

ไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุ ผ่านแอปพลิเคชันไลน์

เอ็นไก่ทอด

นางสาวจุฑามาศ เม่นทองคำ	รหัสนิสิต 64160009
้ นายธีรภัทร เกาเกลี้ยง	รหัสนิสิต 64160011
นางสาวนีรชา รุจิระกุล	รหัสนิสิต 64160012
นายวีระวัตร์ ขุนทองจันทร์	รหัสนิสิต 64160019
นางสาวธัญลักษณ์ แซ่ลี้	รหัสนิสิต 64160097
นายธิติพล หุนสูงเนิน	รหัสนิสิต 64160098

รายงานนี้เป็นส่วนหนึ่งของวิชาอินเทอร์เน็ตของสิ่งต่างๆ (Internet of Things)
หลักสูตรปริญญาวิทยาศาสตรบัณฑิต
สาขาวิชาเทคโนโลยีสารสนเทศเพื่ออุตสาหกรรมดิจิทัล
คณะวิทยาการสารสนเทศ มหาวิทยาลัยบูรพา
ปีการศึกษา 2566

สารบัญ

	หน้า
สารบัญ	
สารบัญตาราง	ข
สารบัญภาพ	ค
บทที่ 1 บทนำ	1
1.1 หลักการและเหตุผล	1
1.2 วัตถุประสงค์ของโครงงานที่ได้รับมอบหมาย	1
1.3 ขอบเขตของโครงงาน	2
1.4 ประโยชน์ที่คาดว่าจะได้รับจากการดำเนินโครงงาน	2
บทที่ 2 หลักการและทฤษฎีที่เกี่ยวข้อง	3
2.1 นิยามศัพท์ของคำสำคัญ	3
2.2 หลักการและทฤษฎีที่เกี่ยวข้อง	4
2.2.1 แนวคิดของกระบวนการพัฒนากลอนประตูอัจฉริยะเพื่อผู้สูงอายุ	4
2.2.2 แนวคิดการเขียนโปรแกรมภาษาซี (C Programming Language)	7
2.3 เครื่องมือและเทคโนโลยีที่ใช้ในการปฏิบัติงาน	9
2.3.1 เครื่องมือที่ใช้ในการปฏิบัติงาน	9
2.3.2 ภาษาที่ใช้ในการปฏิบัติงาน	15
2.4 ตัวอย่างโครงงานที่เกี่ยวข้อง	
บทที่ 3 รายละเอียดของการปฏิบัติงาน	
3.1 Story Board	
3.2 อุปกรณ์ที่ใช้ในการปฏิบัติโครงงาน	25
3.3 Hardware Desing	29
3.4 Software Desing	30
3.5 User Interface Desing (On Mobile)	32
บทที่ 4 ผลการดำเนินงาน	33
4.1 ทดสอบการใช้งาน	33
4.1.1 ขั้นตอนการทดลอง	33
4.1.2 ผลการทดลอง	
บทที่ 5 สรุปผลการดำเนินงาน	37
5.1 สรปผลการทดลอง	

สารบัญตาราง

ตารางที่	หน้า
2-1 คำศัพท์ของคำสำคัญ	3
3-1 Story Board	22
3-2 อุปกรณ์	25

สารบัญภาพ

ภาพที่		หน้า
2-1	Active Buzzer Module	9
2-2	GY-521 IMU 3-axis Accelerometer	. 10
2-3	GY-GPS6MV2 GPS module	. 10
2-4	NodeMCU ESP8266	11
2-5	Breadboard	11
2-6	Jumper Wire	. 12
2-7	Battery	. 12
2-8	รางถ่าน	13
2-9	Smart Phone	13
2-10	GPS	14
2-11	LINE Notification	14
2-12	ระบบตรวจจับพฤติกรรมการหหกล้มโดยใช้เซนเซอร์วัดความเร่งแบบ 3 แกน	16
2-13	การตรวจจับการล้มสำหรับผู้สูงอายุและจำแนกข้อมูลกิจกรรมการเคลื่อนไหว	17
2-14	การสร้างอุปกรณ์ขอความช่วยเหลือผู้สูงอายุแจ้งเตือนผ่านแอปพลิเคชันไลน์	18
2-15	ตู้เสียงเตือนการเข้า – ออกบริเวณประตูหนีไฟ	19
2-16	ระบบเฝ้าติดตามและแจ้งเตือนสำหรับผู้สูงอายุโดยทางเครือข่าย Wi-Fi	20
3-1	Hardware Design	29
3-2	ขั้นตอนการทำงานของระบบสามารถตรวจจับการล้ม	30
3-3	แสดงให้เห็นถึงสถานะของประตู	32
3-4	แสดงหน้าจอพิกัด GPS	32
4-1	เครื่องและตัวระบบแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุผ่านแอปพลิเคชันไลน์	. 34
4-2	ระบบตรวจจับการล้มโดยทดสอบด้วยการจำลองสถานการณ์การ	34
4-3	ระบบแจ้งเตือนทางแอปพลิเคชั่นไลน์	. 35
4-4	ระบบสามารถแจ้งเตือนด้วยการส่งเสียงได้	36

บทที่ 1

บทน้ำ

1.1 หลักการและเหตุผล

ตามพระราชบัญญัติผู้สูงอายุ พ.ศ.2546 ได้บัญญัติคำเรียกบุคคลที่มีสัญชาติไทยที่มีอายุเกินกว่าหกสิบปี บริบูรณ์ขึ้นไปคือ "ผู้สูงอายุ" หรือ บางคนเรียกว่า "ผู้สูงวัย" เป็นคำที่บ่งบอกถึงตัวเลขของอายุว่ามีอายุมากขึ้น นิยม นับ ตามอายุตั้งแต่แรกเกิด (Chronological Age) หรือ ทั่วไปเรียกว่า คนแก่ หรือ คนชรา "ผู้สูงอายุ" เป็นวัยบั้น ปลายของชีวิตและปัจจุบันมีผู้ป่วยที่ไม่สามารถพยุงตัวเองให้เดินมากขึ้นในทุกๆวัน ดังนั้นปัญหาของผู้ป่วยและผู้สูงอายุจะเกิดขึ้นในทุกด้านโดยเฉพาะด้านสังคมและสาธารณสุข จึงแตกต่างจากคนในวัยอื่นปัจจุบันเป็นที่ทราบ กันดีแล้วว่าจำนวนผู้ป่วยและผู้สูงอายุเพิ่มขึ้นอย่างต่อเนื่อง ทั้งในประเทศไทยและทั่วโลก ซึ่งรัฐบาลไทยและทั่วโลก ได้ตระหนักถึงความสำคัญในเรื่องนี้ จึงมีความพยายามและมีการรณรงค์อย่างต่อเนื่องให้ทุกคนตระหนักเข้าใจ พร้อมทั้งดูแลผู้ป่วยและผู้สูงอายุให้เท่าเทียม เช่นเดียวกับการดูแลประชากรในกลุ่มอายุอื่น

ชึ่งทางคณะผู้จัดทำได้พบเห็นปัญหาภายในชุมชนท้องถิ่นและศูนย์ดูแลผู้ป่วยและผู้สูงอายุต่างๆของ ประเทศไทยที่ยังต้องมีคนดูแลผู้สูงอายุดลอดเวลา คนที่ดูแลผู้ป่วยและผู้สูงอายุที่ไม่สมารถอยู่กับผู้สูงอายุได้ ตลอดเวลา อาจจะต้องไปทำธุรกิจประจำวันมากมายในแต่ละวัน ทำให้เกิดปัญหาคือคนดูแลผู้ป่วยและผู้สูงอายุไม่ สามารถอยู่กับผู้สูงอายุได้ตลอด อีกทั้งในโลกปัจจุบันมีระบบออนไลน์เกิดขึ้นมากๆคนดูแลผู้สูงอายุมีการใช้แอปพลิ ชันไลน์ในการติดต่อที่ง่ายต่อการติดต่อสื่อสาร

ดังนั้นทางผู้วิจัยจึงมีแนวคิดในการสร้างไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุผ่าน แอปพลิเคชันไลน์ สำหรับแจ้งเตือนให้กับคนดูแลผู้สูงอายุเป็นการแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุอีกทั้งยัง สามารถรู้ถึงพิกัดตำแหน่งของผู้ป่วยในเวลานั้นอีกด้วย

1.2 วัตถุประสงค์ของโครงงาน

- 1. เพื่อออกแบบระบบแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุจากอุปกรณ์ช่วยเดินผ่านแอปพลิเคชันไลน์
- 2. เพื่อหาประสิทธิภาพของระบบแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุผ่านแอปพลิเคชันไลน์
- 3. เพื่อหาพิกัดตำแหน่งผู้ป่วยและผู้สูงอายุผ่านแอปพลิเคชันไลน์

1.3 ขอบเขตของโครงงาน

- 1. พัฒนาให้มีการแจ้งเตือนและส่งตำแหน่ง GPS หากเกิดการล้ม
- 2. พัฒนาให้ระบบสามารถตรวจจับการล้มได้
- 3. พัฒนาให้มีการส่งเสียงเมื่อระบบสามารถตรวจจับการล้มได้

1.4 ประโยชน์ที่คาดว่าจะได้รับจากการดำเนินโครงงาน

- 1. รู้ทันทีหากเกิดการล้มของผู้สูงอายุจากอุปกรณ์ช่วยเดินโดยแจ้งเตือนผ่านแอปพลิเคชันไลน์
- 2. เข้าช่วยเหลือได้ทันเวลาและทราบตำแหน่งของ GPS

