18. Общо уравнение на равнина в пространството

Нека K = Oxy е афинна координатна система.

Теорема.1: Всяка равнина π има спрямо координатната система K уравнение от вида Ax + By + Cz + D = 0, където $(A, B, C) \neq (0, 0, 0)$.

Обратното: Всяко уравнение от вида Ax + By + Cz + D = 0, където $(A, B, C) \neq (0, 0, 0)$ е уравнение спрямо K на някоя равнина π .

Доказателство:

Нека т. $P_0(x_0, y_0, z_0)$ е точка от π и векторите $v_1(a_1, b_1, c_1)$ и $v_2(\underline{a_2, b_2, c_2})$ са компланарни с π и не са колинеарни помежду си. Нека т. $P(x, y, z) \in \pi$, тогава $\overrightarrow{P_0P}, v_1, v_2$ са компланарни. От условието за компланарност следва:

$$\det \begin{pmatrix} x - x_0 & a_1 & a_2 \\ y - y_0 & b_1 & b_2 \\ z - z_0 & c_1 & c_2 \end{pmatrix} = 0,$$

т.е.

$$(x - x_0) \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} + (y - y_0) \begin{vmatrix} c_1 & c_2 \\ a_1 & a_2 \end{vmatrix} + (z - z_0) \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = 0$$
 (1)

Нека да означим с $A=\left|\begin{array}{cc}b_1&b_2\\c_1&c_2\end{array}\right|,$ $B=\left|\begin{array}{cc}c_1&c_2\\a_1&a_2\end{array}\right|,$ $C=\left|\begin{array}{cc}a_1&a_2\\b_1&b_2\end{array}\right|$ и $D=-Ax_0-By_0-Cz_0$. Следователно от $P(x,y,z)\in\pi$ следва

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0, Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0, Ax + By + Cz + D = 0,$$
(2)

т.е. π има уравнение Ax + By + Cz + D = 0.

Остана да докажем, че $(A,B,C) \neq (0,0,0)$. Да допуснем противното, т.е. (A,B,C) =

$$(0,0,)$$
. В такъв случай минорите на натрицата $\begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{pmatrix}$ са равни на нула, т.е.

ранга на матрицата е по-малък или равен на 1. Това означава, че векторите v_1 и v_2 са колинеарни, което е противоречие. Следователно $(A, B, C) \neq (0, 0, 0)$. Сега ще докажем и обратната посока:

Тъй като $(A, B, C) \neq (0, 0, 0)$, то уравнението

$$Ax + By + Cz + D = 0 (3)$$

има решение (например ако $A \neq 0$, то едно решение е $x = -\frac{D}{A}, y = 0, z = 0$). Нека (x_0, y_0, z_0) е едно решение на уравнение (2), тогава $D = Ax_0 - By_0 - Cz_0$. Нека т.P е с координати (x_0, y_0, z_0) . От първата част на доказателството знаем, че е достатъчно да намерим некоолинеарни вектори $v_1(a_1, b_1, c_1), v_2(a_2, b_2, c_2)$, такива че

$$A = \left| \begin{array}{cc} b_1 & b_2 \\ c_1 & c_2 \end{array} \right|, B = \left| \begin{array}{cc} c_1 & c_2 \\ a_1 & a_2 \end{array} \right|, C = \left| \begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right|$$

Без ограничение на общноста, можем да приемем $A \neq 0$. Нека вземем $b_1 = A, c_2 = 1, b_2 = 0, c_1 = 0, a_1 = -B, a_2 = -\frac{C}{A}$. Непосредствено проверяваме, че горните равенства са изпълнени. Така получихме векторите $v_1(-B,A,0)$ и $v_2(-\frac{C}{A},0,1)$, тези два вектора са неколинеарни.

Така т. P_0 , v_1 , v_2 задават равнина π и уравнението и е точно:

$$\pi: (x - x_0) \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} + (y - y_0) \begin{vmatrix} c_1 & c_2 \\ a_1 & a_2 \end{vmatrix} + (z - z_0) \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = 0, \tag{4}$$

т.е. $Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0$ или Ax + By + Cz + D = 0.