"" UK Patent Application "GB " 2 040 943 A

- (21) Application No 7941829
- (22) Date of filing 21 Jun 1979
- (30) Priority data
- (31) 917962
- (32) 22 Jun 1978
- (31) 950858
- (J2) 12 Oct 1978
- (33) United States of America (US)
- (43) Application published: 3.Sep 1980
- (51) INT CL3
 - C07H 19/16 C07G 7/00
- (52) Domestic classification C2P 1L2 1L3 2E13 2E15A 2E188 2E18C 2E19C 2E19D 2E24 2E25A 2E26A 2E26B 5A C2C 1422 1481 214 220 22Y 248 250 252 253 25Y 282 28X 311 315 31Y 322 32Y 342 34Y 360 361 364 365 36Y 575 620 63X 669 695 899 AA KZ

CCP |

63X 669 695 699 AA KZ CZU 3 4A18 4A2A 4A2X 4C11 4C1 4C4A 4C5 4C9A 4N12 4N1 4N5 4N6X 4N6Y 5 6A2 7A CZH HX2

- (56) Documents cited GB 1552507
- (58) Field of search C2C C2P
 - ______C3H
- (71) Applicant
 Miles Laboratories Inc.,
 1127 Myrde Street,
 Elichart, Indiana 46514,
 U.S.A.
- (72) Inventors. Röbert Joseph Carrico, Richard Don Johnson
- (74) Agent L.A. Kerng & Co

(54) Intermediates Useful in the Preparation of Flavin Adenine Dinucleotide-labeled Conjugates for use in Specific Binding Assays

(57) Compounds of the formula:

wherein —(—CO)L is a specifically bindable ligand, or a binding analog thereof, preferably an iodothyronine such as thyroxine, bound through an amide bond; n=2 to 6; R¹ is —OH or

when R² and R³ together form the group

when R² and R³ are —OH, lare useful intermediates in the preparation of labeled conjugates of the formula:

wherein Riboflavin-(Phos)2-Ribose represents the riboflavin-pyrophosphate-ribose residue in flavin adenine dinucleotide (FAD), and n and -(-CO)L are as hereinbefore defined. The FAD-labeled conjugates are useful as labeled conjugates in specific binding assays for determining the ligand or a specific binding partner thereto in ligand media such as serum.

BEST AVAILABLE COPY

10

25

30

35

40

SPECIFICATION

5

10

Int rmediates Us ful in The Preparation of Flavin Adenine Dinucleotide-Labeled Conjugates For Use In Specific Binding Assays

Background of the Invention

1. Field of the Invention

This invention relates to intermediates useful in the preparation of labeled conjugates for use in specific binding assays for ligands or their binding partners in a liquid medium, and more particularly for determining an iodothyronine such as thyroxine in serum. This application is a divisional of our Application No. 79,21694. Serial No. 2023609.

The iodothyronines have the following general formula:

wherein β^1 and β^2 are, independently, hydrogen or lodine. The principle iodothyronines of clinical interest are listed in Table 1 below.

Table 1

15	lodothyronine	β1	β²	15
	3,5,3'5'-tetraiodothyronine (thyroxine; T-4)	iodine	iodine	
	3,5,3'-triiodothyronine (liothyronine; T-3)	iodine	hydrogen	
20	3,3',5'-triiodothyronine ("reverse" T-3)	hydrogen	iodine	20
	· 3,3'-diiodothyronine	hydrogen	hydrogen	•

The quantitative determination of the concentration of the various iodothyronines, particularly the hormones T-3 and T-4, in serum and of the degree of saturation of the iodothyronine binding sites on the carrier protein thyroid binding globulin (TBG) are valuable aids in the diagnosis of thyroid disorders. Likewise, the determination of other components of body fluids including serum is useful in assessing the well-being of an individual. Examples of other substances of clinical interest are evident from the description below.

2. Brief Description of the Prior Art

Specific binding assay methods have undergone a technological evolution from the original competitive binding radioimmunoassay (RIA) in which a radioisotope-labeled antigen is made to compete with antigen from a test sample for binding to specific antibody. In the RIA technique, sample antigen is quantitated by measuring the proportion of radioactivity which becomes associated with the antibody by binding of the radiolabeled antigen (the bound-species of the labeled antigen) to the radioactivity that remains unassociated from antibody (the free-species) and then comparing that proportion to a standard curve. A comprehensive review of the RIA technique is provided by Skelly et al, Clin. Chem. 19: 146(1973). While by definition RIA is based on the binding of specific antibody with an antigen or hapten, radiolabeled binding assays have been developed based on other specific binding interactions, such as between hormones and their binding proteins.

From the radiolabeled binding assays have evilved non-radioisotopic binding arrays employing labeling substances such as enzymes as described in U.S. Patents Nos. 3,654,090 and 3,817,837. Recently further improved nonradioisotopic binding assays have been developed as described in German Offenlegungschriften Nos. 2,618,419 and 2,618,511, based on U.S. Serial N.s. 667,982 and 667,996, filed on March 18, 1976 and assigned to the present assignee, employing particularly unique labeling substances, including coenzymes, cyclic reactants, cleavable fluorescent enzyme substrates, and chemiluminescent molecules. Flavin adenine dinucleotide is mentioned as being useful as a coenzyme label since FAD functions as a coenzyme in useful monitoring reactions. In U.S. Patent

Application Serial No. 917,961, filed Jun 22, 1978 and assigned to the present assignee

5

10

15

20

25

30

(corresponding to our British Application No. 7921693) Serial No. 2023607 FAD is further described as useful in improved specific binding assays emplying a prosthetic group as the label because FAD also functions as a prosthetic group in a lect biochemical systems.

Various methodologies exist for the determination of iodothyronine concentrations in the serum.

5 A significant advance in iodothyronine assays was the development of the competitive protein binding assay by Murphy and Pattee, J. Clin. Endocrinol. Metab. 24:187(1964) in which radiolabeled iodothyronine competes with serum iodothyronine for binding to TBG. The development of specific antiserum for the various iodothyronines permitted radioimmunoassays to be devised in which radiolabeled and serum iodothyronine compete for binding to antibodies rather than to TBG. In both th

competitive protein binding assay and the radioimmunoassay for an iodothyronine, the radiolabeled material consists of the native iodothyronine in which one or more of the iodine atoms are replaced by a radioactive iodine isotope, usually ¹²⁵I. The above-mentioned nonradioisotopic binding assays hav offered even more advantageous methods for determining iodothyronines, particularly those methods described in U.S. Patents Nos. 4,043,872 and 4,040,907 and most especially in OLS's 2,618,419 and 2,618,511 and U.S. Serial No. 917,961 mentioned above.

Summary of the Invention

The novel intermediates of the present invention have the formula:

wherein —(—CO)L is a specifically bindable ligand, or a binding analog thereto, and preferably is of formula (5), bound through an amide bond; n=2 through 6; β^1 and β^2 are, independently, hydrogen or iodine; R¹ is —OH or

when R² and R² together form the group

25 or R1 is

when R2 and R3 are ---OH.

These intermediates, corresponding to formulae (3), (6), and (7) below, are useful in the preparation of novel flavin adenine dinucleotide (FAD)—labeled conjugates for use in binding assays for determining ligands or binding partners thereof, of analytical interest such as the iodothyronin s, and particularly for use in the assay referred to hereinbefore employing a prosthetic group label. The FAD-labeled conjugates have the general formula:

15

20

35

25

wherein Riboflavin-(Phos)₂-Ribose represents the riboflavin-pyrophosphate-ribose residue in FAD; n=2 through 6, and preferably is 2 or 6; and —(—CO)L is a specifically bindable ligand, or a specific binding analog thereof, and preferably is an iodothyronine such as thyroxine, bound through an amide bond.

