Introduction to Turing Machines

Prof. Susan Older

4 November 2019

(CIS 252) Turing Machines 4 November 2019

Turing Machines: The Inspiration

What does algorithm (or effective method) mean?

Turing looked at what a computer¹ does:

- She makes marks on paper.
- She sometimes shifts attention from what was previously written to what she's writing now.

What determines what she writes next?

- The symbols she's currently looking at
- Her current state of mind

Turing Machines: A Little History

1928: David Hilbert poses the Entscheidungsproblem

Is there an effective method (i.e., an algorithm or mechanical procedure) that, when given an arbitrary statement in first-order logic, always correctly determines whether that statement is universally valid?

1935-6: Church & Turing independently show the answer is "no".

Both of them first needed to define effective method precisely:

- Alonzo Church introduces the λ -calculus, which later becomes the basis for functional-programming languages such as Haskell.
- Alan Turing introduces the notion of a Turing machine. The idea of a universal machine that could simulate other machines lies at the heart of today's computing.
- Turing also shows the two notions to be equivalent notions of computation.

(CIS 252)

Turing Machines

4 November 2019

Turing Machines: The Basics

A Turing machine is a hypothetical computing device that comprises:

- A tape of unbounded length containing cells Each cell is either empty or contains a symbol; only finitely many cells contain symbols.
- A tape head that can read a cell and move to the right or left
- A notion of state, which (along with current symbol) determines TM's behavior

Turing Machines 4 November 2019 (CIS 252) 4 November 2019 (CIS 252) Turing Machines

¹ Job title of person doing calculations

Turing Machines: More Basics

Running a Turing machine (think "program"):

- Write input string on the tape.
- 2 Execute the Turing machine (see below).
- 3 If/when the Turing machine halts, the result is what's written on the tape.

Behavior of TM depends on current state and current symbol:

- Read current symbol
- 2 Erase symbol and write new symbol (or leave cell blank)
- Move one cell to the right or to the left
- Update the state

(CIS 252)

Turing Machines

4 November 2019

5 / 14

Specifying TM Behavior: A Very Simple Example

Let's describe a TM that:

- Starts at the leftmost input symbol
- Converts as into bs (and vice versa)
- Stops when it sees a blank cell

The state-transition table:

		Current Symbol		
State		a	b	
scan		b,R,scan	a,R,scan	

How to read the table:

- If you're in state scan and you see symbol a, then (i) replace it with b, (ii) move to the right, and (iii) change to state scan.
- If you're in state scan and you see symbol b, then (i) replace it with a, (ii) move to the right, and (iii) change to state scan.

6 / 14

* If there's no instruction for current state/symbol: HALT!

(CIS 252) Turing Machines 4 November 2019

Same Simple TM: A Different Description

The state-transition table:

		Current Symbol		
State		a	b	
scan	1	b,R,scan	a,R,scan	

The state-transition diagram (a.k.a. bubble diagram):

- States are represented by circles ("bubbles").
- Transitions between states are represented by arrows.
- Each transition arrow is labeled by (in order): current symbol, symbol to be written, and direction tape head should move.
- * The start state is indicated by an arrow that does not originate from a state.

Same Simple TM: An Executable Version

A Haskell version:

import Turing

-- TM to swap 'a's and 'b's in the input string

To try it out in the interpreter:

*Main> stepRun convertAB "aaababbbaa"

(CIS 252) Turing Machines 4 November 2019 7 / 14 (CIS 252) Turing Machines 4 November 2019

Another TM Task: Odd or Even?

Desired behavior of TM:

- Input is a series of as and bs.
- Tape head starts at the leftmost input symbol.
- TM should determine whether the number of bs in the input string is even or odd:
 - If even, the symbol E should appear at end of string.
 - If odd, the symbol O should appear at end of string.

The general approach:

- Skip over any as.
- 2 Each time a b is read, switch states to indicate current status (even or odd).
- When a blank symbol is encountered, write E or O (depending on current state) and halt.

(CIS 252) Turing Machines 4 November 2019 9 / 1

Another TM Task: Odd or Even? (State-Transition Table)

The state-transition diagram (a.k.a. bubble diagram):

The state-transition table:

	a	b	~
evenB	a,R,evenB	b,R,oddB	E,R,done
oddB	a,R,oddB	b,R,evenB	O,R,done

- The start state is listed first in table (e.g., evenB).
- No transitions are possible from state done (thus omitted from table).
- If TM ever encounters a symbol in a state with no specification for that symbol, HALT.

Another TM Task: Odd or Even? (Bubble Diagram)

The general approach:

- Skip over any as.
- 2 Each time a b is read, switch states to indicate current status (even or odd).
- When a blank symbol is encountered, write E or O (depending on current state) and halt.

The state-transition diagram (a.k.a. bubble diagram):

(CIS 252) Turing Machines 4 November 2019 10 / 14

Another TM Task: Increment a Binary Number

Desired behavior of TM:

- Input is a series of 1s and 0s, representing a binary number.
- Tape head starts at the leftmost input symbol, finishes to the immediate left of the leftmost symbol of result.
- TM should increment the binary number by 1.

The general approach:

- Move tape head to least significant (i.e., rightmost) bit.
- ② If the symbol is 0 (or blank), change it to 1 and finish up (step 3). If, instead, the symbol is 1, replace with 0, and continue "carrying" for as long as necessary.
- To finish up, move tape head to left of result.

(CIS 252) Turing Machines 4 November 2019 11 / 14 (CIS 252) Turing Machines 4 November 2019 12 /

TM: Increment a Binary Number (Bubble Diagram)

The general approach:

- 1 Move tape head to least significant (i.e., rightmost) bit.
- If the symbol is 0 (or blank), change it to 1 and finish up (step 3).
 If, instead, the symbol is 1, replace with 0, and continue "carrying" for as long as necessary.
- 3 To finish up, move tape head to left of result

The state-transition diagram (a.k.a. bubble diagram):

(CIS 252) Turing Machines 4 November 2019 13 / 14

TM: Increment a Binary Number (State-Transition Table)

The state-transition table:

	0	1	~
scanR	0,R,scanR	1,R,scanR	\sim ,L carry
carry	1,L,finish	0,L,carry	1,L finish
finish	0,L finish	1,L,finish	

- The start state is listed first in table (e.g., scanR).
- \bullet ~ represents an empty cell (i.e., blank symbol).
- If TM ever encounters a symbol in a state with no specification for that symbol, HALT.

(CIS 252) Turing Machines 4 November 2019 14 / 14