A Shimura-Shintani correspondence for rigid analytic cocycles

I. Negrini

McGill University

International Seminar on Automorphic Forms

• Goal: to lay the foundations to develop a Shimura-Shintani style correspondence from certain modular forms of weight k + 1/2 to *rigid* analytic cocycles of weight 2k on $SL_2(\mathbb{Z}[1/p])$.

- Goal: to lay the foundations to develop a Shimura-Shintani style correspondence from certain modular forms of weight k + 1/2 to rigid analytic cocycles of weight 2k on $SL_2(\mathbb{Z}[1/p])$.
- The latter were introduced by Darmon and Vonk in Singular moduli for real quadratic fields: a rigid analytic approach.

- Goal: to lay the foundations to develop a Shimura-Shintani style correspondence from certain modular forms of weight k+1/2 to rigid analytic cocycles of weight 2k on $\mathrm{SL}_2(\mathbb{Z}[1/p])$.
- The latter were introduced by Darmon and Vonk in Singular moduli for real quadratic fields: a rigid analytic approach.
- Darmon and Vonk conjectured that the "RM values" of rigid meromorphic cocycles belong to narrow ring class fields of real quadratic fields.

- Goal: to lay the foundations to develop a Shimura-Shintani style correspondence from certain modular forms of weight k+1/2 to rigid analytic cocycles of weight 2k on $SL_2(\mathbb{Z}[1/p])$.
- The latter were introduced by Darmon and Vonk in Singular moduli for real quadratic fields: a rigid analytic approach.
- Darmon and Vonk conjectured that the "RM values" of rigid meromorphic cocycles belong to narrow ring class fields of real quadratic fields.
- They can be thought as analogues of singular moduli for real quadratic fields.

 Building a Shimura-Shintani style correspondence in the setting of rigid analytic cocycles fits into the general program of developing the analogy between these objects and modular forms.

- Building a Shimura-Shintani style correspondence in the setting of rigid analytic cocycles fits into the general program of developing the analogy between these objects and modular forms.
- It also fits into the nascent *p-adic Kudla program*, an emerging *p-*adic version of the classical Kudla program. Indeed:

- Building a Shimura-Shintani style correspondence in the setting of rigid analytic cocycles fits into the general program of developing the analogy between these objects and modular forms.
- It also fits into the nascent *p-adic Kudla program*, an emerging *p-*adic version of the classical Kudla program. Indeed:
 - the Kudla program investigates relations between generating series of cycles on orthogonal and unitary Shimura varieties and automorphic forms,

- Building a Shimura-Shintani style correspondence in the setting of rigid analytic cocycles fits into the general program of developing the analogy between these objects and modular forms.
- It also fits into the nascent *p-adic Kudla program*, an emerging *p-*adic version of the classical Kudla program. Indeed:
 - the Kudla program investigates relations between generating series of cycles on orthogonal and unitary Shimura varieties and automorphic forms,
 - its p-adic counterpart explores connections between algebraic cycles constructed by p-adic analytic means and families of modular forms.

- Building a Shimura-Shintani style correspondence in the setting of rigid analytic cocycles fits into the general program of developing the analogy between these objects and modular forms.
- It also fits into the nascent *p-adic Kudla program*, an emerging *p-*adic version of the classical Kudla program. Indeed:
 - the Kudla program investigates relations between generating series of cycles on orthogonal and unitary Shimura varieties and automorphic forms,
 - its p-adic counterpart explores connections between algebraic cycles constructed by p-adic analytic means and families of modular forms.
- Darmon and Vonk relate principal parts of certain weakly holomorphic modular forms to divisors of rigid meromorphic cocycles.

- Building a Shimura-Shintani style correspondence in the setting of rigid analytic cocycles fits into the general program of developing the analogy between these objects and modular forms.
- It also fits into the nascent *p-adic Kudla program*, an emerging *p-*adic version of the classical Kudla program. Indeed:
 - the Kudla program investigates relations between generating series of cycles on orthogonal and unitary Shimura varieties and automorphic forms,
 - its p-adic counterpart explores connections between algebraic cycles constructed by p-adic analytic means and families of modular forms.
- Darmon and Vonk relate principal parts of certain weakly holomorphic modular forms to divisors of rigid meromorphic cocycles.
- So these can then be viewed as real quadratic counterparts of Borcherds' singular theta lifts.

Definition

Let D > 0 be a real quadratic discriminant, k > 2 an even integer and $z \in \mathcal{H}$. Let

$$f_k(D,z) := \sum_{disc(Q)=D} Q(z,1)^{-k},$$

where $Q(z,1) = az^2 + bz + c$ is a binary quadratic form with integer coefficients and discriminant D.

Definition

Let D > 0 be a real quadratic discriminant, k > 2 an even integer and $z \in \mathcal{H}$. Let

$$f_k(D,z) := \sum_{disc(Q)=D} Q(z,1)^{-k},$$

where $Q(z,1) = az^2 + bz + c$ is a binary quadratic form with integer coefficients and discriminant D.

Theorem (Zagier)

 $f_k(D,z)$ belongs to the space $S_{2k}(SL_2(\mathbb{Z}))$ of weight 2k cusp forms for $SL_2(\mathbb{Z})$.

• $f_k(D, z)$ is the *D*-th Fourier coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence.

- $f_k(D, z)$ is the *D*-th Fourier coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence.
- We want to build a *p*-adic analogue for $f_k(D, z)$.

- $f_k(D, z)$ is the *D*-th Fourier coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence.
- We want to build a *p*-adic analogue for $f_k(D, z)$.
- More precisely, we want to build a rigid analytic cocycle which should play the same role for the correspondence that we aim to build as the role played by $f_k(D, z)$ for the Shiura-Shintani correspondence.

- $f_k(D, z)$ is the *D*-th Fourier coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence.
- We want to build a *p*-adic analogue for $f_k(D, z)$.
- More precisely, we want to build a rigid analytic cocycle which should play the same role for the correspondence that we aim to build as the role played by $f_k(D, z)$ for the Shiura-Shintani correspondence.
- We will now see the connection between $f_k(D, z)$ and the Shimura-Shintani correspondence.

• Let $S_{k+1/2}$ be the space of weight k+1/2 cusp forms for $\Gamma_0(4)$ whose *n*-th Fourier coefficients vanish unless $n \equiv 0, 1 \pmod{4}$.

- Let $S_{k+1/2}$ be the space of weight k+1/2 cusp forms for $\Gamma_0(4)$ whose *n*-th Fourier coefficients vanish unless $n \equiv 0, 1 \pmod{4}$.
- There is a map $S: S_{k+1/2} \to S_{2k}$ sending $\sum_{n\geq 1} c(n)q^n$ to $\sum_{n\geq 1} (\sum_{d\mid n} d^{k-1}c(n^2/d^2))q^n$.

