Single-Machine Scheduling with with Supporting Tasks

- Tasks $\{1,2,...,m\}$ and Jobs $\{1,2,...,n\}$ are to be processed on a single machine (So, we have m+n positions on the machine)
- Task *i* is characterized by processing time t_i , Job *j* is characterized by processing time p_j and weight w_i
- For task i, J_i is the set of jobs that can start only when task j is finished
- For job j, \mathcal{T}_j is the set of tasks that must precede the start of job j
- The supporting relation is presented as a bi-partite graph
- At any time, the machine can perform at most one task or one job
- A schedule is feasible if the precedence constraints are observed
- The problem is to determine a schedule that has the minimum $\sum_{j=1}^{n} w_j C_j$, where C_j is the completion time of job j

Tasks Sequence is Given

Reduce the size O((m+n)!) of solution space to O(m!)

We can also reduce the size to O(n!) by the technique of fixing a job sequence.