Извлечение корня из комплексного числа

$$\sqrt[n]{z} = w \Leftrightarrow z = w^n, n \in \mathbb{N} .$$
Пусть $z = r(\cos \varphi + i \sin \varphi), w = \rho(\cos \varphi + i \sin \varphi)$. Тогда
$$\rho^n(\cos n\phi + i \sin n\phi) = r(\cos \varphi + i \sin \varphi) \Rightarrow \begin{cases} r^n = \rho, \\ n\phi = \varphi + 2k\pi \end{cases} \Leftrightarrow \begin{cases} \rho = \sqrt[n]{r} = r^{\frac{1}{n}}, \\ \phi = \frac{\varphi + 2k\pi}{r} \end{cases}$$

Исследование формулы извлечения корня.

Теорема. Существует ровно n значений корня n - ой степени из отличного от нуля комплексного числа $z = r(\cos \varphi + i \sin \varphi)$ (почему корней ровно n?). Они получаются по формуле:

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), k = 0, 1, 2, ..., n - 1$$

Обратите внимание, что все корни расположены на одной окружности радиуса $\sqrt[n]{r}$ на одинаковом расстоянии друг от друга, поэтому достаточно знать только один корень, из него получаются остальные движением по окружности.

Примеры.

$$1 - i = \sqrt{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$$

$$\sqrt[5]{1 - i} = \sqrt[5]{\sqrt{2}} \left[\cos \frac{\left(-\frac{\pi}{4} \right) + 2k\pi}{5} + i \sin \frac{\left(-\frac{\pi}{4} \right) + 2k\pi}{5} \right], k = 0, 1, 2, ..., 4;$$

$$w_0 = \sqrt[10]{2} \left(\cos \left(-\frac{\pi}{20} \right) + i \sin \left(-\frac{\pi}{20} \right) \right), k = 0,$$

$$w_1 = \sqrt[10]{2} \left(\cos \frac{7\pi}{20} + i \sin \frac{7\pi}{20} \right), k = 1,$$

$$w_2 = \sqrt[10]{2} \left(\cos \frac{15\pi}{20} + i \sin \frac{15\pi}{20} \right) = \sqrt[10]{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right), k = 2$$

$$w_3 = \sqrt[10]{2} \left(\cos \frac{23\pi}{20} + i \sin \frac{23\pi}{20} \right), k = 3$$

$$w_4 = \sqrt[10]{2} \left(\cos \frac{31\pi}{20} + i \sin \frac{31\pi}{20} \right), k = 4.$$

Мы нашли первый корень w_0 и движемся по окружности радиуса $\sqrt[10]{2}$ против часовой стрелки. Расстояние между корнями $\frac{8\pi}{20} = \frac{2\pi}{5}$.

Упражнение.

Найдите ошибку в утверждении

$$-1 = i^{2} = i \cdot i = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{(-1) \cdot (-1)} = \sqrt{1} = 1.$$

Замечания.

- 1. Понятие «арифметического корня» для комплексных чисел не вводится.
- 2. Формула $\sqrt{z_1} \cdot \sqrt{z_2} = \sqrt{z_1 z_2}$ верна только при определенном выборе аргументов для левой и правой частей равенства, а в общем виде она **не верна**.

Формулы Эйлера.

По определению вводим комплексную степень:

$$e^{bi} = \cos b + i \sin b \Rightarrow e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b)$$
. Здесь e^a — модуль числа, b —аргумент.

Корни из единицы

$$1 = \cos 0 + i \sin 0 \Rightarrow \sqrt[n]{1} = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}, k = 0, 1, 2 ... n - 1$$

Геометрическое изображение √1

Все корни имеют модуль 1, поэтому их изображения находятся на единичной окружности.

$$\varepsilon_0 = 1 = \cos 0 + i \sin 0, \ \varepsilon_1 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}, \ \varepsilon_2 = \cos \frac{4\pi}{n} + i \sin \frac{4\pi}{n},$$

$$\varepsilon_3 = \cos \frac{6\pi}{n} + i \sin \frac{6\pi}{n}, \dots, \varepsilon_{n-1} = \cos \frac{2\pi(n-1)}{n} + i \sin \frac{2\pi(n-1)}{n}.$$

Они делят окружность на n равных частей. Все корни являются решениями уравнения $x^n - 1 = 0$.

