Chapter 3

Maximum-Likelihood and Bayesian Parameter Estimation

Bayes Theorem for Classification

$$P(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j) \cdot P(\omega_j)}{p(\mathbf{x})} \quad (1 \le j \le c) \quad \text{(Bayes Formula)}$$

To compute posterior probability $P(\omega_j|\mathbf{x})$, we need to know: $\|\mathbf{x}\|$

Prior probability: $P(\omega_i)$ Likelihood: $p(\mathbf{x}|\omega_i)$

The collection of training examples is composed of c data sets

- Each example in \mathcal{D}_i is drawn according to the classconditional pdf, i.e. $p(\mathbf{x}|\omega_j)$ $\mathcal{D}_i \ (1 \le j \le c)$
 - \square Examples in \mathcal{D}_i are *i.i.d.* random variables, i.e. independent and identically distributed (独立同 分布)

Bayes Theorem for Classification (Cont.)

For prior probability: ______ no difficulty

 $P(\omega_j) = \frac{|\mathcal{D}_j|}{\sum_{i=1}^c |\mathcal{D}_i|}$ (Here, $|\cdot|$ returns the **cardinality**, i.e. number of elements, of a set)

For class-conditional pdf:

$$p(\mathbf{x}|\omega_j)$$

e.g.:
$$p(\mathbf{x}|\omega_j) \sim N(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$
 (parameters: $\boldsymbol{\theta}_j = \{\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\}$)
$$p(\mathbf{x}|\omega_j)$$
 $\mathbf{x} \in \mathbf{R}^d \longrightarrow \boldsymbol{\theta}_j \text{ contains "} d + d(d+1)/2$ " free parameters

To show the dependence of $p(\mathbf{x}|\omega_i)$ on $\boldsymbol{\theta}_i$ explicitly:

$$p(\mathbf{x}|\omega_j) \longrightarrow p(\mathbf{x}|\omega_j, \boldsymbol{\theta}_j)$$

□ Case II: $p(\mathbf{x}|\omega_j)$ doesn't have parametric form

Estimation Under Parametric Form

Parametric class-conditional pdf: $p(\mathbf{x}|\omega_j, \boldsymbol{\theta}_j)$ $(1 \leq j \leq c)$

□ Assumption I: Maximum-Likelihood (ML) estimation (极大似然估计)

View parameters as quantities whose values are **fixed but unknown**

Estimate parameter values by maximizing the likelihood (probability) of observing the actual training examples

□ Assumption II: Bayesian estimation (贝叶斯估计)

View parameters as random variables having some known prior distribution

Observation of the actual training examples transforms parameters' prior distribution into posterior distribution (via Bayes theorem)

Maximum-Likelihood Estimation

Settings

Likelihood function for each category is governed by some **fixed but unknown** parameters, i.e. $p(\mathbf{x}|\omega_j, \boldsymbol{\theta}_j)$ $(1 \le j \le c)$

Task: Estimate $\{\boldsymbol{\theta}_j\}_{j=1}^c$ from $\{\mathcal{D}_j\}_{j=1}^c$

A simplified treatment

Examples in \mathcal{D}_i gives no information about $\boldsymbol{\theta}_i$ if $i \neq j$

Work with each category **separately** and therefore simplify the notations by dropping subscripts w.r.t. categories

without loss of generality: $\mathcal{D}_j \longrightarrow \mathcal{D}$; $\boldsymbol{\theta}_j \longrightarrow \boldsymbol{\theta}$

Maximum-Likelihood Estimation (Cont.)

$$\mathbf{x}_k \sim p(\mathbf{x}|\boldsymbol{\theta})$$

$$(k=1,\ldots,n)$$

 θ : Parameters to be estimated

 $(k = 1, ..., n) \mid \mathcal{D} : A \text{ set of } i.i.d. \text{ examples } \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$

The objective function

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{k=1}^{n} p(\boldsymbol{x}_k|\boldsymbol{\theta})$$

The likelihood of θ w.r.t. the set of observed examples

The maximum-likelihood estimation

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ p(\mathcal{D}|\boldsymbol{\theta})$$

Intuitively, $\hat{\theta}$ best agrees with the actually observed examples

Maximum-Likelihood Estimation (Cont.)

