同济大学 计算机科学与技术系

计算机组成原理课程设计实验报告

目录

_	、实	验内容														3
$\vec{-}$	、模	块建模														3
	2.1	功能描述		 	 			 •				 				3
	2.2	实现原理														
	2.3	模块代码		 	 							 				3
三	、测	试模块建模														17
	3.1	测试思路														
	3.2	测试代码		 	 			 •				 				17
四	、实	验结果														19
	4.1	无符号乘法	÷	 	 							 				19
	4.2	有符号乘法	<u>.</u>	 	 							 				20

一、 实验内容

- 1. 了解 32 位带符号、无符号乘法器的实现原理
- 2. 使用 Verilog 实现 32 位无符号乘法器和带符号乘法器

二、模块建模

2.1 功能描述

无符号乘法器功能为:将两个 32 位无符号数相乘,得到一个 64 位无符号数。将低 32 位存放在专用寄存器 LO 中,高 32 位存放在寄存器 HI 中。

带符号乘法器功能为:将两个 32 带符号数相乘,得到一个 64 位带符号数。只选取低 32 位存入指定寄存器。执行乘法指令过程中不产生异常。

2.2 实现原理

无符号乘法器:两个二进制数 a 和 b 相乘,可以认为是 a 和 b 的每一位相乘移位后的结果相加。关于 a 与 b 的每一位相乘产生的中间结果,如果 b 那位是 0,那么中间结果就是 0;如果是 1,那么中间结果就是在 a 前后补上相应位数的零通过字符拼接的方式表示。然后将这些中间乘积相加就是最后的结果。

带符号乘法器:可以在无符号乘法器的基础上,先将原始输入的数据进行处理,如果是负数就先转化为正数,接着按无符号乘法器的原理处理,最后判断结果的符号,如果原始输入数据同号,那么结果直接输出即可;如果原始输入数据异号,那么需要将结果转化为负数然后才能输出。

