EMMY-W1 series Host-based multiradio modules with Wi-Fi, Bluetooth and NFC Data Sheet

Abstract

This technical data sheet describes the EMMY-W1 series modules with Wi-Fi 802.11ac, Bluetooth v4.2 (Bluetooth® Smart Ready) and Near-Field Communication (NFC) designed for both simultaneous and independent operation. These modules include an integrated MAC/baseband processor and RF front-end components and can connect to a host processor through SDIO 3.0 or high-speed UART interfaces. A PCM interface is available for Bluetooth audio applications. These modules are offered in both professional and automotive grades.

www.u-blox.com

UBX-15011785 - R05

Document Information						
Title	EMMY-W1 serie	es				
Subtitle	Host-based multi	Host-based multiradio modules with Wi-Fi, Bluetooth and NFC				
Document type	Data Sheet					
Document number	UBX-15011785					
Revision and date	R05	15-Dec-2016				
Disclosure restriction						

Product Status	Corresponding conten	Corresponding content status						
Functional Sample	Draft	For functional testing. Revised and supplementary data will be published later.						
In Development / Prototype	Objective Specification	Target values. Revised and supplementary data will be published later.						
Engineering Sample	Advance Information	Data based on early testing. Revised and supplementary data will be published later.						
Initial Production Early Prod. Information		Data from product verification. Revised and supplementary data may be published later.						
Mass Production / End of Life	Production Information	Final product specification.						

This document applies to the following products:

Product name	Type number	Firmware version	PCN reference	Product Status
EMMY-W161	EMMY-W161-00B-00	EMMY-W161-00B	N/A	Initial Production
EMMY-W161-A	EMMY-W161-00A-00	EMMY-W161-00A	N/A	Initial Production
EMMY-W163	EMMY-W163-00B-00	EMMY-W163-00B	UBX-16017374	Initial Production
EMMY-W163-A	EMMY-W163-00A-00	EMMY-W163-00A	UBX-16017374	Initial Production
EMMY-W165	EMMY-W165-00B-00	EMMY-W165-00B	N/A	Initial Production
EMMY-W165-A	EMMY-W165-00A-00	EMMY-W165-00A	N/A	Initial Production

u-blox reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this document or any part thereof without the express permission of u-blox is strictly prohibited.

The information contained herein is provided "as is" and u-blox assumes no liability for the use of the information. No warranty, either express or implied, is given, including but not limited, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time. For most recent documents, visit www.u-blox.com.

Copyright © 2017, u-blox AG.

u-blox® is a registered trademark of u-blox Holding AG in the EU and other countries. ARM® is the registered trademark of ARM Limited in the EU and other countries.

UBX-15011785 - R05 Page 2 of 47

Contents

Conte	ents	3
1 Fu	unctional description	5
1.1	Overview	5
1.2	Applications	5
1.3	Product features	6
1.4	Block diagrams	6
1.5	Product description	7
1.6	Supported features	8
1.0	.6.1 Wi-Fi features	8
1.0	.6.2 Bluetooth features	8
1.0	.6.3 NFC features	8
1.0	.6.4 General product features	8
1.0	.6.5 Compliance	9
1.7	Additional reserved MAC addresses	9
2 In	nterfaces	10
2.1	Operation mode configuration	10
2.2	SDIO interface	10
2.2	.2.1 Default speed and High speed modes	10
2.2	.2.2 SDR12, SDR25, SDR50 Modes (up to 100 MHz) (1.8 V)	11
2.2	.2.3 SDR104 Mode (208 MHz) (1.8 V)	12
2.2	.2.4 DDR50 Mode (50 MHz) (1.8 V)	13
2.3	High Speed UART interface	14
2.4	PCM interface	15
2.4	.4.1 PCM interface specifications	15
2.5	GPIO interface	16
3 Pi	in Definition	18
3.1	Pin description	18
3.2	Reset configuration	20
4 El	lectrical specification	21
4.1	Absolute maximum ratings	
4.2	Operating conditions	21
4.3	Digital pin ratings	
4.4	Wi-Fi power consumption	
4.5	Bluetooth power consumption	23
4.6	NFC power consumption	23
4.7	Radio specifications	
4.	.7.1 Wi-Fi	24
4.	.7.2 Bluetooth	
4.	.7.3 LTE co-existence	25
4.	.7.4 Near field communication	26

5 Host drivers and firmware	27
5.1 General principle	27
5.2 Supported operating systems	27
5.2.1 Linux	27
6 Mechanical specifications	28
7 Qualification and approvals	30
7.1 Approvals	
7.1.1 European Union regulatory compliance	
7.1.2 FCC compliance	
7.1.3 IC compliance	
7.1.4 Australia and New Zealand regulatory compliance	33
7.1.5 Korean KCC compliance	33
7.1.6 Japan radio equipment compliance	33
7.2 Approved antennas	34
7.2.1 Bluetooth antenna	34
7.2.2 NFC antenna	34
7.3 FCC and IC IDs	35
7.4 Korea KCC IDs	35
7.5 Japan Giteki IDs	35
7.6 Bluetooth qualification	35
7.6.1 Bluetooth host stack	35
8 Product handling	36
8.1 Packaging	36
8.1.1 Reels	36
8.1.2 Tapes	36
8.2 Shipment, storage and handling	37
8.2.1 Moisture sensitivity levels	37
8.2.2 Mounting process and soldering recommendations	37
8.2.3 ESD handling precautions	38
9 Labeling and ordering information	40
9.1 Product labeling	40
9.2 Explanation of codes	41
9.3 Ordering codes	42
Appendix	43
A Glossary	
-	
Related documents	
Revision history	46
Contact	47

1 Functional description

1.1 Overview

The EMMY-W1 series provides a complete short range transceiver solution that can easily be integrated into automotive and industrial applications. The modules are designed for both simultaneous and independent operation of the following technologies:

- IEEE 802.11a/b/g/n/ac data rates for Wi-Fi
- Dual-mode Bluetooth v4.2
- NFC

The EMMY-W1 series is a surface-mount device (SMD) component and can be used as a Wi-Fi micro-access point supporting up to 10 clients. A coexistence feature at the chip level improves parallel use of Bluetooth and Wi-Fi communication. For highest throughput and performance, a module variant with separate Wi-Fi and Bluetooth antenna pins is also available.

The modules include an integrated MAC/baseband processor and RF front-end components and can connect to a host processor through SDIO 3.0 and high-speed UART interfaces. The EMMY-W1 series are offered in automotive and professional grades (see Ordering codes and Block diagrams). The automotive grade variant includes an automotive-qualified (AEC-Q100) chipset. A host driver for Linux 3.x is available free of charge. The modules are radio type approved for Europe (ETSI R&TTE), US (FCC CFR 47 part 15 unlicensed modular transmitter approval), Canada (IC RSS), Korea (KCC)¹, Japan (MIC)1 and Australia / New Zealand (ACMA)². Approvals for other countries may be possible upon inquiry.

1.2 Applications

Automotive applications

- High definition (HD) video streaming (headrest displays, rear-view camera) and in-car gaming
- Rapid sync-n-go applications and fast content download to the vehicle
- Hands-free equipment (Bluetooth)
- Personalized adjustment of comfort functions through NFC

Industrial applications

- Manufacturing floor automation, wireless control terminals and point-to-point backhaul
- Outdoor content distribution
- Mobile video streaming
- Robust wireless connectivity in a broad range of industrial applications

UBX-15011785 - R05 Functional description

¹ EMMY-W163 and EMMY-W163-A only

² EMMY-W161 and EMMY-W161-A only

1.3 Product features

Model				Radio)				In	terfa	ices	Power	Connectors	F	eatu	ıres		G	irad	e
	Wi-Fi 2.4 GHz channels 1-13 Wi-Fi 5 GHz channels 36-165	Wi-Fi IEEE 802.11 version	NFC	Bluetooth qualification	Bluetooth profiles	Max output power at antenna pin	Antenna type	LTE filter	High-speed UART	SDIO 3.0	PCM (Bluetooth audio)	Power supply: 3.0-3.6 V	Solder pins	Micro Access Point	AES hardware support	RF parameters in OTP memory	MAC addresses in OTP memory	Standard	Professional	Automotive
EMMY-W161	• •	a/b/g/n/ac	•	v4.2	Н	18 dBm	1р	•	•	•	•	•	•	•	•	•	•			
EMMY-W163		a/b/g/n/ac	•	v4.2	Н	18 dBm	2р		•	•	•	•	•	•	•	•	•			
EMMY-W165		a/b/g/n/ac	•	v4.2	Н	18 dBm	1p		•	•	•	•	•	•	•	•	•			

H = HCI

1p = One pin for combined external antenna for Bluetooth and Wi-Fi

2p = Two pins for separate external antennas for Bluetooth and Wi-Fi

Table 1: EMMY-W1 series main features summary

1.4 Block diagrams

The block diagrams of the EMMY-W1 series are provided in this section.

Figure 1: EMMY-W161/EMMY-W165 block diagram - Single antenna variant

UBX-15011785 - R05 Functional description

Page 6 of 47

A

In EMMY-W161, the band pass filter (2.4 GHz BPF) is a BAW filter that enables co-existence with LTE. For the EMMY-W165 variant, the band pass filter provides no co-existence protection against a co-located LTE transmitter.

Figure 2: EMMY-W163 block diagram - Dual-antenna variant

In EMMY-W163, the bandpass filters (2.4 GHz BPF) are ceramic bandpass filters. An LTE co-existence variant is not available in the dual-antenna configuration.

