08.12.2004

REC'D 0 4 JAN 2005

PCT

**WIPO** 

#### 日 OFFICE PATENT JAPAN

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2月 9日 2004年

出 Application Number:

特願2004-032661

[ST. 10/C]:

[JP2004-032661]

人 出 Applicant(s):

マックス株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年11月25日

特許庁長官 Commissioner, Japan Patent Office







【書類名】 特許願 14-185 【整理番号】 特許庁長官 殿 【あて先】 B25C 5/15 【国際特許分類】 【発明者】 東京都中央区日本橋箱崎町6番6号 マックス株式会社内 【住所又は居所】 長谷川 隆生 【氏名】 【特許出願人】 000006301 【識別番号】 マックス株式会社 【氏名又は名称】 【代理人】 100074918 【識別番号】 【弁理士】 瀬川 幹夫 【氏名又は名称】 03 (3865) 8347 【電話番号】 【手数料の表示】 【予納台帳番号】 054449 21,000円。 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】

要約書 1

9006047

【物件名】

【包括委任状番号】

# 【曹類名】特許請求の範囲

### 【請求項1】

多数の真直状の針を帯状に連結したうえでロール状としたロールステープルの外周面に 送りローラを当接させ、駆動モータにより送りローラを回転させるとともに前記ロールス テープルを巻き戻し方向に回転させて前記ロールステープルの先端をステープル供給通路 に案内供給することを特徴とするステープル装置。

## 【請求項2】

前記送りローラの周面に前記ロールステープルの隣接する針間に臨む複数の送り歯が形 成されていることを特徴とする請求項1に記載のステープル装置。

# 【審類名】明細書

【発明の名称】ステープル装置

#### 【技術分野】

# [0001]

本発明は、複写機等の画像形成装置に設置され、被綴り用紙をステープルで綴じるステ ープル装置、特に多数の真直状の針を帯状に連結したうえでロール状に巻回したロールス テープルをカートリッジに収納し、上記ロールステープルをカートリッジに続くステープ ル供給通路に案内供給するロールステープルの供給機構に関するものである。

#### 【背景技術】

### [0002]

従来から、複写機等の画像形成装置に複数枚からなる被綴り用紙を針で閉じるステープ ル装置を内蔵したものが知られている。

# [0003]

また、このようなステープル装置には、多数の真直状の針を帯状に連結したうえでロー ル状に巻回してカートリッジに収納したものも知られている(例えば、特許文献1参照) 。カートリッジ内のロールステープルはカートリッジから排出されてステープル供給通路 に案内供給され、さらにステープル供給通路の先端でコ字状に成形されて打ち出し部から 打ち出される。

【特許文献1】特開2000-167782号公報

## 【発明の開示】

# 【発明が解決しようとする課題】

# [0004]

ところで、上記のステープル装置にあっては、ステープルを送る手段として往復運動を 行なう送り爪を採用している。しかし,送り爪でロールステープルを送るためには、ロー ルステープルの先端側を平板状にする必要があり、また送り爪を直線的往復運動させるた めには、回転するモータの運動を直線的な動作に変える必要があるほか、送りローラと比 較すると、長い距離の送りが困難であるという欠点があった。

## [0005]

しかも、上記送り機構では、針送り装置が直線状の針通路にレイアウトされており、ロ ールステープルをステープル供給通路に送るためには、針の先端をロールステープルの外 周より引き出した形の消耗品形態とするか、ロールステープルをカートリッジ収納後に所 定の操作によって針先端を針送り装置まで送りこむ必要がある。

# [0006]

しかし、前者の場合、製造時における先端位置の管理や製造そのものに手間がかかり生 産性もよくない。また、後者の場合、針交換作業の手間がかかるほか、操作性もよくない という問題があった。

## [0007]

本発明は、上記問題点を解決するため、ロールステープルを確実にステープル供給通路 に案内供給することができるステープル装置を提供することを目的とする。

# 【課題を解決するための手段】

#### [0008]

その目的を達成するため、本発明に係るロールステープルの供給機構は、多数の真直状 の針を帯状に連結したうえでロール状としたロールステープルの外周面に送りローラを当 接させ、駆動モータにより送りローラを回転させるとともに前記ロールステープルを巻き 戻し方向に回転させて前記ロールステープルの先端をステープル供給通路に案内供給する ことを特徴とする

