Rank-74532 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_0^2 X_2 + X_1^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(8)$ is 1378161230

General information

Number of lines	2
Number of points	81
Number of singular points	1
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	64
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{2}
Type of lines on points	$2, 1^{16}, 0^{64}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{769}$$

$$\ell_1 = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

Rank of lines: (4673, 4744)

Rank of points on Klein quadric: (769, 1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_{138} = (0,0,1,1) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

$0: P_1 = (0, 1, 0, 0)$ lies on line ℓ_0	9: $P_{193} = (0,7,1,1)$ lies on line ℓ_0
1: $P_2 = (0, 0, 1, 0)$ lies on line ℓ_1	$10: P_{201} = (0,0,2,1)$ lies on line ℓ_1
$2: P_3 = (0,0,0,1)$ lies on line ℓ_1	11: $P_{265} = (0,0,3,1)$ lies on line ℓ_1
$3: P_{146} = (0, 1, 1, 1)$ lies on line ℓ_0	12: $P_{329} = (0, 0, 4, 1)$ lies on line ℓ_1
4: $P_{153} = (0, 2, 1, 1)$ lies on line ℓ_0	13 : $P_{393} = (0, 0, 5, 1)$ lies on line ℓ_1
$5: P_{161} = (0, 3, 1, 1) \text{ lies on line } \ell_0$	14: $P_{457} = (0,0,6,1)$ lies on line ℓ_1
6: $P_{169} = (0, 4, 1, 1)$ lies on line ℓ_0	15 : $P_{521} = (0, 0, 7, 1)$ lies on line ℓ_1
7: $P_{177} = (0, 5, 1, 1)$ lies on line ℓ_0	
8: $P_{185} = (0, 6, 1, 1)$ lies on line ℓ_0	

The single points on the surface are:

Points on surface but on no line

The surface has 64 points not on any line: The points on the surface but not on lines are:

$0: P_4 = (1, 1, 1, 1)$	11: $P_{87} = (5, 1, 0, 1)$
$1: P_{12} = (1,0,1,0)$	$12: P_{88} = (6, 1, 0, 1)$
$2: P_{20} = (1, 1, 1, 0)$	$13: P_{97} = (7, 2, 0, 1)$
$3: P_{31} = (4, 2, 1, 0)$	$14: P_{108} = (2, 4, 0, 1)$
$4: P_{42} = (7,3,1,0)$	$15: P_{134} = (4,7,0,1)$
$5: P_{50} = (7, 4, 1, 0)$	$16: P_{157} = (4, 2, 1, 1)$
$6: P_{53} = (2, 5, 1, 0)$	17: $P_{158} = (5, 2, 1, 1)$
$7: P_{63} = (4, 6, 1, 0)$	$18: P_{175} = (6, 4, 1, 1)$
$8: P_{69} = (2,7,1,0)$	$19: P_{176} = (7, 4, 1, 1)$
$9: P_{75} = (1,0,0,1)$	$20: P_{195} = (2,7,1,1)$
$10: P_{85} = (3, 1, 0, 1)$	$21: P_{196} = (3,7,1,1)$

```
22: P_{206} = (5,0,2,1)
                                                                 44: P_{411} = (2, 2, 5, 1)
23: P_{208} = (7, 0, 2, 1)
                                                                 45: P_{426} = (1, 4, 5, 1)
24: P_{216} = (7, 1, 2, 1)
                                                                 46: P_{442} = (1, 6, 5, 1)
25: P_{236} = (3,4,2,1)
                                                                 47: P_{443} = (2, 6, 5, 1)
26: P_{245} = (4, 5, 2, 1)
                                                                 48: P_{447} = (6, 6, 5, 1)
27: P_{252} = (3, 6, 2, 1)
                                                                 49: P_{455} = (6,7,5,1)
28: P_{253} = (4, 6, 2, 1)
                                                                 50: P_{476} = (3, 2, 6, 1)
29: P_{254} = (5, 6, 2, 1)
                                                                 51: P_{482} = (1, 3, 6, 1)
30: P_{282} = (1, 2, 3, 1)
                                                                 52: P_{484} = (3, 3, 6, 1)
31: P_{302} = (5,4,3,1)
                                                                 53: P_{485} = (4, 3, 6, 1)
32: P_{306} = (1, 5, 3, 1)
                                                                 54: P_{493} = (4, 4, 6, 1)
33: P_{310} = (5,5,3,1)
                                                                 55: P_{514} = (1, 7, 6, 1)
34: P_{312} = (7, 5, 3, 1)
                                                                 56: P_{524} = (3, 0, 7, 1)
35: P_{328} = (7,7,3,1)
                                                                 57: P_{525} = (4,0,7,1)
36: P_{331} = (2,0,4,1)
                                                                 58: P_{533} = (4, 1, 7, 1)
37: P_{335} = (6,0,4,1)
                                                                 59: P_{543} = (6, 2, 7, 1)
38: P_{339} = (2,1,4,1)
                                                                 60: P_{547} = (2, 3, 7, 1)
39: P_{358} = (5, 3, 4, 1)
                                                                 61: P_{563} = (2, 5, 7, 1)
40: P_{359} = (6, 3, 4, 1)
                                                                 62: P_{564} = (3, 5, 7, 1)
41: P_{360} = (7, 3, 4, 1)
                                                                 63: P_{567} = (6, 5, 7, 1)
42: P_{384} = (7, 6, 4, 1)
43: P_{390} = (5, 7, 4, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_{138}

Line 1 intersects

Line	ℓ_0
in point	P_{138}

The surface has 81 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$14: P_{87} = (5, 1, 0, 1)$	28: $P_{177} = (0, 5, 1, 1)$
$1: P_2 = (0, 0, 1, 0)$	$15: P_{88} = (6, 1, 0, 1)$	$29: P_{185} = (0, 6, 1, 1)$
$2: P_3 = (0,0,0,1)$	$16: P_{97} = (7, 2, 0, 1)$	$30: P_{193} = (0,7,1,1)$
$3: P_4 = (1,1,1,1)$	$17: P_{108} = (2, 4, 0, 1)$	$31: P_{195} = (2,7,1,1)$
$4: P_{12} = (1, 0, 1, 0)$	18: $P_{134} = (4,7,0,1)$	$32: P_{196} = (3,7,1,1)$
$5: P_{20} = (1, 1, 1, 0)$	19: $P_{138} = (0, 0, 1, 1)$	$33: P_{201} = (0, 0, 2, 1)$
$6: P_{31} = (4, 2, 1, 0)$	$20: P_{146} = (0, 1, 1, 1)$	$34: P_{206} = (5,0,2,1)$
$7: P_{42} = (7, 3, 1, 0)$	$21: P_{153} = (0, 2, 1, 1)$	$35: P_{208} = (7,0,2,1)$
$8: P_{50} = (7, 4, 1, 0)$	$22: P_{157} = (4, 2, 1, 1)$	$36: P_{216} = (7, 1, 2, 1)$
$9: P_{53} = (2, 5, 1, 0)$	$23: P_{158} = (5, 2, 1, 1)$	$37: P_{236} = (3,4,2,1)$
$10: P_{63} = (4, 6, 1, 0)$	$24: P_{161} = (0, 3, 1, 1)$	$38: P_{245} = (4, 5, 2, 1)$
$11: P_{69} = (2,7,1,0)$	$25: P_{169} = (0, 4, 1, 1)$	$39: P_{252} = (3, 6, 2, 1)$
$12: P_{75} = (1,0,0,1)$	$26: P_{175} = (6, 4, 1, 1)$	$40: P_{253} = (4, 6, 2, 1)$
13: $P_{85} = (3, 1, 0, 1)$	$27: P_{176} = (7, 4, 1, 1)$	$41: P_{254} = (5, 6, 2, 1)$
, , , ,	• • • • •	(, , , ,

42: $P_{265} = (0, 0, 3, 1)$ 43: $P_{282} = (1, 2, 3, 1)$ 44: $P_{302} = (5, 4, 3, 1)$	$56: P_{384} = (7, 6, 4, 1)$ $57: P_{390} = (5, 7, 4, 1)$ $58: P_{393} = (0, 0, 5, 1)$	70: $P_{493} = (4, 4, 6, 1)$ 71: $P_{514} = (1, 7, 6, 1)$ 72: $P_{521} = (0, 0, 7, 1)$
$45: P_{306} = (1, 5, 3, 1)$ $46: P_{310} = (5, 5, 3, 1)$ $47: P_{312} = (7, 5, 3, 1)$ $48: P_{328} = (7, 7, 3, 1)$	$59: P_{411} = (2, 2, 5, 1)$ $60: P_{426} = (1, 4, 5, 1)$ $61: P_{442} = (1, 6, 5, 1)$ $62: P_{443} = (2, 6, 5, 1)$	73: $P_{524} = (3,0,7,1)$ 74: $P_{525} = (4,0,7,1)$ 75: $P_{533} = (4,1,7,1)$ 76: $P_{543} = (6,2,7,1)$
$49: P_{329} = (0, 0, 4, 1)$ $50: P_{331} = (2, 0, 4, 1)$ $51: P_{335} = (6, 0, 4, 1)$	$63: P_{447} = (6, 6, 5, 1)$ $64: P_{455} = (6, 7, 5, 1)$ $65: P_{457} = (0, 0, 6, 1)$	$76: P_{543} = (0, 2, 7, 1)$ $77: P_{547} = (2, 3, 7, 1)$ $78: P_{563} = (2, 5, 7, 1)$ $79: P_{564} = (3, 5, 7, 1)$
$52: P_{339} = (2, 1, 4, 1)$ $53: P_{358} = (5, 3, 4, 1)$ $54: P_{359} = (6, 3, 4, 1)$ $55: P_{360} = (7, 3, 4, 1)$	$66: P_{476} = (3, 2, 6, 1)$ $67: P_{482} = (1, 3, 6, 1)$ $68: P_{484} = (3, 3, 6, 1)$ $69: P_{485} = (4, 3, 6, 1)$	$80: P_{567} = (6, 5, 7, 1)$