

Contents

Background

Finite field mathematics & motivation

Design

Overview of components & design

Live Demo

Description of processor & working example

Conclusion

Future work & questions

Finite Fields

Brief Mathematical Background

- A field is a set on which addition, subtraction, multiplication, and division are defined.
- A finite field (or Galois field) is a field that contains a finite number of elements.
- A primitive polynomial generates all elements of a finite field.
- We can perform math using these elements!

Applications

- Mathematical applications such as number theory and algebraic geometry.
- Computer science applications such as cryptography, coding theory, and error detection & correction.

Our Example

For the duration of this presentation, we'll be using the primitive polynomial $x^3 + x^2 + 1$.

- This "input" polynomial of GF(2) has degree 3 and generates $2^3 1 = 7$ elements.
- These elements are cyclic [2].
- We use two different representations for the elements: **element form** and **polynomial form**. Different mathematical operations require using different forms.
- The number zero is the additive identity [1].

Table 1: The 8 Element Vectors of $x^3 + x^2 + x^0$ in GF(2)[x]

Element	Symbol	Polynomial Form	Symbol
0 (NULL)	[1]	0+0+0	000
$oldsymbol{eta}^0$	000	$0+0+\beta^{0}$	001
$oldsymbol{eta}^1$	001	$0+\beta^1+0$	010
$oldsymbol{eta}^2$	010	β^2+0+0	100
$oldsymbol{eta}^3$	011	$eta^2 + 0 + eta^0$	101
$oldsymbol{eta}^4$	100	$\beta^2 + \beta^1 + \beta^0$	111
$oldsymbol{eta}^5$	101	$0+\beta^1+\beta^0$	011
$oldsymbol{eta}^6$	110	$\beta^2 + \beta^1 + 0$	110
$oldsymbol{eta}^7$	[2]	$0+0+\beta^{0}$	001

*Finite Field Arithmetic

Addition & Subtraction

- Addition & subtraction are equivalent
- Performed by computing bitwise XOR with the operands in polynomial form
- Example:

$$β^4 + β^3 = 111 ⊕ 101$$

= 010
= $β^1$

Multiplication

- Identical to the sum of the operands in element form modulus 2ⁿ – 1
- The modulus is required because of the cyclic nature of the finite field
- Example:

$$\beta^4 \times \beta^3 = (100 + 011) \% 111$$

= 000
= β^0

Division

- Similar to multiplication, but is the difference of the operands in element form modulus 2ⁿ – 1
- Example:

$$\beta^4 \div \beta^3 = (100 - 011) \% 111$$

= 001
= β^1

Note: The output form will always be the same as the input form.

Scope

Input polynomials, $GF(p^n)$

- p = 2
- Assumed primitive
- Polynomial degrees: $2 \le n \le 9$
- Represented as a 1-indexed 9-bit vector, with the bit position representing all the terms except the 0th
 - Example: $x^9 + x^7 + x^3 + x^2 + 1$ is represented as 1 0100 0110

Values generated in $GF(2^n)$

- Field order: $2^n 1$ elements
- Field range: $[0, 2^n 2]$
- Elements **do not** include the additive identity (-1st term)
- Elements include the multiplicative identity (0th term)
- Elements stop generating on $2^n 1$

Instructions

Opcode	Instruction	Description	Cycles
000	ldi	Load immediate value to operand 1	2
001	add	Add operand 1 to operand 2	2
010	mul	Multiply operand 1 by operand 2	2
011	div	Divide operand 1 by operand 2	2
100	ld	Load memory value to operand 1	2
101	init	Initialize polynomial constants	2
110	gen	Generate all 2 ⁿ polynomial elements	$2^{n} - 1$
111	rst	Reset	2

12-bit instruction – opcode (bits 11-9) & operand (bits 8-0)

Program Counter

- The program counter (PC) holds the address of the next instruction to be executed.
- Because different instructions require a different number of clock cycles to complete, the PC must know the instruction being performed (the first five inputs).
- In order to properly consider the number of clock cycles required to generate the field elements, it must also know the number of elements (size).
- The output is the next instruction to execute.

Polynomial Generator

- The polynomial generator spawns all the elements generated by the input polynomial. These are the elements that we will perform mathematical operations with.
- The address (addr) is the element form of the polynomial.
- The constants in the polynomial generator are reset when init is set to high and the polynomials are populated when gen is set to high.
- The outputs are the size of the field and the polynomial form of the element.

Control Unit

- The control unit processes the opcode to split it into individual instructions to send to the other components in the circuit.
- The elem output denotes whether to use the element or polynomial form of the element.

Arithmetic Logic Unit

- The arithmetic logic unit (ALU) is responsible for performing the mathematical operations.
- The inputs include the operands, the field size, opcode, and an enable bit.
- It will perform addition/subtraction, multiplication, and division.

Future Work

- Improve latency of instructions:
 - Instructions without memory lookups, besides gen (ldi, add, init, rst), can be reduced to single-cycle operations by modifying the program counter
 - Memory read instructions (mul, div, ld) can be reduced to singlecycle operations by modifying the memory interface
- Add to the CPU:
 - capability to look up ALU output in memory
 - support for arithmetic with the additive identity (0)
 - support for checking irreducibility of input polynomials
 - support for checking primitivity of irreducible polynomials
- Investigate methods of optimizing generation of elements

References

- https://mathworld.wolfram.com/FiniteField.html
- https://en.wikipedia.org/wiki/Finite_field