บทที่ 2 หลักการและทฤษฎีที่เกี่ยวข้อง

บทนี้จะกล่าวถึงนิยามคำศัพท์ของคำที่สำคัญในการทำโครงงานไม้เท้าต้นแบบระบบแจ้งเตือนการล้ม ของผู้สูงอายุผ่าน แอปพลิเคชันไลน์ซึ่งมีการอธิบายถึงหลักการและทฤษฎีที่เกี่ยวข้องในการพัฒนาไม้เท้า ต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์ซึ่งประกอบไปด้วยแนวคิดของ กระบวนการพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์และแนวคิดการ เขียนโปรแกรมภาษาซี (C Programming Language) อีกทั้งยังมีเครื่องมือและเทคโนโลยี ที่ใช้ในการทำ โครงงานไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์ โดยประกอบด้วยเครื่องมือที่ ใช้ในการพัฒนา (Tools) และภาษาที่ใช้ในการพัฒนา (Programming Language) รวมถึงแสดงตัวอย่างของ โครงงาน ที่เกี่ยวข้องทั้งหมดที่กล่าวมาข้างต้น ดังนั้นเพื่อการพัฒนาระบบดำเนินไปได้สะดวก รวดเร็วและมี ประสิทธิภาพในการทำงานเป็นอย่างยิ่งโดยมีรายละเอียดดังต่อไปนี้

2.1 นิยามศัพท์ของคำสำคัญ

นิยามคำศัพท์ของคำสำคัญนั้นเป็นส่วนอธิบายความหมายของคำศัพท์ที่มีความเกี่ยวข้องกับ การ โครงงานไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์ ซึ่งจำเป็นต้องเข้าใจ ความหมายเพื่อให้เกิดความเข้าใจ และส่งผลให้การทำงานเป็นไปอย่างราบรื่น โดยประกอบไปด้วยคำศัพท์ดัง ตารางที่ 2-1

ตารางที่ 2-1 คำศัพท์ของคำสำคัญ

	<u> </u>		
ลำดับ	คำศัพท์	ความหมาย	
1	Arduino	โปรแกรมสำหรับสั่งงานไมโครคอนโทรลเลอร์	
2	Battery	อุปกรณ์ที่ทำหน้าที่จัดเก็บพลังงานเพื่อไว้ใช้ต่อไป ถือ	
		เป็นอุปกรณ์ที่สามารถแปลงพลังงานเคมีให้เป็นไฟฟ้าได้	
		โดยตรง	
3	Breadboard	บอร์ดพลาสติกสำหรับใช้ต่อวงจรต้นแบบ	
4	Buzzer Module Active	โมดูลเสียงเตือน ใช้ได้กับหลายบอร์ด เช่น Arduino	
		ESP8266 ESP32 เป็นต้น	
5	Charcoal rail	ภาชนะใส่ถ่าน	
6	GY-GPS6MV2 GPS	เป็นอุปกรณ์สำหรับระบุตำแหน่งต่างๆบนโลกเป็นค่า	
	module	ละติจูด ลองจิจูด	

ตารางที่ 2-1 คำศัพท์ของคำสำคัญ (ต่อ)

7	Gyro Module	โมดูลเซนเซอร์ที่ตรวจจับการเคลื่อนไหวและความเอียง	
	(MPU6050)	ของวัตถุ โดยตรวจวัดจากความเร่งเชิงเส้น (Linear	
		Acceleration) และ ความเร็วเชิงมุม (Angular	
		Velocity หรือใช้ Gyroscope)	
8	Jumper Wire	สายที่ใช้สำหรับเชื่อมต่อระหว่าง Arduino กับ Sensor	
		หรือบอร์ดทดลอง โมดูลต่างๆ เพื่อเชื่อมต่อกับวงจร	
9	LINE Notification	แพลตฟอร์มการแจ้งเตือนที่ส่งไปยัง Application LINE	
10	Node MCU-ESP8266	บอร์ดพัฒนาชิพ Wi-Fi เบอร์ 8266	
11	Smartphone	โทรศัพท์พกพาซึ่งมีความสามารถคล้ายคอมพิวเตอร์	
		และสามารถเชื่อมต่อกับอินเทอร์เน็ตได้	
12	GPS	ระบบการนำทางด้วยดาวเทียมซึ่งประกอบด้วย	
		ดาวเทียมอย่างน้อย 24 ดวง	

2.2 หลักการและทฤษฎีที่เกี่ยวข้อง

การพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์ ได้ประยุกต์ใช้ หลักการและทฤษฎีที่เกี่ยวข้องใน โดยมีรายละเอียดดังนี้

2.2.1 แนวคิดของกระบวนการพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเค ชันไลน์

กระบวนการพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์เป็น กระบวนการที่มุ่งเน้นการออกแบบ และสร้างระบบ เพื่อการแจ้งเตือนการล้มของผู้สูงอายุอย่างมีประสิทธิภาพ และปลอดภัยทาง คณะผู้จัดทำจึงศึกษาถึงปัญหาและนำมาวิเคราะห์เพื่อให้เป็นเป้าหมายสำคัญในการพัฒนา ไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์ ทั้งขั้นตอนและแนวคิดสำคัญใน กระบวนการพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์ประกอบไปด้วย

1.ปัญหาของผู้สูงอายุ

การเรียนรู้ถึงปัญหาสุขภาพที่อาจเกิดขึ้นได้ในผู้สูงอายุรวมถึงวิธีป้องกันและดูแลจะช่วยให้ ผู้สูงอายุ สามารถดำรงชีวิตต่อไปได้อีกยาวนานด้วยสุขภาพที่ดีและมีชีวิตชีวา เมื่อวัยเพิ่มขึ้นการทำงาน หรือโครงสร้าง ของเนื้อเยื่อหรืออวัยวะย่อมเสื่อมถอยลงไป ทำให้ปัญหาสุขภาพจึงเป็นสิ่งที่ไม่อาจ หลีกเลี่ยงได้แต่สามารถทำ ความเข้าใจ ป้องกันและดูแลได้ว่าด้วยเรื่องของปัญหาสุขภาพนั้นที่พบบ่อย ในผู้สูงอายุแบ่งออกได้เป็น 2 กลุ่ม ใหญ่ๆ กลุ่มแรกคือ กลุ่มโรคสามัญทั่วไปที่เป็นได้แม้ยังไม่เข้าสู่วัย ผู้สูงอายุ เช่น เบาหวาน ความดัน หัวใจ ไต ซึ่งเกิดได้กับคนทุกวัย แต่พออายุมากขึ้นก็ยิ่งมีโอกาส เป็นมากขึ้น ส่วนกลุ่มที่สองเป็นกลุ่มอาการที่เกิดเฉพาะ

กับผู้สูงอายุ คือเกิดจากความชราภาพของ ร่างกายหรือจากผลข้างเคียงจากโรคที่มารุมเร้าทำให้การดูแลตนเอง ถดถอยลงและนี้คือกลุ่มอาการที่ เป็นปัญหาเฉพาะหรือพบได้บ่อยในผู้สูงอายุนั้นได้แก่

1.1 ภาวะกระดูกพรุน

เป็นภาวะที่ผู้ป่วยมักไม่ทราบว่าตัวเองเป็นเพราะแทบไม่มีอาการเลยกว่าจะทราบก็เมื่อหกล้ม กระดูกหักซึ่งเกิดมาจากความหนาแน่นและมวลของกระดูกลดน้อยลงจนทำให้กระดูกเสื่อม เปราะบาง ผิดรูป และมีโอกาสแตกหักได้ง่าย

1.2 ภาวะหกล้ม

เกิดจากการสูญเสียการทรงตัวขณะเดิน หรือวิ่ง เนื่องจากความแข็งแรงของกล้ามเนื้อลดลง และการ ทรงตัวไม่ดีทำให้ผู้สูงวัยเกิดการหกล้ม และเกิดอันตรายต่อร่างกาย

1.3 ภาวะการทรงตัวไม่ดี

ผู้สูงวัยที่มีปัญหากระดูกและข้อเสื่อม, กล้ามเนื้ออ่อนแรง, ระบบประสาทรับสัมผัสเสื่อม, โรคทาง สมองที่ส่งผลต่อการทรงตัว และอีกสาเหตุหนึ่งที่สำคัญของการหกล้มในผู้สูงอายุคือ การใช้ยาหลายๆ ตัวที่มี ผลข้างเคียงทำให้วิงเวียน ง่วง และรบกวนการทรงตัว เป็นต้น

1.4 ภาวะการเริ่มเดินล้มเหลว

ภาวะที่มีอาการไม่สามารถเริ่มต้นก้าวเดินได้ และไม่สามารถเดินได้ต่อเนื่อง (Sustain Locomotion) การเริ่มต้น และการหมุนตัวเริ่มทำได้ช้าลง เวลาเดินต้องหยุดบ่อย (Start-and-turn hesitation) ก้าวเท้าไม่ ออก สับเท้าเดินอยู่กับที่ ซึ่งภาวะนี้พบได้ในบ่อยในหลายโรคของผู้สูงอายุ เช่น ภาวะโพรงสมองคั่งน้ำชนิด ความดันปกติ หรือโรคพาร์กินสัน เป็นต้น

1.5 ปัญหาสายตา

เมื่ออายุมากขึ้นผู้สูงวัยเริ่มมีปัญหาทางสายตาดวงตาเริ่มมองเห็นไม่ชัดเจนบางครั้งทำให้คาดคะเน ระยะทางได้ไม่ถูกต้อง หรือโรคต้อที่ทำให้มองเห็นไม่ชัดจึงเกิดการหกล้มหรือเกิดอันตรายต่าง ๆ

1.6 ปัญหากระดูกและข้อ

เกิดการเปลี่ยนแปลงข้อต่อ และเอ็นที่อ่อนแอลง ส่งผลต่อการทรงตัวที่ไม่มั่นคงหรือมีอาการเท้าชา

