Intro to IT Security

CS306C-Fall 2022

Prof. Antonio R. Nicolosi

Antonio.Nicolosi@stevens.edu

SSL/TLS + SSH

SSL/TLS Overview

- Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
- SSL offers security for application-level protocols (e.g. HTTP)
- Authentication of server to client
- Optional authentication of client to server
- SSL protects secrecy of communication
- SSL protects integrity of communication

Purpose in more detail

- Authentication based on certification authorities (CAs)
 - Trusted third party with well-known public key
 - Certifies who owns a given public key (domain name and real name of company)
 - Example: DigiCert (owner of former Verisign brand)
- What SSL Does Not Address
 - Privacv
 - Traffic analysis
 - Trust management

Overview of SSL Handshake

Client Server

Ciphersuites: Negotiating ciphers

- Server authentication algorithm (RSA, DSS)
- Key exchange algorithm (RSA, DHE)
- Symmetric cipher for secrecy (3DES, AES)
- MAC (HMAC-SHA1, HMAC-SHA256)

Simplified View of SSL Handshake

- Client and server negotiate on cipher selection.
- Cooperatively establish session keys.
- Use session keys for secure communication.

Client Authentication Handshake

- Server requests that client send its certificate.
- Client signs a signed digest of the handshake messages.

SSL Client Certificate

Client Server

Establishing a Session Key

- Server and client both contribute randomness.
- Client sends server a "pre-master secret" encrypted with server's public key.
- Use randomness and pre-master secret to create session keys:
 - Client MAC
 - Server MAC
 - ClientWrite
 - ServerWrite
 - Client IV
 - Server IV

Establishing a Session Key

From "SSL and TLS" by Eric Rescorla

What does a CA-issued Certificate Mean?

- No one knows exactly.
- That a public key belongs to someone authorized to represent a hostname?
- That a public key belongs to someone who is associated in some way with a hostname?
- That a public key belongs to someone who has lots of paper trails associated to a company related to a hostname?
- That the CA has no liability?

How to Get a Certificate

- Pay DigiCert (\$300+)
- Get "Doing Business As" (DBA) license from city call (\$20)
 - No on-line check for name conflicts ... can I do business as Microsoft?
- Letterhead from company (\$0)
- Notarized document (need driver's license) (\$0)
- Conclusions:
 - Easy to get a fraudulent certificate (many CAs)
 - Maybe not so easy to avoid prosecution afterwards

Man in the Middle Attacks

- Man in the middle attack foils user:
 - Attacker emulates server when talking to client
 - Attacker emulates client when talking to server
 - Attacker passes most messages through unmodified
 - Attacker substitutes own public key for client's & server's
 - Attacker records secret data, or tampers to cause damage

SSH Overview

- Widely-used secure remote login program
- MACs/encrypts all data sent over the network
 - Version 2 of protocol basically gets this right
 - Open to man in the middle attack on first server access
- Often sends password at start of session
 - Gets sent encrypted in a single TCP packet
- Assuming crypto secure (& no MiM), how to attack?

Packet Size

- Transmitted packets rounded to multiple of 8 bytes
 - Version 1 even had exact packet-size in the clear
- Can tell if user's password is less than 7 chars
 - Password sent in one packet of initial exchange
- Why do we care?
 - Might tell you which account to try to crack

Inter-Keystroke Timings

- Each character typed causes a packet to be sent
 - Typical inter-character times 10–300 msec
 - Typical network round-trip time 10 of msec
 - Can get very accurate timing information by eavesdropping
- What can you learn from this?
 - Some character sequences harder to type than others
 - E.g., v-b is much slower to type than v-o
 - In general, characters with different hands faster
 - Two characters typed with same finger are much slower
 - Digits, special chars also slower
- Idea: Use timing to learn about passwords

Character Latency

How to Know Password is being Typed

- Traffic signature
 - E.g., echo turned off when password typed
- Multi-user attack
 - E.g., run ps on machine to see when victim runs pgp
- Nested ssh attack
 - See remote host open SSH connection to another host

Example: su Command

- "Password" prompt 28 char packet
- Echo turned off for password, no return packets

How to Work around the Problem

- Send dummy packets when in echo mode
 - Foils traffic signature detection of passwords
- Adding random delays to packets?
 - Latencies in 100s of msec, so need big random delays
 - Can still get info by averaging many sessions
 - Delay might get seriously annoying
- Constant bit-rate traffic
 - Practical for one session over a modem