- a) Choose $n_0 = 0$ and c = 1. Because $a \le b$, then $n^a \le cn^b$. Therefore n^a is $O(n^b)$.
- b) Suppose there are witnesses n_0 and c > 0 such that n^a is $O(n^b)$ if a > b. Then $n^a \le cn^b$ for all $n \ge n_0$. But n^a/n^b becomes arbitrarily large as n increases since a > b. Thus $n^a/n^b \le c$ contradicts c being constant.
- c) Choose $n_0 = 0$ and c = 1. Since $1 < a \le b$, then $a^n \le cb^n$. Therefore a^n is $O(b^n)$.
- d) Suppose there are witnesses n_0 and c > 0 such that $a^n \le cb^n$ if 1 < b < a for all $n \ge n_0$. From the big-oh inquality we must have $1 \le cb^n/a^n$. But b^n/a^n approaches 0 as n increases. For large n we would have $1 \le 0$, a contradiction.
- e) Exponentials grow faster than polynomials. We can likely choose c = 1, but the general n_0 would be too difficult to find, however, n_0 must be large. Therefore n^a is $O(b^n)$ for any a and for any b > 1.
- f) Suppose there are witnesses n_0 and c > 0 such that $a^n \le cn^b$ for any b and for any a > 1 for all $n \ge n_0$. But a^n/n^b becomes arbitrarily large as n increases. Therefore $a^n/n^b \le c$ contradicts c being a constant.
- **2.** We must have the inequality $f(n) + g(n) \le c \cdot \max(f(n), g(n))$ for some c. By Exercise 3.4.3, if $f(n) \le g(n)$ then we must have O(g(n)). If $g(n) \le f(n)$ then we must have O(f(n)). Thus it is true that we must have big-oh of the maximum of the two functions.
- **3.** We have that $T(n) \leq cf(n)$ for all $n \geq n_0$ and some c > 0, and $g(n) \geq 0$. Multiply both sides by g(n) to get $g(n)T(n) \leq cg(n)f(n)$, which holds for all $n \geq n_0$ and some c > 0. Therefore g(n)T(n) is O(g(n)f(n)).
- **4.** We are given $S(n) \leq c_1 f(n)$ for $c_1 > 0$ for all $n \geq n_1$ and $T(n) \leq c_2 g(n)$ for $c_2 > 0$ for all $n \geq n_2$. We can multiply them to get $S(n)T(n) \leq c_1 c_2 f(n)g(n)$ for some positive numbers c_1 and c_2 . Let $c = c_1 c_2$ and n_2 be the larger of n_1 and n_0 . Then the inequality holds for c and for all $n \geq n_2$. Therefore S(n)T(n) is O(f(n)g(n)).
- 5. We have that $f(n) \leq cg(n)$ for all $n \geq n_0$ and some c > 0.