# Einführung in die

#### Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21



# 4. Übungsblatt - Lösungsskizzen

# Aufgabe 13 (Das Bildmaß, 4 = 1.5 + 1 + 1.5 Punkte).

Seien  $(\Omega, \mathscr{A})$ ,  $(\mathcal{X}, \mathscr{B})$ ,  $(\mathcal{Y}, \mathscr{C})$  Messräume,  $X : \Omega \longrightarrow \mathcal{X}$  eine  $(\mathscr{A}, \mathscr{B})$ -messbare Abbildung und  $Y : \mathcal{X} \longrightarrow \mathcal{Y}$  eine  $(\mathscr{B}, \mathscr{C})$ -messbare Abbildung. Sei  $\mathbb{P}$  ein Wahrscheinlichkeitsmaß auf  $(\Omega, \mathscr{A})$ .

(a) Das Bildmaß bzw. induzierte Maß von  $\mathbb{P}$  unter X auf  $(\mathcal{X}, \mathcal{B})$  ist definiert durch

$$\mathbb{P}^X : \mathscr{B} \longrightarrow \mathbb{R}, \qquad \mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B)), \quad B \in \mathscr{B}.$$

Zeigen Sie:  $\mathbb{P}^X$  ist tatsächlich ein Maß auf  $(\mathcal{X}, \mathscr{B})$ .

(b) Zeigen Sie die Verträglichkeit des Bildmaßes mit der Komposition von Abbildungen, d.h. zeigen Sie

$$\left(\mathbb{P}^X\right)^Y = \mathbb{P}^{(Y \circ X)}.$$

(c) Es sei nun  $\Omega=\mathbb{N}_0=\{0,1,2,3,\ldots\}$  und  $\mathbb{P}$  als Wahrscheinlichkeitsmaß auf  $(\Omega,2^\Omega)$  definiert durch

$$\mathbb{P}(\{n\}) := 2^{-n-1}.$$

Weiter sei eine (messbare) Abbildung definiert durch

$$X: \Omega \longrightarrow \mathbb{R}, \quad X(n) := n \mod 3.$$

Bestimmen Sie das induzierte Maß  $\mathbb{P}^X$  auf  $(\mathcal{X}, \mathcal{B}) := (\text{Bild}(X), 2^{\text{Bild}(X)})$ , das durch

$$\mathbb{P}^X(A) := \mathbb{P}(X^{-1}(A))$$

gegeben ist.

### Lösung 13.

(a) Da X messbar ist, gilt  $\forall A \in \mathcal{B} : X^{-1}(A) \in \mathcal{A}$  und somit das Maß  $\mathbb{P}(X^{-1}(A))$  überhaupt erst berechenbar. Daher ist  $\mathbb{P}^X$  wohldefiniert.

1

Wir zeigen für  $\mathbb{P}^X$  die drei Eigenschaften eines Maßes, die im Wesentlichen von  $\mathbb{P}$  vererbt werden:

► Es gilt 
$$\mathbb{P}^X(\emptyset) = \mathbb{P}(X^{-1}(\emptyset)) = \mathbb{P}(\emptyset)$$
  $\stackrel{\mathbb{P}}{=}$  Maß 0.

▶ Sei 
$$A \in \mathcal{B}$$
 beliebig. Dann gilt  $\mathbb{P}^X(A) = \mathbb{P}(X^{-1}(A)) \stackrel{\mathbb{P}}{\geq} \text{Maß}$  0.

▶ Sei  $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{B}$  eine Folge paarweise disjunkter Mengen. Dann gilt

$$\mathbb{P}^{X} \left( \biguplus_{n \in \mathbb{N}} A_{n} \right) = \mathbb{P} \left( X^{-1} \left( \biguplus_{n \in \mathbb{N}} A_{n} \right) \right) \overset{\text{Urbild-Eig.}}{=} \mathbb{P} \left( \biguplus_{n \in \mathbb{N}} X^{-1}(A_{n}) \right)$$

$$\mathbb{P} \overset{\text{Maß}}{=} \sum_{n \in \mathbb{N}} \mathbb{P}(X^{-1}(A_{n})) = \sum_{n \in \mathbb{N}} \mathbb{P}^{X}(A_{n}).$$

