MOCK TEST 17, 2024(HS 2ND YEAR SCIENCE)

TIME: 1 HOUR

MARKS: 120(JEE), 200(NEET)

BIOLOGY

1	Polymerase Chain Reaction is not used in:			· *				
	Confirming presence of a pathogen during early infection							
	. Identifying the mutated genes in suspected cancer patients							
	. Isolating the gene of interest from host DNA to be cloned I	by recombinant proc	edures	Street courses by				
d. Detection of the presence of HIV in suspected AIDS patient								
	. Which kind of therapy was given in 1990 to a four-year-ol		ne Deaminase (A	ADA) deficiency?				
	a. Gene therapy b. Chemotherapy c. Immunotherapy	d. Radiation thera		Ű.				
	3. Which part of the tobacco plant is infected by Meloidegyn	e incognitia?						
	Leaf b. Stem c. Root		d. Flower					
4	1. Golden rice is a genetically modified crop plant where the	incorporated gene is	s meant for bios	synthesis of				
ä	a. vitamin-B b. omega 3 c. vitar	nin-C	d. vitamin-A					
:	5. In Bt cotton, the Bt toxin present in plant tissue as pro-tox	in is converted into a	active toxin due	to to				
i	a) Alkaline pH of the insect gut	b) acidic pH of the						
•	e) action of gut microorganisms	d) presence of cor	iversion factors	in insect gut				
	6. Which one is released from the ovary?							
		fian follicle	d.Oogonium					
	7. During oogenesis, each diploid cell produces		•	1. 1. 2				
	a. four functional eggs	b. two functional		olar bodies				
	c.one functional egg and two polar bodies	d.four functional	polar bodies.					
	8. In oogenesis haploid egg is fertilised by sperm at which st	c.Oogonium	d.Ovu	ım				
	a. Primary oocyte b. Secondary oocyte	C.Oogomum	u.ova					
	9. Layers of an ovum from outside to inside is	h zona nellucida	corona rodiata	and vitelline membrane				
	a. corona radiata, zona pellucida and vitelline membrane	d zona nellucida.	vitelline membr	rane and corona radiata.				
	c.vitelline memorane, zona perfueida and corona radiate	c.vitelline membrane, zona pellucida and corona radiate d.zona pellucida, vitelline membrane and corona radiata. 10. Which part of ovary in mammals acts as an endocrine gland after ovulation?						
		c.Vitelline memb	rane d.Gra	afian follicle				
	a. Stroma b.Germinal epithelium 11. The outermost and innermost wall layers of microsporar	igium in an anther ar	re respectively					
	a. Endothecium and tapetum	b. Epidermis and endodermis						
	c. Epidermis and middle layers	d. Epidermis and	tapetum					
	12. Vulture is							
	a. Scavenger b. Detrivore c. Dec	composers	d. Mineraliser					
	12. Testal arganic matter stored in producers is							
	a Gross primary productivity b. Net primary Productivity	 Secondary produc 	tivity d. Ne	t production efficiency				
	14 The first stage or pioneer colonisers of bare rock are-			distribution i				
	a. Mosses b. Foliose lichens c. Cru	istose lichen	d. Fri	ucticise lichen				
	15. Which one is inverted pyramid?			a a a mustam				
	a Pyramids of biomass in grassland	b. Pyramids of b	iomass in pond	ecosystem				
	a. Pyramids of biomass in grassland c. Pyramid of numbers in grassland ecosystem d. Pyramid of energy in a pond ecosystem 16. The logistic growth curve of animal population growth is more realistic than J shaped curve because:							
	16. The logistic growth curve of animal population growth	is more realistic that	13 shaped curve	, occurre.				
	a) A cayual mode of reproduction is rare in higher attitudes							
	b) Resources are finite and become limiting sooner or later	. Abjected factor	rs affect animals	s more than plants				
	b) Resources are finite and become limiting sooner of factors affect animals more than plants c) Most animals are conformers rather than regulators d) Abiotic factors affect animals more than plants c) Most animals are conformers rather than regulators 17. When the population density reaches the carrying capacity, the logistic growth curve is said to be in: (c) A phase of deceleration (d) Asymptote							
	17 When the population density reaches the carrying capac	(c) A phase of de	eceleration	(d) Asymptote				
	(a) Lag phase (b) A phase of acceleration	(c)/r pilane i i		,				
	t an of a country.	individuals.						
		individuals.						
	(a)pre-reproductive individuals are less than post-reproductive (b)reproductive individuals are							

