Math 112 Honors Exam 6 NAME: Quan Nguyen Béla Bajnok Fall 2020

Write and sign the full Honor Pledge here:

I affirm that I have upheld the highest principles of honesty and integrity in my academic work and have not witnessed a violation of the Honor Code.

Quan Nguyen

General instructions – Please read!

- The purpose of this exam is to give you an opportunity to explore a complex and challenging question, gain a fuller view of calculus and its applications, and develop some creative writing, problem solving, and research skills.
- All your assertions must be completely and fully justified. At the same time, you should aim to be as concise as possible; avoid overly lengthy arguments and unnecessary components. Your grade will be based on both mathematical accuracy and clarity of presentation.
- Your finished exam should read as an article, consisting of complete sentences, thorough explanations, and exhibit correct grammar and punctuation.
- I encourage you to prepare your exam using LaTeX. However, you may use instead other typesetting programs that you like, and you may use hand-writing or hand-drawing for some parts of your exam. In any case, the final version that you submit must be in PDF format.
- It is acceptable (and even encouraged) to discuss the exams with other students in your class or with the PLA. However, you must individually write up all parts of your exams.
- You may use the text, your notes, and your homework, but no other sources.
- You must write out a complete, honest, and detailed acknowledgment of all assistance you received and all resources you used (including other people) on all written work submitted for a grade.
- Submit your exam to me by email at bbajnok@gettysburg.edu by the deadline announced in class.

Good luck!

Some Serious Series

Let us define the sequence

$$(a_n)_{n=1}^{\infty} = \left(\frac{1}{10}, -\frac{\pi^2}{100}, +\frac{\pi^4}{1000}, -\frac{\pi^6}{10000}, + - \cdots\right)$$

and the function

$$f(x) = \frac{1}{10 + x^2}.$$

- 1. (a) Find an explicit formula for a_n . (Make sure that $a_1 = 1/10$.)
 - (b) Find $\lim_{n\to\infty} a_n$.
 - (c) Find the exact value of $\sum_{n=1}^{\infty} a_n$.
- 2. (a) Use a known series to find the infinite Maclaurin series $P_{\infty}(x)$ for f(x).
 - (b) Verify your answer to part (a) by finding the quartic (degree four) Maclaurin polynomial $P_4(x)$ for f(x) using differentiation.
 - (c) How is this problem related to Problem 1 above?
- 3. (a) Use integration rules to find $\int f(x) dx$.
 - (b) Use Problem 2 above to find $\int f(x)dx$.
 - (c) Use part (a) above to find the exact value of $\int_0^{\pi} f(x) dx$.
 - (d) Use part (b) above to approximate $\int_0^{\pi} f(x) dx$. Compare your answer to part (c).
 - (e) Use part (a) above to find the exact value of $\int_0^\infty f(x) dx$. Use your calculator to verify your answer.
 - (f) Explain why part (b) cannot be used for $\int_0^\infty f(x) dx$.

My work

Question 1:

(a) Find an explicit formula for a_n :

The sequence of a:

$$\begin{split} a &= \left(\frac{1}{10}, -\frac{\pi^2}{100}, \frac{\pi^4}{1000}, -\frac{\pi^6}{10000}, \cdots\right) \\ &= \left[\frac{1}{10}, \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right), \frac{1}{10} \cdot \left(\frac{\pi^4}{100}\right), \frac{1}{10} \cdot \left(\frac{-\pi^6}{1000}\right), \cdots\right] \\ &= \left[\frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^0, \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^1, \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^2, \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^3, \cdots\right] \\ &= \left[\frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{1-1}, \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{2-1}, \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{3-1}, \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{4-1}, \cdots\right] \end{split}$$

Thus, the general formula for a_n is:

$$(a_n)_{n=1}^{\infty} = \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{n-1}$$

(b) Find $\lim_{n\to\infty} a_n$:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{n-1}$$
$$= \frac{1}{10} \lim_{n \to \infty} \left(\frac{-\pi^2}{10}\right)^{n-1}$$

