Exercises 4

1

- 1. Let $f: X \to Y$ be a continuous map between topological spaces, \mathcal{F} and \mathcal{G} are sheaves over X and Y respectively.
 - (a) Let the direct image $f_*\mathcal{F}$ be the presheaf over Y, s.t. $f_*\mathcal{F}(U) := \mathcal{F}(f^{-1}(U))$. Check that this is already a sheaf and $f_*: Sh(X) \to Sh(Y)$ defines a functor.
 - (b) Let the inverse image $f^*\mathcal{G}$ be the sheafification of presheaf $\mathcal{G}(f(U)) := \operatorname{colim}_{Vopen, f(U) \subset V} \mathcal{G}(V)$ over X. Show that $f^*\mathcal{G}_x \cong \mathcal{G}_{f(x)}$ and $f^* : Sh(Y) \to Sh(X)$ defines a functor.
 - (c) When Y = * is a point, to define a sheaf \mathcal{G} over * is equivalent to giving the set $G = \mathcal{G}(*)$. Show that $f_*\mathcal{F} = \mathcal{F}(X)$ and $f^*G = \underline{G}$ the const sheaf.
 - (d) For any $x \in X$ induces a map $x : * \to X$. Show that $x^*\mathcal{F} = \mathcal{F}_x$ and $x_*G = G_{\{x\}}$ the skyscraper sheaf supported on $\{x\}$ (i.e. $G_{\{x\}}(U) = G$ if $x \in U$ and * otherwise).
 - (e) * Show that there is an isomorphism

$$\operatorname{Hom}_{Sh(X)}(f^*\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{Sh(Y)}(\mathcal{G},f_*\mathcal{F})$$

(Use the fact that for sheafification functor $^+$, $\operatorname{Hom}_{PSh(X)}(\mathcal{P}, \mathcal{F}) \cong \operatorname{Hom}_{Sh(X)}(\mathcal{P}^+, \mathcal{F})$)

- 2. * Let $\mathcal{F}, \mathcal{G} \in Sh(X)$ and let $i : \mathcal{F} \to \mathcal{G}$ be a morphism s.t. $\forall x \in X, i_x : \mathcal{F}_x \to \mathcal{G}_x$ are isomorphisms. Show that i is an isomorphism of sheaves. (Hint: first show that i induces a homeomorphism between etale space $Et(i) : Et(\mathcal{F}) \to Et(\mathcal{G})$)
- 3. We define the (pre)sheaf \mathcal{F} of Abelian group (i.e. Abelian (pre)sheaf) over X by changing the target to Ab, i.e. now $\mathcal{F}(U) \in Ab$. We denote PAb(X) and Ab(X) as the category of Abelian presheaf and sheaf. And for a sequence in PAb(X) (resp. Ab(X))

$$\mathcal{F} \to \mathcal{G} \to \mathcal{H}$$

¹find also these exercises on https://github.com/iamcxds/AG-exercise, you can skip a question with * if it is difficult.

we say it is exact if $\forall U$ open,

$$\mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U)$$

(resp. $\forall x \in X$,

$$\mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x$$

) are exact.

- (a) Show that the exactness of presheaf implies the exactness of sheaf. (Hint: taking stalk $\operatorname{colim}_{x \in U} \mathcal{F}(U)$ is a filtered $\operatorname{colimit}$)
- (b) Let $X = \mathbb{C}$, show that

$$0 \to \underline{\mathbb{Z}} \xrightarrow{2\pi i} \mathcal{O} \xrightarrow{\exp} \mathcal{O}^* \to 0$$

is an exact sequence of Abelian sheaves, where \mathcal{O} (resp. \mathcal{O}^*) is the sheaf of holomorphic functions (resp. non-vanishing holomorphic functions). But by considering the sections on $\mathbb{C}^* \subset \mathbb{C}$, show that this is not exact as presheaf.

(c) Let $\mathbb{Z} \in Ab(X)$ be the const sheaf, and for close point $x \in X$, let $\mathbb{Z}_{\{x\}}$ be the skyscraper sheaf. and let $\mathbb{Z}_{X-\{x\}}$ be the sheaf s.t. $\mathbb{Z}_{X-\{x\}}(U) = \mathbb{Z}$ if $x \notin U$, and 0 otherwise. Show that there is an exact sequence of sheaf

$$0 \to \mathbb{Z}_{X - \{x\}} \to \underline{\mathbb{Z}} \to \mathbb{Z}_{\{x\}} \to 0$$

But then show that $\underline{\mathbb{Z}}$ is **not** isomorphic to $\mathcal{B} = \mathbb{Z}_{X-\{x\}} \oplus \mathbb{Z}_{\{x\}}$, even if there are isomorphisms $\forall x, \underline{\mathbb{Z}}_x \cong \mathbb{Z} \cong \mathcal{B}_x$.

- 4. Let X = [0,1] and let C(X) be the ring of real-valued functions on X. Recall that the maximal spectrum $\mathrm{Spm}(R)$ is the subspace of $\mathrm{Spec}(R)$ consisting of maximal ideals. We will show that $\tilde{X} = \mathrm{Spm}(C(X))$ is homeomorphic to X.
 - (a) For $x \in X$, let maximal ideals $\mathfrak{m}_x = \{f \in C(X), s.t. f(x) = 0\}$. Now for any ideal $I \subsetneq C(X)$, let $V_X(I) = \{x \in X, s.t. f(x) = 0, \forall f \in I\}$. Show that $V_X(I)$ is nonempty and thus for $x \in V_X(I), I \subset \mathfrak{m}_x$. Therefore $\mathfrak{m}_-: X \to \tilde{X}$ is surjective.
 - (b) By construction functions separate the points of X, conclude that $\mathfrak{m}_{-}:X\to \tilde{X}$ is injective.
 - (c) Let $f \in C(X)$, and let

$$U_f = \{x \in X, s.t. f(x) \neq 0\} \subset X$$

$$\tilde{U}_f = \{ m \in \tilde{X}, s.t. f \notin m \} \subset X$$

Show that $\mathfrak{m}_{-}(U_f) = \tilde{U}_f$ and therefore \mathfrak{m}_{-} is a homeomorphism.

(d) * Show that any prime ideal $\mathfrak{p} \subset C(X)$ are contained in exact one \mathfrak{m}_x .