Q1. Business Case: Target SQL:

Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

1.1 Data type of all columns in the "customers" table.

```
--Data type of all columns in the "customers" table.
SELECT
    column_name,
    data_type
FROM
    Target.INFORMATION_SCHEMA.COLUMNS
WHERE
    table_name = 'customers';
```

output:

Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

Observation/Insights:

- customer_id, customer_unique_id, customer_city and customer_state is of string data type.
- Customer_zip_code_prefix data type is Integer.

1.2 Get the time range between which the orders were placed.

--Get the time range between which the orders were placed.

```
select MIN(extract(DATE from order_purchase_timestamp)) FIRST_ORDER_DATE,
MAX(extract(DATE from order_purchase_timestamp)) LAST_ORDER_DATE
FROM `Target.orders`;
```


All orders placed in between 2016-09-04 and 2018-10-17

1.3 Count the Cities & States of customers who ordered during the given period.

```
--Count the Cities & States of customers who ordered during the given period.

SELECT count(distinct customer_city) count_city,count(distinct customer_state) count_state

FROM

`Target.customers` c
join

`Target.orders` o
on c.customer_id=o.customer_id
where o.order_purchase_timestamp between '2016-09-04' and '2018-10-17';

Query results
```

JOB INFORMATION		RESULTS		CHART	
Row	count_city ▼	11	count_state	→	
1	411	19		27	

• All orders have been created from 4119 cities and 27 states. In-depth Exploration:

2.1 Is there a growing trend in the no. of orders placed over the past years?

```
--Is there a growing trend in the no. of orders placed over the past years?
select extract(year from order_purchase_timestamp) as Year, count(order_id)
as orders_placed
from
`Target.orders`
group by extract(year from order_purchase_timestamp)
order by Year;
```

JOB IN	IFORMATION		RESULTS	CHART
Row	Year ▼	1	orders_placed	-
1	2	016		329
2	2	017	45	101
3	2	018	54	011

Observations/insights:

Yes, there is a growing trend in the number of orders placed over past years as per output.
 Orders placed has been increasing from 2016 to 2018.

2.2 Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

--Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
select extract(Year from order_purchase_timestamp) Year,Extract(month from
order_purchase_timestamp) Month,
format_datetime('%B',datetime(order_purchase_timestamp)) as
Month_Name,count(order_id) as No_order_placed
from
`Target.orders`
group by extract(Year from order_purchase_timestamp),Extract(month from
order_purchase_timestamp), format_datetime('%B',datetime(order_purchase_timestamp))
order by Year,Month,Month_Name;
```

JOB IN	NFORMATION	RESULTS CHA	ART JSON EXECUT	ION DETAILS EX
Row	Year ▼	Month ▼	Month_Name ▼	No_order_placed 🔻
1	2016	9	September	4
2	2016	10	October	324
3	2016	12	December	1
4	2017	1	January	800
5	2017	2	February	1780
6	2017	3	March	2682
7	2017	4	April	2404
8	2017	5	May	3700
9	2017	6	June	3245
10	2017	7	July	4026
11	2017	8	August	4331

2.3 During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
--During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)
```

```
select
case
when Extract(hour from order_purchase_timestamp) between 0 and 6 then 'Dawn'
when Extract(hour from order_purchase_timestamp) between 7 and 12 then 'Morning'
when Extract(hour from order_purchase_timestamp) between 13 and 18 then 'Afternoon'
else 'Night'
end as order_time,count(order_id) order_count
`Target.orders` o
join
`Target.customers` c
on o.customer_id=c.customer_id
where c.customer_state='DF'
group by
case
when Extract(hour from order_purchase_timestamp) between 0 and 6 then 'Dawn'
when Extract(hour from order_purchase_timestamp) between 7 and 12 then 'Morning'
when Extract(hour from order_purchase_timestamp) between 13 and 18 then 'Afternoon'
else 'Night'
order by order_count desc;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row /	order_time ▼	li.	order_count ▼	1.
1	Afternoon		8	320
2	Night		6	514
3	Morning		6	808
4	Dawn			98

OR

