EMAIL: rafamathsinformatica@gmail.com

2. Teoría de números

En este capítulo se desglosan las principales definiciones y propiedades sobre los números naturales y enteros que se utilizan a lo largo de la asignatura.

Definición 2.1. Definimos informalmente un **número natural** como cualquier número utilizado para contar los elementos de un conjunto. Representamos el conjunto de los números naturales como

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Sobre este conjunto se definen las operaciones usuales de suma y producto representadas por los símbolos $+y\cdot$. Como consecuencia directa de las propiedades de la suma, tiene sentido definir el opuesto o negativo de un número natural. Definimos así un número entero como cualquier número que es natural o bien el opuesto respecto de la suma de un número natural. Representamos el conjunto de los números enteros como

$$\mathbb{Z} = \{\ldots -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Definimos también los conjuntos de números naturales o enteros mayores o iguales que un cierto número dado mediante las expresiones

$$\mathbb{N}_m = \{ n \in \mathbb{N} \mid n \ge m \} = \{ m, m+1, m+2, \ldots \}$$

y

$$\mathbb{Z}_m = \{ n \in \mathbb{Z} \mid n \ge m \} = \{ m, m+1, m+2, \ldots \}$$

Definición 2.2. Sean $a, b \in \mathbb{Z}$, decimos que b divide a a, b es divisor de a, a es dividido o es divisible por b, o bien, a es múltiplo de b, si existe $k \in \mathbb{Z}$ que cumple $a = b \cdot k$. Lo denotamos por

$$b|a \rightarrow a b$$

Si no existe $k \in \mathbb{Z}$ cumpliendo $a = b \cdot k$, decimos que b no divide a a y lo denotamos por

$$b \nmid a$$

$$d = mcd(a, b)$$

Decimos que $m \in \mathbb{N}\setminus\{0\}$ es el **mínimo común múltiplo** de a y b si a m y b|m (m es multiplo común de a y b) y si $n \in \mathbb{N}\setminus\{0\}$ cumple a|n y b|n entonces m|n (n es el mínimo de los divisores comunes de a y b respecto del orden de la divisibilidad). Lo denotamos por

$$m = mcm(a, b)$$

Teorema 2.4 (Teorema de Bezout). Sean $a, b \in \mathbb{Z}$ con $a \neq 0$ o $b \neq 0$ y sea d = mcd(a, b) entonces existen $m, n \in \mathbb{Z}$ tales que

$$d = a \cdot m + b \cdot n$$

A esta igualdad se la denomina identidad de Bezout.

Teorema 2.5 (Teorema de Euclides). Sean $a, b \in \mathbb{Z}$ y supongamos |a| > |b|, existen únicos $q, r \in \mathbb{Z}$ llamados cociente y resto respectivamente que cumplen la igualdad

$$a = b \cdot q + r$$

siendo $0 \le r < |b|$. Se cumplen además las siguientes propiedades:

1.
$$b|a \text{ si } y \text{ solo si } r = 0$$
2. $mcd(a,b) = mcd(b,r)$

Definición 2.6. Decimos que $p \in \mathbb{Z}$ es un **número primo** si $p \geq 2$ y sus únicos divisores son ± 1 y $\pm p$.

Teorema 2.7. Sea $p \in \mathbb{N}$ un número primo y sean $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ tales que $p|(a_1 \cdot a_2 \cdots a_n)$ entonces $p|a_i$ para algún $i \in \{1, 2, \ldots, n\}$.

Observación 2.8. En el teorema anterior es muy importante tener en cuenta la hipótesis de que p es un número primo ya que si no se cumple dicha hipótesis podría no cumplirse la consecuencia del teorema. Por ejemplo, $6|(4\cdot 3)$ pero $6 \nmid 4$ y $6 \nmid 3$

Teorema 2.9 (Teorema de factorización única). Sea $a \in \mathbb{N}$ con $a \geq 2$ entonces existen primos diferentes p_1, p_2, \ldots, p_n únicos salvo el orden y existen $k_1, k_2, \ldots, k_n \in \mathbb{N}$ con $k_i \geq 1$ tales que

$$a = p_1^{k_1} \cdot p_2^{k_2} \cdots p_n^{k_n}$$

Ejercicios

Ejercicio 2.1 (Parcial febrero 2011). Sean $a, b, c \in \mathbb{N}$ tales que a|(b+c) entonces:

- \square Si a|b entonces a|c
- $\square a|(b\cdot c)$
- $\square \ a|mcd(b,c)$

Ejercicio 2.2 (Parcial febrero 2014). Sean $a, b \in \mathbb{N}$ tales que mcd(a, 4) = mcd(b, 4) = 2. Indica la respuesta correcta:

- $\square \ mcd(a+b,4) = 2.$
- $\square \ mcd(a+b,4) = 4.$
- $\Boxmcd(a+b,4) = 1.$
- \square Ninguna de las anteriores.

