Unsupervised Learning

Overview

Algorithms such as regression and classification "learn" a function y = f(x)

Unsupervised learning algorithms look at data (the X) and try to find patterns within it

Clustering and Principal Components Analysis are familiar examples

Supervised and Unsupervised Learning

Training the ML-based Classifier

Everything so far discussed really applied only to Supervised Learning

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Supervised Learning

Input variable x and output variable y

Learn the mapping function y = f(x)

Approximate the mapping function so for new values of x we can predict y

Use existing dataset to correct our mapping function approximation

Unsupervised Learning

Only have input data x no output data

Model the underlying structure to learn more about data

Algorithms self discover the patterns and structure in the data

Unsupervised Learning does not have:

y variables a labeled corpus

Why Look Within

In Life

In Machine Learning

To be emotionally self-sufficient

To make unlabelled data self-sufficient

To learn what values matter to you

Latent factor analysis

Identify others who share them...

Clustering

..and those who don't

Anomaly detection

Eliminate what does not matter

Quantisation

In general, to train yourself to navigate the

Pre-training for supervised learning problems

outside world

(classification, regression)

Unsupervised Learning Use-cases

ML Technique

Use-case

To make unlabelled data self-sufficient

Identify photos of a specific individual

Latent factor analysis

Find common drivers of 200 stocks

Clustering

Find relevant document in a corpus

Anomaly detection

Flag fraudulent credit card transactions

Quantisation

Compress true color (24 bit) to 8 bit

Pre-training for supervised learning problems (classification, regression)

All of the above!

Unsupervised Learning Use-cases

What

How

To make unlabelled data self-sufficient

Autoencoder

Latent factor analysis

Autoencoder

Clustering

Clustering

Anomaly detection

Autoencoder

Quantisation

Clustering

Pre-training for supervised learning problems

All of the above!

(classification, regression)

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Autoencoding

Identify latent factors that drive data e.g. PCA

Clustering Algorithms

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Autoencoding

Identify latent factors that drive data e.g. PCA

Patterns in Pata

How do you make sense of this?

Patterns in Pata

Group them based on some

common

attributes

Patterns in Pata

Clustering

Products sold on Amazon People on Facebook

Websites indexed by Google

What if you want to group more complex

entities?

Products sold on Amazon People on Facebook Websites indexed by Google

Too many entities, too many attributes per entity

Huge complexity

Anything can be represented by a set of numbers

Product ID, Timestamp,
Amount

Age, Height, Weight

Length, word frequencies

Age, Height, Weight

Age, Height, Weight

Age

Age, Height, Weight

A set of N numbers represents a point in an N-dimensional Hypercube

A set of points, each representing a Facebook user

Same group = similar

Different group = different

Same group = similar

Different group = different

Users in a Cluster

May like the same kind of music

May have gone to the same high school

May have kids of the same age

The distance between users in a cluster indicates how similar they are

Maximize intra-cluster similarity

Minimize inter-cluster similarity

The K-Means Clustering algorithm is a famous Machine Learning algorithm to achieve this

K-Means Clustering

Initialize K centroids i.e means

Recalculate the mean for each cluster

Re-assign the points to clusters

Iterate until
points are in
their final
clusters

Convergence

Each cluster has a representative point called a

reference vector

Because of how they are calculated, these reference vectors are often called centroids

Repeat:

For each data point:

Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

- Pick an initial solution (algorithms exist to pick well)
- Iterate until convergence
 - Update assignments of points to clusters
 - Update coordinates of reference vectors
- Keep iterating until we converge

Repeat:

For each data point:

Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

Hyperparameters

- Number of clusters
- Initial values of centroids

Repeat:

For each data point:
Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

Design choice #1:

- Distance measure between point, cluster
- Euclidean distance often used

Repeat:

For each data point:

Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

Design choice #2:

- Calculating cluster center from points in cluster
- Centroid (simple average) often used

Total Reconstruction Error

...Minimising total reconstruction error

The lower the total reconstruction error, the better the fit

Individual Reconstruction Error

Square of Euclidean distance of each point from nearest reference vector

Total Reconstruction Error

Sum over all points and reference vectors

Hyperparameters

Model configuration properties that define a model, and remain constant during the training of the model

