Free space EM

• Under *free space* (f.s.) propagation and in far field ($r >> \lambda$), the electric field in the location of the received antenna behaves as a plain wave

$$e(f,t,\mathbf{r}) = \frac{\alpha(\varphi,\theta,f)\cos(2\pi f(t-r/\epsilon))}{r} \tag{1}$$

where **r** is a vector given by spheric coordinates $\mathbf{r} = [r, \varphi, \theta]^{\mathsf{T}}$, pointing to the receiving antenna, and $\alpha(\varphi, \theta, f)$ depends on the transmitting antenna used and the power delivered by it.

The average power in the same point is given by the average Poynting's vector

$$\langle \mathcal{S} \rangle = \frac{e^2}{\eta} = \frac{eirp}{4\pi r^2} \tag{2}$$

where η is the medium characteristic impedance (120 π in free space) and we made use of the definition of $eirp = p_t'g_t$, where p_t' is the delivered power to the antenna and g_t its isotropic gain. And here $e^2 = e_{ms}^2 = e_{mox}^2/2$.

Through the course, when needed, we will used lower case letters to denote magnitudes in natural units and capital letters to denote magnitudes in decibels).

eirp: equivalent isotropic radiated power (eirp), pire in Spanish

@000 ©murillo@us.es

Friis

 \blacksquare The received power, the power delivered by the receiving antenna, is the product of $\langle \mathcal{S} \rangle$ by its effective area

$$p_{r}' = \langle \mathcal{S} \rangle S_{eq} = \langle \mathcal{S} \rangle \frac{\lambda^{2}}{4\pi} g_{r} = \frac{eirp(\varphi_{t}, \theta_{t})}{4\pi r^{2}} \frac{\lambda^{2}}{4\pi} g_{r}(\varphi_{r}, \theta_{r}) = eirp(\varphi_{t}, \theta_{t}) \frac{1}{I_{hf}} g_{r}(\varphi_{r}, \theta_{r})$$
(3)

• This expression, in dB, leads to the well-known Friis formula

$$P'_r(dBm) = EIRP(dBm) - L_{bf}(dB) + G_r(dB).$$
(4)

where L_{bf} are the *basic free space (bf) losses*, and G_t , G_R are the gains of antennas (dB).

• The e_b/n_0 received is a function of the power of the envelop, p_r , and the bit time, T_b

$$e_b/n_0 = \frac{e_b}{n_0} = \frac{p_r I_b}{n_0} = \frac{p_r}{n_0 R_b} = \frac{p_r}{K T_0 f_s R_b}$$
 (5)

In dB, we get the sensitivity

$$P_r(dBm) \ge E_b/N_0(dBm) + F_s(dB) + 10\log(R_b) - 174(dBm/Hz)$$
 (6)

where K is the Boltzmann constant, $T_0 = 290$ K is the *room* temperature, F_s is the noise figure of the system and E_h/N_0 is given by the desired BER and the modulation used.

Notation

As in Hernando Rábanos 2006,

Simple flat LTI system

Most important to note that:

1. $e(f,t,\mathbf{r})$ is the value at a given frequency, if we *define*,

$$H(f) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2}} \frac{\alpha(\varphi, \theta, f) e^{-j2\pi fr/c}}{r} \tag{7}$$

and
$$e(f,t,\mathbf{r}) = \sqrt{2} \operatorname{Re}[H(f)e^{j2\pi ft}]$$

- **2.** the propagation in f.s. (free space) just introduces a loss of 1/r to the field and $1/r^2$ to the power
- **3.** the antenna frequency response is almost flat in its frequency bandwidth
- **4.** there is a remarkable dependency on the antennas radiation patterns
- **5.** the antennas and propagation are considered to be lineal, so we can integrate over the frequency responses to get the overall powers, it is easy given the previous assumptions
- **6.** when computing $\langle S \rangle$ we integrate over all transmitted frequencies, using $e(f,t,\mathbf{r})$

LTI

The systems behaves as *linear and time invariant, LTI*: the received signal is built as a linear combination of delayed versions of the transmitted one and the weights of the linear combinations and the delays are constant through time.

Additional losses

In propagation (f>100MHz) and fixed service we have additional constant in time losses to L_{bf} as follows

- 1. $+L_a$ if the transmitting or/and receiving directions are not the maximum gain ones
- **2.** $+L_a$ attenuation due to gasses, quite strong above 20 GHz
- **3.** $+L_d$ diffraction losses (obstacles), above 20 GHz, *Line Of Sight* (LOS) is a necessary
- **4.** $+L_{\nu}$ due to vegetation, similar to gases (as diffraction for large frequencies)
- **5.** $+L_r$ due to *permanent* reflections, see *example of Flat Earth*. (Reflections may also provoke selective fading)

and also slow variant ones, so the system can be considered LTI

- **6.** $+L_1$ due to rain, strong above 10 GHz
- those due to additional diffraction losses caused by variations on the refraction phenomena (grazing incidence).

Flat channel

The received power can be written as $p_r' = eirp \cdot g_r/I$, where I depends on f_c , the carrier frequency, the distant r_c ... but It does not change for frequencies in the Tx bandwith.

Flat LTI model and AWGN channel

• From the power point of view, the model reduces to

• From the signal point of view,

that it is equivalent to an AWGN channel: y(t)' = y(t)/h = x(t) + w'(t) with w'(t) = w(t)/h, and $\sigma'_w^2 = \sigma_w^2/h^2$, the variance of the noise.

