Cubical Type Theory

Free bounded distributive lattice

The free distributive lattice on a set J can be described as the set of finite antichains in the poset of finite subsets of J, for the order $L \leq M$ if, and only if, for all X in L there exists Y in M such that $Y \subseteq X$. We think of an element L as a formal representation of $\bigvee_{X \in L} \bigwedge_{u \in X} u$.

The free distributive lattice on J where we impose some relations of the form $\wedge_{u \in X} u = 0$ for some given set C of finite subsets has a similar description: it is the set of finite antichains of finite subsets not containing any element of C.

In both cases the elements of the form $\wedge_{u \in X} u$ are exactly the *join irreducible* element of the lattice, and we call $\wedge_{u \in X} u$ a *face* of an element L for X in L (these are exactly the maximal join irreducible element below this given element of the lattice).

Interval and Face lattice

$$r,s \; ::= \; 0 \; | \; 1 \; | \; i \; | \; 1-i \; | \; r \wedge s \; | \; r \vee s \qquad \qquad \varphi, \psi \; ::= \; 0 \; | \; 1 \; | \; (r=0) \; | \; (r=1) \; | \; \varphi \wedge \psi \; | \; \varphi \vee \psi$$

The equality on the inverval \mathbb{I} is the equality in the free bounded distributive lattice on generators i, 1-i. This lattice has a canonical involution, and hence a structure of de Morgan algebra. The equality in the face lattice \mathbb{F} is the one for the free distributive lattice on formal generators (i=0), (i=1) with the relation $(i=0) \land (i=1) = 0$. We have $[(r \lor s) = 1] = (r=1) \lor (s=1)$ and $[(r \land s) = 1] = (r=1) \land (s=1)$. An irreducible element of this lattice is a face, a conjunction of elements (i=0) and (j=1) and any element is a disjunction of irreducible elements (unique up to the absorption law).

The following observation will be useful for defining composition for glueing. Any formula φ has a decomposition $\delta \vee (\varphi_0 \wedge (i=0)) \vee (\varphi_1 \wedge (i=1))$ where δ is the disjunction of all faces of φ not containing i, and φ_0 (resp. φ_1) the disjunction of all faces α such that $\alpha \wedge (i=0)$ (resp. $\alpha \wedge (i=1)$) is a face of φ . We can then define $\forall i.\varphi$ as being δ .

Contexts and Terms

$$\begin{array}{lll} \Delta,\Gamma & ::= & () \mid \Gamma,x:A \mid \Gamma,i:\mathbb{I} \mid \Gamma,\varphi \\ t,u,A,B & ::= & x \mid \lambda x:A.t \mid t \mid t \mid t \mid r \mid \langle i \rangle t \mid (x:A) \rightarrow B \mid (x:A,B) \mid t,t \mid t.1 \mid t.2 \mid pt \\ pt & ::= & \psi_1 u_1 \vee \cdots \vee \psi_k u_k \end{array}$$

We define ordinary substitution t(x = u) and name substitution t(i = r) as meta-operations as usual. We may write t(i0) instead of t(i = 0) and t(i1) instead of t(i = 1).

Basic typing rules

$$\frac{\Gamma \vdash A}{\Gamma, x : A \vdash} \qquad \frac{\Gamma \vdash}{\Gamma, i : \mathbb{I} \vdash} \qquad \frac{\Gamma \vdash \varphi : \mathbb{F}}{\Gamma, \varphi \vdash} \qquad \frac{\Gamma \vdash r : \mathbb{I}}{\Gamma \vdash (r = 1) : \mathbb{F}} \qquad \frac{\Gamma \vdash r : \mathbb{I}}{\Gamma \vdash (r = 0) : \mathbb{F}}$$

$$\frac{\Gamma \vdash}{\Gamma \vdash x : A} (x : A \ in \ \Gamma) \qquad \frac{\Gamma \vdash}{\Gamma \vdash i : \mathbb{I}} (i : \mathbb{I} \ in \ \Gamma)$$

$$\frac{\Gamma, x : A \vdash B}{\Gamma \vdash (x : A) \to B} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A . \ t : (x : A) \to B} \qquad \frac{\Gamma \vdash t : (x : A) \to B}{\Gamma \vdash t : B(u)}$$

Sigma types

$$\frac{\Gamma, x:A \vdash B}{\Gamma \vdash (x:A,B)} \qquad \frac{\Gamma \vdash a:A \quad \Gamma \vdash b:B(a)}{\Gamma \vdash (a,b):(x:A,B)} \qquad \frac{\Gamma \vdash z:(x:A,B)}{\Gamma \vdash z.1:A} \qquad \frac{\Gamma \vdash z:(x:A,B)}{\Gamma \vdash z.2:B(z.1)}$$

Path types

$$\frac{\Gamma \vdash A \quad \Gamma \vdash a_0 : A \quad \Gamma \vdash a_1 : A}{\Gamma \vdash \mathsf{Path} \ A \ a_0 \ a_1} \qquad \frac{\Gamma \vdash A \quad \Gamma, i : \mathbb{I} \vdash t : A}{\Gamma \vdash \langle i \rangle t : \mathsf{Path} \ A \ t(i0) \ t(i1)}$$

$$\frac{\Gamma \vdash t : \mathsf{Path} \ A \ a_0 \ a_1 \quad \Gamma \vdash r : \mathbb{I}}{\Gamma \vdash t \ r : A} \qquad \frac{\Gamma \vdash t : \mathsf{Path} \ A \ a_0 \ a_1}{\Gamma \vdash t \ 0 = a_0 : A} \qquad \frac{\Gamma \vdash t : \mathsf{Path} \ A \ a_0 \ a_1}{\Gamma \vdash t \ 1 = a_1 : A}$$

We define 1_a : Path A a a as $1_a = \langle i \rangle a$.

We add the usual β and η -conversion laws, as well as projection laws and surjective pairing.

With these rules we also can justify function extensionality

$$\frac{\Gamma \vdash t : (x : A) \rightarrow B \qquad \Gamma \vdash u : (x : A) \rightarrow B \qquad \Gamma \vdash p : (x : A) \rightarrow \mathsf{Path} \ B \ (t \ x) \ (u \ x)}{\Gamma \vdash \langle i \rangle \lambda x : A. \ p \ x \ i : \mathsf{Path} \ ((x : A) \rightarrow B) \ t \ u}$$

We also can justify the fact that any element in (x: A, Path A a x) is equal to $(a, 1_a)$

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash p : \mathsf{Path} \ A \ a \ b}{\Gamma \vdash \langle i \rangle (p \ i, \langle j \rangle p \ (i \land j)) : \mathsf{Path} \ (x : A, \mathsf{Path} \ A \ a \ x) \ (a, 1_a) \ (b, p)}$$

For justifying the transitivity of equality, we need A to have composition operations.

