Sísmica de Refração

Três escalas:

- Global (terremotos)
- Crustal (explosão sismológica)
- Rasa (aplicações de engenharia)

Principais aplicações:

- Resolução lateral e em profundidade do refrator.
- Velocidade das ondas sísmicas no refrator.

Princípios Gerais

- O método se baseia no fato de ondas sísmicas mudarem de velocidade e direção de propagação ao mudarem de meio.
- Mudança de direção e velocidade -> Lei de Snell.
- Ângulos críticos diferentes para ondas P e S.
- Razão entre velocidades das ondas P e S diferentes para camadas diferentes.

- O método se baseia no aumento da velocidade com a profundidade ($V_2 > V_1$).
- Caso $V_2 < V_1$, haverá uma camada escondida.
- Assume-se que $d_n \ge d_{n-1} \ge ... \ge d_1 > \lambda$, na qual d é a espessura da camada, n é a n-ésima camada e λ é o comprimento da onda incidente.
- Para um levantamento de Sísmica de Refração, geralmente considera-se apenas a propagação da onda P.

Componentes básicos de um experimento de sísmica de refração

Três principais caminhos das ondas:

- Ondas diretas, viajando na superfície.
- Ondas refletidas.
- Ondas criticamente refratadas (mais importantes), viajando pela parte superior do refrator.

$$r = 90^{\circ} \Rightarrow \sin i_c = \frac{V_1}{V_2}$$

A chegada de cada onda é detectada ao longo de um arranjo de geofones e registrada em um sismógrafo.

A partir do registro do sismógrafo, obtém-se um gráfico de *tempo vs distância*, como o da figura abaixo.

- Critical distance (distância crítica) -> distância na qual a chegada das ondas refletidas coincide com a chegada das primeiras ondas criticamente refratadas; idênticos tempos de trânsito ($i_c = i_r$).
- Crossover distance -> offset no qual as ondas criticamente refratadas atingem o geofone antes das ondas diretas. O crossover point indica a mudança no gradiente de velocidade do gráfico.

Geometria do Raio Refratrado

Caso de duas camadas

- O tempo de viagem da onda refratada é dado por: $T_{SG} = T_{SA} + T_{AB} + T_{BG}$
- Temos que: $T_{SA} = T_{BG} = \frac{z}{\left(V_1 \cos i_c\right)}$ $T_{AB} = \frac{\left(x 2z \tan i_c\right)}{\left(V_2\right)}$
- Substituindo na primeira expressão temos:

$$T_{SG} = \frac{Z}{\left(V_1 \cos i_c\right)} + \frac{\left(x - 2z \tan i_c\right)}{V_2} + \frac{Z}{\left(V_1 \cos i_c\right)}$$

Que se simplifica para

$$T_{SG} = (1/V_2)x + 2z(\cos i_c)/V_1$$

• Como simplificou?

- Utilizando as relações
$$\begin{cases} \sin i_c = V_1/V_2 \\ \cos^2 \theta + \sin^2 \theta = 1 \end{cases}$$

• Então,
$$T_{SG}$$
? $T_{SG}=x/V_2+t_i$
$$t_i=2z\sqrt{V_2^2-V_1^2}\left/V_1V_2\right.$$

$$z=t_iV_1V_2/2\sqrt{V_2^2-V_1^2}$$

• Utilizando a relação $\cos^2\theta + \sin^2\theta = 1 \rightarrow \cos^2\theta = 1 - \sin^2\theta$ $\sin i_c = V_1/V_2 \rightarrow \cos i_c = \sqrt{1 - \left(V_1/V_2\right)^2}$

Uso da *crossover distance* no cálculo da profundidade do refrator

- Onda direta -> $T = x_{cross}/V_1$
- Onda refratada -> $T = x_{cross}/V_2 + 2z\sqrt{V_2^2 V_1^2}/V_1V_2$
- Igualando T temos que

$$x_{cross}/V_1 = x_{cross}/V_2 + 2z\sqrt{V_2^2 - V_1^2}/V_1V_2$$

 Resolvendo para distância do refrator z e x_{cross} temos que:

$$z = \frac{1}{2} x_{cross} \sqrt{V_2 - V_1/V_2 + V_1}$$
$$x_{cross} = 2z \sqrt{V_2 + V_1/V_2 - V_1}$$

Consideremos agora um caso de três camadas.

