BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Eine ichung einer Patentanmeldung

Aktenzeichen:

197 43 894.6

Anmeldetag:

4. November 1997

Anmelder/Inhaber:

Forschungszentrum Jülich GmbH, Jülich/DE

Bezeichnung:

Verfahren zur mikrobiellen Herstellung von

Aminosäuren der Aspartatfamilie und im

Verfahren einsetzbare Mittel

IPC:

C 12 N, C 07 H, C 12 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 14. August 2001 Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Wehner

Ĵ

Forschungszentrum Jülich GmbH

5

Patentansprüche

- Verfahren zur mikrobiellen Herstellung von Aminosäuren der
 Aspartatfamilie, bei dem die Pyruvat-Carboxylase-Aktivität durch genetische Veränderung des Enzyms und / oder die Pyruvat-Carboxylase-Genexpression eines die entsprechende Aminosäure produzierenden Mikroorganismus erhöht wird.
- Verfahren nach Anspruch 1,
 dadurch gekennzeichnet,
 daß durch Mutation des endogenen Pyruvat-Carboxylase-Gens ein Enzym mit höherer Pyruvat-Carboxylase-Aktivität erzeugt wird.
- 3. Verfahren nach Anspruch 1 oder 2, dad urch gekennzeichnet, daß die Genexpression der Pyruvat-Carboxylase durch Erhöhen der Genkopienzahl erhöht wird.
- 4. Verfahren nach Anspruch 3,
 dadurch gekennzeichnet,
 daß zur Erhöhung der Genkopienzahl das Pyruvat-Carboxylase-Gen in ein Genkonstrukt eingebaut wird.

- 5. Verfahren nach Anspruch 4,
 da durch gekennzeichnet,
 daß das Gen in ein Genkonstrukt eingebaut wird, das dem PyruvatCarboxylase-Gen zugeordnete regulatorische Gensequenzen enthält.
- 6. Verfahren nach Anspruch 4 oder 5,
 d a d u r c h g e k e n n z e i c h n e t,
 daß ein die entsprechende Aminosäure produzierender Mikroorganismus mit dem das Gen enthaltende Genkonstrukt transformiert wird.
- 7. Verfahren nach Anspruch 6,
 d a d u r c h g e k e n n z e i c h n e t,
 daß ein Mikroorganismus der Gattung Corynebacterium mit dem das Gen enthaltende Genkonstrukt transformiert wird.
- 8. Verfahren nach Anspruch 6 oder 7,
 d a d u r c h g e k e n n z e i c h n e t,
 daß für die Transformation ein Mikroorganismus eingesetzt wird, in dem die
 an der Synthese der entsprechenden Aminosäure beteiligten Enzyme
 dereguliert sind und / oder die eine erhöhte Exportcarrier-Aktivität für die
 entsprechende Aminosäure aufweisen.
- 9. Verfahren nach einem der Ansprüche 6 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß für die Transformation ein Mikroorganismus eingesetzt wird, der einen erhöhten Anteil an den an der Synthese der entsprechenden Aminosäure beteiligten Zentralstoffwechselmetaboliten enthält.

10. Verfahren nach einem der Ansprüche 6 bis 9,
d a d u r c h g e k e n n z e i c h n e t,
daß für die Transformation ein Mikroorganismus eingesetzt wird, bei dem ein
zu dem entsprechenden Aminosäurebiosyntheseweg konkurrierender Biosyntheseweg mit verminderter Aktivität abläuft.

5

- 11. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet,
 daß das Pyruvat-Carboxylase-Gen aus einem Mikroorganismus-Stamm der
 Gattung Corynebacterium isoliert wird.
- 12. Verfahren nach einem der vorhergehenden Ansprüche,
 15 da durch gekennzeichnet,
 daß die Genexpression durch Verstärkung der Transkriptionssignale erhöht wird.
- 13. Verfahren nach einem der vorhergehenden Ansprüche,
 20 da durch gekennzeichnet,
 daß dem Pyruvat-Carboxylase-Gen der tac-Promotor vorgeschaltet wird.
- 14. Verfahren nach Anspruch 13,
 gekennzeichnet durch
 dem tac-Promotor zugeordnete regulatorische Sequenzen.
 - 15. Verfahren nach einem der vorhergehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t,
 daß als Pyruvat-Carboxylase-Gen ein Gen mit einer für die unter SEQ ID
 No. 2 angegebenen Aminosäuresequenz und deren Allelvariationen

kodierenden Nukleotidsequenz eingesetzt wird.

16. Verfahren nach Anspruch 15,
d a d u r c h g e k e n n z e i c h n e t,
daß als Pyruvat-Carboxylase-Gen ein Gen mit der Nukleotidsequenz von
Nukleotid 165 bis 3587 gemäß SEQ ID No. 1 oder einer im wesentlichen
gleichwirkenden DNA-Sequenz eingesetzt wird.

10

15

20

- 17. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung von Lysin, Threonin, Homoserin, Methionin und / oder Isoleucin.
- 18. Pyruvat-Carboxylase-Gen mit einer für die unter SEQ ID No. 2 angegebenen Aminosäuresequenz und / oder deren Allelvariationen kodierenden Nukleotidsequenz.
- 19. Pyruvat-Carboxylase-Gen nach Anspruch 18 mit der Nukleotidsequenz von Nukleotid 165 bis 3587 gemäß SEQ ID Nr. 1 oder einer im wesentlichen gleichwirkenden DNA-Sequenz.
 - 20. Pyruvat-Carboxylase-Gen nach Anspruch 18 oder 19 mit einem vorgeschalteten Promotor der Nukleotidsequenz von Nukleotid 20 bis 109 gemäß SEQ ID No. 1 oder einer im wesentlichen gleichwirkenden DNA-Sequenz.
 - 21. Pyruvat-Carboxylase-Gen nach Anspruch 18 oder 19 mit vorgeschaltetem tac-Promotor

22. Pyruvat-Carboxylase-Gen nach Anspruch 21 mit der	n Promotor
zugeordneten regulatorischen Sequenzen.	

5

- 23. Pyruvat-Carboxylase-Gen nach einem der Ansprüche 18 bis 20 mit diesem zugeordnete regulatorische Gensequenzen.
- 24. Genstruktur, enthaltend ein Pyruvat-Carboxylase-Gen nach einem der
 Ansprüche 18 bis 23
 - 25. Vektor, enthaltend ein Pyruvat-Carboxylase-Gen nach einem der Ansprüche 18 bis 23 oder eine Genstruktur nach Ansprüch 24.
- 26. Transformierte Zelle, enthaltend in replizierbarer Form ein Pyruvat-Carboxylase-Gen nach einem der Ansprüche 18 bis 23 oder eine Genstruktur nach Ansprüch 24.
 - Transformierte Zelle nach Anspruch 26, enthaltend einen Vektor nach Anspruch 25.
 - 28. Transformierte Zelle nach Anspruch 26 oder 27, dadurch gekennzeichnet, daß sie der Gattung Corynebacterium angehört.

25

30

20

29. Transformierte Zelle nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, daß in dieser die an der Synthese der entsprechenden Aminosäure beteiligten Enzyme und / oder die am Export der entsprechenden Aminosäure beteiligten Enzyme dereguliert sind.

- 30. Transformierte Zelle nach einem der Ansprüche 26 bis 29, dad urch gekennzeichnet, daß sie einen erhöhten Anteil an den an der Synthese der entsprechenden Aminosäure beteiligten Zentralstoffwechselmetaboliten enthält.
- 31. Transformierte Zelle nach einem der Ansprüche 26 bis 30,
 d a d u r c h g e k e n n z e i c h n e t,

 daß sie einen erniedrigten Anteil an den nicht an der Synthese der entsprechenden Aminosäure beteiligten Zentralstoffwechselmetaboliten enthält.
- 32. Verwendung eines Pyruvat-Carboxylase-Gens zur Steigerung der
 Produktion von aus der Aspartatfamilie stammenden Aminosäuren von
 Mikroorganismen.
- 33. Verwendung nach Anspruch 32,
 dadurch gekennzeichnet,
 daß ein mutiertes Pyruvat-Carboxylase-Gen, das für ein Enzym mit erhöhter
 Pyruvat-Carboxylase-Aktivität kodiert, verwendet wird.
- 34. Verwendung nach Anspruch 32 oder 33,
 dadurch gekennzeichnet,
 daß der die entsprechende Aminosäure produzierende Mikroorganismus mit einem Genkonstrukt, das ein Pyruvat-Carboxylase-Gen enthält, transformiert wird.

- 35. Verwendung nach Anspruch 34,
 d a d u r c h g e k e n n z e i c h n e t,
 daß das Genkonstrukt zusätzlich regulatorische Gensequenzen enthält.
- 36. Verwendung nach einem der Ansprüche 32 bis 35, dadurch gekennzeichnet, daß ein Pyruvat-Carboxylase-Gen aus Corynebacterium verwendet wird.

37. Verwendung nach einem der Ansprüche 32 bis 36, dadurch gekennzeichnet, daß als Aminosäure-produzierender Mikroorganismus Corynebacterium verwendet wird.

15

10

5

•••

Forschungszentrum Jülich GmbH

5

10

15

Beschreibung

Verfahren zur mikrobiellen Herstellung von Aminosäuren der Aspartatfamilie und im Verfahren einsetzbare Mittel

Die Erfindung betrifft ein Verfahren zur mikrobiellen Herstellung von Aminosäuren der Aspartatfamilie gemäß den Ansprüchen 1 bis 17, Pyruvat-Carboxylase-Gene nach Ansprüch 18 bis 23, Genstrukturen nach Ansprüch 24, Vektoren nach Ansprüch 25, transformierte Zellen nach Ansprüch 26 bis 31 sowie Verwendungen nach Ansprüch 32 bis 37.

Aminosäuren sind von großem wirtschaftlichen Interesse, wobei die Verwendung von Aminosäuren vielfältig ist: So wird z.B. L-Lysin wie auch L-Threonin, L-Methionin und L-Tryptophan als Futtermittelzusatz benötigt, L-Glutamat als Gewürzzusatz, L-Isoleucin und L-Tyrosin in der pharmazeutischen Industrie, L-Arginin und L-Isoleucin als Medikament oder L-Glutamat, L-Aspartat und L-Phenylalanin als Ausgangssubstanz zur Synthese von Feinchemikalien.

Eine bevorzugte Methode zur Herstellung dieser verschiedensten Aminosäuren ist die biotechnologische Herstellung mittels Mikroorganismen; denn auf diese Weise wird direkt die biologisch wirksame und optisch aktive Form der jeweiligen Aminosäure erhalten, und es können einfache und preisgünstige Rohstoffe eingesetzt werden. Als Mikroorganismen werden z.B. Corynebacterium glutamicum und seine Verwandten ssp. flavum und ssp. lactofermentum (Liebl et al., Int J System acteriol 1991, 41: 255 bis 260) wie auch Escherichia coli und verwandte Bakterien eingesetzt.

Diese Bakterien produzieren die Aminosäuren normalerweise aber nur in der zum Wachstum benötigten Menge, so daß also keine überschüssigen Aminosäuren gebildet und ausgeschieden werden. Dies ist darin begründet, daß in der Zelle die Biosynthese der Aminosäuren in vielfacher Weise kontrolliert wird. Folglich sind bereits verschiedenste Verfahren bekannt, um die Produktbildung durch Ausschalten der Kontrollmechanismen zu steigern. Bei diesen Prozessen werden Aminosäureanaloga eingesetzt, um die effektive Regulation der Biosynthese auszuschalten. So ist beispielsweise ein Verfahren beschrieben, bei dem Corynebacterium-Stämme benutzt werden, die gegen L-Tyrosin- und Phenylalaninanaloga resistent sind (JP 19037/1976 und 39517/1978). Ebenso sind Verfahren beschrieben, bei denen gegenüber L-Lysin- oder auch L-Theoninanaloga resistente Bakterien eingesetzt werden, um die Kontrollmechanismen zu überwinden (EP 0 205 849, GB 2 152 509).

Weiterhin sind auch durch rekombinante DNA-Techniken konstruierte Mikroorgansimen bekannt, bei denen ebenfalls die Regulation der Biosynthese aufgehoben ist, indem die Gene, die für die nicht mehr feedback-inhibierbaren Schlüsselenzyme kodieren, kloniert und exprimiert werden. So ist z.B. ein rekombinantes, L-Lysin produzierendes Bakterium mit plasmid-kodierter, feedbackresistenter Aspartatkinase bekannt (EP 0 381 527). Ebenso ist ein rekombinantes, L-Phenylalanin produzierendes Bakterium mit feedback-resistenter Prephenatdehydrogenase beschrieben (JP 123475/1986, EP 0 488 424).

5

10

15

20

Darüber hinaus wurden auch durch Überexpression von Genen, die nicht für feedback-sensitive Enzyme der Aminosäuresynthese kodieren, erhöhte Aminosäureausbeuten erreicht. So wird z.B. die Lysinbildung durch erhöhte Synthese der Dihydrodipicolinatsynthase verbessert (EP 0 197 335). Ebenso wird durch erhöhte Synthese der Threonindehydratase eine verbesserte Isoleucinbildung erreicht (EP 0 436 886).

Weitere Versuche zur Erhöhung der Aminosäureproduktion zielen auf eine verbesserte Bereitstellung der zellulären Primärmetabolite des Zentralstoffwechsels. So ist bekannt, daß die durch rekombinante Techniken erreichte Überexpression der Transketolase eine verbesserte Produktbildung von L-Tryptophan, L-Tyrosin oder L-Phenylalanin ermöglicht (EP 0 600 463). Weiterhin führt die Reduktion der Phosphoenolpyruvat-Carboxylase-Aktivität in Corynebacterium zu verbesserter Bildung aromatischer Aminosäuren (EP 0 3331 145), wohingegen die Erhöhung der Phosphoenolpyruvat-Carboxylase-Aktivität in Corynebacterium zu erhöhter Ausscheidung von Aminosäuren der Aspartatfamilie führte (EP 0 358 940).

