This weeks problem set provides practice with diagonalisable operators and the basic properties of inner products. A question marked with a \dagger is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 4: is due Friday June 5: questions 2, 4, 5 below.

- 1. From section 6.2, problems 1, $2b,g,i,k,\,5^*,\,6,\,7,\,9,\,13^*,\,17^*,\,22.$
- 2. Let V be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .
 - (a) Fix $y \in V$ and suppose $\langle x, y \rangle = 0$ for all $x \in V$. Show that y = 0.
 - (b) Let $T: V \longrightarrow V$ be a linear map such that $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all pairs $x, y \in V$ (we call such a map a *metric* map). Prove that T is an isomorphism.
 - (c) † Find all metric maps $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ that have $\det T = 1$.
- 3. (22 from 6.2) Let $V = \mathcal{C}([0,1],\mathbb{R})$ be the space of real valued, continuous functions on the interval [0,1] with the inner product $\langle f,g\rangle = \int_0^1 f(t)g(t)\ dt$. Let W be the subspace spanned by the linearly independent set $\{t,\sqrt{t}\}$.
 - (a) Find an orthonormal basis for W.
 - (b) Let $h(t) = t^2$. Use the orthonormal basis obtained in (a) to obtain the "best" (closest) approximation of h in W.
- 4. Let V be a real inner product space and let $r: V \longrightarrow V^*$ be the map $r(x) = \varphi_x := \langle -, x \rangle$. In class we showed that if V is finite dimensional then r is an isomorphism.
 - (a) Assume that V is infinite dimensional. Prove that r is injective.
 - (b) Let $V = \mathbb{R}[x]$ and let $W = \{(a_0, a_1, \ldots) \mid a_i \in \mathbb{R} \}$ be the vector space of all infinite sequences. Show that the map $f: V^* \longrightarrow W$ given by $f(\varphi) = (\varphi(x^n))_{n \geq 0}$ is an isomorphism.
 - (c) We can define the following inner product on $\mathbb{R}[x]$

$$\langle x^i, x^j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j, \end{cases}$$

and extending linearly (so $\langle 1+x, 2-x^2 \rangle = 2$ for example). Use this to demonstrate that r is not necessarily surjective, i.e. find an element $\varphi \in V^*$ such that $\varphi \neq r(p)$ for any $p \in \mathbb{R}[x]$.

5. Let V be a finite dimensional inner product space. For any $T:V\longrightarrow V$ define $\check{T}:V^*\longrightarrow V^*$ by $\check{T}(\phi)=\phi\circ T$. Furthermore for any $X:V^*\longrightarrow V^*$ define $X^\perp:V\longrightarrow V$ by $X^\perp=r^{-1}\circ X\circ r$. Prove that $T^*=\check{T}^\perp$.