

 $lue{}$ 모집단이 정규분포 $N(\mu,\sigma^2)$ 을 따르고, σ^2 이 알려진 경우

모평균 μ의 추정 (점추정)

 $lacksymbol{\blacksquare}$ 모평균 μ 의 추정량: 확률표본 $\{X_1,X_2,\,\cdots,X_n\}$ 의 표본평균 \overline{X}

$$\overline{X} = (X_1 + X_2 + \dots + X_n)/n$$

$$\Rightarrow \underbrace{\text{Ridelity}}_{\text{Var}(\overline{X})} = \underbrace{\frac{\sigma^2}{n}}$$

$$\Rightarrow \underbrace{\text{Ridelity}}_{\text{Var}(\overline{X})} = \underbrace{\frac{\sigma^2}{n}}$$

불편(비면향)추정강⇒꽃수정강! 오누와같음

 $lacksymbol{\blacksquare}$ 모평균 μ 의 추정값: 확률표본의 실제 값 $\{x_1,x_2,\,\cdots,x_n\}$ 의 평균 \overline{x}

$$\bar{x} = (x_1 + x_2 + \cdots + x_n)/n$$

- 실제 μ 와 얼마나 가까운지는 알 수 없음

5

통계적 추론

- 구간추정 (신뇌가난)
 - 확률표본 $X_i \sim N(\mu, \sigma^2)$ 이고 서로 독립

로 독립
$$X-\mu$$
 $N(0,1)$

$$\overline{X} \sim N(\mu, \sigma^2/n), \longrightarrow \overline{X} - \mu \over \sigma/\sqrt{n}$$
 $N(0, 1)$

$$P\left(-1.96 < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < 1.96\right) = 0.95$$

$$\overline{X} - 1.96 \xrightarrow{\sigma} < \mu < \overline{X} + 1.96 \xrightarrow{\sigma}$$

$$\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}$$

• μ 의 95% <u>신뢰구간</u> (\bar{x} 는 표본평균의 값)

$$\left(\overline{x}-1.96\frac{\sigma}{\sqrt{n}}\,,\,\overline{x}+1.96\frac{\sigma}{\sqrt{n}}\right)$$

- 실제 μ 를 포함하는 구간이 될 가능성은 95%

■ 모평균 µ의 가설 검정 : 가성에 대한진위여부

✓ 귀무가설: 기존의 가설 또는 주장인 귀무가설 (H₀) ♥ <mark>대립가설:</mark> 새로이 내세우는 주장을 대립가설이라 한다.(₭i)

$$\begin{array}{ll} H_0: \mu = \mu_0 \\ \\ H_1: \mu > \mu_0 \\ \\ (단촉가설) \end{array} \qquad \begin{array}{ll} \underline{H_1: \mu < \mu_0} \\ \\ \hline \end{array} \qquad \begin{array}{ll} \underline{H_1: \mu \neq \mu_0} \\ \\ \hline \end{array} \qquad (양촉가설) \end{array}$$

- い出れないとかな
- 거하나 사업 들가지 $H_0: \mu=\mu_0 \text{가 사실이라면, } Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$
- या स्वायां से सेरायर यहा
- $P(Z \ge 1.645) = P(Z \le -1.645) = 0.05,$ ٦-17 저의위시확인
 - - \ 11મુન્ન કુંધાનું મિગાપુ $P(Z \ge \underline{1.96}) = P(Z \le -1.96) = \underline{0.025} \implies P(|Z| \ge 1.96) = 0.05$ ધરાનુ મિગાપુ પ્ર

3-2) 421-50 723

통계적 추론

くせらはなっ

(i) $H_0: \mu = \mu_0$, $H_1: \mu > \mu_0$ 인 경우

- \bar{x} 가 μ_0 보다 매우 큰 값이면 H_0 를 기각
 - H_0 가 사실이면, $P\left(\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\geq 1.645\right)=0.05$
- $z^* = \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \ge 1.645$ 이면 H_0 를 기각
 - 기각역(critical region): $z^* \ge 1.645$ 또는 $\overline{x} \ge \mu_0 + 1.645 \, \sigma / \sqrt{n}$
- 유의수준 $\alpha=0.05$ 의 검정: H_0 이 사실일 때 $P(z^*\geq 1.645)=0.05$
- (ii) $H_0: \mu = \mu_0$, $H_1: \mu < \mu_0$ 인 경우
 - $z^* = \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \le -1.645$ 이면 H_0 를 기각 $(\alpha = 0.05)$

