Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 9

Виконав	студент	Григоренко Родіон Ярославович
(шифр,	прізвище, ім'я, г	по батькові)
Перевірив	·	
		(прізвище, ім'я, по батькові)

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

9. Дані додатні дійсні числа a, x, ε . У послідовності $y_1, y_2, ...,$ що утворена за законом

$$y_0 = a;$$
 $y_i = \frac{1}{2} \left(y_{i-1} + \frac{x}{y_{i-1}} \right), i = 1, 2, ...$

Варіант 9 знайти перший член y_n , для якого виконується нерівність $|y_n^2 - y_{n-1}^2| < \varepsilon$.

Постановка задачі

Результатом розв'язку ϵ виведення значення першого члена послідовності,що задовольня ϵ

умову
$$|y_n^2 - y_{n-1}^2| < \varepsilon$$
, член прогресії обчислюється за рекурентною формулою $y_i = \frac{1}{2} \left(y_{i-1} + \frac{x}{y_{i-1}} \right), i = 1, 2, ...$

Побудова математичної моделі

Складемо таблицю імен змінних та функцій

Змінна	Тип	Ім'я	Призначення
Перший член	Дійсний	a	Початкове дане
послідовності			
Складова рекурент-	Дійсний	X	Початкове дане
ної формули для			
обчислення			
значення члена			
послідовності			
Складова умовного	Дійсний	3	Початкове дане
виразу			
Попередній член	Дійсний	pre_y	Проміжний
послідовності			результат
Дійсний член	Дійсний	У	Результат
послідовності			
Функція	Дійсний	abs()	Функція
знаходження			
модуля виразу			

Поки виконується умова $abs(y*y - pre_y*pre_y) < \varepsilon$, виконуємо $pre_y := y$, після чого y := 0.5*(y + x/y).

Коли умова перестане виконуватись, виводимо значення у.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення першого члена прогресії.

Крок 3. Деталізуємо дію знаходження члена прогресії за рекурентною формулою.

Псевдокод

Крок 1

```
початок
```

```
введення а,х, є
```

Обчислення у,рге у

Знаходження члена прогресії за рекурентною формулою

виведення у

кінець

Крок 2

початок

```
введення a, x, \epsilon
 y := a
```

j

 $pre_y := y$

Знаходження члена прогресії за рекурентною формулою

виведення у

кінець

Крок 3

початок

```
введення a,x, ε
y := a
pre_y := y
```

поки $abs(y*y - pre_y*pre_y) < \varepsilon$

повторити

pre_y := y
y :=
$$0.5*(y + x/y)$$

все повторити

кінець

Блок-схема

Тестування

Блок	Дія	
	Початок	
1	Введення $a = 2, x = 1, \epsilon = 1$	
2	abs(2*2 - 2*2) < 1 = True	
3	y = 0.5*(2 + 1/2) = 1.25	
4	abs(1.25*1.25 - 2*2) < 1 = False	
5	Виведення: 1.25	
	Кінець	

Блок	Дія
	Початок
1	Введення $a = 4, x = 2, \epsilon = 7$
2	abs(4*4 - 4*4) < 1 = True
3	y = 0.5*(4 + 2/4) = 2.25
4	abs(2.25*2.25 - 4*4) < 1 = False
5	Виведення: 2.25
	Кінець

Висновки

Я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій.