(2) ଓ (3) ପରସ୍କର ବିରୋଧୀ ଉକ୍ତି ।

ସୂତରାଂ ଆମେ ଗ୍ରହଣ କରିଥିବା ପ୍ରାରୟିକ ଉକ୍ତିଟି ସତ୍ୟ ନୁହେଁ । ଅର୍ଥାତ୍ ABCD ଚତୁର୍ଭୁଚ୍ଚ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେବ । ସୟାବନା (ii) କ୍ଷେତ୍ରରେ ଅନୁରୂପ ପ୍ରମାଣ ଚିତ୍ର 2.49(b) ସାହାଯ୍ୟରେ ଦିଆଯାଇ ପାରିବ (ପ୍ରମାଣିତ)

ଅନୁଶୀଳନୀ - 2(b)

(କ - ବିଭାଗ)

1. ନିମ୍ନ ଉକ୍ତି ଗୁଡ଼ିକରେ ଠିକ୍ ଉକ୍ତି ପାଇଁ ${f T}$ ଓ ଭୁଲ ଉକ୍ତି ପାଇଁ ${f F}$ ଲେଖ ।

- (i) ବୃତ୍ତର ଏକ ଉପସେଟ୍କୁ ଚାପ କହନ୍ତି ।
- (ii) ଚାପର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ସମ୍ପୃକ୍ତ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ନୁହେଁ ।
- (iii) ଗୋଟିଏ ବୃତ୍ତରେ P ଓ Q ଦୁଇଟି ଚାପର ସାଧାରଣ ପ୍ରାନ୍ତବିନ୍ଦୁ ହେଲେ ଚାପଦ୍ୱୟ ପରସ୍କରର ପରିପୂରକ ଚାପ ଅଟନ୍ତି ।
- (iv) ପ୍ରତ୍ୟେକ ଚାପର ପ୍ରାନ୍ତବିନ୍ଦୁଦ୍ୱୟକୁ କେନ୍ଦ୍ର ସହିତ ଯୋଗ କଲେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ ହୁଏ ତାହା ଉକ୍ତ ଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣ ଅଟେ ।
- (v) ଦୁଇଟି ଚାପର ଡିଗ୍ରୀ ପରିମାପର ସମଷ୍ଟି 360° ରୁ ଅଧିକ ହୋଇ ପାରିବ ନାହିଁ ।
- (vi) ବୃତ୍ତ ଏକ ଉତ୍ତଳ ସେଟ୍ ନୁହେଁ ।
- (vii) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ଗୋଟିଏ ସାଧାରଣ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଥିଲେ ଚାପ ଦୁଇଟି ସନ୍ନିହିତ ଚାପ ହେବେ ।
- (viii) ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ ଚାପଦ୍ୱୟ ସନ୍ନିହିତ ଚାପ ହେଲେ ଚାପଦ୍ୱୟର ସଂଯୋଗରେ ସର୍ବଦା ବୃହତ୍ ଚାପ ଗଠିତ ହେବ ।
- (ix) ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ପରୟରକୁ ଲୟ ଭାବରେ ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ P ରେ ଛେଦ କରନ୍ତି । ବୃତ୍ତର କେନ୍ଦ୍ର O ଠାରୁ ସେମାନଙ୍କ ପ୍ରତି \overline{OQ} , \overline{OR} ଲୟ ଗଠନ କରାଯାଛି । ତେବେ O, Q, P ଓ R ଏକ ବର୍ଗଚିତ୍ରର ଶୀର୍ଷବିନ୍ଦୁ ହେବେ ।
- (x) $\widehat{\mathrm{BPC}}$ ର ଡିଗ୍ରୀ ପରିମାପ 30° । A ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେଲେ $\Delta\mathrm{ABC}$ ରେ $\angle\mathrm{A}$ ର ପରିମାଣ ସର୍ବଦ। 15° ହେବ ।
- (xi) ଗୋଟିଏ ଚାପ ଅସଂଖ୍ୟ ବିନ୍ଦୁର ସମାହାର ଅଟେ ।
- (xii) ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ରୟସ୍ ଏକ ବର୍ଗିଚିତ୍ର ।

2. ଶୃନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

- (i) ଏକ ବୃହତ୍ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ... ରୁ ବେଶୀ I
- (ii) ଗୋଟିଏ ସୁଷମ ଷଡ଼ଭୁଜର ପ୍ରତ୍ୟେକ ବାହୁ ଏହାର ପରିବୃତ୍ତର କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କରୁଥିବା କେନ୍ଦ୍ରସ୍ଥ କୋଶର ପରିମାଣ ।
- (iii) ଗୋଟିଏ ବୃତ୍ତାନ୍ତଲିଖିତ ଚତୁର୍ଭୁଜର ABCDର m $\angle A = 50^{\circ}$ ଓ m $\angle B = 120^{\circ}$ ହେଲେ m $\angle C$ ଓ m $\angle D$ ମଧ୍ୟରେ ଅନ୍ତର

- (iv) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା $\overline{\mathrm{AB}}$ ଓ $\overline{\mathrm{CD}}$ ପରୟରକୁ ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ P ରେ ଛେଦ କରନ୍ତି । O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ B ଓ $\mathrm{C}\,\overline{\mathrm{OP}}$ ର ଏକ ପାର୍ଶ୍ୱରେ ଥିଲେ $\widehat{\mathrm{AD}}$ ଓ ଦୁହେଁ ସର୍ବସମ ।
- (v) ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ଜ୍ୟାର ଦୈର୍ଘ୍ୟ ବ୍ୟାସାର୍ଦ୍ଧ ସହ ସମାନ ହେଲେ ଉକ୍ତ ଜ୍ୟା ଦ୍ୱାରା ଛେଦିତ କ୍ଷୁଦ୍ର ଚାପର ଡିଗୀ ପରିମାପ ।
- (vi) \overline{AB} ର ଏକ ପାର୍ଶ୍ୱରେ C ଓ D ଦୁଇଟି ବିନ୍ଦୁ | m∠ACB = m∠ADB = 20° | Δ ACDର ପରିବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ m∠AOB = |
- (vii) m∠ABC = 90° ହେଲେ \triangle ABC ର ପରିବୃତ୍ତରେ \overline{AC} ଏକ ।
- (viii) ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଳ । m∠BAD ଚାପର ଡିଗ୍ରୀ ପରିମାପର ଅର୍ଦ୍ଧେକ ।
- (ix) ଏକ ଅର୍ଦ୍ଧବୃତ୍ତର ଡିଗ୍ରୀ ପରିମାପ ।
- (x) ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 90° ହେଲେ, ସଂପୃକ୍ତ ଜ୍ୟା ଓ ବ୍ୟାସାର୍ଦ୍ଧର ଅନୁପାତ।

(ଖ - ବିଭାଗ)

- 3. ଚିତ୍ର 2.50ରେ ΔABC ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଏବଂ ସୂକ୍ଷ୍ମକୋଣୀ । D, E, F, ବୃତ୍ତ ଉପରିସ୍ଥ ତିନୋଟି ବିନ୍ଦୁ ହେଲେ ନିମ୍ନ ପ୍ରଶ୍ମଗୁଡ଼ିକର ଉତ୍ତର ଦିଅ ।
 - (i) ∠B କେଉଁ ଚାପର ଅନ୍ତର୍ଲିଖିତ ?
 - (ii) ∠B ଦ୍ୱାରା କେଉଁ ଚାପ ଛେଦିତ ?
 - (iii) \overline{BC} ଜ୍ୟା ଦ୍ୱାରା ଛେଦିତ କ୍ଷୁଦ୍ରଚାପ ଓ ବୃହତ୍ ଚାପ କିଏ ?
 - (iv) ∠A ର ପରିମାଣ କେଉଁ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ପରିମାଣର ଅର୍ଦ୍ଧେକ ?
 - (v) ΔABC ରେ ଯଦି AB = BC ହୁଏ ତେବେ କେଉଁ ଚାପ ଦ୍ୱୟ ସର୍ବସମ ହେବେ ? $\widehat{(\widehat{\varsigma}_{\underline{\mathcal{G}}} \ 2.50)}$
 - (vi) ଦୁଇଟି ସନ୍ନିହିତ ଚାପର ନାମ ଲେଖ ଯେପରିକି ସେମାନଙ୍କ ସଂଯୋଗରେ $\widehat{\mathrm{BAD}}$ ଗଠିତ ହେବ ।
 - (vii) \overrightarrow{BFC} ଉପରେ ଏପରି ଏକ ବିନ୍ଦୁ P ନିଅ ଯେପରିକି $m\angle BPA = m\angle C$ । ଏପରି କେତୋଟି ବିନ୍ଦୁ ଅଛି ? \overrightarrow{ADC} ଉପରେ ଏପରି କୌଣସି ବିନ୍ଦୁ ଅଛି କି ? \overrightarrow{BEA} ଉପରେ ଏପରି କୌଣସି ବିନ୍ଦୁ ଅଛି କି ?
- 4. ଚିତ୍ର 2.51 ରେ ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜ ଯାହାର କର୍ଣ୍ଣଦ୍ୱୟ ବୃତ୍ତର କେନ୍ଦ୍ରଠାରେ ଛେଦ କରନ୍ତି । $\widehat{mAEB}=100^{\circ}$ ହେଲେ
 - (i) ଚତୁର୍ଭୁଳର ସମୟ କୋଣ ପରିମାଣ ନିର୍ଦ୍ଧୟ କର ।
 - (ii) AHD ଓ BFC ମଧ୍ୟରେ କି ସମ୍ପର୍କ ଦେଖୁଛ ?
 - (iii) ABCD କି ପ୍ରକାର ଚତୁର୍ଭୁଜ ?

O

5. ଚିତ୍ର 2.52 ରେ \overline{AB} ଓ \overline{CD} କ୍ୟା ଦ୍ୱୟ ପରୟରକୁ ବୃତ୍ତର ଏକ ଅନ୍ତଃୟ ବିନ୍ଦୁ P ଠାରେ ଛେଦ କରନ୍ତି । m $\angle PBD = 80^{\circ}$, m $\angle CAP = 45^{\circ}$ ହେଲେ

(ଚିତ୍ର 2.52)

- (i) ΔBPD ର କୋଣ ପରିମାଣଗୁଡ଼ିକ ନିର୍ଣ୍ଣୟ କର ।
- (ii) ΔAPC ର କୋଣ ପରିମାଣ ଗୁଡ଼ିକ ନିର୍ଣ୍ଣୟ କର ।
- (iii) ΔAPC ଓ ΔDPB ମଧ୍ୟରେ କି ସମ୍ପର୍କ ଦେଖୁଛ ?
- ΔABC ରେ $\angle A$ ର ସମଦ୍ୱିଖଣ୍ଡକ ତ୍ରିଭୁଜର ପରିବୃତ୍ତକୁ D ବିନ୍ଦୁରେ ଛେଦ କଲେ ପ୍ରମାଣ କର ଯେ ΔBDC ସମଦ୍ୱିବାହୁ ।
- 7. ଚିତ୍ର 2.53 ରେ ଗୋଟିଏ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ A ଠାରୁ \overrightarrow{AP} ଓ \overrightarrow{AR} ରଶ୍ମି ଦ୍ୱୟ ବୃତ୍ତକୁ ଯଥାକ୍ରମେ P,Q ଏବଂ R,S ଠାରେ ହେଦ କରନ୍ତି ଯେପରି A-P-Q ଏବଂ A-R-S I
- (a) ପୁମାଣ କର ଯେ $\Delta APR \sim \Delta AQS$
- (b) ପ୍ରମାଣ କର ଯେ $\Delta APS \sim \Delta ARQ$
- (c) ଯଦି \overline{PS} ଓ \overline{QR} ର ଛେଦ ବିନ୍ଦୁ T ହୁଏ, ତେବେ
 - (i) ପ୍ରମାଣ କର ଯେ TP . TS = TR . TQ

(ଚିତ୍ର 2.53)

- (d) $m\angle PAR = 15^{\circ}$ ଏବଂ m $\overrightarrow{QXS} = 50^{\circ}$ ହେଲେ $m\angle PTR$ ନିର୍ଣ୍ଣୟ କର ।
- 8. ଚିତ୍ର 2.54ରେ ABC ବୃତ୍ତର \widehat{AXB} ଓ \widehat{BYC} ଦୁଇଟି ଚାପର ଡିଗ୍ରୀ ପରିମାପ ଯଥାକ୍ରମେ 80° ଓ 140°

(iii) m
$$\widehat{ACB}$$
 ନିର୍ଣ୍ୟ କର ।

$$(iv)$$
 \widehat{AZC} ଓ \widehat{BYC} ମଧ୍ୟରେ କି ସମ୍ପର୍କ ଅଛି ?