くままはなって

(iii) $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$ 인 경우

- \overline{x} 가 μ_0 보다 매우 크거나 작은 값이면 H_0 를 기각
 - \circ H_0 가 사실이면 $Pigg(rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\geq \underline{1.96}igg)=Pigg(rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\leq -1.96igg)=0.025$
- $|z^*| = \left| \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \right| \ge 1.96$ 이면 H_0 를 기각 $(\alpha = 0.05)$ (z^* 가 1.96 이상이거나 -1.96 이하이면 H_0 를 기각)
 - \circ $\alpha = 0.10$: 귀무가설을 기각하는 오류가 10번 중에 1번
 - \circ $\alpha = 0.05$: 귀무가설을 기각하는 오류가 20번 중에 1번
 - \Rightarrow lpha = 0.05 일 때 더 신뢰할 수 있는 결론

9

통계적 추론 (< < > + Ho기가 (등날이 있는 누있는 일 ! 7

- 유의확률(p-값, p-value) -> 오늘 성실다크지않게 해두겠다
 - H_0 을 기각할 수 있게 되는 가장 작은 유의수준 α 의 값
 - H₀이 사실일 때 관찰된 것보다 더 대립가설 쪽으로 치우칠 확률

些以是一个精整

(ii)
$$H_0: \mu = 100$$
, $H_1: \mu > 100$, $\bar{x} = 101.5$, $\underline{\sigma}^2 = 25$, $n = 25$

$$z^* = \frac{101.50 - 100}{5/\sqrt{25}} = 1.5, \quad p - 2k = P(Z \ge 1.50) = \frac{0.0668}{0.0668}$$

गुरुद्वाम्

⇒ M=100일(대 (Ho이상인(내) 10 .5보다더크게 나올转혈은 0.067 유의누는 d=0.05보나 크므ス Ho기각 X 즉 "숙농히 있는두있는 일이다"

- 유의확률 (p-값) **~1**
 - $\text{(i)} \quad H_0: \mu = \mu_0, \quad H_1: \mu > \mu_0 \ : \quad p \exists \! k = P(Z \! \geq z^*)$
 - $\text{(ii)} \quad H_0: \mu = \mu_0, \quad H_1: \mu < \mu_0 \ : \quad p \exists \! k = P(Z \leq z^*)$
 - (iii) $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0: \quad p \exists t = 2P(Z \ge |z^*|)$

t

 $lacksymbol{\square}$ 모집단이 정규분포 $N(\mu,\sigma^2)$ 을 따르고, σ^2 이 알려지지 않은 경우

5 吃的吃了完好到 不是从少子对

■ 모평균 *μ*의 추정

 $lacksymbol{\blacksquare}$ 모평균 μ 의 추정량: 확률표본 $\{X_1,X_2,\,\cdots,X_n\}$ 의 표본평균 \overline{X}

$$\overline{X} = (X_1 + X_2 + \cdots + X_n)/n$$

$$-\mu$$
의 추정값: $\overline{x} = (x_1 + x_2 + \cdots + x_n)/n$

 \blacksquare 모분산 σ^2 의 추정량

$$S^2 = \sum (X_i - \overline{X})^2 / (n-1)$$

$$-\sigma^2$$
의 추정값: $s^2 = \sum (x_i - \bar{x})^2/(n-1)$

11

통계적 추론

- 구간추정
 - 확률표본 $X_i \sim N(\mu, \sigma^2)$ 이고 서로 독립
 - ullet 모 분산 σ^2 을 표본분산 S^2 으로 대체하여 \overline{X} 를 표준화

$$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

$$P\!\!\left(\!-t(\alpha/2,\!n\!-\!1)<\frac{\overline{X}\!-\!\mu}{S\!/\sqrt{n}}< t(\alpha/2,\!n\!-\!1)\right)\!=1-\alpha$$

$$\overline{X} - t(\alpha/2, n-1) \frac{S}{\sqrt{n}} < \mu < \overline{X} + t(\alpha/2, n-1) \frac{S}{\sqrt{n}}$$

표본평균: $\stackrel{-}{x}$ 표본표준편차: s

$$\left(\bar{x} - t(\alpha/2, n-1) \frac{s}{\sqrt{n}} \;,\; \bar{x} + t(\alpha/2, n-1) \frac{s}{\sqrt{n}} \;\right)$$

