

Machine Learning (CSC033U3M)

Dr. Shaifu Gupta shaifu.gupta@iitjammu.ac.in

Content for the course

Data Preprocessing. Evaluation metrics. Supervised learning algorithms: Linear and Logistic Regression, Gradient Descent, Support Vector Machines, Kernels, Artificial Neural Networks, Decision Trees, ML and MAP Estimates, K-Nearest Neighbor, Naive Bayes, Introduction to Bayesian Networks. Unsupervised learning algorithms: K-Means clustering, Gaussian Mixture Models, Expectation Maximization. Dimensionality Reduction and Principal Component Analysis. Bias Variance Trade-off. Model Selection and Feature Selection. Regularization. Applications. Advanced Topics.

Course Information

Course structure: 3:0:2

Prerequisite: COL 773 (Python, **probability and statistics**, linear algebra, optimization)

Revision will be helpful!

Labs/ mini projects

Linear and Logistic Regression, Support Vector Machines, Artificial Neural Networks, Decision Trees, K-Nearest Neighbor, Bayesian models, K-Means clustering, Gaussian Mixture Models, Principal Component Analysis etc.

Write the code yourself (rather than using inbuilt libraries)!!

Mode of Evaluation	% Weight
Class Test 1	15
Mid Sem	25
Class Test 2	15
End Sem	25
Lab Evaluation	20
Total %	100

Reference material

Other reference materials will also be shared from time to time!

INTRODUCTION

What is machine learning?

Herbert Simon (1970)

Any process by which a system improves its performance

Tom Mitchell (1990)

A computer program that improves its performance at some task through experience

Wikipedia

Machine learning (ML) is the study of computer algorithms that improve automatically through experience - by the use of data.

Big Data

- Widespread use of personal computers, social networks, web search etc.. leads to generation of "big data"
- We are both producers and consumers of data
- Data is not random, it has structure, e.g., customer behavior
- We need mechanism to extract that structure from data for
 - (a) Understanding the process
 - (b) Making predictions for the future

Example in retail: Customer transactions to consumer behavior:

People who bought "Blink" also bought "Outliers" [*books by Malcolm Gladwell] (www.amazon.com)

Data Mining

- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Control, robotics, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Spam filters, intrusion detection
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- ...

Learning paradigms

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning

Classification

- Example: Credit scoring (financial metric used by money lenders)
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

Classification: Applications

- Face recognition: Pose, lighting, occlusion (glasses, beard), makeup, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc
- Outlier/novelty detection
- Fault diagnosis

Face Recognition

Training examples of a person

Test images

ORL dataset, AT&T Laboratories, Cambridge UK

Regression

- Example: Price of a used car
- x : car attributes

```
y: price
```

$$y = g(x \mid \theta)$$

g () model,

 $\theta \ {\rm parameters}$

Regression applications

- Predict water given to soil based on weather conditions
- Predict future resource usage of server/data center
- Predict weather conditions (temperature, humidity etc.)
- Predict mobility of public based on active covid cases
- Predict sales based on season, customer interest, quality of product etc.

Unsupervised Learning

- Clustering: Grouping similar instances
- Example applications
 - Customer segmentation in CRM
 - Grouping sensors in an organization
 - Grouping of movies based on reviews, genre etc.

Other learning paradigms (Meta learning, EXplainable AI)

- Transfer learning
 - Transfer of knowledge between multiple domains
- Active learning
 - Learning algorithms interactively queries an oracle to obtain desired outputs for new data
- Online learning
 - Learning on the fly
 - zero shot learning
- Representation learning
 - Learning representation from data
 - Embeddings
- Reinforcement learning
 - Learn to act in an environment
 - Actions: rewards and penalties

Machine learning challenges

- Curse of dimensionality
- Sample size
- Choosing algorithm
- Too many hyper-parameters to tweak
- Choosing right values of parameters to learn

Resources: Datasets

- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- Statlib: http://lib.stat.cmu.edu/