EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

08333650

PUBLICATION DATE

17-12-96

APPLICATION DATE

24-10-95

APPLICATION NUMBER

07275231

APPLICANT: HITACHI METALS LTD;

INVENTOR: KOJO KATSUHIKO;

INT.CL.

C22C 37/04 C21C 1/10

TITLE

THIN-WALLED SPHEROIDAL GRAPHITE CAST IRON, AUTOMOBILE PARTS USING

SAME, AND PRODUCTION OF THIN-WALLED SPHEROIDAL GRAPHITE CAST IRON

ABSTRACT :

PURPOSE: To produce a thin-walled spheroidal graphite cast iron minimal in the

occurrence of chill and also to produce automobile parts by using this material.

CONSTITUTION: The thin-walled spheroidal graphite cast iron has a composition consisting of, by mass ratio, 3.0-4.0% C, 1.5-2.4% Si, <0.3% Mn, <0.05% P, 0.009-<0.016% S, 0.02-0.06% Mg, 5-60ppm Bi, and the balance Fe with inevitable impurities and further has a chilled carbon equivalent (CEc) represented by equation, CEc=C%+ α Si%, where 1< α ≤2 is satisfied. By this method, the sound thin-walled spheroidal graphite cast iron, in which the occurrence of chill in the thin-walled part of

≤3mm thickness in an as-cast state is controlled to ≤2%, can be obtained.

COPYRIGHT: (C)1996,JPO

		10/4-		NTON TO
		•		
				400
				. 18 2
			* **	7.5
			e e	* * *
		•		
		•		
		•		
			•	
		. •		
		. 8	*	
		v-•		
	· +·			
				•
		. •		
			-	
		,		
		•		
		•		
			•	
		e in the second		
The state of the s				

(19)日本国特許庁(JP)

(51) Int.Cl.6

(12) 公開特許公報(A)

F I

庁内整理番号

(11)特許出願公開番号

特開平8-333650

技術表示箇所

(43)公開日 平成8年(1996)12月17日

C 2 2 C 37/04		C 2 2 C 3	7/04 Z
C 2 1 C 1/10	1 0 2	C 2 1 C	1/10 1 0 2
	·		
·		審査請求	未請求 請求項の数15 OL (全 12 頁)
(21)出願番号	特願平7-275231	(71)出願人	000005083
			日立金属株式会社
(22)出願日	平成7年(1995)10月24日		東京都千代田区丸の内2丁目1番2号
		(72)発明者	上田 精心
(31)優先権主張番号	特願平6-262914		福岡県京都郡刈田町長浜町35番地 日立金
(32)優先日	平6(1994)10月26日		属株式会社九州工場內
(33)優先権主張国	日本(JP)	(72)発明者	中野英治
(31)優先権主張番号	特願平7-80407		栃木県真岡市鬼怒ケ丘13番地 日立金属株
(32)優先日	平7(1995)4月5日		式会社真岡工場内
(33)優先権主張国	日本(JP)	(72)発明者	吉田 敏樹
	·		栃木県真岡市鬼怒ケ丘11番地 日立金属株
			式会社案材研究所内
		(74)代理人	弁理士 開口 宗昭
		,	最終頁に続く

(54) 【発明の名称】 薄肉球状黒鉛鋳鉄及びこれを用いた自動車用部品並びに薄肉球状黒鉛鋳鉄の製造方法

(57)【要約】

【目的】 チル発生が極めて少ない蒋肉球状黒鉛鋳鉄及びこれを用いた自動車用部品及び蒋肉球状黒鉛鋳鉄の製造方法を提供する。

識別記号

【構成】 本発明の薄肉球状黒鉛鋳鉄は、質量比で、 $C:3.0\sim4.0\%$ 、 $Si:1.5\sim2.4\%$ 、Mn:0.3%未満、P:0.05%未満、 $S:0.009\sim0.016%$ 未満、 $Mg:0.02\sim0.06%$ 、 $Bi:5\sim60ppm$ 、残部Fe および不可避不純物からなる組成を有し、かつ、(1)式で示されるチル化炭素当量(CEc)に調製されるようにしたので、3mm以下の薄肉部の鋳放しでのチル発生を2%以下に抑制した健全な薄肉球状黒鉛鏡鉄とすることができる。

 $CEc = C\% + \alpha Si\% \cdot \cdot \cdot \cdot \cdot (1)$ 但し、 $1 < \alpha \le 2$

1

【特許請求の範囲】。

【請求項1】 質量比で、C:3.0~4.0%、S i:1.5~3.0%、Mn:0.5%未満、P:0. 05%未満、S:0.006~0.025%未満、M g: 0. 02~0. 06%, Bi: 5~60ppm, R EM:20~300ppm、残部Fe及び不可避不純物 からなり、かつ、(1) 式で示されるチル化炭素当量 (CEc) に調製されることを特徴とする薄肉球状黒鉛 鋭鉄。

 $CEc = C\% + \alpha S i\% \cdot \cdot \cdot \cdot \cdot \cdot (1)$ **但し、1<α≦2**

【請求項2】 質量比で、C:3.0~4.0%、S i:1.5~3.0%、Mn:0.5%未満、P:0. 05%未満、S:0.006~0.025%未満、M $g:0.02\sim0.06\%$, $Bi:5\sim60$ ppm, R EM:20~300ppm、残部Fe及び不可避不純物 からなり、かつ、(2) 式で示されるチル化炭素当量 (CEc) に調製されることを特徴とする薄肉球状黒鉛

