南京大学 概率论基础期中考试

天影 陈相相 路音薇 陈韵雯

2022年11月28日

评语: 这张试卷是代雄平和宋玉林老师一起出的, 主要考察《概率论基础》的前两章, 有很多书上原题和往年题, 整体上可以说是几乎没有难度, 所以扣分部分主要在细节处理, 因此学弟学妹们在写做题时尤其要注意细节.

一、(20分)

1. 陈述事件域和概率的定义.

2. 设 (Ω, \mathcal{F}, P) 是一个概率空间, $B \in \mathcal{F}$ 满足 P(B) > 0, 证明: 条件概率 $P(\cdot|B): \mathcal{F} \longrightarrow \mathbb{R}$ 是一个概率.

分析: 此题的第一问只须直接默写定义, 第二问按照概率的定义——验证即可, 没有难度, 属于送分题.

1. **解**: 事件域是样本空间 Ω 上的 σ -代数 \mathfrak{F} . 亦即, \mathfrak{F} 是由 Ω 的一些子集构成的集族, 且应满足: (1) $\Omega \in \mathfrak{F}$; (2) 若 $A \in \mathfrak{F}$, 则 $A^c \in \mathfrak{F}$; (3) 若 $\{A_i\}_{i=1}^{\infty}$ 中每个 $A_i \in \mathfrak{F}$, 则 $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{F}$.

概率是定义在事件域 f 上的集合函数 P, 且应满足:

- (1) 非负性: $\forall A \in \mathcal{F}, P(A) \ge 0$; (2) 规范性: $P(\Omega) = 1$;
- (3) 可列可加性: 若 $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ 两两不交, 则有

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n).$$

2. 证明: 我们对概率的三条性质逐一验证.

非负性: 对于任意 $A\in \mathcal{F}$, 由定义 $P(A|B)=\frac{P(AB)}{P(B)}$, 因为 $P(AB)\geq 0$, P(B)>0, 因此 有 $P(A|B)\geq 0$.

规范性:
$$P(\Omega|B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$

可列可加性: 若 $\{A_n\}_{n=1}^\infty$ 为两两不交的集合列,则 $\{A_nB\}_{n=1}^\infty$ 也两两不交.因此,

$$P\left(\bigcup_{n=1}^{\infty} A_n \middle| B\right) = P\left(\bigcup_{n=1}^{\infty} A_n B\right) \cdot \frac{1}{P(B)} = \frac{1}{P(B)} \sum_{n=1}^{\infty} P(A_n B) = \sum_{n=1}^{\infty} P(A_n | B).$$

因此, $P(\cdot|B)$ 是一个概率.

- 二、 $(30 \, \mathcal{G})$ 设 (Ω, \mathcal{F}) 是一个可测空间.
- 1. 若 P 是一个概率并且 $\{A_n\}$ 是一列单调增的事件, 证明 $\lim_{n\to\infty} P(A_n) = P(\lim_{n\to\infty} A_n)$.

- 2. 若 $\eta: \mathfrak{F} \longrightarrow \mathbb{R}$ 是一个非负的函数满足: (a) $\eta(\Omega)=1$, (b) 有限可加性, (c) η 是上半连续的. 证明: η 是一个概率.
- 3. 若 P 是一个概率, $\{A_n\}_{n=1}^{\infty}$ 是一列事件满足 $\sum_n P(A_n) \le 100$. 证明 $P(\limsup_n A_n) = 0$.
- **分析:** 第一小问主要考察对概率可列可加性的运用, 难度较低; 第二小问和概率的上半连续性紧密相关, 难度较低; 第三小问主要考察上极限的性质, 难度中等. 事实上, 本题第三小问是期中后会讲到的 Borel-Cantelli 引理, 并且这一结论还会在实变函数课程中再次出现. 这里叙述它在实分析中的版本: 在测度空间 (X,τ,μ) 中, 设 $E_k\subseteq X$ 为一可测序列, 若 $\sum_{k=1}^{\infty}\mu(E_k)<\infty$, 则 $\mu(\limsup_{k\to\infty}E_k)=0$.
 - 1. **证明:** 因为 $\{A_n\}$ 单调增, 故取 $B_n = A_n \setminus A_{n-1}$, 则 $\{B_n\}$ 是两两不交的集合列且有

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n = \lim_{n \to \infty} A_n.$$

因为 $A_{n-1} \subseteq A_n$, 故 $n \ge 2$ 时,

$$P(B_n) = P(A_n \setminus A_{n-1}) = P(A_n) - P(A_{n-1}).$$

则由概率的可列可加性,有

$$P\left(\lim_{n\to\infty} A_n\right) = P\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} P(B_n)$$
$$= P(A_1) + \sum_{n=2}^{\infty} \left[P(A_n) - P(A_{n-1})\right] = \lim_{n\to\infty} P(A_n),$$

即得.

