import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.cluster import DBSCAN

from sklearn.preprocessing import StandardScaler

df = pd.read_csv('/content/Mall_Customers.csv')
df.head()

₹		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

sns.pairplot(df[['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']]) plt.show()

sns.countplot(x='Gender', data=df)
plt.show()

6/30/24, 1:31 PM ML TASK-02 - Colab


```
X = df[['Annual Income (k$)', 'Spending Score (1-100)']]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=5, random_state=0)
kmeans.fit(X_scaled)
df['Cluster'] = kmeans.labels_
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 warnings.warn(

```
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', hue='Cluster', data=df, palette='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=200, c='red', marker='*', label='Küme Merkezleri')
plt.title("Müşteri Segmentleri")
plt.show()
```

print(df.groupby('Cluster')[['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']].mean())

Cluster			
0	41.114286	88.200000	17.114286
1	42.716049	55.296296	49.518519
2	32.692308	86.538462	82.128205
3	25.272727	25.727273	79.363636
4	45.217391	26.304348	20.913043

```
import altair as alt
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
dbscan = DBSCAN(eps=0.4, min_samples=10)
df['Cluster'] = dbscan.fit predict(X scaled)
outliers = df[df['Cluster'] == -1]
cluster_centers = df.groupby('Cluster')[['Annual Income (k$)', 'Spending Score (1-100)']].mean()
chart = alt.Chart(df).mark_circle().encode(
   x='Annual Income (k$)',
   y='Spending Score (1-100)',
   color=alt.Color('Cluster:N', scale=alt.Scale(domain=[str(i) for i in df['Cluster'].unique()]), legend=alt.Legend(title="Kümeler")),
   tooltip=['Annual Income (k$)', 'Spending Score (1-100)', 'Cluster']
).properties(
   title='Müşteri Segmentleri (DBSCAN)'
).interactive()
centers df = pd.DataFrame(cluster centers.reset index())
centers_chart = alt.Chart(centers_df).mark_point(shape='star', size=200, filled=True).encode(
   x='Annual Income (k$)',
   y='Spending Score (1-100)',
   color=alt.value('red')
)
combined_chart = chart + centers_chart
combined_chart.save('musteri_segmentleri_dbscan.json')
print(df.groupby('Cluster')[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']].mean())
→
                   Age Annual Income (k$) Spending Score (1-100)
    Cluster
             37.490196
                                 58.333333
                                                        44,470588
    -1
     0
             25.181818
                                 23.090909
                                                        74.636364
     1
             42.804598
                                 55.413793
                                                        48.816092
             32,931034
                                 79.241379
                                                        83.620690
     2
             41.000000
                                 80.181818
                                                        12.681818
print(f"\nAykırı değer sayısı: {len(outliers)}")
    Aykırı değer sayısı: 51
filtered_df = df[df['Cluster'] != -1].copy()
cluster_means = filtered_df.groupby('Cluster')[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']].mean()
print("Filtrelenmiş Kümelerin Ortalamaları:\n", cluster_means.to_markdown(numalign="left", stralign="left"))
Filtrelenmiş Kümelerin Ortalamaları:
     | Cluster | Age | Annual Income (k$) | Spending Score (1-100)
     |:----|:----|:-----|:-----|:-----|
      0
                  25.1818
                            23.0909
                                                  74.6364
                42.8046 | 55.4138
                                                 48.8161
     | 1
                32.931 | 79.2414
                                                  83.6207
      2
     | 3
                41
                          80.1818
                                                 12.6818
cluster centers = filtered df.groupby('Cluster')[['Annual Income (k$)', 'Spending Score (1-100)']].mean()
```

https://colab.research.google.com/drive/1wap0WtXZUh09oHF7Ff2-2U37XQ6gopqf#printMode=true

```
chart = alt.Chart(filtered_df).mark_circle().encode(
            x='Annual Income (k$)',
            y='Spending Score (1-100)',
            color=alt.Color('Cluster:N', scale=alt.Scale(domain=[str(i) for i in filtered\_df['Cluster'].unique()]), \\ legend=alt.Legend(title="Kümeler", legend=alt.Scale(domain=[str(i) for i in filtered\_df['Cluster'].unique()]), \\ legend=alt.Scale(domain=[str(i)
            tooltip=['Annual Income (k$)', 'Spending Score (1-100)', 'Cluster']
 ).properties(
            title='Müşteri Segmentleri (DBSCAN - Aykırı Değerler Çıkarıldı)'
 ).interactive()
centers_df = pd.DataFrame(cluster_centers.reset_index())
centers_chart = alt.Chart(centers_df).mark_point(shape='star', size=200, filled=True).encode(
            x='Annual Income (k$)',
            y='Spending Score (1-100)',
            color=alt.value('red')
 )
 combined_chart = chart + centers_chart
combined_chart.save('musteri_segmentleri_dbscan_filtered.json')
df[df["Age"] >= 60].count()
df.shape
 → (200, 6)
 cluster_centers = filtered_df.groupby('Cluster')[['Annual Income (k$)', 'Spending Score (1-100)', "Age"]].max()
 cluster_centers
  ₹
                                           Annual Income (k$) Spending Score (1-100) Age
                 Cluster
                          0
                                                                                           34
                                                                                                                                                                               31
                                                                                                                                                                  82
                                                                                           79
                           1
                                                                                                                                                                                70
                                                                                                                                                                  65
                          2
                                                                                           98
                                                                                                                                                                  97
                                                                                                                                                                                40
                          3
                                                                                           93
                                                                                                                                                                                59
                                                                                                                                                                  27
```

df['Age_Group'] = pd.cut(df['Age'], bins=[0, 18, 35, 55, 100], labels=['0-18', '19-35', '36-55', '56+'])

_		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1- 100)	Cluster	Age_Group
	0	1	Male	19	15	39	-1	19-35
	1	2	Male	21	15	81	-1	19-35
	2	3	Female	20	16	6	-1	19-35
	3	4	Female	23	16	77	0	19-35
	4	5	Female	31	17	40	-1	19-35
	195	196	Female	35	120	79	-1	19-35
	196	197	Female	45	126	28	-1	36-55
	197	198	Male	32	126	74	-1	19-35
	198	199	Male	32	137	18	-1	19-35
	199	200	Male	30	137	83	-1	19-35

200 rows × 7 columns

df['Spending_Ratio'] = df['Spending Score (1-100)'] / df['Annual Income (k\$)']
index_to_drop = df[df['Cluster'] == -1].index
df.drop(index_to_drop, inplace=True)

df

6/30/24, 1:31 PM ML TASK-02 - Colab

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster	Age_Group	Spending_Ratio
3	4	Female	23	16	77	0	19-35	4.812500
5	6	Female	22	17	76	0	19-35	4.470588
9	10	Female	30	19	72	0	19-35	3.789474
13	14	Female	24	20	77	0	19-35	3.850000
15	16	Male	22	20	79	0	19-35	3.950000
176	177	Male	58	88	15	3	56+	0.170455
178	179	Male	59	93	14	3	56+	0.150538
179	180	Male	35	93	90	2	19-35	0.967742
181	182	Female	32	97	86	2	19-35	0.886598
183	184	Female	29	98	88	2	19-35	0.897959

149 rows × 8 columns

₹