Alkalmazott matematika

Baran Ágnes

Lineáris programozás

Grafikus úton megoldható feladatok

1. példa

Egy céges karácsonyi partira a szervezők kétféle bólét készítenek, az egyikből 1 liter elkészítéséhez többek között 1 üveg habzóbor és 3 gyümölcskonzerv, a másikból 1 literhez 2 üveg habzóbor és 2 gyümölcskonzerv szükséges. Mennyit készítsenek az egyes fajtákból, ha az elkészített bólé összmennyiségét maximalizálni szeretnék, és habzóborból 20 üveg, gyümölcskonzervből 30 darab áll rendelkezésre?

Jelölje x_1 és x_2 az első-, illetve a másodikféle bólé mennyiségét literben.

Írjuk fel a korlátozó feltételeket:

$$x_1 + 2x_2 \le 20$$

 $3x_1 + 2x_2 \le 30$
 $x_1, x_2 \ge 0$

Ezen feltételek mellett keresett x_1 és x_2 úgy, hogy $\{x_1 + x_2\}$ maximális legyen.

Grafikus úton megoldható feladatok

A korlátozó feltételek mindegyike egy zárt félsíkot határoz meg \mathbb{R}^2 -ben. Ezek metszete lesz a megengedett tartomány.

$$x_1 + 2x_2 \le 20$$
$$3x_1 + 2x_2 \le 30$$
$$x_1, x_2 \ge 0$$

Grafikus úton megoldható feladatok

Az $x_1 + x_2 = z$ egyenesek egymással párhuzamosak. A legnagyobb olyan z értéket keressük, melyre az egyenesnek még van közös pontja a megengedett tartománnyal.

Az $x_1 + 2x_2 = 20$ és $3x_1 + 2x_2 = 30$ egyenesek metszéspontja: x = (5, 7.5). Megoldás: 5 litert kell az első, 7.5 litert a második fajta bóléból készíteni.

2. példa

Egy cukrász kétféle forrócsokit árul: chilis étcsokit és tejcsokit. Egy adott napon a szükséges összetevők közül tejből már csak 40 doboznyi, csokoládérúdból 56 darab, chiliből 10 g van a raktárban. Egy liter chilis étcsoki előállításához 1 doboz tej, 5 csokoládérúd és 1 g chili szükséges, míg a tejcsokihoz 2 doboz tej és 1 csokoládérúd. Egy liter chilis étcsoki eladásából 10 Euro, míg egy liter tejcsoki eladásából 2 Euro haszna van. Melyikből mennyit állítson elő, ha maximalizálni szeretné a hasznát?

Jelölje x_1 és x_2 a chilis étcsoki és a tejcsoki mennyiségét literben.

Írjuk fel a korlátozó feltételeket:

$$x_1 + 2x_2 \le 40$$

 $5x_1 + x_2 \le 56$
 $x_1 \le 10$
 $x_1, x_2 \ge 0$

Ezen feltételek mellett keresett max $\{10x_1 + 2x_2\}$

A megengedett tartomány:

$$x_1 + 2x_2 \le 40$$

 $5x_1 + x_2 \le 56$
 $x_1 \le 10$
 $x_1, x_2 \ge 0$

A $10x_1 + 2x_2 = z$ egyenesek párhuzamosak az $5x_1 + x_2 = 56$ egyenessel.

A $\binom{8}{16}$ és $\binom{10}{6}$ pontok közötti szakasz minden pontja optimális, ezekben a pontokban a célfüggvény értéke 112.

3. példa

Oldjuk meg grafikus úton a következő feladatot:

$$\begin{array}{rcl}
-2x_1 + x_2 & \leq & 8 \\
x_1 - 2x_2 & \leq & 12 \\
x_1, x_2 & \geq & 0
\end{array}$$

$$f(x) = 2x_1 + x_2 \quad \to \quad \text{max}$$

$$\begin{array}{cccc} -2x_1 + x_2 & \leq & 8 \\ x_1 - 2x_2 & \leq & 12 \\ x_1, x_2 & \geq & 0 \\ \hline f(x) = 2x_1 + x_2 & \to & \max \end{array}$$

A megengedett tartományon a célfüggvény felülről nem korlátos.

Normál alak (Primál feladat)

Az előző feladatok mindegyike

$$\begin{array}{ccc}
Ax & \leq & b \\
x & \geq & 0 \\
\hline
\max_{x} \{c^{T}x\}
\end{array}$$

alakba írható, ahol

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \ge 0, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Normál alak (Primál feladat)

$$\frac{Ax \leq b}{x \geq 0}$$

$$\frac{\max_{x} \{c^{T}x\}}{}$$

ahol

a korlátozó feltételek:

$$Ax \leq b$$

a nemnegatívitási feltételek:

$$x \ge 0$$
, $b \ge 0$

a célfüggvény:

$$f(x) = c^T x$$

a feladat:

$$\max_{x}\{c^Tx\}$$

Duál feladat

2. példa, emlékeztető:

Egy cukrász kétféle forrócsokit árul: chilis étcsokit és tejcsokit. Egy adott napon a szükséges összetevők közül tejből már csak 40 doboznyi, csokoládérúdból 56 darab, chiliből 10 g van a raktárban. Egy liter chilis étcsoki előállításához 1 doboz tej, 5 csokoládérúd és 1 g chili szükséges, míg a tejcsokihoz 2 doboz tej és 1 csokoládérúd. Egy liter chilis étcsoki eladásából 10 Euro, míg egy liter tejcsoki eladásából 2 Euro haszna van. Melyikből mennyit állítson elő, ha maximalizálni szeretné a hasznát?

Jelölje x_1 és x_2 a chilis étcsoki és a tejcsoki mennyiségét literben.

$$x_1 + 2x_2 \le 40$$
 $5x_1 + x_2 \le 56$
 $x_1 \le 10$
 $x_1, x_2 \ge 0$
 $f(x) = 10x_1 + 2x_2 o max$

Duál feladat

Tfh. valaki meg akarja vásárolni a nyersanyagokat $y_1, y_2, y_3 \ge 0$ egységáron.

Ha a cukrász legyártana 1 adat chilis étcsokit, akkor ahhoz rendre 1,
 5 és 1 egység tejet, csokit és chilit használna és 10 Euro haszna lenne.
 Ha ugyanezt a nyersanyagmennyiséget eladja, akkor legalább ennyi hasznot szeretne:

$$y_1 + 5y_2 + y_3 \ge 10$$

 Ha legyártana 1 adat tejcsokit, akkor ahhoz rendre 2, 1 és 0 egység tejet, csokit és chilit használna és 2 Euro haszna lenne. Ha ugyanezt a nyersanyagmennyiséget eladja, akkor legalább ennyi hasznot szeretne:

$$2y_1+y_2\geq 2$$

 A vevő a nyersanyagokért kifizetett teljes összeget minimalizálni szeretné:

$$40y_1 + 56y_2 + 10y_3 \rightarrow \min$$

Primál-duál feladatpár

$$x_1 + 2x_2 \le 40$$

 $5x_1 + x_2 \le 56$
 $x_1 \le 10$
 $x_1, x_2 \ge 0$
 $10x_1 + 2x_2 \to \max$

$$y_1 + 5y_2 + y_3 \ge 10$$

 $2y_1 + y_2 \ge 2$
 $y_1, y_2, y_3 \ge 0$
 $40y_1 + 56y_2 + 10y_3 \rightarrow mir$

Mátrixos alakban:

$$\begin{array}{rcl}
Ax & \leq & b \\
x & \geq & 0 \\
\{c^T x\} & \to & \max
\end{array}$$

$$\begin{array}{ccc}
A^T y & \geq & c \\
y & \geq & 0 \\
\{b^T y\} & \to & \min
\end{array}$$

A duál feladat megoldásának elemei a nyersanyagok árnyékárai.

14 / 85

Primál feladat, kanonikus alak

Az előző normál alak korlátozó feltételei új, nemnegatív változók bevezetésével átírhatók egyenletekké:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_n$

A nemnegatívitási feltételek:

$$x_1, x_2, \ldots, x_{n+m} \geq 0,$$

Mátrixos formában:

$$\underbrace{[A,E]}_{\tilde{A}}x=b$$

A új változók a célfüggvényben 0 együtthatókkal szerepelnek.

Szimplex módszer

Az \tilde{A} mátrix oszlopvektoraiból kell kikombinálnunk a b vektort úgy, hogy a célfüggvény értéke a lehető legnagyobb legyen.

A kiindulótábla normál alakból származó kanonikus alak esetén:

			<i>c</i> ₁	<i>c</i> ₂	 Cn	0	0	 0
В	c_B	x_B	<i>x</i> ₁	<i>X</i> ₂	 Xn	x_{n+1}	$0 \\ x_{n+2}$	 x_{n+m}
x_{n+1}	0	b_1	a ₁₁	a ₁₂		1		0
x_{n+2}	0	b_2	a ₂₁	a ₂₂	a_{2n}	0	1	0
:								
X_{n+m}	0	b_m	a _{m1}	a_{m2}	a_{mn}	0	0	1
f(:	x)=0		Δ_1	Δ_2	 Δ_n	0	0	0

ahol $\Delta_i = -c_i$.

Ez annak a megoldásnak felel meg, hogy $x_i=0$, ha $i=1,\ldots,n$ és $x_{n+i}=b_i$, ha $i=1,\ldots,m$

Az \tilde{A} mátrix utolsó m oszlopából, mint bázisból állítottuk elő a megoldást. Cseréljük ki a bázis egyik elemét (pl. az x_{n+k} -nak megfelelő oszlopot) egy másik oszlopra (pl. az x_j -hez tartozó oszlopra). \Longrightarrow bázistranszformáció.

Ekkor az x_j -hez tartozó oszlop a k-adik egységvektor lesz, a tábla többi eleme is transzformálódik.

A célfüggvény értéke $-\Delta_j$ -vel nő, ahol $\Delta_j = \sum\limits_{i \in I_B} c_i a_{ij} - c_j \implies$ olyan változót vigyünk be a bázisváltozók közé, melyre $\Delta_j < 0$.

A bázismegoldás elemeinek (a x_B alatti oszlop) nemnegatívnak kell lenni \implies a j-edik oszlopban az összes $a_{ij}>0$ elemre képezzük a $\frac{b_i}{a_{ij}}$ hányadost, legyen a_{kj} egy minimális hányadoshoz tartozó elem (generáló elem)

Táblatranszformáció

- 1. lépés: az alsó sorban válasszunk egy negatív elemet (legyen ez a Δ_j)
- 2. lépés: a kiválasztott elem oszlopában az összes $a_{ij}>0$ elemre képezzük a $\frac{b_i}{a_{ii}}$ hányadost
- 3. lépés: legyen a_{kj} egy minimális hányadoshoz tartozó elem **(generáló elem)**
- 4. lépés: elemi sortranszformációkkal érjük el, hogy a j-edik oszlopban a k-adik egységvektor álljon

Szimplex módszer

На

- az alsó sorban álló minden negatív elem fölött van pozitív a_{ij} elem, akkor a célfüggvény értéke még növelhető, járjunk el az előzőekben megadott lépések szerint.
- az alsó sorban már nincs negatív elem, akkor a táblánk optimális
- ullet az alsó sorban van olyan negatív elem, mely fölött minden a_{ij} elem negatív, akkor a célfüggvény a megadott tartomány felett nem korlátos

1. példa, folytatás

Oldjuk meg az alábbi feladatot szimplex módszerrel.

$$\begin{array}{cccc} x_1 + 2x_2 & \leq & 20 \\ 3x_1 + 2x_2 & \leq & 30 \\ x_1, x_2 & \geq & 0 \\ \hline f(x) = x_1 + x_2 & \to & \max \end{array}$$

A kiindulótábla:

			1	1	0	0
В	c_B	x_B	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4
<i>X</i> 3	0	20	1	2	1	0
<i>x</i> ₄	0	30	3	2	0	1
f	$\overline{(x)} =$	0	-1	-1	0	0

Most $\Delta_j < 0$, j=1,2 esetén. Válasszuk pl. Δ_1 -et, ennek oszlopában most minden $a_{ij}>0$, így képezzük az összes $\frac{b_i}{a_{i1}}$ hányadost:

$$\frac{b_1}{a_{11}} = \frac{20}{1} = 20, \quad \frac{b_2}{a_{21}} = \frac{30}{3} = 10$$

Mivel a második a kisebb, ezért a_{12} lesz a generáló elem.

					U	U
В	c_B	x_B	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄
-X3	0	20	1	2	1	0
<i>x</i> ₄	0	30	3	2	0	1
	0		-1	-1	0	0
			1	1	0	0
В	c_B	x_B	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
<i>X</i> 3	0	10	0	$\frac{4}{3}$	1	$-\frac{1}{3}$
x_1	1	10	1	4 3 2 3	0	$\frac{1}{3}$
	10		0	$-\frac{1}{3}$	0	$\frac{\frac{3}{3}}{\frac{1}{3}}$

Most csak $\Delta_2 < 0$, így a második oszlopban keressük a generáló elemet.

$$\frac{b_1}{a_{12}} = \frac{10}{\frac{4}{3}} = \frac{15}{2}$$
 és $\frac{b_2}{a_{22}} = \frac{10}{\frac{2}{3}} = 15$,

így a generáló elem az a_{12} lesz.

			1	1	0	0
В	c_B	x_B	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄
<i>X</i> 3	0	10	0	4/3	1	$-\frac{1}{3}$
x_1	1	10	1	<u>2</u> 3	0	$\frac{1}{3}$
	10		0	$-\frac{1}{3}$	0	$\frac{1}{3}$

			1	1	0	0
В	c_B	x_B	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4
<i>x</i> ₂	1	$\frac{15}{2}$	0	1	<u>3</u>	$-\frac{1}{4}$
x_1	1	5	1	0	$-\frac{1}{2}$	$\frac{1}{2}$
	<u>25</u> 2		0	0	$\frac{\overline{1}}{4}$	$\frac{\overline{1}}{4}$

				1	1	0	0
	В	c_B	x_B	<i>x</i> ₁	x_2	<i>x</i> ₃	<i>X</i> ₄
-	<i>X</i> ₂	1	$\frac{15}{2}$	0	1	$\frac{3}{4}$	$-\frac{1}{4}$
	x_1	1	5	1	0	$-\frac{1}{2}$	$\frac{1}{2}$
		<u>25</u>		0	0	$\frac{1}{4}$	$\frac{1}{4}$

Az utolsó tábla optimális, az optimális megoldás: $x_1=5, x_2=\frac{15}{2}$, a célfüggvény értéke: $\frac{25}{2}$.

Figyeljük meg hogy a megoldás során hogyan lépkedtünk bázismegoldásról bázismegoldásra:

			1	1	0	0
В	c_B	ΧB	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
<i>X</i> ₃	0	20 30	1	2	1	0
<i>X</i> 4	0	30	3	2	0	1
	0		-1	-1	0	0

			1	1	0	0
В	c_B	ΧB	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄
<i>X</i> 3	0	10	0	$\frac{4}{3}$	1	$-\frac{1}{3}$
x_1	1	10	1	$\frac{2}{3}$	0	$\frac{1}{3}$
	10		0	$-\frac{1}{3}$	0	$\frac{1}{3}$

$$x = (10, 0), f(x) = 10.$$

x = (0,0), f(x) = 0.

			1	1	0	0
В	c_B	x_B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
<i>x</i> ₂	1	$\frac{15}{2}$	0	1	$\frac{3}{4}$	$-\frac{1}{4}$
x_1	1	5	1	0	$-\frac{1}{2}$	$\frac{1}{2}$
	<u>25</u> 2		0	0	$\frac{1}{4}$	$\frac{1}{4}$

$$x = (5, 7.5),$$

 $f(x) = 12.5.$

2. példa, folytatás

Oldjuk meg a következő feladatot szimplex-módszerrel.

$$\begin{array}{cccc} x_1 + 2x_2 & \leq & 40 \\ 5x_1 + x_2 & \leq & 56 \\ x_1 & \leq & 10 \\ x_1, x_2 & \geq & 0 \\ \hline f(x) = 10x_1 + 2x_2 & \rightarrow & \text{max} \end{array}$$

A kiindulótábla:

			10	2	0	0	0
В	c_B			<i>x</i> ₂	-	<i>X</i> ₄	-
-X3	0	40	1 5	2	1	0	0
<i>X</i> ₄	0	56	5	1	0	1	0
<i>X</i> 5	0	10	1	0	0	0	1
	0		-10	-2	0	0	0

			10	2	0	0	0
В	c_B	ΧB	<i>x</i> ₁	2 <i>x</i> ₂	0 <i>x</i> ₃	<i>X</i> 4	<i>X</i> 5
<i>X</i> 3	0	30	0	2	1	0	-1
<i>X</i> 4	0	6	0	$\begin{array}{c} x_2 \\ 2 \\ \hline 1 \\ 0 \end{array}$	0	1	-5
x_1	10	10	1	0	0	0	1
	100		0	-2	0	0	10

Az optimális megoldás: $x_1 = 10$, $x_2 = 6$, f(x) = 112

27 / 85

Ha a bázisváltozók közé x_3 helyett bevisszük x_5 -öt, a célfüggvény értéke nem változik:

			10	2	0	0	0
В	c_B	x_B	10 x ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
<i>X</i> 3	0	18 6 10	0	0	1	-2	9
<i>X</i> ₂	2	6	0	1	0	1	-5
x_1	10	10	1	0	0	0	1
	112		0	0	0	2	0

			10	2	0	0	0
В	c_B	x_B	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> 5
<i>X</i> ₅	0	2	0	0	$\frac{1}{2}$	$-\frac{2}{9}$	1
<i>X</i> ₂	2	16	0	1	<u>5</u>	$-\frac{1}{9}$	0
x_1	10	8	1	0	$-\frac{1}{9}$	$\frac{2}{9}$	0
	112		0	0	0	2	0

Ekkor az optimális megoldás: $x_1 = 8$, $x_2 = 16$, f(x) = 112.

3. példa, folytatás

Oldjuk meg az alábbi feladatot szimplex módszerrel.

$$\begin{array}{cccc} -2x_1 + x_2 & \leq & 8 \\ x_1 - 2x_2 & \leq & 12 \\ x_1, x_2 & \geq & 0 \\ \hline f(x) = 2x_1 + x_2 & \to & \max \end{array}$$

A kiindulótábla:

			2	1	0	0
В	c_B	ΧB	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4
<i>X</i> 3	0	8 12	-2	1	1	0
<i>X</i> ₄	0	12	1	-2	0	1
	0		-2	-1	0	0

			2	1	0	0
В	c_B	x_B		x_2	<i>X</i> ₃	<i>x</i> ₄
X3	0	8		1		0
<i>X</i> 4	0	12	1	-2	0	1
	0		-2	-1	0	0

			2	1	0	0
В	c_B	ΧB	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4
<i>X</i> 3	0	32	l 0	- ≺	- 1	2
<i>x</i> ₁	2	12	1	-2	0	1
	24		0	-5	0	2

Mivel van olyan negatív érték az alsó sorban, amely fölött nem lehet generálóelemet választani, így célfüggvény felülről nem korlátos.

4. példa

Oldjuk meg grafikus úton az alábbi feladatot!

Egy bútoripari vállalkozás kétféle bútort gyárt: komódot és tálalószekrényt. Egy komód előállításához 4 egység faanyagra és 2 óra szakmunkára van szükség, míg egy tálalószekrény előállításához 2 egység faanyagra, 2 egység üvegre és 3 óra szakmunkára. Egy komódot 80 ezer Ft-ért, egy tálalószekrényt 60 ezer Ft-ért lehet eladni. Határozza meg a maximális bevételt biztosító gyártási tervet, ha 160 egység faanyag, 120 óra szakmunka és 60 egység üveg áll rendelkezésre!

Melyik korlátozó feltétel aktív?

Van-e olyan erőforrás, melyet az optimális termelési terv esetén nem használunk fel teljesen?

$$\begin{array}{rcl}
4x_1 + 2x_2 & \leq & 160 \\
2x_1 + 3x_2 & \leq & 120 \\
2x_2 & \leq & 60 \\
x_1, x_2 & \geq & 0
\end{array}$$

$$f(x) = 80x_1 + 60x_2 \quad \rightarrow \quad \text{max}$$

Milyen határok között változhat a komód eladási ára, hogy az optimális termelési terv ne változzon?

A célfüggvény meredeksége: $-\frac{80}{60}=-\frac{4}{3}$

Az optimális megoldás a $4x_1+2x_2=160$ és a $2x_1+3x_2=120$ egyenesek metszéspontja. Ezek meredeksége:

$$4x_1 + 2x_2 = 160 \rightarrow -2$$

$$2x_1 + 3x_2 = 120 \rightarrow -\frac{2}{3}$$

Az optimális megoldás nem változik, ha a célfüggvény meredeksége ezen értékek között marad. Ha a komód ára c_1 , a tálalószekrényé 60:

$$-2 \le -\frac{c_1}{60} \le -\frac{2}{3}$$
$$120 > c_1 > 40$$

Milyen határok között változhat a tálalószekrény ára?

Feladat

A grafikus megoldás alapján az 1. és 2. példában adott lineáris programozási feladatok esetén melyik korlátozó feltételek aktívak?

Az optimális termelési terv esetén melyik erőforrásból marad fel nem használt mennyiség?

Az egyes termékek eladási árai milyen határok között változhatnak úgy, hogy az optimális termelési terv ne változzon?

Lineáris programozási feladatok Matlab-bal

A linprog függvényt használhatjuk.

Megoldja az

$$Ax \leq b$$

$$A_{eq}x = b_{eq}$$

$$I_b \leq x \leq u_b$$

$$\min_{x} \{c^T x\}$$

feladatot.

