

Mark Scheme (Results)

June 2022

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH13)

Paper 01: Unit 3 Practical Skills in Physics I

Question Number	Answer		Mark
1(a)	 Determines the average coin radius/diameter using at least five coins Determines the average coin thickness using all 20 coins Use of V = πr²t Or use of V = π d²/4 t • V between 1.14×10⁻⁶ and 1.22×10⁻⁶ m³ Example of calculation Total length of 10 coins = 30.2 cm Average coin radius = 0.0151 m Total height of 20 coins = 3.3 cm Average coin thickness = 0.00165 m V = πr²t V = π × (0.0151 m) ² × 0.00165 m V = 1.18×10⁻⁶ m³ 	(1) (1) (1) (1)	4
1(b)	• Use of $\rho = m/V$ • ρ between 8000 and 8600 kg m ⁻³ Allow ecf for V from 1(a) for both marks. Example of calculation $\rho = m/V$ $\rho = 0.0098 \text{ kg}/1.18 \times 10^{-6} \text{ m}^3$ $\rho = 8300 \text{ kg m}^{-3}$	(1) (1)	2
1(c)	 EITHER Calculates values for 2% range of the density of brass Statement comparing this with 1(b) and relevant conclusion made OR Calculates percentage difference between 8550 kg m⁻³ and the density from 1(b) Statement comparing this with 2% and relevant conclusion made Example of calculation 8550 kg m⁻³ × 1.02 = 8721 kg m⁻³ 8550 kg m⁻³ × 0.98 = 8379 kg m⁻³ 	(1) (1) (1) (1)	2

Question Number	Answer		Mark
1(d)	EITHER		
	• Use of a displacement can filled with water	(1)	
	Multiple coins added and volume of displaced water measured using a measuring		
	cylinder	(1)	
	 Volume of displaced water divided by number of coins 	(1)	
	Coins added slowly to prevent splashing		
	Or measuring cylinder read at eye level to avoid parallax		
	Or ensure measuring cylinder is vertical	(4)	
	Or displacement can is filled until overflowing and waits until drips stop	(1)	
	OR		
	Use of a measuring cylinder part filled with water	(1)	
	Multiple coins added and the change in volume recorded	(1)	
	Volume of displaced water divided by number of coins	(1)	
	Coins added slowly to prevent splashing		
	Or measuring cylinder read at eye level to avoid parallax	(1)	
	Or ensure measuring cylinder is vertical	(1)	
	OR		
	Use of vernier/digital calipers	(1)	
	Or use of a micrometer (screw gauge)		
	Multiple coins measured	(1)	
	Or multiple positions measured on the same coin		
	Mean radius/diameter and thickness/height calculated	(1)	
	Corrects/checks for zero error in the measuring device	(1)	4
	Total for question 1		12

Question Number	Answer		Mark
2(a)	 Uncertainty is half resolution (0.5°) Use of percentage uncertainty = (uncertainty / angle value) × 100% for either angle 	(1)	
	• % uncertainty in $\theta_1 = 1.4\%$ (accept 1%) and % uncertainty in $\theta_2 = 0.8\%$ If the full resolution of protractor is used (1°) – award MP2 for use of equation and MP3 for correctly values 2.9% (3%) and 1.6% (2%)	(1)	3
	Example Calculation % uncertainty in $\theta_1 = (0.5^{\circ} / 35^{\circ}) \times 100\% = 1.4\%$ % uncertainty in $\theta_2 = (0.5^{\circ} / 62^{\circ}) \times 100\% = 0.81\%$		
2(b)(i)	 See n₁ sin θ₁ = n₂ sin θ₂ with refractive index of air n₂ = 1 Rearranges and compares with y = mx (+ c) Or rearranges and compares n₁ = sin θ₂ / sin θ₁ with gradient = Δsin θ₂ / Δsin θ₁ 	(1) (1)	
	• Identifies $n_1 = \text{gradient}$ For MP1 accept $n \sin \theta_1 = \sin \theta_2$ For MP2 accept comparing $\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1}$ with gradient $= \frac{\Delta \sin \theta_2}{\Delta \sin \theta_1}$	(1)	3
2(b)(ii)	 Uses two points on the line to determine the gradient n₁ between 1.46 and 1.54 MP2 dependent on MP1 MP2 allow correct use of gradient = 1/n from 2(b)(i) 	(1) (1)	2
	Example Calculation $n_1 = (0.77 - 0.17) / (0.50 - 0.10)$ $n_1 = 1.5$		

