Chap 22 – Elementary Graph Algorithms

*22.1 Representations of graphs

22.2 Breadth-first search

22.3 Depth-first search

22.4 Topological sort

- Breadth-first search
 - ∘ G = (V, E) directed or undirected; S ∈ V source vertex
 - BFS explores the graph *G* level-by-level and computes
 - v.d = distance (smallest # of edges) from s to $v, \forall v \in V$
 - = length of shortest path $s \sim v$
 - $v.\pi = \text{predecessor of } v \text{ on shortest path } s \sim v$
 - ∘ $v.\pi$ induces a breadth-first tree: $\{(v, v.\pi : v \in V \{s\})\}$
 - As BFS progresses, every vertex has a color
 - WHITE = undiscovered
 - GRAY = discovered, but not finished
 - BLACK = finished

Breadth-first search

• BFS
$$(V, E, s)$$

for each $u \in V - \{s\}$
 $u.d = \infty$
 $u.\pi = \text{NIL}$
 $u.color = \text{WHITE}$
 $s.d = 0$
 $s.\pi = \text{NIL}$
 $s.color = \text{GRAY}$
 $Q = \emptyset$
ENQUEUE (Q, s)

```
while Q \neq \emptyset
   u = \mathsf{DEQUEUE}(Q)
   for each v \in G. Adj[u]
       if v.color == WHITE
          v.d = u.d + 1
          v.\pi = u
          v.color = GRAY
          ENQUEUE(Q, v)
   u.color = BLACK
```

Breadth-first search

Example

$$Q = \{s^0\} \to \{a^1, c^1\} \to \{c^1, e^2\} \to \{e^2, g^2\} \to \{g^2, b^3, h^3\}$$

$$\to \{b^3, h^3, i^3, f^3\} \to \{h^3, i^3, f^3\} \to \{i^3, f^3\} \to \{f^3\} \to \emptyset$$

- Breadth-first search
 - BFS may not discover all vertices.
 - \circ Time: O(V+E)
 - O(V) : each vertex is enqueued at most once
 - O(V)
 - \because for directed graph, each edge (u, v) is examined at most once when u is dequeued.
 - For undirected graph, each edge $\{u, v\}$ is examined at most twice when u and v are dequeued.

Depth-first search

- Depth-first search explores the graph path-by-path.
- No source vertex is given if any undiscovered vertices remain, DFS selects one of them as a new source and searches from that source.
- Comment

In the book, BFS is limited to one source, but DFS may search from multiple sources.

Why?

It is because BFS and DFS are typically used this way.

- Depth-first search
 - DFS computes two timestamps on each vertex:
 - v.d = discovery time (i.e. when v is grayed)
 - v.f = finishing time (i.e. when v is blacken)
 - It also computes
 - $v.\pi = \text{predecessor of } v$
 - \circ Since DFS may repeat from multiple sources , v. π induces a depth-first forest comprising several depth-first trees, one for each source vertex.

Depth-first search

```
• DFS(G)

for each u \in G. V

u. color = WHITE

u. \pi = NIL

time = 0

for each u \in G. V

if u. color == WHITE

DFS_VISIT(G, u)
```

• *time* is a global variable.

```
DFS_VISIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v \in G. Adj[u]
   if v.color == WHITE
      \nu.\pi = u
      DFS_VISIT(G, v)
u.color = BLACK
time = time + 1
u.f = time
```

- Depth-first search
 - Time: $\Theta(V+E)$
 - Similar to BFS analysis.
 - Θ not O : guaranteed to examine every vertex and edge
 - Example

- Properties of depth-first search
 - Classification of edges
 - Tree edge: edges in the depth-first forest
 - Back edge: (u, v), where u is a descendant of v.
 - Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
 - Cross edge: Any other edge between vertices in the same depth-first tree or in different depth-first trees.
 - \circ \because (u,v) and (v,u) are the same edge in an undirected graph, an edge is classified by the first type above that matches.

Depth-first search

• THEOREM

In a DFS of an undirected graph, every edge is either a tree edge or a back edge.

Every edge not in the tree is a back (not forward) edge.

- Depth-first search
 - THEOREM (PARENTHESIS THEOREM)

For any u, v, exactly one of the following holds:

- $[u.d,u.f] \cap [v.d,v.f] = \emptyset$ and neither of u and v is a descendant of the other.
- $[u.d, u.f] \subseteq [v.d, v.f]$ and u is a descendant of v.
- $[v.d, v.f] \subseteq [u.d, u.f]$ and v is a descendant of u.
- THEOREM (WHITE-PATH THEOREM)

v is a descendant of u iff at the time u. d that the search discovers u, there is a path $u \sim v$ consisting of only white vertices (except for u, which was just colored gray).

- Topological sort
 - G = (V, E) directed acyclic graph (dag) A topological sort of G is a linear ordering on V such that if $(u, v) \in E$ the u appears somewhere before v.
 - \circ Topological-Sort(G)
 - 1 Call DFS(G) to compute finishing times v. f for all v
 - 2 Output vertices in order of *decreasing* finishing times
 - Time: $\Theta(V + E)$
 - Don't need to sort by finishing times
 - Just insert the vertices onto the front of a linked list as they're finished.

Depth-first search

THEOREM

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof

 \Rightarrow Suppose (u, v) is a back edge.

Then, u is a descendant of v in a depth-first tree:

Therefore, $v \sim u \rightarrow v$ is a cycle.

A contradiction.

- Depth-first search
 - THEOREM (Cont'd)

 \Leftarrow Suppose G contains a cycle c.

Let v be the first vertex discovered in c

Let (u, v) be the preceding edge in c

By the white-pace theorem, u is a descendant of v.

