第八章

动态规划

Dynamic Programming

动态规划(DP)是运筹学的一个分支,解决多阶段决策问题的一种方法。1951年美国数学家贝尔曼(R.Bellman)等提出"最优化原理",创建动态规划学科。主要应用于工程技术、经济、工业生产、最优控制等问题。

8.1 多阶段决策问题

例1: 某工厂根据合同要求在未来半年中需提供货物数量如表中所示,表中数字为月底交货数量。该厂的生产能力为每月400件,其仓库的存货能力为3百件。已知每百件货物的生产费用为10千元,在进行生产的月份,工厂要支出固定费用4千元,仓库保管费用为每百件货物每月1千元,假定开始及6月底交货后均无存货,试问每个月应该生产多少件产品,才能既满足交货任务又使总费用最小?

月份	1	2	3	4	5	6
交货数量(百件)	1	2	5	3	2	1

决策过程设计:

例2: 由A至E需经B、C、D, 问如何行走, 路程最短?

例3:公司承担一种新产品试制任务,合同要求 三个月内交出一台合格的样品, 否则将负 担1500元的赔偿费。试制时投产一台成功 的概率为1/3,投产一批的准备费用为250 元,每台试制费用为100元。若投产一批 后全部不合格,可再投产一批试制,但每 投产一批需要一个月的周期。问每批应该 投产多少台,可使总的费用(包括可能发 生的赔偿费用)期望值最小?

多阶段决策问题的界定:

- ① 决策过程可划分为若干个互相联系的阶段;
- ② 在每个阶段分别对应着一组可以选取的决策;
- ③ 当每个阶段决策选定以后,活动过程也随之确定。

♣ 多阶段决策问题表现出明显的时序性,体现出"动态"的特点,是动态规划研究的主要对象。某些静态问题,当采用动态规划的方法求解时,也会使问题的处理变得简单。

8.2 动态规划的基本概念和数学模型

- 一、动态规划的基本概念
 - (1) 阶段(stage):指一个活动过程需要做出决策的步数。 k——阶段变量。
 - (2) 状态(state): 某阶段初始状况。既是本阶段决策的出发点,又是上一阶段决策产生的结果。是动态规划中各阶段信息的传递点和结合点。 x_{k} ——第k阶段状态变量。

特征:

- ① 反映研究对象的演变特征;
- ② 包含到达这个状态前的足够信息,并具有无后效性;或称决策的相互独立性;
- ③ 状态变量具有可知性,当决策确定后,到达的状态是可以测知的。
- ♣ 描述状态所必须使用的变量数, 称动态规划的维数。

(3) 决策(decision): 指在某阶段从给定的状态出发,决策者从面临的若干种不同的方案中所做出的选择。

决策变量 $u_k(x_k) \in D_k(x_k)$ ——允许决策集合, $u_k(x_k)$ 取值范围。

要点: ① 决策变量是对活动过程控制的手段;

- ② 决策变量取值可以是连续型的,也可以是离散型的;
- ③ 允许决策集合相当于可行域。
- (4) 策略(policy) 与子策略(subpolicy): 各阶段决策组成的序列 总体称为策略; 从某一阶段开始到过程最终的决策序列称为子策 略。
 - n 阶段策略可记为 $\{u_1(x_1), u_2(x_2), \dots, u_n(x_n)\}$, 子策略可记为 $\{u_k(x_k), u_{k+1}(x_{k+1}), \dots, u_n(x_n)\}$ 。
- (5) 状态转移律: 状态参数变化的规律。从第k阶段的某一状态值 x_k 出发,当决策变量 u_k 的取值确定之后,下一阶段的状态值 x_{k+1} 按某种规律 $T(x_k, u_k)$ 确定。

第k+1阶段状态是第k阶段状态 x_k 和变量 u_k 的函数 $x_{k+1} = T(x_k, u_k)$,又称状态转移方程。

--第8章 动态规划--

- 说明: ① 当 x_k , u_k 确定后, x_{k+1} 取值唯一确定,则为确定性多阶段决策问题;
 - ②当 x_k , u_k 确定后, x_{k+1} 取值为具有某种概率分布的随机变量,则称为随机性多阶段决策问题。
 - (6) 指标函数:决策所产生的效益的度量函数。分如下的几类:
 - ① $v_k(x_k, u_k)$ ——阶段指标函数。
 - ② $V_{k,n}(x_k,u_k,x_{k+1},u_{k+1},\ldots,x_n,u_n)$ ——过程指标函数。
 - ③ $f(x_k)$ =opt $V_{k,n}$ ——最优指标函数,只与 x_k 有关。Opt——optimize,可以是max,或者min。

说明:为便于计算,指标函数应具有递推性。

(7) 边界条件: 对过程最终状态时的效益值表示。即

当 k=n+1时,
$$f(x_{n+1}) = ?$$

上述基本概念可用下述图示某性表示:

动态规划概念模型示意图

二、最优化原理与动态规划的数学模型

贝尔曼(R.Bellman)原理:作为整个过程的最优策略具有这样性质:无论过去的状态和决策如何,对前面所形成的状态而言,余下的诸决策必构成最优策略。

动态规划的基本方程(递推方程):

$$V_{k,n} = \sum_{i=k}^{n} v_i(x_i, u_i),$$

$$f_k(x_k) = \text{opt}\{v_k(x_k, u_k) + f_{k+1}(x_{k+1})\}$$

$$u_k(x_k) \in D_k(x_k)$$

$$V_{k,n} = \prod_{i=k}^{n} v_i(x_i, u_i),$$

$$f_k(x_k) = \text{opt}\{v_k(x_k, u_k) \cdot f_{k+1}(x_{k+1})\}$$

$$u_k(x_k) \in D_k(x_k)$$

三、动态规划模型的基本分类

~若阶段数固定,则为定期型;