なお、前記送りローラの周面に前記ロールステープルの隣接する針間に臨む複数の送り 歯が形成されているのが好ましい。

# 【発明の効果】

#### [0009]

請求項1に係る発明によれば、ロールステープルが多数の真直状の針を帯状に連結した うえでロール状とされ、ロール状のままのロールステープルの外周面に当接する送りロー ラが回転されることにより、ロールステープルの先端位置がどこにあってもロール状のま まのロールステープルの先端が送りローラによりステープル供給通路に供給することがで きる。

### [0010]

したがって、カートリッジの製造時におけるロールステープルの先端位置の管理や製造 そのものに手間がかからず、生産性もよい。また、ロールステープルの先端位置の案内供 給は自動的に行われるので、針交換作業の手間はかからず、操作性もよ釘、取り扱いが楽 である。

#### [0011]

請求項2に係る発明によれば、送り歯によってさらに確実にロールステープルを送るこ とができる。

# 【発明を実施するための最良の形態】

# [0012]

次に、本発明のステープル装置を図面に基づいて説明する。

# [0013]

# <全体構成>

図1は本発明のステープル装置の外観の斜視図、図2は本発明のステープル装置の側面 図、図3は本発明のステープル装置の縦断面図である。

# [0014]

図1乃至図3において、ステープル装置Aは、ソータやフィニッシャ等の後処理装置を 含めた意味での画像形成装置(図示せず)に装着されるメインフレーム1を有する。

#### [0015]

このメインフレーム1には正逆転駆動モータ2が固定されている。また、メインフレー ム1には、正逆転駆動モータ2の回転駆動を伝達する動力伝達ギヤ部10と、正逆転駆動 モータ2の正転時に針綴じ動作を行う綴じ部30と、正逆転駆動モータ2の逆転時に針供 給動作を行う針供給部40と、メインフレーム1に着脱可能なカートリッジ50とを備え ている。

#### [0016]

<動力伝達ギヤ部10>

図4は、動力伝達ギヤ部10の構成を示し、図4(a)は正転時のギヤ伝達状態の説明 図、図4(b)は逆転時のギヤ伝達状態の説明図である。

#### [0017]

動力伝達ギヤ部10は、正逆転駆動モータ2の出力軸2aに固定された駆動ギヤ11と 、メインフレーム1に軸12を介して回転可能に保持され且つ駆動ギヤ11と噛み合う大 径な従動ギヤ13と、従動ギヤ13の内側で軸12に設けられた小径な連動ギヤ14と、 メインフレーム1に軸15を介して回転可能に保持され且つ連動ギヤ14と噛み合う大径 な伝達ギヤ16と、伝達ギヤ16の内側で軸15に設けられた小径な伝達連動ギヤ17と 、軸15を回動支点として回動可能に保持された回動プレート18に軸19を介して回転 可能に保持され且つ伝達連動ギヤ17と噛み合う変位ギヤ20と、回動プレート18を貫 通する軸21を介して回転可能に保持され且つ常時は変位ギヤ20と噛み合うストッパギ ヤ22と、回動プレート18を貫通する軸23を介して回転可能に保持され且つ常時はフ リーで回動プレート18が逆転方向に回動した際に変位ギヤ20と噛み合うフリーギヤ2 4と、メインフレーム1の内部に位置して軸23に設けられた内部連動ギヤ25と、内部 連動ギヤ25と噛み合うようにメインフレーム1の内部に設けられた内蔵ギヤ26とを備 えている。

#### [0018]

回動プレート18は、金属等の薄肉プレートから構成されており、その一端寄りには軸 2 1 が貫通する長孔18 a が形成されている。また、この長孔18 a の近傍には突起18

bが突出されている。さらに、その他端寄りには軸23が貫通する長孔18cが形成され ている。これにより、回動プレート18が回動した際には、図4(a)に示すように、変 位ギヤ20とストッパギヤ22とが噛み合って駆動ギヤ11の回転駆動をストッパギヤ2 2へと伝達する正転状態と、図4 (b) に示すように、変位ギヤ20とフリーギヤ24と が噛み合って駆動ギヤ11の回転駆動を内臓ギヤ26へと伝達する逆転状態とに切り替え ることができる。尚、回動プレート18の回動は、メインフレーム1の裏面側に設けて正 逆転駆動モータ2の駆動を利用したクラッチ機構やソレノイド等、任意のタイミングで回 動規制することができれば、特に限定されるものではない。

