How are temperatures increasing and what are the implications?

Marc Los Huertos

1 Introduction

According the the IPCC, the temperature has been changing about 0.X degrees per XX years – but how do these values "map" onto our communities? Can we find out how these changes will affect specific people in communities we care about?

1.1 Learning Goals

For this project, you will evaluate determine if the Earth's temperature has in fact changed, and if so, by how much?

1.2 Driving Question

Is my region's climate changing?

How is climate change affecting my community?

1.3 Public Product

Narrative Blog...

with professional graphics and statistics.

1.4 Approach

2 Procedures

- 2.1 How is temperature data collected?
- 2.2 How are the data store, curated and checked for quality?

3 Data Source

3.1 Compressed Files

```
# Uncompress the files.
# ghcnd_all
source("summarySE.R")

tarfile = "C:\\workspace\\GitHub\\RTricks\\300_Global_Warming\\Raw Data\\ghcnd_all.tar.gz"

#ftpsource = ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3/ghcnm.tmax.latest.qca.tar.gz

#ghcnm.tmax.latests.qca.tar.qz

tarfile = "C:\\workspace\\GitHub\\RTricks\\300_Global_Warming\\Raw Data\\ghcnm.tmax.latest.qca.tar.gz

# untar(tarfile)
```

stationfile = "/home/CAMPUS/mwl04747/github/Climate_Change_Narratives/Data/ghcnd-stations.tr

3.2 Obtain Locations

```
# read.table(stationfile, header=F, fill=T, row.names=NULL); head(stations)
stations = (read.fwf(stationfile, fill=T, widths= c(11, 9, 10, 7, 3, 32, 3, 4, 9), ))
names(stations) = c("ID", "LAT", "LONG", "ELEV", "STATE", "NAME", "GSN", "HCN_CRN", "WHOID")
head(stations)
##
             ID
                    LAT
                            LONG ELEV STATE
## 1 ACW00011604 17.1167 -61.7833 10.1
## 2 ACW00011647 17.1333 -61.7833 19.2
## 3 AE000041196 25.3330 55.5170 34.0
## 4 AEM00041194 25.2550 55.3640 10.4
## 5 AEM00041217 24.4330 54.6510 26.8
## 6 AEM00041218 24.2620 55.6090 264.9
##
                                NAME GSN HCN_CRN WHOID
## 1 ST JOHNS COOLIDGE FLD
                                                    NA
## 2 ST JOHNS
                                                    NA
## 3 SHARJAH INTER. AIRP
                                     GSN
                                                 41196
## 4 DUBAI INTL
                                                 41194
## 5 ABU DHABI INTL
                                                 41217
## 6 AL AIN INTL
                                                 41218
str(stations)
## 'data.frame': 100747 obs. of 9 variables:
## $ ID : Factor w/ 100747 levels "ACW00011604",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ LAT : num 17.1 17.1 25.3 25.3 24.4 ...
```

```
## $ LONG : num -61.8 -61.8 55.5 55.4 54.7 ...

## $ ELEV : num 10.1 19.2 34 10.4 26.8 ...

## $ STATE : Factor w/ 76 levels " "," AB"," AK",..: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

## $ NAME : Factor w/ 93968 levels " 'S HEERENHOEK ",..: 79235 79234 762

## $ GSN : Factor w/ 3 levels ""," ","GSN": 2 2 3 2 2 2 3 2 2 2 ...

## $ HCN_CRN: Factor w/ 4 levels ""," "," CRN",..: 2 2 2 2 2 2 2 2 2 2 2 ...

## $ WHOID : num NA NA 41196 41194 41217 ...
```

Example of data:

Here's what the data look like:

ID 1-11 Character YEAR 12-15 Integer MONTH 16-17 Integer ELEMENT 18-21 Character VALUE1 22-26 Integer MFLAG1 27-27 Character QFLAG1 28-28 Character SFLAG1 29-29 Character VALUE2 30-34 Integer MFLAG2 35-35 Character QFLAG2 36-36 Character SFLAG2 37-37 Character VALUE31 262-266 Integer MFLAG31 267-267 Character QFLAG31 268-268 Character SFLAG31 269-269 Character

Arizona, let's chech import process for the sites...

Let's get the arizona data into R

```
# Read the file
dlyfile = "/home/CAMPUS/mwl04747/github/Climate_Change_Narratives/AGM00060515"
test = read.fwf(dlyfile,widths = c(11, 4, 2, 4, rep(c(5, 1, 1, 1),31)))
## Warning in file(file, "rt"): cannot open file '/home/CAMPUS/mwl04747/github/Climate_Chan
No such file or directory
## Error in file(file, "rt"): cannot open the connection
str(test)
## Error in str(test): object 'test' not found
# practicing loops
```

for (year in c(2010,2011,2012,2013,2014,2015)){

print(paste("The year is", year))

```
## [1] "The year is 2010"
## [1] "The year is 2011"
## [1] "The year is 2012"
## [1] "The year is 2013"
## [1] "The year is 2014"
## [1] "The year is 2015"
# Create New Varible Names
MFLAG=NA; QFLAG=NA; SFLAG=NA; VALUE=NA
for (i in 1:31){
VALUE[i] = paste("DATE", i, sep="")
MFLAG[i] = paste("MFLAG", i, sep="")
QFLAG[i] = paste("QFLAG", i, sep="")
SFLAG[i] = paste("SFLAG", i, sep="")
#print(QFLAG)
# Vector of variable names converted from a transposed matrix
tmp = as.vector(t(matrix(data=c(VALUE, MFLAG, QFLAG, SFLAG), ncol=4)))
Names = c("ID", "YEAR", "MONTH", "ELEMENT", tmp); length(Names)
## [1] 128
names(test) = Names; #test
## Error in names(test) = Names: object 'test' not found
head(test)
## Error in head(test): object 'test' not found
```

