Model Documentation of the Four-Bar Linkage

This document was automatically generated based on the ACKREP project system model with CK7EX. The Automatic Control Knowledge Repository, short ACKREP, aims to facilitate knowledge transfer of control theory and control engineering.

1 Nomenclature

1.1 Nomenclature for Model Equations

- s_i distance from the joint to the center of gravity of link i, where i = 1, 2, 3
- m_i mass of link i, where i = 1, 2, 3
- J_i moment of inertia of link i, where i = 1, 2, 3
- l_i length of (distance between joints) of link i, where i = 1, 2, 3, 4
- g acceleration due to gravity
- p_1 angle between basis and link 1 (joint 1)
- p_2 angle between link 1 and link 2 (joint 2)
- q_1 angle between basis and link 3 (joint 4)
- u_1 external torgue applied to joint 1
- y array of angles
- \dot{y} array of angular velocities

2 Model Equations

DAE Variables and Input Vector:

$$\underline{x} = (x_1 \ x_2 \ x_3 \ \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \ \lambda_1 \ \lambda_2)^T \qquad = (p_1 \ p_2 \ q_1 \ \dot{p}_1 \ \dot{p}_2 \ \dot{q}_1 \ \lambda_1 \ \lambda_2)^T$$

$$\underline{u} = u_1$$

Constraints:

$$l_1 \cos(x_3) + l_2 \cos(x_1 + x_3) - l_3 \cos(x_2) - l_4$$
 (1a)

$$l_1 \sin(x_3) + l_2 \sin(x_1 + x_3) - l_3 \sin(x_2)$$
 (1b)

System Equations:

$$\begin{aligned} 0 &= J_2\ddot{x}_1 + J_2\ddot{x}_3 + gm_2s_2\cos(x_1 + x_3) + l_1m_2\ddot{x}_3s_2\cos(x_1) + l_1m_2\dot{x}_3^2s_2\sin(x_1) \\ &+ l_2\lambda_1\sin(x_1 + x_3) - l_2\lambda_2\cos(x_1 + x_3) + m_2\ddot{x}_1s_2^2 + m_2\ddot{x}_3s_2^2 \end{aligned}$$

$$0 &= J_3\ddot{x}_2 + gm_3s_3\cos(x_2) - l_3\lambda_1\sin(x_2) + l_3\lambda_2\cos(x_2) + m_3\ddot{x}_2s_3^2$$

$$0 &= J_1\ddot{x}_3 + J_2\ddot{x}_1 + J_2\ddot{x}_3 + gl_1m_2\cos(x_3) + gm_1s_1\cos(x_3) + gm_2s_2\cos(x_1 + x_3) \\ &+ l_1^2m_2\ddot{x}_3 + l_1\lambda_1\sin(x_3) - l_1\lambda_2\cos(x_3) + l_1m_2\ddot{x}_1s_2\cos(x_1) - l_1m_2\dot{x}_1^2s_2\sin(x_1) \\ &- 2l_1m_2\dot{x}_1\dot{x}_3s_2\sin(x_1) + 2l_1m_2\ddot{x}_3s_2\cos(x_1) + l_2\lambda_1\sin(x_1 + x_3) - l2\lambda_2\cos(x_1 + x_3) \end{aligned}$$

Parameters: s_1 s_2 s_3 m_1 m_2 m_3 J_1 J_2 J_3 l_1 l_2 l_3 l_4 g Outputs: y \dot{y}

2.1 Exemplary parameter values

 $+ m_1\ddot{x}_3s_1^2 + m_2\ddot{x}_1s_2^2 + m_2\ddot{x}_3s_2^2 - u_1$

Parameter Name	Symbol	Value	Unit
distance from the joint to the center of gravity of link 1	s_1	0.5	m
distance from the joint to the center of gravity of link 2	s_2	0.5	\mathbf{m}
distance from the joint to the center of gravity of link 3	s_3	0.5	\mathbf{m}
mass of link 1	m_1	1	$_{ m kg}$
mass of link 2	m_2	1	$_{ m kg}$
mass of link 3	m_3	3	kg
moment of inertia of link 1	J_1	0.0833333333333333333333333333333333333	
moment of inertia of link 2	J_2	0.08333333333333333	$\frac{\frac{kg}{m^2}}{\frac{kg}{m^2}}$ $\frac{kg}{m^2}$
moment of inertia of link 3	J_3	0.08333333333333333	$\frac{kg}{m^2}$
length of link 1	l_1	0.8	m
length of link 2	l_2	1.5	\mathbf{m}
length of link 3	l_3	1.5	\mathbf{m}
length of link 4	l_4	2	m
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

Not available

References

[1] Knoll, Carsten: Considered model: four-bar linkage (= two link manipulator + one link manipulator + rigid coupling), Jupyter Notebook published 2019