Stat 300A Theory of Statistics

Homework 5

Andrea Montanari

Due on November 7, 2018

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (https://www.gradescope.com) for homework submission (you should have received an invitation) no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: A function denoising problem

Let θ be a discrete function sampled on a regular grid in [0, 1]. Namely, for $n \in \mathbb{N}$, we let $\varepsilon = 1/n$, and

$$\boldsymbol{\theta} = (\theta(0), \theta(\varepsilon), \theta(2\varepsilon), \dots, \theta((n-1)\varepsilon)) \in \mathbb{R}^n.$$
 (1)

We observe noisy measurements of this function $y_k = \theta(k\varepsilon) + z_k$, where $(z_k)_{k \le n} \sim_{iid} \mathsf{N}(0, \sigma^2)$, and are interested in estimating $\boldsymbol{\theta}$ with respect to the normalized square loss $L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\|_2^2/n$.

We define the discrete derivative by letting $\Delta\theta(k\varepsilon) = [\theta((k+1)\varepsilon) - \theta(k\varepsilon)]/\varepsilon$ for $k \in \{0, \dots, n-2\}$, and $\Delta\theta((n-1)\varepsilon) = [\theta(0) - \theta((n-1)\varepsilon)]/\varepsilon$ (periodic boundary conditions). We consider the following parameter class

$$\Theta(R,n) = \left\{ \boldsymbol{\theta} : \sum_{k=0}^{n-1} \theta(k\varepsilon) = 0, \sum_{k=0}^{n-1} \varepsilon \left(\Delta \theta(k\varepsilon) \right)^2 \le R \right\}.$$
 (2)

- (a) Give an expression for the linear minimax risk $R_L(\Theta(R,n))$. [Hint: It might be convenient to use the discrete Fourier transform of $\boldsymbol{\theta}$.]
- (b) Can you apply Pinsker's theorem and show that the linear minimax risk is close to the overall minimax risk $R_{\text{M}}(\Theta(R, n))$? Justify your answer and state explicitly any eventual condition that you are imposing on R, n.

2: A simple application of Le Cam's method

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable probability density function, and assume that there exists another density function $g: \mathbb{R}^d \to \mathbb{R}$, and a constant M such that, for all $x \in \mathbb{R}^d$

$$\|\nabla f(\boldsymbol{x})\|_{2} \le M g(\boldsymbol{x}). \tag{3}$$

We will denote by P_{θ} the probability distribution of $X = \theta + W$ where $W \sim f(\cdot)$ is noise with density f.

(a) Prove that, for any $\theta_1, \theta_2 \in \mathbb{R}^d$,

$$\|\mathsf{P}_{\theta_1} - \mathsf{P}_{\theta_2}\|_{\mathrm{TV}} \le \frac{M}{2} \|\theta_1 - \theta_2\|_2.$$
 (4)

- (b) Consider the problem of estimating $\boldsymbol{\theta} \in \Theta \equiv \mathbb{R}^d$ from data $\boldsymbol{X} \sim \mathsf{P}_{\boldsymbol{\theta}}$ under the square loss $L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \|\hat{\boldsymbol{\theta}} \boldsymbol{\theta}\|_2^2$. Use the previous result to derive a lower bound on the minimax risk. [Hint: It is sufficient to consider two priors Q_1 , Q_2 given by Dirac's deltas.]
- (c) Apply this lower bound to the case of Gaussian noise, namely to the case of f the density of the Gaussian distribution $N(0, \sigma^2 I_d)$. How does the result compare with the actual minimax risk?

3: Some properties of distances between distributions

(a) Let $P = P_1 \times P_2 \times \cdots \times P_n$ and $Q = Q_1 \times Q_2 \times \cdots \times Q_n$ be two product-form distributions (where, for each $i \leq n$, P_i , Q_i are probability measures on the same space \mathcal{X}_i). Show that

$$\|P - Q\|_{TV} \le \sum_{i=1}^{n} \|P_i - Q_i\|_{TV}.$$
 (5)

[Hint: Start with n=2. It is fine to assume that the \mathcal{X}_i 's are finite sets.]

(b) Prove that there cannot be a reverse Pinsker inequality. Namely, there does not exist any function $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ with f(t) > 0 for t > 0 such that, for any two distributions P, Q .

$$D(\mathsf{P}\|\mathsf{Q}) \le f(\|\mathsf{P} - \mathsf{Q}\|_{\mathsf{TV}}). \tag{6}$$

(c) Assume that P and Q are probability distributions over a finite set \mathcal{X} , with probability mass functions p, q, and assume $q(x) \geq q_{\min} > 0$ for all $x \in \mathcal{X}$. Prove that there exists $g : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ with g(t,s) > 0 for t,s > 0 such that, for any two probability mass functions p,q, we have

$$D(\mathsf{P}\|\mathsf{Q}) \le g(\|\mathsf{P} - \mathsf{Q}\|_{\mathsf{TV}}, \mathsf{q}_{\min}). \tag{7}$$

We would like the function g to be such that $\lim_{z\to 0} g(z; q_{\min}) = 0$ for any $q_{\min} > 0$. Give an explicit expression for the function g.

[Hint: Write $D(\mathsf{P}||\mathsf{Q}) = \mathbb{E}_{\mathsf{Q}}(X \log X - X + 1)$, for $X = \frac{\mathrm{d}P}{\mathrm{d}Q}$.]

Optional

Can you suggest different priors Q_1 , Q_2 to improve the lower bound in problem 2?