Sets (S)

	Chapter	Lecture	Assignment
Sets	1, 6	3	2

1. (6 pts) Which of the following statements is **true** for all sets A?

 $\square A \times \emptyset = \emptyset.$

 $\square \emptyset \in A$.

 $\square A \cap \emptyset = A.$

 $\square A \subseteq P(A)$.

1. (6 pts) Which of the following statements is **true** for all sets A?

 $\square A \subseteq \emptyset$.

 $\square A \in A$.

 $\square A \in P(A)$.

 $\square A \cup \emptyset = \emptyset.$

1. (6 pts) Which of the following statements is false?

 $\square \emptyset \subseteq \{1, 2, 3\}.$

 $\square \{1,2,3\} \subseteq \mathcal{P}(\{1,2,3\}).$

 $\square \{1,2,3\} \times \emptyset = \{1,2,3\} \cap \emptyset.$

1. (6 pts) Which of the following statements is **true** for all sets A?

 $\mathbf{A} \times \emptyset = \emptyset.$

 $\mathbb{B} \emptyset \in A$.

 $\boxed{\mathbf{C}} A \cap \emptyset = A.$

 $\square A \subseteq P(A)$.

1. (6 pts) Which of the following statements is **true** for all sets A?

 $\mathbf{A} A \subseteq \emptyset$.

 $B A \in A$.

 $D A \cup \emptyset = \emptyset.$

1. (6 pts) Which of the following statements is false?

 $\mathbf{A} \emptyset \subseteq \{1, 2, 3\}.$

 \mathbb{F} $\{1,2,3\} \subseteq \mathcal{P}(\{1,2,3\}).$

 $\mathbb{C} \{1,2,3\} \cup \emptyset = \{1,2,3\} - \emptyset.$

 $\boxed{\mathbb{D}} \{1, 2, 3\} \times \emptyset = \{1, 2, 3\} \cap \emptyset.$

- 1. (6 pts) Which of the following statements is **true**?
 - \square For any set A, we have that $(A \cup A) A = A$.
 - $\square \{a,b\} \times \{1,2\} = \{(a,1),(b,2)\}$
 - \square $\{1,2\} \cup \{2,3\} \subseteq \{1,2,3,4\}$
 - $\square \{\emptyset\} \in \mathcal{P} (\{1,2,3\})$
- 1. (6 pts) Which of the following statements is true?
 - $\square \{1,2\} \in \{1,2,3\}$
 - $\square \{1,2\} \times \{3,4\} = \{(1,3),(2,4)\}$

 - $\square \{1,2\} \cap \mathcal{P}(\{1,2,3\}) = \{1,2\}$

- 1. (6 pts) Which of the following statements is true?
 - \overline{A} For any set A, we have that $(A \cup A) A = A$.
 - \mathbb{B} {a,b} × {1,2} = {(a,1), (b,2)}
 - $2 \{1,2\} \cup \{2,3\} \subseteq \{1,2,3,4\}$
 - $\boxed{\mathbb{D}} \left\{ \emptyset \right\} \in \mathcal{P} \left(\left\{ 1, 2, 3 \right\} \right)$
- 1. (6 pts) Which of the following statements is **true**?
 - A $\{1,2\} \in \{1,2,3\}$
 - $\mathbb{B} \{1,2\} \times \{3,4\} = \{(1,3),(2,4)\}$

 - $\mathbb{D} \{1,2\} \cap \mathcal{P} (\{1,2,3\}) = \{1,2\}$

Solution: Because $\{1, 2, 3\} \cap \{0, 1\} = \{1\}$ and $\{1\} \subseteq \{1, 2\}$.

- 1. (6 pts) Which of the following statements is true?
 - \square For any set A, we have that $(A \cup A) A = A$.
 - $\square \{a,b\} \times \{1,2\} = \{(a,1),(b,2)\}\$
 - $\square \{1,2\} \cup \{2,3\} \subseteq \{1,2,3,4\}$
 - $\square \{\emptyset\} \in \mathcal{P}\left(\{1,2,3\}\right)$
- 1. (6 pts) Which of the following statements is **true**?
 - $\Box 1 \subseteq \{1, 2, 3\}$
 - \square {1} × {2,3} = {(1,2), (1,3)}
 - \square {1} \in {1, 2, 3}
 - $\square \mathcal{P}(\{1,2,3\}) = \{\emptyset,1,2,3\}$
- 1. (2 pts) Which of the following statements is true?

