

Concours A2GP session 2018

Composition : **Chimie générale**

Durée : 2 Heures

Consignes pour les candidats	Merci de ne rien marquer sur le sujet. Pour chaque question de l'épreuve, une seule bonne réponse possible.				
	Répondez sur la grille séparée qui comporte 20 questions (Q01 à Q20). Seules les grilles correctement remplies seront corrigées.				

Le carbone $^{14}_{6}\text{C}$ est radioactif $\beta^{\text{-}}$ et sa période T = 5730 ans. L'activité d'un échantillon de bois jeune est A_0 = 1500 dpm (désintégration par minute). (Les questions Q01, Q02 et Q03 dépendent de cet énoncé)

Q01- La réaction de désintégration radioactive est

$$A^{-14}C \rightarrow {}^{0}_{1}e + {}^{14}_{5}B + {}^{0}_{0}v + \gamma$$

B-
$${}^{14}_{6}C \rightarrow {}^{10}_{-1}e + {}^{14}_{7}N + {}^{0}_{0}\overline{\nu} + \gamma$$

$$C^{-14}_{6}C \rightarrow {}^{10}_{-1}e + {}^{14}_{7}N + {}^{0}_{0}\overline{\nu}$$

D-
$${}^{14}_{6}C \rightarrow {}^{4}_{2}He + {}^{10}_{4}Be + \gamma$$

Q02- L'activité du bois jeune est Bq est :

A-
$$A_0 = 25 \text{ Bq}$$

$$B- A_0 = 1500 Bq$$

$$C- A_0 = 90000 Bq$$

$$D-A0 = 18000 Bq$$

Q03- L'âge t d'un échantillon de bois dont l'activité vaut 232 dpm est :

A-
$$t = 5730$$
 ans

B-
$$t = 17895$$
 ans

C-
$$t = 15430$$
 ans

D-
$$t = 3009$$
 ans

Q04- L'ordre croissant d'énergie d'ionisation des ions suivants K⁺, Cl⁻ et S²⁻ est :

A-
$$EI(K^+) < EI(Cl^-) < EI(S^{2-})$$

B-
$$EI(Cl^{-}) < EI(S^{2-}) < EI(K^{+})$$

C-
$$EI(S^{2-})$$
 $<$ $EI(Cl^-)$ $<$ $EI(K^+)$

D-
$$EI(K^+)$$
 < $EI(S^2)$ < $EI(Cl^-)$

Q05- L'ordre croissant d'énergie d'ionisation des espèces suivantes N, O et NO est :

- A- EI(N) < EI(O) < EI(NO)
- B- EI(O) < EI(NO) < EI(N)
- C-EI(NO) < EI(N) < EI(O)
- D-EI(NO) < EI(O) < EI(N)

Q06- L'ordre croissant du nombre de liaison C-O des espèces suivantes CO , CO_2 , CO_3^{2-} et CH_3OH est

- A- $il(CO_2) < il(CO_2)^{-1} < il(CH_3OH)$
- B- $il(CH_3OH) < il(CO_3^{2-}) < il(CO_2) < il(CO)$
- C- $il(CO_2) < il(CO) < il(CH_3OH) < il(CO_3^{2-})$
- D- $il(CH_3OH) < il(CO_3^{2-}) < il(CO) < il(CO_2)$

Q07- On considère les espèces suivantes : XeF_2 , IF_3 , IF_4^+ et SF_5^+ . Les espèces qui ont un moment dipolaire sont :

- A- IF₃ et IF₄⁺
- B- XeF₂, IF₃ et IF₄⁺
- C- IF₃, IF₄ et SF₅⁺
- D- IF4 et SF5

Q08- L'élément X est dans la même période que Ba et la même colonne que O. Son numéro atomique Z est :

- A- Z = 81
- B-Z = 70
- C Z = 84
- D-Z = 102

A 700°C, l'acide propanoïque CH₃CH₂COOH subit deux réactions de décomposition thermique simultanée :

- $CH_3CH_2COOH \xrightarrow{k_1} CH_3CH_3 + CO_2 \text{ avec } k1 = 5.5 \text{ s}^{-1}$
- $CH_3CH_2COOH \xrightarrow{k2} CH_3CH=C=O + H_2O \text{ avec } k2 = 9,5 \text{ s}^{-1}$

(Les questions Q09, Q10 et Q11 dépendent de cet énoncé)

Q09- L'ordre de chacune de ces réactions est

- A- ordre 0
- B- ordre 1
- C- ordre 2
- D- ordre 3

Q10- Le nom de la réaction de décomposition de CH₃CH₂COOH est

A- réaction simple

B- réaction jumelle

C- réaction réversible

D- réaction successive

Q11- Le temps t pour décomposer 90% de l'acide CH₃CH₂COOH initial est :

A- t = 0.154 s

B-t=6s

C-t=9s

D-t = 18 s

On dose 10 mL d'une solution de chlorure de fer (II) $FeCl_2$ de concentration 0,1 mol.L⁻¹ en milieu acide par le dichromate de potassium $K_2Cr_2O_7$ de concentration inconnue C contenue dans la burette. A l'équivalence, le volume de $K_2Cr_2O_7$ versé est $V_E = 10$ mL.(Les questions Q12 et Q13 dépendent de cet énoncé)

Q12- La constante d'équilibre K° de la réaction de dosage est :

A- $K^{\circ} = 10^{56}$

B- $K^{\circ} = 10^{46,67}$

 $C- K^{\circ} = 10^{37,33}$

D- $K^{\circ} = 0.15$

Q13- La concentration inconnue C de K₂Cr₂O₇ est

A- $C = 1,07.10^{-2} \text{ mol.L}^{-1}$

B- $C = 0.02 \text{ mol.L}^{-1}$

C- $C = 0.025 \text{ mol.L}^{-1}$

D- $C = 1,67.10^{-2} \text{ mol.L}^{-1}$

Une solution d'ion nickel N^{2+} de molarité $C_0 = 1$ mol. L^{-1} , qui contient aussi des impuretés des ions Cu^{2+} à la concentration molaire 8.10^{-3} mol. L^{-1} , des ions Fe^{2+} à la concentration molaire 2.10^{-3} mol. L^{-1} . Ces impuretés doivent être extraites avant que la solution de nickel ne soit introduite dans un compartiment. (Les questions Q14 et Q15 dépendent de cet énoncé)

Q14- Le pH de début de précipitation des quatre hydroxydes est dans l'ordre suivant :

A- $Ni(OH)_2 < Co(OH)_2 < Cu(OH)_2 < Fe(OH)_2$

B- $Cu(OH)_2 < Ni(OH)_2 < Fe(OH)_2 < Co(OH)_2$

C- $Co(OH)_2 < Cu(OH)_2 < Fe(OH)_2 < Ni(OH)_2$

D- Co(OH)₂ < Cu(OH)₂ < Ni(OH)₂ < Fe(OH)₂

Q15- L'extraction des ions N²⁺ par précipitation des hydroxydes :

A- est très sélective des ions nickel

B- est peu sélective des ions nickel

C- n'est pas sélective des ions nickel

D- est très sélective des ions fer(II)

On traite l'ilménite FeTiO₃ (association des deux oxydes FeO et TiO₂) ou les slangs (laitiers titanifères) par du carbone dans un four à haute température.

On peut considérer que la transformation réalisée dans le four fait intervenir les deux réactions suivantes : (Les questions Q16 et Q17 dépendent de cet énoncé)

$$TiO_{2(s)} + 2 C(s) \stackrel{\sim}{\leftarrow} 2 CO(g) + Ti(s)$$
 (1)
 $FeO(s) + C(s) \stackrel{\sim}{\leftarrow} CO(g) + Fe(s)$ (2)

Q16- Une élévation de la température

A- n'a aucune influence sur l'équilibre (1)

B- déplace l'équilibre (2) dans le sens 1

C- n'a aucune influence sur l'équilibre (2)

D- déplace l'équilibre (1) dans le sens 1

Q17- A 1600 K les pressions partielles en CO sont $P_{(CO) \acute{e}q,1}=4,9.10^{-3}$ bar pour l'équilibre (1) et $P_{(CO)\acute{e}q,2}=8,8.10^{20}$ bar pour l'équilibre (2) alors $\Delta r G_1^0(1600 \text{K})$ et $\Delta r G_2^0(1600 \text{K})$ ont pour valeurs respectives :

A- $\Delta rG_1^0(1600K) = 4,14 \text{ kJ.mol}^{-1} \text{ et } \Delta rG_2^0(1600K) = 42,6 \text{ kJ.mol}^{-1}$

B- $\Delta rG_1^0(1600K) = -4.14 \text{ kJ.mol}^{-1} \text{ et } \Delta rG_2^0(1600K) = -42.6 \text{ kJ.mol}^{-1}$

C- $\Delta rG_1^0(1600K) = 1,41.10^2 \text{ kJ.mol}^{-1} \text{ et } \Delta rG_2^0(1600K) = 6,41.10^2 \text{ kJ.mol}^{-1}$

D- $\Delta rG_1^0(1600K) = 1,41.10^2 \text{ kJ.mol}^{-1} \text{ et } \Delta rG_2^0(1600K) = -6,41.10^2 \text{ kJ.mol}^{-1}$

Une solution S contient de l'hydrogénocarbonate de potassium KHCO₃ de molarité C_1 et du carbonate de sodium Na_2CO_3 de molarité C_2 . On dose 20 mL de la solution S par l'acide chlorhydrique de molarité $C_A = 0,5$ mol.L⁻¹. La courbe de de dosage est donnée par la figure-1. (Les questions Q18, Q19 et Q20 dépendent de cet énoncé)

Q18- Les molarités C1 et C2 de la solution S sont

A- $C_1 = 0.35 \text{ mol.L}^{-1} \text{ et } C_2 = 0.15 \text{ mol.L}^{-1}$

B- $C_1 = 0.25 \text{ mol.L}^{-1} \text{ et } C_2 = 0.1 \text{ mol.L}^{-1}$

 $C- C_1 = 0.45 \text{ mol.L}^{-1} \text{ et } C_2 = 0.1 \text{ mol.L}^{-1}$

D- $C_1 = 0.25 \text{ mol.L}^{-1} \text{ et } C_2 = 0.45 \text{ mol.L}^{-1}$

Q19- A l'équivalence, la solution est

A- Une solution neutre

B- Une solution basique

C- Une solution acide

D- Une solution tampon

Q20- Le pH à l'équivalence est

A- pH = 3,57

B- pH = 7

C- pH = 6.5

D- pH = 11,2

Données

Les numéros atomiques : $_6C$; $_7N$; $_8O$; $_9F$; $_{16}S$; $_{17}Cl$; $_{19}K$; $_{53}I$; $_{54}Xe$ et $_{56}Ba$

- Constante des gaz parfaits : R = 8,31 J.K⁻¹.mol⁻¹
- Quelques données thermodynamiques :

composé	TiO ₂ (s)	CO(g)	FeO(s)	TiCI ₄ (g)	Ti(s)	Fe(s)	C(s)	Cl ₂ (g)	O ₂ (g)
$\Delta_f H^{0}$ (kJ.mol ⁻¹)	- 944,7	- 110,5	272,0	- 763,2	0	0	0	0	0
S ⁰ (J.K ⁻¹ .mol ⁻¹)	50,2	197,6	57,5	354,8	30,6	27,3	5,7	223,0	205,1

C(s) représente le carbone graphite

- pKs des hydroxydes (pKs = $-log_{10}$ Ks) à 298 K

	Ni(OH) ₂	Cu(OH) ₂	Co(OH) ₂	Fe(OH) ₂
pKs	14,7	18,5	14,8	15,1

- Les potentiels d'oxydoréduction

$$E^{\circ}(Fe^{3+}/Fe^{2+}) = 0.77 \text{ V et } E^{\circ}(Cr_2O_7^{2-}/Cr^{3+}) = 1.33 \text{ V}$$

$$pK_{A1}(CO_2/HCO_3^-) = 6.4 \text{ et } pK_{A2}(HCO_3^-/CO_3^{2-}) = 10.3$$

Figure 1 - Dosage d'un volume $V_S = 20.0$ mL de la solution **S** par une solution titrée d'acide chlorhydrique de concentration $C_A = 0.500$ mol·L⁻¹

