Bin packing problem

with Lower and Upper Bound Capacity
Constraint

Class ID: 144217

Lecturer: Mr. Pham Quang Dung

OUR GROUP MEMBERS

Vu Hoang Nhat Anh

Phan Tran Viet Bach

Chu Trung Anh

Tran Nam Tuan Vuong

Table of contents

The bin packing problem is an optimization problem in which items of different sizes must be packed into a finite number of bins or containers, each having a fixed given capacity, in a way that optimizes the problem depending on the desired outcome.

The goal in this case:

- 1) An "item" is packed to at most 1 "bin";
- 2) Each "bin" must meet the requirements of loaded quantities: a lower bound & an upper bound;
- 3) The profit gained from "packed items" is maximal.

30kg, 70kg, 40kg, 50kg

K vehicles

> N orders

N orders

K vehicles

> N orders

K vehicles ("bins")

Capacity bounds: lower bound c_1 and upper bound c_2

N orders ("items")

Quantity (weight) w and cost (profit) p

Modelling the problem

$$c_1(j)$$
: lower bound for capacity of j^{th} vehicle

$$c_2(j)$$
: upper bound for capacity of j^{th} vehicle

$$p(i)$$
: profit of i^{th} order

$$\mathbf{w}(i)$$
: weight of i^{th} order

Decision variable:

$$X(i,j)$$
: a binary variable

$$X(i,j) = \begin{cases} 1, if \ i^{th} \ order \ is \ served \ by \ j^{th} \ vehicle \\ 0, otherwise \end{cases}$$

I. Problem description Modelling the problem

Constraints

• Each order is served by at most one vehicle:

$$\forall i = 1, 2, ..., N: \sum_{j=1}^{K} X(i, j) \leq 1$$

 Total weight of orders served by a vehicle must be between the low-bound and up-bound of capacity of that vehicle:

$$\forall j = 1, 2, ..., K: c_1(j) \le \sum_{i=1}^{N} X(i, j) \times w(i) \le c_2(j)$$

I. Problem description Modelling the problem

Objective

Maximize total profit of served orders:

$$\sum_{j=1}^{K} \sum_{i=1}^{N} X(i,j) \times p(i) \to max$$

II. Algorithms

1. Solve exactly

- Integer Linear Programming (ILP)
- Constraint Programming (CP)

2. Handle larger cases

- "Greedy" assigning method
- Local search algorithm for completion

Algorithm 1 Integer Linear Programming

Import the library

```
from ortools.linear_solver import pywraplp
```

Get input data

```
n, k, Orders, Vehicles = GetInput()
```

Create an ILP solver

```
solver = pywraplp.Solver.CreateSolver('SCIP')
```

Get input data

```
def GetInput():
  n, k = map(int, input().split()) # n orders and k vehicles
  Orders = []
 Vehicles = []
  for i in range(n):
   w, p = map(int, input().split()) # weight and profit of
   Orders.append((w, p))
                                # each order
  for i in range(k):
    low, up = map(int, input().split()) # lower & upper bound
   Vehicles.append((low, up))
                               # for each vehicle
  return n, k, Orders, Vehicles
```

Create decision variables

```
X = {}
for i in range(n):
   for j in range(k):
    X[i, j] = solver.IntVar(0, 1, X['+ str(i) + ',' + str(j) + ']')
```

$$X(i,j): \text{a binary variable}$$

$$X(i,j) = \begin{cases} 1, & \text{if } i^{th} \text{ order is served by } j^{th} \text{ vehicle} \\ & 0, & \text{otherwise} \end{cases}$$

Add constraints

```
for i in range(n):
  c1 = solver.Constraint(0, 1) # an order is not served
                      # or served by 1 vehicle
  for j in range(k):
    c1.SetCoefficient(X[i, j], 1)
for j in range(k):
  c2 = solver.Constraint(Vehicles[j][0], Vehicles[j][1])
  for i in range(n):
                                            # total weight loaded
    c2.SetCoefficient(X[i, j], Orders[i][0]) # satisfies constraints
```

