LINMA1731 – Project 2019 Fish schools tracking

By Louis Navarre and Gilles Peiffer

Abstract

In this paper we solve the first part of the project for the class "Stochastic processes: Estimation and prediction" given during the Fall term of 2019. The average speed of each fish in a school of fish is approximated by a gamma-distributed random variable with a shape parameter k and a scale parameter s, and various methods for estimating this quantity are given; a numerical simulation is also included.

Contents

\mathbf{Part}	1. Average speed estimation	2
1.	Introduction	2
2.	Maximum likelihood estimation	2
3.	Properties of the estimator	3
4.	Joint maximum likelihood estimation	5
5.	Numerical simulation	5
6.	Fisher information matrix	7
7.	Numerical proof	8
Ap	pendix A. Definitions of properties	9
Ap	pendix B. Omitted proofs	9
Ap	pendix C. Calculations of the Fisher information matrix	11
Re	ferences	11

[©] 2019 Gilles Peiffer and Louis Navarre.

Part 1. Average speed estimation

1. Introduction

For the purpose of this project, we assume that the speed of each fish in a school at time i is a random variable V_i following a Gamma distribution, as suggested in [1]. This distribution is characterized by two parameters: a shape parameter k > 0 and a scale parameter s > 0. The parameters are the same for every fish and are time invariant. The aim of this first part is to identify these two parameters using empirical observations v_i .

2. Maximum likelihood estimation

Let v_i be i.i.d. realisations of a random variable following a Gamma distribution $\Gamma(k,s)$ (with $i=1,\ldots,N$). We first assume that the shape parameter k is known.

We start by deriving the maximum likelihood estimator of $\vartheta := s$ based on N observations. Since the estimand ϑ is a deterministic quantity, we use Fisher estimation. In order to do this, let us restate the probability density function of $V_i \sim \Gamma(k,s)$:

(2.1)
$$f_{V_i}(v_i; k, s) = \frac{1}{\Gamma(k) s^k} v_i^{k-1} e^{-\frac{v_i}{s}}, \quad i = 1, \dots, N.$$

With this in mind, we can find that the likelihood $\mathcal{L}(v_1,\ldots,v_N;k,\vartheta)$ is given by

(2.2)
$$\mathcal{L}(v_1, \dots, v_N; k, \vartheta) = \prod_{i=1}^N f_{V_i}(v_i; k, \vartheta) = \prod_{i=1}^N \frac{1}{\Gamma(k)\vartheta^k} v_i^{k-1} e^{-\frac{v_i}{\vartheta}}.$$

In order to alleviate notation, we compute instead the log-likelihood, which is generally easier to work with¹:

$$(2.3) \quad \ell(v_1, \dots, v_N; k, \vartheta) := \ln \mathcal{L}(v_1, \dots, v_N; k, \vartheta)$$

(2.4)
$$= \sum_{i=1}^{N} \ln \left(\frac{1}{\Gamma(k)\vartheta^k} v_i^{k-1} e^{-\frac{v_i}{\vartheta}} \right)$$

$$= (k-1)\sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{v_i}{\vartheta} - N(k \ln \vartheta + \ln \Gamma(k)).$$

Now, in order to obtain the maximum likelihood estimate $\hat{\vartheta}$, we must differentiate the log-likelihood with respect to the estimand ϑ , and set it equal to

¹This is possible because the values of ϑ which maximize the log-likelihood also maximize the likelihood.

zero:

(2.6)
$$\frac{\partial \ell(v_1, \dots, v_N; k, \vartheta)}{\partial \vartheta} \bigg|_{\vartheta = \hat{\vartheta}} = -\frac{kN}{\hat{\vartheta}} + \frac{\sum_{i=1}^N v_i}{\hat{\vartheta}^2} = 0$$

(2.7)
$$\iff \hat{\vartheta} = \frac{\sum_{i=1}^{N} v_i}{kN} = \frac{\overline{v}}{k}.$$

This then allows us to find the maximum likelihood estimator $\widehat{\Theta}$, given by

(2.8)
$$\widehat{\Theta} = \frac{\sum_{i=1}^{N} V_i}{kN} = \frac{\overline{V}}{k}.$$

3. Properties of the estimator

We now wish to show some of the properties of this estimator. The definitions of these properties are given in Appendix A.

