PATENT ABSTRACTS OF JAPAN

(11) Publication number: 03148968 A

(43) Date of publication of application: 25.06.91

(51) Int. CI

H04N 5/225 G03B 19/06 G03B 19/12 H04N 9/09

(21) Application number: 01286621

(22) Date of filing: 02.11.89

(71) Applicant:

SONY CORP

(72) Inventor:

SAITO ETSURO

(54) TWO BOARDS TYPE ELECTRONIC CAMERA

(57) Abstract:

PURPOSE: To shorten a flange back distance and to reduce the insertion of glass on an optical axis by providing an optical type switching means which is rotatably or slidably arranged between a second image-pickup element and a light-receiving part and which switches light from an optical lens system to a state where it is reflected on the light-receiving part and a state where it is divided into the first and second image-pickup elements for irradiation by means of rotation or sliding.

CONSTITUTION: At the time of using an optical finder 7, a total reflection mirror 15 and a half mirror 16 are mutually and integrally slided in the direction of an arrow (e), and the total reflection mirror 15 is inserted on the optical axis P. Incident light from the optical lens system 1 is totally reflected on the total reflection mirror 15, is totally reflected on a total reflection mirror 8 through a focus screen 12 and the optical finder 7 is irradiated with said light. At the time of photographing, the total reflection mirror 15 and the half mirror 16 are slided and the half mirror 16 is inserted on the optical axis 16. The incident light from the optical lens system 1 is divided in the half

mirror 16 by transmission and reflection and CCD for Y 3 and CCD for C 4 are irradiated with the light.

COPYRIGHT: (C)1991,JPO&Japio

⑲日本国特許庁(JP)

① 特許出願公開

⑫公開特許公報(A)

平3-148968

③公開 平成3年(1991)6月25日

®Int. Cl. 5 H 04 N G 03 B

5/225 19/06

19/12 5/225 9/09

識別記号 庁内整理番号 Z

8942-5C 8007-2H

8007-2H 8942-5C D Ã 8725 - 50

審査請求 未請求 請求項の数 1 (全7頁)

❷発明の名称

H 04 N

2板式電子カメラ

②特 頭 平1-286621

御出 願 平1(1989)11月2日

⑫発 明 の出 頭 人

悦 朗 ソニー株式会社 東京都品川区北品川6丁目7番35号 東京都品川区北品川6丁目7番35号

ソニー株式会社内

四代 理 , 弁理士 土 屋

1. 発明の名称

2 板式電子カメラ

2. 特許請求の範囲/

光学レンズ系と、その光軸上に配置された第1 の退像素子と、上記光軸に対して直交する方向か ら相対向されて配置された第2の摄像素子及び光 学ファインダー用の受光部と、上記第2の摄像素 子と上記受光部との間に回転可能又はスライド可 能に配置され、その回転又はスライドによって上 紀光学レンズ系からの光を上記受光部に反射させ る状態と上記第1及び第2の摄像素子に分光して 照射する状態とに切換えるようにした光学式切換 手段とを具備させた2板式電子カメラ。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、光学レンズ系に入射した光を輝度信

号用と色信号用の 2 つの撮像楽子に分光する 2 板 式電子カメラに関するものである。

(発明の優要)

本発明は、2板式電子カメラにおいて、第1の 摄像素子を光学レンズ系の光軸上に配置する一方、 第2の摄像素子と光学ファインダー用の受光部と を光軸に対して直交する方向から相対向させ、こ れら第2の摄像素子と受光部との間に反転又はス ライド可能に配置させた光学式切換手段によって、 光学レンズ系からの光を受光部に反射させる状態 と第1及び第2の機像素子に分光して照射する状 態とに切換えるように構成することにより、電子 カメラの小型化を図ることができるようにしたも のである。

(従来の技術)

例えば、本発明の出願人が先に出願した先願例 (特願昭 6 3 - 2 3 1 6 1 8 号) に見られるよう に、従来の2板式電子カメラは第9図に示すよう

特開平3-148968(2)

に構成されている。

即ち、光学レンズ系1の光輪P上に分光大大を とで2回反射させる方号用として2回 で記載した 2回 で記載と色の 3と で記載して 2回 での 3と での

そして、従来の2板式電子カメラは、光学ファインダー7を使用する時には、回転式全反射ミラー6を光軸P上の実線位置まで矢印a方向に回転させて、光学レンズ系1からの入射光をその全反射ミラー6で全反射し、全反射ミラー8を介して光学ファインダー7に照射する。また、撮影時には、回転式全反射ミラー6を光軸Pから外した1

