Применение комплексно-значного метода анализа сингулярного спектра

Жорникова Полина Георгиевна, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э. Рецензент: ассистент Шлемов А.Ю.

Санкт-Петербург 2016г.

Введение: Общая постановка задачи

Комплексный временной ряд $F_N=F_N^{(1)}+\mathrm{i} F_N^{(2)}$, где $F_N^{(i)}=(f_1^{(i)},\dots,f_N^{(i)}),\ i=1,2,$ — вещественные.

Проблема: найти компоненты разложения $F_N=T_N+S_N+R_N$, где $T_N=T_N^{(1)}+\mathrm{i}T_N^{(2)},\ S_N=S_N^{(1)}+\mathrm{i}S_N^{(2)},\ R_N=R_N^{(1)}+\mathrm{i}R_N^{(2)},$ $T_N^{(i)}-$ тренд, $S_N^{(i)}-$ периодика и $R_N^{(i)}-$ шум для ряда $F_N^{(i)}.$

Метод: **SSA (Singular Spectrum Analysis)** [Golyandina N., Nekrutkin V., Zhigljavsky A., 2001] — для вещественных рядов,

Complex SSA [Keppenne C., Lall U., 1996] — для комплексных рядов.

Две задачи:

- Выделение периодики для вещественного и комплексного случаев.
- Применение метода Complex SSA: исследование и обоснование алгоритма выделения прямых линий с зашумленного изображения.

Введение: Алгоритм метода Complex SSA

$$F_N = F_N^{(1)} + \mathrm{i} F_N^{(2)} -$$
 комплексный временной ряд.

- ullet Вложение: 0 < L < N- длина окна, K=N-L+1, ряд переводится в траекторную матрицу $\mathbf{X} = [X_1:\ldots:X_K]$, где $X_i = (f_i,\ldots,f_{i+L-1})^{\mathrm{T}}$.
- ② Сингулярное разложение: $\mathbf{X} = \mathbf{X}_1 + \ldots + \mathbf{X}_d$, $\mathbf{X}_i = \mu_i U_i V_i^*$, μ_i сингулярные числа, U_i левые сингулярные вектора, V_i правые сингулярные вектора.
- ullet Группировка: матрицы ${f X}_i$ группируются в три группы, соотв. тренду, периодике и шуму; внутри каждой группы матрицы суммируются.
- Диагональное усреднение: сгруппированные матрицы переводятся в ряды.

В результате получаем:

$$F_N = T_N + S_N + R_N.$$

где T_N — тренд, S_N — периодика и R_N — шум.

Задача 1: Идентификация периодики

Задача 1: Идентификация периодики для вещественного и комплексного случаев.

Идентификация периодики: Постановка задачи

Разложение, которое ищем: $F_N = T_N + S_N + R_N$, $F_N \leftrightarrow \mathbf{X}$.

$$\mathbf{X} = \mathbf{X}_1 + \ldots + \underbrace{(\mathbf{X}_k + \ldots + \mathbf{X}_m)}_{\leftrightarrow S_N} + \ldots + \mathbf{X}_d, \quad \mathbf{X}_i = \mu_i U_i V_i^*.$$

Вопрос: как найти группу матриц $\mathbf{X}_k,\dots,\mathbf{X}_m$, относящуюся к периодике?

Идентификация периодики происходит с помощью сингулярных чисел μ_i , левых сингулярных векторов U_i , правых сингулярных векторов V_i .

Периодика (обобщенная) описывается суммой экспоненциально-модулированных гармоник, задаваемых формулой:

- $A\,e^{eta k}\cos(2\pi\omega k+\phi)$ в вещественном случае,
- $A\,e^{\beta k}(\cos(2\pi\omega k+\phi)+\mathrm{i}B\cos(2\pi\omega k+\psi))$ в комплексном случае.

Задача: научиться идентифицировать вещественную и комплексную э.-м. гармоники.