- Let $S_{k+1/2}$ be the space of weight k+1/2 cusp forms for $\Gamma_0(4)$ whose *n*-th Fourier coefficients vanish unless $n \equiv 0, 1 \pmod{4}$.
- There is a map $S: S_{k+1/2} \to S_{2k}$ sending $\sum_{n\geq 1} c(n)q^n$ to $\sum_{n\geq 1} (\sum_{d\mid n} d^{k-1}c(n^2/d^2))q^n$.
- We have

$$\Omega_k(z,\tau) := (-1)^{k/2} 2^{3k-1} \sum_{D>0} D^{k-1/2} f_k(D,z) e^{2\pi i D \tau} \in S_{k+1/2} \text{ (for } \tau),$$

- Let $S_{k+1/2}$ be the space of weight k+1/2 cusp forms for $\Gamma_0(4)$ whose *n*-th Fourier coefficients vanish unless $n \equiv 0, 1 \pmod{4}$.
- There is a map $S: S_{k+1/2} \to S_{2k}$ sending $\sum_{n\geq 1} c(n)q^n$ to $\sum_{n\geq 1} (\sum_{d\mid n} d^{k-1}c(n^2/d^2))q^n$.
- We have

$$\Omega_k(z,\tau) := (-1)^{k/2} 2^{3k-1} \sum_{D>0} D^{k-1/2} f_k(D,z) e^{2\pi i D \tau} \in S_{k+1/2} \text{ (for } \tau),$$

$$S(g)(z) = \frac{1}{6} \int_{\Gamma_0(4) \setminus \mathcal{H}} g(\tau) \overline{\Omega_k(-\overline{z},\tau)} v^{k-3/2} du dv.$$

• Similar correspondences have been studied by Borcherds.

- Similar correspondences have been studied by Borcherds.
- To a weakly homomorphic modular form f Borcherds associated a $SL_2(\mathbb{Z})$ -invariant real analytic function $B_f(z)$ with logarithmic singularities at certain CM points in \mathcal{H} .

- Similar correspondences have been studied by Borcherds.
- To a weakly homomorphic modular form f Borcherds associated a $SL_2(\mathbb{Z})$ -invariant real analytic function $B_f(z)$ with logarithmic singularities at certain CM points in \mathcal{H} .
- These points are determined by the principal part of f.

- Similar correspondences have been studied by Borcherds.
- To a weakly homomorphic modular form f Borcherds associated a $SL_2(\mathbb{Z})$ -invariant real analytic function $B_f(z)$ with logarithmic singularities at certain CM points in \mathcal{H} .
- These points are determined by the principal part of f.
- The expression for $B_f(z)$ is given by

$$B_f(z) = \mathsf{CT}_{s=0} \Big[\lim_{T \to \infty} \int_{D_T} f(\tau) \overline{\Theta(\tau, z)} v^{-3/2 - s} du dv \Big],$$

- Similar correspondences have been studied by Borcherds.
- To a weakly homomorphic modular form f Borcherds associated a $SL_2(\mathbb{Z})$ -invariant real analytic function $B_f(z)$ with logarithmic singularities at certain CM points in \mathcal{H} .
- These points are determined by the principal part of f.
- The expression for $B_f(z)$ is given by

$$B_f(z) = \mathsf{CT}_{s=0} \Big[\lim_{T \to \infty} \int_{D_T} f(\tau) \overline{\Theta(\tau, z)} v^{-3/2 - s} du dv \Big],$$

where $\Theta(\tau,z)\in M_{1/2}(\Gamma_0(4))$ for au and is $\mathsf{SL}_2(\mathbb{Z})$ -invariant in z,

- Similar correspondences have been studied by Borcherds.
- To a weakly homomorphic modular form f Borcherds associated a $SL_2(\mathbb{Z})$ -invariant real analytic function $B_f(z)$ with logarithmic singularities at certain CM points in \mathcal{H} .
- These points are determined by the principal part of f.
- The expression for $B_f(z)$ is given by

$$B_f(z) = \mathsf{CT}_{s=0} \Big[\lim_{T \to \infty} \int_{D_T} f(\tau) \overline{\Theta(\tau, z)} v^{-3/2 - s} du dv \Big],$$

where $\Theta(\tau,z)\in M_{1/2}(\Gamma_0(4))$ for τ and is $\mathrm{SL}_2(\mathbb{Z})$ -invariant in z, $\mathrm{CT}_{s=0}$ denotes the constant term in Laurent expansion at s=0 of a function meromorphic near s=0,

- Similar correspondences have been studied by Borcherds.
- To a weakly homomorphic modular form f Borcherds associated a $SL_2(\mathbb{Z})$ -invariant real analytic function $B_f(z)$ with logarithmic singularities at certain CM points in \mathcal{H} .
- These points are determined by the principal part of f.
- The expression for $B_f(z)$ is given by

$$B_f(z) = \mathsf{CT}_{s=0} \Big[\lim_{T \to \infty} \int_{D_T} f(\tau) \overline{\Theta(\tau, z)} v^{-3/2 - s} du dv \Big],$$

where $\Theta(\tau,z)\in M_{1/2}(\Gamma_0(4))$ for τ and is $\mathrm{SL}_2(\mathbb{Z})$ -invariant in z, $\mathrm{CT}_{s=0}$ denotes the constant term in Laurent expansion at s=0 of a function meromorphic near s=0, D_T is a suitably truncated fundamental domain for $\Gamma_0(4)\setminus\mathcal{H}$.

 This has been made explicit by Bruinier and Ono, Schwagenscheidt and others.

- This has been made explicit by Bruinier and Ono, Schwagenscheidt and others.
- Darmon and Vonk estabilished an analogous result for rigid meromorphic cocycles (RMC).

- This has been made explicit by Bruinier and Ono, Schwagenscheidt and others.
- Darmon and Vonk estabilished an analogous result for rigid meromorphic cocycles (RMC).
- RMC can be though as real quadratic analogues of meromorphic functions whose divisors are concentrated on CM points, such as those arising in the image of Borcherds' lift.

- This has been made explicit by Bruinier and Ono, Schwagenscheidt and others.
- Darmon and Vonk estabilished an analogous result for rigid meromorphic cocycles (RMC).
- RMC can be though as real quadratic analogues of meromorphic functions whose divisors are concentrated on CM points, such as those arising in the image of Borcherds' lift.
- This result of Darmon and Vonk adds evidence in favour of this analogy.

• Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane.

• Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) - \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane. Let $\Gamma := \mathrm{SL}_2(\mathbb{Z}[1/p])$.

- Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane. Let $\Gamma := \mathrm{SL}_2(\mathbb{Z}[1/p])$.
- Let M[×] denote the multiplicative group of non-zero rigid meromorphic functions on H_p.

- Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane. Let $\Gamma := \mathrm{SL}_2(\mathbb{Z}[1/p])$.
- Let \mathcal{M}^{\times} denote the multiplicative group of non-zero *rigid* meromorphic functions on \mathcal{H}_p . These are analogues of the classical meromorphic functions on \mathcal{H} .

- Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane. Let $\Gamma := \mathrm{SL}_2(\mathbb{Z}[1/p])$.
- Let \mathcal{M}^{\times} denote the multiplicative group of non-zero *rigid* meromorphic functions on \mathcal{H}_p . These are analogues of the classical meromorphic functions on \mathcal{H} .
- Γ acts by Moebius transformations on \mathcal{H}_p and by translation on \mathcal{M}^{\times} .

- Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane. Let $\Gamma := \mathrm{SL}_2(\mathbb{Z}[1/p])$.
- Let \mathcal{M}^{\times} denote the multiplicative group of non-zero *rigid* meromorphic functions on \mathcal{H}_p . These are analogues of the classical meromorphic functions on \mathcal{H} .
- Γ acts by Moebius transformations on \mathcal{H}_{ρ} and by translation on \mathcal{M}^{\times} .
- Rigid meromorphic cocycles are elements of $H^1(\Gamma, \mathcal{M}^{\times})$.

- Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane. Let $\Gamma := \mathrm{SL}_2(\mathbb{Z}[1/p])$.
- Let \mathcal{M}^{\times} denote the multiplicative group of non-zero *rigid* meromorphic functions on \mathcal{H}_p . These are analogues of the classical meromorphic functions on \mathcal{H} .
- ullet Γ acts by Moebius transformations on \mathcal{H}_{p} and by translation on \mathcal{M}^{\times} .
- Rigid meromorphic cocycles are elements of $H^1(\Gamma, \mathcal{M}^{\times})$.
- For $J \in H^1(\Gamma, \mathcal{M}^\times)$, Darmon and Vonk defined Divisor(J) essentially as Divisor(J(S)), where for $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- Let p be a prime number and let $\mathcal{H}_p = \mathbb{P}^1(\mathbb{C}_p) \mathbb{P}^1(\mathbb{Q}_p)$ denote Drinfeld's p-adic upper-half plane. Let $\Gamma := \mathrm{SL}_2(\mathbb{Z}[1/p])$.
- Let \mathcal{M}^{\times} denote the multiplicative group of non-zero *rigid* meromorphic functions on \mathcal{H}_p . These are analogues of the classical meromorphic functions on \mathcal{H} .
- ullet Γ acts by Moebius transformations on \mathcal{H}_{p} and by translation on \mathcal{M}^{\times} .
- Rigid meromorphic cocycles are elements of $H^1(\Gamma, \mathcal{M}^{\times})$.
- For $J \in H^1(\Gamma, \mathcal{M}^{\times})$, Darmon and Vonk defined Divisor(J) essentially as Divisor(J(S)), where for $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- Divisor(J) is a finite formal linear combination of elements of $\Gamma \setminus \mathcal{H}_p^{RM}$.

Theorem (Darmon, Vonk)

Let ϕ be a weight 1/2 weakly holomorphic modular form for $\Gamma_0(4p)$. Assume that ϕ is regular at all the cusps except ∞ and has integer Fourier coefficients. Let -d be a negative discriminant.

Theorem (Darmon, Vonk)

Let ϕ be a weight 1/2 weakly holomorphic modular form for $\Gamma_0(4p)$. Assume that ϕ is regular at all the cusps except ∞ and has integer Fourier coefficients. Let -d be a negative discriminant. Then there exists a rigid meromorphic cocycle $J_{-d,\phi}$ such that ${\rm Divisor}(J_{-d,\phi})$ is determined by the principal part of ϕ .

Theorem (Darmon, Vonk)

Let ϕ be a weight 1/2 weakly holomorphic modular form for $\Gamma_0(4p)$. Assume that ϕ is regular at all the cusps except ∞ and has integer Fourier coefficients. Let -d be a negative discriminant. Then there exists a rigid meromorphic cocycle $J_{-d,\phi}$ such that ${\rm Divisor}(J_{-d,\phi})$ is determined by the principal part of ϕ .

• The construction of $J_{-d,\phi}$ does not use a theta kernel.

Theorem (Darmon, Vonk)

Let ϕ be a weight 1/2 weakly holomorphic modular form for $\Gamma_0(4p)$. Assume that ϕ is regular at all the cusps except ∞ and has integer Fourier coefficients. Let -d be a negative discriminant. Then there exists a rigid meromorphic cocycle $J_{-d,\phi}$ such that ${\rm Divisor}(J_{-d,\phi})$ is determined by the principal part of ϕ .

- The construction of $J_{-d,\phi}$ does not use a theta kernel.
- Our goal: to get a correspondence using a theta kernel,

Theorem (Darmon, Vonk)

Let ϕ be a weight 1/2 weakly holomorphic modular form for $\Gamma_0(4p)$. Assume that ϕ is regular at all the cusps except ∞ and has integer Fourier coefficients. Let -d be a negative discriminant. Then there exists a rigid meromorphic cocycle $J_{-d,\phi}$ such that ${\sf Divisor}(J_{-d,\phi})$ is determined by the principal part of ϕ .

- The construction of $J_{-d,\phi}$ does not use a theta kernel.
- Our goal: to get a correspondence using a theta kernel, more precisely to define p-adic analogues of $f_k(D,z)$ and package them into a theta kernel.

• We will now give a more precise description of \mathcal{H}_p in order to define rigid analytic and meromorphic functions.

- We will now give a more precise description of \mathcal{H}_p in order to define rigid analytic and meromorphic functions.
- For $n \geq 1$, let \mathcal{R}_n be a set of representatives for $\mathbb{P}^1(\mathbb{Q}_p)$ modulo p^n .

- We will now give a more precise description of \mathcal{H}_p in order to define rigid analytic and meromorphic functions.
- For $n \geq 1$, let \mathcal{R}_n be a set of representatives for $\mathbb{P}^1(\mathbb{Q}_p)$ modulo p^n .
- For each $x \in \mathbb{P}^1(\mathbb{C}_p)$, let B(x, n) (resp. $B^-(x, n)$) denote the closed (resp. open) ball of center x and radius p^n .

- We will now give a more precise description of \mathcal{H}_p in order to define rigid analytic and meromorphic functions.
- For $n \geq 1$, let \mathcal{R}_n be a set of representatives for $\mathbb{P}^1(\mathbb{Q}_p)$ modulo p^n .
- For each $x \in \mathbb{P}^1(\mathbb{C}_p)$, let B(x, n) (resp. $B^-(x, n)$) denote the closed (resp. open) ball of center x and radius p^n .

Definition

Let
$$\Omega_n := \mathbb{P}^1(\mathbb{C}_p) - \bigcup_{x \in \mathcal{R}_n} B(x, n)$$
 and $\Omega_n^- := \mathbb{P}^1(\mathbb{C}_p) - \bigcup_{x \in \mathcal{R}_n} B^-(x, n - 1)$.

- We will now give a more precise description of \mathcal{H}_p in order to define rigid analytic and meromorphic functions.
- For $n \geq 1$, let \mathcal{R}_n be a set of representatives for $\mathbb{P}^1(\mathbb{Q}_p)$ modulo p^n .
- For each $x \in \mathbb{P}^1(\mathbb{C}_p)$, let B(x, n) (resp. $B^-(x, n)$) denote the closed (resp. open) ball of center x and radius p^n .

Definition

Let
$$\Omega_n := \mathbb{P}^1(\mathbb{C}_p) - \bigcup_{x \in \mathcal{R}_n} B(x, n)$$
 and $\Omega_n^- := \mathbb{P}^1(\mathbb{C}_p) - \bigcup_{x \in \mathcal{R}_n} B^-(x, n - 1)$.

• Hence $\mathcal{H}_p = \cup_n \Omega_n = \cup_n \Omega_n^-$.

- We will now give a more precise description of \mathcal{H}_p in order to define rigid analytic and meromorphic functions.
- For $n \geq 1$, let \mathcal{R}_n be a set of representatives for $\mathbb{P}^1(\mathbb{Q}_p)$ modulo p^n .
- For each $x \in \mathbb{P}^1(\mathbb{C}_p)$, let B(x, n) (resp. $B^-(x, n)$) denote the closed (resp. open) ball of center x and radius p^n .

Definition

Let
$$\Omega_n := \mathbb{P}^1(\mathbb{C}_p) - \bigcup_{x \in \mathcal{R}_n} B(x, n)$$
 and $\Omega_n^- := \mathbb{P}^1(\mathbb{C}_p) - \bigcup_{x \in \mathcal{R}_n} B^-(x, n - 1)$.

- Hence $\mathcal{H}_p = \cup_n \Omega_n = \cup_n \Omega_n^-$.
- The Ω_n^- are examples of *affinoids*.

