Advanced optimization methods Mirror descent

Alexandr Katrutsa

MIPT department of applied mathematics and computer science

October 9, 2018

Plan for today¹

- Uniform view on first order method
- Mirror descent
- Bregman divergence
- Convergence
- Experiments

¹Pictures and some ideas are taken from this presentation

Problem statement

$$\min_{x \in G} f(x)$$

- ▶ *f* is smooth and convex
- G is convex and closed
- ▶ Condition number $\kappa = \frac{L}{\mu}$, where L is Lipschitz constant of gradient and μ is strong convexity constant

Projected gradient descent

$$x_{k+1} = \pi_G(x_k - \alpha_k f'(x_k)) = \underset{x \in G}{\arg\min} \frac{1}{2} \|(x - x_k) + \alpha_k f'(x_k)\|_2^2$$

$$= \underset{x \in G}{\arg\min} \left\{ \underbrace{f(x_k) + \langle f'(x_k), x - x_k \rangle}_{\text{linear approximation}} + \underbrace{\frac{1}{2\alpha_k} \|x - x_k\|_2^2}_{\text{proximity term}} \right\}$$

$$f(x)$$

$$-\frac{1}{2\pi} \|x - x^t\|_2^2$$

Use euclidean distance to measure discrepancy between f and FO approximation

► We believe that euclidean distance is good for local curvature estimation

- We believe that euclidean distance is good for local curvature estimation
- ▶ What is the main property of euclidean distance?

- We believe that euclidean distance is good for local curvature estimation
- ▶ What is the main property of euclidean distance?
- ► Main issue: local geometry might sometimes be highly inhomogeneous or even non-euclidean

- We believe that euclidean distance is good for local curvature estimation
- What is the main property of euclidean distance?
- ► Main issue: local geometry might sometimes be highly inhomogeneous or even non-euclidean
- Can you give some examples?

Examples: quadratic programming

$$\min_{x} \frac{1}{2} (x - x^*)^{\top} A (x - x^*),$$

where
$$A \in \mathbb{S}^n_{++}$$
 and $\kappa(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \gg 1$

▶ Gradient descent: $x_{k+1} = x_k - \alpha_k A(x_k - x^*)$ is slow, since convergence rate depends on κ

It does not fit local curvature of f!

Examples: quadratic programming

$$\min_{x} \frac{1}{2} (x - x^*)^{\top} A (x - x^*),$$

where $A \in \mathbb{S}^n_{++}$ and $\kappa(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \gg 1$

Rescaling gradient helps a lot

$$x_{k+1} = x_k - \alpha_k A^{-1} f'(x_k) = \underbrace{x_k - \alpha_k (x_k - x^*)}_{=x^* \text{ for } \alpha_k = 1}$$

$$x_{k+1} = \operatorname*{arg\,min}_{x} \left\{ \langle f'(x_k), x - x_k \rangle + \underbrace{\frac{1}{2\alpha_k} (x - x_k)^\top A (x - x_k)}_{\text{proximity term}} \right\}$$

Examples: probability simplex

$$\min_{x \in \Delta} f(x),$$

where
$$\Delta = \{ x \in \mathbb{R}^n_+ \mid x_1 + \ldots + x_n = 1 \}$$

- Euclidean distance is not appropriate to measure distance between probability vectors
- Different probability divergence metrics are better
- ► KL divergence

$$D_{KL}(p||q) = \sum_{i} p_i \log \frac{p_i}{q_i}$$

- Total variation distance
- $ightharpoonup \chi^2$ divergence

Mirror descent: main idea

Nemirovsky & Yudin, 1983 Adjust gradient updates to fit problem geometry

Mirror descent: formalism

Replace euclidean distance with distance-like function D_{arphi}

$$x_{k+1} = \operatorname*{arg\,min}_{x \in G} \bigg\{ f(x_k) + \langle f'(x_k), x - x_k \rangle + \underbrace{\frac{1}{\alpha_k} D_\varphi(x, x_k)}_{\text{Bregman divergence}} \bigg\},$$

where $D_{\varphi}(x,z)=\varphi(x)-\varphi(z)-\langle \varphi'(z),x-z\rangle$ for convex and differentiable φ

Bregman divergence

Definition

Let φ be strictly convex and differentiable on G then for any $x,z\in G$

$$D_{\varphi}(x,z) = \varphi(x) - \varphi(z) - \langle \varphi'(z), x - z \rangle$$

- Similar to squared euclidean distance
- Locally quadratic measure:

$$D_{\varphi}(x,z) = (x-z)^{\top} \varphi''(\xi)(x-z)$$

for some ξ

How to choose Bregman divergence?