1. példa, folytatás

Matlab segítségével oldjuk meg a következő feladatot.

$$x_1 + 2x_2 \le 20$$

 $3x_1 + 2x_2 \le 30$
 $x_1, x_2 \ge 0$
 $f(x) = x_1 + x_2 \rightarrow \max$

Definiáljuk az A mátrixot, a b és c vektorokat. Mivel a Matlab a célfüggvény minimumát keresi meg, ezért c vektorként a feladatban adott vektor (-1)-szeresét kell megadni.

```
>> A=[1 2; 3 2];
>> b=[20;30];
>> c=[-1 -1];
```

Hívjuk meg a linprog függvényt. A változóink mindegyikére a 0 alsó korlát adott, míg felső korlát nincs, azt állítsuk ∞ -re (vagy hagyjuk el).

```
>> A=[1 2; 3 2];
>> b=[20;30];
>> c=[-1 -1];
>> x=linprog(c,A,b,[],[],[0;0],[inf,inf])
Optimal solution found.
x =
    5.0000
    7.5000
```

2. példa, folytatás

Matlab segítségével oldjuk meg a következő feladatot.

$$\begin{array}{cccc} x_1 + 2x_2 & \leq & 40 \\ 5x_1 + x_2 & \leq & 56 \\ x_1 & \leq & 10 \\ x_1, x_2 & \geq & 0 \\ \hline f(x) = 10x_1 + 2x_2 & \rightarrow & \text{max} \end{array}$$

```
>> A=[1 2; 5 1; 1 0];
>> b=[40; 56; 10];
>> c=[-10; -2];
>> [x,fval]=linprog(c,A,b,[],[],[0;0],[inf,inf])
```

Ha a linprog függvényt két output változóval hívjuk, akkor a célfüggvény optimális értékét is megkapjuk (ami (-1)-szerese az eredeti feladatunkban szereplő értéknek)

```
>> A=[1 2; 5 1; 1 0];
>> b=[40; 56; 10];
>> c=[-10; -2];
>> [x,fval]=linprog(c,A,b,[],[],[0;0],[inf,inf])
Optimal solution found.
x =
   10.0000
    6,0000
fval =
 -112.0000
```

$$x_1 + 2x_2 \le 40$$

 $5x_1 + x_2 \le 56$
 $x_1 \le 10$
 $x_1, x_2 \ge 0$

Az $x = (10, 6)^T$ megoldás rajta van a 2. és 3. tartomány peremén, de az 1.-nek a belsejében van \Longrightarrow ilyen gyártás mellett a 2. és 3. nyersanyagot teljesen elhasználjuk, az 1.- nem.

Mennyi nyersanyag marad?

Ha lehetőségünk van valamelyik nyersanyagkészletet bővíteni, akkor melyiket érdemes?

Ekkor a lambda struktúra mezőin találjuk a nyersanyagok ú.n. árnyékárait:

Ez megadja, hogy az egyes nyersanyagokból 1 egységnyit beszerezve még mennyivel növelhetjük a célfüggvény értékét.

csak a második nyersanyagkészletet érdemes most bővíteni. (Természetesen a bővítés csak bizonyos határok között hozza ezt az eredményt.) Ugyanez a megoldást adó szimplex táblából:

			10	2	0 <i>x</i> ₃	0	0
В	c_B						
X3	0	18 6	0	0	1	-2	9
<i>X</i> ₂	2	6	0	1	0	1	-5
x_1	10	10	1	0	0	0	1
	112		0	0	0	2	0

Mennyit változtathatunk a nyersanyag mennyiségén úgy, hogy az optimális megoldásban szereplő bázisváltozók ugyanazok maradjanak?

A kiindulótábla:

A megoldás:

$$x^* = B^{-1}b,$$

ahol B az A-nak a megoldásban szereplő bázisváltozókhoz tartozó oszlopaiból áll:

$$B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix} \text{ és } B^{-1} = \begin{bmatrix} 1 & -2 & 9 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{bmatrix}$$

 B^{-1} az optimális táblában a kiinduló bázisváltozók alatt található.

43 / 85

Innen megkapható, hogy a *b* egy koordinátáját milyen határok között változtathatjuk.

$$b = \begin{bmatrix} 40 \\ 56 \\ 10 \end{bmatrix} \quad \rightarrow \quad \tilde{b} = \begin{bmatrix} 40 \\ 56 + \varepsilon \\ 10 \end{bmatrix} = b + \begin{bmatrix} 0 \\ \varepsilon \\ 0 \end{bmatrix}$$

$$x^* = B^{-1}b \rightarrow \tilde{x}^* = B^{-1}\tilde{b} = x^* + B^{-1}\begin{bmatrix} 0 \\ \varepsilon \\ 0 \end{bmatrix} = x^* + \begin{bmatrix} -2\varepsilon \\ \varepsilon \\ 0 \end{bmatrix}$$

Az új megoldás minden koordinátájának nemnegatívnak kell lenni, azaz

$$18 - 2\varepsilon > 0$$
, $6 + \varepsilon > 0$

$$-6 < \varepsilon < 9$$

Általánosan: az k-adik nyersanyagot figyelve

Vegyük az optimális táblában az k-adik nyersanyag kiegészítőváltozójához tartozó oszlopot, legyenek ennek elemei e_{ik} , az optimális megoldás koordinátái pedig x_i^* , $i=1,\ldots n$.

Ekkor ahhoz, hogy az optimális megoldáshoz tartozó bázisváltozók ugyanezek legyenek, a k-adik nyersanyag mennyisége ε -nal változhat, ahol

$$\max_{\substack{1 \leq i \leq n \\ e_{ik} > 0}} \left\{ -\frac{x_i^*}{e_{ik}} \right\} \leq \varepsilon \leq \min_{\substack{1 \leq i \leq n \\ e_{ik} < 0}} \left\{ -\frac{x_i^*}{e_{ik}} \right\}$$

3. példa, folytatás

Oldjuk meg Matlab-bal a következő feladatot.

$$\begin{array}{rcl}
-2x_1 + x_2 & \leq & 8 \\
x_1 - 2x_2 & \leq & 12 \\
x_1, x_2 & \geq & 0
\end{array}$$

$$f(x) = 2x_1 + x_2 \quad \to \quad \text{max}$$

```
>> A=[-2 1; 1 -2];
>> b=[8; 12];
>> c=[-2; -1];
>> [x,fval]=linprog(c,A,b,[],[],[0;0],[inf,inf])
```

```
>> A=[-2 1: 1 -2]:
>> b=[8: 12]:
>> c=[-2: -1]:
>> [x,fval]=linprog(c,A,b,[],[],[0;0],[inf,inf])
Problem is unbounded.
x =
fval =
```

Ahogy azt a grafikus és szimplex módszerrel történő megoldásnál is láttuk, a célfüggvény a megadott tartományon nem korlátos.

Módosított normál feladat

Αz

$$A_1x = b_1$$

$$A_2x \le b_2$$

$$x \ge 0$$

$$c^T x \to \max$$

feladatot, ahol $b_1 \geq 0, b_2 \geq 0$, módosított normál feladatnak nevezzük.

