STA 588 Final Project

By Smita Sukhadeve and Ttiana Romanchishina

Appendix C: Code and Output

Out[78]:

Out[78]:

16274 2388

16274 2376

```
In [144]: library(randomForest)
           library(RColorBrewer)
  In [2]: lon <- read.csv("/Users/tatiana/Desktop/DATA ANALYTICS/all meps fil</pre>
           es/2012 - longitudinal.csv", na.strings = c(-1,-9)
           head(lon)
 Out[2]:
              X DUID PID DUPERSID PANEL
                                             YEARIND | ALL5RDS |
                                                                DIED INST | MILITARY
             1
                20004 101 20004101
                                      17
                                             1
                                                      1
                                                                0
                                                                      0
                                                                           0
             2
                20004 102 20004102
                                      17
                                             1
                                                      1
                                                                O
                                                                      O
                                                                           O
           2
           3
             3
                                      17
                                             1
                                                       1
                                                                0
                                                                      0
                                                                           0
                20004 | 103 | 20004103
           4
             4
                20005 101 20005101
                                      17
                                             1
                                                       1
                                                                0
                                                                      0
                                                                           0
           5
             5 20005 102 20005102
                                                                      0
                                      17
                                             1
                                                      1
                                                                0
                                                                           0
              6 20005 103 20005103
                                      17
                                             1
                                                      0
                                                                0
                                                                      0
                                                                           1
  In [3]: | dim(lon)
 Out[3]:
               17923 3496
In [74]: |lon_few_missing <- lon[ , colSums(is.na(lon)) <= 500 ]</pre>
           dim(lon few missing)
Out[74]:
               17923 2388
In [78]:
           lon no missing <- na.omit(lon few missing)</pre>
           dim(lon no missing)
           lon wt <- lon no missing[,c(4, 14:ncol(lon no missing))]</pre>
           dim(lon wt)
```

In [81]: lon_all_num <- lon_wt[,sapply(lon_wt,is.numeric)]
 dim(lon_all_num)

lon_wt_y1 <- lon_all_num[,grepl("Y1",names(lon_all_num))]
 dim(lon_wt_y1)</pre>

Out[81]: 16274 2356

Out[81]: 16274 989

In [6]: Response <- lon_wt\$IPNGTDY2
Response[Response > 0] <- 1
#Response <- factor(Response)</pre>

Out[7]:

	TTLPY1X	FAMINCY1	POVLEVY1	WAGEPY1X	BUSNPY1X	UNEMPY1X	INTR
1	1.057738	0.4468941	0.5362892	1.241203	-0.0601531	-0.1266105	-0.10
2	0.2195184	0.4468941	0.5362892	0.3533358	-0.0601531	-0.1266105	-0.10
3	-0.6775425	0.4468941	0.5362892	-0.5968581	-0.0601531	-0.1266105	-0.10
4	0.07614411	-0.6287251	-0.5647706	0.2014695	-0.0601531	-0.1266105	-0.10
5	-0.6775425	-0.6287251	-0.5647706	-0.5968581	-0.0601531	-0.1266105	-0.10
7	0.3084123	0.06152826	-0.1326233	0.447495	-0.0601531	-0.1266105	-0.10

In [94]: dim(wt)

Out[94]: 16274 261

```
In [8]: wss <- (nrow(wt)-1)*sum(apply(wt,2,var))
    for (i in 2:15) wss[i] <- sum(kmeans(wt,centers=i)$withinss)
    plot(1:15, wss, type="b", xlab="Number of Clusters",
        ylab="Within groups sum of squares")</pre>
```

Warning message:

: Quick-TRANSfer stage steps exceeded maximum (= 813700)


```
In [9]: wt <- cbind.data.frame(wt, Response)
#wt$Response <- as.numeric(wt$Response)</pre>
```

Out[10]:

```
Call:
glm(formula = Response ~ RXTOTY1 + TOTEXPY1 + SSECPY1X + ERTMCRY1
    OPOTCHY1 + IPDMCDY1 + ERDTCHY1 + OBDMCRY1 + OBDWCPY1 + OBCPRVY
1 +
    OTHSLFY1 + ERTOSRY1 + PUBPY1X + AMTTCHY1 + IPFPTRY1 + TOTSLFY1
+
   RXSTLY1 + TOTOSRY1 + OPFSLFY1 + ERDMCDY1 + HHATCHY1 + HHAEXPY1
+
   VISEXPY1 + OTHTCHY1 + TRSTPY1X + FAMINCY1 + OBTOTVY1 + OBCSLFY
1 +
    OBOEXPY1 + AMNMCRY1 + OBTTCHY1 + OBVVAY1 + TOTWCPY1 + OPPEXPY1
+
   OPOPRVY1 + SSIPY1X + TOTOPUY1 + IPDMCRY1 + IPFMCRY1 + DVOTCHY1
+
   OBTPTRY1 + AMTPRVY1 + OPVMCDY1 + OPSPTRY1 + TOTVAY1 + OPDEXPY1
+
    OPTPTRY1 + OPTPRVY1 + OPOPTRY1 + OBVTRIY1 + OTHEXPY1 + OBDOPRY
1 +
   OBVOPRY1 + DIVDPY1X + OPFTCHY1 + OBCTCHY1 + OBCEXPY1 + OBNSLFY
1 +
   AMNEXPY1, data = wt)
Deviance Residuals:
    Min
               10
                     Median
                                   30
                                            Max
-0.84502 \quad -0.04534 \quad -0.02959 \quad -0.02620
                                        1.06048
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       0.001681 31.221 < 2e-16 ***
(Intercept) 0.052476
RXTOTY1
            0.020652
                       0.002109
                                 9.792 < 2e-16 ***
TOTEXPY1
            0.023608
                       0.004070 5.801 6.71e-09 ***
                       0.001873 8.711 < 2e-16 ***
            0.016317
SSECPY1X
            0.007759
                       0.001784 4.350 1.37e-05 ***
ERTMCRY1
                       0.002994 5.909 3.50e-09 ***
OPOTCHY1
            0.017696
                       0.001859 4.200 2.68e-05 ***
IPDMCDY1
            0.007806
            0.007847
                       0.001810 4.337 1.46e-05 ***
ERDTCHY1
OBDMCRY1
            0.006705
                       0.002009 3.338 0.000845 ***
                       0.002756 4.273 1.94e-05 ***
OBDWCPY1
            0.011775
OBCPRVY1
            0.006451
                       0.002401 2.687 0.007218 **
                       0.002180 4.427 9.60e-06 ***
OTHSLFY1
            0.009651
                       0.001825 4.268 1.99e-05 ***
ERTOSRY1
            0.007789
                       0.001691
                                 3.246 0.001175 **
PUBPY1X
            0.005489
AMTTCHY1
           -0.010357
                       0.003169 -3.268 0.001084 **
           -0.007661
                       0.002867 -2.672 0.007555 **
IPFPTRY1
TOTSLFY1
           -0.004655
                       0.002053 -2.268 0.023371 *
                       0.001705 -2.931 0.003379 **
RXSTLY1
           -0.004999
TOTOSRY1
           -0.005471
                       0.001864 -2.936 0.003335 **
           -0.007138
                       0.001898 -3.762 0.000169 ***
OPFSLFY1
```

