(19) World Intellectual Pr perty Organization International Bureau

(43) International Publication Date 15 February 2001 (15.02.2001)

PCT

(10) International Publication Number WO 01/11074 A2

(51) International Patent Classification7:

- (21) International Application Number: PCT/US00/21223
- (22) International Filing Date: 3 August 2000 (03.08.2000)
- (25) Filing Language:

English

C12Q

(26) Publication Language:

English

(30) Priority Data: 09/369,364

6 August 1999 (06.08.1999) US

- (71) Applicant (for all designated States except US): THE CLEVELAND CLINIC FOUNDATION [US/US]; 9500 Euclid Avenue, Cleveland, OH 44195 (US).
- (71) Applicants and
- (72) Inventors: APTE, Suneel, S. [IN/US]; 19917 Malvern Road, Shaker Hts., OH 44122 (US). HURSKAINEN, Tiina, L. [FI/FI]; Onnelantie 3A, FIN-90230 Oulu (FI). HI-ROHATA, Satoshi [JP/US]; 6809 Mayfield Road, #859, Mayfield Hts., OH 44124 (US).

- (74) Agent: DOCHERTY, Pamela, A.; Calfee, Halter & Griswold LLP, Suite 1400, 800 Superior Avenue, Cleveland, OH 44114 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

ADAM-TS RELATED PROTEIN-1 (ADAM-TSR1) ADAM-TS1 951 e.a. ADAM-TSR1 525 a.e. N- 1

74 A2

SIGNAL PEPTIDE

PRO-DOMAIN

METALLOPROTEASE DOMAIN

DISINTEGRIN-LIKE DOMAIN

THROMBOSPONDIN TYPE I REPEAT

CYSTEINE-RICH DOMAIN
CYSTEINE-POOR DOMAIN

UNIQUE DOMAINS

(57) Abstract: Isolated mammalian proteins having disintegrin-like and metalloprotease domains with thrombospondin type I motifs, i.e., ADAMTS proteins, are provided. The proteins are ADAMTS-5, ADAMTS-6, ADAMTS-7, ADAMTS-8, ADAMTS-9 and ADAMTS-10, collectively referred to as "ADAMTS-N". The present invention also provides isolated polynucleotides which encode an ADAMTS-N protein or a variant thereof, polynucleotide sequences complementary to such polynucleotides, vectors containing such polynucleotides, and host cells transformed or transfected with such vectors. The present invention also relates to antibodies which are immunospecific for one or more of the ADAMTS-N proteins. The present invention also relates to a protein referred to hereinafter as ADAMTS-R1 (ADAM-TS Related protein-1) and the polynucleotides which encode such protein.

-1-

NUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

Background of the Invention

This invention relates to isolated nucleic acid -molecules

5 which encode proteins belonging to a zinc metalloprotease family.

The zinc metalloproteases have been implicated in a variety of diseases and development disorders that involve* enhanced or depressed proteolysis of components of the extracellular matrix, receptors, or other extracellular molecules.

- More particularly, the invention relates to isolated nucleic acid molecules encoding proteins belonging to a subfamily of zinc metalloproteases referred to as "ADAMTS", an abbreviation for A Disintegrin-like And Metalloprotease domain with ThromboSpondin type I motifs. Proteins in the ADAMTS subfamily all possess a Zn 15 protease catalytic site consensus sequence (HEXXH+H), which suggests
- an intact catalytic activity for each of these proteins. The ADAMTS proteins also have putative N-terminal signal peptides and lack transmembrane domains, which suggests that the proteins in this subfamily are secreted. The proteins in the ADAMTS subfamily also
- 20 possess at least one thrombospondin type (TSP1) motif, which suggests a binding of these proteins to components of the extracellular matrix (ECM) or to cell surface components.