(b) Sei  $A \in \mathcal{C}$ , dann gilt

$$\left(\mathbb{P}^{X}\right)^{Y}(A) = \mathbb{P}^{X}(Y^{-1}(A)) = \mathbb{P}(X^{-1}(Y^{-1}(A))) = \mathbb{P}((Y \circ X)^{-1}(A)) = \mathbb{P}^{Y \circ X}(A).$$

(c) Es ist  $\mathcal{X} = \text{Bild}(X) = \{0, 1, 2\}$  und  $\mathcal{B} = 2^{\mathcal{X}}$ . Ein Maß können wir auf dem Raum  $\mathcal{X}$  (da er abzählbar ist) durch Angabe auf den einelementigen Mengen  $\{x\}$ ,  $x \in \mathcal{X}$  eindeutig angeben. Das heißt, wir müssen folgende Terme bestimmen:

$$\mathbb{P}^X(\{x\}) = \mathbb{P}(X^{-1}(\{x\})), \qquad x \in \{0, 1, 2\}.$$

Es gilt  $X^{-1}(\{x\}) = 3\mathbb{N}_0 + x = \{3n + x : n \in \mathbb{N}_0\}$ . Daher folgt

$$\mathbb{P}^{X}(\{x\}) = \mathbb{P}(X^{-1}(\{x\})) = \mathbb{P}(\{3n + x : n \in \mathbb{N}_{0}\}) = \sum_{n=0}^{\infty} \mathbb{P}(\{3n + x\}) = \sum_{n=0}^{\infty} 2^{-(3n+x)-1}$$
$$= 2^{-x-1} \cdot \sum_{n=0}^{\infty} \left(\frac{1}{8}\right)^{n} = 2^{-x-1} \cdot \frac{1}{1 - \frac{1}{8}} = \frac{8}{7} \cdot 2^{-x-1},$$

konkret

$$\mathbb{P}^X(\{0\}) = \frac{4}{7}, \quad \mathbb{P}^X(\{1\}) = \frac{2}{7}, \quad \mathbb{P}^X(\{2\}) = \frac{1}{7}.$$

### Aufgabe 14 (Transformation von Zufallsvariablen, 4 = 1.5 + 1 + 1.5 Punkte).

Sei  $(\Omega, \mathcal{A}, \mathbb{P})$  ein Wahrscheinlichkeitsraum und  $X : \Omega \to \mathbb{R}$  eine stetig-verteilte Zufallsvariable.

- (a) Sei  $X \sim U_{[0,1]}$ , d.h. X ist gleichverteilt auf [0,1] mit Dichte  $\mathbb{f}^X(x) = \mathbb{1}_{[0,1]}(x), x \in \mathbb{R}$ . Berechnen Sie die Dichte  $\mathbb{f}^Y$  von  $Y := -2\log(X)$ . Welche (bekannte) Verteilung besitzt Y?
- (b) Sei  $X \sim \text{Exp}_{\lambda}$ , d.h. X ist exponential verteilt mit Parameter  $\lambda > 0$  und Dichte  $\mathbb{f}^{X}(x) = \mathbb{1}_{[0,\infty)}(x)\lambda \exp(-\lambda x), x \in \mathbb{R}$ . Berechnen Sie die Dichte  $\mathbb{f}^{Y}$  von  $Y := \alpha X$ , wobei  $\alpha > 0$ . Welche (bekannte) Verteilung besitzt Y?
- (c) Sei  $X \sim U_{[-1,1]}$ , d.h. X ist gleichverteilt auf [-1,1] mit Dichte  $\mathbb{f}^X(x) = \frac{1}{2}\mathbb{1}_{[-1,1]}(x), x \in \mathbb{R}$ . Berechnen Sie die Dichte  $\mathbb{f}^Y$  von  $Y := X^2$ .

### Lösung 14.

(a) Wir benutzen Satz 10.08. (Dichtetransformation). Wir haben Y = g(X) mit  $g(x) = -2\log(x)$ . g ist stetig differenzierbar und streng monoton fallend. Damit gilt für die Dichte von Y:

$$f^{Y}(y) = f^{X}(g^{-1}(y)) \cdot \left| \frac{\partial}{\partial y} g^{-1}(y) \right|.$$

Hier ist  $f^X(x) = \mathbb{1}_{[0,1]}(x)$  und  $g^{-1}(y) = \exp(-y/2)$ ,  $\frac{\partial}{\partial y}g^{-1}(y) = -\frac{1}{2}\exp(-y/2)$ . Damit

$$f^{Y}(y) = \mathbb{1}_{\{0 \le \exp(-y/2) \le 1\}} \cdot \frac{1}{2} \exp(-y/2) = \frac{1}{2} \exp(-y/2) \cdot \mathbb{1}_{\{y \ge 0\}},$$

das ist die Dichte einer  $\operatorname{Exp}_{1/2}$ -Verteilung, d.h.  $Y \sim \operatorname{Exp}_{1/2}$ .

