Full Derivation

We start with our basic equation definitions. *
$$P(X) = \frac{-\beta + \sqrt{\beta^2 - 4\gamma}}{2} * \beta = -\Big(P(C) + P(A)\Big)_* \gamma = \frac{P(A)^2 + P(C)^2 - h^2}{2}$$

Reformulate

First we want to reformulate in terms of our new δ variable. * $\delta = \frac{P(C) - P(A)}{h}$

We can rewrite this so we have a new definition of $P(C) \star P(C) = h\delta + P(A)$

This allows us to derive new values for the other equations. * $\beta = -\Big(P(C) + P(A)\Big)_*$

$$\beta = -\Big(h\delta + P(A) + P(A)\Big)_{*\beta} = -h\delta - 2P(A)_{*}\gamma = \frac{P(A)^2 + P(C)^2 - h^2}{2}_{*}$$

$$\gamma = \frac{P(A)^2 + \left(P(A) + h\delta\right)^2 - h^2}{2} * \gamma = P(A)^2 + h\delta P(A) + \frac{h^2\delta^2 - h^2}{2} *$$

$$P(X) = \frac{-\beta + \sqrt{\beta^2 - 4\gamma}}{2}_*$$

$$P(X) = \frac{-(-h\delta - 2P(A)) + \sqrt{\Big(-h\delta - 2P(A)\Big)^2 - 4\Big(P(A)^2 + h\delta P(A) + \frac{h^2\delta^2 - h^2}{2}\Big)}}{2}$$

*

$$P(X) = \frac{h\delta + 2P(A) + \sqrt{\left(-h\delta - 2P(A)\right)^2 - 4P(A)^2 - 4h\delta P(A) - 2h^2\delta^2 + 2h^2}}{2}$$

*

$$P(X) = \frac{h\delta + 2P(A) + \sqrt{4P(A)^2 + 4h\delta P(A) + h^2\delta^2 - 4P(A)^2 - 4h\delta P(A) - 2h^2\delta^2 + 2h^2}}{2} \\ *P(X) = \frac{h\delta + 2P(A) + \sqrt{-h^2\delta^2 + 2h^2}}{2} \\ *P(X) = P(A) + \frac{h}{2} \left(\delta + \sqrt{2 - \delta^2}\right)$$

We're going to call this a new function $f(\delta)$, so now P(X) is in terms of $f(\delta)$ *

$$f(\delta) = P(A) + \frac{h}{2} \left(\delta + \sqrt{2 - \delta^2}\right)$$

Taylor Series Expansion

For computational efficiency, we are going to compute the Taylor series expansion. So first,

$$\text{we'll need the derivatives of } f(\delta) \cdot \star f'(\delta) = \frac{h}{2}(1 - \frac{\delta}{\sqrt{2 - \delta^2}}) \cdot \star f''(\delta) = \frac{-h}{(2 - \delta^2)^{\frac{3}{2}}}$$

Oth Order Taylor

•
$$f_0(\delta, a) = f(a)$$

•
$$f_0(\delta, a) = P(A) + \frac{h}{2} \left(a + \sqrt{2 - a^2} \right)$$

1st Order Taylor

•
$$f_1(\delta, a) = f(a) + f'(a)(\delta - a)$$

•
$$f_1(\delta, a) = P(A) + \frac{h}{2} \left(a + \sqrt{2 - a^2} \right) + \frac{h}{2} \left(1 - \frac{a}{\sqrt{2 - a^2}} \right) (\delta - a)$$

•
$$f_1(\delta, a) = P(A) + \frac{h}{2} \left(a + \sqrt{2 - a^2} + \left(1 - \frac{a}{\sqrt{2 - a^2}}\right) (\delta - a) \right)$$

•
$$f_1(\delta, a) = P(A) + \frac{h}{2} \left(a + \sqrt{2 - a^2} + \delta - a - \frac{a\delta}{\sqrt{2 - a^2}} + \frac{a^2}{\sqrt{2 - a^2}} \right)$$

•
$$f_1(\delta, a) = P(A) + \frac{h}{2} \left(\delta - \frac{a\delta}{\sqrt{2 - a^2}} + \sqrt{2 - a^2} + \frac{a^2}{\sqrt{2 - a^2}} \right)$$

•
$$f_1(\delta, a) = P(A) + \frac{h}{2} \left(\delta - \frac{a\delta}{\sqrt{2 - a^2}} + \frac{2}{\sqrt{2 - a^2}} \right)$$

2nd Order Taylor

•
$$f_2(\delta, a) = f(a) + f'(a)(\delta - a) + \frac{f''(a)}{2!}(\delta - a)^2$$

•
$$f_2(\delta, a) = f_1(\delta, a) + \frac{1}{2} \frac{-h}{(2 - a^2)^{\frac{3}{2}}} (\delta - a)^2$$

•
$$f_2(\delta, a) = f_1(\delta, a) + \frac{h}{2} \frac{(-1)^3}{(2-a^2)^{\frac{3}{2}}} (\delta^2 - 2\delta a + a^2)$$

•
$$f_2(\delta, a) = P(A) + \frac{h}{2} \left(\delta - \frac{a\delta}{\sqrt{2 - a^2}} + \frac{2}{\sqrt{2 - a^2}} \right) + \frac{h}{2} \frac{-1}{(2 - a^2)^{\frac{3}{2}}} (\delta^2 - 2\delta a + a^2)$$

•
$$f_2(\delta, a) = P(A) + \frac{h}{2} \left(\delta - \frac{a\delta}{\sqrt{2 - a^2}} + \frac{2}{\sqrt{2 - a^2}} + \frac{-1}{(2 - a^2)^{\frac{3}{2}}} (\delta^2 - 2\delta a + a^2) \right)$$

•
$$f_2(\delta, a) = P(A) + h(c_0(a) + c_1(a)\delta + c_2(a)\delta^2)$$

$$c_0(a) = \frac{1}{2} \left(\frac{2}{\sqrt{2-a^2}} - \frac{a^2}{(2-a^2)^{\frac{3}{2}}} \right)$$

$$c_0(a) = \frac{4 - 3a^2}{2(2 - a^2)^{\frac{3}{2}}}$$

$$c_1(a) = \frac{1}{2} \left(1 - \frac{a}{\sqrt{2 - a^2}} + \frac{2a}{(2 - a^2)^{\frac{3}{2}}} \right)$$

$$c_2(a) = \frac{-1}{2(2-a^2)^{\frac{3}{2}}}$$

Exact coefficients

Now that we have the general equations for the Taylor series, we can evaluate it at different values of a in the range [0, 1].

$$a$$
 $c_0(a)$ $c_1(a)$ $c_2(a)$ 0.0 0.7071 0.5000 -0.1768 0.5 0.7019 0.5270 -0.2160 1.0 0.5000 1.0000 -0.5000

Historically, the values used by $\frac{\text{navfn}}{c_0}$ are c_0 c_1 c_2 0.7040 0.5307 -0.2301

You can see these values plotted <u>here</u>.

The historical values are pretty close to the values for $\delta=0.5$, although the exact reason for the difference is unknown, but its close enough to not be overly concerning.