УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

> **Курсовая работа** Часть 2 Вариант 107

> > Студент: Собитов Анвархон Акмалович Группа: P3115

Преподаватель: Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую функцию $C = (A_{mod 6} + B)_{mod 8} (A - 3 бита, B - 2 бита, C - 3 бита). При переносе устанавливается бит <math>e$.

Таблица истинности

No	a_1	a ₂	a ₃	b_1	b ₂	C 1	C 2	C 3	е
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	1	0
2	0	0	0	1	0	0	1	0	0
3	0	0	0	1	1	0	1	1	0
4	0	0	1	0	0	0	0	1	0
5	0	0	1	0	1	0	1	0	0
6	0	0	1	1	0	0	1	1	0
7	0	0	1	1	1	1	0	0	0
8	0	1	0	0	0	0	1	0	0
9	0	1	0	0	1	0	1	1	0
10	0	1	0	1	0	1	0	0	0
11	0	1	0	1	1	1	0	1	0
12	0	1	1	0	0	0	1	1	0
13	0	1	1	0	1	1	0	0	0
14	0	1	1	1	0	1	0	1	0
15	0	1	1	1	1	1	1	0	0
16	1	0	0	0	0	1	0	0	0
17	1	0	0	0	1	1	0	1	0
18	1	0	0	1	0	1	1	0	0
19	1	0	0	1	1	1	1	1	0
20	1	0	1	0	0	1	0	1	0
21	1	0	1	0	1	1	1	0	0
22	1	0	1	1	0	1	1	1	0
23	1	0	1	1	1	0	0	0	1
24	1	1	0	0	0	0	0	0	0
25	1	1	0	0	1	0	0	1	0
26	1	1	0	1	0	0	1	0	0
27	1	1	0	1	1	0	1	1	0
28	1	1	1	0	0	0	0	1	0
29	1	1	1	0	1	0	1	0	0
30	1	1	1	1	0	0	1	1	0
31	1	1	1	1	1	1	0	0	0

Минимизация булевых функций на картах Карно

 $c_1 = a_1 \overline{a_2} \overline{a_3} \vee a_1 \overline{a_2} \overline{b_1} \vee a_1 \overline{a_2} \overline{b_2} \vee \overline{a_1} \overline{a_2} b_1 \vee a_2 \overline{a_3} b_1 b_2 \vee \overline{a_1} \overline{a_2} a_3 b_2 \vee \overline{a_1} \overline{a_3} b_1 b_2 \quad (S_Q = 31)$

 $c_2 = a_1\,b_1\,\overline{b_2} \lor a_1\,\overline{a_3}\,b_1 \lor \overline{a_2}\,b_1\,\overline{b_2} \lor \overline{a_2}\,\overline{a_3}\,b_1 \lor a_1\,a_3\,\overline{b_1}\,b_2 \lor \overline{a_1}\,\overline{a_2}\,\overline{a_3}\,\overline{b_1} \lor \overline{a_1}\,\overline{a_2}\,\overline{b_1}\,\overline{b_2} \lor \overline{a_2}\,\overline{a_3}\,\overline{b_1}\,b_2 \lor \overline{a_1}\,\overline{a_2}\,a_3\,\overline{b_1}\,b_2 \lor \overline{a_1}\,\overline{a_2}\,\overline{a_3}\,\overline{b_1}\,b_2 \lor \overline{a_1}\,\overline{a_2}\,\overline{a_3}\,\overline{b_1}\,\overline{b_2}\,\overline{a_2}\,\overline{a_3}\,\overline{b_1}\,\overline{b_2}\,\overline{a_2}\,\overline{a_3}\,\overline{a_2}\,\overline$

 $c_3 = a_3 \overline{b_2} \vee \overline{a_3} b_2 \quad (S_Q = 6)$

$$e = a_1 \overline{a_2} a_3 b_1 b_2 \quad (S_Q = 5)$$

Преобразование системы булевых функций

$$c_{1} = a_{1} \overline{a_{2}} \overline{a_{3}} \vee a_{1} \overline{a_{2}} \overline{b_{1}} \vee a_{1} \overline{a_{2}} \overline{b_{2}} \vee \overline{a_{1}} a_{2} b_{1} \vee a_{2} a_{3} b_{1} b_{2} \vee \overline{a_{1}} a_{2} a_{3} b_{2} \vee \overline{a_{1}} a_{2} a_{3} b_{2} \vee \overline{a_{1}} a_{2} a_{3} b_{1} b_{2} \vee \overline{a_{1}} a_{2} a_{3} b_{1} \vee \overline{a_{2}} a_{3} b_{1} b_{2} \vee \overline{a_{2}} a_{3} b_{1} b_{2} \vee \overline{a_{1}} a_{2} a_{3} b_{1} b_{2} \vee \overline{a_{2}} a_{2} \wedge \overline{a_{2}} a_{3} b_{1} b_{2} \vee \overline{a_{2}} a_{3} b_{1} b_{2} \vee \overline{$$

Проведем раздельную факторизацию системы.

