# Gramáticas y lenguajes libres de contexto

Sebastián Taboh

13 de mayo de 2020

Definición de gramática

lacktriangle Una gramática es una 4-upla  $G=\langle V_N,V_T,P,S \rangle$  donde

#### Definición de gramática

- lackbox Una gramática es una 4-upla  $G=\langle V_N,V_T,P,S
  angle$  donde
  - $ightharpoonup V_N$  es un conjunto de símbolos llamados no-terminales, variables o categorías sintácticas.

#### Definición de gramática

- lackbox Una gramática es una 4-upla  $G=\langle V_N,V_T,P,S
  angle$  donde
  - $ightharpoonup V_N$  es un conjunto de símbolos llamados no-terminales, variables o categorías sintácticas.
  - $ightharpoonup V_T$  es un conjunto de símbolos terminales.

#### Definición de gramática

- lackbox Una gramática es una 4-upla  $G=\langle V_N,V_T,P,S
  angle$  donde
  - V<sub>N</sub> es un conjunto de símbolos llamados no-terminales, variables o categorías sintácticas.
  - $ightharpoonup V_T$  es un conjunto de símbolos terminales.
  - ightharpoonup P es el conjunto de "producciones", que es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*$$

#### Definición de gramática

- lackbox Una gramática es una 4-upla  $G=\langle V_N,V_T,P,S
  angle$  donde
  - V<sub>N</sub> es un conjunto de símbolos llamados no-terminales, variables o categorías sintácticas.
  - $ightharpoonup V_T$  es un conjunto de símbolos terminales.
  - ightharpoonup P es el conjunto de "producciones", que es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*$$

Estas producciones son entonces pares ordenados  $(\alpha,\beta)$ , que usualmente son notados como  $\alpha \to \beta.$ 

#### Definición de gramática

- lackbox Una gramática es una 4-upla  $G=\langle V_N,V_T,P,S
  angle$  donde
  - V<sub>N</sub> es un conjunto de símbolos llamados no-terminales, variables o categorías sintácticas.
  - $ightharpoonup V_T$  es un conjunto de símbolos terminales.
  - ightharpoonup P es el conjunto de "producciones", que es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*$$

Estas producciones son entonces pares ordenados  $(\alpha, \beta)$ , que usualmente son notados como  $\alpha \to \beta$ .

▶  $S \in V_N$  es el símbolo distinguido de  $V_N$ .

#### Derivación

ightharpoonup Derivación directa  $(\Rightarrow)$ 

- ▶ Derivación directa (⇒)
  - ▶ Si  $\alpha\beta\gamma \in (V_N \cup V_T)^*$  y  $\beta \to \delta \in P$ , se dice que  $\alpha\delta\gamma$  se deriva directamente en G de  $\alpha\beta\gamma$ .

- ▶ Derivación directa (⇒)
  - ▶ Si  $\alpha\beta\gamma \in (V_N \cup V_T)^*$  y  $\beta \to \delta \in P$ , se dice que  $\alpha\delta\gamma$  se deriva directamente en G de  $\alpha\beta\gamma$ .
  - $\blacktriangleright \ \, \mathsf{Se} \,\, \mathsf{denota} \,\, \alpha\beta\gamma \underset{G}{\Rightarrow} \, \alpha\delta\gamma.$

- ▶ Derivación directa (⇒)
  - ▶ Si  $\alpha\beta\gamma \in (V_N \cup V_T)^*$  y  $\beta \to \delta \in P$ , se dice que  $\alpha\delta\gamma$  se deriva directamente en G de  $\alpha\beta\gamma$ .
  - $\blacktriangleright \ \, \mathsf{Se} \,\, \mathsf{denota} \,\, \alpha\beta\gamma \underset{G}{\Rightarrow} \, \alpha\delta\gamma.$
- ▶ Derivación en 0 o más pasos (\*\*)

- ▶ Derivación directa (⇒)
  - Si  $\alpha\beta\gamma\in (V_N\cup V_T)^*$  y  $\beta\to\delta\in P$ , se dice que  $\alpha\delta\gamma$  se deriva directamente en G de  $\alpha\beta\gamma$ .
- ightharpoonup Derivación en 0 o más pasos  $(\stackrel{*}{\Rightarrow})$ 
  - $lackbox{ } \alpha \overset{*}{\underset{G}{\Rightarrow}} \alpha$  para cualquier  $\alpha \in (V_N \cup V_T)^*$ .

- ▶ Derivación directa (⇒)
  - ▶ Si  $\alpha\beta\gamma \in (V_N \cup V_T)^*$  y  $\beta \to \delta \in P$ , se dice que  $\alpha\delta\gamma$  se deriva directamente en G de  $\alpha\beta\gamma$ .
  - $\blacktriangleright \ \, \mathsf{Se} \,\, \mathsf{denota} \,\, \alpha\beta\gamma \underset{G}{\Rightarrow} \, \alpha\delta\gamma.$
- ightharpoonup Derivación en 0 o más pasos  $(\stackrel{*}{\Rightarrow})$ 
  - $ightharpoonup lpha \stackrel{*}{\underset{G}{\Rightarrow}} lpha$  para cualquier  $lpha \in (V_N \cup V_T)^*$ .
  - $\blacktriangleright \ \, \mathsf{Si} \,\, \alpha \overset{*}{\underset{G}{\longrightarrow}} \, \beta \,\, \mathsf{y} \,\, \beta \underset{G}{\Longrightarrow} \, \gamma \,\, \mathsf{entonces} \,\, \alpha \overset{*}{\underset{G}{\longrightarrow}} \, \gamma.$

