Perceptrons and Structured Perceptrons

CS114B Lab 8

Kenneth Lai

March 26, 2021

Perceptrons

- Documents are characterized by features
 - ▶ No independence assumptions
- ► For each feature *j*:
 - ▶ Value x_j
 - ▶ Weight w_j
- ▶ Bias term b

• "Score"
$$z = \left(\sum_{j=1}^{n} w_j x_j\right) + b = \mathbf{w} \cdot \mathbf{x} + b$$

Perceptrons

- Documents are characterized by features
 - No independence assumptions
- ► For each feature *j*:
 - ▶ Value x_i
 - Weight w_j
- ▶ Bias term b

• "Score"
$$z = \left(\sum_{j=1}^{n} w_j x_j\right) + b = \mathbf{w} \cdot \mathbf{x} + b$$

Does this look familiar?

Graphical Representation of Logistic Regression

Graphical Representation of a Neuron

► (Heaviside) step function *H*

► (Heaviside) step function *H*

$$H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$$

- ► (Heaviside) step function *H*
 - ► $H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$ ► What if z = 0?

► (Heaviside) step function *H*

$$H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$$

- What if $\hat{z} = 0$?
 - ► Set by convention (1, 0, or 1/2)

• Hinge loss $L(\hat{y}, y) = (\hat{y} - y)z$

- ► Hinge loss $L(\hat{y}, y) = (\hat{y} y)z$
- We want to compute $\frac{\partial L}{\partial w_j}$
- ► Chain Rule of calculus: $\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$
- ► Looking at the graph: $\frac{\partial L}{\partial w_j} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w_j}$

- ► Hinge loss $L(\hat{y}, y) = (\hat{y} y)z$
- ► We want to compute $\frac{\partial L}{\partial w_j}$
- ► Chain Rule of calculus: $\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$
- ► Looking at the graph: $\frac{\partial L}{\partial w_j} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w_j}$
 - ▶ Problem: $\frac{\partial \hat{y}}{\partial z} = 0$ almost everywhere

- ► Hinge loss $L(\hat{y}, y) = (\hat{y} y)z$
- We want to compute $\frac{\partial L}{\partial w_j}$
- ► Chain Rule of calculus: $\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$
- ► Looking at the graph: $\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w_i}$
 - ▶ Problem: $\frac{\partial \hat{y}}{\partial z} = 0$ almost everywhere
 - A change in z does not result in a change in \hat{y} unless you are at the threshold

- ► Hinge loss $L(\hat{y}, y) = (\hat{y} y)z$
- ► We want to compute $\frac{\partial L}{\partial w_j}$
- ► Chain Rule of calculus: $\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$
- ► Looking at the graph: $\frac{\partial L}{\partial w_j} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w_j}$
 - ▶ Problem: $\frac{\partial \hat{y}}{\partial z} = 0$ almost everywhere
 - ▶ A change in z does not result in a change in \hat{y} unless you are at the threshold
 - ► Solution: consider $\frac{\partial L}{\partial z}$ directly

- ► Hinge loss $L(\hat{y}, y) = (\hat{y} y)z$
- We want to compute $\frac{\partial L}{\partial w_j}$
- ► Chain Rule of calculus: $\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$
- ► Looking at the graph: $\frac{\partial L}{\partial w_j} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial w_j}$

►
$$\frac{\partial L}{\partial w_j} = (\hat{y} - y)x_j$$

► $\frac{\partial z}{\partial w_j} = x_j$

► For the hinge loss: $\frac{\partial L}{\partial z} = \hat{y} - y$

►
$$\frac{\partial L}{\partial w_j} = (\hat{y} - y)x_j$$

► $\frac{\partial z}{\partial w_j} = x_j$

► For the hinge loss: $\frac{\partial L}{\partial z} = \hat{y} - y$

► $\frac{\partial L}{\partial b} = \hat{y} - y$

► $\frac{\partial z}{\partial b} = 1$

Gradient Descent

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ightharpoonup Compute gradient ∇L
 - Move in direction of negative gradient

$$\theta_{t+1} = \theta_t - \eta \nabla L$$

Gradient Descent

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ightharpoonup Compute gradient ∇L
 - Move in direction of negative gradient

$$\theta_{t+1} = \theta_t - \eta \nabla L$$

Does this look familiar?

