Herbst 11 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Bestimmen Sie für die Differentialgleichung

$$y'' + \frac{4}{x}y' - \frac{10}{x^2}y = 0$$

alle reellen Lösungen y(x) auf dem Intervall $[0, \infty[$. Benutzen Sie dazu die Substitution $y(x) = z(\ln x)$ mit $z : \mathbb{R} \to \mathbb{R}$ oder eine andere Methode Ihrer Wahl.

Lösungsvorschlag:

Wir verwenden die angegebene Substitution. Aus $y(x)=z(\ln x)$ folgt $y'(x)=\frac{z'(\ln x)}{x}$ und $y''(x)=\frac{z''(\ln x)-z'(\ln x)}{x^2}$. Die zu lösende Gleichung ist für x>0 äquivalent zu $x^2y''(x)+4xy'(x)-10y(x)=0$, also zu

$$z''(\ln x) + 3z'(\ln x) - 10z(\ln x) = 0.$$

Die allgemeine reelle Lösung der Gleichung u'' + 3u' - 10u = 0 ist wegen $t^2 + 3t - 10 = 0$ (t-2)(t+5) durch $u(t)=ae^{2t}+be^{-5t}$ für $a,b\in\mathbb{R}$ gegeben. Daher ist $y(x)=ae^{2\ln x}+be^{-5\ln x}=ax^2+\frac{b}{x^5}$ mit $a,b\in\mathbb{R}$ gegeben.

Dass diese Funktionen Lösungen darstellen kann man leicht nachrechnen. Dass es keine weiteren gibt, folgt aus der allgemeinen Theorie linearer Differentialgleichungen, weil die vorliegende Gleichung von zweiter Ordnung ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$