(b) Wir können hier direkt Korollar 10.10 aus der Vorlesung über die linearen Transformation von Zufallsvariablen benutzen. Es gilt für die Dichte von Y:

$$\mathbb{f}^Y(y) = \frac{1}{\alpha} \mathbb{f}^X(\frac{y}{\alpha}) = \frac{\lambda}{\alpha} \exp(-\frac{\lambda}{\alpha} y) \mathbb{1}_{\{y/\alpha \ge 0\}} = \frac{\lambda}{\alpha} \exp(-\frac{\lambda}{\alpha} y) \mathbb{1}_{\{y \ge 0\}},$$

das ist die Dichte einer  $\operatorname{Exp}_{\lambda/\alpha}$ -Verteilung.

(c) Hier kann kein Satz der Vorlesung benutzt werden, da die Funktion  $x \mapsto x^2$  auf [-1,1] nicht bijektiv ist. Wir müssen die Verteilung elementar berechnen. Die Dichte von X lautet  $\mathbb{f}^X(x) = \frac{1}{2}\mathbb{1}_{[-1,1]}(x)$ , die Verteilungsfunktion entsprechend für  $x \in [-1,1]$ :  $\mathbb{F}^X(x) = \frac{x+1}{2}$ . Wir erhalten für die Verteilungsfunktion von Y für  $y \in [0,1]$ :

$$\begin{split} \mathbb{F}^Y(y) &=& \mathbb{P}(Y \leq y) = \mathbb{P}(X^2 \leq y) = \mathbb{P}(X^2 \leq y, X \geq 0) + \mathbb{P}(X^2 \leq y, X < 0) \\ &=& \mathbb{P}(0 \leq X \leq \sqrt{y}) + \mathbb{P}(-\sqrt{y} \leq X < 0) \overset{\text{Symmetrie}}{=} 2\mathbb{P}(0 \leq X \leq \sqrt{y}) \\ &=& 2\Big(\mathbb{F}^X(\sqrt{y}) - \mathbb{F}^X(0)\Big) = 2\Big(\frac{\sqrt{y}+1}{2} - \frac{1}{2}\Big) = \sqrt{y}. \end{split}$$

Für die Dichte erhalten wir durch Ableiten:

$$f^Y(y) = (F^Y)'(y) = \frac{1}{2}y^{-\frac{1}{2}}.$$

Da  $X \in [-1,1]$ , ist  $Y = X^2 \in [0,1]$ . Für  $y \in \mathbb{R} \setminus [0,1]$  gilt daher  $\mathfrak{f}^Y(y) = 0$ .

# Aufgabe 15 (Inversionsmethode, 4 = 2 + 1 + 1 Punkte).

Um Realisierungen von stetig verteilten Zufallsvariablen auf dem Computer zu erzeugen, wird häufig auf die Inversionsmethode zurückgegriffen. Damit beschäftigt sich diese Aufgabe. Sei  $(\Omega, \mathscr{A}, \mathbb{P})$  ein Wahrscheinlichkeitsraum und X eine stetig verteilte Zufallsvariable mit Verteilungsfunktion  $\mathscr{F} : \mathbb{R} \to [0, 1]$ .

- (a) Definiere  $\mathbb{F}^*(y) := \inf\{x \in \mathbb{R} : \mathbb{F}(x) \geq y\}$ . Zeigen Sie, dass für alle  $y \in [0,1], z \in \mathbb{R}$  gilt:  $\mathbb{F}^*(y) \leq z \Leftrightarrow y \leq \mathbb{F}(z)$ .

  Hinweis: Zeigen Sie zunächst mittels der rechtsseitigen Stetigkeit von F, dass  $F(F^*(y)) \geq y$  gilt.
- (b) Zeigen Sie: Ist  $Y \sim U[0,1]$ , dann hat  $\mathbb{F}^*(Y)$  dieselbe Verteilung wie X.

