Task Scheduling with Nonlinear Costs using SMT Solvers

Mohammad Hekmatnejad, Giulia Pedrielli, and Georgios Fainekos

- mhekmatn at asu edu
- □ https://www.linkedin.com/in/mohammad-hekmatnejad-54535232

Motivation

SMT-COMP 2019 Results

Competition-Wide Recognitions

Largest Contribution Ranking

- · Challenge Track (incremental)
- · Challenge Track (non-incremental)
- Incremental Track
- Model Validation Track (experimental)
- Single Query Track
- Unsat Core Track

Biggest Lead Ranking

- Challenge Track (incremental)
- Challenge Track (non-incremental)
- Incremental Track
- Model Validation Track (experimental)
- Single Query Track
- Unsat Core Track

Tracks Summary

- Challenge Track (incremental)
- Incremental Track

- Challenge Track (non-incremental)

Problem Definition & Solution Overview

[1] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, "Priced timed automata: Algorithms and applications," in Formal Methods for Components and Objects (FMCO), ser. LNCS, 2005, pp. 162–182.

Solution Architecture

Summary of Our Contribution

- We model tasks and machines as PTAs annotated with nonlinear cost functions on the clock variables.
- By modifying the framework proposed in [2], we translate the PTA reachability problem to an SMT formula whose models correspond to feasible schedules that satisfy a given cost constraint.
- For nonlinear cost functions, a bisection method can be used to compute optimal schedules.
- We demonstrate that the resulting framework based on SMT solvers can outperform UPPAAL CORA when the costs are linear functions of the clocks.
- Finally, we have released a publicly available tool called CEPTA2SMT available at: https://cpslab.assembla.com/spaces/bio-manufacturing/.

Preliminaries

Priced Timed Automaton

- $\mathcal{A} = \langle L, l_0, \mathcal{C}, A, E, I, P_L, P_E \rangle$
- $E \subseteq L \times \mathcal{X}(\mathcal{C}) \times A \times 2^{\mathcal{C}} \times L$ i.e., $\langle l, \phi, a, \gamma, l' \rangle \in E$
 - $\mathcal{X}(\mathcal{C})$ is the set of conjunctive formulas with atomic clock constraints $c \bowtie r$ and $c_1 c_2 \bowtie r$ for $c, c_1, c_2 \in \mathcal{C}$, $r \in \mathbb{R}^+$, and $\bowtie \in \{>, <, =, \geq, \leq\}$.
- $I: L \to \mathcal{X}(\mathcal{C})$ assigns invariants to locations.
- $P_E: E \to \mathbb{R}^+$ assigns constant prices to transitions
- $P_L: L \to \Psi(\mathcal{C})$ assigns a nonlinear function of clocks to locations.
- we consider actions as blocking send/receive signals over channels for inter-communication purposes.

Sample PTA with 2 locations, 3 transitions, one local clock (two guards, one reset), and two actions.

*Preliminaries (cont')

- A trace over PTA A
 - is a sequence of locations and transitions i.e.,

$$p = l_0 \xrightarrow{a_0, \gamma_0, p_0, t_0} l_1 \xrightarrow{a_1, \gamma_1, p_1, t_1} l_2 \xrightarrow{a_2, \gamma_2, p_2, t_2} \dots l_n$$

- $T_i = \langle l_i, \phi_i, a_i, \gamma_i, l_{i+1} \rangle \in E$
- $C_0 = 0$
- $C_i = (C_{i-1} + t_{i-1})[\gamma_{i-1} = 0]$
- |p| = n
- At each location l_i , every clock valuation $(C_i + t)$ satisfies $I(l_i)$ for $t < t_i$
- The clock valuation (C_i+t_i) satisfies ϕ_i
- $p_i = P_E(T_i) + P_L(l_i)$ is the price calculated by taking transition T_i from location l_i

Preliminaries (cont')

- PTA = better visualization, scalability, and more understandable, maintainable? (counters for loops, semaphores for mutual exclusion)
- Extended PTA is an extension of a standard PTA by adding a set of integer update variables (updates) *U*.
 - These variables are updated and evaluated in locations and transitions like clocks but more expressive.

