Review of Lecture 16

Radial Basis Functions

$$h(\mathbf{x}) = \sum_{k=1}^{K} \mathbf{w}_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right)$$

Choose μ_k 's: Lloyd's algorithm

Choose w_k 's: Pseudo-inverse

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 17: Three Learning Principles

Outline

Occam's Razor

Sampling Bias

Data Snooping

Recurring theme - simple hypotheses

A "quote" by Einstein:

An explanation of the data should be made as simple as possible, but no simpler

The razor: symbolic of a principle set by William of Occam

Learning From Data - Lecture 17 3/22

Occam's Razor

The simplest model that fits the data is also the most plausible.

Two questions:

- 1. What does it mean for a model to be simple?
- 2. How do we know that simpler is better?

First question: 'simple' means?

Measures of complexity - two types: **complexity of** h and **complexity of** \mathcal{H}

Complexity of h: MDL, order of a polynomial

Complexity of \mathcal{H} : Entropy, VC dimension

- ullet When we think of simple, it's in terms of h
- ullet Proofs use simple in terms of ${\cal H}$

and the link is ...

counting: ℓ bits specify $h \implies h$ is one of 2^ℓ elements of a set $\mathcal H$

Real-valued parameters? Example: 17th order polynomial - complex and one of "many"

Exceptions? Looks complex but is one of few - SVM

© M Creator: Yaser Abu-Mostafa - LFD Lecture 17

Puzzle 1: Football oracle

- Want more? \$50 charge ⓒ
- Should you pay?

Second question: Why is simpler better?

Better doesn't mean more elegant! It means better out-of-sample performance

The basic argument: (formal proof under different idealized conditions)

Fewer simple hypotheses than complex ones $m_{\mathcal{H}}(N)$

- \Rightarrow less likely to fit a given data set $m_{\mathcal{H}}(N)/2^N$
- ⇒ more significant when it happens

The postal scam: $m_{\mathcal{H}}(N)=1$ versus 2^N

A fit that means nothing

Conductivity linear in temperature?

Two scientists conduct experiments

What evidence do A and B provide?

Outline

Occam's Razor

Sampling Bias

Data Snooping

Puzzle 2: Presidential election

In 1948, Truman ran against Dewey in close elections

A newspaper ran a phone poll of how people voted

Dewey won the poll decisively - newspaper declared:

Learning From Data - Lecture 17 11/22

On to the victory rally ...

... of Truman 🙂

It's not δ 's fault:

$$\mathbb{P}\left[|E_{\text{in}} - E_{\text{out}}| > \epsilon \right] \leq \delta$$

Learning From Data - Lecture 17 12/22

The bias

In 1948, phones were expensive.

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

Example: normal period in the market

Testing: live trading in real market

Matching the distributions

Methods to match training and testing distributions

Doesn't work if:

Region has P=0 in training, but P>0 in testing

Puzzle 3: Credit approval

Historical records of customers

Input: information on credit application:

Target: profitable for the bank

age	23 years
gender	male
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • •	• • •

© AM Creator: Yaser Abu-Mostafa - LFD Lecture 17

Outline

• Occam's Razor

Sampling Bias

Data Snooping

The principle

If a data set has affected any step in the learning process, its ability to assess the outcome has been compromised.

Most common trap for practitioners - many ways to slip 😟

Learning From Data - Lecture 17 17/22

Looking at the data

Remember nonlinear transforms?

$$\mathbf{z} = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

or
$$\mathbf{z} = (1, x_1^2, x_2^2)$$
 or $\mathbf{z} = (1, x_1^2 + x_2^2)$

Snooping involves \mathcal{D} , not other information

Puzzle 4: Financial forecasting

Predict US Dollar versus British Pound

Normalize data, split randomly: $\mathcal{D}_{ ext{train}}$, $\mathcal{D}_{ ext{test}}$

Train on $\mathcal{D}_{ ext{train}}$ only, test g on $\mathcal{D}_{ ext{test}}$

Reuse of a data set

Trying one model after the other **on the same data set**, you will eventually 'succeed'

If you torture the data long enough, it will confess

VC dimension of the **total** learning model

May include what **others** tried!

Key problem: matching a *particular* data set

© A Creator: Yaser Abu-Mostafa - LFD Lecture 17

Two remedies

1. Avoid data snooping

strict discipline

2. Account for data snooping

how much data contamination

Puzzle 5: Bias via snooping

Testing long-term performance of "buy and hold" in stocks. Use 50 years worth of data

 \bigcirc

- All currently traded companies in S&P500
- Assume you strictly followed buy and hold
- Would have made great profit!

Sampling bias caused by 'snooping'