Задача А. Хан, который не в соло

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды 256 мегабайт Ограничение по памяти:

Хан не хотел учиться в соло, поэтому он пригласил к себе своего друга Доминика. После насыщенного вечера, который будет запомнен за рекордное количество решенных задач по электротехнике, Доминик отправился домой. К своему удивлению, родители остановили его прямо перед входом в комнату, думая что он ничему не научился. В этой ситуации для того, чтобы доказать, что он действительно занимался, ему требуется решить серию хорошо подготовленных задач для проверки когнитивных способностей. Если поверить словам Доминика, диалог выглядел примерно так:

Родители: Так, давай начнем с чего-нибудь попроще... Какая сложность у сортировки пузырьком?

Дом: Ну, это как два бита переслать — $O(n^2)$.

Родители: Произнеси фразу в обратном порядке: А роза упала на лапу Азора.

Дом: А, это известный палиндром: А роза упала на лапу Азора.

Родители: Ну, ты просто это знал. Теперь представь, что буквы латинского алфавита от 'a' до 'z' записаны по-кругу по часовой стрелке. Начни с буквы 'а' и произноси буквы по очереди. После каждой произнесенной буквы я могу попросить тебя продолжать произносить алфавит в обратном порядке или спросить сколько раз ты произнес ту или иную букву. Ты готов? 3, 2, 1, Поехали!

Дом: Мммм... a, b, с...

Напишите программу, которая поможет Доминику.

Формат входных данных

В первой строке содержится число q ($1 \leqslant q \leqslant 10^5$) — количество вопросов родителей.

В следующих q строках описаны команда родителей в формате — "rev n" или "cnt n x". Команда " \mathbf{rev} n" значит, что после n-й произнесенной буквы, Доминик должен произносить буквы в обратном порядке, вопрос "cnt n x" значит, что Доминик должен сказать, сколько раз он сказал букву x в первых n произнесенных буквах.

Вопросы родителей заданы в хронологическом порядке: числа $n \ (0 \leqslant n \leqslant 10^9)$ расположены строго по возрастанию; x в вопросе вида " $\mathbf{cnt} \ \mathbf{n} \ \mathbf{x}$ " — строчная буква латинского алфавита.

Формат выходных данных

Для каждого вопроса вида " $\operatorname{cnt} \mathbf{n} \mathbf{x}$ ", выведите сколько раз Доминик сказал букву x среди n произнесенных. Ответ для каждого вопроса должен быть выведен в отдельную строку, в том порядке, в котором они заданы в условии.

Система оценки

Номер подзадачи	Баллы	Ограничения	Комментарий
0	0		Примеры из условия.
1	20	$0 \leqslant n \leqslant 1000$	Баллы начисляются, если все тесты пройдены.
2	20	$0 \leqslant n \leqslant 10^5$	Баллы начисляются, если все тесты этой и предыдущих подзадач пройдены.
3	60	Основные ограничения	Баллы начисляются, если все тесты этой и предыдущих подзадач пройдены.

Примеры

стандартный ввод	стандартный вывод
5	0
cnt 1 b	1
cnt 3 b	2
rev 4	1
cnt 7 a	
cnt 10 z	
5	2
rev 1	1
rev 2	
rev 3	
cnt 5 a	
cnt 7 w	
4	4
cnt 100 a	8
cnt 200 c	12
cnt 300 a	16
cnt 400 b	

Задача В. Новое Имя

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 7 секунд Ограничение по памяти: 1024 мегабайта

Динару всегда было достаточно его имени. Он всегда был узнаваем в узких кругах, но у него всегда было ощущение, что его психологическое имя может отличаться от его текущего.

С сегодняшнего дня всё изменится. Когда кто-то будет обращаться к мальчику «Динар», то он даст ему карточку с новым именем. Проблема, однако, в том, что карандаш мальчика сломался, поэтому все, что он может сделать, это собрать все карточки, на которых он писал какие-то странные несуществующие слова и с помощью ластика стереть некоторые буквы.

Конечно, все визитные карточки должны иметь одно и то же имя, и все возможные карточки должны использоваться, потому что не может быть ситуации, в которой у Динара не хватит визитных карточек. Новое имя не должно иметь логического смысла. Важно, чтобы оно было как можно ближе к концу списка в дневнике.

Формат входных данных

В первой строке стандартного ввода есть одно число N ($1 \le N \le 10^7$), обозначающее количество сохраненных страниц. В следующих N содержатся слова, написанные на карточках, все эти слова состоят из маленьких букв английского алфавита. Общая длина слов во входном файле не превышает 10^7 .