Because:

$$\pi^2 = 9.8696 < 10$$

$$\iff \frac{\pi^2}{10} < 1$$

$$\iff -1 < \frac{-\pi^2}{10} < 1$$

So:

$$\lim_{n \to \infty} a_n = \frac{1}{10} \lim_{n \to \infty} \left(\frac{-\pi^2}{10} \right)^{n-1}$$
$$= \frac{1}{10} \cdot 0$$
$$= 0$$

(c) Find the exact value of $\sum_{n=1}^{\infty} a_n$:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{n-1}$$
$$= \frac{1}{10} + \frac{-\pi^2}{100} + \frac{\pi^4}{1000} + \frac{-\pi^3}{10000} + \cdots$$

The sum of a_n with n from $1 \to \infty$ is a Geometric Series $\left(a = \frac{1}{10}, r = \frac{-\pi^2}{10}\right)$, so I can use the formula to calculate the exact value of this series:

$$\sum_{n=1}^{\infty} a_n = \frac{a}{1-r} = a \div (1-r)$$

$$= \frac{1}{10} \div \left[1 - \left(\frac{-\pi^2}{10} \right) \right]$$

$$= \frac{1}{10} \div \left(\frac{10 + \pi^2}{10} \right)$$

$$= \frac{1}{10 + \pi^2}$$

Question 2:

(a) Find Maclaurin Series for f(x):

Maclaurin series general formula from an function f(x) at x = a:

$$\frac{f^{(n)}(a)}{n!} (x-a)^n$$

A known Maclaurin Series at a = 0:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$= 1 + x + x^2 + x^3 + x^4 + \dots$$

$$= \frac{1}{0!(1-0)} + \frac{(x-0)}{1!(1-0)^2} + \frac{2(x-0)^2}{2!(1-0)^3} + \frac{6(x-0)^3}{3!(1-0)^4} + \dots$$

If I replace 1 in the denominator with 10, and x with $-x^2$, I will get the Maclaurin Series of function f(x):

$$\frac{1}{10-x^2} = \frac{1}{0!(10-0)} + \frac{(-x^2-0)}{1!(10-0)^2} + \frac{2(-x^2-0)^2}{2!(10-0)^3} + \frac{6(-x^2-0)^3}{3!(10-0)^4} + \cdots$$

$$= \frac{1}{10} + \frac{(-x^2)}{10^2} + \frac{(-x^2)^2}{10^3} + \frac{(-x^2)^3}{10^4} + \cdots$$

$$P(x) = \frac{1}{10} - \frac{x^2}{10^2} + \frac{x^4}{10^3} - \frac{x^6}{10^4} + \cdots$$

(b) Verify the answer:

$$f(x) = \frac{1}{10 + x^2}$$

$$\implies f'(x) = \frac{-2x}{(10 + x^2)^2}$$

$$\implies f''(x) = \frac{6x^2 - 20}{(10 + x^2)^3}$$

$$\implies f'''(x) = \frac{-24x(x^2 - 10)}{(10 + x^2)^4}$$

$$\implies f''''(x) = \frac{120x^4 - 2400x^2 + 2400}{(10 + x^2)^5}$$

^{*}The calculation of differentiation is in the Appendix section

The Maclaurin Series has a general formula:

$$a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + \cdots$$

With
$$f(x) = \frac{1}{10 + x^2}$$
, and $x = 0$:

$$f(0) = \frac{1}{10+0} = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + \cdots$$

$$\iff \frac{1}{10} = a_0 + a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0 + a_4 \cdot 0 + a_5 \cdot 0 + a_6 \cdot 0 + \cdots$$

$$\iff a_0 = \frac{1}{10}$$

With
$$f'(x) = \frac{-2x}{(10+x^2)^2}$$
, and $x = 0$:

$$f'(0) = \frac{0}{(10+0)^2} = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + 6a_6x^5 + \cdots$$
$$0 = a_1 + 2a_2 \cdot 0 + 3a_3 \cdot 0 + 4a_4 \cdot 0 + 5a_5 \cdot 0 + 6a_6 \cdot 0 + \cdots$$
$$\implies a_1 = 0$$

