M/G/1 queue

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Age and Residual life of a Renewal process

- Let A(t) and R(t) denote the age and the residual life of the renewal process at time t.
- Assume you arrive at a Metro station at time t.
- ightharpoonup A(t) is the time since the last metro departed.
- ightharpoonup R(t) is the time till the next Metro arrives.
- ► Assume that you arrive uniformly at random to the Metro.
- ▶ What is your average waiting time \bar{R} ? $\bar{R} = E[X]/2$?

Hitchhiker's Paradox!

- ► Consider $\bar{R} = \lim_{t\to\infty} \frac{Y(t)}{t}$ where $Y(t) = \int_0^t R(t)$.
- ▶ Using Renewal reward theorem, $\bar{R} = \frac{E[Y]}{E[X]} = \frac{E[X^2]}{2E[X]} \neq E[X]/2$.
- ▶ $\frac{E[X^2]}{2E[X]} = E[X]/2$ only when interarrival times are deterministic.
- ▶ Consider $\bar{A} = \lim_{t \to \infty} \frac{Y(t)}{t}$ where $Y(t) = \int_0^t A(t)$. \bar{A} ?.
- ▶ What is \bar{R} or \bar{A} when $X_i \sim exp(\lambda)$?

PASTA

- The key assumption to Hitchhikers paradox was that you arrive uniformly at random at the busy/metro stop.
- Now suppose there is a signboard at the metro that tells you the residual time till the next metro.
- Suppose that you note the residual time after every 5 min interval and compute an empirical average of the residual times.
- ▶ Will this be equal to \bar{R} ? No!
- \triangleright You do not sample (0, t) uniformly.

PASTA

- What is you make the residual time readings after a random time which is $exp(\lambda)$ distributed.
- ▶ Your observation process is a Poisson(λ) process.
- ▶ In this case, the empirical average will equal \bar{R} .

For a Poisson process, given N(t) = n, the arrival times $S_1, \ldots S_n$ have the same distribution as the order statistics of n i.i.d uniform points over (0, t). (Thm 2.3.2 Sheldon ross)

Poisson arrivals see time average! (PASTA)

M/G/1 queue

- Arrival process Poisson (λ)
- Single server with unit service rate
- Arriving jobs require a random service time with arbitrary distribution $F(\cdot)$ with mean b.
- lacksquare For an M/M/1 queue, $F(\cdot) \sim exp(\mu)$ and $b=rac{1}{\mu}$
- For an M/G/1 queue, is N(t) (number of jobs in the system) a Markov chain ? no!

M/G/1 queue

- General service times do not have the memoryless property.
- Let h(x) denote the probability that the job will finish service now given that it has received x units of service already. (a.k.a hazard rate)
- $h(x) = \frac{f(x)}{\bar{F}(x)}$. $h(x) = \mu$ for exponential distribution.
- ▶ Therefore the instantaneous rate of going from N(t) = n to $N(t^+) = n 1$ depends on the age of the job which is in service at time t.
- N(t) is therefore not sufficient to describe the evolution of the state.
- (N(t), age(t)) is a valid descriptor for a Markov chain. We do not study this in the course!

M/G/1 queue: Notations

- L denotes the mean number of jobs in the system.
- let / denote the mean number of waiting jobs in the queue.
- r = L I denotes the mean number of jobs receiving service. This is same as the probability that the server is busy.
- w denotes the mean time spent by any job waiting for service while W denotes the mean sojourn time.
- ► W = w + b.

M/G/1 queue: Little's law

- ightharpoonup L = I + r & W = w + b.
- Using Little's law we have, $L = \lambda W$.
- ► Similarly, $I = \lambda w$.
- ► This gives us $r = \lambda b$.
- ▶ The probability that the server is busy is λb .
- Probability Recall that for an M/M/1 queue, $1-\pi(0)=rac{\lambda}{\mu}=\lambda b$.

Busy period analysis for M/G/1

- ▶ What is the mean length of busy period, i.e., E[B]?
- What is the probability that the server is busy? $(1 \pi_0 = \frac{\lambda}{\mu})$
- The time average that the server is busy is $\lim_{t\to\infty}\frac{1}{t}\int_0^t 1_{\{N(t)>0\}}dt$.
- Let $Y(t) = \int_0^t 1_{\{N(t)>0\}} dt$. This denotes the time for which the server is busy till time t.
- ▶ Using RR theorem, Y(t)/t approaches $\frac{E[B]}{E[B]+\frac{1}{\lambda}}$.

Busy period analysis for M/G/1

- ▶ Using RR theorem, Y(t)/t approaches $\frac{E[B]}{E[B]+\frac{1}{\lambda}}$
- Equating the two averages give us $E[B] = \frac{b}{1-\rho}$ where $\rho = \lambda b$.
- Mean number of jobs served in a busy period $n_B = E[B]/b = \frac{1}{1-\rho}$.

Mean value formulas for M/G/1

- W = w + b. $L = I + \rho$.
- Poisson arrival see time average. So consider a tagged arrival.
- For this job $w = w_0 + A$ where w_0 is the residual service time of job in server and A is the delay due to waiting jobs.
- $ightharpoonup A = lb = \lambda wb.$
- ▶ What is w_0 ? Use Hitchhikers paradox!
- $w_0 = \rho \frac{M_2}{2b}$ where M_2 is the second moment of distribution F.
- $ightharpoonup w = rac{\lambda M_2}{2} + \lambda wb.$
- ▶ These formulas are called Pollaczek-Khinchin formulas.
- ▶ We used Little's law to obtain mean performance metrics!!

For those interested in Honors/DD

- 1. Stochastic Optimization
 - Bayesian Optimization (Gaussain processes for ML)
 - Reinforcement learning (Markov Decision Process under unertainty)
 - Multi-arm bandit optmization (UCB, Thompson, Gittins index)
 - Probabilistic Machine learning
- 2. Operations Research
 - Performance modeling (this course)
 - Pricing (Data driven approaches, estimating distributions)
 - Choice modeling, Assortment Optimization, Recommender Systems
- 3. Financial Engineering
 - Porfolio Optimization
 - Optimal stopping for Option pricing
 - Brownian motion, Black Sholes formula, Stochastic Differential Equations