Physics 4310 Homework #9

5 problems Due by Wednesday, April 6

> 1.

Prove that if f is an eigenfunction of L_z with eigenvalue μ , then $L_{\pm}f$ is also an eigenfunction of L_z , but with eigenvalue $\mu + \hbar$.

\triangleright 2.

The raising and lowering operators for spin are $S_{\pm} = S_x \pm i S_y$. Using the S_z matrix notation from Macintyre,

- (a) ... prove that applying the raising operator to $|\uparrow\rangle$, or the lowering operator to $|\downarrow\rangle$, gives you zero
- (b) show that $S_+|\downarrow\rangle\propto|\uparrow\rangle$ and $S_-|\uparrow\rangle\propto|\downarrow\rangle$

> 3

For a pair of spin-1/2 particles, prove that s=1 for $|\uparrow\uparrow\rangle$ and s=0 for $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)$. Use the fact that $S^2\chi=\hbar^2s(s+1)\chi$, and write $S^2=(\vec{S}_1+\vec{S}_2)\cdot(\vec{S}_1+\vec{S}_2)$.

▶ 4.

Consider a spin-1/2 particle and a spin-3/2 particle. Their total angular momentum is measured to be s = 1 and m = 0.

- (a) What is the probability that the first particle is spin-up $(m_2 = +1/2)$?
- **(b)** What other value(s) could s take?

> **5**.

(Griffiths 5.1) Typically, the interaction potential only depends on the vector $\vec{r} \equiv \vec{r}_1 - \vec{r}_2$. In that case the Schrodinger equation separates, if we change variables from \vec{r}_1, \vec{r}_2 to

$$\vec{r} = \vec{r_1} - \vec{r_2}$$
 and $\vec{R} \equiv = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2}$

(the latter is the center of mass).

(a) If

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

is the reduced mass of the system, show that

$$\vec{r}_1 = \vec{R} + \frac{\mu}{m_1} \vec{r} \qquad \vec{r}_2 = \vec{R} - \frac{\mu}{m_2} \vec{r} \qquad \nabla_1 = \frac{\mu}{m_2} \nabla_R + \nabla_r \quad \text{and} \quad \nabla_2 = \frac{\mu}{m_1} \nabla_R - \nabla_r$$

(b) Show that the energy eigenstate equation (aka the time-independent Schrodinger equation) becomes

$$-\frac{\hbar^2}{2(m_1 + m_2)} \nabla_R^2 \psi - \frac{\hbar^2}{2\mu} \nabla_r^2 \psi + V(\vec{r}) \psi = E \psi$$

(c) Separate the variables, letting $\psi(\vec{R}, \vec{r}) = \psi_R(\vec{R})\psi_r(\vec{r})$. Show that ψ_R satisfies the one-particle Schrodinger equation, with the *total* mass, potential zero, and some energy E_R . Show that ψ_r satisfies the one-particle Scrondinger equation with the *reduced* mass, potential $V(\vec{r})$, and some energy E_r , so that $E = E_R + E_r$.

What this tells us is that the center of mass moves like a free particle, and the relative motion is the same as if we had a single particle with the reduced mass, subject to the potential V. We can do the same thing in classical mechanics, reducing the two-body problem to an equivalent one-body problem.