Name	PMF	Mean	Variance	MGF
$\mathbf{Ber}(p)$	$\mathbb{P}(X=1) = p, \mathbb{P}(X=0) = 1 - p$	p	p(1-p)	$e^t p + (1-p)$
$\mathbf{Bin}(n,p)$	$\binom{n}{x} p^x (1-p)^{n-x}$ for $x = 0, 1, \dots, n$	qn	np(1-p)	$(e^t p + (1-p))^n$
$\mathbf{Geom}(p)$	$p(1-p)^{x-1}$ for $x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{e^t p}{1 - (1 - p)e^t}$ for $t < -\ln(1 - p)$
$\mathbf{NegBin}(r,p)$	$\binom{x-1}{r-1} p^r q^{x-r}$ for $x = r, r+1, \dots$	$r \mid q$	$\frac{r(1\!-\!p)}{p^2}$	$\left(\frac{e^t p}{1 - (1 - p)e^t}\right)^r \text{ for } t < -\ln(1 - p)$
$\mathbf{HG}(N_1,N_2,n)$	$\frac{\binom{x}{n}\binom{n-2}{n-N}}{\binom{N-1}{n-N-2}}$ for $\max\{0, n-N_2\} \le x \le \min\{n, N_1\}$	$m_{\frac{N_1}{N_1 + N_2}}$	$n \cdot \frac{N_1 N_2}{(N_1 + N_2)^2} \cdot \cdot \cdot \frac{N_1 + N_2 - n}{N_1 + N_2 - 1}$	
$\mathbf{Poisson}(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$ for $x=0,1,\ldots$	×	>	$e^{\lambda(e^t-1)}$
$\mathbf{Uniform}(a,b)$	$\frac{1}{b-a}$ for $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$rac{e^{tb}-e^{ta}}{t(b-a)}$
$\mathbf{Normal}(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$ for $x \in (-\infty, \infty)$	μ	σ^2	$e^{\mu t + \frac{\sigma^2}{2}t^2}$
$\mathbf{Exp}(\lambda)$	$\lambda e^{-\lambda x}$ for $x > 0$	<i>></i> □	$\frac{1}{\lambda^2}$	$(1 - \frac{t}{\lambda})^{-1}$ for $t < \lambda$
$\boxed{\mathbf{Gamma}(a,\lambda)}$	$\frac{\lambda^a x^{a-1} e^{-\lambda x}}{\Gamma(a)}$ for $x > 0$	\(\sigma a \)	$\frac{a}{\lambda^2}$	$(1 - \frac{t}{\lambda})^{-a}$ for $t < \lambda$

Geometric series
$$\sum_{k=0}^{N} ar^k = \frac{a(1-r^{N+1})}{1-r} \text{ for } r \neq 1, \quad \sum_{k=0}^{\infty} ar^k = \frac{a}{1-r} \text{ for } |r| < 1$$
Binomial Theorem
$$(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$$
Power series for e^x
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$