Tabela 5.1 Amplificadores transistorizados com TBJ sem carga.

Configuração	Z_i	Z_o	A_{ν}	A_i
Polarização fixa:	Média (1 kΩ)	Média (2 kΩ)	Alta (-200)	Alta (100)
$\begin{array}{c c} I_i & V_{CC} \\ \hline & R_B & R_C \\ \hline & V_o \\ \hline & V_i & Z_i \\ \end{array}$	$= \boxed{R_B \ \beta r_e}$ $\cong \boxed{\beta r_e}$	$= \boxed{R_C \ r_o}$ $\cong \boxed{R_C}$	$= -\frac{(R_C \ r_o)}{r_e}$	$= \frac{\beta R_B r_o}{(r_o + R_C)(R_B + \beta r_e)}$
	$(R_B \ge 10\beta r_e)$	$(r_o \ge 10R_C)$	$\cong \left[-\frac{R_C}{r_e} \right]$ $(r_o \ge 10R_C)$	$ \begin{array}{c} \cong \boxed{\beta} \\ (r_o \ge 10R_C, \\ R_B \ge 10\beta r_e) \end{array} $
Polarização por	Média (1 kΩ)	Média (2 kΩ)	Alta (-200)	Alta (50)
divisor de tensão: $R_1 \qquad \qquad V_{CC}$ $R_C \qquad \qquad R_C$	$= \left[R_1 \ R_2 \ \beta r_e \right]$	$= \begin{bmatrix} R_C \ r_o \end{bmatrix}$ $\cong \begin{bmatrix} R_C \end{bmatrix}$	$= -\frac{R_C \ r_o}{r_e}$	$= \frac{\beta(R_1 R_2) r_o}{(r_o + R_C)(R_1 R_2 + \beta r_e)}$
V_i Z_i R_E Z_o C_E		$(r_o \ge 10R_C)$	$\cong \left[-\frac{R_C}{r_e} \right]$ $(r_o \ge 10R_C)$	$\cong \left[\frac{\beta(R_1 R_2)}{R_1 R_2 + \beta r_e} \right]$ $(r_o \ge 10R_C)$
Polarização de	Alta (100 kΩ)	Média (2 kΩ)	Baixa (-5)	Alta (50)
emissor sem desvio: V_{CC} R_{B} I_{o} R_{C} I_{o} R_{C} I_{o}	$= \boxed{R_B \ Z_b}$ $Z_b \cong \beta(r_e + R_E)$ $\cong \boxed{R_B \ \beta R_E}$ $(R_E \gg r_e)$	$= \boxed{R_C}$ (qualquer nível de r_o)	$= \boxed{-\frac{R_C}{r_e + R_E}}$ $\cong \boxed{-\frac{R_C}{R_E}}$ $(R_E \gg r_e)$	$\cong \left[-rac{eta R_B}{R_B + Z_b} ight]$
Seguidor de emissor:	Alta (100 kΩ)	Baixa (20 Ω)	Baixa (≅1)	Alta (-50)
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$= \boxed{R_B \ Z_b}$ $Z_b \cong \beta(r_e + R_E)$ $\cong \boxed{R_B \ \beta R_E}$ $(R_E \gg r_e)$	$= \boxed{\begin{array}{c} R_E \ r_e \\ \\ \cong \boxed{\begin{array}{c} r_e \\ \\ \end{array}} \\ (R_E \gg \ r_e) \end{array}}$	$= \boxed{\frac{R_E}{R_E + r_\epsilon}}$ $\cong \boxed{1}$	$\cong \left[-\frac{\beta R_B}{R_B + Z_b} \right]$
Base-comum:	Baixa (20 Ω)	Média (2 kΩ)	Alta (200)	Baixa (-1)
$ \begin{array}{c c} I_i \\ V_i \\ \hline Z_i \\ \hline V_{EE} \end{array} $ $ \begin{array}{c c} I_o \downarrow \\ \hline Z_o \\ V_o \end{array} $	$= \boxed{R_E \ r_e}$ $\cong \boxed{r_e}$ $(R_E \gg r_e)$	$=$ R_C	$\cong \left[\frac{R_C}{r_e} \right]$	≅ −1
Realimentação do coletor:	Média (1 kΩ)	Média (2 kΩ)	Alta (-200)	Alta (50)
$\begin{array}{c} I_{o} \downarrow \begin{matrix} \downarrow \\ R_{F} \end{matrix} \\ \downarrow \begin{matrix} \downarrow \\ R_{C} \end{matrix} \\ \downarrow \begin{matrix} \downarrow \\ Z_{o} \end{matrix} \\ V_{o} \end{matrix}$	$= \boxed{\frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_F}}}$ $(r_o \ge 10R_C)$	$\cong \boxed{R_C \ R_F}$ $(r_o \ge 10R_C)$	$\cong \boxed{-\frac{R_C}{r_e}}$ $(r_o \ge 10R_C)$ $(R_F \gg R_C)$	$= \boxed{\frac{\beta R_F}{R_F + \beta R_C}}$ $\cong \boxed{\frac{R_F}{R_C}}$

Tabela 5.2 Amplificadores transistorizados com TBJ incluindo o efeito de R_s e R_L .

Configuração	$A_{v_L} = V_o/V_i$	Z_i	Z_o
V_{CC} R_{S} V_{CC} R_{R} R_{C} R_{R} R_{C} R_{R} R_{C} R_{R} R_{C}	$\frac{-(R_L \ R_C)}{r_e}$	$R_B \ eta r_e$	R_C
	Incluindo r_o : $-\frac{(R_L R_C r_o)}{r_e}$	$R_B \ \beta r_e$	$R_C \ r_o$
V _{CC} R ₁ R ₂ R ₂ V _C	$\frac{-(R_L \ R_C)}{r_e}$	$R_1 \ R_2 \ \beta r_e$	R_C
$\begin{array}{c c} & & & & & & & & & \\ & & & & & & & & \\ & & & &$	Incluindo r_o : $\frac{-(R_L \ R_C \ r_o)}{r_e}$	$R_1 \ R_2 \ \beta r_\epsilon$	$R_C \ r_o$
R_1	≅ 1	$R_E' = R_L \ R_E$ $R_1 \ R_2 \ \beta(r_e + R_E')$	$R'_{s} = R_{s} R_{1} $ $R_{E} \left(\frac{R'_{s}}{\beta} + r_{o}\right)$
V_s V_s V_s V_s V_o	Incluindo r_o : $\cong 1$	$R_1 \ R_2 \ \beta(r_e + R_E')$	$R_E \ \left(\frac{R_s'}{\beta} + r_o' \right) \ $
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\cong \frac{-(R_L \ R_C)}{r_e}$	$R_E \ r_e$	R_C
	Incluindo r_o : $\cong \frac{-(R_L R_C r_o)}{r_e}$	$R_E \ r_e$	$R_C \ r_o$
V_{CC} R_1 R_2 R_L R_L	$\frac{-(R_L \ R_C)}{R_E}$	$R_1 \ R_2\ \beta(r_e + R_E)$	R_C
	Incluindo r_{σ} : $\frac{-(R_L \ R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_e)$	$\cong R_C$

Tabela 5.2 Amplificadores transistorizados com incluindo o efeito de R_s e R_L (continuação).

Configuração	$A_{\nu_L} = V_o/V_i$	Z_i	Z_o
R _B V _C	$\frac{-(R_L \ R_C)}{R_{E_1}}$	$R_B \ \beta(r_e + R_{E_i})$	R_C
$\begin{array}{c c} + & & \\ \hline \end{array}$	Incluindo r_o : $\frac{-(R_L \ R_C)}{R_{E_e}}$	$R_B \ \beta(r_e + R_E)$	$\cong R_C$
V_{CC} R_C	$\frac{-(R_L \ R_C)}{r_e}$	$\beta r_e \ \frac{R_F}{ A_v }$	R_C
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ \end{array}$	Incluindo r_o : $\frac{-(R_L \ R_C\ r_o)}{r_e}$	$eta r_e \ rac{R_F}{ A_v }$	$R_C \ R_F\ _{r_o}$
R_{F}	$\frac{-(R_L \ R_C)}{R_E}$	$eta R_E \ rac{R_F}{ A_ u }$	$\cong R_C R_F$
$\begin{array}{c c} R_{z} & V_{I} \\ V_{z} & Z_{i} \\ \end{array}$ $\begin{array}{c c} R_{E} & Z_{i} \end{array}$	Incluindo r_o : $\cong \frac{-(R_L \ R_C)}{R_E}$	$\cong eta R_E \ rac{R_F}{ A_ u }$	$\cong R_C R_F$