Nehmen Sie nun an, dass  $\mathbb{F}$  stetig und streng monoton wachsend auf  $D_{\mathbb{F}} := \mathbb{F}^{-1}((0,1))$  ist. In diesem Fall ist  $\mathbb{F}: D_{\mathbb{F}} \to (0,1)$  offenbar invertierbar und es gilt  $\mathbb{F}^* = \mathbb{F}^{-1}$  auf dem offenen Intervall (0,1), wobei  $\mathbb{F}^{-1}: (0,1) \to D_{\mathbb{F}}$  die Umkehrfunktion von  $\mathbb{F}: D_{\mathbb{F}} \to (0,1)$  bezeichnet.

(c) Sei  $\lambda > 0$ . Auf ihrem Computer können Sie nur Realisierungen einer U[0,1]-verteilten Zufallsvariable Y erzeugen. Geben Sie eine Funktion  $G:[0,1] \to \mathbb{R}$  an, so dass Sie durch G(Y) Realisierungen einer  $\operatorname{Exp}_{\lambda}$ -verteilten Zufallsvariable erhalten.

### Lösung 15.

(a) Sei  $y \in [0,1]$  beliebig. Sei  $w := \mathbb{F}^*(y) = \inf\{x \in \mathbb{R} : \mathbb{F}(x) \geq y\}$ . Nach Definition des Infimums gibt es eine monoton fallende Folge  $(x_n)_{n \in \mathbb{N}}$  mit  $x_n \downarrow \mathbb{F}^*(y)$  und  $\mathbb{F}(x_n) \geq y$  für alle  $n \in \mathbb{N}$ . Wegen der Rechtsstetigkeit von  $\mathbb{F}$  gilt

$$y \leq \mathbb{F}(x_n) \to \mathbb{F}(\mathbb{F}^*(y)),$$

also

$$y \le \mathbb{F}(\mathbb{F}^*(y)). \tag{1}$$

Sei nun  $z \in \mathbb{R}$  beliebig.

- ▶ Gelte  $\mathbb{F}^*(y) \leq z$ . Da  $\mathbb{F}$  monoton wachsend ist, folgt  $y \stackrel{(1)}{\leq} \mathbb{F}(\mathbb{F}^*(y)) \leq \mathbb{F}(z)$ .
- ▶ Gelte  $y \leq \mathbb{F}(z)$ . Dann ist z in der Menge  $\{x \in \mathbb{R} : \mathbb{F}(x) \geq y\}$ , über die bei  $\mathbb{F}^*$  das Infimum gebildet wird. Also gilt sicher  $\mathbb{F}^*(y) \leq z$ .
- (b) Für die Verteilungsfunktion von  $\mathbb{F}^*(Y)$  erhalten wir:

$$\mathbb{P}(\mathbb{F}^*(Y) \le z) \stackrel{(a)}{=} \mathbb{P}(Y \le \mathbb{F}(z)) \stackrel{Y \sim U[0,1]}{=} \int_0^{\mathbb{F}(z)} dx = \mathbb{F}(z),$$

das heißt,  $\mathbb{F}^*(Y)$  und X haben die gleiche Verteilungsfunktion. Damit haben diese beiden Zufallsvariablen dieselbe Verteilung.

(c) Anmerkung: Da  $\mathbb{F}$  streng monoton wachsend auf  $\mathbb{F}^{-1}((0,1))$  ist, ist die Funktion  $\mathbb{F}: \mathbb{R} \to \mathbb{F}(\mathbb{R})$  bijektiv und besitzt eine Umkehrfunktion  $\mathbb{F}^{-1}$ . Weil  $\mathbb{F}$  eine Verteilungsfunktion ist, gilt  $\lim_{x\to-\infty}\mathbb{F}(x)=0$  und  $\lim_{x\to\infty}\mathbb{F}(x)=1$ , weswegen zusammen mit der angenommenen Stetigkeit sicher  $(0,1)\subseteq\mathbb{F}(\mathbb{R})$  gilt. Ob  $\mathbb{F}$  die Werte 0 oder 1 tatsächlich annimmt, ist nicht klar und bei dieser Aufgabe auch nicht von Belang.

