Computability and Complexity COSC 4200

The Arithmetical Hiearchy

Arithmetical Hierarchy

The Arithmetical Hierarchy is a collection of classes that sit above Turing-recognizable and co-Turing-recognizable.

The Arithmetical Hierarchy

 $\Pi_0 = \Sigma_0 = \mathsf{decidable}$

 $\Sigma_1 = \mathsf{Turing\text{-}recognizable}$

 $\Pi_1 = \text{co-Turing-recognizable}$

Stephan Kleene (1909-1994)

Quantifiers and Predicates

Recall that we proved another way to define Turing-recognizability is in terms of existential quantifiers and decidable predicates.

Theorem

A language A is Turing-recognizable if and only if there is a decidable language D such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in D.$$

Quantifiers and Predicates

Theorem

A language A is Turing-recognizable if and only if there is a decidable language D such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in D.$$

If we instead use a \forall quantifier, we get another way to define co-Turing-recognizability.

Corollary

A language A is co-Turing-recognizable if and only if there is a decidable language D such that for all $x \in \Sigma^*$,

$$x \in A \iff (\forall w \in \Sigma^*) \langle x, w \rangle \in D.$$

Proof of Corollary. Let *A* be co-Turing-recognizable.

Proof of Corollary. Let A be co-Turing-recognizable. Then A^c is Turing-recognizable.

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

Let $D = C^c$.

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

$$x \in A \iff x \notin A^c$$

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

$$x \in A \iff x \notin A^c$$

 $\iff \neg [(\exists w \in \Sigma^*) \langle x, w \rangle \in C]$

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

$$x \in A \iff x \notin A^{c}$$

$$\iff \neg [(\exists w \in \Sigma^{*}) \langle x, w \rangle \in C]$$

$$\iff (\forall w \in \Sigma^{*}) \neg [\langle x, w \rangle \in C]$$

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

$$x \in A \iff x \notin A^{c}$$

$$\iff \neg [(\exists w \in \Sigma^{*}) \langle x, w \rangle \in C]$$

$$\iff (\forall w \in \Sigma^{*}) \neg [\langle x, w \rangle \in C]$$

$$\iff (\forall w \in \Sigma^{*}) \langle x, w \rangle \notin C$$

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

$$x \in A \iff x \notin A^{c}$$

$$\iff \neg [(\exists w \in \Sigma^{*}) \langle x, w \rangle \in C]$$

$$\iff (\forall w \in \Sigma^{*}) \neg [\langle x, w \rangle \in C]$$

$$\iff (\forall w \in \Sigma^{*}) \langle x, w \rangle \notin C$$

$$\iff (\forall w \in \Sigma^{*}) \langle x, w \rangle \in D.$$

$$x \in A^c \iff (\exists w \in \Sigma^*) \langle x, w \rangle \in C.$$

Let $D = C^c$. We have

$$x \in A \iff x \notin A^{c}$$

$$\iff \neg [(\exists w \in \Sigma^{*}) \langle x, w \rangle \in C]$$

$$\iff (\forall w \in \Sigma^{*}) \neg [\langle x, w \rangle \in C]$$

$$\iff (\forall w \in \Sigma^{*}) \langle x, w \rangle \notin C$$

$$\iff (\forall w \in \Sigma^{*}) \langle x, w \rangle \in D.$$

This proves the left-to-right direction. The proof of the right-to-left direction is similar. \Box

The arithmetical hierarchy is defined inductively using both \exists and \forall quantifiers.

The arithmetical hierarchy is defined inductively using both \exists and \forall quantifiers.

Define

$$\Sigma_0 = \Pi_0 = \{A \mid A \text{ is decidable}\}.$$

The arithmetical hierarchy is defined inductively using both \exists and \forall quantifiers.

Define

$$\Sigma_0 = \Pi_0 = \{A \mid A \text{ is decidable}\}.$$

• For $k \ge 1$, the class Σ_k consists of all B such that for some $A \in \Pi_{k-1}$,

$$x \in B \iff (\exists w) \langle x, w \rangle \in A.$$

The arithmetical hierarchy is defined inductively using both \exists and \forall quantifiers.

