

W600 芯片规格书

V1. 0. 4

北京联盛德微电子有限责任公司(Winner Micro) 地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900 网址: www.winnermicro.com

文档历史

版本	完成日期	修订记录	作者	审核	批准
V1. 0. 0	2018-03-29	创建	Ray		
V1. 0. 1	2019-02-20	增加 2MF1ash 规格说明	Ray	1	
V1. 0. 2	2019-04-18	统一 PWM 编号定义从 PWMO 到 PWM4	Ray	/ {	
V1. 0. 3	2020-06-06	更新性能指标单位	Ray		
V1. 0. 4	2020-7-6	更新 IO 复用表 PB13 说明	Ray		
			\ \		
		140//-			
		37.			

目录

1	特征		1
2	概述		4
3	芯片特点	点	4
4	芯片结构	构	4
5	地址空门	间划分	5
6	功能描述	述	6
	6.1	SDIO 设备控制器	6
	6.2	高速 SPI 设备控制器	6
	6.3	DMA 控制器	6
	6.4	时钟与复位	7
	6.5	内存管理器	7
	6.6	数字基带	7
	6.7	MAC 控制器	7
	6.8	安全系统	8
	6.9	FLASH 控制器	8
	6.10	RSA 加密模块	8
	6.11	通用硬件加密模块	8
	6.12	I ² C 控制器	8
	6.13	主/从 SPI 控制器	8
	6.14	UART 控制器	9
	6.15	GPIO 控制器	9
	6.16	定时器	9
	6.17	看门狗控制器	9
	6.18	射频配置器	9
	6.19	射频收发器	10
	6.20	PWM 控制器	10
	6.21	² S 控制器	10

	6.22	7816/UART 控制器	10
7	管脚定》	义	12
8	电气特性	生	14
	8.1	极限参数	14
	8.2	射频功耗参数	14
	8.3	Wi-Fi 射频	14
9	封装信息	1	16
		- 产品型号定义	

1 特征

- 芯片外观
 - ➤ QFN32 封装, 5mm x 5mm
- 芯片集成度
 - 集成32位嵌入式Cortex-M3处理器,工 作频率80MHz;
 - ▶ 集成 288KB 数据存储器;
 - ➤ 集成 1MB/2MB FLASH;
 - ▶ 集成 8 通道 DMA 控制器,支持任意通道分配给硬件使用或是软件使用,支持 16 个硬件申请,支持软件链表管理;
 - ▶ 集成 2.4G 射频收发器,满足 IEEE802.11 规范:
 - ➤ 集成 PA/LNA/TR-Switch;
 - ▶ 集成 32.768KHz 时钟振荡器;
 - ▶ 集成电压检测电路;
 - ➤ 集成 LDO;
 - ▶ 集成电源控制电路;
 - ▶ 集成上电复位电路;
 - ▶ 集成通用加密硬件加速器,支持 PRNG/SHA1/MD5/RC4/DES/3DES/AES/CRC/ RSA等多种加解密协议。

● 芯片接口

- ▶ 集成 1 个 SDI02. 0 Device 控制器,支持 SDI01 位/4 位/SPI 三种操作模式;工作时 钟范围 0~50MHz;
- ▶ 集成 2 个 UART 接口,支持 RTS/CTS,波特率范围 1200bps~2Mbps;
- 集成1个高速 SPI 设备控制器,工作时钟 范围 0~50MHz;
- ➤ 集成 1 个 SPI 主/从接口,主设备工作频率支持 20Mpbs,从设备支持 6Mbps 数据传输速率;

- ▶ 集成一个 I²C 控制器,支持 100/400Kbps 速率;
- ▶ 集成 GPIO 控制器:
- ▶ 集成 PWM 控制器,支持 5 路 PWM 单独输出 或者 2 路 PWM 输入。最高输出频率 20MHz, 最高输入频率 20MHz;
- ▶ 集成双工 I²S 控制器,支持 32KHz 到 192KHz I²S 接口编解码;
- ▶ 集成 7816 接口,支持 ISO-7816-3 T=0/1 模式,支持 EVM2000 规范,并兼容串口功 能。

