

1/64

FIG.1

BEST AVAILABLE COPY

2/64

FIG.2

3/64

FIG.3

<In vitro: cell adhesion efficiency>

FIG.4

Only collagen type I

VECs seeded

-(P<0.01)-

(29±10%)

#7 days after cell seeing
Collagen type I+IV

4/64

VSMCs seeded

-(P<0.01)-

(40±6%)

FIG.5 (In vivo: two months after implantation)

6/64

FIG.6 (In vivo: two months after implantation)

Smooth internal side
Attached thrombi (-)

Cells seeded (-)

Cells seeded (+)

(HEx100)

(HEx100)

7/64

FIG.7

(*In vivo*: two months after implantation; vascular endothelial cell)

8/64

FIG.8
(In vivo: two months after implantation; vascular smooth muscle cell)

9/64

FIG.9
(In vivo: two months after implantation; elastic fiber)

10/64

FIG.10 (In vivo: six months after implantation)

Cells seeded (-)

Smooth internal side
Attached thrombi (-)

FIG.11 (In vivo: six months after implantation)

12/64

FIG.12
(In vivo: six months after implantation; calcification)

13/64

FIG. 13A

14/64

FIG.13B

FIG. 14

16/64

1

FIG.15

17/64

FIG.16A

18/64

FIG. 16B

FIG.17

FIG.18 Patch production method

21/64

22/64

FIG.20A

FIG.20B

Collagen cross linking

Knit-woven double layer**FIG.21**

25/64

FIG.22A

	Tensile strength
Aorta blood vessel wall	4.6
Vascutek artificial blood vessel bloodstream direction	45.2
Vascutek artificial blood vessel circumferential direction	99.8
Hamshield artificial blood vessel bloodstream direction	79.9
Hamshield artificial blood vessel circumferential direction	102.1
Vicryl triple layer	86.0
PGA knit-PGA woven double layer	101.9
PGA knit-PGA woven double layer	101.4
PGA woven	101.2
PGA woven	101.8
PGA knit	63.4
PGA knit	102.1

26/64

Tension test: poly(L-lactic acid)

	Tensile strength; N
Aorta blood vessel wall	4.6
Vascutek artificial blood vessel bloodstream direction	45.2
Vascutek artificial blood vessel circumferential direction	99.8
Hamshield artificial blood vessel bloodstream direction	79.9
Hamshield artificial blood vessel circumferential direction	102.1
PGA knit No3 warp	73.8
PGA knit No3 weft	61.2
PLA woven 47.5 warp	43.7
PLA woven 47.5 weft	82.5
PGA knit No3-PLA woven warp	56.5
PGA knit No3-PLA woven weft	98.8

FIG.22B

27/64

FIG.23

Young's modulus; Mpa

MPa

PGA knit No3-PLA
woven weftPGA knit No3-PLA
woven warp

PLA woven 47.5 weft

PLA woven 47.5 warp

PGA knit No3 weft

PGA knit No3 warp

Hamshield artificial
blood vessel
circumferential directionHamshield artificial
blood vessel
bloodstream directionVascutek artificial
blood vessel
circumferential directionVascutek artificial
blood vessel
bloodstream direction

Aorta blood vessel wall

28/64

29/64

FIG.25

30/64

FIG.26Air permeability (ml/cm²/sec)

Air permeability test	Air permeability (ml/cm ² /sec)
Vicryl woven double layer	4.3
PGA knit	142.3
PLA woven dense	5.1
PLA woven rough	14.1
PGA knit-PLA woven dense	2.1
PGA knit-PLA woven rough	2.6

31/64

FIG.27A

32/64

FIG.27B

Cell adhesion test

After collagen crosslinking

	Mean	S.D.
PGA knit	0.174	0.091
PLA woven	0.024	0.008
PLA woven-PLA woven	0.071	0.028
PGA knit-PLA woven	0.572	0.092
PGA knit	0.792	0.205
PLA woven	0.068	0.016
PLA woven-PLA woven	0.198	0.094
PGA knit-PLA woven	0.606	0.123

After collagen crosslinking

FIG.28

FIG.29A**Attachment strength Study on conditions**

	80°C	100°C	120°C	140°C
1	0	0.1945	0.1363	0.4682
5	0	0.6553	0.5782	0.6634
10	0.257	0.6029	0.7035	0.4879
30	0.5395	0.9898	1.0695	1.4402

35/64

FIG.29B

36/64

FIG.29C

37/64

FIG.29D

38/64

FIG.30

FIG.31

39/64
Changes in weight of support

Rate of changes in maximum point weight of support

FIG.32

41/64

FIG.33

Rat lig Sham
One month

Extracted sample

HE staining

42/64

FIG. 34

Rat lig patch implantation
One month

Extracted sample

HE staining

lig patch only 1mon X 40

43/64

FIG.35

Rat lig patch (collagen I+IV) implantation
One month

HE staining

Collagen + IV lig 1 Mo

44/64

FIG.36

Implantation into rat myocardial infarction site

- sham
- Cardiovascular repair material
- Cardiovascular repair material (collagen I+IV, laminin)

45/64

FIG.37

Implantation into rat myocardial infarction site
(cardiovascular repair material-implanted group)

Extracted sample

Desmin staining

4 weeks after implantation

46/64

FIG.38

Implantation into rat myocardial infarction site (cardiovascular repair material+type I collagen+type IV collagen+aminin+laminin group)

47/64

FIG.39**Assessment of implantation into rat myocardial infarction site**

FIG.40

Implantation into the dorsum of rat

Implanted material

- Control patch
 - Cardiovascular repair patch
(colla I +F-HGF)
 - Cardiovascular repair patch
(colla I +IV, laminin)

Tissue assessment :HE Masson

TroponinT α - actinin

Desmin Fluorescence

Tissue PCR

49/64

FIG.41

Implantation into the dorsum of rat
(cardiovascular repair material+type I collagen+HGF group)

Implanted material: PLGA patch (collagen I) \times 100

50/64

FIG.42

Implantation into the dorsum of rat
(cardiovascular repair material+type I collagen+HGF group)

Actinin $\times 400$ TroponinT $\times 400$ Desmin $\times 400$

*4 weeks after
implantation*

51/64

FIG.43
Implantation into the dorsum of rat
 (cardiovascular repair material+type I collagen+HGF group)
real-time PCR

52/64

FIG.44

Implantation into the dorsum of rat (cardiovascular repair material+type I collagen+type IV collagen+ laminin-implanted group)

Implanted material: PLGA patch (collagen I+IV, lam) \times 100

Extracted sample

53/64

FIG.45
Implantation into the dorsum of rat (cardiovascular repair material+type I
collagen+type IV collagen+laminin+implanted group)

Actinin $\times 400$ TroponinT $\times 400$ Desmin $\times 400$ *4 weeks after
implantation*

54/64

FIG.46
Implantation into the dorsum of rat
(cardiovascular repair material+type I collagen+
type IV collagen+ laminin-implanted group)

55/64

FIG.47

56/64

FIG.48

Cell growth test (vascular smooth muscle cell)

57/64

FIG.4.9

58/64

KNIT + WOVEN : リサイクル化繊・天然繊維混紡織物 (2M)

FIG.50

59/64

FIG.51

© 2004. Mitsubishi Chemical Corporation. All Rights Reserved.

PLGA patch (re-cellularization)

60/64

FIG.52

61/64

FIG. 53

62/64

FIG. 54

63/64

FIG.55

64/64

FIG.56

TEE (diastolic phase)**TEE (systolic phase)****RVG (L)****PAG (L)**

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.