Perceptron Learning Algorithm

- ▶ If $\hat{y} = y$, then $\hat{y} y = 0$
 - ▶ Do nothing

Perceptron Learning Algorithm

- If $\hat{y} = y$, then $\hat{y} y = 0$
 - Do nothing
- ▶ If $\hat{y} = 0$ and y = 1, then $\hat{y} y = -1$
 - $\nabla L = -\mathbf{x}$
 - $\bullet \ \theta_{t+1} = \theta_t + \eta \mathbf{x}$
 - ► Increment weights

Perceptron Learning Algorithm

- If $\hat{y} = y$, then $\hat{y} y = 0$
 - ▶ Do nothing
- ▶ If $\hat{y} = 0$ and y = 1, then $\hat{y} y = -1$
 - $\nabla L = -\mathbf{x}$
 - $\theta_{t+1} = \theta_t + \eta \mathbf{x}$
 - Increment weights
- ▶ If $\hat{y} = 1$ and y = 0, then $\hat{y} y = 1$
 - $\nabla L = \mathbf{x}$
 - $\bullet \ \theta_{t+1} = \theta_t \eta \mathbf{x}$
 - ► Decrement weights

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

$$\hat{y} = \operatorname*{argmax}_{k=1}^{K} z_{k}$$

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

- $\hat{y} = \underset{k=1}{\operatorname{argmax}} z_k$
 - ▶ Unlike in multinomial logistic regression, \hat{y} does not have to be a vector

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

- $\hat{y} = \operatorname*{argmax}_{k=1}^{K} z_{k}$
 - ▶ Unlike in multinomial logistic regression, \hat{y} does not have to be a vector
 - $\,\blacktriangleright\,$ If we wanted to, we could define one-hot vectors $\hat{\boldsymbol{y}}$ and \boldsymbol{y}

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

- $\hat{y} = \operatorname*{argmax}_{k=1}^{K} z_{k}$
 - Unlike in multinomial logistic regression, \hat{y} does not have to be a vector
 - ▶ If we wanted to, we could define one-hot vectors $\hat{\mathbf{y}}$ and \mathbf{y}
 - What if there is a tie?

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

- $\hat{y} = \operatorname*{argmax}_{k=1}^{K} z_{k}$
 - Unlike in multinomial logistic regression, \hat{y} does not have to be a vector
 - ▶ If we wanted to, we could define one-hot vectors $\hat{\mathbf{y}}$ and \mathbf{y}
 - What if there is a tie?
 - Do whatever numpy.argmax does

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

- $\hat{y} = \underset{k=1}{\operatorname{argmax}} z_k$
 - Unlike in multinomial logistic regression, \hat{y} does not have to be a vector
 - ▶ If we wanted to, we could define one-hot vectors $\hat{\mathbf{y}}$ and \mathbf{y}
 - What if there is a tie?
 - Do whatever numpy.argmax does
- ▶ Hinge loss $L(\hat{y}, y) = z_{\hat{y}} z_y$

- If $\hat{y} = y$, then do nothing
- ► Else:

- ▶ If $\hat{y} = y$, then do nothing
- ► Else:
 - ► For the correct class y, $\frac{\partial L}{\partial z_y} = -1$
 - $(\nabla L)_y = -\mathbf{x}$
 - $(\theta_y)_{t+1} = (\theta_y)_t + \eta \mathbf{x}$
 - Increment weights

- If $\hat{y} = y$, then do nothing
- ► Else:
 - ► For the correct class y, $\frac{\partial L}{\partial z_y} = -1$
 - $(\nabla L)_y = -\mathbf{x}$
 - $(\theta_y)_{t+1} = (\theta_y)_t + \eta \mathbf{x}$
 - ► Increment weights
 - ▶ For the predicted class \hat{y} , $\frac{\partial L}{\partial z_{\hat{y}}} = 1$
 - $(\nabla L)_{\hat{y}} = \mathbf{x}$
 - $(\theta_{\hat{y}})_{t+1} = (\theta_{\hat{y}})_t \eta \mathbf{x}$
 - Decrement weights