```
select order_time,count(order_id) order_count
from
(select
case
when Extract(hour from o.order_purchase_timestamp) between 0 and 6 then 'Dawn'
when Extract(hour from o.order_purchase_timestamp) between 7 and 12 then 'Morning'
when Extract(hour from o.order_purchase_timestamp) between 13 and 18 then
'Afternoon'
else 'Night'
end as order_time,order_id
from
`Target.orders` o
join
`Target.customers` c
on o.customer_id=c.customer_id
where c.customer_state='DF') table1
group by order_time
order by order_count desc;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	order_time ▼	le	order_count ▼	4
1	Afternoon		8	20
2	Night		6	14
3	Morning		6	80
4	Dawn			98

- during Afternoon time Brazilian customers have ordered max orders of 820.
- 3. Evolution of E-commerce orders in the Brazil region:
- 3.1 Get the month-on-month no. of orders placed in each state.

```
--Get the month on month no. of orders placed in each state.
select
extract(month from o.order_purchase_timestamp) as
month_of_order,c.customer_state,count(o.order_id) order_count
from
`Target.orders` o
join
`Target.customers` c
on o.customer_id=c.customer_id
group by extract(month from o.order_purchase_timestamp),c.customer_state
order by month_of_order,c.customer_state;
```

JOB IN	IFORMATION		RESULTS	CHART .	JSON E	XECUTION DET
Row	month_of_order	V /1	customer_state	▼ //	order_count	→
1		1	AC			8
2		1	AL			39
3		1	AM			12
4		1	AP			11
5		1	BA			264
6		1	CE			99
7		1	DF			151
8		1	ES			159
9		1	GO			164
10		1	MA			66
11		1	MG			971

3.2 How are the customers distributed across all the states?

--How are the customers distributed across all the states?

```
select customer_state,count(customer_id) count_of_customer
from `Target.customers`
group by customer_state
order by count_of_customer desc;
```

Query results

JOB IN	FORMATION	RESULTS	CHART	JSON
Row	customer_state -		count_of_customer	/1
1	SP		41746	
2	RJ		12852	
3	MG		11635	
4	RS		5466	
5	PR		5045	
6	SC		3637	
7	BA		3380	
8	DF		2140	
9	ES		2033	
10	GO		2020	
11	PE		1652	

- State SP has highest customers and RJ and MJ has 2nd highest and 3 highest customers.
- 4.Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 4.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

```
1. --1. Get the % increase in the cost of orders from year 2017 to 2018
   (include months between Jan to Aug only).
2. --You can use the "payment_value" column in the payments table to get the
   cost of orders.
with cte1 as(
4. select sum(payment_value) cost_of_order_2017
5. from
Target.payments` p
7. join
8. `Target.orders` o
9. on p.order_id=o.order_id
10. where order_purchase_timestamp between '2017-01-01' and '2017-08-31'),
11.
12.cte2 as(
13. select sum(payment_value) cost_of_order_2018
14. from
15. `Target.payments` p
16. join
17. `Target.orders` o
18. on p.order_id=o.order_id
19. where order_purchase_timestamp between '2018-01-01' and '2018-08-31')
20. select ((cte2.cost_of_order_2018-
   cte1.cost_of_order_2017)/cte1.cost_of_order_2017)*100 as
   percentage_increase_in_cost_of_orders
21. from cte1, cte2;
```


• There is 138.52% increase in cost of orders value in 2017 to 2018

4.2 Calculate the Total & Average value of order price for each state.

```
--Calculate the Total & Average value of order price for each state.
select c.customer_state,sum(i.price) as total_order_price,Avg(i.price) avg_price
from
```

```
`Target.customers` c
join
`Target.orders` o
on c.customer_id=o.customer_id
join
`Target.order_items`i
on o.order_id=i.order_id
group by c.customer_state;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION
Row	customer_state	~	total_order_price	avg_price	→
1	RN		83034.97999999	156.96593	357277
2	CE		227254.7099999	153.75826	511637
3	RS		750304.0200000	120.3374	530874
4	SC		520553.3400000	124.65357	775862
5	SP		5202955.050001	109.65362	291597
6	MG		1585308.029999	120.74857	741488
7	BA		511349.9900000	134.60120	082126
8	RJ		1824092.669999	125.11781	180945

4.3 Calculate the Total & Average value of order freight for each state.

