

Taller 7: REACCIONES - VELOCIDAD DE REACCIÓN - TERMODINÁMICA

1. Balancear por el método de tanteo las siguientes ecuaciones químicas:

a.
$$NH_3 + O_2 \rightarrow NO + H_2O$$

b.
$$H_2SO_4 + Fe(OH)_3 \rightarrow Fe_2(SO_4)_3 + H_2O$$

2. Balancear por el método de tanteo las siguientes ecuaciones químicas:

a.
$$\hspace{.1in} O_{3(g)} \hspace{.1in} + \hspace{.1in} NO_{(g)} \hspace{.1in} \rightarrow \hspace{.1in} O_{2(g)} \hspace{.1in} + \hspace{.1in} NO_{2(g)} \\$$

$$b. \hspace{1cm} C_7H_6O_2 \hspace{3mm} + \hspace{3mm} O_{2(g)} \hspace{3mm} \rightarrow \hspace{3mm} CO_{2\ (g)} \hspace{3mm} + \hspace{3mm} H_2O_{(l)}$$

3. Clasifique las siguientes reacciones:

a.
$$2KClO_{3(s)} \rightarrow 2KCl_{(s)} + 3O_{2(g)}$$

b.
$$2AgNO_{3(ac)} + Cu_{(s)} \rightarrow 2Ag_{(s)} + Cu(NO_3)_{2(ac)}$$

c.
$$2C_2H_{6(g)} + 7O_{2(g)} \rightarrow 4CO_{2(g)} + 6H_2O_{(l)}$$

4. Clasifique las siguientes reacciones:

a.
$$2Fe_{(s)} + 3Cl_{2(g)} \rightarrow 2FeCl_{3(s)}$$

b.
$$3AgNO_{3(ac)} + K_3PO_{4(ac)} \rightarrow Ag_3PO_{4(s)} + 3KNO_{3(ac)}$$

5. Hallar la velocidad media del butadieno (C_4H_6) a 250 °C y la velocidad del 4-vinilciclohexeno (C_8H_{12}) a partir de los siguientes datos:

$$2 C_4H_6 \rightarrow C_8H_1$$

Tiempo	Concentración		
(s)	C_4H_6 (M)		
0	0,0917		
500	0,0870		

6. Hallar la velocidad media del HNO₃ y la velocidad de formación del hidrógeno (H₂) en la reacción:

$$Zn_{(s)} + 2HNO_{3(ac)} \rightarrow Zn(NO_3)_{2(ac)} + H_{2(g)}$$

Tiempo	Concentración		
(s)	$HNO_3(M)$		
0	0,2		
25	0,025		

- 7. Durante un estudio de la velocidad de la reacción $O_{2(g)} + 2 SO_{2(g)} \rightarrow 2 SO_{3(g)}$, se observa que en un recipiente cerrado que contiene cierta cantidad de O_2 y 0,75 mol/L de SO_2 , la concentración de SO_2 disminuye hasta 0,5 mol/L en 40 segundos.
 - a. ¿Cuál es la velocidad de la reacción?
 - b. ¿Cuál es la velocidad de desaparición de O₂?
 - c. ¿Cuál es la velocidad de aparición de SO₃?

