

Ell. In défait le poulties paritire et regolix Ay = (max(y, 0), y = - min X. So fet impide tile du A got define:

Les propriétés fondamentales de l'intégrale de Lebesgue

- (L1) Pour toute constante $c \in \mathbb{R}$ on a $\int_A c d\mu = c\mu(A)$. Conséquences:
 - La fonction constante = 0 est intégrable sur tout ensemble A et son intégrale sur A est égale à 0.
 - 2. Toute fonction constante non nulle est intégrable sur A si et seulement si $\mu(A) < +\infty$.
 - 3. On a la formule pratique suivante pour calculer la mesure d'un ensemble A:

$$\mu(A) = \int_A 1 \, d\mu.$$

Les propriétés fondamentales de l'intégrale de Lebesgue

(L3) (relation de Chasles) Supposons que $A_1 \cap A_2 = \emptyset$ et soit $f: A_1 \cup A_2 \to \mathbb{C}$. Si f est intégrable sur A_1 et sur A_2 alors f est intégrable sur $A_1 \cup A_2$ avec en plus

$$\int_{A_1 \cup A_2} f \, d\mu = \int_{A_1} f \, d\mu + \int_{A_2} f \, d\mu.$$

(L4) Soient $f, g: A \to \mathbb{R}$ telles que f(y) = g(y) μ - p. p. $y \in A$. Si f est intégrable sur A alors g est intégrable sur A avec en plus

$$\int_A f \, d\mu = \int_A g \, d\mu.$$

Exemple

Soit $f:]0,1[\rightarrow IR]$ donnée par

$$f(x) = \begin{cases} 1 & \text{si} & x \in Q \cap]0, 1[\\ 0 & \text{si} & x \in (R-Q) \cap]0, 1[.\end{cases}$$

où Q désigne l'ensemble des nombres rationnels.

Montrer que f est intégrable Lebesgue et non intégrable au sens de Riemann.