Während des Wachstums und speziell unter Aminosäureproduktionsbedingungen muß 20 der Tricarbonsäure-Cyclus kontinuierlich und effektiv mit C4-Verbindungen, z.B. Oxalacetat, aufgefüllt werden, um die für die Aminosäurebiosynthese abgezogenen Zwischenprodukte zu ersetzen. Bis vor kurzem hat man angenommen, daß für diese sogenannten anaplerotischen Funktionen in Corynebacterium die Phosphoenolpyruvat-Carboxylase verantwortlich ist (Kinoshita, Biology of industrial 25 micro-organisms 1985: 115 bis 142, Benjamin/Cummings Publishing Company, London; Liebl, The prokaryotes II, 1991: 1157 bis 1171, Springer Verlag N.Y.; Vallino und Stephanopoulos, Biotechnol Bioeng 1993, 41: 633 bis 646). Es wurde jedoch gefunden, daß Phosphoenolpyruvat-Carboxylase-negative Mutanten im

Vergleich zu den jeweiligen Ausgangsstämmen auf allen getesteten Medien gleich wuchsen (Peters-Wendisch et al., FEMS Microbiology Letters 1993, 112: 269 bis 274; Gubler et al., Appl Microbiol Biotechnol 1994, 40: 18 bis 863). Dieses Ergebnis zeigte, daß die Phosphoenolpyruvat-Carboxylase nicht essentiell für das Wachstum ist und für die anaplerotischen Reaktionen keine oder nur eine untergeordnete Rolle spielt. Desweiteren wies das oben genannte Ergebnis darauf hin, daß es in Corynebacterium mindestens ein anderes Enzym geben muß, das für die Synthese von Oxalacetat, das für das Wachstum benötigt wird, verantwortlich ist. Kürzlich wurde auch tatsächlich eine Pyruvat-Carboxylase-Aktivität permeabilisierten Zellen von Corynebacterium glutamicum gefunden (Peters-Wendisch et al., Microbiology 1997, 143: 1095 bis 1103). Dieses Enzym wird effektiv durch AMP, ADP und Acetyl-Coenzym A inhibiert und in Gegenwart von Laktat als Kohlenstoffquelle in erhöhter Menge gebildet. Da davon ausgegangen werden mußte, daß dieses Enzym in erster Linie für die Auffüllung des Tricarbonsäure-Cycluses beim Wachstum verantwortlich ist, war zu erwarten, daß eine Erhöhung der Genexpression bzw. der Enzymaktivität entweder zu keiner oder allenfalls zu einer geringfügigen Erhöhung der zur Aspartatfamilie gehörenden Aminosäuren führt.

20

25

5

10

15

Es wurde nunmehr überraschenderweise gefunden, daß nach Erhöhung der Pyruvat-Carboxylase-Aktivität durch genetische Veränderung des Enzyms und / oder nach Erhöhung der Pyruvat-Carboxylase-Genexpression die mikrobielle Herstellung von Aminosäuren der Aspartatfamilie erhöht wird. Es zeigte sich, daß insbesondere Stämme mit erhöhter Kopienzahl des Pyruvat-Carboxylase-Gens etwa 50% mehr Lysin, 40% mehr Threonin und 150% mehr Homoserin ins Kulturmedium ausscheiden.

Die genetische Veränderung der Pyruvat-Carboxylase zur Erhöhung der 30 Enzymaktivität erfolgt vorzugsweise durch Mutation des endogenen Gens. Derartige Mutationen können entweder nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder durch mutationsauslösenden Chemikalien, oder gezielt mittels gentechnologischer Methoden wie Deletion(en), Insertion(en) und/oder Nukleotidaustausch(e).

Die Pyruvat-Carboxylase-Genexpression wird durch Erhöhen der Genkopienzahl und/oder durch Verstärkung regulatorischer Faktoren, die die Expression des Gens positiv beeinflussen, erhöht. So kann eine Verstärkung regulatorischer Elemente vorzugsweise auf der Transkriptionsebene erfolgen, indem insbesondere die Transkriptionssignale erhöht werden. Dies kann beispielsweise dadurch erfolgen, daß durch Veränderung der dem Strukturgen vorgeschalteten Promotorsequenz der Promotor in seiner Wirksamkeit erhöht wird oder indem der Promotor komplett durch wirksamere Promotoren ausgetauscht wird. Auch kann eine Verstärkung der Transkription durch entsprechende Beeinflussung eines dem Pyruvat-Carboxylase-Gens zugeordneten Regulatorgens erfolgen. Desweitern kann ggf durch Mutation einer regulatorischen Gensequenz die Effektivität der Bindung Regulatorporteins an die DNA des zu regulierenden Pyruvat-Carboxylase-Gens so beeinflußt sein, daß dadurch die Transkription verstärkt und somit die Genexpression erhöht ist. Desweiteren können dem Pyruvat-Carboxylase-Gen als regulatorische Sequenzen aber auch sog. "enhancer" zugeordnet sein, die über eine verbesserte Wechselwirkung zwischen RNA-Polymerase und DNA ebenfalls eine erhöhte Pyruvat-Carboxylase-Genexpression bewirken. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der m-RNA verbessert wird.

Zur Erhöhung der Genkopienzahl wird das Pyruvat-Carboxylase-Gen in ein Genkonstrukt bzw. Vektor eingebaut. Das Genkonstrukt enthält insbesondere dem

5

10

15

20

5

10

15

20

25

Pyruvat-Carboxylase-Gen zugeordnete regulatorische Sequenzen, vorzugsweise solche, die die Genexpression verstärken. Für den Einbau des Pyruvat-Carboxylase-Gens in ein Genkonstrukt wird das Gen vorzugsweise aus einem Mikroorganismen-Stamm der Gattung Corynebacterium isoliert und in einen Aminosäureproduzierenden Mikroorganismen-Stamm, insbesondere Corynebacterium oder in Escherichia coli oder Serratia marcescens, transformiert. Für das erfindungsgemäße Verfahren eignen sich insbesondere Gene aus C. glutamicum oder C. glutamicum ssp. flavum oder C. glutamicum ssp. lactofermentum. Nach Isolierung des Gens und der in vitro-Rekombination mit bekannten Vektoren (vgl. z.B. Simon et al., Bio/Technology 1983, 1: 784 bis 791; Eikmanns et al., Gene 1991, 102: 93 bis 98) erfolgt die Transformation in die Aminosäure-produzierenden Stämme durch Elektroporation (Liebl et al., FEMS Microbiology Letters 1991, 65: 299 bis 304) oder Konjugation (Schäfer et al., J Bacteriol 1990, 172: 1663 bis 1666). Als Wirtsstämme werden vorzugsweise solche Aminosäureproduzenten eingesetzt, die in der Synthese der entsprechenden Aminosäure dereguliert sind und/oder die eine erhöhte Exportcarrier-Aktivität für die entsprechende Aminosäure aufweisen. Weiterhin werden solche Stämme bevorzugt. die einen erhöhten Anteil an solchen Zentralstoffwechselmetaboliten enthalten, die an der Synthese der entsprechenden Aminosäure beteiligt sind und / oder Stämme, die einen erniedrigten Anteil an den nicht der Synthese der entsprechenden Aminosäure beteiligten Zentralstoffwechselmetaboliten enthalten, insbesondere an Metaboliten, die für Konkurrenzreaktionen zuständig sind; d.h. es werden solche Stämme bevorzugt, bei denen ein zu dem entsprechenden Aminosäurebiosyntheseweg konkurrierender Biosyntheseweg mit verminderter Aktivität abläuft. So ist insbesondere ein, gegen L-Asparaginsäure-β-Methylester (AME) resistenter coryneformer Mikroorganismen-Stamm mit reduzierter Citrat-Synthase-Aktivität geeignet (EP 0 551 614).

Nach Isolierung sind Pyruvat-Carboxylase-Gene mit Nukleotidsequenzen erhältlich, die für die unter SEQ ID No. 2 angegebenen Aminosäuresequenz oder deren Allelvariationen kodieren bzw. die die Nukleotidsequenz von Nukleotid 165 bis 3587 gemäß SEQ ID No. 1 oder einer im wesentlichen gleichwirkenden DNA-Sequenz aufweisen. Desweiteren sind Gene mit einem vorgeschalteten Promotor der Nukleotidsequenz von Nukleotid 20 bis 109 gemäß SEQ ID No. 1 oder eine im wesentlichen gleichwirkende DNA-Sequenz erhältlich. Allelvariationen bzw. gleichwirkende DNA-Sequenzen umfassen insbesondere funktionelle Derivate, die durch Deletion(en), Insertion(en) und/oder Substitution(en) von Nukleotiden aus entsprechenden Sequenzen erhältlich sind, wobei die Enzymaktivität bzw. -funktion erhalten bleibt oder sogar erhöht ist. Diese Pyruvat-Carboxylase-Gene werden vorzugsweise im erfindungsgemäßen Verfahren eingesetzt.

15

25

5

10

Dem Pyruvat-Carboxylase-Gen mit oder ohne vorgeschaltetem Promotor bzw. mit oder ohne zugeordnetem Regulatorgen können ein oder mehrere DNA-Sequenzen vor- und/oder nachgeschaltet sein, so daß das Gen in einer Genstruktur enthalten ist.

20 Dem Pyruvat-Carboxylase-Gen ist vorzugsweise der tac-Promotor (lacl^Q-Gen) vorgeschaltet, wobei diesem insbesondere regulatorische Sequenzen zugeordnet sind.

Durch Klonierung des Pyruvat-Carboxylase-Gens sind Plasmide erhältlich, die das Gen enthalten und zur Transformation eines Aminosäureproduzenten geeignet sind. Die durch Transformation erhältlichen Zellen, bei denen es sich vorzugsweise um transformierte Zellen von Corynebacterium handelt, enthalten das Gen in replizierbarer Form, d.h. in zusätzlichen Kopien auf dem Chromosom, wobei die Genkopien durch Rekombination an beliebigen Stellen des Genoms integriert werden, und/oder auf einem Plasmid oder Vektor

Ausführungsbeispiel

5 1. Klonierung des Pyruvat-Carboxylase-Gens aus Corynebaærium glutamicum

Ausgehend von konservierten Bereichen aller bisher bekannten Pyruvat-Carboxylase-(pyc-)Genen, von Saccharomyces cerevisiae (J Biol Chem 1988, 263: 11493-11497; Mol Gen Genet 1991, 229: 307-315), Mensch (Biochim Biophys Acta 1994, 1227: 46-52), Maus (Proc Natl Acad Sci, USA 1993, 90: 1766-1770), Aedes aegypti (EMBL-GenBank: Accession Nr. L36530) sowie von Mycobacterium tubercolosis (EMBL-GenBank: Accession Nr. U00024) wurden PCR-Primer synthetisiert (MWG Biotech). Die Primer entsprachen den Basen 810 bis 831 und 1015 bis 1037 des pyc-Gens von M. tuberculosis. Mit diesen Primern konnte mittels PCR nach der Standardmethode von Innis et al. (PCR protocols. A guide to methods and applications, 1990, Academic Press) für nicht-degenerierte, homolge Primer ein Fragment von ca. 200 bp aus chromosomaler DNA von C. glutamicum ATCC 13032, die wie bei Eikmanns et al. (Microbiology 1994, 140: 1817-1828) beschrieben, isoliert wurde, amplifiziert werden. Die Größe von 200 bp entsprach der Erwartung für pyc-Gene. Das PCR-Produkt wurde wie bei Sanger et al. (Proc Natl Acad Sci USA 1977, 74: 5463-5467) beschrieben, sequenziert. Die Sequenzierung wurde mit fluoreszenzmarkierten ddNTPs mit einer automatischen DNA-Sequenzierapparatur (Applied Biosystems) durchgeführt.

25

10

15

20

Ausgehend von diesem DNA-Fragment aus C. glutamicum wurden folgende homologe Oligonukleotide hergestellt:

pyc 1 5'- CGTCTTCATCGAAATGAAC -3'

pyc 2 5'- ACGGTGGTGATCCGGCACT -3'

Die Oligonukleotide wurden als PCR-Primer zur Isolierung einer Sonde für das Gen der Pyruvat-Carboxylase (pyc) aus C. glutamicum verwendet. Die Primer wurden in eine PCR-Reaktion mit chromosomaler DNA von C. glutamicum und Digoxigeninmarkierten Nukleotiden eingesetzt. Die Reaktion wurde nach der Vorschrift des 'PCR DIG Labeling Kits' der Firma Boehringer Mannheim durchgeführt. Mit diesem Ansatz konnte ein Digoxigenin-markiertes DNA-Fragment amplifiziert werden, das der erwarteten Größe von ca. 200 bp entsprach. Die so hergestellte pyc-Sonde wurde dann eingesetzt, um über Southern-Blot-Hybridisierung ein DNA-Fragment in der chromosomalen DNA von C. glutamicum zu identifizieren, auf dem das pyc-Gen lokalisiert ist. Hierzu wurden jeweils 2 bis 5 µg chromosomaler DNA von C. glutamicum WT mit den Restriktionsenzymen HindIII, SphI, SalI, DraI, EcoRI und BamHI geschnitten, die erhaltenen DNA-Fragmente 16 h bei 20 V in einem 0,8 %igen Agarosegel gelelektrophoretisch ihrer Größe entsprechend aufgetrennt. Die in dem Agarosegel befindlichen DNA-Fragmente wurden nach einer Methode von Southern (J Mol Biol 1975, 98: 503-517) denaturiert und vakuumunterstützt mit der VacuGene Blot Apparatur von Pharmacia LKB (Uppsala, Schweden) aus der Gelmatrix auf eine Nylon-Membran (Nytran N13 von Schleicher und Schüll, Dassel, Schweiz) transferiert, immobilisiert und die Digoxigeninmarkierung mittels NBT/X-Phosphat-Umsetzung durch alkalische Phosphatase nachgewiesen. Auf diese Weise konnten folgende, mit der pyc-DNA-Sonde hybridisierende chromosomale Fragmente nachgewiesen werden: ein 17 kb HindIII-Fragment, ein 6,5 kb SalI-Fragment und ein 1,35 kb EcoRI-Fragment.

