Survey of Materials. Lecture 2

Atomistic structure

Andriy Zhugayevych

October 30, 2018

Outline

- Why symmetry is important
- 2D crystallography
- 3D crystallography
- Nonperiodic solids
- Structure characterization and determination

2D crystallography

Space group = point group + translation symmetry

- Determine all 2D point groups
- Determine all 2D Bravais lattices

2D crystallography

2D space groups (17), point groups, Bravais lattices, and crystal systems (4)

2D glide plane

2D materials

- graphene, BN
- organic networks

MoS₂

• P, As

3D point groups

3D symmetry elements

3D crystallography

Lecture of Artem Abakumov or any textbook

Unit cell

	min.size	parallelepiped	symmetric
primitive	+	+	_
Wigner–Seitz	+	_	+
Bravais	_	+	+

Generators, fundamental domain (asymmetric unit)

also orbits (Wyckoff positions), stabilizators etc.

$$T_d \equiv -43 \text{m} = \{1, 8c_3, 3c_2, 6c_{4i}, 6\sigma_v\} \sim O$$

Generators: $c_3(1)$ and $\sigma_v(34)$, e.g. $c_3(1)\sigma_v(34) = c_{4i}^{-1}(7)$, $c_{4i}^2 = c_2$

	orbit	WP	stab.	atoms
000	Γ	1a	-43m	
XXX	Λ	4e	3m	CH
×00	Δ	6f	2mm	C
XXZ	$\Lambda\Delta$	12i	m	Н
xyz		24j	1	

Fundamental domain is $\Lambda\Delta\Lambda'$ -pyramid (V=1/24)

Asymetric unit is HCCH

Classification of space groups

structural type	A4 (dia)	A3 (hcp)	A7 (α -As)
space group	Fd-3m	P63/mmc	R-3m
arithmetic crystal class	Fm-3m	P6/mmm	R-3m
lattice centering	F	Р	R
crystal class	m-3m	6/mmm	-3m
crystal family	С	h	h*

^{*} Lattice system is rhombohedral, crystal system is trigonal

Lattice system vs crystal system, crystal family

space		lattice	crystal	crystal	
groups		system	family	system	
P1		P-1	anorthic*	а	anorthic
P2		C2/c	monoclinic	m	monoclinic
P222		Imma	orthorhombic	0	orthorhombic
P4		$I4_1/acd$	tetragonal	t	tetragonal
R3		R-3c	rhombohedral	h	trigonal
P3		P-3c1	hexagonal	h	trigonal
P6		$P6_3/mmc$	hexagonal	h	hexagonal
P23		la-3d	cubic	С	cubic

^{*} anorthic is also called triclinic

Structure factor and radial distribution function

Summary and Resources

See summary here

- Wikipedia
- Bilbao Crystallographic Server
- Crystal structures
- References: crystallography, symmetry
- Textbooks (sections General, Crystallography, Symmetry)

Visualization software:

- Jmol
- Mercury
- Surface explorer (online tool)