Elementary Logic (PrepCamp)

Sebastiano Tronto

uni.lu

September 7-8, 2020

- Statements
- 2 Logical operations
 - Boolean algebra
 - Truth tables
- Implication
- Quantifiers
- Proofs
 - Direct proofs
 - Proofs by contradiction
 - Proofs by induction

- These slides:
- Exercises:
- Contact:

sebastiano.tronto@uni.lu

2/28

Unambiguous

Unambiguous

Example (A bad joke)

Q: How many months have 30 days?

Unambiguous

Example (A bad joke)

Q: How many months have 30 days?

A: 11, some of them have even more!

Unambiguous

Example (A bad joke)

Q: How many months have 30 days?

A: 11, some of them have even more!

:-(

Unambiguous

Example (A bad joke)

```
Q: How many months have 30 days? A: 11, some of them have even more! :-(
```

Objective

Unambiguous

Example (A bad joke)

Q: How many months have 30 days? **A:** 11, some of them have even more! :-(

Objective

Example

Good: 3 is greater than 4

Bad: 3 is nicer than 4

- Mathematical: "Three is greater than four" (or "3 > 4")
- ...or not: "I am 26 years old"
- Key point: staments can be true or false

- We can combine statements to make new ones
- Negation (not), conjunction (and), disjunction (or)

Negation (not)

If A is a statement, the statement "not A" (in symbols: $\neg A$) is **true** when A is **false**, and it is **false** when A is **true**.

Negation (not)

If A is a statement, the statement "not A" (in symbols: $\neg A$) is **true** when A is **false**, and it is **false** when A is **true**.

Example

 $\neg (3 > 4)$ is equivalent to $3 \le 4$

"3 is not greater than 4" is equivalent to "3 is less or equal than 4"

Conjunction (and)

The statement "A and B" (in symbols: $A \wedge B$) is **true** when both A and B are **true**, and it is **false** if at *at least* one of them is **false**.

Conjunction (and)

The statement "A and B" (in symbols: $A \wedge B$) is **true** when both A and B are **true**, and it is **false** if at at least one of them is **false**.

Example

" $(3 < 4) \land (5 \text{ is an odd number})$ " is **true**

Example

"(Today is Monday) ∧ (we are in France)" is false

September 7-8, 2020

Disjunction (or)

The statement "A or B" (in symbols: $A \vee B$) is **true** when at least one of A and B is **true**, and it is **false** if both of them are **false**.

Disjunction (or)

The statement "A or B" (in symbols: $A \vee B$) is **true** when at least one of A and B is **true**, and it is **false** if both of them are **false**.

Example

" $(3 = 4) \lor (5 \text{ is an even number})$ " is **false**

Example

"(Today is Monday) \lor (we are in Luxembourg)" is **true**

• **Important:** \vee is always *inclusive*:

• **Important:** \vee is always *inclusive*:

Example (Another bad joke)

Waiter: "Would you like cheese or dessert?"

Mathematician: "Yes."

• **Important:** \vee is always *inclusive*:

Example (Another bad joke)

Waiter: "Would you like cheese or dessert?"

Mathematician: "Yes."

• \neg has precedence over \land and \lor :

$$\neg A \land B \text{ means } (\neg A) \land B, \qquad \neg A \lor B \text{ means } (\neg A) \lor B$$

(or just use parenthesis)

Properties

If A, B and C are statements:

commutativity	$A \lor B = B \lor A$	$A \wedge B = B \wedge A$
associativity	$A \vee (B \vee C) = (A \vee B) \vee C$	$A \wedge (B \wedge C) = (A \wedge B) \wedge C$
distributivity		$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$
distributivity*		$A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$
double negation		$\neg(\neg A)=A$
	$A \wedge false = false$	$A \wedge true = A$
	$A \vee \mathbf{false} = A$	$A \lor true = true$
	$(\neg A) \lor A = true$	$(\neg A) \land A = false$
De Morgan's laws	$\neg(A\vee B)=(\neg A)\wedge(\neg B)$	$\neg(A \land B) = (\neg A) \lor (\neg B)$
UNIVERSITÉ DU		

Boolean algebra

• For simplicity: true = 1, false = 0

Boolean algebra

- For simplicity: true = 1, false = 0
- We have a set $\{0,1\}$ with some operations (\land,\lor,\lnot)

Boolean algebra

- For simplicity: true = 1, false = 0
- We have a set $\{0,1\}$ with some operations (\land,\lor,\lnot)
- This is called a Boolean algebra

September 7-8, 2020

Truth tables

A compact way of describing an operator, or a composition of operators

Truth tables

A compact way of describing an operator, or a composition of operators Example:

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$(A \lor B) \land (\neg A)$
0	0	1	0	0	0
0	1	1	0	1	1
1	0	0	0	1	0
1	1	0	1	1	0

Truth tables

We can check that two statements are equivalent with truth tables

Α	В	$\neg (A \land B)$	$(\neg A) \lor (\neg B)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

• " $A \implies B$ " means "If A (is true), then B (is true)"

• " $A \implies B$ " means "If A (is true), then B (is true)"

Example

"If it rains, I will bring an umbrella" (It rains) \Longrightarrow (I will bring an umbrella)

• " $A \implies B$ " means "If A (is true), then B (is true)"

Example

"If it rains, I will bring an umbrella" (It rains) \Longrightarrow (I will bring an umbrella)

Example

"If my grandpa had wheels, he would be a bike" $(My grandpa has wheels) \Longrightarrow (My grandpa is a bike)$

• It is a logical operation: " $A \implies B$ " means " $B \lor (\neg A)$ "

September 7-8, 2020

• It is a logical operation: " $A \implies B$ " means " $B \lor (\neg A)$ "

Α	В	$A \Longrightarrow B$	
0	0	1	No rain, I don't bring an umbrella
0	1	1	No rain, I bring an umbrella anyway
1	0	0	It rains, I don't bring an umbrella
1	1	1	It rains, I bring an umbrella

• It is a logical operation: " $A \implies B$ " means " $B \lor (\neg A)$ "

Α	В	$A \Longrightarrow B$	
0	0	1	No rain, I don't bring an umbrella
0	1	1	No rain, I bring an umbrella anyway
1	0	0	It rains, I don't bring an umbrella
1	1	1	It rains, I bring an umbrella

Remark

"false \implies A" is always true, whatever A is (ex falso quodlibet) "A \implies true" is always true, whatever A is

Notation

Sometimes we use the following symbols:

- " $A \Leftarrow B$ " is the same as " $B \Rightarrow A$ "
- " $A \iff B$ is the same as " $(A \implies B) \land (B \implies A)$ ". It is read "A is equivalent to B" or "A if and only if B".

Contrapositive

• The statement $(\neg B) \Longrightarrow (\neg A)$ is called *contrapositive* of $A \Longrightarrow B$

Contrapositive

- The statement $(\neg B) \Longrightarrow (\neg A)$ is called *contrapositive* of $A \Longrightarrow B$
- It is equivalent to " $A \implies B$ "

Contrapositive

- The statement $(\neg B) \Longrightarrow (\neg A)$ is called *contrapositive* of $A \Longrightarrow B$
- It is equivalent to " $A \implies B$ "
- Two proofs:
 - Properties of logical operations
 - 2 Truth tables

End of part 1

See you tomorrow!

- These slides:
- Exercises:
- Contact: sebastiano.tronto@uni.lu

Quantifiers

Let S be a set and let A(x) be a "variable statement" that depends on $x \in S$ (for example $S = \mathbb{N}$ and A(x) = "x is an even number").

Quantifiers

Let S be a set and let A(x) be a "variable statement" that depends on $x \in S$ (for example $S = \mathbb{N}$ and A(x) = "x is an even number").

- Universal quantifier (\forall or "for all"): " $\forall x \in S$, A(x)" means that if we replace x with any element of S, A(x) is always **true**.
- Existential quantifier (\exists or "there exists"): " $\exists x \in S, A(x)$ " means that A(x) is **true** for at least one value of x is S.

Quantifiers - examples

Example

S = "the set of all cars", A(x) = "x is red"

 $\forall x \in S, A(X)$ is **false**.

 $\exists x \in S, A(X) \text{ is true}.$

Example

$$S = \mathbb{N}, \ A(x) = x > 5$$

 $\forall x \in S, A(x) \text{ is false.}$

 $\exists x \in S, A(X) \text{ is true}.$

20 / 28

Negation of quantifiers

Today's most important fact:

$$\neg(\forall x \in S, A(x)) = ?$$

$$\neg(\exists x \in S, A(x)) = ?$$

Negation of quantifiers

Today's most important fact:

$$\neg(\forall x \in S, A(x)) = \exists x \in S, \neg A(x)$$

$$\neg(\exists x \in S, A(x)) = ?$$

Example

 \neg "every number is even" = "there is at least one odd number"

Negation of quantifiers

Today's most important fact:

$$\neg(\forall x \in S, A(x)) = \exists x \in S, \neg A(x)$$
$$\neg(\exists x \in S, A(x)) = \forall x \in S, \neg A(x)$$

Example

 \neg "every number is even" = "there is at least one odd number"

(exercise)

 A proof is a sequence of statements, each one logically deriving from the previous.

- A proof is a sequence of statements, each one logically deriving from the previous.
- Proofs are used to derive new statements from statements that are known to be true.

23 / 28

- A proof is a sequence of statements, each one logically deriving from the previous.
- Proofs are used to derive new statements from statements that are known to be true.
- If A is known to be true and the implication $A \implies B$ is logically clear, then also B must be true.

- A proof is a sequence of statements, each one logically deriving from the previous.
- Proofs are used to derive new statements from statements that are known to be true.
- If A is known to be true and the implication $A \Longrightarrow B$ is logically clear, then also B must be true.
- Every mathematical theorem must be justified with a proof.