1.7 ปัญหาจากโรคประจำตัว

ผู้สูงวัยบางรายที่มีโรคประจำตัว ส่งผลต่อปัญหาการเดิน หรือการหกล้มได้ เช่น โรคทางเดินปัสสาวะ ทำให้ผู้สูงอายุที่มีปัญหาปัสสาวะบ่อยหรือกลั้นไม่อยู่ ต้องรีบเร่งเดินเข้าห้องน้ำ และทำให้เกิดการหกล้ม บ่อยครั้ง เป็นต้นโรคผิดปกติของกล้ามเนื้อและเส้นประสาท (Neuromuscular diseases) โรคพาร์กินสัน (Parkinson's disease) สมองส่วนหน้าฝ่อจากความเสื่อม (Frontal lobe atrophy) และภาวะกล้ามเนื้อส่วน ขาอ่อนแรง

- 2. ขั้นตอนและแนวคิดสำคัญในกระบวนการพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอป พลิเคชันไลน์
- 2.1 การวางแผนและวิเคราะห์: ในขั้นตอนแรกจะต้องกำหนดวัตถุประสงค์และความต้องการ ของ ระบบตรวจจับการล้ม ระบบส่งเสียงและระบบแจ้งตำแหน่ง GPS ผ่านทางไลน์จะต้องทำการประเมินและ วิเคราะห์ความเหมาะสมของเทคโนโลยีที่ใช้ รวมถึงการ พิจารณาปัจจัยต่างๆ เช่น ความปลอดภัยและความ สะดวกสบายของผู้ใช้งาน
- 2.2 ออกแบบระบบ: ในขั้นตอนนี้จะมีการออกแบบโครงสร้างของระบบระบบตรวจจับการล้ม ระบบ ส่งเสียงและระบบแจ้งตำแหน่ง GPS ผ่านทางไลน์ รวมถึงการ เลือกใช้เซนเซอร์และอุปกรณ์ที่เหมาะสม เพื่อ ตรวจจับสถานะของอุปกรณ์ว่าเมื่อเกิดการล้มมีการแจ้งเตือนผ่านทางไลน์หรือไม่
- 2.3 การพัฒนาซอฟต์แวร์และฮาร์ดแวร์: ในขั้นตอนนี้จะมีการสร้างซอฟต์แวร์ที่จำเป็นสำหรับ ระบบ ตรวจจับการล้ม ระบบส่งเสียงและระบบแจ้งตำแหน่ง GPS ผ่านทางไลน์ รวมถึงการสร้างหรือเลือกใช้ ฮาร์ดแวร์ที่เหมาะสม เช่น ไมโครคอนโทรลเลอร์ อุปกรณ์ สื่อสาร หรือโมดูลเซนเซอร์
- 2.4 การทดสอบและปรับปรุง: หลังจากที่ระบบถูกสร้างขึ้นแล้วจะต้องมีการทดสอบเพื่อ ตรวจสอบ ความถูกต้องและประสิทธิภาพของระบบ รวมถึงการทดสอบระบบในเงื่อนไขที่แตกต่างกัน เพื่อให้มั่นใจว่า ระบบสามารถทำงานได้อย่างเสถียรและปลอดภัย
- 2.5 การบำรุงรักษาและการดูแลรักษา: หลังจากที่ไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุ ผ่าน แอปพลิเคชันไลน์เริ่มใช้งาน แล้ว จะต้องมีการดูแลรักษาและบำรุงรักษาอย่างสม่ำเสมอเพื่อรักษา ประสิทธิภาพและความปลอดภัย ของระบบ
- 2.6 การปรับปรุงและพัฒนา: การพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอป พลิเคชันไลน์ไม่ควรจบลงที่ ระบบเริ่มใช้งาน ต้องมีการติดตามและพัฒนาระบบต่อเพื่อปรับปรุงความสามารถ และความปลอดภัย ของระบบตามเวลา
- 2.7 การติดต่อและการสื่อสาร: การสื่อสารและการสอนให้ผู้ใช้เข้าใจวิธีการใช้งานไม้เท้าต้นแบบระบบ แจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์มีความสำคัญ เพื่อป้องกันความผิดพลาดและเพิ่มความ ปลอดภัย

กระบวนการพัฒนาไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่าน แอปพลิเคชันไลน์นี้ต้องถูก ดำเนินการอย่างรอบคอบและ ให้ความสำคัญกับความปลอดภัยและประสิทธิภาพของระบบเสมอ การใช้ เทคโนโลยีที่เหมาะสมและ การปรับปรุงต่อเนื่องเป็นสิ่งสำคัญในกระบวนการนี้

2.2.2 แนวคิดการเขียนภาษาซี (C Programming Language)

ภาษาซี (C Programming Language) มีความเรียบง่ายและประสิทธิภาพของการเขียนโค้ด และมี อิทธิพลในการพัฒนาภาษาโปรแกรมอื่นๆ มากมายเหมาะสำหรับการพัฒนาซอฟต์แวร์และ ระบบที่ต้องการ ความเร็วและประสิทธิภาพในการทำงาน โดยมีคุณสมบัติสำคัญเช่นการเขียนโค้ดเป็น โครงสร้าง การใช้งาน ฟังก์ชัน การจัดการข้อมูลพื้นฐาน ความเร็ว และพอร์ตาบิลิตี้ ภาษาซี (C Programming Language) ยังมีชุด โค้ดที่ถูกสร้างขึ้นเพื่อใช้งานร่วมกันในการพัฒนาซอฟต์แวร์อย่าง มากมายที่ช่วยในการทำงานต่าง ๆ และยัง เป็นภาษาที่ใช้งานเพื่อพัฒนาต่อไปในสถาบันการศึกษาและ อุตสาหกรรมซอฟต์แวร์ได้อย่างแพร่หลาย

การเขียนโปรแกรมภาษาซี (C Programming Language) มีแนวคิดและหลักการหลายอย่าง ที่สำคัญ ในการพัฒนาโค้ดอย่างเรียบง่ายและมีประสิทธิภาพ นี่คือแนวคิดและหลักการสำคัญในการ เขียนโปรแกรม ภาษาซี(C Programming Language)

- 1. การแบ่งโค้ดเป็นฟังก์ชัน: แบ่งโค้ดออกเป็นฟังก์ชันที่ทำงานแยกกัน เพื่อทำให้โค้ดมี โครงสร้างและ ง่ายต่อการบริหารจัดการฟังก์ชันที่แยกแยะมีความรับผิดชอบเฉพาะส่วนงานที่ เฉพาะเจาะจง และสามารถ นำไปใช้งานซ้ำได้
- 2. การใช้งานตัวแปร: ประกาศและใช้ตัวแปรให้ถูกต้องและชัดเจน โดยระบุประเภทของตัว แปรอย่าง ถูกต้องเพื่อให้ระบบจัดการหน่วยความจำอย่างถูกต้อง
- 3. การใช้การดำเนินการ: ใช้การดำเนินการทางคณิตศาสตร์และตรรกะให้ถูกต้องเพื่อ ประมวลผล ข้อมูล และตรวจสอบเงื่อนไขในโค้ด
- 4. การใช้โครงสร้างควบคุม: ใช้โครงสร้างควบคุมเพื่อควบคุมการทำงานของโปรแกรมตาม เงื่อนไขที่ กำหนด
- 5. การจัดการกับอาร์เรย์: อาร์เรย์เป็นโครงสร้างข้อมูลที่สำคัญในภาษาซี (C Programming Language) เนื่องจากช่วยในการจัดเก็บข้อมูลหลายรายการในตัวแปรเดียวการเข้าถึงและจัดการ กับอาร์เรย์ เป็นสิ่งสำคัญ
- 6. การใช้พอยน์เตอร์: การใช้พอยน์เตอร์ช่วยในการอ้างอิงและเปลี่ยนแปลงค่าตัวแปรใน หน่วยความจำโดยตรงนี้เป็นคุณสมบัติที่สำคัญในการจัดการข้อมูลแบบซับซ้อน
- 7. การจัดการข้อผิดพลาด: การควบคุมและจัดการข้อผิดพลาดเป็นสิ่งสำคัญในการพัฒนา โปรแกรม ในภาษาซี (C Programming Language) การใช้คำสั่ง try catch throw สามารถช่วย จัดการข้อผิดพลาดได้ อย่างมีประสิทธิภาพ
- 8. การเรียนรู้การใช้ไลบรารี: ใช้ไลบรารีที่มีอยู่อย่างเหมาะสมเพื่อลดเวลาและความ ยากลำบากในการ พัฒนาไลบรารีให้ฟังก์ชันพร้อมใช้งานที่มีอยู่เพื่อไม่ต้องเขียนโค้ดซ้ำซ้อน
- 9. การเรียนรู้การใช้งานเครื่องมือพัฒนา: การใช้เครื่องมือเช่น คอมไพเลอร์ (Compiler) ตัว อ่านและ แก้ไขโค้ด (IDEs) และเครื่องมือทดสอบ (Debuggers) เป็นสิ่งสำคัญในการพัฒนาและทดสอบ โปรแกรม

- 10. การทดสอบและบำรุงรักษา: การทดสอบโปรแกรมอย่างถูกต้องและการดูแลรักษา โปรแกรมให้มี ประสิทธิภาพตลอดเวลาเป็นสิ่งสำคัญ
- 11. การปฏิบัติตามหลักการเหล่านี้จะช่วยให้คุณสามารถเขียนโปรแกรมภาษาซี (C Programming Language) ที่มีประสิทธิภาพและง่ายต่อการบริหารจัดการในระยะยาวได้ดีขึ้น

