Thermodynamics and mechanics of solids

Kamil Belan

March 24, 2025

Contents

1	Geo	ometry	1
	1.1	Deformation	1
	1.2	Displacement	2
	1.3	Changes of measures	3
		1.3.1 Change of volume	3
		1.3.2 Change of lengths	3
		1.3.3 Change of surfaces	4
	1.4	Affine transformations	4
2	For	ces	5
	2.1	Forces in the deformed configuration	5
		2.1.1 Cauchy stress tensor	5
		2.1.2 Balance equations in the deformed configuration	6
	2.2	Forces in the undeformed configuration	6
		2.2.1 Piola-Kirchhoff stresses	6
		2.2.2 Balance equations in the deformed configuration \dots .	7
3	Elas	sticity	7
	3.1	Frame invariance principle	8
	3.2	Isotropic material	8
	3.3	Hyperelastic materials	8
	3.4	Properties of W	8
4	Tut	orials 1	.1
	4.1	Change of observer	1
	4.2	Change of reference configuration	1
	4.3	Consequences of isotropic hyperelastic solid	2
	4.4		3

1 Geometry

1.1 Deformation

Suppose we are given an abstract body $\Omega \subset \mathbb{R}^d$, d = 2, 3. Choosing a particular state, we denote it the **reference configuration**. After the acting of forces, the body deforms into the **current**, **deformed configuration**.

The mapping that produces the deformation is called the **deformation**, denoted \mathbf{y} , i.e.

$$\mathbf{y}: \overline{\Omega} \to \mathbb{R}^d$$
.

Of large interest will be the deformation gradient

$$\mathbb{F}(\mathbf{x}) = \nabla y(\mathbf{x}), (\nabla y)_{ij} = \frac{\partial y^i}{\partial x^j},$$

on which we put some physically sound restrictions, such as $det \mathbb{F} > 0$. This means in particular that the determinant is nonzero, but also that preserves orientations of bases:

$$(\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbf{e}_3 > 0 \Rightarrow (\mathbb{F}\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbb{F}\mathbf{e}_3 > 0.$$

Example. Suppose the deformation is given as

$$\mathbf{y}(\mathbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x},$$

i.e., $\mathbb{F}=\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, det $\mathbb{F}=-1$. This is an example of a deformation that is forbidden.

Imagine it is a sheet of paper in a plane - you cannot reflect it without lifting it from the plane.

1.2 Displacement

Another useful way of describing the deformation is by using the **displacement vector u**:

$$\mathbf{u}(\mathbf{x}) = \mathbf{y}(\mathbf{x}) - \mathbf{x},$$

so taking the gradient gives

$$\nabla \mathbf{u}(\mathbf{x}) = \mathbb{F}(\mathbf{x}) - \mathbb{I}.$$

Remark. It is interesting that we do not place any restrictions on the determinant of the displacement gradient.

1.3 Changes of measures

We need to examine how the volume, area and lengths change under deformation. In what follows, for a set $\omega \subset \mathbb{R}^d$ in the reference configuration we denote $\omega^y \subset \mathbb{R}^d$ to be the deformed body in the current configuration, i.e.

$$\omega^y = \mathbf{y}(\omega).$$

1.3.1 Change of volume

Using the change of variable theorem we obtain

$$\lambda(\omega^y) = \int_{\omega^y} 1 d\mathbf{x}^y = \int_{\omega} \det \mathbb{F}(\mathbf{x}) d\mathbf{x},$$

so we write $d\mathbf{x}^y = \det \mathbb{F} d\mathbf{x}$. This motivates "our" definition of the determinant of the deformation gradient:

$$\det \mathbb{F}(\mathbf{x}) = \lim_{r \to 0} \frac{\lambda(B(\mathbf{x}, r))}{\lambda(B(\mathbf{x}, r))},\tag{1}$$

where $B(\mathbf{x}, r)$ is a (closed) ball centered at \mathbf{x} of radius r.

1.3.2 Change of lengths

Suppose the line segment $\mathbf{x} + \Delta \mathbf{x}$ undergoes deformation. How does its length change? Taylor expansion yields:

$$\mathbf{y}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{y}(\mathbf{x}) + \mathbb{F}(\mathbf{x})\Delta \mathbf{x} + \text{h.o.t.},$$

where h.o.t. stands for higher order terms. Using the expansion, we can write

$$\|\mathbf{y}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{y}(\mathbf{x})\|^2 = (\Delta \mathbf{x})^{\mathsf{T}} \mathbb{F}^{\mathsf{T}} \mathbb{F} \Delta \mathbf{x} = (\Delta \mathbf{x})^{\mathsf{T}} \mathbb{C}(\mathbf{x}) \Delta \mathbf{x},$$

where we have denoted

$$\mathbb{C}(\mathbf{x}) = \mathbb{F}^{\mathsf{T}}(\mathbf{x})\mathbb{F}(\mathbf{x}),$$

as the Right Cauchy Green tensor.

Example. Let the deformation \mathbf{y} be given as $\mathbf{y}(\mathbf{x}) = \mathbb{R}\mathbf{x} + \mathbf{v}, \mathbf{v} \in \mathbb{R}^d, \mathbb{R} \in SO(d) = \{\mathbb{A} \in \mathbb{R}^{d \times d}, \mathbb{A}^{\mathsf{T}} \mathbb{A} = \mathbb{A}\mathbb{A}^{\mathsf{T}} = \mathbb{I}\}$. Then $\mathbb{F} = \mathbb{R}$, $\mathbb{C} = \mathbb{I}$.

1.3.3 Change of surfaces

For $\mathbb{A} \in \mathbb{R}^{d \times d}$ regular we define the **cofactor matrix** cof \mathbb{A} as

$$\operatorname{cof} \mathbb{A} = (\det \mathbb{A}) \mathbb{A}^{-\top},$$

which is an interesting quantity whatsoever; we will use the following theorem

Theorem 1 (Piola's identity). Let $\mathbf{y} \in C^2(\Omega; \mathbb{R}^d)$, then $\forall \mathbf{x} \in \Omega$:

$$\nabla \cdot (\operatorname{cof} \nabla \mathbf{y}(\mathbf{x})) = \mathbf{0}.$$

For a regular matrix \mathbb{A} , we also have the identity

$$\mathbb{A}^{-1} = \frac{1}{\det \mathbb{A}} (\operatorname{cof} \mathbb{A})^{\mathsf{T}}, \tag{2}$$