Define

$$\Sigma_0 = \Pi_0 = \{A \mid A \text{ is decidable}\}.$$

• For $k \ge 1$, the class Σ_k consists of all B such that for some $A \in \Pi_{k-1}$,

$$x \in B \iff (\exists w) \langle x, w \rangle \in A.$$

• For $k \ge 1$, define

$$\Pi_k = \{A \mid A^c \in \Sigma_k\}.$$

The arithmetical hierarchy is defined inductively using both \exists and \forall quantifiers.

Define

$$\Sigma_0 = \Pi_0 = \{A \mid A \text{ is decidable}\}.$$

• For $k \ge 1$, the class Σ_k consists of all B such that for some $A \in \Pi_{k-1}$,

$$x \in B \iff (\exists w) \langle x, w \rangle \in A.$$

• For $k \ge 1$, define

$$\Pi_k = \{A \mid A^c \in \Sigma_k\}.$$

Equivalently, Π_k consists of all B such that for some $A \in \Sigma_{k-1}$,

$$x \in B \iff (\forall w) \langle x, w \rangle \in A.$$

The Arithmetical Hierarchy

First Level

 $A \in \Sigma_1$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists w) \langle x, w \rangle \in B.$$

 $\Sigma_1 = \mathsf{Turing\text{-}recognizable}$

First Level

 $A \in \Sigma_1$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists w) \langle x, w \rangle \in B.$$

 $\Sigma_1 = \mathsf{Turing}\mathsf{-recognizable}$

 $A \in \Pi_1$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\forall w) \langle x, w \rangle \in B.$$

 $\Pi_1 = \text{co-Turing-recognizable}$

The Arithmetical Hierarchy

Second Level

 $A \in \Sigma_2$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists y)(\forall z) \langle x, y, z \rangle \in B.$$

Second Level

 $A \in \Sigma_2$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists y)(\forall z) \langle x, y, z \rangle \in B.$$

 $A \in \Pi_2$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\forall y)(\exists z) \langle x, y, z \rangle \in B.$$

Third Level

 $A \in \Sigma_3$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists w)(\forall y)(\exists z) \langle x, w, y, z \rangle \in B.$$

Third Level

 $A \in \Sigma_3$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\exists w)(\forall y)(\exists z) \langle x, w, y, z \rangle \in B.$$

 $A \in \Pi_3$ if there is a decidable B such that for all $x \in \Sigma^*$,

$$x \in A \iff (\forall w)(\exists y)(\forall z) \langle x, w, y, z \rangle \in B.$$

The Arithmetical Hierarchy

Decision Problems about TMs

Let's use the Arithmetical Hierarchy to classify these problems and some new ones:

$$\begin{aligned} \textit{FIN}_{\mathrm{TM}} &= \{ \langle \textit{M} \rangle \mid \textit{L}(\textit{M}) \text{ is finite} \} \\ \textit{INFCOMP}_{\mathrm{TM}} &= \{ \langle \textit{M} \rangle \mid \textit{L}(\textit{M})^c \text{ is infinite} \} \end{aligned}$$

Recall the *acceptance problem* for TMs:

$$A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$$

We showed $A_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $A_{\rm TM}$ meets the quantifier definition for Σ_1 :

Recall the *acceptance problem* for TMs:

$$A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$$

We showed $A_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $A_{\rm TM}$ meets the quantifier definition for Σ_1 :

We have

$$\langle M, w \rangle \in A_{\mathrm{TM}} \iff M \text{ accepts } w$$
 $\iff (\exists t) M \text{ accepts } w \text{ in } t \text{ steps.}$

Recall the *acceptance problem* for TMs:

$$A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$$

We showed $A_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $A_{\rm TM}$ meets the quantifier definition for Σ_1 :

We have

$$\langle M, w \rangle \in A_{\mathrm{TM}} \iff M \text{ accepts } w$$
 $\iff (\exists t) M \text{ accepts } w \text{ in } t \text{ steps.}$

Define

$$D = \{ \langle M, x, t \rangle \mid \text{ accepts } x \text{ in } t \text{ steps} \}.$$

Recall the *acceptance problem* for TMs:

$$A_{\mathrm{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input string } w \ \}.$$

We showed $A_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $A_{\rm TM}$ meets the quantifier definition for Σ_1 :

We have

$$\begin{split} \langle M,w\rangle \in A_{\mathrm{TM}} &\iff & M \text{ accepts } w \\ &\iff & (\exists t) \ M \text{ accepts } w \text{ in } t \text{ steps.} \end{split}$$

Define

$$D = \{ \langle M, x, t \rangle \mid \text{ accepts } x \text{ in } t \text{ steps} \}.$$

Then

$$\langle M, w \rangle \in A_{TM} \iff (\exists t) \langle \langle M, w \rangle, t \rangle \in D.$$

Since D is a decidable predicate and we used \exists , this shows $A_{\rm TM} \in \Sigma_1$.