2.3 เครื่องมือและเทคโนโลยีที่ใช้ในการปฏิบัติงาน

เครื่องมือและเทคโนโลยีที่ใช้ในการปฏิบัติโครงงานไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุ ผ่าน แอปพลิเคชันไลน์ ซึ่ง ประกอบไปด้วยเครื่องมือที่ใช้ในการพัฒนา (Tools) และภาษาที่ใช้ในการพัฒนา (Programming Language) โดยมีรายละเอียดดังนี้

2.3.1 เครื่องมือที่ใช้ในการปฏิบัติงาน

1. Active Buzzer Module

เป็นโมดูลเสียงเตือน ใช้ได้กับหลายบอร์ด เช่น Arduino ESP8266 ESP32 เป็นต้น ใช้ในส่วนของการ ส่งเสียงเตือนเมื่อเกิดการล้มเกิดขึ้นแสดงดังภาพที่ 2-1

ภาพที่ 2-1 Active Buzzer Module

จากภาพที่ 2-1 Active Buzzer Module คือ โมดูลบัซเซอร์ที่มีวงจรอินเตอร์เน็ตในตัว ซึ่งสามารถ ออกเสียงเองเมื่อได้รับกระแสไฟฟ้า ไม่จำเป็นต้องใช้วงจรขยายเสียงภายนอก เราสามารถควบคุม Active Buzzer Module เพื่อสร้างเสียงต่าง ๆ โดยเปิดหรือปิดกระแสไฟฟ้าตามลำดับหรือความถี่ที่กำหนด

2. GY-521 IMU 3-axis Accelerometer

เป็นโมดูลเซนเซอร์ที่ตรวจจับการเคลื่อนไหวและความเอียงของวัตถุ โดยตรวจวัดจากความเร่งเชิงเส้น และความเร็วเชิงมุม ใช้ในส่วนของตรวจจับความเอียงของอุปกรณ์เมื่อเกิดการล้มอุปกรณ์ก็จะเปลี่ยนองศาไป จากเดิมแสดงดังภาพที่ 2-2

ภาพที่ 2-2 GY-521 IMU 3-axis Accelerometer

จากภาพที่ 2-2 GY-521 IMU 3-axis Accelerometer คือ อุปกรณ์ที่มีการตรวจวัดความเร็วที่หมุน หรือองศาที่วัดหมุนรอบแกนต่าง ๆ โดยใช้หลักการของเซนเซอร์เอกลักซ์ (MEMS - Micro-Electro-Mechanical Systems) ซึ่งเป็นเซนเซอร์ที่ทำงานบนพื้นผิวของชิพได้ด้วยการใช้การเคลื่อนที่ของเซนเซอร์ ขนาดเล็กในการตรวจจับแรงเสียดทาน. MPU6050 เป็นเซนเซอร์หมุนที่มีความไวและแม่นยำ

3. GY-GPS6MV2 GPS module

เป็นโมดูลสำหรับระบุตำแหน่งต่างๆบนโลกเป็นค่า ละติจูด ลองจิจูด ใช้ในส่วนของการส่งตำแหน่ง GPS ไปยังแอปพลิเคชัน LINE เมื่อเกิดการล้มเกิดขึ้นแสดงดังภาพที่ 2-3

ภาพที่ 2-3 GY-GPS6MV2 GPS module

จากภาพที่ 2-3 GY-GPS6MV2 GPS module คือ โมดูล GPS (Global Positioning System) ซึ่งใช้ เพื่อรับสัญญาณจากดาวเทียม GPS เพื่อหาตำแหน่งทางภูมิศาสตร์ (พิกัดพื้นที่) ที่แน่นอน

4. NodeMCU ESP8266 เป็นบอร์ดที่ใช้ในการเชื่อมวงจรต่างๆเข้าด้วยกันแสดงดังภาพที่ 2-4

ภาพที่ 2-4 NodeMCU ESP8266

จากภาพที่ 2-4 Node MCU V2 คือ บอร์ดที่ใช้ ESP8266 เป็น CPU สำหรับประมวลผล โปรแกรม ต่างๆมีข้อดีกว่า Arduino ตรงที่มีขนาดเล็กกว่ามีพื้นที่เขียนโปรแกรมลงไปมากกว่าและ สามารถเชื่อมต่อกับ Wi-Fi ได้บนบอร์ดรุ่นนี้ใช้ ESP8266 12e มีพื้นที่หน่วยความจำรอมสูงถึง 4MB เพียงพอสำหรับการเขียน โปรแกรมขนาดใหญ่

5. Breadboard

เป็นอุปกรณ์ที่จะช่วยให้สามารถเชื่อมต่อวงจรเมื่อนำอุปกรณ์อิเล็กทรอนิกส์มาเสียบ จะทำให้พลังงาน ไฟฟ้าสามารถไหลจากอุปกรณ์หนึ่ง ไปยังอุปกรณ์หนึ่งได้ ผ่านรูที่มีการเชื่อมต่อกันด้านล่าง ใช้ในส่วนของการ นำ NodeMCU ESP8266 และอุปกรณ์ต่างๆที่ต้องการไฟมาเสียบแสดงดังภาพที่ 2-5

ภาพที่ 2-5 Breadboard

จากภาพที่ 2-5 Breadboard คือ อุปกรณ์ที่ใช้ในการสร้างและทดลองวงจรอิเล็กทรอนิกส์โดยไม่ต้อง ใช้เชื่อมต่อพวกสายไฟหรือลวดเพื่อรวมส่วนประกอบของวงจรเข้าด้วยกัน เป็นอุปกรณ์ที่นิยมใช้ในการทดลอง และพัฒนาวงจรกิเล็กทรอนิกส์โดยที่ไม่ต้องเชื่อมต่อเส้นใยหรือแพร่ฯสายไฟ

6. Jumper Wire สายไฟที่ใช้ในการเชื่อมต่อแสดงดังภาพที่ 2-6

ภาพที่ 2-6 Jumper Wire

จากภาพที่ 2-6 สายต่อจัมเปอร์ (Jumpers) คือ สายที่ใช้สำหรับเชื่อมต่อระหว่าง Arduino กับ Sensor หรือบอร์ดทดลองโมดูลต่างๆ เพื่อเชื่อมต่อกับวงจรโดยจะแบ่งออกเป็น 2 รูปแบบเป็น แบบตัวเมีย และตัวผู้

7. Battery

เป็นอุปกรณ์อย่างหนึ่งที่ใช้เก็บพลังงาน และนำมาใช้ได้ในรูปของไฟฟ้า แบตเตอรี่นั้นประกอบด้วย อุปกรณ์ไฟฟ้าเคมี ใช้ในส่วนของการให้พลังงานบอร์ดและอุปกรณ์ต่างๆแสดงดังภาพที่ 2-7

ภาพที่ 2-7 Battery

จากภาพที่ 2-7 Battery คือ อุปกรณ์ที่เก็บพลังงานไฟฟ้าในรูปแบบของพันธุ์แรงจากกระแสไฟฟ้าและ จะมีความต้องการใช้งานในอุปกรณ์อิเล็กทรอนิกส์หรืออุปกรณ์พกพาที่ต้องการพลังงานไฟฟ้าเพื่อทำงาน

8. รางถ่าน เป็นภาชนะใส่ถ่าน ใช้ในส่วนของการใส่ถ่าน Battery แสดงดังภาพที่ 2-8

ภาพที่ 2-8 รางถ่าน

จากภาพที่ 2-8 รางถ่าน คือ อุปกรณ์ที่ใช้ในการใส่ถ่าน รางถ่านมักมีโครงสร้างที่ออกแบบมาเพื่อ รองรับและควบคุมถ่านไฟฟ้าให้อยู่ในที่ปลอดภัยและมักมีที่ตั้งและสามารถถอดได้เพื่อเปิดใช้งานหรือเปลี่ยน ถ่านไฟฟ้าอย่างง่าย

9. Smartphone

เป็นอุปกรณ์ที่รองรับระบบปฏิบัติการต่างๆได้ เสมือนยกเอาคุณสมบัติที่ PDA และคอมพิวเตอร์มาไว้ ในโทรศัพท์ ใช้ในส่วนของการรับการแจ้งเตือนและ GPS แสดงดังภาพที่ 2-9

ภาพที่ 2-9 Smartphone

จากภาพที่ 2-9 Smartphone คือ อุปกรณ์สื่อสารแบบพกพาที่มีความสามารถที่มากกว่า โทรศัพท์เคลื่อนที่แบบทั่วไป มันสามารถใช้ในการโทรสารสารออกเสียงและส่งข้อความเหมือนกับ โทรศัพท์มือถือทั่วไป

10. GPS

เป็นระบบการนำทางด้วยดาวเทียมซึ่งประกอบด้วยดาวเทียมอย่างน้อย 24 ดวง GPS สามารถ ปฏิบัติการได้ในทุกสภาพอากาศ ทุกที่ในโลก ตลอด 24 ชั่วโมงต่อวัน และไม่มีค่าลงทะเบียนหรือค่าธรรมเนียม ในการตั้งค่า ใช้ในส่วนของการระบุตำแหน่งที่เกิดเหตุแสดงดังภาพที่ 2-10

ภาพที่ 2-10 GPS

จากภาพที่ 2-10 GPS คือ ระบบเทคโนโลยีสื่อสารและนำทางทางภูมิศาสตร์ที่ใช้สัญญาณจาก ดาวเทียมเพื่อระบุตำแหน่งทางภูมิศาสตร์และเวลาในทุกจุดบนผิวโลก ระบบ GPS จะช่วยให้เราสามารถระบุ ตำแหน่งที่อยู่บนโลกอย่างแม่นยำโดยใช้ค่าละติจูดและลองจิจูดทางภูมิศาสตร์