Partial elements

$$\frac{\Gamma \vdash \varphi \leqslant \psi \qquad \Gamma, \psi \vdash A}{\Gamma, \varphi \vdash A} \qquad \frac{\Gamma \vdash \varphi \leqslant \psi \qquad \Gamma, \psi \vdash u : A}{\Gamma, \varphi \vdash u : A}$$

$$\frac{\Gamma, \psi_1 \vdash A_1 \qquad \dots \qquad \Gamma, \psi_k \vdash A_k \qquad \Gamma, \psi_i \land \psi_j \vdash A_i = A_j}{\Gamma, \psi_1 \lor \dots \lor \psi_k \vdash \psi_1 A_1 \lor \dots \lor \psi_k A_k}$$

$$\underline{\Gamma, \psi_1 \vdash u_1 : A_1 \qquad \dots \qquad \Gamma, \psi_k \vdash u_k : A_k \qquad \Gamma, \psi_i \land \psi_j \vdash A_i = A_j \qquad \Gamma, \psi_i \land \psi_j \vdash u_i = u_j : A_i}{\Gamma, \psi_1 \lor \dots \lor \psi_k \vdash \psi_1 u_1 \lor \dots \lor \psi_k u_k : \psi_1 A_1 \lor \dots \lor \psi_k A_k}$$

We can have k=0 in which case we get a dummy element of type A in the context $\Gamma,0$.

We also have $\psi_1 u_1 \vee \cdots \vee \psi_k u_k = u_i : A$ if $\psi_i = 1$ and $\psi_1 \vee \cdots \vee \psi_k \vdash u = v : A$ if $\psi_i \vdash u = v : A$ for $i = 1, \ldots, k$. Finally, we add that $\Gamma \vdash r = 1$ if $\Gamma \vdash 1 = (r = 1)$.

If $\Gamma, \varphi \vdash u : A$ then $\Gamma \vdash a : A[\varphi \mapsto u]$ is an abreviation for $\Gamma \vdash a : A$ and $\Gamma, \varphi \vdash a = u : A$. In this case, we see this element a as a witness that the partial element u, defined on the extent φ , is *connected*.

For instance if $\Gamma, i : \mathbb{I} \vdash A$ and $\Gamma, i : \mathbb{I}, \varphi \vdash u : A$ where $\varphi = (i = 0) \lor (i = 1)$ then the element u is determined by two element $\Gamma \vdash a_0 : A(i0)$ and $\Gamma \vdash a_1 : A(i1)$ and an element $\Gamma, i : \mathbb{I} \vdash a : A[\varphi \mapsto u]$ gives a path connecting a_0 and a_1 .

We may write $\Gamma \vdash a : A[\psi_1 \mapsto u_1, \dots, \psi_k \mapsto u_k]$ for $\Gamma \vdash a : A[\psi_1 \lor \dots \lor \psi_k \mapsto \psi_1 u_1 \lor \dots \lor \psi_k u_k]$. This means that $\Gamma \vdash a : A$ and $\Gamma, \psi_i \vdash a = u_i : A$ for $i = 1, \dots, k$.

Composition operation

$$\frac{\Gamma \vdash \varphi \qquad \Gamma, i : \mathbb{I} \vdash A \qquad \Gamma, \varphi, i : \mathbb{I} \vdash u : A \qquad \Gamma \vdash a_0 : A(i0)[\varphi \mapsto u(i0)]}{\Gamma \vdash \mathsf{comp}^i \ A \ [\varphi \mapsto u] \ a_0 : A(i1)[\varphi \mapsto u(i1)]}$$

Kan filling operation

We recover Kan filling operation

$$\Gamma, i : \mathbb{I} \vdash \mathsf{fill}^i \ A \ [\varphi \mapsto u] \ a_0 = \mathsf{comp}^j \ A(i \land j) \ [\varphi \mapsto u(i \land j), (i = 0) \mapsto a_0] \ a_0 : A$$

The element $i: \mathbb{I} \vdash v = \text{fill}^i A [\varphi \mapsto u] a_0: A \text{ satisfies}$

$$\Gamma \vdash v(i0) = a_0 : A(i0) \qquad \Gamma \vdash v(i1) = \mathsf{comp}^i \ A \ [\varphi \mapsto u] \ a_0 : A(i1) \qquad \Gamma, \varphi, i : \mathbb{I} \vdash v = u : A(i1) = \mathsf{comp}^i \ A \ [\varphi \mapsto u] \ a_0 : A(i2) = \mathsf{comp}^i \ A \ [\varphi \mapsto u] \ a_0 : A(i2) = \mathsf{comp}^i \ A$$

Recursive definition of composition

The operation $comp^i A [\varphi \mapsto u] a_0$ is defined by induction on A.

Product type

In the case of a product type $i: \mathbb{I} \vdash (x:A) \to B = C$, we have $i: \mathbb{I}, \varphi \vdash \mu: C$ with and $\vdash \lambda_0: C(i0)[\varphi \mapsto \mu(i0)]$ and we define, for $\vdash u_1: A(i1)$

$$(\operatorname{comp}^i C [\varphi \mapsto \mu] \lambda_0) u_1 = \operatorname{comp}^i B(x = v) [\varphi \mapsto \mu \ v] (\lambda_0 \ u_0)$$

where
$$i : \mathbb{I} \vdash v = w(1-i) : A$$
 and $i : \mathbb{I} \vdash w = \text{fill}^i \ A(1-i) \ [] \ u_1 : A(1-i) \ \text{and} \ u_0 = v(i0) : A(i0).$

Path type

In the case of path type $i : \mathbb{I} \vdash \mathsf{Path} \ A \ u \ v = C \ \text{we have} \ i : \mathbb{I}, \varphi \vdash \mu : C \ \text{and} \vdash p_0 : C(i0)[\varphi \mapsto \mu(i0)].$ We define

$$\mathsf{comp}^i \ C \ [\varphi \mapsto \mu] \ p_0 = \langle j \rangle \mathsf{comp}^i \ A \ [\varphi \mapsto \mu \ j, (j=0) \mapsto u, (j=1) \mapsto v] \ (p_0 \ j)$$

Sum type

In the case of a sigma type $i: \mathbb{I} \vdash (x:A,B) = C$ given $i: \mathbb{I}, \varphi \vdash w: C$ and $\vdash w_0: C(i0)[\varphi \mapsto w(i0)]$ we define

$$\mathsf{comp}^i \ C \ [\varphi \mapsto w] \ w_0 = (\mathsf{comp}^i \ A \ [\varphi \mapsto w.1] \ w_0.1, \mathsf{comp}^i \ B(x=a) \ [\varphi \mapsto w.2] \ w_0.2)$$

where $i: \mathbb{I} \vdash a = \text{fill}^i \ A \ [\varphi \mapsto w.1] \ w_0.1: A.$

Example

If $i: \mathbb{I} \vdash A$, composition for $\varphi = 0$ corresponds to a transport function $A(i0) \to A(i1)$.

If I is an object of C the lattice $\mathbb{F}(I)$ has a greatest element < 1 which is the disjunction of all $(i=0) \lor (i=1)$ for i in I. This element can be called the *boundary* of I. Composition w.r.t. this boundary gives the usual operation of Kan composition, which witnesses the existence of a lid for any open box.

Two derived operations

The first derived operation states that the image of a composition is path equal to the composition of the respective images.

