Positroids, non-crossing partitions, and a conjecture of da Silva

Federico Ardila M.

San Francisco State University, San Francisco, California. Universidad de Los Andes, Bogotá, Colombia.

> Discrete Mathematics Seminar Princeton University November 19, 2015

atroids Positroids Connectivity Realizability Topology

Joint work with:

Felipe Rincón (Los Andes → Oslo) and Lauren Williams (Berkeley)

- 1. Positroids and non-crossing partitions. *Trans. Amer. Math Soc., to appear* http://arxiv.org/abs/...
- 2. Positively oriented matroids are representable.

 J. European Math. Soc., to appear

 http://arxiv.org/abs/...

1. Matroids

A **matroid** M on $[n] := \{1, ..., n\}$ is a collection \mathcal{B} of subsets of [n] (called **bases**) satisfying the **basis exchange axiom**:

• If A, B are bases and $a \in A - B$, there exists $b \in B - A$ such that $A - a \cup b$ is a basis.

All elements of \mathcal{B} have the same size, called the **rank** of M.

Motivating example. If \mathbb{K} is any field and $A \in \mathbb{K}^{m \times n}$ has rank m, the collection

 $\mathcal{B} := \{B \subset [n] \mid \text{the submatrix } A_B \text{ is invertible}\}$ is a matroid M(A) of rank m.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \quad \rightsquigarrow \quad M(A) = \{12, 13, 14, 23, 24\}$$

Axiom systems for matroids

There are many equivalent ways of defining matroids:

- simplicial complex (independent sets)
- submodular function (rank function)
- closure operator (span)
- lattice (flats)
- polytope (bases) (My favorite.)

Given a matroid \mathcal{B} of subsets of [n], the **matroid polytope** is

$$P_{\mathcal{B}} := \operatorname{convex} \left\{ \sum_{i \in B} e_i \mid B \in \mathcal{B} \right\}.$$

$$\mathcal{B} = \{12, 13, 14, 23, 24\} \quad \rightsquigarrow$$

Matroid polytopes

Given a matroid \mathcal{B} (or any collection of d-subsets) on [n], let

$$P_{\mathcal{B}} := \operatorname{convex} \left\{ \sum_{i \in B} e_i \mid B \in \mathcal{B} \right\}.$$

$$\mathcal{B} = \{12, 13, 14, 23, 24\} \quad \leadsto \quad$$

Theorem (Edmonds, Gelfand-Goresky-MacPherson-Serganova) \mathcal{B} is a matroid \iff all edges of $P_{\mathcal{B}}$ have the form $e_i - e_j$.

Remark:

basis exchanges in $\mathcal{B} \Longleftrightarrow$ edges of $P_{\mathcal{B}}$

latroids Positroids Connectivity Realizability Topology

2. Positroids

If $A \in \mathbb{R}^{m \times n}$ is a rank m totally nonnegative matrix (i.e., all its maximal minors are nonnegative) then M(A) is called a **positroid**.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \implies \{12, 13, 14, 23, 24\} \text{ is a positroid.}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & < 0 & 0 \\ 0 & 1 & 0 & > 0 \end{pmatrix} \implies \{12, 14, 23, 34\} \text{ is not a positroid.}$$

Positroids have a rich, beautiful geometric and combinatorial structure:

A. Postnikov: totally nonnegative Grassmanniar

J. Scott: cluster algebras

and physics

N. Arkani-Hamed et. al.: scattering amplitudes Y. Kodama and L. Williams: KP-solitons

latroids Positroids Connectivity Realizability Topology

2. Positroids

If $A \in \mathbb{R}^{m \times n}$ is a rank m totally nonnegative matrix (i.e., all its maximal minors are nonnegative) then M(A) is called a **positroid**.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \longrightarrow \{12, 13, 14, 23, 24\} \text{ is a positroid.}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & <0 & 0 \\ 0 & 1 & 0 & >0 \end{pmatrix} \longrightarrow \{12, 14, 23, 34\} \text{ is not a positroid.}$$

Positroids have a rich, beautiful geometric and combinatorial structure:

A. Postnikov: totally nonnegative Grassmannian

They have very interesting applications in algebra:

J. Scott: cluster algebras

and physics:

N. Arkani-Hamed et. al.: scattering amplitudes

Y. Kodama and L. Williams: KP-solitons

Indexing positroids

Positroids have several axiom systems of their own:

(2368, 2368, 3568, 4568, 5689, 6789, 6789, 2689, 26910, 23610)

0	+	0	+	0	
+	+	+	+	+	
0	0	0			
+	+				

Le-diagrams

Decorated permutations

Plabic graphs

Positroid polytopes

$$\mathcal{B} = \{12, 13, 14, 23, 24\} \quad \leadsto$$

A key result:

Theorem. (Gelfand-Serganova '87)

 \mathcal{B} is a matroid \iff all edges of $P_{\mathcal{B}}$ have the form $e_i - e_j$.