2. **证明:** 非负性与规范性显然,下面证明可列可加性,即任取 $\{A_n\}_{n=1}^{\infty}$ 为一列两两不交的集合列,要证

$$\eta\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \eta(A_n).$$

设 $E_n = \bigcup_{k=1}^n A_k$, 则 E_n 为单增集列, 令 $B_n = E_n^c$, 则 B_n 为单减集列且

$$\lim_{n \to \infty} B_n = \lim_{n \to \infty} E_n^c = \left(\bigcup_{n=1}^{\infty} A_n\right)^c.$$

故由 η 的上半连续性,有

$$1 - \eta \left(\bigcup_{n=1}^{\infty} A_n \right) = \eta \left[\left(\bigcup_{n=1}^{\infty} A_n \right)^c \right] = \eta \left(\lim_{n \to \infty} B_n \right) = \lim_{n \to \infty} \eta (B_n)$$
$$= \lim_{n \to \infty} \eta \left[\left(\bigcup_{k=1}^n A_k \right)^c \right] = 1 - \lim_{n \to \infty} \eta \left(\bigcup_{k=1}^n A_k \right).$$

又因为 A_n 两两不交, 因此由 η 的有限可加性可得

$$\eta\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \eta\left(\bigcup_{k=1}^{n} A_k\right) = \lim_{n \to \infty} \sum_{k=1}^{n} \eta(A_k) = \sum_{n=1}^{\infty} \eta(A_n).$$

因此 η 是一个概率.

3. 证明: 设 $E_n = \bigcup_{k=n}^{\infty} A_k$, 不难看出 E_n 为递减集列, 且

$$\limsup_{n \to \infty} A_n = \lim_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} E_n.$$

由于 $\sum_{n} P(A_n) \leq 100$, 故

$$\lim_{n \to \infty} P(E_n) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = 0.$$

另一方面,

$$P(E_1) = P\left(\bigcup_{k=1}^{\infty} A_k\right) \le \sum_{k=1}^{\infty} P(A_k) < \infty,$$

所以

$$P(\limsup_{n\to\infty} A_n) = P\left(\bigcap_{n=1}^{\infty} E_n\right) = P(\lim_{n\to\infty} E_n) = \lim_{n\to\infty} P(E_n) = 0.$$

证毕.

三、(10 分) 分赌问题: 一个 B(1,p)- 型 Bernoulli 试验独立重复做下去,问: 在第 m 次失败之前取得 n 次成功的概率是多少?

分析: 此题是一道送分题, 只需要注意到前 m+n-1 次有 m-1 次失败, n 次成功, 且 第 m+n 次失败即可.

 \mathbf{M} : 设第 m 次失败之前取得 n 次成功事件为 A. 则

$$P(A) = (1-p) \cdot \binom{m+n-1}{n} p^n (1-p)^{m-1} = \binom{m+n-1}{n} p^n (1-p)^m.$$

四、(10分)10对夫妻随机坐一圈,求至少有一对相邻而坐的概率是多少?

分析: 此题主要考察容斥原理的应用, 难度稍大, 可以算得上是本次考试中最难的一题. 需要注意的是, 坐成一圈的排列和直接排成一排的方法数在计算有一些区别. n 个人围成一圈的排列方式有 (n-1)! 种, 而排成一排的排列方式有 n! 种.

解: 设 E_i 表示第 i 对夫妻相邻而坐, $1 \le i \le 10$. 设 A 表示至少有一对相邻而坐, 则由容斥原理, 有

$$P(A) = P\left(\bigcup_{i=1}^{10} E_i\right) = \sum_{i=1}^{10} \left[(-1)^{i-1} \sum_{1 \le k_1 < k_2 < \dots < k_i \le 10} P\left(\bigcap_{r=1}^{i} E_{k_r}\right) \right]$$
$$= \sum_{i=1}^{10} (-1)^{i-1} \binom{10}{i} P\left(E_1 E_2 \cdots E_i\right).$$

其中, $P(E_1E_2\cdots E_i)$ 表示前 i 对夫妻相邻而坐的概率 (其他夫妻相邻与否不加限制). 因为所有人坐成一个圆圈, 因此排列方法总数为 (20-1)!=19!.