 $CEc = C\% + \alpha S i\% \cdot \cdot \cdot \cdot \cdot (2)$

但し、1.5≦α≦1.9

【請求項3】 チル化炭素当量 (CEc) を7%以上と する請求項1または請求項2記載の薄肉球状黒鉛鋳鉄。

3mm以下薄肉部の鋳放しでのチル面積 率が2%以下である請求項1~請求項3の何れか一に記 載の薄肉球状黒鉛鋳鉄。

【請求項5】 質量比で、C:3.0~4.0%、S i:1.5~3.0%、Mn:0.5%未満、P:0. 05%未満、S:0.006~0.025%未満、M g: 0. 02~0. 06%, Bi: 5~60ppm, R 30 EM:20~300ppm、残部Fe及び不可避不純物 からなり、かつ、(1)式で示されるチル化炭素当量 (CEc) に調製された薄肉球状黒鉛鋳鉄を用いたこと を特徴とする自動車用部品。

 $CEc = C\% + \alpha S i\% \cdot \cdot \cdot \cdot \cdot (1)$

但し、1 < α ≤ 2

【請求項6】 チル化炭素当量(CEc)を7%以上と する請求項5記載の自動車用部品。

【請求項7】 3mm以下薄肉部の鋳放しでのチル面積 率が2%以下である請求項5または請求項6記載の自動 40 **車用部品。**

【請求項8】 自動車用部品が懸架装置部品である請求 項5~請求項7の何れか一に記載の自動車用部品。

【請求項9】 自動車用部品が差動歯車装置部品である 請求項5~請求項7の何れか一に記載の自動車用部品。

【請求項10】 質量比で、C:3.0~4.0%、S i:1.5~3.0%、Mn:0.5%未满、P:0. 05%未満、残部Fe、S及び不可避不純物からなる組 成を有する溶湯を準備し、C及びSiの分量を(1)式 で示されるチル化炭素当量(CEc)に調製し、REM 50 の状態で薄肉球状黒鉛鋳鉄に、引張強さ、伸び及び衝撃

を含む球状化剤で球状化処理を行って残留Mg: 0. 0 2~0.06%とし、更に前記球状化処理と同時または 球状化処理した後にBi:20~150ppm添加し、 Sの含有量を結果として0.006~0.025%未満 に調整することを特徴とする薄肉球状黒鉛鋳鉄の製造方

2

 $CEc = C\% + \alpha S i\% \cdot \cdot \cdot \cdot \cdot \cdot (1)$ **但し、1<α≦2**

【請求項11】 質量比で、C:3.0~4.0%、S 10 i:1.5~3.0%、Mn:0.5%未満、P:0. 05%未満、残部Fe、S及び不可避不純物からなる組 成を有する溶湯を準備し、C及びSiの分量を(1)式 で示されるチル化炭素当量(CEc)に調製し、球状化 剤で球状化処理を行って残留Mg:0.02~0.06 %とし、更に前記球状化処理と同時または球状化処理し た後にBi:20~150ppm及びREMを添加し、 結果として含有量がS:0.006~0.025%未 満、Bi:5~60ppm、REM:20~300pp mに調整することを特徴とする薄肉球状黒鉛鋳鉄の製造 20 方法。

 $CEc=C%+\alpha Si%\cdots\cdots$ (1)

但し、1 < α ≤ 2

【請求項12】 チル化炭素当量(CEc)を7%以上 とする請求項10または請求項11記載の薄肉球状黒鉛 鋳鉄の製造方法。

【請求項13】 Sが元湯で添加されてSの含有量が結 果として0.006~0.025%未満に調整する請求 項10~請求項12の何れか一に記載の薄肉球状黒鉛鋳 鉄の製造方法。

【請求項14】 Sを取鍋ポケット内で添加して、元湯 で含有するSと併せSが結果として0.006~0.0 25%未満に調整される請求項10~請求項12の何れ か一に記載の薄肉球状黒鉛鋳鉄の製造方法。

【請求項15】 Sを二次接種と同時に0.003%添 加して、元湯で含有するSと併せSが結果として0.0 06~0.025%未満に調整される請求項10~請求 項12の何れか一に記載の薄肉球状黒鉛鋳鉄の製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は薄肉球状黒鉛鋳鉄及 びこれを用いた自動車用部品並びに薄肉球状黒鉛鋳鉄の 製造方法に関する。

[0002]

【従来の技術】球状黒鉛鋳鉄は優れた機械的強度を有 し、自動車部品や機械部品等を含む種々の用途に広く使 われている。この球状黒鉛鋳鉄で、特に部分的に薄肉部 を有する鋳物の場合、その薄肉部における冷却速度が速 くなりチル化するという問題がある。このため、鋳放し 値等について優れた機械的性質を持たせるには、基地組織中の黒鉛粒数を増加することによりチル発生を少なくする必要がある。このような目的で従来から、球伏黒鉛 鋳鉄の組成におけるCE値 [炭素当量= (C) +1/3 (Si)] を高くする、或は炭化物を安定させる元素を排除する等の調整を行うなど、海肉部を有する球状黒鉛 鋳鉄について種々の開発が行われている。

