Provability modal logic - George Boolos

Kevin De Keyser

May 8, 2018

Zuerst sollte man zwischen der Sprache der Aussgagenlogik, der Sprache der Urteile, der Sprache der hypothetischen Urteile und der Sprache der Beweise unterscheiden.

Sprache der Logik \mathcal{L}_{modal} := Formale Sprache aller (wohl-geformten) Formeln der Modellogik über das Alphabet $\Sigma_{modal} = \{\Box, \bot, \rightarrow, (,)\}$ Diese können **induktiv definiert** werden:

- \perp ist eine logische Formel.
- Alle kleingeschriebenen lateinische Charakter sind logische Formeln.
- Falls ϕ, ψ logische Formeln sind, dann sind es auch $(\phi \to \psi)$.
- Falls ϕ eine logische Formel ist, dann ist es auch $(\Box \phi)$.

Die Sprache kann erweitert werden mit syntaktischem Zucker, wobei für alle logische Formeln ϕ, ψ gilt, dass folgende Formeln syntaktisch äquivalent in die rechte umgeformt werden:

- $\neg \phi :\equiv (\phi \to \bot)$
- $(\phi \lor \psi) :\equiv (\neg \phi \to \psi)$
- $(\phi \land \psi) :\equiv \neg(\phi \to \neg\psi)$
- $\bullet \ (\boxdot \phi) :\equiv ((\Box \phi) \land \phi)$

Zusätzlich kommen nicht-erwähnte Umformungsregeln wenn Klammern ausgelassen werden (braucht wissen von Operatorpräzedenz und Assoziativität), zum Beispiel: $a \wedge b \wedge c \rightarrow p \rightarrow q :\equiv ((a \wedge b) \wedge c) \rightarrow (p \rightarrow q)$

Sprache der Urteile Wahrheitsurteile sind von der Form: " ϕ wahr" oder " ϕ falsch", wobei ϕ wieder eine beliebige logische Formel ist. Urteile können auch von anderer Natur sein, wie zum Beispiel " ϕ falsifizierbar" oder nur schon " ϕ syntaktisch valid".

Oft wird die Wahrheit einfach weggelassen.

Sprache der hypothetischen Urteile Ein Sequenz (mit nur einem Konsequens) ist einfach von der Form: " $\Gamma \vdash J$ ", wobei Γ kommagetrennte Urteile sind (der Antedezens) und J ein einzelnes Urteil ist.

Es bedeutet so viel, dass wenn man die Urteile in Γ glaubt, dann kann man aus diesen syntaktisch die Konklusion J herleiten und muss somit J glauben (in dieser Sprache).

Zum Beispiel:

"
$$(p \to (q \to r))$$
 wahr, p wahr $\vdash (q \to r)$ wahr"

Oft lässt man hier das "wahr" weg, da herkömmliche Beweise immer über Wahrheitsurteile handeln.

Boolos verwendet selber folgende Notation (wobei A_i , B logische Formeln sind): $\langle A_1, A_2, \dots, A_n, B \rangle$

Logiksystem Eine Logiksystem besteht nun aus einer Menge solcher Sequenzen. Hier sind ϕ, ψ alles modallogische Formeln (wie zuvor induktiv definiert).

Beweisregeln von GL:

Als modus ponens gelten alle Regeln der Form $\langle (\phi \to \psi), \phi, \psi \rangle$

Als **necessitation** (Notwendigkeit) gelten alle Regeln der Form $<\phi,(\Box\phi)>$

Axiomenschematas von GL:

Als distribution axiom gelten alle Regeln der Form $\vdash \Box(\phi \to \psi) \to (\Box\phi \to \psi)$

Als **Löbs Axiom** gelten alle Regeln der Form: $\vdash \Box(\Box \phi \rightarrow \phi) \rightarrow \Box \phi$

Hinzu gelten alle Tautologien der klassichen Aussagenlogik A direkt als Axiome $\vdash A$

Die Substitution ist nicht eine explizite Regel von GL wird aber trotzdem formuliert als $< F, F_p(\phi) >$, wobei $F_p(\phi)$ alle Instanzen von p in F durch ϕ ersetzt.