- ▶ Derivación directa (⇒)
  - ▶ Si  $\alpha\beta\gamma \in (V_N \cup V_T)^*$  y  $\beta \to \delta \in P$ , se dice que  $\alpha\delta\gamma$  se deriva directamente en G de  $\alpha\beta\gamma$ .
  - $\blacktriangleright \ \, \mathsf{Se} \,\, \mathsf{denota} \,\, \alpha\beta\gamma \underset{G}{\Rightarrow} \, \alpha\delta\gamma.$
- ightharpoonup Derivación en 0 o más pasos  $(\stackrel{*}{\Rightarrow})$ 
  - $lackbox{ } \alpha \overset{*}{\underset{G}{\Rightarrow}} \alpha$  para cualquier  $\alpha \in (V_N \cup V_T)^*$ .
  - $\blacktriangleright \ \, \mathsf{Si} \,\, \alpha \overset{*}{\underset{G}{\longrightarrow}} \, \beta \,\, \mathsf{y} \,\, \beta \overset{}{\underset{G}{\longrightarrow}} \, \gamma \,\, \mathsf{entonces} \,\, \alpha \overset{*}{\underset{G}{\longrightarrow}} \, \gamma.$
  - ► Es la clausura reflexiva y transitiva de ⇒.

Más definiciones y propiedades

► Lenguaje generado por *G*:

$$L(G) = \{ \alpha \in V_T^* \mid S \stackrel{*}{\Rightarrow} \alpha \}$$

#### Más definiciones y propiedades

Lenguaje generado por *G*:

$$L(G) = \{ \alpha \in V_T^* \mid S \stackrel{*}{\Rightarrow} \alpha \}$$

► Gramática libre de contexto (tipo 2): todas las producciones son de la forma

$$A \to \alpha \text{ con } A \in V_N, \ \alpha \in (V_N \cup V_T)^*$$

#### Más definiciones y propiedades

► Lenguaje generado por *G*:

$$L(G) = \{ \alpha \in V_T^* \mid S \stackrel{*}{\Rightarrow} \alpha \}$$

Gramática libre de contexto (tipo 2): todas las producciones son de la forma

$$A \to \alpha \text{ con } A \in V_N, \ \alpha \in (V_N \cup V_T)^*$$

 Los lenguajes libres de contexto son los generados por gramáticas libres de contexto.

#### Más definiciones y propiedades

Lenguaje generado por *G*:

$$L(G) = \{ \alpha \in V_T^* \mid S \stackrel{*}{\Rightarrow} \alpha \}$$

► Gramática libre de contexto (tipo 2): todas las producciones son de la forma

$$A \to \alpha \text{ con } A \in V_N, \ \alpha \in (V_N \cup V_T)^*$$

- Los lenguajes libres de contexto son los generados por gramáticas libres de contexto.
- Son los mismos que los generados por autómatas de pila.

#### Más definiciones y propiedades

Lenguaje generado por *G*:

$$L(G) = \{ \alpha \in V_T^* \mid S \stackrel{*}{\Rightarrow} \alpha \}$$

Gramática libre de contexto (tipo 2): todas las producciones son de la forma

$$A \to \alpha \text{ con } A \in V_N, \ \alpha \in (V_N \cup V_T)^*$$

- Los lenguajes libres de contexto son los generados por gramáticas libres de contexto.
- Son los mismos que los generados por autómatas de pila.
- Los autómatas de pila determinísticos definen sólo un subconjunto propio de los lenguajes libres de contexto.

#### Más definiciones y propiedades

Lenguaje generado por G:

$$L(G) = \{ \alpha \in V_T^* \mid S \stackrel{*}{\Rightarrow} \alpha \}$$

Gramática libre de contexto (tipo 2): todas las producciones son de la forma

$$A \to \alpha \text{ con } A \in V_N, \ \alpha \in (V_N \cup V_T)^*$$

- Los lenguajes libres de contexto son los generados por gramáticas libres de contexto.
- Son los mismos que los generados por autómatas de pila.
- Los autómatas de pila determinísticos definen sólo un subconjunto propio de los lenguajes libres de contexto.
- Los lenguajes regulares están propiamente incluidos en los lenguajes libres de contexto.

# Ejercicio de parcial: 1P-1C-2017

Dados 
$$\Sigma=\{0,1,\#\}$$
 y  $L=\{\omega\#1^i\mid \omega\in\{0,1\}^*\wedge i=|\omega|_{01}\}$ 

# Ejercicio de parcial: 1P-1C-2017

Dados 
$$\Sigma=\{0,1,\#\}$$
 y  $L=\{\omega\#1^i\mid \omega\in\{0,1\}^*\wedge i=|\omega|_{01}\}$ 

b) Dar una gramática libre de contexto para L.

