Theoretische Physik IV: Quantenmechanik (PTP4)

Universität Heidelberg Sommersemester 2021

Übungsblatt 8

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Carsten Littek

Besprechung in den virtuellen Übungsgruppen in der Woche 07. - 11. Juni 2021 Bitte geben Sie maximal 2 Aufgaben per Übungsgruppensystem zur Korrektur an Ihre Tutorin / Ihren Tutor! Nutzen Sie dazu den Link https://uebungen.physik.uni-heidelberg.de/h/1291

1. Verständnisfragen

- a) Was ist ein quantenmechanischer Drehimpuls? Diskutieren Sie den Unterschied zur korrespondenzmäßigen Definition.
- b) Welche besonderen Eigenschaften zeichnen die Kugelflächenfunktionen aus? Vergleichen Sie die Kugelflächenfunktionen mit den Basisfunktionen der Fouriertransformation.
- c) Erklären Sie die Notwendigkeit und die Bedeutung der Clebsch-Gordan-Koeffizienten.

2. Exponentialdarstellung von Drehmatrizen

Wir betrachten die Matrizen $(T^a)_{bc} = -i\epsilon_{abc}$,

$$T^{1} = -i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad T^{2} = -i \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad T^{3} = -i \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Eine beliebige reell-asymmetrische 3×3 -Matrix lässt sich als Linearkombination i $\varphi_a T^a$ der sogenannten Generatoren T^a schreiben. Hier haben wir die Einstein'sche Summenkonvention benutzt und summieren über gleiche Indices.

- a) Zeigen Sie, dass für beliebiges reell antisymmetrisches X die Matrix $T = e^X$ orthogonal ist.
- b) Zeigen Sie, dass

$$\operatorname{tr}(T^a T^b) = 2\delta^{ab}$$
 und $[T^a, T^b] = \mathrm{i}\epsilon_{abc} T^c$.

- c) Überzeugen Sie sich, dass $(iT^1)^2 = -\text{diag}(0, 1, 1), (iT^1)^3 = -iT^1, (iT^1)^4 = \text{diag}(0, 1, 1),$ etc., und analog für T^2 und T^3 .
- d) Berechnen Sie $e^{i\varphi T^1}$, $e^{i\varphi T^2}$, $e^{i\varphi T^3}$. Die resultierenden Matrizen sollten Drehungen mit dem Winkel φ um die x_1, x_2 bzw. x_3 -Achse beschreiben.

3. Parität

Der Paritätsoperator \hat{P} ist definiert als ein Operator, der wie folgt auf die Ortswellenfunktion $\psi(\vec{x})$ wirkt,

$$\hat{P}\,\psi(\vec{x})\equiv\psi(-\vec{x}).$$

a) Zeigen Sie die folgenden Eigenschaften des Paritätsoperators,

$$\hat{P}^2 = \hat{I},$$

$$\hat{P}^{\dagger} = \hat{P}$$
.

wobei \hat{I} der Einsoperator ist. Zeigen Sie außerdem, dass \hat{P} unitär ist und die Eigenwerte ± 1 hat.

- b) Berechnen Sie die Kommutatoren $[\hat{\vec{x}}, \hat{P}]$ und $[\hat{\vec{p}}, \hat{P}]$.
- c) Berechnen Sie $[\hat{H}, \hat{P}]$ für einen eindimensionalen harmonischen Oszillator. Was impliziert das Ergebnis für die Energieeigenzustände? Welche Parität hat der n-te Zustand? Stellen Sie einen Zusammenhang zwischen der Parität und der (Anti-)Symmetrie der Wellenfunktion her. Hinweis: Betrachten Sie zunächst den Grundzustand. Für die angeregten Zustände ist es hilfreich, zunächst \hat{P} \hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{P} zu berechnen und das Ergebnis dann zu verwenden.

4. Datenbanksuche mit Quantencomputern

Die Suche nach einem bestimmten Datensatz in einer unsortierten Datenbank mit N Einträgen erfordert durchschnittlich N/2 Vergleichsoperationen. Liegen die Daten in einem Quantencomputer als quantenmechanischer Überlagerungszustand $|D\rangle$ vor, reichen im Prinzip $\sim N$ Quantenoperationen und eine einzige Messung. Der folgende berühmte Algorithmus stammt von K.L. Grover*. Er wurde vor kurzem zu Testzwecken in einem einfachen Quantencomputer realisiert[†]. Die Strategie besteht darin, den Ausgangszustand $|D\rangle$ durch geschickte Wahl des Hamiltonoperators in solcher Weise unitär zu transformieren, dass im Anschluss die Messung einer Observable \hat{K} mit beliebig hoher Wahrscheinlichkeit die gesuchte Antwort liefert.

