Some Gradient Approximation Methods for Derivative Free Optimization

Albert S. Berahas, Liyuan Cao, Katya Scheinberg

Lehigh University

INFORMS Annual Meeting 2019

Collaborators

Albert S. Berahas

Katya Scheinberg

Black Box Optimization a.k.a. Derivative Free Optimization

typical objective function

$$x \longrightarrow f(x) = \sum_{i=1}^{N} \log(1 + \exp(y_i \cdot x^T \phi_i))) \longrightarrow f(x)$$

use derivative based algorithms:

gradient descent, L-BFGS, Newton's method

black box objective function

Background

Let $\phi:\mathbb{R}^n\to\mathbb{R}$ be the objective function, and we are optimizing it with a gradient based algorithm, but with gradient estimates instead of the true gradients.

Theorem (Berahas, Cao, Scheinberg, 2019)

Under \dots assumptions, if for each iteration k, the gradient estimate $g(x_k)$ is sufficiently accurate

$$||g(x_k) - \nabla \phi(x_k)|| \le \theta ||\nabla \phi(x_k)||$$

with probability at least $1-\eta$, then the expected number of iterations to reach $\phi(X_k)-\phi^*\leq \epsilon$ is less than $(\theta,\eta\in(0,1))$

Finite Difference

Let $\phi: \mathbb{R}^n \to \mathbb{R}$.

For each coordinate i = 1, 2, ..., n, let e_i be the unit vector.

$$\frac{\partial \phi(x)}{\partial x_i} = \lim_{h \to 0} \frac{\phi(x + he_i) - \phi(x)}{h} \implies [g(x)]_i = \frac{\phi(x + he_i) - \phi(x)}{h}$$

Finite Difference

Let $\phi: \mathbb{R}^n \to \mathbb{R}$.

For each coordinate i = 1, 2, ..., n, let e_i be the unit vector.

$$\frac{\partial \phi(x)}{\partial x_i} = \lim_{h \to 0} \frac{\phi(x + he_i) - \phi(x)}{h} \implies [g(x)]_i = \frac{\phi(x + he_i) - \phi(x)}{h}$$

If the gradient of ϕ is L-Lipschitz continuous, then

$$||g(x) - \nabla \phi(x)|| \le \frac{\sqrt{nLh}}{2}.$$

Finite Difference

no noise:

$$||g(x) - \nabla \phi(x)|| \le \frac{\sqrt{n}Lh}{2}.$$

objective function with bounded noise:

$$f(x) = \phi(x) + \epsilon(x)$$
 and $|\epsilon(x)| < \epsilon_f$

$$||g(x) - \nabla \phi(x)|| \le \frac{\sqrt{n}Lh}{2} + \frac{2\sqrt{n}\epsilon_f}{h}$$

Interpolation

The sample set is $\{x, x+hu_1, x+hu_2, \ldots, x+hu_n\}$, where $\{u_1, u_2, \ldots, u_n\} \subset \mathbb{R}^n$ with $\|u_i\| \leq 1$ for all i.

$$\begin{pmatrix} hu_1^{\mathsf{T}} \\ hu_2^{\mathsf{T}} \\ \vdots \\ hu_n^{\mathsf{T}} \end{pmatrix} g(x) = \begin{pmatrix} f(x+hu_1) - f(x) \\ f(x+hu_2) - f(x) \\ \vdots \\ f(x+hu_n) - f(x) \end{pmatrix} \implies hQ_{\mathcal{X}}g(x) = F_{\mathcal{X}}$$

error bounds:

without noise:
$$\|g(x) - \nabla \phi(x)\| \le \|Q_{\mathcal{X}}^{-1}\| \frac{\sqrt{nLh}}{2}$$
 with noise: $\|g(x) - \nabla \phi(x)\| \le \|Q_{\mathcal{X}}^{-1}\| \left(\frac{\sqrt{nLh}}{2} + \frac{2\sqrt{n}\epsilon_f}{h}\right)$

A Little Bit Summary

method	formula	bound
FD	$g_i(x) = \frac{f(x+he_i) - f(x)}{h}$	$\frac{\sqrt{n}Lh}{2} + \frac{2\sqrt{n}\epsilon_f}{h}$
interp	$hQ_{\mathcal{X}}g(x) = F_{\mathcal{X}}$	$ \ Q_{\mathcal{X}}^{-1}\ \left(\frac{\sqrt{nLh}}{2} + \frac{2\sqrt{n}\epsilon_f}{h}\right) $
GSG*	$g(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{f(x+\sigma u_i) - f(x)}{\sigma} u_i$	

* Gaussian smooth gradient; $u_i \in \mathbb{R}^n$, $u_i \sim \mathcal{N}(0,I)$ for all i independently

origin of the formula:

$$F(x) = \int_{\mathbb{R}^n} f(y) \frac{1}{\left(\sqrt{2\pi}\sigma\right)^n} \exp\left(-\frac{\|y-x\|^2}{2\sigma^2}\right) \mathrm{d}y$$

$$\nabla F(x) = \int_{\mathbb{R}^n} f(y) \frac{y - x}{\sigma^2} \frac{1}{\left(\sqrt{2\pi}\sigma\right)^n} \exp\left(-\frac{\|y - x\|^2}{2\sigma^2}\right) dy \qquad y \sim \mathcal{N}(x, \sigma^2 I)$$

$$= \int_{\mathbb{R}^n} \frac{f(x + \sigma u)}{\sigma} u \cdot \frac{1}{\left(\sqrt{2\pi}\right)^n} \exp\left(-\frac{\|u\|^2}{2}\right) du \qquad u \sim \mathcal{N}(0, I)$$

$$= \int_{\mathbb{R}^n} \frac{f(x + \sigma u) - f(x)}{\sigma} u \cdot \frac{1}{\left(\sqrt{2\pi}\right)^n} \exp\left(-\frac{\|u\|^2}{2}\right) du$$

$$g(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x + \sigma u_i) - f(x)}{\sigma} u_i$$