MATEMÁTICA DISCRETA Y LÓGICA MATEMÁTICA I PROFESOR: RAFA GÓMEZ

EMAIL: rafamathsinformatica@gmail.com

Ejercicio 2.3 (Parcial febrero 2014). Sean $a, b \ y \ c$ tres números naturales tales que $a \ y \ b$ son primos $y \ a (b \cdot c)$. Indica la respuesta correcta:
\square Siempre se da que a c.
\square Si a y b son distintos, entonces a c.
\square Si c es primo entonces a c.
□ Ninguna de las anteriores.
Ejercicio 2.4 (Parcial febrero 2015). Sean $a,b,c,d\in\mathbb{N}$ tales que $a b\ y\ c d$. Considera los asertos:
1. Se cumple $(a + c) (b + d)$.
2. Se cumple $(a \cdot c) (b \cdot d)$
Determina el enunciado correcto:
□ El primer aserto siempre se cumple, pero el segundo algunas veces no se cumple.
☐ El segundo aserto siempre se cumple, pero el primero algunas veces no se cumple.
\square Existen situaciones en que ninguno de los dos se cumple.
\square Los dos asertos siempre se cumplen.
Ejercicio 2.5 (Final junio 2015). Sean $p \in \mathbb{N}_1$ y $j \in \{1, 2, \dots, p-1\}$, marca la respuesta correcta
\square Si p es primo entonc <mark>es p es d</mark> ivisor de $\binom{p}{j}$
\square p es siempre divisor de $\binom{p}{j}$
$\Box \ p \ nunca \ es \ divisor \ de \ {p \choose j}$
\square Si p es compu <mark>esto ent</mark> onces p es divisor de $\binom{p}{j}$
Ejercicio 2.6 (Final septiembre 2015). Si $a,b,c\in\mathbb{N}$ son tales que $a (b+c)$ entonces
\square Si a b entonces a c
$\square \ a (b\cdot c)$
$\square \ a med(b,c)$
\square Ninguna de las anteriores

Ejercicio 2.7 (Parcial febrero 2016). Dados $a,b,c\in\mathbb{Z}$ tales que $a c,b c$ y $mcd(a,b)=1$ entonces
$\Box (a \cdot b) c$
$\square (a \cdot b) c$ sólo si a y b son primos.
$\Box (a \cdot b) c \ s\'olo \ si \ a + b \ es \ primo.$
$\Box (a \cdot b) \nmid c$
Ejercicio 2.8 (Parcial febrero 2017). Sean $a, b \in \mathbb{Z}$ y sea p un número primo, si $p a$ y $p (a^2 + b^2)$ demuestra que $p b$.
Ejercicio 2.9 (Final junio 2017). Sean $a, b \in \mathbb{N}$ tales que $mcd(2, a) = mcd(2, b) = 1$, entonces siempre sucede que
$\square \ 2 (a+b)$
$\square \ 2 mid (a+b)$
$\square \ 2 (a+b+1)$
$\square \ 2 (a\cdot b)$
Ejercicio 2.10 (Parcial febrero 2018). Dadas las dos siguientes afirmaciones, donde $a \in \mathbb{Z}$: $1. \ 6 a^2 \Longrightarrow 6 a \qquad \qquad 2. \ 4 a^2 \Longrightarrow 4 a$
Determina el enunciado correcto:
\square Ambas son ciertas.
\Box Ambas son falsas.
□ Solamente es cier <mark>ta la primera</mark> .
□ Solamente es cierta la segunda.
Ejercicio 2.11 (Parcial febrero 2018). Sea p un número primo y sean $a, b \in \mathbb{Z}$ siendo $a, b \geq 2$. Demuestra que si $p a^2$ y $p b^3$, entonces $p (a+b)$.
Ejercicio 2.12 (Final junio 2018). Sean a,b,d números enteros mayores que 0 , si $mcd(a,b)=1$, indica la respuesta correcta:
\square Si d b entonces siempre $mcd(a,d) = 1$
\square Si d b entonces siempre $mcd(a,d)=d$
\square Si $d (a\cdot b)$ entonces siempre $mcd(a,d)=d$
\square Si d a entonces siempre $mcd(a,d) = 1$

MATEMÁTICA DISCRETA Y LÓGICA MATEMÁTICA I PROFESOR: RAFA GÓMEZ

EMAIL: rafamathsinformatica@gmail.com

Ejercicio 2.13 (Final septiembre 2018). Sean $a,b,c\in\mathbb{Z}$ tales que $a (b+c)$ entonces siempre:
\square Si a b entonces a c
$\Box \ a (b\cdot c)$
$\Box \ a mcd(b,c)$
$\Box \ a c \ y \ a b$
Ejercicio 2.14 (Parcial enero 2019). Si a y b son enteros positivos tales que $3a - 5b = 27$ entonces
\square el $mcd(a,b)$ no puede ser 27
\square el $mcd(a,b)$ no puede ser 13
\square el $mcd(a,b)$ puede ser 14
\square Ninguna de las afirmaciones anteriores es cierta
Ejercicio 2.15 (Parcial enero 2019). Sean $a,b,c\in\mathbb{N}_1$. Demuestra que
$c a \wedge c b \iff c mcd(a,b)$
(Idea: en uno de los sentidos conviene usar el teorema de Bezout)
Ejercicio 2.16 (Final junio 2019). Dado un número a
\square Para cualquier número natural positivo n se cumple $(a-1) (a^n-1)$
$\square (a-1) (a^n-1)$ sólo si n es primo
$\square (a+1) \nmid (a^2-1)$
$\square (a-1) (a^n-1) s\acute{o}lo si n = 2$