Lemma 0.1 If we have $\Delta, i : \mathbb{I} \vdash \sigma : T \to A$, $\Delta \vdash \psi$ and $\Delta, \psi, i : \mathbb{I} \vdash t : T$ with $\Delta \vdash t_0 : T(i0)[\psi \mapsto t(i0)]$ then we can build

$$\Delta \vdash \mathsf{pres}(\sigma, [\psi \mapsto t], t_0) : \mathsf{Path} \ A(i1) \ (\mathsf{comp}^i \ A \ [\psi \mapsto a] \ a_0) \ \sigma(i1) \ (\mathsf{comp}^i \ T \ [\psi \mapsto t] \ t_0)$$

where $\Delta \vdash a_0 = \sigma(i0) \ t_0 : A(i0)$ and $\Delta, i : \mathbb{I}, \psi \vdash a = \sigma \ t : A$. Furthermore, we have

$$\Delta, \psi \vdash \mathsf{pres}(\sigma, [\psi \mapsto t], t_0) = \langle j \rangle a(i1)$$

We define isContr $A=(x:A,(y:A)\to \mathsf{Path}\ A\ x\ y)$ and isEquiv $A\ B\ f=(y:B)\to \mathsf{isContr}(x:A,\mathsf{Path}\ A\ y\ (f\ x))$ and Equiv $(T,A)=(f:T\to A,\mathsf{isEquiv}\ T\ A\ f).$

The second operation corresponds to a reformulation of the notion of being contractible.

Lemma 0.2 We have an operation

$$\frac{\Gamma \vdash p : \mathsf{isContr}\ A \qquad \Gamma, \varphi \vdash u : A}{\Gamma \vdash \mathsf{ext}\ p\ [\varphi \mapsto u] : A[\varphi \mapsto u]}$$

and it follows that we have an operation equiv $(\sigma, [\delta \mapsto t], a) = \text{ext } (\sigma.2 \ a) \ [\delta \mapsto (t, \langle j \rangle a)]$

$$\frac{\Delta \vdash \sigma : \mathsf{Equiv}(T,A) \qquad \Delta, \delta \vdash t : T \qquad \Delta \vdash a : A[\delta \mapsto \sigma \ t]}{\Delta \vdash \mathsf{equiv}(\sigma, [\delta \mapsto t], a) : (x : T, \mathsf{Path} \ A \ a \ (\sigma \ x))[\delta \mapsto (t, \langle j \rangle a)]}$$

A definition of ext

We assume given $\Gamma \vdash p$: isContr A and $\Gamma, \varphi \vdash u : A$. We define ext $p \ [\varphi \mapsto u] = \mathsf{comp}^i \ A \ [\varphi \mapsto p.2 \ u \ i] \ p.1$ so that $\Gamma \vdash \mathsf{ext} \ p \ [\varphi \mapsto u] : A[\varphi \mapsto u]$.

A definition of pres

We assume given $\Delta, i : \mathbb{I} \vdash \sigma : T \to A$, $\Delta \vdash \psi$ and $\Delta, \psi, i : \mathbb{I} \vdash t : T$ with $\Delta \vdash t_0 : T(i0)[\psi \mapsto t(i0)]$. We define $\Delta \vdash a_0 = \sigma(i0) \ t_0 : A(i0)$ and $\Delta, i : \mathbb{I}, \psi \vdash a = \sigma \ t : A$, and

$$\Delta, i: \mathbb{I} \vdash u = \mathsf{fill}^i \ A \ [\psi \mapsto a] \ a_0: A \qquad \ \ \Delta, i: \mathbb{I} \vdash v = \mathsf{fill}^i \ T \ [\psi \mapsto t] \ t_0: T$$

We define then $\operatorname{pres}(\sigma, [\psi \mapsto t], t_0) = \langle j \rangle \operatorname{comp}^i A [\psi \mapsto \sigma t, (j=0) \mapsto \sigma v, (j=1) \mapsto u] a_0$

Glueing

$$\begin{split} \frac{\Gamma \vdash A & \Gamma, \varphi \vdash T & \Gamma, \varphi \vdash \sigma : \mathsf{Equiv}(T, A)}{\Gamma \vdash \mathsf{Glue}(A, [\varphi \mapsto (T, \sigma)])} \varphi \neq 1 \\ \frac{\Gamma, \varphi \vdash \sigma : \mathsf{Equiv}(T, A) & \Gamma, \varphi \vdash t : T & \Gamma \vdash a : A[\varphi \mapsto \sigma t]}{\Gamma \vdash \mathsf{Glue}(a, [\varphi \mapsto t]) : \mathsf{Glue}(A, [\varphi \mapsto (T, \sigma)])} \varphi \neq 1 \end{split}$$

We define $\mathsf{glue}(A, [\varphi \mapsto (T, \sigma)]) = \mathsf{Glue}(A, [\varphi \mapsto (T, \sigma)])$ if $\varphi \neq 1$ and $\mathsf{glue}(A, [\varphi \mapsto (T, \sigma)]) = T$ if $\varphi = 1$. Similarly we define $\mathsf{glue}(a, [\varphi \mapsto t]) = \mathsf{Glue}(a, [\varphi \mapsto t])$ if $\varphi \neq 1$ and $\mathsf{glue}(a, [\varphi \mapsto t]) = t$ if $\varphi = 1$.

Any element of the type $\mathsf{glue}(A, [\varphi \mapsto (T, \sigma)])$ can be written in an unique way of the form $\mathsf{glue}(a, [\varphi \mapsto t])$ with $\varphi \vdash t : T$ and $a : A[\varphi \mapsto \sigma t]$.

We define the substitution $\mathsf{Glue}(A, [\varphi \mapsto (T, \sigma)])f = \mathsf{glue}(Af, [\varphi f \mapsto (Tf, \sigma f)])$ and $\mathsf{Glue}(a, [\varphi \mapsto t])f = \mathsf{glue}(af, [\varphi f \mapsto tf])$.

Composition for glueing

Assume $\Gamma, i : \mathbb{I} \vdash A$ and $\Gamma, i : \mathbb{I} \vdash \varphi$ and $\Gamma, i : \mathbb{I}, \varphi \vdash \sigma : \mathsf{Equiv}(T, A)$. We write $B = \mathsf{glue}(A, [\varphi \mapsto (T, \sigma)])$. Assume also $\Gamma \vdash \psi$ and $\Gamma, i : \mathbb{I}, \psi \vdash b = \mathsf{glue}(a, [\varphi \mapsto t]) : B$ and $\Gamma \vdash b_0 = \mathsf{glue}(a_0, [\varphi(i0) \mapsto t_0]) : B(i0)[\psi \mapsto b(i0)]$.

The goal is to build $\Gamma \vdash b_1 : B(i1)[\psi \mapsto b(i1)]$. Furthermore, we should have $b_1 = \mathsf{comp}^i \ T \ [\psi \mapsto t] \ t_0$ if $\Gamma, i : \mathbb{I} \vdash \varphi = 1$.

We have $\Gamma, \psi \vdash a(i0) = a_0 : A(i0)$ and $\Gamma, \psi \land \varphi(i0) \vdash t(i0) = t_0 : T(i0)$. Furthermore $\Gamma, \varphi(i0) \vdash a_0 = \sigma(i0)t_0 : A(i0)$ and $\Gamma, i : \mathbb{I}, \varphi \land \psi \vdash a = \sigma t : A$.

