Table of derivatives

Function y	Derivative $\frac{dy}{dx}$	Examples
1 unction y	Derivative $\frac{1}{dx}$	
kx"	nkx ⁿ⁻¹	Multiply by the power n , then reduce the power by 1. $y = 3x^2 \Rightarrow \frac{dy}{dx} = 2 \times 3x^1 = 6x$ $y = -4x = -4x^1 \Rightarrow \frac{dy}{dx} = 1 \times (-4x^0) = -4$ $y = 3 = 3x^0 \Rightarrow \frac{dy}{dx} = 0 \times 3x^{-1} = 0$
		$y = 3 - 3\lambda$ $t = 3\lambda$ $t = 3\lambda$
		Multiply by k , then swap sin to cos.
sin(kx)	$k\cos(kx)$	$y = \sin(2x) \Rightarrow \frac{dy}{dx} = 2\cos(2x)$
		Multiply by $-k$, then swap cos to sin.
cos(kx)	$-k\sin(kx)$	$y = -\cos(\frac{x}{2}) \Rightarrow \frac{dy}{dx} = \frac{x}{2}\sin(\frac{x}{2})$
		Multiply by k.
e^{kx}	ke ^{kx})	$y = e^{2x} \Rightarrow \frac{dy}{dx} = 2e^{2x}$
		Make sure you only have $ln(x)$ which has derivative $\frac{1}{x}$.
ln(x)	$\frac{1}{x}$	(Remember the derivative of a constant is 0.) $y = -\ln(3x) = -\ln(3) - \ln(x) \Rightarrow \frac{dy}{dx} = 0 - \frac{1}{x} = -\frac{1}{x}$

An example

A function can be expressed as the sum of smaller expressions called terms. So

$$f(x) = \text{Term } 1 + \text{Term } 2 + \ldots + \text{Term } k$$
.

For example, the function $f(x) = 3x^2 - 4x + 3 + \sin(2x) - \cos(\frac{x}{2}) + e^{2x} - \ln(3x)$ has terms: $3x^2$, -4x, 3, $\sin(2x)$, $-\cos(\frac{x}{2})$, e^{2x} and $-\ln(3x)$.

To find the derivative of a function, you can find the derivative of each term.

The examples in the table above give the derivatives of each of the terms in

$$f(x) = 3x^2 - 4x + 3 + \sin(2x) - \cos(\frac{x}{2}) + e^{2x} - \ln(3x)$$

so the derivative of f(x) is

$$f'(x) = 6x - 4 + 0 + 2\cos(2x) - \frac{1}{2}\sin(2x) + 2e^{2x} - \frac{1}{x} = 6x - 4 + 2\cos(2x) - \frac{1}{2}\sin(2x) + 2e^{2x} - \frac{1}{x}.$$