Цель этой заметки — объяснить, что находится в обратной матрице кросс-произведений $(X^TX)^{-1}$. Поехали!

Обозначим нашу матрицу $(X^TX)^{-1}$ как V. Она симметрична, $V^T=V$. По определению, $X^TX\cdot V=I$. Разобьём произведение на две части по-другому, $X^T\cdot XV=I$.

Заметим, что $X_* = XV$ — это матрица такого же размера, как X, $n \times k$. Что же собой представляют эти звезданутые иксы, X_* ?

Во-первых, $X_* = XV$, поэтому новые X_* — это линейные комбинации исходных X с весами из матрицы $V = (X^TX)^{-1}$. Например, $x_{1*} = v_{11}x_1 + v_{21}x_2 + \cdots + v_{k1}x_k$.

Во-вторых, $X_*^T X_*^T = (XV)^T X \hat{V} = V^T X^T X V = V = (X^T X)^{-1}$. Матрица кросс-произведений новых переменных является обратной к матрице кросс-произведений исходных переменных.

В частности, $v_{11}=x_{1*}^Tx_{1*}$, а $v_{12}=v_{21}=x_{1*}^Tx_{2*}$.

В-третьих, $X^TX_*=I$, например, новая переменная x_{1*} перпендикулярна всем старым переменным кроме x_1 . Ортогональность позволяет нам взглянуть на первую звезданутую переменную как на остаток в регресии. Первая ничем не выделяется, просто индексов меньше будет.

$$x_{1*} = v_{11}x_1 + v_{21}x_2 + \dots + v_{k1}x_k$$

Изолируем x_1 слева, а всё остальное — перенесём вправо:

$$x_1 = -\frac{v_{21}}{v_{11}}x_2 - \frac{v_{31}}{v_{11}}x_3 - \dots - \frac{v_{k1}}{v_{11}}x_k + \frac{1}{v_{11}}x_{1*}$$

Мы только что заметили, что переменная x_{1*} перпендикулярна $x_2, x_3, ..., x_k$, поэтому перед нами регрессия x_1 на все остальные переменные X_{-1} :

$$x_1 = \hat{\beta}_{12}x_2 + \hat{\beta}_{13}x_3 + \dots + \hat{\beta}_{1k}x_k + e_1$$

Здесь $e_1=x_{1*}/v_{11}$ — это остаток от регрессии x_1 на $x_2,...,x_k$. И $\hat{\beta}_{12}=-v_{21}/v_{11}=-v_{12}/v_{11}$ — это оценка коэффиента в регрессии x_1 перед переменной x_2 .

Отсюда мы сразу видим, что $V=(X^TX)^{-1}$ — это матрица-мать всех регрессий! Хочешь узнать коэффициент в регрессии x_1 на все остальные переменные перед x_7 ? В уме, $\hat{\beta}_{17}=-v_{17}/v_{11}$.

Найдём, чему равен RSS_1 в этой регрессии.

$$RSS_1 = e_1^T e_1 = x_{1*}^T x_{1*} / v_{11}^2 = v_{11} / v_{11}^2 = 1 / v_{11}.$$

Бинго! Ура, $v_{11}=1/RSS_1$. Заметим, что $x_{1*}=e_1v_{11}=e_1/RSS_1$. Типичный недиагональный элемент равен $v_{12}=-\hat{\beta}_{12}v_{11}=-\hat{\beta}_{12}/RSS_1$. И, наконец, матрицу-мать всех регрессий для k=3 в студию:

$$V = (X^T X)^{-1} = \begin{pmatrix} 1/RSS_1 & -\hat{\beta}_{12}/RSS_1 & -\hat{\beta}_{13}/RSS_1 \\ -\hat{\beta}_{21}/RSS_2 & 1/RSS_2 & -\hat{\beta}_{23}/RSS_2 \\ -\hat{\beta}_{31}/RSS_3 & -\hat{\beta}_{32}/RSS_3 & 1/RSS_3 \end{pmatrix}$$

Например, первая строка этой матрицы несёт всю информацию о регрессии x_1 на x_2 и x_3 .

В случае пары центрированных регрессоров вспомним, что R^2 одинаков в регрессии x_1 на x_2 и в обратной и равен $R^2=\hat{\beta}_{12}\hat{\beta}_{21}$. Поэтому, $v_{12}^2=v_{21}^2=\hat{\beta}_{12}\hat{\beta}_{21}/(RSS_1RSS_2)=R^2/(RSS_1RSS_2)$ и $V=(X^TX)^{-1}$ равна

$$\begin{pmatrix} 1/RSS_1 & -\hat{\beta}_{12}/RSS_1 \\ -\hat{\beta}_{21}/RSS_2 & 1/RSS_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{RSS_1} & -\frac{R}{\sqrt{RSS_1RSS_2}} \\ -\frac{R}{\sqrt{RSS_1RSS_2}} & \frac{1}{RSS_2} \end{pmatrix} = \frac{1}{1-R^2} \begin{pmatrix} \frac{1}{TSS_1} & -\frac{R}{\sqrt{TSS_1TSS_2}} \\ -\frac{R}{\sqrt{TSS_1TSS_2}} & \frac{1}{TSS_2} \end{pmatrix}.$$