Bank Marketing Analysis

In [1]: #importing the libery
import numpy as np
import pandas as pd

Data Collection

```
In [2]: #data loading in panda
data=pd.read_csv('bank.csv')
```

In [3]: #check first five rows of the dataset
data.head()

Out[3]:

	age	job	marital	education	default	balance	housing	loan	contact	day	mon
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	m
1	56	admin.	married	secondary	no	45	no	no	unknown	5	m
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	m
3	55	services	married	secondary	no	2476	yes	no	unknown	5	m
4	54	admin.	married	tertiary	no	184	no	no	unknown	5	m

In [4]: #check last five rows pf the dataset
data.tail()

Out[4]:

	age	job	marital	education	default	balance	housing	loan	contact	day
11157	33	blue- collar	single	primary	no	1	yes	no	cellular	20
11158	39	services	married	secondary	no	733	no	no	unknown	16
11159	32	technician	single	secondary	no	29	no	no	cellular	19
11160	43	technician	married	secondary	no	0	no	yes	cellular	8
11161	34	technician	married	secondary	no	0	no	no	cellular	9

In [3]: #check basic infomation of the dataset data.info()

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 11162 entries, 0 to 11161
Data columns (total 17 columns):
                Non-Null Count
#
     Column
                                Dtype
0
                11162 non-null
                                int64
     age
                                object
 1
     job
                11162 non-null
 2
                                object
     marital
                11162 non-null
                                object
 3
     education
                11162 non-null
 4
     default
                11162 non-null
                                object
                11162 non-null
5
    balance
                                int64
6
    housing
                11162 non-null
                                object
 7
    loan
                11162 non-null
                                object
                11162 non-null
8
     contact
                                object
 9
     day
                11162 non-null
                                int64
 10
    month
                11162 non-null
                                object
 11
    duration
                11162 non-null
                                int64
 12 campaign
                11162 non-null
                                int64
 13
     pdays
                11162 non-null
                                int64
 14
    previous
                11162 non-null
                                int64
                11162 non-null
 15
     poutcome
                                object
 16
     deposit
                11162 non-null
                                object
dtypes: int64(7), object(10)
memory usage: 1.4+ MB
```

In [4]: #check columns name of the dataset data.columns

In [5]: data.head(10)

Out [5]:

	age	job	marital	education	default	balance	housing	loan	contact	day	ı
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	
1	56	admin.	married	secondary	no	45	no	no	unknown	5	
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	
3	55	services	married	secondary	no	2476	yes	no	unknown	5	
4	54	admin.	married	tertiary	no	184	no	no	unknown	5	
5	42	management	single	tertiary	no	0	yes	yes	unknown	5	
6	56	management	married	tertiary	no	830	yes	yes	unknown	6	
7	60	retired	divorced	secondary	no	545	yes	no	unknown	6	
8	37	technician	married	secondary	no	1	yes	no	unknown	6	
9	28	services	single	secondary	no	5090	yes	no	unknown	6	

In [6]: #check mathamatic realtionship of the dataset data.describe()

Out[6]:

	age	balance	day	duration	campaign	pday
count	11162.000000	11162.000000	11162.000000	11162.000000	11162.000000	11162.00000
mean	41.231948	1528.538524	15.658036	371.993818	2.508421	51.33040
std	11.913369	3225.413326	8.420740	347.128386	2.722077	108.75828
min	18.000000	-6847.000000	1.000000	2.000000	1.000000	-1.00000
25%	32.000000	122.000000	8.000000	138.000000	1.000000	-1.00000
50%	39.000000	550.000000	15.000000	255.000000	2.000000	-1.00000
75%	49.000000	1708.000000	22.000000	496.000000	3.000000	20.75000
max	95.000000	81204.000000	31.000000	3881.000000	63.000000	854.00000

- 1. Age / Age
- 2. Job / Job
- 3. Marital Status / Marital Status
- 4. Education / Education Level
- 5. Default / Having a previously broken credit
- 6. Housing / home loan?
- 7. Loan / Personal Loan?
- 8. Contact / Was the customer contacted on his home or mobile phone?
- 9. Month: Last month of contact
- 10. Day: The day of the contacted.
- 11. Duration: Talk time on last call
- 12. Campaign: The number of contacts reaching the customer during the current campaign (including the last contact)
- 13. Pdays: The number of days since the previous campaign, if reached (-1 if it was never reached before)
- 14. Previous: The number of contacts that reached the customer before this campaign
- 15. Poutcome: Previous campaign success, failure or failure

Univariate Variable Analysis

- Categorical Variables:job,marital, default, education,housing,loan,contact,poutcome,mounth,deposit,day
- Numerical Variables: age, campaign, duration, pdays, balance, previous

Categorical Variable

In [7]: import matplotlib.pyplot as plt