The Arithmetical Hierarchy

Halting Problem for TMs

Recall the *halting problem* for TMs:

 $HALT_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \}.$

We showed $HALT_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $HALT_{\rm TM}$ meets the quantifier definition for Σ_1 :

Halting Problem for TMs

Recall the *halting problem* for TMs:

 $HALT_{\mathrm{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \ \}.$

We showed $HALT_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $HALT_{\rm TM}$ meets the quantifier definition for Σ_1 :

We have

$$\langle M, w \rangle \in HALT_{\text{TM}} \iff M \text{ halts on } w$$
 $\iff (\exists t) M \text{ halts on } w \text{ in } t \text{ steps.}$

Halting Problem for TMs

Recall the *halting problem* for TMs:

$$HALT_{\mathrm{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \ \}.$$

We showed $HALT_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $HALT_{\rm TM}$ meets the quantifier definition for Σ_1 :

We have

$$\langle M, w \rangle \in HALT_{TM} \iff M \text{ halts on } w$$

 $\iff (\exists t) M \text{ halts on } w \text{ in } t \text{ steps.}$

Define

$$D = \{ \langle M, x, t \rangle \mid \text{ halts on } x \text{ in } t \text{ steps} \}.$$

Halting Problem for TMs

Recall the *halting problem* for TMs:

$$HALT_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input string } w \}.$$

We showed $HALT_{\rm TM}$ is undecidable and Turing-recognizable. Let's see how $HALT_{\rm TM}$ meets the quantifier definition for Σ_1 :

We have

$$\langle M, w \rangle \in HALT_{\text{TM}} \iff M \text{ halts on } w$$
 $\iff (\exists t) M \text{ halts on } w \text{ in } t \text{ steps.}$

Define

$$D = \{ \langle M, x, t \rangle \mid \text{ halts on } x \text{ in } t \text{ steps} \}.$$

Then

$$\langle M, w \rangle \in HALT_{TM} \iff (\exists t) \langle \langle M, w \rangle, t \rangle \in D.$$

Since D is a decidable predicate and we used \exists , this shows $HALT_{TM} \in \Sigma_1$.

The Arithmetical Hierarchy

Recall the *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

We showed $E_{\rm TM}$ is undecidable and co-Turing-recognizable. Let's see how $E_{\rm TM}$ meets the quantifier definition of Π_1 :

Recall the *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

We showed $E_{\rm TM}$ is undecidable and co-Turing-recognizable. Let's see how $E_{\rm TM}$ meets the quantifier definition of Π_1 :

$$\langle M \rangle \in \mathcal{E}_{\mathrm{TM}} \iff \mathcal{L}(M) = \emptyset$$

Recall the *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

We showed $E_{\rm TM}$ is undecidable and co-Turing-recognizable. Let's see how $E_{\rm TM}$ meets the quantifier definition of Π_1 :

$$\langle M \rangle \in E_{\text{TM}} \iff L(M) = \emptyset$$

 $\iff (\forall x) \ M \text{ does not accept } x$

Recall the *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

We showed $E_{\rm TM}$ is undecidable and co-Turing-recognizable. Let's see how $E_{\rm TM}$ meets the quantifier definition of Π_1 :

$$\langle M \rangle \in E_{\text{TM}} \iff L(M) = \emptyset$$
 $\iff (\forall x) \ M \text{ does not accept } x$
 $\iff (\forall x)(\forall t) \ M \text{ does not accept } x \text{ in } t \text{ steps}$

