ISEL INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA Licenciatura em Engenharia Eletrotécnica

Máquinas Elétricas II

Exercícios

ISEL\LEE\ME II Exercícios

Prefácio

Esta coletânea de exercícios está dividida 3 capítulos:

- Máquinas de corrente contínua
- Máquinas síncronas trifásicas
- Dinâmica de máquinas elétricas

Estes exercícios destinam-se principalmente à utilização nas aulas teóricas e teórico-práticas, adotando a Aprendizagem Baseada em Problemas como metodologia de ensino-aprendizagem. Deste modo, promove-se a discussão e a análise crítica dos temas, estimulando o desenvolvimento do pensamento analítico e a capacidade de resolução de problemas reais.

Para além dos exercícios propostos, alguns dos exercícios estão resolvidos analiticamente como introdução ou sistematização de conceitos, enquanto outros estão resolvidos recorrendo à linguagem de computação científica Julia (https://julialang.org/), através da realização de documentos computacionais (notebooks), usando o ambiente de desenvolvimento integrado interativo: Pluto.jl (https://plutojl.org/). A utilização de notebooks interativos permite que os estudantes aprofundem a sua compreensão dos conceitos teóricos fundamentais. Além disso, a prática exploratória possibilita a aplicação dos conhecimentos na resolução de exercícios de forma interativa, a representação e análise gráfica de resultados, e o desenvolvimento de capacidades de escrita técnica.

Ricardo Luís (2024). Exercícios de Máquinas Elétricas II. Curso da Licenciatura em Engenharia Eletrotécnica (LEE) do Instituto Superior de Engenharia de Lisboa (ISEL).

Índice

Ma	áquinas de Corrente Contínua	1
	Exercício 1	1
	Exercício 2	2
	Exercício 3	2
	Exercício 4	3
	Exercício 5	4
	Exercício 6	4
	Exercício 7	5
	Exercício 8	6
	Exercício 9	6
	Exercício 10	7
	Exercício 11	8
	Exercício 12	9
	Exercício 13	9
	Exercício 14	10
	Exercício 15	11
	Bibliografia	11
Ma	áquinas Síncronas Trifásicas	13
	Exercício 1	
	Exercício 2	
	Exercício 3	15
	Exercício 4	15
	Exercício 5	16
	Exercício 6	16
	Exercício 7	17
	Exercício 8	18
	Exercício 9	19
	Exercício 10	
	Exercício 11	23
	Exercício 12	23
	Bibliografia	24

ISEL\LEE\ME II Exercícios

Dinâmica de Máquinas Elétricas	
Exercício 1	
Exercício 2	
Exercício 3	27

MÁQUINAS DE CORRENTE CONTÍNUA

Exercício 1

Uma máquina de corrente contínua hexapolar tem 360 condutores em cavas do induzido. Cada polo magnético apresenta um arco polar de 20cm, uma profundidade de 20cm e uma indução magnética de 0.8T. Com o rotor à velocidade de 1000rpm, determine a força eletromotriz induzida, E_0 , que se obtém se a máquina tiver:

- a) enrolamento induzido do tipo imbricado;
- b) enrolamento induzido do tipo ondulado.

Resolução:

Sejam:

- 2p = 6, polos; z = 360condutores;
- b = 20cm (arco polar); l = 20cm (profundidade)
- B = 0.8T, a indução magnética

Área da face do polo, A_p : $A_p = b \ l = 0.02 \times 0.02 = 0.04 \text{m}^2$

O fluxo magnético por polo, ϕ_p , vem:

$$\phi_P = B \ A_p = 0.8 \times 0.04 = 0.032 \mathrm{Wb}$$

Com a velocidade em rpm, a constante k vem dada por: $k = \frac{z p}{60 a}$

Assim, obtém-se a força eletromotriz induzida, ${\cal E}_0$, no enrolamento do induzido:

a) Enrolamento imbricado, a = p (n.º de escovas igual ao n.º de polos):

$$E_0 = k\phi_p n = \frac{360 \times 3}{60 \times 3} \times 0.032 \times 1000 = 192 \text{V}$$

b) Enrolamento ondulado, a = 1 (apenas um par de escovas):

$$E_0 = k\phi_p n = \frac{360 \times 3}{60 \times 1} \times 0.032 \times 1000 = 576$$
V

(Fonte: Modificado a partir do exercício 5.5 de [Guru & Hiziroğlu, 2003])

Exercício 2

Considere um induzido de um gerador de corrente contínua tetrapolar com um enrolamento imbricado colocado em 28 cavas com 10 condutores em cada uma. O fluxo magnético por polo é 40 mWb e a velocidade do induzido (rotor) de 1200rpm. O gerador alimenta uma carga e a corrente em cada condutor é 2A. Quais são o binário e a potência desenvolvidos pelo gerador?

Soluções:

 $T_d = 14,26 {
m Nm}$; $P_d = 1,79 {
m kW}$

(Fonte: Modificado a partir do exercício 5.8 de [Guru & Hiziroğlu, 2003])

Exercício 3

É dado um gerador de corrente contínua com 2p=6 polos, 2a=4 circuitos derivados e z=632 condutores úteis distribuídos uniformemente na periferia do induzido.

Sabe-se que a secção de cada condutor do induzido é $s=8\mathrm{mm^2}$ e é percorrido por uma densidade de corrente, $J=3\mathrm{A.mm^{-2}}$.

