ALGORYTMY GRAFOWE

Opis algorytmu Floyda-Warshalla

Najkrótsze ścieżki między wszystkimi parami wierzchołków (dowolne wagi krawędzi).

- 1. Mając daną macierz wag **W** tworzymy macierz poprzedników $\mathbf{P}^{(0)}$, w ten sposób, że jeśli $w_{ij} = \infty$, to $p_{ij}^{(0)} = 0$; jeśli natomiast $w_{ij} \neq \infty$, to $p_{ij}^{(0)}$ przyjmie wartość i.
- 2. Tworzymy ciągi macierzy $\mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \dots, \mathbf{W}^{(n)}$ oraz $\mathbf{P}^{(1)}, \mathbf{P}^{(2)}, \dots, \mathbf{P}^{(n)}$ według wzorów:

$$w_{ij}^{(0)} = w_{ij}; \qquad w_{ij}^{(l)} = \min\{w_{ij}^{(l-1)}, w_{il}^{(l-1)} + w_{lj}^{(l-1)}\},$$

co oznacza, że obliczając l-tą macierz $\mathbf{W}^{(l)}$ zmieniamy długość ścieżki w_{ij} z wierzchołka i do j, jeżeli po włączeniu do niej wierzchołka l staje się ona krótsza. Wtedy też w macierzy $\mathbf{P}^{(l)}$ wstawiamy $p_{ij}^{(l)} := p_{lj}^{(l-1)}$; w pozostałych przypadkach $p_{ij}^{(l)} := p_{ij}^{(l-1)}$. Dodatkowo po utworzeniu każdej macierzy sprawdzamy czy elementy na głownej przekątnej są nieujemne $(w_{ij} \geqslant 0)$. Jeżeli na głownej przekątnej pojawi się wartość ujemna, to STOP – znaleziony został cykl o ujemnej sumie wag.

3. Macierz $\mathbf{W}^{(n)}$ jest macierzą zawierającą długości najkrótszych ścieżek między każdą parą wierzchołków i,j. Aby wyznaczyć te najkrótsze ścieżki korzystamy z macierzy $\mathbf{P}^{(n)} = \left[p_{ij}^{(n)}\right]$. Każdy element $p_{ij}^{(n)}$ jest przedostatnim wierzchołkiem na najkrótszej ścieżce z i do j. Jeśli ta ścieżka ma, na przykład, postać (i,v_1,v_2,\ldots,v_q,j) , to poszczególne wierzchołki v_k (gdzie $k=1,2,\ldots,q$) otrzymujemy z macierzy $\mathbf{P}^{(n)}$:

$$i = p_{iv_1}, \dots, v_{q-2} = p_{iv_{q-1}}, v_{q-1} = p_{iv_q}, v_q = p_{ij}, j.$$