1 Basic equations

Basic equations to start from: MHD with non-adiabatic effects added:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p - \rho \mathbf{v} \cdot \nabla \mathbf{v} + (\nabla \times \mathbf{B}) \times \mathbf{B} + \rho \mathbf{g}$$

$$\rho \frac{\partial T}{\partial t} = -\rho \mathbf{v} \cdot \nabla T - (\gamma - 1)p \nabla \cdot \mathbf{v} - (\gamma - 1)\rho \mathcal{L} + (\gamma - 1)\nabla \cdot (\boldsymbol{\kappa} \cdot \nabla T)$$

$$\frac{\partial B}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$
(1)

Linearize them with flow, so $v_0 \neq 0$. Also use a vector potential $B_1 = \nabla \times A_1$ for the perturbed magnetic field and replace p_1 by $T_0 \rho_1 + \rho_0 T_1$ (from the linearized ideal gas law):

$$\frac{\partial \rho_{1}}{\partial t} = -\nabla \cdot (\rho_{0} \boldsymbol{v}_{1}) - \nabla \cdot (\rho_{1} \boldsymbol{v}_{0})$$

$$\rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t} = -\rho_{0} \boldsymbol{v}_{0} \cdot \nabla \boldsymbol{v}_{1} - \rho_{0} \boldsymbol{v}_{1} \cdot \nabla \boldsymbol{v}_{0} - \rho_{1} \boldsymbol{v}_{0} \cdot \nabla \boldsymbol{v}_{0} - \nabla (T_{0} \rho_{1} + \rho_{0} T_{1}) + (\nabla \times \boldsymbol{B}_{0}) \times (\nabla \times \boldsymbol{A}_{1})$$

$$+ [\nabla \times (\nabla \times \boldsymbol{A}_{1})] \times \boldsymbol{B}_{0} + \rho_{1} \boldsymbol{g}$$

$$\rho_{0} \frac{\partial T_{1}}{\partial t} = -\rho_{0} \boldsymbol{v}_{1} \cdot \nabla T_{0} - \rho_{0} \boldsymbol{v}_{0} \cdot \nabla T_{1} - (\gamma - 1)\rho_{0} T_{0} \nabla \cdot \boldsymbol{v}_{1} - (\gamma - 1)\rho_{1} \mathcal{L}_{0} - (\gamma - 1)\rho_{0} (\mathcal{L}_{T} T_{1} + \mathcal{L}_{\rho} \rho_{1})$$

$$+ (\gamma - 1) \nabla \cdot (\boldsymbol{\kappa}_{0} \cdot \nabla T_{1}) + (\gamma - 1) \nabla \cdot (\boldsymbol{\kappa}_{1} \cdot \nabla T_{0})$$

$$\frac{\partial \boldsymbol{A}_{1}}{\partial t} = \boldsymbol{v}_{1} \times \boldsymbol{B}_{0} + \boldsymbol{v}_{0} \times (\nabla \times \boldsymbol{A}_{1})$$

$$\frac{\rho_{1}}{\rho_{0}} = \frac{T_{1}}{T_{0}} + \frac{\rho_{1}}{\rho_{0}}$$
(2)

Denote coordinate system by (u_1, u_2, u_3) , which is (x, y, z) in Cartesian and (r, θ, z) in cylindrical coordinates. Equilibrium profiles are only dependent on u_1 , taken to be

$$\rho_0 = \rho_0(u_1)
p_0 = p_0(u_1)
T_0 = T_0(u_1)
\mathbf{v}_0 = v_{02}(u_1)\hat{\mathbf{e}}_2 + v_{03}(u_1)\hat{\mathbf{e}}_3
\mathbf{B}_0 = B_{02}(u_1)\hat{\mathbf{e}}_2 + B_{03}(u_1)\hat{\mathbf{e}}_3$$
(3)

so $\nabla \cdot \boldsymbol{v}_0 = 0$ and obviously $\nabla \cdot \boldsymbol{B}_0 = 0$ and $\nabla \cdot \boldsymbol{B}_1 = 0$, take gravity as $\boldsymbol{g} = -g\hat{\boldsymbol{e}}_1$. Vectors $\hat{\boldsymbol{e}}_1$, $\hat{\boldsymbol{e}}_2$ and $\hat{\boldsymbol{e}}_3$ are orthonormal basis vectors representing directions along (u_1, u_2, u_3) . Apply Fourier transformation using

$$f_1(u_1, u_2, u_3, t) = \widetilde{f}_1(u_1) e^{-i\omega t + ik_2 u_2 + ik_3 u_3}$$

$$\tag{4}$$

1.1 Slab geometry

Below all tildes are dropped for convenience.

