Consensus and Related Problems

George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012

Consensus (1)

- Objective: processes must agree on a value after one or more of the processes has proposed what that value should be
- Hypotheses: reliable communication, but processes may fail
- Consensus problem:
 - Every process P_i begins in the undecided state
 - Proposes a value V_i ⊂ D (i=1, ..., N)
 - Processes communicate with one another, exchanging values
 - Each process then sets the value of a decision variable d_i

Enters the state *decided*, in which it may no longer change d_i (i=1, ..., N)

Consensus (2)

A simple algorithm for fault-free consensus

Each processor:

- 1. Broadcast its input to all processors
- 2. Decide on the minimum

(only one round is needed, since the graph is complete)

Start

Broadcast values 0,1,2,3,4

Decide on minimum

0,1,2,3,4

Finish

This algorithm satisfies the validity condition

If everybody starts with the same initial value, everybody decides on that value (minimum)

Consensus with Crash Failures

The simple algorithm doesn't work

Each processor:

- 1. Broadcast value to all processors
- 2. Decide on the minimum

fail Start 0

The failed processor doesn't broadcast its value to all processors

Broadcasted values

fail

0,1,2,3,4

1,2,3,4

1,2,3,4

Decide on minimum

fail

0,1,2,3,4

1,2,3,4

Finish fail

No Consensus!!!

If an algorithm solves consensus for failed (crashing) processors we say it is:

an f-resilient consensus algorithm

An f-resilient algorithm

Round 1:

Broadcast my value

Round 2 to round f+1:

Broadcast any new received values

End of round f+1:

Decide on the minimum value received

Start

Broadcast all values to everybody

Round 2

0,1,2,3,4

Broadcast all new values to everybody

Finish

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0 0,1,2,3,4

Decide on minimum value

Start

Broadcast all values to everybody

Broadcast new values to everybody

Round 3

Broadcast new values to everybody

Finish

Failure 1

0,1,2,3,4

Decide on the minimum value

If there are f failures and f+1 rounds then there is at least a round with no failed processors:

In the algorithm, at the end of the round with no failure:

 Every (non faulty) process knows about all the values of all other participating processes

 This knowledge doesn't change until the end of the algorithm Therefore, at the end of the round with no failure:

everybody would decide the same value

However, we don't know the exact position of this round, so we have to let the algorithm execute for f+1 rounds

Validity of algorithm

when all processes start with the same input value then the consensus is that value

This holds, since the value decided from each process is some input value

A Lower Bound

Theorem: Any f-resilient consensus algorithm

requires at least f+1 rounds

Proof sketch:

Assume for contradiction that f or less rounds are enough

Worst case scenario:

There is a process that fails in each round

before process P_i fails, it sends its value a to only one process p_k

before process p_k fails, it sends value a to only one process p_m

Process p_n may decide **a**, and all other processes may decide another value (b)

Therefore f rounds are not enough At least f+1 rounds are needed

Consensus in synchronous systems

Up to faulty processes

Duration of round: max. delay of B-multicast

```
Algorithm for process p_i \in g; algorithm proceeds in f+1 rounds On \ initialization \ Values_i^1 := \{v_i\}; \ Values_i^0 = \{\}; In \ round \ r \ (1 \le r \le f+1) \ B-multicast(g, \ Values_i^r - Values_i^{r-1}); \ /\!/ \ Send \ only \ values \ that \ have \ not \ been \ sent \ Values_i^{r+1} := Values_i; \ while \ (in \ round \ r) \ \{ \ Only \ crashes, \ No \ B-deliver(V_j) \ from \ some \ p_j \ Values_i^{r+1} := Values_i^{r+1} \cup V_j; \ After \ (f+1) \ rounds \ Assign \ d_i = minimum(Values_i^{f+1});
```

Dolev & Strong, 1983:

Any algorithm to reach consensus despite up to f failures requires (f + 1) rounds.

Byzantine agreement: synchronous

Lamport et al, 1982:

No solution for N = 3, f = 1

Pease et al, 1982:
No solution for N<= 3*f

(assuming private comm. channels)

Byzantine agreement for N > 3*f

Example with N=4, f=1:

- 1st round: Commander sends a value to each lieutenant
- 2nd round: Each of the lieutenants sends the value it has received to each of its peers.
- A lieutenant receives a total of (N 2) + 1 values, of which (N 2) are correct.
- By majority(), the correct lieutenants compute the <u>same</u> value.

Four Byzantine Generals: N = 4, f = 1 in a Synchronous DS

Faulty processes

p2 decides on majority(v,u,v) = vp4 decides on majority(v,v,w) = v p2, p3, p4 decide on $majority(u, v, w) = \bot$

Thank You