Numerical Solution of the 2D Poisson Equation

Jesse RONG, Tommso Melotti, Gwendolyn Gillian Glodt

project of Numerical Analysis in , University of luxembourg

January 30, 2025

Outline

- Problem Statement
- Pinite Difference Method
- 3 Validation of the Implementation
- Solving the Linear System
- 5 Jacobi Method and Iterative Solver Costs
- 6 Higher Order Finite Difference Methods
 - Richardson Extrapolation
- Construction of the Compact Difference Scheme
 - Introduction
 - Operators
 - Difference Scheme Derivation
 - Approximations of Partial Derivatives
 - Residual Term
 - Error Bound
 - Conclusion

Problem Statement

• Solve the 2D Poisson equation:

$$-(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2}) = f(x, y), \quad \text{on } \Omega = [0, 1] \times [0, 1].$$

Boundary conditions:

$$u(x,y)=0$$
, on $\partial\Omega$.

Exact solution for validation:

$$u(x,y) = \sin^2(\pi x)\sin^2(\pi y).$$

Finite Difference Method

- Discretize the domain into a uniform grid with spacing $h = \frac{1}{N+1}$.
- Approximate derivatives using central differences:

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}, \quad \frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2}.$$

Discretized Poisson equation:

Diagram

 Numbering the grid points in column-major order, we obtain a linear system, The equation is given as:

$$Du_{j-1} + Cu_j + Du_{j+1} = f_j, \quad 1 \le j \le n-1.$$

where

$$C = \begin{pmatrix} 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) & -\frac{1}{h_2^2} & 0 & \cdots & 0 \\ -\frac{1}{h_2^2} & 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) & -\frac{1}{h_2^2} & \cdots & 0 \\ 0 & -\frac{1}{h_2^2} & 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & -\frac{1}{h_2^2} \\ 0 & 0 & 0 & -\frac{1}{h_2^2} & 2\left(\frac{1}{h_1^2} + \frac{1}{h_2^2}\right) \end{pmatrix},$$

$$D = egin{pmatrix} -rac{1}{h_2^2} & 0 & 0 & \cdots & 0 \ 0 & -rac{1}{h_2^2} & 0 & \cdots & 0 \ 0 & 0 & -rac{1}{h_2^2} & \cdots & 0 \ dots & dots & dots & dots & 0 \ 0 & 0 & 0 & -rac{1}{h_2^2} \end{pmatrix}$$

$$f_{j} = f + b = \begin{pmatrix} f(x_{1}, y_{j}) + \frac{1}{h_{1}^{2}} \varphi(x_{0}, y_{j}) \\ f(x_{2}, y_{j}) \\ \vdots \\ f(x_{m-2}, y_{j}) \\ f(x_{m-1}, y_{j}) + \frac{1}{h_{1}^{2}} \varphi(x_{m}, y_{j}) \end{pmatrix}.$$

Equation can be further written as:

$$\begin{pmatrix} C & D & 0 & \cdots & 0 \\ D & C & D & \cdots & 0 \\ 0 & D & C & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & D \\ 0 & 0 & 0 & D & C \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-2} \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} f_1 - Du_0 \\ f_2 \\ \vdots \\ f_{n-2} \\ f_{n-1} - Du_n \end{pmatrix}.$$

Since u(x,1) = u(x,0) = u(1,y) = u(0,y) = 0, the vector b is a zero-vector the size of $(N_y - 1)^2$. For a procedure with a non-zero boundary, the vector resembles:

$$A = \begin{pmatrix} C & D & 0 & \cdots & 0 \\ D & C & D & \cdots & 0 \\ 0 & D & C & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & D \\ 0 & 0 & 0 & D & C \end{pmatrix}$$

$$b + f = \begin{pmatrix} f_1 - Du_0 \\ f_2 \\ \vdots \\ f_{n-2} \\ f_{n-1} - Du_n \end{pmatrix}.$$

Validation of the Implementation

• The exact solution we are solving is given by:

$$u(x,y) = \sin^2(\pi x)\sin^2(\pi y).$$

• The corresponding Poisson equation:

$$-\Delta u(x,y)=f(x,y).$$

• Substituting the exact solution u(x, y) into the Laplacian, the right-hand side f(x, y) is derived as:

$$f(x,y) = 2\pi^2 \left(\cos(2\pi x)\sin^2(\pi y) + \cos(2\pi y)\sin^2(\pi x)\right).$$