(ଚିତ୍ର 2.54)

9. ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ \overline{AB} ଏକ ବ୍ୟାସ । ବୃତ୍ତ ଉପରିସ୍ଥ P ଓ Q ବିନ୍ଦୁ ଦ୍ୱୟ \overline{AB} ର ଏକ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଯଦି A ଓ P ପ୍ରାନ୍ତ ବିନ୍ଦୁ ବିଶିଷ୍ଟ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 60° ଏବଂ B ଓ Q ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ ଚାପର

- ଡିଗ୍ରୀ ପରିମାପ 50º ହୁଏ ତେବେ -
- (i) A ଓ Q ପାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ କ୍ଷୁଦ୍ରଚାପର ଡିଗୀ ପରିମାପ,
- (ii) P ଓ B ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ ବୃହତ୍ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ଏବଂ
- (iii) P ଓ Q ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ ବୃହତ୍ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ନିର୍ଣ୍ଣୟ କର ।
- \overline{AB} ଓ \overline{CD} ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା (ଚିତ୍ର 2.55) ପମାଣ କର ଯେ i) m $\widehat{AXC}=\widehat{mBYD}$, (ii) AC=BD
- ପ୍ରମାଶ କର ଯେ 1) m AXC = m BYD , (11) 11. ABCD ଏକ ବୃଢାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଳ ।
 - (i) \overline{AB} II \overline{CD} ହେଲେ ପ୍ରମାଣ କର ଯେ, AD=BC ଏବଂ AC=BD
 - $(ii)~{
 m AD}={
 m BC}$ ହେଲେ ପ୍ରମାଶ କର ଯେ, ${
 m AC}={
 m BD}~$ ଏବଂ ${
 m \overline{AB}}~{
 m II}~{
 m \overline{CD}}$
- $12.\ (i)$ ଗୋଟିଏ ବୃଉରେ \widehat{AXB} ଏକ ଚାପ । ପ୍ରମାଣ କର ଯେ \widehat{AXB} ର ଅନ୍ତଃସ୍ଥ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ବିନ୍ଦୁ C ଅଛି ଯେପରି \widehat{AC} ଓ \widehat{BC} ଚାପଦ୍ୱୟ ସର୍ବସମ ହେବେ । (C ବିନ୍ଦୁକୁ \widehat{AXB} ର ମଧ୍ୟବିନ୍ଦୁ କୁହାଯାଏ) (ସୂଚନା : $\angle AOB$ ର ସମଦ୍ୱିଖଣ୍ଡକ ରେଖା \widehat{AXB} କୁ C ବିନ୍ଦୁରେ ଛେଦ କଲେ C ଆବଶ୍ୟକ ବିନ୍ଦୁ ହେବ)
 - (ii) ଚାପର ମଧ୍ୟବିନ୍ଦୁ ଧାରଣାକୁ ବ୍ୟବହାର କରି ପ୍ରମାଣ କର ଯେ \widehat{AXB} ରେ ଅସଂଖ୍ୟ ବିନ୍ଦୁ ଅଛି ।
- \overline{OD} ଯେକୌଣସି ଏକ ବ୍ୟାସାର୍ଦ୍ଧ । \overline{AC} ।

ପ୍ରମାଣ କର ଯେ \widehat{BXD} ଓ \widehat{DYC} ସର୍ବସମ ଅର୍ଥାତ୍ $D,\;\widehat{BDC}$ ମଧ୍ୟବିନ୍ଦୁ । A (ସୂଚନା : \overline{OC} ଅଙ୍କନ କରି ଦର୍ଶାଅ ଯେ, $m\angle BOD = m\angle DOC$)

- 14. ଚିତ୍ର 2.57ରେ $\overline{\text{CD}}$ କ୍ୟା $\overline{\text{AB}}$ ବ୍ୟାସ ସହ ସମାନ୍ତର ଏବଂ $\overline{\text{CD}} = \overline{\text{OB}}$ | ପ୍ରମାଣ କର ଯେ m $\angle{\text{BDC}} = 2\text{m}\angle{\text{OBD}}$ |
- 15. ABCD ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜର \overline{AC} ଓ \overline{BD} କର୍ଷଦ୍ୱୟ ପରୟରକୁ P ଠାରେ ଛେଦ କରନ୍ତି । O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ B ଓ C, \overrightarrow{OP} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଯଦି AC = BD ହୁଏ, ତେବେ ପ୍ରମାଣ କର ଯେ
 - (i) AB = CD,
- (ii) PA = PD ଏବଂ (iii) BC II AD |

В

- 17. (i) \triangle ABC ର ପରିବୃତ୍ତର କେନ୍ଦ୍ର O ତ୍ରିଭୁକଟିର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେଲେ ପ୍ରମାଣ କର ଯେ $m\angle BAC + m\angle OBC = 90^{\circ}$ ।
 - (ii) ΔABC ର ପରିବୃତ୍ତର କେନ୍ଦ୍ର O ତ୍ରିଭୁଜଟିର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ । O ଏବଂ A, \overline{BC} ର ବିପରୀତ ପାର୍ଶ୍ୱସ୍ଥ ହେଲେ ପ୍ରମାଣ କର ଯେ $m\angle BAC m\angle OBC = 90^{\circ}$ ।
- 18. ପ୍ରମାଣ କର ଯେ ଏକ ଟ୍ରାପିଜିୟମ୍ର ଅସମାନ୍ତର ବାହୁଦ୍ୱୟ ସର୍ବସମ ହେଲେ ଟ୍ରାପିଜିୟମ୍ଟି ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେବ ।
- 19. ଦୁଇଟି ବୃତ୍ତ ପରୟରକୁ P ଓ Q ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । P ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଏକ ସରଳରେଖା ବୃତ୍ତଦ୍ୱୟକୁ K ଓ L ବିନ୍ଦୁରେ ଛେଦ କରେ । ସେହିପରି Q ମଧ୍ୟ ଦେଇ ଏକ ସରଳରେଖା ବୃତ୍ତଦ୍ୱୟକୁ M ଓ N ବିନ୍ଦୁରେ ଛେଦ କରେ । K ଓ M \overline{PQ} ର ଏକ ପାର୍ଶ୍ୱରେ ଥିଲେ ପ୍ରମାଣ କର ଯେ \overline{KM} Π \overline{LN} ।
- $20.~{
 m ABCD}~{
 m Va}$ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକରେ $\angle B$ ଓ $\angle D$ ର ସମଦ୍ୱିଖଣ୍ଡକ ଦ୍ୱୟ ପରସ୍କରକୁ E ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । $\overleftrightarrow{
 m DE}~$ ବୃତ୍ତକୁ F ବିନ୍ଦୁରେ ଛେଦ କଲେ ପ୍ରମାଣ କର ଯେ $\overline{
 m BE}~\perp \overline{
 m BF}~$ ।
- 21. ΔABC ର କୋଣମାନଙ୍କର ସମଦ୍ୱିଖଣ୍ଡକମାନେ ତ୍ରିଭୁଜର ପରିବୃତ୍ତକୁ $X,\,Y,\,$ ଓ Z ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ ΔXYZ ର କୋଣମାନଙ୍କର ପରିମାଣ ଯଥାକ୍ରମେ $90^{0}-\frac{1}{2}\,\mathrm{m}\angle A,\,\,90^{0}-\frac{1}{2}\,\mathrm{m}\angle B$ ଓ $90^{0}-\frac{1}{2}\,\mathrm{m}\angle C$ ।
- 22. ΔABC ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ସମବାହୁ ତ୍ରିଭୁଜ । \overline{BC} ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ କ୍ଷୁଦ୍ର ଚାପ ଉପରେ P ଏକ ବିନ୍ଦୁ । ପ୍ରମାଣ କର ଯେ PA=PB+PC ।
 - (ସୂଚନା : \overrightarrow{BP} ଉପରେ D ନିଅ ଯେପରି PC = PD ହେବ । ΔBCD ଓ ΔACP ର ତୁଳନା କର ।)
- 23. $\triangle ABC$ ରେ $\angle A$ ର ସମଦ୍ୱିଖଣ୍ଡକ $\triangle ABC$ ର ପରିବୃତ୍ତକୁ P ବିନ୍ଦୁରେ ଛେଦ କରେ । P ବିନ୍ଦୁରୁ \overrightarrow{AB} ଓ \overrightarrow{AC} ପ୍ରତି ଅଙ୍କିତ ଲୟ ଦ୍ୱୟର ପାଦବିନ୍ଦୁ ଯଥାକୁମେ Q ଏବଂ R । ପ୍ରମାଣ କର ଯେ $AQ = AR = \frac{AB + AC}{2}$ । (ସୂଚନା : ଦର୍ଶାଅ ଯେ $\triangle PBQ \cong \triangle PCR \Rightarrow BQ = CR$)

24. ΔABC ରେ $\angle A$ ର ସମଦ୍ୱିଖଣ୍ଡକ ΔABC ର ପରିବୃତ୍ତକୁ P ବିନ୍ଦୁରେ ଛେଦ କରେ । \overline{AP} ଓ \overline{BC} ର ଛେଦ ବିନ୍ଦୁ D ହେଲେ ପ୍ରମାଣ କର ଯେ ΔABD ଓ ΔAPC ସଦୃଶ ଅଟନ୍ତି । ସୁତରାଂ ଦର୍ଶାଅ ଯେ

$$AB \cdot AC = BD \cdot DC + AD^2$$

(ସୂଚନା :
$$\triangle ABD$$
 ଓ $\triangle APC$ ସଦୂଶ $\Rightarrow AB$. $AC = AD$. AP , $AD^2 = AD$ $(AP - PD)$)

