Forwards & Futures

We will now consider two standard types of contracts - namely, so called Forwards and Futures. As withall contracts they allow you to hedge (or speculate) on the evolving price of a risky asset. However, compared to what we've seen before, they modive a different payment show

Forwards

We consider a general multi-period (discrete) market model as set up before (ct. Lecture S). We suppose that it is free of arbitrage and complete Cire. There is a unique OND such that \$ is a martingale mar a) and denote the fair pricet at time to of a claim X by TI(X) recall that it is given by TT_(X) = 5° [E [X/50 | Ft].

One typical agreement is thus that at time to the buyer pays the price TT_(x) to the seller and at time T the buyer receives X from the seller. In a forward contract written on X one agrees instead on a price which is to be paid at time I (although decided on at theet). Do transactions are to take plane at the t. Henre, we define as follows:

The forward price at time t of a claim X to be delivered at time T, denoted by f(t;T,X), is the F- wearing random variable for which

$$TT_{t}(X-f(t;T,X))=0$$
.

Det

Prof The forward price f(t;T,x) of a claim X is que by $f(t;T,x) = \frac{T_t(x)}{\rho(t;T)},$

where $p(t,T) := T_t(T)$.

Proof We have that

TT_t
$$(X - f(t;T,X)) = S_t \mathbb{E}^{\phi} \left[\frac{X - f(t;T,X)}{S_T^{\circ}} \right] \mathcal{F}_t$$

by the definition of f(t;T,X) is F_t -meas. The result follows

- The forward price of the underlying asset it self is given by $f(t;T,S_T^i) = TT_t(S_T^i)/\rho(t,T) = S_t^i/\rho(t,T)$, i=1,...,D.
- Rem Fix tXT and a clean X. Let t CUCT. It is important to distinguish between the following two prices:
 - The forward prive f(bi.T. X) which is to be paid at time T to the seller of a forward contract entered at time u.
 - The price at time u of a forward contract entered at time t (with time of delivery T). This price is given by

 $TT_{u}(X-4(t;T,X))=TT_{u}(X)-p(u,T)+(t;T,X)$.

Futures

Yet a different type of contract that allows you to hedge (or speculate) using the price movements of an underlying risky asset, is the futures contract. Similarly to a forward contract, it costs nothing to enter. However, in contrast, you are here obliged allowed to pay receive the debts/profit over time. That is, expected profits/losses are regulated on a raining basis and not postponed until the terminal date. Specifically, a futures contract worklen on an underlying claim X with maturity T is governed by the futures price F(t;T,x) and if the contract is entered at time t=0 it involves the following payments:

- · t=0: contract entered no payments
- · t=1,...,T: the difference $\Delta F(t;T,X) := F(t;T,X) F(t-1;T,X)$ is payed. (it can be negative).
- · t=T: F(T;T,X) is payed and X received.

We consider the same market model as above the futures price is then defined as follows:

Given a claim X, a futures price process is an adapted process F(t;T,X) such that F(T;T,X)=X and at each t< T, the value of all the upcoming payment (from t+1) onwards) equals zero.

Det

- Rem · From the detrition it follows that the exchange of F(T;T,x) for X at time T has no value and can be omitted.
 - · From the definition it follows that the cost of buying (i.e. entering) into a futures contract at any time t ((after DF(t;t,x) has been settled) is zero.

Prop Surpose that (Si) +=0,..., is predictable (i.e. Si is Fin-meas). Then given a claim X, its future price process is grun by

$$F(t;T,x) = \mathbb{E}^{Q}[x|F_t], t=0,...,T$$

Proof Note first that F(t;T,X) thus defined satisfies the definition; indeed, clearly F(T;T,X) = 15 (X 18,7 = X and for t<T,

"value at time too! = = "value at time toot DF(i:T,X) being all upcoming payments" == t+1 paid at time i"

$$= \sum_{i=t+1}^{T} S_{t}^{o} \mathbb{E}^{\sigma} \left\{ F(i;T,x) - F(i-1;T,x) \right\} \mathcal{F}_{t}^{o}$$

Conversely, suppose that F(t;T,x) satisfies the definition. Pethre $T_{t} = \sum_{t=0}^{t} \Delta F(t;T,x)$

