

a) \mathcal{R}_0 :

MA0301 Elementær Diskret matematikk

Øving 2

Våren 2025

Øvingen skal leveres inn digitalt på OVSYS, som én enkelt individuelt .pdf-fil. Du må gjøre et ærlig forsøk på alle oppgavene som ikke har en stjerne etter seg.

1 La $A = \{1, 2, 3, 4, 5\}$ og betrakt følgende relasjoner på A :
$\mathcal{R}_0 = \{(x, y) \in A \times A \mid x + y \text{ kan deles på 3}\}$
$\mathcal{R}_1 = \{(x, y) \in A \times A \mid x - y \text{ kan deles på 3}\}$
$\mathcal{R}_2 = \{ (x, y) \in A \times A \mid x + y = 6 \}$

Velg de riktige påstandene under. Flere av dem kan være sanne samtidig. Du trenger ikke å forklare svarene dine.

	\square er refleksiv.	
	\square er symmetrisk.	
	\square er transitiv.	
	\square er en funksjon.	
b)	\mathcal{R}_1 :	
	\square er antisymmetrisk.	
	\Box inneholder $(4,1)$.	
	\square er symmetrisk.	
	\square er en funksjon.	
c)	\mathcal{R}_2 :	
	\square er refleksiv.	
	\square er en delmengde av \mathcal{R}_0 .	
	\square er en delmengde av \mathcal{R}_1	
	\square er en funksjon.	
d)	Betrakt disse påstandene:	
	\square Både \mathcal{R}_0 og \mathcal{R}_1 er ekvivalensrelasjoner.	
	$\square \mathcal{R}_2$ er en ekvivalensrelasjon.	
	☐ Ingen av relasionene nevnt i denne oppgaven er delvi	se ordninger.

Teori:

- Husk at det er tre krav for at en relasjon skal være en delvis ordning: Den må være refleksiv, transitiv og antisymmetrisk. For å vise at en relasjon er en delvis ordning, er det derfor tilstrekkelig å vise at den har hver av disse tre egenskapene.
- Husk at en ekvivalensrelasjon er en refleksiv, transitiv og symmetrisk relasjon.
- 2 Betrakt følgende resonnement:

"La \mathcal{R} være en symmetrisk og transitiv relasjon på en mengde E.

- 1. $(x,y) \in \mathcal{R} \Rightarrow (y,x) \in \mathcal{R}$ fordi \mathcal{R} er symmetrisk
- 2. $(x,y) \in \mathcal{R}$ og $(y,x) \in \mathcal{R} \Rightarrow (x,x) \in \mathcal{R}$ fordi \mathcal{R} er transitiv
- 3. Altså er \mathcal{R} refleksiv."

Vi ønsker å sjekke om denne resonneringen fungerer på et eksempel: La \mathcal{R} være relasjonen $\{(1,1)\}$ på mengden $A := \{1,2\}$.

- a) Er \mathcal{R} en symmetrisk og transitiv relasjon? Forklar.
- b) Er \mathcal{R} en refleksiv relasjon? Forklar.
- c) Bestem om resonnementet over er gyldig eller ugyldig.
- [3] La $A = \{1, 2, 3, \dots, 10\}$. Betrakt følgende relasjon \mathcal{R} på A:

$$\mathcal{R} = \{(a, b) \in A \times A \mid b \text{ kan deles på } a \text{ (uten rest)}\}$$

- a) Tegn \mathcal{R}
- b) Vis at relasjonen er en delvis ordning.
- c) Forklar hvorfor relasjonen er ikke en ekvivalensrelasjon.
- a) La $A = \{1, 2, 3, 4\}$ og $B = \{4, 5\}$. Forklar eller demonstrer ved opplisting at det er like mange elementer i $A \times B$ som i $B \times A$.
 - b) La A, B være to vilkårlige mengder. Vis at

$$A \times B \cap B \times A = (A \cap B) \times (B \cap A)$$

c) \bigstar La A, B være to vilkårlige mengder. Vis at $A \times B$ og $B \times A$ har samme kardinalitet ved å finne en bijektiv funksjon f som sender par $(x_A, x_B) \in A \times B$ til par $(y_B, y_A) \in B \times A$. (Hint: Gitt x_A og x_B , hva bør y_B og y_A være? Husk å forklare hvorfor funksjonen du foreslår er surjektiv og injektiv.)

Under har vi noen funksjoner $\mathbb{N} \to \mathbb{N}$, altså funksjoner som tar inn et naturlig tall og gir ut et naturlig tall. For hver av dem, ta stilling til om funksjonen er surjektiv og/eller injektiv. Husk å begrunne svaret ditt.

(husk at 0 teller som partall)

a)
$$f(x) = x + 2$$

b)
$$f(x) = \begin{cases} x+1, & \text{hvis } x \text{ er partall} \\ x-1, & \text{hvis } x \text{ er oddetall} \end{cases}$$

c)
$$f(x) = \begin{cases} x/2, & \text{hvis } x \text{ er partall} \\ (x-1)/2, & \text{hvis } x \text{ er oddetall} \end{cases}$$

- I denne oppgaven vil vi bevise at noen mengder er tellbare. I forelesningen ble det vist at \mathbb{Z} er tellbar fordi fant en injeksjon fra \mathbb{Z} til \mathbb{N} . Bruk en slik teknikk for å vise at følgende mengder er tellbare:
 - a) $\mathbb{N} \setminus \{0, 1\}$
 - b) $\mathbb{N} \times \{0,1\}$
 - c) $\mathbb{N} \times \mathbb{N}$