

CRYPTOCURRENCY FRAUD DETECTION

GROUP # 06:
ASHISH KUMAR
HASHIR HABIB
SAMEEN SHAHID
SAMIA FATIMA
SUKAINA ALI
UME ABEEHA

ABOUT COMPANY

CipherTrace is a cryptocurrency intelligence company acquired by Mastercard in 2021. It provides tools and services for analyzing crypto transactions, identifying scams and illicit activity, and helping organizations comply with cryptocurrency regulations.

KEY CHALLENGE

CipherTrace faced evolving **Fraud challenges** due to the dynamic, decentralized crypto landscape such as:

- Crypto Anonymity: Use of privacy coins and mixers to hide transactions.
- Evolving Scams: New fraud types like rug pulls, DeFi hacks, and phishing.
- Cross-Chain Activity: Criminals moving funds across multiple blockchains.
- Lack of Standardization: Varying blockchain structures require custom solutions.
- Constant Updates Needed: Tools and algorithms had to evolve rapidly.

ABOUT THE DATASET

DATASET OVERVIEW

- Contains **9,841** Ethereum transactions
- **51 features** capturing detailed transaction activity
- Goal: Identify suspicious wallets

PROJECT OBJECTIVES

Use transaction data to classify wallets as:

- 0 = Legitimate
- 1 = Flagged/Suspicious

IMPORTANT FEATURES

- Total Ether sent, received, and balance
- Avg/min/max values of Ether sent/rec
- Unique sent/received addresses
- Time difference between first and last transaction

DATA PREPROCESSING

- Drops Unnamed: 0, Index columns.
- Fills missing categorical values with 'Unknown', numerics with 0.
- Converts object columns to category.
- Scales numeric columns to [0, 1].
- Computes total transactions if missing.

COMPARING ALGORITHMS

	Accuracy	f1-score	recall	precision
LightGBM	0.998984	0.997712	1.000	0.995434
XGBoost	0.995429	0.989619	0.983945	0.99536
KNN	0.91	0.79	0.78	0.81
Random Forest	0.995259	0.989410	1.000	0.979042
Logistic Regression	0.793769	0.611359	0.732416	0.524644
Linear SVM	0.751101	0.562239	0.721713	0.460488

OBSERVATIONS AT THIS STAGE

- SIGNS OF OVERFITTING
- SIGNS OF DATA LEAKAGE
- ABNORMALLY HIGH RESULTS
- XGBOOST & LIGHTGBM HAVE GIVEN THE BEST RESULTS
- FURTHER RESEARCH SHOWS
 PAYPAL HAS SUCCESSFULLY
 USED XGBOOST TO CREATE A
 FRAUD DETECTION ML

Engineering Features For Enhanced Fraud Detection

Correlation of the Target Variable and Engineered features

Correlation with FLAG: Num Bursts NaN Burst Intensity NaN Night Ratio -0.442870 Dormancy_Activity_Ratio -0.018096 Address_Interaction_Concentration -0.053055 ERC20_Token_Diversity NaN Value Anomaly Ratio -0.037649 Sent_Received_Imbalance 0.051980

- Num_Bursts: Counts transaction bursts, detecting sudden spikes signaling potential fraud.
- Burst_Intensity: Measures transaction density in bursts, highlighting rapid, suspicious activity
- **Night_Ratio:** Estimates night-time transaction fraction, flagging off-hour activity
- **Dormancy_Activity_Ratio:** Captures dormant-then-active transaction spikes typical of fraud.
- Address_Interaction_Concentration: Measures transactions per unique address, signaling fund funneling.
- **ERC20_Token_Diversity:** Gauges unique ERC20 tokens per transaction, flagging scam token focus.
- Value_Anomaly_Ratio: Identifies large transaction outliers relative to average values.
- **Sent_Received_Imbalance**: Quantifies sent vs. received transaction asymmetry in fraud schemes.

Overview of the Final Code

The code builds an advanced fraud detection system using XGBoost with optuna on transaction dataset

Handling Class Imbalance

• applied SMOTE on training data to handle class imbalance

Handling Missing Values

- we filled missing values with "unknown" for text-based and "0" for numeric values
- we had 2 models; baseline and enhanced model
- baseline model worked without the addition of new features

Normalizing

- we converted labels to categories and scaled all numbers between 0 and 1.
- this helped the model learn more efficiently as all features were at the same scale

Enhanced Model

- it used both old and new features
- this has a higher and better performance making it better at catching fraud

Optuna

- we used "optuna" to find the best settings for our ML model to get the best result
- It tried 100 different options of XGBoost settings and chose the best combination (no. of trees, depth, learning rate)

Correlation Analysis

 we did correlation analysis to find out which feature strongly effects fraud

Improved Results of the Enhanced Model

Enhanced Fraud Detection

- Boosted recall by 0.68% (87.61%), identifying more true positive
- Improved F1-score (+0.08%) and ROC-AUC (+0.05%) for fraud class.
- Captured nuanced patterns like network and value anomalies.

Point: Improved True Positives and True Negatives

- Engineered features increased true positives to 382 (19.40%), detecting ~3 more fraudulent accounts.
- Maintained high true negatives at 1479 (75.11%), ensuring accurate non-fraud identification.
- Address_Interaction_Concentration (19.82% importance) drove fraud detection by flagging suspicious network patterns.

	Predicted: Non-Fraud (0)	Predicted: Fraud (1)
Actual: Non-Fraud (0)	1479 (True Negatives)	54 (X False Positives)
Actual: Fraud (1)	54 (X False Negatives)	382 (True Positives)

```
Confusion Matrix (Enhanced Model):
Predicted 0 Predicted 1
Actual 0 1479 54
Actual 1 54 382
```

Model Performance:

Model Accuracy Precision Recall F1 Score ROC AUC

1 Enhanced (All Features) 0.94515 0.876147 0.876147 0.876147 0.982803

Prediction Breakdown (Enhanced Model):

True Positives (Fraud correctly detected): 382 (19.40%)

True Negatives (Non-fraud correctly detected): 1479 (75.11%)

X False Positives (Non-fraud wrongly flagged as fraud): 54 (2.74%)

False Negatives (Fraud missed): 54 (2.74%)

Per-Class Accuracy (Enhanced Model): Class 0 (Non-Fraud) Accuracy: 96.48% Class 1 (Fraud) Accuracy: 87.61%

Cross-Validated F1 Score (Enhanced): 0.8680 ± 0.0096

Solutions: Addressing CipherTrace's Fraud Detection Challenges with Enhanced Features

CipherTrace's Limitation:

Reliance on Static Rules and Known Labels

- Static rules & blacklists
- Misses new evasive wallets
- Undetected emerging fraud

What
CipherTrace
Could Do
Better — And
What We Did
Differently

- Replaced static rules with behavioral features
- Moved beyond blacklists using XGBoost model
- Optimized performance with Optuna tuning

Dataset Constraints:

Why We
Couldn't Fully
Implement All
Suggestions

- Limited to on-chain data only
- Missing external sources (e.g., exchange logs, metadata)
- Still achieved strong results with available data

Impact of
Using
Additional
Features:

Enhanced Fraud

Detection

- Improved recall, F1 score, and ROC-AUC
- Detected 3 more fraudulent accounts
- Top feature: Address_Interaction_Concen tration (19.8% importance)

Why This Solution is Relevant for CipherTrace's Future

Behavior-based ML outperforms static rules Reduces false negatives with richer signals & tuning Provides a data-driven upgrade path for CipherTrace