# Sample Report

Adarsh

## Contents

| 1 | Problem 1      | 3 |
|---|----------------|---|
| 2 | Algorithm      | 3 |
| 3 | Tikzpicture    | 4 |
| 4 | Subfigures     | 4 |
| 5 | External image | 5 |

#### 1 Problem 1

Suppose we start with a currency  $i_1$  and and trade our way through  $i_2, i_3 \dots$  to end up with a currency  $i_k$ . Its easy to see that if we start with one unit of  $i_1$  currency then we will end up with  $R[i_1, i_2].R[i_2, i_3] \dots R[i_{k-1}, i_k]$  amount of currency  $i_k$ . We are more comfortable with addition than multiplication [Tawarmalani et al., 2009]. Hence, we can model the above conversion by taking log (base e) of R[i,j] i.e. we start with log 1=0 unit of currecy  $i_1$  and end up getting  $\log(R[i_1,i_2].R[i_2,i_3]\dots R[i_{k-1},i_k]) = \log R[i_1,i_2] + \log R[i_2,i_3] + \dots + \log R[i_{k-1},i_k]$  amount of currency  $i_k$ . Now further more, we want to choose set of currencies in our trade path such that we end up with largest units of  $i_k$ . Mathematically, we want to choose a set of currencies in our trading path such that  $\log R[i_1,i_2] + \log R[i_2,i_3] + \dots + \log R[i_{k-1},i_k]$  is maximized or  $-\log R[i_1,i_2] - \log R[i_2,i_3] - \dots - \log R[i_{k-1},i_k]$  is minimized.

#### 2 Algorithm

```
Algorithm 1: INITIALIZE(G, s)

Input: G, s

Result: initialization

for each vertex v in G do

d(v) = \infty

\pi(v) = null

end

d(s) = 0
```

## 3 Tikzpicture



## 4 Subfigures



Figure 1: Training Examples are not linearly separable

### 5 External image

Figure 2: A bird



### References

[Tawarmalani et al., 2009] Tawarmalani, M., Kannan, K., and De, P. (2009). Allocating objects in a network of caches: Centralized and decentralized analyses. *Management Science*, 55(1):132–147.