

Lecture 12

Last week(s)

Basics concepts of superconducting circuits covered

Today:

Quantum Optics and Information processing with SC circuits: a few examples

Next two weeks:

Quantum error correction and near-term applications

Superconducting circuits ... a few examples

Cavity QED/Radiation-Matter-Interaction

Vacuum Rabi splitting Stark/Lamb shifts Root N nonlinearity Two Photon nonlinearity Collective effects
Ultrastrong coupling
Quantum-to-classical

Quantum state engineering/tomography

Dispersive readout Cavity-qubit interactions Fock states and arbitrary superpositions Multi-qubit readout NOON states, cat states W and GHZ states Wigner tomography

Quantum Computation

Single qubit operations Quantum bus Multi-qubit gates Toffoli gate Error correction Quantum feedback Single shot readout Teleportation

Quantum Optics with propagating microwaves Oubit-photon e

Single photon sources State Tomography Squeezing/DCE Time-correlations Photon Shaping Qubit-photon entanglement Hong-Ou-Mandel Photon routing Single photon detectors Quantum simulations Remote entanglement

on chip $\begin{array}{c|c} & X_a, P_a \\ & \downarrow \\ & \downarrow$

Hybrid systems

Cavity electromechanics Cavity QED with semiconductor Qdots Measurement and control of electron spins Coupling to magnons

Outline

1) Deterministic quantum teleportation

- 2) Quantum Optics with Propagating Microwaves
- a) Measuring Photon Correlations with Linear Detectors
 - Anti-bunching of single photons
 - Qubit-photon entanglement
 - Two-photon (Hong-Ou-Mandel) interference
- b) Single photon detection
 - Parity detection
 - Creation of itinerant cat states by measurement
 - Direct Wigner function measurement

The teleportation protocol

Teleportation: Transmission of a quantum state from Alice to Bob using previously shared entanglement.

entanglement, high fidelity readout, real-time feedback.

Teleportation: Gate sequence

Ideally: $|\psi_{\rm in}\rangle = |\psi_{\rm out}\rangle$

Teleportation: Sample and measurement setup

- Use three qubits on a 4Q chip.
- Use joint dispersive readout (see Filipp et al., Rev. Lett. 102, 200402 (2009)) to measure Q1 and Q2 with a single resonator.
- Second readout line for Q3.
- Josephson parametric amplifiers allow for high fidelity single shot readout.
- Signal processing and real-time feedback triggered by FPGA electronics.

Teleportation: Process tomography

 Perform process tomography post-selected on any of the four possible measurement outcomes

$$\rho_{out} = \mathcal{E}(\rho) = \sum_{i} E_{i} \rho_{in} E_{j}^{+} \chi_{ij}$$

- Without feedback, the process depends on the outcome of the Bell measurement.
- Recover initial state by applying conditional feedback pulse.
- Fidelity reduced due to feedback delay time.

Quantum Optics with Propagating Microwaves

Exploring propagating microwave radiation

Superconducting circuit

Control with electromagnetic (EM) radiation at GHz frequencies.

Emitted radiation exhibits quantum correlations

How to characterize?

... typically measured: ullet amplitude $\langle a \rangle$

• intensity $\langle a^{\dagger}a \rangle$

- Single photons
- Quantum superposition states
- Entanglement with the emitter
- Squeezed states

higher order correlations ... NEED:

$$\langle (a^{\dagger})^n a^m \rangle$$

Example: Single-photon source

Transmon qubit

$$T_1 = 1.1 \, \mu s$$

$$T_2 = 550 \, ns$$

$$T_2^* = 220 \, ns$$

Single sided resonator

$$1/\kappa = 25 \, ns$$

Strong coupling limit

$$\sqrt{\pi/g} = 7.7 \, ns$$

Single photons

Detection?

on demand!

Vacuum Rabi oscillations

Microwave Photon Field Detection

In the visible

At microwave frequencies:

- Typical detection scheme based on linear amplifiers, equivalent to optical homodyne detection.
- Measurement of higher order photon correlation by signal processing and averaging.

