Approximation Algorithms

ORAN DANON

§1. Introduction

§ 1.1 Definitions.

Let μ denote a maximization problem, and let ν denote a minimization problem.

A poly-time algorithm \mathcal{A} satisfying:

$$|\mathcal{A}(I)|^{a} \geq C \cdot \mathbf{OPT}(I)$$

for all instance I of μ , is said to be an **approximation algorithm for** μ with **approximation ratio** C.

 $^{a}|\mathcal{A}(I)|$ denotes what the algorithm \mathcal{A} output on instance I

Remark 1. 1-approximation algorithm is one that solves the problem optimally. Hence we would like to get approximation ratio as close to one as possible.

DEFINITION 2. A sequence of algorithms A is said to be an **approximation scheme** for μ if for every instance I of μ and for every $\varepsilon > 0$:

$$|\mathcal{A}(I,\varepsilon)| \ge (1-\varepsilon) \mathbf{OPT}(I).$$

Moreover, such a scheme is said to be a **poly-time approximation scheme** and abbreviate **PTAS** if for every $\varepsilon > 0$ the running time of \mathcal{A} is bounded by $\operatorname{poly}(|I|)$.

Remark 3.

- Here ε is part of the input.
- Why do we say scheme?
 - Because we can treate \mathcal{A} as a family of algorithms i.e. $\{\mathcal{A}_{\varepsilon}\}_{{\varepsilon}>0}$.
- As an example for PTAS, take $O(n^{2/\varepsilon})$, then for every ε this is a polynomial.

DEFINITION 4. A PTAS whose running time is bounded by a polynomial of the size of the instance and $1/\varepsilon$ is called a **fully poly-time approximation scheme** and abbreviate **FPTAS**.

REMARK 5. As an example one can take $O\left((1/\varepsilon)^2 n^3\right)$

For *NPC* problems, an FPTAS is the best one can hope for.

§ 1.2 Knapsack Problem.

Instance: items a_1, a_2, \ldots, a_n with weights $w(a_i)$ and profits $p(a_i)$ for all $1 \le i \le n$, and a total weight $W \in \mathbb{R}$.

Goal: a boolean vector (x_1, x_2, \ldots, x_n) such that

$$\max \sum_{i=1}^{n} x_i p(x_i)$$
 such that $\sum_{i=1}^{n} x_i w(a_i) \leq W$

For knapsack problem one can obtain O(nW) algorithm using dynamic programming as follows:

- 1. For $i \in \{1, 2, ..., n\}$ and $0 \le j \le W$ set S(i, j) to be the optimal if we can only choose from $\{a_1, ..., a_i\}$ and the sack limitation is j.
- 2. Then set

$$S(i,j) = \begin{cases} \max\{S(i-1,j), p(a_i) + S(i-1,j-w(a_i))\} &, w(a_i) \le j \\ S(i-1,j) &, otherwise \end{cases}$$

The running time of this algorithm is pseudo-polynomial.

DEFINITION 6. If I is an instance of μ we write $|I_n|$ to denote the length of the unary encoding of I.

DEFINITION 7. An algorithm A for μ is said to be pseudo-polynomial if its running time is bounded by $\operatorname{\mathbf{poly}}(|I_n|)$ for all instance I of μ .

REMARK 8.

- Recall that time complexity ≥ space complexity demonstrates why unary Unicode is unreasonable.
- For knapsack: The algorithm above runs in $\Theta(nW)$ knapsack has a pseudo-poly algorithm.

Figure 1: Two types of problems

Thus we can conclude that being NPC does not exclude not having a pseudo-poly algorithm.

DEFINITION 9. Given a decision problem μ and an instance I of μ define:

- Max(I) := The largest integer present in I.
- Length(I) := length of the encoding of I under a reasonable encoding scheme (say binary).

DEFINITION 10. Problem μ is said to be a number problem if there exists no poly $p(\cdot)$ such that

$$Max(I) \le p(Length(I))$$

DEFINITION 11. An algorithm is said to be pseudo-polynomial if the algorithm is polynomial in Length(I) and Max(I) for every I.