$$\omega \rho_{1} = -iv_{1}\rho'_{0} - i\rho_{0}(v'_{1} + ik_{2}v_{2} + ik_{3}v_{3}) + (v_{02}k_{2} + v_{03}k_{3})\rho_{1}$$

$$\omega \rho_{0}v_{1} = \rho_{0}(k_{2}v_{02} + k_{3}v_{03})v_{1} - i(\rho_{0}T_{1} + \rho_{1}T_{0})' + iB'_{02}(a'_{3} - ik_{3}a_{1}) - iB'_{03}(a'_{2} - ik_{2}a_{1}) + iB_{03}\left[k_{3}^{2}a_{2} - k_{2}k_{3}a_{3} - (a'_{2} - ik_{2}a_{1})'\right] - iB_{02}\left[k_{2}^{2}a_{3} - k_{2}k_{3}a_{2} + (ik_{3}a_{1} - a'_{3})'\right] - ig\rho_{1}$$

$$\omega \rho_{0}v_{2} = k_{2}(T_{0}\rho_{1} + \rho_{0}T_{1}) + \rho_{0}(k_{2}v_{02} + k_{3}v_{03})v_{2} - i\rho_{0}v'_{02}v_{1} - B'_{02}(k_{2}a_{3} - k_{3}a_{2}) - iB_{03}\left[(k_{2}^{2} + k_{3}^{3})a_{1} + i(k_{2}a_{2} + k_{3}a_{3})'\right]$$

$$\omega \rho_{0}v_{3} = k_{3}(T_{0}\rho_{1} + \rho_{0}T_{1}) + \rho_{0}(k_{2}v_{02} + k_{3}v_{03})v_{3} - i\rho_{0}v'_{03}v_{1} - B'_{03}(k_{2}a_{3} - k_{3}a_{2}) + iB_{02}\left[(k_{2}^{2} + k_{3}^{2})a_{1} + i(k_{2}a_{2} + k_{3}a_{3})'\right]$$

$$\omega \rho_{0}T_{1} = -i\rho_{0}v_{1}T'_{0}' + \rho_{0}(k_{2}v_{02} - k_{3}v_{03})T_{1} - i(\gamma - 1)\rho_{0}T_{0}(v'_{1} + ik_{2}v_{2} + ik_{3}v_{3}) - i(\gamma - 1)\mathcal{L}_{0}\rho_{1} - i(\gamma - 1)\rho_{0}\mathcal{L}_{T}T_{1} - i(\gamma - 1)\rho_{0}\mathcal{L}_{\rho}\rho_{1} - i(\gamma - 1)(\kappa_{\parallel} - \kappa_{\perp})\frac{1}{B^{2}}(k_{2}B_{02} + k_{3}B_{03})^{2}T_{1} + i(\gamma - 1)(\kappa_{\perp}T'_{1})' - i\kappa_{\perp}(\gamma - 1)(k_{2}^{2} + k_{3}^{2})T_{1} + i(\gamma - 1)(\kappa_{\perp}T'_{1})' - i\kappa_{\perp}(\gamma - 1)(k_{2}^{2} + k_{3}^{2})T_{1} + i(\gamma - 1)(\kappa_{\perp}T'_{0})' + i(\gamma - 1)(\kappa_{\parallel} - \kappa_{\perp})\frac{1}{B^{2}}\left[(k_{2}k_{3}B_{02} + k_{3}^{2}B_{03})a_{2} - (k_{2}k_{3}B_{03} + k_{2}^{2}B_{02})a_{3}\right]T'_{0}$$

$$\omega a_{1} = iB_{03}v_{2} - iB_{02}v_{3} + iv_{02}a'_{2} + iv_{03}a'_{3} + (k_{2}v_{02} + k_{3}v_{03})a_{1}$$

$$\omega a_{2} = -iB_{03}v_{1} - v_{03}(k_{2}a_{3} - k_{2}a_{3})$$

where the prime denotes ∂_{u_1} .

1.2 Cylindrical geometry

Derivations in cylindrical coordinates, explicitly done to see how the scale factor enters into the equations. For consistency with the slab case the same Fourier transformation is used (usually $k_2 = m$ and $k_3 = k$).

$$\omega \rho_{1} = -iv_{1}\rho'_{0} - i\rho_{0} \left(v'_{1} + \frac{v_{1}}{r} + \frac{1}{r}ik_{2}v_{2} + ik_{3}v_{3}\right) + \left(\frac{1}{r}v_{02}k_{2} + v_{03}k_{3}\right)\rho_{1}$$

$$\omega \rho_{0}v_{1} = -i\left(T_{0}\rho_{1} + T_{1}\rho_{0}\right)' - i\frac{B'_{03}}{r}\left[\left(ra_{2}\right)' - ik_{2}a_{1}\right] + i\frac{\left(rB_{02}\right)'}{r}\left(a'_{3} - ik_{3}a_{1}\right)$$

$$+ iB_{03}\left\{k_{3}^{2}a_{2} - \frac{1}{r}k_{2}k_{3}a_{3} - \left[\frac{1}{r}\left(\left(ra_{2}\right)' - ik_{2}a_{1}\right)\right]'\right\} + \left(\frac{v_{02}k_{2}}{r} + v_{03}k_{3}\right)\rho_{0}v_{1}$$

