IOT & Applications

Module - 4

IoT using Arduino: Interoperability in IoT, Arduino Programming, Integration of Sensors and Actuators, Microcontrollers, Embedded C programming, Analog Interfacing

Microprocessor and Microcontroller

Microprocessor is a computer processor that incorporate the function of a central processing unit on a single integrated circuit. It is the central unit that executes and manages the logical instruction passed to it.

Microcontroller is a integrated circuit that contains a microprocessor along with memory and associated circuit like RAM, EEPROM, AD-DA converter etc.

Microprocessor and Microcontroller

What is an Arduino?

 Open Source electronic prototyping platform based on flexible easy to use hardware and software.

Different microcontroller board

Arduino

STM32

Beaglebone

TI MSP430

Bare minimum code

```
void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:
}
```

Bare minimum code

- setup: It is called only when the Arduino is powered on or reset. It is used to initialize variables and pin modes
- loop : The loop functions runs continuously till the device is powered off. The main logic of the code goes here. Similar to while (1) for micro-controller programming.

PinMode

A pin on arduino can be set as input or output by using pinMode function.

pinMode(13,OUTPUT);// sets pin 13 as output pin

pinMode(13,INPUT);// sets pin 13 as input pin

Reading/writing digital values

• digitalWrite(13,LOW);// Makes the output voltage on pin 13,0V

digitalWrite(13,HIGH);// Makes the output voltage on pin 13,5V

int buttonState = digitalRead(2); // reads the value of pin 2 in buttonState

Example-1: LED Blink

```
// the setup function runs once when you press reset or power the
board
void setup()
// initialize digital pin LED_BUILTIN as an output. pinMode(LED_BUILTIN, OUTPUT);
// the loop function runs over and over again forever
void loop()
digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the
voltage level) delay(1000);
                                       // wait for a second
digitalWrite(LED_BUILTIN,LOW); // turn the LED off by making the
voltage LOW delay(1000);
                                       // wait for a second
```


Analog to Digital Conversion

- What is analog?
 - It is continuous range of voltage values (not just 0 or 5V)
- Why convert to digital?
 - Because our microcontroller only understands digital.

ADC in Arduino Uno

Converting Analog Value to Digital

ADC in Arduino

- The Arduino Uno board contains 6 pins for ADC
- ▶ 10-bit analog to digital converter
- This means that it will map input voltages between 0 and 5 volts into integer values between 0 and 1023
- Resolution?

Reading/Writing Analog Values

analogRead(A0);// used to read the analog value from the pin A0

analogWrite(2,128); How much is the voltage?

Arduino board components

Arduino board Pin diagram

Arduino board schematic

Schematic are symbolic and simplified diagram of an circuit

2<u>7</u> RN3B 22R

3<u>6</u> PN3C 22P

Arduino board layout

Layout can be defined in which parts/components are arranged or road laid out.

ADC Example-2: Connecting POT, scaling the value and printing in serial monitor

```
//These constants won't change. They're
                                          void loop() {
used to give names to the pins used:
                                           // read the analog in value:
const int analogInPin = A0; // Analog
                                           sensorValue = analogRead(analogInPin);
input pin that the potentiometer is
                                           // map it to the range of the analog out:
                                           outputValue = map(sensorValue, 0, 1023, 0, 255);
attached to
const int analogOutPin = 9; // Analog
output pin that the LED is attached to
                                           // change the analog out value:
                                           analogWrite(analogOutPin, outputValue);
int sensorValue = 0; // value read
from the pot
                                           // print the results to the serial monitor:
                                           Serial.print("sensor = " );
int output Value = 0; // value output to
the PWM (analog out)
                                           Serial.print(sensorValue);
                                           Serial.print("\t output = ");
                                           Serial.println(outputValue);
void setup() {
 // initialize serial communications at
                                           delay(2);
9600 bbs:
 Serial.begin(9600);
```


Example-3: ADC with LED Blink using LDR

```
/* Analog Input
                                  void loop()
int sensorPin = A0; // select the
                                  // read the value from the sensor:
input pin for the potentiometer
                                  sensorValue = analogRead(sensorPin);
int ledPin = 13: // select the
pin for the LED
                                  // turn the ledPin on
int sensorValue = 0; // variable to
                                  digitalWrite(ledPin, HIGH);
store the value coming from the
                                  delay(sensorValue);
sensor
                                  digitalWrite(ledPin, LOW);
void setup() {
                                  delay(sensorValue);
// declare the ledPin as an
OUTPUT:
pinMode(ledPin, OUTPUT);
```


Example-3: ADC with LED Blink

Example-4: Temperature Sensor (LM35) with ADC and display temperature in degree C

- LM35:Temperature sensitivity I 0mv/C
- Using 10 bit ADC

```
void setup()
{ // initialize serial communication at 9600 bits per
second:
Serial.begin(9600);
void loop() {
int sensorValue = analogRead(A0);
// Convert the analog reading (which goes from 0 -
1023) to a voltage (0 - 5V):
float voltage = sensorValue * (5.0 / 1023.0);
int temperature = (voltage/10);
Serial.println("Temperature=");
Serial.print(temperature);
```

Arduino Programming Procedure

PC connection with Arduino Through USB

PC connection with Arduino Through USB

Arduino IDE Programming

PC connection with Arduino Through USB

Arduino Uno Board

Arduino IDE

Example-1: Two Arduino Uno boards connected through RS232

Ground

Example-2: Arduino Uno boards connected to Bluetooth module through RS232

Example-3: Arduino Uno boards connected to Raspberry Pi through SPI

Raspberry Pi

Arduino Uno

Wi-Fi module (ESP2866)

Steps for Arduino IDE

- 1. First you must have your Arduino board and USB cable.
- Download Arduino IDE.
- 3. Power on your board.
- 4. Launch Arduino IDE.
- Open Arduino project.
- Select serial port in which USB cable is connected with Arduino board.

Steps for Arduino IDE

Demonstration of Arduino IDE & Arduino Uno development board

- 1. Running a LED blink program on Arduino Uno
- 2. Scanning of Wifi Signals using ESP8266 development board

Example: Scanning of Wifi Signals using ESP8266 development board

```
#include "ESP8266WiFi.h"
void setup() {
Serial.begin(115200);
int numberOfNetworks = WiFi.scanNetworks();
for(int i =0; i<numberOfNetworks; i++){</pre>
    Serial.print("Network name: ");
    Serial.println(WiFi.SSID(i));
    Serial.print("Signal strength: ");
    Serial.println(WiFi.RSSI(i));
    Serial.println("----");
                                                    sì c|Z,8% '('BZ p _ûNo8snoUāi b pìZs{1{1pūoà f l _U c oĀāNli à Zb_ûNo1 $EDl' U no $'
 void loop() {}
```

Raspberry Pi

- Raspberry Pi board comprises RAM, processor, CPU, GPU, Ethernet port, Xbee socket, UART and various interface for other external devices.
- Essential H/W specification of raspberry pi board mainly include SD card containing Linux
 OS, keyboard, monitor, video cable optional specification includes
 USB mouse, USB hub, USB
 Wi-Fi adapter.

THANK YOU