A máquina tem uma relação arco polar/passo polar, $b/\tau=2/3$ e o induzido tem um diâmetro, $D=220 \mathrm{mm}$.

- a) Decompor a reação magnética do induzido nas suas componentes longitudinal e transversal, quando as escovas estiverem avançadas de 15° elétricos em relação à Linha Neutra Geométrica (LNG);
- b) Com as escovas na LNG calcular o número de espiras a colocar num enrolamento de compensação, supondo que se abriram 6 cavas em cada polo principal. Calcular o número de condutores a inserir em cada cava e como devem ser ligados entre si. Fazer um esquema que mostre a posição dos condutores no enrolamento e a forma como estão ligados;
- c) Se a máquina tiver polos auxiliares e enrolamentos de compensação, calcular a força magnetomotriz (FMM) a colocar nos polos auxiliares de comutação, supondo as escovas na LNG;

d) Calcular a FMM de reação segundo a LNG, depois de montados os polos auxiliares e os enrolamentos de compensação. Traçar graficamente o andamento da curva de FMM de reação resultante.

Soluções:

- a) $\mathcal{F}_L=211~\mathrm{Acond};~~\mathcal{F}_T=1053~\mathrm{Acond}$
- b) Enrolamento de compensação: 9 espiras; 3 condutores/cava
- c) $\mathcal{F}'_{\mathrm{PA}} = 480 \, \mathrm{Acond};$ d) $\mathcal{F}_R = -80 \, \mathrm{Acond}$

Exercício 4

Um gerador de corrente contínua [220V, 12A, 1500rpm] com excitação independente foi ensaiado em vazio e em carga, à velocidade nominal, tendo-se obtido as seguintes características:

$$E_0$$
 [V] 20 180 238 270 284 300 U [V] 278 260 242 216 186 i [A] 0,00 0,25 0,50 0,75 1,00 1,50 I [A] 0 5 10 15 20

- a) Determine a queda de tensão interna total deste gerador;
- b) O que é a resistência crítica de um gerador com uma excitação derivação? Qual a sua importância? Como se determina (aproximadamente) na prática?
- c) Qual a resistência do enrolamento indutor, sabendo que como gerador derivação, à velocidade nominal, sem resistência de campo, $U_0=294\mathrm{V};$
- d) Explicite qualitativamente qual a influência que a variação da resistência de campo tem, sobre a característica externa do gerador derivação. Justifique sucintamente;
- e) Nas condições de excitação da alínea c), como proceder para obter uma tensão de vazio de 336V?

O exercício 4 está resolvido na linguagem **julià**, através da ferramenta **Pluto**.jl **g** para uma experiência mais interativa: *protebook*

Um gerador de excitação em derivação apresenta a seguinte característica de vazio, a 1500rpm:

Considere que o gerador tem incorporado polos auxiliares e enrolamentos de compensação.

- a) Com o gerador acionado a 1500rpm, determine o valor do reóstato de campo para obter o ponto de funcionamento (35A; 180V);
- b) Determine o valor da velocidade de acionamento do gerador, para que sem reóstato de excitação,
 a máquina funcione nas mesmas condições da alínea a);
- c) Nas condições da alínea a) (1500rpm e reóstato de campo), determine a razão de equivalência (N_s/N_d) , para se obter o ponto de funcionamento (35A; 200V). Considere que o enrolamento de excitação série tem uma resistência de 0.5Ω .

Soluções:

- a) 150Ω ;
- **b)** 1389rpm;
- c) 0.39/35

Exercício 6

Um gerador de excitação composta ligado em longa derivação e fluxo de excitação série aditivo apresenta as seguintes características:

Considere ainda um interruptor em paralelo com o enrolamento indutor série, de acordo com esquema seguinte:

- a) Calcule o valor da tensão em vazio sem reóstato de excitação. Explique se o estado do interruptor influencia o valor da tensão de vazio do gerador;
- b) Com o interruptor desligado, calcule o valor da queda de tensão devido à reação magnética do induzido, sabendo que nas condições nominais se obtém uma regulação plana;
- c) Com o interruptor ligado explicite qualitativamente a característica exterior do gerador. Qual a variação do ponto de funcionamento da característica externa para uma dada resistência de carga, nas seguintes situações:
 - 1) aumento da velocidade de acionamento;
 - 2) diminuição do reóstato de campo derivação.

O exercício 6 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **§** para uma experiência mais interativa: *potebook*

Exercício 7

Considere um gerador série com 5 espiras/polo, com uma característica magnética que passa pelos seguintes pontos, a 1200rpm:

\mathcal{F} [Ae]	0	200	600	1000
E_0 [V]	5	120	160	170

Sabe-se que as perdas rotacionais são de 1200W, a $R_a=0,\!2\Omega$ e que $R_s=0,\!05\Omega.$

- a) Determine a queda de tensão de tensão devido à reação magnética do induzido, quando alimenta uma carga de 1Ω , com 120A;
- b) Considere que a reação magnética do induzido se traduz numa perda de fluxo de 5%. Será possível obter a tensão de 150V, para a mesma corrente? Justifique;
- c) Tentou-se colocar este dínamo série a funcionar sobre uma carga de 3Ω , mas tal não foi possível. Comente a situação;
- d) Determine o valor da corrente correspondente ao rendimento máximo.