Идентификация периодики: Свойства регулярности

P, Q – два вещественных вектора длины L. Два функционала:

•
$$au_1(P,Q) := rac{1}{L-1} \sum_{k=1}^{L-1} \left(heta_k - ar{ heta}
ight)^2$$
, где $heta_k$ — угол между $\left(p_k, q_k
ight)^{\mathrm{T}}$ и $\left(p_{k+1}, q_{k+1}
ight)^{\mathrm{T}}$, $ar{ heta} = rac{1}{L-1} \sum_{k=1}^{L-1} heta_k$;

$$oldsymbol{\circ} au_2(P,Q) := rac{1}{L} \sum_{k=1}^L (x_k - ar{x})^2,$$
 где $x_k = (p_k)^2 + (q_k)^2$, $ar{x} = \sum_{k=1}^L x_k/L$.

Свойства регулярности:

- $oldsymbol{\circ}$ $au_1(P,Q)=0\Leftrightarrow$ углы между $\left(p_k,q_k
 ight)^{\mathrm{T}}$ и $\left(p_{k+1},q_{k+1}
 ight)^{\mathrm{T}}$ равны.
- $oldsymbol{\circ}$ $au_2(P,Q)=0\Leftrightarrow$ точки $(p_k,q_k)^{
 m T}$ лежат на окружности.

Идентификация периодики: Вещественный случай: Теория

Вещественная экспоненциально-модулированная гармоника S_N :

$$s_n = e^{\alpha n} A \cos(2\pi \omega n + \phi)$$
, $n = 1, \dots, N$, $0 < \omega < 0.5$.

Сингулярное разложение траекторной матрицы: $\mathbf{S} = \mu_1 U_1 V_1^{\mathrm{T}} + \mu_2 U_2 V_2^{\mathrm{T}}$. L — длина окна, U_1 и U_2 — вектора длины L.

$$au_1(P,Q)=0\Leftrightarrow$$
 углы между $(p_k,q_k)^{\mathrm{T}}$ и $(p_{k+1},q_{k+1})^{\mathrm{T}}$ равны. $au_2(P,Q)=0\Leftrightarrow$ точки $(p_k,q_k)^{\mathrm{T}}$ лежат на окружности.

Теорема

Для сингулярных векторов U_1 и U_2 , порождаемых рядом S_N , верны следующие утверждения.

- $m{\Theta}$ Если lpha=C/N и L=[eta N], где C константа, 0<eta<1, то $\lim_{L o\infty} au_1(U_1,U_2)=0.$
- $m{Q}$ Если lpha=0 и L=[eta N], где 0<eta<1, то $\lim_{L o\infty} au_1(U_1,U_2)=0$ и $\lim_{L o\infty} au_2(U_1,U_2)=0.$
- ullet Если lpha=0 и $L\omega$ целое, то $au_1(U_1,U_2)=0$ и $au_2(U_1,U_2)=0$.

Идентификация периодики: Вещественный случай: Пример

Вещественная э.-м. гармоника: $s_n = e^{\alpha n} A \cos(2\pi \omega n + \phi)$.

$$\mathbf{S} = \mu_1 U_1 V_1^{\mathrm{T}} + \mu_2 U_2 V_2^{\mathrm{T}}.$$

Если $\alpha = C/N$ и $L = [\beta N]$, где C — константа, $0 < \beta < 1$, то $\lim_{L\to\infty} \tau_1(U_1, U_2) = 0.$

(a) $\omega = 0.2$, $\alpha = 0.005$, (b) $\omega = 0.04$, $\alpha = 0.009$, C = 0.495, $\tau_1 = 1.3 \text{ e-05}$, C = 0.891, $\tau_1 = 4.2 \text{ e-05}$.

Рис.: Двумерные диаграммы с.в. вещ. э.-м. гармоник, $N=99,\,L=50,\,\beta=0.5.$

Идентификация периодики: Вещественный случай: Алгоритм

Сингулярное разложение:
$$\mathbf{X}=\mu_1 U_1 V_1^{\mathrm{T}}+\ldots+\mu_d U_d V_d^{\mathrm{T}}$$
, U_1,\ldots,U_d — левые сингулярные вектора.

- au рассматриваемый функционал (au_1 или au_2).
 - ullet Визуальная идентификация: среди двумерных диаграмм векторов U_j и U_{j+1} ищутся те, где изображение обладает регулярным видом («спирали»).
 - Автоматическая идентификация:
 - число э.-м. гармоник известно: отбираем пары U_j, U_{j+1} с минимальным значением функционала $au(U_i, U_{j+1});$
 - **Q** число э.-м. гармоник неизвестно: отбираем пары U_j, U_{j+1} , у которых значение функционала $au(U_j, U_{j+1})$ меньше заданного порога.