Recall the *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

We showed $E_{\rm TM}$ is undecidable and co-Turing-recognizable. Let's see how $E_{\rm TM}$ meets the quantifier definition of Π_1 :

$$\langle M \rangle \in E_{\text{TM}} \iff L(M) = \emptyset$$

$$\iff (\forall x) \ M \ \text{does not accept } x$$

$$\iff (\forall x)(\forall t) \ M \ \text{does not accept } x \ \text{in } t \ \text{steps}$$

$$\iff (\forall \langle x, t \rangle) \ M \ \text{does not accept } x \ \text{in } t \ \text{steps}$$

Recall the *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

We showed $E_{\rm TM}$ is undecidable and co-Turing-recognizable. Let's see how $E_{\rm TM}$ meets the quantifier definition of Π_1 :

We have

$$\langle M \rangle \in E_{\text{TM}} \iff L(M) = \emptyset$$

$$\iff (\forall x) \ M \ \text{does not accept } x$$

$$\iff (\forall x)(\forall t) \ M \ \text{does not accept } x \ \text{in } t \ \text{steps}$$

$$\iff (\forall \langle x, t \rangle) \ M \ \text{does not accept } x \ \text{in } t \ \text{steps}$$

Define

$$D = \{ \langle M, \langle x, t \rangle \rangle \mid M \text{ accepts } x \text{ in } t \text{ steps} \}.$$

Recall the *emptiness problem* for TMs:

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

We showed $E_{\rm TM}$ is undecidable and co-Turing-recognizable. Let's see how $E_{\rm TM}$ meets the quantifier definition of Π_1 :

We have

$$\langle M \rangle \in E_{\mathrm{TM}} \iff L(M) = \emptyset$$

$$\iff (\forall x) \ M \ \mathrm{does \ not \ accept} \ x$$

$$\iff (\forall x)(\forall t) \ M \ \mathrm{does \ not \ accept} \ x \ \mathrm{in} \ t \ \mathrm{steps}$$

$$\iff (\forall \langle x, t \rangle) \ M \ \mathrm{does \ not \ accept} \ x \ \mathrm{in} \ t \ \mathrm{steps}$$

Define

$$D = \{ \langle M, \langle x, t \rangle \rangle \mid M \text{ accepts } x \text{ in } t \text{ steps} \}.$$

Then

$$\langle M \rangle \in E_{\text{TM}} \iff (\forall \langle x, t \rangle) \langle M, x \rangle \in D.$$

Since D is a decidable predicate and we used \forall , this shows

The Arithmetical Hierarchy

Recall the diaganol halting problem:

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

We showed K is undecidable and co-Turing-recognizable. Let's see how K meets the quantifier definition of Π_1 :

Recall the diaganol halting problem:

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

We showed K is undecidable and co-Turing-recognizable. Let's see how K meets the quantifier definition of Π_1 :

$$\langle M \rangle \in K \quad \Longleftrightarrow \quad M \text{ does not accept } \langle M \rangle$$

Recall the diaganol halting problem:

$$K = \{ \langle M \rangle \mid M \text{ does not accept } \langle M \rangle \}.$$

We showed K is undecidable and co-Turing-recognizable. Let's see how K meets the quantifier definition of Π_1 :

$$\langle M \rangle \in K \quad \Longleftrightarrow \quad M \text{ does not accept } \langle M \rangle \\ \iff \quad (\forall t) \ M \text{ does not accept } \langle M \rangle \text{ in } t \text{ steps}$$

Recall the diaganol halting problem:

$$K = \{\langle M \rangle \mid M \text{ does not accept } \langle M \rangle\}.$$

We showed K is undecidable and co-Turing-recognizable. Let's see how K meets the quantifier definition of Π_1 :

We have

$$\langle M \rangle \in K \quad \Longleftrightarrow \quad M \text{ does not accept } \langle M \rangle \\ \iff \quad (\forall t) \ M \text{ does not accept } \langle M \rangle \text{ in } t \text{ steps}$$

Define

$$D = \{ \langle M, t \rangle \mid M \text{ does not accept } \langle M \rangle \text{ in } t \text{ steps} \}.$$

Recall the diaganol halting problem:

$$K = \{ \langle M \rangle \mid M \text{ does not accept } \langle M \rangle \}.$$

We showed K is undecidable and co-Turing-recognizable. Let's see how K meets the quantifier definition of Π_1 :

We have

$$\langle M \rangle \in K \quad \Longleftrightarrow \quad M \text{ does not accept } \langle M \rangle \\ \iff \quad (\forall t) \ M \text{ does not accept } \langle M \rangle \text{ in } t \text{ steps}$$

Define

$$D = \{ \langle M, t \rangle \mid M \text{ does not accept } \langle M \rangle \text{ in } t \text{ steps} \}.$$

Then

$$\langle M \rangle \in K \iff (\forall t) \langle M, t \rangle \in D.$$

Since D is a decidable predicate and we used \forall , this shows $K \in \Pi_1$.

