Proof of <u>edge-critical</u> <u>strongly-</u> <u>connected</u> digraph generator algorithm

Index

• Definition

- 1. Graph
- 2. Strongly-connected digraph
- 3. edge-critical strongly-connected digraph
- Summary

• Problem Statement

- Objective
- Existing tools

Prime digraph generation

- Example and Motivation
- Algorithm I Find all prime digraphs
- Results

Index

Proof of prime generator algorithm

- Correctness of prime generator
- Completeness of prime_generator
- Construction of BFS tree
- Three cases
- Case I Two or more out-edges only
- Case II Two or more in-edges
- Case III One in-edge and at least one out-edge

Conclusion

- Conclusion
- Further study
- Reference

Graph^[1]

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation that associates with each edge two vertices (not necessarily distinct) called its endpoints.

 The terms vertex and node may be used interchangeably.

Here $V(G) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ And $E(G) = \{(0,1), (0,2), (0,3), (1,4), (2,5), (2,6), (3,7), (4,8), (5,9), (6,9), (7,10), (8,9), (9,10)\}$ strongly-connected digraph [3]

A digraph is strongly connected or strong if for each ordered pair u, v of vertices, there is a path from u to v.

Here $V(G) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ And $E(G) = \{(0,1), (0,2), (0,3), (1,4), (2,5), (2,6), (3,7), (4,8), (5,9), (6,9), (7,10), (8,9), (9,0), (10,9)\}$

edge-critical strongly-connected digraph

A strongly-connected digraph that ceases to be strongly-connected if **any of its edge is removed** is called edge-critical strongly-connected digraph.

Note: In the codebase ^[5], an edge-critical strongly-connected digraph is called **prime digraph.** We may use the terms interchangeably.

G and H are prime digraphs.

Note: All edge-critical graphs are 1-edge-connected graphs but not necessarily vice versa.

Definitions-Summary

Term	Definition
Graph	A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices (not necessarily distinct) called its endpoints.
Directed Graph	A directed graph or digraph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a function assigning each edge an ordered pair of vertices .
strongly-connected Directed Graphs	A digraph is strongly connected or strong if for each ordered pair u,v of vertices, there is a path from $u\ to\ v$.
k-edge-connected digraph	A strongly-connected digraph is k-edge-connected directed graph if it remains strongly-connected whenever fewer than k edges are removed.
edge-critical strongly- connected digraph	A strongly-connected digraph that ceases to be strongly-connected if any of its edge is removed is called edge-critical strongly-connected digraph.
Isomorphic Graphs	Two graphs G and H are said to be isomorphic if there exists a function f from nodes of G to nodes of H , such that (u,v) is an edge of G if and only if $(f(u),f(v))$ is an edge of G .

Objective

- Find an algorithm to generate all prime (edge-critical strongly-connected) directed graphs of n+1 nodes given a set of all prime digraphs of n nodes.
- Prove the algorithm's correctness and completeness.

Tools at hand

Following algorithms/tools that have been studied in detail is assumed to be present at hand for achieving the mentioned objectives.

- 1. strong-connection test^[9,10]: An algorithm that tests whether the given graph is strongly-connected or not. It does so by finding the strongly connected components using Depth First Search algorithm. It is referred as **is_strongly_connected** (digraph)
- 2. Prime test [5]: An algorithm that tests whether given graph is edge-critical strongly-connected or not. It does so by removing an edge and checking for strong-connectedness. This is done for all edges. It is referred as is prime (digraph)

Note: is_strongly_connected is available in the networkx package while is_prime is available on link mentioned in reference.

All prime digraphs of 2,3, and 4 nodes

Motivation of Prime digraphs

- The prime (edge-critical strongly-connected) digraphs are basic unit of construction for any strongly-connected graph.
- If even a single prime digraph is available for a given number of nodes, then one can add edges randomly with some probability p adhering to G(n,p) Erdős–Rényi model^[11]. This results into a digraph that is assured to be strongly-connected.
- In order to choose a random prime digraph for reduced bias in digraph selection, it is best to have list of all prime digraphs for a given node count n.

