A Lie Group Approach to Riemannian Batch Normalization

- ICLR 2024 -

Ziheng Chen¹, Yue Song ¹, Yunmei Liu ², Nicu Sebe ¹

1 Dept. of Information Engineering and Computer Science, University of Trento 2 Industrial Engineering Department, University of Louisville

Applications of Lie groups

Several measurements lie in Lie groups:

SPDNet

Action Recognition

LieNet

Vemulapalli, Raviteja, et al. Human action recognition by representing 3D skeletons as points in a lie group. CVPR. 2014.

Huang, Zhiwu, and Luc Van Gool. A Riemannian network for SPD matrix learning. AAAI. 2017.

Huang, Zhiwu, et al. Deep learning on lie groups for skeleton-based action recognition. CVPR. 2017.

Finzi, Marc, et al. Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. ICML. 2020.

Existing Batch Normalization

Euclidean Batch Normalization: facilitating network training by controlling mean and variance

$$\forall i \le N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$

Table 2: Summary of some representative RBN methods.

Methods	Involved Statistics	Controllable Mean	Controllable Variance	Application Scenarios
SPDBN (Brooks et al., 2019b)	Mean	/	N/A	SPD manifolds under AIM
SPDBN (Kobler et al., 2022b)	Mean+Variance	✓	✓	SPD manifolds under AIM
Chakraborty (2020, Algs. 1-2)	Mean+Variance	×	×	Riemannian homogeneous space
Chakraborty (2020, Algs. 3-4)	Mean+Variance	✓	✓	A certain Lie group structure and distance
RBN (Lou et al., 2020, Alg. 2)	Mean+Variance	×	×	Geodesically complete manifolds
Ours	Mean+Variance	✓	✓	General Lie groups

All the previous RBN methods fail to control statistics in a general manner.

Daniel Brooks, et al. Riemannian batch normalization for SPD neural networks. Neurips. 2019.

Reinmar J Kobler, et al. Controlling the Fréchet variance improves batch normalization on the symmetric positive definite manifold. ICASSP. 2022. Rudrasis Chakraborty. Extending normalizations on Riemannian manifolds. ArXiv. 2020.

Aaron Lou, et al. Differentiating through the Fréchet mean. ICML. 2020

Contributions

LieBN:

- LieBN on general Lie groups, which can control mean and variance
- Specific LieBN on SPD manifolds under three deformed Lie groups
- Preliminary experiments on rotation matrices

Preliminaries

Definition 2.1 (Lie Groups). A manifold is a Lie group, if it forms a group with a group operation \odot such that $m(x,y)\mapsto x\odot y$ and $i(x)\mapsto x_\odot^{-1}$ are both smooth, where x_\odot^{-1} is the group inverse.

Lie groups:

Definition 2.2 (Left-invariance). A Riemannian metric g over a Lie group $\{G, \odot\}$ is left-invariant, if for any $x, y \in G$ and $V_1, V_2 \in T_x \mathcal{M}$,

$$g_y(V_1, V_2) = g_{L_x(y)}(L_{x*,y}(V_1), L_{x*,y}(V_2)), \tag{1}$$

where $L_x(y) = x \odot y$ is the left translation by x, and $L_{x*,y}$ is the differential map of L_x at y.

Table 1: Lie group structures and the associated Riemannian operators on SPD manifolds.

SPD geometries:

Metric	(α, β) -LEM	(α, β) -AIM	LCM
$g_P(V,W)$	$\langle \mathrm{mlog}_{*,P}(V), \mathrm{mlog}_{*,P}(W) \rangle^{(\alpha,\beta)}$	$\langle P^{-1}V,WP^{-1}\rangle^{(\alpha,\beta)}$	$\sum_{i>j} V_{ij} W_{ij} + \sum_{j=1}^{n} V_{jj} W_{jj} L_{jj}^{-2}$
$\mathrm{d}(P,Q)$	$\ \operatorname{mlog}(P) - \operatorname{mlog}(Q)\ ^{(\alpha,\beta)}$	$\left\ \operatorname{mlog}\left(Q^{-\frac{1}{2}}PQ^{-\frac{1}{2}}\right)\right\ ^{(\alpha,\beta)}$	$\ \psi_{\mathrm{LC}} \circ \mathrm{Chol}(P) - \psi_{\mathrm{LC}} \circ \mathrm{Chol}(Q)\ _{\mathrm{F}}$
$Q \odot P$	$\operatorname{mexp}(\operatorname{mlog}(P) + \operatorname{mlog}(Q))$	KPK^{\top}	$\operatorname{Chol}^{-1}(\lfloor L+K\rfloor+\mathbb{KL})$
$FM({P_i})$	$\operatorname{mexp}\left(\frac{1}{n}\sum_{i}\operatorname{mlog}P_{i}\right)$	Karcher Flow	$\psi_{\mathrm{LC}}^{-1}\left(\frac{1}{n}\sum_{i}\psi_{\mathrm{LC}}(P_{i})\right)$
$\operatorname{Log}_P Q$	$(\mathrm{mlog}_{*,P})^{-1}\left[\mathrm{mlog}(Q)-\mathrm{mlog}(P)\right]$	$P^{\frac{1}{2}} \operatorname{mlog} \left(P^{\frac{-1}{2}} Q P^{\frac{-1}{2}} \right) P^{\frac{1}{2}}$	$(\operatorname{Chol}^{-1})_{*,L} \left[\lfloor K \rfloor - \lfloor L \rfloor + \mathbb{L} \operatorname{Dlog}(\mathbb{L}^{-1}\mathbb{K}) \right]$
Invariance	Bi-invariance	Left-invariance	Bi-invariance

