Chapitre 1 - partie 2 Flots et coupes

Cours RO202

Zacharie ALES (zacharie.ales@ensta.fr)

Adapté de cours de Marie-Christine Costa, Alain Faye et Sourour Elloumi

Optimisation dans les graphes

1.1 - Arbre couvrant

Le problème du flot maximal

2 L'algorithme de Ford-Fulkerson

Sommaire

- 1 Le problème du flot maximal
- 2 L'algorithme de Ford-Fulkerson

Réseau de transport

— Capacité ≥ 0 des arcs

Graphe G = (V, A, C) orienté tel qu'il existe :

- $s \in V$ une source $(\Gamma^{-}(s) = \emptyset)$
- $t \in V$ un puits $(\Gamma^+(t) = \emptyset)$

On ajoute $(ts) \in A$ un arc fictif de retour

Réseau de transport

Capacité ≥ 0 des arcs

Graphe G = (V, A, C) orienté tel qu'il existe :

- $s \in V$ une source $(\Gamma^{-}(s) = \emptyset)$
- $t \in V$ un puits $(\Gamma^+(t) = \emptyset)$

On ajoute $(ts) \in A$ un arc fictif de retour

Problème de flot maximal

.....

Hypothèses

A chaque noeud:

•

Le problème du flot maximal

Applications

- Réseaux routiers
- Distribution d'eau
- Réseau internet
- ...

Un réseau de distribution de l'eau

[x] : capacité des canalisations [a], [b] : capacité des châteaux d'eau [x] [x][b] [x][a] [x] [x]

Définition - Flux φ_{ii}

Flux sur l'arc (ij)

Quantité de matière circulant sur l'arc

Définition - Flot sur G

Vecteur $\varphi = \{\varphi_{ij}\}_{(ij) \in A \cup (t,s)}$ Flux sur chaque arc de G

Définition - Flot réalisable φ

Flot vérifiant en chaque arc (ij):

la contrainte de capacité

$$0 \leq \varphi_{ij} \leq c_{ij}$$

la loi de conservation
 ≈ loi de Kirchhoff en électricité

$$\sum_{i \in \Gamma^-(j)} arphi_{ij} = \sum_{i \in \Gamma^+(j)} arphi_{ji} \quad orall j \in V$$

Définition - Flux φ_{ii}

Flux sur l'arc (ij)

Quantité de matière circulant sur l'arc

Définition - Flot sur G

Vecteur $\varphi = \{\varphi_{ij}\}_{(ij) \in A \cup (t,s)}$ Flux sur chaque arc de G

Définition - **Flot réalisable** φ

Flot vérifiant en chaque arc (ij):

la contrainte de capacité

$$0 \leq \varphi_{ij} \leq c_{ij}$$

la loi de conservation
 ≈ loi de Kirchhoff en électricité

$$\sum_{i \in \Gamma^{-}(j)} \varphi_{ij} = \sum_{i \in \Gamma^{+}(j)} \varphi_{ji} \quad \forall j \in V$$

Définition - Arc saturé

(ij) est dit saturé si $\varphi_{ij} = c_{ij}$ Exemple (dv)

Flot sur un réseau de transport

Remarque

La loi de conservation est vérifiée en s et t grâce à l'arc de retour

Défintion - Flot complet φ

 φ est dit complet si et seulement si

0

Flot complet

• $v(\varphi)=7$

Quiz!

Question 1

Quel flot est complet?

Quiz!

Question 2

Quel flot est complet?

Définition - Valeur d'un flot $v(\varphi)$

Flux des arcs entrants en t

= Flux des arcs sortants de s

$$v(\varphi) = \sum_{i \in \Gamma^{-}(t)} \varphi_{it}$$

Définition - Flot maximal

Flot de valeur maximale

Retour à notre réseau de transport

Comment améliorer le flot?

