الجمهورية الجزائرية الديمقراطية الشعبية

- وزارة التربية الوطنية -

سلسلة سبسل التألسق مراكم الدياضيات مراكم الدياضيات مراكم الدياضيات مراكم الدياضيات مراكم المراكم الدياضيات مراكم الدياضيات الدياضيات

ملخص حول الهندسة التحليلية في الفضاء

4

أعدهذا الملخص وفق أهداف ومضمون وهيكلت النظام الجديد

قيل لنابليون كيف استطعت ان تولد الثقة في جيشك ؟

فأحاب: كنت ارد على ثلاث بثلاث

من قال: لا اقدر قلت له: حاول ومن قال: لا اعلم قلت له: تعلم ومن قال مستحيل قلت له: جرب

إعداد الأستاذ: محمد حاقت

دليل الهندسة الفضائية التحليلية

 $\left(o\,; \vec{i}\,; \vec{j}\,; \vec{k}\,
ight)$ في كل ما يلي المستوي منسوب إلى معلم متعامد ومتجانس

أولا - مفاهيم أولية - [

 $\vec{v}egin{pmatrix}lpha'\eta'\\gamma'\end{pmatrix}$ و $\vec{u}egin{pmatrix}lpha\eta\end{pmatrix}$: نعتبر النقطتين $\vec{u}egin{pmatrix}lpha\eta\end{pmatrix}$ والشعاعان $\vec{u}egin{pmatrix}lpha\eta\end{pmatrix}$

 $\overrightarrow{AB}egin{pmatrix} x_B^{}-x_A^{} \ y_B^{}-y_A^{} \ z_B^{}-z_A^{} \end{pmatrix}:$ هي \overrightarrow{AB} هي (1

 $AB = \|\overrightarrow{AB}\| = \sqrt{\left(x_B - x_A^2\right)^2 + \left(y_B - y_A^2\right)^2 + \left(z_B - z_A^2\right)^2}$ الطول (المسافة) بين النقطتين $AB = \|\overrightarrow{AB}\| = \sqrt{\left(x_B - x_A^2\right)^2 + \left(y_B - y_A^2\right)^2 + \left(z_B - z_A^2\right)^2}$

$$\left(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2},\frac{z_A+z_B}{2}\right)$$
: هي $[AB]$ هي العطعة المستقيمة $[AB]$

 $\overrightarrow{u} \cdot \overrightarrow{v} = \alpha \times \alpha' + \beta \times \beta' + \gamma \times \gamma'$: هو \overrightarrow{v} هو \overrightarrow{v} الجداء السلمي لشعاعان \overrightarrow{u} و \overrightarrow{v}

$$\vec{u} \perp \vec{v} \Rightarrow \vec{u} \cdot \vec{v} = lpha imes lpha' + eta imes eta' + \gamma imes \gamma' = 0 :$$
تعامد الشعاعان \vec{u} و \vec{v} يعني \vec{v} يعني (5

 $(\vec{u}=t\ \vec{v}:\vec{v}:\vec{v}$ يعني \vec{v} و \vec{v} مرتبطين خطياً (أي إثبات وجود عدد حقيقي \vec{v} يحقق (6

محقق
$$\left[\ rac{lpha}{lpha'} = rac{eta}{eta'} = rac{\gamma}{\gamma'} = t \in \mathbb{R} \
ight]$$
: محقق ان نثبت أن التناسب التالي

 $\vec{v} \neq \vec{0}$ و $\vec{u} \neq \vec{0}$: حیث : حیث (\cos) جیب تمام (

$$\cos\left(\vec{u}; \vec{v}\right) = \frac{\vec{u} \cdot \vec{v}}{\left\|\vec{u}\right\| \times \left\|\vec{v}\right\|} = \frac{\alpha \times \alpha' + \beta \times \beta' + \gamma \times \gamma'}{\sqrt{\alpha^2 + \beta^2 + \gamma^2} \times \sqrt{\alpha'^2 + \beta'^2 + \gamma'^2}}$$

