概率论与数理统计

Thursday $8^{\rm th}$ August, 2024

目录

Ι	概率		4
1	随机	事件及其概率	4
	1.1	符号	4
	1.2	条件概率	4
	1.3	乘法公式	4
	1.4	古典概型	4
	1.5	几何概型	4
	1.6	完备事件组	5
	1.7	全概率公式	5
		1.7.1 全概率条件公式	5
	1.8	贝叶斯公式	5
	1.9	独立事件	5
	1.10	伯努利概型	5
2	连续	型随机变量及其分布函数	6
	2.1	密度函数(概率密度)	6
	2.2	分布函数	6
3	分布	- -	6
	3.1	边缘分布	6
		3.1.1 边缘分布律	7
		3.1.2 边缘密度函数	7
	3.2	条件分布	7
		3.2.1 条件分布律	7
		3.2.2 条件分布密度函数	7
	3.3	独立性	7
4	—维	离散型随机变量及其分布律	8
	4.1	· ···································	
	4.2		8
	4.3	泊松分布	8
		4.3.1 泊松定理	8
	4.4	几何分布	8
	4.5	超几何分布	9
5	—	连续型随机变量及其密度、分布函数	9
9	5.1	· 均匀分布	9
	5.2	指数分布	
		正态(高斯)分布	
		_ == = -0.40/0024-00	

		5.3.1 标准正态分布	10
		5.3.2 经验原则	10
	— // :) 大体TUM 也	10
6		连续型随机变量及其密度函数	10
	6.1	均匀分布	
	6.2	正态分布	
	6.3	换元	
		6.3.1 最值分布	12
II	数:	理统计	12
7	数字	特征	12
	7.1	期望	12
		7.1.1 性质	12
	7.2	方差	13
		7.2.1 标准差	13
		7.2.2 离散型	13
		7.2.3 连续型	13
		7.2.4 性质	13
	7.3	标准化随机变量	14
	7.4	常见分布期望方差	14
	7.5	协方差	
	7.6	性质	14
	7.7	(线性) 相关系数	15
		7.7.1 (线性)均方误差	15
		7.7.2 定义	15
		7.7.3 性质	15
		7.7.4 不 (线性) 相关	16
8	统计		16
	8.1	样本联合分布函数	
	8.2	样本均值	
	8.3	(修正) 样本方差	
	8.4	样本标准差	_
	8.5	其他	
	8.6	矩	17
9	抽样	:分布	17
	9.1	伽马分布	17
		9.1.1 伽马函数	17
		9.1.2 密度函数	17
		9.1.3 性质	18

	9.2	卡方分	布	18
		9.2.1	非中心的卡方分布	18
		9.2.2	密度函数	18
		9.2.3	性质	19
	9.3	t 分布		19
		9.3.1	密度函数	19
		9.3.2	性质	19
	9.4	F 分布		19
		9.4.1	密度函数	20
		9.4.2	性质	20
	9.5	常见分	· 布期望方差	20
	9.6	上侧分	位点	20
	9.7	正态总	体的常用统计量分布	21
		9.7.1	单个正态总体的抽样分布	21
		9.7.2	两个正态总体的抽样分布	21
10	参数			22
	10.1	<i>/</i> —	•	
		10.1.1	基本思想	22
	10.2	极大似	然估计	22
	10.3	估计量	:评价标准	22
		10.3.1	均方误差	22
		10.3.2	无偏性	23
		10.3.3	有效性	23
		10.3.4	相合(一致)性	23
	10.4	区间估	计	23
11	假设	检验		23

Part I

概率论

1 随机事件及其概率

1.1 符号

名词	符号	注释
随机实验	E	
样本点	ω	
样本空间	Ω	
交(积)事件	$A \cap B \stackrel{.}{ ext{id}} AB$	$ \left \{ \omega \omega \in A \land \omega \in B \} \right $
并事件	$A \cup B$	$\left \{\omega \omega \in A \lor \omega \in B\} \right $
差事件	A-B	$ \left \{ \omega \omega \in A \wedge \omega \notin B \} \right $
互斥事件		$A \cap B = \emptyset$
对立事件	\overline{A}	$\Omega - A$
概率	$P\left(A\right)$	

1.2 条件概率

已知 A 事件发生,发生 B 事件的概率 (P(A) > 0)

$$P(B|A) = \frac{P(AB)}{P(A)}$$

1.3 乘法公式

$$P(AB) = P(A) P(B|A)$$

1.4 古典概型

$$P(A) = \frac{A \text{所含样本点个数}}{\Omega \text{样本点个数}}$$

1.5 几何概型

$$P(A) = \frac{A$$
的几何测度 Ω 的几何测度

1.6 完备事件组

$$\bigcup A_i = \Omega; A_i \cap A_j = \emptyset$$

1.7 全概率公式

 ${A_i}$ 完备事件组

$$P(B) = \sum P(A_i B) = \sum P(A_i) P(B|A_i)$$

1.7.1 全概率条件公式

$$P(C|B) = \sum P(A_iC|B) = \sum P(A_i|B) P(C|A_iB)$$

1.8 贝叶斯公式

$$P(A_{j}|B) = \frac{P(A_{j}B)}{P(B)} = \frac{P(A_{j}B)}{\sum P(A_{i}B)} = \frac{P(A_{j}) P(B|A_{j})}{\sum P(A_{i}) P(B|A_{i})}$$

