Support Vector Machines

TOTAL POINTS 5

Suppose you have trained an SVM classifier with a Gaussian kernel, and it learned the following decision boundary on

You suspect that the SVM is underfitting your dataset. Should you try increasing or decreasing C? Increasing or $\mathrm{decreasing}\, \sigma^2?$

- \bigcirc It would be reasonable to try **decreasing** C. It would also be reasonable to try **increasing** σ^2 .
- \bigcirc . It would be reasonable to try ${\bf increasing}~C.$ It would also be reasonable to try ${\bf increasing}~\sigma^2.$
- \bigcirc It would be reasonable to try **decreasing** C. It would also be reasonable to try **decreasing** σ^2 .
- $igoreal{igoreal}$ It would be reasonable to try **increasing** C. It would also be reasonable to try **decreasing** σ^2 .
- The formula for the Gaussian kernel is given by similarity $(x,l^{(1)})=\exp\left(-rac{|x-l^{(1)}||^2}{2\sigma^2}
 ight)$.

1 point

The figure below shows a plot of $f_1 = \mathrm{similarity}(x, l^{(1)})$ when $\sigma^2 = 1$.

1 0.5 10 0 6 0 2 6 2 10 0

Which of the following is a plot of f_1 when $\sigma^2=0.25$?

Figure 4.

Figure 2.

Figure 3.

3. The SVM solves

 $\min_{\theta} \ C \textstyle \sum_{i=1}^m y^{(i)} \mathrm{cost}_1\big(\theta^T x^{(i)}\big) + \big(1-y^{(i)}\big) \mathrm{cost}_0\big(\theta^T x^{(i)}\big) + \textstyle \sum_{j=1}^n \theta_j^2$

where the functions $\mathrm{cost}_0(z)$ and $\mathrm{cost}_1(z)$ look like this:

1 point

The first term in the objective is:

$$C\sum_{i=1}^m y^{(i)} \mathrm{cost}_1\big(\theta^T x^{(i)}\big) + \big(1-y^{(i)}\big) \mathrm{cost}_0\big(\theta^T x^{(i)}\big).$$

This first term will be zero if two of the following four conditions hold true. Which are the two conditions that would guarantee that this term equals zero?

 $\qquad \qquad \square \quad \text{For every example with } y^{(i)} = 1 \text{, we have that } \theta^T x^{(i)} \geq 0.$

$lacksquare$ For every example with $y^{(i)}=0$, we have that $ heta^Tx^{(i)}\leq -1$.		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
4. Suppose you have a dataset with n = 10 features and m = 5000 examples.		1 point
After training your logistic regression classifier with gradient descent, you find that it has underfit the t does not achieve the desired performance on the training or cross validation sets.	raining set and	
Which of the following might be promising steps to take? Check all that apply.		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
Use an SVM with a linear kernel, without introducing new features.		
Create / add new polynomial features.		
Use an SVM with a Gaussian Kernel.		
5. Which of the following statements are true? Check all that apply.		1 point
It is important to perform feature normalization before using the Gaussian kernel.		
$igspace$ The maximum value of the Gaussian kernel (i.e., $sim(x,l^{(1)})$) is 1.		
Suppose you are using SVMs to do multi-class classification and		
would like to use the one-vs-all approach. If you have ${\cal K}$ different		
classes, you will train K - 1 different SVMs.		
If the data are linearly separable, an SVM using a linear kernel will		
return the same parameters $\boldsymbol{\theta}$ regardless of the chosen value of		
C (i.e., the resulting value of $ heta$ does not depend on C).		
I, Long Håi Hoàng, understand that submitting another's work as my own can result in zero credit fo this assignment. Repeated violations of the Coursera Honor Code may result in removal from this course or deactivation of my Coursera account.	r	6 P P
Learn more about Coursera's Honor Code		
	Save	Submit