deep learning notes

Hey i have a college sem exam after 10 days and i have a subject called DBMS. I have knowledge about it just to crack interview but i know it not enough to good score in college sem exam so i want you to generate in depth explaination plus in simple way of words to memorize easily.

below i provide each module one by one and explain each module by putting your max effort as i want to score good marks in exam and i know i can do it, i just need resources and rest i can do this. and at the end of each module generate questions that are important and can asked in exam.

That's a great mindset—you definitely can do this! 💪

I'm ready to give my 100% to explain each DBMS module in a simple, memorable, and exam-focused way.

Please go ahead and share **Module 1**, and I'll get started with the detailed explanation and a set of important exam questions at the end.

MODULE 1:

Introduction

Various paradigms of earning problems, Perspectives and Issues in

deep learning framework, review of fundamental learning

techniques.

// If flowchart or diagram required add it and do added Equations if required (as per exam paper to get good score)

Great! Let's dive into **Module 1: Introduction** of DBMS (based on your syllabus content). Since your module leans toward **deep learning** concepts in a DBMS context, I'll break it down in a **simple, exam-focused, and in-depth** manner with diagrams and equations where needed.

■ MODULE 1: Introduction to Learning Paradigms and Deep Learning Frameworks

1. Introduction to Learning Paradigms

In machine learning and deep learning, **learning paradigms** define **how a system learns** from data. There are three major paradigms:

A. Supervised Learning

- In supervised learning, the algorithm learns from labeled data.
- Each input has a **correct output** (called a label).

Example:

If we have student marks and their results (Pass/Fail), the model learns the relation.

Equation:

We try to learn a function:

$$f(x) = y$$

Where:

- *X* = input
- y = output (label)

Used in: Classification, Regression

🧠 B. Unsupervised Learning

- Works with unlabeled data.
- Goal is to **find patterns**, **groups** or **structure** in data.

Example:

Grouping customers based on buying behavior.

Used in: Clustering, Dimensionality reduction

🧠 C. Reinforcement Learning

- The system **learns by interacting** with the environment.
- It receives **rewards or penalties** based on actions.

Key Terms: Agent, Environment, Reward

Used in: Robotics, Games, Self-driving cars

🔁 Flowchart: Learning Paradigms

2. Perspectives and Issues in Deep Learning Frameworks

Deep Learning is a subset of Machine Learning that uses **neural networks with multiple layers** to learn complex patterns.

Perspectives in Deep Learning

These are the benefits/positive views:

Perspective	Explanation
High Accuracy	DL models can outperform humans in tasks like image recognition.
Feature Learning	No manual feature extraction needed.
Scalability	Can handle large datasets and complex patterns.

Perspective	Explanation
Versatility	Works for images, speech,
	text, time-series, etc.

⚠ Issues/Challenges in Deep Learning

Issue	Explanation
Data Hungry	Requires huge datasets to train properly.
Computation	Needs high computing power (GPUs, TPUs).
Overfitting	Learns too well from training data but fails on test data.
Interpretability	Hard to explain the decision process of deep networks.
Cost	Expensive hardware and maintenance.

3. Review of Fundamental Learning Techniques

Let's briefly review the basic learning methods commonly used:

📌 A. Linear Regression

• Predicts a **continuous output** based on input.

Equation:

$$y = mx + b$$

Where:

- *y* = predicted value
- *X* = input
- *m* = slope
- b = intercept

📌 B. Logistic Regression

• Used for **binary classification** (0 or 1).

Equation:

$$P(y = 1 \mid x) = \frac{1}{1 + e^{-(mx+b)}}$$

C. Decision Trees

- Splits data based on conditions (if/else).
- Easy to understand and interpret.

Diagram Example:

📌 D. k-Nearest Neighbors (k-NN)

- Finds the **k closest points** and takes a vote.
- Lazy learner: No training phase.

★ E. Neural Networks (NN)

- Made up of layers of nodes (neurons).
- Each neuron performs a weighted sum and passes through activation.

