PROGRAM NAME: ETABSREVISION NO.: 0

EXAMPLE Indian IS 456-2000 Wall-002

FRAME - P-M INTERACTION CHECK FOR A WALL

EXAMPLE DESCRIPTION

The Demand/Capacity ratio for a given axial load and moment are tested in this example. A reinforced concrete wall is subjected to factored axial load P_u = 8426 kN and moments M_{uy} = 11670 kN-m. This wall is reinforced as noted below. The design capacity ratio is checked by hand calculations and results are compared with ETABS program.

GEOMETRY, PROPERTIES AND LOADING

PROGRAM NAME: ETABSREVISION NO.: 0

Material Properties **Design Properties** Section Properties $tb = 200 \, mm$ E = $f'_{c} = 30 \text{ MPa}$ 25000 MPa H = 2500 mm $f_{\rm v} = 460 \, {\rm MPa}$ V = 0.2 2400 mm S = 460 mm $As1 = As5 = 4-35M+2-20M (4600 mm^2)$ As2, As3, As4, As5 = 2-20M (600 mm²)

TECHNICAL FEATURES OF ETABS TESTED

➤ Concrete Wall Demand/Capacity Ratio

RESULTS COMPARISON

Independent results are hand calculated and compared with ETABS design check.

Output Parameter	ETABS	Independent	Percent Difference
Wall Demand/Capacity Ratio	1.003	1.00	0.30%

COMPUTER FILE: INDIAN IS 456-2000 WALL-002

CONCLUSION

The ETABS results show a very close match with the independent results.

PROGRAM NAME: ETABS
REVISION NO.: 0

HAND CALCULATION

WALL STRENGTH DETERMINED AS FOLLOWS:

1) A value of e = 1385 mm was determined using $e = M_u / P_u$ where M_u and P_u were taken from the ETABS test model PMM interaction diagram for the pier, P1. Values for M_u and P_u were taken near the balanced condition and large enough to produce a flexural D/C ratio very close to or equal to one. The depth to the neutral axis, c, was determined by iteration using an excel spreadsheet so that equations 1 and 2 below were equal.

2) From the equation of equilibrium:

$$P_n = C_c + C_s - T$$

where

 $C_c = C_{cw} + C_{cf}$, where C_{cw} and C_{cf} are the area of the concrete web and flange in compression

$$C_{cw} = \frac{0.36}{0.84} f_{ck} \cdot 200 \cdot (a - 200), \text{ where } a = 0.84 x_{u}$$

$$C_{cf} = \frac{0.36}{0.84} f_{ck} \cdot 200 (2500 - 1000)$$

$$C_{s} = \frac{A'_{sI}}{\gamma_{s}} \left(f_{sI} - \frac{0.36}{0.84} f_{ck} \right) + \frac{A'_{s2}}{\gamma_{s}} \left(f_{s2} - \frac{0.36}{0.84} f_{ck} \right) + \frac{A'_{s3}}{\gamma_{s}} \left(f_{s3} - \frac{0.36}{0.84} f_{ck} \right)$$

$$T = \frac{A_{s4}}{\gamma_{s}} f_{s4} + \frac{A_{s5}}{\gamma_{s}} f_{s5} + \frac{A_{s6}}{\gamma_{s}} f_{s6}$$

$$P_{nI} = \frac{0.36}{0.84} f_{ck} \cdot 200 \cdot (a - 200) + \frac{0.36}{0.84} f_{ck} \cdot 200 (2500 - 1000) + \frac{A'_{sI}}{\gamma_{s}} \left(f_{sI} - \frac{0.36}{0.84} f_{ck} \right) + \frac{A'_{s2}}{\gamma_{s}} \left(f_{s2} - \frac{0.36}{0.84} f_{ck} \right)$$

$$+ \frac{A'_{s3}}{\gamma_{s}} \left(f_{s3} - \frac{0.36}{0.84} f_{ck} \right) - \frac{A_{s4}}{\gamma_{s}} f_{s4} - \frac{A_{s5}}{\gamma_{s}} f_{s5} - \frac{A_{s6}}{\gamma_{s}} f_{s6}$$

(Eqn. 1)

PROGRAM NAME: ETABS

REVISION NO.: 0

3) Taking moments about A_{s6} :

$$P_{n2} = \frac{1}{e'} \left[C_{cf} \left(d - d' \right) + C_{cw} \left(d - \frac{a - t_f}{2} - t_f \right) + C_{sl} \left(d - d' \right) + C_{s2} \left(4s \right) + C_{s3} \left(3s \right) - T_{s4} \left(2s \right) - T_{s5} \left(s \right) \right]$$
(Eqn. 2)
$$\text{Where } C_{s1} = \frac{A'_{s1}}{\gamma_s} \left(f_{s1} - \frac{0.36}{0.84} f_{ck} \right); \ C_{s2} = \frac{A'_{sn}}{\gamma_s} \left(f_{sn} - \frac{0.36}{0.84} f_{ck} \right); \ T_{s4} = \frac{A_{sn}}{\gamma_s} \left(f_{sn} \right) \text{ and the bar strains and stresses are determined below.}$$

The plastic centroid is at the center of the section and d'' = 1150 mme' = e + d'' = 1138 + 1150 = 2535 mm.

4) Using c = 1298.1 mm (from iteration)

$$a = \beta_1 c = 0.84 \cdot 1298.1 = 1090.4 \text{ mm}$$

5) Assuming the extreme fiber strain equals 0.0035 and c= 1298.1 mm, the steel stresses and strains can be calculated. When the bar strain exceeds the yield strain then, $f_s = f_v$:

$$\begin{split} \varepsilon_{s1} &= \left(\frac{c-d'}{c}\right) 0.003 &= 0.00323; \, f_s = \varepsilon_s E \leq F_y \, \; ; \quad f_{s1} = 460 \, \text{MPa} \\ \varepsilon_{s2} &= \left(\frac{c-s-d'}{c}\right) 0.0035 &= 0.00199 \, f_{s2} = 398.0 \, \text{MPa} \\ \varepsilon_{s3} &= \left(\frac{c-2s-d'}{c}\right) 0.0035 &= 0.00075 \, f_{s3} = 150.0 \, \text{MPa} \\ \varepsilon_{s4} &= \left(\frac{d-c-2s}{d-c}\right) \varepsilon_{s5} &= 0.00049 \, f_{s4} = 98.1 \, \text{MPa} \\ \varepsilon_{s5} &= \left(\frac{d-c-s}{d-c}\right) \varepsilon_{s5} &= 0.00173 \, f_{s5} = 346.1 \, \text{MPa} \\ \varepsilon_{s6} &= \left(\frac{d-c}{c}\right) 0.0035 \, = 0.00297 \, f_{s6} = 460.0 \, \text{MPa} \end{split}$$

PROGRAM NAME: ETABS
REVISION NO.: 0

Substitute in Eqn. 1 and 2 and iterating the value of the neutral axis depth until the two equations are equal gives,

$$P_{nl} = 8426 \text{ kN}$$

$$P_{n2} = 8426 \text{ kN}$$

$$M_n = P_n e = 8426(1385)/1000 = 11670 \text{ kN-m}$$