1.) $R = \frac{3}{2}(x_1 x^4) : x \in R^{\frac{3}{2}} \subset R \times R$

Ly kann als Funktion f: R > R ærfgefasst worden.

Allganein: Eine Funktion fiR > PR bildet jedes XER cenf genan esna reelle tall y fx) ER. linkstotal

 $f:\mathbb{R} \longrightarrow \mathbb{R}$ $(\times, f(\times))$ $f:\mathbb{R} \longrightarrow \mathbb{R}$ $(\times, f(\times))$

2) $R = \frac{1}{2} (x^2 \otimes) : x \in \mathbb{R}^3 \subset \mathbb{R} \times \mathbb{R}$

- hann nicht als Funktion fir aufgfasst werden.

Denn: Rechtsandentigheit ist varletet: $\chi^2 = 4$

~ XEZ+2,-23

dhe ein file si Re viaste 4 and -2 and +2 abbildon, dhe flidet viant eludentiq & ist damit beine Funktion

· Linkstotalität vesletzt: 23. lässt sich - 1 nicht in des Faran X² mit XER.

~> Schränke die Relation c'en:

 $\mathcal{R} = \mathcal{L}(x^2, x) : x \in \mathbb{R}_{>0} \mathcal{L} \subset \mathbb{R}_{>0} \mathcal{R}_{\geq 0}$

Lis kann als Funktion f: Rzo Rzo ængefasst worden.

Alternativ: R'= ?(x2,x): xER &o) C Rsox R60.

Tut2.2 Seite

kann als Hot. aufgefosst wooden:

f: R>0 - R<0

X + - IVXI.

Agrivalent relationen:

· Repråsentantensystème:

 $Sen: \mathbb{R} \to \mathbb{R}$ $\times \mapsto Sen(X)$

-2u -11 27 377

ns ist 27-posiodisch,

d.h. Sinus ist dusch

die Woste auf [0,27]

boseits vollständig bestimmt.

Définice $R = \frac{3}{4} (x,y) \in \mathbb{R} \times \mathbb{R}$: $y = x + 2\pi \cdot h$ für ein $h \in \mathbb{Z}$

25 Repräsentantensystem: [0,27 [-[0,27)

vus Notationsuntershied

Genoel! ist eine Relation auf eines Menge M gegdoen, dann bezeichnet für ein XEM [X] die Ägnivalentlelasse, in des x liegt.

 $X = \begin{cases} x = 10a + b : a, b \in 30, 1, 2, ..., 93 \end{cases} = \begin{cases} 0, 1, ..., 93 \end{cases}$ $R = \begin{cases} (x_1, x_2) : a_1 + b_1 = a_2 + b_2 \end{cases}$ $10a_1 + b_1 = a_2 + b_2 = a_2 + b_2 \end{cases}$ $10a_1 + b_1 = a_2 + b_2 = a_2 + b_$

Aquivalent blage von X=35

= $\begin{cases} X' = 10a' + b' : 3 + 5 = a' + b' \end{cases}$ $\begin{cases} a_2 = a' \\ b_2 = b' \end{cases}$ > $\begin{cases} b' = 8 : \\ a' + b' = 8 : \end{cases}$ Aquivalent blage von X=35 $\begin{cases} a_1 = a' + b' = 8 : \\ a' + b' = 8 : \end{cases}$ Alguivalent blage von X=35 $\begin{cases} a_2 = a' \\ b_2 = b' \end{cases}$ The regular loss of the second properties (a' b') von a' + b' = 8.

 \sim [35] = $\frac{2}{8}$, 17, 26, 35, 44, 53, 62, 71, 80 $\frac{3}{8}$.

Repräsentantensystem: « X beinhaltet alle maximal Eweistelligen

Kepräsentantensystem: X beinhaltet alle maximal Eweistelligen gante Eahlen.

ex=10a+b, abe \\ \(\) \

· at = Quessumme von x = 10 at6

. 2 Wei Elemente aus X sind åguivalent genan dann, wenn ihre Quessumme gleich ist.

. Welche Quessammen treten ænf in X? minimal: O

ns jede tahl 20.0 & 18 tritt als Quescume auf No bestimme zu jedes möglichen QS (0 bis 18) einen Repräsentanten aus X ns liefot das Repräsentantensystem.

Repråsentantensystem = 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 88, 93 }.