A integral da função $f\left(x
ight),\;\;x\;\in\left[0,2\right]$, cujo gráfico é exibido a seguir, é um valor:

- A) Neutro
- O B) Negativo
- O C) Alternado
- O D) Nulo
- E) Positivo

(Valor da questão: 1,00)

Qual é a estimativa encontrada para a integral de $f(x)=\sin(x)$ com x variando de 0 a $\frac{\pi}{2}$ considerando-se o domínio dividido em quatro partes e considerando-se o ponto mais a esquerda de cada intervalo.

- A) 1.00
- O B) 0.56
- O C) 1.18
- O D) 0.79
- O E) 1.40

Na figura temos o gráfico de y=f(x). O mesmo gráfico representa x=g(y). Se $\int_{0}^{3}f(x)\,dx=\frac{18}{\pi}$, quanto vale $\int_{0}^{3}g(y)\,dy$?

- \bigcirc A) 9 $\frac{\pi}{18}$
- \bigcirc B) $\frac{9}{\pi}$
- \bigcirc C) $\frac{18}{\pi}$
- O D) $\frac{2}{\pi}$ $(\pi 1)$
- \bigcirc E) $\frac{9}{\pi} (\pi 2)$
- O F)9

(Valor da questão: 1,00)

Qual é a derivada da função $F\left(x\right)=\int_{x}^{x^{2}}\,e^{\left(t^{\,3}\right)}\,dt$?

- \bigcirc A) $e^{(x^6)} e^{(x^3)}$
- \bigcirc B) 2 x $e^{(x^6)} e^{(x^3)}$
- $\bigcirc {}^{\mathrm{C})}2\mathrm{xe}^{\left(\mathrm{x}^{6}\right)}$
- $O_{p}(x^{6})$
- $\bigcirc \ ^{\mathsf{E)}} 3 x^2 \ e^{\left(x^6\right)} e^{\left(x^3\right)}$
- $O^{F)}3x^2 e^{(x^6)}$

Um bastão de comprimento de 2 m tem densidade linear de carga elétrica dada por $\lambda=5+3\sqrt{x}$ $\frac{C}{m}$. x é medida a partir de uma extremidade da barra. Qual é a quantidade total de carga na barra?

- A) $10 + 4\sqrt{2}$ C
- O B) 16 C
- O C) $10 + 4\sqrt{2} \frac{C}{m}$
- O D) 16 Cm
- (E) $10 + 6\sqrt{2}$ C
- O F) $10 + 6\sqrt{2} \frac{C}{m}$

(Valor da questão: 1,00)

A integral $\int_0^1 e^{\left(x^2\right)} 2x \; dx$ é equivalente a:

- \bigcirc A) $\int_1^e u^2 du$ ou $\int_1^e u du$
- \bigcirc B) $\int_1^e u^2 du$ ou $\int_0^1 e^u du$
- \bigcirc C) $\int_1^e du$ ou $\int_0^1 e^u \, du$
- \bigcirc D) $\int_0^e du$ ou $\int_1^e u^2 du$
- \bigcirc E) $\int_1^e du$ ou $\int_1^e u du$

Qual é área da região delimitada pelas funções $f\left(x
ight)=\left|x\right|\,$ e $g\left(x
ight)=\,-\left|x\right|\,+\,4$

- O A) 8
- O B) 4
- O C) 16
- \bigcirc D) $16\sqrt{2}$
- \bigcirc E) $4\sqrt{2}$
- O F) 2

(Valor da questão: 1,00)

A integral $\int_{-2}^{0} \left(-\frac{4}{x^4}\right) dx$:

- \bigcirc A) Diverge pois tende para $-\infty$
- B) Converge para 2.
- \bigcirc C) Diverge pois tende para $+\infty$
- O) Converge para $\frac{3}{2}$
- \bigcirc E) Converge para $\frac{1}{6}$

(Valor da questão: 1,00)

Qual deve ser o valor de a na função $f\left(x\right)=\sqrt{1+a\;x},\;\;1\leq\;x\;<3\;$, para que o sólido de revolução fornecido pela rotação da função $f\left(x\right)$ em torno do eixo x tenha volume igual a 10π

- () A) 2
- () B) 4
- O C) 5
- O D) 1
- E) 3
- O F) 6

(Valor da questão: 1,00)

Qual integral surge durante os procedimentos de cálculo do comprimento da curva dada pela função $f\left(x\right)=-\ln\left(\cos\left(x\right)\right), \quad x \in \left[0, \frac{\pi}{3}\right]$

- $\bigcap A \int_{0}^{\frac{\pi}{3}} \sqrt{1 \cos(x)^{2}} dx$
- O B) $\int_0^{\frac{\pi}{3}} \sqrt{1 + \tan(x)} dx$
- $\int_{0}^{\pi} \int_{0}^{\pi} \sqrt{1 + \ln(\cos(x))^{2}} dx$
- $\bigcirc D) \int_0^{\frac{\pi}{3}} \sec(x) dx$
- O E) $\int_{0}^{\frac{\pi}{3}} \sqrt{1 + \cos^{2}(x)} dx$
- O F) $\int_0^{\frac{\pi}{3}} \sqrt{1 \ln(\cos(x))^2} dx$

(Valor da questão: 1,00)

O valor médio de uma função de uma variável em $\,$ um determinado intervalo é definida com sendo a integral da função no intervalo dividida pelo comprimento do intervalo. Qual é a expressão que fornece o valor médio da função f $(x)=\sin{(4x)}\,,\;\;x\in[-\pi,\,\pi]$

- \bigcirc A) $\frac{\pi}{3}$
- (B) 2
- O C) o
- O D) 4
- () E) π
- \bigcirc F) $\frac{\pi}{2}$