Az egyenlőtlenségeket a korábban látott módon alakítsuk egyenlőségekké, új, nemnegatív változók bevezetésével:

$$A_1x = b_1$$

$$A_2x + \tilde{x} = b_2$$

$$x \ge 0, \tilde{x} \ge 0$$

$$c^T x \to \max$$

Példa

$$x_{2} + x_{4} = 15$$

$$x_{3} + x_{4} = 20$$

$$x_{1} + 2x_{2} + x_{3} \leq 50$$

$$4x_{1} - x_{2} + x_{4} \leq 60$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

$$f(x) = x_{1} + 2x_{3} - 5x_{4} \rightarrow \max$$

$$x_{2} + x_{4} = 15$$

$$x_{3} + x_{4} = 20$$

$$x_{1} + 2x_{2} + x_{3} + x_{5} = 50$$

$$4x_{1} - x_{2} + x_{4} + x_{6} = 60$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

$$f(x) = x_{1} + 2x_{3} - 5x_{4} \to \max$$

Az egyenletrendszer együtthatómátrixa:

$$A = \left[\begin{array}{cccccc} 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 4 & -1 & 0 & 1 & 0 & 1 \end{array} \right]$$

Az A oszlopvektoraiból kellene előállítanunk a b vektort, nemnegatív együtthatókkal vett lineáris kombinációként.

A kiindulóbázis két tagjaként használhatjuk az x_5, x_6 változókhoz tartozó oszlopokat, de a bázis másik két tagjának megválasztása problémás lehet.

Abból a célból, hogy rendelkezésre álljon egy kiinduló bázis, vezessük be a z ismeretlen vektort is.

$$A_1x + z = b_1$$

$$A_2x + \tilde{x} = b_2$$

$$x \ge 0, \tilde{x} \ge 0, z \ge 0$$

$$c^T x \to \max$$

Az így kapott feladatnak viszont csak olyan megoldásai elégítik ki az eredeti feltételrendszert, melyekre a z minden koordinátája 0. Ennek teljesülését egy ú.n. másodlagos célfüggvény bevezetésével biztosítjuk:

$$\hat{f} = \sum_{i} z_{i} \rightarrow min$$

A megoldást először a másodlagos célfüggvény minimalizálásával kezdjük (1. fázis), ha annak optimuma 0, akkor innen folytatjuk a megoldást az elsődleges célfüggvény optimalizálásával (2. fázis). Ha az első fázis végén $\hat{f} \neq 0$, akkor az eredeti feladatnak nincs megoldása.

Kétfázisú szimplex módszer

A példa folytatása:

$$x_{2} + x_{4} + z_{1} = 15$$

$$x_{3} + x_{4} + z_{2} = 20$$

$$x_{1} + 2x_{2} + x_{3} + x_{5} = 50$$

$$4x_{1} - x_{2} + x_{4} + x_{6} = 60$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, z_{1}, z_{2} \ge 0$$

$$f(x) = x_{1} + 2x_{3} - 5x_{4} \to \max$$

$$\hat{f}(z) = z_{1} + z_{2} \to \min$$

A másodlagos célfüggvénynek vegyük a (-1)-szeresét, hogy a feladat maximalizálás legyen:

$$-\hat{f}(z) = -z_1 - z_2 \rightarrow \max$$

1. fázis:

			0	0	0	0	0	0	-1	-1
В	c_B	x_B	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	z_1	<i>z</i> ₂
z_1	-1	15	0	1	0	1	0	0	1	0
z_2	-1	20	0	0	1	1	0	0	0	1
<i>X</i> 5	0									
<i>x</i> ₆	0	60	4	-1	0	1	0	1	0	0
	-35		0	-1	-1	-2	0	0	0	0

			0	0	0	0	0	0	-1	-1	
В	c_B	x_B	<i>x</i> ₁	<i>X</i> ₂	0 <i>x</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	z_1	<i>z</i> ₂	
<i>X</i> ₄	0	15	0	1	0	1	0	0	1	0	
z_2	-1	5	0	-1	1	0	0	0	-1	1	
<i>X</i> 5	0	50	1	2	1	0	1	0	0	0	
<i>x</i> ₆	0	45	4	-2	0	0	0	1	-1	0	
	-5		0	1	-1	0	0	0	2	0	

		ΧB	0	0	0	0	0	0	-1	-1
В	c_B	x_B	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	z_1	<i>z</i> ₂
<i>X</i> 4	0	15	0	1	0	1	0	0	1	0
<i>X</i> 3	0	5	0	-1	1	0	0	0	-1	1
	0	45	1	3	0	0	1	0	1	-1
<i>x</i> ₆	0				0					
	0		0	0	0	0	0	0	1	1

Az első fázis vége, a másodlagos célfüggvény értéke 0

2. fázis:

			1	0	2	-5 <i>x</i> 4	0	0
В	c_B			<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	
<i>X</i> ₄	-5	15	0	1	0	1	0	0
<i>X</i> 3	2	5	0	-1	1	0	0	0
<i>X</i> 5	-5 2 0 0	45	1	3	0	0	1	0
<i>x</i> ₆	0	45	4	-2	0	0	0	1
	-65		-1	-7	0	0	0	0

			1	0	2	-5	0	0
В	c_B	x_B	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆
-X ₄	-5	0	$-\frac{1}{3}$	0	0	1	$-\frac{1}{3}$	0
<i>X</i> 3	2	20	$\frac{1}{3}$	0	1	0	$\frac{1}{3}$	0
<i>X</i> ₂	0	15	$\frac{1}{3}$	1	0	0	$\frac{1}{3}$	0
<i>x</i> ₆	0	75	$\frac{14}{3}$	0	0	0	$\frac{2}{3}$	1
	40		$\frac{4}{3}$	0	0	0	$\frac{7}{3}$	0

Megoldás: $x_1 = 0$, $x_2 = 15$, $x_3 = 20$, $x_4 = 0$, f(x) = 40

Baran Ágnes

Általános feladat

Αz

$$A_1x = b_1$$

$$A_2x \le b_2$$

$$A_3x \ge b_3$$

$$x \ge 0$$

$$c^T x \to \max$$

feladatot, ahol $b_1 \ge 0, b_2 \ge 0, b_3 \ge 0$, általános feladatnak nevezzük.

Ekkor egy nemnegatív vektor levonásával a \geq egyenlőtlenségeket átírjuk egyenlőségekké, majd a módosított normál feladatnál leírtak szerint járunk el.

Szállítási feladat

- R_1, \ldots, R_m : raktárak rendre r_1, \ldots, r_m egység raktárkészlettel,
- B_1, \ldots, B_n : felvevőhelyek b_1, \ldots, b_n egység igénnyel,
- c_{ij} : egy egység áru szállítási költsége R_i -ből B_j -be.

Készítsünk egy minimális költségű szállítási tervet!

Ha

$$\sum_{i=1}^{m} r_i = \sum_{j=1}^{n} b_j$$

(összes raktárkészlet = összes igény), akkor a feladat kiegyensúlyozott.

Kiegyensúlyozott feladat esetén:

ha x_{ij} az R_i -ből B_j -be szállítandó áru mennyisége, akkor a feladat:

$$\sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} o \mathsf{min}$$

úgy, hogy

$$\sum_{j=1}^{n} x_{ij} = r_{i}, \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_{j}, \quad j = 1, \dots, n$$

$$x_{ii} \ge 0, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Egy lineáris programozási feladat, a mátrixában csak 0-k és 1-ek, a mátrix mérete $(m+n) \times (m+n)$, rangja m+n-1.

A feladat költségtáblája:

	B_1	B_2	 B_n	
R_1	c ₁₁	<i>c</i> ₁₂	 <i>C</i> _{1<i>n</i>}	r_1
R_2	c ₂₁	<i>c</i> ₂₂	 <i>c</i> _{2<i>n</i>}	<i>r</i> ₂
:				
R_m	c _{m1}	C _{m2}	 C _{mn}	r _m
	b_1	<i>b</i> ₂	bn	

Ha a feladat nem kiegyensúlyozott, akkor egy fiktív raktár, vagy felvevőhely segítségével tegyük kiegyensúlyozottá. A fiktív helyekhez tartozó szállítási költségek mind 0-k.

