Топологическая теория разрешимости уравнений в элементарных функциях

Зайцев Р.В. Научный руководитель: Канель-Белов А.Я.

Московский физико-технический институт

29 июня, 2021

Аннотация

В этой работе рассматривается применение топологической теории Галуа к анализу трансцендентных уравнений на разрешимость в элементарных функциях. Излагаются общие теоретические сведения и доказывается неразрешимость уравнений $\tan(x) - x = a$ и $x^x = a$ в радикалах.

1 Исторический очерк

Общие сведения из топологической теории Галуа

- $oldsymbol{3}$ Исследование разрешимости уравнения an(x)-x=a
- $oldsymbol{4}$ Исследование разрешимости уравнения $x^x=a$

Содержание

- 1 Исторический очерк
- 2 Общие сведения из топологической теории Галуа
- $ext{ } ext{ } ex$
- \bigcirc Исследование разрешимости уравнения $x^x = a$

Задача

Задано

- Изначальное множество объектов S
- ullet Семейство допустимых операций ${\mathcal F}$

Задача

Задано

- Изначальное множество объектов S
- ullet Семейство допустимых операций ${\mathcal F}$

Вопрос

Можно ли выразить какой-то объект применяя операции из заданного семейства \mathcal{F} к исходным объектам S?

Задача

Выразить корень уравнения P(x) = 0, где P - многочлен, через алгебраические операции и радикалы.

Задача

Выразить корень уравнения P(x) = 0, где P - многочлен, через алгебраические операции и радикалы.

• Изначальное множество S - симметрические многочлены

Задача

Выразить корень уравнения P(x) = 0, где P - многочлен, через алгебраические операции и радикалы.

- Изначальное множество S симметрические многочлены
- Семейство допустимых операций \mathcal{F} алгебраические (сложение, вычитание, умножение, деление) и корень натуральной степени, т.е. $f(x) = \sqrt[n]{x}$

Задача

Выразить корень уравнения P(x) = 0, где P - многочлен, через алгебраические операции и радикалы.

- Изначальное множество S симметрические многочлены
- Семейство допустимых операций \mathcal{F} алгебраические (сложение, вычитание, умножение, деление) и корень натуральной степени, т.е. $f(x) = \sqrt[n]{x}$
- Объект, который нужно выразить x_1

• Руффини (неполное доказательство) [Ruffini 1799]

- Руффини (неполное доказательство) [Ruffini 1799]
- Абель [Abel 1824]

- Руффини (неполное доказательство) [Ruffini 1799]
- Абель [Abel 1824]
- Галуа в 1846 году

Теорема

Алгебраическое уравнение разрешимо в радикалах тогда и только тогда, когда его группа Галуа разрешима

- Руффини (неполное доказательство) [Ruffini 1799]
- Абель [Abel 1824]
- Галуа в 1846 году

Теорема

Алгебраическое уравнение разрешимо в радикалах тогда и только тогда, когда его группа Галуа разрешима

Жордан показал, что группа Галуа алгебраического уравнения изоморфна группе монодромии корня (который понимается как многозначная функция) [Хованский 2008].

- Руффини (неполное доказательство) [Ruffini 1799]
- Абель [Abel 1824]
- Галуа в 1846 году

Теорема

Алгебраическое уравнение разрешимо в радикалах тогда и только тогда, когда его группа Галуа разрешима

Жордан показал, что группа Галуа алгебраического уравнения изоморфна группе монодромии корня (который понимается как многозначная функция) [Хованский 2008].

В.И. Арнольд обобщил эти результаты и доказал топологическую неразрешимость ряда задач.

Определение

Элементарные функции - это логарифм, экспонента, тригонометрические и гиперболические функции и их обратные.

Определение

Элементарные функции - это логарифм, экспонента, тригонометрические и гиперболические функции и их обратные.

Задача

Выразить неопределенный интеграл $\int_{x_0}^x f(t)dt$ от обобщенной элементарной функции f через обобщенные элементарные функции

Определение

Элементарные функции - это логарифм, экспонента, тригонометрические и гиперболические функции и их обратные.

Задача

Выразить неопределенный интеграл $\int_{x_0}^x f(t)dt$ от обобщенной элементарной функции f через обобщенные элементарные функции

• Изначальное множество S - $\mathbb{C}(x)$

Определение

Элементарные функции - это логарифм, экспонента, тригонометрические и гиперболические функции и их обратные.