startBio

- $\mathcal{A} = \langle L, l_0, \mathcal{C}, A, E, I, P_L, P_E, U, U^0 \rangle$
- $X^u(U)$ represents the same type of formulas as for X(C) using update variables rather than clocks.
- u(u) is the set of conjunctive formulas in which atomic update assignments are of the form $u \odot, u \bowtie n$ and $u_1 \bowtie u_2$ for $u, u_1, u_2 \in U$, $n \in \mathbb{Z}$, $\odot \in \{++,--\}$, and $\bowtie \in \{=,+=,-=\}$.
- E is a set of transitions $s.t.E \subseteq L \times \mathcal{X}(\mathcal{C}) \cup \mathcal{X}^u(U) \cup \mathcal{U}(U) \times A \times 2^{\mathcal{C}} \times 2^{U} \times L$, and for $T = \langle l, \phi, a, \gamma, \lambda, l' \rangle$, λ is a set of update variables that needs to be updated after taking the transition.
- $I: L \to \mathcal{X}(\mathcal{C}) \cup \mathcal{X}^u(U)$ assigns invariants to locations.

Preliminaries (cont')

Composite PTA:

- The parallel composition of m PTAs $\mathcal{A}_1, \dots, \mathcal{A}_m$ denoted by
- $\mathcal{A}_{||}^{m} = \mathcal{A}_{1} || \mathcal{A}_{2} ... || \mathcal{A}_{m}$ is the synchronized product of all the automata.
- By $\mathcal{R} = s_0 \xrightarrow{p_0, t_0} s_1 \xrightarrow{p_1, t_1} \dots s_{n-1} \xrightarrow{p_{n-1}, t_{n-1}} s_n$, we represent a trace over a composite PTA.
- We let a set of global update variables \mathcal{V}^g to be used among PTAs.

Preliminaries (cont')

Satisfiability Modulo Theory (SMT)

Boolean Satisfiability (SAT)

Is there an assignment to the $p_1, p_2, ..., p_n$ variables such that ϕ evaluates to 1?

Satisfiability Modulo Theories

Is there an assignment to the x,y,z,w variables s.t. ϕ evaluates to 1?

- The SMT problem is checking if a given closed logical formula ϕ is satisfiable with respect to some background theory \mathcal{T} which restricts the range of used symbols in ϕ .
- The SMT problem for ϕ and \mathcal{T} is about the existence of a model of \mathcal{T} that satisfies the formula ϕ .
- An *SMT solver* is a software that implements a procedure for satisfiability modulo for some given theory.

Formal Problem Statement

• **Given** a set of jobs (tasks or operations) each with its nonlinear cost function, a set of machines, and a dependency graph among the jobs and machines, compute a schedule for the jobs which minimizes the total additive cost over all jobs.

Solution Overview:

• Formally, given a set of m concurrent PTAs \mathcal{A}_i , a finite horizon n, and a set of target locations $\mathcal{L} \subseteq \prod_{i=1}^m L_i$, we are interested in an execution path $\mathcal{R} = s_0 \xrightarrow{p_0, t_0} s_1 \xrightarrow{p_1, t_1} \dots s_{n-1} \xrightarrow{p_{n-1}, t_{n-1}} s_n$ for which $s_n \in \mathcal{L}$, and for any other execution path $\mathcal{R}' = s_0 \xrightarrow{p'_0, t'_0} s'_1 \xrightarrow{p'_1, t'_1} \dots s'_{l-1} \xrightarrow{p'_{l-1}, t'_{l-1}} s'_l$ of length $l \leq n$ and $s'_l \in \mathcal{L}$, we have $\sum_{i=0}^{n-1} p_i \leq \sum_{i=0}^{l-1} p'_i$.

Extended PTA to SMT Translation

$$s_{l_0} \Longrightarrow U^0$$
, $\bigwedge_{l \in I} s_l \Longrightarrow I(l)$

At each time-step, for each PTA, for all $l \in L$ only-and-only one s_l is true.

$$\bigwedge_{T = \langle l, \phi, a, \gamma, \lambda, l' \rangle} T \Longrightarrow (s_l \land \phi \land s'_{l'} \land (a \neq \epsilon \Longrightarrow a) \land \bigwedge_{c \in \gamma} c' = z' \land \bigwedge_{c \notin \gamma} c' = c \land z' = z)$$
 Regular transition

 $T_{\delta} \Longrightarrow (s_l = s'_l \land (z' - z < 0) \land \bigwedge c' = c \land \bigwedge \neg a)$ Delay transition

