# Частичное обучение

#### Виктор Китов

victorkitov.github.io

Курс поддержан фондом 'Интеллект'







Победитель конкурса VK среди курсов по IT



# Частичное обучение

• Доступны данные:

$$L = \{(x_1, y_1), ...(x_N, y_N)\}; \ U = \{x_{N+1}, ...x_{N+M}\}.$$

- Использование частичного обучения (semi-supervised learning):
  - N мало, а M ≫ N велико.
- Достаточно типичная ситуация:
  - классификация документов, много документов в интернете
  - классификация изображений, много изображений в интернете
  - распознавание речи, записи речи в свободном режиме
- Также применимо к трансдуктивному обучению (transductive learning)
  - когда тестовая выборка известна заранее, например kaggle
- Будем рассматривать только задачу классификации.

# Мотивационный пример

#### Обучение с учителем:



### Мотивационный пример

#### Обучение с учителем:



#### Частичное обучение:



# Мотивационный пример

#### Обучение с учителем:



#### Частичное обучение:



#### Предположение частичного обучения

Выход зависит плавно от входа.

- Кластеры/многообразия похожих объектов должны принадлежать одному классу.
- Если предположение не выполнено, то частичное обучение может работать хуже обучения с учителем.

### Мотивационный пример<sup>1</sup>

Рассмотрим классификацию документов на "астрономию" и "путешествия" или классификацию рукописных цифр.



Напрямую объекты несравнимы, но могут быть сравнимы за счет попарной схожести с неразмеченными объектами.

<sup>&</sup>lt;sup>1</sup>Источник иллюстрации.

# Методы частичного обучения

#### • Типы методов частичного обучения:

- препроцессинг на основе большой неразмеченной выборки
  - ↓ размерности, используя РСА
  - word2vec.
  - оценка расстояния Махаланобиса
- мета-алгоритмы, использующие любой базовый алгоритм
  - самообучение (self-learning)
  - совместное обучение (co-learning)
- специальные алгоритмы, использующие как размеченные, так и неразмеченные данные
  - кластеризация с метками
  - частичная генеративная классификация
  - трансдуктивный метод опорных векторов (transductive SVM)

# Содержание

- Самообучение
- Совместное обучение

- б Графовые методы

#### Самообучение

классификатор: 
$$f(x)=rg\max_{c}g_c(x)$$
 уверенность:  $M_f(x)=g_{f(x)}(x)-\max_{c\in C\setminus f(x)}g_c(x)$  (можно по  $p(y|x)$ )

#### Самообучение

классификатор: 
$$f(x)=\arg\max_c g_c(x)$$
 уверенность:  $M_f(x)=g_{f(x)}(x)-\max_{c\in C\setminus f(x)}g_c(x)$  (можно по  $p(y|x)$ )

Метод самообучения (self-training):

```
Z=L # выборка, по которой учимся ПОВТОРЯТЬ до условия остановки: обучить f(x) на Z применить f(x) к U \setminus Z зададим расширение \Delta = \{(x_i, f(x_i)) \in U \setminus Z : M_f(x) \geq t\} Z = Z \cup \Delta
```

- ullet Выход: обученный f(x) либо разметка тестовой выборки.
- ullet Параметр t может выбираться, чтобы  $|\Delta|=0.05|U|$

# Самообучение

- Условия остановки:
  - вся тестовая выборка размечена
  - точность на валидации перестала ↑
- Можно составлять △ по наиболее уверенным предсказаниям, сохраняя исходное распределение на классах.
- Применим к любому f(x)
- Предположение: прогнозы, полученные с большой уверенностью, считаются верными.
  - самообучение сильно увеличивает переобученность f(x).
  - отчасти исправляется совместным обучением (co-training)

# Содержание

- Самообучение
- 2 Совместное обучение
- 3 Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- б Графовые методы

# Совместное обучение через ансамбль

- Самообучение усиливает переобученность метода.
- Для ↓ переобучения будем использовать разные методы для разметки.

#### Идея совместного обучения

Разные методы дообучают друг друга.

