EMPIRE DA

0.1

Generated by Doxygen 1.8.6

Wed Oct 1 2014 16:22:10

Contents

1	EMF	PIRE Da	RE Data Assimilation Documentation 1						1
	1.1	Downlo	oading						1
	1.2	Compi	ling						1
		1.2.1	Compilat	tion of the source code					1
		1.2.2	Compilat	tion of the documentation					2
	1.3	Custor	nising for	specific models					2
	1.4	Testing							3
	1.5	Linking	to your m	nodel using EMPIRE					3
	1.6	Runnir	ng						3
	1.7	Bug R	eports and	d Functionality Requests					3
2	Data	a Type lı	ndex						5
	2.1	Data T	ypes List						5
3	File	Index	dex 7						
	3.1	File Lis	st						7
4	Data	a Type C	ocument)	tation					9
	4.1	comm	s Module F	Reference					9
		4.1.1	Detailed	Description					9
		4.1.2	Member	Function/Subroutine Documentation					9
			4.1.2.1	allocate_data					9
			4.1.2.2	deallocate_data					10
			4.1.2.3	initialise_mpi					10
		4.1.3	Member	Data Documentation					10
			4.1.3.1	cpl_mpi_comm					10
			4.1.3.2	gblcount					10
			4.1.3.3	gbldisp					10
			4.1.3.4	mype_id					10
			4.1.3.5	myrank					11
			4.1.3.6	npfs					11
			4.1.3.7	nproc					11

iv CONTENTS

		4.1.3.8	pf_mpi_comm	. 11						
		4.1.3.9	pfrank	. 11						
4.2	histogr	ram_data M	am_data Module Reference							
	4.2.1	Detailed I	Detailed Description							
	4.2.2	Member I	Function/Subroutine Documentation	. 12						
		4.2.2.1	kill_histogram_data	. 12						
		4.2.2.2	load_histogram_data	. 12						
	4.2.3	Member I	Data Documentation	. 12						
		4.2.3.1	rank_hist_list	. 12						
		4.2.3.2	rank_hist_nums	. 12						
		4.2.3.3	$rhl_n \ \ldots \ $. 12						
		4.2.3.4	$rhn_n \ldots \ldots \ldots \ldots \ldots$. 12						
4.3	hqht_p	olus_r Modu	ule Reference	. 12						
	4.3.1	Detailed I	Description	. 12						
	4.3.2	Member I	Function/Subroutine Documentation	. 13						
		4.3.2.1	hqhtr_factor	. 13						
		4.3.2.2	kill_hqhtr	. 13						
		4.3.2.3	load_hqhtr	. 13						
4.4	pf_con	ntrol Module	e Reference	. 13						
	4.4.1	Detailed I	Description	. 14						
	4.4.2	Member I	Function/Subroutine Documentation	. 14						
		4.4.2.1	allocate_pf	. 14						
		4.4.2.2	deallocate_pf	. 15						
		4.4.2.3	parse_pf_parameters	. 15						
		4.4.2.4	set_pf_controls	. 16						
	4.4.3	Member I	Data Documentation	. 17						
		4.4.3.1	pf	. 17						
4.5	pf_con	ntrol::pf_cor	ntrol_type Type Reference	. 17						
	4.5.1	Detailed I	Description	. 19						
	4.5.2	Member I	Data Documentation	. 19						
		4.5.2.1	count	. 19						
		4.5.2.2	couple_root	. 19						
		4.5.2.3	efac	. 19						
		4.5.2.4	gen_data	. 19						
		4.5.2.5	gen_q	. 19						
		4.5.2.6	human_readable	. 19						
		4.5.2.7	init	. 20						
		4.5.2.8	keep	. 20						
		4.5.2.9	len	. 20						
		4.5.2.10	mean	. 20						

CONTENTS

		4.5.2.11	nens	20
		4.5.2.12	nfac	20
		4.5.2.13	nudgefac	20
		4.5.2.14	particles	20
		4.5.2.15	psi	20
		4.5.2.16	qscale	21
		4.5.2.17	rho	21
		4.5.2.18	talagrand	21
		4.5.2.19	time	21
		4.5.2.20	time_bwn_obs	21
		4.5.2.21	time_obs	21
		4.5.2.22	timestep	21
		4.5.2.23	type	21
		4.5.2.24	ufac	21
		4.5.2.25	use_mean	22
		4.5.2.26	use_rmse	22
		4.5.2.27	use_talagrand	22
		4.5.2.28	use_traj	22
		4.5.2.29	use_var	22
		4.5.2.30	use_weak	22
		4.5.2.31	weight	22
4.6	qdata I	Module Re	eference	22
	4.6.1	Detailed	Description	23
	4.6.2	Member	Function/Subroutine Documentation	23
		4.6.2.1	killq	23
		4.6.2.2	loadq	23
	4.6.3	Member	Data Documentation	24
		4.6.3.1	qcol	24
		4.6.3.2	qdiag	24
		4.6.3.3	qn	24
		4.6.3.4	qne	24
		4.6.3.5	qrow	24
		4.6.3.6	qscale	24
		4.6.3.7	qval	24
4.7	randon	n Module I	Reference	24
	4.7.1	Detailed	Description	25
	4.7.2	Member	Function/Subroutine Documentation	25
		4.7.2.1	bin_prob	25
		4.7.2.2	Ingamma	26
		4.7.2.3	random_beta	26

vi CONTENTS

		4.7.2.4	random_binomial1	26
		4.7.2.5	random_binomial2	27
		4.7.2.6	random_cauchy	27
		4.7.2.7	random_chisq	27
		4.7.2.8	random_exponential	27
		4.7.2.9	random_gamma	28
		4.7.2.10	random_gamma1	29
		4.7.2.11	random_gamma2	29
		4.7.2.12	random_inv_gauss	29
		4.7.2.13	random_mvnorm	30
		4.7.2.14	random_neg_binomial	30
		4.7.2.15	random_normal	31
		4.7.2.16	random_order	31
		4.7.2.17	random_poisson	32
		4.7.2.18	$random_t \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	32
		4.7.2.19	random_von_mises	32
		4.7.2.20	random_weibull	33
		4.7.2.21	seed_random_number	33
	4.7.3	Member I	Data Documentation	33
		4.7.3.1	dp	33
4.8	rdata N	Module Ref	erence	34
	4.8.1	Detailed I	Description	34
	4.8.2	Member I	Function/Subroutine Documentation	34
		4.8.2.1	killr	34
		4.8.2.2	loadr	34
	4.8.3	Member I	Data Documentation	35
		4.8.3.1	rcol	35
		4.8.3.2	rdiag	35
		4.8.3.3	$m\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	35
		4.8.3.4	rne	35
		4.8.3.5	rrow	35
		4.8.3.6	rval	35
4.9	sizes N	Module Ref	erence	36
	4.9.1	Detailed I	Description	36
	4.9.2	Member I	Data Documentation	36
		4.9.2.1	obs_dim	36
		4.9.2.2	state_dim	36
File	Documo	entation		37
5.1			specific_l96.f90 File Reference	37
	15	_	- , 	

5

CONTENTS vii

	5.1.1	Function/	Subroutine Documentation	37
		5.1.1.1	configure_model	37
		5.1.1.2	dist_st_ob	38
		5.1.1.3	$h \ \dots $	38
		5.1.1.4	$ht \ldots \ldots \ldots \ldots \ldots$	38
		5.1.1.5	q	38
		5.1.1.6	qhalf	39
		5.1.1.7	$r \ldots \ldots \ldots \ldots$	39
		5.1.1.8	rhalf	39
		5.1.1.9	solve_hqht_plus_r	40
		5.1.1.10	solve_r	40
		5.1.1.11	solve_rhalf	40
5.2	model_	_specific.f9	90 File Reference	41
	5.2.1	Function	Subroutine Documentation	41
		5.2.1.1	configure_model	41
		5.2.1.2	dist_st_ob	42
		5.2.1.3	$h \ \ldots \ldots \ldots \ldots \ldots \ldots$	43
		5.2.1.4	$ht \ldots \ldots \ldots \ldots \ldots \ldots$	44
		5.2.1.5	q	45
		5.2.1.6	qhalf	47
		5.2.1.7	$r \ldots \ldots \ldots \ldots$	48
		5.2.1.8	rhalf	49
		5.2.1.9	solve_hqht_plus_r	50
		5.2.1.10	solve_r	51
		5.2.1.11	solve_rhalf	52
5.3	src/con	trolers/pf_	control.f90 File Reference	53
5.4	src/con	trolers/pf_	couple.f90 File Reference	53
	5.4.1	Function	Subroutine Documentation	53
		5.4.1.1	empire	53
5.5	src/con	trolers/pf_	parameters.dat File Reference	54
	5.5.1	Variable I	Documentation	55
		5.5.1.1	gen_data	55
		5.5.1.2	gen_Q	55
		5.5.1.3	human_readable	55
		5.5.1.4	keep	55
		5.5.1.5	nfac	55
		5.5.1.6	nudgefac	55
		5.5.1.7	Qscale	55
		5.5.1.8	time_bwn_obs	55
		5.5.1.9	time_obs	55

viii CONTENTS

	5.5.1.10 type	56
	5.5.1.11 ufac	56
	5.5.1.12 use_mean	56
	5.5.1.13 use_rmse	56
	5.5.1.14 use_talagrand	56
	5.5.1.15 use_traj	56
	5.5.1.16 use_var	56
	5.5.1.17 use_weak	56
5.6 s	rc/controlers/sizes.f90 File Reference	56
5.7 s	rc/data/Qdata.f90 File Reference	56
5.8 s	rc/data/Rdata.f90 File Reference	57
5.9 s	rc/DOC_README.txt File Reference	57
5.10 s	rc/filters/deterministic_model.f90 File Reference	57
5	.10.1 Function/Subroutine Documentation	57
	5.10.1.1 deterministic_model	57
5.11 s	rc/filters/eakf_analysis.f90 File Reference	58
5	.11.1 Function/Subroutine Documentation	58
	5.11.1.1 eakf_analysis	58
5.12 s	rc/filters/enkf_specific.f90 File Reference	58
5	.12.1 Function/Subroutine Documentation	58
	5.12.1.1 get_local_observation_data	59
	5.12.1.2 h_local	59
	5.12.1.3 localise_enkf	60
	5.12.1.4 solve_rhalf_local	60
5.13 s	rc/filters/equivalent_weights_step.f90 File Reference	60
5	.13.1 Function/Subroutine Documentation	61
	5.13.1.1 equal_weight_filter	61
5.14 s	rc/filters/etkf_analysis.f90 File Reference	61
5	.14.1 Function/Subroutine Documentation	62
	5.14.1.1 etkf_analysis	62
5.15 s	rc/filters/letkf_analysis.f90 File Reference	62
5	.15.1 Function/Subroutine Documentation	62
	5.15.1.1 letkf_analysis	62
5.16 s	rc/filters/proposal_filter.f90 File Reference	63
5	.16.1 Function/Subroutine Documentation	63
	5.16.1.1 proposal_filter	63
5.17 s	rc/filters/sir_filter.f90 File Reference	64
5	.17.1 Function/Subroutine Documentation	64
	5.17.1.1 sir_filter	64
5.18 s	rc/filters/stochastic_model.f90 File Reference	65