【0003】かかる従来例として特開平1-30993 9号公報には、球状黒鉛鍍鉄でのCE値を3.9~4. 6重量%とし、Biを0.015~0.008重量%含 10 有することにより、黒鉛粒数が300個/mm²以上の 高钢性の球状黒鉛鋳鉄が得られるとする開示がある。ま た、特開平2-70015号公報には、球状黒鉛鋳鉄で のCE値を3. 9~4. 6重量%とし、Biを0. 00 3~0.015重量%添加することにより、黒鉛粒数が 300個/mm³以上の高靱性の球状黒鉛鋳鉄が得られ るとする開示がある。更に、特開平3-130344号 公報には、5を0.016~0.030重量%含有させ ると共に、必要によりランタニド系希土類元素を含有さん せ、鋳放し肉厚が3mmのとき、2μm以上の粒径を有 20 する黒鉛粒数が1700個/mm²以上の高靱性の球状 黒鉛鋳鉄が得られるとする開示がある。また更に、特公 平4-18002号公報には、Sを0.025~0.1 8 重量%含有する溶湯に、Sの2.0~7.0倍量の希 土類金属または希土類元素を含む合金或いはその添加剤 で処理し、引き続きMg系の球状化剤で球状化処理する ことにより、鋳放しでチルの存在しない健全な蒋肉球状 黒鉛鋳鉄を得ることができるとする開示がある。

[0004]

【発明が解決しようとする課題】しかし各従来技術によ 30 っても、まだまだ薄肉球状黒鉛鋳鉄でのチル発生防止を充分に達成することはできず、更に改善の余地がある。特に近年自動車用部品においては、その軽量化の要請が大きく、その要請に伴い薄肉化される傾向があり、その反面強度上の要請も大きく、軽量化と強度確保が同時に存在するという特性がある。従って、薄肉化を進めていくと同時に、チルの発生による強度上の欠陥の発生を防止しなければならないという課題がある。

【0005】本発明は、以上の従来技術における問題に 鑑みてなされたものであって、鋳放しでの蒋肉部位にお 40 いてもチル発生が極めて少ない蒋肉球状黒鉛鋳鉄及びこれを用いた自動車用部品並びに蒋肉球状黒鉛鋳鉄の製造 方法を得ることを目的とする。

[0006]

【課題を達成するための手段】本発明者等は以上の課題を達成するために種々検討し、球状黒鉛鋳鉄溶湯の組成をS、Bi、チル化炭素当量(CEc)等に関して適宜に調整し、REMを含む球状化剤で球状化処理を行って残留Mg濃度を調整すると共に球状化処理と同時または球状化処理した後にBiを所定量添加することにより、

薄肉部においても有効にチル化防止を図ることができる ことを知見し本発明に想到した。

【0007】以上の課題を達成する本出願請求項1記載の薄肉球状黒鉛鋳鉄は、質量比で、C:3.0~4.0%、Si:1.5~3.0%、Mn:0.5%未満、P:0.05%未満、S:0.006~0.025%未満、Mg:0.02~0.06%、Bi:5~60ppm、REM:20~300ppm、残部Fe及び不可避不純物からなり、かつ、(1)式で示されるチル化炭素当量(CEc)に調製されることを特徴とする。

 $CEc=C%+\alpha Si% \cdots (1)$ 但し、 $1<\alpha \le 2$

本出願請求項2記載の薄肉球状黒鉛鋳鉄は、質量比で、C:3.0~4.0%、Si:1.5~3.0%、Mn:0.5%未満、P:0.05%未満、S:0.006~0.025%未満、Mg:0.02~0.06%、Bi:5~60ppm、REM:20~300ppm、残部Fe及び不可避不純物からなり、かつ、(2)式で示されるチル化炭素当量(CEc)に調製されることを特徴とする。

 $CEc=C%+\alpha Si%\cdots\cdots(2)$

但し、1.5≦α≦1.9

このような薄肉球状黒鉛鋳鉄は、3mm以下薄肉部の鋳放しでのチル面積率が2%以下となる。

【0008】また、以上の課題を達成する本出願請求項4記載の自動車部品は、質量比で、C:3.0~4.0%、Si:1.5~3.0%、Mn:0.5%未満、P:0.05%未満、S:0.006~0.025%未満、Mg:0.02~0.06%、Bi:5~60ppm、REM:20~300ppm、残部Fe及び不可避不純物からなり、かつ、(1)式で示されるチル化炭素当量(CEc)に調製された薄肉球状黒鉛鋳鉄を用いたことを特徴とする。

 $CEc=C%+\alpha Si% \cdots (1)$ 但し、 $1 < \alpha \le 2$

そして、このような自動車部品は、3 mm以下薄肉部の 鋳放しでのチル面積率が2%以下となり、懸架装置部品 のサスペンションアームや差動歯車装置部品のギャーケース等である。

40 【0009】以上の課題を達成する本出願語求項8記載の薄肉球状黒鉛鋳鉄の製造方法は、質量比で、C:3.0~4.0%、Si:1.5~3.0%、Mn:0.5%未満、P:0.05%未満、残部Fe、S及び不可避不純物からなる組成を有する溶湯を準備し、C及びSiの分量を(1)式で示されるチル化炭素当量(CEc)に調製し、REMを含む球状化剤で球状化処理を行って残留Mg:0.02~0.06%とし、更に前記球状化処理と同時または球状化処理した後にBi:20~150ppm添加し、Sの含有量を結果として0.006~500.025%未満に調整することを特徴とする。

(4)

