

THE POWER FLOW PROBLEM

CHRIS MUTZEL

DECEMBER 7TH, 2011

EE193 – POWER SYSTEMS ANALYSIS – A. STANKOVIC

PRESENTATION OUTLINE

- 1) Background
- 2) Problem Formulation
- 3) Solution: Newton-Raphson
- 4) Approach and Program Flow
 - 1) Finding Ybus, Data Format, Current Injections
 - 2) Determining the Jacobian
- 5) Results
- 6) Code Excerpt

BACKGROUND

- One of most common tools in power systems analysis
- Used in system control and planning to minimize costs and increase stability.
- Analysis is done for balanced, single phase network

Relevant Details:

- Thousands of Nodes (large amounts of data)
- Nodes have only a few connections (lots of zeros)
- Each node has 4 state variables (P,Q,V,θ)
- 3 Types: PV, PQ, slack

PROBLEM FORMULATION

Each bus has a current injection:

$$I_i = \sum_{j=1}^n Y_{ij} V_j = \sum_{j=1}^n |Y_{ij}| |V_j| \angle \theta_{ij} + \delta_j$$

$$P_i^{[k]} = \sum_{j=1}^n |V_i^{[k]}| |V_j^{[k]}| |Y_{ij}| \cos(\theta_{ij} - \delta_i^{[k]} + \delta_j^{[k]})$$

$$Q_{i}^{[k]} = -\sum_{i=1}^{n} |V_{i}^{[k]}| |V_{j}^{[k]}| |Y_{ij}| \sin(\theta_{ij} - \delta_{i}^{[k]} + \delta_{j}^{[k]})$$

From these we get real and reactive power flow equations.

Then we can make the problem of the form f(x) = b

$$x^{[k]} = \begin{bmatrix} \delta^{[k]} \\ V^{[k]} \end{bmatrix} \qquad f(x^{[k]}) = \begin{bmatrix} P_{inj}(x^{[k]}) \\ Q_{inj}(x^{[k]}) \end{bmatrix}$$

SOLUTION: NEWTON-RAPHSON

- -Iterative Method for Solution of non-linear equations
- -An initial guess is made:

$$c = f(x_{solution})$$
 $x^{[0]} = \text{initial estimate of } x_{solution}$

-From this initial guess, we can use the error to calculate a new guess: c(-[k])

$$x^{[k+1]} = x^{[k]} + \frac{c - f(x^{[k]})}{\left(\frac{df(x^{[k]})}{dx}\right)}$$

Bottom term is the $\frac{df(x)}{dx} \Rightarrow \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial |V|} \\ \frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial |V|} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$

APPROACH AND PROGRAM FLOW

YBUS, CURRENT INJECTIONS, DATA STORAGE

Row	Col	Value
1	1	2.6-3j
1	5	1.3
2	2	7.7j

busData Array	(update each iter.)
---------------	---------------------

-bus type,

-P, Q

-V, θ

Mismatches, Jacobian calculations use bus type to evaluate only correct elements

FindInjections.m

References data table and Ybus.

EDU>> busData

busData =

•	Dava				
	3.0000	2.9750	0.1420	1.0000	0
	2.0000	0.1830	0.3730	1.0431	-0.1348
	0	-0.0240	-0.0120	0.9976	-0.1746
	0	-0.0760	-0.0160	0.9985	-0.2144
	2.0000	-0.9420	0.2100	1.0099	-0.2982
	0	0	0	1.0011	-0.2505
	0	-0.2280	-0.1090	0.9969	-0.2793
	2.0000	-0.3000	0.1000	1.0099	-0.2667
	0	0	0	1.0069	-0.3296
	0	-0.0580	-0.0200	0.9727	-0.3727
	2.0000	0	0.2400	1.0821	-0.3296
	0	-0.1120	-0.0750	1.0094	-0.3555
	2.0000	0	0.2400	1.0709	-0.3555
	0	-0.0620	-0.0160	0.9858	-0.3757
	0	-0.0820	-0.0250	0.9722	-0.3773
	0	-0.0350	-0.0180	0.9854	-0.3670
	0	-0.0900	-0.0580	0.9714	-0.3755
	0	-0.0320	-0.0090	0.9594	-0.3895
	0	-0.0950	-0.0340	0.9551	-0.3930
	^				0 2001

Type

Р

Q

V

θ

DETERMINING JACOBIAN

Jacobian is hard because of dimensions and bus data references. It must have same dimensions and order as X.

$$x^{[k]} = \begin{bmatrix} \delta^{[k]} \\ V^{[k]} \end{bmatrix} \leftarrow PQ \text{ and PV buses.}$$
N-m-1 entries for PQ buses only

First N-1 entries correspond to

For simplicity, Jacobian is calculated for all buses (N=30).

Needed entries are then copied to a new Jacobian, which is used to solve power flow.

Size (old) =

$$2N \times 2N$$

Throw away irrelevant data

 $2N - M - 2$
 X
 $2N - m - 2$

RESULTS

Solution for N = 30, (Ave. time = .00320 sec)

Iteration	Error (2-Norm)
1	1.403115
2	0.198388
3	0.002192
4	0.0000007

Solution for N = 30, (Ave. time = .00304 sec) Freeze Jacobian after 1^{st} iteration

Iteration	Error (2-Norm)
1	1.403115
2	0.019838
3	0.002192
4	.0000719

JACOBIAN CODE

```
for Jr=1:2
    for Jc=1:2
        %J11
        if (Jr == 1 && Jc == 1)
            for SJr=1:N
                for SJc=1:N
                    if (SJr == SJc) % diagonal elements
                        Jacob(SJr,SJr) = -Qcalc(SJc,1) - imag(Ybus(SJc,SJc))*abs(busData(SJc,4))^2;
                    else
                                    % off-diagonal elements
                        Jacob(SJr, SJc) = abs(busData(SJr,4))*abs(busData(SJc,4))*(...
                            real(Ybus(SJr,SJc))*sin(busData(SJr,5)-busData(SJc,5))-...
                            imag(Ybus(SJr,SJc))*cos(busData(SJr,5)-busData(SJc,5)));
                    end
                end
            end
        if (Jr == 1 && Jc == 2)
            for SJr=1:N
                for SJc=1:N
                    if SJr == SJc & diagonal elements
                        Jacob(SJr, N + SJc) = Pcalc(SJc)/abs(busData(SJc,4)) + ...
                            real(Ybus(SJc,SJc)) *abs(busData(SJc,4));
                    else
                                  % off-diagaonal elements
                        Jacob(SJr, N + SJc) = abs(busData(SJr,4))*(...
                            real(Ybus(SJr, SJc))*cos(busData(SJr,5)-busData(SJc, 5))+...
                            imag(Ybus(SJr, SJc))*sin(busData(SJr,5)-busData(SJc, 5)));
                    end
                end
            end
        end
        if (Jr == 2 && Jc == 1)
            for SJr=1:N
                for SJc=1:N
                    if SJr == SJc % diagonal elements
                        Jacob(N + SJr, SJc) = Pcalc(SJc) - real(Ybus(SJc, SJc))*abs(busData(SJc, 4))^2;
                                  * off-diagonal elements
                        Jacob(N + SJr, SJc) = -abs(busData(SJr,4))*abs(busData(SJc,4))*(...
                            real(Ybus(SJr, SJc))*cos(busData(SJr,5) - busData(SJc,5)) + ...
                            imag(Yhus(S.Tr. S.Tc))*sin(husData(S.Tr.5) - busData(S.Tc.5))):
```

THANKS!