Scilab Textbook Companion for Analog and Digital Communications by H. P. Hsu¹

Created by
K Anusha
B.Tech
Electronics Engineering
ABES Engineering College, Ghaziabad
College Teacher
None
Cross-Checked by
K. V. P. Pradeep

May 18, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Analog and Digital Communications

Author: H. P. Hsu

Publisher: Tata McGraw-Hill, New Delhi

Edition: 3

Year: 2010

ISBN: 978-0-07-015150-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Signals and Spectra	10
3	Amplitude Modulation	15
4	Angle Modulation	20
5	Pulse Modulation Systems	45
6	Probability and Random Variables	74
8	Noise	86
9	Noise in Analog Communication System	121
10	Digital Modulation and Demodulation	141
11	Information Theory and Source Coding	161

List of Scilab Codes

Exa 1.9	FT of exponential with step function 10
Exa 1.10	Exponential function
Exa 1.11	Rectangular Function
Exa 3.7	Efficiency
Exa 3.8	Sine wave in AM broadcasting
Exa 4.3	Instantaneous frequency
Exa 4.9	Peak frequency
Exa 4.13	Bandwidth
Exa 4.14	Modulation Index
Exa 4.15	changed fm
Exa 4.16	Using FM
Exa 4.17	Frequency Modulated
Exa 4.18	Carsons rule
Exa 4.19	Frequency Multiplier
Exa 4.20	FM Transmitter
Exa 4.21	FM Modulator
Exa 4.22	FM generator
Exa 4.23	Multiplication Factor
Exa 4.29	Superheterodyne Receiver
Exa 5.9	Sampling rate
Exa 5.14	Binary Channel
Exa 5.15	Analog Signal to PCM System 48
Exa 5.18	Binary PCM System
Exa 5.19	CD Recording System
Exa 5.22	Audio Signal with Spectral Components 54
Exa 5.25	DM System
Exa 5.26	PCM Systems
Exa 5.27	DM system

Exa 5.32	TDM	9
Exa 5.33	TD Multiplexing 6	2
Exa 5.34	T1 Carrier System 6	4
Exa 5.35	TDM	6
Exa 5.37	Telephone Line	7
Exa 5.38	Roll Off Factor	0
Exa 5.39	Telemetry System	1
Exa 5.40	M ary PSK	1
Exa 6.7	Dot and dash	4
Exa 6.14	Binary Communication	7
Exa 6.16	Pulse Positions	8
Exa 6.17	Binary Source	9
Exa 6.20	Noisy Transmission Channel 8	1
Exa 6.23	Pdf of random variable	2
Exa 6.41	16 Binary Digits Transmission 8	4
Exa 8.1	Units Conversion	6
Exa 8.2	Rms Voltage	9
Exa 8.3	Output Noise Power	0
Exa 8.4	Noise Figure	1
Exa 8.6	Cascaded Amplifiers	3
Exa 8.7	Noise figure and temperature	6
Exa 8.9	WLAN Reciever	7
Exa 8.10	Receiver Noise Power	9
Exa 8.11	Cascade Amplifiers A and B 10	1
Exa 8.12	Distortion Component	4
Exa 8.13	Receiver Antenna System	6
Exa 8.14	TV Recievers	8
Exa 8.15	Reciever	1
Exa 8.18	Repeaters	4
Exa 8.23	Noise process	7
Exa 8.24	White Gaussian Noise	7
Exa 9.1	Output Noise Power	1
Exa 9.4	SNR of filters	4
Exa 9.8	AM with envelope detection	4
Exa 9.9	AM with additive thermal noise	6
Exa 9.10	Modulation Systems transmission Bandwidth 12	7
Exa 9.13	SSB System	
Exa 9.14	FM broadcast System	

Exa 9.17	Audio Signal Over RF Channel	134
Exa 9.18	Modulation Index	136
Exa 9.21	Normalized Message Signal	138
Exa 10.1	Binary Reciever	141
Exa 10.2	BPSK Reciever	143
Exa 10.6	Satellite Communication	145
Exa 10.11	Baseband Binary Transmission	145
Exa 10.17	On Off Binary System	148
Exa 10.18	Binary System	150
Exa 10.19	Binary Data Transmission	151
Exa 10.20	Binary Communication	153
Exa 10.24	Voice Transmission BPSK	153
Exa 10.25	Coherent Matched Reciever	157
Exa 10.27	M level PSK	158
Exa 11.2	DMS X with four symbols	161
Exa 11.3	Binary Memoryless Source	163
Exa 11.5	Black and white TV picture	163
Exa 11.6	Telegraph Source	166
Exa 11.7	Binary Channel	168
Exa 11.8	Binary Channel in cascade	170
Exa 11.9	Channel	172
Exa 11.16	BSC	172
Exa 11.20	Differential Entropy	176
Exa 11.23	AWGN Channel	178
Exa 11.24	DMS X with two symbols	178
Exa 11.25	DMS X	182
Exa 11.26	Second order extension of DMS	184
Exa 11.27	Kraft inequality	186
Exa 11.32	Shannon Fano	188
Exa 11.33	Shannon Fano and Huffman	190
Eva 11 34		194

List of Figures

1.1	FT of exponential with step function	10
1.2	Exponential function	11
1.3		12
3.1	Efficiency	16
3.2	Sine wave in AM broadcasting	18
4.1	4	21
4.2	Peak frequency	23
4.3	Bandwidth	24
4.4	Modulation Index	26
4.5	changed fm	28
4.6	Using FM	30
4.7	Frequency Modulated	31
4.8		33
4.9		35
4.10	FM Transmitter	37
4.11	FM Modulator	39
4.12	FM generator	40
		42
		44
5.1	Sampling rate	46
5.2	Binary Channel	47
5.3	Analog Signal to PCM System	49
5.4	Binary PCM System	51
5.5		52
5.6		55
5.7		57

5.8	PCM Systems	8
5.9	DM system	0
5.10	TDM	1
5.11	TD Multiplexing	3
5.12	T1 Carrier System	5
		6
		8
		9
		0
		2
6.1	Dot and dash	' 5
6.2	Binary Communication	6
6.3	Pulse Positions	8
6.4		0
6.5		1
6.6	Pdf of random variable	3
6.7		34
8.1	Units Conversion	7
8.2	Rms Voltage	0
8.3	Output Noise Power	1
8.4	Noise Figure	2
8.5	Cascaded Amplifiers	4
8.6	Noise figure and temperature	6
8.7	WLAN Reciever	8
8.8	Receiver Noise Power	0
8.9	Cascade Amplifiers A and B	2
8.10	Distortion Component	5
8.11	Receiver Antenna System	7
8.12	TV Recievers	9
	Reciever	2
8.14	Repeaters	5
8.15	Noise process	8
8.16	White Gaussian Noise	9
9.1	Output Noise Power	2
9.2	SNR of filters	3

9.3	AM with envelope detection
9.4	AM with additive thermal noise
9.5	Modulation Systems transmission Bandwidth 128
9.6	SSB System
9.7	FM broadcast System
9.8	Audio Signal Over RF Channel
9.9	Modulation Index
9.10	Normalized Message Signal
	Binary Reciever
	BPSK Reciever
10.3	Satellite Communication
10.4	Baseband Binary Transmission
10.5	On Off Binary System
10.6	Binary System
10.7	Binary Data Transmission
10.8	Binary Communication
10.9	Voice Transmission BPSK
10.10	Coherent Matched Reciever
10.11	M level PSK
	DMS X with four symbols
	Binary Memoryless Source
11.3	Black and white TV picture
	Telegraph Source
11.5	Binary Channel
11.6	Binary Channel in cascade
11.7	Channel
11.8	BSC
	Differential Entropy
11.10	OAWGN Channel
	DMS X with two symbols
11.12	2DMS X
11.13	Second order extension of DMS
11.14	Kraft inequality
11.15	Shannon Fano
11.16	Shannon Fano and Huffman
11 17	DMS X with five symbols 193

Chapter 1

Signals and Spectra

Scilab code Exa 1.9 FT of exponential with step function

Figure 1.1: FT of exponential with step function

Figure 1.2: Exponential function

```
'a' is 1

10 t= 0:1:10;

11 a=1; // a >0

12 z=((%e)^(-a*t) * x);

13 y=fft(z);

14 disp(y, 'fourier transform of x(t)=');
```

Scilab code Exa 1.10 Exponential function

Fourier transform of x(t) = 1. Fourier transform of x(t) = 1. Fourier transform of x(t) = 1. -->

Figure 1.3: Rectangular Function

```
15 disp(y, 'fourier transform of x(t)=');
```

Scilab code Exa 1.11 Rectangular Function

```
1 //Page Number: 1.14
2 //Example 1.11
3 clc;
4
5 //(a)
```

```
7 // Given
8 // Signal is x(t) = rect(t)
9 / \text{rect}(t) = 1 \text{ for } -a < |t| < a \text{ and } 0 \text{ elsewhere}
10 // Therefore
11 //We find out fourier transform of x(t) = 1 for -a < |
      t \mid < a \text{ thus},
12 x = 1;
13 a= 200; //Assume
14 t= -a : 1 : a; //range for fourier transform
15 y = fft(x);
16 disp(y, 'Fourier transform of x(t)=');
17
18
19 //(b)
20
21 // Given
\frac{22}{\sqrt{\text{Signal is } x(t)}} = \text{rect}(t)
23 // \operatorname{rect}(t) = 1 for -a/4 < |t| < a/4 and 0 elsewhere
24 //Therefore
25 //We find out fourier transform of x(t) = 1 for -a/4 <
        |t| < a/4 thus,
26 x = 1;
27 a= 200; //Assume
28 t = -a/4 : 1 : a/4; //range for fourer transform
29 y = fft(x);
30 disp(y, 'Fourier transform of x(t)=');
31
32 //(c)
33
34 // Given
35 // Signal is x(t) = rect(t)
36 // \operatorname{rect}(t) = 1 \text{ for } b < |t| < b + a/2 \text{ and } 0 \text{ elsewhere}
37 //Therefore
38 //We find out fourier transform of x(t) = 1 for b < 1
      t \mid < b + a/2 thus,
39 x = 1;
40 a= 200; //Assume
```

```
41 b=100; //Assume
42 t= b : 1 : (b+(a/2)); //range for fourer transform
43 y=fft(x);
44 disp(y, 'Fourier transform of x(t)=');
```

Chapter 3

Amplitude Modulation

Scilab code Exa 3.7 Efficiency

```
1 // Page Number: 3.14
\frac{2}{\sqrt{\text{Example } 3.7}}
3 clc;
4 //Given
6 //(a) efficiency = ((u^2)/(2+(u^2))
7 u=0.5;
8 n=((u^2)/(2+(u^2)));
9 \text{ np=n*100};
10 disp("%", np, "Efficiney: ");
11
12 //(b) nmax,
13 //nmax occurs at u=1;
14 u1=1;
15 nmax=((u1^2)/(2+(u1^2)));
16 nmaxp=nmax*100;
17 disp("%", nmaxp, "Efficiney max: ");
```

Scilab 5.4.1 Console

Figure 3.1: Efficiency

Scilab code Exa 3.8 Sine wave in AM broadcasting

```
1 // Page Number: 3.14
2 //Example 3.8
3 clc;
4 // Given
5 //From waveform
6 Amax = 150;
7 Amin=30;
8
9 //(a) Modulation index
10 u=((Amax-Amin)/(Amax+Amin));
11 disp(u, "Modulation Index: ");
12
13 Ac = (Amax/(1+u));
14 //(b)
15 // Carrier Power
16 Pc = (Ac^2)/2;
17 disp("W", Pc, "Carrier Power: ");
18
19 //Side band Power
20 PSB=(Amin^2)/2;
21 disp("W", PSB, "USB=LSB Power: ");
22
23 // Total Average power
24 \text{ Pt=Pc+(2*PSB)};
25 disp("W",Pt," Total Average Power: ");
26
27 //(c)Peak Envelope Power
28 // Given
29 R=60; //Ohm
30 PEP=(Amax^2)/(2*R);
```

```
Scilab 5.4.1 Console
Modulation Index:
    0.6666667
Carrier Power:
    4050.
W
USB=LSB Power:
   450.
W
Total Average Power:
   4950.
W
 Peak Envelope Power:
   187.5
W
Modulation efficieny:
   0.0909091
A=
   210.
                            18
A=
 - 15.
```

-->

```
31 disp("W", PEP, "Peak Envelope Power: ");
32
33 //(d) Modulation Efficieny
34 n=PSB/Pt;
35 disp(n, "Modulation efficieny: ");
36
37 / (e) Given
38 //(i) u=0.2
39 u1=0.2;
40 A1 = (60/u1) - Ac;
41 disp(A1, "A=");
42
43 //(ii) u=0.8
44 u2=0.8;
45 A2 = (60/u2) - Ac;
46 disp(A2, "A=");
```

Chapter 4

Angle Modulation

Scilab code Exa 4.3 Instantaneous frequency

```
1 //Page Number: 4.9
2 //Example 4.3
3 clc;
4 //Given
5 fc=1D+6; //Hz
6 kf=5;
7 mt=1D+5; //Hz
8
9 //(a) mi(t) with fm
10 mi=(fc+(kf*mt));
11 disp("Hz",mi,"Max, Inst. Frequency with FM");
12
13 kp=3;
14 //(b) mi2(t) with pm
15 mi2=fc+(mt*(kp/(2*%pi)));
16
17 disp("Hz",mi2,"Max, Inst. Frequency with PM");
```

```
Max, Inst. Frequency with FM

1500000.

Hz

Max, Inst. Frequency with PM

1047746.5

Hz
```

Figure 4.1: Instantaneous frequency

Scilab code Exa 4.9 Peak frequency

```
1 //Page Number: 4.13
2 //Example 4.9
3 clc;
4 //Given
5 delf=20D+3; //hz
6 fm=10D+3; //Hz
7
8 B=delf/fm;
9 disp(B, "Beta: ");
```

Scilab code Exa 4.13 Bandwidth

```
//Page Number: 4.16
//Example 4.13
clc;
//Given
//x(t)=10cos((2*pi*10^8*t)+(200cos(2*pi*10^3*t)))
//on differentiating
//wi=2*pi*(1D+8)-4*pi*sin(2*pi*(1D+3)*t)
//Therefore
delw=4*%pi*(1D+5);
wm=2*%pi*(1D+3);

B=delw/wm;
wb=2*(B+1)*wm;
fb=wb/2*%pi;
```


Figure 4.2: Peak frequency

Scilab 5.4.1 Console

Wb

2525840.5

rad/s

Fb

3967581.