 $CEc = C\% + \alpha S i\% \cdot \cdot \cdot \cdot \cdot (1)$ 但し、1 < α ≤ 2

また以上の課題を達成する本出願請求項9記載の薄肉球 状黒鉛鋳鉄の製造方法は、質量比で、C:3.0~4. 0%、Si:1.5~3.0%、Mn:0.5%未満、 P: 0. 05%未満、残部Fe、S及び不可避不純物か らなる組成を有する溶湯を準備し、C及びSiの分量を (1) 式で示されるチル化炭素当量 (CEc) に調製 し、球状化剤で球状化処理を行って残留Mg:0.02 ~0.06%とし、更に前記球状化処理と同時または球 10 状化処理した後にBi:20~150ppm及びREM を添加し、結果として含有量がS:0.006~0.0 25%未満、Bi:5~60ppm、REM:20~3 00ppmに調整することを特徴とする。

 $CEc = C\% + \alpha Si\% \cdot \cdot \cdot \cdot \cdot \cdot (1)$ **但し、1<α≦2**

【0010】 Sを添加してSの含有量を結果として0. 006~0.025%未満に調整するには、元湯でSを 添加してもよく、また、取鍋内でSを添加してもよく、 更に、二次接種と同時にSを添加して、元湯で含有する 20 Sと併せることもできる。

[0011]

【作用】以下、本発明の薄肉球状黒鉛鋳鉄及びこれを用 いた自動車用部品並びに薄肉球状黒鉛鋳鉄の製造方法に おける各合金元素の組成範囲の限定理由について詳細に 説明する。

【0012】(1) C (炭素): 3.0~4.0%、好 ましくは、C:3.6~4.0%

Cが3.0%未満では黒鉛粒数が減少して、パーライト るとキッシュ黒鉛が出やすくなり強度が低下する。この ためCは3.0~4.0%とし、好ましくは、Cは3. 6~4.0%とする。

【0013】(2) Si(珪素):1.5~3.0%、 好ましくは、Si:2.0~2.7%

Siが1. 5%未満では炭化物が析出しやすくなり衝撃 値と伸びが低下する。一方、Siが3.0%を越えると シリコフェライトの影響で衝撃値や伸びが低下する。こ のため、Siは1.5~3.0%とし、好ましくは、S iは2.0~2.7%とする。

【0014】(3) Mn(マンガン):0.5%未満、 好ましくは、Mn:0.3%未満

Mnが0. 5%以上ではパーライトが多くなり衝撃値と 仲びが低下する。このため、Mnは0.5%以下とし、 好ましくは、Mnは0.3%未満とする。

【0015】(4) P(リン):0.05%未満、好ま しくは、P:0.03%未満

Pが0.05%以上あると基地中に固溶して組織を脆化 させる。このためPは 0. 05%未満とし、好ましく は、Pは0.03%未満とする。

【0016】(5)S(硫黄):0.006~0.02 5%未満、好ましくは、S:0.008~0.020 %、更に好ましくは、S:0.012~0.018% Sは通常不純物として認識されるが、本発明では、Sを 積極的に含有させ、有用元素として認識する。即ち、S を適量添加することにより、黒鉛の球状化を阻害せずに チル発生を抑制させる。Sが0.006%未満ではチル が発生する。一方、Sが0.025%を越えると、黒鉛 の球状化率が低下して強度が出なくなる。このため、S は0.006~0.025%未満、好ましくは、Sは 0.008~0.020、更に好ましくは、Sは0.0 12~0.018%とする。Sの添加は、元捌でSを高 めにするか、取鍋内に置くか、または二次接種と同時に 行うかして行うが、チル抑制には元湯で高S化するのが 効果が大きい。図12は、元湯でSの添加量を変化させ た場合のチル面積率の関係を示す図である。図12に示 すように、S添加量が0.006~0.025の範囲で チル面積率が2%以下になっていることがわかる。

6

【0017】(6) Mg(マグネシウム):0.02~ 0.06%

Mgが0.02%未満では黒鉛が球状化せず、一方、M gが0.06%を越えると、引け巣、炭化物が出やすく なるばかりでなく、経済的にも不利となる。このため、 Mgは0.02~0.06%とする。図1はS及びMg の含有量と球状化率の関係を示す図である。Sは元湯で 添加し、球状化率は実際の球状黒鉛鋳鉄での薄肉部を想 定した2mm厚さの部分と、Yプロックでの球状黒鉛鋳 鉄での厚肉部を想定した25mm厚さの部分で測定し た。S添加が0.008%での球状化率は、2mm厚さ が多くなりチル化しやすい。一方、Cが4.0%を越え 30 で87.1%、25mm厚さで83.1%である。これ に対して、Sが0.012%での球状化率は2mm厚さ で87.8%、25mm厚さで79.1%である。2m mの薄肉部では球状化率が殆ど低下せず、また25mm の厚肉部での球状化率もほぼ80%であり、実際の球状 黒鉛鋳鉄にしても問題のない球状化率となっている。図 13は、S及びMg含有量と球状黒鉛鋳鉄の黒鉛球状率 の関係を示す図である。図13に示すように、黒鉛球状 率を80%以上確保するには、S含有量に応じてMgの 含有量を0.02~0.06%で変化させればよいこと 40 がわかる。

> 【0018】(7) Bi:5~60ppm、好ましく は、Bi:10~50ppm

BiはCE値(炭素当量)の広い範囲でチル化を抑止す る効果を有し、球状黒鉛鋳鉄の引張強さ、伸び、衝撃値 を向上する。海肉球状黒鉛鋳鉄のチル化を抑止し、引張 強さ、仲び、衝撃値を確保するためには、蔣肉球状黒鉛 鋳鉄のチル面積率は2%以下とする必要があり、このた めBiを5ppm以上含有させる必要がある。一方、B iを60ppmを越えて含有すると逆にチルが2%以上 50 発生する。このため、Biは5~60ppm、好ましく