We define $a_1' = \mathsf{comp}^i \ A \ [\psi \mapsto a] \ a_0$ so that $\Gamma \vdash a_1' : A(i1)$ and $\Gamma, \psi \vdash a_1' = a(i1) : A(i1)$. Take $\delta = \forall i.\varphi$. We have $\Gamma, \delta, \psi, i : \mathbb{I} \vdash a = \sigma \ t$ and $\Gamma, \delta \vdash a_0 = \sigma(i0) \ t_0$. Hence, using Lemma 0.1

$$\Gamma, \delta \vdash \omega = \mathsf{pres} \ \sigma \ [\psi \mapsto t] \ t_0 : \mathsf{Path} \ A(i1) \ a_1' \ (\sigma(i1) \ t_1')$$

where $t_1' = \mathsf{comp}^i \ T \ [\psi \mapsto t] \ t_0$. We can then define $a_1'' = \mathsf{comp}^j \ A(i1) \ [\delta \mapsto \omega \ j, \psi \mapsto a(i1)] \ a_1'$ so that $\Gamma \vdash a_1'' : A(i1)$ and $\Gamma, \psi \vdash a_1'' = a(i1) : A(i1)$ and $\Gamma, \delta \vdash a_1'' = \sigma(i1) \ t_1' : A(i1)$.

We have $\Gamma, \varphi(i1) \vdash \sigma(i1) : T(i1) \to A(i1)$ and $\Gamma \vdash a_1'' : A(i1)$ and $\Gamma, \delta \vdash a_1'' = \sigma(i1)$ t_1' and $\Gamma, \psi \land \varphi(i1) \vdash a_1'' = a(i1) = \sigma(i1)$ t(i1). Using Lemma 0.2 we get

$$t_1 = \mathsf{equiv}(\sigma(i1), [\delta \mapsto t_1', \psi \mapsto t(i1)], a_1'').1$$
 $\alpha = \mathsf{equiv}(\sigma(i1), [\delta \mapsto t_1', \psi \mapsto t(i1)], a_1'').2$

so that $\Gamma, \varphi(i1) \vdash t_1 : T(i1)$ and $\Gamma, \varphi(i1) \vdash \alpha : \mathsf{Path}\ A(i1)\ a_1''\ (\sigma(i1)\ t_1)$. We then define

$$a_1 = \mathsf{comp}^j \ A(i1) \ [\varphi(i1) \mapsto \alpha \ j, \psi \mapsto a(i1)] \ a_1'' \qquad b_1 = \mathsf{glue}(a_1, [\varphi(i1) \mapsto t_1])$$

We have $\Gamma \vdash b_1 : B(i1)[\psi \mapsto b(i1)]$ as required and, if $\Gamma, i : \mathbb{I} \vdash \varphi = 1$ we have $b_1 = \mathsf{comp}^i \ T \ [\psi \mapsto t] \ t_0$.

Identity types

We explain how to define an identity type with the required computation rule, following an idea due to Andrew Swan.

We define a new type $\operatorname{Id} A a_0 a_1$ with the introduction rule

$$\frac{\Gamma \vdash \omega : \mathsf{Path} \ A \ a_0 \ a_1[\varphi \mapsto \langle i \rangle a_0]}{\Gamma \vdash (\omega, \varphi) : \mathsf{Id} \ A \ a_0 \ a_1}$$

We can now define $r(a) = (\langle j \rangle a, 1) : \text{Id } A \ a \ a$.

Given $\Gamma \vdash \alpha = (\omega, \varphi) : \mathsf{Id} \ A \ a \ x \text{ we define } \Gamma, i : \mathbb{I} \vdash \alpha^*(i) : \mathsf{Id} \ A \ a \ (\alpha \ i)$

$$\alpha^*(i) = (\langle j \rangle \omega(i \wedge j), \varphi \vee (i = 0))$$

This is well defined since $\Gamma, i : \mathbb{I}, (i = 0) \vdash \langle j \rangle \omega(i \wedge j) = \langle j \rangle a$ and $\Gamma, i : \mathbb{I}, \varphi \vdash \langle j \rangle \omega(i \wedge j) = \langle j \rangle a$.

If we have $\Gamma, x : A, \alpha : \mathsf{Id}\ A\ a\ x \vdash C\ \mathsf{and}\ \Gamma \vdash b : A\ \mathsf{and}\ \Gamma \vdash \beta : \mathsf{Id}\ A\ a\ b\ \mathsf{and}\ \Gamma \vdash d : C(a, \mathsf{r}(a))$ we take, for $\beta = (\omega, \varphi)$

$$J \ b \ \beta \ d = \mathsf{comp}^i \ C(\omega \ i, \beta^*(i)) \ [\varphi \mapsto d] \ d : C(b, \beta)$$

and we have J a r(a) d = d as desired.

If $i : \mathbb{I} \vdash \mathsf{Id} A \ a \ b$ and $p_0 = (\omega_0, \psi_0) : \mathsf{Id} \ A(i0) \ a(i0) \ b(i0)$ and $\varphi, i : \mathbb{I} \vdash q = (\omega, \psi) : \mathsf{Id} \ A \ a \ b$ such that $\varphi \vdash q(i0) = p_0$ we define $\mathsf{comp}^i \ (\mathsf{Id} \ A \ a \ b) \ [\varphi \mapsto q] \ p_0$ to be $(\gamma, \varphi \land \psi(i1))$ where

$$\gamma = \langle j \rangle \mathsf{comp}^i \ A \ [\varphi \mapsto \omega \ j, (j=0) \mapsto a, (j=1) \mapsto b] \ (\omega_0 \ j)$$

Factorization

The same idea of Andrew Swan can be used to factorize a map

$$\frac{\Gamma \vdash f : A \to B}{\Gamma \vdash \mathsf{G}(f)} \qquad \frac{\Gamma \vdash f : A \to B \quad \Gamma, \varphi \vdash a : A \quad \Gamma \vdash b : B[\varphi \mapsto f \ a]}{\Gamma \vdash (b, [\varphi \mapsto a]) : \mathsf{G}(f)}$$

We define $p_G : \mathsf{G}(f) \to B$ by $p_G(b, [\varphi \mapsto a]) = b$ and $\mathsf{c}(a) = (f \ a, [1 \mapsto a])$ and we have a factorization of the map $f = p_G \circ \mathsf{c}$.

The composition for G(f) is defined by

$$\mathsf{comp}^i \ G(f) \ [\varphi \mapsto (b, [\psi \mapsto a])] \ (b_0, [\psi_0 \mapsto a_0]) = (\mathsf{comp}^i \ B \ [\varphi \mapsto b] \ b_0, [\varphi \land \psi(i1) \mapsto a(i1)])$$

Here is one application of the type G(f). Suppose that we have a dependent type D(v) (v:B) with a section g(v):C(v) (v:B) and h(a):C(f|a) (a:A) with $\omega(a):\mathsf{Path}\ C(f|a)\ g(f|a)\ h(a)\ (a:A)$. We can define a new section $\tilde{g}(u):C(p_G|u)\ (u:\mathsf{G}(f))$ such that $\tilde{g}(\mathsf{c}|a)=h(a)\ (a:A)$. The definition is

$$\tilde{g}(b, [\varphi \mapsto a]) = \mathsf{comp}^i \ C(b) \ g(b) \ [\varphi \mapsto \omega(a) \ i]$$

It can be checked that **c** has the lifting property w.r.t. any trivial fibrations. Also p_G is a trivial fibration, since G(f) can be defined as the sigma type $(b:B,T_f(b))$ where $T_f(b)$ is the contractible type of element $\varphi \mapsto a$ with $\Gamma, \varphi \vdash a:A$ and $\Gamma, \varphi \vdash f$ a=b:B.