Идентификация периодики: Комплексный случай: Особенности

Комплексная экспоненциально-модулированная гармоника:

$$s_n = e^{\alpha n} (A\cos(2\pi\omega n + \phi) + iB\cos(2\pi\omega n + \psi)), n = 1, \dots, N, 0 < \omega < 0.5.$$

Ранг ряда d=1, если A=B и $|\phi-\psi|\equiv\pi/2\ (\mathrm{mod}\,\pi)$, иначе d=2.

В отличие от вещественного случая:

- ullet Синг. разложение имеет одно (d=1) или два (d=2) слагаемых.
- ullet С.в. определены неоднозначно, с точностью до *комплексного поворота*, т.е. умножения на $e^{\mathrm{i}2\pi t},\,0\leqslant t<1.$

Идентификация периодики: Комплексный случай: Особенности

Комплексная экспоненциально-модулированная гармоника:

$$s_n = e^{\alpha n} (A\cos(2\pi\omega n + \phi) + iB\cos(2\pi\omega n + \psi)), n = 1, \dots, N, 0 < \omega < 0.5.$$

Ранг ряда d=1, если A=B и $|\phi-\psi|\equiv\pi/2\ (\mathrm{mod}\,\pi)$, иначе d=2.

В отличие от вещественного случая:

- ullet Синг. разложение имеет одно (d=1) или два (d=2) слагаемых.
- ullet С.в. определены неоднозначно, с точностью до *комплексного поворота*, т.е. умножения на $e^{\mathrm{i}2\pi t},\,0\leqslant t<1.$

Рис.: Примеры двумерных диаграмм с.в. э.-м. комплексной гармоники, N=99, $L=50,~\omega=0.2,~\alpha=0.007$.

Идентификация периодики: Комплексный случай: Теория

Комплексная экспоненциально-модулированная гармоника S_N : $s_n=e^{\alpha n}(A\cos(2\pi\omega n+\phi)+\mathrm{i}B\cos(2\pi\omega n+\psi)),\ n=1,\ldots,N,\ 0<\omega<0.5.$

В случае ранга d=2: $\mathbf{S}=\mu_1 U_1 V_1^* + \mu_2 U_2 V_2^*$.

Теорема

Для с.в. U_1 и U_2 , порожденных рядом S_N с d=2, верны след. утв-я.

ullet Если lpha=C/Nи L=[eta N], где C — константа, 0<eta<1, то существует пос-ть $t=t_L$, принимающая значения в [0,0.5), такая что

$$\lim_{L \to \infty} (\tau_1(\text{Re } U_1, \text{Re } e^{i2\pi t} U_2) + \tau_1(\text{Im } U_1, \text{Im } e^{i2\pi t} U_2)) = 0.$$

 $m{Q}$ Если lpha=0 и L=[eta N], где 0<eta<1, то существует пос-ть $t=t_L$, принимающая значения в [0,0.5), такая что

$$\lim_{L \to \infty} (\tau_k(\text{Re } U_1, \text{Re } e^{i2\pi t} U_2) + \tau_k(\text{Im } U_1, \text{Im } e^{i2\pi t} U_2)) = 0, \quad k = 1, 2.$$

ullet Если lpha=0 и $L\omega$ — целое, то существует $0\leqslant t<0.5$, такое что

$$\tau_k(\text{Re }U_1, \text{Re }e^{i2\pi t}U_2) + \tau_k(\text{Im }U_1, \text{Im }e^{i2\pi t}U_2) = 0, \quad k = 1, 2.$$

Комплексная э.-м. гармоника: $e^{\alpha n}(A\cos(2\pi\omega n+\phi)+\mathrm{i}B\cos(2\pi\omega n+\psi)).$

$$\mathbf{S} = \mu_1 U_1 V_1^* + \mu_2 U_2 V_2^*.$$

Идентификация: фиксируем U_1 , для U_2 ищем поворот $2\pi t$, $0\leqslant t<0.5$, решая оптимизационную задачу:

$$au_k(\operatorname{Re} U_1,\operatorname{Re} e^{\mathrm{i} 2\pi t}U_2) + au_k(\operatorname{Im} U_1,\operatorname{Im} e^{\mathrm{i} 2\pi t}U_2) \longrightarrow \min_t, \quad k=1$$
 или $2.$

