PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11354919 A

(43) Date of publication of application: 24.12.99

(51) Int. CI

H05K 3/34 B23K 31/02 B23K 35/26

(21) Application number: 10155594

(22) Date of filing: 04.06.98

(71) Applicant:

HITACHI LTD

(72) Inventor:

SOGA TASAO ISHIDA TOSHIHARU NAKATSUKA TETSUYA

SHIMOKAWA HIDEYOSHI

SERIZAWA KOJI AMANO YASUO SAKAGUCHI MASARU YAMAGUCHI HIROSHI

(54) MANUFACTURE OF ELECTRONIC CIRCUIT BOARD

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a proper temperature profile when connected by solder and increase the connection reliability by specifying the cooling speed of Pb-free solder including Bi when connecting electronic components to a circuit board.

SOLUTION: In order to inspect the lift-off for various compositions, Sn_3Ag_solder_is added_with_Bu_by_0,_2,_4, 7, 10, 15%. From a graph obtained, it can be seen that any composition has a lift-off at a cooling speed of 1°C/s (black dots) or about, which is a cooling speed in usual flow solder. Nextly, in order to change the cooling speed largely, the solder is cooled in water or hot water at a cooling speed of 5-40°C/s. As a result, it can be seen that there is no lift_off_nor_cracking_inexternal appearance in cooling in hot water at a cooling speed of 10-20°C/s (black square marks). The higher the cooling speed becomes, the less Bi segregates. For suppression of cracks, the cooling speed of about 40°C/s or lower is good, preferably 10-20°C/s. By cooling the solder rapidly, there is not time lag in solidification

from part to part and thereby connection failure can be reduced.

COPYRIGHT: (C)1999,JPO

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-354919

(43)公開日 平成11年(1999)12月24日

(51) Int.Cl. ⁶	識別記号	F Ι	
HO5K 3/34	5 1 2	H05K 3/34	5 1 2 C
B 2 3 K 31/02	3 1 0	B 2 3 K 31/02	310H
35/26	3 1 0	35/26	3 1 0 A
		審査請求 未請求	前求項の数8 OL (全 8 頁)
(21) 出願番号	特顧平10-155594	(71) 出額人 0000051	08
	•	株式会社日立製作所	
(22)出顧日	平成10年(1998) 6月4日	東京都千代田区神田駿河台四丁目 6 番地	
		(72)発明者 曽我	太佐男
		神奈川リ	具横浜市戸塚区吉田町292番地株式
		会社日3	立製作所生產技術研究所内
		(72)発明者 石田 🥫	寿治
		神奈川	具横浜市戸塚区吉田町292番地株式
		会社日3	立製作所生産技術研究所内
		(72)発明者 中塚 (哲也
		神奈川以	県横浜市戸塚区吉田町292番地株式
		会社日	立製作所生産技術研究所内
	•	(74)代理人 弁理士	小川 勝男
			最終頁に続く

(54) 【発明の名称】 電子回路基板の製造方法

(57)【要約】

【課題】本発明は、Biを含んだ鉛フリーはんだを用いた電子部品と回路基板との接続信頼性を向上させ、接続不良の少ない電子回路基板の製造方法を提供することを目的とする。特にはんだ接続時の温度プロファイルを適正化することによりその接続信頼性を向上させ、接続不良の少ない電子回路基板の製造方法を提供することを目的とする。

【解決手段】本発明は、上記目的を達成するために、Bi を含有するPbフリーはんだを用いて電子部品と回路基板とを接続する電子回路基板の製造方法であって、該はんだを約10~20℃/sの冷却速度で冷却して該電子部品と該回路基板と接続したものである。

【特許請求の範囲】

【請求項1】Biを含有するPbフリーはんだを用いて電子部品と回路基板とを接続する電子回路基板の製造方法であって、該はんだを約10~20℃/sの冷却速度で冷却して該電子部品と該回路基板と接続したことを特徴とする電子回路基板の製造方法。

1

【請求項2】Biを含有するPbフリーはんだを用いて電子 部品と回路基板とを接続する電子回路基板の製造方法で あって、該はんだの液相線温度近傍から固相線温度近傍 までを約10~20℃/sの冷却速度で冷却して該電子部品と 10 該回路基板と接続したことを特徴とする電子回路基板の 製造方法。