Definition

Definition

The Bruhat-Tits Tree for $\operatorname{PGL}_2(\mathbb{Q}_p)$ is the graph \mathcal{T} whose vertices are equivalence classes of lattices in \mathbb{Q}_p^2 . Two vertices x, x' are joined by an edge if $x = [L], \ x' = [L']$ and $pL \subsetneq L' \subsetneq L$.

• Set of vertices of \mathcal{T} is denoted by \mathcal{T}_0 , set of unordered edges \mathcal{T}_1 , set of ordered edges \mathcal{T}_1^* .

Definition

- Set of vertices of \mathcal{T} is denoted by \mathcal{T}_0 , set of unordered edges \mathcal{T}_1 , set of ordered edges \mathcal{T}_1^* .
- \mathcal{T} is a p+1-regular tree.

Definition

- Set of vertices of \mathcal{T} is denoted by \mathcal{T}_0 , set of unordered edges \mathcal{T}_1 , set of ordered edges \mathcal{T}_1^* .
- \mathcal{T} is a p+1-regular tree. The vertices of \mathcal{T} at distance n from any given vertex are in bijection with $\mathbb{P}_1(\frac{\mathbb{Z}_p}{p^n\mathbb{Z}_p})$.

Definition

- Set of vertices of \mathcal{T} is denoted by \mathcal{T}_0 , set of unordered edges \mathcal{T}_1 , set of ordered edges \mathcal{T}_1^* .
- \mathcal{T} is a p+1-regular tree. The vertices of \mathcal{T} at distance n from any given vertex are in bijection with $\mathbb{P}_1(\frac{\mathbb{Z}_p}{p^n\mathbb{Z}_p})$.
- ullet PGL $_2(\mathbb{Q}_p)$ acts on \mathcal{T} by g[L]:=[gL].

Definition

- Set of vertices of \mathcal{T} is denoted by \mathcal{T}_0 , set of unordered edges \mathcal{T}_1 , set of ordered edges \mathcal{T}_1^* .
- \mathcal{T} is a p+1-regular tree. The vertices of \mathcal{T} at distance n from any given vertex are in bijection with $\mathbb{P}_1(\frac{\mathbb{Z}_p}{p^n\mathbb{Z}_p})$.
- ullet PGL $_2(\mathbb{Q}_p)$ acts on \mathcal{T} by g[L]:=[gL].
- Let v_0 be the vertex $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We will call it *standard vertex*.

Definition

- Set of vertices of \mathcal{T} is denoted by \mathcal{T}_0 , set of unordered edges \mathcal{T}_1 , set of ordered edges \mathcal{T}_1^* .
- \mathcal{T} is a p+1-regular tree. The vertices of \mathcal{T} at distance n from any given vertex are in bijection with $\mathbb{P}_1(\frac{\mathbb{Z}_p}{p^n\mathbb{Z}_p})$.
- ullet PGL $_2(\mathbb{Q}_p)$ acts on \mathcal{T} by g[L]:=[gL].
- Let v_0 be the vertex $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We will call it *standard vertex*.
- Let v_1 be the vertex $\begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} v_0$. Let e_0 be the edge joining v_0 and v_1 . We will call it *standard edge*.

Proposition

Proposition

There is a $\operatorname{PGL}_2(\mathbb{Q}_p)$ -equivariant map $r:\mathcal{H}_p\to\mathcal{T}$. We call it the *reduction map*.

• $r^{-1}(v_0) = \{z \in \mathcal{H}_p \text{ s.t. } |z-t| \ge 1, \text{ for } t = 0, ..., p-1, \text{ and } |z| \le 1\}$ is the standard affinoid.

Proposition

- $r^{-1}(v_0) = \{z \in \mathcal{H}_p \text{ s.t. } |z-t| \ge 1, \text{ for } t = 0, ..., p-1, \text{ and } |z| \le 1\}$ is the standard affinoid.
- $r^{-1}(e_0) = \{z \in \mathcal{H}_p \ s.t. \ 1/p < |z| < 1\}$ is the standard annulus.

Proposition

- $r^{-1}(v_0) = \{z \in \mathcal{H}_p \text{ s.t. } |z-t| \ge 1, \text{ for } t = 0, ..., p-1, \text{ and } |z| \le 1\}$ is the standard affinoid.
- $r^{-1}(e_0) = \{z \in \mathcal{H}_p \text{ s.t. } 1/p < |z| < 1\}$ is the standard annulus.
- Ω_n^- is the preimage of subtrees of \mathcal{T} made of points at distance at most n-1 from v_0 .

Proposition

- $r^{-1}(v_0) = \{z \in \mathcal{H}_p \text{ s.t. } |z-t| \ge 1, \text{ for } t = 0, ..., p-1, \text{ and } |z| \le 1\}$ is the standard affinoid.
- $r^{-1}(e_0) = \{z \in \mathcal{H}_p \text{ s.t. } 1/p < |z| < 1\}$ is the standard annulus.
- Ω_n^- is the preimage of subtrees of \mathcal{T} made of points at distance at most n-1 from v_0 .
- \mathcal{H}_p is a tubular neighbourhood of \mathcal{T} .

Proposition

- $r^{-1}(v_0) = \{z \in \mathcal{H}_p \text{ s.t. } |z-t| \ge 1, \text{ for } t = 0, ..., p-1, \text{ and } |z| \le 1\}$ is the standard affinoid.
- $r^{-1}(e_0) = \{z \in \mathcal{H}_p \text{ s.t. } 1/p < |z| < 1\}$ is the standard annulus.
- Ω_n^- is the preimage of subtrees of \mathcal{T} made of points at distance at most n-1 from v_0 .
- \mathcal{H}_p is a tubular neighbourhood of \mathcal{T} .
- Preimages of vertices are called affinoids, preimages of edges are called annuli.

The setup: rigid analytic and meromorphic functions

Definition

A rigid analytic function is a \mathbb{C}_p -valued function f on \mathcal{H}_p , such that its restriction to any affinoid is a uniform limit, with respect to the sup norm, of rational functions on $\mathbb{P}^1(\mathbb{C}_p)$ having poles outside the affinoid.

The setup: rigid analytic and meromorphic functions

Definition

A rigid analytic function is a \mathbb{C}_p -valued function f on \mathcal{H}_p , such that its restriction to any affinoid is a uniform limit, with respect to the sup norm, of rational functions on $\mathbb{P}^1(\mathbb{C}_p)$ having poles outside the affinoid.

Definition

A rigid meromorphic function is the quotient of two rigid analytic functions.

Rigid meromorphic cocycles

• For all $k \ge 0$, the weight k action of Γ on rigid analytic and meromorphic functions is defined as

$$(f|_k\gamma)(au):=(c au+d)^{-k}f\Big(rac{a au+b}{c au+d}\Big),\quad ext{where } \gamma:=egin{pmatrix} a&b\\c&d \end{pmatrix}\in\Gamma.$$

Rigid meromorphic cocycles

• For all $k \ge 0$, the weight k action of Γ on rigid analytic and meromorphic functions is defined as

$$(f|_k\gamma)(au):=(c au+d)^{-k}f\Big(rac{a au+b}{c au+d}\Big),\quad ext{where } \gamma:=egin{pmatrix} a & b \ c & d \end{pmatrix}\in\Gamma.$$

• The additive group of rigid analytic (resp. meromorphic) functions endowed with the weight k action of Γ will be denoted as \mathcal{A}_k (resp. \mathcal{M}_k).