11. LINE Notification

บริการแจ้งเตือนหรือข้อความแจ้งเตือนที่ถูกส่งผ่านแอปพลิเคชัน LINE ซึ่งเป็นแอปพลิเคชัน สื่อสารที่ มีความนิยมในหลายประเทศรวมถึงประเทศไทยและใช้กันอย่างแพร่หลายในการส่ง ข้อความ ข้อคิดเห็น รูปภาพ วิดีโอและแจ้งเตือนต่างๆให้ผู้ใช้งานแสดงดังภาพที่ 2-11

ภาพที่ 2-11 LINE Notification

จากภาพที่ 2-11 Line Notify เป็นบริการที่ LINE ได้เตรียมไว้ให้ในรูปแบบของ API ให้กับ นักพัฒนา สามารถนำไปใช้ต่อยอดหรือพัฒนาโครงงานที่มีความต้องการส่งข้อความและทำการ แจ้งเตือนเข้าไปยังบัญชี ส่วนตัวของเราหรือกลุ่มได้

2.3.2 ภาษาที่ใช้ในการปฏิบัติงาน

ภาษาซี (C Programming Language) คือภาษาคอมพิวเตอร์เพื่อวัตถุประสงค์ทั่วไป ซึ่ง สามารถ เขียนโปรแกรมได้ทั้งแบบออบเจ็คและการเขียนแบบปกติทั่วไปและยังมีเครื่องมืออำนวยความ สะดวกในการ จัดการและเข้าถึงระดับหน่วยความจำ นอกจากนี้มันยังถูกนำไปใช้ในการเขียนโปรแกรม แบบต่างๆ มากมาย เช่น โปรแกรมคอมพิวเตอร์ระบบฝังตัว (Embedded) เว็บเซิร์ฟเวอร์ การพัฒนา เกมและแอพพลิเคชันที่ ต้องการประสิทธิภาพอย่างสูง

2.4 ตัวอย่างโครงานที่เกี่ยวข้อง

โครงงานที่ 1 ระบบตรวจจับพฤติกรรมการหหกล้มโดยใช้เซนเซอร์วัดความเร่งแบบ 3 แกน

ปัญหาการหกล้มของผู้สูงอายุก็เป็นปัญหาหนึ่งที่มักจะเป็นสาเหตุทำให้เกิดการสูญเสียเกิดขึ้นได้ซึ่ง ปัญหาการหกล้มอาจเกิดจากสาเหตุการป่วยแล้วเกิดอุบัติเหตุการเป็นลมแล้วล้มจึงได้คิดค้นระบบตรวจจับ พฤติกรรมการหหกล้มโดยใช้เซนเซอร์วัดความเร่งแบบ 3 แกนขึ้นมา แสดงดังภาพที่ 2-12

ภาพที่ 2-12 ระบบตรวจจับพฤติกรรมการหหกล้มโดยใช้เซนเซอร์วัดความเร่งแบบ 3 แกน

จากภาพที่ 2-12 ระบบตรวจจับพฤติกรรมการหหกล้มโดยใช้เซนเซอร์วัดความเร่งแบบ 3 แกน นั้นจะ เห็นได้ว่าอุปกรณ์หลักๆจะมี FiO Std Board, เซ็นเซอร์วัดความเร่ง 3 แกน (MMA7361L), X-bee และ แบตเตอรี่ ใช้ในการส่งข้อมูลเมื่อมีการหกล้ม

อุปกรณ์

- 1. FiO Std Board
- 2. เซ็นเซอร์วัดความเร่ง 3 แกน (MMA7361L)
- 3. X-bee
- 4. คอมพิวพิเตอร์ หรือ Labtop

ผลการทดลอง

การใช้ค่า Threshold ที่ได้จากการเฉลี่ยขณะล้มให้ความแม่นยำในการตรวจสอบในระดับหนึ่ง 1 ใน 4 ผู้ทดสอบที่ได้ค่าดีที่สุดคือค่า Sensitivity สามารถตรวจสอบได้ถูกต้องว่ามีการล้มเกิดขึ้นจริง 70% และได้ ค่า Specificity ความสามารถในการตรวจสอบว่าไม่มีการล้มเกิดขึ้น 90%

โครงงานที่ 2 การตรวจจับการล้มสำหรับผู้สูงอายุและจำแนกข้อมูลกิจกรรมการเคลื่อนไหว ด้วยอัลกอริทึม Weighted k-Nearest neighbor บนระบบฝังตัวแบบพกพา

สร้างระบบการตรวจจับการล้มและจำแนกข้อมูลการเคลื่อนไหวโดยใช้อินเทอร์เน็ตในทุกสิ่ง(Internet of Things)แสดงดังภาพที่ 2-13

ภาพที่ 2-13 การตรวจจับการล้มสำหรับผู้สูงอายุและจำแนกข้อมูลกิจกรรมการเคลื่อนไหว ด้วยอัลกอริทึม Weighted k-Nearest neighbor บนระบบฝังตัวแบบพกพา

จากภาพที่ 2-13 เป็นอุปกรณ์ตรวจจับการล้มสำหรับผู้สูงอายุที่ใช้ในการทดลองโดยจะมีอุปกรณ์ต่างๆ เช่น ESP32 Dev Kit V1.0, GY-521และBuzzer Module เป็นต้น

อุปกรณ์

- 1. ESP32 Dev Kit V1.0
- 2. โมดูลเซนเซอร์ GY-521
- 3. แอปพลิเคชัน LINE
- 4. สายคาดเอว
- 5. Arduino IDE

ผลการทดลอง

การประเมินประสิทธิภาพการตรวจจับการล้มพบว่า สามารถนำไปช่วยในการตรวจจับการล้มได้และ การประเมินประสิทธิภาพทำนาย เหตุการณ์ที่จะเกิดการล้มด้วย Weighted K-NN พบว่า สามารถจำแนก ข้อมูลการเคลื่อนไหวได้ทั้งในส่วนผู้ที่มีความ เสี่ยงและผู้ที่ไม่มีความเสี่ยงที่จะเกิดการล้มได้ถูกต้อง

โครงงานที่ 3 การสร้างอุปกรณ์ขอความช่วยเหลือผู้สูงอายุแจ้งเตือนผ่านแอปพลิเคชันไลน์

เนื่องจากสถิติในปัจจุบันผู้สูงอายุลื่นล้มในห้องน้ำกว่า 31% ห้องน้ำจึงเป็นพื้นที่เสี่ยงที่จะเกิดอุบัติเหตุ จากการลื่นล้มอุปกรณ์ขอความช่วยเหลือจะทำการแจ้งเตือนผ่านแอปพลิเคชันไลน์ และจะทำให้ช่วยเหหลือได้ ไวมากขึ้นแสดงดังภาพที่ 2-14

แสดงดังภาพที่ 2-14 การสร้างอุปกรณ์ขอความช่วยเหลือผู้สูงอายุแจ้งเตือนผ่านแอปพลิเคชันไลน์

จากภาพที่ 2-14 เป็นอุปกรณ์และการต่อวงจรทั้งหมดที่จะนำไปใช้ในส่วนของตัวงานที่จะนำไปใช้ใน การทดลองจริงซึ่งก็จะมีอุปกรณ์หลักๆคือ บอร์ด ESP8266, โมดูลแปลงไฟและBuzzer 3-24V DC เป็นต้น

อุปกรณ์

- 1. บอร์ด ESP8266
- 2. โมดูลแปลงไฟ
- 3. Buzzer 3-24V DC
- 4. Arduino IDE
- 5. แอปพลิเคชัน LINE

ผลการทดลอง

ด้านการออกแบบชิ้นงานมีความทันสมัยความประณีตสีสันสวยงามช่วยให้สบายตามีความสร้างสรรค์ ชิ้นงานโดยรวมนั้นมีความสมบูรณ์ ด้านการใช้งานพบว่าชิ้นงานนี้สามารถใช้งานได้จริง มีการแจ้งเตือนที่ รวดเร็วสะดวกต่อการเคลื่อนย้ายมีประสิทธิภาพและไม่เปลืองพื้นที่

โครงงานที่ 4 ตู้เสียงเตือนการเข้า - ออกบริเวณประตูหนีไฟ

ออกแบบและสร้างระบบแจ้งเตือนการเข้า - ออกบริเวณประตูหนีไฟภายในหอนอนนักเรียนด้วยเสียง และแอปพลิเคชัน Line แสดงดังภาพที่ 2-15

แสดงดังภาพที่ 2-15 ตู้เสียงเตือนการเข้า - ออกบริเวณประตูหนีไฟ

จากภาพที่ 2-15 เป็นภาพวงจรตู้เสียงเตือนเข้า - ออกบริเวณประตูหนีไฟและการแจ้งเตือนของ LINE Notify ซึ่งในส่วนของอุปกรณ์หลักๆ คือ บอร์ด Kidbright, บอร์ด iKB-1, โปรแกรม Kidbright IDE, Motion Sensor : Passive Infrared Sensors (PIR sensor) เป็นต้น

อุปกรณ์

- 1. บอร์ด Kidbright
- 2. บอร์ด iKB-1
- 3. โปรแกรม Kidbright IDE
- 4. Motion Sensor: Passive Infrared Sensors (PIR sensor)
- 5. Line Notify

ผลการทดลอง

จากการทดลองระบบแจ้งเตือนการเข้า - ออกบริเวณประตูหนีไฟภายในหอนอนนักเรียนเป็นไปตามที่ กำหนดไว้ ช่วยแก้ปัญหาเหตุการณ์นักเรียนใช้ประตูหนีไฟภายในหอนอน เกิดการหลบหนีออกจากบริเวณ โรงเรียน สามารถลดปัญหาการใช้ประตูหนีไฟภายในหอนอนให้น้อยลง