Hz

-->

Figure 4.3: Bandwidth

```
15
16 disp("rad/s",wb, "Wb");
17
18 disp("Hz",fb, "Fb");
```

Scilab code Exa 4.14 Modulation Index

```
1 // Page Number: 4.17
2 //Example 4.14
3 clc;
4
5 // Given
6 delf=100D+3; //Hz
7 fc=20D+6; //Hz
8
9 //As B=delf/fm;
10 //(a) \text{ fm} 1=1D+3hz
11 disp('Part a')
12 fm1=1D+3; //Hz
13 B1=delf/fm1;
14 disp(B1, 'Modulation Index');
15
16 \text{ fb1=2*delf};
17 disp('Hz',fb1,'Bandwidth');
18
19 //(b) \text{ fm} 2 = 100D + 3hz
20 disp('Part b')
21 \text{ fm}2=100D+3; //Hz
22 B2=delf/fm2;
23 disp(B2, 'Modulation Index');
24
25 \text{ fb2=2*(B2+1)*fm2};
26 disp('Hz',fb2, 'Bandwidth');
```

Scilab 5.4.1 Console

```
Part a
Modulation Index
  100.
Bandwidth
  200000.
Hz
Part b
Modulation Index
   1.
Bandwidth
  400000.
Hz
Part c
Modulation Index
                     26
   0.2
Bandwidth
```

Victoria de la decima de la companione d

```
27
28 //(c) fm3=500D+3hz
29 disp('Part c')
30 fm3=500D+3; //Hz
31 B3=delf/fm3;
32 disp(B3,'Modulation Index');
33
34 fb3=2*fm3;
35 disp('Hz',fb3,'Bandwidth');
```

Scilab code Exa 4.15 changed fm

```
1 // Page Number: 4.17
2 //Example 4.15
3 clc;
4 // Given
5/x(t)=10\cos(wct+3sinwmt)
6 //Comparing with standard equation
7 B=3;
8 fm=1D+3; //hz
9 \text{ fb=2*(B+1)*fm};
10
11 //(a)fm is doubled
12 fma=2*fm;
13 fba=2*(B+1)*fma;
14 disp(fba, "fb with 2fm: ");
15
16
17
18 //(b)fm is one halved
19 fmb=fm/2;
20 fbb=2*(B+1)*fmb;
21 disp(fbb,"fb with 0.5fm:");
```

Scilab 5.4.1 Console fb with 2fm: 16000. fb with 0.5fm: 4000.

Figure 4.5: changed fm

Scilab code Exa 4.16 Using FM

```
1 // Page Number: 4.18
2 //Example 4.15
3 clc;
4 // Given
5 //x(t) = 10 \cos(wct + 3 \sin wmt)
6 //Comparing with standard equation of fm
7 B=3;
8 fm=1D+3; //hz
9 fb=2*(B+1)*fm;
10
11 //B is inversaly proportional to fm
12
13 //(a)fm is doubled
14 Ba=B/2;
15 \text{ fma=2*fm};;
16 fba=2*(Ba+1)*fma;
17 disp(fba, "fb with 2fm: ");
18
19
20
21 / (b)fm is one halved
22 Bb = 2 * B;
23 fmb=fm/2;
24 \text{ fbb=}2*(Bb+1)*fmb;
25 disp(fbb,"fb with 0.5fm:");
```

Scilab 5.4.1 Console

```
fb with 2fm:
10000.

fb with 0.5fm:
7000.
```

Figure 4.6: Using FM

Scilab 5.4.1 Console

```
Bandwidth
    14000.
 Hz
 Maximum frequency deviation
    15000.
 Hz
 Bandwidth
    32000.
Hz
-->
```

Figure 4.7: Frequency Modulated

Scilab code Exa 4.17 Frequency Modulated

```
1 // Page Number: 4.18
2 //Example 4.17
3 clc;
4 //Given
5 \text{ fm}=2D+3; //Hz
6 delf=5D+3; //Hz
8 //(a) Bandwidth of modulated signal
9 B=delf/fm;
10
11 fb=2*(B+1)*fm;
12 disp('Hz',fb,'Bandwidth');
13
14 //(b) Max. frequency deviation and Bandwidth of new
      signal
15 // Given
16 fm1=fm-(1D+3);
17 delf1=3*delf;
18
19 B1=delf1/fm1;
20
21 fd=B1*fm1;
22 disp('Hz',fd,'Maximum frequency deviation');
23
24 \text{ fb1=2*(B1+1)*fm1;}
25 disp('Hz',fb1,'Bandwidth');
```

Scilab code Exa 4.18 Carsons rule

```
1 //Page Number: 4.19
2 //Example 4.18
```

BW uing formula 210000. Hz BW uing Carsons Rule 180000. Hz

Figure 4.8: Carsons rule

```
3 clc;
4 //Given
5 delf=75D+3; //Hz
6 fM=15D+3; //Hz
7
8 D=delf/fM;
9 //Given formula fb=2(D+2)*fM
10 fb1=2*(D+2)*fM;
11 disp('Hz',fb1,'BW uing formula');
12
13 //Carsons Rule
14 fb2=2*(D+1)*fM;
15 disp('Hz',fb2,'BW uing Carsons Rule');
16
17 //High quality Fm radios require minimum 200kHz
18 //Therefore, carsons rule underestimates bandwidth
```

Scilab code Exa 4.19 Frequency Multiplier

```
1 //Page Number: 4.19
2 //Example 4.19
3 clc;
4 //Given
5 fm1=50; //Hz
6 fm2=15D+3; //Hz
7
8 delf=75D+3; //Hz
9
10 //As B=delf/fm
11 Bmin=delf/fm2;
12 Bmax=delf/fm1;
13
14 //Let B1=0.5
```

```
Multiplication factor

3000.

Max allowed frequency deviation

25.

Hz
```

Figure 4.9: Frequency Multiplier

```
15 B1=0.5;
16 n=(Bmax/B1);
17 disp(n,'Multiplication factor');
18
19 delf1=(delf/n);
20 disp('Hz',delf1,'Max allowed frequency deviation');
```

Scilab code Exa 4.20 FM Transmitter

```
1 // Page Number: 4.20
2 //Example 4.20
3 clc;
4 // Given
5 f1=2D+5; //Hz
6 fL0=10.8D+6; //Hz
7 delf1=25; //Hz
8 n1 = 64;
9 n2=48;
10
11 delf=(delf1*n1*n2);
12 disp('Hz', delf, 'Maximum frequency deviation');
13
14 f2=n1*f1;
15
16 f3a=f2+fL0;
17 f3b=f2-fL0;
18
19 //For f3a
20 fca=n2*f3a;
21 disp('Hz',fca,'Carrier frequency 1');
22
23 / \text{For } f3b
24 fcb=n2*f3b;
```

```
Maximum frequency deviation
   76800.
Hz
Carrier frequency 1
   1.133D+09
Hz
Carrier frequency 2
   96000000.
Hz
```

Figure 4.10: FM Transmitter

```
25 disp('Hz',fcb,'Carrier frequency 2');
```

Scilab code Exa 4.21 FM Modulator

```
1 // Page Number: 4.20
2 //Example 4.21
3 clc;
4 // Given
5 delf=20D+3; //Hz
6 fc=200D+3; //Hz
7 of = 96D+6; //hz
8 // delf=n1*n2 and as only doublers are used, n1*n2
      has to be power of 2
9 //By trail and error, we find
10 \text{ n1=64};
11 n2=32;
12 //Output of first Multiplier
13 o1=n1*fc;
14 disp('Hz', o1, 'Output of first multiplier: ');
15 i2 = of/n2;
16 \text{ flo=o1-i2};
17 disp('Hz',flo,'fLO');
```

Scilab code Exa 4.22 FM generator

```
1 //Page Number: 4.20
2 //Example 4.22
3 clc;
4 //Given
```

Figure 4.11: FM Modulator

fLO 99280000. Hz n1 with n2=150: 50.

Figure 4.12: FM generator

```
5 B=0.2;
6 f1 = 200D + 3; //Hz
7 fml=50; //Hz
8 fmh=15D+3; //Hz
9 delf=75D+3; //hz
10 fc=108D+6; //Hz
11
12 delf1=B*fml;
13 n1n2=delf/delf1;
15 / \text{Let n2} = 150
16 \quad n2=150;
17 flo=((delf*f1)-fc)/n2;
18 disp('Hz',flo,'fLO');
19
20 n1=n1n2/n2;
21 disp(n1, "n1 with n2=150:")
```

Scilab code Exa 4.23 Multiplication Factor

```
1 //Page Number: 4.21
2 //Example 4.23
3 clc;
4 //Given,
5
6 delfd1=50; //Hz
7 f1=120; //Hz
8
9 delfd2=20000; //Hz
10 f2=240; //Hz
11 //(a)PM
12 delf1=(f2/f1)*delfd1;
13 n1=delfd2/delf1;
```

```
Frequency multiplication factor in PM

200.

Frequency multiplication factor in FM

400.

-->
```

Figure 4.13: Multiplication Factor

```
disp(n1, 'Frequency multiplication factor in PM');

//(b)FM
n2=delfd2/delfd1;
disp(n2, 'Frequency multiplication factor in FM');
```

Scilab code Exa 4.29 Superheterodyne Receiver

```
1 // Page Number: 4.25
2 //Example 4.29
3 clc;
4 // Given
5 f1=108; //MHz
6 f2=157; //MHz
8 //(a) Image frequency overlaps RF band
9 fIF=12; //MHz
10
11 fLO1=f1-fIF;
12 disp('MHz',fL01,'fL01');
13 fim1=fLO1-fIF;
14 disp('MHz',fim1,'fim1');
15
16 \text{ fLO2=f2-fIF};
17 disp('MHz',fL02,'fL02');
18 fim2=fL02-fIF;
19 disp('MHz',fim2,'fim2');
20
21 // Clearly image and RF band overlap
```

Scilab 5,4,1 Console

fL01

96.

MHz

fim1

84.

MHz

fL02

145.

MHz

fim2

133. 44

MHz

Chapter 5

Pulse Modulation Systems

Scilab code Exa 5.9 Sampling rate

```
1 // Page Number: 5.26
2 //Example 5.9
3 clc;
4 // Given,
5 /m(t) = 10 \cos(2000*pi*t) \cos(8000*pi*t)
6 //or 5 cos (6000*pi*t) +5*cos(10000*pi*t)
7 //(a) Minimum sampling rate
8 //we have
9 fM=5000; //Hz
10 fs = 2 * fM;
11 disp('Hz',fs,'Minimum sampling rate');
13 //(b) bandpass sampling theoram
14 fu=fM;
15 fb=fM-3000; //Hz
16 //As fu/fb is 2.5
17 //We have
18 k=2;
19 fs2=(2*fu)/k;
```

```
Minimum sampling rate

10000.

Hz

Minimum sampling rate by sampling theoram

5000.

Hz

-->
```

Figure 5.1: Sampling rate

Scilab code Exa 5.14 Binary Channel

```
1 //Page Number: 5.31
2 //Example 5.14
3 clc;
4 //Given,
5 Rb=36000; // (b/s)
6 fM=3200; //Hz
7 fs=2*fM;
8 n=Rb/fs;
9 //As n should be less than Rs/fs
```


Figure 5.2: Binary Channel

```
10
11 nn=round(n)-1;
12 disp(nn, 'Binary digits');
13
14 L=2^nn;
15 disp(L, 'Quantizing level');
16
17 fs=Rb/nn;
18 disp('Hz',fs, 'Sampling Rate');
```

Scilab code Exa 5.15 Analog Signal to PCM System

```
1 // Page Number: 5.31
2 //Example 5.15
3 clc;
5 mp=1; //Assume peak amplitude is unity
6 //Given
7 del=0.02*mp;
9 L = (mp*2)/del;
10
11 for (i=0:10)
12
     j=2^i;
13
     if(j>=L)
14
       L1=j;
15
       break;
16
       end
17 end
18 n=log2(L1);// bits per sample
19 disp(n, 'Number of bits');
```


Figure 5.3: Analog Signal to PCM System

Scilab code Exa 5.18 Binary PCM System

```
1 // Page Number: 5.31
2 //Example 5.18
3 clc;
4 // Given,
5 SbyN=40; //db
6 SbyN0=10^(SbyN/10);
8 //As sbyn=3L^2/2
9 L=sqrt((2*(SbyN0))/3);
10 LL=round(L);
11
12 n = (log_2(LL));
13
14 nn=(round(n))+1; //Upper limit
15
16 disp(nn, 'Binary digits');
17 LL=2<sup>nn</sup>;
18
19 disp(LL, 'Number of levels');
20 / As SQN = 1.76 + 6.02(n)
21 \text{ SQN} = 1.76 + 6.02 * (nn);
22 disp('dB', SQN, 'Signal to quantizin ratio');
```

Scilab code Exa 5.19 CD Recording System

```
1 // Page Number: 5.33
```

```
Binary digits
7.
Number of levels
128.
Signal to quantizin ratio
43.9
dB
-->
```

Figure 5.4: Binary PCM System

```
Output signal to quantizing ratio:
   98.08
dB
Input bit rate:
   1411200.
B/s
Output bit rate:
   2822400.
B/s
Number of bits recorded:
   1.016D+10
Bytes
Number of bits required
   1.008D+08
Bytes
                      52
Number of comparable books
   50.
```

```
2 //Example 5.19
3 clc;
4 // Given,
5 n=16;
6 Rb=44100; //b/s
7 //(a) Output signal to quantizing ratio
8 SNQ=1.76+(6.02*n);
9 disp('dB', SNQ, 'Output signal to quantizing ratio: ')
10
11 //(b) Input Bit Rate
12 IBR=2*Rb*n;
13 disp('B/s',IBR,'Input bit rate: ');
14 OBR=2*IBR;
15 disp('B/s', OBR, 'Output bit rate: ');
16
17 //(c) Number of bits recorded
18 //Given, an hours time
19 //Therefore, time
20 t = 60*60;
21 \text{ NBR=OBR*t};
22 disp('Bytes', NBR, 'Number of bits recorded: ');
23
24 //(d) Dictionary
25 // Given
26 p = 1500;
27 c = 2;
28 1 = 100;
29 \text{ w=8};
30 \, \text{let=6};
31 b = 7;
32 d=p*c*l*w*let*b;
33 disp('Bytes',d,'Number of bits required');
34
35 x = NBR/(2*d);
36 \text{ y=round(x)};
37 disp(y, 'Number of comparable books');
```

Scilab code Exa 5.22 Audio Signal with Spectral Components

```
1 // Page Number: 5.35
2 //Example 5.22
3 clc;
4 // Given
5 f1 = 200; //Hz
6 f2=3300; //Hz
7 fs=8000; //Samples/s
8 \text{ SQN} = 30; //dB
10 //(a) Minimum number of quantizin levels and bits per
       sample
11 / \text{From SQN} = 1.76 + 20 \log L
12 La=10^{((SQN-1.76)/20)};
13 L=round(La);
14 disp(L, 'Minimum number of quantizing levels');
15 n = log_2(L);
16 nn=round(n);
17 disp(nn, 'Minimum number of bits per sample');
18
19 //(b) Minimum system bandwidth
20 Fpcm=(nn*fs)/2;
21 disp('Hz', Fpcm, 'Minimum system Bandwidth');
22
23 //(c) For u=255
24 / \text{SQN} = 20 \log L - 10.1
25 La1=10^{((SQN+10.1)/20)};
26 L1=(round(La1))+1; //Upper Limit
27 disp(L1, 'Minimum number of quantizing levels for u
      =255;
28 n1 = log_2(L1);
```

```
Scilab 5.4.1 Console
Minimum number of quantizing levels
   26.
Minimum number of bits per sample
   5.
Minimum system Bandwidth
   20000.
Hz
Minimum number of quantizing levels for u=255
   102.
Minimum number of bits per sample
   7.
Minimum system Bandwidth
   28000.
Hz
```

-->

Figure 5.6: Audio Signal with Spectral Components

```
29 nn1=(round(n1));
30 disp(nn1, 'Minimum number of bits per sample');
31
32 //Minimum system bandwidth
33 Fpcm1=(nn1*fs)/2;
34 disp('Hz', Fpcm1, 'Minimum system Bandwidth');
```

Scilab code Exa 5.25 DM System

```
1 //Page Number: 5.37
2 //Example 5.25
3 clc;
4 //Given,
5 fs=32D+3; //Hz
6 fm=1000; //Hz
7 fM=4D+3; //Hz
8 //As SNR=(3*(fs^3))/(8*pi*pi*(fm^2)*fM)
9 SNR=(3*(fs^3))/(8*%pi*%pi*(fm^2)*fM);
10 SNRdb=(log10(SNR));
11 disp('dB',SNRdb,'Output SNR');
```

Scilab code Exa 5.26 PCM Systems

```
1 //Page Number: 5.38
2 //Example 5.26
3 clc;
4 //Given,
5 n=4;
6 SNQ=1.76+(6.02*n);
```

Output SNR

2.4931215

dB

-->

Figure 5.7: DM System

Figure 5.8: PCM Systems

```
7 disp('dB',SNQ,'Output SNR');
```

Scilab code Exa 5.27 DM system

```
1 // Page Number: 5.38
2 //Example 5.27
3 clc;
4 // Given,
5 bw=3D+3; //Hz
6 n=3;
7 fs=(n*2*bw);
8 del=250D-3; //mV
9 fm=1000; //Hz
10 //(a) Maximum amplitude
11 Amax=(del*fs)/(2*%pi*fm);
12 disp('V', Amax, 'Maximum Amplitude');
13
14 //(b) Output signal to quantizing ratio
15 SNRO=(3*(fs^3))/(8*%pi*%pi*(fm^3));
16 SNRdb=10*(log10(SNRO));
17 disp('dB', SNRdb, 'Output SNR');
```

Scilab code Exa 5.32 TDM

```
1 //Page Number: 5.40
2 //Example 5.32
3 clc;
4 //Given,
5 m1=3D+3; //Hz
```

Maximum Amplitude 0.7161972 V Output SNR 23.45549 dB -->

Figure 5.9: DM system

Scilab 5,4,1 Console

Sampling Rate

7000.

Samples/s

-->

Figure 5.10: TDM

```
6 m2=3.5D+3; //Hz
7 //Since highest frequency is of m2
8 Sr=2*m2;
9 disp('Samples/s',Sr,'Sampling Rate');
```

Scilab code Exa 5.33 TD Multiplexing

```
1 // Page Number: 5.40
 2 //Example 5.33
3 clc;
4 // Given,
5 \text{ m1} = 3.6 D + 3; //Hz
6 m2=1.2D+3; //Hz
7 m3=m2;
8 \text{ m4} = \text{m2};
9 //(a) Nyquist rate
10 nr1=2*m1;
11 disp(nr1, 'Nyquist Rate of m1(t)');
12 \text{ nr2} = 2 * m2;
13 disp(nr2, 'Nyquist Rate of m2(t)');
14 \text{ nr3}=2*m3;
15 disp(nr3, 'Nyquist Rate of m3(t)');
16 \text{ nr4} = 2 * m4;
17 disp(nr4, 'Nyquist Rate of m4(t)');
18
19 //(b) Speed of commutator
20 c=nr1+nr2+nr3+nr4;
21 disp('samples/s',c,'Speed of commutator');
22
\frac{23}{\sqrt{c}} Output bit rate
24 // Given,
25 L = 1024;
26 \text{ n=log2(L)};
```

```
Nyquist Rate of m1(t)
  7200.
Nyquist Rate of m2(t)
  2400.
Nyquist Rate of m3(t)
  2400.
Nyquist Rate of m4(t)
  2400.
Speed of commutator
  14400.
samples/s
Output bit rate
   144000.
b/s
Minimum Channel Bandwidth
  7200.
```

Hz

```
27 OBR=n*c;
28 disp('b/s',OBR,'Output bit rate');
29
30 //(d)Minimum channel bandwidth
31 fB=c/2;
32 disp('Hz',fB,'Minimum Channel Bandwidth');
```

Scilab code Exa 5.34 T1 Carrier System

```
1 // Page Number: 5.41
2 //Example 5.34
3 clc;
4 //Given,
5 fs=8000; //Hz
6 m = 24;
7 n=8;
8 //(a) Duration of each bit
9 t1=1/fs;
10 t2=(m*n)+1; // Extra bit for synchronization
11 Tb=t1/t2;
12 disp('seconds', Tb, 'Duration of each bit');
13
14 //(b) Transmission Rate
15 Rb=1/Tb;
16 disp('b/s',Rb,'Transmission Rate');
17
18 //(c) Minimum transmission bandwidth
19 fT1=1/(2*Tb);
20 disp('Hz',fT1,'Minimum transmission bandwidth');
```

```
Duration of each bit
   0.0000006
seconds
Transmission Rate
   1544000.
b/s
Minimum transmission bandwidth
   772000.
Hz
```

Figure 5.12: T1 Carrier System

```
Spacing between succesive multiplexed pulses

0.000004

Seconds

Spacing between succesive multiplexed pulses using Nyquist rate of sampling

0.0000049

Seconds

-->
```

Figure 5.13: TDM

Scilab code Exa 5.35 TDM

```
//Page Number: 5.42
//Example 5.35
clc;
//Given,
n=24;
f=3.4D+3; //Hz
ts=1D-6; //Second

//(a) Spacing between succesive multiplexed pulses
fs=8000; //Samples per second
t1=1/fs;
t2=n+1; //One synchronizing bit
```

```
15 // Actual Tb, as actual duration of each pulse is 1 us
16 ATb=Tb-ts;
17 disp('Seconds', ATb, 'Spacing between succesive
      multiplexed pulses');
18
19
20 //(b) Nyquist Rate of Sampling
21 f1=2*f;
22 T=1/f1; //Seconds
23
24 \text{ Tb1=T/t2};
25
26 \quad ATb1=Tb1-ts;
27 disp('Seconds', ATb1, 'Spacing between succesive
      multiplexed pulses using Nyquist rate of sampling
      ');
```

Scilab code Exa 5.37 Telephone Line

```
1 //Page Number: 5.43
2 //Example 5.37
3 clc;
4 //Given,
5 bw=3.5D+3; //Hz
6 //Roll off factor
7 a=0.25;
8 Rb=(2*bw)/(1+a);
9 disp('b/s',Rb,'Data Rate');
```


Figure 5.14: Telephone Line

Roll off factor

0.5

Figure 5.15: Roll Off Factor

```
Minimum Transmission bandwidth

168000.

Hz
```

Figure 5.16: Telemetry System

Scilab code Exa 5.38 Roll Off Factor

```
1 //Page Number: 5.43
2 //Example 5.38
3 clc;
4 //Given,
5 fB=75D+3; //Hz
6 Rb=0.1D+6; //B/s
7 Tb=1/Rb;
8 a=(2*fB*Tb)-1;
9 disp(a,'Roll off factor');
```

Scilab code Exa 5.39 Telemetry System

```
1 // Page Number: 5.43
2 //Example 5.39
3 clc;
4 // Given,
5 m=8;
6 fM=2D+3; //Hz
7 a=0.2;
8 //Here we choose L=128;
9 L=128;
10 n = log2(L);
11 Sr = 2 * fM;
12 fs=1.25*Sr;
13
14 //For n tdm signals
15 \text{ x=m*fs};
16
17 // Resultant bit rate
18 br = 7 * x;
19
20 //Minimum Transmission bandwidth
21 fB=((1+a)*br)/2;
22 disp('Hz', fB, 'Minimum Transmission bandwidth');
```

Scilab code Exa 5.40 M ary PSK

```
1 // Page Number: 5.44
2 // Example 5.40
3 clc;
4 // Given,
5 M=16;
6 sr=40000;
```

Scilab 5.4.1 Console

```
Bit Rate:
    160000.
b/s
Value of M
    4.
Band Rate
    80000.
Symbols/s
Spectral efficiency
    1.5384615
b/s Hz
-->
```

72

Figure 5.17: M ary PSK

```
7 a=0.3;
8 //(a) Bit Rate
9 n = log2(M);
10 br=sr*n;
11 disp('b/s',br,'Bit Rate: ');
12
13 //(b)
14 //As 2*fB = (1+a)*R/log2M
15 // Given
16 bw=110D+3; //\text{Hz} //=2*fB
17
18 M=2^(((1+a)*br)/bw);
19 MM = round(M);
20 disp(MM, 'Value of M');
21
22 //(c)Band Rate
23 band=br/(log2(n));
24 disp('Symbols/s',band,'Band Rate');
25
26 //(d) Spectral efficiency
27 BT=((1+a)*br)/2;
28 Eff=br/BT;
29 disp('b/s Hz', Eff, 'Spectral efficiency');
```

Chapter 6

Probability and Random Variables

Scilab code Exa 6.7 Dot and dash

```
//Page Number: 6.16
//Example 6.7
clc;
//Given
//Pdot=2*Pdash and Pdot+Pdash=1
//Therfore, on solving using linear equations
a=[1 -2;1 1];
c=[0;1];
b=inv(a)*c;
Pdash=b(1,1);
Pdot=b(2,1);
disp(Pdot, 'Pdot:');
disp(Pdash, 'Pdash:')
```

Pdot: 0.3333333 Pdash: 0.6666667 -->

Figure 6.1: Dot and dash

```
P(r0):
   0.55
P(r1):
   0.45
P(m0/r0):
   0.8181818
P(m1/r1):
   0.8888889
Probability error:
   0.15
Probabilty that is transmitted correctly:
   0.85
```

Figure 6.2: Binary Communication

Scilab code Exa 6.14 Binary Communication

```
1 // Page Number: 6.18
2 //Example 6.14
3 clc;
4 // Given
5 p=0.1;
6 q = 0.2;
7 \text{ Pm0} = 0.5;
8 \text{ Pr1bym0=p};
9 PrObym1=q;
10
11 //(a) Find Pr0 and Pr1
12
13 Pm1 = 1 - Pm0;
14 \text{ PrObym0=1-Pr1bym0};
15 Pr1bym1=1-Pr0bym1;
16
17 //By formula
18 //P(r0) = (P(r0/m0)*P(m0)) + (P(r0/m1)*P(m1);
19 //P(r1) = (P(r1/m0)*P(m0)) + (P(r1/m1)*P(m1);
20
21 Pr0=(Pr0bym0*Pm0)+(Pr0bym1*Pm1);
22 Pr1=(Pr1bym0*Pm0)+(Pr1bym1*Pm1);
23 disp(Pr0, 'P(r0): ');
24 disp(Pr1, 'P(r1): ');
25
26 //(b)P(m0/r0)
27 //Using Bayes Rule
28 //P(m0/r0) = (P(m0) *P(r0/m0)/P(r0))
29 PmObyr0 = (PmO*PrObym0)/PrO;
30 disp(PmObyrO, P(mO/rO): ');
31
32 //(c)P(m1/r1)
```

```
Scilab 5.4.1 Console
```

```
Probabilty that all pulses are positive:

0.004096

Probabilty that all pulses are positive ,positive, positive, zero,zero,negative:

0.001728

-->
```

Figure 6.3: Pulse Positions

```
// Using Bayes Rule
//P(m1/r1)=(P(m1)*P(r1/m1)/P(r1))
Pm1byr1=(Pm1*Pr1bym1)/Pr1;
disp(Pm1byr1, 'P(m1/r1): ');

// (d) Probabilty error
// As Pe=(P(r1/m0)*P(m0))+(P(r0/m1)*P(m1))
Pe=(Pr1bym0*Pm0)+(Pr0bym1*Pm1);
disp(Pe, 'Probability error: ');
// (e) Probabilty that is transmitted correctly // As Pc=(P(r0/m0)*P(m0))+(Pr1bym1*Pm1)
// Pc=(Pr0bym0*Pm0)+(Pr1bym1*Pm1);
fraction of the probability of the
```

Scilab code Exa 6.16 Pulse Positions

```
1 // Page Number: 6.21
```

```
2 //Example 6.16
3 clc;
4 // Given
5 p=0.4;
6 Pp=p;
7 q=0.3;
8 \text{ Pn=q};
9 a=1; //i start value
10 b=6; //i end value
11 //(a) Probabilty that all pulses are positive
12 s=1;
13 for i=a:b
14
       s=s*Pp;
15
       end
16 disp(s, 'Probabilty that all pulses are positive:');
17
18 //(b) Pulses are positive , positive , positive , zero ,
      zero, negative
19 Pz=1-(p+q);
20 \text{ s1=(Pp^3)*(Pz^2)*Pn};
21 disp(s1, 'Probabilty that all pulses are positive,
      positive, positive, zero, zero, negative: ');
```

Scilab code Exa 6.17 Binary Source

```
1 //Page Number: 6.21
2 //Example 6.17
3 clc;
4 //Given
5 P1=0.6;
6 P0=0.4;
7 n=5; //Five digit sequence
8 j=2; //two outcomes 0 and 1
```

```
Probability for 1,1,0,0,0:

0.2304

Probability for atleast three 1 s:

0.68256
```

Figure 6.4: Binary Source

```
9
10 //(a)1,1,0,0,0
11 xf=(factorial(n))/((factorial(j))*(factorial(n-j)));
12 s=xf*(P1^j)*(P0^(n-j));
13 disp(s, 'Probability for 1, 1, 0, 0, 0: ');
14
15 //(b) at least 3 1's
16 / P(X \ge 3) = 1 - P(X \le 2)
17 / \text{Here y=1-x}
18 x = 0;
19 for k=0:2
20
        f=(factorial(n))/((factorial(k))*(factorial(n-k)
        x=x+\{f*((P1^k)*(P0^(n-k)))\};
21
22 \text{ end}
23 y=1-x;
24 disp(y, 'Probability for atleast three 1 s:');
```

```
Probabilty of more than one error in 10 recieved digits:

0.0042662

Using Poisson Approximation:

0.0046788
```

Figure 6.5: Noisy Transmission Channel

Scilab code Exa 6.20 Noisy Transmission Channel

```
1 // Page Number: 6.23
2 //Example 6.20
3 clc;
4 // Given
5 pe=0.01; //Error probability
  //(a) Probabilty of more than one error in 10
      recieved digits
8 n = 10;
9 //As P(X>1)=1-P(X=0)-P(X=1)
10 // Let x=P(X>1)
11 / s = P(X=0) + P(X=1)
12 s = 0;
13 for t=0:1
       f=(factorial(n))/((factorial(t))*(factorial(n-t)
14
          ));
```

```
s=s+{f*(pe^t)*((1-pe)^(n-t))};
15
16 \text{ end}
17 x=1-s;
18 disp(x, 'Probabilty of more than one error in 10
       recieved digits: ');
19
20 //(b) Using Poisson approximation
21 //P(X=k)^{\sim} [\{(\%exp)^{\sim}(-n*p)\}*\{((n*p)^{\sim}k)\}]/k \text{ factorial}
22 \text{ s1=0};
23 \text{ for } k=0:1
        j=factorial(k);
24
25
        s1=s1+[{exp(-n*pe)}*{((n*pe)^k)}]/j;
26 \text{ end}
27 \times 1 = 1 - s1;
28 disp(x1, 'Using Poisson Approximation: ');
```

Scilab code Exa 6.23 Pdf of random variable

```
1 //Page Number: 6.23
2 //Example 6.23
3 clc;
4 //We find, k=1/(b-a)
5 //(b) if a=1 and b=2,P(|x|<c) where c=1/2
6 a=-1;
7 b=2;
8 c=1/2;
9
10 k=1/(b-a);
11 //P(|x|<c) = P(-c<=x<=c)
12 //Let y
13 x0=-c;x1=c;
14 y=integrate('1', 'x', x0, x1);
15 y1=k*y;</pre>
```

Scilab 5.4.1 Console P(|x|<c): 0.3333333 -->

Figure 6.6: Pdf of random variable

```
Average errors per block:

0.16

Varience of errors per block:

0.1584

Probability that number of errors per block is bgeater or equal than 4:

0.0000165

-->
```

Figure 6.7: 16 Binary Digits Transmission

```
16 disp(y1, P(|x| < c): ');
```

Scilab code Exa 6.41 16 Binary Digits Transmission

```
//Page Number: 6.34
//Example 6.41
clc;
//Given
n=16; //binary digits
p=0.01; //Probabilty error due to noise
//(a) Average errors per block
//E(X)=n*p
Lefx=n*p;
disp(EofX, 'Average errors per block:');
```

```
12
13 //(b) Varience of errors of block
14 / s = n * p * (1 - p)
15 s=n*p*(1-p);
16 disp(s,'Varience of errors per block:');
17
18
19 //(c) Probability that number of errors per block is
       bgeater or equal than 4
20 i = 4;
21 //AsP(X>=4)=1=P(X<=3)
22 P3=0;
23 \text{ for } k=0:3;
       f=(factorial(n))/((factorial(k))*(factorial(n-k)
24
       P3=P3+(f*(p^k)*((1-p)^(n-k)));
25
26 \text{ end}
27 P4=1-P3;
28 disp(P4, 'Probability that number of errors per block
       is bgeater or equal than 4:');
```

Chapter 8

Noise

Scilab code Exa 8.1 Units Conversion

```
1 //Page Number: 8.6
2 //Example 8.1
3
4 clc;
5 disp('Part a');
6 //(a) Given, u1=1W and u2=1mW
7 //Change to dBW and dBm
8 u1=1D-3;
9 u2=1;
10 //(i)470 \text{mW}
11 a=470D-3;
12 y1=(10*log10(a/u1));
13 disp('dBm',y1);
14
15 y2=(10*log10(a/u2));
16 disp('dBW',y2);
17
18 //(ii)1W
19 b=1;
```


Figure 8.1: Units Conversion

```
20 z1 = (10 * log10 (b/u1));
21 disp('dBm',z1);
22
23 z2=(10*log10(b/u2));
24 disp('dBW',z2);
25
26 //(iii) 100nW
27 c = 100D - 9;
28 x1 = (10 * log 10 (c/u1));
29 disp('dBm',x1);
30
31 x2=(10*log10(c/u2));
32 disp('dBW',x2);
33
34 disp('Part B');
35 //(b) Here u1=1W (for dBW) and u2=1mW (for dBm)
36 //Change to powers to watts
37 //(i) - 20 dBW
38 a = -20;
39 k1=u2*(10^(a/10));
40 disp('W',k1);
41
42
43 //(ii) 47dBm
44 b = 47;
45 \text{ k2=u1*(10^(b/10))};
46 disp('W',k2);
47
48
49 //(ii)0dBm
50 c = 0;
51 k3=u1*(10^(c/10));
52 disp('W',k3);
53
54
55 disp('Part C');
\frac{56}{\sqrt{\text{consense}}} Given, channel \frac{10 \text{ss}}{20 \text{dB}} and \frac{10 \text{ss}}{20 \text{dB}}
57 \quad 1 = -20;
```

```
58 \text{ PT} = 1;
59 PR=10^(1/10);
60 disp(PR, 'W', 'Received Power',);
61
62 disp('Part D');
63 //(d) Given, channel loss=30dB when signal=3dB and
      overall loss = 20dB
64 \quad 11 = -30;
65 s = -3;
66 \quad 12 = -20;
67 q = -11 - s - s + 12;
68 d1=10^{(q/10)};
69 disp('dB',q,'=');
70 disp(d1);
71
72 disp('Part E');
73 //(e) Given,
74 Si=0; //dBm
75 S1=1D-3*(10^(Si/10));
76 Ni=1D-7; //W
77
78 Osnr=S1/Ni;
79 Odb=(10*(log10(Osnr)));
80 disp('dB',Odb);
```

Scilab code Exa 8.2 Rms Voltage

```
1 //Page Number: 8.7
2 //Example 8.2
3 clc;
4 //Given,
5 R=1000;
6 T=27; //degree celsius
```

```
Rms noise voltage:
4.069D-11
V
```

Figure 8.2: Rms Voltage

```
7 TK=T+273; //kelvin
8
9 // We know, rms noise voltage is 4RKTB
10 K=1.38D-28;
11 B=10;
12
13 V=sqrt(4*R*K*TK*B);
14 disp('V',V,'Rms noise voltage:');
```

Scilab code Exa 8.3 Output Noise Power

```
1 //Page Number: 8.8
2 //Example 8.3
3 clc;
4
5 //Given,
6 G=100;
7 G1=(10^(G/10));
8
9 T=30;
```

```
Output Noise Power

0.0000621

W
-->
```

Figure 8.3: Output Noise Power

```
10 Te=270;
11
12 //We know, output noise power=GKB(T+Te)
13 K=1.38D-23;
14 B=1.5D+6;
15
16 No=G1*1.38D-23*1.5D+6*(T+Te);
17 disp('W', No, 'Output Noise Power');
```

Scilab code Exa 8.4 Noise Figure

```
1 //Page Number: 8.8
2 //Example 8.4
3 clc;
4
5 //Given,
6 R=50;
7 osnr=0;
```

```
Output SNR

1.
Input noise power
2.001D-15
W
Signal Power Input
5.000D-15
W
Input SNR
2.4987506
Noise Factor
2.4987506
Noise figure
3.9772292
dB
-->
```

Figure 8.4: Noise Figure

```
8 SNRo = (10^{(osnr/10)});
9 disp(SNRo, 'Output SNR');
10
11 //As Pni=KTB
12 K=1.38D-23;
13 T = 290;
14 B=5D+5;
15 Pni=K*T*B;
16 disp('W', Pni, 'Input noise power');
17
18 // Psi=V^2/R
19 // Given V=5*10^-6V
20 \quad V = 0.5D - 6;
21 Psi=(V^2)/R;
22 disp('W', Psi, 'Signal Power Input');
23
24 isnr=(Psi/Pni);
25 disp(isnr, 'Input SNR');
26
27 F=(isnr/SNRo);
28 disp(F, 'Noise Factor');
29
30 \text{ NF} = 10 * \frac{\log 10}{(F)};
31 disp('dB',NF,'Noise figure');
```

Scilab code Exa 8.6 Cascaded Amplifiers

```
1 //Page Number: 8.9
2 //Example 8.6
3 clc;
4
5 //Given, Stage 1
6 SNRo=120;
```

```
Noise factor of stage 1
3.0682616
Noise figure of stage 1
4.8689238
dB
Input signal power of stage 1
0.0000037
W
Noise added by stage 1
0.0000004
W
-->
```

Figure 8.5: Cascaded Amplifiers

```
7 Pni=0.01D-6; //W
8 G1 = 20;
9
10 //Stage 2
11 F2=12; //dB
12 FF2 = (10^{(F2/10)});
13 G2 = 30;
14
15 //Stage 3
16 F3=9.3; //dB
17 FF3=(10<sup>(F3/10))</sup>;
18 \text{ G3} = 35;
19
20 //(a) Nosie factor and noise figure of Stage 1
21 F = 5.6; //dB
22 \text{ FF} = (10^{(F/10)});
23
24 //As F=F1-((F2-1)/G1)-((F3-1)*(G1G2));
25 Fa=FF-((F2-1)/G1)-((FF3-1)/(G1*G2));
26 disp(Fa, 'Noise factor of stage 1');
27
28 FadB=(10*(log10(Fa))); //dB
29 disp('dB',FadB,'Noise figure of stage 1');
30
31
32 //(b)Input signal power of stage 1
33 Psi=Pni*Fa*SNRo;
34 disp('W', Psi, 'Input signal power of stage 1');
35
36
37 //(c) Nosie added by stage 1
38 \ N = (Fa-1)*G1*Pni;
39 disp('W', N, 'Noise added by stage 1');
```

```
Overall Noise Figure

2.0041827

dB

Equivalent Noise Temperature

170.0619

K
-->
```

Figure 8.6: Noise figure and temperature

Scilab code Exa 8.7 Noise figure and temperature

```
1 // Page Number: 8.10
2 //Example 8.7
3 clc;
4
5 // Given
6 Te=127; // Kelvin
7 T=290; // Kelvin
9
  G1 = 100;
10
11 F2dB=12; //db
12 F2=(10^{(F2dB/10)});
13
14 F1=1+(Te/T);
15
16 F=F1+((F2-1)/G1);
```

```
17 FF=(10*log10(F));
18 disp('dB',FF,'Overall Noise Figure');
19
20 //Equivalent Noise Temperature TE
21 TE=(F-1)*T;
22 disp('K',TE,'Equivalent Noise Temperature');
```

Scilab code Exa 8.9 WLAN Reciever

```
1 // Page Number: 8.11;
2 //Example 8.9
3 clc;
5 //(a) Noise Figure
6 // Given
7 //Loss Fcator
8 IL=1.5; //dB
9 IL1 = (10^{(IL/10)});
10
11 // Noise figure
12 F1=1.41;
13 G1=1/F1;
14
15 G2=10;
16 GG2 = (10 * log 10 (G2)); //dB
17
18 \text{ G3} = 100;
19 GG3 = (10 * log10 (G3)); //dB
20
21 F2=2; //dB
22 F3=2; //dB
23
24 \text{ FF2} = (10^{(F2/10)});
```

```
Scilab 5.4.1 Console
Noise figure of cascade
   3.6495777
dB
Noise power output:
 - 64.280813
dBm
Signal to Noise ratio:
   2.780813
dB
Noise figure will be:
   2.017124
dB
```

Figure 8.7: WLAN Reciever

```
25 \text{ FF3} = (10^{(F3/10)});
26
27 F = (F1 + ((FF2 - 1)/G1) + ((FF3 - 1)/(G1 * GG2)));
28 FF = (10 * log 10 (F));
29 disp('dB', FF, 'Noise figure of cascade');
30
31 //(b) SNR at output
32 // Given
33 Pin=-90; //dBm
34 Pout=Pin-IL+GG2+GG3; //dBm
35
36 //Pn=Gcas*K*Te*B (cascade)
37 \text{ K} = 1.38D - 23;
38 To=290; // Kelvin
39 B=1D+8;
40 Gcas = GG2 + GG3 - IL;
41 Gcas1 = (10^{(Gcas/10)});
42 Pn=K*To*(F-1)*B*Gcas1; /W
43
44 Pn1 = (10*(log10(Pn/1D-3)));
45 disp('dBm', Pn1, 'Noise power output:');
46
47 SNR=Pout-Pn1;
48 disp('dB', SNR, 'Signal to Noise ratio:');
49
50 //(c)Best Noise Figure
51 //G1 after G2 after IL
52
53 Fcas = (FF2 + ((FF3 - 1)/G3) + ((IL1 - 1)/(G3*G2)));
54 \text{ Fcas1} = (10*(log10(Fcas)));
55
56 disp('dB', Fcas1, 'Noise figure will be:');
```

```
Scilab 5.4.1 Console
Nant=
   3.312D-13
W
Nant=
   1.656D-12
Reciver Noise Power Output
   0.0001987
W
```

Figure 8.8: Receiver Noise Power

Scilab code Exa 8.10 Receiver Noise Power

```
1 // Page Number: 8.12
2 //Example 8.10
3 clc;
4
5
6 // Given
7 K=1.38D-23;
8 B=40D+6;
9
10 Tant=600; //Kelvin
11 Trec=3000; //Kelvin
12
13 G=80; //dB
14 GG = (10^{(G/10)});
15
16 //Input noise power from antenna
17 Nant=K*Tant*B; //W
18 disp('W', Nant, 'Nant=');
19
20 Nrec=K*Trec*B; //W
21 disp('W', Nrec, 'Nant=');
22
23 Nout = (Nant + Nrec) *GG;
24 disp('W', Nout, 'Reciver Noise Power Output');
```

Scilab code Exa 8.11 Cascade Amplifiers A and B

```
1 //Page Number: 8.12
2 //Example 8.11
3 clc;
```

```
GA =
   10.
GB =
    15.
Gain when Amp A followed by Amp B
    1.5995262
Gain when Amp B followed by Amp A
   2.0110737
T0 =
    20.
Noise temperataure when Amp A followed by Amp B
    175.66119
Noise temperataure when Amp B followed by Amp A
   296.2446
-->
```

Figure 8.9: Cascade Amplifiers A and B

```
5 / \text{We use}, F = (F1 + (F2 - 1)/G1)
6 //Given
7 \text{ FA} = 1.5;
8
9 GA=10, //dB
10 GAA = (10^{(GA/10)});
11
12 FB=3; //dB
13 FBB = (10^{(FB/10)});
14
15 GB=15, //dB
16 GBB = (10^{(GB/10)});
17
18 //Case 1: Amp A followed by Amp B
19 F11=FA;
20 \text{ F12=FBB};
21 \quad G11 = GAA;
22
23 F1 = (F11 + (F12 - 1)/G11);
24 disp(F1, 'Gain when Amp A followed by Amp B');
25
26 //Case 2: Amp B followed by Amp A
27 F21=FBB;
28 F22=FA;
29 \quad G21 = GBB;
30
31 F2=(F21+(F22-1)/G21);
32 disp(F2, 'Gain when Amp B followed by Amp A');
33
34 //As F1<F2, Case 1 gives lowest Noise
35
36 // Also given,
37 T0=20 //degree celsius
38 T=T0+273; // Kelvin
39
40 //For amplifier A
41 TA = ((FA-1)*T);
42
```

```
//For amplifier B
TB=((FBB-1)*T);

//When A is followed by B
Te1=(F1-1)*T;

disp(Te1,'Noise temperataure when Amp A followed by Amp B');

//When B is followed by A
Te2=(F2-1)*T;
disp(Te2,'Noise temperataure when Amp B followed by Amp A');
```

Scilab code Exa 8.12 Distortion Component

```
1 //Page Number: 8.13
2 //Example 8.12
3 clc;
4 //Given, Noise figure
5 \text{ NF=2}; //dB
6 F = (10^{(NF/10)});
8 AG=12; //dB
9 A = (10^{(AG/10)});
10
11 //(a) Total Output Noise Power
12
13 // Also given, Input signal power
14 Pi=1; /W
15
16 //Input Noise power Pni
17 Pni=100D-3; //W
18
```

Scilab 5.4.1 Console

Figure 8.10: Distortion Component

```
19 //Input SNR
20 Isnr=Pi/Pni;
21
22 //Output SNR
23 Osnr=Isnr/F;
24
25 //Total output signal power
26 Po=Pi*A; /W
27
28 //Total output noise power
29 \text{ N=Po/Osnr; } /W
30 disp('W', N, 'Total Output Noise Power');
31
32 //(b) Signal to Noise and disortion ratio
33
34 //Given. 2% is disortion
35 \text{ Di} = 2/100;
36
37 // Total disortion
38 D=Di*A; /W
39
40 //Useful Power
41 S = (1 - Di) *A; /W
42
43 //As given SNAD=10*(log10(S+N+D)/(N+D));
44 SNAD=10*(log10((S+N+D)/(N+D)));
45 \operatorname{disp}(\mathrm{'dB'}, \operatorname{SNAD}, \mathrm{'SNAD}: ');
```

Scilab code Exa 8.13 Receiver Antenna System

```
1 //Page Number: 8.14
2 //Example 8.13
3 clc;
```

Scilab 5.4.1 Console

```
Noise tempertaure of antenna
362.31884

K

Effective Noise tempertaure
129.17753

K

Output Noise:
- 68.675706
dBm
```

Figure 8.11: Receiver Antenna System

```
4 // Given
5 Pni = -100; //dBm
6 PniW = ((1D-3)*(10^(Pni/10)));
8 To=290; //K
10 F=1.6; //dB
11 NF = (10^{(F/10)});
12
13 //(a) Noise tempertaure of antenna
14 //As Te=Pni/K*B;
15 K=1.38D-23;
16 B = 20D + 6;
17 Te=(PniW/(K*B));
18 disp('K', Te, 'Noise tempertaure of antenna');
19
20 //(b) Effective noise temperature
21 //Given,
22 G=30; //dB
23 GdB = (10^{(G/10)});
24
25 \text{ Tef} = ((NF-1)*To);
26 disp('K', Tef, 'Effective Noise tempertaure');
27
28 //Output Noise Pno=K*T(Te+Tef)*B*GdB
29
30 Pno=K*(Te+Tef)*B*GdB; //W
31 Pno1 = (10*(log10(Pno/1D-3)));
32 disp('dBm', Pno1, 'Output Noise: ');
```

Scilab code Exa 8.14 TV Recievers

```
1 // Page Number: 8.14
```

```
Overall Noise Figure:

6.7809936

db

Overall Noise Figure:

19.

db

Overall Noise Figure:

9.4039983

db

-->
```

Figure 8.12: TV Recievers

```
2 //Example 8.14
3 clc;
4 // Given
5 \text{ GG1} = 20; //dB
6 G1 = (10^{(GG1/10)});
8 FF1=6; //dB
9 F1 = (10^{(FF1/10)});
10
11 GG2=60; //dB
12 G2 = (10^{(GG2/10)});
13
14 FF2=16; //dB
15 F2=(10^{(FF2/10)});
16
17 LF=3; //dB
18 FC = (10^{(LF/10)});
19 GC=1/FC;
20
21 //(a) Overall Noise Figure
22 //Usinng F=(F1+((F2-1)/G1)+((F3-1)(G1*G2)));
23
24 Fa=(F1+((FC-1)/G1)+((F2-1)/(G1*GC)));
25 FadB=(10*(log10(Fa)));
26 disp('db', FadB, 'Overall Noise Figure:');
27
28
  //(b) Noise figure, if pre-amplifier is removed and
29
      gain increased by 20dB
30
31 Fb=FC+((F2-1)/GC);
32 \text{ FbdB} = (10*(log10(Fb)));
33 disp('db', FbdB, 'Overall Noise Figure:');
34
35 //(c) Change in noise figure
36 //Again using F=(F1+((F2-1)/G1)+((F3-1)(G1*G2)));
37 Fc = (FC + ((F1-1)/GC) + ((F2-1)/(G1*GC)));
38 FcdB = (10*(log10(Fc)));
```

```
39
40 disp('db',FcdB,'Overall Noise Figure:');
```

Scilab code Exa 8.15 Reciever

```
1 // Page Number: 8.15
2 //Example 8.15
3 clc;
5 //Given Noise figure
6 NF=5; //dB
7 F = (10^{(NF/10)});
9 Ta=1050; //Kelvin
10
11 //(a) Overall Noise Figure
12 T=20; // degree Celsius
13 To=T+273; // Kelvin
14
15 // Effective Noise temperature
16 Te = ((F-1) * To);
17 disp('K', Te, 'Effective Noise temperature');
18
19 // Overall effective Noise Temperature
20 \text{ TIN=Ta+Te};
21 disp('K', TIN, 'Overall Effective Noise temperature');
22
23 // Overall noise figure
24 \quad ONF = (1 + (TIN/To));
25 ONFdB=(10*(log10(ONF))); //dB
26
27 disp('dB',ONFdB,'Overall Noise Figure:');
28
```

```
Effective Noise temperature
  633.54735
K
Overall Effective Noise temperature
  1683.5474
K
Overall Noise Figure:
  8.290396
dB
Input signal Power:
- 135.05886
dBW
Equivalent Noise temperature:
  418.02117
K
Effective Noise temperature:
  1468.0212
K
Overall Noise Figure:
   8.290396
                              112
Input Signal Power:
  6.982D-14
W
```

Minimum detectable signal Umin:

```
29
30 //(b)Input Signal Power
31 // Given Output SNR
32 \text{ Outsnr=6}; //dB
33 Osnr=(10^(Outsnr/10));
34
35 Isnr=ONF*Osnr;
36
37 //Input Noise Power=KTB
38 \text{ K} = 1.38 D - 23;
39 B = 50000;
40 Pni=K*TIN*B; //W
41
42 //Input signal Power
43 Psi=Isnr*Pni; //W
44 PsidBW = (10*(log10(Psi/1))); //dBW
45 disp('dBW', PsidBW, 'Input signal Power:');
46
47
48 //(c) Minimum detectable signal Vmin
49 // Given
50 Osnr=10; //dB
51 R=50; /Ohms
52
53 \text{ FF1=3}; //dB
54 F1 = (10^{(FF1/10)});
55
56 \text{ FF2=5}; //dB
57 F2=(10^{(FF2/10)});
58
59 \text{ GG1} = 7;
60 G1 = (10^{(GG1/10)});
61 // \text{Using } F=F1+((F2-1)/G1)
62
63 Fa=F1+((F2-1)/G1);
64
65 Fa1 = (10*(log10(Fa)));
66
```

```
67 // Equivalent Noise Tempertaure
68 Te1=((Fa-1)*To);
69 disp('K', Te1, 'Equivalent Noise temperature:');
70
71 // Overall effective Noise Temperature
72 \text{ TIN1=Ta+Te1};
73 disp('K', TIN1, 'Effective Noise temperature:');
74
75 //Input Noise Power=KTB
76 Pni1=K*TIN1*B; //W
77
78 // Overall noise figure
79 ONF1 = (1 + (TIN1/To));
80 ONFdB1=(10*(log10(ONF)));
81 disp('W', ONFdB1, 'Overall Noise Figure:');
82
83 //Input SNR
84 Isnr1=ONF1*Osnr;
85
86 //Input signal Power
87 Psi1=Isnr1*Pni; //W
88 disp('W', Psi1, 'Input Signal Power:');
89
90 //Now as Vmin^2/R=Psi1
91 //Therefore
92 Vmin=sqrt(Psi1*R);
93 disp('V', Vmin, 'Minimum detectable signal Vmin:');
```

Scilab code Exa 8.18 Repeaters

```
1 //Page Number: 8.18
2 //Example 8.18
3 clc;
```

```
Noise figure:
   400.
dB
Power transmitted with no repeaters
   5.060D+26
W
Power transmitted with 20 repeaters
   1.012D-10
```

Figure 8.14: Repeaters

```
4 //Given,
5
6 Fa=5; //dB
7 d=200; /Km
8 a=2; //dB/Km
9 No=4D-21; //W/Hz
10 BW=4000;
11 Osnr=30; //dB
12 //(a) No repeaters used
13 L=d*a; //dB
14 disp('dB',L,'Noise figure:');
15
16 //As Output SNR=InputSNR/F where F=L*Fa
17 //And Input SNR=(Pt/(No*B))
18 // Therefore ,PT=Output SNR+L+Fa+(No*B)
19
20 NoB=10*log10(No*BW);
21
22 //Power Transmitted
23 Pt=Osnr+L+Fa+(NoB);
24
25 PtdB=10^(Pt/10);
26 disp('W', PtdB, 'Power transmitted with no repeaters')
27
\frac{28}{(b)} 20 repeaters are employed
29 n = 20;
30 //F becomes 20F
31 //Output SNR=InputSNR/20*F where F=L*Fa
32 L1=L/n; //dB per segment
33
34 //Power Transmitted
35 Pt1=0snr+L1+Fa+(NoB)+(10*(log10(n));
36
37 \text{ PtdB1}=10^{(Pt1/10)};
38 disp('W', PtdB1, 'Power transmitted with 20 repeaters'
      );
```

Scilab code Exa 8.23 Noise process

```
1 // Page Number: 8.23
2 //Example 8.23
3 clc;
4 // Given,
5 // S=10D-8*(1-(|f|/10D+8));
7
8 //(a) Power contenet of output noise
9 //Bandwidth of 2MHz centered at 50MHz
10 //Therefore, first limits will be
11
12 \times 0 = -51D + 6;
13 x1 = -49D + 6;
14 P1=integrate('1+(f/10^8)', 'f', x0, x1);
15
16 //And, second limits will be
17
18 \times 2 = 49D + 6;
19 x3=51D+6;
20
21 P2=integrate('1-(f/10^8)', 'f', x2, x3);
22
23 P=10D-8*(P1+P2);
24 disp('W',P,'Power content:');
```

Scilab code Exa 8.24 White Gaussian Noise

Figure 8.15: Noise process

```
Scilab 5.4.1 Console
Noise power at input of filter:
     1.536
W
-->
       1.8 -
       1.6 -
        1.4 -
        1.2 -
       0.8
        0.6 -
        0.4 -
```

Figure 8.16: White Gaussian Noise

```
1 // Page Number: 8.25
2 //Example 8.24
3 clc;
4 //Given, band limited gaussian noise with psd,
5 S=9.6D-5; //W/Hz for |f| < 8kHz
6 L=100D-3; //H
7 R=100; /Ohms
9 //(a) Noise power at input of filter
10
11 x0 = -8000;
12 \times 1 = 8000;
13 Pni=S*(integrate('1', 'f', x0, x1));
14 disp('W', Pni, 'Noise power at input of filter:');
15
16 // Plot
17 x=linspace(-8,8,3);
18 y=linspace(0,1,1);
19
20 plot(x,y);
```

Chapter 9

Noise in Analog Communication System

Scilab code Exa 9.1 Output Noise Power

```
1 // Page Number: 9.10
2 // Example 9.1
3 clc;
4 // Given
5 wo=2*%pi*8000;
6 n=2D-9;
7 // N0=(n/4*%pi)integrate('1/(1+((w/w0)^2))','w',-%inf,+%inf)
8 // Which yields
9 // Output Noise Power
10 N0=(wo*n)/4;
11 disp("W",N0," Output Noise Power: ");
```

Output Noise Power:

0.0000251

W

-->

Figure 9.1: Output Noise Power

Scilab 5.4.1 Console SNR: 1.25 SNR1: 1.2376238 -->

Figure 9.2: SNR of filters

Scilab code Exa 9.4 SNR of filters

```
1 // Page Number: 9.12
2 //Example 9.4
3 clc;
4 // Given
5 //(a)
6 \text{ H1=1};
7 H2=(1/2);
8 S0 = (H1^2)/2;
9 w0 = -2 * \%pi;
10 w1 = 2 * \%pi;
11 NO=(0.1/(2*%pi))*2*(integrate('1', 'w', w0, w1));
12 SNR = SO/NO;
13 disp(SNR, "SNR: ");
14
15 //(b)
16 S01=(H1^2*H2^2)/2;
17 \quad NO1 = 0.101;
18 SNR1=S01/N01;
19 disp(SNR1, "SNR1: ");
```

Scilab code Exa 9.8 AM with envelope detection

```
1 //Page Number: 9.15
2 //Example 9.8
3 clc;
4 //Given
5 p=0.99;
6 u=1;
7 q=1-p;
8 //As exp(-Ac^2/4*n*B)=1-p
9 //AndAC^2/2*n*B=S/N
```


Figure 9.3: AM with envelope detection

Scilab 5 4 1 Console

```
Minimum Value of Ac:

0.0309839

V

Minimum Value of Ac at Threshold:

0.0005237

V

-->
```

Figure 9.4: AM with additive thermal noise

```
10  //Therefore exp(-(1/2)*(S/N))=1-p
11  SN=2*(log(1/q));
12  SN1=(round(SN)+1); //Upper limit
13  disp('db',SN1,'S/N:');
14  //Hence proved
```

Scilab code Exa 9.9 AM with additive thermal noise

```
1 // Page Number: 9.16
2 //Example 9.9
3 clc;
4 //Given
5 \text{ Si} = 7D + 4;
6 u=1;
7 BW=4D+3; //Hz
8 n=2D-12; //W/Hz
9
10 //(a) Minimum value of Ac
11 SbyN=40; //dB
12 SN = 10^{(SbyN/10)};
13
14 Sx=2*[integrate('(x^2)*(-x+1)', 'x', 0, 1)];
15 //Now
16 g=SN/(Sx/(1+Sx));
17 //And
18 //Ac = sqrt((2*n*BW*g)/(1+(u^2*Sx))
19 //We have
20 Ac=sqrt((2*n*BW*g)/(1+(u^2*Sx)));
21 disp('V', Ac, 'Minimum Value of Ac:');
22
23 //(b) Threshold value of Ac
24 //AS S/N at threshold is 10 dB
25 SNT=10; //dB
26 \text{ gT}=2*SNT;
27 AcT=sqrt((2*n*BW*gT)/(1+(u^2*Sx)));
28 disp('V', AcT, 'Minimum Value of Ac at Threshold:');
```

Scilab code Exa 9.10 Modulation Systems transmission Bandwidth

```
1 //Page Number: 9.17
2 //Example 9.10
```

```
Transmission Bandwidth for DSB:
    20000.
Hz
Transmission Bandwidth for AM:
   20000.
Hz
Transmission Bandwidth for SSB:
   10000.
Hz
Power transmission for DSB and SSB:
   2000.
W
Power transmission for AM:
    6000.
W
                       128
```

```
3 \text{ clc};
4 // Given
5 BW=10D+3; //Hz
6 SNR=40; //dB
7 SNR0 = 10^{(SNR/10)};
8 \text{ P=40; } //\text{dB}
9 PL=10^(P/10);
10 n=2D-9; //W/Hz
11 USx2=0.5;
12 //For DSB, AM and SSB bandwidth requirement
13 BTD=2*BW;
14 BTA=2*BW;
15 BTS=BW;
16 disp('Hz', BTD, 'Transmission Bandwidth for DSB:');
17 disp('Hz', BTA, 'Transmission Bandwidth for AM:');
18 disp('Hz', BTS, 'Transmission Bandwidth for SSB:');
19
20
21 //Pt for DSB and SSB
22 //As SNRO=Si/nBW
23 Si=n*BW*SNRO; //W
24 // Considering Channel loss
25 \text{ ST=Si*PL};
26 disp('W', ST, 'Power transmission for DSB and SSB:');
27
28 //Pt for AM
29 //As SNRO=x*Si/nBW
30 //x = USx2/(1+USx)
31 x=USx2/(1+USx2);
32 Si1=(n*BW*SNRO)/x; //W
33 // Considering Channel loss
34 \text{ ST1=Si1*PL};
35 disp('W', ST1, 'Power transmission for AM:');
```

```
Scilab 5.4.1 Console
```

```
Ac for s(t)=100mw:
    3.6514837
V
Power in absence of Noise:
    0.025
W
Power:
    0.00015
W
SNR at output for SSB:
    22.218487
dB
                   130
SNR at output for DSB:
```

25.228787

Scilab code Exa 9.13 SSB System

```
1 // Page Number: 9.20
     2 //Example 9.13
    3 clc;
    4 //Given
    5 \text{ Mf1} = 0.003;
     6 / for f <= 1.5D+3 Hz
    7 f1=1.5D+3; //Hz
    9 \text{ Mf2=0.001};
 10 // \text{for } 1.5D+3 \le f \le 3D+3 \text{ Hz}
 11 f2=3D+3; //Hz
12
13 Mf3=0;
14 // for f > 3D + 3 Hz
15
16
17 //(a) Ac that power transmitted is 100 \text{mW}
 18 St=100D-3; //W
 19 //As St = 2*[{f1*(Mf1*Ac/2)^2}+{f1*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/2)^2}+{f2*(Mf2*Ac/
                                      Mf3*Ac/2)^2
 20 // Neglecting Mf3 as zero
 21 Ac=sqrt((4*St)/(2*f1*(Mf1^2+Mf2^2)));
22 disp('V', Ac, 'Ac for s(t) = 100 \text{mw}:');
23
24 //(b) Power in abscence of noise
 25 Zt=2*[{f1*(((Mf1*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*(((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)/4)^2)}+{f1*((Mf2*Ac)
                                      f2*(((Mf3*Ac)/4)^2)}];
 26 disp('W', Zt, 'Power in absence of Noise:');
27
28 //(c)
29 // Given
30 NO=0.0001D-3; /W/Hz
31 / Psd=N0/4
32 / Pt = 2*f1*N0/4
33 Pt=(2*f2*N0)/4;
34 disp('W', Pt, 'Power:');
```

```
35
36 //(d) SNR at output
37 SNR=Zt/Pt;
38 SNR0=10*\log 10 (SNR);
39 disp('dB', SNRO, 'SNR at output for SSB:');
40
41 //(e) For DSB
42 St1=100D-3; /W
43 //As St=4*[{ f1*(Mf1*Ac/2)^2}+{ f1*(Mf2*Ac/2)^2}+{ f2*(
                           Mf3*Ac/2)^2
44 // Neglecting Mf3 as zero
45 Ac1=sqrt((4*St)/(4*f1*(Mf1^2+Mf3^2)));
46
47 \text{ Zt1}=4*[\{f1*(((Mf1*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+\{f1*(((Mf2*Ac)/4)^2)\}+(((Mf2*Ac)/4)^2)\}+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+(((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2*Ac)/4)^2)+((Mf2
                           f2*(((Mf3*Ac)/4)^2)}];
48
49 //SNR at output
50 SNR1 = Zt1/Pt;
51 \text{ SNRO1} = 10 * \frac{\log 10}{\log 10} \text{ (SNR1)};
52 disp('dB', SNRO1, 'SNR at output for DSB:');
53
54 //3dB increase in SNR
55 //DSB has higher SNR but SSB os spectarally
                             efficient
```

Scilab code Exa 9.14 FM broadcast System

```
1 //Page Number: 9.22
2 //Example 9.14
3 clc;
4 //Given
5 delf=75D+3; //Hz
6 W=15D+3; //Hz
```


Figure 9.7: FM broadcast System

```
7 Sx=1/2;
8 //As SNRO=3(delf/W)^2*Sx*g
9 // Assume g=1
10 g=1;
11
12 SNRO=3*(delf/W)^2*Sx*g;
13 SNdB=10*log10(SNRO);
14 disp('dB',SNdB,'Output SNR:');
15
16 //Hence it is SNdB times better
```

Scilab code Exa 9.17 Audio Signal Over RF Channel

```
1 // Page Number: 9.23
2 //Example 9.17
3 clc;
4 // Given
5 \text{ oSNR} = 40; //dB
6 \text{ SNRO} = 10^{\circ} (\text{oSNR}/10);
7 n=2D-10; /W/Hz
8 1=50; //dB
9 \text{ PL}=10^(1/10);
10 B=15D+3; //Hz
11 Sx = 1/2;
12 //(a) DSB Modulation
13 BTD = 2 * B;
14 disp('Hz', BTD, 'Transmission bandwidth for DSB:');
15 //As SNRO=Si/(n*B)
16 SiD=SNRO*n*B;
17 STD=SiD*PL;
18 disp('W', STD, 'Average Power transmitted for DSB:');
20 //(b) AM
```

```
Transmission bandwidth for DSB:
   30000.
Hz
Average Power transmitted for DSB:
   3000.
W
Transmission bandwidth for AM:
   30000.
Hz
Average Power transmitted for AM:
   9000.
W
Transmission bandwidth for PM:
   120000.
Hz
Average Power transmitted for PM:
                        135
   666.66667
```

W

Transmission handwidth for FM.

```
21 U = 1;
22 \quad U2Sx=U*U*Sx;
23 BTA = 2 * B;
24 disp('Hz', BTA, 'Transmission bandwidth for AM:');
25 //As SNRO=x*Si/(n*B)
\frac{26}{\text{where }} = \frac{\text{USx}}{(1+\text{USx})}
27 x = U2Sx/(1+U2Sx);
28 SiA=(SNRO*n*B)/x;
29 STA=SiA*PL;
30 disp('W', STA, 'Average Power transmitted for AM:');
31
32 //(c)PM
33 \text{ kp=3};
34 \text{ BTP}=2*(kp+1)*B;
35 disp('Hz', BTP, 'Transmission bandwidth for PM:');
36 //As SNRO=kp^2*Sx*Si/(n*B)
37 SiP=(SNRO*n*B)/(Sx*(kp^2));
38 STP=SiP*PL;
39 disp('W', STP, 'Average Power transmitted for PM:');
40
41 // (d) FM
42 D=5;
43 BTF=2*(D+1)*B;
44 disp('Hz', BTF, 'Transmission bandwidth for FM:');
45 //As SNRO = 3*D^2*Sx*Si/(n*B)
46 SiF=(SNRO*n*B)/(3*(D^2)*Sx);
47 \text{ STF} = \text{SiF} * \text{PL};
48 disp('W', STF, 'Average Power transmitted for FM:');
```

Scilab code Exa 9.18 Modulation Index

```
1 // Page Number: 9.24
2 // Example 9.18
```

Scilab 5.4.1 Console Modulation index:

2.917128

-->

Figure 9.9: Modulation Index

```
3 clc;
4 //(b) Modulation index b
5 //Given
6 SNdB=30; //dB
7 SNRO=10^(SNdB/10);
8 //As SNRO=30*b^2*(b+1)
9 //Therefore
10 p2=poly(0,'x');
11 p3 =30*(p2^3)+30*(p2^2)-1000;
12 r=roots(p3);
13 t=r(3,1);
14 disp(t,'Modulation index:');
```

Scilab code Exa 9.21 Normalized Message Signal

```
1 // Page Number: 9.27
2 //Example 9.21
3 clc;
4 // Given
5 BW=5000; //Hz
6 P = 0.1; /W
7 CBW = 100D + 3; //Hz
8 A = 80; //dB
9 A1=10^{(-A/10)};
10 N0=2*(0.5D-12); //W/Hz
11 Pt=10D+3; //W
12
13 //We know, CBW=2*(D+1)*BW
14 // Therefore
15 D = (CBW/(2*BW)) - 1;
16 \text{ kp=D};
17 Si=Pt*A1;
18 Sx=P;
```

Scilab 5 4 1 Console

SNR at output:

52.09515

dB

-->

Figure 9.10: Normalized Message Signal

```
19  //We know
20  //SNR=((kp^2)*Si*Sx)/(N0*BW);
21
22  SNR=((kp^2)*Si*Sx)/(N0*BW);
23  SNR1=10*log10(SNR);
24  disp("dB", SNR1,"SNR at output: ");
```

Chapter 10

Digital Modulation and Demodulation

Scilab code Exa 10.1 Binary Reciever

```
1 // Page Number: 10.18
2 //Example 10.1
3 clc;
4 // Given
5 Rb=1D+6; //b/s
6 A = 5D - 3; //V
7 NO=0.5D-11; //W/Hz
9 Tb=1/Rb;
10 Eb = (A*A*Tb)/2;
11
12 //(a) ASK
13 / Pe=Q(x)
14 //where
15 xA = sqrt(Eb/N0);
16
17 PeA = (1/2) * erfc(xA/1.414);
```

For ASK:

0.0568959

For PSK:

0.0126626

For FSK:

0.0568959

-->

Figure 10.1: Binary Reciever

```
18 disp(PeA, 'For ASK: ');
19
20 //(b) PSK
21 / Pe=Q(x)
22 //where
23 xP = sqrt((2*Eb)/N0);
24
25 PeP = (1/2) * erfc(xP/1.414);
26 disp(PeP, 'For PSK: ');
27
28 //(c) FSK
29 / Pe=Q(x)
30 / \text{where}
31 	ext{ xF=sqrt(Eb/N0)};
32
33 PeF = (1/2) * erfc(xF/1.414);
34 disp(PeF, 'For FSK: ');
```

Scilab code Exa 10.2 BPSK Reciever

```
1 //Page Number: 10.19
2 //Example 10.2
3 clc;
4 //Given
5 Rb=1D+6; //b/s
6
7 //(a)
8 Aa=1D-3; //V
9 N0=1D-11; //W/Hz
10
11 Tb=1/Rb;
12 Eba=(Aa*Aa*Tb)/2;
13
```

```
For Average bit error probability:

0.3758967

Average Power:

9.171D-09

V

For Average bit error probability for bipolar antipodal signals:

0.00001
```

Figure 10.2: BPSK Reciever

```
14 / Pe=Q(z)
15 //where
16 za=sqrt((2*Eba)/N0);
17
18 Peb=(1/2)*erfc(za/1.414);
19 disp(Peb, 'For Average bit error probability:');
20
21 //(b) Maintain Pb=2D-3
22 //From table
23 \text{ zb} = 2.9;
24 Ebb=((zb^2)*N0)/2;
25 P = Ebb * Tb;
26 \text{ Ab=} sqrt((2*P));
27 disp('V', Ab, 'Average Power:');
28
29 //(c)
30 Ac=100; //V
31 Rbc=1D+5; //p/s
```

```
32 N01=1D-2;; //W/Hz
33 Tbc=1/Rbc;
34 Ebc=(Ac*Ac*Tbc);
35
36 zc=sqrt(((2*Ebc)/N01));
37
38 Pec=(1/2)*erfc(zc/1.414);
39 //Pec=0.0000039
40 //nearly 10^-5
41 disp(10^-5, 'For Average bit error probability for bipolar antipodal signals:');
```

Scilab code Exa 10.6 Satellite Communication

```
1 //Page Number: 10.23
2 //Example 10.6
3 clc;
4 //Given
5 p=0.1; //dB
6 p1=10^(-p/10);
7 p2=sqrt(p1);
8 t=acosd(p2);
9 a=round(t);
10 disp('degrees',a,'System cannot tolerate more than:');
```

Scilab code Exa 10.11 Baseband Binary Transmission

```
1 // Page Number: 10.28
```

-->

System cannot tolerate more than:
9.
degrees

Figure 10.3: Satellite Communication

Scilab 5 4 1 Console

```
Required value of A:

0.6010408

Bandwidth:

100000.

Hz
```

Figure 10.4: Baseband Binary Transmission

```
2 //Example 10.11
3 clc;
4 // Given
5 Rb=1D+6; //b/s
6 T = 1D - 5;
7 N0 = 2*0.5D-7; /W/Hz
9 //From table for Q(z)=10^-5
10 z=4.25;
11
12 //As z = sqrt (A*A*T/2*N0)
13 x=((z^2)*2*N0)/T;
14 A = sqrt(x);
15 disp(A, 'Required value of A: ');
16
17 //(b) Bandwidth
18 / B = 1/(2*(T/2))
19 // Therefore B=1/T
20 B = (1/T);
21 disp('Hz',B,'Bandwidth:');
```

Scilab code Exa 10.17 On Off Binary System

```
1 //Page Number: 10.33
2 //Example 10.17
3 clc;
4 //Given
5 A=0.2D-3; //V
6 T=2D-6; //s
7 n=2*1D-15; //W/Hz
8
9
10 //Pe=Q(z)
```

Error probability: 0.0007814 -->

Figure 10.5: On Off Binary System

```
Error probability:

0.0000038

-->
```

Figure 10.6: Binary System

```
11  //where
12  x=(A*A*T)/(4*n);
13  z=sqrt(x);
14  Pe=(1/2)*erfc(z/1.414);
15  disp(Pe, 'Error probability:');
```

Scilab code Exa 10.18 Binary System

```
1 // Page Number: 10.34
2 //Example 10.18
3 clc;
4 // Given
5 A=0.2D-3; //V
6 \quad A1 = A/1.414;
8 T = 2D - 6; //s
9 n=2*1D-15; /W/Hz
10
11
12 / Pe=Q(z)
13 //where
14 x = (A1 * A1 * T) / (n);
15 z = sqrt(x);
16 Pe=(1/2)*erfc(z/1.414);
17 disp(Pe, 'Error probability:');
```

Scilab code Exa 10.19 Binary Data Transmission

```
1 //Page Number: 10.35
2 //Example 10.19
3 clc;
4 //Given
5 d12sqr=8;
6 N0=2*0.5; //W/Hz
7
8 //(c)
9 //As for two equiprobables
10 //Pe=Q(z)
11 //where z=sqrt(d12^2)/sqrt(2*N0)
```

Probabilty error:

0.0227338

Figure 10.7: Binary Data Transmission

```
12 z=sqrt((d12sqr)/(2*N0));
13 Pe=(1/2)*erfc(z/1.414);
14 disp(Pe, 'Probabilty error:')
```

Scilab code Exa 10.20 Binary Communication

```
1 // Page Number: 10.36
2 //Example 10.20
3 clc;
4 //Given
5 c=sqrt(2);
6 \text{ A=sqrt}(5);
7 NO=1; //W/Hz
8
9 d12sqr=4*A*A;
10
11 //As for two equiprobables
12 / Pe=Q(z)
13 //where z=sqrt(d12^2)/(2*N0)
14 z=sqrt((d12sqr)/(sqrt(2*N0)));
15 Pe=(1/2)*erfc(z/1.414);
16 disp(Pe, 'Probabilty error:')
```

Scilab code Exa 10.24 Voice Transmission BPSK

```
1 //Page Number: 10.41
2 //Example 10.24
3 clc;
4 //(a) Number of constellation Points
```

Probabilty error:

0.0000846

Figure 10.8: Binary Communication

```
Number of constellation points

256.

Bandwidth efficiency

8.

bps/hz

-->
```

Figure 10.9: Voice Transmission BPSK

```
Probabilty of bit error:

0.2701151

Probabilty error for fs=50Hz:

0.0062031
```

Figure 10.10: Coherent Matched Reciever

```
5 //Given
6 Rs=2400; //bps
7 Rb=19.2D+3; //bps
8
9 //As Rs=Rb/log2M
10 M=2^(Rb/Rs);
11 disp(M,'Number of constellation points');
12
13 //(b) Bandwidth efficiency
14 BT=2400; //Symbols/second
15 n=Rb/BT;
16 disp('bps/hz',n,'Bandwidth efficiency');
```

Scilab code Exa 10.25 Coherent Matched Reciever

```
1 // Page Number: 10.41
2 //Example 10.25
3 clc;
4 //Given
5 \quad A1 = 0.5;
6 \quad A2 = 0.5;
7 T=0.01; // \sec c
8 N0=2*0.0001; /W/Hz
9 \text{ f=50; } //\text{Hz}
10
11 //(a) Probability of bit error
12 Es1=(A1^2*T)/2;
13 Es2=(A2^2*T)/2;
14
15 Eb = (Es1 + Es2)/2;
16 //As PE=Qsqrt(Ep+Eq-2Epq/2N0)
17 //In this case Ep=Eq=Eb
18 // Therefore PE=Qsqrt(Eb(1-p)/N0)
19 //where p=Epq/Eb
20
21 //p = (1/Eb) * integrate ('0.5 * cos (2000 * \%pi * t) * 0.5 * cos
      (2020*\%pi*t)', 't', 0, T);
22 //We get
23 p=0.94;
24 q = 1 - p;
25 //As Pe=Q(z)
\frac{26}{\text{where }} z = sqrt (Eb/N0)
z=sqrt((Eb*q)/N0);
28 Pe=(1/2)*erfc(z/1.414);
29 disp(Pe, 'Probabilty of bit error:')
30
31 / (b)
```

```
32  //Given
33  fs=50; //Hz
34  //or  fs=1/2T where T=0.001
35  //This implies y=tone spacing will be orthogonal
36  //Therefor p=0
37
38  //As Pe=Q(z)
39  //where z=sqrt(Eb/N0)
40  zb=sqrt(Eb/N0);
41  PB=(1/2)*erfc(zb/1.414);
42  disp(PB, 'Probabilty error for fs=50Hz:')
```

Scilab code Exa 10.27 M level PSK

```
1 // Page Number: 10.43
2 //Example 10.27
3 clc;
4 //Given
5 Rb=4.8D+3; //b/s
6 bw=3.2D+3; //Hz
  //BPSK can give maximum spectral efficiency of 1bps/
     Hz, therefore not suitable
9 //QPSK can give twice spectral efficiency, 2 bps/Hz,
      therefore
10 qpsk=2*bw;
11 //PSK can give thrice spectral efficiency ,3 bps/Hz,
      therefore
12 \text{ psk}=3*bw;
13
14 //QPSK is most suitable
15 Rs=Rb/2;
16 //Roll off Factor
```

Roll off factor:

33.333333

용

-->

Figure 10.11: M level PSK

```
17 a=(bw/Rs)-1;
18 ap=a*100;
19 disp('%',ap,'Roll off factor:');
```

Chapter 11

Information Theory and Source Coding

Scilab code Exa 11.2 DMS X with four symbols

```
1 // Page Number: 11.12
2 //Example 11.2
3 clc;
4 // Given
 5 // Probabilities of four symbols
 6 Px = [0.4 \ 0.3 \ 0.2 \ 0.1];
8 //(a) H(X)
9 //As H(X)=-Sum of(P(xi)log2P(xi))
10 / Where i=0 to n;
11 HofX=0;
12 \text{ for } i=1:4
         HofX = HofX + (Px(i) * log2(Px(i)));
13
14 end
15 \operatorname{disp}('b/\operatorname{symbol}', -\operatorname{HofX}, 'H(X):');
16
17\ //\left(\mathrm{b}\right)\mathrm{Amount} of information in x1x2x1x3 and x4x3x3x2
```

```
H(X):

1.8464393

b/symbol

Ix1x2x1x3:

6.7027499

b/symbol

Ix4x3x3x2:

9.7027499

b/symbol

-->
```

Figure 11.1: DMS X with four symbols $\,$

```
18  Px1x2x1x3=Px(1)*Px(2)*Px(1)*Px(3);
19  Ix1x2x1x3=-log2(Px1x2x1x3);
20  disp('b/symbol', Ix1x2x1x3, 'Ix1x2x1x3:');
21
22  Px4x3x3x2=Px(4)*Px(3)*Px(3)*Px(2);
23  Ix4x3x3x2=-log2(Px4x3x3x2);
24  disp('b/symbol', Ix4x3x3x2, 'Ix4x3x3x2:');
```

Scilab code Exa 11.3 Binary Memoryless Source

```
1 //Page Number: 11.13
2 //Example 11.3
3 clc;
4 //As H(X) is maximum when
5 //Px1=Px2=1/2
6 Px=[0.5 0.5];
7
8 //As H(X)=-Sum of [P(xi)log2P(xi)]
9 //Where i=0 to n;
10 HofX=0;
11 for i=1:2
12    HofX=HofX+(Px(i)*log2(Px(i)));
13 end
14 disp('b/symbol',-HofX, 'Maximum H(X):');
```

Scilab code Exa 11.5 Black and white TV picture

```
1 // Page Number: 11.15
2 // Example 11.5
```

Maximum H(X): 1. b/symbol -->

Figure 11.2: Binary Memoryless Source

Figure 11.3: Black and white TV picture $\,$

```
3 clc;
4 //Given
5 // Picture elements
6 pe=2D+6;
7 // Brightness levels
8 1 = 16;
9 //Rate of repeatation
10 rr=32; //Per second
11
12
13 //As H(X) = -Sum of [P(xi)log2P(xi)]
14 / Where i=0 to n;
15 HofX=(-1)*l*[(1/1)*log2(1/1)];
16
17 r=pe*rr;
18
19 //As R=r*H(X)
20 R=r*HofX;
21 disp('b/symbol', R, 'Average rate of information
      conveyed: ');
```

Scilab code Exa 11.6 Telegraph Source

```
1  //Page Number: 11.15
2  //Example 11.6
3  clc;
4  //Given
5  //Pdot-2*Pdash and Pdot+Pdash=1
6  //Therfore, on solving
7  Pdot=2/3;
8  Pdash=1/3;
9
10  tdot=0.2;  //Sec
```

```
Average information rate:

1.7218047

b/symbol

-->
```

Figure 11.4: Telegraph Source

```
11 tdash=0.6; //Sec
12 tspace=0.2; //Sec
13
14 // Finding H(X)
15 //As H(X) = -Sum of [P(xi)log2P(xi)]
16 //Where i=0 to n;
17 HofX=(-1)*[{Pdot*log2(Pdot)}+{Pdash*log2(Pdash)}];
18
19 //Average time per symbol
20 Ts=(Pdot*tdot)+(Pdash*tdash)+tspace;
21
22 //Average Symbol Rate
23 \text{ r=1/Ts};
24
25 // Average information rate
26 R=r*HofX;
27 disp('b/symbol', R, 'Average information rate:');
```

Scilab code Exa 11.7 Binary Channel

```
1  //Page Number: 11.15
2  //Example 11.7
3  clc;
4
5  //(a) Channel Matrix
6  //Given
7  Py1byx1=0.9;
8  Py2byx1=0.1;
9  Py1byx2=0.2;
10  Py2byx2=0.8;
11  PYbyX=[Py1byx1  Py2byx1; Py1byx2  Py2byx2];
12  disp(PYbyX, 'Channel Matrix, P(Y/X):');
13
```

```
Channel Matrix, P(Y/X):

0.9 0.1
0.2 0.8

P(y1) P(y2):

0.55 0.45

P(x1,y2) P(x2,y1)

0.05

0.1
```

Figure 11.5: Binary Channel 169

```
14  //(b)Py1 and Py2
15  //Given
16  Px1=0.5;
17  Px2=Px1;
18  //As P(Y)=P(X)*P(Y/X)
19  PX=[Px1 Px2];
20  PY=PX*PYbyX;
21  disp(PY, 'P(y1) P(y2): ');
22
23  //(c) Joint Probabilities P(x1,y2) and P(x2,y1)
24  //Diagonalizing PX
25  PXd=diag(PX);
26  PXY=PXd*PYbyX;
27  disp(PXY(2,1),PXY(1,2), 'P(x1,y2) P(x2,y1)');
```

Scilab code Exa 11.8 Binary Channel in cascade

```
1 //Page Number: 11.16
2 //Example 11.8
3 clc;
4 //(a) Channel Matrix
5 //Given
6 PYbyX=[0.9 0.1;0.2 0.8];
7 PZbyY=[0.9 0.1;0.2 0.8];
8
9 //As P(Z/X)=P(Y/X)*P(Z/Y)
10 PZbyX=PYbyX*PZbyY;
11 disp(PZbyX, 'Channel Matrix');
12
13 //(b)Pz1 and Pz2
14 //Given
15 Px1=0.5;
16 Px2=Px1;
```