1.9 独立事件

$$A, B$$
相互独立 \iff $P(AB) = P(A) P(B)$ \iff $P(A|B) = P(A)$ \iff \overline{A}, B 相互独立 \iff $\overline{A}, \overline{B}$ 相互独立 \iff $P(A|B) = P(A|\overline{B})$ $\{A_i\}$ 相互独立 \iff $P(A|B) = P(A|\overline{B})$

1.10 伯努利概型

定义:

- 1. 每次试验对应样本空间相同
- 2. 各次试验结果相对独立
- 3. 只考虑两种结果
 - n 重伯努利试验中,A 事件恰好发生 k 次的概率为 $C_n^k p^k \left(1-p\right)^{n-k}$

2 连续型随机变量及其分布函数

2.1 密度函数(概率密度)

$$f(x)$$
、 $f(x,y)$ 等

性质

$$f(x) \geqslant 0$$

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$$

随机变量换元

$$X = g(Y)$$

$$f_Y(y) = f_X(g(y)) |g'(y)| (g(y) \in D_x)$$

2.2 分布函数

$$F(x)$$
、 $F(x,y)$ 等

定义

$$P\left\{X=x\right\} = 0 \left(x \in \mathbb{R}\right)$$

$$F\left(x\right) = P\left\{X \leqslant x\right\} = \int_{-\infty}^{x} f\left(t\right) dt \left(x \in \mathbb{R}\right)$$
$$F\left(x,y\right) = P\left\{X \leqslant x, Y \leqslant y\right\} = \int_{-\infty}^{x} \int_{-\infty}^{y} f\left(u,v\right) du dv \left(x, y \in \mathbb{R}\right)$$

性质

$$F(x) \geqslant 0$$

$$\lim_{x \to +\infty} F\left(x\right) = 1$$

3 分布

3.1 边缘分布

$$F_X(x) = \lim_{y \to +\infty} F(x, y) = F(x, +\infty) (x \in \mathbb{R})$$

$$F_{Y}(y) = \lim_{x \to +\infty} F(x, y) = F(+\infty, y) (y \in \mathbb{R})$$

3.1.1 边缘分布律

$$P\{X = x_i\} = \sum_{j} P\{X = x_i, Y = y_j\}$$

$$P\{Y = y_j\} = \sum_{i} P\{X = x_i, Y = y_j\}$$

3.1.2 边缘密度函数

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y \, (x \in \mathbb{R})$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx (y \in \mathbb{R})$$

3.2 条件分布

$$F_{X|Y}(x|y) = P\left\{X \leqslant x | Y = y\right\}(x \in \mathbb{R})$$

$$F_{Y|X}(y|x) = P\left\{Y \leqslant y|X = x\right\}(y \in \mathbb{R})$$

3.2.1 条件分布律

$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{\sum_{j} P\{X = x_i, Y = y_j\}}$$

$$P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{\sum_{i} P\{X = x_i, Y = y_j\}}$$

3.2.2 条件分布密度函数

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} (x \in \mathbb{R})$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} (y \in \mathbb{R})$$

3.3 独立性

充要条件

$$F(x,y) = F_X(x) F_Y(y)$$

4 一维离散型随机变量及其分布律

以下都有

$$p \in (0, 1)$$

4.1 两点分布

$$X \sim B(1, p)$$

 $k \ k \in \{0, 1\}$

$$P\{X = k\} = p^k (1-p)^{1-k}$$

4.2 二项(伯努利)分布

$$X \sim B(n, p)$$

 $n \ n \in \mathbb{N}^+$

 $k\ n\geqslant k\in\mathbb{N}$

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}$$

4.3 泊松分布

$$X \sim P(\lambda)$$

 $\lambda \lambda > 0$

 $k \ k \in \mathbb{N}$

$$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$$

4.3.1 泊松定理

n 重伯努利试验中,事件发生概率 $p_n \in (0,1)$ 与试验次数有关,若 $\lim_{n \to \infty} np_n = \lambda > 0$,则

$$\lim_{n \to \infty} C_n^k p_n^k \left(1 - p_n\right)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