ERDMCDY1

HHATCHY1

HHAEXPY1

OTHTCHY1

VISEXPY1

0.004005

0.034629

-0.003563 -0.015983

-0.031820

0.001801

2.223 0.026221 *

0.008887 3.897 9.79e-05 ***

0.008897 -3.576 0.000350 *** 0.001700 -2.096 0.036122 *

 $0.007225 - 2.212 \ 0.026956 *$

```
0.004022
                        0.001712
                                   2.350 0.018810 *
TRSTPY1X
FAMINCY1
            -0.003465
                        0.001751 - 1.979 0.047812 *
                        0.002599
                                   2.171 0.029910 *
OBTOTVY1
             0.005643
                        0.002310 -1.573 0.115760
OBCSLFY1
            -0.003633
OBOEXPY1
            -0.008426
                        0.003062 - 2.752 0.005930 **
                        0.002722
                                   3.371 0.000751 ***
AMNMCRY1
             0.009175
                                   3.163 0.001567 **
OBTTCHY1
             0.010785
                        0.003410
OBVVAY1
             0.004875
                        0.001877 2.597 0.009417 **
                        0.002807 -2.429 0.015163 *
           -0.006817
TOTWCPY1
                        0.002824 -4.878 1.08e-06 ***
OPPEXPY1
            -0.013776
                                 3.712 0.000206 ***
OPOPRVY1
             0.056365
                        0.015185
SSIPY1X
                                  1.743 0.081281 .
             0.003018
                        0.001731
TOTOPUY1
           -0.003005
                        0.001724 - 1.743 0.081356.
IPDMCRY1
           -0.005602
                        0.002290 -2.447 0.014431 *
                                  1.719 0.085599 .
             0.004424
                        0.002573
IPFMCRY1
DVOTCHY1
           -0.002768
                        0.001725 - 1.604 0.108689
            -0.015503
                        0.007496 -2.068 0.038636 *
OBTPTRY1
                                  1.520 0.128612
AMTPRVY1
             0.010960
                        0.007212
                        0.001823
                                 -1.424 0.154390
OPVMCDY1
            -0.002596
                        0.003965 -3.640 0.000273 ***
OPSPTRY1
            -0.014433
TOTVAY1
            -0.003796
                        0.001893 -2.005 0.045000 *
                                  4.432 9.42e-06 ***
             0.020047
                        0.004524
OPDEXPY1
             0.254546
                        0.040759
                                 6.245 4.34e-10 ***
OPTPTRY1
OPTPRVY1
            -0.247110
                        0.040470 -6.106 1.04e-09 ***
OPOPTRY1
           -0.055681
                        0.015302 -3.639 0.000275 ***
                        0.001780 - 2.235 0.025423 *
OBVTRIY1
           -0.003979
OTHEXPY1
             0.012295
                        0.007252
                                  1.695 0.090025 .
                        0.003302 -3.868 0.000110 ***
OBDOPRY1
           -0.012770
                                   3.960 7.51e-05 ***
OBVOPRY1
             0.014351
                        0.003624
                        0.001723 -1.681 0.092787 .
DIVDPY1X
            -0.002896
                        0.002719 - 2.529 \ 0.011438 *
OPFTCHY1
            -0.006878
OBCTCHY1
             0.013739
                        0.006344
                                 2.166 0.030333 *
                        0.006697 - 1.685 0.091966.
OBCEXPY1
            -0.011286
             0.003279
                        0.001856
                                   1.767 0.077301 .
OBNSLFY1
                        0.003343 - 1.569 0.116695
AMNEXPY1
           -0.005245
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.0459765)
    Null deviance: 809.19 on 16273 degrees of freedom
```

Residual deviance: 745.46 on 16214 degrees of freedom AIC: -3872.3

Number of Fisher Scoring iterations: 2

```
In [95]: selected = attr(terms(formula(both1)), "term.labels")
    length(selected)
    wt_step = wt[selected]
    dim(wt_step)
```

Out[95]: 59

Out[95]: 16274 59

```
In [12]: wss <- (nrow(wt_step)-1)*sum(apply(wt_step,2,var))
    for (i in 2:15) wss[i] <- sum(kmeans(wt_step,centers=i)$withinss)
    plot(1:15, wss, type="b", xlab="Number of Clusters",
        ylab="Within groups sum of squares")</pre>
```


In [13]: k1 <- kmeans(wt_step, 7, iter.max = 500, nstart = 25)</pre>

In [31]: final <- cbind.data.frame(ClustID = k1\$clust, wt_step, Response)
head(final)</pre>

Out[31]:

	ClustID	RXTOTY1	TOTEXPY1	SSECPY1X	ERTMCRY1	ОРОТСНҮ1	IPDMCDY
1	5	-0.452942	-0.3232491	-0.2890601	-0.07032514	-0.06893971	-0.078193
2	5	-0.452942	-0.3232491	-0.2890601	-0.07032514	-0.06893971	-0.078193
3	5	-0.452942	-0.3146469	-0.2890601	-0.07032514	-0.06893971	-0.078193
4	5	1.634197	-0.2378013	-0.2890601	-0.07032514	-0.06893971	-0.078193
5	5	-0.452942	-0.3086828	-0.2890601	-0.07032514	-0.06893971	-0.078193
7	5	-0.452942	-0.3232491	-0.2890601	-0.07032514	-0.06893971	-0.078193

In [73]: dim(final)

Out[73]: 16274 61


```
In [15]:
          table(final$ClustID)
                      2
                                                  6
                                                         7
                             3
                                           5
Out[15]:
               1
                      6
            1856
                            63
                                  105 14123
                                                  3
                                                      118
          table(final$ClustID)
In [31]:
                      2
Out[31]:
               1
                             3
                                           5
                                                  6
                                                         7
                                                                8
          13953
                    118
                            64
                                1773
                                          99
                                                258
                                                         3
                                                                6
```

```
In [37]: table(final$ClustID)
                      2
Out[37]:
               1
                             3
                                    4
                                          5
                                                 6
                                                        7
                                                               8
                                                                      9
             563
                     63 13751
                                    6
                                        100
                                               118
                                                     1545
                                                               3
                                                                    125
          table(final$ClustID)
In [43]:
                                                        7
               1
                      2
                             3
                                    4
                                          5
                                                 6
                                                               8
                                                                      9
                                                                            10
Out[43]:
                                                              75
              10
                    118
                             6
                                 164
                                         64 11650
                                                        3
                                                                   1432
                                                                         2752
          table(final$ClustID)
In [40]:
               1
                      2
                             3
                                    4
                                          5
                                                 6
                                                        7
                                                               8
Out[40]:
                                                                      9
                                                                            10
                                                                                   11
          12
                 13
           1253
                     79
                           86
                                  28
                                         14
                                               152
                                                        3
                                                             128
                                                                     61
                                                                             6
                                                                                2884
          71 10976
              14
                     15
             457
                     76
In [16]: table(final$ClustID, final$Response)
Out[16]:
                    0
                          1
             1
                1567
                        289
             2
                    4
                          2
             3
                  55
                          8
             4
                  73
                         32
             5 13625
                        498
             6
                    3
                          0
             7
                  93
                         25
          final$Response <- as.factor(final$Response)</pre>
In [32]:
          levels(final$Response) <- c("NotAdmittedY2", "AdmittedY2")</pre>
           final$Response <- relevel(final$Response, "NotAdmittedY2")</pre>
          final$ClustID <- as.factor(final$ClustID)</pre>
In [33]:
          train <- sample(1:nrow(final), 2*nrow(final)/3)</pre>
          test <- final[-train, ]</pre>
          train <- final[train, ]</pre>
In [37]: | table(train$Response)
Out[37]: NotAdmittedY2
                              AdmittedY2
```

In [34]: rf1 <- randomForest(Response ~ ., data = train,</pre> mtry = floor(sqrt(ncol(train))), ntree = 1001, do.trace = 100, importance = T) varImpPlot(rf1) 2 OOB 1 ntree 100: 5.33% 0.11% 98.61% 200: 5.32% 0.09% 98.78% 300: 5.30% 0.06% 98.96% 400: 5.30% 0.05% 99.13% 500: 5.31% 0.06% 99.13% 600: 5.31% 0.06% 99.13% 700: 5.31% 0.06% 99.13% 0.06% 99.30% :008 5.32%

900:

1000:

5.31%

5.30%

0.06% 99.13%

0.06% 98.96%

rf1

In [130]: importanceOrder=order(-rf1\$importance[,4])
 names=names(rf1\$importance[,4])[importanceOrder][1:15]
 par(mfrow=c(5, 3), xpd=NA)

In [134]: names

Out[134]: 'TOTEXPY1' 'FAMINCY1' 'TOTSLFY1' 'RXTOTY1' 'OBTOTVY1' 'OBOEXPY1' 'ERDTCHY1' 'OBDMCRY1' 'SSECPY1X' 'OPFTCHY1' 'VISEXPY1' 'ClustID' 'TOTOSRY1' 'ERDMCDY1' 'OTHTCHY1'

```
In [131]: for (name in names) {
          partialPlot(rf1, train, eval(name), main=name, xlab=name)
     }
```

TOTEXPY1

FAMINCY1

TOTSLFY1

RXTOTY1

OBTOTVY1

OBOEXPY1

ERDTCHY1

OBDMCRY1

SSECPY1X

OPFTCHY1

VISEXPY1

TOTOSRY1

ERDMCDY1

OTHTCHY1

In [97]: library(caret)
 varImp(rf1)

Loading required package: lattice Loading required package: ggplot2

	NotAdmittedY2	AdmittedY2
ClustID	1.751955	1.751955
RXTOTY1	13.38969	13.38969
TOTEXPY1	5.081527	5.081527
SSECPY1X	13.63035	13.63035
ERTMCRY1	6.812783	6.812783
ОРОТСНҮ1	4.09112	4.09112
IPDMCDY1	4.864932	4.864932
ERDTCHY1	8.918273	8.918273
OBDMCRY1	12.52303	12.52303
OBDWCPY1	4.335661	4.335661
OBCPRVY1	4.728115	4.728115
OTHSLFY1	4.358331	4.358331
ERTOSRY1	8.510591	8.510591
PUBPY1X	-1.00111	-1.00111
AMTTCHY1	-0.586257	-0.586257
IPFPTRY1	5.969305	5.969305
TOTSLFY1	-2.980633	-2.980633
RXSTLY1	5.523363	5.523363
TOTOSRY1	6.624293	6.624293
OPFSLFY1	2.883687	2.883687
ERDMCDY1	10.57081	10.57081
HHATCHY1	2.983612	2.983612
HHAEXPY1	2.650526	2.650526
VISEXPY1	1.853175	1.853175
ОТНТСНҮ1	7.42618	7.42618
TRSTPY1X	0.6001318	0.6001318
FAMINCY1	6.580865	6.580865
ОВТОТУУ1	6.690174	6.690174
OBCSLFY1	2.318861	2.318861
OBOEXPY1	3.42409	3.42409