Задача

Выразить неопределенный интеграл $\int_{x_0}^x f(t)dt$ от обобщенной элементарной функции f через обобщенные элементарные функции

- Изначальное множество S $\mathbb{C}(x)$
- Семейство допустимых операций ${\cal F}$ алгебраические, элементарные функции и решение алгебраических уравнений

8 / 63

Операцию взятия композиции можно заменить на операцию решения определенного дифференциального уравнения.

Операцию взятия композиции можно заменить на операцию решения определенного дифференциального уравнения.

Пример

$$y = \exp(x) \Leftrightarrow y' = y$$

Операцию взятия композиции можно заменить на операцию решения определенного дифференциального уравнения.

Пример

$$y = \exp(x) \Leftrightarrow y' = y$$

Определение

Дифференциальное поле - это поле, на котором определена операция дифференцирования, удовлетворяющая правилу Лейбница

Используя метод, не связанный с теорией групп, Лиувилль доказал следующую теорему [Ritt 1948]

Теорема (Лиувилля об интегралах)

Неопределенный интеграл

$$y(x) = \int_{x_0}^x f(t)dt, f(t) \in K$$

принадлежит дифференциальному полю К если и только если

$$y(x) = A_0(x) + \sum_{i=1}^n \lambda_i \ln(A_i(x)), A_i(x) \in K$$

ullet Изначальное множество S - дифференциальное поле

- Изначальное множество S дифференциальное поле
- Семейство допустимых операций ${\cal F}$ алгебраические, элементарные функции, дифференцирование и интегрирование

- Изначальное множество S дифференциальное поле
- Семейство допустимых операций \mathcal{F} алгебраические, элементарные функции, дифференцирование и интегрирование

Задача

Выразить решение дифференциального уравнения Ly=0 в квадратурах, где L - дифференциальный оператор

Метод Лиувилля не опирается на теорию групп

Метод Лиувилля не опирается на теорию групп Пикар обнаружил сходство между линейными дифференциальными и алгебраическими уравнениями и построил дифференциальный аналог теории Галуа [Vessiot 1910]

Метод Лиувилля не опирается на теорию групп Пикар обнаружил сходство между линейными дифференциальными и алгебраическими уравнениями и построил дифференциальный аналог теории Галуа [Vessiot 1910]

Теорема (Пикара-Вессио)

Линейное дифференциальное уравнение над дифференциальным полем К решается в квадратурах, если и только если группа Галуа уравнения над полем К является разрешимой

Метод Лиувилля не опирается на теорию групп Пикар обнаружил сходство между линейными дифференциальными и алгебраическими уравнениями и построил дифференциальный аналог теории Галуа [Vessiot 1910]

Теорема (Пикара-Вессио)

Линейное дифференциальное уравнение над дифференциальным полем К решается в квадратурах, если и только если группа Галуа уравнения над полем К является разрешимой

Из теории Пикара-Вессио вытекает более сильная теорема о неразрешимости алгебраических уравнений в радикалах, а именно, что при неразрешимости группы Галуа, уравнение неразрешимо в квадратурах.

12 / 63

Содержание

- 1 Исторический очерк
- Общие сведения из топологической теории Галуа
- \bigcirc Исследование разрешимости уравнения $x^x = a$

Определение

Элемент - это пара (f,U), где f - голоморфная на области $U\subset\mathbb{C}$ функция

Определение

Элемент - это пара (f,U), где f - голоморфная на области $U\subset\mathbb{C}$ функция

Определение

Росток функции f в точке $a \in \mathbb{C}$ - это класс эквивалентности элементов, совпадающих c f в некоторой окрестности точки a. Другими словами, два элемента $(f,U_a),(g,V_a)$ называются эквивалентными, если существует $W_a \subset U_a \cap V_a$ т.ч. $(f,W_a)=(g,W_a)$

Рассмотрим петлю в точке a, не содержащую особых точек функции f. Тогда вдоль этой петли можно продолжить любой росток функции f, причем в конце петли ростки переставятся между собой. Зафиксируем точку a.

Определение

Группа монодромии - это группа всевозможных перестановок ростков, при продолжении вдоль петель, не содержащих особых точек

Наблюдение

Для голоморфной на комплексной области функции группа монодромии тривиальна.

Наблюдение

Для голоморфной на комплексной области функции группа монодромии тривиальна.

