Maximum Entropy Model (I)

LING 572

Fei Xia

Week 4: 01/28-02/02/2010

MaxEnt in NLP

 The maximum entropy principle has a long history.

 The MaxEnt algorithm was introduced to the NLP field by Berger et. al. (1996).

 Used in many NLP tasks: Tagging, Parsing, PP attachment, ...

Reference papers

- (Ratnaparkhi, 1997)
- (Berger et. al., 1996)
- (Ratnaparkhi, 1996)
- (Klein and Manning, 2003)

People often choose different notations.

Notation

	Input	Output	The pair
(Berger et. al., 1996)	X	у	(x,y)
(Ratnaparkhi, 1997)	b	a	X
(Ratnaparkhi, 1996)	h	t	(h,t)
(Klein and Manning, 2003)	d	С	(c,d)

We following the notation in (Berger et al., 1996)

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training**

Case study: POS tagging

The Overview

Joint vs. Conditional models **

- Given training data $\{(x,y)\}$, we want to build a model to predict y for new x's. For each model, we need to estimate the parameters θ .
- Joint (generative) models estimate P(x,y) by maximizing the likelihood: $P(X,Y|\theta)$
 - Ex: n-gram models, HMM, Naïve Bayes, PCFG
 - Choosing weights is trivial: just use relative frequencies.
- Conditional (discriminative) models estimate P(y|x) by maximizing the conditional likelihood: P(Y|X, θ)
 - Ex: MaxEnt, SVM, etc.
 - Choosing weights is harder.

Naïve Bayes Model

Assumption: each f_m is conditionally independent from f_n given C.

The conditional independence assumption

 f_m and f_n are conditionally independent given c: $P(f_m \mid c, f_n) = P(f_m \mid c)$

Counter-examples in the text classification task:

P("bank" | politics) != P("bank" | politics, "bailout")

Q: How to deal with correlated features?

A: Many models, including MaxEnt, do not assume that features are conditionally independent.

Naïve Bayes highlights

- Choose $c^* = arg max_c P(c) \prod_k P(f_k \mid c)$
- Two types of model parameters:
 - Class prior: P(c)
 - Conditional probability: P(f_k | c)
- The number of model parameters: |C|+|CV|

P(f | c) in NB

	f ₁	f_2	 fj
C ₁	$P(f_1 c_1)$	$P(f_2 c_1)$	 $P(f_j \mid c_1)$
C_2	$P(f_1 c_2)$		
C _i	$P(f_1 c_i)$		 $P(f_j \mid c_i)$

Each cell is a weight for a particular (class, feat) pair.

Weights in NB and MaxEnt

- In NB
 - P(f | y) are probabilities (i.e., \in [0,1])
 - P(f | y) are multiplied at test time

$$P(y|x) = \frac{P(y) \prod_{k} P(f_k|y)}{Z}$$
$$= \frac{e^{\ln P(y) + \sum_{k} \ln P(f_k|y)}}{Z}$$

- In MaxEnt
 - the weights are real numbers: they can be negative.
 - the weights are added at test time

$$P(y|x) = \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{Z}$$

The highlights in MaxEnt

$$P(y|x) = \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{Z}$$

 $f_j(x,y)$ is a feature function, which normally corresponds to a (feature, class) pair.

Training: to estimate λ_j

Testing: to calculate P(y|x)

Main questions

- What is the maximum entropy principle?
- What is a feature function?

Modeling: Why does P(y|x) have the form?

$$P(y|x) = \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{Z}$$

• Training: How do we estimate λ_i ?

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training*
- Case study

The maximal entropy principle

The maximum entropy principle

- Related to Occam's razor and other similar justifications for scientific inquiry
- Make the minimum assumptions about unseen data.
- Also: Laplace's Principle of Insufficient Reason: when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely.

Maximum Entropy

- Why maximum entropy?
 - Maximize entropy = Minimize commitment
- Model all that is known and assume nothing about what is unknown.
 - Model all that is known: satisfy a set of constraints that must hold
 - Assume nothing about what is unknown: choose the most "uniform" distribution
 - choose the one with maximum entropy

Ex1: Coin-flip example (Klein & Manning, 2003)

- Toss a coin: p(H)=p1, p(T)=p2.
- Constraint: p1 + p2 = 1
- Question: what's p(x)? That is, what is the value of p1?
- Answer: choose the p that maximizes H(p)

$$H(p) = -\sum_{x} p(x) \log p(x)$$

p1=0.3

Coin-flip example** (cont)

Ex2: An MT example (Berger et. al., 1996)

Possible translation for the word "in" is:

{dans, en, à, au cours de, pendant}

Constraint:

$$p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1$$

Intuitive answer:

$$p(dans) = 1/5$$
 $p(en) = 1/5$
 $p(\grave{a}) = 1/5$
 $p(au\ cours\ de) = 1/5$
 $p(pendant) = 1/5$

An MT example (cont)

Constraints:

$$p(dans) + p(en) = 3/10$$

$$p(dans) + p(en) + p(au cours de) + p(pendant) = 1$$

Intuitive answer:

$$p(dans) = 3/20$$

$$p(en) = 3/20$$

$$p(\grave{a}) = 7/30$$

$$p(au \ cours \ de) = 7/30$$

$$p(pendant) = 7/30$$

An MT example (cont)

Constraints:

$$p(dans) + p(en) = 3/10$$

$$p(dans) + p(en) + p(\grave{a}) + p(au \ cours \ de) + p(pendant) = 1$$

$$p(dans) + p(\grave{a}) = 1/2$$

Intuitive answer:

??

Ex3: POS tagging (Klein and Manning, 2003)

Lets say we have the following event space:

|--|

... and the following empirical data:

3 5	11	13	3	1
-----	----	----	---	---

Maximize H:

... want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1

1/6	1/6	1/6	1/6	1/6	1/6
	•	•	•		

Ex3 (cont)

- Too uniform!
- N* are more common than V*, so we add the feature $f_N = \{NN, NNS, NNP, NNPS\}$, with $E[f_N] = 32/36$

NN	NNS	NNP	NNPS	VBZ	VBD
8/36	8/36	8/36	8/36	2/36	2/36

and proper nouns are more frequent than common nouns,
 so we add f_P = {NNP, NNPS}, with E[f_P] =24/36

NN	NNS	NNP	NNPS	VBZ	VBD
4/36	4/36	12/36	12/36	2/36	2/36

Ex4: Overlapping features (Klein and Manning, 2003)

Empirical

	Α	a
В	1	1
b	1	0

	А	a
В	p1	p2
b	р3	p4

	-	
	Α	a
В		
b		
	All =	- 1

Ex4 (cont)

Empirical

	Α	a
В	1	1
b	1	0

	А	a
В	p1	p2
b	$\frac{2}{3} - p_1$	$\frac{1}{3} - p_2$

$$A = 2/3$$

	Α	a
В	1/3	1/6
b	1/3	1/6

Ex4 (cont)

Empirical

	А	a
В	1	1
b	1	0

$$A = 2/3$$

	А	a
В		
b		

$$B = 2/3$$

	Α	a
В	p1	$\frac{2}{3} - p_1$
b	$\frac{2}{3} - p_1$	$p_1 - \frac{1}{3}$

	Α	a
В	4/9	2/9
b	2/9	1/9

The MaxEnt Principle summary

 Goal: Among all the distributions that satisfy the constraints, choose the one, p*, that maximizes H(p).

 $p^* = \arg \max_{p \in P} H(p)$

- Q1: How to represent constraints?
- Q2: How to find such distributions?

Reading #2

(Q1): Let P(X=i) be the probability of getting an i when rolling a dice. What is the value of P(x) with the maximum entropy if the following is true?

(a)
$$P(X=1) + P(X=2) = \frac{1}{2}$$

 $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$, $\frac{1}{8}$, $\frac{1}{8}$

(b)
$$P(X=1) + P(X=2) = 1/2$$
 and $P(X=6) = 1/3$ $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{18}$, $\frac{1}{18}$, $\frac{1}{18}$, $\frac{1}{18}$, $\frac{1}{18}$

(Q2) In the text classification task, |V| is the number of features, |C| is the number of classes. How many feature functions are there?

|C| * |V|

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training**
- Case study

Modeling

The Setting

- From the training data, collect (x, y) pairs:
 - $-x \in X$: the observed data
 - y ∈ Y: thing to be predicted (e.g., a class in a classification problem)
 - Ex: In a text classification task
 - x: a document
 - y: the category of the document

To estimate P(y|x)

The basic idea

- Goal: to estimate p(y|x)
- Choose p(x,y) with maximum entropy (or "uncertainty") subject to the constraints (or "evidence").

$$H(p) = -\sum_{(x,y)\in X\times Y} p(x,y) \log p(x,y)$$

The outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

The forms of P(x,y) and P(y|x)

Feature function

The definition

A feature function is a binary-valued function on events:

$$f_j: X \times Y \rightarrow \{0,1\}$$

The j in f_j corresponds to a (feature, class) pair (t, c) $f_j(x, y) = 1$ iff t is present in x and y = c.