本発明は、フランジバック距離を短くでき、また、光軸上へのガラス挿入を少なくできる 2 板式電子カメラを提供することを目的としている。

(課題を解決するための手段)

(作用)

上記のように構成された2板式電子カメラは、 光学レンズ系からの光を、光学式切換手段の回転 点鎖線位置まで矢印 b 方向に回転させて、光学レンズ系 1 からの入射光を分光用ブリズム 2 で分光して、光出射面 2 c、 2 d から Y 用 C C D 3 と C 用 C C D 4 とに照射するように構成したものである。この際 C 用 C C D 4 に 照射される光は、分光用プリズム 2 の分光面 2 a と 反射面 2 b とで 2 回反射されて、光出射面 2 c から 医射される。

[発明が解決しようとする課題]

(実施例)

以下、本発明を適用して2板式電子カメラの一 実施例を第1A図~第8図を参照して説明する。 なお、第9図に示した従来例と同一構造部には同 一の符号を付して重複説明を省略する。

まず、第1A図~第2図に示した2板式電子カメラは、第1の優像素子である輝度信号用のY用

特別平3-148968(3)

この2板式電子カメラによれば、光学ファインダー7を使用する際には、第1A図に示すように、ハーフミラー10を第2図の実線位置まで矢印 c 方向に回転させる。そして、光学レンズ系1からの入射光をそのハーフミラー10で反射し、フォーカススクリーン12を通して全反射ミラー8で全反射させて光学ファインダー7に照射する。ま

た、撮影時には、第1B図に示すように、ハーフミラー10を第2図の1点鎖線位置まで矢印 d 方向に回転させる。そして、光学レンズ系 l からの入射光をそのハーフミラー10で透過及び反射によって分光して、Y用CCD3とC用CCD 4 とに照射する。

次に、第3 A 図及び第3 B 図は、回転可能な光学式切換手段 9 であるハーフミラー 1 0 を光の反射面 1 3 a を有するプリズム 1 3 に置換した変形例を示したものである。

次に、第4A図~第5図に示した2板式電子カカでは、C用CCD4と全反射ミラー8との問題と発見したのである。な光学では、光学ではな光学では、光学ではなかってある。などでは、光学である。などでは、光学である。などでは、かってある。などは光明には対してある。などは、「方向に対してあるができる。などは、「方向に対していて、かつ互いに異なる方向に90°の位相で、その矢印e、「方向にスラー」を表していて、その矢印e、「方向にスラー」を表していて、第4A目によりを表している。

可能に構成されている。

この2板式電子カメラによれば、光学ファイン ダー7を使用する際には、第4A図に示すように、 全反射ミラー15とハーフミラー16とを互いに 一体に矢印。方向にスライドさせて、第5図に実 線で示すように全反射ミラー15を光軸P上に揮 入させる。そして、光学レンズ系1からの入射光 をその全反射ミラー15で全反射し、フォーカス スクリーン12を通して全反射ミラー8で全反射 させて光学ファイングーフに照射する。また、擬 影時には、第4B図に示すように、全反射ミラー 15とハーフミラー16とを互いに一体に矢印「・ 方向にスライドさせて、第5図に点線で示すよう にハーフミラー16を光帕P上に挿入させる。そ して、光学レンズ系1からの入射光をそのハーフ ミラー16で透過及び反射によって分光して、Y 用CCD3とC用CCD4とに照射する。

次に、第6A図及び第6B図は、スライド可能な光学式切換手段14である全反射ミラー15及びハーフミラー16を2つの光の反射及び透過面

1 7 a 、 1 7 b を有するプリズム 1 7 に 置換した変形 例を示したものである。

なお、第 7 図によって映像信号の説出し回路を 説明する。

まず、光軸 P 上に配置されている Y 用 C C D 3 には光学レンズ系 1 からの入射光が光学式切換手段 9 又は 1 4 をそのまま透過して照射されるのに

特別平3-148968(4)

対して、光軸Pに対して直交する方向に配置されているC用CCD4には光学レンス系1からの射光が光学式切換手段9又は14によって反射れて照射されるので、Y用CCD3に結像ではれる。 映像に対してC用CCD4に結像される映像はは1 H分反転されている。そして、これらの映像はは1 Y用CCD3及びC用CCD4によって電気の映像はは Y用CCD3及びC用CCD4によって電気の映像は 像信号に変換されて、Y処理回路18及びC処理 回路19によって読出される。

