Digital Design Principles

Octal Decoder

Name: Rajkaran Singh Grewal Student No: 8882386 Email: rgrewal2386@conestogac.on.ca

Objective:

- Explore the use of concurrent constructs to model combinational logic circuits.
- Model an octal decoder circuit using conditional assignment.

Truth Table:

X2	X1	X0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

VHDL Introduction:

To make the program in VHDL we will need to initialize the library and entity. Within the entity we will state the 3 input switches and the 8 output LEDs. Within the architecture of the program we will use case and when statement. Where for each different state the three inputs

are the according led will be set to light up. The above truth table is the be followed to know which led is to be set accordingly.

VHDL program screenshot:

```
library IEEE;
     use ieee.STD_LOGIC_1164.all;
     entity rgrewallab4vhdl is
         port(
             X: in std_logic_vector(2 downto 0);
             Y: out std_logic_vector(7 downto 0));
     end rgrewallab4vhdl;
     architecture octalDecoder of rgrewallab4vhdl is
11
        begin
12
             process(X) is
13
                 begin
                     case X is
                         when "000" => Y <= "00000001";
                         when "001" => Y <= "00000010";
17
                         when "010" => Y <= "00000100";
                         when "011" => Y <= "00001000";
                         when "100" => Y <= "00010000";
                         when "101" => Y <= "00100000";
21
                         when "110" => Y <= "01000000";
                         when "111" => Y <= "10000000";
                     end case;
             end process;
24
     end octalDecoder;
```

VHDL compilation report:

Pin Planner screenshot:

Named: * * 15 Edit: × 4										Filter: Pins: all	
Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair	er Analog S
■ X[2]	Input	PIN_AF9	3A	B3A_N0	PIN_AF9	2.5 V		12mA (default)			
L X[1]	Input	PIN_AC12	3A	B3A_N0	PIN_AC12	2.5 V		12mA (default)			
L X[0]	Input	PIN_AB12	3A	B3A_N0	PIN_AB12	2.5 V		12mA (default)			
[™] Y[7]	Output	PIN_W20	5A	B5A_N0	PIN_W20	2.5 V		12mA (default)	1 (default)		
	Output	PIN_Y19	4A	B4A_N0	PIN_Y19	2.5 V		12mA (default)	1 (default)		
	Output	PIN_W19	4A	B4A_N0	PIN_W19	2.5 V		12mA (default)	1 (default)		
	Output	PIN_W17	4A	B4A_N0	PIN_W17	2.5 V		12mA (default)	1 (default)		
	Output	PIN_V18	4A	B4A_N0	PIN_V18	2.5 V		12mA (default)	1 (default)		
	Output	PIN_V17	4A	B4A_N0	PIN_V17	2.5 V		12mA (default)	1 (default)		
	Output	PIN_W16	4A	B4A_N0	PIN_W16	2.5 V		12mA (default)	1 (default)		
	Output	PIN V16	4A	B4A NO	PIN V16	2.5 V		12mA (default)	1 (default)		

Verilog introduction:

For the program in Verilog we will need to initialize the module with the parameters having the three inputs and eight outputs. Within the module block we use case where the output will assign the value according to the state of the input which matches to the truth table.

Verilog program screenshot:

Verilog compilation report:

Verilog pin planner screenshot:

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair	er Analog Se
	Input	PIN_AF9	3A	B3A_N0	PIN_AF9	2.5 V		12mA (default)			
	Input	PIN_AC12	3A	B3A_N0	PIN_AC12	2.5 V		12mA (default)			
■ X[0]	Input	PIN_AB12	3A	B3A_N0	PIN_AB12	2.5 V		12mA (default)			
[™] Y[7]	Output	PIN_W20	5A	B5A_N0	PIN_W20	2.5 V		12mA (default)	1 (default)		
	Output	PIN_Y19	4A	B4A_N0	PIN_Y19	2.5 V		12mA (default)	1 (default)		
	Output	PIN_W19	4A	B4A_N0	PIN_W19	2.5 V		12mA (default)	1 (default)		
[™] Y[4]	Output	PIN_W17	4A	B4A_N0	PIN_W17	2.5 V		12mA (default)	1 (default)		
	Output	PIN_V18	4A	B4A_N0	PIN_V18	2.5 V		12mA (default)	1 (default)		
[™] Y[2]	Output	PIN_V17	4A	B4A_N0	PIN_V17	2.5 V		12mA (default)	1 (default)		
	Output	PIN_W16	4A	B4A_N0	PIN_W16	2.5 V		12mA (default)	1 (default)		
	Output	PIN_V16	4A	B4A_N0	PIN_V16	2.5 V		12mA (default)	1 (default)		

Conclusion:

Thus we can conclude that by both the programming languages we will use case statement and the one led which corresponds to the input will light up. The above truth table will be followed thus creating our octal decorder.