Manfredo Perdigao Do Carmo and J Flaherty Francis. Riemannian geometry. Springer.1992. Loring W., Tu. An introduction to manifolds. Springer. 2011

Yann Thanwerdas and Xavier Pennec. O (n)-invariant Riemannian metrics on SPD matrices. Linear Algebra and its Applications. 2023. Zhenhua Lin. Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition. SIAM Journal on Matrix Analysis and Applications. 2019.

LieBN: from Euclidean to Lie Groups

Euclidean BN:

$$\forall i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$
 • Gaussian Mean and variance

Centering, biasing, scaling

Gaussian on manifolds:
$$p(X \mid M, \sigma^2) = k(\sigma) \exp\left(-\frac{d(X, M)^2}{2\sigma^2}\right)$$
,

Our LieBN:

Centering to the neutral element $E: \forall i \leq N, \bar{P}_i \leftarrow L_{M_{\odot}^{-1}}(P_i),$

Scaling the dispersion:
$$\forall i \leq N, \hat{P}_i \leftarrow \operatorname{Exp}_E\left[\frac{s}{\sqrt{v^2 + \epsilon}} \operatorname{Log}_E(\bar{P}_i)\right],$$

Biasing towards parameter $B \in \mathcal{M}$: $\forall i \leq N, \tilde{P}_i \leftarrow L_B(\hat{P}_i)$,

Properties

Our centering and biasing can control mean, while scaling can control variance:

Proposition 4.1 (Population). \square Given a random point X over \mathcal{M} , and the Gaussian distribution $\mathcal{N}(M, v^2)$ defined in Eq. (12), we have the following properties for the population statistics:

- 1. (MLE of M) Given $\{P_{i...N} \in \mathcal{M}\}$ i.i.d. sampled from $\mathcal{N}(M, v^2)$, the maximum likelihood estimator (MLE) of M is the sample Fréchet mean.
- 2. (Homogeneity) Given $X \sim \mathcal{N}(M, v^2)$ and $B \in \mathcal{M}$, $L_B(X) \sim \mathcal{N}(L_B(M), v^2)$

Proposition 4.2 (Sample). \square Given N samples $\{P_{i...N} \in \mathcal{M}\}$, denoting $\phi_s(P_i) = \operatorname{Exp}_E[s \operatorname{Log}_E(P_i)]$, we have the following properties for the sample statistics:

Homogeneity of the sample mean:
$$FM\{L_B(P_i)\} = L_B(FM\{P_i\}), \forall B \in \mathcal{M},$$
 (16)

Controllable dispersion from
$$E$$
: $\sum_{i=1}^{N} w_i d^2(\phi_s(P_i), E) = s^2 \sum_{i=1}^{N} w_i d^2(P_i, E),$ (17)

where $\{w_{1...N}\}$ are weights satisfying a convexity constraint, i.e., $\forall i, w_i > 0$ and $\sum_i w_i = 1$.

