MATHÉMATIQUES II

Dans tout le texte, I désigne un intervalle de \mathbbm{R} contenant au moins deux points et n est un entier strictement positif. On note $\mathcal{M}_n(\mathbbm{R})$ l'ensemble des matrices $n \times n$ à coefficients réels et on désigne par $E_n(I)$ l'ensemble des applications de classe C^1 de I dans $\mathcal{M}_n(\mathbbm{R})$. Si $M \in E_n(I)$, M' désigne la dérivée de M. Parmi les éléments de $E_n(I)$, on s'intéresse en particulier à ceux qui vérifient l'une ou l'autre des propriétés qui suivent :

(P1):
$$\forall (x, y) \in I^2$$
, $M(x)M(y) = M(y)M(x)$
(P2): $\forall x \in I$, $M'(x)M(x) = M(x)M'(x)$

On adopte les notations suivantes : I_n désigne la matrice identité d'ordre n, \mathbb{R}^n l'espace vectoriel des vecteurs-colonnes à n lignes, $O_n(\mathbb{R})$ le groupe des matrices orthogonales réelles d'ordre n et $SO_n(\mathbb{R})$ le sous-groupe des matrices orthogonales réelles d'ordre n et de déterminant +1 ; si $M \in \mathcal{M}_n(\mathbb{R})$, on désigne par $M_{[i,j]}$ le coefficient de M en position (i,j) lorsque $1 \le i \le n$ et $1 \le j \le n$. Enfin, on dit d'une matrice triangulaire de $\mathcal{M}_n(\mathbb{R})$ qu'elle est stricte si elle a les coefficients diagonaux tous nuls et d'une matrice de $\mathcal{M}_n(\mathbb{R})$ qu'elle est scalaire si elle est proportionnelle à l'identité $(M = \lambda I_n$, avec $\lambda \in \mathbb{R}$).

Enfin, on rappelle que, si M est élément de $\mathcal{M}_n(\mathbb{R})$, l'application de \mathbb{R} dans $\mathcal{M}_n(\mathbb{R})$ définie par

$$t \mapsto \exp(tM) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} M^k$$

est un élément de $E_n(\mathbb{R})$ dont la dérivée est

$$t \mapsto M \exp(tM) = \exp(tM)M$$
.

Partie I - Exemples élémentaires

I.A - .

I.A.1) Montrer que tout élément de $E_n(I)$ vérifiant (P1) vérifie (P2).

Filière MP

- I.A.2) Démontrer que si M est une application élément de $E_n(I)$, alors pour tout $k \in {\rm IN}^*$, l'application $M^k: x \mapsto M(x)^k$ est élément de $E_n(I)$; calculer sa dérivée.
- I.A.3) Démontrer que si M est une application élément de $E_n(I)$, telle que pour tout $x \in I$ la matrice M(x) est inversible, alors l'application $M^{-1}: x \mapsto M(x)^{-1}$ est élément de $E_n(I)$; calculer sa dérivée.
- **I.B** Dans la suite de la Partie I, on prend n = 2.

Un élément M de $E_2(I)$ s'écrit pour $x \in I$:

$$M(x) = \left(\begin{array}{c} a(x) \ b(x) \\ c(x) \ d(x) \end{array}\right).$$

I.B.1) On suppose dans cette question que M vérifie (P2) et que la fonction b ne s'annule pas. Que dire des fonctions

$$\frac{c}{b}$$
 et $\frac{d-a}{b}$?

Montrer, en l'explicitant, qu'il existe une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que, pour tout $x \in I$, $M(x) \in \text{Vect}\{I_2, A\}$. Montrer que l'application M vérifie aussi (P1).

I.B.2) Soit A une matrice non scalaire dans $\mathcal{M}_2(\mathbb{R})$. Montrer qu'il existe $X \in \mathbb{R}^2$ tel que (X, AX) soit une base de \mathbb{R}^2 . On suppose X ainsi choisi. Si $B \in \mathcal{M}_2(\mathbb{R})$, il existe donc $(u, v) \in \mathbb{R}^2$ tel que BX = uX + vAX.

