Act 14: Programando K-Nearest-Neighbor en Python

Patricio Ricardí

March 2025

¿Qué es K-NN?

Es un método de clasificación que predice la categoría de un dato basándose en:

- Los K datos más cercanos (vecinos)
- Una votación entre las clases de estos vecinos
- Ejemplo: Clasificar una fruta como "manzana" si sus 5 vecinos más cercanos son manzanas

Pasos realizados

- 1. **Cargar datos**: Usamos un archivo CSV con información para clasificar
- 2. **Preparar datos**:
 - Dividir en entrenamiento (80%) y prueba (20%)
 - Escalar características (normalizar valores)
- 3. **Entrenar modelo**:
 - Elegir K = 5 vecinos
 - Usar distancia euclidiana para medir cercanía
- 4. **Evaluar resultados**:
 - Matriz de confusión
 - Precisión, Recall y F1-score
 - \bullet Comparación con otros valores de K

Código simplificado

[language=Python, basicstyle=] Dividir datos from sklearn.model_selectionimporttrain_test_splitX_entrenamientrain_test_split(datos, clases, test_size = 0.2)

Escalar características from sklearn.preprocessing import StandardScaler escalador = StandardScaler() $X_entrenamiento = escalador.fit_transform(X_entrenamiento)X_prueba = escalador.transform(X_prueba)$

Crear y entrenar modelo K-NN from sklearn.neighbors import KNeighborsClassifier modelo $_k nn = KNeighborsClassifier(n_n eighbors = 5) modelo_k nn.fit(X_entrenamiento, y_entrenamiento)$

Evaluar from sklearn.metrics import accuracy_score, classification_reportpredicciones = $modelo_k nn.predict(X_p rueba)print(f"Precisión: accuracy_score(y_p rueba, predicciones): .2f")$

Resultados clave

- Precisión: 82% en datos de prueba
- Matriz de confusión:
 - 48 aciertos en clase 0 (de 60)
 - 34 aciertos en clase 1 (de 40)
- Mejor K: 5 vecinos mostró el mejor equilibrio
- F1-score promedio: 81%

Conclusiones

- Muy efectivo para problemas con fronteras de decisión complejas
- Ventajas:
 - Fácil de entender e implementar
 - Sin suposiciones sobre distribución de datos
- Desventajas:
 - Lento con datasets muy grandes
 - Sensible a datos no escalados
- Para mejorar:
 - Probar diferentes valores de K
 - Usar técnicas de reducción de dimensionalidad