O gráfico obtido será com 3 retas agora.

Temos que:

$$\frac{\sin \theta_1}{V_1} = \frac{\sin \theta_c}{V_2} = \frac{1}{V_3}$$

 A espessura das camadas podem ser calculadas por:

$$z_1 = \frac{t_1 V_1 V_2}{2\sqrt{V_2^2 - V_1^2}}$$

$$z_{2} = \frac{t_{2}V_{2}V_{3}}{2\sqrt{V_{3}^{2} - V_{2}^{2}}} - \frac{z_{1}V_{2}\sqrt{V_{3}^{2} - V_{1}^{2}}}{V_{1}\sqrt{V_{3}^{2} - V_{2}^{2}}}$$

Para *n*-camadas, temos que:

$$T_{n} = 2\sum_{k=1}^{n} \frac{h_{k}}{v_{k}} \cos \theta_{k(n+1)}$$

$$h_{n} = \left[\frac{T_{n}}{2} - \sum_{k=1}^{n-1} \frac{h_{k}}{v_{k}} \cos \theta_{k(n+1)}\right] \frac{v_{n}}{\cos \theta_{n(n+1)}}$$

$$t_n = \frac{x}{v_n} + T_n$$

 T_n -> ponto que a reta intercepta o eixo y.

 h_n -> espessura da camada.

 t_n -> equação da reta (y = ax + b)

Camada em mergulho

Reverse Coverage T-X Plot for Two Layer Dipping Model

A forma geral da equação para o tempo de viagem do raio criticamente refratado no n-ésimo refrator mergulhante é dada por

$$t_n = \frac{x \sin \beta_1}{v_1} + \sum_{i=1}^{n-1} \frac{h_i(\cos \alpha_i + \cos \beta_i)}{v_i}$$

na qual h_i é a espessura vertical diretamente abaixo do ponto de tiro, v_i é a velocidade de propagação da onda, α_i é o ângulo entre o raio que se desloca para baixo e a vertical, β_i é o ângulo entre o raio que se desloca para cima e a vertical, todos relativos à i-ésima camada, e x é a distância entre fonte e receptor.

Para o tiro que mergulha para baixo, temos

$$t_{2} = \frac{x \sin \beta_{1}}{v_{1}} + \frac{h_{1}(\cos \alpha + \cos \beta)}{v_{1}}$$

$$= \frac{x \sin(\theta_{12} + \gamma_{1})}{v_{1}} + \frac{h_{1}\cos(\theta_{12} - \gamma_{1})}{v_{1}}$$

$$+ \frac{h_{1}\cos(\theta_{12} + \gamma_{1})}{v_{1}}$$

$$= \frac{x \sin(\theta_{12} + \gamma_{1})}{v_{1}} + \frac{2h_{1}\cos\theta_{12}\cos\gamma_{1}}{v_{1}}$$

$$= \frac{x \sin(\theta_{12} + \gamma_{1})}{v_{1}} + \frac{2z\cos\theta_{12}}{v_{1}}$$

Para o tiro que mergulha para cima, temos

$$t_2' = \frac{x \sin(\theta_{12} - \gamma_1)}{v_1} + \frac{2z' \cos \theta_{12}}{v_1}$$

Nas equações anteriores, z é a distância perpendicular ao refrator abaixo do primeiro tiro (descida), enquanto z' é a distância perpendicular ao refrator abaixo do segundo tiro (subida)

