Introduction to Group Theory

Carson James

1

Contents

N	tion	
P	reface	1
1	Prelimiaries 1.1 Category Theory	
2	Representation Theory 2.1 Group Representations	5
3	Groupoids	13

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Prelimiaries

1.1 Category Theory

- Hilb:
 - $\text{ Obj}(\mathbf{Hilb}) = \{H : H \text{ is a Hilbert space}\}\$
 - $\operatorname{Hom}_{\mathbf{Hilb}}(H_1, H_2) = \{ T \in \mathbf{Vect}_{\mathbb{C}}(H_1, H_2) : T \text{ is continuous} \}$
- Mon

1.1.1 The Unitary Group

Definition 1.1.1.1. Let $H_1, H_2 \in \text{Obj}(\mathbf{Hilb})$. We define the unitary group from H_1 to H_2 , denoted $U(H_1, H_2)$, by

$$U(H_1, H_2) = \{ T \in \text{Iso}_{\mathbf{Hilb}}(H_1, H_2) : T^* = T^{-1} \}$$

We write U(H) in place of U(H,H). We equip $U(H_1,H_2)$ with the strong operator topology.

Exercise 1.1.1.2. Let $H \in \text{Obj}(\mathbf{Hilb})$. Then $\mathcal{T}^s_{U(H)} = \mathcal{T}^w_{U(H)}$. strong weak operator topologies coincide

Exercise 1.1.1.3. Let $H \in \text{Obj}(\text{Hilb})$. Then U(H) is a topological group.

Proof. content...

Chapter 2

Representation Theory

2.1 Group Representations

2.1.1 Unitary representations

Definition 2.1.1.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $H \in \text{Obj}(\mathbf{Hilb})$ and $\pi \in \text{Hom}_{\mathbf{TopGrp}}(G, U(H))$. Then (H, π) is said to be a **unitary representation of** G. We define the **dimension of** (H, π) , denoted $\dim(H, \pi)$, by $\dim(H, \pi) := \dim V$.

Definition 2.1.1.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$, (H_{π}, π) , (H_{ρ}, ρ) unitary representations of G and $T \in \text{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho})$. Then T is said to be (π, ρ) -equivariant if for each $g \in G$, $T \circ \pi(g) = \rho(g) \circ T$, i.e. the following diagram commutes:

$$\begin{array}{ccc} H_{\pi} & \xrightarrow{T} & H_{\rho} \\ \pi(g) \Big\downarrow & & & \downarrow \rho(g) \\ H_{\pi} & \xrightarrow{T} & H_{\rho} \end{array}$$

Definition 2.1.1.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$. We define $\mathbf{URep}(G)$ by

- Obj(URep(G)) = { (H, π) : (H, π) is a unitary representation of G }.
- for $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \text{Obj}(\mathbf{URep}(G)),$

$$\operatorname{Hom}_{\mathbf{URep}(G)}((H_{\pi},\pi),(H_{\rho},\rho)) = \{T \in \operatorname{Hom}_{\mathbf{Hilb}}(H_{\pi},H_{\rho}) : T \text{ is } (\pi,\rho)\text{-equivariant}\}$$

• for $(H_{\pi}, \pi), (H_{\rho}, \rho), (H_{\mu}, \mu) \in \text{Obj}(\mathbf{URep}(G)), T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$ and $S \in \text{Hom}_{\mathbf{URep}(G)}((H_{\rho}, \rho), (H_{\mu}, \mu)),$

$$S \circ_{\mathbf{URep}(G)} T = S \circ T$$

Exercise 2.1.1.4. Let $G \in \text{Obj}(\mathbf{TopGrp})$. Then $\mathbf{URep}(G)$ is a category.

Definition 2.1.1.5. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \mathbf{URep}(G)$. Then (H_{π}, π) is said to be unitarily equivalent to (H_{ρ}, ρ) , denoted $(H_{\pi}, \pi) \equiv (H_{\rho}, \rho)$, if $\text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho)) \cap U(H_{\pi}, H_{\rho}) \neq \emptyset$.

