Km Mayawati Govt. Girls Polytechnic

Assignment (Unit-2)

Applied Mathematics-III

1-Identify the curve given by $2x^2 + 2y^2 - 6x + 5 = 0$.

2-If u =
$$e^{xyz}$$
, then show $\frac{\partial^3 u}{\partial x \partial y \partial z}$ = (1 + 3xyz + $x^2y^2z^2$) e^{xyz}

3-If u =
$$\log (x^3 + y^3 + z^3 - 3xyz)$$

show that
$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z+)^2}$$

4-If
$$u = \sin^{-1} \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$$
, then show $\frac{\partial u}{\partial x} = -\frac{y}{x} \frac{\partial u}{\partial y}$

5-If z = f (x,y) , x =
$$e^u + e^{-v}$$
 , y = $e^{-u} - e^v$, y = e^{-u} - e^v , then prove

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$$

6-If
$$u_1 = \frac{x_2 x_3}{x_1}$$
, $u_2 = \frac{x_3 x_1}{x_2}$, $u_3 = \frac{x_1 x_2}{x_3}$, then prove J (u_1, u_2, u_3) = 4

7-If
$$x = r \sin \theta \cos \emptyset$$
, $y = r \sin \theta \sin \emptyset$, $z = r \cos \theta$, then show $\frac{\partial (x,y,z)}{\partial (r,\theta,\emptyset)} = r^2 \sin \theta$

And evaluate
$$\frac{\partial(r,\theta,\emptyset)}{\partial(x,y,z)}$$

8-If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then find $\frac{\partial(x,y)}{\partial(r,\theta)}$ and $\frac{\partial(r,\theta)}{\partial(x,y)}$.

9- If
$$\vec{r}=t^2\ \hat{\imath}$$
 -t $\hat{\jmath}$ + (2t + 1) \hat{k} , find (i) $\frac{d\vec{r}}{dt}$ (ii) $\frac{d^2\vec{r}}{dt^2}$ (iii) $|\frac{d\vec{r}}{dt}|$ (ii) $|\frac{d^2\vec{r}}{dt}|$

10-If
$$\vec{f}$$
 = grad $(x^3+y^3+z^3-3xyz)$, then find div \vec{f} , curl \vec{f} .

11- Prove (i) curl grad
$$\emptyset = 0$$
 (ii) div $\vec{r} = 3$

12- (i)
$$\int_{1}^{2} \int_{0}^{y/2} y \, dy \, dx$$
 (ii) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} \, dx \, dy \, dz$

13- If
$$\overrightarrow{r(t)} = 5 t^2 \hat{\imath} + t \hat{\jmath} - t^3 \hat{k}$$
 then find $\int_1^2 \overrightarrow{r} \times \frac{d^2 \vec{r}}{dt^2} dt$

14- If
$$F = xv^3 - x^3v$$
 then find $\Delta^2 F$

15-Prove
$$\frac{\partial(u,v)}{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(u,v)} = 1$$