English consonants

p	pie	pea		lowercase p
t	tie	tea		lowercase t
k	kye	key		lowercase k
b	by	bee		lowercase b
d	dye	D		lowercase d
	guy			lowercase g
g			***	
m	my	me	ra <i>m</i>	lowercase m
n	nigh	knee	ra <i>n</i>	lowercase n
ŋ			rang	eng (or angma)
ŋ f	fie	fee		lowercase f
v	vie	V		lowercase v
θ	thigh			theta
ð	thy	thee		eth
S	sigh	sea	listen	lowercase s
Z		Z	mizzen	lowercase z
ſ(š)	shy	she	mission	esh (or long s)
3 (ž)			vision	long z (or yogh)
1	lie	lee		lowercase I
w	why	we		lowercase w
r	rye			lowercase r
j (y)		ye		lowercase j
h	high	he		lowercase h
Note also the	following:			

chea(p)

chi(me)

ji(ve)

t∫ (tš) d3 (dž)

English consonants

p	pie	pea		lowercase p
t	tie	tea		lowercase t
k	kye	key		lowercase k
b	by	bee		lowercase b
d	dye	D		lowercase d
g	guy			lowercase g
m	my	me	ra <i>m</i>	lowercase m
n	nigh	knee	ra <i>n</i>	lowercase n
ŋ			rang	eng (or angma)
f	fie	fee		lowercase f
v	vie	V		lowercase v
θ	thigh			theta
ð	thy	thee		eth
S	sigh	sea	listen	lowercase s
Z		Z	mizzen	lowercase z
∫(š)	shy	she	mission	esh (or long s)
3 (ž)			vision	long z (or yogh)
1	lie	lee		lowercase I
w	why	we		lowercase w
r	rye			lowercase r
j (y)		ye		lowercase j
h	high	he		lowercase h

Note also the following:

 $d_3(d\check{z})$ chi(me) chea(p) chea(p) G

English vowels

	1	2						
	i	i	heed	he	bead	heat	keyed	lowercase i
	I	I	hid		bid	hit	kid	small capital I
	eı	eı	hayed	hay	bayed	hate	Cade	lowercase e
(O	ε	ε	head		bed			epsilon
β	æ	æ	had		bad	hat	cad	ash
סר	α	α	hard		bard	heart	card	script a
monophthongs	α	σ	hod		bod	hot	cod	turned script a
ldc	၁	၁	hawed	haw	bawd		cawed	open o
)U(υ	υ	hood				could	upsilon
U U	OÜ	ອບ	hoed	hoe	bode		code	lowercase o
	u	u	who'd	who	booed	hoot	cooed	lowercase u
	Λ	Λ	Hudd		bud	hut	cud	turned v
	3∿	3	herd	her	bird	hurt	curd	reversed epsilon
S	aı	aı	hide	high	bide	height		lowercase a (+I)
diphthongs	aυ	au		how	bowed		cowed	(as noted above)
<u>ا</u> ور	ıc)IC		(a)hoy	Boyd			(as noted above)
ht	ır	ıә		here	beard			(as noted above)
j	εr	ခေ		hair	bared		cared	(as noted above)
	aır	аә	hired	hire				(as noted above)
	Note	e also:						
	ju	ju	hued	hue	Bude		cued	(as noted above)

Praat

open sound file

record sound

Duration, pitch, intensity, formant

Hands-on experiments with Praat

- Record yourself with the sentence:
 - "Your good pants look great"
- Pitch
- Labeling
- Segmentation

Phonetics

- A study on speech
- How speech is described
 - Articulatory phonetics (from mouth) ← the most primitive
 - How to produce speech
 - Acoustic phonetics (through air)
 - How to transmit speech
 - Auditory phonetics (to ear)
 - How to hear speech

Articulation

The vocal tract

The vocal tract

The vocal tract

Vocal tract (upper)

Vocal tract (lower)

Inside the vocal tract

Articulatory phonetics = speech production (dance of the tongue)

5 speech organs =constrictors =articulators

Phonation process in larynx

Vocal cords vibration

Slow motion of vocal cords vibration

Larynx = voicebox

voiced: can feel vibration

voiceless: can't feel vibration

e.g. f, s, k, p, h, ...

