KP N1

Опреденить для оринадра, заданного матрищей смеж-

б) матрину синьной связности;

в) конпоненно синьной связности;

г) матрину контуров.

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad V_{2} \qquad V_{4}$$

Demenue d'Hangen nampuny ognocmanonnen chaznocmu no gropmyne: T = EVAVA²VA³.

$$\frac{A}{A} = A \cdot A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$2)A^{3}=A^{2}\cdot A=\begin{pmatrix}0&0&0&1\\1&0&1&1\\1&0&0&0\\0&0&1&0\end{pmatrix}\begin{pmatrix}0&0&1&0\\1&0&1&1\\0&0&0&1\end{pmatrix}=\begin{pmatrix}1&0&0&0\\1&0&1&1\\0&0&0&1\end{pmatrix}$$

3)
$$T = EVAVA^2VA^3 =$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Найдён намину односторонней связности по итерационному аморитму уоринамия.

$$T^{(0)} = EVA = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} V \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} i$$

$$k = 1, \quad k - 1 = 0$$

$$T^{(1)} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$T^{(2)} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$T^{(3)} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$T(4) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = T;$$

б) Матрица синьной связности

$$\bar{S} = T \otimes T^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}.$$

- в) Ноходин веринит компонент синьной связности и соми компоненты.
- 1. Вогащает первую стурку как ненулевую в матрище синьной связности Нотера верини первой компоненты синьной связности соответствуют номерам столбуов местрицы 5 в которых в первой строке стаят единицы: 5 м. 12. 14 г. Восстанавшиваем дут между

Костиков Е.С M80-107Б-22 Ваниант 14

KP N1

Продолжение. Вершинами V1, V3, V4 и получаем первую компоненту Синьной связности:

Обпункци первый, второй и гетвериный станбец матрицы S. Полугаем матрицу

2. Ищем ненулевую строку матрицът S_1 : это вторая строка. Единица одна-во второне столебизе =) вторая компонента сильной связности: $\{V_2\}$.

Облушени второй столеви метрицог 5, получаем муневую момунизу -> друшя компонени стиной связности нет.

2) Manyuna ronnypol: K=58A.

$$K = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

resican kakony-mão konnypy ucxognow maga.