Integrierter Kurs IV

Theoretische Physik II Tom Folgmann

28. April 2023

Einleitung und Wellenfunktion 1

Einleitung Bei der Auffassung kleinster Teilchen gab es Probleme mit dem Teilchenmodell.	VL 1 25.04.2023, 08:15
$\hfill\Box$ Stelle dieses Problem $deutlich$ dar. Skizziere eine Lösung desselben.	(⊚1)
Schwarzkörperstrahlung	
Jede sogenannte $Mode$ mit der Frequenz $\nu = c_0/\lambda$ des elektromagnetischen Feldes kann beliebige Energien enthalten, enthält jedoch nach dem $\ddot{A}quipositionsprinzip$ im Mittel die Energie $E=k_B\cdot T$, bekannt als das $Rayleigh$ - $Jeans$ - $Gesetz$.	
Photoeffekt	
Compton Effekt	
$[\rightarrow$ IK4 Exp. II]	
Welleneigenschaften der Materie $[\rightarrow IK4 Exp. II]$	
Doppelspaltexperiment mit Elektronen $[\rightarrow IK4 \text{ Exp. II}]$	
[III.4 Exp. II]	
$\hfill\Box$ Lies im Skript der ${\it Experimentalphysik}\ II$ die Inhalte der Überschriften nach.	(№2)
→ Was ist die Wellenfunktion beim Doppelspaltexperiment? Wie erklärt man, daß ein Elektron durch beide Spalten gehen kann? Was passiert mit einem einzeln eingestrahlten Elektron?	(\$2.1)
\rightarrow Wie lautet die de Broglie Relation?	(№2.2)

(&2.3) \rightarrow Kann man das Doppelspaltexperiment auch mit massiveren Teilchen oder Molekülen durchführen? Gibt es hierbei eine Grenze? Recherchiere den Beitrag zur Doppelspaltuntersuchung der *Universität Konstanz*.

.....

Welle-Teilchen-Dualismus

Wir haben beobachtet:

- \rightarrow elektromagnetische Wellen verhalten sich wie Teilchen
- \rightarrow materielle Teilchen verhalten sich wie Wellen

Als Ziel unserer folgenden Untersuchungen setzen wir eine einheitliche Theorie, welche sowohl die Wellen- als auch die Teilcheneigenschaften beschreibt.

Wellenfunktion und Wahrscheinlichkeitsinterpretation

Wir wollen den folgenden Zusammenhang herstellen:

freies Teilchen	ebene Welle
Impuls $p \in \mathbb{R}^3$	Wellenvektor $k \in \mathbb{R}^3$
Energie $E(p) = p^2/2m$	Kreisfrequenz $\omega(k) = \hbar k^2/2m = c_0$.
	$\begin{array}{ c c c c c c }\hline k _2\\ \text{Amplidute am Ort } r(t) \text{ mit } \psi(t,r(t)) = \\ \end{array}$
	$C \cdot \exp\left(i(\langle r(t), k \rangle - \omega \cdot t)\right) \rightarrow Wellen$
	funktion

Tabelle 1: Gegenüberstellung der Teilchen- und Welleneigenschaften.

Es kommen nun die folgenden Fragen auf:

- \rightarrow Wie hängen p und k zusammen?
- \rightarrow Was ist die physikalische Bedeutung von $\psi \in C^1(\mathbb{R} \times \mathbb{R}^3, \mathbb{R})$?

Es stellt sich heraus, daß wir die erste Frage bereits mit der de Broglie Relation [\rightarrow IK4 Exp II] beantworten können: $p(k) = \hbar \cdot k$, wobei $\hbar := h/(2\pi)$ mit $h = 6.6 \cdot 10^{-34} \mathrm{J}\,\mathrm{s}$. Für die Energie finden wir aus der Schwarzkörperstrahlung den Zusammenhang $E(\omega) = \hbar \cdot \omega$ (Einstein/Planck) mit $\omega = 2\pi \cdot \nu$. In die Funktion ψ eingesetzt folgt

$$\psi(t,r(t)) = C \cdot \exp\Biggl(\frac{\stackrel{\circ}{\imath} \cdot (\langle p,r(t),-\rangle \, E(p) \cdot t)}{\hbar}\Biggr).$$

Für die Dispersion der Welle gilt

$$E(\omega) = \hbar \cdot \omega = \begin{cases} \frac{\hbar^2 \cdot k^2}{2 \cdot m} & m > 0 \\ \hbar \cdot c_0 \cdot ||k||_2 & \text{sonst} \end{cases} = \begin{cases} \frac{\langle p, p \rangle}{2 \cdot m} & m > 0 \\ c_0 \cdot ||p||_2 & \text{sonst} \end{cases}$$

Theoretische Physik II Skript

Für die physikalische Interpretation müssen wir uns der Wahrscheinlichkeitsinterpretation widmen:

Teilchen	Welle
Aufenthaltswahrscheinlichkeit	Intensität der Welle $ \psi(t,r(t)) ^2$
des Teilchens (pro Volumen) am	
Ort $r(t)$ zur Zeit $t \in \mathbb{R}$	

Prinzipiell ist es möglich, den *Ort* zum *Zeitpunkt* eines Teilchens zu kennen; anders ist es bei quantenmechanischen Wellen. Wir bemerken:

- $\rightarrow \psi$ bezeichnet man auch als Wahrscheinlichkeitsamplitude.
- \rightarrow Die Aufenthaltswahrscheinlichkeit des durch r beschriebenen Teilchens ist gegeben als Integral

$$P(t,V) := \int |\psi(t,x)|^2 \ \lambda|_V (dx) =: \mu(V)$$

mit Wahrscheinlichkeitsmaß $P(t,\cdot) =: \mu$ auf $(\mathbb{R}^3, \sigma(\mathbb{R}^3))$. Ist der Aufenthalt in einem Volumen $V \subseteq \mathbb{R}^3$ bekannt, so sei

$$P(t,V) := \begin{cases} \int |\psi(t,x)|^2 \ \lambda|_V (dx) & V \in \sigma(\mathbb{R}^3) \\ \infty & \text{sonst} \end{cases}$$

eine Umdefinition des Maßes.

 \rightarrow Aus der Wahrscheinlichkeitsmaß-Eigenschaft $\mu(\mathbb{R}^3)=1$ folgt

$$P(t, \mathbb{R}^3) = \int |\psi(t, x)|^2 \lambda|_V(dx) = 1.$$

 \to In einem Volumen $W \subseteq V \subseteq \mathbb{R}^3$ gilt $\mu|_V(W) = \lambda(V) \cdot |C|^2$ und für W = V folgt $|C|^2 = 1/\lambda(V)$.

Ebene Wellen beschreiben also Teilchen mit wohldefiniertem Impuls $p = \hbar \cdot k$, aber vollständig unbestimmtem Ort.

......

 \Box Überlege dir den Spezialfall eines Punktes $\{x\}\subseteq\mathbb{R}^3$ als Testvolumen. Wie sieht die Aufent- (§3) haltswahrscheinlichkeit aus?

Wellenpakete

Als nächstes beschäftigen wir uns mit der Frage, wie wir Teilchen mit genau definiertem Aufenthaltsort beschreiben. Wir wenden uns hierbei an das Prinzip der Superposition, konkreter der Fourier-Summation, bei der wir eine Funktion $f \in \mathscr{L}^2(\mathbb{R}^3)$ zerlegen in Funktionen des Typus der ebenen Welle:

$$\psi(t,r(t)) = \frac{1}{(2\cdot\pi)^3} \int \left(\exp\biggl(\stackrel{\circ}{\imath} \cdot (\langle x,r(t) \rangle - \frac{\hbar \cdot x^2}{2\cdot m} \cdot t) \biggr) \right)_{x \in \mathbb{R}^3} \, \tilde{\psi}|_V \quad V \subseteq \mathbb{R}^3,$$

Theoretische Physik II Skript

wobei $(\mathbb{R}^3,\sigma(\mathbb{R}^3),\tilde{\psi})$ ein Maßraum ist. Wir haben dabei den Zusammenhang

$$E = \hbar \cdot \omega(k) = \frac{\hbar \cdot k^2}{2 \cdot m}.$$

.....

(\$4) \square Warum wird bei der Fourier-Summation keine Wurzel im Vorfaktor gezogen? Recherchiere verschiedene Konventionen. [Tipp: Bedenke $\hbar = h/(2 \cdot \pi)$ und die Definition des Impulses über k.]

VL 2 27.04.2023,

10:00 Gaußsches Wellenpaket

Als fundamentale Funktion eines Wellenpaketes zählt das sogenannte Gaußsche Wellenpaket. Es wird beschrieben durch die Funktion

$$\psi(k) = A \cdot \exp\biggl(\frac{-(k-k_0)^2}{4 \cdot \pi^2}\biggr), \quad \psi \in \operatorname{Abb}\left(\mathbb{R}^3, \mathbb{R}^3\right),$$

wobei $4\pi^2$ mit der "Breite" korreliert und k_0 der *mittlere Wellenvektor* ist. Die Funktion hat die Form

Abbildung 1: Die Gaußkurve für A = 1, $k_0 = 1$ in \mathbb{R} .