Soluções:

a) 10V;

d) 69,3A

Exercício 8

Conhecem-se as características externas de dois dínamos de excitação derivação, de 220V, 110kW, ligados em paralelo:

$I\left[\mathrm{A}\right]$	0	200	400	500	700	900
U_1 [V]	$229,\!5$	$226,\!5$	$222,\!5$	220,0	213,0	205,5
$U_2[V]$	224,0	223,0	221,0	220,0	217,5	214,0

- a) Como repartiriam as duas máquinas uma corrente de 1500A? Qual a tensão?
- b) O que se verifica para cargas reduzidas e próximas de zero? 0 < I < 250A
- c) Complete:

"Em sobrecarga a máquina com ______ regulação, fornece _____ corrente".

O exercício 8 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **§** para uma experiência mais interativa: *protebook*

Exercício 9

Um motor série com o induzido de 0.8Ω e o indutor de 0.4Ω foi posto a funcionar como dínamo. Excitado separadamente a 50A, deu 230V sobre os terminais em vazio e a 1500rpm, e com excitação série, debitando 50A e à mesma velocidade deu 150V. Sabendo que as perdas mecânicas e magnéticas, $P_{(\mathrm{mec+Fe})}$, são 400W, calcular:

- a) A velocidade quando absorve 50A como motor série de uma rede de 220V;
- b) O binário mecânico que transmite à carga nesta situação;
- c) Trace qualitativamente as características de binário e de velocidade deste motor. Explicite a influência da introdução de uma resistência de campo, sobre estas características.

Soluções:

- **a)** 1174rpm;
- **b)** 61,8Nm

Exercício 10

Considere um motor de corrente contínua, com a seguinte chapa de características: 17kW, 250V, 1200rpm, $\eta=85\%$.

Conhecem-se ainda os seguintes parâmetros:

$$E_0 = f(I_{\mathrm{exc}}) \;,\; n = 1200 \mathrm{rpm}$$

$$R_i = 0.6\Omega$$

$$R_s = 0.1\Omega$$
 , 30 espiras

$$R_d=200\Omega$$
 , $3000~{
m espiras}$

- a) Com o motor em excitação derivação, determine o valor do reóstato de campo, nas condições nominais (U_n,I_n,n_n) ;
- b) Utilizando o reóstato de campo calculado na alínea anterior, determine as características de velocidade, binário e mecânica deste motor (excitação derivação);
- c) Idem, com excitação composta em longa derivação aditiva e subtrativa. Representar as características nos mesmos gráficos para comparação;
- d) Determinar as curvas características com o circuito de derivação desligado (motor série). Representar as características nos mesmos gráficos para comparação;

- e) Considere o motor com excitação separada, $U_{\rm exc}=240{\rm V}$, com o reóstato de campo calculado na alínea a). Explicite a variação da característica de velocidade nas situações:
 - 1) aumento de tensão do induzido;
 - 2) diminuição do reóstato de campo;
 - 3) aumento da resistência adicional.

O exercício 10 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **p**ara uma experiência mais interativa: *p* notebook

Exercício 11

Um motor série de 12kW, 250V, 1400rpm, 80% de rendimento, velocidade máxima 2400rpm, tem a seguinte característica magnética obtida a 1500rpm:

$$I_{\rm exc}$$
 (A) 10 20 30 40 50 60 70 80 E_0 (V) 80 140 190 225 250 270 285 295

Sabendo que a resistência do induzido é 0.35Ω e a do indutor é 0.1Ω , calcular:

- a) As perdas mecânicas e no ferro, $p_{(\text{mec+Fe})}$;
- b) O valor mínimo da corrente que o motor pode absorver;
- c) A queda de tensão devida à reação magnética do induzido a plena carga;
- d) A potência do motor que corresponde ao rendimento máximo;
- e) Explicite qualitativamente a influência do reóstato de campo sobre a característica de velocidade do motor série;
- f) Explicite qualitativamente a influência do reóstato de campo sobre a característica de binário do motor série.

O exercício 11 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **§** para uma experiência mais interativa: Ø <u>notebook</u>

Um motor série alimentado a $250\mathrm{V}$ tem uma resistência de induzido de 0.2Ω e uma resistência de indutor de 0.15Ω . Este enrolamento indutor tem uma resistência de campo de 0.1Ω munida de interruptor.

- a) Suponha o interruptor aberto. Nestas condições, o motor fornece um binário útil de 25Nm, rodando a 800rpm e consumindo uma corrente de 10A.
 - Calcule o rendimento, η (%), o binário eletromagnético, T_d , e as perdas mecânicas e magnéticas, $p_{(\text{mec+Fe})}$;
- b) Suponha o interruptor fechado. Quais os novos valores da corrente consumida e de velocidade, quando o binário eletromagnético duplica. Explicite as hipóteses efetuadas;
- c) Trace qualitativamente a característica de binário útil deste motor. Explicite o que acontece à mesma quando se varia a tensão da rede. Justifique.

Soluções:

- **a)** 83,8%; 29,4Nm; 370,6W **b)** 22,4A; 888rpm

Exercício 13

Um motor excitação derivação apresenta as seguintes características:

$$U_n = 220 \text{V} \qquad \qquad I_n = 42 \text{A} \qquad \qquad n_n = 1500 \text{rpm} \qquad \qquad R_a = 0.34 \Omega$$

a) No ensaio em vazio obtiveram-se os seguintes valores:

$$U = 220V$$
 $n = 1600$ rpm $I_a = 3A$ $I = 4.6A$

Calcule o binário de perdas;

- b) Obtenha a equação da velocidade, $n = f(I_a)$;
- c) Dimensione um reóstato de arranque por pontos para que: $40 {\rm A} < I_{
 m arr} < 65 {\rm A}$.