【請求項3】Biを含有するPbフリーはんだを用いて電子 部品と回路基板とを接続する電子回路基板の製造方法で あって、該はんだの液相線温度近傍から固相線温度近傍 までの温度域を約10~20℃/sの第一の冷却速度で冷却 し、その後、第一の冷却速度よりも遅い第二の冷却速度 で冷却して該電子部品と該回路基板と接続したことを特 徴とする電子回路基板の製造方法。

【請求項4】前記第二の冷却速度が0.1~5℃/sであ 20 ることを特徴とする請求項3記載の電子回路基板の製造方法。

【請求項5】Biを含有するPbフリーはんだを用いて電子部品と回路基板とを接続する電子回路基板の製造方法であって、該はんだの固相線温度近傍以下の温度域を0.1~5℃/sの冷却速度で冷却することを特徴とする電子回路基板の製造方法。

【請求項6】エア、不活性ガス、噴霧液、蒸気、液体、 液体窒素、ドライアイスなどの少なくとも室温以下の冷 媒により冷却したことを特徴とする請求項1から5のい 30 ずれかに記載の電子回路基板の製造方法。

【請求項7】前記不活性ガスが、液体窒素、ドライアイス、液体窒素、ドライアイスのいずれか一つを含む混合体であることを特徴とする請求項5記載の電子回路基板の製造方法。

【請求項8】フロリナート液などの少なくとも室温以下のフラックス洗浄液を噴霧又はシャワーで供給して冷却することを特徴とする請求項1から5のいずれかに記載の電子回路基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】電子回路基板へのLSI、部品等を実装した電子回路基板の製造方法に係り、特にPbフリーのBi系はんだを用いて実装した電子回路基板の製造方法に関する。

[0002]

【従来の技術】PbフリーのBi系はんだを通常のフロープロセスではんだ付けすると、基板のCuランド部とはんだとが剥離する(リフトオフと呼ばれている)ことが知られている。また、リフトオフはSn-Bi系はんだのBiの偏

析により生じることが知られている(菅沼:回路実装学 術講演大会講演論文集、p67、H10.3.24)。

【0003】このリフトオフのメカニズムは複雑で明確にされた訳ではないが、水、水蒸気噴霧で急冷してリフトオフ発生を防止できることが知られている(H10。4.27日刊工業新聞、阪大)。

[0004]

【発明が解決しようとする課題】しかし、単純に水や水蒸気噴霧で急冷すると、Biの偏析はなくなるがはんだにクラックを発生させたり、部品への熱衝撃、冷却液による悪影響(接点、腐食等)の問題がある。

【0005】本発明は、Biを含んだ鉛フリーはんだを用いた電子部品と回路基板との接続信頼性を向上させ、接続不良の少ない電子回路基板の製造方法を提供することを目的とする。特にはんだ接続時の温度プロファイルを適正化することによりその接続信頼性を向上させ、接続不良の少ない電子回路基板の製造方法を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明は、上記目的を達成するために、Biを含有するPbフリーはんだを用いて電子部品と回路基板とを接続する電子回路基板の製造方法であって、該はんだを約10~20℃/sの冷却速度で冷却して該電子部品と該回路基板と接続したものである。

【0007】また、Biを含有するPbフリーはんだを用いて電子部品と回路基板とを接続する電子回路基板の製造方法であって、該はんだの液相線温度近傍から固相線温度近傍までを約10~20℃/sの冷却速度で冷却して該電子部品と該回路基板と接続したものである。

【0008】また、Biを含有するPbフリーはんだを用いて電子部品と回路基板とを接続する電子回路基板の製造方法であって、該はんだの液相線温度近傍から固相線温度近傍までの温度域を約10~20℃/sの第一の冷却速度で冷却し、その後、第一の冷却速度よりも遅い第二の冷却速度で冷却して該電子部品と該回路基板と接続したものである。

【0009】また、前記第二の冷却速度が $0.1\sim5$ $^{\circ}$ /s であるものである。

【0010】また、Biを含有するPbフリーはんだを用い 40 て電子部品と回路基板とを接続する電子回路基板の製造 方法であって、該はんだの固相線温度近傍以下の温度域 を0.1~5℃/sの冷却速度で冷却するものである。

