Задача.

Необхідно оцінити 4 альтернативи за 4 критеріями.

Матриця парних порівнянь важливості критеріїв:

	Критерій 1	Критерій 2	Критерій 3	Критерій 4
Критерій 1	1	2	1/4	1/2
Критерій 2	1/2	1	1/5	1/3
Критерій 3	4	5	1	3
Критерій 4	2	3	1/3	1

Порівняння альтернатив за критерієм 1:

	Альтернатива 1	Альтернатива 2	Альтернатива 3	Альтернатива 4
Альтернатива 1	1	1/2	2	1
Альтернатива 2	2	1	3	2
Альтернатива 3	1/2	1/3	1	1/2
Альтернатива 4	1	1/2	2	1

Порівняння альтернатив за критерієм 2:

	Альтернатива 1	Альтернатива 2	Альтернатива 3	Альтернатива 4
Альтернатива 1	1	1/3	4	3
Альтернатива 2	3	1	4	4
Альтернатива 3	1/4	1/4	1	1
Альтернатива 4	1/3	1/4	1	1

Порівняння альтернатив за критерієм 3:

	Альтернатива 1	Альтернатива 2	Альтернатива 3	Альтернатива 4
Альтернатива 1	1	1/4	1/6	2
Альтернатива 2	4	1	1/4	3
Альтернатива 3	6	4	1	4
Альтернатива 4	1/2	1/3	1/4	1

Порівняння альтернатив за критерієм 4:

	Альтернатива 1	Альтернатива 2	Альтернатива 3	Альтернатива 4
Альтернатива 1	1	1/2	2	1/3
Альтернатива 2	2	1	4	1
Альтернатива 3	1/2	1/4	1	1/5
Альтернатива 4	3	1	5	1

ЕТАП 1. Обчислення локальних ваг

МЕТОД ЕМ

Спосіб 1.

В будь-якому математичному пакеті шукаємо **власний вектор** матриці парних порівнянь, що відповідає **максимальному власному числу**. Для МПП критеріїв:

Матриця:
$$\begin{pmatrix} 1 & 2 & 1/4 & 1/2 \\ 1/2 & 1 & 1/5 & 1/3 \\ 4 & 5 & 1 & 3 \\ 2 & 3 & 1/3 & 1 \end{pmatrix},$$
 власні числа:

$$(4,051 \quad -0,04 \quad -0,006+0,455i \quad -0,006-0,455i)$$

Максимальне власне число – 4,051. Йому відповідає власний вектор:

$$v = \begin{pmatrix} 0,224 \\ 0,136 \\ 0,888 \\ 0,378 \end{pmatrix}$$

Сума компонентів власного вектора повинна бути рівною 1, тому нормуємо його (ділимо кожне значення на суму всіх значень):

$$w_1 = \frac{0,224}{0,224 + 0,136 + 0,888 + 0,378} = 0,138$$

$$w_2 = \frac{0,136}{0,224 + 0,136 + 0,888 + 0,378} = 0,084$$

$$w_3 = \frac{0,888}{0,224 + 0,136 + 0,888 + 0,378} = 0,546$$

$$w_4 = \frac{0,378}{0,224 + 0,136 + 0,888 + 0,378} = 0,232$$

Результат:

$$w = \begin{pmatrix} 0,138 \\ 0,084 \\ 0,546 \\ 0,232 \end{pmatrix}$$

Спосіб 2.

Обчислюємо власний вектор вручну. Для цього множимо МПП на довільний вектор, сума компонентів якого дорівнює 1, наприклад вектор $(0,25 \quad 0,25 \quad 0,25)$:

$$\begin{pmatrix} 1 & 2 & 1/4 & 1/2 \\ 1/2 & 1 & 1/5 & 1/3 \\ 4 & 5 & 1 & 3 \\ 2 & 3 & 1/3 & 1 \end{pmatrix} \begin{pmatrix} 0,25 \\ 0,25 \\ 0,25 \\ 0,25 \end{pmatrix} = \begin{pmatrix} 0,938 \\ 0,508 \\ 3,25 \\ 1,583 \end{pmatrix}$$

Нормуємо результат (ділимо кожне значення на суму всіх значень):

$$\frac{0,938}{0,938+0,508+3,25+1,583} = 0,149$$

$$\frac{0,508}{0,938+0,508+3,25+1,583} = 0,081$$

$$\frac{3,25}{0,938+0,508+3,25+1,583} = 0,518$$

$$\frac{1,583}{0,938+0,508+3,25+1,583} = 0,252$$

Множимо МПП на новий вектор:

$$\begin{pmatrix}
1 & 2 & 1/4 & 1/2 \\
1/2 & 1 & 1/5 & 1/3 \\
4 & 5 & 1 & 3 \\
2 & 3 & 1/3 & 1
\end{pmatrix}
\begin{pmatrix}
0,149 \\
0,081 \\
0,518 \\
0,252
\end{pmatrix} = \begin{pmatrix}
0,567 \\
0,343 \\
2,276 \\
0,966
\end{pmatrix}$$

