7148.003 Sequence Listing.ST25 SEQUENCE LISTING

<110> Cummings, Richard D.

Ju, Tongzhong

<120> CORE1 BETA-3 GALACTOSYLTRANSFERASE SPECIFIC MOLECULAR CHAPARONES, NUCLEIC ACIDS, AND METHODS OF USE THEREOF

<130> 7148.003

<150> 60/411,310

<151> 2002-09-13

<160> 16

<170> PatentIn version 3.1

<210> 1

<211> 318

<212> PRT

<213> Homo sapiens

<400> 1

Met Leu Ser Glu Ser Ser Ser Phe Leu Lys Gly Val Met Leu Gly Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile Gly His 20 25 30

Gly Asn Arg Met His His His Glu His His His Leu Gln Ala Pro Asn 35 40 45

Lys Glu Asp Ile Leu Lys Ile Ser Glu Asp Glu Arg Met Glu Leu Ser 50 55 60

Lys 65	Ser	Phe	Arg	Val	Tyr 70	Cys	Ile	Ile	Leu	Val 75	Lys	Pro	Lys	Asp	Val 80
Ser	Leu	Trp	Ala	Ala 85	Val	Lys	Glu	Thr	Trp 90	Thr	Lys	His	Cys	Asp 95	Lys
Ala	Glu	Phe	Phe 100	Ser	Ser	Glu	Asn	Val 105	Lys	Val	Phe	Glu	Ser 110	Ile	Asn
Met	Asp	Thr 115	Asn	Asp	Met	Trp	Leu 120	Met	Met	Arg	Lys	Ala 125	Tyr	Lys	Tyr
Ala	Phe 130	Asp	Lys	Tyr	Arg	Asp 135	Gln	Tyr	Asn	Trp	Phe 140	Phe	Leu	Ala	Arg
Pro 145	Thr	Thr	Phe	Ala	Ile 150	Ile	Glu	Asn	Leu	Lys 155	Tyr	Phe	Leu	Leu	Lys 160
Lys	Asp	Pro	Ser	Gln 165	Pro	Phe	Tyr	Leu	Gly 170	His	Thr	Ile	Lys	Ser 175	Gly
Asp	Leu	Glu	Tyr 180	Val	Gly	Met	Glu	Gly 185	Gly	Ile	Val	Leu	Ser 190	Val	Glu
Ser	Met	Lys 195	Arg	Leu	Asn	Ser	Leu 200	Leu	Asn	Ile	Pro	Glu 205	Lys	Cys	Pro
Glu	Gln 210	Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala
Val 225	Cys	Leu	Lys	Tyr	Ala 230	Gly	Val	Phe	Ala	Glu 235	Asn	Ala	Glu	Asp	Ala 240
Asp	Gly	Lys	Asp	Val 245	Phe	Asn	Thr	Lys	Ser 250	Val	Gly	Leu	Ser	Ile 255	Lys
Glu	Ala	Met	Thr 260	Tyr	His	Pro	Asn	Gln 265	Val	Val	Glu	Gly	Cys 270	Cys	Ser
Asp	Met	Ala 275	Val	Thr	Phe	Asn	Gly 280	Leu	Thr	Pro	Asn	Gln 285	Met	His	Val
Met	Met	Tyr	Gly	Val	Tyr	Arg	Leu	Arg	Ala	_	Gly age 2		Ile	Phe	Asn

290 295

Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser Asp Asn Asp 305 310 315

<210> 2

<211> 957

<212> DNA

<213> Homo sapiens

<400> 2 atgetttetg aaageagete etttttgaag ggtgtgatge ttggaageat tttetgtget 60 ttgatcacta tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 120 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga ggatgagcgc 180 atggagetea gtaagagett tegagtatae tgtattatee ttgtaaaaee caaagatgtg 240 agtctttggg ctgcagtaaa ggagacttgg accaaacact gtgacaaagc agagttcttc 300 agttctgaaa atgttaaagt gtttgagtca attaatatgg acacaaatga catgtggtta 360 atgatgagaa aagcttacaa atacgccttt gataagtata gagaccaata caactggttc 420 ttccttgcac gcccactac gtttgctatc attgaaaacc taaagtattt tttgttaaaa 480 aaggatccat cacagccttt ctatctaggc cacactataa aatctggaga ccttgaatat 540 gtgggtatgg aaggaggaat tgtcttaagt gtagaatcaa tgaaaagact taacagcctt 600 ctcaatatcc cagaaaagtg tcctgaacag ggagggatga tttggaagat atctgaagat 660 aaacagctag cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 720 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga ggcaatgact 780 tatcacccca accaggtagt agaaggctgt tgttcagata tggctgttac ttttaatgga 840 ctgactccaa atcagatgca tgtgatgatg tatggggtat accgccttag qqcatttqqq 900 catattttca atgatgcatt ggttttctta cctccaaatg gttctgacaa tgactga 957

