ITM(SLS) BARODA UNIVERSITY, VADODARA

School of Computer Science Engineering & Technology (BTECH.SEM-1)

SUBJECT: DISCRETE MATHEMATICS WITH PYTHON

Tutorial-2 Propositional Logics and Predicate Logics

	Propo	sitional Logics and Predicate Logics	
Q1.	truth values of those that are propositions?		
	a) Boston is the capital of Massachusetts.b) Miami is the capital of Florida.		
	c) $2 + 3 = 5$.		
	d) $5 + 7 = 10$.		
	(e) x + 2 = 11.		
	f) Answer this question.		
Q2.	Let <i>p</i> and <i>q</i> be the propositions "The election is decided" and "The votes have been counted," respectively. Express		
		apound propositions as an English sentence.	
	\mathbf{a}) $\neg p$	$\mathbf{b}) p \vee q$	
	$\mathbf{c}) \neg p \wedge q$	$\mathbf{d}) \ q \to p$	
	e) $\neg q \rightarrow \neg p$	$\mathbf{f}) \neg p \rightarrow \neg q$	
	$\mathbf{g}) \ p \leftrightarrow q$	$\mathbf{h}) \ \neg q \lor \ (\neg p \land q)$	
Q3.	Let <i>p</i> , <i>q</i> , and <i>r</i> be the propositions <i>p</i> : You have the flu. <i>q</i> : You miss the final examination.		
	r: You pass the course.		
	Express each of these propositions as an English sentence.		
	$\mathbf{a}) \ p \to q$	$\mathbf{b}) \neg q \leftrightarrow r$	
	c) $q \rightarrow \neg r$	$\mathbf{d}) p \vee q \vee r$	
	e) $(p \rightarrow \neg r) \lor (q \rightarrow \neg r)$ f) $(p \land q) \lor (\neg q \land r)$		
Q4.	Construct a truth table for each of these compound propositions.		

	e) No student in your class has taken a course in logic programming.		
Q10.	Express these system specifications using the propositions p "The user enters a valid password," q "Access is granted," and r "The user has paid the subscription fee" and logical connectives (including negations). a) "The user has paid the subscription fee, but does not enter a valid password." b) "Access is granted whenever the user has paid the subscription fee and enters a valid password." c) "Access is denied if the user has not paid the subscription fee." d) "If the user has not entered a valid password but has paid the subscription fee, then access is granted."		
Q11.	Let $Q(x, y)$ be the statement "x has sent an e-mail message to y," where the domain for both x and y consists of all students in your class. Express each of these quantifications in English. a) $\exists x \exists y Q(x, y)$ b) $\exists x \forall y Q(x, y)$		
	c) $\forall x \exists y Q(x, y) \mathbf{d}$ $\exists y \forall x Q(x, y)$		
	e) $\forall y \exists x Q(x, y) \mathbf{f}$) $\forall x \forall y Q(x, y)$		
Q12.	Translate these statements into English, where the domain for each variable		
	consists of all real numbers. Also find truth value		
	a) $\exists x \ \forall y \ (xy = y)$		
	b) $\forall x \ \forall y (((x \ge 0) \land (y < 0)) \rightarrow (x - y > 0))$		
	c) $\forall x \ \forall y \ \exists z(x = y + z)$		
Q13.	Use rules of inference to show that the hypothesis "Randy works hard," "If Randy		
	works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get		
	the job" imply the conclusion "Randy will not get the job."		
Q14.	Use direct proof to show that		
	(i) the sum of two odd integers is even. (ii) The sum of two even integers is		
Q15.	Define the following terms:		
Q20.	1. Propositions.		
	2. Logical connectives with truth table.		
	3. Tautology, contradiction, and contingency. 4. Converse, contrapositive and inverse.		
	4. Converse, contrapositive and inverse.5. Logically equivalent		
	6. Predicates		
	7. Quantifiers, Universal, Existential		

- 8. Theorem, proofs, lemma, axiom9. Types of proof.