Georgia Institute of Technology ISyE3770 - Midterm 2

Instructor: Jie Wang

2024/03/28 (03:30 PM - 04:45 PM)

Name:		
~-~		
GT Student ID:		

- 1. This midterm **2** contains 10 pages (including this cover page) and 5 questions. Total of points is 100.
- 2. In taking this examination, you are allowed to use your own computer and calculator. However, you are **NOT** allowed to use the Internet!
- 3. In taking this examination, you are expected to adhere to the GT academic honor code. At a minimum, this requires that you utilize only the materials supplied to you and that you do not give help to, or accept help from, others.

Distribution of Marks

Question	Points	Score
1	40	
2	12	
3	11	
4	23	
5	14	
Total:	100	

Multiple	Choice	(52)	points)
----------	--------	------	---------

Remark:	for each	a question,	one and	only	one of	four	given	choices	(A,	В,	С,	and	D)	is	correct	t.
---------	----------	-------------	---------	------	--------	------	-------	---------	-----	----	----	-----	----	----	---------	----

- 1. Suppose you are trying to compare the difference in auto insurance rates between male and female drivers in Georgia. You randomly select 1000 drivers (consist of male and female) and ask them their insurance rates using an online survey. (a) (8 points) All of male and female drivers in Georgia are A. Population B. Sample C. Parameter (a) _____ (b) (8 points) The 1000 selected drivers that were asked are B. Sample C. Parameter A. Population (b) _____ (c) (8 points) The insurance difference between all male and female Georgia drivers is A. Population B. Sample C. Parameter D. Statistic (c) _____ (d) (8 points) The sample mean difference between male and female drivers (who took the survey) is B. Sample C. Parameter D. Statistic A. Population (d) _ (e) (8 points) We substitute the realizations of the insurance rates of 1000 drivers and find the sample mean difference between male and female drivers is 20.5. This numerical value A. Estimator B. Estimate (e) _____ 2. Suppose that $\widehat{\theta}_1$ and $\widehat{\theta}_2$ are estimators of the parameter θ . We know that $\mathbb{E}[\widehat{\theta}_1] = \theta$, $\mathbb{E}[\widehat{\theta}_2] = \theta/2$, $\operatorname{Var}(\widehat{\theta}_1) = 10$, $\operatorname{Var}(\widehat{\theta}_2) = 6$. Suppose that $-4 < \theta < 4$ but $\theta \neq 0$. (a) (6 points) Which estimator is better in terms of unbiasedness? A. $\widehat{\theta}_1$ B. $\widehat{\theta}_2$
 - (a) _____
 - (b) (6 points) Which estimator is better in terms of MSE? A. $\widehat{\theta}_1$ B. $\widehat{\theta}_2$

(b) _____

Regular Question (48 points)

3. (11 points) A random variable has probability density function

$$f(x;\theta) = 7x^{6}\theta^{-7}e^{-(\frac{x}{\theta})^{7}}, \qquad 0 < x < \infty, 0 < \theta < \infty.$$

Now, given samples X_1, \ldots, X_n , derive the maximum likelihood estimator for the parameter θ .

- 4. (23 points) In the fast-paced world of eCommerce, it is of research interest to study the daily market prices for eCommerce products. Especially, the prices of the File Folders SKU product from 10 days are as follows: 87, 88, 81, 88, 88, 68, 90, 88, 82, 83.
 - (i) Compute the mode, sample mean, median, range, sample variance, sample standard deviation, Q_1, Q_3 , and IQR. (It's allowed to use R or calculator to finish the calculation).

 (18 points)
 - (ii) Is there any outlier for the data? Why? (Hint: you can either look at the IQR value or draw the box plot using R to answer this question. If you choose to draw the plot using R, please also try to draw the boxplot in the answer sheet.) (5 points)

- 5. (14 points) A synthetic fiber used in manufacturing carpet has tensile strength that has an unknown probability distribution with mean 73.2 psi and variance 3.5^2 psi². We take a random sample of n = 40 fiber specimens.
 - (i) What is the (approximate) sampling distribution of the sample mean \overline{X} ? (10 points)
 - (ii) Approximate the probability that the sample mean \overline{X} is smaller than 73. (4 points)

Discrete Distributions

Bernoulli
$$f(x) = p^x (1-p)^{1-x}, \quad x = 0, 1$$

 $0 $M(t) = 1 - p + pe^t, \quad -\infty < t < \infty$
 $\mu = p, \quad \sigma^2 = p(1-p)$
Binomial $f(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}, \quad x = 0, 1, 2, \dots, n$
 $b(n,p)$ $0 $M(t) = (1-p+pe^t)^n, \quad -\infty < t < \infty$
 $\mu = np, \quad \sigma^2 = np(1-p)$
Geometric $f(x) = (1-p)^{x-1}p, \quad x = 1, 2, 3, \dots$
 $0 $M(t) = \frac{pe^t}{1-(1-p)e^t}, \quad t < -\ln(1-p)$
 $\mu = \frac{1}{p}, \quad \sigma^2 = \frac{1-p}{p^2}$$$$