【0011】また、前述の冷却を、エア、不活性ガス、 噴霧液、蒸気、液体、液体窒素、ドライアイスなどの少 なくとも室温以下の冷媒により行うものである。

【0012】また、前配不活性ガスが、液体窒素、ドライアイス、液体窒素、ドライアイスのいずれか一つを含む混合体であるものである。

【0013】また、フロリナート液などの少なくとも室 50 温以下のフラックス洗浄液を噴霧又はシャワーで供給し ¹ ; 3

て冷却するものである。

【0014】このように10~20℃/sで急冷すれば、Biを含んだ鉛フリーはんだを用いて電子部品と回路基板とを接続したとしても、はんだにクラック等は発生しないことが実験により確認された。すなわち、10~20℃/sで急冷することで、接続不良の少ない電子回路基板の製造方法を提供することが可能であることが確認された。

【0015】また、固相線温度以下を0.1~5℃/sで徐冷すれば、Biを含んだ鉛フリーはんだを用いて電子部品と回路基板とを接続したとしても、固相線温度から10室温までの温度差による応力が緩和されはんだにクラック等は発生しないことも実験により確認された。すなわち、固相線温度以下を0.1~5℃/sで徐冷することで、接続不良の少ない電子回路基板の製造方法を提供することが可能であることが確認された。

【0016】さらに、この2つの急冷と徐冷を組み合わせることで、総合的に優れた電子回路実装基板の製造が可能となる。

[0017]

【発明の実施の形態】まず、リフトオフのメカニズムを 20 図2で説明する。

【0018】(a)はスルーホール断面のランド部のクラックを示し、(b)ははんだの外観をSEM(走査型電子顕微鏡)観察したものであり、ランド部のリフトオフを示している。(c)は、(a)(b)で示したCuパッドを形成したスルーホールと、そのスルーホールに挿入したCuリードとをはんだ接続した例をモデル化したものである。【0019】図2(c)に示すように、リフトオフの発生要因としては、基板の厚さ方向の熱膨張係数の差がリード(ピン)に比べ著しく大きいことから、拘束の始まるはんだの固相線温度から室温までの温度差が大きいために起きる場合(①)と、冷却時にはんだ凝固の時間差で起きる場合((②-1):部品側は金属であるため、図中で示したようにフィレット先端部で先に凝固して、凝固しない部分を引っ張る形になる。この間基板の収縮に伴い、ランド部が容易に剥離する)と、Biがランド部に集

まる場合((②-2):生成物(Bi)が形成される場合と生成物(Bi)が形成されなくても、Biの影響で強度低下を起こす場合)とがある。なお、②-1)は液相線と固相線との温度差と凝固プロセスに起因し、②-2)はBiの偏析に起因するものである(後述する図4にこれらの関係を示す)。

【0020】次に、PbフリーのBi系はんだのリフトオフ 現象を解明するため、Sn-3mass% Ag (以下、単にSn-Agと略す)にBi量をパラメータにしたはんだの各種実験 を行いデータと材料物性値から現象を考察した。

【0021】リフトオフ実験用サンプルはDIP(Dual Inline Package)のピンを6層で1.6tのガラスエポキシ基板のスルーホールに挿入し、ロジンに僅かに酸が入ったフラックスを塗布しはんだ浴に浸漬して、継手の冷却速度 50

を変えて作製した。冷却速度を変えた実験は、実験が容易な大気及び水(湯)で行った。冷却速度は熱電対先端をランド上に耐熱テープで固定して測定した。はんだ付け条件はすべての組成に対して、250℃で、3秒間である。基板の穴径は1.0mmで、ランド径は1.6mmである。リフトオフは低倍率の電子顕微鏡観察で外観を観察し、ランド周辺の剥離部の長さを尺度とした。

【0022】図1はSn-3AgはんだにBi量を0,2,4,7,10,15%添加したときのBi量とリフトオフの剥離部の長さ(き裂長さ)の関係を示したものである。

【0023】通常のフローソルダリングにおける冷却速度である1℃/s(黒丸印)程度ではすべての組成でリフトオフを発生していることが分かった。

【0024】次に、冷却速度を大きく変えるため、水(室温)および湯中(100℃)で試みた。水及び湯では5~40℃/sの範囲で変えることができた。この実験により、冷却速度が10~20℃/sの湯冷(黒四角印)ではリフトオフがなく、かつ外観(クラックが発生しないこと)も優れていることがわかった。また、冷却速度が約40℃/s(黒三角印)の水冷では、リフトオフは起こらないが外観上は、湯冷ほど良好ではないことが分かった。すなわち、冷却速度が40℃/sでは、冷却速度が速すぎることからクラックを発生するものがあり、実用的ではないことが分かった。

