SKETCH OF A PROGRAMME¹ by Alexandre GROTHENDIECK

1. Preface. — As the present situation makes the prospect of teaching at the research level at the University seem more and more illusory, I have resolved to apply for admission to the CNRS, in order to devote my energy to the development of projects and perspectives for which it is becoming clear that no student (nor even, it seems, any mathematical colleague) will be found to develop them in my stead.

In the role of the document "Titles and Articles", one can find after this text the complete reproduction of a sketch, by themes, of what I considered to be my principal mathematical contributions at the time of writing that report, in 1972. It also contains a list of articles published at that date. I ceased all publication of scientific articles in 1970. In the following lines, I propose to give a view of at least some of the principal themes of my mathematical reflections since then. These reflections materialised over the years in the form of two voluminous boxes of handwritten notes, doubtless difficult to decipher for anyone but myself, and which, after several successive stages of settling, are perhaps waiting for their moment to be written up together at least in a temporary fashion, for the benefit of the mathematical community. The term "written up" is somewhat incorrect here, since in fact it is much more a question of developing the ideas and the multiple visions begun during these last twelve years, to make them more precise and deeper, with all the unexpected rebounds which con-

https://agrothendieck.github.io/

¹This text has been transcribed by Mateo Carmona

stantly accompany this kind of work – a work of discovery, thus, and not of compilation of piously accumulated notes. And in writing the "Mathematical Reflections", begun since February 1983, I do intend throughout its pages to clearly reveal the process of thought, which feels and discovers, often blindly in the shadows, with sudden flashes of light when some tenacious false or simply inadequate image is finally shown for what it is, and things which seemed all crooked fall into place, with that mutual harmony which is their own.

In any case, the following sketch of some themes of reflection from the last ten or twelve years will also serve as a sketch of my programme of work for the coming years, which I intend to devote to the development of these themes, or at least some of them. It is intended on the one hand for my colleagues of the National Committee whose job it is to decide the fate of my application, and on the other hand for some other colleagues, former students, friends, in the possibility that some of the ideas sketched here might interest one of them.

2. A game of "Lego-Teichmüller" and the Galois group \overline{Q} over Q.

- The demands of university teaching, addressed to students (including those said to be "advanced") with a modest (and frequently less than modest) mathematical baggage, led me to a Draconian renewal of the themes of reflection I proposed to my students, and gradually to myself as well. It seemed important to me to start from an intuitive baggage common to everyone, independent of any technical language used to express it, and anterior to any such language it turned out that the geometric and topological intuition of shapes, particularly two-dimensional shapes, formed such a common ground. This consists of themes which can be grouped under the general name of "topology of surfaces" or "geometry of surfaces", it being understood in this last expression that the main emphasis is on the topological properties of the surfaces, or the combinatorial aspects which form the most down-to-earth technical expression of them, and not on the differential, conformal, Riemannian, holomorphic aspects, and (from there) on to "complex algebraic curves". Once this last step is taken, however, algebraic geometry (my former love!) suddenly bursts forth once again, and this via the objects which we can consider as the basic building blocks for all other algebraic varieties. Whereas in my research before 1970, my attention was systematically directed towards objects of maximal generality, in order to uncover a general language adequate for the world of algebraic

geometry, and I never restricted myself to algebraic curves except when strictly necessary (notably in étale cohomology), preferring to develop "pass-key" techniques and statements valid in all dimensions and in every place (I mean, over all base schemes, or even base ringed topoi...), here I was brought back, via objects so simple that a child learns them while playing, to the beginnings and origins of algebraic geometry, familiar to Riemann and his followers!

Since around 1975, it is thus the geometry of (real) surfaces, and starting in 1977 the links between questions of geometry of surfaces and the algebraic geometry of algebraic curves defined over fields such as C, R or extensions of Q of finite type, which were my principal source of inspiration and my constant guiding thread. It is with surprise and wonderment that over the years I discovered (or rather, doubtless, rediscovered) the prodigious, truly inexhaustible richness, the unsuspected depth of this theme, apparently so anodine. I believe I feel a central sensitive point there, a privileged point of convergence of the principal currents of mathematical ideas, and also of the principal structures and visions of things which they express, from the most specific (such as the rings Z, Q, \overline{Q} , R, C or the group Sl(2) over one of these rings, or general reductive algebraic groups) to the most "abstract", such as the algebraic "multiplicities", complex analytic or real analytic. (These are naturally introduced when systematically studying "moduli va-

[]

3. Number fields associated to a child's drawing. — Instead of following (as I meant to) a rigorous thematic order, I let myself be carried away by my predilection for a particularly rich and burning theme, to which I intend to devote myself prioritarily for some time, starting at the beginning of the academic year 84/85. Thus I will take the thematic description up again where I left it, at the very beginning of the preceding paragraph.

