Sikkel: Multimode Simple Type Theory as an Agda Library

<u>Joris Ceulemans</u> Andreas Nuyts Dominique Devriese

imec-DistriNet, KU Leuven, Belgium

Ninth Workshop on Mathematically Structured Functional Programming

Munich, Germany

2 April 2022

General Aim

Dependently typed languages are based on type theories like MLTT or CIC.

Extensions of standard type theory with new primitives:

- guarded recursion,
- parametricity,
- univalence,
- directed type theory,
- nominal reasoning,
- •

How to work in such extended theories within Agda, Coq, ...?

Multimode Simple Type Theory (MSTT)

pprox MTT by Gratzer et al. (LICS20), restricted to simple types.

MSTT is parametrized by a mode theory (pprox small category):

Mode theory	\approx	Small category
Modes	\leftrightarrow	Objects
Modalities	\leftrightarrow	Morphisms

Agda data types TyExpr, TmExpr, CtxExpr indexed by a mode. MSTT is extrinsically typed.

Multimode Simple Type Theory (MSTT)

 \approx MTT by Gratzer et al. (LICS20), restricted to simple types.

MSTT is parametrized by a mode theory (\approx small category):

Mode theory	\approx	Small category
Modes	\leftrightarrow	Objects
Modalities	\leftrightarrow	Morphisms

Agda data types TyExpr, TmExpr, CtxExpr indexed by a mode. MSTT is extrinsically typed.

Modality μ (from m to n) gives rise to type constructor & context operation lock (\approx left adjoint).

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \; \kappa \; | \; \langle \; \mu \; | \; A \; \rangle \Rrightarrow B \; \rangle \Rrightarrow \langle \; \kappa \; \textcircled{m} \; \mu \; | \; A \; \rangle \Rrightarrow \langle \; \kappa \; | \; B \; \rangle$$

Hole	Mode	Context	Expected type
0	0	♦	$\begin{array}{c c} \langle \ \kappa \mid \langle \ \mu \mid A \ \rangle \Rrightarrow B \ \rangle \Rrightarrow \\ \langle \ \kappa \ \textcircled{m} \ \mu \mid A \ \rangle \Rrightarrow \langle \ \kappa \mid B \ \rangle \end{array}$

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

Constructing a function of type

$$\langle \ \kappa \mid \langle \ \mu \mid A \ \rangle \Rrightarrow B \ \rangle \Rrightarrow \langle \ \kappa \ \textcircled{m} \ \mu \mid A \ \rangle \Rrightarrow \langle \ \kappa \mid B \ \rangle$$

mod-applicative : TmExpr o mod-applicative = $\{ \text{lam}[\kappa \mid \text{"f"} \in \langle \mu \mid A \rangle \Rightarrow B \} ? \} 0$

$$\begin{array}{c|c|c|c} \textbf{Hole} & \textbf{Mode} & \textbf{Context} & \textbf{Expected type} \\ \hline 0 & \textbf{o} & \Diamond & & & \langle \kappa \mid \langle \mu \mid A \rangle \Rrightarrow B \rangle \Rrightarrow \\ & & & \langle \kappa \mathclap{\begin{subarray}{c} m \mid \mu \mid A \rangle } \Rrightarrow \langle \kappa \mid B \rangle \\ \hline \end{array}$$

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \ \kappa \mid \langle \ \mu \mid A \ \rangle \Rrightarrow B \ \rangle \Rrightarrow \langle \ \kappa \ \textcircled{m} \ \mu \mid A \ \rangle \Rrightarrow \langle \ \kappa \mid B \ \rangle$$

$$\begin{array}{l} \operatorname{mod-applicative}: \operatorname{TmExpr}\ o \\ \operatorname{mod-applicative} = \\ \operatorname{lam}[\ \kappa \mid \text{"f"} \in \langle \ \mu \mid A \ \rangle \Rrightarrow B \] \end{array} \boxed{ \left\{ \ \right\} 0 }$$

Hole	Mode	Context	Expected type
0	0	\diamond , $\kappa \mid$ "f" $\in \langle \; \mu \mid A \; angle \Rrightarrow B$	$\langle \kappa \bigcirc \mu \mid A \rangle \Rightarrow \langle \kappa \mid B \rangle$

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

Constructing a function of type

$$\langle \kappa \mid \langle \mu \mid A \rangle \Rightarrow B \rangle \Rightarrow \langle \kappa \bigcirc \mu \mid A \rangle \Rightarrow \langle \kappa \mid B \rangle$$

 $\begin{array}{l} \operatorname{\mathsf{mod-applicative}}: \operatorname{\mathsf{TmExpr}} o \\ \operatorname{\mathsf{mod-applicative}} = \\ \operatorname{\mathsf{lam}}[\; \kappa \mid \text{"f"} \in \langle \; \mu \mid A \; \rangle \Rrightarrow B \;] \end{array} \\ \boxed{ \left\{ \operatorname{\mathsf{lam}}[\; \kappa \; \textcircled{\texttt{m}} \; \mu \mid \text{"a"} \in A \; \right\} } \\ ? \right\} 0 \end{array}$