【0025】なお、冷却速度を速めるほどBiの偏析は防止できた。

【0026】以上のように、リフトオフの一要因と考えられるBiの偏析を抑制するには、冷却速度を速めた方が良いが、はんだのクラックを抑制するには冷却速度は約40℃/sよりも遅い方が良いことが分かった。特に10~20℃/sの冷却速度が良いことが分かった。また、急冷することではんだ凝固の部分的な時間差がなくなることから、図2に示した②の要因を解決できることが分かった。

【0027】一方、Sn-3Agの場合、Biが存在しなくてもリフトオフが発生するのは図2に示す①の要因によるものであり、221℃から室温までの温度差が大きいことによる大きな熱応力に耐えきれずリフトオフが起きることが分かった。即ち、基板の厚さ方向の熱膨張係数(70×10-6/℃)が、リード材(427口付:4×10-6/℃、Cu系:17×10-6/℃)、はんだ(20×10-6/℃)に比べ極端に大きいことから、はんだが221℃で凝固してから室温に下がるまで基板は厚さ方向に大きく収縮することにより起こることが分かった。従って、リフトオフの一要因と考えられる熱応力を抑制するには、はんだの固層線温度以下を0.1~5℃/sで徐冷することが良いことが分かった。

【0028】次に、図4は図1、図2の結果をより明確 にしたものであり、Sn-Ag-Bi系はんだ組成と物性値、溶 触特性、強度等の関係を示す。なお、図中の3元共晶(S n-1Ag-57Bi)の比率は、図3に示すようにSn-3AgにBiが1 10

30

5%入った組成における組織(粗大なSn晶と微細なSn-1Ag -57Biの3元共晶)と、示差熱(DSC)曲線における137℃ の3元共晶(Sn-1Ag-57Bi)反応域の面積Q1を求め、3元 共晶のDSCから得た面積Q0を100%として、両者の面積比 を求めたものである。

【0029】図4に示すように、Biが7.5%以上では界面 の強度は小さく(2-1))、3元共晶が存在してくる。 また、液相線と固相線との温度差△T (**①**) も増してリ フトオフが発生しやすい方向になる。しかし、Biを多量 に含んだ3元共晶(Sn-1Ag-57Bi)になると、温度差△T がなくなるため、かつ、①のモードの固相線温度(137 ℃)から室温(20℃)までの温度差が小さいため、リフト オフの発生はなくなる。一方、Biが少ない組成、例えば 2%前後では冷却速度が10℃/s以下でもほぼ良好な結果が 得られた。即ち、Biが少ない組成は固相線温度が高く、 液相線と固相線との温度差も少なく、かつ、接合界面の 強度も高い。このため、リフトオフが起こりにくい状況 下にあるので、冷却速度は5℃/s前後でも可能である。 これより、リフトオフは液相線と固相線との温度差と、 冷却速度と、界面の強度の相互関係に依存しており、当 20 然、組成にも影響してくることが分かった。

【0030】このように接合界面の強度低下原因はBi量 で異なる。図1からも分かるように、4~6%i前後を境 に曲線が折れ曲がっていることが分かる。この変曲点を 境に現象が異なっていることが予想される。この変曲点 以上では融点の低いBiを多量(57%)に含んだ3元共晶が 存在することから、Bi同志が結合して粗大化し、界面に 沿って偏析することが予想される。本来Cuと反応しにく いBiがCu界面に集まると、Cuとの密着力がないことから 容易に剥離を起こすことは明らかである。

【0031】一方、Biがこの変曲点以下の場合、即ち比 較的に融点の高いはんだの場合、均一なBi相は界面で観 察されない。しかし、Biの少ないはんだでも、最終凝固 のランド界面では、凝固のプロセスとしてBiを界面に偏 析する程の量は無いが、Biが界面近傍に集まってくるこ とは予想される。この結果として、図4のBiが0~変曲 点における強度低下の原因として関係してくる。