Für eine exponentialverteilte Zufallsvariable  $X \sim \operatorname{Exp}_{\lambda}$  lautet die Verteilungsfunktion

$$\mathbb{F}(x) = \begin{cases} 1 - \exp(-\lambda x), & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

Hier ist  $D_{\mathbb{F}} = \mathbb{F}^{-1}((0,1)) = (0,\infty)$ . Wegen  $y = 1 - e^{-\lambda x} \Leftrightarrow e^{-\lambda x} = 1 - y \Leftrightarrow -\lambda x = \ln(1-y) \Leftrightarrow x = -\frac{1}{\lambda}\ln(1-y)$  lautet die Umkehrfunktion von  $\mathbb{F}: D_{\mathbb{F}} \to (0,1)$ :

$$\mathbb{F}^{-1}(y) = -\frac{1}{\lambda}\ln(1-y).$$

Dies motiviert uns in Hinsicht auf (b) zu folgender Definition:

$$G(y) := \begin{cases} -\frac{1}{\lambda} \ln(1-y), & y \in (0,1) \\ 0, & y \in \{0,1\} \end{cases}.$$

Laut (b) und dem Hinweis  $\mathbb{F}^* = \mathbb{F}^{-1}$  auf (0,1) gilt damit:  $\mathbb{F}^*(Y) = \mathbb{F}^{-1}(Y) = G(Y)$  hat dieselbe Verteilung wie X.

Beachte hierbei, dass das Verhalten von  $\mathbb{F}^*$  bzw.  $\mathbb{F}^{-1}$  bzw. G an den Werten 0 und 1 nicht von Belang ist, da Y stetig verteilt ist (gleichverteilt) und damit die Werte Y = 0 oder

Y=1 nur mit Wahrscheinlichkeit 0 auftreten.

Formal exakt könnte man argumentieren, dass für die Verteilungsfunktion von G(Y) gilt:

$$\mathbb{P}(G(Y) \leq z) = \mathbb{P}(G(Y) \leq z, Y \in (0,1)) = \mathbb{P}(\mathbb{F}^*(Y) \leq z, Y \in (0,1)) = \mathbb{P}(\mathbb{F}^*(Y) \leq z) = \mathbb{F}(z),$$

womit G(Y) und X dieselbe Verteilungsfunktion besitzen, also dieselbe Verteilung.

### Aufgabe 16 (Gemeinsame Verteilungen, 4 = 1 + 1 + 2 Punkte).

Sei  $(\Omega, \mathscr{A}, \mathbb{P})$  ein Wahrscheinlichkeitsraum,  $\lambda > 0$  und  $X, Y : \Omega \to \mathbb{R}$  zwei stetige Zufallsvariablen mit gemeinsamer Wahrscheinlichkeitsdichte

$$f^{X,Y}(x,y) = C_{\lambda} \cdot \exp(-\lambda y) \cdot \mathbb{1}_{\{0 \le x \le y\}}.$$

- (a) Bestimmen Sie  $C_{\lambda} > 0$ , sodass  $\mathbb{f}^{X,Y}$  tatsächlich eine Wahrscheinlichkeitsdichte ist.
- (b) Berechnen Sie die Randdichten  $\mathbb{f}^X$  und  $\mathbb{f}^Y$  von X bzw. Y.
- (c) Berechnen Sie die Wahrscheinlichkeiten  $\mathbb{P}(X \geq Y)$  und  $\mathbb{P}(2X \leq Y)$ .

### Lösung 16.

(a)  $\mathbb{f}^{X,Y} \geq 0$  ist offensichtlich und muss nicht nachgerechnet werden. Damit  $\mathbb{f}^{X,Y}$  eine Wahrscheinlichkeitsdichte ist, muss gelten:

$$1 = \int_{\mathbb{R}^2} \mathbb{f}^{X,Y} d(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C_{\lambda} \cdot \exp(-\lambda y) \cdot \mathbb{1}_{\{0 \le x \le y\}} \, dy \, dx$$
$$= C_{\lambda} \int_{0}^{\infty} \int_{x}^{\infty} \cdot \exp(-\lambda y) \, dx \, dy = \frac{C_{\lambda}}{\lambda} \int_{0}^{\infty} \left[ -\exp(-\lambda y) \right]_{x}^{\infty} \, dy$$
$$= \frac{C_{\lambda}}{\lambda} \int_{0}^{\infty} \exp(-\lambda x) \, dx = \frac{C_{\lambda}}{\lambda^2} \left[ -\exp(-\lambda x) \right]_{0}^{\infty} = \frac{C_{\lambda}}{\lambda^2}.$$

Damit muss  $C_{\lambda} = \lambda^2$  sein.