• Ex:

$$f_j(x,y) = \begin{cases} 1 & \text{if } y = Politics & x contains "the" \\ 0 & o.w. \end{cases}$$

The weights in NB

	f ₁	f_2	•••	f _k
C ₁				
c_2				
C _i				

The weights in NB

	f ₁	f_2	•••	fj
C ₁	$P(f_1 c_1)$	$P(f_2 c_1)$		$P(f_j \mid c_1)$
c_2	$P(f_1 c_2)$			
C _i	$P(f_1 C_i)$			$P(f_j \mid c_i)$

Each cell is a weight for a particular (class, feat) pair.

The matrix in MaxEnt

Illines	t ₁	t ₂		t _k
C ₁	f ₁	f_2		f _k
C_2	f _{k+1}	f _{k+2}		f _{2k}
		Illinoise	Himme	Himme
C _i	f _{k*(i-1)+1}			f _{k*i}

Each feature function f_i corresponds to a (feat, class) pair.

The weights in MaxEnt

	t ₁	t ₂	 t _k
C ₁	$\lambda_{_1}$	$\lambda_{_2}$	 λ_k
c ₂			
· · ·	•••		λ_{ki}
C _i			' ki

Each feature function f_j has a weight λ_j .

Feature function summary

 A feature function in MaxEnt corresponds to a (feat, class) pair.

 The number of feature functions in MaxEnt is approximately |C| * |V|.

 A MaxEnt trainer is to learn the weights for the feature functions.

The outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

The forms of P(x,y) and P(y | x)

The expected return

- Ex1:
 - Flip a coin
 - if it is a head, you will get 100 dollars
 - if it is a tail, you will lose 50 dollars
 - What is the expected return?

$$P(X=H) * 100 + P(X=T) * (-50)$$

- Ex2:
 - If it is a x_i, you will receive v_i dollars?
 - What is the expected return?

$$\sum_{i} P(X = x_i) v_i$$

Calculating the expectation of a function

Let P(X = x) be a distribution of a random variable X. Let f(x) be a function of x.

Let $E_p(f)$ be the expectation of f(x) based on P(x).

$$E_P(f) = \sum_i P(X = x_i) f(x_i)$$

$$\sum_i P(X = x_i) v_i$$

Empirical expectation

- Denoted as : $\widetilde{p}(x)$
- Ex1: Toss a coin four times and get H, T, H, and H.
- The average return: (100-50+100+100)/4 = 62.5
- Empirical distribution: $\widetilde{p}(X=H)=3/4$ $\widetilde{p}(X=T)=1/4$
- Empirical expectation:
 3/4 * 100 + 1/4 * (-50) = 62.5

Model expectation

 Ex1: Toss a coin four times and get H, T, H, and H.

• A model:
$$p(x)$$

$$p(X = H) = 1/2$$

$$p(X = T) = 1/2$$

Model expectation:

$$1/2 * 100 + 1/2 * (-50) = 25$$

Some notations

Training data:

Empirical distribution: $\widetilde{p}(x, y)$

A model: p(x, y)

The jth feature function: $f_j(x, y)$

Empirical expectation of f_j $E_{\tilde{p}}f_j = \sum_{(x,y)\in X\times Y} \widetilde{p}(x,y)f_j(x,y)$

Model expectation of f_j $E_p f_j = \sum_{(x,y) \in X \times Y} p(x,y) f_j(x,y)$

Empirical expectation**

$$E_{\widetilde{p}}f_j = \sum_{x \in X, y \in Y} \widetilde{p}(x, y) f_j(x, y)$$

$$= \sum_{x \in X, y \in Y} \widetilde{p}(x) \widetilde{p}(y \mid x) f_j(x, y) = \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y)$$

$$= \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} \widetilde{p}(y \mid x_i) f_j(x_i, y)$$

$$=\frac{1}{N}\sum_{i=1}^{N} f_{i}(x_{i}, y_{i})$$

An example

Training data:

$$E_{\widetilde{p}}f_j = \frac{1}{N}\sum_{i=1}^N f_j(x_i, y_i)$$

Raw counts $\sum_{i=1}^{N} f_j(x_i, y_i)$

	t1	t2	t3	t4
c1	1	1	2	1
c2	1	0	0	1
сЗ	1	0	1	0

An example

Training data:

$$E_{\tilde{p}}f_{j} = \frac{1}{N}\sum_{i=1}^{N} f_{j}(x_{i}, y_{i})$$

Empirical expectation

	t1	t2	t3	t4
c1	1/4	1/4	2/4	1/4
c2	1/4	0/4	0/4	1/4
сЗ	1/4	0/4	1/4	0/4

Calculating empirical expectation

Let N be the number of training instances

for each instance x in the training data let y be the true class label of x for each feature t in x empirical_expect [t] [y] += 1/N