Rigid meromorphic cocycles

• For all $k \ge 0$, the weight k action of Γ on rigid analytic and meromorphic functions is defined as

$$(f|_k\gamma)(au):=(c au+d)^{-k}f\Big(rac{a au+b}{c au+d}\Big),\quad ext{where } \gamma:=egin{pmatrix}a&b\\c&d\end{pmatrix}\in\Gamma.$$

• The additive group of rigid analytic (resp. meromorphic) functions endowed with the weight k action of Γ will be denoted as \mathcal{A}_k (resp. \mathcal{M}_k).

Definition

A rigid meromorphic (resp. analytic) cocycle of weight k>0 is a class in $H^1_{par}(\Gamma,\mathcal{M}_k)$ (resp. in $H^1_{par}(\Gamma,\mathcal{A}_k)$).

Rigid meromorphic cocycles

• For all $k \ge 0$, the weight k action of Γ on rigid analytic and meromorphic functions is defined as

$$(f|_k\gamma)(au):=(c au+d)^{-k}f\Big(rac{a au+b}{c au+d}\Big),\quad ext{where } \gamma:=egin{pmatrix}a&b\\c&d\end{pmatrix}\in\Gamma.$$

• The additive group of rigid analytic (resp. meromorphic) functions endowed with the weight k action of Γ will be denoted as \mathcal{A}_k (resp. \mathcal{M}_k).

Definition

A rigid meromorphic (resp. analytic) cocycle of weight k>0 is a class in $H^1_{par}(\Gamma,\mathcal{M}_k)$ (resp. in $H^1_{par}(\Gamma,\mathcal{A}_k)$).

• Goal: to realise a Shimura-Shintani style correspondence from certain modular forms of weight k+1/2 to $H^1_{par}(\Gamma, \mathcal{A}_{2k})$.

Modular symbols

Definition

A Γ -invariant \mathcal{A}_k -valued modular symbol is a function $m: \mathbb{P}_1(\mathbb{Q}) \times \mathbb{P}_1(\mathbb{Q}) \to \mathcal{A}_k$ that, for all $r, s, t \in \mathbb{P}_1(\mathbb{Q})$, satisfies

$$m\{r,s\} = -m\{s,r\}$$
 and $m\{r,s\} + m\{s,t\} = m\{r,t\},$

as well as

$$m\{\gamma r, \gamma s\}|\gamma = m\{r, s\}$$
 for all $\gamma \in \Gamma$.

We denote the space of such functions as $\mathsf{MS}^\Gamma(\mathcal{A}_k)$. The space of Γ -invariant \mathcal{M}_k -valued modular symbols $\mathsf{MS}^\Gamma(\mathcal{M}_k)$ is defined similarly.

Modular symbols

Definition

A Γ -invariant \mathcal{A}_k -valued modular symbol is a function $m: \mathbb{P}_1(\mathbb{Q}) \times \mathbb{P}_1(\mathbb{Q}) \to \mathcal{A}_k$ that, for all $r, s, t \in \mathbb{P}_1(\mathbb{Q})$, satisfies

$$m\{r,s\} = -m\{s,r\}$$
 and $m\{r,s\} + m\{s,t\} = m\{r,t\},$

as well as

$$m\{\gamma r, \gamma s\}|\gamma = m\{r, s\}$$
 for all $\gamma \in \Gamma$.

We denote the space of such functions as $\mathsf{MS}^\Gamma(\mathcal{A}_k)$. The space of Γ -invariant \mathcal{M}_k -valued modular symbols $\mathsf{MS}^\Gamma(\mathcal{M}_k)$ is defined similarly.

Lemma

$$\mathsf{MS}^\Gamma(\mathcal{M}_k) \cong \mathsf{H}^1_{\mathsf{par}}(\Gamma, \mathcal{M}_k) \text{ and } \mathsf{MS}^\Gamma(\mathcal{A}_k) \cong \mathsf{H}^1_{\mathsf{par}}(\Gamma, \mathcal{A}_k).$$

The main object

• Let $\mathcal{F}_D(\mathbb{Z}[1/p])$ denote the set of binary quadratic forms of discriminant D with coefficients in $\mathbb{Z}[1/p]$, equipped with the natural action of Γ .

The main object

- Let $\mathcal{F}_D(\mathbb{Z}[1/p])$ denote the set of binary quadratic forms of discriminant D with coefficients in $\mathbb{Z}[1/p]$, equipped with the natural action of Γ .
- Given $Q \in \mathcal{F}_D(\mathbb{Z}[1/p])$, let γ_Q denote the hyperbolic geodesic joining the two roots of Q.

The main object

- Let $\mathcal{F}_D(\mathbb{Z}[1/p])$ denote the set of binary quadratic forms of discriminant D with coefficients in $\mathbb{Z}[1/p]$, equipped with the natural action of Γ .
- Given $Q \in \mathcal{F}_D(\mathbb{Z}[1/p])$, let γ_Q denote the hyperbolic geodesic joining the two roots of Q.

Theorem (N.)

Let $k \geq 1$ be an odd integer and let D be non-square. For all $(r,s) \in \mathbb{P}_1(\mathbb{Q}) \times \mathbb{P}_1(\mathbb{Q})$, the infinite sum

$$J_{k,D}\{r,s\}(z) := \sum_{Q \in \mathcal{F}_D(\mathbb{Z}[1/p])} (\gamma_Q \cdot (r,s)) \cdot Q(z,1)^{-k}$$

converges to a rigid meromorphic function of $z \in \mathcal{H}_p$, which is rigid analytic when $(\frac{D}{p}) = 1$. The function $J_{k,D} : \mathbb{P}_1(\mathbb{Q}) \times \mathbb{P}_1(\mathbb{Q}) \to \mathcal{M}_{2k}$ is a rigid meromorphic cocycle of weight 2k.

 $J_{k,D}$ is the analogue of $f_k(D,z)$ that we look for,

 $J_{k,D}$ is the analogue of $f_k(D,z)$ that we look for, and we would like to build a series of the form $\widehat{\Omega}(q) = \sum_{D>0} D^{k-1/2} J_{k,D} \cdot q^D$.

 $J_{k,D}$ is the analogue of $f_k(D,z)$ that we look for, and we would like to build a series of the form $\widehat{\Omega}(q) = \sum_{D>0} D^{k-1/2} J_{k,D} \cdot q^D$. Such a series would give the correspondence that we seek because:

 $J_{k,D}$ is the analogue of $f_k(D,z)$ that we look for, and we would like to build a series of the form $\widehat{\Omega}(q) = \sum_{D>0} D^{k-1/2} J_{k,D} \cdot q^D$. Such a series would give the correspondence that we seek because:

ullet we can write $\widehat{\Omega}$ as a finite sum

$$\widehat{\Omega} = \sum g_i \otimes m_i,$$

where g_i 's are a basis of eigenforms of weight k+1/2 and m_i 's are in $MS^{\Gamma}(A_{2k})$,

 $J_{k,D}$ is the analogue of $f_k(D,z)$ that we look for, and we would like to build a series of the form $\widehat{\Omega}(q) = \sum_{D>0} D^{k-1/2} J_{k,D} \cdot q^D$. Such a series would give the correspondence that we seek because:

ullet we can write $\widehat{\Omega}$ as a finite sum

$$\widehat{\Omega} = \sum g_i \otimes m_i,$$

where g_i 's are a basis of eigenforms of weight k+1/2 and m_i 's are in $MS^{\Gamma}(A_{2k})$,

• we can write a modular form f of weight k + 1/2 as a finite sum

$$f=\sum \alpha_i g_i,$$

 $J_{k,D}$ is the analogue of $f_k(D,z)$ that we look for, and we would like to build a series of the form $\widehat{\Omega}(q) = \sum_{D>0} D^{k-1/2} J_{k,D} \cdot q^D$. Such a series would give the correspondence that we seek because:

ullet we can write $\widehat{\Omega}$ as a finite sum

$$\widehat{\Omega} = \sum g_i \otimes m_i,$$

where g_i 's are a basis of eigenforms of weight k+1/2 and m_i 's are in $MS^{\Gamma}(A_{2k})$,

• we can write a modular form f of weight k + 1/2 as a finite sum

$$f=\sum \alpha_i \mathsf{g}_i,$$

• to f we can then associate the rigid analytic cocycle $\sum \alpha_i m_i$.