Theorem

The sum of two even numbers is even.

Theorem

The sum of two even numbers is even.

Proof.

1 Recall the definition: a natural number x is called *even* if there is some natural number n such that x = 2n.

UNIVERSITÉ DU LUXEMBOURG

Theorem

The sum of two even numbers is even.

- **1** Recall the definition: a natural number x is called *even* if there is some natural number n such that x = 2n.
- ② If x and y are even numbers, then there are natural numbers n and m such that x = 2n and y = 2m.

Theorem

The sum of two even numbers is even.

- **1** Recall the definition: a natural number x is called *even* if there is some natural number n such that x = 2n.
- ② If x and y are even numbers, then there are natural numbers n and m such that x = 2n and y = 2m.
- **3** Then x + y = 2n + 2m = 2(n + m).

Theorem

The sum of two even numbers is even.

- **1** Recall the definition: a natural number x is called *even* if there is some natural number n such that x = 2n.
- ② If x and y are even numbers, then there are natural numbers n and m such that x = 2n and y = 2m.
- **3** Then x + y = 2n + 2m = 2(n + m).
- Then x + y is even.

Idea: I want to show A = true. I show that the implication " $(\neg A) \implies \text{false}$ " is true. Then $\neg A = \text{false}$, so A = true.

Idea: I want to show A = true. I show that the implication " $(\neg A) \implies \text{false}$ " is true. Then $\neg A = \text{false}$, so A = true.

Definition

A natural number is called *prime* if it is different from 1 and it is only divisible by 1 and itself.

Theorem

There are infinitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Proof.

Assume that there are only finitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Proof.

- Assume that there are only finitely many prime numbers.
- ② So there are n prime numbers, for some number n. Call them p_1, p_2, \ldots, p_n .

Theorem

There are infinitely many prime numbers.

Proof.

- Assume that there are only finitely many prime numbers.
- ② So there are n prime numbers, for some number n. Call them p_1, p_2, \ldots, p_n .

Theorem

There are infinitely many prime numbers.

Proof.

- Assume that there are only finitely many prime numbers.
- ② So there are n prime numbers, for some number n. Call them p_1, p_2, \ldots, p_n .
- $\mathbf{0}$ u is not divisible by any of the prime numbers p_1, \ldots, p_n .

Theorem

There are infinitely many prime numbers.

Proof.

- Assume that there are only finitely many prime numbers.
- ② So there are n prime numbers, for some number n. Call them p_1, p_2, \ldots, p_n .
- **1** u is not divisible by any of the prime numbers p_1, \ldots, p_n .
- **5** Therefore u is only divisible by 1 and itself. So u is prime.

Theorem

There are infinitely many prime numbers.

- Assume that there are only finitely many prime numbers.
- ② So there are n prime numbers, for some number n. Call them p_1, p_2, \ldots, p_n .
- **1** u is not divisible by any of the prime numbers p_1, \ldots, p_n .
- **5** Therefore u is only divisible by 1 and itself. So u is prime.
- **o** So p_1, \ldots, p_n are not the only prime numbers.

Proofs by induction

If I want to prove $\forall n \in \mathbb{N}, A(n)$:

- Prove A(0) (base step)
- **2** Prove $\forall n \in \mathbb{N}$, $(A(n) \implies A(n+1))$ (inductive step)

Proofs by induction

If I want to prove $\forall n \in \mathbb{N}, A(n)$:

- Prove A(0) (base step)
- **2** Prove $\forall n \in \mathbb{N}$, $(A(n) \implies A(n+1))$ (inductive step)

Theorem (Sum of natural numbers)

$$\forall n \in \mathbb{N}, \quad 0+1+\cdots+n=\frac{n(n+1)}{2}$$

UNIVERSITÉ DU LUXEMBOURG

- \bullet Base case: 0 = 0.
- 2 Let *n* be any natural number.

UNIVERSITÉ DU LUXEMBOURG

- \bullet Base case: 0 = 0.
- 2 Let n be any natural number. If A(n) =false, then $A(n) \implies A(n+1)$ is true.

- \bullet Base case: 0 = 0.
- 2 Let *n* be any natural number.

If
$$A(n) =$$
false, then $A(n) \implies A(n+1)$ is true.

If
$$A(n) = \text{true}$$
, we have to show that $A(n+1) = \text{true}$.

- \bullet Base case: 0 = 0.
- ② Let n be any natural number. If A(n) = **false**, then $A(n) \implies A(n+1)$ is **true**. If A(n) = **true**, we have to show that A(n+1) = **true**.

$$\begin{array}{ll} 0+\cdots+(n+1) &= (0+\cdots+n)+(n+1) = \\ &= \frac{n(n+1)}{2}+(n+1) = \\ &= \frac{n^2+n+2n+2}{2} \\ &= \frac{(n+1)(n+2)}{2} \end{array}$$
 since $A(n)=$ true

so
$$A(n+1) =$$
true

