Aufgabe (Rand-Normalenfeld)

- Sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit mit Rand. Man zeige:
- (a) Für $a \in \partial M$ ist $T_a(\partial M)$ ein (k-1)-dimensionaler Untervektorraum von T_aM , $T_a^{\perp}M$ ist ein (n-k)-dimensionaler Untervektorraum von $T_a^{\perp}(\partial M)$, und es gilt

$$\mathbb{R}^n = T_a^{\perp} M \oplus (T_a M \cap T_a^{\perp}(\partial M)) \oplus T_a(\partial M).$$

- (b) Man zeige: Es gibt eine eindeutig bestimmte stetige Abbildung $N: \partial M \to \mathbb{R}^n$ mit den folgenden Eigenschaften für jedes $x \in \partial M$:
- (i) ||N(x)|| = 1;
- (ii) $N(x) \in T_x M \cap T_x^{\perp}(\partial M);$
- (iii) ist $\phi: V \cap H^k \to U \cap M$ eine Karte für M um x mit $\phi(y) = x$ und $w \in \mathbb{R}^k$ der eindeutig bestimmte Vektor mit $D\phi(y)w = N(x)$, so ist die erste Komponente von w positiv.

Die Abbildung $N: \partial M \to \mathbb{R}^n$ heißt das äußere Normalenfeld zu ∂M in M.

Lösung

Teil (a):

Sei $a \in \partial M$. Da M eine k-dimensionale Untermannigfaltigkeit mit Rand ist und ∂M der Rand von M ist, ist ∂M eine (k-1)-dimensionale Untermannigfaltigkeit ohne Rand von \mathbb{R}^n .

Behauptung 1: $T_a(\partial M)$ ist ein (k-1)-dimensionaler Untervektorraum von T_aM .

Beweis: Da $\partial M \subset M$ gilt, folgt $T_a(\partial M) \subset T_aM$. Da ∂M eine (k-1)-dimensionale Untermannigfaltigkeit ist, gilt dim $T_a(\partial M) = k-1$.

Behauptung 2: $T_a^{\perp}M$ ist ein (n-k)-dimensionaler Untervektorraum von $T_a^{\perp}(\partial M)$.

Beweis: Da T_aM ein k-dimensionaler Untervektorraum von \mathbb{R}^n ist, gilt $\dim T_a^{\perp}M = n - k$. Da $\partial M \subset M$ gilt, folgt $T_a(\partial M) \subset T_aM$, und somit $T_a^{\perp}M \subset T_a^{\perp}(\partial M)$.

Behauptung 3: $\mathbb{R}^n = T_a^{\perp}M \oplus (T_aM \cap T_a^{\perp}(\partial M)) \oplus T_a(\partial M)$.

Beweis: Wir zeigen zuerst, dass die drei Räume paarweise orthogonal sind und dann, dass ihre direkte Summe ganz \mathbb{R}^n ist.

Schritt 1: Paarweise Orthogonalität.

- $T_a^{\perp}M \perp T_a(\partial M)$: Da $T_a(\partial M) \subset T_aM$ und $T_a^{\perp}M \perp T_aM$, folgt $T_a^{\perp}M \perp T_a(\partial M)$.
- $T_a^{\perp}M \perp (T_aM \cap T_a^{\perp}(\partial M))$: Da $T_aM \cap T_a^{\perp}(\partial M) \subset T_aM$ und $T_a^{\perp}M \perp T_aM$, folgt die Orthogonalität.
- $(T_aM \cap T_a^{\perp}(\partial M)) \perp T_a(\partial M)$: Da $T_aM \cap T_a^{\perp}(\partial M) \subset T_a^{\perp}(\partial M)$ und $T_a(\partial M) \perp T_a^{\perp}(\partial M)$, folgt die Orthogonalität.

