FIND

MBA em DATA SCIENCE & ARTIFICIAL INTELLIGENCE

APPLIED STATISTICS

profregina.bernal@fiap.com.br
reginabernal@terra.com.br

Dra. Regina Tomie Ivata Bernal Cientista de Dados na área da Saúde

Formação Acadêmica:

Estatístico - UFSCar

Mestre em Saúde Pública – FSP/USP

Doutor em Ciências – Epidemiologia - FSP/USP

Atividades Profissionais:

Professora de pós-graduação na FIAP

Consultora externa da SVS/MS

Cientista de Dados em Saúde

TÍTULO DA APRESENTAÇÃO OU TÍTULO PRINCIPAL DO DOCUMENTO

Programa

. •	+				
DATA	CONTEÚDO PROGRAMÁTICO				
22/01	Introdução; Estatística Descritiva. Exercício prático usando no Python.				
24/01	Modelos de distribuição (Probabilidade). Probabilidade condicional. Exercício prático usando no Python				
27/01	Inferência Estatística: Amostragem. Exercício prático usando no Python				
29/01	Inferência estatística: Teste de hipóteses paramétrico e não paramétrico. Exercício prático usando no Python.				
03/02	Correlação de Pearson. Gráfico de Dispersão. Regressão Linear Simples Exercício prático usando no PythonR.				
05/02	Regressão Linear Múltipla. Exercício prático usando no Python.				
10/02	Regressão Logística. Exercício prático usando no Python	+	+		
17/02	Análise de Cluster. Exercício prático usando no Python		•		
21/02	Modelos de Séries Temporais. Exercício prático usando no Python	٠	•	•	

Avaliação da disciplina

Avaliação	Peso
Listas de exercícios	0.5
Projeto Integrado	0.5

Objetivos da Disciplina

- Disseminar a cultura estatística quanto ao uso das técnicas descritivas, técnicas de associação e correlação tendo em vista a modelagem para previsão.
- Apresentar os conceitos básicos e metodologias para que seja extraído conhecimento de grandes bases de dados.
- Desenvolver conceitos de preparação de dados para fins estatísticos e informações para a geração de competitividade organizacional.
- Proporcionar o conhecimento necessário para reconhecer as seguintes técnicas Supervisionadas (Árvore de Decisão, Regressão Linear e Regressão Logística) e Não Supervisionadas como Componentes Principais e Análise de Cluster.

*Referências Bibliográficas

- BERRY, M.J.A.; LINOFF, G. Data Mining Techniques: for marketing, sales, and customer.
 Wiley Computer Publishing, 1997.
- BUSSAB, W.O.; MORETTIN, P. A., Estatística Básica, 5a. ed., São Paulo: Saraiva, 2006.
- KUHN, M. / JOHNSON, K., Applied Predictive Modeling, 2013
- HAIR, J.F. / ANDERSON, R.E. / TATHAN, R.L. / BLACK, W.C. Análise multivariada de dados, 2009
- JAMES, G, / WITTEN, D. / HASTIE, T. / TIBSHIRANI, R. Na Introduction to Statistical Learning with Aplications in R, 2013
- LANTZ, B. Machine Learning with R. 2a. ed. Packt Publishing, 2015

Referências Bibliográficas

- MOORE, S.D.; MCCABE, G.P.; DUCKWORTH, W.M.; SCLOVE, S.S.
 - **Estatística Empresarial como usar dados para tomar decisões**. Tradução Luis Antonio Forjado. Rio de Janeiro: LTC, 2006.
- MORETIM, P.A.; TOLOI, C.M.C. Análise de Séries Temporais, 2ª ed., São
 Paulo: Edgard Blücher, 2006.
- SILVA, NN. Amostragem Probabilística. 2ª ed., São Paulo: Editora da Universidade de São Paulo, 2001.
- SOARES, J.; FARIAS, A. A.; CESAR, C. C., Introdução a Estatística,
 LTC, 2002.
- TORGO, L. Data Mining with R: Learning with Case Studies. 2.a ed. Chapman and Hall/CRC, 2007

DATA ANALYTICS

" UNIVERSO DE FORNECEDORES

MicroStrategy®

ESTATÍSTICA

. .

COMO TIRAR INFORMAÇÕES DELES

• •

Estatística

É a ciência que trata dados numéricos provenientes de mensuração em grupos de indivíduos.

