

人工智能讲义 启发式搜索

March 20, 2018

- 启发式搜索基础
- ② 启发式函数的例子
- 3 启发式函数的设计
- ④ 设计启发式函数的例子: A* 算法

- 启发式搜索基础
- ② 启发式函数的例子
- 3 启发式函数的设计
- ④ 设计启发式函数的例子: A* 算法

搜索算法框架改动为启发式搜索算法

```
Input: G: 状态图: so: 初态:
Output: path: 代表解的路径
path \longleftarrow (s_0), FRINGE \longleftarrow \phi /* 初始化 */;
if (GOAL(s_0) = T then
                             FRINGE 的优先级次序,表示了搜索的"策略"
   return path = (s_0);
end
INSERT(s_0, FRINGE);
while T do
   if empty(FRINGE) == T then
       return failure /* 返回 failure, 表示无解 */;
   end
   N ← REMOVE(FRINGE) /* 将未扩展节点中队头节点从队列移除到 N*/;
   s \leftarrow STATE(N) / * 从节点 N 恢复为状态 <math>s^*/:
   update path;
   foreach s' in successors(s) do
       为 s' 创建 N 的新子节点 N':
       if GOAL(s') = T then
        return (path, s')/* 找到目标节点,返回解 */;
                            修改该函数的功能, 使之完成
       end
       INSERT(s', FRINGE); \leftarrow
                              FRINGE 的优先级排序
   end
end
```


最佳优先搜索:从 FRINGE 中选择最佳节点进行扩展

- 何为最佳节点?
- 如何获得最佳节点?

评估节点的优劣: 利用状态/节点信息或描述来度量

- 设计评估函数 f,将搜索树的节点 N 映射为一个非负实数 f(N) ,表示从初始状态 到达某个节点的路径耗散(越小越好!)
- 将整个未扩展节点集合 FRINGE 按增序排列,排在最前面的称为"最佳"(best), 优先进行扩展 (first), Best-first search
- 若两个节点 f 值相等,则可任意指定其次序,或者添加其他的信息进行进一步排序

注意"最佳"的概念,并非指最后获得的解是最佳的

- 局部贪婪的
- 什么时候能获得最优解?

ustc

AI: Heuristic Search March 20, 2018 5

目前为止, 学习的路线/思路

搜索问题求解 ⇒ 算法框架 ⇒ 搜索策略 ⇒ 评估函数 f 的设计

设计节点评估函数 f 的两种方法:

- f(N) = g(N) + h(N), 完整解的路径耗散, 对应 A* 算法
- f(N) = h(N), 从当前节点到目标节点的路径耗散, 对应 贪婪算法

符号解释说明

- N: 当前待判决/估计/评价的节点
- g(N): 从初始节点到 N 的路径耗散
- h(N): 从 N 到目标节点的路径耗散,就是所谓的 <mark>启发式函数</mark>,估计值

函数 f 的形式因具体问题而异!

启发式函数: 机器人导航问题

机器人导航:问题描述

- 灰格子表示障碍物;
- 红格子表示初态, 绿格子表示终态。
- 寻找从绿格子到红格子的路径 (路径规划问题)

ustc 🗐

启发式函数: 机器人导航问题

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

机器人导航:问题描述

- f(N) = h(N)
- h(N) = Manhattan distance to the goal
- 格子中的数字标明了 f(N) 的值

启发式函数: 机器人导航问题

8+3	7+4	6+3	5+6	4+7	3+8	2+9	3+10	4	5	6
7+2		5+6	4+7	3+8						5
6+1			3	2+9	1+10	0+11	1	2		4
7+0	6+1									5
8+1	7+2	6+3	5+4	4+5	3+6	2+7	3+8	4	5	6

机器人导航:问题描述

- f(N) = g(N) + h(N)
- h(N) = Manhattan distance to the goal
- 格子中的数字标明了 f(N) 的值

5		8
4	2	1
7	3	6

1	2	3
4	5	6
7	8	

N

Goal

 $h_1(N)$ = 错误放置的格子数 = 6

节点评估函数 f 的设计,核心在于启发式函数 h 的设计

- 一般情形下,启发式函数值由当前节点和目标节点二者所确定
- h(N) 应保证的性质: h(N) >= 0, h(Goal) = 0, h(N) 越小,离目标越近
- 如上图所示 h₁

ustc 🚚

5		8
4	2	1
7	3	6

1	2	3
4	5	6
7	8	

Goal

数码问题,如上图所示,三种启发式函数的设计如下:

- $h_1(N) =$ 错误放置的格子数 = 6
- $h_2(N) =$ 所有数字到其正确位置的 Manhattan 距离之和 = 2+3+0+1+3+0+3+1=13
- $h_3(N) =$ 逆序数之和 = n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6 =4+6+3+1+0+2+0+0=16