1.5 Product description

Model	Description
EMMY-W161	Professional grade module with 1 combined antenna pin for Wi-Fi and Bluetooth and integrated LTE filter
EMMY-W163	Professional grade module with 2 separate antenna pins for Wi-Fi and Bluetooth (no LTE filter)
EMMY-W165	Professional grade module with 1 combined antenna pin for Wi-Fi and Bluetooth (no LTE filter)
EMMY-W161-A	Automotive grade module with 1 combined antenna pin for Wi-Fi and Bluetooth and integrated LTE filter
EMMY-W163-A	Automotive grade module with 2 separate antenna pins for Wi-Fi and Bluetooth (no LTE filter)
EMMY-W165-A	Automotive grade module with 1 combined antenna pin for Wi-Fi and Bluetooth (no LTE filter)

The EMMY-W161 is recommended for applications that have co-located Wi-Fi, Bluetooth and LTE antennas and require co-existence of these wireless technologies. This module provides a dedicated BAW bandpass filter instead of the ceramic bandpass filter. This filter rejects the adjacent LTE bands B40, B7, B41 and B38. The integrated BAW filter is available only for the single-antenna configuration (EMMY-W161). The module pinout, operating conditions, and electrical characteristics are identical for all product variants. Differences in the RF parameters are explained in the Radio specifications section.

UBX-15011785 - R05 Functional description

1.6 Supported features

1.6.1 Wi-Fi features

- Wi-Fi standards: IEEE 802.11a/b/g/n/ac/d/e/h/i/k³/r/v3/w
- Simultaneous client and access point operation (up to 10 clients supported)
- Support of Wi-Fi direct mode
- IEEE 802.11ac 1x1 antenna configuration
- IEEE 802.11 PHY data rates up to 433 Mbps
- 64- and 128-bit AES hardware encryption engine
- WAPI encryption is supported by hardware
- SDIO 3.0 host interface for Wi-Fi

1.6.2 Bluetooth features

- Bluetooth v4.2 with Bluetooth Low Energy and Classic Bluetooth v2.1+EDR over SDIO or high-speed UART interface
- PCM interface for audio
- MWS/LTE coexistence serial transport interface for connecting an external and co-located LTE device⁴

1.6.3 NFC features

- NCI 1.0 support according to NFC Forum specification
- NFC support through SDIO or UART
- Full protocol support for ISO 14443A/B, ISO 15693⁵, ISO 18092, NFCIP-2, NFC forum, EMV contactless targets with data rates up to 848 Kbps
- Deep Sleep
- Proprietary Low-Power Target Detection mode to reduce standby current consumption
- On-Host card emulation: supported in NFC A, B, F and V technologies
- Off-Host card emulation with UICCs and Embedded SEs (availability is package dependent):
 - o ETSI TS 102 613: SWP/CLT ISO14443 Type A (Mifare) and ISO18093 212/424 kbps passive mode (FeliCa).
 - ETSLTS 102 622: SWP/HCI ISO14443A/B and ISO18092 212/424 kbps passive mode
 - o DCLB
- Compliant with EMVCo book D (Contactless Communication Protocol)
- Reader/Writer, card emulation, and Peer-to-peer (P2P) modes
- Programmable carrier detection level for card emulation mode
- Programmable field detection level for RF anti-collision when operating as reader or active target
- UART host interface support (shared with Bluetooth when operating)

1.6.4 General product features

- Driver support for Linux
- Low-power and sleep modes for Bluetooth and Wi-Fi core
- Coexistence arbitration for Wi-Fi/Bluetooth/LE/NFC/LTE operation
- Small footprint (19.8 mm x 13.8 mm), LGA package
- Product variant with integrated LTE co-location filter available
- Automotive qualification tests (climatic, mechanical, and operating life tests) according ISO 16750-4 planned

UBX-15011785 - R05 Functional description

³ Supported by hardware but not supported by firmware currently.

⁴ Available on request

⁵ For ISO 15693 VICC mode, the maximum supported 10-90% rise/fall times for receiving 10% ASK modulation is 1.18 µs.

1.6.5 Compliance

- RoHS compliant
- Radio type approvals for Europe, USA, Canada, Korea, Japan, Australia, and New Zealand.

1.7 Additional reserved MAC addresses

The EMMY-W1 module series has four unique consecutive MAC addresses reserved for each module, from which the first two addresses are already stored in the configuration during production. The first address is used for the Bluetooth communication while the second address is configured for Wi-Fi communication. The Data Matrix Code on the label includes the Bluetooth MAC address (see section 9). The remaining two MAC addresses are not used in the manufacturing configuration, but are reserved for usage with the module.

MAC address	Assignment	Last two bits of MAC address	Example
Module1, address 1	Bluetooth	0b00	D4:CA:6E:44:00:04
Module1, address 2	Wi-Fi	0b01	D4:CA:6E:44:00:05
Module1, address 3	(free for use)	0b10	D4:CA:6E:44:00:06
Module1, address 4	(free for use)	0b11	D4:CA:6E:44:00:07
Module2, address 1	Bluetooth	0b00	D4:CA:6E:44:00:08
Module2, address 2	Wi-Fi	0b01	D4:CA:6E:44:00:09
Module2, address 3	(free for use)	0b10	D4:CA:6E:44:00:0A
Module2, address 4	(free for use)	0b11	D4:CA:6E:44:00:0B

Table 2: MAC address assignment

UBX-15011785 - R05 Functional description

Page 9 of 47

2 Interfaces

2.1 Operation mode configuration

EMMY-W1 series module uses the GPIO_3 and GPIO_2 pins as host interface configuration input to set the desired operation mode following a reset. The definitions of these pins are changed to their usual functions after reset. When you need to configure the pins for a certain module operation mode, you need to provide a 100 k Ω pull down resistor to the ground. No external circuitry is required to set a configuration pin to high logical level.

External reset is not needed for proper operation due to internal power-up reset logic though it can be used by the host controller through the PDn pin (active low) in case of an abnormal module behavior.

After reset, GPIO_3 and GPIO_2 pins can be used as open drain outputs (depending on firmware/driver version) for Bluetooth and Wi-Fi activity LED indicators, but simultaneous usage of an LED connected to 3.3 V power line and a pull-down resistor is not allowed (LED acts as a strong pull-up circuitry). Do not connect LED if you need the pull-down resistors.

Depending on the firmware or driver used, you can use either one or both host interface operation modes:

GPIO_3	GPIO_2	Wi-Fi	Bluetooth/NFC	Number of SDIO functions
0	0	SDIO	UART	1 (Wi-Fi)
0	1	SDIO	SDIO	3 (Wi-Fi, Bluetooth and NFC)
1	0	SDIO	UART	1 (Wi-Fi)
1	1	SDIO	SDIO	3 (Wi-Fi, Bluetooth and NFC) ⁶

Table 3: Module configuration

2.2 SDIO interface

EMMY-W1 series modules support an SDIO device interface that conforms to the industry standard SDIO 3.0 Full-Speed specification (4-bit SDIO up to 208 MHz) and allows a host controller using the SDIO bus protocol to access the Wi-Fi and Bluetooth functions. The interface supports 4-bit SDIO transfer mode at the full clock range of 0 to 208 MHz.

2.2.1 Default speed and High speed modes

Figure 3: SDIO protocol timing diagram- Default speed mode (3.3 V)

⁶ Default configuration. It is possible to use connected LEDs to both the pins.

Figure 4: SDIO protocol timing diagram – High speed mode (3.3 V)

Symbol	Parameter	Condition	Min.	Тур	Max.	Units
f _{PP}	Clock frequency	Normal	0	-	25	MHz
		High speed	0	-	50	MHz
T _{WL}	Clock low time	Normal	10	-	-	ns
		High speed	7	-	-	ns
T _{WH}	Clock high time	Normal	10	-	-	ns
		High speed	7	-	-	ns
T_{ISU}	Input setup time	Normal	5	-	-	ns
		High speed	6	-	-	ns
T _{IH}	Input hold time	Normal	5	-	-	ns
		High speed	2	-	-	ns
$T_{ODLY(max)}$	Maximal Output delay time	Normal		-	14	ns
$T_{\text{ODLY(min)}}$	Minimal Output delay time	Normal		-	0	ns
T _{ODLY}	Output delay time CL ≤ 40 pF (1 card)	Normal		-	14	ns
Тон	Output hold time	High speed	2.5	-	-	ns

Table 4: SDIO timing data – Default speed, High speed modes (3.3 V)

2.2.2 SDR12, SDR25, SDR50 Modes (up to 100 MHz) (1.8 V)

Figure 5: SDIO protocol timing diagram – SDR12, SDR25, SDR50 modes (up to 100 MHz) (1.8 V)

Symbol	Parameter	Condition	Min.	Тур	Max.	Units
f_{PP}	Clock frequency	SDR12/25/50	25	-	100	MHz
T _{IS}	Input setup time	SDR12/25/50	3	-	-	ns
T _{IH}	Input hold time	SDR12/25/50	0.8	-	-	ns
T _{CLK}	Clock time	SDR12/25/50	10	-	40	ns
T_{CR} , T_{CF}	Rise time, fall time T_{CR} , T_{CF} < 2 ns (max) at 100 MHz C_{CARD} = 10 pF	SDR12/25/50		-	0.2*T _{CLK}	ns
T _{ODLY}	Output delay time $C_L \le 30 \text{ pF}$	SDR12/25/50		-	7.5	ns
Тон	Output hold time $C_L = 15 \text{ pF}$	SDR12/25/50	1.5	-	-	ns

Table 5: SDIO timing data - SDR12, SDR25, SDR50 modes (up to 100 MHz) (1.8 V)

2.2.3 SDR104 Mode (208 MHz) (1.8 V)

Figure 6: SDIO protocol timing diagram – SDR104 mode (208 MHz)

Symbol	Parameter	Condition	Min.	Тур	Max.	Units
f_{pp}	Clock frequency	SDR104	0	-	208	MHz
T _{IS}	Input setup time	SDR104	1.4	-	-	ns
T _{IH}	Input hold time	SDR104	0.8	-	-	ns
T_{CLK}	Clock time	SDR104	4.8	-	-	ns
$T_{CR_s} T_{CF_s}$	Rise time, fall time T_{CR} , T_{CF} < 0.96 ns (max) at 208 MHz C_{CARD} = 10 pF	SDR104		-	0.2*T _{CLK}	ns
T _{OP}	Card output phase	SDR104	0	-	10	ns
T _{odw}	Output timing of variable data window	SDR104	2.88	-	-	ns

Table 6: SDIO timing data – SDR104 mode (208 MHz)