```
def bar_plot(variable):
    var =data[variable]
    varValue = var.value_counts()
    plt.figure(figsize=(15,3))
    plt.bar(varValue.index, varValue,color=['#00008b','#00e5ee','#c
    plt.xticks(varValue.index, varValue.index.values)
    plt.ylabel("Frequency")
    plt.title(variable)

plt.show()
    print("{}: \n {}".format(variable,varValue))
```

In [9]: categoryc = ["job","marital","education", "housing", "loan","contac for c in categoryc: bar_plot(c)

job:	
management	2566
blue-collar	1944
technician	1823
admin.	1334
services	923
retired	778
self-employed	405
student	360
unemployed	357
entrepreneur	328

Numerical Variable

```
In [10]: def plot_hist(variable):
    plt.figure(figsize=(9,6))
    plt.hist(data[variable], bins=40,color='#cd1076')
    plt.xlabel(variable)
    plt.ylabel("frequency")
    plt.title("{} distrubition with hist".format(variable))
    plt.show()
```

```
In [11]: numericVar = ["age","campaign","duration"]
for n in numericVar:
    plot_hist(n)
```


50

60

age

70

80

90

30

40


```
In [12]: pd.crosstab(data.age,data.deposit).plot(kind="area",figsize=(15,7),
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```


The number of people who are 25 to 40 years old with a time deposit account is high.

```
In [13]: pd.crosstab(data.job,data.deposit).plot(kind="barh",figsize=(15,7),
    plt.title('Deposit Age Distribution')
    plt.xlabel('Frequency')
    plt.ylabel('Job')
    plt.show()
```


In people at the executive level have more deposit accounts.

Outlier Detection

outlier_indices = []

def detect_outliers(data, features):

In [14]: **from** collections **import** Counter

```
for c in features:
                  # 1st quartile
                  Q1 = np.percentile(data[c],25)
                  # 3rd quartile
                  Q3 = np.percentile(data[c],75)
                  # IQR
                  IQR = Q3 - Q1
                  # Outlier step
                  outlier_step = IQR * 1.5
                  # detect outlier and their indeces
                  outlier list col = data[(data[c] < Q1 - outlier step) | (da
                  # store indeces
                  outlier_indices.extend(outlier_list_col)
              outlier indices = Counter(outlier indices)
              multiple outliers = list(i for i, v in outlier indices.items()
              return multiple_outliers
In [15]: data.loc[detect_outliers(data,['age',
                                           'day','duration','campaign','previou
Out [15]:
               age
                     job marital education default balance housing loan
                                                                    contact day
                                                                               moi
          3945
                                                  4761
                84 retired married
                                   tertiary
                                            no
                                                           no
                                                               no telephone
```

I do not include this row

```
In [16]: data = data.drop([3945], axis=0)
```

Missing Value

```
In [17]: data.isnull().sum()
Out[17]: age
                        0
          job
                        0
          marital
          education
                        0
          default
                        0
          balance
                        0
          housing
          loan
          contact
          day
          month
                        0
          duration
                        0
          campaign
                        0
          pdays
                        0
          previous
          poutcome
          deposit
                        0
          dtype: int64
```

No missing value..

Correlation matrix

In [18]: import seaborn as sns
fig, ax = plt.subplots(figsize=(13,13)) # Sample figsize in
sns.heatmap(data.corr(), annot=True, linewidths=.5, ax=ax)

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f705038d390>

* Calculated correlation between two variables (r) gets a value between -1 and 1.