Trata da organização, descrição, apresentação análise e interpretação de dados resultantes da observação de fenômenos coletivos. Produz métodos para inferência estatística.

✓ Propriedades

Estuda as variações:

- > entre indivíduos;
- em um mesmo indivíduo.

DATA ANALYTICS

Levantamento de Dados

Data Cleaning:

- Padronização
- Transformação de Dados
- Adoção de De-Para de Atributos

Atributo Descrição				
	De	Para		
Sexo: Masculino	2	0		
Feminino	4		1	
Idade:Criação de Faixa Etária				
	0-10			1
	11-18		2	
	19-25		3	
	26-30		4	
	31-35		5	
	36-40		6	
	41-45		7	
	46	8		
	sem informação		0	

FIND MBA+

Levantamento de Dados

|1-3| |4-8|

Descrição Atributo De Para Acesso últimos 3 meses Internet: 1 1 3 0 Anos de Estudo: Criação da Faixa Grau de Instrução 10-41 |5-8| |9-11| 3 112 Renda: Criação de Faixa Salarial baseando em salários mínimos (Valor atual R\$380,00) |0-380| |381-760| |761-1900| |1901-3800| 3801 sem informação Área: Agrupamento da área de residência em 1-Urbana e 2-Rural

Estatística Descritiva

Inferência Estatística

Exemplo de Cluster Não Hierárquico

Exemplo de Cluster Hierárquico

Técnicas de Discriminação

Exemplo de Árvore de Decisão

Fonte: https://www.infoq.com/br/presentations/data-science-na-olx

LEVANTAMENTO DE DADOS

"É A OPERAÇÃO DE COLETA PARA DESCRIÇÃO E/OU ANÁLISE DAS CARACTERÍSTICAS DE UMA POPULAÇÃO"

LEVANTAMENTO DE DADOS

+

.

Exemplos de dados secundários do IBGE:

- Pesquisa Mensal de Emprego.
- Pesquisa Industrial Mensal de Empregos e Salários.
- Pesquisa Mensal de Comércio.
- · Pesquisa Nacional de Saúde.

- Censo Demográfico.
- Pesquisa de Orçamentos Familiares (POF).
- Pesquisa Nacional por Amostra de Domicílios (PNAD).
- Contagem Populacional.

Link: https://www.ibge.gov.br/

• • +

.

• Exemplos de dados secundários da Agência Nacional de Saúde suplementar (ANS)

http://www.ans.gov.br/anstabnet/

- Pesquisa Mensal de Comércio
- Susep

http://www2.susep.gov.br/menuestatistica/Autoseg/menu1.aspx

· + • □ LEVANTAMENTO DE DADOS

+

.

Segmento	Dados	Fonte
Seguradora de veículos	Susep Frota de veículos	http://www2.susep.gov.br/m enuestatistica/Autoseg/menu 1.aspx https://www.gov.br/transport es/pt- br/assuntos/transito/conteud o-Senatran/frota-de-veiculos- 2023
Operadora de Saúde	Agência Nacional de Saúde suplementar (ANS)	http://www.ans.gov.br/anstab net/
População		https://www.ibge.gov.br

.

ESTATÍSTICA DESCRITIVA

ESTATÍSTICA

· · · · Estatística Descritiva

Tem por objetivo organizar, descrever e apresentar os dados, de uma determinada população, em tabelas, gráficos e medidas de resumo.

População

Quais as ocorrências possíveis para atividade física?

Como você representaria essas ocorrências?

* Apresentação dos dados

Arquivo

estrutura matricial: linhas e colunas

ordem	Sexo	Atividade física	Estado civil	Grupo
1	F	Sim	Solteira	1
2	M	Sim	solteiro	1
3	F	Não	Casada	2
4	M	Não	Casado	2
5	F	Não	Casada	3
6	M	Não	Casado	3
7	F	Não	Solteira	3
8	M	Não	Solteiro	3

* Apresentação dos dados

Arquivo

estrutura matricial: linhas e colunas

Grupo	Masculino	Feminino	Atividade física_Sim	Atividade física_Nao	Solteira	Casada
1	1	1	2	0	2	0
2	1	1	0	2	0	2
3	2	2	0	4	2	2

· · · Escala de Mensuração

· • +

•

. .