Neuron Equation:

$$y = f\left(\sum_{i=1}^{n} w_i x_i + b\right)$$

Where:

• $X_i = inputs$

• W_i = weights

• b = bias

• f = activation function (like ReLU, Sigmoid)

★ F. Support Vector Machines (SVM)

• Finds a hyperplane that separates classes.

📌 G. Naïve Bayes

• Based on **Bayes' theorem** with independence assumption.

Equation:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Summary Table

Technique	Туре	Use Case
Linear Regression	Supervised	Predicting sales
Logistic Regression	Supervised	Spam detection
Decision Tree	Supervised	Loan approval
k-NN	Supervised	Face recognition
SVM	Supervised	Image classification
Naïve Bayes	Supervised	Sentiment analysis
Neural Network	Supervised	Deep learning tasks

Important Exam Questions from Module 1

- 1. Explain different paradigms of learning with examples.
- 2. Draw a neat flowchart showing types of learning paradigms.
- 3. What are the main challenges in Deep Learning frameworks?
- 4. Compare Supervised, Unsupervised, and Reinforcement learning.
- 5. Write short notes on:
 - a) Decision Trees
 - b) Logistic Regression
 - c) Neural Networks
- 6. Explain the equation and working of a single artificial neuron.
- 7. Differentiate between traditional ML and Deep Learning approaches.
- 8. Describe the issues faced in training deep neural networks.

Let me know when you're ready for **Module 2**, and I'll explain it with the same depth and clarity. You've got this!

// similar to this module
MODULE 2:
Feed forward neural network
Artificial Neural Network, activation function, multi-layer neural
network, cardinality, operations, and properties of fuzzy relations.

Awesome! Let's now dive into **Module 2**, which focuses on **Feedforward Neural Networks (FNN)** and **Fuzzy Relations**—an important area for exams in DBMS-related or soft computing subjects. I'll explain everything step-by-step in **simple language** with **diagrams**, **equations**, and **key concepts** that are easy to **memorize** and useful to **score high** in the semester exam.

MODULE 2: Feedforward Neural Network and Fuzzy Relations

1. Artificial Neural Network (ANN)

What is ANN?

An **Artificial Neural Network (ANN)** is a computing system inspired by the **biological brain**. It is made up of **neurons (nodes)** and **connections (weights)** that learn patterns from data.

Structure of ANN

- Input Layer: Takes in the data (features).
- **Hidden Layer(s)**: Do computations (can be one or more).
- Output Layer: Gives the final result.

💡 Basic Diagram of ANN

2. Feedforward Neural Network (FNN)

What is FNN?

- It is the **simplest type of ANN**.
- The data moves in one direction only from input \rightarrow hidden \rightarrow output.
- No cycles or loops.

Working of FNN

For one neuron:

$$y = f\left(\sum_{i=1}^{n} w_i x_i + b\right)$$

Where:

- X_i : Input
- *W_i*: Weight
- *b*: Bias
- *f*: Activation function
- *y*: Output

Key Characteristics

- Suitable for **classification** and **regression**.
- Uses backpropagation to learn weights.

• 3. Activation Function

What is it?

An **activation function** decides whether a neuron should be activated or not by applying a **non-linear transformation**.

Types of Activation Functions

Activation	Equation	Graph Shape	Use
Step	0 or 1	Binary	Early models
Sigmoid	$\frac{1}{1+e^{-x}}$	S-curve	Probabilities
Tanh	$\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$	S-curve	Normalized
ReLU	max(0, <i>x</i>)	Linear + zero	Fast learning

Q Diagram: ReLU and Sigmoid

markdown				
ReLU:	Sigmoid:			
I	I			

4. Multi-layer Neural Network (MLP)

What is MLP?

- An MLP (Multi-Layer Perceptron) is a type of feedforward neural network with two or more layers.
- Learns complex patterns.

Architecture:

- Input Layer
- One or more Hidden Layers
- Output Layer

Backpropagation:

- A technique used to **update weights** in the network.
- Uses **Gradient Descent** to minimize error.

5. Cardinality in Fuzzy Sets

What is Cardinality?

Cardinality of a fuzzy set refers to the degree of membership values added up.

