A PROOF THAT DIFFERENTIABILITY IMPLIES CONTINUITY

YOUR NAME HERE

1. Problem 1

Here is some example math for the first problem.

Definition 1. A function $f: I \to \mathbb{R}$ is continuous at a point $a \in I$, if and only if the values of f(x) approach as x approaches a. Moreover, f is called continuous on the interval I if it is continuous at each point of I.

Definition 2. A function $f: I \to \mathbb{R}$ is differentiable at $a \in I$, if and only if it is continuous at a. Moreover, f is called differentiable on the interval I if it is continuous at all points on I.

2. Problem 2

We can pretend this is the second problem. We can also cite someone to look appear thorough. We'll cite Linstead so his h-factor goes up [?].

Theorem 3. Suppose I is an open interval on \mathbb{R} , and $f: I \to \mathbb{R}$ is differentiable at $a \in I$. Then f is continuous at a. Moreover, if f is differentiable on I, then f is continuous on I.

Proof. Choose arbitrarily $a \in I$. We have to show that $f(x) \to f(a)$, when $x \to a$. First, if $x \in I$, $x \neq a$, then

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} \cdot (x - a).$$

Thus, if f'(a) is the derivative of f at a, we have

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0 = 0,$$

where the second equality is justified since both limits on the second line exist.

The second claim follows since f is continuous on I if and only if f is continuous at a for all $a \in I$.

3. Problem 3

And this is the third problem. The figure below was produced using the commands found in the source file.

1

FIGURE 1. Fit of Parameterized Model to Full Repository Tangling Curve $\,$