Proposizione 1. Siano $E, F \in \mathcal{P}(\Omega)$ due eventi.

- (i) $\mathbb{P}(\emptyset) = 0$.
- (ii) Se $E \subseteq F$, allora $\mathbb{P}(F \setminus E) = \mathbb{P}(F) \mathbb{P}(E)$ (dove l'insieme $F \setminus E := F \cap E^c$ è la differenza di F meno E).
- (iii) Se $E \subseteq F$, allora $\mathbb{P}(E) \leq \mathbb{P}(F)$.
- (iv) $\mathbb{P}(E^c) = 1 \mathbb{P}(E)$.
- (v) $\mathbb{P}(E) \leq 1$.
- (vi) $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) \mathbb{P}(E \cap F)$.

Proposizione 2. Siano X e Y due variabili aleatorie assolutamente continue e indipendenti, con densità f_X e f_Y , rispettivamente. Sia Z = X + Y la loro somma. Allora Z è una variabile aleatoria assolutamente continua con densità

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z - y) f_Y(y) \, \mathrm{d}y. \tag{1.9}$$

Proposizione 4. Se $\vec{X} = (X_1, X_2, ..., X_n)$ è un vettore aleatorio discreto con densità $p_{\vec{X}}$ [rispettivamente, assolutamente continuo con densità f_X] e $g : \mathbb{R}^n \to \mathbb{R}$ è una funzione qualunque, allora

$$\mathbb{E}\left[g(X_1, X_2, \dots, X_n)\right] = \sum_{x_1} \sum_{x_2} \dots \sum_{x_n} g(x_1, x_2, \dots, x_n) p_{\vec{X}}(x_1, x_2, \dots, x_n)$$

[risp.,

$$\mathbb{E}\left[g(X_1, X_2, \dots, X_n)\right] = \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} dx_2 \dots \int_{-\infty}^{+\infty} dx_n \, g(x_1, x_2, \dots, x_n) f_{\vec{X}}(x_1, x_2, \dots, x_n)$$

1

- **Proposizione 5** (Proprietà della media). (i) Se $c \in \mathbb{R}$ e $X \equiv c$ è la variabile aleatoria identicamente uguale a c (cioè $X(\omega) = c$ per ogni $\omega \in \Omega$), allora $\mathbb{E}[X] = c$.
 - (ii) Se X e Y sono due variabili aleatorie e a, b sono numeri reali, allora $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$. In particolare, $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$.

CAPITOLO 1. CALCOLO DELLE PROBABILITÀ

(iii) Se X e Y sono due variabili aleatorie indipendenti, allora $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Dalla Proposizione 4 possiamo ricavare l'espressione esplicita di Cov(X,Y) nei due casi in cui (X,Y) è un vettore aleatorio discreto

$$Cov(X,Y) = \sum_{x,y} (x - \mathbb{E}[X])(y - \mathbb{E}[Y])p_{(X,Y)}(x,y)$$

oppure assolutamente continuo

$$\operatorname{Cov}(X,Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - \mathbb{E}[X])(y - \mathbb{E}[Y]) f_{(X,Y)}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

La proposizione seguente riassume le principali proprietà della covarianza.

- **Proposizione** 6 (Proprietà della covarianza). (i) $Cov(X,Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$ (formula alternativa della covarianza).
 - (ii) Cov(X,Y) = Cov(Y,X) per ogni coppia di variabili aleatorie X, Y (simmetria).
- (iii) Se X è una variabile aleatoria costante, allora Cov(X, Y) = 0.
- (iv) Cov (aX + bY, Z) = aCov (X, Z) + bCov (Y, Z) per ogni tripla di variabili aleatorie X, Y, Z e coppia di numeri reali a, b; la stessa proprietà vale anche per il secondo argomento (bilinearità).
- (v) Se X e Y sono indipendenti, allora Cov(X, Y) = 0.

Proposizione 7 (Proprietà della varianza). (i) $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ (formula alternativa della varianza).

- (ii) Se X è una variabile aleatoria costante, allora Var(X) = 0.
- (iii) Se a, b sono numeri reali, allora $Var(aX + b) = a^2Var(X)$.
- (iv) Se $X_1, X_2, \ldots X_n$ sono n variabili aleatorie, la varianza della loro somma è

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) + 2 \sum_{\substack{i,j=1\\i < j}}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right). \tag{1.12}$$

In particolare, se le variabili aleatorie $X_1, X_2, \dots X_n$ sono indipendenti

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right). \tag{1.13}$$

Proposizione 8 (Disuguaglianza di Chebyshev). Sia X una variabile aleatoria qualsiasi. Allora, per ogni k > 0,

$$\mathbb{P}\left(\left|X - \mathbb{E}\left[X\right]\right| > k\sqrt{\operatorname{Var}\left(X\right)}\right) \le \frac{1}{k^2}.$$

Proposizione 9 (Approssimazione normale della binomiale). Supponiamo $X \sim B(n,p)$ con n molto grande e p non trascurabile. Allora $X \approx N(np, np(1-p))$.

Proposizione 10 (Approssimazione di Poisson della binomiale). Supponiamo $X \sim B(n, p)$ con n molto grande e p infinitesimo, in modo però che il prodotto $\lambda := np$ sia confrontabile con 1. Allora X ha approssimativamente densità

$$p_X(k) \simeq e^{-\lambda} \frac{\lambda^k}{k!}$$
 per ogni $k = 0, 1, 2, \dots$

Proposizione 11. Sia X_1, \ldots, X_n un campione qualsiasi, e sia $\sigma^2 := \text{Var}(X_i)$ la sua varianza. Allora $\mathbb{E}[S_n^2] = \sigma^2$. In altre parole, la varianza campionaria S_n^2 è uno stimatore non distorto della varianza vera σ^2 del campione.