Un polinomio e Hurwitz se Tutle 6

Asintotica stabilità

$$\alpha(s) = s^n + \alpha_{n-1}s^{n-1} + \ldots + \alpha s + \alpha_0$$

Le radici del polinomio caratteristico determinano i modi del sistema. Il segno della parte reale di queste radici (poli del sistema) determinano la stabilità asintotica (tutti i modi convergenti) o l'instabilità (almeno un modo divergente).

Definition

Un polinomio si dice Hurwitz se tutte le sue radici hanno parte reale negativa.

Theorem

Un sistema presenta tutti modi asintoticamente stabili se e solo se ha una funzione di trasferimento il cui polinomio al denominatore è

$$A = -\frac{1}{K_1} \det \begin{pmatrix} h_i & h_{i+1} \\ \kappa_1 & \kappa_{i+1} \end{pmatrix} = d_0$$

Siccome dobbiamo controllare il segno, possiamo anche ricavarci delle condizioni di stabilità. Data una funzione di trasferimento ed un guadagno k, per quali valori di k la fdt rimane stabile?

Se il denominatore ha tutti i coefficienti a parte reale positiva ...

$$\frac{3 \times - 4 \times 5}{5^{2} + 0.45 + 4} = \frac{\times (3 - 8)}{5^{2} + 5(0.4 - 1) + 3 \times 4}$$

$$= \frac{3 \times - 4 \times 5}{5^{2} + 0.45 + 4}$$

Affinchi sia Hurnitz

$$-\frac{4}{3} < \sqrt{<0.4}$$

$$K>0$$
 U $K<\frac{1.6}{3.4}$

Schema a blocchi controllo in retroazione

La variabile manipolabile potrebbe essere una forza i una coppia, quindi non possiamo direttamente manipolarla dal computer.
Abbiamo bisogno sicuramente di un motore che mette in rotazione un ipotetico braccio robotico.

La variabile m deve essere **attuata**, ed è attuata da A(s): lega la tensione del calcolatore alla coppia che mette in rotazione un eventuale motore.

A(s) descrive il comportamento dell'attuatore.

C_tilde(s) guarda all'errore di controllo.
Conosce sia il riferimento che l'uscita, che
dobbiamo misurare. Questa misura è fatta dai
due blocchi in retroazione composti da un
trasduttore

Requisiti di un sistema di controllo

I principali requisiti di un sistema di controllo sono:

- ► Stabilità in condizioni nominali IMPORTANTISSIMO
- Stabilità in condizioni perturbate (stabilità robusta)
 - ► Modello approssimato (ipotesi, prove sperimentali, ...)
 - ► Variazioni parametriche
 - Nonlinearità

Quanto può variare il sistema da quello nominale fino a quando essi diventa instabile?

Prestazioni statiche in condizioni nominali

- Errore a regime con ingresso polinomiale (trasformata $1/s^i$): errore di posizione, di velocità, ecc.
- Comportamento in risposta ad ingressi sinusoidali

A regime come si comporta il sistema?

Non consideriamo il transitorio ma solo a regime (anche per risposte sinusoidali, e quindi non costanti)

- Prestazioni dinamiche in condizioni nominali
 - ► Tempo di assestamento, tempo di salita, sovraelongazione
 - Risposta ai disturbi
 - Moderazione della variabile di controllo
- Prestazioni dinamiche in condizioni perturbate (prestazioni robuste) ¹ E STATICHE