25

10

15

20

Das 17 kb HindIII-Fragment wurde isoliert und subkloniert. Dazu wurde eine Cosmid-Genbank aus chromosomaler DNA von C. glutamicum im Cosmid pHC79 verwendet, die das Genom von C. glutamicum zu 99% repräsentierte (Mol Microbiol 1992, 6: 317-326). Der E. coli-Stamm DH5α wurde mit dieser Genbank mittels der

CaCl2-Methode von Sambrook et al. (Molecular Cloning, A laboratory manual, 1989, Cold Spring Habour Laboratory Press) transformiert und zu ca. 300 Kolonien pro LB-Agarplatte mit 50 μg/l Kanamycin ausplattiert (insgesamt 5000 Kolonien). Anschließend wurden die erhaltenen Transformanden auf Nytran N13-Filter übertragen und diese zur alkalischen Lyse der Zellen und Denaturierung der DNA auf mit 0,5 M NaOH und 1,5 M NaCl getränktem Whatmann-Papier 5 min. inkubiert. Die darauffolgende Neutralisierung erfolgte mit 1 M Tris/HCl pH 7,5 und 1,5 M NaCl. Nach Inkubation der Filter in 2 x SSC wurde die freigesetzte DNA durch UV-Bestrahlung bei 366 nm auf dem Filter fixiert. Anschließend wurden die restlichen Zelltrümmer durch Schütteln in 3 x SSC, 0,1 % SDS bei 50°C entfernt. Die Filter wurden in dieser Form für die Hybridisierung mit einer spezifischen pyc-Sonde, wie bei Southern (J Mol Biol 1975, 98: 503-517) beschrieben, verwendet. Es wurden 3 Transformanden identifiziert, die gegen die pyc-Sonde hybridisierten. Aus diesen Transformanden wurde die Cosmid-DNA mittels Plasmid-Präparation nach der Methode der alkalischen Lyse von Birnboim (Meth Enzymol 1983, 100: 243-255) isoliert und anschließend über Restriktion und Southern-Blot Analyse auf das Vorhandensein des HindIII-Fragments getestet. Das Cosmid pHC79-10, das ein 40 kb Insert enthielt, trug das 17 kb HindIII-Fragment vollständig und wurde weiter analysiert. Es zeigte sich, daß auch nach Restriktion mit den Endonukleasen Sall und EcoRI die gleichen hybridisierenden Fragmente wie in der chromosomalen DNA, d.h. ein 6,5 kb SalI- und ein 1,35 kb EcRI-Fragment, erhalten wurden. Das 17 kb HindIII-Fragment wurde durch Restriktion mit HindIII aus dem Cosmid isoliert und in den E. coli-Vektor pUC18, der ebenfalls mit HindIII geschnitten wurde, ligiert. Es wurde eine Restriktionsanalyse des Fragments in dem resultierenden Vektor pUCpyc erstellt. Die physikalische Kartierung des Fragments ist in Figur 1 dargestellt.

5

10

15

20

2. Sequenzierung des Pyruvat-Carboxylase-Gens

In weiteren Subklonierungsschritten wurden ein 0,85 kb Sall-EeRI-Fragment, das 1,35 kb EcoRI-Fragment, ein 1,6 kb EcoRI-EcoRI-StuI-Fragment sowie ein 1,6 kb ClaI-Fragment, das partiell mit dem 0,85 kb SalI-EcoRI-Fragment überlappte, durch Restriktion mit den entsprechenden Restriktionsenzymen aus dem Plasmid pUCpyc isoliert. Durch Ligation wurden die Fragmente in den jeweils entsprechend restringierten Vektor pUC18 kloniert und anschließend nach Sanger et al. (Proc Natl Acad Sci USA 1977, 74: 5463-5467) wie oben beschrieben sequenziert. Die erhaltenen Nukleotidsequenzen wurden mit dem Programmpaket HUSAR (Release 3.0) des Deutschen Krebsforschungszentrums (Heidelberg) analysiert. Die Sequenzanalyse der Fragmente ergab ein durchgehendes offenes Leseraster von 3576 bp, das für eine Proteinsequenz von 1140 Aminosäuren kodiert. Ein Vergleich der abgeleiteten Proteinsequenz mit der EMBL Gen-Datenbank (Heidelberg) ergab Ähnlichkeiten zu allen bekannten Pyruvat-Carboxylasen. Die höchste Identität (62%) wurde zur putativen Pyruvat-Carboxylase aus Mycobacterium tuberculosis (EMBL-GenBank: Accession Nr. U00024) gefunden. Die Ähnlichkeit betrug, unter Berücksichtigung konservierter Aminosäureaustausche, 76%. Ein Vergleich mit den Pyruvat-Carboxylasen anderer Organismen ergab 46 bis 47% identische und 64 bis 65% ähnliche Aminosäuren (Gene 1997, 191: 47-50; J Bacteriol 1996, 178: 5960-5970; Proc Natl Acad Sci USA 1993, 90: 1766-1770; Biochem J 1996, 316: 631-637; EMBL-GenBank: Accession Nr. L36530; J Biol Chem 1988, 263: 11493-11497, Mol Gen Genet 1991, 229: 307-315). Aus diesen Ergebnissen wurde geschlossen, daß das klonierte Fragment das Gen für die Pyruvat-Carboxylase aus C. glutamicum trägt. Die Nukleotidsequenz des Gens ist unter SEQ ID No.1 und die entsprechende Aminosäuresequenz unter SEQ ID No. 2 angegeben.

5

10

15

20

3. Überexpression des Pyruvat-Carboxylase-Gens

Zur Überexpression des Gens für die Pyruvat-Carboxylase aus Gglutamicum wurde 5 das Gen aus dem Plasmid pUCpyc als 6,2 kb SspI-ScaI-Fragment in den E. coli-C. Glutamicum-Pendelvektor pEK0 (Gene 1991, 102: 93-98) kloniert, der mit den Restriktionsendonukleasen EcoRI und PstI geschnitten wurde. Mittels Klenow-Polymerase-Behandlung wurden die überhängenden Enden zu glatten Enden aufgefüllt (EcoRI) bzw. abgedaut (PstI), und der linearisierte Vektor wurde mit dem 10 6,2 kb SspI-ScaI-Fragment ligiert. Das erhaltene Konstrukt pEK0pyc wurde zunächst in den Stamm E. coli DH5\alpha transformiert, die Plasmid-DNA auf den erhaltenen Transformanden isoliert und auf die Richtigkeit des Inserts durch Restriktion kontrolliert. Die DNA wurde anschließend in den Stamm SP733 durch Elektroporation eingebracht (FEMS Microbiol Lett 1989, 65: 299-304). Bei diesem 15 Stamm handelt es sich um eine Mutante des restriktionsnegativen C. glutamicum Stammes R127 (Dechema Biotechnology Conference 1990, 4: 323-327, Verlag Chemie), die durch chemische Mutagenese erhalten worden war und sich dadurch auszeichnet, daß sie nicht auf Minimalmedium mit Pyruvat und Lactat als einziger Kohlenstoffquelle wachsen kann (Microbiology 1997, 143: 1095-1103). Dieser Phänotyp wird durch einen Defekt in der Pyruvat-Carboxylase hervorgerufen und konnte durch das Einbringen des Pyruvat-Carboxylase-Gens aus C. glutamicum komplementiert werden, d.h. der Stamm, der das Plasmid pEK0pyc trägt, war im Gegensatz zum Ausgangsstamm wieder in der Lage auf Minimalmedium mit Lactat als einziger Kohlenstoffquelle zu wachsen. Damit war auch der Beweis erbracht, daß das Gen für eine funktionelle Pyruvat-Carboxylase kodiert.

Darüber hinaus wurde das Plasmid pEK0pyc in den C. glutamicum Wildtyp ATCC 13032 durch Elektroporation transformiert. Der resultierende Stamm WT (pEK0pyc)

wurde im Vergleich zum Wildtyp ATCC 13032 bezüglich seiner Pyruvat-Carboxylase-Aktivität untersucht. Die Stämme wurden in Komplexmedium (Luria-Bertani, Molecular Cloning, A laboratory manual, 1989, Co. Spring Harbour Laboratory Press) mit 0,5 % Lactat und auf Minimalmedium mit 2 % Lactat bzw. 4 % Glukose gezüchtet, und der Pyruvat-Carboxylase-Test wurde entsprechend der Methode, wie sie bei Peters-Wendisch et al. (Microbiology 1997, 143: 1095-1103) beschrieben wurde, durchgeführt. Das Ergebnis der Analyse (Tabelle 1) zeigt, daß die Pyruvat-Carboxylase-Aktivität im pEK0-pyc-tragenden Stamm ca. 4-fach höher als im Ausgangsstamm war.

4. Gesteigerte Akkumulation von Lysin durch Überexpression des Pyruvat-Carboxylase-Gens im Stamm C. glutamicum DG52-5

Zur Untersuchung der Auswirkung der Überexpression des Gens für die Pyruvat-Carboxylase in dem Lysin-Produktionsstamm DG52-5 (J Gen Microbiol 1988, 134: 3221-3229) wurde der Expressionsvektor pVWEX1 verwendet, der eine IPTG-induzierbare Expression erlaubt. In diesen Vektor wurde das pyc Gen promotorlos hinein kloniert. Dazu wurden zunächst PCR-Primer (Primer 1 = Position 112 - 133; Primer 2 = Position 373 bis 355 in der Nukleotidsequenz gemäß SEQ ID No. 1) synthetisiert und 261 bp des promotorlosen Anfangsbereichs des Pyruvat-Carboxylase-Gens mittels PCR amplifiziert. Die Primer wurden so gewählt, daß Primer 1 eine PstI-Schnittstelle vermittelt und Primer 2 eine BamHI-Schnittstelle. Nach der PCR wurde das erhaltene 274 bp PCR-Produkt isoliert, zu Konkatemeren ligiert und anschließend mit den Restriktionsenzymen PstI und BamHI geschnitten. Der Restriktionsansatz wurde durch Ethanol-Fällung ankonzentriert und anschließend mit dem PstI-BamHI-geschnittenen Vektor pVWEX1 ligiert. Das erhaltene Konstrukt

5

10

15

pVWEX1-PCR wurde durch Restriktion getestet. Der Endbereich des pyc Gens wurde durch RcaI-Klenow-SalI-Behandlung aus dem Vektor pEK0pyc isoliert und in den BamHI-Klenow-SalI behandelten Vektor pVWEX1-PCR keiert. Das erhaltene Konstrukt pVWEX1pyc wurde durch Restriktionskartierung analysiert. Eine physikalische Karte des Plasmids ist in Figur 2 gezeigt.

Das Plasmid wurde durch Elektroporation in den C. glutamicum Stamm DG52-5 eingebracht. Als Kontrolle wurde der Stamm DG52-5 mit dem Vektor pVWEX1 ohne Insert transformiert und die L-Lysinausscheidung jeweils drei verschiedener Transformanden verglichen. Dazu wurden DG52-5(pVWEX1)1, 2 und 3 sowie DG52-5(pVWEX1pyc)3, 4 und 6 in Komplexmedium (2xTY; Molecular Cloning, A laboratory manual, 1989, Cold Spring Harbour Laboratory Press; mit 50 μ g/l Kanamycin) gezüchtet und das Fermentationsmedium CGXII (J Bacteriol 1993, 175: 5595-5603) jeweils aus den Vorkulturen getrennt beimpst. Das Medium enthielt zusätzlich Kanamycin, um die Plasmide stabil zu halten. Es wurden jeweils zwei parallele Ansätze durchgeführt, wobei einem Kolben 200 µg IPTG/ml zugesetzt wurde, während der zweite Kolben kein IPTG enthielt. Nach Kultivierung für 48 Stunden bei 30°C auf dem Rotationsschüttler bei 120 Upm wurde die in das Medium akkumulierte Lysinmenge bestimmt. Die Bestimmung der Aminosäurekonzentration erfolgte mittels Hochdruckflüssigkeitschromatographie (J Chromat 1983, 266: 471-482). Das Ergebnis der Fermentation ist in Tabelle 2 dargestellt, wobei die angegebenen Werte Mittelwerte aus jeweils drei Experimenten mit unterschiedlichen Klonen darstellen. Es zeigte sich, daß die Überexpression des Pyruvat-Carboxylase-Gens zu einer um 50 % gesteigerten Akkumulation von Lysin im Medium führt. Somit stellt die Nutzung des entdeckten und beschriebenen Gens für das anaplerotische Enzym Pyruvat-Carboxylase ein Verfahren dar, um die L-Lysinbildung entscheidend zu verbessern.

5

10

15

20

25

5. Gesteigerte Akkumulation von Threonin und Homoserin durch Überexpression des Pyruvat-Carboxylase-Gens im Stamm C. glutamicum DM368-3

Analog zu den Experimenten zur L-Lysin-Bildung wurde auch die Akkumulation von Threonin im Kulturüberstand durch Überexpression des Gens für die Pyruvat-Carboxylase untersucht. Hierzu wurde, wie unter Punkt 4 beschrieben, der Threoninproduktionsstamm C. glutamicum DM368-3 (Degussa AG) mit dem Plasmid pVWEX1pyc sowie zur Kontrolle mit dem Plasmid pVWEX1 transformiert und die Threoninausscheidung von jeweils drei verschiedenen Transformanden untersucht. Dazu wurden DM368-3(pVWEX1)1, 2 und 3 sowie DM368-3(pVWEX1pyc)1, 2 und 3 in Komplexmedium (2xTY mit 50 µg/l Kanamycin) gezüchtet und das Fermentationsmedium CGXII (J Bacteriol 1993, 175: 5595-5603) jeweils aus den Vorkulturen getrennt beimpft. Das Medium enthielt zusätzlich Kanamycin, um die Plasmide stabil zu halten. Es wurden zwei parallele Ansätze durchgeführt, wobei einem Kolben 200 µ IPTG/ml zugesetzt wurde, während der zweite Kolben kein IPTG enthielt. Nach Kultivierung für 48 Stunden bei 30°C auf dem Rotationsschüttler bei 120 Upm wurde die in das Medium akkumulierte Threoninmenge bestimmt. Die Bestimmung der Aminosäurekonzentration erfolgte ebenfalls mittels Hochdruck-Flüssigkeitschromatographie (J Chromat 1983, 266: 471-482). Das Ergebnis der Fermentation ist in Tabelle 3 dargestellt, wobei die angegebenen Werte Mittelwerte aus jeweils drei Experimenten mit unterschiedlichen Klonen darstellen. Es zeigte sich, daß die Überexpression des Pyruvat-Carboxylase-Gens zu einer ca. 40%igen Steigerung der Threoninkonzentration im Medium führt. Somit stell die Nutzung des endeckten und beschriebenen Gens für das anaplerotische Enzym Pyruvat-Carboxylase ein Verfahren dar, um die L-Threoninbildung entscheidend zu verbessern.