What about the determinant of the cofactor? Clearly

$$\det \operatorname{cof} \mathbb{A} = (\det \mathbb{A})^d \det \mathbb{A}^{-\mathsf{T}} = (\det \mathbb{A})^{d-1},$$

so we can also express equation 2 in a different way

$$\mathbb{A}^{-1} = \frac{(\operatorname{cof} \mathbb{A})^{\top}}{(\operatorname{det} \operatorname{cof} \mathbb{A})^{1/d-1}}.$$
(3)

From geometry, recall the change of variables for surface integration:

$$\int_{\partial \omega^y} \mathbf{n}^y \, \mathrm{d}S^y = \int_{\partial \omega} \mathrm{cof} \, \mathbb{F} \mathbf{n} \, \mathrm{d}S \,,$$

where \mathbf{n}^y is the outward unit normal to the deformed boundary ω^y . Informally, we write $\mathbf{n}^y \, \mathrm{d} S^y = \mathrm{cof} \, \mathbb{F} \mathbf{n} \, \mathrm{d} S$. We can also explicitely express the normal to the deformed boundary as

$$\mathbf{n}^{y}(\mathbf{x}^{y}) = \frac{\operatorname{cof} \mathbb{F}(\mathbf{x})\mathbf{n}(\mathbf{x})}{\|\operatorname{cof} \mathbb{F}(\mathbf{x})\mathbf{n}(\mathbf{x})\|}, \mathbf{x} \in \partial \omega, \mathbf{y}(\mathbf{x}) \in \partial \omega^{y}.$$
(4)

1.4 Affine transformations

An example of deformation is the so called **affine transformation**.

Example. Suppose the following deformation:

$$\mathbf{y}(\mathbf{x}) = \mathbb{A}\mathbf{x} + \mathbf{v}, \mathbb{A} \in \mathbb{R}^{d \times d}, \mathbf{v} \in \mathbb{R}^d, \det \mathbb{F} > 0.$$

Clearly then $\mathbb{F}(\mathbf{x}) = \mathbb{A}$.

It is crucial to realize how $\mathbb{F}, \mathbb{F}^{\mathsf{T}}, \mathbb{F}^{\mathsf{-T}}$ work.

- \mathbb{F} takes a vector $\mathbf{x} \mathbf{0}$ from the reference configuration and maps it to the vector $\mathbb{F}\mathbf{x} \mathbb{F}\mathbf{0}$ in the current configuration
- \mathbb{F}^{-1} takes the vector $\mathbb{F}\mathbf{x} \mathbb{F}\mathbf{0}$ from the *current configuration* and maps it to the vector $\mathbf{x} \mathbf{0}$ from the *reference configuration*

- \mathbb{F}^{T} is defined through: $\mathbb{F}\mathbf{u} \cdot \mathbf{w} = \mathbf{u} \cdot \mathbb{F}^{\mathsf{T}}\mathbf{w}$, and since \mathbb{F} is defined on the reference configuration, \mathbb{F}^{T} must take something from the *current configuration* and return something from the *reference configuration*.
- \mathbb{F}^{-T} consequently takes something from the reference configuration and maps it to something from the current configuration.

Example. What when $\mathbb{C} = \mathbb{I}$? Can we say something about \mathbb{F} ? Write $\mathbb{C} = \mathbb{F}^{\mathsf{T}} \mathbb{F} = \mathbb{I}$, so $\mathbb{F}^{\mathsf{T}} = \mathbb{F}^{-1}$, det $\mathbb{F} > 0$. From this we have $\mathbb{F}(\mathbf{x}) = \mathbb{R}(\mathbf{x})$, $\mathbf{x} \in \Omega$, where \mathbb{R} is a rotation tensor. Investigate the cofactor of the deformation gradient:

$$\operatorname{cof} \mathbb{F} = \operatorname{det} \mathbb{F} \mathbb{F}^{-\mathsf{T}} = \operatorname{cof} \mathbb{R} = 1 \mathbb{R}(\mathbf{x}) = \mathbb{F}(\mathbf{x}).$$

This implies $\operatorname{cof} \mathbb{F} = \mathbb{F}$. Recall Piola's identity:

$$\mathbf{0} = \nabla \cdot \operatorname{cof} \mathbb{F} = \nabla \cdot \mathbb{F}(\mathbf{x}) = \nabla^2 \mathbf{y}(\mathbf{x}).$$

We have the identity: and since the LHS is zero, we also have $\|\nabla\nabla\mathbf{y}\| = 0 \Rightarrow \mathbf{y}(\mathbf{x}) = \mathbb{R}\mathbf{x} + \mathbf{v}$. Let \mathbb{R} be piecewise affine. Then $\mathbb{R}_1(\mathbb{I} - \mathbf{n} \otimes \mathbf{n}) = \mathbb{R}_2(\mathbb{I} - \mathbf{n} \otimes \mathbf{n})$, so $\mathbb{R}_1 - \mathbb{R}_2 = (\mathbb{R}_1 = \mathbb{R}_2) = (\mathbb{R}_1 - \mathbb{R}_2)\mathbf{n} \otimes \mathbf{n} = \mathbf{a} \otimes \mathbf{b}$, but that is not possible for two rotations; the rank of the RHS is one, whereas the LHS is not.

2 Forces

2.1 Forces in the deformed configuration

Recall $\mathbf{y}: \overline{\Omega} \to \overline{\Omega}^y$. We can define the **volume density of applied forces** $\mathbf{f}^y: \overline{\Omega}^y \to \mathbb{R}^3$ (in newtons per cubic meters, e.g. gravity). The same on the boundary $\mathbf{g}^y: \Gamma_N^y \to \mathbb{R}^3$ (**surface density of applied forces** (in newtons per square meters = Pascals, e.g. hydrostatic pressure.)

2.1.1 Cauchy stress tensor

Lemma 1 (Stress principle of Euler and Cauchy). There exists a (Cauchy) stress vector function $\mathbf{t}^y : \overline{\Omega}^y \times \mathcal{S}^{d-1} \to \mathbb{R}^d$ with the following properties.

- 1. If $\mathbf{x}^y \in \Gamma_N^y$, then $\mathbf{t}^y(\mathbf{x}^y, \mathbf{n}^y) = \mathbf{g}^y(\mathbf{x}^y)$, where \mathbf{n}^y is the unit outer normal vector to $\partial \Omega^y$ at \mathbf{x}^y .
- 2. $\forall \omega^y \in \Omega^y$ it holds that $\int_{\omega^y} \mathbf{f}(\mathbf{x}^y) d\mathbf{x}^y + \int_{\partial \omega^y} \mathbf{t}^y(\mathbf{x}^y, \mathbf{n}^y) dS^y = 0$. (Balance of forces in static equilibrium.
- 3. $\forall \omega^y \in \Omega^y$ it holds that $\int_{\omega^y} \mathbf{x}^y \times \mathbf{f}^y(\mathbf{x}^y) d\mathbf{x}^y + \int_{\partial \omega^y} \mathbf{x}^y \times \mathbf{t}^y(\mathbf{x}^y, \mathbf{n}^y) dS^y = \mathbf{0}$. (Balance of moment of forces in static equilibrium.)