## [0019]

ストッパギヤ22には、その裏面側に突起案内溝22aが形成されている。この突起案 内溝22aは、変位ギヤ20とストッパギヤ22とが噛み合った正転状態の時にはストッ パギヤ22の回転を許容するように突起18bが位置する環状に形成されている。また、 突起案内溝 2 2 a は、変位ギヤ 2 0 とフリーギヤ 2 4 とが噛み合った逆転状態への移行時 には突起18bが環状の突起案内溝22aの一部に形成された逃げ部へ変位することでス トッパギヤ22の回転が停止されるようになっている。

# [0020]

#### <綴じ部30>

綴じ部30は、ステープル綴じ動作時に回動するアーム31と、このアーム31の上端 に設けられてアーム31の回動に連動して昇降するクリンチャユニット32と、クリンチ ャユニット32に設けられた一対のクリンチャ33と対向して所定タイミングで上昇する ドライバ34と、ドライバ34を昇降させるドライバ駆動プレート35と、軸21に相対 回転不能に設けられてストッパギヤ22の回転に連動して回転することによってアーム3 1やクリンチャ33並びにドライバ駆動プレート35を駆動させるタイミングプレート3 6とを備えている。

#### [0021]

# <針供給部40>

図5及び図6は本発明のステープル装置Aの針供給部40を示し、図5(a)は針供給 部の斜視図、図5 (b) は送りローラの正面図、図5 (c) は送りローラとステープル針 との関係を示す説明図、図6は送りローラによるロールステープル供給動作を時系列で示 す説明図である。

#### [0022]

針供給部40は、一端に軸23が貫通する一対の保持プレート41と、この保持プレー ト41の他端間に回転可能に保持されたボビン形状の送りローラ42とを備えている。尚 、保持プレート41は、内部連動ギヤ25と内蔵ギヤ26とをその間で保持している。

#### [0023]

送りローラ42は、周面に多数の送り歯43を形成した硬質ゴム等から形成された一対 のローラ部材44と、このローラ部材44の間に位置して内臓ギヤ26と噛み合う送りギ ヤ45とを備えている。

#### [0024]

送り歯43は、多数の真直状の針Sを帯状に連結したうえでロール状に巻回した円筒状 のロールステープル3の外周面に対し、例えば、図5(c)に示すように、一つ置きに隣 接する針Sの間と係合する。これにより、図6に示すように、正逆転駆動モータ2を逆転 駆動させるだけでローラ部材44の回転によりロールステープル3の先端を自動的に巻き 戻し方向に送って、ステープル供給通路100(図8参照)に案内供給することができる

## [0025]

また、この供給時のローラ部材44に送り歯43を形成したことにより、短い供給路に てロールステープル3の供給を実現することができると共に、摩滅等の経年劣化や送り出 し時のスリップ等を防止することができ、信頼性を向上させることができる。

#### [0026]

なお、送りローラは必ずしも送り歯を有するものに限定されない。送り歯のないもので あってもよい。

# [0027]

<ロールステープル>

ロールステープル3は、ドライバ34にて最先端に位置する針Sを次段の針Sから分離 する際には切断可能となるような接着シート4にて多数の針Sを連結している。この際、 接着シート4は針Sをロール状に巻回するにあたって、外側に位置される。これは、接着 シート4を内側に位置させると接着シート4に弛みが発生することと、ドライバ34が下 方から上昇することに起因する。即ち、後述するように、ローラ部材44により供給され た先端側の針Sに対して、接着シート4は上側に位置する。従って、ドライバ34を下方 から上昇させることにより、切断後に針Sに付着したままの接着シート4の断片は、被綴 り用紙綴じ後の針Sと被綴り用紙との間に位置して外部から見え難くしている。

# [0028]

<カートリッジ50>

図7万至図12はカートリッジ50を示し、図7(a)はカートリッジの平面図、図7 (b) はカートリッジの左側面図、図7 (c) はカートリッジの正面図、図7 (D) はカ ートリッジの右側面図、図8は図7 (a)のA-A線に沿うカートリッジの縦断面図、図 9は図7(a)のB-B線に沿うカートリッジの縦断面図、図10は図7(a)のC-C 線に沿うカートリッジの縦断面図、図11は図7 (a)のD-D線に沿うカートリッジの 縦断面図、図12は図7 (a)のE-E線に沿うカートリッジの縦断面図である。