Flat Earth

Example: Flat Earth

Also, we may have strong fixed reflected path

• The effect is a loss, $+L_r$, for $r \ge 12h_th_r/\lambda$, proportional to r^4

$$L_{bf} + L_r = 40 \log(r \text{ (km)}) - 20 \log(h_t h_r) + 120$$
(8)

Flat Earth,
$$R = -1$$
, $h_t = 30$, $h_r = 20$, $\lambda = 0.1$

A generalized model: Loss exponent

• An extended expression for the loss is as follows,

$$L = 10\log(kd^n) \tag{9}$$

where *n* is the so called, loss exponent, and *k* models all constant losses

- ▶ Propagation models for flat losses can be rewritten using this simple formula: n = 2 in f.s., n = 4 in flat Earth, 3 < n < 5 in urban areas
- ▶ Empirical methods such as the Okumura-Hata can be rewritten in this form
- The models: free-space plus additional losses, loss exponent model, empirical approaches such as
 - 1. Okumura-Hata
 - 2. Cost 231
 - 3. ITU-R P.1546
 - 4. Longley-Rice

or the point to point software analysis *provide a mean value for the losses*, do not explain

- ► variations along distance (not due to *r*)
- variations along frequency
- ▶ variations along time (moving or not)
- a log-normal model can be assumed to explain variations around the mean value

Dispersive/Selective channel

- Whenever multi-path is present, we may have a channel frequency response changing with frequency
- If the modulation bandwidth, W, is large enough, one frequency components experience a different attenuation than another: selective channel
- In time, we have a sum of delayed copies of the signal, causing ISI: dispersive channel

Static two ray model: frequency response

Two ray model

The channel impulse response yields

$$h(t) = a(\delta(t) + b\delta(t - \tau_1)), -1 < a, b < 1$$
 (10)

with frequency response $H(\omega) = a[1 + be^{-j\omega\tau_1}]$ with module

$$10 \log |H(\omega)|^2 = 10 \log(a^2[1 + b^2 - 2|b|\cos(\omega\tau_1 - \omega_0\tau_1)]), \ |\omega_0\tau_1| = \begin{cases} 0, \ b < 0 \\ \pi, b > 0 \end{cases}$$

Nulls at *notches* with period $1/\tau_1$, with maximum null for b=1

Channel Frequency Response

Channel Frequency Response

 Observe selectiveness and dispersion. Try changing b, its module, sign and delay. What is the effect of changing a?

```
close all; clear all; rng(30)
Nfft=2048;U=1/sqrt(Nfft)*exp(-1j*2*pi*([0:Nfft-1]')*([0:Nfft-1])/Nfft);%DFT matrix
%% Channel
a=1;b=+0.8;
h=a*[1,0,0,0,0,b,0,0,0]; L=10; %L:channel length;
%% Filtering, using DFT
ht=U*[h'; zeros(Nfft-L,1)]; %DFT of channel

%% Representation
Tm = 1e-6/5; %tau=Tm*5=1e-6
T = 1e-3;
Ht = 20*log10(abs(ht));
figure(1),plot([1:Nfft]/Nfft*1/Tm,20*log10(abs(ht))), grid on, hold on,
plot(ones(1,2)*(1/(2*T)),[min(Ht),max(Ht)],'--k')
title('Channel Frequency Response'), xlabel('Hz'), legend('a[\delta(t)+b\delta(t-\tau)]','h''W')
```

Reflection on a wall: response along distance

• In time, the two ray model can be analyzed in the following reflection scenario,

• if we assume the receive antenna to be omnidirectional in the horizontal plane, and the reflection coefficient to be R=-1, the received electric field yields

$$e(f,t,r) = \frac{\alpha(f)\cos(2\pi f(t-r/c))}{r} - \frac{\alpha(f)\cos(2\pi f(t-(2d-r)/c))}{2d-r}$$
(11)

• the phase difference is as follows, with peaks for e(f,t,r) at multiples of 2π and valleys (nulls) for odd multiples of π

$$\Delta\theta = \left(\frac{2\pi f(2d-r)}{c} + \pi\right) - \left(\frac{2\pi fr}{c}\right) = \frac{4\pi f}{c}(d-r) + \pi = \frac{4\pi}{\lambda}(d-r) + \pi \quad (12)$$

© © © murillo@us.es

19/78

• The Δr that makes $\Delta \theta$ vary π (peak to a valley) is the *coherence distance*,

Coherence distance, Δr : $\Delta \theta' = \Delta \theta + \pi$

$$\Delta r \stackrel{\text{def}}{=} \frac{\lambda}{4} \tag{13}$$

• As a function of f the distance between a peak to a valley is given by a change in f, make $f' = f + \Delta f$, and estimate Δf such that $\Delta \theta' = \Delta \theta + \pi$,

$$\Delta f = \frac{1}{2} \left(\frac{2d - r}{c} - \frac{r}{c} \right)^{-1} = \frac{c}{4(d - r)} \tag{14}$$

being the delay spread

Delay Spread: T_d

$$T_d \stackrel{\text{def}}{=} \frac{2d-r}{\epsilon} - \frac{r}{\epsilon} = 2 \frac{d-r}{\epsilon} \tag{15}$$

the difference between the propagation delay along the two paths and

Coherence bandwidth: W.

$$W_c \stackrel{\text{def}}{=} 1/(2T_d) = \Delta f \tag{16}$$

- This model, for a given distance *r* has equal frequency response as the static two ray model.
 - ► The coherence bandwidth is the inverse of the delay spread: we have nulls in frequency every $1/I_d = 1/\tau$
- The interesting point now is to analyze the variation with the position r How would the field change if I were at some other points?