The specifically bindable ligand or analog thereof in the present labeled conjugates, in terms of its chemical nature, usually is a protein, polypeptide, peptide, carbohydrate, glycoprotein, steroid, or oth or organic molecule for which a specific binding partner is obtainable. In functional terms, the ligand will usually be an antigen or an antibody thereto; a hapten or an antibody thereto; or a hormone, vitamin, or drug, or a receptor or binding substance therefor. Most commonly, the ligand is an immunologically-active polypeptide or protein of molecular weight between 1,000 and 4,000,000 such as an antigenic 10 polypeptide or protein or an antibody; or is a hapten of molecular weight between 100 and 1,500.

FAD-labeled conjugates wherein the ligand therein is an iodothyronine are particularly useful in specific binding assays to determine the iodothyronine in liquid media such as serum and preferably have the general formula:

$$\begin{array}{c} \text{NH} \rightarrow \text{CH}_2 \rightarrow_{\pi} \text{NH} - \text{C} \cdot \text{CHCH}_2 \rightarrow \text{CHCH}_2 \rightarrow \text{O} \rightarrow \text{OH}_2 \rightarrow \text$$

15 Riboflavin-(Phos)₂-Ribose

wherein Riboflavin-(Phos)₂-Ribose represents the riboflavin-pyrophosphate-ribose residue in flavin adenine dinucleotide, n=2 through 6, and β^1 and β^2 are, independently, hydrogen or iodine.

The FAD-labeled conjugates are used in binding assays for the ligand or a specific binding partner therefor and are determined, i.e., monitored, for the purposes of the assay by measuring FAD activity, e.g., the coenzyme or prosthetic group activity generated upon combination of such conjugate with an appearing that requires FAD to perform its catalytic function as described in detail in the above-mentioned U.S. Serial No. 317,361.

The present FAD-labeled conjugates can be prepared by a variety of synthetic routes. Exemplary of such available synthetic routes is the following general reaction procedure:

Reaction of 6-chloro-9-(2',3'-0-isopropylidine- β -D-ribofuranosyl) purine (1) [Hampton *et al, J. Am. Chem. Soc. 83*:150(1961)] with an α,ω -diaminoalkane selected from those listed in Table 2

Table 2

n αω-dleminoalkane
2 1,2-diaminoethan 30
3 1,3-dlaminopropane
4 1,4-diaminobutane
5 1,5-diaminopentane
6 1,6-diaminoh xane

35 yields the intermediate 6-(ω -aminoalkyl)-9-(2'.3'-0-isopropylidine- β -D-ribofuranosyl) purine (2).

10

15

20

25

30

35

The amino-purine intermediate (2) is then linked by formation of a peptide or amide couple with either the ligand, where such contains a carboxylic acid function, or a binding analog of the ligand (e.g., a derivative of the ligand) which analog contains the desired carboxylic acid function, to form the ligand or analog substituted adenosine intermediate of the present invention of formula (3)

wherein ——(—CO)L is the ligand or analog thereof bound by an amide bond. Such condensation reactions can be accomplished by reacting the amino-purine intermediate (2) directly with the carboxylic acid-containing ligand or ligand analog using conventional peptide condensation reactions such as the carbodilmide reaction [Science 144:1344(1964)], the mixed anhydride reaction [Erlanger et al, Methods In Immunology and Immunochemistry, ed. Williams and Chase, Academic Press (New York 1987) p. 149], and the acid azide and active ester reactions [Kopple, Peptides and Amino Acids, W. A. Benjamin, Inc. (New York 1986)]. See also for a general review Clin. Chem. 22:726(1976).

It will be recognized, of course, that other well known methods are available for coupling the ligand or a derivative thereof to the amino-purine intermediate (2). In particular, conventional bifunctional coupling agents can be employed for coupling a ligand, or its derivative, containing a carboxylic acid or amino group to the amino-purine intermediate (2). For example, amine-amine coupling agents such as bis-isocyanates, bis-imidoesters, and glutaraldehyde (Immunochem. 6:53(1969)) can be used to couple a ligand or derivative containing an amino group to the amino-purine intermediate (2). Also, appropriate coupling reactions are well known for inserting a bridge

group in coupling an amine (e.g., the amino-purine intermediate) to a carboxylic acid (e.g., the ligand or a derivative thereof). Coupling reactions of this type are thoroughly discussed in the literature, for instance in the above-mentioned Kopple monograph and in Lowe & Dean, Affinity Chromatography, John Wiley & Sons (New York 1974).

Such coupling techniques will be considered equivalents to the previously discussed peptide condensation reactions in preparing useful labeled conjugates. The choice of coupling technique will depend on the functionalities available in the ligand or analog thereof for coupling to the amino-purine intermediate (2) and on the length of bridging group desired. In all cases, for purposes of this disclosure, the resulting condensation product will comprise the amino-purine intermediate, which ultimately is converted to FAD, bound to the remaining portion of the product, or ultimately to the remaining portion of the FAD-labeled conjugate, through an amine bond. Such remaining portion of the condensation product, or conjugate, will be considered as a residue of a binding analog of the ligand, unless the ligand itself in directly coupled to the amino-purine intermediate (2). Thus, in this description and in the claims to follow, the abbreviation —(—CO)L represents the ligand or a binding analog the reof coupled through an amide bond, wherein such analog can be a derivative of the ligand coupled by peptide

10

15

20

25

condensation or can be the ligand or derivative their of coupled through a bridging group inserted by coupling of the ligand or derivative with a bifunctional coupling agent.

It is evident that in coupling the ligand or derivative thereof to the amino-purine intermediate (2) it may be desirable to protect certain reactive groups in such ligand or derivative from participating in side reactions during coupling. Protection of reactive groups may also be desirable to prevent interfering reactions during the synthetic steps described below for completing the preparation of the FAD-labeled conjugate. Depending upon the specific ligand or derivative involved and the coupling technique chosen, the addition of protecting groups at the reactive sites on the ligand or derivative can be accomplished before or after the coupling to the amino-purine intermediate (2). One skilled in the 10 art will have a wide variety of conventional blocking reactions from which to accomplish the desired protection of reactive groups such that the blocking group added can be readily removed in a subsequent synthetic step to yield the original ligand or derivative coupled to FAD.

For instance, where the ligand is an iodothyronine, it is preferably treated to protect the amine group prior to condensation or linkage with the amino-purine intermediate. The amine-protected iodothyronine intermediate has the formula:

8¹.8² - H or I

wherein Y is an amine-protecting group. It will be recognized that protection of the amine group is a conventional procedure and the amine-protecting group can be selected from a wide variety of groups, including trifluoroacetyl, which is preferred, and the like, such as others of the acyl type (e.g., formyl, benzyl, phthalyl, p-tosyl, aryl- and alkylphosphoryl, phenyl- and benzylsulfonyl, tritylsulfenyl, o-nitrophenyl- sulfenyl and o-nitrophenoxyacetyl), those of the alkyl type (e.g., trityl, benzyl and alkylidene) and those of the urethane type (e.g., carbobenzoxy, p-bromo-, p-chlom- and p-methoxycarbobenzoxy, tosyloxyalkyloxy-, cyclopentyloxy-, cyclohexyloxy-, t-butyloxy, 1.1-dimethylpropyloxy, 2-(p-biphenyl)-2-propyloxy- and benzylthiocarbonyl.