2.2.4 DDR50 Mode (50 MHz) (1.8 V)

Figure 7: SDIO CMD timing diagram – DDR50 mode (50 MHz)

1. In DDR50 mode, DAT[3:0] lines are sampled on both edges of the clock (not applicable for CMD line).

Figure 8: SDIO DAT[3:0] timing diagram – DDR50 mode (50 MHz)

Symbol	Parameter	Condition	Min.	Тур	Max.	Units
Clock						
T _{CLK}	Clock time 50 MHz (max) between rising edges	DDR50	20			ns
T_{CR} , T_{CF} ,	Rise time, fall time T_{CR} , T_{CF} < 4.00 ns (max) at 50 MHz C_{CARD} = 10 pF	DDR50			0.2*T _{CLK}	ns
Clock Duty		DDR50	45		55	%
CMD Input ((referenced to clock rising edge)					
T _{IS}	Input setup time $C_{CARD} \le 10 \text{ pF (1 card)}$	DDR50	6			ns
Т	Input hold time $C_{CARD} \le 10$ pF (1 card)	DDR50	0.8			ns
CMD Outpu	t (referenced to clock rising edge)					
T _{odly}	Output delay time during data transfer mode $C_L \le 30$ pF (1 card)	DDR50			13.7	ns
T _{OHLD}	Output hold time $C_L \ge 15 \text{ pF (1 card)}$	DDR50	1.5			ns
DAT[3:0] Inp	out (referenced to clock rising and falling edge	es)				
T _{IS2x}	Input setup time $C_{CARD} \le 10$ pF (1 card)	DDR50	3			ns
T _{IH2x}	Input hold time $C_{CARD} \le 10$ pF (1 card)	DDR50	0.8			ns
DAT[3:0] Ou	tput (referenced to clock rising and falling ed	ges)				
T _{ODLY2x (max)}	Output delay time during data transfer mode $C_L \le 25$ pF (1 card)	DDR50			7.0	ns
T _{ODLY2x (min)}	Output hold time $C_L \ge 15 \text{ pF (1 card)}$	DDR50	1.5			ns

Table 7: SDIO timing data - DDR50 mode (50 MHz)

2.3 High Speed UART interface

The EMMY-W1 series modules support a high speed Universal Asynchronous Receiver/Transmitter (UART) interface in compliance with the industry standard 16550 specification. The main features of the UART interface are:

- FIFO mode permanently selected for transmit and receive operations
- 2 pins for transmit and receive operations
- 2 flow control pins
- Interrupt triggers for low-power, high throughput operation
- High throughput (4 Mbps)

The UART interface operation includes:

- Uploading the firmware to the module
- Supporting data input/output operation for peripheral devices connected through a standard UART interface

Baud Rate				
1200	38400	460800	1500000	3000000
2400	57600	500000	1843200	3250000
4800	76800	921600	2000000	3692300
9600	115200	1000000	2100000	4000000
19200	230400	1382400	2764800	

Table 8: Supported UART Baud rates

2.4 PCM interface

The EMMY-W1 series modules support a Pulse Code Modulation (PCM) interface that provides:

- Master or slave mode
- PCM bit width size of 8 bits or 16 bits
- Up to 4 slots with configurable bit width and start positions
- Short frame and long frame synchronization

2.4.1 PCM interface specifications

Figure 9: PCM timing specification – Master mode

Symbol	Parameter	Condition	Min.	Тур	Max.	Units
F _{BCLK}	-	-	-	2/2.048	-	MHz
Duty Cycle BCLK	-	-	0.4	0.5	0.6	-
T _{BCLK rise/fall}	-	-	-	3	-	Ns
T _{DO}	-	-	-	-	15	ns
T _{DISU}	-	-	20	-	-	ns
Тыно	-	-	15	-	-	ns
T _{BF}	-	-	-	-	15	ns

Table 9: PCM timing specification – Master mode

Figure 10: PCM timing specification - Slave mode

Symbol	Parameter	Condition	Min.	Тур	Max.	Units
F _{BCLK}	-	-	-	2/2.048	-	MHz
Duty Cycle BCLK	-	-	0.4	0.5	0.6	-
T _{BCLK rise/fall}	-	-	-	3	-	ns
T_{DO}	-	-	-	-	30	ns
T _{DISU}	-	-	15	-	-	ns
Тыно	-	-	10	-	-	ns
T_{BFSU}	-	-	15	-	-	ns
T _{BFHO}	-	-	10	-	-	ns

Table 10: PCM timing specification - Slave mode

2.5 GPIO interface

The General-Purpose I/O (GPIO) interface is used to implement user defined input and output signals to and from the 88W8887 chip such as external interrupts and other user-defined I/Os. Main features of the GPIO interface include:

- User-defined GPIO (each I/O configured to either input or output)
- Each GPIO independently controlled
- Each I/O configurable to output bit from GPIO_OUT

The general functions associated with each GPIO pin is shown in Table 11:

GPIO								GP	IO Pin							
Function	0	1	2	3	4	5	6	7	8	9	10	11	14	15	16	17
General																
Input	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Output	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
LEDs ⁷																
LED output ⁸	-	-	Χ	Χ	-	-	-	-	-	-	-	-	-	-	-	-
Interrupts																
Input	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х

Table 11: GPIO Functions – GPIO [17:14], [11:0]

GPIO_12 and GPIO_13 are not available.

 $^{^{^{7}}}$ The possibility to use as an LED output depends on the firmware and driver version. $^{^{8}}$ GPIO [2] is used for Wi-Fi activity while GPIO [3] is used for Bluetooth activity.

3 Pin Definition

3.1 Pin description

Figure 11: EMMY-W1 series pin assignment (top view)

No	Pin name	Pin type	Supply domain	Description
1	GND	Ground	-	Ground
2	NC		-	Reserved, do not connect
3	NC		-	Reserved, do not connect
4	NC		-	Reserved, do not connect
5	GPIO_0	I/O	VIO2	BT2HOST_WAKEUP (Output)
6	GPIO_1	I/O	VIO2	WL2HOST_WAKEUP (Output)
7	GPIO_14	I/O	VIO2	HOST2WL_WAKEUP (Input)
8	GPIO_15	I/O	VIO2	HOST2BT_WAKEUP (Input)
9	GPIO_16	I/O	VIO2	UART_LTE_SIN (Input)
10	GPIO_17	I/O	VIO2	UART_LTE_SOUT (Output)
11	GPIO_4	I/O	VIO2	PCM_DIN (Input)

UBX-15011785 - R05 Pin Definition

No	Pin name	Pin type	Supply domain	Description
12	GPIO_5	1/0	VIO2	PCM_DOUT (Output)
13	GPIO_6	1/0	VIO2	PCM_CLK (Input if slave, Output if master)
14	GPIO_7	1/0	VIO2	PCM_SYNC (Input if slave, Output if master)
15	GND	Ground	-	Ground
16	GND	Ground	-	Ground
17	SD_CLK	I	VIO1	SDIO Clock input
18	SD_CMD	I/O	VIO1	SDIO Command line
19	SD_D0	1/0	VIO1	SDIO Data line bit [0]
20	SD_D0	1/0	VIO1	SDIO Data line bit [1]
21	SD_D1	1/0	VIO1	SDIO Data line bit [1]
22	SD_D3	1/0	VIO1	SDIO Data line bit [2]
23	GND			Ground
23	GND	Ground Ground	-	Ground
			2 2)/	3.3V Power supply (2.97 V - 3.63 V)
25 26	VIO1	Power	3.3V	
		Power	VIO1	VIO1 Power supply (1.62V - 1.98 V, 2.97 V - 3.63 V)
27	VIO2	Power	VIO2	VIO2 Power supply (1.62V - 1.98 V, 2.97 V - 3.63 V)
28	PDn	Input	-	Full power down(active low) ⁹
29	GPIO_8	1/0	VIO2	UART_SOUT (Output)
30	GPIO_9	1/0	VIO2	UART_SIN (Input)
31	GPIO_10	1/0	VIO2	UART_CTSn (Input)
32	GPIO_11	1/0	VIO2	UART_RTSn (Output)
33	GPIO_3	1/0	3.3V	LED_OUT_BT (Output) - BT indicator, Configuration pin ¹⁰ , PCM_MCLK (output if master, input if slave)
34	GPIO_2	I/O	3.3V	LED_OUT_WLAN (Output) - WLAN indicator, Configuration pin10
35	GND	Ground	-	Ground
36	NFC_ANT_N	I/O, RF	3.3V	NFC Coil Antenna, negative I/O pin
37	NFC_ANT_P	I/O, RF	3.3V	NFC Coil Antenna, positive I/O pin
38	GND	Ground	-	Ground
39	GND	Ground	-	Ground
40	ANT2	I/O, RF	-	Bluetooth antenna only in case of EMMY-W163 module. Not connected in case of EMMY-W161 or EMMY-W165 module ¹¹
41	GND	Ground	-	Ground
42	GND	Ground	-	Ground
43	GND	Ground	-	Ground
44	GND	Ground	-	Ground
45	ANT1	I/O, RF	-	Wi-Fi + Bluetooth antenna in case of single-antenna module. Wi-Fi antenna only in case of dual-antenna module11
46	GND	Ground	-	Ground
	Exposed pin	Ground		Six Ground/Thermal exposed pins, connect to the ground

Table 12: EMMY-W1 series pin description

UBX-15011785 - R05 Pin Definition

⁹ High input impedance pin for minimizing shutdown current consumption. The pin shall be driven by the host controller or/and connected via 51 k Ω (or less) pull-up resistor to the 3.3 V supply rail. ¹⁰ Possible to use as an LED output depending on the firmware and driver version. In this case, the module pin acts as an open drain output

and the whole LED circuitry must be supplied from 3.3 V power line. A LED current limiting resistor should be used; maximum sink current to the ground is 10 mA. These pins can also be used for host interface configuration. See Operation mode configuration section.