- **a)** 3,92Nm **b)** $n(\text{rpm}) = \frac{-100}{37.4}(I_a 3) + 1600$
- c) Resistências entre os 6 contactos (Ω) : 1,30; 0,80; 0,49; 0,30; 0,15. Reóstato: 3,04 Ω .

Um motor de corrente contínua de excitação separada, 10kW, 250V, 88% de rendimento, é alimentado a partir de um sistema Ward Leonard, apresentado no seguinte esquema de princípio de funcionamento:

Conhecem-se as características magnéticas obtidas a 1200rpm do gerador e do motor:

Gerador:	i(A)	0,0	0,4	0,8	1,2	1,6	2,0	$R_i=0.8\Omega$	$R_d=120\Omega$
	E(V)	12	110	200	260	290			$\Delta E = 0 V$

Motor:	i(A)	0,0	0,4	0,8	1,2	1,6	$R_i = 1.6\Omega$	$R_d = 150\Omega$
	E(V)	10	105	190	240	265	$U_{ m exc} = 240$ V	$\Delta E = 0 V$

- a) Calcule a velocidade e o binário eletromagnético do motor a plena carga, com: $R_c^{\rm ~ger}=180\Omega~{\rm e}~R_c^{\rm ~mot}=50\Omega~;$
- Regule através do sistema Ward Leonard a velocidade do motor para 1100rpm a meia carga.
 Calcule o valor do reóstato de campo para essa situação;
- c) Quando a corrente de excitação do gerador atingir o seu valor máximo, como poderá aumentar a velocidade do motor de corrente contínua? Justifique;
- d) Refira quais as vantagens na substituição do sistema Ward Leonard por um variador eletrónico de velocidade.

Soluções:

a) 455rpm; 87Nm **b)** 53Ω

Considere um motor de corrente contínua alimentado a partir de um sistema Ward-Leonard eletrónico, de acordo com a figura seguinte:

Conhece-se ainda a característica magnética da máquina obtida às 2000rpm:

$$I_f$$
 (A) 0 0,25 0,50 0,75 1,00 1,25 1,50 E_0 (V) 20 160 210 235 250 260 265

- a) Determine qual o valor da tensão aplicada ao induzido do motor em condições nominais;
- b) Considere o motor a funcionar nas seguintes condições: $U_a=195\mathrm{V};~n=1400\mathrm{rpm}.$ Suponha agora que a partir do comando "Referência de velocidade" do variador eletrónico de velocidade, se altera subitamente a tensão do induzido para 155V. Calcule no instante imediato o valor da corrente da máquina. O que sucedeu? Justifique.

Soluções:

- **a)** 231V
- **b)** -25A

Bibliografia

• [Guru & Hiziroğlu, 2003]: Bhag S. Guru, Hüseyin R. Hiziroğlu, Electric Machinery and Transformers, 3rd Ed., Oxford University Press, 2003.

Exercícios: máquina de corrente contínua

MÁQUINAS SÍNCRONAS TRIFÁSICAS

Exercício 1

Um alternador síncrono trifásico, 390kVA, 1250V, 50Hz, 750rpm, ligado em triângulo, apresenta os seguintes resultados dos ensaios em vazio e curto-circuito:

$I_{\mathrm{exc}}\left(\mathbf{A}\right)$	11,5	15,0	20,0	$23,\!5$	29,0	$33,\!5$
E_0 (V)	990	1235	1460	1560	1640	1660
I_{cc} (A)	139	179	242	284	347	400

A resistência medida aos bornes do enrolamento do induzido é $0,144\Omega$. Determine:

- a) A resistência por fase do enrolamento induzido do alternador síncrono, considerando um coeficiente de correção do efeito pelicular da corrente de 1,2;
- b) A tensão de linha, para a corrente nominal e uma corrente de excitação de 33,5A, considerando um fator de potência da carga de 0,9 indutivo;
- c) A característica exterior do alternador síncrono trifásico, com uma corrente de excitação de 33,5A, para um fator de potência 0,9 indutivo, unitário e 0,9 capacitivo;
- d) A corrente de excitação do alternador, para este alimentar um motor assíncrono trifásico a uma tensão de 1kV, sabendo que o motor desenvolve uma potência de 150kW com um fator de potência de 0,832 e um rendimento de 90%.

(**Nota:** Admita que a impedância síncrona, \overline{Z}_s), é igual à obtida da alínea anterior)

(Fonte: Modificado a partir do problema 9 de [Malea & Balaguer, 2004])

O exercício 1 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **§** para uma experiência mais interativa: *protebook*

Exercício 2

Um gerador síncrono, ligação Y, 2300V, 1000kVA, fator de potência 0.8 indutivo, 60Hz, 2 polos, tem uma reatância síncrona de 1.1Ω e uma resistência do induzido de 0.15Ω . A 60Hz, as perdas por atrito e ventilação são 24kW, e as perdas no ferro 18kW.

