Conjuntos y Números

Lista 1 Curso 2018-19

1) Decir cuáles de las siguientes condiciones son necesarias, cuáles son suficientes y cuáles son necesarias y suficientes para que un número natural n sea divisible por 6.

- a) n es divisible por 3;
- d) n^2 es divisible por 6;
- b) n es divisible por 12;
- e) n es par y divisible por 3;

c) n = 24;

f) n es par o divisible por 3.

2) Explica por qué son equivalentes las proposiciones: $S \vee (\neg R) \Rightarrow T$, $(\neg T) \Rightarrow (\neg S) \wedge R$, y confírmalo con la tabla de verdad de cada una de ellas.

3) En las siguientes proposiciones, x, y son números reales. Traduce cada una de ellas a frases que no contengan ningún símbolo, sólo palabras. Explica cuáles son ciertas y escribe la negación de las que no lo sean.

- a) $\forall x ((x > 0) \Rightarrow \exists y ((y > 0) \land (y^2 = x)))$
- c) $\exists x (1 < x^2 < x)$

b) $\exists x \, \forall y \, ((y > x) \Rightarrow (y > 5))$

d) $\forall y \,\exists x \,((x \in \mathbb{R}) \wedge (x^3 = y + 1))$

4) Traduce cada una de las siguientes afirmaciones a símbolos y cuantificadores. Las respuestas no deben contener palabras.

- a) El número 5 tiene una raíz cuadrada positiva.
- b) Todo número real positivo tiene dos raíces cuartas reales y distintas.

5) Razona con palabras por qué los siguientes pares de afirmaciones no son equivalentes en los números naturales, y explica cuáles de ellas son ciertas.

- a) $\forall x \exists y (x = 2y \lor x = 2y + 1)$ y $\exists x \forall y (x = 2y \lor x = 2y + 1)$.
- b) $\exists x \forall y, x < y < x + 2$ y $\forall x \exists y, x < y < x + 2$.

6) ¿Son ciertas las siguientes afirmaciones en los números naturales? Escribir su negación.

- a) $\forall x \,\exists y, \, y < x$
- b) $\exists x \, \forall y, \, \forall z, x < z < y$

7) Demuestra por reducción al absurdo que $log_3(1215)$ es irracional.

8) Se llama cuadrado perfecto a un número de la forma a^2 donde a es un número natural. Demuestra que si un número natural n > 0 es un cuadrado perfecto, entonces n + 1 no puede ser un cuadrado perfecto.

9) Halla una expresión para la suma de los primeros números naturales positivos: $1 + 2 + \cdots + n$. Y otra para la suma de los n primeros términos de la progresión aritmética: a + kd, $k = 0, 1, \ldots$

10) Halla la suma de las n primeras potencias de r: $r^0 + r^1 + \cdots + r^{n-1}$. Halla una fórmula general para la suma de las n primeros términos de una progresión geométrica cr^k , $k = 0, 1, \ldots$

11) Encuentra una fórmula para la suma de los ángulos interiores de un polígono de n lados. Indicación: recuerda que los ángulos de un triángulo suman π radianes.

12) Demostrar por inducción:

- a) $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$, para cada $n \in \mathbb{N}, n \ge 1$.
- b) $\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}\cdot \cdot \cdot +\frac{1}{n\cdot (n+1)}=\frac{n}{n+1} \text{ , para cada } n\in \mathbb{N}, n\geq 1.$
- c) $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$, para cada $n \in \mathbb{N}, n \ge 1$.

- 13) a) Demostrar que si $n \in \mathbb{N}, n > 2$, entonces $2^n > 1 + 2n$.
 - b) Demostrar que si $n \in \mathbb{N}, n > 4$, entonces $2^n > n^2 + 1$.
 - c) Demostrar que si $n \in \mathbb{N}$, entonces el número $a_n = 4^n + 6n 1$ es divisible por 9.
 - d) Demostrar que si $n \in \mathbb{N}$, entonces el número $b_n = 7^n 4^n$ es divisible por 3.
- 14) Probar que la suma de los cubos de tres números naturales consecutivos es divisible por 9.
- Demostrar que todo número natural mayor que uno, es producto de números primos.
- 16) Probar que hay infinitos primos. Es decir, que hay más de n primos distintos para todo $n \in \mathbb{N}$.
- Demostrar que $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} > \frac{13}{24}$, para cada $n \in \mathbb{N}, n \geq 2$.
- **18)** Demostrar, para todo $q \neq 1$ y para todo $n \in \mathbb{N}$, la igualdad

$$(1+q)(1+q^2)(1+q^{2^2})\cdots(1+q^{2^n})=\frac{q^{2^{n+1}}-1}{q-1}.$$

- **19)** Supongamos que $A \subset B \subset C$. Determinar $A \setminus B$, $A \setminus C$ y $A \cup B$.
- Probar las siguientes igualdades para conjuntos arbitrarios $S, T, U \vee V$. (Indicación: los diagramas de Venn pueden ser útiles para orientarse, pero la demostración no debe depender de ellos).

 - $\begin{array}{ll} \text{a)} & (S \setminus T) \cup (T \setminus S) = (S \cup T) \setminus (S \cap T) \\ \text{b)} & (S \setminus (T \cup U)) = (S \setminus T) \cap (S \setminus U) \\ \end{array} \quad \begin{array}{ll} \text{d)} & (S \setminus T) \times (U \setminus V) = (S \times U) \setminus [(S \times V) \cup (T \times U)] \\ \text{e)} & (S \cup T) \times V = (S \times V) \cup (T \times V) \\ \end{array}$
- c) $(S \setminus (T \cap U)) = (S \setminus T) \cup (S \setminus U)$
- 21) Dar una descripción explícita del conjunto $\mathcal{P}(S)$ de partes de $S = \{a, b, 1, 2\}$. Demostrar que $S \subset T$ si y sólo si $\mathcal{P}(S) \subset \mathcal{P}(T)$. Concluir que S = T si y sólo si $\mathcal{P}(S) = \mathcal{P}(T)$.
- 22) Probar, o demostrar que son falsas, las siguientes afirmaciones:

a)
$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$$
; b) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$; c) $\mathcal{P}(A \setminus B) = \mathcal{P}(A) \setminus \mathcal{P}(B)$.

23) Sean A, B, C conjuntos dados tales que $B \subset A$. Describir en cada caso los conjuntos X que satisfacen las ecuaciones:

$$\mathbf{i)} \begin{cases} A \cap X = B \\ A \cup X = C \end{cases} \text{, si sabemos que } A \subset C.$$

$$\mathbf{ii)} \begin{cases} A \setminus X = B \\ X \setminus A = C \end{cases} \text{, si sabemos que } A \cap C = \varnothing \text{.}$$