CONTENTS

	5.18.1	Function/Subroutine Documentation	65
		5.18.1.1 check_scaling	65
		5.18.1.2 stochastic_model	65
5.19	src/ope	rations/gen_rand.f90 File Reference	66
	5.19.1	Function/Subroutine Documentation	66
		5.19.1.1 mixturerandomnumbers1d	66
		5.19.1.2 mixturerandomnumbers2d	67
		5.19.1.3 normalrandomnumbers1d	68
		5.19.1.4 normalrandomnumbers2d	69
		5.19.1.5 random_seed_mpi	69
		5.19.1.6 uniformrandomnumbers1d	70
5.20	src/ope	rations/operator_wrappers.f90 File Reference	70
	5.20.1	Function/Subroutine Documentation	71
		5.20.1.1 bprime	71
		5.20.1.2 innerhqht_plus_r_1	71
		5.20.1.3 innerr_1	72
		5.20.1.4 k	73
5.21	src/ope	rations/perturb_particle.f90 File Reference	74
	5.21.1	Function/Subroutine Documentation	75
		5.21.1.1 perturb_particle	75
		5.21.1.2 update_state	75
5.22	src/ope	rations/resample.f90 File Reference	76
	5.22.1	Function/Subroutine Documentation	76
		5.22.1.1 resample	76
5.23	src/test	s/alltests.f90 File Reference	77
	5.23.1	Function/Subroutine Documentation	77
		5.23.1.1 alltests	77
5.24	src/test	s/test_h.f90 File Reference	78
	5.24.1	Function/Subroutine Documentation	78
		5.24.1.1 test_h	78
5.25	src/test	s/test_hqhtr.f90 File Reference	79
	5.25.1	Function/Subroutine Documentation	79
		5.25.1.1 test_hqhtr	79
5.26	src/test	s/test_q.f90 File Reference	80
	5.26.1	Function/Subroutine Documentation	80
		5.26.1.1 test_q	80
5.27	src/test	s/test_r.f90 File Reference	80
	5.27.1	Function/Subroutine Documentation	80
		5.27.1.1 test_r	80
5.28	src/test	s/tests.f90 File Reference	81

CONTENTS

	5.28.1	Function/	Subroutine Document	ation	 	 	 	 	81
		5.28.1.1	h_tests		 	 	 	 	81
		5.28.1.2	hqhtr_tests		 	 	 	 	82
		5.28.1.3	q_tests		 	 	 	 	83
		5.28.1.4	r_tests		 	 	 	 	83
5.29	src/utils	s/comms.f9	90 File Reference		 	 	 	 	84
5.30	src/utils	s/data_io.f9	90 File Reference		 	 	 	 	84
	5.30.1	Function/	Subroutine Document	ation	 	 	 	 	84
		5.30.1.1	get_observation_data	a	 	 	 	 	84
		5.30.1.2	get_state		 	 	 	 	85
		5.30.1.3	output_from_pf		 	 	 	 	85
		5.30.1.4	save_observation_da	ata	 	 	 	 	86
		5.30.1.5	save_state		 	 	 	 	86
		5.30.1.6	save_truth		 	 	 	 	86
5.31	src/utils	s/diagnosti	cs.f90 File Reference		 	 	 	 	87
	5.31.1	Function/	Subroutine Document	ation	 	 	 	 	87
		5.31.1.1	diagnostics		 	 	 	 	87
		5.31.1.2	trajectories		 	 	 	 	88
5.32	src/utils	s/genQ.f90	File Reference		 	 	 	 	88
	5.32.1	Function/	Subroutine Document	ation	 	 	 	 	88
		5.32.1.1	genq		 	 	 	 	88
5.33	src/utils	s/histogran	n.f90 File Reference .		 	 	 	 	89
5.34	src/utils	s/quicksort	.f90 File Reference .		 	 	 	 	89
	5.34.1	Function/	Subroutine Document	ation	 	 	 	 	89
		5.34.1.1	$insertions or t_d \ . \ . \ .$		 	 	 	 	89
		5.34.1.2	quicksort_d		 	 	 	 	90
5.35	src/utils	s/random_	d.f90 File Reference .		 	 	 	 	91
Index									92

Chapter 1

EMPIRE Data Assimilation Documentation

Author

Philip A. Browne p.browne@reading.ac.uk

Date

Time-stamp: <2014-09-26 18:02:48 pbrowne>

1.1 Downloading

These codes are hosted on www.bitbucket.org and can be attained with the following commands:

git clone https://www.bitbucket.org/pbrowne/empire-data-assimilation.git

Copyright

These codes are distributed under the GNU GPU v3 License. See LICENSE.txt.

1.2 Compiling

1.2.1 Compilation of the source code

The Makefile must be editted for the specific compiler setup. In the main directory you will find the file Makefile. Edit the variables as follows:

• FC The fortran compiler

This has been tested with gfortran 4.8.2

- FCOPTS The options for the fortran compiler
- LIB_LIST The libraries to be called. Note this must include BLAS and LAPACK

To compile the source code, simply then type the command

make

If successful, the following executables are created in the bin/ folder:

- · empire
- · alltests
- · test h
- · test_hqhtr
- test_q
- test r

To remove the object and executable files if compilation fails for some reason, run the following:

make clean

1.2.2 Compilation of the documentation

Documentation of the code is automatically generated using Doxygen, dot and pdflatex.

All of these packages must be installed for the following to work.

make docs

This will make an html webpage for the code, the mainpage for which is located in doc/html/index.html.

A latex version of the documentation will be built to the file doc/latex/refman.pdf.

To simply make the html version of the documentation (if pdflatex is not available) then use the command

make doc_html

1.3 Customising for specific models

This is where the science and all the effort should happen!!

The file model_specific.f90 should be editted for the specific model which you wish to use. This contains a number of subroutines which need to be adapted for the model and the observation network. We list these subsequently.

- configure_model This is called early in the code and can be used to read in any data from files before subsequently using them in the below operations.
- h This is the observation operator
- · ht This is the transpose of the observation operator
- r This is the observation error covariance matrix R
- rhalf This is the square root of the observation error covariance matrix $R^{\frac{1}{2}}$
- solve_r This is a linear solve with the observation error covariance matrix, i.e. given b, find x such that Rx = b or indeed, $x = R^{-1}b$
- solve_rhalf This is a linear solve with the square root of the observation error covariance matrix, i.e. given b, find x such that $R^{\frac{1}{2}}x = b$ or indeed, $x = R^{-\frac{1}{2}}b$
- q This is the model error covariance matrix Q
- qhalf This is the square root model error covariance matrix $Q^{\frac{1}{2}}$
- solve_hght_plus_r This is a linear solve with the matrix $(HQH^T + R)$

Not all of these subroutines will be required for each filtering method you wish to use, so it may be advantageous to only implement the necessary ones.

1.4 Testing 3

1.4 Testing

You can test your user supplied routines by running the test codes found in the folder bin/.

These are by no means full-proof ways of ensuring that you have implemented things correctly, but should at least check what you have done for logical consistency.

For example, they will test if $HH^Tx = x$, and if $Q^{\frac{1}{2}}Q^{\frac{1}{2}}x = Qx$ for various different vectors x.

1.5 Linking to your model using EMPIRE

Full instructions on how to put the EMPIRE MPI commands into a new model can be found at www.met.-reading.ac.uk/~darc/empire.

1.6 Running

For example, to run **N_MDL** copies of the model with **N_DA** copies of empire, then the following are possible:

```
mpirun -np N_MDL model_executable : -np N_DA empire
aprun -n N_MDL -N N_MDL model_executable : -n N_DA -N N_DA empire
```

The empire executable is controlled by the namelist data file pf_parameters.dat. As such, this file should be put in the directory where empire is executed.

1.7 Bug Reports and Functionality Requests

While the code is not too large, you may email me the issue or request here.

However there is a webpage set up for this:

https://bitbucket.org/pbrowne/empire-data-assimilation/issues

Chapter 2

Data Type Index

2.1 Data Types List

Here are the data types with brief descriptions:

ç
li
12
3
7
22
24
34
36

6 **Data Type Index**

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

model_specific.f90
examples/model_specific_l96.f90
src/controlers/pf_control.f90
src/controlers/pf_couple.f90
src/controlers/pf_parameters.dat
src/controlers/sizes.f90
src/data/Qdata.f90
src/data/Rdata.f90
src/filters/deterministic_model.f90
src/filters/eakf_analysis.f90
src/filters/enkf_specific.f90
src/filters/equivalent_weights_step.f90
src/filters/etkf_analysis.f90
src/filters/letkf_analysis.f90
src/filters/proposal_filter.f90
src/filters/sir_filter.f90
src/filters/stochastic_model.f90
src/operations/gen_rand.f90
src/operations/operator_wrappers.f90 70
src/operations/perturb_particle.f90
src/operations/resample.f90
src/tests/alltests.f90
src/tests/test_h.f90
src/tests/test_hqhtr.f90
src/tests/test_q.f90
src/tests/test_r.f90
src/tests/tests.f90
src/utils/comms.f90
src/utils/data_io.f90
src/utils/diagnostics.f90
src/utils/genQ.f90
src/utils/histogram.f90
src/utils/quicksort.f90
src/utils/random d.f90

8 File Index

Chapter 4

Data Type Documentation

4.1 comms Module Reference

Module containing EMPIRE coupling data.

Public Member Functions

- · subroutine allocate data
- subroutine deallocate_data
- subroutine initialise_mpi

subroutine to make EMPIRE connections and saves details into pf_control module

Public Attributes

- integer cpl_mpi_comm
- integer mype_id
- integer myrank
- integer nproc
- integer pf_mpi_comm
- · integer pfrank
- integer npfs
- integer, dimension(:), allocatable gblcount
- integer, dimension(:), allocatable gbldisp

4.1.1 Detailed Description

Module containing EMPIRE coupling data.

Definition at line 30 of file comms.f90.

4.1.2 Member Function/Subroutine Documentation

4.1.2.1 subroutine comms::allocate_data()

Definition at line 37 of file comms.f90.

4.1.2.2 subroutine comms::deallocate_data ()

Definition at line 43 of file comms.f90.

Here is the caller graph for this function:

4.1.2.3 subroutine comms::initialise_mpi ()

subroutine to make EMPIRE connections and saves details into pf_control module Definition at line 50 of file comms.f90.

Here is the caller graph for this function:

4.1.3 Member Data Documentation

4.1.3.1 integer comms::cpl_mpi_comm

Definition at line 31 of file comms.f90.

4.1.3.2 integer, dimension(:), allocatable comms::gblcount

Definition at line 34 of file comms.f90.

4.1.3.3 integer, dimension(:), allocatable comms::gbldisp

Definition at line 34 of file comms.f90.

4.1.3.4 integer comms::mype_id

Definition at line 31 of file comms.f90.

4.1.3.5 integer comms::myrank

Definition at line 31 of file comms.f90.

4.1.3.6 integer comms::npfs

Definition at line 33 of file comms.f90.

4.1.3.7 integer comms::nproc

Definition at line 31 of file comms.f90.

4.1.3.8 integer comms::pf_mpi_comm

Definition at line 32 of file comms.f90.

4.1.3.9 integer comms::pfrank

Definition at line 32 of file comms.f90.

The documentation for this module was generated from the following file:

• src/utils/comms.f90

4.2 histogram_data Module Reference

Module to control what variables are used to generate rank histograms.

Public Member Functions

- subroutine load_histogram_data
 - subroutine to read from variables_hist.dat which variables to be used to make the rank histograms
- subroutine kill_histogram_data

subroutine to clean up arrays used in rank histograms

Public Attributes

- integer, dimension(:), allocatable rank_hist_list
- integer, dimension(:), allocatable rank_hist_nums
- integer rhl_n
- integer rhn_n

4.2.1 Detailed Description

Module to control what variables are used to generate rank histograms.

Definition at line 29 of file histogram.f90.

4.2.2 Member Function/Subroutine Documentation

4.2.2.1 subroutine histogram_data::kill_histogram_data()

subroutine to clean up arrays used in rank histograms

Definition at line 57 of file histogram.f90.

4.2.2.2 subroutine histogram_data::load_histogram_data()

subroutine to read from variables_hist.dat which variables to be used to make the rank histograms Definition at line 37 of file histogram.f90.

4.2.3 Member Data Documentation

4.2.3.1 integer, dimension(:), allocatable histogram_data::rank_hist_list

Definition at line 30 of file histogram.f90.

4.2.3.2 integer, dimension(:), allocatable histogram_data::rank_hist_nums

Definition at line 31 of file histogram.f90.