O enrolamento de campo é alimentado por uma tensão contínua de $200\mathrm{V}$, sendo o valor máximo de I_f de $10\mathrm{A}$. O ensaio em circuito aberto deste alternador é o apresentado na figura seguinte:

- a) Qual o valor da corrente de campo necessário para que a tensão composta do seja de 2300V, quando o alternador funciona em vazio?
- b) Qual a força eletromotriz (FEM) gerada por esta máquina nas condições nominais?
- c) Qual o valor da corrente de campo necessário para obter a tensão nominal, quando o alternador se encontra nas condições nominais?
- d) Quais os valores de potência e binário necessários, para o acionamento deste alternador nas condições nominais?
- e) Obtenha o diagrama P-Q deste alternador;
- f) Considerando as condições nominais, obtenha a característica externa, U=f(I), para: $\cos \varphi = 0.8$ indutivo; $\cos \varphi = 0.8$ capacitivo; $\cos \varphi = 1$.
- g) Para uma FEM de 2500V determine a característica externa, U=f(I), para: $\cos\varphi=0.8$ indutivo; $\cos\varphi=0.8$ capacitivo; $\cos\varphi=1.$

(Fonte: Adaptado do problema 5.2 de [Chapman, 2005])

O exercício 2 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **a** para uma experiência mais interativa: *notebook*

Uma máquina síncrona $3\sim$, 5kVA, 208V, 4 polos, 60Hz, estator ligado em Y, apresenta um valor de resistência estatórica desprezável e uma reatância síncrona de $8\Omega/\text{fase}$.

A máquina é posta a funcionar como alternador ligado a uma rede elétrica $3 \sim$, 208V - 60Hz.

- a) Determine a FEM e o ângulo de carga quando a máquina entrega a potência nominal (kVA), com um fator de potência 0,8 indutivo. Trace o diagrama vetorial de tensões nessas condições;
- b) Calcule a corrente do estator, o fator de potência e a potência reativa fornecida pela máquina, se a corrente de excitação aumentar 20%. Trace o diagrama vetorial de tensões correspondente;
- c) Com a corrente de excitação da alínea a), a potência mecânica do motor de acionamento é gradualmente aumentada. Qual o limite de estabilidade em regime permanente?
 Quais são os valores correspondentes de corrente do estator, fator de potência e potência reativa, na condição de transferência máxima de potência? Trace o diagrama vetorial.

(Fonte: Exemplo 6.3 de [Sen, 1989])

Soluções:

- **a)** $206.8\angle 25.4^{\circ} \text{ V}$ **b)** $17.8\angle -51.6^{\circ} \text{ A}; 0.62(i); 5.0 \text{kVAr}$
- c) $29.9 \angle 30.1^{\circ} \text{ A}$; 0.87(c); 5.4 kVAr

Exercício 4

A máquina síncrona do **exercício 3** é agora utilizada como motor síncrono alimentado por uma rede elétrica $3 \sim$, 208V - 60Hz. A corrente de excitação é ajustada de modo a obter um fator de potência unitário quando a máquina absorve 3kW da rede.

- a) Determine a força contraeletromotriz (FCEM) e o ângulo de carga. Trace o diagrama vetorial de tensões nessas condições;
- b) Determine o binário máximo que o motor pode desenvolver, se a corrente de excitação se mantiver constante e a carga aplicada ao veio for aumentando gradualmente.

(Fonte: Exemplo 6.4 de [Sen, 1989])

Soluções:

a) $137.3\angle - 29.0^{\circ} \text{ V}$

b) 32,8Nm

Exercício 5

Uma máquina síncrona trifásica, 5MVA, 11kV, ligação dos enrolamentos do estator em Y, apresenta uma reatância síncrona de $10\Omega/f$ ase e uma resistência do induzido desprezável. A máquina é ligada a um barramento de 11kV-60Hz e funciona como compensador síncrono. Despreze as perdas mecânicas.

- a) Determine a corrente do estator para o ponto de excitação ótima. Desenhe o diagrama vetorial;
- b) Determine a corrente do estator e o fator de potência se a corrente de excitação aumentar 50%. Desenhe o diagrama vetorial;
- c) Idem, para uma diminuição de 50%. Desenhe o diagrama vetorial.

(Fonte: Exemplo 6.6 de [Sen, 1989])

Soluções:

a) 0A;

b) $317.5 \angle 90^{\circ} \text{ A}$; **c)** $317.5 \angle -90^{\circ} \text{ A}$

Exercício 6

Considere um alternador síncrono com $X_s=4\Omega$ e $R\approx 0\Omega$, a operar sob a rede de potência infinita: U = 200 V/fase e f = 50 Hz.

a) Traçar os diagramas vetoriais correspondentes às combinações entre as seguintes potências ativas e reativas:

> 0 10 15 20 kW, kVAr 5

b) Traçar as curvas em V, também designadas por curvas de Mordey, das potências requeridas.

O exercício 6 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **§** para uma experiência mais interativa: 🔗 <u>notebook</u>

Considere uma máquina síncrona de rotor cilíndrico, 2 polos, 20 MVA, 6 kV - 50 Hz, $\cos \varphi = 0.8 \text{(i)}$, enrolamentos estatóricos em Y, de resistência desprezável e $X_s = 1.1 \text{pu}$. A máquina síncrona é ligada a uma rede elétrica de 6 kV - 50 Hz e apresenta o seu mapa de funcionamento, traduzido nas curvas V da figura seguinte:

Determine em valores por unidade (pu):

- a) as potências ativa e aparente do ponto 4 e o respetivo ângulo de carga;
- b) Que pontos formam uma linha de excitação ótima? Justifique;
- c) nos pontos 1 e 3, as potências ativa e reativa, ângulos de carga, como alternador. Apresente justapostos os diagramas vetoriais de tensões dos pontos 1 e 3 indicando as respetivas potências;
- d) as perdas rotacionais da máquina. Justifique.
- e) o binário mecânico correspondente ao ponto 8, em funcionamento como motor síncrono. Apresente o respetivo diagrama vetorial de tensões;
- f) Escolha justificadamente o ponto correspondente ao funcionamento como condensador síncrono e apresente o respetivo diagrama vetorial de tensões.

