GTX Geothermal Datathon 2021

Team Name: GeoStars

Team Members:

Blair Cann, Zahra Esmaeilzadeh, Naimeh Riazi, Paulina Wozniakowska, Jieyu Zhang

Project Overview

Quantitative

Problems

Underestimation

Limited True temperature measurements

Approaches

ML model for True Temperature Predictions

DST data and well log information

Qualitative

Estimate geothermal potential

Identify high permeability/productive areas

Simplified economic evaluation

Machine Learning Model

Predictions & Feature Importance – Duvernay

Predictions & Feature Importance – Eaglebine

Eaglebine

Duvernay

Geothermal Economics

Energetic productivity

Energy produced = Heat Capacity x Flow Rate x Temperature Change x Conversion Efficiency

Economic Factors

- Flow rate
- Temperature
- Surface infrastructure
- Pump and heat exchanger maintenance
- Well integrity (age)
- Purpose

Technology

Perceived Value

utilization of hot, currently producing wells with high water cuts for combined heat, power, and oil production

- Longer lifespan of producing wells
- Low carbon energy
- Future operations can consider two resources
- Heat and power can be used locally to reduce carbon intensity of oil and gas operations
- o Initiates geothermal operations in prospective area
- Abundant wells for reinjection or monitoring

Future Development

- Fluid engineering for binary systems
- Nano particles in closed loop fluids
- Thermoelectric generators (near 100% efficiency)
- Element extraction from brine (not just lithium)
- Real time monitoring using DAS fiber optics
- Accurate BHT temperature method

Using existing/developed wells and basins

Advantages

- Subsurface disturbance already exists
- Data is abundant
- Infrastructure of some sort already exists
- Opportunity to reassess safety of suspended and abandoned wells
- Abundant wells for various purposes

Problems

- Well integrity
- Abandonment costs
- Pressure issues
- Environmental responsibility
- Long payback times
- Casing size and flow rates

Operational Risks

- Pump failure
- Formation damage
- Heat exchanger scaling
- Well integrity
- Induced seismicity

Operational Risk: Things that can and will fail Main Plate Secondary Maste Plate Heat Secondary fluid line Secondary water circulating pumps Primary fluid line (Geo) Re-Injection Production well https://www.researchgate.net/publication/269395854_TESTING_DIRECT_USE_GEOTHERMAL _WELLS_IN_ROTORUA_NEW_ZEALAND/figures?lo=1

Environmental Impacts

Negative

- Well casing failure/well integrity (older is typically worse)
- Induced seismicity and formation fracturing
- Re-disturbing surface
- Brine spills
- Large withdrawal of geothermal fluids
- Waste production and disposal
- Noise
- Impact on sensitive living organisms
- Released gases

Positive

- Non carbon intensive electrical energy
- Low emission base load power
- Low impact and low cost thermal energy
- Re assessment of old wells in previously developed basins
- Drive for reworking poorly abandoned wells
- Monitoring of heavily drilled "mature" oil and gas basins

Barriers And Opportunities

- Oil and gas companies see a challenging regulatory, operational and financial situation in geothermal
 - Needs to be changed with regulations and incentives
- Commercial viability
 - Needs to be demonstrated and incentivized
- Societal and financial recognition of baseload power
 - Needs societal baseload power understanding
 - Needs appropriate baseload power regulation and valuation
- Recognition of emissions from current baseload power production
 - Geothermal impact on emissions needs to be quantified and shared
- Consistent long term plan for carbon tax, carbon credits, or carbon trading
 - Increase value and create a potential carbon economy
- Long term energy policy with substantial incentives
 - Derisk and provide value
- Effectively regulate and recognize heat as a resource
- Exploration/Research & development government tax breaks
- Faster and more consistent geothermal permits and exploration licenses
- Drilling insurance for failed wells

Thank you!