BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI – HYDERABAD CAMPUS SECOND SEMESTER 2022-2023

Course Handout (Part II)

Date16-01-2023

In addition to part-I (General Handout for all courses appended to the time table), this portion gives further specific details regarding the course.

Course No. : ME F220
Course Title : Heat Transfer
Instructor-in-charge : SATISH K DUBEY

Team of Instructors :M Srinivas, S P Datta Mrinal K Jagirdar, Sayan Das

Shaik Gouse A, K. Monika, Y S Prasanna

Course **Description**:

Fundamental concepts of heat transfer; steady-state and unsteady-state heat conduction; analytical and empirical relations for forced and free convection heat transfer; heat exchanger analysis and design; Heat transfer by radiation; condensation and boiling, associated laboratory.

1. Scope and Objective:

.This course is designed to make the students familiar with the concepts of heat and their applications in engineering. As a part of this course, students have to do the experiments through which they can correlate with their theoretical knowledge on the subject.

2. Text Books:

T1 : J.P. Holman, Heat Transfer, McGraw Hill, 2002, 9th Edition.

3. Reference Books:

R1 : F. P. Incropera & D. P. Dewitt, Fundamentals of Heat and Mass Transfer,

John Wiley & Sons, 2001, 5th edition.

R2 : F. Kreith & M. S. Bohn, Principles of Heat Transfer, Brooks Cole, 2000, 6th edition.

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Reference Chap/Sec in Textbook/ Ref. Book
1	To revise the basic concepts of transport phenomena	Introduction to heat and mass transfer	Lecture notes & 1.1 -1.4(T1)
2 - 3	To learn the basics of conduction heat transfer	Heat conduction equation	1.1 – 1.2 (T1)
4-5	To understand the analysis of one- dimensional steady state heat conduction	1D steady state heat conduction	2.1 – 2.8 (T1)
6 – 8	To understand the heat transfer from extended surfaces	Finned Surfaces	2.9 – 2.10 (T1)
9 – 14	To do the analysis of multidimensional steady state heat conduction	Analytical and numerical methods	3.1 – 3.2 (T1) 3.4 – 3.6 (T1) Lecture notes
15 – 17	To learn heat transfer analysis of unsteady-state conduction	Lumped system analysis; analytical methods of analysis, numerical	4.1 – 4.6(T1)
18-19	To learn the principles of convection heat transfer	Concepts and basic relations in convection heat transfer	5.1-5.2 (T1) R1, Lecture notes
19-21	To understand the forced convection heat transfer for flow inside ducts	Analytical solutions and empirical relations	5.10, 5.11, 6.2 (T1) R1, Lecture notes
22-25	To understand the forced convection heat transfer for flow over bodies	Analytical solution and empirical relations for forced convection heat transfer for flow over flat	5.4 – 5.9, 5.12, 6.3 – 6.5 (T1) R1, Lecture notes

		plate, cylinders, spheres and tube banks	
26-27	To understand the heat transfer	Analytical solutions and empirical	7.2 – 7.12 (T1)
	analysis of natural convection	correlation	Lecture notes
	systems		
28	To understand the basic laws of	Basic laws and nature of thermal	8.1-8.3 (T1)
	radiation	radiation	
29 – 34	To learn the principles of radiation	Radiation heat exchange between	8.4 - 8.8; 8.16 -
	heat transfer	surfaces; radiation shields	8.17 (T1)
35–37	To learn the design and analysis of	Types of heat exchangers; LMTD	10.1 – 10.6 (T1)
	heat exchangers	and NTU method of analysis	
38 – 40	To learn the principles condensation	Film wise, dropwise condensation,	9.1-9.2,9.4-9.5 (T1)
	and boiling	pool boiling, flow boiling basics	Lecture notes
41-42	Introduction to mass transfer	Analogy between heat and mass	11.1-11.5 (T1)
		transfer, mass diffusion, Fick's law	Lecture notes
		of diffusion, transient mass	
		diffusion, mass convection,	
		limitations of heat and mass	
		transfer analogy.	

5. List of Experiments:

The list of experiments and complete modalities of operation of the laboratory such as the exact titles of experiments, reports submission and evaluation methodology etc. shall be announced at the beginning of laboratory session by the lab instructors.

List of Experiments

S. No.	Name of Equipment
1	Thermal Conductivity of Insulating Powder
2	Thermal Conductivity of Insulating Slab
3	Heat Transfer from Pin Fins
4	Thermal Conductivity of liquid
5	Heat Transfer in Force Convection
6	Heat Transfer in Natural Convection
7	Emissivity Measurement Apparatus
8	Stefen's Boltzman Apparatus
9	Double Pipe Heat Exchanger
10	Pool Boiling Apparatus
11	Vertical and Horizontal Condenser
12	Convection Drying Equipment

6. Evaluation Schedule:

Evaluation Component	Duration (minute)	Weightag e (%)	Marks	Date & Time	Nature of Component
Mid Semester Test	90	25	75	15/03 9.30 - 11.00AM	СВ
Tutorial Test(s)	-	15	45	Evenly spaced throughout the semester during tutorial hour	ОВ
Lab work *	-	20	60	Evenly spaced throughout the semester during Practical	ОВ
Comprehensive Exam	180	40	120	12/05 FN	СВ

*Lab work

Evaluation Component	Duration (minute)	Weightage (%)	Date & Time	Nature of Component
Lab Reports	-	10%	Continuous During Practical hour	ОВ
Lab Viva/ quiz	-	10 %	Continuous During Practical hour	ОВ

NOTE:

- **7. Chamber Consultation Hour**: To be announced in the class room.
- **8. Notices**: All notices concerning this course shall be displayed on the <u>CMS</u> Students are advised to visit regularly <u>CMS</u> (institute's web based course management system) for updates on the course matters.
- **9. Make-up Policy**: Make-up shall be given only to the genuine cases with prior intimation. <u>No make-up will be given for the TUTORIAL tests</u>.
- **10. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and any type of academic dishonesty is not acceptable.

Instructor-in-charge ME F220