

Programación en paralelo con CUDA

Contenido

- Instalación de software.
- Introducción a CUDA

Instalación de software

Software requerido

- Windows
 - Putty (<u>http://www.putty.org/</u>)
 - TurboVNC (https://goo.gl/JJ6y4X)
 - WinSCP (https://goo.gl/CUwUrr)
- MacOS
 - TurboVNC (https://goo.gl/JJ6y4X)
- Linux
 - SSH (sudo apt-get install openssh-server)
 - TurboVNC (https://goo.gl/JJ6y4X

Conectarse al servidor (Windows)

Conectarse al servidor (Windows)

Conectarse al servidor (Linux, MacOS)

- Abrir una terminal.
- ssh -XC usuario@10.25.24.6

```
> ssh -XC pperezm@10.25.24.6

pperezm@10.25.24.6's password:

Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.10.0-37-generic x86_64)
```

pperezm@gpuserver:~\$ vncserver

```
Desktop 'TurboVNC: gpuserver:1 (pperezm)' started on display gpuserver:1
```

Starting applications specified in /home/pperezm/.vnc/xstartup.turbovnc

Log file is /home/pperezm/.vnc/gpuserver:1.log

```
pperezm@gpuserver:~$ vncserver -list
TurboVNC server sessions:
X DISPLAY # PROCESS ID
:1 3538
pperezm@gpuserver:~$ vncserver -kill :1
Killing Xvnc process ID 3538
pperezm@gpuserver:~$ vncserver -list
TurboVNC server sessions:
X DISPLAY # PROCESS ID
```

Ejecutar una aplicación que utiliza CUDA

Introducción de CUDA

FIGURE 1.1

Enlarging performance gap between GPUs and CPUs.

- CPU está especializado para el desempeño de código secuencial. GPU está espacializado en punto flotante.
- La velocidad de acceso a la memoria en ambas arquitecturas.

FIGURE 1.2

CPUs and GPUs have fundamentally different design philosophies.

Quadro K5000

GPU Specs	
CUDA Cores ¹	1536
Single Precision Compute Performance	2.1 Teraflops
GPU Memory Specs	
Memory Size Total	4GB GDDR5
Memory Interface	256-bit
Memory Bandwidth (GB/sec)	173 GB/s

Breakthrough Titan Performance

Jaguar Specs (2011)	
Compute Nodes	18,688
Login & I/O Nodes	256
Memory per node	16 GB
# of Opteron cores	224,256
# of NVIDIA K20 "Kepler" accelerators (2013)	N/A
Total System Memory	300 TB
Total System Peak Performance	2.3 Petaflops

Titan Specs (2012)	
Compute Nodes	18,688
Login & I/O Nodes	512
Memory per node	32 GB + 6 GB
# of Opteron cores	299,008
# of NVIDIA K20 "Kepler" accelerators (2013)	18,688
Total System Memory	710 TB
Total System Peak Performance	20+ Petaflops