Approximation

• We can approximate the summation of the two sinusoids (Tse pp.17):

$$e(f,t,r) = \frac{\alpha(f)\cos(2\pi f(t-r/c))}{r} - \frac{\alpha(f)\cos(2\pi f(t-(2d-r)/c))}{2d-r}$$
(17)

We first recall that

$$\cos(u) - \cos(v) = -2\sin\left(\frac{u-v}{2}\right)\sin\left(\frac{u+v}{2}\right)$$
 (18)

- Then in the denominator we assume $r \approx 2d r$, i.e. we are near the wall, and for simplicity denote $\alpha(f) = \alpha$
- And approximate

$$e(f,t,r) = -\frac{2\alpha\sin(2\pi f(d-r)/c)\sin(2\pi f(t-d/c))}{r}$$
(19)

where we have the carrier multiplied by amplitude $2\alpha \sin(2\pi(d-r)/\lambda)/r$

LTI Channel in a wall reflection: representation

At every distance we receive a sinusoidal form whose amplitude depends on the distance: the distance between a maximum and minimum amplitud value is $\lambda/4$

- red: $2\alpha \sin(2\pi(d-r)/\lambda)/r$
- ► the module is depicted • green: $\operatorname{red} \cdot \sin(2\pi f(t - d/c))$

Example: Fixed Service

- In fixed point to point we have atmospheric multi path, called scattering, due to reflections on atmospheric layers
- This effect grows with frequency and approximately the cube of the distance, r^3
- The channel is modeled as a two components:
- **1.** flat fading, can be seen as a AWGN channel where the E_h/N_0 varies slowly with time
- 2. selective/fading, that vanishes as the bandwidth decreases; it must be modeled as a LTI system with ISI that varies slowly with time

Exercise: delay spread

Consider a channel where the largest path has no more than double the length of the shortest one, compute the delay spread, and the coherence bandwidth, if

- 1. the shortest path has 30 km
- 2. the shortest path has 3 km
- 3. the shortest path has 3 m

Linear time variant channel (LTV)

The response depends on time t. At any $t = t_0$, we have a different channel impulse $h(t; t_0)$

$$y(t) = x(t) * h(t;t_0) + w(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau;t_0)d\tau + w(t)$$
 (20)

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega; t_0) X(\omega) e^{j\omega t} d\omega + w(t)$$
 (21)

We assume that the channel is under spread

under spread

An LTV channel is *under spread* if the channel can be considered LTI during a time larger than the channel response in τ , i.e. its delay spread.

Doppler: free space, moving antenna

• If the receiver antenna moves away the transmitter with velocity v and $r(t) = r_0 + vt$, the delay changes from r/c to $(r_0 + vt)/c$, and (1) yields,

$$e(f,t,r_0+vt) = \frac{\alpha(f)\cos(2\pi f(t-r_0/c-vt/c))}{r_0+vt}$$
(22)

- Note that as the antenna moves, the variations on the phase in the numerator are quite fast compared to the effect in the denominator
- ▶ By rewriting $f(t r_0/c vt/c)$) = $f[(1 v/c)t r_0/c]$
- It follows

$$e(f,t,r_0 + vt) = \frac{\alpha(f)\cos(2\pi f[(1 - v/c)t - r_0/c])}{r_0 + vt}$$
(23)

where we observe frequency deviation, a *Doppler shift*, of $-fv/c = -v/\lambda$

It cannot be modeled as linear time invariant.

Doppler and multipath: moving antenna and wall reflection

We have the same case that in (11) but with a frequency variation due to the doppler effect, described in (22): combining both equations:

$$e(f,t,r_0+vt) = \frac{\alpha(f)\cos(2\pi f[(1-v/c)t-r_0/c])}{r_0+vt} - \frac{\alpha(f)\cos(2\pi f[(1+v/c)t-(2d-r_0)/c])}{2d-r_0-vt}$$

- ightharpoonup assume we are near the wall, so $r_0 + vt \approx 2d r_0 vt$ in the denominator and we can sum the numerators:
- It follows

$$e(f,t,r_0 + vt) \approx -\frac{2\alpha(f)\sin(2\pi f[-vt/c + (d-r_0)/c])\sin(2\pi f[t-d/c])}{r_0 + vt}$$
 (24)

Doppler spread in the wall scenario

- We add two sinusoids
 - ► The first one has as Doppler shift of $D_1 = -fv/c$,
 - ► The second one has a Doppler shift of $D_2 = fv/c$
 - ► The overall Doppler is $D_s = D_2 D_1 = 2fv/c$
 - For f = 900 MHz and v = 60 km/h we have $D_c = 100$ Hz

Doppler Spread: D_s

$$D_{s} \stackrel{\text{def}}{=} D_{2} - D_{1} \tag{25}$$

- that can be rewritten as the product of two sinusoids, one of frequency D_s/2 and the other with the
 original frequency f
- the effect can be seen as a modulation of the carrier by a sinusoid of Doppler frequency: we have a
 fading every 1/D_c seconds!!. From (24),

$$2\pi f v \Delta t/c = \pi \Rightarrow \Delta t = \frac{c}{2f v} = \frac{1}{D_s}$$

Note that in space, $\Delta r = v\Delta t = \lambda/2$.