~若阶段数不固定,则称为不定期型

四、动态规划问题的模型表述

动态规划模型属于算法类模型,故借助于对其相关概念的定义来表述。内容如下:

- (1) 阶段数: k=1,2,····,n
- (2) 状态变量: x_k——?
- (3) 决策变量: u_k ——? ,允许决策集合 $D(x_k)$
- (4) 状态转移律: $x_{k+1} = T(x_k, u_k)$
- (5) 阶段指标函数: $v_k(x_k, u_k)$ ——?
- (6) 基本方程: fk(xk)=?
- (7) 边界条件: $f_{n+1}(x_{n+1})=?$

动态规划问题的逆序算法

- 1. 建立模型:
- (1) 阶段数: k=1,2,3,4
- (2) 状态变量: x_k ——第k阶段的位置点。
- (3) 决策变量: u_k ——第k阶段选择的行走路线, 允许决策集合 $D(x_k)$ —— x_k 位置时可选择的线路集合。
- (4) 状态转移律: x_{k+1} = $T(x_k, u_k)$ ——采取 u_k 决策后,位置变化的规律。
- (5) 阶段指标函数: $v_k(x_k, u_k)$ ——选择 u_k 决策后产生的距离。
- (6) 基本方程: $f_k(x_k) = \min\{v_k(x_k, u_k) + f_{k+1}(x_{k+1})\}$
- (7) 边界条件: $f_5(x_5=E)=0$

--第8章 动态规划--

2. 逆序求解

1)k=4,由递推方程知 $f_4(x_4)=\min\{v_4(x_4, u_4)+f_5(x_5)\}$,而 $f_5(x_5)=0$ 为边界条件

$$f_4(x_4=D_1)=\min \{D_1E+f_5(x_5)\}=3, u_4^*(D_1)=D_1E$$

$$f_4(x_4=D_2)=\min \{\overline{D_2}E+f_5(x_5)\}=4, u_4^*(D_2)=D_2E$$

2) k=3, $f_3(x_3)=\min\{v_3(x_3, u_3)+f_4(x_4)\}$,

$$f_3(x_3=C_1)=\min \left\{ \begin{array}{c} C_1D_1+f_4(D_1) \\ \hline C_1D_2+f_4(D_2) \end{array} \right\} = \min \left\{ \begin{array}{c} 1+3 \\ 4+4 \end{array} \right\} = 4, \ u_3^*(C_1)=C_1D_1$$

$$f_3(x_3=C_2)=\min \left\{ \begin{array}{c} C_2D_1+f_4(D_1) \\ \\ \hline C_2D_2+f_4(D_2) \end{array} \right\} =\min \left\{ \begin{array}{c} 6+3 \\ \\ 3+4 \end{array} \right\} =7, \quad u_3^*(C_2)=C_2D_2$$

--第8章 动态规划--

$$f_3(x_3=C_3)=\min\left\{\begin{array}{c} \overline{C_3D_1+f_4(D_1)} \\ \overline{C_3D_2+f_4(D_2)} \end{array}\right\} = \min\left\{\begin{array}{c} 3+3 \\ 3+4 \end{array}\right\} = 6, \ u_3^*(C_3) = C_3D_1$$

3) k=2,
$$f_2(x_2)=\min\{v_2(x_2, u_2)+f_3(x_3)\}$$
,

$$f_{2}(x_{2}=B_{1})=\min \left\{ \begin{array}{l} \overline{B_{1}}C_{1}+f_{3}(C_{1}) \\ \overline{B_{1}}C_{2}+f_{3}(C_{2}) \\ \overline{B_{1}}C_{3}+f_{3}(C_{3}) \end{array} \right\} =\min \left\{ \begin{array}{l} 7+4 \\ 5+7 \\ 6+6 \end{array} \right\} =11, \quad u_{2}^{*}(B_{1})=B_{1}C_{1}$$

$$f_{2}(x_{2}=B_{2})=\min \left\{ \begin{array}{l} \overline{B_{2}}C_{1}+f_{3}(C_{1}) \\ \overline{B_{2}}C_{2}+f_{3}(C_{2}) \\ \overline{B_{2}}C_{3}+f_{3}(C_{3}) \end{array} \right\} =\min \left\{ \begin{array}{l} 3+4 \\ 2+7 \\ 4+6 \end{array} \right\} =7, \quad u_{2}^{*}(B_{2})=B_{2}C_{1}$$

$$f_{2}(x_{2}=B_{3})=\min \left\{ \begin{array}{l} \overline{B_{3}}C_{1}+f_{3}(C_{1}) \\ \overline{B_{3}}C_{2}+f_{3}(C_{2}) \\ \overline{B_{3}}C_{3}+f_{3}(C_{3}) \end{array} \right\} =\min \left\{ \begin{array}{l} 5+4 \\ 1+7 \\ 5+6 \end{array} \right\} =8, \quad u_{2}^{*}(B_{3})=B_{3}C_{2}$$

4)
$$k=1$$
, $f_1(x_1)=\min\{v_1(x_1, u_1)+f_2(x_2)\}$,

$$f_{1}(x_{1}=A)=\min \left\{ \begin{array}{l} \overline{AB}_{1}+f_{2}(B_{1}) \\ \overline{AB}_{2}+f_{2}(B_{2}) \\ \overline{AB}_{3}+f_{2}(B_{3}) \end{array} \right\} =\min \left\{ \begin{array}{l} 2+11 \\ 5+7 \\ 3+8 \end{array} \right\} =11, \ u_{1}^{*}(A)=AB_{3}$$

.. 最优策略: A——B₃——C₂——E,

最短距离: f(A)=11

8.3 离散确定性动态规划问题的模型与求解

例4: 某一警卫部队共有12支巡逻队,负责4个要害部门A、B、C、D的警卫巡逻。对每个部位可分别派出2~4支巡逻队,并且由于派出巡逻队数的不同,各部位在一段时期内可能造成的预期损失如表中所示。问: 如何分派,可使总的预期损失为最小?