Das equações da reta, para o tiro direto temos

$$1/v_{2d} = \sin(\theta_{12} + \gamma_1)/v_1$$

e para o tiro reverso

$$1/v_{2u} = \sin(\theta_{12} - \gamma_1)/v_1$$

Portanto, temos que

$$\theta_{12} + \gamma_1 = \sin^{-1}(v_1/v_{2d})$$

$$\theta_{12} - \gamma_1 = \sin^{-1}(v_1/v_{2d})$$

e, resolvendo para θ_{12} e γ_1 temos que

$$\theta_{12} = \frac{1}{2} \left[\sin^{-1}(v_1/v_{2d}) + \sin^{-1}(v_1/v_{2u}) \right]$$

$$\gamma_1 = \frac{1}{2} \left[\sin^{-1}(v_1/v_{2d}) - \sin^{-1}(v_1/v_{2u}) \right]$$

Velocidade na camada 2 dada por:

$$\frac{1}{v_2} = \frac{1}{2} \left(\frac{1}{v_u} + \frac{1}{v_d} \right)$$

ou
$$v_2 = \frac{v_1}{\sin \theta_c}$$

• As distâncias z e z' podem ser encontradas através dos tempos de interceptação t_i e t_i' dos tempos de viagem dos tiros direto e inverso, respectivamente. São dadas por

$$z = v_1 t_1 / 2 \cos \theta_{12}$$
 $z' = v_1 t_1 / 2 \cos \theta_{12}$

Velocidade na camada 2 dada por:

$$\frac{1}{v_2} = \frac{1}{2} \left(\frac{1}{v_u} + \frac{1}{v_d} \right)$$

ou
$$v_2 = \frac{v_1}{\sin \theta_c}$$

• As distâncias z e z' podem ser encontradas através dos tempos de interceptação t_i e t_i' dos tempos de viagem dos tiros direto e inverso, respectivamente. São dadas por

$$z = v_1 t_1 / 2 \cos \theta_{12}$$
 $z' = v_1 t_1 / 2 \cos \theta_{12}$

• As profundidas perpendiculares podem ser convertidas, então, em profundidades verticais h e h', dadas por

$$h = z/\cos \gamma_1$$
 $h' = z'/\cos \gamma_1$

• Note que o tempo de viagem de um ponto a outro da linha do perfil, seja direto ou reverso, deve ser o mesmo, de modo que $t_{AD}=t_{DA}$.

Camada com degrau (falha)

- O efeito de uma falha que desloca um refletor planar é causar um "deslocamento" no gráfico do tempo de viagem relativo a lados opostos da falha.
- Há dois tempos de interceptação, cada um associado a uma profundidade, e a diferença (positiva) ΔT entre esses tempos está relacionada ao tamanho do rejeito, de forma que $\Delta T \approx \frac{\Delta z \cos \theta}{\Delta T}$

$$\Delta T \approx \frac{v_1}{v_2}$$

$$\Delta z \approx \frac{\Delta T v_1}{\cos \theta} = \frac{\Delta T v_1 v_2}{\left(v_2^2 - v_1^2\right)^{1/2}}$$

- Há uma aproximação nessa fórmula, uma vez que o raio que viaja para a "base" do rejeito não é criticamente refratado em A e involve difração na base B.
- Entretanto, o erro é negligenciável quando o rejeito é pequeno comparado à pronfundidade do refrator.

Geometria dos perfis de aquisição para estudo de camadas planares

 A geometria de campo convencional para um perfil de sísmica de refração envolve disparar em cada ponta do perfil e recordar as chegadas ao longo da linha de ambos tiros. Em relação à figura, apenas a parte central do refrator (de B a C) é amostrada por raios refratados detectados entre A e D.

- Profundidades interpretadas do refrator sob os pontos finais da linha do perfil são estimados, baseados na geometria do refrator, e não medidos diretamente.
- Onde cobertura contínua da geometria do refrator é requerida ao longo de uma série de perfis, linhas de aquisição individuais deveriam ser arranjadas de forma a se sobrepor umas às outras, de modo que todas as partes do refrator sejam diretamente medidas pelas ondas criticamente refratadas.

- Profundidades interpretadas do refrator sob os pontos finais da linha do perfil são estimados, baseados na geometria do refrator, e não medidos diretamente.
- Onde cobertura contínua da geometria do refrator é requerida ao longo de uma série de perfis, linhas de aquisição individuais deveriam ser arranjadas de forma a se sobrepor umas às outras, de modo que todas as partes do refrator sejam diretamente medidas pelas ondas criticamente refratadas.

