

REMARKS ON THE PAPER "JENSEN'S INEQUALITY AND NEW ENTROPY BOUNDS" OF S. SIMIĆ

J. PEČARIĆ AND J. PERIĆ

(Communicated by A. Aglić Aljinović)

Abstract. The purpose of this paper is twofold. The first is to give a brief account of the results preceding the main results from [14] and [15]. The second is to give generalizations and improvements of these results.

1. Introduction

Let $I \subset \mathbb{R}$ be an interval, $(x_i)_{i=1}^n$ a sequence such that $x_i \in I$, i = 1, ..., n, and $(p_i)_{i=1}^n$ a sequence of positive weights with $\sum_{i=1}^n p_i = 1$. For a convex function $f: I \to \mathbb{R}$, the Jensen inequality states

$$0 \leqslant \sum_{i=1}^{n} p_i f(x_i) - f\left(\sum_{i=1}^{n} p_i x_i\right).$$

The following theorems are proved in [15].

THEOREM 1. If f is convex on I, then

$$\max_{1 \leqslant \mu < \nu \leqslant n} \left[p_{\mu} f\left(x_{\mu}\right) + p_{\nu} f\left(x_{\nu}\right) - \left(p_{\mu} + p_{\nu}\right) f\left(\frac{p_{\mu} x_{\mu} + p_{\nu} x_{\nu}}{p_{\mu} + p_{\nu}}\right) \right]$$

$$\leqslant \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) - f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)$$

and this bound is sharp.

THEOREM 2. If $(x_i)_{i=1}^n \in [a,b]^n$, then

$$\sum_{i=1}^{n} p_{i} f(x_{i}) - f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leqslant f(a) + f(b) - 2f\left(\frac{a+b}{2}\right) := S_{f}(a,b)$$

Mathematics subject classification (2010): 26D15.

Keywords and phrases: Jensen inequality, Jensen difference, linear functionals.

However, Theorem 1 is contained in the following theorem and corollary, which are in fact Theorem 3.14 and Corollary 3.15 published in [9, p. 87]. The statement on sharpness in Theorem 1 is obvious (equality is attained for n = 2).

THEOREM 3. Let $f: U \to \mathbb{R}$ be a convex function , where U is a convex set in a real linear space M. Let I and J be finite subsets in \mathbb{N} , such that $I \cap J = \emptyset$. Let $(x_i)_{i \in I \cup J}$ be a sequence such that $x_i \in U$, $i \in I \cup J$ and $(p_i)_{i \in I \cup J}$ a real sequence such that $P_i > 0$, $P_j > 0$ and $P_{I \cup J} > 0$, where $P_i = \sum_{k \in K} p_k$ for $K \subseteq I \cup J$. If $\frac{1}{P_i} \sum_{i \in I} p_i x_i \in U$, $\frac{1}{P_j} \sum_{i \in J} p_i x_i \in U$, $\frac{1}{P_{I \cup J}} \sum_{i \in I \cup J} p_i x_i \in U$. Then

$$F(I \cup J) \leqslant F(I) + F(J), \tag{1}$$

where
$$F(K) = P_K f\left(\frac{1}{P_K} \sum_{k \in K} p_k x_k\right) - \sum_{k \in K} p_k f(x_k)$$
.

Notice that the function F from Theorem 3 describes the opposite Jensen's difference than the differences in Theorems 1, 2.

COROLLARY 1. Let f be a convex function on U, where U is a convex set in an arbitrary real linear space M. Let $(x_i)_{i=1}^n$ be a sequence such that $x_i \in U$, i = 1, ..., n, and $(p_i)_{i=1}^n$ a real sequence. If $p_i \ge 0$, i = 1, ..., n and $I_k = \{1, ..., k\}$, then

$$F(I_n) \leqslant F(I_{n-1}) \leqslant \cdots \leqslant F(I_2) \leqslant 0$$

and

$$F(I_n) \leqslant \min_{1 \leqslant i < j \leqslant n} \left\{ (p_i + p_j) f\left(\frac{p_i x_i + p_j x_j}{p_i + p_j}\right) - p_i f(x_i) - p_j f(x_j) \right\}.$$

REMARK 4. It should be noted that results related to Theorem 3 and Corollary 1 and implying Theorem 1 were published previously in [12], [13], [6], [2], [8] and [1].

Theorem 2 was proved by the same author in paper published one year before [15]. It was the main result in [14]. This fact wasn't noted in [15]. It was noted in [4] that this main result from [14], and therefore Theorem 2 can be derived from Corollaries 3 and 4 from [5]. Moreover, these Corollaries give the following improvements of Theorem 2.

THEOREM 5. Let $[a,b] \subset \mathbb{R}$, $(x_i)_{i=1}^n$ be a sequence such that $x_i \in [a,b]$, $i=1,\ldots,n$ and $(p_i)_{i=1}^n$ a sequence of positive weights with $\sum_{i=1}^n p_i = 1$. If $f:[a,b] \to \mathbb{R}$ is a convex function, then

$$\sum_{i=1}^{n} p_{i} f(x_{i}) - f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)$$

$$\leq f\left(a + b - \sum_{i=1}^{n} p_{i} x_{i}\right) - 2f\left(\frac{a+b}{2}\right) + \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)$$

$$\leq f(a) + f(b) - 2f\left(\frac{a+b}{2}\right) = S_{f}(a,b)$$

To state further improvements of Theorem 2 and also for the rest of the paper, we need the following notions.