But if D is a square then $J_{k,D}$ is not defined, so we prove instead

Theorem (N.)

If D is not a square, then $J_{k,D}$ is the D-th coefficient of a weight k+1/2 modular form $\widehat{\Omega}(q)$ with coefficients in $\mathsf{MS}^\Gamma(\mathcal{A}_{2k})$.

But if D is a square then $J_{k,D}$ is not defined, so we prove instead

Theorem (N.)

If D is not a square, then $J_{k,D}$ is the D-th coefficient of a weight k+1/2 modular form $\widehat{\Omega}(q)$ with coefficients in $\mathsf{MS}^\Gamma(\mathcal{A}_{2k})$.

Idea of proof:

But if D is a square then $J_{k,D}$ is not defined, so we prove instead

Theorem (N.)

If D is not a square, then $J_{k,D}$ is the D-th coefficient of a weight k+1/2 modular form $\widehat{\Omega}(q)$ with coefficients in $\mathsf{MS}^\Gamma(\mathcal{A}_{2k})$.

Idea of proof:

• Construct a modular form $\bar{\Omega}(q) = \sum_{D>0} c_D \cdot q^D$ with coefficients in $S_{2k}(\Gamma_0(p))$.

But if D is a square then $J_{k,D}$ is not defined, so we prove instead

Theorem (N.)

If D is not a square, then $J_{k,D}$ is the D-th coefficient of a weight k+1/2 modular form $\widehat{\Omega}(q)$ with coefficients in $\mathsf{MS}^\Gamma(\mathcal{A}_{2k})$.

Idea of proof:

- Construct a modular form $\bar{\Omega}(q) = \sum_{D>0} c_D \cdot q^D$ with coefficients in $S_{2k}(\Gamma_0(p))$.
- Apply a linear map $S_{2k}(\Gamma_0(p)) \to \mathsf{MS}^\Gamma(\mathcal{A}_{2k})$ sending $c_D \mapsto J_{k,D}$.

But if D is a square then $J_{k,D}$ is not defined, so we prove instead

Theorem (N.)

If D is not a square, then $J_{k,D}$ is the D-th coefficient of a weight k+1/2 modular form $\widehat{\Omega}(q)$ with coefficients in $\mathsf{MS}^\Gamma(\mathcal{A}_{2k})$.

Idea of proof:

- Construct a modular form $\bar{\Omega}(q) = \sum_{D>0} c_D \cdot q^D$ with coefficients in $S_{2k}(\Gamma_0(p))$.
- Apply a linear map $S_{2k}(\Gamma_0(p)) \to \mathsf{MS}^{\Gamma}(\mathcal{A}_{2k})$ sending $c_D \mapsto J_{k,D}$.
- This will give a modular form with coefficients in $MS^{\Gamma}(A_{2k})$.

• Let $\mathcal{F}_D^{(p)}(\mathbb{Z}) := \{Q(x,y) = ax^2 + bxy + cy^2 \text{ where } p|a, b^2 - 4ac = D \text{ and } a,b,c \in \mathbb{Z}\}.$

- Let $\mathcal{F}_D^{(p)}(\mathbb{Z}):=\{Q(x,y)=ax^2+bxy+cy^2 \text{ where } p|a,\ b^2-4ac=D \text{ and } a,b,c\in\mathbb{Z}\}.$
- Let s, -s be the two distinct square roots of D modulo p.

- Let $\mathcal{F}_D^{(p)}(\mathbb{Z}) := \{Q(x,y) = ax^2 + bxy + cy^2 \text{ where } p|a, b^2 4ac = D \text{ and } a,b,c \in \mathbb{Z}\}.$
- Let s, -s be the two distinct square roots of D modulo p.
- ullet Then $\mathcal{F}_D^{(p)}(\mathbb{Z})=\mathcal{F}_D^{(p),s}(\mathbb{Z})\sqcup\mathcal{F}_D^{(p),-s}(\mathbb{Z})$ where

$$\mathcal{F}_D^{(p),s}(\mathbb{Z}) = \{ax^2 + bxy + cy^2 \in \mathcal{F}_D^{(p)}(\mathbb{Z}) \text{ with } b \equiv s \text{ (mod } p)\}.$$

- Let $\mathcal{F}_D^{(p)}(\mathbb{Z}) := \{Q(x,y) = ax^2 + bxy + cy^2 \text{ where } p|a, b^2 4ac = D \text{ and } a,b,c \in \mathbb{Z}\}.$
- Let s, -s be the two distinct square roots of D modulo p.
- ullet Then $\mathcal{F}_D^{(p)}(\mathbb{Z})=\mathcal{F}_D^{(p),s}(\mathbb{Z})\sqcup\mathcal{F}_D^{(p),-s}(\mathbb{Z})$ where

$$\mathcal{F}_D^{(p),s}(\mathbb{Z})=\{ax^2+bxy+cy^2\in\mathcal{F}_D^{(p)}(\mathbb{Z})\ \text{with}\ b\equiv s\ (\text{mod}\ p)\}.$$

Proposition (N.)

Let

$$f_{k,D}^{(p),s}(z) := \sum_{Q \in \mathcal{F}_D^{(p),s}(\mathbb{Z})} Q(z,1)^{-k}.$$

Then $f_{k,D}^{(p),s}(z)$ converges to a form in $S_{2k}(\Gamma_0(p))$.

Theorem (N.)

 $\bar{\Omega}(q) := \sum_{D \geq 1} D^{k-1/2} f_{k,D}^{(p),s}(z) \cdot q^D$ is a modular form of weight k+1/2 and coefficients in $S_{2k}(\Gamma_0(p))$.

Theorem (N.)

 $\bar{\Omega}(q) := \sum_{D \geq 1} D^{k-1/2} f_{k,D}^{(p),s}(z) \cdot q^D$ is a modular form of weight k+1/2 and coefficients in $S_{2k}(\Gamma_0(p))$.

• We will now apply $S_{2k}(\Gamma_0(p)) \xrightarrow{\mathfrak{p}} \mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2}) \xrightarrow{ST} \mathsf{MS}^{\Gamma}(\mathcal{A}_{2k})$.

Theorem (N.)

 $\bar{\Omega}(q) := \sum_{D \geq 1} D^{k-1/2} f_{k,D}^{(p),s}(z) \cdot q^D$ is a modular form of weight k+1/2 and coefficients in $S_{2k}(\Gamma_0(p))$.

- We will now apply $S_{2k}(\Gamma_0(p)) \xrightarrow{\mathfrak{p}} \mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2}) \xrightarrow{ST} \mathsf{MS}^{\Gamma}(\mathcal{A}_{2k}).$
- Here \mathcal{P}_{2k-2} denotes the space of \mathbb{C}_p -valued polynomials of degree at most 2k-2.

Theorem (N.)

 $\bar{\Omega}(q) := \sum_{D \geq 1} D^{k-1/2} f_{k,D}^{(p),s}(z) \cdot q^D$ is a modular form of weight k+1/2 and coefficients in $S_{2k}(\Gamma_0(p))$.

