LF - TD 3

Exercice 3

Montrer que $L=\{uv|u,v\in\Sigma^*\wedge|u|=|v|\wedge u\neq v\}$ est engendré par la grammaire G suivante : $S\to AB|BA$

 $A \rightarrow aAa|aAb|bAa|bAb|a$

 $B \rightarrow aBa|aBb|bBa|bBb|b$

Montrons que $L(G) \subset L$:

Soit $w \in L(G)$. D'après les règles de production, $\exists f, f', g, g' \in \Sigma^*$ tels que w = faf'gbg' (ou w = fbf'gag', et la démonstration est symétrique) avec |f| = |f'| = n et |g| = |g'| = p.

w étant alors de longueur paire, soient u et v de même longueur tels que w=uv=faf'gbg'; on a |w|=2n+2p+2 et donc |u|=|v|=n+p+1. Ainsi, la lettre de u en position (n+1) est un a, alors que celle de v à la même position est un b: on a bien $u\neq v$ et donc $w\in L$.

Réciproquement, pour $L \subset L(G)$, on dérive un mot de L en s'appuyant sur la première lettre différente entre ses moitiés.

Exercice 4

1. $\epsilon, ab, aabb \in L_1 = \{a^nb^n | n \geqslant 0\}$; $\epsilon, abab, abaabb \in L_2 = L_1 \cdot L_1$; $aabbababab, aaaaabbbbb, aaabbbaabb \in L_3 = L_1^*$.

2.
$$G_1: S \to aSb|\epsilon$$
; $G_2: S \to TT, T \to aTb|\epsilon$; $G_3: S \to SS|T, T \to aSb|\epsilon$.

3. et 4. La question précédente fournit les constructions de grammaires pour le produit et l'étoile de langages.