Exercice 56 p. 92

 \overline{f} est une fonction polynôme de degré 3, donc elle s'écrit sous la forme factorisée $f(x) = a(x - x_1)(x - x_2)(x - x_3)$.

Or cette fonction admet pour racines 1; -2 et 4, ce qui donne x_1 , x_2 et x_3 .

On a alors f(x) = a(x-1)(x-(-2))(x-4) = a(x-1)(x+2)(x-4).

Il nous reste à déterminer a.

Or
$$f(0) = 16$$
, ce qui donne $a(0-1)(0+2)(0-4) = 16$

$$a \times (-1) \times 2 \times (-4) = 16$$

$$8a = 16$$

$$a = \frac{16}{8} = 2$$

Donc
$$f(x) = 2(x-1)(x+2)(x-4)$$
.

Exercice 66 p. 95

 \overline{f} est définie sur [15; 30] par $f(x) = -2x^2 + 90x - 400$ (attention car c'est une fonction polynôme de degré 2 ici).

1. On calcule f(5) et f(40).

$$f(5) = -2 \times 5^2 + 90 \times 5 - 400 = 0$$
 donc 5 est une racine de $f(x)$.
 $f(40) = -2 \times 40^2 + 90 \times 40 - 400 = 0$ donc 40 est une racine de $f(x)$.

2. La forme factorisée de f(x) est $a(x-x_1)(x-x_2)$ où a est le coefficient devant x^2 , x_1 et x_2 les racines du polynôme.

Ainsi
$$f(x) = -2(x-5)(x-40)$$
.

3. On peut dans un premier temps construire le tableau de signes de f(x) sur \mathbb{R} puis se limiter à [15; 30]:

x	$-\infty$	5		40	$+\infty$
signe de -2	-		_		_
signe de $x-5$	_	ф	+		+
signe de $x - 40$	_		_	ф	+
signe du produit	_	0	+	•	_

Puis en se limitant à l'intervalle [15; 30] :

x	15 30
signe de $f(x)$	+

- 4. Les racines du polynôme étant 5 et 40, le polynôme admettra un extremum en $\frac{5+40}{2} = 22,5$.
- 5. Comme a=-2<0, la fonction admet un maximum en 22,5.

Ce maximum vaut f(22.5) = -2(22.5 - 5)(22.5 - 40) = 612.5

On obtient alors le tableau de variations (sur l'intervalle [15; 30]) - on calcule aussi les images de 15 et 30 :

x	15	$22,\!5$	30
		-612,5	
\int	500		500

6. Comme f(x) > 0 sur tout l'intervalle [15; 30], on conclut que l'entreprise réalise du profit quelle que soit la quantité produite entre 1500 et 3000.

Par contre le profit sera maximal quand elle produira 2250 ventilateurs.