PROPERTY 3.1. The maximum likelihood estimator derived in (2.8) is asymptotically unbiased, that is,

(3.1)
$$\lim_{N \to +\infty} \mathbb{E}\left[g(V_1, \dots, V_N); \vartheta\right] = \vartheta.$$

Proof. We wish to prove that $\lim_{N\to+\infty} \mathbb{E}\left[\frac{\overline{V}}{k}\right] = \vartheta$. We recall that $\mathbb{E}\left[V_i\right] = k\vartheta$ for $V_i \sim \Gamma(k,\vartheta)$ and that the expected value operator is linear to obtain

(3.2)
$$\mathbb{E}\left[\frac{\overline{V}}{k}\right] = \frac{\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}V_{i}\right]}{k} = \frac{\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left[V_{i}\right]}{k} = \frac{\frac{1}{N}Nk\vartheta}{k} = \vartheta.$$

This proves that the maximum likelihood estimator of (2.8) is unbiased, hence it is also asymptotically unbiased.

Property 3.2. The maximum likelihood estimator derived in (2.8) is efficient.

Proof. We use the fact that the random variables are independent to simplify the computations. Since ϑ is a scalar parameter, the Fisher information matrix is a scalar, equal to

(3.3)
$$\mathcal{I}(\vartheta) = -N\mathbb{E}\left[\frac{\partial^2}{\partial \vartheta^2} \left((k-1) \ln v_1 - \frac{v_1}{\vartheta} - \left(k \ln \vartheta + \ln \Gamma(k) \right) \right) \right]$$

(3.4)
$$= N\mathbb{E}\left[\frac{\partial^2}{\partial \vartheta^2} \left(\frac{v_1}{\vartheta} + k \ln \vartheta\right)\right] = \frac{kN}{\vartheta^2}.$$

We must also compute the variance of the ML estimator $\widehat{\Theta}$, which is given by

(3.5)
$$\mathbb{V}\left[\widehat{\Theta}\right] = \mathbb{V}\left[\frac{\overline{V}}{k}\right] = \frac{\vartheta^2}{kN}.$$

The Cramér–Rao lower bound is thus reached for all values of ϑ , which concludes the proof.

Property 3.3. The maximum likelihood estimator of (2.8) is best asymptotically normal.

Proof. In our case, we can show using the Cramér–Rao lower bound that Σ is minimal if it is equal to $\mathcal{I}^{-1}(\vartheta)$. To alleviate notations, we will write $\ell(\vartheta)$ instead of $\ell(v_1,\ldots,v_N;k,\vartheta)$. By definition, since $\hat{\vartheta}=\arg\max_{\vartheta}\ell(\vartheta)$, we know that $\ell'(\hat{\vartheta})=0$. Let ϑ_0 be the true value of the parameter ϑ . We can then use Taylor expansion on $\ell'(\hat{\vartheta})$ around $\hat{\vartheta}=\vartheta_0$ to obtain

(3.6)
$$\ell'(\hat{\vartheta}) = \ell'(\vartheta_0) + \frac{\ell''(\vartheta_0)}{1!}(\hat{\vartheta} - \vartheta_0) + \mathcal{O}\left((\hat{\vartheta} - \vartheta_0)^2\right).$$

We know the expression on the left is zero, hence

(3.7)
$$\ell'(\vartheta_0) = -\ell''(\vartheta_0)(\hat{\vartheta} - \vartheta_0) + \mathcal{O}\left((\hat{\vartheta} - \vartheta_0)^2\right).$$

Rearranging and multiplying by \sqrt{n} , we get

(3.8)
$$\sqrt{n}(\hat{\vartheta} - \vartheta_0) = \frac{\ell'(\vartheta_0)/\sqrt{n}}{-\ell''(\vartheta_0)/n + \mathcal{O}\left((\hat{\vartheta} - \vartheta_0)/n\right)}.$$

Next, we need to show that $\frac{1}{\sqrt{n}}\ell'(\vartheta_0) \sim \mathcal{N}(0,\mathcal{I}(\vartheta_0))$. This is done using the Lindeberg–Lévy central limit theorem, in Appendix B. We know that $\frac{1}{N}\ell''(\vartheta_0) = \mathcal{I}(\vartheta_0)$. Finally, we can rewrite