25. (ଟଲେମୀଙ୍କ ଉପପାଦ୍ୟ) ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭଜ ହେଲେ ପ୍ରମାଣ କର ଯେ

$$AC.BD = AB \cdot CD + BC \cdot AD$$

(ଅର୍ଥାତ୍ ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକରେ କର୍ଷଦ୍ୱୟର ଦିର୍ଘ୍ୟର ଗୁଣଫଳ, ଚତୁର୍ଭୁକର ସମ୍ମୁଖୀନ ବାହୁମାନଙ୍କର ଦିର୍ଘ୍ୟର ଗୁଣଫଳର ସମଷ୍ଟି ସଙ୍ଗେ ସମାନ ।)

(ସୂଚନା: ମନେକର m∠ADB > m∠BDC | E, \overline{AC} ଉପରେ ଏପରି ଏକ ବିନ୍ଦୁ ହେଉ ଯେପରି

$$m \angle BDC = m \angle ADE$$
 ା ବର୍ତ୍ତମାନ ΔADE ଏବଂ ΔBDC ସଦୃଶ $\Rightarrow \frac{AE}{BC} = \frac{AD}{BD}$ ।

ପୁନଣ୍ଟ
$$\Delta ADB$$
 ଏବଂ ΔEDC ସଦୃଶ $\Rightarrow \frac{CD}{BD} = \frac{EC}{AB}$)

ବୃତ୍ତର ସ୍ପର୍ଶକ

3.1 ଉପକ୍ମଣିକା (Introduction) :

ଆମେ ପୂର୍ବ ଆଲୋଚନାରୁ ଜାଣୁ ଯେ, ଗୋଟିଏ ସରଳରେଖା ଏକ ବୃତ୍ତକୁ ଦୁଇରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରିବ ନାହିଁ । ବର୍ତ୍ତମାନ ଆସ ଖାତାର ଗୋଟିଏ ପୃଷ୍ପାରେ ଗୋଟିଏ ବୃତ୍ତ ଏବଂ ସେହି ପୃଷ୍ପାରେ ଗୋଟିଏ ସରଳରେଖା ଅଙ୍କନ କରିବା । ଚିତ୍ରରେ ଦର୍ଶାଯାଇଥିବା ସମ୍ଭାବନା ମଧ୍ୟରୁ କରିଥିବା ଅଙ୍କନରେ ଅନ୍ୟ କୌଣସି ସମ୍ଭାବନା ଉପୁକୁଛି କି ? ପରୀକ୍ଷା କରି ଦେଖ ।

ଏକ ସମତଳରେ ବୃତ୍ତଟି ଅଙ୍କନ କଲା ପରେ, ସରଳରେଖାଟିଏ ଅଙ୍କନ କଲେ ଅଙ୍କନ ପରେ ତିନିଗୋଟି ସୟାବନା ଉପୁଜେ । ତାହା ହେଲା – (i) ସରଳରେଖାଟି ବୃତ୍ତକୁ ଛେଦ କରେ ନାହିଁ (ଚିତ୍ର 3.1(a)) (ii) ସରଳରେଖାଟି ବୃତ୍ତକୁ ଦୁଇଟି ବିନ୍ଦୁରେ ଛେଦ କରେ (ଚିତ୍ର 3.1(b)) ଏବଂ (iii) ସରଳରେଖାଟି ବୃତ୍ତକୁ ଗୋଟିଏ ମାତ୍ର ବିନ୍ଦୁରେ ଛେଦ କରେ (ଚିତ୍ର 3.1(c)) ।

- ଚିତ୍ର 3.1(a) ରେ ସରଳରେଖା \mathbf{L} ଓ ବୃତ୍ତ ମଧ୍ୟରେ କୌଣସି ସାଧାରଣ ବିନ୍ଦୁ ନାହିଁ । ଅର୍ଥାତ୍ ସରଳରେଖା \mathbf{L} , ବୃତ୍ତ \mathbf{ABC} ର ବହିଃସ୍ଥ ବା ସରଳରେଖା \mathbf{L} ଓ ବୃତ୍ତ \mathbf{ABC} ପରସ୍କର ଅଣହ୍ରେଦୀ ।
- ଚିତ୍ର 3.1(b) ରେ ସରଳରେଖା L ଓ ବୃତ୍ତ ABC ଉଭୟର ଦୁଇଟି ସାଧାରଣ ବିନ୍ଦୁ (ବା ଛେଦବିନ୍ଦୁ) ଅଛତି । ଏପରି କ୍ଷେତ୍ରରେ ସରଳରେଖା L ଓ ବୃତ୍ତ ABC କୁ ପର୍ୟର୍ଚ୍ଚେଦୀ ବୋଲି କୁହାଯାଏ ଏବଂ L କୁ ବୃତ୍ତ ABC ର ଏକ **ଛେଦକ ରେଖା (Secant)** କୁହାଯାଏ । P ଓ Q ହେଉଛଡି ଛେଦବିନ୍ଦୁ ।

ଚିତ୍ର - 3.1(c) ରେ ସରଳରେଖା $\mathbf L$ ଓ ବୃତ୍ତ $\mathbf ABC$ ପର୍ୟରଚ୍ଛେଦୀ, ମାତ୍ର ଏ କ୍ଷେତ୍ରରେ ଛେଦବିନ୍ଦୁ (ବା ସାଧାରଣ ବିନ୍ଦୁ) ସଂଖ୍ୟା ଏକ । ଏପରି ଅବସ୍ଥାରେ ସରଳରେଖା L କୁ ବୃଭ ABC ର ଏକ ସର୍ଶକ (tangent) କୁହାଯାଏ ଏବଂ T ବିନ୍ଦୁ ହେଉଛି L ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁ (Point of contact) ।

ସଂଜ୍ଞା : ଗୋଟିଏ ସମତଳରେ ଅବସ୍ଥିତ ଏକବୃଦ୍ଧ ଓ ଏକ ସରଳରେଖାର ଗୋଟିଏ ମାତ୍ର ସାଧାରଣ ବିନ୍ଦୁ (ବା ଛେଦବିନ୍ଦୁ) ଥିଲେ, ଉକ୍ତ ସରଳରେଖାକୁ ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକ କୁହାଯାଏ ଏବଂ ସେମାନଙ୍କର ସାଧାରଣ ବିନ୍ଦୁକୁ ସମ୍ପକ୍ତ ସର୍ଶକର ସର୍ଶବିନ୍ଦୁ କୁହାଯାଏ I

ଚିତ୍ର 3.1(c) ରେ ବୃତ୍ତ ABC ର ଗୋଟିଏ ସର୍ଶକ ହେଉଛି L ଏବଂ T ହେଉଛି ଉକ୍ତ ସର୍ଶକର ସର୍ଶବିନ୍ଦ୍ର ।

ମନ୍ତବ୍ୟ : L ସରଳରେଖା ବୃତ୍ତକୁ T ବିନ୍ଦୁରେ ଛେଦ କରେ କହିବା ପରିବର୍ତ୍ତେ L ସରଳରେଖା ବୃତ୍ତକୁ T ବିନ୍ଦୁରେ ସର୍ଶ କରେ ବୋଲି କହିବା ।

ବୃତ୍ତର କେନ୍ଦ୍ର ଓ ୟର୍ଶବିନ୍ଦୁକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡକୁ ସର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ କୁହାଯାଏ ।

L ସରଳରେଖା ଉପରିସ୍ଥ ସର୍ଶବିନ୍ଦୁ T ଭିନ୍ନ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ Q ନେଲେ ଏହା ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ ହେବ (ଚିତ୍ର 3.2) । ନଚେତ୍ର \overrightarrow{PQ} ଅର୍ଥାତ୍ର L ରେଖା ବୃତ୍ତକୁ ଦୁଇଟି ବିନ୍ଦୁରେ ଛେଦ କରିବ । (ବୃତ୍ତ ସମ୍ବନ୍ଧୀୟ ଅଧ୍ୟାୟର ପ୍ରମେୟ - 2.1 ଅନୁସିଦ୍ଧାନ୍ତ -2 ପରବର୍ତ୍ତୀ ଆଲୋଚନା ଦେଖ) । ସୂତରାଂ ଆମେ ମନେ ରଖିବା ଉଚିତ ଯେ, **କୌଣସି** ବୃତ୍ତର ଏକ ସର୍ଶକର ସର୍ଶବିନ୍ଦୁ ବ୍ୟତୀତ ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ବୃତ୍ତର ବହିଃସ୍ଥ ଅଟନ୍ତି ।

ଉପପାଦ୍ୟ - 12

ଗୋଟିଏ ବୃତ୍ତର ଏକ ସର୍ଶକ ଏହାର ସର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରତି ଲୟ I

(A tangent to a circle is perpendicular to the radius drawn through the point of contact.)

ଦଉ : ABC ବୃତ୍ତର କେନ୍ଦ୍ର O , L ରେଖା ଏକ ସ୍ପର୍ଶକ ଓ P ବିନ୍ଦୁ

ହେଉଛି ସ୍ପର୍ଶବିନ୍ଦ୍ର । $\overline{\mathrm{OP}}$ ହେଉଛି P ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ।

ପାମାଣ୍ୟ : OP \perp L

ପ୍ରମାଣ : P ଭିନ୍ନ, ରେଖା L ଉପରିସ୍ଥ ଅନ୍ୟ ଯେକୌଣସି $\stackrel{\longleftarrow}{}_L$

ବିନ୍ଦୁ Q, ABC ବୃତ୍ତର ବହିଃସ୍ଥ ।

m ... O ବିନ୍ଦୁରୁ m L ରେଖା ପ୍ରତି ଅଙ୍କିତ ରେଖାଖଣ୍ଡମାନଙ୍କ ମଧ୍ୟରେ $m \overline{OP}$ ର ଦୈର୍ଘ୍ୟ କ୍ଷଦ୍ରତମ ।

(ପ୍ରମାଣିତ) $\Rightarrow \overline{OP} \perp L$

ପ୍ରମେୟ -3.1 : (ଉପପାଦ୍ୟ - 12 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ) :

ବୃତ୍ତର କୌଣସି ବିନ୍ଦୁରେ, ଉକ୍ତ ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ଲୟ, ଉକ୍ତ ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକ ଅଟେ । (The line drawn perpendicular to the radius at a point of a circle through that point, is a tangent to the circle.)

