SCR_EL3, Secure Configuration Register

The SCR EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

- The Security state of EL0, EL1, and EL2. The Security state is Secure, Non-secure, or Realm.
- The Execution state at lower Exception levels.
- Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
- Whether various operations are trapped to EL3.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR EL3 are undefined.

Attributes

SCR EL3 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
RES	50 NSE	RES	50	FGTEn2		RES0		EnIDCP128	RES0	PFAREn	TWERR	TMEA	RES0	MECEn	GPF
TW	/EDEL	TWEDEn	ECVEn	FGTEn	ATA	EnSCXT		RES0		FIEN	NMEA	EASE	EEL2	API	APK
31	. 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Bit [63]

Reserved, res0.

NSE, bit [62]

When FEAT RME is implemented:

This field, evaluated with SCR_EL3.NS, selects the Security state of EL2 and lower Exception levels.

For a description of the values derived by evaluating NS and NSE together, see SCR EL3.NS.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0, and the Effective value of this bit is 0b0.

Bits [61:60]

Reserved, res0.

FGTEn2, bit [59] When FEAT_FGT2 is implemented:

Fine-Grained Traps Enable 2.

FGTEn2	Meaning
0b0	EL2 accesses to the specified
	registers are trapped to EL3.
	The values in these registers
	are treated as 0.
0b1	EL2 accesses to the specified
	registers are not trapped to
	EL3 by this mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR ELx.EC value of 0x18 and its associated ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [58:56]

Reserved, res0.

EnIDCP128, bit [55] When FEAT SYSREG128 is implemented:

Enables access to implementation defined 128-bit System registers.

EnIDCP128	Meaning
0b0	Accesses at EL2, EL1, EL0
	to implementation defined
	128-bit System registers
	are trapped to EL3 using
	an ESR_EL3.EC value of
	0x14, unless the access
	generates a higher
	priority exception.
	Disables the functionality
	of the 128-bit
	implementation defined
	System registers that are
	accessible at EL3.
0b1	No accesses are trapped
	by this control.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [54]

Reserved, res0.

PFAREn, bit [53] When FEAT_PFAR is implemented:

Enable access to Physical Fault Address Registers. When disabled, accesses to Physical Fault Address Registers generate a trap to EL3.

PFAREn	Meaning
0b0	Accesses of the specified Physical Fault Address Registers at EL2 and EL1 are trapped to EL3, unless the
	instruction generates a higher priority exception.

0b1	Accesses of the specified Physical Fault Address
	Registers are not trapped by
	this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to PFAR EL1, PFAR EL2, and PFAR EL12.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWERR, bit [52] When FEAT RASv2 is implemented:

Trap writes of error record registers. Enables a trap to EL3 on writes of error record registers.

TWERR	Meaning
0b0	Writes of the specified error
	record registers are not
	trapped by this mechanism.
0b1	Writes of the specified error
	record registers at EL2 and
	EL1 are trapped to EL3,
	unless the instruction
	generates a higher priority
	exception.

In AArch64 state, the instructions affected by this control are: MSR accesses to <a href="https://example.com/errange-en/state-en

In AArch32 state, the instructions affected by this control are: MCR accesses to ERRSELR, ERXADDR2, ERXCTLR, ERXMISC0, ERXMISC3, ERXMISC5, ERXMISC5, ERXM

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03.

Accessing this field has the following behavior:

- This field is permitted to be res0 if all of the following are true:
 - <u>ERRSELR_EL1</u> and all ERX* registers are implemented as undefined or RAZ/WI.
 - ERRIDR EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TMEA, bit [51] When FEAT DoubleFault2 is implemented:

Trap Masked External Aborts. Controls whether a masked error exception at a lower Exception level is taken to EL3.

TMEA	Meaning
0b0	Synchronous External Abort
	exceptions and SError
	exceptions at EL2, EL1, and EL0
	are unaffected by this
	mechanism.
0b1	Synchronous External Abort
	exceptions when PSTATE.A is 1
	and masked SError exceptions
	at EL2, EL1, and EL0 are taken
	to EL3, unless routed to another
	Exception level by a higher
	priority control.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [50]

Reserved, res0.

