

IFRS CÂMPUS IBIRUBÁ CIÊNCIA DA COMPUTAÇÃO ALGORITMOS

Abordagem Contextual Formas de Representação de Algoritmos

Prof. Luis Claudio Gubert luis.gubert@ibiruba.ifrs.edu.br

Abordagem Contextual

- Algoritmo não é a solução do problema, e sim, o caminho para a solução de um problema.
- Existem várias formas de representar um algoritmo.
- O aprendizado de algoritmos não se consegue a não ser através de muitos exercícios.
- Para a definição de um bom algoritmo é necessário desenvolver um raciocínio lógico.

Abordagem Contextual

- Algoritmos não se aprendem:
 - Copiando algoritmos
 - Estudando algoritmos
- Algoritmos só se aprendem:
 - Construindo algoritmos
 - Testando algoritmos

Abordagem Contextual – Exemplo 1

Abordagem Contextual – Exemplo 2

Abordagem Contextual - Torre de Hanói

 Transferir um disco para outra haste. Não pode colocar um disco maior em cima de um menor

Conceito de algoritmo

- A automação é o processo em que uma tarefa deixa de ser desempenhada pelo homem e passa a ser realizada por máquinas
 - Dispositivos mecânicos importante
 máquinas industriais
 - Eletrônicos computadores
 - Natureza mista > robôs
- É necessário que seja especificado com clareza e exatidão o que deve ser realizado em cada uma das fases do processo a ser automatizado, bem como a sequência em que estas fases devem ser realizadas.
- À especificação da sequencia ordenada de passos que deve ser seguida para a realização de um tarefa, dá-se o nome de algoritmo.

Conceito de algoritmo

"Algoritmo é um conjunto finito de regras, bem definidas, para a solução de um problema em um tempo finito e com um número finito de passos."

Conceito de algoritmo

- Para que um computador possa desempenhar uma tarefa é necessário que esta seja detalhada passo a passo, numa forma compreensível pela máquina, utilizando aquilo que se chama de programa.
- Neste sentido, um programa de computador nada mais é que um algoritmo escrito numa forma compreensível pelo computador.

Para se ter um algoritmo, é necessário:

- 1. Que se tenha um número finito de passos;
- 2. Que cada passo esteja precisamente definido, sem possíveis ambiguidades;
- 3. Que existam zero ou mais entradas tomadas de conjuntos bem definidos;
- 4. Que existam uma ou mais saídas;
- 5. Que exista uma condição de fim sempre atingida para quaisquer entradas e num tempo finito.

Importância

"Quanto mais tempo se leva na construção de um algoritmo do papel, menos tempo leva-se codificando-o".

Formas de representação de um algoritmo

- Dentre as formas de representação de algoritmos mais conhecidas, sobressaltam:
 - a Descrição Narrativa
 - o Fluxograma Convencional
 - O Diagrama de Chapin
 - o Pseudocódigo, também conhecido como Linguagem Estruturada ou Portugol.

Descrição Narrativa

- Nesta forma de representação os algoritmos são expressos diretamente em linguagem natural.
 Como por exemplo:
- > Troca de um pneu furado:
 - Afrouxar ligeiramente as porcas
 - Suspender o carro
 - Retirar as porcas e o pneu
 - Colocar o pneu reserva
 - Apertar as porcas
 - Abaixar o carro
 - Dar o aperto final nas porcas

Descrição Narrativa

- Cálculo da média de um aluno:
 - Obter as notas da primeira e da segunda prova
 - Calcular a média aritmética entre as duas
- Se a média for maior ou igual a 7, o aluno foi aprovado, senão ele foi reprovado

Descrição Narrativa

- ➤ Sacar Dinheiro
 - ✓ Ir até o caixa eletrônico
 - ✓ Colocar o cartão
 - ✓ Digitar a senha
 - ✓ Solicitar o saldo
 - ✓ Se o saldo for maior ou igual à quantia desejada, sacar a quantia desejada; caso contrário sacar o valor do saldo
 - ✓ Retirar dinheiro e cartão
 - √ Sair do caixa eletrônico