解:

把对每一个部位派出 巡逻队数量的决策,看成 是一个阶段,可归结成4 个阶段的决策问题。

各部位预期损失表

部位	A	В	C	D
2	18	38	24	34
3	14	35	22	31
4	10	31	21	25

一、建立模型

- (1) 阶段变量: k=1, 2, 3, 4 APU)
- (2) 状态变量: x_k ——第k阶段可用于分配的巡逻队数量;
- (3) 决策变量: u_k 一第k阶段派出的巡逻队数量; 允许决策集合 $D(x_k)$ = $\{2,3,4\}$
- (4) 状态转移律: $x_{k+1} = x_k u_k$;
- (5) 阶段指标函数: $v_k(u_k)$ ——预期损失函数,如表示;
- (6) 基本方程: $f_k(x_k) = \min\{v_k(u_k) + f_{k+1}(x_{k+1})\}$
- (7) 边界条件: $f_5(x_5)=0$

第一个阶段

,	里相加取八、	シバルバイ	叶大土。		(10)	/	
	増加青工数 采矿队	0	1	2	3	4	5
	第一采矿队	0	16	25	30	32	33
	第二采矿队	0	10	14	16	17	17.5
	第三采矿队	0	12	17	21	22	22.5

- 解:根据题意,原问题用动态规划求解模型为:
 - (1) 按作业班组分为 3 阶段, K= (1, 2, 3, 4), k=4 为终了阶段;
 - (2) xk: 第 k 阶段初拥有待分配新工人数;
 - 有: $X_1=\{8\}$, $X_2=\{8,7,6,5,4,3\}$, $X_3=\{5,4,3,2,1,0\}$, $X=\{0\}$ 。
 - (3) uk: 第 k 阶段分配给第 k 作业班组的新工人数;
 - 有: $U_1 = \{0,1,2,3,4,5\}$, $U_2 = \{0,1,2,...,x_2\}$ ($x_2 \le 5$); $U_2 = \{x_2-5,...,5\}$ ($x_2 > 5$), $U_3 = \{x_3\}$.
 - (4) 状态转移方程: $x_{k+1} = x_k u_k$;
 - (5) 阶段指标: 见表, 如: $d_2(3,2)=14$; $d_3(2,1)=12$;
 - (6) 递推方程: $f_k(x_k) = \max_{k \in \mathcal{K}} \{d_k(x_k, u_k) + f_{k+1}(x_{k+1})\}$
 - (7) 边界条件: $f_4(x_4) = 0$ 。

--第8章 动态规划--

二、逆序算法求解

2 X X X X 2 3 X X X X 3 4 34 X X 34 5 31 34 X 31 6 25 31 34 25

9	(opor					
X ₄	2	3	4	5	6	
$f_4(x_4)$	34	31	25	25	25	
$u_4^*(x_4)$	2	3	4	4	4	

2) k=3,对C部位, $x_4 = x_3 - u_3$ $f_3(x_3) = \min\{v_3(u_3) + f_4(x_4)\} = \min\{v_3(u_3) + f_4(x_3 - u_3)\} ,$ 而 $\max\{12-8, 2+2\} \le x_3 \le 12-4=8$,列表计算如下:

--第8章 动态规划--

	f. (du)											
u_3	$v_3(u_2)$	$f_4(x_3) + f_4(x_3)$	u_3)	$f_3(x_3)$	$u_3^*(x_3)$							
X_3	2	3	4	13 (A3)	u ₃ (A ₃)							
4	24+34	_		58	2							
5	24+31	22+34		55	2							
6	24+25	22+31	21+34	49	2							
7	24+25	22+25	21+31	47	3							
8	24+25	22+25	21+25	46	4							

3)
$$k=2$$
,对B部位, $x_3=x_2-u_2$

$$f_2(x_2) = \min\{v_2(u_2) + f_3(x_3)\} = \min\{v_2(u_2) + f_3(x_2 - u_2)\}$$
,而 $\max\{12-4, 6\} \le x_2 \le 12-2=10$,列表计算如下:

--第8章 动态规划--

u_2	$v_2(u_2)$	$(2) + f_3(x_2 -$	f(v)	*(*)	
\mathbf{x}_2	2	3	4	$f_2(x_2)$	$u_2^*(x_2)$
8	38+49	35+55	31+58	87	2
9	38+47	<i>35</i> + <i>49</i>	31+55	84	3
10	38+46	35+47	31+49	80	4

4) k=1, 对A部位, $x_2 = x_1 - u_1$, $x_1 = 12$

 $f_1(x_1) = \min\{v_1(u_1) + f_2(x_2)\} = \min\{v_1(u_1) + f_2(x_1 - u_1)\}$, 列表计算:

u_1	$v_1(u_1)$	$f_1(x_1)$	$u_1^*(x_1)$		
\mathbf{x}_1	2	3	4	1 ₁ (x ₁)	$u_1 (x_1)$
12	18+80	14+84	<i>10</i> +87	97	4

最优策略: A—4支, B—2支, C—2支, D—4支; 最小损失为97。

例5:

某企业现有5千万元资金可用于三个项目A、B、C的技术改造建设。项目利润的预期年增长额与投资的规模有关,如表示。问如何确定投资计划,可使利润的预期年增长额最大?