Ha

$$\sum_{i=1}^m r_i < \sum_{j=1}^n b_j,$$

akkor

$$r_{m+1} := \sum_{j=1}^{n} b_j - \sum_{i=1}^{m} r_i$$

és

	B_1	B_2	 B_n	
R_1	c ₁₁	<i>c</i> ₁₂	 <i>C</i> _{1<i>n</i>}	r_1
R_2	c ₂₁	<i>c</i> ₂₂	 <i>c</i> _{2<i>n</i>}	<i>r</i> ₂
:				
R_m	c _{m1}	c _{m2}	 C _{mn}	r _m
R_{m+1}	0	0	 0	r_{m+1}
	b_1	b_2	b_n	

Ha

$$\sum_{i=1}^m r_i > \sum_{j=1}^n b_j,$$

akkor

$$b_{n+1} := \sum_{i=1}^{m} r_i - \sum_{j=1}^{n} b_j$$

és

	B_1	B_2	 B_n	B_{n+1}	
R_1	c ₁₁	<i>c</i> ₁₂	 C _{1n}	0	r_1
R_2	c ₂₁	C ₂₂	 c _{2n}	0	<i>r</i> ₂
:					
R_m	C _{m1}	C _{m2}	 C _{mn}	0	r _m
	b_1	<i>b</i> ₂	bn	b_{n+1}	

Kiinduló megoldás meghatározása

1. ÉNY sarok módszer

- 1. i = 1, j = 1
- 2. szállítsuk a lehető legtöbb árut R_i -ből B_j -be, ez $x_{ij} := \min\{r_i, b_j\}$ egység.
- 3. $r_i := r_i x_{ij}, b_j := b_j x_{ij}$
- 4. Ha $r_i = 0$ és i < m, akkor i := i + 1, ha $b_j = 0$ és j < n, akkor j := j + 1 és $\rightarrow 2$.

A bázismegoldásban mindig n+m-1 cellának (útvonalnak) kell szerepelni.

Ha a 4. lépésben a két feltétel egyszerre teljesül, akkor legyen $x_{i,j+1}=0$ vagy $x_{i+1,j}=0$ része a bázismegoldásnak (**degenerált bázis**)

Példa

Határozzuk meg az alábbi költségtáblával adott szállítási feladat egy kiinduló bázismegoldását ÉNY sarok módszerrel!

	B_1	B_2	B_3	B_4	
R_1	3	1	7	4	250
R_2	2	6	5	9	350
R ₃	8	3	3	2	400
	200	300	350	150	

Kapacitás:
$$250 + 350 + 400 = 1000$$

lgény: 200 + 300 + 350 + 150 = 1000

Kiegyensúlyozott feladat.

A kiinduló bázismegoldás:

	B_1	B_2	B ₃	B_4
R_1	200	50		
R_2		250	100	
R ₃			250	150

Ennek költsége:

$$200 \cdot 3 + 50 \cdot 1 + 250 \cdot 6 + 100 \cdot 5 + 250 \cdot 3 + 150 \cdot 2 = 3700$$

Példa

Határozzuk meg az alábbi költségtáblával adott szállítási feladat egy kiinduló bázismegoldását ÉNY sarok módszerrel!

	B_1	B_2	B_3	
R_1	40	10	20	80
R_2	15	20	10	50
R ₃	20	25	30	60
	105	50	65	

	B_1	B_2	B_3	
R_1	40	10	20	80
R_2	15	20	10	50
R ₃	20	25	30	60
R_4	0	0	0	30
	105	50	65	

Kapacitás:
$$80 + 50 + 60 = 190$$

lgény:
$$105 + 50 + 65 = 220$$

Kiegyensúlyozatlan feladat.

 R_4 : fiktív raktár 30 egység áruval.

Az új költségtábla:

	B_1	B_2	B_3	
R_1	40	10	20	80
R_2	15	20	10	50
R ₃	20	25	30	60
R_4	0	0	0	30
	105	50	65	

A kiinduló bázismegoldás:

	B_1	B_2	<i>B</i> ₃
R_1	80		
R_2	25	25	
R ₃		25	35
R_4			30

A költség:

$$80 \cdot 40 + 25 \cdot 15 + 25 \cdot 20 + 25 \cdot 25 + 35 \cdot 30 + 30 \cdot 0 = 5750$$

65/85

Kiinduló megoldás meghatározása

2. Minimális költség módszer

Mindig a még lehetséges "legolcsóbb" utak egyikén szállítsunk!

	B_1	B_2	B_3	B_4	
R_1	3	1	7	4	250
R_2	2	6	5	9	350
R ₃	8	3	3	2	400
	200	300	350	150	

Kapacitás:
$$250 + 350 + 400 = 1000$$

Igény:

$$200 + 300 + 350 + 150 = 1000$$

Kiegyensúlyozott feladat.

A kiinduló bázismegoldás:

	B_1	B_2	B_3	B_4
R_1		250		
R_2	200	50	100	
R ₃			250	150

A bázismegoldás n+m-1=6 elemű.

Ennek költsége:

$$250 \cdot 1 + 200 \cdot 2 + 50 \cdot 6 + 100 \cdot 5 + 250 \cdot 3 + 150 \cdot 2 = 2500$$

Kiinduló megoldás meghatározása

3. Vogel-módszer

Mindig a még lehetséges utak közül azt válasszuk, ahol egységenként a legtöbbet veszítenénk, ha nem ezt az útvonalat választanánk.

Minden sorban és oszlopban képezzük a két legkisebb költség különbségét. Válasszunk ki egy maximális különbséghez tartozó sort, vagy oszlopot, és ott végezzük el a legolcsóbb útvonalon a lehetséges legnagyobb szállítást. Csökkentsük a készleteket/igényeket az elvégzett szállítással.

Az így kiürült raktár sorát, vagy a "megtelt" felvevőhely oszlopát húzzuk ki a táblából.

Ismételjük meg az algoritmust az új táblával.

Ügyeljünk rá, hogy a bázismegoldás elemszáma megfelelő legyen!

	B_1	B_2	B_3	B_4	
R_1	3	1	7	4	250
R_2	2	6	5	9	350
R ₃	8	3	3	2	400
	200	300	350	150	

Kapacitás:
$$250 + 350 + 400 = 1000$$

Igény:

$$200 + 300 + 350 + 150 = 1000$$

Kiegyensúlyozott feladat.

A kiinduló bázismegoldás:

	B_1	B_2	B_3	B_4
R_1		250		
R_2	200		150	
R ₃		50	200	150

A bázismegoldás n + m - 1 = 6 elemű.

Ennek költsége:

$$250 \cdot 1 + 200 \cdot 2 + 150 \cdot 5 + 50 \cdot 3 + 200 \cdot 3 + 150 \cdot 2 = 2450$$

A megoldás optimalitásának ellenőrzése

A kiinduló megoldás (pirossal az 1 egységre vonatkozó szállítási költségek):

	B_1	B_2	B_3	B_4
R_1	3	250 ₁	7	4
R_2	200 ₂	6	150 ₅	9
R_3	8	50 ₃	200 ₃	150 ₂

Hogyan változna a tábla, ha beírnánk 1 egység szállítását az $R_1 \to B_1$ útvonalra?