11 Pin protected from the static electricity by internal DC feed to the ground.

3.2 Reset configuration

The EMMY-W1 is reset to its default operating state under the following conditions:

- Power-on reset (POR) Module receives power 3V3 supplies rise (triggers internal POR circuit)
- Software/Firmware reset
- External pin assertion (PDn) will generate POR.

UBX-15011785 - R05 Pin Definition

4 Electrical specification

Stressing the device above one or more of the ratings listed in the Absolute Maximum Rating section may cause permanent damage. These are stress ratings only. Operating the module at these or at any conditions other than those specified in the Operating conditions section (section 4.2) of the specification should be avoided. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Operating condition ranges define those limits within which the functionality of the device is guaranteed. Where application information is given, it is advisory only and does not form part of the specification.

4.1 Absolute maximum ratings

Symbol	Description	Min.	Тур	Max.	Units
3V3	Power supply voltage 3.3 V	-	3.3	4.0	V
VIO1	I/O supply voltage 1.8 V		1.8	2.2	V
	I/O supply voltage 3.3 V		3.3	4.0	V
VIO2	I/O supply voltage 1.8 V	-	1.8	2.2	V
	I/O supply voltage 3.3 V		3.3	4.0	V
T _{STORAGE}	Storage temperature	-40		+85	°C

Table 13: Absolute maximum ratings

The product is not protected against overvoltage or reversed voltages. If necessary, voltage spikes exceeding the power supply voltage specification given in table above must be limited to values within the specified boundaries by using appropriate protection devices.

4.2 Operating conditions

Symbol	Parameter	Min.	Тур	Max.	Units
3V3	Power supply voltage 3.3 V	2.97	3.3	3.63	V
VIO1	I/O supply voltage 1.8V/3.3 V	1.62	1.8	1.98	V
		2.97	3.3	3.63	V
VIO2	I/O supply voltage 1.8V/3.3 V	1.62	1.8	1.98	V
		2.97	3.3	3.63	V
VDD_NFC	NFC antenna input voltage (pins NFC_ANT_P/N)	-	-	3.6	V
IANT_NFC	NFC antenna peak input current (pins NFC_ANT_P/N))	-	-	400	mA
T _A	Ambient operating temperature	-40	-	+85	°C
Ripple Noise	Peak-to-peak voltage ripple on 3V3, VIO1 or VIO2 supply line. The values have been determined in a frequency range from 10 KHz to > 2 MHz [3].	20	-		mV

Table 14: Operating conditions

Parameter	Min.	Тур	Max.	Units
Storage temperature	-40		+85	°C
Operation temperature	-40		+85	°C

Table 15: Temperature range

4.3 Digital pin ratings

Symbol	Parameter	Min.	Max.	Units
V _{IH}	Input high voltage	0.7*VIO	VIO+0.4	V
V _{IL}	Input low voltage	-0.4	0.3*VIO	V
$V_{\scriptscriptstyle HYS}$	Input hysteresis	100	-	mV
V_{OH}	Output high voltage	VIO-0.4	-	V
V_{OH}	Output low voltage	-	0.4	V
I _{max}	Maximum current consumption on each VIO domain	-	<5	mA

Table 16: Digital pin ratings for VIO1 and VIO2 supply domains

4.4 Wi-Fi power consumption

Operation mode: 2.4 GHz Wi-Fi TX/RX with BT and NFC in Deep Sleep mode	Average current, mA ¹²
RX 11 Mbps	108
TX 11 Mbps (18 dBm)	320
TX 11 Mbps (8 dBm)	240
RX 54 Mbps	86
TX 54 Mbps (15 dBm)	263
TX 54 Mbps (8 dBm)	229
RX MCS7(HT40)	93
TX MCS7 (HT40, 15 dBm)	268
TX MCS7 (HT40, 8 dBm)	235

Table 17: Wi-Fi current consumption during frame transmission for 2.4 GHz on channel 6

Operation mode: 5 GHz Wi-Fi TX/RX with BT and NFC in Deep Sleep mode	Average current, mA ¹²
RX 54 Mbps	77
TX 54 Mbps (16 dBm)	324
TX 54 Mbps (8 dBm)	238
RX MCS7 (HT20)	87
TX MCS7 (HT20, 16 dBm)	336
TX MCS7 (HT20, 8 dBm)	242
RX MCS7 (HT40)	106
TX MCS7 (HT40, 11 dBm)	268
TX MCS7 (HT40, 8 dBm)	248
RX MCS8 (VHT20)	91
TX MCS8 (VHT20, 11 dBm)	260
RX MCS9 (VHT40)	108
TX MCS9 (VHT40, 10 dBm)	267
RX MCS9 (VHT80)	148
TX MCS9 (VHT80, 8 dBm)	372

Table 18: Wi-Fi current consumption during frame transmission for 5 GHz on channel 36

¹² Supply 3.3 V. Current measurements during frame transmission. Numbers obtained with IPERF3 UDP traffic data pump.

Operation mode: Power save modes	Average current, mA
Power Down	0.03
WiFi and BT both in Deepsleep	0.17
WiFi DTIM 1 and BT Deepsleep	1.14
WiFi DTIM 3 and BT Deepsleep	0.47
WiFi DTIM 5 and BT Deepsleep	0.34

Table 19: Wi-Fi power consumption

4.5 Bluetooth power consumption

Bluetooth mode with Wi-Fi and NFC in deep sleep mode TX @ 0dBm	Average current, mA ¹³
Deep Sleep Mode	0.17
BT idle	4.23
SCO HV3 Peak TX	18.75
SCO HV3 Peak RX	16.50
HV3 SCO mode ACL sniff 0x800	7.57
eSCO link, Master (2-EV3), ACL sniff 0x800	6.57
eSCO link, Master (EV3), ACL sniff 0x800	7.69
ACL (data pump) DH1	11.60
ACL (data pump) DH3	14.60
ACL (data pump) DH5	16.40
ACL Link, master sniff mode, interval=1.28s (800)	0.186
ACL Link, master sniff mode, interval=500ms (320)	0.278
SCO HV3 Average TX @ 4 dBm (external antenna)	7.83
SCO HV3 Peak TX @ 4 dBm (external antenna)	22.00
Interlaced scan (= P&I scan)	0.372
Page & Inquiry scan	0.667
Page Scan	0.293
Inquiry Scan	0.293
LE Advertise @ 1.28s interval	0.196
Peak LE TX	15.40
Peak LE RX	12.30
LE Link (interval=400=1.28s)	0.204
LE Link (interval=320=1.00s)	0.206
LE Scan (interval=800=1.28s)	0.281
LE Scan (interval=640-1.00s)	0.311

Table 20: Bluetooth power consumption

4.6 NFC power consumption

Operation Mode	Average current, mA	3V3
TAG Type 1		90
TAG Type 1 TAG Type 2		95
TAG Type 3		85
TAG Type 4A		100

Table 21: NFC power consumption

¹³ Supply 3.3V, Average consumption current if not specified otherwise.

4.7 Radio specifications

4.7.1 Wi-Fi

The EMMY-W1 series modules support Wi-Fi standards IEEE 802.11a/b/g/n/ac in 2.4 GHz and 5 GHz radio bands. In the 2.4 GHz band, the EMMY-W1 supports 802.11b/g/n while in 5 GHz band, it supports 802.11a/n/ac.

Parameter		Operation Mode			Specification
RF Frequency range		802.11b/g/n			2.400 – 2.500 GHz
		802.11a/n/ac		5.150 – 5.850 GHz	
		802.11b			CCK and DSSS
Modulation		802.11a/g/n/ac			OFDM
Supported data rates		802.11b			1, 2, 5.5, 11 Mbps
		802.11a/g			6, 9, 12, 18, 24, 36, 48, 54 Mbps
		802.11n			MCS0 - MCS7 (150 Mbps)
		802.11ac			MCS0 – MCS9 (433 Mbps)
Supported channel bandwidth		802.11ac			20, 40, 80 MHz
Supported guard interval (GI)		802.11n			400, 800 ms
		802.11ac			Short guard interval supported
Maximum transmit power		802.11b			18 dBm ± 1.5 dB
		802.11a/g/n/ac			16 dBm ± 1.5 dB
Receiver sensitivity	2.4 GHz	802.11b	1 Mbps		-98 dBm ± 1 dB
			11 Mbps		-89 dBm ± 1 dB
		802.11g		6 Mbps	-91 dBm ± 1 dB
				54 Mbps	-74 dBm ± 1 dB
		802.11n	20 MHz	MCS0	-91 dBm ± 1 dB
				MCS7	-73 dBm ± 1 dB
			40 MHz	MCS0	-89 dBm ± 1 dB
				MCS7	-71 dBm ± 1 dB
	5 GHz	802.11a		6 Mbps	-91 dBm ± 1 dB
				54 Mbps	-74 dBm ± 1 dB
		802.11n	20 MHz	MCS0	-90 dBm ± 1 dB
				MCS7	-72 dBm ± 1 dB
			40 MHz	MCS0	-88 dBm ± 1 dB
				MCS9	-63 dBm ± 1 dB
		802.11ac	80 MHz	MCS0	-85 dBm ± 1 dB
				MCS9	-60 dBm ± 1 dB

Table 22: Wi-Fi radio specifications

Channel	Frequency, GHz	Channel	Frequency, GHz
1	2.412	6	2.437
2	2.417	7	2.442
3	2.422	8	2.447
4	2.427	9	2.452
5	2.432	10	2.457

Frequency, GHz
2.462
2.467
2.472

Table 23: 2.4 GHz Band Supported Channels, 20 MHz bandwidth

Channel	Frequency, GHz	Channel	Frequency, GHz
1 - 5	2.422	4 - 8	2.437
2 - 6	2.427	5 - 9	2.442
3 - 7	2.432	6 - 10	2.447

Channel	Frequency, GHz
7 - 11	2.452

Table 24: 2.4 GHz band supported channels, 40 MHz bandwidth

Channel	Frequency, GHz	Channel	Frequency, GHz	Channel	Frequency, GH
36	5.180	100	5.500	132	5.660
40	5.200	104	5.520	136	5.680
44	5.220	108	5.540	140	5.700
48	5.240	112	5.560	149	5.745
52	5.260	116	5.580	153	5.765
56	5.280	120	5.600	157	5.785
60	5.300	124	5.620	161	5.805
64	5.320	128	5.640	165	5.825