Appendix 1: self-contained operational semantics

We use $\alpha, \beta, \gamma, \ldots$ for the "faces", irreducible elements of the distributive lattice \mathbb{F} . If we restrict context as follows

$$\Gamma ::= () \mid \Gamma, x : A \mid \Gamma, i : \mathbb{I} \mid \Gamma, \alpha$$

then any partial element in such a context is equal to a total element. This follows from the fact that faces are irreducible element. To test a judgement in a context Γ , φ is then reduced to test the judgement in the context Γ , α for all irreducible component α of φ .

$$\frac{\Gamma \vdash A}{\Gamma,x:A \vdash} \frac{\Gamma \vdash \alpha}{\Gamma,i:\mathbb{I} \vdash} \frac{\Gamma \vdash \varphi : \mathbb{F}}{\Gamma,\varphi \vdash} \frac{\Gamma \vdash \alpha}{\Gamma \vdash x:A} (x:A \ in \ \Gamma) \frac{\Gamma \vdash \alpha}{\Gamma \vdash i:\mathbb{I}} (i:\mathbb{I} \ in \ \Gamma)$$

$$\frac{\Gamma,x:A \vdash B}{\Gamma \vdash (x:A) \to B} \frac{\Gamma,x:A \vdash t:B}{\Gamma \vdash \lambda x:A. \ t:(x:A) \to B} \frac{\Gamma \vdash t:(x:A) \to B}{\Gamma \vdash t:B(u)} \frac{\Gamma \vdash t:B(u)}{\Gamma \vdash t:B(u)}$$

$$\frac{\Gamma,x:A \vdash B}{\Gamma \vdash (x:A,B)} \frac{\Gamma \vdash a:A}{\Gamma \vdash (a,b):(x:A,B)} \frac{\Gamma \vdash z:(x:A,B)}{\Gamma \vdash z.1:A} \frac{\Gamma \vdash z:(x:A,B)}{\Gamma \vdash z.2:B(z.1)}$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash a_0:A} \frac{\Gamma \vdash a_1:A}{\Gamma \vdash a_0:A} \frac{\Gamma \vdash a_1:A}{\Gamma \vdash a_0:A} \frac{\Gamma \vdash A}{\Gamma \vdash a_0:A} \frac{\Gamma \vdash x:\Gamma \vdash xA}{\Gamma \vdash x:\Gamma \vdash xA}$$

$$\frac{\Gamma \vdash x:\Gamma \vdash xA}{\Gamma \vdash x:\Gamma} \frac{\Gamma \vdash x:\Gamma}{\Gamma \vdash x$$

For $i: \mathbb{I} \vdash C = \mathsf{Path}[A\ u\ v]$

$$\mathsf{comp}^i \ C \ [\varphi \mapsto \mu] \ p_0 = \langle j \rangle \mathsf{comp}^i \ A \ [\varphi \mapsto \mu \ j, (j=0) \mapsto u, (j=1) \mapsto v] \ (p_0 \ j)$$

For $i: \mathbb{I} \vdash C = (x: A, B)$

$$\operatorname{comp}^i C \left[\varphi \mapsto w\right] w_0 = (\operatorname{comp}^i A \left[\varphi \mapsto w.1\right] w_0.1, \operatorname{comp}^i B(x=a) \left[\varphi \mapsto w.2\right] w_0.2)$$

where $i: \mathbb{I} \vdash a = \text{fill}^i \ A \ [\varphi \mapsto w.1] \ w_0.1: A$.

We define isContr $A=(x:A,(y:A)\to \mathsf{Path}\ A\ x\ y)$ and isEquiv $A\ B\ f=(y:B)\to \mathsf{isContr}(x:A,\mathsf{Path}\ A\ y\ (f\ x))$ and Equiv $(T,A)=(f:T\to A,\mathsf{isEquiv}\ T\ A\ f).$

$$\begin{split} \frac{\Gamma \vdash A & \Gamma, \varphi \vdash T & \Gamma, \varphi \vdash \sigma : \mathsf{Equiv}(T, A)}{\Gamma \vdash \mathsf{glue}(A, [\varphi \mapsto (T, \sigma)]) & \Gamma, \varphi \vdash \mathsf{glue}(A, [\varphi \mapsto (T, \sigma)]) = T} \\ \frac{\Gamma, \varphi \vdash \sigma : \mathsf{Equiv}(T, A) & \Gamma, \varphi \vdash t : T & \Gamma \vdash a : A[\varphi \mapsto \sigma t]}{\Gamma \vdash \mathsf{glue}(a, [\varphi \mapsto t]) : \mathsf{glue}(A, [\varphi \mapsto (T, \sigma)])[\varphi \mapsto t]} \end{split}$$

For $\Gamma, i : \mathbb{I} \vdash B = \mathsf{glue}(A, [\varphi \mapsto (T, \sigma)])$ we define

$$\mathsf{comp}^i \ B \ [\psi \mapsto \mathsf{glue}(a, [\varphi \mapsto t])] \ \mathsf{glue}(a_0, [\varphi(i0) \mapsto t_0]) = \mathsf{glue}(a_1, [\varphi(i1) \mapsto t_1])$$

where

$$\begin{array}{lll} a_1 &=& \mathsf{comp}^j \ A(i1) \ [\varphi(i1) \mapsto \alpha \ j, \psi \mapsto a(i1)] \ a_1'' & \Gamma \\ t_1 &=& \mathsf{equiv}(\sigma(i1), [\delta \mapsto t_1', \psi \mapsto t(i1)], a_1'').1 & \Gamma, \varphi(i1) \\ \alpha &=& \mathsf{equiv}(\sigma(i1), [\delta \mapsto t_1', \psi \mapsto t(i1)], a_1'').2 & \Gamma, \varphi(i1) \\ a_1'' &=& \mathsf{comp}^j \ A(i1) \ [\delta \mapsto \omega \ j, \psi \mapsto a(i1)] \ a_1' & \Gamma \\ \omega &=& \mathsf{pres} \ \sigma \ [\psi \mapsto t] \ t_0 & \Gamma, \delta \\ t_1' &=& \mathsf{comp}^i \ T \ [\psi \mapsto t] \ t_0 & \Gamma, \delta \\ a_1' &=& \mathsf{comp}^i \ A \ [\psi \mapsto a] \ a_0 & \Gamma \\ \delta &=& \forall i. \varphi & \Gamma \end{array}$$

Name-free presentation

$$\begin{array}{rclcrcl} \Gamma, \Delta & ::= & () \mid \Gamma.A \mid \Gamma.\Pi \mid \Gamma, \varphi \\ \varphi, \psi & ::= & 0 \mid 1 \mid (q \mid 1) \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi f \\ r, s & ::= & 0 \mid 1 \mid (q \mid 1) \mid r \mid r \land s \mid r \lor s \mid r f \\ t, u, A, B & ::= & q \mid \lambda t \mid \operatorname{app}(t,t) \mid t \mid r \mid \langle \rangle t \mid \Pi A B \mid \Sigma A B \mid t, t \mid t.1 \mid t.2 \\ & ::= & tf \mid \operatorname{comp} A \mid \varphi \mapsto u \mid t \mid \operatorname{Glue}(A, [\varphi \mapsto (T, w]]) \mid \operatorname{Glue}(a, [\varphi \mapsto u]) \mid pt \\ pt & ::= & \psi_1 u_1 \lor \cdots \lor \psi_k u_k \\ f, g & ::= & p \mid gf \mid 1 \mid (f, u) \mid (f, r) \\ \hline & \frac{\Gamma \vdash A}{\Gamma.A \vdash} & \frac{\Gamma \vdash }{\Gamma.\Pi \vdash} & \frac{\Gamma \vdash \varphi : \mathbb{F}}{\Gamma.\varphi \vdash} & \frac{\Gamma \vdash A}{\Gamma.A \vdash q : Ap \mid \Gamma.\Pi \vdash q : \Pi} \\ \hline & \frac{\Gamma.A \vdash B}{\Gamma \vdash \Pi A B} & \frac{\Gamma.A \vdash t : B}{\Gamma \vdash \lambda t : \Pi A B} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Pi A B} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Pi A B} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Pi A B} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Pi A B} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Pi A B} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Pi A B} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash t : \Pi A B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t : \Lambda} & \frac{\Gamma \vdash \tau : \Lambda B}{\Gamma \vdash \lambda t$$

