A Parameter Free Genetic Algorithm for Estimating the Dynamic Structure Factor at Zero and Finite Temperature

Nathan Nichols

(University of Vermont)

Adrian Del Maestro

(University of Vermont)

Timothy Prisk

(National Institute of Standards and Technology)

Garfield T Warren

(Indiana University Bloomington)

Paul E Sokol

(Indiana University Bloomington)

DMR-1809027 DMR-1808440 OAC-1827314

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

Green function:

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

Spectral function:

$$A(\omega) = ?$$

Green function:

$$G(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$G(\tau) = \sum \Delta \omega K(\tau, \omega_i) A(\omega_i)$$

Spectral function:

$$A(\omega) = ?$$

An example

Bayes' rule:

$$P(A|G) = \frac{P(G|A)P(A)}{P(G)}$$

Bayes' rule:

$$P(A|G) = \frac{P(G|A)P(A)}{P(G)}$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

Bayes' rule:

$$P(A|G) = \frac{P(G|A)P(A)}{P(G)}$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$P(A) \propto e^{\alpha S}$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \sum_{i} \frac{(\tilde{G}_i - G_i)^2}{\sigma^2}$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$P(A) \propto e^{\alpha S}$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$P(A) \propto e^{\alpha S}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$
 $S = -\int \frac{d\omega}{2\pi} A(\omega) \ln \frac{A(\omega)}{D(\omega)}$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$P(A) \propto e^{\alpha S}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$
 $S = -\int \frac{d\omega}{2\pi} A(\omega) \ln \frac{A(\omega)}{D(\omega)}$

$$P(G|A)P(A) \propto e^{\alpha S - \frac{\chi^2}{2}}$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Algorithm:

 A_i

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Algorithm:

$$A_i \rightarrow \chi_i^2$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$A_i \rightarrow \chi_i^2$$

$$A_{i+\frac{1}{2}} = A_i + \lambda_i$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$A_i \rightarrow \chi_i^2$$

$$A_{i+\frac{1}{2}} = A_i + \lambda_i \to \chi^2_{i+\frac{1}{2}}$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$A_i \rightarrow \chi_i^2$$

$$A_{i+\frac{1}{2}} = A_i + \lambda_i \to \chi_{i+\frac{1}{2}}^2$$

$$\chi_{i+\frac{1}{2}}^2 \le \chi_i^2$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$A_i \rightarrow \chi_i^2$$

$$A_{i+\frac{1}{2}} = A_i + \lambda_i \to \chi_{i+\frac{1}{2}}^2$$

$$\chi_{i+\frac{1}{2}}^2 \le \chi_i^2 \to A_{i+1} = A_{i+\frac{1}{2}}$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$A_i \rightarrow \chi_i^2$$

$$A_{i+\frac{1}{2}} = A_i + \lambda_i \to \chi_{i+\frac{1}{2}}^2$$

$$\chi_{i+\frac{1}{2}}^2 \leq \chi_i^2 \to A_{i+1} = A_{i+\frac{1}{2}}$$

$$\chi_{i+\frac{1}{2}}^2 > \chi_i^2$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$A_i \rightarrow \chi_i^2$$

$$A_{i+\frac{1}{2}} = A_i + \lambda_i \to \chi_{i+\frac{1}{2}}^2$$

$$\chi_{i+\frac{1}{2}}^2 \leq \chi_i^2 \to A_{i+1} = A_{i+\frac{1}{2}}$$

$$\chi_{i+\frac{1}{2}}^2 > \chi_i^2 \to A_{i+1} = A_i$$

Minimal knowledge of prior probability:

$$P(A|G) = P(G|A)$$

Likelihood:

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}$$

$$\tilde{G}(\tau) = \int d\omega K(\tau, \omega) A(\omega)$$

$$\chi^2 = \frac{1}{N} \sum_{i} \frac{\left(\tilde{G}_i - G_i\right)^2}{\sigma^2}$$

$$A_{i} \to \chi_{i}^{2}$$

$$A_{i+\frac{1}{2}} = A_{i} + \lambda_{i} \to \chi_{i+\frac{1}{2}}^{2}$$

$$\chi_{i+\frac{1}{2}}^{2} \le \chi_{i}^{2} \to A_{i+1} = A_{i+\frac{1}{2}}$$

$$\chi_{i+\frac{1}{2}}^{2} > \chi_{i}^{2} \to A_{i+1} = A_{i}$$

FESOM example

FESOM example

Differential Evolution for Analytic Continuation (DEAC)

- Inspired by GIFT
- Evolutionary algorithm
 - Population of individuals
 - Genome $\longrightarrow A(\omega_i)$
 - Mutations → vector differences
 - Fitness $\longrightarrow f(A; \chi^2, \langle \omega^k \rangle)$
 - Rejection → keep most fit

DEAC Population

$$\tilde{A}(\omega_i) = A(\omega_i) + F \times (A(\omega_i) - A(\omega_i))$$

$$\tilde{A}(\omega_i) = A(\omega_i) + F \times (A(\omega_i) - A(\omega_i))$$

$$U(0,1) \ge C$$

$$\tilde{A}(\omega_i) = A(\omega_i)$$

$$\tilde{A}(\omega_i) = A(\omega_i) + F \times (A(\omega_i) - A(\omega_i))$$

$$U(0,1) \ge C$$

$$f(\tilde{A}) < f(A)$$

$$U(0,1) \ge C$$

$$f(\tilde{A}) < f(A)$$

$$\frac{\tilde{A}(\omega_i)}{A(\omega_i)} = \frac{1}{A(\omega_i)} + \frac{1}{F} \times \left(\frac{A(\omega_i)}{A(\omega_i)} - \frac{A(\omega_i)}{A(\omega_i)} \right)$$

$$U(0,1) \ge C$$

$$\tilde{A}(\omega_i) = A(\omega_i)$$

$$f(\tilde{A}) < f(A)$$

DEAC Population

$A(\omega_0)$	$A(\omega_1)$	$A(\omega_2)$	$A(\omega_3)$	$A(\omega_4)$	F	C
$A(\omega_0)$	$A(\omega_1)$	$A(\omega_2)$	$A(\omega_3)$	$A(\omega_4)$	F	C
$A(\omega_0)$	$A(\omega_1)$	$A(\omega_2)$	$A(\omega_3)$	$A(\omega_4)$	F	C
$A(\omega_0)$	$A(\omega_1)$	$A(\omega_2)$	$A(\omega_3)$	$A(\omega_4)$	F	C
$A(\omega_0)$	$A(\omega_1)$	$A(\omega_2)$	$A(\omega_3)$	$A(\omega_4)$	F	C

How do the three methods compare?

Method	χ^2		
MEM	3.5×10^{-4}		
FESOM	5.2×10^{-5}		
DEAC	8.6×10^{-6}		

Method	χ^2		
MEM	9.3×10^{-5}		
FESOM	6.0×10^{-5}		
DEAC	8.9×10^{-5}		

Future Work

- Use DEAC on new qmc data
- Port code to gpu

GitHub

DelMaestroGroup nscottnichols

