Proof Theory of Modal Logic Lecture : Nested Sequents

Tiziano Dalmonte, Marianna Girlando

Free University of Bozen-Bolzano, University of Amsterdam

ESSLLI 2024 Leuven, 5-9 August 2024

Nested sequents for the S5-cube:

Soundness

Independently introduced in:

- ▶ [Brünnler, 2006], [Brünnler, 2009] *→ deep sequents*

Main references for this lecture:

- ▶ [Lellmann & Poggiolesi, 2022 (arXiv)]
- ▶ [Brünnler, 2009], [Brünnler, 2010 (arXiv)]
- ▶ [Marin & Straßburger, 2014]

Sequent

 $\Gamma \Rightarrow \Delta$

 Γ, Δ multisets of formulas

Sequent	$\Gamma \Rightarrow \Delta$	Γ, Δ multisets of formulas
One-sided sequent	Γ	Γ multiset of formulas

Γ, Δ multisets of formulas
Γ multiset of formulas
. <i>B</i> <i>A</i> ∨ <i>B</i>

 $\begin{array}{cccc} \text{Sequent} & \Gamma \Rightarrow \Delta & \Gamma, \Delta \text{ multisets of formulas} \\ \text{One-sided sequent} & \Gamma & \Gamma \text{ multiset of formulas} \end{array}$

$$A,B ::= p \mid \overline{p} \mid A \wedge B \mid A \vee B$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B} \qquad \overline{A \vee B} := \overline{A} \wedge \overline{B}$$

Sequent
$$\Gamma\Rightarrow\Delta$$
 Γ,Δ multisets of formulas One-sided sequent Γ Γ multiset of formulas
$$A,B::=p\mid \overline{p}\mid A\wedge B\mid A\vee B$$

 $\overline{A \wedge B} := \overline{A} \vee \overline{B}$ $\overline{A \vee B} := \overline{A} \wedge \overline{B}$ $A \to B := \overline{A} \vee B$ $\bot := p \wedge \overline{p}$

$$\Gamma \Rightarrow \Delta$$

 Γ, Δ multisets of formulas

One-sided sequent

Γ

 Γ multiset of formulas

$$A, B ::= p \mid \overline{p} \mid A \wedge B \mid A \vee B$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B} \qquad \overline{A \vee B} := \overline{A} \wedge \overline{B}$$

$$A \to B := \overline{A} \vee B \qquad \bot := p \wedge \overline{p}$$

Rules of G3cp^{one}

$$\operatorname{init} \frac{\Gamma, \rho, \overline{\rho}}{\Gamma, \rho, \overline{\rho}} \qquad ^{\wedge} \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \qquad ^{\vee} \frac{\Gamma, A, B}{\Gamma, A \vee B}$$

$$\Gamma \Rightarrow \Delta$$

 Γ, Δ multisets of formulas

One-sided sequent

Γ

 Γ multiset of formulas

$$A, B ::= p \mid \overline{p} \mid A \wedge B \mid A \vee B$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B} \qquad \overline{A \vee B} := \overline{A} \wedge \overline{B}$$

$$A \to B := \overline{A} \lor B \qquad \bot := \rho \land \overline{\rho}$$

Rules of G3cpone

$$\operatorname{init} \frac{\Gamma, \rho, \overline{\rho}}{\Gamma, \rho, \overline{\rho}} \qquad ^{\wedge} \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \qquad ^{\vee} \frac{\Gamma, A, B}{\Gamma, A \vee B}$$

Exercise.
$$\vdash_{\mathsf{G3cp}} \Gamma \Rightarrow \Delta$$
 iff $\vdash_{\mathsf{G3cp}^{one}} \overline{\Gamma}, \Delta$, where $\overline{\Gamma} = \{\overline{A} \mid A \in \Gamma\}$.

$$A, B ::= p \mid \overline{p} \mid A \wedge B \mid A \vee B \mid \Box A \mid \Diamond A$$

$$A, B ::= p \mid \overline{p} \mid A \wedge B \mid A \vee B \mid \Box A \mid \Diamond A$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B} \qquad \overline{A \vee B} := \overline{A} \wedge \overline{B} \qquad \overline{\Box A} := \Diamond \overline{A} \qquad \overline{\Diamond A} := \Box \overline{A}$$

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box} \overline{A} := \Diamond \overline{A} \qquad \overline{\Diamond} \overline{A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box} \overline{A} := \Diamond \overline{A} \qquad \overline{\Diamond} \overline{A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box A} := \Diamond \overline{A} \qquad \overline{\Diamond A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

A multiset of formulas is a nested sequent;

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box A} := \Diamond \overline{A} \qquad \overline{\Diamond A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

- A multiset of formulas is a nested sequent;
- ▶ If Γ and Δ are nested sequents, then Γ , Δ is a nested sequent;

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box A} := \Diamond \overline{A} \qquad \overline{\Diamond A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

- A multiset of formulas is a nested sequent;
- ▶ If Γ and Δ are nested sequents, then Γ , Δ is a nested sequent;
- If Γ is a nested sequent, then [Γ] is a nested sequent.
 We call [Γ] a boxed sequent.

