第4节 高考中抛物线常用的二级结论(★★☆)

强化训练

1. $(2020 \cdot 新高考 I 卷 \cdot ★★) 斜率为 √3 的直线过抛物线 <math>C: y^2 = 4x$ 的焦点,且与 C 交于 $A \setminus B$ 两点,则 $|AB| = ____.$

答案: $\frac{16}{3}$

解法 1: 直线 AB 过焦点且已知斜率,可写出其方程,与抛物线联立,用坐标版焦点弦公式求 |AB|,

由题意,p=2,抛物线 C 的焦点为 F(1,0),过 F 且斜率为 $\sqrt{3}$ 的直线为 $y=\sqrt{3}(x-1)$,

联立
$$\begin{cases} y = \sqrt{3}(x-1) \\ y^2 = 4x \end{cases}$$
 消去 y 整理得: $3x^2 - 10x + 3 = 0$, 所以 $x_A + x_B = \frac{10}{3}$, 故 $|AB| = x_A + x_B + 2 = \frac{16}{3}$.

解法 2: 由斜率能求出倾斜角,故也可用角版焦点弦公式算 | AB |,

由题意, p=2 ,直线 AB 的斜率为 $\sqrt{3}$ ⇒其倾斜角 $\alpha=60^\circ$,所以 $|AB|=\frac{2p}{\sin^2\alpha}=\frac{4}{\sin^260^\circ}=\frac{16}{3}$.

2. (★★)设 F 为抛物线 $C: y^2 = 3x$ 的焦点,过 F 且倾斜角为 30° 的直线交 C 于 A, B 两点,O 为原点,则 ΔAOB 的面积为_____.

答案: $\frac{9}{4}$

解析: 已知直线的倾斜角,代公式 $S = \frac{p^2}{2\sin\alpha}$ 即可求 ΔAOB 的面积,

由题意, $p = \frac{3}{2}$, 直线 AB 的倾斜角 $\alpha = 30^{\circ}$, 所以 $S_{\Delta AOB} = \frac{p^2}{2\sin\alpha} = \frac{(\frac{3}{2})^2}{2\sin30^{\circ}} = \frac{9}{4}$.

3. (★★★) 过抛物线 $y^2 = 2x$ 的焦点 F 作直线交抛物线于 A, B 两点,若 $|AB| = \frac{25}{12}$, |AF| < |BF|,则 $|AF| = \frac{1}{12}$

答案: $\frac{5}{6}$

解法 1: 已知 |AB|,可由角版焦点弦公式求角,再代入焦半径公式算 |AF|,

不妨设直线 AB 为如图所示的情形,设 $\angle AFO = \alpha(0 < \alpha < \frac{\pi}{2})$,则 $|AB| = \frac{2}{\sin^2 \alpha} = \frac{25}{12} \Rightarrow \sin \alpha = \frac{2\sqrt{6}}{5}$,

所以
$$\cos \alpha = \sqrt{1-\sin^2 \alpha} = \frac{1}{5}$$
,故 $|AF| = \frac{1}{1+\cos \alpha} = \frac{1}{1+\frac{1}{5}} = \frac{5}{6}$.

解法 2: |AB| 可转换成|AF| + |BF|,把|AF|,|BF| 看成未知数,结合 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$ 即可求解|AF|,

由题意,
$$p=1$$
,所以 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = 2$ ①,又 $|AB| = |AF| + |BF| = \frac{25}{12}$ ②,

由①可得
$$\frac{|AF|+|BF|}{|AF|\cdot|BF|} = 2$$
,结合式②可得 $|AF|\cdot|BF| = \frac{25}{24}$ ③,

由②③知
$$|AF|$$
, $|BF|$ 是一元二次方程 $x^2 - \frac{25}{12}x + \frac{25}{24} = 0$ 的两根,解得: $x = \frac{5}{6}$ 或 $\frac{5}{4}$,

因为|AF| < |BF|,所以 $|AF| = \frac{5}{6}$.

4. (★★★) 过抛物线 $C: y^2 = 3x$ 的焦点 F 的直线与 C 交于 A、B 两点,若 |AF| = 2|BF|,则 $|AB| = _____$.

答案: $\frac{27}{8}$

解法 1: 由 |AF|=2|BF| 可用角版焦半径公式建立方程求角,从而求得 |AB|,

如图,设
$$\angle AFO = \alpha$$
,则 $|AF| = \frac{p}{1 + \cos \alpha}$, $|BF| = \frac{p}{1 + \cos(\pi - \alpha)} = \frac{p}{1 - \cos \alpha}$,

因为
$$|AF|=2|BF|$$
,所以 $\frac{p}{1+\cos\alpha}=2\cdot\frac{p}{1-\cos\alpha}$,从而 $\cos\alpha=-\frac{1}{3}$,故 $|AB|=\frac{2p}{\sin^2\alpha}=\frac{2p}{1-\cos^2\alpha}=\frac{3}{1-(-\frac{1}{2})^2}=\frac{27}{8}$.