Members of the ADAMTS subfamily of proteins are ADAMTS-1,
ADAMTS-2, ADAMTS-3, and ADAMTS-4. ADAMTS-1 protein is selectively
25 expressed in colon 26 adenocarcinoma cachexigenic sublines. ADAMTS-1
mRNA is induced by the inflammatory cytokine interleukin-1 in vitro
and by intravenous administration of lipopolysaccharide in vivo.
Thus, the ADAMTS-1 protein is believed to play a role in tumor
cachexia and inflammation.

The ADAMTS-2 protein is also known as procollagen I/H aminopropetide processing enzyme or PCINP. The ADAMTS-2 protein catalyzes

-2-

cleavage of native triple-helical procollagen I and procollagen II.

The ADAMTS-2 protein also has an affinity for collagen XIV. Lack of the ADAMTS-2 protein is known to cause dermatosparaxis in cattle, or Ehlers-Danlos syndrome type VIIC (EDS-VIIC) in humans. EDS-VIIC is characterized clinically by severe skin fragility, and biochemically by the presence in skin of procollagen which is incompletely processed at the amino terminus. Thus, it is believed that the ADAMTS-2 protein plays a role in processing of procollagen to mature collagen, an essential step for correct assembly of collagen into 10 collagen fibrils. The ADAMTS-3 protein is similar in sequence to ADAMTS-2 and may have similar function.

The ADAMTS-4 protein catalyzes cleavage of the core protein of the extracellular matrix proteoglycan, aggrecan. Aggrecan degradation is an important factor in the erosion of articular cartilage in arthritic disease. Aggrecan fragments have been identified in cultures undergoing cartilage matrix degradation and in arthritic synovial fluids. Therefore, overexpression or activation 10 of ADAMTS-4 protein may be related to both inflammatory and non-inflammatory arthritis.

- On the basis of the structure, location, and the demonstrated proteolytic activity of ADAMTS proteins 1-4, it is expected that other members of the ADAMTS subfamily play a role in the cleavage of proteoglycan core proteins that are found in the extracellular matrix, such as, for example, versican, brevican, neuracan, NG-2,
- 25 aggrecan, as well as molecules such as collagen. It is also expected that other members of the ADAMTS subfamily play a role in embryogenesis, implantation of a fertilized egg, angiogenesis, arthritic degradation of cartilage, inflammation, nerve regeneration, tumor growth, and metastases.
- Thus, it is desirable to have other members of the ADAMTS

subfamily of proteins, the nucleic acids that encode such proteins, and antibodies that are specific for such proteins. Such molecules are useful research tools for studying development of the extracellular matrix during embryogenesis and fetal development, and 5 for studying disorders or diseases that are characterized by improper development of the extracellular matrix or enhanced or reduced destruction of the extracellular matrix. Such molecules, particularly the nucleic acids and the antibodies, are also useful tools for diagnosing such diseases or for monitoring the efficacy of therapeutic agents that have been developed to treat such diseases.

Summary of the Invention

The present invention provides novel, isolated, and substantially purified proteins having the characteristics of an 15 ADAMTS protein. The novel proteins are referred to hereinafter individually as "ADAMTS-5", "ADAMTS-6", "ADAMTS-7", "ADAMTS-8", "ADAMTS-9" and "ADAMTS-10", and collectively as "ADAMTS-N". In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set 20 forth set forth in SEQ ID NO: 2. In another embodiment, ADAMTS-5 is a human ADAMTS-5 protein which comprises amino acid 1 through amino acid 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, mature human ADAMTS-6 protein comprises amino acid 245 through amino acid 860 of SEQ ID NO: 6. In one embodiment, mature 25 human ADAMTS-7 protein comprises amino acid 233 through amino acid 997 of the sequence set forth in SEQ ID NO: 8. In one embodiment, mature ADAMTS-8 protein is a mouse protein which comprises amino acid 229 through amino acid 905 of the sequence set forth in SEQ ID NO: In another embodiment, ADAMTS-8 protein is a human protein which 30 comprises amino acid 1 through amino acid 245 of the sequence set forth in SEQ ID NO: 12. In one embodiment, mature ADAMTS-9 protein

is a human protein which comprises amino acid 236 through amino acid 1882 of the sequence set forth in SEQ ID NO: 14. In another embodiment, ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 974 of the sequence set forth in SEQ ID NO:

- 5 16. In one embodiment, mature ADAMTS 10 protein is a human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment, ADAMTS-10 protein is a mouse protein which comprises amino acid 1 through amino acid 547 of the sequence set forth in SEQ ID NO: 20.
- The present invention also provides isolated polynucleotides which encode an ADAMTS-N protein or a variant thereof, polynucleotide sequences complementary to such polynucleotides, vectors containing such polynucleotides, and host cells transformed or transfected with such vectors. The present invention also relates to antibodies which are immunospecific for one or more of the ADAMTS-N proteins. The present invention also relates to a protein referred to hereinafter as ADAMTS-R1 (ADAM-T-S Related protein-1) and the polynucleotides which encode such protein. In one embodiment, the ADAMTS-R1 protein comprises amino acid 1 through amino acid 525 of the sequence set

Brief Description of the Drawings
Figure 1 shows an amino acid sequence (SEQ ID NO:2) of a full-length
mouse ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 1)
which encodes such protein.

25 Figure 2 shows an amino acid sequence (SEQ ID NO:4) of a partial human ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 3) which encodes such protein.

Figure 3 shows an amino acid sequence (SEQ ID NO:6) of a full-length human ADAMTS-6 protein and a nucleic acid sequence (SEQ ID NO:5)

30 which encodes such protein.

Figure 4 shows an amino acid sequence (SEQ ID NO:8) of a full-length human ADAMTS-7 protein and a nucleic acid sequence (SEQ ID NO:7) which encodes such protein.

Figure 5 shows an amino acid sequence (SEQ ID NO: 10) of a full-

5 length mouse ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO:9) which encodes such protein.

Figure 6 shows an amino acid sequence (SEQ ID NO: 12) of a partial human ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO: 11) which encodes such amino acid sequence.

10 Figure 7 shows an amino acid sequence (SEQ ID NO: 14), of a full-length human ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 13) Which encodes such protein.

Figure 8 shows an amino acid sequence (SEQ ID NO: 16) of a partial mouse ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 15)

15 which encodes such amino acid sequence.

Figure 9 shows an amino acid sequence (SEQ ID NO:18) of a full-length human ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 17) which encodes such protein.

Figure 10 show's an amino acid sequence (SEQ ID NO:20) of a partial

- 20 mouse ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO,: 19) which encodes such amino acid sequence.
 - Figure 11 shows an amino acid sequence (SEQ ID NO:22) of a full length ADAMTS-R1 protein and a nucleic acid sequence (SEQ ID NO: 21) which encodes such protein.
- 25 Figure 12 depicts the cloning strategy used for isolation of a. mouse and human ADAMTS-5 cDNAs b. human ADAMTS-6 cDNA and c. human ADAMTS-7 cDNA. The domain organization of each protein relative to the cDNA clones (thin line) is shown as is the extent of overlap between clones. The original I.M.A.G.E. clones are underlined. Intronic 30 regions of incompletely spliced transcripts are shown by the angled

dotted lines. DNA scale marker (in bp) and amino acid scale marker are at upper right. Location of the probe used for in situ hybridization (ISH) is shown in a.

Figure 13 shows the predicted amino acid sequences of a. the mouse 5 and human ADAMTS-5 proteins (alignment shows mouse sequence above, partial human sequence below) b. ADAMTS-6, and c. ADAMTS-7. The active-site sequences and proposed Met-turn are enclosed in boxes. Potential furin cleavage site(s) are indicated by arrows.