Проведем раздельную факторизацию системы.

$$c_{1} = a_{2} \ a_{3} \ \underline{b_{2}} \ (b_{1} \lor \overline{a_{1}}) \lor a_{1} \ \overline{a_{2}} \ \overline{a_{3}} \lor \overline{b_{1}} \underline{\lor} \ \overline{b_{2}} \ \lor \overline{a_{1}} \ b_{1} \ (\underline{a_{2}} \lor a_{3} \ b_{2}) \qquad (S_{Q}^{c_{1}} = 22)$$

$$- - - - - - - - c_{c}^{c} = a \ \underline{a} \ b \ Q$$

$$c_{Q} = \sqrt{a_{3}} \ b_{Q} \ (\sqrt{a_{3}} \sqrt{b_{2}}) \ b \ b \ \lor a \ b \ \lor a \ b \ b \quad \lor a \ a \ a \ b \ b \quad (S = 28) \quad (S_{Q}^{c_{3}} = 5)$$

$$e = a_{1} \ \overline{a_{2}} \ a_{3} \ b_{1} \ b_{2} \qquad (S_{Q} = 5)$$

$$(S_{Q} = 61)$$

Проведем совместную декомпозицию системы.

Проведем совместную декомпозицию системы.

$$\phi_{0} = a_{3} \underline{b}_{2}$$

$$c_{3} = a_{3} b_{2} \vee a_{3} b_{2}$$

$$\phi = \phi b$$

$$c_{1} = \phi_{0} \underline{a}_{1} (\underline{a}_{1} \vee b_{1}) \vee \underline{\phi}_{1} \underline{a}_{1} \underline{a}_{2} \vee \underline{a}_{1} b_{1} (\phi_{0} \vee a_{2})$$

$$c_{2} = (a_{1} \vee \overline{a}_{2}) \quad \phi_{0} \underline{b}_{1} \vee \underline{b}_{1} \underline{b}_{2} \vee \overline{a}_{3} \underline{b}_{1} \quad \vee \underline{\phi}_{1} \overline{a}_{1} \underline{a}_{2} \vee \overline{\phi}_{0} \overline{a}_{1} \underline{a}_{2} \underline{b}_{1}$$

$$c_{2} = \phi_{1} \underline{a}_{1} \underline{a}_{2}$$

$$(S_{Q}^{c_{1}} = 2)$$

$$(S_{Q}^{c_{1}} = 16)$$

$$(S_{Q}^{c_{2}} = 23)$$

$$(S_{Q}^{c_{2}} = 3)$$

$$(S_{Q} = 54)$$

 $\phi_1 = \phi_0 b_1$, $\overline{\phi_1} = \overline{\phi_0} \vee \overline{b_1}$

Проведем раздельную факторизацию системы.

$$\phi_{0} = a_{3} \underline{b}_{2}$$

$$c_{3} = a_{3} b_{2} \vee a_{3} b_{2}$$

$$\phi = \phi b$$

$$c_{1} = \phi_{0_{0}} a_{2_{1}} (a_{1} \vee b_{1}) \vee \phi_{1} a_{1} a_{2} \vee a_{1} b_{1} (\phi_{0} \vee a_{2})$$

$$c_{2} = a_{1} a_{2} - \phi_{1} \vee \phi_{0} b_{1} \vee (a_{1} \nabla a_{2}) - \phi_{0} b_{1} \nabla b_{1} b_{2} \vee a_{3} b_{1}$$

$$(S_{Q}^{c_{1}} = 2)$$

$$(S_{Q}^{c_{2}} = 16)$$

$$(S_{Q}^{c_{2}} = 22)$$

$$(S_{Q}^{c_{2}} = 3)$$

Синтез комбинационной схемы в булевом базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 1$$
, $a_2 = 0$, $a_3 = 1$, $b_1 = 1$, $b_2 = 1$

Выходы схемы из таблицы истинности:

$$c_1 = 0$$
, $c_2 = 0$, $c_3 = 0$, $e = 1$

Цена схемы: $S_Q = 53$. Задержка схемы: $T = 6\tau$.