

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 1/29

SUMMER – 2013 EXAMINATION MODEL ANSWER

Subject: APPLIED MATHEMATICS

Subject Code: 12062

Important Instructions to examiners:

• The model answer shall be the complete solution for each and every question on the question paper.

• Numericals shall be completely solved in a step by step manner along with step marking.

• All alternative solutions shall be offered by the expert along with self-explanatory comments from the expert.

• In case of theoretical answers, the expert has to write the most acceptable answer and offer comments regarding marking scheme to the assessors.

• In should offer the most convincing figures / sketches / circuit diagrams / block diagrams / flow diagrams and offer comments for step marking to the assessors.

• In case of any missing data, the expert shall offer possible assumptions / options and the ensuing solutions along with comments to the assessors for effective assessment.

 In case of questions which are out of the scope of curricular requirement, the expert examiner shall solve the question and mention the marking scheme in the model answer. However, the experts are requested to submit their clear cut opinion about the scope of such question in the paper separately to the coordinator.

• Experts shall cross check the DTP of the final draft of the model answer prepared by them.

Subject Code: (12062) **Page No:** 2/29 Summer 2013

Que.	Sub.	3.6.1.1	3.7.1	Total
No.	Que.	Model answers	Marks	Marks
1)		Attempt any ten of the following:		20
	(a)	Evaluate $\int \frac{1}{4-9x^2} dx$		
	Ans.	$\int \frac{1}{4 - 9x^2} dx = \int \frac{1}{2^2 - (3x)^2} dx$	1/2	
		$= \frac{1}{2.2} \log \left \frac{2+3x}{2-3x} \right \frac{1}{3} + c$	1	
		$= \frac{1}{12} \log \left \frac{2+3x}{2-3x} \right + c$	1/2	02
		OR		
		$\int \frac{1}{4 - 9x^2} dx = \int \frac{1}{9\left(\frac{4}{9} - x^2\right)} dx$		
		$=\frac{1}{9}\int \frac{1}{\left(\frac{2}{3}\right)^2 - x^2} dx$	1/2	
		$= \frac{1}{9} \frac{1}{2 \cdot \frac{2}{3}} \log \left \frac{\frac{2}{3} + x}{\frac{2}{3} - x} \right \frac{1}{3} + c$	1	
		$= \frac{1}{12} \log \left \frac{2+3x}{2-3x} \right + c$	1/2	02
		Note: In solution of integration problems, if the constant 'c' is not added, ½ mark may be deducted.		
	(b)	Evaluate $\int \sin^5 x \cdot \cos x dx$		
	Ans.	Put $sinx = t$	1/2	
		$\cos x dx = dt$		
		$=\int t^5 dt$		
		$=\frac{t^6}{6}+c$	1	
		$=\frac{\sin^6 x}{6} + c$	1/2	02
	(c)	Evaluate $\int x^2 e^x dx$		
	Ans.	$\int x^2 e^x dx = x^2 \int e^x dx - \int \left[\frac{dx^2}{dx} \int e^x dx \right] dx$	1/2	

Subject Code: (12062) **Page No:** 3/29 Summer 2013

Que.	Sub.	M 11	M 1	Total
No.	Que.	Model answers	Marks	Marks
1.		$= x^2 e^x - \int 2x \ e^x dx$	1/2	
		$= x^2 e^x - 2 \int x e^x dx$		
		$= x^{2}e^{x} - 2\left\{x \int e^{x} dx - \int \left[\frac{dx}{dx} \int e^{x} dx\right] dx\right\}$	1/2	
		$=x^{2}e^{x} - 2\{xe^{x} - \int 1 \cdot e^{x} dx\}$ $=x^{2}e^{x} - 2\{xe^{x} - e^{x}\} + c$	1/2	02
	(d)	Evaluate $\int \frac{1}{x^2 - 3x + 2} dx$, -	
		$T.T = \frac{(M.T)^2}{4 \times F.T} = \frac{(-3x)^2}{4x^2} = \frac{9}{4}$	1/2	
		OR		
		$T.T = \left(\frac{1}{2}coeff.of\ x\right)^2 = \left(\frac{1}{2}(-3)\right)^2 = \frac{9}{4}$		
		$-\int \frac{1}{\sqrt{1-x^2}} dx$		
		$= \int \frac{1}{x^2 - 3x + \frac{9}{4} - \frac{9}{4} + 2} dx$		
		$= \int \frac{1}{\left(x - \frac{3}{2}\right)^2 - \frac{1}{4}} dx$		
		$= \int \frac{1}{\left(x - \frac{3}{2}\right)^2 - \frac{1}{2^2}} dx$	1/2	
		$= \frac{1}{2 \cdot \frac{1}{2}} log \left \frac{x - \frac{3}{2} - \frac{1}{2}}{x - \frac{3}{2} + \frac{1}{2}} \right \frac{1}{3} + c$	1	02
		$= \log \left \frac{x-2}{x-1} \right + c$		
	(e)	Evaluate $\int_0^\infty e^{-x} dx$		
		$= \left[\frac{e^{-x}}{-1}\right]_0^{\infty}$	1	
		$= -(e^{-\infty} - e^{-0})$ $= -(0 - 1)$	1/2	
		= 1	1/2	02

