Feedback — Quiz 3

Help

You submitted this quiz on Fri 20 Jun 2014 11:45 AM PDT. You got a score of 7.00 out of 7.00.

Question 1

Consider the mtcars data set. Fit a model with mpg as the outcome that includes number of cylinders as a factor variable and weight as confounder. Give the adjusted estimate for the expected change in mpg comparing 8 cylinders to 4.

Your Answer		Score	Explanation
33.991			
-4.256			
-6.071	~	1.00	
-3.206			
Total		1.00 / 1.00	

Question 2

Consider the mtcars data set. Fit a model with mpg as the outcome that includes number of cylinders as a factor variable and weight as confounder. Compare the adjusted by weight effect of 8 cylinders as compared to 4 the unadjusted. What can be said about the effect?.

Your Answer	Score	Explanation
 Including or excluding weight does not appear to change anything regarding the estimated impact of number of cylinders on mpg. 		
Holding weight constant,	✓ 1.00	It is both true and sensible that including

cylinder appears to have less of an impact on mpg than if weight is disregarded.	weight would attenuate the effect of number of cylinders on mpg.
Holding weight constant, cylinder appears to have more of an impact on mpg than if weight is disregarded.	
 Within a given weight, 8 cylinder vehicles have an expected 12 mpg drop in fuel efficiency. 	
Total	1.00 / 1.00

Question 3

Consider the mtcars data set. Fit a model with mpg as the outcome that considers number of cylinders as a factor variable and weight as confounder. Consider the model with an interaction between cylinders and weight and one without. Give the P-value for the likelihood ratio test comparing the two models and suggest a model using 0.05 as a type I error rate significance benchmark.

Your Answer	Score	Explanation
 The P-value is small (less than 0.05). So, according to our criterion, we reject, which suggests that the interaction term is necessary 		
The P-value is small (less than 0.05). Thus it is surely true that there is an interaction term in the true model.		
The P-value is small (less than 0.05). Thus it is surely true that there is no interaction term in the true model.		
 The P-value is small (less than 0.05). So, according to our criterion, we reject, which suggests that the interaction term is not necessary. 		
The P-value is larger than 0.05. So, according to our criterion, we would fail to reject, which suggests that the interaction terms is necessary.		
 The P-value is larger than 0.05. So, according to our criterion, we would fail to reject, which suggests that the 	1.00	

interaction terms may not be necessa	ıry.
Total	1.00 /
	1.00

Question 4

Consider the mtcars data set. Fit a model with mpg as the outcome that includes number of cylinders as a factor variable and weight inlcuded in the model as

How is the wt coefficient interpretted?

Your Answer	Score	Explanation
 The estimated expected change in MPG per half ton increase in weight for for a specific number of cylinders (4, 6, 8). 		
The estimated expected change in MPG per one ton increase in weight.		
The estimated expected change in MPG per half ton increase in weight.		
• The estimated expected change in MPG per one ton increase in weight for a specific number of cylinders (4, 6, 8).	✓ 1.00	
The estimated expected change in MPG per half ton increase in weight for the average number of cylinders.		
Total	1.00 /	
	1.00	

Question 5

Consider the following data set

```
x <- c(0.586, 0.166, -0.042, -0.614, 11.72)
y <- c(0.549, -0.026, -0.127, -0.751, 1.344)
```

Give the hat diagonal for the most influential point

Your Answer		Score	Explanation
0.2287			
0.9946	~	1.00	
0.2804			
0.2025			
Total		1.00 / 1.00	

Question 6

Consider the following data set

```
x <- c(0.586, 0.166, -0.042, -0.614, 11.72)
y <- c(0.549, -0.026, -0.127, -0.751, 1.344)
```

Give the slope dfbeta for the point with the highest hat value.

Your Answer		Score	Explanation
● -134	~	1.00	
00134			
O -0.378			
0.673			
Total		1.00 / 1.00	

Question 7

Consider a regression relationship between Y and X with and without adjustment for a third variable Z. Which of the following is true about comparing the regression coefficient between Y and X with and without adjustment for Z.

Your Answer	Score	Explanation
 For the the coefficient to change sign, there must be a significant interaction term. 		
 Adjusting for another variable can only attenuate the coefficient toward zero. It can't materially change sign. 		
It is possible for the coefficient to reverse sign after adjustment. For example, it can be strongly significant and positive before adjustment and strongly significant and negative after adjustment.	✔ 1.00	
The coefficient can't change sign after adjustment, except		
for slight numerical pathological cases.		
Total	1.00 /	
	1.00	