解法 2: 由 |AF| = 2|BF| 结合 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$ 也可求出 |AF| 和 |BF|, 进而求得 |AB|,

由题意,
$$p = \frac{3}{2}$$
,所以 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = \frac{4}{3}$,结合 $|AF| = 2|BF|$ 可得 $|AF| = \frac{9}{4}$, $|BF| = \frac{9}{8}$,

所以
$$|AB| = |AF| + |BF| = \frac{27}{8}$$
.

5. $(2022 \cdot \text{张掖模拟} \cdot \bigstar \star \star \star)$ 已知抛物线 $C: y^2 = 4x$ 的焦点为 F,O 为原点,过 F 的直线 l 与 C 交于 P,Q 两点,且 $\overrightarrow{PF} = 3\overrightarrow{FQ}$,则 ΔOPQ 的面积为()

(A)
$$\sqrt{3}$$
 (B) $2\sqrt{3}$ (C) $\frac{2\sqrt{3}}{3}$ (D) $\frac{4\sqrt{3}}{3}$

$$(C) \frac{2\sqrt{3}}{3}$$

(D)
$$\frac{4\sqrt{3}}{3}$$

答案: D

解析:如图,由 $\overline{PF}=3\overline{FQ}$ 可得|PF|与|QF|的长度关系,故可用角版焦半径公式计算,

$$\overrightarrow{PF} = 3\overrightarrow{FQ} \Rightarrow |PF| = 3|QF|, \quad \text{if } \angle PFO = \alpha, \quad \text{if } |PF| = \frac{p}{1 + \cos \alpha} = \frac{2}{1 + \cos \alpha}, \quad |QF| = \frac{p}{1 + \cos(\pi - \alpha)} = \frac{2}{1 - \cos \alpha},$$

所以
$$\frac{2}{1+\cos\alpha} = 3 \cdot \frac{2}{1-\cos\alpha}$$
,解得: $\cos\alpha = -\frac{1}{2}$,从而 $\alpha = \frac{2\pi}{3}$,故 $S_{\Delta OPQ} = \frac{p^2}{2\sin\alpha} = \frac{4}{2\sin\frac{2\pi}{3}} = \frac{4\sqrt{3}}{3}$.

6. (★★★) 已知抛物线 $C: y^2 = 2px(p>0)$ 的焦点为 F,准线为 l,过点 F 作倾斜角为120° 的直线与准线 l相交于点 A,线段 AF 与 C 相交于点 B,且 $|AB| = \frac{4}{3}$,则 C 的方程为_____.

答案: $y^2 = 2x$

解析:如图,过B作 $BD \perp l$ 于D,直线AF的倾斜角为120°,所以 $\angle AFO = \angle ABD = 60°,$

已知 $|AB| = \frac{4}{2}$,可在 ΔABD 中求|BD|,结合抛物线定义得出|BF|,再由角版焦半径公式建立方程求p,

从而 $|BD|=|AB|\cos\angle ABD=\frac{2}{3}$,由抛物线定义, $|BF|=|BD|=\frac{2}{3}$,

 $\Sigma |BF| = \frac{p}{1 + \cos \angle BFO} = \frac{p}{1 + \cos 60^{\circ}} = \frac{2p}{3}$,所以 $\frac{2p}{3} = \frac{2}{3}$,解得: p = 1,故 C 的方程为 $y^2 = 2x$.

7. (★★★) 已知 *F* 为抛物线 $y^2 = 2px(p > 0)$ 的焦点,过 *F* 且倾斜角为 45°的直线 *l* 与抛物线交于 *A*, *B* 两 点,线段 AB 的中垂线与 x 轴交于点 M,则 $\frac{4p}{|FM|} =$ ____.

答案: 2

解法 1: 涉及中垂线,可先把直线 l 与抛物线联立,结合韦达定理求出 AB 中点,写出中垂线的方程,

由题意, $F(\frac{p}{2},0)$,直线 AB 的方程为 $y=x-\frac{p}{2}$,即 $x=y+\frac{p}{2}$,设 $A(x_1,y_1)$, $B(x_2,y_2)$,

将 $x = y + \frac{p}{2}$ 代入 $y^2 = 2px$ 消去 x 整理得: $y^2 - 2py - p^2 = 0$,判别式 $\Delta = (-2p)^2 - 4 \times 1 \times (-p^2) = 8p^2 > 0$,

由韦达定理, $y_1+y_2=2p$, 所以 $x_1+x_2=y_1+\frac{p}{2}+y_2+\frac{p}{2}=y_1+y_2+p=3p$, 故 AB 中点 G 为 $(\frac{3p}{2},p)$,

所以 AB 中垂线的方程为 $y-p=-(x-\frac{3p}{2})$ ①,由此中垂线可求 M 的坐标,进而求得 |FM|,

在①中令
$$y=0$$
得: $x=\frac{5p}{2}$, 故 $M(\frac{5p}{2},0)$, 所以 $|FM|=\frac{5p}{2}-\frac{p}{2}=2p$, 故 $\frac{4p}{|FM|}=2$.