Fading due to Doppler in the wall scenario

Coherence time: T_c

$$T_c \stackrel{\text{def}}{=} 1/(4D_s) \tag{26}$$

- While moving we may have fading due to
 - **1.** Multi path+Doppler effect, with significant variations of the order of ms (T_c) , or $\lambda/4$ m (Δr) .
 - Same coherence distance than in the ITI case!!
 - Shadowing effect, the obstacles in the environment change causing fading, of the order of s or m: large scale.

$$f$$
=900 MHz, v =60 km/h, d =800, r =750

Two ray impulse response of the moving Rx and wall

- The scenario can be modeled with an LTV system given in (20) with response $h(t; t_0)$,
 - but where the $h(t; t_0)$ is given by deltas delayed $\tau_i(t_0)$ and values $a_i(t_0)$ that vary with time
 - and the integral yields a sum

$$y(t) = \sum_{i} a_{i}(t_{0})x(t - \tau_{i}(t_{0}))$$
 (27)

In the wall case we have two deltas with values

$$a_1(t) = \frac{|\alpha(f)|}{r_0 + vt} \qquad a_2(t) = \frac{|\alpha(f)|}{2d - r_0 - vt}$$

$$\tau_1(t) = \frac{r_0 + vt}{\epsilon} \qquad \tau_2(t) = \frac{2d - r_0 - vt}{\epsilon} - \frac{\pi}{2\pi f}$$

- The doppler effect is not readily seen in this representation
 - ▶ In the table above, the delay for a path is changing with

$$\frac{d\tau_i(t)}{dt} = \tau_i'(t) \Rightarrow \tau_1'(t) = v/c \Rightarrow \Delta\tau_1(t) = \tau_1'(t)t \tag{28}$$

the Doppler shift can be rewritten as

$$-f\tau_i'(t) \tag{29}$$

Impulse response of ${\it N}$ rays in a moving channel

• If we model the multi path channel by several rays, from i=1 to i=N, and consider a moving Rx, we have similar definitions, for a carrier frequency f_c ,

Moving LTV

- ▶ Doppler Spread: $D_s \stackrel{\text{def}}{=} \max_{i,j} f_c |\tau_i'(t) \tau_i'(t)|$
- ightharpoonup Coherence time: $T_c = \frac{1}{4D_s}$
- ▶ Delay Spread: $T_d \stackrel{\text{def}}{=} \max_{i,j} |\tau_i(t) \tau_i(t)|$
- ► Coherence Bandwidth: $W_c = \frac{1}{2T_d}$
- ▶ Underspread Channel : if $T_c >> T_d$

Example: a moving multi path channel

Frequency selective

We show a bandpass channel for $f_c = 0.7$ GHz for 200 MHz and 40 MHz bandwidth

Example: a moving multi path channel

Example of values

Key channel parameters and time-scales	Symbol	Representative values
Carrier frequency	$f_{ m c}$	1 GHz
Communication bandwidth	W	1 MHz
Distance between transmitter and receiver	d	1 km
Velocity of mobile	v	64 km/h
Doppler shift for a path	$D = f_c v/c$	50 Hz
Doppler spread of paths corresponding to		
a tap	$D_{\rm s}$	100 Hz
Time-scale for change of path amplitude	d/v	1 minute
Time-scale for change of path phase	1/(4D)	5 ms
Time-scale for a path to move over a tap	c/(vW)	20 s
Coherence time	$T_{c} = 1/(4D_{s})$	2.5 ms
Delay spread	$T_{\rm d}$	1 μs
Coherence bandwidth	$W_{c} = 1/(2T_{d})$	500 kHz

Types of wireless channels

Types of wireless channels

Types of channel	Defining characteristic	
Fast fading	$T_c <<$ delay requirement	
Slow fading	$T_c >> $ delay requirement	
Flat fading	$W \ll W_c$	
Frequency-selective fading	$W >> W_c$	
Underspread	$T_d << T_c$	

The delay requirement depends on the transmission, it may be

- the frame length
- the burst length
- · ...

Important: wall example

In the wall examples above we did transmit a tone of amplitude $\alpha(f)$. If a signal is transmitted instead, we must include the dependence with time in the $\alpha(f,t)$ term.

Excersises

Exercise 5.1 (Wall reflection LTI)

Given a radio transmission of a sinusoid at frequency f = 900 MHz, this signal gets the receiver at a distance 750 m. The transmitter power is 1 W, the transmitter (Tx) is omnidirectional with gain 10 dBi and it is assumed it transmits with this gain into the direction of the receiver (Rx). The receiver antennas is isotropic

- a) Compute the received field in the surroundings of the Rx, and the value of α in (1)
- b) If a wall, at 800 m from the Tx in the direction Tx-Rx reflects the transmitted signal with coefficient -1, compute the amplitude of the field from 750 to 750 $+6\lambda$ meters. Hint: use Equation (2.13) in Tse and Vis. with v=0, t=0 and changing distance, r.
- c) In the previous scenario compute the signal along t at 750, at 750 $+ \lambda/8$ and 750 $+ \lambda/4$, and its Fourier transform. For the Fourier transform you may read the documentation and use fftshift. For example

```
f=1e9; Tm=1/f/20; fm=1/Tm; %,carrier, sampling time and frequency
t=[0:Tm:200/f]; %observed time period
y= 2*cos(2*pi*f*t);
L=length(t); Nfft = 4*1024;
Y = fftshift(fft(y,Nfft)/L);
fq = fm/2*linspace(-Nfft/2,Nfft/2-1,Nfft)/(Nfft/2);
figure, plot(fq,abs(Y),'r')
```

Exercises

Exercise 5.2 (Wall reflection LTV)

In the same scenario than in the previous excercise the Rx moves towards the wall at a constant speed v = 50 km/h.

- a) Compute the averaged received field in the surrounds of the Rx
- b) Compute the Fourier transform

Equivalent lowpass signal model (Review)

We define

$$S_b(f) \stackrel{\text{def}}{=} \sqrt{2}S_+(f + f_c)$$

• We can reconstruct S(f) and s(t) from $S_b(f)$

$$S(f) = \frac{1}{\sqrt{2}} \left(S_b(f - f_c) + S_b^*(-f - f_c) \right)$$

$$S(t) = \frac{1}{\sqrt{2}} \left(S_b(t) e^{j2\pi f_c t} + S_b^*(t) e^{-j2\pi f_c t} \right) = \sqrt{2} \operatorname{Re} \left[S_b(t) e^{j2\pi f_c t} \right]$$

Note: the following transforms are used: $s^*(t) \longleftrightarrow S^*(-f)$ and $s(t)e^{j2\pi f_c t} \longleftrightarrow S(f-f_c)$.