الأستـــاذ: محمد حــاقة

ثانيا - الستقيم في الفضاء-

1°) التمثيل الوسيطى لمستقيم (يشمل نقطة ويوازي شعاع)

$$\vec{u}egin{pmatrix} lpha \ eta \ \gamma \end{pmatrix}$$
 ويوازي الشعاع $A\Big(x_A^{},y_A^{},z_A^{}\Big)$ الذي يشمل النقطة المستقيم (Δ) ويوازي الشعاع المستقيم المستقيم

 $(\ \mathbb{R}$ من $T: \overrightarrow{AM} = t \ \overrightarrow{u}: \overrightarrow{u}: \overrightarrow{AM} \parallel \overrightarrow{u}:$ لتكن: $M(x,y,z) \in (\Delta)$ التكن: لتكن

 $[\ (\Delta)$ ومنه \vec{u}] (Δ) : $\begin{cases} x=lpha\ t+x_A \ y=eta\ t+y_A \ z=\gamma\ t+z_A \end{cases}$ الله تمثیل وسیطي من الشکل (Δ) : (Δ)

2°) التمثيل الوسيطي لمستقيم (يشمل نقطتين)

 $B\left(x_B,y_B,z_B
ight)$ و $A\left(x_A,y_A,z_A
ight)$ الذي يشمل النقطتين $A\left(x_A,y_A,z_A
ight)$ يعني $A\left(x_A,y_A,z_A
ight)$ أي $A\overrightarrow{B}: \overrightarrow{AM}=t$ من $A\overrightarrow{B}: \overrightarrow{AM}: \overrightarrow{AB}: \overrightarrow{AB}$

[(AB) ومنه AB هو شعاع توجيه للمستقيم $x=(x_B-x_A)t+x_A$ ومنه $y=(y_B-y_A)t+y_A$: ومنه $z=(z_B-z_A)t+z_A$

3°) مستقیمات خاصت

$$\begin{cases} y=0 \\ z=0 \end{cases}$$
 : يعرف بالجملة $(o;\vec{i})$ يعرف بالجملة $(o;\vec{i})$

$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
: alaphi system $(o; \vec{j})$ system in the first example $(o; \vec{j})$

$$\begin{cases} x=0 \\ y=0 \end{cases}$$
: يعرف بالجملة $\left(o;\vec{k}\right)$ يعرف بالجملة \Leftrightarrow

4°) المسقط العمودي لنقطة على مستقيم

 (Δ) المستقيم H(x,y,z) على المستقيم H(x,y,z)

الأستــاذ: محمد حـاقة

ملخص الهندسة الفضائية التحليلية

H الذي تمثيله الوسيطي (Δ) : $\begin{cases} x=\alpha\ t+x_0 \\ y=\beta\ t+y_0 \end{cases} ; (t\in\mathbb{R}) ,$ الذي تمثيله الوسيطي $z=\gamma\ t+z_0$

: عن طریق t نبحث عن طریق \star

$$\overrightarrow{AH} \perp \overrightarrow{u} \Rightarrow \overrightarrow{AH} \cdot \overrightarrow{u} = 0 \Rightarrow \begin{pmatrix} x - x_A \\ y - y_A \\ z - z_A \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} \alpha t + x_0 - x_A \\ \beta t + y_0 - y_A \\ \gamma t + z_0 - z_A \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = 0$$

Hنعوض عن t في إحداثيات التمثيل الوسيطى للمستقيم (Δ) ، فنجد إحداثيات المسقط العمودي \star

5°) بعد نقطة عن مستقيم

لحساب بُعد نقطة A عن المستقيم (Δ) ، نعيّن مسقطها العمودي Hعلى هذا المستقيم ويكون بُعد النقطة عن المستقيم (Δ) هو الطول (Δ) هو الطول (Δ)

$$d\left(A;\left(\Delta\right)\right) = AH = \left\|\overrightarrow{AH}\right\| = \sqrt{\left(x_{H} - x_{A}\right)^{2} + \left(y_{H} - y_{A}\right)^{2} + \left(z_{H} - z_{A}\right)^{2}}$$