Thrombospondin type-1 modules are underlined. Potential sites for N-

- 10 inked glycosylation are overlined. Cysteine residues within the context of an MMP-like "cysteine switch" are indicated by the solid circles. Other cysteine residues are indicated by asterisks. The prodomain extends until the furin cleavage site, and the catalytic domain extends from the furin cleavage site to the approximate start
- 15 of the disintegrin-like sequence (Dis). The start of the spacer domain is indicated; the region between the N-terminal TS domain and the spacer domain is the cysteine-rich domain. The single letter amino acid code is used.

Figure 14 shows Northern analysis of expression of ADAMTS-5, 6 and 7.

- 20 RNA kilobase markers are shown at left of each autoradiogram, and tissue origin is indicated above each lane. a. Mouse embryo northern blots. b. Human multiple adult tissue northern blots.
 - Figure 15 is a schematic representation of the domain structure of ADAMTS-R1 protein as compared to ADAMTS-1 protein.
- 25 Figure 16 shows an amino acid sequence (SEQ ID NO: 24) of an alternative embodiment of a full-length human ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 23) which encodes such protein.

 Figure 17 shows an amino acid sequence (SEQ ID NO: 26) of an alternative embodiment of human ADAMTS-9, which is a full-length

 30 protein designated as human ADAMTS-9b and a nucleic acid sequence

" (SEQ ID NO: 25) which encodes such protein.

Figure 18 is a schematic representation of the domain structure of human ADAMTS-9b protein as compared to human and mouse ADAMTS-9 protein.

5 <u>Detailed Description of the Invention</u> ADAMTS-N Proteins

The present invention relates to novel, isolated, substantially purified, mammalian proteins belonging to the ADAMTS subfamily of metalloproteases. As used herein, the term "substantially purified"

10 refers to a protein that is removed from its natural environment, isolated or separated, and at least 60% free, preferably 75% free, and most preferably 90% free from other components with which it is naturally associated.

The novel mammalian proteins are ADAMTS-5, ADAMTS-6, ADAMTS-7, 15 ADAMTS-8, ADAMTS-9 and ADAMTS-10, collectively ADAMTS-N. In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set forth in SEQ ID NO: 2. In another embodiment, the ADAMTS-5 protein is a human protein which comprises amino acid 1 through amino acid 20 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, .. ADAMTS-6 protein is a mat-Lire human protein which comprises amino acid 245 through amino acid 860 of SEQ ID NO:6. In one embodiment, the ADAMTS-7 protein is a mature human protein which comprises amino acid 233 through amino acid 997 of the sequence set forth in SEQ ID 25 NO: 8. In one embodiment, the ADAMTS-8 protein is a mature mouse protein which comprises amino acid 229 through amino acid 905 of the sequence set forth in SEQ ID NO: 10. In another embodiment, the ADAMTS-8 protein is a human protein which comprises amino acid 1 through amino acid 245 of the sequence set forth in SEO ID NO: 12. 30 In one embodiment, the ADAMTS-9 is a mature human protein which

comprises amino acid 236 through amino acid 1882 of the sequence set

-8-

forth in SEQ ID NO: 14. In another embodiment, the ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 874 of the sequence set forth in SEQ ID NO: 16. In another embodiment, the ADAMTS-9 designated ADAMTS-9b is a human protein 5 which is comprised of 1934 amino acids as set forth in SEQ ID NO 26. In one embodiment, the ADAMTS-10 protein is a mature human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment the ADAMTS- 10 protein is a mouse protein which comprises amino acid 1 . 10 through amino acid 525 of the sequence set forth in SEQ ID NO:20. In another embodiment, the ADAMTS-10 protein is a human protein which is comprised of 1072 amino acids as set forth in SEQ ID NO 24.

terminus comprise a signal sequence followed by a putative pro region

15 which contains a consensus sequence for furin cleavage (except for

ADAMTS-10), a catalytic domain, a domain of 60-90 residues with 35 to

45% similarity to snake venom disintegrins, a TS module, a cysteine

rich domain containing multiple conserved cysteine residues, a spacer

domain, and one or multiple C terminal TS modules. (See Figure 12.)

