Homework -8

Q1 JOBCO produces two products on two machines. A unit of product 1 requires 2hours on machine 1 and 1 hour on machine 2. For product 2, a unit requires 1 hour on machine 1 and 3hours on machine 2. The revenues per unit of products 1 and 2 are \$30 and \$20 respectively. The total daily processing time available for each machine is 8 hours.

- i) Formulate the above as a LPP.
- ii) Solve the LPP using the simplex method and observe as to what happens in each of the tables, with the graphical method.
- iii) Get the shadow price, minimum capacity and maximum capacity of ma- chines 1 and 2, using TORA and by plotting the lines physically.

Solution:

- i) LPP: Maximize $z = 30x_1 + 20x_2$ subject to $2x_1 + x_2 \leq 8 \text{ (machine 1)}$ $x_1 + 3x_2 \leq 8 \text{ (machine 2)}$ $x_1, x_2 \geq 0 \text{ (non-negativity)}$
- ii) Graphical solution by using TORA

Simplex method:

After introducing slack variables

Max
$$Z = 30 x1 + 20 x2 + 0 S1 + 0 S2$$
 subject to

$$2 x1 + x2 + S1 = 8$$

 $x1 + 3 x2 + S2 = 8$

Iteration-1		Cj	30	20	0	0	
В	СВ	XB	<i>x</i> 1	<i>x</i> 2	S1	S2	Min Ratio XB/x1
S1	0	8	(2)	1	1	0	8/2=4→
S2	0	8	1	3	0	1	8/1=8
Z=0		Zj	0	0	0	0	
		Cj - Zj	30↑	20	0	0	

Table 1: This gives a solution at point origin (0,0) in the graphical method.

By $R1(\text{new})=R1(\text{old})\div 2$ and R2(new)=R2(old)-R1(new)

Iteration-2		Cj	30	20	0	0	
В	СВ	XB	<i>x</i> 1	<i>x</i> 2	S1	<i>S</i> 2	MinRatio XB/x2
<i>x</i> 1	30	4	1	1/2	1/2	0	4/(1/2)=8
S2	0	4	0	(5/2)	-1/2	1	4/(5/2)=8/5=1.6→
Z=120		Zj	30	15	15	0	
		Cj - Zj	0	5↑	-15	0	

Table 2: This gives a solution at corner point (4,0) in the graphical method.

by $R2(\text{new})=R2(\text{old}) \times 2/5$ and R1(new)=R1(old) - (1/2)R2(new)

Iteration-3		Cj	30	20	0	0	
В	СВ	XB	<i>x</i> 1	<i>x</i> 2	S1	S2	MinRatio
<i>x</i> 1	30	16/5	1	0	3/5	-1/5	
<i>x</i> 2	20	8/5	0	1	-1/5	2/5	
Z=128		Zj	30	20	14	2	
		Cj - Zj	0	0	-14	-2	

Table 3: This gives a solution at corner point (16/5, 8/5) in the graphical method. Thus in simplex method we are moving from one corner point to next corner point.

Since all $Cj - Zj \le 0$

Hence, optimal solution is arrived with value of variables as : x1=16/5, x2=8/5

Max Z = 128\$

iii)

Machine 1:

Change in constraint : $2x_1 + x_2 \le 9$

New optimum solution:

$$x_1 = 3.8$$
, $x_2 = 1.4$; $z = 142$

Dual price = (142-128)/(9-8) = \$14 / hr.

Min. capacity at B(0,2.67)=2X0+2.67=2.67hr

Max. capacity at F(8,0)=2X8+0=16hr

Machine 2:

Change in constraint : $x_1 + 3 x_2 \le 9$

New optimum solution:

$$x_1 = 2.7$$
, $x_2 = 2.1$; $z = 140$

Dual price = (142-140)/(9-8) = \$2 / hr.

Min. capacity at B(4,0)=4+3X0=4hr

Max. capacity at F(0,8)=0+3X8=24hr

.

Q2 Show that the following objective function can be presented in equation form.

Minimize $Z = \max\{|x_1-x_2+3x_3|, |-x_1+3x_2-x_3|\}; x_1, x_2, x_3 \ge 0 \text{ Hints:}$

- i) $|a| \le b$ is equivalent to $a \le b$ and $a \ge -b$
- ii) Set $y = \max\{|x_1 x_2 + 3x_3|, |-x_1 + 3x_2 x_3|\}$ and observe that in such a case $y \ge |x_1 x_2 + 3x_3|$ and $y \ge |-x_1 + 3x_2 x_3|$ and use i).

Solution: Let
$$y = \max\{|x_1-x_2+3x_3|, |-x_1+3x_2-x_3|\}$$

Therefore Min z = y and either
$$|x_1 - x_2 + 3x_3| \le y$$
 ----(1)
or $|-x_1 + 3x_2 - x_3| \le y$ ----(2)

by (1)
$$x_1-x_2+3x_3 \le y$$
 and $-x_1+x_2-3x_3 \le y$
by (2) $-x_1+3x_2-x_3 \le y$ and $x_1-3x_2+x_3 \le y$

Thus the problem in equation form is

Min
$$z = y$$

Subject to
$$x_1 - x_2 + 3x_3 \le y$$
$$-x_1 + x_2 - 3x_3 \le y$$
$$-x_1 + 3x_2 - x_3 \le y \text{ and }$$
$$x_1 - 3x_2 + x_3 \le y$$
$$x_1, x_2, x_3, y \ge 0$$

Q3 Solve the following LPP

Maximize
$$z = 15x_1 + 6x_2 + 9x_3 + 2x_4$$

Subject to
$$2x_1 + x_2 + 5x_3 + 0.6x_4 \le 10$$
$$3x_1 + x_2 + 3x_3 + 0.25x_4 \le 12$$
$$7x_1 + x_4 \le 35$$
$$x_j \ge 0, j = 1, 2, 3, 4.$$

Using TORA and by hand and verify the solution.

