Claims

What is claimed is:

- 1. The application of a compound selected from the group consisting of 5-benzoylamino-1,3-dioxacyclane derivatives represented by the following formulae
- 5 1-48 in preparing protein kinase inhibitors:

- 1. $R=-CH_2CH(OCH_3)_2$;
- 2. R=-CH₂CH(OCH₃)OCH₂CH₃

3.
$$R=-CH_2-O$$
3. $R=-CH_2-O$
4. R

çoo.

5. $R=-CH_2CH(OCH_3)_2$, 6. $R=-CH_2CH(OCH_3)OCH_2CH_3$

7.
$$R=-CH_2-O$$

7. $R=-CH_2-O$

8. $R=-CH_2-O$

H

23. $R=P-NO_2-C_6H_4$

7. $R=-CH_2-O$

H

24. $R=-CH_2-O$

H

25. $R=-CH_2-O$

H

26. $R=-CH_2-O$

H

27. $R=-CH_2-O$

H

28. $R=-CH_2-O$

H

29. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

21. $R=-CH_2-O$

H

22. $R=-CH_2-O$

H

23. $R=-CH_2-O$

H

24. $R=-CH_2-O$

H

25. $R=-CH_2-O$

H

26. $R=-CH_2-O$

H

27. $R=-CH_2-O$

H

28. $R=-CH_2-O$

H

29. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

21. $R=-CH_2-O$

H

22. $R=-CH_2-O$

H

23. $R=-CH_2-O$

H

24. $R=-CH_2-O$

H

25. $R=-CH_2-O$

H

26. $R=-CH_2-O$

H

27. $R=-CH_2-O$

H

28. $R=-CH_2-O$

H

29. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

20. $R=-CH_2-O$

H

21. $R=-CH_2-O$

H

22. $R=-CH_2-O$

H

23. $R=-CH_2-O$

H

24. $R=-CH_2-O$

H

25. $R=-CH_2-O$

H

26. $R=-CH_2-O$

H

27. $R=-CH_2-O$

H

28. $R=-CH_2-O$

H

29. $R=-CH_2-O$

H

20. $R=-CH_2$

9. R=-CH₂CH(OCH₃)₂; 10. R=-CH₂CH(OCH₃)OCH₂CH₃;

25.
$$R = P - NO_2 - C_6H_4$$

31.
$$R=P-NH_2-C_6H_4$$
;

$$C_6H_5CONH$$
 H
 $(18,19,26,32,40,43,47)$

18, $R = -CH_2CH(OCH_3)_2$;

19, R=
$$\frac{-\text{CH}_2}{\text{H}}$$
 HNCOC₆H₅

26.
$$R = P-NO_2-C_6H_4$$
 32. $R = P-NH_2-C_6H_4$

40.
$$R = CH_2CHO$$

20, $R=CH_2CH(OCH_3)_2$;

21, R=
$$\frac{\text{CH}_2}{\text{H}}$$
 $\frac{\text{O}}{\text{NH}} \cos_6 \text{H}_5$.

$$48.R = \frac{\text{NH}_2 \cdot \text{H}^+\text{COO}^-\text{H}^+\text{Lys}}{\text{CH}_2}$$

$$C_6\text{H}_5\text{COHN} = \frac{\text{O}^-\text{NO}_2}{\text{H}}$$

$$(29)$$

5

10

15

- 2. A compound selected from the group consisting of 5-benzoylamino-1,3-dioxacyclane derivatives represented by the formulae 22-48 described in claim 1.
- 3. A method of preparing the compound described in claim 2, which including a stereo-specific acetal transfer reaction between N-benzoylamino glycol and aromatic aldehyde.
- 4. The method of claim 3, wherein said stereo-specific acetal transfer reaction includes: preparing benzoylamino glycol (include optically active glycols) via using L-amino acid as raw material of a methyl esterification, benzoylation, and reducing reaction, and cyclizing with p-nitrobenzaldehyde or phenylacrylaldehyde to produce cylized product.
- 5. The method of claim 4, wherein the nitro groups in said cylized product is reduced to amino and the reduced product is obtained.
- 6. The method of claim 5, wherein said reduced product react with propane diacid and basic amino acid in sequence to be salified.
 - 7. The method of claim 6, wherein said basic amino acid is L-Arg or L-Lys.