Theorem. (Lam-Postnikov, A.-Reiner-Williams '13)

 \mathcal{B} is a **positroid** \iff additionally, all facets of $P_{\mathcal{B}}$ have the form $\sum_{i \in \mathcal{S}} x_i \leq a_{\mathcal{S}}$ with \mathcal{S} a **cyclic interval**.

Sketch of \Longrightarrow .

- Define Q by all ineqs $\sum_{i \in S} x_i \le a_S$ (S cyclic interval) sat. by P_B .
- Matrix of Q is totally unimodular $\Rightarrow \mathbb{Z}^n$ vertices $\Rightarrow 0/1$ vertices
- Check P_B and Q have the same 0/1 vertices. "Just combinatorics", using Grassmann necklaces.

Positroid polytopes

$$\mathcal{B} = \{12, 13, 14, 23, 24\} \quad \leadsto \quad$$

A key result:

Theorem. (Gelfand-Serganova '87)

 \mathcal{B} is a matroid \iff all edges of $P_{\mathcal{B}}$ have the form $e_i - e_j$.

Theorem. (Lam-Postnikov, A.-Reiner-Williams '13)

 \mathcal{B} is a **positroid** \iff additionally, all facets of $P_{\mathcal{B}}$ have the form $\sum_{i \in \mathcal{S}} x_i \leq a_{\mathcal{S}}$ with \mathcal{S} a **cyclic interval**.

Sketch of \Longrightarrow .

- Define Q by all ineqs $\sum_{i \in S} x_i \le a_S$ (S cyclic interval) sat. by P_B .
- Matrix of Q is totally unimodular $\Rightarrow \mathbb{Z}^n$ vertices $\Rightarrow 0/1$ vertices
- Check P_B and Q have the same 0/1 vertices. "Just combinatorics", using Grassmann necklaces.

3. Connectivity for matroids

A matroid *M* is **disconnected** if it can be written as

$$M = M_1 \oplus M_2 := \{B_1 \sqcup B_2 \mid B_1 \in M_1 \text{ and } B_2 \in M_2\}.$$

Any matroid *M* can be written uniquely as

$$M = M_1 \oplus \cdots \oplus M_k$$

with all the M_i connected (called its **connected components**).

Fact. *M* is connected \iff P_M is (almost) full-dimensional.

Mayhew - Newman - Welsh - Whittle '11

Conjecture. Almost every matroid is connected.

Theorem. At least 1/2 of matroids are connected.

Enumerating connected matroids

Let

$$m(n) = \#$$
 matroids on $[n]$, $m_{conn}(n) = \#$ connected matroids on $[n]$.

$$M(x) = \sum_{n>0} m(n) \frac{x^n}{n!}, \qquad M_{conn}(x) = \sum_{n>0} m_{conn}(n) \frac{x^n}{n!}.$$

Then if Π_n is the collection of set partitions of [n],

$$m(n) = \sum_{\{S_1, \dots, S_k\} \in \Pi_n} m_{conn}(|S_1|) \cdots m_{conn}(|S_k|)$$

and the Exponential Formula gives

$$M(x) = e^{M_{conn}(x)}$$
.

This is nice, but gives no useful bounds for $m_{conn}(n)/m(n)$

Connectivity for positroids.

For positroids, connected components look quite different.

Theorem. (A. - Rincón - Williams, Ford '13) The connected components of a positroid are the "connected components" of its decorated permutation. They form a **non-crossing partition** of [n].

Enumerating connected positroids

p(n) = # positroids on [n], $p_{conn}(n) = \#$ connected positroids on [n].

$$P(x) = \sum_{n \ge 0} p(n)x^n, \qquad P_{conn}(x) = \sum_{n \ge 0} p_{conn}(n)x^n$$

Then if NC_n is the set of **non-crossing** partitions of [n],

$$p(n) = \sum_{\{S_1, \dots, S_k\} \in NC_n} p_{conn}(|S_1|) \cdots p_{conn}(|S_k|)$$

We get

$$xP(x) = \left(\frac{x}{P_{conn}(x)}\right)^{\langle -1 \rangle}$$
 (Beissinger '85, Speicher '94).

This brings us to free probability.

