Part 4 – First thoughts, Tomi

Applicability of current model in 3D (3D two particle harmonic oscillator and Lennard-Jones balls)

3D two particle harmonic oscillator (NON-INTERACTING MOLECULES)

At their current state the model would provide good simulations to following systems:

• Diatomic homomolecules in a gaseous state (H₂, O₂, N₂, F₂, Cl₂, ...); non-polar [particles have same mass, no outward charge or polarity; issues: no induced dipolemoment)

At their current state the model would provide decent simulations to following systems:

• Diatomic heteromolecules in a gaseous state (HCl); polar [particle masses can be changed, no outward charge; issues: no Coulombic interaction, no polarity)

At their current state the model would provide passable simulations to following systems:

 Approximated system where a single bond is analysed ignoring other molecular structures (H₃C-CH₃)

[functional group masses can be changed, outwardly neutral)

Lennard-Jones balls (NEUTRAL ATOMS / MOLECULES INTERACTING)

At their current state the model would provide good simulations to following systems:

- Noble gas atoms in a gaseous state
 [outwardly neutral due to octet, quantum mechanics description reduces to a sphere]
- Neutral single atoms radicals
 [no outward charge; issues: no reaction-interaction, no reaction pathways]

At their current state the model would provide passable simulations to following systems:

• Any molecules approximated to a single ball (CH₄, polymer globules) ignoring internal state and interactions based on non-Lennard-Jones properties.

Molecular dynamic simulation - units

System energy: described as Hartree (1 Hartree = 4.359 744 650(54)×10⁻¹⁸ J)

System size: max 500 Å (1 Å = 10^{-10} m)

System timestep: picoseconds or femtoseconds (10⁻¹² s, 10⁻¹⁵ s)

No results from part two