Table 25: 5 GHz band supported channels, 20 MHz bandwidth

Channel	Frequency, GHz	Channel	Frequency, GHz	Channel	Frequency, GHz
36 - 40	5.190	100 - 104	5.510	132 - 136	5.670
44 - 48	5.230	108 - 112	5.550	149 - 153	5.755
52 - 56	5.270	116 - 120	5.590	157 - 161	5.795
60 - 64	5.310	124 - 128	5.630		

Table 26: 5 GHz band supported channels, 40 MHz bandwidth

Channel	Frequency, GHz	Channel	Frequency, GHz	Channel	Frequency, GHz
42	5.210	106	5.530	138	5.690
58	5.290	122	5.610	155	5.775

Table 27: 5 GHz band supported channels, 80 MHz bandwidth

4.7.2 Bluetooth

Parameter	Specifications	
RF Frequency Range	2.400 – 2.4835 GHz	
Supported Modes	Bluetooth v4.2 (including Bluetooth Low Energy and Classic Bluetooth with BR and EDR)	
Number of channels	79	
Modulation	1 Mbps: GFSK (BR)	
	2 Mbps: π/4 DQPSK (EDR)	
	3 Mbps: 8DQPSK (EDR)	
Transmit Power	Class 2, Class 1, BR: 10 dBm \pm 2 dB, EDR: 8 dBm \pm 2 dB ¹⁴	
Receiver Sensitivity	-95 dBm ± 2 dB	

Table 28: Bluetooth radio specifications

4.7.3 LTE co-existence

Specific influence of BAW filters on the following RF parameters:

- Wi-Fi output power
- Wi-Fi sensitivity
- Bluetooth output power
- Bluetooth sensitivity

Characterization of LTE co-existence:

- Maximum tolerated input power from LTE interferer
- Rejection in LTE bands
- Wi-Fi and Bluetooth desensitization in presence of LTE transmission in adjacent bands for given antenna isolation

 $^{^{14}}$ For regulatory reasons, only class 2 operations are permitted in Europe.

BAW decrease influence to LTE as well

The BAW-Filter is included only in the EMMY-W161 module variant.

4.7.4 Near field communication

4.7.4.1 Card emulator specifications

Parameter	Condition	Minimum	Туре	Maximum	Units
AC characteris	stics				
Vsens _{PICC}	Input carrier detection level, full-power mode, peak sinus differential voltage on NFC_ANT_P/N pin	-	300	-	mV_{peak}
MOD_{PICC}	Input ASK modulation index ¹⁵	8	-	100	%
DR _{PICC}	Input data rate (coding depending on standard: Manchester, Modified, Miller, or NRZ	106	-	848	Kbps

Table 29: NFC card emulator

For typical recommended operating conditions unless otherwise specified.

4.7.4.2 Reader/Writer specifications

Parameter	Condition	Minimum	Туре	Maximum	Units
DC characteristics					
VCM_{TX_PA}	Power amplifier output common mode level	-	VDDTX/2	-	V
AC characteristics					
F _{TXCARR}	Output carrier frequency	13.553	13.56	13.567	MHz
R _{OUT_ANT}	Power amplifier output impedance	-	50	-	Ω
MOD_{PCD}	Output ASK modulation index15	8	-	100	%

Table 30: NFC Reader/Writer specifications

For typical recommended operating conditions unless otherwise specified

¹⁵ As defined in ISO/IEC 14443-2, for example, [a-b]/[a+b] where a and b are the peak and minimum signal amplitude respectively.

5 Host drivers and firmware

5.1 General principle

The EMMY-W1 series module does not contain any persistent software. A firmware binary will be downloaded by the host operating system driver on system start-up.

5.2 Supported operating systems

5.2.1 Linux

Linux device drivers are available from u-blox. Once you sign the Limited Use License Agreement (LULA) with u-blox, a driver package will be available. This package includes:

- Dedicated Kernel driver, to bind the Wi-Fi, Bluetooth and NFC block to the kernel. The sources of those drivers will be provided.
- A dedicated firmware image, which will be uploaded during initialization.
- Various configuration tools
- Laboratory and manufacturing tools

For a detailed description of the driver packages, refer to EMMY-W1 series System Integration Manual [3].

UBX-15011785 - R05 Host drivers and firmware

6 Mechanical specifications

Figure 12: EMMY-W1 series dimensions (bottom view)

Parameter	Description	Typical		Tolerance	
A	Module Length [mm]	19.8	(779.5 mil)	+0.35/-0.1	(+13.8/-3.9 mil)
В	Module Width [mm]	13.8	(543.3 mil)	+0.1/-0.1	(+3.9/-3.9 mil)
С	Module Thickness [mm]	2.5	(98.4 mil)	+0.2/-0.2	(+7.9/-7.9 mil)
ссс	Seating Plane Coplanarity [mm]	0.15	(5.9 mil)		
D	PCB Edge to Pin Edge [mm]	0.3	(11.8 mil)	+0.20/-0.20	(+7.9/-7.9 mil)
E	Pin Width [mm]	0.8	(31.5 mil)	+0.05/-0.05	(+2.0/-2.0 mil)
F	Pin Length [mm]	1.2	(47.2 mil)	+0.05/-0.05	(+2.0/-2.0 mil)
G	Pin to Pin Pitch [mm]	1.25	(49.2 mil)	+0.02/-0.02	(+0.8/-0.8 mil)
Н	Horizontal Corner Pin to Pin Pitch [mm]	1.5	(59.1 mil)	+0.02/-0.02	(+0.8/-0.8 mil)
I	Lateral Corner Pin to Pin Pitch [mm]	1.65	(65.0 mil)	+0.02/-0.02	(+0.8/-0.8 mil)
J	Horizontal Thermal Pads Pitch [mm]	4.9	(192.9 mil)	+0.02/-0.02	(+0.8/-0.8 mil)

Parameter	Description	Typical		Tolerance	
K	Thermal Pad Height [mm]	3.35	(131 9 mil)	+0.1/-0.1	(+3.9/-3.9 mil)
L	Thermal Pad Length [mm]	3.7	(145.7 mil)	+0.1/-0.1	(+3.9/-3.9 mil)
М	Thermal Pad Pin 1 Mark Chamfer [mm]	0.6 x 45°	(23.6 mil x 45°)	+0.1/-0.1	(+3.9/-3.9 mil)
N	Horizontal Pin to Thermal Pad Pitch [mm]	3.725	(146.7 mil)	+0.05/-0.05	(+2.0/-2.0 mil)
0	Lateral Pin to Thermal Pad Distance [mm]	4.1	(161.4 mil)	+0.05/-0.05	(+2.0/-2.0 mil)
Р	Lateral Thermal Pads Pitch [mm]	4.55	(179.1 mil)	+0.02/-0.02	(+0.8/-0.8 mil)

UBX-15011785 - R05 Mechanical specifications

7 Qualification and approvals

Table 31 provides an overview of the available radio type approvals for each EMMY-W1 product variant.

Country/Region	EMMY-W161	EMMY-W161-A	EMMY-W163	EMMY-W163-A	EMMY-W165	EMMY-W165-A
EU (ETSI)	Yes	Yes	Yes	Yes	Yes	Yes
USA (FCC)	Yes	Yes	Yes	Yes	Yes	Yes
Canada (IC)	Yes	Yes	Yes	Yes	Yes	Yes
Australia (ACMA)	Yes	Yes	No	No	No	No
Korea (KCC)	No	No	Yes	Yes	No	No
Japan (Giteki)	No	No	Yes	Yes	No	No

Table 31: Overview of certifications for EMMY-W1 module series

7.1 Approvals¹⁶

Products marked with this lead-free symbol on the product label comply with the "Directive 2002/95/EC of the European Parliament and the Council on the Restriction of Use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS).

EMMY-W1 series Wi-Fi modules are RoHS compliant.

7.1.1 European Union regulatory compliance

Information about regulatory compliance of the European Union for EMMY-W1 modules is available in the EMMY-W1 Declaration of Conformity [4].

7.1.1.1 Equipment classes

A multi-radio module is classified as class-1 or class-2 radio equipment depending on the frequency band in which it can operate. This equipment class is inherited by the end-product that integrates the module, thus it must be marked accordingly.

Class-1 radio equipment can be placed on the market and put into service without restrictions. (Article 1 of Commission Decision 2000/299/EC of April 6 2000)

This multi-radio module is defined as class-1 radio equipment when it is restricted to operate in the following frequency bands:

- Bluetooth , ISM band 2400 2483.5 MHz
- WLAN, ISM band 2400 2483.5 MHz
- WLAN, U-NII band-2e 5470 5725 MHz, exludes 5600-5650 GHz¹⁷

Class-2 radio equipment includes restrictions applied by Member States as indicated in Article 1(2) of the Commission Decision. This class uses the "Alert Sign" as an equipment class identifier.

Figure 13: Alert sign to identify equipment Class-2

UBX-15011785 - R05 Qualification and approvals

¹⁶ See Table 31 for information on what certifications are completed for each of the EMMY-W1 module versions.

¹⁷ Channels 118, 120, 122, 124, 126 and 128 have to be excluded for the EMMY-W1 series modules. The firmware was not approved to operate in frequencies between 5.600 – 5.650 GHz due to lack of CCA time of 10 min. This might change in future firmware releases.

If an end product allows the multiradio module to operate in the 5150-5350 MHz band (WLAN channel: 36-64), it is defined as class-2 radio equipment and must be marked accordingly. Class-2 radio equipment must have the "alert" sign affixed on the equipment, packaging and printed in the user manual.

The EMMY-W1 multiradio module uses harmonized frequency bands thus it is comprised by subclass H01 of class 2 equipment, for which notification in accordance with article 6(4) of the R&TTE directive is not necessary.

A definition of subclasses of Class 2 equipment can be found in [15].

