МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1
по дисциплине «Качество и метрология программного обеспечения»
ТЕМА: «Расчет метрических характеристик качества разработки
программ по метрикам Холстеда»

Студент гр. 6304	Рыбин А.С.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать, как саму характеристику, так и ее оценку.

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А. Измеримые характеристики рассчитанные вручную представлены в таблице 1.

Таблица 1 – Измеримые характеристики программы на Pascal (ручной подсчёт)

$N_{\underline{0}}$	Оператор	Количество	No॒	Операнд	Количество
1	program	1	1	X	4
2	procedure	1	2	У	3
3	linfit	1	3	y_calc	3
4	0	3	4	a	4
5	;	29	5	b	3
6	:=	20	6	n	8
7	real	4	7	linear_fit	1
8	integer	2	8	i	7
9	for do	2	9	sum_x	8
10	+	6	10	sum_y	8
11	*	9	11	sum_xy	6
12	/	6	12	sum_x2	6
13	begin	4	13	sum_y2	5
14	end	4	14	xi	6
15	[]	4	15	yi	6
16	•	1	16	SXX	4
	Всего	97	17	syy	2
			18	sxy	3
			19	0.0	5
				Всего	92

Измеримые характеристики рассчитанные с помощью программы представлены в таблице 2. Файл с результатами программных расчётов представлен в приложении Б.

Таблица 2 – Измеримые характеристики программы на Pascal (программный расчёт)

No	Оператор	Количество	№ Операнд		Количество
1	()	6	1	0.0	5
2	*	9	2	1	2
3	+	6	3	a	3
4	-	4	4	b	3
5	/	6	5	i	5
6	;	40	6	linear_fit	1
7	=	18	7	n	7
8	[]	4	8	sum_x	8
9	for	2	9 sum_x		6
10	integer	2	10 sum_xy		6
11	linfit	1	11	sum_y	8
12	procedure	1	12	sum_y2	5
13	program	1	13	SXX	4
14	real	4	14	sxy	3
	Всего	105	15	syy	2
			16	X	3
			17	xi	6
			18	у	2
			19	y_calc	2
			20	yi	6
				Всего	88

Определение расчетных характеристик представлено в таблице 3.

Таблица 3 — Расчётные характеристики программы на Pascal

Характеристика	Ручной подсчёт	Программный расчёт
Число простых операторов n ₁	16	14
Число простых операндов n ₂	19	20
Общее число всех операторов N ₁	97	105
Общее число всех операндов N ₂	92	88
Словарь п	35	34
Длина N _{опыт}	189	193
Теоретическая длина N _{теор}	144.71	150.84
Объём V	969.38	997.80
Потенциальный объём V*	19.65	19.65
Уровень программы L	0.020	0.020
Оценка уровня программы L~	0.026	0.032
Интеллектуальное содержание I	25.20	31.75
Работа программирования Е	48469	50662.60
Оценка времени программирования Т^	4846.90	1361.63
Время программирования Т	3755.08	2814.59
Уровень языка λ	0.39	0.39
Ожидаемое число ошибок в программе В	0.99	0.46

2. Определение метрических характеристик для программы на Cu.

Код программы представлен в приложении В. Измеримые характеристики рассчитанные вручную представлены в таблице 4.

Таблица 4 – Измеримые характеристики программы на Си (ручной подсчёт)

№	ица 4 — Измеримые характеристики программы на Си Оператор Количество № Операнд				Количество
1	void	1	1 0		3
2	linfit	1	2	0.0	5
3	()	5	3	a	3
4	{}	3	4	b	3
5	float	6	5	i	10
6	int	5	6	n	7
7	;	24	7	sum_x	8
8	=	20	8	sum_x2	6
9	for	2	9	sum_xy	6
10	++	2	10	sum_y	8
11	<	2	11	sum_y2	5
12	[]	4	12	SXX	4
13	+	10	13	sxy	3
14	-	4	14	syy	2
15	/	6	15	X	3
16	*	9	16	xi	6
17	_* разыменование указателя	4	17	у	2
18	* указатель	5	18	y_calc	2
	Всего	115	19	yi	6
				Всего	92

Измеримые характеристики рассчитанные с помощью программы представлены в таблице 5. Файл с результатами программных расчётов представлен в приложении Г.