- Совместное обучение через ансамбль:
  - применяем самообучение к ансамблю  $f_1(x), ... f_K(x)$ .
  - объекты, на которых большинство прогнозов базовых моделей сходятся, добавляются в выборку
- Снижается степень переобучения индивидуальной модели f(x).

### Совместное обучение

- Пусть  $f_1(\cdot)$  и  $f_2(\cdot)$  одинаковые классификаторы, использующие различные наборы признаков  $F_1$  и  $F_2$ ,  $F_1 \cap F_2 = \emptyset$ .
- Совместное обучение (co-training):

```
Z_1 = L на признаках F_1
Z_2=L на признаках F_2
ПОВТОРЯТЬ до условия остановки:
     обучить f_1(x) на Z_1
     применить f_1(x) к U \setminus Z_2
     \Delta_1 = \{(x_i, f_1(x_i)) \in U \setminus Z_2 : M_{f_1}(x_i) \geq t\}
     Z_2 = Z_2 \cup \Delta_1
     обучить f_2(x) на Z_2
     применить f_2(x) к U \setminus Z_1
     \Delta_2 = \{(x_i, f_2(x_i)) \in U \setminus Z_1 : M_{f_2}(x_i) \geq t\}
     Z_1 = Z_1 \cup \Delta_2
```

### Совместное обучение

- Выход: обученные  $f_1(x)$ ,  $f_2(x)$  или разметка тестовой выборки.
- Предположение метода (когда прогнозы одной модели случайны для другой):

$$p(F_1, F_2|y) = p(F_1|y)p(F_2|y)$$

- Альтернативно  $f_1(\cdot)$  и  $f_2(\cdot)$  используют одинаковые признаки, но разные модели.
  - ullet в этом случае инициализация  $Z_1 = Z_2 = L$ .

### Содержание

- Самообучение
- 2 Совместное обучение
- 3 Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- 6 Графовые методы

#### Расширение меток на кластер



- Кластеризовать  $L \cup U$ .
- Расширить метки на кластер.
  - если нет меток оставить неразмеченными / взять ближайшие
  - если несколько голосование по большинству
- Простой, но слишком грубый метод обобщения меток
  - особенно если разные метки в одном кластере

# К-средних для частичного обучения

Инициализировать  $\mu_{k},\ k=1,2,...K$  .

ПОВТОРЯТЬ до сходимости:

для 
$$n = N + 1, 2, ...N + M$$
: определить кластер для  $x_i$ :  $z_n = \arg\min_{k \in \{1,2,...K\}} ||x_n - \mu_k||_2^2$ 

для 
$$k=1,2,...K$$
: пересчитать центры:  $\mu_k = \frac{1}{|C_k|} \sum_{n \in C_k} x_n$ 

•  $\mu_1, \mu_2, \dots$  инициализируются средними для размеченных объектов.

### Аггломеративная кластеризация - алгоритм

инициализировать матрицу попарных расстояний  $M \in \mathbb{R}^{N \times N}$  между кластерами из отдельных объектов  $\{x_1\},...\{x_N\}$ 

#### ПОВТОРЯТЬ:

- 1) выбрать ближайшие кластеры i и j
- 2) объединить  $i, j \rightarrow \{i+j\}$ , если нет разных меток
- 3) удалить строки/столбцы і, і из матрицы расстояний
- 4) добавить строку/столбец для нового  $\{i+j\}$  в матрицу

ПОКА не выполнено условие остановки

ВЕРНУТЬ иерархическую кластеризацию

Объединяем самые близкие  $\{i\}$  и  $\{j\}$ , в которых нет меток разных классов.

# Содержание

- Самообучение
- 2 Совместное обучение
- Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- б Графовые методы

# Частичное обучение в генеративных моделях

• Генеративная модель оценивает  $p(x,y|\theta)$ , поэтому можем оценить  $p(x|\theta) = \sum_y p(x,y|\theta)$  для U.

# Частичное обучение в генеративных моделях

• Генеративная модель оценивает  $p\left(x,y|\theta\right)$ , поэтому можем оценить  $p(x|\theta) = \sum_{y} p(x,y|\theta)$  для U.

оценить 
$$p(x|\theta) = \sum_{y} p(x,y|\theta)$$
 для  $U$ .