 - $\square \emptyset \subseteq \{1, 2, 3, 4, 5, 6\}$
 - $(\{1,2\} \cup \{1,3\}) \cap \{1,3\} = (\{1,2\} \cap \{1,3\}) \cup \{1,2\}$
 - \square For any nonempty set A we have that $A \cap \emptyset = A$

- 1. (6 pts) Which of the following statements is true?
 - \overline{A} For any set A, we have that $(A \cup A) A = A$.
 - \mathbb{B} {a, b} × {1, 2} = {(a, 1), (b, 2)}
 - \bigcirc $\{1,2\} \cup \{2,3\} \subseteq \{1,2,3,4\}$
 - $\mathbb{D}\left\{\emptyset\right\} \in \mathcal{P}\left(\left\{1,2,3\right\}\right)$
- 1. (6 pts) Which of the following statements is true?
 - $A 1 \subseteq \{1, 2, 3\}$
 - \mathbb{Z} {1} × {2,3} = {(1,2), (1,3)}
 - \mathbb{C} $\{1\} \in \{1, 2, 3\}$
 - $\mathbb{D} \mathcal{P}(\{1,2,3\}) = \{\emptyset,1,2,3\}$
- 1. Which of the following statements is true?
 - A $\{a,b\} \times \{1,2\} = \{(a,1),(b,2)\}$

 - $\mathbb{C}(\{1,2\} \cup \{1,3\}) \cap \{1,3\} = (\{1,2\} \cap \{1,3\}) \cup \{1,2\}$
 - \square For any nonempty set A we have that $A \cap \emptyset = A$

1. (6 pts) Which of the following statements is true?

 $\square A \subseteq \emptyset$ for all sets A.

 $\square P(\emptyset) = \emptyset.$

 $A \cup \emptyset = \emptyset$ for all sets A.

 $A \cap \emptyset = \emptyset$ for all sets A.

defined by $f(x) = x^2$ for all $x \in A$. Depending on how we choose the set A, the function f has different properties. Choose A such that f is both one-to-one and has range $\{0, 4, 16\}$:

 $\square A = \emptyset$.

 $\Box A = \{0, 4, 16\}.$

 $\Box A = \{-4, 0, 2\}.$

 $\square A = \{-4, -2, 0, 2, 4\}.$

1. (6 pts) Which of the following statements is true?

 $[1,2,3] \times \emptyset = \{(1,\emptyset),(2,\emptyset),(3,\emptyset)\}.$

 \square $\{1,2,3\} \subseteq \{1,2,3\} \cap \{2,3,4\}.$

 $[1,2,3] \in P(\{1,2,3\}).$

 $\square \{1,2,3\} \cup \emptyset = \emptyset.$

1. (6 pts) Which of the following statements is true?

 $\overline{\mathbf{A}} \ A \subseteq \emptyset$ for all sets A.

 $B P(\emptyset) = \emptyset.$

 $\overline{\mathbb{C}} A \cup \emptyset = \emptyset$ for all sets A.

 $\triangleright A \cap \emptyset = \emptyset$ for all sets A.

2. (6 pts) Let A be a subset of $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ and $f: A \to \mathbb{Z}$ a function **2.** (6 pts) Let A be a subset of $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ and $f: A \to \mathbb{Z}$ a function defined by $f(x) = x^2$ for all $x \in A$. Depending on how we choose the set A, the function f has different properties. Choose A such that f is both one-to-one and has range $\{0, 4, 16\}$:

 $A = \emptyset$.

 $B A = \{0, 4, 16\}.$

 $\triangle A = \{-4, 0, 2\}.$

 $D A = \{-4, -2, 0, 2, 4\}.$

1. (6 pts) Which of the following statements is true?

 $A \{1,2,3\} \times \emptyset = \{(1,\emptyset),(2,\emptyset),(3,\emptyset)\}.$

 $\mathbb{B} \{1,2,3\} \subseteq \{1,2,3\} \cap \{2,3,4\}.$

 \bigcirc $\{1,2,3\} \in P(\{1,2,3\}).$

 $D \{1, 2, 3\} \cup \emptyset = \emptyset.$

7. (6 pts) Let $(\{a, b, c, d, e, f, g, h\}, \preceq)$ be the partially ordered set defined by the following Hasse diagram:

Which of the following statements is true?

	is	the	greatest	element.
--	----	-----	----------	----------

 \square h is the least element.

 \Box a and f are incomparable.

 $\Box g \leq c$.

ing Hasse diagram:

Which of the following statements is **true**?

 $\triangle a$ is the greatest element.

 \mathbf{B} h is the least element.

 $\overline{\mathbb{C}}$ a and f are incomparable.

 $D g \leq c$.

8. (2 pts) The following is the Hasse diagram for the partially ordered set $(\{a,b,c,d\},\preccurlyeq)$. 8. The following is the Hasse diagram for the partially ordered set $(\{a,b,c,d\},\preccurlyeq)$.

Which of the following statements is true?

$$\square d \preccurlyeq c$$

 $\Box a \preccurlyeq b$

There is no least element

There is no greatest element

Which of the following statements is true?

$$Ad \leq c$$

$$\mathbb{B} \ a \preccurlyeq b$$

There is no least element

D There is no greatest element

13. (8 pts) Let $(\{a, b, c, d, e, f, g, h\}, \preceq)$ be the partially ordered set defined by the following Hasse diagram:

- (a) Find all minimal elements.
- (b) Find all maximal elements.
- (c) Find all least elements.
- (d) Find all greatest elements.

13. (8 pts) Let $(\{a,b,c,d,e,f,g,h\},\preceq)$ be the partially ordered set defined by the following Hasse diagram:

(a) Find all minimal elements.

Solution: h

(b) Find all maximal elements.

Solution: a, e

(c) Find all least elements.

Solution: h is the least element.

(d) Find all greatest elements.

Solution: There is no greatest element.