$$- iB_{02}\left\{\frac{1}{r^{2}}k_{2}^{2}a_{3} - \frac{1}{r}k_{2}k_{3}a_{2} + \frac{1}{r}\left[r\left(ik_{3}a_{1} - a'_{3}\right)\right]'\right\} + i\frac{2}{r}\rho_{0}v_{02}v_{2} + i\frac{1}{r}v_{02}^{2}\rho_{1} - ig\rho_{1}$$

$$\omega \rho_{0}v_{2} = \frac{1}{r}\left(T_{0}\rho_{1} + \rho_{0}T_{1}\right)k_{2} + \rho_{0}\left(\frac{1}{r}v_{02}k_{2} + v_{03}k_{3}\right)v_{2} + \frac{1}{r^{2}}\left(rB_{02}\right)'\left(rk_{3}a_{2} - k_{2}a_{3}\right)$$

$$+ B_{03}\left[-ik_{3}^{2}a_{1} + k_{3}a'_{3} + \frac{1}{r^{2}}k_{2}\left(ra_{2}\right)' - \frac{i}{r^{2}}k_{2}^{2}a_{1}\right] - i\rho_{0}\frac{1}{r}v_{02}v_{1} - i\rho_{0}v'_{02}v_{1}$$

$$\omega \rho_{0}v_{3} = \left(T_{0}\rho_{1} + \rho_{0}T_{1}\right)k_{3} - B'_{03}\left(\frac{1}{r}k_{2}a_{3} - k_{3}a_{2}\right) + iB_{02}\left[\frac{1}{r^{2}}ik_{2}\left(ra_{2}\right)' + \frac{1}{r^{2}}k_{2}^{2}a_{1} + k_{3}^{2}a_{1} + ik_{3}a'_{3}\right]$$

$$+ \rho_{0}\left(\frac{1}{r}k_{2}v_{02} + k_{3}v_{03}\right)v_{3} - i\rho_{0}v'_{03}v_{1}$$

$$(6)$$

$$\omega \rho_{0}T_{1} = -i\rho_{0}v_{1}T'_{0} + \rho_{0}\left(\frac{1}{r}k_{2}v_{02} + k_{3}v_{03}\right)T_{1} - i\left(\gamma - 1\right)\rho_{0}T_{0}\left[\frac{1}{r}\left(rv_{1}\right)' + \frac{1}{r^{2}}ik_{2}v_{2} + ik_{3}v_{3}\right]$$

$$- i\left(\gamma - 1\right)\left(\kappa_{\parallel} - \kappa_{\perp}\right)\frac{1}{B^{2}}\left(\frac{1}{r}k_{2}B_{02} + k_{3}B_{03}\right)^{2}T_{1} + i\left(\gamma - 1\right)\frac{1}{r}\left(r\kappa_{\perp}T'_{1}\right)'$$

$$- i\left(\gamma - 1\right)\kappa_{\perp}\left(\frac{1}{r^{2}}k_{2}^{2} + k_{3}^{2}\right)T_{1} + i\left(\gamma - 1\right)\frac{1}{r}\left(r\kappa_{\perp}T_{1}T'_{0}\right)'$$

$$+ i\left(\gamma - 1\right)\left(\kappa_{\perp} - \kappa_{\parallel}\right)\frac{1}{B^{2}}\left[\left(B_{03}k_{3}^{2} + B_{02}k_{2}k_{3}\right)a_{2} - \frac{1}{r}\left(B_{02}k_{2}^{2} + B_{03}k_{2}k_{3}\right)a_{3}\right]$$

$$- i\left(\gamma - 1\right)\rho_{1}\mathcal{L}_{0} - i\left(\gamma - 1\right)\rho_{0}(\mathcal{L}_{T}T_{1} + \mathcal{L}_{\rho}\rho_{1}\right)$$

$$\omega a_{1} = iB_{03}v_{2} - iB_{02}v_{3} + iv_{02}a'_{2} + iv_{03}a'_{3} + \left(\frac{1}{r}k_{2}v_{02} + k_{3}v_{03}\right)a_{1} + i\frac{1}{r}v_{02}a_{2}$$

$$\omega a_{2} = -iB_{03}v_{1} - \left(\frac{1}{k_{3}}k_{2}a_{3} - \frac{1}{r}k_{2}a_{3}\right)v_{02}$$

1.3 Introducing the scale factor

Now define the scale factor ε , where $\varepsilon = 1$ and $\varepsilon' = 0$ in Cartesian coordinates. In cylindrical coordinates, $\varepsilon = r$ and $\varepsilon' = 1$. Apply the following transformation to the perturbed quantities:

$$\varepsilon \rho_1 = \widetilde{\rho}_1 \qquad i\varepsilon v_1 = \widetilde{v}_1 \qquad v_2 = \widetilde{v}_2 \qquad \varepsilon v_3 = \widetilde{v}_3
\varepsilon T_1 = \widetilde{T}_1 \qquad a_1 = \widetilde{a}_1 \qquad i\varepsilon a_2 = \widetilde{a}_2 \qquad ia_3 = \widetilde{a}_3$$

