

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

$1^{\underline{a}}$ Lista - MAT 135 - Geometria Analítica e Álgebra Linear

2017/II

1. Considere as matrizes A, B, C, D e E com respectivas ordens, 4×3 , 4×5 , 3×5 , 2×5 e 3×5 . Determine quais das seguintes expressões matriciais são possíveis e determine a respectiva ordem.

$$(a) AE + B^T$$

(a)
$$AE + B^T$$
; (b) $C(D^T + B)$; (c) $AC + B$; (d) $E^T(CB)$.

$$(c)AC+B;$$

$$(d) E^T(CB).$$

- 2. Seja a matriz $A = \begin{bmatrix} 1 & -1 & 0 & -3 & 4 \\ -4 & 0 & -5 & 3 & 1 \\ 2 & -1 & -1 & 1 & 0 \\ 2 & 1 & 4 & 0 & 5 \end{bmatrix}$. Determine:
 - (a) a ordem de A;
 - (b) os elementos a_{21} , a_{34} e a_{44} .
- 3. Sejam as matrizes $A = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & 4 & -3 \\ 1 & 2 & -1 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 3 & 2 \\ -2 & 1 & 4 \\ -1 & 2 & 1 \end{bmatrix}$, $C = A.B \ e \ D = B.A.$

Determine os elementos c_{23} e d_{41} .

4. Determine a matriz quadrada $A = (a_{ij})$, de ordem 4 cujos elementos são dados por:

$$a_{ij} = \begin{cases} 3i - j, & \text{se } i < j \\ i^2 - 3j, & \text{se } i = j \\ -i + 3j, & \text{se } i > j \end{cases}.$$

- 5. Seja a matriz $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$. Determine:

- (a) A^2 ; (b) A^3 ; (c) A^{31} ; (d) A^{42} .

6. Determine números reais $x \in y$ tais que

$$\begin{bmatrix} x^3 & y^2 \\ y^2 & x^2 \end{bmatrix} + \begin{bmatrix} -x & 3y \\ 4y & 2x \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 5 & -1 \end{bmatrix}.$$

7. Determine em cada um dos casos abaixo, $x, y \in z$ números reais tais que a matriz A seja

$$(a) A = \begin{bmatrix} -2 & x \\ -1 & 1 \end{bmatrix}, \quad (b) B = \begin{bmatrix} 4 & x+1 & -6 \\ -3 & 2 & -4 \\ 2y+2 & 2z & 9 \end{bmatrix}, \quad (c) C = \begin{bmatrix} 8 & x^2+3 & -5 \\ 7 & -9 & 4 \\ y+x & z+3x & 11 \end{bmatrix}.$$

8. Considere as matrizes:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}.$$

Quando possível, calcule o que se pede:

$$(a) 4E - 2D;$$

$$(b) 2A^T + C;$$

(b)
$$2A^T + C$$
; (c) $(2E^T - 3D^T)^T$; (d) $(BA^T - 2C)^T$.

$$(d) (BA^T - 2C)^T.$$

9. Obtenha as matrizes que comutam com $A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$.

10. Diz-se que uma matriz B é uma raiz quadrada de uma matriz A se $B^2 = A$.

(a) Encontre duas raízes quadradas de $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$.

(b) Existem quantas raízes quadradas distintas de $A = \begin{bmatrix} 5 & 0 \\ 0 & 9 \end{bmatrix}$? Justifique.

(c) Na sua opinião qualquer matriz 2 × 2 tem pelo menos uma raiz quadrada? Justifique.

11. Uma matriz quadrada A é dita idempotente se $A^2 = A$.

(a) Mostre que a matriz $A = \begin{bmatrix} 2 & -1 & 1 \\ -3 & 4 & -3 \\ -5 & 5 & -4 \end{bmatrix}$ é idempotente. Calcule A^3, A^4, \dots, A^n .

(b) Qual é a única matriz idempotente não singular? Justifique sua resposta.

12. Uma matriz quadrada A é dita nilpotente se existir um número inteiro p > 0 tal que $A^p = 0$. Se p é o menor inteiro para o qual $A^p = 0$, A diz-se nilpotente de ordem p. Mostre que a matriz $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 4 & -2 \end{bmatrix}$ é nilpotente e determine seu índice de nilpotência.