My interest in topological surfaces began to appear in 1974, when I proposed to Yves Ladegaillerie the theme of the isotopic study of embeddings of a topological 1-complex into a compact surface. Over the two following years, this study led him to a remarkable isotopy theorem, giving a complete algebraic description of the isotopy classes of embeddings of such 1-complexes, or compact surfaces with boundary, in a compact oriented surface, in terms of certain very simple combinatorial invariants, and the fundamental groups of the pro-

tagonists. This theorem, which should be easily generalisable to embeddings of any compact space (triangulable to simplify) in a compact oriented surface, gives as easy corollaries several deep classical results in the theory of surfaces, and in particular Baer's isotopy theorem. It will finally be published, separately from the rest (and ten years later, seeing the difficulty of the times...), in Topology. In the work of Ladegaillerie there is also a purely algebraic description, in terms of fundamental groups, of the "isotopic" category of compact surfaces X, equipped with a topological 1-complex K embedded in X. This description, which had the misfortune to run counter to "today's taste" and because of this appears to be unpublishable, nevertheless served (and still serves) as a precious guide in my later reflections, particularly in the context of absolute algebraic geometry in characteristic zero.

[]

4. Regular polyhedra over finite fields. — From the very start of my reflection on 2-dimensional maps, I was most particularly interested by the "regular" maps, those whose automorphism group acts transitively (and consequently, simply transitively) on the set of flags. In the oriented case and in terms of the algebraic-geometric interpretation given in the preceding paragraph, it is these maps which correspond to Galois coverings of the projective line.

5. Denunciation of so-called "general" topology, and heuristic reflections towards a so-called "tame" topology. — I would like to say a few words now about some topological considerations which have made me understand the necessity of new foundations for "geometric" topology, in a direction quite different from the notion of topos, and actually independent of the needs of so-called "abstract" algebraic geometry (over general base fields and rings). The problem I started from, which already began to intrigue me some fifteen years ago, was that of defining a theory of "dévissage" for stratified structures, in order to rebuild them, via a canonical process, out of "building blocks" canonically deduced from the original structure. Probably the main example which had led me to that question was that of the canonical stratification of a singular algebraic variety (or a complex or real singular space) through the decreasing sequence of its successive singular loci. But I probably had the premonition of the

ubiquity of stratified structures in practically all domains of geometry (which surely others had seen clearly a long time before). Since then, I have seen such structures appear, in particular, in any situation where "moduli" are involved for geometric objects which may undergo not only continuous variations, but also "degeneration" (or "specialisation") phenomena - the strata corresponding then to the various "levels of singularity" (or to the associated combinatorial types) for the objects in question. The compactified modular multiplicities $\widehat{M}_{g,\nu}$ of Mumford-Deligne for the stable algebraic curves of type (g,ν) provide a typical and particularly inspiring example, which played an important motivating role when I returned to my reflection about stratified structures, from December 1981 to January 1982. Two-dimensional geometry provides many other examples of such modular stratified structures, which all (if not using rigidification) appear as "multiplicities" rather than as spaces or manifolds in the usual sense (as the points of these multiplicities may have non-trivial automorphism groups). Among the objects of two-dimensional geometry which give rise to such modular stratified structures in arbitrary dimensions, or even infinite dimension, I would list polygons (Euclidean, spherical or hyperbolic), systems of straight lines in a plane (say projective), systems of "pseudo straight lines" in a projective topological plane, or more general immersed curves with normal crossings, in a given (say compact) surface.

6. "Differentiable theories" (à la Nash) and "tame theories". — One of the most interesting foundational theorems of (tame) topology which should be developed would be a theorem of "dévissage" (again!) of a proper tame map of tame spaces

$$f: X \longrightarrow Y$$
,

via a

7. Pursuing Stacks. — Since the month of March last year, so nearly a year ago, the greater part of my energy has been devoted to a work of reflection on the *foundations of non-commutative (co)homological algebra*, or what is the same, after all, of *homotopical algebra*. These reflections have taken the concrete form of a voluminous stack of typed notes, destined to form the first

volume (now being finished) of a work in two volumes to be published by Hermann, under the overall title "Pursuing Stacks". I now foresee (after successive extensions of the initial project) that the manuscript of the whole of the two volumes, which I hope to finish definitively in the course of this year, will be about 1500 typed pages in length. These two volumes are moreover for me the first in a vaster series, under the overall title "Mathematical Reflections", in which I intend to develop some of the themes sketched in the present report.

