Algebraic Methods in Combinatorics

Instructor: Benny Sudakov

Assignment 5

To be completed by October 23

Problem 1. Let $n \geq 2k$. Find an explicit k-colouring of the edges of $K_{\binom{n}{2k-1}}$ such that there is no monochromatic K_{n+1} (recall that K_m is the complete graph on m vertices).

Problem 2. Let $\mathbf{f} = (f_1, \dots, f_m)$ be a sequence of polynomials in variables x_1, \dots, x_n over a field \mathbb{F} . The zero pattern of \mathbf{f} at $c \in \mathbb{F}^n$ is the sequence $(\sigma_1, \dots, \sigma_m)$ where $\sigma_i = 0$ if $f_i(c) = 0$ and otherwise $\sigma_i = *$. Let $Z(\mathbf{f})$ be the set of zero patterns of \mathbf{f} at c, where c ranges over $c \in \mathbb{F}^n$, and denote the size of the set $Z(\mathbf{f})$ by $z(\mathbf{f})$.

For example, let $\mathbf{f} = (f_1, f_2)$, where $f_1(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 1)^2$ and $f_2(x_1, x_2) = x_1 + x_2 - 1$. Then the zero pattern of \mathbf{f} at (1, 2) is (0, *), at (1/2, 1/2) it is (*, 0) and at (3, 4) it is (*, *). The pattern (0, 0) is not a zero pattern of any point in \mathbb{R}^2 . Hence $Z(\mathbf{f}) = \{(0, *), (*, 0), (*, *)\}$ and $Z(\mathbf{f}) = 3$.

In this exercise our goal is to give upper bounds on $z(\mathbf{f})$ in term of the degrees of the polynomials in \mathbf{f} .

(a) Show that the number of zero patterns is at most 2^m .

If $m \leq n$, show that there is a choice of *linear* polynomials f_1, \ldots, f_m in n variables such that $z(\mathbf{f}) = 2^m$, where $\mathbf{f} = (f_1, \ldots, f_m)$.

From now on, we assume that $m \geq n$. Let d_i be the degree of f_i .

(b) Show that $z(\mathbf{f}) \leq {n+\sum_{i=1}^{m} d_i \choose n}$.

The *support* of a zero pattern $(\sigma_1, \ldots, \sigma_m)$ is the set of *i*'s such that $\sigma_i = *$. For the remaining parts, suppose that $d_i \leq d$ for every $i = 1, \ldots, m$.

- (c) Show that the number of zero patterns of **f** whose support has size at most m-n is at most $\binom{md-(d-1)n}{n}$.
- (d) Show that the number of zero patterns whose support has size larger than m-n is at most $\sum_{i=0}^{n-1} {m \choose i}$.
- (e) Deduce that $z(\mathbf{f}) \leq {md (d-2)n \choose n}$.