• No correlaiton r=0

Very weak correlation: r<20

Weak correlation: between 0.20-0.49
Moderate correlation: between 0.5-0.79
Strong correlation: between 0.8-0.99

• Perfect correlation: r=1

Looking at it, there is a moderate correlation between the *days* and the *previous* ones. (r=0.51)

Data Manipulation

I do not include the *Duration column* in the dataset, as it is unknown data at the time of the prediction.

duration: Talk Time on Last Call

In [19]: data=data.drop(['duration'],axis=1)

In [20]: data.head()

Out [20]:

	age	job	marital	education	default	balance	housing	loan	contact	day	mon
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	m
1	56	admin.	married	secondary	no	45	no	no	unknown	5	m
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	m
3	55	services	married	secondary	no	2476	yes	no	unknown	5	m
4	54	admin.	married	tertiary	no	184	no	no	unknown	5	m

One-Hot Encoding

One Hot Encoding means that categorical variables are represented as binary.

In [21]: columns=data.select_dtypes(include=[object]).columns
 data=pd.concat([data,pd.get_dummies(data[columns])],axis=1)
 data=data.drop(['job','marital','education','default','housing','lo
 data.info()
 data.head()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 11161 entries, 0 to 11161
Data columns (total 52 columns):

Data #	columns (total 52 co Column	Non-Null Count	Dtype
0	age	11161 non-null	int64
1	balance	11161 non-null	int64
2	campaign	11161 non-null	int64
3	pdays	11161 non-null	int64
4	previous	11161 non-null	int64
5	deposit	11161 non-null	object
6	job_admin.	11161 non-null	uint8
7	job_blue-collar	11161 non-null	uint8
8	job_entrepreneur	11161 non-null	uint8
9	job_housemaid	11161 non-null	uint8
10	job_management	11161 non-null	uint8
11	job_retired	11161 non-null	uint8
12	job_self-employed	11161 non-null	uint8
13	job_services	11161 non-null	uint8
14	job_student	11161 non-null	uint8
15	job_technician	11161 non-null	uint8
16	job_unemployed	11161 non-null	uint8
17	job_unknown	11161 non-null	uint8
18	marital_divorced	11161 non-null	uint8
19	marital_married	11161 non-null	uint8
20	marital_single	11161 non-null	uint8
21	education_primary	11161 non-null	uint8
22	education_secondary	11161 non-null	uint8
23	education_tertiary	11161 non-null	uint8
24	education_unknown	11161 non-null	uint8
25	default_no	11161 non-null	uint8
26	default_yes	11161 non-null	uint8
27	housing_no	11161 non-null	uint8
28	housing_yes	11161 non-null	uint8
29	loan_no	11161 non-null	uint8
30	loan_yes	11161 non-null	uint8
31	contact_cellular	11161 non-null	uint8
32	contact_telephone	11161 non-null	uint8
33	contact_unknown	11161 non-null	uint8
34	month_apr	11161 non-null	uint8
35	month_aug	11161 non-null	uint8
36	month_dec	11161 non-null	uint8

37	month_feb	11161	non-null	uint8
38	month_jan	11161	non-null	uint8
39	month_jul	11161	non-null	uint8
40	month_jun	11161	non-null	uint8
41	month_mar	11161	non-null	uint8
42	month_may	11161	non-null	uint8
43	month_nov	11161	non-null	uint8
44	month_oct	11161	non-null	uint8
45	month_sep	11161	non-null	uint8
46	<pre>poutcome_failure</pre>	11161	non-null	uint8
47	poutcome_other	11161	non-null	uint8
48	<pre>poutcome_success</pre>	11161	non-null	uint8
49	<pre>poutcome_unknown</pre>	11161	non-null	uint8
50	deposit_no	11161	non-null	uint8
51	deposit_yes	11161	non-null	uint8
			/ \	

dtypes: int64(5), object(1), uint8(46)

memory usage: 1.1+ MB

Out [21]:

	age	balance	campaign	pdays	previous	deposit	job_admin.	job_blue- collar	job_entrepren
0	59	2343	1	-1	0	yes	1	0	_
1	56	45	1	-1	0	yes	1	0	
2	41	1270	1	-1	0	yes	0	0	
3	55	2476	1	-1	0	yes	0	0	
4	54	184	2	-1	0	yes	1	0	

5 rows × 52 columns

Others..