4.2.3.3 integer histogram_data::rhl_n

Definition at line 32 of file histogram.f90.

4.2.3.4 integer histogram_data::rhn_n

Definition at line 32 of file histogram.f90.

The documentation for this module was generated from the following file:

• src/utils/histogram.f90

4.3 hqht_plus_r Module Reference

Public Member Functions

- subroutine load_hqhtr
- subroutine hqhtr_factor
- subroutine kill_hqhtr

4.3.1 Detailed Description

Definition at line 59 of file Rdata.f90.

4.3.2 Member Function/Subroutine Documentation

4.3.2.1 subroutine hqht_plus_r::hqhtr_factor()

Definition at line 69 of file Rdata.f90.

Here is the caller graph for this function:

4.3.2.2 subroutine hqht_plus_r::kill_hqhtr ()

Definition at line 74 of file Rdata.f90.

4.3.2.3 subroutine hqht_plus_r::load_hqhtr ()

Definition at line 65 of file Rdata.f90.

Here is the call graph for this function:

The documentation for this module was generated from the following file:

• src/data/Rdata.f90

4.4 pf_control Module Reference

module pf_control holds all the information to control the the main program

Collaboration diagram for pf_control:

Data Types

type pf_control_type

Public Member Functions

- subroutine set_pf_controls

 subroutine to ensure pf_control data is ok
- subroutine parse_pf_parameters

subroutine to read the namelist file and save it to pf datatype Here we read pf_parameters.dat

- subroutine allocate_pf
 - subroutine to allocate space for the filtering code
- subroutine deallocate_pf

subroutine to deallocate space for the filtering code

Public Attributes

• type(pf_control_type) pf

the derived data type holding all controlling data

4.4.1 Detailed Description

module pf_control holds all the information to control the the main program Definition at line 29 of file pf_control.f90.

4.4.2 Member Function/Subroutine Documentation

4.4.2.1 subroutine pf_control::allocate_pf ()

subroutine to allocate space for the filtering code

Definition at line 310 of file pf_control.f90.

Here is the caller graph for this function:

4.4.2.2 subroutine pf_control::deallocate_pf ()

subroutine to deallocate space for the filtering code

Definition at line 332 of file pf_control.f90.

4.4.2.3 subroutine pf_control::parse_pf_parameters ()

subroutine to read the namelist file and save it to pf datatype Here we read pf_parameters.dat pf_parameters.dat is a fortran namelist file. As such, within it there must be a line beginning &pf_params

To make it (probably) work, ensure there is a forward slash on the penultimate line and a blank line to end the file This is just the fortran standard for namelists though.

On to the content...in any order, the $pf_parameters.dat$ may contain the following things:

Integers:

- · time obs
- time_bwn_obs

Reals, double precision:

- nudgefac
- nfac
- ufac
- Qscale
- keep
- rho
- len
- 2 Characters:
 - type
- 1 Character:
 - init

Logicals:

- gen_Q
- gen_data
- use_talagrand
- use_weak
- use_var
- use_traj
- use_rmse
- human_readable

Definition at line 141 of file pf_control.f90.

Here is the caller graph for this function:

4.4.2.4 subroutine pf_control::set_pf_controls ()

subroutine to ensure pf_control data is ok Definition at line 74 of file pf_control.f90. Here is the call graph for this function:

Here is the caller graph for this function:

4.4.3 Member Data Documentation

4.4.3.1 type(pf_control_type) pf_control::pf

the derived data type holding all controlling data

Definition at line 69 of file pf_control.f90.

The documentation for this module was generated from the following file:

• src/controlers/pf_control.f90

4.5 pf_control::pf_control_type Type Reference

Public Attributes

· integer nens

the total number of ensemble members

real(kind=kind(1.0d0)), dimension(:), allocatable weight

the negative log of the weights of the particles

• integer time_obs

the number of observations we will assimilate

integer time_bwn_obs

the number of model timesteps between observations

• real(kind=kind(1.0d0)) nudgefac

the nudging factor

· logical gen_data

true generates synthetic obs for a twin experiment

· logical gen_q

true attempts to build up Q from long model run

logical human_readable

unused

• integer timestep =0

the current timestep as the model progresses

real(kind=kind(1.0d0)), dimension(:,:), allocatable psi

state vector of ensemble members on this mpi process

real(kind=kind(1.0d0)), dimension(:), allocatable mean

mean state vector

• real(kind=kind(1.0d0)) nfac

standard deviation of normal distribution in mixture density

real(kind=kind(1.0d0)) ufac

half width of the uniform distribution in mixture density

- real(kind=kind(1.0d0)) efac
- real(kind=kind(1.0d0)) keep

proportion of particles to keep in EWPF EW step

real(kind=kind(1.0d0)) time

dunno

real(kind=kind(1.0d0)) qscale

scalar to multiply Q by

• real(kind=kind(1.0d0)) rho

enkf inflation factor so that $P_f = (1 + \rho)P_f$

• real(kind=kind(1.0d0)) len

R localisation length scale.

integer couple_root

empire master processor

· logical use_talagrand

switch if true outputs rank histograms

· logical use_weak

switch unused

logical use_mean

switch if true outputs ensemble mean

· logical use_var

switch if true outputs ensemble variance

logical use_traj

switch if true outputs trajectories

· logical use_rmse

switch if true outputs Root Mean Square Errors

 integer, dimension(:,:), allocatable talagrand

storage for rank histograms

· integer count

number of ensemble members associated with this MPI process

integer, dimension(:), allocatable particles

particles associates with this MPI process

• character(2) type

which filter to use

· character(1) init

which method to initialise ensemble

4.5.1 Detailed Description

Definition at line 31 of file pf_control.f90.

4.5.2 Member Data Documentation

4.5.2.1 integer pf_control::pf_control_type::count

number of ensemble members associated with this MPI process

Definition at line 64 of file pf_control.f90.

4.5.2.2 integer pf_control::pf_control_type::couple_root

empire master processor

Definition at line 56 of file pf_control.f90.

4.5.2.3 real(kind=kind(1.0d0)) pf_control::pf_control_type::efac

Definition at line 46 of file pf_control.f90.

4.5.2.4 logical pf_control::pf_control_type::gen_data

true generates synthetic obs for a twin experiment

Definition at line 37 of file pf_control.f90.

4.5.2.5 logical pf_control::pf_control_type::gen_q

true attempts to build up Q from long model run

Definition at line 38 of file pf_control.f90.

4.5.2.6 logical pf_control::pf_control_type::human_readable

unused

Definition at line 40 of file pf_control.f90.

4.5.2.7 character(1) pf_control::pf_control_type::init

which method to initialise ensemble

Definition at line 67 of file pf control.f90.

4.5.2.8 real(kind=kind(1.0d0)) pf_control::pf_control_type::keep

proportion of particles to keep in EWPF EW step

Definition at line 47 of file pf_control.f90.

4.5.2.9 real(kind=kind(1.0d0)) pf_control::pf_control_type::len

R localisation length scale.

Definition at line 54 of file pf_control.f90.

4.5.2.10 real(kind=kind(1.0d0)), dimension(:), allocatable pf_control::pf_control_type::mean

mean state vector

Definition at line 43 of file pf_control.f90.

4.5.2.11 integer pf_control::pf_control_type::nens

the total number of ensemble members

Definition at line 32 of file pf_control.f90.

4.5.2.12 real(kind=kind(1.0d0)) pf_control::pf_control_type::nfac

standard deviation of normal distribution in mixture density

Definition at line 44 of file pf_control.f90.

4.5.2.13 real(kind=kind(1.0d0)) pf_control::pf_control_type::nudgefac

the nudging factor

Definition at line 36 of file pf_control.f90.

4.5.2.14 integer, dimension(:), allocatable pf_control::pf_control_type::particles

particles associates with this MPI process

Definition at line 65 of file pf_control.f90.

4.5.2.15 real(kind=kind(1.0d0)), dimension(:,:), allocatable pf_control::pf_control_type::psi

state vector of ensemble members on this mpi process

Definition at line 42 of file pf_control.f90.

4.5.2.16 real(kind=kind(1.0d0)) pf_control::pf_control_type::qscale

scalar to multiply Q by

Definition at line 49 of file pf_control.f90.

4.5.2.17 real(kind=kind(1.0d0)) pf_control::pf_control_type::rho

enkf inflation factor so that $P_f = (1 + \rho)P_f$

Definition at line 51 of file pf_control.f90.

4.5.2.18 integer, dimension(:,:), allocatable pf_control::pf_control_type::talagrand

storage for rank histograms

Definition at line 63 of file pf_control.f90.

4.5.2.19 real(kind=kind(1.0d0)) pf_control::pf_control_type::time

dunno

Definition at line 48 of file pf_control.f90.

4.5.2.20 integer pf_control::pf_control_type::time_bwn_obs

the number of model timesteps between observations

Definition at line 35 of file pf_control.f90.

4.5.2.21 integer pf_control::pf_control_type::time_obs

the number of observations we will assimilate

Definition at line 34 of file pf_control.f90.

4.5.2.22 integer pf_control::pf_control_type::timestep =0

the current timestep as the model progresses

Definition at line 41 of file pf_control.f90.

4.5.2.23 character(2) pf_control::pf_control_type::type

which filter to use

Definition at line 66 of file pf_control.f90.

4.5.2.24 real(kind=kind(1.0d0)) pf_control::pf_control_type::ufac

half width of the uniform distribution in mixture density

Definition at line 45 of file pf_control.f90.

4.5.2.25 logical pf_control::pf_control_type::use_mean

switch if true outputs ensemble mean

Definition at line 59 of file pf_control.f90.

4.5.2.26 logical pf_control::pf_control_type::use_rmse

switch if true outputs Root Mean Square Errors

Definition at line 62 of file pf_control.f90.

4.5.2.27 logical pf_control::pf_control_type::use_talagrand

switch if true outputs rank histograms

Definition at line 57 of file pf control.f90.

4.5.2.28 logical pf_control::pf_control_type::use_traj

switch if true outputs trajectories

Definition at line 61 of file pf_control.f90.

4.5.2.29 logical pf_control::pf_control_type::use_var

switch if true outputs ensemble variance

Definition at line 60 of file pf_control.f90.

4.5.2.30 logical pf_control::pf_control_type::use_weak

switch unused

Definition at line 58 of file pf_control.f90.

4.5.2.31 real(kind=kind(1.0d0)), dimension(:), allocatable pf_control::pf_control_type::weight

the negative log of the weights of the particles

Definition at line 33 of file pf_control.f90.

The documentation for this type was generated from the following file:

• src/controlers/pf_control.f90

4.6 qdata Module Reference

Module as a place to store user specified data for Q.

Public Member Functions

- subroutine loadq
 - Subroutine to load in user data for Q.
- · subroutine killq

Public Attributes

- integer qn
- integer qne
- integer, dimension(:), allocatable qrow
- integer, dimension(:), allocatable qcol
- real(kind=kind(1.0d0)), dimension(:), allocatable qval
- real(kind=kind(1.0d0)), dimension(:), allocatable qdiag
- real(kind=kind(1.0d0)) qscale

4.6.1 Detailed Description

Module as a place to store user specified data for Q.

· the model error covariance matrix

Definition at line 30 of file Qdata.f90.

4.6.2 Member Function/Subroutine Documentation

4.6.2.1 subroutine qdata::killq ()

SUbroutine to deallocate user data for Q

Definition at line 44 of file Qdata.f90.

4.6.2.2 subroutine qdata::loadq ()

Subroutine to load in user data for Q.

Definition at line 38 of file Qdata.f90.

Here is the caller graph for this function:

4.6.3 Member Data Documentation

4.6.3.1 integer, dimension(:), allocatable qdata::qcol

Definition at line 33 of file Qdata.f90.

4.6.3.2 real(kind=kind(1.0d0)), dimension(:), allocatable qdata::qdiag

Definition at line 34 of file Qdata.f90.

