Algèbre linéaire 3 (L2 - 2023/2024)

Feuille de TD n° 7 — Espaces euclidiens : Projections orthogonales (suite), endomorphismes d'un espace euclidien (début : isométries).

Cette feuille est tirée en partie des feuilles de TD proposées par Guillaume Legendre (2020 à 2022), disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/alglin3/

Exercice 1. On considère \mathbb{R}^4 muni de la structure euclidienne canonique et le plan P d'équations

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0, \\ x_1 + x_2 - 2x_3 - x_4 = 0. \end{cases}$$

- 1. Déterminer les matrices de la projection orthogonale sur P et de la symétrie orthogonale par rapport à P.
- 2. Calculer la distance d'un vecteur quelconque de \mathbb{R}^4 à P.

Exercice 2. Dans \mathbb{R}^3 muni de la structure euclidienne canonique, déterminer la matrice dans la base canonique de :

- la projection orthogonale sur la droite d'équations $3x_1 = 6x_2 = 2x_3$,
- la projection orthogonale sur la droite engendrée par le vecteur unitaire $\mathbf{u} = (a, b, c)$,
- la projection orthogonale sur le plan d'équation $a x_1 + b x_2 + c x_3 = 0$, où les réels a, b et c sont les coordonnées du vecteur u ci-dessus.

Exercice 3. Soit \mathbb{R}^3 muni de sa structure euclidienne canonique et p un endomorphisme de E dont la matrice dans la base canonique est

$$A = \frac{1}{6} \left(\begin{array}{rrr} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{array} \right).$$

Démontrer que p est une projection orthogonale sur un plan dont on précisera l'équation. Déterminer la distance du point de coordonnées (1,1,1) à ce plan.

Exercice 4. (méthode des moindres carrés). Soit n et p deux entiers naturels non nuls tels que $p \leq n$. On munit \mathbb{R}^n de sa structure euclidienne canonique. On considère une matrice A de $M_{n,p}(\mathbb{R})$ dont le rang vaut p et un vecteur b de \mathbb{R}^n .

- 1. Montrer qu'il existe un vecteur x_0 de \mathbb{R}^p tel que $||Ax_0 b|| = \inf\{||Ax b|| | x \in \mathbb{R}^p\}$.
- 2. Montrer que x_0 est l'unique solution de $A^{\top}Ax = A^{\top}b$.
- 3. Application : déterminer inf $\{(x+y-1)^2 + (x-y)^2 + (2x+y+2)^2 \mid (x,y) \in \mathbb{R}^2 \}$.

Exercice 5. Soit $E = \mathbb{R}_3[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) \, dt$. On considère l'endomorphisme u de E défini par u(P)(X) = P(-X). Montrer que u est une symétrie orthogonale.

Exercice 6. Soit n un entier naturel non nul et u_1, \ldots, u_n des réels tels que $\sum_{i=1}^n u_i^2 = 1$. On considère la matrice A de $M_n(\mathbb{R})$ telle que

$$\forall (i,j) \in \{1,\ldots,n\}^2, \ a_{ij} = u_i u_j,$$

et $B = 2A - I_n$.

Montrer que B est orthogonale. Quelles sont les valeurs propres de A?

Exercice 7. (sur les coefficients d'une matrice orthogonale) Soit n un entier naturel non nul $M = (m_{ij})_{i,j=1,\dots,n}$ une matrice orthogonale d'ordre n.

- 1. Montrer que $\left|\sum_{i=1}^{n}\sum_{j=1}^{n}m_{ij}\right| \leq n$. Cette inégalité est-elle optimale?
- 2. Montrer que $\sum_{i=1}^{n} \sum_{j=1}^{n} |m_{ij}| \le n^{3/2}$.
- 3. Montrer que $\sum_{i=1}^n \sum_{j=1}^n |m_{ij}| \ge n$.

