Name :	\ <u>\</u>
Roll No.:	
Inviailator's Signature:	

2012

FORMAL LANGUAGE & AUTOMATA THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) The basic limitation of FSM is that
 - a) it can't remember arbitrary large amount of information
 - b) it sometimes recognize grammar that is not regular
 - c) it sometimes fails to recognize grammar that is regular
 - d) all of these.

4358 [Turn over

- ii) Choose the correct statements:
 - a) Moore & Mealy machine are FSM with output capabilities
 - b) Any given Moore machine has an equivalent Mealy machine
 - c) Any given Mealy machine has an equivalent Moore machine
 - d) Moore machine is not an FSM.
- iii) The intersection of CFL & regular language
 - a) need not be regular
 - b) need not be CF
 - c) is always regular
- d) none of these.
- iv) Palindromes can't be recognized by any FSM because
 - a) an FSM can't be remember arbitrary large amount of information
 - b) an FSM can't deterministically fix the mid point
 - c) FSM can't find whether 2nd half of the string machines the 1st half or not
 - d) None of these.
- v) Can a DFA simulate NFA?
 - a) no

- b) yes
- c) some times
- d) depends on DFA.

vi)
$$(P + Q)^* = ?$$

a)
$$(P^* + Q^*)$$

b)
$$P^* + Q^*$$

c)
$$(P^* Q^*)^*$$

vii) What is the RE for the language set strings with atleast one 1, one 2 and one 3?

viii) Which of the following sets is regular?

a)
$$\{a^i : i = n^2, n > 1\}$$

b)
$$\{a^p : p \text{ is prime }\}$$

c)
$$\{ ww : w \text{ is in } (a, b) + \}$$

d) {
$$a^{2n}: n > = 1$$
 }.

The regular expression representing the set of all strings ix) over $\{x, y\}$ ending with XX beginning with Y is

a)
$$XX(X+Y)^*Y$$
 b) $YY(X+Y)^*X$

b)
$$YY(X+Y)*X$$

c)
$$Y(X+Y)*XX$$
 d) $Y(XY)*XX$.

d)
$$Y(XY) * XX$$
.

Regular expression (a/b)(a/b) denotes the set x)

a)
$$\{a, b, ab, aa\}$$

GROUP - B

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Show that $L = \{ O^n \mid n \mid n > 1 \}$ is not regular.
- Write the CFG for the following language 3.

$$L = \{ 0^i 1^j 2^k | I = j j = k \}$$

Design a PDA which accepts the language 4.

 $L = \{ w \in (a,b)^* \mid w \text{ has equal no. of } a \& b \}.$

- Give DFA which reads strings from {a,b} and with aaa. 3 5.
 - Construct a DFA equivalent to M = { $\{q_0, q, \}, \{0, 1\}, \delta q_0,$ b) $\{q_0\}\}$, δ is given by the state table.

State /	0	1
q_0	q ₀	q ₁
q1	q_1	q ₀ , q1

2

Find a GNF grammar equivalent to the following CFG: 6.

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 \mid b$$

$$A_3 \rightarrow A_1 A_2 \mid a$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. Construct a DFA diagram to the NFA given below. a) 6

b) Convert Mealy Machine to Moore Machine.

- c) What are Kleene Closure and Positive Closure ? Give example for both. 2+1
- 8. a) What are distinguishable and Indistinguishable state? 3
 - b) Use Myhill Nerode Theorem to minimize the following finite automata.

9. a) Give the Regular Expression for the *DFA* using arden Theorem.

b) What is Griebach Normal Form (*GNF*) for Context Free grammar?

Convert the following grammar into GNF

$$S \rightarrow ABb/a$$

 $A \rightarrow aaA/B$

$$B \rightarrow bAb$$
 1 + 4

- c) Using Pumping Lemma show that $L = \{a^nb^n : n > 0\}$ is not regular.
- 10. a) Construct a *NFA* with ε or λ transition for

$$r = (11 + 0)*(00 + 1)*$$
 5

- b) What is PDA?
- c) Construct PDA for $L = \{ww^R : w \text{ belongs to } (0, 1)^* \}$ 5

11.

	1		~
PS	NS, Z Annua of Exemples and Confirm		
	I_1	I_2	I_3
A	C,O	E,1	
B	C,O	E,	
C	В,	C,O	A,
D	B,O	C,	<i>E</i> ,
E		E	A,

For the incompletely specified machine shown above find the minimum state reduced machine containing the original one.

PS	NS,Z	
	x = 0	x = 1
A	B, 1	Н, 1
В	F, 1	D, 1
C	D, 0	E, 1
D	C, 0	F, 1
E	D, 1	C, 1
F	C, 1	C, 1
G	C, 1	D, 1
Н	C, 0	A, 1

Using this table

a) Find the equivalence partition.

- b) Find the standard form of the corresponding reduced machine.
- c) What is the minimum length sequence that distinguishes state A from state B?