

Course > Section... > 1.3 Sur... > 1.3.5 Q...

1.3.5 Quiz: (Optional) Qualitative Analysis of the Fishing Model

□ Bookmark this page

Peter just showed how to use the graph of $\frac{dP}{dt}$ versus P to do a **qualitative analysis** of the differential equation $\frac{dP}{dt}=\frac{1}{10}P(1-\frac{P}{40000})-\alpha$, in the case of $\alpha=0$ and a 'small' α

Now it's your turn to do the same for 'large' α and the critical α .

Question 1

7/7 points (graded)

For each of the three different cases, match the graph of $\frac{dP}{dt}$ versus P with the qualitative analysis of $\frac{dP}{dt}$ (the qualitative sketch of solutions P(t)).

View Larger Image Image Description

Image Description for answer graphs A-G

Explanation

For small values of $\pmb{\alpha}$, the differential equation has two equilibrium solutions, a stable equilibrium at a high value of \pmb{P} and an unstable equilibrium at a low value of \pmb{P} . Solution curves with initial condition $\pmb{P}(0)$ greater than the larger equilibrium will decrease toward the upper asymptote, solution curves with initial condition $\pmb{P}(0)$ between the two equilibria will tend toward the upper asymptotes, and solution curves with initial condition $\pmb{P}(0)$ less than the larger equilibrium will tend toward $\pmb{P}=\pmb{0}$.

Note: We can see from the graph of $\frac{dP}{dt}$ versus P that for solutions with initial condition less than the larger equilibrium, the rate of change of P becomes more and more negative as P decreases. This means the solution curves are concave down, hence there is no horizontal asymptote at P=0.

For the critical value of α , the differential equation has a semi-stable equilibrium at P=20,000. Solution curves with initial condition above this value will decrease to this asymptote, while solutions curves with initial condition below this value will decrease to P=0, extinction. The curves will decrease most steeply for high and low values of P since $\frac{dP}{dt}$ is most negative there.

For large values of α , the population decreases to P=0 no matter what the starting value of P is since $\frac{dP}{dt}$ is always negative. We can see from the graph of $\frac{dP}{dt}$ versus P that as P decreases, the derivative $\frac{dP}{dt}$ eventually becomes increasingly negative. This means the solution curves are concave down as they hit P=0. Each of these situations describes a different possible behavior for the solutions of the differential equation, depending on the α level. Close to the value $\alpha=1000$, small changes in α may lead to major changes in behavior of solutions. This is an example of a bifurcation, with critical value $\alpha=1000$.

Submit

You have used 2 of 5 attempts

1 Answers are displayed within the problem

Learn About Verified Certificates

© All Rights Reserved

© 2012–2018 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