4.4 几何分布

$$X \sim G(p)$$

k 前 k-1 次都失败, 第 k 次成功 $k \in \mathbb{N}^+$

$$P\{X = k\} = (1-p)^{k-1}p$$

4.5 超几何分布

$$X \sim H(M, N, n)$$

N 总样本数 N > 1

n 抽取样本数 $n \leq N$

M 指定样本数 $M \leq N$

k抽到指定样本数 $k \in \mathbb{N} \cap \left[\max \left\{ 0, M + n - N \right\}, \min \left\{ M, n \right\} \right]$

$$P\left\{X=k\right\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$$

5 一维连续型随机变量及其密度、分布函数

5.1 均匀分布

 $X \sim U[a, b]$

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in (a,b) \\ 0 & x \in (-\infty,a] \cup [b,+\infty) \end{cases}$$
$$F(x) = \begin{cases} 0 & x \leqslant a \\ \frac{x-a}{b-a} & x \in (a,b) \\ 1 & x \geqslant b \end{cases}$$

5.2 指数分布

$$X \sim E(\lambda)$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
$$F(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

5.3 正态(高斯)分布

$$X \sim N\left(\mu, \sigma^2\right)$$

 $\mu \mu \in \mathbb{R}$ 期望

 $\sigma \sigma > 0$ 标准差

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$\Phi(x) = \frac{1}{2} \operatorname{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right) + \frac{1}{2}$$
$$Z = \frac{X-\mu}{\sigma} \sim N(0,1)$$

5.3.1 标准正态分布

$$X \sim N(0,1)$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$\Phi\left(x\right) = \frac{1}{2}\mathrm{erf}\left(\frac{x}{\sqrt{2}}\right) + \frac{1}{2}$$

5.3.2 经验原则

$$\begin{cases} P\{|X - \mu| < \sigma\} = 0.6826 \\ P\{|X - \mu| < 2\sigma\} = 0.9544 \\ P\{|X - \mu| < 3\sigma\} = 0.9974 \end{cases}$$

6 二维连续型随机变量及其密度函数

6.1 均匀分布

$$(X,Y) \sim U(D)$$

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D\\ 0 & (x,y) \notin D \end{cases}$$

6.2 正态分布

$$(X,Y) \sim N(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$$

 $\mu \mu \in \mathbb{R}$ 期望

 $\sigma \sigma > 0$ 标准差

 $\rho \ \rho \in (-1,1)$, 相关系数 $(\rho = 0 \text{ 时 } X \setminus Y \text{ 独立})$

$$f\left(x,y\right) = \frac{1}{2\pi\sigma_{X}\sigma_{Y}\sqrt{1-\rho^{2}}}\exp\left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}} - 2\rho\frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X}\sigma_{Y}} + \frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right)\right]$$

若 X、Y 独立

$$\left. \begin{array}{l} X \sim N\left(\mu_X, \sigma_X^2\right) \\ Y \sim N\left(\mu_Y, \sigma_Y^2\right) \end{array} \right\} \implies (X, Y) \sim N\left(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, 0\right)$$

$$Z = aX + bY \sim N\left(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2\right)$$

6.3 换元

Z = X + Y

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

若 $X \times Y$ 独立

$$f_{Z}\left(z\right) = \int_{-\infty}^{+\infty} f_{X}\left(x\right) f_{Y}\left(z - x\right) dx = \int_{-\infty}^{+\infty} f_{X}\left(z - y\right) f_{Y}\left(y\right) dy = f_{X}\left(z\right) * f_{Y}\left(z\right)$$

$$Z = \frac{X}{Y}$$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy$$

若 $X \times Y$ 独立

$$f_{Z}(z) = \int_{-\infty}^{+\infty} |y| f_{X}(yz) f_{Y}(y) dy$$

Z = XY

$$f_{Z}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|y|} f\left(\frac{z}{y}, y\right) dy$$

若 X、Y 独立

$$f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f_X(x) f_Y\left(\frac{z}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|y|} f_X\left(\frac{z}{y}\right) f_Y(y) dy$$

6.3.1 最值分布

若 X、Y 独立

$$M = \max \left\{ X, Y \right\}, N = \min \left\{ X, Y \right\}$$

则

$$F_{M} = F_{X}F_{Y}$$

$$1 - F_{N} = (1 - F_{X})(1 - F_{Y})$$

$$f_{M} = F'_{M} = f_{X}F_{Y} + f_{Y}F_{X}$$

$$f_{N} = F'_{N} = f_{X}(1 - F_{Y}) + f_{Y}(1 - F_{X})$$

Part II

数理统计

7 数字特征

7.1 期望

	离散型	连续型
$E\left(X\right)$	$\sum x_i p_i$	$\int_{-\infty}^{+\infty} x f(x) \mathrm{d}x$
E(Y)(Y = g(X))	$\sum g\left(x_{i}\right)p_{i}$	$\int_{-\infty}^{+\infty} g(x) f(x) dx$
E(Z)(Z = g(X,Y))	$\sum_{i} \sum_{j} g(x_i, y_j) p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dxdy$