MECEn, bit [49] When FEAT_MEC is implemented:

Enables access to the following EL2 MECID registers, from EL2:

- <u>MECID P0 EL2</u>.
- MECID A0 EL2
- MECID P1 EL2
- MECID A1 EL2
- <u>VMECID P EL2</u>
- VMECID A EL2

Accesses to these registers are trapped and reported using an ESR EL3.EC value of 0x18.

MECEn	Meaning
0b0	Accesses from EL2 to a listed
	MECID register are trapped to
	EL3. The value of a listed EL2
	MECID register is treated as 0
	for all purposes other than
	direct reads or writes to the
	register from EL3.
0b1	This control does not cause
	any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

GPF, bit [48] When FEAT RME is implemented:

Controls the reporting of Granule protection faults at EL0, EL1 and EL2.

Gr i Meaning	GPF	Meaning
--------------	-----	---------

0b0	This control does not cause
000	
	exceptions to be routed from ELO,
	EL1 or EL2 to EL3.
0b1	GPFs at EL0, EL1 and EL2 are
	routed to EL3 and reported as
	Granule Protection Check
	exceptions.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

D128En, bit [47] When FEAT D128 is implemented:

128-bit System Register trap control. Enables access to 128-bit System Registers via MRRS, MSRR instructions.

- MRRS and MSRR accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an ESR ELx.EC value of 0×14:
 - <u>TTBR0 EL1</u>.
 - <u>TTBR1 EL1</u>.
 - RCWMASK EL1, RCWSMASK EL1.
 - PAR EL1.
- MRRS and MSRR accesses from EL2 using AArch64 to the following registers are trapped and reported using an ESR_ELx.EC value of 0x14:
 - <u>TTBR1_EL2</u> and accesses using the register name TTBR1_EL12.
 - <u>TTBR0_EL2</u> and accesses using the register name TTBR0_EL12.
 - VTTBR EL2.

D128En	Meaning
0b0	EL1 and EL2 accesses to the
	specificed registers are
	disabled, and trapped to EL3.

0b1	This control does not cause	
	any instructions to be	
	trapped.	

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AIEn, bit [46] When FEAT AIE is implemented:

MAIR2_ELx, AMAIR2_ELx Register access trap control.

- Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an ESR_ELx.EC value of 0x18:
 - AMAIR2 EL1.
 - MAIR2 EL1.
- Accesses from EL2 using AArch64 to the following registers are trapped and reported using an ESR_ELx.EC value of 0x18:
 - AMAIR2_EL2 and accesses using the register name AMAIR2 EL12.
 - MAIR2_EL2 and accesses using the register name MAIR2 EL12.

AIEn	Meaning
0b0	EL1 and EL2 accesses to the
	specificed registers are disabled,
	and trapped to EL3. The values in
	these registers are treated as 0.
0b1	This control does not cause any
	instructions to be trapped.

Traps are not taken if there is a higher priority exception generated by the access.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PIEn, bit [45]

When FEAT_S1PIE is implemented, or FEAT_S2PIE is implemented, or FEAT_S1POE is implemented or FEAT_S2POE is implemented:

Permission Indirection, Overlay Register access trap control. Enables access to Permission Indirection and Overlay registers.

- Accesses from ELO, EL1 and EL2 using AArch64 to the following registers are trapped and reported using an ESR ELx.EC value of 0x18:
 - POR ELO.
- Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an ESR_ELx.EC value of 0x18:
 - PIREO EL1.
 - PIR EL1.
 - POR EL1.
 - S2POR EL1.
- Accesses from EL2 using AArch64 to the following registers are trapped and reported using an ESR_ELx.EC value of 0x18:
 - PIREO_EL2 and accesses using the register name PIREO EL12.
 - PIR_EL2 and accesses using the register name PIR EL12.
 - POR_EL2 and accesses using the register name POR EL12.
 - S2PIR EL2.

