ΛΥΣΗ

α) Είναι
$$\overrightarrow{AB} = (2 - 1, 4 - 2) = (1, 2)$$
 και $\overrightarrow{A\Gamma} = (3 - 1, 1 - 2) = (2, -1)$.

Τότε $\overrightarrow{AB} \cdot \overrightarrow{A\Gamma} = 1 \cdot 2 + 2 \cdot (-1) = 0$. Επομένως τα διανύσματα είναι κάθετα και ως εκ τούτου $B \hat{A} \Gamma = 90^\circ$.

Εναλλακτική λύση:
$$\lambda_{AB}=\frac{4-2}{2-1}=2$$
, $\lambda_{A\Gamma}=\frac{1-2}{3-1}=-\frac{1}{2}$ και $\lambda_{AB}\cdot\lambda_{A\Gamma}=-1$.

β) Αφού το τρίγωνο $AB\Gamma$ είναι ορθογώνιο στο A, ο κύκλος ο οποίος διέρχεται από τα σημεία A,B και Γ έχει διάμετρο την υποτείνουσα $B\Gamma$ του τριγώνου και κέντρο το μέσο K της $B\Gamma$.

Αλλά
$$x_K = \frac{2+3}{2} = \frac{5}{2}$$
, $y_K = \frac{4+1}{2} = \frac{5}{2}$, οπότε $K\left(\frac{5}{2}, \frac{5}{2}\right)$.

Για την ακτίνα του, είναι:
$$\rho = \frac{(B\Gamma)}{2} = \frac{\sqrt{(3-2)^2 + (1-4)^2}}{2} = \frac{\sqrt{10}}{2}$$
.

Ως γνωστόν, η εξίσωση κύκλου με κέντρο $K(x_0, y_0)$ και ακτίνα ρ είναι η

$$(x - x_0)^2 + (y - y_0)^2 = \rho^2$$

Επομένως, η εξίσωση του κύκλου c είναι η $\left(x-\frac{5}{2}\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{5}{2}$.

γ) Έστω ε : $y = \lambda \ x \Leftrightarrow \lambda x - y = 0$ εξίσωση ευθείας που διέρχεται από την αρχή των αξόνων. Η ευθεία εφάπτεται στον κύκλο αν και μόνο αν η απόσταση του κέντρου του κύκλου από την ευθεία ισούται με την ακτίνα του ρ . Είναι λοιπόν:

$$d(K,\varepsilon) = \rho \Leftrightarrow \frac{\left|\lambda \cdot \frac{5}{2} - 1 \cdot \frac{5}{2} + 0\right|}{\sqrt{\lambda^2 + 1}} = \frac{\sqrt{10}}{2} \Leftrightarrow 2 \cdot \frac{5}{2} \cdot |\lambda - 1| = \sqrt{10} \cdot \sqrt{\lambda^2 + 1} \Leftrightarrow$$

$$25 (\lambda - 1)^2 = 10 (\lambda^2 + 1) \Leftrightarrow 3\lambda^2 - 10\lambda + 3 = 0$$

Η διακρίνουσα είναι $\Delta=10^2-4\cdot3\cdot3=64>0$ και οι λύσεις της δευτέρου βαθμού εξίσωσης που έχει προκύψει είναι οι $\lambda_{1,2}=\frac{10\pm\sqrt{64}}{2\cdot3}$ \Leftrightarrow $\lambda_1=3$ ή $\lambda_2=\frac{1}{3}$.

Επειδή από ένα σημείο εκτός κύκλου φέρονται δύο ακριβώς εφαπτόμενες προς αυτόν, οι ζητούμενες ευθείες που εφάπτονται στον κύκλο έχουν εξισώσεις:

$$\varepsilon_1$$
: $y = 3x$ και ε_2 : $y = \frac{1}{3}x$

