

Groups and Representation

Wesley Quaresma Cota

Universidade Federal de Minas Gerais, Belo Horizonte.

1 Introdução

O Teorema de Burnside, nos diz que se ϕ é uma representação irredutível de grau n sobre um corpo algebricamente fechado, então o conjunto $\{g\phi \mid g \in G\}$ gera $End_F(M)$ onde M é o FG—módulo associado e portanto contém n^2 elementos linearmente independentes. Neste trabalho iremos apresentar algumas aplicações interessantes desse teorema.

Se G é um subgrupo de GL(n,F), então a inclusão de $G \hookrightarrow GL(n,F)$ é uma representação de G sobre F. Neste caso, se a representação é irreduvível, então diremos que G é irreduvível, caso contrário, dizemos que G é reduvível. Além disso, definimos o expoente de um grupo G como o menor inteiro M tal que M = $1 \forall X \in G$.

2 Aplicações

Theorem 1. Seja G um subgrupo irredutível de GL(n,F) onde F é um corpo algebricamente fechado. Suponha que o conjunto $\{tr(g) \mid g \in G\}$ possui um número finito de elementos, digamos m. Então G é finito e $|G| \leq m^{n^2}$

Proof. Seja ρ a inclusão $G \hookrightarrow GL(n,F)$; então pelo Teorema de Burnside $\{g\rho \mid g \in G\}$ tem no máximo n^2 elementos linearmente independentes, digamos $\{g_1,...,g_{n^2}\}$. Tome $g \in G$, denotamos por $g_{i,j}$ a entrada (i,j) da matriz $n \times n$ de g e por $t_i = Tr(g_ig)$. Logo:

$$t_i = \sum_{j,k=1}^{n} g_{i_{j,k}} g_{k,j}, \quad i = 1, 2, \dots, n^2.$$

Note que o sistema consiste de n^2 variáveis $g_{k,j}$. Como $g_i's$ são linearmente independentes, o sistema possui única solução, o que determina g completamente. Desde que $t_1, ..., t_{n^2}$ pode ser escolhido de m^{n^2} formas, segue que $|G| < m^{n^2}$

Theorem 2 (Burnside). Seja F um corpo de característica 0. Então todo subgrupo de GL(n, F) de expoente finito é finito. De fato, se G tem expoente m, então contém no máximo m^{n^3} elementos.

П

Proof. Como $GL(n,F) \leq GL(n,\overline{F})$, onde \overline{F} é o corpo algebricamente fechado de F, podemos supor, sem perda de generalidade que F é algebricamente fechado. Provaremos o resultado por indução em n.

Se n=1, então $G \leq F^*$ de expoente m. Desde que o número de soluções da equação $x^m=1$ em F é no máximo m, a ordem de um subgrupo de F^* de expoente m é no máximo $m=m^{1^3}$.

Assuma que o resultado é verdadeiro para subgrupos de GL(r,F) onde r < n. Então, provaremos para os subgrupos de GL(n,F). Seja G um subgrupo de GL(n,F) de expoente m, onde F é algebricamente fechado. Se G é irredutível, desde que $g^m = 1$, $\forall g \in G$, todo autovalor de g são raízes m-ésimas da unidade. Como o traço da matriz é a soma dos seus autovalores, então há m^n possíveis valores para os traços dos elementos de G. Segue do teorema anterior que G tem ordem finita e $|G| \leq (m^n)^{n^2} = m^{n^3}$.

Se G é redutível, existe um G-submódulo próprio não trivial W de V. Logo $\dim W = s < n$ e $\dim V/W = t < n$. Portanto, podemos considerar o homomorfirmo $\rho: G \to GL(W)$ dado pela restrição de V ao subespaço W. Desse modo, $(G)\rho$ é um subgrupo de GL(W) de expoente no máximo m. O que, pela hipótese de indução, $(G)\rho$ é finito e de ordem até m^{s^3} . Seja $H_1 = Ker \rho = \{A \in G \mid A \cdot w = w\}$, então $H_1 \triangleleft G$ tal que, pelo Teorema do Isomorfismo, $|G: H_1| \leq m^{s^3}$.

Desde que W é invariante pela ação de G, temos também um homorfismo $\psi: G \to GL(V/W)$ definido por $\psi(A)(v+W) = A.v + W$. Pela hipótese de indução, $(G)\psi$ tem expoente no máximo m, logo é finito de ordem no máximo m^{t^3} . Definindo $H_2 = Ker \psi = \{A \in G \mid A \cdot (v+W) = v+W\}$, temos que, $H_2 \triangleleft G$ e $|G: H_2| \leq m^{t^3}$.

