Tesla Battery Degradation

Springboard Data
Science Career Track
Capstone Project 1
Valentina Sorokina

The Tesla Model S was the top-selling plug-in electric car worldwide in 2015 and 2016

The Model S exists in several versions, differing in energy capacity (battery size), power (motor size), and equipment. Battery size determines the car range in miles.

Every Tesla driver is provided with a warranty for battery failure which doesn't cover degradation

Degradation – the decrease in battery capacity over time which leads to the decrease in range (miles) that a Tesla driver can drive before he has to re-charge his battery again.

Performance of Li-ion batteries can be impacted by cycling, elevated temperatures, and aging

...but only 15 pounds (7kg) is lithium. About the weight of a bowling ball.

My goal is to develop a model that can predict the expected battery degradation

My target audience: Tesla drivers/future owners interested in prevention of battery degradation

My target audience: electric car manufacturers

The data set represents Tesla Model S Survey taken by drivers in Asia, Europe, Canada, and USA

Download from Google Drive in a form of "MaxRange Tesla Battery Survey.xlsx" file

Use Python to import and inspect the data for separate spreadsheets from different locations

Resolve any missing, invalid, or corrupted rows

The resulting master data frame contains 1152 observations and 36 columns which represent answers provided by Tesla drivers

	id	username	location	manufacture_date	range_reading_date	model	mileage	mileage_per_day	range_at_full	ran
1146	1147	Simon Mac	UK	2014-05-21	2015-10-23	Model S 60	10500.0	20.2	180.0	
1147	1148	memesweeper	UK	2015-10-12	2016-11-02	Model S 85D	34653.0	89.3	256.0	
1148	1149	gyroscope	UK	2015-05-14	2016-11-20	Model S 85	45959.0	82.5	231.0	
1149	1150	tes	UK	2015-03-02	2016-12-14	Model S 85	37895.0	57.9	238.0	
1150	1151	4dme	UK	2016-06-20	2016-12-24	Model S 85	16800.0	89.4	242.0	
1151	1152	Justin	UK	2016-01-06	2017-04-25	Model S 85D	49129.0	103.2	266.0	
1152	1153	Patrick	UK	2014-12-30	2017-04-17	Model S 85	49900.0	59.4	239.0	
1153	1154	Gary	UK	2017-03-17	2017-04-22	Model S 60D	2271.0	61.4	205.0	

EDA helped us to determine the correlation between the target variable (remaining range in %) and other variables

The total mileage of a car, battery age, and vehicle cycles are negatively correlated with the remaining range

Supercharging frequency and location had no impact on remaining range

Introduction

Main Research

Conclusion

Supercharging frequency and location had no impact on remaining range

Having a fully charged battery on a daily basis was shown to contribute to battery degradation

Never discharging the battery fully was shown to be beneficial for remaining range

Daily charge level of 100% contributed to decrease in remaining range

It was determined that 11 parameters can be used to predict remaining range

15

Remaining range was predicted using Linear, Ridge, Elastic Net, and Random Forest Regression in Sklearn

Imputation of missing values using logistic regression (96 for full charge frequency and empty charge frequency; 253 for daily charge)

Converting full charge frequency, empty charge frequency, and daily charge to Boolean

Dividing the data frame into train/test

Fitting train/predicting test

The resulting regression models were evaluated using R² and Root-Mean-Squared-Error

Introduction Main Research Conclusion 17

Prediction for remaining range in miles was more accurate as it used original range for approximation

Introduction Main Research Conclusion 18

Predicting different car models separately increased the accuracy of the model

Regression results for predicting remaining range (in %) of Tesla Model S 85

Regression	R ²	RMSE
Elastic Net	0.421	0.019
Ridge Regression	0.447	0.018
Linear Regression	0.453	0.018
Random Forest	0.61	0.016

Random Forest modeling resulted in the highest R² and the lowest RMSE

The majority of Tesla Model S owners do not have to worry about battery degradation

Recommendations

- Make optional survey questions mandatory (charge frequency related)
- Obtain more observations for different model types
 - Add information about average battery temperature
 - Perform prediction separately for different models