Циліндричні функції

1. При розв'язанні задач в сферичних та циліндричних координатах виникає рівняння Бесселя:

$$\frac{1}{z}\frac{d}{dz}\left(z\frac{d\Phi}{dz}\right) + \left(1 - \frac{v^2}{z^2}\right)\Phi = 0 \tag{1}$$

Розв'язки рівняння (1) називають циліндричними функціями. Єдиний незалежний розв'язок цього рівняння при z > 0, що є обмеженим при $z \to 0+0$, можна подати у виді ряду:

$$\boldsymbol{J}_{v}(z) = \left(\frac{z}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{\left(-1\right)^{k}}{k! \ \Gamma(v+k+1)} \cdot \left(\frac{z}{2}\right)^{2k} \tag{2}$$

Функцію $\boldsymbol{J}_{_{\mathrm{V}}}\!\left(z\right)$ називають функцією Бесселя першого роду. Тут $\Gamma(z)$ гамма-функція, $\Gamma(x+1)=x\Gamma(x)$; для цілих n: $\Gamma(n+1)=n!$.

Вигляд функцій Бесселя $J_0(z), J_1(z)$.

Другий незалежний розв'язок рівняння (1) при $v \neq 0, \pm 1, \pm 2, \dots$ є $\boldsymbol{J}_{-v}(z)$, але він має особливість при $z \to 0$.

При цілому n має місце тотожність:

$$\boldsymbol{J}_{-n}(z) = (-1)^n \boldsymbol{J}_n(z)$$

і ця функція не ϵ незалежною від \boldsymbol{J}_n . В цьому разі незалежний від \boldsymbol{J}_n розв'язок да ϵ функція Неймана або функція Бесселя другого роду:

$$N_{\nu}(z) = \frac{1}{\sin(\pi \nu)} \left[J_{\nu}(z) \cos(\pi \nu) - J_{-\nu}(z) \right], \tag{3}$$

яка означена також для цілих n за допомогою граничного переходу $v \to n$. Розв'язками (1) є також функції Ганкеля:

$$\boldsymbol{H}_{v}^{(1)}(z) = \boldsymbol{J}_{v}(z) + i\boldsymbol{N}_{v}(z) , \qquad (4)$$

$$\boldsymbol{H}_{v}^{(2)}(z) = \boldsymbol{J}_{v}(z) - i\boldsymbol{N}_{v}(z) , \qquad (5)$$

зручно використовувати в задачах, пов'язаних з випромінюванням. За $z \to \infty$ ці функції мають асимптотики:

$$H_{v}^{(1)}(z) = \sqrt{\frac{2}{\pi z}} e^{i\left(z - \frac{\pi v}{2} - \frac{\pi}{4}\right)} + O\left(|z|^{-3/2}\right)$$

$$H_{v}^{(2)}(z) = \sqrt{\frac{2}{\pi z}} e^{-i\left(z - \frac{\pi v}{2} - \frac{\pi}{4}\right)} + O\left(|z|^{-3/2}\right)$$

При $z \to 0$ функції Ганкеля мають особливість.

2. Наведемо приклади задач, де виникають циліндричні функції. Розглянемо хвильове рівняння всередині сфери радіуса *R*

$$\frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = \Delta \Phi \tag{6}$$

з граничною умовою на поверхні $\Phi(t,R,\theta,\phi) = 0$ (у сферичних координатах r,θ,ϕ). Нас цікавитимуть коливні розв'язки виду $\Phi(t,R,\theta,\phi) = \psi(r,\theta,\phi)e^{\pm i\omega t}$; це приводить до рівняння Гельмгольца

$$\Delta \psi + k^2 \psi = 0$$
, $k^2 = (\omega/c)^2$, $\psi(R, \theta, \varphi) = 0$.

Після розкладу по по сферичних гармоніках

$$\psi(k,r,\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{nm}(k,r) \cdot Y_n^m(\theta,\varphi);$$

маємо

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f_{nm}}{\partial r} \right) + \left(k^2 - \frac{n(n+1)}{r^2} \right) f_{nm} = 0, \quad f_{nm}(k,R) = 0.$$
 (7)

Загальний розв'язок рівняння (6) буде суперпозицією коливних розв'язків виду $e^{-i\omega t} f_{nm}(k,r) Y_n^m(\theta,\phi)$