4.6.3.3 integer qdata::qn

Definition at line 32 of file Qdata.f90.

4.6.3.4 integer qdata::qne

Definition at line 32 of file Qdata.f90.

4.6.3.5 integer, dimension(:), allocatable qdata::qrow

Definition at line 33 of file Qdata.f90.

4.6.3.6 real(kind=kind(1.0d0)) qdata::qscale

Definition at line 35 of file Qdata.f90.

4.6.3.7 real(kind=kind(1.0d0)), dimension(:), allocatable qdata::qval

Definition at line 34 of file Qdata.f90.

The documentation for this module was generated from the following file:

• src/data/Qdata.f90

4.7 random Module Reference

A module for random number generation from the following distributions:

Public Member Functions

- real(kind=kind(1.0d+0)) function random_normal ()
 function to get random normal with zero mean and stdev 1
- real(kind=kind(1.0d+0)) function random gamma (s, first)
- real(kind=kind(1.0d+0)) function random_gamma1 (s, first)
- real(kind=kind(1.0d+0)) function random_gamma2 (s, first)
- real(kind=kind(1.0d+0)) function random_chisq (ndf, first)
- real(kind=kind(1.0d+0)) function random_exponential ()
- real(kind=kind(1.0d+0)) function random_weibull (a)
- real(kind=kind(1.0d+0)) function random_beta (aa, bb, first)
- real(kind=kind(1.0d+0)) function random_t (m)

- subroutine random_mvnorm (n, h, d, f, first, x, ier)
- real(kind=kind(1.0d+0)) function random_inv_gauss (h, b, first)
- integer function random poisson (mu, first)
- integer function random_binomial1 (n, p, first)
- real(kind=kind(1.0d+0)) function bin_prob (n, p, r)
- real(dp) function Ingamma (x)
- integer function random binomial2 (n, pp, first)
- integer function random_neg_binomial (sk, p)
- real(kind=kind(1.0d+0)) function random von mises (k, first)
- real(kind=kind(1.0d+0)) function random_cauchy ()
- subroutine random order (order, n)
- subroutine seed_random_number (iounit)

Public Attributes

• integer, parameter dp = SELECTED_REAL_KIND(12, 60)

4.7.1 Detailed Description

A module for random number generation from the following distributions:

Distribution Function/subroutine name

Normal (Gaussian) random_normal Gamma random_gamma Chi-squared random_chisq Exponential random_exponential Weibull random_Weibull Beta random_beta t random_t Multivariate normal random_mvnorm Generalized inverse Gaussian random_inv_gauss Poisson random_Poisson Binomial random_binomial1 * random_binomial1 * random_binomial2 * Negative binomial random_neg_binomial von Mises random_von_Mises Cauchy random_Cauchy

Definition at line 22 of file random_d.f90.

4.7.2 Member Function/Subroutine Documentation

4.7.2.1 real(kind=kind(1.0d+0)) function random::bin_prob (integer, intent(in) n, real(kind=kind(1.0d+0)), intent(in) p, integer, intent(in) r)

Definition at line 1000 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.2.2 real (dp) function random::lngamma (real (dp), intent(in) x)

Definition at line 1018 of file random_d.f90.

Here is the caller graph for this function:

4.7.2.3 real(kind=kind(1.0d+0)) function random::random_beta (real(kind=kind(1.0d+0)), intent(in) aa, real(kind=kind(1.0d+0)), intent(in) bb, logical, intent(in) first)

Definition at line 371 of file random_d.f90.

Here is the call graph for this function:

4.7.2.4 integer function random::random_binomial1 (integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *p*, logical, intent(in) *first*)

Definition at line 923 of file random_d.f90.

Here is the call graph for this function:

4.7.2.5 integer function random::random_binomial2 (integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *pp*, logical, intent(in) *first*)

Definition at line 1082 of file random_d.f90.

Here is the call graph for this function:

4.7.2.6 real(kind=kind(1.0d+0)) function random::random_cauchy ()

Definition at line 1517 of file random_d.f90.

4.7.2.7 real(kind=kind(1.0d+0)) function random::random_chisq (integer, intent(in) ndf, logical, intent(in) first)

Definition at line 308 of file random_d.f90.

Here is the call graph for this function:

4.7.2.8 real(kind=kind(1.0d+0)) function random::random_exponential()

Definition at line 324 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.2.9 real(kind=kind(1.0d+0)) function random::random_gamma (real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first)

Definition at line 154 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.2.10 real(kind=kind(1.0d+0)) function random::random_gamma1 (real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first

Definition at line 189 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.2.11 real(kind=kind(1.0d+0)) function random::random_gamma2 (real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first

Definition at line 238 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.2.12 real(kind=kind(1.0d+0)) function random::random_inv_gauss (real(kind=kind(1.0d+0)), intent(in) *h*, real(kind=kind(1.0d+0)), intent(in) *b*, logical, intent(in) *first*)

Definition at line 610 of file random_d.f90.

Here is the call graph for this function:

4.7.2.13 subroutine random::random_mvnorm (integer, intent(in) *n*, real(kind=kind(1.0d+0)), dimension(:), intent(in) *h*, real(kind=kind(1.0d+0)), dimension(:), intent(in) *d*, real(kind=kind(1.0d+0)), dimension(:), intent(inout) *f*, logical, intent(in) *first*, real(kind=kind(1.0d+0)), dimension(:), intent(out) *x*, integer, intent(out) *ier*)

Definition at line 509 of file random_d.f90.

Here is the call graph for this function:

4.7.2.14 integer function random::random_neg_binomial (real(kind=kind(1.0d+0)), intent(in) sk, real(kind=kind(1.0d+0)), intent(in) p)

Definition at line 1314 of file random_d.f90.

Here is the call graph for this function:

4.7.2.15 real(kind=kind(1.0d+0)) function random::random_normal ()

function to get random normal with zero mean and stdev 1

Returns

fn_val

Definition at line 108 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.7.2.16 subroutine random::random_order (integer, dimension(n), intent(out) order, integer, intent(in) n)

Definition at line 1539 of file random_d.f90.

Here is the call graph for this function:

4.7.2.17 integer function random::random_poisson (real(kind=kind(1.0d+0)), intent(in) mu, logical, intent(in) first)

Definition at line 681 of file random d.f90.

Here is the call graph for this function:

4.7.2.18 real(kind=kind(1.0d+0)) function random::random_t (integer, intent(in) m)

Definition at line 448 of file random_d.f90.

Here is the call graph for this function:

4.7.2.19 real(kind=kind(1.0d+0)) function random::random_von_mises (real(kind=kind(1.0d+0)), intent(in) k, logical, intent(in) first)

Definition at line 1389 of file random_d.f90.

Here is the call graph for this function:

4.7.2.20 real(kind=kind(1.0d+0)) function random::random_weibull (real(kind=kind(1.0d+0)), intent(in) a)

Definition at line 351 of file random_d.f90.

Here is the call graph for this function:

4.7.2.21 subroutine random::seed_random_number (integer, intent(in) iounit)

Definition at line 1573 of file random_d.f90.

Here is the call graph for this function:

4.7.3 Member Data Documentation

4.7.3.1 integer, parameter random::dp = SELECTED_REAL_KIND(12, 60)

Definition at line 101 of file random_d.f90.

The documentation for this module was generated from the following file:

• src/utils/random_d.f90

4.8 rdata Module Reference

Module to hold user supplied data for *R* observation error covariance matrix.

Public Member Functions

subroutine loadr

Subroutine to load data for R.

subroutine killr

Public Attributes

- integer rn
- integer rne
- integer, dimension(:), allocatable rrow
- integer, dimension(:), allocatable rcol
- real(kind=kind(1.0d0)), dimension(:), allocatable rval
- real(kind=kind(1.0d0)), dimension(:), allocatable rdiag

4.8.1 Detailed Description

Module to hold user supplied data for *R* observation error covariance matrix.

Definition at line 29 of file Rdata.f90.

4.8.2 Member Function/Subroutine Documentation

4.8.2.1 subroutine rdata::killr ()

SUbroutine to deallocate R data

Definition at line 49 of file Rdata.f90.

4.8.2.2 subroutine rdata::loadr ()

Subroutine to load data for R.

Definition at line 36 of file Rdata.f90.

4.8 rdata Module Reference 35

Here is the caller graph for this function:

4.8.3 Member Data Documentation

4.8.3.1 integer, dimension(:), allocatable rdata::rcol

Definition at line 32 of file Rdata.f90.

4.8.3.2 real(kind=kind(1.0d0)), dimension(:), allocatable rdata::rdiag

Definition at line 33 of file Rdata.f90.

4.8.3.3 integer rdata::rn

Definition at line 31 of file Rdata.f90.

4.8.3.4 integer rdata::rne

Definition at line 31 of file Rdata.f90.

4.8.3.5 integer, dimension(:), allocatable rdata::rrow

Definition at line 32 of file Rdata.f90.

4.8.3.6 real(kind=kind(1.0d0)), dimension(:), allocatable rdata::rval

Definition at line 33 of file Rdata.f90.

The documentation for this module was generated from the following file:

• src/data/Rdata.f90

4.9 sizes Module Reference

Module that stores the dimension of observation and state spaces.

Public Attributes

• integer obs_dim size of the observation space

• integer state_dim

dimension of the model

4.9.1 Detailed Description

Module that stores the dimension of observation and state spaces.

Definition at line 29 of file sizes.f90.

4.9.2 Member Data Documentation

4.9.2.1 integer sizes::obs_dim

size of the observation space

Definition at line 31 of file sizes.f90.

4.9.2.2 integer sizes::state_dim

dimension of the model

Definition at line 32 of file sizes.f90.

The documentation for this module was generated from the following file:

• src/controlers/sizes.f90

Chapter 5

File Documentation

5.1 examples/model_specific_l96.f90 File Reference

Functions/Subroutines

```
• subroutine configure_model
```

subroutine called initially to set up details and data for model specific functions

• subroutine solve_r (obsDim, nrhs, y, v, t)

subroutine to take an observation vector y and return v in observation space.

• subroutine solve_rhalf (obsdim, nrhs, y, v, t)

subroutine to take an observation vector y and return v in observation space.

subroutine solve_hqht_plus_r (obsdim, y, v, t)

subroutine to take an observation vector y and return v in observation space.

• subroutine q (nrhs, x, Qx)

subroutine to take a full state vector x and return Qx in state space.

• subroutine qhalf (nrhs, x, Qx)

subroutine to take a full state vector x and return $Q^{1/2}x$ in state space.

• subroutine r (obsDim, nrhs, y, Ry, t)

subroutine to take an observation vector x and return Rx in observation space.

• subroutine rhalf (obsDim, nrhs, y, Ry, t)

subroutine to take an observation vector x and return Rx in observation space.

subroutine h (obsDim, nrhs, x, hx, t)

subroutine to take a full state vector x and return H(x) in observation space.

• subroutine ht (obsDim, nrhs, y, x, t)

subroutine to take an observation vector y and return $x = H^T(y)$ in full state space.

• subroutine dist_st_ob (xp, yp, dis, t)

subroutine to compute the distance between the variable in the state vector and the variable in the observations

5.1.1 Function/Subroutine Documentation

```
5.1.1.1 subroutine configure_model ( )
```

subroutine called initially to set up details and data for model specific functions Definition at line 30 of file model_specific_l96.f90.

5.1.1.2 subroutine dist_st_ob (integer, intent(in) *xp*, integer, intent(in) *yp*, real(kind=kind(1.0d0)), intent(out) *dis*, integer, intent(in) *t*)

subroutine to compute the distance between the variable in the state vector and the variable in the observations Compute $\operatorname{dist}(x(xp),y(yp))$

Parameters

in	хр	the index in the state vector
in	ур	the index in the observation vector
out	dis	the distance between x(xp) and y(yp)
in	t	the current time index for observations

Definition at line 281 of file model specific 196.f90.