7.1.1 性质

线性

$$E(kX + c) = kE(X) + c$$

$$E(X \pm Y) = E(X) \pm E(Y)$$

独立 若 *X*、*Y* 独立

$$E(XY) = E(X) E(Y)$$

平均

$$\bar{X} \frac{1}{n} \sum X_i$$

$$E\left(\bar{X}\right) = \frac{1}{n} \sum E\left(X_i\right)$$

7.2 方差

$$D(X) = E[(X - E(X))^{2}] = E(X^{2}) - (E(X))^{2}$$

7.2.1 标准差

$$\sqrt{D(X)}$$

7.2.2 离散型

$$D(X) = \sum (x_i - E(X))^2 p_i$$

7.2.3 连续型

$$D(X) = \int_{-\infty}^{+\infty} (x_i - E(X))^2 f(x) dx$$

7.2.4 性质

线性

$$D\left(kX+c\right) = k^2 D\left(X\right)$$

独立 若 X、Y 独立

$$D(aX + bY) = a^2D(X) + b^2D(Y)$$

$$D\left(XY\right) =D\left(X\right) D\left(Y\right)$$

平均

$$\bar{X} \frac{1}{n} \sum X_i$$

$$D\left(\bar{X}\right) = \frac{1}{n^2} \sum D\left(X_i\right)$$

7.3 标准化随机变量

$$X^* = \frac{X - E(X)}{\sqrt{D(X)}}$$

7.4 常见分布期望方差

$X \sim F(X)$	$E\left(X\right)$	$D\left(X\right)$
B(n,p)	np	np(1-p)
$P\left(\lambda\right)$	λ	λ
$G\left(p\right)$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$
$H\left(M,N,n\right)$	$\frac{nM}{N}$	$n \cdot \frac{M}{N} \left(1 - \frac{M}{N} \right) \cdot \frac{N - n}{N - 1}$
$U\left[a,b\right]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$E\left(\lambda\right)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$N\left(\mu,\sigma^2\right)$	μ	σ^2

7.5 协方差

$$\operatorname{Cov}\left(X,Y\right)=E\left[\left(X-E\left(X\right)\right)\left(Y-E\left(Y\right)\right)\right]=E\left(XY\right)-E\left(X\right)E\left(Y\right)$$

7.6 性质

$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)$$

$$Cov(X, X) = D(X)$$

交换律

$$Cov(X, Y) = Cov(Y, X)$$

线性

$$Cov(X,c) = 0$$

$$\operatorname{Cov}\left(\sum a_i X_i, \sum b_j Y_j\right) = \sum_i \sum_j a_i b_j \operatorname{Cov}\left(X_i, Y_j\right)$$

- 7.7 (线性)相关系数
- 7.7.1 (线性)均方误差

用 aX + b 去拟合 Y

- e(a,b) 越小表明线性关系越强,越大越弱
- $e(a_0,b_0)$ 最小均方误差

 (a_0,b_0) 驻点

$$a_0 \frac{\operatorname{Cov}(X,Y)}{D(X)}$$

 $b_0 E(Y) - a_0 E(X)$

$$e(a,b) = E[(Y - (aX + b))^{2}]$$

$$e(a_0, b_0) = (1 - \rho_{XY}^2) D(Y)$$

7.7.2 定义

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

7.7.3 性质

$$\rho \in [-1, 1]$$

$$|\rho_{XY}|=1 \Longleftrightarrow P\left\{Y=aX+b\right\}=1 \left(a\neq 0\right) \begin{cases} a>0 & \text{(正相关)} \ \rho_{XY}=& 1\\ a<0 & \text{(负相关)} \ \rho_{XY}=& -1 \end{cases}$$

