GDumb: A Simple Approach that Questions Our Progress in Continual Learning

Ameya Prabhu¹

Philip Torr¹

Puneet Dokania^{1,2}

ECCV'20
ONLINE

University of Oxford¹& Five AI Ltd.²

What is Continual Learning?

Input: Each dataset $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n$ of n samples

Goal: Learn $f_{\theta}: \mathbf{x} \to \mathbf{y}$

$$\min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{D}} L(f_{\theta}(\mathbf{x}), \mathbf{y})$$

(Standard) Supervised Classification

What happens when it's given a new dataset $\bar{\mathcal{D}}$ (having samples with both old and new labels)?

$$\min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{D} \cup \bar{\mathcal{D}}} L(f_{\theta}(\mathbf{x}), \mathbf{y})$$

Combine datasets and repeat the process!

What is Continual Learning?

(Standard) Supervised Classification

Input: Each dataset $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n$ of n samples

Goal: Learn $f_{\theta}: \mathbf{x} \to \mathbf{y}$

$$\min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \bigcup_{i=1}^{k} \mathcal{D}_{i}} L(f_{\theta}(\mathbf{x}), \mathbf{y})$$

It's the same process, repeated *k* times

Objectives

- Make learning scalable over time
- Mechanisms to add, consolidate & query knowledge (

Continual Classification

Input: A stream of labeled data at each timestep *t*

Goal: Learn $f_{\theta}: \mathbf{x} \to \mathbf{y}$

$$\min_{\theta} \mathbb{E}_{\bigcup_{i=1}^{k} \mathcal{D}_{i}} L(f_{\theta}(\mathbf{x}), \mathbf{y}) \equiv \min_{\theta} \mathbb{E}_{\mathcal{D}_{k}} L(f_{\theta}(\mathbf{x}), \mathbf{y}; \mathbb{K})$$

(Previous knowledge)

General Continual Learning

Open-set: The data stream can provide any sample, with any new label, at any time – including at test time Use-case: Partial information about the classes, consolidate knowledge on-the-fly

General Continual Learning

Supervised Learning

General (Open-Set) Continual Learning

Observations not near training features are likely novel.

Updates made to CNN via active learning.

CNN now has more knowledge about novel classes for future observations.

Trends in Continual Learning

- Classify over all seen labels only (y ∈ Yt)
- Any class (old or new) can come at any time
- Cannot revisit streamed samples again

Disjoint Subsets: Clean partitioning into clusters of classes called a task, typically of equal sizes

Trends in Continual Learning

Offline: Clean partitioning into clusters of classes & reduce all timesteps in the same cluster to one

Trends in Continual Learning

Classifying Literature

Form.	CI-CL	Online	Disjoir	nt Papers	Regularize	Memory	Distill I	Param is
A	√	√	✓	MIR[11], GMED[12]	×	√	×	×
				LwM[13], DMC[14]	×	×	✓	×
				SDC [15]	\checkmark	×	×	×
				BiC[16], $iCARL[4]$				
				UCIR[17], EEIL[18]		✓	,	
В	\checkmark	×	\checkmark	IL2M[19], WA[20]	×	V	V	×
				PODNet[21], MCIL[22]				
				RPS-Net[23], iTAML[24]	×	✓	✓ ,	✓
				CGATE[25]	×	\checkmark	×	\checkmark
				RWALK[8]	\checkmark	\checkmark	×	×
				PNN[26], DEN[27]	×	×	×	✓
				DGR [28]	×	\checkmark	×	×
				LwF[3]	×	×	\checkmark	×
				P&C[29]	×	×	✓ × × ✓ × ✓ × × × × × × × × × × × ×	
\mathbf{C}	×	×	\checkmark	APD[30]	\checkmark	×		\checkmark
				VCL[31]	\checkmark	\checkmark	×	×
				MAS[32], IMM[33]				
				SI[5], Online-EWC[29]	\checkmark	×	×	×
				$\mathrm{EWC}[6]$				
D				TinyER[34], HAL[35]	×	✓	×	×
$D \times$	√	✓	GEM[7], AGEM[36]	\checkmark	\checkmark	×	×	
Е	√	√	×	GSS[37]	×	√	×	×

(Left) Assumptions in formulation

- Disjoint set assumed?
- Task or class-incremental?
- Online or offline?

(Right) Strategy to consolidate knowledge

- Regularization?
- Replay?
- Distillation?
- Parameter-isolation?

