

Distributed Algorithms 2016/17 **Organizational Matters**

Odej Kao | Complex and Distributed IT Systems

Lecturer

Name Prof. Dr. Odej Kao

Address Komplexe und Verteilte IT Systeme (CIT)

Fakultät für Informatik und Elektrotechnik

Einsteinufer 17, Sekretariat EN59 (Room: EN 157)

Technische Universität Berlin

10587 Berlin

Office EN 158

E-Mail odej.kao@tu-berlin.de

Office Hours by appointment

Lecture & Tutorial

Lecture

- Tuesday, 10-12, EMH 225
- Website: http://www.cit.tu-berlin.de/menue/teaching/wintersemester_1617/distributed_algorithms/
- Course will be managed through ISIS website
- Registration (by enrolling for the ISIS course): until Oct. 30st
- QISPOS registration will be announced on ISIS

Tutorial

- Mareike Hoeger, Dipl.-Inf.
- Monday 10-12, MA 043
- First tutorial: Oct. 31st
- Successful participation is precondition for exam
- Details on first tutorial

ISIS Course

Exams

Type of exam

Oral exam at the end of the term

Date

On Appointment at end of Semester

Preparation

Last lecture is dedicated to Q&A

Conditions and Materials

Prerequisites

- Basic knowledge of computer science
- Basic knowledge in the field of distributed systems
- Knowledge of contents of BSc courses Systemprogrammierung and Verteilte Systeme recommended -> certain important slides of Verteilte Systeme will be available on ISIS

Materials

provided via course website @ ISIS

Literature links

- are provided chapter by chapter
- usually on the last slides

Distributed Algorithms for Distributed Systems

?

Distributed Systems

A distributed system consists of several nodes that

- are connected by a network and
- communicate through message exchange
- to achieve a common functionality.

The field "Distributed Systems" is a subarea of Applied Computer Science and an important field.

Motivation

- A distributed algorithm is an algorithm containing several nodes that work in parallel cooperatively to solve a common problem by coordination through message exchange.
- In a distributed algorithm state and control are distributed on several nodes of the system and the implementation is parallelized.
- Through the inherent characteristics of distributed systems, engineering of distributed algorithms is much more complex than for a centralized algorithm with a similar functionality.

Goals of the Lecture

The lecture provides an overview of conceptual problems occurring in distributed systems and deals with their algorithmic possibilities of solution.

The students are to

- get to know the most important basic distributed algorithms
- develop an understanding of the structure of distributed algorithms, their complexity, their scalability and their fault tolerance features,
- choose convenient distributed algorithms while drafting distributed systems
- understand the possibilities, limits and risks of distributed systems.

Outline

- Introduction
- Application
- Echo
- Election
- Exclusion
- Clocks
- Snapshots & Snapshot Application
- Fault Tolerance
- Consensus
- Self Stabilization
- Transaction
- Security
- P2P

Literature

- 1. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design. Addison-Wesley, 4th edition, 2005. [auch in Deutsch erhältlich]
- 2. F. Mattern. Verteilte Basisalgorithmen. Springer-Verlag, 1989.
- G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2nd edition, 2000.
- 4. S. Mullender, editor. Distributed Systems. Addison-Wesley, 2nd edition, 1993.
- 5. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
- 6. A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms. Prentice Hall, 2nd edition, 2006. [auch in Deutsch und als Taschenbuch erhältlich]