Définition - Chaîne améliorante μ pour un flot φ

Chaîne de s à t vérifiant que :

- pour tout arc (ij) de μ dans le "bon sens"
 - de s vers t
- ullet pour tout arc (ij) de μ dans le "mauvais sens"

de t vers s

Définition - Chaîne améliorante μ pour un flot φ

Chaîne de s à t vérifiant que :

- pour tout arc (ij) de μ dans le "bon sens"
 - de s vers t
- pour tout arc (ij) de μ dans le "mauvais sens"

de t vers s

Définition - Chaîne améliorante μ pour un flot φ

Chaîne de s à t vérifiant que :

- pour tout arc (ij) de μ dans le "bon sens"
 - de s vers t
- pour tout arc (ij) de μ dans le "mauvais sens"

 \sqsubseteq de t vers s

Soit μ une chaîne améliorante

Notations

- μ^+ = arcs de μ dans le bon sens
- \bullet μ^- = arcs de μ dans le mauvais sens

Augmentation de la valeur du flot de α

$$\alpha =$$

- dans μ^+ : on augmente les flux de α
- dans μ^- : on diminue les flux de α

Exemple

$$s = \min \left[\min \left(1, 6, 3, 3 \right), \min \left(4 \right) \right]$$

$$peut être diminué de 4$$

$$4/6$$

$$e \mu^{+}$$

$$e = \frac{1/4}{6}$$

$$e \mu^{+}$$

Sommaire

- 1 Le problème du flot maxima
- 2 L'algorithme de Ford-Fulkerson

L'algorithme de Ford-Fulkerson

Problème

Trouver un flot maximal

Principe

- Trouver un flot initial
 - De préférence complet
- Tant qu'une chaîne améliorante est trouvée
 - Améliorer le flot le long de cette chaîne
- \Rightarrow un flot optimal

Preuve plus Ioin

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marguer '+' le sommet s

répéter

Marquer +i le sommet terminal i de tout

arc (ij) tel que :

- i est marqué
- i est non marqué
- (ij) non saturé

Marquer '-j' le sommet initial i de tout arc

- (ij) tel que :
 - i est non marqué
 - j est marqué
 - (ii) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marguer '+' le sommet s

répéter

Marquer +i le sommet terminal j de tout

arc (ij) tel que :

- i est marqué
- j est non marqué
- (ij) non saturé

Marquer -j le sommet initial i de tout arc

- (ij) tel que :
 - i est non marqué
 - j est marqué
 - (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marguer '+' le sommet s

répéter

Marquer +i le sommet terminal j de tout

arc (ij) tel que :

- i est marqué
- j est non marqué
- (ij) non saturé

Marquer '-j' le sommet initial i de tout arc

(ij) tel que :

- i est non marqué
- j est marqué
- (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marguer '+' le sommet s

répéter

Marquer i+i le sommet terminal j de tout

arc (ij) tel que :

- i est marqué
- i est non marqué
- (ij) non saturé

Marquer -j le sommet initial i de tout arc

(ij) tel que:

- i est non marqué
- j est marqué
- (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marquer '+' le sommet s

répéter

Marquer +i le sommet terminal i de tout

arc (ij) tel que :

- i est marqué
- i est non marqué
- (ij) non saturé

Marquer '-j' le sommet initial i de tout arc

(ij) tel que:

- i est non marqué
- j est marqué
- (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marguer '+' le sommet s

répéter

Marquer +i le sommet terminal j de tout

arc (ij) tel que :

- i est marqué
- i est non marqué
- (ij) non saturé

Marquer -j le sommet initial i de tout arc

(ij) tel que:

- i est non marqué
- j est marqué
- (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marguer '+' le sommet s

répéter

Marquer +i le sommet terminal i de tout

arc (ij) tel que :

- i est marqué
- i est non marqué
- (ij) non saturé

Marquer -j le sommet initial i de tout arc

(ij) tel que:

- i est non marqué
- j est marqué
- (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Quiz!

Question 3 et 4

Appliquer le marquage de l'algorithme de Ford-Fulkerson en vue de trouver le flot maximal entre les sommets A et D.

A chaque étape si vous avez la possibilité de marquer plusieurs sommets marquer celui qui est le premier dans l'ordre alphabétique.