The table below shows the restrictions when operating WLAN at different bands within the European countries:

Band	Channel number	Channel frequency [MHz]	Indoor use allowed	Outdoor use allowed	Radio Equipment Class	Max. EIRP
ISM	1 – 11	2412 – 2462	Yes	Yes	1	100 mW / 20 dBm
U-NII 1	36 – 48	5180 – 5240	Yes	No	2	200 mW / 23 dBm
U-NII 2	52 – 64	5260 – 5320	Yes	No	2	200 mW / 23 dBm
U-NII 2e	100 – 140 ¹⁷	5500 – 5700	Yes	Yes	1	1 W / 30 dBm
U-NII 3	149 - 165	5750 - 5825	Yes	Yes	1	25 mW / 14 dBm

Table 32: Operating restrictions and radio equipment classification of EMMY-W1 series

Guidance on how the end product is marked in accordance with the R&TTE directive can be found in the Radio and Telecommunication Terminal Equipment (R&TTE) Directive [15].

IMPORTANT: The "CE" marking must be affixed on a visible location on the OEM product in which this module is installed and has to be labeled in accordance to R&TTE Directive 1999/5/EC.

7.1.2 FCC compliance

The EMMY-W1 series module complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesired operation.

Non-authorized modification could void authority to use this equipment. The internal / external antenna(s) used for this module must provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

In accordance with 47 CFR § 15.19, the end product into which this module is integrated shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesired operation.

When the end-product is so small or for such use that it is not practical to place the above statement on it, the information shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or on the container in which the device is marketed. However, the FCC ID label must be displayed on the device.

If the end-product will be installed in locations where the end-user is not able to see the FCC ID and/or this statement, the FCC ID and the statement shall also be included in the end-product manual.

The outside of final products containing the EMMY-W1 module must display in a user accessible area a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: (XYZ)(UPN)" or "Contains FCC ID: (XYZ)(UPN)", where (XYZ) represents the

FCC "Grantee Code" and (UPN) is the Unique Product Number decided by the grant owner¹⁸.

7.1.3 IC compliance

The EMMY-W1 series module complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

- 1. This device may not cause interference, and
- 2. This device must accept any interference, including interference that may cause undesired operation of the device.

Any notification to the end user of installation or removal instructions about the integrated radio module is NOT allowed. Unauthorized modification could void authority to use this equipment.

This equipment complies with IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body.

This radio transmitter IC: 8595A-EMMYW161, IC: 8595A-EMMYW163 and IC: 8595A-EMMYW165 has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Operation in the band 5150–5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;

Operation in the 5600-5650 MHz band is not allowed in Canada. High-power radars are allocated as primary users (i.e. priority users) of the bands 5250-5350 MHz and 5650-5850 MHz and that these radars could cause interference and/or damage to LE-LAN devices.

The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device; otherwise, the host device must be labeled to display the Industry Canada certification number for the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows: "Contains transmitter module IC: (CN)-(UPN)", where (CN) is the Company Number registered at Industry Canada and (UPN) is the Unique Product Number decided by the grant owner.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Cet équipement est conforme aux limites d'exposition de rayonnement d'IC RSS-102 déterminées pour un environnement non contrôlé. Cet équipement devrait être installé et actionné avec la distance minimum 20 cm entre le radiateur et votre corps.

Cet émetteur radio, IC: 8595A-EMMYW161, IC: 8595A-EMMYW163 et IC: 8595A-EMMYW165 été approuvé par Industry Canada pour fonctionner avec les types d'antenne énumérés ci-dessous avec le gain maximum autorisé et l'impédance nécessaire pour chaque type d'antenne indiqué. Les types d'antenne ne figurant pas dans cette liste et ayant un gain supérieur au gain maximum indiqué pour ce type-là sont strictement interdits d'utilisation avec cet appareil.

Le dispositif de fonctionnement dans la bande 5150-5250 MHz est réservé à une utilisation en intérieur pour réduire le risque d'interférences nuisibles à la co-canal systèmes mobiles par satellite

Opération dans la bande 5600-5650 MHz n'est pas autorisée au Canada. Haute puissance radars sont désignés comme utilisateurs principaux (c.-àutilisateurs prioritaires) des bandes 5250-5350 MHz et 5650-5850 MHz et que ces radars pourraient causer des interférences et / ou des dommages à dispositifs LAN-EL.

UBX-15011785 - R05 Qualification and approvals

¹⁸ The FCC and IC IDs for the EMMY-W1 series module variants are shown in Table 36. Select the applicable ID.

L'étiquette d'homologation d'Industrie Canada d'un module donné doit être posée sur l'appareil hôte à un endroit bien en vue en tout temps. En l'absence d'étiquette, l'appareil hôte doit porter une étiquette sur laquelle figure le numéro d'homologation du module d'Industrie Canada, précédé des mots « Contient un module d'émission », ou du mot « Contient », ou d'une formulation similaire allant dans le même sens et qui va comme suit : « Contient le module d'émission IC: (CN)-(UPN) », où (CN) représente le numéro de compagnie, attribué par Industrie Canada et (UPN) représente le numéro de produit unique attribué par le requérant.

The internal / external antenna(s) used for this module must provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. See Table 33 for list of approved antennas.

The approval type for all the EMMY-W1 series variants is a modular approval. Due to Industry Canada Modular Approval Requirements (Source: RSP-100 Issue 10), any application which includes the module must be approved by the module manufacturer (u-blox). The application manufacturer must provide design data for the review procedure.

7.1.4 Australia and New Zealand regulatory compliance

The EMMY-W1 series modules are compliant with the standards made by the Australian Communications and Media Authority (ACMA). For detailed information about the obligations for end products market in Australia or New Zealand, refer to the EMMY-W1 series System Integration Manual [3].

7.1.5 Korean KCC compliance

MSIP-CRM-ULX-EMMY-W163

The EMMY-W1 series modules are certified by the Korea Communications Commission (KCC).

7.1.6 Japan radio equipment compliance

The EMMY-W1 series module complies with the Japanese Technical Regulation Conformity Certification of Specified Radio Equipment (ordinance of MPT N°. 37, 1981), Article 2, Paragraph 1:

- Item 19 "2.4 GHz band wide band low power data communication system"
- Item 19-3 "Low power data communications system in the 5.2/5.3 GHz band"
- Item 19-3-2 "Low power data communications system in the 5.6 GHz band"

The EMMY-W1 series module is restricted on the Japanese market to be used indoors only if the product is operating in the 5.2/5.3 GHz band.

5GHz band (W52,W53): For indoor use only - この製品は屋内においてのみ使用可能です

Figure 14 Giteki mark for the EMMY-W1 series modules.

7.2 Approved antennas

For Bluetooth and Wi-Fi operation in the 2.4 GHz band and Wi-Fi operation in the 5 GHz band, the module has been tested and approved for use with the antennas listed in Table 33.

Manufacturer	Part Number	Antenna type	Peak gain [dBi]	
			2.4 GHz band	5 GHz band
Antenova	A10194	SMD chip antenna 10x10x0.9 [mm] [5]	1.8	4.1
Linx	ANT-DB1-RAF-RPS	Dual-band dipole antenna [6]	2.5	4.6
Taoglas	GW.40.2153	Dual-band dipole antenna [7]	3.74	2.5
Taoglas	GW.59.3153	Dual-band dipole antenna [8]	2.37	2.93
Walsin	RFDPA870900SBLB8G1	Dual-band dipole antenna [9]	2	3
Delock	88395	Dual-band dipole antenna [11]	1.5	2.1

Table 33: List of approved dual-band antennas

The module can be integrated with other antennas which the OEM installer must authorize with respective regulatory agencies and after approval of the module manufacturer.

Important: To be compliant to FCC §15.407(a) the EIRP is not allowed to exceed 125 mW (21 dBm) at any elevation angle above 30 degrees as measured from the horizon when operate as an outdoor access point in U-NII-1 band, 5.150-5.250 GHz.

If in doubt if the antenna installation fulfills this requirement at maximum output power, restrict the maximum output power setting for operation in the 5.150-5.250 GHz band to 16 dBm. For a description on how to configure output power settings refer to the *EMMY-W1 series System Integration Manual* [3].

7.2.1 Bluetooth antenna

The following antennas are designated for Bluetooth transmission on EMMY-W163:

Manufacturer	Part Number	Antenna type	Peak gain [dBi]
			2.4 GHz band
Johanson Technology	2450AT45A100	SMD chip antenna 10x10x0.9 [mm] [12]	2.2
Taoglas	GW.26.0151	Single-band monopole antenna [13]	1.8
Linx	ANT-2.4-CW-RCT-RP	Single-band dipole antenna [10]	2.2
Linx	ANT-2.4-CW-RH	Single-band monopole antenna [14]	-0.9

Table 34: List of approved single-band antennas

7.2.2 NFC antenna

The following antennas are designated to be used for Near Field Communication (NFC) on EMMY-W161, EMMY-W163, and EMMY-W165:

Manufacturer	Part Number	Antenna type
u-blox	EMMY_NFC_ANT	External PCB antenna with connector

Table 35: List of approved NFC antenna

UBX-15011785 - R05 Qualification and approvals

7.3 FCC and IC IDs

Product name	FCC ID	IC ID
EMMY-W161	XPYEMMYW161	8595A-EMMYW161
EMMY-W161-A	XPYEMMYW161	8595A-EMMYW161
EMMY-W163	XPYEMMYW163	8595A-EMMYW163
EMMY-W163-A	XPYEMMYW163	8595A-EMMYW163
EMMY-W165	XPYEMMYW165	8595A-EMMYW165
EMMY-W165-A	XPYEMMYW165	8595A-EMMYW165

Table 36: FCC and IC IDs for different models of EMMY-W1 series

7.4 Korea KCC IDs

Product name	KCC ID
EMMY-W161	-
EMMY-W161-A	-
EMMY-W163	MSIP-CRM-ULX-EMMY-W163
EMMY-W163-A	MSIP-CRM-ULX-EMMY-W163
EMMY-W165	-
EMMY-W165-A	-

Table 37: KCC certification IDs for different models of EMMY-W1 series

7.5 Japan Giteki IDs

Product name	GITEKI ID
EMMY-W161	-
EMMY-W161-A	-
EMMY-W163	MIC ID: R 207-16EMMY
EMMY-W163-A	MIC ID: R 207-16EMMY
EMMY-W165	-
EMMY-W165-A	-

Table 38: Giteki certification IDs for different models of EMMY-W1 series

7.6 Bluetooth qualification

The EMMY-W1 series modules is Bluetooth qualified as "Controller Subsystem" and is listed with the qualified design ID, QD ID: 87047.

