CSIP5403: Research Methods and Applications

Lecture 6: Statistics in Research

Shengxiang Yang¹

¹Institute of Artificial Intelligence School of Computer Science and Informatics De Montfort Universty – UK

Outline

- Introduction
- 2 Descriptive Statistics
- Inferential Statistics
- 4 Summary

Statistics: Descriptive and Inferential

- Collection, processing, analysis, interpretation, and presentation of numerical data belongs to the domain of statistics
 - Descriptive: Organise, summarise or describe important features of a set of data without going any further
 - Inferential: Interpret data to make generalizations which go beyond the data

Descriptive Statistics

- Grouping, classifying and describing measurements and observations is a basic in statistics
- Many types of descriptive statistics
 - Frequency counts and distributions
 - Summary measures such as measures of central tendency, variability, and relationship
 - Graphical representations of the data
- A way to visualize the data and the first step in any statistical analysis

Frequency Distributions

- First step in organization of data
 - Can see how the scores are distributed
- Used with all types of data
- Illustrate relationships between variables in a cross-tabulation
- Simplify distributions with a large range by using a grouped frequency distribution (5-20)

Histograms

- A bar graph can be used to graph either
 - data from discrete groups
 - data from individual scores of a continuous variable

Sample Histogram

Histograms (2 Distributions)

 Possible to graph two or more distributions on the same histogram to see how they compare

Sample Histogram

Frequency Polygon (1 Group)

- Like a histogram except that, instead of a bar representing the mean score or frequency, a dot is used, with the dots connected as shown
- Data could be either discrete or continuous

Frequency Polygon (2 Groups)

- Can compare two or more frequency polygons on the same scale as shown
- Easier to compare frequency polygons because the graph appears less cluttered than multiple histograms

Measures of Central Tendency

- One simple way to summarise the results of an experiment is to calculate the value of the typical score
- There are 3 common measures of central tendency
 - Mean
 - Median
 - Mode

Measures of Central Tendency: Mean

- Mean: the arithmetic average score
 - Used to represent data by means of a single number
 - Centre of gravity
 - Familiar to most people
 - Always exists
 - Unique
 - Take into account each individual score
 - Sensible to single extreme values
 - Used in later inferential statistics

Measures of Central Tendency: Median and Mode

- Median: the middle score in a data set when arranged in increasing or decreasing order of magnitude
 - Always exists
 - Unique
 - Unlike mean, not affected by a few deviant scores
- Mode: the most frequently occurring score
 - Can be used for qualitative data
 - May not be unique

Measures of Variation

- They will tell us something about the extent to which data are disperse, spread out or bunched
- The concept of variability is of special importance in statistical inference
- Variance: average squared distance from the mean
 - Used in later inferential statistics
- Standard Deviation: square root of variance
 - Expressed on the same scale as the mean

Formulas

$$\bar{X} = \frac{\sum X}{N}$$

$$s^2 = \frac{SS}{df} = \frac{\sum (X - \bar{X})^2}{N - 1}$$

• df — "degree of freedom"

• Computational Formula:
$$SS = \sum_{N} X^2 - \frac{(\sum_{N} X)^2}{N}$$

• Standard Deviation:
$$s = \sqrt{s^2}$$

Computational Example

- Compute mean, variance, and standard deviation of the following: 2, 5, 7, 4, 6, 5
- Compute mean: $\bar{X} = \frac{\sum X}{N} = \frac{29}{6} = 4.83$
- Next, compute sum of X and sum of X^2 :

$$\sum X = 29, \quad \sum X^2 = 155$$

• Compute variance, and standard deviation:

$$SS = \sum X^2 - \frac{(\sum X)^2}{N} = 155 - \frac{29^2}{6} = 14.83$$

Measures of Relationship

- Pearson product-moment correlation
 - Used with interval or ratio data
- Spearman rank-order correlation
 - Used when one variable is ordinal and the second is at least ordinal
- Scatter plots
 - Visual representation of a correlation
 - Helps to identify possible nonlinear relationships

Correlations: Formulas

• Pearson product-moment correlation

$$r_{xy} = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

Spearman rank-order correlation

$$r_{\rm s} = 1 - \frac{6 \sum d_{XY}^2}{N(N^2 - 1)}$$

where d_{XY} is the difference in ranks between X and Y

Computational Example

Compute the product-moment correlation for the data below

	X	Y	X^2	Y^2	XY
	4	5	16	25	20
	3	5	9	25	15
	5	6	25	36	30
	2	4	4	16	8
	6	7	36	49	42
	5	7	25	49	35
\sum	25	34	115	200	150

- Compute sums, sums of squares, and cross products as shown
- Calculate the product-moment correlation

$$r_{xy} = \frac{\sum_{XY - \frac{(X^{2})(X^{2})}{N}} \sqrt{\left[\sum_{X^{2} - \frac{(X^{2})(34)}{6}}\right] \left[\sum_{Y^{2} - \frac{(X^{2})(34)}{N}}\right]}}{\sqrt{\left[115 - \frac{(25)(34)}{6}\right] \left[200 - \frac{(34)^{2}}{6}\right]}} = \frac{8.33}{\sqrt{\left[10.83\right] \left[7.33\right]}} = 0.93$$

Computational Example

• Compute a rank-order correlation for the ordinal data below

Χ	Y	d_{XY}	d_{XY}^2
1	3	-2	4
2	2	0	0
3	1	2	4
4	5	-1	1
5	4	1	1
			10

- Compute the difference in ranks (d_{XY}) and d_{XY}^2 as shown
- Calculate the rank-order correlation

$$r_s = 1 - \frac{6 \sum d_{XY}^2}{N(N^2 - 1)} = 1 - \frac{6(10)}{5(5^2 - 1)} = 1 - \frac{60}{120} = 0.5$$