J. Gabelli et al., *Phys. Rev. Lett.* 93, 056801 (2004) E. P. Menzel et al., *Phys. Rev. Lett.* 105, 100401 (2010) M.P da Silva, et al., *PRA 82, 043804 (2010)* C. Eichler, et al., *PRL* 106, 220503 (2011)

Complex amplitude: S = X + i P

How to measure $\langle (a^+)^n a^m \rangle$?

$$\langle (\hat{S}^{\dagger})^n \hat{S}^m \rangle_{\rho} = \sum_{i,j=0}^{n,m} {m \choose j} {n \choose i} \langle (a^{\dagger})^i a^j \rangle \left(h^{n-i} (h^{\dagger})^{m-j} \right)$$
 [*]

• Measure noise correlations in a reference measurements ...

$$\langle (\hat{S}^{\dagger})^n \hat{S}^m \rangle_{|0\rangle\langle 0|} = \langle h^n (h^{\dagger})^m \rangle$$

... and solve set of linear Eqs. (*).

Demonstration of anti-bunching using linear detection

- Generate train of single photon pulses.
- Measure intensity-intensity correlations as a function of time-delay au
- Use method discussed on previous slide to account for amplifier noise.

Observations:

- Intensity-intensity vanishes at $\tau = 0$ as expected for single photons.
- Measurements (back in 2011) done w/o parametric amplifier $\rightarrow \eta \sim 3\%$
- Prepare and measure reference coherent state $|\alpha\rangle$ for comparison:
- $\rightarrow G^{(2)}(0) \approx 1$, as expected.

Measurement scheme also applicable to continuously driven systems ...

Quantum Optics textbook scenario:

Continuous drive @ frequency ω_d and amplitude Ω_R .

Properties of emitted radiation?

• Elastically scattered radiation at $\omega = \omega_d$ (Rayleigh scattering)

rate κ

- In addition: incoherent emission with triplet structure.
- ! Two-level system can only emit one photon at a time!
- \rightarrow anti-bunching $g^{(2)}(\tau=0)$
- Onset of Rabi oscillations when $\Omega_R \approx \kappa \to \text{enhanced}$ emission probability at delay $\tau = \pi/\Omega_R$.

Experiments with Propagating Photons: Two examples

1) Entanglement between the emitter qubit and photons

2) Hong-Ou-Mandel interference of single photons at a beamsplitter

Why interesting?

- Test of correlations between propagating and stationary modes
- Probe non-local aspects of quantum mechanics in circuits
- Interfacing stationary and flying qubits
- Entanglement distribution in a quantum network

Quantum networks Kimble, *Nature* **453**, 1023 (2008)

Atom-Atom Entanglement Moehring et al., Nature 449, 68 (2007) Ritter et al., Nature 484, 195 (2012) Kurpiers et al., Nature 558, 263 (2018)

Concept of Photon/Qubit Entanglement Experiment

Challenge: Generation and detection of qubit/photon entanglement

Photon/Qubit Entanglement Experiment

Prepare ground state and measure qubit population vs. X, P

as expected $\langle \sigma_z \rangle_{\alpha}$ independent of X,P

What about the Bell state?

$$|\psi\rangle = |0e\rangle + |1g\rangle$$

What about coherences?

$$= |e_x\rangle(\underbrace{|1\rangle - |0\rangle}) + |g_x\rangle(\underbrace{|1\rangle + |0\rangle})$$

$$\langle \hat{X}\rangle < 0 \qquad \langle \hat{X}\rangle > 0$$

Photon/Qubit Joint State Density Matrix

Reconstruction from measured moments

Fidelity:
$$F = \langle \psi | \rho | \psi \rangle = 0.83$$

Limited by qubit decay during time required for photon detection in same mode.

