Analysis of Algorithms Homework 5

- 1. $A1 5 \times 10$, $A2 10 \times 3$, $A3 3 \times 12$, $A4 12 \times 5$, $A5 5 \times 50$, $A6 50 \times 6$
 - a. Optimal Parenthesization: (((((([5,10][10,3])[3,12])[12,5])[5,50])[50,6]) Table:

0	150	330	405	1655	2010
0	0	360	330	2430	1950
0	0	0	180	930	1770
0	0	0	0	3000	1860
0	0	0	0	0	1500
0	0	0	0	0	0

b.

parenthesis(1) = 0
parenthesis(2) = 1
parenthesis(3) = 2
parenthesis(
$$n + 1$$
) = $n - 1$

Where
$$n = 2$$

parenthesis
$$(2+1) = 2 - 1 = 2$$

parenthesis $(3) = 2$

2.

- a. A recursive matrix-chain would be the best choice, as the recursive chain has $\frac{1}{2}n^2$ unique checks. Enumerating through all the ways would result in $(n-1)^{n-1}$ unique checks.
- b. Having to allocate additional memory to an algorithm would worsen its time complexity.

- c. This problem exhibits optimal structure. The maximization of scalar multiplications will ensure the best multiplication is the higher number instead of the lower one.
- 3. See hw5.py

4.

```
    a. knapsack(items, weight):
        if items is empty or weight is 0:
            return 0
        else:
        i = max(i.value/i.weight, i::items)
        i.value + knapsack(items - i, weight - items.weight)
```

- b. See hw5.py
- c. See hw5.py

5.

```
a. e(S, M, i, j):

if S == [] \text{ or } i > j:

return M

else:

return e(S, M-(len(S[i]) + 1), i+1, j)
```

- b. See printPar.py
- c. bl(S, M, i, j):

if M < 0:

return infinity

else:

return e(S, M, i, j)

- d. See printPar.py
- e. mb(S, M):

while e(S, M, 0, infinity) >= 0:

$$bl(S, M, 0, infinity)$$

 $bl(S[: mb'(S, M, 0)], M, 0, mb'(S, M)) + mb(S[: mb'(S, M, i)])$

f. mb'(S, M, i):

$$if \ i \ge |S| \ or \ e(S[:i], \ M, \ 0, \ infinity) \le 0:$$
 return i -1

else:

$$mb'(S, M, i+1)$$

6. d values:

S	t	X	y	Z
∞	∞	∞	∞	0
2	∞	7	∞	0
2	5	7	9	0
2	5	6	9	0
2	4	6	9	0

 π values:

S	t	X	y	Z
NIL	NIL	NIL	NIL	NIL
Z	NIL	Z	NIL	NIL
Z	X	Z	S	NIL
Z	X	y	S	NIL
Z	X	y	S	NIL

Weight of the edge at 4:

d Values:

S	t	X	y	Z
0	8	8	8	8
0	6	8	7	8
0	6	4	7	2
0	2	4	7	2
0	2	4	7	-2

 π values :

S		t	X	у	Z
N	IIL	NIL	NIL	NIL	NIL

NIL	S	NIL	S	NIL
NIL	S	y	S	t
NIL	X	у	S	t
NIL	X	у	S	t