MA2252 Introduction to Computing

Lecture 8
Part 2: Recursion

Sharad Kumar Keshari

School of Computing and Mathematical Sciences
University of Leicester

Learning outcomes

At the end of lecture, students will be able to

- understand recursion
- create recursive functions
- understand the difference between recursion and iteration
- solve recursion problems e.g. games

Recursion

Recursion occurs when something is defined in terms of itself. of itself.

Perample in biology

Examples:

Romanesco broccoli¹

Recursion (contd.)

Sierpiński triangle²

¹Picture credit: Ivar Leidus

²Picture credit: Beojan Stanislaus

Recursive functions

A recursive function is defined in terms of itself.

Examples:

Factorial function

$$f(n) = \begin{cases} \sqrt{2}, & n = 1 \\ \sqrt{2 + f(n-1)}, & n > 1. \end{cases}$$

$$f(1) = \sqrt{2}$$
, $f(2) = \sqrt{2 + f(1)} = \sqrt{2 + \sqrt{2}}$

The definition of a recursive function includes any reminds

- Base case: Function's value is given or can be calculated without using recursion.

 1, 1, 2, 3, 5, 8, 13
- Recursive step: Function's value is calculated by calling to itself.

 $f(n) = \frac{1}{f(n-1)} + \frac{1}{f(n-1)} = \frac{1}{f(n-1)}$ or example in factorial function is definitely the cross h = 0 and h = 0.

For example, in factorial function's definition, the cases h=0 and n>0 are base case and recursive step respectively.

Example: Write a recursive function in MATLAB to find n!

```
fortagal(n)
function out = myfactorial(n)
if n==0
                           01=1
out=1:
                                                       n=3
else
out=n*myfactorial(n-1) n*(n-1)!
          51 = 544 x3x2x 31 = 6
end
                                      = 6 out = 3 * my factorial

= 3 * 2 * my factorial

= 3 × 2 × 1× my factorial(0) an(1)
end
```

Demo

The factorial function can also be calculated using while loop. Observe how tricky it is to code now!

```
function out = myfactorial while(n)
if n = 0 | |n = 1|
   out=1:
else
   fact=n:
                     n-1); n(n-1) = 2(2-1)

5! = 5 \times 4 \times 3 \times 2 \times 1

Unot a recursive function.
   while n>1
     fact=fact*(n-1);
n=n-1;
   end
   out=fact;
end
end
```

Recursion vs Iteration

	Se.d. Mary Pargar
Recursion	/ Iteration
Easier to code recursive functions	Harder to code recursive functions
creates extra workspace	uses only one workspace
consumes more memory	consumes less memory
code runs rather slow	code runs faster

Recursion in Games

Tower of Hanoi

Figure: Tower of Hanoi game with 3 pegs ³

Goal: To move an entire stack of disks from one peg to another.

Rules:

- Only one can be used at a time.
- Only top disk of a stack can be moved to an empty peg or top of other stack.
- Larger diameter cannot go on top of smaller diameter

ndish

Question:

What is the minimum number of moves required to move a stack of n disks to other peg?

Possible strategy:

Exploit the recursive property of Tower of Hanoi game.

The recursive definition of minimum number of moves function f(n) is given as

$$f(n) = \begin{cases} 1, & n = 1 \\ 2 * f(n-1) + 1, & n > 1. \end{cases}$$

Write a recursive MATLAB function to find the minimum number of moves needed to play Tower of Hanoi game with n disks and 3 pegs.

Demo

Frame-Stewart algorithm can be used to find minimum number of moves. The proof of optimality of this algorithm is still an unsolved problem in

Mathematics.

Re vestional matis

³Picture credit: Evanherk

End of Part 2

Please provide your feedback • here