Hole	Mode	Context	Expected type
0	0	\diamond , $\kappa \mid$ "f" $\in \langle \; \mu \mid A \; angle \Rrightarrow B$	$\langle \kappa \bigcirc \mu \mid A \rangle \Rightarrow \langle \kappa \mid B \rangle$

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

Constructing a function of type

$$\langle \kappa \mid \langle \mu \mid A \rangle \Rightarrow B \rangle \Rightarrow \langle \kappa \bigcirc \mu \mid A \rangle \Rightarrow \langle \kappa \mid B \rangle$$

 $\begin{array}{l} \operatorname{mod-applicative}: \ \operatorname{TmExpr}\ o \\ \operatorname{mod-applicative} = \\ \operatorname{lam}[\ \kappa \mid \text{"f"} \in \langle\ \mu \mid A\ \rangle \Rrightarrow B\] \ \operatorname{lam}[\ \kappa \ \textcircled{m}\ \mu \mid \text{"a"} \in A\] \\ \{\ \}0 \end{array}$

Hole	Mode	Context	Expected type
0	0	\diamond , $\kappa \mid \text{"f"} \in \langle \mu \mid A \rangle \Rrightarrow B$, $\kappa \textcircled{m} \mu \mid \text{"a"} \in A$	$\langle \; \kappa \mid B \; \rangle$

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \; \kappa \; | \; \langle \; \mu \; | \; A \; \rangle \Rrightarrow B \; \rangle \Rrightarrow \langle \; \kappa \; \textcircled{m} \; \mu \; | \; A \; \rangle \Rrightarrow \langle \; \kappa \; | \; B \; \rangle$$

$$\begin{array}{l} \operatorname{\mathsf{mod-applicative}}: \, \mathsf{TmExpr} \, o \\ \operatorname{\mathsf{mod-applicative}} = \\ \operatorname{\mathsf{lam}}[\, \kappa \mid \mathsf{"f"} \in \langle \, \mu \mid A \, \rangle \Rrightarrow B \,] \, \operatorname{\mathsf{lam}}[\, \kappa \ \textcircled{\texttt{m}} \, \mu \mid \mathsf{"a"} \in A \,] \\ \\ \left\{ \operatorname{\mathsf{mod}}\langle \, \kappa \, \rangle \, ? \right\} 0 \end{array}$$

Hole	Mode	Context	Expected type
0	0	\diamond , $\kappa \mid$ "f" $\in \langle \mu \mid A \rangle \Rightarrow B$, $\kappa \bowtie \mu \mid$ "a" $\in A$	$\langle \ \kappa \mid B \ \rangle$
		$\kappa \stackrel{ ext{(m)}}{} \mu \mid ext{"a"} \in \mathcal{A}$	

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \; \kappa \; | \; \langle \; \mu \; | \; A \; \rangle \Rrightarrow B \; \rangle \Rrightarrow \langle \; \kappa \; \textcircled{m} \; \mu \; | \; A \; \rangle \Rrightarrow \langle \; \kappa \; | \; B \; \rangle$$

Н	ole	Mode	Context	Expected type
	0	n	$ \begin{vmatrix} \diamond , \kappa \mid \text{"f"} \in \langle \mu \mid A \rangle \Rrightarrow B, \\ \kappa @ \mu \mid \text{"a"} \in A, \text{lock} \langle \kappa \rangle $	В
			$\kappa \ \textcircled{m} \ \mu \ \mid$ "a" $\in A$,lock $\langle \ \kappa \ angle$	

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \; \kappa \; | \; \langle \; \mu \; | \; A \; \rangle \Rrightarrow B \; \rangle \Rrightarrow \langle \; \kappa \; \textcircled{m} \; \mu \; | \; A \; \rangle \Rrightarrow \langle \; \kappa \; | \; B \; \rangle$$

$$\begin{array}{l} \operatorname{\mathsf{mod-applicative}}: \, \operatorname{\mathsf{TmExpr}} \, o \\ \operatorname{\mathsf{mod-applicative}} = \\ \operatorname{\mathsf{lam}}[\, \kappa \mid \text{\tt "f"} \in \langle \, \mu \mid A \, \rangle \Rrightarrow B \,] \, \operatorname{\mathsf{lam}}[\, \kappa \ \textcircled{\texttt{m}} \, \mu \mid \text{\tt "a"} \in A \,] \\ \operatorname{\mathsf{mod}}\langle \, \kappa \, \rangle \, \, & \\ \end{array}$$