Let E be a non-empty set and L be a linear class of real-valued functions $f: E \to \mathbb{R}$ having the properties:

- (L1) $(\forall a, b \in \mathbb{R}) (\forall f, g \in L) \ af + bg \in L$
- (L2) $\mathbf{1} \in L$ (that is if f(t) = 1 for all $t \in E$, then $f \in L$)

We consider positive linear functionals $A: L \to \mathbb{R}$, or in other words we assume:

(A1)
$$(\forall f, g \in L)(\forall a, b \in \mathbb{R})$$
 $A(af + bg) = aA(f) + bA(g)$ (linearity)

(A2)
$$(\forall f \in L)(f \geqslant 0 \Longrightarrow A(f) \geqslant 0)$$
 (positivity)

If additionally the condition $A(\mathbf{1})=1$ is satisfied, we say that A is positive normalized linear functional.

The following generalization and improvement of Theorem 2 was proved in [4].

THEOREM 6. Let L satisfy (L1) and (L2) and let Φ be a convex function on I = [a,b]. Then for any positive normalized linear functional A on L and for any $g \in L$ such that $\Phi(g) \in L$ we have

$$A(\Phi(g)) - \Phi(A(g)) \leqslant \left\{ \frac{1}{2} + \frac{1}{b-a} \left| \frac{a+b}{2} - A(g) \right| \right\} S_{\Phi}(a,b).$$

The main purpose of the paper is to give generalizations and improvements of Theorems 1, 2 and an improvement of Theorem 6.

2. Improvements

In the following theorem we give two generalizations of Theorem 1. For similar results obtained by different methods see [3].

THEOREM 7. Let f be a convex function on U, where U is a convex set in an arbitrary real linear space M. Let $(x_i)_{i=1}^n$ be a sequence such that $x_i \in U$, $i \in I_n = \{1, ..., n\}$, and $(p_i)_{i=1}^n$ a positive sequence.

(i) If \mathscr{S} is a family of subsets of I_n , then

$$F(I_n) \leqslant \min_{S \in \mathscr{S}} (F(S) + F(I_n \setminus S)) \leqslant \min_{S \in \mathscr{S}} F(S) + \max_{S \in \mathscr{S}} F(I_n \setminus S) \leqslant \min_{S \in \mathscr{S}} F(S). \quad (2)$$

(ii) If \mathcal{S} is a family of disjoint subsets of I_n , then

$$F(I_n) \leqslant \sum_{S \in \mathscr{S}} F(S),$$
 (3)

where F is the function defined in Theorem 3.

Proof. (*i*) Simple consequence of Theorem 3.

(ii) Obviously
$$I_n = \bigcup_{S \in \mathscr{S}} S \cup_{i \notin \bigcup_{S \in \mathscr{S}}} \{i\}$$
, so (3) follows using Theorem 3 and $F(\{i\}) = 0$.

Improvement of Theorem 2 and Theorem 6 will be obtained using the following lemma.

LEMMA 1. Let ϕ be a convex function on an interval I, $x,y \in I$ and $p,q \in [0,1]$ such that p+q=1. Then

$$\min\{p,q\}S_{\phi}(x,y) \leqslant p\phi(x) + q\phi(y) - \phi(px + qy) \leqslant \max\{p,q\}S_{\phi}(x,y). \tag{4}$$

Proof. This is a special case of Theorem 1 from [7, p.717] for n = 2. \square

We will also need to equip our linear class L from above with an additional property denoted by (L3):

(L3)
$$(\forall f, g \in L)(\min\{f, g\} \in L \land \max\{f, g\} \in L)$$
 (lattice property)

Obviously, (\mathbb{R}^E, \leq) (with standard ordering) is a lattice. It can also be easily verified that a subspace $X \subseteq \mathbb{R}^E$ is a lattice if and only if $x \in X$ implies $|x| \in X$. This is a simple consequence of identities

$$\min \left\{ x,y \right\} = \frac{1}{2} \left(x + y - |x - y| \right), \quad \max \left\{ x,y \right\} = \frac{1}{2} \left(x + y + |x - y| \right).$$

Next theorem is our main result.

