5										10		2	8	2		
OI.	Ch	Ch	4	4	4 &	ω	ω	З	ω	4		N	2	1		
											Boom's Taxonomy, L') Find the area between t using double integration.	Hence deduce tha	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-it}$	Evaluate $\int_{0}^{3} \int_{-1}^{1} \int_{2}^{4}$	ZIMA101
											Level; CO* Cours	ween the parabolas ration.	Hence deduce that $\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$.	$-(x^2+y^2)$ dxdy by cha	$\int_{0}^{3} \int_{-1}^{1} \int_{2}^{4} (y-xz) dz dy dx .$	
ψ											iloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome	Find the area between the parabolas $y^2=4ax$ and $x^2=4ay$ by using double integration.		$e^{-(x^2+y^2)}dxdy$ by changing to polar coordinates.		SEE - April - May 2022
											n Outcome	y by 7	7	95.	6	2022
												5	2		2	
												O O	OT.		55	
												-	N		-	
			1000	SOUTH THE	6200°			Marine .			ACTIVISTICS.	Mary III		Messey	Section 1	THE REAL PROPERTY.

a) Test for consistency and hence solve the system of equations by the Gauss elimination method: 4x+y+z=4SEE - April - May 2022

b) State Comparision test. Test for convergence of the $\frac{1.2}{3.4.5} + \frac{2.3}{4.5.6} + \frac{3.4}{5.6.7} + \dots \infty$. 3x+2y-4z=6x+4y-2z=4series

c) State Cauchy's root test. Test for convergence of the series: $1 + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots \infty, \quad (x>0)$

Unit - II

4. a) Define Jacobian of a transformation. If x+y+z=u, y+z=uv and z=uvw then find the value of $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.

b) With usual notation prove that $\tan \varphi = r \frac{d\theta}{dr}$.

c) State Lagrange's mean value theorem. Verify Lagrange's mean value theorem for the function $f(x)=\sin^{-1}x$ in [0,1].

5. a) Find the angle of intersection between the curves $r^n = a^n cosn\theta$

b) i) If V=f(2x-3y,3y-4z,4z-2x) then find the value of $6\frac{\partial V}{\partial x}+4\frac{\partial V}{\partial y}+3\frac{\partial V}{\partial z}$. and $r^n = b^n sinn \theta$.

ii) Find $\frac{dy}{dx}$ from the implicit function $x\sin(x-y)-(x+y)=0$.

6. a) Find the radius of curvature of the curve $x=6t^2-3t^4$, $y=8t^3$ c) Find the extreme value of the function $f(x,y)=x^3y^2(1-x-y)$.

b) Find the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x}{a^2} + \frac{y}{b^2} + \frac{z'}{c^2} = 1$,

c) Expand the function $f(x,y) = \log(1+x-y)$ as a Maclaurin's series upto second degree terms.

Unit - III

a) Using Gamma function evaluate $\int_0^x x^2 (\log(\frac{1}{x}))^3 dx$.

b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

c) By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4}-y} (x+y) dxdy$

6 12

Evaluate

2 Hence dec

12

ind the

using doub

2

12

-

5

13

12

L3

5

-

12

0 Obtain the Maclaurin's series expansion for $f(x)=(1+x)^2$ up to the a) Find the rank of the matrix A =te: Answer Five full questions choosing Two full questions from Unit – I & Unit – II each and One full question from Unit – III. Find the eigen values and eigen vectors of the matrix State D'Alembert's ratio test. Test the convergence of the series: Take $\begin{vmatrix} y \\ z \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ as an initial approximation and carry out three Using Gauss-Seidel method an initial eigen vector as $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Perform five iterations. equations: 6x+y+z=105corresponding eigen vector of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ starting with Using Power method, find the dominant eigen value and terms containing x4. iterations. elementary row transformation $\sum \frac{1.3.5.7....(2n-1)}{4.7.10....(3n+1)}$ 0 5 First Semester B.E. (Credit System) Degree Examinations April - May 2022 4x+8y+3z=1555x+4y-10z=65(An Autonomous Institution affiliated to VTU, Belagavi) NMAM INSTITUTE OF TECHNOLOGY, NITTE 21MA101 - ENGINEERING MATHEMATICS - I Unit -1 solve the given system of linear April - May 2022 11 6 5 4 using Marks BT* CO* PO* E Manus Marks: 100 L*2 1 5 5 13 2 2 ECHNOLOGY LIBRAR 2 N