Algorithm I – Find all prime digraphs

- Given an exhaustive list of all prime digraphs CDG_n with n nodes, we employ Algorithm I to build CDG_{n+1} , a list of all prime digraphs with n+1 nodes.
- Code present at: https://github.com/oyeluckydps/directed_graph/blob/master/prime_DiGraph_Generator.py
- A digraph is chosen from CDG_n iteratively. It has nodes labelled from $0 \ to \ n-1$.
- Start with an empty list CDG_{n+1} .
- Two new digraph are generated following these steps:
 - add a new node (n).
 - Add (a, n) and (n, b) edges to the original graph to generate $first_possible$.
 - Remove (a, b) from the $first_possible$ to generate $second_possible$.

Algorithm I – Find all prime digraphs

- There are n^2 possibilities for (a,b) and all of them are explored for new prime generation.
- Check if $first_possible$ or $second_possible$ is prime graph. If prime, then add it to list CDG_{n+1} .
- The correctness of Algorithm I to generate exhaustive list of all prime digraphs of n+1 is proved in following slides.
- One may start with single prime digraph of 2 nodes and generate prime digraphs for other node values iteratively.

Algorithm I – Find all prime digraphs

```
def compute next primes(cdg n):
       cdg n1 = []; already checked digraphs = {}
       for DG n in cdg n:
               for in edge, out edge in new edge possibilities:
                        first possible = DG n.add edges from list([in edge, out edge])
                        second possible = first possible.remove edge(in edge[0], out edge[1])
                        if is prime (first possible):
                                 cdg n1.append(first possible)
                        if is prime (second possible):
                                 cdg n1.append(second possible)
       return all primes
new edge possibilities is list of all possibilities for in edge and out edge in following form:
                          [((0,n),(n,0)),((1,n),(n,0)),((2,n),(n,0)),...((n-1,n),(n,0)),
                           ((0,n),(n,1)),((1,n),(n,1)),((2,n),(n,1)),...((n-1,n),(n,1)),
                          ((0,n),(n,n-1)),((1,n),(n,n-1)),.....((n-1,n),(n,n-1))
```

Result: Find all prime digraphs

Algorithm I was used to generate all prime digraphs for 2 to 10 nodes.
 It can be found at:

https://github.com/oyeluckydps/directed graph/blob/master/using isomorphic hashCDG.csv

• Count of prime digraphs for given number of nodes is:

Number of nodes	Total Prime Digraphs
2	1
3	2
4	5
5	15
6	63
7	288
8	1526
9	8627
10	52021

Correctness of prime generator

- RTP: The prime generator algorithm outputs a set of graphs and each graph is a prime graph.
- A graph (either first_possible or second_possible) is only added to the CDG_n1 if it is prime i.e. if it passes the is_prime test thus each graph in the CDG_n1 is prime.

Completeness of prime generator

- To prove that all primes of n+1 nodes are generated when prime generator is employed, we instead prove a different result and show that this results lead to completeness of prime generator.
- We prove

A prime graph must contain a node with degree 2.

- Let us first prove that a prime graph of $n+1\ nodes$, having a node with degree 2 implies that the prime graph will be present in the output of the Algorithm I.
- Without the loss of generalization assume that $node\ n$ of prime graph P has degree 2 and the edges are $e_1=(a,n)\ and\ e_2=(n,b)$ on $node\ n$.
- Now, we require to prove that either
 - Graph G_1 with edges $\mathcal{E}(P)\setminus\{e_1,e_2\}$ and nodes $D(P)\setminus\{n\}$ is prime or
 - Graph G_2 with edges $(\mathcal{E}(P)\setminus\{e_1,e_2\})\cup\{(a,b)\}$ and nodes $D(P)\setminus\{n\}$ is prime