- ▶ Fit local curvature of *f*
- ▶ Use geometry of feasible set G
- ▶ Inexpensive computation of Bregman projection

Examples

▶ Squared Mahalanobis distance, $A \in \mathbb{S}_{++}^n$

$$\varphi(x) = \frac{1}{2} x^{\top} A x, \quad D_{\varphi}(x, z) = \frac{1}{2} (x - z)^{\top} A (x - z)$$

$$MD: x_{k+1} = x_k - \alpha_k A^{-1} f'(x_k)$$

▶ KL divergence for $G = \Delta$

$$\varphi(x) = \sum_{i} x_i \log x_i, \quad D_{\varphi}(x, z) = \sum_{i} x_i \log \frac{x_i}{z_i}$$

$$\text{MD: } x_{k+1}^i = \frac{x_k^i \exp(-\alpha_k'[f'(x_k)]_i)}{\sum_{j=1}^n x_k^j \exp(-\alpha_k'[f'(x_k)]_j)}$$

Also known as exponential gradient method

Some more cases

Table is from this paper

Function Name	$\varphi(x)$	$\mathrm{dom}\varphi$	$D_{\varphi}(x;y)$
Squared norm	$\frac{1}{2}x^2$	$(-\infty, +\infty)$	$\frac{1}{2}(x-y)^2$
Shannon entropy	$x \log x - x$	$[0,+\infty)$	$x \log \frac{x}{y} - x + y$
Bit entropy	$x \log x + (1-x) \log(1-x)$	[0, 1]	$x \log \frac{x}{y} + (1-x) \log \frac{1-x}{1-y}$
Burg entropy	$-\log x$	$(0,+\infty)$	$\frac{x}{y} - \log \frac{x}{y} - 1$
Hellinger	$-\sqrt{1-x^2}$	[-1, 1]	$\left (1-xy)(1-y^2)^{-1/2} - (1-x^2)^{1/2} \right $
ℓ_p quasi-norm	$-x^p \qquad (0$	$[0,+\infty)$	$-x^{p}+pxy^{p-1}-(p-1)y^{p}$
ℓ_p norm	$ x ^p \qquad (1$	$(-\infty, +\infty)$	$ x ^{p} - p x \operatorname{sgn} y y ^{p-1} + (p-1) y ^{p}$
Exponential	$\exp x$	$(-\infty, +\infty)$	$\exp x - (x - y + 1) \exp y$
Inverse	1/x	$(0,+\infty)$	$1/x + x/y^2 - 2/y$

Let $\varphi:G\to\mathbb{R}$ be $\mu\text{-strongly convex}$ and differentiable in G, then

Let $\varphi: G \to \mathbb{R}$ be μ -strongly convex and differentiable in G, then

▶ non-negativity: $D_{\varphi}(x,z) \geq 0$ and $D_{\varphi}(x,z) = 0$ iff x = z

Let $\varphi: G \to \mathbb{R}$ be μ -strongly convex and differentiable in G, then

- ▶ non-negativity: $D_{\varphi}(x,z) \geq 0$ and $D_{\varphi}(x,z) = 0$ iff x = z
- convexity: $D_{\varphi}(x,z)$ is convex in x, but not necessarily convex in z

Let $\varphi: G \to \mathbb{R}$ be μ -strongly convex and differentiable in G, then

- ▶ non-negativity: $D_{\varphi}(x,z) \geq 0$ and $D_{\varphi}(x,z) = 0$ iff x = z
- convexity: $D_{\varphi}(x,z)$ is convex in x, but not necessarily convex in z
- \blacktriangleright non-symmetric: in general $D_{\varphi}(x,z) \neq D_{\varphi}(z,x)$

Let $\varphi:G\to\mathbb{R}$ be μ -strongly convex and differentiable in G, then

- ▶ non-negativity: $D_{\varphi}(x,z) \geq 0$ and $D_{\varphi}(x,z) = 0$ iff x = z
- convexity: $D_{\varphi}(x,z)$ is convex in x, but not necessarily convex in z
- ▶ non-symmetric: in general $D_{\varphi}(x,z) \neq D_{\varphi}(z,x)$
- gradient: $(D_{\varphi}(x,z))'_x = \varphi'(x) \varphi'(z)$

Three-point lemma

Lemma

For any three points x, y, z:

$$D_{\varphi}(x,z) = D_{\varphi}(x,y) + D_{\varphi}(y,z) - \langle \varphi'(z) - \varphi'(y), x - y \rangle$$

Proof on the blackboard

Q: what is the name of this lemma in the euclidean case?

