Instituto Superior Técnico - 1º Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

2^a Ficha de exercícios para as aulas práticas: 2 - 6 Outubro de 2006

1. Verifique que, para qualquer $x \in \mathbb{R}$, se tem:

(a)
$$|x-1| + |x-2| \ge 1$$
, (b) $|x-1| + |x-2| + |x-3| \ge 2$.

2. Relativamente a cada um dos seguintes subconjuntos de \mathbb{R} , determine o conjunto dos majorantes, o conjunto dos minorantes e, no caso de existirem (em \mathbb{R}), o supremo, o ínfimo, o máximo e o mínimo:

(1)
$$\{x \in \mathbb{R} : |x+1| + |x-2| = 7\}$$
, (2) $\{x \in \mathbb{R} : x^2 \ge 3x - 2\}$, (3) $\{x \in \mathbb{R} : 1 < x^2 < 4\}$,

(4)
$$\left\{ x \in \mathbb{R} : \frac{1}{x} < x \right\}$$
, (5) $\left\{ x \in \mathbb{R} : \frac{1}{x} < x^2 \right\}$, (6) $\left\{ x \in \mathbb{R} : \sqrt{2x+1} \le \sqrt{x} + 1 \right\}$,

(7)
$$\{x \in \mathbb{R} : |3 - 2x| > 1\}, \quad$$
(8) $\{x \in \mathbb{R} : |3 - 2x| = 1\}, \quad$ (9) $\{x \in \mathbb{R} : |3 - 2x| < 1\},$

(10)
$$\{x \in \mathbb{R} : |1-x| - x \ge 0\}, \ \ (11) \left\{x \in \mathbb{R} : \left|1 + \frac{1}{x}\right| < 6\right\}, \ \ (12) \left\{x \in \mathbb{R} : \left|\frac{x^2 - x}{1 + x}\right| > x\right\},$$

(13)
$$\{x \in \mathbb{R} : |1 - 4x^{-1}| > 1\}, (14) \{x \in \mathbb{R} : |x^2 - 1| \le 3\}, (15) \{x \in \mathbb{R} : |x^2 - 2x - 15| \ge 9\},$$

(16)
$$\{x \in \mathbb{R} : x | x - 1 | \le 2\}$$
, (17) $\{x \in \mathbb{R} : 4 < |x + 2| + |x - 1| < 5\}$, (18) $\{x \in \mathbb{R} : \frac{4}{|x|} < 2\}$,

(19)
$$\{x \in \mathbb{R} : (2x+3)^6 (x-2) \ge 0\}, \quad (20) \{x \in \mathbb{R} : |x+4| < |x-3|\},$$

(21)
$$\{x \in \mathbb{R} : |x(x-3)| > |1-3x|\}, \quad (22) \{x \in \mathbb{R} : \log \frac{x}{2} \le 0\} \cap \{x \in \mathbb{R} : \sin^2 \frac{\pi}{x} > 0\},$$

(23)
$$\{x \in \mathbb{R} : |x-3| = 2|x|\}, \ (24) \{x \in \mathbb{R} : x+|x|<1\} \cup \{0\}, \ (25) \{x : x \in \mathbb{R} \setminus \mathbb{Q} \land x > 0\},\$$

(26)
$$\left\{ x \in \mathbb{R} : \frac{x+1}{x^3+2x} \le 0 \right\}$$
, (27) $\left\{ x \in \mathbb{R}^+ \setminus \mathbb{Q} : \frac{x+1}{x^3+2x} \le 0 \right\}$, (28) $\left\{ x \in \mathbb{R} : e^x \ge e^{-x} \right\}$,

(29)
$$\{x \in \mathbb{R} : x^4 - 3x^3 + 2x^2 \le 0\}, \quad (30) \{x \in \mathbb{R}^- \setminus \mathbb{Q} : |x - 2| \ge 2|x + 4|\},$$

(31)
$$\left\{ x \in \mathbb{R} : \frac{x^2 - 9}{\log(x - 1)} \le 0 \right\}$$
, (32) $\left\{ x \in \mathbb{R} : \log \frac{1}{x} \ge 1 \right\}$, (33) $\left\{ x \in \mathbb{R} : \frac{x}{e^x(x + 1)} \le 0 \right\}$,

(34)
$$\left\{ x \in \mathbb{R} : \frac{x^2 - 2x + 1}{x^4 - x^2} \ge 0 \right\}$$
, (35) $\left\{ x \in \mathbb{R} : \frac{1}{\log x} \ge 1 \right\}$, (36) $\left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$,

(37)
$$\{x \in \mathbb{R} : x = 1 + e^{-n}, n \in \mathbb{N}\}, (38) \{x \in \mathbb{R} : |3 - 2x| < 2x\} \cap [0, 2],$$