(3.9)
$$\sqrt{N}(\hat{\vartheta} - \vartheta_0) \sim \frac{\mathcal{N}(0, \mathcal{I}(\vartheta_0))}{\mathcal{I}(\vartheta_0)} = \mathcal{N}(0, \mathcal{I}^{-1}(\vartheta_0)),$$

where we didn't take into account the remainder of the Taylor series, which goes to zero. This proves that the ML estimator is best asymptotically normal. \Box

Property 3.4. The maximum likelihood estimator of (2.8) is consistent.

Proof. We have shown that the estimator is unbiased, hence its MSE is equal to its variance. Since the estimator is efficient by Property 3.2, we know that its variance is equal to the Cramér–Rao lower bound, $\cos \widehat{\Theta} = \mathcal{I}^{-1}(\vartheta)$. We found this lower bound to be equal to $\frac{\vartheta^2}{kN}$ in (3.4). We have

(3.10)
$$\lim_{N \to +\infty} \operatorname{cov} \widehat{\Theta} = \lim_{N \to +\infty} \frac{\vartheta^2}{kN} = 0.$$

This proves that the variance (and hence the mean square error) of the estimator goes to zero as N goes to infinity, hence the estimator is consistent. \square

4. Joint maximum likelihood estimation

We now consider $V_i \sim \Gamma(k,s)$ (for $i=1,\ldots,N$) with both k and s unknown. Before, we assumed k was known, so we could maximize the log-likelihood function with respect to s. Now, we have to maximize this function with respect to s and k at the same time. We know the maximum likelihood estimator of s, $\hat{s} = f(k)$. Therefore, in the log-likelihood function, we can replace all the occurrences of s by the estimator we found, \hat{s} . One then gets a function of k only, which can be differentiated and its derivative set to zero. Solving this, one can find the maximum likelihood estimator of k. The log-likelihood is used as given in (2.5). We abusively write $\ell(v)$ instead of $\ell(v_1,\ldots,v_N;\vartheta)$. Substituting in the estimator \hat{s} instead of s, one finds

(4.1)
$$\ell(v) = (k-1) \sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{kv_i}{\overline{v}} - Nk \ln \overline{v} + Nk \ln k - N \ln \Gamma(k)$$

Taking the derivative of this function with respect to k, we get

$$(4.2) \qquad \frac{\partial \ell(v)}{\partial k} \bigg|_{k=\hat{k}} = \sum_{i=1}^{N} \ln v_i - N - N \ln \overline{v} + N \ln \hat{k} + \frac{N\hat{k}}{\hat{k}} - N \frac{\Gamma(\hat{k})}{\Gamma(\hat{k})} \psi^{(0)}(\hat{k})$$

(4.3)
$$= \sum_{i=1}^{N} \ln v_i - N \ln \sum_{i=1}^{N} v_i + N \ln \hat{k} + N \ln N - N \psi^{(0)}(\hat{k}),$$

where $\psi^{(0)}$ is the digamma function, i.e. the logarithmic derivative of the gamma function. One must now look for a root of this equation:

(4.4)
$$\ln \hat{k} - \psi^{(0)}(\hat{k}) = \ln \left(\sum_{i=1}^{N} v_i \right) - \ln N - \frac{\sum_{i=1}^{N} \ln v_i}{N}$$

(4.5)
$$\iff \ln \hat{k} - \psi^{(0)}(\hat{k}) = \ln \left(\frac{\sum_{i=1}^{N} v_i}{N} \right) - \frac{\sum_{i=1}^{N} \ln v_i}{N} .$$

This equation has no closed-form solution for \hat{k} , but can be approximated using numerical methods since the function is very well-behaved.

5. Numerical simulation

For the numerical simulation, N random variables were generated from a distribution with parameters $\Gamma(1,2)$, for different values of N (10:15:1000). For each value of N, the experiment was repeated M=500 times.