@@@@ Cmurillo@us.es

Step 1. Channel lowpass equivalent model

 We can rewrite the channel model to lowpass equivalent, given N multi paths and the bandpass signal

$$y(t) = \sum_{i=1}^{N} a_i(t)x(t - \tau_i(t))$$

$$= \sum_{i=1}^{N} a_i(t)\sqrt{2} \operatorname{Re}[x_b(t - \tau_i(t))e^{j2\pi f_c(t - \tau_i(t))}]$$

$$= \sqrt{2} \operatorname{Re}\left[\left\{\sum_{i=1}^{N} a_i(t)e^{-j2\pi f_c\tau_i(t)}x_b(t - \tau_i(t))\right\}e^{j2\pi f_ct}\right]$$

• by comparison with $y(t) = \sqrt{2} \operatorname{Re} \left[y_b(t) e^{\mathrm{j} 2\pi f_c t} \right]$

$$y_b(t) = \sum_{i=1}^{N} a_i^b(t) x_b(t - \tau_i(t)); \text{ where: } a_i^b(t) \stackrel{\text{def}}{=} a_i(t) e^{-j2\pi f_c \tau_i(t)},$$
(30)

and we may define:
$$h_b(\tau;t) = \sum_{i=1}^{N} a_i^b(t) \delta(\tau - \tau_i(t))$$
 (31)

Step 2. Discrete-time equivalent lowpass channel model

Discrete-time lowpass equivalent

To get a sampled version, $x_h[m]$, of the lowpass equivalent signal we

- **1.** filter with lowpass filter of width W/2: to get $x_h(t)$
- **2.** sample at rate $T_m = T = 1/W$: $x_h[m] = x_h(m/W)$
 - $x_b(t)$ yields, by the Nyquist–Shannon sampling theorem, with $\operatorname{Sinc}(t) = \sin(\pi t)/\pi t$,

$$x_b(t) = \sum_{m} x_b[m] \operatorname{Sinc}(t/T_m - m)$$
(32)

After the channel, using the discrete-time lowpass channel model, we have

$$y_b[m] = \sum_{l=1}^{L} h_b[l; m] x_b[m-l]$$
 (33)

for the sake of simplicity we will denote $h_l[m] = h_b[l;m]$ and $y[m] = y_b[m]$, where, as explained in the following slide,

$$h_b[l;m] \stackrel{\text{def}}{=} h_l[m] = \sum_{i=1}^{N} a_i^b[m] \text{Sinc}[l - \tau_i[m]/T_m]$$
 (34)

Notes on discrete samples of the channel

• From (30), (31) and the sampling theorem

$$\begin{split} y_b(t) &= \sum_{i=1}^N x_b(t) a_i^b(t) \delta(t-\tau_i(t)) = \sum_{i=1}^N \Biggl(\sum_n x[n] \mathrm{Sinc}(Wt-n) \Biggr) a_i^b(t) \delta(t-\tau_i(t)) \\ y_b(t) &= \sum_n x[n] \sum_{i=1}^N a_i^b(t) \mathrm{Sinc}(Wt-\tau_i(t)W-n) \end{split}$$

• The samples at multiples of $T_m = 1/W$, $y[m] \stackrel{\text{def}}{=} y_h(m/W)$

$$y[m] = \sum_{n} x[n] \sum_{i=1}^{N} a_i^b(m/W) \text{Sinc}[m - n - \tau_i(m/W)W]$$
 (35)

■ Let $I \stackrel{\text{def}}{=} m - n$, then

$$y[m] = \sum_{l} x[m-l] \sum_{i=1}^{N} a_i^b(m/W) \text{Sinc}[l - \tau_i(m/W)W]$$
 (36)

and we define

$$h_{l}[m] \stackrel{\text{def}}{=} \sum_{i=1}^{N} a_{i}^{b}(m/W) \operatorname{Sinc}[I - \tau_{i}(m/W)W]$$
(37)

Channel

LTV channel

LTI channel

• Case $1/W >> \max \tau_i(t)$

Discrete low pass equivalent model

- As the Rx moves the delay spread changes
 - ▶ when the Rx moves a distance $\Delta r = c \cdot T_m = c/W$ the path moves from one tap to the next one (equivalently we have $\Delta \tau = \Delta r/c$ equal to the sampling time, 1/W).

 - ► this is the *time-scale for a path to change over a tap*
- As the Rx moves the path phase changes
 - \blacktriangleright when the distance shift, Δr , is $\lambda/4$ the phase difference changes π
 - \blacktriangleright since $\Delta r = v\Delta t$, we conclude $\Delta r = \lambda/4 = v\Delta t \Rightarrow \Delta t = \lambda/(4v) = 1/(4D)$
 - ▶ this is the *time-scale for change of path phase*

Task 2.2: discrete equivalent low-pass model

Rewrite the equations for the discrete equivalent low-pass model for the LTI scenario.

Task 2.3: discrete equivalent low-pass model

Determine and represent the discrete equivalent low-pass model at time $t=4\,\mathrm{s}$ of the channel given by

$$h(t;\tau) = a_1(t)\delta(t - \tau_1(t)) + a_2(t)\delta(t - \tau_2(t))$$
(38)

if
$$a_1(4) = 1$$
, $a_2(4) = -0.5$, $\tau_1(4) = 0$ μ s, $\tau_2(4) = 2$ μ s, $f_c = 900$ MHz and $W = 1$ MHz.

