Tutorial

O1. Let b(n) be the binary representation of $n \ge 0$.

Show that:

(a) $\{b(n)^{m}\} b(n+1) \mid n \ge 0\}$ is not a CFL.

(b) $\{b(n)^{m}\} b(n+1) \mid n \ge 0\}$ is a CFL.

O Structure: $b(n) : 1000 | i>0 b(n) : 1^{m} b(n)^{m} | i=0$ of $b(n+1) : 10^{m}$.

(a) Pumping lemma constant = k.

(a) Pumping lemma constant = k.

(i) If i or i contains i then done i = 2. i = 2

(b) Give a CFG

Q2. Show that {anbn2 | n>0} is not a CFL.

Pumping lemma constant K. Z akbk²

Adversary: u v w n y(i) $v w x \in a^k$. $a^{k+(i+)[l+j]}b^{k^2}$ $i=0 \leftarrow$ (ii) $v w x \in b^k^2$ $i=0 \leftarrow$ (iii) $v w x : a^k b^k$ i=2 i=2 Remaining: $v=a^k$ $n=b^k$ $a_{l,l} \beta_{l} < k$.

Suppose $(k+\alpha_l)^2 : k^2 + \beta_l$ Hence done. $k^2 + \alpha_l^2 + 2k\alpha_l = k^2 + \beta_l$ Hence done.

Q3. Show that $\{w \in \{a,b\}^* | \#a(w) \text{ is an integral multiple of } \#b(w)\}$ is not a CFL.

Pumping L constant k. $a^{k^2}b^k$ k^2+b^4 $k+\beta_1$ $p_i > k$, p_i is a prime; $p_2 > p_i k$, p_2 is a prime.

Soln: $Z=a^{p_1p_2}b^{p_2}$

Q4. True or False: Let L be a CFL.

(a) $\{\omega\omega | \omega \in L\}$ is also a $CFL \leftarrow false$ when $L = \{a_ib_j^*\}^*$ (b) $\{\omega | \omega\omega \in L\}$ is also a CFL.

False.

Q5.(a) Design a PDA over $\{a,b\}$ for $\{a,b\}^*$ - $\{palindromes\}$. (b) Design a CFG for the same