<u>Name of the Experiment:</u>
Familiarization with Vernier Calipers and Screw Gauge by measuring various samples

Data Collection:

Table 1: Reading for Measurement of the length of the sample (using slide Calipers)

Dimension	No.	Main	Vernier	Vernier	Vernier scale	Total	Average	Volume of
to be	of	scale	scale	constant	reading	length/breadth/Th		the Iron
measured	obs	reading	divisions	(V.C)	(V.S.R) =	ickness, 1/b/h		block (V)
		(M.S.R)	(V.S.D)	(cm)	$(V.S.D \times V.C)$	(M.S.R + V.S.R)		cm ³
		cm			cm)	(cm)		
Length of	1							
Iron block								
Holl block	2							
	3							
1	l	I		I			I	l

Table 2: Reading for Measurement of the radius of the sample (using Screw Gauge)

No. of obs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C) (cm)	Circular scale reading (C.S.R) = (C.S.D × L.C)	Total diameter (D) = (L.S.R + C.S.R) (cm)	Mean diameter D (cm)	Volume of the Lead Shot (V) (cm ³)
1							
2							
3							

Name of the Experiment:

To determine the value of g, acceleration due to gravity, by means of a Compound Pendulum

Data Collection:

Table 1: Data for time period

Starting direction	Hole no.	Distance from Top (cm)	Time for 10 oscillations (sec)	Mean Time, t (sec)	Mean Time Period, $T = \frac{t}{10}$ (sec)
	1	5	(i) (ii)		
	2	10	(i) (ii)		
	3	15	(i) (ii)		
	4	20	(i) (ii)		
Forward	5	25	(i) (ii)		
	6	30	(i) (ii)		
	7	35	(i) (ii)		
	8	40	(i) (ii)		
	9	45	(i) (ii)		
	T	T	T	1	
	1	55	(i) (ii)		
	2	60	(i) (ii)		
	3	65	(i) (ii)		
	4	70	(i) (ii)		
Reverse	5	75	(i) (ii)		
	6	80	(i) (ii)		
	7	85	(i) (ii)		
	8	90	(i) (ii)		
	9	95	(i) (ii)		

Name of the Experiment:
To determine the spring constant and effective mass of a given spiral spring

Data Collection:

Table 1: Data of time period for different masses

No. of obs.	Loads m ₀	Extension 1		es for 10 illation	Total Period $T = \frac{t}{10}$ (sec.)		Mean T (sec)	T ²
	(gm)	(cm)	t_1	t_2	$T_1 = \frac{t_1}{10}$	$T_2 = \frac{t_2}{10}$		
1								
2								
3								
4								
5								

Mass of Spring = 75g

Name of the Experiment:
Determination of the Young's Modulus by the flexure of a beam

Data Collection:

 $\overline{\text{Length of the beam}}, 1 = \dots \text{ cm}$

 Table 1: Data for load versus elongation

Additi				Read	ings for the	elongatio	on, x				Mean	Mean
onal		I	Load incr	easing		Load decreasing					reading	depress
Load	L.S.R	C.S.D	L.C	C.S.R	Total	L.S.R	C.S.D	L.C	C.S.R	Total	(cm)	ion
on	(cm)		(cm)	=	Reading	(cm)		(cm)	=	Reading		y_0
hanger				$(C.S.D \times$	=(L.S.R				(C.S.D	=(L.S.R		(cm)
(kg)				L.C)	+				\times L.C)	+		
				(cm)	C.S.R)				(cm)	C.S.R)		
					(cm)					(cm)		

Table 2: Measure the breadth, (b) of beam

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	Total breadth (b) = (MSR+VSR) (cm)	Mean Breadth b (cm)
1						
2						
3						

Table 3: Measure the depth, (d) of beam

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	$\begin{aligned} & & Total \\ & & depth \\ & d = (MSR + VSR) \\ & (cm) \end{aligned}$	Mean depth d (cm)
1						
2						
3						

Young's modulus of the material, $Y = \frac{mgl^3}{4bd^3x} = \text{dyne/cm}^2$

Name of the Experiment:

To determine the modulus of rigidity of a wire by Statical method using Barton's apparatus

Data Collection:

Table 1: Diameter of the fly-wheel (heavy cylinder)

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	Total Diameter D = (MSR+VSR) (cm)	Mean Diameter d (cm)
1						
2						
3						

Table 2: Radius of the wire (using screw gauge)

No. of obs.	Liner scale reading (L.S.R) (cm)	Circular scale divisions (C.S.D)	Least count (L.C) (cm)	Circular scale reading (C.S.R) = (CSD × L.C)	Total diameter D = (LSR+CSR) (cm)	Mean diameter D (MSR+VSR) (cm)	Mean radius r=D/2 (cm)
1							
2							
3							

 Table 3: Reading for load-twist graph

No. of	Load in each		Pointer readi	ing in degrees		Mean por reading	twist o1°)	
Obs.	hanger	Sca	le S ₁		Scale S ₂	S_1	S_2	
	(gm)	Load increasing	Load decreasing	Load increasing	Load decreasing	$(\varphi 1^{\circ})$	$(\varphi 2^{\circ})$	Mean (φ2°-
1								
2								
3								
4								
5								

Calculations: $\mathbf{n} = \frac{360 lg d}{\pi^2 r^4} \times \frac{m}{(\varphi_2^{\circ} - \varphi_1^{\circ})}$

Name of the Experiment:

To determine the modulus of rigidity of a wire by method of oscillations (dynamic method)

Data collection:

Length of the wire, L = cm

Table 1: Readings for the Radius of the cylinder, R (using slide calipers)

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	Total diameter D = (MSR+VSR)	Mean diameter D (cm)	Mean radius R= D/2 (cm)
1							
2							
3							

Table 2: Radius of the wire, r (using screw gauge)

No. of obs.	Liner scale reading (L.S.R) (cm)	Circular scale divisions (C.S.D)	Least count (L.C) (cm)	Circular scale reading (C.S.R) = (CSD × L.C)	Total diameter D = (LSR+CSR) (cm)	Mean diameter D (cm)	Mean radius r=D/2 (cm)
1							
2							
3							

Table 3: Reading for the time period T.

