

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Análisis Funcional

Autor: Jesús Muñoz Velasco

Índice general

Repaso

Definición 0.1 (Espacio normado). E un espacio vectorial y $\|.\|: E \to \mathbb{R}$ una norma que verifica:

- 1. $||x|| \geqslant 0 \ \forall x \in E$
- 2. $||x|| = 0 \iff x = 0$
- 3. $||x + y|| \le ||x|| + ||y||$
- 4. $\|\lambda x\| = |\lambda| \ \forall x, y \in E, \ \lambda \in \mathbb{R}$

Podemos definir además una función $d: E \times E \to \mathbb{R}$ dada por d(x,y) = ||x-y|| $\forall x,y \in E$ llamada distancia.

Si E es completo (toda sucesión de cauchy es convergente), entonces (E, ||.||) es un espacio de Banach.

Definición 0.2 (Espacio prehilbertiano). Supongamos que H es un espacio vectorial, un producto escalar es una función $(.,.): H \times H \to \mathbb{R}$ tal que sea bilineal, simétrica, positiva y definida positiva, es decir:

- 1. $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z), (z, \alpha x + \beta y) = \alpha(z, x) + \beta(z, y)$ donde $x, y, z \in H$, $\alpha, \beta \in \mathbb{R}$
- 2. $(x,y) = (y,x) \ \forall x,y \in H$
- 3. $(x,x) \ge 0 \forall x \in H$
- 4. $(x, x) > 0 \forall x \in H \setminus \{0\}$

Las dos últimas propiedades se pueden resumir en que $(x, x) = 0 \iff x = 0$.

Todo espacio prehilbertiano es en particular un espacio normado, ya que podemos definir $||x|| = \sqrt{(x,x)}$ que es una norma.

Si $\|.\|$ es completa, diremos que (H,(.,.)) es un espacio de Hilbert

Ejemplo.

1. $(\mathbb{R}, |.|)$ es de Banach.

Análisis Funcional Índice general

2. $(\mathbb{R}^N, |.|)$, donde $|x| = |(x_1, x_2, \dots, x_N)| = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$. Además es de Hilbert ya que $(x, y) = \sum_{i=1}^N x_i y_i$ es un producto escalar.

3. dado $A \subset \mathbb{R}^N$ tomamos $\mathcal{L}_b(A) = \{f : A \to \mathbb{R} \text{ tal que } f \text{ es continua y acotada en } A\}$ (la b viene de bounded en inglés). Podemos definir una norma en este espacio como

$$||f||_{\mathcal{L}_b(A)} = \sup\{|f(x)| : x \in A\}$$

4. Supongamos que $K \subset \mathbb{R}^N$ compacto. Consideramos el conjunto de las funciones continuas en K denotado por $\mathcal{L}(K)$ y el espacio (K,(.,.)), donde $(f,g) = \int_K f(x)g(x)dx$ es un producto escalar que hace a este un espacio prehilbertiano. Tendríamos $||f|| = \left(\int_K f(x)^2 dx\right)^{1/2}$

Ejemplo (El espacio del punto 4 No es de Hilbert). $K = [0,1] \subset \mathbb{R}$. Tenemos $\forall n \in \mathbb{N}$ la función $f_n : [0,1] \to \mathbb{R}^+$ donde f_n^2 viene dada por la siguiente gráfica [insertar gráfica]:

$$||f_n||^2 = \int_0^1 f_n^2(x) dx = \frac{1}{n} \cdot \frac{1}{2} = \frac{1}{2n}$$

 $||f_n|| = \frac{1}{\sqrt{2n}} \to 0$

y vemos que $\{f_n(x)\}\to 0$ para todo $x\in (0,1]$ mientras que $\{f_n(0)=1\}\to 1$.

Con esto tenemos que la sucesión $\{f_n\} \to 0$ en $(\mathcal{L}([0,1]),(.,.))$ (ya que la norma converge a 0).

PARA MAÑANA RESOLVER QUÉ ES LO QUE NO ESTÁ CLARO (la contradicción para ser espacio de Hilbert).