 $(\ \)$

5

10

15

20

Desweiteren zeigte die Aminosäurekonzentrationsbestimmung, daß überraschenderweise der Stamm mit überexprimiertem Pyruvat-Carboxylase-Gen außerdem etwa 150% mehr Homoserin ins Medium ausschied als der Stamm mit nicht überexprimiertem Gen. Die entsprechenden Ergebnisse sind ebenfalls in Tabelle 3 dargestellt. Sie machen deutlich, daß durch das erfindungsgemäße Verfahren sowohl die Threonin- als auch die Homoserinbildung entscheidend verbessert werden kann.

SEQUENZ PROTOKOLL

(1) ALLGEMEI	NE A	NGA	BEN:
--------------	------	-----	------

(i	ANMELD	ER	

- (A) NAME: Forschungszentrum Juelich GmbH
- (B) STRASSE: Postfach 1913
- (C) ORT: Juelich
- (E) LAND: Deutschland
- (F) POSTLEITZAHL: 52425

(ii) BEZEICHNUNG DER ERFINDUNG: Pyruvat Carboxylase

(iii) ANZAHL DER SEQUENZEN: 2

(iv) COMPUTER-LESBARE FASSUNG:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

(2) ANGABEN ZU SEQ ID NO: 1:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 3728 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Genom-DNA

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

CGCAACCGTG	CTTGAAGTCG	TGCAGGTCAG	GGGAGTGTTG	CCCGAAAACA	TTGAGAGGAA	60
AACAAAAACC	GATGTTTGAT	TGGGGGAATC	GGGGGTTACG	ATACTAGGAC	GCAGTGACTG	120
CTATCACCCT	TGGCGGTCTC	TTGTTGAAAG	GAATAATTAC	TCTAGTGTCG	ACTCACACAT	180
CTTCAACGCT	TCCAGCATTC	AAAAAGATCT	TGGTAGCAAA	CCGCGGCGAA	ATCGCGGTCC	240
GTGCTTTCCG	TGCAGCACTC	GAAACCGGTG	CAGCCACGGT	AGCTATTTAC	CCCCGTGAAG	300
ATCGGGGATC	ATTCCACCGC	TCTTTTGCTT	CTGAAGCTGT	CCGCATTGGT	ACCGAAGGCT	360
CACCAGTCAA	GGCGTACCTG	GACATCGATG	AAATTATCGG	TGCAGCTAAA	AAAGTTAAAG	420
CAGATGCCAT	TTACCCGGGA	TACGGCTTCC	TGTCTGAAAA	TGCCCAGCTT	GCCCGCGAGT	480

		GTGCGGAAAA	CGGCATTACT	TTTATTGGCC	CAACCCCAGA	GGTTCTTGAT	CTCACCGGTG	540
		ATAAGTCTCG	CGCGGTAACC	GCCGCGAAGA	AGGCTGGTCT	GCCAGTTTTG	GCGGAATCCA	600
		CCCCGAGCAA	AAACATCGAT	GAGATCGTTA	AAAGCGCTGA	AGGCCAGACT	TACCCCATCT	660
		TTGTGAAGGC	AGTTGCCGGT	GGTGGCGGAC	GCGGTATGCG	TTTTGTTGCT	TCACCTGATG	720 ⁻
		AGCTTCGCAA	ATTAGCAACA	GAAGCATCTC	GTGAAGCTGA	AGCGGCTTTC	GGCGATGGCG	780
* *		CGGTATATGT	CGAACGTGCT	GTGATTAACC	CTCAGCATAT	TGAAGTGCAG	ATCGGGGG	840
		ATCACACTGG	AGAAGTTGTA	CACCTTTATG	AACGTGACTG	CTCACTGCAG	CGTCGTCACC	900
		AAAAAGTTGT	CGAAATTGCG	CCAGCACAGC	ATTTGGATCC	AGAACTGCGT	GATCGCATTT	960
		GTGCGGATGC	AGTAAAGTTC	TGCCGCTCCA	TTGGTTACCA	GGGCGCGGGA	ACCGTGGAAT	1020
	r.	TCTTGGTCGA	TGAAAAGGGC	AACCACGTCT	TCATCGAAAT	GAACCCACGT	ATCCAGGTTG	1080
		AGCACACCGT	GACTGAAGAA	GTCACCGAGG	TGGACCTGGT	GAAGGCGCAG	ATGCGCTTGG	1140
		CTGCTGGTGC	AACCTTGAAG	GAATTGGGTC	TGACCCAAGA	TAAGATCAAG	ACCCACGGTG	1200
•		CAGCACTGCA	GTGCCGCATC	ACCACGGAAG	ATCCAAACAA	CGGCTTCCGC	CCAGATACCG	1260
		GAACTATCAC	CGCGTACCGC	TCACCAGGCG	GAGCTGGCGT	TCGTCTTGAC	GGTGCAGCTC	1320
		AGCTCGGTGG	CGAAATCACC	GCACACTTTG	ACTCCATGCT	GGTGAAAATG	ACCTGCCGTG	1380
•		GTTCCGACTT	TGAAACTGCT	GTTGCTCGTG	CACAGCGCGC	GTTGGCTGAG	TTCACCGTGT	1440
		CTGGTGTTGC	AACCAACATT	GGTTTCTTGC	GTGCGTTGCT	GCGGGAAGAG	GACTTCACTT	1500
		CCAAGCGCAT	CGCCACCGGA	TTCATTGCCG	ATCACCCGCA	CCTCCTTCAG	GCTCCACCTG	1560
	es ² .	CTGATGATGA	GCAGGGACGC	ATCCTGGATT	ACTTGGCAGA	TGTCACCGTG	AACAAGCCTC	1620
•	(;;	ATGGTGTGCG	TCCAAAGGAT	GTTGCAGCTC	CTATCGATAA	GCTGCCTAAC	ATCAAGGATC	1680
	,	TGCCACTGCC	ACGCGGTTCC	CGTGACCGCC	TGAAGCAGCT	TGGCCCAGCC	GCGTTTGCTC	1740
		GTGATCTCCG	TGAGCAGGAC	GCACTGGCAG	TTACTGATAC	CACCTTCCGC	GATGCACACC	1800
		AGTCTTTGCT	TGCGACCCGA	GTCCGCTCAT	TCGCACTGAA	GCCTGCGGCA	GAGGCCGTCG	1860
		CAAAGCTGAC	TCCTGAGCTT	TTGTCCGTGG	AGGCCTGGGG	CGGCGCGACC	TACGATGTGG	1920
		CGATGCGTTT	CCTCTTTGAG	GATCCGTGGG	ACAGGCTCGA	CGAGCTGCGC	GAGGCGATGC	1980
		CGAATGTAAA	CATTCAGATG	CTGCTTCGCG	GCCGCAACAC	CGTGGGATAC	ACCCCGTACC	2040
		CAGACTCCGT	CTGCCGCGCG	TTTGTTAAGG	AAGCTGCCAG	CTCCGGCGTG	GACATCTTCC	2100

		•				
GCATCTTCGA	CGCGCTTAAC	GACGTCTCCC	AGATGCGTCC	AGCAATCGAC	GCAGTCCTGG	2160
AGACCAACAC	CGCGGTAGCC	GAGGTGGCTA	TGGCTTATTC	TGGTGATCTC	TCTGATCCAA	2220
ATGAAAAGCT	CTACACCCTG	GATTACTACC	TAAAGATGGC	AGAGGAGATC	GTCAAGTCTG	2280
GCGCTCACAT	CTTGGCCATT	AAGGATATGG	CTGGTCTGCT	TCGCCCAGCT	GCGGTAACCA	2340
AGCTGGTCAC	CGCACTGCGC	CGTGAATTCG	ATCTGCCAGT	GCACGTGCAC	ACCCACGACA	2400
CTGCGGGTGG	CCAGCTGGCA	ACCTACTTTG	CTGCAGCTCA	AGCTGGTGCA	GATGCTGTTG	2460
ACGGTGCTTC	CGCACCACTG	TCTGGCACCA	CCTCCCAGCC	ATCCCTGTCT	GCCATTGTTG	2520
CTGCATTCGC	GCACACCCGT	CGCGATACCG	GTTTGAGCCT	CGAGGCTGTT	TCTGACCTCG	2580
AGCCGTACTG	GGAAGCAGTG	CGCGGACTGT	ACCTGCCATT	TGAGTCTGGA	ACCCCAGGCC	2640
CAACCGGTCG	CGTCTACCGC	CACGAAATCC	CAGGCGGACA	GTTGTCCAAC	CTGCGTGCAC	2700
AGGCCACCGC	ACTGGGCCTT	GCGGATCGTT	TCGAACTCAT	CGAAGACAAC	TACGCAGCCG	2760
TTAATGAGAT	GCTGGGACGC	CCAACCAAGG	TCACCCCATC	CTCCAAGGTT	GTTGGCGACC	2820
TCGCACTCCA	CCTCGTTGGT	GCGGGTGTGG	ATCCAGCAGA	CTTTGCTGCC	GATCCACAAA	2880
AGTACGACAT	CCCAGACTCT	GTCATCGCGT	TCCTGCGCGG	CGAGCTTGGT	AACCCTCCAG	2940
GTGGCTGGCC	AGAGCCACTG	CGCACCCGCG	CACTGGAAGG	CCGCTCCGAA	GGCAAGGCAC	3000
CTCTGACGGA	AGTTCCTGAG	GAAGAGCAGG	CGCACCTCGA	CGCTGATGAT	TCCAAGGAAC	3060
GTCGCAATAG	CCTCAACCGC	CTGCTGTTCC	CGAAGCCAAC	CGAAGAGTTC	CTCGAGCACC	3120
GTCGCCGCTT	CGGCAACACC	TCTGCGCTGG	ATGATCGTGA	ATTCTTCTAC	GGCCTGGTCG	3180
AAGGCCGCGA	GACTTTGATC	CGCCTGCCAG	ATGTGCGCAC	CCCACTGCTT	GTTCGCCTGG	3240
ATGCGATCTC	TGAGCCAGAC	GATAAGGGTA	TGCGCAATGT	TGTGGCCAAC	GTCAACGGCC	3300
AGATCCGCCC	AATGCGTGTG	CGTGACCGCT	CCGTTGAGTC	TGTCACCGCA	ACCGCAGAAA	3360
AGGCAGATTC	CTCCAACAAG	GGCCATGTTG	CTGCACCATT	CGCTGGTGTT	GTCACCGTGA	3420
CTGTTGCTGA	AGGTGATGAG	GTCAAGGCTG	GAGATGCAGT	CGCAATCATC	GAGGCTATGA	3480
AGATGGAAGC	AACAATCACT	GCTTCTGTTG	ACGGCAAAAT	CGATCGCGTT	GTGGTTCCTG	3540
CTGCAACGAA	GGTGGAAGGT	GGCGACTTGA	TCGTCGTCGT	TTCCTAAACC	TTTCTGTAAA	3600
AAGCCCCGCG	TCTTCCTCAT	GGAGGAGGCG	GGGCTTTTTG	GGCCAAGATG	GGAGATGGGT	3660
GAGTTGGATT	TGGTCTGATT	CGACACTTTT	AAGGGCAGAG	ATTTGAAGAT	GGAGACCAAG	3720

GCTCAAAG 3728

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1140 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Ser Thr His Thr Ser Ser Thr Leu Pro Ala Phe Lys Lys Ile Leu 1 5 10 15

Val Ala Asn Arg Gly Glu Ile Ala Val Arg Ala Phe Arg Ala Ala Leu 20 25 30

Glu Thr Gly Ala Ala Thr Val Ala Ile Tyr Pro Arg Glu Asp Arg Gly
35 40 45

Ser Phe His Arg Ser Phe Ala Ser Glu Ala Val Arg Ile Gly Thr Glu 50 55 60

Gly Ser Pro Val Lys Ala Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala 65 70 75 80

Ala Lys Lys Val Lys Ala Asp Ala Ile Tyr Pro Gly Tyr Gly Phe Leu 85 90 95

Ser Glu Asn Ala Gln Leu Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr 100 105 110

Phe Ile Gly Pro Thr Pro Glu Val Leu Asp Leu Thr Gly Asp Lys Ser 115 120 125

Arg Ala Val Thr Ala Ala Lys Lys Ala Gly Leu Pro Val Leu Ala Glu 130 135 140

Ser Thr Pro Ser Lys Asn Ile Asp Glu Ile Val Lys Ser Ala Glu Gly 145 150 155 - 160

Gln Thr Tyr Pro Ile Phe Val Lys Ala Val Ala Gly Gly Gly Arg
165 170 175

Gly Met Arg Phe Val Ala Ser Pro Asp Glu Leu Arg Lys Leu Ala Thr 180 185 190

Glu Ala Ser Arg Glu Ala Glu Ala Ala Phe Gly Asp Gly Ala Val Tyr

- Val Ala Ala Phe Ala His Thr Arg Arg Asp Thr Gly Leu Ser Leu Glu 785 790 795 800
- Ala Val Ser Asp Leu Glu Pro Tyr Trp Glu Ala Val Arg Gly Leu Tyr 805 810 815
- Leu Pro Phe Glu Ser Gly Thr Pro Gly Pro Thr Gly Arg Val Tyr Arg 820 825 830
- His Glu fle Pro Gly Gly Gln Leu Ser Asn Leu Arg Ala Gln Ala Thr 835 840 845
- Ala Leu Gly Leu Ala Asp Arg Phe Glu Leu Ile Glu Asp Asn Tyr Ala 850 855 860
- Ala Val Asn Glu Met Leu Gly Arg Pro Thr Lys Val Thr Pro Ser Ser 865 870 875 880
- Lys Val Val Gly Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Asp 885 890 895
- Pro Ala Asp Phe Ala Ala Asp Pro Gln Lys Tyr Asp Ile Pro Asp Ser 900 905 910
- Val Ile Ala Phe Leu Arg Gly Glu Leu Gly Asn Pro Pro Gly Gly Trp 915 920 925 .
- Pro Glu Pro Leu Arg Thr Arg Ala Leu Glu Gly Arg Ser Glu Gly Lys 930 935 940
- Ala Pro Leu Thr Glu Val Pro Glu Glu Glu Gln Ala His Leu Asp Ala 945 950 955 960
- Asp Asp Ser Lys Glu Arg Arg Asn Ser Leu Asn Arg Leu Leu Phe Pro 965 970 975
- Lys Pro Thr Glu Glu Phe Leu Glu His Arg Arg Phe Gly Asn Thr 980 985 990
- Ser Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu Val Glu Gly Arg 995 1000 1005
- Glu Thr Leu Ile Arg Leu Pro Asp Val Arg Thr Pro Leu Leu Val Arg 1010 1015 1020
- Leu Asp Ala Ile Ser Glu Pro Asp Asp Lys Gly Met Arg Asn Val Val 1025 1030 1035 1040
- Ala Asn Val Asn Gly Gln Ile Arg Pro Met Arg Val Arg Asp-Arg Ser 1045 1050 1055
- Val Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp Ser Ser Asn Lys

Gly His Val Ala Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Ala 1075 1080 1085

Glu Gly Asp Glu Val Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala 1090 1095 1100

Met Lys Met Glu Ala Thr Ile Thr Ala Ser Val Asp Gly Lys Ile Asp 1105 1110 1115 1120

Arg Val Val Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile 1125 1130 1135

Val Val Val Ser 1140

Figur

; (

(* · · ·

*....

