Crypto avancée : feuille de TD 7

– Exercice 1. Monnaie numérique 1. Système de Chaum.

Le protocole suivant est destiné à permettre à un utilisateur U d'acquérir une unité de monnaie numérique auprès d'une banque B. La banque possède une clé publique RSA (n,e). On utilisera une fonction de hachage publique H. On procède ainsi :

- l'utilisateur U choisit deux entiers aléatoires r et x et se manifeste auprès de la banque et lui communique $y = r^e H(x) \mod n$.
- La banque déchiffre Y et donne le résultat $Y^d \mod n$ à l'utilisateur.
- l'utilisateur calcule $X = Y^d r^{-1} \mod n$.
 - a) Vérifier que le couple (X, x) satisfait une équation aisément vérifiable, et qu'il est difficile d'obtenir un tel couple sans l'aide de la banque. C'est une unité de monnaie numérique.
 - b) L'anonymat de l'utilisateur est-il garanti?
 - c) Une telle unité de monnaie est-elle copiable? Réutilisable?
 - d) Pour assurer l'utilisation off-line du moyen de paiement, on souhaite que deux utilisations de la monnaie auprès d'un marchand révèle l'identité de l'utilisateur. Comment peut-on réaliser un tel procédé
 - en supposant l'utilisateur honnête,
 - avec une probabilité de démasquer la double utilisation égale à 1/2.
 - e) Comment rendre le procédé résistant à un utilisateur malhonnête?
 - f) Comment rendre la probabilité de démasquer une double utilisation arbitrairement proche de 1?
- Exercice 2. Monnaie numérique 2. Système de Brands.

Tous les calculs se font dans $\mathbb{Z}/p\mathbb{Z}$. On fixe g, g_1, g_2 trois générateurs d'un sous-groupe multiplicatif d'ordre q de $\mathbb{Z}/p\mathbb{Z}$. On utilisera deux fonctions de hachage H et H_1 publiques.

La banque a un secret x modulo q, et sa clé publique associée est le triplet

$$(h, h_1, h_2) = (g^x, g_1^x, g_2^x).$$

L'utilisateur U a un secret $u \mod q$ et une identité publique $I = g_1^u$. La banque, au cours de l'enregistrement de U, lui donne la quantité $z' = (Ig_2)^x$.

Création de la monnaie. La banque choisit un entier aléatoire w, calcule

$$g_w = g^w \quad \beta = (Ig_2)^w$$

et les communique à U. L'utilisateur choisit le quintuplet secret :

$$(s, x_1, x_2, \alpha_1, \alpha_2)$$

puis il calcule

$$A = (Ig_2)^s$$
, $B = g_1^{x_1} g_2^{x_2}$, $z = z'^s$, $a = g_w^{\alpha_1} g^{\alpha_2}$, $b = \beta^{s\alpha_1} A^{\alpha_2}$.

L'utilisateur calcule ensuite

$$c = \alpha_1^{-1} H(A, B, z, a, b) \bmod q$$

et le donne à la banque. La banque calcule $c_1 = cx + w \mod q$ et le donne à U. Enfin, U calcule

$$r = \alpha_1 c_1 + \alpha_2 \mod q$$
.

L'unité de monnaie est le 6-uple :

Paiment auprès du marchand.

a) le commerçant (vendeur) qui réceptionne la monnaie vérifie :

$$g^r = ah^{H(A,B,z,a,b)}$$
 et $A^r = z^{H(A,B,z,a,b)}b$.

De quoi est-il convaincu?

b) Le commerçant est identifié auprès de la banque par un entier M. Il calcule

$$d = H_0(A, B, M, t)$$

où t est la date et l'heure de la transaction. Le nombre d est communiqué à l'utilisateur U qui calcule et donne au marchand

$$r_1 = dus + x_1, \quad r_2 = ds + x_2.$$

Le commerçant vérifie

$$g_1^{r_1}g_2^{r_2} = A^d B.$$

La banque reçoit la monnaie (A, B, z, a, b, r) et le triplet (r_1, r_2, d) et vérifie que le sextuple n'a pas été utilisé. Montrer que si la monnaie est utilisée deux fois avec deux triplets (r_1, r_2, d) et (r'_1, r'_2, d') alors l'identité de l'utilisateur est exposée.

c) A quoi sert la fonction H_0 ?