5.1.1.3 subroutine h (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *hx*, integer, intent(in) *t*)

subroutine to take a full state vector x and return H(x) in observation space.

Given x compute Hx

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	X	the input vectors in state space
out	hx	the resulting vector in observation space where $hx = Hx$
in	t	the timestep

Definition at line 232 of file model_specific_l96.f90.

5.1.1.4 subroutine ht (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *x*, integer, intent(in) *t*)

subroutine to take an observation vector y and return $\mathbf{x} = H^T(y)$ in full state space.

Given y compute $x = H^T(y)$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	У	the input vectors in observation space
out	X	the resulting vector in state space where $\mathbf{x} = \mathbf{H}^T \mathbf{y}$
in	t	the timestep

Definition at line 257 of file model_specific_l96.f90.

5.1.1.5 subroutine q (integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *Qx*)

subroutine to take a full state vector x and return Qx in state space.

Given x compute Qx

Parameters

in	nrhs	the number of right hand sides
in	X	the input vector
out	qx	the resulting vector where $Qx = Qx$

Definition at line 140 of file model_specific_l96.f90.

Here is the call graph for this function:

5.1.1.6 subroutine qhalf (integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *Qx*)

subroutine to take a full state vector x and return $Q^{1/2}x$ in state space.

Given x compute $Q^{\frac{1}{2}}x$

Parameters

in	nrhs	the number of right hand sides
in	X	the input vector
out	qx	the resulting vector where $Qx = Q^{rac{1}{2}}x$

Definition at line 165 of file model specific 196.f90.

5.1.1.7 subroutine r (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t*)

subroutine to take an observation vector x and return Rx in observation space.

Given y compute Ry

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	the input vector
out	ry	the resulting vectors where $Ry = Ry$
in	t	the timestep

Definition at line 186 of file model_specific_l96.f90.

5.1.1.8 subroutine rhalf (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t*)

subroutine to take an observation vector x and return Rx in observation space.

Given y compute $R^{\frac{1}{2}}y$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	У	the input vector
out	ry	the resulting vector where $Ry = R^{\frac{1}{2}}y$
in	t	the timestep

Definition at line 208 of file model_specific_l96.f90.

5.1.1.9 subroutine solve_hqht_plus_r (integer, intent(in) *obsdim*, real(kind=rk), dimension(obsdim), intent(in) *y*, real(kind=rk), dimension(obsdim), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that $(HQH^T + R)v = y$

Parameters

in	obsdim	the dimension of the observations
in	у	the input vector
out	V	the result where $v = (HQH^T + R)^{-1}y$
in	t	the timestep

Definition at line 120 of file model specific 196.f90.

5.1.1.10 subroutine solve_r (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that Rv = y

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	input vector
out	V	result vector where $v = R^{-1}y$
in	t	the timestep

Definition at line 76 of file model_specific_l96.f90.

5.1.1.11 subroutine solve_rhalf (integer, intent(in) *obsdim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that $R^{\frac{1}{2}}v = y$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	input vector
out	V	result vector where $v = R^{-\frac{1}{2}}y$

in	t	the timestep

Definition at line 97 of file model specific 196.f90.

5.2 model_specific.f90 File Reference

Functions/Subroutines

- · subroutine configure model
 - subroutine called initially to set up details and data for model specific functions
- subroutine solve_r (obsDim, nrhs, y, v, t)
 - subroutine to take an observation vector y and return v in observation space.
- subroutine solve rhalf (obsdim, nrhs, y, v, t)
 - subroutine to take an observation vector y and return v in observation space.
- subroutine solve_hqht_plus_r (obsdim, y, v, t)
 - subroutine to take an observation vector y and return v in observation space.
- subroutine q (nrhs, x, Qx)
 - subroutine to take a full state vector x and return Qx in state space.
- subroutine qhalf (nrhs, x, Qx)
 - subroutine to take a full state vector x and return $Q^{1/2}x$ in state space.
- subroutine r (obsDim, nrhs, y, Ry, t)
 - subroutine to take an observation vector x and return Rx in observation space.
- subroutine rhalf (obsDim, nrhs, y, Ry, t)
 - subroutine to take an observation vector x and return Rx in observation space.
- subroutine h (obsDim, nrhs, x, hx, t)
 - subroutine to take a full state vector x and return H(x) in observation space.
- subroutine https://doi.org/10.2016/nc.nrhs, y, x, t)
 - subroutine to take an observation vector y and return $x = H^T(y)$ in full state space.
- subroutine dist_st_ob (xp, yp, dis, t)
 - subroutine to compute the distance between the variable in the state vector and the variable in the observations

5.2.1 Function/Subroutine Documentation

5.2.1.1 subroutine configure_model ()

subroutine called initially to set up details and data for model specific functions

Definition at line 30 of file model_specific.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.2.1.2 subroutine dist_st_ob (integer, intent(in) *xp*, integer, intent(in) *yp*, real(kind=kind(1.0d0)), intent(out) *dis*, integer, intent(in) *t*)

subroutine to compute the distance between the variable in the state vector and the variable in the observations $\text{Compute } \operatorname{dist}(x(xp),y(yp))$

Parameters

in	хр	the index in the state vector
in	ур	the index in the observation vector
out	dis	the distance between x(xp) and y(yp)
in	t	the current time index for observations

Definition at line 270 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.3 subroutine h (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *hx*, integer, intent(in) *t*)

subroutine to take a full state vector x and return H(x) in observation space.

Given x compute Hx

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	X	the input vectors in state space
out	hx	the resulting vector in observation space where $hx = Hx$
in	t	the timestep

Definition at line 224 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.4 subroutine ht (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *x*, integer, intent(in) *t*)

subroutine to take an observation vector y and return $\mathbf{x} = H^T(y)$ in full state space.

Given y compute $x = H^T(y)$

Parameters

	in	obsdim	the dimension of the observations
ſ	in	nrhs	the number of right hand sides
ſ	in	у	the input vectors in observation space
	out	X	the resulting vector in state space where $\mathbf{x} = \mathbf{H}^T \mathbf{y}$
ſ	in	t	the timestep

Definition at line 247 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.5 subroutine q (integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *Qx*)

subroutine to take a full state vector x and return Qx in state space.

Given x compute Qx

Parameters

in	nrhs	the number of right hand sides
in	X	the input vector
out	qx	the resulting vector where $Qx = Qx$

Definition at line 134 of file model_specific.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.2.1.6 subroutine qhalf (integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *Qx*)

subroutine to take a full state vector \mathbf{x} and return $Q^{1/2}x$ in state space.

Given x compute $Q^{\frac{1}{2}}x$

Parameters

in	nrhs	the number of right hand sides
in	X	the input vector
out	qx	the resulting vector where $Qx = Q^{rac{1}{2}}x$

Definition at line 159 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.7 subroutine r (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t*)

subroutine to take an observation vector x and return Rx in observation space.

Given y compute Ry

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	the input vector
out	ry	the resulting vectors where $Ry = Ry$
in	t	the timestep

Definition at line 179 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.8 subroutine rhalf (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t*)

subroutine to take an observation vector x and return Rx in observation space.

Given y compute $R^{\frac{1}{2}}y$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	the input vector
out	ry	the resulting vector where $Ry = R^{\frac{1}{2}}y$
in	t	the timestep

Definition at line 201 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.9 subroutine solve_hqht_plus_r (integer, intent(in) *obsdim*, real(kind=rk), dimension(obsdim), intent(in) *y*, real(kind=rk), dimension(obsdim), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that $(HQH^T + R)v = y$

Parameters

in	obsdim	the dimension of the observations
in	У	the input vector
out	V	the result where $v = (HQH^T + R)^{-1}y$
in	t	the timestep

Definition at line 114 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.10 subroutine solve_r (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector \boldsymbol{y} and return \boldsymbol{v} in observation space.

Given y find v such that Rv = y

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides

in	у	input vector
out	V	result vector where $v = R^{-1}y$
in	t	the timestep

Definition at line 72 of file model_specific.f90.

Here is the caller graph for this function:

5.2.1.11 subroutine solve_rhalf (integer, intent(in) *obsdim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that $R^{\frac{1}{2}}v = y$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	input vector
out	V	result vector where $v = R^{-\frac{1}{2}}y$
in	t	the timestep

Definition at line 92 of file model_specific.f90.

Here is the caller graph for this function:

5.3	src/controlers/pf_control.f90 File Reference
Data T	ypes
• r	module pf_control
	module pf_control holds all the information to control the the main program
• t	ype pf_control::pf_control_type
5.4	src/controlers/pf_couple.f90 File Reference
Function	ons/Subroutines
• k	program empire
	the main program
5.4.1	Function/Subroutine Documentation
5.4.1.1	program empire ()
the ma	in program

Definition at line 37 of file pf_couple.f90.

Here is the call graph for this function:

5.5 src/controlers/pf_parameters.dat File Reference

Variables

- &pf_params time_obs =10
- &pf_params time_bwn_obs =72
- &pf_params nudgefac =0.5D3
- &pf_params gen_data =.false.
- &pf_params nfac =1.0D-5
- &pf_params ufac =1.0D-5

- &pf_params keep =0.95D0
- &pf_params Qscale =1.0D3
- &pf_params human_readable =1.0D3
- &pf_params use_talagrand =.true.
- &pf_params use_weak =.false.
- &pf_params use_mean =.false.
- &pf_params use_var =.false.
- &pf_params use_rmse =.true.
- &pf_params gen_Q =.false.
- &pf_params use_traj =.true.
- &pf_params type ='EW'

5.5.1 Variable Documentation

5.5.1.1 & pf_params gen_data =.false.

Definition at line 5 of file pf_parameters.dat.

5.5.1.2 & pf_params gen_Q =.false.

Definition at line 16 of file pf_parameters.dat.

5.5.1.3 & pf_params human_readable =1.0D3

Definition at line 10 of file pf_parameters.dat.

5.5.1.4 & pf_params keep =0.95D0

Definition at line 8 of file pf_parameters.dat.

5.5.1.5 & pf_params nfac =1.0D-5

Definition at line 6 of file pf parameters.dat.

5.5.1.6 & pf_params nudgefac =0.5D3

Definition at line 4 of file pf_parameters.dat.

5.5.1.7 & pf_params Qscale =1.0D3

Definition at line 9 of file pf_parameters.dat.

5.5.1.8 & pf_params time_bwn_obs =72

Definition at line 3 of file pf_parameters.dat.

5.5.1.9 & pf_params time_obs =10

Definition at line 2 of file pf_parameters.dat.

5.5.1.10 & pf_params type ='EW'

Definition at line 18 of file pf_parameters.dat.

5.5.1.11 & pf_params ufac =1.0D-5

Definition at line 7 of file pf_parameters.dat.

5.5.1.12 & pf_params use_mean =.false.

Definition at line 13 of file pf_parameters.dat.

5.5.1.13 & pf_params use_rmse =.true.

Definition at line 15 of file pf_parameters.dat.

5.5.1.14 & pf_params use_talagrand =.true.

Definition at line 11 of file pf_parameters.dat.

5.5.1.15 & pf_params use_traj =.true.

Definition at line 17 of file pf_parameters.dat.

5.5.1.16 & pf_params use_var =.false.

Definition at line 14 of file pf_parameters.dat.

5.5.1.17 & pf_params use_weak =.false.

Definition at line 12 of file pf_parameters.dat.

5.6 src/controlers/sizes.f90 File Reference

Data Types

• module sizes

Module that stores the dimension of observation and state spaces.

5.7 src/data/Qdata.f90 File Reference

Data Types

• module qdata

Module as a place to store user specified data for Q.

