Mate 1: Curs #2

Profesor: Radu Gologan

3 Octombrie 2019

1 Latice

Definitie: (X, \leq) se numeste **latice completa** daca $\forall A \subseteq X \implies \exists sub_A, inf_A \in X \ f: X \to X$ este o functie monotona crescatoare(descrescatoare) daca $x \leq y \implies f(x) \leq (\geq) f(y)$

Exemplu:

Fie M o multime, atunci $\mathscr{P}(M)$ este o latice completa relativ la relatia de incluziune \subseteq , cu $\sup_{A_i} = \bigcup_i A_i$ si $\inf_{A_i} = \bigcap_i A_i$, $A_i \in \mathscr{P}(M)$

Teorema (Tarski):

Fie (X, \leq) o latice completa si $f: X \to X$ o functie monotona. Atunci f admite un punct fix: $\exists u \in X \ a.i. \ f(u) = u$

Demonstratie:

Fie $A \subseteq X$ a.i $A = \{x \in X \mid x \leqslant f(x)\}$ si $u = \sup_A$.

Din faptul ca $x \in A \implies x \leqslant f(x)$, dar f este monotona $\implies f(x) \leqslant f(f(x)) \implies f(x) \in A \ \forall x \in A$ (1)

 $\forall x \in A, \ x \leqslant u \text{ si f monotona} \implies f(x) \leqslant f(u) \implies x \leqslant f(x) \leqslant f(u) \implies f(u) \text{ majorant pentru } A, \text{ dar } u = \sup_A \implies u \leqslant f(u)$ (2)

Din faptul ca $u \leq f(u) \implies u \in A$, dar din (1) rezulta ca $f(u) \in A$ si $u = \sup_A \implies f(u) \leq u$ (3)

 $Din (2) si (3) \implies f(u) = u$

Consecinta a teoremei Tarski - Teorema lui Bernstein:

Fie A, B doua multimi, astfel incat $\exists f: A \to B, \ g: B \to A$ doua functii injective. Atunci exista o functie $h: A \to B$ bijectiva.

Demonstratie: O LASAM LA SFARSIT CA E CEVA DE SCRIS LA EA

2 Numarabilitate

Definitie:

Fie A,B doua multimi, supunem ca A si B sunt **echivalente** $\iff \exists f:A\to B$ o functie bijectiva.

Definitie:

O multime A echivalenta cu $\mathbb N$ se numeste **numarabila**.

Notam card(A) cardinalul lui A = clasa de echivalenta a lui A fata de relatia de echivalenta cu N.

Notam $card(\mathbb{N}) = \aleph_0$

Altfel spus, A este numarabila $\iff \exists (a_n)_{n \geq 0} \ a.i. \ \forall x \in A \ \exists i \in \mathbb{N} \ a.i. \ a_i = x$

Propozitie: daca A si B sunt numarabile $\implies A \times B$ este numarabila. Demonstratie:

Este suficient sa demonstram ca $\mathbb{N} \times \mathbb{N}$ este numerabila, intrucat daca A si B sunt echivalente cu $\mathbb{N} \implies A \times B$ este echivalenta cu $\mathbb{N} \times \mathbb{N}$.

 $\mathbb{N} \times \mathbb{N} = \{(n, m) \mid n, m \in \mathbb{N}\}\$

Fie $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ f((i,j)) = \frac{(i+j)\cdot(i+j-1)}{2} + i.$

Vom demonstra ca f este bijectiva.

Se observa ca daca $a+b=k \implies f((a,b)) \in \left[\frac{k(k-1)}{2},\frac{k(k+1)}{2}\right)$ si oricare doua astfel de intervale sunt disjuncte $\implies f((a,b)) = f((c,d)) \iff a+b=c+d$ Daca a+b=c+d si $f((a,b)) = f((c,d)) \implies \frac{(a+b)\cdot(a+b-1)}{2} + a = \frac{(c+d)\cdot(c+d-1)}{2} + c \iff a=c, \text{ dar } a+b=c+d \implies b=d \implies f \text{ este injectiva.}$ (1)

Fie $x \in \mathbb{N} \implies \exists k \in \mathbb{N} \ a.i. \ x \in \left[\frac{k(k-1)}{2}, \frac{k(k+1)}{2}\right].$ Notam $y = x - \frac{k(k-1)}{2} \implies f((y, k - y)) = x \implies \forall x \in \mathbb{N} \ \exists (y, k - y) \in \mathbb{N} \times \mathbb{N} \ a.i. \ f((y, k - y)) = x \implies f$ este surjectiva Din (1) si (2) $\implies f$ este bijectiva $\implies \mathbb{N} \times \mathbb{N}$ este numarabila

Fie $\mathbb{Q}_+ = \{ \frac{p}{q} \mid p, q \in \mathbb{N} \}$ si $g : \mathbb{N} \times \mathbb{N} \to \mathbb{Q}_+, \ g((a,b)) = \frac{a}{b}$ o functie evident bijectiva $\Longrightarrow \mathbb{Q}_+$ este echivalenta cu $\mathbb{N} \times \mathbb{N} \Longrightarrow \mathbb{Q}_+$ este numarabila. Analog se demonsteaza ca $\mathbb{Q}_- = \{-\frac{p}{q} \mid p, q \in \mathbb{N}\}$ este numarabila $\implies \mathbb{Q}$ este numarabila.