

UNCLASSIFIED

AD - 409 815 —

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S.

Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

409815

CATALOGED BY DDC
AS AD NO. _____

OFFICE OF NAVAL RESEARCH

Contract Nonr 1834(13)

Task No. NR 051-215

TECHNICAL REPORT NO. 65

NMR Identification of Substitutional Isomers in
Chelated Polycyclic Aromatic Systems

by

A. L. Porte and H. S. Gutowsky

Prepared for Publication

in the

Journal of Organic Chemistry

University of Illinois
Department of Chemistry and Chemical Engineering
Urbana, Illinois

June 1, 1963

Reproduction in whole or in part is permitted for
any purpose of the United States Government

NO OTS

NMR IDENTIFICATION OF SUBSTITUTIONAL ISOMERS IN
CHELATED POLYCYCLIC AROMATIC SYSTEMS¹

A. L. Porte² and H. S. Gutowsky

Noyes Chemical Laboratory, University of Illinois,
Urbana, Illinois

(1) Acknowledgment is made to the donors of The Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. Also, this work was supported by the Office of Naval Research.

(2) Now at Chemistry Department, The University, Glasgow, Scotland.

Some time ago we made a study of chemical shifts in chelated phenols which contain the structure I, where Y = -H, -CH₃ and -OCH₃, and from the results obtained,³ it seems likely that magnetic resonance methods may be

(3) A. L. Porte, H. S. Gutowsky, and I. M. Hunsberger, J. Am. Chem. Soc., 82, 5057 (1960).

useful in distinguishing between isomers of phenols with chelating substituents. The arguments which we will employ can easily be extended to other systems. The results exhibit two aspects by means of which the isomers may be distinguished on the basis of their high-resolution proton magnetic resonance spectra: (a) From the -OH proton chemical shift. In aromatic systems, the shift of a chelated -OH proton relative to the -OH peak in the corresponding parent phenol is quite large. We have found that this chemical shift is a linear function of the bond order of bond ₁C = ₂C, with the slope depending somewhat upon the substituent Y.³ If the shift is measured, then that part of the aromatic nucleus spanned by the chelated structure can be identified.

(b) From the chemical shift of the protons in Y. A large part of the chemical shift of a proton, which is situated near an aromatic system, arises from the π -electronic ring currents induced in the aromatic system when the molecule is placed in a magnetic field.^{4,5} It is this effect which leads to the other

(4) J. A. Pople, J. Chem. Phys., 24, 1111 (1956).

(5) J. A. Pople, W. G. Schneider, and H. J. Bernstein, High-resolution Nuclear Magnetic Resonance (McGraw-Hill Book Company, Inc., New York, 1959).

method of assigning the substituent position in polynuclear aromatic systems.

Method (a) is straightforward, direct, and requires little amplification.³ Method (b) we will discuss in more detail. To a first approximation, the π -electron currents induced in each six-membered ring can be replaced by an elementary dipole situated at the center of the ring. Each dipole exerts a secondary magnetic field at Y, which is inversely proportional to the third power of the distance between the dipole and Y. This secondary field is in the same direction as the applied magnetic field, provided Y lies in the same plane as the aromatic system. If Y does not lie in this plane, then the effective field is reduced until, eventually, the applied field may be opposed by a secondary field. The maximum opposition to the applied field occurs when Y lies on the perpendicular drawn through the center of the dipole.

It is quite easy to show^{4,5} that when Y does lie in the same plane as the aromatic system, then each secondary field causes a chemical shift of about $27.58/r^3$ parts per million if r, the distance from the protons or other magnetic nuclei in Y to the π -electronic dipole, is expressed in Angstrom units. Hence, if the dimensions of the molecule are known, the approximate relative chemical shifts of Y may be predicted for a series of similar compounds. These predicted shifts will be only approximately correct, because the π -electron systems are perturbed to different extents by interaction with the substituents, and this interaction, in its turn, modifies the diamagnetic circulations induced in the substituents. However, these effects are less important than the geometrical considerations outlined above, and they do not affect the qualitative arguments that are used.

The ring current shifts will be modified by solvent interactions, and so our arguments apply to solutions in which the solvent interactions are either negligible or very similar for the solutes in question.

II

III

IV

V

VI

With this qualification, one predicts that the downfield, ring-current shifts in compounds of types II to VI of the $\text{Y} = \text{H}$ proton absorption peaks should be about 0.175 p.p.m. on going from II to III, somewhat less on going from II to IV, and about 0.55 p.p.m. on going from II and III to V and VI. These predictions are in reasonable agreement with the observed shifts which in τ' units are

	II	III	V	VI
$\text{Y} = \text{H}$	0.04	-0.09	-0.71	-0.57

Here, negative values are downfield with respect to positive. These, and the other measurements given below, were made on dilute solutions in carbon tetrachloride using cyclohexane as an internal reference.³ The shifts were converted to the tetramethylsilane τ' scale by using a τ' value of 8.51 for cyclohexane.