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marquer '+' le sommet s

répéter

Marquer +i le sommet terminal j de tout

arc (ij) tel que :

- i est marqué
- j est non marqué
- (ij) non saturé

Marquer -j le sommet initial i de tout arc

(ij) tel que :

- i est non marqué
- j est marqué
- (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marguer '+' le sommet s

répéter

Marguer +i le sommet terminal i de tout

arc (ij) tel que :

- i est marqué
- i est non marqué
- (ij) non saturé

Marquer -j le sommet initial i de tout arc

- (ij) tel que :
 - i est non marqué
 - j est marqué
 - (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Algorithme

Données : G = (V, A, C)

Établir un flot admissible (complet de préférence)

répéter

Retirer toutes les marques

Marquer '+' le sommet s

répéter

Marquer i+i le sommet terminal j de tout

arc (ij) tel que :

- i est marqué
- j est non marqué
- (ij) non saturé

Marquer -j le sommet initial i de tout arc

- (ij) tel que :
 - i est non marqué
 - j est marqué
 - (ij) a un flux non nul

tant que un nouveau sommet a été marqué

et t n'est pas marqué

si t est marqué alors

Améliorer le flux via une chaîne améliorante

Quiz!

Question 5

De combien d'unités ce marquage permet-il d'augmenter le flot entre H et C?

Question 6

De combien d'unités ce marquage permet-il d'augmenter le flot entre C et B?

Un réseau de transport

Le flot obtenu est-il optimal?

- Oui
- On Non

Problème de coupe minimale

Comment séparer s de t en supprimant un ensemble d'arcs de valeur totale minimale?

"Séparer" signifie qu'il n'existe plus de chemin de s à t après suppression des arcs

Problème de coupe minimale

Comment séparer *s* de *t* en supprimant un ensemble d'arcs de valeur totale minimale?

"Séparer" signifie qu'il n'existe plus de chemin de s à t après suppression des arcs

Définition - Coupe (S,T)

Partition de *V* en deux sous-ensembles S et T telle que

- s ∈ S
- $t \in T$

Problème de coupe minimale

Comment séparer s de t en supprimant un ensemble d'arcs de valeur totale minimale?

"Séparer" signifie qu'il n'existe plus de chemin de s à t après suppression des arcs

Définition - Coupe (S,T)

Partition de *V* en deux sous-ensembles S et T telle que

- s ∈ S
- t ∈ T

Notations

- $\omega^-(T) = \text{arcs entrant dans } T$ $\{(i,j) \in A \mid i \in S, j \in T\}$
- $\omega^+(T) = \text{arcs sortant de } T$ $\{(i,j) \in A \mid i \in T, j \in S\}$

Remarque

Par définition $(ts) \notin \omega^+(T)$ Car $(ts) \notin A$

Problème de coupe minimale

Comment séparer s de t en supprimant un ensemble d'arcs de valeur totale minimale?

"Séparer" signifie qu'il n'existe plus de chemin de s à t après suppression des arcs

Définition - Coupe (S,T)

Partition de *V* en deux sous-ensembles S et T telle que

- s ∈ S
- t ∈ T

Notations

- $\omega^-(T)$ = arcs entrant dans T{ $(i,j) \in A \mid i \in S, j \in T$ }
- $\omega^+(T) = \text{arcs sortant de } T$ $\{(i,j) \in A \mid i \in T, j \in S\}$

Remarque

Par définition $(ts) \notin \omega^+(T)$ Car $(ts) \notin A$

Définition - Capacité d'une coupe (S,T)

$$c(S, T) =$$

Exemple de coupe

Coupe de valeur 15

- $S = \{s, a, b, c\}$
- $T = \{t, d, e, f\}$
- $C = \omega^{-}(T) = \{(b, t), (a, e), (c, e), (s, d)\}$

Relation flots / coupes

Propriété

Soit G = (V, A) un réseau de transport

- $\forall \varphi$ flot admissible sur G
- $\forall (S, T)$ coupe de G

On a

.....

