에너지 프로슈머를 위한

스마트 가전 스케줄링

2020-08-20

팀명

EBS Lab.

이름

김명선 , 김혜빈, 박소영 , 이지훈

Contents

- I. 개발 배경
- Ⅱ. 개발 내용

- Ⅲ. 데이터 설명
- IV. 데이터 예측
- V. 실시간 스케줄링 서비스

VI. 사업화 방안 및 기대효과

개발배경

[에너지 프로슈머]① 독일, 2030년엔 1000만 가구가 전기 생산

조선비즈 | 설성인 기자, 안상희 기자

입력 2018.05.24 12:30 | 수정 2018.05.24 15:09

[에너지 프로슈머]② 뉴욕, 이웃끼리 전기 사고판다

조선비즈 설성인 기자, 안상희 기자

입력 2018.05.25 06:00

개발 내용

스마트그리드

* SASEP 서비스: 누진세를 고려한 전력 사용 스케줄링 서비스 (Smart Appliance Scheduling for Energy Prosumer)

데이터 설명

구분	내용	기간	위치	측정 간격	
태양광 발전량	- 설비용량 3kw에 맞춰 스케일링	- Training data			
전력 사용량	- 가정용 계약 전력 3kw에 맞춰 스케일링	: 2017.01~2018.03 - Test data	인천광역시	1 hour	
전력 가격	- SMP	: 2018.04~2018.05			

데이터 예측

태양광 발전량 기온, 강수 형태, 강수 확률, 운량 **LSTM LSTM** [KW/h] 2.0 1.0 0.5 2018-05 2018-04 예측 정확도: 0.483 (RMSE)

실시간 스케줄링 서비스

서비스 모델 타당성 분석

실시간 스케줄링 서비스 결과

episode

kW 단위로 입력해주세요.

스케줄링 시작

사업화 방안 및 기대효과 (4P Marketing)

참고문헌

- 1. 조선비즈, "[에너지 프로슈머]② 뉴욕, 이웃끼리 전기 사고판다", https://biz.chosun.com/site/data/html_dir/2018/05/24/2018052403105.html
- 2. 조선비즈, "[에너지 프로슈머]① 독일, 2030년엔 1000만 가구가 전기 생산", https://biz.chosun.com/site/data/html_dir/2018/05/24/2018052401099.html
- 3. Samsung Newsroom, "삼성전자, 한층 진화한 '스마트싱스 에너지' 서비스 선보여", <a href="https://news.samsung.com/kr/%EC%82%BC%EC%84%B1%EC%A0%84%EC%9E%90-%ED%95%9C%EC%B8%B5-%EC%A7%84%ED%99%94%ED%95%9C-%EC%8A%A4%EB%A7%88%ED%8A%B8%EC%8B%B1%EC%8A%A4-%EC%97%90%EB%84%88%EC%A7%80-%EC%84%9C%EB%B9%84
- 4. 인공지능신문, "새로운 AI학습 패러다임...'연합학습'은 의료에서 어떤 영향을 미치나?", https://www.aitimes.kr/news/articleView.html?idxno=14473
- 5. 아이콘
 - https://www.flaticon.com/
 - https://www.aitimes.kr/news/articleView.html?idxno=14473
 - https://opendatascience.com/gradient-boosting-and-xgboost/
 - https://www.iconfinder.com/
 - https://www.aitimes.kr/news/articleView.html?idxno=14473
 - https://www.freepik.com/

감사합니다

PV 예측 모델 타당성 분석

강수 및 태양광 기준 – 흐린 날 분석

년도	1	2	3	4	5	6	7	8	9	10	11	12
2013	(-, -)	(6, 7)	(4, 6)	(8, 7)	(7, 8)	(4, 4)	(18, 17)	(6, 5)	(8, 11)	(1, 5)	(7, 8)	(4, 10)
2014	(3, 7)	(2, 4)	(2, 7)	(4, 7)	(7, 3)	(4, 3)	(11, 11)	(10 ,14)	(5, 9)	(4, 6)	(6, 10)	(6, 7)
2015	(4, 9)	(3, 6)	(2, 5)	(8, 7)	(5, 6)	(5, 5)	(9, 12)	(6, 6)	(3, 5)	(7, 8)	(11, 15)	(7, 10)
2016	(1, 9)	(4, 9)	(1, 6)	(5, 6)	(6, 6)	(5, 6)	(9, 9)	(3, 6)	(3, 6)	(7, 5)	(5, 8)	(6, 12)
2017	(5, 8)	(4, 7)	(2, 5)	(5, 5)	(4, 4)	(4, 4)	(17, 16)	(11, 16)	(2, 6)	(3, 8)	(4, 10)	(4, 14)
2018	(1, 8)	(2, 7)	(7, 11)	(9, 9)	(9, 7)	(8, 10)	(5, 8)	(9, 12)	(6, 11)	(6, 9)	(5, 8)	(3, 6)

