

Title: "Electro-luminescent Backlighting Circuit with Multilayer Piezoelectric Transformer"

Inventor: Alfredo Vázquez Carazo & Gregory Paul Thomas

1 **BACKGROUND OF INVENTION**

2

3 **Field of Invention**

4

5 [0001] The present invention relates generally to a voltage converter
6 having multiple layers of piezoelectric ceramic. More specifically, the
7 present invention relates to a multilayer piezoelectric transformer that
8 uses a composite resonant vibration mode for step-up voltage conversion.
9 The piezoelectric transformer may be used in a circuit for providing
10 electro-luminescent (EL) backlighting.

1 Description of the Prior Art

2
3 [0002] Wire wound-type electromagnetic transformers have been used
4 for generating high voltage in internal power circuits of devices such
5 as televisions or fluorescent lamp ballasts. Such electromagnetic
6 transformers take the form of a conductor wound onto a core made of a
7 magnetic substance. Because a large number of turns of the conductor
8 are required to realize a high transformation ratio, electromagnetic
9 transformers that are effective, yet at the same time compact and slim
10 in shape are extremely difficult to produce. Furthermore, in view of
11 high frequency applications, the electromagnetic transformer has many
12 disadvantages involving magnetic material of the electromagnetic
13 transformer, such as sharp increase in hysteresis loss, eddy-current
14 loss and conductor skin-effect loss. Those losses limit the practical
15 frequency range of magnetic transformers to not above 500 kHz.

16
17 [0003] To remedy this and many other problems of the wire-wound
18 transformer, piezoelectric ceramic transformers (or PTs) utilizing the
19 piezoelectric effect have been provided in the prior art. In contrast to
20 electromagnetic transformers, PTs have a sharp frequency characteristic
21 of the output voltage to input voltage ratio, which has a peak at the
22 resonant frequency. This resonant frequency depends on the material
23 constants and the dimensions of the materials involved in the
24 construction of the transformer, including the piezoelectric ceramic
25 layers and electrodes. Furthermore PTs have a number of advantages over
26 general electromagnetic transformers. The size of PTs can be made much
27 smaller than electromagnetic transformers of comparable transformation
28 ratio, PTs can be made nonflammable, and produce no electromagnetically
29 induced noise.

30
31 [0004] The ceramic body employed in PTs takes various forms and
32 configurations, including rings, flat slabs and the like. Typical
33 examples of a prior PTs are illustrated in Figs. 1 and 2. This type of
34 PT is commonly referred to as a "Rosen-type" piezoelectric transformer.
35 The basic Rosen-type piezoelectric transformer was disclosed in U.S.

1 patent no. 2,830,274 and numerous variations of this basic apparatus are
2 well known in the prior art. The typical Rosen-type PT comprises a flat
3 ceramic slab 20 appreciably longer than it is wide and substantially
4 wider than it is thick. In the case of Fig. 1, the piezoelectric body 20
5 is in the form of a flat slab that is considerably wider than it is
6 thick, and having greater length than width.

7

8 [0005] As shown in Fig. 1, a piezoelectric body 20 is employed having
9 some portions polarized differently from others. A substantial portion
10 of the slab 20, the generator portion 22 to the right of the center of
11 the slab is polarized longitudinally, and has a high impedance in the
12 direction of polarization. The remainder of the slab, the vibrator
13 portion 21 is polarized transversely to the plane of the slab's face (in
14 the thickness direction) and has a low impedance in the direction of
15 polarization. In this case the vibrator portion 21 of the slab is
16 actually divided into two portions. The first portion 24 of the vibrator
17 portion 21 is polarized transversely in one direction, and the second
18 portion 26 of the vibrator portion 21 is also polarized transversely but
19 in the direction opposite to that of the polarization in the first
20 portion 24 of the vibrator portion 21.

21

22 [0006] In order that electrical voltages may be related to mechanical
23 stress in the slab 20, electrodes are provided. If desired, there may
24 be a common electrode 28, shown as grounded. For the primary connection
25 and for relating voltages at opposite faces of the low impedance
26 vibrator portion 21 of the slab 20, there is an electrode 30 opposite
27 the common electrode 28. For relating voltages to stresses generated in
28 the longitudinal direction in the high impedance generator portion 22 of
29 the slab 20, there is a secondary or high-voltage electrode 35 on the
30 end of the slab for cooperating with the common electrode 28. The
31 electrode 35 is shown as connected to a terminal 34 of an output load 36
32 grounded at its opposite end.

33

34 [0007] In the arrangement illustrated in Fig. 1, a voltage applied
35 between the electrodes 28 and 30 of the low impedance vibrator portion

1 21 is stepped up to a higher voltage between the electrodes 28 and 35 in
2 the high impedance generator portion for supplying the load 36 at a much
3 higher voltage than that applied between the electrodes 28 and 30. The
4 applied voltage causes a deformation of the slab through proportionate
5 changes in the x-y and y-z surface areas. More specifically, the Rosen
6 PT is operated by applying alternating voltage to the drive electrodes
7 28 and 30, respectively. A longitudinal vibration is thereby excited in
8 the low impedance vibrator portion 21 in the transverse effect mode (d31
9 mode). The transverse effect mode vibration in the low impedance
10 vibrator portion 21 in turn excites a vibration in the high impedance
11 generator portion 22 in a longitudinal effect longitudinal vibration
12 mode (g33 mode). As the result, high voltage output is obtained between
13 electrode 28 and 35. On the other hand, for obtaining output of step-
14 down voltage, as appreciated, the high impedance portion 22 undergoing
15 longitudinal effect mode vibration may be used as the input and the low
16 impedance portion 21 subjected to transverse effect mode vibration as
17 the output.

18

19 [0008] An inherent problem of such prior PTs is that they have
20 relatively low power transmission capacity. This disadvantage of prior
21 PTs relates to the fact that little or no mechanical advantage is
22 realized between the vibrator portion 21 of the device and the driver
23 portion 22 of the device. Because the driver and vibrator portions each
24 is intrinsically a part of the same electroactive member, the
25 transmission of energy between portions is limited to Poisson coupling.
26 This inherently restricts the mechanical energy transmission capability
27 of the device, which, in turn, inherently restricts the electrical power
28 handling capacity of such devices.

29

30 [0009] Additionally, even under resonant conditions, because the
31 piezoelectric voltage transmission function of Rosen-type PTs is
32 accomplished by proportionate changes in the x-y and y-z surface areas
33 (or, in certain embodiments, changes in the x-y and x'-y' surface areas)
34 of the piezoelectric member, which changes are of relatively low
35 magnitude, the power handling capacity of prior circuits using such

1 piezoelectric transformers is inherently low. Because the power
2 transmission capacity of such prior PTs is so low, it has become common
3 in the prior art to combine several such transformers together into a
4 multi-layer "stack" in order to achieve a greater power transmission
5 capacity than would be achievable using one such prior transformer
6 alone. This, of course, increases both the size and the manufacturing
7 cost of the transformer.

8

9 [0010] In addition, with the typical Rosen transformer, it is
10 generally necessary to alternately apply positive and negative voltages
11 across opposing faces of the vibrator portion 21 of the member in order
12 to "push" and "pull", respectively, the member into the desired shape.
13 Even under resonant conditions, prior electrical circuits that
14 incorporate such prior PTs are relatively inefficient, because the
15 energy required during the first half-cycle of operation to "push" the
16 piezoelectric member into a first shape is largely lost (i.e. by
17 generating heat) during the "pull" half-cycle of operation. This heat
18 generation corresponds to a lowering of efficiency of the circuit, an
19 increased fire hazard, and/or a reduction in component and circuit
20 reliability. In order to reduce the temperature of such heat generating
21 circuits, the circuit components (typically including switching
22 transistors and other components, as well as the transformer itself) are
23 oversized, which reduces the number of applications in which the circuit
24 can be utilized, and which also increases the cost/price of the circuit.

25

26 [0011] Also generally known are PTs polarized and vibrating in the
27 thickness direction (i.e., vibrations are parallel to the direction of
28 polarization of the layers). Illustrative of such thickness mode
29 vibration PTs is the device of U.S. Patent 5,118,982 to Inoue shown in
30 Figure 3. A thickness mode vibration PT typically comprises a low
31 impedance portion 11 and a high impedance portion 12 stacked on each
32 other. The low impedance portion 11 and the high impedance portion 12 of
33 the thickness mode PT typically comprises a series of laminate layers of
34 ceramic alternating with electrode layers. Each portion is composed of
35 at least two electrode layers and at least one piezoelectric material

1 layer. Each of the piezoelectric ceramic layers of the low impedance
2 portion 11 and the ceramic layer of the high impedance portion 12 are
3 polarized in the thickness direction (perpendicular to the plane of the
4 interface between the ceramic layers). Every alternate electrode layer
5 in each portion 11 or 12 may be connected to each other and to selected
6 external terminals.

7

8 [0012] The thickness mode PT (TMPT) of Figure 3 comprises a low
9 impedance vibrator portion 11 including a plurality of piezoelectric
10 layers 211 through 214 and a high impedance vibrator portion 12
11 including a piezoelectric layer 222, each of the layers being integrally
12 laminated, and caused to vibrate in thickness-extensional mode. The low
13 impedance portion 11 has a laminated structure which comprises multi-
14 layered piezoelectric layers 211 through 214 each being interposed
15 between electrodes including the top surface electrode layer 201 and
16 internal electrode layers 231 through 234. The high impedance portion 12
17 is constructed of the bottom electrode layer 202, an internal electrode
18 layer 234 and a single piezoelectric layer 222 interposed between both
19 electrode layers 202 and 234. Polarization in each piezoelectric layer
20 is, as indicated by arrows, in the direction of thickness, respectively.
21 In the low impedance portion 11, alternating piezoelectric layers are
22 polarized in opposite directions to each other. The polarization in the
23 high impedance portion 12 is also in the direction of thickness. The
24 TMPT has a common electrode 234 to which one terminal 16 of each portion
25 is connected. The total thickness of the TMPT of Figures 3 is restricted
26 to a half wavelength ($\lambda/2$) or one full wavelength (λ) of the
27 drive frequency.

28

29 [0013] When an alternating voltage is applied to the electrode layers
30 across the ceramic layer of the vibrator portion 11, a vibration is
31 excited in the ceramic parallel to the direction of the polarization of
32 the layers in the longitudinal vibration mode (d33 mode). This vibration
33 of the low impedance portion 11 excites a vibration (g33 mode) in the
34 high impedance portion 12. As the high impedance portion 12 vibrates,
35 the g33 mode deformation of the high impedance portion 12 generates an

1 electrical voltage across the electrodes of the high impedance portion
2 12. When operating the TMPT in the thickness-extensional mode with a
3 resonance of lambda/2 mode (both end free fundamental mode) or lambda
4 mode (both end-free secondary mode), the TMPT may operate in a frequency
5 range of 1-10 MHz.

