Kryptografia z elementami algebry

Laboratorium 3, arytmetyka krzywej eliptycznej (Moduł 2)

- 1. Zaimplementuj algorytm (funkcję), która generuje losową krzywą eliptyczną nad \mathbb{F}_p . **Dane:** $p=3\pmod 4$ duża liczba pierwsza (ok. 300 bitów) **Wynik:** $A,B\in\mathbb{F}_p$ takie, że $E:Y^2=X^3+AX+B$ jest krzywą nad \mathbb{F}_p
- 2. Zaimplementuj algorytm (funkcję), który znajduje losowy punkt na krzywej eliptycznej nad \mathbb{F}_p .

Dane: $A, B, p = 3 \pmod{4}$ takie, że $E: Y^2 = X^3 + AX + B$ jest krzywą nad \mathbb{F}_p **Wynik:** $P = (x, y) \in E(\mathbb{F}_p)$

- 3. Zaimplementuj algorytm (funkcję), który sprawdza czy punkt należy do krzywej. **Dane:** P=(x,y) oraz $A,B,p=3\pmod 4$ takie, że $E:Y^2=X^3+AX+B$ jest krzywą nad \mathbb{F}_p **Wynik:** True jeśli $P=(x,y)\in E(\mathbb{F}_p)$ w przeciwnym przypadku False
- 4. Zaimplementuj algorytm (funkcję), który oblicza punkt przeciwny do danego punktu. **Dane:** $P=(x,y)\in E(\mathbb{F}_p)$ **Wynik:** $-P=(x,-y)\in E(\mathbb{F}_p)$
- 5. Zaimplementuj algorytm (funkcję), która oblicza $P\oplus Q$ sumę punktów krzywej eliptycznych. Zaimplementuj wszystkie przypadki.

Dane: $P = (x_1, y_1), Q = (x_2, y_2) \in E(\mathbb{F}_p)$ oraz $A, B, p = 3 \pmod{4}$ takie, że $E : Y^2 = X^3 + AX + B$ jest krzywą nad \mathbb{F}_p **Wynik:** $R = (x_3, y_3) \in E(\mathbb{F}_p)$ taki, że $R = P \oplus Q$.