38. Сутність та якими властивостями володіє протокол з застосуванням порогової схеми Аді Шаміра?

Побудова відомої порогової схеми Аді Шаміра базується на поліноміальній інтерполяції і на тому факті, що одномірний поліном f(x) степені k-1 над полем Галуа унікально задається по k точках. Поліноми можуть бути задані над p-ічним розширеним полем. При цьому коефіцієнти a_i полінома $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{k-1} x^{k-1}$ задаються над полем GF(p) як елементи поля Z_p . Основними параметрами такої схеми є числа (k,n), де k-1 мінімальне число частин секрету, з використанням яких може бути відновлений загальний секрет, а n-13 загальне число часток секрету, причому, $1 \le k \le n$.

Коефіцієнти a_i визначаються чи задаються числом n часток секрету. Потім випадковим чином формується загальний секрет S, що має бути розділений на частки секрету S_i , $i=\overline{1,n}$. Пропонована схема має бути такою, щоб будьякі k об'єктів чи суб'єктів, об'єднавши свої k приватних секретів могли однозначно відновити загальний секрет S. При цьому всі частки секрету S_i є конфіденційними, і протягом їхнього життєвого циклу мають бути забезпечені цілісність, дійсність, конфіденційність і приступність. При виконанні наведених вище вимог і умов порогова схема поділу секрету S_i . Шаміра реалізується в такий спосіб:

- 1. Формується велике просте число P , що реально більше припустимого P_{Π} , тобто $P > P_{\Pi}$.
- 2. Формується випадковим чином загальний секрет S, що ϵ елементом поля GF(p), тобто ціле S задовольня ϵ умову: 1 < S < p.
- 3. Випадково формується k-1 коефіцієнтів полінома $f(x)-a_1,a_2,...,a_{k-1},$ що оголошуються конфіденційними.
- 4. Як a_0 приймається значення загального секрету S , тобто $a_0=S$.
- 5. Довірена сторона розділяє загальний секрет, обчисливши частки секрету $S_i = f(i)$, де i числовий ідентифікатор або номер кожного з об'єктів чи суб'єктів, причому, $1 \le i \le p-1$. Розподіл секрету може полягати в присвоєнні кожному з об'єктів чи суб'єктів унікального випадкового ідентифікатора.
- 6. Усі частки секрету S_i транспортуються і установлюються чи вкладаються кожному з об'єктів чи суб'єктів із забезпеченням конфіденційності, дійсності, цілісності, приступності і спостережливості.

Основними властивостями порогової схеми Аді-Шаміра ϵ такі:

- 1. Бездоганність. При знанні будь-яких k-1 і менших часток секрету S_i всі значення загального секрету S залишаються рівно імовірними і теоретично можуть вибиратися з інтервалу $0 \le S \le p-1$.
- 2.Відсутність недоведених допущень. На відміну від ймовірнісно-стійких схем схема А. Шаміра не базується ні на яких недоведених допущеннях (наприклад, складності вирішення таких задач як факторизація модуля, перебування дискретного логарифма і т.д.).
- 3. Розширювання з появою нових користувачів. Ця властивість полягає в тому, що нові частини секрету можуть бути обчислені і розподілені без впливу на вже існуючі частини.
- 4. Ідеальність, під якою розуміється той факт, що всі частини загального секрету і сам загальний секрет мають однаковий розмір і можуть приймати значення над полем GF(p) з рівною імовірністю.

Особливістю граничної схеми розподілу секрету ϵ те, що вона вимага ϵ виконання модульних операцій над великим полем GF(p), складність яких ма ϵ поліноміальний характер. Крім того довірений пристрій повинний мати можливість контролювати цілісність і дійсність частин секрету перед виробленням загального секрету.