目录 1

\rightarrow	_
	$\Delta \mathbf{r}$
	ж

2	Chapter 2	2
	2.11 指令编码	 2
	2.12 指令计算	 4
	2.13 指令说明	 4

2 Chapter 2

2.11 指令编码

Question: 根据指令的使用频度设计指令编码,分别用哈弗曼编码,3/3/3扩展编码和 2/7 扩展编码,并计算平均码长。

Answer: 首先先对指令按使用频度排序:

指令	使用频度 (%)
ADD	43
CLA	22
SUB	13
JMP	7
JOM	6
STO	5
CIL	2
SHR	1
STP	1

Huffman 编码:

利用 huffman 树进行编码操作:

规定左 0, 右 1, 可得 huffman 编码:

指令	Huffman 编码
ADD	1
CLA	01
SUB	001
JMP	00011
JOM	00010
STO	00001
CIL	000001
SHR	0000000
STP	0000001

故 Huffman 编码的平均码长为: $\sum_i p_i \times m_i = 2.42$

3/3/3 扩展编码:

同样按照使用频度排序,分级:

指令	3/3/3 扩展编码
ADD	00
CLA	01
SUB	10
JMP	11 00
JOM	11 01
STO	11 10
CIL	1111 00
SHR	1111 01
STP	1111 11

可计算 3/3/3 扩展编码的平均码长为:2.52

2/7 扩展编码:

同理:

指令	2/7 扩展编码
ADD	0 0
CLA	0 1
SUB	1 000
JMP	1 001
JOM	1 010
STO	1 011
CIL	1 100
SHR	1 101
STP	1 110

2/7 扩展编码的平均码长为: 2.7

2.12 指令计算

Question: 设某机器指令字长为 16 位,有单地址指令和两地址指令两类,若每个地址字段均为 6 位,且两地址指令有 A 条,单地址指令最多可以有多少条?

Answer: 计算机的指令字长为 16 位, 地址字段为 6 位:

先考虑两地址指令:

两地址指令的操作码最多只能有 4 位, 所以最多可以编出 2⁴ 条指令, 考虑已经编了 A 条, 那么剩下的才可以用来编单地址.

故单地址指令最多可以有:

$$(2^4 - A) \times 2^6 = (16 - A) \times 64$$

2.13 指令说明

Question: 指令字长为 12 位,每个地址码长度为 3 位,考虑是否可以使用扩展编码为指令编码。

Answer: 指令字长 12 位, 地址码长度 3 位:

先考虑三地址指令 4 条,单地址指令 255 条,零地址指令 16 条的情况。

从多地址指令向下扩展:

三地址指令 4 条,故至少需要操作位是 3 位,而三地址指令确实也仅留出 3 位作为操作码, 3 位可以提供 8 个码点,但其只用到了其中 4 个,剩余 4 个可以向下扩展;

单地址指令,相对三地址指令,多了 6 位,算上三地址指令留下的可扩展的码点,单地址指令共有 $4\times 2^6=256$ 个码点,用掉 255 个,只剩下一个可供扩展。

那么对于零地址指令,自然剩余可用的码点仅有 $1 \times 2^3 = 8$,不够其编码 16 条指令。

综上所述,该情况不可以用扩展编码为其操作码编码。

不过假如单地址指令需求变为 254 条,那么就可以留下 2 个码点供扩展,这样零地址指令就有 $2\times 2^3=16$ 个码点,正好可以编完其 16 条指令。这种情况下,可以为其扩展编码。