- We will now apply $S_{2k}(\Gamma_0(p)) \xrightarrow{\mathfrak{p}} \mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2}) \xrightarrow{ST} \mathsf{MS}^{\Gamma}(\mathcal{A}_{2k})$.
- Here \mathcal{P}_{2k-2} denotes the space of \mathbb{C}_p -valued polynomials of degree at most 2k-2.
- The map p arises from the periods of $f_{k,D}^{(p),s}(z)$.

Definition

Let $f \in S_{2k}(SL_2(\mathbb{Z}))$ and let n be an integer with $0 \le n \le 2k-2$. We define

$$r_n(f):=\int_0^\infty f(it)t^ndt,$$

$$r^{+}(f)(x) := \sum_{\substack{0 \le n \le 2k-2 \\ n \text{ even}}} (-1)^{n/2} \binom{2k-2}{n} r_n(f) x^{2k-2-n}.$$

Definition

Let $f \in S_{2k}(SL_2(\mathbb{Z}))$ and let n be an integer with $0 \le n \le 2k-2$. We define

$$r_n(f):=\int_0^\infty f(it)t^ndt,$$

$$r^{+}(f)(x) := \sum_{\substack{0 \le n \le 2k-2 \\ n \text{ even}}} (-1)^{n/2} \binom{2k-2}{n} r_n(f) x^{2k-2-n}.$$

Kohnen and Zagier computed the even period polynomial of the D-th coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence.

Definition

Let $f \in S_{2k}(SL_2(\mathbb{Z}))$ and let n be an integer with $0 \le n \le 2k-2$. We define

$$r_n(f) := \int_0^\infty f(it)t^n dt,$$

$$r^+(f)(x) := \sum_{\substack{0 \le n \le 2k-2 \\ n \text{ even}}} (-1)^{n/2} \binom{2k-2}{n} r_n(f) x^{2k-2-n}.$$

Kohnen and Zagier computed the even period polynomial of the D-th coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence.

We can do something similar for $f_{k,D}^{(p),s}(z)$, which is the analogue of level p of $f_k(D,z)$.

Proposition (Kohnen, Zagier)

If D is not a square and k is even, then

$$r^+(f_k(D,z))(x) = \sum_{\substack{a,b,c \in \mathbb{Z} \\ a < 0 < c \\ b^2 - 4ac = D}} (ax^2 + bx + c)^{k-1}.$$

Proposition (Kohnen, Zagier)

If D is not a square and k is even, then

$$r^{+}(f_{k}(D,z))(x) = \sum_{\substack{a,b,c \in \mathbb{Z} \\ a < 0 < c \\ b^{2} - 4ac = D}} (ax^{2} + bx + c)^{k-1}.$$

Proposition (N.)

If D is not a square and k is odd, then the odd period polynomial r^- of $f_{k,D}^{(p),s}$ is

$$r^{-}(f_{k,D}^{(p),s})(x) = \sum_{[a,b,c] \in \mathcal{F}_{D}^{(p),s}(\mathbb{Z})} (ax^{2} + bx + c)^{k-1},$$

where [a, b, c] is a simple form.

The modular symbol attached to periods of $f_{k,D}^{(p),s}(z)$

To any $f \in S_{2k}(\Gamma_0(p))$ we can associate $\bar{\kappa}_f \in \mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2})$ defined by:

$$\bar{\kappa}_f\{r,s\}(x) := \int_r^s f(z)(x-z)^{k-1}dz,$$

where the integral is over the geodesic in the upper half plane joining r, s.

The modular symbol attached to periods of $f_{k,D}^{(p),s}(z)$

To any $f \in S_{2k}(\Gamma_0(p))$ we can associate $\bar{\kappa}_f \in \mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2})$ defined by:

$$\bar{\kappa}_f\{r,s\}(x) := \int_r^s f(z)(x-z)^{k-1}dz,$$

where the integral is over the geodesic in the upper half plane joining r, s.

Definition

For any $f \in S_{2k}(\Gamma_0(p))$, we let $\kappa_f\{r,s\} := \bar{\kappa}_f\{r,s\} - \bar{\kappa}_f\{-r,-s\}|\tilde{I}$. Then $\kappa_f \in MS^{\Gamma_0(p)}(\mathcal{P}_{2k-2})$.

The modular symbol attached to periods of $f_{k,D}^{(p),s}(z)$

To any $f \in S_{2k}(\Gamma_0(p))$ we can associate $\bar{\kappa}_f \in \mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2})$ defined by:

$$\bar{\kappa}_f\{r,s\}(x) := \int_r^s f(z)(x-z)^{k-1}dz,$$

where the integral is over the geodesic in the upper half plane joining r, s.

Definition

For any $f \in S_{2k}(\Gamma_0(p))$, we let $\kappa_f\{r,s\} := \bar{\kappa}_f\{r,s\} - \bar{\kappa}_f\{-r,-s\}|\tilde{I}$. Then $\kappa_f \in \mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2})$.

Proposition (N.)

Up to a constant we have:

$$\kappa_{f_{k,D}^{(p),s}(z)}\{r,s\}(x) = D^{1/2-k} \sum_{Q \in \mathcal{F}_D^{(p),s}(\mathbb{Z})} (\gamma_Q \cdot (r,s)) Q(x,1)^{k-1}.$$

The map \mathfrak{p} is defined as $f \mapsto \kappa_f$.

A Schneider-Teitelbaum lift for rigid analytic cocycles

We now study the map $MS^{\Gamma_0(p)}(\mathcal{P}_{2k-2}) \xrightarrow{ST} MS^{\Gamma}(\mathcal{A}_{2k})$.

A Schneider-Teitelbaum lift for rigid analytic cocycles

We now study the map $MS^{\Gamma_0(p)}(\mathcal{P}_{2k-2}) \xrightarrow{ST} MS^{\Gamma}(\mathcal{A}_{2k})$. For k=1 it was defined by Darmon and Vonk.

• Γ acts on \mathcal{P}_{2k-2} by

$$(h|\gamma)(z):=(cz+d)^{2k-2}h\Big(rac{a au+b}{c au+d}\Big),\quad ext{where } \gamma:=egin{pmatrix} a&b\c&d \end{pmatrix}\in\Gamma.$$

We now study the map $MS^{\Gamma_0(p)}(\mathcal{P}_{2k-2}) \xrightarrow{ST} MS^{\Gamma}(\mathcal{A}_{2k})$. For k=1 it was defined by Darmon and Vonk.

• Γ acts on \mathcal{P}_{2k-2} by

$$(h|\gamma)(z):=(cz+d)^{2k-2}h\Big(rac{a au+b}{c au+d}\Big),\quad ext{where } \gamma:=egin{pmatrix} a&b\c&d \end{pmatrix}\in\Gamma.$$

• It is convenient to work with $\mathcal{P}_{2k-2}^{\vee}$, where the Γ -action is given by

$$(\hat{h}|\gamma)(\cdot) = \hat{h}(\cdot|\gamma^{-1})$$

We now study the map $MS^{\Gamma_0(p)}(\mathcal{P}_{2k-2}) \xrightarrow{ST} MS^{\Gamma}(\mathcal{A}_{2k})$. For k=1 it was defined by Darmon and Vonk.