TATE	3.5	
PIEn	Meani	ทต

0b0	EL0, EL1 and EL2 accesses to the
	specificed registers are disabled,
	and trapped to EL3. The values in
	these registers are treated as 0.
0b1	This control does not cause any
	instructions to be trapped.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SCTLR2En, bit [44] When FEAT SCTLR2 is implemented:

SCTLR2_ELx register trap control. Enables access to $\underline{\text{SCTLR2_EL1}}$ and $\underline{\text{SCTLR2_EL2}}$ registers.

SCTLR2En	Meaning
0b0	EL1 and EL2 accesses to
	SCTLR2_EL1 and
	SCTLR2 EL2 registers are
	disabled, and trapped to
	EL3. The values in these
	registers are treated as 0.
0b1	This control does not cause
	any instructions to be
	trapped.

Traps are reported using an ESR EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCR2En, bit [43] When FEAT TCR2 is implemented:

TCR2_ELx register trap control. Enables access to <u>TCR2_EL1</u> and <u>TCR2_EL2</u> registers.

TCR2En	Meaning
0b0	EL1 and EL2 accesses to
	TCR2_EL1 and TCR2_EL2
	registers are disabled, and
	trapped to EL3. The values in
	these registers are treated as
	0.
0b1	This control does not cause
	any instructions to be
	trapped.

Traps are reported using an ESR EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

RCWMASKEn, bit [42] When FEAT THE is implemented:

RCW and RCWS Mask register trap control. Enables access to RCWMASK EL1, RCWSMASK EL1.

RCWMASKEn	Meaning
0b0	EL1 and EL2 accesses
	to <u>RCWMASK_EL1</u> and
	RCWSMASK_EL1
	registers are disabled,
	and trapped to EL3.
0b1	This control does not
	cause any instructions
	to be trapped.

Traps for MRS, MSR access are reported using an <u>ESR_EL3</u>.EC value of 0x18.

Traps for MRRS, MSRR acceess are reported using an <u>ESR_EL3</u>.EC value of 0x14.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnTP2, bit [41] When FEAT_SME is implemented:

Traps instructions executed at EL2, EL1, and EL0 that access TPIDR2_EL0 to EL3. The exception is reported using ESR_ELx.EC value 0x18.

EnTP2	Meaning
0b0	This control causes execution of
	these instructions at EL2, EL1,
	and EL0 to be trapped.
0b1	This control does not cause
	execution of any instructions to
	be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TRNDR, bit [40] When FEAT_RNG_TRAP is implemented:

Controls trapping of reads of <u>RNDR</u> and <u>RNDRRS</u>. The exception is reported using ESR ELx.EC value 0x18.

|--|

0b0	This control does not cause RNDR and RNDRRS to be trapped. When FEAT_RNG is implemented:
	• <u>ID_AA64ISAR0_EL1</u> .RNDR returns the value 0b0001.
	When FEAT_RNG is not implemented:
	 ID_AA64ISAR0_EL1.RNDR returns the value 0b0000. MRS reads of RNDR and RNDRRS are undefined.
0b1	ID_AA64ISAR0_EL1.RNDR returns the value 0b0001. Any attempt to read RNDR or
	RNDRRS is trapped to EL3.

When FEAT_RNG is not implemented, Arm recommends that SCR_EL3.TRNDR is initialized before entering Exception levels below EL3 and not subsequently changed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

GCSEn, bit [39] When FEAT_GCS is implemented:

Guarded control stack enable. Controls access to the Guarded Control Stack registers from EL2, EL1, and EL0, and controls whether the Guarded Control Stack is enabled.

GCSEn	Meaning
0b0	Trap read and write accesses
	to all Guarded Control Stack
	registers to EL3. All Guarded
	Control Stack behavior is
	disabled at EL2, EL1, and EL0.

0b1	This control does not cause any instructions to be trapped, and does not disable Guarded
	Control Stack behavior at EL2, EL1, or EL0.

