Championship Branch Prediction Simulator

Project - II Report

Nishad Saraf (PSU ID: 970679396)

Portland State University, Oregon

Q.1) Implement the PAg branch predictor described in "Alternative Implementations of Two Level Adaptive Branch Prediction," by Yeh & Pat, 1992. You will be testing 2 different configurations of this branch predictor, each with different sized structures (the peraddress branch history table, PBHT, and the global pattern history table, GPHT), but using the same logic. The GPHT should be implemented with 2-bit saturating counters.

<u>Configuration 1:</u> PBHT size = 128 entries, with 8-bit branch history in each entry. Therefore, we will need a 256-entry GPHT.

<u>Configuration 2:</u> PBHT size = 512 entries, with 12-bit branch history in each entry. Therefore, we will need a 4096-entry GPHT.

For each trace in the trace directory, run a simulation for each configuration, PLUS the provided bimodal.bpred as a baseline, using 5 million warmup and 20 million simulation instructions.

(a) Include a table showing the branch prediction accuracy of the baseline bimodal predictor and each of the 2 PAg configurations, for each trace, plus an arithmetic mean of all traces for each case.

	Prediction	Prediction	Prediction	
Traces	Accuracy	Accuracy PAg	Accuracy PAg	
	Bimodal	(PBHT 128)	(PBHT 512)	
astar_163B_50M	74.4939%	90.1207%	92.6884%	
bwaves_1861B_50M	81.2193%	99.9014%	99.9502%	
bzip2_183B_50M	90.2581%	86.2746%	88.8182%	
gcc_13B_50M	92.3782%	93.4848%	96.5422%	
GemsFDTD_109B_50M	99.5228%	99.5606%	99.5685%	
lbm_94B_50M	98.753%	99.3951%	99.3951%	
leslie3d_1116B_50M	98.2522%	98.1797%	98.6011%	
libquantum_1210B_50M	85.6962%	98.5633%	99.9937%	
mcf_46B_50M	87.1969%	92.0786%	93.0937%	
milc_360B_50M	99.9982%	99.9991%	99.9991%	
omnetpp_340B_50M	93.1968%	90.7941%	95.0742%	
soplex_66B_50M	92.9669%	93.0347%	93.5831%	
sphinx3_2520B_50M	95.9391%	95.9093%	96.1831%	
wrf_1212B_50M	96.9415%	96.2368%	98.5878%	
xalancbmk_748B_50M	96.8668%	92.3549%	97.2371%	
Arithmetic Mean	<mark>92.2453%</mark>	<mark>95.0592%</mark>	<mark>96.6210%</mark>	

(b) Include another table showing the IPC of the baseline bimodal predictor and each of the 2 PAg configurations, and % IPC improvement over the baseline bimodal predictor, for each trace, plus a geometric mean of all traces for each case.

Traces	IPC Bimodal	IPC PAg (PBHT 128)	IPC PAg (PBHT 512)	Percent Improvement (PBHT 128)	Percent Improvement (PBHT 512)
astar_163B_50M	0.331881	0.418594	0.438821	26.128%	32.222%
bwaves_1861B_50M	0.694852	0.725193	0.725433	4.367%	4.401%
bzip2_183B_50M	0.83362	0.751556	0.803032	-9.844%	-3.669%
gcc_13B_50M	0.18919	0.190959	0.194571	0.935%	2.844%
GemsFDTD_109B_50M	0.439453	0.439458	0.439487	0.001%	0.008%
lbm_94B_50M	0.494307	0.494347	0.494347	0.008%	0.008%
leslie3d_1116B_50M	0.707987	0.707445	0.707783	-0.077%	-0.029%
libquantum_1210B_50M	0.235601	0.435039	0.497377	84.651%	111.110%
mcf_46B_50M	0.0878508	0.103533	0.104569	17.851%	19.030%
milc_360B_50M	0.592034	0.592036	0.592036	0.000%	0.000%
omnetpp_340B_50M	0.242286	0.233343	0.250261	-3.691%	3.292%
soplex_66B_50M	0.339286	0.340117	0.34594	0.245%	1.961%
sphinx3_2520B_50M	0.737687	0.74091	0.744767	0.437%	0.960%
wrf_1212B_50M	0.544402	0.535366	0.552821	-1.660%	1.546%
xalancbmk_748B_50M	0.399627	0.374277	0.40364	-6.343%	1.004%
Geometric Mean	0.39544467	0.418342	<mark>0.431851</mark>	<mark>5.790%</mark>	<mark>9.206%</mark>

Q.2) Implement the gshare branch predictor described in "Combining Branch Predictors," by McFarling, 1993. You will be testing 2 different configurations of this branch predictor, each with different sized structures (the global predictor table, GPT), but using the same logic. The GPT should be implemented with 2-bit saturating counters.