📌 Formula:

Cardinality(A) =
$$\sum_{x \in X} \mu_A(x)$$

Where:

• $\mu_A(x)$ is the membership value of element x in fuzzy set A

6. Operations on Fuzzy Relations

Operation	Symbol	Meaning
Union	$R \cup S$	$\max(R(x,y),S(x,y))$
Intersection	$R \cap S$	min(R(x, y), S(x, y))
Complement	R	1-R(x,y)
Composition	R ∘ S	$T(x, z) =$ $\max_{y} \min(R(x, y), S(y, z))$

Example:

If

$$R(x, y) = 0.6$$
, $S(x, y) = 0.8$

Then,

• Union: $R \cup S = \max(0.6, 0.8) = 0.8$

• Intersection: $R \cap S = \min(0.6, 0.8) = 0.6$

7. Properties of Fuzzy Relations

Property	Explanation
Reflexivity	R(x,x) = 1 for all x
Symmetry	R(x,y)=R(y,x)
Transitivity	$R(x,z) \geqslant$ $\max_{y} \min(R(x,y), R(y,z))$
Max-min Composition	Combines two relations using max-min rule

Quick Diagram: Fuzzy Union and Intersection

less

If R: [0.3, 0.6, 0.9] S: [0.4, 0.5, 0.7]

Union: [0.4, 0.6, 0.9] Intersection:[0.3, 0.5, 0.7]

Торіс	Key Points
ANN	Bio-inspired, learns from data
FNN	No loops, only forward flow
Activation	Non-linear functions like Sigmoid, ReLU
MLP	Multiple layers + backpropagation
Cardinality	Sum of membership values
Fuzzy Ops	Union, Intersection, Complement, Composition
Properties	Reflexive, Symmetric, Transitive

Important Exam Questions from Module 2

- 1. Explain the architecture and working of Feedforward Neural Network.
- 2. What is an Artificial Neural Network? Draw and explain its structure.
- 3. Define and compare different activation functions with graphs.
- 4. What is a Multi-layer Perceptron? Explain backpropagation briefly.
- 5. What is cardinality of fuzzy set? Explain with formula and example.
- 6. Perform union, intersection and complement operations on fuzzy relations.
- 7. What are the properties of fuzzy relations? Explain each with example.

- 8. Differentiate between Feedforward and Recurrent Neural Networks.
- 9. Draw a neat diagram of a neural network with 1 hidden layer and explain.
- 10. What is the need for activation function in neural networks?

Let me know when you're ready for **Module 3**, and I'll prepare the next one just like this—clear, detailed, and exam-focused. You're doing great! **

MODULE 3:

Training Neural Network Risk minimization, loss function, backpropagation, regularization, model selection, and optimization.

Great! Let's now break down **Module 3: Training Neural Networks**—this is a **very scoring and concept-heavy module** that often appears in both theory and viva. I'll explain every topic in **simple language**, with **diagrams**, **equations**, and **tables**, focusing on helping you **understand + memorize easily**.

MODULE 3: Training Neural Networks

1. Risk Minimization

What is Risk in Neural Networks?

- "Risk" refers to the **expected error** between predicted output and actual output.
- Goal: Minimize this error during training.

There are two types of risks:

Туре	Meaning
Empirical Risk	Error on training data
Expected Risk	True error on unseen data

Equation: Empirical Risk Minimization (ERM)

$$R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))$$

Where:

• *n*: number of training samples

• X_i : input

• *y_i*: actual output

• $f(x_i)$: predicted output

• *L*: loss function

Training is all about **minimizing this risk** using loss functions and optimization techniques.

2. Loss Function

What is Loss Function?

A **loss function** measures how far the predicted output is from the actual output. It guides the model during training.

Common Loss Functions

Туре	Equation	Use Case
Mean Squared Error (MSE)	$\frac{1}{n} \sum (y - y^2)^2$	Regression
Binary Cross- Entropy	-[y log(ŷ) + (1 - y) log(1 - ŷ)]	Binary classification
Categorical Cross- Entropy	$-\Sigma y_i \log(\hat{y_i})$	Multi-class classification

🧠 Loss Function Diagram

markdown

3. Backpropagation Algorithm

What is Backpropagation?