1. The *pdays* data indicates how many times the customer has been contacted before.

Updated as follows.

if the pdays = 0, it indicates that it has not been contacted before

if the pdays = 1, it indicates that it was contacted earlier

```
In [22]: def pdayswork(pdays):
    if(pdays == -1):
        return(0)
    elif(pdays >= 0):
        return(1)
    data['pdays2'] = data['pdays'].apply(pdayswork)
```

2. For a single target column

```
In [23]: data=data.drop(['deposit_no', 'deposit_yes'],axis=1)

In [24]: def deposit1(deposit):
    if(deposit=='yes'):
        return(1)
    elif(deposit=='no'):
        return(0)
    data['depositNew'] = data['deposit'].apply(deposit1)
In [25]: data=data.drop(['deposit'],axis=1)
```

In this way, our target column, whose data type is object, turned into numerical values. And new target column name is depositNew. Also as this is a classification problem, the target column can remain as an object. But I chose to convert it to int data type.

the current state of our data set.

[26] -										
26]:		age	balance	campaign	pdays	previous	job_admin.	job_blue- collar	job_entrepreneur	job_l
	0	59	2343	1	-1	0	1	0	0	
	1	56	45	1	-1	0	1	0	0	
	2	41	1270	1	-1	0	0	0	0	
	3	55	2476	1	-1	0	0	0	0	
	4	54	184	2	-1	0	1	0	0	

In [27]:

data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 11161 entries, 0 to 11161
Data columns (total 51 columns):

рата	Columns (total 51 co		D±vma
#	Column	Non-Null Count	Dtype
	200	11161 non-null	 int64
0 1	age balance	11161 non-null	int64
2	campaign	11161 non-null	int64
3	pdays	11161 non-null	int64
4	previous	11161 non-null	int64
5	job_admin.	11161 non-null	uint8
6	job_blue-collar	11161 non-null	uint8
7	job_entrepreneur	11161 non-null	uint8
8	job_housemaid	11161 non-null	uint8
9	job_management	11161 non-null	uint8
10	job_retired	11161 non-null	uint8
11	<pre>job_self-employed</pre>	11161 non-null	uint8
12	job_services	11161 non-null	uint8
13	job_student	11161 non-null	uint8
14	job_technician	11161 non-null	uint8
15	job_unemployed	11161 non-null	uint8
16	job_unknown	11161 non-null	uint8
17	marital_divorced	11161 non-null	uint8
18	marital_married	11161 non-null	uint8
19	marital_single	11161 non-null	uint8
20	education_primary	11161 non-null	uint8
21	education_secondary	11161 non-null	uint8
22	education_tertiary	11161 non-null	uint8
23	education_unknown	11161 non-null	uint8
24	default_no	11161 non-null	uint8
25	default_yes	11161 non-null	uint8
26	housing_no	11161 non-null	uint8
27	housing_yes	11161 non-null	uint8
28	loan_no	11161 non-null	uint8
29	_ loan_yes	11161 non-null	uint8
30	contact_cellular	11161 non-null	uint8
31	contact_telephone	11161 non-null	uint8
32	contact_unknown	11161 non-null	uint8
33	month_apr	11161 non-null	uint8
34	month_aug	11161 non-null	uint8
35	month_dec	11161 non-null	uint8
36	month_feb	11161 non-null	uint8
37	month_jan	11161 non-null	uint8
38	month_jul	11161 non-null	uint8
39	month_jun	11161 non-null	uint8
40	month_mar	11161 non-null	uint8
41	month_may	11161 non-null	uint8
42	month_nov	11161 non-null	uint8
43	month_oct	11161 non-null	uint8
43 44	month_sep	11161 non-null	uint8
45	poutcome_failure	11161 non-null	uint8
43	pourcome_rarture	TITOT HOH-HULL	ullico

```
46 poutcome_other 11161 non-null uint8
47 poutcome_success 11161 non-null uint8
48 poutcome_unknown 11161 non-null uint8
49 pdays2 11161 non-null int64
50 depositNew 11161 non-null int64
dtypes: int64(7), uint8(44)
memory usage: 1.1 MB
```

Data Normalization

StandartScaler, normalizes the data with a standard deviation of 1 with an average of 0.