<210> 3

<211> 316

<212> PRT

<213> Mus musculus

<400> 3

Met Leu Ser Glu Ser Ser Ser Phe Leu Lys Gly Val Met Leu Gly Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile Gly Asn 20 25 30

Arg Met His His Glu His His Leu Gln Ala Pro Asn Lys Asp 35 40 45

Asp Ile Ser Lys Ile Ser Glu Ala Glu Arg Met Glu Leu Ser Lys Ser 50 55 60

Phe Arg Val Tyr Cys Ile Val Leu Val Lys Pro Lys Asp Val Ser Leu 65 70 75 80

Trp Ala Ala Val Lys Glu Thr Trp Thr Lys His Cys Asp Lys Ala Glu 85 90 95

Phe Phe Ser Ser Glu Asn Val Lys Val Phe Glu Ser Ile Asn Met Asp 100 105 110

Thr Asn Asp Met Trp Leu Met Met Arg Lys Ala Tyr Lys Tyr Ala Tyr 115 120 125

Asp Gln Tyr Arg Asp Gln Tyr Asn Trp Phe Phe Leu Ala Arg Pro Thr 130 135 140

Thr Phe Ala Val Ile Glu Asn Leu Lys Tyr Phe Leu Leu Lys Lys Asp 145 150 155 160

Gln Ser Gln Pro Phe Tyr Leu Gly His Thr Val Lys Ser Gly Asp Leu 165 170 175

Glu Tyr Val Ser Val Asp Gly Gly Ile Val Leu Ser Ile Glu Ser Met 180 185 190

Lys Arg Leu Asn Ser Leu Leu Ser Val Pro Glu Lys Cys Pro Glu Gln
195 200 205

Gly Gly Met Ile Trp Lys Ile Ser Glu Asp Lys Gln Leu Ala Val Cys 210 220

Leu Lys Tyr Ala Gly Val Phe Ala Glu Asn Ala Glu Asp Ala Asp Gly 235 230 240

Lys Asp Val Phe Asn Thr Lys Ser Val Gly Leu Phe Ile Lys Glu Ala 245 250 255

Met Thr Asn Gln Pro Asn Gln Val Val Glu Gly Cys Cys Ser Asp Met 260 265 270

Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln Met His Val Met Met 275 280 285

Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly His Val Phe Asn Asp Ala 290 295 300

Leu Val Phe Leu Pro Pro Asn Gly Ser Glu Asn Asp 305 310 315

<210> 4

<211> 1432

<212> DNA

<213> Mus musculus

<400> cgtaacagag tgggccttgg acctctcacg tccaagcctc gtgaggcagc gctttcctgc 60 cctgaagccg ttctagatgc ggaaaaaatg ctttcagaaa gcagttcctt tttgaagggt 120 gtgatgcttg gaagcatctt ctgtgccttg atcactatgc taggccacat taggattgga 180 aacagaatgc accaccatga gcatcaccat ctgcaagccc ctaacaaaga cgatatctcg 240 aaaatttcag aggctgaacg catggagctc agtaagagtt tccgggtata ctgtatagtt 300 cttgtaaaac ccaaagatgt gagtctttgg gctgcagtga aggagacttg gaccaaacac 360 tgtgacaaag cagaattctt cagttctgaa aatgttaaag tgtttgagtc aattaatatg 420 gacacaaatg acatgtggtt gatgatgagg aaagcttaca aatatgctta tgatcaatac 480 agggaccaat acaactggtt cttccttgca cgccccacta ctttcgctgt tattgaaaac 540 ctcaaatatt ttttgttaaa aaaggatcaa tcccaacctt tctatctcgg acacactgta 600 aaatctggag accttgaata tgtgagtgtg gatggaggaa ttgtcttaag catagaatca 660 atgaaaagac tcaacagtct tctcagtgtt cctgaaaagt gtcctgaaca aggaggaatg 720 Page 5