5.8 src/data/Rdata.f90 File Reference

Data Types

· module rdata

Module to hold user supplied data for R observation error covariance matrix.

module hqht_plus_r

5.9 src/DOC_README.txt File Reference

5.10 src/filters/deterministic model.f90 File Reference

Functions/Subroutines

subroutine deterministic_model
 subroutine to simply move the model forward in time one timestep PAB 21-05-2013

5.10.1 Function/Subroutine Documentation

5.10.1.1 subroutine deterministic_model ()

subroutine to simply move the model forward in time one timestep PAB 21-05-2013 Definition at line 32 of file deterministic_model.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.11 src/filters/eakf_analysis.f90 File Reference

Functions/Subroutines

• subroutine eakf_analysis (num_hor, num_ver, this_hor, this_ver, boundary, x, N, stateDim, obsDim, rho)

5.11.1 Function/Subroutine Documentation

5.11.1.1 subroutine eakf_analysis (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, real(kind=rk), dimension(statedim,n), intent(inout) x, integer, intent(in) N, integer, intent(in) stateDim, integer, intent(in) obsDim, real(kind=rk), intent(in) rho)

Definition at line 27 of file eakf_analysis.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.12 src/filters/enkf_specific.f90 File Reference

Functions/Subroutines

- subroutine h_local (num_hor, num_ver, this_hor, this_ver, boundary, nrhs, stateDim, x, obsDim, y)
- subroutine solve_rhalf_local (num_hor, num_ver, this_hor, this_ver, boundary, nrhs, obsDim, y, v)
- subroutine get_local_observation_data (num_hor, num_ver, this_hor, this_ver, boundary, obsDim, y)
- subroutine localise enkf (enkf analysis)

5.12.1 Function/Subroutine Documentation

5.12.1.1 subroutine get_local_observation_data (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim), intent(out) y)

Definition at line 83 of file enkf_specific.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.12.1.2 subroutine h_local (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, integer, intent(in) nrhs, integer, intent(in) stateDim, real(kind=rk), dimension(statedim,nrhs), intent(in) x, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim,nrhs), intent(out) y)

Definition at line 27 of file enkf_specific.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.12.1.3 subroutine localise_enkf (integer, intent(in) enkf_analysis)

Definition at line 142 of file enkf_specific.f90.

Here is the call graph for this function:

5.12.1.4 subroutine solve_rhalf_local (integer, intent(in) *num_hor*, integer, intent(in) *num_ver*, integer, intent(in) *this_hor*, integer, intent(in) *this_ver*, integer, intent(in) *boundary*, integer, intent(in) *nrhs*, integer, intent(in) *obsDim*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*)

Definition at line 69 of file enkf_specific.f90.

Here is the caller graph for this function:

5.13 src/filters/equivalent_weights_step.f90 File Reference

Functions/Subroutines

subroutine equal_weight_filter
 subroutine to do the equivalent weights step

5.13.1 Function/Subroutine Documentation

5.13.1.1 subroutine equal_weight_filter ()

subroutine to do the equivalent weights step

Definition at line 29 of file equivalent_weights_step.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.14 src/filters/etkf_analysis.f90 File Reference

Functions/Subroutines

• subroutine etkf_analysis (num_hor, num_ver, this_hor, this_ver, boundary, x, N, stateDim, obsDim, rho) subroutine to perform the ensemble transform Kalman filter

5.14.1 Function/Subroutine Documentation

5.14.1.1 subroutine etkf_analysis (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, real(kind=rk), dimension(statedim,n), intent(inout) x, integer, intent(in) N, integer, intent(in) stateDim, integer, intent(in) obsDim, real(kind=rk), intent(in) rho)

subroutine to perform the ensemble transform Kalman filter

Definition at line 34 of file etkf_analysis.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.15 src/filters/letkf_analysis.f90 File Reference

Functions/Subroutines

• subroutine letkf_analysis subroutine to perform the ensemble transform Kalman filter as part of L-ETKF

5.15.1 Function/Subroutine Documentation

5.15.1.1 subroutine letkf_analysis ()

subroutine to perform the ensemble transform Kalman filter as part of L-ETKF

The observation

Definition at line 35 of file letkf_analysis.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.16 src/filters/proposal_filter.f90 File Reference

Functions/Subroutines

subroutine proposal_filter
 Subroutine to perform nudging in the proposal step of EWPF.

5.16.1 Function/Subroutine Documentation

5.16.1.1 subroutine proposal_filter ()

Subroutine to perform nudging in the proposal step of EWPF.

Definition at line 33 of file proposal_filter.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.17 src/filters/sir_filter.f90 File Reference

Functions/Subroutines

subroutine sir_filter

Subroutine to perform SIR filter (Sequential Importance Resampling)

5.17.1 Function/Subroutine Documentation

5.17.1.1 subroutine sir_filter ()

Subroutine to perform SIR filter (Sequential Importance Resampling)
Definition at line 28 of file sir_filter.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.18 src/filters/stochastic_model.f90 File Reference

Functions/Subroutines

- subroutine stochastic_model
 subroutine to simply move the model forward in time one timestep PAB 21-05-2013
- subroutine check_scaling (x, fx, b, scales)

5.18.1 Function/Subroutine Documentation

5.18.1.1 subroutine check_scaling (real(kind=rk), dimension(state_dim), intent(in) x, real(kind=rk), dimension(state_dim), intent(in) fx, real(kind=rk), dimension(state_dim), intent(in) b, real(kind=rk), dimension(9), intent(inout) scales)

Definition at line 80 of file stochastic_model.f90.

5.18.1.2 subroutine stochastic_model ()

subroutine to simply move the model forward in time one timestep PAB 21-05-2013 Definition at line 32 of file stochastic_model.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.19 src/operations/gen_rand.f90 File Reference

Functions/Subroutines

- subroutine uniformrandomnumbers1d (minv, maxv, n, phi)
 - generate one dimension of uniform random numbers
- subroutine normalrandomnumbers1d (mean, stdev, n, phi)
 - generate one dimension of Normal random numbers
- subroutine normalrandomnumbers2d (mean, stdev, n, k, phi)
 - generate two dimensional Normal random numbers
- subroutine mixturerandomnumbers1d (mean, stdev, ufac, epsi, n, phi, uniform)
 - generate one dimensional vector drawn from mixture density
- subroutine mixturerandomnumbers2d (mean, stdev, ufac, epsi, n, k, phi, uniform)
 - generate two dimensional vector, each drawn from mixture density
- subroutine random_seed_mpi (pfid)
 - Subroutine to set the random seed across MPI threads.

5.19.1 Function/Subroutine Documentation

5.19.1.1 subroutine mixturerandomnumbers1d (real(kind=kind(1.0d0)), intent(in) *mean,* real(kind=kind(1.0d0)), intent(in) *stdev,* real(kind=kind(1.0d0)), intent(in) *ufac,* real(kind=kind(1.0d0)), intent(in) *epsi,* integer, intent(in) *n,* real(kind=kind(1.0d0)), dimension(n), intent(out) *phi,* logical, intent(out) *uniform*)

generate one dimensional vector drawn from mixture density

Parameters

in	mean	Mean of normal distribution
in	stdev	Standard deviation of normal distribution
in	ufac	half-width of uniform distribution that is centered on the mean
in	epsi	Proportion controlling mixture draw. if random_number > epsi then draw from
		uniform, else normal
in	n	size of output vector
out	phi	n dimensional mixture random numbers
out	uniform	True if mixture drawn from uniform. False if drawn from normal

Definition at line 90 of file gen_rand.f90.

Here is the call graph for this function:

5.19.1.2 subroutine mixturerandomnumbers2d (real(kind=kind(1.0d0)), intent(in) *mean*, real(kind=kind(1.0d0)), intent(in) *stdev*, real(kind=kind(1.0d0)), intent(in) *ufac*, real(kind=kind(1.0d0)), intent(in) *epsi*, integer, intent(in) *n*, integer, intent(in) *k*, real(kind=kind(1.0d0)), dimension(n,k), intent(out) *phi*, logical, dimension(k), intent(out) *uniform*)

generate two dimensional vector, each drawn from mixture density

Parameters

in	mean	Mean of normal distribution
in	stdev	Standard deviation of normal distribution
in	ufac	half-width of uniform distribution that is centered on the mean
in	epsi	Proportion controlling mixture draw. if random_number > epsi then draw from
		uniform, else normal
in	n	first dimension of output vector
in	k	second dimension of output vector
out	phi	n,k dimensional mixture random numbers
out	uniform	k dimensional logical with uniform(i) True if phi(:,i) drawn from uniform. False if
		drawn from normal

Definition at line 125 of file gen_rand.f90.

Here is the caller graph for this function:

5.19.1.3 subroutine normalrandomnumbers1d (real(kind=rk), intent(in) *mean*, real(kind=rk), intent(in) *stdev*, integer, intent(in) *n*, real(kind=rk), dimension(n), intent(out) *phi*)

generate one dimension of Normal random numbers

Parameters

in	n	size of output vector
in	mean	mean of normal distribution
in	stdev	Standard Deviation of normal distribution
out	phi	n dimensional normal random numbers

Definition at line 43 of file gen_rand.f90.

Here is the call graph for this function:

5.19.1.4 subroutine normalrandomnumbers2d (real(kind=rk), intent(in) *mean,* real(kind=rk), intent(in) *stdev,* integer, intent(in) *n,* integer, intent(in) *k,* real(kind=rk), dimension(n,k), intent(out) *phi*)

generate two dimensional Normal random numbers

Parameters

in	n	first dimension of output vector
in	k	second dimension of output vector
in	mean	mean of normal distribution
in	stdev	Standard Deviation of normal distribution
out	phi	n,k dimensional normal random numbers

Definition at line 60 of file gen_rand.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.19.1.5 subroutine random_seed_mpi (integer, intent(in) pfid)

Subroutine to set the random seed across MPI threads.

Parameters

in	pfid	The process identifier of the MPI process

Definition at line 151 of file gen_rand.f90.

Here is the caller graph for this function:

5.19.1.6 subroutine uniformrandomnumbers1d (real(kind=rk), intent(in) *minv*, real(kind=rk), intent(in) *maxv*, integer, intent(in) *n*, real(kind=rk), dimension(n), intent(out) *phi*)

generate one dimension of uniform random numbers

Parameters

in	n	size of output vector
in	minv	minimum value of uniform distribution
in	maxv	maximum value of uniform distribution
out	phi	n dimensional uniform random numbers

Definition at line 28 of file gen_rand.f90.

Here is the caller graph for this function:

5.20 src/operations/operator_wrappers.f90 File Reference

Functions/Subroutines

- subroutine k (y, x)
 - Subroutine to apply K to a vector y in observation space where $K := QH^T(HQH^T + R)^{-1}$.
- subroutine innerr_1 (y, w)
 - subroutine to compute the inner product with R^{-1}
- subroutine innerhqht_plus_r_1 (y, w)
 - subroutine to compute the inner product with $(HQH^T + R)^{-1}$
- subroutine bprime (y, x, QHtR_1y, normaln, betan)
 - subroutine to calculate nudging term and correlated random errors efficiently

5.20.1 Function/Subroutine Documentation

5.20.1.1 subroutine bprime (real(kind=rk), dimension(obs_dim,pf%count), intent(in) y, real(kind=rk), dimension(state_dim,pf%count), intent(out) x, real(kind=rk), dimension(state_dim,pf%count), intent(out) QHtR_1y, real(kind=rk), dimension(state_dim,pf%count), intent(in) normaln, real(kind=rk), dimension(state_dim,pf%count), intent(out) betan)

subroutine to calculate nudging term and correlated random errors efficiently

Parameters

in	у	(obs_dim,pf%count) vectors of innovations $y - H(x^{n-1})$
out	X	(state_dim,pf%count) vectors of $\rho H^T R^{-1}[y - H(x^{n-1})]$
out	QHtR_1y	(state_dim,pf%count) vectors of $\rho QH^TR^{-1}[y-H(x^{n-1})]$
in	normaln	(state_dim,pf%count) uncorrelated random vectors such that normaln(:,i) \sim
		$\mathscr{N}(0,I)$
out	betan	(state_dim,pf%count) correlated random vectors such that betan(:,i) ~
		$\mathcal{N}(0,Q)$

Definition at line 155 of file operator_wrappers.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.20.1.2 subroutine innerhqht_plus_r_1 (real(kind=rk), dimension(obs_dim), intent(in) y, real(kind=rk), intent(out) w) subroutine to compute the inner product with $(HQH^T+R)^{-1}$

Parameters

in	у	vector in observation space
out	W	scalar with value $y^T R^{-1} y$

Definition at line 91 of file operator_wrappers.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.20.1.3 subroutine innerr_1 (real(kind=rk), dimension(obs_dim,pf%count), intent(in) y, real(kind=rk), dimension(pf%count), intent(out) w)

subroutine to compute the inner product with R^{-1}

Parameters

	in	у	multiple vectors in observation space (pf%count of them)
ĺ	out	W	multiple scalars (pf%count) where w(i) has the value $y(:,i)^T R^{-1} y(:,i)$

Definition at line 65 of file operator_wrappers.f90.

