Hall Ticket Number:											

II/IV B.Tech (Regular) DEGREE EXAMINATION

November, 2016 Third Semester Computer Science & Engineering Operating Systems

Time: Three Hours

Maximum: 60 Marks

Answer Question No.1 compulsorily.

(1X12 = 12 Marks)

Answer ONE question from each unit. (4X12=48 Marks)

		ONE question from each unit.	(4X12=48 Marks)				
1		*	(1X12=12 Marks)				
	a)	What is an operating system?	1M				
	b)	Define a thread.	1M				
	c)	What is a semaphore?	1M				
	d)	What is a safe state?	1M				
	e)	Define a dirty bit.	1M				
	f)	What is thrashing?	1M				
	g)	List out file operations.	1M				
	h)	Define a directory.	1M				
	i)	Distinguish between seek time and latency time.	1M				
	j)	What is the role of device controller?	1M				
	k)	What is a free-space management?					
	I)	What is compaction?	1M				
		UNIT I					
2	a)	Explain about the Evolution of operating systems.	6M				
		Briefly explain any 4 of the following					
		i) Serial Processing					
		ii) Batch Processing					
		iii) Multiprogramming					
		iv) Timesharing					
		v) Real-Time					
		vi) Parallel Processing					
		vii) Distributed Processing					
	b)	What are the main functions of Operating System? Explain them	6M				
		Briefly explain the following					
		i) Processor Management					
		ii) Memory Management					
		iii) I/O Management					
		iv) File Management					
	1	(OR)	•				
3 a)	a)	Define a Process. Describe Process State transition diagram with a neat sketch.					
		Definition of a process 2M					
		Diagram 2M					
		Description of States 2M					
	b)	List and describe different types of schedulers.					
	~,	Three type	6M				
		i) Long-term Scheduler					
		ii) Medium-term Scheduler					
		iii) Short-term Scheduler 3X2 = 6M					
	1	UNIT II					
4	a)	Compare preemptive Scheduling and non-preemptive scheduling.	6M				
•	",	Preemptive Scheduling 3M					
	1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					

		Non-preemptive 3M								
	b)	Consider the following set of processe	es, with the length	of the CPU burst given in	6M					
		milliseconds:	_	-						
		Process	CPU Burst Time	Priority						
		P1	10	3						
		P2	1 2 1 5	1						
		P3		3						
		P4		4						
		P5		2						
		The processes are assumed to have arrived in the order P1, P2/ P3, P4, P5, all at time 0. i. Draw four Gantt charts that illustrate the execution of these processes using the								
			ing scheduling algorithms: FCFS, SJF, non-preemptive priority (a smaller							
		priority number implies a higher priority), and RR (quantum = 1).								
		· · · · · · · · · · · · · · · · · · ·		each of the scheduling algorithms in	ı					
		1	oh process for anal	h of the schoduling electithms in						
		part i?	cii process for eaci	h of the scheduling algorithms in						
		3X2 = 6M								
		JAZ –OIVI	(OR)							
5	a)	Explain the concept of Monitors.	(Oil)		6M					
_	ω,									
		Definition of monitor 2M								
	la\	Concept of it with example 4M			CN					
	b)	Write and explain Producer - Consum	er classical synchr	onization problem.	6N					
		Algorithm 4M								
		Explanation 2M								
	۵١	Describe First fit Deat fit and Mount f	UNIT III	V2_CN4	6M					
6	a)	Describe First-fit, Best-fit and Worst-f		X2=6M						
	b)	Describe necessary conditions for dea	adlock occurrence.	•	6M					
		Need to explain the following								
		i) Mutual exclusion								
		ii) Hold & Wait								
		iii) No preemption								
		iv) Circular wait								
			(OR)		1					
7	a)	Describe the demand-paging Memory	_	chnique.	6M					
		Concept of it and explanation with ne			\perp					
	b)	Describe Page Replacement algorithm	ns with an example	e.	6N					
		Need to explain the following with ex	amples							
		i) FIFO								
		ii) LRU								
		iii) Optimal 3X2=6M								
			UNIT IV							
			What is a file? What are the different operations that can be performed on a file?							
8	a)	What is a file? What are the different	operations that ca	an be performed on a mer	014					
8	a)	What is a file? What are the different Definition of file wit its importance	operations that ca	an be performed on a me:	6N					
8	a) b)		•	an be performed on a me:	6N					
8	·	Definition of file wit its importance	•	an be performed on a me:						
8	b)	Definition of file wit its importance	methods.	an be performed on a me!						