The substituted adenosine intermediates formed by condensation or linkage between the amino-purine intermediate (2) and the amine-protected iodothyronine intermediate (4) are of the formula (3) wherein —(—CO)L is:

$$-C - CHCH_2 - CHCH_$$

 $s^1, s^2 = H \text{ or } I$

wherein Y is an amine-protecting group as above.

Treatment of intermediate (3) with phosphorous oxychloride produces the phosphorylated ligand or analog substituted adenosine intermediate of the invention of formula (6)

$$HO-P-O$$
OH
$$H_3 CCH_3$$

$$NH-(CH_2) n NH-(CO)L$$

$$N = 2-6$$

$$(6)$$

which upon hydrolysis yields the ligand or analog substituted 5'-adenylic acid intermediate of the invention of formula (7).

10

15

20

25

30

Condensation of riboflavin-5'-monophosphate with intermediate (7) activated to a phosphorimidazolidate by treatment with N,N'-carbonyldiimidazole yields FAD-labeled conjugates (8).

$$NH \rightarrow CH_2 \rightarrow NH \rightarrow CO)L$$

$$NH \rightarrow CH_2 \rightarrow NH \rightarrow CO$$

$$NH \rightarrow CH_2 \rightarrow NH$$

$$N$$

In the preferred embodiment wherein the ligand is an iodothyronine, and thus —(—CO)L is represented by formula (5) above, the resulting FAD-iodothyronine conjugates are of the formula:

NHY
$$n = 2-6$$
Riboflavin-(Phos)₂-Ribose β^1 , $\beta^2 = H$ or I

wherein Y is an amine-protecting group, or upon conventional treatment for removal of such protecting group, Y is hydrogen.

As stated hereinabove, the ligand which is comprised in the labeled conjugate or whose binding analog is comprised in the labeled conjugate is in most circumstances an immunologically-active polypeptide or protein of molecular weight between 1,000 and 4,000,000, such as an antigenic polypeptide or protein or an antibody, or is a hapten of molecular weight between 100 and 1,500. Various methods for coupling such ligands or analogs thereof to the amino-purine intermediate (2) through an amide bond in the synthesis of the present FAD-labeled conjugate will now be presented.

Polypeptides and Proteins

Representative of specifically bindable protein ligands are antibodies in general, particularly those of the IgG, IgE, IgM and IgA classes, for example hepatitis antibodies; and antigenic proteins such as insulin, chorionic genadotropin (e.g., HCG), carcinoembryonic antigen (CEA), myoglobin, hemoglobin, follicle stimulating hormone, human growth hormone, thyroid stimulating hormone (TSH), human placental lactogen, thyroxine binding globulin (TBG), instrinsic factor, transcobalamin, enzymes such as alkaline phosphatase and lactic dehydrogenase, and hepatitis-associated antigens such as heptatis 8 surface antigen (HB₂Ag), hepatitis 8 e antigen (HB₂Ag) and hepatitis 8 core antigen (HB₂Ag). Representative of polypeptide ligands are angiotensin I and II, C-peptide, oxytocin, vasopressin, neurophysin, gastrin, secretin, and alucadon.

Since, as peptides, ligands of this general category possess numerous available carboxylic acid and amino groups, coupling to the amino-purine intermediate (2) can proceed according to conventional peptid condensation reactions such the carbodiimide reaction, the mixed anhydride reaction, and so forth as described hereinabove, or by the use of conventional bifunctional reagents capable of coupling carboxylic acid or amino functions to the amino group in the amino-purine intermediates (2) as like wise described above. General references concerning the coupling of protains to primary amines or carboxylic acids are mentioned in detail above.

Haptens, as a class, offer a wide variety of organic substances which evoke an immunochemical response in a host animal only when injected in the form of an immunog in conjugate comprising the hapten coupled to a carrier molecule, almost always a protein such as albumin. The coupling reactions for forming the immunogen conjugates are well developed in the art and in general comprise the coupling of a carboxylic acid ligand or a carboxylic acid derivative of the ligand to available amino groups on the protein carrier by formation of an amide bond. Such well known coupling reactions are directly analogous to the present formation of labeled conjugates by coupling carboxylic acid ligands or binding analogs to the amino-purine intermediate (2).

Hapten ligands which themselves contain carboxylic acid functions, and which thereby can b coupled directly to the amino-purine intermediate (2), include the iodothyronine hormones such as thyroxine and liothyronine, as well as other materials such as biotin, valproic acid, folic acid and certain prostaglandins. Following are representative synthetic routes for preparing carboxylic acid binding analogs of hapten ligands which themselves do not contain an available carboxylic acid function 15 whereby such analogs can be coupled to the amino-purine intermediate (2) by the aforementioned peptide condensation reactions or bifunctional coupling agent reactions (in the structural formula below, n represents an integer, usually 1 through 6, and Me represents methyl).

Carbamazepine

Dibenz[b,f]azepine is treated sequentially with phosgene, an w-aminoalkanol, and Jones reagent 20 (chromium trioxide in sulfuric acid) according to the method of Singh, U.S. Pat. No. 4,058,511 to yield the following series of carboxylic acids:

Quinidine

Following the method of Cook et al, Pharmacologist 17:219(1975), quinidine is demethylated 25 and treated with 5-bromovalerate followed by acid hydrolysis to yield a suitable carboxylic acid derivative.

Digoxin and Digitoxin

The aglycone of the cardiac glycoside is treated with succinic anhydride and pyridine according to the method of Oliver et al, J. Clin. Invest. 47:1035(1968) to yield the following:

Theophylline

30

Following the method of Cook et al, Res. Comm. Chem. Path. Pherm. 13:497(1976), 4,5diamino-1,3-dimethylpyrimidine-2,6-dione is heated with glutaric anhydride to yield the following:

35 Ph n barbital and Primidone

Sodium phenobarbital is heated with methyl 5-bromovalerate and the product hydrolyzed to th corresponding acid derivative of phenobarbital (Cook et al, Quantitative Analytic Studies in Epilepsy. ed. Kelleway and Peterson, Raven Press (New York 1976) pp. 39-58]:

25

10

15

20

30

10

15

20

To obtain the acid derivative of primidone following the same Cook et al reference method, 2thiophenobarbital is alkylated, hydrolyzed, and the product treated with Raney nickel to yield:

5 Diphenylhydantoin

Following the method of Cook et al, Res. Comm. Chem. Path. Pharm. 5:767(1973), sodium diphenylhydantoin is reacted with methyl 5-bromovalerate followed by acid hydrolysis to yield the

10 Morphine

Morphine free base is treated with sodium β -chloroacetate according to the method of Spector et al. Science 168:1347(1970) to yield a suitable carboxylic acid derivative.