4

ωω

ω

w

w

5

5 5

5

***************************************	BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome	30	b) Trace $r^2 = a^2 cos 2\theta$. c) Find the surface area generated by revolving asteroid	10. a) Evaluate i) $\int_0^{\pi} \frac{\sin^4 \theta}{(1+\cos\theta)^2} d\theta$ ii) $\int_0^{2a} x^2 \sqrt{2ax - x^2} dx$	cardioid $r = a(1 + cos\theta)$ about the initial line.	 b) Trace the curve y²(a-x) = x³,a > 0. c) Find the volume of the solid generated by the revolution of the 	9. a) Obtain the reduction formula for $\int \sin^n x dx$. Hence obtain $\int_{\alpha}^{\pi/2} \sin^n x dx$.		$y = t \sin t, z = t \text{ at } \frac{t}{4}$. c) Expand $f(x, y) = t \sin^{-1}(\frac{y}{4})$ in powers of $(x - 1)$ and $(y - 1)$ unto	ii) If $sinu = \frac{x^2 + y^2}{x + y}$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = tanu$. b) Find total derivative of $u = xy + yz + zx$, when $x = tcost$,	8. a) i) If u is a homogeneous function of degree n prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu.$	and has constant volume V. Determine the dimension of the box requiring least surface area.	find $\frac{\partial (x,y,z)}{\partial (x,y,z)}$ at $(1,-1,0)$	ii) If $z = x^2y - xsinxy$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. b) If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$	7. a) i) If $z = yf(x^2 - y^2)$ then show that $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = \frac{zx}{y}$.	c) State and prove Lagrange's mean value theorem.	b) i) With usual notation prove that $\rho = \frac{(1+y_1^2)^{3/2}}{y_2}$	6. a) Find $\frac{ds}{d\theta}$, $\frac{ds}{dx}$, $\frac{ds}{dy}$ for the cycloid $x = a(\theta - sin\theta)$, $y = a(1 - cos\theta)$	folium $x^3 + y^3 = 3axy$ is $\frac{3a}{8\sqrt{2}}$ c) State and prove Cauchy's mean value theorem.	5. a) With usual notation prove that $tan\phi = r\frac{d\theta}{dr}$. b) Show that the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ of the	20MA101 Supplementary Sept. 2022 c) Obtain the Maclaurin's expansion of e^{sinx} upto third degree terms.
	come	6	7		o	7		7	7	0		7	7	0		6		7	6	7	7
		12	22		2	22		13	2	=		2	L3	53		72		53	72	2	5
		S	55 55		C)	5 5		4	4	4		4	4	4		ω ω		ω	ω	ω	N
	c) Sta	iter	Tak		equ	b) Usir	an ir	сопте	a) Using	terms	c) Obtai	A= 0	b) Find th	eleme	a) Find t		te: Answe	tion: 3 Hou			

P.T.0.

NMAM INSTITUTE OF TECHNOLOGY, WITTE (An Autonomous Institution affiliated to VTX Belegging) (An Autonomous Institution affiliated to VTX Beleg

Max. Marks: 100

Note: Answer Five full questions choosing One full question them each Unit. Marks BT* CO* PO*

Unit -1

Define Rank of the matrix. Find rank of the following matrix using elementary row transformation

			1
0]	1	1	[-2 -1
,_	0	2	1
,_	-	ω	-3
1	. ,	_	-2 -1 -3 -1]

Test for consistency and solve the following system of equations by Gauss-elimination method $2x_1 - x_2 + x_3 = 3$ $4x_1 + 2x_2 - 2x_3 = 2$ $x_1 + x_2 - x_3 = 0$

Determine the largest Eigen value and the corresponding Eigen $\begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$ vector of the matrix -1 using Rayleigh's power 2

method, with initial approximation $[1 \ 0 \ 0]^T$, carry out four iterations.

