Operadores de Selección
Operadores de Cruzamiento
Operadores de Mutación
Representación de las soluciones

Software para la optimización de redes de distribución de agua potable "JHawanet Framework"

Gabriel Sanhueza

Defensa de Título Universidad de Talca

Profesores guías Jimmy Gutiérrez Bahamondes Daniel Mora Melia

Agosto, 2020

Operadores de Selección

Tournament Selection

Operadores de Selección

Uniform Selection

$$p_{max} = rac{eta}{N_c}$$
 $p_{min} = rac{2-eta}{N_c}$ $1,5 <= eta <= 2$ $p_i = p_{min} + (p_{max} - p_{min}) imes rac{N_c - i}{N_c - 1}$

Operadores de Cruzamiento

SinglePointCrossover

Operadores de Cruzamiento

SBXCrossover

$$\begin{cases} \beta_{q} = \frac{d_{j} + \sqrt{r\alpha}}{2} & \text{si } r \leq \frac{1}{\alpha} \\ \beta_{q} = \frac{d_{j} + \sqrt{\frac{1}{2 - r\alpha}}}{2} & \text{si } r > \frac{1}{\alpha} \end{cases}$$

$$\beta = 1 + 2\frac{y_{1} - y_{L}}{y_{2} - y_{1}}$$

$$\beta = 1 + 2 \cdot \frac{yU - y_{2}}{y_{2} - y_{1}}$$

$$\alpha = 2 - \frac{1}{\beta^{d_{j} + 1}}$$

$$\alpha = 2 - \frac{1}{\beta^{d_{j} + 1}}$$

$$C_1 = 0.5((y_1 + y_2) - \beta_q(y_2 - y_1))$$
 $C_2 = 0.5((y_1 + y_2) + \beta_q(y_2 - y_1))$

Operadores de Mutación

RandomMutation

1	2	3	4	5	6	7	8	9	10

1	2	3	4	5	11	7	8	9	10
---	---	---	---	---	----	---	---	---	----

Operadores de Mutación

PolynomialMutation

$$\Delta_{1} = \frac{y - yL}{yU - yL}$$

$$\Delta_{2} = \frac{yU - y}{yU - yL}$$

$$\begin{cases} \Delta_{q} = \sqrt[d]{+1} \sqrt{2r + (1 - 2r)(1 - \Delta_{1})^{dl+1}} - 1 & \text{si } r \leq 0,5 \\ \Delta_{q} = 1 - \sqrt[d]{+1} \sqrt{2(1 - r) + 2(r - 0,5)(1 - \Delta_{2})^{dl+1}} & \text{si } r > 0,5 \end{cases}$$

$$y = y + \Delta_{q}(yU - yL)$$

Representación de la solución del problema de diseño

Problema de diseño de RDA basado en el costo de tuberías.

Representación de la solución problema operacional

Problema de operación basado en el Régimen de bombeo.