◆ 协议与功能

- ▶ 支持 GB15629.11-2006、IEEE802.11 b/g/n/e/i/d/k/r/s/w;
- ▶ 支持 WAPI2.0;
- ▶ 支持 Wi-Fi WMM/WMM-PS/WPA/WPA2/WPS;
- ➤ 支持 Wi-Fi Direct;
- ▶ 支持 EDCA 信道接入方式;
- ▶ 支持 20/40M 带宽工作模式;
- 支持 STBC、GreenField、Short-GI、支持反向传输;
- ▶ 支持 RIFS 帧间隔:
- ➤ 支持 AMPDU、AMSDU;
- ightharpoonup 支持 IEEE802.11n MCS $0^{\sim}7$ 、MCS32 物理 层传输速率档位,传输速率最高到 150Mbps;
- ➤ 2/5.5/11Mbps 速率发送时支持 Short Preamble;
- ➤ 支持 HT-immediate Compressed Block Ack、Normal Ack、No Ack 应答方式;
- ➤ 支持 CTS to self:

- ▶ 支持 AP 功能;
- ▶ 支持作为 AP 和 STA 同时使用;
- ➤ 在 BSS 网络中,支持多个组播网络,并且 支持各个组播网络加密方式不同,最多可 以支持总和为32个的组播网络和入网 STA 加密;
- ▶ BSS 网络支持作为 AP 使用时,支持站点与组的总和为 32 个, IBSS 网络中支持 16 个站点;
- ▶ 接收灵敏度:
 - 20MHz MCS7@-71dBm;
 - 40MHz MCS7@-68dBm;
 - 54Mbps@-73dBm;
 - 11Mbps@-86dBm;
 - 1Mbps@-95dBm;
- ▶ 允许的载波频率偏差: 50ppm;
- ▶ 允许的采样频率偏差: 50ppm;
- ▶ 支持不同加密模式 STA 通信;
- ▶ 支持多种不同的接收帧过滤选项;
- ▶ 支持监听功能。
- 供电与功耗
 - ➤ 3.3V 单电源供电;
 - ➤ 支持 PS-Pol1、U-APSD 功耗管理;
 - ➤ SoC 芯片待机电流小于 10uA。

2 概述

本芯片是一款支持多接口、多协议的无线局域网 IEEE802.11n (1T1R) 的 SoC 芯片。适用于智能家电、智能家居、无线音视频、智能玩具、医疗监护、工业控制等物联网应用领域。

3 芯片特点

该 SoC 芯片集成 Cortex-M3 内核,内置 Flash,集成射频收发前端 RF Transceiver,CMOS PA 功率放大器,基带处理器/媒体访问控制,支持 SDIO、SPI、UART、GPIO、I²C、PWM、I²S、7816 等接口,支持多种加解密协议,如 PRNG/SHA1/MD5/RC4/DES/3DES/AES/CRC/RSA等。

4 芯片结构

图 4-1 W600 芯片结构图

5 地址空间划分

表 5-1 总线设备地址空间详细划分

总线从设备	BootMode=0	BootMode=1	地址空间细分	备注
ROM	0x00000000 ~ 0x0003FFFF	0x1FF00000 ~ 0x1FF3FFFF		存放固化的固件代码
FLASH	0x08000000 ~ 0x081FFFFF	0x00000000 ~ 0x001FFFFF		作为专用的指令存储器
SRAM	0x20000000 ~ 0x20027FFF	0x20000000 ~ 0x20027FFF		固件内存区
MAC RAM	0x20028000 ~ 0x20047FFF	0x20028000 ~ 0x20047FFF		SDIO/H_SPI/UART 数据缓存
			0x40000000 ~ 0x400001FF	SDIO 配置空间
	4 A		0x40000200 ~ 0x400002FF	SPI 配置空间
			0x40000300 ~ 0x400003FF	SDIO Wrapper 配置空间
			0x40000400 ~ 0x400005FF	DMA 配置空间
	7		0x40000600 ~ 0x400006FF	PMU 配置空间
	0400000000 %	0400000000 %	0x40000700 ~ 0x400007FF	Clock 与 Reset 配置空间
CONFIG	0x40000000 ~ 0x40001FFF		0x40000800 ~ 0x400009FF	
			0x40000A00 ~ 0x400013FF	
			0x40001400 ~ 0x400017FF	
			0x40001800 ~ 0x40001FFF	
			0x40002000 ~ 0x400021FF	FLASH Controller 配置空间
	•		0x40002200 ~ 0x400028FF	RSA 配置空间
			0x40003200 ~ 0x400033FF	GPSEC 配置空间
			0x40010000 ~ 0x400101FF	I ² C Master
			0x40010200 ~ 0x400103FF	
			0x40010400 ~ 0x400107FF	SPI Master
APB	0x40010000 ~	0x40010000 ~	0x40010800 ~ 0x400109FF	UARTO
AI D	0x4003C000	0x4003C000	0x40010A00 ~ 0x40010BFF	UART1
			0x40010C00 ~ 0x40010DFF	GPIOA
			0x40010E00 ~ 0x40010FFF	Timer
			0x40011000 ~ 0x400111FF	WDOG