Unsere Datenbank soll N unterschiedliche Einträge d_1, \ldots, d_N haben, die der Einfachheit halber ganze Zahlen $d_k \in 1, \ldots, n$ sind. Die Problemstellung lautet: Ermittle die Position \tilde{k} eines bestimmten Eintrags $\tilde{d} = d_{\tilde{k}}$ in der Datenbank. Wir benötigen hier einen $N \times n$ -dimensionalen Zustandsraum. Eine Orthonormalbasis sei gegeben durch die Zustände

$$|k; d\rangle$$
 mit $k = 1, ..., N$ und $d = 1, ..., n$.

Sie erfüllen $\langle k; d | l; e \rangle = \delta_{kl} \delta_{de}$. Für die Observable \hat{K} gelte

$$\hat{K}|k;d\rangle = k|k;d\rangle.$$

Wir können nun jeden *möglichen* Datenbankeintrag durch einen dieser Basisvektoren darstellen. Steht z.B. an 5. Stelle in der Datenbank die Zahl 100, ordnen wir den Basisvektor |5; 100\range zu. Man kann nach diesem Schema den *gesamten* Datenbankinhalt als *einen* Überlagerungszustand

$$|D\rangle = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} |k; d\rangle$$

schreiben.

- a) Zeigen Sie, dass $|D\rangle$ normiert ist und berechnen Sie $\langle \tilde{k}; \tilde{d} | D \rangle$.
- b) Gegeben sei der Zustand $|D\rangle$. Wie groß ist die Wahrscheinlichkeit $P(K = \tilde{k})$, dass die Messung von \hat{K} bereits das gewünschte Ergebnis $K = \tilde{k}$ ergibt? Hinweis: Argumentieren Sie, dass $P(K = \tilde{k}) = |\langle \tilde{k}; \tilde{d} | D \rangle|^2$. Vergleichen Sie mit der klassischen Suche.
- c) Man nutzt die Zeitentwicklungsoperatoren

$$\hat{U} = \mathbb{1} - 2 \sum_{l=1}^{N} |l; \tilde{d}\rangle \langle l; \tilde{d}| \quad \text{und} \quad \hat{V} = \mathbb{1} - 2 |D\rangle \langle D|.$$

Zeigen Sie, dass \hat{U} und \hat{V} unitär sind. Wie wirken diese Operatoren auf die Basiszustände und $|D\rangle$?

^{*}Informationen dazu finden Sie hier: https://arxiv.org/pdf/quant-ph/9605043, https://arxiv.org/abs/1201.1707, https://de.wikipedia.org/wiki/Grover-Algorithmus. Siehe auch: https://arxiv.org/abs/quant-ph/9508027, https://de.wikipedia.org/wiki/Shor-Algorithmus

[†]Informationen dazu finden Sie unter: https://dornsife.usc.edu/news/stories/1126/quantum-computer-built-inside-a-diamond/

d) Gegeben sei wieder der Zustand $|D\rangle$. Wir führen nun mit unserem Quantencomputer *ohne zu messen* einmal die unitäre Transformation ("Grover-Iteration")

$$|D\rangle \to -\hat{V}\hat{U}|D\rangle = |D_1\rangle$$

durch und messen anschließend \hat{K} . Wie groß ist die Wahrscheinlichkeit $P_1(K = \tilde{k}) = |\langle \tilde{k}; \tilde{d} | D_1 \rangle|^2$? Hat sie sich gegenüber b) verbessert?

e) Wie groß ist die Wahrscheinlichkeit nachdem Sie die Transformation aus d) r mal angewendet haben?

Schreiben Sie hierzu $|D\rangle$ und $|D_r\rangle$ als orthogonale Kombination

$$|D\rangle = \sin \phi_0 |\tilde{k}; \tilde{d}\rangle + \cos \phi_0 |T\rangle, \quad |D_r\rangle = \sin \phi_r |\tilde{k}; \tilde{d}\rangle + \cos \phi_r |T\rangle$$

und zeigen Sie, dass $\sin \phi_0 = 1/\sqrt{N}$ ist. Führen Sie eine vollständige Induktion über r durch, indem Sie, die Änderung des Winkels ϕ_r pro Iteration berechnen. Zeigen Sie damit, dass $\phi_r = (2r+1)\phi_0$ und somit

$$P_r(K = \tilde{k}) = \sin^2((2r+1)\phi_0)$$
.

Betrachten Sie den Fall $N \gg 1$. Wie muss man r wählen, um mit großer Sicherheit das gewünschte Ergebnis zu messen?