CS162 Operating Systems and Systems Programming Lecture 15

Memory 3: Caching and TLBs (Con't), Demand Paging

March 10th, 2022 Prof. Anthony Joseph and John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Recall: The two-level page table

How is the Translation Accomplished?

- The MMU must translate virtual address to physical address on:
 - Every instruction fetch
 - Every load
 - Every store
- What does the MMU need to do to translate an address?
 - I-level Page Table
 - » Read PTE from memory, check valid, merge address
 - » Set "accessed" bit in PTE, Set "dirty bit" on write
 - 2-level Page Table
 - » Read and check first level
 - » Read, check, and update PTE
 - N-level Page Table ...
- MMU does *page table Tree Traversal* to translate each address Joseph & Kubiatowicz CS162 © UCB Spring 2022

Where and What is the MMU?

- The processor requests READ Virtual-Address to memory system
 - Through the MMU to the cache (to the memory)
- Some time later, the memory system responds with the data stored at the physical address (resulting from virtual \rightarrow physical) translation
 - Fast on a cache hit, slow on a miss
- So what is the MMU doing?
- On every reference (I-fetch, Load, Store) read (multiple levels of) page table entries to get physical frame or FAULT
 - Through the caches to the memory
 - Then read/write the physical location

Recall: CS61c Caching Concept

- Cache: a repository for copies that can be accessed more quickly than the original
 - Make frequent case fast and infrequent case less dominant
- Caching underlies many techniques used today to make computers fast
 - Can cache: memory locations, address translations, pages, file blocks, file names, network routes, etc...
- Only good if:
 - Frequent case frequent enough and
 - Infrequent case not too expensive
- Important measure: Average Access time =
 (Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Recall: In Machine Structures (eg. 61C) ...

Caching is the key to memory system performance

Average Memory Access Time (AMAT)

HitRate =
$$90\% = > AMAT = (0.9 \times 1) + (0.1 \times 101) = 11$$
 ns

HitRate =
$$99\% = > AMAT = (0.99 \times I) + (0.01 \times IOI) = 2.01 \text{ ns}$$

$$MissTime_{LI}$$
 includes $HitTime_{LI} + MissPenalty_{LI} \equiv HitTime_{LI} + AMAT_{L2}$

Another Major Reason to Deal with Caching

- Cannot afford to translate on every access
 - At least three DRAM accesses per actual DRAM access
 - Or: perhaps I/O if page table partially on disk!
- Even worse: What if we are using caching to make memory access faster than DRAM access?
- Solution? Cache translations!
 - Translation Cache: TLB ("Translation Lookaside Buffer")

 Joseph & Kubiatowicz CS162 © UCB Spring 2022

Why Does Caching Help? Locality!

- Temporal Locality (Locality in Time):
 - Keep recently accessed data items closer to processor
- Spatial Locality (Locality in Space):
 - Move contiguous blocks to the upper levels

Recall: Memory Hierarchy

- Caching: Take advantage of the principle of locality to:
 - Present the illusion of having as much memory as in the cheapest technology
 - Provide average speed similar to that offered by the fastest technology

3/10/22

How do we make Address Translation Fast?

- Cache results of recent translations!
 - Different from a traditional cache
 - Cache Page Table Entries using Virtual Page # as the key

Translation Look-Aside Buffer

- Record recent Virtual Page # to Physical Frame # translation
- If present, have the physical address without reading any of the page tables !!!
 - Even if the translation involved multiple levels
 - Caches the end-to-end result
- Was invented by Sir Maurice Wilkes prior to caches
 - When you come up with a new concept, you get to name it!
 - People realized "if it's good for page tables, why not the rest of the data in memory?"
- On a *TLB miss*, the page tables may be cached, so only go to memory when both miss

Caching Applied to Address Translation

- Question is one of page locality: does it exist?
 - Instruction accesses spend a lot of time on the same page (since accesses sequential)
 - Stack accesses have definite locality of reference
 - Data accesses have less page locality, but still some...
- Can we have a TLB hierarchy?
 - Sure: multiple levels at different sizes/speeds

What kind of Cache for TLB?

- Remember all those cache design parameters and trade-offs?
 - Amount of Data = N * L * K
 - Tag is portion of address that identifies line (w/o line offset)
 - Write Policy (write-thru, write-back), Eviction Policy (LRU, ...)

How might organization of TLB differ from that of a conventional instruction or data cache?

• Let's do some review ...

A Summary on Sources of Cache Misses

- Compulsory (cold start or process migration, first reference): first access to a block
 - "Cold" fact of life: not a whole lot you can do about it
 - Note: If you are going to run "billions" of instruction, Compulsory Misses are insignificant
- Capacity:
 - Cache cannot contain all blocks access by the program
 - Solution: increase cache size
- Conflict (collision):
 - Multiple memory locations mapped to the same cache location
 - Solution 1: increase cache size
 - Solution 2: increase associativity
- Coherence (Invalidation): other process (e.g., I/O) updates memory

How is a Block found in a Cache?