Exercice 8. (valeurs propres réelles d'une isométrie vectorielle). On considère l'espace \mathbb{R}^n muni du produit scalaire canonique et Q une matrice orthogonale d'ordre n.

- 1. On suppose que Q admet une valeur propre réelle λ et on considère un vecteur propre X associé à cette valeur propre. En calculant de deux façons différentes $||QX||^2$, montrer que $\lambda^2 ||X||^2 = ||X||^2$.
- 2. En déduire que $Sp(Q) \cap \mathbb{R} \subset \{-1, 1\}$.
- 3. Donner un exemple de matrice orthogonale d'ordre 2 qui ne possède pas de valeur propre réelle.

Exercices supplémentaires

Exercice 9. [\diamond (déterminant de Gram)] Soit E un espace vectoriel euclidien de dimension p (p > 2) sur \mathbb{R} , de produit scalaire noté $\langle \cdot, \cdot \rangle$. Pour toute famille de vecteurs $\{u_1, \ldots, u_n\}$ donnée de E, on pose $G(u_1, \ldots, u_n) = (\langle u_i, u_j \rangle)_{1 \leq i,j \leq n}$ (matrice de Gram) et $\gamma(u_1, \ldots, u_n) = \det(G(u_1, \ldots, u_n))$ (déterminant de Gram).

- 1. Montrer que rang $(G(u_1,\ldots,u_n)) = \operatorname{rang}(\{u_1,\ldots,u_n\})$.
- 2. Montrer que la famille $\{u_1, \ldots, u_n\}$ est liée si et seulement si $\gamma(u_1, \ldots, u_n) = 0$ et qu'elle est libre si et seulement si $\gamma(u_1, \ldots, u_n) > 0$.
- 3. On suppose maintenant que $\{u_1, \ldots, u_n\}$ est libre dans E (et donc que $n \leq p$). On pose $F = \text{Vect}(\{u_1, \ldots, u_n\})$. Pour x dans E, on note $p_F(x)$ la projection orthogonale de x sur F puis $d_F(x) = \|x p_F(x)\|$ la distance de x à F. Montrer que $d_F(x) = \sqrt{\frac{\gamma(x, u_1, \ldots, u_n)}{\gamma(u_1, \ldots, u_n)}}$.

Exercice 10. Soit n un entier naturel, $E = \mathbb{R}_n[X]$ et a_0, \ldots, a_n des réels distincts. On pose

$$\forall (P,Q) \in E^2, \ \langle P,Q \rangle = \sum_{k=0}^n P(a_k)Q(a_k).$$

- 1. Vérifier que la forme $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 2. Déterminer une base orthonormale de E.
- 3. Déterminer la distance d'un polynôme Q de E au sous-espace $H = \{P \in E \mid \sum_{k=0}^{n} P(a_k) = 0\}$.

Exercice 11. On considère l'espace vectoriel $M_3(\mathbb{R})$, muni du produit scalaire canonique.

- 1. Déterminer l'orthogonal de $A_3(\mathbb{R})$, le sous-espace vectoriel des matrices antisymétriques de $M_3(\mathbb{R})$.
- 2. Calculer la distance de la matrice $M=\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}$ à $A_3(\mathbb{R}).$

Exercice 12. Prouver l'existence et l'unicité des réels a et b tels que $\int_0^1 (x^4 - ax - b)^2 dx$ soit minimum. Les calculer.

Exercice 13. Caractériser les matrices orthogonales qui sont triangulaires supérieures.

Exercice 14. [(conditions nécessaires et suffisantes)] Soit $(a,b,c) \in \mathbb{R}^3$. On pose S=a+b+c et $\sigma=ab+bc+ca$, et

$$M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}.$$

- 1. Démontrer que M appartient à O(3) si et seulement $\sigma = 0$ et $S = \pm 1$.
- 2. Démontrer que M appartient à SO(3) si et seulement si $\sigma = 0$ et S = 1.