3.3 Process Selected Data Files

```
setwd("/home/CAMPUS/mwl04747/github/Climate_Change_Narratives/Data")
dly_list = list.files(pattern="*.dly"); head(dly_list)
## [1] "AGM00060515.dly" "US1AZCN0021.dly"
#for (i in 1:length(dly_list))
```

```
for (i in 1:1){
tmp \leftarrow read.fwf(dly_list[i], widths = c(11, 4, 2, 4, rep(c(5, 1, 1, 1), 31)))
names(tmp) <- Names</pre>
assign(dly_list[i], subset(tmp, ELEMENT=="TMAX", select=c(1:4, seq(5, by = 4, length.out=31)
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
      filter, lag
##
##
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
library(stringr)
#str(AGM00060515.dly)
#gather(US1AZCN0021.dly, "Temp", VALUE1)
library(reshape2)
tmp1 = melt(AGM00060515.dly, id=c("ID", "YEAR", "MONTH", "ELEMENT"))
head(tmp1)
##
              ID YEAR MONTH ELEMENT variable value
## 1 AGM00060515 1984 3
                              XAMT
                                    DATE1 -9999
## 2 AGM00060515 1984
                          4
                              XAMT
                                       DATE1
                                             190
## 3 AGM00060515 1984
                              TMAX
                                       DATE1 -9999
                        5
## 4 AGM00060515 1984
                          6
                               XAMT
                                       DATE1 -9999
## 5 AGM00060515 1984
                         7
                              XAMT
                                    DATE1 430
## 6 AGM00060515 1984
                        8
                               TMAX
                                    DATE1 -9999
tmp1$Day = as.numeric(str_sub(tmp1$variable,6,7)); head(tmp1)
              ID YEAR MONTH ELEMENT variable value Day
##
## 1 AGM00060515 1984
                          3
                              XAMT
                                     DATE1 -9999 NA
## 2 AGM00060515 1984
                          4
                              TMAX
                                       DATE1
                                             190 NA
## 3 AGM00060515 1984
                          5
                               TMAX
                                       DATE1 -9999
                                                    NΑ
## 4 AGM00060515 1984
                          6
                              XAMT
                                       DATE1 -9999
                                                    NA
## 5 AGM00060515 1984
                          7
                               TMAX
                                       DATE1
                                               430
                                                    NA
## 6 AGM00060515 1984
                          8
                               TMAX
                                       DATE1 -9999
                                                    NA
tmp1$value[tmp1$value==-9999] = NA; head(tmp1)
```

```
## ID YEAR MONTH ELEMENT variable value Day
## 1 AGM00060515 1984 3
                          TMAX DATE1
                                        NA NA
                                DATE1
## 2 AGM00060515 1984
                      4
                          TMAX
                                        190 NA
## 3 AGM00060515 1984 5 TMAX DATE1 NA NA
## 4 AGM00060515 1984 6 TMAX DATE1 NA NA
                     7 TMAX
## 5 AGM00060515 1984
                                  DATE1 430 NA
                   8 TMAX
## 6 AGM00060515 1984
                                DATE1 NA NA
tmp1$Temperature = tmp1$value/10
drops <- c("variable", "value")</pre>
tmp1 <-tmp1[ , !(names(tmp1) %in% drops)]</pre>
tmp1$DECADE = round(tmp1$YEAR, -1)
# names(tmp1)
```

4 Presenting the Results

```
# call summarySE function...somehow...
library(ggplot2)
summarydf <- summarySE(tmp1, "Temperature", "DECADE", na.rm=T)</pre>
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr
first, then dplyr:
## library(plyr); library(dplyr)
##
## Attaching package: 'plyr'
##
## The following objects are masked from 'package:dplyr':
##
##
      arrange, count, desc, failwith, id, mutate, rename, summarise,
##
      summarize
ggplot(summarydf, aes(y=Temperature, x=DECADE, color= DECADE))
```



```
+ geom_point() + geom_errorbar(limits, width=0.2)
## Error in +geom_point(): invalid argument to unary operator
ggplot(summarydf, aes(y=Temperature, x=DECADE, color= DECADE)) + geom_errorbar(aes(ymin=Temperature))
```


4.1 NOAA dataset

New NOAA Directory - ftp://ftp.ncdc.noaa.gov/pub/data/noaa/

```
library(raster)

## Loading required package: sp
##

## Attaching package: 'raster'

##

## The following object is masked from 'package:dplyr':

##

## select
##

## The following object is masked from 'package:tidyr':
```

```
##
##
      extract
library(XML)
coords.fwt <- read.fwf("ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-history.txt",widths=c(6,1</pre>
Names = c("USAF", "X1", "WBAN", "X2", "STATION_NAME", "X3", "CTRY", "X4", "ST", "X5", "CALL"
                                           29,
                                                      1, 2,
Widths = c(6)
               1,
                        5,
                              1,
                                                                   3,
                                                                          2,
                                                                                1,
coords.fwt <- read.fwf("ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-history.txt",widths=Widths</pre>
coords <- data.frame(ID=paste(as.factor(coords.fwt[,1])),WBAN=paste(as.factor(coords.fwt[,2])</pre>
## Warning in data.frame(ID = paste(as.factor(coords.fwt[, 1])), WBAN
= paste(as.factor(coords.fwt[, : NAs introduced by coercion
## Warning in data.frame(ID = paste(as.factor(coords.fwt[, 1])), WBAN
= paste(as.factor(coords.fwt[, : NAs introduced by coercion
```

NOAA Locations

```
plot(Lat ~ Lon, data=coords, xlim=c(-180, 180) )
```

