

USN:

School of Computer Science and Engineering B.Tech (Hons.)

CIE-3

Academic Year 2024 - 2025

Course: Calculus and Laplace Transform	Course Code: CS2802	Semester: IV
Date: 11 April 2025	Duration: 60 Minutes	Max Marks: 15 Marks

Instructions:

• All questions are compulsory.

- Write your USN in the space provided as soon as you get the question paper.
- Do not answer any part of the answers in the question paper.
- Do not engage in any unfair practices.
- Non-programmable calculators are allowed.

S.No	Question	Marks	Level	CO
1	 a) Calculate the gradient of the function f(x, y) = x³ + 4xy² - x. [2] b) Starting from an initial guess of (0, 0.25), evaluate the first two steps of the gradient descent method for the function. Take the step-size (learning rate) to be 0.1 [3] 	5	L3	CO 3
2	 a) Let f(x,y) = e^x sin(y). Find the second-order Taylor series expansion of f(x,y) about the point (0,0).[3] b) Use the expansion to approximate the value of f(0.1,0.2) up to second-order terms and also determine the tangent plane at the point. [2] 	5	L3	CO 3
	Cc	ontinued	on next	page

3	a) Evaluate the Laplace transform of $f(t) = e^{2t} \cosh 2t$ where $\cosh(2t)$ is the hyperbolic cosine function. [2]	5	L3	CO 4
	b) Using the properties of linearity of Laplace Transforms calculate the Laplace transform of the function: . [3]			
	$f(t) = 2t^2 - \sin(t) + 4e^{-2t}; 0 \le t < \infty$			

	Course Outcomes								
CO1:	Understand foundational concepts of functions, limits, continuity and derivatives to solve various engineering problems.								
CO2:	Apply derivatives and integrations in problems including rate of change, surface areas, volumes, probabilities, and single variable optimization.								
CO3:	Solve linear approximations and unconstrained optimization problems related to engineering applications.								
CO4:	Apply Laplace transform to solve problems on time varying signals.								

Marks Distribution									
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4
-	-	15	-	-	-	-	-	10	5

 \mathbf{End}

USN:												
------	--	--	--	--	--	--	--	--	--	--	--	--

School of Computer Science and Engineering B.Tech (Hons.)

CIE-3

Academic Year 2024 - 2025

Course: Calculus and Laplace Transform	Course Code: CS2802	Semester: IV
Date: 11 April 2025	Duration: 45 Minutes	Max Marks: 15 Marks

Answer Keys:

Q.1)

a) Calculate the gradient of the function $f(x,y) = x^3 + 4xy^2 - x$. [2]

Solution:

$$f(x,y) = x^3 + 4xy^2 - x$$

$$\Rightarrow \nabla f = \begin{bmatrix} 3x^2 + 4y^2 - x \\ 8xy \end{bmatrix}$$

b) Starting from an initial guess of (0, 0.25), evaluate the first two steps of the gradient descent method for the function. Take the step-size (learning rate) to be 0.1 [3]

Solution: Given the initial guess point, $P_0 = (0, 0.25) = (0, 1/4)$, the gradient descent technique is given by:

$$P_{n+1} = P_n - \alpha \nabla f(P_n)$$

$$P_0 = \begin{bmatrix} 0 \\ 1/4 \end{bmatrix}$$

$$\nabla f(P_0) = \begin{bmatrix} \frac{4}{4^2} - 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{-3}{4} \\ 0 \end{bmatrix}$$

$$\therefore P_1 = P_0 - 0.1 \nabla f(P_0)$$

$$P_1 = \begin{bmatrix} 0 \\ \frac{1}{4} \end{bmatrix} - \frac{1}{10} \begin{bmatrix} \frac{-3}{4} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{40} \\ \frac{1}{4} \end{bmatrix}$$

Now,

$$P_{2} = P_{1} - \frac{1}{10} \nabla f \left(\frac{3}{40}, \frac{1}{4} \right)$$

$$P_{2} = \begin{bmatrix} \frac{3}{40} \\ \frac{1}{4} \end{bmatrix} - \frac{1}{10} \begin{bmatrix} -0.73 \\ 0.15 \end{bmatrix} = \begin{bmatrix} 0.148 \\ 0.235 \end{bmatrix}$$