In  $p(X,Y|\theta) = \sum_{n=1}^{N} \ln p(x_n,y_n|\theta) + \lambda \sum_{i=N+1}^{N+M} \ln p(x_i|\theta)$ 

$$= \sum_{n=1}^{N} \ln p(x_n,y_n|\theta) + \lambda \sum_{n=N+1}^{N+M} \ln \left[ \sum_{y=1}^{C} p(x_n,y|\theta) \right]$$

$$= \sum_{n=1}^{N} \ln \left[ p(y_n|\theta) p(x_n|y_n,\theta) \right] + \lambda \sum_{n=N+1}^{N+M} \ln \left[ \sum_{y=1}^{C} p(y) p(x_n|y,\theta) \right]$$

# Частичное обучение в генеративных моделях

• Генеративная модель оценивает  $p(x,y|\theta)$ , поэтому можем оценить  $p(x|\theta) = \sum_y p(x,y|\theta)$  для U.

оценить 
$$p(x|\theta) = \sum_{y} p(x, y|\theta)$$
 для  $U$ .

In  $p(X, Y|\theta) = \sum_{n=1}^{N} \ln p(x_n, y_n|\theta) + \lambda \sum_{i=N+1}^{N+M} \ln p(x_i|\theta)$ 

$$= \sum_{n=1}^{N} \ln p(x_n, y_n|\theta) + \lambda \sum_{n=N+1}^{N+M} \ln \left[ \sum_{y=1}^{C} p(x_n, y|\theta) \right]$$

$$= \sum_{n=1}^{N} \ln \left[ p(y_n|\theta) p(x_n|y_n, \theta) \right] + \lambda \sum_{n=N+1}^{N+M} \ln \left[ \sum_{y=1}^{C} p(y) p(x_n|y, \theta) \right]$$

- ullet  $\lambda \in [0,1]$  значимость неразмеченной части.
- Важна адекватность генеративной модели p(x|y).
- $ln(\sum \cdots)$  нет численного решения, используем EM-алгоритм (латентные деременные  $y_{N+1},...y_{N+M}$ ).

# ЕМ алгоритм

#### ЕМ алгоритм: повторять до сходимости

- для n = N + 1, ...N + M, c = 1, ...C:
  - ullet найти  $p_{ny}=p(y_n=y|x_n,\widehat{ heta})$
  - ullet уточнить  $\widehat{ heta}$ , решив:

$$\sum_{n=1}^{N} \ln \left[ p(y_n | \theta) p(x_n | y_n, \theta) \right] + \lambda \sum_{n=N+1}^{N+M} \sum_{y=1}^{C} p_{ny} \ln \left[ p(y | \theta) p(x_n | y, \theta) \right]$$

$$\rightarrow \max_{\theta}$$

### Пример использования

Пусть  $y \in \{+1, -1\}$ ,  $p(x|y) = \mathcal{N}(x|\mu_y, \Sigma_y)$  Размеченные и неразмеченные данные:





#### Пример использования

#### Решение без/с использованием неразмеченных данных:





### Мультиномиальная модель

- ullet  $w_1, w_2, ... w_D$  уникальные токены языка
- Решающее правило:

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

- ullet  $x \in \mathbb{R}^D$ ,  $x^i =$  [сколько раз  $w_i$  встретилось в документе],  $i = \overline{1,D}$
- $oldsymbol{ heta}_i^y = p\left(w_i \text{ на словопозиции } i|y
  ight)$  не зависит от i и др. слов документа
- Генерация документа класса у:
  - ullet для каждой словопозиции  $i=1,2,...n_{document}$ :
    - сгенерировать слово  $z_i \sim \mathsf{Categorical}\left(\theta_1^y, \theta_2^y, ... \theta_D^y\right)$

### Мультиномиальная модель

- $\bullet$   $(\sum_i x^i)!$  # перестановок всех слов документа
- ullet  $\prod_i \left( x^i 
  ight)!$  # перестановок в рамках встречи каждого слова
- ullet  $\frac{\left(\sum_{i}x^{i}\right)!}{\prod_{i}(x^{i})!}$  # документов где  $w_{1},w_{2},...$  встретились  $x^{1},x^{2},...$  раз.
- Вероятность:

$$p(x|y) = \frac{\left(\sum_{i} x^{i}\right)!}{\prod_{i} (x^{i})!} \prod_{i=1}^{D} \left(\theta_{i}^{y}\right)^{x^{i}}$$