Покладемо:

$$f_{nm}(k,r) = \frac{g_{nm}(k,r)}{\sqrt{r}}$$

звідки дістанемо

$$\frac{d^2g_{nm}}{dr^2} + \frac{1}{r}\frac{dg_{nm}}{dr} + \left(k^2 - \frac{(n+1/2)^2}{r^2}\right)g_{nm} = 0$$
 (8)

Еквівалентна форма

$$\frac{d}{dr}\left(r\frac{dg_{nm}}{dr}\right) + \left(rk^2 - \frac{\left(n+1/2\right)^2}{r}\right)g_{nm} = 0 \quad . \tag{8a}$$

Заміна x = kr приводить до рівняння Бесселя

$$\frac{d^2g_{nm}}{dx^2} + \frac{1}{x}\frac{dg_{nm}}{dx} + \left(1 - \frac{(n+1/2)^2}{x^2}\right)g_{nm} = 0.$$

Резулярний в нулі розв'язок цього рівняння є $J_{n+\frac{1}{2}}(x)$, відповідно,

$$g_{nm}(k,r) = J_{n+\frac{1}{2}}(kr).$$

Умова на поверхні дає

$$m{J}_{n+rac{1}{2}}ig(k_{np}Rig)=0$$
, тобто $k=k_{n,p}=rac{lpha_{n,p}}{R}, \quad p=1,2,...$, де $lpha_{n,p}-$ це p -й корінь

функціх $J_{n+\frac{1}{2}}(x)$. Таким чином, для кожної пари n,m маємо нескінченний

набір розв'язків рівняння (8)

$$g_{nmp}(r) = J_{n+\frac{1}{2}} \left(\alpha_{np} \frac{r}{R} \right)$$

Зазначимо, що в цій задачі крайовими умовами для розв'язків (8) є умова регулярності в нулі та умова на поверхні сфери.

Покажемо, що при фіксованих n,m розв'язки з різними $\alpha_{n,p}$ ортогональні для скалярного добутку $\left\langle g,f\right\rangle =\int\limits_0^R dr\ r\ g(r)f(r)$.

Нехай g_{nmp} , $g_{nmp'}$ з різними $\alpha_{n,p} \neq \alpha_{n,p'}$ задовольняють (8a):

$$\frac{d}{dr}\left(r\frac{dg_{nmp}}{dr}\right) - + \left(rk_{nmp} - \frac{\left(n + 1/2\right)^2}{r}\right)g_{nmp} = 0,$$
(9a)

$$\frac{d}{dr} \left(r \frac{dg_{nmp'}}{dr} \right) - + \left(rk_{nmp'} - \frac{(n+1/2)^2}{r} \right) g_{nmp'} = 0.$$
 (96)

Помножимо (9a) на $g_{\it nmp}$ і дістанемо

$$\frac{d}{dr}\left(rg_{nmp},\frac{dg_{nmp}}{dr}\right) - r\frac{dg_{nmp}}{dr}\frac{dg_{nmp}}{dr} + \left(rk_{nmp} - \frac{\left(n + 1/2\right)^2}{r}\right)g_{nmp}g_{nmp} = 0$$

Проінтегруємо від 0 до R з врахуванням крайових умов:

$$-\int_{0}^{R} r \frac{dg_{nmp}}{dr} \frac{dg_{nmp}}{dr} dr + \int_{0}^{R} \left(rk_{nmp} - \frac{(n+1/2)^{2}}{r} \right) g_{nmp} g_{nmp} dr = 0.$$

Віднімаючи аналогічне рівняння, отримане з (9б), дістаємо

$$(k_{nmp} - k_{nmp}) \int_{0}^{R} r g_{nmp}(r) g_{nmp}(r) dr = 0,$$

Щ.Т.Д.

Повертаючись до вихідного рівняння (6), бачимо, що частоти можуть набувати дискрених значень $\omega = \pm k_{n,p} c$, що типово для коливань в обмежениому об'ємі. Загальний розв'язок рівняння (6) має вид

$$\Phi(t,r,\theta,\varphi) = \frac{1}{\sqrt{r}} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \sum_{p=1}^{\infty} \left(C_{nmp} e^{i\omega_{np}t} + D_{nmp} e^{-i\omega_{np}t} \right) \boldsymbol{J}_{n+\frac{1}{2}} \left(\alpha_{np} \frac{r}{R} \right) Y_{n}^{m}(\theta,\varphi)$$

де $\omega_{n,p} = \alpha_{n,p} c / R$ коефціцієнти C_{nmp}, D_{nmp} , що відповідають внеску кожної коливної компоненти, визначаються початковими умовами виникнення коливань.