Oro-nasal process in velum

Whether velum lowered

- nasals: m n ng ...
- when breathing?

Articulatory process in lips / tongue tip / tongue body

constriction

lips

tongue tip

tongue body

Control of constrictors(articulators)

By CL and CD

Each constrictor needs to be more specific in geometry

- Constriction location (CL): where exactly?
- Constriction degree (CD): how much exactly?

Constriction location (CL)

Constriction degree (CD)

upper part

lower part

How to produce English consonants & vowels?

By specifying constrictors, CD, and CL

e.g. which sound is produced?

Constrictor: Lips

CL: Bilabial

CD: Closure

From now on let's call a sound (a consonant or vowel) a phoneme.

Phonemes

- Individual sounds that form words
 - e.g., 'psycho' /<u>s aɪ k oʊ</u>/
 —— phonemes
- a combination of speech organs' actions

How to produce a phoneme?

Piano playing analogy

• e.g., /t/

speech organ	on/off	
lips	off	
tongue tip	on	
tongue body	off	
velum	off	
larynx	on	

- Five speech organs analogous to 5 keyboards on piano
- Producing a phoneme analogous to hitting a certain set of keys

Phonemes (practice)

• e.g., /t/

speech organ	on/off
lips	off
tongue tip	on
tongue body	off
velum	off
larynx	on

• e.g., /d/?

• e.g., /m/

speech organ	on/off
lips	on
tongue tip	off
tongue body	off
velum	on
larynx	off

• e.g., /n/?

• e.g., /g/

speech organ	on/off
lips	off
tongue tip	off
tongue body	on
velum	off
larynx	off

• e.g., /k/?

/t/ vs. /s/?

speech organ	on/off
lips	off
tongue tip	on
tongue body	off
velum	off
larynx	on

speech organ	on/off
lips	off
tongue tip	on
tongue body	off
velum	off
larynx	on

not different! More specification needed.

Constriction Degree (CD)

- · How much constriction?
 - stops: full constriction (e.g. p, t, k, b, d, g, m, n, n, n, ...)
 - fricatives: critical constriction (e.g. s, z, f, z, ∫, ʒ, θ, ð, ...)
 - approximants: little constriction (e.g. r, l, w, y, ...)
 - vowels: no constriction (e.g. vowels)
- For active (=on) speech organs only among lips, tongue tip, tongue body.

/t/	speech organ	on/off	CD	
	lips	off	-	
	tongue tip	on	stop	
	tongue body	off	-	
	velum	off	-	
	larynx	on	-	

/t/ vs. /s/

speech organ	on/off	CD
lips	off	-
tongue tip	on	stop
tongue body	off	-
velum	off	-
larynx	on	_

speech organ	on/off	CD
lips	off	-
tongue tip	on	fric.
tongue body	off	-
velum	off	-
larynx	on	-

/t/ vs. /r/?

speech organ	on/off	CD
lips	off	-
tongue tip	on	stop
tongue body	off	-
velum	off	_
larynx	on	-

speech organ	on/off	CD
lips	off	-
tongue tip	on	approx.
tongue body	off	-
velum	off	_
larynx	off	-

/a/ vs. /g/?

speech organ	on/off	CD
lips	off	-
tongue tip	off	-
tongue body	on	vowel
,		
velum	off	-

speech organ	on/off	CD
lips	off	-
tongue tip	off	-
tongue body	on	stop
velum	off	_
larynx	off	_

/s/ vs. /ʃ/?

speech organ	on/off	CD
lips	off	-
tongue tip	on	fric.
tongue body	off	-
velum	off	-
larynx	on	-

speech organ	on/off	CD
lips	off	-
tongue tip	on	fric.
tongue body	off	-
velum	off	-
larynx	on	-

not different! More specification needed.

Constriction Location (CL)

Where constriction occurs at a speech organ?

