Zero Crossing Detector

Using PIC16f876 to design a ZCD for power system applications

Ashutosh Sharma

03.05.2021

B.Tech EEE 4th Yr

INTRODUCTION

The mini project requires to build a Zero Crossing Detector (ZCD). Here an attempt has been made to design a ZCD capable of working for power system applications which typically work around the frequency of 50 Hz.

Tools/Softwares used

- MPLAB X IDE
 - o Mpasm assembler toolchain
- Proteus 8 Design suite

Calculations

Flowchart

A primitive flowchart is shown to explain overall working of code in simple

Code

Code file can also be obtained from this <u>link</u>.

```
LIST p = 16F876
2
         #include pl6f876.inc
         __CONFIG _FOSC_XT & _WDTE_ON & _PWRTE_OFF & _CP_OFF & _BOREN_ON & _LVP_ON & _CPD_OFF & WRT ON
3
     RES_VECT CODE
                     0x0000
                                        ; processor reset vector
      GOTO START
                                        ; go to beginning of program
     MAIN PROG CODE
                                        ; let linker place main program
8
9
                 BSF
                            STATUS,
10
     START
                                        RP0
                                                       ; Bank 1
                                                       ; 0b00011011
                 MOVLW
                            0x001B
11
                 MOVWE
                            TRISA
                                                       ; Set AN0,1,3 as i/p
12
                 MOVLW
13
                            0x0000
14
                 MOVWE
                            TRISB
                                                       ; Set PORTB as o/p
                 BCF
                            ADCON1,
                                     ADFM
                                                      ; Left Justified
                            ADCON1,
                                     PCFG2
                                                      ; A/D Port Configuration Control bits
16
                 BSF
                            STATUS,
                                     RP0
                 BCF
                                                       ; Bank 0
17
                            ADCONO,
                                     ADON
18
                 BSF
                                                       ; A/D converter module is operating
                 BSF
                            ADCONO,
                                       CHSO
                                                       ; Selecting Analog Channel RA1
19
20
                 BSF
                            STATUS,
                                        RP0
                                                       ; Bank 1
21
                 MOVLW
                            0x014
                 MOVWE
                                                       ; TMR2 Delay 20 us
22
                            PR2
                 BCF
                            STATUS.
                                      RPO
                                                       ; Bank 0
23
24
     TMRSTART
                 BSF
                            T2CON,
                                       TMR2ON
                                                       ; Start TMR2
25
26
      LOOP
                 BTFSS
                            PIR1,
                                        TMR2IF
                                                       ; Wait for TMR2 == PR2
                 COTO
                            LOOP
27
                             PIR1,
                 BCF
                                        TMR2IF
                                                       ; Clear Interrupt flag
28
                 BSF
                            ADCONO,
29
                                        GO_DONE
                                                       ; Start A/D conversion
30
31
      ADC_PARSE BTFSS
                            PIR1,
                                        ADIF
                                                       ; Wait for A/D conversion
32
                 COTO
                            ADC_PARSE
                            PIR1,
                 BCF
33
                                        ADIF
                                                       ; Clear Interrupt flag
34
                 MOVE
                            ADRESH,
                 ANDLW
                            0xF8
                                                       ; Masking most significant 7 bits of Wreg
35
                 XORLW
                             0x80
                                                       ; W xor 0b10000000
37
                 BTFSC
                            STATUS,
                                                       ; skip if W == 0x80
                            PULLUP
28
                 COTO
                                                       ; set RBO as low
                 BCF
                            PORTB.
39
                                        RB0
40
                 COTO
                            TMRSTART
41
      PULLUP
42
                 BSF
                            PORTB,
                                        RB0
                            TMRSTART
43
                 COTO
44
                 END
45
```

RESULTS

Fig.1 Complete setup in proteus simulation software

The above graph is more clearly exported from the software, the file can be found here.

Fig.3 Image of the same using an Oscilloscope

CONCLUSION

A zero crossing detector has been developed and successfully tested with simulations.