

2-1.복소수와 이차방정식

2-1-3.이차방정식의 근과 계수의 관계_신사고(고성은)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2020-03-05
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[이차방정식의 근과 계수의 관계]

- •이차방정식 $ax^2 + bx + c = 0$ 의 두 근을 α , β 라 하면
- (1) 두 근의 합: $\alpha + \beta = -\frac{b}{a}$
- (2) 두 근의 곱: $\alpha\beta = \frac{c}{a}$

[두 수를 근으로 하는 이차방정식]

- α , β 를 두 근으로 하고, x^2 의 계수가 1인 이차방정식은 $(x-\alpha)(x-\beta)=0$, 즉 $x^2-(\alpha+\beta)x+\alpha\beta=0$ 이다.
- α , β 를 두 근으로 하고, x^2 의 계수가 a인 이차방정식은 $a(x-\alpha)(x-\beta) = 0$, $= a\{x^2 - (\alpha+\beta)x + \alpha\beta\} = 0$

[이차식의 인수분해]

•이차방정식 $ax^2+bx+c=0$ 의 두 근을 α , β 라 하면 $ax^2 + bx + c = a(x - \alpha)(x - \beta)$

기본문제

[문제]

- **1.** 이차방정식 $2x^2-3x+4=0$ 의 두 근의 합과 곱을 구하면?
 - $\bigcirc -3, 4$
- ② 3, 4
- $3\frac{3}{2}$, -2 $4-\frac{3}{2}$, 2
- $(5) \frac{3}{2}, 2$

- [예제]
- **2.** 이차방정식 $x^2 + 3x + 4 = 0$ 의 두 근을 α , β 라 할 때, $\alpha^2 + \beta^2$ 의 값은?
 - 1 1

2 2

3 3

4

(5) 5

[문제]

- **3.** 이차방정식 $x^2+5x+1=0$ 의 두 근을 α , β 라고 할 때, $\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$ 의 값은?
 - ① 21
- ② 22
- 3 23
- **4** 24
- ⑤ 25

- [문제]
- **4.** 두 수 3+2i, 3-2i를 근으로 하고 x^2 의 계수가 1인 이차방정식을 구하면?

①
$$x^2 - 3x + 13 = 0$$

②
$$x^2 - 3x + 5 = 0$$

$$3x^2-6x+13=0$$

$$4 x^2 - 6x + 5 = 0$$

⑤
$$x^2 - 6x = 0$$

[예제]

5. 이차방정식 $x^2-3x+5=0$ 의 두 근을 α , β 라고 할 때, 두 수 $\alpha+\beta$ 와 $\alpha\beta$ 를 근으로 하고 x^2 의 계수 가 1인 이차방정식을 구하면?

(1)
$$x^2 - 2x + 15 = 0$$

②
$$x^2 - 2x - 15 = 0$$

$$3x^2-8x+15=0$$

(5)
$$x^2 + 8x + 15 = 0$$

[문제]

- **6.** 이차방정식 $x^2 + 2x + 5 = 0$ 의 두 근을 α , β 라고 할 때, $\frac{1}{\alpha}$ 와 $\frac{1}{\beta}$ 를 근으로 하는 이차방정식을 $x^2 + ax + b = 0$ 라고 하면 5(a+b)의 값은?
 - ① 1

② 2

③ 3

(4) 4

(5) 5

[예제]

- **7.** 이차식 $x^2 + 2x + 4$ 을 복소수의 범위에서 인수분 해 할 때, 인수가 되는 식은?
 - ① $x-1+\sqrt{3}i$
- ② $x+1+\sqrt{3}i$
- ③ $x-1-\sqrt{3}i$
- (4) $x + \sqrt{3} + i$
- ⑤ $x \sqrt{3} iA$

[문제

- **8.** 다음 이차식 $x^2+6x+10$ 을 복소수의 범위에서 인수분해를 하면 (x+a+i)(x+3+bi)가 나올 때, a+b의 값은?
 - ① 1
- 2 2
- 3 3
- 4
- (5) 5