は、Biは10~50ppmとする。Bi含有量を確保 するためには、本発明でのS添加、REMを含む球状化 剤での球状化処理との関係から、Biの添加量は20~ 150ppmとする。

【0019】(8) チル化炭紫当量(CEc) $CEc = C\% + \alpha Si\% \cdot \cdot \cdot \cdot \cdot \cdot (1)$ **但し、1<α≦2**

本出願において、鋳鉄溶湯の成分組成におけるチル化炭 素当量 (CEc) を規定するのは、チル化炭素当量 (C Ec) を設定し、かかるチル化炭素当量(CEc)によっ 10 て鋳鉄溶湯の冷却過程におけるチル化傾向を評価するよ うにし、特には前記チル化炭素当量(CEc)をCEc= C%+αSi% (但し、1 < α≤2) として算出するよ うにすることによりチル化傾向を客観的、定量的に精度 良く評価することができ最適に性状を調整した溶湯によ りチルのない鋳鉄を効率よく生産することが可能となる からである。本出願においてかかるチル化炭素当量(C Ec) $0 \alpha = 1 < \alpha \le 2$ と規定するのは、 α が 1未満で はチル化炭素当量(CEc)とチル化傾向との相関が従 来の炭素当量と同程度となり、溶湯のチル化傾向を精度 20 良く評価することができないからである。また α が2を 越えるとチル化炭素当量(CEc)とチル化傾向との相 関が認められなくなる。かかるチル化炭素当量(CE c) 0α は1. $5 \le \alpha \le 1$. 9とするのがより好まし い。 αが1. 5未満及びαが1. 9を越えるとチル化炭 素当量 (CEc) とチル化傾向との相関がまだ十分では なく、溶湯のチル化傾向を十分に精度良く評価すること ができないからである。

[0020] (9) REM: 20~300ppm REMを含む球状化剤で球状化処理を行えば、球状化処 30 理により発生した主としてマグネシウム硫化物などによ り、球状黒鉛鋳鉄の球状化率が損なわれずにREMが機 能する。図14は、REMとして(Ce+La)の含有 **量とチル面積率の関係を示す図である。図14に示すよ** うに、REM (Ce+La) が20ppm~300pp mの範囲でチル面積率が2%以下になっている。

[0021]

【実施例】以下、本発明の薄肉球状黒鉛鋳鉄及びこれを 用いた自動車用部品並びに薄肉球状黒鉛鋳鉄の製造方法 を実施例により説明する。

(実施例1) 質量比で、Mn:0.3%未満、P:0. 03%未満、S: Q. 009以上とし残部C、Si、F e 及び不可避不純物からなる組成を有する溶湯を準備 し、Fe-Si-Mg-REM-Ca系球状化剤により 球状化処理を行い、残留Mg:0.027~0.047 %とし、更に前記球状化処理した後に、Biを50pp m添加して、Bi含有量が5~60ppmである場合 の、CE値ごとに発生するチル面積率を測定した。その 結果を図3に実線で示す。図3には比較例として、Sの みを変え、Sを0.008以下にして含有させた場合の 50 が大きく、チル面積率が0.3%となっている。次にチ

チル面積率を点線として示す。図3に示すように、実施 例のSをO. 009%以上含有させたものは、CE値全 域にわたってチル面積率が2%以下となっている。これ に対し、比較例のSが0.008%以下含有では、チル 面積率はCE値全域にわたって高く、チル面積率が2% に達する場合もある。

8

【0022】 (実施例2) 図4は、Fe-Si-Mg-REM-Ca系球状化剤により球状化処理を行い残留M g:0.032~0.038%とし、S:0.006~ 0. 010%含有させ、CE値を4. 47~4. 50% として、Biを0~500ppm添加した場合の発生す るチル面積率を測定した結果を示す。図4に示すよう に、Biを20~150ppm添加することにより、チ ル面積率を2%以下とすることができる。

【0023】 (実施例3) 図5はFe-Si-Mg-R EM-Ca系球状化剤により球状化処理を行い、残留M $g:0.035\sim0.044\%$, $S:0.008\sim0$. 009%を含有し、Bi:0~500ppm添加した鋳 放し薄肉球状黒鉛鋳鉄のBi含有量とチル面積率を示 す。Bi含有量5~60ppmの範囲でチル面積率は3 %以下となっている。ここで、図12はBi含有量5~ 60 p p m の範囲のときのS量とチル面積率の関係を示 す。Bi含有量5~60ppmの範囲にあれば、S: 0.0010~0.016%とすることにより、鋳放し で安定してチル面積率2%以下の薄肉球状黒鉛鋳鉄を得 ることができる。

【0024】 (実施例4) 図6は、Fe-Si-Mg-REM-Ca系球状化剤により球状化処理を行い残留M g:0.027~0.038%とし、Sを0.006~ 0. 010%含有させた溶湯にBiを50ppm添加 し、CE値を変化させた場合のチル面積率を示す図であ る。図6において実線は実施例のものを示し、破線はB i無添加の比較例のものを示す。図6に示すように、実 施例のものではCE値が4. 45~4. 75の広範囲に わたってチル面積率が2%以下になっていることがわか る。これに対し、図6の比較例のFe-Si-Mg-R EM-Ca系球状化剤により球状化処理を行い、残留M g:0.027~0.038%とし、Sを0.006~ 0. 010%含有させた溶湯でBiを添加しないもの 40 は、CE値が4. 63を越えればチル面積率が2%以下 になるが、それ以下ではチル面積率が2%を大きく越え てる。

