3000788 Intro to Comp Molec Biol

Lecture 6: Variant calling and analysis

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- Variant calling (and filtering)
- Variant annotation / interpretation
- Genotype-phenotype association
 - Quantitative trait loci (QTL)
 - Genome-wide association study (GWAS)

Variant calling

What we knew so far

- We can align sequencing reads to reference genome
- We can assemble reads into contigs and scaffolds
- We can identify differences between sequence data and reference genomes

Type of variants

Translocation

Image from wikipedia

Variant calling from read alignment & assembly

- Small-scale variants: SNV and small indel
 - Identified from alignments and read frequencies
- Copy number variations
 - Genomic loci with relatively higher or lower frequencies
- Chromosomal translocation and inversion
 - Paired-end reads whose forward and reverse mapped to different regions
 - De novo assembly

Copy number variations

- Usually clearly seen by elevated (gain) or diminished (loss) number of reads mapped to some genomic regions
- Can be observed with shallow sequencing

Not all differences are true variants

- Errors are random
- High sequencing depth can resolve (but costly)

Germline versus somatic variants

Germline vs somatic variants

- Germline = inherited
 - Appear in every cell
 - Compare DNA from normal tissues to reference genomes, or parental
 - Heterozygous or homozygous
- Somatic = occurred during lifetime
 - Compare DNA from diseased tissues to normal tissues, and other healthy people
 - Variable frequency (different cells can have different mutations)

Haplotype

https://openpress.wheatoncollege.edu/molecularecologyv1/chapter/haplotype-networks/

- Certain regions of the genome segregate together, also called "linkage"
- Linked variants should be called together

Germline variant calling: identify haplotype

PairHMM

- Hidden states:

 Position on the haplotype
- Observations: Position on the sequence reads
- Find haplotype that maximize:P(read | haplotype)

Somatic variant calling: tumor example

- Use matched normal (N), panels of healthy individual (PoN), and allele frequency in the general population (G Pop Freqs) to remove
- Estimate **contamination** = fraction of normal cells in tumor sample

Somatic variant calling algorithm sketch

- Call variants on tumor and normal samples separately
- For each tumor variant, check whether it is present in normal, panel of normal, or general population → remove
- Usually still too many variants
 - Filtering
 - Intersecting variants called by multiple tools
 - **Examples**: Mutect2 (GATK), Strelka, Varscans2, DeepVariant
 - Machine learning models

Variant Call Format (VCF)

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
                                                                                                      = phased
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
                                                                                                     / = unphased
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                        QUAL FILTER INFO
#CHROM POS
               TD
                         REF
                                ALT
                                                                                       FORMAT
                                                                                                    NA00001
                                                                                                                   NA00002
       14370
               rs6054257 G
                                             PASS
                                                                                       GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51
20
                                                     NS=3:DP=14:AF=0.5:DB:H2
20
       17330
                                              q10
                                                     NS=3:DP=11:AF=0.017
                                                                                       GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
       1110696 rs6040355 A
20
                                G,T
                                        67
                                             PASS
                                                     NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
20
       1230237 .
                                        47
                                             PASS
                                                     NS=3;DP=13;AA=T
                                                                                       GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51
20
       1234567 microsat1 GTC
                                G,GTCT
                                              PASS
                                                     NS=3;DP=9;AA=G
                                                                                       GT:GQ:DP
                                                                                                    0/1:35:4
                                                                                                                   0/2:17:2
```

Variant filtering

