Chapter 1

Integral polyhedra, TU matrices, TDI systems

1.1 Integral polyhedra

1.1.1 Basics

Definition 1 (Integral polyhedron). A polyhedron *P* is called integral if every minimal face of *P* contains an integral vector.

Remark 2. If P has vertices, then P is integral if and only if every vertex is an integral vector.

1.1.2 Properties

Theorem 3. Let $P \subseteq \mathbb{R}^n$ be a polyhedron. Then the following are equivalent:

- 1. $P = \operatorname{conv}(P \cap \mathbb{Z}^n)$
- 2. P is integral
- 3. $\max\{c^Tx:x\in P\}$ has an integral optimal solution for all $c\in\mathbb{R}^n$ such that the optimal value is finite.
- 4. $\max\{c^Tx:x\in P\}$ has an integral optimal solution for all $c\in\mathbb{Z}^n$ such that the optimal value is finite.
- 5. $\max\{c^Tx:x\in P\}$ is an integer for all $c\in\mathbb{Z}^n$ such that the optimal value is finite.

1.2 Unimodular and totally unimodular matrices

1.2.1 Unimodular matrices

Definition 4 (Unimodular matrix). A matrix $A \in \mathbb{R}^{m \times n}$ is called unimodular if: (1) All entries are integers. (2) A has full rank. (3) Every $m \times m$ square submatrix of A has determinant -1,0,1.

Theorem 5. Let $A \in \mathbb{Z}^{m \times n}$ be a full row rank matrix. Then the polyhedron $P = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ is integral for all $b \in \mathbb{Z}^n$ if and only if A is unimodular.

1.2.2 Totally unimodular matrices

Definition 6 (Totally unimodular matrix). The matrix $A \in \mathbb{R}^{m \times n}$ is called totally unimodular if every square submatrix of A has determinant -1,0,1.

Theorem 7. Let $A \in \mathbb{Z}^{m \times n}$. Then the polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$ is integral for all $b \in \mathbb{Z}^n$ if and only if A is totally unimodular.

Theorem 8. Let $A \in \mathbb{Z}^{m \times n}$ be a totally unimodular matrix. Then the polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ is integral for all $b \in \mathbb{Z}^n$.

1.2.3 How to detect unimodularity and totally unimodularity

Theorem 9 (Basic properties). Let $A \in \mathbb{Z}^{n \times m}$. Then the following are equivalent:

- 1. A is totally unimodular
- 2. A^{T} is totally unimodular
- 3. [A I] is totally unimodular (where $I \in \mathbb{R}^n$ denotes the identity matrix)
- 4. [A I] is unimodular

Theorem 10. Let $A \in \mathbb{Z}^{m \times n}$. Then A is totally unimodular if and only if for all $J \subseteq \{1, ..., m\}$ there exists J_1, J_2 such that

- 1. $J_1 \cap J_2 = \emptyset$ and $J = J_1 \cup J_2$
- 2. For all i = 1, ..., n we have

$$\left| \sum_{j \in J_1} a_{ji} - \sum_{j \in J_2} a_{ji} \right| \le 1$$

Remark 11. A analogous result can be written in terms of the columns instead of the rows of A.

1.2.4 Examples of totally unimodular matrices

Classical examples of matrices that are totally unimodular are: network flow matrices, the node-incidence matrix for a bipartite graph, interval matrices.

1.3 Totally dual integral systems

1.3.1 Basics

Definition 12 (Totally dual integral system). Let $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$. The system $Ax \leq b$ is totally dual integral system (TDI) if for each integral vector $c \in \mathbb{Z}^n$ such that

$$\max\{c^T x : Ax \le b\}$$

is finite, then the dual

$$\min\{b^T y : A^T y = c, y \ge 0\}$$

has an integral optimal solution.

1.3.2 Properties

Theorem 13. Let $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Z}^m$. If $Ax \leq b$ is TDI then $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is an integral polyhedron.

Remark 14. The condition $b \in \mathbb{Z}^n$ is crucial in the proof of the theorem above.