• Γ acts on \mathcal{P}_{2k-2} by

$$(h|\gamma)(z):=(cz+d)^{2k-2}h\Big(rac{a au+b}{c au+d}\Big),\quad ext{where } \gamma:=egin{pmatrix} a&b\c&d \end{pmatrix}\in\Gamma.$$

• It is convenient to work with $\mathcal{P}_{2k-2}^{\vee}$, where the Γ -action is given by

$$(\hat{h}|\gamma)(\cdot) = \hat{h}(\cdot|\gamma^{-1})$$

Moreover, we will use the isomorphism

$$\mathsf{MS}^{\Gamma_0(p)}(\mathcal{P}_{2k-2}^{\vee}) \cong \mathsf{MS}^{\Gamma}(C_{\mathsf{har}}(\mathcal{P}_{2k-2}^{\vee})).$$

Where $C_{\operatorname{har}}(\mathcal{P}_{2k-2}^{\vee})$ are the *harmonic cocycles* with values in $\mathcal{P}_{2k-2}^{\vee}$,

Where $C_{\text{har}}(\mathcal{P}_{2k-2}^{\vee})$ are the *harmonic cocycles* with values in $\mathcal{P}_{2k-2}^{\vee}$, i.e. functions $c:\mathcal{T}_1^*\to\mathcal{P}_{2k-2}^{\vee}$ satisfying

$$c(ar{e}) = -c(e), \quad ext{and} \quad \sum_{s(e) = v} c(e) = 0, \quad ext{for all } v \in \mathcal{T}_0 \ \, ext{and} \, \, e \in \mathcal{T}_1^*.$$

Where $C_{\text{har}}(\mathcal{P}_{2k-2}^{\vee})$ are the *harmonic cocycles* with values in $\mathcal{P}_{2k-2}^{\vee}$, i.e. functions $c:\mathcal{T}_1^*\to\mathcal{P}_{2k-2}^{\vee}$ satisfying

$$c(ar{e}) = -c(e), \quad ext{and} \quad \sum_{s(e) = v} c(e) = 0, \quad ext{for all } v \in \mathcal{T}_0 \ \, ext{and} \, \, e \in \mathcal{T}_1^*.$$

The Γ -action on $C_{\text{har}}(\mathcal{P}_{2k-2}^{\vee})$ is given by $(c|\gamma)(e) := c(\gamma e)|\gamma$.

Where $C_{\text{har}}(\mathcal{P}_{2k-2}^{\vee})$ are the *harmonic cocycles* with values in $\mathcal{P}_{2k-2}^{\vee}$, i.e. functions $c:\mathcal{T}_1^*\to\mathcal{P}_{2k-2}^{\vee}$ satisfying

$$c(ar{e})=-c(e), \ \ ext{and} \ \sum_{s(e)=v}c(e)=0, \ \ ext{for all} \ v\in\mathcal{T}_0 \ \ ext{and} \ e\in\mathcal{T}_1^*.$$

The Γ -action on $C_{\mathsf{har}}(\mathcal{P}^{\vee}_{2k-2})$ is given by $(c|\gamma)(e) := c(\gamma e)|\gamma$.

• So we want a map $MS^{\Gamma}(C_{har}(\mathcal{P}_{2k-2}^{\vee})) \xrightarrow{ST} MS^{\Gamma}(\mathcal{A}_{2k}).$

Note that $c \in \mathsf{MS}^{\Gamma}(C_{\mathsf{har}}(\mathcal{P}^{\vee}_{2k-2}))$ is a collection of harmonic cocycles $c\{r,s\}$ indexed on $\mathbb{P}_1(\mathbb{Q}) \times \mathbb{P}_1(\mathbb{Q})$.

Note that $c \in \mathsf{MS}^\Gamma(C_{\mathsf{har}}(\mathcal{P}^\vee_{2k-2}))$ is a collection of harmonic cocycles $c\{r,s\}$ indexed on $\mathbb{P}_1(\mathbb{Q}) \times \mathbb{P}_1(\mathbb{Q})$. This gives a collection of distributions $\mu_{c\{r,s\}}$ given by

$$\int_{U(e)} P(t) d\mu_{c\{r,s\}}(t) = (c\{r,s\}(e))(P),$$

where $P \in \mathcal{P}_{2k-2}$ and U(e) is the *p*-adic ball associated to the edge *e*.

Note that $c \in \mathsf{MS}^\Gamma(C_{\mathsf{har}}(\mathcal{P}^\vee_{2k-2}))$ is a collection of harmonic cocycles $c\{r,s\}$ indexed on $\mathbb{P}_1(\mathbb{Q}) \times \mathbb{P}_1(\mathbb{Q})$. This gives a collection of distributions $\mu_{c\{r,s\}}$ given by

$$\int_{U(e)} P(t) d\mu_{c\{r,s\}}(t) = (c\{r,s\}(e))(P),$$

where $P \in \mathcal{P}_{2k-2}$ and U(e) is the *p*-adic ball associated to the edge *e*.

• The map $MS^{\Gamma}(C_{har}(\mathcal{P}_{2k-2}^{\vee})) \xrightarrow{ST} MS^{\Gamma}(\mathcal{A}_{2k})$ will be given by $c \mapsto f$ where

$$f\{r,s\}(z):=\int_{\mathbb{P}_1(\mathbb{Q}_n)}\frac{1}{z-t}d\mu_{c\{r,s\}}(t).$$

We need to show

that the expression makes sense,

We need to show

- that the expression makes sense,
- that $f\{r,s\}(z)$ is in A_{2k} and that $f\{r,s\}$ is a Γ -invariant modular symbol.

We need to show

- that the expression makes sense,
- that $f\{r,s\}(z)$ is in A_{2k} and that $f\{r,s\}$ is a Γ -invariant modular symbol.

Note that $c\{r,s\} \mapsto c\{0,\infty\}$ identifies $\mathsf{MS}^{\Gamma}(C_{\mathsf{har}}(\mathcal{P}_{2k-2}^{\vee}))$ with a subset of $C_{\mathsf{har}}(\mathcal{P}_{2k-2}^{\vee})$ of cocycles c satisfying the relations

$$c|(1+S)=0$$
, $c|(1+U+U^2)=0$, $c|D=c$,

where

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} p & 0 \\ 0 & 1/p \end{pmatrix}.$$

So it is enough to show that for any $c\in C_{\rm har}(\mathcal{P}_{2k-2}^\vee)$ satisfying the conditions above the integral

$$\int_{\mathbb{P}_1(\mathbb{Q}_p)} \frac{1}{z-t} d\mu_c(t)$$

makes sense.

So it is enough to show that for any $c \in C_{\rm har}(\mathcal{P}_{2k-2}^{\vee})$ satisfying the conditions above the integral

$$\int_{\mathbb{P}_1(\mathbb{Q}_p)} \frac{1}{z-t} d\mu_c(t)$$

makes sense. This follows because

$$\Big|\int_{U(e)} x^n d\mu_c(x)\Big|, \quad 0 \le n \le 2k-2$$

satisfies certain bounds,

So it is enough to show that for any $c \in C_{\sf har}(\mathcal{P}^{\lor}_{2k-2})$ satisfying the conditions above the integral

$$\int_{\mathbb{P}_1(\mathbb{Q}_p)} \frac{1}{z-t} d\mu_c(t)$$

makes sense. This follows because

$$\Big|\int_{U(e)} x^n d\mu_c(x)\Big|, \quad 0 \le n \le 2k-2$$

satisfies certain bounds, hence the distribution can be extended uniquely to the space of \mathbb{C}_p -valued functions on $\mathbb{P}^1(\mathbb{Q}_p)$ which are locally analytic except for a pole at ∞ of order at most 2k-2.

Thank you!