项目	单位:	万元			
投资额项目	0	1000	2000	3000	4000
A	0	15	34	42	56
В	0	18	35	45	58
C	0	20	37	48	60

解: 对每个项目的投资决策可看作是一个阶段,故归结为三阶段的动态规划问题。

一、建立动态规划模型

- (1) 阶段变量: k=1,2,3
- (2) 状态变量: x_k ——第k阶段可用于分配的资金数量;
- (3) 决策变量: u_k ——第k阶段投资数量; 允许决策集合 $D(x_k)=\{u_k|0 \le u_k \le x_k\}$
- (4) 状态转移律: $x_{k+1} = x_k u_k$;
- (5) 阶段指标函数: v_k(u_k)——预期利润年增长额函数,如表示;
- (6) 基本方程: $f_k(x_k) = \max\{v_k(u_k) + f_{k+1}(x_{k+1})\}$
- (7) 边界条件: $f_4(x_4)=0$

--第8章 动态规划--

二、逆序算法求解

1)k=3,对C项目, $f_3(x_3)=\max\{v_3(u_3)+f_4(x_4)\}$,而 $f_4(x_4)=0$,依题意, $0 \le x_3 \le 5000$, $0 \le u_3 \le x_3$,列表计算如下:

X ₃	0	1000	2000	3000	4000	5000
$f_3(x_3)$	0	20	37	48	60	60
$u_3^*(x_3)$	0	1000	2000	3000	4000	4000

2) k=2,对B项目, $x_3=x_2-u_2$

$$f_2(x_2) = \max\{v_2(u_2) + f_3(x_3)\} = \max\{v_2(u_2) + f_3(x_2 - u_2)\}$$
,而 $1000 \le x_2 \le 5000$, $0 \le u_2 \le x_2$,列表计算如下:

--第8章 动态规划--

u_2		$v_2(u_2)$	f (v)	$u_2^*(x_2)$			
X_2	0	1000	2000	3000	4000	$f_2(x_2)$	$u_2(x_2)$
1000	0+20	18+0		<u></u>		20	0
2000	0+37	<i>18+20</i>	35+0	2 N. W.	1	38	1000
3000	0+48	<i>18+37</i>	<i>35</i> + <i>20</i>	45+0		55	1000,2000
4000	0+60	18+48	<i>35</i> + <i>37</i>	45+20	58+0	72	2000
5000	0+60	18+60	<i>35</i> + <i>48</i>	45+37	58+20	83	2000

3) k=1, 对A项目, $x_2=x_1-u_1$,

$$f_1(x_1) = \max\{v_1(u_1) + f_2(x_2)\} = \max\{v_1(u_1) + f_2(x_1 - u_1)\}$$
,而 $x_1 = 5000$, $0 \le u_1 \le 4000$,列表计算如下:

u_1	$v_1(u_1) + f_2(x_1 - u_1)$					f (v)	$u_1^*(x_1)$
\mathbf{x}_1	0	1000	2000	3000	4000	1 ₁ (X ₁)	$\begin{bmatrix} \mathbf{u}_1 & (\mathbf{x}_1) \end{bmatrix}$
5000	0+83	15+72	34+55	42+38	56+20	89	2000

- : 最优策略有两组,分别为:
- (1)对A项目投资2千万元,对B项目投资1千万元,对C项目投资2千万元;
- (2)对A项目投资2千万元,对B项目投资2千万元,对C项目投资1千万元。

最大年利润增长额为89万元。

8.4 连续确定性动态规划问题的模型与求解

例6: 用动态规划的方法求解下述非线性规划问题:

$$\max z = \prod_{i=1}^{3} i \cdot x_{i}$$
s.t
$$\begin{cases} x_{1} + 3x_{2} + 2x_{3} \le 12 \\ x_{1}, x_{2}, x_{3} \ge 0 \end{cases}$$

解:可归结为三个阶段的动态规划问题,每阶段确定一个变量的数值。其求解过程如下:

$$x_1$$
 $3x_2$ $2x_3$ 0 $R_1=12$ $R_2=R_1-x_1$ $R_3=R_2-3x_2$ $R_4=R_3-2x_3$

一、建立模型

- (1) 阶段变量: k=1,2,3
- (2) 状态变量: R_k——第k阶段可用于分配的右端项数量;
- (3) 决策变量: x_k ——第k阶段选取的变量数值; 允许决策集合 $D(R_k)$ = $\{0 \le x_1 \le R_1, 0 \le x_2 \le R_2/3, 0 \le x_3 \le R_3/2\}$;
- (4) 状态转移律: $R_2=R_1-x_1$; $R_3=R_2-3x_2$; $R_4=R_3-2x_3$;
- (5) 阶段指标函数: $v_k(x_k)=k \cdot x_k$;
- (6) 基本方程: $f_k(R_k) = \max\{v_k(x_k) \cdot f_{k+1}(R_{k+1})\}$
- (7) 边界条件: f₄(R₄)=1

二、逆序求解

1) k=3,
$$f_3(R_3) = \max\{v_3(x_3) \cdot f_4(R_4)\} = \max\{3 x_3 \cdot 1\} = 3R_3/2, 0 \le x_3 \le R_3/2$$

$$x_3* = R_3/2$$

2)
$$k=2$$
, $R_3=R_2-3x_2$;

$$f_2(R_2) = \max\{v_2(x_2) \cdot f_3(R_3)\} = \max\{2 x_2 \cdot 3 R_3/2\} = \max\{2 x_2 \cdot 3(R_2 - 3x_2)/2\}$$

$$0 \le x_2 \le R_2/3 \qquad 0 \le x_2 \le R_2/3$$

设
$$S_1=2 x_2 \cdot 3 (R_2-3x_2)/2$$
; 令

$$\frac{dS_1}{dx_2} = 3R_2 - 18x_2 = 0, \qquad \text{ } \exists x_2 = R_2/6$$

$$\therefore$$
 f₂(R₂)= R₂²/4

3)
$$k=1$$
, $R_2=R_1-x_1=12-x_1$;
 $f_1(R_1)=\max\{v_1(x_1)\cdot f_2(R_2)\}=\max\{x_1\cdot R_2^2/4\}=\max\{x_1\cdot (12-x_1)^2/4\}$
 $0 \le x_1 \le R_1$ $0 \le x_1 \le 12$