Nicotine

According to the method of Langone et al, Biochem. 12(24):5025(1973), trans-15 hydroxymethylnicotine and succinic anhydride are reacted to yield the following:

Androgens

Suitable carboxylic acid derivatives of testosterone and androstenedione linked through either the 1- or 7-position on the steroid nucleus are prepared according to the method of Bauminger et al., J. 20 Steroid Biochem. 5:739(1974). Following are representative testosterone derivatives:

7-position

Me OH
$$S \leftarrow CH_2 \rightarrow R$$

$$COOH$$

Estrogens

Suitable carboxylic acid derivatives of estrogens, e.g., estrone, estradiol and estriol, are prepared according to the method of Bauminger et al, supra, as represented by the following estrone derivativ:

Progesterones

Suitable carboxylic acid derivatives of progesterone and its metabolites linked through any of the 3-, 6- or 7-positions on the steroid nucleus are prepared according to the method of Bauminger et al, 10 supra, as represented by the following progesterone derivatives:

3-position

5

10

15

20

25

30

35

45

The methods described above are but examples of the many known techniques for forming suitable carboxylic acid derivatives of haptens of analytical interest. The principal derivation techniques are discussed in *Clin. Chem. 22*:726(1976) and include esterification of a primary alcohol with succinic anhydride [Abraham and Grover, *Principles of Competitive Protein-Binding Assays*, ed. Odell and Daughaday, J. B. Lippincott Co. (Philadelphia 1971) pp. 140—157], formation of an oxime from reaction of a ketone group with carboxylmethyl hydroxylamine [*J. Biol. Chem. 234*:1090(1959)], introduction of a carboxyl group into a phenolic residue using chloroacetate [*Science 168*:1347(1970)], and coupling to diazotized *p*-aminobenzoic acid in the manner described in *J. Biol. Chem. 235*:1051(1960).

The general reaction scheme described above is exemplified by the following descriptions of the synthesis of the ethyl (n=2) and hexyl (n=6) analogs of the FAD-labeled conjugates wherein the ligand is the iodothyronine thyroxine [i.e., —(—CO)L is of the formula (5) wherein β^1 and β^2 are both iodine]. Also provided are descriptions of assay methods, and results therefrom, employing the exemplified analogs as labeled conjugates in a specific binding assay for thyroxine.

1. Ethyl Analog

1-I. Preparation of the Labeled Conjugate

6-(2-Aminoethyl)amino-9-(2',3'-O-isopropylidine- β -D-ribofluranosyl) purine (2).

13.56 grams (g) [41.5 millimoles (mmol)] of 6-chloro-9-(2',3'-0-isopropylidene-β-D20 ribofuranosyl) purine (1) [Hampton et al, J. Am. Chem. Soc. 83:150(1961)] was added with stirring over a 15 minute period to a cold excess of 1,2-diaminoethane [75 milliliters (mil)]. The resulting solution was allowed to stand at room temperature for 24 hours. The solution was evaporated in vacuo and the resulting yellow oil was stirred with 50 ml of cold, saturated sodium bicarbonate. The mixture was evaporated in vacuo and the resulting residue was further repeatedly evaporated in vacuo first from water (3 times from 50 ml) and then from 2-propanol (4 times from 50 ml) to obtain a yellow glass (15 g). A portion (3 g) of the glass was dissolved in a small volume of water which was then applied to the top of a 25×55 centimeter (cm) Dowex 50W-X2 cation exchange column in the ammonium form (Bio-Rad Laboratories, Richmond, California USA).

The column was eluted with a linear gradient generated with 2 liters (L) each of water and 0.5 molar (M) ammonium bicarbonate. The elution was completed using a linear gradient generated with 2 L each of 0.5 M and 1 M ammonium bicarbonate. The effluent from the column was collected in 19 ml fractions and monitored by elution on silica gel thin layer chromatography (TLC) plates (E. Merck, Darmstadt, West Germany) with a 9:1 (V:v) mixture of ethanol and ammonium hydroxide. The developed TLC plates were examined under ultraviolet light, then sprayed with ninhydrin reagent [Randerath, Thin Layer Chromatography, Academic Press (1966)]. Fractions numbered 250 through 350 from the column chromatography were combined and evaporated in vacuo leaving the desired purine (2) as a pale yellow amorphous glass (1.5 g).

Analysis:

Calculated for C₁₅H₂₂N₅O₄:

C, 51.42; H, 6.33; N, 23.99

40

Found:

C. 50.92; H. 6.54; N. 23.01

NMR (60 MHz, CDCl₃): δ 1.37 (s, 3H, isopropylidene), 1.63 (s, 3H, isopropylidene), 5.92 (d, 1H, 1'-ribose), 7.90 (s, 1H, purine), 8.28 (s, 1H, purine) Optical Rotation [α]₂₀=-74.85° (c 1.0, CH₃OH)

45

40

The remaining crude product (12 g) was purified by chromatography on Dowex 50W-X2 as described above. The overall yield was 8 g (55%).

 α -(N-Trifluoroacetyl)amino- β -(3.5-diiodo-4-(3'.5'-diiodo-4'-hydroxyphenoxy)phenyl] propanoic acid (4).

This compound was prepared by the method of Blank, *J. Pharm. Sci. 53*:1333(1984). To a cooled (0°C), stirred suspension of 5 g (6.4 mmol) of L-thyroxine (Sigma Chemical Co., St. Louis, Missouri

USA) in 60 ml of dry thyl acetate was added 11.5 ml of trifluoroacetic acid and 1.9 ml of trifluoroacetic anhydride. After 30 minutes the resulting clear solution was washed three times with 30 ml of water, once with 30 ml of 5% sodium bicarbonate, and twice with 50 ml of saturated sodium chloride. The combined aqueous washings were extracted twice with 20 ml of ethyl acetate. The ethyl 5 acetate layers were combined and washed with 30 ml of water, then dried over magnesium sulfate. 5 The dried ethyl acetate solution was evaporated in vacuo leaving a white solid. Recrystallization from a mixture of ethyl ether and petroleum ether gave a pinkish-white solid (3.95 g, 70.5% yield) having a melting point (m.p.) of 228—230°C with decomposition. 10 Calculated for C,,H,oF,14NO,: 10 C, 23.39; H, 1.15; N, 1.60 Found: C, 23.00; H, 1.05; N, 1.65 NMR [60 MHz, DCON(CD₂)₂] 87.28 (s, 2H, aromatic), 8.03 (s, 2H, aromatic), 9.7 (m, 1H, amido) 15 IR (KCI): 1700 (>C=0) Optical Rotation $[\alpha]_0^{25}$ =-14.97° (c 1.0 dimethylsulfoxide) 15 A second recrystallization produced a second precipitate (0.95 g) m.p. 224-228°C with decomposition. The overall yield was 87.5%. N-{2-{N-(Trifluoroacetyl)-3,3',5,5'-tetraiodothyronyl]aminoethyl}-2',3'-0-isopropylidene adenosine (3). 20 A solution of 8.72 g (10.0 mmol) of lpha-(N-trifluoroacetyl)-amino-eta-[3,5-diiodo-4-(3',5'-diiodo-4'-20 hydroxyphenoxy)phenyl]propanoic acid (4) and 3.86 g (11.0 mmol) of 6-(2-eminoethyl) amino-9-(2',3'-0-isopropylidene- β -0-ribofuranosyl) purine (2) in 50 mt of dry dimethylacetamide was prepared under a dry argon atmosphere at -20°C. To this cold stirred solution was added a solution of 3.04 g (11.0 mmol) of diphenylphosphoryl azide (Aldrich Chemical Co., Milwaukee, Wisconsin USA) in 10 ml 25 of dry dimethylacetamide followed by the addition of 1.6 ml (11.0 mmol) of dry triethylamine. The 25 solution was left at room temperature for 22 hours. The solution was then added dropwise to 300 ml of cold (0°C) water with stirring. The resulting white precipitate was collected by filtration and dried in vacuo (56°C) to give 13.0 g of a light cream colored solid. The solid was dissolved in 500 ml of acatone and the solution was concentrated by boiling. The white solid which precipitated from the 30 boiling acetone solution was collected by filtration while hot. Continued boiling of the filtrate produced 30 two additional precipitates. The three precipitates were combined to give 8 g (66.6% yield) of a white solid, m.p. 198—200°C (decomposed). Analysis: Calculated for C₃₂H₃₀F₃₁,N₃O₄: 35 C, 31.89; H, 2.51; N, 8.14 35 Found: C, 31.95; H, 2.60; N, 7.86 NMR [220 MHz, $(CD_3)_2SO$] δ 1.32 (s, 3H, isopropylidene), 1.55 (s, 3H, isopropylidene), 6.14 (d, 1H, 1'-ribose), 7.02 (s, 2H, thyroxine), 7.82 (s, 2H, thyroxine), 8.25 (s, 1H, purine), 8.36 (s, 40 1H, purine), 8.41 (t, 1H, J=6, amido), 9.64 (d, 1H, J=8, trifluoroacetamido) 40 Optical Rotation $[\alpha]_0^{25}$ = 11.82° (c 1.0, pyridine) N-[2-[N-(Trifluoroacetyl)-3,3',5,5'-tetraiodothyronyl]aminoethyl]-2',3'-Q-isopropylidene-5'adenylic acid monotriethylamine salt monohydrate (6). A solution of 1.2 g (1.0 mmol) of N-(2-[N-(trifluoroacetyl)-3,3',5,5'-45 tetraiodothyronyi]aminoethyi]-2',3'-O-isopropylidene adenosine (3) in 10 ml of dry triethylphosphate 45 was prepared under a dry argon atmosphere at 0°C. To the cold, stirred solution was added 0.45 ml (5 mmol) of phosphorous oxychloride. The resulting solution was kept for 24 hours at 0°C, then added dropwise with stirring to 1 L of ice water. The resulting precipitate was collected by filtration and dried in vacuo to give 1.23 g of a white solid. The solid was dissolved in acetone and 0.32 ml (2.2 mmol) of 50 triethylamine was added. A precipitate formed. The mixture was evaporated in vacuo and the resulting 50 residue lixiviated with dry acetone, then recrystallized from a mixture of dry methyl alcohol and dry ethyl ether to give 390 mg (27.8% yield) of a white solid, m.p. 173-183°C (decomposed). Analysis: Calculated for C₁₈H₄₈F₁I₈N₈O₁₃P: 55 55 C, 32.50; H, 3.45; N, 7.98 Found:

NMR [60 MHz, (CD₂)₂SO] δ 1.53 (s, 3H, isopropylidene), 6.2 (d, 1H, 1'H-ribose), 7.1 (s. 2H, thyroxine aromatic), 7.87 (s, 2H, thyroxine aromatic), 8.27 (s, 1H, purine), 8.52 (s. 1H,

C. 32.24; H. 3.08; N. 7.58

Optical Rotation $[\alpha]_0^{25} = -17.50^{\circ}$ (c 1.0, CH₃OH)

purin)

10

15

. 20

25

. 30

. 35

45

50

55

60

N-(2-[N-(Trifluoroacetyl)-3.3'.5.5'-t traiodothyronyl]aminoethyl]-5'-adenylic acid (7).

200 milligrams (mg) (0.14 mmol) of N-{2-{N-(trifluoroacetyl)-3,3'-5,5'-tetraiodothyronyl]aminoethyl]-2',3'-O-isopropyliden -5'-adenylic acid monotriethylamine salt monohydrate (6) was suspended in 1 ml of water (0°C) and trifluoroacetic acid (9 ml) was added dropwise with stirring. After 30 minutes a clear solution was obtained. The solution was kept cold (0°C) for an additional 15 hours, then evaporated in vacuo (30°C). The resulting residue was evaporated four times in vacuo (25°C) from 20 ml volumes of anhydrous ethyl alcohol and then dried in vacuo (25°C) leaving a white solid.

The solid was stirred for 30 minutes with 10 ml of cold methyl alcohol, then collected by filtration and dried *in vacuo* (25°C) to give a white solid (135 mg, 76% yield) which slowly melted with decomposition above 188°C.

Analysis:

Calculated for C₂₉H₂₇F₃I₄N₇O₁₁P: C, 27.97; H, 2.19; N, 7.87

15 Found:

C. 28.11; H. 2.31; N. 7.65

NMR [220 MHz, (CD₃)₂SO] & 5.95 (d, 1H, 1'-ribose), 7.04 (s, 2H, thyroxine aromatic), 7.84 (s, 2H, thyroxine aromatic), 8.25 (s, 1H, purine), 8.36 (s, 1H, purine), 8.43 (m, 1H, amido), 9.66 (d, 1H, trifluoroacetamido)

Optical Rotation $[\alpha]_0^{25} = -2.72^{\circ}$ (c 1.0, pyridine)

Flavin adenine dinucleotide-thyroxine conjugate (8).

498 mg (0.4 mmol) of N-[2-[N-(trifluoroacetyi)-3,3',5,5'-tetraiodothyronyl]aminoethyl]-5'-adenylic acid (7) was dissolved in 10 ml of dry dimethylformamide and tri-n-butylamine [96 microliters (μl), 0.4 mmol] was added followed by the addition of 1,1'-carbonyldilmidazole (320 mg, 2.0 mmol). After stirring for 18 hours at room temperature in the absence of moisture, water (280 μl) was added and then the solvent evaporated *in vacuo*.

The resulting oil was dried by repeated in vacuo evaporation from dry dimethylformamide (4 times from 10 ml). The resulting phosphorimidazoildate was redissolved in 10 ml of dry dimethylformamide and added dropwise to a 0.4 mmol solution of the tri-n-octylamine salt of riboflavin-5'-monophosphate in 10 ml of dry dimethylformamide. The salt was prepared by adding a solution of the ammonium salt of riboflavin-5'-monophosphate (192 mg, 0.4 mmol) in 10 ml of water to a stirred solution of tri-n-octylamine (176 µl, 0.4 mmol) in 100 ml of acetone. After 30 minutes, the resulting mixture was evaporated in vacuo. The residue was dried by repeated evaporation in vacuo from dry dimethylformamide leaving the salt as an orange solid.

The above solution containing the phosphorimidazolidate of (7) and the riboflavin-5'monophosphate salt was divided into two equal aliquots after 24 hours and one aliquot was
evaporated in vacuo. The resulting residue was chromatographed on a column (2.5x78 cm) prepared
from 100 g of Sephadex LH-20 (Pharmacia Fine Chemicals, Uppsala, Sweden) which had been
preswollen (18 hours) in a 19:1 (v.v) mixture of dimethyl-formamide and triethylammonium
do bicarbonate (1 M, pH 7.5). The column was eluted with the above 19:1 (v.v) mixture and 10 ml

40 bicarbonate (1 M, pH 7.5). The column was eluted with the above 19:1 (v:v) mixture and 10 ml fractions were collected. The effluent from the column was monitored by elution on silica gel 60 silanised RP-2 TLC places (E. Merck, Darmstadt, West Germany).

The TLC plates were developed using a 40:40:25:1:1 (v:v) mixture of acetone, chloroform, methyl alcohol, water, and triethylamine. Fractions numbered 11 through 17 from the abovementioned column chromatography were combined and evaporated in vacuo. The residue was chromatographed on a column (2.5×75 cm) prepared from 125 g of Sephadex LH-20 which had been preswollen (18 hours) in 0.3 M ammonium bicarbonate. The column was eluted with 0.3 M ammonium bicarbonate collecting 10 ml fractions. The effluent was monitored by absorption of ultraviolet light at 254 nanometers (nm). The volume of the fractions was increased to 20 ml beginning with fraction number 150. The salt concentration of the eluent was decreased in a stepwise fashion as follows: 0.15 M ammonium bicarbonate at fraction number 295, 0.075 M ammonium bicarbonate at fraction number 376, and water at fraction number 430. A total of 480 fractions was collected. Fractions numbered 200 through 235 were combined and evaporated in vacuo leaving the labeled

conjugate (8) as a y llow-orange residue. An alkalin , aqueous solution of this residue exhibited

55 ultraviolet absorption maxima at the following way lengths: 266 nm, 350 nm, 373 nm, and 450 nm.