Gradient Operator (梯度算子)

- ✓ Let $\theta = (\theta_1, \dots, \theta_p)^t \in \mathbf{R}^p$ be a *p*-dimensional vector
- ✓ Let $f: \mathbf{R}^p \to \mathbf{R}$ be *p*-variate real-valued function over θ

$$oldsymbol{
abla}_{oldsymbol{ heta}}\equivegin{bmatrix} rac{\partial heta_1}{arphi}\ rac{\partial}{\partial heta_n}\ \end{bmatrix}$$

$$f(\boldsymbol{\theta}) = \theta_1^2 + 3\theta_1\theta_2$$

$$\nabla_{\boldsymbol{\theta}} \equiv \begin{bmatrix} \frac{\partial}{\partial \theta_1} \\ \vdots \\ \frac{\partial}{\partial \theta_n} \end{bmatrix} \qquad f(\boldsymbol{\theta}) = \theta_1^2 + 3\theta_1 \theta_2$$

$$\nabla_{\boldsymbol{\theta}} f = \begin{bmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} 2\theta_1 + 3\theta_2 \\ 3\theta_1 \end{bmatrix}$$

$$l(\theta) = \ln p(\mathcal{D}|\theta)$$
 is named as the log-likelihood function

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta})$$
 $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta})$

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} l(\boldsymbol{\theta})$$

Maximum-Likelihood Estimation (Cont.)

$$l(\boldsymbol{\theta}) = \ln p(\mathcal{D}|\boldsymbol{\theta}) = \sum_{k=1}^{n} \ln p(\mathbf{x}_k|\boldsymbol{\theta})$$

p-dimensional vector with each component being a function over θ

p-variate real-valued function over θ (not over \mathbf{x}_k)

Necessary conditions for ML estimate $\hat{m{ heta}}$

$$\mathbf{\nabla}_{\boldsymbol{\theta}} \, l_{\,|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}} = \mathbf{0} \; (\mathbf{a} \, \mathbf{set} \, \mathbf{of} \, \boldsymbol{p} \, \mathbf{equations})$$

The Gaussian Case: Unknown μ

$$\mathbf{x}_k \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$(k = 1, \dots, n)$$

 $\frac{\mathbf{x}_k \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})}{(k=1,\ldots,n)}$ suppose $\boldsymbol{\Sigma}$ is known $\boldsymbol{\longrightarrow} \boldsymbol{\theta} = \{\boldsymbol{\mu}\}$

$$p(\mathbf{x}_k|\boldsymbol{\mu}) = \frac{1}{(2\pi)^{d/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})\right]$$

$$\ln p(\mathbf{x}_k|\boldsymbol{\mu}) = -\frac{1}{2}\ln\left[(2\pi)^d|\boldsymbol{\Sigma}|\right] - \frac{1}{2}(\mathbf{x}_k - \boldsymbol{\mu})^t\boldsymbol{\Sigma}^{-1}(\mathbf{x}_k - \boldsymbol{\mu})$$

$$= -\frac{1}{2} \ln \left[(2\pi)^d |\mathbf{\Sigma}| \right] - \frac{1}{2} \mathbf{x}_k^t \mathbf{\Sigma}^{-1} \mathbf{x}_k + \boldsymbol{\mu}^t \mathbf{\Sigma}^{-1} \mathbf{x}_k - \frac{1}{2} \boldsymbol{\mu}^t \mathbf{\Sigma}^{-1} \boldsymbol{\mu}$$

$$\nabla_{\boldsymbol{\mu}} \ln p(\mathbf{x}_k | \boldsymbol{\mu}) = \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

The Gaussian Case: Unknown μ

(Cont.)

$$l(\boldsymbol{\mu}) = \sum_{k=1}^{n} \ln p(\mathbf{x}_k | \boldsymbol{\mu})$$

Intuitive result

ML estimate for the unknown μ is just the arithmetic average of training samples – *sample mean*

$$\nabla_{\boldsymbol{\mu}} \ln p(\mathbf{x}_k | \boldsymbol{\mu}) = \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

$$\mathbf{\nabla}_{\boldsymbol{\mu}} l = \sum_{k=1}^{n} \mathbf{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

for ML estimate $\hat{oldsymbol{\mu}}$)