Model expectation**

$$E_p f_j = \sum_{x \in X, y \in Y} p(x, y) f_j(x, y)$$

$$= \sum_{x \in X, y \in Y} p(x)p(y|x)f_j(x,y) \approx \sum_{x \in X, y \in Y} \widetilde{p}(x)p(y|x)f_j(x,y)$$

$$= \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y) \qquad = \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y | x_i) f_j(x_i, y)$$

An example

• Suppose $P(y \mid x_i) = 1/3$

"Raw" counts

Training data:

	t1	t2	t3	t4
c1	3/3	1/3	2/3	2/3
c2	3/3	1/3	2/3	2/3
c3	3/3	1/3	2/3	2/3

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

An example

• Suppose $P(y|x_i) = 1/3$

Model expectation

Training data:

	t1	t2	t3	t4
c1	3/12	1/12	2/12	2/12
c2	3/12	1/12	2/12	2/12
сЗ	3/12	1/12	2/12	2/12

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Calculating model expectation

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{v \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Let N be the number of training instances

for each instance x in the training data calculate P(y|x) for every $y \in Y$ for each feature t in x for each $y \in Y$ model_expect [t] [y] += 1/N * $P(y \mid x)$

Empirical expectation vs. model expectation

$$E_{\tilde{p}}f_j = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

$$E_{p} f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Outline for modeling

• Feature function: $f_j(x, y)$

 Calculating the expectation of a feature function

The forms of P(x,y) and P(y | x)**

Constraints

Model expectation = Empirical expectation

$$E_p f_j = E_{\widetilde{p}} f_j = d_j$$

- Why impose such constraints?
 - The MaxEnt principle: Model what is known
 - To maximize the conditional likelihood: see Slides #24-28 in (Klein and Manning, 2003)

The conditional likelihood (**)

• Given the data (X,Y), the conditional likelihood is a function of the parameters λ

$$log P(Y|X,\lambda)$$

$$= log \prod_{(x,y)\in(X,Y)} P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{\sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}$$

$$= \sum_{(x,y)\in(X,Y)} (log e^{\sum_{j} \lambda_{j} f_{j}(x,y)} - log \sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)})$$

61

The effect of adding constraints

Bring the distribution closer to the data

Bring the distribution further away from uniform

Lower the entropy

Raise the likelihood of data

Restating the problem

The task: find p* s.t.
$$p^* = \underset{p \in P}{\operatorname{arg max}} H(p)$$

where
$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1,...,k\} \}$$

Objective function: H(p)

Constraints:
$$\{E_p f_j = E_{\tilde{p}} f_j = d_j, j = \{1,...,k\}\}$$

Using Lagrange multipliers (**)

$$\begin{aligned} & \text{Minimize A(p):} \qquad A(p) = -H(p) - \sum_{j=1}^k \lambda_j (E_p f_j - d_j) - \lambda_0 (\sum_{x,y} p(x,y) - 1) \\ & A'(p) = 0 \\ & \Rightarrow \frac{\delta(\sum_{x,y} p(x,y) \log p(x,y) - \sum_{j=1}^k \lambda_j ((\sum_{x,y} p(x,y) f_j(x,y)) - d_j) - \lambda_0 (\sum_{x,y} p(x,y) - 1))}{\delta p(x,y)} = 0 \\ & \Rightarrow 1 + \log p(x,y) - \sum_{j=1}^k \lambda_j f_j(x,y) - \lambda_0 = 0 \\ & \Rightarrow \log p(x,y) = (\sum_{j=1}^k \lambda_j f_j(x,y)) + \lambda_0 - 1 \\ & \Rightarrow p(x,y) = e^{\sum_{j=1}^k \lambda_j f_j(x,y) + \lambda_0 - 1} = e^{\sum_{j=1}^k \lambda_j f_j(x,y) + \lambda_0 - 1} \\ & \Rightarrow p(x,y) = \frac{e^{\sum_{j=1}^k \lambda_j f_j(x,y)}}{7} \quad \text{where } Z = e^{1 - \lambda_0} \end{aligned}$$

Questions

$$p^* = \arg\max_{p \in P} H(p)$$
 where
$$P = \{p \mid E_p f_i = E_{\widetilde{p}} f_i, j = \{1,...,k\}\}$$

- Is P empty?
- Does p* exist?
- Is p* unique?
- What is the form of p*?
- How to find p*?