Das Ergebnis der Fourier-Summation angewendet auf die Gaußfunktion ergibt

$$|\psi(t, r(t))|^2 = \frac{1}{\sqrt{2 \cdot \pi} \cdot w(t)}^{\frac{3}{2}} \cdot \exp\left(-\frac{(r(t) - v \cdot t)^2}{2 \cdot w(t)^2}\right)$$

mit der Definition $v:=\hbar\cdot k/m=\frac{\mathrm{d}}{\mathrm{d}t}\left[\omega(k_0+t\cdot h)]\right|_{t=0}=d\omega(k_0)(h)$ und $w(t):=\sqrt{w(0)^2+((\hbar\cdot t)/(2\cdot w(0)\cdot m))}$ mit dem Startwert $w(0)=1/(2\cdot\sigma)$.

(∞ 5) \square Man spricht bei Fourier-Summationen vom *Raumwechsel*. Was ist damit gemeint? Welche Räume haben wir hier verwendet?

Theoretische Physik II Skript

......

Abbildung 2: Die Forier-Summierte Gaußkurve für $A=1,\ k_0=1$ in $\mathbb R$ zum Zeitpunkt t=0 und t=10

Zusammenfassung

→ Das Wellenpaket bewegt sich mit der Aufenthalserwartung

$$\langle r(t) \rangle = \int (r \cdot |\psi(t, r)|)_{r \in \mathbb{R}^3} \lambda(dr).$$

- \rightarrow Das Wellenpaket im Ortsraum ist ebenfalls eine Gaußfunktion mit Peakbreite w(t) und Startwert $w(0) = 1/(2 \cdot \sigma)$.
- \rightarrow Das Wellenpaket erfährt Dispersion für t>0 durch die Funktionsdefinition w:
- \to Für $t >> w(0)^2 \cdot m/\hbar$ ist $w(t) \approx \hbar \cdot t/(2 \cdot w(0) \cdot m)$ linear von t abhängig. Für lange t ist die Dispersion also linear (und nicht proportional zu \sqrt{t}).
- \rightarrow Für die Mittelung $\langle r(t) \rangle$ folgt

$$\Delta r^2 := \langle r(t_1) - \langle r(t_0) \rangle \rangle = \int \left((r - \langle r \rangle) \cdot |\psi(t, r)| \right)_{r \in \mathbb{R}^3} \lambda(dr) = w(t)^2.$$

□1 Berechne die Integrale $\int x \cdot \exp(-x^2) \lambda(dx)$, $\int x \cdot \exp(-(x-x_0)^2) \lambda(dx)$ und $\int (x-x_0) \cdot \exp(-(x-x_0)^2) \lambda(dx)$ für $x_0 \in \mathbb{R}$ auf $(\mathbb{R}, \sigma(\mathbb{R}), \lambda)$. Wie ist die Struktur?

 \square Rechne die Dispersion des Wellenpaketes für t>0 gemäß w nach und zeige $w(t)^2>w(0)$. (§9)

......

1.1 Die Heisenbergsche Unschärferelation

Zunächst bemerken wir die Eigenschaft der Normerhaltung gemäß des Satzes von Parseval der Fourier-Summation. Es gilt

$$\int |\psi(t,r)|^2 \,\lambda\left(dr\right) = \int \frac{\left|\tilde{\psi}(k)\right|^2}{(2\cdot\pi)^3} \,\lambda\left(dk\right) = \int \frac{\left|\tilde{\psi}(p)\right|^2}{(2\cdot\pi\cdot\hbar)^3} \,\lambda\left(dp\right)$$

und für die Mittelung

$$\langle p \rangle = \int \frac{p \cdot \left| \tilde{\psi}(p) \right|^2}{(2 \cdot \pi \cdot \hbar)^3} \, \lambda \left(dp \right) := \int \frac{p \cdot \exp\left(-\frac{(p - p_0)^2}{4 \cdot \hbar^2 \cdot \sigma^2} \right)}{(2 \cdot \pi \cdot \hbar)^3} \, \lambda \left(dp \right) \stackrel{\text{(.???)}}{=} p_0 = \hbar \cdot k_0.$$

Die mittlere Schwankung, also physikalisch die Genauigkeit des Impulses im Impulsraum, ergibt sich zu

$$\Delta p^2 = \langle (p - \langle p \rangle^2)^2 \rangle = \hbar^2 \cdot \sigma^2,$$

wobei unter Verwendung von $\Delta r^2 = w(t)^2$ folgt

$$\Delta r^2 = w(t)^2 \ge \left(\frac{1}{2 \cdot \sigma}\right)^2 = \frac{1}{4 \cdot \sigma^2},$$

sodaß mit beiden Gleichungen unter Produktbildung und Wurzelzug eine Ausdrucksweise der Unschärferelation, konkret jene von Heisenberg, folgt:

$$\Delta r \cdot \Delta p \ge \frac{\hbar}{2}.$$

.....

(\otimes 10) \square Lässt sich die Wellenfunktion direkt experimentell bestimmen? Recherchiere die *Quanten-Zustands-Tomographie*.