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box A} := \Diamond \overline{A} \qquad \overline{\Diamond A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

- A multiset of formulas is a nested sequent;
- ▶ If Γ and Δ are nested sequents, then Γ , Δ is a nested sequent;
- If Γ is a nested sequent, then [Γ] is a nested sequent.
 We call [Γ] a boxed sequent.

Nested sequents are multisets of formulas and boxed sequents:

$$A_1,\ldots,A_m,[\Delta_1],\ldots,[\Delta_n]$$

$$\Gamma = A_1, \ldots, A_m, [\Delta_1], \ldots, [\Delta_n]$$

To a nested sequent Γ there corresponds the following tree $tr(\Gamma)$, whose nodes γ, δ, \ldots are multisets of formulas:

The formula interpretation $i(\Gamma)$ of a nested sequent Γ is defined as:

- ▶ If m = n = 0, then $i(\Gamma) := \bot$
- ▶ Otherwise, $i(\Gamma) := A_1 \lor \cdots \lor A_m \lor \Box(i(\Delta_1)) \lor \cdots \lor \Box(i(\Delta_n))$

Examples

A context is a nested sequent with one or multiple holes, denoted by {}, each taking the place of a formula in the nested sequent.

- ▶ Unary context \(\Gamma\)\
- ▶ Binary context \(\Gamma\)\(\{\}\)

The depth $depth(\Gamma\{\})$ of a unary context $\Gamma\{\}$ is defined as:

- ▶ depth({}) := 0;
- $b depth(\Gamma\{\}, \Delta) := depth(\Gamma\{\});$
- $\qquad \qquad \mathsf{depth}\big(\big[\Gamma\{\,\}\big]\big) := \mathsf{depth}\big(\Gamma\{\,\}\big) + 1.$

A context is a nested sequent with one or multiple holes, denoted by {}, each taking the place of a formula in the nested sequent.

- ▶ Unary context Γ {} \rightsquigarrow Γ { Δ }: filling Γ {} with a nested sequent Δ
- ▶ Binary context $\Gamma\{\}\{\}$ \rightsquigarrow $\Gamma\{\Delta_1\}\{\Delta_2\}$: filling $\Gamma\{\}\{\}$ with Δ_1, Δ_2

The depth $depth(\Gamma\{\})$ of a unary context $\Gamma\{\}$ is defined as:

- ▶ depth({}) := 0;
- ▶ $depth([\Gamma{}]) := depth(\Gamma{}) + 1.$

Rules of NK

$$\begin{split} & \operatorname{init} \frac{}{\Gamma\{\rho,\overline{\rho}\}} & \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A \wedge B\}} & \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \vee B\}} \\ & \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \diamond \frac{\Gamma\{\diamondsuit A,[A,\Delta]\}}{\Gamma\{\diamondsuit A,[\Delta]\}} \end{split}$$

$$\begin{array}{ccc} \operatorname{init} \frac{}{\Gamma\{\boldsymbol{p},\overline{\boldsymbol{p}}\}} & & \wedge \frac{\Gamma\{\boldsymbol{A}\} & \Gamma\{\boldsymbol{B}\}}{\Gamma\{\boldsymbol{A} \wedge \boldsymbol{B}\}} & \vee \frac{\Gamma\{\boldsymbol{A},\boldsymbol{B}\}}{\Gamma\{\boldsymbol{A} \vee \boldsymbol{B}\}} \\ & & \Box \frac{\Gamma\{[\boldsymbol{A}]\}}{\Gamma\{\Box \boldsymbol{A}\}} & & \diamond \frac{\Gamma\{\diamondsuit \boldsymbol{A},[\boldsymbol{A},\boldsymbol{\Delta}]\}}{\Gamma\{\diamondsuit \boldsymbol{A},[\boldsymbol{\Delta}]\}} \end{array}$$

Example. Proof of $(\lozenge p \to \Box q) \to \Box (p \to q)$ in NK

A nested sequent Γ is satisfied by an \mathcal{M} -map for Γ iff

$$\mathcal{M}, f(\delta) \models B$$
, for some $\delta \in tr(\Gamma)$, for some $B \in \delta$

