Lexical Text Simplification

Paula Gombar, Ivan Katanić

FER

June 13, 2016

Contents

Task definition

- Peatures extracted
- Methods used
- 4 Evaluation

SemEval-2012 Task 1

- finding less complex semantically-appropriate words or phrases and replacing those that are difficult to comprehend
- common pipeline in such a system:
 - complexity analysis: finding out which words or phrases are considered complex
 - Substitute lookup: retrieving adequate replacements, simpler than the original word or phrase
 - context-based ranking: ranking of substitutes to produce the final replacement

Example

Sentence: The incisions will feel constricted for the first 24-48 hours. We identify the word constricted as complex, retrieve the possible substitutes:

{uncomfortable} {tight} {stretched} {compressed} {constricted}. We score each candidate on simplicity and context-adequacy, rank them and determine the simplest one, e.g. *tight*.

Features extracted

- inverse word length
- number of synsets in WordNet
 - i.e. the word *fundamental* has the following synsets:
 - (n) fundamental (any factor that could be considered important to the understanding of a particular business)
 - (n) fundamental, fundamental frequency, first harmonic (the lowest tone of a harmonic series)
- frequency in Simple Wikipedia
- frequency in Wikipedia
- corpus complexity

$$C_w = \frac{f_{w,English}}{f_{w,Simple}}$$

where $f_{w,c}$ is the frequency of candidate w in corpus c.

Features extracted

context similarity

$$csim(w, c) = \sum_{w' \in C(w)} cos(\mathbf{v_c}, \mathbf{v_{w'}})$$

where C(w) is the set of context words of the original word w and $\mathbf{v_c}$ is the GloVe vector of the replacement candidate c.

semantic similarity

$$ssim(w, c) = cos(\mathbf{v_w}, \mathbf{v_c})$$

where $\mathbf{v}_{\mathbf{w}}$ is the GloVe vector of the original word w.

Methods used

Ranking SVM with RBF kernel.

Table : Optimal hyperparameters for Ranking SVM with RBF kernel.

Hyperparameter	Optimal value	Possible values
Scaler	Standard	Standard, MinMax, None
PolyFeatures degree	1	1, 2
С	2 ⁵	$[2^{-15},,2^8]$
γ	0.00098	$ \begin{array}{c} 1, 2 \\ [2^{-15},, 2^8] \\ [2^{-15},, 2^8] \end{array} $

Ranking SVM with linear kernel.

Table: Optimal hyperparameters for Ranking SVM with linear kernel.

Hyperparameter	Optimal value	Possible values
Scaler	Standard	Standard, MinMax, None
PolyFeatures degree	1	1, 2
С	2 ⁴	$ \begin{vmatrix} 1, 2 \\ [2^{-15},, 2^8] \end{vmatrix} $

Methods used

Linear combination of features.

Table: Optimal hyperparameters for linear combination of features.

Feature	Weight
Inverse word length	1
WordNet synsets	0
Simple Wikipedia frequency	10
English Wikipedia frequency	0
Corpus complexity	0
Context similarity	9
Semantic similarity	0

Unsupervised approach. Scale the data using MinMax scaler, declare all coefficients as 1.

Baselines

L-Sub Gold. This baseline uses the gold-standard annotations from the Lexical Substitution corpus of SemEval-2007 as is.

Random Randomizes the order, allowing ties.

Simple Freq. Uses the frequency of the substitutes as extracted from the Google Web 1T Corpus.

Table: Baseline kappa scores on Trial and Test datasets.

Baseline	Trial	Test
L-Sub Gold	0.050	0.106
Random	0.016	0.012
Simple Freq.	0.397	0.471

Results

Table: Implemented methods kappa scores on the Test dataset.

	Method name	Test score
-	Ranking SVM with RBF kernel	
	Ranking SVM with linear kernel	0.443
	Linear combination of features	0.459
	Unsupervised approach	0.313

Conclusion

- four different methods, using both context-dependent and context-independent features, as well as external resources such as state-of-the-art word vector representations and simplified corpora.
- the performance of supervised approaches is likely to improve with larger training sets
- very strong relation between distributional frequency of words and their perceived simplicity

The end

Thank you! Any questions?