Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$$\begin{split} & \{ \text{Diaper} \} \rightarrow \{ \text{Beer} \}, \\ & \{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs,Coke} \}, \\ & \{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \}, \end{split}$$

Implication means co-occurrence, not causality!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - · An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. σ({Milk, Bread,Diaper}) = 2

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

Tan,Steinbach, Kumar Introduction to Data Minin

D	Items
	Bread, Milk
	Bread, Diaper, Beer, Eggs
	Milk, Diaper, Beer, Coke
	Bread, Milk, Diaper, Beer
	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

 $s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$

 $c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Tan,Steinbach, Kumar Introduction to Data Mining

4/18/2004 4

Mining Association Rules

TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke

Example of Rules:

 $\begin{array}{ll} \{\mbox{Milk, Diaper}\} \rightarrow \{\mbox{Beer}\} \ (s=0.4, c=0.67) \\ \{\mbox{Milk,Beer}\} \rightarrow \{\mbox{Diaper}\} \ (s=0.4, c=0.67) \\ \{\mbox{Diaper,Beer}\} \rightarrow \{\mbox{Milk}\} \ (s=0.4, c=0.67) \\ \{\mbox{Beer}\} \rightarrow \{\mbox{Milk, Diaper}\} \ (s=0.4, c=0.5) \\ \{\mbox{Milk}\} \rightarrow \{\mbox{Diaper,Beer}\} \ (s=0.4, c=0.5) \\ \{\mbox{Milk}\} \rightarrow \{\mbox{Diaper,Beer}\} \ (s=0.4, c=0.5) \\ \end{array}$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 5

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 6

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 9

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 10

Method: Let k=1 Generate frequent itemsets of length 1 Repeat until no new frequent itemsets are identified Generate length (k+1) candidate itemsets from length k frequent itemsets Prune candidate itemsets containing subsets of length k that are infrequent Count the support of each candidate by scanning the DB Eliminate candidates that are infrequent, leaving only those that are frequent

4/18/2004

Introduction to Data Mining

Tan,Steinbach, Kumar

ECLAT

Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

- Depth-first traversal of the search lattice
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

49

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Tan, Steinbach, Kumar Introduction to Data Mining

4/18/2004

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., L = {A,B,C,D}:

$$c(ABC \to D) \geq c(AB \to CD) \geq c(A \to BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 51