【0025】 (実施例5) 図7は、Fe-Si-Mg-REM-Ca系球状化剤により球状化処理を行い、残留 Mg: 0. 035~0. 044%、CE值: 4. 40~ 4. 52、Bi:50ppmとし、Sを0.006~ 0.025%未満含有させる、添加方法とチル化傾向の 関係を調査した結果を示す図である。Sの添加はチル抑 制に効果があるが、図7に示す元湯での添加が最も効果 【0026】(実施例6)図8は、Fe-Si-Mg-REM-Ca系球状化剤により球状化処理を行い、Biを50ppm、更にSを0.010%以上含有させ、C 10 E値を変化させた場合のチル化傾向を調査した結果を示す図である。図8でBiを50ppm添加したものはC E値4.45~4.75の全域にわたってチル面積率が2%以下となっている。Bi:50ppmに加え更にS:0.010%以上含有させたものはチル面積率がBiのみより大幅に小さくなっている。一方、図8で示されるBi無添加のものは、REMを90~100ppm含有する球状化剤で球状化処理を行い、CE値が4.45以上4.60未満、Sが0.008%以下のものであるが、CE値が4.65未満ではチル面積率が2%を越20えている。

【0027】(実施例7)CE値を4.4~4.75とし、Biを50ppm添加した溶場中に、REMを120~150ppm含有させて球状化処理を行い、Sを0.010%以上添加した溶湯を用いて、クサビ型試験片を鋳造した。このクサビ型試験片の金属組織顕微鏡写真と、この写真により測定した黒鉛粒数とフェライト率の結果を図9に示す。一方、従来の球状黒鉛鋳鉄鋳物を製造する溶湯である、CE値が4.45~4.60未満、Bi無添加の溶湯中に、REM:90~100pp 30m添加して球状化処理を行い、Sを0.008%以下とした溶湯により鋳造したクサビ型試験片の金属組織の顕微鏡写真と、この写真により測定した黒鉛粒数とフェライト率の結果を比較例として図9に示す。図9に示すよ

うに、実施例のものでは肉厚15mmでも黒鉛粒数が3 10個/mm²、フェライト率が40%であり、健全な球状黒鉛鋳鉄鋳物になっている。これに対し、比較例のものでは、肉厚15mmでの黒鉛粒数が209個/mm²、フェライト率が25%であり、実施例に比較して黒鉛粒数及びフェライト率が少ない。

10

【0028】(実施例8) 最終化学成分(ただし、残部 Fe及び不可避不純物を除く)が表1となるように溶過 を調整し、注湯温度1335℃で、図10にその模型形 10 状を示す自動車用懸架装置部品としてのサスペンション アームを鋳造した。

[0029]

【表1】

最終化学成分(質量%)

C Si Mn P S Mg Bi(添加)
3.85 2.18 0.23 0.025 0.009 0.034 50 ppm
【0030】そして薄肉部の肉厚が2.5mm及び2.8mmの部分における金属組織を観察した。その金属組織写真を図11に示す。図11に示すように、2.5mm及び2.8mmの薄肉部においても組織に先の図1に見られるような羽毛状組織のチル発生は見られず、球状化も図れており、健全な球状黒鉛鋳鉄鋳物となっていて

(実施例9) C: Xwt%、Si: Ywt%、S: 0. 012 wt%、Mg: 0. 039~0. 052wt%、Bi: 50ppm、残部Fe及び不可避不純物なる組成に調整した溶 湯にREM含有球状化材を添加し鋳造して得られた試験 片につきチル面積率を測定した。またその場合のチル化 炭紫当量(CEc)を(3)式から算出した。

7 CEc=C%+1.7Si%・・・・・(3)以上のX,Yとチル面積率及びチル化炭素当量(CEc)の関係を表2に示す。

【0031】 【表2】

	X (wt%)	Y (wt%)	チル化炭紫当量(wt%)	チル面積率(タ
)	•			
1	3.60	2. 70	8. 19	0.1
2	3. 53	2.44	7.68	0.2
3	3. 82	2. 33	7. 78	0. 2
4	3.72	2. 34	7. 70	0.4
5	3. 88	2.27	7.74	0.4
6	3. 43	2.68	7. 99	1.0
7	3. 57	2. 23	7. 36	1.3
8	3. 70	2.48	7. 92	1.3
9	3.68	2.40	7. 76	1.6
10	3. 69	2.13	7. 31	3.8
1 1	3. 83	2. 17	7. 52	3.8
1 2	3. 65	2. 35	7.65	5. 7
1 3	3. 47	2. 15	7. 13	10.4
1 4	3.62	1.74	6. 58	13.0

11 1 5 3.91 1.80 6.97 15.6 1 6 3.78 1.78 6.81 17.1

【0032】また以上の表2におけるチル化炭素当量とチル面積率との関係を図15に示す。図15に示されるようにチル化炭素当量とチル面積率との関係におけるパラツキはr=0.88であった。

