Exercises for Architectures of Supercomputers

7th Exercise, 8./9.1.2020

Cache hit rate in practice

- After simulating an Intel processor's L1 cache, in this exercise the hardware performance counters will be used to investigate the processor's behavior in practice
 - We can then compare these findings to our theoretical results from the previous exercise
- Refresher (see 4th exercise for details)
 - Modern processors feature hardware performance counters, which enable logging of certain events that occur on the processor
 - Mode of operation
 - Performance counters can be programmed with a particular event (e.g., the number of branch instructions executed)
 - Once programmed, the counter is incremented whenever the event (e.g., a branch instruction) occurs

Johannes Hofmann 2

Cache hit rate in practice

- Write a program that takes the size of an array as argument
 - Allocate memory for the array (data type does not matter, although float or double is recommended
 - Initialize the array with the value 1.0
- Recreate data-access pattern used in simulator
 - A regular streaming access to an array with a stride of 64 bytes
 - Implement the access in a separate function
 - Execute the data-access loop 10,000 times so the cache misses encountered in the first iteration will not significantly bias the result
- Measure the GROUP MEM_UOPS_RETIRED_LOADS and MEM_LOAD_UOPS_RETIRED_L1_HIT events for the function
 - Hint: Reuse code from 4th exercise to save time
 - Surround your function call with the appropriate LIKWID_MARKER_START and LIKWID_MARKER_STOP macros
 - #include likwid.h and use the appropriate compiler flags (-I, -L, ...)
 - Make sure to use likwid-perfctr's marker API (-m)

Exercise 1: Cache Simulator

- Use likwid-perfctr to determine the cache hit rate for arrays of different sizes (20kB – 40kB)
- Extend last week's figure with a graph of the obtained data
 - x-axis (linear): array size [kB]
 - y-axis (linear): cache hit rate [%]
- Compare the results of the simulator to those of the processor

Johannes Hofmann