Langages, Compilation, Automates. Partie 7: Automates à pile

Florian Bridoux

Polytech Nice Sophia

2022-2023

Table des matières

Rappel

- 2 Automates à pile
- 3 Équivalence langage hors-contexte et automate à pile

Table des matières

Rappel

- 2 Automates à pile
- 3 Équivalence langage hors-contexte et automate à pile

Hiérarchie de Chomsky-Schützenberger

Langage hors-contexte = langage algébrique.

Règles de la grammaire et type de langage

- Une règle est **régulière à gauche** si et seulement si elle est de la forme $A \to xB$, $A \to x$ ou $A \to \epsilon$ avec $A, B \in N$ et $x \in \Sigma^*$.
- Une règle est **régulière à droite** si et seulement si elle est de la forme $A \to Bx$, $A \to x$ ou $A \to \epsilon$ avec $A, B \in N$ et $x \in \Sigma^*$.

Si toutes les règles d'une grammaire sont régulières gauches ou toutes les règles d'une grammaire sont régulières droites alors le langage engendré est régulier.

• Une règle est **hors-contexte** si et seulement si elle est de la forme : $A \to \alpha$ avec $A \in N$ et $\alpha \in (N \cup \Sigma)^*$.

Si toutes les règles d'une grammaire sont hors-contexte alors le langage engendré est hors-contexte.

Automates finis déterministe

Définition (Automate fini déterministe (AFD))

Un **automate fini déterministe (AFD)** est un quintuplet $(\Sigma, Q, \delta, q_0, F)$ où:

- \bullet Σ est un alphabet des symboles d'entrée,
- Q est un ensemble fini d'états,
- δ est la fonction de transition: $Q \times \Sigma \to Q$,
- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états d'acceptation.

Un langage L est régulier si et seulement s'il existe un AFD A tel que L(A) = L.

Table des matières

Rappe

2 Automates à pile

3 Équivalence langage hors-contexte et automate à pile

Automates à pile (AP)

Définition (Automate à pile (AP))

Un **automate à pile (AP)** est un septuplet $(\Sigma, \Gamma, Q, \delta, Z, q_0, F)$ où:

- ullet est un alphabet des symboles d'entrée,
- \bullet Γ est un alphabet des symboles de pile,
- Q est un ensemble fini d'états,
- δ est la fonction de transition: $Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow P(Q \times \Gamma^*)$,
- Z ∈ Γ symbole initial de la pile (aussi appelé symbole de fond de pile)
- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états d'acceptation.

Rappel: P(E) désigne l'ensemble des $2^{|E|}$ sous-ensembles de E.

Automates à pile (AP)

Un AP commence dans l'état initial avec une pile vide.

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow P(Q \times \Gamma^*)$$

L'AP commence dans l'état initial q_0 avec une pile contenant uniquement Z. À chaque étape, l'AP:

- lit l'état courant $q \in Q$.
- Choisit (indéterministe) de consommer le prochain symbole $(a \in \Sigma)$ ou pas de symbole $(a = \epsilon)$.
- Choisit (indéterministe) d'ignorer la pile $\gamma = \epsilon$ ou de dépiler le sommet de la pile $\gamma \in \Gamma$.
- Passe dans un état $q' \in Q$ et empile un mot $w \in \Gamma^*$ avec $(q', w) \in \delta(q, a, \gamma)$

L'AP accepte le mot si après avoir lu tout le mot il peut finir dans un état acceptant avec une pile vide.

Remarque: on verra plus tard des variations de ce mode d'acceptation.

Représentation des transitions

Classiquement:

$$(q', w) \in \delta(q, a, \gamma) \Rightarrow q \xrightarrow{a, \gamma \to w} q'$$

Dans ce cours:

$$(q', w) \in \delta(q, a, \gamma) \Rightarrow q \xrightarrow{a. \gamma. w} q'$$

Passage d'une configuration à une autre:

$$(q, CBA) \xrightarrow{a.C.ED} (q', EDBA)$$

état	mot restant	pile
q_0	aaabbb	Z

état	mot restant	pile
q_0	aaabbb	Ζ
q 0	aabbb	Α

état	mot restant	pile
q_0	aaabbb	Z
q 0	aabbb	Α
90	abbb	AA

état	mot restant	pile
q 0	aaabbb	Z
q 0	aabbb	Α
q 0	abbb	AA
q_0	bbb	AAA

état	mot restant	pile
q_0	aaabbb	Z
q_0	aabbb	Α
q_0	abbb	AA
q_0	bbb	AAA
q_1	bb	AA

état	mot restant	pile
q_0	aaabbb	Z
q 0	aabbb	Α
q_0	abbb	AA
q_0	bbb	AAA
q_1	bb	AA
q_1	Ь	Α