Tome $H = H_1 \cap H_2$; como

$$[G: H_1 \cap H_2] \le [G: H_1][G: H_2] = m^{s^3 + t^3} \le m^{(s+t)^3} = m^{n^3}.$$

Segue que G/H tem ordem no máximo m^{n^3} .

Note que H age trivialmente em W e em V/W. Então podemos considerar uma base $\{w_1,...,w_s\}$ de W e completá-la a uma base $\{v_1,...,v_t,w_1,...,w_s\}$

de V. Tomando $h \in H$ temos que $(v_i + W)h = v_i h + W = v_i + W$ então $v_i h - v_i \in W$, logo $v_i h = v_i + \alpha_1 w_1 + ... + \alpha_s w_s$. Logo a matriz h nessa base é dada pela representação na seguinte forma:

$$\begin{pmatrix} 1 & 0 & \dots & 0 & \alpha_{1,t+1} & \dots & \alpha_{1,t+s} \\ 0 & 1 & \dots & 0 & \alpha_{2,t+1} & \dots & \alpha_{2,t+s} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \alpha_{t,t_1} & \dots & \alpha_{t,t+s} \\ 0 & 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 1 \end{pmatrix}$$

Portanto, podemos encontrar uma base de V com respeito a representação cujos elementos são unitriangulares, isto é, são matrizes triangulares superiores cujas entradas das diagonais são 1. Desde que F tem característica 0, toda matriz unitriangular diferente da identidade tem ordem infinita, o que contradiz o fato de G ter expoente finito, então H é trivial e G/H = G tem ordem no máximo m^{n^3} .

Theorem 3 (Schur). Todo subgrupo de torção de $GL(n, \mathbb{Q})$ é finito. De fato, existe uma função $f: \mathbb{N} \to \mathbb{N}$ tal que a ordem de todo subgrupo de torção de $GL(n, \mathbb{Q})$ é menor ou igual a f(n).

Proof. É suficiente mostrar que existe uma função $\tau: \mathbb{N} \to \mathbb{N}$ que limita a ordem dos elementos (de ordem finita) de $GL(n, \mathbb{Q})$. Então, pelo Teorema de Burnside, a ordem de cada subgrupo de torção de $GL(n, \mathbb{Q})$ é no máximo f(n) onde $f(n) = (\tau(n))^{n^3}$.

Vamos mostrar que se m é a ordem de um elemento de $GL(n,\mathbb{Q})$, então $\Phi(m) \leq n$ onde Φ é a função de Euler. De fato, como o conjunto $\{m \in \mathbb{N} \mid \Phi(m) \leq k\}$ é finito, isto implica que existe uma função tal que m é limitada por $\tau(n)$. O gráfico abaixo nos mostra a relação dos valores da função de Euler para os 100 primeiros números.

Usando indução em n, temos que para n=1, $GL(1,\mathbb{Q})=\mathbb{Q}^*$. Como os únicos elementos de ordem finita de \mathbb{Q}^* são $\{1,-1\}$ e $\Phi(1)=\Phi(2)=1$, o resultado segue.

Assuma que o resultado é verdadeiro para todo $GL(r,\mathbb{Q})$ com r < n. Considere o subgrupo $G = \langle x \rangle$ de $GL(n,\mathbb{Q})$ onde x é um elemento de ordem m. Pela hipótese de indução, podemos supor que G é irredutível, caso contrário podemos considerar a ação de G num G— submódulo próprio não trivial de dimensão menor que n e então G seria finito. Como G é irredutível, \mathbb{Q}^n é um $\mathbb{Q}G$ —módulo simples. Então $End_{\mathbb{Q}G}(\mathbb{Q}^n) = D$ é uma anel de divisão sobre \mathbb{Q} e seu centro Z(D) é um corpo que contém \mathbb{Q} e x. De fato, se $\phi \in D$ e $v \in \mathbb{Q}^n$, então $(vx)\phi = v\phi x$.

Desde que x tem ordem m, x é raiz de um polinômio ciclotômico, portanto irredutível, $\Psi_m(t)$ de grau $\Phi(m)$ sobre \mathbb{Q} . Então, existe $v \in \mathbb{Q}^n, v \neq 0$ tal que $\{v, xv, x^2v, ..., x^{\Phi(m)-1}v\}$ são linearmente independentes, caso contrário x seria raiz de um polinômio de grau menor que $\Phi(m)$. Isto significa que $\Phi(m) \leq n$, o que conclui a prova do teorema.

3 Referências

References

- [1] D. J. S. Robinson. A Course in the Theory of Groups. 1996.
- [2] Lal, Ramji. Algebra 2 Linear Algebra, Galois Theory, Representation theory, Group extensions and Schur Multiplier.