Homework #7: Due: tentatively Dec. 12, 2019

***** (about lecture #5) *****

- 1. (9points) For $j_1=2$, $j_2=1$, j=1, compute all the nonzero Clebsch-Gordon coefficients, $\langle j,m|j_1,m_1;j_2,m_2\rangle$. [Hint: think of this as an "addition of angular momentum" problem, define angular momentum operators $\hat{\boldsymbol{J}}_1$ and $\hat{\boldsymbol{J}}_2$ for $|j_1,m_1\rangle$ and $|j_2,m_2\rangle$ Hilbert spaces respectively, $m_i=-j_i,-j_i+1,\ldots,j_i$, define total angular momentum operators $\hat{\boldsymbol{J}}=\hat{\boldsymbol{J}}_1+\hat{\boldsymbol{J}}_2$, then solve the total angular momentum eigenbasis $|j,m\rangle$ in terms of tensor product basis $|j_1,m_1\rangle|j_2,m_2\rangle$]
- 2. (21points) Consider a spin-1 moment, denote the spin angular momentum operators by $\hat{\boldsymbol{S}}$. Then $[\hat{S}_a, \hat{S}_b] = \sum_c i\epsilon_{abc}\hat{S}_c$. A complete orthonormal basis for the 3-dimensional Hilbert space is the S_z -eigenbasis $|S_z = +1, 0, -1\rangle$. Define "magnetic quadrupole" operators, $\hat{Q}_1 = \hat{S}_y\hat{S}_z + \hat{S}_z\hat{S}_y$, $\hat{Q}_2 = \hat{S}_z\hat{S}_x + \hat{S}_x\hat{S}_z$, $\hat{Q}_3 = \hat{S}_x\hat{S}_y + \hat{S}_y\hat{S}_x$, $\hat{Q}_4 = \hat{S}_x\hat{S}_x \hat{S}_y\hat{S}_y$, $\hat{Q}_5 = \frac{1}{\sqrt{3}}(\hat{S}_x\hat{S}_x + \hat{S}_y\hat{S}_y 2\hat{S}_z\hat{S}_z)$. They are obviously hermitian.
- (a) (5pts) Check that $\sum_{a=x,y,z} [\hat{S}_a, [\hat{S}_a, \hat{Q}_i]] = 6 \cdot \hat{Q}_i$, i = 1, ..., 5. [Therefore the \hat{Q}_i operators "angular momentum" quantum number is k = 2, because $6 = 2 \cdot (2+1)$] [The commutators $[\hat{S}_a, \hat{Q}_i]$ will be useful later]
- (b) (7pts) By making linear combinations of \hat{Q}_i , we can form "irreducible tensor operators" $\hat{T}_q^{(k=2)}$, q=-2,-1,0,1,2. And $[\hat{S}_z,\hat{T}_q^{(k=2)}]=q\cdot\hat{T}_q^{(k=2)}$, $[\hat{S}_\pm,\hat{T}_q^{(k=2)}]=\sqrt{(k\mp q)(k\pm q+1)}\cdot\hat{T}_{q\pm 1}^{(k=2)}$. Solve $\hat{T}_q^{(k=2)}$ as linear combinations of \hat{Q}_i . [Hint: find $\hat{T}_{q=0}^{(k=2)}$ first, then generate others]
- (c) (9pts) Compute the matrix elements $\langle S_z = m | \hat{T}_{q=m_1}^{(k=2)} | S_z = m_2 \rangle$, for m = -1, 0, 1, $m_1 = -2, -1, 0, 1, 2$, $m_2 = -1, 0, 1$. Show that this is proportional to the C-G coefficients $\langle j = 1, m | j_1 = 2, m_1; j_2 = 1, m_2 \rangle$ solved in Problem 1.

***** (about lecture #5 & #6) *****

3. (20points) Consider two spin-1 moments, $\hat{\boldsymbol{S}}_1$ and $\hat{\boldsymbol{S}}_2$. They satisfy $[\hat{S}_{i,a}, \hat{S}_{j,b}] = \delta_{i,j} \sum_c i \epsilon_{abc} \hat{S}_{i,c}$ (here a,b,c label x,y,z components), and $\hat{\boldsymbol{S}}_1^2 = \hat{\boldsymbol{S}}_2^2 = 1 \cdot (1+1) = 2$. A

complete orthonormal basis for the 9-dimensional Hilbert space is the S_z -basis, $|s_1, s_2\rangle$, with $s_{1,2} = -1, 0, 1$ and $\hat{S}_{1,z}|s_1, s_2\rangle = s_1|s_1, s_2\rangle$ and $\hat{S}_{2,z}|s_1, s_2\rangle = s_2|s_1, s_2\rangle$. The matrix elements of $\hat{S}_{i,x}$ and $\hat{S}_{i,y}$ under this basis follow the Condon-Shortley convention.

- (1) (9pts) Consider $\hat{H}_0 = -J \cdot \hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2 \equiv -J \sum_a \hat{S}_{1,a} \hat{S}_{2,a}$. Here J > 0 is a positive real constant. Solve all the eigenvalues and eigenstates (in terms of S_z -basis) of \hat{H}_0 . [Hint: $\hat{H}_0 = -\frac{J}{2}(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2)^2 + \frac{J}{2}\hat{\boldsymbol{S}}_1^2 + \frac{J}{2}\hat{\boldsymbol{S}}_2^2$.]
- (2) (6pts) Define vector spin chirality $\hat{\boldsymbol{\chi}} = \hat{\boldsymbol{S}}_1 \times \hat{\boldsymbol{S}}_2$ (namely $\hat{\chi}_x = \hat{S}_{1,y}\hat{S}_{2,z} \hat{S}_{1,z}\hat{S}_{2,y}$, ...). Define total spin operator (spin rotation generator) $\hat{\boldsymbol{S}} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2$. Check that $\hat{\boldsymbol{\chi}}$ transforms like a vector under spin rotation, namely $[\hat{S}_a, \hat{\chi}_b] = i\epsilon_{abc}\hat{\chi}_c$. Evaluate the matrix elements of $\hat{\chi}_a$ (a = x, y, z) between the degenerate ground states of \hat{H}_0 solved in (1). [Hint: certain symmetry may help, and you can use the "projection theorem"]
- (3) (5pts) Add a small staggered magnetic field term to the Hamiltonian as perturbation, $\hat{H} = \hat{H}_0 B \cdot (\hat{S}_{1,z} \hat{S}_{2,z})$. Treat the real constant B as a small parameter. Solve the second order perturbation results for the energies of the original ground states of \hat{H}_0 . [NOTE: the unperturbed ground states of \hat{H}_0 are degenerate, but degenerate perturbation theory can be avoided by dividing the Hilbert spaces by symmetry (conserved quantity)]