Escala de Mensuração

Variável qualitativa nominal: não existe nenhuma ordenação nos possíveis resultados. CATEGORIAS

Variável qualitativa ordinal: os possíveis resultados são ordenados. **POSTOS**

Variável quantitativa discreta: resultam de operação de

contagem

Variável quantitativa contínua: possíveis resultados (valores) formam um intervalo de números reais

*Aplicando conhecimento

Classifique cada variável de acordo com seu tipo:

Variável	Ocorrência	Tipo (escala de mensuração)	
Estado civil	Solteiro		
	Casado	Qualitativa Nominal	
	Viúvo		
	Divorciado		
Faz atividade física	0=Não; 1=Sim	Qualitativa Nominal	
Idade (anos)	[0-110]	Quantitativa contínua	
Anos de estudo	[0-99]	Quantitativa contínua + +	

Exercitando!!!!!

Escala de Mensuração

Exemplo: Escala de questionário:

péssimo regular bom ótimo excelente

() () () () ()

Variável Qualitativa ordinal

São estatísticas que resumem, em um único valor, a tendência central (média, mediana, moda), a variabilidade (variância, desvio padrão) e a forma da distribuição (simétrica ou assimétrica) da variável.

Distribuição simétrica

Distribuição do tempo de uso de internet (horas)

Medidas de tendência central:

- Média
- Mediana
- Moda

Indicam o centro da distribuição de frequências ou a região de maior concentração de frequência na distribuição.

Medidas de dispersão:

- Variância
- · Desvio padrão

Indicam o grau de homogeneidade dos valores, até que ponto eles se encontram concentrados ou dispersos da média.

Decisão pela média

Qual ativo você escolheria para investir? Justifique sua escolha.

· · · · · Medidas Resumo

Exemplo 2

Durante uma verificação de qualidade no conteúdo de seis recipientes de café instantâneo, foram obtidas as seguintes notas:

Qual a média e a mediana encontrada?

Média aritmética:
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \implies \overline{x} = \frac{6,03 + 5,59 + 6,40 + 6,00 + 5,99 + 6,02}{6} \implies \overline{x} = 6,00$$
Mediana: 5,59 5,99 6,00 6,02 6,03 6,40

$$mediana = \frac{6,00+6,02}{2} = 6,01$$

Exemplo 1

Durante uma verificação de qualidade no conteúdo de seis recipientes de café instantâneo, foram obtidas as seguintes notas:

Qual a média e a mediana encontrada?

$$\bar{x} = 6,00 \quad mediana = 6,01$$

Suponha que o terceiro valor tenha sido incorretamente medido e que na verdade seja de 6,04. Determine novamente a nota média e mediana.

$$\bar{x} = \frac{6,03+5,59+6,04+6,00+5,99+6,02}{6} = 5,95$$

Mediana:

$$mediana = \frac{6,00+6,02}{2} = 6,01$$

Comparação entre Média, Mediana e Moda

	VANTAGENS	LIMITAÇÕES	TIPO DE VARIÁVEIS
MÉDIA	Reflete todos os valores da amostra	É influenciada por valores extremos	Contínua e discreta
MEDIANA	Menos sensível a valores extremos que a média	Mais difícil de ser determinada para grande quantidade de dados	Contínua e discreta
MODA	Representa um valor típico	Não tem função em certos conjuntos de dados	Contínua, discreta, nominal e ordinal

MEDIDAS DE POSIÇÃO - MÉDIA

• Média Aritmética Simples:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

· Média Aritmética Ponderada:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i \cdot F_i}{n}$$

• Média Geométrica (evolução):

$$Mg = \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$$

Média Quadrática:

$$\overline{\mathbf{x}}^2 = \frac{\sum_{i=1}^{n} \mathbf{x}_i^2}{\mathbf{n}}$$

• Decisão pela média ?????

Assimétrico à direita

Média > Mediana

Assimétrico à esquerda

Média < Mediana

Outras Medidas de Posição

Decis: dividem um conjunto de dados em dez partes iguais.

Percentis (P): dividem a série em cem partes, de modo que p% ficam abaixo dele (P).

Quartis: dividem a série em quatro partes iguais.