Bregman projection

Definition

Given point x, then Bregman projection of x onto G is the following

$$\pi_{G,\varphi}(x) = \operatorname*{arg\,min}_{z \in G} D_{\varphi}(z,x)$$

We need fast method to find $\pi_{G, \varphi}$

Generalized Pythagorean theorem

Theorem

If
$$x_{G,\varphi} = \pi_{G,\varphi}(x)$$
, then

$$D_{\varphi}(z,x) \ge D_{\varphi}(z,x_{G,\varphi}) + D_{\varphi}(x_{G,\varphi},x), \quad \forall z \in G$$

Proof on the blackboard

Why this descent is "mirror"?

► Rewrite original sub-problem with Bregman divergence

$$x_{k+1} = \operatorname*{arg\,min}_{x \in G} \left\{ \langle f'(x_k), x - x_k \rangle + \frac{1}{\alpha_k} D_\varphi(x, x_k) \right\}$$

Optimality condition

$$0 \in N_G(x_{k+1}) + \alpha_k f'(x_k) + (\varphi'(x_{k+1}) - \varphi'(x_k))$$

Bregman projection form

$$x_{k+1} = \underset{x \in G}{\arg \min} D_{\varphi}(x, y_{k+1}), \quad \varphi'(y_{k+1}) = \varphi'(x_k) - \alpha_k f'(x_k)$$

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

where $\varphi^*(x) = \sup_z \{ \langle z, x \rangle - \varphi(z) \}$ is conjugate function

"Vectors" and "gradients" are from different spaces in general Banach space case

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

- "Vectors" and "gradients" are from different spaces in general Banach space case
- Gradient descent does not make any sense!

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

- "Vectors" and "gradients" are from different spaces in general Banach space case
- Gradient descent does not make any sense!
- We do not have this problem in Hilbert space, because of Fréchet-Riesz theorem

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

- "Vectors" and "gradients" are from different spaces in general Banach space case
- Gradient descent does not make any sense!
- We do not have this problem in Hilbert space, because of Fréchet-Riesz theorem
- ▶ So, the main insight from MD is

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

- "Vectors" and "gradients" are from different spaces in general Banach space case
- Gradient descent does not make any sense!
- We do not have this problem in Hilbert space, because of Fréchet-Riesz theorem
- ▶ So, the main insight from MD is
 - 1. Map x_k to the dual space with function that induces Bregman divergence

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

- "Vectors" and "gradients" are from different spaces in general Banach space case
- Gradient descent does not make any sense!
- We do not have this problem in Hilbert space, because of Fréchet-Riesz theorem
- ▶ So, the main insight from MD is
 - 1. Map x_k to the dual space with function that induces Bregman divergence
 - 2. Perform gradient step in dual space

Assume $G = \mathbb{R}^n$, then

$$x_{k+1} = (\varphi^*)'(\varphi'(x_k) - \alpha_k f'(x_k)),$$

- "Vectors" and "gradients" are from different spaces in general Banach space case
- Gradient descent does not make any sense!
- We do not have this problem in Hilbert space, because of Fréchet-Riesz theorem
- ▶ So, the main insight from MD is
 - 1. Map x_k to the dual space with function that induces Bregman divergence
 - 2. Perform gradient step in dual space
 - Project new point in primal space w.r.t. Bregman divergence proximity

Conjugacy and inversion

Lemma

$$(\varphi^*)' = (\varphi')^{-1}, \quad x_{k+1} = (\varphi')^{-1}(\varphi'(x_k) - \alpha_k f'(x_k))$$

Proof

- Assume $y = \varphi'(x)$
- By definition $\langle x,y\rangle=\varphi(x)+\varphi^*(y)$
- ▶ From convexity of φ : $\langle x, y \rangle = \varphi^{**}(x) + \varphi^{*}(y)$
- From definition follows $x = (\varphi^*)'(y)$
- Finally $x = (\varphi^*)'(y) = (\varphi^*)'(\varphi'(x))$