```
gatk VariantFiltration \
    -V snps.vcf.qz \
                                  Quality score normalized by read depth
    -filter "QD < 2.0" --filter-name "QD2" \
                                                  Quality score
    -filter "QUAL < 30.0" --filter-name "QUAL30" \
    -filter "SOR > 3.0" --filter-name "SOR3" \
                                                 Strand bias scores
    -filter "FS > 60.0" --filter-name "FS60" \
    -filter "MQ < 40.0" --filter-name "MQ40" \
                                                    Mapping quality scores
    -filter "MQRankSum < -12.5" --filter-name "MQRankSum-12.5" \
    -filter "ReadPosRankSum < -8.0" --filter-name "ReadPosRankSum-8" \
    -O snps filtered.vcf.qz
```

More of an art than science, follow publications and guidelines

Variant annotation / interpretation

Functional impact of a variant

- Does it impact protein integrity and expression?
 - Non-synonymous/synonymous, frameshift
 - Splice site, regulatory element
- Is it a known or common variant?
 - Genome Aggregation Database: gnomAD, dbSNP
- Does it have clinical implication?
 - Frequency in patients
 - Association with drugs/treatments
 - ClinVar, COSMIC, PharmGKB

ClinVar

NM_007294.3(BRCA1):c.*6207C>T

Interpretation: Benign

Review status: ★★★☆ reviewed by expert panel

Submissions:

 First in ClinVar:
 Sep 29, 2015

 Most recent Submission:
 Sep 29, 2015

 Last evaluated:
 Jan 12, 2015

 Accession:
 VCV000209219.3

Variation ID: 209219

Description: single nucleotide variant

NM_007294.3(BRCA1):c.*6207C>T

Allele ID: 206177

Variant type: single nucleotide variant

Variant length: 1 bp

Cytogenetic location: 17q21.31

 Genomic location:
 17: 43039471 (GRCh38)
 GRCh38 UCSC

 17: 41191488 (GRCh37)
 GRCh37 UCSC

HGVS:

Nucleotide	Protein	Molecular consequence
NC_000017.11:g.43039471G>A		
NC_000017.10:g.41191488G>A		
NG_005905.2:g.178513C>T		

... more HGVS

Protein change:

Other names: 11918 C>T

Functional consequence: -

Global minor allele 0.00679 (A)

frequency (GMAF):

Allele frequency: Trans-Omics for Precision Medicine (TOPMed) 0.00211

Catalog of Somatic Mutations in Cancer (COSMIC)

Sample A name	Gene name ∳	Transcript	Primary \(\phi \) Tissue	Tissue Subtype 1	Primary Histology	Histology Subtype 1	Pubmed
<u>1011-mel</u>	BRAF	ENST00000646891.1 ₺	<u>NS</u>	NS	Malignant melanoma	NS	15467732
1022043	BRAF	ENST00000646891.1 &	<u>NS</u>	NS	Malignant melanoma	NS	16007203

Pharmocogenomics knowledgebase

VARIANT ♦	LITERATURE	DRUGS ♦	GENES 🌩	ASSOCIATION
<u>rs2069502</u>	PMCID: <u>PMC3959225</u>	somatropin recombinant	CDK4	Genotype CC is associated with decreased responsible to somatropin recombinant in children with Turn Syndrome as compared to genotypes CT + TT.

VARIANT ♦	SIGNIFICANCE \$	P- VALUE ⊕	# OF CASES ♣	# OF CONTROLS ♦	BIOGEOGRAPHICAL GROUPS ♦	PHENOTYPE CATEGORIES ♦
rs2069502	yes	< 0.05	147	0	Unknown	• Efficacy

Franklin

- Proprietary algorithm for prioritizing variants
- Assess variant confidence and association with clinical information
- Classify variants according to clinical guideline

Mutation Annotation Format (MAF)

#version gdc-1.0	.0											
#filedate 201709	29									Many mor	e columns	
#annotation.spec	gdc-1.0.1-public											
#n.analyzed.sam	ples 986											
#tumor.aliquots.s	submitter_id TCGA-30	C-AAAU-01A-	11D-A41F-09,T	CGA-3C-AALI-0	1A-11D-A41F-09,1	TCGA-3C-AALJ-0	1A-31D-A	F1F-09,TCGA-3C-AALK-	-01A-11D-A41F-0	9,TCGA-4H-AAAK	(-01A-12D-A41F-09,	CGA-5L-AAT0-01A-12
Hugo_Symbol	Entrez_Gene_ld	Center	NCBI_Build	Chromosome	Start_Position	End_Position	Strand	Variant_Classification	Variant_Type	Reference_Allele	Tumor_Seq_Allele1	Tumor_Seq_Allele2
CALML6	163688	WUGSC	GRCh38	chr1	1916819	1916819	+	Missense_Mutation	SNP	C	C	G
PRKCZ	5590	WUGSC	GRCh38	chr1	2172304	2172304	+	Missense_Mutation	SNP	G	G	C
CCDC27	148870	WUGSC	GRCh38	chr1	3766586	3766586	+	Missense_Mutation	SNP	G	G	A