Subject Code: (12062) **Page No:** 4/29 Summer 2013

No. Que. Model answers 1. (f) Show that the differential equation. $(2xy + y - \tan y)dx + (x^2 - x \tan^2 y + \sec^2 y)dy = 0 \text{ is an ex}$ Ans $M = 2xy + y - \tan y$ $\frac{\partial M}{\partial y} = 2x - \tan^2 y$ $N = x^2 - x \tan^2 y + \sec^2 y$ $\frac{\partial N}{\partial x} = 2x - \tan^2 y$ $\frac{\partial N}{\partial x} = 2x - \tan^2 y$ $\frac{\partial N}{\partial x} = 2x - \tan^2 y$	Marks act 1	Marks 02
$(2xy + y - \tan y)dx + (x^2 - x \tan^2 y + \sec^2 y)dy = 0 \text{ is an ex}$ $M = 2xy + y - \tan y$ $\frac{\partial M}{\partial y} = 2x - \tan^2 y$ $N = x^2 - x \tan^2 y + \sec^2 y$ $\frac{\partial N}{\partial x} = 2x - \tan^2 y$	1	02
Ans $M = 2xy + y - \tan y$ $\frac{\partial M}{\partial y} = 2x - \tan^2 y$ $N = x^2 - x \tan^2 y + \sec^2 y$ $\frac{\partial N}{\partial x} = 2x - \tan^2 y$	1	02
$\frac{\partial M}{\partial y} = 2x - \tan^2 y$ $N = x^2 - x \tan^2 y + \sec^2 y$ $\frac{\partial N}{\partial x} = 2x - \tan^2 y$		02
$N = x^{2} - x \tan^{2} y + \sec^{2} y$ $\frac{\partial N}{\partial x} = 2x - \tan^{2} y$		02
$N = x^{2} - x \tan^{2} y + \sec^{2} y$ $\frac{\partial N}{\partial x} = 2x - \tan^{2} y$	1	02
$\frac{\partial N}{\partial x} = 2x - \tan^2 y$	1	02
	1	02
$\partial M \partial N$		
$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$		
∴ Given equation is Exact.		
(g) Prove that $\Delta = E - 1$		
Ans. Consider $\Delta f(x) = f(x+h) - f(x)$	1	
= Ef(x) - f(x)	1/2	
= (E-1)f(x)	1/2	02
$\Delta = E - 1$		02
(h) Find the missing term of the following data by using forward		
difference table.		
x:12345		
y:-1 -3 1 _ 51		
Ans. Let $y = a$ when $x = 4$		
x y Δy $\Delta^2 y$ $\Delta^3 y$ $\Delta^4 y$		
1 -1 -2 6 a-11 68-4a		
2 -3 4 a-5 57-3a		
3 1 a-1 52-2a		
4 a 51-a	1	
5 51		
$\Delta^4 y = 0$	1/2	
68 - 4a = 0		
$\therefore 68 = 4a$	1/	02
$\therefore a = 17$	1/2	02

Subject Code: (12062) **Page No:** 5/29 Summer 2013

Que.	Sub.								Total
No.	Que.			N	Iodel answ	ers		Marks	Marks
1.	(i)	Using Sim	ıpson's	1/3rd Rule	evaluate J	$\int_0^4 1 + x^3 dx,$	h=1		
	Ans.	Let $y = f(x)$							
		x	0	1	2	3	4		
		у	1	2	9	28	65	1	
		$\int_0^4 1 + x^3 d$	$dx = \frac{h}{3} [$	$y_0 + y_n + 2$	$(y_2 + y_4 +$	···) + 4(y ₁ +	- y ₃ + ···)]	1/2	
				$=\frac{1}{2}[1+65]$	5 + 2(9) +	4(2 + 28)]			
				= 68				1/2	02
	(j)	If $A = \{2, 3\}$	3, 5} , <i>B</i>	= {3, 4, 6,	8}, $C = \{2,$	4, 7} find A	\cup C and $B \cap C$	C .	
	Ans.	$A \cup C = \{2,$,3,4,5,7	}				1	
		$B \cap C = \{4$.}					1	02
	(k)	Evaluate \int	e ^x sec(e ^x)tan(e ^x))dx				
	Ans.	Let $e^x = t$						1/2	
		$e^x dx = dt$						72	
		$=\int\sec(t)$	tan(t)	it					
		= sec(t) +	c					1	
		$= \sec(e^x)$	+ c					1/2	02
	(1)			d degree o	f differen	tial equatior	1.		
		$\frac{y - x \frac{dy}{dx}}{\frac{ay}{dx}} = \left(\frac{d}{dx}\right)^{\frac{1}{2}}$	$\left(\frac{iy}{ix}\right)^2$						
	Ans.	$\frac{y - x \frac{dy}{dx}}{\frac{dy}{dx}} =$	$=\left(\frac{dy}{dx}\right)^2$						
		$= y - x \frac{dy}{dx}$	$=\left(\frac{dy}{dx}\right)$)3				1	
		Order=1						1	
		Degree=3						1	
									02

Subject Code: (12062) **Page No:** 6/29 Summer 2013

(a) Verify that $y = \sin(\log x)$ is a solution of D.E. Ans. $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$ Given $y = \sin(\log x)$ $\therefore \frac{dy}{dx} = \cos(\log x) \frac{1}{x}$	1 1/2	
Given $y = \sin(\log x)$		
$\therefore \frac{dy}{dx} = \cos(\log x) \frac{1}{x}$		
ax x	1./-	
$\therefore x \frac{dy}{dx} = \cos(\log x)$	72	
$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = -\sin(\log x)\frac{1}{x}$	11/2	
	1/2	
$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = -y$ $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = 0$	1/2	04
(b) $Solve \frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$		
$\mathbf{Ans.} \frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$		
$=e^xe^{-y}+x^2e^{-y}$		
$=e^{-y}(e^x+x^2)$	1	
$\frac{dy}{e^{-y}} = (e^x + x^2)dx$	1	
$e^{y}dy = (e^{x} + x^{2})dx$	1	
$e^{y} = e^{x} + \frac{x^{3}}{3} + c$	2	04
<i>Note:</i> In the last step, each term carries ½ marks and if all the terms		
are correct, the whole step carries 2 marks.		
Solve $\frac{dy}{dx} = \frac{y}{x} + \sin\frac{y}{x}$		
Ans. $\frac{dy}{dx} = \frac{y}{x} + \sin\frac{y}{x}$		
Let $\frac{y}{x} = v$		
y = vx	1	
$\frac{dy}{dx} = v + x \frac{dv}{dx}$		
$v + x \frac{dv}{dx} = v + \sin v$	1/2	
$x\frac{dv}{dx} = \sin v$		

