Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Nieistniejący Nichilista

Nr albumu: 123456

Implementacja systemu AI-Arena

Praca licencjacka na kierunku INFORMATYKA

> Praca wykonana pod kierunkiem **dra. Roberta Dabrowskiego** Wydział Matematyki Informatyki i Mechaniki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

W pracy przedstawiono implementacje systemu AI-Arena, służacego do przeprowadzania turniejow programow walczacych.

Słowa kluczowe

programy walczace, arena, sztuczna inteligencja

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.3 Informatyka

Klasyfikacja tematyczna

D. Software D.0. General

Tytuł pracy w języku angielskim

Implementation of AI-Arena system

Spis treści

W	prowadzenie	5
1.	Use cases	7
2.	Metodyka Scrum	11
3.	Architektura systemu 3.1. Nadzorca 3.2. Scheduler 3.3. Baza danych 3.4. API uzytkownika	13 13 13
4.	Dokumentacja uzytkowa i opis implementacji	15
5.	Podsumowanie	17
6.	Podział prac	19
7.	Spis płyty	21
Α.	Przykladowa gra	23
В.	Przykladowe programy	25
C.	Przebieg przykladowego turnieju	27
Ri	bliografia	20

Wprowadzenie

System Ai-Arena służy do przeprowadzania rozgrywek i turniejów rółnych gier pomiędzy programami komputerowymi. System ma w zamierzeniu twórców służyć osobom zainteresowanym sztuczną inteligencją do sprawdzenia swoich umiejętności, lub jako pomoc przy badaniach nad sztuczną inteligencją.

Praca składa się z pięciu rozdziałów. Pierwszy zawiera opis architektury systemu. W drugim rozdziałe zawarto dokumentację użytkownika systemu i szczegóły implementacji. Rozdział trzeci zawiera podsumowanie, rozdział czwart podział prac a rozdział piąty spis płyty dołączonej do pracy.

Use cases

Scenariusze użycia systemu przez użytkownika niezalogowanego (Gościa)

Dostęp do strony głównej Założenia:

Zaiozeiii

• Brak

Scenariusz postępowania:

1. Gość wpisuje w pasku adresu adres strony

Efekt:

1. W oknie przeglądarki wyświetla się strona główna

Scenariusze alternatywne:

• Brak

Rejestracja w systemie

Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość posiada aktywne konto mailowe

Scenariusz postępowania:

- 1. Gość klika na link ?zarejestruj? przekierowujący do strony z rejestracją
- 2. Gość wpisuje swoje dane do formularza. Dane zawierają m.in. pożądaną nazwę użytkownika, hasło, pole do weryfikacji hasła, adres mailowy.
- 3. Gość wchodzi na swoją skrzynkę mailową i otwiera list wysłany przez serwis
- 4. Gość klika w link aktywacyjny

Efekt:

- 1. System wysyła do użytkownika wiadomość na podany adres mailowy
- 2. System zakłada użytkownikowi nowe konto w serwisie
- 3. Po kliknięciu w link aktywacyjny system umożliwia zalogowanie na to konto

Scenariusze alternatywne:

- 1. Gość wybrał nazwę użytkownika, która jest już zajęta
 - a) System wyświetla komunikat, że żądana nazwa użytkownika jest niedostępna
- 2. Gość wpisał niejednakowe ciągi znaków w polu "hasło" i "potwierdzenie hasła"
 - a) System wyświetla komunikat o niezgodności danych
- 3. Gość wpisał niepoprawny adres mailowy
 - a) System próbuje wysłać maila na podany adres
 - b) W przypadku braku aktywacji konta w ciągu 24 godzin konto zostanie automatycznie skasowane
- 4. Gość nie kliknął w link aktywacyjny przysłany w mailu
 - a) Po upływie 24 godzin konto zostanie automatycznie skasowane

Logowanie w systemie - wariant 1: Gość posiada konto Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość posiada konto w serwisie

Scenariusz postępowania:

- 1. Gość klika w link ?zaloguj? przekierowujący na stronę logowania
- 2. Gość w formularzu wpisuje swoją nazwę użytkownika i hasło

Efekt:

1. System przekierowuje użytkownika na jego stronę startowa

Scenariusze alternatywne:

- 1. Podana przez Gościa nazwa użytkownika jest nieprawidłowa
 - a) System wyświetla komunikat, że podana nazwa użytkownika lub hasło jest nieprawidłowe
- 2. Podane przez Gościa hasło jest nieprawidłowe
 - a) System wyświetla komunikat, że podana nazwa użytkownika lub hasło jest nieprawidłowe
- 3. Konto nie zostało aktywowane

a) System wyświetla komunikat, że konto nie zostało jeszcze aktywowane. Użytkownik pozostaje niezalogowany

Logowanie w systemie - wariant 2: Gość nie posiada konta Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość nie posiada konta w serwisie

Scenariusz postępowania:

- 1. Gość klika w link ?zaloguj? przekierowujący na stronę logowania
- 2. Gość w formularzu wpisuje nazwę użytkownika i hasło

Efekt:

1. System wyświetla komunikat, że podana nazwa użytkownika lub hasło są nieprawidłowe

Scenariusze alternatywne:

• Brak

Rozdział 2 Metodyka Scrum

Architektura systemu

3.1. Nadzorca

Warstwa nadzorcy jest odpowiedzialna za uruchamienie rozgrywek pomiędzy wybranymi graczami, zbieranie informacji o ich wynikach i przekazywnie ich do warstwy schedulera. Nadzorca jest skryptem napisanm w pythonie, którego najważniejszą częścią jest metoda play. Metoda ta przyjmuje jako argumenty uruchamialne pliki sędziego i programów grających, oraz limity czasowy i pamięciowy dla każdego programu grającego. Następnie metoda play przeprowadza odpowiednią rozgrywkę, zwracając jako wynik ciągi liczb oznaczające przydzielone przez sedziego punkty za rozgrywkę, wykorzystane przez programy czasy i pamięć RAM.

3.2. Scheduler

Warstwa schedulera jest odpowiedzialna za ustalanie jakie rozgrywki w turnieju mają się odbyć, zlecanie poszczególnych rozgrywek nadzorcy i zapisywanie otrzymanych od nadzorcy wyników w bazie. Do realizacji warstwy nadzorcy używany jest program Gearmand0.26.

3.3. Baza danych

3.4. API uzytkownika

Użytkownik komunikuje się z systemem poprzez interfejs webowy, zaimplementowany w Django. Interfejs pozwala na przesyłanie plików swoich programów grających...

Dokumentacja uzytkowa i opis implementacji

Podsumowanie

Podział prac

Spis płyty

Dodatek A

Przykladowa gra

Dodatek B

Przykladowe programy

Dodatek C

Przebieg przykladowego turnieju

Bibliografia