ଦତ୍ତ: ABC ବୃତ୍ତର କେନ୍ଦ୍ର O । ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ P,P ବିନ୍ଦୁଠାରେ ଅଙ୍କିତ ବ୍ୟାସାର୍ଦ୍ଧ \overline{OP} ଏବଂ $L \perp \overline{OP}$ । ପ୍ରାମାଣ୍ୟ : L ରେଖା ABC ବୃତ୍ତର ଏକ ସ୍ୱର୍ଶକ ।

ଅଙ୍କନ : L ରେଖା ଉପରେ , P ବିନ୍ଦୁଠାରୁ ଭିନ୍ନ ଏକ ବିନ୍ଦୁ Q ନିଆଯାଉ । \overline{QQ} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : $L \perp \overline{OP}$ (ଦଉ)

 \therefore OPQ ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ଏବଂ $\overline{\mathrm{OQ}}$ ଏହାର କର୍ତ୍ତ ।

ଅର୍ଥାତ୍ OQ, ବୃତ୍ତର ବ୍ୟସାର୍ଦ୍ଧ OP ଠାରୁ ବୃହତ୍ତର । $\left(\cdot \cdot \cdot \overrightarrow{OP} \right.$ ଏକ ବ୍ୟାସାର୍ଦ୍ଧ) L ଏଣୁ, Q ବିନ୍ଦୁ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ ।

 \Rightarrow P ବିନ୍ଦୁ ହେଉଛି ବୃତ୍ତ ABC ଓ ରେଖା L ର ଏକମାତ୍ର ସାଧାରଣ ବିନ୍ଦୁ ।

∴ L ରେଖା, ବୃତ୍ତ ABC ର ଏକ ସର୍ଶକ ।

(ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ (1) : ଏକ ବୃତ୍ତର କୌଣସି ଏକ ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁଠାରେ ଉକ୍ତ ସ୍ପର୍ଶକ ପ୍ରତି ଲୟ, କେନ୍ଦ୍ର ବିନ୍ଦୁଗାମୀ ହେବ ।

ଅନୁସିଦ୍ଧାନ୍ତ (2) : ବୃତ୍ତର ଯେକୌଣସି ବିନ୍ଦୁଠାରେ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ସର୍ଶକ ଅଙ୍କିତ ହୋଇପାରିବ । କାରଣ P ବୃତ୍ତ ଉପରିସ୍ଥ ଯେକୌଣସି ବିନ୍ଦୁ ହେଲେ ବ୍ୟାସାର୍ଦ୍ଧ \overline{OP} ର P ଠାରେ \overline{OP} ପ୍ରତି କେବଳ ଗୋଟିଏ ମାତ୍ର ଲୟ ଅଙ୍କିତ ହୋଇପାରିବ । ତେଣୁ ଗୋଟିଏ ବୃତ୍ତର ଅସଂଖ୍ୟ ସ୍ତର୍ଶକ ରହିଅଛି ।

(ଚିତ୍ର 3.3)

ଦ୍ରଷ୍ଟବ୍ୟ : ଚିତ୍ର 3.4 ରେ S ବୃତ୍ତର କେନ୍ଦ୍ର O । ବୃତ୍ତ ଉପରେ ତିନୋଟି ବିନ୍ଦୁ P, $Q \otimes R$ ନିଆଯାଇ ଉକ୍ତ ବିନ୍ଦୁମାନଙ୍କଠାରେ ସ୍ୱର୍ଶକମାନ ଅଙ୍କନ କରାଯାଇଛି । ଯେପରିକି ସେମାନଙ୍କର ଛେଦବିନ୍ଦୁ ମାନଙ୍କ ଦ୍ୱାରା ABC ତ୍ରିଭୁଜ ଗଠିତ ହେଉଛି ଏବଂ ବୃତ୍ତ S,

(ଚିତ୍ର 3.4)

 ΔABC ର ଅନ୍ତର୍ଦେଶରେ ରହିଛି । P,Q,R ବିନ୍ଦୁତ୍ରୟର ବିଭିନ୍ନ ଅବସ୍ଥାନକୁ ନେଇ ଆମେ ଭିନ୍ନ ଭିନ୍ନ ତିଭୁଜ ପାଇବା । ଅନ୍ୟ ପକ୍ଷରେ ଯେ କୌଣସି ଏକ ତିଭୁଜ ABC ଦଉ ଥିଲେ ଏହାର ପ୍ରତ୍ୟେକ ବାହୁକୁ ସ୍ପର୍ଶ କରୁଥିବା କେବଳ ଗୋଟିଏ ମାତ୍ର ବୃଉ PQR ନିର୍ଣ୍ଣୟ କରାଯାଇପାରିବ । ଉକ୍ତ ବୃଉକୁ ତିଭୁଜର ଅନ୍ତର୍ଲିଖିତ ବୃଉ ବା ଅନ୍ତଃବୃଉ (Incircle) କୁହାଯାଏ ଏବଂ ଉକ୍ତ ବୃଉର କେନ୍ଦ୍ର O କୁ ତିଭୁଜର ଅନ୍ତଃକେନ୍ଦ୍ର (Incentre) କୁହାଯାଏ । P,Q,R ସ୍ପର୍ଶ ବିନ୍ଦୁ ହୋଇଥବାରୁ $\overline{OP}, \overline{OQ}, \overline{OR}$ ଯଥାକୁମେ ତିଭୁଜର ବାହୁ $\overline{AB}, \overline{BC}, \emptyset \overline{CA}$ ପ୍ରତି ଲୟ ଅଟନ୍ତି । ଏହା ସହଜରେ ପ୍ରମାଣ କରାଯାଇ ପାରିବ ଯେ \overline{OA} \overline{OB} ଓ \overline{OC} ଯଥାକୁମେ $\angle A, \angle B$ ଓ $\angle C$ ର ସମଦ୍ୱିଷକ ଅଟନ୍ତି । A ବୃଦ୍ଧର ବହିଃସ୍ଥ ବିନ୍ଦୁରୁ ବୃଉ ପ୍ରତି ଅଙ୍କିତ ସ୍ୱର୍ଶକ :

ତୁମ ଖାତାର ଗୋଟିଏ ପୃଷାରେ ବୃତ୍ତଟିଏ ଅଙ୍କନ କର ଏବଂ ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ଗୋଟିଏ ବିନ୍ଦୁ ଚିହ୍ନଟ କରି ତାର ନାମ ଦିଅ P । P ବିନ୍ଦୁ ଦେଇ ଯେତେ ସୟବ ରେଖା ଅଙ୍କନ କର । ଚିତ୍ର 3.5 ଭଳି ଚିତ୍ରଟିଏ ପାଇବ । ସେହି

ଚିତ୍ରରେ P ବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ ଛଅଗୋଟି ରେଖା $L_{_1}, L_{_2}, L_{_3},...L_{_6}$ ମଧ୍ୟରୁ କେବଳ ଦୁଇଟି $L_{_1}$ ଓ $L_{_5}$ ଚିତ୍ରରେ ଥବା ବୃତ୍ତ ପ୍ରତି ୱର୍ଶକ ହୋଇଥିବାର ଦେଖିବ ।

ଏଣୁ ଆମେ ଏହି କାର୍ଯ୍ୟରୁ ଜାଣିଲେ ଯେ ଗୋଟିଏ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଦୁଇଟି ଏବଂ କେବଳ ଦୁଇଟି ସ୍ପର୍ଶକ ଅଙ୍କନ ସମ୍ଭବ (ଅବଶ୍ୟ ଏହା ପ୍ରମାଣ ଯୋଗ୍ୟ ତଥ୍ୟ) । ମାତ୍ର ଏହାର ପ୍ରମାଣ ଆମ ଆଲୋଚନାର ପରିସରଭୁକ୍ତ ନୃହେଁ ।

ବୃଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ରଣ୍ଣି : ଚିତ୍ର 3.5 ରେ P ବିନ୍ଦୁଗାମୀ ରେଖା L_1 ଓ L_5 ପ୍ରତ୍ୟେକ ବୃଦ୍ଧ ପ୍ରତି ସ୍ପର୍ଶକ । ଚିତ୍ରରୁ ସ୍ପଷ୍ଟ ଯେ, $\overrightarrow{PM} \subset L_1$ ଏବଂ $\overrightarrow{PN} \subset L_5$ । ସ୍ପର୍ଶକ L_1 ର ସ୍ୱର୍ଶବିନ୍ଦୁ M, \overrightarrow{PM} ଉପରେ ଅବସ୍ଥିତ ଏବଂ ସ୍ପର୍ଶକ L_5 ର ସ୍ପର୍ଶବିନ୍ଦୁ N, \overrightarrow{PN} ଉପରେ ଅବସ୍ଥିତ ହେତୁ \overrightarrow{PM} ଓ \overrightarrow{PN} ମଧ୍ୟ ବୃଦ୍ଧକୁ ଗୋଟିଏ ଗୋଟିଏ ବିନ୍ଦୁରେ ସ୍ପର୍ଶ କରନ୍ତି । ଏଣୁ ଆମେ \overrightarrow{PM} ଓ \overrightarrow{PN} କୁ ବୃଦ୍ଧ ବହଃସ୍ଥ P ବିନ୍ଦୁରୁ ବୃଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ରଶ୍ମି ବୋଲି କହିବା । ଚିତ୍ର 3.5 ରେ \overrightarrow{PM} ଓ \overrightarrow{PN} ପ୍ରତ୍ୟେକ, ସମ୍ପୃକ୍ତ ବୃଦ୍ଧର ଗୋଟିଏ ଗୋଟିଏ ସ୍ପର୍ଶକ ରଶ୍ମି ଏବଂ M ଓ N ଯଥାକ୍ରମେ \overrightarrow{PM} ଓ \overrightarrow{PN} ର ସ୍ପର୍ଶବିନ୍ଦୁ । ପ୍ରକାଶ ଥାଉକି ପ୍ରତ୍ୟେକ ସ୍ପର୍ଶକ ରଶ୍ମି ବୃଦ୍ଧର ଗୋଟିଏ ଗୋଟିଏ ସ୍ପର୍ଶକ ଅଟନ୍ତି ।

ସର୍ଶକ -ଖଣ୍ଡ (Tangent segment) : ଚିତ୍ର 3.5 ରେ ବୃତ୍ତର ବହିଃସ୍ଥ P ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସର୍ଶକ L_1 ର ସର୍ଶ ବିନ୍ଦୁ M ଏବଂ ସର୍ଶକ L_2 ର ସର୍ଶବିନ୍ଦୁ N ।

 \overline{PM} ଓ \overline{PN} ପ୍ରତ୍ୟେକକୁ ବୃତ୍ତ ବହିଃସ୍ଥ P ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ **ସର୍ଶକ-ଖଣ୍ଡ** କୁହାଯାଏ । ଏକ ସର୍ଶକ ଗୋଟିଏ ରେଖା ହୋଇଥିବାରୁ ଏହାର କୌଣସି ନିର୍ଦ୍ଦିଷ୍ଟ ଦୈର୍ଘ୍ୟ ନ ଥାଏ । ମାତ୍ର ଏକ ସ୍ପର୍ଶକ-ଖଣ୍ଡ ଗୋଟିଏ ରେଖାଖଣ୍ଡ ହୋଇଥିବାରୁ **ଉକ୍ତ ସ୍ପର୍ଶକ ଖଣ୍ଡର ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୈର୍ଘ୍ୟ ଥାଏ ।**

ଟୀକା : 'ବୃତ୍ତ ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ' କହିଲେ ଆମେ ବୃତ୍ତର ସମତଳରେ ତଥା ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ଥିବା ଏକ ବିନ୍ଦୁକୁ ବୁଝିବା ।

ଉପପାଦ୍ୟ - 13

କୌଣସି ବୃତ୍ତର ବହିଃସୁ ଏକ ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ଖଣ୍ଡ ଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ସମାନ । (The lengths of two tangent segments drawn to a circle from an external point are equal.)

