Faculty: IT

Course Name: Digital Computer Fundamentals

Course Code: MATH 8127

Lecturer: Kundan Kumar

Student Name: MUTANGANA Joseph

Student ID: 29061

Report: Individual Assignment

Adventist university of control Africa (Auca)

faculty: IT

Department: Software Engineening

Course Name: Digital Computer fundamental

Lecture Name! Kundan Kuman

Student Name! MUTANGANA JosePh

Student 1D: 29062

Report: Number system, Digital Logic and Boolean Algana

Individual Assignment.

Question 1 Bimany substituction and 2's Complement Concept

a) Essential of 3's Complement im bimory substruction with signed numbers

-9's Complement is a method we use in Computers to show a negative numbers in bimany, because computers can only add easily, they are not good at submitting directly.

So instead of substitution, we turn it into addition using 2'complement

Broample with 4 digits

A= 0110

B= 01110

If you try to substitute dinectly, your logic will breadown. and Lose a focus.

here is best way to do it!

Step 1 from Brownable into T's Complement, which is invarion of Braines

B=[000]] 1's Complement, again add I on is comp of B toget twes con

0010

0001+7=0010

Now, in over example we have A-B and be is large

So If we turn it hto addition, It will be A+(-B) when (B) is B.25 com

Plement and 2's Complement of B is 0010

So now we take value of A and Add to 2's Complement of B

A=0110 B=2°Com = 0010 1000

Now A-(-B) = 1000

Question 2: a) Design AND vame NAND fate:

				70	w	th table	_
	A	3	Ā	B		Ā·B	
	1	0	P			0	
	1	1	0	0		0	
	0	0	1	1		1	
1	0	1	1	0		0	

A DO A-B DO A-B

b) besign of gate chang only NAND gates:

c) Design No7 goute using only NAND goute.

d) Design on AND gote using NOR gat

Touth sable

1	10	1 =	1=	1	1 = 5	-1(A+A) + (B+B	$(\bar{A}+\bar{A})+(\bar{B}+\bar{B})$
1 H	13	A	B	A+A	B+13	(111) 1(0.5	M+H) + (15-17)
D	0	1	11	1	1	1	0 /
10	1		0	1	0	1000	0
T	0	6		0	1		0
1	1	0	0	0	0	0	

Logic gare

c) Design Of Gove usin NOR pates

Truth table

A	3	Ā	13	Ã+B	Arb
0	0	4	1	1	9
0	-	1	0	11 ,	(X)
1	0	0	1	1	1
1	-	0	0	0	1

Logic goves

Fruth table

A	B	A+13	A+B	A+D
00	PI	0	1 0 0	1
1	0	1	0	1

f) beign and Not gate using amy NOR

Thurn tame

A	A.	ATA
10	1	1
	0	0
1	1	
1		

Logic gare.

 $A - Do - \overline{A + A} = \overline{A}$

```
Question3 Bootean Algebra - Simplifying isosphession
  0) AB + AB + AB
   => A(B+B)+AB [ by factoring A as Common fortron]
   = AW+ FB [ b) B+ B = 1]
    = A + AB [ by A.7 = A Idon Hity Low ]
    = A+B(A+A') [ by Complement]
   = A+B (1) \qquad [b] \qquad A+A=1]
= A+B \qquad [b] \qquad B(1) = B \qquad AB+AB+AB+AB=2 \qquad A+B
b) (A+B) (A+B) (Ā+B) =
 (AA + AB + BA + BB) (Ā+B) [ By Dismibutive Low]
 (A + AB + OA + O) (A+B) [by Complement Low, where A.A=A, B.B=0]
  A(B+B)(A+B) [ by distnibutive Low]
  A(1) (A+13) [ Complement low 13+8=2]
  A(Ā+B) [ by rolennity Low A-7=4]
   AĀ + AB [ by distni burive Low]
   0 + AB [ by I olenhing Lowe ] A. Ā = a
    AB [ by Identity Low 0+AB = AB]
   AB => (A+B) (A+B) = AB
```

e)
$$\overline{A+\overline{B}} + \overline{\overline{c}+D}$$
 $\overline{A+\overline{B}} \cdot \overline{\overline{c}+\overline{D}}$ [by Demongon Low]

 $\overline{A} \cdot \overline{\overline{B}} \cdot \overline{\overline{c}} \cdot \overline{\overline{D}}$ [by Demongon's Low]

 $\overline{A \cdot \overline{B}} \cdot \overline{\overline{c}} \cdot \overline{\overline{D}}$ [by Demongon's Low]

 $\overline{A \cdot \overline{B}} \cdot \overline{\overline{c}} \cdot \overline{\overline{D}}$ [Neywrian Concess]

 $\overline{A \cdot \overline{B}} \cdot \overline{\overline{c}} \cdot \overline{\overline{D}}$

$$(\overline{A}+B) \cdot (C+\overline{D}) \cdot \overline{E}$$

$$(\overline{A}+B) \cdot (C+\overline{D}) \cdot \overline{E}$$

$$(\overline{A}+B) \cdot (\overline{C}+\overline{D}) \cdot \overline{E}$$

$$(\overline{A}+B) \cdot (\overline{C}+\overline{D}) \cdot \overline{E}$$

$$(\overline{A}+B) \cdot (\overline{C}+\overline{D}) \cdot \overline{E}$$

$$(\overline{A}+B) \cdot C \cdot \overline{D} \cdot E$$

$$(\overline{A}+B) \cdot C \cdot \overline{D} \cdot E$$