- Block is minimum quantum of caching
 - Data select field used to select data within block
 - Many caching applications don't have data select field
- Index Used to Lookup Candidates in Cache
 - Index identifies the set
- Tag used to identify actual copy
 - If no candidates match, then declare cache miss

Review: Direct Mapped Cache

- Direct Mapped 2^N byte cache:
 - The uppermost (32 N) bits are always the Cache Tag
 - The lowest M bits are the Byte Select (Block Size = 2^{M})
- Example: I KB Direct Mapped Cache with 32 B Blocks
 - Index chooses potential block
 - Tag checked to verify block
 - Byte select chooses byte within block

Review: Set Associative Cache

- N-way set associative: N entries per Cache Index
 - N direct mapped caches operates in parallel
- Example: Two-way set associative cache
 - Cache Index selects a "set" from the cache
 - Two tags in the set are compared to input in parallel

3/10/22

Review: Fully Associative Cache

- Fully Associative: Every block can hold any line
 - Address does not include a cache index
 - Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks
 - We need N 27-bit comparators
 - Still have byte select to choose from within block

Where does a Block Get Placed in a Cache?

• Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block no.

01234567890123456789012345678901

Direct mapped:

block 12 can go only into block 4 (12 mod 8)

Set associative:

block 12 can go anywhere in set 0 (12 mod 4)

Fully associative:

block 12 can go anywhere

Which block should be replaced on a miss?

- Easy for Direct Mapped: Only one possibility
- Set Associative or Fully Associative:
 - Random
 - LRU (Least Recently Used)
- Miss rates for a workload:

	2-	2-way		'ay	8-way		
Size	ze LRU Randor		LRU Random		LRU Random		
16 KB	5.2%	5.7%	4.7%	5.3%	4.4%	5.0%	
64 KB	1.9%	2.0%	1.5%	1.7%	1.4%	1.5%	
256 KB	1.15%	1.17%	1.13%	1.13%	1.12%	1.12%	

Review: What happens on a write?

- Write through: The information is written to both the block in the cache and to the block in the lower-level memory
- Write back: The information is written only to the block in the cache
 - Modified cache block is written to main memory only when it is replaced
 - Question is block clean or dirty?
- Pros and Cons of each?
 - WT:
 - » PRO: read misses cannot result in writes
 - » CON: Processor held up on writes unless writes buffered
 - -WB:
 - » PRO: repeated writes not sent to DRAM processor not held up on writes
 - » CON: More complex Read miss may require writeback of dirty data

Administrivia

- Prof Joseph's office hours: Tuesdays I-2pm and Thursdays I2-I (Soda 447A)
- Project 2 design docs are due TOMORROW Friday 3/11
- Midterm 2: Coming up on next Thursday 3/17 7-9pm
 - Topics: up until Lecture 16: Scheduling, Deadlock, Address Translation, Virtual Memory, Caching, TLBs, Demand Paging
- Review Session: Wednesday 3/16 (Details TBA)

What TLB Organization Makes Sense?

- Needs to be really fast
 - Critical path of memory access
 - » In simplest view: before the cache
 - » Thus, this adds to access time (reducing cache speed)
 - Seems to argue for Direct Mapped or Low Associativity
- However, needs to have very few conflicts!
 - With TLB, the Miss Time extremely high! (PT traversal)
 - Cost of Conflict (Miss Time) is high
 - Hit Time dictated by clock cycle
- Thrashing: continuous conflicts between accesses
 - What if use low order bits of virtual page number as index into TLB?
 - » First page of code, data, stack may map to same entry
 - » Need 3-way associativity at least?
 - What if use high order bits as index?
 - » TLB mostly unused for small programs

TLB organization: include protection

- How big does TLB actually have to be?
 - Usually small: 128-512 entries (larger now)
 - -Not very big, can support higher associativity
- Small TLBs usually organized as fully-associative cache
 - Lookup is by Virtual Address
 - Returns Physical Address + other info
- What happens when fully-associative is too slow?
 - Put a small (4-16 entry) direct-mapped cache in front
 - Called a "TLB Slice"
- Example for MIPS R3000:

Virtual Address	Physical Address	Dirty	Ref	Valid	Access	ASID
0xFA00	0x0003	V	N	V	R/W	34
0x0040	0x0010	N	Y	Ÿ	R	0
0x0041	0x0011	N	Υ	Y	R	0

Example: R3000 pipeline includes TLB "stages"

MIPS R3000 Pipeline

Inst Fetch		Dcd/ Reg		ALU / E.A		Memory	Write Reg	
TLB	I-Cac	he	RF	Operation			WB	
				E.A.	TLB	D-Cache		

