Arithmetic Logic Unit

Xiufeng Sui

University of Chinese Academy of Sciences (UCAS)

Arithmetic – The heart of instruction execution

Instruction

Designing an Arithmetic Logic Unit

ALU control input	Function	Operations
000	And	and
001	Or	or
010	Add	add, lw, sw
110	Subtract	sub, beq
111	Slt	slt

A One Bit ALU

This 1-bit ALU will perform AND, OR, and ADD

A 32-bit ALU

1-bit ALU

32-bit ALU CarryIn Operation CarryIn → Result0 ALU0 CarryOut CarryIn → Result1 ALU1 CarryOut CarryIn → Result2 ALU2 CarryOut a31 CarryIn → Result31 ALU31 b31

How About Subtraction?

- Keep in mind the following:
 - (A B) is the same as: A + (-B)
 - 2's Complement negate: Take the inverse of every bit and add 1
- Bit-wise inverse of B is !B:

$$-A-B=A+(-B)=A+(!B+1)=A+!B+1$$

Overflow Detection Logic

中科代计算所 INSTITUTE OF COMPUTING TECHNOLOGY

- Carry into MSB! = Carry out of MSB
 - For a N-bit ALU: Overflow = CarryIn[N 1] XOR CarryOut[N 1]

Zero Detection Logic

ド新代計算時 INSTITUTE OF COMPUTING TECHNOLOGY

- Zero Detection Logic is just one BIG NOR gate
 - Any non-zero input to the NOR gate will cause its output to be zero

Set-on-less-than

- We are mostly there!
 - $-A < B \Rightarrow (A B) < 0$
 - Do a subtract
- If true, set LSB to 1, all others 0
 - Use sign bit
 - route to bit 0 of result
 - all other bits zero

Full ALU

The Disadvantage of Ripple Carry

- The adder we just built is called a "Ripple Carry Adder"
 - The carry bit may have to propagate from LSB to MSB
 - Worst case delay for an N-bit RC adder: 2N-gate delay

The point -> ripple carry adders are slow. Faster addition schemes are possible that *accelerate* the movement of the carry from one end to the other.