Multiply
$$\Sigma$$
 on both sides

$$\sum_{k=1}^n \mathbf{\Sigma}^{-1}(\mathbf{x}_k - \hat{oldsymbol{\mu}}) = \mathbf{0}$$

$$\sum_{k=1}^n (\mathbf{x}_k - \hat{oldsymbol{\mu}}) = \mathbf{0}$$

The Gaussian Case: Unknown μ and Σ

$$\mathbf{x}_k \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$(k = 1, \dots, n)$$

$$\mathbf{x}_k \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 $(k = 1, \dots, n)$
 $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ unknown $\boldsymbol{\longrightarrow} \boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$

Consider univariate case

$$p(x_k|\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \qquad \left(\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \mu \\ \sigma^2 \end{bmatrix}\right)$$

The Gaussian Case: Unknown μ and Σ (Cont.)

$$l(\boldsymbol{\theta}) = \sum_{k=1}^{n} \ln p(x_k | \boldsymbol{\theta})$$

$$\nabla_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) =$$

$$\nabla_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) =$$

$$\begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \end{bmatrix}$$

$$\nabla_{\theta} l = \begin{bmatrix} \sum_{k=1}^{n} \frac{1}{\theta_2} (x_k - \theta_1) \\ \sum_{k=1}^{n} \left(-\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \right) \end{bmatrix}$$

$$\sum_{k=1}^{n} \frac{1}{\hat{\theta}_2} (x_k - \hat{\theta}_1) = 0$$

$$-\sum_{k=1}^{n} \frac{1}{\hat{\theta}_2} + \sum_{k=1}^{n} \frac{(x_k - \hat{\theta}_1)^2}{\hat{\theta}_2^2} = 0$$

 $\nabla_{\theta} l = 0$ (necessary condition for ML estimate $\hat{\theta}_1$ and $\hat{\theta}_2$)

The Gaussian Case: Unknown μ and Σ (Cont.)

$$\sum_{k=1}^{n} \frac{1}{\hat{\theta}_2} (x_k - \hat{\theta}_1) = 0 \implies \sum_{k=1}^{n} (x_k - \hat{\theta}_1) = 0 \implies \hat{\theta}_1 = \frac{1}{n} \sum_{k=1}^{n} x_k$$

$$-\sum_{k=1}^{n} \frac{1}{\hat{\theta}_2} + \sum_{k=1}^{n} \frac{(x_k - \hat{\theta}_1)^2}{\hat{\theta}_2^2} = 0 \quad \Longrightarrow \quad \hat{\theta}_2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\theta}_1)^2$$

ML estimate in univariate case

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$

The Gaussian Case: Unknown μ and Σ (Cont.)

ML estimate in *multivariate* case

Intuitive result as well!

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k$$
Arithmetic average of n vectors \mathbf{x}_k

$$\hat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_k - \hat{\boldsymbol{\mu}})(\mathbf{x}_k - \hat{\boldsymbol{\mu}})^t$$
 of n matrices
$$(\mathbf{x}_k - \hat{\boldsymbol{\mu}})(\mathbf{x}_k - \hat{\boldsymbol{\mu}})^t$$

Arithmetic average

Bayesian Estimation

Settings

- □ The **parametric form** of the likelihood function for each category is known $p(\mathbf{x}|\omega_j, \boldsymbol{\theta}_j)$ $(1 \le j \le c)$
- \square However, θ_j is considered to be **random variables** instead of being fixed (but unknown) values

In this case, we can no longer make a single ML estimate $\hat{\boldsymbol{\theta}}_j$ and then infer $P(\omega_j|\mathbf{x})$ based on $P(\omega_j)$ and $p(\mathbf{x}|\omega_j,\hat{\boldsymbol{\theta}}_j)$

How can we proceed under this situation

Fully exploit training examples!

$$P(\omega_j|\mathbf{x}) \longrightarrow P(\omega_j|\mathbf{x}, \mathcal{D}^*)$$
$$(\mathcal{D}^* = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \dots \cup \mathcal{D}_c)$$

Bayesian Estimation (Cont.)