We have used the defined operation [u] = (1, u)

Appendix 2: spheres

We define S^1 by the rules.

$$\begin{split} \frac{\Gamma \vdash \mathsf{S}^1}{\Gamma \vdash \mathsf{S}^1} & \frac{\Gamma \vdash r : \mathbb{I}}{\Gamma \vdash \mathsf{loop}(r) : \mathsf{S}^1} r \neq 0, 1 \\ \frac{\Gamma, \varphi, i : \mathbb{I} \vdash u : \mathsf{S}^1}{\Gamma \vdash \mathsf{hcomp}^i} & \frac{\Gamma \vdash u_0 : \mathsf{S}^1[\varphi \mapsto u(i0)]}{\Gamma \vdash \mathsf{hcomp}^i} \varphi \neq 1 \end{split}$$

We define the substitution $\mathsf{base} f = \mathsf{base}$ and $\mathsf{loop}(r) f = \mathsf{loop}(rf)$ if $rf \neq 0, 1$ and $\mathsf{loop}(r) f = \mathsf{base}$ if rf = 0 or 1.

Similarly we define $(\mathsf{hcomp}^i \ [\varphi \mapsto u] \ u_0)f = \mathsf{hcomp}^j \ [\varphi f \mapsto u(f,i=j)] \ u_0f \ \text{if} \ \varphi f \neq 1 \ \text{and} \ (\mathsf{hcomp}^i \ [\varphi \mapsto u] \ u_0)f = u(f,i=1) \ \text{if} \ \varphi f = 1.$

Using these operations, we can define

$$\frac{\Gamma, \varphi, i : \mathbb{I} \vdash u : \mathsf{S}^1 \quad \Gamma \vdash u_0 : \mathsf{S}^1[\varphi \mapsto u(i0)]}{\Gamma \vdash \mathsf{comp}^i \ [\varphi \mapsto u] \ u_0 : \mathsf{S}^1[\varphi \mapsto u(i1)]}$$

by $\mathsf{comp}^i \ [\varphi \mapsto u] \ u_0 = \mathsf{hcomp}^i \ [\varphi \mapsto u] \ u_0 \ \text{if} \ \varphi \neq 1 \ \text{and} \ \mathsf{comp}^i \ [\varphi \mapsto u] \ u_0 = u(i1) \ \text{if} \ \varphi = 1.$

We have a similar definition for S^n taking as constructors base and $loop(r_1, \ldots, r_n)$, all $r_i \neq 0, 1$, with the substitution $loop(r_1, \ldots, r_n)f = loop(r_1, \ldots, r_n)f$ if all $r_i f$ are $i \neq 0, 1$ and $loop(r_1, \ldots, r_n)f = base$ if some $r_i f$ is 0 or 1.

Appendix 3: propositional truncation

$$\frac{\Gamma \vdash A}{\Gamma \vdash \mathsf{inh}\ A} \qquad \frac{\Gamma \vdash a : A}{\Gamma \vdash \mathsf{inc}\ a : \mathsf{inh}\ A} \qquad \frac{\Gamma \vdash u_0 : \mathsf{inh}\ A}{\Gamma \vdash \mathsf{u_0} : \mathsf{inh}\ A} \qquad \frac{\Gamma \vdash u_1 : \mathsf{inh}\ A}{\Gamma \vdash \mathsf{u_1} : \mathsf{inh}\ A} \qquad \frac{\Gamma \vdash r : \mathbb{I}}{\Gamma \vdash \mathsf{squash}(u_0, u_1, r) : \mathsf{inh}\ A} r \neq 0, 1$$

$$\frac{\Gamma, \varphi, i : \mathbb{I} \vdash u : \mathsf{inh}\ A}{\Gamma \vdash \mathsf{hcomp}^i\ [\varphi \mapsto u]\ u_0 : \mathsf{inh}\ A} \qquad \frac{\Gamma \vdash u_0 : \mathsf{inh}\ A}{\varphi \neq 1}$$

The substitution is then $\operatorname{squash}(u_0,u_1,r)f=\operatorname{squash}(u_0f,u_1f,rf)$ if $rf\neq 0,1$ and $\operatorname{squash}(u_0,u_1,r)f=u_0f$ if rf=0 and $\operatorname{squash}(u_0,u_1,r)f=u_1f$ if rf=1. Similarly we define $(\operatorname{hcomp}^i [\varphi\mapsto u]\ u_0)f=\operatorname{comp}^j [\varphi f\mapsto u(f,i=j)]\ u_0f$ if $\varphi f\neq 1$ and $(\operatorname{hcomp}^i [\varphi\mapsto u]\ u_0)f=u(f,i=1)$ if $\varphi f=1$.

We can then define two operations

$$\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma \vdash u_0 : \mathsf{inh} \ A(i0)}{\Gamma \vdash \mathsf{transp} \ u_0 : \mathsf{inh} \ A(i1)} \qquad \frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, i: \mathbb{I} \vdash u : \mathsf{inh} \ A}{\Gamma, i: \mathbb{I} \vdash \mathsf{squeeze} \ u : \mathsf{inh} \ A(i1)}$$

satisfying

$$\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, i: \mathbb{I} \vdash u: \mathsf{inh} \ A}{\Gamma \vdash (\mathsf{squeeze} \ u)(i0) = \mathsf{transp} \ u(i0) : \mathsf{inh} \ A(i1)} \qquad \frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, i: \mathbb{I} \vdash u: \mathsf{inh} \ A}{\Gamma \vdash (\mathsf{squeeze} \ u)(i1) = u(i1) : \mathsf{inh} \ A(i1)}$$

by the equations

```
\begin{array}{lll} \operatorname{transp} \; (\operatorname{inc} \; a) & = & \operatorname{inc} \; (\operatorname{comp}^i \; A \; [] \; a) \\ \operatorname{transp} \; (\operatorname{squash}(u_0,u_1,r)) & = & \operatorname{squash}(\operatorname{transp} \; u_0,\operatorname{transp} \; u_1,r) \\ \operatorname{transp} \; (\operatorname{hcomp}^j \; [\varphi \mapsto u] \; u_0) & = & \operatorname{hcomp}^j \; [\varphi \mapsto \operatorname{transp} \; u] \; (\operatorname{transp} \; u_0) \\ \operatorname{squeeze} \; (\operatorname{inc} \; a) & = & \operatorname{inc} \; (\operatorname{comp}^j \; A(i \vee j) \; [(i=1) \mapsto a(i1)] \; a) \\ \operatorname{squeeze} \; (\operatorname{squash}(u_0,u_1,r)) & = & \operatorname{squash}(\operatorname{squeeze} \; u_0,\operatorname{squeeze} \; u_1,r) \\ \end{array}
```

and we define squeeze (hcomp^j $[\delta \mapsto u, \varphi_0 \land (i=0) \mapsto u_0, \varphi_1 \land (i=1) \mapsto u_1] v)$ as

$$\mathsf{hcomp}^j \ [\delta \mapsto \mathsf{squeeze} \ u, \varphi_0 \land (i=0) \mapsto \mathsf{transp} \ u_0, \varphi_1 \land (i=1) \mapsto u_1] \ (\mathsf{squeeze} \ v)$$

using the fact that any formula φ has a decomposition $\delta \vee (\varphi_0 \wedge (i=0)) \vee (\varphi_1 \wedge (i=1))$ where δ is the disjunction of all faces of φ not containing i, and φ_0 (resp. φ_1) the disjunction of all faces α such that $\alpha \wedge (i=0)$ (resp. $\alpha \wedge (i=1)$) is a face of φ .

Using these operations, we can define

$$\frac{\Gamma, i: \mathbb{I} \vdash A \qquad \Gamma, \varphi, i: \mathbb{I} \vdash u: \mathsf{inh} \ A \qquad \Gamma \vdash u_0: \mathsf{inh} \ A(i0)[\varphi \mapsto u(i0)]}{\Gamma \vdash \mathsf{comp}^i \ [\varphi \mapsto u] \ u_0: \mathsf{inh} \ A(i1)[\varphi \mapsto u(i1)]}$$

by $\Gamma \vdash \mathsf{comp}^i \ [\varphi \mapsto u] \ u_0 = \mathsf{hcomp}^i \ [\varphi \mapsto \mathsf{squeeze} \ u] \ (\mathsf{transp} \ u_0) : \mathsf{inh} \ A(i1) \ \mathsf{if} \ \varphi \neq 1 \ \mathsf{and} \ \Gamma \vdash \mathsf{comp}^i \ [\varphi \mapsto u] \ u_0 = u(i1) : \mathsf{inh} \ A(i1) \ \mathsf{if} \ \varphi = 1.$

Given $\Gamma \vdash B$ and $\Gamma \vdash q: (x \ y: B) \to \mathsf{Path} \ B \ x \ y \ \mathrm{and} \ f: A \to B \ \mathrm{we} \ \mathrm{define} \ g: \mathsf{inh} \ A \to B \ \mathrm{by} \ \mathrm{the}$ equations

$$\begin{array}{lll} g \ (\operatorname{inc} \ a) & = & f \ a \\ g \ (\operatorname{squash}(u_0,u_1,r)) & = & q \ (g \ u_0) \ (g \ u_1) \ r \\ g \ (\operatorname{hcomp}^j \ [\varphi \mapsto u] \ u_0) & = & \operatorname{comp}^j \ B \ [\varphi \mapsto g \ u] \ (g \ u_0) \end{array}$$

Appendix 4: How to build a path from an equivalence

Given $\Gamma \vdash \sigma : \mathsf{Equiv}(A, B)$ we define

$$\Gamma, i : \mathbb{I} \vdash E = \mathsf{glue}(B, [(i=0) \mapsto \sigma, (i=1) \mapsto \mathsf{id}_B])$$

where $\mathsf{id}_B : \mathsf{Equiv}(B,B)$ is defined as

$$\mathsf{id}_B = (\lambda x : B.x, \lambda x : B.((x,1_x), \lambda u : (y : B, \mathsf{Path}\ B\ x\ y). \langle i \rangle (u.2\ i, \langle j \rangle u.2\ (i \land j)))$$

We have then $\Gamma, i : \mathbb{I}, (i=0) \vdash E = A$ and $\Gamma, i : \mathbb{I}, (i=1) \vdash E = B$, so that E(i0) = A and E(i1) = B.

If we now introduce an universe U by reflecting all typing rules and

$$\frac{\Gamma \vdash A : U}{\Gamma \vdash A}$$

we can define $\mathsf{Equiv}(A,B) \to \mathsf{Path}\ U\ A\ B\ \text{by}\ \lambda u : \mathsf{Equiv}(A,B). \langle i \rangle \mathsf{glue}(B, [(i=0) \mapsto \sigma, (i=1) \mapsto \mathsf{id}_B]).$

Appendix 5: Semantics

Let \mathcal{C} the following category. The objects are finite sets I, J, \ldots A morphism $\mathsf{Hom}(J, I)$ is a map $I \to \mathsf{dM}(J)$ where $\mathsf{dM}(J)$ is the free de Morgan algebra on J. The presheaf \mathbb{I} is defined by $\mathbb{I}(J) = \mathsf{dM}(J)$. The presheaf \mathbb{F} is defined by taking $\mathbb{F}(J)$ to be the free distributive lattice generated by formal elements (j=0), (j=1) for j in J, with the relations $(j=0) \land (j=1) = 0$.

We interpret context as presheaves over the category \mathcal{C} . A dependent type $\Gamma \vdash A$, non necessarily "fibrant", is interpreted as a family of sets $A\rho$ for each I and $\rho \in \Gamma(I)$ together with restriction maps $A\rho \to A\rho f, \ u \longmapsto uf$ for $f: J \to I$, satisfying $u1_I = u$ and $(uf)g = u(fg) \in \Gamma(K)$ if $g: K \to J$. An element $\Gamma \vdash a: A$ is interpreted by a family $a\rho \in A\rho$ for I and $\rho \in \Gamma(I)$, such that $(a\rho)f = a(\rho f) \in A\rho f$ if $f: J \to I$.

If $\Gamma \vdash A$, we interpret $\Gamma.A$ as the cubical set defined by taking $(\Gamma.A)(I)$ to be the set of element ρ, u such that $\rho \in \Gamma(I)$ and $u \in A\rho$. If $f: J \to I$ the restriction map is defined by $(\rho, u)f = \rho f, uf$.

If $\Gamma A \vdash B$ and $\Gamma \vdash a : A$ we define $\Gamma \vdash B[a]$ by taking $B[a]\rho$ to be the set $B(\rho, a\rho)$.

If $\Gamma \vdash \varphi : \mathbb{F}$ then $\varphi \rho \in \mathbb{F}(I)$ for each $\rho \in \Gamma(I)$. We define $(\Gamma, \varphi)(I)$ to be the set $\rho \in \Gamma(I)$ such that $\varphi \rho = 1$. (In particular $(\Gamma, 0)(I)$ is empty.)

If $\Gamma \vdash A$ and ρ is in $\Gamma(I)$ and φ is in $\mathbb{F}(I)$, we define a partial element of $A\rho$ of extent φ to be a family of elements u_f in $A\rho f$ for $f: J \to I$ such that $\varphi f = 1$, satisfying $u_f g = u_{fg}$ if $g: K \to J$.

We define next when $\Gamma \vdash A$ has a composition structure. This is given by a family of operations $\mathsf{comp}^i \ A\rho \ [\varphi \mapsto u] \ a_0$ in for ρ in $\Gamma(I,i)$, φ in $\mathbb{F}(I)$ and u a partial element of $A\rho$ of extent φ and a_0 in $A\rho(i0)$ such that $a_0f = u_f(i0)$ if $\varphi f = 1$. This element should satisfy $(\mathsf{comp}^i \ A\rho \ [\varphi \mapsto u] \ a_0)f = u_f(i1)$ if $\varphi f = 1$. Furthermore, we have the uniformity condition

$$(\mathsf{comp}^i \ A\rho \ [\varphi \mapsto u] \ a_0)g = \mathsf{comp}^j \ (A\rho(g,i=j)) \ [\varphi g \mapsto u(g,i=j)] \ a_0g$$

if $g: J \to I$ and j not in J.