Método do perfil reverso

Método do perfil dividido

Método do perfil com apenas um final ->
muitos usado para se determinar as camadas
superficiais de baixa velocidade.

- Para se obter um valor do mergulho do refrator, estimativas de velocidade aparente são necessárias em ambas direções diretas e reversas.
- A repetição de um tiro direto permite uma velocidade aparente na direção direta.

- Para computar a velocidade aparente na direção reversa, considere dois caminhos de raios refratados das fontes superficiais S₁ e S₂, medidos nos detectores superficiais D₁ e D₂.
- A distância de offset é x nos dos casos, a separação Δx de S₁ e S₂ e D₁ e D₂ é a mesma nos dois casos

• A equação do tempo de viagem entre S_1 e D_1 é $x\sin(\theta + \gamma) = 2z \cos \theta$

$$t_1 = \frac{x \sin(\theta + \gamma)}{v_1} + \frac{2z_1 \cos \theta}{v_1}$$

A equação do tempo de viagem entre S₂ e D₂
 é

$$t_2 = \frac{x\sin(\theta + \gamma)}{v_1} + \frac{2z_2\cos\theta}{v_1}$$

 Nas equações, z₁ e z₂ são as profundidades perpendiculares ao refrator sob os pontos de tiro S₁ e S₂.

• Sabendo que
$$z_2 - z_1 = \Delta x \sin \gamma$$

 $\therefore z_2 = z_1 + \Delta x \sin \gamma$

• E calculando $t_2 - t_1$, temos

$$t_2 - t_1 = \Delta t = \frac{\Delta x}{v_1} (2\sin\gamma\cos\theta)$$
$$= \frac{\Delta x \sin(\theta + \gamma)}{v_1} - \frac{\Delta x \sin(\theta - \gamma)}{v_1}$$

 Substituindo acima as equações para velocidade aparente de subida e descida, temos que

$$\frac{\Delta t}{\Delta x} = \frac{1}{v_{2d}} - \frac{1}{v_{2u}}$$

Interfaces Irregulares

- Assumir refração em interfaces planares leva a erros inaceitáveis ou imprecisão na interpretação de dados de sísmica de refração.
- O gráfico do (tempo de trânsito) vs (distância) fornece uma ideia da geometria predominante do refrator.
 - Sequência de camadas de refratores planos geram uma série de segmento de retas
- Gráficos irregulares de (tempo de trânsito) vs (distância) são um indicativo de refratores irregulares
 - Ou uma variação lateral da velocidade em cada camada
- Métodos de interpretação de tais gráficos irregulares, e como determinar a geometria não-planar do refrator são baseados no conceito do tempo de atraso (delay time)

 Para a situação apresentada, o tempo de trânsito t é dado por

$$\dot{t} = \frac{x}{v_2} + t_i$$

- O tempo de intercepto t_i ode ser considerado como composto de <u>dois tempos</u> <u>de atraso</u> resultante da presença de uma camada acima de cada final do caminho da raio.
- O tempo de atraso $\delta_t = t_{AB} t_{BC}$

$$\delta_{t} = t_{AB} - t_{BC}$$

$$= \frac{AB}{v_{1}} - \frac{BC}{v_{2}}$$

$$= \frac{z}{v_{1}\cos\theta} - \frac{z}{v_{2}}\tan\theta$$

$$= \frac{z}{v_{1}\cos\theta} - \frac{z\sin\theta}{v_{1}}\frac{\sin\theta}{\cos\theta}$$

$$= \frac{z(1-\sin^{2}\theta)}{v_{1}\cos\theta} = \frac{z\cos\theta}{v_{1}}$$

$$= \frac{z(v_{2}^{2} - v_{1}^{2})^{1/2}}{v_{1}v_{2}}$$

• Portanto, o tempo de atraso pode ser convertido na profundidade do refrator se v_1 e v_2 são conhecidos, via

$$z = \delta_t v_1 / \cos \theta = \delta_t v_1 v_2 / (v_2^2 - v_1^2)^{\frac{1}{2}}$$

• O tempo de atraso t_i pode ser reescrito como

$$t = \frac{x}{v_2} + \delta_{ts} + \delta_{td}$$

na qual δ_{ts} e δ_{td} são os tempos de atraso no ponta do tiro e na ponta do detector no caminho do raio refratado.