6

7 **[0014]** Electro-luminescent (EL) lamps are known in the prior art.
8 Liquid Crystal Displays (LCDs) must be lighted for viewing in darkness
9 or low ambient light conditions by projecting light forward from the
10 back of the LCD display. EL lamps are popular backlights for liquid
11 crystal displays and keypads because EL lamps are flexible, lightweight,
12 thin, vibration and impact resistant, and can be shaped into small,
13 complex or irregular forms. EL lamps evenly light an area without
14 creating "bright-spots". Since EL lamps typically consume much less
15 current than incandescent bulbs or light emitting diodes (LEDs), their
16 low power consumption, low heat generation and flexibility make them
17 ideal for battery powered portable applications. Typical EL lamp
18 backlighting applications include: keyless entry systems; audio/video
19 equipment remote controllers; PDA keyboards and displays; timepieces and
20 watches; LCD displays in cellular phones, pagers, and handheld Global
21 Positioning Systems (GPS); face illumination for instrumentation;
22 assistance lighting for buildings; and decorative lighting for sign-
23 displays and merchandising displays. Typical EL Lamp Applications also
24 include a variety of other devices such as: Safety illumination;
25 Portable instrumentation; Battery-operated displays; LCD modules; Toys;
26 Automotive displays; Night lights; Panel meters; Clocks and radios;
27 Handheld computers and Caller ID displays.

28

29 **[0015]** A common characteristic of both Rosen PTs and TMPTs is that
30 they preferably vibrate in a resonant mode predominantly along one plane
31 or direction (i.e., radial or longitudinal planes, and thickness or
32 longitudinal directions).

33

1 [0016] A problem with Rosen type PTs is that they have a power
2 density limited to 5-10 Watts/cm³ which limits its application to small
3 size applications.

4
5 [0017] Another problem with Rosen type PTs is that they are polarized
6 in two directions which is a complicated process.

7
8 [0018] Another problem with Rosen type PTs is that they typically
9 suffer from mechanical fatigue and breakdown in the interface between
10 sections from poling stresses.

11
12 [0019] Another problem with Rosen type PTs is that they are difficult
13 to mount and thus have complicated mounting housings.

14
15 [0020] Another problem with Rosen type PTs is that they do not
16 develop sufficient power to drive an electro-luminescent (EL) device.

17
18 [0021] A problem with TMPTs is that the voltage generated by the
19 TMPT, which is optimized for low loads (100-1000 Ohms) is too low for
20 applications such as for driving an EL device (50K-100K Ohms.)

21
22 [0022] Another problem with TMPTs is that the thickness mode resonant
23 frequency is too high for some applications.

24
25 [0023] Another problem with TMPTs is that the addition of layers
26 makes the PT profile (height) too high to be placed within miniaturized
27 circuits.

28
29 [0024] Another problem with TMPTs is that the addition of layers
30 makes the thickness dimension to close to the longitudinal or radial
31 dimensions.

32
33 [0025] Another problem with prior PTs is that the addition of layers
34 to the PT does not significantly raise the power density of such devices
35 and may increase capacitive and dielectric losses.

1
2 [0026] Another problem with TMPTs is that the efficiency of the
3 transformer is low due to several spurious resonance peaks (in the
4 longitudinal mode) affecting the thickness mode resonance.

5
6 [0027] Another problem with TMPTs is that the frequency
7 characteristics of the efficiency are poor when applied to a driving
8 circuit due to power loss generated by circulating current.

9
10 [0028] Another problem with both Rosen type PTs and TMPTs is that
11 they do not have a sufficient power transmission capacity for some
12 applications.

13
14 [0029] Another problem with both Rosen type PTs and TMPTs is that
15 they do not have a sufficient power density for some applications,
16 particularly in application where size is a constraint.

17
18 [0030] Accordingly, it would be desirable to provide a piezoelectric
19 transformer design that has a higher power transmission capacity than
20 similarly sized prior piezoelectric transformers.

21
22 [0031] It would also be desirable to provide a piezoelectric
23 transformer that is smaller than prior piezoelectric transformers that
24 have similar power density and transmission capacities.

25
26 [0032] It would also be desirable to provide a piezoelectric
27 transformer design that develops a higher voltage than similarly sized
28 prior piezoelectric transformers.

29
30 [0033] It would also be desirable to provide a piezoelectric
31 transformer that is smaller than prior piezoelectric transformers that
32 have similar voltage output but lower power density.

33
34 [0034] It would also be desirable to provide a piezoelectric
35 transformer that has a low profile as compared to prior piezoelectric

1 transformers that have similar power transmission capacities and voltage
2 outputs.

3

4 **[0035]** It would also be desirable to provide a piezoelectric
5 transformer in which the "driver" portion of the device and the "driven"
6 portion of the device are not the same electro-active element.

7

8 **[0036]** It would also be desirable to provide a piezoelectric
9 transformer that develops a substantial mechanical advantage between the
10 driver portion of the device and the driven portion of the device.

11

12 **[0037]** It would also be desirable to provide a driving circuit
13 incorporating a piezoelectric transformer of the character described for
14 use in EL backlit devices.

15

16 **[0038]** It would also be desirable to provide a piezoelectric
17 transformer sufficiently miniaturized to be adapted to limited space
18 applications.

19

20 **[0039]** It would also be desirable to provide a piezoelectric
21 transformer capable of generating large startup voltages for EL devices.

22

23 **[0040]** It would also be desirable to provide a piezoelectric
24 transformer capable of generating sufficient power to drive an EL device
25 in steady state operation.

26

27 **[0041]** It would also be desirable to provide a piezoelectric
28 transformer having high power density to allow for miniaturization.

29

1 **SUMMARY OF THE INVENTION**

2
3 [0042] According to the present invention, there is provided a
4 piezoelectric transformer (PT) preferably operating at a natural (i.e.
5 "resonant") frequency to convert a transformer input signal of a first
6 character (i.e. voltage, frequency and current) to a transformer output
7 signal of a second character (i.e. voltage, frequency and current). The
8 disclosed PT efficiently accomplishes the described signal conversion by
9 subjecting the input "driver" section of the PT to an alternating
10 voltage (or in certain embodiments a pulsed voltage) which causes the
11 input portion(s) to deform and vibrate, which in turn causes the output
12 portion(s) to vibrate, which in turn causes the "driven" output portion
13 of the PT to deform, and which in turn generates an output voltage at
14 the driven section of the transformer.

15
16 [0043] The preferred embodiment of the invention provides a multi-
17 layer piezoelectric transformer PT. The PT preferably has a disc-shaped
18 input portion which comprises one or more layers of PZT. The input
19 layers are electroded on each major face and are poled between the
20 electrodes perpendicular to the input layers' major faces (in the
21 thickness direction). Application of an alternating voltage causes the
22 input layer(s) to expand and contract depending on the polarity of the
23 voltage.

24
25 [0044] The output layer of the PT comprises one or more disc-shaped
26 layer(s) of PZT bonded along a major face to the input portion. The
27 output layer preferably has electrodes on its two opposing major faces.
28 The output layer is poled between the electrodes perpendicular to the
29 output layer's major faces (in the thickness direction). A deformation
30 of the input portion causes a deformation of the output layer, which
31 generates the output voltage across the output electrodes. In an
32 alternate embodiment an insulator layer, such as alumina, may be bonded
33 between the input portion and the output layer to provide electrical
34 isolation between the input and output side. The output voltage may be

1 applied to a resonant circuit for driving an electro-luminescent (EL)
2 device.

3

4 [0045] Accordingly, it is an object the present invention to provide
5 a PT design that has a higher power density and transmission capacity
6 than similarly sized prior PTs.

7

8 [0046] It is another object of the present invention to provide a PT
9 of the character described that has a smaller size and a lower profile
10 than prior PTs that have similar power transmission capacities.

11

12 [0047] It is another object the present invention to provide a PT
13 design that has generates a higher voltage than similarly sized prior
14 PTs.

15

16 [0048] It is another object of the present invention to provide a PT
17 of the character described that has a smaller size and a lower profile
18 than prior PTs that have similar voltage output.

19

20 [0049] It is another object of the present invention to provide a PT
21 of the character described in which the "driver" portion of the device
22 and the "driven" portion of the device are not the same electroactive
23 element.

24

25 [0050] It is another object of the present invention to provide a PT
26 of the character described that develops a substantial mechanical
27 advantage between the driver portion of the device and the driven
28 portion of the device.

29

30 [0051] It is another object of the present invention to provide a PT
31 of the character described that is relatively less expensive to
32 manufacture than prior PTs that perform comparable power conversion
33 functions.

34

1 **[0052]** It is another object of the present invention to provide a PT
2 of the character described that may achieve a higher voltage gain than
3 prior PTs.

4
5 **[0053]** It is another object of the present invention to provide a PT
6 of the character described and that is simpler to manufacture than prior
7 PTs.

8
9 **[0054]** It is another object of the present invention to provide a PT
10 of the character described that has fewer losses due to capacitive and
11 dielectric losses.

12
13 **[0055]** It is another object of the present invention to provide a PT
14 that generates less heat than prior PTs, and thereby has reduced losses
15 due to heat.

16
17 **[0056]** It is another object of the present invention to provide an
18 inverter circuit incorporating a PT the character described.

1 BRIEF DESCRIPTION OF THE DRAWINGS

2
3 [0057] The above and other objects and advantages of the present
4 invention will be apparent upon consideration of the following detailed
5 description, taken in conjunction with accompanying drawings, in which
6 like reference characters refer to like parts throughout, and in which:

7
8 [0058] FIG. 1 is a partially schematic perspective view of a typical
9 Rosen type piezoelectric transformer of the prior art;

10
11 [0059] FIG. 2 is a perspective view of another example of a Rosen
12 type piezoelectric transformer of the prior art;

13
14 [0060] FIG. 3 is a perspective view of a typical multi-layer
15 thickness mode vibration piezoelectric transformer of the prior art;

16
17 [0061] FIG. 4 is a perspective view of a 2-layer embodiment of the
18 piezoelectric transformer of the present invention with a disc-shaped
19 configuration;

20
21 [0062] FIGS. 5A-5C are elevation views of the piezoelectric
22 transformer of FIG. 4 showing the asymmetrical stresses in the input and
23 output layers of the present invention;

24
25 [0063] FIG. 6 is an elevation view of an alternate embodiment of the
26 piezoelectric transformer of the present invention having an isolation
27 layer and having multiple output layers and showing the preferred
28 electrical connections;

29
30 [0064] FIG. 7 is an elevation view of the preferred embodiment of the
31 piezoelectric transformer

32
33 [0065] FIGS. 8A and 8B are elevation views of the piezoelectric
34 transformer of FIG. 7 showing the asymmetrical stresses in the input and
35 output layers;

- 1
- 2 [0066] FIG. 9 is an elevation view of another embodiment of the
- 3 piezoelectric transformer of the present invention having two multilayer
- 4 input portions and a central output portion;
- 5
- 6 [0067] FIG. 10 is an elevation view of another embodiment of the
- 7 piezoelectric transformer of the present invention having two output
- 8 portions and a central multilayer input portion;
- 9
- 10 [0068] FIG. 11 is a circuit block diagram of a circuit for driving an
- 11 EL device using the above PT;
- 12
- 13 [0069] FIG. 12 is a detailed circuit schematic of an embodiment of
- 14 the circuit in FIG. 11.

