Лабораторная работа № 3.4.2.

Ситников Арсений С01-019.

Цель работы:

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Оборудование:

Катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Ход работы:

Рис. 1

1. Подготовили приборы к работе. Охладили термостат, включили в сеть автогенератор, частотометр и вольтметр. Оценили допустимую ЭДС термопары

$$\Delta \varepsilon = \frac{\Delta T}{k} = \frac{0.5^{\circ} C}{24 \text{ град/мB}} \approx 0.02 \text{ мB}$$

- 2. Исследуем зависимость период колебаний LC-автогенератора от температуры образца. $au_0=9{,}045~{\rm MKCeK}$ период колебаний без образца. Проведем измерения от 13 °C до 38 °C. Результаты представлены в таблице 1.
- 3. Отключаем все приборы и охлаждаем термостат.

<i>Т</i> _{воды} , °С	U, мВ	$T_{\text{образца}}$, ${}^{0}C$	τ, мксек
13,09	-0,002	13,042	10,801
13,93	-0,015	13,570	10,789
14,99	-0,017	14,582	10,748
16,01	-0,007	15,842	10,670
17,14	-0,008	16,948	10,593
17,97	-0,011	17,706	10,526
18,99	-0,013	18,678	10,404
19,99	-0,012	19,702	10,259
22,16	-0,011	21,896	9,873
24,21	-0,014	23,874	9,555
26,11	-0,015	25,750	9,419
28,28	-0,015	27,920	9,332
31,02	-0,041	30,036	9,289
33,01	-0,040	32,050	9,254
35,09	-0,041	34,106	9,227
36,90	-0,036	36,036	9,208
38,96	-0,039	38,024	9,193

Таблица 1

Построим график зависимости $f(T) = 1/(\tau^2 - \tau_0^2)$.

Из полученной прямой мы можем получить парамагнитную точку Кюри для гадолиния. Прямая задается уравнением у = 0,0189х - 0,3446. Следовательно: $\theta_p = \frac{0,3446}{0,0189} \approx 18,23^0 C$.

Посчитаем погрешности (считаем погрешность частотомера 0,001 мкс)

$$\sigma_{\tau^2 - \tau_0^2} = 2\tau \sigma_{\tau}$$

$$\sigma_{1/(\tau^2 - \tau_0^2)} = \frac{2\tau}{(\tau^2 - \tau_0^2)^2} \sigma_{\tau}$$

т, мкс	$\sigma_{ au^2- au_0^2}$, MKC^2	$\sigma_{1/(au^2- au_0^2)}$, $1/$ мкс^2
10,801	0,022	0,00002
10,789	0,022	0,00002
10,748	0,022	0,00002
10,670	0,021	0,00002
10,593	0,021	0,00002
10,526	0,021	0,00003
10,404	0,021	0,00023
10,259	0,021	0,00004
9,873	0,020	0,00008
9,555	0,019	0,00021
9,419	0,019	0,00040
9,332	0,019	0,00067
9,289	0,019	0,00093
9,254	0,019	0,00126
9,227	0,018	0,00167
9,208	0,018	0,00207
9,193	0,018	0,00253

$$\sigma_k = \sqrt{\frac{1}{n-2} \left(\frac{D_{yy}}{D_{xx}} - k^2\right)} = 0,0003$$

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle} = 0,0094$$

$$\sigma_{\theta_p} = \theta_p \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_b}{h}\right)^2} = 0,58\,^{0}C$$

Вывод: Мы изучили температурную зависимость магнитной восприимчивости ферромагнетика.

Получили значение для парамагнитной точки кюри $\theta_p=18{,}23\pm0{,}58^{0}$ С, ~arepsilonpprox3%

В сравнении с табличным значением (19 °C) наше значение находится в 2σ окрестности.