【0033】(比較例) 実施例9の試験片について炭素 当量(CE)を従来用いられている下記(4)式から算* *出した。

CEc=C%+(1/3) S I %・・・・・(4) 以上のX, Yとチル面積率及び炭索当量(CE)の関係 を表3に示す。

12

【0034】 【表3】

	X (wt%)	Y (wt%)	炭素当 <u>最</u> (wt%)	チル面積率 (%)
1	3. 60	2. 70	4. 50	0.1
2	3. 53	2.44	4. 34	0. 2
3	3. 82	2. 33	4.60	0.2
4	3. 72	2. 34	4. 50	0.4
5	3. 88	2. 27	4.64	0.4
6	3. 43	2.68	4. 32	1.0
7	3. 57	2. 23	4. 31	1.3
8	3. 70	2.48	4. 53	1.3
9	3. 68	2.40	4.48	1.6
10	3. 69	2. 13	4.40	3.8
11	3.83	2.17	4. 55	3.8
12	3.65	2. 35	4.43	5. 7
13	3. 47	2. 15	4. 19	10. 4
14	3.62	1.74	4. 20	13.0
15	3.91	1.80	4. 51	15.6
16	3. 78	1.78	4. 37	17.1

【0035】また以上の表3における炭素当量とチル面積率との関係を図16に示す。図16に示されるように炭素当量(CE)とチル面積率との関係におけるパラツキはr=0.41であった。以上の実施例及び比較例に示されるように炭素当量(CE)とチル面積率すなわち 30チル化傾向との間には十分な相関が認められないのに対し、チル化炭素当量(CEc)とチル面積率すなわちチル化傾向との間には十分な相関が認められる。

【0036】(実施例10)

 $CE_c=C%+\alpha Si%\cdots\cdots$ (1)

以上の(1)式における α を各種設定してチル化炭素当量(C Ec)を算出することとして、実施例 1 と同様に調整した溶湯にR EM含有球状化材を添加し鋳造して得られた試験片につきチル面積率を測定し、チル化炭素当量(C Ec)とチル面積率との相関におけるパラツキ(r)を各種設定した α 年に調査した。その結果として、図 1 7 にX、Yを各種設定し、各々の溶湯でチル面積率とチル化炭素当量(C Ec)の相関におけるパラツキ(r)を各種設定した α 年に調査し、各容湯で得られ

る各種設定した α 毎のパラツキ (r) を α 毎に平均した Rを示す。

【0037】図17に示されるように、 α が1.5未満及び α が1.9を越えるとチル化炭素当量(CEc)とチル化傾向との相関におけるパラツキ(R)が大きくなり、 α が1.5未満及び α が1.9を越えると溶湯のチル化傾向を十分に精度良く評価することができないことがわかる。

【0038】(実施例11)実施例1と同様に調整した 溶湯を用い、前述の(1)式における α を1.7として、CEcを各種設定してチル臨界冷却速度が14 $\mathbb C$ / S以下となるCEcの下限値を調査した。その結果を表 4に示す。なお、チル臨界冷却速度を $14\mathbb C$ / Sと設定するのは球状黒鉛鋳鉄溶湯を用いて板厚2mmの鋳造品を得る場合に、チルの生じない溶湯とするにはチル臨界 冷却速度を $14\mathbb C$ / S以上とする必要があるからである。

【0039】 【表4】

【0040】表4に示されるようにチル臨界冷却速度が 14℃/S以下となるCEc下限値は7.64%であ る。

【0041】(実施例12)実施例1と同様に調整した 溶湯を用い、CE値を4. 49と4. 43に調製した溶* *湯につきチル臨界冷却速度を調査した。またそれ等の溶 場につき前述の(1)式におけるαを1.7として、C Ecを算出した。その結果を表5に示す。

[0042] 【表5】

【0043】表5に示されるようにCE値が4.41~ 4. 63内に調製されていてもチル臨界冷却速度は5℃ /Sまたは2℃/Sであり、チル化傾向が大きい。その 夫々についてのCEc値は7. 45、7. 34であり 7. 64未満である。以上のことからCE値が4.41 50 c値は7.6以上が好ましく、7.8以上であるのがよ

~4. 63内に調製されていてもチル化傾向が大きくな る場合があり、チル化傾向の有無についてはCEc値が より明確な指標となる。なお以上の実施例11及び実施 例12の結果から、aの設定如何にも依存するが、CE

り好ましいことが分かる。

【0044】(実施例13) 実施例1と同様に調整した 溶場を用い、チル臨界冷却速度を調査した。そのチル臨 界冷却速度の調査結果に基づき、実用範囲の溶湯の成分 におけるC最及びSi最を調査した。その結果を図18 に示す。図18中に斜線で示された領域が実用範囲の溶 湯の成分におけるC量及びSi量である。図18にはま た前述の(1)式におけるαを1.7とした場合のCE c値が7.64以上となるC量及びSi量の範囲及びC E値が4.41以上となるC量及びSi量の範囲を示 10 す。図に示されるように実用範囲の溶湯の成分における C量及びSi量の範囲がαを1.7とした場合のCEc 値が7.64以上となるC量及びSi量の範囲と一致 し、チル化傾向の有無についてはCEc値が明確な指標 となることがわかる。

[0045]

【発明の効果】以上の説明の通り、本発明の薄肉球状黒 鉛鋳鉄は、質量比で、C:3.0~4.0%、Si: 1. 5~3. 0%、Mn:0. 5%未満、P:0. 05 %未満、S:0.006~0.025%未満、Mg: 0. $0.2 \sim 0.06\%$, Bi: $5 \sim 6.0$ ppm, RE M:20~300ppm、残部Fe及び不可避不純物か らなり、かつ、チル化炭素当量 (CEc) をCEc=C% $+\alpha$ Si% (但し、 $1<\alpha\le 2$) となるようにしたの で、3mm以下の薄肉部の鋳放しでのチル発生を面積率 で2%以下に抑制した健全な薄肉球状黒鉛鋳鉄とするこ とができる。また、本発明の自動車部品は、上記の薄肉 球状黒鉛鋳鉄を用いることにより、3mm以下の薄肉部 の鋳放しでのチル発生を面積率で2%以下に抑制した健 全な自動車部品とすることができ、サスペンションアー 30 率の関係を示す図である。 ムなどの懸架装置部品や、ギャーケースなどの差動歯車 装置部品としてきわめて有用である。