Наблюдение в

Перестановки, индуцированные гомотопными в области не содержащей особых точек петлями, совпадают.

 Экспонента - однозначная функция, поэтому группа монодромии тривиальна

- Экспонента однозначная функция, поэтому группа монодромии тривиальна
- У логарифма ровно одна особая точка 0

- Экспонента однозначная функция, поэтому группа монодромии тривиальна
- У логарифма ровно одна особая точка 0
- Все ростки функции принимают значение $r_0 + 2\pi i$, где r_0 значение какого-то фиксированного ростка в точке a

- Экспонента однозначная функция, поэтому группа монодромии тривиальна
- У логарифма ровно одна особая точка 0
- Все ростки функции принимают значение $r_0 + 2\pi i$, где r_0 значение какого-то фиксированного ростка в точке a
- При одном обходе окружности |z|=|a|, росток r переходит в росток $r\pm 2\pi i$

- Экспонента однозначная функция, поэтому группа монодромии тривиальна
- У логарифма ровно одна особая точка 0
- Все ростки функции принимают значение $r_0 + 2\pi i$, где r_0 значение какого-то фиксированного ростка в точке a
- При одном обходе окружности |z|=|a|, росток r переходит в росток $r\pm 2\pi i$
- ullet Группа монодромии логарифма ${\mathbb Z}$

Пусть задано параметрическое уравнение f(x) = a, где a - комплексный параметр. Будем говорить, что это уравнение разрешимо в элементарных функциях, если при помощи композиции элементарных функций и алгебраических операций можно выразить корень этого уравнения через параметр a.

Пусть задано параметрическое уравнение f(x) = a, где a - комплексный параметр. Будем говорить, что это уравнение разрешимо в элементарных функциях, если при помощи композиции элементарных функций и алгебраических операций можно выразить корень этого уравнения через параметр a.

ullet Изначальное множество $S=\mathbb{C}(a)$

Пусть задано параметрическое уравнение f(x) = a, где a - комплексный параметр. Будем говорить, что это уравнение разрешимо в элементарных функциях, если при помощи композиции элементарных функций и алгебраических операций можно выразить корень этого уравнения через параметр a.

- ullet Изначальное множество $S=\mathbb{C}(a)$
- Семейство допустимых операций ${\cal F}$ алгебраические, элементарные функции

Наблюдение

Вместо элементарных функций достаточно взять лишь логарифм и экспоненту

Наблюдение

Вместо элементарных функций достаточно взять лишь логарифм и экспоненту

Доказательство

Гиперболические и тригонометрические функции (и их обратные) легко выражаются через логарифм и экспоненту при помощи алгебраических операций.

Определение

Глубина d(f) формулы f, выразимой в элементарных функциях определяется рекурсивно.

ullet Если $f\in\mathbb{C}(a)$, то глубина формулы d(f)=0

Определение

Глубина d(f) формулы f, выразимой в элементарных функциях определяется рекурсивно.

- ullet Если $f\in\mathbb{C}(a)$, то глубина формулы d(f)=0
- Более общо, если f получается применением k формулам f_1, f_2, \ldots, f_n алгебраических операций, то $d(f) = \max_{1 \leq i \leq n} d(f_i)$

Определение

Глубина d(f) формулы f, выразимой в элементарных функциях определяется рекурсивно.

- ullet Если $f\in\mathbb{C}(a)$, то глубина формулы d(f)=0
- Более общо, если f получается применением k формулам f_1, f_2, \ldots, f_n алгебраических операций, то $d(f) = \max_{1 \le i \le n} d(f_i)$
- ullet Если f = u(g) и u логарифм или экспонента, то d(f) = d(g) + 1

Корень уравнения, $f^{-1}(a)$ - многозначная функция

Корень уравнения, $f^{-1}(a)$ - многозначная функция

Определение

Группой монодромии уравнения f(x) = a будем называть группу монодромии f^{-1} .

Корень уравнения, $f^{-1}(a)$ - многозначная функция

Определение

Группой монодромии уравнения f(x) = a будем называть группу монодромии f^{-1} .

Теорема

Если уравнение разрешимо в элементарных функциях, то его группа монодромии разрешима

Доказательство

• Докажем по индукции, что для всех формул глубины *n*, *n*-й коммутант группы монодромии тривиален.