下面考虑前 i 对夫妻相邻而坐的排列方法数. 由于这 i 对夫妻坐在一起, 因此可以先将每一对夫妻视为一人, 把他们与剩余的人一起排成一圈, 再考虑这 i 对夫妻各自的顺序, 得到排列个数为 $2^i(19-i)!$, 故

$$P(E_1E_2\cdots E_i) = \frac{2^i(19-i)!}{19!}.$$

从而

$$P(A) = \sum_{i=1}^{10} (-1)^{i-1} {10 \choose i} \frac{2^i (19-i)!}{19!}.$$
 (4.1)

注记: 由于 (4.1) 式难以继续化简, 因此在考试时, 得到上述结果就已经足够了. 然而经过进一步计算, 我们可以算出最终结果, 得到所求概率为 $\frac{432424178}{654729075} = 0.660462769 \cdots$.

五、(10 分) 证明: 二项分布的 Poisson 逼近, 即若 $\lim_{n\to+\infty} np_n = \lambda \geq 0$, 则对任意非负整数 k, $\lim_{n\to+\infty} b(k;n,p_n) = \frac{\lambda^k}{k!} \mathrm{e}^{-\lambda}$.

分析: 此题主要考察简单公式的推导, 在教材上有详细证明, 因此难度较低.

证明: 记 $\lambda_n = np_n$, 则

$$b(k; n, p_n) = \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \left(\frac{\lambda_n}{n}\right)^k \left(1 - \frac{\lambda_n}{n}\right)^{n-k}$$
$$= \frac{\lambda_n^k}{k!} \cdot \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right) \left(1 - \frac{\lambda_n}{n}\right)^{n-k}.$$

因为

$$\lim_{n \to +\infty} \lambda_n^k = \lambda^k, \quad \lim_{n \to +\infty} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n} \right) = 1,$$

且

$$\lim_{n\to +\infty} \left(1-\frac{\lambda_n}{n}\right)^{n-k} = \lim_{n\to +\infty} \exp\left((n-k)\ln\left(1-\frac{\lambda_n}{n}\right)\right) = \mathrm{e}^{-\lambda},$$

故

$$\lim_{n \to +\infty} b(k; n, p_n) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

证毕.

六、(10 分) 在一个袋子里有 3 张形状相同的卡片, 一张双面都是红色, 一张双面都是黑色, 而另外一张一面是红色, 一面是黑色. 现在随机抽取一张放在桌面上, 且该卡片的所见面是红色, 该卡片的另一面是黑色的概率是多少?

分析: 此题主要考察贝叶斯公式的应用, 较为简单, 属于送分题.

解: 设 B 表示抽到的卡片所见面为红色, A_1 表示抽到的卡片两面均为红色, A_2 表示抽到的卡片两面均为黑色, A_3 表示抽到的卡片两面一黑一红. 则 $P(B|A_1)=1$, $P(B|A_2)=0$, $P(B|A_3)=\frac{1}{2}$. 由于抽到每张卡片的概率均等, 即 $P(A_i)=\frac{1}{3}$ (i=1,2,3), 运用贝叶斯公式有

$$P(A_3|B) = \frac{P(B|A_3)P(A_3)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\left(1 + 0 + \frac{1}{2}\right)\frac{1}{3}} = \frac{1}{3}.$$

七、(10 **分**) 坛中有 b 只黑球和 r 只红球, 随机抽取一只, 把原球放回并加入同色球一只, 再按同样的方式继续下去, 现在共进行了 n 次. 问: 恰有 n_1 次抽中黑球, 而 $n_2 = n - n_1$ 次抽中红球的的概率是多少?

分析: 此题为课件上的例题 (波利亚坛子模型) 的改编, 属于送分题. 但要注意计算中不能忘记考虑组合数 $\binom{n}{n_1}$, 不然会扣很多分.

解: 设 A 表示 n_1 次抽中黑球, n_2 次抽中红球. 考虑每一种符合条件的抽法顺序及其概率, 并将这 $\binom{n}{n_1}$ 个 (相同的) 概率相加, 可得

$$P(A) = \binom{n}{n_1} \frac{b(b+1)\cdots(b+n_1-1)r(r+1)\cdots(r+n_2-1)}{(b+r)(b+r+1)\cdots(b+r+n-1)}$$
$$= \binom{b+n_1-1}{n_1} \binom{r+n_2-1}{n_2} / \binom{b+r+n-1}{n}.$$