A derivative-free trust-region algorithm for the optimization of functions smoothed via gaussian convolution using adaptive multiple importance sampling A Maggiar, A Wachter, IS Dolinskaya, J Staum - SIAM Journal on Optimization, 2018 - SIAM In this paper we consider the optimization of a functional F defined as the convolution of a function f with a Gaussian kernel. We propose this type of objective function for the optimization of the output of complex computational simulations, which often present some ...

When $f = \phi$ (no noise) and has L-Lipschitz continuous gradient,

$$\|\nabla F(x) - \nabla f(x)\| \le \sqrt{n}L\sigma.$$

Not bad comparing to $\|Q_{\mathcal{X}}^{-1}\| \frac{\sqrt{n}Lh}{2}$.

A derivative-free trust-region algorithm for the optimization of functions smoothed via gaussian convolution using adaptive multiple importance sampling A Maggiar, A Wachter, IS Dolinskaya, J Staum - SIAM Journal on Optimization, 2018 - SIAM In this paper we consider the optimization of a functional F defined as the convolution of a function f with a Gaussian kernel. We propose this type of objective function for the optimization of the output of complex computational simulations, which often present some ...

When $f = \phi$ (no noise) and has L-Lipschitz continuous gradient,

$$\|\nabla F(x) - \nabla f(x)\| \le \sqrt{n}L\sigma.$$

Not bad comparing to $\|Q_{\mathcal{X}}^{-1}\| \frac{\sqrt{n}Lh}{2}$.

However we don't have the expectation $\nabla F(x)$, only the finite sum g(x). While $\mathbb{E}g(x) = \nabla F(x)$, its has large variance

$$\operatorname{Var}\{g(x)\} = \frac{1}{N} \mathbb{E}_{u \sim \mathcal{N}(0,I)} \left[\left(\frac{f(x + \sigma u) - f(x)}{\sigma} \right)^2 u u^{\mathsf{T}} \right] - \frac{1}{N} \nabla F(x) \nabla F(x)^{\mathsf{T}}.$$

$$||g(x) - \phi(x)|| \le ||\nabla F(x) - \nabla \phi(x)|| + ||g(x) - \nabla F(x)||$$

With Chebyshev inequality:

Theorem (Berahas, Cao, Scheinberg, 2019)

When $f = \phi$ (no noise), if

$$N \ge \frac{3n\|\nabla f(x)\|^2}{\delta r^2} + \frac{n(n+2)(n+4)L^2\sigma^2}{4\delta r^2},$$

then for all $x \in \mathbb{R}^n$ and r > 0, $\|g(x) - \nabla f(x)\| \le \sqrt{n}L\sigma + r$ with probability at least $1 - \delta$.

Summary

Table: Bounds on N and σ which ensure $\|g(x) - \nabla \phi(x)\| \le \theta \|\nabla \phi(x)\|$ (possibly with probability $1-\delta$), for n>12

Gradient Approximation	# of Samples (N)	\boldsymbol{h} or $\boldsymbol{\sigma}$
Forward Finite Differences	n	$\frac{2\theta \ \nabla f(x)\ }{\sqrt{n}L}$
Central Finite Differences	2n	$\sqrt{\frac{6\theta\ \nabla f(x)\ }{\sqrt{n}M}}$
Linear Interpolation	n	$\frac{2\theta \ \nabla f(x)\ }{\sqrt{n}L\ Q^{-1}\ }$
Gaussian Smooth g	$\frac{6n}{\delta\theta^2} + \frac{(2n+13)}{4\delta}$	$\frac{\theta \ \nabla f(x)\ }{nL}$
Central GSG	$\frac{6n}{\delta\theta^2} + \frac{(2n+26)}{36\delta}$	$\sqrt{\frac{\theta\ \nabla f(x)\ }{n^{3/2}M}}$
Sphere Smooth g	$\left(\frac{4n}{\theta^2} + n + \frac{4\sqrt{2}n}{3\theta} + \frac{2\sqrt{2}\sqrt{n}}{3}\right)\log\frac{n+1}{\delta}$	$\frac{\theta \ \nabla f(x)\ }{\sqrt{n}L}$
Centeral SSG	$\left(\frac{4n}{\theta^2} + \frac{n}{9} + \frac{4\sqrt{2}n}{3\theta} + \frac{2\sqrt{2}\sqrt{n}}{9}\right) \log \frac{n+1}{\delta}$	$\sqrt{\frac{\theta\ \nabla f(x)\ }{\sqrt{n}M}}$

Numerical Results

On Moré&Wild test set:

Figure: Performance profiles for best variant of each method.

Numerical Results

On OpenAL Gym reinforcement learning problems:

