Credit Card Approval With Machine Learning

A Model You Can Take to the Bank

By The Data Dudes: Orr Shalev, Antoine Nadaud, Noam Kleinman, and Jacob Salomon

First Steps

- Is ML appropriate?
- Domain knowledge
 - Application process
- Model selection
 - Predictive, transparent

Simple Regression

Exploratory Data Analysis

- Problems with reported income
- Disparities between defaulting and non-defaulting accounts
 - Defaulting Variance
- Collinearity and multicollinearity
 - Variance inflation factor
 - Correlation matrix

Correlation Heatmap

Logistic Regression

- Removed variables with high collinearity
- Dummy variables for states
- Mean utilization
- Past due months num addition
- Normalization

$$n = \frac{n - min}{max - min} * 2$$

Sigmoid Function Basis

Random Forests

- Removed variables with low response linearity
- Dummy variables for states
- Imputation of missing values

Decision Tree Basis

Model Building and Results

Logistic Regression

- Hyperparameter tuning:
 - Liblinear solver
 - Penalty of L2
 - C value: 0.01
- Accuracy: 93.58%

Random Forests

- Hyperparameter tuning:
 - 100 trees
 - Max variables when splitting: Log₂
- Accuracy: 93.66%

Error Comparison

Logistic Regression

Actual Values

Non-default (o) Default (1) FP TP Predicted Values Non-default (o) 47 4552 0.0094 0.9104 FN TN Default (1) 274 127 0.0548 0.0254

Random Forest

Actual Values

		Non-default (o)	Default (1)
Predicted Values	Non-default (o)	TP	FP
		4568	31
	Default (1)	0.9136	0.0062
		FN	TN
		286	115
		0.0572	0.0230
		1	

Plotting Receiver Operating Characteristic (ROC) Curve

Area Under Curve:

- RF Model: 0.852
- LR Model: 0.806

Model Comparison

Logistic Regression

Random Forest

Deals well with high variance in explanatory and	Better false positive rate when importance of	
noise variables (reference 8)	noise variables is large (reference 8)	
Higher true negative and lower false positive rate	Higher true positive and lower false negative rate	
High interpretability	Medium interpretability	
Requires greater amount of data preprocessing	Requires less data preprocessing	

Chosen Model: RF

- Noise
- Maximizing value
 - Loss reduction
- How does it work?
 - Aggregate of decision trees

Feature importance

- High: debt, utilization and past due amount
- Low: prior XYZ customer, state, accounts opened in last 36 months

Model implementation

- Decision making: complete or hybrid
- XYZ Prior customers
 - Brand loyalty vs.
 Importance
- Explaining rejections
 - Transparency vs. Security

Thank you, Are there any questions?