Лекция L9 Выска зывания: изоморфизм Карри-Ховарда

Вадим Пузаренко

Лекция L9 Высказывания: изоморфизм Карри-Ховарда

Вадим Пузаренко

6 апреля 2020 г.

Класс формул ИИВ совпадает с классом формул ИВ.

$\Gamma, \varphi \vdash \varphi$	(аксиома)
	$\frac{\Gamma \vdash (\varphi \to \psi); \ \Gamma \vdash \varphi}{\Gamma \vdash \psi} \ (\to E)$
$ \frac{\Gamma \vdash \varphi; \ \Gamma \vdash \psi}{\Gamma \vdash (\varphi \land \psi)} \ (\land I) $	$\frac{\Gamma \vdash (\varphi \land \psi)}{\Gamma \vdash \varphi} \ (\land E_1)$
$\frac{\Gamma \vdash (\varphi \land \psi)}{\Gamma \vdash \psi} \ (\land E_2)$	$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \lor \psi)} \; (\lor \mathrm{I}_1)$
$ \frac{\Gamma \vdash \psi}{\Gamma \vdash (\varphi \lor \psi)} \ (\lor I_2) $	$rac{\Gamma dash \bot}{\Gamma dash arphi}$ ($oxdot{ ext{E}}$)
	$\frac{\Gamma \vdash (\varphi \lor \psi); \ \Gamma, \varphi \vdash \upsilon; \ \Gamma, \psi \vdash \upsilon}{\Gamma \vdash \upsilon} \ (\lorE)$

ИИВ

Лекция L9 Высказывания: изоморфизм Карри-Ховарда

> Вадим Пузаренко

Предложение L16

Интуиционистское исчисление высказываний замкнуто относительно операций уточнения и подстановки, а именно, из доказуемости $\Gamma \vdash \varphi$ следует доказуемость $\Gamma, \psi \vdash \varphi$ и $[\Gamma]_{\psi}^{\mathbf{v}} \vdash [\varphi]_{\psi}^{\mathbf{v}}$.

ИИВ

Лекция L9 Высказывания: изоморфизм Карри-Ховарда

Вадим Пузаренко

Предложение L16

Интуиционистское исчисление высказываний замкнуто относительно операций уточнения и подстановки, а именно, из доказуемости $\Gamma \vdash \varphi$ следует доказуемость $\Gamma, \psi \vdash \varphi$ и $[\Gamma]^{\mathbf{v}}_{\psi} \vdash [\varphi]^{\mathbf{v}}_{\psi}$.

ИВ vs ИИВ

Следующие секвенции не доказуемы в ИИВ:

- $(\neg \varphi \rightarrow \varphi) \vdash \varphi$ (сведение к абсурду).

Фрагмент ИВ

Лекция L9 Высказывания: изоморфизм Карри-Ховарда

> Вадим Пузаренко

Ограничимся рассмотрением фрагмента алгебры высказываний, в которых используется только импликация в качестве связки.

Определение

Пусть $\alpha_1, \ \alpha_2, \ \dots, \ \alpha_n, \ \dots$ — атомарные высказывания. Индукцией определим высказывания:

- любое атомарное высказывание есть высказывание;
- $oldsymbol{\circ}$ если σ и au высказывания, то и $(\sigma o au)$ также является высказыванием;
- других высказываний нет.

Фрагмент ИВ

Лекция L9 Высказывания: изоморфизм Карри-Ховарда

Вадим Пузаренко Ограничимся рассмотрением фрагмента алгебры высказываний, в которых используется только импликация в качестве связки.

Определение

Пусть $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$ — атомарные высказывания. Индукцией определим высказывания:

- 🗿 любое атомарное высказывание есть высказывание;
- ullet если σ и au высказывания, то и $(\sigma o au)$ также является высказыванием;
- других высказываний нет.

Формально высказывания данного фрагмента совпадают с типами из типизированного λ -исчисления.

Лекция L9
Выска зывания:
изоморфизм
КарриХоварда

Вадим Пузаренко

Теорема L21

Существует биекция между замкнутыми λ -термами типа σ (с точностью до α -эквивалентности) и доказательствами секвенции $\vdash \sigma$.

Лекция L9 Выска зывания: изоморфизм Карри-Ховарда

> Вадим Пузаренко

Теорема L21

Существует биекция между замкнутыми λ -термами типа σ (с точностью до α -эквивалентности) и доказательствами секвенции $\vdash \sigma$.

Следствие L5

Если тип σ таков, что существует замкнутый терм данного типа, то высказывание σ доказуемо.

Лекция L9 Высказывания: изоморфизм Карри-Ховарда

Вадим Пузаренко

Теорема L21

Существует биекция между замкнутыми λ -термами типа σ (с точностью до α -эквивалентности) и доказательствами секвенции $\vdash \sigma$.

Следствие L5

Если тип σ таков, что существует замкнутый терм данного типа, то высказывание σ доказуемо.

Замечание

Для λ -термов, не являющихся замкнутыми, имеется похожее утверждение. Однако в этом случае формулировка более громоздкая, поскольку необходимы в выводе соответствия между свободными переменными в λ -терме и значениями атомарных высказываний.

Лекция L9 Выска зывания: изоморфизм Карри-Ховарда

> Вадим Пузаренко

Доказательство.

Сводится к проверке соответствия между деревьями вывода высказывания и построения λ -терма. При этом построение (x_1x_2) соответствует правилу вывода $(\to E)$, а $\lambda x.\sigma - (\to I)$.

Лекция L9 Высказывания: изоморфизм Карри-Ховарда

Вадим Пузаренко

Доказательство.

Сводится к проверке соответствия между деревьями вывода высказывания и построения λ -терма. При этом построение (x_1x_2) соответствует правилу вывода $(\to E)$, а $\lambda x.\sigma - (\to I)$.

Пример

$$\frac{\frac{x_2; (x_2x_1)}{(x_2(x_2x_1))}}{\frac{\lambda x_1.(x_2(x_2x_1))}{\lambda x_2.\lambda x_1.(x_2(x_2x_1))}}$$

$$\frac{(\alpha \to \alpha), \alpha \vdash (\alpha \to \alpha); (\alpha \to \alpha), \alpha \vdash (\alpha \to \alpha); (\alpha \to \alpha), \alpha \vdash \alpha}{(\alpha \to \alpha), \alpha \vdash \alpha}$$

$$\frac{(\alpha \to \alpha), \alpha \vdash \alpha}{(\alpha \to \alpha), \alpha \vdash \alpha}$$

$$\frac{(\alpha \to \alpha) \vdash (\alpha \to \alpha)}{(\alpha \to \alpha) \to (\alpha \to \alpha)}$$

$$\vdash ((\alpha \to \alpha) \to (\alpha \to \alpha))$$