Note 2.1.1.6. Let $\pi \in \text{Hom}_{\textbf{TopGrp}}(G, U(H))$. Since U(H) is equipped with the strong operator topology, we have that for each $u \in H$, the map $g \mapsto \pi(g)u$ is continuous.

Definition 2.1.1.7. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. We define the **induced group** action of G on H, denoted $\phi_{(H,\pi)} : G \times H \to H$, by

$$\phi_{(H,\pi)}(g,v) = \pi(g)v$$

Note 2.1.1.8. When the context is clear, we write $g \cdot v$ in place of $\phi_{(H,\pi)}(g,v)$.

Exercise 2.1.1.9. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then

- 1. $\phi_{(H,\pi)}$ is a linear group action.
- 2. G is locally compact implies that $\phi_{(H,\pi)}$ is continuous

Proof.

- 1. Let $g, h \in G$ and $v \in H$.
 - (a) Since $\pi \in \text{Hom}_{\mathbf{TopGrp}}(G, U(H))$,

$$e \cdot v = \pi(e)v$$
$$= id_H v$$
$$= v$$

(b) Since $\pi \in \operatorname{Hom}_{\mathbf{TopGrp}}(G, U(H))$,

$$g \cdot (h \cdot v) = \pi(g)[\pi(h)v]$$
$$= [\pi(g)\pi(h)]v$$
$$= \pi(gh)v$$
$$= (gh) \cdot v$$

Since $g, h \in G$ and $v \in H$ are arbitrary, $\phi_{(H,\pi)}$ is a group action of G on H.

• Let $g \in G$, $\lambda \in \mathbb{C}$ and $v, w \in H$. Then

$$g \cdot (\lambda v + w)$$

$$= \pi(g)(\lambda v + w)$$

$$= \lambda \pi(g)v + \pi(g)w$$

$$= \lambda g \cdot v + g \cdot w$$

Since $g \in G$, $\lambda \in \mathbb{C}$ and $v, w \in H$ are arbitrary, $\phi_{(H,\pi)}$ is a linear action.

2. Suppose that G is locally compact. Let $(g_0, v_0) \in G \times H$ and $\epsilon > 0$. Since G is locally compact, there exists $K \subset G$ such that $g_0 \in \text{Int } K$ and K is compact. Let $v \in H$. Define $f_v : G \to H$ by $f_v(g) = g \cdot v$. Since $\pi : G \to U(H)$ is continuous, f_v is continuous. Thus $||f_v||$ is continuous. Since K is compact, $||f_v||(K)$ is compact. Thus

$$\sup_{g \in K} \|g \cdot v\| = \sup_{g \in K} \|f_v(g)\|$$

Since $v \in H$ is arbitrary, we have that for each $v \in H$, $\sup_{g \in K} \|g \cdot v\| < \infty$. The uniform boundedness principle implies that there exists M > 0 such that $\sup_{g \in K} \|\pi(g)\| \leq M$. Since f_{v_0} is continuous, there exists $U \subset K$ such that U is open, $g_0 \in U$, and $f_{v_0}(U) \subset B(f_{v_0}(g_0), \epsilon/2)$. Let $(g_1, v_1) \in U \times B(v_0, (2M)^{-1}\epsilon)$. Then

$$\begin{aligned} \|\phi_{(H,\pi)}(g_0,v_0) - \phi_{(H,\pi)}(g_1,v_1)\| &= \|g_0 \cdot v_0 - g_1 \cdot v_1\| \\ &\leq \|g_0 \cdot v_0 - g_1 \cdot v_0\| + \|g_1 \cdot v_0 - g_1 \cdot v_1\| \\ &= \|f_{v_0}(g_0) - f_{v_0}(g_1)\| + \|\pi(g_1)(v_0 - v_1)\| \\ &\leq \|f_{v_0}(g_0) - f_{v_0}(g_1)\| + \|\pi(g_1)\|\|v_0 - v_1\| \\ &\leq \|f_{v_0}(g_0) - f_{v_0}(g_1)\| + M\|v_0 - v_1\| \\ &\leq \frac{\epsilon}{2} + M \frac{\epsilon}{2M} \\ &= \epsilon \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, we have that $\phi_{(H,\pi)}$ is continuous at (g_0, v_0) . Since $(g_0, v_0) \in G \times H$ is arbitrary, we have that $\phi_{(H,\pi)} : G \times H \to H$ is continuous.