设
$$S_2 = x_1 \cdot (12 - x_1)^2 / 4$$
; 令
$$\frac{dS_2}{dx_1} = x_1^2 - 16x_1 + 48 = 0,$$
 得 $x_1^* = 4$, 或 $x_1^* = 12$

若
$$x_1*=4$$
, $f_1(R_1)=64$ ⇒最大值;
若 $x_1*=12$, $f_1(R_1)=0$ ⇒最小值;
若 $x_1*=0$, $f_1(R_1)=0$ ⇒最小值;
从而 $x_1*=4$, $x_2*=4/3$, $x_3*=2$ 为最优策略。

8.5 离散随机性动态规划模型与求解

特征: 当某一阶段的决策确定之后, 其下一阶段的状态不是一个确定的值, 而是具有某种概率分布的随机变量。

说明:

- 1) $从x_k$ 出发, 当选定 u_k 时,则 x_{k+1} 服从 p_i 的概率分布;
- 2) 动态规划的基本方程(和式)以期望值作为目标,即

$$f_{k}(x_{k}) = \text{opt } \{E \{v_{k}(x_{k}, u_{k}) + f_{k+1}(x_{k+1})\} \}$$

$$= \text{opt } \{v_{k}(x_{k}, u_{k}) + \sum_{i=1}^{N} p_{i} \cdot f_{k+1}(x_{k+1}) = (i) \}$$

3) 边界值依实际情况而定。

研究下述问题:

某公司承担一种新产品试制任务,合同要求三个月内交出一台合格的样品,否则将负担1500元的赔偿费。试制时投产一台成功的概率为1/3,投产一批的准备费用为250元,每台试制费用为100元。若投产一批后全部不合格,可再投产一批试制,但每投产一批需要一个月的周期。问每批应该投产多少台,可使总的费用(包括可能发生的赔偿费用)期望值最小?

解:

- 一、建立模型
- (1) 阶段: k=1,2,3,每批的试制周期为一个月,可作为一个阶段, 而合同期为三个月,故归结为三个阶段决策的动态规划问题问题;
- (2) 状态变量:决策的前提为是否存在合格品,故选作为状态变量,

设
$$x_k = \begin{cases} 0$$
——存在一台以上合格品, 1 ——尚未有一台合格品,

- (3) 决策变量: u_k ——第k阶段投入试制数量; 允许决策集合 $D(x_k=0)=\{0\},\ D(x_k=1)=\{0,1,2,\cdots\cdots,N\}$
- (4) 状态转移律: $p(x_{k+1}=1) = (2/3)^{u_k}$; $p(x_{k+1}=0) = 1 (2/3)^{u_k}$;

(5) 阶段指标函数: $v_k(u_k)$ —当选取决策为 u_k 时,发生的试制费用,

$$v_{k}(u_{k}) = \begin{cases} 250+100 \ u_{k} & (u_{k} > 0) \\ 0 & (u_{k} = 0) \end{cases}$$

(6) 基本方程: $f_k(x_k) = \min\{E\{v_k(u_k) + f_{k+1}(x_{k+1})\}\}$ $f_k(x_k = 0) = 0$ $f_k(x_k = 1) = \min\{v_k(u_k) + (2/3)^{u_k}, f_{k+1}(x_{k+1}) + (2/3)^{u_k}\}, f_{k+1}(x_k = 1) + f_{k+1}(x_{k+1})\}$

$$f_{k}(x_{k}=1) = \min\{v_{k}(u_{k}) + (2/3)^{u_{k}} \cdot f_{k+1}(x_{k+1}=1) + [1 - (2/3)^{u_{k}}] \cdot f_{k+1}(x_{k+1}=0)\}$$

$$= \min\{v_{k}(u_{k}) + (2/3)^{u_{k}} \cdot f_{k+1}(1)\}$$

(7) 边界条件: $\begin{cases} f_4(x_4=0)=0 \\ f_4(x_4=1)=1500 \end{cases}$

二、逆序求解

u_3		v ₃ (u ₃)+ (2	2/3) ^{u 3}	· 1500)		$f_3(x_3)$	u ₃ *
X_3	0	1	2	3	4	5	6	13 (A3)	
0	0							0	0
1	1500	1350	1117	994	946	948	981	946	4

250+100 MR

2) k=2,
$$f_2(x_2=0)=0$$

 $f_2(x_2=1)=\min\{v_2(u_2)+(2/3)^{u_2}\cdot f_3(x_3=1)\},$

列表计算如下:

u_2		$v_2(u_2) + (2/3)^{u_2} \cdot 946$						f (v)	u ₂ *
\mathbf{x}_2	0	1	2	3	4	5	6	$f_2(x_2)$	u ₂
0	0							0	0
1	946	981	870	830	837	874	933	830	3

3) k=1, $f_1(x_1=1)=\min\{v_1(u_1)+(2/3)^{u_1}\cdot f_2(x_2=1)\}$, 列表计算如下:

u_1		$v_1(u_1) + (2/3)^{u_1} \cdot 830$						$f_1(x_1)$	u ₁ *
\mathbf{x}_1	0	1	2	3	4	5	6	1 ₁ (A ₁)	u ₁
1	830	903	819	796	814	859	923	796	3