Classifying Literature

Form.	CI-CL	Online	Disjoir	nt Papers	Regularize	Memory	Distill I	Param iso
A	✓	√	√	MIR[11], GMED[12]	×	√	×	×
				LwM[13], DMC[14]	×	×	✓	×
			SDC [15]	\checkmark	×	×	×	
				BiC[16], $iCARL[4]$				
				UCIR[17], $EEIL[18]$	X	/	-	V
В	\checkmark	×	\checkmark	IL2M[19], WA[20]	^	V	V	^
				PODNet[21], MCIL[22]				
				RPS-Net[23], iTAML[24]	×	✓	✓	× × ×
				CGATE[25]	×	\checkmark	×	\checkmark
				RWALK[8]	✓	✓	×	×
				PNN[26], DEN[27]	×	×	×	✓
				DGR [28]	×	\checkmark	×	×
				LwF[3]	×	×	\checkmark	
				P&C[29]	×	×	\checkmark	
\mathbf{C}	×	×	\checkmark	APD[30]	\checkmark	×	×	
				VCL[31]	\checkmark	\checkmark	×	
				MAS[32], IMM[33]				
				SI[5], Online-EWC[29]	✓	×	×	
				EWC[6]				
D	×	✓		TinyER[34], HAL[35]	×	✓	×	×
D	X	V	√	GEM[7], AGEM[36]	✓	\checkmark	×	×
Е	✓	✓	×	GSS[37]	×	✓	×	×

For eg: RWALK belongs to this class

Offline, class-incremental, disjoint

RWALK aims to mitigate forgetting using regularization with help of memory

Classifying Literature

Form.	CI-CL	Online	Disjoir	nt Papers	Regularize	Memory	Distill I	Param is
A	√	✓	✓	MIR[11], GMED[12]	×	✓	×	×
				LwM[13], DMC[14]	×	×	✓	×
				SDC [15]	✓	×	×	×
				BiC[16], $iCARL[4]$				
				UCIR[17], $EEIL[18]$	×	√		~
В	\checkmark	×	\checkmark	IL2M[19], WA[20]	^	•	•	×
				PODNet[21], MCIL[22]				
			RPS-Net[23], iTAML[24]	×	✓	✓	✓	
				CGATE[25]	×	\checkmark	×	\checkmark
				RWALK[8]	✓	✓	×	×
				PNN[26], DEN[27]	×	×	×	✓
				DGR [28]	×	✓	×	×
				LwF[3]	×	×	\checkmark	✓ × × ✓ × ✓ × × ✓ × × × × × ×
				P&C[29]	×	×	<pre></pre>	
\mathbf{C}	×	×	\checkmark	APD[30]	✓	×		
				VCL[31]	✓	✓	×	×
				MAS[32], IMM[33]				
				SI[5], Online-EWC[29]	✓	×	×	×
		1	EWC[6]					
D	×	√		TinyER[34], HAL[35]	×	✓	×	X
D	X	V	V	GEM[7], AGEM[36]	✓	✓	×	×
Е	✓	✓	×	GSS[37]	×	✓	×	×

Typical CL Algorithms

- Evaluated on one specific formulation
 - Formulation oversimplified & restricted
 - Algorithms often fail to generalize
 - Are the scenarios practical?
- *Very* sensitive to hyperparameters
 - Can't tweak when deployed
- *Very* computationally intensive
 - Why not train a supervised model directly?

GDumb: A Simple, Unifying Approach

GDumb

Greedy Balancing Sampler

- Greedily stores samples in memory
- Balances #samples across classes

Dumb Learner

- When asked, trains a model from scratch only using current memory samples
- Combines predictions with oracle taskinformation via a binary mask at inference

Greedy Sampler & Dumb Learner

• GDumb has no explicit model designed for:

Nothing to reduce forgetting *Nothing* to improve intransigence

Same, simple learning
 No task-incremental training
 No offline training
 No disjoint sampling

No hyperparameter tuning!