Figure 11.6: Binary Channel in cascade

```
17 //As P(Z)=P(X)*P(Z/X)

18

19 //P(X) matrix

20 PX=[Px1 Px2];

21 PZ=PX*PZbyX;

22 disp(PZ, 'P(z1) P(z2): ');
```

Scilab code Exa 11.9 Channel

```
1 //Page Number: 11.17
2 //Example 11.9
3 clc;
4 //Given
5 p=0.2;
6 Px1=0.5;
7 Px2=0.5;
8 //P(X) Matrix
9 PX=[Px1 Px2];
10 //Given
11 PYbyX=[(1-p) p 0;0 p (1-p)];
12 //P(y)=
13 PY=PX*PYbyX;
14 disp(PY, 'P(y1) P(y2) P(y3):');
```

Scilab code Exa 11.16 BSC

```
1 // Page Number: 11.21
2 // Example 11.16
3 clc;
```

0.4

0.2

0.4

Figure 11.7: Channel

Figure 11.8: BSC

```
4 //(b) I(X;Y)
5 //Given
6 a=0.5;
7 p=0.1;
8 //As we know
9 / P(Y) = P(X) *P(Y/X)
10 //We have
11 PX = [a (1-a)];
12 PYbyX = [(1-p) p; p (1-p)];
13 PY = PX * PYbyX;
14
15 //As H(Y) = -Sum of [P(yi)log2P(yi)]
16 / Where i=0 to n;
17 HofY=0;
18 \text{ for } i=1:2
        HofY = HofY + (PY(i) * log2(PY(i)));
19
20 end
21
22 // For BSC, I(X;Y)=H(Y)+p\log 2(p)+(1-p)\log 2(1-p)
23 IXY = -HofY + [(p*log2(p)) + ((1-p)*log2(1-p))];
24 disp(IXY, 'I(X;Y) for a=0.5 and p=0.1:');
25
26
27 //(c) I1(X;Y)
28 //Given
29 \quad a1=0.5;
30 p1=0.5;
31 //As we know
32 / P(Y) = P(X) *P(Y/X)
33 //We have
34 \text{ PX1=[a1 (1-a1)]};
35 PYbyX1 = [(1-p1) p1; p1 (1-p1)];
36 \text{ PY1=PX1*PYbyX1};
37
38 //As H(Y) = -Sum of [P(yi)log2P(yi)]
39 //Where i=0 to n;
40 HofY1=0;
41 for i=1:2
```

Scilab code Exa 11.20 Differential Entropy

```
1 // Page Number: 11.24
2 //Example 11.20
3 clc;
4 // Given
5 //f(x)=1/a for x from 0 to a
6 / 0, otherwise
7
8 //We have
9 //H(X) = -integrate[f(x)) * log 2f(x)] dx
10 / \text{Here}, f(x)=1/a for limits 0 to a
11 //H(X) = -integrate(1/a) * log 2(1/a) dx for 0 to a
12 / H(X) = log 2 (a)
13
14 //(a) a1=1
15 a1=1;
16 y1 = log2(a1);
17 disp(y1, 'For a=1, H(X):');
18
19 //(b) a2=2
20 \text{ a} 2 = 2;
21 	 y2 = log2(a2);
22 disp(y2, 'For a=2, H(X):');
23
```

```
For a=1, H(X):

0.

For a=2, H(X):

1.

For a=1/2, H(X):

- 1.
```

Figure 11.9: Differential Entropy

```
24

25 //(c)a3=1/2

26 a3=1/2;

27 y3=log2(a3);

28 disp(y3,'For a=1/2, H(X):');
```

Scilab code Exa 11.23 AWGN Channel

```
1 //Page Number: 11.26
2 //Example 11.23
3 clc;
4 //Given
5 B=4D+3; //Hz
6 S=0.1D-3; //W
7 n=2*(1D-12); //W/hz
8
9 N=n*B;
10 SN=S/N;
11 //As Channel Capacity
12 //C=B*(log2(1+(S/N)));
13 C=B*(log2(1+(S/N)));
14 disp('b/s',C,'Channel Capacity');
```

Scilab code Exa 11.24 DMS X with two symbols

```
1 // Page Number: 11.26
2 // Example 11.24
3 clc;
```

Channel Capacity

54439.024

b/s

Figure 11.10: AWGN Channel

Scilab 5.4.1 Console

```
Information Rate:

80000.

b/s

Channel Capacity:

66582.115

b/s

For error free transmission S/N:

24.065402

dB

Bandwidth for error free transmission:

12015.239

Hz
```

Figure 11.11: DMS X with two symbols

```
5 //(a) Information Rate
6 //Given
7 n=1.25; // times
8 1=256; //Levels
9 fM=4D+3; //Hz //Bandwidth
10 Nr=2*fM; //Nyquist Rate
11 r=Nr*n;
12 HofX = log2(1);
13 //Information rate
14 R=r*HofX;
15 disp('b/s',R,'Information Rate:');
16
17 //(b)
18 //As Channel Capacity
19 //C = B * (log 2 (1 + (S/N)));
20 B=10^4; //Hz
21 SNdB=20; //dB
22 SN = 10^{(SNdB/10)};
23 C=B*(log2(1+(SN)));
24 disp('b/s',C,'Channel Capacity:');
25
26 //As R>C, error free transmission isnt possible
27
28 //(c) For error free transmission
29 C1 = R;
30 //Therfore S/N
31 SN1 = \{2^{(C1/B)}\} - 1;
32 \text{ SN1dB} = 10 * (log10(SN1));
33 disp('dB', SN1dB, 'For error free transmission S/N:');
34
35 //(d)Bandwidth for error free transmission
36 \text{ SN2dB} = 20; //dB
37 \text{ SN2}=10^{(SN2dB/10)};
38 //As Channel Capacity
39 / C = B * (log 2 (1 + (S/N)));
40 B=C1/(log2(1+(SN2)));
41 disp('Hz',B, 'Bandwidth for error free transmission:'
      );
```

```
42 //Therefore bandwidth should be greater than or equal to B
```

Scilab code Exa 11.25 DMS X

```
1 // Page Number: 11.27
2 //Example 11.25
3 clc;
4 // Given
5 p=0.9;
6 Px = [p (1-p)];
7
8 n = 1;
9 // Average Code length
10 //L=Summation(P(xi)ni)
11 L=0;
12 for i=1:2
13
       L=L+(Px(i)*n);
14 end
15
16 //As H(X) = -Sum of [P(xi)log2P(xi)]
17 / \text{Where } i=0 \text{ to } n;
18 HofX=0;
19 for i=1:2
20
        HofX=HofX+(Px(i)*log2(Px(i)));
21 end
22
23 // Efficiency=H(X)/L
24 n = -HofX/L;
25 \text{ np=n*100};
26 disp('%',np,'Code efficiency:');
27
28 //Redundancy
```

Code efficiency: 46.899559 Code redundancy: 53.100441 -->

Figure 11.12: DMS X

```
29 g=1-n;
30 gp=g*100;
31 disp('%',gp,'Code redundancy:');
```

Scilab code Exa 11.26 Second order extension of DMS

```
1 // Page Number: 11.28
2 //Example 11.26
3 clc;
4 //Given
5 \text{ Pa} = [0.81 \ 0.09 \ 0.09 \ 0.01];
6 n = [1 2 3 4];
8 // Average Code length
9 //L=Summation (P(xi)ni)
10 L=0;
11 for i=1:4
12
       L=L+(Pa(i)*n(i));
13 end
14
15 //Entropy of second order extension
16 //As H(X^2)=-Sum of [P(ai) log 2P(ai)]
17 / Where i=0 to n;
18 \text{ Hof X2=0};
19 for i=1:4
20
       HofX2=HofX2+(Pa(i)*log2(Pa(i)));
21 end
22 / b/s
23
24 // Efficiency=H(X^2)/L
25 n = -HofX2/L;
26 np=n*100;
27 disp('%',np,'Code efficiency:');
```

Scilab 5.4.1 Console Code efficiency: 72.153168 돰 Code redundancy: 27.846832

Figure 11.13: Second order extension of DMS $\,$

```
28
29 //Redundancy
30 g=1-n;
31 gp=g*100;
32 disp('%',gp,'Code redundancy:');
```

Scilab code Exa 11.27 Kraft inequality

```
1 // Page Number: 11.28
2 //Example 11.27
3 clc;
4 //As Kraft inequlity
5 / \text{K=summation}(2^{(-n)})
6 //where i from 0 to 4
7 //As i = 1, 2, 3, 4
8 //Given
9
10 //For Code A
11 na=[2 2 2 2];
12 \quad KA=0;
13 for i=1:4
        KA = KA + (2^{(-na(i))});
14
15 end
16 disp(KA, 'For Code A: ');
17
18 //For Code B
19 nb=[1 2 2 3];
20 \text{ KB=0};
21 for i=1:4
22
        KB = KB + (2^{(-nb(i))});
23 end
24 disp(KB, 'For Code B: ');
25
```

For Code A: 1.. For Code B: 1.125 For Code C: 1... For Code D: 0.875

Figure 11.14: Kraft inequality

```
26 //For Code C
27 nc=[1 2 3 3];
28 \text{ KC=0};
29 \text{ for } i=1:4
30
        KC = KC + (2^{(-nc(i))});
31 end
32 disp(KC, 'For Code C: ');
33
34 //For Code D
35 nd=[1 3 3 3];
36 \text{ KD} = 0;
37 \text{ for } i=1:4
38
        KD = KD + (2^{-1} - nd(i));
39 end
40 disp(KD, 'For Code D: ');
41
42 // All codes except Code B satisfy Kraft inequality
```

Scilab code Exa 11.32 Shannon Fano

```
1 //Page Number: 11.31
2 //Example 11.32
3 clc;
4 //Given
5 Px=[1/2 1/4 1/8 1/8];
6
7 //As I(xi)=-log2(Pxi)
8 for i=1:4
9 Ix(i)=-log2(Px(i));
10 n(i)=Ix(i);
11 end
12
13 //As H(X)=-Sum of [P(xi)log2P(xi)]
```

Scilab 5.4:1 Console

Code efficiency:

100.

돰

-->

Figure 11.15: Shannon Fano

```
14 //and I(xi) = -\log 2p(xi)
15 //Where i=0 to n;
16 HofX=0;
17 \text{ for } i=1:4
18
        HofX=HofX+(Px(i)*Ix(i));
19 end
20
21 // Average Code length
22 //L=Summation (P(xi)ni)
23 L=0;
24 \text{ for } i=1:4
25
        L=L+(Px(i)*n(i));
26 \text{ end}
27
28 // Efficiency=H(X)/L
29 n=HofX/L;
30 \text{ np=n*100};
31 disp('%',np,'Code efficiency:');
32
33 //Hence, efficiency is 100\%
```

Scilab code Exa 11.33 Shannon Fano and Huffman

```
1 //Page Number: 11.32
2 //Example 11.33
3 clc;
4 //Given
5 //(a) Efficiency of code
6 Px=[0.2 0.2 0.2 0.2 0.2];
7 na=[2 2 2 3 3];
8
9 //As H(X)=-Sum of [P(ai)log2P(ai)]
10 //Where i=0 to n;
```

```
Code efficiency for Shannon code 1:
   96.747004
용
Code efficiency for Shannon code 2:
   96.747004
de
Code efficiency for Hauffman code:
   96.747004
```

Figure 11.16: Shannon Fano and Huffman

```
11 HofX=0;
12 for i=1:5
13
        HofX = HofX + (Px(i) * log2(Px(i)));
14 end
15
16 // Average Code length
17 //L=Summation (P(xi)ni)
18 La=0;
19 for i=1:5
        La=La+(Px(i)*na(i));
21 end
22
23 // Efficiency=H(X)/L
24 \text{ ea} = -\text{HofX/La};
25 \text{ npa=ea}*100;
26 disp('%', npa, 'Code efficiency for Shannon code 1:');
27
28 //(b) Another Shannon Fano Code
29 nb=[2 3 3 2 2];
30
31 //Average Code length
32 //L=Summation (P(xi)ni)
33 Lb=0;
34 \text{ for } i=1:5
35
        Lb=Lb+(Px(i)*nb(i));
36 \text{ end}
37
\frac{1}{2} // Efficiency=H(X)/L
39 \text{ eb=-HofX/Lb};
40 npb=eb*100;
41 disp('%', npb, 'Code efficiency for Shannon code 2:');
42
43 //(c) Hauffman Code
44 nc=[2 3 3 2 2];
45
46 // Average Code length
47 //L=Summation (P(xi)ni)
48 \text{ Lc=0};
```

```
Code efficiency for shannon fanon:

95.544548

Code efficiency for hauffman:

97.716015

%
-->
```

Figure 11.17: DMS X with five symbols

```
49 for i=1:5
50     Lc=Lc+(Px(i)*nc(i));
51 end
52
53 // Efficiency=H(X)/L
54 ec=-HofX/Lc;
55 npc=ec*100;
56 disp('%',npc,'Code efficiency for Hauffman code:');
57
58 // Efficiency of all codes is same
```

Scilab code Exa 11.34 DMS X with five symbols

```
1 // Page Number: 11.33
2 //Example 11.34
3 clc;
4 //Given
5 //(a) For Shannon Fano Code
6 Px = [0.4 \ 0.19 \ 0.16 \ 0.15 \ 0.1];
7 n = [2 2 2 3 3];
9 // Average Code length
10 //L=Summation (P(xi)ni)
11 L=0;
12 for i=1:5
13
       L=L+(Px(i)*n(i));
14 end
15
16 //As H(X) = -Sum of [P(xi)log2P(xi)]
17 / Where i=0 to n;
18 HofX=0;
19 for i=1:5
20
       HofX = HofX + (Px(i) * log2(Px(i)));
21 end
22
23 // Efficiency=H(X)/L
24 n=-HofX/L;
25 \text{ np=n*100};
26 disp('%',np,'Code efficiency for shannon fanon:');
27
28 //(b) For Huffman Code
29 nh=[1 3 3 3 3];
30
31 // Average Code length
32 //L=Summation (P(xi)ni)
```

```
33  Lh=0;
34  for i=1:5
35     Lh=Lh+(Px(i)*nh(i));
36  end
37
38  // Efficiency=H(X)/L
39  n1=-HofX/Lh;
40  np1=n1*100;
41  disp('%',np1,'Code efficiency for hauffman:');
```