# [0029]

カートリッジ50は、メインフレーム1の上方並びに一側方に開放する収納部1a(図 1及び図3参照)に着脱可能に収納されており、サブフレームユニット60と、ロールス テープル3を収納する収納ユニット70とを備えている。

#### [0030]

(サブフレームユニット60)

サブフレームユニット60は、ベース61と、このベース61の互いに対向する2辺か ら立ち上げられて収納ユニット70を着脱自在に保持する一対のサブフレーム62と、サ ブフレーム62の先端に軸63を支点として回動可能に保持された平面視略コ字形状のフ ェイスプレート64と、ベース61の後端から立ち上げられた握手片65と、ロールステ ープル3の収納ユニット70から引き出された部分を屈曲させつつ裏面側をガイドするガ イド部材66と、その表面側の屈曲部分から水平部分に跨る範囲でロールステープル3を 送り出す送り出しユニット80とを備えている。

#### [0031]

ベース61の後端寄りには、送りローラ42が臨む開口61aが形成されている。

#### [0032]

フェイスプレート64の下端には、ロールステープル3の先端の突き当て用のストッパ 部64aが設けられている。

#### [0033]

(収納ユニット70)

収納ユニット70は、略半割りの合わせ構造によりロールステープル3を保持する樹脂 背のホルダー71と、ホルダー71を上方から覆うカバー72と、握手片65と協働して 握持操作されメインフレーム1のロック部1bと係合することでカートリッジ50をメイ ンフレーム1に保持させるロック部73を備えたロック操作部74と、スプリング75に よってフェイスプレート64に向けて付勢されたスライダ76とを備えている。

#### [0034]

ホルダー71には、送りローラ42が臨む開口71aと、ロールステープル3の引き出 し開口71bとが形成されている。

#### [0035]

(送り出しユニット80)

図13乃至図15はカートリッジ50を利用したステープル装置Aに用いられる送り出 しユニットを示し、図13は送り出しユニット80の主要部の斜視図、図14は送り出し ユニット80の動作説明図、図15は針Sを取り出す際の送り出しユニット80の動作説 明図である。

#### [0036]

送り出しユニット80は、軸21に固定された基準位置プレート81と、軸21に固定 されたカム82と、カム82によって回動させられる回動リンク83と、回動リンク83 の回動によってスプリング84の付勢に抗して後退させられるスライダ85とをメインフ レーム1側に備えている。また、送り出しユニット80は、スライダ85の進退動によっ て回動させられるアーム部材86と、このアーム部材86を針送り方向に回動させるよう に付勢設定されたスプリング87と、スプリング88の付勢によりロールステープル3の 先端寄りをベース61側に押し付けるガタ防止駒部材89とを備えている(図8参照)。

# [0037]

基準位置プレート81は、その一部に基準位置被検出部81aが設けられている。これ により、基準位置被検出部81aの位置を位置センサー等で検出した場合にのみ正逆転駆 動モータ2の逆転駆動を許容させることができる。また、その切り替えに上述した回動プ レート18による伝達経路の切り替えを行うことにより、正逆転駆動モータ2の正転時は 通常の針綴じ動作とし、正逆転駆動モータ2の逆転時には、上述したロールステープル3 の自動供給や針交換時のステープル装置Aの姿勢変更(ステープル装置A全体を画像形成 装置のメンテナンスカバー開放側に後ろ向き若しくは離脱姿勢へと変える)、といった第 2の作業状態へとまったく異なった機能用へと切り替えることができる。この際、基準プ レート81の1回転と針綴じサイクルとを一致させることにより、基準位置を検出してい ない場合には針Sの挫屈等の綴じ不良が発生したとして基準プレート81を逆方向に回転 させて基準位置へと復帰させた後、正逆転駆動モータ2の逆転をすることも可能である。

# [0038]

アーム部材86は、スプリング87を巻装した軸86aと、軸86aの両端に位置して スライダ85と当接するアーム86bと、軸86aの中央に位置する円弧状部86cと、 円弧状部86cに装着された薄板状の爪部材90とを備えている。