Tildes are dropped below for convenience.

$$\omega \frac{\rho_{1}}{\varepsilon} = -\frac{1}{\varepsilon} \rho'_{0} v_{1} - \frac{1}{\varepsilon} \rho_{0} \left(v'_{1} - k_{2} v_{2} - k_{3} v_{3} \right) + \frac{1}{\varepsilon} \left(\frac{1}{\varepsilon} v_{02} k_{2} + v_{03} k_{3} \right) \rho_{1}$$

$$\omega \rho_{0} \frac{v_{1}}{\varepsilon} = \left(\frac{T_{0} \rho_{1} + \rho_{0} T_{1}}{\varepsilon} \right)' + \frac{1}{\varepsilon} B'_{03} \left(a'_{2} - k_{2} a_{1} \right) - \frac{(\varepsilon B_{02})'}{\varepsilon} \left(a'_{3} - k_{3} a_{1} \right)$$

$$- B_{03} \left\{ \frac{k_{3}^{2}}{\varepsilon^{2}} a_{2} - \frac{k_{2} k_{3}}{\varepsilon} a_{3} - \left[\frac{1}{\varepsilon} \left(a'_{2} - k_{2} a_{1} \right) \right]' \right\} + \frac{1}{\varepsilon} \left(\frac{v_{02} k_{2}}{\varepsilon} + v_{03} k_{3} \right) \rho_{0} v_{1}$$

$$+ B_{02} \left\{ \frac{k_{2}^{2}}{\varepsilon^{2}} a_{3} - \frac{k_{2} k_{3}}{\varepsilon^{2}} a_{2} - \frac{1}{\varepsilon} \left[\varepsilon \left(a'_{3} - k_{3} a_{1} \right) \right]' \right\} - 2 \frac{\varepsilon'}{\varepsilon} \rho_{0} v_{0} v_{2} v_{2} - \frac{\varepsilon'}{\varepsilon^{2}} v_{02}^{2} \rho_{1} + \frac{1}{\varepsilon} g \rho_{1}$$

$$\omega \rho_{0} v_{2} = \frac{1}{\varepsilon^{2}} \left(T_{0} \rho_{1} + \rho_{0} T_{1} \right) k_{2} + \rho_{0} \left(\frac{1}{\varepsilon} k_{2} v_{02} + k_{3} v_{03} \right) v_{2} + \frac{1}{\varepsilon^{2}} \left(\varepsilon B_{02} \right)' \left(k_{3} a_{2} - k_{2} a_{3} \right)$$

$$+ B_{03} \left[- \left(k_{3}^{2} + \frac{k_{2}^{2}}{\varepsilon^{2}} \right) a_{1} + \frac{k_{2}^{2}}{\varepsilon^{2}} a'_{2} + k_{3} a'_{3} \right] - \frac{1}{\varepsilon^{2}} \rho_{0} (\varepsilon v_{02})' v_{1}$$

$$\omega \rho_{0} \frac{v_{3}}{\varepsilon} = \frac{1}{\varepsilon} \left(T_{0} \rho_{1} + \rho_{0} T_{1} \right) k_{3} + \frac{1}{\varepsilon} \rho_{0} \left(\frac{1}{\varepsilon} k_{2} v_{02} + k_{3} v_{03} \right) v_{3} + \frac{1}{\varepsilon} B'_{03} \left(k_{3} a_{2} - k_{2} a_{3} \right)$$

$$- B_{02} \left[- \left(k_{3}^{2} + \frac{k_{3}^{2}}{\varepsilon^{2}} \right) a_{1} + \frac{k_{2}^{2}}{\varepsilon^{2}} a'_{2} + k_{3} u_{03} \right) T_{1} - \left(\gamma - 1 \right) \frac{1}{\varepsilon} \rho_{0} V_{03}' v_{1} \right]$$

$$- i \left(\gamma - 1 \right) \frac{\left(k_{1} - \kappa_{1} \right)}{\varepsilon} \frac{1}{B^{2}} \left(\frac{k_{2}}{\varepsilon} B_{02} + k_{3} B_{03} \right) T_{1} + i \left(\gamma - 1 \right) \frac{1}{\varepsilon} \left[\varepsilon \kappa_{1} \left(\frac{T_{1}}{\varepsilon} \right)' \right]'$$

$$- i \left(\gamma - 1 \right) \frac{\left(k_{1}^{2} - \kappa_{1} \right)}{\varepsilon} \frac{1}{B^{2}} \left(\frac{k_{2}^{2}}{\varepsilon} B_{02} + k_{3}^{2} B_{03} \right) T_{1} + i \left(\gamma - 1 \right) \frac{1}{\varepsilon} \left[\varepsilon \kappa_{1} \left(\frac{T_{1}}{\varepsilon} \right)' \right]'$$

