Reinforcement Learning Lecture 3

Georg Martius today substituted by René Geist

Distributed Intelligence / Autonomous Learning Group, Uni Tübingen, Germany

Oct 29, 2024

1 / 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübingen

Overview

- ► Last time: known MDP
 - ► Markov Decision Process (MDP)
 - reduction of MDP to Markov Reward Proc. (MRP) via policy
 - estimate the value function: policy evaluation
 - control: policy iteration and value iteration
- ► Today: unknown MDP
 - want to estimate the value function (prediction)
 - no model (model-free)
- ► Next time: Solve an unknown MDP

Model-free Prediction

/ 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübingen

Value function - Recap and Problem

Value function: Expected return when starting from state \boldsymbol{s} and following policy π

$$v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$$

Why do we need the value function again? Because it is captures what we want to optimize! Ideal for optimizing behavior.

With known MDP:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

recursive definition!

Problem in unknown MDP? We have no \mathcal{R}^a_s and $\mathcal{P}^a_{ss'}$!

Need to **estimate** v from experience!

Exploration and Exploitation

How to collect this experience?

- ► The agent should discover a good policy
- ▶ Needs to experience relevant transitions in the environment
- ► Should not lose too much reward along the way
- Explore around *promising* solutions
- Exploitation exploits known information to maximize reward
- Exploration finds more information about the environment
- ▶ In RL we the agent need to do both: explore as well as exploit

[Slide adapted from David Silver]

Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

Two Approaches

Monte Carlo Estimation

Follows the global definition:

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$$

- learns from complete episodes of experience
- ► Simplest idea: value = mean return

Temporal Difference Learning

Follows the recursive definition:

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

- learns from incomplete episodes, by bootstrapping
- updates a guess towards a guess

Both learn directly from experience.

Examples

► Robot Control Exploitation Do the movement you know works best Exploration Try a different movement

Playing Go
 Exploitation Play the move you believe is best
 Exploration Play an experimental move

Control of plasma in tokamak
 Exploitation Play Create magnetic field that worked best so far
 Exploration Play Try a different magnetic field

Restaurant Selection
 Exploitation Go to your favorite restaurant
 Exploration Try a new restaurant

[Slide adapted from David Silver]

5 / 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübinger

Monte-Carlo Value Estimation (Policy Evaluation)

Goal: learn v_{π} from episodes of experience under policy π

▶ Given: episodes of experience: all episodes \mathcal{T}_{π} , one episode $\tau \in \mathcal{T}_{\pi}$:

$$\tau = S_1, A_1, R_2, S_2, A_2, R_3 \dots, S_T \sim \pi$$

Return: total discounted reward:

$$G_t(\tau) = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$$

► Value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\tau \sim \pi} \left[G_t(\tau) \mid S_t = s \right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Notation: S_t , A_t , R_t are here specific states/actions/rewards at time t. For consistency with book.

Monte-Carlo Value Estimation (Policy Evaluation)

Need to compute empirical mean return:

- ► Sum of all trajectories
- \blacktriangleright Compute return for state s and divide by the number of times s was visited N(s)

$$V(s) = \frac{1}{N(s)} \sum_{\tau \in \mathcal{T}_{\tau}} G_t(\tau) \llbracket S_t = s \rrbracket$$

$$V(s) \to v_{\pi}(s) \text{ as } N(s) \to \infty.$$

MC Value Estimation

 $N(s)=0 \text{ and } W(s)=0 \text{, } \forall s \in \mathcal{S}$

For all τ and for t in episode τ :

- 1. Increment counter $N(S_t) \leftarrow N(S_t) + 1$
- 2. Increment total return $W(s_t) \leftarrow W(S_t) + G_t$
- 3. Value estimate is updated to mean return $V(S_t) = W(S_t)/N(S_t)$

9 / 44 | Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

Example: Blackjack

- $\,\blacktriangleright\,$ Goal: get as close as possible to 21 points but not above
- ► Counting: Face-cards: 10, Ace: 1 or 11, other: cards their value
- start with two cards, dealer has one card open

Example: Gridworld

V(s) = W(s)/N(s)

Assume the following trajectories and the corresponding returns G ($\gamma = 1$).

Observe how the values for states that are multiple times visited become averages

10 / 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübinger

Example: Blackjack

Here one player against dealer.