Q2).:

a) Let $f(x,y) = e^x \sin(y)$. Find the **second-order Taylor series expansion** of f(x,y) about the point (0,0).[3]

SOlution:

Taylor formula for f(x,y) about a point (x_0,y_0) up to 2^{nd} order is:

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + \frac{1}{2} \left(f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(x_0, y_0)(y - y_0)^2 \right)$$

We have:

$$f(0,0) = 0$$

$$f_x = e^x \sin(y); \Rightarrow f_x(0,0) = 0$$

$$f_{xx} = e^x \sin y; \Rightarrow f_{xx}(0,0) = 0$$

$$f_y = e^x \cos(y); \Rightarrow f_y(0,0) = 1$$

$$f_{yy} = -e^x \sin y \Rightarrow f_{yy}(0,0) = 0$$

$$f_{xy} = e^x \cos y \Rightarrow f_{xy}(0,0) = 1$$

Thus, the Taylor formula (Maclaurin) is:

$$f(x, y) = y + xy$$

b) Use the expansion to approximate the value of f(0.1, 0.2) up to second-order terms and also determine the tangent plane at the point.[2]

Solution:

From the above, the quadratic approximation of the surface at (0,0) is given by:

$$f(x,y) = y + xy$$

.

Using this, the approximate value of the function at (0.1, 0.2) is:

$$f(0.1, 0.2) = 0.2 + 0.1 \times 0.2 = 0.22$$

From the original function:

$$f(0.1, 0.2) = e^{0.1} \sin 0.2 =$$
0.2196

Knowing that the quadratic approximation is f(x,y) = y + xy, the Tangent plane is given by the Taylor formula up to the linear term. Hence:

$$T(x, y) = y$$

Q 3).

a) Evaluate the Laplace transform of $f(t) = e^{2t} \cosh 2t$ where $\cosh(2t)$ is the hyperbolic cosine function. [2]

Answer: We know:

$$\mathcal{L}\{\cosh(2t)\} = \frac{s}{s^2 - 4}$$

Using the shift property:

$$\mathcal{L}\left\{e^{2t}\cosh(2t)\right\} = \frac{s}{s^2 - 4} \bigg|_{s \to s - 2} = \frac{s - 2}{(s - 2)^2 - 4}, \quad s > 4$$

b) Using the properties of linearity of Laplace Transforms calculate the Laplace transform of the function: . [3]

$$f(t) = 2t^2 - \sin(t) + 4e^{-2t}; \quad 0 \le t < \infty$$

Answer: By Applying the Linearity property

$$\mathcal{L}\lbrace f(t)\rbrace = \mathcal{L}\lbrace 2t^2\rbrace - \mathcal{L}\lbrace \sin(t)\rbrace + \mathcal{L}\lbrace 4e^{-2t}\rbrace$$

$$\mathcal{L}\lbrace f(t)\rbrace = 2\mathcal{L}\lbrace t^2\rbrace - \mathcal{L}\lbrace \sin(t)\rbrace + 4\mathcal{L}\lbrace e^{-2t}\rbrace$$

and then using the Standard Laplace Transforms

$$\mathcal{L}\lbrace t^2 \rbrace = \frac{2}{s^3}$$

$$\mathcal{L}\lbrace \sin(t) \rbrace = \frac{1}{s^2+1}$$

$$\mathcal{L}\lbrace e^{-2t} \rbrace = \frac{1}{s+2}$$

Substituting and then simplifying this

$$\mathcal{L}{f(t)} = 2 \cdot \frac{2}{s^3} - \frac{1}{s^2+1} + 4 \cdot \frac{1}{s+2}$$
$$= \frac{4}{s^3} - \frac{1}{s^2+1} + \frac{4}{s+2}$$

End

USN:							
	1	1	I	1		1	i

School of Computer Science and Engineering B.Tech (Hons.)

