5. Quadratic Risk of Estimators **Quadratic Risk of Estimators**

Start of transcript. Skip to the end.

OK.

So now I have two things.

I have the bias and I have the variance.

And I made things easy for you, because the bias was always

the same.

It was 0000 except for the last one, which is this [INAUDIBLE]..

But I had the bias 0.

So once you said that the bias is 0.

视频

下载视频文件

下载 SubRip (.srt) file

下载 Text (.txt) file

Find the Quadratic Risk

1/1 point (graded)

Let $\hat{m{ heta}}_n$ denote an estimator for a true parameter $m{ heta}$. The **quadratic risk** of $\hat{m{ heta}}_n$ is defined to be

$$\mathbb{E}\left[\left(\hat{\theta}_n-\theta\right)^2\right].$$

As in the previous problem on variance, let $X_1,\ldots,X_n\stackrel{iid}{\sim}\mathcal{U}([a,a+1])$ where a is an unknown parameter. What is the quadratic risk of the estimator $\overline{X}_n - \frac{1}{2}$?

Quadratic risk:

✓ Answer: 1/(12*n)

 $\frac{1}{12 \cdot n}$

Solution:

Recall that

quadratic risk = $variance + bias^2$.

We showed in a previous question that this estimator is unbiased. Also note that $\mathrm{Var}(\overline{X}_n) = \mathrm{Var}(\overline{X}_n - \frac{1}{2}) = \frac{1}{12n}$. Hence, the quadratic risk is also $\frac{1}{12n}$.

Answers are displayed within the problem

Properties of Estimators

0/1 point (graded)

Let $\hat{\theta}_n$ denote an estimator for a true parameter θ . Here n denotes the sample size. Which of the following properties of $\hat{\theta}_n$ would ensure that $\hat{\theta}_n$ converges in probability to θ as $n \to \infty$? (Choose all that apply.)

- $\ \ \ \ \hat{ heta}_n$ is consistent. \checkmark
- $\ \ \ \ \hat{m{ heta}}_{n}$ is unbiased.
- ullet The quadratic risk of $\hat{oldsymbol{ heta}}_n$ goes to 0 as $n o \infty$. \checkmark
- \square The variance of $\hat{\boldsymbol{\theta}}_n$ goes to $\boldsymbol{0}$ as $n \to \infty$.

Solution:

The first choice is correct, because by definition, consistency implies that the estimator $\hat{\theta}_n \to \theta$ as $n \to \infty$. The third choice, "The quadratic risk of $\hat{\theta}_n$ goes to 0 as $n \to \infty$.", is correct because if the quadratic risk $\mathbb{E}\left[\left(\hat{\theta}_n - \theta\right)^2\right] \to 0$ then $\hat{\theta}_n \to \theta$ in L^2 . By the properties of convergence, this implies that $\hat{\theta}_n \to \theta$ in probability.

Recall: Refer to Chapter 1 to review the relationship between the different types of convergence.

The second choice, " $\hat{\theta}_n$ is unbiased.", is incorrect. We give an example that shows that this choice is incorrect. Note that if $X_1,\ldots,X_n\stackrel{iid}{\sim} N\left(\mu,1\right)$, then $\hat{\theta}_n:=X_1$ is an unbiased estimator for μ because $\mathbb{E}\left[X_1\right]=\mu$. However, it is not consistent: $X_1-\mu$ does not tend to 0 as $n\to\infty$.

Using this same example, we can also see that the fourth choice "The variance of $\hat{\theta}_n$ goes to 0 as $n \to \infty$." is incorrect. The estimator $\hat{\theta}_n := 0$ has variance 0 for all n, but if $\mu \neq 0$, then $\hat{\theta}_n - \theta = \mu$, which is constant for all n and does not converge to 0.

提交

你已经尝试了3次(总共可以尝试3次)

1 Answers are displayed within the problem

讨论

显示讨论

主题: Unit 2 Foundation of Inference:Lecture 4: Parametric Estimation and Confidence Intervals / 5. Quadratic Risk of Estimators

认证证书是什么?

© 保留所有权利