Question Number	Answer	Mark
2(c)	 Realistic cause of a systematic error in measured data suggested Suitable method to reduce effect of the cause suggested (1) 	2
	MP2 dependent on MP1	
	<u>Examples</u>	
	• Normal line not correctly drawn at 90° to the flat surface	
	Use a protractor/set square to check the normal line	
	Zero error because protractor not aligned correctly	
	Ensure the protractor is aligned to the normal	
	Ray of light not directed to centre of the flat surface	
	Or incident ray not perpendicular to curved surface	
	Mark the position of the centre of the flat surface on paper	
	Block moved	
	Mark the position of the block on paper	
	Or tape the block in position	
	• Did not repeat measurements with angles of incidence either side of the normal	
	 Repeat measurements (for angles of incidence on both sides of the normal) and calculate mean value 	
	Total for question 2	10

Question Number	Answer		Mark
3(a)	 Power supply (e.g., battery), ammeter and LDR connected in series Voltmeter connected in parallel with LDR 	(1) (1)	2
	MP1 – accept incorrect symbol labelled as LDR or an LDR symbol without circle MP2 – we can accept a voltmeter in parallel with a single resistive component in the series circuit unless an LDR is given		
	<u>Examples</u>		
	Ammeter LDR Voltmeter		
3(b)	Distance between bulb and LDR (d) measured with a metre rule (accept tape measure)	(1)	
	 Record current and potential difference and use V = IR to calculate resistance Or use an ohmmeter or multimeter set to measure resistance Repeat for the same values of d and calculate the mean value of R 	(1)	
	Or use a set square/marker to reduce parallax when measuring d Or look down at ruler at eye-level to reduce parallax when measuring d	(1)	3
3(c)	 Downwards curved line with decreasing gradient Line not touching/crossing either axis 	(1) (1)	2
	MP2 dependent on MP1		
	<u>Examples</u>		
3(d)	• Use of $A = 4\pi r^2$ • Use of $I = \frac{P}{A}$ • $I = 18 \text{ W m}^{-2}$	(1) (1) (1)	3
	Example Calculation $I = 9.0 \text{ W} / (4 \times \pi \times (0.20 \text{ m})^2) = 17.9 \text{ W m}^{-2}$		

Question Number	Answer		Mark
3(e)(i)	Mark 3(e)(i) and (ii) holistically		
	Suitable control variable	(1)	1
	e.g., background light level, current in bulb, brightness/power of bulb, angle of light to LDR, temperature of the LDR		
3(e)(ii)	Suitable method of control for the control variable identified	(1)	1
	Total for question 3		12

Question Number	Answer		Mark
4(a)	 (Energy is conserved, so) mgΔh = ½mv² v = √2gΔh Or v² ∝ Δh Or states that m and g are constants Δh is constant so v is always the same Or Δh is constant so v² is always the same If no other marks awarded, accept GPE (decrease) and KE (increase) are the same for 1 mark If suvat equations are used to show v = √2as or v² ∝ s, do not award MP1 or MP2, but MP3 is still available 	(1) (1) (1)	3
4(b)	 Inconsistent d.p. in H H/D should be measured to nearest mm Or H/D should be recorded to 3 d.p. Allow "No repeats shown" for either marking point	(1) (1)	2
4(c)(i)	Correct D² values rounded to 2 s.f. Labels axes with quantities and units Sensible scales Plotting Line of best fit 1.0	(1) (1) (1) (2) (1)	6

Question Number	Answer		Mark
4(c)(ii)	• Calculates gradient using large triangle • Use of $gradient = \frac{2v^2}{g}$ • v between 1.92 and 1.98 (m s ⁻¹) $\frac{\text{Example Calculation}}{gradient = \frac{0.78 - 0.16}{1.0 - 0.2}} = 0.775 \text{ m}$ $v = \sqrt{\frac{g \times gradient}{2}} = \sqrt{\frac{9.81 \text{ m s}^{-2} \times 0.775 \text{ m}}{2}} = 1.95 \text{ m s}^{-1}$	(1) (1) (1)	3
4(c)(iii)	 States actual/percentage difference between the two values Or identifies that their value is slower/faster Comment identifying a potential cause for the difference Or comment on the accuracy of the values Examples The speed given by the graph is slower Air resistance reduced the size of D The speed given by the graph is only 0.03 m s⁻¹ slower than the value she calculated The difference is only 2%, so the experiment is accurate Or the difference is small, so the experiment is accurate Calculates the percentage difference between 1.98 m s⁻¹ and the value from 4(c)(ii) The percentage difference is small, so the experiment is accurate Or the percentage difference is large, so the experiment is not accurate 	(1) (1)	2
	Total for question 4		16