Exemplo: Despesas

Gráfico de Pareto de despesas

Economia nacional São Paulo, Rio e Brasília respondem por 21% do PIB brasileiro

Andrea Bruxellas Direto do Rio de Janeiro Especial para o Terra

Os municípios de São Paulo, Rio de Janeiro e Brasília respondiam por 21% do Produto Interno Bruto brasileiro em 2007. Segundo dados divulgados pelo Instituto Brasileiro de Geografia e Estatística (IBGE) nesta quarta-feira, a capital paulista responde pela maior fatia do PIB brasileiro, gerando 12% de toda riqueza produzida no País, seguida do Rio de Janeiro (5,2%), Brasília (3,8%), Belo Horizonte (1,4%) e Curitiba (1,4%).

"Com os dados de 2007 a gente pode notar uma estabilidade na série. Ou seja, na série inteira a gente vê que a renda ainda está muito concentrada em alguns municípios e isso é bastante estável. Nas cinco principais cidade a gente tem um quarto do PIB. Tirando essas cidades, a economia esta concentrada em 50 cidades que geram 50% da riqueza do País", disse a coordenadora do IBGE Sheila Cristina Zani.

Já os menores PIB do Brasil foram verificados em Santo Antônio dos Milagres (PI), São Miguel da Baixa Grande (PI), Areia de Barúnas (PB), São Luís do Piauí (PI) e Olho D'Água do Piauí (PI). Segundo o IBGE, a soma dos PIB destes cinco municípios representava 0,001% da riqueza produzida em todo País em 2007.

Exercitando!!!!!

Medidas de Dispersão

Exemplo 8:

A: 4, 4, 4, 4, 4, 4, 4, 4

B: 3, 3, 3, 3, 5, 5, 5, 5

C: 1, 1, 3, 3, 5, 5, 7, 7

Qual o desvio padrão?

Medidas de Dispersão

Medidas de Dispersão: variância e desvio padrão

<u>Exemplo C</u>				
X	Média	(X-Média)	(X-Média) ²	
1	4	-3	9	
1	4	-3	9	
3	4	-1	1	
3	4	-1	1	
5	4	1	1	
5	4	1	1	
7	4	3	9	
7	4	3	9	
Soma	-	0	40	

Variância:

$$\sigma^2 = \frac{40}{8} = 5$$

Desvio padrão:

$$\sigma = \sqrt{\sigma^2} = \sqrt{5} = 2.24$$

· ·

· · · · Medidas de Dispersão

O quanto os pontos (dados) estão distantes da média (ponto central)

> variância da população

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \overline{X})^2}{N}$$

variância da amostra

$$s^2 = \frac{\sum_{i=1}^{\infty} (x_i - \overline{x})^2}{n-1}$$

. . •

Controle estatístico do processo

O Controle Estatístico de Processos (CEP) é uma ferramenta da qualidade utilizada nos processos produtivos (e de serviços) com objetivo de fornecer informações para um diagnóstico mais eficaz na prevenção e detecção de defeitos/problemas nos processos avaliados e, consequentemente, auxilia no aumento da produtividade/resultados da empresa, evitando desperdícios de matéria-prima, insumos, produtos etc.

(Fonte: https://pt.wikipedia.org/wiki/Controle_estat%C3%ADstico_de_processos)

Exemplo: Fábrica de Café em Pó

Controle estatístico do processo

Gráfico de Amplitude

O gráfico é construído a partir das medidas estatística como:

Média aritmética.

Desvio padrão.

Média das médias.

Somatórios etc.

Gráfico de controle

"Mostrar evidências de que um processo esteja operando em estado de controle estatístico e dar sinais de presença de causas especiais de variação para que medidas corretivas apropriadas sejam aplicadas".

"Manter o estado de controle estatístico estendendo a função dos limites de controle como base de decisões".

"Apresentar informações para que sejam tomadas ações gerenciais de melhoria dos processos".

Fonte:http://www.portalaction.com.br/controle-estatistico-do-processo/graficos-ou-cartas-de-controle

MEDIDAS DE ASSIMETRIA

Exemplo₊de estatística descritiva da biblioteca SweetViz.