1 **DESCRIPTION OF THE PREFERRED EMBODIMENT**

2
3 [0070] As will be described more fully herein below, according to the
4 preferred embodiment of the present invention, there is provided an
5 electric circuit that incorporates a piezoelectric transformer 1
6 operating at its natural (i.e. "resonant") frequency to convert a
7 transformer input signal of a first character (i.e. voltage, frequency
8 and current) to a transformer output signal of a second character (i.e.
9 voltage, frequency and current). The described circuit, which
10 preferably is powered by a DC source, but may be powered by a rectified
11 AC source, efficiently accomplishes the described signal conversion by
12 subjecting the driver (or, "input") section 1A of the piezoelectric
13 transformer 1 to a voltage of a first polarity, which in turn causes the
14 input portion of the piezoelectric transformer 1 to deform, which in
15 turn causes the mechanically bonded driven (or, "output") section 1B of
16 the piezoelectric transformer to deform, and which, in turn, generates
17 an output voltage at the driven section 1B of the transformer 1. As will
18 be more fully described herein below, and as illustrated in FIG. 11, a
19 resonant circuit 58 is provided for oscillating the piezoelectric
20 transformer 1 at its resonant frequency for driving an (electro-
21 luminescent/) EL backlit device.

22
23 [0071] It will be understood from the instant disclosure that a
24 circuit constructed and operated in accordance with the principles of
25 the present invention can be most advantageously practiced by using a
26 multi-layer piezoelectric transformer that is capable of achieving high
27 energy (power and voltage) transmission. Accordingly, a description of
28 the construction and characteristics of the preferred high performance
29 multi-layer piezoelectric transformer is given below. However, it
30 should be understood that other, conventional, piezoelectric
31 transformers may be used in modified embodiments of the invention to
32 advantageously optimize the operational (i.e. voltage conversion and
33 power transmission) performance of such conventional transformers.

34

1 [0072] In a preferred embodiment of the invention, which comprises a
2 multi-layer piezoelectric transformer PT that is capable of achieving
3 high power density capabilities, the PT may be used in a voltage
4 converter circuit providing power-supply and control for an EL device,
5 particularly an EL backlighting device. However, it should be
6 understood that the PT of the present invention may be advantageously
7 used for many applications, and the scope of the invention, therefore,
8 should not be limited by the nature or description of the "load" that
9 may be applied to the transformer's output.

10

PROPRIETARY MATERIAL
© 2003 SIEMENS INDUSTRIAL PLANTS INC.

1 Multi-Layer Piezoelectric Transformer

2
3 [0073] In the present invention, a multilayer piezoelectric
4 transformer is provided that does not use the conventional longitudinal
5 or thickness mode resonant vibrations exclusively for step-up voltage
6 conversion applications. Typical PTs utilize a variety of constructions
7 in attempting to provide greater voltage gain and power to circuit
8 applications. The electromechanical interactions in a piezoelectric body
9 are governed by Constitutive Law having their interrelations in the
10 following equations / matrices:

11
12 (1) $S = s^E T + d E$

13 (2) $D = \epsilon^T E + d^T T$

14
15 and, particularly for the case of PZT ceramic materials:

16
17
18
19
20
21 (3)
$$\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \\ D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} & s_{13} & 0 & 0 & 0 & 0 & 0 & d_{31} \\ s_{12} & s_{22} & s_{13} & 0 & 0 & 0 & 0 & 0 & d_{31} \\ s_{13} & s_{12} & s_{33} & 0 & 0 & 0 & 0 & 0 & d_{33} \\ 0 & 0 & 0 & s_{44} & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & 0 & s_{44} & 0 & d_{15} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(s_{11}-s_{12}) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{15} & 0 & \epsilon_{11} & 0 & 0 \\ 0 & 0 & 0 & d_{15} & 0 & 0 & 0 & \epsilon_{11} & 0 \\ d_{31} & d_{31} & d_{33} & 0 & 0 & 0 & 0 & 0 & \epsilon_{33} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{31} \\ \tau_{12} \\ E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

22
23
24
25
26
27 [0074] In the above equations S is the 6X1 matrix relating to strain
28 and T is the 6X1 matrix relating to stress. The strain matrix S includes
29 elements of linear strain (ϵ) and shear strain (γ), and the stress matrix
30 T includes elements of linear stress (σ) and shear stress (τ). D is the
31 3X1 matrix relating to the electric displacement and E is the 3X1 matrix
32 relating to the electric field. s^E is the 6X6 matrix representing the
33 zero field compliance of the material along the Cartesian and shear axes

1 and represents purely mechanical deformation. ϵ^T is the 3X3 matrix
2 representing the dielectric constant under condition of constant zero
3 stress along Cartesian axes and represents purely electrical behavior of
4 a material. Because the present invention involves piezoelectric
5 materials, the electrical and mechanical behaviors of the material are
6 interrelated by the piezoelectric coefficient matrices (the 6X3 matrix d
7 and transpose 3X6 matrix d').

8

9 [0075] The electromechanical deformations possible in a piezoelectric
10 material are the d_{33} deformation parallel to the poling axis, the d_{31}
11 deformation orthogonal to the poling axis, and the d_{15} deformation which
12 is a shear deformation relative to the poling axis. Thus, for a poled
13 block of material, the d_{33} coefficient is obtained when a stress σ_3 is
14 applied along the z (i.e., 3) direction. The charge is also collected on
15 the face perpendicular to the z direction. To measure the d_{31}
16 coefficient, a stress or stress component σ_1 or σ_2 , is applied along
17 either the x (i.e., 1) or y (i.e., 2) direction and the polarization is
18 collected on the face perpendicular to the z direction. This coefficient
19 is, however, negative in sign relative to the d_{33} coefficient. Similarly,
20 to measure the d_{15} component, shear stresses σ_{23} (σ_4) or σ_{13} (σ_5) must be
21 applied and the polarization is thereafter measured on the face
22 perpendicular to the x direction.

23

24 [0076] Applying the above matrix to the Rosen type transformer, one
25 can see that that the Rosen transformer relies primarily on the d_{31}
26 deformation along its longitudinal axis. Although there is a
27 corresponding deformation in the axes orthogonal to the longitudinal
28 axis, the deformation along these axes is proportional to the dimensions
29 along those axes and is a function of Poisson coupling. Because the
30 longitudinal dimension is greater than the width and much greater than
31 the thickness of the Rosen transformer, the deformation and resultant
32 electric field in the thickness and width directions are merely higher
33 order effects which do not significantly contribute to the electric
34 field in these directions. In fact, the electric field in the d_{33} and d_{31}

1 directions are of opposite polarity and therefore the electric field in
2 the d_{33} mode diminishes the electric field generated in the d_{31} mode.

3

4 [0077] Furthermore, because the Rosen transformer is in a free
5 vibrational mode, typically mounted by one or more of its nodes of
6 vibration, the Rosen transformer is not constrained at all in its
7 deformation. Therefore, the Rosen transformer primarily deforms along
8 the axis along which it has a natural tendency to deform, namely the
9 longitudinal axis and no others. The Rosen transformer does not deform
10 along any of the shear axes, not being poled, constrained or otherwise
11 disposed to exhibit shear strain.

12

13 [0078] Applying the above matrix to a thickness-extensional mode
14 piezoelectric transformer (TMPT), one can see that that the TMPT relies
15 primarily on the d_{33} deformation along its thickness axis. Although there
16 is a corresponding deformation in the axes orthogonal to the thickness
17 axis, the deformation along these axes is proportional to the dimensions
18 along those axes and is a function of Poisson coupling. Because the TMPT
19 is driven at a frequency related to the thickness of the layers, which
20 are much smaller than the width (or radius) of the TMPT, the deformation
21 and resultant electric field in the width (radial) direction is merely a
22 higher order effect which does not significantly contribute to the
23 electric field in that direction. In fact, the electric field in the d_{33}
24 and d_{31} directions are of opposite polarity and therefore one diminishes
25 the electric field generated by the other.

26

27 [0079] Furthermore, because the TMPT is in a free vibrational mode,
28 typically mounted by one or more of its nodes of vibration, the TMPT is
29 not constrained at all in its deformation. Therefore, the TMPT deforms
30 primarily along the axis along which it has a natural tendency to
31 deform, namely the thickness axis and no others. The TMPT also does not
32 deform along any of the shear axes, not being poled, constrained or
33 otherwise disposed to exhibit shear strain.

34

1 [0080] The above example discusses electro-mechanical properties of a
2 PZT material. Other piezoelectric materials including BaTiO₃, PbZrO₃,
3 PbTiO₃, PbNb₂O₆, (Pb,Ca)TiO₃, (Pb,Sm)TiO₃, Pb(NbO₂)₂/PbTiO₃, Bi₄Ti₃O₆,
4 Bi_{4.5}Na_{0.5}Ti₄O₁₅, (1-x)Pb(Mg_{1/3}Nb_{2/3})O₃-xPbTiO₃, (1-x-y)Pb(Zn_{1/3} Nb_{2/3})O₃-xPbTiO₃-yBaTiO₃, and (1-x-y)Pb(Zn_{1/3} Nb_{2/3})O₃-xBaTiO₃-yPbTiO₃, xPZN-(1-x)PMN, xPMN-1-x)PZT, PNN-PZ-PT and xPZN-(1-x)PZT will behave similarly upon the
5 application of shear and normal stresses. The polarization will depend
6 on the d coefficient matrix which is determined by the crystallographic
7 structure of the material.

10

11 [0081] Previous devices have attempted to use the shear components of
12 the matrices (d₁₅, S₄₄, S₅₅, S₆₆, γ , and τ). This is because the typical
13 piezoelectric coefficients for the shear mode are three times larger than
14 that of the transverse mode, and larger than the longitudinal mode. For
15 PZT 8 (hard PZT) for example, d₃₃=275 pC/N, d₃₁=-109 pC/N and d₁₅=450 pC/N.
16 As can be seen by the example the d₁₅ component is approximately 60
17 percent greater than the d₃₃ coefficient and over three times the d₃₁
18 coefficient. Some prior devices include biaxial transducers such as in
19 U.S. Patent 5,327,041 to Culp and composite actuators such as in U.S.
20 Patent 5,796,207 to Safari et al.

21

22 [0082] The device of Culp uses a layer of electro-deformable material
23 that has been poled in a gradient or spiral fashion to provide shear
24 deformation that is linear along an interfacial surface. The device of
25 Safari uses ceramic/polymer composites having a ceramic phase oriented
26 at an angle relative to the poling direction such that shear stresses
27 are created. A non-ceramic phase (rods) extends through the ceramic
28 structure along one or more axes to cancel or minimize undesirable
29 deformation, i.e., in the d₃₁ mode.

30

31 [0083] However, efforts to use the high value of the d₁₅ component to
32 enhance the performance of piezoelectric devices, and particularly
33 piezoelectric transformers, have been largely unsuccessful. This is
34 because utilization of the d₁₅ component requires application of a shear

1 stress σ_4 or σ_5 , and collection of the charge on the face perpendicular
2 to the x or y direction.

3

4 [0084] The present invention comprises a multilayer piezoelectric
5 transformer having a design that enables the PT to exhibit a shear
6 strain, deforming in the d_{15} mode along the shear axes. The present
7 configuration of PT provides high power by mechanically constraining the
8 longitudinal or radial axis of vibration thereby using a composite
9 resonant mode using the following design.

10

11 [0085] Referring to Figure 4: The PT 1 comprises an input portion 1A
12 and an output portion 1B. In the simplest embodiment of the invention, the
13 input portion 1A and the output portion 1B each comprise a single thin
14 disk-shaped layer 40 and 50 respectively of electroactive material,
15 preferably PZT. The input and output layers 40 and 50 are bonded along a
16 major face 40a and 50a to a central electrode 45, preferably comprising
17 silver, nickel or silver-palladium metallization cofired between the
18 ceramic layers 40 and 50. Although in the preferred embodiment of the
19 invention the central electrode 45 comprises a silver/palladium
20 metallization, other metallization materials may be used comprising
21 platinum, palladium, silver, gold or various other conductive metals and
22 metal oxides and combinations thereof. The electrode 45 may also comprise
23 a metal foil such as a copper foil bonded between the input and output
24 layers 40 and 50 using a strong adhesive such as the imide Ciba-Geigy
25 adhesive.