$$+ i \left(\gamma - 1 \right) \frac{\left(\kappa_{1} - \kappa_{1} \right)}{\varepsilon} \frac{1}{B^{2}} \left[\left(k_{2} k_{3} B_{02} + k_{3}^{2} B_{03} \right) a_{2} - \left(k_{2}^{2} B_{02} + k_{2} k_{3} B_{03} \right) a_{3} \right]$$

$$- i \left(\gamma - 1 \right) \frac{\left(\kappa_{1} - \kappa_{1} \right)}{\varepsilon} \frac{1}{B^{2}} \left[\left(k_{2} k_{3} B_{02} + k_{3}^{2} B_{03} \right) a_{2} - \left(k_{2}^{2} B_{02} + k_{2} k_{3} B_{03} \right) a_{3} \right]$$

$$- i \left(\gamma - 1 \right) \frac{1}$$

1.3.1 Change in thermal conduction tensor

The linearized part of the thermal conduction tensor in cylindrical coordinates is given by

$$\kappa_{\perp,1} = \frac{\partial \kappa_{\perp}}{\partial T} T_1 + \frac{\partial \kappa_{\perp}}{\partial \rho} \rho_1 + 2 \left(B_{02} B_{\theta} + B_{03} B_z \right) \frac{\partial \kappa_{\perp}}{\partial (B^2)} \tag{8}$$

Applying the transformations for the perturbed variables and introducing the vector potential for B_1 , this can be rewritten as

$$\varepsilon \kappa_{\perp,1} = \frac{\partial \kappa_{\perp}}{\partial T} T_1 + \frac{\partial \kappa_{\perp}}{\partial \rho} \rho_1 - 2\varepsilon B_{02} \left(a_3' - k_3 a_1 \right) \frac{\partial \kappa_{\perp}}{\partial (B^2)} + 2B_{03} \left(a_2' - k_2 a_1 \right) \frac{\partial \kappa_{\perp}}{\partial (B^2)} \tag{9}$$

which can be substituted in the above equations.

2 Finite Elements

Define the state vector of the system as $\mathbf{w} = (\rho_1, v_1, v_2, v_3, T, a_1, a_2, a_3)$. Take quadratic elements for components $\rho_1, v_2, v_3, T_1, a_1$ and cubic elements for v_1, a_2, a_3 . The eigenvalue problem can be written as $\omega B \mathbf{x} = A \mathbf{x}$, and for every function we have

$$\int f(r)h_j^a(r)h_k^b(r)dr \tag{10}$$

where $a, b \in [1, 8]$ denote the perturbed variables. In what follows dr should actually be du_1 to be consistent with both the Cartesian and cylindrical cases, but for clarity these are used interchangeably.

2.1 Matrix B

$$B_{jk}(1,1) = \int \frac{1}{\varepsilon} h_j^1 h_k^1 dr \qquad B_{jk}(5,5) = \int \frac{\rho_0}{\varepsilon} h_j^5 h_k^5 dr B_{jk}(2,2) = \int \frac{\rho_0}{\varepsilon} h_j^2 h_k^2 dr \qquad B_{jk}(6,6) = \int h_j^6 h_k^6 dr B_{jk}(3,3) = \int \rho_0 h_j^3 h_k^3 dr \qquad B_{jk}(7,7) = \int \frac{1}{\varepsilon} h_j^7 h_k^7 dr B_{jk}(4,4) = \int \frac{\rho_0}{\varepsilon} h_j^4 h_k^4 dr \qquad B_{jk}(8,8) = \int h_j^8 h_k^8 dr$$

2.2 Matrix A

$$\begin{split} A_{jk}(1,1) &= \int \left[\frac{1}{\varepsilon} \left(\frac{1}{\varepsilon} v_{02} k_2 + v_{03} k_3 \right) \right] h_j^1 h_k^1 dr \\ A_{jk}(1,2) &= -\int \left[\frac{1}{\varepsilon} \rho'_0 \right] h_j^1 h_k^2 dr - \int \left[\frac{1}{\varepsilon} \rho_0 \right] h_j^1 \frac{dh_k^2}{dr} dr \\ A_{jk}(1,3) &= \int \left[\frac{1}{\varepsilon} \rho_0 k_2 \right] h_j^1 h_k^3 dr \\ A_{jk}(1,4) &= \int \left[\frac{1}{\varepsilon} \rho_0 k_3 \right] h_j^1 h_k^4 dr \\ A_{jk}(2,1) &= \left[\frac{T_0}{\varepsilon} \right] h_j^2 h_k^1 - \int \left[\frac{T_0}{\varepsilon} \right] \frac{dh_j^2}{dr} h_k^1 dr - \int \left[\frac{\varepsilon'}{\varepsilon^2} v_{02}^2 \right] h_j^2 h_k^1 dr + \int \left[\frac{1}{\varepsilon} g \right] h_j^2 h_k^1 dr \\ A_{jk}(2,2) &= \int \left[\frac{1}{\varepsilon} \left(\frac{v_{02} k_2}{\varepsilon} + v_{03} k_3 \right) \rho_0 \right] h_j^2 h_k^2 dr \end{split}$$

$$A_{jk}(2,3) = -\int \left[2\frac{\varepsilon'}{\varepsilon} \rho_0 v_{02} \right] h_j^2 h_k^3 dr$$

$$A_{jk}(2,5) = \left[\frac{\rho_0}{\varepsilon}\right] h_j^2 h_k^5 dr - \int \left[\frac{\rho_0}{\varepsilon}\right] \frac{dh_j^2}{dr} h_k^5 dr$$

$$A_{jk}(2,6) = \int \left[\frac{(\varepsilon B_{02})'}{\varepsilon} k_3 + \frac{\varepsilon'}{\varepsilon} B_{02} k_3 - \left(\frac{B_{03}}{\varepsilon} \right)' k_2 \right] h_j^2 h_k^6 dr + \int \left[B_{02} k_3 - \frac{1}{\varepsilon} B_{03} k_2 \right] h_j^2 \frac{dh_k^6}{dr}$$

$$A_{jk}(2,7) = \left\lceil \frac{B_{03}}{\varepsilon} \right\rceil h_j^2 \frac{dh_k^7}{dr} - \int \left\lceil B_{03} \frac{k_3^2}{\varepsilon} + B_{02} \frac{k_2 k_3}{\varepsilon^2} \right\rceil h_j^2 h_k^7 dr - \int \left\lceil \frac{B_{03}}{\varepsilon} \right\rceil \frac{dh_j^2}{dr} \frac{dh_k^7}{dr} dr$$

$$A_{jk}(2,8) = -\left[B_{02}\right]h_{j}^{2}\frac{dh_{k}^{8}}{dr} + \int\left[B_{03}\frac{k_{2}k_{3}}{\varepsilon} + B_{02}\frac{k_{2}^{2}}{\varepsilon^{2}}\right]h_{j}^{2}h_{k}^{8}dr - \int\left[2B_{02}\frac{\varepsilon'}{\varepsilon}\right]h_{j}^{2}\frac{dh_{k}^{8}}{dr}dr + \int\left[B_{02}\right]\frac{dh_{j}^{2}}{dr}\frac{dh_{k}^{8}}{dr}dr$$

$$A_{jk}(3,1) = \int \left[\frac{1}{\varepsilon^2} T_0 k_2 \right] h_j^3 h_k^1 dr$$

$$A_{jk}(3,2) = -\int \left[\frac{1}{\varepsilon^2} \rho_0(\varepsilon v_{02})'\right] h_j^3 h_k^2 dr$$

$$A_{jk}(3,3) = \int \left[\rho_0 \left(\frac{1}{\varepsilon} k_2 v_{02} + k_3 v_{03} \right) \right] h_j^3 h_k^3 dr$$

$$A_{jk}(3,5) = \int \left[\frac{1}{\varepsilon^2} \rho_0 k_2 \right] h_j^3 h_k^5 dr$$

$$A_{jk}(3,6) = -\int \left[B_{03} \left(k_3^2 + \frac{k_2^2}{\varepsilon^2} \right) \right] h_j^3 h_k^6 dr$$

$$A_{jk}(3,7) = \int \left[\frac{1}{\varepsilon^2} (\varepsilon B_{02})' k_3 \right] h_j^3 h_k^7 dr + \int \left[B_{03} \frac{k_2}{\varepsilon^2} \right] h_j^3 \frac{dh_k^7}{dr} dr$$

$$A_{jk}(3,8) = -\int \left[\frac{1}{\varepsilon^2} (\varepsilon B_{02})' k_2 \right] h_j^3 h_k^8 dr + \int \left[B_{03} k_3 \right] h_j^3 \frac{dh_k^8}{dr} dr$$

$$A_{jk}(4,1) = \int \left[\frac{1}{\varepsilon} T_0 k_3\right] h_j^4 h_k^1 dr$$

$$A_{jk}(4,2) = -\int \left[\frac{1}{\varepsilon}\rho_0 v_{03}'\right] h_j^4 h_k^2 dr$$

$$A_{jk}(4,4) = \int \left[\frac{1}{\varepsilon} \rho_0 \left(\frac{1}{\varepsilon} k_2 v_{02} + k_3 v_{03} \right) \right] h_j^4 h_k^4 dr$$

$$A_{jk}(4,5) = \int \left[\frac{1}{\varepsilon}\rho_0 k_3\right] h_j^4 h_k^5 dr$$

$$A_{jk}(4,6) = \int \left[B_{02} \left(k_3^2 + \frac{k_2^2}{\varepsilon^2} \right) \right] h_j^4 h_k^6 dr$$

$$A_{jk}(4,7) = \int \left[\frac{1}{\varepsilon} B'_{03} k_3 \right] h_j^4 h_k^7 dr - \int \left[B_{02} \frac{k_2}{\varepsilon^2} \right] h_j^4 \frac{dh_k^7}{dr} dr$$

