

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

Test: CLAT- 2

Course Code & Title: 18ECE340T - Machine Perception with Cognition

Year & Sem: 1V/VII

Date: 11-10-2023 Duration: 100 minutes Max. Marks: 50

Co	Ourse Articulation Matrix:															
	18ECS301J - Applied Programming			PROGRAM STUDENT OUTCOMES												
C 0	COURSE OUTCOMES	ı	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Understand the fundamentals of image Processing, camera and color models	3	2						-							
2	Analyze the binary shapes, region and boundary- based image modeling	3			2	٦.			-							
3	Illustrate the various filter banks, shape and textures for image synthesis		-		2						-		3			
4	Express the objects, frames based on template relations	3		2											-	
5	Apply the concept of 2D and 3D face recognition			3		2	-							-	-	1
6	Implement the concept of image processing and machine vision in real time applications	3	2						-		-	-	-	2		

	Part – A ($10 \times 1 = 10 \text{ marks}$) Answer all the Questions					
Q. No	Question	Marks	BL	COPO		
1	boundary descriptor is defined as the line perpendicular to the major axis. a) Equilateral axis b) Equidistant axis d) Median axis	ı	l	2	1	
2	The term, Curvature is defined as: a) Rate of change of area b) Rate of change of diameter c) Rate of change of slope d) Slope	I	1	2	1	
3	Which of the following is the useful descriptor of a boundary, whose value is given by the ratio of the length of the major axis to the minor axis? a) Radius b) Perimeter c) Area d) Eccentricity	1	1	2	1	
4	Statistical moments are used to describe the shape of boundary segments a) precisely b) quantitatively c) closely d) qualitatively	1	1	2	!	
5	For the pixel $p(x_1,y_1)$, $q(x_2,y_2)$, the chessboard distance between p & q is defined as a) $d = \max(x_1 - x_2 , y_1 - y_2)$ c) $d = \min(x_1 - x_2 , y_1 - y_2)$ b) $d = \max(y_1 - y_2 , x_1 - x_2)$ d) $d = \min(y_1 - y_2 , x_1 - x_2)$	1	2	2	1	
6	Compute the local binary pattern for the following matrix use 5 as reference value. 3	1	2	3	4	
7	a) Blurring c) Highlighting the fine details b) Increasing the brightness d) Decreasing the brightness	1	l	3	4	
8	Sharpening is analogous to a) spatial integration c) spatial differentiation c) frequency integration d) frequency interpretation	I	1	3	4	
9	The M ₀₀ of the given 3 x 3 binary image is 1 0 0 1 1 1 0 0 1 a) 5 b) 7 c) 0 d) 3	1	2	3	4	

							18 (b)		18 (a)	3		[] [] [] [] [] [] [] [] [] []			5	: 5	7		13	-	;	=			10
Course Outcome (CO) and Bloom's level (BL) Coverage in Ouestions	50	40	40	30	30	5x5 input image	Compute the filtered image, by applying 3x3 median filter for the given		Explair feature image.	example	Explain the	ror the image to 1 0 1 0 1 1 1 1	1		the given 10 10 30 3 x	What	challe		With	- 0 - 0 Carca	Conn	Wha			Вох
tcome (50	30	60	70	40	out ima	te the		n with extra	le.		to ske			the filter ven 3 x : 20 30 50 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30	is the	short nges ii		suitable tricity and	1 1 1 1	ectedin	t are C			filter is a l
CO) and	70	30	150	80	50	ige.	filtered		releva ction n		Conne	letal im	:		Third the filtered image the given 3 x 3 image 10 20 30 10 30 20 30 3 x 3 image	use of h	notes of Textu		ble ex	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Connectedness and 8	onnect			Box filter is a type of a) Linear h
Bloom's	50	0	225	50	60		image		extraction method is		ted C	y image through the control of the c			ge.	istogra	Write short notes on Texture challenges in Texture analysis.		With suitable example, eccentricity and elongation	000	18 - Cc	ed Con		9 0	of Gabor
level (B	150	220	=	100	90		, by app		nple, ho	Guinester Component Euconing	The same	For the given binary image, considering four collimage to skeletal image through thinning process 1	l r	D .	the given 3 x 3 image. 10 20 30 10 50 10 30 20 30 3 x 3 lnage	What is the use of histogram in image processing?	ure An ysis.		define	Calculate the Centroid of the given binary image 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0	Connectedness	ponent	Se	001	-
L) Cove							olying 3	OR	ow the for ca	Luc	OR I sh	inning	PAKI C		3 Weig	age pro	alysis	tion B	the	n binar	iness.	s? Wid	ction II	0 00	3 =
rage in O							x3 mec		testing tegoriz	6		four co process	(2 x 12	3	ght Mec	cessing	of an Ir	2 (2 x 4 ANY 2	region	y imago		releva	1 (2 x c	PART B	filter
uestions							ian filto		Explain with relevant example, how the testing and training model in feature extraction method is used for categorizing textures in a given image.	yagorum wim	laneith	given binary image, considering four connectedness modify the o skeletal image through thinning process. 1	= 24 marks)		Weight Median non-linear filter for	3.7	Analysis of an Image and enumerate the	Section B2 (2 x 4 = 8 Marks) Answer ANY 2 Questions	descriptors			What are Connected Components? With relevant examples, specify 4	Section B1 (2 x $4 = 8$ marks)		<u> </u>
							er for t		aining ures i	1		lness n	arks)		n-linea		d enu	arks) ons				ples,	arks)	1	d) Laplacian
							he giv		model in n a given	II SUITADIO		nodify			ır filte		merate		bascd			specify			Cian Cian
-							en		Ven	1016	5	the			for		the		on			44			
							12		12	12	5	12			4	4	4		4	-	_	4			_
							w		ω	7	١	2			w	2	2		2	U	2	2			_
							2		2	1	,	2			Ų.	w	w		2	1	١	2			ر
							4		4	-	-	-			4	4	4		-	-	-	_			4

CO Coverage (%)

