RESEARCH STATEMENT

ADAM KLEPÁČ

ABSTRACT. Following the construction of d-representation-finite algebras in [2] and the description of the correspondence between certain types of cluster algebras and triangulations of bordered surfaces with marked points in [1], links have appeared connecting d-representation finite algebras to higher dimensional variants of said surface. One such link was discovered in [3] between higher Auslander algebras of the path algebra of linearly oriented Dynkin quiver A_n and cyclic polytopes. I wish to further study such kinds of connections, starting with the establishment of a similar type of link for path algebras of quivers of type D_n which, in the low-dimensional case, correspond to once punctured polygons; then, with a touch of expectation and naïvety, broadening it to include (special types of) cluster algebras not necessarily representation-finite.

1. Introduction

This text serves primarily as an overview of relevant concepts regarding cluster algebras, bordered surfaces with marked points, higher dimensional cluster categories and d-representation-finite algebras interwoven with ideas of possible generalizations and caveats tied to such endeavour. So far, I have only scratched the surface of this topic, hence very few original results are present.

In Section 2, I give a summary of the theory of bordered surfaces with marked points. Section 3 is dedicated to (normalized skew-symmetrizable) cluster algebras and their connection to bordered surfaces with marked points is drawn. Sections 4 and 5 define *d*-representation-finite algebras and higher cluster categories, respectively. Section 6 summarizes relevant results from [3], regarding a higher-dimensional kind of connection described in Section 3. Finally, Section 7 is riddled with (splinters of) steps towards generalizations of the content of Section 6.

2. Bordered Surfaces with Marked Points

This section is a brief summary of [1], Section 2.

Definition 2.1 (Bordered surface with marked points). Let S be a connected oriented 2-dimensional Riemann surface with boundary. We fix a finite set M of marked points in the closure of S. Marked points lying in the interior of S are called punctures. The pair (S, M) is called a bordered surface with marked points if the following additional technical conditions are satisfied.

- The set **M** is non-empty.
- The pair (S, M) is not
 - a sphere with one or two punctures;
 - a monogon with zero or one puncture;
 - a digon without punctures;
 - a triangle without punctures.

Here, the term n-gon denotes a disk with n marked points on its boundary. Moreover, sphere with three punctures is also often excluded.

Date: September 8, 2023.

Definition 2.2 (Arc). An arc γ in a bordered surface with marked points (S, M) is a curve in S such that

- its endpoints are marked points;
- γ does not intersect itself, except that its endpoints may coincide;
- except for its endpoints, γ is disjoint from **M** and from the boundary of **S**;
- γ is not contractible into **M** or into the boundary of **S**.

We are interested in triangulations of (S, M). Vaguely speaking, triangulation is a division of S into 'triangles' by a series of 'cuts'. Here, 'triangles' are either disks with three marked points on their boundaries or, so-called *self-folded* triangles, once-punctured monogons with an arc connecting the unique marked point to the unique puncture. See figure 1.

FIGURE 1. A self-folded triangle.

Definition 2.3 (Isotopy). Let γ_1, γ_2 be two arcs in (\mathbf{S}, \mathbf{M}) . An *isotopy* between γ_1 and γ_2 is a homotopy H between γ_1 and γ_2 such that H(x,t) is an embedding for each fixed $t \in [0,1]$. Isotopy is an equivalence relation on the set of all arcs in (\mathbf{S}, \mathbf{M}) .

In the following text, each arc in (S, M) is considered up to isotopy.

Definition 2.4 (Compatibility of arcs). Two arcs in (S, M) are called *compatible* if they (up to isotopy) do not intersect each other in the interior of S.

Proposition 2.5. Any collection of pairwise compatible arcs can be realized by curves in their respective isotopy classes which do not intersect in the interior of **S**.

Definition 2.6 (Ideal triangulation). A maximal collection of pairwise compatible arcs is called an *ideal triangulation*. In fact, definition 2.1 excludes all cases where (\mathbf{S}, \mathbf{M}) cannot be triangulated. The arcs of an ideal triangulation cut \mathbf{S} into *ideal triangles*. The three sides of an ideal triangle need not be distinct, leading to self-folded triangle, and two triangles can share more than one side.

References

- [1] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Mathematica, 201:83-146, 2008.
- [2] Osamu Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011), no. 1, 1–61.
- [3] Steffen Oppermann and Hugh Thomas, Higher dimensional cluster combinatorics and representation theory, Acta Mathematica, 201:83-146, 2008.