Add objective function and call the solver

```
objective = solver.Objective()
for j in range(k):
   for i in range(n):
     objective.SetCoefficient(X[i, j], Orders[i][1])
objective.SetMaximization()
status = solver.Solve()
```

Get results

```
if status == pywraplp.Solver.OPTIMAL:
 print(objective.Value()) # value of objective function
                 # counter of served orders
 order count = 0
               # pairs of (order, vehicle)
 solution = []
 for j in range(k):
   for i in range(n):
     if X[i, j].solution_value() == 1: # order i served
       order count += 1
                              # by vehicle j
       solution.append((i+1, j+1))
 print(order_count)
 for order in solution:
   print(*order)
```

Algorithm 2 Constraint Programming

Import the library

```
from ortools.sat.python import cp_model
```

Input data

```
number_of_orders, number_of_vehicles = map(int,stdin.readline().split())
Orders = []
for i in range(number_of_orders):
    quantity, cost = map(int, stdin.readline().split())
    Orders.append(Order(i, quantity, cost))
Vehicles = []
for i in range(number_of_vehicles):
    low_capacity, up_capacity = map(int, stdin.readline().split())
    Vehicles.append(Vehicle(i, low_capacity, up_capacity))
```

Class generation

```
class Order:
   def __init__(self, order_id, quantity, cost):
       self.order_id = order_id
       self.quantity = quantity
       self.cost = cost
class Vehicle:
   def __init__(self, vehicle_id, low_capacity,up_capacity):
       self.vehicle_id = vehicle_id
       self.low_capacity = low_capacity
       self.up_capacity = up_capacity
       self.orders_vehicle_carry = []
       self.total_quantity = 0
```

Model creation

```
model = cp_model.CpModel()
x = {(i, j): model.NewBoolVar(f'x_{i}_{j}') for i in range(N)
    for j in range(K)}
```

Constraints

```
for i in range(N):
    model.Add(sum(x[(i, j)] for j in range(K)) <= 1)

for j in range(K):
    quantity_sum = sum(orders[i].quantity * x[(i, j)] for i in range(N))
    model.Add(quantity_sum >= vehicles[j].low_capacity)
    model.Add(quantity_sum <= vehicles[j].up_capacity)</pre>
```

Define the objective

```
model.Maximize(sum(orders[i].cost * x[(i, j)] for i in range(N) for j in range(K)))
```

Create a solver

```
solver = cp_model.CpSolver()
status = solver.Solve(model)
```

Solve the function

```
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
    #print out the number of order were served
   m = 0
    for i in range(N):
        for j in range(K):
            if solver.Value(x[i,j]) > 0:
                m+=1
    stdout.write(str(m)+'\n')
    for i in range(N):
        for j in range(K):
            if solver.Value(x[i,j]) > 0:
                stdout.write(str(i+1) + ' ' + str(j+1)+'\n')
    stdout.write(f'Total cost: {solver.ObjectiveValue()}\n')
```

Algorithm 3 Greedy Algorithm

Random method

- Ignore constraints and randomly assign orders to vehicles
- Fast; creates an initial solution (for later use)

```
X = [-1 for i in range(N)]  # Decision variable
for i in range(N):  # X[i] = j: order i served
   X[i] = random.randint(0,K-1) # by vehicle j
   # X[i] = -1 if order is not served
```

- Assign orders to vehicles sequentially to satisfy problem
- Sort orders and vehicles to support assigning process
- Easy constraint: always obey upper bound of capacity
- 2 approaches:
 - Satisfy capacity constraints (Greedy 1)
 - Maximize profit (Greedy 2)

Satisfy capacity constraints

- Satisfy as much capacity lower bounds as possible
- Strategy:
 - Sort vehicles decreasingly by capacity lower bounds
 - Sort orders decreasingly by weight
 - For each vehicle, check for orders in order list
 - If vehicle's low-bound is satisfied -> move to next vehicle