The Guarded Control Stack registers trapped by this control are: <u>GCSCRE0_EL1</u>, <u>GCSCR_EL1</u>, <u>GCSCR_EL2</u>, GCSCR_EL12, <u>GCSPR_EL0</u>, <u>GCSPR_EL1</u>, <u>GCSPR_EL2</u>, and GCSPR_EL12.

Traps are reported using an ESR EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HXEn, bit [38] When FEAT HCX is implemented:

Enables access to the <u>HCRX_EL2</u> register at EL2 from EL3.

HXEn	Meaning
0b0	Accesses at EL2 to HCRX_EL2
	are trapped to EL3. Indirect
	reads of <u>HCRX_EL2</u> return 0.
0b1	This control does not cause any
	instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ADEn, bit [37] When FEAT_LS64_ACCDATA is implemented:

Enables access to the <u>ACCDATA_EL1</u> register at EL1 and EL2.

ADEn	Meaning
0b0	Accesses to <u>ACCDATA_EL1</u> at EL1 and EL2 are trapped to EL3,
	unless the accesses are trapped to EL2 by the EL2 fine-grained
	trap.
0b1	This control does not cause accesses to <u>ACCDATA_EL1</u> to be trapped.

If the <u>HFGRTR_EL2</u>.nACCDATA_EL1 or <u>HFGRTR_EL2</u>.nACCDATA_EL1 traps are enabled, they take priority over this trap.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnASO, bit [36] When FEAT_LS64_ACCDATA is implemented:

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

EnAS0	Meaning
0b0	EL0 execution of an ST64BV0
	instruction is trapped to EL3,
	unless it is trapped to EL1 by
	SCTLR_EL1.EnAS0, or to EL2
	by either <u>HCRX_EL2</u> .EnAS0 or
	SCTLR_EL2.EnAS0.
	EL1 execution of an ST64BV0
	instruction is trapped to EL3,
	unless it is trapped to EL2 by
	HCRX_EL2.EnAS0.
	EL2 execution of an ST64BV0
	instruction is trapped to EL3.
0b1	This control does not cause any
	instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of $0 \times 0 A$, with an ISS code of $0 \times 0 0 0 0 0 1$.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AMVOFFEN, bit [35] When FEAT AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN	Meaning
0d0	Accesses to AMEVCNTVOFF0 <n> EL2</n>
	and
	AMEVCNTVOFF1 <n>_EL2 at</n>
	EL2 are trapped to EL3.
	Indirect reads of the virtual
	offset registers are zero.
0b1	Accesses to
	AMEVCNTVOFF0 <n>_EL2</n>
	and
	AMEVCNTVOFF1 <n>_EL2</n>
	are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TME, bit [34] When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0, EL1 and EL2.

TME	Meaning
0b0	EL0, EL1 and EL2 accesses to
	TSTART, TCOMMIT, TTEST and
	TCANCEL instructions are
	undefined.

0b1	This control does not cause any
	instruction to be undefined.

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWEDEL, bits [33:30] When FEAT TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE* caused by SCR_EL3.TWE as 2^(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWEDEn, bit [29] When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCR EL3.TWE.

Traps are reported using an ESR ELx.EC value of 0x01.

TWEDEn	Meaning
0b0	The delay for taking the trap
	is implementation defined.
0b1	The delay for taking the trap
	is at least the number of
	cycles defined in
	SCR_EL3.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ECVEn, bit [28] When FEAT ECV is implemented:

ECV Enable. Enables access to the **CNTPOFF EL2** register.

ECVEn	Meaning
0b0	EL2 accesses to CNTPOFF_EL2
	are trapped to EL3, and the
	value of <u>CNTPOFF_EL2</u> is
	treated as 0 for all purposes
	other than direct reads or
	writes to the register from EL3.
0b1	EL2 accesses to CNTPOFF_EL2
	are not trapped to EL3 by this
	mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

FGTEn, bit [27] When FEAT_FGT is implemented:

Fine-Grained Traps Enable. When EL2 is implemented, enables the traps to EL2 controlled by HAFGRTR_EL2, HAFGRTR_EL2, HAFGRTR_EL2, <a href=

Note

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements the MDCR_EL3.TDCC traps.

