Analysis_Test

December 24, 2021

```
[1]: import warnings
   warnings.filterwarnings('ignore')

[2]: import scrapbook as sb
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import numpy as np
   from statistics import mean
   import matplotlib.pyplot as plt
```

0.1 BaseLine Models

We have used Random Forest, Catboost, Vanilla NN and Stats Model as the Baseline Model for the problem

Importing data of baseline Models

BASELINE MODEL MSE VALUES

```
      Catboost
      Stats Model
      Random Forest
      Vanilla Neural Network

      0
      0.134360
      0.308435
      0.182300
      0.911658

      1
      0.088122
      0.305280
      0.123892
      1.015526

      2
      0.101181
      0.309786
      0.173017
      1.117976
```

```
3 0.093362
                0.280718
                               0.178366
                                                       0.978198
4 0.115354
                0.237479
                              0.198445
                                                       0.972637
5 0.088785
                0.326439
                              0.119403
                                                       0.919878
6 0.097160
                0.336741
                              0.228378
                                                       0.805377
7 0.078201
                0.379283
                                                       0.681750
                              0.121724
8 0.076088
                0.348601
                               0.101290
                                                       0.861582
9 0.136799
                0.286368
                               0.207355
                                                       0.881409
```

MEAN:

Catboost0.100941Stats Model0.311913Random Forest0.163417Vanilla Neural Network0.914599

dtype: float64

0.2 GAN

Simple C-GAN was used to train the dataset

```
[4]: book = sb.read_notebooks("./Main/GAN")
     gan_data = []
     gan_mse = []
     for nb in book.notebooks:
         metrics = nb.scraps['GAN_1 Metrics'].data
         for i in range(1000):
             gan_mse.append(metrics[0][i])
         nbList = [nb.scraps['GAN Model MSE'].data,
                   nb.scraps['GAN Model MAE'].data,
                   nb.scraps['GAN Model Euclidean distance'].data,
                   nb.scraps['GAN Model Manhattan Distance'].data,
                   nb.scraps['GAN Model n_epochs'].data]
         gan_data.append(nbList)
     print("GAN Performance Metrics")
     df = pd.DataFrame(gan_data, columns = ['MSE', 'MAE', 'Euclidean_

→Distance', 'Manhattan Distance', 'Epochs'])
     print(df)
     print("MEAN:")
     print(df.mean(axis = 0))
     gan_data = np.array(gan_data)
```

GAN Performance Metrics

	MSE	MAE	Euclidean Distance	Manhattan Distance	Epochs
0	0.108423	0.251182	3.308940	25.369408	171
1	0.310981	0.371125	5.600692	37.483586	142
2	0.222287	0.312892	4.738119	31.602059	5000
3	0.382009	0.469235	6.210758	47.392747	5000
4	0.288838	0.324927	5.401011	32.817620	5000
5	0.213533	0.313193	4.643706	31.632467	5000
6	0.122288	0.262596	3.514324	26.522194	1983

```
7 0.244608 0.315503
                                  4.966387
                                                     31.865806
                                                                   5000
8 0.168282 0.312029
                                  4.122393
                                                     31.514973
                                                                   263
9 0.763354 0.560267
                                  8.779184
                                                     56.586946
                                                                   5000
MEAN:
MSE
                         0.282460
MAF.
                         0.349295
Euclidean Distance
                         5.128551
Manhattan Distance
                        35.278780
                      3255.900000
Epochs
dtype: float64
```