A nested sequent Γ is satisfied by an \mathcal{M} -map for Γ iff

$$\mathcal{M}, f(\delta) \models B$$
, for some $\delta \in tr(\Gamma)$, for some $B \in \delta$

A nested sequent Γ is refuted by an \mathcal{M} -map for Γ iff

$$\mathcal{M}, f(\delta) \not\models B$$
, for all $\delta \in tr(\Gamma)$, for all $B \in \delta$

A nested sequent Γ is satisfied by an \mathcal{M} -map for Γ iff

$$\mathcal{M}, f(\delta) \models B$$
, for some $\delta \in tr(\Gamma)$, for some $B \in \delta$

A nested sequent Γ is refuted by an \mathcal{M} -map for Γ iff

$$\mathcal{M}, f(\delta) \not\models B$$
, for all $\delta \in tr(\Gamma)$, for all $B \in \delta$

For $X \subseteq \{d, t, b, 4, 5\}$, a nested sequent is X-valid iff it is satisfied by all \mathcal{M} -map for Γ , for all models \mathcal{M} satisfying the frame conditions in X.

Soundness of NK

Lemma. If Γ is derivable in NK then $\bigvee \Gamma$ is valid in all Kripke frames.

Rules for extensions: $NK \cup X^{\diamondsuit}$

$$\begin{split} & d^{\diamond} \, \frac{\Gamma\{\diamondsuit A, [A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \, \frac{\Gamma\{\diamondsuit A, A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\diamond} \, \frac{\Gamma\{\left[\Delta, \diamondsuit A\right], A\}}{\Gamma\{\left[\Delta, \diamondsuit A\right]\}} \\ & 4^{\diamond} \, \frac{\Gamma\{\diamondsuit A, \left[\diamondsuit A, \Delta\right]\}}{\Gamma\{\diamondsuit A, \left[\Delta\right]\}} \qquad 5^{\diamond} \, \frac{\Gamma\{\diamondsuit A\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}} \, \operatorname{depth}(\Gamma\{\{\emptyset\}) > 0 \end{split}$$

Rules for extensions: $NK \cup X^{\diamond}$

$$\begin{split} & d^{\diamond} \, \frac{\Gamma\{\diamondsuit A, [A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \, \frac{\Gamma\{\diamondsuit A, A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\diamond} \, \frac{\Gamma\{\left[\Delta, \diamondsuit A\right], A\}}{\Gamma\{\left[\Delta, \diamondsuit A\right]\}} \\ & 4^{\diamond} \, \frac{\Gamma\{\diamondsuit A, \left[\diamondsuit A, \Delta\right]\}}{\Gamma\{\diamondsuit A, \left[\Delta\right]\}} \qquad 5^{\diamond} \, \frac{\Gamma\{\diamondsuit A\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}} \, \, \textit{depth}(\Gamma\{\cdot\}\{\emptyset\}) > 0 \end{split}$$

For $X \subseteq \{d, t, b, 4, 5\}$, we write X^{\diamond} for the corresponding subset of $\{d^{\diamond}, t^{\diamond}, b^{\diamond}, 4^{\diamond}, 5^{\diamond}\}$. We shall consider the calculi NK $\cup X^{\diamond}$.

Rules for extensions: $NK \cup X^{\diamond}$

$$\begin{split} & d^{\diamond} \, \frac{\Gamma\{\diamondsuit A, [A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \, \frac{\Gamma\{\diamondsuit A, A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\diamond} \, \frac{\Gamma\{\left[\Delta, \diamondsuit A\right], A\}}{\Gamma\{\left[\Delta, \diamondsuit A\right]\}} \\ & 4^{\diamond} \, \frac{\Gamma\{\diamondsuit A, \left[\diamondsuit A, \Delta\right]\}}{\Gamma\{\diamondsuit A, \left[\Delta\right]\}} \qquad 5^{\diamond} \, \frac{\Gamma\{\diamondsuit A\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}} \, \operatorname{depth}\left(\Gamma\{\}(\emptyset)\right) > 0 \end{split}$$

For $X \subseteq \{d,t,b,4,5\}$, we write X^{\diamond} for the corresponding subset of $\{d^{\diamond},t^{\diamond},b^{\diamond},4^{\diamond},5^{\diamond}\}$. We shall consider the calculi NK \cup X^{\diamond} .

