Problem 1. color

Input file: color.in
Output file: color.out
Time limit: 1 second
Memory limit: 256MB

给你一棵 n 个点的无根树,每个点有两个颜色:黑色或白色,现在你可以做一种操作:paint(u),对于一个点 v,如果 u 和 v 之间的简单路径上的点 (包括 u 和 v) 是相同的一种颜色,那么 v 的颜色会反转.请问,你最少需要做多少次操作,能使得树的所有点的颜色,变成一样.

Figure 1: 操作之前

Figure 2: 进行 paint(3) 之后

Input

第一行包含一个整数 T 表示数据组数;

对于每组测试数据:

第一行包含一个整数 n 表示点的个数;

第二行包含 n 个整数, 每个数要么是 0 要么是 1, 表示每个点的颜色;

接下来 n-1 行, 每行两个整数 u,v 表示一条边.

Output

输出一个整数表示答案.

Sample

color.in	color.out
2	2
11	0
0 0 0 1 1 0 1 0 0 1 1	
1 2	
1 3	
2 4	
2 5	
5 6	
5 7	
3 8	
3 9	
3 10	
9 11	
4	
0 0 0 0	
1 2	
2 3	
3 4	

No.7 High School OI Training idy002, August 26, 2018

Note

- 对于 30% 的数据, $1 \le T, n \le 10$;
- 对于 100% 的数据,1 $\leq T \leq$ 100, $1 \leq n \leq$ 10⁵, 所有所有数据组数的 n 的和小于等于 2×10^5 , $1 \leq u,v \leq n$.

Problem 2. grow

Input file: grow.in
Output file: grow.out
Time limit: 1 second
Memory limit: 256 MB

现在有一棵树在生长.

它的生长规律可以表示成一个 n 元组: (t_1, t_2, \ldots, t_n) 表示一开始它会向上长 t_1 个格子, 然后会枝丫会分叉, 分别顺时针和逆时针旋转 45 度, 然后继续生长 t_2 个格子, 然后又分叉... 直到最后生长 t_n 个格子, 然后停止分叉和生长 (详见样例).

现在, 请问这棵树会占用多少个格子?

Input

第一行一个整数 n;

接下来一行包含 n 个整数 t_1, t_2, \ldots, t_n .

Output

输出一个整数表示占用的格子数.

Sample

grow.in	grow.out
4	39
4 2 2 3	

Figure 3:

grow.in	grow.out
6	85
1 1 1 1 1 3	

Figure 4:

No.7 High School OI Training idy002, August 26, 2018

grow.in	grow.out
1	3
3	

Note

- 对于 30% 的数据, $1 \le n \le 10$;
- 对于 100% 的数据, $1 \le n \le 30$, $1 \le t_i \le 5$.

Problem 3. year

Input file: year.in
Output file: year.out
Time limit: 1 second
Memory limit: 256 MB

一个字符串是好的当且当它包含2017 作为它的子序列而不包含2016 作为它的子序列, 比如210157 是好的但是20167 或2015 不是好的.

一个字符串的丑陋值指的是最少删除该字符串的字符个数, 使得该字符串变成好的, 如果一个字符串不能通过删除部分字符而使得它变成好的, 则该字符串的丑陋值为 -1.

现在给你一个字符串 s, 有 q 个询问, 第 i 个询问询问你 s 的从 a_i 到 b_i 的子串的丑陋值.

Input

第一行包含一个字符串 s;

第二行包含一个整数 q 表示询问个数;

接下来 q 行, 每行包含两个整数 a_i, b_i , 表示一个询问.

Output

对于每个询问,输出一行包含一个整数表示对应询问的答案.

Sample

year.in	year.out
20166766	4
3	3
1 8	-1
1 7	
2 8	

样例解释: 第一个询问, 我们只需要删除 4 个 6 就行. 第二个询问删除 3 个. 第三个询问我们不可能通过删除字符来使得 2017 出现.

year.in	year.out
012016662091670	-1
5	2
3 4	1
1 14	-1
4 15	-1
1 13	
10 15	

year.in	year.out
1234	-1
2	-1
2 4	
1 2	

Note

- 对于 30% 的数据, $1 \le |s| \le 20$, $1 \le q \le 10$.
- 对于 50% 的数据, $1 \le |s| \le 10^5$, $1 \le q \le 10$.
- 对于 100% 的数据, $1 \le |s| \le 10^5$, $1 \le q \le 10^5$.