8 数码问题的搜索过程

8 数码问题的搜索过程

启发式函数: 应用到搜索过程

 $h_1(N) =$ 错误放置的格子数

8 数码问题的搜索过程

8 数码问题的搜索过程

启发式函数: 应用到搜索过程

 $g(N) + h_1(N), h_1(N) =$ 错误放置的格子数

8 数码问题的搜索过程

10/45 Cook Nove 00 2010

8 数码问题的搜索过程

f(N) = h(N) = 所有数字到其正确位置的 Manhattan 距离之和

AI: Heuristic Search March 20, 2018 19/47

路径规划问题的启发式函数:如上图, g 为目标状态

- Euclidean distance: $h_1(N) = \sqrt{(x_N x_g)^2 + (y_n y_g)^2}$
- Manhattan distance: $h_2(N) = |x_N x_g| + |y_n y_g|$

AI: Heuristic Search March 20, 2018 20/

启发式函数: 路径规划问题

启发式函数: f(N) = h(N) = 到目标的直线距离

- 最佳优先搜索存在的局部最小问题
- 引导搜索进入错误的方向
- 降低了搜索效率

基本要求

- h(N) >= 0, h(Goal) = 0, h(N) 越小, 离目标越近
- 更多的?

可采纳的/admissiable 启发式函数

- 假设 $h^*(N)$ 是节点 N 到目标节点的实际最优路径耗散
- 启发式函数 h(N) 是 "可采纳的", 当且仅当 $0 \le h(N) \le h^*(N)$
- 总是 "乐观地" 估计路径耗散!!!

定义 "可采纳的" 启发式函数的理由和方法

- 松弛问题:放宽问题的限制(约束),减少行动限制,获得更好的解,原问题的解仍在松弛问题的可行域中。
- 用松弛问题来构造启发式函数是最常用的技术
- 加强问题: 增加问题限制, 把原来可行的路径 (解) 给剪枝掉, 可能无解;

ustc

AI: Heuristic Search March 20, 2018 22/47

可采纳启发式函数: 例子

5		8
4	2	1
7	3	6

1	2	3
4	5	6
7	8	

Ν

Goal

数码问题,如上图所示,三种启发式函数的设计如下:

- $h_1(N) =$ 错误放置的格子数 = 6 可采纳的
- $h_2(N) =$ 所有数字到其正确位置的 Manhattan 距离之和 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13可采纳的
- $h_3(N) =$ 逆序数之和 = n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16 不可采纳的。反证法:找一个违背可采纳定义的状态

可采纳启发式函数: 例子

水平/垂直移动一格,路径耗散为1 对角线移动一格,路径耗散为/2

路径规划问题,如上图所示,启发式函数设计如下:

- Euclidean distance:: $h_1(N) = \sqrt{(x_N x_g)^2 + (y_n y_g)^2}$, 可采纳的
- Manhattan distance: $h_2(N) = |x_N x_g| + |y_n y_g|$, 不允许沿对角 线移动,则是可采纳的;否则是不可采纳的

一致的/单调的启发式函数

对一个可采纳的启发式函数 h

- 若它对所有节点都满足三角不等式,即 $h(N) \leq c(N,N') + h(N')$, 其中 N' 是 N 的后继节点,则 h 是一致的或单调的。
- c(N, N') 是节点 N 到 N' 的单步路径耗散。

AI: Heuristic Search March 20, 2018 25/4

性质和理解:一致的/单调的启发式函数

- $h(N) \le h^*(N) \le c(N, N') + h^*(N')$
- $h(N) c(N, N') \le h^*(N')$
- $h(N) c(N, N') \le h(N') \le h^*(N')$
- 随着搜索的深度越来越深,对深处节点估计的启发式函数值越来越 准确!!!

一致的/单调的启发式函数: 例子

不满足三角不等式,不是一致 的启发式函数

5		8
4	2	1
7	3	6

N

1	2	3
4	5	6
7	8	

Goal

数码问题

- $h_1(N) =$ 错误放置的格子数 = 6,可采纳的,一致的
- $h_2(N) =$ 所有数字到其正确位置的 Manhattan 距离之和 = 2+3+0+1+3+0+3+1=13,可采纳的,一致的

AI: Heuristic Search March 20, 2018 27

可采纳启发式函数: 例子

水平/垂直移动一格,路径耗散为1 对角线移动一格,路径耗散为√2

路径规划问题,如上图所示,启发式函数设计如下:

- Euclidean distance:: $h_1(N) = \sqrt{(x_N x_g)^2 + (y_n y_g)^2}$, 可采纳的, 一致的
- Manhattan distance: $h_2(N) = |x_N x_g| + |y_n y_g|$, 不允许沿对角 线移动,则是可采纳的,一致的;否则是不可采纳的,不一致的

