

All about CoAP

TP#3 using FIT/IoT-Lab
Lecture slides for RIO201
24-10-2018

Summary of previous TP

Public CoAP server tutorial

■ How?

- Install a CoAP server on a sensor node
- Read the sensing data from front-end or local computer

■ Why?

- Get a feel of how data is transmitted using lowoverhead protocols such as CoAP
- Collect the data and do practically what you want

Before we go on...

Institut Mines-Télécom

- We will all do the tutorial again
- (Future exercises all stem from this anyway)

Be careful!

Selecting your nodes

- Out of interference range of other nodes
- Choose from Saclay, Lille, Grenoble
- Let's try to fix this before!

Border router

Pick an ipv6 address within the range of subnet!

Example in python for CoAP

Example in python for HTTP

Exercise

- Create a python program that collects sensing data from a CoAP server every period
 - Period = one second
 - Data = sensors/gyro, sensors/pressure
 - Node = 1 border router, 1 CoAP server

Tougher exercise?

- Create a python program that collects sensing data from two CoAP servers every period
 - Node = 1 border router, 2 CoAP servers
 - Period = one second per server #1, three seconds for server #2
 - Data = sensors/light
 - If light value is changed, printf an alarm message
- How can we control two flow of data concurrently?

Hint!

```
import time
from threading import Thread

def myfunc(i):
    print "sleeping 5 sec from thread %d" % i
    time.sleep(5)
    print "finished sleeping from thread %d" % i

for i in range(10):
    t = Thread(target=myfunc, args=(i,))
    t.start()
```


CoAP vs HTTP

On why it is efficient to use COAP

- We have been talking a lot about CoAP being better than HTTP
 - But it would be better to see with our eyes
- How to see this?
 - Let's create a very simple packet sniffer
 - Pity we can't use TCPdump in FIT/IoT-Lab

Where to sniff the packets?

Very simple sniffing code

Goto

```
klim@grenoble: ~/iot-lab/parts/contiki/core/net/ipv6$ pwd
/senslab/users/klim/iot-lab/parts/contiki/core/net/ipv6$ pwd
/senslab/users/klim/iot-lab/parts/contiki/core/net/ipv6
klim@grenoble: ~/iot-lab/parts/contiki/core/net/ipv6$ ls
multicast uip-ds6.h uip-icmp6.c websocket.h
sicslowpan.c uip-ds6-nbr.c uip-icmp6.h websocket-http-client.c
sicslowpan.h uip-ds6-nbr.h uip-nd6.c websocket-http-client.h
uip6.c uip-ds6-route.c uip-nd6.h
uip-ds6.c uip-ds6-route.h websocket.c
klim@grenoble: ~/iot-lab/parts/contiki/core/net/ipv6$ nano uip6.c
```


Part receiving TCP/UDP packets

```
klim@grenoble: ~/iot-lab/parts/contiki/core/net/ipv6
  GNU nano 2.2.6
                               Fichier: uip6.c
                                                                          Modifié
#if UIP IPV6 MULTICAST
 process:
#endif
 while(1) {
   switch (*uip next hdr) {
#if UIP TCP
    case UIP PROTO TCP:
      7" Ter, for both IPv4 and IPvo
      printf("TCP Received\n"); //KWL
      goto tcp input;
#endif /* UIP TCP */
#if UIP UDP
   case UIP PROTO UDP:
    /* UDP, for both IPv4 and IPvo
     printf("UDP Received\n");
     goto udp input;
#endif /* UIP UDP */
    case UIP PROTO ICMP6:
      [ ligne 1298/2365 (54%), col. 28/32 (87%), car. 41234/77543 (53%)
```


Save and compile

- Now the IPv6 will print data packets of CoAP (UDP) and HTTP (TCP) when they are received
- Go to compile coap-server
 - Cd ~/iot-lab/parts/contiki/examples/iotlab/04(tab)
 - Make TARGET=iotlab-m3
 - Node-cli
 - Nc m3-XXX 20000
- Send data in another shell
 - Send a data through your python interface
 - Check output of UDP packets received

Save and compile HTTP

Go to compile http-server

- Cd ~/iot-lab/parts/contiki/examples/ipv6/http-server
- Make TARGET=iotlab-m3
- Node-cli
- Nc m3-XXX 20000

Send data in another shell

- Send a data through your python interface
- Check output of TCP received packets

What you should see

```
_ D X
🧬 klim@grenoble: ~
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Jan 4 12:57:13 2018 from 192.168.1.254
klim@grenoble:~$ nc m3-40 20000
klim@grenoble:~$ nc m3-42 20000
UDP
UDP
UDP
UDP
UDP
UDP
UDP
UDP
UDP
Platform starting in 1...
[in clock init() DEBUG] Starting systick timer at 100Hz
Starting 'IoT-LAB Web server'
TCP
TCP
TCP
TCP
TCP
TCP
```


17

Balance HTTP and CoAP

- Right now, CoAP only sends its data
- HTTP sends other information as well
- Try to balance the packet transmission
 - For HTTP, remove all the parts of other transmission, and send only light sensor information
 - For CoAP send only light sensor information
- What difference does this bring?

Final project

HTTP vs CoAP

Make a performance evaluation between HTTP and CoAP

Things to consider

- Create a server-client model which can use both HTTP and CoAP with multiple nodes
- Utilize both HTTP and CoAP to make a performance evaluation
- What to compare
 - Number of packet transmissions (Energy)
 - Delay (average time taken per request)
 - Transmission ratio (Reliability)

Assessment points

1) Make a survey on the comparison of HTTP vs CoAP

- What are the differences?
- What do you expect as the performance?

2) Explain your code in detail

All parts that you have changed for your project

3) Concluding point

 Does your performance evaluation reflect the survey that you have done?

Assessment points 2

4) Create different network architecture

- multiple nodes in a grid topology (1 hop from border to sensor)
- Line topology from 1 ~ 5 nodes multi-hop (Multi-hop!!!!!)
- What is the difference between these two topologies?

■ 5) Number of transmissions

- How does the performance change with less transmission intervals (for example: 1 second ~ 50 milliseconds)
- How does the performance change with number of multi-hop nodes? (e.g. 1 ~ 5 nodes multi-hop)

6) Delay

- How is delay affected according to increase in data traffic?
- Use Python library to calculate timing

7) Transmission ratio

- Try to congest the network (increase number of hops, nodes, traffic, etc.)
- See the performance between HTTP and CoAP

■ 8) Basically, test HTTP and CoAP under various circumstances!

- Use your imagination to make various tests as you can
- What other topologies can affect the network performance?
- What other performance variables are there?

Assessment method

- Submit a report by
 - keunwoo.lim@telecom-paristech.fr
- Due date
 - 14 November 2018 (tentative)