Figur 2

Stamm	IPTG [µg/mi]	Pyruvat-Carboxylase [nmol min ⁻¹ mg Trockengewicht ⁻¹]
13032(pEK0pyc)	0	75 ± 13
ATCC 13032	0	19 ± 4
DG52-5(pVWEX1pyc)	200	88 ± 13
	Ō	11 ± 2
DG52-5(pVWEX1)	200	5 ± 2
	0	6 ± 1
DM368-3(pVWEX1pyc)	200	76 ± 10
	0	12±3
DM368-3(pVWEX1)	200	10 ± 1
	0	11 ± 2

Tabelle 1

Stamm	IPTG [µg/ml]	Lysin [mM]
DG52-5(pVWEX1pyc)	200	35,4 ± 2,6
	0	23,6 ± 2,9
DG52-5(pVWEX1)	200	23,3 ± 2,9
	0	22,1 ± 4,0

Tabelle 2

Stamm	IPTG [µg/ml]	Threonin [mM]	Homoserin [mM]
DM368-3(pVWEX1pyc)	200	10,2 ± 0,5	14,4 ± 1,2
4. Same -	0	$7,9 \pm 1,0$	$5,6 \pm 0,2$
DM368-3(pVWEX1)	200	$8,0 \pm 0,5$	5,8 ± 0,7
	· 0	$7,5 \pm 0,8$	6,1 ± 1,0

Tabelle 3

21437 PC

State of New York ss: County of the Bronx

TRANSLATOR'S AFFIDAVIT

I, Ruth Goldstein, a citizen of the United States of America, residing in Ft. Lee, New Jersey, depose and state that:

I am familiar with the English and German languages;

I have read a copy of the German-language document attached hereto, namely Certified Copy of German Patent Application 197 43 894.6 as filed on 4 November 1997 (Priority Document); and

The hereto-attached English-language text is an accurate translation of the above-identified German-language document.

Ruth Goldstein

LINDA BERRIOS Notary Public State of New York No. 01BE5016825 Qualified in Bronx County Commission expires August 23, Sworn to and subscribed before me 11 January 2002

Notary Public

FEDERAL REPUBLIC OF GERMANY

Priority Certificate attesting to the filing of a patent application

Ser. No.: 197 43 894.6

Filing Date: 4 November 1997

Applicant/Owner: Forschungszentrum Jülich GmbH, Jülich

DE

Title: METHOD FOR MICROBIAL PRODUCTION OF

AMINOACIDS OF THE ASPARTATE FAMILY AND AGENTS WHICH CAN BE USED IN SAID METHOD

IPC: C 12 N, C 07 H, C 12 P

The attached pieces are a correct and precise reproduction of the documents originally filed in this patent application.

Munich, the 14th of August 2001 German Patent and Trademark Office

President

by ss/signature/ Wehner

[Translation of DE Application 197 43 894.6] FORSCHUNGSZENTRUM JÜLICH GMBH

Patent Claims

- 1. A method of microbial production of amino acids of aspartate family in which the pyruvate-carboxylase activity is increased by genetic modification of the enzyme and/or the pyruvate-carboxylase gene expression of the corresponding aminoacid-producing micro organism.
- 2. The method of claim 1, characterized in that, by mutation of the endogenous pyruvate-carboxylase gene an enzyme with higher pyruvate-carboxylase activity is produced.
- 3. The method of claim 1 or 2, characterized in that, the gene expression of the pyruvate-carboxylase is increased by increasing the gene copy number.
- 1 4. The method according to claim 3, characterized in 2 that, to increase the gene copy number the pyruvate-carboxylase 3 gene is incorporated in a gene construct.

- 5. The method according to claim 4, characterized in that, the gene is incorporated in a gene construct which contains regulatory gene sequences associated with the pyruvate-carboxylase gene.
- 6. The method according to claim 4 or 5, characterized in that, the corresponding amino-acid-producing microorganism is transformed with the gene-containing gene construct.
- 7. The method according to claim 6, characterized in that, a microorganism of the species Corynebacterium is transformed with the gene containing the gene construct.
- 1 8. The method according to claim 6 or 7, characterized 2 in that, for the transformation a microorganism is used in which 3 the enzyme participating in the synthesis of the corresponding 4 amino acid is deregulated and/or wherein an enhanced export carrier 5 activity is shown for the corresponding amino acid.

- 9. The method according to claim 6 to 8, characterized in that, for the transformation a microorganism is used which has a higher proportion of the central metabolism metabolites of the corresponding amino acid participating in the synthesis.
- 10. The method according to claim 6 to 9, characterized 2 in that, for the transformation a microorganism is used in which 3 biosynthesis paths competing with the corresponding amino acid 4 biosynthesis paths runs with reduced activity.
- 11. The method according to one of the preceding claims,
 2 characterized in that, the pyruvate-carboxylase gene is isolated
 3 from a microorganism strain of the variety Corynebacterium.
- 1 12. The method according to one of the preceding claims, 2 characterized in that, the gene expression is increased by 3 reinforcement of the transcription signal.
- 13. The method according to one of the preceding claims, 2 characterized in that, the pyruvate-carboxylase gene has the tac-3 promoter ahead of the pyruvate-carboxylase gene.

- 1 14. The method according to claim 13, characterized in that, the tac-promoter is associated with regulatory sequences.
- 15. The method according to one of the preceding claims, 2 characterized in that, the pyruvate-carboxylase gene is a gene with 3 the amino acid sequence given under SEQ ID No. 2 and its allele 4 variation coding nucleotide sequences.
- 1 16. The method according to claim 15, characterized in 2 that, with the pyruvate-carboxylase gene a gene with the nucleotide 3 sequence of nucleotide 165 to 3587 according to SEQ ID No. 1 or a 4 substantially identically-effective DNA sequence is used.
- 1 17. The method according to one of the preceding claims 2 for the production of lysine, threonine, homoserine, metheonine, 3 and/or isoleucine.
- 18. A pyruvate-carboxylase gene coding for the amino 2 acid sequence given under SEQ ID No. 2 and /or a nucleotide 3 sequence coding for its allele variations.
- 1 19. The pyruvate-carboxylase gene according to claim 18 with the nucleotide sequence of nucleotides 165 to 3587 according

- 3 to SEQ ID No. 1 or a substantially identically-effective DNA
- 4 sequence.
- 1 20. The pyruvate-carboxylase gene according to claim 18
- 2 or 19 with a preceding promoter of the nucleotide sequence from
- nucleotide 20 to 109 according to SEQ ID No. 1 or a substantially-
- 4 identically-effective DNA sequence.
- 5 21. The pyruvate-carboxylate gene according to claim 18
- or 19, with preceding tac-promoter.
- 7 22. The pyruvate-carboxylase gene according to claim 21
- 8 with the regulatory sequence associated with the promoter.
- 1 23. The pyruvate-carboxylase gene according to one of
- 2 claims 18 to 20 with these regulatory gene sequences associated
- 3 therewith.
- 1 24. A gene structure containing a pyruvate-carboxylase
- 2 gene according to one of claims 18 to 23.

7

- 25. A vector containing a pyruvate-carboxylase gene 4 according to one of claims 18 to 23 or a gene structure according 5 to claim 24.
- 26. Transformed cells containing in replicatable form a pyruvate-carboxylase gene according to one of claims 18 to 23 or a gene structure according to claim 24.
- 1 27. Transformed cells according to claim 26 containing a vector according to claim 25.
- 28. Transformed cells according to claim 26 or 27,
 characterized in that, they belong to the variety Corynebacterium.
- 29. Transformed cells according to one of claims 26 to 28, characterized in that, enzymes which participate in the synthesis of the corresponding amino acid and/or enzyme which participate in the export of the corresponding amino acid are deregulated.

30. Transformed cells according to one of claims 26 to 29, characterized in that, they contain an increased proportion of

- 8 the central metabolism metabolites participating in the synthesis
- 9 of the corresponding amino acid.
- 1 31. Transformed cells according to one of claims 26 to
- 2 30, characterized in that, they contain a reduced proportion of the
- 3 central metabolism metabolites which do not participate in the
- 4 synthesis of the corresponding amino acid.
- 1 32. The use of a pyruvate-carboxylase gene for
- 2 increasing the production of amino acids of the aspartate family by
- 3 microorganisms.
- 1 33. The use according to claim 32, characterized in
- 2 that, a mutated pyruvate-carboxylase gene which codes for an enzyme
- 3 with increase pyruvate-carboxylase activity is used.
- 1 34. The use according to claim 32 or 33, characterized
- 2 in that, the microorganism producing the corresponding amino acid
- 3 is transformed with a gene construct that contains a pyruvate-
- 4 carboxylase gene.

- 1 35. The use according to claim 34, characterized in
- that, the gene construct additionally contains regulatory gene
- 3 sequences.
- 1 36. The use according to one of claims 32 or 35,
- 2 characterized in that, a pyruvate-carboxylase gene from
- 3 Corynebacterium is used.
- 1 37. The use according to one of claims 32 or 36,
- 2 characterized in that, Corynebacterium is used as the amino acid-
- 3 producing microorganism.

Forschungszentrum Jülich GmbH

DESCRIPTION

METHOD FOR MICROBIAL PRODUCTION OF AMINO ACIDS OF THE ASPARTATE FAMILY AND AGENTS WHICH CAN BE USED IN SAID METHOD

The invention relates to a method of microbial production of amino acids of the aspartate family according to claims 1 to 17, to the pyruvate-carboxylase gene according to claims 18 to 23, gene structures according to claim 24, vectors according to claim 25,

transformed cells according to claims 26 to 31 as well as to uses according to claims 32 to 37.

Amino acids are of considerable economic interest since amino acids have many uses: thus, for example, L-lysine and L-threonine, L-methionine and L-tryptophan are necessary as fodder additives, L-glutamate as a spice additive, L-isoleucine and L-tyrosine in the pharmaceutical industry, L-arginine and L-isoleucine as medicaments or L-glutamate, L-aspartate and L-phenylalanine as starting substances for the synthesis of fine chemicals.

20

5

10

15

A preferred method of producing these different amino acids is the biotechnical production by means of microorganisms such that in this manner the biologically-effective and optically-active forms of the respective amino acids are obtained and simple and inexpensive raw materials can be used. As microorganisms, for

example, Corynebacterium glutamicum and its derivatives ssp. Flavum and ssp. Lactofermentum (Liebl et al., Int J System Bacteriol 1991, 41: 255 to 260) in addition to Escherichia coli and related bacteria are used.

These bacteria normally produce the amino acids but only in amounts required for growth so that no surplus amino acids are formed and can be recovered. This is because in the cells the biosynthesis of amino acids is controlled in many ways. As a

in amounts required for growth so that no surplus amino acids are formed and can be recovered. This is because in the cells the biosynthesis of amino acids is controlled in many ways. As a consequence, there are already known various processes to increase the product formation by cutting out the control mechanisms. In these processes, for example, amino acid analogs are introduced to switch off the effective regulation of the biosynthesis. For example, a process is described wherein Corynebacterium stems resistant to L-tyrosine analogs and L-phenylalanine analogs have been used (JP 19037/1976 and 39517/1978). Also processes have been described in which bacteria resistant to L-lysine analogs or L-phenylalanine analogs have been used to suppress the control mechanisms (EP 0 205 849, GB 2 152 509).

10

15

20

25

Furthermore, microorganisms which have been constructed also by recombinant DNA-technique which also obviate regulation of biosynthesis in that the gene which is coded in the no-longer feedback-inhibited key enzyme is cloned and expressed. For example, the recombinant L-lysine-producing bacterium with plasmid-coded feedback-resistant aspartate kinase is known (EP 0 381 527). In addition, a recombinant L-phenylalanine-producing bacterium with

- 3 -

10

15

20

25

feedback-resistant prephenate dehydrogenase is described (JP 123475/1986, EP 0 488 424).

In addition, by overexpression of genes which do not code for feedback-sensitive enzymes as amino acid synthesis, increased amino acid yields are obtainable. thus, for example, a lysine formation can be improved by increased synthesis of the dihydrodipicolinate synthesis (EP 0 197 335). Increasingly, by increased synthesis of the threoninedehydratease, improved isoleucine formation is achieved (EP 0 436 886).