	B_1	B_2	В3	B_4
R_1	1 ₃	250-1 ₁	7	4
R_2	200-1 ₂	6	$150 + 1_{5}$	9
R_3	8	50 +1 ₃	200-1 ₃	150 ₂

A költség változása:

$$3-1+3-3+5-2=5>0$$
,

azaz a költség növekedne.

Ellenőrizzük a többi cella esetleges bevonásánál a költség változását!

	B_1	B_2	B_3	B_4
R_1	3	250 ₁	7	4
R_2	200 ₂	6	150 ₅	9
R_3	8	50 ₃	200 ₃	150 ₂

Egy egység áru szállítása esetén a költségek változása:

$$\begin{array}{l} R_1 \rightarrow B_3 \colon \ c_{13} - c_{33} + c_{32} - c_{12} = 7 - 3 + 3 - 1 = 6 > 0 \\ R_1 \rightarrow B_4 \colon \ c_{14} - c_{34} + c_{32} - c_{12} = 4 - 2 + 3 - 1 = 4 > 0 \\ R_2 \rightarrow B_2 \colon \ c_{22} - c_{23} + c_{33} - c_{32} = 6 - 5 + 3 - 3 = 1 > 0 \\ R_2 \rightarrow B_4 \colon \ c_{24} - c_{34} + c_{33} - c_{23} = 9 - 2 + 3 - 5 = 5 > 0 \\ R_3 \rightarrow B_1 \colon \ c_{31} - c_{33} + c_{23} - c_{21} = 8 - 3 + 5 - 2 = 8 > 0 \end{array}$$

Minden esetben nőne a költség, azaz a tábla optimális.

A megoldás optimalitásának ellenőrzése

Vizsgáljuk meg a minimális költség módszerrel kapott kiinduló megoldást!

	B_1	B_2	B ₃	B ₄
R_1	3	250 ₁	7	4
R_2	200 ₂	50 ₆	100 ₅	9
R ₃	8	3	250 ₃	150 ₂

$$R_3 \rightarrow B_2$$
: $c_{32} - c_{33} + c_{23} - c_{22} = 3 - 3 + 5 - 6 = -1 < 0$

Ezt az útvonalat bevonva a szállításba csökken a költség. Maximálisan 50 egység árut írhatunk ide.

	B_1	B_2	B_3	B_4
R_1	3	250 ₁	7	4
R_2	200 ₂	50-50 ₆	100+50 5	9
R_3	8	+50 ₃	250-50 ₃	150 ₂

	B_1	B_2	B_3	B_4
R_1	3	250 ₁	7	4
R_2	200 ₂	6	150 ₅	9
R ₃	8	50 ₃	200 ₃	150 ₂

Példa

Írjuk fel az alábbi költségtáblával adott szállítási feladat kiinduló megoldását minimális költség módszerrel, és ellenőrizzük a megoldás optimalitását!

	B_1	B_2	B_3	B_4	
R_1	6	2	7	8	160
R_2	4	1	6	3	310
R_3	4	8	4	8	80
	110	140	90	210	

Kiegyensúlyozott (110 + 140 + 90 + 210 = 160 + 310 + 80)

	B_1	B ₂	B ₃	B ₄
R_1	30 ₆	2	90 ₇	40 8
R_2	4	140 ₁	6	170 ₃
R_3	80 ₄	8	4	8

Költség: K=2100

Az optimalitás ellenőrzése:

	B_1	B_2	B ₃	B_4
R_1	30 ₆	2	90 ₇	40 ₈
R_2	4	140 ₁	6	170 ₃
R_3	80 ₄	8	4	8

 $R_1 \rightarrow B_2$: $c_{12} - c_{14} + c_{24} - c_{22} = 2 - 8 + 3 - 1 = -4 < 0$ Ezt az útvonalat bevonva a szállítási tervbe a költség csökkenne, áruegységenként 4-gyel. Maximálisan 40 egységet írhatunk ide:

	B_1	B_2	В3	B ₄
R_1	30 ₆	+40 ₂	90 ₇	40-40 8
R_2	4	140-40 1	6	170+40 ₃
R ₃	80 4	8	4	8

	B_1	B_2	B ₃	B ₄
R_1	30 ₆	40 ₂	90 7	8
R_2	4	100 ₁	6	210 ₃
R_3	80 ₄	8	4	8

$$K = 1940$$

73 / 85

Ellenőrizzük az új terv optimalitását!

	B_1	B_2	B ₃	B_4
R_1	30 ₆	40 ₂	90 ₇	8
R_2	4	100 ₁	6	210 ₃
R_3	80 ₄	8	4	8

 $R_1 \rightarrow B_4$: most vettük ki a tervből

$$R_2 \rightarrow B_1$$
: $c_{21} - c_{22} + c_{12} - c_{11} = 4 - 1 + 2 - 6 = -1 < 0$

Ezt az útvonalat is érdemes bevonni a tervbe (30 egységgel tehetjük):

	B_1	B_2	B ₃	B_4
R_1	30-30 ₆	40+30 ₂	90 ₇	8
R_2	+30 4	100-30 1	6	210 ₃
R ₃	80 ₄	8	4	8

	B_1	B_2	B ₃	B_4
R_1	6	70 ₂	90 7	8
R_2	30 ₄	70 ₁	6	210 ₃
R ₃	80 4	8	4	8

$$K = 1910$$

74 / 85

Ellenőrizzük az új terv optimalitását!

	B_1	B_2	B ₃	B_4
R_1	6	70 ₂	90 ₇	8
R_2	30 ₄	70 ₁	6	210 ₃
R ₃	80 ₄	8	4	8

 $R_1 \rightarrow B_1$: most vittük ki a tervből

$$R_1 \rightarrow B_4$$
: $c_{14} - c_{24} + c_{22} - c_{12} = 8 - 3 + 1 - 2 = 4 > 0$

$$R_2 \rightarrow B_3$$
: $c_{23} - c_{22} + c_{12} - c_{13} = 6 - 1 + 2 - 7 = 0$

$$R_3 \rightarrow B_2$$
: $c_{32} - c_{31} + c_{21} - c_{22} = 8 - 4 + 4 - 1 = 7 > 0$

 $R_3 \rightarrow B_3$:

$$c_{33} - c_{31} + c_{21} - c_{22} + c_{12} - c_{13} = 4 - 4 + 4 - 1 + 2 - 7 = -2 < 0$$

Ezt az útvonalat érdemes bevonni (70 egységgel tehetjük):

	B_1	B_2	В3	B ₄
R_1	6	70+70 ₂	90-70 7	8
R_2	30+70 ₄	70-70 1	6	210 ₃
R_3	80-70 4	8	+70 4	8

	B_1	B_2	B ₃	B ₄
R_1	6	140 ₂	20 ₇	8
R_2	100 4	1	6	210 ₃
R ₃	10 ₄	8	70 ₄	8

$$K = 1770$$

Az optimalitás ellenőrzése:

$$R_1 \to B_1$$
: $c_{11} - c_{31} + c_{33} - c_{13} = 6 - 4 + 4 - 7 = -1 < 0$ Ezt az útvonalat érdemes bevonni (10 egységgel tehetjük):

	B_1	B_2	В3	B ₄
R_1	$+10_{6}$	140 ₂	20-10 7	8
R_2	100 4	1	6	210 ₃
R ₃	10-10 4	8	70+10 ₄	8

	B_1	B_2	B ₃	B_4
R_1	10 ₆	140 ₂	10 7	8
R_2	100 4	1	6	210 ₃
R_3	4	8	80 ₄	8

$$K = 1760$$

Ellenőrizzük az optimalitást!