Note que no caso de um refrator horizontal,

$$t = \frac{x}{v_2} + \frac{z\cos\theta}{v_1} + \frac{z\cos\theta}{v_1} = \frac{x}{v_2} + \frac{2z\cos\theta}{v_1}$$

 Na presença de um refrator mergulhante o tempo de atraso é definido similarmente exceto que a geometria do triângulo ABC rotacional com o refrator

 O tempo de atraso se relaciona com a profundidade z por

$$z = \delta_{t} v_{1} / \cos \theta = \delta_{t} v_{1} v_{2} / (v_{2}^{2} - v_{1}^{2})^{\frac{1}{2}}$$

 Agora z é a profundidade do refrator em A medido normal à superfície do refrator.

O tempo de percurso agora é dado por

$$t = rac{x'}{v_2} + \delta_{ts} + \delta_{td}$$
 $\delta_{ts} = t_{AB} - t_{BC}$
 $\delta_{td} = t_{DE} - t_{DF}$

- Para mergulhos rasos, $x' \approx x$
 - É o caso também quando o rejeito no refrator é pequeno se comparado à média da profundidade do refrator.
- Tempos de atraso não podem ser medidos diretamente
- Método 'menos-mais' de Hagedoorn (1959) fornece meios de solucionar

$$t = \frac{x}{v_2} + \delta_{ts} + \delta_{td}$$

 δ_{tS_1} e δ_{tS_1} são os tempos de atraso nos pontos de tiro

• Para raios viajando para uma posição intermediária de detector D a partir de cada extremo da linha, os tempos de trânsito são, partindo de S_1 (tiro direto) e S_2 (tiro reverso):

$$t_{S_1D} = \frac{x}{v_2} + \delta_{tS_1} + \delta_{tD}$$

$$t_{S_2D} = \frac{l - x}{v_2} + \delta_{tS_2} + \delta_{tD}$$

nas quais δ_{tD} é o tempo de atraso no detector.

- v_2 não pode ser obtido diretamente do gráfico (irregular)
- Mas pode ser estimado via 'termo *menos* de Hagedoorn', obtido via cálculo de $t_{S_1D}-t_{S_2D}$

$$t_{S_1D} - t_{S_2D} = \frac{2x}{v_2} - \frac{l}{v_2} + \delta_{tS_1} - \delta_{tS_2}$$

$$t_{S_1D} - t_{S_2D} = \frac{2x - l}{v_2} + \delta_{tS_1} - \delta_{tS_2}$$

- A subtração $t_{S_1D}-t_{S_2D}=\frac{2x-l}{v_2}+\delta_{tS_1}-\delta_{tS_2}$ elimina a variável δ_{tD} (dependente da posição do geofone).
- Uma vez que os últimos dois termos do lado direito da equação são constantes para uma linha particular do perfil, um gráfico de $(t_{S_1D}-t_{S_2D})$ vs (2x-l) tem inclinação $\frac{1}{v_2}$.

- Se a premissa do método 'menos-mais' for válida, o gráfico do tempo de subtração será uma linha reta.
- Portanto, é um gráfico valioso para controle de qualidade.