@000 ©murillo@us.es

AWGN; Degree of Freedom

- When AWGN noise is present we may easily model it by either
 - adding a noise of power N₀, CN(0, N₀), (complex-valued Gaussian) to the equivalent lowpass signal model.
 - **2.** adding two iid noises of power $N_0/2$, $\mathcal{N}(0, N_0/2)$ to the real (in phase) part of the equivalent lowpass signal model and the imaginary part (in quadrature)
- Degrees of Freedom

Degree of freedom

Every 1/W we transmit a (complex) symbol: we say that it represents one (complex) dimension or degree of freedom

- ▶ A continuous-time band-limited signal can be represented by *W* complex *dimensions* per second
- The received signal y(t) is also, due to the channel, band-limited to approximately W and has W
 dimensions per second
 - We have also Doppler effect
- ▶ We say that the (received) signal space has dimension the dimension or degrees of freedom of the channel

Motivation and Introduction

- Motivation
 - ▶ Real channels are not deterministic: they do not have a given known channel response
 - Even point-to-point radio links change greatly with time
 - ► We need to provide an statistical characterization
 - ► This allows to design, simulate, implement and test
- Introduction
 - If the channel is given by just one time-invariant tap (i.e. is flat LTI) we may characterize it by a random variable (r.v.)
 - However, if the tap changes with time or we have several taps, we need random processes (r.p.) to characterize the channel
- One tap is computed as the contributions of every multipath to that sample time: Gaussian
 approximations are good for one tap...

Review: Complex valued random variables

- A complex random variable $W = W_{\rm r} + {\rm j} \, W_{\rm j}$, can be seen as a vector of two variables $W_{\rm R} = [W_{\rm r}, W_{\rm i}]^{\rm T}$ described statistically by its joint pdf.
- In complex-valued AWGN channels the real and imaginary parts are zero-mean and independent of variance $N_0/2$
 - ► In this case the Gaussian rv it is said to be circular
- A complex-valued AWGN is usually denoted as

Gaussian complex random variable

$$W = W_{\rm r} + j W_{\rm i} \sim \mathcal{CN}(0,N_0,0)$$
 where

$$W_{\rm r} \sim \mathcal{N}(0, N_0/2),$$

 $W_{\rm j} \sim \mathcal{N}(0, N_0/2),$ (39)

- Note that the variance is double of the one of the real, or imaginary, part
- The extension to multidimensional complex-valued AWGN is straight-forward $W = W_r + j W_i \sim \mathcal{CN}(0,N_0 I_{W},0)$

Complex valued random variable to model one tap

Gaussian complex circular random variable

$$\begin{split} &\boldsymbol{X}_{\mathrm{r}} \sim \mathcal{N}\big(\mathbf{0}, \sigma_{\boldsymbol{X}}^2/2\big), \quad \boldsymbol{X}_{\mathrm{j}} \sim \mathcal{N}\big(\mathbf{0}, \sigma_{\boldsymbol{X}}^2/2\big) \\ &\boldsymbol{X} = \boldsymbol{X}_{\mathrm{r}} + \mathrm{j}\boldsymbol{X}_{\mathrm{j}} \sim \mathcal{C}\mathcal{N}\big(\mathbf{0}, \sigma_{\boldsymbol{X}}^2\big) \end{split}$$

- If we transform $[X_{\mathbf{r}'}, X_{\mathbf{i}}]^\mathsf{T}$ into polar coordinates $[|X|, \angle X]^\mathsf{T}$
 - \triangleright $\angle X$ is a uniform v.a. in $[0,2\pi]$
 - ▶ R = |X| is a Rayleigh r.v. with pdf $f_R(r) = \frac{2r}{\sigma^2} e^{\frac{-r^2}{\sigma^2}} \sim Rayleigh(\sigma/\sqrt{2})$.

Mode	σ
Median	$\sigma\sqrt{2\ln 2}=1.18\sigma$
Mean	$\sigma\sqrt{\pi/2}=1.25\sigma$
RMS value	$\sigma\sqrt{2} = 1.41\sigma$
Standard dev.	$\sigma\sqrt{2-\pi/2}=0.655\sigma$

- The power, $P = |X|^2$, is an exponential r.v. $P \sim Exp(1/\sigma^2)$.
- The sum of the power of standard Gaussian r.v. is chi-squared distributed.
- The sum of the power of zero mean Gaussian r.v. is Gamma distributed.

© © © © murillo@us.es

Rayleigh (NLOS) and Rician (LOS)

• The channel in the discrete-time lowpass model yields a set of L taps

$$h_{l}[m] = \sum a_{i}(m/W)e^{-j2\pi f_{c}\tau_{i}(m/W)}\operatorname{Sinc}[l - \tau_{i}(m/W)W]$$
(40)

- 1. Rayleigh channel (NLOS)
 - ▶ if no path is clearly stronger than the others: we have *non line-of-sight (NLOS)*
 - each tap $h_l[m]$ can be modeled as $\mathcal{CN}(0, \sigma_l^2)$, here the module is Rayleigh distributed and its phase is uniform in $[0,2\pi]$
 - ▶ this way we model several random paths contributing to one tap
- 2. Rician channel (LOS)
 - If one path is stronger than the other, the so-called specular path, we are modeling a LOS scenario, at least one of the taps is as follows,

$$h_{l}[m] = \sqrt{\frac{\kappa}{\kappa + 1}} \sigma_{l} e^{j\theta} + \sqrt{\frac{1}{\kappa + 1}} s$$
 (41)

where Θ is a r.v. distributed uniformly between 0 and 2π and $S \sim \mathcal{CN}(0, \sigma_l^2)$, and κ , the K factor, adjusts the overall power, σ_l^2 , distribution.