$$\begin{split} A_{jk}(4,8) &= -\int \left[\frac{1}{\varepsilon} B_{03}^{\prime}k_{2}\right] h_{1}^{4}h_{k}^{8}dr - \int \left[B_{02}k_{3}\right] h_{j}^{4} \frac{dh_{k}^{8}}{dr} dr \\ A_{jk}(5,1) &= \left[i(\gamma-1)\frac{1}{\varepsilon} T_{0}^{\prime} \frac{\partial \kappa_{-}}{\partial \rho}\right] h_{j}^{4}h_{k}^{8}dr - \int \left[i(\gamma-1)\frac{1}{\varepsilon} T_{0}^{\prime} \frac{\partial \kappa_{-}}{\partial \rho}\right] \frac{dh_{j}^{4}}{dr} h_{k}^{4}dr \\ &+ \int \left[i(\gamma-1)\frac{1}{\varepsilon} \left(\frac{\varepsilon'}{\varepsilon} T_{0}^{\prime} \frac{\partial \kappa_{-}}{\partial \rho}\right) - \mathcal{L}_{0} - \rho_{0} \mathcal{L}_{0}\right)\right] h_{j}^{5}h_{k}^{4}dr \\ &+ \int \left[i(\gamma-1)\frac{1}{\varepsilon} \rho_{0}T_{0}\right] h_{j}^{5}h_{k}^{2}dr - \int \left[(\gamma-1)\frac{1}{\varepsilon} \rho_{0}T_{0}\right] h_{j}^{5}h_{k}^{4}dr \\ A_{jk}(5,3) &= \int \left[(\gamma-1)\frac{1}{\varepsilon} \rho_{0}T_{0}k_{2}\right] h_{j}^{5}h_{k}^{2}dr \\ A_{jk}(5,4) &= \int \left[(\gamma-1)\frac{1}{\varepsilon} \rho_{0}T_{0}k_{2}\right] h_{j}^{5}h_{k}^{2}dr \\ A_{jk}(5,5) &= \left[\frac{1}{\varepsilon}i(\gamma-1)\left(T_{0}^{\prime} \frac{\partial \kappa_{+}}{\partial T} - \frac{\varepsilon'}{\varepsilon}\kappa_{+}\right)\right] h_{j}^{5}h_{k}^{5} + \left[\frac{1}{\varepsilon}i(\gamma-1)\kappa_{+}\right] h_{j}^{5} \frac{dh_{k}^{5}}{dr} \\ &- \int \left[\frac{1}{\varepsilon}i(\gamma-1)\left\{(\kappa_{\parallel}-\kappa_{\perp})\frac{1}{B^{2}}\left(\frac{k_{2}}{\varepsilon}B_{02} + k_{3}B_{03}\right) + \left(\frac{\varepsilon'}{\varepsilon}\right)^{2} \kappa_{\perp} + \kappa_{\perp}\left(\frac{k_{2}^{2}}{\varepsilon^{2}} + k_{3}^{2}\right) \right. \\ &+ \mu_{0}\mathcal{L}_{T} - \frac{1}{\varepsilon}T_{0}^{3} \frac{\partial \kappa_{\perp}}{\partial T}\right] h_{j}^{5}h_{k}^{5}dr \\ &+ \int \left[\frac{\varepsilon'}{\varepsilon^{2}}i(\gamma-1)\kappa_{\perp}\right] h_{j}^{5} \frac{dh_{k}^{5}}{dr}dr - \int \left[\frac{1}{\varepsilon}i(\gamma-1)\left(\frac{\varepsilon'}{\varepsilon}\kappa_{\perp} - T_{0}^{\prime} \frac{\partial \kappa_{\perp}}{\partial T}\right)\right] \frac{dh_{j}^{2}}{dr}h_{k}^{5}dr \\ &+ \int \left[i(\gamma-1)\frac{1}{\varepsilon}T_{0}^{\prime}(\varepsilon B_{02}k_{3} - B_{03}k_{2})\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] h_{j}^{5}h_{k}^{5}dr \\ &+ \int \left[i(\gamma-1)\frac{\varepsilon'}{\varepsilon}T_{0}^{\prime}(\varepsilon B_{02}k_{3} - B_{03}k_{2})\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] h_{j}^{5}h_{k}^{5}dr \\ &+ \int \left[i(\gamma-1)\frac{\varepsilon'}{\varepsilon}T_{0}^{\prime}B_{03}\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] h_{j}^{5}\frac{dh_{k}^{2}}{dr}dr - \int \left[i(\gamma-1)\frac{\varepsilon}{\varepsilon}T_{0}^{\prime}B_{03}\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] h_{j}^{5}h_{k}^{7}dr \\ &+ \int \left[i(\gamma-1)\frac{\varepsilon'}{\varepsilon^{2}}2T_{0}^{\prime}B_{03}\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] h_{j}^{5}\frac{dh_{k}^{2}}{dr}dr - \int \left[i(\gamma-1)\frac{\varepsilon}{\varepsilon}T_{0}^{\prime}B_{03}\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] \frac{dh_{j}^{5}h_{k}^{7}dr}{dr} \\ &+ \int \left[i(\gamma-1)\frac{\varepsilon'}{\varepsilon^{2}}2T_{0}^{\prime}B_{03}\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] h_{j}^{5}\frac{dh_{k}^{2}}{dr}dr - \int \left[i(\gamma-1)\frac{\varepsilon}{\varepsilon}T_{0}^{\prime}B_{03}\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] \frac{dh_{j}^{5}h_{k}^{7}dr}{dr} \\ &+ \int \left[i(\gamma-1)\frac{\varepsilon'}{\varepsilon^{2}}2T_{0}^{\prime}B_{03}\frac{\partial \kappa_{\perp}}{\partial (B^{2})}\right] h_{j}^{5}\frac{dh_{k}^{2}}{dr}dr - \int \left$$