Exemple avec le mot w = aaabbb:

état	mot restant	pile
q_0	aaabbb	Z
q_0	aabbb	Α
q 0	abbb	AA
q 0	bbb	AAA
q_1	bb	AA
q_1	Ь	Α
q_1	ϵ	ϵ

On finit dans l'état q_1 (acceptant) avec une pile vide: mot accepté.

état	mot restant	pile
q_0	aaabb	Z

état	mot restant	pile
q_0	aaabb	Ζ
q 0	aabb	Α

	état	mot restant	pile
	q_0	aaabb	Z
	q_0	aabb	Α
ĺ	q 0	abb	AA

état	mot restant	pile
q_0	aaabb	Z
q_0	aabb	Α
q_0	abb	AA
q_0	bb	AAA

état	mot restant	pile
q_0	aaabb	Z
q_0	aabb	Α
q_0	abb	AA
q_0	bb	AAA
q_1	b	AA

Exemple avec le mot w = aaabb:

état	mot restant	pile
q_0	aaabb	Z
q 0	aabb	Α
q 0	abb	AA
q 0	bb	AAA
q_1	Ь	AA
q_1	ϵ	Α

On finit (nécessairement) dans l'état q_1 (acceptant) mais avec une pile non vide: mot rejeté.

état	mot restant	pile
q_0	aabbb	Ζ

état	mot restant	pile
q_0	aabbb	Ζ
q 0	abbb	Α

	état	mot restant	pile
	q_0	aabbb	Z
	q_0	abbb	Α
ĺ	q 0	bbb	AA

état	mot restant	pile
q 0	aabbb	Z
q 0	abbb	Α
q 0	bbb	AA
q_1	bb	Α

Exemple avec le mot w = aabbb:

état	mot restant	pile
q_0	aabbb	Ζ
q 0	abbb	Α
q 0	bbb	AA
q_1	bb	Α
q_1	Ь	ϵ

Pas de transition possible: mot rejeté.

Table des matières

Rappe

2 Automates à pile

3 Équivalence langage hors-contexte et automate à pile

Équivalence langage hors-contexte et automates à pile

Theorem

Un langage L est hors-contexte si et seulement s'il existe un automate à pile A qui le reconnaît (L(A) = L).

- Si un langage est engendré par une grammaire hors-contexte alors il existe un automate à pile qui le reconnaît.
- Si un langage est reconnu par un automate à pile alors il est engendré par une grammaire hors-contexte.

grammaire hors-contexte ⇒ automates à pile

Principe:

- Empiler l'axiome S de la grammaire.
- ② Si le sommet de la pile est un non-terminal N_i alors on le remplace par un la partie droite d'une règle de la forme $N_i \rightarrow \alpha$ de telle sorte que le premier symbole x de α se trouve en sommet de pile.
- Si le sommet de la pile est un terminal x alors on le compare avec le prochain caractère de l'entrée. S'ils sont égaux alors on dépile sinon on "rejette".
- Si la pile est vide et que l'entrée a été totalement lue alors on accepte, sinon on revient à l'étape 2.

grammaire hors-contexte ⇒ automate à pile

Construction de l'automate à pile A correspondant à la grammaire hors-contexte $G = (N, \Sigma, R, S)$:

- $A = (\Sigma, \Gamma, Q, \delta, Z, q_0, F),$
- $\bullet \ \Gamma = \Sigma \cup N \cup \{Z\}, \ Q = \{q_0\},\$
- Z = S: à l'état initial, dans la pile on a juste l'axiome.
- La fonction de transition δ est définie de la façon suivante :
 - $\delta(q_0, \epsilon, N_i) = \{(q_0, \alpha) \mid N_i \to \alpha \in R\}$ pour tout $N_i \in N$: Si un symbole non-terminal N_i occupe le sommet de la pile, on le remplace par la partie droite α d'une règle $N_i \to \alpha$. $(\epsilon$ -transition)
 - $\delta(q_0, a, a) = \{(q_0, \epsilon)\}$ pour tout $a \in \Sigma$: Si le même symbole terminal occupe le sommet de la pile et la lettre suivante de l'entrée, on dépile.
- $F = \{q_0\}$: quand l'entrée est entièrement consommée et que la pile est vide on accepte le mot.