Esempio Cruise

Funzioni di sensitività

*

SISTEHA LINEARE STAZIONARIO
MIMO

USCITA 3 CONTROLLATA MATRICE DI TRASFERIHENTO

$$Y(s) = T_{r \to y}(s)R(s) + T_{n \to y}(s)N(s) + T_{d \to y}(s)D(s)$$

$$U(s) = T_{r \to u}(s)R(s) + T_{n \to u}(s)N(s) + T_{d \to u}(s)D(s)$$

$$E(s) = T_{r \to e}(s)R(s) + T_{n \to e}(s)N(s) + T_{d \to e}(s)D(s)$$

SOLO 3 SONO DIVERSE TRA LORE

FDT A ciclo cliuso to rifed y

Sensitività complementare

2-04

$$T_{n\to y}(s) = -T_{r\to y}(s) \triangleq -F(s) \longleftarrow$$

$$T_{n\to e}(s) = T_{r\to y}(s) = F(s)$$

$$T_{d\to e}(s) = -T_{r\to e}(s) \triangleq -S(s)$$

Sensitività del controllo

Sensitività diretta

RICAPITOLANDO

Sensitività

$$r \rightarrow e$$
: $S(s) = \frac{1}{1 + C(s)G(s)}$

Sensitività complementare

$$r \rightarrow y$$
: $F(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}$

Sensitività del controllo

$$r \to u: \quad Q(s) = \frac{C(s)}{1 + C(s)G(s)} = C(s)S(s) = F(s)G^{-1}(s)$$

Analisi della funzione di sensitività DIRETTA

$$S(s) = \frac{1}{1 + C(s)G(s)} = \frac{1}{1 + L(s)},$$

con $L(s) \triangleq C(s)G(s)$. Tale funzione è la f.d.t. tra

disturbo d e uscita y

X

11(€) € €

- ▶ opposto del disturbo (-d) ed errore e
- riferimento r ed errore e

Idealmente vorremmo S(s) identicamente nulla.

Siccome c'è la retroazione, possiamo modificare l'effetto del disturbo. Ad esempio se la sensitività diretta fosse zero, l'errore non avrebbe alcuna influenza (perché il disturbo va moltiplicato per la sensitività)

L'unico modo per rendere S(s) molto piccola è rendere L(s) molto grande; lo facciamo rendendo il controllore C(s) molto grande.

Funzioni di sensitività

$$Y(s) = F(s)R(s) - F(s)N(s) + S(s)D(s)$$

$$U(s) = Q(s)R(s) - Q(s)N(s) - Q(s)D(s)$$

$$E(s) = S(s)R(s) + F(s)N(s) - S(s)D(s)$$

Si noti che

$$S(s) = rac{1}{1 + C(s)G(s)}, \quad F(s) = rac{C(s)G(s)}{1 + C(s)G(s)} \quad Q(s) = rac{C(s)}{1 + C(s)G(s)}$$

Analisi statica

Calcoliamo l'errore a regime quando il riferimento è un gradino:

Se la f.d.t. S(s) è as. stabile

es. stabile
$$e_{ss}^{r} = \lim_{s \to 0} s S(s) \frac{1}{s} = S(0) \quad \text{TVF}$$

$$Steady$$

Data

$$L(s) = \frac{\mu \prod_{i} (1 + \tau_{i} s) \prod_{i} (1 + 2\zeta_{i} s / \alpha_{ni} + s^{2} / \alpha_{ni}^{2})}{s^{g} \prod_{i} (1 + T_{i} s) \prod_{i} (1 + 2\xi_{i} s / \omega_{ni} + s^{2} / \omega_{ni}^{2})}$$

 $L(s) = \frac{\mu \prod_{i} (1 + \tau_{i} s) \prod_{i} (1 + 2\zeta_{i} s / \alpha_{ni} + s^{2} / \alpha_{ni}^{2})}{s^{g} \prod_{i} (1 + T_{i} s) \prod_{i} (1 + 2\xi_{i} s / \omega_{ni} + s^{2} / \omega_{ni}^{2})}$ Forms due luideuzus il gain $left{value}$ Rers-0 $L(o) = \frac{\mu}{s^{g}}$ Moltiplies e divide $left{value}$ Seuti Audio allora

Tallora
$$e_{ss}^{r} = \lim_{s \to 0} \underbrace{\frac{1}{1 + L(s)}} = \lim_{s \to 0} \underbrace{\frac{s^{g}}{s^{g} + \mu}} = \begin{cases} 1, & \underline{g} < 0 \\ \frac{1}{1 + \mu}, & \underline{g} = 0, \ (\mu \neq -1) \\ 0, & \underline{g} > 0 \end{cases}$$