2.1.2 Subrepresentations

Definition 2.1.2.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. Then E is said to be

- nontrivial if $E \neq H, \emptyset$
- (H, π) -invariant if for each $g \in G$, $\pi(g)(E) = E$

Definition 2.1.2.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $\mathbb{K} \in \text{Obj}(\mathbf{Field})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then

- (H, π) is said to be **reducible** if there exists a closed subspace $E \subset H$ such that E is not trivial and E is (H, π) -invariant
- (H,π) is said to be **irreducible** if (H,π) is not reducible.

Exercise 2.1.2.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. Suppose that E is (H, π) -invariant. Then for each $g \in G$, $\pi(g)|_{E} \in U(E)$.

Proof. Let $g \in G$. Since E is (H, π) -invariant, for each $g \in G$, $\pi(g)(E) = E$. Since $\pi(g) \in U(H)$, $\pi(g)|_{E} \in U(E)$.

Definition 2.1.2.4. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. Suppose that E is (H, π) -invariant.

- We define $\pi^E \in \operatorname{Hom}_{\mathbf{TopGrp}}(G,U(E))$ by $\pi^E(g) := \pi(g)|_E$
- We define the **restriction** (H,π) **to** E, denoted $(H,\pi)|_E$, by $(H,\pi)|_E := (E,\pi^E)$

Exercise 2.1.2.5. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace.

- 1. If E is nontrivial, then E^{\perp} is nontrivial.
- 2. If E is (H,π) -invariant, then E^{\perp} is (H,π) -invariant.

Proof.

- 1. Suppose that E is nontrivial. Then $E \neq \{0\}, H$. Then $E^{\perp} \neq \{0\}, H$. Thus E^{\perp} is nontrivial.
- 2. Suppose that E is (H, π) -invariant. Let $g \in G$. Since $\pi(g) \in U(H)$ and $\pi(g)(E) = E$, An exercise in the analysis notes section on Hilbert spaces implies that $\pi(g)(E^{\perp}) = E^{\perp}$. Since $g \in G$ is arbitrary, E^{\perp} is (H, π) -invariant.

Definition 2.1.2.6. Let $G \in \text{Obj}(\mathbf{TopGrp}), (H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $u \in H$. We define the **cyclic subspace of** H **generated by** u **under** (H, π) , denoted $\text{cyc}_{(H, \pi)}(u)$, by

$$\operatorname{cyc}_{(H,\pi)}(u) := \operatorname{cl}\operatorname{span}(\phi_{(H,\pi)}(G,u))$$

Note 2.1.2.7. When the context is clear, we write $\operatorname{cyc}(u)$ in place of $\operatorname{cyc}_{(H,\pi)}(u)$.

Exercise 2.1.2.8. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $u \in H$. Then cyc(u) is (H, π) -invariant, this should largely be a result about linear group actions.

Proof. Let $g \in G$. Since G acts linearly and homeomorphically on H,

$$g \cdot \operatorname{cyc}(u) = g \cdot \operatorname{cl} \operatorname{span}(G \cdot u)$$

$$= \operatorname{cl} g \cdot \operatorname{span}(G \cdot u)$$

$$= \operatorname{cl} \operatorname{span}[g \cdot (G \cdot u)]$$

$$= \operatorname{cl} \operatorname{span}(G \cdot u)$$

$$= \operatorname{cyc}(u)$$

Since $g \in G$ is arbitrary, $\operatorname{cyc}(u)$ is G-invariant.

Definition 2.1.2.9. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$.

- Let $u \in H$. Then u is said to be (H, π) -cyclic if $\operatorname{cyc}(u) = H$.
- Then (H,π) is said to be **cyclic** if there exists $u \in H$ such that u is (H,π) -cyclic.

2.1.3 Direct Sum of Representations

Definition 2.1.3.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H_{\alpha}, \pi_{\alpha})_{\alpha \in A} \subset \text{Obj}(\mathbf{URep}(G))$.