FGTEn	Meaning
0b0	EL2 accesses to HAFGRTR EL2, HDFGRTR EL2, HDFGWTR EL2
	HFGRTR EL2, HFGITR EL2 and HFGWTR EL2 registers are trap
	and the traps to EL2 controlled by those registers are disabled.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR ELx.EC value of 0x18 and its associated ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ATA, bit [26] When FEAT MTE2 is implemented:

Allocation Tag Access. Controls access to Allocation Tags, System registers for Memory tagging, and prevention of Tag checking, at EL2, EL1 and EL0.

ATA	Meaning
0b0	Access to Allocation Tags is prevented at
	EL2, EL1, and EL0.
	Accesses at EL1 and EL2 to GCR EL1,
	RGSR EL1, TFSR EL1, TFSR EL2 or
	TFSRE0 EL1 that are not undefined or
	trapped to a lower Exception level are
	trapped to EL3.
	Accesses at EL2 using MRS or MSR with the
	register name TFSR EL12 that are not
	undefined are trapped to EL3.
	Memory accesses at EL2, EL1, and EL0 are
	not subject to a Tag Check operation.
0b1	This control does not prevent access to
	Allocation Tags at EL2, EL1, and EL0.
	This control does not prevent Tag checking
	at EL2, EL1, and EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnSCXT, bit [25] When FEAT CSV2 2 is implemented or FEAT CSV2 1p2 is implemented:

Enables access to the <u>SCXTNUM_EL2</u>, <u>SCXTNUM_EL1</u>, and <u>SCXTNUM_EL0</u> registers.

EnSCXT	Meaning
0b0	Accesses at EL0, EL1 and EL2 to
	SCXTNUM_EL0, SCXTNUM_EL1,
	or <u>SCXTNUM_EL2</u> registers are
	trapped to EL3 if they are not
	trapped by a higher priority
	exception, and the values of these
	registers are treated as 0.
0b1	This control does not cause any
	accesses to be trapped, or register
	values to be treated as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [24:22]

Reserved, res0.

FIEN, bit [21] When FEAT_RASv1p1 is implemented:

Fault Injection enable. Trap accesses to the registers <u>ERXPFGCDN_EL1</u>, <u>ERXPFGCTL_EL1</u>, and <u>ERXPFGF_EL1</u> from EL1 and EL2 to EL3, reported using an ESR ELx.EC value of 0x18.

FIEN	Meaning
0b0	Accesses to the specified
	registers from EL1 and EL2
	generate a Trap exception to EL3.
0b1	This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If <u>ERRIDR_EL1</u>.NUM is zero, meaning no error records are implemented, or no error record accessible using System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this bit might be res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NMEA, bit [20]

When FEAT DoubleFault is implemented:

Non-maskable External Aborts. Controls whether PSTATE.A masks SError exceptions at EL3.

NMEA	Meaning
0d0	SError exceptions are not taken at EL3 if PSTATE.A $== 1$.
0b1	SError exceptions are taken at EL3 regardless of the value of PSTATE.A.

This field is ignored by the PE and treated as zero when all of the following are true:

- FEAT DoubleFault2 is not implemented.
- SCR $\overline{E}L3.EA == 0.$

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EASE, bit [19]

When FEAT_DoubleFault is implemented:

External aborts to SError interrupt vector.

EASE	Meaning	
------	---------	--

Synchronous External abort exceptions taken to EL3 are taken to the appropriate
synchronous exception vector offset from <u>VBAR_EL3</u> .
Synchronous External abort exceptions taken to EL3 are taken to the appropriate SError interrupt vector offset from VBAR_EL3 .

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EEL2, bit [18] When FEAT_SEL2 is implemented:

Secure EL2 Enable.

