

# Network Layer

#### Position of network layer



#### **Network layer duties**



## Chapter 19

Host-to-Host Delivery: Internetworking, Addressing, and Routing





Figure 19.3 Network layer in an internetwork



Figure 19.4 Network layer at the source



Figure 19.5 Network layer at a router



Figure 19.6 Network layer at the destination











#### Note:

Switching at the network layer in the Internet is done using the datagram approach to packet switching.



### Note:

Communication at the network layer in the Internet is connectionless.



### An IP address is a 32-bit address.



# The IP addresses are unique and universal.



## Example 1

Change the following IP addresses from binary notation to dotted-decimal notation.

- a. 10000001 00001011 00001011 11101111
- b. 11111001 10011011 11111011 00001111

## Solution

We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add dots for separation:

- a. 129.11.11.239
- **b.** 249.155.251.15

# Example 2

Change the following IP addresses from dotted-decimal notation to binary notation.

- a. 111.56.45.78
- **b.** 75.45.34.78

## Solution

We replace each decimal number with its binary equivalent (see Appendix B):

- a. 01101111 00111000 00101101 01001110
- **b.** 01001011 00101101 00100010 01001110



### Note:

In classful addressing, the address space is divided into five classes: A, B, C, D, and E.

Figure 19.10 Finding the class in binary notation

|         | First byte | Second byte | Third byte | Fourth byte |
|---------|------------|-------------|------------|-------------|
| Class A | 0          |             |            |             |
| Class B | 10         |             |            |             |
| Class C | 110        |             |            |             |
| Class D | 1110       |             |            |             |
| Class E | 1111       |             |            |             |

Figure 19.11 Finding the address class



# Example 3

Find the class of each address:

- **a. 0**0000001 00001011 00001011 11101111
- **b. 1111**0011 10011011 11111011 00001111

## Solution

See the procedure in Figure 19.11.

- a. The first bit is 0; this is a class A address.
- b. The first 4 bits are 1s; this is a class E address.

Figure 19.12 Finding the class in decimal notation

|         | First byte | Second byte | Third byte | Fourth byte |
|---------|------------|-------------|------------|-------------|
| Class A | 0 to 127   |             |            |             |
| Class B | 128 to 191 |             |            |             |
| Class C | 192 to 223 |             |            |             |
| Class D | 224 to 239 |             |            |             |
| Class E | 240 to 255 |             |            |             |