Physikalische Bedeutung

Aus der Unschärferelation folgen folgende physikalische Konsequenzen:

- ightarrow Unmittelbar ist ablesbar, daß bei genauerer Ortsbestimmung die Impulsgenauigkeit abnimmt.
- \rightarrow Für $\Delta p \rightarrow 0$ (Fall ebene Welle) ist $\Delta r \rightarrow \infty$.
- \rightarrow Der Phasenraum ist infolge der Unschärferelation quantisiert in Einheiten von \hbar .

1.2 Die Schrödingergleichung für freie Teilchen

Als Ziel der Untersuchungen ist eine Wellengleichung für die Wahrscheinlichkeitsamplitude Ψ zu finden. Wir lassen hierbei den mathematischen Beweis fallen und versuchen, die Gleichung zu "erraten".

Mit Gleichung ?? und $p = \hbar \cdot k$ folgt

$$\psi(t,r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \tilde{\psi}(p) \cdot f(t,r(t)) \,\lambda\left(dp\right) = (\mathscr{F}\hat{\psi})(t,r(t))$$

7

Theoretische Physik II Skript

mit $f:=\left(\exp\left(\mathring{\imath}\cdot(\langle p,r(t),-\rangle\,p^2\cdot t/2m)/\hbar\right)\right)_{(t,r)\in\mathbb{R}\times\mathbb{R}^d}=f_1(t,r(t))\cdot f_2(t,r(t)).$ Für die Ableitung gilt dann

$$\frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\psi(s,r(s)) \right] \right|_{s=t} = \frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\mathscr{F} \hat{\psi}(s,r(s)) \right] \right|_{s=t} = \frac{1}{(2\pi\hbar)^3} \int \left(\frac{-\stackrel{\circ}{\imath}}{2m\hbar} \right) \cdot p^2 \cdot f(t,r(t)) \, \lambda \left(dp \right).$$

.....

 \square Wie lautet die Ableitungen $df_1(t,r)(0,h)$ und $df_2(t,r)(0,h)$? Notiere den Ausdruck in verschiedenen Ableitungsdarstellungen. Ersetze $p^2 \cdot f_1(t,r(t))$ durch den entsprechenden Ableitungsausdruck.

.....

Mit der Aufgabe folgt dann

$$\frac{\mathrm{d}}{\mathrm{d}s} \left[\psi(s,r(s)) \right] \big|_{s=t} = \frac{\mathring{\imath} \cdot \hbar}{2 \cdot m} d(\mathscr{F} \tilde{\psi})(t,r(t))(\hbar)(\hbar)$$

mit der Definition

$$\mathbb{D}_{(\hbar,\hbar)}(\mathscr{F}\hat{\psi})(t,r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \hat{\psi}(p) \cdot f(t,r(t)) \, \lambda \, (dp) \, .$$

Wir erhalten also die zeitabhängige Schrödingergleichung für freie Teilchen der Form

$$\frac{\mathrm{d}}{\mathrm{d}s} \left[\psi(s,r(s)) \right] \big|_{s=t} = \frac{\mathring{i} \cdot \hbar}{2 \cdot m} \mathbb{D}_{(\hbar,\hbar)} (\mathscr{F} \hat{\psi})(t,r(t)) = \frac{\mathring{i} \cdot \hbar}{2 \cdot m} \mathbb{D}_{(\hbar,\hbar)} \psi(t,r(t)).$$

- \square Berechne die Ableitung df(t, r(t))(0, h). Berechne weiter $d\psi(t, r(t))(1, 0)$ und verifiziere dadurch (\lozenge 12) den oberen Funktionsausdruck.
- □ Klassifiziere die Schrödingergleichung. Welche Ordnung hat sie? Schreibe sie in eine Form, bei (\$13) welcher die rechte Seite reell ist.
- \square Benenne drei Beispiele $(s, S) \in Anfangswert(\psi)$. (\$14)
- \square Wie steht die erhaltene Schrödingergleichung mit der Diffusionsgleichung $\frac{\mathrm{d}}{\mathrm{d}s} \left[\phi(s,x(s))\right]|_{s=t} = (\$15)$
- $D \cdot \mathbb{D}_{(h,h)} \psi(t,s(t))$ im Zusammenhang? Stelle Ähnlichkeiten und Unterschiede heraus.
- □ Betrachte die Dispersionsreihe (\$\square\$16)

$$E(p) = \sum_{n(x)=0}^{\infty} \sum_{n(y)=0}^{\infty} \sum_{n(z)=0}^{\infty} c(n(x), n(y), n(z)) \cdot p(1)^{n(x)} \cdot p(2)^{n(y)} \cdot p(3)^{n(z)}.$$

Was passiert im Falle $o := -\stackrel{\circ}{i} h \cdot \text{div}$? Wie kann man die Reihe umdefinieren für Operatoren? In welchem Raum liegt E(o)?

......

Literatur