Convergence analysis: assumptions

Problem statement

$$\min_{x \in G} f(x)$$

- ▶ f is convex and Lipschitz continuous
- G is convex and closed
- φ is ρ -strongly convex w.r.t. $\|\cdot\|$
- ▶ $||g||_* \le L_f$ for any $g \in \partial f$, any point x, where $||\cdot||_*$ is dual norm

Convergence analysis: main theorem

Theorem

Assume f is convex and $L_f\text{-continuous}$ on G and let φ be $\rho\text{-strongly convex w.r.t.}\ \|\cdot\|.$ Then

$$f_K^{best} - f^* \le \frac{\sup_{x \in G} D_{\varphi}(x, x_0) + \frac{L_f^2}{2\rho} \sum_{k=0}^K \alpha_k^2}{\sum_{k=0}^K \alpha_k}$$

▶ If $\alpha_k = \frac{\sqrt{2R\rho}}{L_f} \frac{1}{\sqrt{k}}$, where $R = \sup_{x \in G} D_{\varphi}(x, x_0)$, then

$$f_K^{best} - f^* \le \mathcal{O}\left(\frac{L_f\sqrt{R}}{\sqrt{\rho}}\frac{\log k}{\sqrt{k}}\right)$$

▶ log-factor can be eliminate

Optimization over probability simplex with ℓ_2

Assume $G = \Delta$ and $x_0 = n^{-1}\mathbf{1}$

(1) Use euclidean proximity term: $\varphi(x)=\frac{1}{2}\|x\|_2^2$ – 1-strongly convex in $\|\cdot\|_2$. Then

$$\sup_{x \in G} D_{\varphi}(x, x_0) = \sup_{x \in \Delta} \frac{1}{2} \|x - n^{-1}\mathbf{1}\|_2^2 = \sup_{x \in \Delta} \frac{1}{2} \left(\|x\|_2^2 - \frac{1}{n} \right) \le \frac{1}{2}$$

and

$$f_K^{best} - f^* \le \mathcal{O}\left(L_{f,2} \frac{\log k}{\sqrt{k}}\right),$$

i.e. for all subgradients $g: ||g'||_2 \le L_{f,2}$

Optimization over probability simplex with ℓ_1

Assume $G = \Delta$ and $x_0 = n^{-1}\mathbf{1}$

(2) Use ℓ_1 proximity term: $\psi(x) = -\sum_{i=1}^n x_i \log x_i - 1$ -strongly convex in $\|\cdot\|_1$. Then

$$\sup_{x \in G} D_{\psi}(x, x_0) = \sup_{x \in \Delta} D_{KL}(x||x_0) = \sup_{x \in \Delta} \sum_{i=1}^n x_i \log x_i - \sum_{i=1}^n x_i \log \frac{1}{n}$$
$$= \log n + \sum_{i=1}^n x_i \log x_i \le \log n$$

and

$$f_K^{best} - f^* \le \mathcal{O}\left(L_{f,\infty}\sqrt{\log n} \frac{\log k}{\sqrt{k}}\right)$$

i.e. for all subgradients $g: ||g'||_{\infty} \leq L_{f,\infty}$

Optimization over probability simplex: comparison

Ignore log-terms and compare

- ▶ Euclidean: $\mathcal{O}\left(\frac{L_{f,2}}{\sqrt{k}}\right)$
- $D_{KL}: \mathcal{O}\left(\frac{L_{f,\infty}}{\sqrt{k}}\right)$
- ► Equivalence norm

$$||g||_{\infty} \le ||g||_2 \le \sqrt{n} ||g||_{\infty}$$

▶ Why D_{KL} is better:

$$\frac{1}{\sqrt{n}} \le \frac{L_{f,\infty}}{L_{f,2}} \le 1$$

▶ It is important to fit local geometry

- ▶ It is important to fit local geometry
- Bregman divergence is effective tool to tune distance function for your problem

- It is important to fit local geometry
- Bregman divergence is effective tool to tune distance function for your problem
- ▶ Idea from functional analysis is helpful here

- It is important to fit local geometry
- Bregman divergence is effective tool to tune distance function for your problem
- Idea from functional analysis is helpful here
- Mirror descent separates steps in primal and dual spaces

- It is important to fit local geometry
- Bregman divergence is effective tool to tune distance function for your problem
- ▶ Idea from functional analysis is helpful here
- Mirror descent separates steps in primal and dual spaces
- Experiments will be in the next class...