Then, value of all upcoming payments at the $t'' = S_t \mathbb{E}[I_t - I_t] = 0$ Hence, I_t is a Q-unty. Since

$$F(S, T) = S(T) + F(0; T, X)$$

it follows that also FCt;T,X) is a Q-wtg. Hence,

$$F(t;T,x) = \mathbb{E}^{\mathbb{Q}}[F(T;T,x)|F_t] = \mathbb{E}^{\mathbb{Q}}[x|F_t].$$

 \square

Prof If $(S_t^0)_{t=0,...,T}$ is deterministic, then the forward and future price processes coincide; that is $f(t;T,X) = F(t;T,X) = IE^0[XTF_t].$

Post if (50) is determined their

$$f(t;T,X) = \frac{\pi_t(x)}{p(t,T)} = \frac{s_t^2 \operatorname{IE}^0\left(\frac{x}{s_t^2}\right) f_t^2}{s_t^2 \operatorname{IE}^0\left(\frac{x}{s_t^2}\right) f_t^2} = \frac{\operatorname{E}^0(x) f_t^2}{\operatorname{E}^0(x) f_t^2} = \operatorname{E}^0(x) f_t^2$$

Rem. In reality, butures are very common. In particular when it comes to hedging/speculating on the prices of eg. oil, meet and corn, people typically we futures rather than actually buying the assets themselves.

Black's formula for options on futures

We now consider the Black Scholes model as set up before. We recall that this is a continuous-time model; however, one can show that also in continuous time, forward and future prices coincide when the values of the riskless ascut are deterministic (as they ward for the Black Scholes model); moreover, the detailing of a forward contract is exactly as for the discrete case.

We then have the following well known formula:

Prop (Black's 76 Formula): Consider a European Call Option with strike K and maturity T written on a futures contract on the underlying asset S with delineny T, IT;

payoff at T:
$$X = (F(T;T_1,S_{T_1})-K)_+$$
.

Then the price at time t<T is given by $T_{t}(x)=e^{-r(T-t)}\left(F(t;T_{i},S_{T_{i}})\phi(d_{i}(t))-K\phi(d_{i}(t))\right),$

where \$ is the CDF for the N(0,1)-distribution and

$$d_{2}(t) = \frac{1}{\sigma \sqrt{T-t^{2}}} \left(ln \frac{F(t) + \sigma_{2}^{2}(T-t)}{K} + \frac{\sigma_{2}^{2}(T-t)}{K} \right)$$

$$d_{2}(t) = \frac{1}{\sigma \sqrt{T-t^{2}}} \left(ln \frac{F(t) + T_{1}, S_{T_{1}}}{K} - \frac{\sigma_{2}^{2}(T-t)}{K} \right).$$

Proof The forward and thus futures price satisfies

$$\Pi_{t}\left(S_{\tau_{i}} - F(t; T_{i}, S_{\tau_{i}}) = 0 \right) \Rightarrow F(t; T_{i}, S_{\tau_{i}}) = \frac{\pi_{t}(S_{\tau_{i}})}{\pi_{t}(I)} = \frac{S_{t}}{e^{-r(\tau_{i} - t)}}$$

Henre, X = (er(T,-T) S-K) = er(T,-T) (S-er(T,-T) K) +;

we may thus not this as $e^{r(T_i-T)}$ "usual" call options with strike $e^{-r(T_i-T)}K$ and apply BS-formula to those. We get $T_{t}(X) = e^{r(T_i-T)} \left(S_{t} \phi(d_i(t,S_{t})) - e^{-r(T_i-T)} K \phi(d_2(t,S_{t})) \right)$

where $= \lim_{t \to \infty} e^{-r(T-t)} F(t;T_1,S_{T_1}) K = -r(T-t) + \lim_{t \to \infty} F(t;T_2,S_{T_1}) K$ $\left(d_1(t,S_t) = \frac{1}{a\sqrt{T-t}} \left(\lim_{t \to \infty} \frac{S_t}{e^{-r(T_1-t)}K} + \left(r + a_{22}^{2} \right) (T-t) \right) = \frac{1}{a\sqrt{T-t}} \left(\lim_{t \to \infty} \frac{F(t;T_2,S_{T_1})}{K} + a_{22}^{2} (T-t) \right)$ $\left(d_2(t,S_t) = d_1(t,S_t) - a\sqrt{T-t} \right)$