2.3 模块代码

```
'timescale 1ns / 1ps
//MULTU. v

module MULTU(
    input clk ,
    input reset ,
    input [31:0] a ,
    input [31:0] b ,
    output [63:0] z
);
```

```
reg [63:0] temp;
\mathbf{reg}
    [63:0]
            stored0;
reg
    [63:0] stored1;
reg [63:0] stored2;
reg [63:0] stored3;
reg [63:0] stored4;
reg [63:0] stored5;
reg [63:0] stored6;
reg [63:0] stored7;
reg [63:0] stored8;
reg [63:0] stored9;
    [63:0] stored10;
\mathbf{reg}
reg [63:0] stored11;
reg [63:0] stored12;
reg [63:0] stored13;
    [63:0] stored14;
\mathbf{reg}
\mathbf{reg}
    [63:0] stored15;
    [63:0] stored16;
\mathbf{reg}
reg [63:0] stored17;
reg [63:0] stored18;
reg [63:0] stored19;
    [63:0] stored20;
\mathbf{reg}
    [63:0] stored21;
reg
    [63:0] stored22;
reg
    [63:0] stored23;
\mathbf{reg}
reg [63:0] stored24;
reg [63:0] stored25;
    [63:0] stored26;
reg
    [63:0] stored27;
\mathbf{reg}
    [63:0] stored28;
reg
    [63:0] stored29;
reg
reg [63:0] stored30;
```

```
reg [63:0] stored31;
    [63:0] add0 1;
\mathbf{reg}
reg
    [63:0] add2_3;
reg [63:0] add4_5;
reg [63:0] add6_7;
reg [63:0] add8_9;
reg [63:0] add10_11;
reg [63:0] add12_13;
reg [63:0] add14_15;
reg [63:0] add16_17;
reg [63:0] add18_19;
    [63:0] add20_21;
\mathbf{reg}
reg [63:0] add22_23;
reg [63:0] add24_25;
reg [63:0] add26_27;
reg [63:0] add28_29;
\mathbf{reg}
    [63:0] add30_31;
    [63:0] add0t1_2t3;
reg
reg [63:0] add4t5 6t7;
reg [63:0] add8t9_10t11;
reg [63:0] add12t13_14t15;
    [63:0] add16t17_18t19;
\mathbf{reg}
    [63:0] add20t21_22t23;
\mathbf{reg}
    [63:0] add24t25_26t27;
reg
    [63:0] add28t29_30t31;
\mathbf{reg}
reg [63:0] add0t3_4t7;
reg [63:0] add8t11_12t15;
    [63:0] add16t19_20t23;
reg
    [63:0] add24t27 28t31;
reg
    [63:0] add0t7_8t15;
\mathbf{reg}
    [63:0] add16t23_24t31;
\mathbf{reg}
```

```
always @(posedge clk or posedge reset) begin
if (reset) begin
        temp \ll 0;
         stored0 \ll 0;
         stored1 \ll 0;
         stored2 \ll 0;
         stored3 \leq 0;
         stored4 \ll 0;
         stored5 \ll 0;
         stored6 \le 0;
         stored7 \ll 0;
         stored8 \le 0;
         stored9 \ll 0;
         stored10 \ll 0;
         stored11 \ll 0;
         stored12 \ll 0;
         stored13 \ll 0;
         stored14 \ll 0;
         stored15 \ll 0;
         stored16 \ll 0;
         stored17 \ll 0;
         stored18 \leq 0;
         stored19 \ll 0;
         stored20 \ll 0;
         stored21 \ll 0;
         stored22 \ll 0;
         stored23 \ll 0;
         stored24 \ll 0;
         stored25 \ll 0;
         stored26 \ll 0;
         stored27 \ll 0;
         stored28 \ll 0;
```

```
stored29 \ll 0;
stored30 \ll 0;
stored31 \ll 0;
add0_1 <= 0;
add2_3 <= 0;
add4_5 <= 0;
add6_7 <= 0;
add8_9 <= 0;
add10_11 <= 0;
add12_13 <= 0;
add14_15 <= 0;
add16_17 <= 0;
add18_19 <= 0;
add20_21 \le 0;
add22_23 <= 0;
add24_25 \le 0;
add26_27 <= 0;
add28_29 \le 0;
add30_31 \le 0;
add0t1_2t3 <= 0;
add4t5_6t7 <= 0;
add8t9_10t11 <= 0;
