Entropic Risk Optimization in Discounted MDPs

Jia Lin Hau¹, Marek Petrik^{1,2}, Mohammad Ghavamzadeh²

¹UNH, ²Google

Summary

Motivation

- ▶ Risk avoidance is very important many domains, like health care, or autonomous driving.
- ► Stake holders seek policies that minimize risk while maximizing return.

Limitations of existing methods

- Compute complex history-dependent policies: difficult to deploy and analyze.
- Often lack practical optimality guarantees.
- Usually only optimize VaR and CVaR risk measures.

Our contributions

- ▶ New algorithms for optimizing entropic risk (EVaR and ERM) objectives in MDPs.
- ► History-independent policies are optimal in ERM/EVaR MDPs.
- ▶ Guarantee δ -optimal policy in poly-time, $\log(1/\delta)$ for ERM and $(\frac{\log(1/\delta)}{\delta})^2$ for EVaR.

Risk Averse MDPs

Maximizes the risk measure $\psi[\cdot]$ of the total γ -discounted reward in a Markov decision process (MDP) for finite and inifnite horizon T

$$\max_{\pi \in \Pi} \psi \left[\sum_{t=0}^{T} \gamma^t r^{\pi}(S_t, A_t, S_{t+1}) \right] = \max_{\pi \in \Pi} \psi \left[\mathfrak{R}_T^{\pi} \right]$$

▶ Known rewards $r(s, a, s') \in \mathbb{R}$ and transition probabilities $P(s, a) \in \triangle^S$ and a tabular state and action spaces.

Risk Measures

► **Challenges**: Common risk measures, like VaR and CVaR, do not admit direct dynamic program representations. Nested risk measures, like nCVaR, are difficult to interpret and result in loose approximations.

- Law invariant: Identically distributed random variables have identical risk values.
- ► Tower property: Allows one to nest the risk measure: $\psi[X] = \psi[\psi[X \mid Y]]$.
- ▶ Positively homogeneous: The risk scale equals to the scale of the distribution.

Entropic Risk Measure (ERM-MDP)

Objective for a risk parameter $\beta \in (0, \infty)$ (ERM₀ [X] = $\mathbb{E}[X]$ and ERM_{\infty} [X] = min X):

$$\max_{\pi \in \Pi} \mathsf{ERM}_{\beta} \left[\mathfrak{R}_{T}^{\pi} \right] \quad = \quad \max_{\pi \in \Pi} -\beta^{-1} \cdot \mathsf{log} \Big(\mathbb{E} \left[e^{-\beta \cdot \mathfrak{R}_{T}^{\pi}} \right] \Big),$$

- ► Challenge: ERM struggles with discounting because it lacks positive homogeneity.
- ▶ Main idea: Use time-dependent risk level the Bellman equation.
- ► Theorem 3.1: ERM is Positive Quasi homogeneous:

$$\mathsf{ERM}_{eta}\left[c\cdot\mathfrak{R}_{T}^{\pi}
ight] = c\cdot\mathsf{ERM}_{c\cdoteta}\left[\mathfrak{R}_{T}^{\pi}
ight].$$

► Theorem 3.2: Bellman equations for ERM-MDP:

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} \mathsf{ERM}_{\beta \cdot \gamma^t} \left[r(s, a) + \gamma \cdot v_{t+1}^{\star}(S') \right].$$

- ▶ Risk level $\beta_t = \beta \cdot \gamma^t$ decreases with time t and decisions become less risk-averse.
- ► Theorem 3.4: Infinite horizon approximation error / convergence rate (w.r.t) T':

$$\mathsf{ERM}_{\beta}\left[\mathfrak{R}_{\infty}^{\pi^{\star}}\right] - \mathsf{ERM}_{\beta}\left[\mathfrak{R}_{\infty}^{\hat{\pi}^{\star}}\right] \ \leq \ rac{eta \cdot \gamma^{2T'} \cdot \Delta_{\mathfrak{R}}^2}{8} \ .$$

▶ Select $T'(\delta) = \lceil \frac{1}{2\log(\delta)} \log(\frac{8\delta}{\beta\Delta_{\infty}^2}) \rceil$ for δ -optimal policy $\hat{\pi}^*$

$$\mathsf{ERM}_{lpha}\left[\mathfrak{R}_{\infty}^{\pi^{\star}}
ight]-\mathsf{ERM}_{lpha}\left[\mathfrak{R}_{\infty}^{\hat{\pi}^{\star}}
ight]\leq\delta.$$

- ▶ Total run-time of our ERM MDP algorithm $O(S^2A \log(1/\delta))$.
- ightharpoonup Main limitation: Risk parameter $\beta \in \mathbb{R}_+$ is difficult to interpret

Entropic Value at Risk (EVaR-MDP)