Euler says that the direct consequence of this is the existence of $\mathbb{T}^y(\mathbf{x}^y)$ such that

$$\mathbf{t}^{y}(\mathbf{x}^{y}, \mathbf{n}^{y}) = \mathbb{T}^{y}(\mathbf{x}^{y})\mathbf{n}^{y},\tag{5}$$

where the tensorial quantity \mathbb{T} is called the **Cauchy stress tensor**.

2.1.2 Balance equations in the deformed configuration

Classical physics gives us 2 fundamental relations: Newtons second law for momenta and for angular momenta. We examine these in the continuum mechanics setting.

From second property it follows:

$$\int_{\omega^y} \mathbf{f}^y(\mathbf{x}^y) \, d\mathbf{x}^y = \int_{\partial \omega^y} \mathbb{T}^y(\mathbf{x}^y) \mathbf{n}^y \, dS^y = 0 = \int_{\omega^y} \nabla \cdot \mathbb{T}^y(\mathbf{x}^y) \, d\mathbf{x}^y, \tag{6}$$

so using the localization theorem we get

$$\mathbf{f}^y(\mathbf{x}^y) + \nabla \cdot \mathbf{T}^y(\mathbf{x}^y) = \mathbf{0}, \forall \mathbf{x}^y \in \Omega^y$$

From the third property it follows

$$\int_{\omega^{y}} \mathbf{x}^{y} \times \mathbf{f}^{y}(\mathbf{x}^{y}) d\mathbf{x}^{y} + \int_{\partial\omega^{y}} \mathbf{x}^{y} \times \mathbb{T}^{y}(\mathbf{x}^{y}) \mathbf{n}^{y} dS^{y} =$$

$$= \int_{\omega^{y}} \varepsilon_{ijk} x_{j}^{y} f_{k}^{y} d\mathbf{x}^{y} + \int_{\omega^{y}} \varepsilon_{ijk} x_{j}^{y} (T_{km}^{y} n_{m}^{y}) dS^{y} = \int_{\omega^{y}} \varepsilon_{ijk} x_{j}^{y} f_{k}^{y} d\mathbf{x}^{y} = \int_{\omega^{y}} \varepsilon_{ijk} \frac{\partial (x_{j}^{y} T_{km}^{y})}{\partial x_{m}^{y}} d\mathbf{x}^{y} =$$

$$= \int_{\omega^{y}} \varepsilon_{ijk} x_{j}^{y} f_{k}^{y} d\mathbf{x}^{y} + \int_{\omega^{y}} \varepsilon_{ijk} x_{j}^{y} \frac{\partial T_{km}}{\partial x_{m}^{y}} d\mathbf{x}^{y} + \int_{\omega^{y}} \varepsilon_{ijk} \delta_{jm} T_{km}^{y} d\mathbf{x}^{y} = \mathbf{0}.$$

The last term implies

$$\int_{\omega^y} \varepsilon_{ijk} T_{kj}^y = 0,$$

and using the localization theorem, we obtain

$$T_{ij}^{y}(\mathbf{x}^{y}) = T_{ji}^{y}(\mathbf{x}^{y}), \quad i.e. \mathbb{T}^{y}(\mathbf{x}^{y}) = (\mathbb{T}^{y}(\mathbf{x}^{y}))^{\mathsf{T}}.$$
 (7)

The Cauchy stress tensor is symmetric.

2.2 Forces in the undeformed configuration

We have obtained the equations in the deformed configuration. That is however unconvenient - we solve the equations to find the deformed configuration. This brings us to find a new way to write the equations - in the reference configuration. The construction is a bit synthetic, our intuition will be guided by the requirement to obtain similair equations as in the current configuration.

2.2.1 Piola-Kirchhoff stresses

Definition 1 (First Piola-Kirchhoff stress tensor). Given the Cauchy stress tensor $\mathbb{T}^y(\mathbf{x}^y)$, we define the **First Piola Kirchhoff stress tensor**

$$\mathbb{T}: \overline{\Omega} \to \mathbb{R}^{3\times 3}, \mathbb{T}(\mathbf{x}) = \mathbb{T}^y(\mathbf{x}^y) \operatorname{cof} \mathbb{F}(\mathbf{x}) = \det \mathbb{F}(\mathbf{x}) \mathbb{T}^y(\mathbf{x}^y) \mathbb{F}^{-\top}(\mathbf{x}).$$

Definition 2 (Second Piola-Kirchhoff stress tensor). The quantity

$$\mathbb{S}(\mathbf{x}) = \mathbb{F}^{-1}\mathbb{T}(\mathbf{x}) = \mathbb{S}(\mathbf{x})^{\mathsf{T}},$$

is called the second Piola-Kirchhoff stress tensor.

Remark. The first PK tensor \mathbb{T} is not symmetric in general., but the second $\mathbb{S}(\mathbf{x}) = \mathbb{F}^{-1} = \det \mathbb{F}(\mathbf{x}) \mathbb{F}^{-1} \mathbb{T}^y(\mathbf{x}^y) \mathbb{F}^{-\top}(\mathbf{x})$ is. Also, we see that not every matrix can serve as \mathbb{T} ; it must hold $\mathbb{T}(\mathbf{x})(\cot \mathbb{F}^{-1})$ is symmetric.

Remark. We have the following identity (using Piola's identity):

$$\nabla \cdot \mathbb{T}(\mathbf{x}) = \det \mathbb{F}(\mathbf{x}) \nabla \cdot \mathbb{T}^y (\mathbf{x}^y)^y. \tag{8}$$

2.2.2 Balance equations in the deformed configuration

Recall the balance of momentum

$$-\nabla \cdot (\mathbb{T}^y(\mathbf{x}^y)) = \mathbf{f}^y(\mathbf{x}^y) \text{ in } \Omega^y,$$

multiplying by det $\mathbb{F} > 0$ yields

$$\det \mathbb{F} \nabla \cdot (\mathbb{T}^y(\mathbf{x}^y)) = \det \mathbb{F}(\mathbf{x}) \mathbf{f}^y(\mathbf{x}^y), \tag{9}$$

which begs for the definition

$$f(x) = \det \mathbb{F}(x)f^y(y(x)),$$

as the force in the referential configuration.