With
$$f''(x) = \frac{6x^2 - 20}{(10 + x^2)^3}$$
, and $x = 0$:

$$f''(0) = \frac{6 \cdot 0 - 20}{(10 + 0)^3} = 2a_2 + 6a_3x + 12a_4x^2 + 20a_5x^3 + 30a_6x^4 + \cdots$$
$$-\frac{20}{10^3} = 2a_2 + 6a_3 \cdot 0 + 12a_4 \cdot 0 + 20a_5 \cdot 0 + 30a_6 \cdot 0 + \cdots$$
$$\implies a_2 = -\frac{10}{10^3} = -\frac{1}{10^2}$$

With
$$f'''(x) = \frac{-24x(x^2 - 10)}{(10 + x^2)^4}$$
, and $x = 0$:

$$f'''(0) = \frac{-24 \cdot 0 (0 - 10)}{(10 + 0)^4} = 6a_3 + 24a_4x + 60a_5x^2 + 120a_6x^3 + \cdots$$
$$0 = 6a_3 + 24a_4 \cdot 0 + 60a_5 \cdot 0 + 120a_6 \cdot 0 + \cdots$$
$$\implies a_3 = 0$$

With
$$f''''(x) = \frac{120x^4 - 2400x^2 + 2400}{(10 + x^2)^5}$$
, and $x = 0$:

$$f''''(0) = \frac{120 \cdot 0 - 2400 \cdot 0 + 2400}{(10+0)^5} = 24a_4 + 120a_5x + 360a_6x^2 + \cdots$$
$$\frac{2400}{10^5} = 24a_4 + 120a_5 \cdot 0 + 360a_6 \cdot 0 + \cdots$$
$$\implies a_4 = \frac{100}{10^5} = \frac{1}{10^3}$$

Conclusion:

From the calculations above, I have $a_0 = \frac{1}{10}$, $a_2 = \frac{-1}{10^2}$, and $a_4 = \frac{1}{10^3}$. For every 2 a, the value is multiplied by $\frac{-1}{10}$, so the following values of a will be: $a_6 = \frac{-1}{10^4}$, $a_8 = \frac{1}{10^5}$, $a_{10} = \frac{-1}{10^6}$, ...

Therefore, after plugging a back into the Maclaurin Series, it will be:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + \cdots$$

$$= \frac{1}{10} + 0 + \left(\frac{-1}{10^2}\right) x^2 + 0 + \left(\frac{1}{10^3}\right) x^4 + 0 + \left(\frac{-1}{10^4}\right) x^6 + \cdots$$

$$= \frac{1}{10} + \frac{-x^2}{10^2} + \frac{x^4}{10^3} + \frac{-x^6}{10^4} + \cdots$$

The result of using a known series to find the Maclaurin series of f(x) is the same as using derivative, so the series found in part (a) is correct.

(c) Relation of this problem to Problem 1:

In the Problem 1, a_n is a sequence with the formula:

$$(a_n)_{n=1}^{\infty} = \frac{1}{10} \cdot \left(\frac{-\pi^2}{10}\right)^{n-1} = \frac{1}{10}, -\frac{\pi^2}{100}, \frac{\pi^4}{1000}, -\frac{\pi^6}{10000}, \dots$$

From the Problem 2, I have f(x) with $f(\pi)$ is the sum of all terms in sequence a_n :

$$f(x) = \frac{1}{10} \sum_{n=1}^{\infty} \left(-\frac{x^2}{10} \right)^{n-1} = \frac{1}{10} - \frac{x^2}{10^2} + \frac{x^4}{10^3} - \frac{x^6}{10^4} + \cdots$$
$$\Longrightarrow f(\pi) = \frac{1}{10} - \frac{\pi^2}{10^2} + \frac{\pi^4}{10^3} - \frac{\pi^6}{10^4} + \cdots$$

