EE4204 Review Session

In a txt or word document, please write your answers and then submit the file to the Review-Session-1 folder in LumiNUS Files.

Layering and Cross-Layering

- OSI Reference model
- Reasons for using a layered design
 - Ease of maintenance, prevent tight coupling, scalability
- Encapsulation each layer add a header
- Cross-layer design
 - Introduce coupling between layers in a a structured manner

U

1

- What are the seven layers? What is the job of each layer (in your own words).
 - Physical: learn how to use the medium of communication, create a link
 - Link Layer: Create a reliable link (hop-by hop)
 - Network: Find a set of reliable links which form a path from source to destination, routing
 - Transport: Ensure end-to-end reliability
 - Application: User interface (source and sink)

Transport Layer

- The job of the transport layer is end-to-end reliability
- · Functions at the transport layer
 - Multiplexing and Demultiplexing
 - Sequence numbers
 - Retransmissions
 - Acknowledgments
 - Sliding Window
 - Fast Retransmit and Recovery
 - Flow Control
 - Congestion Control

L

2

Slow-start: A-B, C'-D, H'-I

Timeout: C, H

Fast-retransmit and Recovery: E, F, J

CWND at A, B, C, C', D, E: 1, 2^20, 2^20, 1, 2^19, 2^19+17 SSThresh at A, B, C, C', D, E: inf, inf, inf, 2^19, 2^19

Q3

Aggregate the following set of four /24 IP network addresses to the highest degree

possible.

212.56.132.0/24

212.56.133.0/24

212.56.134.0/24

212.56.135.0/24

212.56.132.0/24
11010100.00111000.100001
212.56.133.0/24
11010100.00111000.100001
212.56.134.0/24
11010100.00111000.100001
212.56.135.0/24
11010100.00111000.100001
Common Prefix:
11010100.00111000.100001
The CIDR aggregation is:
212.56.132.0/22

Network Layer

- The job of the network layer is routing, which is finding a set of reliable links connecting source and destination.
- Functions at the network layer
 - Fragmentation and Reassembly
 - Routing
 - Forwarding
 - IPv4 and IPv6
 - ICMP
 - NAT
 - Routing Link State and Distance Vector (Path Vector)
 - Broadcast and Multicast routing

A

 $\frac{1}{2} = 04$ $\frac{1}{2} = 04$ $\frac{1}{2} = 04$

Shortest Paths from A	Link State	Distance Vector	If Link B-E breaks?
A-B A-C A-C-D A-B-E	In-order A-C A-C-B OR <mark>A-B</mark> (flip coin) A-C-D A-B-E	Same solution as link state.	Link-state There will be no link to E. In the network topology learning phase, every node will learn this.
			Distance Vector Count to infinity Look at B B will rely on its neighbor, say A, to get to E. But A relies on B to get to E. That is the routing loop.

6