0x40011200 ~ 0x400113FF	GPIOB
0x40011400 ~ 0x400115FF	
0x40011600 ~ 0x400117FF	
0x40011800 ~ 0x400119FF	PWM
0x40011A00 ~ 0x40011BFF	I ² S
0x40011C00 ~ 0x40011DFF	7816/UART2
0x40014000 ~ 0x4000BFFF	
0x4001C000 ~ 0x4003BFFF	
0x40013C00 ~ 0x5FFFFFF	RSV

6 功能描述

6.1 SDIO 设备控制器

SDIO2.0 设备端接口,完成与主机数据的交互。内部集成 1024Byte 的异步 FIFO,完成主机与芯片的数据交互。

- 兼容 SDIO 卡规范 2.0
- 支持主机速率 0~50MHz
- 支持最大 1024 字节的 Block
- 支持软复位功能
- 支持 SPI、1 比特 SD 和 4 比特 SD 模式

6.2 高速 SPI 设备控制器

兼容通用 SPI 物理层协议,通过约定与主机交互的数据格式,主机对设备的高速访问,最高支持工作频率为 50Mbps。

- 兼容通用 SPI 协议;
- 可选择的电平中断信号;
- 最高支持 50Mbps 速率;
- 简单的帧格式,全硬件解析与 DMA;

6.3 DMA 控制器

最多支持8通道,16个DMA请求源,支持链表结构与寄存器控制。

- Amba2.0 标准总线接口, 8 路 DMA 通道;
- 支持基于存储器链表结构的 DMA 操作;
- 软件配置 16 个硬件请求源:
- 支持 1, 4-burst 操作模式;
- 支持 byte、half-word, word 操作;
- 源、目的地址不变或顺序递增可配置或在预定义地址范围内循环操作;

● 同步 DMA 请求和 DMA 响应硬件接口时序;

6.4 时钟与复位

支持芯片时钟和复位系统的控制,时钟控制包括时钟变频,时钟关断以及自适应门控;复位控制包括系统以及子模块的软复位控制。

6.5 内存管理器

支持发送接收缓存大小的配置,以及 MAC 访问缓存的基址,缓存个数,帧聚合上限等控制信息。

6.6 数字基带

支持 IEEE802.11a/b/g/e/n(1T1R)发射和接收机算法实现,主要参数:

- 数据速率: 1~54Mpbs (802.11a/b/g), 6.5~150Mbps(802.11n);
- MCS 格式: MCS0~MCS7, MCS32(40MHz HT Duplicate 模式);
- 支持 40MHz 带宽 non-HT Duplicate 模式,6M~54M;
- 信号带宽: 20MHz, 40MHz;
- 调制方式: DSSS(DBPSK,DQPSK,CCK)和 OFDM(BPSK,QPSK,16QAM,64QAM);
- 实现 1T1R 的 MIMO-OFDM spatial multiplexing;
- 支持 Short GI 模式;
- 支持 legacy 模式与 Mixed 模式:
- 支持 40MHz 带宽下对 20M 上下边带信号的发射接收;
- 支持 MCS0~7、32 的 STBC 接收;
- 支持 Green Field 模式;

6.7 MAC 控制器

支持 IEEE802.11a/b/g/e/n MAC 子层的协议控制,具体规格包括:

- 支持 EDCA 信道接入方式;
- 支持 CSMA/CA, NAV 与 TXOP 保护机制;
- Beacon、Mng、VO、VI、BE、BK 五路发送队列与 QoS;
- 支持单、广组波帧接收发送;
- 支持 RTS/CTS,CTS2SELF,Normal ACK,No ACK 帧序列;
- 支持重传机制以及重传速率和功率控制;
- 支持 MPDU 硬件聚合解聚合与 Immediate BlockAck 模式;
- 支持 RIFS, SIFS, AIFS;
- 支持反向传输机制;
- 支持 TSF 计时,并且软件可配置;

● 支持 MIB 统计信息;

6.8 安全系统

支持 IEEE802.11a/b/g/e/n 协议规定的安全算法,配合完成发送接收数据帧的加解密。

- 满足加解密吞吐率大于 150Mbps;
- Amba2.0 标准总线接口;
- 支持 WAPI 安全模式 2.0:
- 支持 WEP 安全模式-64 位加密;
- 支持 WEP 安全模式-128 位加密;
- 支持 TKIP 安全模式;
- 支持 CCMP 安全模式:

6.9 FLASH 控制器

- 提供总线访问 FLASH 接口;
- 提供系统总线和数据总线访问仲裁;
- 实现 CACHE 缓存系统提高 FLASH 接口访问速度;
- 提供对不同 QFlash 的兼容性;

6.10 RSA 加密模块

RSA 运算硬件协处理器,提供 Montgomery(FIOS 算法)模乘运算功能。配合 RSA 软件库实现 RSA 算法。 支持 128 位到 2048 位模乘。

6.11 通用硬件加密模块

加密模块自动完成指定长度的源地址空间数据的加密,完成后自动将加密数据回写到指定的目的地址空间;支持 PRNG (Pseudo random Number Generator)/SHA1/MD5/RC4/DES/3DES/AES/CRC。

6.12 I²C 控制器

APB 总线协议标准接口, 只支持主设备控制器, I2C工作频率支持可配, 100K—400K。

6.13 主/从 SPI 控制器

支持同步的 SPI 主从功能。其工作时钟为系统内部总线时钟。其特点如下:

● 发送和接收通路各有 8 个字深度的 FIFO;

- master 支持 Motorola SPI 的 4 种格式(CPOL,CPHA),TI 时序,macrowire 时序;
- slave 支持支持 Motorola SPI 的 4 种格式 (CPOL, CPHA);
- 支持全双工和半双工:
- 主设备支持 bit 传输,最大支持 65535bit 传输;
- 从设备支持各种长度 byte 的传输模式;
- 从设备输入的 SPI_Clk 最大时钟频率为系统时钟的 1/6;

6.14 UART 控制器

- 设备端符合 APB 总线接口协议;
- 支持中断或轮询工作方式;
- 支持 DMA 传输模式,发送接收各存在 32-byte FIFO;
- 波特率可编程;
- 5-8bit 数据长度,以及 parity 极性可配置;
- 1 或 2 个 stop 位可配置;
- 支持 RTS/CTS 流控;
- 支持 Break 帧发送与接收;
- Overrun,parity error,frame error,rx break frame 中断指示;
- 最大 16-burst byte DMA 操作;

6.15 GPIO 控制器

48 位可配置的 GPIO、软件控制的输入输出、硬件控制的输入输出、可配置中断方式。 GPIOA 和 GPIOB 寄存器起始地址不同,但是功能一致。

6.16 定时器

微秒与毫秒计时(据时钟频率配置计数个数),实现六个可配置的32位计数器,当相应计算器配置的计数完成时,产生相应中断。

6.17 看门狗控制器

支持"看门狗"功能。观察软件形为的正确性及允许系统崩溃后进行全局复位。"看门狗"产生一个周期性的中断,系统软件必须响应这个中断,并清除中断标志;若由于系统崩溃中断标志很长时间没有被清除,则产生一个硬复位进行系统的全局复位。

6.18 射频配置器

实现了同步的 SPI 主功能。其工作时钟为系统内部总线时钟。其特点如下:

● 发送和接收通路各有 1 个字深度的 FIFO;

