# 实验原始数据与处理——微波光学实验

姓名:杨博涵 学号: PB20000328 实验日期: 2022年4月12日

## 一、系统初步认识

## 1. 接受电流与距离的关系

初始条件: 发射器到中心位置距离 25cm

接受器到中心位置距离 20cm

| 表 1  | 接受电流与距离的关系 |
|------|------------|
| 7V I | メスモルフルドリバル |

| 表 1 接受电流与距离的关系 |            |     |     |     |     |     |     |     |     |  |
|----------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|--|
| Δx (cm)        | 0          | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |  |
| Ι (μΑ)         | 4.9        | 4.8 | 4.5 | 4.2 | 3.9 | 4.3 | 3.7 | 4.1 | 3.5 |  |
|                |            |     |     |     |     |     |     |     |     |  |
| Δx (cm)        | 9          | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  |  |
| Ι (μΑ)         | 2.3        | 2.8 | 2.9 | 2.4 | 2.0 | 2.6 | 2.2 | 2.4 | 1.6 |  |
|                |            |     |     |     |     |     |     |     |     |  |
| Δx (cm)        | 18         | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  |  |
| Ι (μΑ)         | 2.0        | 2.4 | 1.9 | 1.8 | 1.7 | 1.3 | 1.3 | 1.5 | 1.4 |  |
|                |            |     |     |     |     |     |     |     |     |  |
| Δx (           | Δx (cm) 27 |     | 28  |     | 29  |     | 30  |     |     |  |
| Ι (μΑ) 1.1     |            | 1.6 |     | 1.5 |     | 1.0 |     |     |     |  |

根据球面波辐射模型, 能量衰减应与距离的负二次方成正比, 而接受器将能量转化为电流又为非线 性关系。我们将以上数据进行三次多项式拟合,得到下图。



发现数据集满足非线性衰减的关系, 且从拟合的 R 看出使用三次多项式拟合效果较优。

## 2. 接受电流与转角的关系

表 2 接受电流与转角的关系

| θ(°)   | 0    | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |
|--------|------|------|------|------|------|------|------|------|------|------|
| Ι (μΑ) | 1.00 | 0.98 | 0.90 | 0.72 | 0.58 | 0.40 | 0.22 | 0.12 | 0.04 | 0.00 |
| cos² θ | 1    | 0.97 | 0.88 | 0.75 | 0.59 | 0.41 | 0.25 | 0.12 | 0.03 | 0    |

由上表看出,此时光强与角度的关系基本符合马吕斯定律,差值很小。为了定量说明,我们对其根据模型 $I=a+b\cos^2(c\theta+d)$ 拟合,得到下图



可以验证马吕斯定律的正确性。

# 二、反射

表 3 入射角和反射角

| 入射角(°)      | 20   | 30   | 40   | 50   | 60   | 70   |
|-------------|------|------|------|------|------|------|
| 反射角(°)      | 19.5 | 28.0 | 38.9 | 51.1 | 54.5 | 69.0 |
| 误差度数<br>(°) | -0.5 | -2.0 | -1.1 | 1.1  | -5.5 | -1.0 |
| 误差百分比 (%)   | -2.5 | -6.7 | -2.8 | 2.2  | -9.2 | 1.4  |

根据反射定律, 反射角等于入射角, 相对误差为

$$\sigma = \frac{\theta_2 - \theta_1}{\theta_1}$$

 $\theta_1$ 是入射角, $\theta_2$ 为反射角。

可以将上表误差项算出,误差小于10%。

# 三、折射

表 4 入射角和折射角

| 入射角(°)    | 0.0  | 30.0 | 60.0  |
|-----------|------|------|-------|
| 折射角(°)    | 43.1 | 14.9 | -10.6 |
| 塑料棱镜折射率 n | 1.37 | 1.47 | 1.43  |

# 计算方法如下:



我们将数据代入并解上式方程得到 n,并填入表中。 取平均值可得

$$\bar{n} = \frac{1.37 + 1.47 + 1.43}{3} = 1.42$$

不确定度为

$$u_n = 1.32 * \sqrt{\frac{_{(1.37-1.42)^2 + (1.47-1.42)^2 + (1.43-1.42)^2}}{_{3*(3-1)}}} = 0.04, \ \ \text{P=0.68}$$

故最终折射率为

$$n = 1.42 \pm 0.04$$
 ,  $P = 0.68$ 

# 四、偏振

初始条件:发射器、接受器到中心位置距离 35cm

表 5 偏振实验

|     |        |      |      | 70.0 | , Mi | リルンページ |      |      |      |      |      |
|-----|--------|------|------|------|------|--------|------|------|------|------|------|
| 接收器 | 转角(°)  | 0    | 10   | 20   | 30   | 40     | 50   | 60   | 70   | 80   | 90   |
| 理论I | (μA)   | 100  | 97.0 | 88.3 | 75   | 58.7   | 41.3 | 25   | 11.7 | 3.0  | 0    |
| 无偏振 | 板实验    | 10.0 | 9.8  | 8.7  | 6.3  | 5.7    | 3.0  | 1.88 | 0.80 | 0.12 | 0.00 |
| I ( | μΑ)    |      |      |      |      |        |      |      |      |      |      |
| 偏振板 | 45°    | 0.18 | 0.24 | 0.38 | 0.50 | 0.62   | 0.70 | 0.68 | 0.60 | 0.48 | 0.34 |
| 栅条与 | I (μA) |      |      |      |      |        |      |      |      |      |      |
| 竖直方 | 90°    | 6.0  | 4.6  | 2.7  | 1.40 | 0.68   | 0.30 | 0.14 | 0.06 | 0.02 | 0.00 |
| 向夹角 | Ι (μΑ) |      |      |      |      |        |      |      |      |      |      |

由上表可知,无偏振板实验结果符合马吕斯定律,将其根据模型 $I = a + b\cos^2(c\theta + d)$ 拟合,得下图



可以看到模型符合较好。

加上偏振板后,接收强度有一定的减少,不仅是偏振造成的,也有偏振板反射了一部分的微波,使传播面积减少的原因,所以下面两行数据显著小于无偏振板时。

当偏振板栅条与竖直方向夹角为 45 度时,数据在大约 50 度角处成对称分布,符合马吕斯定律的理论预期 (两线夹角)。

当偏振板栅条与竖直方向夹角为90度时,分布与无板时一致,只是绝对值减小。

若偏振板栅条方向与竖直方向成 0°时,由于偏振方向与透振方向垂直,所以接收强度应几乎为 0。