AMNMCRY1	0.9449618	0.9449618	
ОВТТСНҮ1	0.3447606	0.3447606	
OBVVAY1	1.642447	1.642447	
TOTWCPY1	5.043234	5.043234	
OPPEXPY1	1.630925	1.630925	
OPOPRVY1	1.556419	1.556419	
SSIPY1X	3.675315	3.675315	
ТОТОРИҮ1	-3.176803	-3.176803	
IPDMCRY1	3.822196	3.822196	
IPFMCRY1	6.217809	6.217809	
DVOTCHY1	2.790948	2.790948	
OBTPTRY1	1.361655	1.361655	
AMTPRVY1	1.202196	1.202196	
OPVMCDY1	0.7097594	0.7097594	
OPSPTRY1	1.490514	1.490514	
TOTVAY1	3.602503	3.602503	
OPDEXPY1	1.936316	1.936316	
OPTPTRY1	3.344695	3.344695	
OPTPRVY1	4.799932	4.799932	
OPOPTRY1	1.571828	1.571828	
OBVTRIY1	-1.149885	-1.149885	
OTHEXPY1	8.076125	8.076125	
OBDOPRY1	1.052252	1.052252	
OBVOPRY1	1.837337	1.837337	
DIVDPY1X	-1.082222	-1.082222	
OPFTCHY1	4.542997	4.542997	
ОВСТСНҮ1	3.792725	3.792725	
OBCEXPY1	2.979564	2.979564	
OBNSLFY1	1.598339	1.598339	
AMNEXPY1	1.888197	1.888197	

```
In [39]: SenSpec=function(model.name, dataset, cut.off.prob.seq){
           cut.off.prob.seq = as.vector(cut.off.prob.seq)
           np=length(cut.off.prob.seq)
           prob.good=predict(model.name, newdata=dataset, type="prob")
           ###### Here the appropriate response column should be specified
           true.class=dataset$Response
           perf.matrix=matrix(rep(0,2*np), byrow=TRUE, ncol=2)
           for(i in 1:np){
             pred.class=true.class
             ##### adding indexing for second column --> prob of Admitted
             pred.class[which(prob.good[,2] >= cut.off.prob.seq[i])] = "Admi
         ttedY2"
             pred.class[which(prob.good[,2] < cut.off.prob.seq[i])] = "NotAd</pre>
         mittedY2"
             confusion=ftable(pred.class, true.class)
             specificity=confusion[1,1]/sum(confusion[,1])
             sensitivity=confusion[2,2]/sum(confusion[,2])
             perf.matrix[i,1] = sensitivity
             perf.matrix[i,2] = specificity
           }
           colnames(perf.matrix)=c("sensitivity", "specificity")
           perf.matrix
         }
```

Out[40]:

sensitivity	specificity
1	0
0.5913978	0.7594248
0.4372760	0.8668869
0.3297491	0.9269335
0.2293907	0.9570540
0.1362007	0.9782355
0.07885305	0.98950641
0.04301075	0.99358725
0.01075269	0.99727944
0.007168459	0.999222697
0.003584229	1.000000000
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1

ROC Curve


```
In [49]: | rf2 <- randomForest(Response ~ ., data = train[,-1],</pre>
                                mtry = floor(sqrt(ncol(train[,-1]))), ntree = 1
          001,
                                do.trace = 100, importance = T)
          varImpPlot(rf2)
          ntree
                      OOB
                                1
                                        2
            100:
                    5.27%
                            0.07% 98.26%
            200:
                    5.29%
                            0.07% 98.61%
            300:
                    5.28%
                            0.05% 98.78%
            400:
                    5.24%
                            0.05% 98.09%
            500:
                    5.23%
                            0.04% 97.91%
            600:
                    5.25%
                            0.04% 98.43%
            700:
                    5.27%
                            0.05% 98.61%
            :008
                    5.27%
                            0.04% 98.78%
```

900:

1000:

5.26%

5.28%

0.03% 98.78%

0.05% 98.78%

rf2

Out[51]:

sensitivity	specificity
1	0
0.5913978	0.7594248
0.4372760	0.8668869
0.3297491	0.9269335
0.2293907	0.9570540
0.1362007	0.9782355
0.07885305	0.98950641
0.04301075	0.99358725
0.01075269	0.99727944
0.007168459	0.999222697
0.003584229	1.000000000
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1

ROC Curve

In [53]: glm1 <- glm(Response ~ ., data = train, family = binomial)
 summary(glm1)</pre>

Warning message:

: glm.fit: fitted probabilities numerically 0 or 1 occurred

Out[53]:

```
Call:
glm(formula = Response ~ ., family = binomial, data = train)
```

-0.2487

30

Max

3.2368

Median

Coefficients:

IPDMCRY1

-0.03242

Min

Deviance Residuals:

10

-1.9224 -0.2814 -0.2650

```
Estimate Std. Error z value Pr(>|z|)
                         0.16786 -15.992 < 2e-16 ***
(Intercept)
             -2.68446
                                 -1.386 0.165658
ClustID2
             -3.81945
                         2.75516
ClustID3
              1.16586
                         0.98921
                                    1.179 0.238565
ClustID4
              0.28387
                         0.61766
                                    0.460 0.645807
                         0.18446
                                 -3.289 0.001004 **
ClustID5
             -0.60676
                                 -0.057 0.954907
ClustID6
            -10.56046
                       186.76016
              1.11896
                         0.71673
                                  1.561 0.118474
ClustID7
                                  4.466 7.96e-06 ***
RXTOTY1
              0.17438
                         0.03904
              0.26209
                         0.08693
                                  3.015 0.002570 **
TOTEXPY1
                                  3.588 0.000333 ***
SSECPY1X
              0.14589
                         0.04066
              0.02128
                         0.02774 0.767 0.443007
ERTMCRY1
OPOTCHY1
              0.15288
                         0.07091
                                  2.156 0.031089 *
                         0.02792
                                    2.240 0.025115 *
IPDMCDY1
              0.06253
                         0.02912
                                  2.886 0.003896 **
ERDTCHY1
              0.08406
OBDMCRY1
             -0.02164
                         0.03164 - 0.684 0.493966
              0.11242
                         0.10777
                                  1.043 0.296892
OBDWCPY1
                                  1.494 0.135050
OBCPRVY1
              0.07543
                         0.05047
OTHSLFY1
              0.06119
                         0.03169
                                  1.931 0.053507 .
                                  2.394 0.016657 *
              0.10380
                         0.04335
ERTOSRY1
                                  2.349 0.018811 *
PUBPY1X
              0.07341
                         0.03125
                                 -1.457 0.145077
AMTTCHY1
             -0.10223
                         0.07016
IPFPTRY1
             -0.11415
                         0.05335
                                 -2.140 0.032395 *
TOTSLFY1
             -0.01086
                         0.04423 - 0.246 0.805984
             -0.14999
                         0.09693
                                  -1.547 0.121765
RXSTLY1
                                 -1.497 0.134350
TOTOSRY1
             -0.16466
                         0.10998
OPFSLFY1
             -0.14377
                         0.07565
                                  -1.901 0.057348
                                   1.104 0.269417
ERDMCDY1
              0.02823
                         0.02556
                                   1.833 0.066822 .
HHATCHY1
              0.25992
                         0.14181
             -0.28087
                         0.14606
                                 -1.923 0.054484 .
HHAEXPY1
                         0.05518 -1.352 0.176291
VISEXPY1
             -0.07461
OTHTCHY1
             -0.07048
                         0.09883
                                 -0.713 0.475734
TRSTPY1X
                         0.02687
                                   2.810 0.004949 **
              0.07550
                         0.05397 - 2.319 0.020369 *
             -0.12518
FAMINCY1
                                   1.774 0.076055 .
OBTOTVY1
              0.09543
                         0.05379
             -0.16783
                         0.09830
                                  -1.707 0.087758
OBCSLFY1
                                  -1.542 0.123123
OBOEXPY1
             -0.12483
                         0.08096
AMNMCRY1
             -0.04893
                         0.09756
                                  -0.501 0.616035
                                    0.933 0.350670
OBTTCHY1
              0.06532
                         0.06999
OBVVAY1
              0.06159
                         0.03384
                                   1.820 0.068765
                                 -1.190 0.234081
TOTWCPY1
             -0.11123
                         0.09348
                         0.06533 -2.687 0.007210 **
OPPEXPY1
             -0.17553
OPOPRVY1
              5.81802
                        10.94870
                                  0.531 0.595149
                                  1.224 0.220780
SSIPY1X
              0.04193
                         0.03424
                         0.12845 - 0.691 0.489279
TOTOPUY1
             -0.08882
```

0.03895

-0.832 0.405171

```
0.04575 -0.913 0.360993
             -0.04179
IPFMCRY1
            -0.49748
                         0.38117 -1.305 0.191853
DVOTCHY1
             -0.00796
                        0.17256 - 0.046 0.963208
OBTPTRY1
             -0.01285
                        0.15897
                                 -0.081 0.935586
AMTPRVY1
OPVMCDY1
             -0.11247
                        0.07890
                                 -1.425 0.154031
            -0.18522
OPSPTRY1
                        0.07475 - 2.478 \ 0.013216 *
                        0.05644 - 1.091 0.275145
TOTVAY1
             -0.06159
OPDEXPY1
             0.18359
                        0.07787 2.357 0.018401 *
                        1.15066 2.395 0.016641 *
              2.75531
OPTPTRY1
                         1.14781 -2.341 0.019253 *
OPTPRVY1
             -2.68657
                        11.06128 -0.535 0.592506
OPOPTRY1
             -5.92008
                        0.15335 - 1.251 0.210959
OBVTRIY1
             -0.19183
OTHEXPY1
             0.11043
                        0.10981
                                 1.006 0.314599
                        0.17436 - 1.050 0.293801
OBDOPRY1
            -0.18305
             0.25349
                        0.20738 1.222 0.221595
OBVOPRY1
DIVDPY1X
            -0.08923
                        0.06687 - 1.334 0.182049
                        0.04291 -1.252 0.210460
             -0.05373
OPFTCHY1
                        0.09714 1.260 0.207658
OBCTCHY1
             0.12240
             -0.12354
                        0.14406 - 0.858 0.391117
OBCEXPY1
                        0.03033 1.823 0.068230 .
OBNSLFY1
             0.05530
AMNEXPY1
            -0.09299
                        0.11050 -0.842 0.400065
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 4497.0 on 10848 degrees of freedom
Residual deviance: 3968.9 on 10783 degrees of freedom
```