26

27 [0086] Each of the remaining major faces 40b and 50b (the outboard
28 faces) of the input and output layers 40 and 50 also have bonded thereon an
29 electrode layer 39 and 51 respectively preferably comprising and silver or
30 silver-palladium metallization cofired thereon. Although in the preferred
31 embodiment of the invention all the electrodes 39, 45 and 51 comprise a
32 silver/palladium metallization, other metallization may be used comprising
33 platinum, palladium, silver, gold or various other conductive metal and
34 metal oxide metallization an combinations thereof. Some or all of the

1 electrodes 39, 45 and 51 may also comprise a metal foil such as a copper
2 foil bonded to the input or output layers 40 and 50 using a strong
3 adhesive such as the imide Ciba-Geigy adhesive. As an alternative or in
4 addition to bonding the electrodes 39 and 51 to the outboard faces of the
5 input or output layers 40 and 50 using Ciba adhesive, the electrodes 39
6 and 51 be electro-deposited or vapor deposited on the major faces 40b and
7 50b of the input or output layers 40 and 50. Preferably, the outboard
8 input electrode 39 is connected to an input terminal 68 and the central
9 electrode 45 is connected to ground. Alternatively, the central electrode
10 45 may be connected to input terminal 68 and input electrode 39 may be
11 connected to ground. Preferably the outboard output electrode 51 is also
12 connected to an output terminal 67.

13

14 [0087] The input layer 40 and the output layer 50 are both poled
15 between their respective major faces 40a and 40b, and 50a and 50b. More
16 specifically, as shown by arrow 90, the input layer 40 is preferably poled
17 in the thickness direction normal to its major faces 40a and 40b. Thus,
18 when an input voltage of a first polarity is applied across input
19 electrode 39 and the central electrode 45, the input ceramic layer 40 will
20 tend to deform, piezoelectrically radially contracting. When a second
21 input voltage of an opposite polarity is across input electrode 39 and the
22 central electrode 45, the input ceramic layer 40 will tend to deform,
23 piezoelectrically radially expanding. Thus, it will be understood that
24 application of an alternating voltage to input terminal 68 will cause the
25 input ceramic layer 40 to cyclically expand and contract at the frequency
26 of the applied voltage.

27

28 [0088] Furthermore, as shown by arrow 92, the output layer 50 is
29 preferably poled in the thickness direction normal to its major faces 50a
30 and 50b. Thus, when a voltage of a first polarity is applied across output
31 electrode and the central electrode, the output ceramic layer 50 will tend
32 to deform radially piezoelectrically contracting. When a second voltage of
33 an opposite polarity is applied across output electrode 51 and the central
34 electrode 45, the output ceramic layer 50 will tend to deform radially
35 piezoelectrically expanding. Thus, it will be understood that application

1 of an alternating voltage to output terminal 67 will likewise cause the
2 output ceramic layer 50 to cyclically expand and contract at the frequency
3 of the applied voltage. The inverse piezoelectric effect also generates an
4 electric field in response to a mechanical strain of the output layer 50.
5 In other words, when the output layer 50 is subjected to a first
6 mechanical stress, i.e., compression, the resultant strains (shear,
7 thickness and transverse/radial) cause the output layer 50 to generate an
8 electric field of a first polarity. Conversely, when the output layer 50
9 is subjected to another mechanical stress, i.e., a tensile stress, the
10 resultant strains (shear, thickness and transverse/radial) cause the
11 output layer 50 to generate an electric field of a second opposite
12 polarity. Thus, it will be understood that cyclically expanding and
13 compressing the output layer 50 will generate an oscillating electric
14 field across the electrodes 45 and 51 of output layer 50.

15

16 [0089] Referring again to FIGS. 5a-5c: Essential to the operation of
17 the present PT is that the input layer 40 and output layer 50 are
18 mechanically coupled to each other. More specifically, each of the input
19 and output layers 40 and 50 are mechanically coupled to each other via a
20 bondline or interfacial coupling layer 60, such as the cofired central
21 electrode and/or adhesive and/or metallic layers. The key feature of the
22 bondline or interfacial coupling layer 60 is that it acts as a mechanical
23 constraint on the deformation of the bonded face 40a of the input layer
24 40. In other words, when an electric field is applied to the input layer
25 40, the bonded face 40a of the input layer 40 tends to expand or contract
26 less than the opposing "free" face 40b of the input layer 40. The bondline
27 or interfacial coupling layer 60 also acts as a strong mechanical coupling
28 to the output layer 50 capable of translating mechanical motion from the
29 bondline 60 to the bonded face 50a of the output layer 50. Thus, when the
30 bonded face 50a of the output layer 50 deforms in response to the
31 deformation of the bondline or interfacial layer 60, the bonded face 50a
32 tends to expand or contract more than the opposing "free" face 50b of the
33 output layer 50.

1 [0090] Referring now to FIG. 6: In an alternate embodiment of the
2 invention, the PT 2 has an interfacial layer 60 that comprises an
3 insulator layer 65 bonded between the input and the output portions 2A and
4 2B. More specifically, the input portion 2A and the output portion 2B each
5 comprise one or more thin disk-shaped layers of electroactive material,
6 preferably PZT. The input portion 2A comprises an input layer 240 that has
7 two major faces 240a and 240b on which are bonded electrodes 241 and 242.
8 The output portion 2B comprises two output layers 250 and 270, each of
9 which likewise has two major faces 250a and 250b, and 270a and 270b on
10 which are bonded electrodes 251, 252 and 253. The electrodes 241, 242,
11 251, 252 and 253 preferably comprise silver or silver-palladium
12 metallization cofired to the ceramic layers 240, 250 and 270. Although in
13 the preferred embodiment of the invention the electrodes 241, 242, 251,
14 252 and 253 comprise a silver/palladium metallization, other metallization
15 may be used comprising platinum, palladium, silver, nickel, gold or
16 various other conductive metal and metal oxide metallization and
17 combinations thereof. Some or all of the electrodes 241, 242, 251, 252 and
18 253 may also comprise a metal foil such as a copper foil bonded to the
19 input and output layers 240 and 250 using a strong adhesive such as the
20 imide Ciba-Geigy adhesive. As an alternative or in addition to bonding the
21 electrodes 241, 242, 251, 252 and 253 to the outboard faces of the input
22 or output layers 240 and 250 and 270 using Ciba adhesive, the electrodes
23 241, 242, 251, 252 and 253 may be electro-deposited or vapor deposited on
24 the major faces 240 and 240b, 250a and 250b, and 270a and 270b of the
25 input or output layers 240, 250 and 270.

26
27 [0091] Preferably, one input electrode 241 is connected to an input
28 terminal 268 and the other electrode 242 is connected to ground.
29 Alternatively, the electrode 242 may be connected to input terminal 268
30 and the opposite input electrode 241 may be connected to ground. Likewise
31 for the output layers 250 and 270, one output electrode 252 is connected
32 to an output terminal 267 and the other electrodes 251 and 253 are
33 connected to ground. Alternatively, the electrodes 251 and 253 may be
34 connected to output terminal 267 and the central output electrode 252 may
35 be connected to ground.

1
2 [0092] The input layer 240 and the output layers 250 and 270 are poled
3 between their respective major faces. More specifically, as shown by arrow
4 290, the input layer 240 is preferably poled in the thickness direction
5 normal to its major faces 240a and 240b. Thus, when an input voltage of a
6 first polarity is applied across input electrodes 241 and 242, the input
7 ceramic layer 240 will tend to deform, piezoelectrically radially
8 contracting. When a second input voltage of an opposite polarity is across
9 input electrodes 241 and 242, the input ceramic layer 240 will tend to
10 deform, piezoelectrically radially expanding. Thus, it will be understood
11 that application of an alternating voltage to input terminal 268 will
12 cause the input ceramic layer 240 to cyclically expand and contract at the
13 frequency of the applied voltage.

14
15 [0093] Furthermore, as shown by arrows 292 and 294, the output layers
16 250 and 270 are preferably poled in the thickness direction normal to
17 their respective major faces 250a and 250b, and 270a and 270b. Preferably
18 the output layer 250 and 270 are poled towards the faces 250b and 270b
19 having the central electrode 252 between them. When a voltage of a first
20 polarity is applied across output electrodes 251 and 252, the output
21 ceramic layer 250 will tend to deform piezoelectrically radially
22 contracting. Likewise, when a voltage of a first polarity is applied
23 across output electrodes 253 and 252, the output ceramic layer 270 will
24 tend to deform piezoelectrically radially contracting. When a second
25 voltage of an opposite polarity is across output electrodes 251 and 252,
26 the output ceramic layer 250 will tend to deform piezoelectrically
27 radially expanding. Likewise, when a second voltage of an opposite
28 polarity is across output electrodes 253 and 252, the output ceramic layer
29 270 will tend to deform piezoelectrically radially expanding. Thus, it
30 will be understood that application of an alternating voltage to output
31 terminal 267 will cause the output ceramic layers 250 and 270 to
32 cyclically expand and contract at the frequency of the applied voltage.

33
34 [0094] The inverse piezoelectric effect also generates an electric
35 field in response to a mechanical strain of the output layers 250 and 270.

1 In other words, when the output layers 250 and 270 are subjected to a
2 mechanical stress, i.e., compressed, the resultant strains (shear,
3 thickness and transverse/radial) cause the output layers 250 and 270 to
4 generate an electric field of a first polarity between the output
5 electrodes 251 and 252 and output electrode 252 and 253. Conversely, when
6 the output layers 250 and 270 are subjected to another mechanical stress,
7 i.e., a tensile stress, the resultant strains (shear, thickness and
8 longitudinal/radial) cause the output layers 250 and 270 to generate an
9 electric field of a second opposite polarity between the output electrodes
10 251 and 252 and output electrodes 253 and 252. Thus, it will be understood
11 that cyclically expanding and compressing the output layers 250 and 270
12 will generate an oscillating electric field between the output electrodes
13 251 and 252 and output electrodes 253 and 252.