#### Оценка параметров

$$p(y) = \frac{\sum_{d=1}^{N} \mathbb{I}[y_d = y] + \lambda \sum_{d=N+1}^{N+M} p_{dy}}{N + \lambda M}$$

$$\theta_i^y = \frac{\sum_{d=1}^{N} n_{di} \mathbb{I}[y_d = y] + \alpha + \lambda \sum_{d=N+1}^{N+M} p_{dy} n_{di}}{\sum_{d=1}^{N} \sum_{i=1}^{D} n_{di} \mathbb{I}[y_d = y] + \alpha D + \lambda \sum_{d=N+1}^{N+M} \sum_{i=1}^{D} p_{dy} n_{di}}$$

- $n_{di}$ =# раз  $w_i$  встретилось в документе d
- D=# документов
- $\alpha > 0$  сглаживание Лапласа
- ullet  $\lambda \in [0,1]$  важность частичного обучения

$$p_{dy} = p(y|d) = \frac{p(y,d)}{p(d)} = \frac{p(y)p(d|y)}{\sum_{y} p(y)p(d|y)}$$

### Эксперимент

- Классификация новостей (20NewsGroups).
- 20 5000 размеченных документов, 10000 неразмеченных.
- Частичное обучение работает лучше:



### Содержание

- Совместное обучение

- Трансдуктивный метод опорных векторов
- Прафовые методы

# Обычный метод опорных векторов

 Метод опорных векторов (SVM) - линейный классификатор:

$$f(x) = \operatorname{sign}\left(w^T x + w_0\right), \quad w, x \in \mathbb{R}^D, w_0 \in \mathbb{R}$$

Отступ объекта x<sub>n</sub>:

$$M(x_n, y_n) = \left(w^T x_n + w_0\right) y_n$$

• Оптимизационная задача:

$$\frac{1}{2C} \|w\|^2 + \sum_{n=1}^{N} \left[1 - M(x_n, y_n)\right]_+ \to \min_{w, w_0}$$

•  $\mathcal{L}(M) = [1 - M]_{\perp}$  штрафует за  $M \le 1$ .

### Трансдуктивный метод опорных векторов

$$\tilde{\mathcal{L}}(M) = [1 - |M|]_{+} = \left[1 - \left|w^{T}x_{n} + w_{0}\right|\right]_{+}$$

- не зависит от у<sub>п</sub>
- штрафует объекты за близость к разделяющей гиперплоскости

Трансдуктивный метод опорных векторов (transductive SVM, TSVM, S3VM):

$$\frac{1}{2C} \|w\|^2 + \sum_{n=1}^{N} \left[1 - M(x_n, y_n)\right]_+ + \lambda \sum_{\substack{n=N+1 \\ 27/36}}^{N+M} \left[1 - |M(x_n, y_n)|\right]_+ \to \min_{w, w_0}$$

### Иллюстрация



- В кругах размеченные объекты.
- Пунктиром разделяющая граница SVM
- Сплошные линии разделяющая граница TSVM

Идея метода - разделение областей низкой плотности.

# Обсуждение

#### Преимущества:

- может быть обобщено ядрами
- существуют эффективные реализации

#### Недостатки:

- задача перестаёт быть выпуклой:
  - много локальных минимумов, нужно искать наилучший
- поощряет тривиальное решение, когда гиперплоскость далека от всех объектов
  - т.е. прогноз одним классом, поэтому рекомендуется оптимизировать при доп. ограничении<sup>2</sup>

$$\frac{1}{M} \sum_{n=N+1}^{N+M} \operatorname{sign}\left(w^{T} x + w_{0}\right) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\left[y_{n} = +1\right]$$

<sup>&</sup>lt;sup>2</sup>Large Scale Transductive SVMs.