$$L = \{\omega \# 1^i \mid \omega \in \{0, 1\}^* \land i = |\omega|_{01}\}$$

$$L = \{\omega \# 1^i \mid \omega \in \{0, 1\}^* \land i = |\omega|_{01}\}$$

 $\triangleright$  Reescribimos L como

$$L = \bigcup_{i \ge 0} L_i$$

donde para cada i fijado

$$L_i := \{ \omega \# 1^i \mid \omega \in \{0, 1\}^* \land i = |\omega|_{01} \}$$

$$L = \{\omega \# 1^i \mid \omega \in \{0, 1\}^* \land i = |\omega|_{01}\}$$

▶ Reescribimos *L* como

$$L = \bigcup_{i \ge 0} L_i$$

donde para cada i fijado

$$L_i := \{ \omega \# 1^i \mid \omega \in \{0, 1\}^* \land i = |\omega|_{01} \}$$

Ojo,  $L_i$  no es L porque para  $L_i$  el i está fijado y para L no.

$$L = \{\omega \# 1^i \mid \omega \in \{0, 1\}^* \land i = |\omega|_{01}\}$$

▶ Reescribimos *L* como

$$L = \bigcup_{i \ge 0} L_i$$

donde para cada i fijado

$$L_i := \{ \omega \# 1^i \mid \omega \in \{0, 1\}^* \land i = |\omega|_{01} \}$$

Ojo,  $L_i$  no es L porque para  $L_i$  el i está fijado y para L no.

 $\alpha \in L_i \text{ es de la pinta } \gamma_1 \text{ } 01 \text{ } \gamma_2 \text{ } 01 \text{ } \dots \gamma_i \text{ } 01 \text{ } \gamma_{i+1} \# 1^i$   $\text{con } \gamma_1, \dots, \gamma_{i+1} \in \{0, 1\}^* \text{ sin } 01 \text{ como subcadena } (\gamma_1, \dots, \gamma_{i+1} \in L(1^*0^*)).$ 

 $\alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \dots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i$   $\operatorname{con} \ \gamma_1, \dots, \gamma_{i+1} \in \{0,1\}^* \ \operatorname{sin} \ 01 \ \operatorname{como} \ \operatorname{subcadena} \ (\gamma_1, \dots, \gamma_{i+1} \in L(1^*0^*)).$ 

- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \bullet \quad \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } (\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

para algún  $i \geq 0$ .

- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } (\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

para algún  $i \geq 0$ .

$$i = 0: 1*0*#$$

- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } (\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

- i = 0: 1\*0\*#
- i = 1: (1\*0\*01) [1\*0\*#] 1

- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \bullet \quad \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } (\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

- i = 0: 1\*0\*#
- i = 1: (1\*0\*01) [1\*0\*#] 1
- $i = 2: (1^*0^*01) [(1^*0^*01)1^*0^*#1] 1$

- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \bullet \quad \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } (\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

- i = 0: 1\*0\*#
- i = 1: (1\*0\*01) [1\*0\*#] 1
- $i = 2: (1^*0^*01) [(1^*0^*01)1^*0^*#1] 1$
- i = i':  $(1^*0^*01) [(1^*0^*01)^{i'-1}1^*0^*#1^{i'-1}] 1$

- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \bullet \quad \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } \big(\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)\big). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

- i = 0: 1\*0\*#
- i = 1: (1\*0\*01) [1\*0\*#] 1
- i = 2: (1\*0\*01) [(1\*0\*01)1\*0\*#1] 1
- i = i':  $(1*0*01) [(1*0*01)^{i'-1}1*0*#1^{i'-1}] 1$

$$L_i = \left\{ \right.$$



- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \bullet \quad \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } \big(\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)\big). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

- i = 0: 1\*0\*#
- i = 1: (1\*0\*01) [1\*0\*#] 1
- i = 2: (1\*0\*01) [(1\*0\*01)1\*0\*#1] 1
- i = i':  $(1*0*01) [(1*0*01)^{i'-1}1*0*#1^{i'-1}] 1$

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0 \end{cases}$$

- $\begin{array}{l} \bullet \quad \alpha \in L_i \text{ es de la pinta } \gamma_1 \ 01 \ \gamma_2 \ 01 \ \ldots \gamma_i \ 01 \ \gamma_{i+1} \# 1^i \\ \\ \bullet \quad \text{con } \gamma_1, \ldots, \gamma_{i+1} \in \{0,1\}^* \text{ sin } 01 \text{ como subcadena } \big(\gamma_1, \ldots, \gamma_{i+1} \in L(1^*0^*)\big). \end{array}$
- ▶ Cualquier  $\alpha \in L$  es de la pinta

$$(1^*0^*01)^i1^*0^*\#1^i$$

- i = 0: 1\*0\*#
- i = 1: (1\*0\*01) [1\*0\*#] 1
- i = 2: (1\*0\*01) [(1\*0\*01)1\*0\*#1] 1
- i = i':  $(1*0*01) [(1*0*01)^{i'-1}1*0*#1^{i'-1}] 1$

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0 \\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

▶ Tenemos

$$L_i = \begin{cases} \{1^*0^* \#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - ightharpoonup P: S 
    ightharpoonup

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $ightharpoonup P: S o S_1S_0 \#$

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $ightharpoonup P: S \to S_1 S_0 \# \mid S_1 S_0 01 S1$

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $P: S \to S_1 S_0 \# \mid S_1 S_0 01S1$  $S_1 \to \lambda \mid 1S_1$

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $P: \quad S \to S_1 S_0 \# \mid S_1 S_0 01 S1$   $S_1 \to \lambda \mid 1 S_1$   $S_0 \to \lambda \mid 0 S_0$

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $P: \quad S \to S_1 S_0 \# \mid S_1 S_0 01S1$   $S_1 \to \lambda \mid 1S_1$   $S_0 \to \lambda \mid 0S_0$
  - ¿Qué variables aparecen en las producciones?

Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0 \\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $P: \quad S \to S_1 S_0 \# \mid S_1 S_0 01S1$   $S_1 \to \lambda \mid 1S_1$   $S_0 \to \lambda \mid 0S_0$
  - ¿Qué variables aparecen en las producciones?

$$V_N = \{S, S_1, S_0\}$$



Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0\\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $P: \quad S \to S_1 S_0 \# \mid S_1 S_0 01S1$   $S_1 \to \lambda \mid 1S_1$   $S_0 \to \lambda \mid 0S_0$
  - ▶ ¿Qué variables aparecen en las producciones?

$$V_N = \{S, S_1, S_0\}$$

 $\triangleright$  ¿Qué símbolos aparecen en las cadenas del lenguaje L?



Tenemos

$$L_i = \begin{cases} \{1^*0^*\#\} & \text{si } i = 0 \\ \{(1^*0^*01)\alpha 1 \mid \alpha \in L_{i-1}\} & \text{si } i > 0 \end{cases}$$

- ▶ Damos la gramática  $G = \langle V_N, V_T, P, S \rangle$  que genera el lenguaje L:
  - $P: \quad S \to S_1 S_0 \# \mid S_1 S_0 01S1$   $S_1 \to \lambda \mid 1S_1$   $S_0 \to \lambda \mid 0S_0$
  - ¿Qué variables aparecen en las producciones?

$$V_N = \{S, S_1, S_0\}$$

▶ ¿Qué símbolos aparecen en las cadenas del lenguaje L?

$$V_T = \{0, 1, \#\}$$



Más definiciones

lackbox Una derivación más a la izquierda  $lpha_1Alpha_2 \Rightarrow lpha_1etalpha_2$  se define por

Más definiciones

- ▶ Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

 ${\cal A}$  es el primer símbolo no-terminal desde la izquierda.

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in {V_T}^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

S

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in {V_T}^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \Rightarrow_{l} S_1 S_0 01 S1$$

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

ightharpoonup Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1$$

#### Más definiciones

- Vina derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1$$

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1$$

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S_1 S_0 \#1$$

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in {V_T}^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S_1 S_0 \#1$$

$$\underset{l}{\Rightarrow} \lambda 0\lambda 011S_1 S_0 \#1$$

#### Más definiciones

- Vina derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S_1 S_0 \#1$$
  
$$\underset{l}{\Rightarrow} \lambda 0\lambda 011S_1 S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda S_0 \#1$$

#### Más definiciones

- Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S_1 S_0 \#1$$

$$\underset{l}{\Rightarrow} \lambda 0\lambda 011S_1 S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda \#1$$

#### Más definiciones

- Vina derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - lacktriangledown más a la izquierda:  $lpha_1 \in {V_T}^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S_1 S_0 \#1$$

$$\underset{l}{\Rightarrow} \lambda 0\lambda 011S_1 S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda \#1$$

▶ Una derivación más a la derecha  $\alpha_1 A \alpha_2 \Rightarrow_r \alpha_1 \beta \alpha_2$  se define por

#### Más definiciones

- ▶ Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A o \beta \in P$
  - ightharpoonup más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S_1 S_0 \#1$$

$$\underset{l}{\Rightarrow} \lambda 0\lambda 011S_1 S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda \#1$$

- ▶ Una derivación más a la derecha  $\alpha_1 A \alpha_2 \Rightarrow_r \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$

#### Más definiciones

- ▶ Una derivación más a la izquierda  $\alpha_1 A \alpha_2 \Rightarrow_l \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$
  - lacktriangle más a la izquierda:  $\alpha_1 \in V_T^*$

A es el primer símbolo no-terminal desde la izquierda.

▶ Ejemplo con la G del ejercicio para 0011#1:

$$S \underset{l}{\Rightarrow} S_1 S_0 01S1 \underset{l}{\Rightarrow} \lambda S_0 01S1 \underset{l}{\Rightarrow} \lambda 0S_0 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S1 \underset{l}{\Rightarrow} \lambda 0\lambda 01S_1 S_0 \#1$$

$$\underset{l}{\Rightarrow} \lambda 0\lambda 011S_1 S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda S_0 \#1 \underset{l}{\Rightarrow} \lambda 0\lambda 011\lambda \#1$$

- ▶ Una derivación más a la derecha  $\alpha_1 A \alpha_2 \Rightarrow_r \alpha_1 \beta \alpha_2$  se define por
  - ightharpoonup ser una derivación:  $A \to \beta \in P$
  - ightharpoonup más a la derecha:  $\alpha_2 \in V_T^*$

A es el primer símbolo no-terminal desde la derecha.



Más definiciones

Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto. Un **árbol de derivación** para G es tal que

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

Un **árbol de derivación** para G es tal que

▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

- ▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .
- ightharpoonup la raíz tiene como etiqueta al símbolo distinguido S.

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

- ▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .
- ightharpoonup la raíz tiene como etiqueta al símbolo distinguido S.
- ightharpoonup todo vértice interior tiene como etiqueta un símbolo de  $V_N$ .

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

- ▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .
- la raíz tiene como etiqueta al símbolo distinguido S.
- lacktriangle todo vértice interior tiene como etiqueta un símbolo de  $V_N$ .
- ▶ si

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

- ▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .
- la raíz tiene como etiqueta al símbolo distinguido S.
- ightharpoonup todo vértice interior tiene como etiqueta un símbolo de  $V_N$ .
- ► si
- un vértice n posee la etiqueta A

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

- ▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .
- la raíz tiene como etiqueta al símbolo distinguido S.
- ightharpoonup todo vértice interior tiene como etiqueta un símbolo de  $V_N$ .
- ► si
- un vértice n posee la etiqueta A
- lacktriangle y sus hijos  $n_1$ , ...,  $n_k$  poseen etiquetas  $X_1$ , ...,  $X_k$  respectivamente,

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

#### Un **árbol de derivación** para G es tal que

- ▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .
- ightharpoonup la raíz tiene como etiqueta al símbolo distinguido S.
- ightharpoonup todo vértice interior tiene como etiqueta un símbolo de  $V_N$ .
- ► si
- un vértice n posee la etiqueta A
- ightharpoonup y sus hijos  $n_1$ , ...,  $n_k$  poseen etiquetas  $X_1$ , ...,  $X_k$  respectivamente,

entonces  $A \to X_1 \dots X_k$  debe ser una producción de P.

#### Más definiciones

▶ Sea  $G = \langle V_N, V_T, P, S \rangle$  una gramática libre de contexto.

#### Un **árbol de derivación** para G es tal que

- ▶ todo vértice posee una etiqueta que pertenece al conjunto  $V_N \cup V_T \cup \{\lambda\}$ .
- la raíz tiene como etiqueta al símbolo distinguido S.
- ightharpoonup todo vértice interior tiene como etiqueta un símbolo de  $V_N$ .
- ► si
- un vértice n posee la etiqueta A
- ightharpoonup y sus hijos  $n_1$ , ...,  $n_k$  poseen etiquetas  $X_1$ , ...,  $X_k$  respectivamente,
- entonces  $A \to X_1 \dots X_k$  debe ser una producción de P.
- ightharpoonup todo vértice con la etiqueta  $\lambda$  es una hoja y es el único hijo de su padre.

#### Ejemplo de árbol de derivación



#### Ejemplo de árbol de derivación



Hay una correspondencia uno a uno entre árboles de derivación, derivaciones más a la izquierda y derivaciones más a la derecha.

#### Más definiciones

Decimos que una gramática libre de contexto G es **ambigua** si existe  $\alpha \in L(G)$  para la cual hay más de un árbol de derivación.

#### Más definiciones

▶ Decimos que una gramática libre de contexto G es **ambigua** si existe  $\alpha \in L(G)$  para la cual hay más de un árbol de derivación.

La gramática  $G = \langle V_N, V_T, P, S \rangle$  con

► P: 
$$S \to S_1 S_0 \# \mid S_1 S_0 01S1$$
  
 $S_1 \to \lambda \mid 1S_1$   
 $S_0 \to \lambda \mid 0S_0$ 

- $V_N = \{S, S_1, S_0\}$
- $V_T = \{0, 1, \#\}$

¿es ambigua?

#### Más definiciones

▶ Decimos que una gramática libre de contexto G es **ambigua** si existe  $\alpha \in L(G)$  para la cual hay más de un árbol de derivación.

La gramática  $G = \langle V_N, V_T, P, S \rangle$  con

► P: 
$$S \to S_1 S_0 \# \mid S_1 S_0 01S1$$
  
 $S_1 \to \lambda \mid 1S_1$   
 $S_0 \to \lambda \mid 0S_0$ 

- $V_N = \{S, S_1, S_0\}$
- $V_T = \{0, 1, \#\}$

¿es ambigua? No.

#### Más definiciones

Decimos que una gramática libre de contexto G es **ambigua** si existe  $\alpha \in L(G)$  para la cual hay más de un árbol de derivación.

La gramática  $G = \langle V_N, V_T, P, S \rangle$  con

► P: 
$$S \rightarrow S_1 S_0 \# \mid S_1 S_0 01S1$$
  
 $S_1 \rightarrow \lambda \mid 1S_1$   
 $S_0 \rightarrow \lambda \mid 0S_0$ 

- $V_N = \{S, S_1, S_0\}$
- $V_T = \{0, 1, \#\}$

¿es ambigua? No.

▶ Un lenguaje libre de contexto L es intrínsecamente ambiguo si toda gramática libre de contexto G que lo genere es ambigua.

#### Más definiciones

Decimos que una gramática libre de contexto G es ambigua si existe  $\alpha \in L(G)$  para la cual hay más de un árbol de derivación.

La gramática  $G = \langle V_N, V_T, P, S \rangle$  con

► P: 
$$S \rightarrow S_1 S_0 \# \mid S_1 S_0 01S1$$
  
 $S_1 \rightarrow \lambda \mid 1S_1$   
 $S_0 \rightarrow \lambda \mid 0S_0$ 

- $V_N = \{S, S_1, S_0\}$
- $V_T = \{0, 1, \#\}$

jes ambigua? No.

- Un lenguaje libre de contexto L es intrínsecamente ambiguo si toda gramática libre de contexto G que lo genere es ambigua.
  - L(G) no es intrínsecamente ambiguo dado que G no es ambigua.

$$L_{=} = \{a^i b^i \mid i \ge 0\}$$

$$L_{=} = \{a^i b^i \mid i \ge 0\}$$

$$G_{=} = \langle \ \{I\}, \{a,b\}, \{I \rightarrow \lambda \mid aIb\}, I \ \rangle$$

$$L_{=} = \{a^i b^i \mid i \ge 0\}$$

$$G_{=} = \langle \ \{I\}, \{a,b\}, \{I \rightarrow \lambda \mid aIb\}, I \ \rangle$$

$$L_{\neq} = \{ a^i b^j \mid i, j \ge 0 \land i \ne j \}$$

$$L_{=} = \{ a^{i}b^{i} \mid i \ge 0 \}$$

$$G_{=} = \langle \{I\}, \{a, b\}, \{I \rightarrow \lambda \mid aIb\}, I \rangle$$

$$L_{\neq} = \{ a^i b^j \mid i, j \ge 0 \land i \ne j \}$$

$$G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\}, P,S \ \rangle$$

$$P: S \rightarrow aAI \mid IBb$$

$$I \rightarrow \lambda \mid aIb$$

$$A \rightarrow \lambda \mid a \mid aA$$

$$B \rightarrow \lambda \mid b \mid bB$$

► 
$$L_{=} = \{a^{i}b^{i} \mid i \geq 0\}$$
  
 $G_{=} = \langle \{I\}, \{a, b\}, \{I \rightarrow \lambda \mid aIb\}, I \rangle$ 

$$\begin{array}{l} \blacktriangleright \ L_{\neq} = \{a^ib^j \mid i,j \geq 0 \land i \neq j\} \\ \\ G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\},P,S \ \rangle \\ \\ P: \ S \rightarrow aAI \mid IBb \\ \\ I \rightarrow \lambda \mid aIb \\ \\ A \rightarrow \lambda \mid a \mid aA \\ \\ B \rightarrow \lambda \mid b \mid bB \end{array}$$

Es ambigua.



► 
$$L_{=} = \{a^{i}b^{i} \mid i \geq 0\}$$

$$G_{=} = \langle \{I\}, \{a, b\}, \{I \rightarrow \lambda \mid aIb\}, I \}$$

$$\begin{array}{l} \blacktriangleright \ L_{\neq} = \{a^i b^j \mid i, j \geq 0 \land i \neq j\} \\ \\ G_{\neq} = \langle \ \{S, I, A, B\}, \{a, b\}, P, S \ \rangle \\ \\ P: \ S \rightarrow aAI \mid IBb \\ \\ I \rightarrow \lambda \mid aIb \\ \\ A \rightarrow \lambda \mid a \mid aA \\ \\ B \rightarrow \lambda \mid b \mid bB \end{array}$$

Es ambigua.

 $L_{\neq}$  puede ser intrínsecamente ambiguo.

$$L_{=} = \{a^i b^i \mid i \geq 0\}$$

$$G_{=} = \langle \ \{I\}, \{a,b\}, \{I \rightarrow \lambda \mid aIb\}, I \ \rangle$$

► 
$$L_{\neq} = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

$$G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\}, P,S \ \rangle \qquad G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\}, P,S \ \rangle$$

$$P: S \rightarrow aAI \mid IBb$$

$$I \rightarrow \lambda \mid aIb$$

$$A \rightarrow \lambda \mid a \mid aA$$

$$B \rightarrow \lambda \mid b \mid bB$$

$$P: S \to AI \mid IB$$

$$I \to \lambda \mid aIb$$

$$A \to a \mid aA$$

$$B \to b \mid bB$$

Es ambigua.

 $L_{\neq}$  puede ser intrínsecamente ambiguo.

 $L_{=} = \{a^i b^i \mid i \geq 0\}$ 

$$G_{=} = \langle \{I\}, \{a, b\}, \{I \rightarrow \lambda \mid aIb\}, I \rangle$$

►  $L_{\neq} = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$ 

$$G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\},P,S \ \rangle \qquad G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\},P,S \ \rangle$$

$$P: S \to aAI \mid IBb$$

$$I \to \lambda \mid aIb$$

$$A \to \lambda \mid a \mid aA$$

$$B \to \lambda \mid b \mid bB$$

$$P: S \to AI \mid IB$$

$$I \to \lambda \mid aIb$$

$$A \to a \mid aA$$

$$B \to b \mid bB$$

Es ambigua.

 $L_{\neq}$  puede ser intrínsecamente ambiguo.

No es ambigua.

 $L_{=} = \{a^i b^i \mid i \geq 0\}$ 

$$G_{=} = \langle \{I\}, \{a,b\}, \{I \rightarrow \lambda \mid aIb\}, I \rangle$$

►  $L_{\neq} = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$ 

$$G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\},P,S \ \rangle \qquad G_{\neq} = \langle \ \{S,I,A,B\}, \{a,b\},P,S \ \rangle$$

$$P: S \to aAI \mid IBb$$

$$I \to \lambda \mid aIb$$

$$A \to \lambda \mid a \mid aA$$

$$B \to \lambda \mid b \mid bB$$

$$P: S \to AI \mid IB$$

$$I \to \lambda \mid aIb$$

$$A \to a \mid aA$$

$$B \to b \mid bB$$

Es ambigua.

 $L_{\neq}$  puede ser intrínsecamente ambiguo.

No es ambigua.

 $L_{\neq}$  no es intrínsecamente ambiguo.