In total, the total acting body force on the body can be written as

$$\int_{\mathbf{y}(\omega)} \mathbf{f}^y(\mathbf{x}^y) \, \mathrm{d}\mathbf{x}^y = \int_{\omega} \mathbf{f}^y(\mathbf{y}(\mathbf{x})) \det \mathbb{F}(\mathbf{x}) \, \mathrm{d}x = \int_{\omega} \mathbf{f}(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

We can do the same for the balance of surface forces; the total contact force acting on the body is

$$\begin{split} \int_{\Gamma_N^y} \mathbf{g}^y(\mathbf{x}^y) \, \mathrm{d}S^y &= \int_{\partial \omega^y} \mathbf{t}^y(\mathbf{x}^y, \mathbf{n}^y) \, \mathrm{d}S^y = \int_{\partial \mathbf{y}(\omega)} \mathbb{T}^y(\mathbf{x}^y) \mathbf{n}^y \, \mathrm{d}S^y = \\ &= \int_{\partial \omega} \mathbb{T}^y(\mathbf{y}(\mathbf{x})) \cos \mathbb{F}(t, \mathbf{x}) \mathbf{n} \, \mathrm{d}S = \int_{\partial \omega} \mathbb{T}(\mathbf{x}) \mathbf{n} \, \mathrm{d}S \,, \end{split}$$

so if we define

$$g(x) = T(x)n(x)$$

as the contact force in the $referential\ configuration$, we formally have a similar expression.

3 Elasticity

Definition 3 (Elasticity). We say that a material is **elastic** (or Cauchy elastic) if there is a response function $\tilde{\mathbb{T}}^D: \Omega^y \times \mathbb{R}^{3\times 3}_+ \to \mathbb{R}^{3\times 3}_{\text{sym}}$ such that

$$\mathbb{T}^y(\mathbf{x}^y) = \tilde{\mathbb{T}}^D(\mathbf{x}, \mathbb{F}).$$

The response function is also called the **constitutive law**.

Remark. If we know the material is elastic, we also have the information about the First Piola-Kirchhoff stress, as $\mathbb{T}(\mathbf{x}) = \mathbb{T}^y(\mathbf{x}^y) \operatorname{cof} \mathbb{F}$, so

$$\mathbb{T}(\mathbf{x}) = \tilde{\mathbb{T}}^D(\mathbf{x}, \mathbb{F}) \operatorname{cof} \mathbb{F} = \tilde{\mathbb{T}}(\mathbf{x}, \mathbb{F}). \tag{10}$$

3.1 Frame invariance principle

The frame invariance principle states:

$$\tilde{\mathbb{T}}^D(\mathbf{x},\mathbb{R}\mathbf{x}) = \mathbb{R}\tilde{\mathbb{T}}^D(\mathbf{x},\mathbb{F})\mathbb{R}^{\scriptscriptstyle \top}, \forall \mathbb{R} \in \mathrm{SO}(3)\,, \forall \mathbf{x} \in \overline{\Omega},$$

from which it follows ($\tilde{\mathbb{T}}$ is defined in 10)

$$\tilde{\mathbb{T}}(\mathbf{x}, \mathbb{RF}) = \det(\mathbb{RF})\tilde{\mathbb{T}}^{D}(\mathbf{x}, \mathbb{RF})(\mathbb{RF})^{-\top} = \det(\mathbb{RF})\mathbb{R}\tilde{\mathbb{T}}^{D}(\mathbf{x}, \mathbb{F})\mathbb{R}^{\top}\mathbb{RF}^{-\top} = \det\mathbb{F}\mathbb{R}\tilde{\mathbb{T}}^{D}(\mathbf{x}, \mathbb{F})\mathbb{F}^{-\top} = \mathbb{R}\tilde{\mathbb{T}}(\mathbf{x}, \mathbb{F}),$$
thus

$$\tilde{\mathbb{T}}(\mathbf{x}, \mathbb{RF}) = \mathbb{R}\tilde{\mathbb{T}}(\mathbf{x}, \mathbb{F}), \text{ i.e. } \mathbb{R}^{\mathsf{T}}\tilde{\mathbb{T}}(\mathbf{x}, \mathbb{RF}) = \tilde{\mathbb{T}}(\mathbf{x}, \mathbb{F}), \forall \mathbb{R} \in \mathrm{SO}(3), \forall \mathbb{F} \in \mathbb{R}^{3\times 3}_{+}.$$

3.2 Isotropic material

Recall $\mathbb{T}^y(\mathbf{x}^y) = \tilde{\mathbb{T}}^D(\mathbf{x}, \mathbb{F}), \mathbf{y} : \overline{\Omega} \to \Omega^y = \mathbf{y}(\Omega)$. Take $\mathbf{x}_0 \in \overline{\Omega}$ general but fixed, take $\mathbf{v}(\mathbf{z}) = \mathbf{x}_0 + R^{\mathsf{T}}(\mathbf{z} - \mathbf{x}_0)$ for some $\mathbb{R} \in SO(3)$ and define a new deformation

$$\tilde{\mathbf{y}} = \mathbf{y} \circ \mathbf{v}^{-1} : \mathbf{v}(\overline{\Omega}) \to \mathbf{y}(\overline{\Omega}), \tilde{\mathbf{y}}(\tilde{\mathbf{x}}) = \mathbf{y}(\mathbf{x}_0 + \mathbb{R}(\tilde{\mathbf{x}} - \mathbf{x}_0)).$$

This implies

$$\mathbf{x}_0^y = \mathbf{x}_0^{\tilde{y}}, \mathbb{T}^y(\mathbf{x}_0^y) = \tilde{\mathbb{T}}^D(\mathbf{x}_0, \mathbb{F}) = \mathbb{T}^{\tilde{y}}(\mathbf{x}_0^{\tilde{y}}) = \tilde{\mathbb{T}}^D(\mathbf{x}_0, \tilde{\mathbb{F}}(\mathbf{x}_0)) = \tilde{\mathbb{T}}^D(\mathbf{x}_0, \mathbb{F}(\mathbf{x}_0)\mathbb{R}).$$

Definition 4 (Isotropic material). We call the material **isotropic** if it holds

$$\tilde{\mathbb{T}}^D(\mathbf{x}, \mathbb{F}) = \tilde{\mathbb{T}}^D(\mathbf{x}, \mathbb{FR}), \forall \mathbb{R} \in SO(3), \forall \mathbb{F} \in \mathbb{R}^{3\times 3}_+.$$

Remark. For the first Piola-Kirchhoff we obtain: $\mathbb{T}^D(\mathbf{x}, \mathbb{FR}) = \mathbb{T}^D(\mathbf{x}, \mathbb{F})\mathbb{R}$, which means

$$\mathbb{T}^D(\mathbf{x},\mathbb{QFR}) = \mathbb{Q}\tilde{\mathbb{T}}^D\mathbb{R}, \forall \mathbb{R}, \mathbb{Q} \in \mathrm{SO}(3)\,, \forall \mathbb{F} \in \mathbb{R}_+^{3\times 3}.$$

3.3 Hyperelastic materials

Definition 5. We say that a material is hyperelastic if there is a function $W: \overline{\Omega} \times \mathbb{R}^{3\times 3}_+ \to \mathbb{R}$ such that

$$\mathbb{T}(\mathbf{x}) = \widetilde{\mathbb{T}}(\mathbf{x}, \mathbb{F}) = \frac{\partial W(\mathbf{x}, \mathbb{F})}{\partial \mathbb{F}}, \mathbb{F} = \nabla \mathbf{y}(\mathbf{x}).$$

The function $W, [W] = \frac{J}{m^3} = \frac{Nm}{m^3} = \text{Pa}$ is called **stored energy density.**

Remark. Evidently, W has a potential.