평가문제

[중단원 마무리]

- **9.** 이차방정식 $x^2 3x + 4 = 0$ 의 두 근을 α , β 라고 할 때, $\alpha^3 + \beta^3$ 의 값은?
 - $\bigcirc 1 1$
- $\bigcirc -3$
- 3 5
- $\bigcirc 4 7$
- (5) 9

[중단원 마무리]

10. 이차방정식 $x^2 + 3x + 5 = 0$ 의 두 근이 α , β 일 때,

$$\frac{\beta}{\alpha^2+4\alpha+5}+\frac{\alpha}{\beta^2+4\beta+5}$$
의 값은?

- $(1) \frac{1}{5}$
- $\bigcirc -\frac{3}{5}$
- 3 1
- $(4) \frac{7}{5}$
- $(5) \frac{9}{5}$

[중단원 마무리]

- **11.** 이차방정식 $x^2-12x+4=0$ 의 근 α , β 에 대해서 $\sqrt{\alpha}+\sqrt{\beta}$ 의 값은?
 - ① 1

② 2

- 3 3
- 4

⑤ 5

[중단원 마무리]

- **12.** 이차방정식 $x^2-px+q=0$ 의 두 근이 α , β 일 때, 다음 조건을 모두 만족시키는 상수 p, q에 대하여 q-p의 값은?
- (γ) α , β 는 50 이하의 서로 다른 자연수이다.
- (나) α , β 는 각각 3개의 약수를 갖는다.
- (다) p, q는 50 이상 200이하의 서로 다른 자연수이다.
- ① 23
- 2 71
- ③ 143
- (4) 191
- **⑤** 383

[대단원 마무리]

- **13.** 이차방정식 $x^2 + ax + b = 0$ 의 한 근이 3 + i일 때, a, b를 두 근으로 하고 x^2 의 계수가 1인 이차방정식을 $x^2 + mx + n = 0$ 이라 할 때, m + n의 값은?. (단, a, b는 실수이다.)
 - \bigcirc -64
- $\bigcirc -48$
- 3 32
- **4** 32
- ⑤ 64

[대단원 마무리]

- **14.** 방정식 $x^3-1=0$ 의 한 허근을 w라고 할 때, $w^3+2w^2+3w=aw+b$ 이다. 실수 a, b에 대하여 a-b의 값은?
 - ① 1

2 2

3 3

4

⑤ 5

 \bigcirc -18

4 18

20. 이차방정식 $x^2-3x-1=0$ 의 두 근을 α, β 라고

할 때, $\frac{eta^2}{lpha^2-2lpha-1}+rac{lpha^2}{eta^2-2eta-1}$ 의 값은?

 $\bigcirc -36$

30

⑤ 36

유사문제

- **15.** -3과 5를 근으로 하고 x^2 의 계수가 1인 이차방 정식은?
 - ① $x^2 2x 15 = 0$
- ② $x^2 + 2x 15 = 0$
- $3x^2-8x-15=0$
- $(4) x^2 15x 2 = 0$
- **16.** $\alpha+\beta=-6, \alpha\beta=6$ 을 만족시키는 두 수 α 와 β 를 구하면?
 - ① $3 \pm \sqrt{3}$
- $3 3 \pm \sqrt{3}$
- $(5) 3 \pm \sqrt{3}i$
- **17.** 이차방정식 $x^2+3x+5=0$ 의 두 근을 α , β 라 할 때, $(\alpha+2)(\beta+2)$ 의 값은?
 - ① 1
- ② 2
- 3 3
- (4) 4
- (5) 5
- **18.** 이차방정식 $x^2 ax 4 = 0$ 의 두 근이 α , β 이고, 이차방정식 $x^2 + bx 20 = 0$ 의 두 근이 $\alpha + \beta$, $\alpha\beta$ 일 때, a + b 의 값은? (단, a, b 는 상수)
 - 1 1