► Capicúas:  $L_C = \{\alpha \mid \alpha \in \{0,1\}^* \land \alpha = \alpha^r\}$ 

► Capicúas:  $L_C = \{\alpha \mid \alpha \in \{0,1\}^* \land \alpha = \alpha^r\}$  $G_C = \langle \{C\}, \{0,1\}, P, C \rangle$ 

▶ Capicúas:  $L_C = \{\alpha \mid \alpha \in \{0,1\}^* \land \alpha = \alpha^r\}$   $G_C = \langle \{C\}, \{0,1\}, P, C \rangle$   $P: C \to 0C0 \mid 1C1$ 

► Capicúas:  $L_C = \{\alpha \mid \alpha \in \{0,1\}^* \land \alpha = \alpha^r\}$   $G_C = \langle \{C\}, \{0,1\}, P, C \rangle$  $P: C \rightarrow 0C0 \mid 1C1 \mid \lambda$ 

▶ Capicúas:  $L_C = \{\alpha \mid \alpha \in \{0,1\}^* \land \alpha = \alpha^r\}$   $G_C = \langle \{C\}, \{0,1\}, P, C \rangle$   $P: C \to 0C0 \mid 1C1 \mid \lambda \mid 0 \mid 1$ 

$$G_A = \langle \{E\}, \{+, *, id, const\}, P, E \rangle$$

$$P: \ E \to E + E \mid E*E \mid id \mid const$$

#### Expresiones aritméticas

$$G_A = \langle \{E\}, \{+, *, id, const\}, P, E \rangle$$

 $P: \quad E \rightarrow E + E \mid E*E \mid id \mid const$ 



$$G_A = \langle \ \{E\}, \{+, *, id, const\}, P, E \ \rangle$$

$$P: \ E \rightarrow E + E \mid E*E \mid id \mid const$$





#### Expresiones aritméticas

$$G_A = \langle \{E\}, \{+, *, id, const\}, P, E \rangle$$
  
 $P: E \rightarrow E + E \mid E * E \mid id \mid const$ 



Es ambigua.



$$G_A = \langle \{E\}, \{+, *, id, const\}, P, E \rangle$$

$$P: \quad E \rightarrow E + E \mid E*E \mid id \mid const$$





- Es ambigua.
- No sabemos cuál es el significado de id + id \* id.

$$G_A = \langle \{E, T, F, I\}, \{+, *, (,), id, const\}, P, E \rangle$$

$$P : E \to T \mid E + T$$

$$T \to F \mid T * F$$

$$F \to I \mid (E)$$

$$I \to id \mid const$$

Expresiones aritméticas

$$G_{A} = \langle \{E, T, F, I\}, \{+, *, (,), id, const\}, P, E \rangle$$

$$P : E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow id \mid const$$

No es ambigua.

$$G_{A} = \langle \{E, T, F, I\}, \{+, *, (,), id, const\}, P, E \rangle$$

$$P : E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow id \mid const$$

- No es ambigua.
  - lacktriangledown T sólo deriva términos: secuencias de uno o más factores conectados por st.

$$G_{A} = \langle \{E, T, F, I\}, \{+, *, (,), id, const\}, P, E \rangle$$

$$P : E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow id \mid const$$

- No es ambigua.
  - lacktriangledown T sólo deriva términos: secuencias de uno o más factores conectados por \*.
  - lacktriangledown E sólo deriva expresiones: secuencias de uno o más términos conectados por +.

$$G_{A} = \langle \{E, T, F, I\}, \{+, *, (,), id, const\}, P, E \rangle$$

$$P : E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow id \mid const$$

- No es ambigua.
  - ightharpoonup T sólo deriva términos: secuencias de uno o más factores conectados por \*.
  - E sólo deriva expresiones: secuencias de uno o más términos conectados por +.
  - ▶ El único árbol de derivación para una secuencia de factores es el que separa  $f_1 * \cdots * f_n$  para n > 1 en un término  $f_1 * \cdots * f_{n-1}$  y un factor  $f_n$ , dado que F no puede derivar expresiones como  $f_{n-1} * f_n$  sin agregar paréntesis alrededor.

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

**Entonces** 

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

 $ightharpoonup L_1 \cup L_2$  es libre de contexto (cerrados por unión)

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

 $ightharpoonup L_1 \cup L_2$  es libre de contexto (cerrados por unión)

Dem.: Es el lenguaje generado por la gramática

$$G=\langle V_{N1}\cup V_{N2}\cup \{S\},V_{T1}\cup V_{T2},P_1\cup P_2\cup \{S\rightarrow S_1,S\rightarrow S_2\},S\rangle$$
 (con  $S\notin V_{N1}\cup V_{N2}$ ).

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

- $ightharpoonup L_1 \cup L_2$  es libre de contexto (cerrados por unión)
  - Dem.: Es el lenguaje generado por la gramática

$$G = \langle V_{N_1} \cup V_{N_2} \cup \{S\}, V_{T_1} \cup V_{T_2}, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}, S \rangle$$

(con  $S \notin V_{N_1} \cup V_{N_2}$ ).

 $ightharpoonup L_1L_2$  es libre de contexto (cerrados por concatenación)

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

 $ightharpoonup L_1 \cup L_2$  es libre de contexto (cerrados por unión)

Dem.: Es el lenguaje generado por la gramática

$$G = \langle V_{N_1} \cup V_{N_2} \cup \{S\}, V_{T_1} \cup V_{T_2}, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}, S \rangle$$

 $(con S \notin V_{N_1} \cup V_{N_2}).$ 

 $ightharpoonup L_1L_2$  es libre de contexto (cerrados por concatenación)

Dem.: Es el lenguaje generado por la gramática

$$G = \langle V_{N_1} \cup V_{N_2} \cup \{S\}, V_{T_1} \cup V_{T_2}, P_1 \cup P_2 \cup \{S \to S_1 S_2\}, S \rangle$$

(con  $S \notin V_{N_1} \cup V_{N_2}$ ).