Доказательство

- Докажем по индукции, что для всех формул глубины *n*, *n*-й коммутант группы монодромии тривиален.
- База: глубина формулы ноль \Rightarrow рациональная функция \Rightarrow группа монодромии тривиальна.

Доказательство (продолжение)

• Переход: пусть для всех формул глубины n-1 группа разрешима, то есть ряд коммутантов заканчивается на тривиальной группе.

Доказательство (продолжение)

- Переход: пусть для всех формул глубины n-1 группа разрешима, то есть ряд коммутантов заканчивается на тривиальной группе.
- На формуле вида $u(f_{n-1}(a))$, где u либо экспонента, либо логарифм, а f_{n-1} формула глубины не более чем n-1, (n-1)-й коммутант действует коммутативно. Действительно, поскольку на f_{n-1} индуцируются лишь тривиальные перестановки, каждый росток f_{n-1} делает петлю. Стало быть (n-1)-й коммутант является подгруппой группы монодромии u, которая, в свою очередь, абелева.

Доказательство (продолжение)

• Произвольная формула глубины n получается при помощи алгебраических операций c формулами такого вида \Rightarrow на произвольной формуле действие (n-1)-го коммутанта также коммутативно \Rightarrow n-й коммутант тривиален.

Замечание

• Если $f'(x) \neq 0$, то точка f(x) заведомо не является особой в силу теоремы о неявной функции

Замечание

- Если $f'(x) \neq 0$, то точка f(x) заведомо не является особой в силу теоремы о неявной функции
- Если уравнение разрешимо в элементарных функциях, то группа, порожденная петлями в области $\{y:y=f(x),f'(x)\neq 0\}$ разрешима, как и любая подгруппа монодромии.

Замечание

- Если $f'(x) \neq 0$, то точка f(x) заведомо не является особой в силу теоремы о неявной функции
- Если уравнение разрешимо в элементарных функциях, то группа, порожденная петлями в области $\{y:y=f(x),f'(x)\neq 0\}$ разрешима, как и любая подгруппа монодромии.

Определение

Группа уравнения f(x) = a - это подгруппа группы монодромии f^{-1} , порожденная петлями в области $\{y: y = f(x), f'(x) \neq 0\}$

Определение

Особые точки уравнения - это множество

$${y: y = f(x), f'(x) = 0}$$

Определение

Особые точки уравнения - это множество

$${y: y = f(x), f'(x) = 0}$$

Определение

Особые корни уравнения - это множество $\{x: f'(x)=0\}$

Наблюдение

Если множество особых точек уравнения нигде не плотно, то группа уравнения транзитивно действует на ростках.

Наблюдение

Если множество особых точек уравнения нигде не плотно, то группа уравнения транзитивно действует на ростках.

Доказательство

Рассмотрим кривую $\gamma(t)$, соединяющую два корня r_1, r_2 , т.е. $\gamma(0) = r_1, \gamma(1) = r_2$ и лежащую вне множества $\{x: f'(x) = 0\}$ (такая кривая существует, т.к. множество $\{x: f'(x) = 0\}$ нигде не плотно). Тогда $a(t) = f(\gamma(t))$ является искомой петлей, отображающей r_1 в r_2 . Действительно,

$$a(0) = f(\gamma(0)) = f(r_1) = f(r_2) = f(\gamma(1)) = a(1)$$

Содержание

- 1 Исторический очерк
- 2 Общие сведения из топологической теории Галуа
- $oldsymbol{3}$ Исследование разрешимости уравнения an(x)-x=a
- \bigcirc Исследование разрешимости уравнения $x^x = a$

До конца этого раздела, положим $f(x) = \tan(x) - x$

До конца этого раздела, положим f(x) = an(x) - x

Лемма

Особые корни и точки уравнения f(x)=a - это $\pi k, k\in\mathbb{Z}$

До конца этого раздела, положим $f(x) = \tan(x) - x$

Лемма

Особые корни и точки уравнения f(x)=a - это $\pi k, k\in\mathbb{Z}$

Доказательство

$$f'(x) = (\tan(x) - x)' = \frac{1}{\cos^2(x)} - 1 = 0 \Leftrightarrow$$
$$\Leftrightarrow \cos^2(x) = 1 \Leftrightarrow x = \pi k, k \in \mathbb{Z} \quad (1)$$

Подставляя эти значения в функцию f, получаем множество особых точек

$$tan(\pi k) - \pi k = -\pi k, k \in \mathbb{Z}$$

Лемма

Все особые корни уравнения являются имеют кратность 3.