The yield, estimated from the absorption at 450 was about 5%.

A phosphodiesterase preparation (Worthington Biochemics) Come, Sepanded New Joseph 15A)

A phosphodiesterase preparation (Worthington Biochemical Corp., Freehold, New Jersey USA) isolated from snake vinom (Crotalus Adamanteus) hydrolyzed and thill above product to riboflavin-5'-monophosphate and the thyroxine substituted 5'-adenylic acid (7) wherein the trifluoroacetyl blocking 60 group had been rimoved.

5

10

15

20

25

30

35

40

50

55

1-II. Binding Assay for Thyroxine

The above-prepared labeled conjugate was used in a prosthetic group-labeled specific binding assay as follows (further details regarding such an assay method may be found in the U.S. Patent Application—Serial No. 917,961-referred to hereinbefore):

5 A. Preparation of Apoglucose Oxidase

Purified glucose oxidase with low catalase activity obtained from the Research Products Division of Miles Laboratories, Inc., Elkhart, Indiana USA was twice dialyzed for 12 hours each against 0.5% (w.v) mannitol (30 volumes each). Aliquots of the dialyzate containing 100 mg of glucose oxidase each were lyophilized and stored at -20°C.

Bovine serum albumin (200 mg) was dissolved in 12 ml of water adjusted to pH 1.6 with concentrated sulfuric acid, mixed with 150 mg charcoal (RIA grade from Schwarz-Mann, Orangeburg, New York USA), and cooled to 0°C. Lyophilized glucose oxidase (100 mg) was redissolved in 3.1 ml of water and 3 ml was added to the stirred albumin-charcoal suspension with continued stirring for three minutes. The suspension was then filtered through a 0.8 micron, 25 millimeters (mm) diameter 15 Millipore filter (millipore Corp., Bedford, Massachusetts USA) mounted in a Sweenex filter apparatus (Millipore Corp.) on a 50 ml disposable plastic syringe. The filtrate was quickly neutralized to pH 7.0 by

addition of 2 ml of 0.4 M phosphate buffer (pH 7.6) and thereafter 5 N sodium hydroxide. Dry charcoal (150 mg) was then added and stirred for one hour at 0°C. The resulting suspension was filtered first through a 0.8 micron Millipore filter and then through a 0.22 micron Millipore filter. To the filtrate was 20 added glycerol to 25% (v:v) and the stabilized apoglucose oxidase preparation was stored at 4°C.

B. Assay Reagents

1. Labeled conjugate—The ethyl analog labeled conjugate prepared as in section 1—I above was diluted in 0.1 M phosphate buffer (pH 7) to a concentration of 1 micromolar (µM).

2. Apoenzyme—Apoglucose oxidase was diluted with 0.1 M phosphate buffer (pH 7) to a 25 concentration of 0.6 μ M FAD binding sites. The FAD binding site concentration of the appenzyme preparation was determined experimentally by measuring the minimum amount of FAD required to give maximum glucose oxidase activity when incubated with the apoenzyme.

3. Insolubilized Antibody—A washed, moist cake of Sepharosa 48 gel (Pharmacia Fine Chemicals, Uppeals, Sweden) activated by cyanogen bromide according to the method of March et al, 30 Anal. Biochem. 60:119(1974) was added to a solution of 85 mg of antibody, (isolated from antiserum against a thyroxine-bovine serum albumin conjugate) in 20 ml of 0.1 M phosphate buffer (pH 7.0) and agitated slowly for 36 hours at 4°C. Upon completion of the coupling reaction, 1 ml of 1 M alanine was added and shaking continued for four more hours to block unreacted sites. The resulting Sepharosebound antibody was washed on a scintered funnel with 400 ml each of 50 mM sodium acetate—500 35 millimolar (mM) sodium chloride (pH 5) and 50 mM phosphate buffer—500 mM sodium chloride (pH

7), and 800 ml of 100 mM phosphate buffer (pH 7). The moist filter cake was then suspended in 100 mM phosphate buffer (pH 7) containing 0.01% sodium azide to give 22 ml of an about 50% suspension.

4. Standard—A 1.15 mM stock solution of thyroxine in 5 mM sodium hydroxide was diluted to 2 40 μM in 0.1,M phosphate buffer (pH 7).

5. Monitoring reagent—A glucose oxidase assay reagent was prepared to contain the following mixture per 130 μ l: 25 μ l of 1.2 mg/ml peroxidase (Sigma Chemical Co., St. Louis, Missouri USA) in 0.1 M phosphate buffer (pH 7), 5 ய of 10 mM 4-aminoantipyrine in water, 20 ய of 25 mM 3,5dichloro-2-hydroxybenzene sulfonate in 0.1 M phosphate buffer (pH 7), 30 µl of 16.5% bovine serum 45 albumin in 0.1 M phosphate buffer (pH 7), and 50 μl of 1 M glucose in aqueous saturated benzoic acid solution.

C. Assay Procedure

Binding reaction mixtures were prepared by mixing 150 μ l of the insolubilized antibody suspension, 80 μ l of the labeled conjugate solution, various amounts of the standard thyroxine solution 50 to give varying concentrations of thyroxine in the reaction mixtures, and a sufficient volume of 0.1 M phosphate buffer (pH 7) to male a total volume of 500 μ l. The reaction mixtures were incubated with shaking for tw hours at 25°C. Each reaction mixture was then vacuum filtered through a glass wool plugged, dry pasteur pipette previously treated sequentially with periodate and ethyl n glycot solutions t eliminate possible FAD contamination. To a 300 µl aliquot of each filtrat was added 130 55 μ l of the monitoring reagent and 50 μ l of the apoenzym solution. After one hour, the absorbanc of each reaction mixture was measured at 520 nm.

D. Results

Following is Table 3 showing the suits of the assay procedure in measuring thyroxine. The absorbance results are expressed as the average of duplicate runs corrected for residual enzyme

50

activity in the appearzyme solution (absorbance of 0.522) and for endogenous FAD in the antibody suspensi in (absorbance of 0.142).