	Hole	Mode	Context	Expected type
_	0	n		В

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \; \kappa \; | \; \langle \; \mu \; | \; A \; \rangle \Rrightarrow B \; \rangle \Rrightarrow \langle \; \kappa \; \textcircled{m} \; \mu \; | \; A \; \rangle \Rrightarrow \langle \; \kappa \; | \; B \; \rangle$$

$$\begin{array}{l} \operatorname{\mathsf{mod-applicative}}: \, \operatorname{\mathsf{TmExpr}} \, o \\ \operatorname{\mathsf{mod-applicative}} = \\ \operatorname{\mathsf{lam}}[\, \kappa \mid \text{\tt "f"} \in \langle \, \mu \mid A \, \rangle \Rrightarrow B \,] \, \operatorname{\mathsf{lam}}[\, \kappa \ \textcircled{\texttt{m}} \, \mu \mid \text{\tt "a"} \in A \,] \\ \operatorname{\mathsf{mod}}\langle \, \kappa \, \rangle \, \big(\, \big\{ \, \big\} 0 \, \cdot \langle \, \mu \, \big\rangle \, \, \big\{ \, \big\} 1 \, \big) \end{array}$$

Hole	Mode	Context	Expected type
0	n	\diamond , $\kappa \mid$ "f" $\in \langle \mu \mid A \rangle \Rightarrow B$,	$\langle \mu \mid A \rangle \Rightarrow B$
		$\kappa \stackrel{\longleftarrow}{\bowtie} \mu \mid \mathtt{"a"} \in A \ ,lock \langle \ \kappa \ angle$	
1	m	$ \diamond$, κ $ $ "f" \in \langle μ $ $ A \rangle \Longrightarrow B ,	A
		$\kappa \ \widehat{\ } \ \mu \ \mid$ "a" $\in A$,lock $\langle \ \kappa \ angle$,lock $\langle \ \mu \ angle$	

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \; \kappa \; | \; \langle \; \mu \; | \; A \; \rangle \Rrightarrow B \; \rangle \Rrightarrow \langle \; \kappa \; \textcircled{m} \; \mu \; | \; A \; \rangle \Rrightarrow \langle \; \kappa \; | \; B \; \rangle$$

$$\begin{array}{l} \operatorname{\mathsf{mod-applicative}}: \mathsf{TmExpr}\ o \\ \operatorname{\mathsf{mod-applicative}} = \\ \operatorname{\mathsf{lam}}[\ \kappa \mid \mathsf{"f"} \in \langle\ \mu \mid A\ \rangle \Rrightarrow B\] \ \operatorname{\mathsf{lam}}[\ \kappa \ \textcircled{\ } \mu \mid \mathsf{"a"} \in A\] \\ \operatorname{\mathsf{mod}}\langle\ \kappa\ \rangle\ \big(\ \{\mathsf{svar}\ \mathsf{"f"}\}0\ \cdot \langle\ \mu\ \big\rangle\ \big\{\ \}1\ \big) \end{array}$$

Hole	Mode	Context	Expected type
0	n	\diamond , $\kappa \mid$ "f" $\in \langle \mu \mid A \rangle \Rightarrow B$,	$\langle \mu \mid A \rangle \Rightarrow B$
1	m	$ \diamond$, κ $ $ "f" \in \langle μ $ $ A \rangle \Longrightarrow B ,	A
		$\kappa \stackrel{(m)}{(m)} \mu \mid \mathtt{"a"} \in A$,lock $\langle \ \kappa \ angle$,lock $\langle \ \mu \ angle$	

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \kappa \mid \langle \mu \mid A \rangle \Rightarrow B \rangle \Rightarrow \langle \kappa \bigcirc \mu \mid A \rangle \Rightarrow \langle \kappa \mid B \rangle$$

```
\begin{array}{l} \operatorname{\mathsf{mod-applicative}}: \mathsf{TmExpr}\ o \\ \operatorname{\mathsf{mod-applicative}} = \\ \operatorname{\mathsf{lam}}[\ \kappa \mid \mathsf{"f"} \in \langle\ \mu \mid A\ \rangle \Rrightarrow B\ ] \ \operatorname{\mathsf{lam}}[\ \kappa \ \textcircled{\ } \mu \mid \mathsf{"a"} \in A\ ] \\ \operatorname{\mathsf{mod}}\langle\ \kappa\ \rangle \ (\operatorname{\mathsf{svar}}\ \mathsf{"f"} \cdot \langle\ \mu\ \rangle \ \ \ \{\ \}1\ ) \end{array}
```

Hole	Mode	Context	Expected type
1	т	\diamond , κ "f" \in \langle μ A \rangle \Longrightarrow B , κ \textcircled{m} μ "a" \in A ,lock \langle κ \rangle ,lock \langle μ \rangle	А