6°) تعامد مستقيمين في الفضاء

يتعامد مستقيمان في الفضاء اذا تعامد شعاعا توجيههما بمعنى:

$$\vec{u}_{(\Delta')}egin{pmatrix} lpha' \ eta' \ \gamma' \end{pmatrix}$$
 و $\vec{u}_{(\Delta)}egin{pmatrix} lpha' \ eta \end{pmatrix}$: بناترتیب الترتیب $\vec{u}_{(\Delta')}$ مستقیمین شعاعی توجیههما علی الترتیب $\vec{u}_{(\Delta')}$ و $\vec{u}_{(\Delta')}$ مستقیمین شعاعی توجیههما علی الترتیب $\vec{u}_{(\Delta')}$

$$(\Delta) \perp (\Delta') \Rightarrow \overrightarrow{U}_{(\Delta)} \cdot \overrightarrow{U}_{(\Delta')} = 0 \Rightarrow \alpha \times \alpha' + \beta \times \beta' + \gamma \times \gamma' = 0$$
 فلدينا:

°7) الوضعية النسبية لمستقيمين في الفضاء

 $u_{(\Delta')}$ و $u_{(\Delta)}$: ستقيمين شعاعي توجيههما على الترتيب (Δ') و Δ

وزيان (Δ') و (Δ') و فان : المستقيمان (Δ') و مرتبطان خطياً فان : المستقيمان (Δ') و $u_{(\Delta')} \parallel u_{(\Delta)}$

(متوازيا تماما أومنطبقان)

• توضيح: نعين نقطة A من المستقيم (Δ) (أو من (Δ)

أ/ إذا كانت A تنتمى كذلك إلى المستقيم (Δ') فان (Δ') و (Δ') منطبقان

ب/ إذا كانت A لا تنتمي إلى المستقيم (Δ') فان (Δ') و (Δ') متوازيا تماما (Δ')

إذا كان (Δ') و (Δ') غير مرتبطان خطياً) فان : المستقيمان (Δ') و (Δ') غير متوازيان (Δ') في نقطت أو من مستويين مختلفين :" ليسا من نفس المستوي ")

ثالثا الستوي في الفضاء

1°) المعادلة الديكارتية لمستو

ax + by + cz + d = 0: كل مستو في الفضاء له معادلة ديكارتية من الشكل

(عمودياً عليه) هو الشعاع الناظمي له $n = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ هو الشعاع الناظمي له c = b هو عليه) حيث a : b

2°) تعيين معادلة ديكارتية استو معين بثلاث نقط (يشمل ثلاث نقط)

أ/ لإثبات أن النقط: A و B ، A و أمستو:

- يعني النقط A:B و C ليست في إستقامية lacktriangleright
- پیعنی الشعاعان: \overrightarrow{AC} و \overrightarrow{AC} غیر مرتبطین خطیاً (غیر متوازیین) \clubsuit

: (ABC)ب/ لإيجاد معادلة ديكارتية للمستوي

$$\begin{cases} \overrightarrow{n} \perp \overrightarrow{AB} \\ \overrightarrow{n} \perp \overrightarrow{AC} \end{cases} \Rightarrow \begin{cases} \overrightarrow{n} \cdot \overrightarrow{AB} = 0 \\ \overrightarrow{n} \cdot \overrightarrow{AC} = 0 \end{cases}$$
 نبحث عن شعاعاً ناظمياً $\overrightarrow{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ له وذلك بحل الجملة التالية

ثم نطبق التعریف التحلیلی للجداء السلمی فنجد عادة جملة ثلاث مجاهیل بمعادلتین فقط ممّا پجعلنا مثلا a: a ونجت عن n_a ونجد الشعاع الناظمی العام n_a ونختار قیمة مبسطة n_a وعلیه نجد الشعاع الناظمی الخاص n_a

