

Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

Hengxu Lin*, Dong Zhou*, Weiging Liu, Jiang Bian

KDD 2021

27th SIGKDD Conference on Knowledge Discovery and Data Mining

Online August 14–18, 2021

Problem

- Accurate stock prediction is of vital importance for successful investment.
- However, as investors usually hold various beliefs and strategies to guide their trading, there will be multiple patterns in the stock market data.
- A single model often fails to capture such diverse or even contrary trading patterns.

Highlights

- We are the first to design stock prediction solutions to address the challenge of multiple trading patterns.
- We propose *Temporal Routing Adaptor (TRA)* to empower existing stock prediction models with the ability to model multiple trading patterns.
- We design an *optimal transport (OT)* based learning algorithm to further guarantee the discovery of multiple trading patterns.
- Our model outperforms the state-of-the-art by 11.3% in terms of IC and achieves higher annualized return and Sharpe ratio in real-world experiments.

Temporal Routing Adaptor

Temporal Routing Adaptor: Predictors + Router

Predictors:

Responsible for representing multiple patterns.

Router:

 Responsible for detecting a sample's underlying pattern and assign to the appropriate predictor.

Router can utilize two types of information to "predict" $p(y_t|\mathbf{x}_t)$:

- Latent representation: $p(\hat{y}_t|\mathbf{x_t})$.
- Temporal prediction errors: $p(y_{< t}|\mathbf{x}_{< t})$.

Prediction Errors t^{t-T} t^{t-T+1} ... t^{t} Memory prediction write prediction g_1^t g_2^t g_3^t TRA router predictors Latent Representation Backbone model Input X

Optimal Transport

Optimal Transport: Objective + Constraint

- Constraint: keep the assigned samples to different predictors almost balanced
- Objective: assign samples to predictors to minimize the overall loss

Results

TRA beats all state-of-the-art stock prediction methods:

Method	Ranking Metrics				Portfolio Metrics			
	MSE (1)	MAE (1)	IC (†)	ICIR (†)	AR (†)	AV (1)	SR (†)	MDD (1)
Linear	0.163	0.327	0.020	0.132	-3.2%	16.8%	-0.191	32.1%
LightGBM	0.160(0.000)	0.323(0.000)	0.041	0.292	7.8%	15.5%	0.503	25.7%
MLP	0.160 (0.002)	0.323 (0.003)	0.037	0.273	3.7%	15.3%	0.264	26.2%
SFM	0.159 (0.001)	0.321 (0.001)	0.047	0.381	7.1%	14.3%	0.497	22.9%
ALSTM	0.158 (0.001)	0.320 (0.001)	0.053	0.419	12.3%	13.7%	0.897	20.2%
Trans.	0.158 (0.001)	0.322 (0.001)	0.051	0.400	14.5%	14.2%	1.028	22.5%
ALSTM+TS	0.160 (0.002)	0.321 (0.002)	0.039	0.291	6.7%	14.6%	0.480	22.3%
Trans,+TS	0.160 (0.004)	0.324 (0.005)	0.037	0.278	10.4%	14.7%	0.722	23.7%
ALSTM+TRA (Ours)	0.157 (0.000)	0.318 (0.000)	0.059	0.460	12.4%	14.0%	0.885	20.4%
Trans.+TRA (Ours)	0.157 (0.000)	0.320 (0.000)	0.056	0.442	16.1%	14.2%	1.133	23.1%

TRA can adaptively select predictor with smaller loss:

TRA benefits from both the latent representation and temporal prediction errors:

Information	MSE (\lambda)	MAE (↓)	IC (†)	ICIR (↑)	
Random	0.159 (0.001)	0.321 (0.002)	0.048	0.362	
LR	0.158 (0.001)	0.320 (0.001)	0.053	0.409	
TPE	0.158 (0.001)	0.321 (0.001)	0.049	0.381	
LR+TPE	0.157 (0.000)	0.318 (0.000)	0.059	0.460	

A moderate selection of the number of predictors could give desirable performance gains

