

Università di Pisa

Effetto Compton

Alberto Montanelli

Laboratorio di Interazioni Fondamentali Facoltà di Fisica

Obbiettivi dell'esperienza e Setup sperimentale

Obbiettivo: misura m_e tramite E' e θ del γ diffuso nello scattering Compton

$$E' = \frac{E}{1 + \frac{E}{m_e}(1 - \cos\theta)}$$

- Sorgente $^{60}\text{Co} \xrightarrow{\beta^-} ^{60}\text{Ni}^{**} \rightarrow ^{60}\text{Ni} + 2\gamma;$
- $\gamma_1 = 1.173 \text{MeV}; \gamma_2 = 1.333 \text{MeV}.$
- Misura spettro energia γ diffuso per $\theta \in [15^{\circ}, 30^{\circ}]$ e stima m_{e} da singola misura;
- Misura m_e tramite un fit di E' vs θ .

Strumentazione:

- Scintillatore plastico PMT02;
- Scintillatore inorganico Nal PMT01
- Moduli NIM (discriminatore, amplificatore, AND, DUAL TIMER)
- Analizzatore multicanale: ADC che campiona la tensione in canali (8192 totali).

#canali $\propto V_{\rm alim.PMT}$.

Canale ∝ energia evento.

Angolo zero - Punti di lavoro - Coincidenza del gate

Fit gaussiano per l'angolo zero:

$$\theta_0 = (92.95 \pm 0.01)^{\circ};$$

Scelta tensione di soglia discrim. PMT02:

$$V_{\rm thr.PMT02} = -40.5 \text{mV} \rightarrow R_{\rm s/n} = 30/60 \text{kHz};$$

 $V_{\rm thr.PMT02} = -51.0 \text{mV} \rightarrow R_{\rm s/n} = 3/20 \text{kHz}.$

soglia PMT01 con GATE manuale:

$$V_{\rm thr.PMT01} = (-20.7 \pm 0.5) \text{mV}$$

- Histogram Entries: 1081090

Angolo: 0 deg; Distanza:32.6cm

Number of Bins: 1024

V_u=680V; V_u=-40.2mV

5000

4000

GATE: PMT01b&PMT02 (ritardato di 50ns) a $\theta =$ 30°.

Il gate deve contenere PMT01a:

 $\omega_{\mathrm{GATE}} = 10 \mu s$.

Andamento spettro Compton

Divergenza angolare $\rightarrow \theta = \arcsin(\frac{d}{2l})$;

Larghezza fotopicchi:

$$\frac{E}{1+\frac{E}{m_{\theta}c^2}(1-\cos(\alpha-\theta))} - \frac{E}{1+\frac{E}{m_{\theta}c^2}(1-\cos(\alpha+\theta))}.$$

d scelta PMT01-sorgente: I = 35cm

$$\Delta E$$
 fotopicchi al variare dell'angolo:

$$\Delta E$$
 fotopicchi al variare dell'angolo: $\frac{E_2}{1 + \frac{E_2}{m_e c^2}(1 - cos(\theta))} - \frac{E_1}{1 + \frac{E_1}{m_e c^2}(1 - cos(\theta))}$
Differenza in energia tra i due fotopicchi dello spettro Compton al variare di θ
Spettro Compton - $\theta = 30$ i

Fit degli spettri delle sorgenti di calibrazione

sorgenti:

- Fit degli spettri delle sorgenti (MLE):
 - Cobalto: double gauss+pol2
 - Cesio: gauss+pol2
 - Sodio: gauss₁+pol2₁ & gauss₂+pol1₂
 - Presa dati: calibrazione 1→spettro Compton→calibrazione 2
 - $\mu=rac{\mu_{\mathrm{cal},1}+\mu_{\mathrm{cal},2}}{2}$, μ_{cal} dai fit guassiani

 σ_{μ} : $\sigma_{\mathrm{stat.,medio}} \pm \sigma_{\mathrm{sist.,medio}}$ (variazione arbitraria di range di fit, bin e background fit function)+ $\pm \left| \frac{\mu_1 - \mu_2}{2} \right|$ (variazione temporale dello spettro delle sorgenti in canali)

Misura della massa dell'elettrone - singola presa dati

$\mu_{\rm fit}$ delle sorgenti Co1 5653 + 5

Co2 Na1 Na2 Cs	6387 ± 5 2524 ± 2 6100 ± 7 3292 ± 3	
χ^2		
retta	315	

r arametri nit ponnonnaie		
С	−210 ± 22	
b [MeV ⁻¹]	5617 ± 57	
a [MeV ⁻²]	-513 ± 32	

Darametri fit nelinemiale

$\mu_{ ext{fit}}$ spettro Compton		
Picco 1	5089 ± 15	
Picco 2	5660 ± 19	

E' misurata		
E' ₁ [MeV]	1.034 ± 0.004	
E' [MeV]	1.167 ± 0.004	

$$E'_2$$
 [MeV] | 1.167 ± 0.0
 E' attesa a θ = 19°
 E'_1 [MeV] | 1.042
 E'_2 [MeV] | 1.167

- Modello migliore: polinomiale (Wilks) $\Delta \chi^2 = 262 \text{ vs } \Delta \text{ndof} = 1$
- Fit Spettro Compton (MLE): double gauss+parabola; σ_{μ} =stat.+sist.
- Conversione canali ← energia: $ch = aE^2 + bE + c$:

$$E = \frac{-b + \sqrt{b^2 - 4a(c - ch)}}{2a}$$

Stima massa elettrone da singola misura: $m_e = \frac{EE'[1-cos(\theta-\theta_0)]}{EE'}$

Plot E' vs θ e fit per la stima della massa dell'elettrone

Plot di E' vs $\theta \to \text{Fit per } m_e$ con fit function: $E' = \frac{E}{1 + \frac{E}{m}(1 - \cos(\theta - \theta_0))}$.

Absolute_sigma=False $\to \chi^2/\mathrm{ndof} = 1 \to \mathsf{Errori}$ su E' riscalati.