20 As determined using the BLAST software from the National Center for

Biotechnology Information, the predicted mature forms of the ADAMTS-N

proteins show an overall 20-30% similarity to each other and to

ADAMTS-1-4, although this may be considerably higher or lower for

individual domains as described below.

25 The ADAMTS-N proteins also encompass variants of the ADAMTS-N proteins shown in Figs. 1-10. A "variant" as used herein, refers to a protein whose amino acid sequence is similar to one of the amino acid sequences shown in Figs. 1-10, hereinafter referred to as the reference amino acid sequence, but does not have 100% identity with 30 the reference sequence. The variant protein has an altered sequence

-9-

in which one or more of the amino acids in the reference sequence is deleted or substituted, or one or more amino acids are inserted into the sequence of the reference amino acid sequence. As a result of the alterations, the variant protein has an amino acid sequence which 5 is at least 95% identical to the reference sequence, preferably, at least 97% identical, more preferably at least 98% identical, most preferably at least 99% identical to the reference sequence. Variant sequences which are at least 95% identical have no more than 5 alterations, i.e. any combination of deletions, insertions or 10 substitutions, per 100 amino acids of the reference sequence. Percent identity is determined by comparing the amino acid sequence of the variant with the reference sequence using MEGALIGN project in the DNA STAR program. Sequences are aligned for identity calculations using the method of the software basic local alignment 15 search tool in the BLAST network service (the National Center for Biotechnology Information, Bethesda, MD) which employs the method of Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) J. Mol. Biol. 215, 403-410. Identities are calculated by the Align program (DNAstar, Inc.) In all cases, internal gaps and amino 20 acid insertions in the candidate sequence as aligned are not ignored when making the identity calculation.

while it is possible to have nonconservative amino acid substitutions, it is preferred that the substitutions be conservative amino acid substitutions, in which the substituted amino acid has 25 similar structural or chemical properties with the corresponding amino acid in the reference sequence. By way of example, conservative amino acid substitutions involve substitution of one aliphatic or hydrophobic amino acids, e.g. alanine, valine, leucine and isoleucine, with another; substitution of one hydroxyl-containing 30 amino acid, e.g. serine and threonine, with another; substitution of

one acidic residue, e.g. glutamic acid or aspartic acid, with another; replacement of one amide-containing residue, e.g. asparagine and glutamine, with another; replacement of one aromatic, residue, e.g. phenylalanine and tyrosine, with another; replacement of one basic residue, e.g. lysine, arginine and histidine, with another; and replacement of one small amino acid, e.g., alanine, serine, threonine, methionine, and glycine, with another.

The alterations are designed not to abolish the immunoreactivity of the variant protein with antibodies that bind to the reference protein. Guidance in determining which amino acid residues may be substituted, inserted or deleted without abolishing immunoreactivity of the variant protein with an antibody specific for the respective reference protein are found using computer programs well known in the art, for example, DNASTAR software.

The ADAMTS-N proteins also encompass fusion proteins comprising an ADAMTS-N protein and a tag, i.e., a second protein or one or more amino acids, preferably from about 2 to 65 amino acids, more preferably from about 34 to about 62 amino acids, which are added to the amino terminus of, the carboxy terminus of, or any point within 20 the amino acid sequence of an ADAMTS-N protein, or a variant of such protein. Typically, such additions are made to stabilize the resulting fusion protein or to simplify purification of an expressed recombinant form of the corresponding ADAMTS-N protein or variant of such protein. Such tags are known in the art. Representative 25 examples of such tags include sequences which encode a series of histidine residues, the epitope tag FLAG, the Herpes simplex glycoprotein D, beta-galactosidase, maltose binding protein, or glutathione S-transferase.