2 2

3 3

4

- **⑤** 5
- **19.** 이차방정식 $x^2 + 2x + 2 = 0$ 의 두 근을 α , β 라고할 때, $\alpha^3 + \beta^3$ 의 값은?
 - ① 1

2 2

3 3

4

- **⑤** 5
- 조보닷컴 zocbo.com

정답 및 해설

1) [정답] ⑤

[해설] 두 근의 합:
$$\frac{-(-3)}{2} = \frac{3}{2}$$
 두 근의 곱: $\frac{4}{2} = 2$

2) [정답] ①

[해설]
$$x^2 + 3x + 4 = 0$$
에서 $\alpha + \beta = -3$, $\alpha\beta = 4$
 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (-3)^2 - 2 \times 4 = 1$

3) [정답] ③

[해설]
$$x^2 + 5x + 1 = 0$$
에서 $\alpha + \beta = -5$, $\alpha\beta = 1$

$$\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{(-5)^2 - 2 \times 1}{1} = 23$$

4) [정답] ③

[해설]
$$\alpha = 3 + 2i$$
, $\beta = 3 - 2i$ 라고 하면 $\alpha + \beta = 6$, $\alpha\beta = 13$ 따라서 $x^2 - 6x + 13 = 0$

5) [정답] ③

[해설]
$$x^2-3x+5=0$$
에서 $\alpha+\beta=3$, $\alpha\beta=5$ $(\alpha+\beta)+\alpha\beta=8$, $(\alpha+\beta)\times\alpha\beta=15$ 따라서 $x^2-8x+15=0$

6) [정답] ③

[해설]
$$x^2 + 2x + 5 = 0$$
에서 $\alpha + \beta = -2$, $\alpha\beta = 5$
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{-2}{5}$$

$$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{5}$$
 따라서 $x^2 + \frac{2}{5}x + \frac{1}{5} = 0$ 이므로 $a = \frac{2}{5}$, $b = \frac{1}{5}$ 그러므로 $5(a+b) = 3$

7) [정답] ②

[해설] 이차방정식
$$x^2+2x+4=0$$
을 풀면
$$x=-1\pm\sqrt{3}i$$
 따라서 $x^2+2x+4=(x+1-\sqrt{3}i)(x+1+\sqrt{3}i)$

8) [정답] ②

[해설] 이차방정식
$$x^2+6x+10=0$$
을 풀면 $x=-3\pm i$ 그러므로 $x^2+6x+10=(x+3+i)(x+3-i)$ 따라서 $a=3,\ b=-1$ 이고 $a+b=2$

9) [정답] ⑤

[해설]
$$x^2 - 3x + 4 = 0$$
에서 $\alpha + \beta = 3$, $\alpha\beta = 4$
 $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = 27 - 36 = -9$

10) [정답] ①

[해설]
$$\alpha$$
, β 는 이차방정식 $x^2 + 3x + 5 = 0$ 의 근이므로 $\alpha^2 + 4\alpha + 5 = \alpha$, $\beta^2 + 4\beta + 5 = \beta$ 한편 $x^2 + 3x + 5 = 0$ 에서 $\alpha + \beta = -3$, $\alpha\beta = 5$ 따라서 $\frac{\beta}{\alpha^2 + 4\alpha + 5} + \frac{\alpha}{\beta^2 + 4\beta + 5}$
$$= \frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{(-3)^2 - 10}{5} = \frac{-1}{5} = -\frac{1}{5}$$

11) [정답] ④

[해설]
$$x^2-12x+4=0$$
에서 $\alpha+\beta=12$, $\alpha\beta=4$ 이때 $(\sqrt{\alpha}+\sqrt{\beta})^2=\alpha+\beta+2\sqrt{\alpha\beta}=12+4=16$ 따라서 $\sqrt{\alpha}+\sqrt{\beta}=4$