add12t13_14t15 \le 0;
add16t17_18t19 \le 0;
add20t21_22t23 \le 0;
add24t25_26t27 \le 0;
add28t29_30t31 \le 0;
add0t3 \ 4t7 <= 0;
add8t11_12t15 <= 0;
add16t19_20t23 <= 0;
```

```
add24t27 28t31 \le 0;
        add0t7_8t15 <= 0;
        add16t23_24t31 \le 0;
end else begin
        stored0 \le b[0] ? {32'b0 ,a } : 64'b0;
        stored1 \le b[1] ? {31'b0 ,a ,1'b0} : 64'b0;
        stored2 \le b[2] ? \{30'b0, a, 2'b0\} : 64'b0;
        stored3 \le b[3] ? \{29'b0, a, 3'b0\} : 64'b0;
        stored4 \le b[4] ? \{28'b0, a, 4'b0\} : 64'b0;
        stored5 \le b[5] ? \{27'b0, a, 5'b0\} : 64'b0;
        stored6 \le b[6]? {26'b0 ,a ,6'b0} : 64'b0;
        stored7 \le b[7] ? \{25'b0, a, 7'b0\} : 64'b0;
        stored8 \le b[8] ? \{24'b0, a, 8'b0\} : 64'b0;
        stored9 \le b[9] ? \{23'b0, a, 9'b0\} : 64'b0;
        stored10 \le b[10] ? {22'b0 ,a ,10'b0} : 64'b0;
        stored11 \le b[11] ? {21'b0 ,a ,11'b0} : 64'b0;
        stored12 \le b[12] ? {20'b0 ,a ,12'b0} : 64'b0;
        stored13 \le b[13] ? \{19'b0, a, 13'b0\} : 64'b0;
        stored14 \le b[14] ? \{18'b0, a, 14'b0\} : 64'b0;
        stored15 \le b[15]? {17'b0 ,a ,15'b0} : 64'b0;
        stored16 \le b[16]? {16'b0, a, 16'b0}: 64'b0;
        stored17 \le b[17]? {15'b0, a, 17'b0}: 64'b0;
        stored18 \le b[18]? {14'b0 ,a ,18'b0} : 64'b0;
        stored19 \le b[19] ? \{13'b0, a, 19'b0\} : 64'b0;
        stored20 \le b[20]? {12'b0 ,a ,20'b0} : 64'b0;
        stored21 \le b[21] ? {11'b0 ,a ,21'b0} : 64'b0;
        stored22 \le b[22] ? \{10'b0, a, 22'b0\} : 64'b0;
        stored23 \le b[23] ? {9'b0 ,a ,23'b0} : 64'b0;
        stored24 \le b[24] ? {8'b0 ,a ,24'b0} : 64'b0;
        stored25 \le b[25]? {7'b0 ,a ,25'b0} : 64'b0;
        stored26 \le b[26] ? {6'b0 ,a ,26'b0} : 64'b0;
```

```
stored27 \le b[27] ? {5'b0 ,a ,27'b0} : 64'b0;
stored28 \le b[28] ? {4'b0 ,a ,28'b0} : 64'b0;
stored29 \le b[29] ? {3'b0 ,a ,29'b0} : 64'b0;
stored30 \le b[30] ? {2'b0 ,a ,30'b0} : 64'b0;
stored31 \le b[31] ? {1'b0 ,a ,31'b0} : 64'b0;
add0_1 \le stored0 + stored1;
add2_3 \le stored2 + stored3;
add4_5 \le stored4 + stored5;
add6_7 \le stored6 + stored7;
add8_9 \le stored8 + stored9;
add10_11 \le stored10 + stored11;
add12 13 \le stored12 + stored13;
add14 15 \le stored14 + stored15;
add16\_17 \le stored16 + stored17;
add18 19 \le stored18 + stored19;
add20\_21 \le stored20 + stored21;
add22 23 \le stored22 + stored23;
add24 \ 25 \le stored24 + stored25;
add26\_27 \le stored26 + stored27;
add28 29 \le stored28 + stored29;
add30 31 \le stored30 + stored31;
add0t1 2t3 \le add0 1 + add2 3;
add4t5\_6t7 \le add4\_5 + add6\_7;
add8t9\_10t11 \le add8\_9 + add10\_11;
add12t13_14t15 \le add12_13 + add14_15;
add16t17_18t19 \le add16_17 + add18_19;
add20t21 \ 22t23 \le add20 \ 21 + add22 \ 23;
add24t25 \ 26t27 \le add24 \ 25 + add26 \ 27;
add28t29\_30t31 \le add28\_29 + add30\_31;
```

```
'timescale 1ns / 1ps
//MUL. v
module MUL(
    input clk,
    input reset,
    input [31:0] a,