14

15 [0095] Essential to the operation of the PT 2 is that the input layer
16 240 and output layer 250 are mechanically coupled to each other with an
17 interfacial coupling layer 260. More specifically, each of the input and
18 output layers 240 and 250 are mechanically coupled to each other via the
19 insulator layer 65 serving as an interfacial coupling layer 260. The
20 insulator layer 65 preferably comprises a layer of alumina cofired between
21 the metallized faces 240a and 250a of the input and output layers 240 and
22 250. The insulator layer 65 may also comprise other insulator or
23 dielectric materials including other ceramics or a layer of a strong
24 adhesive such as Ciba adhesive. Rather than cofiring the insulator layer
25 65 with the input and output layers 240, 250 and 270, the insulator layer
26 65 may alternatively be bonded between the central faces 240a and 250a of
27 input and output layers 240 and 250 using a strong adhesive such as Ciba
28 adhesive. Thus, the insulator layer 65 has a bondline 71 on one major face
29 65a with the central face 240a of the input layer 240 and a second
30 bondline 72 on the opposing major face 65b with the central face 250a of
31 output layer 250. Preferably, the insulator layer 65 is slightly more
32 rigid than the material of construction of the input layer 240, but is
33 sufficiently compliant to deform in response to the deformation of the
34 input layer 240 (i.e., not completely rigid). The strength of the
35 mechanical coupling at the bondlines 71 and 72 with the insulator layer 65

1 is preferably sufficient to translate the deformation of the insulator 65
2 at least in part to the central face 250a of the output layer 250.
3

4 [0096] The key feature of the insulator layer 65 is that it acts as a
5 mechanical constraint on the deformation of the bonded face 240a of the
6 input layer 240. The insulator layer 65 also acts as a strong mechanical
7 coupling to the output layers 250 and 270 capable of translating
8 mechanical motion (deformation) from the bonded face 240a of the input
9 layer 240 to the bonded face 250a of the output layer 250. In other words,
10 when an electric field is applied to the input layer 240, the bonded face
11 240a of the input layer 240 tends to expand or contract less than the
12 opposing "free" face 240b of the input layer 240. Conversely, when the
13 bonded face 250a of the output layer 250 deforms in response to the
14 deformation of the insulator layer 65, the bonded face 250a tends to
15 expand or contract more than the opposing "free" faces 250b and 270b of
16 the output layers 250 and 270.
17

18 [0097] In operation, application of a voltage of a first polarity to
19 input terminal 268 across the electrodes 241 and 242 of the input layer
20 240 tends to cause a radial d31 mode deformation (expansion) of the
21 ceramic layer 240. The free face 240b of the input layer 240 is allowed to
22 deform (expand) to the full extent that it would under a typical d31
23 deformation. However, because the central bonded face 240a of the input
24 layer 240 is constrained at the bondline 71 to the insulator layer 65, the
25 central face 240a cannot expand to the full extent that it would were it
26 not constrained. Likewise, application of a voltage of a second opposite
27 polarity to input terminal 268 across the electrodes 241 and 242 of the
28 input layer 240 tends to cause a radial d31 mode deformation (contraction)
29 of the ceramic layer 240. The free face 240b of the input layer 240 is
30 allowed to deform (contract) to the full extent that it would under a
31 typical d31 deformation. However, because the central bonded face 240a of
32 the input layer 240 is constrained at the bondline 71 to the insulator
33 layer 65, the central face 240a cannot deform (contract) to the full
34 extent that it would were it not constrained.
35

1 [0098] The expansion and contraction of the central face 240a of the
2 input layer 240 causes the insulator layer 65 to expand and contract with
3 it, depending on the relative rigidity of the material. Preferably, the
4 insulator layer 65 is slightly more rigid than the material of
5 construction of the input layer 240, but is sufficiently compliant to
6 deform in response to the deformation of the input layer 240 (i.e., not
7 completely rigid). The strength of the mechanical coupling at the
8 bondlines 71 and 72 to the insulator layer 65 is preferably sufficient to
9 translate the motion of the input layer 240 and insulator layer 65 at
10 least in part to the central face 250a of the output layer 250 and further
11 to output layer 270.

12 [0099] The expansion and contraction of the central face 240a of the
13 input layer 240 causes the bonded insulator layer 65 to expand and
14 contract with it. The bonded insulator layer 65 translates its motion at
15 least in part to the attached central face 250a of the output layer 250
16 and further to output layer 270. More specifically, as the bonded
17 insulator layer 65 expands in response to the expansion of the attached
18 input layer 240, the bonded insulator layer 65 applies a tensile stress to
19 the central face 250a of the output layer 250. In response to the tensile
20 stress the output layer 250 expands. Since tensile stress is applied at
21 the central face 250a of the output layer 250, and the opposing face 250b
22 is bonded to the face 270a of the second output layer 270, the opposite
23 face 250b of the output layer 250 does not deform as much as the central
24 face 250a. In other words, one face 250b of the output layer 250 is
25 constrained from deformation, and therefore does not strain or expand as
26 much as the central face 250a of the output layer 250. The opposing face
27 250b of output layer 250 is bonded to a face 270a of the second output
28 layer and translates its motion to that face 270a. Thus, the face 270a of
29 the second output layer 270 has a tensile stress applied to it by the
30 bonded face 250b of the first output layer 250. Since the tensile stress
31 is applied only at the central face 270a of the output layer 270, and the
32 opposing "free" face 270b does not have tensile stress applied directly to
33 it, the stress at the "free" face 270b of the output layer 270 is only as
34 much as is translated through the output layer 270 from the central face

1 270a. In other words, the free face 270b of the output layer 270 does not
2 have as much tensile stress applied to it and therefore does not strain or
3 expand as much as the central face 270a of the output layer 270.

4

5 [0100] Likewise, as the bonded insulator layer 65 contracts in
6 response to the contraction of the attached input layer 240, the bonded
7 insulator layer 65 applies a compressive stress to the central face 250a
8 of the output layer 250. In response to the compressive stress the output
9 layer 250 contracts. Since compressive stress is applied at the central
10 face 250a of the output layer 250, and the opposing face 250b is bonded to
11 the face 270a of the second output layer 270, the opposite face 250b of
12 the output layer 250 does not deform as much as the central face 250a. In
13 other words, one face 250b of the output layer 250 is constrained from
14 deformation, and therefore does not strain or contract as much as the
15 central face 250a of the output layer 250. The opposing face 250b of
16 output layer 250 is bonded to a face 270a of the second output layer and
17 translates its motion to that face 270a. Thus, the face 270a of the second
18 output layer 270 has a compressive stress applied to it by the bonded face
19 250b of the first output layer 250. Since the compressive stress is
20 applied only at the central face 270a of the output layer 270, and the
21 opposing "free" face 270b does not have compressive stress applied
22 directly to it, the stress at the "free" face 270b of the output layer 270
23 is only as much as is translated through the output layer 270 from the
24 central face 270a. In other words, the free face 270b of the output layer
25 270 does not have as much compressive stress applied to it and therefore
26 does not strain or contract as much as the central face 270a of the output
27 layer 270.

28

29 [0101] Thus, when an alternating voltage is applied across the
30 electrodes 241 and 242 of the input layer 240, the input layer 240
31 deforms, which deforms the bonded insulator layer 65, which in turn
32 deforms the output layers 250 and 270 of the PT 2. This deformation in the
33 absence of the constraint imposed by the bonded insulator layer 65 would
34 simply be the d31 type of radial deformation. However, because of the
35 constraint imposed at bondline 71 by the bonded insulator layer 65, the

1 input layer 240 exhibits a distributed gradient of stress along its
2 thickness and as a result undergoes a shear strain and does not deform
3 uniformly across its thickness. Additionally, due to the constraint of the
4 second output layer 270 on first output layer 250, and the lack of any
5 constraint on the free face 270b of the second output layer 270, the
6 output layers 250 and 270 also undergo a shear strain and do not deform
7 uniformly across their thicknesses. This d15 shear component of this non-
8 uniform deformation provides for generation of greater electric fields
9 than in the typical PT using only the d31 or d33 components.

10

11 [0102] Referring now to FIG. 7: In yet another embodiment of the PT 3,
12 the input portion of the PT 3 comprises multiple (N) thin input layers
13 between multiple (N+1) electrodes. For example, in the embodiment of FIG.
14 7, the PT 3 input portion 3A comprises four thin disc-shaped input ceramic
15 layers bonded between 5 electrodes, each comprising silver or silver-
16 palladium metallization cofired with PZT input layers. Preferably, the
17 individual input layers are thin layers that individually have greater
18 capacitance than a single thicker layer of PZT and are therefore capable
19 of transmitting a greater electric through them with a lower applied
20 electric field. To facilitate the preferred performance of a single input
21 portion having multiple layers, the input portion features the use of
22 alternating poling of layers and alternating terminal connections. This
23 allows the input portion 3A to behave as a single thicker layer would in
24 response to an electrical input across the multiple electrodes and allows
25 the electrical input to be additive in parallel across the multiple layers
26 of the input portion 3A.

27

28 [0103] More specifically, the input portion 3A comprises four thin
29 disc-shaped layers 102, 104, 106 and 108 of an electroactive material such
30 as PZT. The input layers 102, 104, 106 and 108 are bonded to alternating
31 electrode layers 101, 103, 105, 107 and 109, preferably by cofiring the
32 stack of electroactive layers with interspersed electrodes comprising
33 silver or silver-palladium metallization. Thus, input layer 102 is bonded
34 between electrode layers 101 and 103 while input layer 104 is bonded
35 between electrode layers 103 and 105. Likewise, input layer 106 is bonded

1 between electrode layers 105 and 107 and input layer 108 is bonded between
2 electrode layers 107 and 109. Although in the preferred embodiment of the
3 invention the electrodes 101, 103, 105, 107 and 109 comprise a
4 silver/palladium metallization, other metallization may be used comprising
5 platinum, palladium, silver, nickel, gold or various other conductive
6 metal and metal oxide metallization and combinations thereof. As an
7 alternative to bonding the electrodes 101, 103, 105, 107 and 109 to the
8 input layers 102 104, 106 and 108, using Ciba adhesive, the electrodes
9 101, 103, 105, 107 and 109 may be electro-deposited or vapor deposited
10 on the major faces of the input layers 102 104, 106 and 108. The
11 electrodes 101, 103, 105, 107 and 109 may also comprise a metal foil such
12 as a copper foil bonded between the input layers 102, 104, 106 and 108
13 using a strong adhesive such as the imide Ciba-Geigy adhesive.

14

15 [0104] More specifically, a first input electrode 101 is bonded on a
16 first major face 102a of the first input ceramic layer 102, and a second
17 input electrode 103 is bonded on the remaining major face 102b of the
18 first input ceramic layer 102. The second input ceramic layer 104 is
19 bonded on a major face 104a to the second input electrode 103, and a third
20 input electrode 105 is bonded on the remaining major face 104b of the
21 second input ceramic layer 104. The third input ceramic layer 106 is
22 bonded on a major face 106a to the third input electrode 105, and a fourth
23 input electrode 107 is bonded on the remaining major face 106b of the
24 third input ceramic layer 106. The fourth input ceramic layer 108 is
25 bonded on a major face 108a to the fourth input electrode 107, and a fifth
26 input electrode 109 is bonded on the remaining major face 108b of the
27 fourth input ceramic layer 108. Preferably, electrodes 102 and 104 are
28 connected to input terminal 368 and electrodes 101, 103 and 105 are
29 connected to a common ground. Alternatively, electrodes 101, 103 and 105
30 may be connected to input terminal 368 and electrodes 102 and 104 may be
31 connected to a common ground.

32

33 [0105] As mentioned above, the input layers 102, 104, 106 and 108 are
34 preferably poled in an alternating fashion. In other words, as shown by
35 arrows 390 and 392, input layers 102 and 106 are poled in one direction

1 with respect to each other (normal to the major faces 102a and 102b, and
2 106a and 106b in the thickness direction). Also, as shown by arrows 391
3 and 393, input layers 104 and 108 are poled in the same direction with
4 respect to each other (normal to the major faces 104a and 104b, and 108a
5 and 108b in the thickness direction). but in the opposite thickness
6 direction of layers 102 and 106. Preferably, layers 102 and 104 are poled
7 towards the electrode 103 between them and layers 106 and 108 are poled
8 towards the electrode 107 between them. Thus, input layers 102 and 104 are
9 poled in opposite directions with respect to each other, but are actually
10 poled in the same direction towards the central input electrode 103. Also,
11 input layers 106 and 108 are poled in opposite directions with respect to
12 each other, but are actually poled in the same direction towards a central
13 input electrode 107. To facilitate the application of an electric field
14 across the layers 102, 104, 106 and 108 of the input portion 3A, input
15 terminals are connected to the input electrodes. Preferably, one input
16 terminal 368 is connected to both electrodes 103 and 107 for simultaneous
17 application of an electrical signal to those electrodes 103 and 107.
18 Preferably, the remaining electrodes 101, 105 and 109 are ground
19 connections.