Model Inputs

Model Parameters

Model Hyperparameters

Model Inputs

Input data points, training dataset

Model Parameters

Model Hyperparameters

Model Inputs

Input data points, training dataset

Model Parameters

Reference vectors, i.e. centroids of each cluster

Model Hyperparameters

Model Inputs

Input data points, training dataset

Model Parameters

Reference vectors, i.e. centroids of each cluster

Model Hyperparameters

Number of clusters, initial values, distance measure

Hyperparameters in K-Means Clustering

Number of clusters

Initial values

Distance measures

Number of Clusters

K is the most important hyperparameter

Sometimes obvious e.g. 10 in MNIST digit classification

Else plot average reconstruction error against k, identify elbow

Choosing K

Average Distance to Centroid

Choosing K

Average Distance to Centroid

Initial Values

Final reference vector values sensitive to initial values

Random initialization might not work - examine data carefully

Initial Values

Initial Values

Final reference vector values sensitive to initial values

Random initialization might not work - examine data carefully

- Can perform PCA of data
- Divide range of normalised PCs into K
- Take average of each

Pistance Measures

Can choose multiple distance measures:

Distance Measures

Distance from each point to the center

MARSTON MARST CP WILTSHIRE COUNTY Metres © Khornetres 1 MM 2 3 4 5 6 7 ETRIC

Pistance Measures

Can choose multiple distance measures:

- Euclidean distance centroid might not be actual data point
- Mahalanobis distance normalise each dimension to have equal variance
- Cosine distance cosine of angle between point and centroid

Autoencoders and Dimensionality Reduction

Unsupervised ML Algorithms

Clustering

ldentify patterns in data items e.g. Kmeans clustering

Autoencoding

Identify latent factors that drive data e.g. PCA

40 65 73 81 36 68 22 15

50 25 76 38 19 58 29 88 44 22 11 34 17 52

40 65 73 81 36 68 22 15

Completely random, only brute force memorization works

50 25 76 38 19 58 29 88 44 22 11 34 17 52

40 65 73 81 36 68 22 15

50 25 76 38 19 58 29 88 44 22 11 34 17 52

There is a pattern here

$$n_2 = n_1/2$$

$$n_3 = 3n_2 + 1$$

50 25 76) 38 19 58 29 88 44 22 11 34 17 52

$$n_2 = n_1/2$$
 $n_3 = 3n_2 + 1$

50 25 76 38 19 58 29 88 44 22 11 34 17 52

$$n_2 = n_1/2$$
 $n_3 = 3n_2 + 1$

This is an encoding to remember this long sequence

Autoencoders find patterns in data so it can remember the data using a a more compact representation

An encoding

Latent Factor Analysis: Principal Component Analysis

Pata in One Pimension

Unidimensional data points can be represented using a line, such as a number line

Pata in Two Pimensions

It's often more insightful to view data in relation to some other, related data

A Question of Dimensionality

Pop quiz: Do we really need two dimensions to represent this data?

Bad Choice of Pimensions

If we choose our axes (dimensions) poorly then we do need two dimensions

Good Choice of Pimensions

If we choose our axes (dimensions) well then one dimension is sufficient

Objective: Find the "best" directions to represent this data

Start by "projecting" the data onto a line in some direction

Start by "projecting" the data onto a line in some direction

The greater the distances between these projections, the "better" the direction

Bad Projection

A projection where the distances are minimised is a bad one information is lost

Good Projection

A projection where the distances are maximised is a good one - information is preserved

The direction along which this variance is maximised is the first principal component of the original data

Find the next best direction, the second principal component, which must be at right angles to the first

Find the next best direction, the second principal component, which must be at right angles to the first

Principal Components at Right Angles

Directions at right angles help express the most variation with the smallest number of directions

The variances are clearly smaller along this second principal component than along the first

In general, there are as many principal components as there are dimensions in the original data

Re-orient the data along these new axes

If the variance along the second principal component is small enough, we can just ignore it and use just I dimension to represent the data

Variation along 2 dimensions: 2 principal components required

Variation along I dimension: I principal component is sufficient

PCA is used for dimensionality reduction i.e. use fewer attributes to represent the same information

Choose the most important attributes

Principal Components Analysis

Principal Components Analysis

Keep F₁ and F₂, discard the rest

These 2 principal components explain the vast majority of the total variance in the original data

Principal Components Analysis

Original Data

Same number of

Principal Components

Dimensionality Reduction

Principal Components

Reconstruct Original Pata

Principal Components

Weight Vectors

Original Data

Autoencoders

Autoencoders are Neural Networks that learn efficient representations of data (e.g. PCA)

y = f(x)

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

x = f(x)

Autoencoders Learn the Input!

