Inteligência Artificial Segunda Lista de Exercícios Algoritmos e Programação Genética

Prof. Norton Trevisan Roman

21 de marco de 2019

- 1. Considere uma população consistindo de 5 indivíduos com valores de adaptação (antes do ranqueamento) $f_1 = 7$, $f_2 = 5$, $f_3 = 8$, $f_4 = 10$, $f_5 = 15$. Calcule a probabilidade do indivíduo i_4 ser selecionado, em um único **passo de seleção**, com
 - (a) Seleção da roda de roleta (ou seja, proporcional ao valor de adaptação do indivíduo)
 - (b) Seleção por torneio, com torneios de tamanho k=2, em que o processo de seleção resulta em um único indivíduo
 - (c) Seleção por posição (rank), em que atribuímos um novo valor de adaptação a cada cromossomo, conforme sua ordem (em uma ordenação por f_i), em que $g_1 = 1$, $g_2 = 2$, ..., $g_5 = 5$, sendo g_i o novo valor de adaptação do i-ésimo pior indivíduo.
- 2. Em uma população temos um total de N=6 cromossomos, com funções de adaptação $f_1=1$, $f_2=2,\,f_3=3,\,F_4=4,\,f_5=5,\,f_6=6$. Responda:
 - (a) Assuma que, a cada iteração do algoritmo de seleção, 2 indivíduos sejam selecionados aleatoriamente, deles resultando um único filho (via cruzamento). Então esse processo é repetido N=6 vezes, para manter o tamanho da população. Com base nisso, em quantas iterações espera-se que o indivíduo com f=4 apareça no par escolhido (seja como primeiro, segundo, ou ambos os cromossomos) quando usamos a seleção proporcional à adaptação (roda de roleta), em uma única $\operatorname{\mathbf{geração}}$?
 - (b) Repita o cálculo para o indivíduo com f = 6.
 - (c) Que problema isso indica que poderia ocorrer em um algoritmo genético baseado em seleção proporcional à adaptação?
- 3. Realize os seguintes cruzamentos (crossovers) de um ponto:
 - (a) 000111 e 101010, com ponto de corte 3 (ou seja, após o 3º cromossomo)
 - (b) 11011110 e 00001010, com ponto de corte 0
 - (c) 1010 e 0101, com ponto de corte 1
- 4. Realize os seguintes cruzamentos (crossovers) de dois pontos:
 - (a) 000111 e 101010, com pontos de corte 1 (ou seja, após o 1º cromossomo) e 4 (ou seja, após o $4^{\rm o}$ cromossomo)
 - (b) 110111110 e 00001010, com pontos de corte 0 e 5 (inclusive)
 - (c) 1010 e 0101, com pontos de corte 1 e 3 (inclusive)
- 5. Dado um conjunto de cromossomos de 20 genes cada, e uma probabilidade independente de mutação de 0.002 por gene (ou seja, cada gene no cromossomo possui 0,2% de chance de sofrer mutação), qual a probabilidade que um cromossomo passar ileso pelo processo de mutação?
 - Atente para o fato desse tipo de mutação ser diferente da apresentada em aula, em que apenas um gene era modificado. Nesse caso, o procedimento de mutação funciona da seguinte maneira:

MUTA(x):

```
m <- probabilidade independente pequena, pré-definida, de haver mutação para cada posição p em x:  n <- \mbox{ escolhe aleatoriamente (distribuição uniforme) número entre 0 e 1 } \\ se n <= m: \\ muta x[p]
```

- 6. Simule a execução de uma geração de um Algoritmo Genético com população de 6 elementos, dados por 001100, 010101, 111000, 000111, 101011, 101000 cuja função sendo maximizada é $f(x) = x^2$. Para isso, assuma que
 - Cada elemento é a representação binária do valor de x, onde x >= 0 é inteiro
 - Cada geração possui o mesmo número de indivíduos
 - Cada cruzamento de 2 pais resulta em 2 filhos. Deixe claro que indivíduos foram "sorteados" para o cruzamento
 - O cruzamento se dá por ponto único, onde o ponto de cruzamento é escolhido aleatoriamente, a cada cruzamento. Deixe claro que pontos de cruzamento foram "sorteados" em sua simulação
 - A mutação se dá como apresentada em aula, ou seja, primeiro verifica-se se haverá mutação, e em seguida sorteia-se uma única posição para sofrer a mutação. Embora a chance de mutação seja pequena, você deve executá-la em pelo menos um cromossomo em sua simulação. Deixe claro qual gene foi "sorteado" para mutação