(b) Um die Randdichten zu bestimmen, müssen die überflüssigen Variablen aus der gemeinsamen Wahrscheinlichkeitsdichte von X, Y herausintegriert werden:

$$\mathbf{f}^{X}(x) = \int_{\mathbb{R}} \mathbf{f}^{X,Y}(x,y) \, \mathrm{d}y = \int_{-\infty}^{\infty} \lambda^{2} \exp(-\lambda y) \cdot \underbrace{\mathbb{1}_{\{0 \le x \le y\}}}_{=\mathbb{1}_{\{0 \le x\}} \cdot \mathbb{1}_{\{x \le y\}}} \, \mathrm{d}y$$

$$= \int_{x}^{\infty} \lambda^{2} \exp(-\lambda y) \, \mathrm{d}y \cdot \mathbb{1}_{\{0 \le x\}} = \left[ -\lambda \exp(-\lambda y) \right]_{x}^{\infty} \cdot \mathbb{1}_{\{0 \le x\}} = \lambda \exp(-\lambda x) \cdot \mathbb{1}_{\{0 \le x\}},$$

$$\mathbf{f}^{Y}(y) = \int_{\mathbb{R}} \mathbf{f}^{X,Y}(x,y) \, \mathrm{d}x = \int_{-\infty}^{\infty} \lambda^{2} \exp(-\lambda y) \cdot \underbrace{\mathbb{1}_{\{0 \le x \le y\}}}_{=\mathbb{1}_{\{0 \le x \le y\}} \cdot \mathbb{1}_{\{0 \le y\}}} \, \mathrm{d}x$$

$$= \int_{0}^{y} \lambda^{2} \exp(-\lambda y) \, \mathrm{d}x \cdot \mathbb{1}_{\{0 \le y\}} = \left[ \lambda^{2} \exp(-\lambda y) \cdot x \right]_{0}^{y} = \lambda^{2} \cdot y \exp(-\lambda y) \cdot \mathbb{1}_{\{0 \le y\}}.$$

(c) Es ist

$$\begin{split} \mathbb{P}(X \geq Y) &= \mathbb{P}((X,Y) \in \{(x,y) \in \mathbb{R}^2 : x \geq y\}) = \int_{\{(x,y) \in \mathbb{R}^2 : x \geq y\}} \mathbb{f}^{X,Y}(x,y) \, d(x,y) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{x} \lambda^2 \exp(-\lambda y) \mathbb{1}_{\{0 \leq x \leq y\}} \, dy \, dx \\ &= \int_{0}^{\infty} \int_{x}^{x} \lambda^2 \exp(-\lambda y) \mathbb{1}_{\{0 \leq x \leq y\}} \, dy \, dx = \int_{0}^{\infty} 0 \, dx = 0. \end{split}$$

Weiter haben wir

$$\mathbb{P}(2X \le Y) = \mathbb{P}((X,Y) \in \{(x,y) \in \mathbb{R}^2 : 2x \le y\}) = \int_{\{(x,y) \in \mathbb{R}^2 : 2x \le y\}} \mathbb{f}^{X,Y}(x,y) \, d(x,y)$$

$$= \int_{-\infty}^{\infty} \int_{2x}^{\infty} \lambda^2 \exp(-\lambda y) \cdot \mathbb{1}_{\{0 \le x \le y\}} \, dy \, dx$$

$$\stackrel{x \le 2x}{=} \int_{0}^{\infty} \int_{2x}^{\infty} \lambda^2 \exp(-\lambda y) \, dy \, dx = \int_{0}^{\infty} \left[ -\lambda \exp(-\lambda y) \right]_{2x}^{\infty} dx$$

$$= \int_{0}^{\infty} \lambda \exp(-2\lambda x) \, dx = \left[ -\frac{1}{2} \exp(-2\lambda x) \right]_{0}^{\infty} = \frac{1}{2}.$$

#### Abgabe:

In Zweiergruppen, bis spätestens Montag, den 07. Dezember 2020, 09:00 Uhr.

### Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/