• We define $\bigoplus_{\alpha \in A} \pi_{\alpha} \in \operatorname{Hom}_{\mathbf{TopGrp}}(G, U(\bigoplus_{\alpha \in A} H_{\alpha}))$ by

$$\left[\bigoplus_{\alpha\in A}\pi_{\alpha}\right](g) = \bigoplus_{\alpha\in A}\pi_{\alpha}(g)$$

• We define the **direct sum** of $(H_{\alpha}, \pi_{\alpha})_{\alpha \in A}$, denoted $\bigoplus_{\alpha \in A} (H_{\alpha}, \pi_{\alpha})$, by

$$\bigoplus_{\alpha \in A} (H_{\alpha}, \pi_{\alpha}) = \left(\bigoplus_{\alpha \in A} H_{\alpha}, \bigoplus_{\alpha \in A} \pi_{\alpha}\right)$$

Note 2.1.3.2. FINISH!!! the last definition works for internal or external direct sum, just need to define inner or external sum of H_{α} and π_{α} in either case.

Exercise 2.1.3.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$, $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $E \subset H$ a closed subspace. If E is nontrivial and (H, π) -invariant, then $(H, \pi) = (E \oplus E^{\perp}, \pi^E \oplus \pi^{E^{\perp}})$.

Proof. Suppose that E is nontrivial and (H, π) -invariant. A previous exercise implies that E^{\perp} is nontrivial and (H, π) -invariant. It is clear that $H = E \oplus E^{\perp}$. Let $g \in G$ and $u \in H$. Since $H = E \oplus E^{\perp}$, there exists $v \in E$ and $w \in E^{\perp}$ such that u = v + w. Then

$$\pi(g)(u) = \pi(g)(v + w)$$

$$= \pi(g)(v) + \pi(g)(w)$$

$$= \pi(g)|_{E}(v) + \pi(g)|_{E^{\perp}}(w)$$

$$= \pi^{E}(g)(v) + \pi^{E^{\perp}}(g)(w)$$

$$= [\pi^{E}(g) \oplus \pi^{E}(g)](v + w)$$

$$= [\pi^{E} \oplus \pi^{E}](g)(v + w)$$

$$= [\pi^{E} \oplus \pi^{E}](g)(u)$$

Since $u \in H$ is arbitrary, $\pi(g) = [\pi^E \oplus \pi^E](g)$. Since $g \in G$ is arbitrary, $\pi = \pi^E \oplus \pi^E$.

Definition 2.1.3.4. Let $G \in \text{Obj}(\mathbf{TopGrp}), (H, \pi) \in \text{Obj}(\mathbf{URep}(G))$ and $\mathcal{E} \subset \mathcal{P}(H)$. Then \mathcal{E} is said to be an (H, π) -orthocyclic system if for each $E, F \in \mathcal{E}$,

- 1. E is a closed subspace of H
- 2. $(H,\pi)|_E$ is cyclic
- 3. if $E \neq F$, then $E \perp F$

Exercise 2.1.3.5. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then there exists $(H_{\alpha}, \pi_{\alpha})_{\alpha \in A} \subset \text{Obj}(\mathbf{URep}(G))$ such that for each $\alpha \in A$, $(H_{\alpha}, \pi_{\alpha})$ is cyclic and $(H, \pi) = \bigoplus_{\alpha \in A} (H_{\alpha}, \pi_{\alpha})$.

Hint: Zorn's lemma

Proof. Define $\mathcal{P} = \{\mathcal{E} : \mathcal{E} \text{ is an } (H, \pi)\text{-orthocyclic system}\}$. We partially order \mathcal{P} by inclusion. Let $\mathcal{C} \subset \mathcal{P}$ be a chain. Set $\mathcal{E}_0 = \bigcup_{\mathcal{E} \in \mathcal{C}} \mathcal{E}$. Let $E_1, E_2 \in \mathcal{E}_0$. Then there exist $\mathcal{E}_1, \mathcal{E}_2 \in \mathcal{C}$ such that $E_1 \in \mathcal{E}_1$ and $E_2 \in \mathcal{E}_2$. Since \mathcal{C} is a chain, $\mathcal{E}_1 \subset \mathcal{E}_2$ or $\mathcal{E}_2 \subset \mathcal{E}_1$.