Question 3:

(a) Find $\int f(x) dx$ using Integration Rules:

$$\int f(x) dx = \int \frac{1}{10 + x^2} dx$$

$$= \int \frac{1}{10 \left(1 + \frac{x^2}{10}\right)} dx$$

$$= \frac{1}{10} \int \frac{1}{1 + \left(\frac{x}{\sqrt{10}}\right)^2} dx$$

$$= \frac{1}{10} \cdot \frac{\sqrt{10}}{1} \int \frac{\frac{1}{\sqrt{10}}}{1 + \left(\frac{x}{\sqrt{10}}\right)^2} dx$$

$$= \frac{1}{\sqrt{10}} \cdot \arctan \frac{x}{\sqrt{10}} + C$$

(b) Find $\int f(x) dx$ using Problem 2:

$$P(x) = \frac{1}{10} - \frac{x^2}{10^2} + \frac{x^4}{10^3} - \frac{x^6}{10^4} + \cdots$$

$$\implies \int P(x) \, \mathrm{d}x = \int \left(\frac{1}{10} - \frac{x^2}{10^2} + \frac{x^4}{10^3} - \frac{x^6}{10^4} + \cdots\right) \, \mathrm{d}x$$

$$= \frac{x}{10} - \frac{x^3}{3 \cdot 10^2} + \frac{x^5}{5 \cdot 10^3} - \frac{x^7}{7 \cdot 10^4} + \cdots$$

$$= \frac{x}{1 \cdot 10} + \frac{x}{3 \cdot 10} \left(\frac{-x^2}{10}\right) + \frac{x}{3 \cdot 10} \left(\frac{-x^2}{10}\right)^2 + \frac{x}{3 \cdot 10} \left(\frac{-x^2}{10}\right)^3 + \cdots$$

$$= \frac{x}{10} \sum_{n=0}^{\infty} \left(\frac{1}{2n+1}\right) \left(\frac{-x^2}{10}\right)^n$$

(c) Find the exact value of $\int_0^{\pi} f(x) dx$ using part (a):

$$\int_0^{\pi} f(x) dx = \int_0^{\pi} \frac{1}{10 + x^2} dx$$

$$= \frac{1}{\sqrt{10}} \left(\arctan \frac{x}{\sqrt{10}} \right)_0^{\pi}$$

$$= \frac{1}{\sqrt{10}} \left(\arctan \frac{\pi}{\sqrt{10}} - \arctan 0 \right)$$

$$= \frac{1}{\sqrt{10}} \cdot \arctan \frac{\pi}{\sqrt{10}}$$

(d) Approximate $\int_0^{\pi} f(x) dx$ using part (b):

From (b):

$$\int P(x) dx = \frac{x}{10} - \frac{x^3}{3 \cdot 10^2} + \frac{x^5}{5 \cdot 10^3} - \frac{x^7}{7 \cdot 10^4} + \frac{x^9}{9 \cdot 10^5} - \cdots$$

$$\implies \int_0^{\pi} P(x) dx = \left(\frac{\pi}{10} - \frac{\pi^3}{3 \cdot 10^2} + \frac{\pi^5}{5 \cdot 10^3} - \frac{\pi^7}{7 \cdot 10^4} + \frac{\pi^9}{9 \cdot 10^5} - \frac{\pi^{11}}{11 \cdot 10^6} + \cdots\right) - 0$$

$$\approx 0.23524$$

(e) Find the exact value of $\int_0^\infty f(x) dx$ using part (a):

$$\int_0^\infty f(x) \, dx = \int_0^\infty \frac{1}{10 + x^2} \, dx$$

$$= \frac{1}{\sqrt{10}} \left(\arctan \frac{x}{\sqrt{10}} \right)_0^\infty$$

$$= \frac{1}{\sqrt{10}} \left(\arctan \frac{\infty}{10} - \arctan 0 \right)$$

$$= \frac{1}{\sqrt{10}} \left(\frac{\pi}{2} - 0 \right)$$

$$= \frac{1}{\sqrt{10}} \cdot \frac{\pi}{2}$$

$$= \frac{\pi}{2\sqrt{10}}$$

(f) Why part (b) cannot be used for $\int_0^\infty f(x) dx$:

The function $P(x) = \frac{1}{10} - \frac{x^2}{10^2} + \frac{x^4}{10^3} - \frac{x^6}{10^4} + \cdots$ is only approximate to $f(x) = \frac{1}{10 + x^2}$ when $x \in \left(-\sqrt{10}, \sqrt{10}\right)$. This means that when x in P(x) is getting closer to $-\sqrt{10}$ or $\sqrt{10}$, the value increases to infinity, and there is no value at $x = \sqrt{10}$.

Therefore, integral of part (b) can only be used in range $\left(-\sqrt{10},\sqrt{10}\right)$. However:

$$\int_0^\infty P(x) \, dx = \int_0^{\sqrt{10}} P(x) \, dx + \int_{\sqrt{10}}^\infty P(x) \, dx$$

Since the function P(x) does not exist in the range from $\sqrt{10}$ to infinity, the integral of P(x): $\int_{\sqrt{10}}^{\infty} P(x) dx$ can not be calculated.

The Appendix

•

$$f(x) = \frac{1}{10 + x^2} = (10 + x^2)^{-1}$$

•

$$f'(x) = \left[\left(10 + x^2 \right)^{-1} \right]'$$

$$= (-1) \left(10 + x^2 \right)^{-2} (2x)$$

$$= (-2x) \left(10 + x^2 \right)^{-2}$$

$$= \frac{-2x}{\left(10 + x^2 \right)^2}$$

•

$$f''(x) = (f'(x))'$$

$$= [(-2x)(10 + x^2)^{-2}]'$$

$$= (-2x)'(10 + x^2)^{-2} + (-2x)[(10 + x^2)^{-2}]'$$

$$= -2(10 + x^2)^{-2} + (-2)(-2x)(10 + x^2)^{-3}(2x)$$

$$= \frac{-2}{(10 + x^2)^2} + \frac{8x}{(10 + x^2)^3}$$

$$= \frac{-2(10 + x^2) + 8x^2}{(10 + x^2)^3}$$

$$= \frac{6x^2 - 20}{(10 + x^2)^3}$$

$$f'''(x) = (f''(x))'$$

$$= \left[(6x^2 - 20) (10 + x^2)^{-3} \right]'$$

$$= (6x^2 - 20)' (10 + x^2)^{-3} + (6x^2 - 20) \left[(10 + x^2)^{-3} \right]'$$

$$= 12x (10 + x^2)^{-3} + (-3) (6x^2 - 20) (10 + x^2)^{-4} (2x)$$

$$= \frac{12x (10 + x^2) - 6x (6x^2 - 20)}{(10 + x^2)^4}$$

$$= \frac{120x + 12x^3 + 120x - 36x^3}{(10 + x^2)^4}$$

$$= \frac{-24x^3 + 240x}{(10 + x^2)^4}$$

$$= \frac{-24x (x^2 - 10)}{(10 + x^2)^4}$$

$$f''''(x) = (f'''(x))'$$

$$= \left[(-24x^3 + 240x) (10 + x^2)^{-4} \right]'$$

$$= (-24x^3 + 240x)' (10 + x^2)^{-4} + (-24x^3 + 240x) \left[(10 + x^2)^{-4} \right]'$$

$$= (-72x^2 + 240) (10 + x^2)^{-4} + (-4) (-24x^3 + 240x) (10 + x^2)^{-5} (2x)$$

$$= \frac{(-72x^2 + 240) (10 + x^2) - 8x (-24x^3 + 240x)}{(10 + x^2)^5}$$

$$= \frac{-72x^4 - 480x^2 + 2400 + 192x^4 - 1920x^2}{(10 + x^2)^5}$$

$$= \frac{120x^4 - 2400x^2 + 2400}{(10 + x^2)^5}$$