# Cambridge (CIE) A Level Chemistry



# **Alcohols**

#### **Contents**

\* Alcohols & Acyl Chlorides





# Reaction of Alcohols With Acyl **Chlorides**

- Acyl chlorides are reactive organic compounds with a -COCI functional group
- The carbonyl carbon is **electron-deficient** and has a **partial positive charge**
- It is therefore susceptible to nucleophilic attack
- The carbon-chlorine bond breaks and white fumes of hydrogen chloride, HCl, are

## Reaction with alcohols and phenols

- Acyl chlorides react with alcohols and phenols to form esters via an additionelimination mechanism
- The -OH group acts as a **nucleophile** and attacks the carbonyl carbon to **substitute** the chlorine atom
- Forming esters from acyl chlorides rather than carboxylic acids is more effective because:
  - Acyl chlorides are more **reactive** (so they produce the ester faster)
  - Acyl chloride reactions go to **completion** (so more of the ester is produced)

#### Reaction with alcohols

• The reaction of acyl chlorides with alcohols is **vigorous** and white fumes of HCl gas are formed

## Esterification of an aliphatic alcohol using an acyl chloride

Acyl chlorides react vigorously with alcohols to form esters

## Reaction with phenols

• For the reaction of acyl chlorides with phenols to occur, **heat** and a **base** are required

- The base is needed to deprotonate the phenol and form a **phenoxide ion**
- The phenoxide ion is a better nucleophile than the original phenol molecule and will be able to attack the carbonyl carbon



#### Esterification of phenol using an acyl chloride

Acyl chlorides react with phenols when heated and in the presence of a base to form esters

A base is needed to form a phenoxide ion which is a better nucleophile than phenol; now, nucleophilic attack on the carbonyl carbon can more readily occur