- 13. Considere as matrizes $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Defina $A^0 = I$ e $A^n = A^{n-1}A$, para todo número natural $n \ge 1$. Mostre que: $A^{2n} = I$ e $A^{2n+1} = A$, para todo natural n.
- 14. Sejam A, B matrizes em $M_n(\mathbb{R})$. Se AB = BA, mostre que:

$$(a)(A \pm B)^2 = A^2 \pm 2AB + B^2;$$

$$(b)(A - B)(A + B) = A^2 - B^2;$$

$$(c)(A-B)(A^2 + AB + B^2) = A^3 - B^3.$$

- 15. Seja A matriz em $M_n(\mathbb{R})$. Mostre que:
 - (a) as matrizes $A.A^T$ e $\frac{1}{2}(A+A^T)$ são simétricas;
 - (b) a matriz $\frac{1}{2}(A-A^T)$ é antissimétrica;
 - (c) toda matriz quadrada é a soma de uma matriz simétrica com uma matriz antissimétrica.
- 16. Dizemos que uma matriz A é ortogonal se é invertível e $A^{-1}=A^T$.
 - (a) Determine os possíveis valores para o determinante de uma matriz ortogonal.
 - (b) Determine quais matrizes reais de ordem 2 são simultaneamente antissimétricas e ortogonais.
 - (c) Mostre que o produto de duas matrizes ortogonais é também uma matriz ortogonal.
- 17. Verifique quais das matrizes abaixo é ortogonal.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} \frac{1}{3} & \frac{2\sqrt{2}}{3} \\ \frac{2\sqrt{2}}{3} & -\frac{1}{3} \end{bmatrix}, \quad D = \begin{bmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

- 18. Dado um número real α , considere a matriz $T_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$.
 - (a) Calcule $T_{\frac{\pi}{2}}$.
 - (b) Dados α e β em \mathbb{R} , mostre que $T_{\alpha}.T_{\beta} = T_{\alpha+\beta}$.
 - (c) Calcule $T_{-\alpha}$.
 - (d) Mostre que, para todo número $\alpha,$ a matriz T_{α} é ortogonal.
- 19. Seja $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$, uma matriz quadrada de ordem n. O traço de A, denotado por tr(A), é definido como sendo o número real

$$tr(A) = \sum_{k=1}^{n} a_{kk} = a_{11} + a_{22} + \dots + a_{nn},$$

ou seja, o traço de A é a soma dos elementos da diagonal principal de A. Dadas A e B matrizes quadradas de ordem n, valem as seguintes propriedades:

(a)
$$tr(A + B) = tr(A) + tr(B);$$
 (c) $tr(A^T) = tr(A);$

$$(b) tr(kA) = ktr(A), \text{ onde } k \in \mathbb{R};$$

$$(d) tr(AB) = tr(BA).$$

Usando algumas destas propriedades verifique que não existem matrizes quadradas A e B de ordem n tais que AB - BA = I.

- 20. Verifique que se A é uma matriz $m \times n$, então os traços de AA^T e A^TA estão definidos. Em seguida prove que $tr(AA^T) = tr(A^TA)$.
- 21. Mostre que se $A^TA = A$, então A é simétrica e $A = A^2$.
- 22. Prove que se A é invertível e AB = AC, então B = C.
- 23. É possível ter AB = I e B não ser inversa de A? Justifique sua resposta.
- 24. Seja A uma matriz quadrada de ordem n, mostre que:
 - (a) Se A satisfaz a igualdade $A^2 3A + I = 0$, então $A^{-1} = 3I A$.
 - (b) Se A é tal que $A^{n+1}=0$, então $(I-A)^{-1}=I+A+A^2+\ldots+A^n$.
- 25. Seja A uma matriz quadrada de ordem 5, cujo determinante é igual a -3, pede-se:
 - (a) O determinante da matriz P dada por $P = 4A^{-1}A^{T}$.
 - (b) Decidir se P é ou não invertível.
 - (c) O determinante da matriz B obtida de A após serem realizadas as seguintes operações: $L_3 \longleftrightarrow L_2; L_1 \longrightarrow L_1 + 2L_5; L_4 \longrightarrow -3L_4.$
 - (d) Decidir se a matriz $Q = AA^T$ é ou não invertível.
- 26. Calcule o determinante da matriz $A = \begin{bmatrix} 4 & -5 & 3 & 2 \\ -1 & 0 & 3 & 0 \\ 1 & 2 & -1 & 3 \\ 2 & 1 & 0 & 4 \end{bmatrix}$:
 - (a) desenvolvendo-o pela segunda linha (usando cofatores).
 - (b) pelo processo de triangularização (usando operações elementares sobre as linhas da matriz).

27. Dadas as matrizes
$$A = \begin{bmatrix} 1 & -5 & -1 & 2 \\ 0 & 2 & -3 & 4 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$
 e $B = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 3 & -4 & 0 & 0 \\ 2 & 2 & -1 & 0 \\ 2 & 1 & 1 & -2 \end{bmatrix}$, determine:

- (a) $\det(AB)$; (b) A^{-1} ; (c) B^{-1} ; (d) $(AB)^{-1}$; (e) $\det(C)$, onde $CA^{T} = 2BC^{2}$.
- 28. Seja Quma matriz quadrada de ordem
n tal que det $Q \neq 0$ e $Q^3 + 2Q^2 = 0.$ Determine o valor de $\det Q$.