Further investigations in increasing amino acid production have been targeted on the improved availability of the cellular primary metabolites of central metabolism. Thus it is known that, by recombinant techniques, over-expression of the transketolase can bring about an improved product formation of L-tryptophan or L-tyrosine or L-phenylalanine (EP 0 600 463). Furthermore, the reduction of the phosphoenolpyruvate-carboxylase activity in Corynebacterium leads to improved formation of aromatic amino acids (EP 0 3331 145) whereas by contrast the increase in the phosphoenolpyruvate-carboxylase activity in Corynebacterium leads to increased separation out of amino acids of the aspartate family (EP 0 358 940).

During the growth and especially under amino acid production conditions, the tricarboxylic acid cycle must continuously and effectively be supplemented with C4 compounds, for example, oxalic acetate to replace intermediate products withdrawn for the amino acid biosynthesis. Until recently it has been

- 4 -

10

15

20

25

thought that phosphoenolpyruvate-carboxylase was answerable for these so-called anaplerotic functions in Corynebacterium (Kinoshita, Biology of Industrial Micro-organisms 1985: 115 to 142, Benjamin/Cummings Publishing Company, London; Liebl, The Prokaryotes II, 1991 to 1171, Springer Verlag N.Y.; Vallino and Stephanopoulos, Biotechnol Bioeng 1993, 41: 633 to 646).

It has, however, now been found that phosphoenolpyruvatecarboxylase-negative mutants grow equally by comparison to the respective starting strains on all media (Peters-Wendisch et al., FEMS Microbiology Letters 1993, 112: 269 to 274; Gubler et al., Appl Microbiol Biotechnol 1994, 40: 857 to 863). These results indicate that the phosphoenolpyruvate-carboxylase is not essential for the growth and plays no role or only a small role for the anaplerotic reactions. Furthermore the aforementioned results indicate that in Corynebacterium another enzyme must be provided which is answerable for the synthesis of oxalacetate which is required for the growth. Recently, indeed, a pyruvate-carboxylase activity has been found in permeablized cells of Corynebacterium glutamicum (Peters-Wendisch et al., Microbiology 1997, 143: 1095 to 1103). This enzyme is effectively inhibited by AMP, ADP and acetyl coenzyme A and in the presence of lactate as a carbon source is formed in increased quantities. Since one must conclude that this enzyme is answerable primarily for the satisfaction of the tricarboxylic acid cycle of growth, it was to be expected that an increase in the gene expression or the enzymatic activity would

- 5 -

10

15

20

25

either give rise to no increase in the amino acids belonging to the aspartate or yield only an increase therein.

It has surprisingly been found that an increase in the pyruvate-carboxylase activity by genetic modification of the enzyme and/or by increasing the pyruvate-carboxylase gene expression, the microbial production of amino acids of the aspartate family can be increased. It has been found that especially strains with increased copy numbers of the pyruvate-carboxylase gene can produce about 50% more lysine, 40% more threonine and 150% more homoserine in the culture medium.

The genetic alteration of the pyruvate-carboxylase to increase the enzyme activity is effected preferably by mutation of the endogenous gene. Such mutation can either be achieved by classical methods like, for example, by UV irradiation or by mutation triggering chemicals or targeted by means of gene technological methods like deletion, insertion and/or nucleotide exchange.

The pyruvate-carboxylase gene expression is increased by increasing the gene copy number and/or by reinforcing regulatory factors which positively influence the expression of the gene. Thus a reinforcement of regulatory elements, preferably on the transcription plane can be effected in that especially the transcription signals are increased. This can be effected, for example, by varying the promoter sequence of the promoter preceding the structure gene to enhance its effectiveness or by replacing the promoter completely by more effective promoters. A reinforcement

- 6 -

of the transcription can also be effected by a corresponding influence on a regulator gene associated with the pyruvate-carboxylase gene. This can be achieved, for example, by mutation of a regulatory gene sequence to influence the effectivity of the binding of a regulator protein to the DNA of the pyruvate-carboxylase gene which is regulated so that the transcription is thereby enhanced and thus the gene expression is increased. Furthermore the pyruvate-carboxylase gene can also be associated with a so-called "enhancer" as a regulatory sequence and which by means of an improved interchange between RNA polymerase and DNA also effects an increased pyruvate-carboxylase gene expression. However, a reinforcement of translations is also possible in that, for example, the stability of the m-RNA is improved.

carboxylase gene is built into a gene construct or vector. The gene construct contains especially the regulatory sequences associated with the pyruvate-carboxylase gene, preferably those which reinforce the gene expression. For the incorporation of the pyruvate-carboxylase gene in a gene construct, the gene is progressively isolated from a microorganism strain of the Corynebacterium variety and is transformed in an amino-acid producing microorganism strain, especially Corynebacterium or in Escherichia coli or serratia marcenscens. For the process of the invention, especially genes from C. glutamicum or C. glutamicum ssp. flavum or C. glutamicum ssp. lactofermentum are suitable. After isolation of the gene and in the in vitro recombination with

- 7 -

10

15

20

25

known vectors (see for example Simon et al., Bio/Technology 1983, 1: 784 to 791; Eikmanns et al., Gene 1991, 102: 93 to 98), the transformation is effected in the amino-acid producing strain by electroporation (Liebl et al., FEMS Microbiology Letters 1991, 65: 299 to 304) or conjugation (Schäfer et al., J. Baceriol 1990, 172: 1663 to 1666). As the host strain preferably such amino-acid producers are used which have been deregulated in the synthesis of the corresponding amino acid and/or show an increased export carrier activity for the corresponding amino acid. Furthermore, such strains are preferred which contain an increased number of such central metabolism metabolites as anticipated in the synthesis of the corresponding amino acid and/or strains which contain a reduced proportion of the central metabolism metabolites which do not participate in the synthesis of the corresponding amino acid, especially metabolites which tolerate competitive reactions; i.e. such strains are preferred with which by synthesis paths competitive with the corresponding amino acid biosynthesis path runs with reduced activity. Thus, especially a Coryne-former microorganism strain with reduced citrate synthase activity is suitable as a strain resistant to L-asparaginic-acid- β -methylester (AME) is suitable (EP 0 551 614).

After isolation, the pyruvate-carboxylase gene is obtained with nucleotide sequences which code for the amino acid sequence given under SEQ ID No. 2 or their allele variations or the nucleotide sequence of nucleotides 165 to 3587 according to SEQ ID

- 8 -

10

15

20

25

No. 1 or a substantially identically-effective DNA sequence. The gene further contains a protein promoter of the nucleotide sequence of nucleotides 20 to 109 according to SEQ ID No. 1, a substantially identically effective DNA sequence. Allele variations or identically effective DNA sequences encompass especially functional derivations which are corresponding nucleotide sequences formed by deletions, insertions and/or substitutions of nucleotides whereby the enzyme activity or function remains or can even be increased. This pyruvate-carboxylase gene is preferably used in the process of the invention.

The pyruvate-carboxylase gene with or without the preceding promoter or with or without the associated regulator gene can be preceded by and/or followed by one or more DNA sequences so that the gene is contained in a gene structure.

The pyruvate-carboxylase gene is preferably preceded by the tac-promoter (lacI $^{\rm Q}$ -Gen) with which is associated especially regulatory sequences.

By cloning the pyruvate-carboxylase gene, plasmids are obtained which contain the gene and are suitable for transformation to an amino acid producer. The cells obtained by transformation which preferably correspond to transformed cells of Corynebacterium, contain the gene in replicatable form, i.e. in additional copies on the chromosome, whereby the gene copies are integrated by recombination at optional sites in the genome and/or on a plasmid or vector.

10

15

20

25

Example

1. Cloning the Pyruvate-Carboxylase Gene of Corynebacterium Glutamicum

Starting from conserved regions of all prior known pyruvate-carboxylase-(pyc-) genes of Saccharomyces cerevisiae (J Biol Chem 1988, 263: 11493-11497; Mol Gen Genet 1991, 229: 307-315), Mensch (Biochem Biophys Acta 1994, 1227: 46-52), Maus (Proc Natl Acad Sci, USA 1993, 90: 1766-1770), Aedes aegypti (EMBL-GeneBank: Accession Nr. L36530) and from Mycobacterium tuberculosis (EMBL-GeneBank: Accession Nr. U00024), PCR primer is synthesized (MWG Biotech). The primer corresponds to the bases 810 to 831 and 1015 to 1037 of the pyc gene from M. tuberculosis. With this primer, by means of PCR according to the standard method of Innis et al (PCR protocols. A Guide to Methods and Applications, 1990, Academic Press) for nongenerated homologous primer, in a fragment of about 200 bp of chromosomal DNA of C. glutamicum ATCC 13032 as has been described by Eikmanns et al. (Microbiology 1994, 140: 1817-1828) is isolated following amplification. The size of 200 bp corresponds to the expectation for the pyc gene. The PCR product as described by Sanger et al (Proc Natl Acad Sci USA 1977, 74: 5463-5467) was sequenced. The sequencing was carried out with fluorescence-marked ddNTPs with an automatic DNA sequencing apparatus (Applied Biosystems).

Starting from this DNA fragment of C. glutamicum, the following homologous oligonucleotides are produced:

DVC 1 5'- CGTCTTCATCGAAATGAAC-3'

10

15

20

25

pyc 2 5'- ACGGTGGTGATCCGGCACT-3'

The oligonucleotide is used as a PCR primer for isolating the probe for the gene of pyruvate-carboxylase (pyc) from C. The primer is introduced into a PCR reaction with chromosomal DNA from C. glutamicum and digoxygenine-marked nucleotides. The reaction is carried out in accordance with the instructions of the "PCR DIG Labeling Kits" of the firm Boehringer Mannheim. With this approach, a digoxygenine-marked DNA fragment is amplified which corresponds to the expected size of about 200 The thus produced pyc probe is then used to identify, utilizing Southern-blot-hybridization, A DNA fragment in the chromosomal DNA of C. glutamicum on which the pyc gene is localized. For this purpose each 2 to 5 $\mu \mathrm{g}$ of chromosomal DNA from C. glutamicum WT is cleaved with the restriction enzyme HindIII, SphI, SalI, DdraI, EcoRI and BamHI and the obtained DNA fragments are correspondingly separated by size over 16 hours at 20 volts gel-electrophoretically in an 0.8% agarose gel. The DNA fragments found in the agarose gel are denatured by the Southern blot (J Mol Biol 1975, 98: 503-517) and subjected to the vacuum-supported separation with the VacuGene Blot Apparatus of Pharmacia LKB (Uppsala, Sweden) from the gene matrix transferred onto a nylon membrane (Nytran N13 of Schleicher and Schüll, Dassel, Switzerland), immobilized and the digoxygenine marker detected by means of NBT/X phosphate conversion with alkali phosphatizes in this manner. Following chromosomal fragments hybridized with the

- 11 -

10

15

20

25

pyc-DNA-probe can be detected: a 17 kb HindIII-fragment, a 6.5 kb SalI fragment and a 1.35 kb EcoRI fragment.

The 17 kb HindIII fragment was isolated and subcloned. For this purpose a cosmid gene bank of chromosomal DNA from C. glutamicum in cosmid pH C79 was used which represented the genome of C. glutamicum to 99% (Mol Microbiol 1992, 6: 317-326). The E. coli strain DH5α was transformed with this gene bank by means of the CaCl₂ method of Sambrook et al (Molecular Cloning, A Laboratory Manual, 1989, Cold Spring Harbor Laboratory Press) and plated out to about 300 colonies per LB-agar plate with 50 μg/l kanamycin (a total of 5000 colonies). Then the obtained transformed product was transferred on a nytran N13 filter and incubated for 5 minutes for alkali lysis of the cells and denaturing of the DNA on Whatmann paper soaked with 0.5 M NaOH and 1.5 M NaCl. The subsequent neutralization is effected with 1 M Tris/HCl pH 7.5 and 1.5 M NaCl. The subsequent neutralization is effected with 1 M Tris/HCl pH 7.5 and 1.5 M NaCl.

After incubation of the filter in 2 x SSC, the liberated DNA is fixed by UV radiation at 366 nm on the filter. Then the remaining cell fragments are removed by shaking in 3 x SSC, 0.1% SDS at 50°C. The filter in this form is used for the hybdridization with a specific pyc probe as described by Southern (J Mol Biol 1975, 98: 503-517).

The 3 transformands were identified from the pyc probe hybridization. From these transformands the cosmid DNA was isolated by means of plasmid proportion in accordance with the

- 12 -

10

15

20

25

alkali lysis method of Birnboim (Meth Enzymol 1983, 100: 243-255) and then tested by restriction and Southern blot analysis for the presence of the HINDIII fragments. The cosmid pH C79-10 which contains a 40 kb HINDIII transmission completely and was further analyzed. It showed that also after the restriction with the endonucleosis SaII and EcoRI the same hybridized fragments as in the chromosomal DNA, i.e. a 6.5 kb SaII- fragment and a 1.35 kb EcRI-fragment. The 17 kb HindIII-fragment was isolated by restriction from the cosmid and is ligated in the E. coli vector pUC 18, which is also cleaved with HindIII. A restriction analysis of the fragments in the resulting vector pUC pyc was carried out. The physical mapping of the fragments is shown in FIG. 1.

2. Sequencing of the Pyruvate-Carboxylase Gene

In further subcloning steps a 0.85 kb SalI-EcoRI-fragment was isolated from the plasmid pUC pyc by restriction with corresponding restriction enzymes as a 1.35 kb EcoRI-fragment, a 1.6 kb EcoRI-EcoRI-StuI-fragment as well as a 1.6 kb ClaI-fragment, that overlapped with 0.85 kb SalI-EcoRI-fragment. By ligation the fragments were cloned correspondingly in the restricting vector pUC 18 and then sequenced as described above according to Sanger et al. In (Proc Natl Acad Sci USA 1977, 74: 5463-5467) the nucleotide sequences obtained were analyzed. The program package HUSAR (Release 3.0) of the German zone for cancer research (Heidelberg). The sequence analysis of the fragments gave a continuously open reading raster of 3576 bp which coded for a protein sequence of

10

15

20

25

1140 amino acids. Comparison of the protein sequence with the EMBL gene data bank (Heidelberg) gave similarities to all known pyruvate carboxylases. The highest identity (62%) was to the putative pyruvate-carboxylase from Mycobacterium tuberculosis (EMBL-GeneBank: Accession No. U00024). The similarity amounted to 76% when conserved amino acid exchange was followed. A comparison with the pyruvate-carboxylase of other organisms yielded an identity of 46 to 47% identical and 64 to 65% similar amino acids (Gene 1997, 191: 47-50; J Bacteriol 1996, 178: 5960-5970; Proc Natl Acad Sci USA 1993, 990: 1766-1770; Biochem J 1996, 316: 631-637; EMBL-GenBank: Accession No. L36530; J Biol Chem 1988, 263: 11493-11497; Mol Gen Genet 1991, 229: 307-315). From these results it could be concluded that the cloned fraction base was the gene for the The nucleotide sequence pyruvate-carboxylase from C. glutamicum. of the gene is given under SEQ ID No. 1 and the corresponding amino acid sequence under SEQ ID No. 2.