- 8. Durante un estudio de la velocidad de la reacción $N_{2(g)}+3H_{2(g)}\rightarrow 2$ $NH_{3(g)}$, se observa que en un recipiente cerrado que contiene cierta cantidad de N_2 y 0,84 mol/L de H_2 , la concentración de H_2 disminuye hasta 0,63 mol/L en 35 segundos.
 - a. ¿Cuál es la velocidad de la reacción?
 - b. ¿Cuál es la velocidad de desaparición de N₂?
 - c. ¿Cuál es la velocidad de aparición de NH₃?
- 9. Indique cuál de cada par de reacciones se llevará a cabo más rápido. Explique.
 - a. $Mg_{(s)} + 2 HCl_{(ac)} \rightarrow MgCl_{2(ac)} + H_{2(g)}$ / $NaCl_{(ac)} + AgNO_{3(ac)} \rightarrow NaNO_{3(ac)} + AgCl_{(s)}$
 - $b. \quad 4NH_{3(g)} \; + \; 3O_{2(g)} \; \rightarrow 2N_{2(g)} \; + \; 6H_2O_{(g)} \qquad \qquad / \quad 4NH_{3(g)} \; + \; 3O_{2(g)} \qquad \stackrel{catalizador}{\rightarrow} \; 2N_{2(g)} \; + \; 6H_2O_{(g)}$
 - $c. \quad Zn_{(s)} \ + \ HNO_{3(ac,2M)} \ \rightarrow \ Zn(NO_3)_{2(ac)} \ + \ H_{2(g)} \quad / \quad Zn_{(s)} \ + \ HNO_{3(ac,5M)} \ \rightarrow \ Zn(NO_3)_{2(ac)} \ + \ H_{2(g)}$
- 10. Indique cuál de cada par de reacciones se llevará a cabo más rápido. Explique.
 - a. $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$ / $PCl_{5~(g)} \rightarrow PCl_{3(g)} + Cl_{2(g)}$
 - b. $2H_2O_{2(g)} \stackrel{catalaza}{\to} O_{2(g)} + 2H_2O_{(g)}$ / $2H_2O_{2(g)} \to O_{2(g)} + 2H_2O_{(g)}$
 - $c. \quad Zn_{(s)} \ + \ HCl_{(ac,0,3M)} \ \to \ ZnCl_{2(ac)} \ + \ H_{2(g)} \qquad \qquad / \quad Zn_{(s)} \ + \ HCl_{(ac,0,2M)} \ \to \ ZnCl_{2(ac)} \ + \ H_{2(g)}$
- 11. Para la reacción hipotética: $2A + B \rightarrow A_2B$, la ley de velocidad es $v = k [A]^m [B]^n$
 - a. ¿De qué factores depende la constante de velocidad específica?
 - b. ¿Qué significado tienen m y n?
 - c. Si m = 1 y n = 2, ¿cuál será el orden respecto a cada reactante y el orden total de la reacción.
 - d. ¿Qué significa si m = 0 y n = 0?
- 12. Para la reacción hipotética: $2A + B \rightarrow A_2B$, la ley de velocidad es $v = k [A]^m [B]^n$
 - a. Si el orden con respecto a [B] es 2 y a [A] es 0, ¿cómo se expresa la ley de velocidad?
 - b. ¿Cuál es el orden total de esta reacción?
- 13. Para cada una de las situaciones planteadas a continuación señale si la entropía aumenta o disminuye:
 - a. "Congelar a 0 °C el agua líquida contenida en un vaso"
 - b. "Preparar un litro de solución de NaOH, a partir de 10 g de NaOH sólido y agua pura"
- 14. Para cada una de las situaciones planteadas a continuación señale si la entropía aumenta o disminuye:
 - a. "Cocer un huevo"
 - b. "Formación del gas amoniaco (NH₃) a partir de nitrógeno (N₂) e hidrógeno (H₂) elementales"
- 15. Prediga si la entropía de las siguientes reacciones aumenta o disminuye:
 - a. $C_3H_{8(g)} + 5 O_{2(g)} \rightarrow 3 CO_{2(g)} + 4 H_2O_{(l)}$
 - b. $CuCO_{3(s)} + H_2SO_{4(ac)} \rightarrow CuSO_{4(ac)} + CO_{2(g)} + H_2O_{(l)}$
- 16. Prediga si la entropía de las siguientes reacciones aumenta o disminuye:
 - a. $Mg_{(s)} + \frac{1}{2} O_{2(g)} \rightarrow MgO_{(s)}$
 - b. $C_6H_{12}O_{6(s)} + 6 O_{2(g)} \rightarrow 6 CO_{2(g)} + 6 H_2O_{(g)}$

17. La entalpía de reacción estándar para la combustión del acetileno es -1299,2 kJ por cada mol de acetileno.

$C_2H_{2(g)}$	- ⁵ / ₂	$O_{2(g)}$	\rightarrow	2 CO _{2(g)}	+	$H_2O_{(l)}$
---------------	-------------------------------	------------	---------------	----------------------	---	--------------

Sustancia	$CO_2(g)$	$H_2O(l)$
ΔH_{f}^{0} (kJ/mol)	-393,5	-285,8

- a. Calcule la entalpía de formación del acetileno.
- b. Dibuje el diagrama de entalpía de la reacción para la combustión del acetileno.

18. Las entropías estándar (a 25°C en J/mol K) para las siguientes sustancias son: diamante 2,43; O₂(g) 205,0; CO(g) 197,9. Calcule el valor de ΔS° para la reacción:

$$2C_{(diamante)} + O_{2(g)} \rightarrow 2CO_{(g)}$$

19. El perclorato de potasio (KClO₄) es usado como explosivo primario y detonante en fuegos artificiales, además tiene uso medicinal en el tratamiento de problemas de tiroides.

Sustancia	KCl (ac)	O ₂ (g)	KClO ₄ (s)
ΔG_{f}^{0} (kJ/mol)	-413,48	0	-304,18

Determine la espontaneidad de la siguiente reacción de síntesis del perclorato de potasio:

$$KCl_{(ac)} + 2 O_{2(g)} \rightarrow KClO_{4(s)}$$

- 20. Se dice que el perclorato de potasio ($KClO_4$) al ser un oxidante, puede incrementar la tasa de combustión de los compuestos orgánicos, como la glucosa ($C_6H_{12}O_6$).
 - a. Determine el calor liberado en la reacción de la glucosa con el perclorato de potasio.

$$3 \ \mathsf{KClO}_{4(s)} \ + \ \mathsf{C}_6\mathsf{H}_{12}\mathsf{O}_{6(s)} \ \to \ 6 \ \mathsf{H}_2\mathsf{O}_{(g)} \ + \ 6 \ \mathsf{CO}_{2(g)} \ + \ 3 \ \mathsf{KCl}_{(s)}$$

Sustancia	CO ₂ (g)	H ₂ O(g)	$C_6H_{12}O_6(s)$	KClO ₄ (s)	KCl(s)
$\Delta H_{\rm f}^0$ (kJ/mol)	-393,51	-241,8	-1273,3	-430,12	-436,68

b. Si en la reacción de la glucosa con el oxígeno del aire se liberan -2538,56 kJ por cada mol de glucosa; indique cuál de estas dos reacciones (a o b) liberó más calor.

$$C_6 H_{12} O_{6(s)} + 6 \ O_{2(g)} \rightarrow \ 6 \ H_2 O_{(g)} \ + \ 6 \ C O_{2(g)} \qquad \Delta H^o \text{= -2538,56 kJ}$$