<u>Configuration 1:</u> GPT size = 1024 entries, meaning we'll need 10 bits of global history register <u>Configuration 2:</u> GPT size = 4096 entries, meaning we'll need 12 bits of global history register For the indexing function, use the IP, XOR-ed with the global history register, and then mod by the size of the predictor table.

For example: int gpt_index = (ip^global_history) % GPT_SIZE; For each trace in the trace directory, run a simulation for each configuration, PLUS the provided bimodal.bpred as a baseline, using 5 million warmup and 20 million simulation instructions.

(a) Include a table showing the branch prediction accuracy of the baseline bimodal predictor and each of the 2 gshare configurations, for each trace, plus an arithmetic mean of all traces for each case.

	Prediction	Prediction	Prediction	
Traces	Accuracy	Accuracy GAg	Accuracy GAg	
	Bimodal	(GPT 1024)	(PBHT 4096)	
astar_163B_50M	74.4939%	90.8024%	92.9464%	
bwaves_1861B_50M	81.2193%	96.8277%	96.8274%	
bzip2_183B_50M	90.2581%	86.5248%	87.7918%	
gcc_13B_50M	92.3782%	96.0495%	96.4851%	
GemsFDTD_109B_50M	99.5228%	94.3974%	99.5048%	
lbm_94B_50M	98.753%	99.3951%	99.3943%	
leslie3d_1116B_50M	98.2522%	97.6933%	98.1823%	
libquantum_1210B_50M	85.6962%	92.8462%	94.6211%	
mcf_46B_50M	87.1969%	92.8489%	94.1715%	
milc_360B_50M	99.9982%	99.9964%	99.996%	
omnetpp_340B_50M	93.1968%	91.7249%	95.2313%	
soplex_66B_50M	92.9669%	93.0075%	93.3811%	
sphinx3_2520B_50M	95.9391%	95.6296%	98.0373%	
wrf_1212B_50M	96.9415%	97.144%	98.562%	
xalancbmk_748B_50M	96.8668%	94.9157%	97.1886%	
Arithmetic Mean	<mark>92.2453%</mark>	<mark>94.6536%</mark>	<mark>96.1547%</mark>	

(b) Include another table showing the IPC of the baseline bimodal predictor and each of the 2 gshare configurations, and % IPC improvement over the baseline bimodal predictor, for each trace, plus a geometric mean of all traces for each case.

Traces	IPC Bimodal	IPC GAg (GPT 1024)	IPC GAg (GPT 4096)	Percent Improvement (GPT 1024)	Percent Improvement (GPT 4096)
astar_163B_50M	0.33188	0.418162	0.433306	25.998%	30.561%
bwaves_1861B_50M	0.69485	0.721411	0.721411	3.822%	3.822%
bzip2_183B_50M	0.83362	0.759457	0.782229	-8.896%	-6.165%
gcc_13B_50M	0.18919	0.190763	0.191893	0.831%	1.429%
GemsFDTD_109B_50M	0.43945	0.421412	0.43941	-4.105%	-0.010%
lbm_94B_50M	0.49431	0.494347	0.494346	0.008%	0.008%
leslie3d_1116B_50M	0.70799	0.706793	0.70709	-0.169%	-0.127%
libquantum_1210B_50M	0.2356	0.294549	0.32462	25.020%	37.784%
mcf_46B_50M	0.08785	0.104574	0.106284	19.036%	20.982%
milc_360B_50M	0.59203	0.592028	0.592028	-0.001%	-0.001%
omnetpp_340B_50M	0.24229	0.233262	0.248841	-3.725%	2.705%
soplex_66B_50M	0.33929	0.340504	0.343354	0.359%	1.199%
sphinx3_2520B_50M	0.73769	0.737624	0.747677	-0.009%	1.354%
wrf_1212B_50M	0.5444	0.543351	0.552833	-0.193%	1.549%
xalancbmk_748B_50M	0.39963	0.388027	0.400504	-2.903%	0.219%
Geometric Mean	0.395445	0.408083	0.418056	<mark>3.196%</mark>	<mark>5.718%</mark>

Q.3) Show a table with the storage overhead for each branch predictor and each configuration from this assignment, i.e., the bimodal predictor, 2 PAg configurations, and 2 gshare configurations. Count the storage overhead as it would appear in real hardware, not as you happened to have implemented it in the simulation. For example, if you implement a 2-bit saturating counter as a 32-bit integer, this should only count as 2 bits, and not 32 bits, for this purpose.

Predictors	Bimodal	PAg (128)	PAg (512)	GAg (1024)	GAg (4096)
Branch	0	8 x 128	12 x 512	1 x 10	1 x 12
History Table					
Pattern	2 x 16384	2 x 256	2 x 4096	2 x 1024	2 x 4096
History Table					
Total	32768 bits	1536 bits	14336 bits	2058 bits	8204 bits
	32Kb	1.5Kb	14Kb	~2Kb	~8Kb