Example. Proof of $\Box p \rightarrow \Box \Box p$ in NK $\cup \{t, 4\}$

$$\frac{\langle \bar{p}, [\langle \bar{p}, \bar{p}, \bar{p}, p]]}{\langle \bar{p}, [\langle \bar{p}, \bar{p}, \bar{p}, p]]} \\
\downarrow^{4} \frac{\langle \bar{p}, [\langle \bar{p}, [\langle \bar{p}, p]]]}{\langle \bar{p}, [\langle \bar{p}, p]]} \\
\downarrow^{4} \frac{\langle \bar{p}, [\langle \bar{p}, [p]]]}{\langle \bar{p}, [[p]]} \\
\downarrow^{2} \frac{\langle \bar{p}, [[p]]}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p}{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle \bar{p}, \Box p} \\
\downarrow^{2} \frac{\langle$$

$$\mathsf{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \quad \mathsf{ctr} \frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \quad \mathsf{cut} \frac{\Gamma\{A\} - \Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}}$$

$$\mathsf{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \quad \mathsf{ctr} \frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \quad \mathsf{cut} \frac{\Gamma\{A\} - \Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}}$$

For $X \subseteq \{d, t, b, 4, 5\}$:

Lemma. The rules wk and ctr are hp-admissible in NK \cup X $^{\diamond}$.

$$\mathsf{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \mathsf{ctr} \frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \mathsf{cut} \frac{\Gamma\{A\} - \Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}}$$

For $X \subseteq \{d, t, b, 4, 5\}$:

Lemma. The rules wk and ctr are hp-admissible in NK \cup X $^{\diamond}$.

Lemma. All the rules of NK \cup X $^{\diamond}$ are hp-invertible.

$$\mathsf{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \quad \mathsf{ctr} \frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \quad \mathsf{cut} \frac{\Gamma\{A\} - \Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}}$$

For $X \subseteq \{d, t, b, 4, 5\}$:

Lemma. The rules wk and ctr are hp-admissible in NK \cup X $^{\diamond}$.

Lemma. All the rules of NK \cup X $^{\diamond}$ are hp-invertible.

Proposition. Rule 5^{\diamond} is derivable in NK $\cup \{5_1^{\diamond}, 5_2^{\diamond}, 5_3^{\diamond}\} \cup \{wk\}$.

$$5^{\diamond} \frac{\Gamma\{\Diamond A\}\{\Diamond A\}}{\Gamma\{\Diamond A\}\{\emptyset\}} \ depth(\Gamma\{||\emptyset|)>0$$

$$5_{1}^{\diamond} \frac{\Gamma\{[\Delta, \Diamond A], \Diamond A\}}{\Gamma\{[\Delta, \Diamond A]\}} \qquad 5_{2}^{\diamond} \frac{\Gamma\{[\Delta, \Diamond A], [\Lambda, \Diamond A]\}}{\Gamma\{[\Delta, \Diamond A], [\Lambda]\}} \qquad 5_{3}^{\diamond} \frac{[\Delta, \Diamond A, [\Lambda, \Diamond A]]}{\Gamma\{[\Delta, \Diamond A, [\Lambda]]\}}$$

$$\operatorname{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \operatorname{ctr} \frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \operatorname{cut} \frac{\Gamma\{A\} - \Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}}$$

For $X \subseteq \{d, t, b, 4, 5\}$:

Lemma. The rules wk and ctr are hp-admissible in NK \cup X $^{\diamond}$.

Lemma. All the rules of NK \cup X $^{\diamond}$ are hp-invertible.

Proposition. Rule 5^{\diamond} is derivable in NK \cup $\{5_1^{\diamond}, 5_2^{\diamond}, 5_3^{\diamond}\} \cup \{wk\}$.

$$5^{\diamond} \frac{\Gamma\{\Diamond A\}\{\Diamond A\}}{\Gamma\{\Diamond A\}\{\emptyset\}} \ depth(\Gamma\{||\emptyset|)>0$$

$$5^{\diamond}_{1} \frac{\Gamma\{[\Delta, \Diamond A], \Diamond A\}}{\Gamma\{[\Delta, \Diamond A]\}} \qquad 5^{\diamond}_{2} \frac{\Gamma\{[\Delta, \Diamond A], [\Lambda, \Diamond A]\}}{\Gamma\{[\Delta, \Diamond A], [\Lambda]\}} \qquad 5^{\diamond}_{3} \frac{[\Delta, \Diamond A, [\Lambda, \Diamond A]]}{\Gamma\{[\Delta, \Diamond A, [\Lambda]]\}}$$

Lemma. If Γ is derivable in NK \cup X $^{\diamond}$ then $\bigvee \Gamma$ is valid in all X-frames.

