▼ 1. IMPORT THE LIBRARIES

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from scipy import stats

from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10
4										

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2833
4										>

df.tail()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	C
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	
4											•

df.shape

(891, 12)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data	columns (tota	al 12 columns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2)), int64(5), obje	ect(5)
memor	∽y usage: 83.7	7+ KB	

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

corr=df.corr()
corr

<ipython-input-13-7d5195e2bf4d>:1: FutureWarning: The default value of numeric_only in [
 corr=df.corr()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

plt.subplots(figsize=(15,10))
sns.heatmap(corr,annot=True)


```
df.Survived.value_counts()
     0
          549
     1
          342
     Name: Survived, dtype: int64
df.Sex.value_counts()
     male
     female
               314
     Name: Sex, dtype: int64
df.Embarked.value_counts()
     S
          644
     C
          168
          77
     Name: Embarked, dtype: int64
```

→ 3. CHECK FOR NULL VALUES

```
df.isnull().any()
    PassengerId
                    False
    Survived
                    False
    Pclass
                    False
                    False
    Name
    Sex
                    False
    Age
                    True
    SibSp
                    False
    Parch
                    False
    Ticket
                    False
    Fare
                    False
    Cabin
                    True
    Embarked
                     True
    dtype: bool
```

```
df.isnull().sum()
     PassengerId
                      0
     Survived
     Pclass
                      0
     Name
                      0
     Sex
                      0
                    177
     Age
     SibSp
                      0
     Parch
                      0
     Ticket
                      0
     Fare
                      0
     Cabin
                    687
     Embarked
                      2
     dtype: int64
Fill null values in the 'Age' column with the mean age
mean_age = df['Age'].mean()
df['Age'].fillna(mean_age, inplace=True)
Fill null values in the 'Embarked' column with the most common value
most common embarked = df['Embarked'].mode()[0]
df['Embarked'].fillna(most_common_embarked, inplace=True)
df.drop(['Cabin'],axis=1, inplace=True)
df.drop(['Ticket'],axis=1, inplace=True)
df.drop(['Name'],axis=1,inplace=True)
```

```
PassengerId 0
Survived 0
Pclass 0
Sex 0
Age 0
SibSp 0
```

print(df.isnull().sum())

Parch 0 Fare 0 Embarked 0 dtype: int64

→ 4. Data Visualization

```
# Visualize the distribution of the 'Survived' column (0 = Not Survived, 1 = Survived)
sns.countplot(data=df, x='Survived')
plt.title('Survival Count')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
```


#Visualize the distribution of the 'Age' column
sns.histplot(data=df, x='Age', bins=20, kde=True)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()

#Visualize the distribution of the 'Fare' column and detect outliers we will handle outliers in the next step
sns.boxplot(data=df, x='Fare')
plt.title('Fare Distribution')
plt.xlabel('Fare')
plt.show()

#Pair plot for selected numerical columns
sns.pairplot(data=df[['Fare', 'SibSp', 'Parch']])

```
plt.title('Pair Plot')
plt.show()
```



```
corr_matrix = df.corr()
sns.heatmap(corr_matrix, annot=True,cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```

<ipython-input-30-8dcbd071ffff3>:1: FutureWarning: The default value of numeric_only in [

▼ 5. Detect and Handle Outliers