3. Overexpression of the Pyruvate-Carboxylase

For the overexpression of the gene for pyruvate-carboxylase from C. glutamicum, the gene was cloned from the plasmid pUCpyc as the 6.2 kb Sspl-Scal-fragment in the E. coliglutamicum swing vector pEKO (Gene 1991, 102: 93-98) which was cleaved with the restriction endonucleosis EcoRI and PstI. By means of Klenow-polymerase treatment the overhanging ends were ligated to smooth ends by filling the EcoRI or linking PstI and the linearized vector was ligated with the 6.2 kb Sspl-Scal-fragment.

10

15

20

25

The resulting construct pEKOpyc was additionally transformed in the $E.\ coli$ strain DH5 α , the plasmid DNA was isolated on the resulting transformand and the correctness of the inserts controlled by restriction. The DNA was then introduced in the strain SP 733 by electroporation (FEMS Microbiol Lett 1989, 65: 299-304).

This strain is a mutant of the restriction negative C. glutamicum strain R 127 (Dechema Biotechnology Conference 1990, 4: 323-327, Verlag Chemie) which was obtained by chemical mutagenesis and was characterized in that it cannot be grown on a minimal medium with pyruvate and lactate as single carbon sources (Microbiology 1997, 143: 1095-1103). This phenotype is recognized as a defect in the pyruvate-carboxylase and can be complemented by introducing the pyruvate-carboxylase gene from C. glutamicum, i.e. the strain which is carried by the plasmid pEKOpyc and was by contrast to the starting strain able to grow again in the presence of minimal medium with lactate as a single carbon source. This was a verification that the gene was coded for a functional pyruvate-carboxylase

Furthermore, the plasmid pEKOpyc was transformed in the C. glutamicum wild type ATCC 13032 by electroporation. The resulting strain WT (pEKOpyc) was investigated by comparison to the wild type ATCC 13032 with respect to its pyruvate-carboxylase activity. The strain was cultured in a complex medium (Luria-Bertani, Molecular Cloning, A laboratory manual, 1989, Cold Spring Harbour Laboratory Press) with 0.5% lactate and on minimal medium with 2% lactate or 4% glucose and the pyruvate-carboxylase test was

10

15

20

25

carried out corresponding to the method as described by Peters-Wendisch et al (Microbiology 1997, 143: 1095-1103). The results of the analysis (Table 1) showed that the pyruvate-carboxylase activity in the pEKO-pyc-carrying strain was about 4 times higher than in the starting strain.

4. Increased Accumulation of Lysine by Overexpression of the Pyruvate-Carboxylase Gene in the Strain C-glutamicum DG 52-5.

To investigate the effect of the overexpression of the gene for the pyruvate-carboxylase in the lysine-producing strain DG 52-5 (J Gen Microbiol 1988,134: 3221-3229), the expression vector pVWEX1 is used to promote an IPTG-inducible expression. vector, the pyc gene was promotorlessly cloned. For that purpose, initially PCR-Primer (Primer 1 = Postion 112 - 133; Primer 2 = Position 373 to 355 in the nucleotide sequence according to SEQ ID No. 1), is synthesized and 261 bp of the promotorless starting region of the pyruvate-carboxylase gene was amplified by means of PCR. The primer was so selected that Primer I enabled a PstI cleavage site and Primer 2 a BamHI cleavage site. After the PCR, the 274 bp PCR product was isolated, ligated to concatemers and then cleaved with the restriction enzymes PstI and BamHI. restriction product was concentrated by ethanol precipitation and then ligated with the PstI-BamHI cleaved vector pVWEX1. resulting construct pVWEX1-PCR was tested by restriction. The end region of the pyc gene was isolated by RcaI-Klenow-SalI treatment from the vector pEKOpyc and ligated in the BamHI-Klenow-SalI during

10

15

20

25

vector PVWEX1-PCR. The resulting construct pVWEX1pyc was analyzed by restriction mapping. Physical mapping of the plasmid is shown in FIG. 2.

The plasmid was introduced by electroporation in the C. glutamicum strain DG 52-5. As a control, the strain DG 52-5 was transformed with the vector pVWEX1 without insert and the L-lysine precipitation of three different transformands were compared. this purpose (DG 52-5 (pVWEX1pyc) 3,4 and (2xTY; Molecular Cloning, A laboratory manual, 1989, Cold Spring Harbour Laboratory Press with 50 μ g/I kanamycin) and the respective fermentation medium CGXII (J Bacteriol 1993, 175: 5595-5603) in each case from the preculture was separately inoculated. The medium contained additional kanamycin to maintain the plasmid stable. In each case two parallel tests were run whereby one flask of 200 μg IPTG/ml was added while the second flask contained no IPTG. After cultivation for 48 hours at 30°C on a rotation shaker at 120 RPM, the accumulated lysine quantity in the medium was determined. determination of the amino acid concentration was effected by means of high-pressure liquid chromatography (J Chromat 1983, 266; 471-482).

The results of the fermentation are shown in Table 2 whereby the values given are mean values each form three experiments with different clones. It shows that the overexpression of the pyruvate-carboxylase gene results in a 50% increased accumulation of lysine in the medium. Thus the use of the covered and described gene for the anaplerotic enzyme pyruvate-

10

15

20

25

carboxylase enables a process of lysine formation to be significantly improved.

5. Increased Accumulation of Threonine and Homoserine by Overexpression of the Pyruvate-Carboxylase Gene in the Strain C. glutamicum DM 368-3

Analogously to the experiment in L-lysine formation, the accumulation of threonine in the culture supernatant by overexpression of the gene for pyruvate-carboxylase was also investigated for this purpose, as has been described under point 4, the threonine production strain C. glutamicum DM 368-3 (Degussa AG) was transformed with the plasmid pVWEX1pyc with control by the plasmid pVWEX1 and the threonine separation was investigated with each of three different transformands. For this purpose DM 368-3 (pVWEX1) 2 and 3 and DM 368-3 (pVWEX1pyc) 1, 2 and 3 in complex medium (2xTY with 50 μ g/l kanamycin) were cultured and the fermentation medium CGXII (J Bacteriol 1993, 175: 5595-5603) in each case was separately inoculated from the preculture. medium contained additional kanamycin to hold the plasmid stable. Two parallel sets of tests were carried out whereby 200 μg IPTG/ml was added to one flask while the second flask contained no IPTG. After culturing for 48 hours at 30°C on a rotation shaker at 120 RPM, the threonine quantities accumulated in the medium were The determination of the amino acid concentration was determined. effected also by means of high-pressure liquid chromatography (J Chromat 1983, 266: 471-482). The results of the fermentation are

shown in Table 3 whereby the values given are mean values from each of three experiments with different clones. It shows that the overexpression of the pyruvate-carboxylase gene gave about a 40% increase in the threonine concentration in the medium. The use of the covered and described gene for anaplerotic enzyme pyruvate-carboxylase in a process for L-threonine formation significantly improves the latter.

Furthermore, the amino acid concentration determination shows surprisingly that the strain with the overexpressed pyruvate-carboxylase gene also yields 150% more homoserine in the medium than the strain with the nonoverexpressed gene. Corresponding results are shown in Table 3. They make clear that in the process according to the invention the threonine like the homoserine can be significantly improved.

15

5

10

SEQUENCE PROTOCOL

(1)	GENERAL	DETAILS	·:
-----	---------	---------	----

(i)APPLICANTS

- (A) NAME: Forschungszentrum Juelich GmbH
- (B) STREET: Postfach 1913
- (CLOCALE: Juelich
- (E)COUNTRY: GERMANY
- (F) ZIP CODE : 52425

(ii)DESIGNATIONOF THE INVENTION Pyruvate Carboxylase

(iii) NUMBER OF SEQUENCES: 2

- (iv) COMPUTER-READABLE FORM :
 - (A) DATA CATEGORY Tloppy disk
 - (B) COMPUTER: IBM PC compatible
 - (COPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

(2) DETAILS TO SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A)LENGTH: 3728 Base PAIRS

(B)TYPE: Nucleotide

(CETRANDSHAPE: Single strand

(D) TOPOLOGY: linear

(ii)TYPE OF MOLECULES : GenomeDNA

(xi) SEQUENCE DESCRIPTION SEQ ID NO: 1:

GCAACCGTG	CTTGAAGTCG	TGCAGGTCAG	GGGAGTGTTG	CCCGAAAACA	TTGAGAGGAA	60
ACAAAAACC	GATGTTTGAT	TGGGGGAATC	GGGGGTTACG	ATACTAGGAC	GCAGTGACTG	120
CTATCACCCT	TGGCGGTCTC	TTGTTGAAAG	GAATAATTAC	TCTAGTGTCG	ACTCACACAT	180
CTTCAACGCT	TCCAGCATTC	AAAAAGATCT	TGGTAGCAAA	CCGCGGCGAA	ATCGCGGTCC	240
GTGCTTTCCG	TGCAGCACTC	GAAACCGGTG	CAGCCACGGT	AGCTATTTAC	CCCCGTGAAG	300
ATCGGGGATC	ATTCCACCGC	TCTTTTGCTT	CTGAAGCTGT	CCGCATTGGT	ACCGAAGGCT	360
CACCAGTCAA	GGCGTACCTG	GACATCGATG	AAATTATCGG	TGCAGCTAAA	AAAGTTAAAG	420
CAGATGCCAT	TTACCCGGGA	TACGGCTTCC	TGTCTGAAAA	TGCCCAGCTT	GCCCGCGAGT	480

GTGCGGAAAA CGGCATTACT TTTATTGGCC CAACCCCAGA GGTTCTTGAT CTCACCGGTG 540 ATAAGTCTCG CGCGGTAACC GCCGCGAAGA AGGCTGGTCT GCCAGTTTTG GCGGAATCCA 600 660 CCCCGAGCAA AAACATCGAT GAGATCGTTA AAAGCGCTGA AGGCCAGACT TACCCCATCT TTGTGAAGGC AGTTGCCGGT GGTGGCGGAC GCGGTATGCG TTTTGTTGCT TCACCTGATG 720 AGCTTCGCAA ATTAGCAACA GAAGCATCTC GTGAAGCTGA AGCGGCTTTC GGCGATGGCG 780 CGGTATATGT CGAACGTGCT GTGATTAACC CTCAGCATAT TGAAGTGCAG ATCCTTGGCG 840 ATCACACTGG AGAAGTTGTA CACCTTTATG AACGTGACTG CTCACTGCAG CGTCGTCACC 900 AAAAAGTTGT CGAAATTGCG CCAGCACAGC ATTTGGATCC AGAACTGCGT GATCGCATTT 960 GTGCGGATGC AGTAAAGTTC TGCCGCTCCA TTGGTTACCA GGGCGCGGGA ACCGTGGAAT 1020 TCTTGGTCGA TGAAAAGGGC AACCACGTCT-TCATCGAAAT-GAACCCACGT ATCCAGGTTG ----1080-AGCACACCGT GACTGAAGAA GTCACCGAGG TGGACCTGGT GAAGGCGCAG ATGCGCTTGG 1140 CTGCTGGTGC AACCTTGAAG GAATTGGGTC TGACCCAAGA TAAGATCAAG ACCCACGGTG 1200 CAGCACTGCA GTGCCGCATC ACCACGGAAG ATCCAAACAA CGGCTTCCGC CCAGATACCG 1260 GAACTATCAC CGCGTACCGC TCACCAGGCG GAGCTGGCGT TCGTCTTGAC GGTGCAGCTC 1320 AGCTCGGTGG CGAAATCACC GCACACTTTG ACTCCATGCT GGTGAAAATG ACCTGCCGTG 1380 GTTCCGACTT TGAAACTGCT GTTGCTCGTG CACAGCGCGC GTTGGCTGAG TTCACCGTGT 1440 CTGGTGTTGC AACCAACATT GGTTTCTTGC GTGCGTTGCT GCGGGAAGAG GACTTCACTT 1500 CCAAGCGCAT CGCCACCGGA TTCATTGCCG ATCACCCGCA CCTCCTTCAG GCTCCACCTG 1560 CTGATGATGA GCAGGGACGC ATCCTGGATT ACTTGGCAGA TGTCACCGTG AACAAGCCTC 1620 ATGGTGTGCG TCCAAAGGAT GTTGCAGCTC CTATCGATAA GCTGCCTAAC ATCAAGGATC 1680 TGCCACTGCC ACGCGGTTCC CGTGACCGCC TGAAGCAGCT TGGCCCAGCC GCGTTTGCTC 1740 GTGATCTCCG TGAGCAGGAC GCACTGGCAG TTACTGATAC CACCTTCCGC GATGCACACC 1800 AGTCTTTGCT TGCGACCCGA GTCCGCTCAT TCGCACTGAA GCCTGCGGCA GAGGCCGTCG 1860 CAAAGCTGAC TCCTGAGCTT TTGTCCGTGG AGGCCTGGGG CGGCGCGACC TACGATGTGG 1920 CGATGCGTTT CCTCTTTGAG GATCCGTGGG ACAGGCTCGA CGAGCTGCGC GAGGCGATGC 1980 CGAATGTAAA CATTCAGATG CTGCTTCGCG GCCGCAACAC CGTGGGATAC ACCCCGTACC 2040 CAGACTCCGT CTGCCGCGCG TTTGTTAAGG AAGCTGCCAG CTCCGGCGTG GACATCTTCC 2100