Exemple

Grammaire G:
$$E \rightarrow E+T$$

$$T \rightarrow T*F$$

$$F \rightarrow (E) \mid a$$

$$a.a.\varepsilon$$

$$+.+.\varepsilon$$

$$*.*.\varepsilon$$

$$(.(.\varepsilon$$

$$).).\varepsilon$$

$$\varepsilon.E.E+T$$

$$\varepsilon.T.T*F$$

$$\varepsilon.F.(E)$$

grammaire hors-contexte \Rightarrow automates à pile

Remarque:

Lorsqu'un non-terminal N_i doit être remplacé au sommet de la pile, il peut l'être par la partie droite d'une règle de la forme $N_i \longrightarrow \alpha$. Plusieurs règles de cette forme peuvent exister dans la grammaire. L'automate correspondant est généralement non déterministe.

automates à pile ⇒ grammaire hors-contexte

Première étape: On simplifie notre automate à pile pour lui donner 3 propriétés:

• Un seul état acceptant.

$$q \Rightarrow q \xrightarrow{\epsilon.\epsilon.\epsilon} q_f$$

- Chaque transition soit:
 - ignore la pile et empile un unique symbole: $\delta(q, a, \epsilon) = (q', \gamma)$ $(a \in \Sigma \cup \{\epsilon\})$;
 - Ou dépile un symbole et n'empile rien: $\delta(q, a, \gamma) = (q', \epsilon)$ $(a \in \Sigma \cup \{\epsilon\}).$
 - On n'empile et ne dépile rien. $\delta(q, a, \epsilon) = (q', \epsilon)$ $(a \in \Sigma \cup \{\epsilon\})$.

automates à pile \Rightarrow grammaire hors-contexte

Première étape: On simplifie notre automate à pile pour lui donner 3 propriétés:

Un seul état acceptant.

$$\boxed{q} \Rightarrow \boxed{q} \xrightarrow{\epsilon.\epsilon.\epsilon} \boxed{q_f}$$

- Chaque transition soit:
 - ignore la pile et empile un unique symbole: $\delta(q, a, \epsilon) = (q', \gamma)$ $(a \in \Sigma \cup \{\epsilon\})$;
 - Ou dépile un symbole et n'empile rien: $\delta(q, a, \gamma) = (q', \epsilon)$ $(a \in \Sigma \cup \{\epsilon\}).$
 - On n'empile et ne dépile rien. $\delta(q, a, \epsilon) = (q', \epsilon)$ $(a \in \Sigma \cup \{\epsilon\})$.

automates à pile \Rightarrow grammaire hors-contexte

Construction de la grammaire hors-contexte $G=(N,\Sigma,R,S)$ à partir de l'automate à pile $A=(\Sigma,\Gamma,\{q_0,\ldots,q_r\},\delta,Z,q_0,\{q_r\})$ (simplifié comme indiqué à la diapo précédente).

On prend
$$N = \{N_{i,j} \mid i \in [-1, r], j \in [0, r]\}.$$

Idée: $N_{i,j}$ représente l'ensemble des mots w tel que:

$$\overbrace{q_i} \xrightarrow{w.\epsilon.\epsilon} \overbrace{q_j}$$

(on peut passer de q_i à q_j sans "toucher à la pile" et en consommant le mot w)

automates à pile \Rightarrow grammaire hors-contexte

 q_{-1} est un "faux état" qu'on ajoute pour mettre l'état initial Z sur la pile.

$$q_{-1}$$
 $\epsilon.\epsilon.Z$ q_0

On prend $S = N_{-1,r}$.

$$q_{-1}$$
 $w.\epsilon.\epsilon$ q_r

grammaire hors-contexte \Rightarrow automates à pile

Cas de base:

• Pour tout $i \in [0, r]$, on ajoute une règle $N_{i,i} \to \epsilon$.