TLB

64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

Reducing translation time for physically-indexed caches

- As described, TLB lookup is in serial with cache lookup
 - Consequently, speed of TLB can impact speed of access to cache
- Machines with TLBs go one step further: overlap TLB lookup with cache access
 - Works because offset available early
 - Offset in virtual address exactly covers the "cache index" and "byte select"
 - Thus can select the cached byte(s) in parallel to perform address translation

Overlapping TLB & Cache Access

• Here is how this might work with a 4K cache:

- What if cache size is increased to 8KB?
 - Overlap not complete
 - Need to do something else. See CS152/252
- Another option: Virtual Caches would make this faster
 - Tags in cache are virtual addresses
 - Translation only happens on cache misses

Current Intel x86 (Skylake, Cascade Lake)

3/10/22 Joseph & Kub Memory Subsystem Lec 15.30

Current Example: Memory Hierarchy

- Caches (all 64 B line size)
 - L1 I-Cache: 32 <u>KiB</u>/core, 8-way set assoc.
 - L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy
 - L2 Cache: I MiB/core, I6-way set assoc., Inclusive, Write-back policy, I4 cycles latency
 - L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive victim cache, Write-back policy, 50-70 cycles latency

TLB

- L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
 - » 8 entries per thread; fully associative, for 2 MiB / 4 MiB page
- L1 DTLB 64 entries; 4-way set associative for 4 KB pages
 - » 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
 - » 4 entries; 4-way associative, IG page translations:
- L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
 - » 16 entries; 4-way set associative, 1 GiB page translations:

What happens on a Context Switch?

- Need to do something, since TLBs map virtual addresses to physical addresses
 - Address Space just changed, so TLB entries no longer valid!
- Options?
 - Invalidate TLB: simple but might be expensive
 - » What if switching frequently between processes?
 - Include ProcessID in TLB
 - » This is an architectural solution: needs hardware
- What if translation tables change?
 - For example, to move page from memory to disk or vice versa...
 - Must invalidate TLB entry!
 - » Otherwise, might think that page is still in memory!
 - Called "TLB Consistency"
- Aside: with Virtually-Indexed cache, need to flush cache!
 - Rember, everyone has their own version of the address "0"!

Putting Everything Together: Address Translation

Putting Everything Together: TLB

3/10/22 Joseph & Kubiatowicz CS162 © UCB Spring 2022 Lec 15.34

Putting Everything Together: Cache

3/10/22

Page Fault

- The Virtual-to-Physical Translation fails
 - PTE marked invalid, Priv. Level Violation, Access violation, or does not exist
 - Causes an Fault / Trap
 - » Not an interrupt because synchronous to instruction execution
 - May occur on instruction fetch or data access
 - Protection violations typically terminate the instruction
- Other Page Faults engage operating system to fix the situation and retry the instruction
 - Allocate an additional stack page, or
 - Make the page accessible Copy on Write,
 - Bring page in from secondary storage to memory demand paging
- Fundamental inversion of the hardware / software boundary

Demand Paging

- Modern programs require a lot of physical memory
 - Memory per system growing faster than 25%-30%/year
- But they don't use all their memory all of the time
 - 90-10 rule: programs spend 90% of their time in 10% of their code
 - Wasteful to require all of user's code to be in memory
- Solution: use main memory as "cache" for disk

Page Fault ⇒ Demand Paging

Summary (1/2)

- The Principle of Locality:
 - Program likely to access a relatively small portion of the address space at any instant of time.
 - » Temporal Locality: Locality in Time
 - » Spatial Locality: Locality in Space
- Three (+1) Major Categories of Cache Misses:
 - Compulsory Misses: sad facts of life. Example: cold start misses.
 - Conflict Misses: increase cache size and/or associativity
 - Capacity Misses: increase cache size
 - Coherence Misses: Caused by external processors or I/O devices
- Cache Organizations:
 - Direct Mapped: single block per set
 - Set associative: more than one block per set
 - Fully associative: all entries equivalent

Summary (2/2)

- "Translation Lookaside Buffer" (TLB)
 - Small number of PTEs and optional process IDs (< 512)
 - Often Fully Associative (Since conflict misses expensive)
 - On TLB miss, page table must be traversed and if located PTE is invalid, cause Page Fault
 - On change in page table, TLB entries must be invalidated
- Demand Paging: Treating the DRAM as a cache on disk
 - Page table tracks which pages are in memory
 - Any attempt to access a page that is not in memory generates a page fault, which causes
 OS to bring missing page into memory
- Replacement policies
 - FIFO: Place pages on queue, replace page at end
 - MIN: Replace page that will be used farthest in future
 - LRU: Replace page used farthest in past