1.3.3 Totally unimodularity and TDI systems

Theorem 15. Let $A \in \mathbb{Q}^{m \times n}$ be a totally unimodular matrix. Then the system $Ax \leq b$ is TDI for all $b \in \mathbb{R}^n$.

1.3.4 Examples of TDI systems

Classical examples of TDI systems are: the independent set formulation for matroids, matchings.

Chapter 2

Cutting Planes

2.1 Introduction

2.1.1 Cutting planes

Definition 16 (Cutting plane for IP). Let $P \subseteq \mathbb{R}^n$ be a polyhedron. An inequality $a^Tx \leq b$ is called a cutting plane if

$$P \cap \mathbb{Z}^n \subseteq \{x \in \mathbb{R}^n : a^T x \le b\}.$$

Definition 17 (Cutting plane for MIP). Let $P \subseteq \mathbb{R}^n$ be a polyhedron. An inequality $a^Tx \leq b$ is called a cutting plane if

$$P \cap (\mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}) \subseteq \{x \in \mathbb{R}^n : a^T x \le b\},$$

where we are assuming that in the MIP only the first n_1 variables must be integers ($n = n_1 + n_2$).

2.1.2 Cutting plane algorithm

Generic cutting plane algorithm

- 1. **Solve** LP (continuous relaxation of MILP).
- 2. If solution of LP is **fractional**: add cutting plane and go to (1.)

3. If solution of LP is integral: STOP.

2.1.3 How to compute cutting planes

Two approaches:

- 1. Computing cutting planes for general IPs.
 - From "Algebraic" properties: CG cuts, MIR inequalities, functional cuts, etc.

- From "Geometric" properties: lattice-free cuts, etc.
- 2. Computing cutting planes for specific IPs.
 - Knapsack problem, Node packing, etc. (many many other examples...)

2.2 Computing cutting planes for general IPs

2.2.1 Chvátal-Gomory cuts (for pure integer programs)

Definition 18 (Chvátal-Gomory cut for *P*). Let $P \subseteq \mathbb{R}^n$ be a polyhedron. Let $a \in \mathbb{Z}^n$, $b \in \mathbb{R}$ and let $a^Tx \leq b$ be a valid inequality for *P*. Then the inequality

$$a^T x \leq |b|$$

is called a Chvátal-Gomory cut.

Remark 19. Some examples of CG cuts are: blossom inequalities for the matching problem, clique inequalities for the independent set problem, Gomory's fractional cut.

A nice property of CG cuts

Definition 20 (Chvátal-Gomory closure of P). Let $P \subseteq \mathbb{R}^n$ be a polyhedron. Then the set

$$P' = P \cap \bigcap_{\substack{\alpha^T x \le \beta \\ \text{is a CG cut for } P}} \{x \in \mathbb{R}^n : \alpha^T x \le \beta\}$$

is called a Chvátal-Gomory closure.

Theorem 21 (Finiteness of the CG cuts procedure). Let P_0 be a rational polyhedron and for $k \in \mathbb{Z}_+$ define $P^{k+1} = (P^k)'$. Then

- 1. For all $k \in \mathbb{Z}_+$, P^k is again a rational polyhedron.
- 2. There exists $t \in \mathbb{Z}_+$ such that $P^t = P_I$.

2.2.2 Cutting planes from the Simplex tableau

Assume $P = \{x \in \mathbb{R}^n : Ax = b, \ x \ge 0\}$ where $A \in \mathbb{R}^{m \times n}$ is a full-row rank matrix. Let B, N denote the basic and nonbasic variables defining a vertex (\hat{x}_B, \hat{x}_N) of P (where $\hat{x}_N = 0$). You can write the constraints defining P in terms of the basis B:

$$x_B = \bar{b} - \bar{A}_N x_N$$
$$x_B, x_N > 0,$$

where $\bar{b} = A_B^{-1}b$ and $\bar{A}_N = A_B^{-1}A_N$.

Denote $\bar{b} = (\bar{b}_i)_{i \in B}$ and $\bar{A}_N = (\bar{a}_{ij})_{i \in B, j \in N}$. Assume that $\bar{b}_i \notin \mathbb{Z}$, so the vertex is fractional (that is, $(\hat{x}_B, \hat{x}_N) \notin \in \mathbb{Z}^n$), and therefore, we would want to cut off that LP solution.

Remark 22. Recall that the vertex (\hat{x}_B, \hat{x}_N) is the only feasible point in P satisfying $x_N = 0$. We will use this fact in order to derive some cutting planes.

A simple inequality

The following is a valid inequality that cuts off the fractional vertex:

$$\sum_{j\in N} x_j \ge 1.$$

2.2.3 A stronger inequality

Let $N_f = \{j \in N : \bar{a}_{ij} \text{ is fractional}\}$. Then the following is a valid inequality that cuts off the fractional vertex:

$$\sum_{j\in N_f} x_j \ge 1.$$

Gomory's fractional cut

The following inequality can be derived as a CG cut:

$$\sum_{j\in N} (\bar{a}_{ij} - \lfloor \bar{a}_{ij} \rfloor) x_j \ge (\bar{b}_i - \lfloor \bar{b}_i \rfloor).$$

It can be verified that this valid inequality cuts off the fractional vertex.

2.3 Cutting planes from lattice free sets

2.3.1 The general case

Definition 23 (Lattice-free sets). A set $L \subseteq \mathbb{R}^n$ is a lattice-free set if it does not contain any integral vector in its (topological) interior, that is, $\operatorname{int}(L) \cap \mathbb{Z}^n = \emptyset$.

Let P be a polyhedron and let L be a lattice-free convex set. Then, we can derive cutting planes from L by using the following fact:

$$P \cap \mathbb{Z}^n \subseteq P \setminus \operatorname{int}(L)$$
.

Such a cutting plane is called a cutting plane derived from a lattice-free set.

Remark 24. It suffice to consider only the cutting planes defining facets of $conv(P \setminus int(L))$ as all the cuts not defining these facets are redundant.

Definition 25 (Maximal lattice-free convex sets). A maximal lattice-free is a lattice-free convex set that is not strictly contained in any other lattice-free convex set.

Maximal lattice-free convex sets are important since they give stronger cuts, since $L' \subseteq L$ implies $P \setminus \text{int}(L) \subseteq P \setminus \text{int}(L')$. The following is a nice property of such sets:

Theorem 26. L is a maximal lattice-free convex set if and only if L is a polyhedron satisfying certain "simple characterization".

Remark 27. The fact that all maximal lattice-free convex set are polyhedra is useful because if L a polyhedron, then cutting planes for the set $P \setminus \text{int}(L)$ are likely 'easy' to obtain.

2.3.2 Split cuts

A special case of a maximal lattice-free convex set is the case of split sets.

Definition 28 (Split set, split cuts). Let $\pi \in \mathbb{Z}^n$ and let $\pi_0 \in \mathbb{Z}$. Then, a split set is a set of the form

$${x \in \mathbb{R}^n : \pi_0 < \pi^T x < \pi_0 + 1}.$$

A split cut is a any cutting plane valid for $P \setminus S$, where S is some split set.

Remark 29. The set $P \setminus S$ can be seen as a disjunction. Let $S = \{x \in \mathbb{R}^n : \pi_0 < \pi^T x < \pi_0 + 1\}$, then

$$P \setminus S = \{x \in P : \pi^T x \le \pi_0\} \cup \{x \in P : \pi_0 + 1 \le \pi^T x\}.$$

In general, disjunctions as the one given by a split set or more general ones are very useful to derived cutting planes for integer programs.

2.4 Mixed-integer rounding cuts (MIR)

2.4.1 Basic MIR inequality

Let $B = \{(u, v) \in \mathbb{Z} \times \mathbb{R} : u + v \ge b, v \ge 0\}$. Then the inequality

$$v \ge (b - \lfloor b \rfloor)(\lceil b \rceil - u)$$

is valid for the set *B*.

2.4.2 MIR inequalities from one-row relaxations

Let *P* be a polyhedron. We want to find valid inequalities for $P \cap (\mathbb{Z}^{|I|} \times \mathbb{R}^{|J|})$.