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

$$\langle \kappa \mid \langle \mu \mid A \rangle \Rightarrow B \rangle \Rightarrow \langle \kappa \bigcirc \mu \mid A \rangle \Rightarrow \langle \kappa \mid B \rangle$$

```
\begin{array}{l} \mathsf{mod}\text{-applicative}: \ \mathsf{TmExpr}\ o \\ \mathsf{mod}\text{-applicative} = \\ \mathsf{lam}[\ \kappa \ | \ \mathsf{"f"} \in \langle\ \mu \mid A\ \rangle \Rightarrow B\ ] \ \mathsf{lam}[\ \kappa \ \textcircled{m}\ \mu \mid \ \mathsf{"a"} \in A\ ] \\ \mathsf{mod}\langle\ \kappa\ \rangle\ (\mathsf{svar}\ \mathsf{"f"}\ \cdot\langle\ \mu\ \rangle\ \ \{\mathsf{svar}\ \mathsf{"a"}\}1\ ) \end{array}
```

Hole	Mode	Context	Expected type
1	m	\diamond , κ "f" \in \langle μ A \rangle \Rightarrow B , κ \bigcirc μ "a" \in A ,lock \langle κ \rangle ,lock \langle μ \rangle	A

$$m \xrightarrow{\mu} n \xrightarrow{\kappa} o$$

Constructing a function of type

$$\langle \kappa \mid \langle \mu \mid A \rangle \Rightarrow B \rangle \Rightarrow \langle \kappa \bigcirc \mu \mid A \rangle \Rightarrow \langle \kappa \mid B \rangle$$

 $\begin{array}{l} \mathsf{mod}\text{-applicative}: \ \mathsf{TmExpr}\ o \\ \mathsf{mod}\text{-applicative} = \\ \mathsf{lam}[\ \kappa \ | \ \mathsf{"f"} \in \langle\ \mu \mid A\ \rangle \Rrightarrow B\] \ \mathsf{lam}[\ \kappa \ \textcircled{m}\ \mu \mid \ \mathsf{"a"} \in A\] \\ \mathsf{mod}\langle\ \kappa\ \rangle\ (\mathsf{svar}\ \mathsf{"f"}\ \cdot\langle\ \mu\ \rangle\ \mathsf{svar}\ \mathsf{"a"}) \end{array}$

Hole	Mode	Context	Expected type

Coinductive streams in Agda:

```
record Stream (A : Set) : Set where
  coinductive
  field
    head: A
    tail: Stream A
zeros: Stream N
head zeros = 0
tail zeros = zeros
map : (A \rightarrow B) \rightarrow \mathsf{Stream} \ A \rightarrow \mathsf{Stream} \ B
head (map f as) = f (head as)
tail (map f as) = map f (tail as)
```

```
\begin{array}{c} \text{nats} : \text{Stream } \mathbb{N} \\ \text{head nats} = 0 \\ \text{tail nats} = \text{map suc } \\ \text{nats} \\ \text{map suc} \\ \downarrow \\ \text{tail nats} \end{array} \begin{array}{c} 0 \\ \downarrow \\ \downarrow \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \begin{array}{c} \cdot \\ \cdot \\ \vdots \\ \cdot \\ \end{array} \begin{array}{c} \cdot \\ \cdot \\ \vdots \\ \vdots \\ \end{array} \begin{array}{c} \cdot \\ \cdot \\ \vdots \\ \vdots \\ \end{array}
```

```
\begin{array}{c} \text{nats} : \mathsf{Stream} \; \mathbb{N} \\ \text{head nats} = 0 \\ \text{tail nats} = \mathsf{map suc} \; \begin{array}{c} \mathsf{nats} \\ \end{array} \\ \begin{array}{c} \mathsf{nats} \\ \mathsf{map suc} \end{array} \qquad \begin{array}{c} \mathsf{0} & \mathsf{1} \\ \downarrow & \downarrow \\ \mathsf{tail nats} \end{array} \qquad \begin{array}{c} \mathsf{1} & \mathsf{1} \\ \mathsf{1} & \mathsf{2} & \mathsf{3} \end{array} \\ \end{array}
```

```
\begin{array}{c} \text{nats} : \mathsf{Stream} \ \mathbb{N} \\ \text{head nats} = 0 \\ \text{tail nats} = \mathsf{map suc} \ \ \begin{array}{c} \mathsf{nats} \\ \\ \end{array} \\ \begin{array}{c} \mathsf{nats} \\ \\ \mathsf{map suc} \end{array} \begin{array}{c} \mathsf{0} \\ \\ \downarrow \\ \\ \mathsf{tail nats} \end{array} \begin{array}{c} \mathsf{1} \\ \mathsf{2} \\ \\ \end{array} \begin{array}{c} \mathsf{2} \\ \\ \end{array} \\ \ldots
```

```
\begin{array}{c} \text{nats} : \mathsf{Stream} \; \mathbb{N} \\ \text{head nats} = 0 \\ \text{tail nats} = \mathsf{map suc} \; \begin{array}{c} \mathsf{nats} \\ \end{array} \\ \begin{array}{c} \mathsf{nats} \\ \mathsf{map suc} \end{array} \qquad \begin{array}{c} \mathsf{0} & \mathsf{1} & \mathsf{2} & \mathsf{3} & \ldots \\ \\ \mathsf{tail nats} & \mathsf{1} & \mathsf{2} & \mathsf{3} & \ldots \end{array}
```

```
nats: Stream N
head nats = 0
tail nats = map suc nats
```


