

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(\overline{A}B) = P[(S-A)B] = P(B) - P(AB)$$

$$P[(A \cup B)(\overline{AB})] = P[(A \cup B)(S - AB)] = P(A \cup B) - P[(A \cup B)(AB)]$$

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

解 (1) :
$$Y = e^x > 0$$
, 故当 $y \le 0$ 时 $F_y(y) = 0$.

当
$$y > 0$$
 时, $F_Y(y) = P\{Y \le y\} = P\{e^x \le y\} = P\{X \le \ln y\} = F_X(\ln y)$,

所以

$$f_{Y}(y) = \frac{d}{dy}F(y) = \begin{cases} \frac{1}{y}f_{X}(\ln y) = \frac{1}{\sqrt{2\pi y}}e^{-\frac{(\ln y)^{2}}{2}}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

对于连续型随机变量 x , 有

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1 \,, \quad F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t) \, \mathrm{d}t \,,$$

$$P\{a < X < b\} = P\{a \le X < b\} = P\{a \le X \le b\} = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$E(X) = \iint_{R \times R} x f(x, y) dx dy$$

$$E(XY) = \iint_{R \times R} xyf(x, y) dxdy$$

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

$$E(X^{2}) = \iint_{R \times R} x^{2} f(x, y) dx dy$$

$$D(X) = E(X^2) - \left[E(X)\right]^2$$

$$D(X+Y) = D(X) + D(Y) + 2Cov(X,Y)$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

解似然函数为: $L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{x_i}{\theta}}$

当
$$x_i > 0$$
时, $\ln L(\theta) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^n x_i$
$$\frac{d}{d\theta} \ln L(\theta) = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n x_i = 0$$

$$\theta = \frac{\sum_{i=1}^n x_i}{n} = \bar{x}$$

得θ的最大似然估计值为 $\hat{\theta} = \bar{x}$ 。

T分布,μ的置信水平为 $1-\alpha$ 的置信区间为: $\bar{x} \pm \frac{s}{\sqrt{n}} \cdot t\alpha_{/2}(n-1)$,适用于 σ 未知的情况,求解条件:均值 \bar{x} ,标准差 s,样本总数 n,置信概率 $1-\alpha*100\%$

Z 分布,μ的置信水平为 1-α的置信区间为: $\frac{\bar{x} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{\alpha/2}}{\sqrt{n}}$,适用于σ已知的情况,

求解条件:均值 \bar{x} ,方差 σ ,样本总数 n,置信概率 1- α *100%

χ分布,方差 σ^2 的置信水平 1- α 的置信区间为: $\left[\frac{(n-1)s^2}{\chi_{\alpha/2}(n-1)},\frac{(n-1)s^2}{\chi_{1-\alpha/2}(n-1)}\right]$, μ未知的情

况, $\left[\chi_{\alpha/2}^{2}(n-1)\right]$ 是一个数, eg.

故 σ 的置信水平为0.95的置信区间为

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}}, \sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}}\right) = \left(\sqrt{\frac{8\times s^2}{\chi^2_{0.025}(8)}}, \sqrt{\frac{8\times s^2}{\chi^2_{0.975}(8)}}\right) = (0.4591, 1.3021).$$

假设检验:

双边: H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$,拒绝域: $z \geq z_0$

右尾: H_0 : $\mu \le \mu_0$, H_1 : $\mu \ge \mu_0$, 拒绝域: $z \ge z_0$

左尾: $H_0: \mu \ge \mu_0, H_1: \mu \le \mu_0$, 拒绝域: $z \le z_0$

【分析】 方差 σ^2 已知,关于均值 μ 的假设检验—— - Z 检验

检验统计量
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

右边检验: $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$.

拒绝域: $\{z \ge z_{\alpha}\}$. ——右尾域

【分析】 方差 σ^2 未知,关于均值 μ 的假设检验——t检验法

检验统计量为: $T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$,

双边检验: $H_0: \mu = \mu_0$

 $H_1: \mu \neq \mu_0$.

拒绝域: $\left\{ |t| \ge t_{\underline{\alpha}}(n-1) \right\}$.

【分析】 关于方差 σ^2 的假设检验—— χ^2 检验

双边检验: $H_0: \sigma^2 = \sigma_0^2$, $H_1: \sigma^2 \neq \sigma_0^2$.

检验统计量为: $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$

拒绝域: $\{\chi^2 \leq \chi^2_{1-\alpha/2}(n-1)\} \cup \{\chi^2 \geq \chi^2_{\alpha/2}(n-1)\}$ ——双尾域

附表 1 常用随机变量的分布、数学期望和方差

	连续型随机变量			兩散型隨机变量					
Sx The or of da	正态分布 N(µ, σ ²)	指数分布	均匀分布 U(a, b)	超几何分布	几何分布	泊松分布 (人)	二项分布 B(n, p)	常见分布 (0-1) 分布	
	$\mu\sigma > 0$	$\theta > 0$	a < b	N, M, n $(M \leqslant N)(n \leqslant N)$	0	λ > 0	$n\geqslant 1, 0< p< 1$	参数 0 < p < 1	
	$f(x) = \sqrt{\frac{1}{\sqrt{2\pi}\sigma}} \mathrm{e}^{-(x-\mu)^2/(2\sigma^2)}$	$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x > 0, \\ 0, & x \leqslant 0 \end{cases}$	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & \text{jth} \end{cases}$	$P\left\{X=k\right\} = \frac{C_{N}^{k}C_{N-M}^{n-k}}{C_{N}^{n}}, k 为整数,$ max $\left\{0, n-N+M\right\} \leqslant k \leqslant \min\left\{n, M\right\}$	$P{X = k} = (1-p)^{k-1}p, k = 1, 2, \cdots$	$P\{X = k\} = (\frac{\lambda^k}{k!}e^{-\lambda}), k = 0, 1, 2, \cdots$	$P\{X=k\} = C_n^k p^k (1-p)^{n-k} k = 0, 1, \dots, n$	分布律或概率密度 $P\{X = 1\} = p, P\{X = 0\} = 1 - p$	
	μ	θ	$\frac{a+b}{2}$	$\frac{nM}{N}$	1 p	>	np	数学期望	
	92	θ ²	$\frac{(b-a)^2}{12}$	$\frac{nM}{N}\left(1-\frac{M}{N}\right)\left(\frac{N-n}{N-1}\right)$	$\frac{1-p}{p^2}$	~	np(1-p)	方差 p(1-p)	