		$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma^{\#2}_{1^+lphaeta}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_1^{\sharp 1}{}_{lpha}$	$\sigma_{1-\alpha}^{\#2}$	$ au_1^{\#1}{}_{lpha}$	τ ₁ - α
σ	$_{1}^{\#1}$ † lphaeta	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
σ	$_{1}^{\#2}$ † $^{\alpha \beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
τ	$_{1}^{\#1}$ † lphaeta	$\frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_1 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
C	$\sigma_{1}^{\#1} + ^{\alpha}$	0	0	0	$\frac{1}{k^2(r_1+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r_1 + r_5)}$	0	$-\frac{i}{k(1+2k^2)(r_1+r_5)}$
C	$\sigma_{1}^{#2} + \alpha$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r_1 + r_5)}$	$\frac{6 k^2 (r_1 + r_5) + t_1}{2 (k + 2 k^3)^2 (r_1 + r_5) t_1}$	0	$\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$
	$\tau_1^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
	$\tau_{1}^{#2} + \alpha$	0	0	0	$\frac{i}{k(1+2k^2)(r_1+r_5)}$	$-\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$	0	$\frac{6 k^2 (r_1 + r_5) + t_1}{(1 + 2 k^2)^2 (r_1 + r_5) t_1}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-} \ lpha}^{$ #1}	$\omega_{1}^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_1^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 (r_1 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i kt</u> 1 3
				ű	- 1-		3
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{\frac{1}{3}i\sqrt{2}kt_1}$
$\omega_{1}^{#2} +^{\alpha}$ $f_{1}^{#1} +^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$		0	

Source constraints				
SO(3) irreps	#			
$\sigma_{0+}^{\#1} == 0$	1			
$\tau_{0^{+}}^{\#1} == 0$	1			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:	17			

	$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	-t ₁

	Massive particle				
	Pole residue:	$-\frac{1}{r_1} > 0$			
2	Polarisations:	5			
- (Square mass:	$-\frac{t_1}{2r_1} > 0$			
	Spin:	2			
	Parity:	Odd			

 $\frac{\text{Unitarity conditions}}{r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0}$