20

21 [0106] Thus, each of the input layers 102, 104, 106 and 108 is poled
22 in the thickness direction so that individually each layer 102, 104, 106
23 and 108 will tend to deform radially, i.e., in the d31 mode perpendicular
24 to the respective poling directions 390, 391, 392 and 393 when a voltage
25 is applied across a layer 102, 104, 106 and 108. However, because the
26 layers 102, 104, 106 and 108 are bonded to each other along their major
27 faces, each layer is constrained from deforming at the bond line.

28

29 [0107] Referring to FIGS. 8a and 8b: In operation, when an electrical
30 signal is applied to input terminal 368 attached to electrodes 103 and
31 107, a voltage of a first polarity (i.e., a positive polarity related to
32 the ground electrodes 101, 105 and 109) is applied simultaneously across
33 electrodes 103 and 101 of layer 102, electrodes 103 and 105 of layer 104,
34 electrodes 107 and 105 of layer 106 and electrodes 107 and 109 of layer
35 108. Since all the layers 102, 104, 106 and 108 are poled toward the

1 electrode to which the electrical signal is applied, they all deform in
2 the same direction, e.g., radially expanding. Conversely, when a second
3 electrical signal is applied to input terminal 368 attached to electrodes
4 103 and 107, a voltage of a second opposite polarity (i.e., a negative
5 polarity related to the ground electrodes 101, 105 and 109) is applied
6 simultaneously across electrodes 103 and 101 of layer 102, electrodes 103
7 and 105 of layer 104, electrodes 107 and 105 of layer 106 and electrodes
8 107 and 109 of layer 108. Since all the layers 102, 104, 106 and 108 are
9 poled toward the electrode to which the electrical signal is applied, they
10 all deform in the same direction, e.g., radially contracting. Thus, it
11 will be understood that application of an oscillating voltage to input
12 terminal 368 will cause the input portion 1A to cyclically radially expand
13 and contract.

14

15 [0108] The input portion 3A is mechanically coupled to an output
16 portion 3B comprising at least one output layer 140. The output layer 140
17 of the PT comprises another disc-shaped layer of electroactive material,
18 preferably PZT having electrodes 141 and 142 on its two opposing major
19 faces 140a and 140b. The electrodes 141 and 142 preferably comprise silver
20 or silver-palladium metallization which is cofired onto the output layer
21 140. Alternatively, electrodes 141 and 142 may be applied by electro-
22 deposition, vapor deposition or by bonding a conductive metal such as
23 copper or nickel to the faces 140a and 140b of the output layer 140 using
24 an adhesive such as Ciba or a conductive epoxy. The output electrodes 141
25 and 142 are connected to an output terminal 267 and ground respectively.
26 Alternately, the terminal 367 and ground connections to electrodes 141 and
27 142 may be reversed. Preferably, the thickness of the output layer 140 is
28 relatively greater than the thickness of the individual input layers 102,
29 104, 106 and 108 and more preferably approximately 2-4 times the thickness
30 of the whole input portion 3A.

31

32 [0109] As shown by arrow 394, the output layer 140 is preferably poled
33 in the thickness direction normal to its major faces 140a and 140b. Thus,
34 when a voltage of a first polarity is applied across output electrodes 141
35 and 142 via terminal 367, the output ceramic layer 140 will tend to deform

1 radially piezoelectrically contracting. When a second voltage of an
2 opposite polarity is applied across the output electrode 141 and 142 via
3 terminal 367 the output ceramic layer 140 will tend to deform radially
4 piezoelectrically expanding. Thus, it will be understood that application
5 of an alternating voltage to output terminal 367 will likewise cause the
6 output ceramic layer 140 to cyclically expand and contract at the
7 frequency of the applied voltage. The inverse piezoelectric effect also
8 generates an electric field in response to a mechanical strain of the
9 output layer 140. Therefore, when the output layer 140 is subjected to a
10 first mechanical stress, i.e., compression, the resultant strains (shear,
11 thickness and transverse/radial) cause the output layer 140 to generate an
12 electric field of a first polarity between electrode 141 and 142.
13 Conversely, when the output layer 140 is subjected to another mechanical
14 stress, i.e., a tensile stress, the resultant strains (shear, thickness
15 and transverse/radial) cause the output layer 140 to generate an electric
16 field of a second opposite polarity. Thus, it will be understood that
17 cyclically expanding and compressing the output layer 140 will generate an
18 oscillating electric field across the electrodes 141 and 142 of output
19 layer 140.

20

21 [0110] In the preferred embodiment of the PT 3, the central electrode
22 101 of the input layer 102 is bonded at bondline 171 to a first major face
23 150a of an insulator layer 150, preferably comprising a thin layer of
24 alumina, and preferably by cofiring. On the other major face 150b of the
25 insulator layer 150 is bonded the output layer 140 via electrode 141 at
26 bondline 172, and preferably by cofiring. The constraints and deformation
27 of the insulator layer 150 in relation to and in conjunction with the
28 deformation of the input and output portions 3A and 3B is analogous to
29 that described above for the insulated PT 2 of FIG. 6. In an alternate
30 embodiment of the PT 3, the input portion 3A is bonded directly to the
31 output portion 3B, and the constraints and deformation of the input and
32 output portions 3A and 3B are analogous to that described above for the PT
33 1 of FIGS. 5A-5C.

34

1 [0111] Thus, the input portion 3A is mechanically bonded to the output
2 portion 3B via an interfacial coupling layer such as an insulator layer
3 150 or other bondline(s). Essential to the operation of the PT 3 is that
4 the input portion 3A and output portion 3B are mechanically coupled to
5 each other. Therefore, the central face of the central input layer 102,
6 i.e., electrode 101 and layer 102 are mechanically coupled to the central
7 major face of the output layer 140a via an interfacial coupling layer such
8 as directly via a bondline 172 or preferably with an insulator layer 150.
9 The bondline 172 is preferably formed by cofiring the output layer 140
10 simultaneously with the cofiring of the input layers 102, 104, 106 and
11 108. The interfacial layer and bondline 172 may alternately comprise a
12 layer of strong adhesive such as Ciba adhesive. The insulator layer 150
13 preferably comprises a layer of alumina cofired between the central
14 metallized faces of the input and output layers 102 and 140. The insulator
15 layer 150 may also comprise other insulator or dielectric materials
16 including other ceramics or a layer of a strong adhesive such as Ciba
17 adhesive. Rather than cofiring the insulator layer 150 with the input and
18 output portions 3A and 3B, the insulator layer 150 may alternatively be
19 bonded between the central faces 102a and 140a of the input and output
20 layers 102 and 140 using a strong adhesive such as Ciba adhesive. Thus,
21 the insulator layer 150 has a bondline 171 on one major face 150a with the
22 central face 102a of the input layer 102 and a second bondline 172 on the
23 opposing major face 150b with the central face 140a of the output layer
24 140. Preferably, the insulator layer 150 is slightly more rigid than the
25 material of construction of the input layers 102, 104, 106 and 108, but is
26 sufficiently compliant to deform in response to the deformation of the
27 input layers 102, 104, 106 and 108 (i.e., not completely rigid). The
28 strength of the mechanical coupling at the bondlines 171 and 172 with the
29 insulator layer 150 is preferably sufficient to translate the deformation
30 of the insulator 150 at least in part to the central face 140a of the
31 output layer 140.

32
33 [0112] The key feature of the interfacial coupling layer 150 is that
34 it acts as a mechanical constraint on the deformation of the bonded face
35 102a of the input layer 102. Thus, when an electric field is applied to

1 the input portion 3A, the bonded faces of the layers of the input portion
2 tend to expand or contract less than the opposing "free" faces of the
3 input layers 102, 104, 106 and 108. More, specifically, for example, when
4 the voltage is applied across input layer 102, the central face 102a is
5 constrained at the bondline 171 or interfacial coupling layer 150 which is
6 not independently deforming. The opposite face 102b of input layer 102 is
7 bonded to the adjacent input layer 104 which is deforming, expanding or
8 contracting simultaneously with the first input layer 102. Therefore, the
9 opposite faces 102a and 102b of the first input layer 102 are subjected to
10 differing stresses, such that the central face 102a of the first input
11 layer 102 is constrained from deforming more than the second face 102b of
12 the input layer 102. Likewise, the second input layer 104 has opposing
13 faces 104a and 104b that differ in the amount they strain, due to having
14 relatively greater constraint on the face 104a bonded to the first input
15 layer 102 in relation to the face 104b that is bonded to the third input
16 layer 106. Furthermore, the third input layer 106 has opposing faces 106a
17 and 106b that differ in the amount they strain, due to having relatively
18 greater constraint on the face 106a bonded to the second input layer 104
19 in relation to the face 106b that is bonded to the fourth input layer 108.
20 Finally, the fourth input layer 108 has opposing faces 108a and 108b that
21 differ in the amount they strain, due to having constraint on the face
22 108a bonded to the third input layer 106 and no constraint on the opposite
23 "free" face 108b. Thus, each of the input layers 102, 104, 106 and 108 is
24 able to deform more on the face 102b, 104b, 106b and 108b of the layer
25 102, 104, 106 and 108 that is further from the interfacial coupling layer
26 150, the overall effect of which is similar to the deformation of an input
27 portion comprising a single layer of the same overall thickness.

28

29 [0113] The interfacial coupling layer 150 also acts as a strong
30 mechanical coupling to the output layer 140 capable of translating
31 mechanical motion (deformation) from the bonded face 102a of the input
32 layer 102 to the bonded face 140a of the output layer 140. Similar to the
33 input portion 3A of the PT 3, when the bonded face 140a of the output
34 layer 140 deforms in response to the deformation of the interfacial
35 coupling layer 150, the bonded face 140a tends to expand or contract more

1 than the opposing "free" face 140b of the output layer 140. Alternatively,
2 the output portion 3B may be of a multilayer construction such that it
3 deforms in a similar manner to that of the input portion 3A of the PT 3.

4

5 [0114] As mentioned herein above, application of a voltage of a first
6 polarity to input terminal 168 across the electrodes 101, 103, 105, 107
7 and 109 of the input layers 102, 104, 106 and 108 tends to cause a radial
8 deformation (expansion) of the ceramic layers 102, 104, 106 and 108. The
9 free face 108b of the outboard input layer 108 is allowed to deform
10 (expand) to the full extent that it would under a typical d31 deformation.