The target column is not normalized.

```
In [28]: from sklearn.preprocessing import StandardScaler
         X = data.iloc[:, 0:50]
         Y = data.iloc[:, 50]
         nd = StandardScaler()
         nd.fit(X)
         X =nd.transform(X)
         print(X)
                        0.25261499 -0.55420079 ... -0.32579855
         [[ 1.4926218
                                                                  0.58352347
           -0.58379938]
          [ 1.24065834 -0.4598839 -0.55420079 ... -0.32579855
                                                                  0.58352347
           -0.583799381
                                                                  0.58352347
          [-0.01915895 -0.08007052 -0.55420079 ... -0.32579855
           -0.583799381
          [-0.77504932 -0.46484473 -0.18682923 ... -0.32579855 0.58352347
           -0.58379938]
          [ 0.14881669 - 0.47383623 - 0.18682923 ... - 0.32579855 - 1.71372713 ]
            1.712917191
          [-0.60707368 - 0.47383623 - 0.55420079 ... - 0.32579855 0.58352347
           -0.5837993811
```

Algorithm Works

```
In [29]: from sklearn.model_selection import train_test_split
    from sklearn.metrics import cohen_kappa_score
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import ConfusionMatrixDisplay
    from sklearn.metrics import f1_score
    X = data.iloc[:, 0:50]
    Y = data.iloc[:, 50]
    X_train, X_test, y_train, y_test = train_test_split( X, Y, test_siz)
    accuracies = {}
    kappaScores= {}
    f1scores={}
```

Logistic Regression

Logistic regression is a predictive linear model that aims to explain the relationship between a dependent binary variable and one or more independent variables. The output of Logistic Regression is a number between *0* and *1* which you can think about as being the probability that a given class is true or not.

```
In [30]: from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(random_state=101,multi_class='ovr',solver='li
lr.fit(X_train,y_train)
prediction = lr.predict(X_test)
```

```
In [31]: print(classification_report(y_test,prediction))
    acc = accuracy_score(y_test,prediction)*100
    print("Logistic Regression accuracy:",acc)
    accuracies['Logistic Regression']=acc

f1=f1_score(y_test,prediction)*100
    print("F1-Score: ",f1)
    f1scores['Logistic Regression']=f1

cohen_kappa = cohen_kappa_score(y_test, prediction)*100
    print('Cohen Kappa score: ',cohen_kappa)
    kappaScores['Logistic Regression']=cohen_kappa
```

	precision	recall	f1-score	support
0 1	0.70 0.71	0.77 0.64	0.73 0.67	1176 1057
accuracy macro avg weighted avg	0.71 0.71	0.70 0.71	0.71 0.70 0.71	2233 2233 2233

Logistic Regression accuracy: 70.71204657411553

F1-Score: 67.36526946107784

Cohen Kappa score: 40.94632616436728

```
In [32]: score=round(accuracy_score(y_test,prediction),3)
    cm= confusion_matrix
    cm1=cm(y_test,prediction)
    sns.heatmap(cm1, annot=True,fmt=".1f",linewidths=3,square=True, cma
    plt.ylabel('actual label')
    plt.xlabel('predicted label')
    plt.title('accuracy score: {0}'.format(score),size=12)
    plt.show()
```


Random Forest

```
In [33]: from sklearn.ensemble import RandomForestClassifier
In [34]: | clf = RandomForestClassifier(n_estimators=100, max_depth=12,
                                       random state=50)
         clf.fit(X_train,y_train)
         prediction = clf.predict(X_test)
In [35]: | acc = accuracy_score(y_test,prediction)*100
         print("Random Forest accuracy:",acc)
         accuracies['Random Forest']=acc
         f1=f1_score(y_test,prediction)*100
         print("F1-Score: ",f1)
         f1scores['Random Forest']=f1
         cohen_kappa = cohen_kappa_score(y_test, prediction)*100
         print('Cohen Kappa score: ',cohen_kappa)
         kappaScores['Random Forest']=cohen kappa
         Random Forest accuracy: 72.05553067622034
         F1-Score: 66.5236051502146
         Cohen Kappa score: 43.27305059532291
```