Detour: Free Probability

A non-commutative probability theory. (Voiculescu '92) (Operator algebras, random matrix theory, representation theory,...)

(Normal) probability	Free probability		
independence	freeness		
moments: $E(e^{tX}) = \sum_{n>0} m_n(X) \frac{t^n}{n!}$	moments: $E(e^{tX}) = \sum_{n>0} m_n(X) \frac{t^n}{n!}$		
cumulants:	free cumulants:		
$m_n = \sum_{\{S_1,\ldots,S_k\}\in\Pi_n} c_{ S_1 }\cdots c_{ S_k }$	$m_n = \sum_{\{S_1,\ldots,S_k\}\in NC_n} k_{ S_1 }\cdots k_{ S_k }$		
X, Y independent \Rightarrow	$X, Y \text{ free} \Rightarrow$		
$c_n(X+Y)=c_n(X)+c_n(Y)$	$k_n(X+Y)=k_n(X)+k_n(Y)$		

Theorem: (A. - Rincón - Williams '13) For $Y \sim 1 + \text{Exp}(1)$,

- moments $m_n(Y) = \#$ positroids on [n]
- free cumulants $k_n(Y) = \#$ connected positroids on [n]

Detour: Free Probability

A non-commutative probability theory. (Voiculescu '92) (Operator algebras, random matrix theory, representation theory,...)

(Normal) probability	Free probability		
independence	freeness		
moments: $E(e^{tX}) = \sum_{n>0} m_n(X) \frac{t^n}{n!}$	moments: $E(e^{tX}) = \sum_{n>0} m_n(X) \frac{t^n}{n!}$		
cumulants:	free cumulants:		
$m_n = \sum_{\{S_1,\ldots,S_k\}\in\Pi_n} c_{ S_1 }\cdots c_{ S_k }$	$m_n = \sum_{\{S_1,\ldots,S_k\}\in NC_n} k_{ S_1 }\cdots k_{ S_k }$		
X, Y independent \Rightarrow	$X, Y \text{ free} \Rightarrow$		
$c_n(X+Y)=c_n(X)+c_n(Y)$	$k_n(X+Y)=k_n(X)+k_n(Y)$		

Theorem: (A. - Rincón - Williams '13) For $Y \sim 1 + \text{Exp}(1)$,

- moments $m_n(Y) = \#$ positroids on [n]
- free cumulants $k_n(Y) = \#$ connected positroids on [n]

Enumerating positroids

p(n) = # positroids on [n], $p_{conn}(n) = \#$ connected positroids on [n].

No bound for $p_{conn}(n)/p(n)$ from $xP(x) = \left(\frac{x}{P_{conn}(x)}\right)^{\langle -1 \rangle}(*)$.

Theorem. (A. - Rincón - Williams '13, Postnikov '06)

$$p(n) = n! \cdot \left(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}\right) \sim n! \cdot e.$$

Proof. Not hard, just count "decorated permutations".

Now we can hope:

$$(*) \rightarrow \mathsf{Sage} \rightarrow \mathsf{OEIS} + \mathsf{veladora} \rightarrow p_{conn}(n) = \mathsf{something} \ \mathsf{good}$$

Enumerating connected positroids

```
(*) 	o Sage 	o OEIS + veladora 	o A075834
```

p(n) = # positroids on [n], $p_{conn}(n) = \#$ connected positroids on [n].

```
Theorem. (A. - Rincón - Williams '13)
p_{conn}(n) = \text{ # of permutations on } [n] \text{ with no fixed intervals } (Callan '04, Salvatore-Tauraso '09)}
\sim \text{ # of permutations on } [n] \text{ with no fixed points } \sim \frac{n!}{e}.
```

Proof. Not so easy, requires more subtle estimates.

Enumerating positroids vs. connected positroids

Since $p(n) \sim n! \cdot e$ and $p_{conn}(n) \sim n!/e$, we get:

Theorem. (A.-Rincón-Williams '13) A positroid is connected with probability

$$1/e^2 = 0.1353...$$

Compare with

Conjecture (Mayhew-Newman-Welsh-Whittle '11) Almost every matroid is connected. (Theorem. At least 1/2 of them are.)

This is not evidence against MNWW's conjeture.

It is evidence that positroids and matroids are very different.

atroids Positroids Connectivity Realizability Topology

4. Realizability for matroids

BIG Question. Which matroids are realizable by a matrix?

Conjecture. (Brylawski-Kelly '80) Almost no matroid is realizable. ("Exercise". The proof didn't fit in the margin.)