Лемма

Все особые корни уравнения являются имеют кратность 3.

Доказательство

$$f''(\pi k) = \frac{2\sin(\pi k)}{\cos^3(\pi k)} = 0$$

$$f'''(\pi k) = \frac{2}{\cos^2(\pi k)} + \frac{6\sin^2(\pi k)}{\cos^4(\pi k)} = 2$$

Лемма

Все особые корни уравнения являются имеют кратность 3.

Доказательство

$$f''(\pi k) = \frac{2\sin(\pi k)}{\cos^3(\pi k)} = 0$$

$$f'''(\pi k) = \frac{2}{\cos^2(\pi k)} + \frac{6\sin^2(\pi k)}{\cos^4(\pi k)} = 2$$

Следствие

Если параметр а делает окружность вокруг особой точки, три корня переставляются между собой циклически.

Корни уравнения

Лемма

Все корни уравнения

$$\tan(z) - z = 0$$

вещественны

Лемма

Все корни уравнения

$$\tan(z) - z = 0$$

вещественны

Теорема (Руше)

Если две голоморфные в некоторой области функции f и g таковы, что на границе этой области |g(z)|<|f(z)|, то уравнения f(z)=0 и f(z)+g(z)=0 имеют одинаковое число корней.

Доказательство леммы

$$tan(z) - z = 0 \Leftrightarrow sin(z) - z cos(z) = 0$$

Положим z = x + iy, тогда

$$\sin(x+iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$

откуда

$$|\sin(x+iy)|^2 = \sin^2(x)\cosh^2(y) + \cos^2(x)\sinh^2(y) = \sin^2(x)+\sinh^2(y)$$

Аналогично

$$|\cos(x+iy)|^2 = \cos^2(x)\cosh^2(y) + \sin^2(x)\sinh^2(y) = \cos^2(x) + \sinh^2(y)$$

Доказательство (продолжение)

Положим

$$f(z) = -z\cos(z), g(z) = \sin(z)$$

и рассмотрим прямоугольник с центром в нуле и верхним правым углом в точке

$$\pi k + iM, k \in \mathbb{N}, M \in \mathbb{R}$$

Тогда на левой и правой сторонах прямоугольника

$$|g(z)|^2 = \sin^2(\pi k) + \sinh^2(y) = \sinh^2(y) <$$

 $< 1 + \sinh^2(y) = \cos^2(\pi k) + \sinh^2(y) < |z\cos(z)|^2 = |f(z)|^2$ (2)

поскольку $|z| \geq \operatorname{Re} z = \pi k$

Доказательство (продолжение)

На верхней и нижней сторонах

$$|g(z)|^2 \le 1 + \sinh^2(M)$$

И

$$|f(z)|^2 \ge |z|^2 \sinh^2(M) \ge M^2 \sinh^2(M) > 1 + \sinh^2(M)$$

для всех достаточно больших M. Отсюда, по теореме Руше $\tan(z)-z$ имеет в точности 2k+1 корней в любом таком достаточно высоком прямоугольнике с фиксированной шириной, поскольку корнями уравнения $z\cos(z)=0$ являются

$$\{0, \pm \pi/2, \ldots, \pm (\pi k - \pi/2)\}$$

Доказательство (продолжение)

У исходного уравнения имеется ровно 2k+1 корней, которые мы можем явно перечислить: 0 - особый корень уравнения кратности 3, а также, как видно на рис., графики функций $y=\tan(x)$ и y=x имеют в точности 2k-1 пересечений, поскольку на каждом интервале вида $(\pi m-\pi/2,\pi m+\pi/2)$, -k < m < k, $m \in \mathbb{Z}$ имеется ровно одно пересечение при a=0. Устремляя высоту прямоуголька к бесконечности, получаем, что других корней у уравнения быть не может, стало быть все корни вещественны.

Графики функций tan(x) и x + a

Наблюдение

При вещественном а не являющимся особой точкой, имеется в точности два комплексных корня, причем в силу $f(\overline{z}) = \overline{f(z)}$ эти корни комплексно сопряжены. Поэтому при обходе параметром а особой точки, будут циклически переставлены эти два комплексных корня и один вещественный.

• Зафиксируем начальное значение параметра, $a_0=1$ и будем вычислять перестановки, которые индуцируют петли, с концами в этой точке.

