Algebra II: Tutorial 11

April 27, 2022

Problem 1 (Galois extensions). Determine whether the following extensions L:K are Galois:

- 1. $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[3]{2}).$
- 2. $K = \mathbb{Q}, L = \mathbb{Q}(\sqrt[4]{2}).$
- 3. $K = \mathbb{Q}(\sqrt{2}), L = \mathbb{Q}(\sqrt[4]{2}).$
- 4. $K = \mathbb{Q}(i), L = \mathbb{Q}(i, \sqrt[4]{2}).$
- 5. $K = \mathbb{Q}(t^2), L = \mathbb{Q}(t).$
- 6. $K = \mathbb{F}_2(t^2 + t), L = \mathbb{F}_2(t).$

Solution. The first two are not Galois extensions, the last four are.

Problem 2 (Computing Galois groups). Compute $G(L) = \operatorname{Aut}_K(L)$, list all subgroups H of G(L) and determine the corresponding intermediate field L^H for each of the following field extensions L over K:

- 1. $K = \mathbb{Q}$ and $L = \mathbb{Q}(i + \sqrt{2})$.
- 2. $K = \mathbb{Q}(i)$ and $L = K(\sqrt[4]{2})$.

Solution. 1. Note that $\sqrt{2}+i$ is a root of the irreducible polynomial $f(x)=x^4-2x^2+9$, so [L:K]=4. Furthermore, f splits completely in L so L is a splitting field for f over \mathbb{Q} . Since \mathbb{Q} is a perfect field, this implies that L:K is a Galois extension, and so $G=\operatorname{Aut}_{\mathbb{Q}}(L)$ has order 4. Explicitly, $G=\{Id,\sigma_1,\sigma_2,\sigma_3\}$ where

$$\sigma_1(i) = i, \qquad \sigma_2(i) = -i, \qquad \sigma_3(i) = -i,$$

$$\sigma_1(\sqrt{2}) = -\sqrt{2}, \qquad \sigma_2(\sqrt{2}) = \sqrt{2}, \qquad \sigma_3(\sqrt{2}) = -\sqrt{2}.$$

In particular, each of the automorphisms σ_i has order 2, so $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. The proper subgroups of G are isomorphic to \mathbb{Z}_2 ; explicitly they are $G_1 = \{Id, \sigma_1\}, G_2 =$

 $\{Id, \sigma_2\}, G_3 = \{Id, \sigma_3\}$. In order to compute L^{G_i} , we choose a convenient basis for elements in L. It is easy to see that the set $\{1, \sqrt{2}, i, i\sqrt{2}\}$ is a \mathbb{Q} -basis of L. Then:

$$L^{G_1} = \mathbb{Q}(i), \quad L^{G_2} = \mathbb{Q}(\sqrt{2}), \quad \text{and} \quad L^{G_3} = \mathbb{Q}(i\sqrt{2}).$$

2. L is the splitting field of $f(x) = x^4 - 2$ over $\mathbb{Q}(i)$; the roots of f(x) are $\pm \sqrt[4]{2}$ and $\pm i\sqrt[4]{2}$. In particular, L is a Galois extension of K, and so |G| = [L : K]. Note that f(x) is irreducible over K, so |G| = 4. Denote by id, σ_1 , σ_2 and σ_3 the four K-automorphisms of L. Since L is a simple extension, each automorphism is completely determined by its value on $\alpha = \sqrt[4]{2}$:

$$\sigma_1(\alpha) = -\sqrt[4]{2}$$
, $\sigma_2(\alpha) = i\sqrt[4]{2}$ and $\sigma_3(\alpha) = -i\sqrt[4]{2}$.

A direct computation shows that σ_1 has order 2 and σ_2, σ_3 have order 4. Hence, $G \cong \mathbb{Z}_4$. There is only one proper subgroup of G, namely $G_1 = \{id, \sigma_1\}$. Using the K-basis $\{1, \alpha, \alpha^2, \alpha^3\}$ of L, it is easy to see that $L^{G_1} = \mathbb{Q}(i, \sqrt{2})$.