LM-115 Suites et intégrales, MIME, deuxième semestre 2010-2011 Université Pierre et Marie Curie

Chapitre 4 : Fonctions réelles d'une variable réelle : continuité, dérivabilité etc...

Exercice 1

Soit a un réel non nul et b un réel. Etudier la limite en $+\infty$ et à droite en 0 de la fonction :

$$f:]0, +\infty[\longrightarrow \mathbb{R}, \ x \mapsto \frac{b}{x} E(\frac{x}{a}).$$

Exercice 2

$$f:]0, +\infty[\longrightarrow \mathbb{R}, \ x \mapsto \sin\left(\frac{1}{x}\right), \ g:]0, +\infty[\longrightarrow \mathbb{R}, \ x \mapsto x\sin(x)$$

f admet-elle une limite en 0? g admet-elle une limite en $+\infty$?

Exercice 3

On définit

$$\chi_{\mathbb{Q}}: \mathbb{R} \longrightarrow \{0,1\}, \ x \mapsto \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{sinon.} \end{cases}.$$

Etudier la continuité de cette fonction.

Exercice 4

Soit D une partie dense de \mathbb{R} .

- 1. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue telle que f(x) = 0 pour tout $x \in D$. Montrer que f = 0.
- 2. Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions continues telle que f(x) = g(x), pour tout $x \in D$. Montrer que f = g.

Exercice 5

Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$. Pour tout $x \in \mathbb{R}_+^*$, on pose $g(x) = \frac{f(x)}{x}$. On suppose f croissante et g décroissante. Montrer que f est continue sur \mathbb{R}_+^* . On pensera aux notions de limite à gauche et de limite à droite.

Exercice 6

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction T périodique (T > 0) et admettant une limite en $+\infty$. Que dire de f?

Exercice 7

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

Montrer que si f est continue en $a \in I$ alors f est bornée dans un voisinage de a.

Montrer que si f est continue en a et si $f(a) \neq 0$ alors f garde une signe constant dans un voisinage de a.

Exercice 8

Déterminer l'ensemble des fonctions continues en $0, f : \mathbb{R} \longrightarrow \mathbb{R}$, telles que pour tout $(x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y). On pensera a un TD précédent.

Exercice 9

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction telle qu'il existe K>0 tel que, pour tout $(x,y)\in \mathbb{R}^2$:

$$|f(x) - f(y)| \le K|x - y|^2.$$

Montrer que f est constante.

Exercice 10

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction dérivable sur \mathbb{R} . On suppose que f' admet en $+\infty$ une limite $\ell \in \mathbb{R}$. Montrer qu'alors

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \ell.$$

Exercice 11 Théorème de Darboux

Soit I un intervalle de \mathbb{R} et f une fonction de I dans \mathbb{R} dérivable sur I.

- 1. Soit $(a,b) \in I^2$ tel que a < b. On suppose que f'(a) < 0 et f'(b) > 0. Montrer qu'il existe $c \in]a,b[$ tel que f'(c) = 0.
- 2. En déduire que f'(I) est un intervalle, i.e f' vérifie le théorème des valeurs intermédiaires.
- 3. Que peut on dire de l'ensemble des fonctions vérifiant la propriété des valeurs intermédiaires par rapport à l'ensemble des fonctions continues. On pensera à la fonction

$$[0, +\infty[\longrightarrow \mathbb{R}, \ x \mapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{sinon.} \end{cases}.$$

Exercice 12 Caractérisation séquentielle de la continuité uniforme.

Soit I un intervalle de $\mathbb R$ et $f:D\longrightarrow \mathbb R$. Montrer que les assertions suivantes sont équivalentes :

- 1) f est uniformément continue sur I
- 2) Pour toutes suites u et v de points de I telles que u-v converge vers 0, la suite $(f(u_n)-f(v_n))_{n\in\mathbb{N}}$ converge vers 0.

Exercice 13

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction uniformément continue. Montrer qu'il existe des réels a et b tels que a > 0 et $b \ge 0$ et pour tout $x \in \mathbb{R}$, $|f(x)| \le a|x| + b$.

Exercice 14

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 , et $a \in \mathbb{R}$. On définit

$$g: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{si } x \neq a \\ f'(a) & \text{si } x = a \end{cases}$$

Montrer que q est de classe \mathcal{C}^1 sur \mathbb{R} .

Exercice 15

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^n $(n \geq 1)$ telles que $f^{(k)}(0) = g^{(k)}(0) = 0$, pour tout $0 \leq k \leq n-1$, $f^{(n)}(0) \neq 0$ et $g^{(n)}(0) \neq 0$. Etudier

$$\lim_{x \to 0} \frac{f(x)}{g(x)}.$$