Universidad de Guadalajara Centro Universitario de los Valles

Ingeniería en Electrónica y Computación

Reporte del proyecto:

Polos y Ceros

Presentado por:

Ignacio Andrade Salazar

Profesor

Dr. Gerardo Ortiz Torres

Ameca, Jalisco, 26 de agosto del 2023

$$G_1(s) = \frac{s-1}{s^2 + 5s + 2};$$

$$G_2(s) = \frac{s^2 + 5s}{(s^2 - 10s - 5)s^2};$$

 $G_2(s) = \frac{s^2 + 5s}{(s^2 - 10s - 5)S^2}$ 52+55; grado 2 54-1053-552; grado 4 II ceros = 2 polos = 2 4 (eros = 51(5+5)=0=) 5=0 y 5=-5 Polos = $-(+10) \pm \sqrt{100 + 20} = 7 \cdot 10 \pm \sqrt{120}$ = 2(1) = 2 $= 7 \cdot 10 \pm \sqrt{120}$ $= 7 \cdot 10 \pm \sqrt{120}$ = 7=7 s,=10.47 y sz=-0.47 53=0 4 54=0 yaque el grado El sistema cs inestable de númerados es 2 veces menor que el denominador existen ceros en el 10 infinito

$$G_3(s) = \frac{5}{(s^2 + 8s + 20)(s+2)};$$

$$G_4(s) = \frac{s+1}{s^3(s+3)};$$

Ejercicio 5

$$G_5(s) = \frac{s}{s^2 + 16}$$

La transformada de Laplace

Primero presentaremos una definición de la transformada de Laplace y un breve análisis de la condición para la existencia de ésta y después ofreceremos ejemplos de la derivación de las transformadas de Laplace en varias funciones comunes.

Definamos

f(t) = una función del tiempo t tal que f(t) = 0 para t < 0

s = una variable compleja

 \mathcal{L} = un **símbolo** operativo que indica que la cantidad a la que antecede se va a transformar mediante la integral de **Laplace** $\int_0^\infty e^{-st} dt$

F(s) = transformada de Laplace de f(t)

A continuación, la transformada de Laplace de f(t) se obtiene mediante

$$\mathscr{L}[f(t)] = F(s) = \int_0^\infty e^{-st} dt [f(t)] = \int_0^\infty f(t)e^{-st} dt$$

El proceso inverso de encontrar la función del tiempo f(t) a partir de la transformada de **Laplace** F(s) se denomina transformada inversa de **Laplace**. La notación para la transformada inversa de **Laplace** es \mathcal{L}^{-1} , se encuentra a partir de F(s) mediante la siguiente integral de inversión:

$$\mathcal{Z}^{-1}[F(s)] = f(t) = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} F(s)e^{st} ds, \quad \text{para } t > 0$$
 (2-4)

en donde c, la abscisa de convergencia, es una constante real y se eligió más grande que las partes reales para todos los puntos singulares de F(s). Por tanto, la trayectoria de integración es paralela al eje jo y se desplaza una cantidad c a partir de él. Esta trayectoria de integración va hacia la derecha de todos los puntos singulares.

Teoremas de la transformada de laplace

Teorema de diferenciación real. La transformada de Laplace de la derivada de una función f(t) se obtiene mediante

$$\mathscr{L}\left[\frac{d}{dt} f(t) = sF(s) - f(0)\right] \tag{2-7}$$

en donde f(0) es el valor inicial de f(t) evaluado en t = 0.