Идентификация периодики: Комплексный случай: Идея идентификации

Комплексная э.-м. гармоника: $e^{\alpha n}(A\cos(2\pi\omega n+\phi)+\mathrm{i}B\cos(2\pi\omega n+\psi))$.

$$\mathbf{S} = \mu_1 U_1 V_1^* + \mu_2 U_2 V_2^*.$$

Идентификация: фиксируем U_1 , для U_2 ищем поворот $2\pi t$, $0\leqslant t<0.5$, решая оптимизационную задачу:

$$au_k(\operatorname{Re} U_1,\operatorname{Re} e^{\mathrm{i} 2\pi t}U_2) + au_k(\operatorname{Im} U_1,\operatorname{Im} e^{\mathrm{i} 2\pi t}U_2) \longrightarrow \min_t, \quad k=1$$
 или 2.

(a) До поворота, $\tau_1 = 0.62$

(b) После поворота, $au_1 = 5.1 e-5.$

Рис.: Двумерные диаграммы с.в. э.-м. комплексной гармоники, $N=99,~L=50,~\omega=0.2,~\alpha=0.007.$

Идентификация периодики: Комплексный случай: Алгоритм

Сингулярное разложение: $\mathbf{X} = \mu_1 U_1 V_1^* + \ldots + \mu_d U_d V_d^*$, U_1,\ldots,U_d — левые сингулярные вектора.

Идентификация э.-м. гармоник с рангом d=2.

На $t_{i,j}$ достигается минимум, $au_{i,j}$ — минимальное значение.

- ② Визуальная идентификация: среди двумерных диаграмм вещественных и мнимых частей U_i и $e^{i2\pi t_{i,j}}U_j$ ищутся те, где изображение обладает регулярным видом («спирали»).
- Э Автоматическая идентификация:
 - ullet число э.-м. гармоник известно: отбираем пары $\left(U_i,\ e^{\mathrm{i} 2\pi t_i,j}U_j
 ight)$ с минимальными значениями функционала $au_{i,j}$.
 - $m{\Theta}$ число э.-м. гармоник неизвестно: отбираем пары $\left(U_i,\ e^{\mathrm{i} 2\pi t_{i,j}}U_j
 ight)$, у которых значение функционала $au_{i,j}$ меньше заданного порога;

Для случая d=1 рассматривается $au_k(\operatorname{Re} U_1,\operatorname{Im} U_1)$.

Два ряда ежемесячных продаж крепленого (Fort) и красного (Red) вина в Австралии в тысячах литров в период с января 1980 года по июнь 1994 года.

 $\mathsf{PaccmatpuBaem}$ ряд $\mathsf{Fort} + \mathsf{iRed}$.

 Puc .: Двумерная диаграмма исходных сингулярных векторов для ряда $\mathsf{Fort} + i\mathsf{Red}$.

Рис.: Двумерная диаграмма сингулярных векторов для ряда Fort+iRed после работы алгоритма с au_1 .

Рис.: Обобщенная периодическая компонента ряда Fort.

Рис.: Обобщенная периодическая компонента ряда Red.

Задача 2: Применение метода Complex SSA

Задача 2: Применение метода Complex SSA.

Применение Complex SSA: Постановка задачи

Пусть наблюдаем матрицу ${f X}$ размера $N_t imes N_c$:

$$\mathbf{X} = \mathbf{S} + \mathbf{R},$$

где ${f S}$ — сигнал: матрица из «0» и «1», все «1» образуют прямые линии; ${f R}=\{arepsilon_{i,j}^{N_t,N_c}$ — шум, $arepsilon_{ij}\sim N(0,\sigma^2)$.

Простейший пример матрицы S:

Проблема: по матрице ${\bf X}$ оценить сигнал ${\bf S}$ (выделить прямые).

Метод: Алгоритм [Trickett, 2003].

Задача: доказать корректность алгоритма, рассмотреть несколько его модификаций и выделить лучший вариант алгоритма.