	/ ~ ~ / ~	1620	4000	(11/40	1 18.6
	3 Page ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Par	5	0 120	1 8 S
				0 . 4.	o y would
	X	(b) $\log_e 2x$	(c) $\frac{x \log_e 2x + \log_e 2}{x}$ (d) nor		S. 20.
	6 The maximum volume (in			ht 3m is (d) None of the	N/6 10
		(b) $3\sqrt{3}\pi$	(c) 6π		of Jou
	7. The maximum value of $\frac{1}{2}$	$f(x) = \frac{1}{1+4x+x^2}$ on [-1,1]	$\int_{0}^{1} \int_{0}^{1} \int_{0$		7
	(a) $-\frac{1}{4}$ 8. Let $f(x) = [e^x(x-1)($	$(0) = \frac{1}{3}$ $(0) = \frac{1}{3}$ Then f decrease	sin the interval:	\W	
	(a) $(-\infty, -2)$ 9. The equation of the line	(b) (-2,-1)	(c) $(1,2)$	2) 1 (d) No	ne of these
	9. The equation of the line $x+2$ $y-4$ $z-2$	joining the points $(-2,4)$	12) and (7, 2,0) are		1, 2, m
,	$(z)^{\frac{x+2}{3}} = \frac{y-4}{-2} = \frac{z-2}{1}$			(a) None of the	10
	10. $f sin^{-1} \frac{x}{3} + sin^{-1} \frac{y}{4} = \frac{7}{6}$		•		TY 20 17.
	(a) \frac{1}{4}	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) None of these	1, 10, 0
	fort.	<u> </u>	CHEMISTRY	(d) None of these	v ","
	1. The vapour pressure of	of a solvent decreased b	y 10 mm in two column		
	solute was added to the	solvent. The mole fract	tion of the solute in the se	olution is 0.2. What shou	ald be the
	mole fraction of the solv				· V
	(a) 0.8	(b) 0.6	(c) 0.4	(d) 0.2	
	2. A 5% solution of can	e sugar (mol. wt. =342)	is isotonic with 1% solu	ition of a substance X. T	he molecular
	weight of X is		· · · · · · · · · · · · · · · · · · ·		, X
	(a) 34.2	(b) 171.2	(c) 68.4	(d) 136.8	
	3. Find out the solubility	y of Ni(OH)2 in 0.1 M?	NaOH. Given, that the io	nic product of Ni(OH) ₂	is 2×10^{-15} .
	(a) $2 \times 10^{-8} \mathrm{M}$	(b) $1 \times 10^{-13} \text{ M}$	(c) $1 \times 10^8 \text{ M}$	(d) $2 \times 10^{-13} \text{ M}$	
			1 1 desire alactrolygic	by a ourrant of 1 amnere	oin 60
	4. The number of electronseconds is (charge on electronseconds)	1 (0 × 10-19 (7)		- 1 NO
	(a) 6×10^{23}	(b) 6×10^{20}	(c) 3.75×10^{20}	(d) 7.48×10^{23}	250
	5. The weight of silver ((at. wt. =108) displaced	l by a quantity of electric	ity which displaces 5600) mL of O_2 at
	STP will be		() 540	(d) 100 0 ~	° 4
	(a) 5.4 g	(b) 10.8 g	(c) 54.0 g	(d) 108.0 g	C
	6. For an endothermic re	eaction, energy of activ	vation is E _a and enthalpy	of reaction is ΔH (both of	of
	these in kJ/mol). Minim	um value of Ea will be			
	(a) less than ΔH	(b) equal to ΔH	(c) more than ΔH	(d) equal to zero	
	7 In a zero order reaction	on for every 10°C rise	of temperature, the rate i	s doubled. If the tempera	ature is
	increased from 10°C to	100°C, the rate of the	reaction will become		7
	(a) 256 times	(b) 512 times	(c) 64 times	(d) 128 times	T A
	8. An example of a sign	no handed arganometal	Hic compound is	€	(n(n+1)
	(a) ruthenocene	(b) Grionard's reagen	t (c) ferrocene	(d) cobaltocene	1.
(a) ruthenocene (b) Grignard's reagent (c) ferrocene (d) cobaltocene 9. A magnetic moment of 1.73 BM will be shown by one among the following					
	9. A magnetic moment	of 1.73 BM will be sho	own by one among the to (c)TiCl ₄	(d) [CoCl ₆] ⁴⁻	4-01
	(a) $[Cu(NH_3)4]^{2+}$	(b) $[Ni(CN)_4]^{2-}$			R'
	10. The product formed	l by the reaction of an a	aldehyde with a primary	amine is	NEW YORK
	(a) Ketone	(b) Carboxylic acid	(c) Aromatic acid	(d) Schiff base	S.

PHYSICS

Q1.Which one of	the following phenomena	is not explaine	ed by Huygens' cor	struction of waverronts	
(a) Refraction	(b) reflection	(c) diffraction	1	(d) origin of spectra	
2. The frequenc	y of a light wave in a mate	erial is 2x10 ¹⁴ F	Iz and wavelength	is 5000Å. The refractive	index of materia
will be					
(a) 1.50	(b) 3.00	(c)1.33	The section of	(d) 1.40	
Q3,Interference is	possible in				
(a) light waves on	ly (b) sound waves only	(c) both light	and sound waves.	(d) neither light nor sou	nd waves
Q4. In the Young's	double slit experiment, t	he intensity of	light at a point on	the screen where the pa	ith difference is
s λisk (λ being t	he wavelength of light us	sed). The inten	sity at a point whe	re the path difference i	s λ/4 , will be
(a) k	(b) k/4		(c) k/2	(d) zero	
Q5. Two coherent	sources of light interfere	and produce f	ringe pattern on a	screen. For central max	imum, the phase
	n the two of waves will b				
(a) π/2	.√(b) zero		(c)π	(d) 3π/2	
Q6. The energy ed	quivalent of one atomic m	ass unit is			
(a) 1.6x 10- ¹⁹ J	(b) 6.02	× 10 ²³ J	(c) 931 MeV	(d) 9.31 Me	V
Q7.At absolute ze	ro, Si acts as				
(a) non metal	(b) meta	al	(c) insulator	(d) none of	these.
Q8.The mass dens	sity of a nucleus varies wi	th mass numbe	er A as		
(a) A ²	(b) A.		(c) constant.	(d) 1/ A	
Q9. The mass num	nber of He is 4 and that of	f sulphur is 32.	. The radius of sulp	hur nucleus is larger tha	n that of helium
by the factor of					
(a) 4	(b) 2		(c) 8	(d) v8	
Q10. A nucleus of	mass number 189 spilits	into two nucle	i having mass num	nber 125 and 64. The rat	io of radius of
two daughter nuc	lei respectively is				Œ
(a) 1:1	(b) 4:5.		(c) 5:4	(d) 25: 16	

10 0 /2