The process is inherently unsupervised, but cleverly uses the input itself to train an algorithm

Autoencoder

Autoencoder

Autoencoder

$$x = f(x) = g(L)$$

Uncover Hidden Patterns in Data

The function f is just the identity, not very interesting. Autoencoders uncover latent factors L that actually drive our data

Autoencoding

Unsupervised learning is often a preparatory step before a supervised learning step (classification, regression)

Autoencoders

Autoencoders are the ultimate "look-within" unsupervised ML technique

Simply neural networks that try to output exactly what is input

Autoencoders

Sounds trivial...

...But we constrain the NN architecture to force real learning

This Neural Network trivially "learns" the input

Just one layer, which serves as both input and output layer

In an autoencoder, the input and output layer must have same dimensionality as the input data

The autoencoder just passes the input through, so output is exactly equal to input

Now, let's constrain the network to force dimensionality reduction

Dimensionality of the NN is now lower than that of input data

Add a middle, hidden layer with just three neurons (3 < N)

The input and output layers must now be separated, since each must still have same dimensionality as the input

Why? Because autoencoder seeks to reconstruct input

This gives undercomplete autoencoders a characteristic sandwich-like appearance

This gives undercomplete autoencoders a characteristic sandwich-like appearance

The undercomplete autoencoder will try to exactly match the input, but it will likely not succeed completely

Now, because of the dimensionality reduction, output will not be exactly same as input

A reconstruction error will now exist

The autoencoder will be forced to learn the most significant characteristics of the data i.e. latent factors

Design choice: What cost function to use in training to minimise reconstruction error?

Possible choice: Minimise MSE (mean-square-error)

Design choice: What activation function to use for the hidden layer neurons?

Activation Function

Recall: Each neuron performs two simple operations, an affine transformation and an activation function

Possible choice: Use linear neuron (no activation function)

Linear Neurons + Min MSE = PCA

Autoencoders with linear neurons that are trained to minimise MSE will simply perform PCA

The central hidden layer is called the coding layer

The central hidden layer is called the coding layer

The central hidden layer is called the coding layer

The first phase - from input to coding - is called encoding

The second phase - from coding to output - is called decoding

Autoencoders are a way to learn what features really matter

Stacked Autoencoder

Add multiple hidden layers to learn more complex internal patterns

Stacked Autoencoder

Add multiple hidden layers to learn more complex internal patterns

Stacked Autoencoders

Overfitting is a serious concern with stacked autoencoders

One solution is to "tie" the weights of symmetric hidden layers to be the same

Another is to train individual hidden layers independently

y = doSomething(really_complicated_x)

Supervised Machine Learning

Here the feature vectors are very complex, making it hard for us to even figure out what features matter

really_complicated_x = g(simple_L)

Unsupervised Pretraining

Use autoencoders to find hidden patterns in the complicated feature data and to discover the latent factors L that matter

y = doSomething(g(simple_L))

Supervised Learning Made Simpler

The latent factors output by the autoencoder make the supervised learning easier and less reliant on human expertise in feature engineering

 $x = f(x + random_noise)$

Penoising Autoencoders

A powerful trick is to add random noise to the inputs and force the autoencoder to recover the signal from the noise

Penoising Autoencoder

Forces autoencoder to discern signal from noise

Can't trivially copy over inputs

Penoising Autoencoder

Two simple mechanisms

- add white noise (Gaussian random numbers)
- Can also switch off inputs e.g. dropout

Types of Learning

$$y = f(x)$$

Supervised algorithms seek to learn external relationships

$$f(x) = ?$$

Unsupervised algorithms seek to learn internal relationships

Identifying Specific Individual

Images of people are common - millions of data items

Images of a specific individual are hard to get

Build classifier to tell if two photos are of same individual or not

Use large number of unlabelled images for this

Use image itself as label (autoencoder!)

Now use this classifier on few available photos of specific individual

Identifying Common Privers

Portfolios of financial assets have hundreds of stocks, bonds

Many common drivers of returns (e.g. state of economy)

Measuring risk of complex portfolio is hard

Identify few, uncorrelated drivers shared by most assets

These factors explain most variance in stock returns - PCA

Now use Principal Components to measure risk

Scenario-based stress tests now relatively easy

Fraudulent Card Transactions

Patterns of card usage vary by individual

More idiosyncratic than spam emails

Hard to say what is fraudulent, what is not

Use autoencoders to find patterns of each individual

No labelled instances required at all

Run autoencoder on new card transactions

Flag instances where reconstruction loss is high