Suppose that $\mathcal{E}_1 \subset \mathcal{E}_2$. Then $E_1 \in \mathcal{E}_2$. Since \mathcal{E}_2 is an (H, π) -orthocyclic system, we have that E_1 is a closed subspaces of H, $(H, \pi)|_{E_1}$ is cyclic and if $E_1 \neq E_2$, then $E_1 \perp E_2$. Similarly, $\mathcal{E}_2 \subset \mathcal{E}_1$ implies the same conclusion. Since $E_1, E_2 \in \mathcal{E}_0$ are arbitrary, we have that for each $E_1, E_2 \in \mathcal{E}_0$

- 1. E_1 is a closed subspaces of H and E_1 is (H, π) -invariant
- 2. $(H,\pi)|_{E_1}$ is cyclic
- 3. if $E_1 \neq E_2$, then $E_1 \perp E_2$

Thus \mathcal{E}_0 is an (H, π) -orthocyclic system. Hence $\mathcal{E}_0 \in \mathcal{P}$. By construction, for each $\mathcal{E} \in \mathcal{C}$, $\mathcal{E} \subset \mathcal{E}_0$. So \mathcal{E}_0 is an upper bound of \mathcal{C} . Since $\mathcal{C} \subset \mathcal{P}$ such that \mathcal{C} is a chain is arbitrary, we have that for each $\mathcal{C} \subset \mathcal{P}$, if \mathcal{C} is a chain, then there exists $\mathcal{E}_0 \in \mathcal{P}$ such that \mathcal{E}_0 is an upper bound of \mathcal{C} . Zorn's lemma implies that there exists $\mathcal{E} \in \mathcal{P}$ such that \mathcal{E} is maximal. Set $E = \bigoplus_{E_0 \in \mathcal{E}} E_0$. For the sake of contradiction, suppose that $H \neq E$.

Then $E^{\perp} \neq \{0\}$. Thus there exists $u \in E^{\perp}$ such that $u \neq 0$. Therefore $\operatorname{cyc}(u) \neq 0$ and $\operatorname{cyc}(u) \subset E^{\perp}$. Let $E_0 \in \mathcal{E}$. By construction, $E_0 \subset E$. Thus

$$\operatorname{cyc}(u) \subset E^{\perp}$$
$$\subset E_0^{\perp}$$

Since $E_0 \in \mathcal{E}$ is arbitrary, we have that for each $E_0 \in \mathcal{E}$, $\operatorname{cyc}(u) \subset E_0^{\perp}$. Set $\mathcal{E}' = \mathcal{E} \cup \{\operatorname{cyc}(u)\}$. Then for each $E, F \in \mathcal{E}'$,

- 1. E is a closed subspaces of H and E is (H, π) -invariant
- 2. $(H,\pi)|_E$ is cyclic
- 3. if $E \neq F$, then $E \perp F$

Hence $\mathcal{E}' \in \mathcal{P}$. Since $\mathcal{E} \subset \mathcal{E}'$ and \mathcal{E}

2.2 Tannaka Duality

Definition 2.2.0.1. Let $G \in \text{Obj}(\mathbf{TopGrp})$. We define the **forgetful functor from URep**(G) **to Hilb**, denoted $U : \mathbf{URep}(G) \to \mathbf{Hilb}$, by

- $U(H,\pi) = H$, $(H,\pi) \in \text{Obj}(\mathbf{URep}(G))$
- U(T) = T, $T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$.

Need to find out if quotienting by equivalence of isomorphism makes $\mathbf{URep}(G)$ a small category so that we can talk about the functor category $\mathbf{Hilb}^{\mathbf{URep}(G)}$ containing the forgetful functor as an object.

