09.20 Notes

Math 403/503

September 2022

1 Week 5

We talked about how any transformation $T:V\to W$ can be given as a matrix $A \in F^{m,n}$ with respect to a basis $v_1, ..., v_n$ of V and $w_1, ..., w_n$ of W. We further talked about how $F^{m,n}$ = the space of mxn matrices supports addition and scalar multiplication, making it into a vector space. Matrices additionally support multiplication or composition when certain dimensions align.

So let V be a vector space with basis $v_1, ..., v_n$ and W be a vector space with basis $w_1, ..., w_n$. Let $S \in L(V, w)$. Then S has a matrix, call it A. The entries of A will be denoted $(a_{i,j})$. So $S(v_j) = \sum_{j=1}^m a_{i,j} w_i$. Now additionally let $T \in L(U, V)$. Then T has a matrix, call it B. The matrices of B will be denoted $(b_{j,k})$. So $Tu_k = \sum_{j=1}^n b_{j,k} v_j$. We know we can compose $S \circ T$ denoted $ST \in L(U, V)$.

Question: What is the matrix of ST?

$$ST_{uk} = S(Tu_k) = S(\sum_{j=1}^{n} b_{j,k} v_j)$$

$$= \sum_{j=1}^{n} b_{j,k} \mathring{Sv_j} = \sum_{j=1}^{n} b_{j,k} \sum_{i=1}^{m} a_{i,j} w_i = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{i,j} b_{j,k}) w_i$$

 $ST_{uk} = S(Tu_k) = S(\sum_{j=1}^n b_{j,k} v_j)$ Using linearity of S... $= \sum_{j=1}^n b_{j,k} Sv_j = \sum_{j=1}^n b_{j,k} \sum_{i=1}^m a_{i,j} w_i = \sum_{i=1}^m (\sum_{j=1}^n a_{i,j} b_{j,k}) w_i$ Note: The inner summation of the final equation written are the entries of matrix ST. We therefore define the matrix product AB to be the matrix with entries $\sum_{j=1}^{n} a_{i,j} b_{j,k}$.

Example: Let
$$U = R^2 \to u_k = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, V = R^3 \to v_j = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

$$W = R^4 \rightarrow w_i = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\1 \end{bmatrix}$$
. $S\epsilon L(V,W)$ suppose it has a ma-

trix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$$
. $T \epsilon L(U, V)$ suppose it has matrix $B = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 2 & 1 \end{bmatrix}$. Then

$$ST\epsilon L(U,W). \text{ It's matrix is } AB = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 10 & 3 \\ 13 & 3 \\ 16 & 3 \end{bmatrix}.$$
 The rule to find the i,k entry of AB is: you multiply the i^{th} row of A by the k^{th} column of B (in sum dot product fashion)