Virtual Lab Experiment 2

AIM: To study and verify the Superposition Theorem

THEORY: Superposition theorem states that -

"In a linear, bilateral network, consisting of several sources, the resultant current in any branch is the algebraic sum of the currents caused by the separate independent sources acting alone replacing all other sources by their respective internal resistances."

This theorem when used for evaluating response in a complicated network containing several sources, simplifies the analysis. The theorem is particularly used in case of network, where sources generating voltages or currents of different frequencies are acting simultaneously, considering the effect of individual source independent of others.

- a) For switch 1 in position 1 and 1 in position ${$
- b) For switch $'S_1'$ in position '2' and $'S_2'$ in position '4', source 'y-n' is active (ON) and source 'r-n' is inactive (OFF). Wattmeter pressure coil is to be connected across 'y-n'.
- c) For switch 'S₁' in position '1' and 'S₂' in position '4', both sources are active (ON). Wattmeter pressure coil is to be connected across 'r-n'.

PROCEDURE:

- 1. Make the connections as per the circuit diagram. Make use of the dot convention for proper connection of secondary of transformers. Secondary of two transformers acts as a voltage source.
- 2. Keep switch S₁ in position '1' and S₂ in position '3'.

- 3. Note down voltage V_{m} , V_{yn} , current through branch A-B and wattmeter reading.
- 4. Keep switch S_1 in position '2' and S_2 in position '4' and repeat step 3.
- 5. Keep switch S_1 in position '1' and S_2 in position '4' and repeat step 3.
- 6. Measure resistance R_1 , R_2 , R_3 .

How to perform simulation :

- 1. Click on V1, enter the appropriate value.
- 2. Repeat the step 1 to enter the values of Z1, Z2, Z3& V2.
- 3. Then click on solve button.
- 4. The result are displaced showing the values when each source is acting.

OBSERVATIONS:

1.

When V1 Acting		
Req	16.8916+j3.5978	
RT	26.8916+j3.5978	
I1	0.3653+j0.0489	
When V2 Acting		
Req'	9.2596+j1.0475	
RT'	29.2596+j1.0475	
I2	0.6827+j0.0244	
IT	1.0480+j0.0733	

2.

When V1 Acting		
Req	7.5610+j1.9512	
RT	12.5610+j1.9512	
I1	2.3321+j0.3623	
When V2 Acting		
Req'	4.3750+j0.6250	
RT'	14.3750+j0.6250	
I2 IT	2.0830+j0.0906	
IT	4.4151+j0.4528	

3.

When V1 Acting		
Req	9.8361+j8.1967	
RT	59.8361+j8.1967	
I1	0.4101+j0.0562	
When V2 Acting		
Req'	9.4595+j6.7568	
RT'	109.4595+j6.7568	
I2 IT	0.4551+j0.0281	
IT	0.8652+j0.0843	

RESULTS: The superposition theorem was verified.