- $lacksymbol{\blacksquare}$ 모평균 μ 의 가설검정
 - 귀무가설 H₀: µ = µ₀
 - 확률표본 $X_i \sim N(\mu, \ \sigma^2)$ 이고 서로 독립
 - $H_0: \mu = \mu_0$ 이 사실이면

$$\frac{\overline{X}\!\!-\!\mu_0}{S\!/\sqrt{n}}\,\sim t(n\!-\!1)$$

• 모분산 σ^2 이 알려진 경우와 같은 논리

$$\left(egin{array}{cccc} ext{모분산} & \sigma^2 & \Rightarrow & ext{표본분산} & S^2 \ rac{ ext{분포}}{ ext{ LY}} & N(0,1) & \Rightarrow & ext{분포} & t(n-1) \end{array}
ight)$$

13

통계적 추론

•
$$t^* = \dfrac{\overset{-}{x} - \mu_0}{s/\sqrt{n}} \geq t(\alpha, n-1)$$
 이면 H_0 를 기각

- p- $\exists k = P(t(n-1) \ge t^*)$
- (ii) $H_0: \mu = \mu_0$, $H_1: \mu < \mu_0$ 인 경우
 - $t^* = \dfrac{\overline{x} \mu_0}{s/\sqrt{n}} \leq -t(\alpha, n-1)$ 이면 H_0 를 기각
 - $\quad \text{$p$-$\rm local} = P(t(n-1) \leq t^*)$
- (iii) $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$ 인 경우
 - $|t^*|=\left|rac{\overline{x}-\mu_0}{s/\sqrt{n}}
 ight|\geq t(lpha/2,n-1)$ 이면 H_0 를 기각
 - p- $\text{W} = 2P(t(n-1) \ge |t^*|)$

분포이론									
[표 3] $\chi^2 - 분포표)$					c	r			
	df.	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005
	1	0.04393	0.0 ³ 157	0.03982	0.02393	3.841	5.024	6.635	7.879
	2	0.0100	0.0201	0.0506	0.103	5.991	7.378	9.210	10.597
$\chi^2(0.025,6) = 14.449$	3	0.0717	0.115	0.261	0.352	7.815	9.348	11.345	12.838
(0.020, 0) — 14.443	4	0.207	0.297	0.484	0.711	9.488	11.143	13.277	14.860
	5	0.412	0.554	0.831	1.145	11.070	12.832	15.086	16.750
D(2(a) - 11110) - 2.005	6	0.676	0.872	1.237	1.635	12.592	14,449	16.812	18.548
$P(\chi^2(6) > 14.449) = 0.025$	7	0.989	1.239	1.690	2.167	14.067	16.013	18.475	20.278
	8	1.344	1.646	2.180	2.733	15.507	17.535	20.090	21.955
	9	1.735	2.088	2.700	3.325	16.919	19.023	21.666	23.589
	10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188
2/	11	2.603	3.053	3.816	4.575	19.675	21.920	24.725	26.757
$\chi^2(0.975,6) = 1.237$	12	3.074	3.571	4.404	5.226	21.026	23.337	26.217	28.300
	13	3.565	4.107	5.009	5.892	22.362	24.736	27.688	29.819
	14	4.075	4.660	5.629	6.571	23.685	26.119	29.141	31.319
$P(\chi^2(6) > 1.237) = 0.975$	15	4.601	5.229	6.262	7.261	24.996	27.488	30.578	32.801
1 (7 (0) 1201) 0010	16	5.142	5.812	6.908	7.962	26.296	28.845	32.000	34.267
D(2(a) +1 00=) 0 00=	17	5.697	6.408	7.564	8.672	27.587	30.191	33.409	35.718
$P(\chi^2(6) < 1.237) = 0.025$	18	6.265	7.015	8.231	9.390	28.869	31.526	34.805	37.156
	19	6.844	7.633	8.907	10.117	30.144	32.852	36.191	38.582
	20	7.434	8.260	9.591	10.851	31.410	34.170	37.566	39.997
	21	8.034	8.897	10.283	11.591	32.671	35.479	38.932	41,401
$P(1.237 < \chi^2(6) < 14.449) = ?$	22	8.643	9.542	10.982	12.338	33.924	36,781	40.289	42,796
	23	9.260	10.196	11.689	13.091	35.172	38.076	41.638	44.181
	24	9.886	10.856	12.401	13.848	36.415	39.364	42.980	45.558
	25	10.520	11.524	13.120	14.611	37.652	40.646	44.314	46.928
	26	11.160	12.198	13.844	15.379	38.885	41.923	45.642	48.290
	27	11.808	12.198	14.573	16.151	40.113	43.194	46.963	49.645
	28	12.461	13.565	15.308	16.928	41.337	44.461	48.278	50.993
	29	13.121	14.256	16.047	17.708	42.557	45.722	49.588	52.336
	30	13.787	14.953	16.791	18.493	43.773	46.979	50.892	53.672