3.4 Properties of W

It is physical to assume

- 1. $W \ge 0$ (energy is nonnegative)
- 2. $W(\mathbf{x}, \mathbb{F}) = W(\mathbf{x}, \mathbb{RF}), \forall \mathbb{R} \in SO(3), \forall \mathbf{x} \in \overline{\Omega}, \forall \mathbb{F} \in \mathbb{R}^{3\times 3}_{+}$. (energy does not change under rotations ¹

 $^{^{1}\}mathrm{If}$ this was not true, you could create infinite energy by just spinning a rubber.

- 3. $W(\mathbf{x}, \mathbb{R}\mathbb{U}) = W(\mathbf{x}, \mathbb{U}), \mathbb{U} = \sqrt{\mathbb{C}}$. (matrices are from the polar decomposition)
- 4. $W(\mathbf{x}, \mathbb{F}) \to \infty$ if det $\mathbb{F} \to 0_+$ (it takes infinite energy to deform the body to a point)
- 5. $W(\mathbf{x}, \mathbb{F}) \ge \alpha (\|\mathbb{F}\|^p + \|\operatorname{cof} \mathbb{F}\|^q + (\det \mathbb{F})^r) d, \forall \alpha > 0, \forall p, q, r \ge 1, \forall d \in \mathbb{R}, \forall \mathbf{x} \in \overline{\Omega}, \forall \mathbb{F} \in \mathbb{R}^{3 \times 3}_{+}$.

Definition 6 (Natural state of the body). The natural state of the body is the state in which

$$W(\mathbf{x}, \mathbb{F}) = 0 \wedge \frac{\partial W}{\partial \mathbb{F}}(\mathbf{x}, \mathbb{F}) = 0. \tag{11}$$

Remark (Unnatural vegetable). Not all materials (bodies) have its natural states. Zum Beispiel, carrot does not have a natural state.

From the previous work, we can write $\mathbb{R}^{\mathsf{T}} \frac{\partial W(\mathbf{x}, \mathbb{R}\mathbb{F})}{\partial \mathbb{F}} = \frac{\partial W(\mathbf{x}, \mathbb{F})}{\partial \mathbb{F}}$, and for brevity denote $W(\mathbf{x}, \mathbb{R}\mathbb{F}) = W_R(\mathbf{x}, \mathbb{F})$. Next, we suppose we can Taylor expand:

$$W_{R}(\mathbf{x}, \mathbb{F} + \tilde{\mathbb{F}}) = W(\mathbf{x}, \mathbb{R}\mathbb{F} + \mathbb{R}\tilde{\mathbb{F}}) = W(\mathbf{x}, \mathbb{R}\mathbb{F}) + \frac{\partial W(\mathbf{x}, \mathbb{R}\mathbb{F})}{\partial \mathbb{F}} : (\mathbb{R}\tilde{\mathbb{F}}) + \text{h.o.t.}$$
$$= W_{R}(\mathbf{x}, \mathbb{F}) + \mathbb{R}^{\mathsf{T}} \frac{\partial W(\mathbf{x}, \mathbb{R}\mathbb{F})}{\partial \mathbb{F}} : \tilde{\mathbb{F}} + \text{h.o.t.}.$$

Moreover

$$W_R(\mathbf{x}, \mathbb{F} + \tilde{\mathbb{F}}) = W_R(\mathbf{x}, \mathbb{F}) + \frac{\partial W_R(\mathbf{x}, \mathbb{F})}{\partial \mathbb{F}} : \tilde{\mathbb{F}}.$$

Altogether

$$\frac{\partial}{\partial \mathbb{F}} (W_R(\mathbf{x}, \mathbb{F}) - W_R(\mathbf{x}, \mathbb{F})) = 0,$$

from which it follows ²

$$W(\mathbf{x}, \mathbb{RF}) = W(\mathbf{x}, \mathbb{F}) + k(\mathbb{R}).$$

Take $\mathbb{F} = \mathbb{I}$, then

$$W(\mathbf{x}, \mathbb{R}^2) = W(\mathbf{x}, \mathbb{R}\mathbb{R}) = W(\mathbf{x}, \mathbb{R}) + k(\mathbb{R}) = W(\mathbf{x}, \mathbb{I}) + 2k(\mathbb{R}),$$

so

$$W(\mathbf{x}, \mathbb{R}^n) = W(\mathbf{x}, \mathbb{I}) + nk(\mathbb{R}).$$

Since the set of rotations is closed and bounded, it is compact, so there exists a convergent subsequence of $\{\mathbb{R}^n\}$. Moreover, we assume W to be continuous (we took the derivative...), so $\lim_{n\to\infty} W(\mathbf{x},\mathbb{R}^n)$ exists and from the properties of W we get it is finite. But then $k(\mathbb{R}) = 0$, as otherwise $nk(\mathbb{R}) \to \infty$. All in all, we have shown

$$W(\mathbf{x}, \mathbb{RF}) = W(\mathbf{x}, \mathbb{F}). \tag{12}$$

Definition 7 (Energy functional). Let us have $\partial\Omega = \Gamma_N \cup \Gamma_D$, $\Gamma_N \cap \Gamma_D = \emptyset$, where the parts of the boundary are those when Neumann/Dirichlet boundary conditions are prescribed. The energy functional of the material is the functional

$$I(\mathbf{y}) = \int_{\Omega} W(\mathbf{x}, \mathbb{F}(\mathbf{x})) d\mathbf{x} - \int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot \mathbf{y}(\mathbf{x}) d\mathbf{x} - \int_{\Gamma_{N}} \mathbf{g}(\mathbf{x}) \cdot \mathbf{y}(\mathbf{x}) dS,$$

²The set of matrices with positive determinant is connected.

where the first part corresponds to the stored energy and the remaining terms are the work done by the external loads.