- a) $Q_4=0$ pu; $P_4=\pm 0,6$ pu; $\delta_4=\pm 33,4^\circ$ b) excitação ótima: 6-8-2-4
- c) $P_1=P_3=0.25 {
 m pu}; \quad \delta_1=21.5^\circ; \quad \delta_3=10.6^\circ; \quad Q_1=0.27 {
 m pu}$ (c); $Q_3=0.43 {
 m pu}$ (i)
- **d)** $p_{\rm rot}=0.05 {\rm pu}$ **e)** $T_{\rm mec}=0.2 {\rm pu}$ **f)** condensador síncrono: 7

Considere um alternador síncrono trifásico, 20MVA, 11kV, com os enrolamentos do estator ligados em estrela, sendo a respetiva resistência desprezável. O alternador síncrono apresenta a seguinte característica magnética à velocidade nominal:

$$I_{\rm exc}$$
 (A) 60 80 100 120 140 160 180 200 220 240 E_0 (V) 7772 8827 9611 10214 10694 11085 11409 11683 11917 12119

O alternador encontra-se ligado a uma rede elétrica de potência infinita de 11kV, fornecendo uma potência de 20MW com fator de potência unitário. Para uma corrente de excitação de 200A, determine:

a) A reatância síncrona do alternador;

Considere um segundo alternador síncrono trifásico, de idênticas características nominais, ligado à rede de potência infinita de 11kV em paralelo com o anterior e à mesma corrente de excitação. Se o conjunto dos alternadores fornecer uma potência de 36MW, repartida de igual modo por ambos, com um fator de potência 0,9 indutivo, calcule:

b) A FEM induzida em cada um dos alternadores síncronos trifásicos e a corrente total fornecida à rede elétrica;

Se reduzir a FEM por fase em 10% de um dos alternadores ligados em paralelo, mantendo constante o binário mecânico aplicado pela turbina a cada alternador, bem como o fator de potência global, determine:

- c) A FEM induzida no outro alternador síncrono trifásico para satisfazer as condições indicadas;
- d) As correntes fornecidas à rede e o fator de potência de cada alternador.

(Fonte: Modificado a partir do problema 10 de [Malea & Balaguer, 2004])

- **a)** $2,16\Omega$; **b)** $7618\angle 15,5^{\circ} \text{ V}$; $2099\angle -25,8^{\circ} \text{ A}$; **c)** $8385\angle 14,1^{\circ} \text{ V}$
- **d)** 949A; 0.996(i); 1254A; 0.753(i)

Um gerador síncrono tetrapolar de polos salientes, 200 kVA, 480 V-60 Hz, fator de potência 0.8 indutivo, ligação dos enrolamentos do estator em estrela, apresenta uma reatância segundo o eixo direto de 0.25Ω , uma reatância segundo o eixo de quadratura de 0.18Ω e uma resistência do induzido de 0.03Ω . As perdas por atrito, ventilação e suplementares assumem-se desprezáveis. O gerador síncrono apresenta a seguinte característica magnética à frequência nominal:

- a) Qual o valor da corrente de campo necessária para obter uma tensão de 480V quando o gerador síncrono de encontra a funcionar em vazio?
- b) Determine o valor da corrente de campo do gerador síncrono, quando este se encontra a funcionar nas condições nominais;
- c) Qual a percentagem da potência resultante do binário de relutância do rotor quando o gerador síncrono se encontra à plena carga, (desprezando *R*)?

(Fonte: Adaptado do problema C-1 de [Chapman, 2005])

- **a)** 4,55A;
- **b)** 7,3A;
- c) 25%

Um alternador síncrono de polos salientes, 12MVA, ligação em triângulo, $\eta=91\%$, faz parte de um processo de cogeração de uma indústria de celulose e encontra-se ligado à rede elétrica de potência infinita de 13,8kV-50Hz. Sabe-se que: $X_d=34\Omega/{\rm fase}$; $X_q=16\Omega/{\rm fase}$ e $R\approx 0\Omega$.

- a) Trace qualitativamente o diagrama vetorial de tensões para uma situação de plena carga e $\cos \varphi = 0.81$ (c), evidenciando a determinação dos eixos direto e quadratura e das componentes da corrente nos mesmos;
- b) Determine o fasor da força eletromotriz nessa situação;
- c) Mantendo a corrente de excitação constante, determine o limite de estabilidade estática deste alternador e a potência desenvolvida correspondente;
- d) Qualitativamente:
 - Como proceder para colocar esta máquina síncrona a operar como um condensador síncrono nesta instalação, partindo do ponto de funcionamento descrito;
 - Apresente o diagrama vetorial do novo ponto de funcionamento da máquina síncrona.