解法 2: 如图,要求 |FM|,结合 $\angle GFM$ 是已知的,可先求 |FG|,

因为 G 为 AB 中点,所以 $|FG| = |AF| - |AG| = |AF| - \frac{1}{2}|AB|$ ①,

已知l的倾斜角,可用角版焦半径和焦点弦公式来算|AF|和|AB|,

直线 l 的倾斜角为 $45^\circ \Rightarrow \angle GFM = 45^\circ \Rightarrow \angle AFO = 135^\circ$,所以 $|AF| = \frac{p}{1 + \cos 135^\circ}$, $|AB| = \frac{2p}{\sin^2 135^\circ}$,

代入①得:
$$|FG| = \frac{p}{1 + \cos 135^{\circ}} - \frac{1}{2} \cdot \frac{2p}{\sin^2 135^{\circ}} = \sqrt{2}p$$
,

又 $\angle GFM = 45^{\circ}$,所以 ΔGFM 是等腰直角三角形,从而 $|FM| = \sqrt{2}|FG| = 2p$,故 $\frac{4p}{|FM|} = 2$.

《一数•高考数学核心方法》

8. $(\star\star\star\star\star)$ 过抛物线 $C:y^2=4x$ 焦点 F 作两条互相垂直的直线分别与 C 交于 A、B 和 D、E 四点,则四 边形 ADBE 的面积 S 的最小值为_____.

答案: 32

解法 1: 四边形 *ADBE* 的对角线互相垂直,所以 $S = \frac{1}{2}|AB|\cdot|DE|$,而 |AB|和 |DE|都是焦点弦,可设直线的方程,与抛物线联立,结合韦达定理来算,

由题意,F(1,0),两直线都不与坐标轴垂直,可设直线 $AB: y = k(x-1)(k \neq 0)$,设 $A(x_1,y_1)$, $B(x_2,y_2)$,

联立
$$\begin{cases} y = k(x-1) \\ y^2 = 4x \end{cases}$$
 消去 y 整理得: $k^2x^2 - (2k^2 + 4)x + k^2 = 0$,

由韦达定理,
$$x_1 + x_2 = \frac{2k^2 + 4}{k^2} = 2 + \frac{4}{k^2}$$
,所以 $|AB| = x_1 + x_2 + 2 = 4 + \frac{4}{k^2}$ ①,

因为 $DE \perp AB$,所以直线DE的方程为 $y = -\frac{1}{k}(x-1)$,

两直线仅斜率不同,其它都一样,故只需在|AB|的结果中替换斜率即得|DE|,无需重复计算,

在①中用 $-\frac{1}{k}$ 替换k可得: $|DE|=4+4k^2$,

四边形 ADBE 的面积 $S = \frac{1}{2}|AB|\cdot|DE| = \frac{1}{2}(4+\frac{4}{k^2})(4+4k^2) = 16+8k^2+\frac{8}{k^2} \ge 16+2\sqrt{8k^2\cdot\frac{8}{k^2}} = 32$,

当且仅当 $8k^2 = \frac{8}{k^2}$ 时等号成立,此时 $k = \pm 1$,所以四边形 *ADBE* 的面积的最小值为 32.

解法 2: 也可设两直线的倾斜角,用角版焦点弦公式来计算|AB|和|DE|,进而表示面积 S,

如图,设直线 AB 的倾斜角为 α ,两直线都不与坐标轴垂直,不妨设 $0<\alpha<\frac{\pi}{2}$,则 $|AB|=\frac{4}{\sin^2\alpha}$,

因为 $AB \perp DE$, 所以直线 DE 的倾斜角为 $\frac{\pi}{2} + \alpha$,故 $|DE| = \frac{4}{\sin^2(\frac{\pi}{2} + \alpha)} = \frac{4}{\cos^2\alpha}$,

所以四边形 ADBE 的面积 $S = \frac{1}{2}|AB|\cdot|DE| = \frac{1}{2}\cdot\frac{4}{\sin^2\alpha}\cdot\frac{4}{\cos^2\alpha} = \frac{8}{\sin^2\alpha\cos^2\alpha} = \frac{8}{(\frac{1}{2}\sin 2\alpha)^2} = \frac{32}{\sin^2 2\alpha}$,

故当 $\alpha = \frac{\pi}{4}$ 时, $\sin^2 2\alpha = 1$,四边形 *ADBE* 的面积取得最小值 32.

数。高考数学核心方法》