EEL2	Meaning
0b0	All behaviors associated with
	Secure EL2 are disabled. All
	registers, including timer
	registers, defined by FEAT_SEL2
	are undefined, and those timers
	are disabled.
0b1	All behaviors associated with
	Secure EL2 are enabled.

When the value of this bit is 1, then:

- When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or writing the register.
- If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to Secure EL2, using the EC value of <u>ESR EL2</u>.EC== 0x3:
 - A read or write of the SCR.
 - A read or write of the NSACR.
 - A read or write of the MVBAR.
 - A read or write of the SDCR.
 - Execution of an ATS12NSO** instruction.

- If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to Secure EL2 using the EC value of <u>ESR EL2</u>.EC== 0x0:
 - Execution of an SRS instruction that uses R13 mon.
 - Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access <u>SPSR_mon</u>, R13 mon, or R14 mon.

Note

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed in Secure EL1 using AArch32 are trapped to EL3.

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if SCR EL3.EEL2 == 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

API, bit [17]

When FEAT_SEL2 is implemented and FEAT_PAuth is implemented:

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using an ESR_ELx.EC value of 0x09:

- PACGA, which is always enabled.
- AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:
 - In EL0, when <u>HCR_EL2</u>.TGE == 0 or <u>HCR_EL2</u>.E2H == 0, and the associated <u>SCTLR_EL1</u>.En<N><M> == 1.
 - In EL0, when <u>HCR_EL2</u>.TGE == 1 and <u>HCR_EL2</u>.E2H == 1, and the associated <u>SCTLR_EL2</u>.En<N><M> == 1.

- \circ In EL1, when the associated <u>SCTLR_EL1</u>.En<N><M> == 1.
- \circ In EL2, when the associated <u>SCTLR_EL2</u>.En<N><M> == 1.

API	Meaning
0d0	The use of any instruction related
	to pointer authentication in any
	Exception level except EL3 when
	the instructions are enabled are
	trapped to EL3 unless they are
	trapped to EL2 as a result of the
	HCR_EL2.API bit.
0b1	This control does not cause any
	instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see 'PAC generation and verification keys'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT SEL2 is not implemented and FEAT PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

- PACGA.
- AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:
 - In Non-secure EL0, when <u>HCR_EL2</u>.TGE == 0 or <u>HCR_EL2</u>.E2H == 0, and the associated <u>SCTLR_EL1</u>.En<N><M>== 1.
 - In Non-secure EL0, when <u>HCR_EL2</u>.TGE == 1 and <u>HCR_EL2</u>.E2H == 1, and the associated SCTLR_EL2.En<N><M> == 1.

- In Secure EL0, when the associated SCTLR EL1.En<N><M> == 1.
- ∘ In Secure or Non-secure EL1, when the associated SCTLR EL1.En<N><M> == 1.
- \circ In EL2, when the associated <u>SCTLR_EL2</u>.En<N><M> == 1.

API	Meaning
0d0	The use of any instruction related
	to pointer authentication in any
	Exception level except EL3 when
	the instructions are enabled are
	trapped to EL3 unless they are
	trapped to EL2 as a result of the
	HCR EL2.API bit.
0b1	This control does not cause any
	instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

APK, bit [16] When FEAT PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers, using an ESR_ELx.EC value of 0×18 , from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit or other traps:

- <u>APIAKeyLo_EL1</u>, <u>APIAKeyHi_EL1</u>, <u>APIBKeyLo_EL1</u>, APIBKeyHi EL1.
- <u>APDAKeyLo_EL1</u>, <u>APDAKeyHi_EL1</u>, <u>APDBKeyLo_EL1</u>, <u>APDBKeyHi_EL1</u>.
- APGAKeyLo EL1, and APGAKeyHi EL1.

APK	Meaning	

0b0	Access to the registers holding "key" values for pointer
	<u> </u>
	authentication from EL1 or EL2
	are trapped to EL3 unless they
	are trapped to EL2 as a result of
	the <u>HCR_EL2</u> .APK bit or other
	traps.
0b1	This control does not cause any
	instructions to be trapped.