29. Dada a matriz
$$A = \begin{bmatrix} 1 & 5 & -1 & 3 \\ -1 & 2 & -2 & 4 \\ 6 & 7 & 3 & -1 \\ 5 & 3 & 0 & 4 \end{bmatrix}$$
, determine:

- (a) $\det A$ utilizando as operações elementares sobre as linhas de A;
- (b) $\det A^T$;

- (c) $\det(A^2)$; (d) A^{-1} ; (e) $\det(-A)$; (f) $3AA^T$.

30. Seja a matriz
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
.

- (a) Determine o polinômio $p(x) = \det(xI_3 A)$, onde I_3 é a matriz identidade de ordem 3 e $x \in I\!\!R$.
- (b) Verifique que p(A) = 0, onde 0 é a matriz nula de ordem 3.
- (c) Use o item anterior para calcular a inversa de A.
- 31. Calcule os seguintes determinantes:

$$(a) \begin{vmatrix} 2 & -1 & 5 \\ 1 & 9 & -4 \\ 3 & 0 & 0 \end{vmatrix}; \qquad (b) \begin{vmatrix} 1+a & b & c \\ a & 1+b & c \\ a & b & 1+c \end{vmatrix}; \qquad (c) \begin{vmatrix} c & -4 & 3 \\ 2 & 1 & c^2 \\ 4 & c-1 & 2 \end{vmatrix};$$

$$(d) \begin{vmatrix} 4 & -5 & 3 & 2 \\ -1 & 0 & 3 & 0 \\ 1 & 2 & -1 & 3 \\ 2 & 1 & 0 & 4 \end{vmatrix}; \qquad (e) \begin{vmatrix} 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 & 0 \end{vmatrix}; \qquad (f) \begin{vmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}.$$

$$(a) \begin{vmatrix} x & 5 & 7 \\ 0 & x+1 & 6 \\ 0 & 0 & 2x-1 \end{vmatrix} = 0; (b) \begin{vmatrix} 2 & x-2 & 3 \\ 2x+3 & x-1 & 4 \\ 5 & 1 & 0 \end{vmatrix} = 16; (c) \begin{vmatrix} x & -1 \\ 3 & 1-x \end{vmatrix} = \begin{vmatrix} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{vmatrix}.$$

33. Calcule o determinante da matriz

$$A = \begin{bmatrix} 0 & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$$

Generalize o resultado para uma matriz $A = (a_{ij})_{n \times n}$ na qual $a_{ij} = 0$ sempre que $i + j \le n$.

- 34. Diz-se que uma matriz A é semelhante à matriz B quando existe uma matriz invertível P tal que $B = PAP^{-1}$.
 - (a) Mostre que se A é uma matriz semelhante a B, então B é semelhante a A.
 - (b) Mostre que se A é semelhante a B e B é semelhante a C, então A é semelhante a C.
 - (c) Prove que matrizes semelhantes tem mesmo determinante.
- 35. Nos casos abaixo, pede-se: verificar se A é invertível; cof(A), a matriz cofatora de A, e A^{-1} , a matriz inversa de A, se esta existir.

$$(a) A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -3 & 1 & 4 \end{bmatrix}; \qquad (b) A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(c) A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ -1 & 2 & 0 & 0 \end{bmatrix}; \qquad (d) A = \begin{bmatrix} 3 & 5 & 6 & 0 \\ 2 & -1 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 5 & 2 & -4 & 3 \end{bmatrix}.$$

36. Usando algumas propriedades dos determinantes, sem calcular diretamente, verifique que:

$$\begin{vmatrix} b+c & a+c & a+b \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

37. Nos casos abaixo, determine A^{-1} , utilizando operações elementares, se esta existir.

$$(a) A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix}; \qquad (b) A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix};$$

$$(c) A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{bmatrix}; \qquad (d) A = \begin{bmatrix} -3 & -6 & -12 \\ 0 & 3 & -3 \\ -6 & -9 & 24 \end{bmatrix}.$$

- 38. Sendo A e B matrizes invertíveis de ordem n, isolar a matriz X de cada equação abaixo:

- (a) AXB = I; $(b) (AX)^T = B;$ $(c) (AX)^{-1} = I;$ $(d) (A + X)^T = B;$ (e) AXB = BA; $(f) (AX^{-1})^T = B.$
- 39. Considere as matrizes $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 2 & 3 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 1 & 1 \\ -2 & 1 & -3 \end{bmatrix}$ e $C = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & 1 \\ 4 & 5 & 7 \end{bmatrix}$.

Determine matrizes elementares E_1, E_2, E_3 e E_4 tais que $B = E_2 E_1 A$ e $C = E_4 E_3 A$. Explique como estas matrizes foram obtidas e confira seu resultado.