0.3 ABC_GAN Analysis

```
[5]: book = sb.read notebooks("./Test")
     paramVal = [0.01, 0.1, 1]
     abc_mse = [[] for i in range(3)]
     abc_mse_skip = [[] for i in range(3)]
     abc_mse_mean = [[] for i in range(3)]
     abc_mse_skip_mean = [[] for i in range(3)]
     abc_weights = [[] for i in range(3)]
     abc_epochs = [[] for i in range(3)]
     for nb in book.notebooks:
         metrics1 = np.array(nb.scraps['ABC_GAN_1 Metrics'].data)
         metrics2 = np.array(nb.scraps['ABC_GAN_2 Metrics'].data)
         metrics3 = np.array(nb.scraps['ABC_GAN_3 Metrics'].data)
         paramVar = float(nb.papermill_dataframe.iloc[0]['value'])
         #Divide data according to parameters
         for i in range(3):
             if paramVar == paramVal[i]:
                 for j in range(1000):
                     abc_mse[i].append(metrics1[0,j])
                     abc_mse_skip[i].append(metrics3[0,j])
                 abc epochs[i].append(nb.scraps['ABC-GAN Model n epochs'].data)
                 abc_weights[i].append(nb.scraps['Skip Connection Weight'].data)
                 abc_epochs[i].append(nb.scraps['ABC-GAN Model n_epochs'].data)
                 abc_mse_mean[i].append(mean(metrics1[0,:]))
                 abc_mse_skip_mean[i].append(mean(metrics3[0,:]))
```

print(df.mean(axis=0)) Variance Weight ABC_Mean 0.01 0.000000 0.142007 0.01 0.000000 0.060067 0.01 0.015057 0.254994 0.01 0.002985 0.243528 0.01 0.005365 0.132533 0.01 0.035787 0.388269 0.01 0.071458 0.157338 0.01 0.073413 0.277285 0.01 0.000087 0.090055 0.01 0.006217 0.110667 0.01 0.017501 0.101729

Skip Connection ABC Mean Epochs
0.005896 62
0.005693 62
0.021283 42
0.005128 42
0.003611 178
0.011524 178

5.350273 63 0.010582 63 0.004755 5000

0.005384 5000 0.006248 58 0.025114 58

Variance 0.010000
Weight 0.030651
ABC_Mean 0.172953

0.01 0.139940 0.116963

Skip Connection ABC Mean 0.454624 Mean Excluding the outlier: 0.00956527272727273

Epochs 900.500000

dtype: float64

0

1

2

3

4

5

6

7

8

9

10

11

	Variance	Weight	$\mathtt{ABC}_{\mathtt{Mean}}$	Skip Connection	ABC Mean	Epochs
0	0.1	0.033136	0.241343		0.015642	53
1	0.1	0.011148	0.069785		0.015451	53
2	0.1	0.007397	0.059361		0.015510	29
3	0.1	0.048406	0.207625		0.027378	29
4	0.1	0.000000	0.132892		0.015136	48
5	0.1	0.002828	0.110457		0.015003	48
6	0.1	0.039032	0.169502		0.015846	36
7	0.1	0.012134	0.056144		0.017275	36
8	0.1	0.007834	0.091934		0.014463	193
9	0.1	0.006314	0.090706		0.016932	193
10	0.1	0.032581	0.121959		0.016522	45
11	0.1	0.000007	0.100863		0.013994	45

 Variance
 0.100000

 Weight
 0.016735

 ABC_Mean
 0.121048

 Skip Connection ABC Mean
 0.016596

 Epochs
 67.333333

dtype: float64

	Variance	Weight	$\mathtt{ABC}_\mathtt{Mean}$	Skip Connection	ABC Mean	Epochs
0	1	0.717305	0.199444		0.181074	554
1	1	0.927315	0.186651		0.152681	554
2	1	0.970261	0.193092		0.133733	5000
3	1	0.747636	0.112559		0.116968	5000
4	1	0.741823	0.295416		0.220009	326
5	1	0.973936	0.125268		0.490795	326
6	1	0.886234	0.375375		0.589509	430

7	1	0.833734	0.316354	0.132037	430
8	1	0.802353	0.159330	0.121161	5000
9	1	0.747843	0.158700	0.152564	5000
10	1	0.897789	0.201753	0.309947	3439
11	1	0.938318	0.326075	0.327597	3439
Variance 1.000000					
Weight 0.848712					
ABC_Mean 0.220835					
Skip Connection ABC Mean 0.244006					
Epochs 2458.166667					

dtype: float64