atttggaaga	tatctgaaga	taaacagctg	gcggtctgcc	tgaaatacgc	cggagtattt	780
gcagaaaatg	ccgaagatgc	cgatggaaaa	gatgtgttta	ataccaaatc	cgttggcctt	840
ttcattaaag	aggcaatgac	taaccaacca	aaccaggtag	tagaaggctg	ttgctctgat	900
atggctgtta	ctttcaatgg	actgactcct	aatcagatgc	acgtgatgat	gtatggggtg	960
taccggctta	gggcatttgg	acatgttttc	aatgatgcat	tggttttctt	acctccaaat	1020
ggttctgaga	atgactgaca	gaaagcaaga	gcatgcattt	agtaactata	ttacgacatg	1080
gtatcatttt	taattgatga	cagatctaac	atagtaatat	gattcttttt	cttatctttt	1140
acccattgaa	gtctgcttgt	acaatgtcaa	atggaatgct	gtttttccct	tatatcattc	1200
ctgagaaatt	aaaatgtatt	aaaaataaat	gttttaaaaa	tagcaatttt	tcaaacacat	1260
atttataagt	atatttatgt	gataaagact	aaattataga	cattgtaatc	tgtggtgtat	1320
ctttgcttat	tggttttaaa	cttatgtatc	attttagctt	tgtaatatat	gtaaatgaga	1380
cctctagaga	atttgtgatt	aaagaatact	cgtagccctg	aaaaaaaaa	aa	1432