Таблица 5 – Измеримые характеристики программы на Си (программный расчёт)

					расчет)
№	Оператор	Количество	№	Операнд	Количество
1	()	6	1	0	3
2	*	9	2	0.0	5
3	+	6	3	a	3
4	++	2	4	b	3
5	,	15	5	i	10
6	-	4	6	n	7
7	/	6	7	sum_x	8
8	;	28	8	sum_x2	6
9	<	2	9	sum_xy	6
10	=	20	10	sum_y	8
11	[]	4	11	sum_y2	5
12	_*	4	12	SXX	4
13	_[]	1	13	sxy	3
14	*	6	14	syy	2
15	char	1	15	X	3
16	const	2	16	xi	6
17	float	6	17	у	2
18	for	2	18	y_calc	2
19	int	5	19	yi	6
20	linfit	1		Всего	92
21	void	1			
	Всего	131	1		

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчётные характеристики программы на Си

Характеристика	Ручной подсчёт	ристики программы на Си Программный расчёт
Число простых операторов n ₁	16	21
Число простых операндов n ₂	19	19
Общее число всех операторов N ₁	115	131
Общее число всех операндов N_2	92	92
Словарь п	35	40
Длина N _{опыт}	207	223
Теоретическая длина N _{теор}	144.71	196.28
Объём V	1061.70	1239.29
Потенциальный объём V*	19.65	19.65
Уровень программы L	0.019	0.016
Оценка уровня программы L~	0.026	0.019
Интеллектуальное содержание I	27.60	24.08
Работа программирования Е	55878.95	78154
Оценка времени программирования T^	4112.70	3064.49
Время программирования Т	5587.90	4341.89
Уровень языка λ	0.37	0.31
Ожидаемое число ошибок в программе В	1.044	0.61

3. Определение метрических характеристик для программы на **Ассемблере**.

Код программы представлен в приложении Д. Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Измеримые характеристики программы на Ассемблере (ручной подсчёт)

Ma	0======	I/	No	0	подечет)
№	Оператор	Количество		Операнд	Количество
1	push	1	1	rbp	73
2	mov	23	2	rsp	1
3	pxor	5	3	rdi	1
4	movss	40	4	rsi	1
5	jmp	2	5	rdx	9
6	cdqe	4	6	rcx	1
7	lea	4	7	r8	1
8	add	6	8	r9d	1
9	addss	6	9	xmm0	75
10	mulss	9	10	eax	8
11	jl	2	11	rax	24
12	cvtsi2ss	4	12	xmm1	25
13	divss	6	13	0	6
14	movaps	3	14	xmm2	2
15	subss	4	15	1	2
16	nop	2	16	linfit	1
17	pop	1	17	.L3	2
18	ret	1	18	.L2	2
	Всего	123	19	.L4	2
			20	.L5	2
			21	QWORD PTR [rbp-56]	3
			22	QWORD PTR [rbp-64]	2
			23	QWORD PTR [rbp-72]	2
			24 QWORD PTR [rbp-80]		3
			25	QWORD PTR [rbp-88]	3
			26	DWORD PTR [rbp-92]	7
			27	DWORD PTR [rbp-4]	6
		l .	1		1

	28	DWORD PTR [rbp-8]	6
	29	DWORD PTR [rbp-8]	5
	30	DWORD PTR [rbp-16]	5
	31	DWORD PTR [rbp-20]	4
	32	DWORD PTR [rbp-24]	5
	33	[0+rax*4]	4
	34	DWORD PTR [rax]	8
	35	DWORD PTR [rbp-44]	4
	36	DWORD PTR [rbp-48]	4
	37	DWORD PTR [rbp-12]	5
	38	DWORD PTR [rbp-36]	2
	39	DWORD PTR [rbp-28]	5
		Всего	326

Определение расчетных характеристик представлено в таблице 8.