Reduce the quadratic form $3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_2x_3 + 2x_3x_1 - 2x_1x_2$ to canonical form. $P^{-1}AP = D$ where D is the diagonal matrix. Find matrix P which diagonalizes the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$. Verify

Unit - II

Test for convergence of the series $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \cdots$. Examine convergence or divergence of the series

 $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \cdots, \quad x > 0$ Obtain Taylor's series expansion of $\log{(secx)}$ about the point

Test for convergence

 $x = \frac{\pi}{3}$ upto third degree terms.

i) $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \cdots$ ii) $\sum \frac{\sqrt{n}}{n^2 + 1}$ State Cauchy's root test and test the convergence of $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots, x > 0$

6 L*2

2

13 2

Find Eigen value and Eigen vector of the matrix $\begin{bmatrix} 11 & -4 & -7 \end{bmatrix}$

L3

Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

21MA101 SEE. September – October 2022

7. a) Evaluate
$$\iint_{1/2} \int 5x^2 y^2 z^3 \, dx \, dy \, dz$$
b) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
c) Evaluate
$$\int_{0}^{1/2} \int_{x}^{\sqrt{x}} 5xy \, dy \, dx$$
 by changing the order of integration .

Evaluate
$$\int_{0}^{\infty} \int_{x}^{x} 5xy \, dy dx$$
 b

7 12

12

8. a) Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} \, d\theta \int_{0}^{2} \frac{1}{\sqrt{\sin \theta}} \, d\theta = \pi$

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

c) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} 2(x^2+y^2) \ dydx$ by changing to polar

b) Evaluate $\int_{0}^{1} x^{7} (1 - x^{4})^{3} dx$ using Beta and Gamma functions.

21MA101

SEE- September – October 2022

b) Using Rayleighs' power method obtain the largest eigen value and

the corresponding eigen vector of the matrix
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

select $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial eigen vector and carry out 5

Write Maclaurin's series expansion of $f(x) = e^x \cos x$ up to third degree terms.

4. a) Given $u = 10 \sin\left(\frac{x}{y}\right)$, $x = 3e^{2t}$ and $y = 5t^2$, find $\frac{du}{dt}$ as a

function of t b) If ρ is the radius of curvature at any point p on the parabola $y^2 = 4ax$ and s is its focus, then show that ρ^2 varies as $(sp)^3$.

) With usual notation prove that
$$\tan \phi = r \frac{d\theta}{dr}$$
.

5. a) Expand the function $f(x,y) = (\cos x)(\cos y)$ up to second degree terms.

b) Examine the following function for extreme values $u=x^4+y^4-x^2-y^2+1$.

c) State and prove Cauchy's mean value theorem.

a) The period of oscillation of a simple pendulum is
$$T=2\pi\sqrt{\frac{l}{g}}$$
. In an experiment carried out to find the value of g ,errors of 1.5% and 0.5% are possible in values of l and T respectively. Find the error in the calculated value of g .

b) If
$$x = r\cos\theta$$
, $y = r\sin\theta$, find $J = \frac{\partial(x,y)}{\partial(r,\theta)}$, $J' = \frac{\partial(r,\theta)}{\partial(x,y)}$ and show that $JJ' = 1$.

With usual notations prove that
$$\rho = \frac{(r^2 + r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$$

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Bellagavi)

First Semester B.E. (Credit System) Degree Examina September - October 2022 September - October - October

Max. Marks: 100

Note: Answer Five full questions choosing Two full questions from Unit - I & Unit - II each and One full question from Unit - III. Duration: 3 Hours

a) Find the rank of the following matrix using elementary row Unit -1

Marks BT* CO* PO*

transformations

[*1

Find the eigen values and eigen vectors of the matrix

(i) State Cauchy's root test. (ii) Test for convergence of the series $\sum \left(\frac{n+2}{n+3}\right)^n x^n$, x > 0

12

12

2. a) Solve the system of equations given below by Gauss - Seidel

6x + 15y + 2z = 7227x+6y-z=85,

x+y+54z=110

take $x^{(0)}=0$, $y^{(0)}=0$, $z^{(0)}=0$, carry out three iterations.

 $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots$

 ∞ , x > 0.

0

x-4y+5z=8

Test for convergence of the series

Test for consistency and solve the system of equations

12

6

1

3x+7y-z=2 by Gauss elimination method

x+15y-11z=-14

a) Test for the convergence of the series

(i) $\sum_{3^{n}}^{n}$ (ii) $\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5}$

5