2018년 3월 기준 비교

	2013	2014	2015	2016	2017	2018
강수 일수 (0.1mm)	<u>5</u>	4	3	1	4	9
강수 일수 (1.0mm)	<u>4</u>	2	2	1	2	7
전운량 6 이상	213	<u>250</u>	138	242	232	362
중하층운량 6 이상	155	<u>166</u>	86	115	123	321

태양광 예측 – 기상 데이터

- 2018년 3월 기준 가장 유사한 년도 일기예보를 추출하여 사용 - Ex. 강수일 수, 운량

PV 예측 모델 타당성 분석

예측 결과

- MAE: 17.15

- RMSE: 32.22

예측 결과 (2018년도 사용 경우)

- MAE: 10.23

- RMSE: 18.39

4주 기준 합계

- 실제 값: 22617.76

- 예측 값: 24014.48

전력 사용량 예측 모델 타당성 분석

- 특징

- ① Kurtosis
- ② Max
- 3 Mean
- **4** Auto-correlation
- **5** Skewness

전력 사용량 예측 모델 타당성 분석

SMP 예측 모델 타당성 분석

특징 간 상관 관계 분석

- 분석 데이터
 - ① SMP 과거 데이터
 - ② 종류 별 Oil (brent, du, lng, wti)
 - ③ Usd
 - ④ 금 가격
 - ⑤ 공급 능력
 - ⑥ 현재 수요
 - ⑦ 최대 예측 수요
 - ⑧ 공급 예비력
 - ⑨ 공급 예비율
 - ⑩ 운영 예비력
 - ① 운영 예비율

- Heat Map 분석

SMP 예측 모델 타당성 분석

예측 결과 #1

- MAE: 5.55

- MSE: 60.39

- RMSE: 7.77

- MAPE: 6.79

예측 결과 #2

- MAE: 4.85

- MSE: 52.90

- RMSE: 7.27

- MAPE: 6.02

태양광 배터리 참고 모델

삼성 SDI 제작

48V 솔루션

- 최고 성능 94Ah 각형 셀
- 고용량, 장수명 셀
- 1시간 충·방전 연속 사용
- 19인치 표준 랙 호환
- 넓은 온도 범위에서 사용

구분	R1-M048		
구성	배터리 모듈, BMS		
에너지 용량	kWh	4.8	
동작 전압	٧	44.8~58.1	
크기 (W x D x H)	mm	446 x 440 x 158	
무게	kg	35	
동작 온도	°C	-10~50	

• 태양광 에너지저장장치

고전압 솔루션 New

(HVS: High Voltage System)

- 고성능 21700 신규 원형 셀
- 높은 에너지 전환 효율(직류→교류)
- 고전압 인버터와 최적화
- 고온에서도 우수한 성능

{	확장 전압&	용량	-
100V	200V	600V	
2.0kWh			
		X 최대 6개	
		12.0kWh	
			_

구분	R3-M020	
구성	배터리 모듈, BMS	
에너지 용량	에너지 용량 kWh	
동작 전압	V	88.2 ~ 112.5
크기 (W x D x H)	mm	191 x 433 x 172
무게	kg	17.5
동작은도	°C	0~60

서비스 모델 타당성 분석 지표

평가항목	수식
누진세 금액	누진 구간{한 달 전력사용량}
누진세 금액 감소율	비교누진금액 - 기존누진금액 기존누진금액 × 100 %
거래 이익	∑ 판매전력량 × 전력가격
거래 이익 증가율	비교거래이익 - 기존거래이익 기존거래이익
소비 금액	누진세금액 – 거래이익
불만족 지수	$\sum rac{\left ext{선호시간} - ext{ 사용시간} ight }{ ext{사용횟수} imes 24} imes 100 \%$

아파트관리신문, "전기요금 누진제…여름철에만 누진 구간 확대키로 최종 결정", http://www.aptn.co.kr/news/articleView.html?idxno=68475