GCATCTTCGA CGCGCTTAAC	GACGTCTCCC	AGATGCGTCC	AGCAATCGAC	GCAGTCCTGG	2160
AGACCAACAC CGCGGTAGCC	GAGGTGGCTA	TGGCTTATTC	TGGTGATCTC	TCTGATCCAA	2220
ATGAAAAGCT CTACACCCTG	GATTACTACC	TAAAGATGGC	AGAGGAGATC	GTCAAGTCTG	2280
GCGCTCACAT CTTGGCCATT	AAGGATATGG	CTGGTCTGCT	TCGCCCAGCT	GCGGTAACCA	2340
AGCTGGTCAC CGCACTGCGC	CGTGAATTCG	ATCTGCCAGT	GCACGTGCAC	ACCCACGACA	2400
CTGCGGGTGG CCAGCTGGCA	ACCTACTTTG	CTGCAGCTCA	AGCTGGTGCA	GATGCTGTTG	2460
ACGGTGCTTC CGCACCACTG	TCTGGCACCA	CCTCCCAGCC	ATCCCTGTCT	GCCATTGTTG	2520
CTGCATTCGC GCACACCCGT	CGCGATACCG	GTTTGAGCCT	CGAGGCTGTT	TCTGACCTCG	2580
AGCCGTACTG GGAAGCAGTG	CGCGGACTGT	ACCTGCCATT	TGAGTCTGGA	ACCCCAGGCC	2640
CAACCGGTCG CGTCTACCGC	CACGAAATCC	CAGGCGGACA	GTTGTCCAAC	CTGCGTGCAC	2700
AGGCCACCGC ACTGGGCCTT	GCGGATCGTT	TCGAACTCAT	CGAAGACAAC	TACGCAGCCG	2760
TTAATGAGAT GCTGGGACGC	CCAACCAAGG	TCACCCCATC	CTCCAAGGTT	GTTGGCGACC	2820
TCGCACTCCA CCTCGTTGGT	GCGGGTGTGG	ATCCAGCAGA	CTTTGCTGCC	GATCCACAAA	2880
AGTACGACAT CCCAGACTCT	GTCATCGCGT	TCCTGCGCGG	CGAGCTTGGT	AACCCTCCAG	2940
GTGGCTGGCC AGAGCCACTG	CGCACCCGCG	CACTGGAAGG	CCGCTCCGAA	GGCAAGGCAC	3000
CTCTGACGGA AGTTCCTGAG	GAAGAGCAGG	CGCACCTCGA	CGCTGATGAT	TCCAAGGAAC	3060
GTCGCAATAG CCTCAACCGC	CTGCTGTTCC	CGAAGCCAAC	CGAAGAGTTC	CTCGAGCACC	3120
GTCGCCGCTT CGGCAACACC	TCTGCGCTGG	ATGATCGTGA	ATTCTTCTAC	GGCCTGGTCG	3180
AAGGCCGCGA GACTTTGATC	CGCCTGCCAG	ATGTGCGCAC	CCCACTGCTT	GTTCGCCTGG	3240
ATGCGATCTC TGAGCCAGAG	GATAAGGGTA	TGCGCAATGT	TGTGGCCAAC	GTCAACGGCC	3300
AGATCCGCCC AATGCGTGTC	CGTGACCGCT	CCGTTGAGTC	TGTCACCGCA	ACCGCAGAAA	3360
AGGCAGATTC CTCCAACAA	G GGCCATGTTG	CTGCACCATT	CGCTGGTGT	GTCACCGTGA	3420
CTGTTGCTGA AGGTGATGA	G GTCAAGGCTG	GAGATGCAGT	CGCAATCAT	GAGGCTATGA	3480
AGATGGAAGC AACAATCAC	I GCTTCTGTTG	ACGGCAAAAT	CGATCGCGT	r GTGGTTCCTG	3540
CTGCAACGAA GGTGGAAGG	I GGCGACTTGA	TCGTCGTCGT	TTCCTAAAC	C TTTCTGTAAA	3600
AAGCCCCGCG TCTTCCTCA	T GGAGGAGGCG	GGGCTTTTT	GGCCÁAGAT	G GGAGATGGGT	3660
GAGTTGGATT TGGTCTGAT	T CGACACTTTT	AAGGGCAGAG	S ATTTGAAGA	T GGAGACCAAG	3720

(2) DETAILS TOSEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (ALENGTH: 1140 Aminosauren
 - (B) TYPE: Aminosaure
 - (C) STRAND SHAPE: single strand
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ser Thr His Thr Ser Ser Thr Leu Pro Ala Phe Lys Lys Ile Leu

1 10 15

Val Ala Asn Arg Gly Glu'lle Ala Val Arg Ala Phe Arg Ala Ala Leu 20 25 30

Glu Thr Gly Ala Ala Thr Val Ala Ile Tyr Pro Arg Glu Asp Arg Gly
35 40 45

Ser Phe His Arg Ser Phe Ala Ser Glu Ala Val Arg Ile Gly Thr Glu 50 55 60

Gly Ser Pro Val Lys Ala Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala 65 70 75 80

Ala Lys Lys Val Lys Ala Asp Ala Ile Tyr Pro Gly Tyr Gly Phe Leu 85 90 95

Ser Glu Asn Ala Gln Leu Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr 100 105 110

Phe Ile Gly Pro Thr Pro Glu Val Leu Asp Leu Thr Gly Asp Lys Ser 115 120 125

Arg Ala Val Thr Ala Ala Lys Lys Ala Gly Leu Pro Val Leu Ala Glu 130 135 140

Ser Thr Pro Ser Lys Asn Ile Asp Glu Ile Val Lys Ser Ala Glu Gly
145 150 155 160

Gln Thr Tyr Pro Ile Phe Val Lys Ala Val Ala Gly Gly Gly Gly Arg 165 170 175

Gly Met Arg Phe Val Ala Ser Pro Asp Glu Leu Arg Lys Leu Ala Thr 180 185 190

Glu Ala Ser Arg Glu Ala Glu Ala Ala Phe Gly Asp Gly Ala Val Tyr

- Val Glu Arg Ala Val Ile Asn Pro Gln His Ile Glu Val Gln Ile Leu 210 215 220
- Gly Asp His Thr Gly Glu Val Val His Leu Tyr Glu Arg Asp Cys Ser 225 230 235 240
- Leu Gln Arg Arg His Gln Lys Val Val Glu Ile Ala Pro Ala Gln His 245 250 255
- Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala Asp Ala Val Lys Phe 260 265 270
- Cys Arg Ser Ile Gly Tyr Gln Gly Ala Gly Thr Val Glu Phe Leu Val 275 280 285
- Asp Glu Lys Gly Asn His Val Phe Ile Glu Met Asn Pro Arg Ile Gln 290 295 300
- Val Glu His Thr Val Thr Glu Glu Val Thr Glu Val Asp Leu Val Lys 305 310 315 320
- Ala Gln Met Arg Leu Ala Ala Gly Ala Thr Leu Lys Glu Leu Gly Leu 325 330 335
- Thr Gln Asp Lys Ile Lys Thr His Gly Ala Ala Leu Gln Cys Arg Ile 340 345 350
- Thr Thr Glu Asp Pro Asn Asn Gly Phe Arg Pro Asp Thr Gly Thr Ile 355 360 365
- Thr Ala Tyr Arg Ser Pro Gly Gly Ala Gly Val Arg Leu Asp Gly Ala 370 375 380
- Ala Gln Leu Gly Gly Glu Ile Thr Ala His Phe Asp Ser Met Leu Val 385 390 395 400
- Lys Met Thr Cys Arg Gly Ser Asp Phe Glu Thr Ala Val Ala Arg Ala 405 410 415
- Gln Arg Ala Leu Ala Glu Phe Thr Val Ser Gly Val Ala Thr Asn Ile 420 425 430
- Gly Phe Leu Arg Ala Leu Leu Arg Glu Glu Asp Phe Thr Ser Lys Arg
 435
 440
 445
- Ile Ala Thr Gly Phe Ile Ala Asp His Pro His Leu Leu Gln Ala Pro 450 455 460
- Pro Ala Asp Asp Glu Gln Gly Arg Ile Leu Asp Tyr Leu Ala Asp Val 465 470 475 480
- Thr Val Asn Lys Pro His Gly Val Arg Pro Lys Asp Val Ala Ala Pro

- Ile Asp Lys Leu Pro Asn Ile Lys Asp Leu Pro Leu Pro Arg Gly Ser 505
- Arg Asp Arg Leu Lys Gln Leu Gly Pro Ala Ala Phe Ala Arg Asp Leu 520
- Arg Glu Gln Asp Ala Leu Ala Val Thr Asp Thr Thr Phe Arg Asp Ala 535 530
- His Gln Ser Leu Leu Ala Thr Arg Val Arg Ser Phe Ala Leu Lys Pro 550
- Ala Ala Glu Ala Val Ala Lys Lys Thr Pro Glu Leu Leu Ser Val Glu 570
- Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala Met Arg Phe Leu Phe Glu 580 585
- Asp Pro Trp Asp Arg Leu Asp Glu Leu Arg Glu Ala Met Pro Asn Val 600
- Asn Ile Gln Met Leu Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro 615
- Tyr Pro Asp Ser Val Cys Arg Ala Phe Val Lys Glu Ala Ala Ser Ser 625 630
- Gly Val Asp Ile Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Ser Gln
- Met Arg Pro Ala Ile Asp Ala Val Leu Glu Thr Asn Thr Ala Val Ala 665
- Glu Val Ala Met Ala Tyr Ser Gly Asp Leu Ser Asp Pro Asn Glu Lys 680 675
- Leu Tyr Thr Leu Asp Tyr Tyr Leu Lys Met Ala Glu Glu Ile Val Lys
- Ser Gly Ala His Ile Leu Ala Ile Lys Asp Met Ala Gly Leu Leu Arg 715 710
- Pro Ala Ala Val Thr Lys Leu Val Thr Ala Leu Arg Arg Glu Phe Asp 725
- Leu Pro Val His Val His Thr His Asp Thr Ala Gly Gly Gln Leu Ala 745 740
- Thr Tyr Phe Ala Ala Ala Gln Ala Gly Ala Asp Ala Val Asp Gly Ala
- Ser Ala Pro Leu Ser Gly Thr Thr Ser Gln Pro Ser Leu Ser Ala Ile

- Val Ala Ala Phe Ala His Thr Arg Arg Asp Thr Gly Leu Ser Leu Glu 785 790 795 800
- Ala Val Ser Asp Leu Glu Pro Tyr Trp Glu Ala Val Arg Gly Leu Tyr
 805 810 815
- Leu Pro Phe Glu Ser Gly Thr Pro Gly Pro Thr Gly Arg Val Tyr Arg 820 825 830
- His Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg Ala Gln Ala Thr 835 840 845
- Ala Leu Gly Leu Ala Asp Arg Phe Glu Leu Ile Glu Asp Asn Tyr Ala 850 855 860
- Ala Val Asn Glu Met Leu Gly Arg Pro Thr Lys Val Thr Pro Ser Ser 865 870 875 880
- Lys Val Val Gly Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Asp 885 890 895
- Pro Ala Asp Phe Ala Ala Asp Pro Gln Lys Tyr Asp Ile Pro Asp Ser 900 905 910
- Val Ile Ala Phe Leu Arg Gly Glu Leu Gly Asn Pro Pro Gly Gly Trp 915 920 925
- Pro Glu Pro Leu Arg Thr Arg Ala Leu Glu Gly Arg Ser Glu Gly Lys 930 935 940
- Ala Pro Leu Thr Glu Val Pro Glu Glu Glu Gln Ala His Leu Asp Ala 945 950 955 960
- Asp Asp Ser Lys Glu Arg Arg Asn Ser Leu Asn Arg Leu Leu Phe Pro 965 970 975
- Lys Pro Thr Glu Glu Phe Leu Glu His Arg Arg Arg Phe Gly Asn Thr 980 985 990
- Ser Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu Val Glu Gly Arg 995 1000 1005
- Glu Thr Leu Ile Arg Leu Pro Asp Val Arg Thr Pro Leu Val Arg 1010 1015 1020
- Leu Asp Ala Ile Ser Glu Pro Asp Asp Lys Gly Met Arg Asn Val Val 1025 1030 1035 1040
- Ala Asn Val Asn Gly Gln Ile Arg Pro Met Arg Val Arg Asp Arg Ser 1045 1050 1055
- Val Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp Ser Ser Asn Lys

Gly His Val Ala Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Ala 1075 1080 1085

Glu Gly Asp Glu Val Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala 1090. 1095 1100

Met Lys Met Glu Ala Thr Ile Thr Ala Ser Val Asp Gly Lys Ile Asp 1105 1110 1115 1120

Arg Val Val Val Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile 1125 1130 1135

Val Val Val Ser 1140

l'igne l

Figure 2

Strain	IPTG [µg/ml]	PynvateCarboxylase [nmol min ⁻¹ mg Dry Weight -1]		
13032(pEK0pyc)	0	75 ± 13		
ATCC 13032	0	19 ± 4		
DG52-5(pVWEX1pyc)) 200 88 ± 13			
	0	11 ± 2		
DG52-5(pVWEX1)	200	5 ± 2		
	0	6 ± 1		
DM368-3(pVWEX1pyc)	200	76 ± 10		
	0	12±3		
DM368-3(pVWEX1)	200	10 ± 1		
	0	11 ± 2		

Table 1

Strain	IPTG [µg/ml]	Lysin e [mM]
DG52-5(pVWEX1pyc)	200	35.4 ± 2,6
	0	23,6 ± 2.9
DG52-5(pVWEX1)	200	23.3 ± 2.9
	0	22.1 ± 4.0

Table 2

-Strain	IPTG [µg/ml]	Threonin e [mM]	Homoserine [mM]
DM368-3(pVWEX1pyc)	200	10,2 ± 0.5	14,4 ± 1,2
	0	7.9 ± 1.0	5,6 ± 0,2
DM368-3(pVWEX1)	200	8,0 ± 0,5	5.8 ± 0,7
	0	7-5 ± 0.8	6,1 ± 1,0

Tab le 3