โครงงานที่ 5 ระบบเฝ้าติดตามและแจ้งเตือนสำหรับผู้สูงอายุโดยทางเครือข่าย Wi-Fi

เป็นระบบเฝ้าติดตามและแจ้งเตือนสำหรับผู้สูงอายุเมื่อผู้สูงอายุประสบอุบัติเหตุหรือเจ็บป่วยโดยจะมี อุปกรณ์ตรวจจับไร้สายทำหน้าที่รับค่าต่างๆ จากเซ็นเซอร์หรืออุปกรณ์ อินพุตแล้วส่งต่อไปยังสถานีฐานผ่าน ทางเครือข่ายวายฟายสถานีฐานทำหน้าที่ประมวลผลและแสดงผล พร้อมทั้งตัดสินใจในการส่งแจ้งเตือนด้วย ข้อความสั้นทางโทรศัพท์ (SMS) แสดงดังภาพที่ 2-16

แสดงดังภาพที่ 2-16 ระบบเฝ้าติดตามและแจ้งเตือนสำหรับผู้สูงอายุโดยทางเครือข่าย Wi-Fi

จากภาพที่ 2-16 เป็นปุ่มกดฉุกเฉินและสายรัดข้อมูลตรวจจับการเคลื่อนไหวและหกล้ม เมื่อเกิด เหตุการฉุกเฉินตัวสายรัดข้อมือและมีการกดปุ่มฉุกเฉินจะมีการส่งการแจ้งเตือนไปยังข้อความโทรศัพท์ (SMS)

อุปกรณ์

- 1. แบตเตอรี่ LiPo ชนิด 3.7V
- 2. Node MCU ESP8266
- 3. สายรัดข้อมือ

อุปกรณ์ (ต่อ)

- 4. Node MCU
- 5. Snap Action Limit Switch
- 6. หลอดไฟ LED
- 7. Pulse Heart Rate Sensor

ผลการทดลอง

การทดสอบจริงได้นำระบบเฝ้าติดตามและแจ้งเตือนสำหรับผู้สูงอายุติดตั้งจริงที่บ้านเมื่อทดสอบครบ 7 วัน คณะผู้วิจัยได้สอบถามผู้ใช้งานด้วยแบบประเมินความพึงพอใจหลังจากการใช้งาน พบว่า มีระดับความ พึงพอใจในระดับดีผู้สูงอายุมีความต้องการให้สายรัดข้อมือมีขนาดเล็กลงและมีความกังวลเรื่องการใช้พลังงาน ไฟฟ้าของระบบ การทดสอบแบบจำลองสถานการณ์ พบว่า การวัดอัตราการเต้นของหัวใจ, การกดปุ่มฉุกเฉิน

และ การตรวจจับการผ่านและเคลื่อนไหวทั้งแบบที่ใช้ Photoelectric Sensor และ กล้อง ทั้งหมดทำงานได้ ถูกต้อง

บทที่ 3

รายละเอียดของการปฏิบัติงาน

บทนี้จะกล่าวถึงรายละเอียดของไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่านแอปพลิเคชันไลน์ ประกอบไปด้วย Story Board (ภาพจำลอง) อุปกรณ์ที่ใช้ในการปฏิบัติโครงงาน Hardware Design Software Design และ User Interface Design (On Mobile) โดยมีรายละเอียดดังนี้

3.1 Story Board (ภาพจำลอง)

ในส่วนของ Story Board (ภาพจำลอง) ทางคณะผู้จัดทำได้ออกแบบ Story Board (ภาพจำลอง) ขึ้นมา เพื่อจำลองสถานการณ์ของการใช้ไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุผ่านแอปพลิเคชั่นไลน์ เพื่อให้ เข้าใจเกี่ยวกับการใช้งานของระบบมากยิ่งขึ้น แสดงดังตารางที่ 3-1

ตารางที่ 3-1 Story Board

ลำดับ	ภาพ	รายละเอียดภาพ
1.		คุณยายกำลังเดินเล่นที่สวนอยู่ที่สวนหลังบ้าน เป็นกิจกรรมนันทนาการ คลายเครียด ทำเพื่อ ความเพลิดเพลินรู้สึกผ่อนคลายทั้งทางด้าน อารมณ์และจิตใจ

ตารางที่ 3-1 Story Board (ต่อ)

2.

การจำลองสถานการณ์เมื่อเกิดอุบัติเหตุกับ
ผู้สูงอายุ เช่น เกิดการล้มขณะที่กำลังเดินเล่นอยู่
ในสวนหลังบ้านทำให้ไม่สามารถลุกหรือ
ช่วยเหลือตัวเองได้ เมื่อล้มลงไปแล้วไม้เท้าก็จะ
ล้มด้วยและไม้เท้าจะส่งเสียงร้องขอความ
ช่วยเหลือเพื่อให้ผู้คนที่อยู่ในบริเวณนั้นหรือคน
ใกล้ชิด

3.

การจำลองสถานการณ์เมื่อมีคนกำลังทำ
กิจกรรมอยู่ในบ้าน เช่น ลูกสาวกำลังซักผ้าอยู่ใน
บ้าน เมื่อคุณยายเกิดอุบัติเหตุล้มไม้เท้าก็จะส่ง
การแจ้งเตือนมายังไลน์ โดยจะขึ้นเตือนว่าผู้ป่วย
ล้มพร้อมกับส่ง Location มาด้วยเพื่อที่จะได้รู้
ว่าล้มอยู่ตรงไหน

ตารางที่ 3-1 Story Board (ต่อ)

4.

การจำลองสถานการณ์ลูกสาวกำลังออกไปช่วย
คุณยายที่สวนหลังบ้านด้วยอาการที่ตกใจ
หลังจากได้รับการแจ้งเตือนผ่านแอปพลิเค
ชันไลน์

5.

หน้าจอการแจ้งเตือนผ่านแอปพลิเคชันไลน์โดย การแจ้งเตือนจะระบุว่ามีผู้ป่วยล้มและระบุ สถานที่โดยการส่ง Location มา เพื่อให้เราได้รู้ ว่าล้มอยู่ตรงไหนจะได้ไปช่วยเหลือได้ถูกที่และ ไม่เสียเวลาในการหาทำให้ช่วยเหลือได้ทันเวลา

6.

ลูกสาวได้ไปที่จุดที่คุณยายล้มและได้ทำการ ช่วยเหลือคุณยายที่สวนหลังบ้านได้อย่างรวดเร็ว และปลอดภัย

3.2 อุปกรณ์ที่ใช้ในการปฏิบัติโครงงาน

ตารางที่ 3-2 อุปกรณ์

ลำดับ	ชื่ออุปกรณ์	ภาพ	รายละเอียด
1.	GY-521 IMU 3-axis Accelerometer/Gyro Module (MPU6050)	A CONTROL OF THE PARTY OF THE P	521 เป็นโมดูลวัดความเร่ง วัดได้ 3 แกน x,y,z เมื่อเราเอนโมดูลค่ามุมจะ เปลี่ยนแปลงไปจากแนวระดับ โมดูล นี้จะส่งค่ามุมมาให้เรา เป็นลักษณะ แบบ I2C ใช้สายสัญญาณ 2 เส้น ใช้ ไฟ 3.3 โวลต์
2.	GY-GPS6MV2 GPS module		เป็นโมดูล U-blox รุ่น NEO-6M ซึ่ง เป็นที่นิยมกันอย่างมาก สำหรับระบุ ตำแหน่งต่างๆบนโลกเป็นค่าละติจูด ลองจิจูด มี Library พร้อมใช้งาน รองรับไฟ 3-5V สามารถเชื่อมต่อได้ กับไมโครคอนโทรเลอร์หลายๆ ประเภท
3.	Node MCU ESP8266		เป็น CPU สำหรับประมวลผล โปรแกรมต่างๆ มีข้อดีกว่า Arduino ตรงที่มีขนาดเล็กกว่ามีพื้นที่เขียน โปรแกรมลงไปมากกว่าและสามารถ เชื่อมต่อกับ Wi-Fi ได้ บนบอร์ดรุ่นนี้ ใช้ ESP8266 12e มีพื้นที่ หน่วยความจำรอมสูงถึง 4MB

ตารางที่ 3-2 อุปกรณ์ (ต่อ)

4.	สายต่อจัมเปอร์ (Jumpers)		สายที่ใช้สำหรับเชื่อมต่อระหว่าง Arduino กับ Sensor หรือบอร์ด ทดลอง โมดูลต่างๆ เพื่อเชื่อมต่อกับ วงจรโดยจะแบ่งออกเป็น 2 รูปแบบ เป็นแบบตัวเมียและตัวผู้
5.	บริดบอร์ด (Breadboard)		เป็นอุปกรณ์ที่ใช้ในการสร้าง โครงสร้างของวงจรไฟฟ้าแบบ ชั่วคราวโดยไม่ต้องใช้การเชื่อมต่อ แบบถาวร โดยที่ไม่ต้องใช้เส้นลวด หรือเบรด (Soldering) เพื่อเชื่อมต่อ ส่วนประกอบของวงจรภายในตัวบริด บอร์ด
6.	แบตเตอรี่	BRC 18650 4800mAh	แบตเตอรี่ 18650 3.7V 4800mAh คือ แบตเตอรี่ที่มีขนาดแบบ 18650 มีแรงดันไฟฟ้า (Voltage) ค่าประมาณ 3.7 โวลต์ และ ความจุที่ จัดเก็บพลังงานของแบตเตอรี่เป็น 4800 มิลลิแมปเอช (mAh) หรือ 4.8 แอมป์เอช (Ah เหมาะสำหรับการใช้ งานในอุปกรณ์ที่ต้องการแหล่งจ่าย พลังงานพกพาและไม่มีที่ใส่แบตเตอรี่ ขนาดใหญ่ได้