Знову нормуємо новий вектор, отримуємо

$$\begin{pmatrix}
0,136 \\
0,083 \\
0,548 \\
0,233
\end{pmatrix}$$

Знову множимо МПП на отриманий вектор:

знову множимо МПП на отримании вектор:
$$\begin{pmatrix}
1 & 2 & 1/4 & 1/2 \\
1/2 & 1 & 1/5 & 1/3 \\
4 & 5 & 1 & 3 \\
2 & 3 & 1/3 & 1
\end{pmatrix}
\begin{pmatrix}
0,136 \\
0,083 \\
0,548 \\
0,233
\end{pmatrix} = \begin{pmatrix}
0,556 \\
0,338 \\
2,206 \\
0,937
\end{pmatrix}$$

Знову нормуємо:

$$\begin{pmatrix}
0,138 \\
0,084 \\
0,546 \\
0,232
\end{pmatrix}$$

Повторюємо, поки результати не стануть співпадати із необхідною точністю. Остаточний вектор – шуканий власний вектор матриці.

Для того, щоб отримати власне число, шукаємо суму компонентів останнього ненормованого вектора:

$$\lambda = 0.556 + 0.338 + 2.206 + 0.937 = 4.037$$

МЕТОД RGMM

Шукаємо корінь степені N (N – розмір матриці) із добутку елементів рядка.

Матриця:
$$\begin{pmatrix} 1 & 2 & 1/4 & 1/2 \\ 1/2 & 1 & 1/5 & 1/3 \\ 4 & 5 & 1 & 3 \\ 2 & 3 & 1/3 & 1 \end{pmatrix}$$
$$v_1 = \sqrt[4]{1 \cdot 2 \cdot \frac{1}{4} \cdot \frac{1}{2}} = 0,707$$

$$v_2 = \sqrt[4]{\frac{1}{2} \cdot 1 \cdot \frac{1}{5} \cdot \frac{1}{3}} = 0,427$$

$$v_3 = \sqrt[4]{4 \cdot 5 \cdot 1 \cdot 3} = 2,783$$

$$v_4 = \sqrt[4]{2 \cdot 3 \cdot \frac{1}{3} \cdot 1} = 1,189$$

Нормуємо значення (ділимо кожне значення на суму всіх значень):
$$w_1 = \frac{0,707}{0,707+0,427+2,783+1,189} = 0,138$$

$$w_2 = \frac{0,427}{0,707+0,427+2,783+1,189} = 0,084$$

$$w_3 = \frac{2,783}{0,707+0,427+2,783+1,189} = 0,545$$

$$w_4 = \frac{1,189}{0,707+0,427+2,783+1,189} = 0,233$$

Результат:

$$w = \begin{pmatrix} 0,138 \\ 0,084 \\ 0,545 \\ 0,233 \end{pmatrix}$$

МЕТОД AN

Шукаємо обернене значення до суми елементів стовпчика.

Матриця:
$$\begin{pmatrix} 1 & 2 & 1/4 & 1/2 \\ 1/2 & 1 & 1/5 & 1/3 \\ 4 & 5 & 1 & 3 \\ 2 & 3 & 1/3 & 1 \end{pmatrix}$$

$$v_1 = \frac{1}{1 + \frac{1}{2} + 4 + 2} = 0,133$$

$$v_2 = \frac{1}{2 + 1 + 5 + 3} = 0,091$$

$$v_3 = \frac{1}{\frac{1}{4} + \frac{1}{5} + 1 + \frac{1}{3}} = 0,561$$

$$v_4 = \frac{1}{\frac{1}{2} + \frac{1}{3} + 3 + 1} = 0,207$$

Нормуємо значення (ділимо кожне значення на суму всіх значень):

$$w_{1} = \frac{0,133}{0,133 + 0,091 + 0,561 + 0,207} = 0,134$$

$$w_{2} = \frac{0,091}{0,133 + 0,091 + 0,561 + 0,207} = 0,092$$

$$w_{3} = \frac{0,561}{0,133 + 0,091 + 0,561 + 0,207} = 0,565$$

$$w_{4} = \frac{0,207}{0,133 + 0,091 + 0,561 + 0,207} = 0,209$$

Результат:

$$w = \begin{pmatrix} 0,134 \\ 0,092 \\ 0,565 \\ 0,209 \end{pmatrix}$$

Ті ж маніпуляції виконуємо з рештою матриць. Отримуємо (результати наведені для методу ЕМ):