Таблица 8 – Расчётные характеристики программы на Ассемблере

Характеристика	Ручной расчёт
Число простых операторов n ₁	18
Число простых операндов n ₂	39
Общее число всех операторов N ₁	123
Общее число всех операндов N ₂	326
Словарь п	57
Длина N _{опыт}	449
Теоретическая длина N _{теор}	281.37
Объём V	2617.67
Потенциальный объём V*	19.65
Уровень программы L	0.0075
Оценка уровня программы L~	0.013
Интеллектуальное содержание I	34.03
Работа программирования Е	349022.67
Оценка времени программирования Т^	34902.27
Время программирования Т	19692.93
Уровень языка λ	0.15
Ожидаемое число ошибок в программе В	2.57

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов для всех языков

		ца 9 — Своднах Pascal		Ассемблер	
v	Ручной	Программный	Ручной	Программный	Ручной
Характеристика	подсчёт	расчёт	подсчёт	расчёт	подсчёт
Число простых	16	14	16	21	18
операторов n ₁	10	14	10	21	10
Число простых	19	20	19	19	39
операндов n ₂		20			37
Общее число всех	97	105	115	131	123
операторов N_1		103	113	131	123
Общее число всех	92	88	92	92	326
операндов N ₂	72	00	72	72	320
Словарь п	35	34	35	40	57
Длина N _{опыт}	189	193	207	223	449
Теоретическая длина	144.71	150.84	144.71	196.28	281.37
$N_{ ext{Teop}}$	144./1	130.04	144.71	170.20	201.57
Объём V	969.38	997.80	1061.70	1239.29	2617.67
Потенциальный			19.65		
объём V*			17.03		
Уровень программы	0.020	0.020	0.019	0.016	0.0075
Оценка уровня	0.026	0.032	0.026	0.019	0.013
программы L~	0.020	0.032	0.020	0.019	0.015
Интеллектуальное	25.20	31.75	27.60	24.08	34.03
содержание I	20.20	31175	27.00	21.00	21102
Работа	48469	50662.60	55878.95	78154	349022.67
программирования Е	10.09	20002.00	00070.50	70101	015022101
Оценка времени					
программирования	4846.90	1361.63	4112.70	3064.49	34902.27
T^					
Время	3755.08	2814.59	5587.90	4341.89	19692.93
программирования Т	2,23.00	2011.07	2237.30	15 11.07	17072170
Уровень языка λ	0.39	0.39	0.37	0.31	0.15

Ожидаемое число					
ошибок в программе	0.99	0.46	1.044	0.61	2.57
В					

В результате сравнения видно, что уровень программы самый низкий у программы на Ассемблере (на порядок меньше чем у Си и Pascal), а самый высокий у программы на Pascal. Наибольшие показатели времени программирования, работы программирования и ожидаемого числа ошибок, наоборот, соответствуют Ассемблеру, а наименьший – Pascal. Показатели для Си практически не отличаются от Pascal за исключением высокого ожидаемого числа ошибок в программе, однако во всех случаях они хуже.

Выводы

В результате выполнения данной лабораторной работы была изучена система метрик Холстеда. Было проведено сравнение программ, реализующих алгоритм линеаризации, на языках Pascal, Си и Ассемблер.

ПРИЛОЖЕНИЕ А

КОД ПРОГРАММЫ НА Pascal.

```
procedure linfit(const x,y: array of real; var y_calc: array of real; var a,b : real;
n : integer);
{ fit a straight line (y_calc) through n sets of x and y pairs of points }
    i : integer;
sum_x, sum_y, sum_xy, sum_x2, sum_y2, xi, yi, sxx, syy, sxy : real;
begin
 sum x := 0.0;
 sum_y := 0.0;
 sum_xy := 0.0;
 sum_x2 := 0.0;
  sum_y2 := 0.0;
  for i := 1 to n do
    begin
     xi := x[i];
      yi := y[i];
      sum x := sum x + xi;
      sum_y := sum_y + yi;
      sum_xy := sum_xy + xi * yi;
      sum x2 := sum x2 + xi * xi;
      sum_y2 := sum_y2 + yi * yi;
   end;
  sxx := sum_x^2 - sum_x * sum_x / n;
  sxy := sum_xy - sum_x * sum_y / n;
  syy := sum_y^2 - sum_y * sum_y / n;
 b := sxy / sxx;
 a := ((sum_x2 * sum_y - sum_x * sum_xy) / n) / sxx;
  for i := 1 to n do
    begin
      y_{calc[i]} := a + b * x[i];
    end;
end;
```