► the Rician pdf can be written using Bessels functions.

Review: Random Process

Process

- **1.** A *random process* (r.p.) X(t) can be seen a sequence of random variables where each outcome is a *sample function*.
 - \blacktriangleright We use x[k] for a sample function in the discrete case.
- **2.** In a random process X(a), $a \in \mathcal{T}$, is a family of indexed r.v. \mathcal{T} represents the set of indexes and $X(a) \equiv X_a$ the associated r.v.

Review: Random process

- We have to specify
 - **1.** the statistical description of the r.p. at any given time, t: the pdf/pmf of a X(t)
 - **2.** the statistical description of the relation between a r.v. at a given time, X(t), and any other r.v. at other time, $X(t + \Delta t)$, $\forall \Delta t$.

In the continuous r.v. discrete time case, we have to specify the joint probability density function $f_{X_1X_2...X_n}(x_1x_2...x_n) \stackrel{\text{def}}{=} f_{\boldsymbol{X}}(\boldsymbol{x})$ for all indexes in \mathcal{T} , $n = |\mathcal{T}|$.

- This is a formidable task in the general case: we may limit the random process by imposing some constraints, in the hope they model the real systems:
 - 1. Stationary: if we assume first that
 - the statistical description of all r.v., x[k] in the discrete case, at any time and $\forall k$, is the same one. We have $f_{X(k)}(\mathbf{x}(k)) = f_{X(k+\tau)}(\mathbf{x}(k+\tau)) \qquad \forall \tau, k, n$
 - o accordingly the relation between two samples of the sample function, x[k] and x[l], only depends on the distance between samples d = k l.
 - 2. Stationary in wide sense (WSS): in practice we only focus on the stationary of the mean and covariance

Review: Random process

Definition

A random process X[k] is *wide sense stationary* if and only if (iff):

- **1.** $\mathbb{E}[X[k]] = m_X[k] = m_X$
- **2.** $\mathbb{E}[X[k+\tau]X[k]] = R_X[k+\tau,k] = R_X[\tau]$

Given a stationary r.p. with $X[k] \sim \mathcal{N}(m, \sigma^2)$ and $R_X[\tau]$ we have a Gaussian random process.

$$R_X[0] = \sigma^2$$

Given a stationary r.p. with $X[k] \sim \mathcal{N}(m, \sigma^2)$ and $R_X[\tau \neq 0] = 0$ we have a *white Gaussian* random process. Used in many cases, e.g., to model noise.

- Note that if we have a finite set of indices, we have a vector of independent Gaussian r.v., it is said that
 the vector is a white Gaussian random vector.
- Note also that in this case, if m=0 and $\sigma^2=1$, n samples of a sample function, is distributed as a standard Gaussian.

Doubled time and frequency: auto-correlations

- In our models we have two times axis
 - **1.** in continuous-time we have t,τ
 - **2.** in discrete-time we have *m,l* (Let us focus on the discrete-time case)
- In *m* we may define the *tap gain auto-correlation function*

$$R_{l}[\Delta m] \stackrel{\text{def}}{=} \mathbb{E}[h_{l}^{*}[m]h_{l}[m+\Delta m]] = \mathbb{E}[h_{l}^{*}[0]h_{l}[\Delta m]] \tag{42}$$

where we assume we have a *wide sense stationary (WSS)* process (in t or m)

- \blacktriangleright as WSS, the response does not depends on time m, but on distance between times, Δm .
- In / we might define the *power-delay profile (PDP)*

$$R_m[I,I+\Delta I] \stackrel{\mathrm{def}}{=} \mathbb{E}[h_I^*[m]h_{I+\Delta I}[m]] = \begin{cases} R_I[0] & \text{if } \Delta I = 0\\ 0 & \text{if } \Delta I \neq 0 \end{cases}$$

- we assume that $h_I[m]$ and $h_q[m']$ are independent r.v. for any $I \neq q$ and m,m'.
- ▶ this assumption is denoted as *uncorrelated scattering (US)*

The overall resulting model is denoted as WSSUS

Further properties

- Tap-gain autocorrelation function
 - ► This is the evolution of a tap along time. We expect that for times much shorter than the *coherence time*, *T*, the autocorrelation remains approximately constant
 - ▶ the coherence time can be also defined as the smallest value of $\Delta m/W$ such that $R_i[\Delta m]$ is statistically different from $R_i[0]$
 - \blacktriangleright the energy received in the *I*-th path is proportional to $R_I[0]$
 - ▶ Its Fourier transform, $S_l(\nu)$, provides a notion of the variation along frequency ν : in the moving channel is due to Doppler and measured through the Doppler spread, D_s
- Power-delay profile (PDP)
 - ▶ the *multi path spread* can be defined as the smallest value L/W, such that $\sum_{l=1}^{L} R_l[0]$ contains *most* of the total energy $\sum_{l=1}^{\infty} R_l[0]$: L is related to T_d
 - ▶ it is not stationary:
 - o it cancels for I/W larger than the delay spread
 - o it may have different values for every / up to the delay spread

and we can not compute the Fourier transform of the autocorrelation

- we compute the Fourier transform, $S_m(f)$, of the sequence $R_1[0]$: $R_1[0]$, $R_2[0]$, $R_3[0]$, ...
- \blacktriangleright these values are used to compute W_{cl} that it is related to T_{dl}

Doubled time and frequency: deterministic and probabilistic

- In LTI systems we have time τ or taps I, and its frequency response in f
 - ▶ No dependence with *m*

