролей. Поэтому было решено назначить людей на эти роли случайно: сначала случайно равновероятно выбирается пресс-секретарь, потом — руководитель штаба, потом — координатор.
Ответы округлите до тысячных.
Заполните пропуски
1. Каковы шансы Лены попасть в тройку, которую выбирают?
2. 10 человек сказали, что не готовы взять роль пресс-секретаря, но Лена не в их числе. Какие теперь у неё шансы попасть в тройку?

В шкафу есть 4 пустые полки для одежды. Вы достаёте одежду из сушилки и случайным образом раскидываете её по полкам. В частности, среди вашей одежды было ровно 6 различных футболок. В результате 6 футболок оказались раскиданы по случайным полкам.

На следующий день вы ищете футболку на нижней полке. Какова вероятность, что на нижней полке есть хотя бы одна футболка? Ответ округлите до тысячных.

Введите численный ответ

У вас есть 7 томов классической литературы. Оказалось, что 4 из них имеют красную обложку, и 3 имеют синюю обложку. Вы выставляете тома на полку в случайном порядке. Какова вероятность, что сначала будут идти 4 красных тома, а потом 3 синих (если смотреть слева направо)

Ответ округлите до тысячных (цифра 5 округляется вверх)

Введите численный ответ

ача с проверкой. Комбинаторика в тервере 2
есть 7 томов классической литературы. Оказалось, что 4 из них имеют красную обложку, и 3 имеют синюю обложку. Вы авляете тома на полку в случайном порядке. Какова вероятность, что цвета томов будут чередоваться – то есть будет красный,
и синий, потом красный, и т.д.
и синий, потом красный, и т.д.
и синий, потом красный, и т.д.
и синий, потом красный, и т.д. г округлите до тысячных (цифра 5 округляется вверх) ците численный ответ
и синий, потом красный, и т.д. г округлите до тысячных (цифра 5 округляется вверх) ците численный ответ
и синий, потом красный, и т.д. г округлите до тысячных (цифра 5 округляется вверх) ците численный ответ
и синий, потом красный, и т.д. г округлите до тысячных (цифра 5 округляется вверх) ците численный ответ
и синий, потом красный, и т.д. г округлите до тысячных (цифра 5 округляется вверх) ците численный ответ
и синий, потом красный, и т.д. г округлите до тысячных (цифра 5 округляется вверх) ците численный ответ
и синий, потом красный, и т.д. г округлите до тысячных (цифра 5 округляется вверх) ците численный ответ