Para una función f(t) determinada, los valores de f(0+) y f(0-) pueden ser iguales o diferentes, tal como se ilustra en la figura 2-2. La diferencia entre f(0+) y f(0-) es importante cuando f(t) tiene una discontinuidad en t=0, debido a que, en tal caso, df(t)/dt implicará una función impulso en t=0. Si $f(0+) \neq f(0-)$, la ecuación (2-7) debe modificarse a

$$\mathcal{L}_{+} \left[\frac{d}{dt} f(t) = sF(s) - f(0+) \right]$$

$$\mathcal{L}_{-} \left[\frac{d}{dt} f(t) \right] = sF(s) - f(0-)$$

Para comprobar el teorema de diferenciación real de la ecuación (2-7), procedemos del modo siguiente. Si se hace la integral de Laplace por partes, obtenemos

$$\int_0^\infty f(t)e^{-st} dt = f(t)\frac{e^{-st}}{-s}\bigg|_0^\infty - \int_0^\infty \left[\frac{d}{dt} f(t)\right]\frac{e^{-st}}{-s} dt$$

Teorema del valor final. El teorema del valor final relaciona el comportamiento en estado estable de f(t) con el comportamiento de sF(s) en la vecindad de s=0. Sin embargo, este teorema se aplica si y sólo si existe $\lim_{t\to\infty} f(t)$ [lo que significa que f(t) se asienta en un valor definido para $t\to\infty$]. Si todos los polos de sF(s) se encuentran en el semiplano izquierdo del plano s, existe $\lim_{t\to\infty} f(t)$. Pero si sF(s) tiene polos en el eje imaginario 0 en el semiplano derecho del plano s, f(t) contendrá funciones de tiempo oscilantes o exponencialmente crecientes, respectivamente, y $\lim_{t\to\infty} f(t)$ no existirá. El teorema de valor final no se aplica en tales casos. Por ejemplo, si f(t) es la función senoidal sen ωt , sF(s) tiene polos en $s=\pm j\omega$ y $\lim_{t\to\infty} f(t)$ no existe. Por tanto, este teorema no es aplicable a tal función.

El teorema de valor final se plantea del modo siguiente. Si f(t) y df(t)/dt se pueden transformar por el método de Laplace, si F(s) es la transformada de Laplace de f(t), y si existe $\lim_{t\to\infty} f(t)$, entonces

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

Para comprobar el teorema, suponemos que s tiende a cero en la ecuación para la transformada de **Laplace** de la derivada de f(t), o bien,

$$\lim_{s\to 0} \int_0^\infty \left[\frac{d}{dt} f(t) \right] e^{-st} dt = \lim_{s\to 0} \left[sF(s) - f(0) \right]$$

Dado que $\lim_{s\to 0} e^{-st} = 1$, obtenemos

$$\int_0^\infty \left[\frac{d}{dt} f(t) \right] dt = f(t) \Big|_0^\infty = f(\infty) - f(0)$$
$$= \lim_{s \to \infty} sF(s) - f(0)$$

a partir de lo cual

$$f(\infty) = \lim_{t \to \infty} f(f) = \lim_{s \to 0} sF(s)$$

El teorema de valor final plantea que el comportamiento en estado estable de f(t) es igual que el comportamiento de sF(s) alrededor de s=0. Por tanto, es posible obtener f(t) en $t=\infty$ directamente de F(s).

Teorema de integración real. Sif(t) es de orden exponencial, existe la transformada de Laplace de $\int f(t)dt$ y se obtiene mediante

$$\mathscr{L}\left[\int f(t)\right]dt = \int_{s}^{F(s)} f^{-1}(0)$$
 (2-8)

en donde $F(s) = \mathcal{L}[f(t)]$ y f-l(O) = $\int f(t) dt$, evaluados en t = 0.

Observe que si f(t) implica una función impulso en t = 0, entonces $f^{-1}(0+) \neq f^{-1}(0-)$. Por tanto, si f(t) implica una función impulso en t = 0, debemos modificar la ecuación (2-8) del modo siguieqte:

$$\mathcal{L}_{+}\left[\int f(t) dt\right] = \frac{F(s)}{s} + \frac{f^{-1}(0+)}{s}$$

$$\mathcal{L}_{-}\left[\int f(t) dt\right] = \frac{F(s)}{s} + \frac{f^{-1}(0-)}{s}$$