- B أو A أعداد معلومة يبقى d مجهول فعلينا أن نعوض إحداثيات احد النقط: A أو A بعد إيجاد A أعداد معلومة يبقى A فنجد قيمة A فنجد قيمة A فنجد قيمة A فنجد قيمة A أو A

ax + by + cz + d = 0: و B، A و B، و A أحداثيات كل من النقط الثلاث

ملخص الهندسة الفضائية التحليلية

$$\left\{ egin{aligned} A \in \left(ABC\right) \ B \in \left(ABC\right) \end{aligned}
ight.$$
بمعنی : $C \in \left(ABC\right)$

الأستـــاذ: محمد حــاقة

3°) مستويات خاصم:

$$\left(o;\vec{j};\vec{k}\;
ight)$$
 هي معادلة ديكارتية للمستوي $x=0$

$$\left(o;\vec{i};\vec{k}\;
ight)$$
 هي معادلة ديكارتية للمستوي $y=0$

$$\left(o;\vec{i};\vec{j}
ight)$$
 هي معادلة ديكارتية للمستوي $z=0$

4°) بعد نقطۃ عن مستو

بعد النقطة (P): ax+by+cz+d=0 عن المستوي : $A\left(x_{A},y_{A},z_{A}\right)$ تعطى بالقانون التالي:

$$d(A;(P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

5°) التمثيل الوسيطي لمستومعين بثلاث نقط (يشمل ثلاث نقط):

AC و AC غير مرتبطين خطياً AC التمثيل الوسيطي للمستوي AC حيث: AC و AC غير مرتبطين خطياً AC (ABC يعنى AC عنى AC عنى

$$egin{cases} x = ig(x_B - x_Aig)t + ig(x_C - x_Aig)t' + x_A \ y = ig(y_B - y_Aig)t + ig(y_C - y_Aig)t' + y_A \ z = ig(z_B - z_Aig)t + ig(z_C - z_Aig)t' + z_A \end{cases}$$
 : يعني

6°) تعامد مستویین

يتعامد مستويان في الفضاء اذا تعامد شعاعهما الناظميّان:

$$\vec{n}_{(P_1)} \perp \vec{n}_{(P_2)}$$
: يعني $(P_1) \perp (P_2) \perp (P_2)$ فلدينا $\{(P_1) : ax + by + cz + d = 0 \ (P_2) : a'x + b'y + c'z + d' = 0 \}$ إذا كان $\vec{n}_{(P_1)} \cdot \vec{n}_{(P_2)} = a \times a' + b \times b' + c \times c' = 0$

°7) المسقط العمودي لنقطة على مستوي

نتكن النقطة H(x,y,z) النقطة H(x,y,z)

الأستـــاذ : محمد حــاقة

ملخص الهندسة الفضائية التحليلية

" $\overrightarrow{AH}=t.$ $\overrightarrow{n}_{(P)}$ يعنى $\overrightarrow{AH}\parallel\overrightarrow{n}_{(P)}$ ": أي

ب/ نعوض إحداثيات التمثيل الوسيطي للمستقيم (AH) في معادلة المستوي (P) فنجد قيمة t ونعوض عن t فنجد إحداثيات المسقط العمودي t

8°) الوضعية النسبية لمستويين في الفضاء

 $\begin{cases} (P_1)\colon ax + by + cz + d = 0 \\ (P_2)\colon a'x + b'y + c'z + d' = 0 \end{cases}$ نعتبر المستویین $(P_1)\colon a'x + b'y + c'z + d' = 0$

(منطبقان) متوازیان بالتطابق (
$$P_2$$
) و (P_1) و المستویین (P_2) فان $a = \frac{b}{a'} = \frac{c}{b'} = \frac{d}{d'}$: اذا کان : المستویین (P_2) و المستویین (P_2) عنان : المستوین (P_2) عنان : المستوین (P_2) عنان : المستوین (P_2) عنان : المستو

(منفصلان) متوازیان تماماً (
$$P_2$$
) و P_3 و نام : المستویین المستویین (P_1) فان : المستویین $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} \neq \frac{d}{d'}$: المستویین باذا کان :