Montrer que, si la matrice B commute avec A, elle s'écrit $B = uI_2 + vA$.

I.B.3) On suppose dans cette question que M vérifie (P2) et que M(x) n'est scalaire pour aucun x de I.

Montrer qu'il existe un unique couple (u,v) d'applications continues de I dans \mathbb{R} tel que $M'(x) = u(x)I_2 + v(x)M(x)$ pour tout $x \in I$. Pour $x_0 \in I$ donné, on pose alors $C(x) = M(x)M(x_0) - M(x_0)M(x)$ pour tout $x \in I$. Montrer que C vérifie une équation différentielle matricielle très simple, dans laquelle intervient la fonction v et la résoudre en la ramenant par exemple à des équations différentielles ordinaires. En conclure que M vérifie (P1).

- I.B.4) Dans cette question, on s'intéresse à $E_2(\mathbb{R})$.
- a) Montrer que (P2) est vérifiée lorsqu'on choisit pour a, b, c et d les fonctions qui à x réel associent respectivement $1 + x^2$, x|x|, x^2 et $1 x^2$.
- b) Déterminer soigneusement les éléments de $E_2(\mathbb{R})$ de la forme

$$x \mapsto \begin{pmatrix} 1 + x^2 & b(x) \\ c(x) & 1 - x^2 \end{pmatrix}$$
 vérifiant $(P2)$.

Pour chaque élément de $E_2(\mathbb{R})$ ainsi trouvé,

- dire s'il vérifie (P1),
- déterminer la dimension du sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par l'ensemble des M(x), noté $\mathrm{Vect}\{M(x),\ x\in\mathbb{R}\}$.
- **I.C** Soit M un élément de $E_2(I)$ tel que pour tout $x \in I$, M(x) est la matrice d'une réflexion.
- I.C.1) Montrer qu'il existe une application θ de classe C^1 de I dans \mathbb{R} telle que la première colonne de M(x) soit

$$\begin{pmatrix} \cos \theta(x) \\ \sin \theta(x) \end{pmatrix} \text{ pour tout } x \in I.$$

I.C.2) À quelle condition, portant sur la fonction θ , M vérifie-t-elle (P2)?

On dit d'une application de $I \times \mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ qu'elle est de type (\mathcal{Q}) (abréviation pour quasi-polynomial) si elle est de la forme

$$(x,M) \mapsto \sum_{k=0}^m \alpha_k(x) \; P_k(x) \; \boldsymbol{M}^k \; Q_k(x)$$

où sont donnés

$$\begin{cases} m \in \mathbb{IN} \\ a_0, \dots, a_m \text{ de classe } C^0 \text{ de } I \text{ dans } \mathbb{IR} \\ P_0, \dots, P_m, Q_0, \dots, Q_m \text{ de classe } C^0 \text{ de } I \text{ dans } \mathcal{M}_n(\mathbb{IR}) \end{cases}$$

On dira qu'une telle application est polynomiale si, de plus, les applications P_k et Q_k sont toutes constantes, égales à I_n .

On admettra alors le théorème $\mathcal T$ suivant, qui est une version du théorème de Cauchy-Lipschitz :

- a) Si $F: I \times \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ est de type (\mathcal{Q}) , et si $(x_0, U_0) \in I \times \mathcal{M}_n(\mathbb{R})$, il existe une unique solution maximale U de l'équation différentielle matricielle M'(x) = F(x, M(x)), définie sur un intervalle J tel que $x_0 \in J \subset I$ vérifiant de plus $U(x_0) = U_0$.
- b) Si, en outre, E est un sous-espace vectoriel de $\mathcal{M}_n(\mathbbm{R})$, si $F(I \times E) \subset E$ et si $U_0 \in E$, alors $U(x) \in E$ pour tout $x \in J$.