$$\rho_{(aX)(bY)}=\frac{ab}{|ab|}\rho_{XY}$$

7.7.4 不(线性)相关

$$\rho = 0$$

$$\iff \operatorname{Cov}(X, Y) = 0$$

$$\iff E(XY) = E(X) E(Y)$$

$$\iff D(X \pm Y) = D(X) + D(Y)$$

独立 → 不相关

- 8 统计量
- 8.1 样本联合分布函数

$$F(x_1, x_2, \cdots, x_n) = \prod F(x_i)$$

$$f(x_1, x_2, \cdots, x_n) = \prod f(x_i)$$

$$P\{X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n\} = \prod p_i$$

8.2 样本均值

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

8.3 (修正)样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

8.4 样本标准差

$$S = \sqrt{S^2}$$

8.5 其他

样本均值的期望等于总体均值(期望),样本方差的期望等于总体方差

$$E\left(\bar{X}\right) = \mu = E\left(X\right)$$

$$E\left(S^{2}\right)=\sigma^{2}=D\left(X\right)$$

$$D\left(\bar{X}\right) = \frac{\sigma^2}{n}$$

8.6 矩

 $k,l\,\in\mathbb{N}^+$

名称	定义	离散	连续
k阶原点矩	$E\left(X^{k}\right)$	$\sum x_i^k p_i$	$\int_{-\infty}^{+\infty} x^k f(x) \mathrm{d}x$
k阶中心矩	$E\left(\left(X-ar{X} ight)^k ight)$	$\sum (x_i - \bar{X})^k p_i$	$\int_{-\infty}^{+\infty} \left(x - \bar{X}\right)^k f(x) \mathrm{d}x$
k + l阶混合原点矩	$E\left(X^{k}Y^{l} ight)$		
k + l阶混合中心矩	$E\left[\left(X - E\left(X\right)\right)^{k} \left(Y - E\left(Y\right)\right)^{l}\right]$		

- 1 阶原点矩 = E(X)
- 1 阶中心矩 = 0
- 2 阶中心矩 = D(X)
- 1+1 阶混合中心矩 = Cov(X, Y)

9 抽样分布

9.1 伽马分布

 $X \sim \Gamma(\alpha, \beta)$

9.1.1 伽马函数

$$\Gamma(x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt (x > 0)$$

9.1.2 密度函数

$$f(x, \alpha, \beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} & x > 0\\ 0 & x \le 0 \end{cases}$$

9.1.3 性质

再生性

$$X_1 \sim \Gamma(\alpha_1, \beta)$$

$$X_2 \sim \Gamma(\alpha_2, \beta)$$

$$X_3 \sim \Gamma(\alpha_1 + \alpha_2, \beta)$$

$$X_1 + X_2 = X_3$$

9.2 卡方分布

$$\chi^{2} \sim \chi^{2}\left(n\right) = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$

n 自由度

 $X_i \sim N(0,1)$,且相互独立

$$\chi^2 = \sum_{i=1}^n X_i^2$$

9.2.1 非中心的卡方分布

$$X_i \sim N(\mu_i, 1)$$

δ 非中心参数

$$\delta = \sqrt{\sum_{i=1}^{n} \mu_i^2}$$

$$\chi_{n,\delta}^2 = \sum_{i=1}^n X_i^2$$

9.2.2 密度函数

$$f(x,n) = \begin{cases} \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} & x > 0\\ 0 & x \le 0 \end{cases}$$

9.2.3 性质

再生性

$$\chi_1^2 \sim \chi^2(m)$$

$$\chi_2^2 \sim \chi^2(n)$$

$$\chi_3^2 \sim \chi^2 (m+n)$$

$$\chi_1^2 + \chi_2^2 = \chi_3^2$$

9.3 t 分布

$$T \sim t(n)$$

n 自由度

$$X \sim N(0,1)$$

$$Y \sim \chi^2(n)$$

且 X、Y 相互独立

$$T = \frac{X}{\sqrt{Y/n}}$$

9.3.1 密度函数

$$f\left(x,n\right) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} \left(x \in \mathbb{R}\right)$$

9.3.2 性质

n=1 时,为柯西分布

n 充分大时, 为标准正态分布

9.4 F 分布

$$F \sim F(m,n)$$

m 第一自由度

n 第二自由度

$$X \sim \chi^2(m)$$

$$Y \sim \chi^2(n)$$

且 X、Y 相互独立

$$F = \frac{X/m}{Y/n}$$

9.4.1 密度函数

$$f\left(x,m,n\right) = \begin{cases} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}} & x > 0\\ 0 & x \leqslant 0 \end{cases}$$

9.4.2 性质

$$\begin{split} T \sim t \, (n) &\implies T^2 \sim F \, (1,n) \\ F \sim F \, (m,n) &\implies \frac{1}{F} \sim F \, (n,m) \end{split}$$

9.5 常见分布期望方差

\overline{X}	服从分布	$E\left(X\right)$	$D\left(X\right)$
X	$\Gamma\left(\alpha,\beta\right)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
χ^2	$\chi^{2}\left(n\right)$	n	2n
T	t(n)	0 (n > 1)	$\frac{n}{n-2} (n > 2)$
F	$\left \begin{array}{c} F\left(m,n\right) \end{array} \right.$	$\frac{n}{n-2} (n > 2)$	$\frac{2n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}(n>4)$