- Note that we
 - ▶ use h and H for deterministic models
 - ▶ use R and S for stochastics ones

 In LTV systems we have time τ or taps I, and its frequency response in f; but also the variation along time t or m, and the corresponding frequency response in v

Example: Clark's Model

Clarke's Model (Description)

- The Clarke's model assumes that
 - 1. the transmitter is fixed and the receiver is *moving at speed v*
 - 2. the objects causing scattering are statics
 - 3. there are K paths, indexed with k = 1,...,K
 - **4.** in the simplest Clarke's model, each one coming from direction $\theta=2\pi/k$, with delay τ_{θ} , and equal amplitude $a_{\theta}=a/\sqrt{K}$
 - 5. the total received power from all paths is a^2
 - **6.** we also assume a *flat channel*, $T_d < T = 1/W$
- The model yields

$$y(t) = \sum_{i=1}^{K} a_{\theta_i} x(t - \tau_{\theta_i}(t)) + w(t)$$
$$y[m] = h_0[m] x[m] + w[m]$$

Clarke's Model (Solution)

- if the phase of each path is iid and uniform in $[0,2\pi]$ the tap $h_0[m]$ is the sum of many small independent components
- we may model $h_0[m]$ as a Gaussian *stationary* process with auto-correlation

$$R_0[n] = 2a^2 \pi J_0(n\pi D_s/W) \tag{43}$$

where

- **1.** $J_0(x) = 1/\pi \int_0^{2\pi} e^{jx\theta} d\theta$ is the zeroth-order Bessel function of the first kind
- 2. its Fourier transform, the power spectral density, is given by ... see figure
- **3.** The time n/W at which $R_0[n]=0.05R_0[0]$ is the coherence time $T_c=\frac{J_0^{-1}(0.05)}{\pi D}$

© © © murillo@us.es

Fast and slow variations

Given a traveling speed

- while the effect of diffraction (*shadowing*) evolves slowly with time
- the changes due to destructive and constructive sums of multiple path changes fast

Non AWGN

- The noise added to the channel models above is additive white Gaussian noise.
- In some channels the noise may be non Gaussian and non white.
- Non Gaussian noise:
 - ▶ Impulse noise: we add to AWGN a noise, u[m], the product of a Bernouilli r.v., b[m], and a constant or another r.v. such as a Gaussian, v[m]

$$w[m] = u[m] + b[m]v[m]$$

$$(44)$$

hence w[n] is AWGN if b[m] = 0 and the sum of an AWGN and a given value or r.v. if b[m] = 1.

 Non white noise: the noise is non white stationary random process, that can be obtained by filtering AWGN

$$w[m] = u[m] * \psi[m] \tag{45}$$

where the filter response, $\Psi(f)$, the so called *noise shaping filter*, defines the frequency response of the noise.

DSL

In DSL the cable can be modeled as a LTI system with non white (coloured) noise.

Non linear channels

- In the path from bits generation in the Tx to bits estimation in the Rx the system design aims at offering a *linear* channel
 - ► There are some frequency up and down converters, that are considered linear as long as they perfectly translate the central frequency
- However, amplifiers and converters exhibit high non linearity
 - ▶ Other elements such as connectors or antennas may exhibit some non-linearity
- The effect of non linearity in the low pass equivalent model is a deformation of the constellation: with different rotations and attenuations for every point
 - ▶ In general, constant envelop signals are more robust to non-linearity
 - O That is why 8-PSK is used in EDGE
- We may use a high back-off (BO) to ensure we work in the linear range, or some techniques as pre-distorters to linearize it by inverting the non linear response.

Figure by Agilent

MIMO: Introduction

- Needs motivation? 3.5G, 4G, 5G mobile and WiFi already include them in the standards...
- We focus on a 2 × 2

- We have 4 channels where the output of each transmitted pair is added at each receiver antenna.
- We can apply every concept above to model this channel.
- For example, if flat, linear and invariant, we have a system model

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 (46)

Or equivalently, if h₁ is the *i*-th column,

$$y = h_1 x_1 + h_2 x_2 + w = \mathbf{H} \mathbf{x} + \mathbf{w} \tag{47}$$

that it is widely used in MIMO systems.

©000 ©murillo@us.es

Flat linear invariant MIMO

- Given N_t and N_r transmit and receive antennas, respectively, and a flat linear invariant MIMO channel
 - ▶ what it is the impact of the MIMO system?
- *Multiplexing*: if $N_t = N_r = N$ and matrix **H** is full rank (i.e. invertible) then we can sent N bits streams in parallel, in *SU-MIMO* (single user MIMO)
 - ▶ this is the *multiplexing gain*
 - ▶ the BER will depend on the E_b/N_0 , that depends on the noise an the entries, $h_{i,i}$, of **H**.
 - ▶ for **H** to be invertible \Rightarrow different entries \Rightarrow *antennas must be far one from each other (in terms of \lambda)*
 - the detection problem is not straightforward, but one simple approach is multiply the observation y by H⁻¹: inverse, canceller or zero-forcing detector
 - ▶ if **H** is known to the transmitter, we can easy the detection...*could you figure it out how?*
 - ightharpoonup if $N_t \neq N_r$, it can be concluded that at most $\min(N_t, N_r)$ bit streams can be multiplexed.
- Diversity: we could decide not to multiplex to just improve the E_b/N₀ at reception by combining the
 observations, in SU-MIMO.
- Beamforming: we could use the N_t transmitting antennas to point the beam to given directions, where the users are, in MU-MIMO (multiuser-user MIMO)

MIMO can be used *either* to multiplex several throughputs, improve signal to noise ratio (diversity) *or* beamforming. But not all of them at the same time!

©©©© ©murillo@us.es 68/78