L'attention des candidats est attirée sur le fait que, dans les questions qui suivent, les hypothèses faites entraînent que les fonctions matricielles solutions d'éventuelles équations différentielles sont définies sur I tout entier et que, partant, le point de vue de la maximalité de ces solutions est accessoire.

Partie II - Étude de cas particuliers

 $\textbf{II.A -} Soit une \'equation différentielle matricielle polynomiale de la forme (\mathscr{E}) :$

$$M'(x) = \sum_{k=0}^{m} a_k(x) M^{2k+1}(x).$$

Déduire du théorème \mathscr{T} le résultat (\mathscr{R}) suivant : si une solution U sur I de (\mathscr{E}) est telle que, pour une valeur $x_0 \in I$, $U(x_0)$ est une matrice antisymétrique, alors U(x) est antisymétrique pour tout $x \in I$. Donner un énoncé plus général concernant une forme analogue d'équation différentielle matricielle, mais de type (\mathscr{Q}) , pour laquelle le résultat (\mathscr{R}) soit conservé.

II.B - Soit une équation différentielle matricielle polynomiale, de la forme

$$M'(x) = \sum_{k=0}^{m} a_k(x) M^k(x).$$

Soit M une solution sur I et $x_0 \in I$ tel que le polynôme caractéristique de $M(x_0)$ soit scindé. On choisit alors $P \in GL_n({\rm I\!R})$ et $T_0 \in \mathcal{M}_n({\rm I\!R})$ triangulaire supérieure telles que $M(x_0) = PT_0P^{-1}$.

- II.B.1) Former une équation différentielle matricielle polynomiale vérifiée par $T: x \mapsto P^{-1}M(x)$ P permettant de montrer que T(x) est triangulaire supérieure pour tout $x \in I$.
- II.B.2) On suppose en outre que T_0 est triangulaire stricte. En considérant les fonctions à valeurs réelles $x \mapsto T(x)_{[i,\,i]}$ avec $1 \le i \le n$, donner une condition nécessaire et suffisante sur la fonction a_0 pour que T(x) soit triangulaire stricte pour tout $x \in I$.

II.B.3) Cette condition étant supposée remplie, on choisit $r \in \mathbb{N}^*$ tel que $T_0^r = 0$; former une équation différentielle matricielle de type (\mathscr{Q}) vérifiée par $x \in I \mapsto T^r(x)$ permettant de montrer que l'application T^r est nulle.

II.C -

II.C.1) Soit *U* solution sur *I* de l'équation différentielle matricielle

$$M'(x) = \sum_{k=0}^{m} a_k(x) P_k(x) M^k(x) Q_k(x).$$

On suppose qu'il existe $x_0 \in I$ tel que $U(x_0)$ commute avec toutes les matrices $P_k(x)$ et $Q_k(x)$ pour tout $x \in I$. Montrer que U(x) commute avec $U(x_0)$ pour tout $x \in I$.

- II.C.2) Soit U une solution sur I d'une équation différentielle matricielle polynomiale. Vérifie-t-elle (P1), vérifie-t-elle (P2)? Montrer que $\dim(\mathrm{Vect}\{U(x),\ x\in I\})$ est inférieure ou égale à n.
- **II.D** Soit E un sous-espace vectoriel de $\mathcal{M}_n(\mathbbm{R})$ tel que $(M,N) \in E^2 \Rightarrow MN-NM \in E$. En introduisant une équation différentielle matricielle bien choisie, montrer que $\forall (t,M,N) \in I \times E^2$, $\exp(tM)N \exp(-tM) \in E$.