9.6 上侧分位点

 x_p 上侧分位点

 $p x_p$ 右侧区域的概率

$$P\{X \ge x_n\} = p(p \in (0,1))$$

9.7 正态总体的常用统计量分布

9.7.1 单个正态总体的抽样分布

9.7.2 两个正态总体的抽样分布

$$X_{1}, X_{2}, \cdots, X_{m} \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$$

$$Y_{1}, Y_{2}, \cdots, Y_{n} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\bar{X} \pm \bar{Y} \sim N\left(\mu_{X} \pm \mu_{Y}, \frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}\right)$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} \sim N\left(0, 1\right)$$

$$\frac{(m - 1) S_{X}^{2}}{\sigma_{X}^{2}} + \frac{(n - 1) S_{Y}^{2}}{\sigma_{Y}^{2}} \sim \chi^{2} \left(m + n - 2\right)$$

$$\frac{\sum_{i=1}^{m} (X_{i} - \mu_{X})^{2} / m \sigma_{X}^{2}}{\frac{S_{X}^{2} / S_{Y}^{2}}{\sigma_{X}^{2} / \sigma_{Y}^{2}}} \sim F\left(m, n\right)$$

$$\frac{S_{X}^{2} / S_{Y}^{2}}{\sigma_{X}^{2} / \sigma_{Y}^{2}} \sim F\left(m - 1, n - 1\right)$$

$$\stackrel{\cong}{\to} \sigma_{X}^{2} = \sigma_{Y}^{2} = \sigma^{2} \mathbb{H}$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{(m - 1) S_{X}^{2} + (n - 1) S_{Y}^{2}}{m + n - 2}} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}} \sim t\left(m + n - 2\right)$$

10 参数估计

10.1 矩估计

10.1.1 基本思想

样本矩代替总体矩,建立k个方程,从中解出k个未知参数的矩估计量(低阶矩优先)

$$k=1$$
 一般采用 $\bar{X}=E(X)$

$$k=2 - 般采用 \begin{cases} E\left(X\right) = \bar{X} \\ D\left(X\right) = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2} \end{cases}$$
 也可以用
$$\begin{cases} E\left(X\right) = \bar{X} \\ E\left(X^{2}\right) = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \end{cases}$$

10.2 极大似然估计

 $p(x,\theta)$ 分布律或者密度函数

$$L(x_1, x_2, \dots; \theta) = \prod p(x_i, \theta)$$

$$L\left(x_{1}, x_{2}, \dots; \hat{\theta}\right) = \max_{\theta \in \Theta} \left\{L\left(x_{1}, x_{2}, \dots; \theta\right)\right\}$$

常用解法:

$$\ln L(\theta) = \sum \ln p(x_i, \theta)$$

求驻点

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\ln L\left(\theta\right) = 0$$

若有多个参数 θ_i , 令每个偏导为 0 即可

$$\frac{\partial}{\partial \theta_i} \ln L \left(\theta \right) = 0$$

10.3 估计量评价标准

10.3.1 均方误差

$$E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = D\left(\hat{\theta}\right) + \left(\theta - E\left(\hat{\theta}\right)\right)^{2}$$

10.3.2 无偏性

无偏估计
$$E(\hat{\theta}) = \theta$$
 否则为有偏估计

渐进无偏估计
$$\lim_{n\to\infty} E\left(\hat{\theta}\right) = \theta$$

性质
$$\bar{X}$$
 是 μ 的无偏估计,即 $E(\bar{X}) = \mu$ S^2 是 σ^2 的无偏估计,即 $E(S^2) = \sigma^2$ 未修正样本方差 $S_0^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$ 是 σ^2 的有偏估计,也是 σ^2 的渐进无偏估计

10.3.3 有效性

 $\hat{\theta}_1, \hat{\theta}_2$ 均为 θ 的无偏估计,均方误差准则就是方差准则,若 $D\left(\hat{\theta}_1\right) < D\left(\hat{\theta}_2\right)$,称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效

10.3.4 相合(一致)性

$$\lim_{n \to \infty} P\left\{ \left| \hat{\theta} - \theta \right| < \epsilon \right\} = 1$$

10.4 区间估计

- θ 未知参数
- T 已知参数
- F 已知分布且与 θ 无关
- $I(T,\theta)$ 枢轴变量, 服从分布 F

$$1-\alpha$$
 置信度

$$v_{\frac{\alpha}{2}}$$
 F 的上 $\frac{\alpha}{2}$ 分位点

$$v_{1-\frac{\alpha}{2}}$$
 F 的上 $1-\frac{\alpha}{2}$ 分位点

 $\left(\hat{\theta}_1,\hat{\theta}_2\right)$ 置信区间

$$P\left\{v_{1-\frac{\alpha}{2}} < I\left(T,\theta\right) < v_{\frac{\alpha}{2}}\right\} = 1 - \alpha \implies P\left\{\hat{\theta}_{1} < \theta < \hat{\theta}_{2}\right\} = 1 - \alpha$$

11 假设检验

 H_0 原假设 (零假设)

 H_1 备择假设(取原假设的逆命题)