Remark. If y is the minimizer of I, then $I(t\varphi + y) \ge I(y), \forall t, \varphi$. If we denote

$$a(t) \coloneqq I(t\varphi + \mathbf{y}),$$

then it most hold

$$0 = a'(0) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} W(\mathbb{F} + t\nabla \varphi) \, \mathrm{d}\mathbf{x} - \int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot (\mathbf{y}(\mathbf{x}) + t\varphi(\mathbf{x})) \, \mathrm{d}\mathbf{x} - \int_{\Gamma_{N}} \mathbf{g}(\mathbf{x}) \cdot (\mathbf{y}(\mathbf{x}) + t\varphi(\mathbf{x})) \, \mathrm{d}\mathbf{x} \right) \Big|_{t=0}$$

calculating the derivatives yields

$$0 = \int_{\Omega} \frac{\partial W(\mathbb{F})}{\partial \mathbb{F}} : \nabla \varphi \, d\mathbf{x} - \int_{\Omega} \mathbf{f} \cdot \varphi \, d\mathbf{x} - \int_{\Gamma_{N}} \mathbf{g} \cdot \varphi \, dS =$$

$$= \int_{\Omega} \frac{\partial}{\partial x_{j}} \left(\frac{\partial W(\mathbb{F})}{\partial F_{ij}} \varphi_{i} \right) d\mathbf{x} - \int_{\Omega} \frac{\partial}{\partial x_{j}} \left(\frac{\partial W(\mathbb{F})}{\partial F_{ij}} \right) \varphi_{i} \, d\mathbf{x} - \int_{\Omega} \mathbf{f} \cdot \varphi \, d\mathbf{x} - \int_{\Gamma_{N}} \mathbf{g} \cdot \varphi \, dS =$$

$$= \int_{\Gamma_{N}} \frac{\partial W(\mathbb{F})}{\partial F_{ij}} \varphi_{i} n_{j} \, dS - \int_{\Omega} \frac{\partial}{\partial x_{j}} \left(\frac{\partial W(\mathbb{F})}{\partial F_{ij}} \right) \varphi_{i} \, d\mathbf{x} - \int_{\Omega} \mathbf{f} \cdot \varphi \, d\mathbf{x} - \int_{\Gamma_{N}} \mathbf{g} \cdot \varphi \, dS,$$

so it must hold

$$-\frac{\partial}{\partial x_j} \left(\frac{\partial W(\mathbb{F})}{\partial F_{ij}} \right) = f_i \text{ in } \Omega, \frac{\partial W(\mathbb{F})}{\partial F_{ij}} n_j = g_i \text{ on } \Gamma_N.$$

This is exactly

$$-\nabla \cdot \mathbb{T} = \mathbf{f} \text{ in } \Omega, \mathbb{T} \mathbf{n} = \mathbf{g}, \text{ on } \Gamma_N.$$

This implies that \mathbf{y} minimizes energy $\Leftrightarrow \mathbf{y}$ is governed by the equations of classical mechanis.

Are there some other qualities of W? It is natural to assume

$$W(\mathbb{I}) = 0 \Rightarrow W(\mathbb{R}) = 0, \forall \mathbb{R} \in SO(3)$$

and $W(\mathbb{F}) > 0$ whenever $\mathbb{F} \notin SO(3)$ This however implies W is not convex! Assume

$$\mathbb{R}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbb{R}_2 = \mathbb{I},$$

then

$$W\left(\frac{1}{4}\mathbb{R}_1 + \frac{3}{4}\mathbb{R}_2\right) > \frac{1}{4}W(\mathbb{R}_1) + \frac{3}{4}W(\mathbb{R}_2) = 0.$$

Example (Minimizer does not exist). Assume $J(u) = \int_0^1 (1 - (u'(x))^2)^2 + u(x)^2 dx$, $u \in W^{1,4}(0,1)$, u(0) = u(1) = 0, and find the minimum of J. First of all, J > 0, so the minimum also. I can take u_k such that $u'_k(x) = 1$ on (0,1/2) and $u'_k(x) = -1$ on (1/2,1). Then $J(u_k) \to 0 \Rightarrow \inf J = 0$ but there is no minimizer.

Not everything is lost...

Definition 8 (Polyconvexity, 1977 J.M. Ball). $W: \mathbb{R}^{3\times 3} \to \mathbb{R} \cup \{\infty\}$ is polyconvex provided there exists convex and lower-semicontinuous function $h: \mathbb{R}^{19} \to \mathbb{R} \cup \{\infty\}$:

$$W(\mathbb{A}) = h(\mathbb{A}, \operatorname{cof} \mathbb{A}, \det \mathbb{A}).$$

Example. • If W is convex and lower-semicontinuous then W is polyconvex.

• $W(\mathbb{A}) = \det \mathbb{A}$ is polyconvex but not convex.

Remark (Weak convergence in $\Omega; \mathbb{R}^3$). Let $1 and <math>\{\mathbf{u_k}\} \subset \Omega; \mathbb{R}^3$. We say $\{\mathbf{u_k}\}$ converges weakly to \mathbf{u} in $\Omega; \mathbb{R}^3$ provided

$$\int_{\Omega} \mathbf{u}_{\mathbf{k}} \boldsymbol{\cdot} \boldsymbol{\varphi} \, \mathrm{d}\mathbf{x} \to \int_{\Omega} \mathbf{u} \boldsymbol{\cdot} \boldsymbol{\varphi} \, \mathrm{d}\mathbf{x} \,, \, \forall \boldsymbol{\varphi} \in [p']\Omega; \mathbb{R}^3.$$

Theorem 2 (Magic). Assume that \mathbf{y}^k converges weakly to \mathbf{y} in $[1][p]\Omega; \mathbb{R}^3, \Omega \subset \mathbb{R}^3 \in C^{0,1}, p > 3$. Then $\det \nabla \mathbf{y}^k$ converges weakly to $\det \nabla \mathbf{y}$ in $[\frac{p}{3}]\Omega$. Moreover $\cot \nabla \mathbf{y}^l$ converges weakly to $\cot \nabla \mathbf{y}$ in $[\frac{p}{3}]\Omega$; $\mathbb{R}^{3\times 3}$.