إذا كان التناسب التالي
$$(P_2)$$
 غير متوازيان غير محقق فان (P_1) و وازيان (P_2) غير متوازيان خير متوازيان (P_2)

(متقاطعان)

- ملحوظة
- $(P_1) \cap (P_2) = (\Delta)$: للبحث عن المستقيم (Δ) ناتج تقاطع المستويين (P_1) و (P_2) أي : للبحث عن المستقيم (Δ) ناتج تقاطع المستقيم (Δ) فنجد التمثيل الوسيطي للمستقيم (Δ) نضع في الحالة العامة (Δ) ونبحث عن (Δ) ونبحث عن

$$(\Delta)$$
: $\begin{cases} x = lpha t + x_0 \ y = eta t + y_0 \ z = t \end{cases}$; $(t \in \mathbb{R})$: من الشكل

المسألة العكسية: عندما يكون لدينا التمثيل الوسيطي للمستقيم (Δ)، لكي نبين أن (Δ) هو مستقيم المستقيم المستقيم عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما يكون الدينا التمثيل الوسيطي المستقيم (Δ) عندما المستقيم (Δ

تقاطع المستويين
$$P_1$$
 و P_2 ، يكفي أن نتحقق P_2 : يكفي أن نتحقق و يكفي أن نتحق و يكفي أن

 (P_2) و (P_1) للمستقيم للمستويين (Δ) عادلة كلأ من المستويين

°9) كيفية تعيين تقاطع ثلاث مستويات

♦ الحالة (1): اذا كان مستويان منهم متوازيان تماما فان تقاطع المستويات الثلاثة خال

$$(P_{_{1}}) \cap (P_{_{2}}) \cap (P_{_{3}}) = \left\{ \varnothing \right\}$$
 : بمعنی

الأستـــاذ: محمد حــاقة

ملخص الهندسة الفضائية التحليلية

♦ الحالة (2): اذا كان مستويين منهم غير متوازيين (متقاطعين) نعين مستقيم تقاطعهما (△)
 فيصبح تقاطع المستويات الثلاثة عبارة عن تقاطع مستقيم مع مستوي

$$(P_1) \cap (P_2) \cap (P_3) = (\Delta) \cap (P_3)$$
 مثلا : مثلا

10°) تعامد مستقيم ومستوى في الفضاء

يتعامد مستقيم ومستوي في الفضاء اذا توازى شعاع توجيه هذا المستقيم مع الشعاع الناظمي لهذا المستوي

$$(P)$$
 بمعنى إذا كان : $\vec{u}_{(\Delta)}$ شعاع توجيه المستقيم (Δ) و Δ و Δ شعاع ناظمي المستوي Δ بمعنى إذا كان Δ شعاع توجيه المستقيم Δ

$$(\Delta) \perp (P) \Rightarrow u_{(\Delta)} \parallel n_{(P)} \Rightarrow \frac{a}{\alpha} = \frac{b}{\beta} = \frac{c}{\gamma}$$
 : فان

11°) الوضع النسبي لمستقيم ومستوي في الفضاء

" مرسوم في هذا المستوي (Δ) " (Δ) = (Δ) " (Δ) عوني (Δ) Δ يعني (Δ) مرسوم في هذا المستوي

(منفصلان (
$$\Delta$$
) متوازیان تماماً (منفصلان (Δ) و (Δ) متوازیان تماماً (منفصلان (Δ) بعني (Δ) (Δ) و (Δ) متوازیان تماماً

$$(\Delta) \cap (P) = \{F\} \quad \diamondsuit$$

لإيجاد إحداثيات F نقطة تقاطع (A) و (A) ، نعوض إحداثيات التمثيل الوسيطي للمستقيم (A) في معادلة المستوي (P) فنجد قيمة (P) و نعوض عن (P) في التمثيل الوسيطي فنجد إحداثيات (P)

رابعاً "سطح الكرة في الفضاء"