Regression

- Using a correlation (relationship between variables) to predict one variable from knowing the score on the other variable
- Usually a linear regression (finding the best fitting straight line for the data)
- Best illustrated in a scatter plot with the regression line also plotted
- ullet Correlation coefficients close to +1 or -1 linear regression

Lecture 6: Statistics in Research
Descriptive Statistics
Measures of Relationship

Regression

Go to Excel for Exercise

Inferential Statistics

- Used to draw inferences about populations on the basis of samples from the populations
- The "statistical tests" that we perform on our data are inferential statistics
- Provide an objective way of quantifying the strength of the evidence for our hypothesis

Populations and Samples

- Population: the larger group of all subjects of interest to the researcher
- Sample: a subset of the population
- Samples almost never represent populations perfectly (termed "sampling error")
 - Not really an error; just the natural variability that you can expect from one sample to another
- Population parameters and sample statistics
 - Population parameter is a descriptive statistic computed from everyone in the population
 - Sample statistics is a descriptive statistic computed from everyone in your sample

Hypothesis Testing

- So far all problems of estimation
- Sample mean estimates Population mean
- Is population mean equal to sample mean?
- In this case, we must test a hypothesis
 - There is NO difference between the population mean and the sample mean

The Null Hypothesis

- Example: Suppose two populations
- We want to test if populations means are equal
- Null Hypothesis: States that there is NO difference between the population means
- We have to test the Null Hypothesis:
 - Compare sample means to test the null hypothesis

Statistical Decisions

- We can either Reject or Fail to Reject the null hypothesis
 - Rejecting the null hypothesis suggests that there is a difference in the populations sampled
 - Failing to reject suggests that no difference exists
 - Decision is based on probability (reject if it is unlikely that the null hypothesis is true)
 - Alpha (α): the statistical decision criteria used
 - ullet Traditionally lpha is set to small values (.05 or .01)
- Always a chance for error in our decision

Statistical Decision Process

	Reject Null Hypothesis	Retain Null Hypothesis
Null Hypothesis is True	Type I Error	Correct Decision
Null Hypothesis is False	Correct Decision	Type II Error

Test Concerning Mean

- Null Hypothesis H₀
- Alternative Hypothesis H₁
 - Standard deviation known
 - Normal distribution
 - Standard deviation not known
 - Normal distribution if sample size >= 30
 - Student distribution (t-test) if sample size < 30

Testing Differences Between Means

- Simple t-test: tests mean difference of two independent groups
- Correlated t-test: tests mean difference of two correlated groups
- Analysis of Variance: tests mean differences in two or more groups

The *t*-test

• For independent samples

$$t = \frac{(X_1 - X_2)}{\sqrt{\left[\frac{SS_1 + SS_2}{N_1 + N_2 - 2}\right]\left[\frac{1}{N_1} + \frac{1}{N_2}\right]}}$$

For correlated samples

$$t = \frac{(\bar{X_1} - \bar{X_2})}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2} - 2r(\frac{s_1}{\sqrt{N_1}})(\frac{s_2}{\sqrt{N_2}})}}$$

where r is the Correlation Coefficient between X_1 and X_2

Computational Example: Independent t-test

• Calculate mean and SS:

	Group 1	Group 2
	5	3
	8	5
	7	2
	8	3
	7	
Mean	7.00	3.25
SS	6.00	4.75
N	5	4

Calculate t-test value:

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\left\lceil \frac{SS_1 + SS_2}{N_1 + N_2 - 2} \right\rceil \left\lceil \frac{1}{N_1} + \frac{1}{N_2} \right\rceil}} = \frac{(7.00 - 3.25)}{\sqrt{\left\lceil \frac{6.00 + 4.75}{5 + 4 - 2} \right\rceil \left\lceil \frac{1}{5} + \frac{1}{4} \right\rceil}} = \frac{3.75}{0.83} = 4.52$$

Make decision:

$$t = 4.52 > t_{crit} = 2.365 \Rightarrow \text{Reject Null Hypothesis}$$

Computational Example: Correlated t-test

• Statistical data:

	Before	After
Mean	3.17	2.96
Standard Deviation	0.893	0.975
N=91	r = 0.84	

Calculate t-test value:

$$t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2} - 2r\left(\frac{s_1}{\sqrt{N_1}}\right)\left(\frac{s_2}{\sqrt{N_2}}\right)}}$$

$$= \frac{(3.17 - 2.96)}{\sqrt{\frac{0.893^2}{91} + \frac{0.975^2}{91} - 2(0.84)\left(\frac{0.893}{\sqrt{91}}\right)\left(\frac{0.975}{\sqrt{91}}\right)}} = \frac{0.21}{0.056} = 3.75$$

• Make decision:

$$t = 3.75 > t_{crit} = 1.99 \Rightarrow \text{Reject Null Hypothesis}$$

Power of a Statistical Test

- Sensitivity of the procedure to detect real differences between the populations
- Not just a function of the statistical test, but also a function of the precision of the research design and execution
- Increasing the sample size increases the power because larger samples estimate the population parameters more precisely

Summary

- Statistics allow us to detect and evaluate group differences that are small compared to individual differences
- Descriptive vs. inferential statistics
 - Descriptive statistics describe the data
 - Inferential statistics are used to draw inferences about population parameters on the basis of sample statistics
- Statistics help objective evaluation, but do not guarantee correct decision every time

