Annex B

SAJC H2 Maths Prelim:

		Paper		
Qn/No	Topic Set	Number	Answers	Marks
1	Binomial Expansion	9740/01	$a = \frac{1}{\sqrt{3}}, b = -\frac{1}{\sqrt{3}}, c = \frac{5}{6\sqrt{3}}$	4
2	Mathematical Induction	9740/01		6
			(i) $x < 0$ or $x^3 = 2$	
3	Inequalities + Integration	9740/01	(ii) $a = 4$	6
			(ii)(a) $3\sqrt{2} \le z-3-3i < 6$	
4	Complex Numbers (Loci)	9740/01	$(1)(0) {4} \leq \arg(z - (3 + 3i)) < \pi$	6
			(ii) $a = 4$ (ii) (a) $3\sqrt{2} \le z - 3 - 3i < 6$ (ii) (b) $\frac{3\pi}{4} \le \arg(z - (3 + 3i)) < \pi$ (ii) $x - \frac{1}{3}x^3$ (iii) $\frac{16\sqrt{3}}{9}$	
5	Maclaurin's Series	9740/01	(iv) 0	7
			(i) $60x + 16y = 125a$ (ii) $\left(\frac{25}{16}a, \frac{125}{64}a\right)$ (iii) $\left(\frac{7}{3}a, \left(\frac{7}{3}\right)^{\frac{3}{2}}a\right)$ and	
6	Tangent and Normal	9740/01	$\left(\frac{7}{3}a, -\left(\frac{7}{3}\right)^{\frac{3}{2}}a\right)$	8
			(i) $\{a \in \Box : a > -1\}$	
			(ii) $[-3, \frac{51}{7})$	
			(iii) $h: x \mapsto \frac{2e^{2x} - 3e^x - 3}{e^x + 1}$,	
7	Functions	9740/01	$x \in \square$, $x > 0$	8
			(a) $A = x\sqrt{a^2 - x^2}$	
8	Maxima-Minima + Rate of Change	9740/01	(b) $-\frac{1}{12}$ rad/s	10

			(4.5)	
			$ \begin{pmatrix} 4.5 \\ 1 \\ 0 \end{pmatrix} $	
			(0)	
			$ \begin{pmatrix} 0 \\ -8 \\ 11 \end{pmatrix} $	
			$\lfloor 11 \rfloor$	
			(iv) 14.9; 53.6;	
	Vootora (linea)	0740/01	Perpendicular/shortest distance	11
9	Vectors (lines)	9740/01	from point <i>X</i> to line <i>AB</i> .	11
			$\begin{vmatrix} 1 \\ (i) \end{vmatrix} = 3 \cdot 3\sqrt{5}$	
			$(i) \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}; 3\sqrt{5}$	
			(ii) $1+\sqrt{55}$	
			$\begin{vmatrix} (iii) & r \cdot \end{vmatrix} = 9$	
10	Vectors (planes)	9740/01	$ \begin{pmatrix} (iii) & r \cdot \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = 9 $	11
10	vectors (planes)	37 40/01	(a)(i) 2.76 units ²	
			(a)(ii) $p \stackrel{\text{de}}{\rightleftharpoons} \frac{1}{2} + 4 \ln 2 \stackrel{\text{o}}{\rightleftharpoons} \text{units}^3$	
11	Area & Volume	9740/01	(b)(ii) tan ⁻¹ 3	11
			(a) $\frac{4}{3}(x+1)\sqrt{x+1} - 4\sqrt{x+1} + C$	
			(b) $\ln(\tan^{-1} x) + C$	
			$\chi_{\rho}\sqrt{1-x^2}$	
			(c)(i) $-\frac{xe^{\sqrt{1-x^2}}}{\sqrt{1-x^2}}$	
12	Integration	9740/01	(c)(ii) 1	12
	Pure Maths			
			(ii) $\frac{1}{2} - \frac{1}{(2n+2)!}$	
	Summation/Method of		(1) 2 $(2n+2)!$	
1	Difference	9740/02	(;;) F	6
2	AP & GP	9740/02	(ii) 5 (iii)56	7
			(b) 1. Translate the graph of	
			$y = \frac{1}{r^2}$ by 2 units in the positive	
			x^2 x direction	
			2. Stretch the resulting graph	
			parallel to the y-axis with a scale	
			factor of -4. 3. Translate the resulting graph	
3	Transformations	9740/02	by 1 unit in the positive y	6

			direction.	
4	Differential Equations	9740/02	(ii) $k < 0$ A vaccination had been found to eliminate the virus OR The people infected by the virus had passed away	8
	·		(a) k = 2 (b) $z_1 = 2e^{i(-\frac{11\pi}{15})}, z_2 = 2e^{i(-\frac{5\pi}{15})}, z_3 = 2e^{i(\frac{\pi}{15})}$	
5	Complex Numbers	9740/02	$z_4 = 2e^{i(\frac{7\pi}{15})}, z_5 = 2e^{i(\frac{13\pi}{15})}$	13
	Statistics			
6	P&C	9740/02	31	3
7	Sampling	9740/02	(ii) Quota Sampling	6
8	Normal Distribution	9740/02	(i) 275 (ii) 344	5
9	Probability	9740/02	(i) $\frac{14}{55}$ (ii) $\frac{11}{21}$	7
10	Poisson Distribution	9740/02	$\lambda = \frac{1}{2}$; 0.392; 0.714	7
11	Hypothesis Testing	9740/02	(i) p-value = 0.00882; reject H₀(ii) conclusion in (i) does not change(ii) 60	10
			(ii) From the scatter diagram, the regression line of y on x should have negative gradient. Therefore $y = 79 - 2x$ is the correct regression line of y on x . (iii) (35, 18) (iv) -0.933	
12	Linear Regression and Correlation	9740/02	(iv) -0.933 (v) $a = 1.75' \ 10^{58}$; $b = -33.6$	10
			(ii) 0.923 (iii) 0.299 (iv) 11	
13	Binomial Distribution	9740/02	0.00242	12