- ▶ If $\hat{y} = y$, then do nothing
- ► Else:
 - For the correct class y, $\frac{\partial L}{\partial z_y} = -1$
 - $(\nabla L)_y = -\mathbf{x}$
 - $\qquad \qquad \bullet \quad (\theta_y)_{t+1} = (\theta_y)_t + \eta \mathbf{x}$
 - ► Increment weights
 - ▶ For the predicted class \hat{y} , $\frac{\partial L}{\partial z_{\hat{y}}} = 1$
 - $\triangleright (\nabla L)_{\hat{y}} = \mathbf{x}$
 - $(\theta_{\hat{y}})_{t+1} = (\theta_{\hat{y}})_t \eta \mathbf{x}$
 - Decrement weights
 - For other classes, do nothing

Perceptrons for sequence labeling

- ▶ Perceptrons for sequence labeling
 - ▶ Given a sequence $X = [x_1, ..., x_T]$, predict labels $Y = [y_1, ..., y_T]$

- Perceptrons for sequence labeling
 - ▶ Given a sequence $X = [x_1, ..., x_T]$, predict labels $Y = [y_1, ..., y_T]$
 - ▶ We do not care about the probability P(Y|X), just which Y has the highest score Z

- Perceptrons for sequence labeling
 - ▶ Given a sequence $X = [x_1, ..., x_T]$, predict labels $Y = [y_1, ..., y_T]$
 - ▶ We do not care about the probability P(Y|X), just which Y has the highest score Z
- $\hat{Y} = \operatorname*{argmax}_{k \in K^T} Z_k$

► Score Z decomposes into a sum of local parts

- ► Score Z decomposes into a sum of local parts
 - At each time step i, for each possible combination of current tag y_i and previous tag y_{i-1} , compute a local score $z(y_i, y_{i-1})$

- Score Z decomposes into a sum of local parts
 - At each time step i, for each possible combination of current tag y_i and previous tag y_{i-1} , compute a local score $z(y_i, y_{i-1})$
 - ▶ Use the Viterbi algorithm to combine the local scores across the sequence, and find the argmax

► Suppose that at each time step *i*, we want to predict the current tag *y_i* using the following features:

- ► Suppose that at each time step *i*, we want to predict the current tag *y_i* using the following features:
 - ▶ Previous tag *y*_{i−1}

- ▶ Suppose that at each time step *i*, we want to predict the current tag *y_i* using the following features:
 - ▶ Previous tag y_{i-1}
 - ▶ At the beginning of the sentence, let the previous tag y_{i-1} be the start symbol <S>

- ► Suppose that at each time step *i*, we want to predict the current tag *y_i* using the following features:
 - ▶ Previous tag y_{i-1}
 - At the beginning of the sentence, let the previous tag y_{i-1} be the start symbol <S>
 - Current word x_i

- ► Suppose that at each time step *i*, we want to predict the current tag *y_i* using the following features:
 - ▶ Previous tag y_{i-1}
 - At the beginning of the sentence, let the previous tag y_{i-1} be the start symbol <S>
 - Current word x_i
- ► For simplicity, we will assume that these are the only features, and we will ignore the bias term

- ▶ Suppose that at each time step *i*, we want to predict the current tag *y_i* using the following features:
 - ▶ Previous tag *y*_{i−1}
 - At the beginning of the sentence, let the previous tag y_{i-1} be the start symbol <S>
 - Current word x_i
- For simplicity, we will assume that these are the only features, and we will ignore the bias term
- ▶ Let $\mathbf{f}(X, y_i, y_{i-1}, i)$ be the feature vector at time step i

- ▶ Suppose that at each time step *i*, we want to predict the current tag *y_i* using the following features:
 - ▶ Previous tag *y*_{i−1}
 - ▶ At the beginning of the sentence, let the previous tag y_{i-1} be the start symbol <S>
 - Current word x_i
- ► For simplicity, we will assume that these are the only features, and we will ignore the bias term
- Let $f(X, y_i, y_{i-1}, i)$ be the feature vector at time step i
 - Using f instead of x, because features can include more than just the input

▶ We can arrange our weight matrix **Θ** as follows:

▶ We can arrange our weight matrix **Θ** as follows:

- ► Initial features
 - ▶ $y_{i-1} = \langle S \rangle, y_i = \dots$

▶ We can arrange our weight matrix **Θ** as follows:

► Initial features

▶
$$y_{i-1} = \langle S \rangle, y_i = \dots$$

► Transition features

▶
$$y_{i-1} = ..., y_i = ...$$

▶ We can arrange our weight matrix **Θ** as follows:

Initial features

▶
$$y_{i-1} = \langle S \rangle, y_i = \dots$$

► Transition features

$$y_{i-1} = \dots, y_i = \dots$$

► Emission features

$$\triangleright x_i = \ldots, y_i = \ldots$$

▶ We want to compute local scores $z(y_1, \le)$ for each possible y_1

- We want to compute local scores $z(y_1, <S>)$ for each possible y_1
 - ▶ These are the elements of $\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathbb{S} \rangle, 1) \cdot \mathbf{\Theta}$

$$\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathbb{S} \rangle, 1) \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} & | & & \\ & & \mathbf{A} & \\ & & \mathbf{B} & \end{bmatrix}$$

$$\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathrm{S} \rangle, 1) \cdot \mathbf{\Theta}$$
 $= \left[\begin{array}{c|c} \mathbf{I} & & \\ & \mathbf{A} & \\ & & \\ & \mathbf{B} & \end{array} \right]$

▶ We know that $y_{i-1} = \langle S \rangle$

$$\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathbb{S} \rangle, 1) \cdot \mathbf{\Theta}$$
 $= \begin{bmatrix} 1 & \mathbf{0} & \mathbf{0} \\ & \mathbf{A} & \mathbf{B} \end{bmatrix}$

▶ We know that y_{i-1} cannot be any other tag

$$\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathbb{S} \rangle, 1) \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} 1 & \mathbf{0} & \mathbf{1}\{x_1 = o_1\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\pi}{\mathbf{A}} & \mathbf{A} \\ \mathbf{B} \end{bmatrix}$$

One-hot vector of the first word

$$\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathbb{S} \rangle, 1) \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} 1 & \mathbf{0} & \mathbf{1}\{x_1 = o_1\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\pi}{\mathbf{A}} \\ \mathbf{A} \\ \mathbf{B} \end{bmatrix}$$

$$= 1 \cdot \pi + \mathbf{0} \cdot \mathbf{A} + \mathbf{1}\{x_1 = o_1\} \cdot \mathbf{B}$$

$$\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathbb{S} \rangle, 1) \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} 1 & \mathbf{0} & \mathbf{1}\{x_1 = o_1\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\pi}{\mathbf{A}} \\ \mathbf{A} \end{bmatrix}$$

$$= 1 \cdot \pi + \mathbf{0} \cdot \mathbf{A} + \mathbf{1}\{x_1 = o_1\} \cdot \mathbf{B}$$

$$= \pi + \mathbf{b}(o_1)$$

$$\mathbf{z}_1 = \mathbf{f}(X, y_1, \langle \mathbf{S} \rangle, 1) \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} 1 & \mathbf{0} & \mathbf{1}\{x_1 = o_1\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\pi}{\mathbf{A}} \\ \mathbf{A} \end{bmatrix}$$

$$= 1 \cdot \pi + \mathbf{0} \cdot \mathbf{A} + \mathbf{1}\{x_1 = o_1\} \cdot \mathbf{B}$$

$$= \pi + \mathbf{b}(o_1)$$

► These local scores go into the first column of the Viterbi trellis

▶ We want to compute local scores $z(y_i, y_{i-1})$ for each possible combination of y_i and y_{i-1}

- ▶ We want to compute local scores $z(y_i, y_{i-1})$ for each possible combination of y_i and y_{i-1}
 - ▶ We can stack the feature vectors for each possible y_{i-1} , $f(X, y_i, y_{i-1}, i)$, on top of each other, in order

- ▶ We want to compute local scores $z(y_i, y_{i-1})$ for each possible combination of y_i and y_{i-1}
 - ▶ We can stack the feature vectors for each possible y_{i-1} , $f(X, y_i, y_{i-1}, i)$, on top of each other, in order
 - Form a feature matrix \mathbf{F}_i