Применение Complex SSA: Алгоритм [Trickett, 2003]

 ${f Bxog}$: матрица ${f X}$, система из N_c временных рядов длины N_t :

$$\mathbf{X} = \{x_{ct} = x_c(t) \mid c = 1, \dots, N_c, \ t = 1, \dots, N_t\}.$$

① Дискретное преобразование Фурье (DFT) для каждого ряда (для каждой строчки матрицы \mathbf{X}). Результат — матрица $\mathbf{\Xi}$.

DFT для ряда
$$(0,\dots,\underbrace{1}_m,\dots,0)$$
: $(y_0,\dots,y_{N-1}),\ y_k=e^{\frac{-2\pi\mathrm{i}}{N}km}.$

$$e^{rac{-2\pi \mathrm{i}}{N}km}=\sin(rac{-2\pi}{N}km)+\mathrm{i}\cos(rac{-2\pi}{N}km)$$
 — компл. гармоника!

- Метод Complex SSA одним из двух способов:
 для каждого столбца матрицы \(\mathbb{E}\) (COL₁),
 - 2 для каждой строчки матрицы Ξ (ROW₁).

Выбираем длину окна L, идентифицируем M компонент, относящихся к сигналу, и получаем матрицу $\Xi^{(1)}(k)$.

- Обратное преобразование Фурье одним из двух способов:
 - $oldsymbol{0}$ для каждого столбца матрицы $oldsymbol{\Xi}^{(1)}$ (COL₂),
 - $oldsymbol{2}$ для каждой строчки матрицы $oldsymbol{\Xi}^{(1)}$ ($oldsymbol{\mathsf{ROW}}_2$).

Результат: матрица $\mathbf{X}^{(1)}$.

Итоговый результат: $\mathbf{X}^{(1)} = \{x_c^{(1)}(t) \mid c = 1, \dots, N_c, t = 1, \dots, N_t\}.$

Применение Complex SSA: Теория

Вывод из сравнения 4 вариантов: алгоритм COL_1 - ROW_2 — лучший.

Пусть сигнал ${f S}$ состоит из m прямых с уравнениями $c=a_j\,t+b_j$, $j=1,\ldots,m$, и с некоторыми условиями на a_j и b_j .

 $\mathbf{\Xi} = \{\xi_t(c)\}_{t=1,c=1}^{N_t,N_c}$ —результат первого этапа DFT, примененного к \mathbf{S} .

Тогда $\xi_t(c)=\sum_{j=1}^m e^{-2\pi\mathrm{i}\frac{(t-1)(c/a_j-1-b_j/a_j)}{N_t}}$, $c=1,\ldots,N_c$, является суммой комплексных гармоник!

$$\mathbf{X} = \mathbf{S} + \mathbf{R}, \ \mathbf{R} = \{\varepsilon_{ij}\}_{i,j}^{N_t,N_c}, \ \varepsilon_{ij} \sim N(0,\sigma^2).$$

Выделение m прямых из матрицы X: на втором этапе Complex SSA восстанавливаем сигнал на основе первых m сингулярных векторов.

Применение Complex SSA: Пример

$$X = S + R;$$

 ${f S}-$ сигнал из трех прямых с уравнениями c=t+10, c=110-t и c=70;

$$\mathbf{R} = \{\varepsilon_{ij}\}_{i,j}^{N_t,N_c}, \ \varepsilon_{ij} \sim N(0,\sigma^2).$$

$$N_c = 100, N_t = 120, \sigma = 0.2.$$

- (а) Исходное изображение.
- (b) Выделенный сигнал.

Рис.: Пример с тремя линиями и шумом до и после работы алгоритма.

Результаты

- Построены и обоснованы алгоритмы идентификации периодики для вещественных и комплексных рядов. Предложено два варианта идентификации: визуальная и автоматическая.
- Проведено численное сравнение вариантов алгоритма с разными функционалами.
- Исследован алгоритм Триккета выделения прямых линий из зашумленного изображения и три аналогичные модификации алгоритма.
- Показано, что вариант, предложенный Триккетом, при некоторых не очень ограничивающих условиях является лучшим, эффективно и корректно работающим для любого количества линий.
- Проиллюстрированы примеры работы алгоритмов идентификации и алгоритмов выделения прямых линий.
- Алгоритмы идентификации и алгоритмы выделения прямых линий реализованы на языке программирования R с использованием пакетов Rssa и Lattice.