

2.º Teste de Introdução à Arquitetura de Computadores

1.º Semestre 2016/2017 Duração: 60 minutos

IST – LEIC-Taguspark 12 dezembro 2016

NOME	NÚMERO	

1. (1 + 2 + 1 valores) Considere o seguinte programa, que usa rotinas de interrupção. Os pinos de interrupção 1 e 3 ligam a relógios com um determinado período, pedindo uma interrupção em cada flanco ascendente.

PLACE	1000H	
pilha:	TABLE	100H
fim_pilha:		
contador:	WORD	0
tab:	WORD	rot_int_1
	WORD	rot_int_3
PLACE	0000H	
	MOV	SP, fim_pilha
	EI	
	MOV	R1, contador
ciclo:	MOV	R2, [R1]
	ADD	R2, 1
	MOV	[R1], R2
	JMP	ciclo
rot_int_1:		; processa int 1
	RET	
rot_int_3:		; processa int 3
	RET	_

 a) Verificou-se que este programa tem erros que impedem o funcionamento correto das interrupções 1 e 3. Reescreva o programa na tabela do lado direito, corrigindo esses erros (o conteúdo das rotinas de interrupção não é relevante).
 Preencha apenas as linhas que entender serem necessárias;

PLACE	1000H	
pilha:	TABLE	100H
fim_pilha:	INDEL	10011
contador:	WORD	0
tab:	WORD	0
tub.	WORD	rot_int_1
	WORD	0
	WORD	rot_int_3
PLACE	0000Н	
	MOV	SP, fim_pilha
	MOV	BTE, tab
	EI1	
	EI3	
	EI	
	MOV	R1, contador
ciclo:	MOV	R2, [R1]
	ADD	R2, 1
	MOV	[R1], R2
	JMP	ciclo
rot_int_1:	• • •	; processa int 1
	RFE	
rot_int_3:	• • •	; processa int 3
	RFE	

b) Agora com o programa a funcionar corretamente, suponha que com os relógios desligados (sem gerarem interrupções) a variável "contador" consegue ser incrementada 1000 vezes em cada segundo. As rotinas de interrupção 1 e 3 demoram 10 e 20 milissegundos a executar, respetivamente. Se ligar apenas o relógio que liga à interrupção 1, com um período de 100 milissegundos, quantas vezes é que a variável "contador" será incrementada em cada segundo, em média?

900 vezes

c) Suponha agora que, mantendo o relógio da interrupção 1 a funcionar (100 milissegundos de período), liga também o relógio da interrupção 3. Os tempos de execução das rotinas de interrupção 1 e 3 são 10 e 20 milissegundos, respetivamente. Qual é aproximadamente o período mínimo do relógio da interrupção 3 para que a variável "contador" seja incrementada pelo menos 500 vezes em cada segundo? Sugestão: pense em termos de percentagem de tempo gasto em cada atividade (ciclo do programa principal e rotinas de interrupção).

50

milissegundos

2.	(2 + 1 valores) Os portáteis mais recentes incluem não apenas um disco mas também um SSD (Solid State
	Drive). Suponha que vai comprar um com Windows 10 Home, mas claro que vai instalar o Windows 10
	Education. O disco tem um 1 TByte de capacidade, 7200 rotações/minuto, 6 ms de seek-time (procura de
	pista) e taxa de leitura de dados de 100 MBytes/seg. O SSD tem uma capacidade de 128 GBytes, um tempo
	de acesso de 0,2 ms e taxa de leitura de dados de 200 MBytes/seg. Considera-se que o setor é a unidade de
	acesso nos dois casos e o seu tamanho é 1 KByte.

a)	Imaginemos que o arranque do Windows requer <u>a leitura de 4000 setores</u> , distribuídos pelo dispositivo (disco
	ou SSD) de forma aleatória, a que se somam cerca de 15 segundos de execução de programas em memória.
	Estime o tempo que demorará aproximadamente o arranque do Windows, no caso do disco e do SSD;

O tempo de leitura de um setor no disco é, aproximadamente 10 ms, obtido pela soma de:

4 ms (latência rotacional de meia volta – uma volta são cerca de 8 ms, a 120 rot/seg, ou 7200 rot/min)

6 ms (latência de procura de pista)

0,01 ms (1 Kbyte a 100 Mbytes/seg) – desprezável face ao restante

Logo, no caso do disco os 4000 setores demorarão cerca de 40 segundos a ser lidos, e o tempo de arranque do Windows será aproximadamente 55 segundos.