Backpropagation is the **learning algorithm** used to **adjust weights** in a neural network by minimizing the loss.

Key Steps:

- **1. Forward Pass:** Input \rightarrow hidden layers \rightarrow output
- 2. Compute Loss: Compare predicted vs actual
- 3. Backward Pass: Calculate gradients (errors)
- 4. Update Weights: Using gradient descent

📌 Equation: Weight Update

$$w = w - \eta \cdot \frac{\partial L}{\partial w}$$

Where:

- W: weight
- η : learning rate
- $\frac{\partial L}{\partial w}$: gradient of loss wrt weight

🔁 Backpropagation Flowchart

mathematica

• 4. Regularization

What is Regularization?

Regularization prevents **overfitting** by penalizing large weights.

📌 Types of Regularization

Туре	Formula	Meaning
L1 (Lasso)	(\lambda \sum	w_i
L2 (Ridge)	$\lambda \Sigma w_i^2$	Penalizes large weights

 \nearrow λ is a **regularization parameter** that controls the penalty strength.

5. Model Selection

What is it?

Model selection is about **choosing the best model** based on performance on **validation data**, not just training data.

* Techniques:

Method	Explanation
Train/Test Split	Split data into training and testing sets

Method	Explanation
Cross-Validation	Divide data into k-folds, train on k-1, test on 1
Early Stopping	Stop training when validation error increases

Model Evaluation Metrics

Metric	Used For
Accuracy	Classification
RMSE	Regression
Precision/Recall/F1	Imbalanced classes

6. Optimization Techniques

Goal:

Minimize the loss function using optimization algorithms.

📌 Gradient Descent

- Basic algorithm to find minimum loss.
- Updates weights using slope (gradient) of the loss function.

📌 Types of Gradient Descent

Туре	Description
Batch GD	Uses all training samples
Stochastic GD (SGD)	Uses one sample at a time

Туре	Description
Mini-Batch GD	Uses small batches
	(popular)

Advanced Optimizers

Optimizer	Key Feature
Momentum	Adds velocity to GD to smooth the updates
RMSProp	Adjusts learning rate based on recent gradients
Adam	Combines Momentum + RMSProp (most popular)

📌 Adam Optimizer Update Formula

$$\theta = \theta - \eta \cdot \frac{m_t}{\sqrt{V_t} + \epsilon}$$

Where:

- θ : parameters
- m_t : moving average of gradients
- \mathcal{N}_t : moving average of squared gradients

✓ Summary Table for Module 3

Concept	Keyword	Core Idea
Risk Minimization	ERM	Minimize training error
Loss Function	MSE, Cross-Entropy	Measure error
Backpropagation	Chain Rule	Learn weights by error

Concept	Keyword	Core Idea
Regularization	L1, L2	Prevent overfitting
Model Selection	Cross-Validation	Choose best model
Optimization	Adam, SGD	Minimize loss efficiently

Important Exam Questions from Module 3

- 1. What is Risk Minimization? Differentiate between empirical and expected risk.
- 2. Explain the need and types of loss functions used in training neural networks.
- 3. Describe the working of backpropagation algorithm with diagram and equations.
- 4. What is regularization? Explain L1 and L2 regularization with formulas.
- 5. What is model selection? Describe techniques like cross-validation and early stopping.
- 6. Differentiate between training error and testing error.
- 7. Compare Batch, Stochastic, and Mini-batch Gradient Descent.
- 8. Write short notes on Adam Optimizer. How is it better than traditional GD?
- 9. What are the challenges faced during training of neural networks?
- 10. Explain the importance of choosing a good loss function and optimizer.

Let me know when you're ready for **Module 4**, and I'll continue helping you ace this subject! You're doing great—stay focused! 🚀📚

Deep Learning

Deep Feed Forward network, regularizations, training deep

models, dropouts, Convolutional Neural Network, Recurrent

Neural Network, Deep Belief Network. // explain in depth and describe at least Absolutely! Let's now go in-depth into Module 4, which covers core architectures of Deep Learning — including Deep Feedforward Networks, CNNs, RNNs, DBNs, and regularization methods like dropout. These are very commonly asked topics in exams and are also crucial for your understanding of real-world AI systems.