Schritt 2: Dimensionsargument. Wir berechnen die Dimensionen:

- $\dim T_a^{\perp} M = n k$
- $\dim T_a(\partial M) = k 1$
- Für $\dim(T_aM \cap T_a^{\perp}(\partial M))$ nutzen wir: Da $\dim T_aM = k$ und $\dim T_a^{\perp}(\partial M) = n (k 1) = n k + 1$, und da $T_aM + T_a^{\perp}(\partial M) = \mathbb{R}^n$ (da ihre orthogonalen Komplemente $T_a^{\perp}M$ und $T_a(\partial M)$ sich zu einem (n k) + (k 1) = n 1 dimensionalen Raum addieren), folgt aus der Dimensionsformel:

$$\dim(T_aM \cap T_a^{\perp}(\partial M)) = \dim T_aM + \dim T_a^{\perp}(\partial M) - \dim(T_aM + T_a^{\perp}(\partial M)) = k + (n - k + 1) - n = 1.$$

Die Summe der Dimensionen ist (n-k)+1+(k-1)=n, und da die Räume paarweise orthogonal sind, folgt

$$\mathbb{R}^n = T_a^{\perp} M \oplus (T_a M \cap T_a^{\perp}(\partial M)) \oplus T_a(\partial M).$$

Teil (b):

Wir zeigen die Existenz und Eindeutigkeit der Abbildung $N: \partial M \to \mathbb{R}^n$.

Eindeutigkeit: Angenommen, es gibt eine solche Abbildung N. Für jedes $x \in \partial M$ muss N(x) folgende Bedingungen erfüllen:

- $N(x) \in T_x M \cap T_x^{\perp}(\partial M)$, welches nach Teil (a) ein 1-dimensionaler Raum ist.
- ||N(x)|| = 1.

Daher gibt es nur zwei Kandidaten für N(x): die beiden Einheitsvektoren in $T_xM\cap T_x^{\perp}(\partial M)$. Bedingung (iii) legt fest, welcher der beiden zu wählen ist. Somit ist N(x) eindeutig bestimmt.

 ${\bf Existenz:}$ Wir konstruieren Nlokal und zeigen dann, dass die lokalen Definitionen zusammenpassen.

Sei $x \in \partial M$. Wähle eine Karte $\phi: V \cap H^k \to U \cap M$ für M um x mit $\phi(y) = x$ für ein $y \in V \cap \partial H^k$. Hier ist $H^k = \{z \in \mathbb{R}^k : z_1 \geq 0\}$ der obere Halbraum.

Das Differential $D\phi(y): \mathbb{R}^k \to \mathbb{R}^n$ ist injektiv, und das Bild ist T_xM . Der Vektor $e_1 = (1, 0, \dots, 0) \in \mathbb{R}^k$ zeigt nach außen von H^k bei y. Betrachte den Vektor

$$v = D\phi(y)(e_1) \in T_xM$$
.

Da ϕ den Rand ∂H^k auf ∂M abbildet, bildet $D\phi(y)$ den Tangentialraum $T_y(\partial H^k)=\{z\in\mathbb{R}^k:z_1=0\}$ auf $T_x(\partial M)$ ab. Daher ist $v=D\phi(y)(e_1)\perp T_x(\partial M)$, also $v\in T_xM\cap T_x^\perp(\partial M)$.

Setze

$$N(x) = \frac{v}{\|v\|}.$$

Dies erfüllt alle drei Bedingungen:

(i) ||N(x)|| = 1 nach Konstruktion.

- (ii) $N(x) \in T_x M \cap T_x^{\perp}(\partial M)$ wie oben gezeigt.
- (iii) Der Vektor w mit $D\phi(y)w=N(x)$ ist $w=\frac{e_1}{\|v\|},$ dessen erste Komponente $\frac{1}{\|v\|}>0$ ist.

Unabhängigkeit von der Kartenwahl: Seien $\phi_1: V_1 \cap H^k \to U_1 \cap M$ und $\phi_2: V_2 \cap H^k \to U_2 \cap M$ zwei Karten um x mit $\phi_1(y_1) = x = \phi_2(y_2)$. Der Kartenwechsel

$$\psi = \phi_2^{-1} \circ \phi_1 : \phi_1^{-1}(U_1 \cap U_2) \cap H^k \to \phi_2^{-1}(U_1 \cap U_2) \cap H^k$$

ist ein Diffeomorphismus, der ∂H^k auf ∂H^k abbildet. Das Differential $D\psi(y_1)$ bildet daher den nach außen zeigenden Vektor bei y_1 auf einen nach außen zeigenden Vektor bei y_2 ab. Dies zeigt, dass beide Karten dasselbe N(x) liefern.

Stetigkeit: Die Stetigkeit von N folgt aus der lokalen Konstruktion: In einer Kartenumgebung hängt N stetig von den Koordinaten ab, da die Normierung und das Differential stetig sind.

Damit ist die Existenz und Eindeutigkeit von N bewiesen.