13. Numerical integration (quadrature)

Last time

- Finite differences for numerical derivatives
- Taylor series
- Interpolation

Goals for today

- Numerical integration (quadrature)
- Error analysis

Need for numerical integration

- Recall: (definite) integrals are more difficult than derivatives
- No analytical solution in general

Need for numerical integration

- Recall: (definite) integrals are more difficult than derivatives
- No analytical solution in general
- e.g. error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt$$

Need for numerical integration

- Recall: (definite) integrals are more difficult than derivatives
- No analytical solution in general
- e.g. error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt$$

Hence numerical integration is of paramount importance

Numerical integration (quadrature) problem

- Numerical integration problem:
- Given a function fCalculate $I(f) := \int_a^b f(x) \, dx$

Numerical integration (quadrature) problem

- Numerical integration problem:
- $\begin{tabular}{ll} {\bf Given a } \textit{function } f \\ \textit{Calculate } I(f) := \int_a^b f(x) \, dx \\ \end{tabular}$
- Want approximation

$$\int_a^b f(x) \simeq \sum_i w_k f(t_k)$$

- lacktriangle Quadrature nodes (points) t_k
- lacksquare Quadrature weights w_k

Numerical integration II

Approximation

$$\int_a^b f(x) \simeq \sum_i w_k f(t_k)$$

- lacktriangle Weights w_k should be **independent** of f
- lacksquare Should work for "any" f

Numerical integration II

Approximation

$$\int_a^b f(x) \simeq \sum_i w_k f(t_k)$$

- lacktriangle Weights w_k should be **independent** of f
- \blacksquare Should work for "any" f

If given a function, can choose nodes and weights

Numerical integration II

Approximation

$$\int_a^b f(x) \simeq \sum_i w_k f(t_k)$$

- lacktriangle Weights w_k should be **independent** of f
- \blacksquare Should work for "any" f

- If given a function, can choose nodes and weights
- Note: Integral and approximation are both linear operations

Simplest case

lacktriangleright What is simplest approximation of f?

Simplest case

- What is simplest approximation of f?
- lacktriangleright Approximate f using $\mbox{rectangles}$ $\mbox{rectangular rule}$
- As in Riemann integration

Simplest case

- What is simplest approximation of f?
- Approximate f using rectangles rectangular rule
- As in Riemann integration

- \blacksquare Split [a,b] into N intervals (or **panels**) of length $h=\frac{b-a}{N}$

Rectangular rule II

- lacksquare Approximate f by piecewise-constant function p
- lacktriangle Choose value of p for each subinterval X_k

Rectangular rule II

- lacktriangle Approximate f by piecewise-constant function p
- $\hfill\blacksquare$ Choose value of p for each subinterval X_k
- \blacksquare e.g. $p(x) = f(t_k)$ for $x \in X_k := [t_k, t_{k+1})$
- \blacksquare So $p(x) = \sum_k f(t_k) \mathbb{1}_{X_k}(x)$
- lacksquare Where $\mathbb{1}_{X_k}$ is indicator function of set
 - = 1 if $x \in X_k$ and 0 if not

Rectangular rule III

- \blacksquare Area A_k of kth rectangle is $hf(t_k)$
- \blacksquare So $I(f) \simeq A(f,h) := h \sum_k f(t_k)$

Rectangular rule III

- \blacksquare Area A_k of kth rectangle is $hf(t_k)$
- \blacksquare So $I(f) \simeq A(f,h) := h \sum_k f(t_k)$
- $\qquad \qquad \mathbf{Weights} \; w_k = h \; \mathbf{except} \; w_N = 0$

Error of rectangular rule

- How good is rectangular rule?
- $\blacksquare \text{ Calculate error } E(h) := |A(f,h) I(f)|$

Error of rectangular rule

- How good is rectangular rule?
- $\blacksquare \text{ Calculate error } E(h) := |A(f,h) I(f)|$
- \blacksquare Taylor: $f(x) = f(t_k) + (x t_k) f'(\xi(x))$ in kth interval

Error of rectangular rule

- How good is rectangular rule?
- $\blacksquare \text{ Calculate error } E(h) := |A(f,h) I(f)|$
- \blacksquare Taylor: $f(x) = f(t_k) + (x t_k) f'(\xi(x))$ in kth interval
- $\hfill \blacksquare$ Suppose |f'| is bounded in X_K by M_k
- $\blacksquare \text{ Then } |f(x)-p(x)| \leq M_k h \text{ in } X_k$

Error of rectangular rule II

- $\qquad |f(x)-p(x)| \leq Mh \text{ for } x \text{ in } X_k$
- \blacksquare So $E_k:=|\int_{X_k}(f-p)|\leq Mh^2$

Error of rectangular rule II

- $\quad \quad |f(x)-p(x)| \leq Mh \text{ for } x \text{ in } X_k$
- \blacksquare So $E_k:=|\int_{X_h}(f-p)|\leq Mh^2$
- We have $N \sim 1/h$ subintervals
- \blacksquare So global error in integral is $E(fh) = \sum_k E_k$

$$E(h) = \int_a^b [f(x) - p(x)] = \mathcal{O}(h)$$

Improving the approximation

■ How can we improve this, i.e. reduce error?