[표 4 계속] F-분포표 ($\alpha = 0.05$)

- F(0.05:5,15) = 2.90 P(F(5,15) > 2.90) = 0.05
- F(0.01:5,15) = 4.56 P(F(5,15) > 4.56) = 0.01

P(F(5,15) > 3.5) = ?

VI	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.4
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.0
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.63
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.2
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.1
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.1
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.0
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.0
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.9
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.9
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.8
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.8

21

확률변수

■ 기대값 (확률변수 Y)

 $\left\{ \begin{array}{ll} \hbox{(i) Ol산형 확률변수 $Y:$} & E(Y) = \sum y f(y) = \mu \\ \\ \hbox{(ii) 연속형 확률변수 $Y:$} & E(Y) = \int y f(y) \, dy = \mu \end{array} \right.$

■ 분산 (확률변수 *Y*)

$$\sigma^2 = Var(Y) = E(Y - E(Y))^2 = E(Y - \mu)^2 = E(Y^2) - \mu^2$$

■ 공분산 (확률변수 *Y*₁, *Y*₂)

$$\sigma_{12} = \mathit{Cov}(\mathit{Y}_{1}, \mathit{Y}_{2}) = E(\mathit{Y}_{1} - \mu_{1})(\mathit{Y}_{2} - \mu_{2}) = E(\mathit{Y}_{1}\mathit{Y}_{2}) - \mu_{1}\mu_{2}$$

 $lacksymbol{\blacksquare}$ 상관계수 (확률변수 $Y_1,\,Y_2$)

$$\rho_{12} = \mathit{Corr}(\mathit{Y}_{1}, \mathit{Y}_{2}) = \frac{\mathit{Cov}(\mathit{Y}_{1}, \mathit{Y}_{2})}{\sqrt{\mathit{Var}(\mathit{Y}_{1})} \, \sqrt{\mathit{Var}(\mathit{Y}_{2})}}$$

확률변수

- □ 확률변수 Y (a, b: 상수)
 - E(a) = a
 - E(aY+b) = aE(Y)+b
 - $Var(aY+b) = a^2 Var(Y)$
- \Box 확률변수 Y_1, Y_2 (a_1, a_2, b_1, b_2) 상수)
 - $\bullet \ \ E(a_1Y_1+a_2Y_2)=a_1\!E\!\left(\,Y_1\right)+a_2\!E\!\left(\,Y_2\right)$
 - $Var(a_1Y_1 + a_2Y_2) = a_1^2 Var(Y_1) + a_2^2 Var(Y_2) + 2a_1a_2 Cov(Y_1, Y_2)$
 - $\bullet \ \, \mathit{Cov}(a_1 \, Y_1 + b_1, \ a_2 \, Y_2 + b_2) = a_1 \, a_2 \, \mathit{Cov}(\, Y_1, \, Y_2)$
 - $\bullet \ \ \mathit{Corr}(a_1Y_1 + b_1, \ a_2Y_2 + b_2) = sign\left\{(a_1a_2)\right\} \ \mathit{Corr}(\ Y_1, Y_2)$

23

확률변수

对为对于中国计队队是证

 \square 확률변수 $Y_1,\,\cdots,Y_n$ $(a_1,\,\cdots\,,a_n$: 상수)

 $a_1Y_1+\cdots+a_nY_n=\sum_{i=1}^na_iY_i$: 선형결합 (linear combination)

$$\bullet \ \ E\!\left(\sum_{i=1}^{n}a_{i}Y_{i}\right) = E(a_{1}Y_{1} + \ \cdots \ + a_{n}Y_{n}) = a_{1}E\!\left(Y_{1}\right) + \ \cdots \ + a_{n}E\!\left(Y_{n}\right) = \sum_{i=1}^{n}a_{i}E\!\left(Y_{i}\right)$$