ଦତ୍ତ : ବୃତ୍ତ C ର କେନ୍ଦ୍ର O ଏବଂ ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P P ବିନ୍ଦୁରୁ C ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଦୁଇଟି ସ୍ପର୍ଶକ ଖଣ୍ଡ ହେଉଛନ୍ତି \overline{PQ} ଓ \overline{PR} ଏବଂ Q ଓ R ଯଥାକ୍ରମେ ସେମାନଙ୍କର ସ୍ୱର୍ଶବିନ୍ଦୁ I

ପ୍ରାମାଶ୍ୟ : PQ = PR

ଅଙ୍କନ : $\overline{\mathrm{OP}}$, $\overline{\mathrm{OQ}}$ ଏବଂ $\overline{\mathrm{OR}}$ ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଣ: ΔOQP ଏବଂ Δ ORP ରେ

 $\because \begin{cases} \angle OQP \cong \angle ORP \ (ext{ପ୍ରତ୍ୟେକ ସମକୋଣ } I \ \because \ \overline{OQ} \ ext{ଏବଂ } \ \overline{OR} \ ext{ } \ ext{g} \ ext{ଶିବିନ୍ଦୁ ଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ}) \end{cases}$ $\hookrightarrow \begin{cases} \triangle OQP \cong \angle ORP \ (ext{ପ୍ରତ୍ୟେକ ସମକୋଣ } I \ \because \ \overline{OQ} \ ext{ } \ \overline{OQ} \ ext{ } \ \overline{OR} \end{cases} \ (ext{ଏକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ})$

 $\therefore \Delta \ \mathrm{OQP} \cong \Delta \ \mathrm{ORP} \ \ ($ ସ.କ.ବା ସର୍ବସମତା)

 $\Rightarrow \overline{PQ} \cong \overline{PR}$ (ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ ବାହୁ) ଅର୍ଥାତ୍ PQ = PR (ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ - (1) : କୌଣସି ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P ଠାରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ଖଣ୍ଡ \overline{PQ} ଓ \overline{PR} ହେଲେ ଏବଂ O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ, \overline{PO} , $\angle QPR$ ଏବଂ $\angle QOR$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।

ଊପରୋକ୍ତ ଉପପାଦ୍ୟ-13 ରେ ପ୍ରମାଣ କରାଯାଇଛି : $\Delta OQP \cong \Delta ORP$

 \Rightarrow $\angle \mathrm{OPQ}\cong \angle \mathrm{OPR}$ (ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ) ।

ଅର୍ଥାତ୍ \overline{PO} ଦ୍ୱାରା $\angle QPR$ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ ।

ପୁନଷ ∠POQ ≅ ∠POR

(ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ) ।

ଅର୍ଥାତ୍ \overline{PO} ଦ୍ୱାରା $\angle QOR$ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ) ।

ଅନୁସିଦ୍ଧାନ୍ତ - (2) : କୌଣସି ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P ଠାରୁ ଅଙ୍କିତ ସ୍ୱର୍ଶକ ଖଣ୍ଡ \overline{PQ} ଓ \overline{PR} ହେଲେ ଏବଂ ବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ \overline{PO} , O ଚାପକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।

ଚିତ୍ର 3.7 ରେ \overline{PO} ବୃତ୍ତକୁ M ବିନ୍ଦୁରେ ଛେଦ କରୁଛି । m $\angle QOM = m\angle ROM$ ହେତୁ \overline{QM} ଓ \overline{MR} (ଅଙ୍କନ କରାଯାଇପାରେ) ଜ୍ୟା ଦ୍ୱୟ ସର୍ବସମ । ସୁତରାଂ M, \widehat{QMR} ର ମଧ୍ୟବିନ୍ଦୁ ।

3.3 ଏକାନ୍ତର ଚାପ (Alternate arc) :

ଚିତ୍ର 3.8 ରେ ଥିବା \overrightarrow{ABC} ବୃତ୍ତର \overrightarrow{TA} କ୍ୟା ମଧ୍ୟ ଅଙ୍କିତ । \overrightarrow{TA} କ୍ୟାକୁ \overrightarrow{PQ} ୱର୍ଣ୍ଣକର **ସର୍ଶବିନ୍ଦୁଗାମୀ କ୍ୟା** ବୋଲି କୁହାଯାଏ ।

ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ଜ୍ୟା $\overline{\mathrm{TA}}$, ସ୍ୱର୍ଶକ $\overrightarrow{\mathrm{PQ}}$ ସହ $\angle\mathrm{ATP}$ ଓ $\angle\mathrm{ATQ}$ ଅଙ୍କନ କରେ । ଜ୍ୟା $\overline{\mathrm{TA}}$ ଦ୍ୱାରା ବୃତ୍ତ

 \overrightarrow{ABC} ଉପରେ ଦୁଇଟି ଚାପ \overrightarrow{ABT} ଓ \overrightarrow{ADT} ଉପ୍ନ ହୁଏ । ଏହା ଲକ୍ଷ୍ୟ କରାଯାଇ ପାରେ ଯେ \overrightarrow{TA} କ୍ୟାର ଯେଉଁ ପାର୍ଶ୍ୱରେ ୱର୍ଶକ ଉପରିସ୍ଥ P ବିନ୍ଦୁ ଅବସ୍ଥିତ, ତା'ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ବୃତ୍ତ ଉପରେ B ବିନ୍ଦୁ ଅବସ୍ଥିତ । ଏଠାରେ \overrightarrow{ABT} କୁ $\angle ATP$ ର **ଏକାନ୍ତର ଚାପ** କୁହାଯାଏ ଏବଂ ଏହି ଚାପର ଅନ୍ତର୍ଲିଖିତ $\angle ABT$ କୁ $\angle ATP$ ର **ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ**

କୁହାଯାଏ । $\angle ACT$ ମଧ୍ୟ $\angle ATP$ ର ଅନ୍ୟ ଏକ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ଅଟେ । ଅନୁରୂପ କାରଣରୁ $\angle ATQ$ ର ଏକାନ୍ତର ଚାପ ହେଉଛି \widehat{ADT} ଏବଂ ଏକ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ହେଉଛି $\angle ADT$ ।

3.3.1 ଏକ ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁଗାମୀ କ୍ୟା ଓ ଉକ୍ତ ସ୍ପର୍ଶକ ଅନ୍ତର୍ଗତ କୋଣ ସମ୍ପର୍କିତ ତଥ୍ୟ :

ଏକ ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁଗାମୀ ଜ୍ୟା ଏବଂ ଉକ୍ତ ସ୍ପର୍ଶକ ଅନ୍ତର୍ଗତ କୋଣ ସହ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣର ସମ୍ପର୍କକୁ ଆମେ ପରବର୍ତ୍ତୀ ପ୍ରମେୟରେ ପଢ଼ିବା ।

ପ୍ରମେୟ - 3.2 : ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକ, ଏହାର ସ୍ପର୍ଶବିନ୍ଦୁଗାମୀ କୌଣସି ଏକ କ୍ୟା ସହିତ ଯେଉଁ କୋଣ ଉପୁନ୍ନ କରେ, ତା'ର ପରିମାଣ ସହ ଉକ୍ତ କୋଣର ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣର ପରିମାଣ ସମାନ ।

(The measure of an angle formed by a tangent to a circle and a chord through the point of contact is equal to the measure of an angle inscribed in the alternate arc.)

ଦତ : O କେନ୍ଦ୍ର ବିଶିଷ୍ଟ ବୃତ୍ତ PQR ର P ବିନ୍ଦୁରେ ଅଙ୍କିତ ସ୍ୱର୍ଶକ \overrightarrow{AB} ଏବଂ \overrightarrow{PQ} , ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ଏକ ଜ୍ୟା (ଚିତ୍ର 3.9) । \overrightarrow{AB} ସହ \overrightarrow{PQ} ଉପ୍ନ କରୁଥିବା କୋଣ ଦୁଇଟି ହେଲେ $\angle APQ$ ଏବଂ $\angle BPQ$ । $\angle APQ$ ର ଏକାନ୍ତର ଚାପ \overrightarrow{PRQ} ଏବଂ $\angle APQ$ ର ଗୋଟିଏ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ $\angle PRQ$ । ସେହିପରି $\angle BPQ$ ର ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ $\angle PSQ$ । $\nearrow R$

ସିଦ୍ଧାନ୍ତ : (i) m∠APQ = m ∠PRQ

(ii) m \angle BPQ = m \angle PSQ

ପ୍ରମେୟ - 3.3 : (ପ୍ରମେୟ 3.2 ର ବିପରୀତ କଥନ) :

ଏକ ବୃତ୍ତର କୌଣସି ଏକ ଜ୍ୟା, ଏହାର ଏକ ପ୍ରାନ୍ତବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ ଏକ ସରଳରେଖା ସହ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ କରେ, ତାହା ଉକ୍ତ କୋଣର ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ସହ ସମପରିମାଣ ବିଶିଷ୍ଟ ହେଲେ, ସରଳରେଖାଟି ବୃତ୍ତ ପ୍ରତି ଏକ ସ୍ପର୍ଶକ ହେବ ।

(If the angle which a chord makes with the straight line drawn through one end of it is equal in measure to the angle inscribed in the alternate arc of the angle, then the line is a tangent to the circle.)

ଦଉ : PQR ବୃତ୍ତର \overline{PQ} ଏକ ଜ୍ୟା ଏବଂ P ବିନ୍ଦୁଗାମୀ ଏକ ସରଳରେଖା \overleftarrow{AB} । ∠ \overrightarrow{APQ} ର ଏକାନ୍ତର

ଚାପାନ୍ତର୍ଲିଖିତ ଏକ କୋଣ ∠PRQ ା m∠APQ = m ∠PRQ

ସିଦ୍ଧାନ୍ତ : \overrightarrow{AB} ହେଉଛି PQR ବୃତ୍ତର P ବିନ୍ଦୁରେ ସର୍ଶକ ।

ମନ୍ତବ୍ୟ : ପ୍ରମେୟ 3.2 ଏବଂ ପ୍ରମେୟ 3.3ର ପ୍ରମାଣ ଆମର ଆଲୋଚନାର ପରିସରଭୁକ୍ତ ନୁହେଁ; କେବଳ ପ୍ରୟୋଗ ଦୃଷ୍ଟିରୁ ସିଦ୍ଧାନ୍ତକୁ ମନେ ରଖିବା ଉଚିତ ।

O

(ଚିତ୍ର 3.9)

3.4 ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ ଦେଇ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଛେଦକ :

ଚିତ୍ର 3.11(a) ରେ L ରେଖା ABC ବୃତ୍ତର ଏକ ଛେଦକ ରେଖା ଏବଂ ଏହା ବୃତ୍ତ ABC କୁ A ଓ B ବିନ୍ଦୁରେ ଛେଦ କରୁଛି $\mid A,B \mid$ ଏବଂ A ଓ B ର ମଧ୍ୟବର୍ତ୍ତୀ ସମୟ ବିନ୍ଦୁ ଭିନ୍ନ L ରେଖା ଉପରିସ୍ଥ ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ବୃତ୍ତ ABC ର ବହିଃସ୍ଥ \mid

ଚିତ୍ର 3.11(b) ରେ ବୃତ୍ତ ବହିଃସ୍ଥ P ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବିନ୍ଦୁ । ଏଠାରେ ଛେଦକ ରେଖା L,P ବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ । P ବିନ୍ଦୁ ଦେଇ ବୃତ୍ତ ABC ର ଅନ୍ୟ ଛେଦକ ରେଖା ହେଉଛି $L_{_1}$ । ଏହିଭଳି P ବିନ୍ଦୁ ଦେଇ ଅସଂଖ୍ୟ ଛେଦକ ଅଙ୍କନ ସୟବ ।

ଉପପାଦ୍ୟ - 14

ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ଗୋଟିଏ ବିନ୍ଦୁ P ଦେଇ ବୃତ୍ତ ପ୍ରତି ଏକ ସ୍ପର୍ଶକ-ଖଣ୍ଡ \overline{PT} ଏବଂ ଏକ ହେଦକ $\overset{\longleftarrow}{PAB}$ ଅଙ୍କିତ ହେଲେ, $PA \times PB = PT^2$ |

(If from an external point P of a circle a tangent segment \overline{PT} and a secant \overline{PAB} are drawn, then PA x PB = PT².)