Свойства
$$\sqrt[n]{1}$$

1. Произведение двух корней степени n из 1 есть корень степени n из 1.

Доказательство.

$$\begin{split} &\varepsilon_{_{K}}\varepsilon_{_{l}} = \left(\cos\frac{2\pi\,k}{n} + i\sin\frac{2\pi\,l}{n}\right) \cdot \left(\cos\frac{2\pi\,l}{n} + i\sin\frac{2\pi\,l}{n}\right) = \\ &\cos\frac{2\pi\,(k+l)}{n} + i\sin\frac{2\pi\,(k+l)}{n} = \cos\frac{2\pi\,m}{n} + i\sin\frac{2\pi\,m}{n} \\ & \text{где} \begin{bmatrix} m = k + l, \, ec\pi u \, m < n, \\ m = k + l - n, \, ec\pi u \, m \geq n \end{bmatrix} \right) \text{ (исключили часть, кратную 2}\,\pi \right). \end{split}$$

2. Число, обратное корню степени n из 1, есть корень степени n из 1.

Доказательство.

$$\varepsilon_{\kappa}^{-1} = \left(\cos\frac{2\pi k}{n} + i\sin\frac{2\pi l}{n}\right)^{-1} = \frac{1}{\cos\frac{2\pi k}{n} + i\sin\frac{2\pi l}{n}} = \cos\frac{2\pi k}{n} - i\sin\frac{2\pi k}{n} = \cos\left(-\frac{2\pi k}{n}\right) + i\sin\left(-\frac{2\pi k}{n}\right) = \cos\left(\frac{2\pi m}{n}\right) + i\sin\left(\frac{2\pi m}{n}\right),$$

где
$$\frac{2\pi\,m}{n}=-\frac{2\pi\,k}{n}+\,2\pi\,l=\frac{2\pi\,(\ln\,-\,k)}{n}$$
 , причем $0\leq m=\ln\,-\,k\leq n$ - 1 , то есть мы прибавили целое число полных оборотов.

3. Все корни степени n из числа z, $z\neq 0$, получаются умножением одного из его корней на все корни степени n из 1.

Доказательство

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) =$$

$$\sqrt[n]{r} \left(\cos \frac{\varphi}{n} + i \sin \frac{\varphi}{n} \right) \left(\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n} \right) = w_0 \cdot \varepsilon_k$$

Дополнительные сведения

Зная геометрическую интерпретацию модуля разности двух комплексных чисел, можно записывать уравнения различных кривых не в координатах, а на языке комплексных чисел

- 1) Окружность радиуса R с центром в начале координат: |z| = R.
- 2) Окружность радиуса R с центром в точке z_0 :

$$|z - z_0| = R$$
.

3) Эллипс определяется как геометрическое место точек плоскости, сумма расстояний которых до двух точек плоскости постоянна:

$$|z-z_1|+|z-z_2|=a.$$

Примеры: 1) $|iz-1| \le 1 \Rightarrow |i(z-i^{-1}| \le 1 \Rightarrow |i(z+i)| \le 1 \Rightarrow |i||z-(-i)| \le 1 \Rightarrow |z-(-i)| \le 1$, но это есть множество точек, удаленных от точки z=-i на расстояние не более 1, т.е. круг радиуса 1 с центром в точке z=-i.

2) |z-i|=|z-1| - это множество точек, равноудаленных от двух точек $z_1=i$ и $z_2=1$. Такое множество представляет собой прямую, проходящую через середину отрезка, соединяющего точки $z_1=i$ и $z_2=1$.

Степени числа і

$$i^{0} = 1, i^{1} = i, i^{2} = -1, i^{3} = i^{2} \cdot i = -i, i^{4} = i^{2} \cdot i^{2} = -1 \cdot (-1) = 1$$
.

Дальше все будет повторяться, таким образом, если n=4k+m, то

$$i^{^n}=i^{^{4k+m}}=i^{^m}, m=0,1,2,3$$
 Примеры: 1) $i^{^{241}}=i^{^{240+1}}=i^{^{4\cdot 60+1}}=i$.