```
--Calculate the Total & Average value of order freight for each state.
select c.customer_state, sum(i.freight_value) as
total_freight_price, Avg(i.freight_value) avg_freight_price
from
`Target.customers` c
join
`Target.orders` o
on c.customer_id=o.customer_id
join
`Target.order_items`i
on o.order_id=i.order_id
group by c.customer_state
order by total_freight_price desc;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION
Row	customer_state -		total_freight_price	avg_freigh	t_price 🔀
1	SP		718723.0699999	15.147275	39041
2	RJ		305589.3100000	20.960923	93168
3	MG		270853.4600000	20.630166	80630
4	RS		135522.7400000	21.735804	33039
5	PR		117851.6800000	20.531651	56794
6	BA		100156.6799999	26.363958	93656
7	SC		89660.26000000	21.470368	377394
8	PE		59449.65999999	32.917862	267995
9	GO		53114.97999999	22.766815	525932
10	DF		50625.499999999	21.041354	194596

Insights:

- Customer State SP has highest total freight value
- 5. Analysis based on sales, freight and delivery time.
 - 5.1 Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_delivered_customer_date order_estimated_delivery_date
- --Find the no. of days taken to deliver each order from the order's purchase date as delivery time.
- --Also, calculate the difference (in days) between the estimated & actual delivery date of an order.
- --Do this in a single query.

select

order_id, timestamp_diff(order_delivered_customer_date, order_purchase_timestamp, Day) time_to_deliver, timestamp_diff(order_delivered_customer_date, order_estimated_delivery_date, Day) diff_estimated_delivery_date from

[`]Target.orders`

```
where order_status='delivered'
order by time_to_deliver desc;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON EXECUTION DETA
Row	order_id ▼	h	time_to_deliver ▼	diff_estimated_delive
1	ca07593549f181	6d26a572e06	209	181
2	1b3190b2dfa9d7	89e1f14c05b	208	188
3	440d0d17af5528	15d15a9e41a	195	165
4	0f4519c5f1c541	ddec9f21b3bd	194	161
5	285ab9426d6982	2034523a855f	194	166
6	2fb597c2f772eca	a01b1f5c561b	194	155
7	47b40429ed8cce	3aee9199792	191	175
8	2fe324febf907e3	ea3f2aa9650	189	167
9	2d7561026d542d	e8dbd8f0daea	188	159
10	437222e3fd1b07	396f1d9ba8c	187	144
11	c27815f7e3dd0b	926b5855262	187	162

5.2 Find out the top 5 states with the highest & lowest average freight value.

```
--Find out the top 5 states with the highest & lowest average freight value.
with cte1 as
(select c.customer_state,avg(i.freight_value) avg_freight_value
`Target.customers` c
join
`Target.orders` o
on c.customer_id=o.customer_id
join
`Target.order_items` i
on o.order_id=i.order_id
group by c.customer_state
order by avg_freight_value desc
limit 5),
(\verb|select| c.customer_state|, \verb|avg| (i.freight_value|) | avg_freight_value|
from
`Target.customers` c
join
`Target.orders` o
on c.customer_id=o.customer_id
`Target.order_items` i
on o.order_id=i.order_id
```

```
group by c.customer_state
order by avg_freight_value asc
limit 5)
select * from cte1
union all
select * from cte2
order by avg_freight_value desc;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EX
Row	customer_state ▼	6	avg_freight_value	Ž	
1	RR		42.98442307692		
2	РВ		42.72380398671.		
3	RO		41.06971223021.		
4	AC		40.07336956521.		
5	PI		39.14797047970.		
6	DF		21.04135494596.		
7	RJ		20.96092393168.		
8	MG		20.63016680630.		
9	PR		20.53165156794		
10	SP		15.14727539041.		

Insights:

- States RR, PB, RO, AC, PI has top 5 highest freight value. Which means it has longer shipped distance.
- States DF, RJ, MG, PR, SP has 5 lowest freight value. Which means it has shorter shipping distance and better logistical networks. We can negotiate with providers for high freight value areas to reduce cost.