(39)
$$\{x \in \mathbb{R} : x^2 (2|x+2|-|x-1|) \le 0\}, \quad \text{(40)} \ \{x : \text{sen } x \ge 0\}, \quad \text{(41)} \ \{x : |x| < 2\pi\},$$

(42)
$$\{x : \operatorname{sen} x \ge 0\} \cap]-2\pi, 2\pi[, \quad (43) \left\{x \in \mathbb{R} : x = \frac{1}{m} + \frac{1}{n}; m, n \in \mathbb{N}\right\},$$

(44)
$$\left\{m + \frac{1}{n} : m, n \in \mathbb{N}\right\}$$
, (45) $\left\{n^{(-1)^m} : m, n \in \mathbb{N}\right\}$, (46) $\left\{\frac{n}{n+1} : n \in \mathbb{N}\right\}$,

(47)
$$\left\{ x \in]-2\pi, 2\pi[: \frac{(x-\pi)\cos\frac{x}{2}}{x} \le 0 \right\} \cap \mathbb{Q}, \quad \text{(48)} \left\{ x \in [0, 2\pi] : |\text{sen } x| = |\cos x| \right\}$$

(49)
$$\left\{ x \in \mathbb{R} : (x+2)^2 \log \frac{2x-4}{x+1} \le 0 \right\}$$
, (50) $\left\{ x \in \mathbb{R} : \left(\frac{\pi}{2} - \arcsin \frac{x}{2} \right)^2 \log \frac{x-1}{2} < 0 \right\}$,

(51)
$$\left\{ x \in \mathbb{R} : x \left(e^{2x} + e^x - 2 \right) \left(\frac{\pi}{3} - \arccos \frac{1}{1 + x^2} \right) > 0 \right\}, \quad \text{(52)} \left\{ y : \frac{y}{y - 1} < \frac{y - 1}{y} \right\},$$

(53)
$$\left\{ x \in \mathbb{R} : x^2 \left(e^{x-1} - 1 \right) \log \left(x + 2 \right) \arccos \frac{1}{\operatorname{ch} x} < 0 \right\}, \quad \text{(54)} \left\{ x \in \mathbb{R} : \frac{|x+1| - 1}{x - 1} \le 0 \right\},$$

(55)
$$\{x \in \mathbb{R} : (\arctan x - \pi) x^2 \log (2 + x) \ge 0\},$$
 (56) $\{x \in \mathbb{R} : |\operatorname{sen} x| < \frac{1}{2} \ \text{e} \ x(2x - \pi) \le 0\}.$

3. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : \frac{x - 1}{x \log x} > 0 \right\}, \quad B = \left\{ x \in \mathbb{R} : x = -\frac{1}{n}, n \in \mathbb{N} \right\}.$$

Verifique que $A = \mathbb{R}^+ \setminus \{1\}$. Relativamente aos conjuntos A e $A \cup B$, determine, se existirem em \mathbb{R} , os respectivos: supremo, ínfimo, máximo e mínimo.

4. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \{x \in \mathbb{R} : |x - 1| < x^2 - 1\}, \quad B = [-2, 2].$$

- (a) Verifique que $A =]-\infty, -2[\cup]1, +\infty[$.
- (b) Determine, se existirem em \mathbb{R} , o máximo e o mínimo de $A \cap B$ e o supremo, ínfimo, máximo e mínimo de $A \cap B \cap (\mathbb{R} \setminus \mathbb{Q})$.
- 5. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : \frac{x^2 - 1}{x} \ge |x - 1| \right\}, \quad B = \left\{ x : \operatorname{sen} x = 0 \right\}, \quad C = \mathbb{Q}.$$

- (a) Verifique que $A = \left[-\frac{1}{2}, 0 \right] \cup [1, +\infty[$.
- (b) Determine o conjunto dos majorantes e o conjunto dos minorantes de $A \cap C$ e de $B \cap C$. Determine, se existirem em \mathbb{R} , o sup A, inf $(A \cap C)$, min $(A \cap C)$, min B e sup $(B \cap C)$.
- 6. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : |x| \ge \frac{1}{2}x + 2 \right\}, \quad B = [-3, 4], \quad C = \mathbb{R} \setminus \mathbb{Q}.$$

- (a) Verifique que $A \cap B = \left[-3, -\frac{4}{3} \right] \cup \{4\}.$
- **(b)** Determine, se existirem em \mathbb{R} , o $\sup A$, $\min (A \cap B)$, $\max (A \cap B)$, $\inf (A \cap B \cap C)$, $\sup (A \cap B \cap C)$ e o $\min (A \cap B \cap C)$.

7. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}, \quad B = \mathbb{R} \backslash \mathbb{Q}, \quad C = \left\{ x \in \mathbb{R} : \log x \ge 0 \right\}.$$

Determine, se existirem em \mathbb{R} , o inf A, min $(A \cup C)$, sup $(A \cup C)$, inf $(A \cap C)$, min $(B \cap C)$ e o sup $(A \cap B)$.