El teorema de integración real ofrecido en la ecuación (2-8) se demuestra del modo siguiente. La integración por partes lleva a

$$\mathcal{L}\left[\int f(t) \ dt\right] = \int_0^\infty \left[\int f(t) \ dt\right] e^{-st} \ dt$$

$$= \left[\int f(t) \ dt\right] \frac{e^{-st}}{-s} \Big|_0^\infty \int_0^\infty f(t) \frac{e^{-st}}{-s} \ dt$$

$$= \frac{1}{s} \int f(t) \ dt \Big|_{t=0} + \frac{1}{s} \int_0^\infty f(t) e^{-st} \ dt$$

$$= \frac{f^{-1}(0)}{s} F(s)$$

Teorema de diferenciación compleja. Si f(t) se puede transformar mediante el método de Laplace, entonces, excepto en los polos de F(s),

$$\mathscr{L}[tf(t)] = -\frac{d}{ds} F(s)$$

en donde $F(s) = \mathcal{L}[f(t)]$. Esto se conoce como teorema de diferenciación compleja. Asimismo,

$$\mathscr{L}[t^2f(t)] = \frac{d^2}{ds^2}F(s)$$

En general,

$$\mathscr{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s), \quad \text{paran} = 1, 2, 3, \dots$$

Para comprobar el teorema de diferenciación compleja, procedemos del modo siguiente:

$$\mathcal{L}[tf(t)] = \int_{0}^{\infty} tf(t)e^{-st} dt = -\int_{0}^{\infty} f(t) \frac{d}{ds} (e^{-st}) dt$$
$$= -\frac{d}{ds} \int_{0}^{\infty} f(t)e^{-st} dt = -\frac{d}{ds} F(s)$$

De aquí el teorema. Asimismo, definiendo tf(t) = g(t), el resultado es

$$\mathcal{L}[t^2f(t)] = \mathcal{L}[tg(t)] = -\frac{d}{ds} G(s) = -\frac{d}{ds} \left[\frac{d}{ds} F(s) \right]$$
$$= (-1)^2 \frac{d^2}{ds^2} F(s) = \frac{d^2}{ds^2} F(s)$$

Si repetimos el mismo proceso, obtenemos

$$\mathscr{L}[t^n f(t)] = (-1) \frac{d^n}{ds^n} F(s), \quad \text{paran} = 1, 2, 3, \dots$$

Integral de convolución. Considere la transformada de Laplace de

$$\int_0^t f_1(t-\tau)f_2(\tau)\ d\tau$$

Con frecuencia, esta integral se escribe como

$$f_1(t) * f_2(t)$$

La operación matemática $f_1(t)*f_2(t)$ s e denomina convolución. Observe que si ponemos $t - \tau = \xi$, entonces

$$\int_0^t f_1(t-\tau)f_2(\tau) d\tau = -\int_{\xi}^0 f_1(\xi)f_2(t-\xi) d\xi$$
$$= \int_{\xi} f_1(\tau)f_2(t-\tau) d\tau$$

Por tanto,

$$f_1(t) * f_2(t) = \int_0^t f_1(t - \tau) f_2(\tau) d\tau$$
$$= \int_0^t f_1(\tau) f_2(t - \tau) d\tau$$
$$= f_2(t) * f_1(t)$$

Si $f_1(t)$ y $f_2(t)$ ocupan posiciones continuas y son de orden exponencial, la transformada de Laplace de

$$\int_{0}^{t} f_{1}(t-\tau)f_{2}(\tau) d\tau$$

se obtiene del modo siguiente:

$$\mathscr{L}\left[\int_{0}^{t} f_{1}(t-\tau)f_{2}(\tau) d\tau\right] = F_{1}(s)F_{2}(s)$$
 (2-10)

en donde

$$F_1(s) = \int_0^\infty f_1(t)e^{-st} dt = \mathcal{L}[f_1(t)]$$

$$F_2(s) = \int_0^\infty f_2(t)e^{-st} dt = \mathcal{L}[f_2(t)]$$

Para comprobar la ecuación (2-10) observe que $f_1(t-\tau)1(t-\tau) = 0$ para $\tau > t$ Por tanto,

$$\int_{a}^{\tau} f_{1}(t-\tau)f_{2}(\tau) d\tau = \int_{a}^{\infty} f_{1}(t-\tau)1(t-\tau)f_{2}(\tau) d\tau$$

