

SHARIF UNIVERSITY OF TECHNOLOGY

Differential Privacy

Name: Khashayar Ghaffari Student ID: 98100215

1 Differentially Private Logistic Regression

(a) We know that:

$$L(\theta, X) = \frac{1}{n} \sum_{i=1}^{n} log(1 + e^{-y_i \sum_{k=1}^{d} \theta_k x_k + \theta_0}) \Rightarrow \frac{\partial L}{\partial \theta_j} = \frac{x_j}{n} \sum_{i=1}^{n} \frac{-y_i e^{-y_i f_{\theta}(x_i)}}{1 + e^{-y_i f_{\theta}(x_i)}}$$

Now we want upper bound on the ℓ_1 -sensitivity of $\nabla L(\theta, X)$, so assume that X and X' are neighbours.

$$||\nabla L(\theta, X) - \nabla L(\theta, X')||_{1} = |\frac{\partial L(\theta, X)}{\partial \theta_{j}} - \frac{\partial L(\theta, X')}{\partial \theta_{j}}| = |\frac{x_{j} - x'_{j}}{n} \sum_{i=1}^{n} \frac{-y_{i}e^{-y_{i}f_{\theta}(x_{i})}}{1 + e^{-y_{i}f_{\theta}(x_{i})}}|$$

$$|\frac{(x_{j} - x'_{j})}{n} \sum_{i=1}^{n} y_{i} \frac{e^{-y_{i}f_{\theta}(x_{i})}}{1 + e^{-y_{i}f_{\theta}(x_{i})}}| \le |\frac{(x_{j} - x'_{j})}{n} \sum_{i=1}^{n} y_{i}| = |\frac{x_{j} - x'_{j}}{n}||\sum_{i=1}^{n} y_{i}| \le \frac{1}{n} \sum_{i=1}^{n} |y_{i}| \le 1$$

2 Graph Privacy and Different Types of Sensitivity

(a) General Sensitivity:

$$GS_q = \max_{G,G':G \sim G'} |q(G) - q(G')| \ge \max |q(G)| - \min |q(G')| \ge n - 0 = n$$

$$\Rightarrow GS_q \ge n$$

Now, let G be a graph with n vertices and zero edges, and G' be a graph with n vertices and edge set $E' = \{(1,2), (1,3), ..., (1,n)\}$. We have $G \sim G'$, because G and G' are different just in edges of vertex 1. Also we have,

$$|q(G) - q(G')| = n - 0 = n$$

 $\Rightarrow GS_q \le n$

So we claim that, $GS_q = n$.

(b) Local Sensitivity:

$$LS_q(G) = \max_{G': G \sim G'} |q(G) - q(G')|$$

For find the graph G' which $LS_q(G) = |q(G) - q(G')|$, notice that we should choose one vertex like v from G and do one the following to construct G':

- Connect v to all other vertices.
- Remove all of the edges which connected to v.

In the first case we have q(G') = 0, so |q(G) - q(G')| = q(G).

In the second case we have q(G') = q(G) + 1 + [#Vertices connected to v and has degree 1], so we have, |q(G) - q(G')| = 1 + [#Vertices connected to v and has degree 1].

$$\Rightarrow LS_q(G) = \max_{v \in V(G)} \{q(G), 1 + [\# \text{Vertices connected to } v \text{ and has degree } 1]\} \ge 1.$$

Let K_n be a complete graph of order $n \geq 3$, then we have, $LS_q(K_n) = 1$, so for all $n \geq 3$ we have $\min_G LS_q(G) = 1$.

If n=2, then it is simple to see that $\min_G LS_q(G)=2$.

(c) Local Sensitivity Over \mathcal{H} :

$$\max_{G \in \mathcal{H}} LS_q(G) = \max_{G \in \mathcal{H}} \max_{G' \in \mathcal{G}: G \sim G'} |q(G) - q(G')| \le GS_q = n$$

Let G be a graph with n vertices and zero edges, then by definition we have, $G \in \mathcal{H}$. And also let G' be a graph with n vertices and edge set $E' = \{(1,2),(1,3),...,(1,n)\}$. We have, |q(G)-q(G')|=n. (G and G' are neighbours.) So we have $\max_{G \in \mathcal{H}} LS_q(G) \geq n$. By first inequality we claim that, $\max_{G \in \mathcal{H}} LS_q(G) = n$.

(d) Restricted Sensitivity on \mathcal{H} : By our explanations in part (b) we can say that, $RS_q^{\mathcal{H}} \leq d+1$. Also let G be a graph and assume that one of its vertices like v is connected to d vertices which has degree 1. So we can construct G' (Similar to part (b)) which has this property:

$$|q(G)-q(G')|=1+[\# \mbox{Vertices connected to }v \mbox{ and has degree }1]=1+d$$

$$\Rightarrow RS_q^{\mathcal{H}}=d+1$$

3 Lipschitz Extensions

(a)

 $GS_f = \infty$ because for all t > 0 we can find two neighbour vectors such that, |f(x) - f(x')| > t. $LS_f(x) = \max_{x':x \sim x'} |f(x) - f(x')| = \max_{x':x \sim x'} \frac{1}{n} |x_j - x'_j| = \infty$ $RS_f^{\mathcal{H}} = \max_{x \sim x'} \frac{1}{n} |\sum_{i=1}^n x_i - \sum_{i=1}^n x'_i| = \max_{x,x'} \frac{1}{n} |x_j - x'_j| = \frac{b-a}{n}$ $g(x) = \frac{1}{n} \sum_{i=1}^n \max\{a, \min\{b, x_i\}\}$ is Lipschitz Extension.

(b)

 $GS_f = \infty$ similar to part (a) $\min_{x \in \mathcal{G}} LS_f(x) = \min_{x \in \mathcal{G}} \max_{x':x \sim x'} |f(x) - f(x')| = \min_{x \in \mathcal{G}} \max_{x':x \sim x'} |median(x) - median(x')|$ if we put $x_1 = x_2 = \ldots = x_n$, then we have $median(x) = x_1 = median(x')$. (for all $n \geq 3$) $\Rightarrow \min_{x \in \mathcal{G}} LS_f(x) = 0$ $RS_f^{\mathcal{H}} = \max_{x \sim x'} |median(x) - median(x')| \leq b - a$ If $x = (a, a, \ldots, a, a, b, b, \ldots, b)$ and $x' = (a, a, \ldots, a, b, b, \ldots, b)$, then we have, |median(x) - median(x')| = b - a. So we claim that, $RS_f^{\mathcal{H}} = b - a$.

(c) Question 2!