ตารางที่ 3-2 อุปกรณ์ (ต่อ)

7.	Smart Phone		โทรศัพท์อัจฉริยะหรือทับศัพท์เป็น สมาร์ตโฟน เป็นโทรศัพท์เคลื่อนที่ที่มี ความสามารถเพิ่มเติมเหนือจาก โทรศัพท์เคลื่อนที่ทั่วไป ถูกมองว่า เป็นคอมพิวเตอร์พกพาที่สามารถ เชื่อมต่อความสามารถหลักของ โทรศัพท์มือถือ
8.	LINE Notification	LINE Notify Connect LINE with Everything	บริการแจ้งเตือนหรือข้อความแจ้ง เตือนที่ถูกส่งผ่านแอปพลิเคชันไลน์ ซึ่งเป็นแอปพลิเคชันสื่อสารที่มีความ นิยมในหลายประเทศโดยมีการส่ง ข้อความข้อคิดเห็น รูปภาพ วิดีโอ และแจ้งเตือนต่างๆให้ผู้ใช้งานแสดง
9.	Buzzer Module Active	「GND」 「VOD」 「VCC」 低电平触发	โมดูลบัซเซอร์สามารถสร้างเสียงได้ โดยต้องมีกระแสไฟฟ้าหรือสัญญาณ เตือนอย่างต่อเนื่องเข้ามาเพื่อให้บัช เซอร์ส่งเสียงออกมา โมดูลบัซเซอร์ แบบ Active มักมีวงจรขับในตัวโมดูล ซึ่งสามารถทำให้บัชเซอร์ส่งเสียงได้ โดยไม่ต้องมีวงจรขับภายนอกและ สามารถใช้งานได้ง่าย

ตารางที่ 3-2 อุปกรณ์ (ต่อ)

10.	รางถ่าน (Battery		สำหรับแบตเตอรี่ 18650 แบบขนาน
	Holder)		3.7V คืออุปกรณ์ที่ใช้เก็บและ เชื่อมต่อแบตเตอรี่ 18650 ให้ สามารถใช้งานได้อย่างสะดวกและ สร้างการติดต่อกับอุปกรณ์ อิเล็กทรอนิกส์หรือไฟฉุกเฉินได้อย่าง ง่าย รางถ่านแบบ 3.7V มักมีการ ออกแบบให้สามารถติดตั้งแบตเตอรี่ 18650 ในตำแหน่งที่ปลอดภัยและ
			มักมีขั้วเชื่อมต่อเพื่อการเชื่อมต่อกับ อุปกรณ์หรือสายไฟได้
11.	GPS	g	ใช้ระบบติดตามการเคลื่อนที่ของ ดาวเทียม และส่งสัญญาณไปยัง ตัวรับ GPS ที่อยู่บนดาวเทียมเพื่อ คำนวณตำแหน่ง ระบบ GPS สามารถใช้ในหลายแอปพลิเคชัน โดย สามารถใช้ระบุตำแหน่งที่แม่นยำบน โลก

3.3 Hardware Design

ในส่วนของ Hardware Design (การออกแบบฮาร์ดแวร์) ทางคณะผู้จัดทำได้ Hardware Design (การ ออกแบบฮาร์ดแวร์) ขึ้นมาเพื่อให้เห็นลักษณะการใช้งานของกลอนประตูอัจฉริยะเพื่อผู้สูงอายุอัจฉริยะมากยิ่งขึ้น แสดงดังภาพที่ 3-18

ภาพที่ 3-18 Hardware Design (การออกแบบฮาร์ดแวร์)

จากภาพที่ 3-18 เราจะต่ออุปกรณ์ทั้งหมดเข้าที่ตัว Node MCU ESP 8266 ดังนี้

- 1. Buzz ขา Do ต่อเข้าที่ช่อง D1
- 2. Buzz ขาขั้วบวกต่อเข้าที่ช่อง 3V3
- 3. Buzz ขาขั้วลบต่อเข้าที่ช่อง GND
- 4. GPS ขาDo ต่อเข้าที่ช่อง D2
- 5. GPS ขาขั้วบวกต่อเข้าที่ช่อง 3V3
- 6. GPS ขาขั้วลบต่อเข้าที่ช่อง GND
- 7. GY-521 SENSOR ขาSCL ต่อเข้าที่ช่อง D3
- 8. GY-521 SENSOR ขาSDA ต่อเข้าที่ช่อง D4
- 9. GY-521 SENSOR ขาขั้วบวกต่อเข้าที่ช่อง 3V3
- 10. GY-521 SENSOR ขาขั้วลบต่อเข้าที่ช่อง GND

3.4 Software Design

ทางคณะผู้จัดทำได้วิเคราะห์ขั้นตอนและกระบวนการของไม้เท้าต้นแบบระบบแจ้งเตือนการล้มของผู้สูงอายุ ผ่านแอปพลิเคชันไลน์โดยมีระบบดังต่อไปนี้ ระบบสามารถตรวจจับการล้ม ระบบแจ้งเตือนทางแอปพลิเคชันไลน์ ระบบแจ้งเตือนด้วยการส่งเสียง ดังนั้นทางคณะผู้จัดทำได้ทำแผนภาพเพื่อทำให้เข้าใจได้ง่ายยิ่งขึ้นโดย

ภาพที่ 3-19 ขั้นตอนการทำงานของระบบสามารถตรวจจับการล้ม ระบบแจ้งเตือนทางแอปพลิเคชันไลน์ ระบบแจ้งเตือนด้วยการส่งเสียงแสดงถึงการทำงานของระบบโดยมีขั้นตอนดังต่อไปนี้

- 1. กำหนดค่าเริ่มต้นสำหรับการใช้งาน MPU6050 Sensor
- 2. ตรวจสอบการเชื่อมต่อ
 - 2.1 อุปกรณ์เชื่อมต่อกับ MPU6050 Sensor สำเร็จหรือไม่
 - 2.2 หากการเชื่อมต่อเป็นความสำเร็จ (Connection Successful) ให้ดำเนินการตามที่กำหนด
 - 2.3 หากการเชื่อมต่อไม่สำเร็จ (Connection Failed) ให้สิ้นสุดโปรแกรมและแสดงข้อความข้อผิดพลาด

- 2.4 วนลูป (Loop)
- 3. เข้าสู่ลูปการทำงานโปรแกรมหลัก
- 4. อ่านข้อมูลจากเซนเซอร์
- 5. คำนวณหาค่าความเร่ง
 - 5.1 คำนวณความเร่งรวมโดยรวมค่าความเร่งในแกน x, y, และ z.
- 6. ค่า totalAcc มากกว่า threshold หรือไม่
 - 6.1 หาก totalAcc ไม่ใช่ จะดำเนินการอ่านค่า Sensor ใหม่
 - 6.2 หาก totalAcc ใช่ จะดำเนินการต่อไปตามที่กำหนด
- 7. ส่งการแจ้งเตือนไปยังแอปพลิเคขันไลน์และทำการส่งพิกัด GPS
- 8. ส่งเสียงแจ้งเตือนไปยัง BUZZER

3.5 User Interface Design (On Mobile)

ทางคณะผู้จัดทำได้วิเคราะห์และออกแบบในส่วนของ UI (**User Interface**) ของระบบการแจ้งเตือนผ่าน แอปพลิเคชันไลน์และพิกัดGPSแสดงตำแหน่ง โดยมีภาพประกอบดังต่อไปนี้

1. หน้าจอการแจ้งเตือนผ่านแอปพลิเคชันไลน์

ภาพที่ 3-20 แสดงให้เห็นถึงสถานะของประตู

จากภาพที่ 3-20 แสดงหน้าจอการแจ้งเตือนผ่านแอปพลิเคชันไลน์ โดยแจ้งเตือนว่ามีผู้ป่วยล้มและบอก พิกัดสถานที่โดยการส่ง GPS มายังไลน์เพื่อที่จะได้รู้พิกัดและไปช่วยเหลือได้ทันเวลา

2. แสดงหน้าจอพิกัด GPS

ภาพที่ 3-21 แสดงหน้าจอพิกัด GPS

จากภาพที่ 3-21 แสดงหน้าจอพิกัด GPS ที่ส่งมาในแอปพลิเคชันไลน์เปิดขึ้นเพื่อแสดงพิกัดที่ผู้สูงอายุเกิด การล้ม เพื่อจะได้ไปช่วยเหลือได้ถูกต้อง

บทที่ 4

ผลการดำเนินงาน

ในบทนี้จะกล่าวถึงวิธีการทดลอง ผลการทดลองว่าหากเกิดการหกล้มแล้ว ระบบจะมีการตรวจจับพฤติกรรม และมีการแจ้งเตือนตามที่เกิดเหตุการณ์นั้นจริงหรือไม่ และหากไม่มีการหกล้มเกิดขึ้น ระบบจะสารถตรวจจับ พฤติกรรมว่าไม่มีการหกล้มได้อย่างถูกต้องหรือไม่

4.1 ทดสอบการใช้งานระบบ

- 4.1.1 ขั้นตอนการทดลอง
 - 1. ติดตั้งตัวอุปกรณ์ Hardware ที่ไม้เท้า
- 2. ทำการเปิดโปรแกรม Arduino IDE และรันโค้ดเพื่อตรวจสอบการรับค่าจากตัวเซนเซอร์ ตรวจจับการล้ม
 - 3. จับไม้เท้าอยู่กับที่ประมาณ 10 วินาที จากนั้นทดสอบการล้มไปข้างหน้า และบันทึกผลที่ได้
 - 4. วิเคราะห์ผลการทดลอง