    input [31:0] b,
    output [63:0] z
    );
    reg [63:0] temp;
    reg [63:0] stored0;
    reg [63:0] stored1;
    reg [63:0] stored2;
    reg [63:0] stored3;
    reg [63:0] stored4;
    reg [63:0] stored5;
    reg [63:0] stored6;
    reg [63:0] stored7;
    reg [63:0] stored8;
```

```
reg [63:0] stored9;
   [63:0] stored10;
reg
reg [63:0] stored11;
reg [63:0] stored12;
reg [63:0] stored13;
reg [63:0] stored14;
reg [63:0] stored15;
reg [63:0] stored16;
reg [63:0] stored17;
reg [63:0] stored18;
reg [63:0] stored19;
reg [63:0] stored20;
reg [63:0] stored21;
reg [63:0] stored22;
reg [63:0] stored23;
reg [63:0] stored24;
   [63:0] stored25;
\mathbf{reg}
   [63:0] stored26;
\mathbf{reg}
reg [63:0] stored27;
reg [63:0] stored28;
reg [63:0] stored29;
\mathbf{reg}
   [63:0] stored30;
   [63:0] stored31;
reg
reg [63:0] add0_1;
reg [63:0] add2_3;
reg [63:0] add4_5;
reg [63:0] add6_7;
   [63:0] add8_9;
reg
reg [63:0] add10_11;
    [63:0] add12_13;
reg
    [63:0] add14_15;
reg
reg [63:0] add16_17;
```

```
reg [63:0] add18 19;
reg [63:0] add20 21;
reg [63:0] add22_23;
reg [63:0] add24_25;
reg [63:0] add26_27;
reg [63:0] add28_29;
reg [63:0] add30_31;
reg [63:0] add0t1_2t3;
reg [63:0] add4t5_6t7;
reg [63:0] add8t9_10t11;
reg [63:0] add12t13_14t15;
reg [63:0] add16t17_18t19;
reg [63:0] add20t21_22t23;
reg [63:0] add24t25_26t27;
reg [63:0] add28t29_30t31;
reg [63:0] add0t3_4t7;
reg [63:0] add8t11_12t15;
reg [63:0] add16t19_20t23;
reg [63:0] add24t27 28t31;
reg [63:0] add0t7_8t15;
reg [63:0] add16t23_24t31;
reg [31:0] aa, bb;
always @(posedge clk or negedge reset) begin
    if(reset) begin
            stored0 \le 0;
            stored1 \ll 0;
            stored2 \ll 0;
            stored3 \le 0:
            stored4 \ll 0;
            stored5 \ll 0;
            stored6 \ll 0;
```

```
stored7 \ll 0;
stored8 \leq 0;
stored9 \ll 0;
stored10 \ll 0;
stored11 \ll 0;
stored12 \ll 0;
stored13 \ll 0;
stored14 \ll 0;
stored15 \ll 0;
stored16 \ll 0;
stored17 \ll 0;
stored18 \ll 0;
stored19 \ll 0;
stored20 \ll 0;
stored21 \ll 0;
stored22 \ll 0;
stored23 \ll 0;
stored24 \ll 0;
stored25 \ll 0;
stored26 \ll 0;
stored27 \ll 0;
stored28 \ll 0;
stored29 \ll 0;
stored30 \ll 0;
stored31 \ll 0;
add0_1 <= 0;
add2_3 <= 0;
add4_5 <= 0;
add6_7 <= 0;
add8 9 <= 0;
add10_11 <= 0;
add12_13 <= 0;
```

```
add14 15 \le 0;
        add16 17 <= 0;
        add18_19 <= 0;
        add20_21 \le 0;
        add22_23 <= 0;
        add24_25 <= 0;
        add26_27 <= 0;
        add28_29 \le 0;
        add30_31 \le 0;
        add0t1_2t3 <= 0;
        add4t5_6t7 <= 0;
        add8t9_10t11 <= 0;
        add12t13_14t15 \le 0;
        add16t17_18t19 \le 0;
        add20t21_22t23 \le 0;
        add24t25_26t27 \le 0;
        add28t29_30t31 \le 0;
        add0t3_4t7 <= 0;
        add8t11_12t15 <= 0;
        add16t19_20t23 \le 0;
        add24t27_28t31 \le 0;
        add0t7_8t15 <= 0;
        add16t23_24t31 \le 0;
        aa \ll 0;
        bb <= 0;