This means that there is no need to do any further qualification if the module is combined with a host stack that is Bluetooth qualified as "Host Subsystem".

7.6.1 Bluetooth host stack

Several Bluetooth host stacks are available in the market. These host stacks are suited for different tasks and environments. These host stacks could differ based on their system requirements, supported Bluetooth profiles, cost, Bluetooth qualification, support and so on.

UBX-15011785 - R05 Qualification and approvals

8 Product handling

8.1 Packaging

The EMMY-W1 series modules are delivered as hermetically sealed tape and reels, to enable efficient production, production lot set-up and tear-down. For more information about packaging, see the u-blox Package Information Guide [1].

8.1.1 Reels

The EMMY-W1 series modules are deliverable in quantities of 500 pieces on a reel. The EMMY-W1 series modules are shipped on reel Type A as described in the u-blox Package Information Guide [1].

8.1.2 Tapes

Figure 14 shows the position and orientation of the EMMY-W1 modules as they are delivered on tape. The dimensions of the tapes are specified in Figure 16.

Figure 15: Orientation for EMMY-W1 modules on tape

UBX-15011785 - R05 Product handling

Ao = 14.4 Bo = 20.4

NOTES:

- 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
- POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED
 AS TRUE POSITION OF POCKET, NOT POCKET HOLE
- 3. Ao AND BO ARE CALCULATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKET.

Figure 16: EMMY-W1 Tape dimensions

8.2 Shipment, storage and handling

For more information regarding shipment, storage and handling see the u-blox Package Information Guide [1].

8.2.1 Moisture sensitivity levels

The EMMY-W1 series modules are rated at moisture sensitivity level 3. See moisture sensitive warning label on each shipping bag for detailed information. After opening the dry pack, modules must be mounted within 168 hours in factory conditions of maximum 30°C/60%RH or must be stored at less than 10%RH. Modules require baking if the humidity indicator card shows more than 10% when read at 23±5°C or if the conditions mentioned above are not met. Please refer to J-STD-033B standard for bake procedure.

8.2.2 Mounting process and soldering recommendations

The EMMY-W1 series module is a surface mount module supplied on a 4-layer FR4-type PCB with gold plated connection pins and produced in a lead-free process with a lead-free soldering paste. The wrap page of the PCB is max. 0,75% according to IPC-A-610E. The thickness of solder resist on the host PCB top side and the EMMY-W1 bottom side must be considered for the soldering process.

This module is compatible with industrial reflow profile for RoHS/Pb-free solders, Sn96.5/Ag3.0/Cu0.5 solder is a right choice. Use of "No Clean" soldering paste is strongly recommended, cleaning the populated modules is strongly discouraged - residuals under the module cannot be easily removed with any cleaning process. Cleaning with water can lead to capillary effects where water is absorbed into the gap between the host board and module. The combination of soldering flux residuals and encapsulated water could lead to short circuits between neighboring pins.

Only a single reflow soldering process is permitted for host boards with the EMMY-W1 series modules.

The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Since the profile used is process and layout dependent, the optimum profile should be studied case by case. Recommendations below should be taken as a starting point quide. In case of basic information necessity, please refer to J-STD-020C standard. }

UBX-15011785 - R05 Product handling

Profile feature	Sn-Pb eutectic (Sn63/Pb37)	RoHS/Pb-free (Sn96.5/Ag3.0/Cu0.5)
Ramp up rate $(T_{\scriptscriptstyle{SMAX}}$ to $T_{\scriptscriptstyle{P}})$	3 °C/sec max	3 °C/sec max
Minimum soak temperature (T _{SMIN})	100 °C	150 °C
Maximum soak temperature (T _{SMAX})	150 °C	200 °C
Soak time (ts)	60 - 120 sec	60 - 180 sec
Liquidus temperature (T _L)	183 °C	217 °C
Time above T_L (t_L)	60 - 150 sec	60 - 150 sec
Peak temperature (T _P)	215 – 225 °C	235 − 245 °C
Time within +0 / -5°C of actual TP (tp)	10 - 30 sec	20 - 40 sec
Ramp down rate	6 °C/sec max	6 °C/sec max
Time from 25°C to T _P	6 min max	8 min max

Table 39: Recommended reflow profile

The lowest value of T_P and slower ramp down rate (2 – 3 °C/sec) is preferred.

Figure 17: Reflow profile

8.2.3 ESD handling precautions

EMMY-W1 series modules are Electrostatic Sensitive Devices (ESD). Observe precautions for handling! Failure to observe these precautions can result in severe damage to the Wi-Fi receiver!

Wi-Fi transceivers are Electrostatic Sensitive Devices (ESD) and require special precautions when handling. Particular care must be exercised when handling patch antennas, due to the risk of electrostatic charges. In addition to standard ESD safety practices, the following measures should be taken into account whenever handling the receiver:

- Unless there is a galvanic coupling between the local GND (i.e. the work table) and the PCB GND, then the first point of contact when handling the PCB must always be between the local GND and PCB GND.
- Before mounting an antenna patch, connect ground of the device

- When handling the RF pin, do not come into contact with any charged capacitors and be careful when contacting materials that can develop charges (e.g. patch antenna ~10 pF, coax cable ~50-80 pF/m, soldering iron, ...)
- To prevent electrostatic discharge through the RF input, do not touch any exposed antenna area. If there is any risk that such exposed antenna area is touched in non ESD protected work area, implement proper ESD protection measures in the design.
- When soldering RF connectors and patch antennas to the receiver's RF pin, make sure to use an ESD safe soldering iron (tip).

9 Labeling and ordering information

9.1 Product labeling

The labels of EMMY-W1 series include important product information as described in this section. The data matrix code for automotive and professional grade variants of EMMY-W1 series includes a serial number.

Figure 18 illustrates the sample label of the automotive grade (professional grade is similar and differs with respect to product version 1 as mentioned in Table 40) of the EMMY-W1 series and includes: the u-blox logo, product name (model), type number, FCC and IC certification number, KCC and GITEKI mark and ID, and the date of unit production encoded YY/WW (year/week). The product label may differ per product type depending on the country approvals obtained for each product type.

Figure 18: EMMY-W1 series - Sample label

A detailed description of the label components are listed in Table 40. The first three digits of the serial number represent the Bluetooth MAC address.

Reference	Description			
1	Text "MODEL:" followed by product type number, excluding the second dash and smaller font used for the product version identifier (For example, "xxB-yy" for professional and "xxA-yy" for automotive grade).			
2	Date of production encoded YY/WW (year/week)			
3	Certification IDs (e.g. FCC/IC, KCC) with which the module has been listed with			
4	KC mark for Korea KCC certification if applicable.			
5	GITEKI mark and ID if applicable			
6	Data Matrix with unique serial number of 19 alphanumeric symbols. The 3 first symbols represent the unique module type no: 631: EMMY-W161-00A-00 632: EMMY-W163-00A-00 700: EMMY-W163-00B-00 701: EMMY-W161-00B-00 756: EMMY-W165-00A-00 841: EMMY-W165-00B-00 The next 12 symbols represent the unique hexadecimal Bluetooth MAC address (see section 1.7 for more information about MAC addresses) of the module AABBCCDDEEFF, and the last 4 symbols represent the hardware and firmware version encoded HHFF.			
7	u-blox logo, the red dot in the logo is also marking pin no 1			

Table 40 EMMY-W1 series label description

9.2 Explanation of codes

Two different product code formats are used. The **Product Name** is used in documentation such as this data sheet and identifies all u-blox products, independent of packaging and quality grade. The **Ordering Code** includes options and quality, while the **Type Number** includes the hardware and firmware versions. Table 41 below details these three different formats:

Format	Structure
Product Name	PPPP-TGVV
Ordering Code	PPPP-TGVV-TTQ
Type Number	PPPP-TGVV-TTQ-XX

Table 41: Product code formats

Table 42 explains the parts of the product code.

Code	Meaning	Example	
PPPP	Form factor	EMMY	
TG	Platform		
	T – Dominant technology, For example, W: Wi-Fi, B: Bluetooth		
	G - Generation		
VV	Variant based on the same platform; range [0099] 61		
TT	Major Product Version 00		
Q	Quality grade	А	
	A: Automotive		
	B: Professional		
	C: Standard		
XX	Minor product version (not relevant for certification)	00	

Table 42: Part identification code

9.3 Ordering codes

Ordering Code	Product name	Product
EMMY-W161-00B	EMMY-W161	EMMY-W161 professional grade module
EMMY-W161-00A	EMMY-W161-A	EMMY-W161 automotive grade module
EMMY-W163-00B	EMMY-W163	EMMY-W163 professional grade module
EMMY-W163-00A	EMMY-W163-A	EMMY-W163 automotive grade module
EMMY-W165-00B	EMMY-W165	EMMY-W165 professional grade module
EMMY-W165-00A	EMMY-W165-A	EMMY-W165 automotive grade module
EVK-EMMY-W161-A	EVK-EMMY-W161	Evaluation kit for EMMY-W161 and EMMY-W161-A as well as EMMY-W165 and EMMY-W165-A when not co-located with LTE
EVK-EMMY-W163-A	EVK-EMMY-W163	Evaluation kit for EMMY-W163 and EMMY-W163-A

Table 43: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website.