Формат выходных данных

Среди всех возможных новых имён Динара выведите лексикографически наибольшее. Если все такие имена имеют нулевую длину, то выведите "EJOI".

Примеры

стандартный ввод	стандартный вывод
3	zki
zygzaki	
zabawawkapitana	
zgryzkamienny	
2	a
blablabla	
nicwaznego	
1	zywwnk
zapomnianywojownik	

Замечание

Подзадача	Баллы	Ограничения <i>п</i>	Необходимые подзадачи
0	0	_	_
1	10	n = 1	0
2	10	n=2	0
3	50	$n \leqslant 10000$	0,1,2
4	30	$n \leqslant 10^7$	0,1,2,3

Задача С. Оля и спорт

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.2 секунд Ограничение по памяти: 256 мегабайт

В Иннополисе зима, а значит идёт снег! На пути от университета до спорткомплекса есть n плиток, удобно пронумерованных 1...n, а плитка i покрыта снегом некоторой глубины. В подвале Иннополиса Оля хранит m пар элегантных сапожек, пронумерованных 1...m. Некоторые пары сапожек тяжелее и легче проваливаются под снег, а некоторые пары более гибкие и позволяют прыгать дальше. В частности, i-я пара сапожек позволяет Оле вставать на плитку со снегом глубиной не больше чем s_i , и позволяет Оле прыгнуть на не более чем d_i плиток вперёд.

Оля начинает с плитки 1 и должена дойти до плитки номера n, чтобы заняться спортом. Плитка 1 защищена крышей университета, а плитка n защищена крышей спорткомплекса, поэтому на этих плитках нет снега. Помогите Оле понять, какие пары снежных сапог позволят ей дойти до спорткомплекса, ведь ей надо одежду подходящей к этим сапожкам.

Формат входных данных

Первая строка содержит два целых числа написанных через пробел n и m ($1 \le n, m \le 10^5$). Вторая строка содержит n целых чисел, разделенных пробелами i-е целое число f_i — глубина снега на плитке номера i ($0 \le f_i \le 10^9$). Гарантируется, что $f_1 = f_n = 0$.

Следующие строки m содержат по два целых числа, разделенных пробелами. Первое число в строке равно s_i —максимальная глубина снега, в которуй можно зайти в сапожках номера. Второе число в строке равно d_i —максимальная длина прыжка в i-й паре сапожек.

Гарантируется, что $0 \leqslant s_i \leqslant 10^9$ и $1 \leqslant d_i \leqslant n-1$.

Формат выходных данных

Выведите m строчек. В i-й строчек должно быть записано одно целое число: 1, если Оля сможет добраться из университета в спорткомплекс используя i-ю пару ботинок, и 0 иначе.

Пример

стандартный ввод	стандартный вывод
8 7	0
0 3 8 5 6 9 0 0	1
0 5	1
0 6	0
6 2	1
8 1	1
10 1	1
5 3	
150 7	

Замечание

Подзадача	Баллы	Ограничения
Подзадача		$_{ m n,m}$
0	0	_
1	10	$1\leqslant n,m\leqslant 100$
2	30	$1\leqslant n,m\leqslant 3000$
3	60	$1\leqslant n,m\leqslant 100000$

Задача D. Галактика

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Давным давно, в далекой, далекой галактике было n планет. Также там было n-1 межпланетных дорог, которые соединяют все планеты (напрямую или через другие планеты). Другими словами, сеть планет и дорог образуют дерево. Вдобавок, у всех дорог есть **интересность**, выраженная целым числом.

Пара планет a, b является скучной, если выполняются следующие условия:

- \bullet a не равно b
- ullet путешествие между планетами a и b возможно с использованием одной или нескольких дорог
- ullet побитовый **XOR** интересности всех путей в этом пути равно 0

Увы, времена изменились и злой император управляет галактикой. Он решил использовать силу для уничтожения межпланетных дорог в **определенном порядке**. Посчитайте количество скучных пар планет, перед тем как император начал разрушение и после каждого уничтожения дороги.

Формат входных данных

Первая строка содержит одно целое число n ($1 \le n \le 100\,000$) — количество планет. Следующие n-1 строк содержат три целых числа a_i, b_i, z_i ($1 \le a_i, b_i \le n, 0 \le z_i \le 10^9$), которые означают, что планеты a_i и b_i соединены дорогой с интересностью z_i .