∴ 最优策略为:第一个月投入3台;若无合格品,第二个月仍投入3台;若还无合格品,则第三个月投入4台。这样可使总的期望费用最小,为796元。

8.6 多维的动态规划模型与求解

例7: 用动态规划方法求解下述模型

$$\text{Max } z=3x_1+5x_2$$

S.t
$$\begin{cases} x_1 \le 4 \\ 2x_2 \le 12 \\ 3x_1 + 2x_2 \le 18 \\ x_1, x_2 \ge 0 \end{cases}$$

解:这是一个LP模型,包括两个决策变量和三个约束方程,即 共有三种资源,所以需要由三个变量来描述其状态,从而可归 结成2个阶段、3个状态变量的动态规划问题。

一、建立模型

- (1) 阶段变量: k=1,2, 每个决策变量取值划分为一个阶段;
- (2) 状态变量: R_{ik}——第k阶段可用于分配的第i行右端项数量;
- (3) 决策变量: x_k 第k阶段决策变量的取值; 允许决策集合 $D(R_{i,k})$;
- (4) 状态转移律: $R_{12}=R_{11}-x_1$; $R_{22}=R_{21}=12$; $R_{32}=R_{31}-3x_1$;
- (5) 阶段指标函数: $v_k(R_{ik}, x_k) = c_k \cdot x_k$; 即 $v_1(x_1) = 3 \cdot x_1$; $v_2(x_2) = 5 \cdot x_2$;
- (6) 基本方程: $f_k(R_{ik}) = \max\{v_k(R_{ik}, x_k) + f_{k+1}(R_{ik+1})\}$
- (7) 边界条件: $f_3(R_{i3})=0$

二、逆序求解

1) k=2, $f_{2}(R_{12}, R_{22}, R_{32}) = \max_{0 \le x_{2} \le \min} \{ v_{2}(x_{2}) + f_{3}(R_{i3}) \}$ $= \max_{0 \le x_{2} \le \min} \{ R_{22}/2, R_{32}/2 \}$ $= \max_{0 \le x_{2} \le \min} \{ R_{22}/2, R_{32}/2 \}$ $= \min_{0 \le x_{2} \le \min} \{ R_{22}/2, R_{32}/2 \}$ $= \min_{0 \le x_{2} \le \min} \{ 30, 5R_{32}/2 \}$

$$x_2^* = \min \{6, R_{32}/2\}$$

2) k=1,
$$R_{32} = R_{31} - 3x_1 = 18 - 3x_1$$

$$f_1(R_{11}, R_{21}, R_{31}) = \max_{0 \le x_1 \le \min} \{v_1(x_1) + f_2(R_{i2})\}$$

$$= \max_{0 \le x_1 \le \min} \{30, 5R_{32}/2\}\}$$

$$0 \le x_1 \le \min_{0 \le x_1 \le 1} \{4, 6\}$$

$$= \max_{0 \le x_1 \le 4} \{3 \cdot x_1 + \min_{0 \le x_1 \le 4} \{30, 5 \times (18 - 3x_1)/2\}\}$$

$$0 \le x_1 \le 4$$

$$\Leftrightarrow 5 \times (18 - 3x_1)/2 = 30, \quad \text{得 } x_1 = 2,$$

$$\therefore \text{原式} = \max_{0 \le x_1 \le 4} \{3 \cdot x_1 + \{30 - (0 \le x_1 \le 2)\}\}$$

$$0 \le x_1 \le 4$$

$$= \max \left\{ \begin{array}{ll} 3 \cdot x_1 + 30 & (0 \le x_1 \le 2) \\ 45 - 9x_1/2 & (2 \le x_1 \le 4) \end{array} \right\} = 36$$

$$x_2^* = \min \{6, R_{32}/2\} = 6$$

复习思考题

- 1. 如何理解状态的概念?
- 2. 状态转移率描述的是什么现象?
- 3. DP模型与LP、ILP模型有何不同?
- 4. DP模型结构包含哪些内容?
- 5. 逆序算法遵从什么原理?
- 6. DP模型如何划分类别?
- 7. DP模型处理中最大的障碍是什么?

8.7 案例分析

例1: 某工厂根据合同要求在未来半年中需提供货物数量如表中所示,表中数字为月底交货数量。该厂的生产能力为每月400件,其仓库的存货能力为3百件。已知每百件货物的生产费用为10千元,在进行生产的月份,工厂要支出固定费用4千元,仓库保管费用为每百件货物每月1千元,假定开始及6月底交货后均无存货,试问每个月应该生产多少件产品,才能既满足交货任务又使总费用最小?

月份	1	2	3	4	5	6
交货数量(百件)	1	2	5	3	2	1

解: 这是具有时间序列的多阶段决策问题,可分为六阶段。

一、建立动态规划模型

- (1) 阶段变量: k=1, 2, 3, 4, 5, 6;
- (2) 状态变量: x_k——第k阶段初货物的库存数量;
- (3) 决策变量: u_k 一第k 阶段的生产数量;

允许决策集合D(x_k):

$$\max\{0, d_{k} - x_{k}\} \le u_{k} \le \min\{\sum_{i=k}^{6} d_{i} - x_{k}, d_{k} + h - x_{k}, H\}$$

$$x_{k} + u_{k} - d_{k} \le h$$

d; 一一第k月需求量, h一一库存能力, H一一生产能力;

(4) 状态转移律: $x_{k+1} = x_k + u_k - d_k$

(5) 阶段指标函数: $v_k(x_k, u_k)$ ——第k阶段发生的费用;

$$v_{k}(x_{k}, u_{k}) = \begin{cases} 4 + 1 \cdot x_{k} + 10u_{k} & (u_{k} > 0) \\ 1 \cdot x_{k} & (u_{k} = 0) \end{cases}$$