- ▶ We want to compute local scores $z(y_i, y_{i-1})$ for each possible combination of y_i and y_{i-1}
 - We can stack the feature vectors for each possible y_{i-1} , $f(X, y_i, y_{i-1}, i)$, on top of each other, in order
 - \triangleright Form a feature matrix \mathbf{F}_i
 - ▶ Compute $\mathbf{Z}_i = \mathbf{F}_i \cdot \mathbf{\Theta}$

$$\mathbf{Z}_i = \mathbf{F}_i \cdot \mathbf{\Theta}$$

$$= \left[egin{array}{c|c} \mathbf{0} & & & \\$$

▶ We know that $y_{i-1} \neq \langle S \rangle$

$$\mathbf{Z}_i = \mathbf{F}_i \cdot \mathbf{\Theta}$$

$$= \left[egin{array}{c|c} \mathbf{0} & \mathbf{I} & & & \\$$

▶ Identity matrix!

$$\mathbf{Z}_i = \mathbf{F}_i \cdot \mathbf{\Theta}$$

$$= \left[\begin{array}{c|c} \mathbf{0} & \mathbf{I} & \mathbf{1}\{x_i = o_i\} \end{array} \right] \cdot \left[\begin{array}{c} \pi & \\ \mathbf{A} & \\ B \end{array} \right]$$

Stack of one-hot vectors

$$\mathbf{Z}_{i} = \mathbf{F}_{i} \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{1} \{x_{i} = o_{i}\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\pi}{\mathbf{A}} \\ \mathbf{A} \end{bmatrix}$$

$$= 0 \cdot \pi + \mathbf{I} \cdot \mathbf{A} + \mathbf{1} \{x_{i} = o_{i}\} \cdot \mathbf{B}$$

$$\mathbf{Z}_{i} = \mathbf{F}_{i} \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{1} \{x_{i} = o_{i}\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\pi}{\mathbf{A}} \\ \mathbf{A} \end{bmatrix}$$

$$= 0 \cdot \pi + \mathbf{I} \cdot \mathbf{A} + \mathbf{1} \{x_{i} = o_{i}\} \cdot \mathbf{B}$$

$$= \mathbf{A} + \mathbf{b}(o_{i})$$

$$\mathbf{Z}_{i} = \mathbf{F}_{i} \cdot \mathbf{\Theta}$$

$$= \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{1} \{x_{i} = o_{i}\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\pi}{\mathbf{A}} \\ \mathbf{A} \end{bmatrix}$$

$$= 0 \cdot \pi + \mathbf{I} \cdot \mathbf{A} + \mathbf{1} \{x_{i} = o_{i}\} \cdot \mathbf{B}$$

$$= \mathbf{A} + \mathbf{b}(o_{i})$$

Use the Viterbi algorithm to combine these local scores with scores from the rest of the sequence

▶ Use the Viterbi algorithm to compute the best tag sequence

- ▶ Use the Viterbi algorithm to compute the best tag sequence
- If $\hat{Y} = Y$, then do nothing

- ▶ Use the Viterbi algorithm to compute the best tag sequence
- If $\hat{Y} = Y$, then do nothing
- ► Else:
 - Increment weights for features in \hat{Y} , decrement weights for features in \hat{Y}

- Use the Viterbi algorithm to compute the best tag sequence
- If $\hat{Y} = Y$, then do nothing
- ► Else:
 - Increment weights for features in Y, decrement weights for features in Ŷ
 - ▶ In other words, for each time step *i*:

- Use the Viterbi algorithm to compute the best tag sequence
- If $\hat{Y} = Y$, then do nothing
- ► Else:
 - Increment weights for features in Y, decrement weights for features in Ŷ
 - ▶ In other words, for each time step *i*:
 - Increment weights for features in y_i, decrement weights for features in ŷ_i

- Use the Viterbi algorithm to compute the best tag sequence
- If $\hat{Y} = Y$, then do nothing
- ► Else:
 - Increment weights for features in Y, decrement weights for features in Ŷ
 - ▶ In other words, for each time step *i*:
 - Increment weights for features in y_i, decrement weights for features in ŷ_i
 - Nothing fancy; no Numpy tricks needed