CIE-3

Academic Year 2024 - 2025

Course: Calculus and Laplace Transform	Course Code: CS2802	Semester: IV
Date: 11 April 2025	Duration: 60 Minutes	Max Marks: 15 Marks

Instructions:

- All questions are compulsory.
- Write your USN in the space provided as soon as you get the question paper.
- Do not answer any part of the answers in the question paper.
- Do not engage in any unfair practices.
- Non-programmable calculators are allowed.

S.No	Question	Marks	Level	СО
1	Using the gradient descent technique, minimize the function	5	L3	CO 3
	$f(x,y) = (x-2)^2 + (y-3)^2$			
	starting from the initial guess $(x_0, y_0) = (0, 0)$ and using a learning rate $\alpha = 0.5$. Show that the method converges to the minimum in two steps.			
2	 a) Evaluate the Taylor series of the function g(x,y) = ln(x + y) about the point P₀ = (1,1) up to second order in x and y.[3] b) Using the Taylor formula calculated above, deduce the tangent plane of the function about (1,1) and obtain the approximate value of g(1.1,1.1) using it. [2] 	55	L3	CO 3
	Cc	ontinued	on next	page

3	a) Evaluate the Laplace transform of $f(t) = e^{2t} \sinh 2t$ where $\sinh(2t)$ is the hyperbolic sine function. [2]	5	L3	CO 4
	b) Using the properties of linearity of Laplace Transforms calculate the Laplace transform of the function: . [3]			
	$f(t) = 4t^2 - 3\cos(t) + 5e^{-t}$			

	Course Outcomes								
CO1:	Understand foundational concepts of functions, limits, continuity and derivatives to solve various engineering problems.								
CO2:	Apply derivatives and integrations in problems including rate of change, surface areas, volumes, probabilities, and single variable optimization.								
CO3:	Solve linear approximations and unconstrained optimization problems related to engineering applications.								
CO4:	Apply Laplace transform to solve problems on time varying signals.								

Marks Distribution									
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4
_	-	15	-	-	-	-	-	10	5

 \mathbf{End}

USN:						

School of Computer Science and Engineering B.Tech (Hons.)

CIE-3

Academic Year 2024 - 2025

Course: Calculus and Laplace Transform	Course Code: CS2802	Semester: IV
Date: 11 April 2025	Duration: 45 Minutes	Max Marks: 15 Marks

Answer Keys:

Q 1). Using the gradient descent technique, minimize the function

$$f(x,y) = (x-2)^2 + (y-3)^2$$

starting from the initial guess $(x_0, y_0) = (0, 0)$ and using a learning rate $\alpha = 0.5$. Show that the method converges to the minimum in two steps.

Solution:

$$f(x,y) = (x-2)^2 + (y-3)^2$$

$$\Rightarrow \nabla f = \begin{bmatrix} 2(x-2) \\ 2(y-3) \end{bmatrix}$$

Given the initial guess point, $P_0 = (0,0)$, the gradient descent technique is given by:

$$P_{n+1} = P_n - \alpha \nabla f(P_n)$$

$$P_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\nabla f(P_0) = \begin{bmatrix} -4 \\ -6 \end{bmatrix}$$

$$\therefore P_1 = P_0 - 0.5 \nabla f(P_0)$$

$$P_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -4 \\ -6 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$P_2 = P_1 - \frac{1}{2} \nabla f(2,3)$$

$$P_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

We observe that $P_2 = P_1$, which means that the iteration is no longer changing and convergence is reached and (2,3) is the minima. This can also be easily seen from the first derivative test that f(x,y) has minima at (2,3)

Q 2).

a) Evaluate the Taylor series of the function $g(x,y) = \ln(x+y)$ about the point $P_0 = (1,1)$ up to second order in x and y.[3]

Solution:

Taylor series of g(x, y) up to second order about (x_0, y_0) is given by:

$$g(x,y) = g(x_0, y_0) + g_x(x_0, y_0)(x - x_0) + g_y(x_0, y_0)(y - y_0) + \frac{1}{2} \left(g_{xx}(x_0, y_0)(x - x_0)^2 + 2g_{xy}(x_0, y_0)(x - x_0)(y - y_0) + g_{yy}(x_0, y_0)(y - y_0)^2 \right)$$