For more information, see 'PAC generation and verification keys'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TERR, bit [15] When FEAT_RAS is implemented:

Trap accesses of error record registers. Enables a trap to EL3 on accesses of error record registers.

TERR	Meaning
0b0	Accesses of the specified error record registers are not trapped by this mechanism.
0b1	Accesses of the specified error record registers at EL2 and EL1 are trapped to EL3, unless the instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

- MRS and MSR accesses to <u>ERRSELR_EL1</u>, <u>ERXADDR_EL1</u>, <u>ERXCTLR_EL1</u>, <u>ERXMISC0_EL1</u>, <u>ERXMISC1_EL1</u>, and <u>ERXSTATUS_EL1</u>.
- MRS accesses to <u>ERRIDR EL1</u> and <u>ERXFR EL1</u>.

- If FEAT_RASv1p1 is implemented, MRS and MSR accesses to ERXMISC2 EL1 and ERXMISC3 EL1.
- If FEAT RASv2 is implemented, MRS accesses to ERXGSR EL1.

In AArch32 state, the instructions affected by this control are:

- MRC and MCR accesses to <u>ERRSELR</u>, <u>ERXADDR</u>, <u>ERXADDR2</u>, <u>ERXCTLR</u>, <u>ERXCTLR2</u>, <u>ERXMISC0</u>, <u>ERXMISC1</u>, <u>ERXMISC2</u>, <u>ERXMISC3</u>, and <u>ERXSTATUS</u>.
- MRC accesses to <u>ERRIDR</u>, <u>ERXFR</u>, and <u>ERXFR2</u>.
- If FEAT_RASv1p1 is implemented, MRC and MCR accesses to ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03.

Accessing this field has the following behavior:

- This field is permitted to be res0 if all of the following are true:
 - <u>ERRSELR_EL1</u> and all ERX* registers are implemented as undefined or RAZ/WI.
 - ERRIDR EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TLOR, bit [14] When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the <u>LORSA_EL1</u>, <u>LOREA_EL1</u>, <u>LORN_EL1</u>, and <u>LORID_EL1</u> registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

TLOR	Meaning
0b0	This control does not cause any
	instructions to be trapped.

0b1	EL1 and EL2 accesses to the
	LOR registers that are not
	undefined are trapped to EL3,
	unless it is trapped
	HCR EL2.TLOR.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from any Security state and both Execution states, reported using an ESR ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE	Meaning
0b0	This control does not cause any instructions to be trapped.
0b1	Any attempt to execute a WFE instruction at any Exception level lower than EL3 is trapped to EL3, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR_EL1 .nTWE, or HCR.TWE .TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for Event mechanism and Send event'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from any Security state and both Execution states, reported using an ESR ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

TWI	Meaning	
0b0	This control does not cause any instructions to be trapped.	
0b1	Any attempt to execute a WFI instruction at any Exception level lower than EL3 is trapped to EL3, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR.nTWI , MCR.TWI , SCTLR.EL2 . TWI , or HCR.EL2 . TWI .	

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for Interrupt'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only, reported using an ESR ELx.EC value of 0x18.

ST	Meaning				
0b0	Secure EL1 using AArch64 accesses to				
	the <u>CNTPS_TVAL_EL1</u> ,				
	<u>CNTPS_CTL_EL1</u> , and				
	<u>CNTPS_CVAL_EL1</u> are trapped to EL3				
	when Secure EL2 is disabled. If Secure				
	EL2 is enabled, the behavior is as if the				
	value of this field was 0b1.				
0b1	This control does not cause any instructions to be trapped.				

Note

Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3. These registers are not accessible at EL0.

When FEAT_RME is implemented and Secure state is not implemented, this bit is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

RW, bit [10] When EL1 is capable of using AArch32 or EL2 is capable of using AArch32:

Execution state control for lower Exception levels.