Resolução:

a)

b) Fasores da tensão e corrente por fase (circuito equivalente), \overline{U}_f e \overline{I}_f :

$$I_n = \frac{S_n}{\sqrt{3}U_n} = \frac{12\times 10^6}{\sqrt{3}\cdot 13.8\times 10^3} = 502 \text{A} \qquad \text{fase: } \varphi = \arccos(0.81) = 35.9^\circ$$

Estator em
$$\Delta$$
: $U_f = U_n$; $I_f = \frac{I_n}{\sqrt{3}}$

Fasores:
$$\overline{U}_f=13.8\angle0^\circ\,\mathrm{kV}$$
 $\overline{I}_f=\frac{502}{\sqrt{3}}\angle35.9^\circ\,\mathrm{A}$

Fasor da FEM efetiva, \overline{E} :

$$\overline{E} = \overline{U}_f + j X_q \overline{I}_f = (13.8 \times 10^3 \angle 0^\circ) + j16 \left(\frac{502}{\sqrt{3}} \angle 35.9^\circ\right) = 11.7 \angle 18.7^\circ \text{ kV}$$

Fasor da corrente segundo o eixo direto, \overline{I}_d :

$$\begin{split} \overline{I}_d &= I \sin(\varphi - \delta) \angle (\delta + 90^\circ) = \frac{502}{\sqrt{3}} \sin(35.9^\circ - 18.7^\circ) \angle (18.7^\circ + 90^\circ) \\ \overline{I}_d &= 85.7 \angle 108.7^\circ \, \text{A} \end{split}$$

Fasor da FEM, \overline{E}_0 :

$$\begin{split} \overline{E}_0 &= \overline{E} + j \big(X_d - X_q \big) \overline{I}_d = \big(11.7 \times 10^3 \angle 18.7^\circ \big) + j (34 - 16) (85.7 \angle 108.7^\circ) \\ \overline{E}_0 &= 10.16 \angle 18.7^\circ \text{ kV} \end{split}$$

Limite de estábilidade estática:
$$\Rightarrow \frac{dP_d}{d\delta} = 0 \Leftrightarrow$$

$$\frac{3UE_0}{X_d}\cos\delta_{\lim} + \frac{3U^2\big(X_d-X_q\big)}{X_dX_q}\cos(2\delta_{\lim}) = 0 \Leftrightarrow$$

$$\frac{3 \cdot 13.8 \times 10^3 \cdot 10.16 \times 10^3}{34} \cos \delta_{\lim} + \frac{3 \big(13.8 \times 10^3\big)^2 (34 - 16)}{34 \cdot 16} \cos(2\delta_{\lim}) = 0 \Rightarrow$$

$$\delta_{\rm lim}=55.8^{\circ}$$

Com: $I_{\rm exc}={\rm constante}\Rightarrow E_0={\rm constante}$

Substituindo em $P_d(\delta)$ com $\delta = \delta_{\lim}$:

$$\begin{split} P_d^{\text{max}} &= \frac{3UE_0}{X_d} \sin \delta_{\text{lim}} + \frac{3U^2 \left(X_d - X_q\right)}{2X_d X_q} \sin(2\delta_{\text{lim}}) \\ &= \frac{3 \cdot 13.8 \times 10^3 \cdot 10.16 \times 10^3}{34} \sin(55.8^\circ) + \frac{3 \cdot \left(13.8 \times 10^3\right)^2 (34 - 16)}{2 \cdot 34 \cdot 16} \sin(2 \cdot 55.8^\circ) \\ &\approx 19 \text{MW} \end{split}$$

d) Procedimento para funcionar como condensador síncrono:

 $1^{\rm o}:(T_{\rm mec}~ \bigstar~~{\rm at\'e}~~\delta=0)~~{\rm e}~~(I_{\rm exc}~ \red ~{\rm at\'e}~~\overline{E}_0=\overline{U}) \Rightarrow {\rm m\'aquina}~{\rm a}~{\rm ``flutuar''}~{\rm na}~{\rm rede,~ou}~~{\rm seja}, (Q=0,P=0)$

2º: Desacoplar a turbina do alternador ⇒ motor síncrono em vazio

 $3^{\rm o}$: $(I_{\rm exc}$ ≠ até $\,\,Q\,$ desejado), modo sobreexcitado \Rightarrow condensador síncrono

Diagrama vetorial de tensões do condensador síncrono de polos salientes:

Um motor síncrono trifásico com quatro polos salientes e o estator ligado em estrela, encontra-se a trabalhar sobre uma rede de potência infinita de 208V, com $\cos \varphi = 0.8(i)$, consumindo 40A.

Sabe-se que:
$$f=50{\rm Hz}$$
; $X_d=2{,}7\Omega/{\rm fase}$; $X_q=1{,}7\Omega/{\rm fase}$; $R=0\Omega.$

- a) Trace, qualitativamente, o diagrama vetorial de tensões correspondente, evidenciando a determinação dos eixos direto e de quadratura e das componentes da corrente nos mesmos;
- b) Determine o fasor da força contraeletromotriz, \overline{E}'_0 , nas condições de funcionamento indicadas;
- c) Calcule o binário máximo desenvolvido por esta máquina;
- d) Trace qualitativamente a curva de binário desenvolvido deste motor.

Soluções:

b) $94.5 \angle -34.5^{\circ} \text{ V};$ **c)** 95.8 Nm

Exercício 12

Uma máquina síncrona $3 \sim$ de polos salientes, 50 MVA, 11 kV - 60 Hz, enrolamentos do estator em Y, apresenta as reatâncias: $X_d=0.8 \mathrm{pu}$ e $X_q=0.4 \mathrm{pu}$. Como motor síncrono é colocado à plena carga com fator de potência 0,8 indutivo. As perdas mecânicas representam são 0,15pu.