For $g(x, y) = \ln(x + y)$, and $(x_0, y_0) = (1, 1)$, we have,

$$g(1,1) = \ln 2 \approx 0.6931$$

$$g_x = \frac{1}{x+y} \Rightarrow g_x(1,1) = \frac{1}{2}$$

$$g_y = \frac{1}{x+y} \Rightarrow g_y(1,1) = \frac{1}{2}$$

$$g_{xx} = \frac{-1}{(x+y)^2} \Rightarrow g_{xx}(1,1) = \frac{-1}{4}$$

$$g_{yy} = \frac{-1}{(x+y)^2} \Rightarrow g_{yy}(1,1) = \frac{-1}{4}$$

$$g_{xy} = \frac{-1}{(x+y)^2} \Rightarrow g_{xy}(1,1) = \frac{-1}{4}$$

Therefore, the Taylor Formula for $g(x,y) = \ln(x+y)$ about (1,1) up to quadratic term is:

$$\begin{split} g(x,y) &= \ln 2 + \frac{1}{2}(x-1) + \frac{1}{2}(y-1) + \frac{1}{2}\left(\frac{-1}{4}(x-1)^2 + 2 \times \frac{-1}{4}(x-1)(y-1) - \frac{1}{4}(y-1)^2\right) \\ \Rightarrow g(x,y) &= x + y - \frac{1}{8}\left(x^2 + y^2 - \frac{3}{2} + \ln 2\right) \end{split}$$

b) Using the Taylor formula calculated above, deduce the tangent plane of the function about (1,1) and obtain the approximate value of g(1.1,1.1) using it. [2] From the Taylor formula in (a), the Tangent plane about (1,1) is given by:

$$T(x,y) = \ln 2 + \frac{1}{2}(x-1) + \frac{1}{2}(y-1)$$

The linear approximation at (1.1, 1.1) is:

$$T(1.1, 1.1) \approx 0.7931$$

.

The actual value of the function at (1.1, 1.1) is $g(1.1, 1.1) = \ln(1.1 + 1.1) = \ln 2.2 \approx 0.7885$.

Q3).

a) Evaluate the Laplace transform of $f(t) = e^{2t} \sinh 2t$ where $\sinh(x)$ is the hyperbolic sine function. [2]

Answer: We know:

$$\mathcal{L}\{\sinh(2t)\} = \frac{2}{s^2 - 4}$$

Using the shift property:

$$\mathcal{L}\left\{e^{2t}\sinh(2t)\right\} = \frac{2}{s^2 - 4}\bigg|_{s \to s - 2} = \frac{2}{(s - 2)^2 - 4}, \quad s > 4$$

b) Using the properties of linearity of Laplace Transforms calculate the Laplace transform of the function: . [3]

$$f(t) = 4t^2 - 3\cos(t) + 5e^{-t}$$

Answer: By Applying the Linearity property

$$\mathcal{L}{f(t)} = \mathcal{L}{4t^2} - \mathcal{L}{3\cos(t)} + \mathcal{L}{5e^{-t}}$$

$$\mathcal{L}\lbrace f(t)\rbrace = 4\mathcal{L}\lbrace t^2\rbrace - 3\mathcal{L}\lbrace \cos(t)\rbrace + 5\mathcal{L}\lbrace e^{-t}\rbrace$$

and then using the Standard Laplace Transforms

$$\mathcal{L}\lbrace t^2 \rbrace = \frac{2}{s^3}$$

$$\mathcal{L}\lbrace \cos(t) \rbrace = \frac{s}{s^2+1}$$

$$\mathcal{L}\lbrace e^{-t} \rbrace = \frac{1}{s+1}$$

Substituting and then simplifying this

$$\mathcal{L}{f(t)} = 4 \cdot \frac{2}{s^3} - 3 \frac{s}{s^2 + 1} + 5 \cdot \frac{1}{s + 1}$$
$$= \frac{8}{s^3} - \frac{3s}{s^2 + 1} + \frac{5}{s + 1}$$

End