Indexing chemical fingerprints for efficient querying of molecular databases

Abhik Mondal (CS10B061)

IIT Madras

May 11, 2015

Project Guide: Dr. Sayan Ranu

Overview

- Motivation
- Problem Statement
- Our Contribution
 - M-tree based index
 - Inverted Index
- Experiments and Results
- Conclusion

Motivation

 Fast database search is vital in drug discovery, where the aim is identifying chemical compounds with high similarity to known drugs.

Motivation

- Fast database search is vital in drug discovery, where the aim is identifying chemical compounds with high similarity to known drugs.
- ZINC database contains over 35 million purchasable compounds.

• Why is a similarity search important?

- Why is a similarity search important?
 - Suppose a company wants to sell drugs, patented by another company.

- Why is a similarity search important?
 - Suppose a company wants to sell drugs, patented by another company.
 - Another scenario is when a drug has side effects and an alternative is required.

- Why is a similarity search important?
 - Suppose a company wants to sell drugs, patented by another company.
 - Another scenario is when a drug has side effects and an alternative is required.
- Exact Search?

- Why is a similarity search important?
 - Suppose a company wants to sell drugs, patented by another company.
 - Another scenario is when a drug has side effects and an alternative is required.
- Exact Search?
 - Billions of dollars are spent for experiments on a single drug.

- Why is a similarity search important?
 - Suppose a company wants to sell drugs, patented by another company.
 - Another scenario is when a drug has side effects and an alternative is required.
- Exact Search?
 - Billions of dollars are spent for experiments on a single drug.
 - Not looking for approximation methods like Locally Sensitive Hashing.

 Representation of molecules? Sub-graph Isomorphism is NP-complete. Solution?

¹**Source**: http://icep.wikispaces.com

 Representation of molecules? Sub-graph Isomorphism is NP-complete. Solution?
Fingerprint.

¹Source: http://icep.wikispaces.com

 Representation of molecules? Sub-graph Isomorphism is NP-complete. Solution?
Fingerprint.

 Representation of molecules? Sub-graph Isomorphism is NP-complete. Solution?
Fingerprint.

Figure: Fingerprint construction ¹

¹Source: http://icep.wikispaces.com

Challenges

• High dimensionality and sparseness of data.

Challenges

High dimensionality and sparseness of data.

Eg. Statistics of the PubChem dataset we have used:

Number of data points: 264016

Number of unique features: 785985

Average number of features in a data point: 270.602966

Challenges

• High dimensionality and sparseness of data.

Eg. Statistics of the PubChem dataset we have used:

Number of data points: 264016

Number of unique features: 785985

Average number of features in a data point: 270.602966

• But why index?

Problem Statement

Range Search Problem

Given a fingerprint, say 'f', a similarity measure 'sim', a threshold distance $'\theta'$ and a database of chemical compounds D, we find the subset $S \subset D$ of all fingerprints, such that:

$$S = \{g \mid g \in D, sim(f,g) < \theta\}$$
 (1)

Some more concepts/definitions

Tanimoto similarity

$$T_s(X,Y) = \frac{\sum_{i} X_i \wedge Y_i}{\sum_{i} X_i \vee Y_i}$$
 (2)

Some more concepts/definitions

Tanimoto similarity

$$T_s(X,Y) = \frac{\sum_{i} X_i \wedge Y_i}{\sum_{i} X_i \vee Y_i}$$
 (2)

Min-Max similarity

$$M_s(X,Y) = \frac{\sum_{i} \min(X_i, Y_i)}{\sum_{i} \max(X_i, Y_i)}$$
(3)

Some more concepts/definitions

Tanimoto similarity

$$T_s(X,Y) = \frac{\sum_{i} X_i \wedge Y_i}{\sum_{i} X_i \vee Y_i}$$
 (2)

Min-Max similarity

$$M_s(X,Y) = \frac{\sum_{i} \min(X_i, Y_i)}{\sum_{i} \max(X_i, Y_i)}$$
(3)

• Distance measure? Metric?

M-tree

- Routing objects
- Covering radius

M-tree

- Routing objects
- Covering radius

M-TREE STRUCTURE

M-tree

- Routing objects
- Covering radius

M-TREE STRUCTURE

• Max: $|dist(Q, RO_i) + CR_i|$, Min: $|dist(Q, RO_i) - CR_i|$

Select pivots? Number?

- Select pivots? Number?
 - The i^{th} pivot is chosen such that its minimum distance to the previous i-1 pivots is maximized.

- Select pivots? Number?
 - The i^{th} pivot is chosen such that its minimum distance to the previous i-1 pivots is maximized.
- Assign each point to a pivot.