Preuve

Soit (S, T) une coupe de G

- (loi de conservation)
- On sait que $\varphi_{ts} = v(\varphi)$
- (flux ≤ capacité)

Fin de l'algorithme de Ford-Fulkerson

Rappel

t non marqué \Rightarrow flot maximal

Propriété

La coupe minimale sépare les sommets marqués des non marqués

Exemple

- $S^* = \{s, a, b, c, d\}$
- $T^* = \{t, e, f\}$
- $C^* = \{(b, t), (a, e), (c, e), (d, t)\}$ $v(\varphi^*) = 10 = v(C^*)$

Théorème de Ford-Fulkerson

Théorème - Ford-Fulkerson, 1962

La valeur d'un flot maximal est égale

Propriété - CNS d'optimalité

Un flot φ de s à t est maximal si et seulement si

Preuve du théorème et de l'algorithme de Ford-Fulkerson

Notations

- φ^* : flot obtenu par l'algorithme
- S*: ensemble des sommets marqués à la fin de l'algorithme
- T*: ensemble des sommets non marqués à la fin de l'algorithme

Rappels

• $v(\varphi^*) = \varphi^*(t,s)$

• $(t, s) \notin \omega^+(T)$

Preuve

- Toute coupe (S,T) et tout flot φ vérifient : $v(\varphi) \leq c(S, T)$
- (loi de conservation des flux)

(principe de marquage)

.....

•

Convergence de l'algorithme

Théorème des valeurs entières

Dans un réseau de transport à capacités entières, il existe un flot maximal dont tous les flux sont entiers

Convergence de l'algorithme

Si les capacités sont entières, l'algorithme de Ford-Fulkerson converge en un nombre fini d'itérations car :

- La valeur du flot max est bornée
 Par la capacité de n'importe quelle coupe
- À chaque itération, on augmente le flot d'une valeur entière

Complexité de l'algorithme (nombre d'«opérations »)

Théorème

Si chaque augmentation du flot est faite suivant une chaîne améliorante de longueur minimale, alors

• le flot maximal est obtenu après moins de $\frac{mn}{2}$ itérations.

Complexité

$$\mathcal{O}(\frac{\textit{m}^{2}\textit{n}}{2})$$

D'après le théorème et le fait qu'il y ait au plus *m* marquages à chaque itération

Remarque

Il existe des algorithmes plus efficaces

Un modèle mathématique « Programmation linéaire »

Programme linéaire

$$\begin{cases}
 max & cx \\
 Ax \le b \\
 x \ge 0
\end{cases}$$

- A, b, c : données
- x : variables

Propriété

L'optimum d'un programme linéaire en variables continues peut être obtenu en temps polynomial

Voir cours suivant

Programme linéaire pour le flot maximal

$$\begin{array}{lll} \text{max} & \varphi_{ts} \\ & \varphi_{ij} \leq \pmb{c}_{ij} \\ & \sum\limits_{i \in \Gamma^{-}(j)} \varphi_{ij} = \sum\limits_{i \in \Gamma^{+}(j)} \varphi_{ji} & \forall (\textit{ij}) \in \pmb{A} \quad (\text{capacit\'es}) \\ & \varphi_{ij} \geq 0 & \forall (\textit{ij}) \in \pmb{A} \end{array}$$

Résumé

Notions abordées dans ce chapitre

Définitions

Réseau de transport

Flot

Flot maximal

Coupe

Capacité d'une coupe

..

Algorithme de Ford-Fulkerson

Calcul d'un flot maximal par détection de chaînes améliorantes via une procédure de marquage

 En fin d'algorithme, s et t sont séparés par une coupe de capacité égale à la valeur du flot

Ces deux problèmes sont duaux (voir chapitre suivant)

Pistes d'approfondissement

• Flot maximal de coût minimal

Problème "facile"

Multiflots et multicoupes

Problèmes "difficiles"

Flot avec multiplicateurs

Flux en entrée d'un arc multiplié à sa sortie

- Matrice totalement unimodulaire et programmation linéaire en nombres entiers
- Programmation linéaire et dualité

04 : V-F C+F E+D F+E G+F H+F

Ø3 : B-H D+H E+A F+G G+A H+G Ø5 : 2