Rules of NK_{ctr}

$$\inf_{\text{init}} \frac{\Gamma\{\rho, \overline{\rho}\}}{\Gamma\{\rho, \overline{\rho}\}} = \operatorname{ctr} \frac{\Gamma\{\Delta, \Delta\}}{\Gamma\{\Delta\}} = \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} = \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$$

$$= \frac{\Gamma\{[A]\}}{\Gamma\{\cap A\}} = \Diamond_{\text{ctr}} \frac{\Gamma\{\Diamond A, [A, \Delta]\}}{\Gamma\{\Diamond A, [A]\}}$$

Rules for extensions

$$d_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, [A]\}}{\Gamma\{\diamondsuit A\}} \qquad t_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, A\}}{\Gamma\{\diamondsuit A\}} \qquad b_{ctr}^{\diamond} \frac{\Gamma\{[\Delta, \diamondsuit A], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}}$$

$$d_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, [\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad \delta_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}} \frac{depth(\Gamma\{\{\emptyset\}) > 0}{depth(\Gamma\{\{\emptyset\})\}} > 0$$

For $X \subseteq \{d, t, b, 4, 5\}$, we write X_{ctr}^{\diamondsuit} for the corresponding subset of $\{d_{ctr}^{\diamondsuit}, t_{ctr}^{\diamondsuit}, b_{ctr}^{\diamondsuit}, 4_{ctr}^{\diamondsuit}, 5_{ctr}^{\diamondsuit}\}$.

Rules of NK_{ctr}
$$\inf_{\text{init}} \frac{\Gamma\{\rho, \overline{\rho}\}}{\Gamma\{\rho, \overline{\rho}\}} = \operatorname{ctr} \frac{\Gamma\{\Delta, \Delta\}}{\Gamma\{\Delta\}} = \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} = \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$$

$$= \frac{\Gamma\{[A]\}}{\Gamma\{\cap A\}} = \Diamond_{\text{ctr}} \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [A]\}}$$

Rules for extensions

$$d_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, [A]\}}{\Gamma\{\diamondsuit A\}} \qquad t_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, A\}}{\Gamma\{\diamondsuit A\}} \qquad b_{ctr}^{\diamond} \frac{\Gamma\{[\Delta, \diamondsuit A], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}}$$

$$d_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, [\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad d_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}} \frac{depth(\Gamma(\{\emptyset)) > 0}{depth(\Gamma(\{\emptyset))} > 0}$$

For $X \subseteq \{d, t, b, 4, 5\}$, we write X_{ctr}^{\diamondsuit} for the corresponding subset of $\{d_{ctr}^{\diamondsuit}, t_{ctr}^{\diamondsuit}, b_{ctr}^{\diamondsuit}, 4_{ctr}^{\diamondsuit}, 5_{ctr}^{\diamondsuit}\}$.

Lemma. The rule wk is hp-admissible in NK \cup X $^{\diamond}$.

Rules of NK_{ctr}
$$\inf_{\text{init}} \frac{\Gamma\{\rho, \overline{\rho}\}}{\Gamma\{\rho, \overline{\rho}\}} = \operatorname{ctr} \frac{\Gamma\{\Delta, \Delta\}}{\Gamma\{\Delta\}} = \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} = \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$$
$$= \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} = \Diamond_{\text{ctr}} \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}}$$

Rules for extensions

$$d_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, [A]\}}{\Gamma\{\diamondsuit A\}} \qquad t_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, A\}}{\Gamma\{\diamondsuit A\}} \qquad b_{ctr}^{\diamond} \frac{\Gamma\{[\Delta, \diamondsuit A], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}}$$

$$4_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A, [\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad 5_{ctr}^{\diamond} \frac{\Gamma\{\diamondsuit A\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}} \frac{depth(\Gamma\{\{\emptyset\}) > 0}{depth(\Gamma\{\{\emptyset\}) > 0}$$

For $X \subseteq \{d,t,b,4,5\}$, we write X_{ctr}^{\diamondsuit} for the corresponding subset of $\{d_{ctr}^{\diamondsuit},t_{ctr}^{\diamondsuit},b_{ctr}^{\diamondsuit},4_{ctr}^{\diamondsuit},5_{ctr}^{\diamondsuit}\}$.

Lemma. The rule wk is hp-admissible in NK \cup X $^{\diamond}$.

Proposition. Γ is derivable in NK \cup X $^{\diamond}$ iff Γ is derivable in NK_{ctr} \cup X $^{\diamond}$ _{ctr}.

Roadmap