Ваги альтернатив за критеріями:

	За критерієм 1	За критерієм 2	За критерієм 3	За критерієм 4
Альтернатива 1	0,227	0,278	0,099	0,158
Альтернатива 2	0,424	0,522	0,241	0,35
Альтернатива 3	0,122	0,097	0,577	0,082
Альтернатива 4	0,227	0,102	0,084	0,41
Макс. власне число	4,01	4,124	4,277	4,016

Висновки: критерій 3 найбільш важливий, він суттєво випереджає всі інші критерії. Далі в порядку спадання важливості йдуть критерій 4, критерій 2 і критерій 1.

За критерієм 1 найкращою ϵ альтернатива 2, потім однакові значення мають альтернативи 1 і 4, найгіршою ϵ альтернатива 3.

За критерієм 2 найкраще значення має альтернатива 2, яка суттєво переважає інші альтернативи. Другою за цим критерієм є альтернатива 1, альтернативи 3 і 4 отримали невисокі, досить близькі значення.

За критерієм 3 альтернатива 3 значно краща за решту альтернатив, далі йде альтернатива 3, найгірші значення у альтернатив 1 і 4, які ϵ досить близькими.

За критерієм 4 альтернатива 4 має найкраще значення, однак альтернатива 2 теж має високе значення. На третьому місці альтернатива 1, потім альтернатива 4.

ЕТАП 2. Оцінка узгодженості матриць

МЕТОД ЕМ

Використовуємо значення максимального власного числа, на основі якого знаходимо індекс узгодженості:

$$CI = \frac{\lambda_{\text{max}} - n}{n - 1}$$

Для критеріїв $\lambda_{\max} = 4,051$ (отримуємо в математичному пакеті разом із власним вектором, або обчислюємо вручну, як показано у способі 2). n – розмір матриці, в даному випадку n=4.

Отже:
$$CI = \frac{4,051-4}{4-1} = 0,017$$

На його основі розраховуємо коефіцієнт узгодженості, поділивши значення СІ на середнє значення індексу узгодженості для випадкових матриць (MRCI). MRCI беремо з таблички (ϵ в презентації). Для n=4 MRCI=0,89.

В нашому випадку
$$CR = \frac{0.017}{0.89} = 0.019$$
.

Значення коефіцієнта узгодженості порівнюємо із пороговим (є в презентації). 0.019 < 0.08, отже матриця достатньо добре узгоджена.

МЕТОД RGMM

Для верхнього трикутника матриці шукаємо значення $e_{ij} = d_{ij}v_j / v_i$, де d_{ij} – значення з МПП, v_i, v_j – відповідні ваги, розраховані методом RGMM.

$$e_{12} = 2.0,084 / 0,138 = 1,217$$

$$e_{13} = \frac{1}{4} \cdot 0,545 / 0,138 = 0,987$$

$$e_{14} = \frac{1}{2} \cdot 0,233 / 0,138 = 0.844$$

$$e_{23} = \frac{1}{5} \cdot 0,545 / 0,084 = 1,298$$

$$e_{24} = \frac{1}{3} \cdot 0,233 / 0,084 = 0,925$$

$$e_{34} = 3.0,233 / 0,545 = 1,283$$

Знаходимо геометричний індекс узгодженості як суму $GCI = \frac{2}{(n-1)(n-2)} \sum_{i=1}^{n} \sum_{j>i}^{n} \ln^2 e_{ij}$, n-1

розмір матриці, в даному випадку n=4.

$$GCI = \frac{2}{3 \cdot 2} \Big(\ln^2(1,217) + \ln^2(0,987) + \ln^2(0,844) + \ln^2(1,298) + \ln^2(0,925) + \ln^2(1,283) \Big) = 0,068$$

Порівнюємо із пороговим значенням для n=4 (є в презентації):

0,068 < 0,3526, отже матриця достатньо добре узгоджена.