6.19 射频收发器

- 射频收发器部分包括功率放大器、发射通路、接收通路、锁相环以及 SPI 在内的模块。通过调整控制端口 SHDN, RXEN 和 TXEN 来改变芯片工作状态;
- 接收通路采用了零中频结构,直接将射频信号转换为基带 I、Q 两路输出。射频前端工作在 2.4GHz, 包含低噪放和正交混频器;基带由低通滤波器和可变增益放大器组成,实现信道滤波和增益控制; 驱动放大器为 ADC 接口提供不同的直流输出:
- 发射通路包含:可编程控制滤波器,上变频混频器,可变增益放大器和功放,发射通路也采用直接变频结构。DAC的输出信号经过低通滤波器,滤掉镜像频率及带外噪声。PA输出是差分输出驱动片外天线;

6.20 PWM 控制器

- 5 通道 PWM 信号生成功能;
- 2通道输入信号捕获功能 (PWM0 和 PWM4 两个通路);
- 频率范围: 3Hz~160KHz;;
- 占空比最大精度: 1/256, 插入死区的计数器宽度: 8bit;

6.21 I²S 控制器

- 支持 AMBA APB 总线接口,32bit single 读写操作:
- 支持主,从模式,可以双工工作;
- 支持 8/16/24/32 位宽,最高采样频率为 128KHz;
- 支持单声道和立体声模式;
- 兼容 I²S 和 MSB justified 数据格式, 兼容 PCM A/B 格式;
- 支持 DMA 请求读写操作。只支持按字操作。

6.22 7816/UART 控制器

- 设备端符合 APB 总线接口协议;
- 支持中断或轮询工作方式;
- 支持 DMA 传输模式,发送接收各存在 32-byte FIF0;
- DMA 只能按字节进行操作,最大 16-burst byte DMA 操作;

兼容 UART 以及 7816 接口功能:

串口功能:

- 波特率可编程;
- 5-8bit 数据长度,以及 parity 极性可配置;
- 1或2个 stop 位可配置;
- 支持 RTS/CTS 流控;
- 支持 Break 帧发送与接收;
- Overrun, parity error, frame error, rx break frame 中断指示; 7816接口功能:
- 兼容 ISO-7816-3 T=0. T=1 模式;

- 兼容 EVM2000 协议;
- 可配置 guard time (11 ETU-267 ETU);
- 正向/反向约定可软件配置;
- 支持发送/接收奇偶校验及重传功能;
- 支持 0.5 和 1.5 停止位配置;

7 管脚定义

表 7-1 管脚分配定义 (QFN32)

编号	名称	类型	复位后管脚功能	复用功能
1	WAKEUP	I	WAKEUP 唤醒功能	
2	RESET	I	RESET 复位	
3	XTAL_OUT	0	外部晶振输出	
4	XTAL_IN	1	外部晶振输入	
5	VDD33	P	芯片电源, 3.3V	
6	DVDD33	Р	数字电路电源, 3.3V	
7	VDD33LNA	P	LNA 电源,3.3V	
8	ANT	I/0	射频天线	
9	VDD33PA	P	PA 电源,3.3V	
10	VDD33ANA	Р	模拟电源, 3.3V	
11	EXT24K	I	串联 24K Ω +-1%精度电阻到地	
12	TEST	I	测试功能配置管脚	
13	BOOTMODE	I/0	BOOTMODE	PWM_0、GPIOPA_0
14	PA_1	I/0	Reserved	SIM_DATA、PWM_1、SPI(M/S)_CK、GPIOPA_1

15	PA_4	I/0	UARTO_TX	PWM_4、SPI(M/S)_DO、I2S_M_SCL、GPIOPA_4
16	VDD3310	Р	IO 电源,3.3V	
17	PA_5	I/0	UARTO_RX	PWM_0、SPI(M/S)_DI、I2S_M_EXTCLK、GPI0PA_5
18	PB_13	I/0	PWM_1	I ² C_SCL、SDIO_CMD、GPIOPB_13
19	PB_14	I/0	H_SPI_INT	PWM_4、I ² C_DAT、I ² S_S_SDA、GPIOPB_14
20	PB_15	I/0	H_SPI_CS	PWM_3、SPI(M/S)_CS、I ² S_S_SCL、GPIOPB_15
21	PB_16	1/0	H_SPI_CK	PWM_2、SPI(M/S)_CK、I2S_S_RL、GPIOPB_16
22	PB_17	I/0	H_SPI_DI	PWM_1、SPI(M/S)_DI、UART1_RX、GPIOPB_17
23	PB_18	I/0	H_SPI_DO	PWM_0、SPI(M/S)_DO、UART1_TX、GPIOPB_18
24	CAP	I	外接电容,1岬	
25	VDD3310	Р	IO 电源,3.3V	1 1
26	PB_6	I/0	Reserved	SWDAT, UARTO_RX, PWM_3, SIM_CLK, GPIOPB_6
27	PB_7	I/0	Reserved	SWCK, UARTO_TX, SD10_CMD, SPI(M/S)_CS, GPIOPB_7
28	PB_8	I/0	PWM_4	H_SPI_CK、SDIO_CK、I2S_M_SCL、GPIOPB_8
29	PB_9	I/0	UART1_CTS	H_SPI_INT、SDIO_DATO、I2S_M_SDA、GPIOPB_9
30	PB_10	I/0	UART1_RTS	H_SPI_CS、SDIO_DAT1、I2S_M_RL、GPIOPB_10
31	PB_11	I/0	UART1_RX	H_SPI_DI、SDIO_DAT2、I2C_SCL、GPIOPB_11
32	PB_12	I/0	UART1_TX	H SPI_DO、SDIO_DAT3、I2C_DAT、GPIOPB_12
33	GND	Р	接地	