ଦଉ : TBA ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ P ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ । P ବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ ଛେଦକ, ବୃତ୍ତକୁ A ଓ B ବିନ୍ଦୁରେ ଛେଦ କରେ ଏବଂ $\stackrel{\longleftarrow}{PT}$ ସ୍ୱର୍ଶକ, ବୃତ୍ତକୁ T ବିନ୍ଦୁରେ ସ୍ୱର୍ଶ କରେ ।

ପାମାଶ୍ୟ : PA x PB = PT²

ଅଙ୍କନ : $\overline{\mathrm{TA}}$ ଓ $\overline{\mathrm{TB}}$ ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଣ : TAB ବୃତ୍ତର T ବିନ୍ଦୁରେ \overleftarrow{PT} ସ୍ୱର୍ଶକ ଏବଂ \overrightarrow{TA} ହେଉଛି ଏକ ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ଜ୍ୟା । \therefore m \angle PTA = m \angle TBA (ପ୍ରମେୟ - 3.2)

 ΔPTA ଏବଂ ΔPBT ମଧ୍ୟରେ $= m \angle TPA = m \angle TPB \text{ (ସାଧାରଣ କୋଣ) ଏବଂ}$ $= m \angle TBP$

 $\therefore \Delta PTA \sim \Delta PBT \;\; (କୋ-କୋ ସାଦୃଶ୍ୟ)$

ମନ୍ତବ୍ୟ (i) : ଉପରୋକ୍ତ ପ୍ରମାଣରେ, ଛେଦକ ଉପରିସ୍ଥ ବିନ୍ଦୁ $P, A \otimes B = P - A - B$ ରୂପେ ନିଆଯାଇଛି । ସେ ବିନ୍ଦୁ ଡିନୋଟିକୁ P - B - A ରୂପେ ନିଆଗଲେ ମଧ୍ୟ ପ୍ରମାଣରେ କିଛି ପରିବର୍ତ୍ତନ ହେବ ନାହିଁ I

ମନ୍ତବ୍ୟ (ii): ପୂର୍ବ ପ୍ରମାଶିତ ଉପପାଦ୍ୟର ପ୍ରମାଶ କଲାବେଳେ ଚିତ୍ର 3.13 ଭଳି ମଧ୍ୟ ଚିତ୍ର କରାଯା।ଇପାରେ ।

ଅନୁସିଦ୍ଧାନ୍ତ -1: ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ଏକ ବିନ୍ଦୁ P ଦେଇ ଦୁଇଟି ଛେଦକ ଯଦି ବୃତ୍ତକୁ ଯଥାକ୍ରମେ A,B ଓ C,D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି, ତେବେ ସ୍ୱର୍ଶକ \overrightarrow{PT} (ସ୍ୱର୍ଶବିନ୍ଦୁ T) ଅଙ୍କନ କରି ପ୍ରମାଣ କରାଯାଇପାରିବ ଯେ,

 $PA \times PB = PC \times PD$

3.5 ଏକାଧିକ ବୃତ୍ତ ସୟନ୍ଧୀୟ କେତେକ ତଥ୍ୟ:

ଏକ ସମତଳରେ ଅଙ୍କିତ ଦୁଇଟି $\mathbf{S}_{_{1}}$ ଓ $\mathbf{S}_{_{2}}$ ର ବିଭିନ୍ନ ଅବସ୍ଥିତି ନିମ୍ନ ଚିତ୍ରମାନଙ୍କରେ ଦର୍ଶାଯାଇଛି ।

(a) ପରୟର ଅଣଛେଦୀ ବୃତ୍ତ:

ଚିତ୍ର 3.15~(a)ରେ ଥିବା ବୃତ୍ତ $\mathbf{S}_1~$ ଓ $\mathbf{S}_2~$ ପରୟର ଅଣଛେଦୀ ଏବଂ ପରୟରର ବହିଃସ୍ଥ ।

ଚିତ୍ର $3.15\,(c)$ ରେ ଥିବା ବୃତ୍ତ $S_{_1}\,$ ଓ $S_{_2}\,$ ପରଷର ଅଣଛେଦୀ ଏବଂ ବୃତ୍ତ $S_{_1}\,$ ଅନ୍ୟ ବୃତ୍ତ $S_{_2}\,$ ର ଅନ୍ତଃସ୍ଥ ଏବଂ ଉଭୟ ବୃତ୍ତର କେନ୍ଦ୍ର ଅଭିନ୍ନ । ଏପରି ବୃତ୍ତଦ୍ୱୟକୁ ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତ (Concentric circle) କୁହାଯାଏ ।

ଦୁଇଟିରୁ ଅଧିକ ସଂଖ୍ୟକ ବୃତ୍ତ ମଧ୍ୟ ଏକକେନ୍ଦ୍ରିକ ହୋଇପାରନ୍ତି ।

ଦୁଇଟି ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତର ସଂଯୋଗରେ ଏକ ବୃତ୍ତାକୃତି ବଳୟ (Circular annulus) ଗଠିତ ହୁଏ । ଏକ ବୃତ୍ତାକୃତି ବଳୟ ଓ ଏହା ସହ ସଂପୃକ୍ତ ବହିଃସ୍ଥ ବୃତ୍ତର ଅନ୍ତର୍ଦେଶ ଓ ଅନ୍ତଃସ୍ଥ ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶର ଛେଦ ଦ୍ୱାରା ଗଠିତ କ୍ଷେତ୍ରକୁ ବଳୟାକୃତି କ୍ଷେତ୍ର (Annular Region) କୁହାଯାଏ ।

(b) ଗୋଟିଏ ସାଧାରଣ ବିନ୍ଦୁ ଥିବା ବୃତ୍ତ I

ଚିତ୍ର 3.16~(a)ରେ $\mathbf{S}_{_1}~$ ଓ $\mathbf{S}_{_2}~$ ବୃତ୍ତ ଦ୍ୱୟର ଗୋଟିଏ ସାଧାରଣ ବିନ୍ଦୁ ଅଛି ଓ ତାହା ହେଉଛି $\mathbf{P}~$ ।

ଚିତ୍ର 3.16 (b)ରେ S_1 ଓ S_2 ବୃତ୍ତ ଦ୍ୱୟର ଗୋଟିଏ ସାଧାରଣ ବିନ୍ଦୁ ଅଛି ଓ ତାହା ହେଉଛି P । ଏଠାରେ S_2 ବୃତ୍ତର କେନ୍ଦ୍ର, S_1 ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ । (a) ଓ (b) ପ୍ରତ୍ୟେକ ଚିତ୍ରରେ ଥିବା ବୃତ୍ତ ଯୋଡ଼ିକୁ **ସ୍ଧର୍ଶକବୃତ୍ତ** (tangent circles) କୁହାଯାଏ । ଚିତ୍ର(a)ରେ ଥିବା ସ୍ୱର୍ଶକବୃତ୍ତ ଦ୍ୱୟଙ୍କୁ **ବହିଃସର୍ଶୀ ବୃତ୍ତ** (Externally tangent circles) ଓ ଚିତ୍ର (b)ରେ ଥିବା ସ୍ୱର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟଙ୍କୁ ଅ**ତଃସର୍ଶୀ ବୃତ୍ତ** (Internally tangent circles) କୁହାଯାଏ ।

(c) ଦୁଇଟି ବିନ୍ଦୁରେ ପରୟରକୁ ଛେଦ କରୁଥିବା ବୃତ୍ତ :

ଚିତ୍ର 3.17 (a) ଓ (b) ପ୍ରତ୍ୟେକରେ ଥିବା ବୃତ୍ତ S_1 ଓ S_2 ପରୟରକୁ ଦୁଇଟି ବିନ୍ଦୁ P ଓ Q ରେ ଛେଦ କରନ୍ତି । ଚିତ୍ର (a) ଓ (b)ରେ ବୃତ୍ତଯୋଡ଼ିଦ୍ୱୟ ମଧ୍ୟରେ ବିଶେଷ କିଛି ପାର୍ଥକ୍ୟ ନାହିଁ । (a) ଚିତ୍ରରେ ଥିବା ବୃତ୍ତଦ୍ୱୟର କେନ୍ଦ୍ର ଦୁଇଟି ଉଭୟ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ ଥିବା ବେଳେ (b) ଚିତ୍ରରେ ଥବା ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର ଦୁଇଟି ମଧ୍ୟରୁ ପ୍ରତ୍ୟେକ କେବଳ ଗୋଟିଏ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ ।

ଚିତ୍ର 3.18 ରେ ମଧ୍ୟ ଦୁଇଟି ବିନ୍ଦୁରେ ପରସ୍ପରକୁ ଛେଦ କରୁଥିବା ଦୁଇଟି ବୃତ୍ତ S_1 ଓ S_2 ଦର୍ଶାଯାଇଛି । P ଓ Q ହେଉଛନ୍ତି ବୃତ୍ତ ଦ୍ୱୟର ଛେଦବିନ୍ଦୁ । $\stackrel{\longleftarrow}{PQ}$ ରେଖାକୁ ବୃତ୍ତ ଦ୍ୱୟର **ରାଡ଼ିକାଲ୍ ଅକ୍ଷ (Radical axis)** କୁହାଯାଏ । $\stackrel{\longleftarrow}{N}$ ରେଖାକୁ ବୃତ୍ତ ଦ୍ୱୟର **ରାଡ଼ିକାଲ୍ ଅକ୍ଷ (Qaba ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକଖ**ଣ୍ଡ ଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ସମାନ ।

ରାଡ଼ିକାଲ୍ ଅକ୍ଷ ସମ୍ଭନ୍ଧରେ ଉଚ୍ଚତର ଗଣିତରେ ଅଧିକ ଜାଣିବ । \overline{PQ} ରେଖାଖଣ୍ଡକୁ ବୃତ୍ତ ଦ୍ୱୟର **ସାଧାରଣ ଜ୍ୟା** (Common chord) କୁହାଯାଏ ।

(ଚିତ୍ର 3.18)

3.6 ସାଧାରଣ ସର୍ଶକ (Common Tangents)

ଏକ ସମତଳରେ ଥିବା ଦୁଇଟି ବୃତ୍ତକୁ ସେହି ସମତଳରେ ଯେଉଁ ସରଳରେଖା ସ୍ପର୍ଶ କରେ ତାକୁ ଉକ୍ତ ବୃତ୍ତ ଦ୍ୱୟର ସାଧାରଣ ସ୍ପର୍ଶକ (Common tangent) କୁହାଯାଏ । ବିଭିନ୍ନ ପ୍ରକାର ଅବସ୍ଥିତିରେ ଦୁଇଟି ବୃତ୍ତର ସାଧାରଣ ସ୍ପର୍ଶକର ଚିତ୍ର ନିମ୍ବରେ ଦର୍ଶାଯାଇଛି ।