- (6) 基本方程: $f_k(x_k) = \min\{v_k(x_k, u_k) + f_{k+1}(x_{k+1})\}$
- (7) 边界条件: $f_7(x_7=0)=0$

二、逆序求解

1)
$$k=6$$
, $x_7=x_6+u_6-d_6=0$, $\Rightarrow u_6=d_6-x_6$, $f_6(x_6)=\min\{v_6(x_6,u_6)+f_7(x_7)\}$, $\therefore d_6=1$, $\therefore x_6=0$ 或1, 面 $f_7(x_7)=0$, 列表计算:

u_6	$v_6(x_6, 0)$	1 (u ₆)+0	$f_6(x_6)$	u ₆ *
0	7 <u></u>	14	14	1
1	1	_	1	0

2)
$$k=5$$
, $0 \le x_6=x_5+u_5-d_5 \le h$, $f_5(x_5)=\min\{v_5(x_5,u_5)+f_6(x_6)\}$, $\max\{0,d_5-x_5\}\le u_5 \le \min\{\sum_{i=5}^6 d_i-x_5,d_5+h-x_5,H\}$ $d_5=2$, $\sum d_i=3$, $h=3$, $H=4$, 而 $0 \le x_5 \le 3$, 列表计算:

u_5	$v_5(x_5, u_5) +$	$v_5(x_5, u_5) + f_6(x_5 + u_5 - 2)$						
X_5	0 1	2	3	$f_5(x_5)$	u ₅ *			
0		24+14	34+1	35	3			
1	<u> </u>	<i>25</i> + <i>1</i>		26	2			
2	2+14 16+1	_		16	0			
3	<i>3+1</i> —			4	0			

3) k=4,
$$0 \le x_5 = x_4 + u_4 - d_4 \le h$$
, $f_4(x_4) = \min\{v_4(x_4, u_4) + f_5(x_5)\}$, $\max\{0, d_4 - x_4\} \le u_4 \le \min\{\sum_{i=4}^6 d_i - x_4, d_4 + h - x_4, H\}$ $d_4 = 3$, $\sum d_i = 6$, $h = 3$, $H = 4$, 而 $0 \le x_4 \le 3$, 列表计算:

u_4	V	$v_4(x_4, u_4)$	C (ate.			
X_4	0	1	2	3	4	$f_4(x_4)$	u ₄ *
0				34+35	44+26	69	3
1		<u>-</u>	25+35	35+26	45+16	60	2
2		16+35	26+26	36+16	46+4	50	4
3	3+35	17+26	27+16	37+4	11 <u>- 1</u>	38	0

u_3	Щij,	$v_3(x_3, u_3) + f_4(x_3 + u_3 - 5)$					*
X_3	0	1	2	3	4	$f_3(x_3)$	u ₃ *
1	-		-	_	<i>45</i> + <i>69</i>	114	4
2	_	_		<i>36</i> + <i>69</i>	46+60	105	3
3		-	<i>27</i> + <i>69</i>	37+60	47+50	96	2

5) k=2,
$$1 \le x_3 = x_2 + u_2 - d_2 \le h$$
, $f_2(x_2) = \min\{v_2(x_2, u_2) + f_3(x_3)\}$, $\max\{0, d_2 - x_2 + 1\} \le u_2 \le \min\{\sum_{i=2}^6 d_i - x_2, d_2 + h - x_2, H\}$ $d_2 = 2$, $\sum d_i = 13$, h=3, H=4 , 而 $0 \le x_2 \le 3$, 列表计算:

u_2		$v_2(x_2,$)	$f_2(x_2)$	*		
X_2	0	1	2	3	4	1 ₂ (A ₂)	u ₂ *
0		-	-	34+114	44+105	148	3
1		-	<i>25+114</i>	35+105	45+96	139	2
2		<i>16</i> + <i>114</i>	26+105	36+96		130	1
3	3+114	17+105	27+96			117	0

6)
$$k=1$$
, $0 \le x_2 = x_1 + u_1 - d_1 \le h$, $f_1(x_1) = \min\{v_1(x_1, u_1) + f_2(x_2)\}$, $\max\{0, d_1 - x_1\} \le u_1 \le \min\{\sum_{i=1}^{6} d_i - x_1, d_1 + h - x_1, H\}$ $d_1=1$, $\sum d_i = 14$, $h=3$, $H=4$, \overrightarrow{m} $x_1=0$,

列表计算:

u_1	$v_1(x_1, u_1) + f_2(x_1 + u_1 - 1)$						*
\mathbf{x}_1	0	1	2	3	4	$f_1(x_1)$	u ₁ *
0		14+148	24+139	34+130	44+117	161	4

∴ 最少费用为161千元, 最优生产计划为:

一月:生产4百件,月末库存3百件;二月:生产0百件,月末库存1百件;三月:生产4百件,月末库存0百件;四月:生产3百件,月末库存0百件;五月:生产3百件,月末库存0百件;六月:生产0百件,月末库存0百件。

例2: 设备更新问题:

某种新设备投入使用的年创收入及平均维修费、更新净费用 (减残值)与设备的役龄有关,如表示。试确定今后五年的更新 策略,使总收益最大。

单位:万元

项目	0	1	2	3	4
年收入 r(t)	5	4.5	4	3.75	3
维修费 s(t)	0.5	1	1.5	2	2.5
更新费 c(t)		1.5	2.2	2.5	3