Subject Code: (12062) **Page No:** 7/29 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
2.		$\frac{dv}{dt} = \frac{dx}{dt}$	1/2	
		$\sin v - x$ dx	1/2	
		$cosecvdv = \frac{dx}{x}$,-	
		$\int cosecvdv = \int \frac{dx}{x}$	1	
		log cosecv - cotv = logx + c	1	
		$\log\left \csc\frac{y}{x} - \cot\frac{y}{x}\right = \log x + c$	1/2	04
	d)	Solve $\cos^2 x \frac{dy}{dx} + y = tanx$		
	Ans.	$\frac{dy}{dx} + \frac{y}{\cos^2 x} = \frac{\tan x}{\cos^2 x}$	1/2	
			1/2	
		$\frac{dy}{dx} + \sec^2 x y = \tan x \sec^2 x$		
		Comparing with $\frac{dy}{dx} + Py = Q$		
		$\therefore P = \sec^2 x \qquad Q = \tan x \sec^2 x$		
		$I.F. = e^{\int p dx}$		
		$=e^{\int \sec^2 x dx}$	1/	
		$=e^{tanx}$	1/2	
		solution is $y.I.F. = \int Q I.F. dx + c$		
		$ye^{tanx} = \int \tan x \sec^2 x e^{tanx} dx + c$	1/2	
		$Put \ tanx = t : \sec^2 x dx = dt$	1/2	
		$ye^{tanx} = \int te^t dt$		
		$=t\int e^t dt - \int \left[\frac{dt}{dt}\int e^t dt\right] dt$	1	
		$=te^t-\int e^tdt$		
		$=te^t-e^t+c$	1/2	04
		$ye^{tanx} = tanxe^{tanx} - e^{tanx} + c$		
	e)	$Solve \frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$		
	Ans.	$\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$		
		u.x		

Subject Code: (12062) **Page No:** 8/29 Summer 2013

Que.	Sub.	24.11	3.5.1	Total
No.	Que.	Model answers	Marks	Marks
2.		$\frac{1}{\cos^2 x} \frac{dy}{dx} + \frac{x(2\sin y. \cos y)}{\cos y. \cos y} = x^3$		
		$sec^{2}y\frac{dy}{dx} = +2xtany = x^{3}$ $Put \ tany = z$	1/2	
		$\sec^2 y \frac{dy}{dx} = \frac{dz}{dx}$	1/2	
		This is linear differential equation of the form $\frac{dz}{dx} + Pz = Q$ Here $P = 2x$, $Q = x^3$		
		I. $F = e^{\int P dx} = e^{\int 2x dx} = e^{x^2}$	1/2	
		: Solution is,		
		$z.I.F. = \int Q.I.F. dx + c$		
		$z.e^{x^2} = \int x^3 .e^{x^2} dx + c$	1/2	
		$z.e^{x^2} = \int e^{x^2}x^2.xdx + c$		
		$z. e^{x^2} = \frac{1}{2} \int e^{x^2} x^2 . 2x dx + c$		
		$Put \ x^2 = u \therefore \ 2xdx = du$		
		$z.e^{u} = \frac{1}{2} \int e^{u}.u.du + c = \frac{1}{2} \int u.e^{u}du + c$		
		$=\frac{1}{2}\left\{u\int e^{u}du-\int\left[\int e^{u}du.\frac{du}{du}\right]\right\}+c$	1/2	
		$=\frac{1}{2}\Big\{ue^u-\int e^udu\Big\}+c$		
		$=\frac{1}{2}\{ue^u-e^u\}+c$		
		$=\frac{1}{2}e^{u}(u-1)+c$		
		$\therefore z. e^{x^2} = \frac{1}{2} e^{x^2} (x^2 - 1) + c$	1/2	
		Now put back $z = tany$ in above equation		

Subject Code: (12062) **Page No:** 9/29 **Summer 2013**

Que.	Sub.	26.11	N/ 1	Total
No.	Que.	Model answers	Marks	Marks
2.	(f)		1/2	04
	Ans.	Given $L = 2$, $i = 0$ at $t = 0$		
		$L\frac{di}{dt} = 30 \sin(10\pi t)$ $Ldi = 30 \sin(10\pi t) dt$ $\int L di = \int 30 \sin(10\pi t) dt$ $Li = 30 \frac{-\cos(10\pi t)}{10} + c$ $\therefore i = 0 \text{ at } t = 0$ $0 = \frac{-3}{\pi} \cos 0 + c$ $= \frac{-3}{\pi} + c$ $c = \frac{3}{\pi}$ $Li = \frac{-3}{\pi} \cos(10\pi t) + \frac{3}{\pi}$ $L = 2$	1 1	
		$2i = \frac{-3}{\pi}\cos(10\pi t) + \frac{3}{\pi}$	1	04
3.		Attempt any Four of the following:		16
	(a)	Using Langrange's interpolation formula evaluate $f(5)$ from the		
		following data:		
		x 1 2 3 4 7		
		y 2 4 8 16 128		

Subject Code: (12062) **Page No:** 10/29 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Wiodei answers	IVIAIKS	Marks
3.	Ans.	$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} \times y_0$		
		$+\frac{(x-x_0)(x-x_2)(x-x_3)(x-x_4)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)\dots(x_1-x_n)}\times y_1$		
		$+\frac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)}{(x_2-x_0)(x_2-x_2)(x_2-x_3)(x_2-x_4)}\times y_2$		
		$+\frac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)(x_3-x_4)} \times y_3$		
		$+\frac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)}{(x_4-x_0)(x_4-x_1)(x_4-x_2)(x_4-x_3)} \times y_4$		
		$y = f(x) = \frac{(5-2)(5-3)(5-4)(5-7)}{(1-2)(1-3)(1-4)(1-7)} \times 2 + \frac{(5-1)(5-3)(5-4)(5-7)}{(2-1)(2-3)(2-4)(2-7)} \times 4$	2	
		$+\frac{(5-1)(5-2)(5-4)(5-7)}{(3-1)(3-2)(3-4)(3-7)} \times 8 +$		
		$\frac{(5-1)(5-2)(5-3)(5-7)}{(4-1)(4-2)(4-3)(4-7)} \times 16$		
		$+\frac{(5-1)(5-2)(5-3)(5-4)}{(7-1)(7-2)(7-3)(7-4)} \times 128$		
		= -0.6667 + 6.4 - 24 + 42.6667 + 8.5333	1	
		= 32.93	1	04
	b)	The table gives the distance of the visible horizon for the given height. x= height: 100 150 200 250 300 350 400 y=distance: 10.63 13.03 15.04 16.81 18.42 19.90 21.27 Find y when x=218, by using Newton's forward interpolation		<u> </u>
		formula.		

