HEMOSTÁZA

- životně důležitý děj
- omezení až zastavení krvácení při poškození cév

Hlavní hemostatické mechanismy

- 1. vasokonstrikce
- 2. tvorba provizorní destičkové zátky
- 3. hemokoagulace
- 4. organizace sraženiny

VASOKONSTRIKCE

- proporcionální velikosti cévního poškození
- nastává okamžitě
- trvá přibližně 30 min

Mechanismy:

- nervové reflexy
- lokální myogenní kontrakce
- vasokonstrikční látky (např. serotonin)

TROMBOCYTY

- oválná, bezjaderná, bezbarvá tělíska
- fragmenty megakaryocytů
- obsahují mitochondrie, ER, ribosomy, granula
- Ø 2 4 μm
- doba života 9 12 dní
- 100 300 x 10⁹/I
- membrána destiček obsahuje fosfolipidy (= destičkový faktor 3) nezbytné pro aktivaci některých koagulačních faktorů
- aktivace destiček 3 syntéza tromboxanu A2 (z k. arachidonové) 3 aktivace dalších destiček (lze inhibovat zablokováním cyklooxygenázy k. acetylsalicylovou)

TROMBOCYTY: DRUHY GRANUL

- denzní granula serotonin, ADP, ATP, Ca²⁺
- α granula von Willebrandův faktor (vWF),
 destičkový faktor 4, trombospondin,, destičkový růstový f. (PDGF), koagulační faktor V a XIII, ...
- lysozomy lysosomální enzymy (E štěpící bílkoviny a sacharidové komplexy)
- uplatění: vazokonstrikce v místě poranění, hemokoagulace následná reparace poraněné cévy

TVORBA PROVIZORNÍ DESTIČKOVÉ ZÁTKY

- nepoškozená cévní stěna = nesmáčivá
- výstelky cév tvořené endotelem
- poškození nesmáčivého povrchu obnažení kolagenu změna v chování destiček

Činnost trombocytů

- (1) adheze
- (2) změna tvaru
- (3) agregace
- (4) uvolňovací reakce

ADHEZE

- trombocyty adherují k obnaženému kolagenu
- účast von Willebrandova faktoru (produkován endotelem)

ZMĚNA TVARU A AGREGACE

trombocyty bobtnají, tvoří výběžky

shlukují se a zachycují k sobě navzájem

UVOLŇOVACÍ REAKCE

ADP, serotonin, prostaglandiny, tromboxan A2, ...

HEMOKOAGULACE

- soubor enzymatických reakcí, jehož výsledkem je přeměna tekuté krve na nerozpustný gel
- kaskáda reakcí v níž jeden koagulační faktor aktivuje další v přesně daném pořadí a výsledkem je vytvoření fibrinové sítě
- vytvoření koagula 3 6 min
- retrakce koagula (vytlačení séra) 30 60 min
- celkem se účastní asi 40 látek: prokoagulancia

antikoagulancia

	slovní označ.	poločas r.
I.	fibrinogen	96 h
II.	protrombin	72 h
III.	tkáň. tromboplastin	
IV.	vápenaté ionty	
V.	proakcelerin	20 h
VII.	prokonvertin	5 h
VIII.	antihemofilický gl.	12 h
IX.	Christmas faktor	24 h
X.	Stuart-Prowerové faktor	30 h
XI.	plazm. předchůdce tromboplastinu	48 h
XII.	Hagemanův faktor	50 h
XIII.	fibrin stabilizující faktor	250 h

FÁZE HEMOKOAGULACE

- 1. Tvorba aktivátoru protrombinu
- 2. Přeměna protrombinu na trombin
- 3. Přeměna fibrinogenu na fibrin

TVORBA AKTIVÁTORU PROTROMBINU

v zevním systému

při kontaktu krve se zevním okolím cévy uplatňuje se tkáňový tromboplastin vytvoření prvních vláken cca 15 s

ve vnitřním systému

uplatňují se pouze faktory přítomné v krvi vytvoření prvních vláken cca 1 – 3 min

FIBRINOVÁ SÍŤ KREVNÍ SRAŽENINY

ROLE VITAMÍNU K

 nezbytný pro syntézu tzv. vitamín K dependentních srážecích faktorů (protrombin, VII, IX, X)

Vitamín K:

- syntetizován bakteriemi ve střevě
- rozpustný v tucích
- kumarinové deriváty fungují jako tzv. antivitamin K

PREVENCE VZNIKU SRAŽENIN

- přítomnost nesmáčivé výstelky
- přítomnost antikoagulancií (fibrin, antitrombin III, heparin)
- činnost makrofágů
- fibrinolytický systém (plasminogen)

INHIBICE HEMOKOAGULACE

PROTISRÁŽLIVÉ PROSTŘEDKY

In vivo

- heparin a jeho deriváty
- kumarinové deriváty
- pentasacharidy (inaktivují Xa prostřednictvím AT III)
- hirudiny (inhibují trombin)
- gatrany (inhibují trombin)
- xabany (inhibují Xa)

In vitro

- dekalcifikace citronan sodný, šťavelan draselný, šťavelan amonný, K2 EDTA (etylendiamin, tetracelová sůl)
- heparin

Vzácně:

- defibrinace
- nádoba s nesmáčivým povrchem

TROMBOEMBOLICKÁ NEMOC

Thrombóza

- vzniká na cévě poškozené aterosklerózou nebo zánětem
- může se rozpustit nebo uvolnit a cestovat

Embolus

ZVÝŠENÁ KRVÁCIVOST

Nedostatek plasmatických faktorů

hemofilie onemocnění jater afibrinogenémie

Snížené množství trombocytů

trombocytopenická purpura (tro ↓ 50 x 10⁹/I)