KCNAB2	8514	WUGSC	GRCh38	chr1	6040634	6040634	+	Silent	SNP	G	G	С
PNRC2	55629	WUGSC	GRCh38	chr1	23961791	23961791	+	Missense_Mutation	SNP	A	A	G
ATPIF1	93974	WUGSC	GRCh38	chr1	28236188	28236188	+	Missense_Mutation	SNP	C	C	G
SMAP2	64744	WUGSC	GRCh38	chr1	40422316	40422316	+	3'UTR	SNP	C	C	G
CCDC30	728621	WUGSC	GRCh38	chr1	42577033	42577033	+	Missense_Mutation	SNP	T	T	G
CCDC17	149483	WUGSC	GRCh38	chr1	45621953	45621953	+	Missense_Mutation	SNP	G	G	A
FAM69A	388650	WUGSC	GRCh38	chr1	92843906	92843906	+	Missense_Mutation	SNP	C	C	G
WDR47	22911	WUGSC	GRCh38	chr1	108970228	108970228	+	3'UTR	SNP	A	A	G
HSD3B1	3283	WUGSC	GRCh38	chr1	119514202	119514202	+	Missense_Mutation	SNP	G	G	A

https://cloud.tencent.com/developer/article/2116172

- Tabular file, one row per variant
- Containing numerous columns, one for each annotation system

Genotype-Phenotype analysis

Quantitative trait loci

- Measure a trait in a population, or disease status
- Call variants
- Single-locus, biallelic, QTL
 - ANOVA (or Kruskal-Wallis) test of trait scores across variants
 - Linked locus can have similar significance → need biological knowledge

Hughes, T.R. and de Boer, C. Genetics 195:9-36

Analysis of Variant (ANOVA)

F-score = Average Between-Group / Average Within-Group

Linear effect model

Alternative Model: Phenotype = Genotype x (effect size) + variance Null Model: Phenotype = (average effect size) + variance

- If **Alternative Model** can capture **Phenotype** significantly better than **Null Model**, then **Genotype** has some effects
- If effect size is significantly different from zero, then Genotype has some effects

Example of QTL results

QTL analyzed over two years

Urun, I, et al. Euphytica 221:48 (2025)

Linkage disequilibrium (LD)

- Distal loci can appear together in a population with high frequency (linked)
- Population analysis cannot distinguish between linked loci

A basic measurement for LD

Locus 1	Locus 2	Frequency
Α	В	91
Α	b	g_2
a	В	9 ₃
a	b	g_4

Linkage between A-B = frequency of AB – expected frequency = g_1 – (frequency of A times frequency of B) = g_1 – (g_1 + g_2) x (g_1 + g_3)

Genome-Wide Association Study (GWAS)

>100,000 association tests covering all loci

The scope for GWAS

Article Published: 15 February 2001

A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms

The International SNP Map Working Group

Nature 409, 928–933 (2001) Cite this article

Imagine having to perform statistical correction for 1.42 million tests!

P-value

P-value cutoff of 0.05 means that if there is no association, there is a 5% random chance that you will observe an association that is at least as extreme as the data

Example scenario:

- Out of 100 patients with disease X, 40 have allele aa
- **Null Hypothesis**: No association between X and allele *a*
- If there's no association, we expect 25 patients with aa
- P-value = 0.0007 (binomial distribution)
- Significant!

Why must we correct p-value for multiple tests?

P-value cutoff of 0.05 means that if there is no association, there is a 5% random chance that you will observe an association that is at least as extreme as the data

Example scenario:

- Perform 1.4 million ANOVA tests on all SNPs in human genome
- Let's say there is no association between disease and 1 million SNPs
- How many of of them would pass the threshold of 0.05 by chance?
 - $-0.05 \times 1,000,000 = 50,000$

P-value correction methods

- **Bonferroni**: Divide the p-value threshold by the number of test

Example scenario:

- Perform 1.4 million ANOVA tests on all SNPs in human genome
- New p-value threshold = 0.05 / 1,400,000
- Let's say there is no association between disease and 1 million SNPs
- How many of of them would pass the threshold by chance?
 - $-0.05 / 1,400,000 \times 1,000,000 = 0.036$

Manhatton Plot

Any question?

See you next time