In order to use method of moments estimation for the Gamma distribution given in (2.1), one first needs to know its characteristic function: $\varphi_{V_i}(t) = \mathbb{E}\left[e^{jtV_i}\right] = (1-jst)^{-k}$. The *n*th moment is given by $\mu_n = \mathbb{E}\left[V_i^n\right] = j^{-n}\varphi_{V_i}^{(n)}(0)$. Since the parameter vector has dimension two, we need to compute the first

two moments. These are given by $\mu_1 = ks$ and $\mu_2 = k(k+1)s^2$. One can use the sample moments $\hat{\mu}_1$ and $\hat{\mu}_2$ to estimate μ_1 and μ_2 as follows:

(5.1)
$$\hat{\mu}_1 = \frac{1}{N} \sum_{i=1}^N v_i, \quad \hat{\mu}_2 = \frac{1}{N} \sum_{i=1}^N v_i^2.$$

Using some simple algebra, one then finds

(5.2)
$$\hat{k}_{\text{MOM}} = \frac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2}, \quad \hat{s}_{\text{MOM}} = \frac{\hat{\mu}_2}{\hat{\mu}_1} - \hat{\mu}_1.$$

The maximum likelihood estimators are computed using the formulas in (2.8) and (4.5), for the given sample. As mentioned in Section 4, the maximum likelihood estimator for k has no closed-form solution, but can be approximated using numerical methods which require an initial guess. One such first guess is provided by the method of moments estimator for the parameter, that is

(5.3)
$$\hat{k}_{\text{ML}}^{(0)} = \hat{k}_{\text{MOM}} = \frac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2}.$$

Another possible choice for the first guess is

(5.4)
$$\hat{k}_{\text{ML}}^{(0)} = \frac{3 - \xi + \sqrt{(\xi - 3)^2 + 24\xi}}{12\xi}$$
, where $\xi = \ln \overline{v} + \frac{1}{N} \sum_{i=1}^{N} \ln v_i$.

This guess can be shown to be within 1.5% of the actual value. The estimator for s can then be found from (2.8), using \hat{k}_{ML} instead of k.

Figure 1. Estimators for the first parameter.

Figure 2. Estimators for the second parameter.

On Figures 1 and 2, the mean and standard deviation are shown for the M values of both the method of moments estimator and the maximum likelihood estimator, for different values of the size of the sample, N. For both parameters, both estimators are unbiased, but the ML estimator has a lower variance. This should not come as a surprise: since it is efficient, every other estimator must have a greater or equal asymptotic variance. As is shown numerically in Section 7, this variance asymptotically goes to $\mathcal{I}^{-1}(\vartheta)$, the Cramér–Rao lower bound. This is also expected, in light of Property 3.2.

6. Fisher information matrix

We can compute the Fisher information matrix. Since we have two estimators, this matrix is a 2×2 matrix. This matrix is hence computed by

$$\mathcal{I}(\vartheta) = \left(\begin{array}{cc} -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial s^2} \right] & -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial k \partial s} \right] \\ -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial s \partial k} \right] & -\mathbb{E} \left[\frac{\partial^2 l(x)}{\partial k^2} \right] \end{array} \right)$$

And remember the log-likelihood function, computed before.

(6.1)
$$\ell(x) = (k-1) \sum_{i=1}^{N} \ln v_i - \sum_{i=1}^{N} \frac{v_i}{s} - N(k \ln s + \ln \Gamma(k))$$

The calculation of theses entries can be found in appendix C. Finally, the Fisher information matrix is

$$\mathcal{I}(\vartheta) = N \begin{pmatrix} \frac{K}{s^2} & \frac{1}{s} \\ \frac{1}{s} & \psi_1(k) \end{pmatrix}$$

And the inverse of this matrix, the Cramr-Rao lower-bound, is

$$\mathcal{I}^{-1}(\vartheta) = \frac{1}{N} \begin{pmatrix} \psi_1(k) & -\frac{1}{s} \\ -\frac{1}{s} & \frac{K}{s^2} \end{pmatrix} \cdot \frac{s^2}{K\psi_1(k) - 1}$$

7. Numerical proof

Figure 3 show the matrix norm induced by the vector 2-norm of the *ratio* matrix. This matrix is is the result of the ratio of the entries of the empirical covariance matrix by the inverse of the Fisher information matrix, subtracted by one. As a result, if the empirical covariance matrix tends to reach the Cramr-Rao lower bound, the ratio of the entries should tend to 1, and hence the matrix induced norm of this matrix subtracted by 1 should be equal to 0. Indeed, we see on figure 3 that this matrix induced norm tends to 0 as the size of the sample vector increases. It empirically proofs that our estimators reach the Cramr-Rao lower bound, meaning that they are efficient.

Convergence towards the Cramér–Rao bound

Figure 3. Using an adequately-centered spectral norm, one can visualize to which extent the Cramér–Rao lower bound is reached. The symbol " \oslash " denotes Hadamard (element-wise) division.

Appendix A. Definitions of properties

Definition A.1 (Unbiased estimator). The Fisher estimator $\widehat{\Theta} = g(Z)$ of ϑ is unbiased if

$$(\mathrm{A.1}) \hspace{1cm} m_{\widehat{\Theta}:\vartheta} \coloneqq \mathbb{E}\left[g(Z);\vartheta\right] = \vartheta \,, \quad \text{for all } \vartheta \,.$$

THEOREM A.1 (Cramér–Rao inequality). If $Z = (Z_1, \ldots, Z_N)^T$ with i.i.d. random variables Z_k and if its probability density function given by $f_Z(z; \vartheta) = \prod_{k=1}^N f_{Z_k}(z_k; \vartheta)$ satisfies certain regularity conditions, then the covariance of any unbiased estimator $\widehat{\Theta}$ satisfies the Cramér–Rao inequality

(A.2)
$$\operatorname{cov} \widehat{\Theta} \succeq \mathcal{I}^{-1}(\vartheta)$$
,

where $\mathcal{I}(\vartheta)$ is the $p \times p$ Fisher information matrix, defined by

$$\left[\mathcal{I}(\vartheta)\right]_{i,j} \coloneqq -\mathbb{E}\left[\frac{\partial^2 \ln f_Z(z;\vartheta)}{\partial \vartheta_i \partial \vartheta_j}\right].$$

Definition A.2 (Efficient estimator). An unbiased estimator is said to be efficient if it reaches the Cramér–Rao bound for all values of ϑ , that is,

(A.4)
$$\operatorname{cov}\widehat{\Theta} = \mathcal{I}^{-1}(\vartheta), \quad \forall \vartheta.$$

Definition A.3 (Best asymptotically normal estimator). A sequence $\{\widehat{\Theta}_N(Z)\}_{N\in\mathbb{N}}$ of consistent estimators of ϑ is called best asymptotically normal if

(A.5)
$$\sqrt{N} \left(\widehat{\Theta}_N(Z) - \vartheta \right) \xrightarrow[N \to +\infty]{\mathcal{D}} \mathcal{N}(0, \Sigma),$$

for some minimal positive definite matrix Σ .

Definition A.4 (Consistent estimator). A sequence $\{\widehat{\Theta}_N(Z)\}_{N\in\mathbb{N}}$ of estimators of ϑ is called *consistent* if

(A.6)
$$\lim_{N \to +\infty} \widehat{\Theta}_N(Z) = \vartheta.$$

Equivalently, one can show that the MSE of the estimator converges to zero as N goes to infinity.

Appendix B. Omitted proofs

The following is a proof of normality, using the Lindeberg–Lévy formulation of the central limit theorem.

Proof. We want to prove that $\ell'(\vartheta_0)/\sqrt{N} \sim \mathcal{N}(0,\mathcal{I}(\vartheta_0))$. We simplify notation by writing $f(v_i)$ instead of $f_{V_i}(v_i;k,\vartheta)$ and using Euler's notation for

derivatives. First, we show that the expected value of $\ell'(\vartheta_0)/\sqrt{N}$ is zero.

(B.1)
$$\mathbb{E}\left[\frac{\ell'(\vartheta_0)}{\sqrt{N}}\right] = \int_{-\infty}^{+\infty} \partial_{\vartheta_0} \left(\sum_{i=1}^{N} \frac{\ln f(v_i)}{\sqrt{N}}\right) f(v_i) \, \mathrm{d}v_i$$

(B.2)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \frac{\partial_{\vartheta} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$

(B.3)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \frac{\partial_{\vartheta} f(v_i)}{f(v_i)} f(v_i) \, \mathrm{d}v_i$$

(B.4)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \partial_{\vartheta} f(v_i) \, \mathrm{d}v_i$$

(B.5)
$$= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \partial_{\vartheta} \int_{-\infty}^{+\infty} f(v_i) \, \mathrm{d}v_i$$

(B.6)
$$= 0$$
.

Next, we compute the variance of $\ell'(\vartheta_0)/\sqrt{N}$. First, we compute (for $i=1,\ldots,N$)

(B.7)
$$\mathbb{E}\left[\left(\partial_{\vartheta_0} \ln f(v_i)\right)^2\right] = \int_{-\infty}^{+\infty} \partial_{\vartheta_0} \ln f(v_i) \frac{\partial_{\vartheta_0} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$

(B.8)
$$= \int_{-\infty}^{+\infty} \partial_{\vartheta_0} \ln f(v_i) \partial_{\vartheta_0} f(v_i) \, dv_i.$$

Using the product rule, we can then find

(B.9)
$$= -\int_{-\infty}^{+\infty} \partial_{\vartheta_0 \vartheta_0} \ln f(v_i) f(v_i) \, dv_i$$
$$+ \int_{-\infty}^{+\infty} \partial_{\vartheta_0} \left(\partial_{\vartheta_0} \ln f(v_i) f(v_i) \right) \, dv_i .$$

(B.10)
$$= -\mathbb{E}\left[\partial_{\vartheta_0\vartheta_0}\ln f(v_i)\right] + \partial_{\vartheta_0} \int_{-\infty}^{\infty} \frac{\partial_{\vartheta_0} f(v_i)}{f(v_i)} f(v_i) \, dv_i$$

$$(B.11) = \mathcal{I}(\vartheta),$$

where the last expression can be shown to be zero by a similar argument as the one used above for the expected value. Knowing this, one easily finds

(B.12)
$$\mathbb{V}\left[\frac{\ell'(\vartheta_0)}{\sqrt{N}}\right] = \frac{1}{N}\mathbb{V}\left[\sum_{i=1}^{N} \partial_{\vartheta_0} \ln f(v_i)\right] = \mathcal{I}(\vartheta_0),$$

since the random variables are i.i.d.. Using the Lindeberg–Lévy CLT, we thus have

(B.13)
$$\frac{\ell'(\vartheta_0)}{\sqrt{N}} \sim \mathcal{N}(0, \mathcal{I}(\vartheta_0)). \qquad \Box$$

Appendix C. Calculations of the Fisher information matrix

(C.1)
$$\frac{\partial h(z; \vartheta)}{\partial s} = \frac{1}{s^2} \sum_{i=1}^{N} v_i - \frac{Nk}{s}$$

(C.2)
$$\frac{\partial h(z; \vartheta)}{\partial k} = \sum_{i=1}^{N} \ln v_i - N \ln s - N \psi_0(k)$$

(C.3)
$$\frac{\partial^2 h(z;\vartheta)}{\partial s^2} = -\frac{2}{s^3} \sum_{i=1}^N v_i + \frac{Nk}{s^2}$$

(C.4)
$$\frac{\partial^2 h(z;\vartheta)}{\partial k^2} = -N\psi_1(k).$$

(C.5)
$$\frac{\partial^2 h(z;\vartheta)}{\partial k \partial s} = -\frac{N}{s}.$$

Then, we take the expectation of these computed values.

(C.6)
$$\mathcal{I}_{00} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\vartheta)}{\partial s^2}\right\} = -\mathbb{E}\left\{-\frac{2}{s^3}\sum_{i=1}^N v_i + \frac{Nk}{s^2}\right\}$$

(C.7)
$$= \frac{2}{s^3} Nsk - \frac{NK}{s^2} = \frac{NK}{s^2}.$$

(C.8)
$$\mathcal{I}_{01} = \mathcal{I}_{10} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\vartheta)}{\partial k \partial s}\right\} = \frac{N}{s}.$$

(C.9)
$$\mathcal{I}_{11} = -\mathbb{E}\left\{\frac{\partial^2 h(z;\vartheta)}{\partial k^2}\right\} = -N\psi_1(k).$$

References

Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium E-mail: navarre.louis@student.uclouvain.be

Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium *E-mail*: gilles.peiffer@student.uclouvain.be