40. Encontre matrizes elementares E_1, E_2, \cdots, E_k tais que $A = E_1 E_2 \cdots E_k$ para

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 0 & 1 & 2 \end{array} \right].$$

41. Uma construtora está fazendo o orçamento de 65 estabelecimentos rurais sendo estes divididos em: 20 de alvenaria, 30 mistos e 15 de madeira. A tabela abaixo descreve a quantidade de material utilizado em cada tipo de construção.

Tipo de construção/	Tábuas	Tijolos	Telhas	Tinta	Mão-de-obra
Material	(unidade)	(mil)	(mil)	(litros)	(dias)
Alvenaria	50	15	6	70	25
Madeira	500	1	5	20	30
Misto	200	8	7	50	40

Pede-se:

- (a) Determinar, utilizando o produto de matrizes, a matriz A que descreve quantas unidades de cada componente serão necessárias para cumprir o orçamento.
- (b) Dar o significado do produto de matrizes AB, sendo A a matriz obtida no item (a) e B é a matriz obtida pela tabela abaixo.

	Valor da Compra	Transporte	
	(a unidade em reais)	(a unidade em reais)	
Tábuas	12	0,08	
Tijolos	100	20	
Telhas	300	10	
Tinta	3	0,50	
Mão-de-obra	40	1,50	

42. Considere os adubos I,II,III e IV com características e preços descritos nas tabelas abaixo:

Substância	Fósforo	Nitrato	Potássio
po kg			
Adubo I	25g	15g	70g
Adubo II	30kg	25g	40g
Adubo III	60g	10g	55g
Adubo IV	15g	30g	60g

Um agricultor necessita de uma mistura com a seguinte especificação: 6 kg do adubo I, 7 kg do adubo II, 5 kg do adubo III e 8 kg do adubo IV. Usando o produto de matrizes, determine a quantidade de cada substância na mistura descrita acima e o preço desta mistura.

- 43. Decida se a afirmação é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.
 - (a) () Se a primeira coluna de A for constituída somente de zeros, o mesmo ocorre com a primeira coluna de qualquer produto AB.
 - (b) () Se a primeira linha de A for constituída somente de zeros, o mesmo ocorre com a primeira linha de qualquer produto AB.
 - (c) () Se a soma de matrizes AB+BA estiver definida, então A e B devem ser matrizes quadradas.
 - (d) () Se A é uma matriz quadrada com duas linhas idênticas, então A^2 tem duas linhas idênticas.
 - (e) () Se A é uma matriz quadrada e A^2 tem uma coluna constituída somente de zeros, então necessariamente A tem uma coluna constituída somente de zeros.
 - (f) () Se AA^T é uma matriz singular, então A não é invertível.
 - (g) () Se A é invertível e AB=0, então necessariamente B é a matriz nula.
 - (h) () A soma de duas matrizes invertíveis é sempre uma matriz invertível.
 - (i) () Se A é uma matriz quadrada tal que $A^4=0$, então

$$(I-A)^{-1} = I + A + A^2 + A^3.$$

- (j) () $\det(2A) = 2 \det(A)$.
- (k) () $\det(I + A) = 1 + \det(A)$.
- (l) () Não existe matriz real quadrada A tal que $\det(AA^T)=-1.$
- (m) () Se $\det(AA^T)=4,$ então $\det(A)=2.$

- (n) () $\det(A + B) = \det(A) + \det(B)$.
- (o) () Se $det(A) \neq 0$ e AB = 0, então B é invertível.
- (p) () Se $A \in M_n(\mathbb{R})$ e n é par, então $\det(A) = \det(-A)$.
- (q) () Se A^{100} é invertível, então 3A também o é.
- (r) () Se AB = 0 e B é invertível, então A = 0.
- (s) () Sejam $A, B \in P$ matrizes reais de ordem n, tais que $B = P^T.A.P$, sendo P invertível. Então $\det(A) = \det(B)$.
- (t) () Dada a equação matricial $X^2+2X=0$, onde X é uma matriz quadrada de ordem n, não singular. Então esta equação tem única solução.
- (u) () Se $A, B \in M_n(\mathbb{R})$ são tais que A.B = 0 (matriz nula), então B.A também é a matriz nula.
- (v) () Se $A, B \in M_n(\mathbb{R})$ são tais que A.B = 0 (matriz nula), então A = 0 ou B = 0.
- (w) () A soma de duas matrizes simétricas de mesma ordem é uma matriz simétrica.
- (x) () O produto de duas matrizes simétricas de mesma ordem é uma matriz simétrica.
- (y) () Se A.B = C e duas das matrizes são invertíveis, então a terceira também o é.
- (z) () Se A.B=C e duas das matrizes são singulares, então a terceira também o é.