TP –Architecture IPv6

Présentation du TP.

Objectif

Découvrir les spécificités d'Ipv6 concernant les outils utilisés, réaliser différents modes de configuration : statique, auto-configuration stateless et statefull. Faire le lien avec les protocoles de couches supérieures, notamment le DNS et les spécificités des résolutions de noms et reverse.

Préparation

Vous devrez utiliser le TP ipv6/.mar sur chamilo:

Version 1.2 Création le : 28/11/2018 Quentin Giorgi.

Note importante:

Afin de faire des observations pertinentes les modifications de la pile IPv6 de m1 et m² doivent être précédées des commandes ip link set dev eth0 down ip link set dev eth0 up

Afin d'être sûr de ne pas avoir des éléments des configs précédentes.

Observation des trames

Mettez en place un mode opératoire permettant d'observer les échanges de trames entre R1 et m1 sur wireshark de la station hôte.

Configuration IPv6 statique

Sous-réseau 1

fd00:dead:dead:1 :: /64 2001:dead:dead:1 ::/64

Sous-réseau 2

fd00:dead:dead:2 :: /64 2001:dead:dead:2 ::/64

Question : pourquoi le choix de ces sous-réseaux ? Que cela signifie t-il en IPv6 ?

La station m2 est un serveur, son adresse sera fixée de manière statique sur le sous-réseau 2 (adresse de la station interface ID ::1).

Question : Effectuer (en tant que root) les manipulations nécessaires dans /etc/network/interfaces pour m1. (adresse et gateway)

Question : Effectuer les manipulations nécessaires pour R1, et vérifier en essayant un ping depuis m1 et m2 les commandes ping6 fd00:dead:dead:2::IDROUTER et ping6 fd00:dead:dead:1::IDROUTER

Question : Effectuer les manipulations nécessaires pour R1, et vérifier en essayant un ping depuis R1 sur les adresses Ipv6 unique local unicast et unicast link local. Quelle différence voyez vous ?

Configuration IPv6 autoconf stateless

Supprimer les config de m1 en statique.

NE430 Couches réseau et routage TP- IPV6

Version 1.2 Création le : 28/11/2018 *Quentin Giorgi*.

Le router R1 devra envoyer les informations d'auto-configuration via radvd (déjà installé sur le routeur), créer le fichier radvd.conf pour annoncer un prefx fd00:dead:dead::1/64 sur net1

Question : Effectuer (en tant que root) et expliquer les configurations nécessaires dans radvd.conf pour que R1 puisse s'annoncer sur le sous-réseau 1. expliquez chaque ligne du fichier de conf, notamment tester l'influence des paramètres de prefix : AdvOnLink et AdvAutonomous

Vérifier en essayant un depuis m2 et m1 les commandes ping6 fd00:dead:dead:1::ff et ping6 fd00:dead:dead:2::ff et ping6 fd00:dead:dead:2::1

Une fois que m1 obtient une adresse stateless par SLAA C : Comment est construit l'interfaceID de l'adresse IPv6 ? Quelle est le la durée de vie valide et préférée ? Modifiez les pour mettre 120s.

Quelle est l'utilité de sysctl -w sys.net.ipv6;conf.eth0.addr_gen_mode ? Que se passe t-il selon les valeurs à 0, 1 2 ou 3 ?

Quelle est l'utilité de sysctl -w sys.net.ipv6;conf.eth0.use_tempaddr Que se passe t-il selon les valeurs à 0, 1 2 ou 3 ?

Par exemple faites un ping vers une IPv6 locale et distante.

Modifier le fichier radvd.conf pour annoncer un prefix 2001:dead:dead::1/64 sur net1

Faites un ping depuis m1 sur les @ ULA et Global unicast, quele est l'@IPv6 source utilisée ?