$$P(\omega_j | \mathbf{x}, \mathcal{D}^*) = \frac{p(\omega_j, \mathbf{x}, \mathcal{D}^*)}{p(\mathbf{x}, \mathcal{D}^*)} = \frac{p(\omega_j, \mathbf{x}, \mathcal{D}^*)}{\sum_{i=1}^c p(\omega_i, \mathbf{x}, \mathcal{D}^*)}$$

$$p(\omega_j, \mathbf{x}, \mathcal{D}^*) = p(\mathcal{D}^*) \cdot p(\omega_j, \mathbf{x} | \mathcal{D}^*) = p(\mathcal{D}^*) \cdot P(\omega_j | \mathcal{D}^*) \cdot p(\mathbf{x} | \omega_j, \mathcal{D}^*)$$

$$P(\omega_j|\mathbf{x}, \mathcal{D}^*) = \frac{p(\mathcal{D}^*) \cdot P(\omega_j|\mathcal{D}^*) \cdot p(\mathbf{x}|\omega_j, \mathcal{D}^*)}{p(\mathcal{D}^*) \cdot \sum_{i=1}^c P(\omega_i|\mathcal{D}^*) \cdot p(\mathbf{x}|\omega_i, \mathcal{D}^*)}$$

$$P(\omega_j | \mathcal{D}^*) = P(\omega_j)$$

$$p(\mathbf{x} | \mathbf{y}, \mathcal{D}^*) = p(\mathbf{x} | \mathbf{y}, \mathcal{D}^*)$$

$$p(\mathbf{x}|\omega_j, \mathcal{D}^*) = p(\mathbf{x}|\omega_j, \mathcal{D}_j)$$

$$\frac{P(\omega_{j}|\mathcal{D}^{*}) \cdot p(\mathbf{x}|\omega_{j}, \mathcal{D}^{*})}{\sum_{i=1}^{c} P(\omega_{i}|\mathcal{D}^{*}) \cdot p(\mathbf{x}|\omega_{i}, \mathcal{D}^{*})}$$

$$= \frac{P(\omega_j) \cdot p(\mathbf{x}|\omega_j, \mathcal{D}_j)}{\sum_{i=1}^c P(\omega_i) \cdot p(\mathbf{x}|\omega_i, \mathcal{D}_i)}$$

Bayesian Estimation (Cont.)

$$P(\omega_j|\mathbf{x}, \mathcal{D}^*) = \frac{P(\omega_j) \cdot p(\mathbf{x}|\omega_j, \mathcal{D}_j)}{\sum_{i=1}^c P(\omega_i) \cdot p(\mathbf{x}|\omega_i, \mathcal{D}_i)} \quad \begin{array}{|l|l|} \textbf{Key problem} \\ \textbf{Determine } p(\mathbf{x}|\omega_j, \mathcal{D}_j) \end{array}$$

Treat each class independently

Simplify the *class-conditional pdf* notation $p(\mathbf{x}|\omega_i, \mathcal{D}_i)$ as $p(\mathbf{x}|\mathcal{D})$

$$p(\mathbf{x}|\mathcal{D}) = \int p(\mathbf{x}, \boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$
 ($\boldsymbol{\theta}$: random variables w.r.t. parametric form)

$$= \int p(\mathbf{x}|\boldsymbol{\theta}, \mathcal{D}) \, p(\boldsymbol{\theta}|\mathcal{D}) \, d\boldsymbol{\theta}$$

$$= \int p(\mathbf{x}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta} \quad (\mathbf{x} \text{ is independent of } \mathcal{D} \text{ given } \boldsymbol{\theta})$$

Bayesian Estimation: The General Procedure

Phase I: prior pdf \rightarrow posterior pdf (for θ)

Bayesian Estimation: The General Procedure

Phase II: posterior pdf (for θ) \rightarrow class-conditional pdf (for \mathbf{x})

Phase III:
$$P(\omega_j|\mathbf{x}, \mathcal{D}^*) = \frac{P(\omega_j) \cdot p(\mathbf{x}|\omega_j, \mathcal{D}_j)}{\sum_{i=1}^c P(\omega_i) \cdot p(\mathbf{x}|\omega_i, \mathcal{D}_i)}$$

The Gaussian Case: Unknown μ

Consider *univariate* case: $\theta = \{\mu\}$ (σ^2 is known)

Phase I: prior pdf \rightarrow posterior pdf (for θ)

$$\frac{p(\mu)}{} + \underbrace{p(x|\mu)}_{} + \mathcal{D} \longrightarrow p(\mu|\mathcal{D})$$

$$\Rightarrow p(x|\mu) \sim N(\mu, \sigma^2) \text{ Gaussian parametric form}$$

$$\Rightarrow p(\mu) \sim N(\mu_0, \sigma_0^2) \text{ Gaussian form}$$

$$\Rightarrow p(\mu) \sim N(\mu_0, \sigma_0^2) \text{ Gaussian form}$$

How would $p(\mu|\mathcal{D})$ look like in this case?