приложение б

РЕЗУЛЬТАТЫ РАБОТЫ ПАРСЕРА parser_pas.exe

Statistics for module linfit		ed	.lxm
The number of different opera		:	15
The number of different opera		:	21
The total number of operators	5	:	105
The total number of operands		:	88
Dictionary	(D)	:	36
Length	(N)	:	193
Length estimation	(^N)	:	150.842
Volume	(v)	:	997.796
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0196949
Programming level estimation	(^L)	:	0.0318182
Intellect	(I)	:	31.748
Time of programming	(T)	:	2814.59
Time estimation	(^T)	:	1361.63
Programming language level	(lambda)	:	0.387034
Work on programming	(E)	:	50662.6
Error	(B)	:	0.456391
Error estimation	(^B)	:	0.332599
Table:			

Operato	rs:					
1	6	()				
2	9	*				
3	6	+				
4	4	-				
5	6	/				
6	40	;				
7	18	=				
8	4	[]				
9	2	for				
10	2	integer				
11	1	linfit				
12	1	procedure				
13	1	program				
14	4	real				
15	1	writeln				
Operand	Operands:					
1	1	'Hello world!'				
2	5	0.0				
3	2	1				
4	3	a				
5	3	b				
6	5	i				
7	1	linear_fit				
8	7	n				
9	8	sum_x				
10	6	sum_x2				
11	6	sum_xy				
12	8	sum_y				
13	5	sum_y2				
14	4	sxx				

15	3	sxy
16	2	syy
17	3	x
18	6	xi
19	2	y
20	2	y_calc
21	6	yi

Summary:

=======================================			
The number of different operators			15
The number of different operands			21
The total number of operators	5	:	105
The total number of operands		:	88
Dictionary	(D)	:	36
Length	(N)	:	193
Length estimation	(^N)	:	150.842
Volume	(V)	:	997.796
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0196949
Programming level estimation	(^L)	:	0.0318182
Intellect	(I)	:	31.748
Time of programming	(T)	:	2814.59
Time estimation	(^T)	:	1361.63
Programming language level	(lambda)	:	0.387034
Work on programming	(E)	:	50662.6
Error	(B)	:	0.456391
Error estimation	(^B)	:	0.332599

ПРИЛОЖЕНИЕ В

КОД ПРОГРАММЫ НА Си

```
void linfit(const float* x, const float* y, float* y_calc, float* a, float* b, int n)
    float sum_x, sum_y, sum_xy, sum_x2, sum_y2, xi, yi, sxx, syy, sxy;
    sum_x = 0.0;
    sum_y = 0.0;
    sum_xy = 0.0;
    sum x2 = 0.0;
    sum y2 = 0.0;
    for (int i = 0; i < n; i++) {
        xi = x[i];
        yi = y[i];
        sum_x = sum_x + xi;
        sum_y = sum_y + yi;
        sum_xy = sum_xy + xi * yi;
        sum_x2 = sum_x2 + xi * xi;
        sum y2 = sum y2 + yi * yi;
    }
    sxx = sum_x^2 - sum_x * sum_x / n;
    sxy = sum_xy - sum_x * sum_y / n;
syy = sum_y2 - sum_y * sum_y / n;
    *b = sxy / sxx;
    *a = ((sum_x2 * sum_y - sum_x * sum_xy) / n) / sxx;
    for (int i = 0; i < n; i++) {
        y_{calc[i]} = *a + *b * x[i];
    }
}
```

приложение г

РЕЗУЛЬТАТЫ РАБОТЫ ПАРСЕРА parser_c.exe

Statistics for module linfit_c_parsed.lxm				
=======================================	=======			
The number of different opera	ators	:	23	
The number of different operands			21	
The total number of operators	5	:	133	
The total number of operands		:	94	
Dictionary	(D)	:	44	
Length	(N)		227	
Length estimation	(^N)	:	196.281	
Volume	(v)	:	1239.29	
Potential volume	(*V)	:	19.6515	
Limit volume	(**V)	:	38.2071	
Programming level	(L)	:	0.015857	
Programming level estimation	(^L)	:	0.0194265	
Intellect	(I)	:	24.075	
Time of programming	(T)	:	4341.89	
Time estimation	(^T)		3064.49	
Programming language level	(lambda)	:	0.311614	
Work on programming	(E)	:	78154	
Error	(B)		0.609321	
Error estimation	(^B)	:	0.413097	