MSFP 2022

 $\begin{array}{ll} \textbf{nats} & : \ \textbf{Stream} \ \mathbb{N} \\ \textbf{head} \ \textbf{nats} & = \ \textbf{0} \\ \textbf{tail} \ \textbf{nats} & = \ \textbf{map} \ \textbf{suc} \ \textbf{nats} \\ \end{array}$

 $\begin{array}{c} \textbf{problem} & : \ \mathsf{Stream} \ \mathbb{N} \\ \mathsf{head} & \mathsf{problem} & = \ 0 \\ \end{array}$

tail problem = flipFst | problem

 $\begin{array}{ll} \textbf{nats} & : \ \textbf{Stream} \ \mathbb{N} \\ \textbf{head} \ \textbf{nats} & = \ \textbf{0} \\ \textbf{tail} \ \textbf{nats} & = \ \textbf{map} \ \textbf{suc} \ \textbf{nats} \\ \end{array}$

 $\begin{array}{c} \textbf{problem} \ : \ \mathsf{Stream} \ \mathbb{N} \\ \mathsf{head} \ \mathsf{problem} \ = \ 0 \end{array}$

tail problem = flipFst problem

..

nats: Stream N head nats = 0tail nats = map suc nats

problem : Stream N head problem = 0

tail problem = flipFst problem

nats: Stream N head nats = 0map suc : Stream $\mathbb{N} \to \mathsf{Stream} \ \mathbb{N}$ tail nats = map suc nats nats map suc tail nats

Guarded Streams in MSTT

Approach based on Veltri and and van der Weide (FSCD19) & Gratzer et al. (LICS20).

Mode Theory:

forever $\stackrel{\textstyle (m)}{\textstyle \ }$ later \simeq^m forever forever $\stackrel{\textstyle (m)}{\textstyle \ }$ constantly \simeq^m 1

Guarded Streams in MSTT

Approach based on Veltri and and van der Weide (FSCD19) & Gratzer et al. (LICS20).

Mode Theory:

forever $\stackrel{(m)}{\text{m}}$ later $\simeq^{\mathbf{m}}$ forever forever $\stackrel{(m)}{\text{m}}$ constantly $\simeq^{\mathbf{m}}$ 1

New non-modal type/term constructors:

Implementation of nats in MSTT

g-nats :
$$TmExpr \omega$$

g-nats = $\{ \}0$

Hole	Mode	Context	Expected type
0	ω	♦	GStream Nat

Implementation of nats in MSTT

```
\begin{array}{ll} \mbox{g-nats}: \mbox{TmExpr}\ \omega \\ \mbox{g-nats} = \begin{tabular}{ll} \mbox{l\"ob}[\mbox{later}|\ \mbox{"s"} \in \mbox{GStream Nat}\ ]\ \mbox{?} \mbox{9} \mbox{0} \end{array}
```

ŀ	Hole	Mode	Context	Expected type
	0	ω	♦	GStream Nat

```
g-nats : TmExpr \omega g-nats = |\ddot{o}b[|ater| "s" \in GStream Nat ] { }0
```

Hole	Mode	Context	Expected type
0	ω	\diamond , later \mid "s" \in GStream Nat	GStream Nat

 $\Gamma \vdash \mathsf{g\text{-}cons} : \langle \mathsf{ constantly} \mid A \rangle \Rrightarrow \langle \mathsf{ later} \mid \mathsf{GStream} \ A \rangle \Rrightarrow \mathsf{GStream} \ A$

```
g-nats : TmExpr \omega g-nats = löb[later| "s" \in GStream Nat ] {g-cons \cdot \langle \text{ constantly } \rangle ? \cdot \langle \text{ later } \rangle ?}0
```

Hole	Mode	Context	Expected type
0	ω	\diamond , later $ $ "s" \in GStream Nat	GStream Nat

```
\mathsf{\Gamma} \vdash \mathsf{g\text{-}cons} : \langle \; \mathsf{constantly} \; | \; \mathsf{A} \; \rangle \Rrightarrow \langle \; \mathsf{later} \; | \; \mathsf{GStream} \; \mathsf{A} \; \rangle \Rrightarrow \mathsf{GStream} \; \mathsf{A}
```

```
g-nats : TmExpr \omega g-nats = |\ddot{o}b[|ater|] "s" \in GStream Nat ] g-cons \cdot \langle \text{ constantly } \rangle { }0 \cdot \langle \text{ later } \rangle { }1
```

