Development of a New First-Level Trigger for Isolated Muons at the ATLAS Experiment

BSc Thesis by Rubén Piles Delgado Supervisors: Prof. Dr. Volker Büscher & Prof. Dr. Stefan Tapprogge

September 11, 2025

Table of Contents

- 1 Introduction & Motivation
- 2 Theoretical Background
- 3 Methodology & Results
- 4 Summary & Outlook
- 6 References

Introduction & Motivation

- The LHC collides high-energy protons at high rates.
- The ATLAS detector records many relevant variables from these collisions.
- Huge data volume generated requires a Trigger System to select interesting events.
- \bullet Moreover, HL-LHC upgrade will increase data significantly \to Trigger must keep improving
- This thesis aims to optimize the Level-1 Trigger to better identify prompt muons.

Theoretical Background

Theoretical Background

September 11, 2025

The Standard Model of Particle Physics

• Elementary
particles interact
with each other via
fundamental
interactions
mediated by the
exchange of force
carriers

The LHC Accelerator

- Protons are **pre-accelerated** in smaller accelerators.
- Two beams circulate in **opposite directions** inside a 26.7 km ring.
- Beams are guided and focused using superconducting magnets.
- Collisions up to 13.6 TeV center-of-mass energy at 4 interaction points (e.g., ATLAS detector).

The ATLAS Detector I

- Reconstructs particle energy, momentum, charge, and trajectories.
- Main subsystems: Inner Detector, Calorimeter & Muon Spectrometer

September 11, 2025

The ATLAS Detector II

- Inner Detector: Tracks charged particles inside a magnetic field.

 Measures momentum from trajectory curvature.
- Calorimeters: Absorbs particles to measure energy.
- Muon Spectrometer: Detects muons after they pass through other subsystems. Uses gas chambers and magnetic fields for precise tracking.

Coordinate System & Kinematic Variables I

- Coordinates:
 - Cylindrical **z** and **azimuth angle** ϕ
 - Pseudorapidity (η) : preferred over θ , approximately Lorentz-invariant:

$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

Coordinate system & Kinematic Variables II

Other variables

- Transverse momentum (p_T) : pp collisions involve partons with unknown momentum along z, but known p_T .
- Angular distance: $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

September 11, 2025

ATLAS Trigger System I

- ATLAS observes **40 million collisions per second**, corresponding to **more than 60 TB/s** of data.
- Most events are common and already well-studied.

ATLAS Trigger System II

- The ATLAS Trigger System reduces the data rate to 3 kHz, by selecting only *interesting* events.
- Two main parts:
 - Level-1 Trigger: Hardware-based, decision in $< 2.5 \,\mu s$.
 - **High-Level Trigger (HLT)**: Software-based, slower full event reconstruction.

ATLAS Trigger System III

ATLAS Trigger System IV

- L1Calo: Detects high-energy jets, electrons and taus via calorimeter data.
 - **jFEX module**: Real-time jet detection and energy sums (7680 calorimeter towers, or *pixels*).

ATLAS Trigger System V

- Muons penetrate through inner detectors and calorimeters.
- L1Muon: Detects muons via hits in spectrometer chambers. It checks for sequences of hits in multiple spectrometer layers.
- Coincidence windows used to determine p_T thresholds.

CTP: Combines all L1 info to make final decision.

Methodology & Results

Methodology & Results

Goal: Improve Level-1 Muon Trigger

Goal and strategy

- Distinguish **prompt muons** (from the primary p-p interaction) from **non-prompt muons** (produced in-flight by hadron decays).
- How? Comparing calorimeter-based **isolation energies** from promp and non-prompt muons.
- Why? **Jets surrounding non-prompt muons** may help to discriminate

Muon Isolation

- Construct a **hollow cone** around the muon impact point
- Sum the energies of all calorimeter towers whose centers lie inside the cone.
- Result = isolation energy (E_{iso}) .

$$\Delta \eta \times \Delta \phi = 0.1 \times 0.1$$

Dataset Overview

- Data source: ATLAS Run 3 (offline+online objects).
 - Online objects: reconstructed in real time by the trigger.
 - Offline objects: reconstructed after data-taking \rightarrow used to mimic Run 4 trigger performance
- Samples:
 - **1** $Z \to \mu^- \mu^+$: predominantly **prompt muons**.
 - 2 ZeroBias: enriched in non-prompt muons
- Pre-selections must be applied

Pre-selections on $Z \to \mu\mu$ events I

- To fire the Trigger
 - Kinematics
 - Leading muon $p_T \ge 25 \,\mathrm{GeV}$
 - Sub-leading muon $p_T \ge 20 \,\mathrm{GeV}$
 - **Isolation**: both muons satisfy a track-based isolation cut.
 - Invariant-mass window: $70 < m_{\mu\mu} < 110 \,\text{GeV}$ (close to Z mass).

Pre-selections on $Z \rightarrow \mu\mu$ events II

- Z mass selection
 - For events with > 2 muons, compute $m_{\mu\mu}$ for every possible pair.
 - Keep the pair closest to 91.2 GeV.
- Only muons with Quality = 0 (highest reconstruction standards)

Pre-selections on ZeroBias events I

- ZeroBias trigger
 - Random events (no physics-specific selection).
 - Dominated by **non-prompt muons**, ideal for background studies.