- Зафиксируем начальное значение параметра, $a_0=1$ и будем вычислять перестановки, которые индуцируют петли, с концами в этой точке.
- Рассмотрим петлю, которая идет вдоль вещественной оси в левую сторону и обходит особые точки по малым полуокрожностям, затем делает оборот вокруг особой точки и возвращается тем же путем.

Выясним, как при этом переставляются корни.

Выясним, как при этом переставляются корни.

• Назовем два комплексных корня c_+ и c_- , где c_+ - корень, который лежит в верхней полуплоскости, а c_- - сопряженный ему.

Выясним, как при этом переставляются корни.

- Назовем два комплексных корня c_+ и c_- , где c_+ корень, который лежит в верхней полуплоскости, а c_- сопряженный ему.
- Вещественные корни обозначим естественным образом, т.е. так, что r_0 корень, который стремится к нулю при $a \to 0$, r_1 следующий за ним вещественный корень и так далее.

• Заметим, что при обходе особой точки по малой полуокружности, один из комплексных корней встает на вещественную ось (по той же причине, что при полном обороте происходит циклическая перестановка).

- Заметим, что при обходе особой точки по малой полуокружности, один из комплексных корней встает на вещественную ось (по той же причине, что при полном обороте происходит циклическая перестановка).
- Выберем такую полуокружность, чтобы на вещественную ось вставал именно верхний корень. Тогда корень, который был вещественным встанет на его место, т.е. окажется в верхней полуплоскости.

- Заметим, что при обходе особой точки по малой полуокружности, один из комплексных корней встает на вещественную ось (по той же причине, что при полном обороте происходит циклическая перестановка).
- Выберем такую полуокружность, чтобы на вещественную ось вставал именно верхний корень. Тогда корень, который был вещественным встанет на его место, т.е. окажется в верхней полуплоскости.
- Двигая влево параметр a приближая его, таким образом, к особой точке, сначала корень c_+ занимает место r_0 , затем r_0 меняется с r_1 и так далее.

• Если изначально вещественные корни расположены как $(r_0, r_1, \ldots, r_n, r_{n+1} \ldots)$, то на тот момент, когда параметр a приблизится к особой точке, которую он будет обходить, корни будут в расположении $(c_+, r_0, r_1, \ldots, r_{n-2}, r_n, r_{n+1} \ldots)$.

- Если изначально вещественные корни расположены как $(r_0, r_1, \ldots, r_n, r_{n+1} \ldots)$, то на тот момент, когда параметр a приблизится к особой точке, которую он будет обходить, корни будут в расположении $(c_+, r_0, r_1, \ldots, r_{n-2}, r_n, r_{n+1} \ldots)$.
- Когда a обойдет особую точку, произойдет циклическая перестановка корней r_{n-1}, r_n, c_- .

- Если изначально вещественные корни расположены как $(r_0, r_1, \ldots, r_n, r_{n+1} \ldots)$, то на тот момент, когда параметр а приблизится к особой точке, которую он будет обходить, корни будут в расположении $(c_+, r_0, r_1, \ldots, r_{n-2}, r_n, r_{n+1} \ldots)$.
- Когда a обойдет особую точку, произойдет циклическая перестановка корней r_{n-1}, r_n, c_- .
- Выбрав подходящее направление обхода, можно добиться того, чтобы получилось расположение

$$(c_+, r_0, r_1, \ldots, r_{n-2}, c_-, r_{n+1} \ldots)$$

в верхней полуплоскости оказался бы корень r_n , а в нижней r_{n-1} .

• Возвращаясь по тому же пути, когда параметр a вернется в исходное положение, корни будут располагаться как $(r_0, r_1, \ldots r_{n-2}, r_n, c_-, r_{n+1} \ldots)$, в верхней полуплоскости по-прежнему будет корень c_+ , а в нижней r_{n-1} .