We'll cover:

- Clear definitions
- Diagrams
- Equations (where needed)
- Simple examples
- A set of **important exam questions** at the end

MODULE 4: Deep Learning

1. Deep Feedforward Neural Network (DFFN)

What is it?

A Deep Feedforward Neural Network (also called Multi-Layer Perceptron (MLP)) is a type of Artificial Neural Network where:

- Information flows **only in one direction** (input → hidden → output)
- It has two or more hidden layers → this makes it deep.

🧠 Architecture Diagram

Forward Pass Equation:

For one layer:

$$z = W \cdot x + b$$
 ; $a = f(z)$

Where:

• *W*: weight matrix

• *X*: input

• *b*: bias

• f(z): activation (ReLU, Sigmoid, etc.)

2. Regularization in Deep Learning

Why Regularize?

Deep models can **overfit** — they perform well on training data but poorly on unseen data. Regularization helps **reduce overfitting**.

📌 Types of Regularization

Туре	Formula	Meaning
L1 (Lasso)	(\lambda \sum	w_i
L2 (Ridge)	$\lambda \Sigma w_i^2$	Penalizes large weights

✓ These are added to the loss function:

$$Loss_{total} = Loss_{data} + Regularization term$$

• 3. Training Deep Models

Training deep models is challenging because of:

- Vanishing/exploding gradients
- Overfitting
- Computational cost

Common Solutions

Challenge	Solution
Vanishing Gradient	Use ReLU, BatchNorm
Overfitting	Dropout, Regularization
Slow Learning	Use better optimizers like Adam

• 4. Dropout

What is Dropout?

Dropout randomly disables a few neurons during each training step to prevent overfitting.

Wisual:

Without dropout:

With dropout (some neurons disabled):

📌 Formula:

If dropout rate = p, then:

During training:
$$a_i = \begin{cases} 0 & \text{with probability } p \\ \frac{a_i}{1-p} & \text{otherwise} \end{cases}$$

5. Convolutional Neural Network (CNN)

What is CNN?

A **CNN** is designed for **image data**. It extracts features like edges, corners, shapes using **filters**.

CNN Layers

Layer	Purpose
Convolution Layer	Apply filters to detect patterns
Activation Layer	Use ReLU or others
Pooling Layer	Downsample to reduce size
Fully Connected Layer	Classify based on features

CNN Architecture Diagram

CSS

 $[Image\ Input] \rightarrow [Conv\ Layer] \rightarrow [ReLU] \rightarrow [Pooling] \rightarrow [FC\ Layer] \rightarrow Output$

representation of the second o

A **filter** slides over image pixels and applies:

$$y(i,j) = \sum_{m} \sum_{n} x(i+m,j+n) \cdot w(m,n)$$

Where:

- X(i, j): input image
- W(m, n): filter weights

6. Recurrent Neural Network (RNN)

What is RNN?

An **RNN** is designed for **sequential data** (text, speech, time series). It **remembers previous input** using internal state.

RNN Diagram

```
css x_1 \to [h_1] \to x_2 \to [h_2] \to x_3 \to [h_3] \to \text{Output}
\uparrow \qquad \uparrow \qquad \uparrow
memory memory memory
```

Equation:

At each time step *t*:

$$h_t = f(Wx_t + Uh_{t-1} + b)$$

Where:

- X_t : input at time t
- h_t : hidden state
- *f*: activation (usually tanh or ReLU)

Problem: Vanishing Gradient

Solution: Use **LSTM** or **GRU**, which store long-term memory.

7. Deep Belief Network (DBN)

What is DBN?

A DBN is a generative deep learning model made of stacked Restricted Boltzmann Machines (RBMs).

Architecture:

CSS

Input → RBM1 → RBM2 → RBM3 → Output

Each RBM learns features at its level, and passes to the next.