# [0039]

爪部材90の先端は、ロールステープル3の先端寄りの隣接する針Sの間に係合し、ス ライダ85の後退により後方へと回動し(図14 (a)参照)、その後はスプリング87 の付勢により最先端の針Sの打ち込みがなされる毎に次段の針Sがフェイスプレート64 のストッパ部64aに突き当たるように順次送り出す。

### [0040]

従って、通常の送り出しでは、ロールステープル3の引き出し始端部寄りの屈曲部分か ら水平に至る間をサイクル範囲とし、ロールステープル3の搬送路を完全直線とすること なく送り出しを可能とし、ロールステープル3の搬送路を短く設定することができ、よっ て、カートリッジ50並びにステープル装置Aの小型化を実現することができる。

#### [0041]

以上のように、カートリッジの製造時におけるロールステープルの先端位置の管理や製 造そのものに手間がかからず、生産性もよい。

# 【図面の簡単な説明】

#### [0042]

- 【図1】本発明のステープル装置の外観の斜視図である。
- 【図2】本発明のステープル装置の側面図である。
- 【図3】本発明のステープル装置の縦断面図である。
- 【図4】本発明のステープル装置の動力伝達ギヤ部の構成を示し、(a)は正転時の ギヤ伝達状態の説明図、(b)は逆転時のギヤ伝達状態の説明図である。

【図5】本発明のステープル装置の針供給部を示し、(a)は針供給部の斜視図、 b) は送りローラの正面図、(c) は送りローラとステープル針との関係を示す説明 図である。

·【図 6】本発明のステープル装置の針供給部を示し、(a)は送りローラによるロー ルステープル供給動作の初期、(b)は送りローラによるロールステープル供給動作 の中期、(c)は送りローラによるロールステープル供給動作の終期を時系列で示す 説明図である。

【図7】 (a) はカートリッジの平面図、(b) はカートリッジの左側面図、(c) はカートリッジの正面図、(d)はカートリッジの右側面図である。

【図8】図7(a)のA-A線に沿うカートリッジの縦断面図である。

【図9】、図7(a)のB-B線に沿うカートリッジの縦断面図である。

【図10】、図7(a)のC-C線に沿うカートリッジの縦断面図である。

【図11】、図7(a)のD-D線に沿うカートリッジの縦断面図である。

【図12】図7(a)のE-E線に沿うカートリッジの縦断面図である。

【図13】カートリッジを利用したステープル装置に用いられる送り出しユニットを 示し、送り出しユニットの主要部の斜視図である。

【図14】カートリッジを利用したステープル装置に用いられる送り出しユニットを 示し、(a)、(b)は送り出しユニットの動作説明図である。

【図15】カートリッジを利用したステープル装置に用いられる送り出しユニットを 示し、(a)~(c)は針を取り出す際の送り出しユニットの動作説明図である。

## 【符号の説明】

[0043]

- A ステープル装置
- 2 正逆転駆動モータ
- 3 ロールステープル
- 42 送りローラ
- 50 カートリッジ





【図2】



【図3】





【図5】

















【図8】



【図9】



【図10】



[図11]



[図12]



【図13】









【図15】







# 【書類名】要約書

【課題】ロールステープルの先端位置を不問としてロール状のままのロールステープルの 先端が送りローラにより所定の閉じ位置へと供給することができるステープル装置用のカ

【解決手段】多数の真直状の針を帯状に連結したうえでロール状としたロールステープル ートリッジを提供すること。 3の外周面に送りローラ42を当接させ、駆動モータにより送りローラ24を回転させる とともに前記ロールステープル3を巻き戻し方向に回転させて前記ロールステープル3の 先端をステープル供給通路93に案内供給することを特徴とする。

【選択図】図1

特願2004-032661

ページ: 1/E

# 認定・付加情報

特許出願の番号

特願2004-032661

受付番号

5 0 4 0 0 2 1 1 1 6 4

書類名

特許願

担当官

第三担当上席

0092

作成日

平成16年 2月10日

<認定情報・付加情報>

【提出日】

平成16年 2月 9日

特願2004-032661

出願人履歴情報

識別番号

[000006301]

1. 変更年月日 [変更理由] 住 所 氏 名

2003年 7月24日 住所変更 東京都中央区日本橋箱崎町6番6号 マックス株式会社