Parallel EM Algorithm Implementation Parallel Programming 2025

Ayush Raina

April 28, 2025

EM Algorithm Overview

- Iterative method for finding maximum likelihood estimates
- Widely used in statistical modeling and machine learning and computationally intensive, especially for large datasets
- Particularly useful for problems with latent variables
- Consists of two steps:
 - E-step: Calculate expected values for missing data
 - M-step: Maximize parameters using these expectations
- Guaranteed to increase likelihood with each iteration

Gaussian Mixture Models (GMM)

- Probabilistic model assuming data is generated from multiple Gaussian distributions
- Key parameters:
 - π_k Weight of each component
 - \bullet μ_k Mean vector of each component
 - \bullet Σ_k Covariance matrix of each component
- Probability density function:

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$
 (1)

• EM is the standard algorithm for fitting GMMs

EM Algorithm for GMM

- **Initialize** parameters: π_k , μ_k , Σ_k
- **E-step**: Compute responsibilities

$$\gamma_{ik} = \frac{\pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}$$
(2)

M-step: Update parameters

$$N_k = \sum_{i=1}^N \gamma_{ik} \tag{3}$$

$$\mu_k^{new} = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} x_i \tag{4}$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (x_i - \mu_k^{new}) (x_i - \mu_k^{new})^T$$
 (5)

$$\pi_k^{\text{new}} = \frac{N_k}{N} \tag{6}$$

Hybrid Parallelization Approach

- EM is computationally intensive:
 - E-step: $O(NKD^2)$ Most expensive for many samples
 - M-step: $O(NKD^2)$ Requires synchronization
- Our Data Parallelism Strategy:
 - Split samples across processing units
 - Each processing unit handles responsibilities for a subset of data points
 - Ideal for E-step where calculations are independent across samples
- Hybrid Implementation:
 - E-step: CUDA kernels for massive GPU parallelism
 - M-step: OpenMP for efficient CPU parallelization
 - This combination yielded better performance than GPU-only or CPU-only approaches

Algorithm Design

Algorithm 1 Hybrid Parallel EM Algorithm for GMM

- 1: Initialize π_k , μ_k , Σ_k randomly or using k-means++
- 2: Precompute precision matrices and normalizers
- 3: repeat
- 4: **E-step (CUDA)**: Calculate responsibilities in parallel
- 5: Log-likelihood (CUDA): Compute in parallel for convergence check
- 6: M-step (OpenMP):
- 7: Update means, covariances, and weights in parallel
- 8: until convergence or max iterations

CUDA Kernel Implementation

E-step Parallelization:

- Two specialized CUDA kernels:
- calculatePDFKernel: Computes responsibilities matrix
- calculateLogLikelihoodKernel:
 Evaluates convergence

Key Optimizations:

- Precomputation: Precision matrices and normalizers cached before kernel launch
- **Shared Memory:** Thread block-local storage for weighted likelihoods
- Parallel Reductions: Efficient summations across samples

Key Optimizations

• Precomputation:

- Cached precision matrices (inverses of covariance matrices)
- Precomputed normalizers: $-\frac{1}{2}(d \ln(2\pi) + \ln |\Sigma_k|)$
- Significantly reduces redundant calculations in E-step
- PDF calculation simplifies to: $p(x) = \exp(\text{normalizer} - \frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu))$

Parallel Reductions:

- Efficient summation of partial results across threads
- Implemented for log-likelihood calculation
- Reduces memory access and global synchronization
- Uses shared memory for intermediate results
- Halves active threads in each step in tree-like pattern
- O(log n) instead of O(n) complexity

Experimental Setup

Hardware Configuration:

- CPU: Intel Core i9-12900K (12th Gen, 16 cores, 24 threads)
- GPU: NVIDIA GeForce GTX 1660 (6 GB)
- Memory: 32 GB RAM

Datasets:

- Synthetic datasets: GMM data with $n \in \{10^3, 10^4, 10^5\}$ samples, d=2 features
- Real-world datasets: Flower Dataset

• Evaluation Metrics:

- Execution time (total and per EM stage)
- Speedup compared to Python baseline
- Log-likelihood convergence rate
- Clustering accuracy (for synthetic datasets with true labels)

Performance Evaluation

Table: Execution Time Comparison (in	in seconds)	
--------------------------------------	-------------	--

Implementation	Initialization	E-step	M-step	Prediction
Sequential $(n = 10^3)$	0	0.91	0.044	0
Parallelized $(n = 10^3)$	0	0.12	0.03	0
Sequential $(n=10^5)$	0.0012	17.43	0.82	0
Parallelized $(n = 10^5)$	0.0013	0.26	0.63	0
Sequential $(n=10^6)$	0.015	78.66	9.55	0
Parallelized $(n = 10^6)$	0.016	1.80	2.90	0

- Our hybrid implementation (CUDA E-step + OpenMP M-step) shows:
 - ullet Up to \sim **77x speedup** in E Step
- Performance advantage increases with dataset size
- E-step benefits most from GPU acceleration

Benchmarking

Following dataset has been benchmarked techniques used in this PARALLELIZATION IN PYTHON - AN EXPECTATION-MAXIMIZATION APPLICATION by Ilia Azizi

Figure: Benchmarking of our implementation against other techniques

Benchmarking

Here are the results from the paper:

Figure: Different Execution Times

Benchmarking

Figure: CUDA based Algorithm

References

- Azizi, I. (2021). Parallelized EM Algorithm. Retrieved from https: //iliaazizi.com/projects/em_parallelized/report.pdf
- Smith, J. (2009). Parallel Algorithms for EM Estimation. IEEE
 Transactions on Parallel and Distributed Systems, 20(5), 123-135.
 Retrieved from https:
 //ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5166982

Questions

Thank you for your attention! Any questions?