Experimental Setup

Form	. Designed in	n Model (Dataset)	memory (k)	Metric	CI-CL	Online	Disjoint
A1	MIR	MLP-400 (MNIST);	300, 500;	Acc. (at end)			
		ResNet18 (CIFAR10)	200, 500, 1000)			
A2	GMED	MLP-400 (MNIST);	500;	Acc. (at end)	✓	\checkmark	\checkmark
		ResNet18 (CIFAR10)	500				
A3	ARM	MLP-400 (MNIST);	500;	Acc. (at end)			
		ResNet18 (CIFAR10)	1000				
B1	Hsu etal.	MLP-400 (MNIST);	4400	Acc. (at end)			
	RPS-Net	ResNet18 (SVHN)		, , ,			
B2	iCARL	ResNet32 (CIFAR100)	2000	Acc. (avg in t)	\checkmark	×	\checkmark
B3	PODNet	ResNet32 (CIFAR100);	1000-2000	Acc. (avg in t)			
		ResNet18 (ImageNet100)	(+20) x50	, , ,			
C1	Hsu etal.	MLP-400 (MNIST)	4400	Acc. (at end)	×	×	
C2	CSDF	Many (TinyImageNet)	4500,9000	Acc. (at end)	^	^	V
D	AGEM	ResNet-18-S (CIFAR10)	0-1105	Acc. (at end)	×	√	√
		, , ,	(+65) x17	, ,			
\mathbf{E}	GSS	MLP-100 (MNIST);	300;	Acc. (at end)	\checkmark	\checkmark	×
		ResNet-18 (CIFAR10)	500	, ,			

Evaluate on 10 popular, diverse formulations

- Same network & memory
- No hyperparameter tuning
 - SGD
 - Ir: 5e-2 → 5e-4
 - SGDR schedular
 - Decay: 1e-6
 - Batch size: 16
- No formulation restrictions used for training

Minimal Assumptions: Comparisons

•	GSS	(Aljundi etal., NeurIPS19)
•	GSS	(Aljundi etal., NeuriPS19)

Method	MNIST	CIFAR10
Reservoir	69.1	-
GSS-Clust	-	25.0
FSS-Clust	-	26.0
GSS-IQP	76.5	29.6
GSS-Greedy	78.0	29.6
GDumb	88.9	45.8
(+Increase)	(+10.9)	(+16.2)

Beats best competitor by 10-15% points

+Disjoint Sets Assumption

• MIR (Aljundi etal., NeurIPS19)

Method (k)	MNIST (500)
GEN	75.5 ± 1.3
GEN-MIR	81.6 ± 0.9
ER	82.1 ± 2.4
GEM	86.3 ± 1.8
ER-MIR	87.6 ± 0.7
GDumb	91.9 ± 0.5
(+Increase)	(+4.3)

Method (k)	(200)	CIFAR10 (500)	(1000)
GEM	16.8 ± 1.1	17.1 ± 1.0	17.5 ± 1.6
iCARL	28.6 ± 1.2	33.7 ± 1.6	32.4 ± 2.1
ER	27.5 ± 1.2	33.1 ± 1.7	41.3 ± 1.9
ER-MIR	29.8 ± 1.1	40.0 ± 1.1	47.6 ± 1.1
ER5	-	-	42.4 ± 1.1
ER-MIR5	-	-	49.3 ± 0.1
GDumb	35.0 ± 0.6	45.8 ± 0.9	61.3 ± 1.7
(+Increase)	(+5.2)	(+5.8)	(+11.0)

Beats previous best which uses disjoint set assumption by 4-11% points (lower margin)

+Disjoint Sets Assumption

Method (<i>k</i>)	MNIST (500)	CIFAR10 (500)
Fine tuning	18.8 ± 0.6	18.5 ± 0.2
AGEM	29.0 ± 5.3	18.5 ± 0.6
BGD	13.5 ± 5.1	18.2 ± 0.5
GEM	87.2 ± 1.3	20.1 ± 1.4
GSS-Greedy	84.2 ± 2.6	28.0 ± 1.3
HAL	77.9 ± 4.2	32.1 ± 1.5
ER	81.0 ± 2.3	33.3 ± 1.5
MIR	84.9 ± 1.7	34.5 ± 2.0
GMED (ER)	82.7 ± 2.1	35.0 ± 1.5
GMED (MIR)	87.9 ± 1.1	35.5 ± 1.9
GDumb	91.9 ± 0.5	45.8 ± 0.9
(+Increase)	(+4.0)	(+10.3)

Beats parallel work which uses disjoint assumption by 4-10% points

+Disjoint, Offline Sets Assumption

• Hsu etal., NeurIPS18 CL-W)