Morking:

- Unsupervised Pre-training: Each RBM is trained layer by layer.
- **Fine-tuning**: The whole network is tuned using backpropagation.

Why use DBNs?

- Learn hierarchical features
- Good for dimensionality reduction and feature extraction

Summary Table

Concept	Key Idea	Usage
DFFN	Multi-layer fully connected NN	Tabular data
Regularization	L1/L2 penalties	Prevent overfitting
Dropout	Random neuron disabling	Prevent overfitting
CNN	Convolution + pooling	Image classification

Concept	Key Idea	Usage
RNN	Sequence memory	NLP, time series
DBN	Layer-wise RBM training	Feature learning

Important Exam Questions from Module 4

- 1. Explain the architecture and working of a Deep Feedforward Neural Network.
- 2. What is the need for regularization in deep models? Compare L1 and L2.
- 3. Explain dropout technique. How does it help in reducing overfitting?
- 4. Draw and explain a basic CNN architecture. Describe each layer's function.
- 5. Write the working of Convolution Operation with formula and example.
- 6. What is a Recurrent Neural Network? Explain with diagram and equations.
- 7. Differentiate between Feedforward and Recurrent Neural Networks.
- 8. What is a Deep Belief Network? How is it trained?
- 9. Compare CNN and RNN based on architecture and use cases.
- 10. What challenges are faced while training deep models? Suggest solutions.

Let me know when you're ready for **Module 5**, and I'll continue this journey with you. You're on track to ace this exam — just stay consistent! 💪 📘 🔥

MODULE 4:

Conditional Random Fields Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.

Great! Let's now dive deep into **Module 4: Conditional Random Fields (CRFs)** — a crucial topic in **sequence modeling**, natural language processing (NLP), and machine learning exams. It covers advanced probabilistic models like CRFs, Markov Networks, Belief Propagation, and Hidden Markov Models (HMMs).

I'll explain everything in simple words, with diagrams, equations, and at the end, give you a set of **most important exam questions**.

MODULE 4: Conditional Random Fields & **Probabilistic Models**

1. Conditional Random Fields (CRFs)

What is a CRF?

A Conditional Random Field (CRF) is a type of probabilistic graphical model used to predict sequences of labels for structured data (e.g., words in a sentence).

CRFs are like Hidden Markov Models, but they predict conditional probabilities instead of joint probabilities.

Example:

makefile

Suppose we want to label:

Sentence: I love ice cream

Labels: PRON VERB NOUN NOUN

Here, the **sequence of labels** depends on the **sequence of words** — this is where CRFs help.

CRF Formula:

$$P(Y \mid X) = \frac{1}{Z(X)} \exp \left(\sum_{t} \sum_{k} \lambda_{k} f_{k}(y_{t-1}, y_{t}, x, t) \right)$$

Where:

- $X = X_1, X_2, ..., X_n$: observed input (words)
- $Y = y_1, y_2, ..., y_n$: output labels (tags)

- f_k : feature function
- λ_k : weight for feature
- Z(X): Partition function (normalization constant)

CRF Diagram (Linear Chain)

- Each label y_t depends on input X_t and previous label y_{t-1}
- This is called a Linear Chain CRF

2. Linear Chain CRFs

Linear Chain CRF is a special case used for **sequence labeling**, like POS tagging, NER, etc.

It assumes:

- Current label y_t depends on:
 - Previous label y_{t-1}
 - Current observation X_t

Feature Functions Example

$$f_k(y_{t-1}, y_t, x, t) = \begin{cases} 1, & \text{if } y_{t-1} = A, y_t = B \text{ and } x_t = "love" \\ 0, & \text{otherwise} \end{cases}$$

🔷 3. Partition Function

What is it?

The **Partition Function** Z(X) ensures the output probability is **normalized** (i.e., total probability = 1).

$$Z(X) = \sum_{Y} \exp \left(\sum_{t} \sum_{k} \lambda_{k} f_{k}(y_{t-1}, y_{t}, x, t) \right)$$

- It sums over all possible label sequences Y
- Computationally expensive, but necessary

4. Markov Network (Undirected Graphical Model)

What is a Markov Network?