Validation of Boundary Conditions

• The exact solution is:

$$u_{ex}(x,y) = \sin^2(\pi x)\sin^2(\pi y).$$

- Verify boundary conditions:
 - **1** At x = 0:

$$u_{\text{ex}}(0,y) = \sin^2(\pi \cdot 0)\sin^2(\pi y) = 0.$$

2 At x = 1:

$$u_{\text{ex}}(1, y) = \sin^2(\pi \cdot 1)\sin^2(\pi y) = \sin^2(\pi)\sin^2(\pi y) = 0.$$

3 At y = 0:

$$u_{\text{ex}}(x,0) = \sin^2(\pi x) \sin^2(\pi \cdot 0) = 0.$$

4 At y = 1:

$$u_{ex}(x,1) = \sin^2(\pi x)\sin^2(\pi \cdot 1) = \sin^2(\pi x)\sin^2(\pi) = 0.$$

• Hence, $u_{ex}(x, y)$ satisfies:

$$u(x,0) = u(x,1) = u(0,y) = u(1,y) = 0.$$

Validation of the Implementation

• result using numpy.linalg.solve:

Numerical Solution (u_app)

2.1 Direct Methods

- For the linear system, the matrix is tri-diagonal and sparse.
- Using a sparse representation, only non-zero entries are stored.
- Computational cost:
 - Gaussian elimination for $n \times n$ matrix: $O(n^3)$.
 - For a sparse matrix: $O(n^2)$ for the 2D Laplacian.
- Compare numerical and exact solutions.
- Plot the error:

$$||u - u_h||_{\infty} = \max |u(x_i, y_j) - u_h(x_i, y_j)|.$$

2.2 Iterative Methods: Finite Difference Approximation

• The second derivative approximation:

$$D_2 = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix},$$

where h is the grid spacing.

• Eigenvalues of D_2 :

$$\lambda_k = -\frac{4}{h^2}\sin^2\left(\frac{k\pi}{2n}\right), \quad k = 1, 2, \dots, n-1.$$

Chebyshev Polynomials

• Chebyshev polynomials $T_n(x)$ satisfy:

$$T_0(x)=1, \quad T_1(x)=x,$$

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad n \ge 1.$$

• Eigenvalues of the second derivative matrix relate to zeros of $T_n(x)$:

$$x_k = \cos\left(\frac{(2k-1)\pi}{2n}\right), \quad k=1,2,\ldots,n.$$

Iterative Method with Recurrence Relation

In 1D discrete case with Dirichlet boundary conditions:

$$\frac{v_{k+1}-2v_k+v_{k-1}}{h^2}=\lambda v_k, \quad k=1,\ldots,n, \quad v_0=v_{n+1}=0.$$

• Rearranging terms:

$$v_{k+1} = (2 + h^2 \lambda) v_k - v_{k-1}.$$

• Let $2\alpha = 2 + h^2\lambda$. Then:

$$v_0 = 0$$
, $v_1 = 1$, $v_{k+1} = 2\alpha v_k - v_{k-1}$.

General solution:

$$v_k = U_k(\alpha),$$

where U_k is the k-th Chebyshev polynomial of the second kind.

Eigenvalues for the 2D Laplacian

• For the 2D Laplacian, eigenvalues are:

$$\lambda_{i,j} = \lambda_i + \lambda_j$$

where λ_i and λ_i are eigenvalues of the 1D Laplacian.

Thus:

$$\lambda_{i,j} = 2 - 2\cos\left(\frac{\pi i}{N+1}\right) - 2\cos\left(\frac{\pi j}{N+1}\right), \quad i,j = 1,2,\ldots,N.$$

Convergence of Iterative Methods

- Laplacian matrix properties:
 - Symmetric and semi-positive definite.
 - Eigenvalues are non-negative:

$$\lambda_i = 2 - 2\cos\left(\frac{\pi i}{N+1}\right).$$

- Condition number increases as grid size grows:
 - Smallest eigenvalue approaches zero.
 - Leads to a spectral radius closer to 1, slowing convergence.
- Convergence radius of iterative method:

$$\rho(T) = \max |\lambda_i(T)|,$$

where $\lambda_i(T)$ are eigenvalues of iteration matrix T.