Extension to states with more than a single photon:

$$\frac{1}{2}[|g\rangle(|1\rangle+|2\rangle)+|e\rangle(|1\rangle-|2\rangle)]$$

$$F = 0.80$$

Two-photon interference of microwaves

Hong-Ou-Mandel experiment:

Interesting for ...

- Testing indistiguishability of single photons
- Entanglement swapping and quantum repeaters
- Optical quantum computation and quantum walks

Hong-Ou-Mandel experiment:

Two-photon interference of microwaves

Approach: Measure 4D histogram and evaluate field correlations.

$$D_{
m ON}(X_a,P_a,X_b,P_b)$$
 analogous to $D_{
m OFF}(X_a,P_a,X_b,P_b)$ 1-channel case $\langle (a^\dagger)^n a^m (b^\dagger)^k b^l \rangle$

Linear amplification vs. Single photon detection

Standard microwave detection chain

employs:

Linear (quantum limited) amplifier

- Quantum efficiency approaching unity
- Well suited for dispersive readout
- Established at MW frequencies
- Unable to resolve single photons with high efficiency

Most common detector at optical frequencies:

Single photon detector, interesting for

- Non-demolishing detection of single photon
- Heralding schemes for remote entanglement
- Essential requirement for photonic quantum computing
- Photon statistics measurements
- Under development at MW frequencies

Concept of Single Photon Detector

Want:

- Projection into photon number basis ...
- ... instead of quadrature basis

Approach:

Photon-Qubit interaction induced C-PHASE gate in a cavity QED system*

Transmon coupled to resonator

$$\omega_c = \omega_{ef} \neq \omega_{ge}$$

- Input: single photon source or coherent source
- Dedicated qubit readout for photon and parity detection
- Displacement field for direct Wigner tomography

^{*}Duan and Kimble, PRL **92** 12 (2004),

Non-demolition detection of single photons

Qutrit-Cavity system:

- $\omega_c = \omega_{ef} \neq \omega_{ge}$
- $\kappa/2\pi = 19 \text{ MHz}$
- $g/2\pi = 40 \text{ MHz}$
- T1 = 3 us
- T2 = 1.8 us

Qubit initialized in
$$|g\rangle+|e\rangle$$
 No photon $|g\rangle+|e\rangle$
$$\frac{Single\ Photon}{reflected\ off} |g\rangle-|e\rangle$$
 Protocol: Duan and Kimble, PRL 92 12 (2004),

Distinguishable in single shot using:

- $\pi/2$ pulse
- Single-shot qubit readout with 92% fidelity

Optical implementation: Reiserer et al. Science 342 1349 (2013),

cQED @ETH: Besse et al., Phys. Rev. X 8, 021003 (2018)

Kono et al., Nat. Phys. (2018)

Qubit Perspective of Interaction: Single Photon Detection

- Prepare qubit in superposition state
- Presence of photon induces π —phase shift
- Map qubit state back to measurement basis

- Preparation of photonic state $|\gamma\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) |1\rangle$
- Measurement of qubit excited state population P_e

Single photon source: Pechal, Besse et al., PRApplied 6 024009 (2016)

Christopher Eichler, HS 2019, QSSC | 06.12.2019 | 259

Photon Number Parity Detection for Microwave Fields

Operation of detector:

- Perform Ramsey sequence
- Sensitive to field-induced qubit-phase shift
- Single-shot qubit readout capability

Observations:

- Alternating parity signal (log-scale)
- Reduction in contrast due to finite transmission efficiency $\eta=0.78$ between source and detector.

Conclusion

- Superconducting circuits provide versatile platform to study quantum optics phenomena.
- Deterministic generation of quantum light: single photons, multi-mode entanglement.
- Measurement schemes: Quadrature, single photon, parity detection
- Access to field correlations: Density matrix reconstruction, time-dependent correlations, direct Wigner tomography.

Outlook

- Realization of photon/photon interactions for QIP.
- Generation of cluster states for measurement-based quantum computing.
- Quantum networks based on microwave radiation.