Proof. Only in 2 dimensions. The determinant can be written as:

$$\det \nabla \mathbf{y} = \frac{\partial y_1}{\partial x_1} \frac{\partial y_2}{\partial x_2} - \frac{\partial y_1}{\partial x_2} \frac{\partial y_2}{\partial x_1} = \frac{\partial}{\partial x_1} \left(y_1 \frac{\partial y_2}{\partial x_2} \right) - \frac{\partial}{\partial x_2} \left(y_1 \frac{\partial y_2}{\partial x_1} \right) = \nabla \cdot \left(y_1, -\frac{\partial y_2}{\partial x_1} \right),$$

so then

$$\int_{\Omega} \det \nabla \mathbf{y}^{k} \varphi \, \mathrm{d}x = \int_{\Omega} \frac{\partial}{\partial x_{1}} \left(y_{1}^{k} \frac{\partial y_{2}^{k}}{\partial x_{2}} \right) \varphi \, \mathrm{d}x - \int_{\Omega} \frac{\partial}{\partial x_{2}} \left(y_{1}^{k} \frac{\partial y_{2}^{k}}{\partial x_{1}} \right) \varphi \, \mathrm{d}x = -\int_{\Omega} y_{1}^{k} \frac{\partial y_{2}^{k}}{\partial x_{2}} \frac{\partial \varphi}{\partial x_{1}} \, \mathrm{d}x + \int_{\Omega} \frac{\partial \varphi}{\partial x_{2}} y_{1}^{k} \frac{\partial y_{2}^{k}}{\partial x_{1}} \, \mathrm{d}x \, ,$$

and the result follows from the embedding theorems and strong convergence (strong times weak gives weak convergence). $\hfill\Box$

4 Tutorials

4.1 Change of observer

The requirement of material frame indifference yields:

$$W = \hat{W}(\mathbb{F}) = \hat{W}(\mathbb{QF}), \forall \mathbb{Q} \in \text{ orth }.$$

4.2 Change of reference configuration

The requiremenent of material symmetry yields:

$$W = \hat{W}(\mathbb{F}) = \hat{W}(\mathbb{FP}), \forall \mathbb{P} \in \mathcal{G},$$

where \mathcal{G} is the symmetry group of the material.

4.3 Consequences of isotropic hyperelastic solid

Remark (Groups unim, orth). The "biggest sensible" symmetry group is the unimodular group:

unim =
$$\{\mathbb{P}, \det \mathbb{P} = \pm 1\}.$$

There exists another common group:

$$\operatorname{orth}\left\{\mathbb{Q},\mathbb{Q}\mathbb{Q}^{\top}=\mathbb{Q}^{\top}\mathbb{Q}=\mathbb{I}\right\}\subset\,\operatorname{unim}\,.$$

We thus have $W = \hat{W}(\mathbb{F}) = \hat{W}(\mathbb{QF}) = \hat{W}(\mathbb{FQ}), \forall \mathbb{Q} \in \text{ orth }, \forall \mathbb{F}.$

Use polar decomposition: $\mathbb{F} = \mathbb{RU} = \mathbb{VR}, \mathbb{R} \in \text{orth}, \mathbb{U}, \mathbb{V} \text{ positively definite}, \mathbb{U} = \sqrt{\mathbb{C}}, \mathbb{V} = \sqrt{\mathbb{B}}.$

To make use of it, we first use m.f.i. and then isotropy and then first use isotropy and then m.f.i. So from material frame indifference

$$W = \hat{F}(\mathbb{F}) = \hat{W}(\mathbb{QF}) = \hat{W}(\mathbb{R}^{\mathsf{T}} \mathbb{RU}) = \hat{W}(\mathbb{U}) = \overline{W}(\mathbb{C}),$$

where we have taken $\mathbb{Q} = \mathbb{R}^{\mathsf{T}}$. Note that this works universaly (without the need of isotropy), as it comes from the objectivity consideration.

From isotropy

$$W = \hat{W}(\mathbb{F}) = \hat{W}(\mathbb{FQ}) = \overline{W}(\mathbb{C}) = \overline{W}((\mathbb{FQ})^{\mathsf{T}}(\mathbb{FQ})) = \overline{W}(\mathbb{Q}^{\mathsf{T}}\mathbb{F}^{\mathsf{T}}\mathbb{FQ}) = \overline{W}(\mathbb{Q}^{\mathsf{T}}\mathbb{CQ}), \forall Q \in \text{ orth }, \forall \mathbb{C} \text{ admissable }.$$

Now backwards using the second polar decomposition:

$$W = \hat{W}(\mathbb{F}) = \hat{W}(\mathbb{FQ}) = \hat{W}(\mathbb{VRQ}) = \hat{W}(\mathbb{VRR}^{\mathsf{T}}) = \hat{W}(\sqrt{\mathbb{B}}) = \tilde{W}(\mathbb{B}),$$

$$W = \tilde{W}(\mathbb{B}) = \tilde{W}(\mathbb{QF}(\mathbb{QF})^{\mathsf{T}}) = \tilde{W}(\mathbb{QBQ}^{\mathsf{T}}).$$

So far, we have shown

$$W(t, \mathbf{X}) = \overline{W}(\mathbb{C}(t, \mathbf{X}), \mathbf{X}) = \overline{W}(\mathbb{QCQ}^{\mathsf{T}}),$$

$$W(t, \mathbf{X}) = \tilde{W}(\mathbb{B}(t, \mathbf{X}), \mathbf{X}) = \tilde{W}(\mathbb{QBQ}^{\mathsf{T}}),$$

In HW, we will know

$$\mathbb{T} = 2 \frac{\partial \hat{W}(\mathbb{F})}{\partial \mathbb{F}}, T_{iJ} = 2 \frac{\partial \hat{W}}{\partial F_{iJ}}$$

and we can show

$$\mathbb{T} = 2\frac{\partial \hat{W}(\mathbb{F})}{\partial \mathbb{F}} = 2\mathbb{F}\frac{\partial \tilde{W}(\mathbb{B})}{\partial \mathbb{B}}\mathbb{F}, \mathbb{T}^y = \dots, \mathbb{S} = 2\frac{\partial \overline{W}(\mathbb{C})}{\partial \mathbb{C}}.$$

Definition 9 (Isotropic functions). We say the functions $\hat{a}(y_{\alpha}, \mathbf{y}_{\alpha}, \mathbb{Y}_{\alpha})$, $\hat{\mathbf{a}}(y_{\alpha}, \mathbf{y}_{\alpha}, \mathbb{Y}_{\alpha})$, $\hat{\mathbb{A}}(y_{\alpha}, \mathbf{y}_{\alpha}, \mathbb{Y}_{\alpha})$, $\hat{\mathbb{A}}(y_{\alpha$

$$\hat{a}(y_{\alpha}, \mathbf{y}_{\alpha}, \mathbb{Y}_{\alpha}) = \hat{a}(y_{\alpha}, \mathbb{Q}\mathbf{y}_{\alpha}, \mathbb{Q}\mathbb{Y}_{\alpha}\mathbb{Q}^{\mathsf{T}}),$$

$$\mathbb{Q}\hat{\mathbf{a}}(y_{\alpha}, \mathbf{y}_{\alpha}, \mathbb{Y}_{\alpha}) = \hat{\mathbf{a}}(y_{\alpha}, \mathbb{Q}\mathbf{y}_{\alpha}, \mathbb{Q}\mathbb{Y}_{\alpha}\mathbb{Q}^{\mathsf{T}}),$$

$$\mathbb{Q}\hat{\mathbb{A}}\mathbb{Q}^{\mathsf{T}} = \hat{\mathbb{A}}(y_{\alpha}, \mathbb{Q}\mathbf{y}_{\alpha}, \mathbb{Q}\mathbb{Y}_{\alpha}\mathbb{Q}^{\mathsf{T}}),$$

•

So we see that $\overline{W}(\mathbb{C}), \tilde{W}(\mathbb{B})$ are scalar isotropic functions of 1 tensorial (symmetric) argument.