معادلة سطح الكرة: معادلة سطح الكرة (S) ذات المركز $(x_\omega, y_\omega, z_\omega)$ ونصف قطرها (S) تعطى (S)

$$(x-x_{_{\varpi}})^2+(y-y_{_{\varpi}})^2+(z-z_{_{\varpi}})^2=R^2$$
 بالقانون

المسألة العكسية: M(x,y,z) من الفضاء التي تحقق M(x,y,z) من الفضاء التي تحقق

$$x^{2} + y^{2} + z^{2} + ax + by + cz + d = 0$$

: يمكن الآتيتين الآتيتين الآتيتين يمكن أن نستعمل إحدى الطريقتين الآتيتين

$$K = \frac{a^2 + b^2 + c^2 - 4d}{4}$$
: نحسب (K فريقة الأولى: (K طريقة حساب العدد) نحسب (K

نميز ثلاث حالات

الأستـــاذ : محمد حــاقة

ملخص الهندسة الفضائية التحليلية

- $(E) = \emptyset$: فان K < 0
- $(E) = \left\{\omega\left(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right)\right\}$: فان K = 0 فان
 - : حيث (S) عيث (E) فان (E) عيث •

$$(E) = (S) = \left\{ \; \omega(x_{_{\scriptscriptstyle \omega}}\,,y_{_{\scriptscriptstyle \omega}}\,,z_{_{\scriptscriptstyle \omega}}) \;\; ; \;\; R = \sqrt{K} \;\; \right\}$$

♦ الطريقة الثانية: (طريقة استعمال قاعدة إكمال التربيع)

$$\begin{cases} x^2 + ax = \left(x + \frac{a}{2}\right)^2 - \left(\frac{a}{2}\right)^2 \\ y^2 + by = \left(y + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 \end{cases}$$
 : نستخدم فيها $z^2 + cz = \left(z + \frac{c}{2}\right)^2 + \left(\frac{c}{2}\right)^2$

• نصيحة: إذا اشتملت المعادلة المعطاة لمجموعة النقط (E) على وسيط يفضل استخدام طريقة حساب العدد K أمّا إذا لم تشتمل المعادلة على وسيط فنفضل استخدام طريقة قاعدة إكمال التربيع

3°) كيفية تعيين معادلة مستويمس سطح كرة في نقطة معلومة

لإيجاد معادلة المستوي (P) الذي يمس سطح الكرة(S) في النقطة A نستعمل إحدى الطريقتين

d ثم نعوض احداثیات النقطة A فی معادلة المستوي ، فنجد الثابت

4°) كيفية تعيين معادلة سطح كرة التي تمس مستو معلوم

ax+by+cz+d=0: مستوِ معادلته $\omega(x_{\omega},y_{\omega},z_{\omega})$ معطی ، و $\omega(x_{\omega},y_{\omega},z_{\omega})$

الأستـــاذ : محمد حــاقة

ملخص الهندسة الفضائية التحليلية

$$\begin{cases} (S): (x-x_{\omega})^2 + (y-y_{\omega})^2 + (z-z_{\omega})^2 = R^2 = R^2 \\ R = d\left(\omega; (P)\right) = \frac{\left|ax_{\omega} + by_{\omega} + cz_{\omega} + d\right|}{\sqrt{a^2 + b^2 + c^2}} \end{cases}$$

5°) الوضعية النسبية لسطح كرة مع مستوفي الفضاء (مع ذكر العناصر المميزة)

: مستوِ معادلته ، $\alpha(x_{\omega}\,,y_{\omega}\,,z_{\omega})$ ، ونصف قطرها $\alpha(x_{\omega}\,,y_{\omega}\,,z_{\omega})$ ، مستوِ معادلته (S)

نضع: $d = d(\omega, (P))$: نضع ax + by + cz + d = 0

 $d\left(\omega,\left(P\right)\right) \prec R$: اذا كان $\left(S\right) \cap \left(P\right) = C\left(H;r\right)$ فان $\left(P\right) \cap \left(P\right)$ يقطع سطح المستوي $\left(S\right)$ يقطع سطح الكرة $\left(S\right)$ وفق دائرة $\left(S\right)$ مركزها H ونصف قطرها H مركزها H المسقط العمودي حيث H المسقط العمودي $\left(P\right)$ على المستوي $\left(P\right)$ و $T = \sqrt{R^2 - d^2}$