Improving the approximation

- How can we improve this, i.e. reduce error?
- Use better approximation: piecewise linear

Improving the approximation

- How can we improve this, i.e. reduce error?
- Use better approximation: piecewise linear

- $\begin{tabular}{l} \blacksquare p_1(x) = \ell_0(x) f(a) + \ell_1(x) f(b) & \text{using Lagrange cardinal polynomials} \\ \end{tabular}$
- \blacksquare So $p_1(x) = \frac{x-b}{a-b}f(a) + \frac{x-a}{b-a}f(b)$

Trapezium rule

- Need to integrate p₁:
- \blacksquare Obtain $\int_a^b p_1(x)\,dx = \frac{1}{2}(b-a)[f(a)+f(b)]$

Trapezium rule

- Need to integrate p₁:
- \blacksquare Obtain $\int_a^b p_1(x)\,dx = \frac{1}{2}(b-a)[f(a)+f(b)]$
- $\blacksquare \ A_k$ is now area of trapezium, $A_k = \frac{h}{2}[f(t_k) + f(t_{k+1})]$
- Total area $A(h) = \frac{h}{2}[f(a) + 2f(t_1) + \dots + 2f(t_{k-1}) + f(b)]$

Interpolation: Newton-Cotes

- Rectangular and trapezium rules: *interpolate* then *integrate*
- Newton-Cotes rules (equally-spaced nodes)

Interpolation: Newton-Cotes

- Rectangular and trapezium rules: interpolate then integrate
- Newton-Cotes rules (equally-spaced nodes)

 \blacksquare Can show: interpolation error by degree-n polynomial \boldsymbol{p}_n is

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \pi_n(x)$$

where
$$\pi_n(x) = \prod_{k=0}^n (x - t_k)$$

Interpolation: Newton-Cotes

- Rectangular and trapezium rules: *interpolate* then *integrate*
- Newton-Cotes rules (equally-spaced nodes)

 \blacksquare Can show: interpolation error by degree-n polynomial \boldsymbol{p}_n is

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \pi_n(x)$$

where
$$\pi_n(x) = \prod_{k=0}^n (x - t_k)$$

Note that interpolation error = 0 at nodes!

Error for Newton-Cotes rules

- Leads to estimates for error when integrating interpolant
- $\quad \blacksquare \mid \int f \int p_n \rvert \leq \tfrac{M_{n+1}}{(n+1)!} \lvert \int \pi_n \rvert$

where ${\cal M}_{n+1}$ is a bound for $|f^{(n+1)}|$ on [a,b]

Error for Newton-Cotes rules

- Leads to estimates for error when integrating interpolant
- $$\label{eq:definition} \begin{split} & \| \int f \int p_n | \leq \frac{M_{n+1}}{(n+1)!} | \int \pi_n | \\ & \text{ where } M_{n+1} \text{ is a bound for } |f^{(n+1)}| \text{ on } [a,b] \end{split}$$
- lacksquare E.g. trapezium rule has error $\mathcal{O}(h^2)$

Alternative method: Integration by parts

■ Recall integration by parts formula:

$$\int_{a}^{b} u(x)v'(x) \, dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx$$

 \blacksquare Error in one interval for rectangular rule: Take v(x)=x

$$\int_0^h [f(x) - p(x)] dx = [(f(x) - p(x)) x]_a^b - \int_0^b f'(x) x dx$$

If $|f'| \leq M$ then get bound $Mh^2/2$ on error

Conditioning of numerical integration

- Is quadraturcondition number of the quadrature problem?
- Input: f; output: $I(f) = \int_a^b f$

Conditioning of numerical integration

- Is quadraturcondition number of the quadrature problem?
- Input: f; output: $I(f) = \int_a^b f$
- lacksquare Perturb input function f by function Δf
- lacksquare Output perturbation ΔI is

$$\Delta I = I(f + \Delta f) - I(f)$$

Conditioning of numerical integration

- Is quadraturcondition number of the quadrature problem?
- Input: f; output: $I(f) = \int_a^b f$
- lacksquare Perturb input function f by function Δf
- lacksquare Output perturbation ΔI is

$$\Delta I = I(f + \Delta f) - I(f)$$

Conditioning II

- $\Delta I = I(\Delta f)$
- So

$$|\Delta I| = \left| \int \Delta f \right| \le \int |\Delta f| =: \|\Delta f\|_1$$

Relative error:

$$\left|\frac{\Delta I}{I}\right| \le \frac{\|\Delta f\|_1}{|I|}$$

Conditioning III

So relative condition number

$$\kappa = \frac{|\Delta I|/|I|}{\|\Delta f\|/\|f\|} = \frac{\|f\|_1}{|I|}$$

So

$$\kappa = \frac{\int_a^b |f(x)| \, dx}{\left| \int_a^b f(x) \, dx \right|}$$

- lacksquare III conditioned when |f| is large but $\int f$ is small
- I.e. when integral of highly oscillatory function

Summary

- Numerical integration approximates definite integral
- Interpolate then integrate
- \blacksquare Degree n polynomial leads to $\mathcal{O}(h^{n+1})$ error