一、建立模型

- (1) 阶段变量: k=1, 2, 3, 4, 5, 每年看作一个阶段,
- (2) 状态变量: x_k——第k年初设备已使用过的年限(役龄);
- (3) 决策变量: u_k——第k年初更新设备与否,为0—1变量;

$$u_k = \begin{cases} 0$$
——第 k 年初更新设备
1——第 k 年初不更新设备

- (4) 状态转移律: x_{k+1}=x_k·u_k+1;
- (5) 阶段指标函数: $v_k(x_k, u_k)$ ——第k年采取 u_k 决策后的净收益; $v_k(x_k, u_k) = r_k(x_k \cdot u_k) s_k(x_k \cdot u_k) c_k[x_k \cdot (1 u_k)]$

(6) 基本方程:

$$f_{k}(x_{k}) = \max\{v_{k}(x_{k}, u_{k}) + f_{k+1}(x_{k+1})\}$$

$$= \max\{r_{k}(x_{k} \cdot u_{k}) - s_{k}(x_{k} \cdot u_{k}) - c_{k}[x_{k} \cdot (1 - u_{k})] + f_{k+1}(x_{k+1})\}$$

(7) 边界条件: $f_6(x_6)=0$

二、逆序求解

1)当 k=5 时,
$$f_6(x_6)=0$$
, $1 \le x_5 \le 4$,
$$f_5(x_5)=\max\{r_5(x_5 \cdot u_5)-s_5(x_5 \cdot u_5)-c_5[x_5 \cdot (1-u_5)]+f_6(x_6)\}$$
列表计算:

--第8章 动态规划--

u ₅	$r_5(x_5 \cdot u_5) - s$	$c_5(x_5 \cdot u_5) - c_5[x_5 \cdot (1 - u_5)]$	$f_5(x_5)$	u ₅ *
1	3	<i>3.5</i>	3.5	1
2	2.3	2.5	2.5	1
3	2	1.75	2	0
4	1.5	0.85	1.5	0

2)当 k=4 时,
$$x_5 = x_4 \cdot u_4 + 1$$
, $1 \le x_4 \le 3$,
$$f_4(x_4) = \max\{r_4(x_4 \cdot u_4) - s_4(x_4 \cdot u_4) - c_4[x_4 \cdot (1 - u_4)] + f_5(x_5)\}$$

$$= \max\{r_4(x_4 \cdot u_4) - s_4(x_4 \cdot u_4) - c_4[x_4 \cdot (1 - u_4)] + f_5(x_4 \cdot u_4 + 1)\}$$
列表计算:

--第8章 动态规划--

u 4 x 4	$r_4(x_4 \cdot u_4) - s_4(x_4 \cdot u_4) - c_4[x_4 \cdot (1 - u_4)] + f_5$	$(x_4 \cdot u_4 + 1)$	$f_4(x_4)$	u ₄ *
1	3+3.5	3.5+2.5	6.5	0
2	2.3+3.5	2.5+2	5.8	0
3	2+3.5	1.75+1.5	5.5	0

3)当 k=3 时,
$$x_4=x_3 \cdot u_3+1$$
, $1 \le x_3 \le 2$,
$$f_3(x_3)=\max\{r_3(x_3 \cdot u_3)-s_3(x_3 \cdot u_3)-c_3[x_3 \cdot (1-u_3)]+f_4(x_4)\}$$

$$=\max\{r_3(x_3 \cdot u_3)-s_3(x_3 \cdot u_3)-c_3[x_3 \cdot (1-u_3)]+f_4(x_3 \cdot u_3+1)\}$$
列表计算:

--第8章 动态规划--

u 3 x 3	$r_3(x_3 \cdot u_3) - s_3(x_3 \cdot u_3) - c_3[x_3 \cdot (1 - u_3)]$	$f_{4}(x_{3}\cdot u_{3}+1)$	$f_3(x_3)$	u ₃ *
1	3+6.5	3.5+5.8	9.5	0
2	2.3+6.5	2.5+5.5	8.8	

4)当 k=2 时,
$$x_3 = x_2 \cdot u_2 + 1$$
, $x_2 = 1$,
$$f_2(x_2) = \max\{r_2(x_2 \cdot u_2) - s_2(x_2 \cdot u_2) - c_2[x_2 \cdot (1 - u_2)] + f_3(x_3)\}$$

$$= \max\{r_2(x_2 \cdot u_2) - s_2(x_2 \cdot u_2) - c_2[x_2 \cdot (1 - u_2)] + f_3(x_2 \cdot u_2 + 1)\}$$
列表计算:

u ₂	$r_2(x_2 \cdot u_2) - s_2(x_2 \cdot u_2) - c_2[x_2 \cdot (1 - u_2)] + 0$	$f_3(x_2 \cdot u_2 + 1)$	$f_2(x_2)$	u ₂ *
1	3+9.5	3.5+8.8	12.5	0

4)
$$\stackrel{\text{def}}{=} k=1$$
 $\stackrel{\text{def}}{=} r_1 = 0$, $x_2 = x_1 \cdot u_1 + 1 = 1$,
$$f_1(x_1) = \max\{r_1(0) - s_1(0) - c_1(0) + f_2(x_2)\}$$
$$= \max\{r_1(0) - s_1(0) + f_2(1)\}$$

列表计算:

--第8章 动态规划--

\mathbf{u}_1	$r_1(x_1 \cdot u_1) - s_1(x_1 \cdot u_1) - c_1[x_1 \cdot (1 - u_1)] + f_2(1)$ 0 1	$f_1(x_1)$	u ₁ *
0	4.5+12.5	17	1

∴ 最优更新策略为:第2、3、4年都更新,第5年不更新。 最大收益为17万元。

本章知识。当

- 1. 多阶段决策问题的概念
- 2. 动态规划模型的结构
- 3. 最优化原理
- 4. 动态规划模型的逆序求解方法
- 5. 离散确定型动态规划问题建模与求解
- 6. 连续确定型动态规划问题建模及求解
- 7. 离散随机型动态规划问题理解
- 8. 多维动态规划问题分析