/s/ vs. /ʃ/

speech organ	on/off	CD	CL
lips	off	-	-
tongue tip	on	fric.	alv.
tongue body	off	-	-
velum	off	_	-
larynx	on	-	-

speech organ	on/off	CD	CL
lips	off	-	-
tongue tip	on	fric.	pal-alv
tongue body	off	-	-
velum	off	-	-
larynx	on	_	-

```
/p/
                                 on/off
                                                CD
                                                              CL
         speech organ
              lips
           tongue tip
         tongue body
            velum
            larynx
```

```
/h/
                                 on/off
                                                CD
                                                              CL
         speech organ
              lips
           tongue tip
         tongue body
            velum
            larynx
```

```
/j/
                                 on/off
                                                CD
                                                               CL
         speech organ
              lips
          tongue tip
         tongue body
            velum
            larynx
```

```
/n/
                                 on/off
                                                CD
                                                              CL
         speech organ
              lips
           tongue tip
         tongue body
            velum
            larynx
```

```
/\//
                                  on/off
                                                 CD
                                                               CL
         speech organ
              lips
           tongue tip
         tongue body
             velum
             larynx
```

```
/ŋ/
                                 on/off
                                                CD
                                                              CL
         speech organ
              lips
           tongue tip
         tongue body
            velum
            larynx
```

```
/w/
                                 on/off
                                                CD
                                                              CL
         speech organ
              lips
           tongue tip
         tongue body
             velum
             larynx
```

```
/n/
                                 on/off
                                                CD
                                                              CL
         speech organ
              lips
           tongue tip
         tongue body
            velum
            larynx
```

```
/z/
                                 on/off
                                                CD
                                                              CL
         speech organ
              lips
          tongue tip
         tongue body
            velum
            larynx
```

Vowels by tongue body only

Figure 1.12 The positions of the vocal organs for the vowels in the words 1 heed, 2 hid, 3 head, 4 had, 5 father, 6 good, 7 food. The lip positions for vowels 2, 3, and 4 are between those shown for 1 and 5. The lip position for vowel 6 is between those shown for 1 and 7.

CL & CD specifications

Figure 1.13 The relative positions of the highest points of the tongue in the vowels in 1 heed, 2 hid, 3 head, 4 had, 5 father, 6 good, 7 food.

Vowel chart

Geometry of tongue body!!

Acoustics

Sound generation

- How is sound generated within the vocal tract?
 - Vocal fold vibration (e.g. vowels)
 - Turbulence noise (e.g. fricatives)
 - Release of cavity under high pressure (e.g. stops)
- All these sound generation mechanisms require getting air to flow
 - English: airflow caused by a single mechanism (action of the lungs)
 - Other languages: alternate methods for getting air to flow

Acoustics in Praat

- Duration:
 - select (click and drag on waveform or spectrogram)
 - read a value (sec.) on the top
 - zoom in (if not visible)

- Intensity:
 - show intensity
 - click on green
 - read a value (dB) on the right

- Pitch:
 - show pitch
 - pitch setting pitch range
 - 65-200Hz for male speech
 - 145-275Hz for female speech
 - click on blue
 - read a value (Hz) on the right

- Formant:
 - show formants
 - place the cursor on one of the trajectories
 - read a value (Hz) on the left

Autosegmentation

Consonant acoustics

Types of Stops voiced vs. voiceless vs. aspirated

English 'bases' Spanish 'pesos' English 'paces'

Voice Onset Time: VOT

- The interval between the release of a closure and the start of the voicing
- The easiest way to visualize VOT is by reference to the waveform of a sound
- Compare VOT:
 - /ba/: English as L1 vs. English as L2

Voice Onset Time: VOT

English 'bases' Spanish 'pesos' English 'paces'

- Measure VOTs
 - download VOT.Collection in "course materials"

Voice Onset Time

Figure 6.7 Waveforms showing stops with different degrees of voicing and aspiration.

