#### ESERCIZIO n.1

Determinare il rendimento isoentropico di espansione di una turbina a gas adiabatica ed operante in regime stazionario che produce un lavoro specifico I = 2000 kJ/kg espandendo una portata di elio (gas perfetto monoatomico) da uno stato di ingresso noto (P<sub>1</sub>= 8 bar, T<sub>1</sub>= 800 °C) ad una condizione di uscita con P<sub>2</sub>= 2 bar. [0.84]

### **DEFINIZIONI**

$$\eta_{IET} = \frac{\dot{L}_{reale}}{\dot{L}_{ideale}} = \frac{\dot{m} \, l_{reale}}{\dot{m} \, l_{ideale}} \qquad \text{Rendimento isoentropico di espansione turbina}$$

$$\dot{L} = \dot{m} \, l$$

$$\dot{L}_{turbina} = \dot{m} \, (h_1 - h_2)$$

$$l_{ideale} = h_1 - h_{2ideale} = c_P \, (T_1 - T_{2ideale}) \qquad l_{reale} = h_1 - h_{2reale}$$

# Conversioni $1 \, \text{bar} = 10^5 \, Pa$ $0 \circ C = 273.15 K$

$$l_{ideale} = h_1 - h_{2ideale} = c_P (T_1 - T_{2ideale}) \qquad l_{reale} = h_1 - h_{2reale}$$

1 bar = 
$$10^5 Pa$$
  
0 °  $C$  = 273,15  $B$ 

## **DATI**

$$l_{reale} = 2000 \frac{kJ}{kg} = 2 \cdot 10^6 \frac{J}{kg}$$

$$P_1 = 8 \text{ bar} = 8 \cdot 10^5 Pa \qquad T_1 = 800 \text{ °} C = 1073 K$$

$$P_2 = 2 \text{ bar} = 2 \cdot 10^5 Pa$$

$$m \sim 4.0026 \frac{g}{M} \qquad R^* = \frac{R}{M} = 8.314 \frac{J}{M}$$

$$m_{melio} \simeq 4,0026 \frac{g}{mol}$$
  $R^* = \frac{R}{m_m} = 8,314 \frac{J}{mol \cdot K} \cdot \frac{1}{4,0026} \frac{mol}{g} = 2078,5 \frac{J}{kg \cdot K}$ 

$$c_{Pelio} = \frac{5}{2} R^* \simeq 5193 \frac{J}{kg \cdot K}$$

$$\eta_{IET} = ?$$

# Unità di misura

$$P[Pa] = \frac{F}{l^2} \left[ \frac{N}{m^2} \right] = \left[ \frac{kg}{m \cdot s^2} \right]$$

#### **SOLUZIONE**



T<sub>2 ID</sub> è l'unica incognita necessaria per il calcolo di l<sub>ideale</sub> e la ricavo come segue:

Bilancio entropico

$$\Delta s_{1\to 2ID} = c_p \ln\left(\frac{T_{2ID}}{T_{\perp}}\right) - R^* \ln\left(\frac{P_2}{P_{\perp}}\right) = 0 \quad \text{(Turbina adiabatica)}$$

Ricavo  $T_{2ID}$ 

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{R^*}{C_p}} = 1073 K \left(\frac{2 \cdot 10^5 Pa}{8 \cdot 10^5 Pa}\right)^{\frac{2}{5}} \approx 616 K$$

Sostituisco il valore nella formula del lavoro specifico ideale

$$l_{ideale} = c_P (T_1 - T_{2ID}) = 5193 \frac{J}{kg \cdot K} (1073 - 616) K = 2373201 \frac{J}{kg}$$

$$\eta_{IET} = \frac{l_{reale}}{l_{ideale}} = \frac{2 \cdot 10^6}{2373201} \approx 0.84$$

#### **ESERCIZIO** n.5

Un compressore comprime adiabaticamente una portata d'aria m = 50 Kg/h.

La pressione e la temperatura dell'aria all'ingresso del compressore sono  $P_1$  = 1 bar e  $T_1$  = 20 °C. All'uscita dal compressore l'aria ha una pressione di  $P_2$  = 5 bar. Nell'ipotesi che il compressore operi stazionariamente, che abbia un rendimento isoentropico  $\eta_c$  = 0,9 e che l'aria si comporti come un gas perfetto, determinare la temperatura dell'aria all'uscita del compressore  $T_2$  e la potenza assorbita dalla macchina. [479.4 K; -2.6 kW]

# **DEFINIZIONI**

$$\eta_C = \frac{\dot{L}_{reale}}{\dot{L}_{ideale}}$$
 Rendimento isoentropico di compressione

Bilanci potenze:

$$\begin{aligned} &\frac{dE}{dt} = \dot{m}(h_1 - h_2) + \dot{Q} - \dot{L}^{\rightarrow} \\ &\frac{dS}{dt} = \dot{m}(s_1 - s_2) + \dot{S}_{IRR} + \dot{S}_{Q \leftarrow} \end{aligned}$$

## **DATI**

$$\dot{m} = 50 \frac{kg}{h} = \frac{50}{3600} \frac{kg}{s}$$

$$P_1 = 1 \text{ bar} = 10^5 Pa \qquad T_1 = 20 \degree C = 293 K$$

$$P_2 = 5 \text{ bar} = 5 \cdot 10^5 Pa$$

$$\eta_C = 0.9$$

 $m_m \simeq 29 \frac{g}{mol}$   $R^* = \frac{8314}{29} \frac{J}{kg \cdot K}$   $c_p = \frac{7}{2} R^*$  Ipotesi: Aria  $\simeq$  Gas Perfetto biatomico

$$T_{2R}=?[K]$$
  $\dot{L}_R^{\rightarrow}=?[W]$ 

#### **SOLUZIONE**



$$\frac{dE}{dt} = \dot{m}(h_1 - h_2) + \dot{Q} - \dot{L} = 0$$

$$\frac{dS}{dt} = \dot{m}(s_1 - s_2) + \dot{S}_{IRR}^{=0} + \dot{S}_{Q\leftarrow}^{=0 \text{ adiab.}} = \dot{m}(c_P \ln(\frac{T_{2ID}}{T_1}) - R^* \ln(\frac{P_2}{P_1})) = 0$$

Conversioni

 $1 \text{ bar} = 10^5 Pa$  $0 \circ C = 273.15 K$ 

 $P[Pa] = \frac{F}{l^2} \left[ \frac{N}{m^2} \right] = \left[ \frac{kg}{m \cdot s^2} \right]$ 

Unità di misura

Ricavo  $T_{2ID}$  ipotizzando un Gas Perfetto biatomico con  $c_P = \frac{7}{2}R^*$ 

$$T_{2ID} = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{R^*}{C_P}} = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{2}{7}} = 293 K \cdot 5^{\frac{2}{7}} \approx 464 K$$

$$\eta_C = \frac{\dot{L}_{ID}}{\dot{L}_P} = \frac{\dot{m} c_P (T_1 - T_{2ID})}{\dot{m} c_P (T_1 - T_{2P})} = 0.9$$

Ricavo  $T_{2R}$  dal rendimento

$$T_{2R} \simeq 483 K$$

Con T<sub>2R</sub> posso così calcolare la potenza assorbita

$$\dot{L}_{R}^{\rightarrow} = \dot{m} c_{P} (T_{1} - T_{2R}) = \frac{50}{3600} \frac{kg}{s} \cdot \frac{7}{2} \cdot \frac{8314}{29} \frac{J}{kg \cdot K} \cdot (293 - 483) K$$

$$\dot{L}_{R}^{\rightarrow} \simeq -2,65 \cdot 10^{3} W = -2,65 kW$$

#### **ESERCIZIO n.8**

Facendo uso delle tabelle allegate determinare il rendimento isoentropico di espansione di una turbina adiabatica che opera in regime stazionario di cui sono note le condizioni di ingresso (P, = 200 bar, T, = 500 °C, h, = 3241 kJ/kg,  $s_1$  = 6,146 kJ/kgK), la pressione in uscita  $P_2$  = 7 bar ed il lavoro specifico reale prodotto  $I_{reale}$  = 650 kJ/kg.

#### **DEFINIZIONI**

$$\eta_{IET} = \frac{\dot{l}_{reale}}{\dot{l}_{ideale}}$$
 Rendimento isoentropico di espansione 
$$\dot{l} = h_1 - h_2 \quad \dot{l}_{ideale} = h_1 - h_{2ideale} \quad \dot{l}_{reale} = h_1 - h_{2reale}$$
 
$$s_{bifase} = (1 - x)s_l + xs_v = s_l + x(s_v - s_l) = s_l + xs_{lv}$$

# Conversioni $1 \, \text{bar} = 10^5 \, Pa$ $0 \circ C = 273.15 K$

# **DATI**

I valori di entropia ed entalpia sono ripresi da tabelle differenti, per cui sono leggermente diversi da quelli del testo

$$P_1 = 200 \text{ bar} = 20 \text{ MPa}$$
 $T_1 = 500 \,^{\circ}C$ 
 $P_2 = 7 \text{ bar} = 0.7 \text{ MPa}$ 
 $i_{reale} = 650 \frac{kJ}{kg}$ 
 $i_{reale} = 650 \frac{kJ}{kg}$ 
 $s_1 = 6.14 \frac{kJ}{kg \cdot K}$ 

# Unità di misura $P[Pa] = \frac{F}{l^2} \left[ \frac{N}{m^2} \right] = \left[ \frac{kg}{m \cdot s^2} \right]$

# **SOLUZIONE**

 $\eta_{IET} = ?$ 

Dal grafico si evince facilmente che  $s_{2ideale} = s_1$ trovandosi sulla stessa isoentropica. Per cui:

$$s_{2ideale} = s_{l@P_2} + x s_{lv@P_2} = s_1$$

Ricavo il titolo:

$$x = \frac{s_1 - s_l}{s_{lv}} = \frac{6,1401 - 1,9922}{4,7158} \approx 0,88$$

Ora posso calcolare  $h_{2ideale}$  e quindi  $\dot{l}_{ideale}$ 

$$h_{2ideale} = h_l + x h_{lv}$$

$$h_{2ideale} = 697,22 \frac{kJ}{kg} + 0,88.2066,3 \frac{kJ}{kg} = 2515,564 \frac{kJ}{kg}$$

$$I = h - h = 3238.2 - 2515.564 \approx 723$$

$$l_{ideale} = h_1 - h_{2ideale} = 3238, 2 - 2515, 564 \approx 723$$

Il rendimento isoentropico di espansione è dunque:

$$\eta_{IET} = \frac{l_{reale}}{l_{ideale}} = \frac{650}{723} \simeq 0.9$$