Number of Fisher Scoring iterations: 11

AIC: 4100.9

In []:

```
In [62]: SenSpec=function(model.name, dataset, cut.off.prob.seq){
           cut.off.prob.seq = as.vector(cut.off.prob.seq)
           np=length(cut.off.prob.seq)
           prob.good=predict(model.name, newdata=dataset, type="response")
           true.class=dataset$Response
           perf.matrix=matrix(rep(0,2*np), byrow=TRUE, ncol=2)
           for(i in 1:np){
             pred.class=true.class
             pred.class[which(prob.good >= cut.off.prob.seq[i])] = "Admitted
         Y2"
             pred.class[which(prob.good< cut.off.prob.seq[i])] = "NotAdmitte</pre>
         dY2"
             confusion=ftable(pred.class, true.class)
             specificity=confusion[1,1]/sum(confusion[,1])
             sensitivity=confusion[2,2]/sum(confusion[,2])
             perf.matrix[i,1] = sensitivity
             perf.matrix[i,2] = specificity
           colnames(perf.matrix)=c("sensitivity", "specificity")
           perf.matrix
         }
```

Out[63]:

sensitivity	specificity		
1	0		
0.4731183	0.8538671		
0.3548387	0.9197435		
0.2580645	0.9562767		
0.1756272	0.9762923		
0.1182796	0.9848426		
0.09318996	0.99008939		
0.07526882	0.99222697		
0.05017921	0.99475321		
0.04301075	0.99591916		
0.03584229	0.99650214		
0.02508961	0.99747377		
0.02150538	0.99747377		
0.01792115	0.99863972		
0.01433692	0.99883405		
0.01075269	0.99922270		
0.01075269	0.99961135		
0.007168459	0.999611349		
0.003584229	0.999611349		
0	1		

In [64]: glm2 <- glm(Response ~ ., data = train[,-1], family = binomial)
 summary(glm2)</pre>

Warning message:

: glm.fit: fitted probabilities numerically 0 or 1 occurred

Out[64]:

```
Call:
glm(formula = Response ~ ., family = binomial, data = train[,
    -11)
```

Deviance Residuals:

Min 10 Median 3Q Max -2.0972 $-0.2890 \quad -0.2663 \quad -0.2506$ 3.0877

Coefficients:

OPVMCDY1

```
Estimate Std. Error z value Pr(>|z|)
                        0.065048 - 48.913 < 2e-16 ***
(Intercept) -3.181717
             0.226287
                        0.035622
                                   6.352 2.12e-10 ***
RXTOTY1
TOTEXPY1
             0.304227
                        0.088294 3.446 0.000570 ***
                        0.033623 6.542 6.07e-11 ***
SSECPY1X
             0.219959
                        0.028105 0.786 0.432155
             0.022077
ERTMCRY1
             0.172737
                        0.074895 2.306 0.021089 *
OPOTCHY1
                        0.027882 2.796 0.005174 **
IPDMCDY1
             0.077958
ERDTCHY1
             0.102051
                        0.030300 3.368 0.000757 ***
          -0.023350
                        0.031420 - 0.743 0.457383
OBDMCRY1
            0.114377
                        0.113400 1.009 0.313161
OBDWCPY1
             0.108192
                        0.050556 2.140 0.032351 *
OBCPRVY1
                        0.037519 1.371 0.170428
OTHSLFY1
             0.051433
                        0.043537 2.493 0.012672 *
ERTOSRY1
             0.108530
PUBPY1X
             0.077326
                        0.030728 2.516 0.011855 *
                        0.071818 - 1.794 0.072856.
AMTTCHY1
            -0.128822
           -0.123520
                        0.054694 - 2.258 \ 0.023921 *
IPFPTRY1
TOTSLFY1
            0.004257
                        0.044216 0.096 0.923292
                        0.094754 - 1.517 0.129176
RXSTLY1
            -0.143777
                        0.111003 -1.395 0.163150
TOTOSRY1
            -0.154800
                        0.077791 - 1.668 \ 0.095375.
OPFSLFY1
            -0.129732
ERDMCDY1
            0.036465
                        0.026366 1.383 0.166662
HHATCHY1
             0.308062
                        0.139397 2.210 0.027108 *
           -0.316767
                        0.148455 -2.134 0.032863 *
HHAEXPY1
                        0.054165 -1.184 0.236550
VISEXPY1
            -0.064112
            -0.093346
                        0.098072 - 0.952 \ 0.341191
OTHTCHY1
                                 3.037 0.002386 **
TRSTPY1X
            0.081980
                        0.026990
FAMINCY1
            -0.128413
                        0.053827 -2.386 0.017048 *
            0.128811
                        0.054078 2.382 0.017222 *
OBTOTVY1
OBCSLFY1
            -0.149653
                        0.101562 - 1.474 0.140612
OBOEXPY1
            -0.148916
                        0.087108 -1.710 0.087350 .
            -0.054988
                        0.105826 - 0.520 \ 0.603337
AMNMCRY1
             0.092112
                        0.070350 1.309 0.190420
OBTTCHY1
                                 1.894 0.058277 .
OBVVAY1
             0.067137
                        0.035454
            -0.115819
                        0.097946 -1.182 0.237018
TOTWCPY1
            -0.169351
                        0.064102 -2.642 0.008244 **
OPPEXPY1
OPOPRVY1
             6.272178
                     10.768922 0.582 0.560275
                        0.033593 1.977 0.048004 *
SSIPY1X
             0.066424
TOTOPUY1
            -0.105200
                        0.130637 -0.805 0.420656
                        0.037504 - 0.759 0.447583
IPDMCRY1
            -0.028482
                                 -0.862 0.388706
IPFMCRY1
            -0.037995
                        0.044079
DVOTCHY1
            -0.497365
                        0.382450 - 1.300 0.193440
                                 -0.261 0.794338
OBTPTRY1
            -0.042146
                        0.161677
                                 -0.060 0.952010
AMTPRVY1
            -0.009451
                        0.157044
            -0.105894
                        0.080638 -1.313 0.189115
```

```
-0.163640
                       0.071681 -2.283 0.022438 *
OPSPTRY1
TOTVAY1
           -0.064447
                       0.058376 -1.104 0.269595
                                2.564 0.010352 *
OPDEXPY1
           0.198914
                       0.077584
            2.599962
                       1.148543 2.264 0.023592 *
OPTPTRY1
                       1.144294 -2.170 0.029997 *
OPTPRVY1
           -2.483270
OPOPTRY1
           -6.346969 10.879675 -0.583 0.559639
                       0.152874 - 1.173 0.240779
OBVTRIY1
           -0.179328
OTHEXPY1
            0.064229
                       0.099775 0.644 0.519742
                       0.177298 -1.121 0.262260
           -0.198763
OBDOPRY1
                                1.330 0.183362
OBVOPRY1
            0.281211
                       0.211361
                       0.067412 -1.109 0.267617
DIVDPY1X
           -0.074730
OPFTCHY1
          -0.038319
                       0.040072 - 0.956 \ 0.338944
OBCTCHY1
            0.146973
                       0.092739 1.585 0.113010
           -0.085625
                       0.134717 - 0.636 0.525042
OBCEXPY1
            0.062493
                       0.030037 2.081 0.037477 *
OBNSLFY1
AMNEXPY1
           -0.069223
                       0.115658 - 0.599 \ 0.549500
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 4497.0 on 10848 degrees of freedom Residual deviance: 3987.1 on 10789 degrees of freedom AIC: 4107.1

Number of Fisher Scoring iterations: 10

Out[65]:

sensitivity	specificity		
1	0		
0.5161290	0.8260785		
0.2974910	0.9350952		
0.2150538	0.9654100		
0.1541219	0.9792072		
0.1075269	0.9873688		
0.09318996	0.98989506		
0.05734767	0.99183832		
0.05017921	0.99397590		
0.04301075	0.99514186		
0.04301075	0.99591916		
0.03942652	0.99611349		
0.03225806	0.99650214		
0.02508961	0.99786242		
0.01792115	0.99825107		
0.01792115	0.99883405		
0.01075269	0.99902837		
0.007168459	0.999611349		
0.003584229	0.999611349		
0	1		