Table:

C)perato	rs:				
	1	6	()			
	2	9	*			
	3	6	+			
	4	2	++			
	5	15	,			
	6	4	-			
	7	6	/			
	8	28	;			
	9	2	<			
	10	20	=			
	11	4	[]			
	12	4	_*			
	13	1	_[]			
	14	6	*			
	15	1	char			
	16	2	const			
	17	6	float			
	18	2	for			
	19	5	int			
	20	1	linfit			
	21	1	main			
	22	1	return			
	23	1	void			
C	Operands:					
	1	3	0			
	2	5	0.0			
	3	3	a			
	4	1	argc			
	5	1	argv			
	6	3	b			

```
7
8
      10 | i
       7
           n
9
       8
           | sum_x
9 | 8
10 | 6
11 | 6
12 | 8
13 | 5
14 | 4
          sum_x2
          | sum_xy
          | sum_y
           | sum_y2
           sxx
       3 2 3
15
           sxy
16
           syy
17
           | x
18 | 6
           | xi
          | y
| y_calc
19 | 2
20 | 2
           | yī
21 | 6
```

Summary:

The number of different opera	:	23			
The number of different operands			21		
The total number of operators			133		
The total number of operands		:	94		
Dictionary	(D)	:	44		
Length	(N)	:	227		
Length estimation	(^N)	:	196.281		
Volume	(V)	:	1239.29		
Potential volume	(*V)	:	19.6515		
Limit volume	(**V)	:	38.2071		
Programming level	(L)	:	0.015857		
Programming level estimation	(^L)	:	0.0194265		
Intellect	(I)	:	24.075		
Time of programming	(T)	:	4341.89		
Time estimation	(^T)	:	3064.49		
Programming language level	(lambda)	:	0.311614		
Work on programming	(E)	:	78154		
Error	(B)	:	0.609321		
Error estimation	(^B)	:	0.413097		

