0.1 Capacity expansion

1. States(S_t)

- (a) Number of generators i in region $r(n_{i,r,t})$ [Physical state]
- (b) Binary decision to denote transmission line built $(nt_{l,t})$ [Physical state]
- (c) Demand for power in region r [Belief state] $(Dem_{r,t})$

2. Other known information

- (a) Capacity of generator Cap_i^{gen} and transmission line Cap_l^{trans}
- (b) Installation cost of generators $C_i^{inst,gen}$ and transmission lines $C_l^{inst,trans}$
- (c) Retirement cost of generator $C_i^{ret,gen}$

3. Actions (A_t)

- (a) number of generators i added in region $r(n_{i,r,t}^{add})$
- (b) number of generators i retired in region $r(n_{i,r,t}^{ret})$
- (c) Power flow in transmission line $l(P_{l,t})$ (1 defined as a tuple in one way)

4. Action Correction Functions

- (a) Santize actions: If power flow $P_{l,t}^l$ is negligible (between $-\epsilon, \epsilon$), it converts it to 0. It also rounds the actions $n_{i,r,t}^{add}$ and $n_{i,r,t}^{ret}$ to the nearest integer
- (b) Check bounds cost:
 - if $n_{i,r,t}^{add} < 0$, then $cost_t + = P + (n_{i,r,t}^{add})^2$ and $n_{i,r,t}^{add} = 0$ for all generators, in all regions, in all times
 - if $n_{i,r,t}^{ret} < 0$, then $cost_t + = P + (n_{i,r,t}^{ret})^2$ and $n_{i,r,t}^{ret} = 0$ for all generators, in all regions, in all times
 - if $n_{i,r,t}^{ret} > n_{i,r,t}$, then $cost_t + P + (n_{i,r,t}^{ret} n_{i,r,t})^2$ and $n_{i,r,t}^{ret} = n_{i,r,t}$ for all generators, in all regions, in all times
 - if $P_{l,t} < -Cap_{l,t}^{trans}$, then $cost_t + = P$ and $P_{l,t} = -Cap_{l,t}^{trans}$
 - if $P_{l,t} > Cap_{l,t}^{trans}$, then $cost_t + = P$ and $P_{l,t} = Cap_{l,t}^{trans}$

5. Transition function

- (a) Change the number of generators
 - $\bullet \ n_{i,r,t} = n_{i,r,t-1} + n_{i,r,t}^{add} n_{i,r,t}^{ret} \quad \forall i,r,t> = 1$
 - $reward_t + = \sum_i \sum_r (-n_{i,r,t}^{add} C_i^{inst,gen} n_{i,r,t}^{ret} C_i^{inst,ret}) \quad \forall t \ge 1$
- (b) Change in transmission network
 - $nt_{l,t} = 1 \quad \forall l, t >= 1, P_{l,t} \neq 0, nt_{l,t-1} = 0$

•
$$reward_t + = \sum_{l|nt_{l,t-1}=0,nt_{l,t}=1} C_l^{inst,trans} \quad \forall t \ge 1$$

- (c) Demand Satisfaction
 - $P_{(r_1,r_2)} = -P_{(r_1,r_2)}$. We define the transmission lines going only in one way that is either (r_1,r_2) or (r_2,r_1) and not both
 - $avail_{r,t} = \sum_{i} Cap_{i}^{gen} n_{i,r,t} + \sum_{r'\mid (r',r) \in L} P_{(r',r),t} \quad \forall t \geq 1$ if $avail_{r,t} < 0, cost_{t} + = D.(avail)^{2} \quad \forall r, t \geq 1$

 - if $avail_{r,t} < Dem_{r,t}, cost_t + = P + D.(Dem_{r,t} avail_{r,t})^2 \quad \forall r, t \ge 1$