THEOREM 8. Let L satisfy (L1), (L2) and (L3) and let Φ be a convex function on I = [a,b]. Then for any positive normalized linear functional A on L and for any $g \in L$ such that $\Phi(g) \in L$ we have

$$A(\Phi(g)) - \Phi(A(g)) \leqslant$$

$$\leqslant \frac{1}{b-a} \left\{ \left| \frac{a+b}{2} - A(g) \right| + A \left(\left| \frac{a+b}{2} - g \right| \right) \right\} S_{\Phi}(a,b).$$

$$(5)$$

Proof. First observe that $\Phi(g) \in L$ also means that the composition $\Phi(g)$ is well defined, hence $g(E) \subseteq [a,b]$. It follows $A(g) \in [a,b]$. Let the functions $p,q \colon [a,b] \to \mathbb{R}$ be defined by

$$p(x) = \frac{b-x}{b-a}, \quad q(x) = \frac{x-a}{b-a}$$

For any $x \in [a,b]$ we can write

$$\Phi(x) = \Phi\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) = \Phi\left(p(x)a + q(x)b\right)$$

Since $A(g) \in [a,b]$ we have $\Phi(A(g)) = \Phi(p(A(g))a + q(A(g))b)$ and by Lemma 1

$$\Phi(A(g)) \geqslant p(A(g))\Phi(a) + q(A(g))\Phi(b) - \max\{p(A(g)), q(A(g))\}S_{\Phi}(a, b)
= p(A(g))\Phi(a) + q(A(g))\Phi(b) - \left\{\frac{1}{2} + \frac{\left|\frac{a+b}{2} - A(g)\right|}{b-a}\right\}S_{\Phi}(a, b)$$
(6)

Again by Lemma 1 we have

$$\Phi(x) \leqslant p(x)\Phi(a) + q(x)\Phi(b) - \min\{p(x), q(x)\}S_{\Phi}(a, b).$$

We have $p(g), q(g) \in L$ and applying A to the above inequality, we obtain

$$A(\Phi(g)) \leq A(p(g))\Phi(a) + A(q(g))\Phi(b) - A\left(\min\{p(g), q(g)\}\right) S_{\Phi}(a, b)$$

$$= A(p(g))\Phi(a) + A(q(g))\Phi(b) - A\left(\frac{1}{2} - \frac{\left|g - \frac{a+b}{2}\right|}{b-a}\right) S_{\Phi}(a, b)$$

$$= p(A(g))\Phi(a) + q(A(g))\Phi(b) - A\left(\frac{1}{2} - \frac{\left|g - \frac{a+b}{2}\right|}{b-a}\right) S_{\Phi}(a, b)$$
(7)

Now, from inequalities (6) and (7) we get desired inequality (5) \Box

Since $A(g) \in [a,b]$, it is obvious that Theorem 8 is an improvement of Theorem 6 and a generalization and an improvement of Theorem 2.

REFERENCES

- P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
- [2] P. S. BULLEN, P. S. MITRINOVIĆ AND P. M. VASIĆ, *Means and Their Inequalities*, D. Reidel Publishing Co., Dordrecht, Boston, Lancaster and Tokyo, 1987.
- [3] A. ČIŽMEŠIJA, J. PEČARIĆ, L.-E. PERSSON, On strengthened weighted Carleman's inequality, 68 (2003), 481–490.
- [4] B. GAVREA, J. JAKŠETIĆ AND J. PEČARIĆ, On a global upper bound for Jessen's inequality, ANZIAM, J. 50 (2008), 246–257.
- [5] A. MATKOVIĆ AND J. PEČARIĆ, A variant of Jensen's inequality for convex functions of several variables, J. Math. Inequal. 1 (2007), 45–51.
- [6] P. S. MITRINOVIĆ, P. S. BULLEN AND P. M. VASIĆ, Sredine i sa njima povezane nejednakosti, Publikacije elektrotehničkog fakulteta, Serija: Matematika i fizika, No. 600, 1977.
- [7] P. S. MITRINOVIĆ, J. E. PEČARIĆ AND A. M. FINK, Classical and new inequalities in analysis, Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993.
- [8] J. PEČARIĆ, Konveksne funkcije: Nejednakosti, Naučna knjiga, Beograd, 1987.
- [9] J. E. PEČARIĆ, F. PROSCHAN AND Y. L. TONG, Convex functions, partial orderings, and statistical applications, Academic Press Inc, 1992.
- [10] J. F. STEFFENSEN, On certain inequalities and methods of approximation, J. Inst. Actuaries 51 (1919), 274–297.
- [11] P. M. VASIĆ AND J. E. PEČARIĆ, Sur une inegalite de Jensen-Steffensen, General Inequalities 4, Birkhauser Verlag, Basel, Boston and Stuttgart, 1984, 87–92.
- [12] P. M. VASIĆ AND Ž. MIJALKOVIĆ, On an index set function connected with Jensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 544–576 (1976), 110–112.

- [13] P. M. VASIĆ AND J. E. PEČARIĆ, On the Jensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 637–677 (1977), 50–54.
- [14] S. Simić, On a global upper bound for Jensen's inequality, J. Math. Anal. Appl. 343 (2008), 414–419.
- [15] S. SIMIĆ, Jensen's inequality and new entropy bounds, Appl. Math. Lett. 22 (2009), 1262–1265.

(Received January 21, 2012)

Faculty of Textile Technology
University of Zagreb
Prilaz Baruna Filipovića 30
10000 Zagreb
Croatia
e-mail: pecaric@hazu.hr
Jurica Perić
Faculty of Science, Department of Mathematics
University of Split
Teslina 12, 21000 Split
Croatia

e-mail: jperic@pmfst.hr

Josip Pečarić