Cryptographic Engineering: Assignment 1 Prelab

- 1. Compute the residue of $a = 2^{30} 18 = 1073741806 = \{0x3FFFFEE\}$ over the following numbers using the method you learned in class. Show your work. Then verify your results using SageMath. Show all results in Hexadecimal.
 - (a) $p_1 = 2^{17} 1 = \{0x1FFFF\}$ (Mersenne prime)
 - (b) $p_2 = 2^{26} 5 = \{0x3FFFFFB\}$ (Pseudo-mersenne prime)
 - (c) $b = 2^{16} = \{0x10000\}$ (Not a prime number)
- 2. In class, you learned two methods to compute the multiplicative inverse of an operand over a finite field; Fermat's Little Theorem (FLT) and Extended Euclidean Algorithm (EEA). The finite field is constructed over $p = 2^{17} 1$ (Mersenne prime from the previous exercise). Compute the multiplicative inverse of a = 51 over \mathbb{F}_p using the below methods. Show your work. Then verify your results using SageMath. Show all results in Hexadecimal.
 - (a) Fermat's Little Theorem (FLT)
 - (b) Extended Euclidean Algorithm (EEA)
- 3. In Exercise 2, you applied two methods to compute the multiplicative inverse of an operand over a finite field. Answer the following questions related to these 2 methods:
 - (a) How many loop iterations does it take to compute the output for each method for a = 51 (exercise 2)?
 - (b) Which method is faster in general? Why?
 - (c) Which method is constant time (aka the number of iterations is the same independent of the input used)? Why?