e Context	Expected type
	Nat
\diamond , later $ $ "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat
	 ◇, later "s" ∈ GStream Nat ,lock⟨ constantly ⟩ ◇, later "s" ∈ GStream Nat ,lock⟨ later ⟩

```
\Gamma \vdash \mathsf{g\text{-}cons} : \langle \; \mathsf{constantly} \; | \; A \; \rangle \Rrightarrow \langle \; \mathsf{later} \; | \; \mathsf{GStream} \; A \; \rangle \Rrightarrow \mathsf{GStream} \; A
```

```
g-nats : TmExpr \omega g-nats = löb[later| "s" \in GStream Nat ] g-cons \cdot \langle constantly \rangle {lit 0}0 \cdot \langle later \rangle { }1
```

e Context	Expected type
	Nat
\diamond , later $ $ "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat
	 ◇, later "s" ∈ GStream Nat ,lock⟨ constantly ⟩ ◇, later "s" ∈ GStream Nat ,lock⟨ later ⟩

 $\mathsf{\Gamma} \vdash \mathsf{g\text{-}cons} : \langle \; \mathsf{constantly} \; | \; \mathsf{A} \; \rangle \Rrightarrow \langle \; \mathsf{later} \; | \; \mathsf{GStream} \; \mathsf{A} \; \rangle \Rrightarrow \mathsf{GStream} \; \mathsf{A}$

```
g-nats : TmExpr \omega g-nats = löb[later| "s" \in GStream Nat ] g-cons \cdot \langle constantly \rangle lit 0 \cdot \langle later \rangle { }1
```

Hole	Mode	Context	Expected type
1	ω	\diamond , later $ $ "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat

```
\Gamma \vdash \mathsf{g\text{-}cons} : \langle \mathsf{\; constantly \; | \; } A \; \rangle \Rightarrow \langle \mathsf{\; later \; | \; } \mathsf{\; GStream \; } A \; \rangle \Rightarrow \mathsf{\; GStream \; } A \Gamma \vdash \mathsf{\; g\text{-}map \; : \; } \langle \mathsf{\; constantly \; | \; } A \Rightarrow B \; \rangle \Rightarrow \mathsf{\; GStream \; } A \Rightarrow \mathsf{\; GStream \; } B (\mathsf{\; Implementation : \; see \; paper.})
```

```
\begin{array}{l} {\sf g-nats}: \ {\sf TmExpr} \ \omega \\ {\sf g-nats} = \ |\"{\sf ob}[|{\sf later}| \ "{\sf s"} \in {\sf GStream} \ {\sf Nat} \ ] \ {\sf g-cons} \\ & \cdot \langle \ {\sf constantly} \ \rangle \ |{\sf lit} \ 0 \\ & \cdot \langle \ |{\sf later} \ \rangle \ \ & \{({\sf g-map} \ \cdot \langle \ {\sf constantly} \ \rangle \ ? \ \cdot ?)\} 1 \end{array}
```

Hole	Mode	Context	Expected type
1	ω	\diamond , later \mid "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat

```
\Gamma \vdash \mathsf{g\text{-}cons} : \langle \; \mathsf{constantly} \; | \; A \; \rangle \Rightarrow \langle \; \mathsf{later} \; | \; \mathsf{GStream} \; A \; \rangle \Rightarrow \mathsf{GStream} \; A \Gamma \vdash \mathsf{g\text{-}map} : \langle \; \mathsf{constantly} \; | \; A \Rightarrow B \; \rangle \Rightarrow \mathsf{GStream} \; A \Rightarrow \mathsf{GStream} \; B (Implementation: see paper.)
```

```
\begin{split} & \text{g-nats}: \ \mathsf{TmExpr}\ \omega \\ & \text{g-nats} = \ \mathsf{l\"ob}[\mathsf{later}|\ \mathsf{"s"} \in \mathsf{GStream}\ \mathsf{Nat}\ ]\ \mathsf{g-cons} \\ & \cdot \langle\ \mathsf{constantly}\ \rangle\ \mathsf{lit}\ 0 \\ & \cdot \langle\ \mathsf{later}\ \rangle\ \mathsf{(g-map}\ \cdot \langle\ \mathsf{constantly}\ \rangle\ \ \ \ \big\{\ \big\}1\ \cdot\ \ \big\{\ \big\}2\ \big) \end{split}
```

Hole	Mode	Context	Expected type
1	*	\diamond , later "s" \in GStream Nat ,lock \langle later \rangle ,lock \langle constantly \rangle	Nat ⇒ Nat
2	ω	\diamond , later "s" \in GStream Nat ,lock \langle later \rangle ,lock \langle constantly \rangle \diamond , later "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat

```
\Gamma \vdash \mathsf{g\text{-}cons} : \langle \; \mathsf{constantly} \; | \; A \; \rangle \Rightarrow \langle \; \mathsf{later} \; | \; \mathsf{GStream} \; A \; \rangle \Rightarrow \mathsf{GStream} \; A \Gamma \vdash \mathsf{g\text{-}map} : \langle \; \mathsf{constantly} \; | \; A \Rightarrow B \; \rangle \Rightarrow \mathsf{GStream} \; A \Rightarrow \mathsf{GStream} \; B (Implementation: see paper.)
```

```
\begin{split} & \text{g-nats}: \ \mathsf{TmExpr}\ \omega \\ & \text{g-nats} = \ \mathsf{l\"ob}[\mathsf{later}|\ \mathsf{"s"} \in \mathsf{GStream}\ \mathsf{Nat}\ ]\ \mathsf{g-cons} \\ & \cdot \langle\ \mathsf{constantly}\ \rangle\ \mathsf{lit}\ 0 \\ & \cdot \langle\ \mathsf{later}\ \rangle\ \mathsf{(g-map}\ \cdot \langle\ \mathsf{constantly}\ \rangle\ \ \mathsf{\{suc\}1}\ \cdot\ \ \mathsf{\{\ \}2\ )} \end{split}
```

Hole	Mode	Context	Expected type
1	*	\diamond , later "s" \in GStream Nat ,lock \langle later \rangle ,lock \langle constantly \rangle	Nat ⇒ Nat
2	ω	\diamond , later "s" \in GStream Nat ,lock \langle later \rangle ,lock \langle constantly \rangle \diamond , later "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat

```
\Gamma \vdash \mathsf{g\text{-}cons} : \langle \mathsf{\; constantly \; | \; } A \; \rangle \Rightarrow \langle \mathsf{\; later \; | \; } \mathsf{\; GStream \; } A \; \rangle \Rightarrow \mathsf{\; GStream \; } A \Gamma \vdash \mathsf{\; g\text{-}map \; : \; } \langle \mathsf{\; constantly \; | \; } A \Rightarrow B \; \rangle \Rightarrow \mathsf{\; GStream \; } A \Rightarrow \mathsf{\; GStream \; } B (\mathsf{\; Implementation : \; see \; paper.})
```

```
\begin{split} & \text{g-nats}: \ \mathsf{TmExpr}\ \omega \\ & \text{g-nats} = \ \mathsf{l\"ob}[\mathsf{later}|\ \mathsf{"s"} \in \mathsf{GStream}\ \mathsf{Nat}\ ]\ \mathsf{g-cons} \\ & \cdot \langle\ \mathsf{constantly}\ \rangle\ \mathsf{lit}\ 0 \\ & \cdot \langle\ \mathsf{later}\ \rangle\ (\mathsf{g-map}\ \cdot \langle\ \mathsf{constantly}\ \rangle\ \mathsf{suc}\ \cdot\ \ \ \big\{\ \big\}2\ \big) \end{split}
```

Hole	Mode	Context	Expected type
2	ω	\diamond , later $ $ "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat

```
\Gamma \vdash \mathsf{g\text{-}cons} : \langle \; \mathsf{constantly} \; | \; A \; \rangle \Rightarrow \langle \; \mathsf{later} \; | \; \mathsf{GStream} \; A \; \rangle \Rightarrow \mathsf{GStream} \; A \Gamma \vdash \mathsf{g\text{-}map} : \langle \; \mathsf{constantly} \; | \; A \Rightarrow B \; \rangle \Rightarrow \mathsf{GStream} \; A \Rightarrow \mathsf{GStream} \; B (Implementation: see paper.)
```

```
g-nats : TmExpr \omega g-nats = löb[later| "s" \in GStream Nat ] g-cons \cdot \langle constantly \rangle lit 0 \cdot \langle later \rangle (g-map \cdot \langle constantly \rangle suc \cdot {svar "s"}2)
```

Hole	Mode	Context	Expected type
2	ω	\diamond , later $ $ "s" \in GStream Nat ,lock \langle later \rangle	GStream Nat

```
\Gamma \vdash \mathsf{g\text{-}cons} : \langle \mathsf{\; constantly \; | \; } A \; \rangle \Rightarrow \langle \mathsf{\; later \; | \; } \mathsf{\; GStream \; } A \; \rangle \Rightarrow \mathsf{\; GStream \; } A \Gamma \vdash \mathsf{\; g\text{-}map \; : \; } \langle \mathsf{\; constantly \; | \; } A \Rightarrow B \; \rangle \Rightarrow \mathsf{\; GStream \; } A \Rightarrow \mathsf{\; GStream \; } B (\mathsf{\; Implementation : \; see \; paper.})
```

```
\begin{split} & \texttt{g-nats}: \ \mathsf{TmExpr} \ \omega \\ & \texttt{g-nats} = \ \mathsf{l\"ob}[\mathsf{later}| \ "\mathtt{s"} \in \mathsf{GStream} \ \mathsf{Nat} \ ] \ \mathsf{g-cons} \\ & \cdot \langle \ \mathsf{constantly} \ \rangle \ \mathsf{lit} \ 0 \\ & \cdot \langle \ \mathsf{later} \ \rangle \ (\mathsf{g-map} \cdot \langle \ \mathsf{constantly} \ \rangle \ \mathsf{suc} \cdot \mathsf{svar} \ "\mathtt{s"}) \end{split}
```

Hole	Mode	Context	Expected type	e

```
What about flipFst?

g-flipFst: GStream Nat \Rightarrow \langle later | GStream Nat \rangle

g-map \cdot \langle constantly \rangle suc: GStream Nat \Rightarrow GStream Nat
```

What about flipFst?

```
g-flipFst : GStream Nat \Rightarrow \langle later | GStream Nat \rangle g-map \cdot \langle constantly \rangle suc : GStream Nat \Rightarrow GStream Nat
```

Guarded streams behave differently than Agda streams.

Stream': TyExpr
$$\star \to$$
 TyExpr \star
Stream' $A = \langle$ forever | GStream $A \rangle$

later ω forever \star constantly

nats : TmExpr *

 $nats = mod \langle forever \rangle g-nats$

Interpretation of GStream A:

$$\operatorname{Vec}_1 A \xleftarrow{\operatorname{init}} \operatorname{Vec}_2 A \xleftarrow{\operatorname{init}} \ldots \xleftarrow{\operatorname{init}} \operatorname{Vec}_n A \xleftarrow{\operatorname{init}} \ldots$$

Interpretation of GStream A and of \langle later | GStream A \rangle :

$$\operatorname{\mathsf{Vec}}_1 A \xleftarrow{\operatorname{\mathsf{init}}} \operatorname{\mathsf{Vec}}_2 A \xleftarrow{\operatorname{\mathsf{init}}} \ldots \xleftarrow{\operatorname{\mathsf{init}}} \operatorname{\mathsf{Vec}}_n A \xleftarrow{\operatorname{\mathsf{init}}} \ldots$$

$$\top \longleftarrow \operatorname{Vec}_1 A \stackrel{\mathsf{init}}{\longleftarrow} \dots \stackrel{\mathsf{init}}{\longleftarrow} \operatorname{Vec}_{n-1} A \stackrel{\mathsf{init}}{\longleftarrow} \dots$$

Interpretation of GStream A and of \langle later | GStream A \rangle :

Löb induction boils down to induction on natural numbers.

Interpretation of GStream A and of \langle later | GStream A \rangle :

$$Vec_1 A \xleftarrow{init} Vec_2 A \xleftarrow{init} \dots \xleftarrow{init} Vec_n A \xleftarrow{init} \dots$$

Löb induction boils down to induction on natural numbers.

General presheaf model: contexts & types represented as diagrams, shape determined by base category.

12 / 20

Presheaf Models of Type Theory

```
MSTT \longrightarrow Presheaf model

Mode \longrightarrow Base category C

Context \longrightarrow Presheaf \Gamma: Ctx C

Type \longrightarrow "Dependent presheaf" T: Ty \Gamma

Term \longrightarrow "Dependent presheaf morphism" t: Tm \Gamma T

Modality \longrightarrow Dependent right adjoint (DRA, Birkedal et al. (2020))
```

Note: Semantic types can depend on variables.

Sound Type-checker

```
(\Gamma : \mathsf{CtxExpr}\ m) \times (t : \mathsf{TmExpr}\ m)
                                                             infer-interpret
Maybe (\Sigma [ T \in \mathsf{TyExpr} \ m ] (\mathsf{Tm} \{ [ m ] \ \mathsf{mode} \} [ \Gamma ] \ \mathsf{ctx} [ T ] \ \mathsf{ty}))
```

User implementing new type theory must specify interpretations mode, modality,

Extraction to the Meta-level

Problem: Agda types obtained by directly unpacking semantic types (trivial base category) are not always as intended, only isomorphic.

Extraction to the Meta-level

Problem: Agda types obtained by directly unpacking semantic types (trivial base category) are not always as intended, only isomorphic.

Solution: type class Extractable for closed semantic types.

Instance provides intended translated type and function extract-term to apply isomorphism.

Constructing the Agda stream of natural numbers:

```
nats-agda : Stream \mathbb N nats-agda = extract-term \ \llbracket nats \rrbracket tm
```

Conclusion

Sikkel allows to work in a multi-modal setting within off-the-shelf Agda and to interpret programs as Agda programs.

- MSTT parametrized by general mode theory.
- Easy to extend with extra (non-modal) primitives.
- Semantic layer fully general in base category. Extra example in paper: parametricity.
- Elegant extraction mechanism thanks to modes and modalities.

Future Work

- Support for **dependent types** at syntactic layer.
 - Challenging to implement interpretation that passes Agda's termination checker.
 - Intermediate step: extensible program logic, orthogonal to Sikkel's current 3 layers.
- Implementation of Hofmann-Streicher universe at semantic layer.
- Investigating other applications (ongoing exploration of nominal type theory).

Thanks for listening! Questions?

https://github.com/JorisCeulemans/sikkel/releases/tag/v1.0