Vowel acoustics

Vowel acoustics

- Record yourself with the vowel /a/
- Measure pitch using Praat
 - The number of occurrences of a repeating event per second (Hz)
 - repeating event = vibration of vocal folds
 - Repeating? This might remind you of a sine wave!
- Let's create a sine wave (=pure tone) with the same frequency using Praat
- Why different in sound quality?
 - Source & Filter

Source

Sound at larynx

- Listen to a sentence from a SiSwati
 - (Southern Bantu Language; Swaziland)
- Listen to the glottal wave recorded from subject's larynx while the sentence is being produced
- Doesn't sound like a pure or simplex tone
- A complex tone

Complex tone in spectrum

Practice with pure tone & spectrum

000	Create Sound	as pure tone
	Name:	tone
	Number of channels:	1 (= mono)
	Start time (s):	0.0
	End time (s):	1.0
Sampling frequency (Hz):		44100
	Tone frequency (Hz):	1.0
	Amplitude (Pa):	0.5
	Fade-in duration (s):	0.01
	Fade-out duration (s):	0.01
Help	Standards	Cancel Apply OK

Practice with pure tone & spectrum

Practice with pure tone & spectrum

Select at least several cycles Spectrum: Spectral slice

View:Zoom From 0 to 3000

Human voice source

- Measured by ElectroGlottoGraph (EGG)
- Open vowelEGG.collection in Praat
- Compare spectrums between EGG and audio

Human voice source

gradually decreasing

Filtered by vocal tract

Jigjagging with peaks and valleys

source & filter

source

- Human voice source consists of harmonics
- A complex tone = sum of pure tones at integer multiples of the lowest pure tone
- the lowest pure tone
 - Fundamental frequency (F0)
 - rate of vibration of the larynx

- the number of opening-closing cycles of the larynx per second
- Amplitude of pure tones gradually decreases

filter

- Compare spectrums between audio and EGG
- EGG: gradual decreasing
- audio: peaks/mountains and valleys
- Because it is filtered by the vocal tract (VT)
 - peaks/mountains: frequencies VT likes = formants
 - valleys: frequencies VT does NOT like
- Matlab 3D view

Guitar plucking (similar to voice source)

- A complex tone consisting of pure tone components
- Decreasing amplitude

- Praat allows one to synthesize Source
- Create harmonics from 100Hz to 1000Hz
- with decreasing amplitude by .05

- Create Sound as pure tone
- Frequency: 100Hz

000 Create Sound as pure tone Name: 100Hz Number of channels: 1 (= mono) Start time (s): 0.0 End time (s): 0.4 Sampling frequency (Hz): 44100 Tone frequency (Hz): 100.0 Amplitude (Pa): 1 Fade-in duration (s): 0.01 0.01 Fade-out duration (s): OK Help Standards Cancel Apply

Amplitude: 1

- Create Sound as pure tone
- Frequency: 200Hz

Amplitude: 0.95

- Create pure tones
 - with different frequencies and amplitudes
- Combine to stereo
- Convert to mono

- Open complex100to1000Hz.collection in Praat
- Plot a spectrum
- Measure pitch

Source-filter theory

(from larynx) (by vocal tract)

Spectrogram

Spectrogram

- Airplane view of temporal concatenation of spectrum!
- Dark band: mountains = Formants

Formants

F1 and F2 are enough to disambiguate vowels.

Vowel space

Figure 1.12 The positions of the vocal organs for the vowels in the words 1 heed, 2 hid, 3 head, 4 had, 5 father, 6 good, 7 food. The lip positions for vowels 2, 3, and 4 are between those shown for 1 and 5. The lip position for vowel 6 is between those shown for 1 and 7.

Practice with VowelEditor in Praat

How formants determined

- What frequencies does the vocal tract tube prefer?
 - = What frequencies resonate in VT?
- Need to understand standing waves
 - determining resonance frequencies of VT shape for a vowel.

Standing waves in VT

- The vowel, schwa is the most similar to this uniform tube
- The tube prefers the frequencies of these standing waves
- These frequencies resonate in VT
- The resonant frequencies are formants for schwa

 http://www.acs.psu.edu/drussell/Demos/superposition/ /superposition.html

 http://www.walterfendt.de/html5/phen/standingwavereflection_en.htm

Standing Waves Demo


```
<u>http://www.walter-fendt.de/html5/phen/standinglongitudinalwaves_en.html</u>
```

Standing waves

When both ends are all fixed/closed

:

Standing waves in VT

When only one end is fixed/closed

How to compute frequencies of standing waves

- Need to know the duration of a cycle to calculate frequency
- We know the distance instead and how fast it is (speed of sound = 340m/sec)