Since I am speaking here of work which is actually now being written up and is even almost finished, the first volume of which will doubtless appear this year and will contain a detailed introduction, it is undoubtedly less interesting for me to develop this theme of reflection here, and I will content myself with speaking of it only very briefly. This work seems to me to be somewhat marginal with respect to the themes I sketched before, and does not (it seems to me) represent a real renewal of viewpoint or approach with respect to my interests and my mathematical vision of before 1970. If I suddenly resolved to do it, it is almost out of desperation, for nearly twenty years have gone by since certain visibly fundamental questions, which were ripe to be thoroughly investigated, without anyone seeing them or taking the trouble to fathom them. Still today, the basic structures which occur in the homotopical point of view in topology are not understood, and to my knowledge, after the work of Verdier, Giraud and Illusie on this theme (which are so many beginnings still waiting for continuations...) there has been no effort in this direction. I should probably make an exception for the axiomatisation work done by Quillen on the notion of a category of models, at the end of the sixties, and taken up in various forms by various authors. At that time, and still now, this work seduced me and taught me a great deal, even while going in quite a different direction from the one which was and still is close to my heart. Certainly, it introduces derived categories in various non-commutative contexts, but without entering into the question of the essential internal structures of such a category, also left open in the commutative case by Verdier, and after him by Illusie. Similarly, the question of putting one's finger on the natural "coefficients" for a non-commutative cohomological formalism, beyond the stacks (which should be called 1-stacks) studied in the book by Giraud, remained open - or rather, the rich and precise intuitions concerning it, taken from the numerous examples coming in particular from algebraic geometry, are still waiting for a precise

and supple language to give them form.

I returned to certain aspects of these foundational questions in 1975, on the occasion (I seem to remember) of a correspondence with Larry Breen (two letters from this correspondence will be reproduced as an appendix to Chap. I of volume 1, "History of Models", of Pursuing Stacks). At that moment the intuition appeared that ∞-groupoids should constitute particularly adequate models for homotopy types, the n-groupoids corresponding to truncated homotopy types (with $\pi_i = 0$ pour i > n). This same intuition, via very different routes, was discovered by Ronnie Brown and some of his students in Bangor, but using a rather restrictive notion of ∞-groupoid (which, among the 1-connected homotopy types, model only products of Eilenberg-Mac Lane spaces). Stimulated by a rather haphazard correspondence with Ronnie Brown, I finally began this reflection, starting with an attempt to define a wider notion of ∞-groupoid (later rebaptised stack in ∞-groupoids or simply "stack", the implication being: over the 1-point topos), and which, from one thing to another, led me to Pursuing Stacks. The volume "History of Models" is actually a completely unintended digression with respect to the initial project (the famous stacks being temporarily forgotten, and supposed to reappear only around page 1000...).

This work is not completely isolated with respect to my more recent interests. For example, my reflection on the modular multiplicities $\widehat{M}_{g,\nu}$ and their stratified structure renewed the reflection on a theorem of van Kampen in dimension > 1 (also one of the preferred themes of the group in Bangor), and perhaps also contributed to preparing the ground for the more important work of the following year. This also links up from time to time with a reflection dating from the same year 1975 (or the following year) on a "De Rham complex with divided powers", which was the subject of my last public lecture, at the IHES in 1976; I lent the manuscript of it to I don't remember whom after the talk, and it is now lost. It was at the moment of this reflection that the intuition of a "schematisation" of homotopy types germinated, and seven years later I am trying to make it precise in a (particularly hypothetical) chapter of the History of Models.

The work of reflection undertaken in Pursuing Stacks is a little like a debt which I am paying towards a scientific past where, for about fifteen years (from 1955 to 1970), the development of cohomological tools was the constant Leit-

motiv in my foundational work on algebraic geometry. If in this renewal of my interest in this theme, it has taken on unexpected dimensions, it is however not out of pity for a past, but because of the numerous unexpected phenomena which ceaselessly appear and unceremoniously shatter the previously laid plans and projects – rather like in the thousand and one nights, where one awaits with bated breath through twenty other tales the final end of the first.

