0.1 H22 数学必修

https://www.math.kobe-u.ac.jp/HOME/home-j/gif/h22.pdf $\boxed{1}$ (1) $W \subset V$ が V の部分空間であるとは,任意の $v,w \in W$ に対して $v+w \in W$ であり,任意の $r \in \mathbb{R}, w \in W$ に対して $rv \in W$ であることである. $(2)x,y \in W$ なら A(x+y) = AX + Ay = 0 より $x+y \in W$ であり $k \in \mathbb{R}, x \in W$ に対して A(kx) = kAx = 0 より $kx \in W$ であるから W は部分空間.

$$(3)A$$
 が正則でないような a を求める.
$$\begin{vmatrix} 1 & 1 & a^2 \\ 1 & a & a \\ a & 1 & a \end{vmatrix} = \begin{vmatrix} 0 & 1 & a^2 \\ 1-a & a & a \\ a-1 & 1 & a \end{vmatrix} = (a-1) \begin{vmatrix} 0 & 1 & a^2 \\ -1 & a & a \\ 1 & 1 & a \end{vmatrix} = (a-1)$$

$$\begin{vmatrix} 0 & 1 & a^2 \\ 0 & a+1 & 2a \\ 1 & 1 & a \end{vmatrix} = (a-1) \begin{vmatrix} 1 & a^2 \\ a+1 & 2a \end{vmatrix} = (a-1)(2a-a^2(a+1)) = -a(a-1)^2(a+2)$$
 より $a=0,1,-2$ のとき

正則でない.

$$a=0$$
 のとき, $A=egin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ の階数は 2 であるから $\dim W=1$

$$a=1$$
 のとき, $A=egin{pmatrix}1&1&1\1&1&1\1&1&1\end{pmatrix}$ の階数は 1 であるから $\dim W=2$

$$a=-2$$
 のとき, $A=\begin{pmatrix}1&1&4\\1&-2&-2\\-2&1&-2\end{pmatrix}$ $\rightarrow \begin{pmatrix}1&1&4\\0&-3&-6\\0&3&6\end{pmatrix}$ より階数は 2 であるから $\dim W=1$

$$\boxed{2} \ (1)a,c \in F_p^\times, b,d \in F_p \ \texttt{とする}. \quad \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ac & ad+b \\ 0 & 1 \end{pmatrix} \ \texttt{である}. \quad ac \in F_P^\times, ad+b \in F_p \ \texttt{である}$$

から G は乗法で閉じている. G の乗法が結合律を満たすことは明らか. また単位元 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G$ も明らか.

 $a\in F_p^{\times}$ に対して逆元 $c\in F_p^{times}$ が唯一存在して ac=1 である. d=-cb と定めれば ad=-b であるから $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ に対して $\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}$ が逆元である. よって G は群である.

$$(2)A = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in G, X = \begin{pmatrix} 1 & e \\ 0 & 1 \end{pmatrix} \in N$$
 を任意にとる. $ac = ca = 1$ として c を定める.

$$AXA^{-1} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & e \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & -cb \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ac & -acb+ae+b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & ae \\ 0 & 1 \end{pmatrix} \in N$$
 である. よって N は正

規部分群

$$(3)X^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 より X の位数は 2 .

$$Y^2 = \begin{pmatrix} 4 & 3b \\ 0 & 1 \end{pmatrix}$$
, $Y^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ より Y の位数は 3 .

$$Z^n = \begin{pmatrix} 1 & 2^n b \\ 0 & 1 \end{pmatrix}$$
 で $b \neq 0$ なら $2^n b = 0$ となる n は存在しないから位数は無限.

b=0 なら位数は 1.

 $\boxed{3}$ (1)f(x)=x(x-1/2)(x+1) とすれば f(0)=0,f(1)=1 である. f が全射であることは明らか. f(0)=f(1/2) より単射ではない.

 $(2)f(x)=\arctan(x)/\arctan(1)$ とすると f(0)=0, f(1)=1 であり f は単射であるが f(x)=10 をみたす x は存在しないから全射でない.

$$(3)f(x) = \begin{cases} 0 & x \le 0 \\ x & 0 \le x \le 1 \end{cases}$$
 とすると $f(0) = 0, f(1) = 1$ で f の像は $[0,1]$ だから有界閉集合,すなわちコンパ $1 \quad x \ge 1$

クト.

 $\boxed{4}$ (1)n=1 のとき, $f_1(x)=\int_0^x f_0(t)dt$ である. $\int_0^x \frac{(x-t)^0}{0!}f(t)dt$ より n=1 で成り立つ。 $n\leq k-1$ で成り立つとする.n=k のとき,

$$f_k(x) = \int_0^x f_{k-1}(x)dx = \int_0^x \int_0^t \frac{(t-s)^{k-2}}{(k-2)!} f(s)dsdt$$

$$= \int_0^x \int_s^x \frac{(t-s)^{k-2}}{(k-2)!} f(s)dtds$$

$$= \int_0^x f(s) \int_s^x \frac{(t-s)^{k-2}}{(k-2)!} dtds$$

$$= \int_0^x f(s) \frac{(x-s)^{k-1}}{(k-1)!} ds$$

より成り立つ.

(2)

$$|f_n(x)| = \left| \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt \right| \le \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} |f(t)| dt$$

$$\le \left[-(x-t)^n / n! \right]_0^x \sup_{t \in [0,1]} |f(t)| = \frac{1}{n!} \sup_{t \in [0,1]} |f(t)|$$

(3)x を固定すると $\sum_{k=0}^n f_k(x) \leq \sup_{t \in [0,1]} |f(t)| \sum_{k=0}^n \frac{1}{k!} \to e \sup_{t \in [0,1]} |f(t)| \quad (n \to \infty)$ より各点収束する.よって $g(x) = \sum_{k=0}^\infty f_k(x)$ と定められる.

 $|g(x)-g_n(x)|=\left|\sum_{k=n+1}^\infty f_k(x)
ight|\leq \sup_{t\in[0,1]}|f(t)|\sum_{k=n+1}^\infty \frac{1}{k!}$ で あ る. $\lim_{n o\infty}\sup_{x\in[0,1]}|g(x)-g_n(x)|\leq \lim_{n o\infty}\sum_{k=n+1}^\infty \frac{1}{k!}=0$ より一様収束する.

 $n \to \infty$ 二ルーパー に $(4)g_n$ が一様収束することから $\int_0^x g(t) + f(t)dt = \int_0^x \sum_{k=0}^\infty f_k(t)dt = \sum_{k=0}^\infty \int_0^x f_k(t)dt = \sum_{k=0}^\infty f_{k+1}(x) = g(x)$ である.

よって g(x) は微分可能であり g'(x) = g(x) + f(x) である.

(5)

$$\left| e^{x-t} - \sum_{k=0}^{n} \frac{(x-t)^k}{k!} \right| = \left| \sum_{k=n+1}^{\infty} \frac{(x-t)^k}{k!} \right| \le \sum_{k=n+1}^{\infty} \frac{x^k}{k!} \to 0 \quad (n \to \infty)$$

より $\sum_{k=0}^n \frac{(x-t)^k}{k!}$ は $t \in [0,x]$ について一様収束する. したがって

$$g(x) = \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} f(t) dt = \int_0^x \sum_{k=1}^{\infty} \frac{(x-t)^{k-1}}{(k-1)!} f(t) dt$$
$$= \int_0^x e^{x-t} f(t) dt$$