Despreze as perdas de Joule do induzido.

- a) Determine X_d e X_q em Ω ;
- b) Determine a FEM em pu;
- c) Determine a potências desenvolvidas (em pu) devido à FEM de excitação e devido ao efeito de relutância do rotor;
- d) Se a corrente de excitação for reduzida a zero, a máquina continua em sincronismo? Justifique;
- e) Se a carga ao veio for retirada e a corrente de excitação reduzida a zero, determine o valor da corrente do estator (em pu) e o fator de potência. Desenhe o diagrama vetorial da máquina para esta situação.

O exercício 12 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl 🏮 para uma experiência mais interativa: 🔗 <u>notebook</u>

Bibliografia

- [Chapman, 2005]: S.J. Chapman, Electric Machinery Fundamentals, 4th Ed., McGraw-Hill, USA, 2005.
- [Malea & Balaguer, 2004]: J.M. Malea, E.F. Balaguer, Problemas resueltos de máquinas eléctricas rotativas, Publicações da Universidade de Jaume I, Espanha, 2004.
- [Sen, 1989]: P.C. Sen, Principles of electric machines and power electronics, John Wiley & Sons, USA, 1989.

DINÂMICA DE MÁQUINAS ELÉTRICAS

Exercício 1

Considere um motor de corrente contínua de excitação em derivação, no qual se efetuaram dois ensaios:

- Ensaio em vazio para a separação das perdas mecânicas e magnéticas;
- Ensaio de desaceleração para determinação dos parâmetros mecânicos.

Ensaio em vazio (velocidade constante = 1500rpm)

$$U\left(\mathrm{V} \right)$$
 220 210 190 172 150 125 100 80 60 40 32 $I_{a}\left(\mathrm{A} \right)$ 0,70 0,70 0,70 0,76 0,86 1,00 1,25 1,60 2,45 3,00

Ensaio de desaceleração (ganho vertical = 250rpm/div):

- a) Determine o valor das perdas mecânicas deste motor, sabendo que a resistência do induzido tem o valor: $R_a=1{,}1\Omega$;
- b) Determine os parâmetros mecânicos (momento de inércia, coeficientes de atrito viscoso e estático) deste motor.

Soluções:

a) 85W **b)** 0,0344kgm²; 0,030Nms; 0,069Nm

Exercício 2

Considere duas máquinas de corrente contínua ligadas de acordo com o esquema da figura seguinte:

O gerador de excitação derivação, **G**, alimenta a resistência de utilização, **Ru**, e é acionado por um motor de excitação separada, **M**, que apresenta a seguinte característica magnética:

$$i \ ({\rm A}) \qquad 0 \qquad 0.2 \qquad 0.4 \qquad 0.6 \qquad 0.8 \qquad 1.0 \qquad 1.2 \qquad 1.4 \qquad n_{\rm mag} = 1200 {\rm rpm}$$

$$E \ ({\rm V}) \qquad 15 \qquad 75 \qquad 130 \qquad 170 \qquad 200 \qquad 220 \qquad 235 \qquad 250$$

- a) Escreva as equações que modelizam o funcionamento do motor CC em regime dinâmico;
- b) Considere o motor alimentado à tensão de 295V e uma corrente de 50A. Atendendo que o fluxo é constante, calcule o binário de carga aplicado ao motor nessas condições, sabendo que o sistema (motor + carga) apresenta os seguintes parâmetros mecânicos:

$$J=0.3 {\rm kgm^2} \hspace{1cm} K_d=0.007 {\rm Nm/rad.s^{-1}} \hspace{1cm} K_e=3.5 {\rm Nm}$$

c) Suponha que o motor se encontra a funcionar nas seguintes condições:

$$T_i = 100 \mathrm{Nm} \hspace{1.5cm} T_c = 80 \mathrm{Nm} \hspace{1.5cm} n = 2250 \mathrm{rpm}$$

Determine o valor de
$$\frac{d\omega}{dt}$$
 quando: Int. $1 o$ o interruptor 1 é aberto; Int. $2 o$ o interruptor 2 é aberto.

Soluções:

Exercício 3

Considere dois alternadores síncronos trifásicos de 5MVA, 6kV, 50Hz, ligação em Y, 2p=4, ligados em paralelo a uma rede de capacidade infinita (6kV-50Hz), fornecendo 1MW cada, com $\cos\varphi=1$.

Sabe-se ainda que:

	Alternador 1	Alternador 2
Máquina síncrona:	polos lisos	polos salientes
Reatâncias/fase:	$X_s=12{,}75\Omega$	$X_d=12{,}75\Omega;X_q=\frac{X_d}{2}$
Resistência do estator:	$R\approx 0\Omega$	$R\approx 0\Omega$
FEM/fase:	$E_0 = 3.675 \text{kV}$	$E_0 = 3.675 \text{kV}$

Utilizando o critério de igualdade das áreas, determinar a máxima perturbação admissível de cada um dos alternadores, mantendo o funcionamento da máquina síncrona estável.

Analise as diferenças entre os alternadores.

O exercício 3 está resolvido na linguagem **julià** através da ferramenta **Pluto**.jl **a** para uma experiência mais interativa: *notebook*