Calcul différentiel

Quizz 6

1) Vrai / faux
Vrai \Box Faux \Box La matrice jacobienne d'une application de \mathbb{R}^n dans \mathbb{R} est une matrice ligne.
Correction. Vrai.
Vrai \square Faux \square La matrice jacobienne d'une application de \mathbb{R}^n dans \mathbb{R}^n est une matrice carrée.
Correction. Vrai.
Vrai \square Faux \square Une application de $\mathbb R$ and $\mathbb R$ est différentiable en un point si et seulement si elle est dérivable au sens usuel en ce point.
Correction. Vrai, la dérivabilité est équivalente à l'existence d'un DL.
Vrai \square Faux \square Il est important, dans la définition de la différentiabilité, de bien préciser les normes que l'on utilise sur \mathbb{R}^n et \mathbb{R}^m .
CORRECTION. Non, la norme n'intervient (indirectement) que dans le $o(h)$, qui, divisé par $ h $ tend vers 0 . Comme toutes les normes sont équivalentes en dimension finie cette propriété ne dépend pas de la norme. N.B. : en dimension infinie il est en revanche essentiel de préciser les normes qui équipent les espaces de départ et d'arrivée.
2) Déterminer la différentielle et la matrice jacobienne des applications suivantes (aux points où ces notions sont bien définies)
a) $f: (x_1, x_2) \in \mathbb{R}^2 \longmapsto (x_1 x_2, x_1 + x_2)$
CORRECTION. On a $df(x_1, x_2) \cdot (h_1, h_2) = (x_1h_2 + x_2h_1, h_1 + h_2),$
et $J_f(x_1, x_2) = \left(\begin{array}{cc} x_2 & x_1 \\ 1 & 1 \end{array}\right)$

b) $g : x = (x_1, x_2) \in \mathbb{R}^2 \longmapsto |x| = \sqrt{x_1^2 + x_2^2}$

CORRECTION.

Cette application est régulière en dehors du point 0, et l'on a , pour $h = (h_1, h_2)$ petit, et $x = (x_1, x_2) \neq (0, 0)$,

$$f(x+h) = \left(x_1^2 + 2h_1x_1 + x_2^2 + 2h_2x_2 + o(h)\right)^{1/2}$$

$$= |x| \left(1 + 2\frac{x_1h_1 + x_2h_2}{|x|^2} + o(h)\right)^{1/2}$$

$$= |x| \left(1 + \frac{x_1h_1 + x_2h_2}{|x|^2} + o(h)\right)$$

d'où

$$dg(x_1, x_2) \cdot (h_1, h_2) = \frac{x_1 h_1 + x_2 h_2}{|x|}.$$

La matrice jacobienne est la matrice ligne $[x_1 \ x_2]/|x|$, et son gradient pour le produit scalaire canonique est le vecteur unitaire correspondant, x/|x|.

3) Soit $f = (f_1, \ldots, f_m)$ une application de \mathbb{R}^n dans \mathbb{R}^m , différentiable en x.

Vrai \square Faux \square La *i*ème ligne de la jacobienne de f en x contient les coordonnées dans la base canonique du gradient de la fonction f_i en x

Correction.

Vrai, sous réserve que le gradient soit défini à partir du produit scalaire canonique sur \mathbb{R}^n .