$$A_{jk}(6,3) = -\int [B_{03}] h_j^6 h_k^3 dr$$

$$A_{jk}(6,4) = -\int \left[\frac{1}{\varepsilon}B_{02}\right]h_j^6h_k^4dr$$

$$A_{jk}(6,6) = \int \left[\frac{k_2}{\varepsilon} v_{02} + k_2 v_{03} \right] h_j^6 h_k^6 dr$$

$$A_{jk}(6,7) = -\int \left[\frac{1}{\varepsilon}v_{02}\right]h_j^6 \frac{dh_k^7}{dr}dr$$

$$A_{jk}(6,8) = -\int [v_{03}] h_j^6 \frac{dh_k^8}{dr} dr$$

$$A_{jk}(7,2) = -\int \left[\frac{1}{\varepsilon}B_{03}\right]h_j^7 h_k^2 dr$$

$$A_{jk}(7,7) = \int \left[\frac{1}{\varepsilon}k_3v_{03}\right]h_j^7h_k^7dr$$

$$A_{jk}(7,8) = -\int \left[\frac{1}{\varepsilon}k_2v_{03}\right]h_j^7h_k^8dr$$

$$A_{jk}(8,2) = \int \left[\frac{1}{\varepsilon}B_{02}\right]h_j^8h_k^2dr$$

$$A_{jk}(8,7) = -\int \left[\frac{1}{\varepsilon}k_3v_{02}\right]h_j^8h_k^7dr$$

$$A_{jk}(8,8) = \int \left[\frac{1}{\varepsilon}k_2v_{02}\right]h_j^8h_k^8dr$$

All other matrix elements are equal to zero.

2.3 Matrix elements

Matrix elements for matrix B:

1. **Qua**
$$\times$$
 Qua: B(1, 1), B(3, 3), B(4, 4), B(5, 5), B(6, 6)

2. Cub
$$\times$$
 Cub: B(2, 2), B(7, 7), B(8, 8)

Matrix elements for matrix A:

- 1. **Qua** \times **Qua** : A(1, 1), A(1, 3), A(1, 4), A(3, 1), A(3, 3), A(3, 5), A(3, 6), A(4, 1), A(4, 4), A(4, 5), A(4, 6), A(5, 1), A(5, 3), A(5, 4), A(5, 5), A(5, 6), A(6, 3), A(6, 4), A(6, 6), A(7, 1), A(7, 5), A(7, 6)
 - A(6, 6), A(5, 1), A(5, 5), A(5, 6)
- 2. **Qua** \times **Cub** : A(1, 2), A(3, 2), A(3, 7), A(3, 8), A(4, 2), A(4, 7), A(4, 8), A(5, 2), A(5, 7), A(5, 8)
- 3. **Qua** \times **Cub':** A(1, 2), A(3, 7), A(3, 8), A(4, 7), A(4, 8), A(5, 2), A(5, 7), A(5, 8), A(6, 7), A(6, 8), A(5, 7), A(5, 8)
- 4. Cub \times Qua: A(2, 1), A(2, 3), A(2, 6), A(2, 1), A(2, 5)
- 5. Cub' \times Qua : A(2, 1), A(2, 5)
- 6. $\mathbf{Cub} \times \mathbf{Cub} : A(2, 2), A(2, 7), A(2, 8), A(7, 2), A(7, 7), A(7, 8), A(8, 2), A(8, 7), A(8, 8)$
- 7. Cub \times Qua': A(2, 6)
- 8. Cub \times Cub': A(2, 8), A(2, 7), A(2, 8)
- 9. Cub' \times Cub': A(2, 7), A(2, 8)
- 10. Qua' \times Qua: A(5, 1), A(5, 5), A(5, 6)
- 11. Qua \times Qua': A(5, 5), A(5, 5)
- 12. **Qua'** \times **Qua'**: A(5, 5)
- 13. Qua' \times Cub: A(5, 7), A(5, 8)