 $d\left(\omega,\left(P\right)\right)=R$: اذا كان $\left(S\right)\cap\left(P\right)=\left\{H\right\}$: فان $\left(S\right)\cap\left(P\right)=\left\{H\right\}$ المستوي $\left(S\right)$ في النقطة H، المسقط العمودي حيث H المسقط العمودي لنقطة ω على المستوي $\left(P\right)$

اذا کان : $d\left(\omega,\left(P
ight)
ight) \succ R$:نان : $\left(S
ight)\cap\left(P
ight)=igotimes$

ملخص الهندسة الفضائية التحليلية الأستــــاذ : محمد حــاقة

6°) الوضعية النسبية لسطح كرة مع مستقيم في الفضاء

$$(x-x_{_{\varpi}})^2+(y-y_{_{\varpi}})^2+(z-z_{_{\varpi}})^2=R^2$$
:سطح کرة مرکزها معادلتها ($S)$

$$(d)$$
:
$$\begin{cases} x = \alpha \ t + x_0 \\ y = \beta \ t + y_0 \ ; \ (t \in \mathbb{R}) \end{cases}$$
 و (d) :
$$\begin{cases} x = \alpha \ t + x_0 \\ z = \gamma \ t + z_0 \end{cases}$$

لدراسة الوضعية النسبية لسطح كرة (S) مع المستقيم (d) في الفضاء ، نعوض y ، y و z من التمثيل

الوسيطي للمستقيم (d) في معادلة (S)، فنحصل على معادلة من الدرجة الثانية مجهولها الوسيط

 $\Delta > 0 \Rightarrow (S) \cap (d) = \{H; H'\}$ نقطتي تقاطع H' و Hحيث (S)نجد إحداثياتهما بتعويض كل (d) مع في التمثيل الوسيطي $t_{_{\scriptscriptstyle 9}}$ و من قيمة للمستقيم(d)

$$\Delta=0\Rightarrow \left(S\right)\cap \left(d\right)=\left\{H\right\}$$

$$\Delta<0\Rightarrow \left(S\right)\cap \left(d\right)=\cancel{\emptyset}$$

$$\Delta<0\Rightarrow \left(S\right)\cap \left(d\right)=\cancel{\emptyset}$$

$$(S)$$

$$(G)$$

$$\Delta<0\Rightarrow \left(S\right)\cap \left(d\right)=\cancel{0}$$

ملخص الهندسة الفضائية التحليلية الأستــــاذ : محمد حــاقة

7°) حجم رباعي الوجوه

 $V=rac{S_{ABC} imes h}{3}$:يحسب الحجم V لرباعي الوجوه بالقانون التالي $V=rac{S_{ABC} imes h}{3}$ و V=1 مساحة القاعدة (المثلث V=1) و V=1 مساحة القاعدة (المثلث V=1

8°) مساحة مثلث

 $S_{ABC} = rac{AB imes AC}{2}$ اً المثلث ABC قائم في A مثلاً فان ABC

ب/ إذا كان المثلث كيفي (أو نجهل طبيعته) وكان لدينا قيس أحد

$$S_{ABC}=rac{a.b.\sin A}{2}=rac{b.\,\mathrm{c.}\sin B}{2}=rac{a.\,\mathrm{c.}\sin C}{2}$$
 زوایاه فان:

خامسًا المرجع في الفضاء

■ ملاحظة: في حالة مرّجح أكثر من ثلاث نقط تعمم النتائج بأكملها بنفس الكيفية التي عُرِف بها مرّجح ثلاث نقط