МЕТОД AN

Обчислюємо гармонічну середню: $HM = \frac{n}{\sum_{j=1}^{n} s_{j}^{-1}}$, де n – розмір матриці, в даному випадку

n=4; s_i — сума стовпчика матриці (по суті, в знаменнику сума ненормованих j-х ваг).

$$HM = \frac{4}{0,133+0,091+0,561+0,207} = 4,033$$

Обчислюємо гармонічний індекс узгодженості: $HCI = \frac{(HM-n)(n+1)}{n(n-1)}$

$$HCI = \frac{(4,033-n)(n+1)}{n(n-1)} = 0,014$$

Обчислюємо гармонічний коефіцієнт узгодженості, поділивши значення HCI на середнє значення гармонічного індексу узгодженості для випадкових матриць (HRCI). HRCI беремо з таблички для MRCI методу EM (ϵ в презентації), оскільки ці значення співпадають з практичною точністю. Для n=4 HRCI=0,89.

$$HCR = \frac{0,014}{0.89} = 0,015$$

Значення коефіцієнта узгодженості порівнюємо із пороговим (ϵ в презентації, співпадають із значеннями для методу EM).

0,015 < 0,08, отже матриця достатньо добре узгоджена.

Повторюємо цю процедуру також і для матриця парних порівнянь альтернатив. Отримуємо результат (наведено для методу EM, в інших методах інші показники, але теж ϵ порівняння з порогом):

	МПП критеріїв	За критерієм 1	За критерієм 2	За критерієм 3	За критерієм 4
Макс. власне число	4,051	4,01	4,124	4,277	4,016
CR	0,019	0,004	0,046	0,104	0,006
Порогове значення	0,08	0,08	0,08	0,08	0,08
Висновок	узгоджена	узгоджена	узгоджена	неузгоджена	узгоджена

Висновок: матриці парних порівнянь критеріїв, а також порівнянь альтернатив за критеріями 1 і 4 дуже добре узгоджені, отже значенням ваг можна довіряти, вони адекватно відображають відношення між альтернативами, задані МПП. Узгодженість МПП за критерієм 2 гірша, але не перевищує порогове значення, отже значення ваг за критерієм 2 також достатньо адекватні. За критерієм 3 виявлено неузгодженість матриці парних порівнянь, отже ваги альтернатив можуть викривлено відображати дійсність, бажано здійснити перегляд деяких значень МПП.

ЕТАП 3. Оцінка глобальних ваг

Наведемо ваги критеріїв і ваги альтернатив за критеріями, отримані на першому етапі (взято результати методу ЕМ).

	Критерій 1	Критерій 2	Критерій 3	Критерій 4
Вага	0,138	0,084	0,546	0,232

	За критерієм 1	За критерієм 2	За критерієм 3	За критерієм 4
Альтернатива 1	0,227	0,278	0,099	0,158

Альтернатива 2	0,424	0,522	0,241	0,35
Альтернатива 3	0,122	0,097	0,577	0,082
Альтернатива 4	0,227	0,102	0,084	0,41

Дистрибутивний синтез

Вагу альтернативи a_i за дистрибутивним синтезом отримуємо як суму добутків ваг цієї альтернативи за j-м критерієм на вагу j-го критерію.

Для альтернативи 1: $w_1 = 0,227 \cdot 0,138 + 0,278 \cdot 0,084 + 0,099 \cdot 0,546 + 0,158 \cdot 0,232 = 0,145$

Для альтернативи 2: $w_2 = 0.424 \cdot 0.138 + 0.522 \cdot 0.084 + 0.241 \cdot 0.546 + 0.35 \cdot 0.232 = 0.315$

Для альтернативи 3: $w_3 = 0.122 \cdot 0.138 + 0.097 \cdot 0.084 + 0.577 \cdot 0.546 + 0.082 \cdot 0.232 = 0.359$

Для альтернативи 4: $w_4 = 0,227 \cdot 0,138 + 0,102 \cdot 0,084 + 0,084 \cdot 0,546 + 0,41 \cdot 0,232 = 0,181$

В дистрибутивному синтезі ваги вже нормовані, тому це і буде результатом.

	Глобальна вага	Ранг
Альтернатива 1	0,145	4
Альтернатива 2	0,315	2
Альтернатива 3	0,359	1
Альтернатива 4	0,181	3

Ідеальний синтез

Вагу альтернативи a_i за ідеальним синтезом отримуємо як суму добутків ваги j-го критерію на відношення ваг цієї альтернативи за j-м критерієм до найкращого значення серед всіх альтернатив за j-м критерієм. В таблиці найкращі значення виділені напівжирним:

	За критерієм 1	За критерієм 2	За критерієм 3	За критерієм 4
Альтернатива 1	0,227	0,278	0,099	0,158
Альтернатива 2	0,424	0,522	0,241	0,35
Альтернатива 3	0,122	0,097	0,577	0,082
Альтернатива 4	0,227	0,102	0,084	0,41

