Stata Lecture Notes Class 3

As a review, there are customized commands in Stata for performing regression analyses. In addition the glm command with appropriate family and link designations can perform the same regression analyses.

The following examples use the nepalibf.dta data set where bf= breastfeeding = 1 if yes, 0 if no; sex_chld=0 if male, 1 if female; age_mom is age in years; parity is number of previous live births.

1. The customized commands in Stata for logistic regression analysis are logit and logistic:

The logit command provides the estimated regression coefficients from the model log(odds) = $\beta_0 + \beta_1 X$

. logit bf sex_chld

```
Iteration 0: log likelihood = -320.00632
Iteration 1: log likelihood = -319.98468
Iteration 2: log likelihood = -319.98468
```

Logistic regression	Number of obs	=	472
	LR chi2(1)	=	0.04
	Prob > chi2	=	0.8352
Log likelihood = -319.98468	Pseudo R2	=	0.0001

	•				[95% Conf.	
sex_chld	.0389756	.1873558	0.21	0.835	3282351 6203693	.4061863

The logistic command provides the exponentiated estimated regression coefficients, $exp(b_0)$ and $exp(b_1)$ from the model $log(odds) = \beta_0 + \beta_1 X$

. logistic bf sex_chld

Logistic regression	Number of obs	=	472
	LR chi2(1)	=	0.04
	Prob > chi2	=	0.8352
Log likelihood = -319.98468	Pseudo R2	=	0.0001

bf	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
sex_chld	1.039745 .6912752	.1948023		0.835	.7201937 .5377458	1.501082

Note: _cons estimates baseline odds.

2. The glm command with family(binomial) and link(logit) provides the estimated regression coefficients (same as the logit command).

```
. glm bf sex_chld, family(binomial) link(logit)
Iteration 0: log likelihood = -320.27607
Iteration 1: log likelihood = -319.9847
Iteration 2: log likelihood = -319.98468
                                                   No. of obs = 472
Residual df = 470
Scale parameter = 1
Generalized linear models
Optimization : ML
                                                   Scale parameter = 1
(1/df) Deviance = 1.361637
Deviance = 639.969364
Pearson = 471.9999981
                                                   (1/df) Pearson = 1.004255
Variance function: V(u) = u*(1-u/1)
                                                   [Binomial]
Link function : g(u) = \ln(u/(1-u))
                                                   [Logit]
                                                   AIC
                                                                   = 1.364342
                                                                  = -2253.811
Log likelihood = -319.984682
                                                   BIC
                            OIM
         bf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----

    sex_chld | .0389756
    .1873558
    0.21
    0.835
    -.3282351
    .4061863

    _cons | -.3692173
    .1281411
    -2.88
    0.004
    -.6203693
    -.1180653
```

3. However, the glm command with family(binomial) and link(identity) provides the estimated regression coefficients provides the estimated regression coefficients, $\exp(b_0)$ and $\exp(b_1)$ from the model $\Pr(Y=1)=\beta_0+\beta_1X$. The estimate b_1 is a risk difference.

```
. glm bf sex_chld, family(binomial) link(identity)
Iteration 0: log likelihood = -319.98468
Iteration 1: log likelihood = -319.98468
                                                  No. of obs = 472
Residual df = 470
Scale parameter = 1
Generalized linear models
Optimization : ML
Deviance = 639.969364
Pearson = 472
                                                (1/df) Deviance = 1.361637
                                                  (1/df) Pearson = 1.004255
Variance function: V(u) = u*(1-u/1)
                                                  [Binomial]
Link function : g(u) = u
                                                  [Identity]
                                       AIC = 1.364342
BIC = -2253.811
Log likelihood = -319.984682
         | OIM
bf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                     OIM
______

    sex_chld
    .0094517
    .0454416
    0.21
    0.835
    -.0796123
    .0985156

    _cons
    .4087302
    .0309678
    13.20
    0.000
    .3480343
    .469426

Coefficients are the risk differences.
```

4. The customized command in Stata for linear regression analysis is regression:

The regress command provides the estimated regression coefficients from the model $E(Y)=\beta_0+\beta_1 X$

. regress age_mom parity

Source	ss	df	MS		er of obs	=	500 983.55
Model Residual	13635.4276 6904.02039	1 498	13635.4276 13.8634947	Frob R-sq	•	=	0.0000 0.6639 0.6632
Total	20539.448	499	41.1612184	-	-	=	3.7234
age_mom	Coef.	Std. Err.	t	P> t	[95% Con:	£.	Interval]
parity _cons	2.031015 19.62211	.0647612 .3326105	31.36 58.99	0.000	1.903776 18.96862		2.158253 20.2756

5. The glm command with family(normal) and link(identify) provides the estimated regression coefficients (same as the regress command).

```
. glm age_mom parity, family(normal) link(identity)
```

Iteration 0: log likelihood = -1365.782

G1:1 1:				E	-1		500
Generalized linear models					obs		500
Optimization	: ML			Residu	al df	=	498
				Scale	parameter	=	13.86349
Deviance	= 6904.02	0385		(1/df)	Deviance	=	13.86349
Pearson	= 6904.02	0385		(1/df)	Pearson	=	13.86349
Variance function		[Gauss	ian]				
Link function : $g(u) = u$				[Ident	-		
				AIC		=	5.471128
Log likelihood = -1365.782038				BIC		=	3809.146
 		OIM					
age_mom	Coef	Std. Err.	z	P> z	[95% Con	f.	Interval]
						·-·	
parity	2.031015	0647612	31.36	0.000	1.904085	_ .	2.157944
:	19.62211	.3326105	58.99	0.000	18.9702		20.27401
_cons	13.02211	.3320105	50.99	0.000	10.9/02	•	20.2/401

6. Please note that family(normal) and link(identity) are the defaults for the glm command if no family and no link are specified.

. glm age_mom parity Iteration 0: log likelihood = -1365.782 No. of obs = Residual df = Generalized linear models 500 Optimization : ML 498 Scale parameter = 13.86349 (1/df) Deviance = 13.86349 Deviance = 6904.020385 = 6904.020385 (1/df) Pearson = Variance function: V(u) = 1[Gaussian] Link function : g(u) = u[Identity] AIC 5.471128 Log likelihood = -1365.782038BIC 3809.146 OIM Coef. Std. Err. z P>|z| [95% Conf. Interval] age_mom ----parity | 2.031015 .0647612 31.36 0.000 1.904085 2.157944 _cons | 19.62211 .3326105 58.99 0.000 18.9702 20.27401

7. A lowess smoother of the relationship between mother's age and parity suggests that the relationship between them appears to be approximately linear until parity exceeds 9 or so. The regression analysis could be repeated on the subset of mothers with parity < 10.