Subject Code: (12062) **Page No:** 11/29 Summer 2013

	Sub.				Mod	del answ	ers			Marks	Total
No.	Que.										Marks
3.	Ans.										
		x	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$]	
		100	10.63	2.4	-0.39	0.15	-0.07	0.02	0.02		
		150	13.03	2.01	-0.24	0.08	-0.05	0.04		1	
		200	15.04	1.77	-0.16	0.03	-0.01			1	
		250	16.81	1.61	-0.13	0.02					
		300	18.42	1.48	-0.11						
		350	19.90	1.37						1	
		400	21.27							1	
										1	
		$m = \frac{x}{}$	$\frac{-x_0}{h}$							1/2	
		= 218-	100 = 2.3	36							
			•		(m-1)	$\Delta^2 y_0 + \frac{m}{2}$	(m-1)(m-1)	$\frac{m-2)}{\Delta}$	³ y ₀ + ···		
					2!		3!				
		= 10.63	3 + (2.36)(2.4)+	2.36(2.	36 – 1) 2	-0.39)				
		+ 2.36(2.36 – 1 6)(2.36 -	(0.15	5)					
		+ 2.36	(2.36 –	1)(2.36	5 – 2)(2	.36 – 3)	(-0.07)				
		2.36	(2.36 –	1)(2.36	5-2)(2	.36 – 3)	(2.36 – 4	4)	0		
					120						
		+ 2.36	(2.36 –	1)(2.36	5 – 2)(2 7	.36 – 3) 20	(2.36 – 4	4)(2.36	- 5) (0.0	2) 1	
		- 10.63		0.63	F072 + /	000000	4 + 0.000	MEC			
				- 0.62	50/2 + (J.U20000	4 + 0.002	156		1/2	
		= 15.70)							/2	

Subject Code: (12062) **Page No:** 12/29 Summer 2013

Que.	Sub.				M	adal ang	*10#G				Montra	Total
No.	Que.				IVI	odel ansv	wers				Marks	Marks
3.	Ans.	Find f((42) fro	m the f	ollowin	g data:						
		x:	20	25	30 35	40	45					
		f(x):	354	332 2	291 26	0 231	204					
		1(%)	001	002 2	.91 2 0	201	201					
			х	у	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$			
			20	354								
			25	332	-22						2	
			30	291	- 41	-19						
			35	260	-31	10	29					
			40	231	-29	2	- 8	-37				
			45	204	-27	2	0	8	<mark>45</mark>			
		$m = \frac{x}{}$	$\frac{-x_n}{h} =$	42 – 45 5	= -0.6			l		I	1/2	
		<i>f</i> (<i>x</i>) =	$y_n + m$	$\nabla y_n + \frac{m}{2}$	2!	$\nabla^2 y_n + \frac{1}{2}$	m(m +	1)(m + 1 3!	$\frac{2)}{\nabla^3 y_n}$	+···		
		= 204 -	+ (-0.6	5)(-27)	+ (-0.6))(-0.6 + 2!	(2)					
		+ (-0.6))(-0.6 +	+ 1)(-0.6 3!	(0)	+ (-0.6)	(-0.6+	1)(-0.6	+ 2)(-0.0	(8)		
		+ (-0.6	6)(-0.6	+ 1)(-	0.6 + 2)(5!	(-0.6 + 3	3)(-0.6	(45	5)		1	
		= 204	+ 16.2	- 0.24 -	- 0.2688	3 – 1.028	316					04
		= 218.6	66								1/2	
	d)	A resis	stance (of 100Ω	and ind	luctance	of 0.1	henries	are con	nected		
		in serie	es with	ı a batte	ry of 20	volts. F	ind the	e curren	t in the	circuit		

Subject Code: (12062) Page No:13/29 Summer 2013

Que.	Sub.	34.11	3.6 1	Total
No.	Que.	Model answers	Marks	Marks
3.		at any instant, if the relation between L,R and E is $L\frac{di}{dt} + Ri = E$ $L\frac{di}{dt} + Ri = E$ $\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$ $P = \frac{R}{L} and Q = \frac{E}{L}$ $\therefore IF = e^{\int pdt} = e^{\int \frac{R}{L}dt} = e^{\frac{R}{L}t}$ $\therefore the solution is,$ $i \cdot IF = \int Q \cdot IF \cdot dt + c$ $\therefore i \cdot e^{\frac{R}{L}t} = \int \frac{E}{L} \cdot e^{\frac{R}{L}t} \cdot dt + c$ $\therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{L} \cdot \frac{e^{\frac{R}{L}t}}{R} + c$ $\therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{L} \cdot \frac{e^{\frac{R}{L}t}}{L} + c$	1	Marks
		At $i = 0$, $t = 0$, $ \therefore 0 = \frac{E}{R} \cdot e^0 + c $ $ \therefore c = -\frac{E}{R} $ $ \therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{R} \cdot e^{\frac{R}{L}t} - \frac{E}{R} \text{or} i = e^{-\frac{R}{L}t} \left[e^{\frac{R}{L}t} - 1 \right] \frac{E}{R} $ Given $R = 100$, $L = 0.1$, $E = 20$. $ \therefore i \cdot e^{1000t} = \frac{1}{5} \cdot e^{1000t} - \frac{1}{5} \text{or} i = e^{-1000t} \left[e^{1000t} - 1 \right] \frac{1}{5} $ Note: In the above example, L, R, E are arbitrary constants whereas i and t are variables. Also the values of L, R, E are given in advance. Thus these values can be substituted directly in the given differential equation and then the equation can be solved as illustrated below.	1	04