No. of obs.	Time for 20 oscillations, t (see)	Period of oscillation $T = \frac{t}{20} (sec)$	Mean T. (sec)
1			
2			
3			

Calculations:
1.
$$I = \frac{1}{2} m R^2$$

2.
$$\mathbf{n} = \frac{8\pi IL}{T^2r^4} \, \mathbf{dynes/cm^2}$$

Experiment Name:

To determine the refractive index of the material of a prism

Data Collection:

Table 1: Determination of angle of Prism

No. of obs.	Readin	ngs for i	mage ir he pris		e AB of	_			nage in the face AC of ne prism			(θ) of the two venires	Angle of the prism A=θ/2
	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading N	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading M	Difference in readings the two face $(\theta=M-N)$	Mean (θ)	Angle of th
1													
2							_						
3													

Table 2: Determination of angle of minimum deviation

No. of obs.	Readi	ngs for t	he min positio		eviation	Readings for the direct position				Angle of minimum deviation (δ m)=(M-N)	Mean (δ_m)	
	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading N	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading M	Angle or deviation	Меа
1												
2												
3												

Calculation:

The refractive index of the material of Prism is

$$\mu = \frac{\sin\frac{A+\delta m}{2}}{\sin\frac{A}{2}}$$

Name of the Experiment: To calibrate a Polarimeter and hence to determine the specific rotation of a sugar solution by means of a Polarimeter.

<u>**Data Collection:**</u>
Table for angular rotation

Strength of sugar solution (%)	No. of obs	First reading with water (P)	Angular rotation (Q~P)	Mean angular rotation	Specific rotation (s)
20%					
10%					
5%					

Specific rotation =
$$\frac{10\theta}{lc}$$

Experiment Name: Determination of moment of inertia of a flywheel about its axis of rotation.

Data Collection:

Table 1: Determination of n_1 , n_2 and t:

Mass M gm	Height h cm	No. of Revolutions n ₁	Average n ₁	No. of Revolution s n2	Average n ₂	Time t	Average t	Moment of Inertia I	Average I

Table 2: Determination of the radius of the axle:

LSR (X) (cm)	VSD	VC (cm)	VSR Y =(VSD×VC) (cm)	Total Reading = X+Y cm	Average Diameter cm	Radius r cm

Calculation:

$$\omega = \frac{4\pi n_2}{t}$$
 and $I = \frac{2mgh - m \ \omega^2 r^2}{\omega^2 (1 + \frac{n_1}{n_2})}$

Name of the Experiment: To determine the Specific resistance of a wire using a Meter Bridge

Data Collection:

Table 1: Reading for the Galvanometer balance point.

No. of observation	Value of resistance, R(Ω)	Length, <i>l</i> cm	(100 – <i>l</i>) cm	$X = \frac{R(100-l)}{l}(\Omega)$	Mean X(Ω)
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

Table 2: Reading for the radius of the experimental wire. (Using Slide Calipers)

No. of obs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C)	Circular scale reading (C.S.R) = (CSD x L.C) cm	Total diameter D cm	Mean diameter D cm	Mean radius r=D/2 cm
1							
2							
3							

Specific Resistance
$$\rho = \frac{\pi r^2 X}{L}$$

Name of the Experiment: To determine the e.m.f of a cell with a potentiometer of known resistance

Data collection:

- (A) Resistance of the potentiometer wire, $R = 72 \Omega$
- (B) Total length of the potentiometer, L=1000 cm.

No. of obs.	Miliammeter readings i mA	On wire number	Scale reading in cm	Total length for balance l cm	e.m.f of the cell $E = \frac{iRl}{1000L}$ Volts.	Mean E' Volts.
1		10th				
2		9th				
3		8th				
4		7th				

Name of the Experiment: To determine the value of unknown resistance and verify the laws of series and parallel resistance by Post Office Box.

Data collection:

Table 1: Reading for the Unknown resistance.

Value of P (Ω)	Value of Q (Ω)	Value of R (Ω)	Value of S $= \frac{QxR}{P}(\Omega)$	Mean , S(Ω)
10	10			
10	100			
100	1000			

Table 2: Reading for the series resistance, S_s

Value of P (Ω)	Value of Q (Ω)	Value of R (Ω)	Series resistance, $S_s = \frac{QxR}{P}(\Omega)$	Mean S₅(Ω)
10	10			
10	100			
100	1000			

Table 3: Reading for the parallel resistance, S

Value of P (Ω)	Value of Q (Ω)	Value of R (Ω)	Parallel resistance $S_{p} = \frac{QxR}{P}(\Omega)$	Mean, S _p (Ω)
10	10			
10	100			
100	1000			