Exercise - 11/10/2021

2019BTECS00035

Q1) Kruskal's algorithm can return different spanning trees for the same input graph G, depending on how it breaks ties when the edges are sorted into order. Show that for each minimum spanning tree T of G, there is a way to sort the edges of G in Kruskal's algorithm so that the algorithm returns T.

81]	-> suppose that He work to pick T' as
	our minimum spanning Tree Then to obtain
	tree with knuskal's algorithm , He will
	order the edges according to their weig-
	hts but then we will resolve the tie
	in edge weights by picking edge first if
	it is contained in the MST and treating
	all the two edges gren't in the T as a
	beig alightly longer even they have some
1/3/24 27	weight. With this order He still be able
	for find cost of MST. There may be
4.2	chance of multiple MST possible in this
	03e,

Q2) Suppose that we represent the graph G=(V,E) as an adjacency matrix. Give a simple implementation of Prim's algorithm for this case that runs in $O(V^2)$ time

ह्य	-> At each step of algorithm He will add
	an edge from vertex in tree created so for
	to next vertex not in the tree, such that
	this edge has minimum Height
	* Implementation
<u> </u>	rector (6001) selected (n, folse);
	Min Edge [0] = 0 11 min Height
	for Cizo sico sitt)
	3
	V=-1
	for (1=0:) <n; 1++)<="" th=""></n;>
	£ !t (100/60/40/1) & (1==-1 1)
	min-Edgeri] < min-Edgervi)
	2 v=1 3
	3
	cost + = Min-Edge [v];
	solected [v] = trues
	5

Q3) For a sparse graph G = (V, E) where $|E| = \Theta(V)$, is the implementation of Prim's algorithm with a Fibonacci heap asymptotically faster than the binary-heap implementation? What about for a dense graph, where $|E| = \Theta(V^2)$? How must the sizes |E| and |V| be related for the Fibonacci-heap implementation to be asymptotically faster than the binary-heap implementation?

83]	-> prima Algorithm implemented using binary
	prob pod untime och + Eloda) Myjep jo
1	sponse graph o (VIOgr).
ill proper	The implementation of fibona or heap is
	OCE+ VIOGN) = OCV+VIOGN) = OCVICGN)
201	- In the sparse mos two algorithms have
	same time complexity
	- In dense moe binary heap has
	0 ((v+E) 109v) = 0 ((V+V2) 109v)
	= O(1,031)
	- for fiborocci implementation
	O(E+V109V) = O(V2+V109V)
	= OCV2)
	: O(n3) < D(n3/621)
	: Fibonocci heap is faster than binary
	heap for dense graphs.
	Fibonacci heap will be faster if E= @CV)

Q4) Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you make Kruskal's algorithm run? What if the edge weights are integers in the range from 1 to W for some constant W?

	-> knuskal algorithm uses the deage
1 1	weights in sorting order. If the edge
	Heights are integers trops range I to [V]
	He can use counting sort to sort edges
	in OCV+E).
	If the edge Heights are in ronge 1 to
	W. (constant) We can use counting sort
	to sort edges in OCON+E) time P
	truskal algorith will run in OCV+E+
	V109V)

Q5) Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you make Prim's algorithm run? What if the edge weights are integers in the range from 1 to W for some constant W?

95] -	> for the tirest case Eguas pood bejouity
	queue can be used to get rain weight in
	OClosicgy) yeilding total running time
	0 (E109 (109 N)),
Lange 1	For second case We can use collection
	of doubly linked list each corrosponding
<u> </u>	esvongari eitt. Idejan seba no ot
	bound to OCE)