

Usaha dan Energi Kinetik

(Dinamika 2)

Mokhammad Nurkholis Abdillah, S.T., M.Eng

Learning Objective

Mampu memahami dan menjelaskan konsep Energi Kinetik

Mampu memahami dan menjelaskan Hubungan antara Usaha dan Energi Kinetik

Mampu memahami dan menjelaskan konsep Daya

Course Material

Energi Kinetik

Usaha dan Gaya Konstan

Usaha dan Gaya Tidak Konstan

Daya

Energi Kinetik dan Usaha

Membahas konsep dasar energi kinetic dan usaha

O1 Energi Kinetik (E_K)

- Energi Kinetik berkaitan dengan energi yang dimiliki oleh sebuah benda karena gerakannya.
- Energi Kinetik adalah usaha yang dibutuhkan untuk menggerakkan sebuah benda dengan massa m tertentu dari keadaan diam hingga mencapai kelajuan v tertentu, maka

$$E_K = \frac{1}{2}mv^2$$

$$1joule = 1 kg \frac{m}{s^2}$$

Satuan dalam SI untuk energi kinetik (dan semua jenis energi) adalah joule (J)

Definisi Usaha (W)

Usaha (W):

Sejumlah **gaya** yang **bekerja** pada suatu benda yang menyebabkan benda itu **berpindah** atau bergerak.

 $\longrightarrow W = \Delta E_K$

- W(+) = energi ditransfer ke objek
- W(-) = energi ditransfer dari objek

Hukum 2 Newton

Adanya gaya \overrightarrow{F} yang bekerja pada benda bermassa m menyebabkan perubahan kelajuan Δv

Karena perpindahan dalam arah mendatar (sumbu x), maka tinjau gaya dalam arah x:

F = ma

Persamaan kinematika 1:

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$

$$v^{2} = v_{0}^{2} + 2ad$$

$$a = \frac{v^{2} - v_{0}^{2}}{2d}$$

Hukum 2 Newton:

$$F_{x} = ma_{x}$$

$$F_{x} = m\left(\frac{v^{2} - v_{0}^{2}}{2d}\right)$$

Maka

$$F_x d = \frac{1}{2} m (v^2 - {v_0}^2)$$

Usaha dan Gaya Konstan

Membahas konsep dasar usaha oleh gaya konstan

Usaha (W) oleh Gaya Konstan

Definisi Usaha

$$W = \Delta E_K$$

$$W = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$$

Berdasarkan hukum 2 newton

$$F_x d = \frac{1}{2} m(v^2 - {v_0}^2)$$

$$F_x d = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$$

Maka usaha dapat ditulis

$$W = F_{x}d$$

Maka usaha dapat ditulis
$$W = |\vec{F}| \cos \phi d$$

Berdasarkan rumus dot product, maka

$$W = \vec{F} \cdot \vec{d}$$

Usaha (W_g) oleh Gaya Gravitasi

Ketika bola bergerak naik (searah sumbu y positif)

Ketika bola bergerak turun (searah sumbu y negatif)

Menghitung Usaha Total (W_{total})

Untuk menghitung usaha total pada suatu benda perlu mengetahui gaya apa saja yang bekerja pada benda (diagram gaya).

$$W_{total} = W_T + W_N + W_W + W_f$$

Kerja oleh gaya tegangan tali:

Kerja oleh gaya normal:

Kerja oleh gaya berat:

Kerja oleh gaya gesek:

$$\vec{f} \qquad \phi = 180^{\circ}$$

$$W_f = f \cos \phi d$$

$$= f d \cos 180^{\circ}$$

$$= -f d$$

Latihan 1

Sebuah koper yang bermassa 10 kg berada di atas bidang datar. Koper tersebut ditarik dengan gaya 60 N yang membentuk sudut θ = 60° terhadap arah horisontal. Gaya gesek yang bekerja antara lantai dengan koper sebesar 12 N. Jika koper berpindah sejauh 20 m dalam arah horizontal berapakah usaha:

- a. Yang dilakukan gaya berat,
- b. Yang dilakukan gaya normal,
- c. yang dilakukan gaya tarik,
- d. yang dilakukan gaya gesekan
- e. secara total.

