Continuous Latent Variable Models for Neuroscience Data

Scott Linderman

Stanford University
Department of Statistics
Wu Tsai Neurosciences Institute

Example: Depth video of a freely moving mouse

Principal Components Analysis (PCA) of video frames

Principal Components

Principal Components Analysis (PCA) of video frames

Depth video of a freely moving mouse

Depth video of a freely moving mouse

Syllables as trajectories in PCA space

Example: Calcium dF/F traces in C. elegans

Example: Trial-averaged firing rates in motor cortex

PCA: Finding dimensions of maximal variance

- PCA finds direction vectors (i.e. components) c along which the variance of the data is largest.
- Projection of x_n onto c is given by $c^{\mathsf{T}}x_n$. Solve for

$$\max_{c} \operatorname{Var}[c^{\top}x] \text{ subject to } ||c||_{2} = 1.$$

Aside: Probability refresher

- The big picture
- Random variables, probability densities

Aside: Probability refresher

- Expectations
- Mean and variance
- Estimators

PCA: Minimizing reconstruction error

- Approximate $x_n \in \mathbb{R}^2$ with $\hat{x}_n = c_1 \cdot z_n$, where $c_1 \in \mathbb{R}^2$ is a unit vector (i.e. $\|c_1\|_2 = 1$) and $z_n \in \mathbb{R}$ is a scalar.
- For fixed c_1 , find the value of z_n that minimizes the error $||x_n \hat{x}_n||_2$.

Two equivalent views of principal component analysis.

PCA: Minimizing reconstruction error

• Each datapoint can be represented as

$$x_n = \hat{x}_n + (x_n - \hat{x}_n)$$

= $c_1(x_n^{\mathsf{T}}c_1) + c_2(x_n^{\mathsf{T}}c_2)$

where c_1 and c_2 are orthogonal unit vectors. Note that we only need to solve for one of these two vectors.

• Minimize the sum of squared residuals wrt c_2

$$\min_{c_2} \frac{1}{N} \sum_{n=1}^{N} \|x_n - \hat{x}_n\|_2^2 \text{ subject to } \|c_2\|_2 = 1.$$

Two equivalent views of principal component analysis.

Probabilistic PCA: A Generative model

• Step 1: Sample low-dimensional loadings z_n from Gaussian distribution.

$$z_n \sim \mathcal{N}(0, I)$$

• Step 2: Project into high dimensional space with matrix W, add an offset μ , then add isotropic Gaussian noise to get x_n .

$$x_n = Wz_n + \mu + \epsilon$$
$$\epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

Aside: Probability refresher II

- Joint distribution
- Fundamental rules of probability
- Graphical models
- Bayes rule

Aside: The multivariate Gaussian distribution

- PDF
- Linear transformations
- Sums of Gaussians
- Marginals
- Conditionals

Probabilistic PCA: A Generative model

• Step 1: Sample low-dimensional loadings z_n from Gaussian distribution.

$$z_n \sim \mathcal{N}(0, I)$$

• Step 2: Project into high dimensional space with matrix W, add an offset μ , then add isotropic Gaussian noise to get x_n .

$$x_n = Wz_n + \mu + \epsilon$$
$$\epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

• What is the marginal distribution of x_n ?

Fitting Probabilistic PCA with MLE

• Maximum Likelihood Estimation (MLE) of W: Tipping and Bishop (1999) showed that,

$$\hat{W} = C(\Lambda - \sigma^2 I)^{1/2} R.$$

where C are eigenvectors of the covariance matrix (principal components), Λ is a diagonal matrix with the corresponding eigenvalues, and R is an arbitrary orthogonal matrix.

- As $\sigma^2 \to 0$ we recover the PCA solution, up to rotation.
- Alternatively, we can estimate σ^2 via MLE too:

$$\hat{\sigma}^2 = \frac{1}{D - K} \sum_{d=K+1}^{D} \lambda_d.$$

Probabilistic PCA: Posterior on latent embedding

• What is the posterior distribution $p(z_n \mid x_n)$? By Bayes' rule:

$$p(z_n \mid x_n) = \frac{p(z_n, x_n)}{p(x_n)} = \frac{p(z_n) p(x_n \mid z_n)}{p(x_n)} \propto p(z_n) p(x_n \mid z_n).$$

Probabilistic PCA: Posterior on latent embedding

• What is the posterior distribution $p(z_n \mid x_n)$? By Bayes' rule:

$$p(z_n \mid x_n) = \frac{p(z_n, x_n)}{p(x_n)} = \frac{p(z_n) p(x_n \mid z_n)}{p(x_n)} \propto p(z_n) p(x_n \mid z_n).$$

Expectation-Maximization for Probabilistic PCA

- Iterate between "updating z_n " and "updating the parameters W, μ, σ^2 ."
- **E step**: Compute $p(z_n \mid x_n)$ using current parameters.
- M step: Find parameters that maximize expected log probability:

$$\mathcal{L}(W,\mu,\sigma^2) = \sum_{n=1}^{N} \mathbb{E}_{p(z_n|x_n)} \left[\log p(z_n,x_n;W,\mu,\sigma^2) \right].$$

Expectation-Maximization for Probabilistic PCA

$$\mathcal{L}(W,\mu,\sigma^2) = \sum_{n=1}^{N} \mathbb{E}_{p(z_n|x_n)} \left[\log p(z_n,x_n;W,\mu,\sigma^2) \right].$$

Why does EM work?

• It maximizes a lower bound on the marginal likelihood:

$$\log p(x; \theta) = \sum_{n=1}^{N} \log p(x_n; \theta) = \sum_{n=1}^{N} \log \int p(x_n, z_n; \theta) dz_n...$$

Factor Analysis

• Same as Probabilistic PCA but with per-dimension noise!

$$z_n \sim \mathcal{N}(0, I)$$

$$x_n = Wz_n + \mu + \epsilon$$

$$\epsilon \sim \mathcal{N}(0, \operatorname{diag}(\sigma_1^2, ..., \sigma_D^2))$$

Equivalently

$$z_n \sim \mathcal{N}(0, I)$$

$$x_{nd} \sim \mathcal{N}(w_d^{\mathsf{T}} z_n + \mu_d, \sigma_d^2) \quad \text{for } d = 1, ..., D$$

Real World Example

Factor Analysis with Missing Data

• What is the posterior distribution $p(z_n \mid \{x_{nd} : x_{nd} \text{ not missing}\})$?

Beyond Factor Analysis: Tensors

Beyond Factor Analysis: Mixtures of Factor Models

Discrete
Latent States

Continuous Embedding

Observed Data

Beyond Factor Analysis: Time Series

Global Parameters

Discrete
Latent States

Continuous Latent States

Observed
Neural Activity
(ΔF/F0)

Beyond Factor Analysis: Nonlinear Latent Variable Models