Therefore, (u, v) is a back page.

A contradiction.

Depth-first search

• **THEOREM** TOPOLOGICAL-SORT(G) is correct.

Proof

Need to show that $(u, v) \in E \Rightarrow u.f > v.f$

When we explore (u, v), u.color == GRAY.

Case 1: v.color == GRAY

Then, u is a descendant of v

 \Rightarrow (u, v) is a back edge \Rightarrow G is cyclic. A contradiction.

Case 2: v.color == WHITE

Then, v is a descendant of u

 \Rightarrow [v.d,v.f] \subseteq [u.d,u.f] \Rightarrow u.f > v.f, as desired.

- Depth-first search
 - THEOREM (Cont'd)

Case 3: v.color == BLACK

Then, v is already finished.

Since we're exploring (u, v), we have not yet finished u.

 $\Rightarrow u.f > v.f$, as desired.

- Strongly connected components
 - G = (V, E) directed graph

 A **strongly connected component** (**SCC**) of G is a maximal set of vertices $C \subseteq V$ such that for all $u. v \in C$, both $u \rightsquigarrow v$ and $v \rightsquigarrow u$.
 - Example

- Strongly connected components
 - \circ SCC(G)
 - 1 Call DFS(G) to compute finishing times v. f for all v
 - 2 Compute G^T , i.e. the transpose of G
 - 3 Call DFS(G^T), but consider vertices in topological sort order, i.e. in order of decreasing v. f found in Step 1
 - 4 Output the vertices of each depth-first tree as a SCC
 - \circ Time: $\Theta(V+E)$
 - $G^T = (V, E^T)$, where $E^T = \{(u, v) : (v, u) \in E\}$, can be created in $\Theta(V + E)$ time using adjacency list
 - G and G^T have the same SCC's, $\because u \rightsquigarrow^G v$ iff $v \rightsquigarrow^{G^T} u$

- Strongly connected components
 - Example (Cont'd)

- Strongly connected components
 - Component graph
 - $G^{scc} = (V^{scc}, E^{scc})$
 - V^{scc} has one vertex for each SCC in G.
 - E^{scc} as an edge if there's an edge between the corresponding SCC's in G.

- Strongly connected components
 - **LEMMA** G^{SCC} is a dag.

More formally, let C and C' be distinct SCC's in G, let $u, v \in C, u', v' \in C'$, and suppose there is a path $u \rightsquigarrow u'$ in G. Then, there can't also be a path $v' \rightsquigarrow v$ in G. Proof

If $v' \sim v$ exists, then $u \sim u' \sim v'$ and $v' \sim v \sim u$. Therefore, u and v' are reachable from each other, so they aren't in separated SCC's

- Strongly connected components
 - Let $U \subseteq V$, define $d(U) = \min_{u \in U} \{u.d\}$, i.e. the earliest discovery time in U $f(U) = \max_{u \in U} \{u.f\}$, i.e. the latest finishing time in U where u.d and u.f refer to the 1st DFS.
 - LEMMA

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$

Then, f(C) > f(C')

- Strongly connected components
 - Proof of LEMMA

Case 1: d(C) < d(C')

Let $x \in C$ be the 1st discovered vertex

- \Rightarrow At time x.d = d(C), all vertices in C and C' are white.
- $\Rightarrow \exists$ a path $x \sim y$ of white vertices in C and C', where $y \in C \cup C' \{x\}$, since C and C' are SCC's and there is an edge (u, v) from C to C'
- \Rightarrow By the white-space theorem, y is a descendant of x in depth-first tree
- \Rightarrow By the parenthesis theorem, $[y, d, y, f] \subsetneq [x, d, x, f]$
- $\Rightarrow x. f = f(C) > f(C')$

- Strongly connected components
 - Proof of LEMMA

Case 2:
$$d(C) > d(C')$$

Let $y \in C'$ be the 1st discovered vertex

By similar argument, all vertices in C' are descendants of y

$$\Rightarrow$$
 y. $f = f(C')$

On the other hand, G^{scc} is a dag and there is an edge

$$(u, v)$$
 from C to C'

- \Rightarrow \nexists a path from C' to C
- \Rightarrow all vertices in C aren't descendants of y
- \Rightarrow at time y. f = f(C'), all vertices in C are still white
- $\Rightarrow f(C) > f(C')$

Strongly connected components

COROLLARY

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^T$ such that $u \in C$ and $v \in C'$ Then, f(C) < f(C')Proof $(u, v) \in E^T \Rightarrow (v, u) \in E \Rightarrow f(C) < f(C')$

COROLLARY

Let C and C' be distinct SCC's in G = (V, E). Suppose that f(C) > f(C'), then there is no edge from C to C' in G^T .

- Strongly connected components
 - **THEOREM** SCC(G) is correct.

Proof

Let $C_1, C_2, C_3, ...$ be SCC's with $f(C_1) > f(C_2) > f(C_3) > ...$

Let $x_i \in C_i$ be such that $x_i \cdot f = f(C_i)$

The last corollary says that there is no edge from C_i to C_j , i > j, in G^T .

Therefore, DFS(G^T) starts with x_1 and visits **only** vertices in C_1 , which means that the depth-first tree rooted at x_1 contains **exactly** the vertices of C_1 .

- Strongly connected components
 - THEOREM (Cont'd)

- Strongly connected components
 - **THEOREM** (Cont'd) Next, DFS(G^T) selects x_2 as a new root and visits
 - vertices in C_2 gets tree edges to these
 - vertices in already-visited SCC \mathcal{C}_1 gets no tree edges to these

Therefore, the depth-first tree rooted at x_2 contains exactly the vertices of C_2 .

The process continues until all the SCC's are found.