Aukadæmi í eðlisfræði hjá 5.Z

- **Dæmi 1:** Bíll keyrir á hraðanum 45 km/klst um hringtorg með geisla 50 m. Hver þarf stöðunúningur að vera hið minnsta til þess að bíllinn renni ekki til?
- **Dæmi 2:** Kúla með massann 0,350 kg er sveiflað í bandi í lárétta hringi með geisla 1,2 m. Kúlan fer upphaflega 3 hringi á sekúndu.
 - (a) Hver er hraði kúlunnar?
 - (b) Hver er togkrafturinn í bandinu?

Nú hægir á hraða kúlunnar þar til bandið myndar 45° horn miðað við lárétt.

- (c) Hver er hraði kúlunnar?
- (d) Hver er togkrafturinn í bandinu?
- **Dæmi 3:** Plútó er dvergpláneta sem hefur massa $M_P=1,30\cdot 10^{22}\,\mathrm{kg}$ og geisla $r_p=1190\,\mathrm{km}$. Plutó er á sporbaug um sólina í meðalfjarlægð $R_P=5,91\cdot 10^{12}\,\mathrm{m}$ frá sólu. Karon er stærsta fylgitungl Plútó og hefur massa $M_K=1,59\cdot 10^{21}\,\mathrm{kg}$. Karon er á jarðsnúningsbundinni (geosynchronous) sporbraut um Plútó. Það þýðir að umferðartími Karons um Plútó samsvarar einum degi á Plútó. Tíminn sem það tekur Plutó að snúast um sjálfan sig er 6,39 jarðardagar
 - (a) Hver er þyngdarhröðunin á Plútó?
 - (b) Hver er fjarlægðin á milli Plútó og Karons?
 - (c) Hver er þyngdarkrafturinn á milli Plútó og sólarinnar?
 - (d) Fylgitunglið Nix er í 48 700 km fjarlægð frá Plútó. Hver er umferðartími Nix um Plútó?

Dæmi 4: Kúla með massa $m=0.1\,\mathrm{kg}$ fellur úr hæðinni $h_0=1.0\,\mathrm{m}$. Í hvert skipti sem kúlan lendir á jörðinni minnkar hraði kúlunnar um 20% þ.e. ef hraði kúlunnar eftir n skopp er v_n þá gildir að:

$$v_{n+1} = k \cdot v_n$$

þar sem k=0,8 og v_{n+1} er hraði kúlunnar eftir n+1 skopp.

- (a) Finnið hraða kúlunnar, v_0 , rétt áður en hún skoppar á jörðinni í fyrsta skipti.
- (b) Finnið mestu hæðina, h_1 , sem kúlan nær eftir að hafa skoppað á jörðinni einu sinni.
- (c) Sýnið að almennt gildi að:

$$v_n = k^n \cdot v_0$$
 og að $h_n = k^{2n} \cdot h_0$

- (d) Finnið tímann, t_0 , sem það tekur kúluna að falla úr h_0 niður á jörðina.
- (e) Sýnið að tíminn, t_n , sem líður frá því að kúlan skoppar í n-ta skipti og þar til hún er við það að lenda aftur í n+1-ta skipti sé gefinn með:

$$t_n = \frac{2v_0}{g}k^n = 2k^n t_0$$

(f) Sýnið að þá sé heildartíminn, τ_n , sem hefur liðið rétt fyrir n+1-ta skoppið:

$$\tau_n = t_0 + t_1 + \ldots + t_n = \frac{v_0}{g} \left(1 + 2k + 2k^2 + \ldots + 2k^n \right)$$