- Prior pdf still takes Gaussian form
- Other form of prior pdf could be assumed as well

The Gaussian Case: Unknown μ (Cont.)

$$p(\mu|\mathcal{D}) = \frac{p(\mu,\mathcal{D})}{p(\mathcal{D})} = \frac{p(\mu)p(\mathcal{D}|\mu)}{\int p(\mu)p(\mathcal{D}|\mu) \, d\mu}$$

$$= \alpha \, p(\mu) \, p(\mathcal{D}|\mu) \qquad \qquad (\int p(\mu)p(\mathcal{D}|\mu) \, d\mu \text{ is a constant not related to } \mu)$$

$$= \alpha \, p(\mu) \prod_{k=1}^n p(x_k|\mu) \qquad \text{(examples in } \mathcal{D} \text{ are } \textit{i.i.d.})$$

$$p(\mu) \sim N(\mu_0, \sigma_0^2)$$

$$p(x|\mu) \sim N(\mu, \sigma^2)$$

$$p(\mu) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2}\left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right]$$

$$p(x_k|\mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x_k - \mu}{\sigma}\right)^2\right]$$

The Gaussian Case: Unknown μ

(Cont.)

$$p(\mu|\mathcal{D}) = \alpha p(\mu) \prod_{k=1}^{n} p(x_k|\mu)$$
 function of μ

$$\begin{array}{c|c}
 & p(\mu|\mathcal{D}) \text{ is an exponential} \\
 & p(\mu|\mathcal{D}) \text{ is an exponential} \\
 & p(\mu|\mathcal{D}) \text{ is a function of a quadratic} \\
 & p(\mu|\mathcal{D}) \text{ is a function of } \mu
\end{array}$$

$$= \alpha \cdot \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2} \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right] \cdot \prod_{k=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x_k - \mu}{\sigma}\right)^2\right]$$

$$= \alpha' \cdot \exp\left[-\frac{1}{2}\left(\left(\frac{\mu - \mu_0}{\sigma_0}\right)^2 + \sum_{k=1}^n \left(\frac{\mu - x_k}{\sigma}\right)^2\right)\right] \qquad \frac{p(\mu|\mathcal{D})}{N(\mu_n, \sigma_n^2)}$$

$$p(\mu|\mathcal{D}) \sim$$
 $N(\mu_n, \sigma_n^2)$

$$= \alpha'' \cdot \exp\left[-\frac{1}{2}\left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)\mu^2 - 2\left(\frac{1}{\sigma^2}\sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2}\right)\mu\right]\right]$$

The Gaussian Case: Unknown μ (Cont.)

$$p(\mu|\mathcal{D}) = \alpha'' \cdot \exp\left[-\frac{1}{2}\left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)\mu^2 - 2\left(\frac{1}{\sigma^2}\sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2}\right)\mu\right]\right]$$

$$p(\mu|\mathcal{D}) = \frac{1}{\sqrt{2\pi}\sigma_n} \exp\left[-\frac{1}{2} \left(\frac{\mu - \mu_n}{\sigma_n}\right)^2\right] = \alpha'' \cdot \exp\left[-\frac{1}{2} \left[\frac{1}{\sigma_n^2} \mu^2 - 2\frac{\mu_n}{\sigma_n^2} \mu\right]\right]$$

Equating the
$$\frac{1}{\sigma_n^2} = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}$$
 coefficients in both form:
$$\frac{\mu_n}{\sigma_n^2} = \frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2}$$

$$\sigma_n^2 = \frac{\sigma^2 \sigma_0^2}{n\sigma_0^2 + \sigma^2}$$

$$\mu_n = \frac{\sigma_n^2}{\sigma^2} \sum_{k=1}^n x_k + \frac{\sigma_n^2}{\sigma_0^2} \mu_0$$

The Gaussian Case: Unknown μ (Cont.)

