1 Differentiator Circuit

Consider the following circuit

1. What is the transfer function $H(j\omega)$?

2 Parallel RLC

Consider the circuit shown below.

At t < 0, S_1 is on (short-circuited), and S_2 is off (open-circuited). At $t \ge 0$, S_1 is off (open-circuited), and S_2 is on (short-circuited).

1. Right after the switches change state (i.e., at t = 0), what is the value of i_L ?

2. Choosing the state variables as $\vec{x}(t) = \begin{bmatrix} V_{\text{out}}(t) \\ i_L(t) \end{bmatrix}$, derive the **A** matrix that captures the behavior of this circuit for $t \geq 0$ with the matrix differential equation $\frac{d\vec{x}(t)}{dt} = \mathbf{A}\vec{x}(t) + \vec{b}$, where \vec{b} is a vector of constants.

3. Assuming that $V_{\rm out}(0) = 0$ V, derive an expression for $V_{\rm out}(t)$ for $t \ge 0$.

3 Diagonalizability and Invertibility

- 1. Given an example of a matrix A, or prove that no such example can exist.
 - Can be diagonalized and is invertible.
 - Cannot be diagonalized but is invertible.
 - Can be diagonalized but is non-invertible.
 - Cannot be diagonalized and is non-invertible.

4 Eigenvalue Decomposition and Singular Value Decomposition

We define Eigenvalue Decomposition as follows:

If a matrix $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors $\vec{p}_1, \dots, \vec{p}_n$ with eigenvalues $\lambda_i, \dots, \lambda_n$, then we can write:

$$A = P\Lambda P^{-1}$$

Where columns of P consist of $\vec{p}_1, \ldots, \vec{p}_n$, and Λ is a diagonal matrix with diagonal entries $\lambda_i, \ldots, \lambda_n$.

Consider a matrix $A \in \mathbb{S}^n$, that is, $A = A^T \in \mathbb{R}^{n \times n}$. This is a symmetric matrix and has orthorgonal eigenvectors. Therefore its eigenvalue decomposition can be written as,

$$A = P\Lambda P^T$$

- 1. First, assume $\lambda_i \geq 0$, $\forall i$. Find the SVD of A.
- 2. Let one particular eigenvalue λ_j be negative, with the associated eigenvector being p_j . Succinctly,

$$Ap_i = \lambda_i p_i$$
 with $\lambda_i < 0$

We are still assuming that,

$$A = P\Lambda P^T$$

- a) What is the singular value σ_i associated to λ_i ?
- b) What is the relationship between the left singular vector u_j , the right singular vector v_j and the eigenvector p_j ?