	B_1	B_2	B ₃	B_4
R_1	10 ₆	140 ₂	10 ₇	8
R_2	100 4	1	6	210 ₃
R_3	4	8	80 ₄	8

$$K = 1760$$

$$\begin{array}{l} R_1 \rightarrow B_4\colon \ c_{14} - c_{11} + c_{21} - c_{24} = 8 - 6 + 4 - 3 = 3 > 0 \\ R_2 \rightarrow B_2\colon \ c_{22} - c_{21} + c_{11} - c_{12} = 1 - 4 + 6 - 2 = 1 > 0 \\ R_2 \rightarrow B_3\colon \ c_{23} - c_{21} + c_{11} - c_{13} = 6 - 4 + 6 - 7 = 1 > 0 \\ R_3 \rightarrow B_1\colon \ \text{most vett\"{u}k ki a tervb\"{o}l} \\ R_3 \rightarrow B_2\colon \ c_{32} - c_{12} + c_{13} - c_{33} = 8 - 2 + 7 - 4 = 9 > 0 \\ R_3 \rightarrow B_4\colon \ c_{34} - c_{33} + c_{13} - c_{11} + c_{21} - c_{24} = 8 - 4 + 7 - 6 + 4 - 3 = 6 > 0 \end{array}$$

A szállítási költség nem csökkenthető tovább, a terv optimális.

Feladat

Határozzuk meg az előző feladatban és az alábbi költségtáblával adott szállítási feladatok kiinduló megoldását Vogel-módszerrel, és ellenőrizzük a megoldás optimalitását.

	B_1	B_2	<i>B</i> ₃	B_4	
R_1	3	4	6	3	200
R_2	3	7	4	7	210
R_3	4	8	6	8	100
	80	200	50	180	

	B_1	B_2	B_3	B_4	
R_1	5	5	1	2	230
R_2	6	5	8	5	250
R ₃	5	8	7	3	100
	110	170	140	160	

Degeneráció, alternatív megoldás

Feladat

Határozzuk meg az alábbi költségtáblával adott szállítási feladat kiinduló megoldását Vogel-módszerrel, és ellenőrizzük a megoldás optimalitását.

	B_1	B_2	B_3	B_4	
R_1	5	3	6	3	130
R_2	8	2	6	3	240
R_3	1	8	4	3	80
	80	120	60	190	

Kiegyensúlyozott feladat (80 + 120 + 60 + 190 = 130 + 240 + 80)

	B_1	B_2	B ₃	B ₄
R_1	5	3	6	130 ₃
R_2	8	120 ₂	60 ₆	60 ₃
R_3	80 ₁	8	4	3

	B_1	B_2	B ₃	B_4
R_1	5	3	6	130 ₃
R_2	8	120 ₂	60 ₆	60 ₃
R_3	80 ₁	8	4	3

Ez nem bázismegoldás (nem tartalmaz elegendő elemet), pl. az $R_1 \to B_1$ útvonalnak megfelelő cella egyik hurokban sincs benne. Ide beírva egy 0 mennyiségű szállítást már bázismegoldást kapunk. (Degenerált bázis.)

	B_1	B_2	B ₃	B ₄
R_1	0 5	3	6	130 ₃
R_2	8	120 ₂	60 ₆	60 ₃
R_3	80 ₁	8	4	3

Ellenőrizzük az optimalitást!

Példa

Egy szállítási feladat egy lehetséges bázismegoldása az alábbi táblában látható. Ellenőrizze a megoldás optimalitását, szükség esetén transzformálja a megoldást.

	B_1	B_2	В3	B ₄
R_1	150 ₂	7	2	50 ₆
R_2	8	260 ₂	50 ₃	20 ₃
R_3	1	6	50 ₁	8

$$R_1 \to B_3$$
: $c_{13} - c_{14} + c_{24} - c_{23} = 2 - 6 + 3 - 3 = -4 < 0$ Ezt az útvonalat érdemes bevonni (50 egységet írhatunk ide.)

	B_1	B_2	В3	B ₄
R_1	150 ₂	7	+50 ₂	50- <mark>50</mark> 6
R_2	8	260 ₂	50-50 ₃	20+50 ₃
R_3	1	6	50 ₁	8

Két útvonal is kiesik a szállítási tervből \rightarrow nem bázismegoldás. Az egyiket 0 szállítással meg kell hagynunk (degenerált bázis).

	B_1	B_2	B_3	B_4
R_1	150 ₂	7	50 ₂	0 6
R_2	8	260 ₂	3	70 ₃
R_3	1	6	50 ₁	8

Az optimalitás ellenőrzése:

$$R_1 oup B_2$$
: $c_{12} - c_{22} + c_{24} - c_{14} = 7 - 2 + 3 - 6 = 2 > 0$
 $R_2 oup B_1$: $c_{21} - c_{11} + c_{14} - c_{24} = 8 - 2 + 6 - 3 = 9 > 0$
 $B_2 oup R_3$: most vettük ki
 $R_3 oup B_1$: $c_{31} - c_{11} + c_{13} - c_{33} = 1 - 2 + 2 - 1 = 0$
 $R_3 oup B_2$: $c_{32} - c_{22} + c_{24} - c_{14} + c_{13} - c_{33} = 6 - 2 + 3 - 6 + 2 - 1 = 2 > 0$
 $R_3 oup B_4$: $c_{34} - c_{14} + c_{12} - c_{33} = 8 - 6 + 2 - 1 = 3 > 0$

A szállítási költség nem csökkenthető, viszont az $R_3 \to B_1$ útvonal bevonásával előállítható egy másik terv, melynek költsége ugyanennyi (alternatív megoldás).

Feladat

Oldjuk meg az alábbi költségtáblával adott szállítási feladatokat.

	B_1	B_2	B_3	
R_1	5	6	9	100
R_2	3	5	10	75
R ₃	6	7	6	50
R_4	6	4	10	75
	70	80	120	

	B_1	B_2	B_3	B_4	
R_1	2	7	4	4	200
R_2	1	3	4	2	150
R ₃	2	3	4	1	120
	140	120	80	220	

Tiltott utak

Példa

Egy sütőipari kisvállalkozás 3 pékségben (A, B és C) süt kenyeret, naponta rendre 40, 15 és 35 kilogrammot. Négy falu (I., II., III., IV) kisboltját látják el kenyérrel, a boltok napi igénye 20 kg, 30 kg, 30 kg, 10 kg. Az egyes pékségek és boltok közötti szállítási költségek az alábbi költségmátrixban adottak. Adjunk optimális szállítási tervet arra a napra, amikor a B pékség és a IV. falu közötti út felújítási munkálatok miatt le van zárva!

I.	II.	III.	IV.	
2	3	5	6	Α
2	1	3	5	В
3	8	4	6	С

	I.	II.	III.	IV.	
Α	2	3	5	6	40
В	2	1	3	5	15
С	3	8	4	6	35
	20	30	30	10	

Kiegyensúlyozott feladat.

A nem használható úthoz tartozó költséget cseréljük ki egy "nagyon nagy" M számra.

	I.	II.	III.	IV.	
Α	2	3	5	6	40
В	2	1	3	М	15
С	3	8	4	6	35
	20	30	30	10	

Alkalmazott matematika

Oldjuk meg a feladatot, M-et mindig nagyobbnak kezelve, mint az előforduló összes többi szám.

85 / 85