Greatest.common Divisor

$$a = 4$$
, $b = 6$
 2×2
 3×2
 1×4
 $1, 2, 4$
 $1, 2, 3, 6$
 3×5

$$a = 7$$
, $b = 13$
 1×7
 1×7
 1×13
 1×7
 1×13

Naive solution

e) Point to know: We know that GCD of two numbers cannot be greater than minimum of 2 numbers given

GOD = 100

As said previously the GICD of two numbers cannot exceed minimum of

2 numbers

$$a = 10, b = 15$$
 $min = 10$
 $min = 9$
 $min = 8$
 $min = 7$
 $min = 6$
 $min = 5$

Euclidean Algorithm

Basic Idea:

Let b' be smaller than 'a' then god can be written as

god (a, b) = god (a-b, b)

This approach uses repective subtraction int god (int q, intb) while (a!=b) { if (a>b) return a: a= 12, b= 15 a= 12, b=3 a= 9, b=3 a= 6, b=3 a = 3, b=3