【0032】この範囲ではBiが増すと、直線的に強度低 下を示しているが、この範囲では接合界面でのBiはXMA 分析にはかからないレベルであり、Biの偏析ではないと 40 みなされる。これまでもSn-Pb系はんだにおいて、はん だ中のBiの存在がCu-Snとの化合物形成を阻害し、強度 低下の一因になっていることが確認されており、しかも 界面強度がはんだのBi含有量の増加に伴って減少してい ることが確認されている(山本他:回路実装学会誌、Vo 1.10,No6(1995.9)))ことから、この場合も現象的に類似 したケースと考えられる。即ち、Biが増えるにつれて、 界面において、分子レベルの極く薄い層でCuとSnとの正 味の接合部が少なくなり、強度低下を起こしているもの と推定する。はんだのバルク材として、DSCカーブによ

る3元共晶の存在の有無が、昇温、冷却の温度勾配でも 異なるが、ほぼこの近傍で現れれることから、一連の関 連があるものと思われる。界面におけるこのBiの境界値 は微妙であり、熱処理、エージング有無で拡散にも大き く影響を及ぼすことから多少のズレは予想される。

6

【0033】以上の実験結果から、リフトオフをなくす プロセスの条件としては、凝固が完了する固相線温度ま でを10~20℃/sで急冷させることにより、Biの界 面への析出を避け、即ち、はんだ中にBiを分散させるこ とにより、界面のBiの偏析に起因した強度低下を防止す ることが望ましいことが分かった。これにより本来は界 面に析出されるBi層は無く、急冷によりBiがはんだ中の 広範囲に分散していることを実験で確認できた。また、 はんだにクラックが発生しないことも確認できた。

【0034】一方、急冷して欠陥を起こす主要因は短時 間の温度変化である。そこで、熱応力の発生を少なくす るため、固相線温度以下は0.1~5℃/sで徐冷する ことで短時間の温度変化による応力を緩和することが望 ましいことが分かった。

【0035】ところで、冷却速度は基板の熱容量にも関 係してくるので、冷却効果を上げるため固相線温度以下 の冷媒で冷やす必要がある。特に、冷媒が気体の場合は 気体の熱容量が小さいので、冷却効果を上げるには温度 を室温以下に下げて初期における冷却効果を上げないこ とには急冷できない。室温より冷えた気体を最初の段階 で使用しても、部品、基板への熱衝撃による悪影響は少 ない。気体を用いるメリットははんだ付け後に被覆され て保護膜として形成されているフラックスを破壊しない こと、コネクター内部の接点部等への影響がないこと等 である。

【0036】従って、望ましいプロセスとしては冷却時 に液相線近傍から固相線温度まで急激に冷却して短時間 で凝固させ、その後は徐冷することにより、応力を解放 させながら冷却することが望ましい。冷却性能として理 想的な冷媒は液体であり、はんだの固相線温度近くで沸 点を持つものが冷却性能としては理想的で、フロリナー トの場合、材料を選ぶことはある程度可能である。液体 から急激に蒸気となることにより、潜熱を奪われて冷却 効果を挙げることができる。

【0037】Biが7.5%より多い系では3元共晶が析出さ れるので、ここでの固相線温度は137℃である。冷却効 果を上げるためには同様に、基板及び部品等への熱影響 のない範囲で冷却温度を下げることができる。但し、は んだ自体の機械的性質、特に伸びはBiの変化に対して、 図4に示す界面強度特性とほぼ同様な傾向を示すことか ら、基板、部品の寸法・構造によっては、Biの多い組成 に対してはリフトオフは避けられても、はんだ自体のク ラック(粒界割れ)、Sn結晶粒界の欠陥(マイクロボイド 発生)が現れる。15%Biはんだの場合、100℃の湯に漬け 50 た急冷の場合(10℃/s)でも、図5の上段に示された水中 の場合に限られず、同様にはんだにクラックを発生している。この原因は、大きなストレスをはんだ全体で緩和できたことによるが、Biが多いことによりはんだ自体の機械的特性が劣るために起きる欠陥である。従って、Biが多い系で理想的なプロセスに近付けるには、固相線まで急冷して、その後徐冷することが必要である。15%Bi入りはんだで100℃と、シリコーンオイルを用いた137℃での急冷効果を確認したところ、外観上でも137℃の優位性が認められた。

【0038】他方、Biか7.5%以下の4%Bi入りはんだの場 10 合は固相温度は200℃であるが、100℃の湯(10℃/s)でも、室温の水(40℃/s)でもリフトオフを防止でき、かつクラック(粒界割れ)、マイクロボイド等の欠陥は見つからない。但し、両者の外観写真を比較すると、100℃の湯に漬けた場合(図5中段) Biが少ない系には水に漬けた場合(図5下段) より明らかに優れる。従って、Biが少ない系においては、冷却効果を上げるため、固相線温度にとらわれないで、それ以下の100~150℃まで下げることが可能である。欠陥が生じにくい原因はバルクはんだの機械的特性の良さにあるものと思われる。即ち、Bi 20 が少ない程良好な継手が得られる。

【0039】フラックスを洗浄する方式の場合は、はんだの固相線温度近くもしくはBiが少ない系において100~150℃で可能なフロリナート等を噴霧、又はシャワーで供給することにより、洗浄と冷却効果が同時に期待できる。この洗浄、冷却工程においては、冷却洗浄液の回収システムが必須である。洗浄方式の場合、フラックスの成分が洗浄液に溶けることが必要条件である。

【0040】水もしくは水の噴霧の場合は、水溶性のフラックスを使用する必要があるが、中途半端な洗浄は問 30 題となる。水の場合、低コストであるがコネクター等の接点への付着の汚れ、腐食、錆等の課題が残るので、構造的にも限定される。

【0041】フラックスの洗浄レス化が主流であるが、洗浄レス方式の場合、冷媒としては冷却したエアもしくは高温での酸化防止用に窒素を基板両面から吹き付けるのが望ましい。最初は冷却したエアもしくは窒素を吹き付け、はんだの固相線温度レベルに達した時、通常のエアで徐冷することで、フラックス保護膜を破壊させないで、かつ基板、部品等への熱衝撃を与えないで可能である。冷媒として液体、例えば水を使用すると、フラックスの被覆保護膜が高温の水、シャワー、噴霧水で局所的に破壊したり、付着のむらを起こすと絶縁性の劣化を起こす可能性があり厄介な問題となる。フラックスの被覆にクラックを与えないで可能な冷却方法にする必要がある。水を使用する場合、瞬時に蒸発させ、不純物が接点部に残らないようにすることが重要であり、残さの影響を考えて純度も考慮するプロセスとする。

【0042】液体に浸漬する方法としては、主にはんだ付け面側を冷却する方式も可能である。コネクターを使 50

用する場合、液体がコネクターの中に入らないようにす るため、はんだ付けと同様なやり方ではんだ付け面を液 体に浸漬するプロセスも可能である。また、このとき、 部品側は気体、噴霧、シャワー等を組み合わせても良 い。なお、液体の温度は一定に管理する必要がある。 【0043】次に、ダブルウエーブの窒素雰囲気のフロ ーソルダリングへの適用例を図6に示す。1は窒素チャ ンバーユニットで、ピン8付き部品7を搭載したプリン ト基板6が一次噴流ノズル9及び二次噴流ノズル10を 経て、冷却工程に移る断面(上段)、平面図(下段)を示 す。Sn-3Ag-7.5Bi(液相線:210℃,固相線:188℃)を 用いた場合の例を示す。基板をフロー直後、窒素雰囲気 の流れを乱さないで急冷させるため、炉と冷却機構の間 に熱遮蔽板3のカーテンを設け、先端には耐熱性のフィ ルム15が取り付けられ、搭載部品の通過に支障がない ように設計されている。熱遮蔽板の間及び、その後の冷 却板2間にクーラーから導入した冷却エア5,4がノズ ル14から流れる。窒素チャンバー1から出てくる窒素 11は上側及び下側に吸引される(一部、熱遮蔽板から でてくる窒素もしくはエア5も混入)ことにより、冷却 効果を上げている。熱遮蔽板の間からでてくる窒素もし くはエア、及び冷却板間からでてくるエアは基板が存在 するときは主に両側12で吸引される仕組みになってい る。13は各部を通過するときの基板のランド部の温度 で、はんだ付け部は245℃、熱遮蔽板3通過直後ははん だの液相線温度の210℃に合わせた。冷却板を通過した 時点でははんだの固相線温度の188℃より低めの180℃程 度とした。なお、サンプルによっては150℃(137℃以上) で冷却しても効果がある。この間、10℃/sで冷却するこ とにより、リフトオフを防止できる。図6の下段に温度 (t)と時間(s)のプロフィルを示した。急冷されるA点の 位置での基板ランド部の温度勾配が10℃/sとなる。な お、3元共晶が出る場合は固相線温度として137℃を考 慮する必要がある。冷却性能アップのために、冷媒温度 を下げること、流量を増すこと、基板の速度を遅くする ことは有効である。急冷には、冷媒を液体にすることは 効果がある。場合によっては、液相線温度での保温部を 設けると、フロー部への乱れの影響がなくなるので急冷 しやすくなる。なお、180℃以下は残留応力、ひずみを 緩和させながら冷却する必要があるため、約1℃/sで徐 冷した。これにより、健全な継手が得られる。他のはん だ組成においても同様な方法で、はんだの溶融特性に合 ったリフトオフ防止プロセス制御が可能である。