# Содержание

- 1 Самообучение
- 2 Совместное обучение
- ③ Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- б Графовые методы

# Алгоритм распространения меток<sup>3</sup>

- строим граф связей похожих объектов:
  - ullet узлы  $x \in L \cup U$  и связи между близкими  $x_i, x_j$ :  $w_{ij} = e^{\left\|x_i x_j \right\|^2/\left(2\sigma^2 
    ight)} = w_{ji}$  (можно и по-другому)
- $oldsymbol{0}$  вычисляем матрицу переходов  $P \in \mathbb{R}^{(N+M) \times (N+M)}$

$$P_{ij} = P(x_i \rightarrow x_j) = \frac{w_{ij}}{\sum_{k=1}^{N+M} w_{ik}}$$

- **3** Инициализируем ответы на объектах  $f \in \mathbb{R}^{N+M}$ .
  - $f_n := y_n$  для n = 1, 2, ...N.
  - $f_n := 0$  (не принципиально) для n = N + 1, ...N + M.

<sup>&</sup>lt;sup>3</sup>Детали метода.

### Алгоритм распространения меток

- Алгоритм распространения меток (label propagation)
  - повторять до сходимости f:
    - 🚺 усреднить ответы по исходам из каждой вершины

$$f := Pf$$
 (покомпонентно  $f(x_i) := \sum_{j \sim i} p_{ij} f(x_j)$ )

либо по входам в каждую вершину

$$f^{\mathsf{T}} := f^{\mathsf{T}} P$$
 (покомпонентно  $f(x_j) := \sum_{i \sim j} f(x_i) p_{ij}$ )

- $oldsymbol{2}$  перезадать известные метки:  $f_L := Y_L$
- Идейно это self-learning для KNN.

### Визуализация работы



#### Регуляризация энергии графа

- Воспользуемся графом из алгоритма распространения меток.
- Энергия графа измеряет согласованность меток для соседних узлов

$$E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(x_i) - f(x_j))^2 = f^T \Delta f$$

ullet Найдем f(x) из задачи

$$\sum_{n=1}^{N} \mathcal{L}\left(f(x_n), y_n\right) + \lambda_1 R\left(f\right) + \frac{\lambda_2 E(f)}{f} \to \min_{f}$$

- Варианты оптимизации:
  - ullet по значениям  $f \in \mathbb{R}^{N+M}$
  - по параметрам  $f_w(x)$

### Лапласиан графа

$$E\left(f
ight) = rac{1}{2} \sum_{i,j} w_{ij} \left(f(x_i) - f(x_j)
ight)^2 = f^T \Delta f$$
 где  $\Delta = D - W$  - Лапласиан графа,  $D, W \in \mathbb{R}^{(N+M) \times (N+M)}$   $D = ext{diag} \left(\sum_{j=1}^{N+M} w_{1j}, \sum_{j=1}^{N+M} w_{2j}, ... \sum_{j=1}^{N+M} w_{(N+M)j}
ight)$   $W = \{w_{ij}\}_{i,i=1,...N+M}$ 

Разобьём Лапласиан на блоки: 
$$\Delta = \left[ egin{array}{cc} \Delta_{LL} & \Delta_{LU} \\ \Delta_{UL} & \Delta_{UU} \end{array} \right]$$

$$\sum_{n=1}^{N} (f_n - y_n)^2 + f^T \Delta f \to \min_{f \in \mathbb{R}^{N+M}} \quad = > \quad f_U = -\Delta_{UU}^{-1} \Delta_{UL} Y_L$$

#### Заключение

- Частичное обучение использование неразмеченных объектов для уточнения прогнозов.
- Наиболее эффективно, когда N мало,  $M \gg N$  велико.
  - ullet при  $N\gg 1$  не так эффективно.
- Предположение: близким объектам соответствуют похожие отклики.
- Подходы к частичному обучению:
  - мета-алгоритмы, строящиеся на базе других
    - самообучение, совместное обучение
  - кластеризация
    - обобщение меток на кластер, кластеризация с учётом меток
  - ullet генеративные модели, учитывающие  $p\left(x\right)$  для  $x\in U$ .
  - разделение областей высокой плотности (transductive SVM)
  - минимизация энергии на графе