11 However, because the central face 102a and internal faces 102b, 104a-b,
12 106a-b and 108a of the input layers 102, 104, 106 and 108 are constrained
13 at their respective bondlines with each other, the central 102a and
14 interior faces 102b, 104a-b, 106a-b and 108a cannot expand to the full
15 extent that they would were they not constrained. Likewise, application of
16 a voltage of a second opposite polarity to input terminal 168 across the
17 electrodes 101, 103, 105, 1076 and 109 of the input layers 102, 104, 106
18 and 108 tends to cause a radial deformation (contraction) of the ceramic
19 layers 102, 104, 106 and 108. The free face 108b of the input layer 108 is
20 allowed to deform (contract) to the full extent that it would under a
21 typical d31 deformation. However, because the central face 102a and
22 interior faces 102b, 104a-b, 106a-b and 108a of the input layers 102, 104,
23 106 and 108 are constrained at their respective bondlines or interfacial
24 coupling layer, the central 102a and interior faces 102b, 104a-b, 106a-b
25 and 108a cannot deform (contract) to the full extent that they would were
26 they not constrained.

27

28 [0115] The expansion and contraction of the central face 102a of the
29 input layer 102 causes the bondline/interfacial coupling layer 150 to
30 expand and contract with it, depending on the relative rigidity of the
31 material opposite the input layer 102 at the bondline 171, i.e., the
32 interfacial layer 150. Preferably, the interfacial layer 150 is slightly
33 more rigid than the material of construction of the input layers 102, 104,
34 106 and 108, but is sufficiently compliant to deform in response to the
35 deformation of the input layers (i.e., not completely rigid). The strength

1 of the mechanical coupling at the bondline/interfacial layer is preferably
2 sufficient to translate its motion at least in part to the central face
3 140a of the output layer 140.

4

5 [0116] Referring again to FIGS. 8a and 8b: The expansion and
6 contraction of the central face 102a of the input layer 102 causes the
7 bondline 171 and interfacial coupling layer 65 to expand and contract with
8 it. The interfacial layer 65 translates its motion at least in part to the
9 attached central face 140a of the output layer 140 via the second bondline
10 172. More specifically, as the bondline 171 and interfacial layer 65
11 expand in response to the expansion of the attached input layer 102, the
12 interfacial layer 65 applies a tensile stress to the central face 140a of
13 the output layer 140 via the second bondline 172. In response to the
14 tensile stress the output layer 140 expands. Since the tensile stress is
15 applied only at the central face 140a of the output layer 140, and the
16 opposing "free" face 140b does not have tensile stress applied directly to
17 it, the stress at the "free" face 140b of the output layer 140 is only as
18 much as is translated through the output layer 140 from the central face
19 140a. In other words, the free face 140b of the output layer 140 does not
20 have as much tensile stress applied to it and therefore does not strain or
21 expand as much as the central face 140a of the output layer 140. This
22 expansion generates a voltage of a first polarity between electrodes 141
23 and 142.

24

25 [0117] Likewise, as the bondline 171 and interfacial layer 65 contract
26 in response to the contraction of the attached input layer 102, the
27 interfacial layer 65 applies a compressive stress to the central face 140a
28 of the output layer 140. In response to the compressive stress the output
29 layer contracts 140. Since the compressive stress is applied only at the
30 central face 140a of the output layer 140, and the opposing "free" face
31 140b does not have compressive stress applied directly to it, the stress
32 at the "free" face 140b of the output layer 140 is only as much as is
33 translated through the output layer 140 from the central face 140a. In
34 other words, the free face 140b of the output layer 140 does not have as

1 much compressive stress applied to it and therefore does not strain or
2 contract as much as the central face 140a of the output layer 140.
3

4 [0118] Thus, when an alternating voltage is applied across the
5 electrodes 101, 103, 105, 107 and 109 of the input layers 102, 104, 106
6 and 108, the input layers 102, 104, 106 and 108 deform, which deforms the
7 attached interfacial layer 65 via bondline 171, which interfacial layer 65
8 in turn deforms the output layer 140 of the PT 3 via bondline 172. This
9 deformation, in the absence of the constraint imposed by the interfacial
10 layer 65 would simply be the d31 type of radial type deformation. However,
11 because of the constraint imposed by the bondline 171 and interfacial
12 layer 65, the input layers 102, 104, 106 and 108 undergo shear strains and
13 do not deform uniformly across their respective thicknesses. Additionally,
14 due to the lack of any constraint on the free face 140b of the output
15 layer 140, the output layer(s) 140 also undergoes a shear strain and does
16 not deform uniformly across its thickness. This d15 shear component of
17 this non-uniform deformation provides for generation of greater electric
18 fields than in the typical PT using only the d31 or d33 components.
19

20 [0119] Thus, upon application of a voltage of a first polarity to the
21 input terminal, the input portion deforms (contracts), thereby contracting
22 the bondline and attached insulator layer , which translates the
23 deformation to the attached output layer. The deformation (contraction) of
24 the output portion piezoelectrically generates a g15 mode output voltage
25 of a first polarity between the output electrodes connected to output
26 terminal 47. Conversely, upon application of a second voltage of a second
27 opposite polarity to input terminal the input portion deforms (expands),
28 thereby expanding the bondline or attached insulator layer, which
29 translates the deformation to the attached output layer. The deformation
30 (expansion) of the output layer piezoelectrically generates an output
31 voltage of a second opposite polarity between the output electrodes
32 connected to output terminal 47. Thus, application of an alternating
33 voltage to the input portion causes the input layers to deform (in the d15
34 mode) which causes the attached bondline and/or insulator layer and output

1 layers to deform, thereby generating an alternating output voltage (in the
2 g15 mode).

3

4 [0120] Referring to FIGS. 9 and 10: Alternate constructions of a PT
5 according to the present invention are possible and desirable. For
6 example, the PT may be designed with only one input layer and one output
7 layer such as that of FIGS. 4 and 5. Alternately, a PT may be designed
8 having an insulator layer between the input and output portions such as in
9 FIGS. 6 and 7. Additionally, PTs may be designed having multiple input
10 layers such as in FIG. 7 or multiple output layers as in FIG. 6. The PT 4
11 of FIG. 9 shows a PT having one output portion 4C bonded between two
12 multilayer input portions 4A and 4B. In the PT 4 of FIG. 9, the function
13 of the portions may be reversed such that one portion 4C acts as an input
14 layer 4C bonded between two multilayer output portions 4A and 4B. The PT 5
15 of FIG. 10 shows an alternate PT 5 having one multilayer input portion 5C
16 bonded between two output portions 5A and 5B. In the PT 5 of FIG. 10, the
17 function of the portions may be reversed such that one portion 5C acts as
18 a multilayer output portion 5C bonded between two input layers 5A and 5B.

19

1 EL Driver Circuit

2

3 [0121] It will be understood that the composite radial shear mode PTs
4 of FIGS. 4-10 described above may be used in a variety of circuits. The
5 present invention describes a circuit 7 as in FIG. 17 incorporating the
6 PT for use in powering an EL backlighting device. In certain embodiments
7 of the invention it is desirable to use a PT to drive the EL device and
8 not concern oneself with providing electrical isolation between the
9 input and output sides of the circuit/PT as in the PTs of FIGS. 4, 5, 9
10 and 10. A circuit 7 incorporating such a PT simply having an input
11 portion bonded directly to an output portion may be described as a three
12 terminal non-isolating PT circuit 7. This is because the three terminal
13 device only has an input terminal, an output terminal and a central
14 common terminal.

15

16 [0122] In other embodiments of the circuit, it is also desirable to
17 provide electrical isolation between the input and output portions of
18 the circuit by using a PT such as the PTs 2 and 3 in FIGS. 6-8,
19 hereinafter referred to as an isolation PT 6. The circuit having a PT 6
20 that has an insulation layer 65 bonded between the input 6A and output
21 portions 6B is described as a four terminal isolating PT 6 circuit 7.
22 This is because the input portion 6A has two terminals 61 and 62
23 (exterior and interior respectively) and the output portion also has two
24 terminals 63 and 64 (interior and exterior respectively) separated by
25 the insulation layer 65. Although the two interior terminals 62 and 63
26 may be connected to each other, this obviates the isolation between the
27 input portion 6A and output portion 6B, and therefore in the preferred
28 embodiment of the invention the input and output portions 6A and 6B have
29 separate electrical/ground connections to the interior terminals 62 and
30 63 respectively.

31

32 [0123] Referring now to Figure 11: The block diagram of Figure 11 is
33 representative of a circuit topology for driving the present PT 6 in an EL
34 driver circuit 7. This circuit 7 applies a voltage to the input portion 6A
35 of the transformer 6 through a resonant switching converter 220, such as a

1 half-bridge converter, a push-pull mode switching converter, a class-E
2 resonant converter or other similar resonant topology. Particularly, a
3 half bridge converter topology or class-E topology is appropriate for
4 embodiments where there is no need for isolation between the input and
5 output grounds of the transformer. Since in the preferred mode of
6 operation of the transformer, it is preferred to provide isolation between
7 the input and output, a push-pull mode resonant switching converter is
8 preferred. The switching converter 220 of FIG. 11 comprises a pair of
9 inductors L1 and L2 and a pair of switching devices, such as transistors
10 Q1 and Q2 used in conjunction with an oscillator 230 and gate drive 240.
11 The voltage source 210 is connected across the input layer 6A to ground
12 via each inductor-transistor pair (L1-Q1 or L2-Q2) depending upon which
13 switching device Q1 or Q2 is closed. Each switch Q1 and Q2 is driven by a
14 gate drive 240 connected to the respective gates G1 and G2. The gate
15 drives 240 operate in conjunction with an oscillator (timer) 230 such that
16 when the gate G1 of the first switch Q1 is de-energized, the gate G2 of
17 the second switch Q2 is energized and vice versa. The output portion 6B of
18 the transformer 6 is connected to the EL lamp 200. A feedback subcircuit
19 250 may be provided between the transformer 6 and the oscillator 230 in
20 order to ensure the transformer 6 operates at resonance. Dimming 260 may
21 also be provided to control the output of the transformer 6 and
22 consequently the relative intensity of the EL lamp 200.

23

24 [0124] Referring now to FIG. 12: FIG. 12 shows one embodiment of a
25 circuit according to the topology of FIG. 11. More specifically, a
26 positive voltage source 210 is provided. Preferably, the voltage source
27 210 is a DC source such as a battery with a voltage in the range of +3 to
28 +15 VDC. The voltage source 210 may also include a rectified AC voltage
29 source. A voltage regulator may also be included to limit or filter the
30 output voltage signal. The voltage source 210 is linked to the input
31 electrode(s) connected to one input terminal 61 via an inductor L1. The
32 first input terminal 61 is for applying voltage pulses of a first polarity
33 to the input portion 6A of the transformer 6. The positive voltage input
34 is also linked to the other input electrode(s) connected to a second input
35 terminal 62 via a second inductor L2. The second input terminal 62 is for

1 applying voltage pulses of a second polarity to the input portion 6A of
2 the transformer 6. Thus, the polarity of the voltage applied to the
3 transformer 6 is positive when applying a voltage to the first input
4 terminal 61 while the second input terminal 62 is connected to ground. Due
5 to polarization of the input layer(s) 6A, the polarity of the voltage
6 applied to the transformer 6 is reversed, i.e., negative when applying the
7 same voltage to the second input terminal 62 while the first input
8 terminal 61 is connected to ground. This arrangement may be modified such
9 that the input voltage polarities are reversed by switching the input
10 terminals 61 and 62 to which the voltage source 210 is connected, or even
11 by polarizing the input portion 6A in the opposite direction.

