

SEQUENCE LISTING

<110> Stanton, Lawrence W.
Kapoun, Ann Marie

<120> SECRETED FACTORS

<130> SCIOS.013A

<150> 60/156,277
<151> 1999-09-27

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 275

<212> PRT

<213> Rattus norvegicus

<400> 1

Met Thr Pro Arg Ala Gln Leu Leu Pro Leu Leu Leu Ala Thr Tyr Thr
1 5 10 15
Val Val Ala Ala Ala Val Thr Ser Asp Glu Pro Thr Lys Thr Leu Ser
20 25 30
Pro Ala Thr Gly Asp Ala Thr Leu Ala Phe Val Phe Asp Val Thr Gly
35 40 45
Ser Met Trp Asp Asp Leu Met Gln Val Ile Asp Gly Ala Ser Arg Ile
50 55 60
Leu Glu Arg Ser Leu Ser Ser Arg Ser Arg Val Ile Ala Asn Tyr Ala
65 70 75 80
Leu Val Pro Phe His Asp Pro Asp Ile Gly Pro Val Thr Leu Thr Ala
85 90 95
Asp Pro Val Val Phe Gln Arg Glu Leu Arg Gln Leu Tyr Val Gln Gly
100 105 110
Gly Gly Asp Cys Pro Glu Met Ser Val Gly Ala Ile Lys Ala Ala Val
115 120 125
Glu Val Ala Asn Pro Gly Ser Phe Ile Tyr Val Phe Ser Asp Ala Arg
130 135 140
Ala Lys Asp Tyr His Lys Lys Asn Glu Leu Leu Gln Leu Leu Gln Leu
145 150 155 160
Lys Gln Ser Gln Val Val Phe Val Leu Thr Gly Asp Cys Gly Asp Arg
165 170 175
Thr His Pro Gly Tyr Leu Ala Phe Glu Glu Ile Ala Ser Thr Ser Ser
180 185 190
Gly Gln Val Phe Gln Leu Asp Lys Gln Gln Val Ser Glu Val Leu Lys
195 200 205
Trp Val Glu Ser Ala Ile Gln Ala Ser Lys Val His Leu Leu Ser Ala
210 215 220

Asp His Glu Glu Glu Gly His Thr Trp Arg Ile Pro Phe Asp Pro
225 230 235 240
Ser Leu Lys Glu Val Thr Ile Ser Leu Ser Gly Pro Gly Pro Glu Ile
245 250 255
Glu Val Arg Asp Pro Leu Gly Met Ser Gln Gly Ser Pro Pro Leu Leu
260 265 270
Met Gln Asp
275

<210> 2
<211> 1031
<212> DNA
<213> Rattus norvegicus

<220>
<221> CDS
<222> (96) ... (920)

<400> 2
tctagcgaac cccttcggcc cgcttagagcg agactgcact gccatctatc cctgcgacct 60
gcmcgtccca ttagggctgc agcctccggc tcagc atg acg cct agg gcg cag 113
Met Thr Pro Arg Ala Gln
1 5

ctc ctg ccg ctg ctc ctg gcg acc tac aca gta gtg gcg gcg gtc 161
Leu Leu Pro Leu Leu Ala Thr Tyr Thr Val Val Ala Ala Ala Val
10 15 20

aca tct gat gag ccc acg aag acg ctg tcc ccc gcc aca gga gac gcc 209
Thr Ser Asp Glu Pro Thr Lys Thr Leu Ser Pro Ala Thr Gly Asp Ala
25 30 35

acc ctg gcc ttc gtc ttc gat gtc acc ggc tcc atg tgg gac gat ctg 257
Thr Leu Ala Phe Val Phe Asp Val Thr Gly Ser Met Trp Asp Asp Leu
40 45 50

atg cag gtg atc gac ggc gcc tca cgc att ctg gag cgc agt ctg agc 305
Met Gln Val Ile Asp Gly Ala Ser Arg Ile Leu Glu Arg Ser Leu Ser
55 60 65 70

agc cgc agc cgg gtc atc gcc aac tat gcg ctg gtg cct ttc cac gac 353
Ser Arg Ser Arg Val Ile Ala Asn Tyr Ala Leu Val Pro Phe His Asp
75 80 85

cca gac att ggc cca gtg acc ctc acg gcg gac cca gtg gtg ttt cag 401
Pro Asp Ile Gly Pro Val Thr Leu Thr Ala Asp Pro Val Val Phe Gln
90 95 100

aga gag ctg aga caa ctc tat gtt cag gga ggt ggt gac tgc cca gaa 449
Arg Glu Leu Arg Gln Leu Tyr Val Gln Gly Gly Gly Asp Cys Pro Glu
105 110 115

