Combinatorial Nullstellensatz

Tymoteusz Kucharek

26.09.22

1 Wstęp

Twierdzenie 1 (Combinatorial Nullstellensatz) Niech $F(X_1, X_2, ..., X_n) \in \mathbb{K}[X_1, X_2, ..., X_n]$ będzie wielomianem n zmiennych o współczynnikach w ciele \mathbb{K} . Niech $\deg(F) = k_1 + ... + k_n$ i jednomian $X_1^{k_1} \cdot ... \cdot X_n^{k_n}$ występuje w F z niezerowym współczynnikiem. Niech $A_1, ..., A_n \subseteq \mathbb{K}$, takie że $|A_i| > k_i$. Wtedy istnieją takie $\alpha_1 \in A_1, ..., \alpha_n \in A_n$, że $F(\alpha_1, ..., \alpha_n) \neq 0$.

Zarys dowodu: indukcja po stopniach.

Ćwiczenie 1 (Zadanie o broszkach) Przy okrągłym stole siedzi n kobiet, każda ma dwie broszki różnych kolorów. Czy mogą one tak wybrać i przypiąć broszki, aby każda para sąsiadek miała przypięte broszki różnych kolorów?

2 Zastosowania

Twierdzenie 2 (Erdős, Ginzburg, Ziv) W dowolnym ciągu liczb całkowitych o 2n-1 elementach istnieje n-elementowy podciąg o sumie wyrazów podzielnej przez n.

Twierdzenie 3 (Cauchy-Davenport) Niech $A, B \subseteq \mathbb{Z}_p$; $A, B \neq \emptyset$. Wtedy: $|A + B| \ge \min(p, |A| + |B| - 1)$.

Twierdzenie 4 (Chevalley) Dane jest r wielomianów n zmiennych $G_1, G_2, ..., G_r$, o współczynnikach w ciele \mathbb{Z}_p , takich że $\deg(G_1) + \deg(G_2) + ... + \deg(G_r) < n$. Jeśli układ złożony z równań $G_i(X_1, ..., X_n) = 0$ dla $1 \le i \le r$ ma rozwiązanie, to ma co najmniej dwa rozwiązania.

Twierdzenie 5 (Chevalley-Warning) Liczba rozwiązań układu z poprzedniego twierdzenia jest podzielna przez p.

3 Zadania

Ćwiczenie 2 (IMO 2007) Dana jest liczba naturalna n. Znaleźć najmniejszą liczbę płaszczyzn, takich że punkt (x,y,z) (gdzie $x,y,z\in\mathbb{Z},\ 0\leq x,y,z\leq n$ oraz $xyz\neq 0$), leży na pewnej z tych płaszczyzn, zaś punkt (0,0,0) nie leży na żadnej płaszczyźnie.