- ► Two actions:
 - 1. stick: Stop receiving cards and terminate
 - 2. twist: Take another card (without replacement)
- Rewards for stick:
 - ightharpoonup +1 if sum of cards > sum of dealer cards
 - ▶ 0 if sum of cards = sum of dealer cards
 - ▶ -1 if sum of cards < sum of dealer cards
- ► Rewards for twist:
 - ► -1 if sum of cards > 21 (goes bust and terminate)
 - 0 otherwise
- ► Transitions: automatically twist if sum < 12
- ► States (200 of them)
 - ► Sum of cards (12 21)
 - ► Dealer's shown card (ace 10)
 - ▶ Useable Ace? (player has an ace that can be counted as 11)

MC - Value estimation for Blackjack

- \triangleright Policy: stick if sum of cards > 20, otherwise twist
- ▶ Dealer: stick if sum of cards > 17, otherwise twist

After 10,000 episodes

After 500,000 episodes

Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübinger

Incremental Update of Mean

Remember: MC Value Estimation

N(s) = 0 and W(s) = 0, $\forall s \in \mathcal{S}$ For all τ and for t in episode τ :

- 1. Increment counter $N(S_t) \leftarrow N(S_t) + 1$
- 2. Increment total return $W(s_t) \leftarrow W(S_t) + G_t$
- 3. Value estimate is updated to mean return $V(S_t) = W(S_t)/N(S_t)$

Let's do this in a way that we can feed one trajectory τ at a time and update V(s) incrementally, without storing W.

Talk to your peers and compute an incremental update for a mean μ_k from a sequence x_1, x_2, \ldots Derive how to update μ_k from μ_{k-1} and x_k :

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

Why Monte-Carlo and not Dynamic programming Policy evaluation?

System is known, so we could do DP

Discuss for 3 minutes with your neighbor

- ightharpoonup Computing the probabilities $\mathcal P$ is difficult and error prone
- ► Simulating the environment can be easy (for games it usually is easy)

So MC can sometimes be prefered also in known systems

Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

Incremental Update of Mean

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} \left(x_k + (k-1) \frac{1}{k-1} \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} \left(x_k + (k-1) \mu_{k-1} \right)$$

$$= \frac{1}{k} \left(x_k + k \mu_{k-1} - \mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_k - \mu_{k-1} \right)$$

Incremental Monte-Carlo Updates

Incremental every-visit MC policy evaluation

- ightharpoonup For every episode au
 - **1.** For every t
 - 2. $N(S_t) \leftarrow N(S_t) + 1$
 - 3. $V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t V(S_t))$

In non-stationary problems: use a running mean, i.e. forget old episodes: $V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$

17 / 44 Georg Martius & René Geist Reinforcement Learning - Lecture 3

© 2024 Universität Tübinger

MC vs. TD

$$\alpha\text{-MC: }V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$
$$\mathsf{TD(0): }V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

MC and TD converge: $V(s) \rightarrow v_{\pi}(s)$ as experience $\rightarrow \infty$

What happens if we have finite experience?

$$\tau^1, \tau^2, \dots, \tau^K$$

Batch methods: repeatedly go through the data (sample $k \in [1, K]$)

AB Example

Two states A, B; no discounting; 8 episodes of experience:

episode	transitions
1	A, 0; B, 0
2	B, 1
3	B, 1
4	B, 1
5	B, 1
6	B, 1
7	B, 1
8	B, 0

MC:
$$V(A) = 0$$
 $V(B) = \frac{3}{4}$

TD:
$$V(A) = \frac{3}{4}$$
 $V(B) = \frac{3}{4}$

Temporal-Difference Learning

Goal: learn v_{π} from episodes of experience under policy π

- ▶ Idea: make value function locally consistent (minimize temporal difference)
- ightharpoonup Given: episodes of experience \mathcal{T}_{π}
- ▶ Update value $V(S_t)$ towards estimated return: $R_{t+1} + \gamma V(S_{t+1})$
- ► Value function is the expected return: Simplest algorithm: TD(0)

$$V(S_t) \leftarrow V(S_t) + \alpha \Big(\underbrace{R_{t+1} + \gamma V(S_{t+1})}_{\text{TD target}} - V(S_t)\Big)$$

Compare: Incremental every-visit Monte-Carlo:

ightharpoonup Update value $V(S_t)$ towards actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

Example: Gridworld

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

Assume the following trajectories as before.

- \triangleright we update V offline a few times before adding a new trajectory (all data)
- $ightharpoonup \gamma = 1$
- \triangleright Computation not quite accurate, not α , but average over different paths:

- observe how TD uses intermediate values
- ► What would happen with only first 2 trajectories and iterated updates?

