Algoritmos Greedy Problema QAP

DANIEL BOLAÑOS MARTÍNEZ

JOSÉ MARÍA BORRAS SERRANO

FERNANDO DE LA HOZ MORENO

SANTIAGO DE DIEGO DE DIEGO

Análisis del problema

El problema P, está basado en el Problema de Asignación Cuadrática.

Nuestro ejemplo consiste en asignar a cada oficinista de un grupo de oficinistas, una habitación de un grupo de habitaciones de forma que se minimice el coste de asignar a cada habitación i el oficinista p(i).

$$p^* = min_p H(p) = min_p \sum_{i=0}^{N-1} \sum_{i=0}^{N-1} f_{p(i)p(j)} d_{ij}$$

Análisis del problema

Matriz de distancias

0	7	14	20	3
4	0	10	17	49
51	1	0	43	71
7	3	10	0	20
90	101	47	3	0

Matriz de flujos

0	4	7	4	1
0	0	10	3	21
0	0	0	47	3
41	21	7	0	9
21	43	32	0	27

Distancia potencial: (44,80,160,40,241)

Flujo potencial: (16,34,50,78,123)

Componentes Greedy

- Lista de candidatos: en este caso son las habitaciones y los oficinistas.
- <u>Función solución</u>: cuando el conjunto de candidatos se encuentra vacío se tiene la solución al problema.
- <u>Función selección</u>: se escoge la habitación con menor distancia potencial y el oficinista con mayor flujo potencial.
- Función de factibilidad: en este caso siempre se da la factibilidad.
- <u>Función objetivo</u>: asignar a oficinistas con la máxima carga de trabajo a habitaciones con la mínima distancia.

Pseudocódigo

```
S <- 0
Mientras (habitaciones != 0 && oficinistas != 0) hacer:
   x1 = Selección de la habitación con mínima
        distancia potencial entre las habitaciones.
   x2 = Selección del oficinista con máximo
        flujo potencial entre los oficinistas.
   habitaciones = habitaciones \setminus \{x1\}
   oficinistas = oficinista \ \ \{x2\}\
   S[x1] = x2
Fin-Mientras
Devolver S
```

	Н1	H2	Н3	Н4	H5	
H1	0	7	14	20	3	
H2	4	0	10	17	49	
Н3	51	1	0	43	71	
H4	7	3	10	0	20	
H5	90	101	47	3	0	
			↓			
dр	1	2	3	4	5	
~ P	44	80	160	40	241	

		N-1	
$d_p(i)$	=	$\sum_{j=0}$	d_{ij} .

	01	02	03	04	05
01	0	4	7	4	1
02	0	0	10	3	21
О3	0	0	0	47	3
04	41	21	7	0	9
O5	21	43	32	0	27
			↓		

1	2	3	4	5
16	34	50	78	123

 f_p

$$f_p = \sum_{b=0}^{N-1} f_{ab}$$

d _p 1	1	2	3	4	5
	44	80	160	40	241

fp	1	2	3	4	5
•	16	34	50	78	123

habitación	1	2	3	4	5
oficinista					

Casos reales de aplicación del algoritmo

• Diseño de **centros comerciales** donde se quiere que el público recorra la menor cantidad de distancia para llegar a tiendas de mayor interés común.

• Diseño de **circuitos eléctricos**, en donde es de relevante importancia donde se ubican ciertas partes o chips con el fin de minimizar la distancia entre ellos, ya que las conexiones son de alto costo.

Casos reales de aplicación del algoritmo

- Haremos un pequeño esquema de cómo resolveríamos el ejemplo de los centros comerciales descrito tal y como hemos hecho con los oficinistas y habitaciones.
- Lista de candidatos: tiendas (distancias) y sector (interés).
- <u>Función solución</u>: cuando el conjunto de candidatos se encuentra vacío se tiene la solución al problema.
- <u>Función selección</u>: se escoge la tienda con menor distancia potencial y el sector con mayor flujo potencial.
- Función de factibilidad: en este caso siempre se da la factibilidad.
- Función objetivo: asignar a sectores con mayor interés a tiendas con la mínima distancia.

Orden de eficiencia teórica

Si n es el número de habitaciones y oficinistas el algoritmo tiene una eficiencia de O(n²).

Esto es debido a que el algoritmo tiene n etapas, en las que se elige la habitación de mínima distancia potencial y al oficinista con máximo flujo potencial en cada etapa. Esta elección de habitación y oficinista requiere recorrer dos vectores de tamaño n, buscando el mínimo y el máximo respectivamente, por lo que la eficiencia es O(n²).

Orden de eficiencia teórica

```
//Eficiencia: O(n^2)
S <- 0
//Eficiencia: O(n)
Mientras (habitaciones != 0 && oficinistas != 0) hacer:
        //Eficiencia: O(n)
   x1 = Selección de la habitación con mínima
        distancia potencial entre las habitaciones.
        //Eficiencia: O(n)
   x2 = Selección del oficinista con máximo
        flujo potencial entre los oficinistas.
   habitaciones = habitaciones \ {x1}
   oficinistas = oficinista \ {x2}
   S[x1] = x2
Fin-Mientras
Devolver S
```