RW	Meaning
0b0	Lower levels are all AArch32.

- The next lower level is AArch64. If EL2 is present:
 - EL2 is AArch64.
 - EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:

- EL1 is AArch64.
- EL0 is determined by the Execution state described in the current process state when executing at EL0.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and SCR_EL3.{EEL2, NS} == $\{1, 0\}$, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAO/WI.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction execution from memory marked in the first stage of translation as being Non-secure.

SIF	Meaning
0d0	Secure state instruction execution
	from memory marked in the first
	stage of translation as being Non-
	secure is permitted.
0b1	Secure state instruction execution
	from memory marked in the first
	stage of translation as being Non-
	secure is not permitted.

When FEAT_RME is implemented and Secure state is not implemented, this bit is res0.

When FEAT_PAN3 is implemented, it is implementation defined whether SCR_EL3.SIF is also used to determine instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC value of 0×00 .

HCE	Meaning
0b0	HVC instructions are undefined.
0b1	HVC instructions are enabled at EL3, EL2, and EL1.

Note

HVC instructions are always undefined at EL0 and, if Secure EL2 is disabled, at Secure EL1. Any resulting exception is taken from the current Exception level to the current Exception level.

If EL2 is not implemented, this bit is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from any Security state and both Execution states, reported using an ESR_ELx.EC value of 0x00.

SMD	Meaning
0b0	SMC instructions are enabled at
	EL3, EL2 and EL1.

Note

SMC instructions are always undefined at ELO. Any resulting exception is taken from the current Exception level to the current Exception level.

If <u>HCR_EL2</u>.TSC or <u>HCR</u>.TSC traps attempted EL1 execution of SMC instructions to EL2, that trap has priority over this disable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [6]

Reserved, res0.

Bits [5:4]

Reserved, res1.

EA, bit [3]

External Abort and SError interrupt routing.

EA	Meaning
0b0	When executing at Exception levels below EL3, External aborts and SError interrupts are not taken to EL3. In addition, when executing at EL3:
	SError interrupts are not taken.External aborts are taken to EL3.
0b1	When executing at any Exception level, External aborts and SError interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing'.

• On a Warm reset, this field resets to an architecturally unknown value.

FIQ, bit [2]

Physical FIQ Routing.

FIQ	Meaning
0d0	When executing at Exception
	levels below EL3, physical FIQ
	interrupts are not taken to EL3.
	When executing at EL3, physical
	FIQ interrupts are not taken.
0b1	When executing at any Exception
	level, physical FIQ interrupts are
	taken to EL3.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IRQ, bit [1]

Physical IRQ Routing.

IRQ	Meaning				
0b0	When executing at Exception				
	levels below EL3, physical IRQ				
	interrupts are not taken to EL3.				
	When executing at EL3, physical				
	IRQ interrupts are not taken.				
0b1	When executing at any Exception				
	level, physical IRQ interrupts are				
	taken to EL3.				

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

NS, bit [0] When FEAT_RME is implemented:

Non-secure bit. This field is used in combination with SCR_EL3.NSE to select the Security state of EL2 and lower Exception levels.

NSE	NS	Meaning
0b0	0b0	Secure.
0b0	0b1	Non-secure.
0b1	0d0	Reserved.
0b1	0b1	Realm.

When Secure state is not implemented, SCR_EL3.NS is res1 and its effective value is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Non-secure bit.

NS	Meaning			
0b0	Indicates that EL0 and EL1 are in			
	Secure state.			
	When FEAT SEL2 is implemented			
	and SCR EL3.EEL2 $==$ 1, then EL2			
	is using ĀArch64 and in Secure			
	state.			
0b1	Indicates that Exception levels			
	lower than EL3 are in Non-secure			
	state, so memory accesses from			
	those Exception levels cannot			
	access Secure memory.			

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing SCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	0b0001	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    X[t, 64] = SCR_EL3;
```

MSR SCR_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	0b0001	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    SCR_EL3 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.