The Arithmetical Hierarchy

All Problem for TMs

Recall

$$ALL_{\text{TM}} = \{\langle M \rangle L(M) = \Sigma^* \}$$

Given $\langle M \rangle$, the problem is to determine whether M accepts every string.

We showed that $ALL_{\rm TM}$ is neither Turing-recognizable nor co-Turing-recognizale.

$$\langle M \rangle \in ALL_{\mathrm{TM}} \quad \Longleftrightarrow \quad L(M) = \Sigma^*$$

$$\langle M \rangle \in ALL_{\mathrm{TM}} \iff L(M) = \Sigma^* \\ \iff (\forall x) \ M \ \mathrm{accepts} \ x$$

$$\langle M \rangle \in ALL_{\mathrm{TM}} \iff L(M) = \Sigma^*$$
 $\iff (\forall x) \ M \text{ accepts } x$
 $\iff (\forall x)(\exists t) \ M \text{ accepts } x \text{ in } t \text{ steps}$

We have

$$\langle M \rangle \in ALL_{\mathrm{TM}} \iff L(M) = \Sigma^* \\ \iff (\forall x) \ M \text{ accepts } x \\ \iff (\forall x)(\exists t) \ M \text{ accepts } x \text{ in } t \text{ steps} \\ \iff (\forall x)(\exists t) \ \langle M, x, t \rangle \in D$$

where

$$D = \{ \langle M, x, t \rangle \text{ accepts } x \text{ in } t \text{ steps} \}$$

is a decidable predicate. We used $\forall \exists$ with D, so $ALL_{\mathrm{TM}} \in \Pi_2$.

The Arithmetical Hierarchy

Infinite Problem for TMs

The infinite problem for TMs is

$$INF_{\mathrm{TM}} = \{ \langle M \rangle \mid L(M) \text{ is infinite} \}.$$

Given $\langle M \rangle$, the problem is to determine whether M accepts infinitely many strings.

 \emph{INF}_{TM} is neither Turing-recognizable nor co-Turing-recognizale.

$$\langle M \rangle \in \mathit{INF}_{\mathrm{TM}} \quad \Longleftrightarrow \quad \mathit{L}(M) \text{ is infinite}$$

$$\langle M \rangle \in \mathit{INF}_{\mathrm{TM}} \iff L(M) \text{ is infinite}$$

$$\iff (\forall n)(\exists x) \ |x| \geq n \text{ and } M \text{ accepts } x$$

$$\langle M \rangle \in \mathit{INF}_{\mathrm{TM}} \iff L(M) \text{ is infinite}$$

$$\iff (\forall n)(\exists x) \ |x| \geq n \text{ and } M \text{ accepts } x$$

$$\iff (\forall n)(\exists x)(\exists t) \ |x| \geq n \text{ and}$$

$$M \text{ accepts } x \text{ in } t \text{ steps}$$

We have

$$\langle M \rangle \in \mathit{INF}_{\mathrm{TM}} \iff L(M) \text{ is infinite}$$

$$\iff (\forall n)(\exists x) \ |x| \geq n \text{ and } M \text{ accepts } x$$

$$\iff (\forall n)(\exists x)(\exists t) \ |x| \geq n \text{ and } M \text{ accepts } x \text{ in } t \text{ steps}$$

$$\iff (\forall n)(\exists \langle x, t \rangle) \ \langle M, n, \langle x, t \rangle \rangle \in D,$$

where

$$D = \{ \langle M, n, \langle x, t \rangle \rangle \mid x \mid \geq n \text{ and } M \text{ accepts } x \text{ in } t \text{ steps} \}$$
 is a decidable predicate. We used $\forall \exists$ with D , so $\mathit{INF}_{\mathrm{TM}} \in \Pi_2$.