atg	agt	gtg	ggg	gcc	atc	aag	gct	gcc	gtg	gag	gtt	gcc	aac	ccc	ggc	497	
Met	Ser	Val	Gly	Ala	Ile	Lys	Ala	Ala	Val	Glu	Val	Ala	Asn	Pro	Gly		
120															130		
tcc	tcc	atc	tac	gtc	ttc	tcg	gat	gcc	cgt	gcc	aag	gac	tac	cac	aag	545	
Ser	Phe	Ile	Tyr	Val	Phe	Ser	Asp	Ala	Arg	Ala	Lys	Asp	Tyr	His	Lys		
135															150		
aag	aat	gag	ctc	ctg	cag	ctc	ctg	cag	ctg	aag	cag	tcg	cag	gtg	gtc	593	
Lys	Asn	Glu	Leu	Leu	Gln	Leu	Leu	Gln	Leu	Lys	Gln	Ser	Gln	Val	Val		
															165		
ttc	gtg	ctg	act	ggg	gac	tgc	ggt	gac	cgc	acc	cac	cct	ggc	tac	ctg	641	
Phe	Val	Leu	Thr	Gly	Asp	Cys	Gly	Asp	Arg	Thr	His	Pro	Gly	Tyr	Leu		
															170		
gct	ttt	gag	gag	atc	gcc	tcc	acc	agt	tct	ggc	caa	gtg	ttc	cag	ctg	689	
Ala	Phe	Glu	Glu	Ile	Ala	Ser	Thr	Ser	Ser	Gly	Gln	Val	Phe	Gln	Leu		
															185		
gac	aag	cag	cag	gtg	tcg	gag	gtg	tta	aag	tgg	gtg	gag	tcc	gcc	atc	737	
Asp	Lys	Gln	Gln	Val	Ser	Glu	Val	Leu	Lys	Trp	Val	Glu	Ser	Ala	Ile		
															200		
cag	gcc	tcc	aaa	gtt	cat	ctg	ctg	tca	gca	gac	cac	gag	gag	ggc	785		
Gln	Ala	Ser	Lys	Val	His	Leu	Leu	Ser	Ala	Asp	His	Glu	Glu	Gly			
															215		
gaa	cac	aca	tgg	aga	atc	cct	ttt	gac	ccc	agc	ttg	aag	gaa	gtc	acc	833	
Glu	His	Thr	Trp	Arg	Ile	Pro	Phe	Asp	Pro	Ser	Leu	Lys	Glu	Val	Thr		
															235		
atc	tca	ctg	agc	ggg	cca	ggg	cct	gag	atc	gaa	gtc	cg	gac	cca	ctg	881	
Ile	Ser	Leu	Ser	Gly	Pro	Gly	Pro	Glu	Ile	Glu	Val	Arg	Asp	Pro	Leu		
															250		
gg	at	tg	tc	ca	gg	tt	ct	ct	at	ca	gac	tg	ag	ct	gg	aa	930
Gly	Met	Ser	Gln	Gly	Ser	Pro	Pro	Leu	Leu	Met	Gln	Asp					
															265		
ggccaggctg	aggcgatg	gga	aggagggg	cc	tgaggagat	g	ctcagccaa	taaaatgtct	990								
gcctcacaca	aaaaaaaaaa	aagcccg	gt	cg	agcggccg	c										1031	

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 3
cgtatgttgt gtgaaattgt gagcg

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 4
gatgtgctgc aaggcgatta agttg

25

<210> 5
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 5
gccggccagtg tgctggaatt cggcttagc

28

<210> 6
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 6
cgaattctgc agatatccat cacactgg

28

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 7
ctagagggcc caattcgccc tatag

25

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 8
tgagtcgtat tacaattcac tggcc 25

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 9
gctcggatcc actagtaacg 20

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 10
ttttttttt tttttttt 18

<210> 11
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 11
cgtagtgtgt gtggaattgt gagcg 25

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 12
gatgtgctgc aaggcgatta agttg 25

<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic

<400> 13
tggccttcgt cttcgatgtc 20

<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 14
gccgtcgatc acctgcat 18

<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 15
ccggctccat gtgggacgat ct 22

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 16
cggttaccac atccaaggaa 20

<210> 17
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 17
gctggaattta ccgcggct 18

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 18
tgctggcacc agacttgcac tc

22

<210> 19
<211> 1031
<212> DNA
<213> Rattus norvegicus

<400> 19
agatcgcttg gggaaagccgg gcgatctcg tctgacgtga cggtagatag ggacgctgga 60
cgcgcagggt aatcccgacg tcggaggccg agtcgtactg cgatcccgc gtcgaggacg 120
gcgacgagga ccgctggatg tgtcatcacc gccggccca gtgtagacta ctgggtgct 180
tctgcgacag ggggcgggtgt cctctgcggt gggaccggaa gcagaagcta cagtggccga 240
gttacaccct gctagactac gtccactagc tgccgcggag tgcgttaagac ctgcgtcag 300
actcgctggc gtcggccag tagcgggtga tacgcgacca cggaaagggtg ctgggtctgt 360
aaccgggtca ctgggagtgc cgccctgggtc accacaaagt ctctctcgac tctgttgaga 420
tacaagtccc tccaccactg acgggtcttt actcacaccc ccggtagttc cgacggcacc 480
tccaacgggtt ggggccgagg aagttagatgc agaagagcct acgggcacgg ttccctgatgg 540
tgttcttctt actcgaggac gtcgaggacg tcgacttcgt cagcgccac cagaagcacf 600
actgaccctt gacgcccactg gcgtgggtgg gaccgatgga ccgaaaactc ctctagcgga 660
ggtgtcaag accgggtcac aaggtcgacc tgttcgtcgt ccacagccct cacaatttca 720
cccacctca gcggttaggtc cggaggttca aagtagacga cagtcgtctg gtgctcctcc 780
tcccgcttgcgt gtgtacctct tagggaaaac tgggtcgaa ttcccttcag tggttagagtg 840
actcgccccgg tcccgactc tagttcagg ccctgggtga cccatacagg gtcccaagtg 900
gaggagaaga ctacgttctg actcgacctt ccggtccgac tccgctaccc ttctccccgg 960
actcctctac cgagtcgggtt attttacaga cggagtggtgt tttttttttt ttccggccga 1020
gctcgccggc g 1031

01652736 000000