приложение д

КОД ПРОГРАММЫ НА Ассемблер

```
linfit:
        push
                rbp
        mov
                rbp, rsp
        mov
                QWORD PTR [rbp-56], rdi
        mov
                QWORD PTR [rbp-64], rsi
                QWORD PTR [rbp-72], rdx
        mov
                QWORD PTR [rbp-80], rcx
        mov
        mov
                QWORD PTR [rbp-88], r8
                DWORD PTR [rbp-92], r9d
        mov
                xmm0, xmm0
        pxor
                DWORD PTR [rbp-4], xmm0
        movss
                xmm0, xmm0
        pxor
                DWORD PTR [rbp-8], xmm0
        movss
                xmm0, xmm0
        pxor
                DWORD PTR [rbp-12], xmm0
        movss
                xmm0, xmm0
        pxor
                DWORD PTR [rbp-16], xmm0
        movss
                xmm0, xmm0
        pxor
        movss
                DWORD PTR [rbp-20], xmm0
        mov
                DWORD PTR [rbp-24], 0
        jmp
                .L2
.L3:
                eax, DWORD PTR [rbp-24]
        mov
        cdqe
                rdx, [0+rax*4]
        lea
                rax, QWORD PTR [rbp-56]
        mov
        add
                rax, rdx
                xmm0, DWORD PTR [rax]
        movss
                DWORD PTR [rbp-44], xmm0
        movss
                eax, DWORD PTR [rbp-24]
        mov
        cdqe
        lea
                rdx, [0+rax*4]
                rax, QWORD PTR [rbp-64]
        mov
        add
                rax, rdx
                xmm0, DWORD PTR [rax]
        movss
                DWORD PTR [rbp-48], xmm0
        movss
                xmm0, DWORD PTR [rbp-4]
        movss
                xmm0, DWORD PTR [rbp-44]
        addss
                DWORD PTR [rbp-4], xmm0
        movss
        movss
                xmm0, DWORD PTR [rbp-8]
                xmm0, DWORD PTR [rbp-48]
        addss
        movss
                DWORD PTR [rbp-8], xmm0
        movss
                xmm0, DWORD PTR [rbp-44]
                xmm0, DWORD PTR [rbp-48]
        mulss
                xmm1, DWORD PTR [rbp-12]
        movss
        addss
                xmm0, xmm1
                DWORD PTR [rbp-12], xmm0
        movss
                xmm0, DWORD PTR [rbp-44]
        movss
        mulss
                xmm0, xmm0
        movss
                xmm1, DWORD PTR [rbp-16]
        addss
                xmm0, xmm1
        movss
                DWORD PTR [rbp-16], xmm0
                xmm0, DWORD PTR [rbp-48]
        movss
                xmm0, xmm0
        mulss
                xmm1, DWORD PTR [rbp-20]
        movss
        addss
                xmm0, xmm1
        movss
                DWORD PTR [rbp-20], xmm0
```

```
add
                DWORD PTR [rbp-24], 1
.L2:
                eax, DWORD PTR [rbp-24]
        mov
        cmp
                eax, DWORD PTR [rbp-92]
        jl
                .L3
        movss
                xmm0, DWORD PTR [rbp-4]
                xmm0, xmm0
        mulss
                        xmm1, DWORD PTR [rbp-92]
        cvtsi2ss
        divss
                xmm0, xmm1
        movaps xmm1, xmm0
        movss
                xmm0, DWORD PTR [rbp-16]
        subss
                xmm0, xmm1
                DWORD PTR [rbp-32], xmm0
        movss
        movss
                xmm0, DWORD PTR [rbp-4]
        mulss
                xmm0, DWORD PTR [rbp-8]
        cvtsi2ss
                        xmm1, DWORD PTR [rbp-92]
        divss
                xmm0, xmm1
        movaps
               xmm1, xmm0
                xmm0, DWORD PTR [rbp-12]
        movss
                xmm0, xmm1
        subss
        movss
                DWORD PTR [rbp-36], xmm0
                xmm0, DWORD PTR [rbp-8]
        movss
        mulss
                xmm0, xmm0
        cvtsi2ss
                        xmm1, DWORD PTR [rbp-92]
                xmm0, xmm1
        divss
        movaps
                xmm1, xmm0
        movss
                xmm0, DWORD PTR [rbp-20]
                xmm0, xmm1
        subss
                DWORD PTR [rbp-40], xmm0
        movss
        movss
                xmm0, DWORD PTR [rbp-36]
        divss
                xmm0, DWORD PTR [rbp-32]
                rax, QWORD PTR [rbp-88]
        mov
        movss
                DWORD PTR [rax], xmm0
        movss
                xmm0, DWORD PTR [rbp-16]
        mulss
                xmm0, DWORD PTR [rbp-8]
        movss
                xmm1, DWORD PTR [rbp-4]
                xmm1, DWORD PTR [rbp-12]
        mulss
                xmm0, xmm1
        subss
        cvtsi2ss
                        xmm1, DWORD PTR [rbp-92]
        divss
                xmm0, xmm1
        divss
                xmm0, DWORD PTR [rbp-32]
                rax, QWORD PTR [rbp-80]
        mov
        movss
                DWORD PTR [rax], xmm0
        mov
                DWORD PTR [rbp-28], 0
        jmp
                .L4
.L5:
                rax, QWORD PTR [rbp-80]
        mov
                xmm1, DWORD PTR [rax]
        movss
        mov
                rax, QWORD PTR [rbp-88]
                xmm2, DWORD PTR [rax]
        movss
                eax, DWORD PTR [rbp-28]
        mov
        cdqe
                rdx, [0+rax*4]
        lea
                rax, QWORD PTR [rbp-56]
        mov
        add
                rax, rdx
        movss
                xmm0, DWORD PTR [rax]
                xmm0, xmm2
        mulss
                eax, DWORD PTR [rbp-28]
        mov
        cdge
        lea
                rdx, [0+rax*4]
                rax, QWORD PTR [rbp-72]
        mov
```

```
add rax, rdx
addss xmm0, xmm1
movss DWORD PTR [rax], xmm0
add DWORD PTR [rbp-28], 1

.L4:

mov eax, DWORD PTR [rbp-28]
cmp eax, DWORD PTR [rbp-92]
jl .L5
nop
nop
pop rbp
ret
```