(a) ପରୟର ଅଣଛେଦୀ ବୃତ୍ତର ସାଧାରଣ ୟର୍ଶକ:

ଚିତ୍ର 3.19 (a) ଓ (b) ପ୍ରତ୍ୟେକରେ ଦୁଇଟି ଅଣଛେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଚିତ୍ର ଦର୍ଶାଯାଇଛି । ଚିତ୍ର 3.19 (a)ରେ ଥିବା S_1 ଓ S_2 ଉଭୟ ବୃତ୍ତକୁ L_1 ସରଳରେଖା ସ୍ୱର୍ଶ କରୁଛି । ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର O_1 ଓ O_2 ଉଭୟ C_1 ରେଖାର ଗୋଟିଏ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଏପରି ସ୍ଥଳେ C_1 ରେଖାକୁ ବୃତ୍ତଦ୍ୱୟର **ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ (direct common tangent)** କୁହାଯାଏ । C_2 ରେଖା ମଧ୍ୟ ଚିତ୍ର C_2 ଉତ୍ତର ଥିବା ବୃତ୍ତ ଦ୍ୱୟର ଅନ୍ୟ ଏକ ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ । ଏଣୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଦୁଇଟି ଅଣଛେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଦୁଇଗୋଟି ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ଥାଏ (ଚିତ୍ର C_2 C_2 ଓଡ଼େ ଅଣ୍ଟେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଦୁଇଗୋଟି ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ଥାଏ (ଚିତ୍ର C_2 C_2 ଓଡ଼େ ଓଡ଼ିଆ ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଦୁଇଗୋଟି ସରଳ

ଚିତ୍ର 3.19~(b)ରେ ଥିବା $S_3~$ ଓ $S_4~$ ବୃତ୍ତ ଦ୍ୱୟକୁ L_3 ସରଳରେଖା ସ୍ପର୍ଶ କରୁଛି ଏବଂ ଲକ୍ଷ୍ୟ କରାଯାଇପାରେ ଯେ କେନ୍ଦ୍ର $O_3~$ ଏବଂ O_4 , $L_3~$ ରେଖାର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅଛନ୍ତି । ଏପରି କ୍ଷେତ୍ରରେ, ବୃତ୍ତ ଦ୍ୱୟର ସାଧାରଣ ସ୍ପର୍ଶକକୁ **ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସର୍ଶକ (transverse common tangent)** କୁହାଯାଏ ।

ଚିତ୍ରରୁ ସମ୍ବ ଯେ ଦୁଇଟି ଅଣଛେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତ ଲାଗି ଦୁଇଟି ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ଥାଏ ।(ଚିତ୍ର 3.19 (b))

ଚିତ୍ର 3.20 ରେ ଦୁଇଟି ଅଣଛେଦୀ ବୃତ୍ତ \mathbb{S}_1 ଓ \mathbb{S}_2 ମଧ୍ୟରୁ \mathbb{S}_2 ବୃତ୍ତ \mathbb{S}_1 ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ । ଏଣୁ ଏପରି କ୍ଷେତ୍ରରେ କୌଣସି ସାଧାରଣ ସ୍ପର୍ଶକ ରହିବା ସମ୍ପବ ନୁହେଁ ।

- (i) ବହିଃୟର୍ଶୀ ସର୍ଶକ ବୃତ୍ତର ସରଳ ସାଧାରଣ ସର୍ଶକ : ଚିତ୍ର 3.21~(a)ରେ $S_1~$ ଓ $S_2~$ ବୃତ୍ତ ଦ୍ୱୟ ସର୍ଶକ ବୃତ୍ତ (ବହିଃସର୍ଶୀ) $L_1~$ ଓ $L_2~$ ଉଭୟ $S_1~$ ଓ $S_2~$ ବୃତ୍ତ ଦ୍ୱୟର ସରଳ ସାଧାରଣ ସର୍ଶକ ।
 - (ii) ବହିଃୟର୍ଶୀ ୟର୍ଶକ ବୃତ୍ତର ତୀର୍ଯ୍ୟକ ସାଧାରଣ ୟର୍ଶକ :
- 3.21~(b) ରେ ${
 m S_3}~$ ଓ ${
 m S_4}~$ ବହିଃସର୍ଶୀ ସର୍ଶକ ବୃତ୍ତ । ${
 m L_3}~$ ହେଉଛି ବୃତ୍ତ ଦ୍ୱୟର ତୀର୍ଯ୍ୟକ ସାଧାରଣ ସର୍ଶକ । ଏହା ବୃତ୍ତ ଦ୍ୱୟର ସର୍ଶ ବିନ୍ଦୁରେ ହିଁ ବୃତ୍ତ ଦ୍ୱୟକୁ ସର୍ଶ କରୁଛି ।
 - (iii) ଅତଃୟର୍ଶୀ ୟର୍ଶକ ବୃତ୍ତର ସରଳ ସାଧାରଣ ୟର୍ଶକ:
- ଚିତ୍ର 3.21 (c) ରେ $S_{_5}$ ଓ $S_{_6}$ ବୃତ୍ତ ଦ୍ୱୟ ଅନ୍ତଃସର୍ଶୀ ସର୍ଶକ ବୃତ୍ତ । $L_{_4}$ ରେଖା ଉଭୟ ବୃତ୍ତର ସର୍ଶ ବିନ୍ଦୁରେ ବୃତ୍ତ ଦ୍ୱୟକୁ ସର୍ଶ କରୁଛି । ଏହା ହେଉଛି ବୃତ୍ତ ଦ୍ୱୟର ସରଳ ସାଧାରଣ ସର୍ଶକ ।
- ଚିତ୍ର 3.21 (a) ଓ (c) କ୍ଷେତ୍ରରେ ସ୍କର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟ ପ୍ରତି ଅଙ୍କିତ ସରଳ ସାଧାରଣ ସ୍କର୍ଶକ ଏବଂ ଚିତ୍ର 3.21 (b) କ୍ଷେତ୍ରରେ ସ୍ୱର୍ଶକବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ତୀର୍ଯ୍ୟକ ସାଧାରଣ ସ୍ୱର୍ଶକ । କାହିଁକି ?

(c) ପରୟରଚ୍ଛେଦୀ ଦୁଇଟି ଚ୍ଛେଦ ବିନ୍ଦୁ ଥିବା ବୃତ୍ତର

ସାଧାରଣ ସର୍ଶକ :

ଚିତ୍ର 3.22 ରେ \mathbf{S}_1 ଓ \mathbf{S}_2 ବୃତ୍ତ ଦ୍ୱୟ ପରସ୍ପରକୁ \mathbf{A} ଓ \mathbf{B} ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ଏଠାରେ \mathbf{L}_1 ଓ \mathbf{L}_2 ରେଖାଦ୍ୱୟ ପ୍ରତ୍ୟେକ \mathbf{S}_1 ଓ \mathbf{S}_2 ବୃତ୍ତ ଦ୍ୱୟକୁ ସ୍ୱର୍ଶ କରନ୍ତି । ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର \mathbf{O}_1 ଏବଂ \mathbf{O}_2 ଉଭୟ \mathbf{L}_1 ର ଗୋଟିଏ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । \mathbf{O}_1 ଏବଂ \mathbf{O}_2 ଉଭୟ \mathbf{L}_2 ର ମଧ୍ୟ ଗୋଟିଏ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଏଣୁ \mathbf{L}_1 ଓ \mathbf{L}_2 ପ୍ରତ୍ୟେକ, \mathbf{S}_1 ଓ \mathbf{S}_2 ବୃତ୍ତ ଦ୍ୱୟର ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ।

3.7 ଦୁଇଟି ୟର୍ଶକ-ବୃତ୍ତର ସର୍ଶବିନ୍ଦୁ ଓ ସେମାନଙ୍କର କେନ୍ଦ୍ରଦ୍ୱୟର ଆପେକ୍ଷିକ ଅବସ୍ଥିତି :

ପରୟ୍ବରକୁ ଧ୍ୱର୍ଶ କରୁଥିବା ଦୁଇଟି ବୃତ୍ତର ଧ୍ୱର୍ଶବିନ୍ଦୁ ଏବଂ ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର ,ଏହିପରି ତିନୋଟି ବିନ୍ଦୁର ଆପେକ୍ଷିକ ଅବସ୍ଥିତି ସମ୍ବନ୍ଧରେ ପରବର୍ତ୍ତୀ ଉପପାଦ୍ୟରେ ପଢ଼ିବା ।

ଉପପାଦ୍ୟ - 15

ଦୁଇଟି ସର୍ଶକ ବୃତ୍ତର କେନ୍ଦ୍ର ଦୃୟ ଓ ସର୍ଶବିନ୍ଦୁ ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ।

(The centres of two tangent circles and their point of contact are collinear)

ଦତ : S_1 ଓ S_2 ସ୍ୱର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟର ସ୍ୱର୍ଶବିନ୍ଦୁ P ଏବଂ ସେମାନଙ୍କର କେନ୍ଦ୍ର ଯଥାକୁମେ O_1 ଏବଂ O_2 । ଚିତ୍ର 3.23ରେ ବୃତ୍ତ ଦ୍ୱୟ ବହିଃସ୍ୱର୍ଶୀ ଏବଂ ଚିତ୍ର 3.24ରେ ବୃତ୍ତ ଦ୍ୱୟ ଅନ୍ତଃସ୍ୱର୍ଶୀ ।

ପ୍ରାମାଣ୍ୟ : O1, O, ଏବଂ P ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ।

ଅଙ୍କନ : ବୃତ୍ତ ଦ୍ୱୟର ସ୍ୱର୍ଶ ବିନ୍ଦୁରେ ସାଧାରଣ ସ୍ୱର୍ଶକ \overrightarrow{PT} ଅଙ୍କନ କରାଯାଉ ଏବଂ ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ $\overline{PO_1}$ ଓ $\overline{PO_2}$ ଅଙ୍କନ କରାଯାଉ । (ଚିତ୍ର 3.23 ଓ ଚିତ୍ର 3.24 ରେ ଯଥାକ୍ରମେ ତୀର୍ଯ୍ୟକ ସାଧାରଣ ସ୍ୱର୍ଶକ ଏବଂ ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ଅଙ୍କିତ ହୋଇଛି ।)

$$\therefore \overrightarrow{O_2P} \perp \overrightarrow{PT} \Rightarrow \overrightarrow{O_2P} \perp \overrightarrow{PT}$$

ମାତ୍ର $\stackrel{\longleftarrow}{PT}$ ର P ବିନ୍ଦୁରେ ଗୋଟିଏ ଓ କେବଳ ଗୋଟିଏ ଲୟ ସୟବ । $\stackrel{\longleftarrow}{\dots}$ $\stackrel{\longleftarrow}{O_1P}$ ଏବଂ $\stackrel{\longleftarrow}{O_2P}$ ରେଖାଦ୍ୱୟ ଅଭିନ୍ନ । ଏଣୁ O_1 , O_2 ଓ P ବିନ୍ଦୁତ୍ରୟ ଏକ ରେଖାରେ ଅବସ୍ଥିତ । (ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ -1 : ଦୁଇଟି ବହିଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଦ୍ୱୟର ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା, ଉକ୍ତ ବୃତ୍ତ ଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧର ସମଷ୍ଟି ସହ ସମାନ [ଚିତ୍ର 3.25~(a)]