4日 > 4周 > 4 至 > 4 至 > 三

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

Entonces

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

 $ightharpoonup L_1^+$  es libre de contexto (cerrados por clausura positiva)

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

L<sub>1</sub><sup>+</sup> es libre de contexto (cerrados por clausura positiva)
 Dem.: Es el lenguaje generado por la gramática

$$G=\langle V_{N_1}\cup V_{N_2}\cup \{S\},V_{T_1}\cup V_{T_2},P_1\cup P_2\cup \{S\rightarrow S_1,S\rightarrow S_1S\},S\rangle$$
 (con  $S\notin V_{N_1}\cup V_{N_2}$ ).

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

▶  $L_1^+$  es libre de contexto (cerrados por clausura positiva) <u>Dem.</u>: Es el lenguaje generado por la gramática

$$G = \langle V_{N1} \cup V_{N2} \cup \{S\}, V_{T1} \cup V_{T2}, P_1 \cup P_2 \cup \{S \to S_1, S \to S_1S\}, S \rangle$$

 $(\operatorname{con} S \notin V_{N_1} \cup V_{N_2}).$ 

 $ightharpoonup L_1^*$  es libre de contexto (cerrados por clausura)

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

L<sub>1</sub><sup>+</sup> es libre de contexto (cerrados por clausura positiva)
<u>Dem.:</u> Es el lenguaje generado por la gramática

$$G = \langle V_{N1} \cup V_{N2} \cup \{S\}, V_{T1} \cup V_{T2}, P_1 \cup P_2 \cup \{S \to S_1, S \to S_1 S\}, S \rangle$$

 $(\operatorname{con} S \notin V_{N_1} \cup V_{N_2}).$ 

▶  $L_1^*$  es libre de contexto (cerrados por clausura) <u>Dem.:</u>  $L_1^* = \{\lambda\} \cup L_1^+$  es la unión de dos lenguajes libres de contexto.

Propiedades de los lenguajes libres de contexto

Sean  $L_1$  y  $L_2$  lenguajes libres de contexto.

Sean 
$$G_1=\langle V_{N_1},V_{T_1},P_1,S_1\rangle$$
 y  $G_2=\langle V_{N_2},V_{T_2},P_2,S_2\rangle$  con  $V_{N_1}\cap V_{N_2}=\emptyset$  tales que  $L(G_1)=L_1$  y  $L(G_2)=L_2$ .

#### **Entonces**

L<sub>1</sub><sup>+</sup> es libre de contexto (cerrados por clausura positiva) <u>Dem.</u>: Es el lenguaje generado por la gramática

$$G = \langle V_{N1} \cup V_{N2} \cup \{S\}, V_{T1} \cup V_{T2}, P_1 \cup P_2 \cup \{S \to S_1, S \to S_1S\}, S \rangle$$

 $(\mathsf{con}\ S \notin V_{N\,1} \cup V_{N\,2}).$ 

- ▶  $L_1^*$  es libre de contexto (cerrados por clausura) <u>Dem.:</u>  $L_1^* = \{\lambda\} \cup L_1^+$  es la unión de dos lenguajes libres de contexto.
- $ightharpoonup L_1 \cap L_2$  no necesariamente es libre de contexto (no cerrados por intersección)

► Analizar si los lenguajes no tienen cierta estructura recursiva.

- ► Analizar si los lenguajes no tienen cierta estructura recursiva.
- Es útil separar en sublenguajes para que generen distintos símbolos no terminales. Si son disjuntos, mejor.

- Analizar si los lenguajes no tienen cierta estructura recursiva.
- Es útil separar en sublenguajes para que generen distintos símbolos no terminales. Si son disjuntos, mejor.
- ► A veces sirve pensar en expresiones regulares para esos sublenguajes (no siempre existen).

- Analizar si los lenguajes no tienen cierta estructura recursiva.
- Es útil separar en sublenguajes para que generen distintos símbolos no terminales. Si son disjuntos, mejor.
- A veces sirve pensar en expresiones regulares para esos sublenguajes (no siempre existen).
- Practicar nos permite reutilizar gramáticas ya vistas.

# Ejercicios de parciales :D

### Ejercicio del 7 de mayo de 2018

Sea  $L_1 = \{\omega a^n b^m \omega^r \mid \omega \in \{c, d\}^* \land n, m \in \mathbb{N}_0 \land m > n\}.$ 

Dar una gramática libre de contexto para  $L_1$ .

### Ejercicio del 20 de octubre de 2018

Sea  $L_2 = \{0^n 1^{2m} \mid n, m \in \mathbb{N}_0 \land n \neq m\}.$ 

Dar una gramática libre de contexto para  $L_2$ .

### Ejercicio del 6 de diciembre de 2018

Sea  $L_3 = \{0^n 1^{2m} a^i \mid n, m \in \mathbb{N}_0 \land n \neq m \land i = |n - m|\}.$ 

Dar una gramática libre de contexto para  $L_3$ .