Completeness of prime generator

- Now, we require to prove that either
 - Graph G_1 with edges $\mathcal{E}(P)\setminus\{e_1,e_2\}$ and nodes $D(P)\setminus\{n\}$ is prime or
 - Graph G_2 with edges $(\mathcal{E}(P)\setminus\{e_1,e_2\})\cup\{(a,b)\}$ and nodes $D(P)\setminus\{n\}$ is prime
- First, we show that there exists a path from $any \ node \ x \ to \ another \ node \ y$ in the graph G_2 . This is trivial. If we assume the contradictory that there doesn't exist a path from $node \ x \ to \ node \ y$ then the same would be true for original graph P too. This is a contradiction as P is prime graph.
- Next, any of the edges in G_2 except the edge (a,b) cannot be redundant.
- To prove this, let us assume the contradictory, that removing an edge of G_2 (other than (a,b)) results in strongly connected graph. Then the same would be true for original graph P too but that leads to a contradiction as P is a prime graph.
- Finally, (a, b) may be a redundant edge in which case the graph G_1 is prime otherwise, G_2 is prime.

Completeness of prime generator

- This proves that a prime graph of n+1 nodes with a node having two edges can always be found from a prime graph of n nodes by either
 - Adding a new node 'n' and adding an in-edge and out-edge from two nodes say a and b, OR
 - Removing an edge (a, b) followed by addition of node n and edges (a, n) and (n, b).
- Now, we shall prove that any prime graph has at least one node with two edges.

Construction of BFS tree

- Now, we shall prove that any prime graph has at least one node with two edges. $\min(\deg(n)) = 2 \ for \ n \in Nodes(P)$
- Let us assume the contradictory and assume that each node has at least 3 edges.
- To prove this we construct a Breadth First Tree using the following mechanism.
 - Choose any node A in the prime graph P.
 - Using a as the root, add all nodes x as children of A, if (x, A) is an edge.
 - Repeat this process iteratively for the children of A, their children and so on.
 - Do not readd already added nodes including the node A in the tree construction.

Three cases

- Now, we shall concentrate on the three cases for the leafs of the BFS tree. It is known that the leaf has at least 3 edges. One of this is represented in the BFS tree, so there must be at least two other edges that are not represented in the BFS.
- Case 1: The leaf has two or more out edges only.
- Case 2:
 The leaf has two or more in edges.
- Case 3:
 The leaf has one in edge and at least one out edge.

Two or more out-edges only

Case 1: The leaf has two or more out – edges only

• If the node has only out-edges (as the edge on the BFS tree is also an out-edge), then there does not exist a path from any other node to this node. So clearly, case 1 leads to contradiction.

Three cases

 Now, we shall concentrate on the three cases for the leafs of the BFS tree. It is known that the leaf has at least 3 edges. One of this is represented in the BFS tree, so there must be at least two other edges that are not represented in the BFS.

• Case 1:

The leaf has two or more out - edges only.

• Case 2:

The leaf has two or more in - edges.

• Case 3:

The leaf has one in - edge and at least one out - edge.

Two or more in-edges

Case 2: The leaf has two or more in – edges

- We prove the base case, i.e. there exists a contradiction for two inedges on the leaf.
- Suppose the leaf node is I and the two edges are (x, I) and (y, I) which are not a part of the BFS tree.
- Now there must exist a path from A to either x or y or both, otherwise there is no path from A to I.

Two or more in-edges

Case 2: The leaf has two or more in - edges.

- Without the loss of generality let us assume that there exists a path from A to x. This leads to either of the two cases:
 - All paths from A to x contain (y, l) edge
 - There exists a path from A to x independent of (y, I) edge.
- The first case implies that there exists a path from x to A to y to I. So, the (x, I) edge is redundant.
- In the second case, there exists a path y to A to x to I. So, the (y, I) edge is redundant.
- Thus it is not possible to have two (or more) in-edges on the leaf.
 - And this holds independent or number of out-edges on the leaf node.

Three cases

 Now, we shall concentrate on the three cases for the leafs of the BFS tree. It is known that the leaf has at least 3 edges. One of this is represented in the BFS tree, so there must be at least two other edges that are not represented in the BFS.

• Case 1:

The leaf has two or more out - edges only.

• Case 2:

The leaf has two or more in - edges.

• Case 3:

The leaf has one in - edge and at least one out - edge.

1 in-edge and at least 1 out-edge

Case 3: The leaf has one in - edge and at least one out - edge.