AI 中最著名的搜索算法

- f(N) = g(N) + h(N), 其中
- g(N) = 从初始节点到 N 的路径耗散
- h(N): 从 N 到目标节点的路径耗散,可采纳的启发式函数

从 A* 算法中的启发式函数设计, 学习如何设计启发式函数

A* 算法性质 1: 完备性

证明:完备性 (若 A* 算法结束,问题有解,则一定会返回一个解)

- 如图所示
- 未扩展节点集合 FRINGE 中任意节点 N 满足 $f(N)=g(N)+h(N)\geq g(N)\geq d(N)\times\epsilon$, 其中 d(N) 是节点 N 的深度
- 只要 A* 算法没结束,在 FRINGE 中至少有一个节点 K 属于解路径
- 节点扩展会使得路径变长, K 将最终被扩展,除非在这之前找到一个到达目标节点的其他路径。
- 条件: 状态被重复访问时, 节点不被丢弃

证明: 最优性 (A* 选择某个目标节点扩展,则到此目标节点的路径一定是最优的)

- 如上图所示
- C* = 最优解的路径耗散
- G': 未扩展节点集合中"非最佳"目标节点(为什么只要考虑目标节点?) f(G') = g(G') + h(G') = g(G') > C*
- 未扩展节点集合中的节点 K 位于最优解的路径 上: $f(K) = g(K) + h(K) \le C^*$
- 所以, G' 不会被选择扩展

问题无解时

- 若状态空间无限或允许状态重复访问,则 A* 算法的搜索不会停止;
- 求解实际问题时,通常给一个停止时间/time limit,当停止时间达到时,算法停止运行;
- 因停止时间耗完而停止的 A* 算法,无法判断其是否有解或无解, 也无法说明更多的搜索时间可以得到解。

A* 状态的可重复访问

状态图说明

- 如左图
- h 是一个可采纳的启发式函数,每个节点的 h 值(估计值)标记在节点附近;
- 每条边标记了路径耗散 c值;
- 从红色状态节点找一条路径 到绿色状态节点。

AI: Heuristic Search March 20, 2018 33/47

A* 状态的可重复访问

解释说明

- 蓝色节点被访问后,若丢弃该状态,会发生什么事情?
- 次优解(红-黄-蓝-绿),路径耗散104

AI: Heuristic Search March 20, 2018 34/47

A* 状态的可重复访问

解释说明

- 若不丢弃访问过的状态,运行状态重复访问
- 我们可以得到最优解 (红-褐-蓝-绿), 路径耗散 102
- WHY? 付出什么代价了?

AI: Heuristic Search March 20, 2018 35/4

再议图搜索和树搜索

图搜索: 允许状态重复访问

- 保证获得最优解
- 无解时可能永远停不下来

树搜索:避免状态重复访问

- 状态有限时, 是完备的
- 但不保证解是最优的

一个重要的事实

• 丢弃重复访问状态的节点,如果到该节点的新路径的耗散 g(N) 比以前(访问该状态)的路径耗散更大

一致的/单调的启发式函数

- 来自上述重要事实
- 虽然采用一致启发式函数的搜索树的节点仍可能是指数增加的
- 但实际应用中,能有效地避免许多重复访问状态的节点扩展。

ustc

AI: Heuristic Search March 20, 2018 37

A* **算法性质 3**

从第二次开始重复扩展的状 态总是不如第一次扩展

证明:对一致的 h, A* 算法扩展一个状态节点时,到该状态的路径一定是最优的

- 一致性意味着单调性: (考虑 N 及其后继 N') $f(N) = g(N) + h(N) \le g(N) + c(N, N') + h(N') = f(N')$
- 如上图, K 被选择进行扩展,我们要证明此时路径到 K 是最优的,即 g(K) 最小。考虑在未扩展节点集合中存在一个其他节点 N,经 N 到 K, K 的状态此时扩展为节点 N',存在一条路径,那么有: (N' 和 K 是同一个状态不同的节点表示) $f(N') \geq f(N) \geq f(K)$ 以及 h(N') = h(K) 所以, $g(N') \geq g(K)$

处理状态的重复访问

- 节点被扩展,则状态进入 CLOSED 表
- 当一个新节点 N 产生了
 - 若 N 表示的状态在 CLOSED 表中,则丢弃节点 N
 - 若 N 表示的状态不在 CLOSED 表中,但是在未扩展节点集合 FRINGE 中(不妨设为 N),则去掉 f(N),f(N) 中较大的节点,等价于去掉 g(N) 和 g(N) 中较大的节点

特殊的一致启发式函数: $h \equiv 0$

- 一致的, 当然也是可采纳的
- 等价于单步路径耗散相同
- A* 退化为宽度优先搜索,代价一致搜索

为 A* 设计什么样的启发式函数更好?