弃真错误(第一类错误、 α 错误) H_0 为真,且被拒绝

纳伪错误(第二类错误、 β 错误) H_0 为假,且被接受

- α $P\{(x_1,x_2,\cdots,x_n\in W)|H_0$ 为真} 或 $P_{\theta\in\Theta_W}\{H_0$ 为真}; 显著性水平、弃真错误的概率
- $\beta P\{(x_1,x_2,\cdots,x_n\in D)|H_0$ 为假} 或 $P_{\theta\in\Theta_D}\{H_0$ 为假}; 纳伪错误的概率
- W 拒绝域;若统计量的值属于拒绝域,则拒绝 H_0
- D 接受域;若统计量的值属于接受域,则接受 H_0

决策	总体情况			
伏來	H ₀ 为真	H ₀ 为假		
接受 H ₀	正确 (1 – α)	纳伪 (β)		
拒绝 H ₀	弃真 (α)	正确 $(1-\beta)$		

表 1: 置信水平为 $1-\alpha$ 的双侧置信区间表

待估参数	其他参数	枢轴变量	服从分布	置信区间
	σ^2 已知	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$N\left(0,1\right)$	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$
μ	σ^2 未知	$\frac{\bar{X} - \mu}{S/\sqrt{n}}$	t(n-1)	$\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} \left(n-1\right)\right)$
σ^2	μ 已知	$\frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \mu \right)^2$	$\chi^{2}\left(n\right)$	$\left(\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\alpha/2}^2(n)}, \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\alpha/2}^2(n)}\right)$
	μ 未知	$\frac{(n-1)S^2}{\sigma^2}$	$\chi^2 (n-1)$	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$
	σ_X^2, σ_Y^2 已知	$\frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_X - \mu_Y\right)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$	$N\left(0,1 ight)$	$\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}\right)$
$\mu_X - \mu_Y$	$\sigma_X^2 = \sigma_Y^2 = \sigma^2 未知$	$\frac{\left(\bar{X} - \bar{Y}\right) - (\mu_X - \mu_Y)}{S_{\omega} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}}$	$t\left(m+n-2\right)$	$\left(\bar{X} - \bar{Y} \pm t_{\alpha/2} \left(m + n - 2\right) S_{\omega} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}\right)$
$rac{\sigma_X^2}{\sigma_Y^2}$	μ_X,μ_Y 已知	$\frac{\sum_{i=1}^{m} (X_i - \mu_X)^2 / m\sigma_X^2}{\sum_{i=1}^{n} (Y_i - \mu_Y)^2 / n\sigma_Y^2}$	$F\left(m,n\right)$	$ \left(\frac{\frac{1}{m}\sum_{i=1}^{m}(X_{i}-\mu_{X})^{2}}{\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\mu_{Y})^{2}F_{\alpha/2}(m,n)}, \frac{\frac{1}{m}\sum_{i=1}^{m}(X_{i}-\mu_{X})^{2}}{\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\mu_{Y})^{2}F_{1-\alpha/2}(m,n)}\right) $
	μ_X,μ_Y 未知	$\frac{S_X^2/S_Y^2}{\sigma_X^2/\sigma_Y^2}$	F(m-1,n-1)	$\left(\frac{S_X^2}{S_Y^2} \cdot \frac{1}{F_{\alpha/2}(m-1,n-1)}, \frac{S_X^2}{S_Y^2} \cdot \frac{1}{F_{1-\alpha/2}(m-1,n-1)}\right)$

 $^{^{\}dagger}$ $S_{\omega}=\sqrt{rac{\left(m-1
ight)S_{X}^{2}+\left(n-1
ight)S_{Y}^{2}}{m+n-2}}$ ‡ 对应参数未知时,用 \bar{X} 代替 μ ,用 S 代替 σ