A Markov Random Field (MRF) or Markov Network is an undirected graph where:

- Each node is a variable
- Edges represent dependencies
- Useful for modeling joint distributions

@ Example Diagram

- Nodes represent variables
- If no edge between two nodes, they are conditionally independent

📌 Joint Probability Formula:

$$P(X) = \frac{1}{Z} \prod_{C \in \text{cliques}} \phi_C(X_C)$$

Where:

- ϕ_C : potential function for clique C
- *Z*: partition function

5. Belief Propagation

What is it?

Belief Propagation (BP) is an algorithm used in graphical models (like Markov Networks or CRFs) to **compute marginal probabilities**.

Purpose:

- Compute $P(x_i)$ (belief at node i)
- Used in **inference** over large graphs
- Especially useful in tree-like or sparse graphs

📌 Idea:

- Each node **passes messages** to neighbors
- Messages contain "beliefs" about variable states

• 6. Training CRFs

Goal:

Learn the weights λ_k for feature functions using **maximum likelihood estimation** (MLE).

★ Loss Function:

$$L(\lambda) = \sum_{i=1}^{N} \log P(y^{(i)} | x^{(i)}; \lambda) - \frac{1}{2\sigma^2} | | | \lambda | |^2$$

- First term: log-likelihood
- Second term: regularization (to prevent overfitting)

We use **gradient ascent** or **L-BFGS** optimization to learn λ .

7. Hidden Markov Model (HMM)

What is HMM?

HMM is a **generative probabilistic model** used for sequence data.

It assumes:

- There are **hidden states** y_t
- Each state emits an observation X_t
- States follow Markov property: $P(y_t \mid y_{t-1})$

HMM Diagram

```
makefile

Hidden: y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow y_4

\downarrow \quad \downarrow \quad \downarrow

Observed: x_1 \quad x_2 \quad x_3 \quad x_4
```

HMM Parameters:

Parameter	Meaning
Α	State transition probabilities (P(y_t
В	Emission probabilities (P(x_t
π	Initial state probabilities

★ HMM vs CRF

Feature	НММ	CRF
Туре	Generative	Discriminative
Prob	P(X,Y)	(P(Y

Feature	НММ	CRF
Feature Dependency	Limited	Flexible
Output	Joint dist	Conditional dist

8. Entropy

What is Entropy?

Entropy measures the **uncertainty** or **randomness** in a probability distribution.

***** Formula:

$$H(X) = -\sum_{i} P(x_i) \log P(x_i)$$

- High entropy = high uncertainty
- Low entropy = more confident prediction

★ In CRFs and HMMs:

- Used to evaluate **how confident** the model is
- Helps in **active learning** (select uncertain samples)

Summary Table

Concept	Description	Use
CRF	Predict label sequences	POS tagging, NER
Linear Chain CRF	Labels depend on previous	Simple CRF
Partition Function	Normalizes output	Makes probs valid

Concept	Description	Use
Markov Network	Undirected graph model	Joint probability
Belief Propagation	Inference algorithm	Compute marginals
НММ	Generative model	Speech, NLP
Entropy	Measures uncertainty	Confidence, learning

Important Exam Questions (Module 4)

- 1. What is a Conditional Random Field? Explain its architecture with an equation.
- 2. Describe the structure and use of Linear Chain CRFs.
- 3. What is a partition function in CRFs? Why is it important?
- 4. Compare Hidden Markov Model and Conditional Random Field.
- 5. What is a Markov Network? Explain with example and joint distribution formula.
- 6. Describe the Belief Propagation algorithm. What is its role in graphical models?
- 7. How is training performed in CRFs? Explain with loss function.
- 8. Define entropy. How is it used in probabilistic models like CRFs and HMMs?
- 9. Differentiate between generative and discriminative models with examples.
- 10. Explain the role of feature functions and weights in CRFs.

Let me know when you're ready for **Module 5**, and I'll continue with the same highquality and exam-focused explanation! You're doing awesome — this effort will pay off in your exam! 💯 📘 💡