Example: Driving Home α -MC: $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$

TD(0): $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

updates of Monte Carlo method ($\alpha = 1$)

updates by TD methods ($\alpha = 1$)

Georg Martius & René Geist

Reinforcement Learning - Lecture 3

© 2024 Universität Tübinger

MC vs. TD

TD

- can update at every step works also in non-episodic case
- ▶ low variance, some bias
- ightharpoonup TD(0) converges to $v_{\pi}(s)$ (not always with function approximation)
- more sensitive to initial value
- usually more efficient than MC

MC

- only updates after episode ends only work in episodic case
- high variance, zero bias
- good convergence properties (also with function approximation)
- not very sensitive to initial value
- very simple to understand and use

Bias/Variance Trade-Off

- ▶ Return $G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}\left(S_{t}\right)$
- ▶ True TD target $R_{t+1} + \gamma v_{\pi}\left(S_{t+1}\right)$ is unbiased estimate of $v_{\pi}\left(S_{t}\right)$
- ► TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- ► TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - ▶ TD target depends on one random action, transition, reward

Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

Random Walk Example

One run of TD(0) ($\alpha = 0.1$)

Learning curves

Georg Martius & René Geist

Initialization: V(s) = 0.5

What do Batch MC and TD converge to?

 MC converges to solution with minimum mean-squared error Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} \left(G_t^k - V\left(s_t^k\right) \right)^2$$

► TD(0) converges to solution of max likelihood Markov model Solution to the MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$ that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1} \left(s_t^k, a_t^k, s_{t+1}^k = s, a, s' \right)$$

$$\hat{\mathcal{R}}_{s}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1} \left(s_t^k, a_t^k = s, a \right) r_t^k$$

TD exploits Markov property

more efficient in Markov environments

MC does not exploit Markov property

more effective in non-Markov
environments

25 / 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübingen

n-step Backup

 ${\sf TD}$ with n steps look into the future

n-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

Backup Diagrams

/ 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübingen

n-step ${\bf TD}$

Random walk (with 19 states)

n-step TD methods (with data from 10 episodes)

intermediate value of n can be better than either extremes (TD(0) and MC)

What about combining n steps in TD? \rightarrow TD(λ)

Idea: combine information from all n-step updates

How could we do that?

- ► The λ -return G_t^{λ}

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Forward-view $TD(\lambda)$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(G_{t}^{\lambda} - V\left(S_{t}\right)\right)$$

n-step return:
$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

29 / 44 | Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübinger

Forward-view and Backward View of $TD(\lambda)$

- Forward-view: looks into the future to compute G_t^{λ}
- ► Can only be computed at the end of the episode (like MC)

There is an efficient way to implement the Backward view using Eligibility Traces (later)

$TD(\lambda)$ Weighting

Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

$TD(\lambda)$

Example: random walk with 19 states

Intermediate values of λ are best (as before with n-step)

$\mathsf{TD}(\lambda)$ and $\mathsf{TD}(0)$

Reminder: TD(λ), λ -returns, n-step returns: $V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$ $G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$ $G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^n V(S_{t+n})$

For $\lambda = 0$: only current state is updated:

$$G_t^0 = (1 - 0)0^0 G_t^{(1)}$$

$$= R_{t+1} + \gamma^1 V(S_{t+1})$$

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_{t+1}))$$

Equivalent to TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

33 / 44 | Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübinger

Backward View $TD(\lambda)$

- Forward view is impractical but provides the theory
- Backward view provides mechanism/practical implementation
 update online from incomplete sequences
- However, most modern algorithms are updating values offline and keep a memory of past interactions
- Backward view is less important anymore, but good to understand nevertheless

$TD(\lambda)$ and MC

For $\lambda \to 1$ the credit is deferred to the end of the episode

- ▶ We consider episodic environments with offline updates
- Over the course of an episode, total update for TD(1) is the same as total update for MC

34 / 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübingen

Backward View - Eligibility Traces

- ► Credit assignment problem: did bell or light cause shock?
- ► Frequency heuristic: assign credit to most frequent states
- ► Recency heuristic: assign credit to most recent states

 $E_0(s) = 0$

► Eligibility traces combine both heuristics

$$E_t(s) = \gamma \lambda E_{t-1}(s) + [\![S_t = s]\!]$$
 accumulating eligibility transfer

times of visits to a state

IIIII

Backward View - Eligibility Traces

- ► Keep an eligibility trace for every state *s* (how much did *s* contribute to the current situation)
- ▶ Update value V(s) for every state s
- \triangleright current TD-error δ_t scaled by eligibility $E_t(s)$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