٦	٠.	_	2

	Table 3		
5	Valume of Thyroxine Standard Added (மி) Abso	rbance (520 nm)	
	0	•	5
	•	0.223	
	25	0.221	
	75	0.281	
	250	0.286	
. 10	The results demonstrate that the present labeled conjugmethod for determining a ligand in a liquid medium.	gates are useful in a specific binding assay	10
	Hexyl Analog		
	2—I. Preparation of the Labeled Conjugate		
	6-(6-Aminohexyl)amino-9-(2',3'-O-isopropylidene-β	-D-ribofuranosyl) purine (2).	
15			
	et al, J. Am. Chem. Soc. 83:1501(1961)] was added widistilled 1,6-diaminohexane (58 g, 500 mmol). The resulting pale yellow residue was adsorbed on West Germany) and used to top a chemostrometric of the contraction of the	it stirring to a molten (70°C) sample of freshly liting mixture was stirred under argon at 40°C ation under reduced pressure (60°C, 0.01 mm o 150 g of silica gel 60 (E. Merck, Darmstadt.	15
	mixture and 900 20 ml fractions were collected. The fractionatography (TLC) on silica gel 60 eluting with a 7:3 triethylammonium bicarbonate (eH 7.5 the fractionate)	in was eluted with the above 9:1 (v:v) solvent ctions were examined by thin layer I (v:v) mixture of absolute ethyl alcohol and	20
	yieid). A i g sample of the glass was dissolved in a small top of a column prepared from 80 g of Sephadex LH-20 preswollen in methyl alcohol. The column was eluted with fractions were collected. The fractions were	I volume of methyl alcohol and applied to the (Pharmacia Fine Chemicals, Uppsala, Sweden) the methyl alcohol. A total of ninety 8 ml	25
	mixture of absolute ethyl alcohol and triethylammonium numbered 19 through 27 from the column chromatogra leaving 910 mg (91% recovery) of a white glass.	on silica gel 60 eluting with a 7:3 (v:v)	30
	And	1	
	Analysis:		
35	Calculated for C _{1e} H ₃₀ N _e O ₄ : , C, 56.14; H, 7.44; N, 20.68 Found:		35
	C, 53.91; H, 7.33; N, 19.18 NMR (60 MHz, CDCl ₃): δ 1.40 (s, 3H, isopropyliden ribose), 7.92 (s. 1H, purine), 8.36 (s. 1H, purine).	e) 1.82 (c. 24 iana a m.)	
40	ribose), 7.92 (s, 1H, purine), 8.36 (s, 1H, purine) Optical Rotation [α], 33=-50.11° (c 1.0, methyl alco	e), 1.05 (5, 3H, isopropylidene) 5.98 (d, 1H, 1'- shol)	40
į	N-[6-[N-(Triffluoroacetyl)-3,3',5,5'-tetraiodothyronyl]		
(A solution of 4.36 g (5.0 mmol) of α -(N-trifluoroace hydroxyphenoxy)-phenyl]propanoic acid (4), prepared as (5.5 mmol) of 6-(6-aminohexyl)amino-9-(2',3'-0-isoproperior of dry dimethylograpside.	tyl)amino-β-[3,5-diiodo-4-(3',5'-diiodo-4'-	45

45 (5.5 mmol) of 6-(6-aminohexyl)amino-9-(2',3'-0-isopropylidene-β-0-ribofuranosyl) purine (2) in 100 ml of dry dimethylformamide was prepared under a dry argon atmosphere at -20°C. To this cold

solid. A sample of this solid was recrystallized from a mixture of acetone and water giving a white solid.

stirred solution was added a solution of 1.52 g (5.5 mmol) of diphenylphosphoryl azide (Aldrich Chemical Co., Milwauke, Wisconsin USA) in 50 ml of dry dimethylformsmid followed by the addition of 0.8 ml (5.5 mmol) of dry triethylamine. The solution was left at room temperature for 22 hours. The 50 solution was thin added dropwise to 600 ml of cold (0°C) water with stirring. The resulting white precipitate was collected by filtration and dried in vacuo (60°C) to give 4.90 g (78% yield) of white

m.p. 205—207°C (decomposed).

10

20

25

30

35

-ئ ج

40

45

50

55

٠

ybc

say

ampton

of freshly

at 40°C

0.01 mm

mstadt,

: and solvent

ol and

74%

πi

column

d to the

:3 (v:v)

7 VACUO

Sweden)

Analysis:

Calculated for C₃₆H₃₆F₃I₄N₇O₆: C. 34.8; H. 3.04; N. 7.77

Found:

C, 34.22; H, 2.99; N, 7.41

Mass Spectrum (20 ma) m/e: 1262 [MH+], 1164 [M+ minus COCF,]

Optical Rotation $(\alpha)_0^{25} = -21.89^{\circ}$ (c 1.0, pyridine)

N-[8-[N-(Trifluoroacetyl)-3.3',5,5'-tetraiodothyronyl]aminohexyl]-2',3'-0-isopropylidene-5'. adenylic acid monotriethylamine salt monohydrate (6).

A solution of 1.89 g (1.5 mmol) of N-[6-N-(trifuloroacetyl)-3.3',5,5'tetraiodothyronyl]aminohexyl]-2',3'-0-isopropylidene adenosine (3) in 15 ml of dry triathylphosphat was prepared under a dry argon atmosphere at -10°C. To the cold stirred solution was added 0.68 ml (7.5 mmol) of phosphorous oxychloride. The resulting solution was kept for 18 hours at -15°C then added dropwise with stirring to 1.5 L of ice water. The resulting precipitate was collected by filtration 15 and dried in vacuo to give 1.91 g (87% yield) of a white solid. The solid was dissolved in 10 ml methyl alcohol and 0.38 mt (2.6 mmol) of triethylamine was added. This solution was evaporated in vacuo and the resulting residue was recrystallized from a mixture of methyl alcohol and ethyl ether to give 720 mg (33% yield) of a white solid, m.p. 151--154°C (decomposed).

20

25

Calculated for C₄₂H₅₆F₃I₄N₆O₁₂P:

C, 34.54; H, 3.86; N, 7.67

Found:

Analysis:

C. 35.24: H. 3.88: N. 7.75

Mass Spectrum (20 ma) m/e: 1342 [MH+], 1244 [M+ minus COCF₃]

Optical Rotation $[\alpha]_0^{25}$ =-17.20° (c 1.0, CH₂OH)

N-[6-[N-(Trifluoroacetyl)-3.3',5.5'-tetraiodothyronyl]aminohexyl]-5'-adenylic acid (7).

600 mg (0.41 mmol) of N-[6-[N-(trifluoroacetyl)-3,3′,5,5′-tetraiodothyronyl]aminohexyl}-2′,3′-Oisopropylidene-5'-adenylic acid monotriethylamine salt monohydrate (6) was suspended in 0.6 ml of water (0°C) and trifluoroacetic acid (6 ml) was added dropwise with stirring. After 50 minutes a clear solution was obtained. The solution was kept cold (0°C) for an additional 15 hours then evaporated in vacuo (30°C). The resulting residue was evaporated in vacuo five times from 20 ml volumes of anhydrous ethyl alcohol then triturated with 30 ml water and washed with a small volume of methyl alcohol. The resulting white solid (430 mg) was recrystallized from methyl alcohol to give 290 mg (54.6% yield) of white solid, m.p. 180—183°C (decomposed).

35 Analysis:

Calculated for C₂₂H₂₅F₃I₄N₇O₁₁P:

C. 30.46; H. 2.71; N. 7.54

Found:

C. 30.77; H. 2.55; N. 7.29

Mass Spectrum (20 ma) m/e: 1302 [MH+], 1204 [M+ minus COCF.]

Flavin Adenine Dinucleotide—Thyroxine Conjugate (8).

