MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 8, 2024 Lecture 15 D3

Rekha Santhanam Lecture 15 D3

Linear Transformations

Defn. Let V and W be vector spaces.

• A linear transformation from V to W is a function $T: V \to W$ such that for $x, y \in V$, scalars a and b,

$$T(ax + by) = aT(x) + bT(y)$$

i.e., T takes linear combinations of vectors in V to the linear combinations of their images in W.

- If T is also a bijection, we say T is a linear isomorphism.
- The *image* (or *range*) of T is defined to be $C(T) = \{ y \in W \mid T(x) = y \text{ for some } x \in V \}.$
- The kernel (or null space) of T is defined as $N(T) = \{x \in V \mid T(x) = 0\}.$

Main Example: Let A be an $m \times n$ matrix. Define T(x) = Ax.

- This defines a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.
- The image of T is the column space of A, i.e., C(T) = C(A).
- The kernel of T is the null space of A, i.e., N(T) = N(A).

Rekha Santhanam Lecture 15 D3

Linear Transformations: Examples

Show that the following functions are linear transformations.

 $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by $T(x_1, x_2, ...) = (x_1 + x_2, x_2 + x_3, ...,)$.

Exercise: What is N(T)?

 $S: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by $S(x_1, x_2, ...) = (x_2, x_3, ...)$.

Exercise: Find C(S), and a basis of N(S).

Let $T: \mathscr{P}_2 \to \mathscr{P}_1$ be $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$.

Exercise: Show that dim (N(T)) = 1, and find C(T).

Let $D: \mathscr{C}^{\infty}([0,1]) \to \mathscr{C}^{\infty}([0,1])$ defined as $Df = \frac{df}{dx}$.

Exercise: Is $D^2 = D \circ D$ linear? What about D^3 ?

Exercise: What is N(D)? $N(D^2)$? $N(D^k)$?

Question: Is integration linear?

Observe: Images and null spaces are subspaces!

Of which vector space?

Rekha Santhanam Lecture 15 D3

Properties of Linear transformations

```
Let \mathscr{B} = \{v_1, \dots, v_n\} \subseteq V, T: V \to W be linear, and T(\mathscr{B})
= \{T(v_1), \dots, T(v_n)\}. Then:
```

- T(au + bv) = aT(u) + bT(v). In particular, T(0) = 0.
- N(T) is a subspace of V. Why? C(T) is a subspace of W. Why?
- If $\operatorname{Span}(\mathcal{B}) = V$, is $\operatorname{Span}\{T(\mathcal{B})\} = W$? **Note:** It is C(T).
- Conclusion: (i) If dim (V) = n, then dim $(C(T)) \le n$. (ii) T is onto \Leftrightarrow Span $\{T(\mathcal{B}\}) = C(T) = W$.
- $T(u) = T(v) \Leftrightarrow u v \in N(T)$. Conclusion: T is one-one $\Leftrightarrow N(T) = 0. \bullet \text{ If } \mathscr{B} \subseteq V$ is linearly independent, is $\{T(\mathcal{B})\}\subseteq W$ linearly independent? **Hint:** $a_1 T(v_1) + \cdots + a_n T(v_n) = 0 \Rightarrow a_1 v_1 + \cdots + a_n v_n \in N(T)$.
- $S: U \to V$, $T: V \to W$ are linear $\Rightarrow T \circ S: U \to W$ is linear. Exercise: Show that $N(S) \subseteq N(T \circ S)$. How are $C(T \circ S)$ and C(T) related?

Lecture 15 D3

Isomorphism of vector spaces

Recall: A linear map $T: V \to W$ is an *isomorphism* if T is also a bijection. **Notation:** $V \simeq W$.

Ques: If $T: V \to W$ is an isomorphism, is $T^{-1}: W \to V$ linear?

Recall: T is one-one $\Leftrightarrow N(T) = 0 \& T$ is onto $\Leftrightarrow C(T) = W$.

Thus
$$T$$
 is an isomorphism $\Leftrightarrow N(T) = 0$ and $C(T) = W$.

Example: If V is the subspace of convergent sequences in \mathbb{R}^{∞} , then

 $L: V \to \mathbb{R}$ given by $L(x_1, x_2, ...) = \lim_{n \to \infty} (x_n)$ is linear.

What is N(L)? C(L)? Is L one-one or onto?

Exercise: Given $A \in \mathcal{M}_{m \times n}$, let T(x) = Ax for $x \in \mathbb{R}^n$.

Then T is an isomorphism $\Leftrightarrow m = n$ and A is invertible.

Exercise: In the previous examples, identify linear maps which are one-one, and those which are onto.

Example: $S\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a, b, c, d)^T$ is an isomorphism since N(S) = 0 and $C(S) = \mathbb{R}^4$. Thus $\mathcal{M}_{2\times 2} \simeq \mathbb{R}^4$. What is S^{-1} ?

Rekha Santhanam Lecture 15 D3

Linear Maps and Basis

Question to think about

Show that to give a linear map from $T: \mathcal{M}_{2\times 2} \to \mathbb{R}^4$ it is sufficient to write down the image for $T(e_{11})$, $T(e_{12})$, $T(e_{21})$, $T(e_{22})$.

For instance create a linear transformation where $T(e_{11})=(5,6,7,8)$, $T(e_{12})=(1,2,3,4)$, $T(e_{21})=(1,1,1,1)$ and $T(e_{22})=(0,1,0,1)$

A general answer is given in the next slide.

Linear Maps and Basis

• Consider $S: \mathcal{M}_{2\times 2} \to \mathbb{R}^4$ given by $S\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a, b, c, d)^T$. Recall that $\{e_{11}, e_{12}, e_{21}, e_{22}\}$ is a basis of $\mathcal{M}_{2\times 2}$ such that $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ae_{11} + be_{12} + ce_{21} + de_{22}$. Observe that $S(e_{11}) = e_1, S(e_{12}) = e_2, S(e_{21}) = e_3, S(e_{22}) = e_4$. Thus, $S(A) = aS(e_{11}) + bS(e_{12}) + cS(e_{21}) + dS(e_{22}) = ae_1 + be_2 + ce_3 + de_4 =$ $(a, b, c, d)^{T}$.

General case:

If
$$\{v_1, \dots, v_n\}$$
 is a basis of V , $T: V \to W$ is linear, $v \in V$, then $v = a_1v_1 + \cdots + a_nv_n \Rightarrow T(v) = a_1T(v_1) + \cdots + a_nT(v_n)$. Why? Thus, T is determined by its action on a basis,

i.e., for any n vectors w_1, \ldots, w_n in W (not necessarily distinct), there is unique linear transformation $T: V \to W$ such that $T(v_1) = w_1, \ldots, T(v_n) = w_n$

Lecture 15 D3