Satisfy capacity constraints

Satisfy capacity constraints

We use 2 arrays to check for feasibility of orders and vehicles:

```
load = [0 for j in range(k)]  # load of vehicles
is_served = [False for i in range(n)] # an order is served or not
```

and an array to store results:

```
assignments = []
```

Satisfy capacity constraints

```
for j in range(k):
  vehicle_pos, cur_vehicle = sorted_vehicles[j]
  for i in range(n):
    if load[vehicle_pos] >= Vehicles[vehicle_pos][0]:
      break
  order_pos, cur_order = sorted_orders[i]
  if is_served[order_pos]:
    continue
```

Satisfy capacity constraints

```
if load[vehicle_pos] + cur_order[0] <= Vehicles[vehicle_pos][1]:
    is_served[order_pos] = True
    load[vehicle_pos] += cur_order[0]
    assignments.append((order_pos, vehicle_pos))</pre>
```

Results for unassigned orders:

```
for i in range(n):
   if not is_served[i]:
     assignments.append((i, -1)) # mark unassigned orders with -1
```

Satisfy capacity constraints

- Runs through each vehicle once, for each vehicle runs through all orders once
 O(n*k) -> fast
- Not feasible solution: Usually "smallest" vehicles are still underload
- Example: For a test case of 300 orders and 10 vehicles:

Vehicle 0: Load:789; lower bound:789 Vehicle 1: Load:1194; lower bound:1187 Vehicle 2: Load:778; lower bound:773 Vehicle 3: Load:1006; lower bound:1001

Vehicle 4: Load:694; lower bound:691

Vehicle 5: Load:585; lower bound:596 Vehicle 6: Load:622; lower bound:617 Vehicle 7: Load:728; lower bound:725

Vehicle 8: Load:938; lower bound:934

Vehicle 9: Load:886; lower bound:884

- Prioritize orders with higher profit
- Strategy:
 - Sort vehicles increasingly by capacity upper bounds
 - Sort orders decreasingly by cost
 - For each order, attempt to load to a vehicle

```
# Sort orders by cost in descending order
 sorted orders = sorted(enumerate(orders, 1), key=lambda x: -x[1][1])
# Sort vehicles by upper capacity in ascending order
 sorted vehicles = sorted(enumerate(vehicles, 1), key=lambda x: x[1][1])
 assignments = []
 remaining_capacity = [(capacity[0], capacity[1], i) for i, capacity in
                       sorted vehicles
```

```
for order count, (quantity, cost) in sorted orders:
 assigned = False
 for i, (lower_bound, upper_bound, vehicle_count) in enumerate(remaining_capacity):
  if quantity <= upper bound:</pre>
   assignments.append((order_count, vehicle_count))
   remaining_capacity[i] = (lower_bound-quantity, upper_bound-quantity, vehicle_count)
   assigned = True
   break
  if not assigned:
   assignments.append((order count, 0)) # Mark as not served
```

- More optimal result compared to first strategy
- Still remains underload vehicle(s)

- => Require methods to complete the solution
- => Local Search strategy

Algorithm 4 Local Search Algorithm

Initial Solution

- 1. Randomly assign orders to vehicles
- 2. Greedy algorithm (2)

Results of test cases 8, 9, 10

	Random algorithm	Greedy algorithm(2)		
Time	29.1 sec.(total)	0.38 sec.(total)		
Good move	742/969/1012	55/68/79		
Bad move	48/62/65	2/3/5		

Violation

```
violation = 0
[violation := violation + 1 for v in range(k) if\
sum_quant[v] > upper(v) or sum_quant[v] < lower(v)]</pre>
```