 $T, T_{null}, T_{\delta}: E \rightarrow \{true, false\}$

$$T_{null} \Longrightarrow (s_l = s_l' \land z' = z \land \bigwedge_{c \in \mathcal{C}} c' = c \land \bigwedge_{a \in A \setminus \{\epsilon\}} \neg a)$$
 Null transition

$$cA >= t11sf1$$

$$sFerm1!$$

$$cA = 0,$$

$$startBio$$

$$GPFID++,$$

$$PID = GPFID$$

$$(1)cA^{(1)}$$

$$\bigwedge_{T=\langle l,\phi,a,\gamma,\lambda,l\prime\rangle} \neg T \Longrightarrow \bigwedge_{u\in\lambda\backslash\mathcal{V}^g} u' = u \ , \bigwedge_{a,b\in A\backslash\{\epsilon\},a\neq b} (\neg a \lor \neg b) \ ^{\text{At each time-step, for each PTA, at most one signal can be activated.}}$$

At each time-step, for each PTA, for all $T \in E \cup T_{null} \cup T_{\delta}$ only-and-only one *T* is true.

$$\left(\bigvee_{T=\langle l,\phi,\boldsymbol{\epsilon},\gamma,\lambda,l'\rangle}T\right)\Longrightarrow \bigwedge_{a\in A\setminus\{\boldsymbol{\epsilon}\}}\neg a\,,\qquad T_{null}\vee T_{\delta}\vee\bigvee_{T\in E}T$$

PTA to SMT Translation (cont')

$$P \in \mathbb{R}$$
 $P_0 = 0$, $\bigwedge_{T \in E} T \Longrightarrow (P' = P + P_E(T))$ Cost rules

$$\bigwedge_{l \in L} T_{\delta} \wedge s_l \Longrightarrow P' = P + P_L(l), \qquad T_{null} \Longrightarrow P' = P$$

 $(1 \le i, j, k \le m)$:

Composite constraint rules

$$\mathcal{A}_i.A.a \Longrightarrow \exists j \neq i \land \mathcal{A}_j.A.a \land \bigwedge_{k \neq i,j} \neg \mathcal{A}_k.A.a$$
 At each time-step, for all PTAs, only one pair of the same signals can be activated.

$$\forall u \in \mathcal{V}^g, \left(\bigwedge_{T:=\langle l, \phi, g, \chi, \lambda, l' \rangle u \in \lambda} \neg T_i \right) \Longrightarrow u' = u \qquad \bigwedge_{l \in \mathcal{L}} S_l$$

Reachability rules

Z3 internal optimizer

Cost optimization constraint rules

Optimal
$$(\sum_{i=1}^{n} P_i)$$
 OR $Y_{\min} \leq \sum_{i=1}^{n} P_i \leq Y_{\max}$

$$Y_{\min} \le \sum_{i=1}^{n} P_i \le Y_{\max}$$

The cost of a satisfiable model can be used as a bound to start with as a strategy

Bisection method

^[3] D. Petrides, D. Carmichael, C. Siletti, and A. Koulouris, "Biopharmaceutical process optimization with simulation and scheduling tools," Bioengineering, vol. 1, no. 4, pp. 154–187, 2014.

^[5] UPPAAL CORA http://people.cs.aau.dk/~adavid/cora/casestudies.html

^[4] M. Dorceus, S. S. Willard, A. Suttle, K. Han, P.-J. Chen, and M. Sha, "Comparing culture methods in monoclonal antibody production: Batch, fed-batch, and perfusion," BioProcess International, 3 2017.

Example (cont')

System Configurations

Non-Deterministic

```
chan sFerml, eFerml:
chan sPurl, ePurl;
                             Channels are signal actions in PTAs
chan cleanBiol, cleanPurl;
ProdAl = ProductA1( sFerml, eFerml, sPurl , ePurl );
ProdA2 = ProductA1( sFerml, eFerml, sPurl , ePurl );
ProdA3 = ProductA1( sFerml, eFerml, sPurl , ePurl );
Bioll = Bioreactor1( sFerml, eFerml, cleanBiol );
Biol2 = Bioreactor1( sFerml, eFerml, cleanBiol );
Biol3 = Bioreactor1( sFerml, eFerml, cleanBiol );
Purl = Purifier1( sPurl, ePurl, cleanPurl );
Pur2 = Purifier1( sPurl, ePurl, cleanPurl );
Clean1 = Cleaner1( cleanBiol, cleanPurl );
system ProdAl, ProdA2, ProdA3, Bioll, Biol2, Biol3, Purl, Pur2, Cleanl;
```