Exemplo de estatística descritiva

idade		
Média	34.6	
Erro padrão	1.1	
Mediana	34.5	
Modo	26	
Desvio padrão	6.74	
Variância da amostra	45.39	
Curtose	-0.54	
Assimetria	-0.07	
Intervalo	28	
Mínimo	20	
Máximo	48	
Soma	1245	
Contagem	36	

[□]Exemplo de estatística descritiva

Fonte: Estudo de Caso no Centro de Florianópolis

Valor (R\$)		
Média	144618.3	
Erro padrão	10992.8	
Mediana	120000.0	
Modo	110000.0	
Desvio padrão	72084.7	
Variância da amostra	5196201097.5	
Curtose	1.4	
Assimetria	1.4	
Intervalo	312400.0	
Mínimo	50000.0	
Máximo	362400.0	
Soma	6218585.0	
Contagem	43	

.

Medidas de Assimetria

As medidas de assimetria referem-se à forma da curva que representa a distribuição de frequência. A assimetria é o afastamento da simetria de uma frequência.

- Curvas de frequência simétrica ou em forma de sino: caracterizam-se pelo fato das observações equidistantes do ponto central terem a mesma frequência (curva normal)
- ➤ Curvas de frequência moderadamente assimétricas ou desviadas: a cauda de um lado da ordenada máxima é mais longa do que do outro. Se o ramo mais alongado fica à direita, a curva é dita de assimetria positiva, enquanto que, se ocorre o inverso, diz-se que a curva é de assimetria negativa.

Medidas de Assimetria

Coeficientes de Assimetria (Skewness)

As=
$$\frac{m^3}{\sigma^3} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^3}{[\frac{1}{n} (x_i - \bar{x})^2]^{\frac{3}{2}}}$$

As=0 → simétrica

As>0 → assimétrica positiva

As<0 → assimétrica negativa

Índice de Assimetria (Pearson)

$$A = \frac{\text{m\'edia} - \text{moda}}{\text{desviopadr\~ao}}$$

|A|<0,15→simétrica 0,15<|A|<1→ assimetria moderada |A|>1 → assimetria forte

Medidas de Assimetria

Curtose (Kurtosis)

As=
$$\frac{m^4}{\sigma^4} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4}{[\frac{1}{n} (x_i - \bar{x})^2]^{\frac{4}{2}}}$$

- > Curtose: grau de achatamento em relação a uma curva Normal
 - ➤ Leptocúrtica (afilado) → K>3
 - ➤ Mesocúrtica → K=3
 - ➤ Platicúrtica (achatado) → K<3</p>

+

 $2 \frac{\sum x^2}{n}$

$$\frac{\sum (x-\mu)^2}{n}$$

VARIANCE

 $3 \frac{\sum x^3}{n}$

$$\frac{\sum (x-\mu)^3}{n}$$

$$\frac{\sum (x-\mu)^4}{n}$$

$$1\sum(x-\mu)^3$$

KURTOSIS

$$\frac{1}{n} \frac{\sum (x-\mu)^4}{\sigma^4}$$

. .

Outras Medidas de Dispersão

- Coeficiente de Variação
- > Amplitude
- Amplitude Inter-Quartílica

Outras Medidas de Dispersão

Coeficiente de variação (CV)

É o quociente entre o desvio padrão e a média.

$$\mathsf{CV} = \frac{\sigma}{\mathsf{X}}$$

Vantagem: caracterizar a dispersão dos dados em termos relativos a seu valor médio.

_ · · •

Qual o coeficiente de variação?

Medidas de Dispersão

Exemplo 8:

A: 4, 4, 4, 4, 4, 4, 4, 4

B: 3, 3, 3, 5, 5, 5, 5

C: 1, 1, 3, 3, 5, 5, 7, 7

Outras Medidas de Dispersão Amplitude

É definida como a diferença entre o maior e o menor valor de um conjunto de dados.

Fortemente relacionado com a dispersão dos dados.

A amplitude pode levar a erros de avaliação, pois não representa o conjunto dos dados. Muitas vezes reflete muito mal a dispersão dos mesmos.

• Outras Medidas de Dispersão

Amplitude Inter-quartílica

É a diferença entre o terceiro e o primeiro quartil (Q3-Q1).

Usada em análise exploratória de dados – gráficos Box Plot.

DETECÇÃO DE OUTLIERS

+ + •

· · • •

Detecção de dados suspeitos - "Outlier"

- Dado incorreto
- População diferente
- Dado correto Evento raro

Detecção de dados suspeitos - "Outlier"

• Representação Gráfica na Análise dos Dados

O Box Plot (desenho esquemático) informa medidas de posição, dispersão, assimetria, caudas e dados atípicos (outliers). A posição central é dada pela mediana e a dispersão pela amplitude inter-quartílica. As medidas de posição q1, q2 e q3 informam a assimetria da distribuição. Os comprimentos das caudas são dados pelas linhas que vão do retângulo aos valores distantes e pelos valores atípicos.

