Équations différentielles et transformation de Fourier

1 Rappel

Pour $f \in L^1(\mathbb{R})$ dérivable, la transformation de Fourier possède la propriété de "dérivation dans l'espace direct" :

$$F(f')(\nu) = 2i\pi\nu \, F(f)(\nu)$$

Elle permet donc de transformer des équations différentielles dans l'espace direct en équations polynomiales dans l'espace de Fourier, qui peuvent parfois être plus facile à résoudre.

2 Exercices

Exercice 1. On considère l'équation différentielle du second ordre

$$f''(t) + 4\pi\kappa f'(t) + (2\pi\Omega)^2 f(t) = h(t)$$

avec $\kappa > 0$ et $\Omega > 0$ deux constantes positive.

a) Calculer la transformée de Fourier de l'équation, et montrer qu'elle peut se mettre sous la forme

$$F(f)(\nu) = -\frac{F(h)(\nu)}{(2\pi)^2(\nu - \nu_+)(\nu - \nu_-)}$$

où ν_+ et ν_- sont deux constantes à trouver.

Régimes non-critiques ($\Omega \neq \kappa$)

- b) On suppose $\Omega \neq \kappa$. Calculer dans ce cas la décomposition en éléments simples du membre de droite.
- c) Soit $\nu_0 \in \mathbb{C}$ tel que $\operatorname{Im}(\nu_0) > 0$. Calculer la transformée de Fourier de $g_0(t) = \mathbf{1}_{\mathbb{R}_+}(t) e^{2i\pi\nu_0 t}$.
- d) En déduire que f s'exprime alors comme f(t) = (G * h)(t) où G est la fonction définie par

$$G(t) = -\frac{i}{2\pi(\nu_{+} - \nu_{-})} \mathbf{1}_{\mathbb{R}_{+}}(t) \left(e^{2i\pi\nu_{+}t} - e^{2i\pi\nu_{-}t} \right)$$

e) Exprimer G à l'aide des fonctions usuelles dans les cas $\Omega > \kappa$ et $\kappa > \Omega$, et commenter.

Régime critique ($\Omega = \kappa$)

- f) Soit $\nu_0 \in \mathbb{C}$ tel que $\operatorname{Im}(\nu_0) > 0$. Calculer la transformée de Fourier de $g_1(t) = \mathbf{1}_{\mathbb{R}_+}(t) t e^{2i\pi\nu_0 t}$.
- g) On suppose ici $\Omega = \kappa$. Montrer que f s'écrit encore sous la forme $f(t) = (G_c * h)(t)$, avec

$$G_c(t) = \mathbf{1}_{\mathbb{R}_+}(t) t e^{-2\pi\kappa t}$$

On appelle ce cas le régime amorti critique.

Exercice 2. On cherche $f \in L^1(\mathbb{R}) \cap C^2(\mathbb{R})$ satisfaisant l'équation différentielle

$$-f''(t) + f(t) = h(t).$$

avec $h \in L^1(\mathbb{R})$.

- a) Calculer la transformée de Fourier de l'équation.
- b) En déduire la solution f de l'équation différentielle. Note : on pourra utiliser la transformée de Fourier $F(e^{-|t|})(\nu) = \frac{2}{1+4\pi^2\nu^2}$.
- c) Application : soit T > 0 et $h(t) = \mathbf{1}_{[0,T]}(t)$. Exprimer f(t) pour t > T et t < 0.