12) [정답] ③

[해설] 조건 (가), (나)에서
$$\alpha$$
, β 는 50 이하인 소수의 제곱수이므로 α , β 가 될 수 있는 수는 2^2 , 3^2 , 5^2 , 7^2 , 즉 4, 9, 25, 49 한편 이차방정식 $x^2-px+q=0$ 의 두 근이 α , β 이므로 이차방정식의 근과 계수의 관계에 의하여 $p=\alpha+\beta$, $q=\alpha\beta$ 이때 조건 (가)에서 α , β 가 50 이하의 서로 다른 자연수이고 조건 (다)에서 p , $p=\alpha+\beta$ 0 이상 200이하의 서로 다른 자연수이므로 $p=4+49=53$, $q=4\times49=196$ 따라서 $q-p=196-53=143$

13) [정답] ①

[해설]
$$x^2 + ax + b = 0$$
의 한 근이 $3 + i$ 이므로
다른 한 근은 $3 - i$
 $-a = (3 + i) + (3 - i) = 6$
 $b = (3 + i) \times (3 - i) = 10$
그러므로 $a = -6$, $b = 10$
 -6 과 10 을 근으로 하는 이차방정식은
 $(x + 6)(x - 10) = x^2 - 4x - 60 = 0$
따라서 $m = -4$, $n = -60$ 이고 $m + n = -64$

14) [정답] ②

[해설]
$$x^3-1=(x-1)(x^2+x+1)=0$$
이므로
$$w^2+w+1=0$$

$$w^3+2w^2+3w=1+2w^2+3w$$

$$=2(w^2+w+1)+w-1=w-1$$
 따라서 $a=1,\ b=-1$ 이고 $a-b=2$

15) [정답] ①

[해설]
$$-3$$
과 5를 근으로 갖는 이차방정식은 $(x+3)(x-5)=0$ $\therefore x^2-2x-15=0$

16) [정답] ③

[해설] α , β 를 두 근으로 하는 이차방정식은 $x^2+6x+6=0$ 이다.

근의 공식을 이용하면 $x=-3\pm\sqrt{3}$ 이다.

17) [정답] ③

[해설] 근과 계수와의 관계에 의해 $\alpha+\beta=-3$, $\alpha\beta=5$ $\therefore (\alpha+2)(\beta+2)=\alpha\beta+2(\alpha+\beta)+4=5-6+4=3$

18) [정답] ④

[해설] 근과 계수와의 관계에 의해 $\alpha+\beta=a, \ \alpha\beta=-4$ $\alpha+\beta+\alpha\beta=-b$ 이므로 a-4=-b $(\alpha+\beta)\alpha\beta=-20$ 이므로 -4a=-20 $a=5, \ b=-1$ $\therefore a+b=4$

19) [정답] ④

[해설] 이차방정식 $x^2 + 2x + 2 = 0$ 의 두 근이 α , β 이므로 근과 계수의 관계에 의해 $\alpha + \beta = -2$, $\alpha\beta = 2$ 이다. $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ $= -8 - 3 \cdot 2 \cdot (-2)$ = 4

20) [정답] ①

[해설] 이차방정식 $x^2 - 3x - 1 = 0$ 의 두 근이 α , β 이므로 근과 계수의 관계에 의하여 $\alpha + \beta = 3$, $\alpha\beta = -1$ 이다. α , β 를 방정식 $x^2 - 3x - 1 = 0$ 에 대입하면 $\alpha^2 - 3\alpha - 1 = 0$, $\beta^2 - 3\beta - 1 = 0$ 이고 $\alpha^2 - 2\alpha - 1 = \alpha$, $\beta^2 - 2\beta - 1 = \beta$ 이다. $\therefore \frac{\beta^2}{\alpha^2 - 2\alpha - 1} + \frac{\alpha^2}{\beta^2 - 2\beta - 1} = \frac{\beta^2}{\alpha} + \frac{\alpha^2}{\beta} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{27 - 3 \cdot (-1) \cdot 3}{-1} = -36$