Length of 1st standing wave

Compute frequency (F1) of 1st standing wave

- Length (λ: Lamda) of 1st standing wave:
 - 0.17 (VT length) x 4 = 0.68 m
- Duration: 0.68/340 sec. = 0.002 sec
 - ← speed of sound: 340 m/s
- Frequency (F1): 1/0.002 = 500 Hz

Length of 2nd standing wave

Compute frequency (F2) of 2nd standing wave

- Length (λ: Lamda) of 1st standing wave:
 - 0.17/3 (VT length) x 4 = 0.68/3 m
- Duration: 0.68/3/340 sec. = 0.002/3 sec.
 - ← speed of sound: 340 m/s
- Frequency (F2): 1/(0.002/3) = 1500 Hz

Machine learning vs. Statistics

인식(perception) classification

- continous, physical, numerical, concrete
- discrete, cognitive, nominal, categorical, abstract

Variables vs. Constants

- Variables (input or output): may change
 - Types: Numerical vs. Nominal
 - e.g. temperature = {32.7° F, 90° F, 0° C}
 - e.g. country = {'Portugal', 'Ireland', 'Italy', 'Greece', Spain'}
- Constants: not change
 - e.g. $\pi = 3.141592...$

in-out mapping in a function

Classification: Num-Nom

Regression: Num-Num

t-test, ANOVA: Nom-Num

classification: Num-Nom

smoke양-cancer유무

regression: Num-Num

hours of studying— math score

t-test, ANOVA: Nom-Num

gender – math score

input: independent variable (IV)

독립변수

output: dependent variable (DV)

종속변수

A study on the effect/impact/influence of IV on DV

A study on the effect of sleep, calory & workout on weight

regression: 학습량이 수학점수에 미치는 영향

$$r = 0.7$$
, $p = 0.012$

t-test (or ANOVA): 성별이 수학점수에 미치는 영향

$$p = 0.09$$

Regression: 학습량이 수학점수에 미치는 영향

t-test: 성별이 수학점수에 미치는 영향

Comparing two groups' normal distributions

Normal distribution

Standard Deviations and Percentages of Scores in a Normal Distribution

Normal distribution

- Normal distribution
 - salary
 - life span
 - height & weight
- non-normal distribution
 - throwing a dice/ flipping a coin
 - sunrise or sunset time
 - wealth in communist countries (?)

Comparing two groups' normal distributions

Comparing two groups' normal distributions

T-test practices

- A = 30, B = 35, std = 2
- A = 60, B = 80, std = 10.5
- A와 B는 통계적으로 유의미하게 (p < 0.05) 차이 있나?

Linear algebra

Matrices

```
\left(\begin{array}{cccc} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array}\right)
```

Vectors

```
\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}
```

 $\begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$

Scalar

[1] [3] [-2]

a sequence of numbers

vector multiplication

vector addition

vector product

inner product outer product tensor product

inner product = dot product = scalar product

$$a = [2, 3]$$

 $b = [3, 0]$

algebraic: $a \cdot b = 2x3 + 3x0$

geometric: $a \cdot b = |a||b|\cos(\theta)$

How to measure informational similarity between a and b?

- $cosine(\theta)$
- a-b distance

inner product

$$a \cdot b = 4x3x\cos(\pi/2)$$

$$a \cdot b = 4x3xcos(0)$$

correlation

correlation = cosine similarity

$$a \cdot b = |a||b|\cos(\theta)$$

 $\rightarrow \cos(\theta) = a \cdot b / |a||b|$

inner product signal vectors

a = [0, 0.85, 1, 0.85, 0, -0.85, -1, -0.85, 0]

0°

b = [0, 0.85, 1, 0.85, 0, -0.85, -1, -0.85, 0]

$$cos(\theta) = ?$$

inner product signal vectors

a = [0, 0.85, 1, 0.85, 0, -0.85, -1, -0.85, 0]

b = [0, 1.7, 2, 1.7, 0, -1.7, -2, -1.7, 0]

$$cos(\theta) = ?$$

inner product signal vectors

$$a = [0, 0.85, 1, 0.85, 0, -0.85, -1, -0.85, 0]$$

$$b = [1, 0.85, 0, -0.85, -1, -0.85, 0, 0.85, 1]$$

$$cos(\theta) = ?$$