The Arithmetical Hierarchy

Finite Problem for TMs

The finite problem for TMs is

$$FIN_{TM} = \{ \langle M \rangle \mid L(M) \text{ is finite} \}.$$

Given $\langle M \rangle$, the problem is to determine whether M accepts only finitely many strings.

 \emph{FIN}_{TM} is neither Turing-recognizable nor co-Turing-recognizale.

$$\langle M \rangle \in \mathit{FIN}_{\mathrm{TM}} \quad \Longleftrightarrow \quad \mathit{L}(M) \text{ is finite}$$

$$\langle M \rangle \in FIN_{\mathrm{TM}} \iff L(M) \text{ is finite}$$

$$\iff$$
 $(\exists n)M$ accepts no string x with $|x| \ge n$

$$\langle M \rangle \in FIN_{\mathrm{TM}} \iff L(M) \text{ is finite}$$

$$\iff (\exists n)M \text{ accepts no string } x \text{ with } |x| \geq n$$

$$\iff (\exists n)(\forall x)(\forall t) \quad |x| \geq n \text{ or } M \text{ does not accept } x \text{ in } t \text{ steps}$$

We have

$$\langle M \rangle \in \mathit{FIN}_{\mathrm{TM}} \iff L(M) \text{ is finite}$$

$$\iff (\exists n) M \text{ accepts no string } x \text{ with } |x| \geq n$$

$$\iff (\exists n) (\forall x) (\forall t) \quad |x| \geq n \text{ or } M \text{ does not accept } x \text{ in } t \text{ steps}$$

$$\iff (\exists n) (\forall \langle x, t \rangle) \langle M, n, \langle x, t \rangle \rangle \in D,$$

where

$$D = \{\langle M, n, \langle x, t \rangle \rangle \mid x \mid \geq n \text{ or } M \text{ does not accept } x \text{ in } t \text{ steps} \}$$
 is a decidable predicate. We used $\exists \forall$ with D , so $FIN_{\mathrm{TM}} \in \Sigma_2$.

The Arithmetical Hierarchy

Equivalence Problem

Recall the equivalence problem for TMs:

$$EQ_{\mathrm{TM}} = \{\langle M, N \rangle \mid M \text{ and } N \text{ are TMs and } L(M) = L(N) \}$$

Given $\langle M, N \rangle$, the problem is to determine whether M and N accept exactly the same strings.

We showed $EQ_{\rm TM}$ is neither Turing-recognizable nor co-Turing-recognizale.

Classifying EQ_{TM}

$$\langle M, N \rangle \in EQ_{\mathrm{TM}} \quad \Longleftrightarrow \quad L(M) = L(N)$$

Classifying EQ_{TM}

$$\langle M,N \rangle \in EQ_{\mathrm{TM}} \iff L(M) = L(N)$$
 $\iff (\forall x) \quad M(x) = N(x) \text{ or } M(x) \text{ and } N(x) \text{ both do not halt}$

Classifying $EQ_{\rm TM}$

$$\langle M, N \rangle \in EQ_{\mathrm{TM}} \iff L(M) = L(N)$$
 $\iff (\forall x) \quad M(x) = N(x) \text{ or}$
 $M(x) \text{ and } N(x) \text{ both do not halt}$

$$\iff$$
 $(\forall x)(\exists t)$ $M(x)$ and $N(x)$ halt within t steps and give the same answer, or $M(x)$ and $N(x)$ both do not halt

Classifying \textit{EQ}_{TM}

We have

$$\langle M, N \rangle \in EQ_{\mathrm{TM}} \iff L(M) = L(N)$$
 $\iff (\forall x) \quad M(x) = N(x) \text{ or } M(x) \text{ and } N(x) \text{ both do not halt}$
 $\iff (\forall x)(\exists t) \quad M(x) \text{ and } N(x) \text{ halt within } t \text{ steps}$
and give the same answer, or $M(x)$ and $N(x)$ both do not halt
$$\iff (\forall x, n)(\exists t) \quad M(x) \text{ and } N(x) \text{ halt within } t \text{ steps}$$
and give the same answer, or $M(x)$ and $N(x)$ both do not

halt within n steps

This is a decidable predicate with $\forall \exists$, so $EQ_{\mathrm{TM}} \in \Pi_2$.

The Arithmetical Hierarchy

Regularity Problem for TMs

Recall

 $REGULAR_{\mathrm{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}.$

Given $\langle M \rangle$, the problem is determine whether M may be replaced by a DFA that accepts the same language.