Jacobi Method

The iteration matrix for Jacobi:

$$T_J = D^{-1}(L+U),$$

where:

- D: Diagonal part of the system matrix.
- L: Lower triangular part.
- *U*: Upper triangular part.
- For the discrete Poisson problem, the convergence radius:

$$\rho(T_J) = \max \left| 1 - \frac{h^2 \lambda_i}{2} \right|.$$

• As grid size increases, smallest eigenvalues λ_i approach zero, making $\rho(T_J)$ approach 1, slowing convergence.

Jacobi Method

Jacobi Method

Gauss-Seidel method

SOR method

Cost of an Iterative Solver

- The cost of an iterative solver depends on:
 - **①** Cost per iteration: Computational cost of a single iteration.
 - **2** Number of iterations: Total iterations required for convergence.

Example: Jacobi Method

- Sparse system matrix A (e.g., discrete Laplacian) for $N \times N$ grid:
 - $O(N^2)$ unknowns.
 - $O(N^2)$ nonzero entries for a 5-point stencil.
- Cost per iteration:
 - Sparse matrix-vector multiplication: $O(N^2)$.
 - Additional vector operations (addition, scaling): $O(N^2)$.
- Total cost per iteration: $O(N^2)$.

Total Cost = Cost per Iteration \times Number of Iterations.

Successive Over-Relaxation (SOR) Method

• Iteration matrix for SOR:

$$T_{\mathsf{SOR}} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U].$$

- Convergence rate depends on spectral radius $\rho(T_{SOR})$.
- The smaller the spectral radius, the faster the convergence.

Optimal Relaxation Parameter ω_{opt}

- For SOR, the optimal relaxation parameter $\omega_{\rm opt}$ minimizes the spectral radius.
- It is given by:

$$\omega_{\rm opt} = \frac{2}{1 + \sin\left(\frac{\pi}{n+1}\right)}.$$

This value ensures faster convergence for the SOR method.

finding the best omega by plot:

Comparison between the three methods

Sparse Matrix Solvers

• The coefficient matrix A has the form:

$$A = I_n \otimes T + T \otimes I_n,$$

where \otimes is the Kronecker product. so we can use scipy.kron to create sparse matrix and use spsolve in scipy.sparse.linalg to solve the linear system.

Computational Time Between The Dense and Sparse Matrix Solvers

Richardson Extrapolation

Solution Representation:

$$u_{ij}(h_1, h_2)$$
 approximates $u(x, y)$.

Theorem: Problem Definition

$$-\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) = \frac{1}{12} \frac{\partial^4 u(x, y)}{\partial x^4}, \quad (x, y) \in \Omega,$$
 (1)

$$v=0, (x,y) \in \Gamma.$$

$$-\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) = \frac{1}{12} \frac{\partial^4 u(x, y)}{\partial y^4}, \quad (x, y) \in \Omega,$$
 (2)

$$w = 0, (x, y) \in \Gamma.$$

Existence of a Smooth Solution

Error Bound:

$$\max_{\substack{1 \le i \le m-1 \\ 1 \le j \le n-1}} \left| u(x_i, y_j) - \left[\frac{4}{3} u_{2i,2j} \left(\frac{h_1}{2}, \frac{h_2}{2} \right) - \frac{1}{3} u_{ij}(h_1, h_2) \right] \right| = O(h_1^4 + h_2^4), \quad (3)$$

where:

$$h_1=\frac{b-a}{m}, \quad h_2=\frac{d-c}{n}.$$

Error Equation and Difference Schemes

Error Equation:

$$-(\delta_{x}^{2}e_{ij}+\delta_{y}^{2}e_{ij}) = -\frac{h_{1}^{2}}{12}\frac{\partial^{4}u(x_{i},y_{j})}{\partial x^{4}} - \frac{h_{2}^{2}}{12}\frac{\partial^{4}u(x_{i},y_{j})}{\partial y^{4}} - \frac{h_{1}^{4}}{360}\frac{\partial^{6}u(\xi_{ij},y_{j})}{\partial x^{6}} - \frac{h_{2}^{4}}{360}\frac{\partial^{6}u(\xi_{ij},y_{j})}{\partial x^{6}} - \frac{h_{2}^{4}}{360}\frac{\partial^{6}u(\xi_{ij},y$$

