# Principes et méthodes statistiques

## William SCHMITT

#### 2018-2019

# Table des matières

| 1 | Intr | roduction                                | 1 |
|---|------|------------------------------------------|---|
|   | 1.1  | Exemples                                 | 1 |
|   | 1.2  | Rappel des concepts abordés l'an dernier | 1 |
|   | 1.3  | Les deux dés                             | 3 |

# 1 Introduction

## 1.1 Exemples

**Studio de musique** Mesures de bruits pour construire un studio, la rue est au maximum à 74 dB, après 20 mesures. 74 dB est le seuil dérangeant les enregistrements. On peut calculer à la fin de ce cours la probabilité de subir des nuisances > 74 dB.

**Sondage** Suite à un sondage (51/49), on peut estimer le risque à prendre pour pouvoir affirmer que le candidat annoncé gagnant sera effectivement élu.

# 1.2 Rappel des concepts abordés l'an dernier

- Lois de probabilité
  - continues
    - Normale
    - Poisson
  - discrètes
    - Bernoulli
    - Binomiale



- Indicateurs
  - espérance
  - variance
  - écart-type
- Fonctions génératrices (des moments)
- Fonction de répartition
- Fonction de densité
- Loi des grands nombres
- Théorème central limite
- Indépendance de variables aléatoires

#### 1.3 Les deux dés

Expérience aléatoire : on lance deux dés, un rouge et un bleu, à six faces et équilibrés. On introduit les variables aléatoires suivantes :

- B : valeur du dé bleu
- R : valeur du dé rouge
- S : somme des deux valeurs

# 1.3.1 Question

Les variables aléatoires B et R sont égales?

- Vrai
- Faux
- Autre

#### 1.3.2 Retours

La variable aléatoire est une fonction, qui à chaque probabilité fait correspondre une valeur.

$$B: \Omega \to \{1, 2, 3, 4, 5, 6\}$$
$$\omega \mapsto B(\omega)$$
$$(b, r) \mapsto b$$

Il manque un bout ici.

$$\omega = (b, r)$$
$$S \mapsto b + r$$

avec b : valeur du dé bleu, r : valeur du dé rouge.

Elles ne sont pas égales : sinon les valeurs prises seraient toujours égales. C'est-à-dire que si elles étaient égales, si le dé rouge tombait sur 1, le dé bleu tomberait également sur 1.

Elles ont néanmoins la même loi.

## 1.3.3 Indépendance

Soient deux évènements, sont-ils indépendants?

# Exemple 1

```
-A = {Somme = 3}-B = {Dé rouge = 4}
```

Les évènements ne sont pas indépendants, trivialement.

#### Exemple 2

- $-- C = \{\text{Somme est paire}\}\$
- $-D = \{Dé \text{ rouge pair}\}\$

C, comme D, sont de probabilité  $\frac{1}{2}$ . La réponse est complexe car D a une influence sur C. Néanmoins, les probabilités ne sont pas affectées : les évènements C et D sont donc bel et bien **indépendants**.