【0044】次に、窒素を使用しないフラックス洗浄レスプロセスに導入した例を図7に示す。熱遮蔽板3を境に沸点の高いフロリナート被17に浸漬して冷却するモデルを示し、部品7面は窒素、エア16を吹き付けても良く、あるいはフロリナートを噴霧、もしくはシャワーで散布しても良い。一連の流れ工程で可能であり、フロリナートのフロー浴は冷却機で一定温度に保たれてい

; 9

る。基板の温度制御プロセスは図6に示したものと同じ やりかたが可能である。この場合、フロリナートの代わ りに水を用いる場合、温度管理、不純物管理が重要とな る。

【0045】このようにフローにおける急冷プロセスを 導入することにより、すでに接合されてあるリフロー継 手に及ぼすフローの急冷効果の影響も期待できる。急冷 によるリフローによる継手のBiの偏析を防止できるの で、高信頼化が期待できる。

【0046】なお、これまでSn-Ag-Bi系の鉛フリーはん 10 示す。だを一例として説明してきたが、リフトオフ現象はBiの 無い系でも液相線と固相線との温度差で起きていること から、このことは他のSn系、例えばSn-Sb系、Sn-Cu系、 Sn-Zn系、Sn-In系等においても起こり得ることであり、 同様な対策、手法の適用が可能であることは言うまでも ない。当然のことながら、Agにおいては3%に限定する 1…望ものではない。 2…そ

[0047]

【発明の効果】本発明によれば、Biを含んだ鉛フリーはんだを用いた電子部品と回路基板との接続信頼性を向上 20 させ、接続不良の少ない電子回路基板の製造方法を提供することができる。特にはんだ接続時の温度プロファイルを適正化することによりその接続信頼性を向上させ、接続不良の少ない電子回路基板の製造方法を提供することができる。

【図面の簡単な説明】

【図1】Bi量とランド部はんだき裂長さの関係である。

10

【図2】ガラスエポキシ基板のリフトオフ現象とそのメ カニズムを示す。

【図3】Bi系はんだ中に含まれる3元共晶の量の測定法の原理を示す。

【図4】Sn-Ag-Bi系はんだのBi量と物性値、溶融特性、 強度等の関係を示す。

【図5】SEM写真によるスルーホール継手の外観観察を示す。

【図6】窒素雰囲気のフローソルダリングへの適用例を 示す断面、平面図である。

【図7】 フローソルダリングへの適用例を示す断面図である。

【符号の説明】

1…窒素チャンバー	10…二次噴流ノズル
2…冷却板	11…窒素
3 …熱遮蔽板	1 2 …吸引
4 …冷却エア	13…温度
5…冷却エア	14…ノズル
6…プリント基板	15…フィルム
7…部品	16…窒素、エア
8…ピン	17…フロリナート液
9…一次噴流ノズル	18…移動方向

【図1】

【図3】

【図2】

図 2

【図4】

図4

【図5】

【図6】

【図7】

図7

- 3. 熱運籔板 6. ブリント基板 7. 部品 9. 一次噴流ノズル 10. 二次噴流ノズル ⇒18 15. フィルム 16. 整素, エア 17. フロリナート液
- フロントページの続き

(72)発明者 下川 英恵

神奈川県横浜市戸塚区吉田町292番地株式

会社日立製作所生産技術研究所内

(72)発明者 芹沢 弘二

神奈川県横浜市戸塚区吉田町292番地株式

会社日立製作所生産技術研究所内

(72)発明者 天野 泰雄

神奈川県横浜市戸塚区吉田町292番地株式

会社日立製作所生産技術研究所内

(72)発明者 坂口 勝

神奈川県横浜市戸塚区吉田町292番地株式

会社日立製作所生産技術研究所内

(72)発明者 山口 博司

神奈川県横浜市戸塚区吉田町292番地株式

会社日立製作所生産技術研究所内