Method	MNIST	SVHN
MAS	19.5 ± 0.3	17.3
SI	19.7 ± 0.1	17.3
EWC	19.8 ± 0.1	18.2
Online-EWC	19.8 ± 0.04	18.5
LwF	24.2 ± 0.3	-
DGR	91.2 ± 0.3	-
DGR+Distill	91.8 ± 0.3	-
GEM	92.2 ± 0.1	75.6
RtF	92.6 ± 0.2	-
RPS-Net	96.2	88.9
OvA-INN	96.4	-
iTAML	97.9	94.0
GDumb	97.8 ± 0.2	93.4 ± 0.4

Beats all competitors inspite disjoint & offline assumptions, matching iTAML performance

+Disjoint, Offline Sets Assumption

	iCARL (Rebuffi etal., CVPR17)	PODNet (Douillard etal., ECCV2	(0)	
Method/CIFAR1	00 10 tasks, 10 cls	50 tasks, 1 cls		
DMC++	56.8 ± 0.9	-		
iCARL	58.8 ± 1.9	44.2 ± 1.0		
WA	62.6	-		
EEIL	63.4 ± 1.6	-		
BiC	63.8	47.1 ± 1.5		
UCIR (CNN)	-	49.3 ± 0.3		
PODNet (CNN)	-	58.0 ± 0.5		
GDumb	45.2 ± 1.7	58.4 ± 0.8		
(Diff w) iCARL, B	iC -13.6, -18.6	+14.2, +11.3		
	+30!			

When tasks were 10, we were ~15-20% lower When tasks increase to 50, we perform 10-15% higher Illustrates: BiC/iCARL don't work beyond formulations having less timesteps (tasks)

Questioning Progress in Continual Learning

Method	MNIST				
k	(300)	(500)			
MLP-100					
FSS-Clust [37]	75.8 ± 1.7	83.4 ± 2.6			
GSS-Clust [37]	75.7 ± 2.2	83.9 ± 1.6			
GSS-IQP [37]	75.9 ± 2.5	84.1 ± 2.4			
GSS-Greedy $[37]$	82.6 ± 2.9	84.8 ± 1.8			
GDumb (Ours)	$\textbf{88.9}\pm\textbf{0.6}$	$\textbf{90.0}\pm\textbf{0.4}$			
MLP-400					
GEN [43]	-	75.5 ± 1.3			
GEN-MIR $[11]$	-	81.6 ± 0.9			
ER [44]	-	82.1 ± 1.5			
GEM [7]	-	86.3 ± 1.4			
ER-MIR [11]	-	87.6 ± 0.7			
GDumb (Ours)	-	$\textbf{91.9}\pm\textbf{0.5}$			
2.6 -1 1	3.63	TTOTE			

Oumb (Ours)	- 91.9 ± 0			
Method	MNIST			
(k)	(4400)			
GEM [7]	98.42 ± 0.10			
EWC [6]	98.64 ± 0.22			
SI [5]	99.09 ± 0.15			
Online EWC [29]	99.12 ± 0.11			
MAS [32]	99.22 ± 0.21			
DGR [28]	99.50 ± 0.03			
LwF [3]	99.60 ± 0.03			
DGR+Distil [28]	99.61 ± 0.02			
RtF	99.66 ± 0.03			
GDumb	99.77 ± 0.03			
(C1)				

Method	Parameters	Regularization Accuracy		
	No stored	samples		
mean-IMM [33]	3.5M	none	32.42	
mode-IMM [33]	9.0M	dropout	42.41	
SI [5]	$3.5\mathrm{M}/9.0\mathrm{M}$	L2/dropout	43.74	
HAT [51]	$3.5\mathrm{M}/9.0\mathrm{M}$	L2	44.19	
EWC [6]	613K	none	45.13	
LwF [3]	9.0M	L2	48.11	
EBLL [52]	9.0M	L2	48.17	
MAS [32]	$3.5\mathrm{M}/9.0\mathrm{M}$	none	48.98	
PackNet [53]	$613\mathrm{K}/3.5\mathrm{M}$	L2/dropout	55.96	
k=4500				
GEM [7]	613 K/3.5 M	none/dropout	44.23	
GDumb	834K	cutmix	45.50	
iCARL [4]	$613\mathrm{K}/3.5\mathrm{M}$	dropout	48.55	
	k=90	000		
GEM [7]	613 K / 3.5 M	none/dropout	45.27	
iCARL [4]	$613\mathrm{K}/3.5\mathrm{M}$	dropout	49.94	
GDumb	834K	cutmix	57.27	
nod	CII	FAR10		
(2	(00)	500) (100	0)	
л [7] 16.8	+ 1 1 17 1	+ 1 0 17 5 +	- 1.6	