• Pour toute transition $(q_j, \epsilon) \in \delta(q_i, a, \epsilon)$ on ajoute une règle $N_{i,j} \to a$.

grammaire hors-contexte ⇒ automates à pile

Récursion:

• Pour tout $i \in [-1, r]$, $j, k \in [0, r]$, on ajoute une règle $N_{i,k} \to N_{i,j}N_{j,k}$.

$$\begin{array}{c|c}
\hline
q_i & u.\varepsilon.\varepsilon \\
\hline
q_j & v.\varepsilon.\varepsilon \\
\hline
q_k \\
\Rightarrow & \hline
q_i & uv.\varepsilon.\varepsilon \\
\hline
q_k
\\
\hline
q_k
\\
\hline$$

• Pour tout $(q_j, \gamma) \in \delta(q_i, a, \epsilon)$ et $(q_\ell, \epsilon) \in (q_k, b, \gamma)$ (une règle qui empile γ et l'autre qui dépile γ), on ajoute: $N_{i,\ell} \to aN_{j,k}b$.

(On suppose $q_{-1} \xrightarrow{\epsilon.\epsilon.z} q_0$.)

Exemple: grammaire pour le langage $\{a^nb^n \mid n \geq 1\}$

$$S = N_{-1,2},$$

$$N = \{N_{-1,0}, N_{-1,1}, N_{-1,2}, N_{-1,1}N_{0,0}, N_{0,1}, N_{0,2}, N_{1,0}, N_{1,1}, N_{1,2}, N_{2,0}, N_{2,1}, N_{2,2}\}$$

$$N_{0,0} \rightarrow \epsilon \qquad N_{-1,0} \rightarrow N_{-1,0}N_{0,0} \mid \dots$$

$$N_{1,1} \rightarrow \epsilon \qquad N_{2,2} \rightarrow K_{2,0}N_{0,2} \mid N_{2,1}N_{1,2} \mid N_{2,2}N_{2,2}$$

$$N_{0,2} \rightarrow \epsilon \qquad N_{0,1} \rightarrow aN_{0,0}b$$

$$N_{1,2} \rightarrow \epsilon \qquad N_{0,1} \rightarrow aN_{0,1}b$$

$$N_{-1,2} \rightarrow \epsilon N_{0,1}\epsilon$$

Reconnaissance de aaabbb:

 q_{-1}

$$\begin{bmatrix}
Z \\
q_{-1} \xrightarrow{\epsilon.\epsilon.Z} q_0
\end{bmatrix}$$

$$\begin{array}{c|c}
\hline
Z & \overline{A} \\
\hline
Z & \overline{Z}
\end{array}$$

$$q_{-1} \xrightarrow{\epsilon.\epsilon.Z} q_0 \xrightarrow{a.\epsilon.A} q_0$$

$$\begin{array}{c|cccc}
A & A \\
\hline
Z & Z & Z
\end{array}$$

$$q_{-1} \xrightarrow{\epsilon.\epsilon.Z} q_0 \xrightarrow{a.\epsilon.A} q_0 \xrightarrow{a.\epsilon.A} q_0$$

$$\begin{array}{c|cccc}
A & A & A & A \\
\hline
Z & Z & Z & Z & Z
\end{array}$$

$$\begin{array}{c|ccccc}
A & A & A & A \\
A & Z & Z & Z
\end{array}$$

$$\begin{array}{c|ccccc}
Q_0 & \underline{a.\varepsilon.A} & Q_0 & \underline{a.\varepsilon.A} & Q_0 & \underline{a.\varepsilon.A} & Q_0 & \underline{b.A.\varepsilon} & Q_1
\end{array}$$

Reconnaissance de aaabbb:

 $N_{-1.2} \Rightarrow N_{0.1} \Rightarrow aN_{0.1}b \Rightarrow aaN_{0.1}bb \Rightarrow aaaN_{0.0}bbb \Rightarrow aaabbb.$

Quelques résultats

- On peut déduire des constructions précédentes que chaque automate à pile est équivalent à un automate à pile à un seul état.
- En revanche, il n'y a pas de notion d'automate à pile minimal comme pour les AFD...
- Et en général, savoir si deux automates à pile sont équivalent est un problème indécidable!
- (C'est en revanche décidable pour les automates à pile déterministes...)