One-row relaxation

A set of the form

$$Q = \left\{ (x, y) \in \mathbb{R}^{|I|} \times \mathbb{R}^{|J|} : \sum_{i \in I} a_i x_i + \sum_{j \in J} c_j y_j \ge b, \ x, y \ge 0 \right\}$$

is a one-row relaxation of *P* if $P \subseteq Q$.

Remark 30. One-row relaxations can be constructed by using any valid inequality for P. In particular one could obtain a valid inequality by combining rows of the matrix and vector defining P.

Applying the basic MIR inequality

We first relax the inequality defining Q. Let $I' \subseteq I$ and consider the following mixed-integer set:

$$B = \left\{ (x,y) \in \mathbb{Z}^{|I|} \times \mathbb{R}^{|J|} : \left(\sum_{i \in I \setminus I'} x_i + \sum_{i \in I} \lfloor a_i \rfloor x_i \right) + \left(\sum_{i \in I'} (a_i - \lfloor a_i \rfloor) x_i + \sum_{j \in J} \max\{0, c_j\} y_j \right) \ge b \right\}.$$

© tikz/Illustration1.pdf1

Figure 2.1: tikz/Illustration1.pdf

Sicne the first part of the l.h.s. of the inequality is integral and the second part is non-negative, we can apply the procedure described in Section 2.4.1. We obtain the following valid inequality for B:

$$\left(\sum_{i\in I'}(a_i-\lfloor a_i\rfloor)x_i+\sum_{j\in J}\max\{0,c_j\}y_j\right)\geq (b-\lfloor b\rfloor)\left(\lceil b\rceil-\left(\sum_{i\in I\setminus I'}x_i+\sum_{i\in I}\lfloor a_i\rfloor x_i\right)\right).$$

Remark 31. The above inequality is valid for $P \cap (\mathbb{Z}^{|I|} \times \mathbb{R}^{|J|})$, for all $I' \subseteq I$. The set $I' = \{i \in I : (a_i - |a_i|) < (b - |b|)\}$ gives the strongest inequality of this form.

2.5 Gomory Mixed-integer cut (GMI)

Consider the one-row relaxation $Q = \{(x,y) \in \mathbb{Z}^{|I|} \times \mathbb{R}^{|J|} : \sum_{i \in I} a_i x_i + \sum_{j \in J} c_j y_j = b, \ x,y \ge 0\}.$ Denote $f_0 = b - \lfloor b \rfloor$ and for $i \in I$ denote $f_i = a_i - \lfloor a_i \rfloor$.

We will assume that $0 < f_0 < 1$. In this case, the Gomory mixed-integer cut (GMI) is given by

$$\sum_{\substack{i \in I \\ f_i \le f_0}} \frac{f_i}{f_0} x_i + \sum_{\substack{i \in I \\ f_i > f_0}} \frac{1 - f_i}{1 - f_0} x_i + \sum_{\substack{j \in I \\ c_j > 0}} \frac{c_j}{f_0} y_j + \sum_{\substack{j \in I \\ c_j < 0}} \frac{c_j}{1 - f_0} y_j \ge 1.$$

Remark 32.

- The validity of GMI cuts follows from the fact that they are also split cuts.
- In the pure integer programming case (that is, $J = \emptyset$), GMI gives a cut that is stronger than the Gomory's fractional cut.

¹tikz/Illustration1.pdf, from tikz/Illustration1.pdf, tikz/Illustration1.pdf, tikz/Illustration1.pdf.

²tikz/Illustration2.pdf, from tikz/Illustration2.pdf, tikz/Illustration2.pdf, tikz/Illustration2.pdf.

³tikz/Illustration3.pdf, from tikz/Illustration3.pdf, tikz/Illustration3.pdf, tikz/Illustration3.pdf

© tikz/Illustration2.pdf²

Figure 2.2: tikz/Illustration2.pdf

 \odot tikz/Illustration3.pdf 3

Figure 2.3: tikz/Illustration3.pdf