130.13 mg (0.1 mmol) of N-(6-[N-(trifluoroacetyl)-3,3',5,5'-tetralodothyronyl]aminohexyl)-5'adenylic acid (7) was placed in an argon atmosphere. To this sample was added a solution of 14 μ l (0.1 mmol) of triethylamine in 1 ml of dry dimethylformamide followed by the addition of a solution of 16.2 mg (0.1 mmol) of 1,1'-carbonyldiimidazole in 1 ml of dry dimethylformamide. After 24 hours, a second 45 equivalent of 1,1'-carbonyldiimidazole (16.2 mg) in 1 ml of dry dimethylformamide was added. The above reaction was allowed to proceed a total of 48 hours at room temperature excluding moistur. A sample of 47.3 mg (0.1 mmol) of the ammonium salt of riboflavin-5'-monophosphate was converted to the corresponding tri-n-octylamine salt as described in section 1—/ above. This salt was dissolved in 3 ml of dry dimethylformamide and added to the above solution containing the phosphorimidazolidate

of the adenviic acid intermediate (7). The resulting solution was allowed to stand in the dark at room temperatur excluding moisture for 24 hours. The solvent was evaporated in vacuo and the resulting residue was chromatographed on a column (2.5 x 78 cm) prepar d from 100 g of Sephadex LH-20 (Pharmacia Fine Chemicals, Uppsala, Sweden) which had been preswollen (18 hours) in a 19:1 (v:v) mixture of dimethylformamide and 55 triethylammonium bicarbonate (1 M, pH 7.5). The column was eluted with the above 19:1 (v:v) mixtur and 5 ml fractions were collected. The effluent from the column was monitored by elution on silica gel 60 silanised RP-2 TLC plat is (E. Merck, Darmstadt, West Germany). The TLC plates were developed

using a 40:40:25:1:1 (v:v) mixture of acetone, chloroform, methyl alcohol, water, and triethylamine. Fractions numbered 24 through 38 from the column chromatography were combined and

(d, 1H, 1'-States I

18

12.24 g 7 in 100 cold ch e addition

odo-4'-

ours. The vhita

white thite's lid.

evaporated in vacuo. The residu was chromatographed on a column (2.5×85 cm) prepared from 125 g of Sephad x LH-20 which had been preswoll in (18 hours) in 0.1 M ammonium bicarbonate. The column was eluted with a linear gradient generated from 2L of 0.1 M ammonium bicarbonat and 2 L of water and 23 ml fractions collected. The effluent was monitored by ultraviol t absorption (254 nm). 5 Fractions numbered 170 through 182 were combined and evaporated in vacuo. The residue was chromatographed on a column (2.5×55 cm) prepared from 80 g of Sephadex LH-20 which had been preswollen in 0.05 M ammonium bicarbonate. The column was eluted with a linear gradient generated from 2 L of 0.05 M ammonium bicarbonate and 2 L of 0.02 M ammonium bicarbonate. The effluent was monitored by ultraviolet absorption (254 nm). Elution was continued with 2 L of 0.2 M ammonium 10 bicarbonate, collecting 23 ml fractions. A total of 257 fractions was collected. Fractions numbered 70 through 110 were combined and evaporated in vacuo leaving the labeled conjugate (8) as a yelloworange residue. An alkaline, aqueous solution of this residue exhibited ultraviolet absorption maxima at the following wavelengths: 270 nm, 345 nm, and 450 nm. The yield, estimated from the absorption at 450 nm, was about 5%. 1.5 A phosphodiesterase preparation (Worthington Biochemical Corp., Freehold, New Jersey USA) 15 isolated from snake venom (Crotalus Adamanteus) hydrolyzed the above product to riboflavin-5'monophosphate and the thyroxine substituted 5'-adenylic acid (7) wherein the trifluoroacetyl blocking group had been removed. 2.—II. Binding Assay for Thyroxine 20 The above-prepared labeled conjugate was used in a prosthetic-group labeled specific binding 20 assay as follows (further details regarding such an assay method may be found in the U.S. Patent Application—Serial No. 917,961—referred to hereinbefore): A. Preparation of Apoglucose Oxidase The appenzyme used was prepared by the method described in section 1—II, part A above. 25 B. Assay Reagents 25 1. Labeled conjugate—The hexyl analog labeled conjugate prepared as in section 2—/ above was diluted in 0.1 M phosphate buffer (pH 7) to a concentration of 100 nM. 2. Appenzyme—This reagent was the same as that described in section 1—//, part B-2 above. 3. Insolubilized antibody—This reagent was the same as that described in section î—ii, part 8-3 30 above. 30 4. Standard—A 1.15 mM stock solution of thyroxine in 5 mM sodium hydroxide was diluted to 1 μM in 0.1 M phosphate buffer (pH 7). 5. Monitoring reagent—A glucose oxidase reagent was prepared to contain the following mixture per 117 μl: 25 μl of 1.2 mg/ml peroxidase (Sigma Chemical Co., St. Louis, Missouri USA) in 0.1 M 35 phosphate buffer (pH 7), 5 μl of 10 mM 4-eminoantipyrine in water, 20 μl of 25 mM 3,5-dichloro-2-35 hydroxybenzene sulfonate in 0.1 M phosphate buffer (pH 7), 17 μ l of 30% bovine serum albumin in 0.1 M phosphate buffer (pH 7), and 50 μ l of 1 M glucose in aqueous saturated benzoic acid solution. C. Assay Procedure Binding reaction mixtures were prepared by mixing 30 μ l of the insolubilized antibody 40 suspension, 100 μ l of the labeled conjugate solution, either 100 μ l or none of the standard thyroxine 40 solution, and a sufficient volume of 0.1 M phosphate buffer (pH 7) to make a total volume of 500 μ l. The reaction mixtures were incubated with shaking for two hours at 25°C. Each reaction mixture was then vacuum filtered through a glass wool plugged, dry pasteur pipette previously treated sequentially with periodate and ethylene glycol solutions to eliminate possible FAD contamination. To a 350 ய 45 aliquot of each filtrate was added 117 μ l of the monitoring reagent and 50 μ l of the appenzyme 45 . solution. After one hour, the absorbance of each reaction mixture was measured at 520 nm.

D. Results

Following is Table 4 showing the results of the assay procedure in measuring thyroxine. The absorbance results are expressed as the average of duplicate runs corrected for residual enzyme activity in the apoenzyme solution (absorbance of 0.467) and for endogenous FAD in the antibody suspension (absorbance of 0.041).

Tabl 4

Volume of Thyroxine Standard Added (யி)

Absorbance (520 nm)

55

0

0.231

55

5

10

15

20

25

30

The results demonstrate that the present labeled conjugates are useful in a specific binding assay method for determining a ligand in a liquid medium.

Claims

1. A compound of the formula

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}

wherein (CO)L is a specifically bindable ligand, or a binding analog thereof, bound through an amide bond; n=2 through 6; R1 is -OH or

when R2 and R3 together form the group

10

25

30

ОН

when R² and R³ are --

- 2. The compound of Claim 1 wherein said specifically bindable ligand is an antigen or an antibody 15 thereto; a hapten or an antibody thereto; or a hormone, vitamin, or drug, or a receptor or binding substance therefor.
 - 3. The compound of Claim 1 wherein said specifically bindable ligand is an antigenic polypeptide or protein, a hapten, or an antibody.
- 4. The compound of Claim 3 wherein said specifically bindable ligand is an antigenic polypeptide 20 or protein of molecular weight between 1,000 and 4,000,000.
 - 5. The compound of Claim 3 wherein said specifically bindable ligand is a hapten of molecular weight between 100 and 1,500.
 - 6. The compound of Claim 1 wherein said specifically bindable ligand is an iodothyronine
 - 7. The compound of Claim 6 wherein said hormone is thyroxine. 8. The compound of Claim 1 wherein —(---CO)L is

- 9. The compound of Claim 8 wherein Y is trifluoroacetyl.
- 10. The compound of Claim 8 or 9 wherein both β^1 and β^2 are iodine.
- 11. The compound of any of Claims 1 to 10 wherein n=2 or 6.
- 12. Any one of the compounds of Claim 1 described in the foregoing Examples.

wherein Y is an amine-protecting group and eta^1 and eta^2 are, independently, hydrogen or iodine.

sty's Stationery Office by the Courier Press, Learningson Sps., 1980, Published by the Patent Office, 25 Southempton Buildings, London, WC2A 1AY, from which copies may be obtained.