

SHENTON COLLEGE

Examination Semester One 2017 Question/Answer Booklet

MATHEMATICS SPECIALIST UNIT 3

Section One (Calculator-free)

Your name	

Time allowed for this section

Reading time before commencing work: 5 minutes Working time for paper: 50 minutes

Material required/recommended for this section

To be provided by the supervisor

Question/answer booklet for Section One.

Formula sheet.

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid/tape, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this examination

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of exam
Section One: Calculator-free	8	8	50	53	35
Section Two: Calculator-assumed	11	11	100	99	65
			Total	152	100

Section One: Calculator-free

35% (53 Marks)

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time: 50 minutes.

Question 1 (6 marks)

A sphere has its centre at R, which has position vector $2\mathbf{i} - \mathbf{k}$. If the diameter of the sphere is \overrightarrow{PQ} and the position vector of Q is $8\mathbf{i} - 3\mathbf{j} + \mathbf{k}$.

(a) Determine the position vector of P.

(2 marks)

(b) Determine the vector equation of the sphere.

(2 marks)

(c) The sphere intersects the y-axis where y = a. Determine the value(s) of the constant a. (2 marks)

Question 2 (5 marks)

A function is defined by $g(z) = 2z^4 - z^3 + 7z^2 - 4z - 4$.

(a) Show that z = 1 and z = 2i are both zeros of g(z).

(2 marks)

(b) Determine all solutions to g(z) = 0.

(3 marks)

Question 3 (8 marks)

Simplify the following into the form x + iy.

(a)
$$\frac{3}{2i} + 2i$$
.

(2 marks)

(b)
$$\frac{1}{(2-i)^2}$$

(3 marks)

(c)
$$\left(-\sqrt{2}+\sqrt{2}i\right)^6$$
.

(3 marks)

Question 4 (7 marks)

The function f is defined by $f(x) = \frac{1}{1-x}$.

(a) Evaluate f(f(-1)).

(1 mark)

(b) Determine and simplify an expression for $f \circ f(x)$.

(2 marks)

- (c) For $f \circ f(x)$, state the
 - (i) domain.

(2 marks)

(ii) range.

(2 marks)

Question 5 (7 marks)

(a) The equation $2z^2 + 3z + 5 = 0$ has roots of α and β . Determine the value of

(i) $\alpha + \beta$. (1 mark)

(ii) $\alpha\beta$. (1 mark)

(iii) $2\alpha^2 + 3\alpha + 5$. (1 mark)

(b) Determine the values of the real constants a and b if z-2+i is a factor of z^3+az+b . (4 marks)

Question 6 (6 marks)

Let $f(x) = \sqrt{16 + 6x - x^2}$, $0 \le x \le 8$. The graph of y = f(x) is shown below.

(a) In order that $y = f^{-1}(x)$ is a function, the domain of f must be restricted to $k \le x \le 8$. Explain why this restriction is necessary and state the minimum value of k. (2 marks)

(b) Using the restriction from (a), determine the inverse function of f and its domain. (4 marks)

Question 7 (6 marks)

On the axes below, draw the graph of $y=\frac{x^2}{x^2-2x-3}$, clearly showing key features and the behaviour of the curve near the asymptotes.

Question 8 (8 marks)

- (a) Two of the solutions to the equation $z^n = 1, n \in \mathbb{Z}^+$, are $z = \operatorname{cis} \frac{\pi}{2}$ and $z = \operatorname{cis} \frac{\pi}{3}$.
 - (i) State another solution to the equation. (1 mark)
 - (ii) Determine, with reasons, the minimum value of n. (2 marks)

(ii) If $z = cis \frac{11\pi}{24}$ is <u>not</u> a solution to the equation then determine, with reasons, the maximum value of n. (2 marks)

(b) If $z = cis \frac{\pi}{4}$, determine the sum of the geometric series $1 + z + z^2 + z^3 + + z^{24}$. Explain your answer. (3 marks)