العلاقة $(A,\alpha),(B,\beta),(C,\gamma)$ عطى بالعلاقة G مرجح الجملة المثقلة: ومرجح الجملة المثقلة المؤلفة ومرجح الجملة المثقلة ومرجح العملة ومرجع العملة ومرجح العملة ومرج العملة ومرجح العملة ومر

$$G\!\left(\!\frac{\alpha x_{\!\scriptscriptstyle A} + \beta x_{\!\scriptscriptstyle B} + \gamma x_{\!\scriptscriptstyle C}}{\alpha + \beta + \gamma},\!\frac{\alpha y_{\!\scriptscriptstyle A} + \beta y_{\!\scriptscriptstyle B} + \gamma y_{\!\scriptscriptstyle C}}{\alpha + \beta + \gamma},\!\frac{\alpha z_{\!\scriptscriptstyle A} + \beta z_{\!\scriptscriptstyle B} + \gamma z_{\!\scriptscriptstyle C}}{\alpha + \beta + \gamma}\right)$$

 $\alpha \overrightarrow{AM} + \beta \overrightarrow{BM} + \gamma \overrightarrow{CM}$:<u>ڪيفيۃ تحويل العلاقۃ الشعاعيۃ من الشكل</u> (°2)

 $\alpha + \beta + \gamma \neq 0$ علمًا أن:

ملخص الهندسة الفضائية التحليلية الأستـــــاذ : محمد حـــاقة

: بإدخال نقطة المرّجح G نجد

$$\alpha \overrightarrow{AM} + \beta \overrightarrow{BM} + \gamma \overrightarrow{CM} = (\alpha + \beta + \gamma) \overrightarrow{MG}$$

- التعميم: المرجح M × (مجموع المعاملات)
- علا و کان C و B ، A فلا یوجد مرّجح للنقط $\alpha+\beta+\gamma=0$ و یکون الشعاع: ملاحظت:

النقط المعلومة $\alpha \overrightarrow{AM} + \beta \overrightarrow{BM} + \gamma \overrightarrow{CM}$ ويتم تحويل العبارة بإدخال إحدى النقط المعلومة واستعمال علاقة شال Chasles

 $lpha MA^2 + eta MB^2 + \gamma MC^2$ كيفية تحويل العلاقة العددية من الشكل 2 (°3)

بإدخال نقطة المرّجح G نجد

$$\alpha MA^2 + \beta MB^2 + \gamma MC^2 = (\alpha + \beta + \gamma)MG^2 + \alpha GA^2 + \beta GB^2 + \gamma GC^2$$

- التعميم: اجعل مكان M نقطة المرّجح + 2 [المرّجح 2 المرّجح المعاملات)
 - 4°) لاحقة النقطة H مركز ثقل المثلث ABC تعطى بالعلاقة:

$$H\!\left(\!\frac{x_{\!\scriptscriptstyle A} + x_{\!\scriptscriptstyle B} + x_{\!\scriptscriptstyle C}}{3},\!\frac{y_{\!\scriptscriptstyle A} + y_{\!\scriptscriptstyle B} + y_{\!\scriptscriptstyle C}}{3},\!\frac{z_{\!\scriptscriptstyle A} + z_{\!\scriptscriptstyle B} + z_{\!\scriptscriptstyle C}}{3}\right)$$

__Đ

سادسًا -مجموعة النقط M من الفضاء -

طبيعة $(E$ نوع E مجموعة النقط الفضاء	شكل المعادلة المحصل عليها من مجموعة
	النقط M من الفضاء
ونصف قطرها G ونصف قطرها E	MG = K > 0 (°1
R = K	
ω مركزها GH مركزها E	$\overrightarrow{MG} \bullet \overrightarrow{MH} = 0$ (°2
منتصف القطعة المستقيمة $\left[GH ight]$ ونصف قطرها	
$R = \frac{GH}{2}$	
المتوي الذي يشمل النقطة G و \overrightarrow{AB} شعاع E	$\overrightarrow{MG} \bullet \overrightarrow{AB} = 0$ (°3
ناظميله (عمودي عليه)	
E : المستوي المحوري على منتصف القطعة	MG = MH (°4
المستقيمة [GH]	