8. Digressions on 2-dimensional geometry. — Up to now I have spoken very little of the more down-to-earth reflections on two-dimensional topological geometry, directly associated to my activities of teaching and "directing research". Several times, I saw opening before me vast and rich fields ripe for the harvest, without ever succeeding in communicating this vision, and the spark which accompanies it, to one of my students, and having it open out into a more or less long-term common exploration. Each time up through today, after a few days or weeks of investigating where I, as scout, discovered riches at first unsuspected, the voyage suddenly stopped, upon its becoming clear that I would be pursuing it alone. Stronger interests then took precedence over a voyage which at that point appeared more as a digression or even a dispersion, than a common adventure.

One of these themes was that of planar polygons, centred around the modular varieties which can be associated to them. One of the surprises here was the irruption of algebraic geometry in a context which had seemed to me quite distant. This kind of surprise, linked to the omnipresence of algebraic geometry in plain geometry, occurred several times.

9. Assessment of a teaching activity. — The occasion appears to be auspicious for a brief assessment of my teaching activity since 1970, that is, since it has taken place in a university. This contact with a very different reality taught me many things, of a completely different order than simply pedagogic or scientific. Here is not the place to dwell on this subject. I also mentioned at the beginning of this report the role which this change of professional milieu played in the renewal of my approach to mathematics, and that of my centres of interest in mathematics. If I pursue this assessment of my teaching activity on the research level, I come to the conclusion of a clear and solid failure. In the more than ten years that this activity has taken place, year after year in the same university, I was never at any moment able to suscitate a place where

"something happened" - where something "passed", even among the smallest group of people, linked together by a common adventure. Twice, it is true, around the years 1974 to 1976, I had the pleasure and the privilege of awakening a student to a work of some consequence, pursued with enthusiasm: Yves Ladegaillerie in the work mentioned earlier (par. 3) on questions of isotopy in dimension 2, and Carlos Contou-Carrére (whose mathematical passion did not await a meeting with myself to blossom) an unpublished work on the local and global Jacobians over general base schemes (of which one part was announced in a note in the CR). Apart from these two cases, my role has been limited throughout these ten years to somehow or other conveying the rudiments of the mathematician's trade to about twenty students on the research level, or at least to those among them who persevered with me, reputed to be more demanding than others, long enough to arrive at a first acceptable work written black on white (and even, sometimes, at something better than acceptable and more than just one, done with pleasure and worked out through to the end). Given the circumstances, among the rare people who persevered, even rarer are those who will have the chance of carrying on the trade, and thus, while earning their bread, learning it ever more deeply.

10. Epilogue. — Since last year, I feel that as regards my teaching activity at the university, I have learned everything I have to learn and taught everything I can teach there, and that it has ceased to be really useful, to myself and to others. To insist on continuing it under these circumstances would appear to me to be a waste both of human resources and of public funds. This is why I have applied for a position in the CNRS (which I left in 1959 as freshly named director of research, to enter the IHES). I know moreover that the employment situation is tight in the CNRS as everywhere else, that the result of my request is doubtful, and that if a position were to be attributed to me, it would be at the expense of a younger researcher who would remain without a position. But it is also true that it would free my position at the USTL to the benefit of someone else. This is why I do not scruple to make this request, and to renew it if is not accepted this year.

In any case, this application will have been the occasion for me to write this sketch of a programme, which otherwise would probably never have seen the light of day. I have tried to be brief without being sibylline and also, afterwards,

to make it easier reading by the addition of a summary. If in spite of this it still appears rather long for the circumstances, I beg to be excused. It seems short to me for its content, knowing that ten years of work would not be too much to explore even the least of the themes sketched here through to the end (assuming that there is an "end"...), and one hundred years would be little for the richest among them!

Behind the apparent disparity of the themes evoked here, an attentive reader will perceive as I do a profound unity. This manifests itself particularly by a common source of inspiration, namely the geometry of surfaces, present in all of these themes, and most often front and centre. This source, with respect to my mathematical "past", represents a renewal, but certainly not a rupture. Rather, it indicates the path to a new approach to the still mysterious reality of "motives", which fascinated me more than any other in the last years of this past². This fascination has certainly not vanished, rather it is a part of the fascination with the most burning of all the themes evoked above. But to-day I am no longer, as I used to be, the voluntary prisoner of interminable tasks, which so often prevented me from springing into the unknown, mathematical or not. The time of tasks is over for me. If age has brought me something, it is lightness.

²On this subject, see my commentaries in the "Thematic Sketch" of 1972 attached to the present report, in the last section "motivic disgressions", (loc. cit. pages 17-18)