37 / 44 Georg Martius & René Geist Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

TD(1) and MC

Advanced content for self study

- ightharpoonup Consider an episode where s is visited once at time-step k
- ightharpoonup TD(1) eligibility trace discounts time since visit

$$E_t(s) = \gamma E_{t-1}(s) + [S_t = s]$$

$$= \begin{cases} 0 & \text{if } t < k \\ \gamma^{t-k} & \text{if } t > k \end{cases}$$

► TD(1) updates accumulate error online

$$\sum_{t=1}^{T-1} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t = \alpha \left(G_k - V\left(S_k \right) \right)$$

▶ By end of episode it accumulates total error

$$\delta_k + \gamma \delta_{k+1} + \gamma^2 \delta_{k+2} + \ldots + \gamma^{T-1-k} \delta_{T-1}$$

$TD(\lambda)$ and MC

- Offline updates:
 - Updates are accumulated within episode but applied in batch at the end of episode

Forward-backward Equivalence

The sum of offline updates is identical for forward-view and backward-view $\mathsf{TD}(\lambda)$

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \sum_{t=1}^{T} \alpha \left(G_t^{\lambda} - V(S_t) \right) [S_t = s]$$

- ► Online updates:
 - ightharpoonup TD(λ) updates are applied online at each step within episode
 - Forward and backward-view $TD(\lambda)$ are slightly different

8 / 44 | Georg Martius & René Geist | Reinforcement Learning – Lecture 3

© 2024 Universität Tübingen

TD(1) and MC - Online

Advanced content for self study

When $\lambda = 1$, sum of TD errors telescopes into MC error,

$$\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2} + \dots + \gamma^{T-1-t} \delta_{T-1}$$

$$= R_{t+1} + \gamma V (S_{t+1}) - V (S_{t})$$

$$+ \gamma R_{t+2} + \gamma^{2} V (S_{t+2}) - \gamma V (S_{t+1})$$

$$+ \gamma^{2} R_{t+3} + \gamma^{3} V (S_{t+3}) - \gamma^{2} V (S_{t+2})$$

$$\vdots$$

$$+ \gamma^{T-1-t} R_{T} + \gamma^{T-t} V (S_{T}) - \gamma^{T-1-t} V (S_{T-1})$$

$$= R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} \dots + \gamma^{T-1-t} R_{T} - V (S_{t})$$

$$= G_{t} - V (S_{t})$$

TD(λ) and **MC**

Advanced content for self study

- ► TD(1) is roughly equivalent to Monte-Carlo (MC)
- ► Error is accumulated online, step-by-step
- ▶ If value function is only updated offline at end of episode then total update is exactly the same as MC

 $TD(\lambda)$: Telescoping sums trick can be also used here

 \Rightarrow Forward and backward view of TD(λ) are the same: yield total λ -return

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t = \alpha \left(G_k^{\lambda} - V(S_k) \right)$$

- ▶ Backward $TD(\lambda)$ updates online
- For multiple visits of s, $E_t(s)$ accumulates many TD-errors

41 / 44 | Georg Martius & René Geist | Reinforcement Learning - Lecture 3

© 2024 Universität Tübingen

Overview of TD, MC, DP and Exhaustive search

Online and Offline updates

Advanced content for self study

- ► Offline updates:
 - ▶ Updates are accumulated within episode but applied in batch at the end of
- Online updates:
 - ightharpoonup TD(λ) updates are applied online at each step within episode
 - Forward and backward-view $TD(\lambda)$ are slightly different

Offline updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$\mathrm{TD}(\lambda)$	TD(1)
Forward view	TD(0)	Forward $TD(\lambda)$	MC
Online updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$\mathrm{TD}(\lambda)$	TD(1)
		*	*
Forward view	TD(0)	Forward $\mathrm{TD}(\lambda)$	MC
Exact Online	TD(0)	Exact Online $TD(\lambda)$	Exact Online $TD(1)$

Equality in terms of total update at end of episode

Georg Martius & René Geist Reinforcement Learning – Lecture 3

© 2024 Universität Tübingen

Summary

- ▶ Value estimation is central in Reinforcement Learning
- ▶ It is a non-trivial problem as we have to fight stochasticity
- ► Two different ways:
 - ► Monte Carlo (MC)
 - high variance, zero bias
 - simple to understand and use
 - ► Temporal Difference (TD)
 - low variance, some bias
 - usually more efficient than MC
- combination of both: *n*-step returns
- ightharpoonup TD(λ): weighted version of all n-step returns