Fluxograma Convencional e Diagrama de Blocos

- É uma representação gráfica de algoritmos onde formas geométricas diferentes implicam ações (instruções, comandos) distintos. Tal propriedade **facilita o entendimento das idéias** contidas nos algoritmos.
- Símbolos utilizados no fluxograma:

= Operação de entrada de dados

Fluxograma Convencional e Diagrama de Blocos

= Operação de saída de dados

 Operações de atribuição e chamada ou retorno de subalgoritmo

= Decisão

= Seta do Fluxo de Dados

Fluxograma Convencional e Diagrama de Blocos Exemplo

Saída

- Um algoritmo é desenvolvido para que uma determinada tarefa seja realizada
- Pode ser necessário apresentar ao usuário um resultado

Saída

- Qual o dispositivo de saída padrão?
 - Monitor

Entrada

 O algoritmo pode precisar de dados para sua execução!

Entrada

- Qual o dispositivo padrão de entrada?
 - Teclado!

Exemplo Entrada-Saída

Diagrama de Chapin

- Criador: Ned Chapin
- Substituição do fluxograma tradicional por um diagrama que apresenta uma visão hierárquica e estruturada da lógica do programa.
- Vantagem: representação das estruturas que tem um ponto de entrada e um ponto de saída e são compostas pelas estruturas básicas de controle de sequência, seleção e repartição.

Diagrama de Chapin – cálculo da média de um aluno

Pseudocódigo

- Conhecido como português estruturado ou portugol
- Rico em detalhes
- Esta representação é suficientemente geral para permitir que a tradução de um algoritmo nela representado para uma linguagem de programação específica seja praticamente direta

Representação de um algoritmo na forma de pseudocódigo

Representação do algoritmo de cálculo da média

```
Algoritmo Media
Var N1, N2, Media
Inicio
Leia N1, N2
Media := (N1+N2)/2
Se Media >= 7 Entao
Escreva "Aprovado"
Senao
Escreva "Reprovado"
Fim.
```


Operadores de Atribuição

- Um operador de atribuição serve para atribuir um valor a uma variável.
- Em algoritmo usamos o operador de atribuição:
 - ° =
 - · <-
- A sintaxe de um comando de atribuição é:
 - nome_da_variável = expressão
- A expressão localizada no lado direito do sinal de igual é avaliada e armazenado o valor resultante na variável à esquerda.
 - O nome da variável aparece sempre sozinho, no lado esquerdo do sinal de igual deste comando.

Operadores de Atribuição

 O comando de atribuição ou simplesmente atribuição, é a principal maneira de armazenar uma informação numa variável.

```
Ex:

nome = "Jenoveva";

preco = 15.85;

quantidade = 5;

total = preco * quantidade;

imposto = total * 17 / 100;
```


Operadores Aritméticos

Operador	Operação	Prioridade
+	Adição	2
-	Subtração	2
*	Multiplicação	1
1	Divisão	1
%	Resto da Divisão	1

Operadores Relacionais

 Os operadores relacionais são operadores binários que devolvem os valores lógicos verdadeiro e falso.

Operador	Comparação		
>	maior que		
<	menor que		
>=	maior ou igual que		
<=	menor ou igual que		
==	igual		
<>	diferente		

- Estes valores são somente usados quando se deseja efetuar comparações.
 - Comparações só podem ser feitas entre objetos de mesma natureza, isto é, variáveis do mesmo tipo de dados.

Operadores Lógicos

- Os operadores lógicos ou booleanos são usados para combinar expressões relacionais.
- Também devolvem como resultado valores lógicos verdadeiro ou falso.

Operador	Tipo	Operação	Prioridade
OU	Binário	Disjunção	3
E	Binário	Conjunção	2
NAO	Unário	Negação	1

Operadores Lógicos

• Tabela Verdade

A	В	A E B	A OU B	NÃO A	NÃO B
V	V	V	V	F	F
V	F	F	V	F	V
F	V	F	V	V	F
F	F	F	F	V	V

Operadores Lógicos

 Forma uma nova proposição lógica a partir de outras proposições lógicas.

EX:

- Se chover e relampejar, eu fico em casa. Quando eu fico em casa?
- Se chover ou relampejar, eu fico em casa. Quando eu fico em casa?