Here is the caller graph for this function:

5.20.1.4 subroutine k (real(kind=rk), dimension(obs_dim,pf%count), intent(in) y, real(kind=rk), dimension(state_dim,pf%count), intent(out) x)

Subroutine to apply K to a vector \mathbf{y} in observation space where $K := QH^T(HQH^T + R)^{-1}$.

Parameters

in	У	vector in observation space
out	X	vector in state space

Definition at line 32 of file operator_wrappers.f90.

Here is the caller graph for this function:

5.21 src/operations/perturb_particle.f90 File Reference

Functions/Subroutines

subroutine perturb_particle (x)

Subroutine to perturb state vector with normal random vector drawn from $\mathcal{N}(0,Q)$.

• subroutine update_state (state, fpsi, kgain, betan)

Subroutine to update the state.

5.21.1 Function/Subroutine Documentation

5.21.1.1 subroutine perturb_particle (real(kind=rk), dimension(state_dim), intent(inout) x)

Subroutine to perturb state vector with normal random vector drawn from $\mathcal{N}(0,Q)$.

Definition at line 30 of file perturb_particle.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.21.1.2 subroutine update_state (real(kind=rk), dimension(state_dim), intent(out) *state*, real(kind=rk), dimension(state_dim), intent(in) *fpsi*, real(kind=rk), dimension(state_dim), intent(in) *kgain*, real(kind=rk), dimension(state_dim), intent(inout) *betan*)

Subroutine to update the state.

This can be changed for the specific model if it needs to be

Parameters

in	fpsi	deterministic model update $f(x^{n-1})$
in	kgain	nudging term
in,out	betan	Stochastic term
out	state	The updated state vector

Definition at line 95 of file perturb_particle.f90.

Here is the caller graph for this function:

5.22 src/operations/resample.f90 File Reference

Functions/Subroutines

• subroutine resample

Subroutine to perform Universal Importance Resampling.

5.22.1 Function/Subroutine Documentation

5.22.1.1 subroutine resample ()

Subroutine to perform Universal Importance Resampling.

Definition at line 28 of file resample.f90.

Here is the caller graph for this function:

5.23 src/tests/alltests.f90 File Reference

Functions/Subroutines

• program alltests

program to run all tests of user specific functions

5.23.1 Function/Subroutine Documentation

5.23.1.1 program alltests ()

program to run all tests of user specific functions Definition at line 31 of file alltests.f90.

Here is the call graph for this function:

5.24 src/tests/test_h.f90 File Reference

Functions/Subroutines

program test_h

program to run tests of user supplied observation operator

5.24.1 Function/Subroutine Documentation

5.24.1.1 program test_h ()

program to run tests of user supplied observation operator Definition at line 31 of file test_h.f90.

Here is the call graph for this function:

5.25 src/tests/test_hqhtr.f90 File Reference

Functions/Subroutines

program test_hqhtr
 program to run tests of user supplied linear solve

5.25.1 Function/Subroutine Documentation

5.25.1.1 program test_hqhtr ()

program to run tests of user supplied linear solve

$$(HQH^T + R)^{-1}$$

Definition at line 33 of file test_hqhtr.f90.

5.26 src/tests/test_q.f90 File Reference

Functions/Subroutines

program test_q

program to run tests of user supplied model error covariance matrix

5.26.1 Function/Subroutine Documentation

5.26.1.1 program test_q ()

program to run tests of user supplied model error covariance matrix

Definition at line 31 of file test_q.f90.

Here is the call graph for this function:

5.27 src/tests/test_r.f90 File Reference

Functions/Subroutines

program test_r

program to run all tests of user supplied observation error covariance matrix/

5.27.1 Function/Subroutine Documentation

5.27.1.1 program test_r ()

program to run all tests of user supplied observation error covariance matrix/ Definition at line 31 of file test_r.f90. Here is the call graph for this function:

5.28 src/tests/tests.f90 File Reference

Functions/Subroutines

- subroutine h_tests ()
- subroutine r_tests ()
- subroutine q_tests ()
- subroutine hqhtr_tests ()

5.28.1 Function/Subroutine Documentation

5.28.1.1 subroutine h_tests ()

These are some tests to check that the observation operator is implemented correctly

Definition at line 27 of file tests.f90.

Here is the caller graph for this function:

5.28.1.2 subroutine hqhtr_tests ()

These are some tests to check that the linear solve operator is implemented correctly

This should check the operation $(HQH^T+R)^{-1}$ is working

Definition at line 757 of file tests.f90.

Here is the call graph for this function:

5.28.1.3 subroutine q_tests ()

These are some tests to check that the model error covariance matrix is implemented correctly Definition at line 560 of file tests.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.28.1.4 subroutine r_tests ()

These are some tests to check that the observation error covariance matrix is implemented correctly Definition at line 254 of file tests.f90.

Here is the caller graph for this function:

5.29 src/utils/comms.f90 File Reference

Data Types

· module comms

Module containing EMPIRE coupling data.

5.30 src/utils/data_io.f90 File Reference

Functions/Subroutines

• subroutine get_observation_data (y)

Subroutine to read observation from a file
Uses pftimestep to determine which observation to read.

• subroutine save_observation_data (y)

Subroutine to save observation to a file
Uses pftimestep to determine which observation to save.

• subroutine save_truth (x)

Subroutine to save truth to a file

• subroutine output_from_pf

subroutine to ouput data from the filter

• subroutine save state (state, filename)

subroutine to save the state vector to a named file as an unformatted fortran file

• subroutine get_state (state, filename)

subroutine to write the state vector to a named file as an unformatted fortran file

5.30.1 Function/Subroutine Documentation

5.30.1.1 subroutine get_observation_data (real(kind=rk), dimension(obs_dim), intent(out) y)

Subroutine to read observation from a file

Uses pftimestep to determine which observation to read.

Parameters

out	У	The observation

Definition at line 32 of file data_io.f90.

Here is the caller graph for this function:

5.30.1.2 subroutine get_state (real(kind=rk), dimension(state_dim), intent(out) state, character(14), intent(in) filename)

subroutine to write the state vector to a named file as an unformatted fortran file Parameters

out	state	the state vector
in	filename	the name of the file to write the state vector in

Definition at line 283 of file data_io.f90.

Here is the caller graph for this function:

5.30.1.3 subroutine output_from_pf ()

subroutine to ouput data from the filter

Definition at line 124 of file data_io.f90.

Here is the caller graph for this function:

5.30.1.4 subroutine save_observation_data (real(kind=rk), dimension(obs_dim), intent(in) y)

Subroutine to save observation to a file

Uses pftimestep to determine which observation to save.

Parameters

in	у	The observation

Definition at line 60 of file data_io.f90.

Here is the caller graph for this function:

5.30.1.5 subroutine save_state (real(kind=rk), dimension(state_dim), intent(in) state, character(14), intent(in) filename)

subroutine to save the state vector to a named file as an unformatted fortran file

Parameters

in	state	the state vector
in	filename	the name of the file to save the state vector in

Definition at line 257 of file data_io.f90.

5.30.1.6 subroutine save_truth (real(kind=rk), dimension(state_dim), intent(in) x)

Subroutine to save truth to a file

Parameters

Definition at line 98 of file data_io.f90.

Here is the caller graph for this function:

5.31 src/utils/diagnostics.f90 File Reference

Functions/Subroutines

• subroutine diagnostics

Subroutine to give output diagnositics such as rank histograms and trajectories.

• subroutine trajectories

subroutine to output trajectories

5.31.1 Function/Subroutine Documentation

5.31.1.1 subroutine diagnostics ()

Subroutine to give output diagnositics such as rank histograms and trajectories.

Definition at line 31 of file diagnostics.f90.

Here is the caller graph for this function:

5.31.1.2 subroutine trajectories ()

subroutine to output trajectories

Definition at line 203 of file diagnostics.f90.

Here is the caller graph for this function:

5.32 src/utils/genQ.f90 File Reference

Functions/Subroutines

· subroutine genq

Subroutine to estimate Q from a long model run.

5.32.1 Function/Subroutine Documentation

5.32.1.1 subroutine genq ()

Subroutine to estimate Q from a long model run.

Definition at line 28 of file genQ.f90.

Here is the caller graph for this function:

5.33 src/utils/histogram.f90 File Reference

Data Types

• module histogram_data

Module to control what variables are used to generate rank histograms.

5.34 src/utils/quicksort.f90 File Reference

Functions/Subroutines

- recursive subroutine quicksort_d (a, na)
 subroutine to sort using the quicksort algorithm
- subroutine insertionsort_d (A, nA)

subroutine to sort using the insertionsort algorithm

5.34.1 Function/Subroutine Documentation

5.34.1.1 subroutine insertionsort_d (real(kind=kind(1.0d0)), dimension(na), intent(inout) A, integer, intent(in) nA)

subroutine to sort using the insertionsort algorithm

Parameters

in,out	а	array of doubles to be sorted
in	na	dimension of array a

Definition at line 86 of file quicksort.f90.

Parameters

in,out	а	array of doubles to be sorted
in	na	dimension of array a

Definition at line 9 of file quicksort.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

5.35 src/utils/random_d.f90 File Reference

Data Types

• module random

A module for random number generation from the following distributions:

Index

allocate_data	deterministic_model
comms, 9	deterministic_model.f90, 57
allocate_pf	deterministic_model.f90
pf_control, 14	deterministic_model, 57
alltests	diagnostics
alltests.f90, 77	diagnostics.f90, 87
alltests.f90	diagnostics.f90
alltests, 77	diagnostics, 87
	trajectories, 88
bin_prob	dist_st_ob
random, 25	model_specific.f90, 42
bprime	model_specific_l96.f90, 37
operator_wrappers.f90, 71	dp
, – ,,	random, 33
check_scaling	,
stochastic_model.f90, 65	eakf_analysis
comms, 9	eakf_analysis.f90, 58
allocate_data, 9	eakf_analysis.f90
cpl_mpi_comm, 10	eakf_analysis, 58
deallocate_data, 9	efac
gblcount, 10	pf_control::pf_control_type, 19
gbldisp, 10	empire
initialise_mpi, 10	pf_couple.f90, 53
mype_id, 10	enkf_specific.f90
myrank, 10	get_local_observation_data, 58
npfs, 11	h_local, 59
nproc, 11	localise_enkf, 60
pf_mpi_comm, 11	solve_rhalf_local, 60
pfrank, 11	equal_weight_filter
configure_model	equivalent_weights_step.f90, 61
model_specific.f90, 41	equivalent_weights_step.f90
model_specific_l96.f90, 37	equal_weight_filter, 61
count	etkf analysis
pf_control::pf_control_type, 19	etkf_analysis.f90, 62
couple_root	etkf_analysis.f90
pf_control::pf_control_type, 19	etkf_analysis, 62
cpl_mpi_comm	examples/model_specific_l96.f90, 37
	examples/model_specific_iso.fso, 37
comms, 10	gblcount
data_io.f90	comms, 10
get_observation_data, 84	gbldisp
get_state, 85	comms, 10
output_from_pf, 85	gen_Q
save_observation_data, 86	pf_parameters.dat, 55
save_state, 86	
	gen_data
save_truth, 86	pf_control::pf_control_type, 19
deallocate_data	pf_parameters.dat, 55
comms, 9	gen_q
deallocate_pf	pf_control::pf_control_type, 19
pf_control, 15	gen_rand.f90

mixturerandomnumbers1d, 66	keep
mixturerandomnumbers2d, 67	pf_control::pf_control_type, 20
normalrandomnumbers1d, 68	pf_parameters.dat, 55
normalrandomnumbers2d, 68	kill_histogram_data
random_seed_mpi, 69	histogram_data, 12
uniformrandomnumbers1d, 70	kill_hqhtr
genQ.f90	hqht_plus_r, 13
genq, 88	killq
genq	qdata, 23
genQ.f90, 88	killr
get_local_observation_data	rdata, 34
enkf_specific.f90, 58	
get_observation_data	len
data_io.f90, 84	pf_control::pf_control_type, 20
get_state	letkf_analysis
data_io.f90, 85	letkf_analysis.f90, 62
_ ,	letkf_analysis.f90
h	letkf_analysis, 62
model_specific.f90, 42	Ingamma
model specific 196.f90, 38	random, 26
h local	load_histogram_data
enkf_specific.f90, 59	histogram data, 12
h tests	load_hqhtr
tests.f90, 81	hqht_plus_r, 13
histogram_data, 11	loadq
kill_histogram_data, 12	qdata, 23
load_histogram_data, 12	loadr
rank_hist_list, 12	rdata, 34
rank_hist_nums, 12	localise_enkf
rhl_n, 12	enkf_specific.f90, 60
rhn_n, 12	011111_0p00111011100, 00
hqht_plus_r, 12	mean
	pf_control::pf_control_type, 20
hqhtr_factor, 13	mixturerandomnumbers1d
kill_hqhtr, 13	gen_rand.f90, 66
load_hqhtr, 13	mixturerandomnumbers2d
hqhtr_factor	gen_rand.f90, 67
hqht_plus_r, 13	model_specific.f90, 41
hqhtr_tests	configure_model, 41
tests.f90, 82	dist_st_ob, 42
ht ''' '' ''	h, 42
model_specific.f90, 43	ht, 43
model_specific_l96.f90, 38	q, 45
human_readable	qhalf, 47
pf_control::pf_control_type, 19	r, 48
pf_parameters.dat, 55	
	rhalf, 49
init	solve_hqht_plus_r, 50
pf_control::pf_control_type, 19	solve_r, 51
initialise_mpi	solve_rhalf, 52
comms, 10	model_specific_l96.f90
innerhqht_plus_r_1	configure_model, 37
operator_wrappers.f90, 71	dist_st_ob, 37
innerr_1	h, 38
operator_wrappers.f90, 72	ht, 38
insertionsort d	
-	q, 38
quicksort.f90, 89	q, 38 qhalf, 39
quicksort.f90, 89	q, 38 qhalf, 39 r, 39
-	q, 38 qhalf, 39

solve_r, 40	keep, 20
solve_rhalf, 40	len, 20
mype_id	mean, 20
comms, 10	nens, 20
myrank	nfac, 20
comms, 10	nudgefac, 20
•	particles, 20
nens	psi, 20
pf_control::pf_control_type, 20	•
nfac	qscale, 20
	rho, 21
pf_control::pf_control_type, 20	talagrand, 21
pf_parameters.dat, 55	time, 21
normalrandomnumbers1d	time_bwn_obs, 21
gen_rand.f90, 68	time_obs, 21
normalrandomnumbers2d	timestep, 21
gen_rand.f90, 68	type, 21
npfs	ufac, 21
comms, 11	
	use_mean, 21
nproc	use_rmse, 22
comms, 11	use_talagrand, 22
nudgefac	use_traj, <mark>22</mark>
pf_control::pf_control_type, 20	use_var, <mark>22</mark>
pf_parameters.dat, 55	use_weak, 22
	weight, 22
obs_dim	pf_couple.f90
sizes, 36	empire, 53
operator_wrappers.f90	pf_mpi_comm
bprime, 71	
innerhqht_plus_r_1, 71	comms, 11
innerr_1, 72	pf_parameters.dat
	gen_Q, 55
k, 73	gen_data, 55
output_from_pf	human_readable, 55
data_io.f90, 85	keep, <u>55</u>
	nfac, 55
parse_pf_parameters	nudgefac, 55
pf_control, 15	Oscale, 55
particles	time_bwn_obs, 55
pf_control::pf_control_type, 20	time_obs, 55
perturb particle	
perturb_particle.f90, 75	type, 55
perturb_particle.f90	ufac, 56
perturb_particle, 75	use_mean, 56
• —	use_rmse, 56
update_state, 75	use_talagrand, 56
pf	use_traj, <mark>56</mark>
pf_control, 17	use_var, 56
pf_control, 13	use_weak, 56
allocate_pf, 14	pfrank
deallocate_pf, 15	comms, 11
parse_pf_parameters, 15	ŕ
pf, 17	proposal_filter
set_pf_controls, 16	proposal_filter.f90, 63
pf_control::pf_control_type, 17	proposal_filter.f90
	proposal_filter, 63
count, 19	psi
couple_root, 19	pf_control::pf_control_type, 20
efac, 19	
gen_data, 19	q
gen_q, 19	model_specific.f90, 45
human_readable, 19	model_specific_l96.f90, 38
init, 19	q_tests
	

tests.f90, 82	random_order, 31
qcol	random_poisson, 32
qdata, <mark>24</mark>	random_t, 32
qdata, 22	random_von_mises, 32
killq, 23	random_weibull, 33
loadq, 23	seed_random_number, 33
qcol, 24	random_beta
qdiag, 24	random, 26
qn, 24	random_binomial1
qne, 24	random, 26
grow, 24	random_binomial2
qscale, 24	random, 27
qval, 24	random_cauchy
qdiag	random, 27
qdata, 24	random_chisq
qhalf	random, 27
model_specific.f90, 47	random_exponential
model_specific_l96.f90, 39	random, 27
qn	random_gamma
qdata, 24	random, 28
qne	random_gamma1
qdata, 24	random, 28
qrow	random_gamma2
qdata, 24 Qscale	random, 29
pf_parameters.dat, 55	random_inv_gauss
gscale	random, 29
pf_control::pf_control_type, 20	random_mvnorm
qdata, 24	random, 30
quicksort.f90	random_neg_binomial
insertionsort_d, 89	random, 30
quicksort_d, 89	random_normal
quicksort_d	random, 30
quicksort.f90, 89	random_order
qval	random, 31
qdata, 24	random_poisson
-1	random, 32
r	random_seed_mpi
model_specific.f90, 48	gen_rand.f90, 69
model_specific_l96.f90, 39	random_t
r_tests	random, 32
tests.f90, 83	random_von_mises
random, 24	random, 32
bin_prob, 25	random_weibull
dp, 33	random, 33
Ingamma, 26	rank_hist_list
random_beta, 26	histogram_data, 12
random_binomial1, 26	rank_hist_nums
random_binomial2, 27	histogram_data, 12
random_cauchy, 27	rcol
random_chisq, 27	rdata, 35
random_exponential, 27	rdata, 34
random_gamma, 28	killr, 34
random_gamma1, 28	loadr, 34
random_gamma2, 29	rcol, 35
random_inv_gauss, 29	rdiag, 35
random_mvnorm, 30	rn, 35
random_neg_binomial, 30	rne, 35
random_normal, 30	rrow, 35

rval, 35	src/data/Rdata.f90, 57
rdiag	src/filters/deterministic_model.f90, 57
rdata, 35	src/filters/eakf analysis.f90, 58
resample	src/filters/enkf_specific.f90, 58
resample.f90, 76	src/filters/equivalent_weights_step.f90, 60
resample.f90	src/filters/etkf analysis.f90, 61
resample, 76	src/filters/letkf_analysis.f90, 62
	_ ·
rhalf	src/filters/proposal_filter.f90, 63
model_specific.f90, 49	src/filters/sir_filter.f90, 64
model_specific_l96.f90, 39	src/filters/stochastic_model.f90, 65
rhl_n	src/operations/gen_rand.f90, 66
histogram_data, 12	src/operations/operator_wrappers.f90, 70
rhn_n	<pre>src/operations/perturb_particle.f90, 74</pre>
histogram_data, 12	src/operations/resample.f90, 76
rho	src/tests/alltests.f90, 77
pf_control::pf_control_type, 21	src/tests/test_h.f90, 78
rn	src/tests/test_hqhtr.f90, 79
rdata, 35	src/tests/test_q.f90, 80
rne	src/tests/test_r.f90, 80
rdata, 35	src/tests/tests.f90, 81
rrow	src/utils/comms.f90, 84
rdata, 35	src/utils/data_io.f90, 84
rval	src/utils/diagnostics.f90, 87
rdata, 35	src/utils/genQ.f90, 88
agua abaggiation data	src/utils/histogram.f90, 89
save_observation_data	src/utils/quicksort.f90, 89
data_io.f90, 86	src/utils/random_d.f90, 91
save_state	state_dim
data_io.f90, 86	sizes, 36
save_truth	stochastic_model
data_io.f90, 86	stochastic_model.f90, 65
seed_random_number	stochastic_model.f90
random, 33	check_scaling, 65
set_pf_controls	stochastic_model, 65
pf_control, 16	Stochastic_model, 00
sir_filter	talagrand
sir_filter.f90, 64	pf_control::pf_control_type, 21
sir_filter.f90	test_h
sir filter, 64	test_h.f90, 78
- · · ·	test_h.f90
sizes, 36	
obs_dim, 36	test_h, 78
state_dim, 36	test_hqhtr
solve_hqht_plus_r	test_hqhtr.f90, 79
model_specific.f90, 50	test_hqhtr.f90
model_specific_l96.f90, 40	test_hqhtr, 79
solve_r	test_q
model_specific.f90, 51	test_q.f90, 80
model_specific_l96.f90, 40	test_q.f90
solve_rhalf	test_q, 80
model_specific.f90, 52	test r
model_specific_l96.f90, 40	test_r.f90, 80
solve_rhalf_local	test_r.f90
enkf_specific.f90, 60	
— <i>i</i>	test_r, 80
src/DOC_README.txt, 57	tests.f90
src/controlers/pf_control.f90, 53	h_tests, 81
src/controlers/pf_couple.f90, 53	hqhtr_tests, 82
src/controlers/pf_parameters.dat, 54	q_tests, 82
src/controlers/sizes.f90, 56	r_tests, 83
src/data/Qdata.f90, 56	time

```
pf_control::pf_control_type, 21
time_bwn_obs
     pf_control::pf_control_type, 21
     pf_parameters.dat, 55
time_obs
     pf control::pf control type, 21
     pf_parameters.dat, 55
timestep
     pf_control::pf_control_type, 21
trajectories
     diagnostics.f90, 88
type
     pf_control::pf_control_type, 21
     pf_parameters.dat, 55
ufac
     pf_control::pf_control_type, 21
     pf_parameters.dat, 56
uniformrandomnumbers1d
     gen rand.f90, 70
update_state
     perturb_particle.f90, 75
use_mean
     pf_control::pf_control_type, 21
     pf_parameters.dat, 56
use_rmse
     pf_control::pf_control_type, 22
     pf_parameters.dat, 56
use_talagrand
     pf_control::pf_control_type, 22
     pf parameters.dat, 56
use traj
     pf_control::pf_control_type, 22
     pf_parameters.dat, 56
use var
     pf_control::pf_control_type, 22
     pf_parameters.dat, 56
use_weak
     pf_control::pf_control_type, 22
     pf_parameters.dat, 56
weight
     pf_control::pf_control_type, 22
```