Para o SSD, cada setor leva aproximadamente 0,2 ms a ser lido, tempo obtido pela soma de:

0,2 ms (tempo para aceder a um setor)

0,005 ms (1 Kbyte a 200 Mbytes/seg) – desprezável face ao restante

A leitura dos 4000 setores demorará assim cerca de 0,8 segundos, e o tempo de arranque do Windows será aproximadamente 15,8 segundos.

b) Em qual dispositivo (disco ou SSD) deverá instalar o Windows, e qual dispositivo deverá usar para guardar os seus ficheiros? Justifique.

O SSD é o mais rápido, pelo que é onde se deve instalar o Windows (arranque e acesso às funcionalidades do sistema operativo mais rápidos)

O disco é mais lento mas tem uma capacidade muito maior, pelo que deve ser usado para guardar os ficheiros

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela sobre cada dispositivo, indicando a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
RAM	A0-A9	1 K	1000H	13FFH
Periférico	A0-A4	32	1800H	181FH
ROM1	A0-A8	512	3000Н	31FFH
ROM2	A0-A10	2 K	3800Н	3FFFH

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a <u>expressão algébrica mais</u> simplificada que lhe é equivalente.

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

$$Z = \overline{AC} + B\overline{C} + \overline{C}D + \overline{B}C\overline{D}$$

5. (2 + 1 valores) Pretende-se construir um circuito microprogramado que implemente a operação potência (base elevada a expoente) por multiplicações sucessivas da base. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem a base e o expoente, respetivamente. O registo R3 vai acumulando o resultado das multiplicações. A saída da ALU pode tomar uma de quatro possibilidades, consoante o valor de OP_ALU: soma (SOMA) e multiplicação (MUL) dos dois operandos, 0 (ZERO) e 1 (UM). O sinal Z está ativo (vale 1) quando R2 é zero e o sinal PRONTO é ativado quando o resultado está pronto.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	LOAD_R1	LOAD_R2	DEC_R2	OP_ALU	LOAD_R3	PRONTO	SEL_MICRO _SALTO	MICRO_ SALTO
0	$R1 \leftarrow Base$ $R2 \leftarrow Expoente$ $R3 \leftarrow 1$	SIM	SIM		UM	SIM			
1	R3 ← R3 * R1				MUL	SIM			
2	R2 ← R2 - 1			SIM					
3	$(R2 = 0)$: MPC $\leftarrow 5$							Z	5
4	$MPC \leftarrow 1$							1	1
5	PRONTO $\leftarrow 1$ MPC $\leftarrow 5$						SIM	1	5

b) Quantos bits de largura deve ter no mínimo o sinal MICRO_SALTO?

3

- 6. (1,5 + 1,5 valores) Considere uma cache de dados de mapeamento direto, com capacidade para 128 blocos de 8 palavras cada, para um processador com 16 bits de endereço <u>com</u> endereçamento de byte (uma palavra = dois endereços).
 - a) Quantos bits deve ter a etiqueta?

5

b) Suponha que o tempo de acesso em caso de *hit* e de *miss* é de 4 ns e 30 ns, respetivamente. Se a *hit rate* média for de 80%, qual o tempo médio de acesso?

9,2 ns

- 7. (2 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 00000H até FFFFH, enquanto o espaço de endereçamento físico vai de 0000H até FFFFH, <u>mas só há RAM entre 1000H e 4000H</u>. As páginas virtuais têm uma dimensão de 100H bytes. A TLB é totalmente associativa de 8 entradas e está inicialmente vazia, após o que o processador acedeu aos seguintes endereços virtuais, por esta ordem:
 - 2AFE0H
 - AC18AH
 - AC78CH
 - 348E4H
 - 2AF8CH
 - AC7E4H
 - AC7E0H
 - AC18CH
 - 348F4H
 - 56B4AH
 - 2AF58H

Preencha a TLB com os valores com que vai ficando, após cada um destes acessos. Assuma que <u>as páginas físicas vão sendo atribuídas por ordem</u>, começando na primeira (a partir do endereço 1000H) e indo até onde for necessário. <u>Coloque X nos campos da TLB</u> cujo valor não seja determinável neste exemplo.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	1	2AFH	10H
1	1	AC1H	11H
2	1	AC7H	12H
3	1	348H	13H
4	1	56BH	14H
5	0	X	X
6	0	X	X
7	0	X	X