Under metrics (LEM and LCM on SPD manifolds), LieBN can further control the Gaussian (App. C): $\mathcal{N}(M,\sigma^2) \to \mathcal{N}(E,\sigma^2) \to \mathcal{N}(E,s^2) \to \mathcal{N}(B,s^2),$

Algorithm


```
Algorithm 1: Lie Group Batch Normalization (LieBN) Algorithm
```

```
: A batch of activations \{P_{1...N} \in \mathcal{M}\}, a small positive constant \epsilon, and
Input
                   momentum \gamma \in [0, 1]
                   running mean M_r = E, running variance v_r^2 = 1,
                   biasing parameter B \in \mathcal{M}, scaling parameter s \in \mathbb{R}/\{0\},
                 : Normalized activations \{\tilde{P}_{1...N}\}
Output
if training then
     Compute batch mean M_b and variance v_b^2 of \{P_{1...N}\};
     Update running statistics M_r \leftarrow \text{WFM}(\{1-\gamma,\gamma\},\{M_r,M_b\}), v_r^2 \leftarrow (1-\gamma)v_r^2 + \gamma v_b^2;
end
if training then M \leftarrow M_b, v^2 \leftarrow v_b^2;
else M \leftarrow M_r, v^2 \leftarrow v_r^2;
for i \leftarrow 1 to N do
     Centering to the neutral element E: \bar{P}_i \leftarrow L_{M_{\circ}^{-1}}(P_i)
     Scaling the dispersion: \hat{P}_i \leftarrow \operatorname{Exp}_E \left[ \frac{s}{\sqrt{v^2 + \epsilon}} \operatorname{Log}_E(\bar{P}_i) \right]
     Biasing towards parameter B: \tilde{P}_i \leftarrow L_B(\hat{P}_i)
end
```

Our LieBN is a natural generalization of the Euclidean BN:

Proposition D.1. The LieBN algorithm presented in Alg. \overline{I} is equivalent to the standard Euclidean BN when $\mathcal{M} = \mathbb{R}^n$, both during the training and testing phases.

LieBN on SPDNet and TSMNet

(a) Radar dataset.

Radar:

Method	SPDNet	SPDNetBN	AIM-(1)	LEM-(1)	LCM-(1)	LCM-(-0.5)
Fit Time (s)	0.98	1.56	1.62	1.28	1.11	1.43
Mean±STD	93.25±1.10	94.85±0.99	95.47±0.90	94.89±1.04	93.52±1.07	94.80±0.71
Max	94.4	96.13	96.27	96.8	95.2	95.73

(b) HDM05 and FPHA datasets.

Skeleton data:

M	ethod	SPDNet	SPDNetBN	AIM-(1)	LEM-(1)	LCM-(1)	AIM-(1.5)	LCM-(0.5)
HDM05	Fit Time (s)	0.57	0.97	1.14	0.87	0.66	1.46	1.01
	Mean±STD	59.13±0.67	66.72±0.52	67.79±0.65	65.05±0.63	66.68±0.71	68.16±0.68	70.84±0.92
	Max	60.34	67.66	68.75	66.05	68.52	69.25	72.27
FPHA	Fit Time (s)	0.32	0.62	0.80	0.55	0.39	1.03	0.65
	Mean±STD	85.59±0.72	89.33±0.49	89.70±0.51	86.56±0.79	77.64±1.00	90.39±0.66	86.33±0.43
	Max	86	90.17	90.5	87.83	79	92.17	87

(a) Inter-session classification

EEG:

Method	Fit Time (s)	Mean±STD
SPDDSMBN	0.16	54.12±9.87
AIM-(1)	0.16	55.10±7.61
LEM-(1) LCM-(1)	0.13 0.10	54.95±10.09 51.54±6.88
LCM-(0.5)	0.15	53.11±5.65

(b) Inter-subject classification

Method	Fit Time (s)	Mean±STD
SPDDSMBN	7.74	50.10±8.08
AIM-(1) LEM-(1) LCM-(1)	6.94 4.71 3.59	50.04±8.01 50.95±6.40 51.86±4.53
AIM-(-0.5)	8.71	53.97±8.78

Preliminary Results on Rotation

Table 8: The associated Riemannian operators on Rotation matrices.

Ingredients:

Operators	$d^2(R,S)$	$\log_I R$	$\operatorname{Exp}_I(A)$	$\gamma_{(R,S)}(t)$	FM
Expression	$\left\ \operatorname{mlog}\left(R^{T}S\right)\right\ _{\mathrm{F}}^{2}$	mlog(R)	mexp(A)	$R \operatorname{mexp}(t \operatorname{mlog}(R^{\top}S))$	Manton (2004, Alg. 1)

Table 9: Results of LieNet with or without LieBN on the G3D dataset.

Application to LieNet:

	G3D			
Methods	Mean±STD	Max		
LieNet LieNetLieBN	87.91±0.90 88.88±1.62	89.73 90.67		

Thanks you Q & A

Code

Paper

Homepage