注: 1. I = 输入, 0 = 输出, P = 电源

8 电气特性

8.1 极限参数

表 8-1 极限参数

参数	名称	最小值	典型值	最大值	单位
供电电压	VDD	3.0	3.3	3.6	V
输入逻辑电平低	V_{IL}	-0.3		0.8	V
输入逻辑电平高	V_{IH}	2.0		VDD+0.3	V
输入引脚电容	C_pad			2	pF
输出逻辑电平低	V_{OL}			0.4	V
输出逻辑电平高	V _{OH}	2.4			V
输出最大驱动能力	I _{MAX}			12	mA
存储温度范围	T_{STR}	-40℃		+125℃	$^{\circ}\!\mathbb{C}$
工作温度范围	T_OPR	-40°C		+85℃	$^{\circ}\!\mathbb{C}$

8.2 射频功耗参数

表 8-2 射频功耗参数

模式	典型值	单位
发送 IEEE802.11b, CCK 11Mbps,	230	mA
POUT = +19 dBm	230	IIIA
发送 IEEE802.11g, OFDM 54Mbps,	210	m 1
POUT = +13.5 dBm	210	mA
发送 IEEE802.11n, OFDM MCS7,	210	т Л
POUT = +12dBm	210	mA
接收 IEEE802.11b/g/n	100-110	mA

8.3 Wi-Fi 射频

Wi-Fi 射频参数

参数	典型值	单位
输入频率	2.4G~2.4835	GHz
	输出功率	
72.2 Mbps PA 输出功率	12	dBm
11b 模式 PA 输出功率	19	dBm
	灵敏度	
DSSS, 1 Mbps	-95	dBm
CCK, 11 Mbps	-86	dBm
OFDM, 6 Mbps	-89	dBm

OFDM, 54 Mbps	-73	dBm
HT20, MCS0	-89	dBm
HT20, MCS7	-71	dBm
HT40, MCS0	-85	dBm
HT40, MCS7	-68	dBm
	邻道抑制	
OFDM, 6 Mbps	32	dB
OFDM, 54 Mbps	15	dB
HT20, MCS0	29	dB
HT20, MCS7	10	dB

封装信息

D2 Nd

TOP VIEW A1

图 9-1 W600 封装参数

表 9-1 W600 封装参数表

	表 9-1	(衣			
CVMDOI	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
_	0.70	0.75	0.80		
A	0.80	0.85	0. 90		
A1	0.00	0.02	0.05		
b	0. 20	0. 25	0.30		
b1	0. 16REF				
С	0. 18	0. 20	0. 25		
D	4. 90	5. 00	5. 10		
D2	3. 70	3.80	3. 90		
е	0. 50BSC				
Ne	3. 50BSC				
Nd	3. 50BSC				
Е	4. 90	5. 00	5. 10		

E2	3. 70	3.80	3. 90
L	0. 25	0.30	0. 35
h	0.30	0.35	0. 40
L/F 载体 尺寸	4. 10x4. 10		

10 产品型号定义

图 10-1 芯片型号命名参考

举例:

● 内置 1MByte Flash 型号: W600-A800 ● 内置 2MByte Flash 型号: W600-BA00