この際、Y処理回路18及びC処理回路19によるY用CCD3及びC用CCD4の走査方向が同一であると、Y用CCD3から統出される映像信号に対してC用CCD4から読出される映像信号は1日分遅れることになる。

そこで、Y処理回路 1 8 の後段に 1 H遅延回路 2 0 を設け、C処理回路 1 9 の後段には、 2 つの 1 Hメモリー 2 1、 2 2 を並列に設け、スイッチャー 2 3 によってライン毎にスイッチングするように構成する。

そして、Y用CCD3からY処理回路18によ

って読出した映像信号を1 H遅延回路 2 0 によって1 H分遅らせて出力する一方、 C 用 C C D 4 から C 処理回路 7 によって読出した映像信号をスイッチングによって一方の1 Hメモリー 2 1 で記憶すると共に、他の1 Hメモリー 2 2 から 1 H分反転された映像信号を出力させる。 そして、 これら2 つの出力信号を混同回路 2 4 で混合させて 1 つの映像信号として出力するようにしたものである。

この際、1Hメモリー21、22は、近年低価格、小型で製造でき、反転CCDを製造するより 低価格となる。

但し、第8図に示すように、Y用CCD3及びC用CCD4の何れか一方を反転CCDで構成すれば、上記1H遅延回路20や2づの1Hメモリー21、22は不要になる。

以上、本発明の実施例に付き述べたが、本発明 は上記実施例に限定されることなく、本発明の技 術的思想に基づいて、各種の有効な変更が可能で ある。

(発明の効果)

本発明は、上述のとおり構成されているので、 次に記載する効果を奏する。

フランジバック距離を非常に短くできるので、 電子カメラの小型化を図ることができる。

フランジバック距離を短くできると共に、光触上へのガラス挿入を少なくできるので、特殊な光学レンズ系を必要とせず、従来の35 m 1 限レフ用のレンズ群も使用できると共に、特殊なCCDも必要とせず、著しい低価格化を図ることができる。

光軸上へのガラス挿人が少ないので、1 チップ型カメラと光学系を共通化できる。

従来のような2回反射式の大型かつ特殊形状の 分光用プリズムを必要とせず、低価格化を図るこ とができる。

4. 図面の簡単な説明

第1A図~第8図は本発明の一実施例を示した ものであって、第1A図及び第1B図は回転可能 な光学式切換手段を使用した2板式電子カメラの 斜視図、第2図は同上の機略的な側面図、第3A 図及び第3B図は同上の変形例の斜視図、第4A 図及び第4B図はスライド可能な光学式切り換 を使用した2板式電子カメラの斜視図、第5図は 同上の概略的な側面図、第6A図及び第6B図は 同上の変形例の斜視図、第7図は映像信号の変形 同上の変形のおれてカック図、第8図は同上の変形 例を示したブロック図である。

第9図は従来の2板式電子カメラの振略的な側 筋関である。

なお図面に用いた符号において、

I				٠.				·	 -		X		学	レ		ン	ズ	不									
3						٠.	٠.		 		Y		用	С		С	D	((笋,	1	တ	最	倮	聚	子)
4				• • •			٠.		 		С	;	用	С		С	D	((¥	2	Ø	报	像	衆	7)
7			••				٠.		 	••	X	-	学	フ		7	4	ン	,	9	-						
8	;		••							٠.	≩	•	反	9		3	ラ	_		(受	光	ßB)			
9	1		••		•	•				٠.	Ж	:	学	力	: 1	切	換	Ŧ		段							
1		4	••	٠.				- • •	 	••	Ħ	Ŀ	学	<u>z(</u> '		Ņ	换	7		段							
1	P	,	٠.						 		٠,	Ė	軸														

Q . … … フランジバック距離

である.

代理人 土屋 服

光学ファインダー使用時 第1A図

摄影時 蹲了 P. 國

光学式切換手段の切換を動作 第 5 図

特別平3-148968(6)

光学プァインダー使用時 第3A図

撮影時 第3B図

光学ファインダー使用時 第4月至

撮影時 第4B國

光学ファインダー使用時 第 6 A三

撮影時 第6B図

-417-