Definition 2.2.0.2. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $g \in G$. We define $\hat{g}: U \Rightarrow U$ by

$$\hat{g}_{(H,\pi)} = \pi(g)$$

Exercise 2.2.0.3. Let $G \in \text{Obj}(\mathbf{TopGrp})$ and $g \in G$. Then

- 1. $\hat{g}: U \Rightarrow U$ is a natural transformation.
- 2. $\hat{g} \in \operatorname{Aut}_{\mathbf{Hilb}^{\mathbf{URep}(G)}}(U)$

Proof.

1. (a) Let $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. By definition,

$$\hat{g}_{(H,\pi)} = \pi(g)$$

$$\in U(H)$$

$$\subset \operatorname{Aut}_{\mathbf{Hilb}}(U(H,\pi))$$

(b) Let $(H_{\pi}, \pi), (H_{\rho}, \rho) \in \text{Obj}(\mathbf{URep}(G))$ and $T \in \text{Hom}_{\mathbf{URep}(G)}((H_{\pi}, \pi), (H_{\rho}, \rho))$. By definition, $T \in \text{Hom}_{\mathbf{Hilb}}(H_{\pi}, H_{\rho})$ and T is (π, ρ) -equivariant. Therefore

$$\begin{split} U(T) \circ \hat{g}_{(H_{\pi},\pi)} &= T \circ \pi(g) \\ &= \rho(g) \circ T \\ &= \hat{g}_{(H_{\rho},\rho)} \circ U(T) \end{split}$$

i.e. the following diagram commutes:

$$U(H_{\pi}, \pi) \xrightarrow{\hat{g}_{(H_{\pi}, \pi)}} U(H_{\pi}, \pi) \qquad H_{\pi} \xrightarrow{\pi(g)} H_{\pi}$$

$$U(T) \downarrow \qquad \qquad \downarrow U(T) \qquad = \qquad \downarrow T \qquad \qquad \downarrow T$$

$$U(H_{\rho}, \rho) \xrightarrow{\hat{g}_{(H_{\rho}, \rho)}} U(H_{\rho}, \rho) \qquad H_{\rho} \xrightarrow{\rho(g)} H_{\rho}$$

Thus $\hat{g}: U \Rightarrow U$ is a natural transformation.

2. Set $h = g^{-1}$. Part (1) implies that $\hat{g}, \hat{h} \in \text{End}_{\mathbf{Hilb}U\mathbf{Rep}(G)}(U)$. Let $(H, \pi) \in \text{Obj}(\mathbf{URep}(G))$. Then

$$(\hat{g} \circ \hat{h})_{(H,\pi)} = \hat{g}_{(H,\pi)}$$

The previous part implies that

$$\begin{split} \hat{g} &\in \mathrm{Hom}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}} \big(U, U \big) \\ &= \mathrm{End}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}} \big(U \big) \end{split}$$

Definition 2.2.0.4. Let $G \in \operatorname{Obj}(\mathbf{TopGrp})$ and $(H, \pi) \in \operatorname{Obj}(\mathbf{URep}(G))$. We define the (H, π) -projection, denoted $\pi_{(H,\pi)} : \operatorname{End}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}}(U) \to \operatorname{End}_{\mathbf{TopVect}^{\mathbb{C}}_{\mathbb{C}}}(V)$, by $\pi_{(H,\pi)}(\alpha) = \alpha_{(H,\pi)}$. We define the **topology** of endomorphisms of U, denoted $\mathcal{T}_{\mathcal{E}(U)}$, by

$$\mathcal{T}_{\mathcal{E}(U)} = \tau(\pi_{(H,\pi)} : (H,\pi) \in \mathbf{URep}(G))$$

Definition 2.2.0.5. define addition of endomorphisms of U pointwise

Exercise 2.2.0.6. Let $G \in \mathrm{Obj}(\mathbf{TopGrp})$. Then $(\mathrm{Aut}_{\mathbf{TopVect}^{\mathbf{URep}(G)}_{\mathbb{C}}}(U), \mathcal{T}_{\mathcal{E}(U)})$ is a topological unital algebra.

Proof.

Chapter 3

Groupoids

Definition 3.0.0.1.

Bibliography

- [1] Introduction to Algebra
- [2] Introduction to Analysis
- [3] Introduction to Fourier Analysis
- [4] Introduction to Measure and Integration