Negative Binomial $f(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}, \qquad x = r, r+1, r+2, \dots$ 0 $<math>r = 1, 2, 3, \dots$ $M(t) = \frac{(pe^t)^r}{[1-(1-p)e^t]^r}, \qquad t < -\ln(1-p)$ $\mu = r\left(\frac{1}{p}\right), \qquad \sigma^2 = \frac{r(1-p)}{p^2}$ Poisson $f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \qquad x = 0, 1, 2, \dots$ $\lambda > 0$

$$X!$$

$$M(t) = e^{\lambda(e^t - 1)}, \quad -\infty < t < \infty$$

$$\mu = \lambda, \quad \sigma^2 = \lambda$$

Uniform
$$f(x) = \frac{1}{m}, \quad x = 1, 2, ..., m$$

 $m > 0$ $\mu = \frac{m+1}{2}, \quad \sigma^2 = \frac{m^2 - 1}{12}$

Continuous Distributions

Beta
$$α > 0$$
 $β > 0$ $μ = \frac{\Gamma(α + β)}{\Gamma(α)\Gamma(β)}x^{α-1}(1 - x)^{β-1}, 0 < x < 1$ $μ = \frac{α}{α + β}, σ^2 = \frac{αβ}{(α + β + 1)(α + β)^2}$

Chi-square $χ^2(r)$ $r = 1, 2, ...$ $M(t) = \frac{1}{(1 - 2t)^{r/2}}, t < \frac{1}{2}$ $μ = r, σ^2 = 2r$

Exponential $θ > 0$ $M(t) = \frac{1}{1 - θt}, t < \frac{1}{θ}$ $μ = θ, σ^2 = θ^2$

Gamma $α > 0$ $M(t) = \frac{1}{(1 - θt)^α}, t < \frac{1}{θ}$ $μ = αθ, σ^2 = αθ^2$

Normal $N(μ, σ^2)$ $-∞ < μ < ∞$ $M(t) = \frac{1}{σ\sqrt{2π}}e^{-(x-μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{σ\sqrt{2π}}e^{-(x-μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{θ}$ $(x) = \frac{1}{π(α)θ^α}$ $(x) = \frac{1}{σ\sqrt{2π}}e^{-(x-μ)^2/2σ^2}, -∞ < x < ∞$ $(x) = \frac{1}{σ}$ $(x) = \frac{1}{σ\sqrt{2π}}e^{-(x-μ)^2/2σ^2}, -∞ < x < ∞$ $(x) = \frac{1}{σ}$ $(x) = \frac{1}{σ$

Table III Cumulative Standard Normal Distribution

Tubic II	• Cumula	tive Standar	d I vormai D	istribution						
Z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687
-3.1	0.000711	0.000736	0.000762	0.000789	0.000816	0.000845	0.000874	0.000904	0.000935	0.000968
-3.0	0.001001	0.001035	0.001070	0.001107	0.001144	0.001183	0.001223	0.001264	0.001306	0.001350
-2.9	0.001395	0.001441	0.001489	0.001538	0.001589	0.001641	0.001695	0.001750	0.001807	0.001866
-2.8	0.001926	0.001988	0.002052	0.002118	0.002186	0.002256	0.002327	0.002401	0.002477	0.002555
-2.7	0.002635	0.002718	0.002803	0.002890	0.002980	0.003072	0.003167	0.003264	0.003364	0.003467
-2.6	0.003573	0.003681	0.003793	0.003907	0.004025	0.004145	0.004269	0.004396	0.004527	0.004661
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012224	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
-1.0	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.261086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308538
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344578
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.382089
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.420740
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.460172
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.500000
_										

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^{2}} du$$

Table III Cumulative Standard Normal Distribution (continued)

					, , , , , , , , , , , , , , , , , , , ,					
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273
1.8	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2.0	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427
2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074
2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605
3.0	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999
3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499
3.3	0.999517	0.999533	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999650
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999821	0.999828	0.999835
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967

Table IV $\;\;$ Percentage Points $\chi^2_{\alpha,\nu}$ of the Chi-Squared Distribution

ν α	.995	.990	.975	.950	.900	.500	.100	.050	.025	.010	.005
1	.00+	.00+	.00+	.00+	.02	.45	2.71	3.84	5.02	6.63	7.88
2	.01	.02	.05	.10	.21	1.39	4.61	5.99	7.38	9.21	10.60
3	.07	.11	.22	.35	.58	2.37	6.25	7.81	9.35	11.34	12.84
4	.21	.30	.48	.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	.41	.55	.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	.68	.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.55
7	.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.28	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.65
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
50 60	27.99 35.53	29.71 37.48	32.36 40.48	34.76 43.19	37.69 46.46	49.33 59.33	63.17 74.40	67.50 79.08	71.42 83.30	76.15 88.38	79.49 91.95
70	43.28	37.48 45.44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	89.33	107.57	113.14	118.14	112.33	128.30
100	67.33	70.06	74.22	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17
100	07.33	/0.00	14.22	11.93	82.30	99.33	118.30	124.34	129.30	133.81	140.1/

 $[\]nu$ = degrees of freedom.