Naive Bayes

```
In [36]: from sklearn.naive_bayes import GaussianNB
In [37]: nb=GaussianNB()
    nb.fit(X_train,y_train)
    naiveb=nb.predict(X_test)
    prediction= nb.predict(X_test)
```

```
In [38]: acc = accuracy_score(y_test,prediction)*100
    print("Naive Bayes accuracy:",acc)
    accuracies['Naive Bayes']=acc

f1=f1_score(y_test,prediction)*100
    print("F1-Score: ",f1)
    f1scores['Naive Bayes']=f1

cohen_kappa = cohen_kappa_score(y_test, prediction)*100
    print('Cohen Kappa score: ',cohen_kappa)
    kappaScores['Naive Bayes']=cohen_kappa
```

Naive Bayes accuracy: 68.3833407971339

F1-Score: 62.08378088077337

Cohen Kappa score: 35.812328283001015

Stochastic Gradient Descent Classifier

```
In [39]: from sklearn.linear_model import SGDClassifier
In [40]: | sgd=SGDClassifier(loss='modified_huber', shuffle=True, random_state=1
                            ,max_iter=100,eta0=0.2,learning_rate='optimal')
         sqd.fit(X train,y train)
         prediction=sqd.predict(X test)
In [41]:
         acc = accuracy_score(y_test,prediction)*100
         print("SGD Classifier accuracy:",acc)
         accuracies['SGDC']=acc
         f1=f1_score(y_test,prediction)*100
         print("F1-Score: ",f1)
         f1scores['SGDC']=f1
         cohen_kappa = cohen_kappa_score(y_test, prediction)*100
         print('Cohen Kappa score: ',cohen_kappa)
         kappaScores['SGDC']=cohen_kappa
         SGD Classifier accuracy: 65.42767577250336
```

F1-Score: 61.361361361354

Cohen Kappa score: 30.271249787643693

KNN

```
In [42]: from sklearn.neighbors import KNeighborsClassifier
In [43]: knn= KNeighborsClassifier(n_neighbors = 4,algorithm='ball_tree')
knn.fit(X_train, y_train)
prediction=knn.predict(X_test)

In [44]: acc = accuracy_score(y_test,prediction)*100
print("Knn accuracy:",acc)
accuracies['KNN']=acc

f1=f1_score(y_test,prediction)*100
print("F1-Score: ",f1)
f1scores['KNN']=f1

cohen_kappa = cohen_kappa_score(y_test, prediction)*100
print('Cohen Kappa score: ',cohen_kappa)
kappaScores['KNN']=cohen_kappa
```

Knn accuracy: 61.12852664576802
F1-Score: 49.651972157772626

Cohen Kappa score: 20.55250457646862

In [45]: from sklearn.tree import DecisionTreeClassifier

Decision Tree

```
In [47]: acc = accuracy_score(y_test,prediction)*100
    print("Decision Tree accuracy:",acc)
    accuracies['Decision Tree']=acc

f1=f1_score(y_test,prediction)*100
    print("F1-Score: ",f1)
    f1scores['Decision Tree']=f1

    cohen_kappa = cohen_kappa_score(y_test, prediction)*100
    print('Cohen Kappa score: ',cohen_kappa)
    kappaScores['Decision Tree']=cohen_kappa
```

Decision Tree accuracy: 70.53291536050156

F1-Score: 62.61363636363636

Cohen Kappa score: 39.879244072476475

Neural Network - Perceptron

```
In [48]: from sklearn.linear model import Perceptron
In [49]: | pr = Perceptron(alpha=0.07, max_iter=100, random_state=100, penalty='
         pr.fit(X_train, y_train)
         prediction = pr.predict(X_test)
In [50]: | acc = accuracy_score(y_test, prediction)*100
         print("Perceptron accuracy:",acc)
         accuracies['Perceptron']=acc
         f1=f1_score(y_test,prediction)*100
         print("F1-Score: ",f1)
         f1scores['Perceptron']=f1
         cohen_kappa = cohen_kappa_score(y_test, prediction)*100
         print('Cohen Kappa score: ',cohen_kappa)
         kappaScores['Perceptron']=cohen_kappa
         Perceptron accuracy: 61.262875055978505
         F1-Score: 47.41641337386018
         Cohen Kappa score: 20.520826432474315
```