Teorema Usaha (W) – Energi Kinetik (E_K)

Perubahan energi kinetik pada suatu objek diakibatkan oleh usaha total dari gaya yang dikenakan pada objek tersebut

$$W_{total} = \Delta E_K$$

$$W_{total} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$$

SERI KULIAH FISIKA 1 - Dinamika 2

Usaha dan Gaya Tidak Konstan

Membahas konsep dasar usaha oleh gaya tidak konstan

Usaha (W) oleh Gaya Tidak Konstan

Maka Usaha (W):

$$W = \int_{x_i}^{x_f} F_{x}(x) dx$$

Luas daerah yang diapit antara kurva gaya dengan sumbu mendatar

Latihan 2

Sebuah gaya bekerja pada sebuah partikel berubah terhadap posisi (x).

- a. Hitunglah usaha yang dilakukan gaya tersebut sehingga partikel bergerak dari posisi x = 0 m ke x = 12 m!
- b. Jika awalnya partikel dalam keadaan diam, berapakah kelajuan akhir partikel setelah mencapai jarak 12m?

Usaha (W) oleh Gaya Pegas

Ketika pegas dalam keadaan setimbang (tidak tertekan atau tidak teregang)

Ketika **pegas ditarik ke kanan**, perpindahan (\vec{d}) ke kanan dan pegas menarik ke kiri

Ketika **pegas ditekan ke kiri**, perpindahan (\vec{d}) ke kiri dan pegas mendorong ke kanan

- Gaya pegas merupakan gaya pemulih.
- Besarnya sebanding dengan perubahan panjang pegas (perpindahan ujung pegas yang ditarik),
- Berlaku Hukum Hooke:

$$\vec{F}_{x} = -k\vec{d}$$

$$F_{x} = -kx$$

Dimana k adalah konstanta pegas dalam satuan N/m^2

(lanjutan) Usaha (W) oleh Gaya Pegas

- Untuk pegas tak bermassa dan ideal (memenuhi Hukum Hooke),
- Gaya pegas: $F_x = -kx$, gaya pegas bergantung pada posisi (tidak konstan), maka

$$W_{pegas} = \int_{x_i}^{x_f} F_x(x) d_x = \int_{x_i}^{x_f} (-kx) d_x = -\frac{1}{2} k x^2 \Big|_{x_i}^{x_f} = -\frac{1}{2} k (x_f^2 - x_i^2)$$

$$W_{pegas} = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2$$

• Jika pegas awalnya berada dalam keadaan rileks (posisi setimbang), $x_i = 0$, maka

$$W_{pegas} = \frac{1}{2}kx^2$$

Daya

Membahas konsep dasar daya pada suatu benda

#Fisika1

Daya

Daya rata-rata merupakan usaha yang dilakukan oleh suatu gaya dalam selang waktu tertentu:

$$\bar{P} = \frac{W}{\Delta t}$$

Daya sesaat atau Daya:

$$P = \lim_{\Delta t \to 0} \frac{W}{\Delta t} = \frac{dW}{dt}$$

- Daya adalah laju melakukan suatu usaha.
- Daya merupakan jumlah energi yang dikonsumsi per satuan waktu.

Hubungan antara **Daya** dan Usaha:

$$W = \vec{F} \cdot \vec{x}$$

$$W = \vec{F} \cdot \vec{x}$$
 $P = \frac{d(\vec{F} \cdot \vec{x})}{dt} = \vec{F} \cdot \frac{d\vec{x}}{dt} = \vec{F} \cdot v$ Satuan: $\frac{Joule}{s} = Watt$

Satuan:
$$\frac{Joule}{s} = Watt$$

Latihan 3

Seorang yang massanya 70 kg berlari menaiki tangga yang memiliki ketinggian vertikal 4,5 m. Waktu yang diperlukan untuk mencapai puncak tangga adalah 4 s.

- a) Berapa usaha yang dilakukan pelari tersebut
- b) Berapa daya yang dikeluarkan pelari tersebut?