• Da soma $t_{S_1D} + t_{S_2D}$, obtemos

$$t_{S_1D} + t_{S_2D} = \frac{l}{v_2} + \delta_{tS_1} + \delta_{tS_2} + 2\delta_{tD}$$

Usando

temos

$$t_{S_1S_2} = l/\nu_2 + \delta_{tS_1} + \delta_{tS_2}$$

$$t_{S_1D} + t_{S_2D} = t_{S_1S_2} + 2\delta_{tD}$$

Portanto

$$\delta_{tD} = \frac{1}{2} \left(t_{S_1D} + t_{S_2D} - t_{S_1S_2} \right)$$

• O tempo de atraso $\delta_{tD} = \frac{1}{2} (t_{S_1D} + t_{S_2D} -$

$$z = \delta_t v_1 / \cos \theta = \delta_t v_1 v_2 / (v_2^2 - v_1^2)^{\frac{1}{2}}$$

- Notar que o valor de todos os tempos de atraso dependem do tempo recíproco
 - tempo recíproco e o tempo gasto para a onda percorrer de uma ponta a outra do perfil, que deve ser o mesmo para o tiro direto e para o tiro reverso.
- Erros na medida do tempo recíproco (que geralmente apresentam a menor razão sinalruído) introduzem um erro constante em todos os tempos de atraso.

- O 'termo mais' e, portanto, uma profundidade local do refrator pode ser computada para todas as posições de detectores para as quais a chegada da frente da onda são reconhecidas nos dois extremos da linha.
 - Na prática, normalmente significa a porção da linha do perfil entre as distâncias de crossovers x_{c1} e x_{c2}

- Onde um refrator é coberto por mais de uma camada, a equação para profundidade não pode ser usada diretamente para de obter a profundidade através do tempo de atraso. Neste caso
 - Ou a espessura de cada camada é computada separadamente usando as chegadas refratadas das interfaces mais rasas
 - Ou uma velocidade média é usada no lugar de v_1 na equação da profundidade para se obter uma conversão em profundidade.

$$z = \delta_{t} v_{1} / \cos \theta = \delta_{t} v_{1} v_{2} / (v_{2}^{2} - v_{1}^{2})^{\frac{1}{2}}$$

- O método só é aplicável para refratores que apresentem mergulhos rasos ($\leq 10^{\circ}$)
 - Para mergulhos maiores, $x \neq x'$
- Além, há um fator de suavização inerente ao método:
 - Ao computar o 'termo mais' para cada detector, o refrator é assumido plano entre os pontos de emergência do refrator no tiro direto e no tiro reverso (pontos A e B).

- O problema da suavização do método 'maismenos' é solucionado no método recíproco generalizado de interpretação de refração.
- A solução se dá combinando os raios diretos e reversos que deixam o refrator aproximadamente no mesmo ponto e chegam em diferentes posições de detectores separados por uma distância Δx

• O método usa uma função de análise de velocidade t_{v} dada por

$$t_{v} = \frac{1}{2} \left(t_{S_{1}D_{1}} + t_{S_{2}D_{2}} - t_{S_{1}S_{2}} \right)$$

com os valores sendo referente ao ponto médio entre cada par de posições de detectores D_1 e D_2 .

• Para casos onde $D_1 = D_2 = D$ (isto é, $\Delta x = 0$), a equação acima se reduz a uma forma similar ao 'termo menos' de Hagedoorn.

- O valor ótimo para Δx para um levantamento é o que produz a melhor aproximação a uma reta quando se produz um gráfico de t_v vs x.
- A interpretação de modo geral é mais complexa que no método 'menos-mais', embora resulte em melhores discriminações de velocidade, resolução lateral e estimativas de profundidade.
- Requer cobertura de dados mais densa que o 'menos-mais'.

Camadas Escondidas e Cegas

- É possível que camadas existam mas não produzam nenhuma onda refratada de primeirachegada.
 - Camada indetectável
 - Dados observados interpretados erroneamente com os modelos obtidos até o momento.
- Para ser detectável:
 - $-v_i < v_{i+1}$
 - Possuir espessura velocidade de modo que as frentes de onda sejam as primeiras a chegarem em algum ponto.

Camada Escondida

- Uma camada
 escondida é uma que,
 enquanto produz
 onda refratada, não
 dá surgimento a
 primeiras chegadas.
 - Pouca espessura da camada
 - Velocidade próxima à camada superior

Camada Cega

- Uma camada cega é resultado de uma camada de baixa velocidade ($v_i < v_{i+1}$), que não apresenta ondas criticamente refratadas.
 - Levam a uma superestimação da profundidade das interfaces.