Deterministic and Non-Deterministic

```
chan sFerml, eFerml;
chan sFerm2, eFerm2;
chan sFerm3, eFerm3;
chan sPurl, ePurl;
chan sPur2, ePur2;
chan cleanBiol, cleanPurl;
ProdAl = ProductA1( sFerml, eFerml, sPurl , ePurl! );
ProdA2 = ProductA1( sFerm2, eFerm2, sPur2 , ePur2 );
ProdA3 = ProductA1( sFerm3, eFerm3, sPurl , ePurl );
Bioll = Bioreactor1( sFerml, eFerml, cleanBiol);
Biol2 = Bioreactor1( sFerm2, eFerm2, cleanBiol );
Biol3 = Bioreactor1( sFerm3, eFerm3, cleanBiol;);
Purl = Purifier1( sPurl, ePurl, cleanPurl | );
Pur2 = Purifier1( sPur2, ePur2, cleanPurl );
Clean1 = Cleaner1( cleanBiol, cleanPurl );
system ProdAl, ProdA2, ProdA3, Biol1, Biol2, Biol3, Purl, Pur2, Cleanl;
```

The results of solving bio-manufacturing task scheduling problems using SMT and CORA

Test	1	2	3	4	5	6			
# Prod	3	3	3	3	6	6			
# Bio	3	3	3	3	3	6			
# Pur	1	2	1	2	3	6			
# Clean	1	1	2	2	3	6			
EXCLUSIVELY NON-DETERMINISTIC OPTIONS									
SMT Max Step	40	40	40	40	50	50			
Opt Cost	120	120	120	120	ТО	ТО			
SMT Len	25	19	25	19	38	22			
CORA Len	39	34	SO	SO	SO	SO			
SMT Time	56	33	73	30	363	685			
CORA Time	202	2074	SO	SO	SO	SO			

The results of solving bio-manufacturing task scheduling problems using SMT and CORA

Test	1	2	3	4	5	6			
# Prod	3	3	3	3	6	6			
# Bio	3	3	3	3	3	6			
# Pur	1	2	1	2	3	6			
# Clean	1	1	2	2	3	6			
DETERMINISTIC AND NON-DETERMINISTIC OPTIONS									
SMT Max Step	40	16	25	16	19	10			
Opt Cost	220	120	220	120	240	240			
SMT Len	25	16	25	16	19	10			
CORA Len	34	28	35	29	SO	SO			
SMT Time	57	2	43	2	54	5			
CORA Time	43	41	8515	6860	SO	SO			

Nonlinear Cost Example

Eventually, all the servers reach the end location


```
srvTime = 1
chan endMsql;
                                                                   maxJob = 3
                                                                   count = 0
chan startMsq2;
                                                                   delay = 0
chan endMsq2;
                                                                   repeat = 10
                                                                   rc = 0
chan startMsq3;
chan endMsg3;
S1 = Server( startMsq1, endMsq1, startMsq2, endMsq2, startMsq3, endMsq3);
S2 = Server( startMsg1, endMsg1, startMsg2, endMsg2, startMsg3, endMsg3);
S3 = Server( startMsg1, endMsg1, startMsg2, endMsg2, startMsg3, endMsg3);
     Client (startMsql, endMsql, startMsq2, endMsq2, startMsq3, endMsq3, 0, 10);
C2 = Client( startMsg1, endMsg1, startMsg2, endMsg2, startMsg3, endMsg3, 0, 10 );
C3 = Client( startMsql, endMsql, startMsq2, endMsq2, startMsq3, endMsq3, 0, 10 );
system S1, S2, S3, C1, C2, C3;
```

