

Deep Learning

5 Backpropagation-1

Dr. Konda Reddy Mopuri Dept. of Artificial Intelligence IIT Hyderabad Jan-May 2023

Recap

• Gradient of a scalar valued function $f(\mathbf{x})$: $\mathbf{x} \to \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_D}\right)^T$

Recap

- ullet Gradient of a scalar valued function $f({f x})$: ${f x} o \left(rac{\partial f}{\partial x_1},\dots,rac{\partial f}{\partial x_D}
 ight)^T$
- Gradient of a vector valued function f(x) is called Jacobian:

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla^{\mathrm{T}} f_1 \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

① w^l_{jk} is the weight connecting j^{th} neuron in l^{th} layer and k^{th} neuron in $(l-1)^{st}$ layer

① w_{jk}^l is the weight connecting j^{th} neuron in l^{th} layer and k^{th} neuron in $\left(l-1\right)^{st}$ layer

① b_j^l is the bias of j^{th} neuron in l^{th} layer

- f 0 b_i^l is the bias of j^{th} neuron in l^{th} layer
- ② x_j^l is the activation (output) of j^{th} neuron in l^{th} layer

- ① b_i^l is the bias of j^{th} neuron in l^{th} layer
- ② x_j^l is the activation (output) of j^{th} neuron in l^{th} layer

3

$$x_j^l = \sigma(\sum_k w_{jk}^l x_k^{l-1} + b_j^l)$$

- ① b_i^l is the bias of j^{th} neuron in l^{th} layer
- ② x_j^l is the activation (output) of j^{th} neuron in l^{th} layer

3

$$x_j^l = \sigma(\sum_k w_{jk}^l x_k^{l-1} + b_j^l)$$

 $\ \, \Phi$ Vector of activations (or, biases) at a layer l is denoted by a bold-faced \mathbf{x}^l (or $\mathbf{b}^l)$ and W^l is the matrix of weights into layer l

 $\ \, \mathbf 1 \ \, s^l_j$ is the weighted input to j^{th} neuron in l^{th} layer

- $\ \ \, \mathbf \, \mathbf \, \mathbf \, \mathbf \, \mathbf \, s_j^l$ is the weighted input to j^{th} neuron in l^{th} layer

- ① s_{j}^{l} is the weighted input to j^{th} neuron in l^{th} layer
- $s_j^l = \sum_k w_{jk}^l x_k^{l-1} + b_j^l$
- $\mathbf{3} \mathbf{s}^l = W^l \mathbf{x}^{l-1} + \mathbf{b}^l$

- ① s_{j}^{l} is the weighted input to j^{th} neuron in l^{th} layer
- $s_j^l = \sum_k w_{jk}^l x_k^{l-1} + b_j^l$
- $\mathbf{3} \mathbf{s}^l = W^l \mathbf{x}^{l-1} + \mathbf{b}^l$
- Φ is the activation function that applies element-wise

Gradient descent on MLP

• Loss is $\mathcal{L}(W, \mathbf{b}) = \sum_n l(f(x_n; W, \mathbf{b}), y_n) = \sum_n l(\mathbf{x}^L, y_n)$ (L is the number of layers in the MLP)

Gradient descent on MLP

- Loss is $\mathcal{L}(W, \mathbf{b}) = \sum_n l(f(x_n; W, \mathbf{b}), y_n) = \sum_n l(\mathbf{x}^L, y_n)$ (L is the number of layers in the MLP)
- For applying Gradient descent, we need gradient of individual sample loss with respect to all the model parameters

$$l_n = l(f(x_n; W, \mathbf{b}), y_n)$$

$$rac{\partial l_n}{\partial W_{jk}^{(l)}}$$
 and $rac{\partial l_n}{\partial \mathbf{b}_j^{(l)}}$ for all layers l

Forward pass operation

$$x^{(0)} = x \xrightarrow{W^{(1)}, \mathbf{b}^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{W^{(2)}, \mathbf{b}^{(2)}} s^{(2)} \dots x^{(L-1)} \xrightarrow{W^{(L)}, \mathbf{b}^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; W, \mathbf{b})$$

Formally,
$$x^{(0)} = x, f(x; W, \mathbf{b}) = x^{(L)}$$

$$\forall l = 1, \dots, L \quad \begin{cases} s^{(l)} &= W^{(l)} x^{(l-1)} + \mathbf{b}^{(l)} \\ x^{(l)} &= \sigma(s^{(l)}) \end{cases}$$

Core concept of backpropagation

Core concept of backpropagation

0

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Core concept of backpropagation

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

$$\left. \frac{\partial}{\partial x} g(f(x)) = \frac{\partial g(a)}{\partial a} \right|_{a = f(x)} \cdot \frac{\partial f(x)}{\partial x}$$

The Chain Rule
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$\frac{dy}{dx} = \begin{pmatrix} \text{Differentiate} \\ \text{outer function} \\ \text{Keep the inside} \\ \text{the same} \end{pmatrix} \begin{pmatrix} \text{Differentiate} \\ \text{inner function} \\ \text{wear informations con} \end{pmatrix}$$

① $f(x) = e^{\sin(x^2)}$, let's find $\frac{\partial f}{\partial x}$ (work it out on the board)

Chain rule of differential calculus for an MLP

$$J_{f_N \circ f_{N-1} \circ \dots \circ f_1(x)} = J_{f_N(f_{N-1}(\dots \circ f_1(x)))} \cdot J_{f_{N-1}(f_{N-2}(\dots \circ f_1(x)))} \cdot \dots \cdot J_{f_2(f_1(x))} \cdot J_{f_1(x)}$$

 $J_{f(x)}$ is Jacobian of f computed at x.

0