        temp \ll 0;
end else begin
        aa <= a [31] ? (~a + 1'b1) : a;
        bb \le b[31] ? (\sim b + 1'b1) : b;
        stored0 \le bb[0] ? {32'b0, aa} : 64'b0;
        stored1 \le bb[1] ? {31'b0, aa, 1'b0} : 64'b0;
```

```
stored2 \le bb[2] ? \{30'b0, aa, 2'b0\} : 64'b0;
stored3 \le bb[3] ? \{29'b0, aa, 3'b0\} : 64'b0;
stored4 \le bb[4] ? \{28'b0, aa, 4'b0\} : 64'b0;
stored5 \le bb[5]? {27'b0, aa, 5'b0} : 64'b0;
stored6 \iff bb[6] ? \{26'b0, aa, 6'b0\} : 64'b0;
stored7 \le bb[7] ? {25'b0, aa, 7'b0} : 64'b0;
stored8 \le bb[8]? {24'b0, aa, 8'b0} : 64'b0;
stored9 \le bb[9] ? \{23'b0, aa, 9'b0\} : 64'b0;
stored10 \le bb[10] ? {22'b0, aa, 10'b0} : 64'b0;
stored11 \le bb[11] ? {21'b0, aa, 11'b0} : 64'b0;
stored12 \le bb[12] ? {20'b0, aa, 12'b0} : 64'b0;
stored13 \le bb[13] ? \{19'b0, aa, 13'b0\} : 64'b0;
stored14 \le bb[14] ? \{18'b0, aa, 14'b0\} : 64'b0;
stored15 \le bb[15]? \{17'b0, aa, 15'b0\}: 64'b0;
stored16 \le bb[16]? \{16'b0, aa, 16'b0\}: 64'b0;
stored17 \le bb[17] ? \{15'b0, aa, 17'b0\} : 64'b0;
stored18 \le bb[18] ? \{14'b0, aa, 18'b0\} : 64'b0;
stored19 \le bb[19] ? \{13'b0, aa, 19'b0\} : 64'b0;
stored20 \le bb[20]? {12'b0, aa, 20'b0} : 64'b0;
stored21 \le bb[21] ? {11'b0, aa, 21'b0} : 64'b0;
stored22 \le bb[22] ? {10'b0, aa, 22'b0} : 64'b0;
stored23 \le bb[23] ? {9'b0, aa, 23'b0} : 64'b0;
stored24 \le bb[24] ? {8'b0, aa, 24'b0} : 64'b0;
stored25 \le bb[25]? {7'b0, aa, 25'b0} : 64'b0;
stored26 \le bb[26] ? {6'b0, aa, 26'b0} : 64'b0;
stored27 \le bb[27]? {5'b0, aa, 27'b0} : 64'b0;
stored28 \le bb[28]? {4'b0, aa, 28'b0} : 64'b0;
stored29 \le bb[29]? {3'b0, aa, 29'b0} : 64'b0;
stored30 \le bb[30] ? {2'b0, aa, 30'b0} : 64'b0;
stored31 \le bb[31] ? {1'b0, aa, 31'b0} : 64'b0;
add0_1 \le stored0 + stored1;
```

```
add2 3 \le stored2 + stored3;
add4 5 \le stored4 + stored5;
add6 7 \le stored6 + stored7;
add8_9 \le stored8 + stored9;
add10_11 \le stored10 + stored11;
add12 13 \le stored12 + stored13;
add14\_15 \le stored14 + stored15;
add16 	ext{ } 17 \leq stored16 + stored17;
add18\_19 \le stored18 + stored19;
add20\_21 \le stored20 + stored21;
add22\_23 \le stored22 + stored23;
add24 \ 25 \le stored24 + stored25;
add26 	ext{ } 27 \leq stored26 + stored27;
add28 29 \le stored28 + stored29;
add30_31 \le stored30 + stored31;
add0t1_2t3 \le add0_1 + add2_3;
add4t5 6t7 \le add4 5 + add6 7;
add8t9 \ 10t11 \le add8 \ 9 + add10 \ 11;
add12t13_14t15 \le add12_13 + add14_15;
add16t17_18t19 \le add16_17 + add18_19;
add20t21 \ 22t23 \le add20 \ 21 + add22 \ 23;
add24t25 \ 26t27 \le add24 \ 25 + add26 \ 27;
add28t29 \ 30t31 \le add28 \ 29 + add30 \ 31;
add0t3\_4t7 \le add0t1\_2t3 + add4t5\_6t7;
add8t11_12t15 \le add8t9_10t11 + add12t13_14t15;
add16t19\_20t23 \le add16t17\_18t19 + add20t21\_22t23;
add24t27_28t31 \le add24t25_26t27 + add28t29_30t31;
add0t7 \ 8t15 \le add0t3 \ 4t7 + add8t11 \ 12t15;
add16t23 \quad 24t31 \le add16t19 \quad 20t23 + add24t27 \quad 28t31;
temp \le add0t7\_8t15 + add16t23\_24t31;
```