Execution Result

30 20 68 1 code.smt2 S1 S2 S3 -C1 -C2 -C3 Windows PowerShell weating from SMT file. co using process: S1 using process: S2 using process: 53
Reading solver's configurations from solver.txt ...
>>> Model has Real optimization declarations. Finding solution in the range of [1,30] steps... iterative code is segmented. [1,30] running solver... inding solution in the range of [1,30] steps... Iteration: 15 -> UNSATISFIABLE -> 207 ms Iteration: 15 -> UNSATISFIABLE -> 207 ms [16,30] running solver... Iteration: 23 -> SATISFIABLE -> 1124 ms S1_price_23: [16,30] running solver... S2_price_23: Trying bisection [66.5 , 68. Iteration: 23 -> SATISFIABLE -> 1124 ms S1_price_23: 36 S2_price_23: S3_price_23: Iteration S1_price_16: optimizati S3_price_16: 36 Total sum: 68.0 number of functions: 2009 Trying bit Total used function definitions: 644 Trying bis Trying bis Trying bis Trying bis Trying bis SATISFIABL >>>Preparing and executing time by Z3 SMT solver: 79654 mil sec

Min holdizohbrizen Inner Maurgihal error

>>Preparing and executing time by Z3 SMT solver:

79654 mil sec

Execution Result (cont')

```
Windows PowerShell
PS D:\Projects\Programming\mix\bio-manufacturing\benchmarking\nonlinear-test> java -jar .\uppaal-translator-1.0-SNAPSHOT
-fat.jar --smt2pta --iterative--bisectionOptimizer 16 16 51 68 1 code.smt2 S1 52 53 -C1 -C2 -C3
Reading from SMT file: code.smt2
using process: S1
using process: S2
using process: S3
Reading solver's configurations from solver.txt ...
>>> Model has Real optimization declarations.
SMT iterative code is segmented.
Finding solution in the range of [16,16] steps...
[16,16] running solver...
Iteration: 16 -> SATISFIABLE -> 650 ms
S1_price_16:
                      28
S2_price_16:
                      20
S3_price 16:
                      20
Minimum number of steps: 16
sample used SMT code saved as test.smt2
Optimization is activated.
Given interval = [51.0 , 68.0]
Trying bisection [51.0 , 59.5]
Trying bisection [59.5 , 68.0]
Trying bisection [59.5 , 63.75]
Trying bisection [63.75 , 68.0]
Trying bisection [63.75 , 65.875]
TIME OUT
                                                                             Trying bisection [66.9375 , 68.0]
Trying bisection [65.875 , 68.0]
< OK >
                                                                             < OK >
Trying bisection [65.875 , 66.9375]
                                                                             SATISFIABLE
Trying bisection [66.9375 , 68.0]
< OK >
                                                                             S1_price_16:
SATISFIABLE
S1_price_16:
                                                                             S2_price_16:
                      20
S2_price_16:
                                                                             S3_price_16:
                                                                                                                         36
S3_price_16:
Total sum: 68.0
                                                                             Total sum: 68.0
number of functions: 2009
Total used function definitions: 644
                                                            453003 mil sec
>>>Preparing and executing time by Z3 SMT solver:
```

Summary of Our Contribution

- We model tasks and machines as PTAs annotated with nonlinear cost functions on the clock variables.
- By modifying the framework proposed in [2], we translate the PTA reachability problem to an SMT formula whose models correspond to feasible schedules that satisfy a given cost constraint.
- For nonlinear cost functions, a bisection method can be used to compute optimal schedules.
- We demonstrate that the resulting framework based on SMT solvers can outperform UPPAAL CORA when the costs are linear functions of the clocks.
- Finally, we have released a publicly available tool called CEPTA2SMT available at: https://cpslab.assembla.com/spaces/bio-manufacturing/.

Conclusion

- Used PTA to model bio-manufacturing scheduling problem.
 - UPPAAL CORA vs SMT based
 - · Lessons learned:
 - modeling concurrent PTAs with many non-deterministic transitions in them significantly decreases the performance in both approaches.
 - the SMT approach scales better than the graph-based search algorithms.
 - the length of potential solutions (horizon) for a given problem is a critical performance factor.
- Our SMT based framework supports non-linear cost functions.
 - since the problem is undecidable in the general form, it is possible that the SMT solver may terminate without a solution.
- We incorporated a bisection method in our tool for dealing with nonlinear cost functions when an upper bound and a lower bound exist.

Future Work

• Implementation:

- Implement other design types for mutual exlusion and compare the computation results.
- Use different translations for graph structures and compare the results.
- Use other SMT based solvers that support Real theory.
- · Compare our results with classic methods such as MILP and Monte Carlo.

• Application:

• Implement more realistic models in bio-pharmaceutical domain.

Thank You!

Acknowledgement:

This work was partially supported by NSF-CMMI 1829238.