 $\textit{REGULAR}_{\mathrm{TM}}$ is neither Turing-recognizable nor co-Turing-recognizale.

$$\langle M \rangle \in REGULAR_{TM} \iff (\exists D) \ D \text{ is a DFA and } L(M) = L(D)$$

$$\langle M \rangle \in REGULAR_{TM}$$
 \iff $(\exists D) \ D \text{ is a DFA and } L(M) = L(D)$
 \iff $(\exists D)(\forall x)$
 $D(x) \text{ accepts } \leftrightarrow M(x) \text{ accepts}$

$$\langle M \rangle \in REGULAR_{TM}$$
 $\iff (\exists D) \ D \text{ is a DFA and } L(M) = L(D)$
 $\iff (\exists D)(\forall x)$
 $D(x) \text{ accepts } \leftrightarrow M(x) \text{ accepts}$
 $\iff (\exists D)(\forall x)$
 $[D(x) \text{ accepts } \land M(x) \text{ accepts}] \lor$
 $[D(x) \text{ rejects } \land M(x) \text{ does not accept}]$

 $\langle M \rangle \in REGULAR_{TM}$

$$[D(x) \text{ accepts } \land M(x) \text{ accepts}] \lor \\ [D(x) \text{ rejects } \land M(x) \text{ does not accept}]$$

$$\iff \begin{array}{c} (\exists D)(\forall x, u)(\exists t) \\ [D(x) \text{ accepts } \land M(x) \text{ accepts in } t \text{ steps}] \lor \\ [D(x) \text{ rejects } \land M(x) \text{ does not accept} \\ \text{ in } u \text{ steps}] \end{array}$$
 This is a decidable predicate with $\exists \forall \exists$, so $\textit{REGULAR}_{\text{TM}} \in \Sigma_3$.

 \iff $(\exists D)(\forall x)$

 \iff $(\exists D)(\forall x)$

 \iff $(\exists D)$ D is a DFA and L(M) = L(D)

D(x) accepts $\leftrightarrow M(x)$ accepts

The Arithmetical Hierarchy

Infinite Complement Problem for TMs

The infinite complement problem for TMs is

$$INFCOMP_{\mathrm{TM}} = \{ \langle M \rangle \mid L(M)^c \text{ is infinite} \}.$$

Given $\langle M \rangle$, the problem is to determine whether there are infinitely many strings that M does not accept.

 $\textit{INFCOMP}_{\mathrm{TM}}$ is neither Turing-recognizable nor co-Turing-recognizale.

Classifying $\mathit{INFCOMP}_{\mathrm{TM}}$

$$\langle M \rangle \in \mathit{INFCOMP}_{\mathrm{TM}} \quad \Longleftrightarrow \quad \mathit{L}(M)^c \text{ is infinite}$$

Classifying $\mathit{INFCOMP}_{\mathrm{TM}}$

$$\langle M \rangle \in \mathit{INFCOMP}_{\mathrm{TM}} \iff L(M)^c \text{ is infinite}$$

$$\iff (\forall n)(\exists x) \quad |x| \geq n \text{ and}$$
 $M \text{ does not accept } x$

Classifying $INFCOMP_{\mathrm{TM}}$

$$\langle M \rangle \in \mathit{INFCOMP}_{\mathrm{TM}} \iff L(M)^c \text{ is infinite}$$

$$\iff (\forall n)(\exists x) \quad |x| \geq n \text{ and}$$
 $M \text{ does not accept } x$

$$\iff (\forall n)(\exists x)(\forall t) \quad |x| \ge n \text{ and}$$

$$M \text{ does not accept } x$$
in $t \text{ steps}$

Classifying $INFCOMP_{TM}$

We have

$$\iff$$
 $(\forall n)(\exists x)$ $|x| \ge n$ and M does not accept x

 \iff $(\forall n)(\exists x)(\forall t) |x| \ge n \text{ and }$

M does not accept x

in t steps

 $\langle M \rangle \in INFCOMP_{TM} \iff L(M)^c \text{ is infinite}$

This a decidable predicate with $\forall \exists \forall$, so $INFCOMP_{TM} \in \Pi_3$.

The Arithmetical Hierarchy