```
In [ ]:
```

ROC Curves

_		
In [132]:	seq(0,1,length=20)	
Out[132]:	0 0.0526315789473684 0.105263157894737 0.157894736842105	
	0.210526315789474	
	0.368421052631579 0.421052631578947 0.473684210526316	
	0.526315789473684 0.578947368421053 0.631578947368421	
	0.684210526315789 0.736842105263158 0.789473684210526	
	0.842105263157895 0.894736842105263 0.947368421052632 1	

In [140]: names(final)

Out[140]:

'ClustID' 'RXTOTY1' 'TOTEXPY1' 'SSECPY1X' 'ERTMCRY1'
'OPOTCHY1' 'IPDMCDY1' 'ERDTCHY1' 'OBDMCRY1' 'OBDWCPY1'
'OBCPRVY1' 'OTHSLFY1' 'ERTOSRY1' 'PUBPY1X' 'AMTTCHY1'
'IPFPTRY1' 'TOTSLFY1' 'RXSTLY1' 'TOTOSRY1' 'OPFSLFY1'
'ERDMCDY1' 'HHATCHY1' 'HHAEXPY1' 'VISEXPY1' 'OTHTCHY1'
'TRSTPY1X' 'FAMINCY1' 'OBTOTVY1' 'OBCSLFY1' 'OBOEXPY1'
'AMNMCRY1' 'OBTTCHY1' 'OBVVAY1' 'TOTWCPY1' 'OPPEXPY1'
'OPOPRVY1' 'SSIPY1X' 'TOTOPUY1' 'IPDMCRY1' 'IPFMCRY1'
'DVOTCHY1' 'OBTPTRY1' 'AMTPRVY1' 'OPVMCDY1' 'OPSPTRY1'
'TOTVAY1' 'OPDEXPY1' 'OPTPTRY1' 'OPTPRVY1' 'OPOPTRY1'
'OBVTRIY1' 'OTHEXPY1' 'OBDOPRY1' 'OBVOPRY1' 'DIVDPY1X'
'OPFTCHY1' 'OBCTCHY1' 'OBCEXPY1' 'OBNSLFY1' 'AMNEXPY1'
'Response'

In [174]: par(mfrow=c(2,3))
 cols = brewer.pal(6, "Blues")

hist(final[,'RXTOTY1'], main = "Number of Prescriptions 2012", freq
=F, col = cols[1], xlab = "")
hist(final[,'TOTEXPY1'], main = "Total Health Expenditure 2012", fr
eq=F, col = cols[2], xlab = "")
hist(final[,'FAMINCY1'], main = "Total Family Income 2012", freq=F,
col = cols[3], xlab = "")
hist(final[,'SSECPY1X'], main = "Total Social Security Income 201
2", freq=F, col = cols[4], xlab = "")
hist(final[,'AMNEXPY1'], main = "Ambulatory NP Expenses", freq=F, c
ol = cols[5], xlab = "")
hist(final[,'VISEXPY1'], main = "Glasses/Contacts Expenses 2012", f
req=F, col = cols[6], xlab = "")
par(mfrow=c(1,1))


```
In [146]: par(mfrow=c(1,1))
    col = brewer.pal(6, "Greys")
    col[1]

Out[146]: '#F7F7F7'

In [150]: polygon(density(final[,'RXTOTY1']), col = brewer.pal(6, "Blues"))
    Error in polygon(density(final[, "RXTOTY1"]), col = brewer.pal(6, "Blues")): plot.new has not been called yet
```

Warning message:

In brewer.pal(2, "Blues"): minimal value for n is 3, returning requested palette with 3 different levels

Imbalanced Distribution of the Response Variable

In [197]: str(final)