Solution: Using TORA:

Iteration 1	1	2	3	4				
Basic	x1	ж2	кЗ	x4	сх5	дже в в в	sx7	Solution
z (max)	-15.00	-6.00	-9.00	-2.00	0.00	0.00	0.00	0.00
sx5	2.00	1.00	5.00	0.60	1.00	0.00	0.00	10.00
8x8	3.00	1.00	3.00	0.25	0.00	1.00	0.00	12.00
sx7	7.00	0.00	0.00	1.00	0.00	0.00	1.00	35.00
Lower Bound	0.00	0.00	0.00	0.00				
Upper Bound	infinity	infinity	infinity	infinity				
Unrestr'd (y/n)?	n	n	n	n				
Iteration 2	1	2	3	4				
Basic	x1	x2	хЗ	×4	sx5	дже в ж	sx7	Solution
z (max)	0.00	-1.00		-0.75	0.00	5.00	0.00	60.00
sx5	0.00	0.33	3.00	0.43	1.00	-0.67	0.00	2.00
x1	1.00	0.33		0.08	0.00	0.33	0.00	4.00
sx7	0.00			0.42	0.00	-2.33	1.00	7.00
Lower Bound	0.00	0.00		0.00				
Upper Bound	infinity	infinity	infinity	infinity				
Unrestr'd (y/n)?	n	n	n	n				
Iteration 3	1	2	3	4				
Basic	x1	x2	х3	x4	с с с с с с с с с с с с с с с с с с с	3х6	sx7	Solution
z (max)	0.00	0.00	15.00	0.55	3.00	3.00		66.00
х2	0.00	1.00		1.30		-2.00	0.00	6.00
x1	1.00	0.00	-2.00	-0.35	-1.00	1.00	0.00	2.00
sx7	0.00	0.00	14.00	3.45	7.00	-7.00	1.00	21.00
Lower Bound	0.00	0.00	0.00	0.00				
Upper Bound	infinity	infinity	infinity	infinity				
Unrestr'd (y/n)?	n	n	n	n				

Thus using TORA we have Max z = 66 at $x_1 = 2$, $x_2 = 6$, $x_3 = 0$, $x_4 = 0$

By Hand solution is same as below

After introducing slack variables

Max
$$Z = 15x1 + 6x2 + 9x3 + 2x4 + 0S1 + 0S2 + 0S3$$

subject to
 $2x1 + x2 + 5x3 + 0.6 \quad x4 + S1 = 10$
 $3x1 + x2 + 3x3 + 0.25x4 + S2 = 12$
 $7x1 + x4 + S3 = 35$
and $x1, x2, x3, x4, S1, S2, S3 \ge 0$

Iteration-1		Cj	15	6	9	2	0	0	0	
В	СВ	XB	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	S1	S2	<i>S</i> 3	MinRatio XB/x1
<i>S</i> 1	0	10	2	1	5	0.6	1	0	0	10/2=5
S2	0	12	(3)	1	3	0.25	0	1	0	12/3=4→
<i>S</i> 3	0	35	7	0	0	1	0	0	1	35/7=5
Z=0		Zj	0	0	0	0	0	0	0	
		Cj - Zj	15↑	6	9	2	0	0	0	

Ву

 $R2(\text{new})=R2(\text{old})\div 3$,

R1(new)=R1(old) - 2R2(new)

R3(new)=R3(old) - 7R2(new)

Iteration-2		Cj	15	6	9	2	0	0	0	
В	СВ	ХВ	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	x4	S1	S2	<i>S</i> 3	MinRatio XB/x2
<i>S</i> 1	0	2	0	(1/3)	3	0.4333	1	-2/3	0	2/(1/3)=6→
<i>x</i> 1	15	4	1	1/3	1	0.0833	0	1/3	0	4/(1/3)=12
<i>S</i> 3	0	7	0	-7/3	-7	0.4167	0	-7/3	1	
Z=60		Zj	15	5	15	1.25	0	5	0	
		Cj - Zj	0	1↑	-6	0.75	0	-5	0	

Ву

 $R1(\text{new})=R1(\text{old})\times 3$

R2(new) = R2(old) - (1/3) R1(new)

R3(new)=R3(old) + (7/3)R1(new)

Iteration-3		Cj	15	6	9	2	0	0	0	
В	СВ	XB	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>S</i> 1	S2	<i>S</i> 3	MinRatio
<i>x</i> 2	6	6	0	1	9	1.3	3	-2	0	
<i>x</i> 1	15	2	1	0	-2	-0.35	-1	1	0	
<i>S</i> 3	0	21	0	0	14	3.45	7	-7	1	
Z =66		Zj	15	6	24	2.55	3	3	0	
		Cj - Zj	0	0	-15	-0.55	-3	-3	0	

Since all $Cj - Zj \le 0$

Hence, optimal solution is arrived with value of variables as : x1=2, x2=6, x3=0, x4=0

Max Z=66