Constrained Optimisation

Student	Q1	Q2	Q3	Q4	 Q50
Scrooge	×				
Fezziwig			×	×	
Marley	×	×			×
Emily					×

Scrooge's Mark =
$$\sum_{i} w_{i}$$
 · (ith question is correct)

Iteration 11,000

 \min_{w} ||Dist. of Weighted Marks - Target Dist.||²

 \min_{w} ||Dist. of Weighted Marks - Target Dist.||²

$$w_i \geq 0, \qquad \sum_i w_i = 1$$

$$\min_{w} f(w)$$

$$w_i \ge 0, \qquad \sum_{i} w_i = 1$$

Gradient Descent

$$w^{t+1} = w^t - \eta_t \nabla_w f$$

$$\frac{dw}{dt} = -\nabla_w f$$

$$w_i \geq 0, \qquad \sum_i w_i = 1$$

Exponentiated Gradient Descent

Discrete:
$$w^{t+1} = w^t \exp(-\eta_t \nabla_w f)$$

Continuous:
$$\frac{d}{dt} \log(w) = -\nabla_w f$$

$$w_i \geq 0, \qquad \sum_i w_i = 1$$

Exponentiated Gradient Descent

Discrete:
$$w^{t+1} = \frac{w^t \exp(-\eta_t \nabla_w f)}{\sum_i w_i^t \exp(-\eta_t \nabla_{w_i} f)}$$

Continuous:
$$\frac{d}{dt} \log(w) = -\nabla_w f$$

$$w_i \geq 0, \qquad \sum_i w_i = 1$$

Projected Gradient

Discrete:
$$w^{t+1} = w^t - \eta_t \left(\nabla_w f - \frac{1}{n} \sum_i \nabla_{w_i} f \right)$$

Continuous:
$$\frac{dw}{dt} = -\left(\nabla_w f - \frac{1}{n} \sum_i \nabla_{w_i} f\right)$$

$$w_i \geq 0,$$

$$\sum_i w_i = 1$$

Our Proposal

Continuous:
$$\frac{dw}{dt} = -w(\nabla_w f - w \cdot \nabla_w f)$$

Our Proposal

Continuous:
$$\frac{dw}{dt} = -w(\nabla_w f - w \cdot \nabla_w f)$$

Discrete:
$$w^{t+1} = w^t - \eta_t w^t (\nabla_w f - w^t \cdot \nabla_w f)$$

$$w_i \geq 0, \qquad \sum_i w_i = 1$$

Our Proposal

$$\frac{dw}{dt} = -w(\nabla_w f - w \cdot \nabla_w f)$$

Continuous:

$$\frac{d}{dt}\log(w) = -\left(\nabla_w f - w \cdot \nabla_w f\right)$$

Discrete:

$$w^{t+1} = w^t \exp(-\eta_t (\nabla_w f - w^t \cdot \nabla_w f)),$$

$$w_i \geq 0, \qquad \sum_i w_i = 1$$