In the case of the corresponding ketones, $\text{Y} = \text{CH}_3$, prediction of the ring current shifts is complicated by rotation about the $\text{C}-\text{CH}_3$ bond, but similar principles hold. The relative chemical shifts, however, will be smaller within this series than in the case of the aldehydes because the protons of the $-\text{CH}_3$ group are further away from the elementary induced dipoles and they do not lie in the same plane as the aromatic system. The observed shifts of the $-\text{CH}_3$ absorption peaks in τ' units are

	II	III	IV	V	VI
$\text{Y} = \text{CH}_3$	7.35	7.21	7.23	7.14	7.19

in qualitative agreement with the above arguments.

As an example of the use of these methods in structural determination, consider the position to be assigned to the $-\text{CYO}$ groups in an hydroxyanthral-dehyde (A) and in an hydroxy-anthranyl-methyl ketone (B) which melt at 167°C

and 116°C respectively. The $-\text{OH}$ proton line of A occurs at $\tau = -3.64$. This position is about 8.7₅ p.p.m. down-field from that expected³ for the $-\text{OH}$ position in either 1-hydroxy, or 2-hydroxyanthracene ($\tau \approx 5.1$) and is at the position expected for the chelated system VII.

in which the mobile bond order of the $\text{C}=\text{C}$ bond is 0.745.³ Hence, it follows that the $-\text{OH}$ and aldehyde group are chelated and that the chelated system must span the 1-2 bond in the anthracene nucleus. It can not span the 2-3 position, i.e. A is either VIII or IX.

The ring current effects enable us to distinguish between these two structures. The observed position of the $-\text{CHO}$ absorption peak, $\tau = -0.87$, is in the range predicted for structure VIII. For structure IX, the $-\text{CHO}$ τ value is predicted to be about -0.1, which differs so greatly from experiment that VIII must be the correct structure. This conclusion supports a structural determination based upon chemical arguments.^{6,7}

(6) J. L. Ferrari and I. M. Hunsberger, *J. Org. Chem.*, 25, 485 (1960).

(7) J. L. Ferrari, Ph.D. Thesis, Fordham University, 1962.

In a similar way, the -OH and -CH₃ chemical shifts, τ = -4.37 and 7.18 p.p.m. respectively, show³ that B is X.

Experimental

The samples and experimental procedure, with one exception, were the same in these experiments as described in an earlier report.³ The exception is the hydroxyanthraldehyde (A), the synthesis of which has been described elsewhere.^{6,7} Furthermore, we are indebted to Professor I. Moyer Hunsberger for furnishing the samples.

TECHNICAL REPORT DISTRIBUTION LIST

University of Illinois

Contract Nonr 1834(13)

NR 051-215

<u>No. Copies</u>	<u>No. Copies</u>
Commanding Officer Office of Naval Research Branch Office The John Crerar Library Building 86 East Randolph Street Chicago 1, Illinois	(1)
Commanding Officer Office of Naval Research Branch Office 346 Broadway New York 13, New York	(1)
Commanding Officer Office of Naval Research Branch Office 1030 East Green Street Pasadena 1, California	(1)
Commanding Officer Office of Naval Research Branch Office Box 39 Navy No. 100 Fleet Post Office New York, New York	(7)
Director, Naval Research Laboratory Washington 25, D.C. Attn: Technical Information Officer Chemistry Division	(6) (2)
Chief of Naval Research Department of the Navy Washington 25, D.C. Attn: Code 425 Code 421	(2) (1)
DDRandE Technical Library Room 3C-128, The Pentagon Washington 25, D.C.	(1)
Technical Director Research and Engineering Division Office of the Quartermaster General Department of the Army Washington 25, D.C.	(1)
Research Director Clothing and Organic Materials Division Quartermaster Research and Engineering Command U. S. Army Natick, Massachusetts	(1)
Air Force Office of Scientific Research (SRC-E) Washington 25, D.C.	(1)
Commanding Officer Diamond Ordnance Fuze Laboratories Washington 25, D.C. Attn: Technical Information Office Branch 012	(1)
Office, Chief of Research and Development Department of the Army Washington 25, D.C. Attn: Physical Sciences Division	(1)
Chief, Bureau of Ships Department of the Navy Washington 25, D.C. Attn: Code 342C	(2)
Chief, Bureau of Naval Weapons Department of the Navy Washington 25, D.C. Attn: Technical Library Code RRMA-3	(3) (1)
ASTIA Document Service Center Arlington Hall Station Arlington 12, Virginia	(10)
Director of Research U. S. Army Signal Research and Development Laboratory Fort Monmouth, New Jersey	(1)
Naval Radiological Defense Laboratory San Francisco 24, California Attn: Technical Library	(1)
Naval Ordnance Test Station China Lake, California Attn: Head, Chemistry Division	(1)
Commanding Officer Army Research Office Box CM, Duke Station Durham, North Carolina Attn: Scientific Synthesis Office	(1)