Consideramos $\emptyset \neq \Omega \subset \mathbb{R}^N$ medible, entonces podemos definir $L^2(\Omega) = \mathcal{L}^2(\Omega) / \sim = \{f : \Omega \to \mathbb{R} \text{ medible } : \int_{\Omega} f(x)^2 dx < \infty\}$. $L^2(\Omega)$ con la norma definida anteriormente (en el punto 4) es un espacio de Hilbert (teorema de Fisher)

Ejemplo. Sea $1 \leq p < \infty$. Consideramos $L^p(\Omega) = \{f : \Omega \to \mathbb{R} \text{ medibles } : \int_{\Omega} |f|^p dx < \infty\}$. Entonces tenemos que con $||f||_{L^p(\Omega)} = (\int_{\Omega} |f|^p dx)^{1/p}$ es un espacio de Banach. Recordemos para este resultado la desigualdad de Hilder, Minteowski.

Definimos el conjugado de p.

Tenemos $p' = \frac{p}{p-1}$ para $1 y <math>\infty$ para p = 1. Con esto tenemos que $\frac{1}{p} + \frac{1}{p'} = 1$. La desigualdad de Holder dice que si $f \in L^p(\Omega)$ y $g \in L^{p'}(\Omega)$ entonces $fg \in L^1(\Omega)$ y además $\int |f(x)g(x)|dx \leq (\int |f|^p dx)^{1/p} dx (\int |f|^{p'} dx)^{1/p'} = ||f||_{L^p} ||g||_{L^{p'}}$

Ejemplo.

1.
$$(\mathbb{R}^N, \|.\|_p)$$
 con $\|x\|_p = (\sum_{i=1}^N |x_i|^p)^{1/p}(x, y) = \sum_{i=1}^N x_i y_i$.

Análisis Funcional Índice general

- 2. \mathbb{R}^N , $\|.\|_{\infty}$ con $\|x\|_{\infty} = \max\{|x_i| : i = 1, ..., N\}$
- 3. Sea $p = \infty$. Tenemos $L^{\infty} = \{f : \Omega \to \mathbb{R} \text{ medible } : \sup\{|f(x)| : x \in \Omega\} < \infty\}$. A este supremo lo llamaremos supremo esencial que se define de la siguiente forma:

 $\sup_{\Omega} |f| = \inf\{M \ge 0 : |f(x)| \le M \text{ a.e. } x \in \Omega\}$ a.e. significa almost everywhere (casi por doquier). En algunos libros se denota por ess sup.

Tendremos que reescribir lo anterior como $L^{\infty} = \{f : \Omega \to \mathbb{R} \text{ medible } : \sup_{\Omega} |f| < \infty\}.$

Entonces el espacio $(L^{\infty}, ||x||_{\infty})$ con $||f||_{\infty} = \sup_{\Omega} |f|$ es un espacio de Banach.

La designaldad de Holder con $p = \infty$, p' = 1 nos dice que $\lambda \in L^{\infty}$, $g \in L^{1}(\Omega)$ entonces $fg \in L^{1}(\Omega)$ y $||fg||_{L^{1}} \leq ||f||_{L^{\infty}} ||g||_{L^{1}}$ es una norma en H.

Ejemplo. Consideramos $1 \leq p < \infty$. Consideramos $\mathcal{L}^p = \{x : \mathbb{N} \to \mathbb{R} : \sum_{n=1}^{\infty} |x(n)|^p < \infty \}$. Si definimos $||x||_{\mathcal{L}^p} = (\sum_{n=1}^{\infty} |x(n)|^p)^{1/p}$, entonces $(\mathcal{L}^p, ||.||_p)$ es un espacio de Banach.

Esto se hace tomando $x \in \mathcal{L}^p$, $y \in \mathcal{L}^{p'}$ y tenemos que $xy \in \mathcal{L}^1$ y que $||xy||_{\mathcal{L}^1} \le ||x||_{\mathcal{L}^p}||y||_{\mathcal{L}^{p'}}$ de la que se deduce la desigualdad de Mikowsky.

Para p=2 tenemos que es un espacio de Hilbert.

Para $p = \infty$ podemos definir $\mathcal{L}^{\infty} = \{x : \mathbb{N} \to \mathbb{R} : x \text{ sucesión acotada}\}$ y con $||x||_{\infty} = \sup\{|x(n)| : n \in \mathbb{N}\}$ es un espacio de Banach.

Ejemplo. Tomamos $C = \{x \in \mathcal{L}^{\infty} : x \text{ es convergente}\}$ y es un subespacio del anterior.

Podemos tomar otro subespacio de este $C_0 = \{x \in C : x \text{ es convergente a } 0\}$