ในการทำงานของระบบแจ้งเตือนการล้มของผู้สูงอายุผ่านแอปพลิเคชันไลน์ โดยบอร์ดอาดูโน่ ESP32 และ อุปกรณ์สำหรับตรวจจับสถานะความผิดปกติของผู้สูงอายุ ได้แก่ ไจโรเซนเซอร์ เพื่อตรวจสอบการล้มของผู้สูงอายุ ระบบ GPS สำหรับระบุตำแหน่งของอุปกรณ์ที่ผู้สูงอายุใช้งาน เมื่อเซนเซอร์และอุปกรณ์เหล่านี้พบสิ่งผิดปกติของ ผู้สูงอายุ

4.1.2 ผลการทดลอง

ผลการทดลองเรื่องระบบแจ้งเตือนการล้มของผู้สูงอายุผ่านแอปพลิเคชันไลน์เพื่อแสดงผลการทดลองและ การออกแบบตัวเครื่องโดยมีรายละเอียดดังต่อไปนี้ 1. ได้สร้างเครื่องและตัวระบบแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุผ่านแอปพลิเคชันไลน์ดังภาพที่ 4-1

ภาพที่ 4-1 เครื่องและตัวระบบแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุผ่านแอปพลิเคชันไลน์

จากภาพที่ 4-1 ได้ทำการสร้างไม้เท้าและตัวระบบแจ้งเตือนการล้มของผู้ป่วยและผู้สูงอายุผ่านแอปพลิเค ชันไลน์โดยประกอบไปด้วย Buzzer Module Active ทำหน้าที่แจ้งเตือนด้วยเสียง ไจโรเซนเซอร์ (GY-521 IMU) ทำหน้าที่ตรวจจับการล้ม และ GPS (GY-GPS6MV2 GPS Module) Notify ทำหน้าที่แจ้งเตือนผ่านแอปพลิเคชั่น ไลน์

2. ทดสอบระบบสามารถตรวจจับการล้มได้ดังภาพที่ 4-2

ภาพที่ 4-2 ระบบตรวจจับการล้มโดยทดสอบด้วยการจำลองสถานการณ์การเกิดอุบัติเหตุด้วยการล้ม

จากภาพที่ 4-2 ระบบตรวจจับการล้มโดยทดสอบด้วยการจำลองสถานการณ์การเกิดอุบัติเหตุด้วยการล้ม เมื่อเหตุการณ์ดังกล่าวนั้นได้เกิดขึ้นแล้ว ระบบตรวจจับการล้มจะส่งค่าให้กับระบบการแจ้งเตือนด้วยเสียงและ ระบบแจ้งเตือนผ่านแอปพลิเคชันไลน์ ดังรูปภาพที่ 4-3และ4-4 ทั้งหมดที่กล่าวมานี้เป็นผลการทดลอง

3. ทดสอบระบบสามารถแจ้งเตือนทางแอปพลิเคชั่นไลน์ได้ดังภาพที่ 4-3

ภาพที่ 4-3 ระบบแจ้งเตือนทางแอปพลิเคชั่นไลน์นั้นสามารถส่งการแจ้งเตือนผ่านเข้าทางแอปพลิเคชั่นไลน์ได้

จากภาพที่ 4-3 ระบบแจ้งเตือนทางแอปพลิเคชั่นไลน์นั้นสามารถส่งการแจ้งเตือนผ่านเข้าทาง แอปพลิเคชั่นไลน์ได้แต่ GPS นั้นไม่มีความสเถียรมากพอที่จะจับพิกัดได้ จึงทำให้ระบบการแจ้งเตือนผ่านทาง แอปพลิเคชั่นไลน์นั้นแจ้งมาแค่ข้อความที่ตรวจจับการล้มของผู้ใช้งาน 4. ทดสอบระบบสามารถแจ้งเตือนด้วยการส่งเสียงได้ดังภาพที่ 4-4

ภาพที่ 4-4 ระบบสามารถแจ้งเตือนด้วยการส่งเสียงได้

จากภาพที่ 4-4 ระบบสามารถแจ้งเตือนด้วยการส่งเสียงได้ เพราะมีการตรวจจับการล้มของผู้ใช้งานและ อุปกรณ์จึงส่งเสียงออกมา

บทที่ 5

สรุปผลการดำเนินงาน

ในบทนี้จะกล่าวถึงผลการดำเนินงานทั้งหมดที่ได้ปฏิบัติโดยมีรายละเอียดดังนี้

5.1 สรุปผลการทดลอง

พบว่าระบบตรวจจับการล้มและระบบแจ้งเตือนด้วยเสียงนั้นตรงตามขอบเขตของโครงงานที่กล่าวไว้ ตัว อุปกรณ์นั้นสามารถตรวจจับการล้มและส่งเสียงได้หากเกิดอุบัติเหตุ และในส่วนของระบบการแจ้งเตือนผ่านแอป พลิเคชันไลน์สามารถส่งการแจ้งเตือนเป็นข้อความได้ แต่ไม่สามารถส่งตำแหน่งของ GPS ได้ เนื่องจากอุปกรณ์นั้น ไม่มีความสเถียรมากพอในการจับค่าพิกัดจึงไม่สามารถส่งตำแหน่งผ่านแอปพลิเคชันไลน์ ดังนั้นจึงไม่ตรงตาม ขอบเขตของโครงงาน

บรรณานุกรม

กรชนก พุทธะ ¹ จันทนิภา กาญจนนพวงศ์ ²./(2556)./ระบบตรวจจับพฤติกรรมการหกล้มโดยใช้เซนเซอร์ววัด ความเร่งแบบ 3 แกน[รายงาน]./มหาวิทยาลัยเทคโนโลยีสุรนารี:/มหาวิทยาลัยเทคโนโลยีสุรนารี./เข้าถึงข้อมูลวันที่ 9 ตุลาคม 2566./จาก/sutir.sut.ac.th:8080/sutir/bitstream/123456789/7233/2/

Analogread. (n.d.). สอนการใช้งานบอร์ด Arduino กับ Buzzer ชนิด Active พร้อมโค้ดตัวอย่าง./เข้าถึงข้อมูล วันที่ 9 ตุลาคม 2566./จาก/https://www.analogread.com/article/155/สอนการใช้งานบอร์ด-arduino-กับ-buzzer-ชนิด-active-พร้อมโค้ดตัวอย่าง

Artron Shop. (n.d.). ESP32 เบื้องต้น: บทที่ 3 พื้นฐานอุปกรณ์และวงจรดิจิตอล./เข้าถึงข้อมูลวันที่ 13 ตุลาคม 2566./จาก/https://www.artronshop.co.th/article/53/esp32-เบื้องต้น-บทที่-3-พื้นฐานอุปกรณ์และวงจรดิจิตอล

Bangkok International Hospital. (n.d.). ทราบเกี่ยวกับโรคกระดูกแตกเพื่อป้องกันการหัก./เข้าถึงข้อมูลวันที่ 10 ตุลาคม 2566./จาก/https://www.bangkokinternationalhospital.com/th/health-articles/disease-treatment/know-osteoporosis-to-prevent-fractures

Commandrone Store. (n.d.). BO100 Productตัวอย่าง./เข้าถึงข้อมูลวันที่ 10 ตุลาคม 2566./เข้าถึงข้อมูล วันที่ 10 ตุลาคม 2566./จาก/https://commandronestore.com/products/bo100.php

Digital School Club. (n.d.). รายละเอียดของวัสดุ: รางถ่าน 18650 2 ก้อน./เข้าถึงข้อมูลวันที่ 9 ตุลาคม 2566./ จาก/http://www.digitalschool.club/digitalschool/physics2_2_2/physics5/2/item10.php

Garmin. (n.d.). About GPS./เข้าถึงข้อมูลวันที่ 9 ตุลาคม 2566./จาก/https://www.garmin.com/th-TH/aboutgps/

HWLibre. (n.d.). RP2040 PiZero SBC: ลดฟอร์มแฟคเตอร์ใหม่./เข้าถึงข้อมูลวันที่ 11 ตุลาคม 2566./ จาก/https://www.hwlibre.com/th/rp2040-pizero-sbc-ลดฟอร์มแฟคเตอร์ใหม่/

KDMC Hospital. (n.d.). เดินช้า: ดีกว่าสำหรับผู้ใหญ่./เข้าถึงข้อมูลวันที่ 9 ตุลาคม 2566./จาก/ https://kdmshospital.com/article/walk-slower-better-for-adults/

บรรณานุกรม (ต่อ)

MindPHP. (n.d.). Smartphone คืออะไร?./เข้าถึงข้อมูลวันที่ 9 ตุลาคม 2566./ จาก/https://www.mindphp.com/คู่มือ/73-คืออะไร/2389-smartphone-คืออะไร.html

Robotsiam. (n.d.). รางถ่าน 18650 2 ก้อน./เข้าถึงข้อมูลวันที่ 14 ตุลาคม 2566./ จาก/https://www.robotsiam.com/product/20/รางถ่าน-18650-2-ก้อน

Tech Talk 2 Apply. (n.d.). ESP8266 คืออะไร?./เข้าถึงข้อมูลวันที่ 9 ตุลาคม 2566./ จาก/https://techtalk2apply.com/what-is-esp8266/

Arduino4. (n.d.). GY-NEO6MV2 Ublox GPS Module โมดูล GPS./เข้าถึงข้อมูลวันที่ 9 ตุลาคม 2566./ จาก/https://www.arduino4.com/product/231/gy-neo6mv2-ublox-gps-module-โมดูล-gps