Gradient Boosting Classifier

```
In [53]: | acc = accuracy_score(y_test, prediction)*100
         print("Gradient Boosting Classifier accuracy:",acc)
         accuracies['Gradient Boosting']=acc
         f1=f1_score(y_test,prediction)*100
         print("F1-Score: ",f1)
         f1scores['Gradient Boosted']=f1
         cohen_kappa = cohen_kappa_score(y_test, prediction)*100
         print('Cohen Kappa score: ',cohen_kappa)
         kappaScores['Gradient Boosting']=cohen kappa
```

Gradient Boosting Classifier accuracy: 70.98074339453649

F1-Score: 66.14420062695925

Cohen Kappa score: 41.23359639746186

Xgboost Classifier

```
In [54]: from xgboost import XGBClassifier
In [55]: | xgb = XGBClassifier(n_estimators=100, learning_rate=0.08, gamma=0, s
                                     colsample bytree=1, max depth=7)
         xqb.fit(X train,y train)
         prediction = xgb.predict(X test)
In [56]:
         acc = accuracy_score(y_test, prediction)*100
         print("Xgboost Classifier accuracy:",acc)
         accuracies['Xgboost Classifier']=acc
         f1=f1_score(y_test,prediction)*100
         print("F1 Score: ",f1)
         f1scores['Xgboost Classifier']=f1
         cohen_kappa = cohen_kappa_score(y_test, prediction)*100
         print('Cohen Kappa score: ',cohen_kappa)
         kappaScores['Xgboost Classifier']=cohen_kappa
         Xgboost Classifier accuracy: 72.50335871025526
```

F1 Score: 67.5475687103594

Cohen Kappa score: 44.25775091212313

Comparison of accuracies

Accuracy is a metric used to measure the success of a model but is not sufficient by itself.

```
In [57]: colors = ["#00008b", "#00e5ee", "#cd1076", "#008080","#cd5555",'bla

sns.set_style("whitegrid")
plt.figure(figsize=(16,5))
plt.yticks(np.arange(0,100,3))
plt.ytabel("Accuracy %")
plt.xlabel("Accuracy %")
sns.barplot(x=list(accuracies.keys()), y=list(accuracies.values()),
plt.show()
```


Comparison of Kappa Scores

Cohen's kappa, (7), symbolized by the lowercase Greek letter, is a powerful statistic useful for testing reliability. Similar to the correlation coefficients, between -1 and +1; where 0 represents the availability that can be expected from random chance, and 1 represents the perfect match between raters.

- · 0 indicates no information agreement
- 0.01-0.20 Slight agreement
- 0.21-0.40 Fair agreement
- 0.41-0.60 Moderate agreement
- 0.61-0.80 Substantial agreement
- 0.81-1.00 Almost perfect agreement

```
In [58]: colors = ["#00008b", "#00e5ee", "#cd1076", "#008080","#cd5555",'bla

sns.set_style("whitegrid")
plt.figure(figsize=(16,5))
plt.yticks(np.arange(0,100,3))
plt.ylabel("Kappa Score %")
plt.xlabel("\n\n Algorithms")
sns.barplot(x=list(kappaScores.keys()), y=list(kappaScores.values()
plt.show()
```


Comparison of F1 Scores

The F1 Score value shows us the harmonic mean of the Precision and Recall values.

The main reason for using the F1 Score value instead of Accuracy is not to make an incorrect model selection in non-uniform data sets.

```
In [59]: colors = ["#00008b", "#00e5ee", "#cd1076", "#008080","#cd5555",'bla

sns.set_style("whitegrid")
plt.figure(figsize=(16,5))
plt.yticks(np.arange(0,100,3))
plt.yticks(np.arange(0,100,3))
plt.ylabel("F1 Score %")
plt.xlabel("\n\n Algorithms")
sns.barplot(x=list(f1scores.keys()), y=list(f1scores.values()), pal
plt.show()
```