+ Detecção de dados suspeitos - "Outlier"

Representação Gráfica na Análise dos Dados

Legenda:

Q1 = quartil 1

Q2 = quartil 2 = mediana

Q3 = quartil 3

IQ = interquartil

Detecção de dados suspeitos - "Outlier"

. • +

.

Exemplo

Aplicação

Detecção de dados suspeitos - "Outlier"

Gráfico Box-Plot

Exemplo: "Total de unidades

vendidas por produto -

Campanha 1 a 12 de 2016

Exercitando!!!!!

TABELAS DE FREQUÊNCIAS

Transformando variáveis quantitativas em qualitativas

Quantitativas Critério Qualitativa

Transformando variáveis quantitativas em qualitativas

• • +

.

Exemplo: Quantas classes serão necessárias para representar a despesa anual?

Fórmula de Sturges

Medidas resumo da despesa anual

Mean	Std Dev	Minimum	Maximum	Mode	Range	Sum	N
265,22	537,55	0	4491,19	0	4491,19	16118247,5	60773

$$K = 1 + 3.3 * log (60773) = 16.78 ~ 17$$

Intervalo =
$$\frac{(M\acute{a}ximo - M\'{i}nimo)}{K} = \frac{4491,19}{17} = 264,18 \cong 265$$

K = número de classes

Despesa	N	%	%ac
[0 - 265)	26740	44,0	44,0
[265 - 530)	10939	18,0	62,0
[530 - 795)	4862	8,0	70,0
[795 - 1060)	4254	7,0	77,0
[1060 - 1325)	3646	6,0	83,0
[1325 - 1590)	3039	5,0	88,0
[1590 - 1855)	2431	4,0	92,0
[1855 - 2120)	1823	3,0	95,0
[2120 - 2385)	1215	2,0	97,0
[2385 - 2650)	608	1,0	98,0
[2650 - 2915)	243	0,4	98,4
[2915 - 3180)	243	0,4	98,8
[3180 - 3445)	182	0,3	99,1
[3445 - 3710)	182	0,3	+ 99,4
[3170 - 3975)	122	0,2	99,6
[3975 - 4240)	122	0,2	99,8
[4240 - 4505)	_* 122	0,2	100,0
Total	60773	100,0	

Distribuição de Frequência

O número de vezes que ocorreram valores em cada classe ou valores chama-se frequência absoluta. O conjunto das ocorrências, com correspondentes frequências absolutas (FA) e relativas (FR), define a distribuição de frequências da variável. Conhecer o comportamento da variável.

Distribuição etária dos trabalhadores da Empresa XXX, 01/05/2019

Faixa etária	Frequency	Percent	Cumulative	Cumulative
rdixd etalla		Percent	Frequency	Percent
00 - 17	19052	33,8	19052	33,8
18 - 29	16143	28,6	35195	62,4
30 - 39	13710	24,3	48905	86,7
40 - 49	5773	10,2	54678	96,9
50 - 59	1559	2,8	56237	99,7
60 - 69	174	0,3	56411	100,0
Acima 69	13	0,0	56424	100,0
Total	56424	100,0		

GRÁFICOS

As regras básicas de elaboração de um gráfico são:

- > simplicidade
- > clareza
- > veracidade

Variáveis qualitativas ou discretas

a) Colunas

Um gráfico de colunas ilustra comparações entre itens. As categorias são organizadas na horizontal e os valores são distribuídos na vertical.

Exemplo:

Distribuição dos setores segundo região

Variáveis qualitativas

Causa	%
Suicídios	14.2
Acidentes com veículos a motor	52.1
Homicídios	8.1
Demais causas externas	2.6
Outros acidentes	23
Total	100.0

Causa	%
Acidentes com veículos a motor	52.1
Outros acidentes	23
Suicídios	14.2
Homicídios	8.1
Demais causas externas	2.6
Total	100.0

b) Setores ou pizza

Um gráfico de pizza mostra o tamanho proporcional de itens que constituem uma série de dados para a soma dos itens. A freqüência relativa (%) transformada em graus mediante o calculo proporcional.

$$X = \frac{360 \cdot 50}{100} = 180$$

Apresentação Gráfica dos Dados

c) Linha

Um gráfico de linha mostra tendências nos dados em intervalos iguais.