Simultane Substitution $F_{p_1,p_2,\ldots,p_n}(\phi_1,\ldots,\phi_n)$ substitutioniert alle Instanzen von p_1,\ldots,p_n gleichzeitig jeweils durch ϕ_1,\ldots,ϕ_n .

Sehr viele Logiker haben Fehler gemacht mit der Definition von Substitution:

$$\begin{array}{ll} (p \wedge q)_{p,q}(p \vee q, p \rightarrow q) = ((p \vee q) \wedge (p \rightarrow q)) \ (p \wedge q)_p(p \vee q)_q(p \rightarrow q) = \\ ((p \vee q) \wedge q)_q(p \rightarrow q) = ((p \vee (p \rightarrow q)) \wedge (p \rightarrow q)) \end{array}$$

Sprache der Beweise Beweise kann man jetzt auf Urteilen oder hypothetischen Urteilen definieren. Dabei gibt es verschiedene Stile, solche Beweise zu machen (Gentzen, Fitch, Lemon)

$$\frac{L \vdash A \to B}{L \vdash \Box(A \to B) \to ((\Box A) \to (\Box B))} \xrightarrow{ax. nec.} I$$

$$L \vdash ((\Box A) \to (\Box B))$$

Figure 1: Gentzen style proof

Eine Logik besteht aus verschiedenen Beweisregeln (wobei manche davon Axiome oder Axiomenschema sind).

Gentzen's Stil (natural deduction) ist wahrscheinlich der bekannteste Stil:

 $\Box p$ in deontischer Logik wird z.B. interpretiert als: Es ist zwingend, dass p.

 $\Box(A(x) \to A(y))$ kann unter der Interpretation A(x) = A drückt einen Knopf gelesen werden als: Es ist zwingend, dass immer wenn x einen Knopf drückt, dass dann auch y einen Knopf drückt.

In dieser Beweisbarkeitslogik (provability logic) gilt, dass $\Box \phi$ dafür steht, dass ϕ beweisbar ist.

Nehme die Interpretation: A(x) = x ist eine Gödelnummerierung einer arithmetischen Formel und diese ist wahr.

Da wir nicht quantifizieren können wir gleich $p \equiv A(x)$ und $q \equiv A(y)$.

Also liest sich $\Box(p \to q)$ als: Es ist beweisbar, dass falls die arithmetische Aussage x wahr ist, dann ist es auch die arithmetische Aussage y wahr.

Löbs Axiom liest sich also als: Falls beweisbar ist, dass wenn ϕ dann ψ , dann gilt wenn wir ϕ beweisen können, wir auch ψ beweisen können.

 $\neg\Box\bot$ kann gelesen werden als: Es ist unmöglich etwas falsches zu beweisen. Alternativ: Das untersuchte System ist konsistent.

 $\Box \neq \Box \bot$ sagt also aus, dass es beweisbar ist, dass das untersuchte System konsistent ist (in dem System selber).

Theorem 1. Suppose
$$L \vdash A \rightarrow B$$
. Then $L \vdash \Box A \rightarrow \Box B$.

Proof. Applying necessitation gives us that $L \vdash \Box (A \rightarrow B)$. Since $L \vdash \Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$, $L \vdash \Box A \rightarrow \Box B$, by modus ponens. \dashv

Figure 2: Proof as in George Boolos text

Bei Boolos ist es vielleicht noch amüsant anzumerken, dass er ein umgekehrten Frege $\dashv\,\Box A$

Bei Boolos ist es vielleicht noch amüsant anzumerken, dass er einen umgekehrtes turnstile verwendet um das Ende des mathematischen Arguments anzudeuten \dashv .

Die Sprache der Beweise ("hypothetical judgements / sequents") kann man jetzt deuten und man kann schreiben: " $p \lor q$ wahr, p wahr p wahr".

Eine Sprache ist geschlossen, falls keine weitere ... existiert.