Phase II: posterior pdf (for θ) \rightarrow class-conditional pdf (for \mathbf{x})

$$\begin{array}{c|c}
p(\mu|\mathcal{D}) + p(x|\mu) & \longrightarrow p(x|\mathcal{D}) \\
\hline
 & \longrightarrow p(x|\mu) \sim N(\mu, \sigma^2) \\
 & \longrightarrow p(\mu|\mathcal{D}) \sim N(\mu_n, \sigma_n^2)
\end{array}$$

How would $p(x|\mathcal{D})$ look

like in this case?

$$\sigma_n^2 = \frac{\sigma^2 \sigma_0^2}{n\sigma_0^2 + \sigma^2}$$

$$\mu_n = \frac{\sigma_n^2}{\sigma^2} \sum_{k=1}^n x_k + \frac{\sigma_n^2}{\sigma_0^2} \mu_0$$

The Gaussian Case: Unknown μ

(Cont.)

$$p(x|\mathcal{D}) = \int p(x|\mu)p(\mu|\mathcal{D})d\mu$$
 Eq.25 [pp.92] for prediction

Then, phase III follows naturally

$$= \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] \frac{1}{\sqrt{2\pi}\sigma_n} \exp\left[-\frac{1}{2} \left(\frac{\mu-\mu_n}{\sigma_n}\right)^2\right] d\mu$$

$$= \beta \cdot \exp \left[-\frac{1}{2} \frac{(x - \mu_n)^2}{\sigma^2 + \sigma_n^2} \right] \quad \text{Eq.36 [pp.95]}$$

$$p(x|\mathcal{D})$$
 is an exponential $p(x|\mathcal{D})$ is a function of a quadratic function of x as well

The Gaussian Case: Unknown μ (Multivariate)

$$\begin{bmatrix} \boldsymbol{\theta} = \{\boldsymbol{\mu}\} \ (\boldsymbol{\Sigma} \text{ is known}) \end{bmatrix} \longrightarrow p(\mathbf{x}|\boldsymbol{\mu}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$p(\boldsymbol{\mu}) \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$

$$p(\boldsymbol{\mu}|\mathcal{D}) \sim N(\boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n)$$
 $p(\mathbf{x}|\mathcal{D}) \sim N(\boldsymbol{\mu}_n, \boldsymbol{\Sigma} + \boldsymbol{\Sigma}_n)$ $\boldsymbol{\mu}_n = \boldsymbol{\Sigma}_0 \left(\boldsymbol{\Sigma}_0 + \frac{1}{n}\boldsymbol{\Sigma}\right)^{-1} \frac{1}{n} \sum_{k=1}^n \mathbf{x}_k + \frac{1}{n}\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma}_0 + \frac{1}{n}\boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\mu}_0$ $\boldsymbol{\Sigma}_n = \boldsymbol{\Sigma}_0 \left(\boldsymbol{\Sigma}_0 + \frac{1}{n}\boldsymbol{\Sigma}\right)^{-1} \frac{1}{n}\boldsymbol{\Sigma}$

Summary

- Key issue for PR
 - Estimate prior and class-conditional pdf from training set
 - Basic assumption on training examples: *i.i.d.*
- Two strategies to the key issue
 - Parametric form for class-conditional pdf
 - Maximum likelihood (ML) estimation
 - Bayesian estimation
 - No parametric form for class-conditional pdf

Summary (Cont.)

- Maximum likelihood estimation
 - Settings: parameters as fixed but unknown values
 - The objective function: Log-likelihood function
 - Necessary conditions for ML estimation: gradient for the objective function should be zero vector
 - □ The Gaussian case
 - Unknown μ
 - Unknown μ and Σ

Summary (Cont.)

- Bayesian estimation
 - Settings: parameters as random variables
 - The general procedure
 - Phase I: prior pdf \rightarrow posterior pdf (for θ)
 - Phase II: *posterior pdf* (for θ) → *class-conditional pdf* (for \mathbf{x})
 - Phase III: prediction (Eq.22 [pp.91])
 - □ The Gaussian case
 - Unknown μ : univariate and multivariate