Aula 3 – Descrevendo Circuitos Lógicos

Prof. Dr. Emerson Carlos Pedrino

024376 – Circuitos Digitais

DC/UFSCar

www.dc.ufscar.br/~emerson

Funções Lógicas

- Relação entre um conjunto de variáveis (A, B, C, D...) que só podem assumir um de dois estados possíveis.
- Operações com valores binários
- Álgebra de Boole (Booleana)
- Diferente das operações aritméticas
- Não se operam com números, mas com estados
- ULA Unidade Lógica e Aritmética

Função E ("AND")

Portas Lógicas

- São circuitos digitais (circuitos eletrônicos) que efetuam uma função lógica (operação booleana)
- Possui uma ou mais tensões de entrada, mas somente uma tensão de saída.
- Os valores possíveis das tensões de entrada e da tensão de saída são somente dois:
 - Tensão de alimentação do circuito Vcc
 - Tensão nula ou terra (GND).

Porta E ("AND")

 Circuito digital que efetua a função lógica E (AND)

 Uma porta E tem dois ou mais sinais de entrada mas somente um sinal de saída;

• É chamada porta E porque o estado de saída somente é alto (1) quando todas as entradas são altas (1).

Função E ("AND")

Função OU ("OR")

Porta OU ("OR")

 Circuito digital que efetua a função lógica OU (OR)

- Uma porta OU tem dois ou mais sinais de entrada mas somente um sinal de saída;
- É chamada porta OU porque o estado de saída é alto (1) quando qualquer uma das entradas forem altas (1).

Função OU ("OR")

Função Inversora ou Não ("NOT")

Porta Inversora ou Inversor

 Um inversor é uma porta com somente uma entrada e uma saída

 É chamado inversor ou porta NOT porque o estado de saída é sempre o oposto ao de entrada

Função Não ("NOT")

Função Não E ("NAND")

Porta Não E ("NAND")

 Uma porta "NÃO E" é chamada assim porque é a combinação das portas "NÃO" e "E", ou seja, sua saída é dada por:

$$S = A \cdot B$$

 Como o circuito é uma porta "E" (AND) seguida de um inversor a única maneira de obter uma saída baixa é ter todas as entradas altas.

Porta Não E ("NAND")

Porta Não E ("NAND")

Porta NAND: Circuito lógico equivalente: Símbolo Equivalente

Função Não OU ("NOR")

Porta Não Ou ("NOR")

 Uma porta NOR é chamada assim porque é a combinação das portas "NÃO" e "OU", ou seja, sua saída é dada por:

$$S = A + B$$

 Como o circuito é uma porta OR seguida de um inversor a única maneira de obter uma saída alta é ter todas as entradas baixas.

Porta Não Ou ("NOR")

Porta Não Ou ("NOR")

Porta NOR: Circuito lógico equivalente:

Símbolo Equivalente

Diagramas de Tempo

• Formas de Onda – Porta AND:

Porta AND como porta Habilitadora

Formas de Onda – Porta OR

Formas de Onda – Porta NAND

Formas de Onda – Porta NOR

Circuito de uma porta NAND TTL – Transistor Bipolar

Circuitos Integrados – 7408 – 4 Portas AND

Circuitos Integrados – 7432 – 4 Portas OR

Exercícios*©

Exercícios*©

Monte o circuito digital que execute a operação lógica abaixo:

$$x = (A + B)(\overline{B} + C)$$

$$y = AC + \overline{B}C + \overline{A}BC$$

Exercícios*©

- Escrever a expressão de saída do circuito
- Montar a tabela verdade
- Desenhar a forma de onda da saída X

Referências

- Tocci, R. J. et al. Sistemas Digitais (princípios e aplicações), 10a Edição. Pearson, 2007.
- Vieira, M. A. C. SEL-0414-Sistemas Digitais, EESC-USP.