<210> 5

<211> 313

<212> PRT

<213> Brachydanio rerio

<400> 5

Met Met Ser Glu Gly Ser Ser Phe Met Lys Gly Met Ile Leu Gly Gly 1 5 10 15

Ile Phe Cys Leu Ile Met Ser Phe Phe Glu Thr Phe Asn Pro Gly Thr 20 25 30

His Ser Glu Gly His Asn His Leu His His His Leu Lys Pro Val Ser 35 40 45

Lys Asp Glu Leu Gln Lys Leu Ser Glu Ser Gln Met Ser Glu Phe Ala 50 60

Met Gln Val Arg Val Tyr Cys Leu Ile Met Val Thr Pro Lys Leu Leu 65 70 75 80

Val His Trp Ala Thr Ala Asn Asp Thr Trp Ser Lys His Cys Asp Lys Page 6

Ser Val Phe Tyr Thr Ser Glu Ala Ser Lys Ala Leu Asp Ala Val Asp 100 105 110

Leu Gln Glu Gln Asp Glu Trp Thr Arg Leu Arg Lys Ala Ile Gln His

Ala Tyr Glu Asn Ala Gly Asp Leu His Trp Phe Phe Ile Ala Arg Pro 130 135 140

Thr Thr Phe Ala Ile Ile Glu Asn Leu Lys Tyr Leu Val Leu Asp Lys 145 150 155 160

Asp Pro Ser Gln Pro Phe Tyr Ile Gly His Thr Glu Lys Ser Gly Glu 165 170 175

Leu Asp Tyr Val Glu Tyr Asp Ser Gly Ile Val Leu Ser Tyr Glu Ala 180 185 190

Met Arg Arg Leu Met Glu Val Phe Lys Asp Glu Asp Lys Cys Pro Glu 195 200 205

Arg Gly Arg Ala Leu Trp Lys Met Ser Glu Glu Lys Gln Leu Ala Thr 210 215 220

Cys Leu Lys Tyr Ser Gly Val Phe Ala Glu Asn Gly Glu Asp Ala Gln 235 230 235

Gly Lys Gly Leu Phe Asn Lys Lys Ser Val Ser Ser Leu Ile Ser Asp 245 250 255

Ser Ile Ser Gln Asn Pro Gly Asp Val Val Glu Ala Cys Cys Ser Asp 260 265 270

Met Ala Ile Thr Phe Ala Gly Met Ser Pro Ser Gln Ile Gln Val Leu 275 280 285

Met Tyr Gly Val Tyr Arg Leu Arg Pro Tyr Gly His Asp Phe His Asp 290 295 300

Ser Leu Thr Phe Leu Pro Pro Arg Leu 305 310

<210> 6
<211> 1223
<212> DNA
<213> Brachydanio rerio

<400> 6 gatcactatt cttcgtcgtt aaaaggacga ctccattcta gcatgatgtc tgagggcagt 60 tcatttatga aaggcatgat cctcggagga atattctgct tgatcatgtc tttctttgag 120 acctttaatc caggaaccca ctcagaaggt cacaatcacc tccaccatca tttgaaacct 180 gtcagcaaag atgagctaca gaagttatcc gagtctcaga tgtctgagtt cgctatgcag 240 300 gttcgagtct actgcctcat catggtcact ccaaagcttt tagttcactg ggcgacagct 360 aacgacacct ggagcaaaca ctgcgacaaa tctgtgtttt acacctctga ggcgtctaaa getetagatg eggttgacet acaggageag gacgagtgga caaggetteg caaagceate 420 caacacgctt atgagaacgc cggagacctg cactggtttt tcatagcgcg acccaccacc 480 540 tttgctatta tagagaatct caaatacctg gtgttggata aagatccaag ccagccgttt tacattggcc acacggaaaa gtctggagag ctggattatg tggagtacga cagtgggatt 600 gtgttgagtt atgaagcgat gaggaggctg atggaggtgt ttaaagatga agataaatgt 660 ccagagcgag gacgagctct atggaagatg tctgaagaaa agcaactggc cacttgtctg 720 aagtacagcg gagtgtttgc tgaaaacgga gaggacgccc aaggcaaagg gctttttaac 780 aagaagagtg tgagctcttt gatttccgat agcatcagcc aaaacccggg cgatgtggtg 840 900 gaggcctgtt gttctgacat ggctatcaca tttgctggga tgtcgccgag tcagatacag gtcttgatgt acggcgtcta cagacttcga ccgtacggac acgactttca cgattccttg 960 acatttctgc ctccaagact ctgataatga ttgagggagt ttgtggattc tgaaactctt 1020 actgtgactc tcagcagtga aatgttgatc ataattgggt gcgggatgaa ttatttgtga 1080 agttggtgaa ggtaaaaatg aaaatgattt gcattatgat ttaatactaa taaqtcaaqt 1140 gctggatcat gtgtgtgcac ttgacagtat tttgaataaa aatgctagat tcacaaaaaa 1200 aaaaaaaaaaaaaaaaaaaaaaaaaaa 1223

<210> 7

<211> 316

<212> PRT

<213> Rattus norvegicus

<400> 7

Met Leu Ser Glu Ser Ser Ser Phe Leu Lys Gly Val Met Leu Gly Ser 1 10 15

Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile Gly Asn 20 25 30

Arg Met His His Glu His His His Leu Gln Ala Pro Asn Lys Asp 35 40 45

Asp Ile Leu Lys Ile Ser Glu Thr Glu Arg Met Glu Leu Ser Lys Ser 50 60

Phe Gln Val Tyr Cys Ile Val Leu Val Lys Pro Lys Asp Val Ser Leu 65 70 75 80

Trp Ala Ala Val Lys Glu Thr Trp Thr Lys His Cys Asp Lys Ala Glu 85 90 95

Phe Phe Ser Ser Glu Asn Val Lys Val Phe Glu Ser Ile Asn Met Asp 100 105 110

Thr Asn Asp Met Trp Leu Met Met Arg Lys Ala Tyr Lys Tyr Ala Tyr 115 120 125

Asp Lys Tyr Lys Asp Gln Tyr Asn Trp Phe Phe Leu Ala Arg Pro Thr 130 140

Thr Phe Ala Val Ile Glu Asn Leu Lys Tyr Phe Leu Leu Arg Lys Asp 145 150 155 160

Pro Ser Gln Pro Phe Tyr Leu Gly His Thr Val Lys Ser Gly Asp Leu 165 170 175

Glu Tyr Val Ser Val Asp Gly Gly Ile Val Leu Ser Ile Glu Ser Met 180 185 190

Lys Arg Leu Asn Gly Leu Leu Ser Val Pro Glu Lys Cys Pro Glu Gln
195 200 205

7148.003 Sequence Listing.ST25 Gly Gly Met Ile Trp Lys Ile Ser Glu Asp Lys Gln Leu Ala Val Cys 210 215 220

Leu Lys Tyr Ala Gly Val Phe Ala Glu Asn Ala Glu Asp Ala Asp Gly 225 230 235 240

Lys Asp Val Phe Asn Thr Lys Ser Val Gly Leu Phe Ile Lys Glu Ala 245 250 255

Met Thr Asn Gln Pro Asn Gln Val Val Glu Gly Cys Cys Ser Asp Met 260 265 270

Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln Met His Val Met Met 275 280 285

Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly His Val Phe Asn Asp Ala 290 295 300

Leu Val Phe Leu Pro Pro Asn Gly Ser Glu Asn Asp 305 310 315

<210> 8

<211> 1283

<212> DNA

<213> Rattus norvegicus

<400> 8 cacattaqqa ttqqaaacaq aatgcaccac catgaacatc accatctgca agcccctaac 60 aaagatgata tottgaaaat ttoagagact gaacgoatgg agottagtaa gagtttooag 120 gtatactgta tagttctcgt aaaacctaaa gatgtgagtc tttgggctgc agtgaaggag 180 acttggacca aacactgtga caaagcagaa ttcttcagtt ctgaaaatgt taaagtgttt 240 gagtcaatta atatggacac aaatgatatg tggttgatga tgaggaaagc ttacaaatat 300 gcttatgata aatacaagga ccaatacaac tggttcttcc ttgcacgccc cactactttc 360 gctgttattg aaaatctcaa atattttttg ttaagaaagg atccatcaca acctttctat 420 ctaggtcaca ctgtaaaatc tggagacctt gaatatgtga gtgtggatgg aggaattgtc 480 ttaagcatag aatcaatgaa aagactcaat ggccttctca gtgttcctga aaagtgtcct 540

gaacaaggag gaatgatttg gaagatatct gaagataagc agctagcagt ctgcctgaaa

600

7148.003 Sequence Listing.ST25 tatgctggag tatttgcaga aaatgcagaa gacgccgatg gaaaagatgt gtttaatacc	660						
aaatetgttg ggetttteat taaagaggea atgaetaace aaceaaacea ggtagtagaa	720						
ggatgttgct ctgatatggc tgttactttc aatggactga ctcctaatca gatgcatgtg	780						
atgatgtatg gggtgtaccg gcttagggca tttggacatg ttttcaatga tgcattggtt	840						
ttcttacctc cgaatggttc tgagaatgac tgacagaaag caagagcatg cttttagtaa	900						
ctatattaag acacggtatt gtttttaatt gataacaaat ctaacacagt agtatgtttc	960						
tttttcttat ctggttacac tggtataatc acacattgaa gtctacttgt acattgtcaa	1020						
atggaatgct gttttagcct tgcatcattt gtgagaattt aaatgtatta aaaataaatg	1080						
ttttaagaat aacaattttt caaatacata tttataaata ctatatttat gtgataaaga	1140						
ctaaattata gacattaaaa tctgtggtgt atctttgctt attggtttta tacctgtgta	1200						
ttggggttgg ggatttagct cagtggtaga gtgcttgcct agcaagcgca aggccctggg	1260						
tttggtcctt acctccgagg gaa	1283						
<210> 9							
<211> 20							
<212> DNA							
<213> Artificial sequence							
<220>							
<223> Completely synthesized.							
<400> 9							
ctccatagag gagttgttgc							
<210> 10							
<211> 20							
<212> DNA							
<213> Artificial sequence							
<220>							
<223> Completely synthesized.							
<400> 10 tcacgctttt ctaccacttc	20						
toacyclett claccactic							

<210>	11	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Completely synthesized.	
<400> gcggato	11 ccat ggcctctaaa tc	22
<210>	12	
<211>	69	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Completely synthesized.	
<400> ggaagat	12 ccta cttgccgtcg atcagcctgg ggtccacctg gtcctcagga tttcctaact	60
tcacttt	etg	69
<210>	13	
<211>	12	
<212>	PRT	
<213>	Artificial sequence	
<220>		
<223>	Completely synthesized.	
<400>	13	
Glu Asp 1	o Gln Val Asp Pro Arg Leu Ile Asp Gly Lys 5 10	

Page 12

<210> 14 <211> 9 <212> PRT <213> Artificial sequence <220> <223> Completely synthesized. <400> 14 Ala Ser Lys Ser Trp Leu Asn Phe Leu <210> 15 <211> 18 <212> PRT <213> Artificial sequence <220> <223> Completely synthesized. <400> 15 Met Leu Ser Glu Ser Ser Phe Leu Lys Gly Val Met Leu Gly Ser Ile Phe <210> 16 <211> 7 <212> PRT <213> Artificial sequence <220> <223> Completely synthesized.

<400> 16