ଅନୁସିଦ୍ଧାନ୍ତ - 2 : ଦୁଇଟି ଅନ୍ତଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ରଦ୍ୱୟ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା, ଉକ୍ତ ବୃତ୍ତଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧର ଅନ୍ତର ସହ ସମାନ $[(\hat{9} + \hat{9} + \hat{9}$

ଚିତ୍ର 3.25 (a)ରେ
$$O_1O_2 = O_1P + O_2P [\because O_1-P-O_2]$$

ଚିତ୍ର 3.25 (b)ରେ $O_1O_2 = O_1P - O_2P [\because O_1-O_2-P]$

ସ୍ପର୍ଶକ ସୟନ୍ଧୀୟ କେତେକ ଉଦାହରଣ :

ଜଦାହରଣ -1 : ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ଏକ ବିନ୍ଦୁ P ଠାରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ରଶ୍ମି \overrightarrow{PA} ଓ \overrightarrow{PB} ର ସ୍ପର୍ଶବିନ୍ଦୁ ଯଥାକ୍ରମେ A ଓ B । $m\angle APB = 42^\circ$ ହେଲେ A ଓ B ପ୍ରାନ୍ତ ବିନ୍ଦୁ ବିଶିଷ୍ଟ କ୍ଷୁଦ୍ରଚାପର ଅନ୍ତଲିଖିତ ଏକ କୋଣର ପରିମାଣ କେତେ ?

ଦତ୍ତ : ଚିତ୍ର 3.26 ରେ ଥିବା ବୃତ୍ତ ABCର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overrightarrow{PA} ଓ \overrightarrow{PB} ସ୍ୱର୍ଶକ ରଶ୍ମିଦ୍ୱୟର ସ୍ୱର୍ଶବିନ୍ଦୁ ଯଥାକ୍ରମେ A ଓ B ।

 $\widehat{A \times B}$ ହେଉଛି A ଓ B ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ କ୍ଷୁଦ୍ରଚାପ ।

 $\angle {
m AXB}$ ହେଉଛି $\widehat{{
m AXB}}$ ଚାପର ଅନ୍ତର୍ଲିଖିତ ଗୋଟିଏ କୋଣ ।

$$m\angle APB = 42^{\circ}$$

ନିର୍ଷ୍ୟେ: m∠AXB

ଅଙ୍କନ : \overline{AB} କ୍ୟା ଅଙ୍କନ କରାଯାଉ ।

 \Rightarrow $(a+b)^0 + (a+b)^0 + 42^0 = 180^0$

ସମାଧାନ : ସ୍ୱର୍ଶକ $\stackrel{\longleftarrow}{PB}$ ଓ $\stackrel{\longleftarrow}{BX}$ ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ କ୍ୟା ହେତୁ, m $\angle XBP = m\angle BAX$ (ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ) । ମନେକର m $\angle XBP = m\angle BAX = a^0$ ହେଉ । ସେହି କାରଣରୁ $m\angle XAP = m\angle ABX = b^0$ ହେଉ । $m\angle PAB = (a+b)^0$ ଏବଂ m $\angle PBA = (a+b)^0$ ΔPAB ରେ, $m\angle PAB + m\angle PBA + m\angle APB = 180^0$

$$\Rightarrow 2(a+b) = 180 - 42 \Rightarrow 2(a+b) = 138 \Rightarrow a+b = \frac{138}{2} = 69 \dots (1)$$

 $\triangle AXB$ 60 $m\angle AXB + m\angle XAB + m\angle XBA = 180^{\circ}$

$$\Rightarrow$$
 m \angle AXB + a⁰ + b⁰ = 180⁰ \Rightarrow m \angle AXB + 69⁰ = 180⁰ [(1) ଅନୁଯାୟୀ]

$$\Rightarrow$$
 m \angle AXB = 180 $^{\circ}$ - 69 $^{\circ}$ = 111 $^{\circ}$ (ଉଉର)

ଉଦାହରଣ -2 : ଦୁଇଟି ବହିଃୟର୍ଶୀ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ \mathbf{r}_1 ଓ \mathbf{r}_2 ଏକକ । ବୃତ୍ତଦ୍ୱୟର ଏକ ସରଳ ସାଧାରଣ ସର୍ଶକ ଉପରିସ୍ଥ ସର୍ଶବିନ୍ଦୁ \mathbf{P} ଓ \mathbf{Q} ହେଲେ $\overline{\mathbf{PQ}}$ ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।

ଦତ୍ତ : ଚିତ୍ର 3.27 ରେ . \overrightarrow{PQ} ହେଉଛି ବହିଃୟର୍ଶୀ ବୃତ୍ତ ଦ୍ୱୟର ଏକ ସରଳ ସାଧାରଣ ୟର୍ଶକ । \overrightarrow{AP} ଓ \overrightarrow{BQ} ହେଉଛନ୍ତି ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ । ମନେକର $AP=r_1$, $BQ=r_2$ ଏବଂ $r_1 \ge r_2$ ।

ନିର୍ଣେୟ : PO ର ଦୈର୍ଘ୍ୟ ।

ଅଙ୍କନ : $\overline{\mathrm{BC}} \perp \overline{\mathrm{AP}}$ ଅଙ୍କନ କରାଯାଉ ।

ସମାଧାନ: ∠APQ ଓ ∠BQP ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ସମକୋଣ

 $[\overline{\mathrm{AP}} \ {}^{\mathrm{g}} \ \overline{\mathrm{BQ}} \ {}^{\mathrm{g}}$ ସୂର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ହେତୁ]

∠BCP ସମକୋଶ (ଅଙ୍କନ ଅନୁଯାୟୀ) ।

ଏଣୁ BCPQ ଚତୁର୍ଭୁକର ଚତୁର୍ଥ କୋଣ $\angle {
m CBQ}$ ମଧ୍ୟ ଏକ ସମକୋଣ $| :: {
m BCPQ}$ ଏକ ଆୟତଚିତ୍ର ।

$$AP = r_1$$
 $BQ = r_2$ ଏବଂ $AC = AP - PC = r_1 - r_2$

 ΔABC ରେ, $\angle ACB = 90^{\circ} \ [\because \overline{BC} \perp \overline{AP} \ \mathbb{U}$ ଙ୍କନ]

$$BC^2 = AB^2 - AC^2 = (r_1 + r_2)^2 - (r_1 - r_2)^2 = 4r_1r_2$$

[ବହିଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ରଦ୍ୱୟ ମଧ୍ୟରେ ଦୂରତା = $\mathbf{r}_{_{\! 1}} + \mathbf{r}_{_{\! 2}}$]

$$\Rightarrow$$
 BC = $\sqrt{4r_1r_2} = 2\sqrt{r_1r_2}$

$$\therefore PQ = BC = 2\sqrt{r_1 r_2}$$
 (ଉତ୍ତର)

ଅନୁଶୀଳନୀ - 3

(କ - ବିଭାଗ)

1. ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର :

- (i) ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O , ବୃତ୍ତ ବହିଃସ୍ଥ P କୌଣସି ଏକ ବିନ୍ଦୁ ଏବଂ \overline{PT} ଉକ୍ତ ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକଖଣ ହେଲେ, m $\angle OTP =$
- (ii) ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O । ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overline{PX} ଓ \overline{PY} ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଦୁଇଟି ସ୍ୱର୍ଶକଖଣ୍ଡ । $\angle XPY$ ଏକ ସୂକ୍ଷ୍ମକୋଣ ହେଲେ, $\angle XOY$ ଏକ କୋଣ ।

(iii)	ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O, ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overline{PT} ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଏକ ୱର୍ଶକଖଣ୍ଡ ହେଲେ, m $\angle TOP + m \angle TPO =$
(iv)	ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O , ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overline{PX} ଓ \overline{PY} ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଦୁଇଟି ସ୍ପର୍ଶକ ଖଣ୍ଡ ହେଲେ, (a) XOP କୋଣ ଓ କୋଣ ସମପରିମାଣ ବିଶିଷ୍ଟ;
	(b) YPO କୋଣ ଓ କୋଣ ସମପରିମାଣ ବିଶିଷ୍ଟ ।
(v)	ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ । ବୃତ୍ତର ସମତଳରେ P ଏକ ବିନ୍ଦୁ ଏବଂ OP ଓ r ମଧ୍ୟରେ ବୃହତ୍ତର ହେଲେ, P ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ଏକ ସ୍ପର୍ଶକ ଖଣ୍ଡ ଅଙ୍କନ ସମ୍ଭବ ।
(vi)	5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ 13 ସେ.ମି. ଦୂରରେ ଓ ବୃତ୍ତର ସମତଳରେ ଅବସ୍ଥିତ ଏକ ବିନ୍ଦୁ P ହେଲେ, \overline{PT} ସ୍ପର୍ଶକଖଣ୍ଡର ଦୈର୍ଘ୍ୟ ସେ.ମି.
(vii)	କେନ୍ଦ୍ର O ଏବଂ r ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତର ସମତଳରେ ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଠାରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଏକ ସ୍ପର୍ଶକ ଖଣ୍ଡର ଦୈର୍ଘ୍ୟ t ସେ.ମି. ହେଲେ $OP = \dots$ ସେ.ମି. ।
(viii)	ଦୁଇଟି ବହିଃୟର୍ଶୀ ବୃତ୍ତର (a) ସରଳ ସାଧାରଣ ୟର୍ଶକ ସଂଖ୍ୟା = ଏବଂ
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
(ix)	ଦୁଇଟି ଅନ୍ତଃୟର୍ଶୀ ବୃତ୍ତର
	(a) ସରଳ ସାଧାରଣ
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ
(x)	ପରୟର ବହିଃସ୍ଥ ହୋଇଥିବା ଦୂଇଟି ଅଣଛେଦୀ ବୃତ୍ତର
	(a) ସରଳ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
(xi)	ପରୟର ବହିଃସ୍ଥ ହୋଇ ନ ଥିବା ଦୁଇଟି ଅଣଛେଦୀ ବୃତ୍ତର
	(a) ସରଳ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
(xii)	Δ ABC ର AB = AC । Δ ABC ର ପରିବୃତ୍ତ ଉପରିସ୍ଥ A ବିନ୍ଦୁରେ ଅଙ୍କିତ ସ୍ପର୍ଶକ ଉପରେ P ଏକ ବିନ୍ଦୁ,
	ଯେପରି P ଓ B ବିନ୍ଦୁଦ୍ୱୟ \overline{AC} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ।
	$m\angle PAC = 70^{0}$ ହେଲେ, $m\angle ABC =$
(xiii)	ଗୋଟିଏ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 8 ସେ.ମି ହେଲେ ଏହାର ଦୁଇଟି ସମାନ୍ତର ସ୍ପର୍ଶକ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ସେ.ମି. ।
(xiv)	ଦୁଇଟି ବହିଁୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଦ୍ୱୟ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ହେଉଛି ବୃତ୍ତ ଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧମାନଙ୍କର ସହ ସମାନ ।