Последняя строка содержит перестановку n-1 целых чисел, которая обозначает последовательность уничтожения дорог. Если i-й элемент перестановки равен j, то это значит, что император уничтожит дорогу между планетами a_i и b_i в i-й шаг.

Формат выходных данных

Ответ должен содержать n строк, k-я строка должна содержать количество скучных планет a, b перед тем как император уничтожит k-1 дорогу.

Система оценки

Номер		Ограничения		V
подзадачи Баллы n z_i	Комментарии			
0	0			Тесты из примера.
1	30	$1 \leqslant n \leqslant 1000$	$0 \leqslant z_i \leqslant 10^9$	Баллы начисляются за прохождение всех тестов из группы.
2	30	$1 \leqslant n \leqslant 100000$	$z_i = 0$	Баллы начисляются за прохождение всех тестов из группы.
3	40	$1 \leqslant n \leqslant 100000$	$0 \leqslant z_i \leqslant 10^9$	Баллы начисляются за прохождение всех тестов из этой и предыдущих групп.

Примеры

стандартный ввод	стандартный вывод
2	1
1 2 0	0
1	
3	1
1 2 4	0
2 3 4	0
1 2	
4	6
1 2 0	3
2 3 0	1
2 4 0	0
3 1 2	

Замечание

Пояснение первого примера: До разрушения дорога между планетами 1 и 2 была скучной. После уничтожения дорога между ними перестала существовать.

Пояснение второго примера: До уничтожения дорога между планетами 1 и 3 была скучной. После первого уничтожения путь между планетами 1 и 3 перестанет существовать, и других скучных пар планет не существует.

Пояснение третьего примера: В этом примере каждая пара планет является скучной.

Задача Е. Дорожная реформа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

В стране Флатландия n городов. Здесь недавно прошли выборы и был выбран новый премьерминистр. Сейчас в стране нет ни одной дороги, так что премьер-министр решил провести реформу, соединив некоторые города двусторонними дорогами и сформировать регионы. Два города будут находиться в одном и том же регионе, если существует путь между этими городами по построенным дорогам. Каждый город будет находиться ровно в одном регионе. Каждый регион состоит из одного или более городов.

Города представлены точками в декартовой плоскости. Дорога между двумя городами представлена отрезком, соединяющим две точки, соответствующие городам.

В стране кризис, поэтому премьер-министр решил, что он выберет константу d и запретит строить дороги длиннее d. Кроме того, премьер-министр очень суеверен. Он будет доволен, если хотя бы в одном регионе существует непустое подмножество городов, в которых суммарное число жителей делится на k. Например, при k=4 и регионе с населениями городов в 3, 5 и 7 жителей, соответственно, премьер-министр будет доволен, потому что суммарное число жителей в первом и втором городах равно 8.

Помогите премьер-министру сэкономить бюджетные деньги, определив минимальное значение d, для которого можно построить дороги так, чтобы премьер-министр был доволен.

Формат входных данных

Первая строка содержит целые числа n и k ($1 \le k \le 30$). Следующие n строк содержат по три целых числа x_i, y_i, k_i — координаты города на плоскости и число жителей в городе i. Гарантируется, что не существует двух городов в одной точке. Ни одно k_i не кратно k. Все числа во входном файле неотрицательные и не превосходят 10^8 .

Формат выходных данных

Выведите квадрат искомого расстояния d. Можно показать, что этот квадрат всегда будет целым числом. Гарантируется, что решение существует.

Система оценки

Номера	Баллы	Ограничения	Комментарий	
подзадач	Баллы	n		
0	0		Примеры из условия.	
1	17	$1 \leqslant n \leqslant 20$	Баллы начисляются, если все тесты пройдены.	
2	23	$1 \leqslant n \leqslant 100$	Баллы начисляются, если все тесты этой и предыдущих подзадач пройдены.	
3	26	$1 \leqslant n \leqslant 1000$	Баллы начисляются, если все тесты этой и предыдущих подзадач пройдены.	
4	34	$1 \leqslant n \leqslant 50000$	Баллы начисляются за каждый тест отдельно, но толь- ко, если все тесты предыдущих подзадач пройдены.	

Примеры

стандартный ввод	стандартный вывод
3 3	2
0 4 4	
1 5 1	
2 6 1	
6 11	32
0 0 1	
0 1 2	
1 0 3	
1 1 4	
5 5 1	
20 20 10	
6 5	4
20 20 9	
0 0 3	
0 1 1	
10 0 1	
10 1 6	
12 0 3	