5		8
4	2	1
7	3	6

1	2	3
4	5	6
7	8	

STATE(N)

Goal state

可采纳的启发式函数 h_1, h_2 对任何节点, $h_1 \leq h_2$, 则称 h_2 比 h_1 准确

- 如上图
- $h_1(N) =$ 错误放置的格子数目
- $h_2(N) =$ 每个数字到对应目标位置的 Manhattan 距离
- h2 比 h1 更准确/精确/更富含信息

ustc 📜

解释说明

当解存在时,较精确启发式函数导致的被扩展节点集合包括在"不精确"启发式函数导致的被扩展节点集合中,除了f值相同且等于最优解的路径耗散的那些节点。

证明:精确的启发式函数扩展的节点更少一些

- 任何 $f(N) < C^*$ 的节点都将会被扩展(在获得最优解之前)。可用绘制等 g(N) 值线的方式来逐步扩展初始状态为核心的等值线系统,在最优解路径耗散 C^* 围成的等值线包括了所有 $f(N) < C^*$ 的节点。(完备性容易由此被证明)
- 所以由 $h_1(N) \le h_2(N)$ 可知,在找到最优解之前, h_2 扩展的节点, h_1 都会进行扩展
- 除了最后达到最优解时,可能获得的是不同的最优目标节点!

不精确的启发式函数会访问更多的节点!

ustc ____

	搜索代价			有效分支因子		
d	IDS	A*(h1)	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	- 1	539	113	- 1	1.44	1.23
16	- 1	1301	211	- 1	1.45	1.25
18	- 1	3056	363	- 1	1.46	1.26
20	- 1	7276	676		1.47	1.27
22	- 1	18094	1219	- 1	1.48	1.28
24	_	39135	1641	_	1.48	1.26

有效分支因子 b*

- b* 可以度量启发式函数的有效性
- 通过隐函数来定义: $n=b^*+(b^*)^2+\ldots+(b^*)^d$,其中 n 是被扩展的节点数目, d 是解的深度
- 如上图, 8 数码问题, 考虑无信息的迭代深入搜索、h1 和 h2, 随机产生 1200 个 instances
- 被扩展节点数目 n
 - $d = 12, h1 \rightarrow 227, h2 \rightarrow 73$
 - $d = 24, h1 \rightarrow 39135, h2 \rightarrow 1641$

经验总结

- 基本思路:求解原问题的松弛问题,获得灵感
- 例如 8 数码问题
 - h_1 的设计:假设错了数字,可以一次就放到正确位置,忽略其它所有因素
 - h₂ 的设计: 假设数字可以水平和垂直任意移动,忽略移动目标位置 是否被占据
 - 更复杂有效的启发式函数设计:假设数字可以水平和垂直移动,使得 1, 2, 3, 4 移动到目标位置,忽略 5, 6, 7, 8 的阻挡,计算移动次数 d1;使得 5, 6, 7, 8 移动到目标位置,忽略 1, 2, 3, 4 的阻挡,计算移动次数 d2; h=d1+d2。(产生大约 3024 个状态节点)
- 其他方法: 从经验中学习,归纳学习,不同启发式函数的集成等

目标:精确的、一致的启发式函数

- 保证了完备性、最优性,不需要重复访问同一个状态
- 实际上,问题并没有解决。问题规模大时,因为时空要求都是解长度的指数函数
- 算法时间限制及其设置
- 其它实用的,不可采纳的启发式函数,不能保证最优性和完备性, 但是能快速获得最优解或近似最优解

AI: Heuristic Search March 20, 2018 45

迭代深入 A* 算法: IDA*

- 思想:设置 f 的阈值,超过 f 的阈值,节点不再扩展;迭代执行 A*,降低 A* 算法对内存的需求
- 要求: 一致的启发式函数

算法思想

- 初始化 f 的阈值 t 为 f(N0)
- 重复执行下述两步:
 - 执行深度优先搜索,扩展 f(N) <= t 的节点 N
 - 重新设置 t 为未扩展节点中 f 的最小值

优点

- 完备的、最优的
- 比 A* 要求的内存少
- 避免了未扩展节点集合的排序开销

不足

- 无法充分利用内存,用的内存太少,两次迭代之间只保留阈值 t
- 无法避免重复访问不在路径上的节点

IDA* 改进为 SMA*

● *IDA** 的改进: 把内存用光,不能保存节点了,丢掉保存的一个高耗散,最旧的节点,再插入新的节点,这个算法称为: *SMA**