Difference Schemes:

$$-(\delta_x^2 v_{ij} + \delta_y^2 v_{ij}) = \frac{1}{12} \frac{\partial^4 u(x_i, y_j)}{\partial x^4}, \quad v_{ij} = 0, \quad (i, j) \in \gamma,$$
 (5)

$$-(\delta_x^2 w_{ij} + \delta_y^2 w_{ij}) = \frac{1}{12} \frac{\partial^4 u(x_i, y_j)}{\partial v^4}, \quad w_{ij} = 0, \quad (i, j) \in \gamma.$$
 (6)

Theorem Results and Extrapolation

Theorem Results:

$$v(x_i, y_j) - v_{ij}(h_1, h_2) = O(h_1^2 + h_2^2), \quad (i, j) \in \omega,$$
 (7)

$$w(x_i, y_j) - w_{ij}(h_1, h_2) = O(h_1^2 + h_2^2), \quad (i, j) \in \omega.$$
 (8)

Final Approximation:

$$u_{ij}(h_1, h_2) = u(x_i, y_j) + h_1^2 v(x_i, y_j) + h_2^2 w(x_i, y_j) + O(h_1^4 + h_2^4), \quad (i, j) \in \omega.$$
(9)

Richardson Extrapolation Formula

Higher Accuracy Approximation:

$$\frac{4}{3}u_{2i,2j}\left(\frac{h_1}{2},\frac{h_2}{2}\right)-\frac{1}{3}u_{ij}(h_1,h_2)=u(x_i,y_j)+O(h_1^4+h_2^4),\quad (i,j)\in\omega. \tag{10}$$

Richardson Extrapolation

Richardson Extrapolation Formula

The error plot of Richardson:

Richardson Extrapolation Formula

Convergence order:

Construction of the Compact Difference Scheme

In this section, we establish a difference scheme with an accuracy of $O(h_1^4 + h_2^4)$ for solving the boundary value problems. Let $v = \{v_{ii} \mid 0 \le i \le m, 0 \le j \le n\}$. Define the operators as follows:

$$(Av)_{ij} = \begin{cases} -\frac{1}{12} \left(v_{i-1,j} + 10v_{ij} + v_{i+1,j} \right), & 1 \le i \le m-1, \ 0 \le j \le n, \\ -v_{ij}, & i = 0, \ 0 \le j \le n, \end{cases}$$
(11)

$$(Bv)_{ij} = \begin{cases} -\frac{1}{12} \left(v_{i,j-1} + 10v_{ij} + v_{i,j+1} \right), & 1 \le j \le n-1, \ 0 \le i \le m, \\ -v_{ij}, & j = 0, \ 0 \le i \le m. \end{cases}$$
(12)

4□ > 4□ > 4 = > 4 = > = 90

At the grid point (x_i, y_j) , the differential equation is:

$$\frac{\partial^2 u}{\partial x^2}(x_i, y_j) + \frac{\partial^2 u}{\partial y^2}(x_i, y_j) = f(x_i, y_j), \quad 0 \le i \le m, \ 0 \le j \le n.$$
 (13)

Applying the operator AB gives:

$$AB\frac{\partial^2 u}{\partial x^2}(x_i, y_j) + AB\frac{\partial^2 u}{\partial y^2}(x_i, y_j) = ABf(x_i, y_j), \quad 1 \le i \le m-1, \ 1 \le j \le n-1.$$
(14)

This can be rewritten as:

$$B\left(A\frac{\partial^2 u}{\partial x^2}(x_i, y_j)\right) + A\left(B\frac{\partial^2 u}{\partial y^2}(x_i, y_j)\right) = ABf(x_i, y_j), \quad 1 \le i \le m-1, \ 1 \le j$$