What is the form of p*? (Ratnaparkhi, 1997)

$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1,...,k\} \}$$

$$Q = \{ p \mid p(x, y) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x, y)}, \alpha_j > 0 \}$$

Theorem: if
$$p^* \in P \cap Q$$
 then $p^* = \arg \max_{p \in P} H(p)$

Furthermore, p* is unique.

Two equivalent forms

$$p(x,y) = \pi \prod_{j=1}^k \alpha_j^{f_j(x,y)}$$

$$p(x, y) = \frac{e^{\sum_{j=1}^{k} \lambda_j f_j(x, y)}}{Z}$$

$$\pi = \frac{1}{Z} \quad \lambda_j = \ln \alpha_j$$

Modeling summary

Goal: find p* in P, which maximizes H(p).

$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1, ..., k\} \}$$

It can be proved that, when p* exists

- it is unique
- it maximizes the conditional likelihood of the training data
- it is a model in Q, where

$$Q = \{ p \mid p(x) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x)}, \alpha_j > 0 \}$$

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training**
- Case study: POS tagging

Decoding

Decoding

$$p(y \mid x) = \frac{e^{\sum_{j=1}^{k} \lambda_{j} f_{j}(x,y)}}{Z}$$

Z is the normalizer.

t ₁	t ₂		t _k
$\lambda_{_1}$	$\lambda_{_2}$		λ_k
			λ_{ki}
		λ_1 λ_2	λ_1 λ_2

The procedure for calculating P(y | x)

```
Z=0;
for each y ∈ Y
 sum = 0; // or sum = default_weight_for_class_y;
 for each feature t present in x
    sum += the weight for (t, y);
  result[y] = exp(sum);
 Z += result[y];
for each y \in Y
  P(y|x) = result[y] / Z;
```

MaxEnt summary so far

- Idea: choose the p* that maximizes entropy while satisfying all the constraints.
- p* is also the model within a model family that maximizes the conditional likelihood of the training data.
- MaxEnt handles overlapping features well.
- In general, MaxEnt achieves good performances on many NLP tasks.
- Next: Training: many methods (e.g., GIS, IIS, L-BFGS).

Hw5

Q1: run Mallet MaxEnt learner

The format of the model file:

```
FEATURES FOR CLASS c1
<default> 0.3243
t1 0.245
t2 0.491
```

• • • •

FEATURES FOR CLASS c2 <default> 0.3243 t1 -30.412 t2 1.349

. . . .

Q2: write a MaxEnt decoder

The formula for P(y|x):

$$p(y|x) = \frac{e^{\lambda_0(y) + \sum_{k=1}^K \lambda_k f_k(x,y)}}{Z}$$

 $\lambda_0(y)$ is the weight of the default feature for y.

The k in f_k corresponds to a (class, feature) pair (c_i, t_j)

 $f_k(x,y) = 1$ iff t_j is present in x and $y = c_i$.

Q2: calculate P(y|x)

The format of the model file:

FEATURES FOR CLASS c1

<default> 0.324

t1 0.245

t2 0.491

t3 -0.22

FEATURES FOR CLASS c2 < default > 0.456

t1 -30.4

t2 1.349

t3 2.42

Suppose x is "t1 t3"

$$p(c_1|x) = \frac{e^{\lambda_0(c_1) + \sum_{k=1}^K \lambda_k f_k(x,c_1)}}{Z}$$

$$p(c_1|x) = \frac{e^{0.324 + 0.245 - 0.22}}{Z}$$

$$p(c_2|x) = \frac{e^{\lambda_0(c_2) + \sum_{k=1}^K \lambda_k f_k(x, c_2)}}{Z}$$

$$p(c_2|x) = \frac{e^{0.456 - 30.4 + 2.42}}{Z}$$

$$P(c1 \mid x) = \frac{A}{Z}$$

$$P(c2 \mid x) = \frac{B}{Z}$$

$$P(c3 \mid x) = \frac{C}{Z}$$

$$Z = A + B + C$$

$$P(c1 \mid x) = \frac{A}{A+B+C}$$

$$P(c2 \mid x) = \frac{B}{A+B+C}$$

$$P(c3 \mid x) = \frac{C}{A+B+C}$$

- train2.vectors.txt
- train2.vectors

- test2.vectors.txt
- test2.vectors

info2vectors —input test2.vectors.txt —output test2.vectors —use-pipe-from train2.vectors

Q3-Q4: calculate expectation

$$E_{\tilde{p}}f_j = \sum_{(x,y)\in X\times Y} \tilde{p}(x,y)f_j(x,y)$$

$$E_p f_j = \sum_{(x,y) \in X \times Y} p(x,y) f_j(x,y)$$