```
'data.frame': 16274 obs. of 61 variables:
$ ClustID : Factor w/ 7 levels "1", "2", "3", "4", ...: 5 5 5 5 5 5 5
5 5 5 ...
$ RXTOTY1 : num
               -0.453 -0.453 -0.453 1.634 -0.453 ...
$ TOTEXPY1: num
                -0.323 - 0.323 - 0.315 - 0.238 - 0.309 \dots
$ SSECPY1X: num -0.289 -0.289 -0.289 -0.289 ...
$ ERTMCRY1: num -0.0703 -0.0703 -0.0703 -0.0703 ...
$ OPOTCHY1: num -0.0689 -0.0689 -0.0689 -0.0689 ...
$ IPDMCDY1: num -0.0782 -0.0782 -0.0782 -0.0782 ...
               -0.166 - 0.166 - 0.166 - 0.166 - 0.166 \dots
$ ERDTCHY1: num
               -0.133 -0.133 -0.133 -0.133 ...
$ OBDMCRY1: num
$ OBDWCPY1: num
                -0.0284 -0.0284 -0.0284 -0.0284 -0.0284 ...
$ OBCPRVY1: num -0.0646 -0.0646 -0.0646 -0.0646 ...
$ OTHSLFY1: num -0.038 -0.038 -0.038 -0.038 ...
$ ERTOSRY1: num -0.0498 -0.0498 -0.0498 -0.0498 ...
$ PUBPY1X : num
                -0.0853 -0.0853 -0.0853 -0.0853 ...
                -0.058 -0.058 -0.058 -0.058 -0.058 ...
$ AMTTCHY1: num
$ IPFPTRY1: num
               -0.0738 -0.0738 -0.0738 -0.0738 -0.0738 \dots
$ TOTSLFY1: num
                -0.309 -0.309 -0.253 -0.273 -0.305 ...
$ RXSTLY1 : num -0.0413 -0.0413 -0.0413 0.1211 -0.0413 ...
$ TOTOSRY1: num
               -0.0694 -0.0694 -0.0694 -0.0694 ...
$ OPFSLFY1: num -0.0873 -0.0873 -0.0873 -0.0873 ...
$ ERDMCDY1: num
               -0.0938 -0.0938 -0.0938 -0.0938 -0.0938 ...
$ HHATCHY1: num
                -0.0651 -0.0651 -0.0651 -0.0651 -0.0651 \dots
$ HHAEXPY1: num -0.062 -0.062 -0.062 -0.062 ...
$ VISEXPY1: num
                -0.221 -0.221 -0.221 -0.221 ...
$ OTHTCHY1: num
               -0.044 -0.044 -0.044 -0.044 -0.044 ...
$ TRSTPY1X: num -0.07 -0.07 -0.07 -0.07 ...
                0.447 \ 0.447 \ 0.447 \ -0.629 \ -0.629 \ \dots
$ FAMINCY1: num
$ OBTOTVY1: num
                -0.429 -0.429 -0.429 0.152 -0.313 ...
$ OBCSLFY1: num
                -0.087 -0.087 -0.087 -0.087 -0.087 ...
$ OBOEXPY1: num -0.162 -0.162 -0.162 -0.162 ...
$ AMNMCRY1: num -0.0325 -0.0325 -0.0325 -0.0325 ...
$ OBTTCHY1: num -0.0741 -0.0741 -0.0741 -0.0741 ...
$ OBVVAY1 : num -0.0495 -0.0495 -0.0495 -0.0495 ...
$ TOTWCPY1: num -0.0473 -0.0473 -0.0473 -0.0473 ...
$ OPPEXPY1: num
               -0.069 -0.069 -0.069 -0.069 -0.069 ...
$ OPOPRVY1: num
               -0.0822 -0.0822 -0.0822 -0.0822 -0.0822 ...
$ SSIPY1X : num -0.156 -0.156 -0.156 -0.156 ...
$ TOTOPUY1: num -0.0246 -0.0246 -0.0246 -0.0246 ...
$ IPDMCRY1: num -0.0736 -0.0736 -0.0736 -0.0736 ...
$ IPFMCRY1: num -0.0766 -0.0766 -0.0766 -0.0766 ...
$ DVOTCHY1: num
                -0.0949 -0.0949 -0.0949 -0.0949 -0.0949 ...
$ OBTPTRY1: num
                -0.0458 -0.0458 -0.0458 -0.0458 -0.0458 \dots
                -0.0508 -0.0508 -0.0508 -0.0508 -0.0508 \dots
$ AMTPRVY1: num
$ OPVMCDY1: num
                -0.064 -0.064 -0.064 -0.064 -0.064 ...
$ OPSPTRY1: num
                -0.0835 -0.0835 -0.0835 -0.0835 ...
$ TOTVAY1 : num
               -0.0419 -0.0419 -0.0419 -0.0419 -0.0419 ...
$ OPDEXPY1: num
               -0.128 -0.128 -0.128 -0.128 -0.128 ...
                -0.0974 -0.0974 -0.0974 -0.0974 -0.0974 ...
$ OPTPTRY1: num
$ OPTPRVY1: num -0.0961 -0.0961 -0.0961 -0.0961 ...
$ OPOPTRY1: num -0.0836 -0.0836 -0.0836 -0.0836 ...
$ OBVTRIY1: num -0.0449 -0.0449 -0.0449 -0.0449 ...
$ OTHEXPY1: num -0.0464 -0.0464 -0.0464 -0.0464 ...
```

```
$ OBDOPRY1: num -0.0428 -0.0428 -0.0428 -0.0428 -0.0428 ...
$ OBVOPRY1: num -0.0405 -0.0405 -0.0405 -0.0405 -0.0405 ...
$ DIVDPY1X: num -0.0823 -0.0823 -0.0823 -0.0823 -0.0823 ...
$ OPFTCHY1: num -0.125 -0.125 -0.125 -0.125 -0.125 ...
$ OBCTCHY1: num -0.095 -0.095 -0.095 -0.095 ...
$ OBCEXPY1: num -0.0904 -0.0904 -0.0904 -0.0904 ...
$ OBNSLFY1: num -0.0733 -0.0733 -0.0733 -0.0733 ...
$ AMNEXPY1: num -0.0638 -0.0638 -0.0638 -0.0638 ...
$ Response: Factor w/ 2 levels "NotAdmittedY2",..: 1 1 1 1 1 1 1
```

```
In [ ]:
```