Neural net applications for images

Victor Kitov

v.v.kitov@yandex.ru

Convolutional neural networks

- Convolutional neural network:
 - Used for image analysis
 - Consists of a set of convolutional layer / sub-sampling (pooling) layer pairs and several fully connected layers at the end.

Table of Contents

- ConvNets building blocks
- 2 Case study: ZIP codes recognition
- 3 Invariances
- 4 Image segmentation

1-D Convolution operation

1-D convolution [W=5,~K=3, zero-padded with $P{=}1,~S=1$ (left) and S=2 (right)]

Parameters1:

- W length of input
- K kernel size
- P amount of padding
- Type of padding (zero, extension, mirror)
- *S* stride (offset of kernel)
- D dilation (offset inside kernel)

¹Depending on these parameters, what would be the size of output layer?

Convolution²

Single layer convolution:

²Illustrations from Dumoulin et al. 2018.

Convolution

Convolution with stride and zero-padding:

Padding

- Stride: to decrease dimensionality.
- Padding: to increase dimensionality.
- Padding types:
 - zero padding
 - same padding
 - mirror padding

Convolution

2 layer input, 3 layer output convolution:

Convolution operation

2-D convolution

Comments

- Comments on convolution:
 - Locality: each neuron in the feature map takes output from small neighborhood of input layer neurons
 - Equivalence: the same transformation is applied by each neuron in the feature map
 - obtained by constraining sets of weights to each feature map layer neuron to be equal
 - This is feature extraction from a patch

Average pooling

Max pooling

Transposed convolution

- Also known as fractinally strided convolution or deconvolution.
- "Stamps" kernel multiplied by feature intensity

Transpose convolution:

Transposed convolution

• Leads to checkerboard artifacts due to kernel overlaps:

Checkerboard artifacts of transposed convolution:

- Ways to avoid:
 - use non-overlapping stride
 - use nearest neighbours upsampling and convolution.

Table of Contents

- ConvNets building blocks
- 2 Case study: ZIP codes recognition
- 3 Invariances
- 4 Image segmentation

Case study (due to Hastie et al. The Elements of Statistical Learning)

ZIP code recognition task

Neural network structures

Net1: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight sharing

Results

Table of Contents

- ConvNets building blocks
- 2 Case study: ZIP codes recognition
- 3 Invariances
- 4 Image segmentation

Invariances

- When prediction should not depend on certain transformations
 - want to take this into account.
- Example: character recognition task
 - translation invariance
 - scale invariance
 - invariance to small rotations
 - invariance to small uniform noise
 - invariance to small smooth transformations

Invariances

- Approaches to build an invariant model:
 - augment training set with invariantly transformed objects
 - amount of possible transformations grows exponentially of #[invariances types].
 - add regularization, penalizing changes in output after invariant transformations
 - see tangent propagation
 - extract features that are invariant to transformations
 - e.g. color histogram, color gradient histogram
 - build the invariance properties into the structure of neural network
 - e.g. convolutional neural networks

- generate a random set of invariant transformations
- 2 apply these transformations to training objects
- obtain new training objects

Table of Contents

- ConvNets building blocks
- 2 Case study: ZIP codes recognition
- 3 Invariances
- 4 Image segmentation

Image segmentation³

- Segmentation classification of every pixel of the image.
- Applications:
 - surveillance systems, autonomous driving, image classification, activity recognition on videos, etc.
- Model needs:
 - high level features to reconstruct object type
 - low level features to reconstruct boundaries

³Picture source.

U-net architecture⁴

Horizontal numbers = #[channels]; vertical numbers = spatial size. White blocks - copied output of earlier layers; up-conv - rescaling & convolution.

⁴Ronneberger et al [2015].

Discussion

Key ideas of U-net:

- preserve spatial info at each layer
 - use only convolution, pooling, scaling.
 - don't use vectorization & fully connected layers
- 1st half encoder; 2nd half decoder.
- Encoder aggregates wider and wider local information
 - creating more abstract features
- Decoder reconstructs local information from
 - more abstract features (green input on figure)
 - lower level features (gray input on figure)