Лабораторная работа №5

Модель эпидемии (SIR)

Дворкина Е. В.

8 марта 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Дворкина Ева Владимировна
- студентка
- · группа НФИбд-01-22
- Российский университет дружбы народов
- · 1132226447@rudn.ru
- https://github.com/evdvorkina

Исследование модели эпидемии (SIR) с помощью xcos и OpenModelica.

- Реализовать классическую модель SIR с помощью xcos(в том числе с помощью блока Modelica) и OpenModelica.
- Реализовать модель SIR с учетом демографических признаков с помощью хсоs(в том числе с помощью блока Modelica) и OpenModelica.
- · Исследовать модель SIR с учетом демографических признаков, изменяя параметры.

Теоретическое введение

$$\begin{cases} \frac{dS}{dt} = -\beta IS, \\ \frac{dI}{dt} = \beta IS - \nu I, \\ \frac{dR}{dt} = \nu I, \end{cases}$$

Выполнение лабораторной работы

Задать контекст в хсоѕ

Реализация модели в xcos

Начальные значения интегрирования

Рис. 3: Задать начальное значение в блоке интегрирования

Время моделирования

Рис. 4: Задать конечное время интегрирования в хсоѕ

Параметры регистрирующего устрйоства

Рис. 5: Задать значения отображения графиков в регистрирующем устройстве

Решение модели

Рис. 6: График решения модели SIR при $\beta=1$, $\nu=0.3$

Реализация модели с помощью блока Modelica (настройка блока)

Реализация модели с помощью блока Modelica (настройка блока)

Реализация модели с помощью блока Modelica в xcos

Рис. 9: Модель SIR в xcos с применением блока Modelica

Решение модели

Рис. 10: График решения модели SIR при $\beta=1$, $\nu=0.3$

Реализация модели в OpenModelica

```
lab5 1*
Н 🔏 🗐 🕦 Доступный на запись Мodel Вид Текст lab5_1 lab5_1
      model lab5 1
       parameter Real beta=1:
       parameter Real nu=0.3:
       parameter Real S 0=0.999;
       parameter Real I 0=0.001:
       parameter Real R 0=0;
       Real s(start=S 0);
 10
       Real i(start=I 0):
       Real r(start=R 0):
      equation
 14
       der(s) = -beta*s*i;
 15
      der(i) = beta*s*i - nu*i:
       der(r) = nu*i;
 18
     end lab5 1;
```

Рис. 11: Модель в OpenModelica

Рис. 12: График решения модели SIR при $\beta=1$, $\nu=0.3$

Задание для самостоятельного

выполнения

Модель SIR с учетом демографии

$$\begin{cases} \frac{dS}{dt} = -\beta IS + \mu(N-S), \\ \frac{dI}{dt} = \beta IS - \nu I - \mu I, \\ \frac{dR}{dt} = \nu I - \mu R, \end{cases}$$

Задать переменные окружения

Рис. 13: Задать переменные окружения в хсоѕ

Реализация модели в xcos

Рис. 14: Модель SIR с учетом демографии в хсоs

Решение модели с параметрами $\beta=1$, $\nu=0.3$, $\mu=0.1$

Рис. 15: График решения модели SIR с учетом демографии при $\beta=1$, $\nu=0.3$, $\mu=0.1$

Реализация модели с помощью блока Modelica в xcos (настройка блока)

Реализация модели с помощью блока Modelica в xcos (настройка блока)

Реализация модели с помощью блока Modelica в xcos

Рис. 18: Модель SIR в xcos с применением блока Modelica

Решение модели с параметрами $\beta=1$, $\nu=0.3$, $\mu=0.1$

Рис. 19: График решения модели SIR с учетом демографии при $\beta=1$, $\nu=0.3$, $\mu=0.1$

Реализация модели в OpenModelica

```
囯
                                        task5*
                                                                                  ×
💾 🊜 🗏 🕦 Доступный на запись | Model | Вид Текст | task5 | task5
      model task5
        parameter Real beta=1;
       parameter Real nu=0.3:
       parameter Real mu=0.1:
       parameter Real S 0=0.999:
  6
       parameter Real I 0=0.001:
       parameter Real R 0=0;
  8
       Real s(start=S 0):
 10
       Real i(start=I 0);
        Real r(start=R 0):
      equation
 14
      der(s) = -beta*s*i + mu*(r+i):
      der(i) = beta*s*i - nu*i - mu*i:
 16
       der(r) = nu*i - mu*r:
 18
      end task5:
```

Рис. 20: Модель SIR с учетом демографии в OpenModelica

Задать параметры моделирования

Решение модели с параметрами $\beta=1$, $\nu=0.3$, $\mu=0.1$

Рис. 22: График решения модели SIR с учетом демографии при $\beta=1$, $\nu=0.3$, $\mu=0.1$

Анализ графиков при разных параметрах модели

Рис. 23: График решения модели SIR с учетом демографии при $\beta=1$, $\nu=0.3$, $\mu=0.3$. OpenModelica

Рис. 24: График решения модели SIR с учетом демографии при $\beta=1$, $\nu=0.3$, $\mu=0.5$. OpenModelica

Рис. 25: График решения модели SIR с учетом демографии при $\beta=1$, $\nu=0.3$, $\mu=0.05$. OpenModelica

Решение модели с параметрами $\beta=1.5$, $\nu=0.2$, $\mu=0.2$

Рис. 26: График решения модели SIR с учетом демографии при $\beta=1.5$, $\nu=0.2$, $\mu=0.2$. OpenModelica

Решение модели с параметрами $\beta=1$, $\nu=0.5$, $\mu=0.2$

Рис. 27: График решения модели SIR с учетом демографии при eta=1, u=0.5, $\mu=0.2$. OpenModelica

Выводы

В результате выполнения работы была исследована модель SIR при помощи xcos и OpenModelica.