Objective for risk level $\alpha \in [0,1]$

$$\begin{split} \max_{\pi \in \Pi} \mathsf{EVaR}_{\alpha} \left[\mathfrak{R}_{\infty}^{\pi} \right] &= \max_{\pi \in \Pi} \inf_{\xi \ll f} \left\{ \mathbb{E}_{\xi} [\mathfrak{R}_{\infty}^{\pi}] \mid \mathsf{KL}(\xi \| f) \leq \log \left(\frac{1}{1 - \alpha} \right) \right\} \\ &= \sup_{\beta > 0} \left(\max_{\pi \in \Pi} \mathsf{ERM}_{\beta} \left[\mathfrak{R}_{\infty}^{\pi} \right] + \frac{\log (1 - \alpha)}{\beta} \right) \,. \end{split}$$

- ► Challenge: EVaR does not satisfy the tower property.
- Main idea: Reduce EVaR optimization to a sequence of ERM optimizations.
- ► Theorem 4.1: Reduce EVaR-MDP to ERM-MDP

$$\max_{\pi \in \Pi} \mathsf{EVaR}_{\alpha} \left[\mathfrak{R}_{\infty}^{\pi} \right] = \sup_{\beta > 0} h(\beta) \,.$$

▶ Function $h(\beta)$ is neither convex nor concave in β .

▶ **Theorem 4.3:** Our algorithm computes δ-optimal EVaR-MDP policy $\hat{\pi}^*$ in $O(S^2A(\frac{\log(1/\delta)}{\delta})^2)$ time when using a grid $B = \{\beta_k\}_{k=1}^K$ is constructed (for $K(\delta) \in O\left(\frac{\log(1/\delta)}{\delta^2}\right)$) as

$$\beta_1 = \frac{8\delta}{\Delta_{\mathfrak{R}}^2} \quad , \qquad \beta_{k+1} = \frac{\beta_k \cdot \log(1-\alpha)}{\beta_k \delta + \log(1-\alpha)} \quad , \qquad \beta_{\kappa} \ge \frac{-\log(1-\alpha)}{\delta} \, .$$

Algorithms for ERM-MDP and EVaR-MDP

Algorithm 1: VI for ERM-MDP

Input: planning horizon $T' < \infty$, risk level $\beta > 0$

- 1. $\hat{v}_{T':\infty}^{\star} \leftarrow 0$ for finite horizon, otherwise $\hat{v}_{T':\infty}^{\star} \leftarrow \bar{v}^{\star}$ value function of standard infinite-horizon MDP
- 2. $\hat{v}_t^{\star}(s) \leftarrow \max_{a \in \mathcal{A}} \mathsf{ERM}_{\beta \cdot \gamma^t} \left[r(s, a) + \gamma \cdot \hat{v}_{t+1}^{\star}(S') \right]$, for $t \in \{T' 1, \dots, 0\}$
- 3. Construct $\hat{\pi}^*$ analogously to \hat{v}^*

Output: policy $\hat{\pi}^*$ and value function \hat{v}^*

Algorithm 2: Algorithm for EVaR-MDP

Input: Desired error tolerance δ , confidence level $\alpha \in [0,1]$

- 1. $T \leftarrow \lceil \frac{1}{2 \log(\delta/2)} \log(\frac{4\delta}{\beta \Delta_{\infty}^2}) \rceil$ for infinite horizon.
- 2. Let K be the smallest value that satisfies $\beta_K \geq \frac{-\log(1-\alpha)}{\delta/2}$.
- 3. $v^k, \pi^k \leftarrow ErmVI(T, \beta_k)$ for $k = 1, \dots, K$
- 4. Let $k^* \leftarrow \operatorname{arg\,max}_{k=1:K} v_0^k(s_0) + \beta_k^{-1} \cdot \log(1-\alpha)$

Output: policy $\hat{\pi}^* \leftarrow \pi^{k^*}$ and value function $\hat{v}_0^* \leftarrow v_0^{k^*}(s_0) + \beta_{k^*}^{-1} \cdot \log(1-\alpha)$

Simulation Results

Time horizon T=100, number of episodes =100,000, risk level: $\alpha=0.9=90\%$ confidence.

Tail risk performance measured in VaR (dark red), CVaR (medium red), and EVaR (light red)

Higher (shorter) the better

- ► EVaR-MDP algorithms perform well across all domains for both CVaR and EVaR.
- ► Naive algorithms ("Naive grid" or "Naive level") exhibit inconsistent performance.
- ightharpoonup Risk-neutral " \mathbb{E} " and "ERM" optimize different also exhibit inconsistent performance.
- ► Nested risk measures ("nCVaR", "nEVaR", "nERM") perform poorly across all domains.
- ▶ Quantile augmentation "Aug CVaR" is slow, computes history-dependent policies, and fails in larger domains.