Idea of Local Move


```
def range_change(v):
    # The range that total load a vehicle can change
    return (lower(v) - sum_quant[v], upper(v) - sum_quant[v])

def can_go(v):
    #Check whether a vehicle can go: total load satisfied
    return range_change(v)[0] * range_change(v)[1] <= 0</pre>
```



```
def can_trade(v1,v2):
    # Check whether 2 vehicles are suitable for the local move
    if can_go(v1) and can_go(v2):
        return False
    if range_change(v1)[0] * range_change(v2)[1] < 0 or\
        range_change(v1)[1] * range_change(v2)[0] < 0:
            return True
        return False

def choose_vehicles():
    # Randomly choose 2 vehicles which are suitable (can trade)</pre>
```



```
def accept_change(v1,v2):
    # Acceptable range total quantity change
    # (+:v1,-:v2)
    r1 = range_change(v1)
    r2 = (-range_change(v2)[1], -range_change(v2)[0])
    if r1[0] < 0 and r2[0] < 0:
        ans = (max(r1[0], r2[0]), -1)
    elif r1[1] > 0 and r2[1] > 0:
        ans = (1, min(r1[1], r2[1]))
    return ans
```



```
orders.append([0, 0]) # index-n
def choose_orders(v1, v2, accept_change):
 # Choose 2 sets of orders of each vehicle to trade
 candidate_v1 = [n]
  [candidate_v1.append(o) for o in range(n) if X[o] == v1]
 candidate v2 = [n]
  [candidate_v2.append(o) for o in range(n) if X[o] == v2]
 for i in candidate_v1:
   for j in candidate_v2:
        if -quant(i) + quant(j) in\
        range(accept_change[0], accept_change[1]+1):
            return i, j, -quant(i)+quant(j)
```

Propagation

```
ans = choose_orders(v1, v2, ac)
if ans != None:
   pre_v1, pre_v2 = can_go(v1), can_go(v2)
   if ans[0] != n:
       X[ans[0]] = v2
    if ans[1] != n:
       X[ans[1]] = v1
    sum_quant[v1] += ans[2]
    sum_quant[v2] -= ans[2]
    if pre_v1 != can_go(v1):
       violation -= 1
    if pre_v2 != can_go(v2):
       violation -= 1
```

Results: Perfect

• Runtime: avg. of 10 tests, limit of 5 min.

• For large test cases:

Test Cases	ILP	СР	Greedy + Local Search		
			Random	Greedy 1	Greedy 2
N=300, K=10	0.95	0.14	0.031	0.0025	6*10^-4
N=500, K=50	97.53	1.71	1.6	0.081	0.027
N=800, K=80	N/A	4.96	7.3	33.53	0.11
N=900, K=90	N/A	170	10.2	42.83	0.16
N=1000, K=100	N/A	9.48	11.6	51.69	0.21

For small test cases:

Test Cases	ILP	СР	Greedy + Local Search		
			Random	Greedy 1	Greedy 2
N=5, K=2	0.0027	0.006	10^-4	3 * 10^-5	3 * 10^-5
N=10, K=2	0.0029	0.008	0.001	4 * 10^-5	4 * 10^-5
N=50, K=3	0.0051	0.021	0.003	8 * 10^-5	7 * 10^-5
N=100, K=5	0.013	0.056	0.004	6 * 10^-4	3 * 10^-4
N=200, K=10	0.48	0.19	0.016	0.0012	8 * 10^-4

III. Tests and Results Conclusion

- Integer Linear Programming & Constraint Programming:
 - Provide exact results; long runtime, especially for large cases
 - For large cases, ILP has significantly longer runtime than CP
 - => CP is more suitable for solving this problem
- Greedy algorithms with Local Search:
 - Greedy algorithms provide quick assignments; cannot satisfy all constraints
 - Local search: Faster than ILP & CP; give perfect results with given testcases.
 - Works best with "Greedy 2": Prioritizing orders with higher profit & vehicles with smaller up-bound capacity

Conclusion

- Drawbacks of local search:
 - Does not work when the difference between order quantites is too big.
 - Stop when all vehicles can go.
 - Not able to reduce sum of quantity of a vehicle whose sum of quantity is smaller than its lower bound.