end

```
end
assign z = (a[31] == b[31]) ? temp : ~temp + 1'b1;
endmodule
```

三、 测试模块建模

3.1 测试思路

首先通过8组既含边界条件又含有正常条件的测试案例得到结果,然后与VIVADO自带的无符号、有符号乘法器所得结果进行对比,最后即可验证编写的程序的正确与否。

3.2 测试代码

```
'timescale 1ns / 1ps
module multu_tb;
      reg clk = 0;
      reg reset = 0;
      reg [31 : 0] a, b;
      wire [63 : 0] c;
      wire [63 : 0] rc;
      MULTU uut (.clk(clk), .reset(reset), .a(a), .b(b), .z(c));
   assign rc = a * b;
      always \#5 clk = \simclk;
      initial begin
             reset \ll 'b1;
             a <= 'b0;
             b <= 'b0;
             \#5 reset \ll 'b0;
             #30 a \le 'b0;
             b <= 'b0;
```

```
'timescale 1ns / 1ps
module mul_tb;
         reg clk = 0;
         reg reset = 0;
         reg [31 : 0] a, b;
         wire [63 : 0] c;
         wire [63 : 0] rc;
        MUL\ uut\left(.\,clk\left(\,clk\,\right)\,,\ .\,reset\left(\,reset\,\right)\,,\ .\,a\left(a\right)\,,\ .\,b\left(\,b\right)\,,\ .\,z\left(\,c\,\right)\,\right);
    assign rc = $signed(a) * $signed(b);
         always \#5 clk = \simclk;
         initial begin
                  reset \ll 'b1;
                  a <= 'b0;
                  b <= b0;
                 #5 \text{ reset} \ll 'b0;
                  #30 a \le 'b0;
```

四、 实验结果

4.1 无符号乘法

a、b 分别代表被乘数和乘数,c 代表自己编写的模块运算结果,rc 代表 VIVADO 自带函数运算结果。

	a	b	c	rc
第1组	00000000	00000000	00000000000000000	00000000000000000
第2组	00000000	ffffffff	00000000000000000	00000000000000000
第3组	ffffffff	00000000	00000000000000000	00000000000000000
第4组	ffffffff	ffffffff	fffffffe00000001	fffffffe00000001
第5组	80000000	aaaaaaaa	55555555000000000	55555555000000000
第6组	aaaaaaaa	80000000	55555555000000000	55555555000000000
第7组	0000002d	00000068	0000000000001248	0000000000001248
第8组	00000047	0000000e	00000000000003e2	00000000000003e2

表 1: 无符号乘法

4.2 有符号乘法

a、b 分别代表被乘数和乘数,c 代表自己编写的模块运算结果,rc 代表 VIVADO 自带函数运算结果。

	a	b	c	rc
第1组	00000000	00000000	00000000000000000	00000000000000000
第2组	00000000	ffffffff	00000000000000000	00000000000000000
第3组	ffffffff	00000000	00000000000000000	00000000000000000
第4组	ffffffff	ffffffff	00000000000000001	00000000000000001
第5组	80000000	aaaaaaaa	2aaaaaab00000000	2aaaaaab00000000
第6组	aaaaaaaa	80000000	2aaaaaab00000000	2aaaaaab00000000
第7组	0000002d	00000068	0000000000001248	0000000000001248
第8组	00000047	0000000e	000000000000003e2	000000000000003e2

表 2: 有符号乘法