Exercise 6N Proof by Mathematical Induction

- 1. Use mathematical induction to prove that for all positive integers n:
 - (a) $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$
- (b) $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$
 - (c) $1+3+5+7+\cdots+(2n-1)=n^2$
- (d) $1+2+3+4+\cdots+n=\frac{1}{2}n(n+1)$
- (e) $1 + 2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} 1$ (f) $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$
- (g) $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ (h) $\frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$ (i) $2 \times 2^0 + 3 \times 2^1 + 4 \times 2^2 + \dots + (n+1)2^{n-1} = n \times 2^n$
- (j) $1 \times 2 \times 3 2 \times 3 \times 4 + 3 \times 4 \times 5 + \dots + n(n+1)(n+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$ (k) $\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)(n+3)}{4(n+1)(n+2)}$
 - (1) $u + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^n 1)}{r 1}$, provided $r \neq 1$
- (m) $z + (a+d) + (a+2d) \cdots + (a+(n-1)d) = \frac{1}{2}n(2a+(n-1)d)$
- 2. Hence find the limiting sums of the series in parts (g), (h) and (k) of the previous question

DEVELOPMENT

- 3. Use mathematical induction to prove these divisibility results for all positive integers v:
- (a) $5^n + 3$ is divisible by 4
- (d) $5^n + 2 \times 11^n$ is a multiple of 3
 - (b) $9^n 3$ is a multiple of 6

(c) $11^n - 1$ is divisible by 10

4.

- (f) $x^n 1$ is divisible by x 1(c) $5^{2n} - 1$ is a multiple of 24
- Prove these divisibility results, advancing in part B of the proof from k to k+2:
 - (a) For even n: (i) $n^3 2n$ is divisible by 12 (ii) $n^2 + 2n$ is a multiple of 8 (b) For odd n: (i) $3^n + 7^n$ is divisible by 10 (ii) $7^n + 6^n$ is divisible by 13
- Examine the divisors of $n^3 n$ for lcw odd values of n, make a judg:ment about the largest integer divisor, and prove your result by induction.
- 6. Prove these inequalities by mathematical induction:
- (c) $3^n > n^2$, for $n \ge 2$ (and also for n = 0 and 1) (d) $(1+\alpha)^n \ge 1+n\alpha$, for $n \ge 1$, where $\alpha > -1$ (a) $n^2 > 10n + 7$, for $n \ge 11$

(b) $2^n > 3n^2$, for $n \ge 8$

- Examine 2^n and $2n^3$ for low values of n, make a judgement about which is eventually bigger, and prove your result by induction.
- 8. Prov3: (a) $\sum_{n=1}^{n} \frac{1}{r^2} \le 2 \frac{1}{s}$, for $n \ge 1$ (b) $\frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} \ge \frac{1}{2n}$, for $n \ge 1$
- **9.** (a) Given that $T_n = 2T_{n-1} + 1$ and $T_1 = 5$, prove that $T_n = 6 \times 2^{n-1} 1$.
 - (b) Given that $T_n = \frac{3T_{n-1} 1}{4T_{n-1} 1}$ and $T_1 = 1$, prove that $T_n = \frac{n}{2n-1}$.

- 10. Prove by induction that the sum of the angles of a polygon with n sides is n-2 straight angles. [HINT: Dissect the (k+1)-gon into a k-gon and a triangle.]
- Prove by induction that n lines in the plane, no two being parallel and no three concurrent, livide the plane into $\frac{1}{2}n(n+1)+1$ regions. [HINT: The (k+1)th line will cross k lines in k distinct points, and so will add k+1 regions.
- Prove by mathematical induction that every set with n members has 2^n subsets. [Hint: When a new member is added to a k-member set, then every subset of the resulting (k+1)-member set either contains or does not contain the new member.] 12.
- Defining $n! = 1 \times 2 \times 3 \times \cdots \times n$ (this is called 'n factorial'), prove that:

(a)
$$\sum_{r=1}^{n} r \times r! = (n+1)! - 1$$
 (b) $\sum_{r=1}^{n} \frac{r-1}{r!} = 1 - \frac{1}{n!}$

- 14. Prove: (a) $\sum_{n=1}^{n} r^4 = \frac{1}{30} n(n+1)(2n+1)(3n^2+3n-1)$ (b) $\sum_{n=1}^{n} r^5 = \frac{1}{12} n^2(n+1)^2(2n^2+2n-1)$
- 15. (a) By rationalising the numerator, prove that $\sqrt{n+1} \sqrt{n} > \frac{1}{2\sqrt{n+1}}$.
- (b) Hence prove by induction that $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \sqrt{n}$, for $n \ge 7$.
- 16. (a) Show that $f(n) = n^2 n + 17$ is prime for n = 0, 1, 2, ..., 16. Show, however, that f(17) is not prime. Which step of proof by induction does this counterexample show is necessary?
- (b) Begin to show that $f(n) = n^2 + n + 41$ is prime for n = 0, 1, 2, ..., 40, but not for 41.

NOTE: There is no formula for generating prime numbers — these quadratics are interesting because of the long unbroken sequences of primes they produce.

Exercise 6N
$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots = 1,$$

$$\frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \dots = \frac{1}{3},$$

$$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots = \frac{1}{4}$$
5 $n^3 - n$ is divisible by 24, for odd cardinals n .
7 $2^n > 2^n^3$, for $n \ge 12$.
17(a) $L_n = \left(\frac{1 + \sqrt{5}}{2}\right)^n + \left(\frac{1 - \sqrt{5}}{2}\right)^n$

17(d)
$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$