By a Lemma, we have:

$$A\frac{\partial^2 u}{\partial x^2}(x_i, y_j) = \delta_x^2 u_{ij} + \frac{h_1^4}{240} \frac{\partial^6 u}{\partial x^6}(\xi_{ij}), \quad 1 \le i \le m - 1, \ 0 \le j \le n, \quad (16)$$

$$B\frac{\partial^2 u}{\partial y^2}(x_i, y_j) = \delta_y^2 u_{ij} + \frac{h_2^4}{240} \frac{\partial^6 u}{\partial y^6}(\eta_{ij}), \quad 0 \le i \le m, \ 1 \le j \le n - 1. \quad (17)$$

Here, $\xi_{ij} \in (x_{i-1}, x_{i+1}), \ \eta_{ij} \in (y_{j-1}, y_{j+1}).$

Define:

$$P_{ij} = \frac{h_1^4}{240} \frac{\partial^6 u}{\partial x^6} (\xi_{ij}), \quad 1 \le i \le m - 1, \ 0 \le j \le n, \tag{18}$$

$$Q_{ij} = \frac{h_2^4}{240} \frac{\partial^6 u}{\partial v^6} (\eta_{ij}), \quad 0 \le i \le m, \ 1 \le j \le n - 1.$$
 (19)

From equations (16) and (17), we obtain:

$$A\frac{\partial^2 u}{\partial x^2}(x_i, y_j) = \delta_x^2 u_{ij} + P_{ij}, \quad 1 \le i \le m - 1, \ 0 \le j \le n, \tag{20}$$

$$B\frac{\partial^2 u}{\partial y^2}(x_i, y_j) = \delta_y^2 u_{ij} + Q_{ij}, \quad 0 \le i \le m, \ 1 \le j \le n - 1.$$
 (21)

Substituting into (15):

$$-\left[B\left(\delta_{x}^{2}u_{ij}+P_{ij}\right)+A\left(\delta_{y}^{2}u_{ij}+Q_{ij}\right)\right]=ABf_{ij},\quad (i,j)\in\omega. \tag{22}$$

Simplifies to:

$$-\left(B\delta_{x}^{2}u_{ij}+A\delta_{y}^{2}u_{ij}\right)=ABf_{ij}+R_{ij},\quad (i,j)\in\omega,$$
(23)

where:

$$R_{ij} = BP_{ij} + AQ_{ij}, \quad (i,j) \in \omega.$$
 (24)

Define:

$$M_6 = \max \left\{ \max_{(x,y) \in \Omega} \left| \frac{\partial^6 u(x,y)}{\partial x^6} \right|, \max_{(x,y) \in \Omega} \left| \frac{\partial^6 u(x,y)}{\partial y^6} \right| \right\}. \tag{25}$$

Jesse RONG, Tommso Melotti, Gwendolyn Gi

From equations (23), (20), and (21), we know:

$$|R_{ij}| \leq \frac{1}{240} M_6 \left(h_1^4 + h_2^4 \right), \quad (i,j) \in \omega, \quad (26)$$

Jesse RONG, Tommso Melotti, Gwendolyn Gi

Construction of the Compact Difference Scheme

Numerical Solution using compact infinite difference

Construction of the Compact Difference Scheme

Laplace equation with non-homogeneous boundary condition

• The Laplace equation is given by:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

for
$$(x, y) \in (0, 1) \times (0, 1)$$
.

• The boundary conditions are:

$$u(0,y) = 0$$
, for $y \in [0,1]$.

$$u(x,0) = 0$$
, for $x \in [0,1]$.

$$u(1, y) = y$$
, for $y \in [0, 1]$.

$$u(x,1) = x$$
, for $x \in [0,1]$.

Laplace equation with non-homogeneous boundary condition

Conclusion

- Successfully solved the 2D Poisson equation using finite difference methods.
- Validated numerical results against exact solution.
- Explored iterative methods and their convergence properties.
- Constract higher order methods
- Implement our methods on Laplace eqution with non-homogeneous boundary condition.

Acknowledgment

Thank You!

- Thank you for your attention!
- Special thanks to Pro.Hadrien BERIOT, who taught us how to use the difference method and supported this work.
- Questions and discussions are welcome!