- Возвращаясь по тому же пути, когда параметр a вернется в исходное положение, корни будут располагаться как $(r_0, r_1, \ldots r_{n-2}, r_n, c_-, r_{n+1} \ldots)$, в верхней полуплоскости по-прежнему будет корень c_+ , а в нижней r_{n-1} .
- Повторяя аналогичную петлю, но делая оборот вокруг следующей особой точки, получаем конфигурацию корней $(r_0, r_1, \ldots, r_{n-2}, r_n, r_{n+1}, r_{n-1} \ldots)$

Неразрешимость

Утверждение

Уравнение tan(x) - x = a не разрешимо в элементарных функциях

Неразрешимость

Утверждение

Уравнение tan(x) - x = a не разрешимо в элементарных функциях

Доказательство

• Группа заведомо содержит перестановки вида (k,k-1,k+1), которые порождают знакопеременную группу A_n (если ограничить $k \leq n$)

Неразрешимость

Утверждение

Уравнение tan(x) - x = a не разрешимо в элементарных функциях

Доказательство

- Группа заведомо содержит перестановки вида (k,k-1,k+1), которые порождают знакопеременную группу A_n (если ограничить $k \leq n$)
- ullet При $n \geq 5$ группа A_n неразрешима

Содержание

- 1 Исторический очерк
- 2 Общие сведения из топологической теории Галуа
- ${ exttt{ 3)}}$ Исследование разрешимости уравнения an(x)-x=a
- $oxed{4}$ Исследование разрешимости уравнения $x^x = a$

Преобразование уравнения

Логарифмируя обе части уравнения $x^x = a$ дважды и делая замену

$$\ln \ln x \to x$$
, $\ln \ln a \to a$

приходим к уравнению

$$x + e^x = a$$

Преобразование уравнения

Логарифмируя обе части уравнения $x^x = a$ дважды и делая замену

$$\ln \ln x \rightarrow x$$
, $\ln \ln a \rightarrow a$

приходим к уравнению

$$x + e^x = a$$

До конца этого раздела, положим $f(x) = x + e^x$

Особые точки уравнения

Утверждение

Особыми корнями уравнения являются

$$r_n = (2n+1)\pi i, n \in \mathbb{Z}$$

а особыми точками

$$a_n = (2n+1)\pi i - 1, n \in \mathbb{Z}$$

Особые точки уравнения

Утверждение

Особыми корнями уравнения являются

$$r_n = (2n+1)\pi i, n \in \mathbb{Z}$$

а особыми точками

$$a_n = (2n+1)\pi i - 1, n \in \mathbb{Z}$$

Доказательство

$$f(z) = z + e^z \Rightarrow f'(z) = 1 + e^z$$

 $f'(z) = 0 \Leftrightarrow e^z = -1 \Leftrightarrow z = (2n+1)\pi i, n \in \mathbb{Z}$
 $a_n = f((2n+1)\pi i) = (2n+1)\pi i - 1, n \in \mathbb{Z}$

Особые точки уравнения

Поскольку

$$f''(z) = e^z \neq 0 \ \forall z \in \mathbb{C}$$

все особые корни имеют порядок 2, а значит если петля обходит произвольную особую точку, происходит транспозиция двух корней.

Из графика функции $f(x), x \in \mathbb{R}$ видно, что имеется ровно один вещественный корень уравнения f(x) = 0.

Из графика функции $f(x), x \in \mathbb{R}$ видно, что имеется ровно один вещественный корень уравнения f(x) = 0.

• Рассмотрим путь r(t) этого вещественного корня, который подводит его к r_n , затем переставляет его с другим корнем, и дальше новый корень возвращается по тому же пути, по которому подходил вещественный корень.

- Рассмотрим путь r(t) этого вещественного корня, который подводит его к r_n , затем переставляет его с другим корнем, и дальше новый корень возвращается по тому же пути, по которому подходил вещественный корень.
- Положим a(t) = f(r(t)).

- Рассмотрим путь r(t) этого вещественного корня, который подводит его к r_n , затем переставляет его с другим корнем, и дальше новый корень возвращается по тому же пути, по которому подходил вещественный корень.
- Положим a(t) = f(r(t)).
- Тогда a(t) описывает петлю и индуцирует транспозицию вида (1m), где m какой-то корень.

- Рассмотрим путь r(t) этого вещественного корня, который подводит его к r_n , затем переставляет его с другим корнем, и дальше новый корень возвращается по тому же пути, по которому подходил вещественный корень.
- Положим a(t) = f(r(t)).
- Тогда a(t) описывает петлю и индуцирует транспозицию вида (1m), где m какой-то корень.
- Вычислим непосредственно путь, по которому движется параметр *a*.