- We have proved that the leafs cannot have two or more in-edges or only out-edges. So, all leafs must have one in-edge and at least one out-edge that are not a part of BFS tree.
- Let us focus on a leaf I with edges (x, I) and (I, y) which are not the part of BFS tree.
- Then there cannot exist a path from A to I, independent of (x, I)
 - Otherwise it would imply that there exists a path from x to A to I, thus (x, I) is redundant.
- Also there cannot exist a path from A to y independent of (I, y)
 - Otherwise it would imply that there exists a path from I to A to y, thus (I, y) is redundant.

1 in-edge and at least 1 out-edge

Case 3: The leaf has one in - edge and at least one out - edge.

- Also there cannot exist a path from A to y independent of (I, y)
 - Otherwise it would imply that there exists a path from I to A to y, thus (I, y) is redundant.
- But this implies, that y must be a leaf.
 - If it has a child, let say y', then there is no path from A to y' in the prime graph P which is not possible.
- Since y is a leaf so y must also have 1 in-edge and at least 1 out-edge and the in-edge is (I, y). Let the out edge be (y, z).
- Using the same logic, z must be leaf on the BFS tree with 1 in-edge and at least 1 out-edge.

1 in-edge and at least 1 out-edge

Case 3: The leaf has one in - edge and at least one out - edge.

- Using the same logic, z must be leaf on the BFS tree with 1 in-edge and at least 1 out-edge.
- This logic might repeat infinitely but the number of nodes on the leaf is finite.
- Thus it is not possible to have one in-edge and one or more out-edge either.
- Hence, we have found contradiction in all the three cases when assumed that all nodes have three or more edges.
- Thus all prime graphs must have at least one node with 2 edges.

Conclusion

- A algorithm to find the set of all prime (edge-critical strongly-connected) digraphs for any given number of nodes is found. The algorithm is iterative in nature.
- A theoretical proof for correctness and completeness of Alorithm I to generate exhaustive list of all prime digraphs of n+1 nodes is established.

Further study

- This is the first step in study of random strongly-connected directed graphs and further study may be conducted in following direction:
 - 1. Study of time/space complexity of the mentioned algorithm.
 - 2. Optimization of the mentioned algorithm.
 - 3. Optimization of the is_prime algorithm.
 - 4. Peer review of correctness and completeness of Algorithm I to generate exhaustive list of all prime digraphs of n+1 is provable.
 - 5. Deployment of strongly-connected digraphs in network studies.
 - 6. Resilience test of AI agents on games with underlying strongly-connected digraphs as playground.

Reference

- 1. Douglas B West (2001). 1.1.2 Introduction to Graph Theory. Pearson Education, Inc.
- 2. Douglas B West (2001). 1.4.2 Introduction to Graph Theory. Pearson Education, Inc.
- 3. Douglas B West (2001). 1.4.12 Introduction to Graph Theory. Pearson Education, Inc.
- 4. Wikipedia contributors (2022a, June 25). K-edge-connected graph. https://en.wikipedia.org/wiki/K-edge-connected graph
- 5. Verma, A. Kumar (2022, December 11). Directed Graph and analysis. GitHub. https://github.com/oyeluckydps/directed graph
- 6. Wikipedia contributors (2022c, November 28). Graph isomorphism. Wikipedia. https://en.wikipedia.org/wiki/Graph isomorphism
- 7. L. P. Cordella, P. Foggia, C. Sansone, M. Vento (2001). "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5342
- 8. Shervashidze, Nino, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt (2011). Weisfeiler Lehman Graph Kernels. Journal of Machine Learning Research. http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf

Reference

- 9. R. Tarjan (1972). Depth-first search and linear graph algorithms. SIAM Journal of Computing 1(2):146-160.
- 10. E. Nuutila and E. Soisalon-Soinen (1994). On finding the strongly connected components in a directed graph. Information Processing Letters 49(1): 9-14
- 11. Erdős, P.; Rényi, A. (1959). "On Random Graphs. I" (PDF). Publications Mathematicae. **6**: 290–297.