

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Exercise 8

Section 2.2

13 Verify that

$$[(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p)] \Leftrightarrow [(p \to q) \land (q \to r) \land (r \to p)],$$

for primitive statements p, q and r.

14 For primitive statements p, q,

- **b)** verify that $(p \lor q) \to [q \to q]$ is a tautology by using the result from part (a) along with the substitution rules and laws of logic.
- c) is $[p \lor q] \to [q \to (p \land q)]$ a tautology?

Section 4.2

19 c) For $k \in \mathbb{Z}^+$ verify that $k^3 = \binom{k}{3} + 4 \binom{k+1}{3} + \binom{k+2}{3}$.

d) Use step c) to show that

$$\sum_{k=1}^{n} k^{3} = \binom{n+1}{4} + 4 \binom{n+2}{4} + \binom{n+3}{4} = \frac{n^{2}(n+1)^{2}}{4}$$

e) Find $a, b, c, d \in \mathbb{Z}^+$ so that for any $k \in \mathbb{Z}^+$,

$$k^{4} = a \binom{k}{4} + b \binom{k+1}{4} + c \binom{k+2}{4} + d \binom{k+3}{4}.$$

Section 5. Suppl

23 Given a nonempty set A, let $f: A \to A$ and $g: A \to A$ where

$$f(a) = g(f(f(a)))$$
 and $g(a) = f(g(f(a)))$

for all a in A. Prove that f = g.

- [27] With $A = \{x, y, z\}$, let $f, g: A \to A$ be given by $f = \{(x, y), (y, z), (z, x)\}$, $g = \{(x, y), (y, x), (z, z)\}$. Determine each of the following: $f \circ g$, $g \circ f$, f^{-1} , g^{-1} , $(g \circ f)^{-1}$, $f^{-1} \circ g^{-1}$, and $g^{-1} \circ f^{-1}$.
- 28 a) If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 5x + 3, find $f^{-1}(8)$.

Section 7. Suppl

12 The adjecency list representation of a directed graph G is given by the lists in [?]. Construct G from this representation

Table 1: Adjacency list representation

Adjacency List		Index List	
1	2	1	1
2	3	2	4
3	6	3	5
4	3	4	5
5	3	5	8
6	4	6	10
7	5	7	10
8	3	8	10
9	6		

- b) For all $2 \le n \le 35$, show that the Hasse diagram for the set of positive-integer divisors of n looks like one of the nine diagrams in part (a)
- Let U denote the set of all points in and on the unit square shown in Fig 29. That is $U = \{(x,y) \mid 0 \le x \le 1, \ 0 \le y \le 1\}$. Define the relation \mathscr{R} on U by $(a,b)\mathscr{R}(c,d)$ if one of the conditions below holds
 - 1. (a,b) = (c,d)
 - 2. b = d and a = 0 and c = 1
 - 3. b = d and a = 1 and c = 0.

b) List the ordered pairs in the equvalence classes

$$[(0.3, 0.7)], [(0.5, 0)], [(0.4, 1)], [(0, 0.6)], [(1, 0.2)]$$

$$(1)$$

For $0 \le a \le 1$, $0 \le b \le 1$, how many ordered pairs are in [(a,b)]?