HOMEWORK 4

1a) Context Free Graman (CFG) 1-

b) Perse tree for (0.23/(5+3.1)-20)* 2

F-> (E)|E+E|E-E|E*E|E/E|E

This is senmon for celculation. One rule for t, -, *, 1, an (). For every operator,

For parentheres have in between two perentheses have expression so Ne is (E).

its needed two operands of the use of operator and operands mut be Experience.

-> This sives (i2/(i2+i2)-i2)* i2

= (0.23/(5+31)-20)*2

2-) F = x y ~ (T ~ 72) Sexp OR Sexp Not SEXP bexp - s bexp OR Sexp | Sexp AND Sexp

bexp -> NOT Lexp

bexp - TRUE 1x 1512

Sexp -> FALSE 1x 19 12

E	= 7	<u>~e</u>	<u>~</u>	<u>ار د</u>	e	_ :	_5	<u>.</u>	<u>ا.</u>	2							
Ĺ	• •)		0	0	ŀ					2	ef	· ta	10	r)		ŀ	
	·				٠			٠		ء ۔	->,	À١	ß		٠		S
											ئ		0				
											ا د	0	ıS			1	
											ا ذــ	-	- B	•		1	
))	၁	• L (3		1	
											-)				٠	1	-
c).	0	0	D. (. l	٠	٠			Le	£	Mc	بر ک	.		Rį	ç
										S -:	A	iß			د	-	-

-10001B

-) 1001 | -) 1001

Leftmost | Richtmost

S-) A1B | S-) [A1B |
-) 00A1B | -) A11 |
-) 000A1B | -) OA11

-100A11

Exercise 5.1.3

Base case: Starting with single characters, with no operations to consider a single character a, we can just have a CFG with a single transition S > a.

Inductive step: Spose that for any reser with fever than k operators We can bill a CFG that senerates the same larguege. Then take a larvase L & represented by the resex R sich that R has k operators. three possible operationsi For union if R= FI+Rz then assume that Ri is secreted by CFG-AL stort son boly on that Rz is superated by a CFG with start som bol Sz. We create - new start state S. with the production rule S-5, 152. If the first production we use is S-15, they we will product

excepts the strings hetched by R, by on IH. If the first production we use is 5-152, the , we will produce motehing with he.

For conceleration, If R= KIR, then we use the same boic as union. For Kleene stor, If R = Rit, then we create a new CFG with stort stek 8-15,5, 16. Then we can prove by indiction that a string with my number of spies of strings metaled by Pi ca se secreted.