TECHNICAL REPORT DISTRIBUTION LIST

Page 2

Brookhaven National Laboratory Chemistry Department Upton, New York	(1)	Dr. H. E. Torrey Department of Physics Rutgers University New Brunswick, New Jersey	(1)
Atomic Energy Commission Division of Research Chemistry Programs Washington 25, D.C.	(1)	Dr. F. Bitter Department of Physics Massachusetts Institute of Technology Cambridge 39, Massachusetts	(1)
Atomic Energy Commission Division of Technical Information Post Office Box 62 Oak Ridge, Tennessee	(1)	ONR Resident Representative University of Illinois 605 S. Goodwin Urbana, Illinois	
U. S. Army Chemical Research and Development Laboratories Technical Library Army Chemical Center, Maryland	(1)	Dr. M. S. Newman Department of Chemistry Ohio State University Columbus, Ohio	(1)
Office of Technical Services Department of Commerce Washington 25, D.C.	(1)	Dr. Paul Bartlett Department of Chemistry Harvard University Cambridge 38, Massachusetts	(1)
Dr. S. Young Tyree, Jr. Department of Chemistry University of North Carolina Chapel Hill, North Carolina	(1)	Dr. Saul Winstein Department of Chemistry University of California Los Angeles, California	(1)
Dr. G. B. Kistiakowsky Department of Chemistry Harvard University Cambridge 38, Massachusetts	(1)	Dr. L. P. Hammett Department of Chemistry Columbia University New York 27, New York	(1)
Dr. G. E. Pake Department of Physics Stanford University Palo Alto, California	(1)	Dr. H. C. Brown Department of Chemistry Purdue University Research Foundation Lafayette, Indiana	(1)
Dr. E. M. Purcell Department of Physics Harvard University Cambridge 38, Massachusetts	(1)	Dr. J. D. Roberts Department of Chemistry California Institute of Technology Pasadena, California	(1)
Dr. F. Block Department of Physics Stanford University Palo Alto, California	(1)	Dr. R. W. Taft, Jr. Department of Chemistry Pennsylvania State University University Park, Pennsylvania	(1)
Dr. C. P. Slichter Department of Physics University of Illinois Urbana, Illinois	(1)	Commanding Officer ONR Branch Office 495 Summer Street Boston 10, Massachusetts Attn: Dr. A. L. Powell	(1)

TECHNICAL REPORT DISTRIBUTION LIST

Page 3

- Dr. G. Barth-Wehrenalp, Director
Inorganic Research Department
Pennsalt Chemicals Corporation
Post Office Box 4388
Philadelphia 18, Pennsylvania (2)
- Dr. Dudley Williams
Department of Physics
Ohio State University
Columbus, Ohio (1)
- Dr. M. J. S. Dewar
Department of Chemistry
University of Chicago
Chicago 37, Illinois (1)
- Dr. M. S. Cohen, Chief
Propellants Synthesis Section
Reaction Motors Division
Denville, New Jersey (1)
- Dr. D. A. Brown
Department of Chemistry
University College
Dublin, Ireland (1)
- Dr. Joyce J. Kaufman
RIAS
7212 Bellona Avenue
Baltimore 12, Maryland (1)
- Monsanto Research Corporation
Everett Station
Boston 49, Massachusetts
Attn: Mr. K. Warren Easley (1)
- Dr. B. B. Anex
Department of Chemistry
Yale University
New Haven, Connecticut (1)
- Dr. A. M. Zwickel
Department of Chemistry
Clark University
Worcester, Massachusetts (1)
- Dr. T. P. Onak
Department of Chemistry
Los Angeles State College
Los Angeles, California (1)
- Dr. T. L. Heying
Olin Mathieson Chemical Corporation
275 Winchester Avenue
New Haven, Connecticut (1)
- Dr. Henry Freiser
Department of Chemistry
University of Arizona
Tucson, Arizona (1)
- Dr. W. O. Milligan
Rice Institute
Post Office Box 189
Houston 1, Texas (1)
- Dr. Roald Hoffman
Department of Chemistry
Harvard University
Cambridge 38, Massachusetts (1)
- Headquarters
U. S. Army Missile Command
Redstone Arsenal, Alabama
Attn: AMSMI-RRD (Alfred C. Daniel) (1)