12

13 [0125] A switching device, e.g., a transistor such as a FET, IGBT or
14 BJT, but most preferably a MOSFET is connected to each input terminal 61
15 and 62. More preferably, a chip U1 is used having dual N-channel power
16 MOSFETs with internal diodes in parallel with each switching transistor,
17 such as NDS9945 as manufactured by Fairchild Semiconductor for example.
18 More specifically, the source S1 of a MOSFET Q1 is electrically connected
19 to inductor L1 and input terminal 61. The drain D1 of the MOSFET Q1 is
20 connected to ground. This places the input portion 6A of the transformer 6
21 in parallel with the source S1 and drain D1 of the first MOSFET Q1. Also,
22 the source S2 of a second MOSFET Q2 is electrically connected to inductor
23 L2 and input terminal 62. The drain D2 of the MOSFET Q2 is connected to
24 ground as are the ground wires of the transformer 6. This places the
25 input portion 6A of the transformer 6 in parallel with the source S2 and
26 drain D2 of the second MOSFET Q2.

27

28 [0126] Each switching device (MOSFETs Q1 and Q2) has a gate drive 240A
29 and 240B connected to their respective gates G1 and G2. The preferred
30 gates drives 240A and 240B comprise a dual high speed power MOSFET gate
31 driver chip U2. The gate drives 240A and 240B operate in conjunction with
32 an oscillator (timer) 230 such that when the gate G1 of MOSFET Q1 is de-
33 energized, the gate G2 of MOSFET Q2 is energized and when the gate G2 of
34 MOSFET Q2 is de-energized, the gate G1 of MOSFET Q1 is energized. When the
35 gate G1 of the first MOSFET Q1 is energized, current will flow from the

1 source S1 to the drain D1. When the first MOSFET Q1 is de-energized, the
2 magnetic field in the inductor L1 collapses and a positive voltage pulse
3 is applied to input terminal 61, which causes the input portion 6A of the
4 transformer 6 to deform in a first direction, i.e., radially expand. Also,
5 when the gate G2 of the second MOSFET Q2 is energized, current will flow
6 from the source S2 to the drain D2. When the second MOSFET Q2 is de-
7 energized, the magnetic field in the inductor L2 collapses and a positive
8 voltage pulse is applied to input terminal 62, which causes the input
9 portion 6A of the transformer 6 to deform in the opposite direction, i.e.,
10 radially contract. An example of a suitable driving device for driving the
11 gates is the Telcom TC4428 dual gate driver U2 by Microchip, which is an
12 integrated device that can easily switch gates G1 and G2 having large
13 capacitances with high speed.

14

15 [0127] As mentioned above, the driver(s) 240A and 240B send one signal
16 to the gate G1 of the first switching device Q1, and the inverse signal to
17 the gate G2 of the other switching device Q2. To develop these two
18 signals, the driver U2 uses as a source an oscillating signal generated by
19 a timer/oscillator 230. The oscillator 230 may be constructed in many
20 ways, including but not limited to: (a) a CMOS inverter-based
21 oscillator; (b) a commercial timer, such as an LMC555 or LTC555 by
22 National Semiconductor; and (c) other similar voltage converter
23 oscillator (VCO) topology. An example of the preferred appropriate
24 oscillator is a 555 DC/AC timer U3. In general, the oscillator 230 has an
25 output pin for transmitting an oscillating voltage signal which is
26 electrically connected to the input pin of the driver U2. The oscillator
27 230 is preferably configured as a 50 percent duty driver. Thus, the
28 output of the oscillator 230 is a square wave oscillating between ground
29 and a positive voltage of 3-15 VDC. The initial frequency of the square
30 wave (preferably approximately 500 kHz) is set according to the Z constant
31 determined by the combination of resistor R2 and capacitor C2 connected
32 in parallel to the input pins of the oscillator U3 designed therefor.
33 More specifically, the trigger pin is connected to the threshold pin and
34 the resistor R2 is connected between the trigger pin and the output pin,
35 whereas the capacitor C2 has one end grounded and the other end

1 connected between the resistor R2 and the threshold pin. To determine or
2 adjust the initial oscillator 230 frequency, a potentiometer may be used
3 in place of the resistor R2, which may then be replaced with fixed
4 resistor R2 after the circuit 7 is adjusted to the open circuit resonant
5 frequency of the PT 6. The oscillator 230 is powered by an external power
6 source such as the voltage source 210 ranging, for example, from +3 to 15
7 volts DC.

8

9 [0128] The high voltage end 202 of the lamp 200 or EL device is
10 connected to the high voltage output terminal 64 of the PT 6 and the low
11 voltage end 201 of the lamp 200 connected to the low voltage terminal 63
12 of the output portion 6B of the transformer 6. To provide feedback to
13 the oscillator 230, the EL lamp 200 may be connected to ground through a
14 feedback subcircuit 250, which may comprise voltage, current or phase
15 based feedback and combinations thereof. For, example, current sensing
16 circuitry can be attached at the high voltage 202 end of the lamp 200.
17 The feedback subcircuit 250 may also be connected to the low voltage 201
18 end of the lamp 200 for comparison of the input and output frequency
19 phases. The feedback signal is summed with the input value (Z) at the
20 input to the oscillator 230. This results in the inverter oscillations
21 being synchronized to the natural resonant frequency of the PT 6, which
22 compensates for variations due to the temperature or the load.

23

24 [0129] The above circuit 7 is preferably configured to also use a
25 dimming device 260 such as a switching or regulating device in order to
26 provide a variable intensity of light from the EL device 200 attached to
27 the output side of the transformer 6. For example, a manual analog or
28 digital input may be used with a voltage comparator. Preferably, to
29 accomplish dimming a switching regulator, such as voltage chopper type
30 TL1415, may be used for on/off averaging for dimming 260. The dimming
31 device 260 may be attached to the circuit 7 at a variety of locations, For
32 example, the dimmer 260 may control the voltage at the output of the
33 transformer 6, or at the switching regulator 220, such as at the input to
34 the inductors L1 and L2 or at the input to the gate driver 240.

35

1 [0130] Each transistor gate G1 and G2 is connected to the driver 240
2 that alternately energizes each gate G1 or G2. When a positive voltage
3 signal from the driver 240 is applied to the gate G1 of the first
4 switching device Q1, the gate G1 turns on and the switching device Q1
5 conducts from the source to the drain. This allows current to conduct
6 through inductor L2 to ground across the input layer 6A and through the
7 switch Q1. Conversely, when a positive voltage signal from the driver 240
8 is applied to the gate G2 of the first switching device Q2, the gate G2
9 turns on and the switching device Q2 conducts from the source to the
10 drain. This allows current to conduct through inductor L1 to ground across
11 the input layer 6A and through the switch Q2.

12 [0131] Thus, depending on which switch Q1 or Q2 is energized, the
13 circuit 7 is connected across the input portion 6A through L1 and Q2 or
14 through L2 and Q1. Due to the inductance of inductors L1 and L2, and
15 capacitance of the input portion 6A of the PT 6 (as well as the drain to
16 source capacitances of the switching devices Q1 and Q2), the circuit 7
17 behaves as a resonant circuit 7. Consequently the square wave DC voltage
18 input becomes a sinusoidal input to the PT 6. The PT 6 has step-up ratio
19 and power capabilities determined by its shape, size and number of input
20 and output layers, and its piezoelectric characteristics. In order to
21 achieve the best step-up and power capabilities, it is desirable to
22 idealize this sinusoidal input signal. This may be achieved through Zero
23 Voltage Switching (ZVS) described below.

25 [0132] In operation, the PT 6 is driven by a switched DC voltage
26 resulting from the on/off operation of the switching transistors Q1 and
27 Q2. Due to the high frequency associated with the converters, Zero Voltage
28 Switching (ZVS) operation is particularly preferable. The switching
29 transistors Q1 and Q2 are alternately turned on and off with a short dead
30 time. During the short dead time, magnetizing current charges and
31 discharges the drain to source capacitance of the switches Q1 and Q2, as
32 well as the input capacitance of the PT 6. As a result, ZVS of these
33 switches Q1 and Q2 is achieved. The inductance of each of the inductors L1
34 and L2 is selected to achieve ZVS by ensuring the resonance between the
35

1 inductors L1 and L2 and the capacitance of the input portion 6A of the PT
2 6 as well as the drain to source capacitance of the switches Q1 and Q2.
3

4 [0133] Thus, by having the oscillator and gate drive alternatingly
5 driving the gates G1 and G2 of FETs Q1 and Q2 such that one gate G1 or G2
6 is on while the other is off, a series of positive voltage pulses may be
7 alternatingly applied to the input terminals T1 and T2 of the transformer
8 to alternate the polarity of the voltage across the input portion 6A and
9 drive the transformer 6 in a push-pull mode. When driving the transformer
10 6, it is preferable to drive the PT 6 at its natural resonant frequency.
11 This is because greater deformation of the layers occurs while operating
12 at resonance and therefore, greater voltage gains are realized. Thus, it
13 is preferred to apply the voltage inputs at a frequency corresponding to
14 the natural radial resonant frequency of the PT 6 which is in the range of
15 490-510 kilohertz.

16

17 [0134] As the input portion 6A of the PT 6 expands and contracts, the
18 output portion 6B likewise expands and contracts generating an alternating
19 voltage which is applied to the high voltage connection 202 of the EL lamp
20 200. A feedback signal is developed in the feedback subcircuit 250 which
21 is input into the oscillator 230. This ensures that the timing of the
22 signal from the oscillator 230 input into the driver 240 substantially
23 corresponds to the actual resonant frequency of the PT 6, thereby
24 maximizing the efficiency of the circuit 7. This circuit 7 provides a one
25 hundred per cent duty cycle for driving the push-pull input portion 6A of
26 the transformer 6. Furthermore, the drive circuit 7 has to support only
27 half the current resulting in lower losses, greater efficiency and lower
28 cost components.

29

30 [0135] While the above description contains many specificities, these
31 should not be construed as limitations on the scope of the invention,
32 but rather as exemplification of preferred embodiments thereof. Many
33 other variations are possible, for example:

34

1 [0136] While in the preferred embodiment of the invention the ceramic
2 layers are preferably constructed of a PZT ceramic material, other
3 electroactive materials may be used in its place;

4

5 [0137] The ceramic layers can be piezoelectric, ferroelectric or
6 other electroactive elements;

7

8 [0138] The input portion may comprise as few as one ceramic layer or
9 may be of a multi-layer construction;

10

11 [0139] The output portion may comprise as few as one ceramic layer or
12 may be of a multi-layer construction;

13

14 [0140] The direction of polarization of the input layers in a
15 multilayer input portion can vary and need not be toward the central
16 electrode, but may be away from the central electrode or combinations
17 thereof;

18

19 [0141] The direction of polarization of the layers in the multilayer
20 output portion need not be toward the central electrode, but may be away
21 the central electrode;

22

23 [0142] The central electrode of the multilayer output portion need
24 not be the high voltage electrode - the outer electrodes may carry the
25 high voltage and the central electrode may be ground referenced;

26

27 [0143] The input and output portions may share a common ground
28 electrode, or may have separate ground connections taking advantage of
29 the isolation layer;

30

31 [0144] The insulating layer need not be constructed of alumina, but
32 may be constructed of other insulating materials, including but not
33 limited to unpoled electroactive materials that remain piezoelectrically
34 inactive;

35

1 [0145] Accordingly, the scope of the invention should be determined
2 not by the embodiment illustrated, but by the appended claims and their
3 legal equivalents.