

Chapter 5: Mission Analysis

Lecture 3 – The ellipse equation

Professor Hugh Lewis

Overview of lecture 3

- This lecture is focused on the derivation of the ellipse equation:
 - The ellipse equation we need describes the ellipse as a function of the radius and the position (measured using an angle):
 - I.e. it is the polar form of the ellipse equation
 - <u>Understanding the approach at a conceptual level is important, but the derivation</u> itself will not be assessed
- Why is the ellipse equation important?
 - It describes an elliptical trajectory with respect to a frame of reference
 - If we show mathematically, using fundamental physical principles, that orbital trajectories can be described using this equation then we can prove that Kepler's 1st Law is correct
 - This is what we will do in lectures 4 and 5

• Ellipse properties and equation in cartesian coordinates:

Ellipse equation:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

• Compare with equation for a circle:

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$$

• We want to write the ellipse equation in polar form

• Ellipse equation: $f(r, \theta)$

 Use cartesian coordinates as our starting point

Use the ellipse equation in cartesian form to start:

• Ellipse equation:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- Where* $x = h \cos \alpha$ and $y = h \sin \alpha$
- Also**: $r \cos \theta = x + ae = h \cos \alpha + ae$
- So: $h \cos \alpha = r \cos \theta ae$

- *Triangle PQC
- **Triangle PQF

Use some geometry and algebra...:

We can also see that*:

$$y = h \sin \alpha = r \sin \theta$$

This means we can now write the ellipse equation in terms of r and heta

- (1) Write x & y in terms of $h \& \alpha$; (2) Then write $h \& \alpha$ in terms of r, θ , a & e

^{*}Triangles PQF and PQC have one side in common

Ellipse equation

• Ellipse equation in polar form:

• Ellipse equation:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

• Re-writing:

$$\frac{(h\cos\alpha)^2}{a^2} + \frac{(h\sin\alpha)^2}{b^2} = 1$$

• And continuing:

$$\frac{(r\cos\theta - ae)^2}{a^2} + \frac{(r\sin\theta)^2}{b^2} = 1$$

• Ellipse equation in polar form:

For $0 \le e < 1$ only one of the roots guarantees a positive value of r

• Expanding and collecting terms (working not shown) we get:

$$r^{2}(b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta)$$
$$-2b^{2}aer\cos\theta = 0$$
$$+a^{2}b^{2}e^{2} - a^{2}b^{2}$$

• Which is a quadratic with roots:

$$r = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Southampton Astronautics – Chapter 5: Mission Analysis

• Ellipse equation in polar form:

Ellipse equation

We also know from the properties of an ellipse*:

$$b^2 = a^2(1 - e^2)$$

• Using this, some algebra and trig identities (working not shown) we can get to:

$$r = \frac{a(1 - e^2)}{1 - e\cos\theta}$$

• But we generally use the angle $(180 - \theta)$ when referring to orbital positions so...

• Ellipse equation in polar form:

- So our ellipse equation in polar form, with
- the angle θ measured from the closest point on the ellipse to the focus, is:

$$r = \frac{a(1 - e^2)}{1 - e\cos(180 - \theta)}$$

• Or:

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

Ellipse equation

• Ellipse equation in polar form:

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

If we can <u>show that orbits have</u> <u>the same equation</u> then we will know that orbits are ellipses if the gravitational force is inverse square

Recap of lecture 3

- This lecture focused on the derivation of the ellipse equation:
 - Starting with the ellipse equation in cartesian form: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 - With trigonometry & algebra, we can write this in polar form: $r = \frac{a(1 e^2)}{1 + e \cos \theta}$
 - This is just the first step of a longer derivation, to show that the ellipse equation follows mathematically from Newton's Law of Uniform Gravitation and his Laws of Motion
 - If we show mathematically, using fundamental physical principles, that orbital trajectories can be described using this equation then we can prove that Kepler's 1st Law is correct
 - This is what we will do in lectures 4 and 5

Activity

Additional activities (not compulsory):

- 1. Go through the derivation of the ellipse equation in polar form and complete the missing steps/working
- 2. Look at other properties of an ellipse, e.g. using Wikipedia: https://en.wikipedia.org/wiki/Ellipse