表 2: 正态总体的假设检验

原假设	备择假设	条件	检验统计量	服从分布	拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$		_		$ z \geqslant z_{\alpha/2}$
$\mu \leqslant \mu_0$	$\mu > \mu_0$	σ^2 已知	$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$	$N\left(0,1 ight)$	$z \geqslant z_{\alpha}$
$\mu \geqslant \mu_0$	$\mu < \mu_0$, ,		$z \leqslant -z_{\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$		$ar{oldsymbol{v}}$		$ t \geqslant t_{\alpha/2} \left(n - 1 \right)$
$\mu \leqslant \mu_0$	$\mu > \mu_0$	σ^2 未知	$T = \frac{X - \mu_0}{S/\sqrt{n}}$	t(n-1)	$t \geqslant t_{\alpha} (n-1)$
$\mu \geqslant \mu_0$	$\mu < \mu_0$, •		$t \leqslant -t_{\alpha} \left(n - 1 \right)$
$\sigma^2=\sigma_0^2$	$\sigma^2 \neq \sigma_0^2$		$\chi^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \mu)^2$		$\chi^2 \geqslant \chi^2_{\alpha/2} \left(n \right) \ \ \ \ $
		i kn		$\chi^{2}\left(n ight)$	$\chi^2 \leqslant \chi^2_{1-\alpha/2}(n)$
$\sigma^2 \leqslant \sigma_0^2$	$\sigma^2 > \sigma_0^2$	μ 己知			$\chi^2 \geqslant \chi^2_\alpha \left(n \right)$
$\sigma^2 \geqslant \sigma_0^2$	$\sigma^2 < \sigma_0^2$				$\chi^2 \leqslant \chi^2_{1-\alpha} \left(n \right)$
$\sigma^2=\sigma_0^2$	$\sigma^2 \neq \sigma_0^2$		$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2 (n-1)$	$\chi^2 \geqslant \chi^2_{\alpha/2} \left(n - 1 \right) $
		+ 60			$\chi^2 \leqslant \chi^2_{1-\alpha/2} \left(n - 1 \right)$
$\sigma^2 \leqslant \sigma_0^2$	$\sigma^2 > \sigma_0^2$	<i>μ</i> 未知			$\chi^2 \geqslant \chi_\alpha^2 \left(n - 1 \right)$
$\sigma^2 \geqslant \sigma_0^2$	$\sigma^2 < \sigma_0^2$				$\chi^2 \leqslant \chi^2_{1-\alpha} \left(n - 1 \right)$
$\mu_X - \mu_Y = \delta$	$\mu_X - \mu_Y \neq \delta$		$(\bar{X} - \bar{Y}) - \delta$		$ z \geqslant z_{\alpha/2}$
$\mu_X - \mu_Y \leqslant \delta$	$\mu_X - \mu_Y > \delta$	σ_X^2, σ_Y^2 己知	$Z = \frac{(X - Y) - \delta}{\sqrt{\frac{\sigma_X^2}{T} + \frac{\sigma_Y^2}{T}}}$	$N\left(0,1 ight)$	$z\geqslant z_{\alpha}$
$\mu_X - \mu_Y \geqslant \delta$	$\mu_X - \mu_Y < \delta$		$\sqrt{m} + \overline{n}$		$z \leqslant -z_{\alpha}$
$\mu_X - \mu_Y = \delta$	$\mu_X - \mu_Y \neq \delta$		$(ar{X} - ar{Y}) - \delta$		$ t \geqslant t_{\alpha/2} \left(m + n - 2 \right)$
$\mu_X - \mu_Y \leqslant \delta$	$\mu_X - \mu_Y > \delta$	σ_X^2, σ_Y^2 未知	$T = \frac{(X - Y) - \delta}{S_{\omega} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}}$	$t\left(m+n-2\right)$	$t \geqslant t_{\alpha} \left(m + n - 2 \right)$
$\mu_X - \mu_Y \geqslant \delta$	$\mu_X - \mu_Y < \delta$		$\int_{\omega} \sqrt{m} \sqrt{m}$		$t \leqslant -t_{\alpha} \left(m + n - 2 \right)$

Continued on next page

表 2: 正态总体的假设检验 (Continued)

$\overline{\sigma_X^2 = \sigma_Y^2}$	$\sigma_X^2 \neq \sigma_Y^2$	μ_X,μ_Y 已知	$F = \frac{\sum_{i=1}^{m} (X_i - \mu_X)^2 / m}{\sum_{i=1}^{n} (Y_i - \mu_Y)^2 / n}$	$F\left(m,n ight)$	$F \geqslant F_{\alpha/2}(m,n)$ 或 $F \leqslant F_{1-\alpha/2}(m,n)$	
$\sigma_X^2 \leqslant \sigma_Y^2$	$\sigma_X^2 > \sigma_Y^2$				$F \geqslant F_{\alpha}(m,n)$	
$\sigma_X^2 \geqslant \sigma_Y^2$	$\sigma_X^2 < \sigma_Y^2$				$F \leqslant F_{1-\alpha}\left(m,n\right)$	
$\sigma_X^2 = \sigma_Y^2$	$\sigma_X^2 \neq \sigma_Y^2$				$F \geqslant F_{\alpha/2} (m-1, n-1)$ 或	
		μ_X,μ_Y 未知	S_X^2	S_X^2		$F \leqslant F_{1-\alpha/2} \left(m - 1, n - 1 \right)$
$\sigma_X^2 \leqslant \sigma_Y^2$	$\sigma_X^2 > \sigma_Y^2$		$F = \frac{S_X^2}{S_Y^2}$	F(m-1,n-1)	$F \geqslant F_{\alpha} (m-1, n-1)$	
$\sigma_X^2 \geqslant \sigma_Y^2$	$\sigma_X^2 < \sigma_Y^2$				$F \leqslant F_{1-\alpha} \left(m - 1, n - 1 \right)$	