【0046】更に、本発明の薄肉球状黒鉛鋳鉄の製造方 法は、(a) 質量比で、C:3、0~4、0%、Si: 1.5~3.0%、Mn:0.5%未満、P:0.05 %未満、残部 Fe、S及び不可避不純物からなる組成を 有する溶湯を準備し、C、Siの分量をチル化炭素当量 (CEc) がCEc=C%+αSi% (但し、1 <α≦ 2) となるように調製し、REMを含む球状化剤で球状 化処理を行って残留Mg: 0. 02~0. 06%とし、 更に前記球状化処理と同時または球状化処理した後にB i:20~150ppm添加し、Sの含有量が結果とし て0.006~0.025%未満に調整すること、及 び、(b) 質量比で、C:3.0~4.0%、Si: 1. 5~3.0%、Mn:0.5%未满、P:0.05 %未満、残部Fe、S及び不可避不純物からなる組成を · 有する溶湯を準備し、C, Siの分量をチル化炭素当量 (CEc) がCEc=C%+αSi% (但し、1<α≦ 2)となるように調製し、球状化剤で球状化処理を行っ て残留 $Mg:0.02\sim0.06$ %とし、更に前記球状 50 ル面積率との関係におけるバラツキを示す図である。

化処理と同時または球状化処理した後にBi:20~1 50ppm及びREMを添加し、結果として含有量が S:0.006~0.025%未満、Bi:5~60p pm、REM:20~300ppmに調整するようにし たので、3mm以下の蒋肉部の鋳放しでのチル発生を面 積率2%以下に抑制した健全な游肉球状黒鉛鋳鉄を得る

16

【図面の簡単な説明】

ことができる。

【図1】 Sの含有量(質量%)と球状化率の関係を示す 金属組織の顕微鏡写真である。

【図2】 C E 値 (炭素当量) を変化させた場合のチル面 積率の変化を示す図である。

【図3】本発明の薄肉球状黒鉛鋳鉄の製造方法の一実施 例と比較例のCE値(炭素当量)とチル面積率の関係を 示す図である。

【図4】本発明の薄肉球状黒鉛鋳鉄の製造方法の一実施 例での、Bi添加量とチル面積率の関係を示す図であ

【図5】Bi含有量とチル面積率の関係を示す図であ 20 る。

【図6】本発明の一実施例の球状黒鉛鋳鉄のBiを50 ppm添加と無添加の場合の、CE値(炭素当量)とチ ル面積率の関係を示す図である。

【図7】本発明の球状黒鉛鋳鉄の製造方法の一実施例を 示し、Sの添加方法とチル面積率の関係を示す図であ

【図8】本発明の球状黒鉛鋳鉄鋳鉄の製造方法の一実施 例であるBi添加、Bi添加に加え高S化と、比較例と してBi無添加の場合のCE値(炭素当量)とチル面積

【図9】本発明の蒋肉球状黒鉛鋳鉄の製造方法の一実施 例と比較例の、クサビ型試験での金属組織の顕微鏡写真 と、これによる黒鉛粒数とフェライト化率の測定を示す 図である。

【図10】本発明の自動車用部品の一実施例としてのサ スペンショナームを製造するための模型形状を示す斜視 図である。

【図11】本発明の自動車用部品の一実施例としてのサ スペンショナームの薄肉部である肉厚2.5mm、2. 8 mm部の金属組織の顕微鏡写真である。

【図12】元鶡でSの含有量を変化させた場合のチル面 積率の関係を示す図である。

【図13】S及びMg含有量と球状黒鉛鋳鉄の黒鉛球状 率の関係を示す図である。

【図14】REMとして (Ce+La) の含有量とチル 面積率の関係を示す図である。

【図15】本発明の実施例におけるチル化炭素当量とチ ル面積率との関係におけるパラツキを示す図である。

【図16】本発明の比較例におけるチル化炭素当量とチ

18

【図17】炭素量X、Si量Yを各種設定した溶場でチル面積率とチル化炭素当量(CEc)の相関におけるパラツキ(r)を各種設定した α 毎に調査し、各溶場で得られる各種設定した α 毎のパラツキ(r)を α 毎に平均

17

したRと各種設定したαとの関係を示す図。 【図18】実施例1と同様に調整した溶湯を用いチル臨 界冷却速度を調査した結果に基づき、実用範囲の溶湯の

成分におけるC量及びSi量を調査した結果を示す図。

【図1】

S=0.008% S=0.012%

(2mm¹)

(2mm¹)

(2mm²)

(3mm²)

(3mm²)

(4mm²)

(4mm²)

(5mm²)

(5mm²)

(5mm²)

(7m²)

(2mm²)

(2mm²)

[図2]

【図3】

[図4]

【図5】

【図6】

[図16]

[図17]

【図18】

フロントページの続き

(72)発明者 古城 勝彦 栃木県真岡市鬼怒ケ丘11番地 日立金属株 式会社素材研究所内