Lista 3 Obliczenia naukowe

Aleksandra Wójcik

Listopad 2023

1 Zadanie 1

1.1 Opis zadania

Zadanie polega na implementacji metody bisekcji (połowienia). Opisywana metoda jest prosta iteracyjna metoda numeryczna służaca do rozwiazywania równań. Jej główna idea jest iteracyjne zmniejszanie przedziału, w którym znajduje sie rozwiazanie, dzieki kolejnym przybliżonym wartościom.

Kroki metody bisekcji

• Wybór przedziału poczatkowego:

Należy wybrać przedział poczatkowy [a,b] taki,
że f(a) i f(b) sa różnych znaków.

• Iteracyjne zmniejszanie przedziału:

Należy wyznaczyć wartość funkcji f dla $c=\frac{a+b}{2}$, sprawdzić czy spełnia warunki stopu. Jeśli tak, należy zakończyć algorytm, lecz w przeciwnym przypadku należy porównić znak f(c), odpowiednio zmiejszyc przedział przeszukiwań.

• Warunek stopu:

Zakończ algorytm w przypadku kiedy c $<\delta$ lub f(c) $<\epsilon 5$

2 Zadanie 2

2.1 Opis zadania

Należy zaimplementowac metode newtona , znana również jako metoda stycznych. Jest to kolejna iteracyjna metoda numeryczna stosowana do znajdowania miejsc zerowych funkcji. Jest to bardziej zaawansowana metoda niż bisekcja, ale wymaga, aby funkcja była różniczkowalna.

Kroki metody bisekcji

- Wybór punktu startowego

Należy wyznaczyć kolejne wyrazy ciagu za pomowa wzoru

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

.

• Warunek stopu:

Należy zakończyć działanie algorymu w przypadku $|x_{n+1}-x_n|<\delta$ lub $f(x_{n+1})<\epsilon$

3 Zadanie 3

Zadanie polega na zaimplementowaniu metody siecznych. Jest to numeryczna metoda znajdowania przybliżonego rozwiazania równan. W odróżnieniu od metody Newtona, nie wymaga obliczania pochodnych funkcji. Zamiast tego, używa różnic skończonych do przybliżenia pochodnej.

Kroki metody siecznych

- Wybór punktów startowego x_0ix_1
- Iteracyjne wyznaczania kolejnych punktów ciagu:

Należy wyznaczyć kolejne wyrazy ciagu za pomowa wzoru

$$x_{n+1} = x_n - \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

.

• Warunek stopu:

Należy zakończyć działanie algorymu w przypadku $|x_{n-1}-x_n|<\delta$ lub $f(x_{n+1})<\epsilon$

4 Zadanie 4

4.1 Opis zadania

Zadanie 4 polega na wyznaczeniu pierwiastka równania $sin(x) - (\frac{1}{2}x)^2$, stosujac wczesniej zaprogramowane metody.

Metoda	Bisekcji	Newtona	siecznych
f(x)	-2.7027680138402843e-7	-2.2423316314856834e-8	-2.3487103129049558e-7
X	1.9337539672851562	1.933753779789742	1.933753940501514
liczba iteracii	16	4	5

4.2 Wyniki

4.3 Obserwacje

Wyniki niezncznie różnia sie od siebie. Główna różnica wynika z liczby przeprowadzonych iteracji.

4.4 Wnioski

Najwiecej iteracji wykonała metoda bisekcji (zbieżność liniowa $\alpha = 1$).

Nastepnie uklasowała sie metoda siecznych z 5 iteracjami (zbieżność $\alpha = \frac{1+\sqrt{5}}{2}).$

Najmniej iteracji wykonała metoda Newtona (zbieżność kwadratowa $\alpha=2$). Wyniki tego eksperymentu idealnie odzwierciedlaja nature zbieżności badanych metod.

5 Zadanie 5

5.1 Opis zadania

Należy znaleźć miejsce przeciecia funkcji $\mathbf{f}(\mathbf{x})=3\mathbf{x}$ i $g(x)=e^x$ za pomoca metody bisekcji.

5.2 Wyniki

Przedział	X	liczba iteracji	kod błedu
$x_1 : [0.0, 1.0]$	0.619140625	9	0
$x_2:[1.0, 2.0]$	1.5120849609375	13	0

Powtórzenie doświadczenia dla zmienionych przedziałów poczatkowych.

Przedział	X	liczba iteracji	kod błedu
$x_1 : [0.6, 0.7]$	0.6191406249999999	8	0
$x_2:[1.5, 1.6]$	1.512109375	8	0

5.3 Obserwacje

Przedstawione w tabeli powyżej wyniki dla różnych przedziałów startowych nieco sie różnia, mimo wszytko odpowiadaja punktom przeciecia sie funkcji na wykresie.

5.4 Wnioski

Uzyskane wyniki sa poprawne i równoważne punktom z wykresu. W celu otrzymania poprawnych miejsc przeciecia, należy zwrócić uwage na wybór przedziału poczatkowego, ponieważ wpływa to bezpośredno na wynik, jak i na liczbe iteracji wykonywanych przez algorytm.