$$\begin{split} \bullet \ \ Var\!\!\left(\!\sum_{i=1}^{n}a_{i}Y_{i}\!\right) &= \sum_{i=1}^{n}a_{i}^{2}Var(Y_{i}) + \sum_{i\neq j}a_{i}a_{j}Cov(Y_{i},Y_{j}) \\ &= a_{1}^{2}Var(Y_{i}) + a_{2}^{2}Var(Y_{2}) + \ldots + a_{n}^{2}Var(Y_{n}) \\ &+ a_{1}a_{2}Cov(Y_{1},Y_{2}) + a_{1}a_{3}Cov(Y_{1},Y_{3}) + \cdots + a_{n-1}a_{n}Cov(Y_{n-1},Y_{n}) \end{split}$$

$$\begin{split} Var\!\!\left(\!\sum_{i=1}^{n}a_{i}Y_{i}\!\right) &= \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}C\!ov\!\left(Y_{i},Y_{j}\right) \\ &= a_{1}a_{1}C\!ov\!\left(Y_{1},Y_{1}\right) + a_{1}a_{2}C\!ov\!\left(Y_{1},Y_{2}\right) + \dots + a_{n}a_{n}C\!ov\!\left(Y_{n},Y_{n}\right) \end{split}$$

확률변수

$$\begin{split} & = Cov(Y_i,Y_j) = 00 | \mathbf{P} \\ & Var \Biggl(\sum_{i=1}^n a_i Y_i \Biggr) = \sum_{i=1}^n a_i^2 Var(Y_i) + \sum_{i \neq j} a_i a_j Cov(Y_i,Y_j) \\ & = \sum_{i=1}^n a_i^2 Var(Y_i) \\ & = a_1^2 Var(Y_i) + a_2^2 Var(Y_2) + \ldots + a_n^2 Var(Y_n) \end{split}$$

$$\bullet \ \ Cov(\sum_{i=1}^{n}a_{i}Y_{i},\sum_{i=1}^{m}b_{j}X_{j})=\sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}Cov(Y_{i},X_{j})$$

$$\bullet \ \, C\!ov\left(\,Y_{1}+\,Y_{2},\,\,Y_{3}\right) \,=\, C\!ov\left(\,Y_{1},\,\,Y_{3}\right) +\, C\!ov\left(\,Y_{2},\,\,Y_{3}\right)$$

25

확률변수

143449H471

(example)

$$\begin{split} n &= 3, \ m = 2, \qquad \sum_{i=1}^{3} a_{i}Y_{i} = a_{1}Y_{1} + a_{2}Y_{2} + a_{3}Y_{3}, \qquad \sum_{j=1}^{2} b_{j}X_{j} = b_{1}X_{1} + b_{2}X_{2} \\ & \cdot \underbrace{Var\left(\sum_{i=1}^{3} a_{i}Y_{i}\right)}_{} = \sum_{i=1}^{3} a_{i}^{2}Var(Y_{i}) + \sum_{i \neq j} a_{i}a_{j}Cov(Y_{i}, Y_{j}) \\ & = a_{1}^{2}Var(Y_{1}) + a_{2}^{2}Var(Y_{2}) + a_{3}^{2}Var(Y_{3}) \\ & + a_{1}a_{2}Cov(Y_{1}, Y_{2}) + a_{1}a_{3}Cov(Y_{1}, Y_{3}) + a_{2}a_{1}Cov(Y_{2}, Y_{1}) \\ & + a_{2}a_{3}Cov(Y_{2}, Y_{3}) + a_{3}a_{1}Cov(Y_{3}, Y_{1}) + a_{3}a_{2}Cov(Y_{3}, Y_{2}) \end{split}$$

$$\begin{array}{c} \checkmark \ \, Cov(\underbrace{\sum_{i=1}^{3}a_{i}Y_{i}}, \underbrace{\sum_{j=1}^{2}b_{j}X_{j}}) = \underbrace{\sum_{i=1}^{3}\sum_{j=1}^{2}a_{i}b_{j}Cov(\,Y_{i},X_{j})} \\ \\ = a_{1}b_{1}Cov(\,Y_{1},X_{1}) + a_{1}b_{2}Cov(\,Y_{1},X_{2}) \\ \\ + a_{2}b_{1}Cov(\,Y_{2},X_{1}) + a_{2}b_{2}Cov(\,Y_{2},X_{2}) \\ \\ + a_{3}b_{1}Cov(\,Y_{3},X_{1}) + a_{3}b_{2}Cov(\,Y_{3},X_{2}) \end{array}$$

受力力量を見入 4音のはれい音 018H0とおり!