Wtorek 27.04

UMCS.ai

Klasyfikacja zbiorów – problem Titanica

Overfitting

Overfitting – jak uniknąć?

Wartość accuracy na przestrzeni epok

Wartość loss na przestrzeni epok

Overfitting – jak uniknąć?

from tensorflow.keras.callbacks import EarlyStopping

```
history = model.fit(x=X_train, y=Y_train, epochs=200, batch_size=16, validation_split=0.2, callbacks=[EarlyStopping(monitor='loss', patience=2)])
```

history.history[,loss'] = wartości loss dla zbioru train history.history[,val_loss'] = wartości loss dla zbioru valid

Funkcje straty

Klasyfikacja binarna:

używamy aktywacji sigmoid oraz funkcji straty binary crossentropy

Klasyfikacja wieloklasowa:

używamy aktywacji softmax orax funkcji straty categorical crossentropy

Regresja:

MAE – mean absolute error

MSE – mean square error

MAPE – mean absolute percentage error

Można doczytać trochę więcej: https://neptune.ai/blog/keras-loss-functions

ZADANIE

- Przeanalizuj zbiór danych Titanic
- Wykonaj transformację kolumn do odpowiedniej postaci
- Zamodeluj dane (np. MLP Keras, [KNN, SVM, Random Forest] sklearn)

Kopalnia wiedzy:

- kaggle.com
- medium.com
- towardsdatascience.com

Index	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
)	1			Braund, Mr. Owen Harris	male	22		0	A/5 21171	7.25	nan	S
	2	1		Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38		0	PC 17599	71.2833	C85	С
2	3	1		Heikkinen, Miss. Laina	female	26	0	0	STON/02. 3101282	7.925	nan	s
	4	1		Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35		0	113803	53.1	C123	S
	5			Allen, Mr. William Henry	male	35	0	0	373450	8.05	nan	S
	6			Moran, Mr. James	male	nan	0	0	330877	8.4583	nan	Q
	7			McCarthy, Mr. Timothy J	male	54	0	0	17463	51.8625	E46	S
7	8			Palsson, Master. Gosta Leonard	male			1	349909	21.075	nan	S
3	9	1		Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0		347742	11.1333	nan	S
	10	1		Nasser, Mrs. Nicholas (Adele Achem)	female	14		0	237736	30.0708	nan	С
0	11	1		Sandstrom, Miss. Marguerite Rut	female	4			PP 9549	16.7	G6	S
1	12	1		Bonnell, Miss. Elizabeth	female	58	0	0	113783	26.55	C103	S
2	13			Saundercock, Mr. William Henry	male	20	0	0	A/5. 2151	8.05	nan	S
3	14			Andersson, Mr. Anders Johan	male	39		5	347082	31.275	nan	S
4	15			Vestrom, Miss. Hulda Amanda Adolfina	female	14	0	0	350406	7.8542	nan	S
5	16	1		Hewlett, Mrs. (Mary D Kingcome)	female	55	0	0	248706	16	nan	S
6	17			Rice, Master. Eugene	male		4		382652	29.125	nan	Q
7	18	1		Williams, Mr. Charles Eugene	male	nan	0	0	244373	13	nan	S
8	19			Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)	female	31		0	345763	18	nan	S
9	20	1		Masselmani, Mrs. Fatima	female	nan	0	0	2649	7.225	nan	С
0	21			Fynney, Mr. Joseph J	male	35	0	0	239865	26	nan	S
1	22	1	2	Reeslev. Mr. Lawrence	male	34	а	а	248698	13	D56	ς

Analiza danych

Read dataset

df = pd.read_csv('data.csv')

Analyse data

Print head / tail of dataset

print("Head:\n", df.head(n=5))
print("Tail:\n", df.tail(n=10))

Get column names

print("Column names: ", df.columns)

Describe dataframe

print(df.describe())

Check if dataframe has NaN values

print(df.isna())
print(df.isna().any())

Print feature correlations

```
print(df[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean())
print(df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean())
print(df[['SibSp', 'Survived']].groupby(['SibSp'], as_index=False).mean())
```

Preprocessing danych

Drop column / row

```
df = df.drop(['PassengerId', 'Ticket'], axis=1) # Column
df = df.drop(0, axis=0) # Row #0
```

Drop rows with any NaN value

```
df = df.dropna()
```

Fill NaN values

```
df['Age'] = df['Age'].fillna(df['Age'].dropna().median()) # Fill 'Age' with median
df['Age'] = df['Age'].fillna(method='ffill') # ffill = forward fill ; bfill = backward fill
```

Categorical feature normalization

```
df['Embarked'] = LabelEncoder().fit transform(df['Embarked'])
```

Cast values to specified format

```
df['Age'] = df['Age'].astype('int')
```

New features (using list comprehension)

```
df['Age_child'] = [int(x<18) for x in df['Age']]
df['Age_adult'] = [int(x>=18) for x in df['Age']]
```

Scale values

```
from sklearn.preprocessing import MinMaxScaler df[['Age', 'Fare']] = MinMaxScaler().fit transform(df[['Age', 'Fare']])
```