Subject Code: (12062) **Page No:** 14/29 Summer 2013

Que.	Sub.		Mod	del answers	,			Marks	Total
No.	Que.		10100	aci aliswels	•			IVIAINS	Marks
3.	e)	, ,	$=e^{1000t}$ a town in	the year 1 1941 19	955.	L	n below.	1	04
	Ans.	,		T -	T -	Г.	1		
		X	$Y \qquad \nabla_{\mathcal{I}}$	$\nabla \nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$			
		1921	46						
		1931	66 20)				1	
		1941	81 15	-5					
		1951	93 12	3	2				
		1961	101 8	<mark>-4</mark>	<mark>-1</mark>	-3			
		$m = \frac{x - x_n}{h} = \frac{1955 - 10}{10}$						1/2	
		$f(x) = y_n + m\nabla y_n +$	$\frac{m(m+1)}{2!}$	$7^2y_n + \frac{m(n)^2}{n}$	$\frac{n+1)(m}{3!}$	<u>+ 2)</u> ∇³ ງ	$y_n + \cdots$		
		= 101 + (-0.6)(8) +	(-0.6)(-0 2!	(-4	·)			1½	
		+ \frac{(-0.6)(-0.6 + 1)(-3)}{3!}	-0.6 + 2) (-	-1)					

Subject Code: (12062) **Page No:** 15/29 Summer 2013

Que.	Sub.					Mod	el ans	wer	ı			Marks	Total
No.	Que.											Marks	Marks
3.		+ (-().6)(-0	0.6 + 1)(- 4	0.6 + !	2)(-	0.6 +	3) (-	-3)				
		= 101	1 – 4.8	+ 0.48 + 0	0.056	+ 0.1	1008						
		= 96.	8368									1	04
	f)	From	the fo	llowing	data	find	U ₃ , if	:					
		U ₄ =	0.35,	$U_{5} = 0.8$	8, U ₆	= 1.	71 U	7 =	2, U ₈ =	8			
	Ans.	x	f(x)	$\Delta f(x)$	$\Delta^2 f$	F(x)	$\Delta^3 f$	(x)	$\Delta^4 f(x)$	r)	$\Delta^5 f(x)$		
		3	a	0.35-a	0.18	8+a	0.12	- а	-0.96	6+a	4.05-a		
		4	0.35	0.53	0.3		-0.8	34	3.09				
			0.00	0.02	0	<u> </u>	2.25						
		5	0.88	0.83	- 0.	.54	2.25					2	
		6	1.71	0.29	1.7	1							
		7	2	2									
		8	4										
		4.05-	-a=0									1	
		∴ a =	: U ₃ =	4.05								1	04
			-3		OR								
		X	f(x)	$\Delta f(x)$		$\Delta^2 f$	(x)	Δ^3	f(x)	Δ^4	f(x)		
		4	0.35	0.53		0.3		- 0	.84	3.0	<mark>)9</mark>		
		5	0.88	0.83		-0.5	4	2.2	.5				
		6	1.71	0.29		1.71						1½	
		7	2	2								, -	
				<u> </u>									
		8	4										

Subject Code: (12062) **Page No:** 16/29 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.		Marks	Marks
		$m = \frac{x - x_0}{h}$ $= \frac{3 - 4}{1} = -1$ $f(x) = y_0 + m\Delta y_0 + \frac{m(m-1)}{2!} \Delta^2 y_0 + \frac{m(m-1)(m-2)}{3!} \Delta^3 y_0 + \cdots$ $= 0.35 + (-1)(0.53) + \frac{(-1)(-1-1)}{(2!)} (0.3) + \frac{(-1)(-1-1)(-1-2)}{(3!)} (-0.84)$ $+ \frac{(-1)(-1-1)(-1-2)(-1-3)}{(4!)} (3.09)$	1/2	
		$= 0.35 - 0.53 + 0.3 + 0.84 + 3.09$ $= 4.05$ $\therefore U_3 = 4.05$	1	04
4.		Attempt any four of the following:		16
	a)	Evaluate $\int \frac{e^x(x+1)}{\cot(xe^x)} dx$		
	Ans.	Put $t = xe^x$		
		$dt = (xe^x + e^x)dx$		
		$dt = e^x(x+1)dx$	1	
		$I = \int \frac{dt}{\cot(t)}$	1/2	
		$=\int tant dt$	1/2	
		I = logsec(t) + c	1	
		$= logsec(xe^x) + c$	1	04

Subject Code: (12062) **Page No:** 17/29 Summer 2013

Que.	Sub. Que.	Model answers	Marks	Total Marks
4.	b)	Evaluate $\int x \tan^{-1} x dx$		IVILIES
	Ans.	$I = \int x \tan^{-1} x dx$		
		$= \tan^{-1} x \int x dx - \int \left[\frac{d(\tan^{-1} x)}{dx} \cdot \int x dx \right] dx$	1/2	
		$= \tan^{-1} x \left(\frac{x^2}{2}\right) - \int \left[\frac{1}{1+x^2} \cdot \frac{x^2}{2}\right] dx$	1	
		$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \int \frac{x^2}{1 + x^2} dx$		
		$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \int \frac{1 + x^2 - 1}{1 + x^2} dx$	1/2	
		$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \int \left[\frac{1 + x^2}{1 + x^2} - \frac{1}{1 + x^2} \right] dx$		
		$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \int \left[1 - \frac{1}{1 + x^2} \right] dx$	1	
		$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} [x - \tan^{-1} x] + c$		
		$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2}x + \frac{1}{2} \tan^{-1} x + c$	1	04
		Evaluate $\int_0^2 \frac{1}{x^2 - 2x + 2} dx$		
	Ans.	$I = \int_0^2 \frac{1}{x^2 - 2x + 2} dx$		
		$T.T = \frac{(M.T)^2}{4F.T.} = \frac{(-2x)^2}{4x^2} = \frac{4x^2}{4x^2} = 1$	1	
		OR		
		$T.T = \left(\frac{1}{2} \operatorname{coeff.of} x\right)^2 = \left(\frac{1}{2}(-2)\right)^2 = 1$		

Subject Code: (12062) **Page No:** 18/29 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
4.		$I = \int_0^2 \frac{1}{x^2 - 2x + 1 + 1} dx$ $\int_0^2 \frac{1}{x^2 - 2x + 1 + 1} dx$	1/2	
		$= \int_0^2 \frac{1}{(x-1)^2 + 1^2} dx$		
		$= [\tan^{-1}(x-1)]_0^2$	1	
		$= \tan^{-1}(1) - \tan^{-1}(-1)$	1/2	
		$= \tan^{-1}(1) + \tan^{-1}(1)$		
		$=\frac{\pi}{4}+\frac{\pi}{4}$		
		$I = \frac{\pi}{2}$	1	04
	d)	Evaluate $\int_0^{\pi} x \sin^2 x dx$		
	Ans.	Let $I = \int_0^{\pi} x \sin^2 x dx$ (1)		
		$= \int_0^{\pi} (\pi - x) \sin^2(\pi - x) dx \text{by property}$	1/2	
		$= \int_0^{\pi} (\pi - x) \sin^2(x) dx \qquad \sin(\pi - \theta) = \sin \theta$	1/2	
		$= \int_0^\pi \pi \sin^2 x - x \sin^2 x dx$		
		$= \int_0^\pi \pi \sin^2 x dx - I \qquad From(1)$	1/2	
		$2I = \int_0^\pi \pi \sin^2 x dx$		
		$2I = \int_0^\pi \pi \left(\frac{1 - \cos 2x}{2} \right) dx$	1/2	
		$= \int_0^\pi \left(\frac{\pi}{2} - \frac{\pi}{2}\cos 2x\right) dx$		
		$= \left[\frac{\pi}{2}x - \frac{\pi}{2}\frac{\sin 2x}{2}\right]_0^{\pi}$	1/2	
		$= \left[\frac{\pi}{2} (\pi) - \frac{\pi}{2} \frac{\sin 2(\pi)}{2} \right] - \left[\frac{\pi}{2} (0) - \frac{\pi}{2} \frac{\sin 2(0)}{2} \right]$	1/2	

Subject Code: (12062) **Page No:** 19/29 Summer 2013

Que.	Sub. Que.	Model answers	Marks	Total Marks
4.	Que.	$2I = \frac{\pi^2}{2} - \frac{\pi}{4}(0)$		Iviaiks
		$2I = \frac{\pi^2}{2}$	1/2	
		$I = \frac{\pi^2}{4}$	1/	
		4	1/2	04
	e) Ans.	Using integration, find the area of the circle $x^2 + y^2 = 9$		
	Alls.	$y^2 = 9 - x^2 = 3^2 - x^2$		
		$\therefore y = \sqrt{3^2 - x^2}$		
		A_1 =Area bounded by the curve $y = \sqrt{3^2 - x^2}$, X-axis and the lines $x = 0$, $x = a$		
		$A_1 = \int_0^3 y dx$		
		$= \int_0^3 \sqrt{3^2 - x^2} dx$	1/2	
		$= \left[\frac{1}{2}x\sqrt{3^2 - x^2} + \frac{3^2}{2}\sin^{-1}\left(\frac{x}{3}\right)\right]_0^3$	1	
		$= \left[\frac{1}{2} (3) \sqrt{3^2 - 3^2} + \frac{3^2}{2} \sin^{-1} \left(\frac{3}{3} \right) \right] - \left[\frac{1}{2} (0) \sqrt{3^2 - 0^2} + \frac{3^2}{2} \sin^{-1} \left(\frac{0}{3} \right) \right]$	1	
		$=\frac{9}{2}\left(\frac{\pi}{2}\right)$		
		$=\frac{9\pi}{4}$	1	
		$A_1=Area~of~the~circle~=4\times A_1=4 imesrac{9\pi}{4}=9\pi~sq.units$	1/2	
	f)	Using integration, find the area bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$		04
	Ans.	The two curves are $y^2 = 4x (1)$ $x^2 = 4y (2)$		

Subject Code: (12062) **Page No:** 20/29 Summer 2013

Que.	Sub. Que.	Model answers	Marks	Total Marks
110.	Que.	Put $y = \frac{x^2}{4}$ in equation (1)		IVIAIKS
		Put $y = \frac{1}{4}$ in equation (1)		
		$\left(\frac{x^2}{4}\right)^2 = 4x \qquad \therefore x^4 - 64x = 0 \qquad \therefore x(x^3 - 64) = 0$		
		$\therefore x = 0 , x = 4$	1	
		When $x = 0$, $y = 0$: one point of intersection is $(0,0)$		
		When $x = 4$, $y = 4$: other point of intersection is $(4,4)$		
		From $y^2 = 4x \implies y_1 = 2x^{1/2}$		
		From $x^2 = 4y \implies y_2 = \frac{x^2}{4}$		
		The required area = $\int_0^4 y_1 - y_2 dx$		
		$= \int_0^4 2x^{1/2} - \frac{x^2}{4} dx$	1	
		$=2\left[\frac{x^{3/2}}{\frac{3}{2}}\right]_0^4 - \frac{1}{4}\left[\frac{x^3}{3}\right]_0^4$	1	
		$= \frac{4}{3} \left[4^{3/2} - 0 \right] - \frac{1}{12} \left[4^3 - 0 \right]$	1/2	
		_ 32 16		
		$=\frac{3}{3}-\frac{3}{3}$		04
		$=\frac{16}{3} sq. units$	1/2	
5.		Attempt any four of the following:		16
	a)	Find y'(0) from the following data:		
	<i>a)</i>			
		x: 0 1 2 3 4 5		
		y: 4 8 15 7 6 2		

Subject Code: (12062) **Page No:** 21/29 Summer 2013

Δ ⁵ <i>y</i>		Marks
Δ ⁵ y		
$\Delta^5 y$		
-72		
	2	
$-18, \Delta^4 y_0$	$= 40, \Delta^5 y_0 =$	-72
	1	
	1/2	
	1/2	04
7] into 5 eq	ual	
	1/2	
7		
0.14	1½	
	1	
	-18, Δ ⁴ y ₀	2 -18 , $\Delta^4 y_0 = 40$, $\Delta^5 y_0 = 1$ 1 $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$

Subject Code: (12062) **Page No:** 22/29 Summer 2013

Que.	Sub.	M. 1.1	34.1	Total
No.	Que.	Model answers	Marks	Marks
5.	c)	$I=1.27$ Using Simpson's $1/3^{\rm rd}$ rate ,evaluate $\int_0^1 \frac{1}{1+x^2} dx$, dividing the interval [0,1] into	1	04
		Six equal parts. Hence find an approximate value of π $a = x_0 = 0, b = x_n = 1, n = 6$		
	Ans.	$h = \frac{b-a}{n} = \frac{1-0}{6} = \frac{1}{6}$	1/2	
		$\begin{bmatrix} x & 0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{5}{6} & 1 \end{bmatrix}$	1	
		y 1 0.97 0.9 0.8 0.69 0.59 0.5		
		$I = \int_0^1 \frac{1}{1+x^2} dx = \frac{h}{3} [(y_0 + y_6) + 2(y_2 + y_4) + 4(y_1 + y_3 + y_5)]$ $= \frac{\frac{1}{6}}{3} [(1+0.5) + 2(0.9+0.69) + 4(0.97+0.8+0.59)]$	1	
		$= \frac{1}{18} [1.5 + 2(1.59) + 4(2.36)]$ $= 0.7844$ $\int_0^1 \frac{1}{1 + x^2} dx = [\tan^{-1} x]_0^1$	1/2	
		$= \tan^{-1} 1 - \tan^{-1} 0$ $= \frac{\pi}{4}$ but $\frac{\pi}{4} = 0.7844$	1/2	04
	d) Ans.	$\pi = 3.14$ Apply Runge's formula of order 2, for finding approximate value of y when x=1.1 Given $\frac{dy}{dx} = 3x + y^2$ and y=1.2 when x=1	1/2	
		$\frac{dy}{dx} = 3x + y^2$	1/2	
		$x_0 = 1$, $y_0 = 1.2$, $x_1 = 1.1$ $h = x_1 - x_0 = 0.1$	1	
		$K_1 = hf(x_0, y_0) = (0.1)f(1, 1.2) = (0.1)[3(1) + (1.2)^2]$ $\therefore K_1 = 0.444$		

Subject Code: (12062) **Page No:** 23/29 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
5.		$K_2 = hf(x_0 + h, y_o + k_1) = (0.1)f(1 + 0.1, 1.2 + 0.444) = (0.1)f(1.1, 1.1)$.644)	
		$= (0.1)[3(1.1) + (1.644)^2]$		
		$K_2 = 0.6003$	1	
		$K = \frac{K_1 + K_2}{2} = 0.5222$	1/2	
		$y_1 = y_0 + K = 1.2 + 0.5222$		
		$\therefore y_1 = 1.7222$	1	04
	e)	Use Simpson's one-third rule to estimate approximately the area of the cross section of a river 80 ft.wide, the depth d(in feet) at a distance x from one bank being given by the following:		
		x: 0 10 20 30 40 50 60 70 80		
		d: 0 4 7 9 12 15 14 8 3		
	Ans.	The area of the cross section of a river 80 ft. wide=		
		$A = \int_0^{80} d dx \text{h=step length}$	1	
		$A = \int_0^{80} d dx = \frac{h}{3} \left[(d_0 + d_8) + 2(d_2 + d_4 + d_6) + 4(d_1 + d_3 + d_5 + d_6) \right]$		
		$= \frac{10}{3}[(0+3) + 2(7+12+14) + 4(4+9+15+8)]$	2	
		$=\frac{10}{3}[213]$		
		$\therefore A = 710 \ sq.feet$	1	04
	f)	Apply Runge-Kutta fourth order method , to find an approximate value of y when x=0.2 , given that		
	Ans.	$\frac{dy}{dx} = x + y, y(0) = 1 \text{ take h=0.2}$		
		$x_0 = 0$, $y_0 = 1$, $h = 0.2$, $x_1 = 0.2$ $K_1 = hf(x_0, y_0) = (0.2)f(0,1) = (0.2)[0+1]$		

Subject Code: (12062) **Page No:** 24/29 Summer 2013

Que.	Sub.	Model en envene	Manka	Total
No.	Que.	Model answers	Marks	Marks
5.		$K_1 = 0.2$ $K_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = (0.2)f\left(0 + \frac{0.2}{2}, 1 + \frac{0.2}{2}\right) = (0.2)f(0.1, 1.1)$	1/2	
		$K_{2} = hf\left(x_{0} + \frac{1}{2}, y_{0} + \frac{1}{2}\right) = (0.2)f\left(0 + \frac{1}{2}, 1 + \frac{1}{2}\right) = (0.2)f(0.1, 1.1)$ $= (0.2)(0.1 + 1.1)$ $\therefore K_{2} = 0.24$ $K_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right) = (0.2)f(0.1, 1.12) = (0.2)(0.1 + 1.12)$	1	
		$K_3 = 0.244$ $K_4 = hf(x_0 + h, y_0 + k_3) = (0.2)f(0.2 + 1.244)$	1	
		$K = \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$ $= \frac{0.2 + 2(0.24) + 2(0.244) + 0.2888}{6}$	1/2	
		6 $= 0.2428$ $y_1 = y_0 + K = 1 + 0.2428$	1/2	
		$y_1 = 1.2428$	1/2	04
6.		Attempt any four of the following:		16
	a)	Apply Runge -Kutta fourth order method to find the value of y whenx=1.Given that		
		$\frac{dy}{dx} = \frac{y - x}{y + x} \text{ and } y(0) = 1$		
		Let $\frac{dy}{dx} = f(x, y) = \frac{y - x}{y + x}$		
		$x_0 = 0$, $y_0 = 1$, $x_1 = 1$	1/2	
		h=1 $K_1 = hf(x_0, y_0) = (1) f(0,1)$	/ 2	

Subject Code: (12062) **Page No:** 25/29 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
6.		$= \frac{1-0}{1+0}$ $\therefore K_1 = 1$ $K_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = (1)f\left(0 + \frac{1}{2}, 1 + \frac{1}{2}\right) = f(0.5, 1.5)$	1/2	
		$= \frac{1.5 - 0.5}{1.5 + 0.5}$ $\therefore K_2 = 0.5$ $K_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = (1)f(0.5, 1.25) = \frac{1.25 - 0.5}{1.25 + 0.5} = \frac{0.75}{1.75}$	1/2	
		$K_{4} = hf(x_{0} + h, y_{0} + k_{3}) = (1) f(1, 1.4286) = \frac{1.4286 - 1}{1.4286 + 1} = \frac{0.4286}{2.4286}$	1/2	
		$K_{4} = 0.1765$ $K = \frac{k_{1} + 2k_{2} + 2k_{3} + k_{4}}{6}$	1/2	
		$= \frac{1 + 2(0.5) + 2(0.4286) + 0.1765}{6}$ $= 0.5056$	1	
		$y_1 = y_0 + K = 1 + 0.5056$ $\therefore y_1 = 1.5056$	1/2	04
	b)	If $A = \{2, 4, 6, 8\}$, $B = \{1, 2, 5, 6, 7\}$ and $C = \{0, 2, 6, 7, 8\}$ Verify that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		
	Ans.	$B \cap C = (2,6,7)$	1/2	
		$A \cup (B \cap C) = \{2,4,6,7,8\}$	1	
		$A \cup B = \{1,2,4,5,6,7,8\}$	1/2	
		$A \cup C = \{0,2,4,6,7,8\}$	1	04
		$(A \cup B) \cap (A \cup C) = \{2,4,6,7,8\}$	1	

Subject Code: (12062) **Page No:** 26/29 Summer 2013

Que.	Sub.	Model or sweet	Maulra	Total
No.	Que.	Model answers	Marks	Marks
6.	c)	Shade the following sets using Venn diagram. (1) $(A \cap B)'$		
		$(2)(B-A)' (3)A' \cup B'$		
	Ans.	A $\cap B =$		
		$(A \cap B)'=$	1	
		B-A=		
		(B-A)'=	1	
		A' = U	1/2	
		B'=	1/2	
		$A' \cup B' =$	1	04

Subject Code: (12062) **Page No:** 27/29 Summer 2013

Que.	Sub.	Model energes	Maulza	Total
No.	Que.	Model answers	Marks	Marks
6.	d)	Find how many integer from 1 to 200 are not divisible by 4 nor by 5. $n(X) = 200$ $A = \text{ numbers divisible by 4.}$ $\therefore n(A) = \frac{200}{4} = 50$ $B = \text{ numbers divisible by 5.}$ $\therefore n(B) = \frac{200}{5} = 40$ $A \cap B = \text{ numbers divisible by 4 and 5.}$	1/2	
		$\therefore n(A \cap B) = \frac{200}{4 \times 5} = 10$ $\therefore n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $= 50 + 40 - 10$ $= 80$ $(A \cup B)' = \text{ number not divisible by 4 nor by 5.}$ $\therefore n[(A \cup B)'] = n(X) - n(A \cup B)$ $= 200 - 80$ $= 120$	1 1/2	04
	e) Ans.	Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\cot x}}$	1	04
		Consider $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\cot x}}$ $= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \frac{\sqrt{\cos x}}{\sqrt{\sin x}}}$ $= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \qquad -(1)$	1/2	

Subject Code: (12062) **Page No:** 28/29 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Wiodel allsweis	Iviaiks	Marks
6.		$x \to \frac{\pi}{3} + \frac{\pi}{6} - x = \frac{\pi}{2} - x \text{ (by property)}$		
		$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}} dx$	1	
		$\therefore I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \qquad -(2)$	1	
		Adding equation (1) and equation (2)		
		$2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$	1/2	
		$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$		
		$2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \ dx$		
		$2I = \left[x\right] \frac{\pi}{\frac{3}{6}}$	1/2	
		$2I = \frac{\pi}{3} - \frac{\pi}{6}$		
		$2I = \frac{\pi}{6}$		
		$I = \frac{\pi}{12}$	1/2	04
	f)	Evaluate $\int \frac{\sec^2 x}{(1 + tanx)(2 - tanx)} dx$		
	Ans.	Putt = tanx		
		$dt = \sec^2 x dx$	1/2	

Subject Code: (12062) **Page No:** 29/29 Summer 2013

Que.	Sub.	N. 11	3.6.1	Total
No.	Que.	Model answers	Marks	Marks
6.		Consider $\frac{1}{(1+t)(2-t)} = \frac{A}{1+t} + \frac{B}{2-t}$	1/2	
		1 = A(2 - t) + B(1 + t)		
		$\therefore A = \frac{1}{3}$	1/2	
		$\therefore B = \frac{1}{3}$	1/2	
		$\therefore \frac{1}{(1+t)(2-t)} = \frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t}$		
		$I = \int \frac{\frac{1}{3}}{1+t} + \frac{\frac{1}{3}}{2-t} dt$	1/2	
		$I = \frac{1}{3}\log(1+t) + \frac{1}{3}\frac{\log(2-t)}{-1}$	1	
		$I = \frac{1}{3}\log(1 + \tan x) - \frac{1}{3}\log(2 - \tan x)$	1/2	04
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		