5.3 Find out the top 5 states with the highest & lowest average delivery time.

--Find out the top 5 states with the highest & lowest average delivery time.

```
with cte1 as(
select
customer_state,avg(timestamp_diff(order_delivered_customer_date,order_purchase_time
stamp,Day)) avg_delivery_time
from
   `Target.orders` o
join
   `Target.customers` c
on o.customer_id=c.customer_id
where order_status='delivered'
group by customer_state
```

```
order by avg_delivery_time desc
limit 5),
cte2 as(
customer_state,avg(timestamp_diff(order_delivered_customer_date,order_purchase_time
stamp,Day)) avg_delivery_time
`Target.orders` o
join
`Target.customers` c
on o.customer_id=c.customer_id
where order_status='delivered'
group by customer_state
order by avg_delivery_time
limit 5
select * from cte1
union all
select * from cte2
order by avg_delivery_time desc ;
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	E
Row	customer_state	~	avg_delivery_time	7	
1	RR		28.97560975609.		
2	AP		26.73134328358.		
3	AM		25.98620689655.		
4	AL		24.04030226700.		
5	PA		23.31606765327.		
6	SC		14.47956019171.		
7	DF		12.50913461538.		
8	MG		11.54381329810.		
9	PR		11.52671135486.		
10	SP		8.298061489072.		

Insights:

- RR, AP, AM, AL, PA has worst performing as compared to orders
- SP, PR, MG, DF, SC has best performance in terms of delivery time.
- 5.4 Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

--Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

--You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery --was for each state.

select

```
customer_state,avg(timestamp_diff(order_estimated_delivery_date,order_delivered_cus
tomer_date,day)) as how_fast_delivery
from
    Target.orders` o
join
    Target.customers` c
on o.customer_id=c.customer_id
where order_status='delivered'
group by customer_state
order by how_fast_delivery desc
limit 5;
```

Query results

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	customer_state	~	how_fast_delivery	•
1	AC		19.76250000000	
2	RO		19.13168724279	
3	AP		18.73134328358	
4	AM		18.60689655172	
5	RR		16.41463414634	

Insights:

- Customer state AC, RO, AP, AM, RR has fast order delivery as compared to estimated date of delivery.
- This says this state has better logistic infrastructure, warehouse management, faster processing time.
- Implement this strategy in slow delivery states.

6.1 Find the month on month no. of orders placed using different payment types.

--Find the month on month no. of orders placed using different payment types.

```
group by extract(Year from order_purchase_timestamp), extract(month from
order_purchase_timestamp), format_datetime('%B', datetime(order_purchase_timestamp)),
payment_type
order by Year, month, order_count desc;
```


JOB IN	IFORMATION	RESULTS CHA	ART JSON EXECUTI	ON DETAILS EXECUTION G	RAPH
Row	Year ▼	month ▼	Month_name ▼	payment_type ▼	order_count ▼
1	2016	9	September	credit_card	3
2	2016	10	October	credit_card	253
3	2016	10	October	UPI	63
4	2016	10	October	voucher	11
5	2016	10	October	debit_card	2
6	2016	12	December	credit_card	1
7	2017	1	January	credit_card	582
8	2017	1	January	UPI	197
9	2017	1	January	voucher	33
10	2017	1	January	debit_card	9
11	2017	2	February	credit card	1347

Insight:

- Credit Card is most commonly used payment types
- \bullet UPI is 2^{nd} mostly used payment types .showing as it's use is growing fastly.

6.2 Find the no. of orders placed on the basis of the payment installments that have been paid.

--Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select payment_installments,count(distinct o.order_id) orders_placed
from
`Target.orders` o
join
`Target.payments` p
on o.order_id=p.order_id
group by payment_installments
order by payment_installments;
```

JOB IN	FORMATION	RESULTS CH	IART
Row	payment_installment	orders_placed ▼	,
1	0	2	
2	1	49060	
3	2	12389	
4	3	10443	
5	4	7088	
6	5	5234	
7	6	3916	
8	7	1623	

Load more

INSIGHTS:

- Installment 1 plan is more popular among the customers.
- Majority of orders placed with a single payment installment. It means customer don't prefer to spread their payment into multiple payments.

Recommendation:

• Offer discount to single payment customers to encourage immediate revenue collection