

Extending ctapipe image reconstruction using FACT methods

Lukas Nickel and Maximilian Nöthe

18. März 2019

E5b

The Cherenkov Telescope Array

- "Cherenkov Telescope Array"
- Proposed in 2005
- Currently in pre-production
- Two arrays of multiple telescopes
- Three types of telescopes: LST, MST, SST
- Goals: Extend observable energy range, huge field of view, higher sensitivity
- Status: First light on LST1

Visualization of the different telescope types. (1)

Planned Layout (2)

Expected Sensitivity (2)

ctapipe

- Pipeline for low level cta data
- Performs Transformation, Calibration, Cleaning, Hillas-Parameter, 3D-Reconstruction. Visualization
- Mainly python based
- Still in active development
- https://github.com/ctaobservatory/ctapipe

The FACT Experiment

- "First G-APD Cherenkov Telescope"
- Operating in La Palma since 2011
- Monoscopic reconstruction only
- Advanced analysis pipeline
- What did we take a look at?
 - More advanced cleaning method
 - Distinction of "islands" in shower images
 - → Possible improvements for monoscopic reconstruction in ctapipe
 - → First use case: LST1

(3)

Image cleaning in FACT

Cleaning Methods

Tailcuts cleaning

- "Two treshold procedure"
- Pixels above upper threshold survive
- Signal pixels need at least N neighbors
- Add neighboring pixels above the lower threshold

"FACT image cleaning"

- Similar behaviour, but also uses information about the arrival times
- Pixels nedd to have a similar arrival time as their neighbors
- More steps removing "lonely" pixels
- → Probably removes more pixels with the same intensity thresholds

Sample MC Event

Cleaning Results

Finding islands

- Cleaning removed all but one cluster of pixels
- → Number of islands: 1

- Cleaning kept too many pixels
- → Number of islands: > 1

Machine learning impacts

Setup and expectations

- A few 100 000 diffuse gamma and proton events
- Preprocessed with ctapipe, machine learning with aict-tools (3)
- Cleaning might affect separator performance
- Tailcuts cleaning should perform pretty well with the chosen parameters
- Number of islands might contribute to separator performance
- Number of islands will probably not constribute to gamma energy regression

Gamma/Hadron Separation - AUC

Tailcuts cleaning:

Gamma/Hadron Separation - Features

Tailcuts cleaning:

Energy Regression

Tailcuts cleaning:

Energy Regression - Features

Tailcuts cleaning:

Thank you for your attention!

C.-A. B. (Diaz)/ESO, (https://www.eso.org/public/germany/images/eso1841a/).

T. C. Consortium, CTA's expected baseline performance, (https://www.cta-observatory.org/science/cta-performance).

H. Anderhub u. a., Journal of Instrumentation 8, P06008–P06008, (https://doi.org/10.1088%2F1748-0221%2F8%2F06%2Fp06008) (Juni 2013).