Así,

$$\mathcal{L}\left[\int_0^t f_1(t-\tau)f_2(\tau) d\tau\right] = \mathcal{L}\left[\int_0^\infty f_1(t-\tau)1(t-\tau)f_2(\tau) d\tau\right]$$
$$= \int_0^\infty e^{-st} \left[\int_0^\infty f_1(t-\tau)1(t-\tau)f_2(\tau) d\tau d\tau\right]$$

Si sustituimos $t - \tau = \lambda$ en esta última ecuación y modificamos el orden de integración, que en este caso es válido debido a que $f_1(t)$ y $f_2(t)$ se transforman mediante el sistema de Laplace, obtenemos:

$$\mathcal{L}\left[\int_0^t f_1(t-\tau)f_2(\tau) d\tau\right] = \int_0^\infty f_1(t-\tau)1(t-\tau)e^{-st} dt \int_0^\infty f_2(\tau) d\tau$$

$$= \int_0^\infty f_1(\lambda)e^{-s(\lambda+\tau)} d\lambda \int_0^\infty f_2(\tau) d\tau$$

$$= \int_0^\infty f_1(\lambda)e^{-s\lambda} d\lambda \int_0^\infty f_2(\tau)e^{-s\tau} d\tau$$

$$= F_1(s)F_2(s)$$

Esta última ecuación obtiene la transformada de Laplace de la integral de convolución. A la inversa, si la transformada de Laplace de una función se determina mediante un producto de dos funciones de transformadas de Laplace, $F_1(s)F_2(s)$, la función de tiempo correspondiente (la transformada inversa de Laplace) se obtiene mediante la integral de convolución $f_1(t)*f_2(t)$.

La transformada de Laplace del producto de dos funciones del tiempo. La transformada de Laplace del producto de dos funciones que se pueden transformar mediante el método de Laplace f(t) y g(t) se obtiene mediante

$$\mathscr{L}[f(t)g(t)] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+j\infty} F(p)G(s-p) dp$$
 (2-11)

Para demostrar esto, procedemos del modo siguiente: La transformada de Laplace del producto de f(t) y g(t) se escribe como

$$\mathcal{L}[f(t)g(t)] = \int_0^\infty f(t)g(t)e^{-st} dt \qquad (2-12)$$

Observe que la integral de inversión es

$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+j\infty} F(s) e^{st} ds, \quad \text{para } t > 0$$

en donde c es la abscisa de convergencia para F(s). Por tanto,

$$\mathscr{L}[f(t)g(t)] = \frac{1}{2\pi i} \int_0^\infty \int_{cc-i\infty}^{c+j\infty} F(p)e^{pt} dp \ g(t)e^{-st} dt$$

Debido a la convergencia uniforme de las integrales consideradas, es posible invertir el orden de integración:

$$\mathcal{L}[f(t)g(t)] = \frac{1}{2\pi i} \int_{c_{C^{-i}}/\infty}^{c+j\infty} F(p) dp \int_{n_0}^{\infty} g(t)e^{-(s-p)t} dt$$

Si observamos que

$$\int_0^\infty g(t)e^{-(s-p)t}\ dt = G(s-p)$$

obtenemos

$$\mathcal{L}[f(t)g(t)] = \frac{1}{2\pi i} \int_{c-1^{\infty}}^{c+j^{\infty}} F(p)G(s-p) dp$$
 (2-13)

Bibliografía

Kuo., B. (1997). Sistemas de control automático. Prentice-Hall.

Ogata, K. (2010). *Ingeniería de control moderna*. Madrid: Pearsdon.

Richard C. Dorf, R. H. (2008). Sistemas de Control Moderno. Pearson Prentice-Hall.