Good news:

Theorem (Geelan-Gerards-Whittle '16) Rota's Conjecture, '71 Over \mathbb{F}_q , finitely many obstructions to being realizable. (Any q.)

Bad news:

Theorem (Vámos '78, Mayhew-Newman-Whittle '12, '14) "The missing axiom of matroid theory is lost forever".

Over infinite fields, the realizability question is very difficult.

ttroids Positroids Connectivity **Realizability** Topology

4. Realizability for oriented matroids

An **oriented matroid** is a matroid where bases have signs, and If *Sac* and *Sbd* have the same sign, then

- Sab and Scd have the same sign, or
- Sad and Sbc have the same sign.

Here sign(...x...y...) = - sign(...y...x...).

Motivating example. A **real** matrix $A \in \mathbb{R}^{m \times n}$ gives an oriented matroid, where a basis I is given the sign of the minor $\Delta_I(A)$.

$$\Delta_{Sac}\Delta_{Sbd} = \Delta_{Sab}\Delta_{Scd} + \Delta_{Sad}\Delta_{Sbc}$$
. (Plücker)

BIG Question. Which matroids are realizable by a matrix?

(Probably) very difficult:

Theorem (Sturmfels '87) The following are equivalent:

- ullet There's an algorithm to determine if any oriented matroid is realizable over $\mathbb Q.$
- There's an alg. to decide solvability of any system of Diophantine eqs over Q.
- There's an algorithm to decide if any lattice is the face lattice of a Q-polytope.

Positively oriented matroids

A **positively oriented matroid** is an oriented matroid whose bases are all positive. (da Silva - Las Vergnas '87)

Goal: generalize combinatorics of **cyclic polytope**. Da Silva did find several elegant combinatorial properties.

Conjecture. (da Silva, 1987)

Every positively oriented matroid is realizable.

- Are there any antecedent results for realizability of OMs?
- Remember, we believe almost no matroid is realizable.
 This conjecture seems rather optimistic.

atroids Positroids Connectivity Realizability Topology

Realizability of positively oriented matroids

A **positively oriented matroid** is an oriented matroid whose bases are all positive. (da Silva - Las Vergnas '87)

```
Theorem. (A. -Rincón -Williams 13) (da Silva's Conjecture) Every positively oriented matroid is realizable over \mathbb{Q}.
```

Idea of the proof. Use matroid polytopes!

M is a positroid \iff facet dirs. of P_M are cyclic intervals. M is positively oriented \iff facet dirs. of P_M are cyclic intervals.

- \Rightarrow : If P_M has a facet which is **not** a cyclic interval, play with the chirotope to contradict the combinatorial Plücker relations.
- First do it for full-dim polytopes (connected positroids)
- Then do it in general, via the non-crossing partition structure.

Topology: The MacPhersonian

If χ and χ' are oriented matroids, we say χ specializes to χ' if

$$\chi(I) \neq \chi'(I) \implies \chi'(I) = 0.$$

The MacPhersonian (or combinatorial Grassmannian) MacP(m, n) is the poset of rank m OMs on [n] ordered by (reverse) specialization.

Idea: build a discrete model of the Grassmannian.

- For $m \in \{1, 2, n-2, n-1\}$, MacP(m, n) and $Gr_{\mathbb{R}}(m, n)$ are homotopy equivalent. (MacPherson '93, Babson '93).
- ullet Some info on \mathbb{Z}_2 -cohomology and homotopy groups. (Anderson-Davis '02)
- "Otherwise, the topology of MacP(m, n) is a mystery".

Open question: Is MacP(m, n) homotopy equivalent to $Gr_{\mathbb{R}}(m, n)$?

Topology: the positive MacPhersonian

The **positive MacPhersonian** $MacP^+(m, n)$ is the poset of rank m **positively** oriented matroids on [n] ordered by (reverse) specialization.

The **positive Grassmannian** $Gr^+(m, n)$ is the subset of Gr(m, n) where all Plücker coordinates are nonnegative.

The **positroid stratification** of $Gr^+(m, n)$ makes it a CW complex. (Postnikov-Speyer-Williams '09). Is it regular?

Theorem. (A.-Rincón-Williams 2013) MacP $^+(m, n)$ is homeomorphic to a ball, and thus homotopy equiv. to $Gr^+(m, n)$ [Rietsch-Williams '10].

many thanks

The papers and slides are at:

http://math.sfsu.edu/federico

- 1. Positroids and non-crossing partitions. http://arxiv.org/abs/...
 - Trans. Amer. Math Soc., to appear
- 2. Positively oriented matroids are representable.

http://arxiv.org/abs/...

J. European Math. Soc., to appear