O gráfico está adequado?

Fonte: Relatório Anual da Anatel, 2007.

c)• Linha

Qual gráfico está adequado?

Tabela 2.4-Coeficientes de mortalidade (por 100.000 hab.) por meningite meningocócica no Município de São Paulo, no período de 1968 a 1974 observados durante todo o ano (total) e mês de junho de cada ano.

Ano	Total	Junho
1968	1,4	0,13
1969	1,5	0,12
1970	2,1	0,22
1971	6,6	0,37
1972	15,6	1,49
1973	26,5	2,24
1974	17,0	6,26

FONTE: Rev. Saúde Públ., 10: 1-16, 1976

Figura 1- Coeficientes de mortalidade (por 100.000 hab.) por meningite meningocócica no Município de São Paulo, no período de 1968 a 1974 observados durante todo o ano (total) e mês de junho de cada ano.

e) Bolhas +

Um gráfico de bolhas é um tipo de gráfico xy (dispersão). O tamanho do marcador de dados indica o valor de uma terceira variável.

Exemplo:

(Valores)	(Valores	Y Tamanhodab	olha
18	R\$14.400,00	5	
20	R\$ 60.000,00	23	
14	R\$ 11.200,00	13	
N° de produtos	Vendas	Partic, no mercado %	

O gráfico nesse exemplo mostra que a Empresa A tem a maioria dos produtos e a maior fatia do mercado, mas não necessariamente as melhores vendas.

_ · · •

Variáveis contínuas

a) Histograma

O histograma é formado por retângulos cujas áreas representam freqüências dos intervalos de suas classes. Esta apresentação é indicada para séries contínuas, e portanto não há espaço entre as barras.

Histograma

Exemplo: Preço médio (net price) do produto A (em reais)

Classes	Freqüência	Freqüência Relativa	Ponto Médio
2,09 2,21	1	0,01	2,15
2,21 2,33	0	0,00	2,27
2,33 2,45	0	0,00	2,39
2,45 2,57	0	0,00	2,51
2,57 2,69	0	0,00	2,63
2,69 2,81	2	0,02	2,75
2,81 2,93	19	0,21	2,87
2,93 3,05	45	0,50	2,99
3,05 3,17	17	0,19	3,11
3,17 3,29	6	0,07	3,23
Total	90	1,00	

Duração das Ligações

· · • •

Tabela 1 - Nascidos vivos segundo peso ao nascer

Peso ao nascer (g)	Иo		h'(frequência
		Amplitude (g)	por gramas)
1.500 2.500	1.200	1000	1,2
2.500 3.000	3.600	500	7,2
3.000 3.500	4.800	500	9,6
3.500 -4.500	2.400	1000	2,4
Total	12.000		

Tabela de frequência com amplitudes desiguais.

Frequência ajustada
$$\longrightarrow h' = \frac{N^{\circ}}{Amplitude}$$

O gráfico mostra que a AES Eletropaulo tem maior número de acidentes. Você concorda com esse resultado?

Variáveis qualitativas ou quantitativas discretas

<u>Colunas:</u> Um gráfico de colunas ilustra comparações entre itens. As categorias são organizadas na horizontal e os valores são distribuídos na vertical.

<u>Setor ou pizza:</u> Um gráfico de pizza mostra o tamanho proporcional de itens que constituem uma série de dados para a soma dos itens.

A frequência relativa (%) transformada em graus mediante o calculo proporcional.

<u>Bolhas:</u> Um gráfico de bolhas é um tipo de gráfico dispersão (x,y). O tamanho do marcador de dados indica o valor de uma terceira variável.

Variáveis quantitativas contínuas

<u>Histograma:</u> É formado por retângulos cujas áreas representam frequências dos intervalos de suas classes. Esta apresentação é indicada para séries contínuas, e portanto não há espaço entre as barras.

O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

OBRIGADA

Copyright © 2023 | Professora Dra. Regina Tomie Ivata Bernal
Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente
proibido sem consentimento formal, por escrito, do professor/autor.

· · · + — +

• • + •

. . .

. . . .

. .

.... +

-¦-