Appendix

A Glossary

Name	Definition	
ACL	Access control list	
AES	Advanced Encryption Standard	
BPF	Band-Pass Filter	
ВТ	Bluetooth	
BAW	Bulk Acoustic Wave	
CPU	Central Processing Unit	
DTIM	Delivery traffic indication message	
DC	Direct Current	
DDR	Double Data Rate	
EIRP	Equivalent Isotropically Radiated Power	
ESD	Electrostatic Sensitive Devices	
EMV	Europay, MasterCard and Visa	
FCC	Federal Communications Commission	
FIFO	First In, First Out	
Gl	Guard interval	
GND	Ground	
GPIO	General-purpose input/output	
HD	High Definition	
HCI	Host Controller Interface	
IC	Industry Canada	
IMEI	International Mobile Station Equipment Identity	
LED	Light-emitting diode	
LTE	Long Term Evolution	
LE	Low Energy	
MAC	Medium Access Control	
MWS	Mobile Wireless Standards	
MCS	Modulation Coding Scheme	
MSL	Moisture sensitivity level	
NFC	Near-Field Communication	
NFCIP	NFC Interface and Protocol	
OEM	Original equipment manufacturer	
P2P	Peer-to-peer	
PCB	Printed Circuit Board	
PCN	Product Change Notification	
PCM	Pulse-code modulation	
R&TTE	Radio and telecommunications terminal equipment	
RF	Radio Frequency	
RSS	Radio Standards Specification	
RH	Relative humidity	
RoHS	Restriction of Hazardous Substances	
SDIO	Secure Digital Input Output	

UBX-15011785 - R05 Appendix

Name	Definition	
SDR	Secure Digital Rate	
SMD	Surface-mount Device	
SCO	Synchronous Connection-Oriented	
UART	Universal Asynchronous Receiver/Transmitter	

Table 44: Explanation of abbreviations and terms used

UBX-15011785 - R05 Appendix

Related documents

- [1] u-blox Package Information Guide, document number UBX-14001652
- [2] Driver Software Application Note for ELLA-W1 series and EMMY-W1 series, document number UBX-15012542
- [3] EMMY-W1 series System Integration Manual, document number UBX-15024929
- [4] EMMY-W1 Declaration of Conformity, document number UBX-16007139
- [5] Mixtus A10194 Product Specification, Antenova-M2M, http://www.antenova-m2m.com/documents/download/40c67cf2e7a4c7b8cd0f7faed7f6d2ca4fe1886d597d5, October 2015
- [6] ANT-DB1-RAF-xxx Data Sheet, Linx, http://www.linxtechnologies.com/resources/data-guides/ant-db1-raf-xxx.pdf, October 2015
- [7] Specification. Part No.: GW.40.2153, taoglas, https://fccid.io/pdf.php?id=2415249, December 2015
- [8] Specification. Part No.: GW.59.3153, taoglas,
 http://www.taoglas.com/images/product_images/original_images/GW.59.3153-2.4GHz-5.8GHz Band
 Mount Dipole Antenna 080910.pdf, October 2015
- [9] 2015 RF Devices and High Frequency Inductors Product catalog, http://www.passivecomponent.com/document/HF_Devices/2013RF_Catalogue.pdf, December 2015
- [10] ANT-2.4-CW-RCT-xx Data Sheet, Linx, http://www.linxtechnologies.com/resources/data-guides/ant-2.4-cw-rct-xx.pdf, October 2015
- [11] Delock WLAN 802.11 ac/a/b/g/n Antenna RP-SMA 2 dBi Omnidirectional Joint, 2015-11-26 http://www.delock.com/produkt/88395/pdf.html?sprache=en, November 2015
- [12] 2.45 GHz High Gain SMD Chip Antenna P/N 2450AT45A100, Johanson Technology, http://www.johansontechnology.com/datasheets/antennas/2450AT45A100.pdf, October 2015
- [13] 2.4 GHz Miniature Screw mount Monopole Antenna, taoglas, http://www.taoglas.com/images/product_images/original_images/GW.26.0112 2.4GHz Band Monopole SMA%28M%29RA.pdf, December 2015
- [14] ANT-2.4-CW-RH Data Sheet, Linx, http://www.linxtechnologies.com/resources/data-guides/ant-2.4-cw-rh-xxx.pdf, December 2015
- [15] Radio and Telecommunication Terminal Equipment (R&TTE) Directive; http://ec.europa.eu/growth/sectors/electrical-engineering/rtte-directive; July 2016

UBX-15011785 - R05 Related documents

Revision history

Revision	Date	Name	Comments
R01	16-Mar-2015	lalb	Initial draft release.
R02	16-Oct-2015	shoe, ishe, kfra, ovik, ddie, kgom	Professional grade variants added. Minor updates in section 1.6. Modified figures 2, 11 and 12. Included subsections 2.2, 2.4 and 4.6. Included Table 7 in section 2.3, Table 9 in section 2.4.1 and Table 10 in Section 2.5. Updated Tables 2, 10, 11, 18, and 23. Renamed section 2.5 as GPIO interface. Added information for the sections 2.3, 2.4 and 2.5. Removed section 4.4 - Current consumption from R01. Added section 3.2 - Reset configuration, section 4.4 - Wi-Fi power consumption, section 4.5 - Bluetooth power consumption and section 4.6 - NFC power consumption. Removed VIO1/2 from PDn description. Added maximum ratings for NFC_ANT_N/P pins. Added note with respect to availability of BAW in EMMY-W161 variant only. Updated features to include compliance with Bluetooth 4.2. Included sample labels for professional and automotive grade variants in section 9.1. Modified Wi-Fi standards support in section 4.7.1. Included NFC specifications and packaging information in section 4.7.4 and 8.1 respectively. Minor change in section 7.1.3 - IC compliance. Modified the top view drawing in Figure 12. Added info about upcoming country approvals for Japan, South Korea, China, Taiwan and Australia. Added section 7.2 - Approved antennas. Provided reference to EMMY-W1 series System Integration Manual for information about driver packages in section 5.2.1. Updated planned FCC and IC IDs in Table 36 and on the label (Figure 18 and 17). Included Receiver Sensitivity information in Table 28.
R03	9-Dec-2015	shoe, ishe, kgom	Modified section 1.5. In section 1.6.1, included footnote that IEEE 802.11k and v is not supported by the firmware currently in the first bullet. Removed "applies only to automotive grade variants" from the last bullet in section 1.6.4 as ISO 16750 will apply for both the variants. Added section 1.7. In sections 4.7.1 and 4.7.2, modified the specifications for maximum transmit power and receiver sensitivity. Updated Table 30 in section 7.1.4. Updated section 7.1.4. Modified the Note in section 7.1.2 - "FCC Compliance". Modified the last note in section 7.1.3.
R04	19-Jul-2016	shoe, kgom	Early Production Information document status. Specified the final FCC and IC IDs (Table 36). Added measured ripple noise values. Updated label description with matrix code information (section 9.1). Included information about EMMY-W165 product variant. Added information about the restrictions for U-NII band 3 in Table 32.
R05	15-Dec-2016	shoe, lalb, kgom	Corrected the description of the data matrix code on the module label (Table 40) and added EMMY-W165-00B to the table. Removed the note that states "FCC, ETSI and IC certifications are in progress" as they are completed now. Updated power consumption values for Wi-Fi, Bluetooth and Bluetooth low energy (sections 4.4 and 4.5). Added BT QDID (section 7.6). Added maximum current consumption for VIO related PINS (section 4.3). Updated Bluetooth sensitivity value (section 4.7.2). Added PCM_MCLK as optional function for GPIO3 (section 3.1). Updated tolerance for mechanical specifications (section 6). Added footnote to explain exclusion of frequencies 5600-5650 for ETSI in section 7.1.1. Added KCC IDs and compliance notes (section 7.1.5) and 7.4). Added Australia and New Zealand compliance notes (section 7.1.4). Added Japan GITEKI compliance notes (section 7.5 and 7.1.6). Added tape orientation information (section 8.1.2). Moved the Declaration of Conformity information to a separate EMMY-W1 Declaration of Conformity document (section 7.1.1). Replaced Document status with Disclosure restriction
R06	08-Feb-2017	ddie	Added requirement for outdoor use as an Wi-Fi access point in the 5.15-5.25 GHz band (section 7.2). Extended the Glossary.

UBX-15011785 - R05 Revision history

Contact

For complete contact information visit us at www.u-blox.com.

u-blox Offices

North, Central and South America

u-blox America, Inc.

Phone: +1 703 483 3180 E-mail: info_us@u-blox.com

Regional Office West Coast:

Phone: +1 408 573 3640 E-mail: info_us@u-blox.com

Technical Support:

Phone: +1 703 483 3185 E-mail: support_us@u-blox.com

Headquarters Europe, Middle East, Africa

u-blox AG

Phone: +41 44 722 74 44
E-mail: info@u-blox.com
Support: support@u-blox.com

Asia, Australia, Pacific

u-blox Singapore Pte. Ltd.

Phone: +65 6734 3811 E-mail: info_ap@u-blox.com Support: support_ap@u-blox.com

Regional Office Australia:

Phone: +61 2 8448 2016 E-mail: info_anz@u-blox.com Support: support_ap@u-blox.com

Regional Office China (Beijing):

Phone: +86 10 68 133 545
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Chongqing):

Phone: +86 23 6815 1588 E-mail: info_cn@u-blox.com Support: support_cn@u-blox.com

Regional Office China (Shanghai):

Phone: +86 21 6090 4832
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Shenzhen):

 Phone:
 +86 755 8627 1083

 E-mail:
 info_cn@u-blox.com

 Support:
 support_cn@u-blox.com

Regional Office India:

Phone: +91 80 4050 9200
E-mail: info_in@u-blox.com
Support: support_in@u-blox.com

Regional Office Japan (Osaka):

Phone: +81 6 6941 3660
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com

Regional Office Japan (Tokyo):

Phone: +81 3 5775 3850
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com

Regional Office Korea:

Phone: +82 2 542 0861
E-mail: info_kr@u-blox.com
Support: support_kr@u-blox.com

Regional Office Taiwan:

Phone: +886 2 2657 1090
E-mail: info_tw@u-blox.com
Support: support_tw@u-blox.com

UBX-15011785 - R05 Contact
Page 47 of 47