• На первом (вертикальном) отрезке пути, имеем

$$r(t) = x + it$$

где x - вещественный корень уравнения f(x) = 0.

$$a(t) = x + it + e^{x+it} = x(1-\cos t) + i(t-x\sin t)$$

• На первом (вертикальном) отрезке пути, имеем

$$r(t) = x + it$$

где x - вещественный корень уравнения f(x) = 0.

$$a(t) = x + it + e^{x+it} = x(1-\cos t) + i(t-x\sin t)$$

• Это уравнение циклоиды. Эта циклоида не содержит особых точек, поскольку при $t=(2k+1)\pi$ (единственное значение t при котором мнимые части a_k и a(t) совпадают),

$$a=2x+i(2k+1)\pi$$

т.е. левее a_k

• Положим $y_n = (2n+1)\pi$. Тогда следующий (горизонтальный) отрезок пути задается

$$r(s) = s + iy_n + e^{s+iy_n} \Rightarrow a(s) = s - e^s + iy_n$$

• Положим $y_n = (2n+1)\pi$. Тогда следующий (горизонтальный) отрезок пути задается

$$r(s) = s + iy_n + e^{s+iy_n} \Rightarrow a(s) = s - e^s + iy_n$$

• a(s) также движется горизонтально.

Положим $y_n = (2n+1)\pi$. Тогда следующий (горизонтальный) отрезок пути задается

$$r(s) = s + iy_n + e^{s+iy_n} \Rightarrow a(s) = s - e^s + iy_n$$

- a(s) также движется горизонтально.
- Далее, когда корни меняются между собой, двигаясь по полуокрожностям, параметр а делает оборот вокруг особой точки a_n.

Эта петля гомотопна простейшей

Утверждение

Произвольная петля может быть представлена в виде произведения петель простейшего вида

Утверждение

Произвольная петля может быть представлена в виде произведения петель простейшего вида

Доказательство

Рассмотрим произвольную петлю. Мысленно представим, что особые точки - это гвозди, а петля - это резинка. Возьмем эту резинку и стянем ее к началу координат, так, что останутся лишь прямолинейные куски резинки, идущие от начала координат к какому-то гвоздю и обратно. Такие куски являются простейшими петлями, т.е. исходная петля действительно гомотопна произведению петель. Это рассуждение можно формализовать при помощи алгебраической топологии.

Утверждение

Группа, порожденная такими петлями - симметрическая

Утверждение

Группа, порожденная такими петлями - симметрическая

Доказательство

C одной стороны, в силу транзитивности группы, существует перестановка σ , которая отображает корень $r_k \mapsto r_l \ \forall k, l \in \mathbb{Z}$. C другой стороны, эта перестановка раскладывается в произведение транспозиций вида (1n). Стало быть существуют петли, которые индуцируют транспозиции (1k) и (1l). Значит произвольная транспозицию (kl) принадлежит группе.

Утверждение

Уравнение $x^x = a$ не решается в элементарных функциях

Утверждение

Уравнение $x^x = a$ не решается в элементарных функциях

• Корней бесконечно много

Утверждение

Уравнение $x^x = a$ не решается в элементарных функциях

- Корней бесконечно много
- Симметрическая группа неразрешима

Благодарности

Выражаю благодарность своему научному руководителю, А.Я. Канель-Белову, за предложенные задачи и идеи их решения, А.С. Малистову, за численное решение задачи, которое позволило изобразить результаты графически, В.О. Мантурову, за приглашение сделать доклад на математическом коллоквиуме МГТУ им. Н.Э. Баумана, а также гранту РНФ №17-11-01377, которым поддержано это исследование.

Библиография

- Abel, Niels Henrik (1824). "Mémoire sur les équations algébriques, ou l'on démontre l'impossibilité de la résolution de l'équation générale du cinquième degré". In: *Grøndahl & Søn*.
- Ritt, J. F. (1948). "Integration in finite terms. Liouville's theory of elementary methods". In: N. Y.: Columbia Univ. Press.
- Ruffini, Paolo (1799). "Teoria generale delle equazioni, in cui si dimostra impossibile la soluzione algebraica delle equazioni generali di grado superiore al quarto". In: Stamperia di S. Tommaso d'Aquino.
- Vessiot, Ernest (1910). "Méthodes d'intégration élémentaires". In: Encyclopédie des sciences mathématiques pures et appliquées.
- Хованский, А.Г. (2008). Топологическая теория Галуа. МЦНМО. ISBN: 978-5-94057-374-6.