2)
$$i^{1346} = i^{1344} \cdot i^2 = -(i^4)^{338} = -1$$
.

Вопросы к лекции

- 1. Верно или неверно?
- 1) Число $\sqrt{5}$ является комплексным числом с неравной нулю мнимой частью.
 - 2) Число a, такое, что $a^2 = -4$, является вещественным.
 - 3) Число a, такое, что $a^4 = 1$ является вещественным.
- 4) Многочлен $x^2 + 4$ можно разложить на линейные множители с комплексными коэффициентами.
- 5) Точки плоскости, удовлетворяющие условию |z-1|=2, лежат на окружности радиуса 1.

- 6) Если комплексное число равно своему сопряженному, то оно является вещественным.
 - 7) Если $\bar{z} = -z$, то вещественная часть числа z равна нулю.
 - 8) Число различных корней n-й степени из числа z может быть бесконечно.
 - 9) Корни n-й степени из числа z расположены на луче, исходящем из начала координат.
 - 10) Корни n-й степени из числа z расположены на окружности с центром в начале координат.
 - 11) Количество корней n-й степени из числа z может быть меньше или больше числа n.
- 2. Какими свойствами обладают корни *n*-й степени из 1?

Примеры и задачи:

- 1. Какие множества комплексных чисел удовлетворяют следующему условию:
 - 1) |2z-i|=4; 2) $|2z-3-i|\leq 4$?
- 2. Вычислите $\left(\frac{1+i}{1-i}\right)^{1993}$.
- 3. Найдите все корни третьей степени из 1. Один из них-1, а два других ω и $\overline{\omega}$.
 - 1) Вычислите ω^{5} , ω^{-10} , ω^{36} .
 - 2) Вычислите $\omega^{100} + \omega^{200} + \omega^{300}$.
 - 3) Пусть a, b, c-вещественные числа. Докажите, что

$$\left(a+b\omega+c\omega^2\right)^n+\left(a+b\omega^2+c\omega\right)^n$$
 , $n\in Z$ -вещественное число.

- 4)* Докажите тождество: $x^3 + y^3 = (x + y)(x + \omega y)(x + \omega^2 y)$.
- 4. Изобразите на комплексной плоскости множество точек z, задаваемых $y_{\text{СЛОВИЯМИ}}$: |z-i|>|z+i| |z|<|z-1+i|.
- 5. а) * Найдите min |3 + 2i z| при $|z| \le 1$;
 - б) * Найдите max |1 + 4i z| при $|z 10i + 2| \le 1$
- 6. *Укажите геометрический смысл числа arg $\frac{z_1-z_2}{z_2-z_3}$, где z_1,z_2,z_3- различные числа.
- 7. Как расположены на плоскости точки z_1, z_2, z_3 , для которых

a)
$$z_1 + z_2 + z_3 = 0$$
, $|z_1| = |z_2| = |z_3| \neq 0$,
6) $z_1 + z_2 + z_3 + z_4 = 0$, $|z_1| = |z_2| = |z_3| = |z_4| \neq 0$?

8. Докажите:

- а)* точки плоскости, соответствующие комплексным числам z_1, z_2, z_3 , лежат на одной прямой тогда и только тогда, когда существуют вещественные числа $\lambda_1, \lambda_2, \lambda_3 \neq 0$, не все равные нулю, такие что $\lambda_1 z_1 + \lambda_2 z_2 + \lambda_3 z_3 = 0$, $\lambda_1 + \lambda_2 + \lambda_3 = 0$;
- б)* точки плоскости, соответствующие различным комплексным числам z_1, z_2, z_3 , лежат на одной прямой тогда и только тогда, когда число $\frac{z_1 z_3}{z_2 z_3}$ -вещественное;
- в)* точки плоскости, соответствующие различным комплексным числам $z_1, z_2, z_3,$ z_4 , не лежащие на одной прямой, лежат на одной окружности тогда и только

тогда, когда число
$$\frac{z_1-z_3}{z_2-z_3}$$
 : $\frac{z_1-z_4}{z_2-z_4}$ -вещественное.