COMP9020 19T1 Week 4 Equivalence and Order Relations

- Textbook (R & W) Ch. 3, Sec. 3.4-3.5
 Ch. 11, Sec. 11.1-11.2
- Problem set 4
- Supplementary Exercises Ch. 3, Ch. 11 (R & W)
- Quiz 4 (due Monday week 5)

◆□▶◆□▶◆≣▶◆≣▶ 夏 か9℃

Thus the equivalence classes are disjoint and jointly cover the entire domain. It means that every element belongs to one (and only one) equivalence class.

We call s_1, s_2, \ldots representatives of (different) equivalence classes For $s, t \in S$ either [s] = [t], when $s\mathcal{R}t$, or $[s] \cap [t] = \emptyset$, when $s\mathcal{R}t$. We commonly write $s \sim_{\mathcal{R}} t$ when s, t are in the same equivalence class.

In the opposite direction, a partition of a set defines the equivalence relation on that set. If $S = S_1 \dot{\cup} \dots \dot{\cup} S_k$, then we specify $s \sim t$ exactly when s and t belong to the same S_i .

Example

$$\mathbb{Z} = \{\ldots, -3, 0, 3, \ldots\} \ \dot{\cup} \ \{\ldots, -2, 1, 4, \ldots\} \ \dot{\cup} \ \{\ldots, -1, 2, 5, \ldots\}$$

 $m \sim n$ if, and only if, $m \mod 3 = n \mod 3$

$$[0] = [3] = [6] = \dots$$
 $[0] \cap [1] = \emptyset = [0] \cap [2]$

Equivalence Relations and Partitions

Relation \mathcal{R} is called an **equivalence** relation if it satisfies (R), (S), (T).

Every equivalence \mathcal{R} defines **equivalence classes** on its domain S. The equivalence class [s] (w.r.t. \mathcal{R}) of an element $s \in S$ is

$$[s]_{\mathcal{R}} = \{ t \in S : t\mathcal{R}s \}$$

This notion is well defined only for \mathcal{R} which is an equivalence relation. Collection of all equivalence classes is a *partition* of S:

$$S = \bigcup_{s \in S} [s]_{\mathcal{R}}$$
 ($\dot{\cup}$ denotes a disjoint union)

Example

$$\mathcal{R} = \{(m,n) \in \mathbb{Z} : m \mod 2 = n \mod 2\}$$
 $[0] = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$ (same as $[-2], [2], \ldots$)
 $[1] = \{\ldots, -3, -1, 1, 3, 5, \ldots\}$

If the relation \sim is an equivalence on S and S the corresponding partition, then

$$\nu: S \longrightarrow [S], \quad \nu: s \mapsto [s] = \{ x \in S : x \sim s \}$$

is called the natural map. It is always onto.

Exercise

When is ν also 1–1 ?

Only when \sim is the identity on ${}^{\circ}$

If the relation \sim is an equivalence on S and S the corresponding partition, then

$$\nu: S \longrightarrow [S], \quad \nu: s \mapsto [s] = \{ x \in S : x \sim s \}$$

is called the *natural* map. It is always onto.

Exercise

When is ν also 1–1 ?

Only when \sim is the identity on S.

A function $f: S \longrightarrow T$ defines an equivalence relation on S by

$$s_1 \sim s_2$$
 iff $f(s_1) = f(s_2)$

These sets $f^{\leftarrow}(t)$, $t \in T$ that are nonempty form the corresponding partition

$$S = \bigcup_{t \in T} f^{\leftarrow}(t)$$

Exercise

When are all $f^{\leftarrow}(t) \neq \emptyset$?

When f is onto

A function $f: S \longrightarrow T$ defines an equivalence relation on S by

$$s_1 \sim s_2$$
 iff $f(s_1) = f(s_2)$

These sets $f^{\leftarrow}(t)$, $t \in T$ that are nonempty form the corresponding partition

$$S = \bigcup_{t \in T} f^{\leftarrow}(t)$$

Exercise

When are all $f^{\leftarrow}(t) \neq \emptyset$?

When f is onto.

Example: Congruence Relations

 $\mathbb{Z} \longrightarrow \mathbb{Z}_p$: Partition of \mathbb{Z} into classes of numbers with the same remainder (mod p); it is particularly important for p prime

$$\mathbb{Z}(p) = \mathbb{Z}_p = \{0, 1, \dots, p-1\}$$

One can define all four arithmetic operations (with the usual properties) on \mathbb{Z}_p for a prime p; division has to be restricted when p is not prime.

Standard notation: $\mathbf{m} \equiv \mathbf{n} \pmod{\mathbf{p}}$ $\stackrel{\text{def}}{=}$ remainder of dividing m by p = remainder of dividing n by p

NB

 $(\mathbb{Z}_p, +, \cdot, 0, 1)$ are fundamental algebraic structures known as **rings**. These structures are very important in coding theory and cryptography.

Modular Arithmetic

Example

$$\mathbb{Z}_5 = \{0,1,2,3,4\}$$

$+_5$	0	1	2	3	4		n	-n
0	0	1	2	3	4		0	0
1	1	2	3	4	0		1	4
2	2	3	4	0	1		2	3
3	3	4	0	1	2		3	2
3	4	0	1	2	3		4	4 3 2 1
	'							•
*5	0	1	2	3	4			n^{-1}
0	0	0	0	0	0		0	_

1 2 3

4

3

2

4

0 1 2 3 4

0 3 1 4 2

0 4 3 2 1

2 0 2 4 1 3

Exercise

3.5.6 Calculate the following in \mathbb{Z}_7 .

(b)
$$5 + 6 =$$

(c)
$$4 * 4 = 1$$

(d) for any
$$k \in \mathbb{Z}_7$$
, $0 + k = \mathbb{A}$

(e) for any
$$k \in \mathbb{Z}_7$$
, $1 * k = 1$

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ □ ■ 9 Q @

Exercise

 $\boxed{3.5.6}$ Calculate the following in \mathbb{Z}_7 .

(b)
$$5+6=4$$

(c)
$$4*4=2$$

(d) for any
$$k \in \mathbb{Z}_7$$
, $0 + k = k$

(e) for any
$$k \in \mathbb{Z}_7$$
, $1 * k = k$

Exercise

900

Solve the following for x in \mathbb{Z}_5 .

(a)
$$2 + x = 1$$

(b)
$$2 * x = 1$$
 $\Rightarrow x = 2^{-1} =$

(c)
$$2 * x = 3 \implies x = 1$$

Exercise

Solve the following for x in $\mathbb{Z}_{\mathfrak{k}}$

(d)
$$5 + x = 1$$

(e)
$$5 * x = 1$$

(e)
$$2 * x =$$

Solve the following for x in \mathbb{Z}_5 .

(a)
$$2 + x = 1 \implies x = 4$$

(b)
$$2 * x = 1 \implies x = 2^{-1} = 3$$

(c)
$$2 * x = 3$$
 $\Rightarrow x = 3 * 2^{-1} = 3 * 3 = 4$

Exercise

Solve the following for x in \mathbb{Z}_6 .

(d)
$$5 + x = 1 \implies x = 2$$

(e)
$$5 * x = 1 \implies x = 5$$
 (since 25 mod $6 = 1$)

(e)
$$2 * x = 1$$
 undefined (since $2 \cdot k \mod 6 \neq 1$ for all $k \in \mathbb{Z}_6$)

Exercise

Solve the following for x in \mathbb{Z}_5 .

(a)
$$2 + x = 1 \implies x = 4$$

(b)
$$2 * x = 1 \implies x = 2^{-1} = 3$$

(c)
$$2 * x = 3$$
 $\Rightarrow x = 3 * 2^{-1} = 3 * 3 = 4$

Exercise

Solve the following for x in \mathbb{Z}_6 .

(d)
$$5 + x = 1 \Rightarrow x = 2$$

(e)
$$5 * x = 1 \implies x = 5$$
 (since 25 mod $6 = 1$)

(e)
$$2 * x = 1$$
 undefined (since $2 \cdot k \mod 6 \neq 1$ for all $k \in \mathbb{Z}_6$)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ りへ○

Supplementary Exercise

Exercise

3.6.6 Show that $m \sim n$ iff $m^2 \equiv n^2 \pmod{5}$ is an equivalence on $S = \{1, \dots, 7\}$. Find all the equivalence classes.

$$[1] = \{1, 4, 6\}$$

$$[2] = \{2, 3, 7\}$$

Supplementary Exercise

Exercise

3.6.6 Show that $m \sim n$ iff $m^2 \equiv n^2 \pmod{5}$ is an equivalence on $S = \{1, \dots, 7\}$. Find all the equivalence classes.

(a) It just means that $m \equiv n \pmod{5}$ or $m \equiv -n \pmod{5}$, e.g. $1 \equiv -4 \pmod{5}$. This satisfies (R), (S), (T).

(b) We have

$$[1] = \{1, 4, 6\}$$

$$[2] = \{2, 3, 7\}$$

$$[5] = \{5\}$$

It is often necessary to define a function on [S] by describing it on the individual representatives $t \in [s]$ for each equivalence class [s]. If $\phi: [S] \longrightarrow X$ is to be defined in this way, one must

- define $\phi(t)$ for all $t \in S$, making sure that $\phi(t) \in X$
- make sure that $\phi(t_1) = \phi(t_2)$ whenever $t_1 \sim t_2$, ie. when $[t_1] = [t_2]$
- define $\phi([s]) \stackrel{\text{def}}{=} \phi(s)$.

The second condition is critical for ϕ to be well-defined.

Example

$$[S] = \{0,4,8,\ldots\} \ \dot{\cup} \ \{1,5,9,\ldots\} \ \dot{\cup} \ \{2,6,10,\ldots\} \ \dot{\cup} \ \{3,7,11,\ldots\}$$

$$\phi: [S] \longrightarrow \mathbb{Z}_2$$
 defined by $\phi(n) = n \mod 2$

$$\phi(0) = 0 = \phi(4) = \phi(8) = \dots$$

Example

Example of a not well-defined 'function' on equivalence classes:

$$\phi: \{0,3,6,\ldots\} \dot{\cup} \{1,4,7,\ldots\} \dot{\cup} \{2,5,8,\ldots\} \longrightarrow \mathbb{Z}_5$$

$$\phi(n) \stackrel{?}{=} n \mod 5$$

Problem:
$$[0] = [3] = [6] = \dots$$
 in \mathbb{Z}_3 ; however, $0 \mod 5 = 0$, $3 \mod 5 = 3$, $6 \mod 5 = 1 \dots$

◆ロト→園ト→園ト→園ト 夏 めの◎

Supplementary Exercise

Exercise

3.6.10

 \mathcal{R} is a binary relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of \mathbb{N}^4 $(m, n) \mathcal{R}(p, q)$ if $m \equiv p \pmod{3}$ or $n \equiv q \pmod{5}$. (a) $\mathcal{R} \in (\mathbb{R})$?

Supplementary Exercise

Exercise

3.6.10

 \mathcal{R} is a binary relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of \mathbb{N}^4 $(m, n) \mathcal{R}(p, q)$ if $m \equiv p \pmod{3}$ or $n \equiv q \pmod{5}$.

(a) $\mathcal{R} \in (R)$?

Yes: $(m, n) \sim (m, n)$ iff $m \equiv m \pmod{3}$ or $n \equiv n \pmod{5}$ iff true or true.

(b) $\mathcal{R} \in (S)$?

Supplementary Exercise

Exercise

3.6.10

 \mathbb{R} is a binary relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of \mathbb{N}^4 $(m, n) \mathcal{R}(p, q)$ if $m \equiv p \pmod{3}$ or $n \equiv q \pmod{5}$.

(a) $\mathcal{R} \in (R)$?

Yes: $(m, n) \sim (m, n)$ iff $m \equiv m \pmod{3}$ or $n \equiv n \pmod{5}$ iff true or true.

(b) $\mathcal{R} \in (S)$?

Yes: by symmetry of $n \equiv n \pmod{n}$.

(c) $\mathcal{R} \in (T)$?

No — for arbitrary two pairs (m_1, n_1) and (m_2, n_2) one can create a chain $(m_1, n_1)\mathcal{R}(m_2, n_1)$ and $(m_2, n_1)\mathcal{R}(m_2, n_2)$, but $(m_1, n_1)\mathcal{R}(m_2, n_2)$.

Supplementary Exercise

Exercise

3.6.10

 $\overline{\mathcal{R}}$ is a binary relation on $\mathbb{N} \times \mathbb{N}$, i.e. it is a subset of \mathbb{N}^4 $(m,n)\mathcal{R}(p,q)$ if $m \equiv p \pmod{3}$ or $n \equiv q \pmod{5}$.

(a) $\mathcal{R} \in (R)$?

Yes: $(m, n) \sim (m, n)$ iff $m \equiv m \pmod{3}$ or $n \equiv n \pmod{5}$ iff true or true.

(b) $\mathcal{R} \in (S)$?

Yes: by symmetry of $n \equiv 1 \pmod{n}$.

(c) $\mathcal{R} \in (\mathsf{T})$?

No — for arbitrary two pairs (m_1, n_1) and (m_2, n_2) one can create a chain $(m_1, n_1)\mathcal{R}(m_2, n_1)$ and $(m_2, n_1)\mathcal{R}(m_2, n_2)$, but $(m_1, n_1)\mathcal{R}(m_2, n_2)$.

Order Relations

Total order < on *S*

(R) $x \le x$ for all $x \in S$

(AS) $x \le y, y \le x \Rightarrow x = y$

(T) $x \le y, y \le z \Rightarrow x \le z$

(L) Linearity — any two elements are comparable: for all x, y either x < y or y < x (and both if x = y) On a finite set all total orders are "isomorphic"

$$x_1 \leq x_2 \leq \cdots \leq x_n$$

On an infinite set there is quite a variety of possibilities.

Examples

- discrete with a least element, e.g. $\mathbb{N} = \{0, 1, 2, \ldots\}$
- discrete without a least element, e.g. $\mathbb{Z} = \{\dots, 0, 1, 2, \dots\}$
- various dense/locally dense orders
 - rational numbers \mathbb{Q} : $\forall p, q \in \mathbb{Q} (p < q \Rightarrow \exists r \in \mathbb{Q} (p < r < q))$
 - S = [a, b] both least and greatest elements
 - S = (a, b] no least element
 - S = [a, b) no greatest element
 - other $[0,1] \cup [2,3] \cup [4,5] \cup ...$

Partial Order

Example

A partial order \leq on S satisfies (R), (AS), (T); need not be (L) We call (S, \leq) a poset — partially ordered set

To each (partial) order one can associate a unique quasi-order

$$x \prec y \text{ iff } x \leq y \text{ and } x \neq y$$

It satisfies (AS) and (T); it satisfies (L) if it corresponds to a total order (we could call it a total quasi-order); it does not satisfy (R) for any pair x, y.

Exercise

11.1.8 For $\omega_1, \omega_2 \in \Sigma^*$ define $\omega_1 \preceq \omega_2$ when $\omega_2 = \nu \omega_1 \nu'$ for some ν, ν' .

Is this a partial order?

Yes

Relation \preceq means being a substring; it is a partial order

- (R) $\omega = \lambda \omega \lambda$, hence $\omega \prec \omega$
- (S) if $\omega_1 = \nu \omega_2 \nu'$ and $\omega_2 = \chi \omega_1 \chi'$ for some ν, ν', χ, χ' then $\nu = \nu' = \chi = \chi' = \lambda$ hence $\omega_1 = \omega_2$
- (T) if $\omega_1 = \nu \omega_2 \nu'$ and $\omega_2 = \chi \omega_3 \chi'$ then $\omega_1 = \nu \chi \omega_3 \chi' \nu'$

4□ > 4□ > 4 = > 4 = > = 90

26

Example

Exercise

11.1.8 For $\omega_1, \omega_2 \in \Sigma^*$ define $\omega_1 \leq \omega_2$ when $\omega_2 = \nu \omega_1 \nu'$ for some ν, ν' .

Is this a partial order?

Yes.

Relation \leq means being a substring; it is a partial order:

- (R) $\omega = \lambda \omega \lambda$, hence $\omega \leq \omega$
- (S) if $\omega_1 = \nu \omega_2 \nu'$ and $\omega_2 = \chi \omega_1 \chi'$ for some ν, ν', χ, χ' then $\nu = \nu' = \chi = \chi' = \lambda$, hence $\omega_1 = \omega_2$
- (T) if $\omega_1 = \nu \omega_2 \nu'$ and $\omega_2 = \chi \omega_3 \chi'$ then $\omega_1 = \nu \chi \omega_3 \chi' \nu'$

Exercise

11.6.16 Properties of four relations defined on $\mathbb{P} = \{1, 2, \ldots\}$?

- \bullet \mathcal{R}_1 if m|n
- \mathcal{R}_2 if $|m-n| \leq 2$
- \mathcal{R}_3 if 2|m+n
- \mathcal{R}_4 if 3|m+n

(AS) (T)

Equivalence ? ? ? ? Partial order ? ? ?

11.6.16 Properties of four relations defined on $\mathbb{P} = \{1, 2, \ldots\}$

- ullet \mathcal{R}_1 if m|n
- \mathcal{R}_2 if $|m-n| \leq 2$
- \mathcal{R}_3 if 2|m+n
- \mathcal{R}_4 if 3|m+n

Yes

Yes

(T) Yes Equivalence

Partial order Yes

Hasse Diagram

Every finite poset can be represented as a **Hasse diagram**, where a line is drawn *upward* from x to y if $x \prec y$ and there is no z such that $x \prec z \prec y$

Example

11.1.1(a) Hasse diagram for positive divisors of 24

 $p \leq q$ if, and only if, $p \mid q$

4□ > <4□ > 4□ >

4□▶ 4₫▶ 4½▶ ½ 900

Ordering Concepts

- *Minimal* and *maximal* elements (they always exist in every finite poset)
- Minimum and maximum unique minimal and maximal element
- *lub* (least upper bound) and *glb* (greatest lower bound) of a subset $A \subseteq S$ of elements lub(A) smallest element $x \in S$ s.t. $x \succeq a$ for all $a \in A$ glb(A) greatest element $x \in S$ s.t. $x \preceq a$ for all $a \in A$
- Lattice a poset where lub and glb exist for every pair of elements
 (by induction, they then exist for every finite subset of elements)

Examples

- Pow($\{a, b, c\}$) with the order \subseteq \emptyset is minimum; $\{a, b, c\}$ is maximum
- 11.1.4 Pow($\{a, b, c\}$) \ $\{\{a, b, c\}\}$ (proper subsets of $\{a, b, c\}$) Each two-element subset $\{a, b\}, \{a, c\}, \{b, c\}$ is maximal.
 - But there is no maximum
- {1,2,3,4,6,8,12,24} partially ordered by divisibility is a lattice
 - e.g. $lub({4,6}) = 12$; $glb({4,6}) = 2$
- \bullet $\{1,2,3\}$ partially ordered by divisibility is not a lattice
 - {2,3} has no lub
- {2,3,6} partially ordered by divisibility is not a lattice
 - {2,3} has no glb

Examples

- $\{1, 2, 3, 12, 18, 36\}$ partially ordered by divisibility is not a lattice
 - {2,3} has no lub (12,18 are minimal upper bounds)

NB

An infinite lattice need not have a lub (or no glb) for an arbitrary infinite subset of its elements, in particular no such bound may exist for **all** its elements.

Examples

- \bullet \mathbb{Z} neither lub nor glb;
- $\mathbb{F}(\mathbb{N})$ all finite subsets, has no *arbitrary* lub property; glb exists, it is the intersection, hence always finite;
- \bullet $\mathbb{I}(\mathbb{N})$ all infinite subsets, may not have an arbitrary glb; lub exists, it is the union, which is always infinite.

◆□ > ◆□ > ◆ = > ◆ = ◆ 9 < ○</p>

34

Exercise

|11.1.5| Consider poset (\mathbb{R},\leq)

- (a) Is this a lattice?
- (b) Give an example of a non-empty subset of $\mathbb R$ that has no upper bound.

(c) Find lub($\{ x \in \mathbb{R} : x < 73 \}$)

(d) Find lub($\{x \in \mathbb{R} : x \leq 73\}$)

(e) Find lub($\{ x : x^2 < 73 \}$)

(f) Find glb($\{x: x^2 < 73\}$)

Exercise

- (a) It is a lattice.
- (b) subset with no upper bound: $\mathbb{R}_{>0} = \{ r \in \mathbb{R} : r > 0 \}$

(c) and (d) $lub({x:x < 73}) = lub({x:x \le 73}) = 73$

(e) lub($\{x: x^2 < 73\}$) = $\sqrt{73}$

(f) glb($\{x: x^2 < 73\}$) = $-\sqrt{73}$

11.1.13 $\mathbb{F}(\mathbb{N})$ — collection of all *finite* subsets of \mathbb{N} ; \subseteq -order

- (a) Does it have a maximal element?
- (b) Does it have a minimal element?
- (c) Given $A, B \in \mathbb{F}(\mathbb{N})$, does $\{A, B\}$ have a lub in $\mathbb{F}(\mathbb{N})$?
- (d) Given $A, B \in \mathbb{F}(\mathbb{N})$, does $\{A, B\}$ have a glb in $\mathbb{F}(\mathbb{N})$?
- (e) Is $(\mathbb{F}(\mathbb{N}), \subseteq)$ a lattice?

Exercise

11.1.13 $\mathbb{F}(\mathbb{N})$ — collection of all *finite* subsets of \mathbb{N} ; \subseteq -order

- (a) No maximal elements
- (b) \emptyset is the minimum
- (c) $lub(A, B) = A \cup B$
- (d) $glb(A, B) = A \cap B$
- (e) $(\mathbb{F}(\mathbb{N}),\subseteq)$ is a lattice is has *finite* union and intersection properties.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

38

Exercise

 $ig| 11.1.14 \, ig| \, \mathbb{I}(\mathbb{N}) = \mathsf{Pow}(\mathbb{N}) \setminus \mathbb{F}(\mathbb{N})$ — all *infinite* subsets of \mathbb{N}

- (a) Does it have a maximal element?
- (b) Does it have a minimal element?
- (c) Given $A, B \in \mathbb{I}(\mathbb{N})$, does $\{A, B\}$ have a lub in $\mathbb{I}(\mathbb{N})$?
- (d) Given $A, B \in \mathbb{I}(\mathbb{N})$, does $\{A, B\}$ have a glb in $\mathbb{I}(\mathbb{N})$?
- (e) Is $(\mathbb{I}(\mathbb{N}),\subseteq)$ a lattice?

Exercise

11.1.14 $\mathbb{I}(\mathbb{N}) = \mathsf{Pow}(\mathbb{N}) \setminus \mathbb{F}(\mathbb{N})$ — all *infinite* subsets of \mathbb{N}

- (a) $\mathbb N$ is the maximum
- (b) No minimal elements (\emptyset is not in $\mathbb{I}(\mathbb{N})$)
- (c) $lub(A, B) = A \cup B$
- (d) $glb(A, B) = A \cap B$ if it exists; it does not exist when $A \cap B$ is finite, eg. when empty.
- (e) $(\mathbb{I}(\mathbb{N}),\subseteq)$ is not a lattice it has finite union but not finite intersection property; eg. sets $2\mathbb{N}$ and $2\mathbb{N}+1$ have the empty intersection.

Well-Ordered Sets

Well-ordered set: every subset has a least element.

NB

The greatest element is not required.

Examples

- $\bullet \ \mathbb{N} = \{0,1,\ldots\}$
- $\mathbb{N}_1 \dot{\cup} \mathbb{N}_2 \dot{\cup} \mathbb{N}_3 \dot{\cup} \dots$, where each $\mathbb{N}_i \simeq \mathbb{N}$ and $\mathbb{N}_1 < \mathbb{N}_2 < \mathbb{N}_3 \dots$

NB

41

Well-order sets are an important mathematical tool to prove termination of programs.

Ordering of a Poset — Topological Sort

For a poset (S, \preceq) any linear order \leq that is consistent with \preceq is called **topological sort**. Consistency means that $a \preceq b \Rightarrow a \leq b$.

Example

The following all are topological sorts:

$$a \le b \le e \le c \le f \le d$$

 $a \le e \le b \le f \le c \le d$

 $a \le e \le f \le b \le c \le d$

Combining Orders

Product order — can combine any partial orders. In general, it is only a *partial order*, even if combining total orders. For $s, s' \in S$ and $t, t' \in T$ define

$$(s,t) \leq (s',t')$$
 if $s \leq s'$ and $t \leq t'$

Exercise

11.2.1 Let $A = \{1, 2, 3, 4\}$ and $S = A \times A$ with the product order.

- (a) A chain with seven elements?
- (b) A chain with eight elements?

11.2.1 Let $A = \{1, 2, 3, 4\}$ and $S = A \times A$ with the product order.

- (a) A chain with seven elements?
- (1,1)(1,2)(2,2)(2,3)(2,4)(3,4)(4,4)
- (b) A chain with eight elements?

The above is a maximal chain.

No chains of eight elements.

Example

Take (S, \leq_1) , (T, \leq_2) to be any total orders of more than one element. Then $S \times T$ with the product order is not a total order: for any $s_1 \prec s_2$, $t_1 \prec t_2$ the pair (s_1, t_2) and (s_2, t_1) are not comparable.

◆ロ ト ◆ 個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Ordering of Functions

T — arbitrary set (no order required) S — partially ordered set $M = \{f : T \longrightarrow S\}$ — set of all functions from T to SIt has a natural partial order

$$f \leq g$$
 iff $\forall t \in T (f(t) \leq g(t))$

It is, in effect, a product order on $S^{|T|}$. In most applications T has a linear ordering; however, it does not affect the order of the functions defined on T (only the order on S matters).

Practical Orderings

They are, effectively, total orders on the product of ordered sets.

- Lexicographic order defined on all of Σ^* . It extends a total order already assumed to exist on Σ .
- Lenlex the order on (potentially) the entire Σ^* , where the elements are ordered first by length. $\Sigma^{(1)} \prec \Sigma^{(2)} \prec \Sigma^{(3)} \prec \cdots$, then lexicographically within each $\Sigma^{(k)}$. In practice it is applied only to the finite subsets of Σ^* .
- Filing order lexicographic order confined to the strings of the same length.
 It defines total orders on Σⁱ, separately for each i.

4□▶ 4團▶ 4臺▶ 4臺▶ 臺 ∽Q

Examples Examples

Exercise

 $\boxed{11.2.5}$ Let $\mathbb{B}=\{0,1\}$ with the usual order 0<1. List the elements 101,010,11,000,10,0010,1000 of \mathbb{B}^* in the

- (a) Lexicographic order
- 000, 0010, 010, 10, 1000, 101, 11
- (b) Lenlex order
- 10, 11, 000, 010, 101, 0010, 1000

11.2.8 When are the lexicographic order and *lenlex* on Σ^* the same?

Only when $|\nabla| = 1$

Exercise

 $\boxed{11.2.5}$ Let $\mathbb{B}=\{0,1\}$ with the usual order 0<1. List the elements 101,010,11,000,10,0010,1000 of \mathbb{B}^* in the

- (a) Lexicographic order
- 000,0010,010,10,1000,101,11
- (b) Lenlex order
- 10, 11, 000, 010, 101, 0010, 1000

11.2.8 When are the lexicographic order and *lenlex* on Σ^* the same?

Only when $|\Sigma| = 1$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへ○

Supplementary Exercise

11.6.12 Draw a Hasse diagram for a poset with exactly 5 members, 2 of which are maximal and 1 of which is the poset's minimum.

Supplementary Exercise

11.6.12 Draw a Hasse diagram for a poset with exactly 5 members, 2 of which are maximal and 1 of which is the poset's minimum.

Supplementary Exercise

Exercise

- 11.6.6 True or false?
- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* also must be totally ordered.
- (c) Every finite partially ordered set has a Hasse diagram.
- (d) Every finite partially ordered set has a topological sorting.
- (e) Every finite partially ordered set has a smallest element.
- (f) Every finite totally ordered set has a largest element.
- (g) An infinite partially ordered set cannot have a largest element.

Supplementary Exercise

Exercise

- 11.6.6
- (a) and (b) True; this is the idea behind various lex-sorts
- (c) Yes.
- (d) Yes.
- (e) False consider a two-element set with the identity as p.o.
- (f) True due to the finiteness
- (g) False, eg. $\mathbb{Z}_{<0}$

- Equivalence relations \sim , equivalence classes [S]
- Special equivalence relations \mathbb{Z}_p with notation $m \equiv n \pmod{p}$
- Ordering concepts: total, partial, lub, glb, lattice, topological sort
- Orderings: product, lexicographic, lenlex, filing