Method		CIFAR10	
k	(200)	(500)	(1000)
GEM [7]	16.8 ± 1.1	17.1 ± 1.0	17.5 ± 1.6
iCARL [4]	28.6 ± 1.2	33.7 ± 1.6	32.4 ± 2.1
ER [44]	27.5 ± 1.2	33.1 ± 1.7	41.3 ± 1.9
ER-MIR [11]	29.8 ± 1.1	40.0 ± 1.1	47.6 ± 1.1
ER5 [11]	-	-	42.4 ± 1.1
ER-MIR5 [11]	-	-	49.3 ± 0.1
GDumb (Ours)	35.0 ± 0.6	$\textbf{45.8}\pm\textbf{0.9}$	$\textbf{61.3}\pm\textbf{1.7}$

Method	CIFAR100
(k)	(1105)
RWalk [8]	40.9 ± 3.9
EWC [6]	42.4 ± 3.01
Base	$42.9\pm2.0^{\circ}$
MAS [32]	44.2 ± 2.39
SI [5]	47.1 ± 4.4
iCARL [4]	50.1
S-GEM [36]	56.2
PNN [26]	59.2 ± 0.8
GEM [7]	61.2 ± 0.7
A-GEM [36]	63.1 ± 1.2
TinyER [34]	68.5 ± 0.6
GDumb	60.3 ± 0.85

(D)			
Method	MNIST	CIFAR10	
Reservoir [43]	69.12	-	
GSS-Clust [37]	-	25.0	
FSS-Clust [37]	-	26.0	
GSS-IQP $[37]$	76.49	29.6	
GSS-Greedy $[37]$	77.96	29.6	
GDumb (Ours)	$\boldsymbol{88.93}$	45.8	
(E)			

	Method	MNIST	CIFAR-10	Method	MNIST		CIFAR10	
R100	k	(500)	(500)		Memory	Accuracy	Memory	Accuracy
	Fine tuning	18.8 ± 0.6	18.5 ± 0.2	Finetune	0	18.8 ± 0.5	0	15.0 ± 3.1
3.9	AGEM [36]	29.0 ± 5.3	18.5 ± 0.6	GEN [28]	4.58	79.3 ± 0.6	34.5	15.3 ± 0.5
3.0	BGD [48]	13.5 ± 5.1	18.2 ± 0.5	GEN-MIR $[11]$	4.31	82.1 ± 0.3	38.0	15.3 ± 1.2
2.0	GEM [7]	87.2 ± 1.3	20.1 ± 1.4	LwF [3]	1.91	33.3 ± 2.5	4.38	19.2 ± 0.3
2.3	GSS-Greedy [37]	84.2 ± 2.6	28.0 ± 1.3	ADI [47]	1.91	55.4 ± 2.6	4.38	24.8 ± 0.9
4.4	HAL [35]	77.9 ± 4.2	32.1 ± 1.5	ARM [41]	1.91	56.2 ± 3.5	4.38	26.4 ± 1.2
	ER [44]	81.0 ± 2.3	33.3 ± 1.5	ER [44]	0.39	83.2 ± 1.9	3.07	41.3 ± 1.9
2	MIR [11]	84.9 ± 1.7	34.5 ± 2.0	ER-MIR [11]	0.39	85.6 ± 2.0	3.07	47.6 ± 1.1
0.8	GMED (ER) $[12]$	82.7 ± 2.1	35.0 ± 1.5	iCarl [4] (5 iter)	_	-	3.07	32.4 ± 2.1
0.7	GMED (MIR) $[12]$	87.9 ± 1.1	35.5 ± 1.9	GEM [7]	0.39	86.3 ± 0.1	3.07	17.5 ± 1.6
1.2	GDumb (Ours)	$\textbf{91.9}\pm\textbf{0.5}$	$\textbf{45.8}\pm\textbf{0.9}$	GDumb (ours)	0.39	$\textbf{91.9}\pm\textbf{0.5}$	3.07	$\textbf{61.3}\pm\textbf{1.7}$
0.6		(A2)				(A3)		
0.85	_							

Possible failure modes:

- Bad evaluation (metrics, ..)?
- Too simplistic/restrictive formulations?
- Heavily tailored approaches?

It's alarming that simple GDumb outperforms tailored algorithms on formulations they were designed for!

Summary: Our Contributions

A General CL Formulation

GDumb: A Simple, Unifying Approach

Quirks & Assumptions of Recent Formulations