Partie III - Cas des matrices orthogonales

- **III.A** On s'intéresse à une équation différentielle matricielle de la forme (\mathscr{E}') : $M'(x) = a(x)(I_n M^2(x))$, où a désigne une fonction donnée, de classe C^0 de I dans IR .
- III.A.1) Si U est une solution sur I de (\mathcal{E}') telle que $(U(x_0))^2 = I_n$ (matrice d'une symétrie) pour un certain $x_0 \in I$, que peut-on dire de la fonction U?
- III.A.2) Soit $J \in \mathcal{M}_n(\mathbbm{R})$. On suppose qu'une solution U de (\mathcal{E}') sur I vérifie ${}^tU(x_0)JU(x_0)=J$ pour un $x_0\in I$. On pose alors $N(x)={}^tU(x)JU(x)$ pour tout $x\in I$. Former une équation différentielle matricielle de type (\mathcal{Q}) vérifiée par N-J et en conclure que N(x)=J pour tout $x\in I$. Si, en outre, J est inversible, montrer que l'application $x\mapsto \det(U(x))$ est constante.
- **III.B** Dans toute cette section III.B, on choisit n=3. Soit U une matrice élément de $E_3(I)$ à valeurs dans $SO_3(\mathbb{R})$ vérifiant (P2) et telle que,

$$\forall x \in I \text{ , } \begin{cases} U(x) \neq I_3 \\ -1 \text{ n'est pas valeur propre } \operatorname{de} U(x) \end{cases}.$$

III.B.1)

- a) Pour $x_0 \in I$ fixé, on pose $U_0 = U(x_0)$. Montrer qu'il existe un vecteur Z_0 unitaire dans ${\rm I\!R}^3$ euclidien canonique, tel que $U_0Z_0 = Z_0$.
- b) On choisit alors X_0 et Y_0 tels que $B=(X_0,Y_0,Z_0)$ soit une base orthonormale directe de ${\rm I\!R}^3$, on pose $X=Y_0+Z_0$ et $C=(X,U_0X,U_0^2X)$.

De quelle forme est la matrice dans B de l'endomorphisme de \mathbb{R}^3 ayant U_0 pour matrice dans la base canonique ? Calculer alors $\det_B(C)$ en fonction des coefficients de cette matrice et en déduire que C est une base de \mathbb{R}^3 .

- c) En conclure qu'il existe trois fonctions u, v, w de I dans \mathbb{R} telles que $U'(x) = u(x)I_3 + v(x)U(x) + w(x)U^2(x)$ pour tout $x \in I$. On admettra que ces trois fonctions sont continues.
- d) En exprimant la dérivée de tUU en fonction de u, v, w, ${}^tU+U$, montrer que U est solution d'une équation différentielle matricielle, notée \mathscr{F} , de la forme (\mathscr{E}') : on exprimera, à l'aide de certaines des fonctions u, v, w, la fonction a correspondante.
- III.B.2) Transformer l'équation (\mathscr{F}) par le changement de matrice inconnue défini par la formule : $(I_3 + U(x))A(x) = I_3 U(x)$, en justifiant l'introduction de A(x).

Montrer que A est solution sur I d'une équation différentielle matricielle polynomiale très simple. Résoudre cette équation et en déduire une expression de U(x) pour tout $x \in I$.

- **III.C** En s'inspirant de III.B.1-d), construire une fonction élément de $E_3(\mathbb{R})$ à valeurs dans $SO_3(\mathbb{R})$ vérifiant (P2) mais pas (P1).
- **III.D** Chercher la solution maximale U dans $\mathcal{M}_2(\mathbb{R})$ de l'équation différentielle matricielle $M'(x) = I_2 + M^2(x)$, définie au voisinage de 0 et telle que

$$U(0) = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Pour cela, on montrera que les solutions sont nécessairement de la forme

$$x \in I \mapsto U(x) = \begin{pmatrix} a(x) \ b(x) \\ b(x) \ a(x) \end{pmatrix}$$

et on cherchera ensuite une équation différentielle vérifiée par $u=b^2-a^2$, sachant que u(0)=1.