- Select pivots? Number?
 - The i^{th} pivot is chosen such that its minimum distance to the previous i-1 pivots is maximized.
- Assign each point to a pivot.

• Choose outliers ?

- Choose outliers ?
 - Those points whose similarity to closest pivot is below median similarity.

- Choose outliers ?
 - Those points whose similarity to closest pivot is below median similarity.

Indexing approach

• Repeat procedure on outlier set.

Indexing approach

• Repeat procedure on outlier set.

Indexing approach

• Repeat procedure on outlier set.

• Termination?

Range Search

- Start from the root as pivot p
- Apply triangle inequality bounds to prune or include all points from sub-tree.
- If not, then go to the children of *p* and repeat the process with them as the new pivot, till we reach leaf.

Inverted Index

- High dimensionality and sparsity of chemical data are an impediment to our indexing process.
- Use of inverted index motivated by its use in text mining.

Figure : Distribution of data points against the features

Range Search

Pruning

Consider P_{200} , not present in any set other than of f_2 Maximum Similarity possible for such a point with the query?

$$1/(N_q - 1 + V_2)$$

Can we prune the set?

 $\begin{pmatrix} N_q - \text{number of features in query,} \\ V_2 - \text{minimum number of} \\ \text{features present in any point} \\ \text{containing } f_2 \end{pmatrix}$

Greedy Technique

• Sort the features based on popularity.

Greedy Technique

- Sort the features based on popularity.
- Start from the most popular feature.

Greedy Technique

- Sort the features based on popularity.
- Start from the most popular feature.
- If till the *i*th feature is considered, if j features (call it set *R*) have been pruned till now, we can prune the *i*th feature as well if the following holds.

$$\frac{j+1}{N_q-1+\min(V_i,\rho)}<1-t\tag{4}$$

where ρ is the minimum number of features present in any point containing atleast one of the features pruned until now i.e $\rho = \min_{k \in R} V_k$

Extension to non-binary fingerprints

Prune *i*th feature if:

$$\frac{\min(j_i, W_i)}{S_q - W_i - k_i + l_i + \max(k_i, V_i)} < 1 - t \tag{5}$$

Here j_i is the maximum feature value taken for the feature f_i , W_i is the i^{th} feature value of query q, S_q is the sum magnitude of the feature values of the query q, k_i is the is the minimum feature value taken for the feature f_i , l_i is the minimum sum of feature values for any point containing the feature f_i , t is the threshold similarity.

Experiments¹

- Datasets
 - PubChem Dataset (264016 compounds, 785985 features)
 - DUD Dataset (128374 compounds, 32198 features)
- Evaluations
 - Compared range search result with that of full database scan.
 - ullet Compared average run-times of range search with the state of the art Bit-bound technique 2

²**Source:** Swamidass, S Joshua and Baldi, Pierre. *Bounds and algorithms for fast exact searches of chemical fingerprints in linear and sublinear time.*

M-tree based index analysis

- Indexing time per compound on average increases linearly with data-set size as well as with size of pivot-set
- Outlier base limit size has no significant effect.

M-tree based index analysis...

• Runtime for different pivot-set sizes? High v/s low?

M-tree based index analysis...

Runtime for different pivot-set sizes? High v/s low?

Range Search Query time using diffferent sizes of pivot set for a dataset of 100k size (for different threshold sizes)

Inverted index analysis

• Indexing time per compound on average is constant. Does not change with data-set size.

Inverted index analysis

- Indexing time per compound on average is constant. Does not change with data-set size.
- Pruning upto 50-100 features on average for low threshold distances.

Comparison

Figure : PubChem-n dataset

Comparison ...

Figure : PubChem-b dataset

Comparison ...

Comparison of techniques **DUD** dataset 350 300 250 Range Search Time (in ms per compound on avg) Mtree 200 - Bit bound Inverted Indexing 150 100 50 0 0 0.1 0.2 0.3 0.5 0.8 0.9 0.6 0.7

Figure: DUD dataset

Distance Threshold

Conclusion

 Proposed an M-tree based index approach which achieved 2-3 times speed-up over the Bit-Bound Technique.

Conclusion

- Proposed an M-tree based index approach which achieved 2-3 times speed-up over the Bit-Bound Technique.
- Proposed a novel Inverted Indexing technique which achieved 5-6 times speed-up over the Bit-Bound Technique.

Conclusion

- Proposed an M-tree based index approach which achieved 2-3 times speed-up over the Bit-Bound Technique.
- Proposed a novel Inverted Indexing technique which achieved 5-6 times speed-up over the Bit-Bound Technique.
- Showed the effectiveness of our techniques through comprehensive analysis on 2 real world datasets (both binary and non-binary).

Thank You!