```
z_scores = np.abs(stats.zscore(df['Age']))
max threshold=3
outliers = df['Age'][z_scores > max_threshold]
# Print and visualize the outliers
print("Outliers detected using Z-Score:")
print(outliers)
    Outliers detected using Z-Score:
           71.0
    116
           70.5
    493
           71.0
     630
           80.0
     672
           70.0
    745
           70.0
    851
           74.0
    Name: Age, dtype: float64
                               z_scores = np.abs(stats.zscore(df['Fare']))
max threshold=3
outliers = df['Fare'][z_scores > max_threshold]
# Print and visualize the outliers
print("Outliers detected using Z-Score:")
print(outliers)
     Outliers detected using Z-Score:
    27
           263.0000
    88
           263,0000
    118
           247.5208
    258
           512.3292
           247.5208
     299
    311
           262.3750
     341
           263.0000
     377
           211.5000
    380
           227.5250
    438
           263.0000
     527
           221.7792
           227.5250
    557
     679
           512.3292
     689
           211.3375
    700
           227.5250
    716
           227.5250
     730
           211.3375
     737
           512.3292
    742
           262.3750
    779
           211.3375
    Name: Fare, dtype: float64
column_name = 'Fare'
# Calculate the first quartile (Q1) and third quartile (Q3)
Q1 = df[column_name].quantile(0.25)
Q3 = df[column_name].quantile(0.75)
# Calculate the IQR
IQR = Q3 - Q1
# Define the lower and upper bounds for outliers
lower\_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Filter rows with values outside the IQR bounds
df_cleaned = df[(df[column_name] > lower_bound) & (df[column_name] < upper_bound)]</pre>
# Display the original and cleaned DataFrame sizes
print(f"Original DataFrame size: {df.shape}")
print(f"Cleaned DataFrame size: {df_cleaned.shape}")
df_cleaned
```

Original DataFrame size: (891, 9) Cleaned DataFrame size: (775, 9)

		•							
	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.000000	1	0	7.2500	S
2	3	1	3	female	26.000000	0	0	7.9250	S
3	4	1	1	female	35.000000	1	0	53.1000	S
4	5	0	3	male	35.000000	0	0	8.0500	S
5	6	0	3	male	29.699118	0	0	8.4583	Q
886	887	0	2	male	27.000000	0	0	13.0000	S
887	888	1	1	female	19.000000	0	0	30.0000	S
888	889	0	3	female	29.699118	1	2	23.4500	S
889	890	1	1	male	26.000000	0	0	30.0000	С
890	891	0	3	male	32.000000	0	0	7.7500	Q

 $\verb|sns.boxplot(df_cleaned)| \\$

df=df_cleaned

x=df.drop('Survived', axis=1) y=df['Survived']

x.head()

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	3	male	22.000000	1	0	7.2500	S
2	3	3	female	26.000000	0	0	7.9250	S
3	4	1	female	35.000000	1	0	53.1000	S
4	5	3	male	35.000000	0	0	8.0500	S
5	6	3	male	29.699118	0	0	8.4583	Q

y.head()

- 0 1
- 2 1
- 4 0

Name: Survived, dtype: int64

▼ 7. Perform Encoding

```
en = LabelEncoder()
x['Sex'] = en.fit_transform(x['Sex'])
x.head()
```

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	3	1	22.000000	1	0	7.2500	S
2	3	3	0	26.000000	0	0	7.9250	S
3	4	1	0	35.000000	1	0	53.1000	S
4	5	3	1	35.000000	0	0	8.0500	S
5	6	3	1	29.699118	0	0	8.4583	Q

x = pd.get_dummies(x,columns=['Embarked'])

x.head()

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked_C	Embarked_Q	Em
0	1	3	1	22.000000	1	0	7.2500	0	0	
2	3	3	0	26.000000	0	0	7.9250	0	0	
3	4	1	0	35.000000	1	0	53.1000	0	0	
4	5	3	1	35.000000	0	0	8.0500	0	0	
5	6	3	1	29.699118	0	0	8.4583	0	1	
4										-

▼ 8. Feature Scaling

```
scale = StandardScaler()
x[['Age', 'Fare']] = scale.fit_transform(x[['Age', 'Fare']])
x.head()
```

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked_C	Embarked_Q	Ε
0	1	3	1	-0.556219	1	0	-0.779117	0	0	
2	3	3	0	-0.243027	0	0	-0.729373	0	0	
3	4	1	0	0.461654	1	0	2.599828	0	0	
4	5	3	1	0.461654	0	0	-0.720161	0	0	
5	6	3	1	0.046606	0	0	-0.690071	0	1	
4										•

▼ 9. Splitting the data into Train and Test

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

(620, 10) (155, 10) (620,) (155,)