September 11, 2025

Pre-selections on ZeroBias events II

- Online–Offline matching: Offline muons are kept only if they are close to an online muon ($\Delta R < 0.4$).
- Low- p_T cut: Discard ZeroBias muons with $p_T < 14 \,\text{GeV}$, to make the background p_T spectrum comparable to the $Z \to \mu\mu$ sample.

Samples after pre-selections I

- Signal sample
 - Derived from the original $Z \to \mu^- \mu^+$ dataset.
 - Expected to contain a high fraction of **prompt muons**.
- Background sample
 - Obtained from the original ZeroBias dataset.
 - Dominated by non-prompt muons.

September 11, 2025

Samples after pre-selections II

Samples after pre-selections III

Samples after pre-selections IV

Calorimeter noise cuts I

Noise sources

- Detector noise: fluctuations in electronic read-out / sensor imperfections
- Pile-up: simultaneous interactions may overlap in the detector.
- Strategy
 - Apply a minimum-energy threshold to each calorimeter tower.
 - \bullet Thresholds depend on tower type and η position
 - Towers with energy below the threshold are set to zero (treated as noise).

Calorimeter noise cuts II

η Interval	EM Noise Cuts [MeV]	HAD Noise Cuts [MeV]
(0, 0.1]	1150	0
[0.1, 0.2]	1150	0
[0.2, 0.3]	1200	0
[0.3, 0.4]	1150	0
[0.4, 0.5]	1100	0
[0.5, 0.6]	1100	0
[0.6, 0.7]	1050	0
[0.7, 0.8]	1050	0
[0.8, 0.9]	1000	0
[0.9, 1.0]	1000	0
[1.0, 1.1]	950	0
[1.1, 1.2]	950	0
[1.2, 1.3]	900	0
[1.3, 1.4]	850	0
[1.4, 1.5]	1300	500
[1.5, 1.6]	1150	950
[1.6, 1.7]	1050	850
[1.7, 1.8]	1000	700
[1.8, 1.9]	1050	750
[1.9, 2.0]	950	700
[2.0, 2.1]	950	650
[2.1, 2.2]	900	650
[2.2, 2.3]	850	600
[2.3, 2.4]	900	550
[2.4, 2.5]	800	1300
[2.5, 2.7]	2150	1250
[2.7, 2.9]	2000	1150
[2.9, 3.1]	1800	350
$[3.1, \infty)$	1100	0

Isolation energy vs. ΔR cone I

Isolation energy vs. ΔR cone II

- TopoEtCones are fancier isolation quantities used in ATLAS reconstruction.
- Impossible to compute them in real time.
- We employ an isolation that acts as an **approximation** of the TopoEtCones.
- As a sanity check we compare the two.

Isolation energy vs. ΔR cone III

Isolation energy vs. ΔR cone IV

September 11, 2025

ROC curves I

ROC curve

A ROC curve visualizes the trade-off between signal efficiency and background contamination.

- **x-axis**: FPR: fraction of background muons that pass the selection (trigger rate).
- y-axis: TPR: fraction prompt muons correctly identified (trigger efficiency).

ROC curves II

Goal

Find the ΔR cone that yields the lowest FPR value at TPR = 0.95

Two-variable optimization I

- FPR(95%)depends on two parameters: ΔR_{min} and ΔR_{max}
- Hard to tell which is best

Two-variable optimization II

• Solution: use a grid displaying FPR at TPR=0.95 values

Two-variable optimization III

- Hollow cones are superior.
 - Best region clusters around $\Delta R_{\rm min} \approx 0.1$
- 2 Too large ΔR_{min} is bad.
 - Potentially excludes part of the jet surrounding a non-prompt muon, which locates around the center
- Optimal outer radius.
 - With $\Delta R_{\rm min} \approx 0.1$, the minimum FPR(95%) occurs near $\Delta R_{\rm max} \approx 0.3$.
 - Extending the cone beyond 0.3 incorporates additional noise without capturing extra jet activity.

Summary & Conclusions

Summary & Conclusions

September 11, 2025

Summary & Conclusions I

- ATLAS records events at $\mathcal{O}(40\text{MHz})$; the trigger must decide within a few µs.
- Muons are excellent signatures of rare processes (e.g. $Z \to \mu^+ \mu^-$, $W \to \mu \nu$).
- Goal: improve prompt-muon vs. non-prompt-muon.

Key result

- Optimal isolation cone: $\Delta R \in [0.1, 0.3]$.
- Achieved FPR(95%) = 0.778 \pm 0.07 , i.e. a \sim 22% reduction in trigger rate for only a 5% loss in efficiency.

Summary & Conlcusions II

Future work & improvements

- Integration into the real Muon Trigger
 This was just a proof-of-concept, not tested in the real world
- **2 Low-** p_T muon regime Extend the study to $p_T < 20 \,\text{GeV}$ muons; evaluate whether the same ΔR window remains optimal.
- **3** Other physics processes Test the method on other muon-producing decays, such as $W \to \mu\nu$.

References I

Figures without reference are properly referenced in the *Bibliography* section of my thesis.

- Saadeh Dayoub on Pinterest https://www.pinterest.com/pin/735001601669839698/
- Michael Tino & M Kobel,
 https://www.researchgate.net/publication/241772118_
 Determination_of_muon_reconstruction_efficiencies_in_the_
 ATLAS_detector_using_a_tag_probe_approach_in_Z_events
- What is a Viewfinder and How is it Used?, https://greatbigphotographyworld.com/camera-viewfinder/
- Alessandra Betti, https://www.mdpi.com/2410-390X/6/3/37

Thanks

Thank you!

