Claims

- 1. A coating composition comprising
 - at least one α-(1'-hydroxyalkyl)acrylate (A) and
- 5 at least one photoinitiator (P).
 - 2. The coating composition according to claim 1, further comprising
 - at least one reactive diluent and/or
 - at least one polyfunctional polymerizable compound.

10

- 3. The coating composition according to claim 1 or 2, further comprising
 - at least one compound (B) containing at least one hydroxy (-OH)-reactive group.
- 15 4. A method of coating substrates, wherein a coating composition according to any one of claims 1 to 3 is used.
 - 5. A substrate coated with a coating composition according to any one of claims 1 to 3.

20

6. A compound of the formula (V),

$$R^7$$
 O R^6 O R^5 O R^5 R^3 R^5

(V)

in which

25

 R^2 and R^3 independently of one another are C_1 – C_{18} alkyl, C_2 – C_{18} alkyl optionally interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C_2 – C_{18} alkenyl, C_6 – C_{12} aryl, C_5 – C_{12} cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles,

30

R² and/or R³ are/is additionally hydrogen, C₁-C₁₈ alkoxy optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or −COOR⁴,

35

25

R² may additionally together with R¹ form a ring, in which case R² can be a carbonyl group, so that the group COOR¹ and R² together form an acid anhydride group –(CO)-O-(CO)-,

- R⁴ is C₁–C₁₈ alkyl, C₂–C₁₈ alkyl optionally interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C₂–C₁₈ alkenyl, C₆–C₁₂ aryl, C₅–C₁₂ cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles,
- R⁵ and R⁶ independently of one another are hydrogen, C₁–C₁₈ alkyl, C₂–C₁₈ alkyl optionally interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C₂–C₁₈ alkenyl, C₆–C₁₂ aryl, C₅–C₁₂ cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or may together form a ring,
- 20 n is a positive integer from 3 to 10, and
 - R^7 is an n-valent organic radical having 1 to 50 carbon atoms which can be unsubstituted or substituted by halogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, carboxyl, carboxy- C_1 - C_8 alkyl, C_1 - C_2 0 acyl, C_1 - C_8 alkoxy, C_6 - C_{12} aryl, hydroxyl or hydroxy-substituted C_1 - C_8 alkyl and/or can contain one or more –(CO)-, -O(CO)O-, -(NH)(CO)O-, -O(CO)(NH)-, -O(CO)- or -(CO)O- groups.
 - 7. The compound according to claim 6, wherein n is 3 or 4 and
- 30 R⁷ is derived from an n-hydric alcohol by removing n hydroxyl groups,

the n-hydric alcohol being trimethylolpropane, pentaerythritol or a singly to virgintuply ethoxylated trimethylolpropane.

35 8. A process for preparing a compound of the formula (V)

$$R^{7} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{5} \longrightarrow R^{7} \longrightarrow R^{6} \longrightarrow R^{5} \longrightarrow R^{7} \longrightarrow R^{6} \longrightarrow R^{5} \longrightarrow R^{7} \longrightarrow R^{7$$

15

20

25

as defined in claim 6, it being possible for n to be additionally 2, wherein the compound (II) is an aldehyde R^5 -CHO and is used in free form so that in formals of the formula $(R^5$ -CHO)_w in which w is a positive integer, w is ≤ 20 .

- The use of α-(1'-hydroxyalkyl)acrylates in coating compositions for dual-cure applications.
 - 10. The use of compounds of the formula (V) as defined in claim 8 or (VII)

$$R^{1}OOC$$
 R^{8}
 $COOR^{1}$
 R^{2}
 R^{3}
 R^{3}
 R^{2}

10 (VII)

in which R2 and R3 are as defined in claim 6,

R¹ is C₁–C₁₈ alkyl, C₂–C₁₈ alkyl optionally interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C₂–C₁₈ alkenyl, C₆–C₁₂ aryl, C₅–C₁₂ cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, and

 R^8 is unsubstituted or halogen-, C_1 - C_8 alkyl-, C_2 - C_8 alkenyl-, carboxyl-, carboxy- C_1 - C_8 alkyl-, C_1 - C_2 0 acyl-, C_1 - C_8 alkoxy-, C_6 - C_{12} aryl-, hydroxyl- or hydroxy-substituted C_1 - C_8 alkyl-substituted C_6 - C_{12} arylene, C_3 - C_{12} cycloalkylene or C_1 - C_{20} alkylene or is C_2 - C_{20} alkylene interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups and/or by one or more –(CO)-, -O(CO)O-, -(NH)(CO)O-, -O(CO)(NH)-, -O(CO)- or -(CO)O- groups or is a single bond

in radiation curing.