Problem statement Send feedback

You are given an integer 'n'.

Return 'true' if 'n' is an Armstrong number, and 'false' otherwise.

Note:

An Armstrong number is a number (with 'k' digits) such that the sum of its digits raised to 'kth' power is equal to the number itself. For example, 371 is an Armstrong number because $3^3 + 7^3 + 1^3 = 371$.

Example:

Input: 'n' = 1634

Output: true

Explanation:

1634 is an Armstrong number, as $1^4 + 6^4 + 3^4 + 4^4 = 1634$

Detailed explanation (Input/output format, Notes, Images)

Sample Input 1:

1

Sample Output 1:

true

Explanation of Sample Input 1:

1 is an Armstrong number as, $1^1 = 1$.

Sample Input 2:

103

Sample Output 2:

false

Expected Time Complexity:

Try to solve this in $O(\log(n))$.

Constraints:

1 <= 'n' <= 10^9

Time Limit: 1 sec