6 Zadanie 6

6.1 Opis zadania

Należy wyznaczyć miejsca zerowe funkcji $f_1(x)=e^{1-x}$ -1 oraz $f_2(x)=x^{-x}$ na pomoca metod isekcji, Newtona i siecznych. Przy wymaganej dokładności obliczeń $\delta=10^{-5}, \epsilon=10^{-5}$, dobrać odpowiednio przedział i przybliżenia poczatkowe. Należy również sprawdzić co sie stanie, gdy w metodzie Newtona dla f_1 wybierzemy x_0 należace do $(1,\infty)$ a dla f_2 wybierzemy $x_0>0$. Należy zbadać czy można Wybrać $x_0=1$ dla f_2 .

6.2 Wyniki

6.2.1 Wyniki dla funkcji f_1

Metoda bisekcji dla f1:

$f_1(x) = e^{1-x}-1$	X	f(x)	liczba iteracji	kod błedu
[1.0]	0.0	0.0	0	1
[2.0]	1.0	0.0	1	0
[5.0]	0.9999923706054688	$7.629423635080457\mathrm{e}\text{-}6$	18	0

Metoda newtona dla f1:

$f_1(x) = e^{1-x}-1$	X	f(x)	liczba iteracji	kod błedu
[0.0]	0.9999984358892101	1.5641120130194253e-6	4	0
[-1.0]	0.9999922654776594	7.734552252003368e-6	5	0
[1.0]	1.0	0.0	0	2
[2.0]	0.9999999810061002	1.8993900008368314e-8	5	0
[5.0]	0.9999996427095682	3.572904956339329e-7	54	0
[8.0]	NaN	NaN	0	1
[10.0]	NaN	NaN	0	1

Metoda siecznych dla f1:

$f_1(x) = e^{1-x}-1$	X	f(x)	liczba iteracji	kod błedu
[1.0]	1.0	0.0	1	0
[2.0]	0.9999907423255805	9.257717271893284e-6	6	0
[5.0]	1.0000000276407284	-2.7640728039735052e-8	11	0

6.2.2 Wyniki dla funkcji f_2

Metoda bisekcji dla f2:

$f_2(x) = xe^{-x}$	X	f(x)	liczba iteracji	kod błedu
[0.1]	6.103515624990749e-6	6.103478372201451e-6	14	0
[1.0]	-7.62939453125e-6	-7.629452739132958e-6	17	0
[2.0]	7.62939453125e-6	$7.62933632381113\mathrm{e}\text{-}6$	18	0

Metoda newtona dla f2:

$f_2(x) = xe^{-x}$	X	f(x)	liczba iteracji	kod błedu
[0.1]	-1.4906619716777104e-8	-1.490661993898442e-8	3	0
[1.0]	m NaN	NaN	0	1
[2.0]	14.398662765680003	8.03641534421721e-6	10	0
[10.0]	14.380524159896261	$8.173205649825554\mathrm{e}\text{-}6$	4	0

Metoda siecznych dla f2:

$f_2(x) = xe^{-x}$	X	f(x)	liczba iteracji	kod błedu
[0.1]	2.801292630773511e-7	2.8012918460495804e-7	6	0
[1.0]	0.0	0.0	1	0
[2.0]	$1.7338731352119032\mathrm{e}\text{-}8$	1.7338731051487428e-8	7	0

6.3 Obserwacje

W powyższym eksperymencie porównujemy działania 3 metod z tym samym punktem startowym. Jak łatwo mozna zauważyć metoda Newtona zbiega najszybciej, po niej metoda siecznych a najwolniejsza znów okazała sie metoda bisekcji.

6.4 Wnioski

Wyniki wszytkich działań sa bliskie zeru, co świadczy tym że algorytm zadziałały poprawnie. Najszybciej do wyniku zbiegła metoda Newtona, nastepnie metoda siecznych, a potem metoda bisekcji. Rozważmy teraz podane pytania:

- 1) Co sie stanie jeżeli w metodzie Newtona dla f_1 wybierzemy $x_0 \in (1,\infty)$
 - 2) Co sie stanie kiedy dla f_2 wybierzemy $x_0 > 1$
 - 3) Czy można wybrać $x_0 = 1$ dla f_2
- 1) Wybranie $x_0 \in (1, \infty)$ w funkcji f_1 powoduje gwałtowny wzrost liczby potrzebnych do wyznaczenia wyniku iteracji.
- 2) W przypadku ustalenia $x_0 > 1$ w funkcji f_2 dla metody Newtona dochodzi do błedów podczas wyznaczania wyniku. Wynika to z faktu wybrania x_0 bardzo odległego od rzeczywistego pierwiastka funkcji, co w rezultacie prowadzi do zwiekszenia liczby potrzebnych do uzyskania wyniku iteracji, a dla dalszych x_0 skutkuje zwróceniem błedu, spowodowanego niewyznaczeniem pierwiastka równania o wymaganej dokładności w maxit itercacji.
- 3) Nie można wybrać $x_0 = 1$ dla f_2 dla metody newtona ponieważ pochodna $f'_2(x)$ osiagnie wartość bliska 0. W rezultacie otrzymamy kod błedu 2.