It is then possible to give the semantics of the composition operations. If $\Gamma.\mathbb{I} \vdash A$ and $\Gamma \vdash \varphi$ and $\Gamma.\mathbb{I}, \varphi \mathbf{p} \vdash u : A$ and $\Gamma \vdash a_0 : A[0][\varphi \mapsto u[0]]$ and ρ is in $\Gamma(J)$ we define

$$(\operatorname{comp} A [\varphi \mapsto u] a_0)\rho = \operatorname{comp}^j A(\rho, j) [\varphi \rho \mapsto u(\rho, j)] a_0\rho$$

for j not in J.

Appendix 6: Universes have a composition operation

Given $\Gamma \vdash A$, $\Gamma \vdash B$ and $\Gamma, i : \mathbb{I} \vdash E$ such that E(i0) = A and E(i1) = B we explain first how to buid $\Gamma \vdash \mathsf{equiv}^i E : \mathsf{Equiv}(A, B)$.

We define

$$\Gamma \vdash f : A \to B$$
 $\Gamma \vdash g : B \to A$ $\Gamma, i : \mathbb{I} \vdash u : A \to E$ $\Gamma, i : \mathbb{I} \vdash v : B \to E$

such that u(i1) = f and $u(i0) = \lambda x : A.x$ and v(i0) = g and $v(i1) = \lambda y : B.y$. The definitions are

$$\begin{array}{lll} f &=& \lambda x : A.\mathsf{comp}^i \ E \ [] \ x \\ g &=& \lambda y : B.\mathsf{comp}^i \ E(1-i) \ [] \ y \\ u &=& \lambda x : A.\mathsf{fill}^i \ E \ [] \ x \\ v &=& \lambda y : B.\mathsf{fill}^i \ E(1-i) \ [] \ y \end{array}$$

We then show that two elements (x_0, β_0) and (x_1, β_1) in (x : A, Path B y (f x)) are path-connected. This is obtained by the definitions

$$\begin{array}{lll} \omega_0 & = & \mathsf{comp}^i \; E(1-i) \; [(j=0) \mapsto v \; y, (j=1) \mapsto u \; x_0] \; (\beta_0 \; j) \\ \omega_1 & = & \mathsf{comp}^i \; E(1-i) \; [(j=0) \mapsto v \; y, (j=1) \mapsto u \; x_1] \; (\beta_1 \; j) \\ \theta_0 & = & \mathsf{fill}^i \; E(1-i) \; [(j=0) \mapsto v \; y, (j=1) \mapsto u \; x_0] \; (\beta_0 \; j) \\ \theta_1 & = & \mathsf{fill}^i \; E(1-i) \; [(j=0) \mapsto v \; y, (j=1) \mapsto u \; x_1] \; (\beta_1 \; j) \\ \omega & = & \mathsf{comp}^j \; A \; [(k=0) \mapsto \omega_0, (k=1) \mapsto \omega_1] \; (g \; y) \\ \theta & = & \mathsf{fill}^j \; A \; [(k=0) \mapsto \omega_0, (k=1) \mapsto \omega_1] \; (g \; y) \end{array}$$

so that we have $\Gamma, j : \mathbb{I}, i : \mathbb{I} \vdash \theta_0 : E$ and $\Gamma, j : \mathbb{I}, i : \mathbb{I} \vdash \theta_1 : E$ and $\Gamma, j : \mathbb{I}, k : \mathbb{I} \vdash \theta : A$. If we define

$$\delta = \mathsf{comp}^i \ E \ [(j=0) \mapsto v \ y, (j=1) \mapsto u \ \alpha, (k=0) \mapsto \theta_0, (k=1) \mapsto \theta_1] \ \theta$$

we then have $\langle k \rangle (\alpha, \langle j \rangle \theta)$: Path $(x : A, Path B y (f x)) (x_0, \beta_0) (x_1, \beta_1)$ as desired.

Since $(x:A, \mathsf{Path}\ B\ y\ (f\ x))$ is inhabited, since it contains the element $(g\ y, \gamma)$ where $\gamma = \langle k \rangle \mathsf{comp}^i\ E\ [(k=0) \mapsto v\ y, (k=1) \mapsto u\ (g\ y)]\ (g\ y)$, we have shown that the fiber of f at y is contractible. Hence f is an equivalence and we have built $\mathsf{equiv}^i\ E$: $\mathsf{Equiv}(A,B)$.

If we now introduce an universe U by reflecting all typing rules and

$$\frac{\Gamma \vdash A : U}{\Gamma \vdash A}$$

then we can define $\mathsf{comp}^i\ U\ [\varphi\mapsto E]\ A_0=\mathsf{glue}(A_0,\varphi\mapsto (E(i1),\mathsf{equiv}^i\ E(1-i))).$

Appendix 7: Univalence

We have shown how to build maps Path $U \land B \to \mathsf{Equiv}(A, B)$ and $\mathsf{Equiv}(A, B) \to \mathsf{Path} \ U \land B$. Using only the glueing operation, it has been shown formally by Simon Huber and Anders Mörtberg that these two maps are homotopy inverse.

Since one can prove formally that a map with a homotopy inverse is an equivalence and that the map Path $U A B \to \text{Equiv}(A, B)$ is equal to the one we get by path elimination and the canonical proof of Equiv(A, A), we get univalence for Path.

It can then be shown formally that univalence for $\operatorname{\mathsf{Id}} U A B$ holds as well.

Another approach is to show that the type $(X:U,\mathsf{Equiv}(X,A))$ is contractible. (This is one possible way to state the univalence axiom.) For this it is enough to show that any partial element of this type $\varphi \vdash (T,\sigma)$ can be extended to a total element. And for this, it is enough to show that the map $\mathsf{unglue}: B \to A$, where $B = \mathsf{glue}([\varphi \mapsto (T,\sigma)],A)$ is an equivalence.

For showing this, we give $\psi \vdash b = \mathsf{glue}([\varphi \mapsto b], a) : B \text{ and } u : A[\psi \mapsto a]$ and we explain how to build

$$\tilde{b}: B[\psi \mapsto b] \quad \alpha: \mathsf{Path} \ A \ u \ (\mathsf{unglue} \ \tilde{b})[\psi \mapsto \langle i \rangle u]$$

Since $\varphi \vdash \sigma : T \to A$ is an equivalence and we have $\psi, \varphi \vdash b : T$ and $\psi, \varphi \mapsto \sigma$ b = a : A we can find $\varphi \mapsto t : T[\psi \mapsto b]$ and $\varphi \vdash \beta : \mathsf{Path}\ A\ u\ (\sigma t)[\psi \mapsto \langle i \rangle u$. We then define $\tilde{a} = \mathsf{comp}^i\ A\ [\varphi \mapsto \beta\ i, \psi \mapsto u]\ u$ and $\alpha = \mathsf{fill}^i\ A\ [\varphi \mapsto \beta\ i, \psi \mapsto u]\ u$. We then conclude by taking $\tilde{b} = \mathsf{glue}([\varphi \mapsto t], \tilde{a})$.