Theorem 3 (Representation theorem for scalar isotropic functions). Let $\psi = \hat{\psi}(\mathbb{A}) = \hat{\psi}(\mathbb{Q}\mathbb{A}\mathbb{Q}^{\mathsf{T}})$ be a scalar isotropic function of a single symmetric tensorial variable. Then it must hold

$$\hat{\psi}(\mathbb{A}) \equiv \hat{\psi}(I_1(\mathbb{A}), I_2(\mathbb{A}), I_3(\mathbb{A})),$$

where

$$\begin{split} &I_{1}\left(\mathbb{A}\right)=\operatorname{tr}\mathbb{A},\\ &I_{2}\left(\mathbb{A}\right)=\frac{1}{2}\Big((\operatorname{tr}\mathbb{A})^{2}-\operatorname{tr}\mathbb{A}^{2}\Big),\\ &I_{3}\left(\mathbb{A}\right)=\det\mathbb{A}, \end{split}$$

are the invariants of A.

Proof. det $(\mathbb{A} - \lambda \mathbb{I}) = -\lambda^3 + \lambda^2 I_1 - \lambda I_2 + I_3 = p_{\lambda}(\mathbb{A})$ We will prove a different assertion:

 \mathbb{A} , \mathbb{B} are symmetric with the same invariants $\Leftrightarrow \mathbb{BQ} : \mathbb{A} = \mathbb{QBQ}^T$ " \Leftarrow " is trivial, as then the matrices are similliar, so they have the same char. polynomial, so they have the same invariants. \Rightarrow have same eigenvalues, so if i write the spectral decomposition, i can write

$$A = QAQ^{\mathsf{T}}, B = QAR^{\mathsf{T}} = RQ^{\mathsf{T}}AQR^{\mathsf{T}}.$$

Now suppose that the function is not a function of the invariants: $\hat{\psi} \neq \tilde{\psi}(I_1, I_2, I_3)$. That means $\exists \mathbb{A}_{,}, \mathbb{A}_2$ such that $I_1(\mathbb{A}_1) = I_1(\mathbb{A}_2)$ and the same for the remaining invariants. Using the previous assertion, we have

$$\exists \mathbb{Q} : \mathbb{A}_1 = \mathbb{Q} \mathbb{A}_2 \mathbb{Q}^{\mathsf{T}} \Rightarrow \hat{\psi}(\mathbb{A}_1) = \hat{\psi}(\mathbb{Q} \mathbb{A}_2 \mathbb{Q}^{\mathsf{T}}) = \hat{\psi}(\mathbb{A}_2), \text{ but } \hat{\psi}(\mathbb{A}_1) \neq \hat{\psi}(\mathbb{A}_2).$$

Since using polar decomposition it can be shown the invariants of \mathbb{B}, \mathbb{C} are the same we recieve

$$W = \widetilde{W}(I_1(\mathbb{B}), I_2(\mathbb{B}), I_3(\mathbb{B})) = \overline{W}(I_1(\mathbb{C}), I_2(\mathbb{C}), I_3(\mathbb{C})).$$

4.4 Representation in terms of principial stresses

... in terms of the eigenvalues \mathbb{U}, \mathbb{V} . The invariants can be expressed as

$$\begin{split} &I_1 = \lambda_1 + \lambda_2 + \lambda_3, \\ &I_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3, \\ &I_3 = \lambda_1 \lambda_2 \lambda_3. \end{split}$$

Often in materials science the quantites can be expressed in these variables:

Example (Ogden materials).

$$\hat{W}(\lambda_1, \lambda_2, \lambda_3) = \sum_{k=1}^n \frac{\mu_k}{\alpha_k} \left(\lambda_1^{\alpha_k} + \lambda_2^{\lambda_k} + \lambda_3^{\alpha_k} - 3 \right)$$

How to calculate e.g. $\mathbb T$ in this representation?

$$\mathbb{T} = 2 \frac{\partial W(\mathrm{I}_1, \mathrm{I}_2, \mathrm{I}_3)}{\partial \mathbb{B}} \mathbb{F} = 2 \frac{\partial \hat{W}}{\partial \mathbb{B}} (\lambda_1(\mathbb{B}), \lambda_2(\mathbb{B}), \lambda_3(\mathbb{B})) 2 \frac{\partial \hat{W}}{\partial \lambda_i} \frac{\partial \lambda_i(\mathbb{B})}{\partial \mathbb{B}} \mathbb{F}.$$

What (in the hell) is $\frac{\partial \lambda_i(\mathbb{B})}{\partial \mathbb{B}}$? ³

$$\mathbb{B}(s) = \sum_{\alpha=1}^{3} \omega_{\alpha}(s) \mathbf{g}_{\alpha}(s) \otimes \mathbf{g}_{\alpha}(s), \forall s \in I$$

where I is some open interval and $\{\mathbf{g}_{\alpha}\}$ is an ON eigenbasis of \mathbb{B} . Next, realize

$$\omega_1(s) = \mathbf{g}_1(s) \cdot \mathbb{B}(s)\mathbf{g}_1(s),$$

and differentiate this:

$$\frac{\mathrm{d}\omega(s)}{\mathrm{d}s} = \frac{\mathrm{d}\mathbf{g}_1}{\mathrm{d}s} \cdot \mathbb{B}\mathbf{g}_1 + \mathbf{g}_1 \frac{\mathrm{d}\mathbb{B}}{\mathrm{d}s} \mathbf{g}_1 + \mathbf{g}_1 \cdot \mathbb{B} \frac{\mathrm{d}\mathbf{g}}{\mathrm{d}s} = \frac{1}{2} + +0.$$

 $^{^3}$ Recall the Daleckii-Krein theorem: