

Universidade Federal da Fronteira Sul Curso de Ciência da Computação **UFFS** Campus Chapecó

Álgebra de **Boole**

Prof. Luciano L. Caimi Icaimi@uffs.edu.br

Definida por:

- Um conjunto de operações válidas;
- Um conjunto de valores que cada variável pode assumir;

Valores das Variáveis:

Seja $A \in B \Rightarrow A \in \{0,1\}$ ($\{F,V\}$, $\{high, low\}$, $\{on, off\}$...)

De outra forma:

Se
$$A \neq 0 \Rightarrow A = 1$$

Se
$$A \neq 1 \Rightarrow A = 0$$

Operações Básicas da Álgebra de Boole

Cada operação possui pelo três formas de representação clássicas:

- Expressão lógica (simbólica);
- Tabela-verdade;
- Circuito;

Além destes formatos clássicos existem outros:

- Diagrama de decisão binária (BDD);
- Diagrama de Venn;

Operações Básicas da Algebra de Boole

1) Complemento (NOT)

Também chamado inversão ou negação.

Símbolo

Tabela Verdade

Ā, ¬A, ~A, A', not(A)

(lê-se "A negado")

A	S
0	1
1	0

Porta Lógica

- ↓ É uma operação unária (i.e. só pode ser aplicada a uma variável por vez);
- Tem como resultado na saída o valor oposto ao presente na entrada.

2) Operação E (AND)

Também denominada multiplicação lógica.

Símbolo

{.,^}

Tabela Verdade

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Porta Lógica

- **▶Definição 1:** a operação "E" resulta 1 se e somente se todas as variáveis de entrada valerem 1.
- **▶ Definição 2:** a operação "E" resulta 0 se ao menos uma das variáveis de entrada valer 0.

Operação "E" para 3 variáveis

Porta Lógica

▶ Definição 1: a operação "E" resulta 1 se e somente se todas as variáveis de entrada valerem 1.

Tabela Verdade

A	В	С	A.B.C
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

3) Operação OU (OR)

Também denominada adição lógica.

Símbolo

Tabela Verdade

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Porta Lógica

- **▶Definição 1:** a operação "OU" resulta 1 se ao menos uma das variáveis de entrada valer 1.
- **▶ Definição 2:** a operação "OU" resulta 0 se e somente se todas variáveis de entrada valerem 0.

porta

A	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Uma outra forma de representação é o Diagrama de Decisão Binária (Bynary Decision Diagram - BDD)

Parte-se de uma variável de entrada qualquer e chega-se ao valor da saída conforme o valor contido nas variáveis de entrada (indicadas por arcos)

Diagrama de Venn

Circuitos Integrados comerciais

74LS32 – OR 2 entradas 74LS86 – XOR 2 entradas 74LS73A – Flip-Flop JK 74LS74A – Flip-Flop D

Propriedades da Álgebra de Boole

1) Comutativa

As variáveis de entrada podem ser operadas em qualquer ordem

2) Associativa

As variáveis podem ser associadas em qualquer conjunto

3) Distributiva

Em relação a operação de multiplicação booleana

Propriedades da Algebra de Boole

1) Comutativa

As variáveis de entrada podem ser operadas em qualquer ordem.

... Comutativa

Em termos de portas lógicas, teremos...

$$\equiv A \longrightarrow C + A + B \equiv ...$$

Tal propriedade é válida para qualquer uma das portas lógicas, respeitando-se obviamente a sua função.

2) Associativa

As variáveis de entrada podem ser operadas de duas em duas (ou de três em três, ou de quatro em quatro...)

Os parênteses indicam precedência.

... Associativa

Em termos de portas lógicas, teremos...

Tal propriedade é válida para qualquer uma das portas lógicas, respeitando-se obviamente a sua função.

3) Distributiva

Refere-se a operação de "multiplicação"

$$S = A.(B + C) = (A.B) + (A.C)$$

Conversão entre formatos de representação

Considerando as três formas de representação clássicas precisamos realizar a conversão entre as mesmas

- Expressão para tabela-verdade: avaliação
- Circuito para tabela verdade: avaliação
- Expressão para Circuito: síntese
- Circuito para expressão: variáveis e operações
- Tabela-verdade para expressão: SOP ou POS
- Tabela verdade para circuito: síntese

Avaliação de expressões booleanas

- Dada uma expressão booleana desejamos saber o comportamento da mesma:
- Montamos uma tabela-verdade com as variáveis de entrada a esquerda;
- Criar colunas à direita, conforme a ordem de precedência das operações contidas na equação que se está avaliando;
- Avaliar as expressões e obter resultados intermediários até encontrar valores finais;

Exemplo: Dada a expressão abaixo obtenha a tabela-verdade da mesma:

$$F(X,Y,Z) = X \cdot (Y + \overline{Z})$$

Avaliação de expressões booleanas: exemplo

$$F(X,Y,Z) = X \cdot (Y + \overline{Z})$$

X	Υ	Z	Z	(Y + Z)	X . (Y + Z)
0	0	0	1	1	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1

Avaliação de expressões booleanas: exemplo

A		 	 _	
В				
C	 		 	
Y	 	 	 	

Circuitos Lógicos

- Dada uma equação que representa uma função Booleana, é possível representá-la graficamente, por meio de uma associação apropriada de portas lógicas.
- O desenho de um circuito lógico deve obedecer à ordem de precedência das operações mostradas na equação lógica que se deseja implementar.

Exemplo: Desenhe o circuito lógico que implementa a equação:

$$F(X,Y,Z) = X \cdot (Y + \overline{Z})$$

$$z \xrightarrow{Y + \overline{Z}} \times (Y + \overline{Z})$$

$$\times (Y + \overline{Z})$$

Exercício:

Avalie a expressão que segue e desenhe seu circuito lógico

$$F(A,B,C) = \overline{A} \cdot C + ((B \cdot C) + A \cdot \overline{B})$$

Exercício:

Avalie a expressão que segue e desenhe seu circuito lógico

$$F(A,B,C) = \overline{A} \cdot C + ((B \cdot C) + A \cdot \overline{B})$$

A	В	С	B.C	$A.\overline{B}$	$((B \cdot C) + A \cdot \overline{B})$	\overline{A} . C	\overline{A} . C +((B.C)+ A. \overline{B})
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	0	0	0	0	0
0	1	1	1	0	1	1	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	0	0	0	0	0
1	1	1	1	0	1	0	1

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Exercício:

Avalie a expressão que segue e desenhe seu circuito lógico

$$F(A,B,C)=\overline{A}\cdot C+((B\cdot C)+A\cdot \overline{B})$$