Для альтернативи 1:
$$v_1 = \frac{0,227}{0,424} \cdot 0,138 + \frac{0,278}{0,522} \cdot 0,084 + \frac{0,099}{0,577} \cdot 0,546 + \frac{0,158}{0,41} \cdot 0,232 = 0,302$$
 Для альтернативи 2: $v_2 = \frac{0,424}{0,424} \cdot 0,138 + \frac{0,522}{0,522} \cdot 0,084 + \frac{0,241}{0,577} \cdot 0,546 + \frac{0,35}{0,41} \cdot 0,232 = 0,648$ Для альтернативи 3: $v_3 = \frac{0,122}{0,424} \cdot 0,138 + \frac{0,097}{0,522} \cdot 0,084 + \frac{0,577}{0,577} \cdot 0,546 + \frac{0,082}{0,41} \cdot 0,232 = 0,648$ Для альтернативи 4: $v_4 = \frac{0,227}{0,424} \cdot 0,138 + \frac{0,102}{0,522} \cdot 0,084 + \frac{0,084}{0,577} \cdot 0,546 + \frac{0,41}{0,41} \cdot 0,232 = 0,402$

Нормуємо ваги (ділимо кожне значення на суму всіх значень):

$$W_1 = \frac{0,302}{0,302 + 0,648 + 0,648 + 0,402} = 0,151$$

$$w_2 = \frac{0,648}{0,302 + 0,648 + 0,648 + 0,402} = 0,324$$

$$w_3 = \frac{0,648}{0,302 + 0,648 + 0,648 + 0,402} = 0,324$$

$$w_4 = \frac{0,402}{0,302 + 0,648 + 0,648 + 0,402} = 0,201$$

	Глобальна вага	Ранг
Альтернатива 1	0,151	4
Альтернатива 2	0,324	1
Альтернатива 3	0,324	1
Альтернатива 4	0,201	3

Мультилікативний синтез

Вагу альтернативи a_i за мультиплікативним синтезом отримуємо як добуток ваг цієї альтернативи за j-м критерієм, піднесених до степені ваги j-го критерію.

Для альтернативи 1:
$$v_1 = 0.227^{0.138} \cdot 0.278^{0.084} \cdot 0.099^{0.546} \cdot 0.158^{0.232} = 0.135$$

Для альтернативи 2:
$$v_2 = 0,424^{0,138} \cdot 0,522^{0,084} \cdot 0,241^{0,546} \cdot 0,35^{0,232} = 0,303$$

Для альтернативи 3:
$$v_3 = 0.122^{0.138} \cdot 0.097^{0.084} \cdot 0.577^{0.546} \cdot 0.082^{0.232} = 0.255$$

Для альтернативи 4:
$$v_4 = 0,227^{0,138} \cdot 0,102^{0,084} \cdot 0,084^{0,546} \cdot 0,41^{0,232} = 0,141$$

Нормуємо ваги (ділимо кожне значення на суму всіх значень):

$$w_{1} = \frac{0,135}{0,135 + 0,303 + 0,255 + 0,141} = 0,162$$

$$w_{2} = \frac{0,303}{0,135 + 0,303 + 0,255 + 0,141} = 0,363$$

$$w_{3} = \frac{0,255}{0,135 + 0,303 + 0,255 + 0,141} = 0,306$$

$$w_{4} = \frac{0,141}{0,135 + 0,303 + 0,255 + 0,141} = 0,169$$

	Глобальна вага	Ранг
Альтернатива 1	0,162	4
Альтернатива 2	0,363	1
Альтернатива 3	0,306	2
Альтернатива 4	0,169	3

Висновки: якщо враховувати всі критерії, різні методи обирають різну найкращу альтернативу. В дистрибутивному методі синтезу найкращою виявилась альтернатива 3, в ідеальному методі синтезу альтернативи 2 і 3 отримали однакові з практичною точністю ваги, в мультиплікативному методі синтезу найкращою виявилась альтернатива 2. Альтернатива 2 має найкращі значення за критеріями 1 і 2, і непогані значення за іншими критеріями; в той час як успіх альтернативи 3 пояснюється тим, що вона має суттєву перевагу за критерієм 3, який виявився найбільш важливим. Альтернативи 1 і 4 суттєво програють першим двом альтернативам, причому всі методи ставлять альтернативу 4 на

третє місце, а альтернативу 1 — на останнє, що пояснюється тим, що альтернатива 1 не має найкращого значення за жодним із критеріїв.

Враховуючи, що у всіх методах альтернативи 2 і 3 отримали досить близькі ваги, і при цьому є недостатньо узгоджена МПП (за критерієм 3), важко однозначно віддати перевагу одній із цих двох альтернатив.