The ADAMTS-N proteins also encompass ADAMTS-N proteins in which 30 one or more amino acids, preferably no more than 10 amino acids, in

the respective ADAMTS-N protein are altered by posttranslation processes or synthetic methods. Examples of such modifications include, but are not limited to, acetylation, amidation, ADP-ribosylation, covalent attachment of flavin, covalent attachment of a flavin, covalent attachment of a flavin, covalent attachment of a nucleotide or a lipid, cross-linking gamma-carboxylation, glycosylation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, sulfation, and transfer-RNA mediated additions of amino acids to 10 proteins such as arginylation and ubiquitination.

The ADAMTS-N proteins are immunogenic and, thus, are useful for preparing antibodies. Such antibodies are useful for identifying and diagnosing disorders which are associated with decreased expression or activity or increased expression of an ADAMTS-N protein. The 15 ADAMTS-N protein may also be useful for treating such disorder.

Diseases involving enhanced or depressed proteolyisis of the core proteins of the extracellular may involve enhanced expression or activity or decreased expression or activity of one or more ADAMTS-N proteins. Thus, ADAMTS-N proteins may be used to identify drugs,

20 polypeptides, auto-antibodies, or other natural compounds which bind to an ADAMTS-N protein with sufficient affinity to block or facilitate its activity. The activity of the ADAMTS-N protein is assayed in the presence and the absence of the putative inhibitor or facilitator using any of a variety of protease assays known in the

25 art. In general, the activity of the ADAMTS-N protein is assayed through the use of a peptide or protein substrate having a known or putative cleavage site for the ADAMTS-N protein. To detect cleavage or to monitor the extent of cleavage, the substrate is tagged in a manner which provides a detectable signal upon cleavage. For

side of the cleavage site and with a fluorescence-quenching group on the opposite side of the cleavage site. Upon cleavage by the substrate, quenching is eliminated and a detectable signal is produced. Alternatively, the substrate is tagged with a colorimetric leaving group that more strongly absorbs upon cleavage. Agents which block ADAMTS-N-catalyzed cleavage of a protein substrate may be administered to a subject to block proteolysis of the corresponding protein substrate.

ADAMTS-R1 Protein

The present invention also relates to a protein, referred to hereinafter as "ADAMTS-R1". From its amino to its carboxyl terminus, ADAMTS-R1 comprises a signal peptide sequence, a TS1 module, a cysteine-rich domain, a spacer domain, and three TS1 modules. Thus, ADAMTS-R1 has a structure which is related to or similar to an 15 ADAMTS-N protein, but which lacks a catalytic domain and a disintegrin-like domain. In one embodiment, ADAMTS-R1, protein comprises amino acid 1 through amino acid 525 of the amino acid sequence, SEQ ID NO:22, shown in Fig. 11. Such protein has a 30-40% overall sequence identity with similar regions of the ADAMTS-N 20 proteins. The ADAMTS-R1 proteins also encompass variants of the amino acid sequence shown in Fig. 11 and fusion proteins which contain the amino acid sequence shown in Fig. 11 or a variant thereof. On the basis of its domain organization, it is expected that ADAMTS-R1 can bind to extracellular matrix or cell surface 25 molecules, including ADAMTS-N substrates. Thus, it is expected that ADAMTS-R1 can be used as an cell-matrix or cell-cell adhesion molecule or an ADAMTS-N competitive inhibitor. The ADAMTS-R1 proteins are also useful for preparing antibodies. Such antibodies are useful for identifying tissues where ADAMTS-R1 is expressed and 30 for diagnosing disorders which are associated with decreased

:...

The present invention also provides isolated polynucleotides

expression or increased expression of. an ADAMTS-R1 protein.

Polynucleotides

which encode the mammalian ADAMTS-N proteins and the mammalian

5 ADAMTS-R1 protein. Figure 1 shows one embodiment of a
polynucleotide, SEQ ID NO: 1, which encodes the full-length mouse

ADAMTS-5 protein. Figure 2 shows one embodiment of a polynucleotide;

SEQ ID NO: 3, which encodes a partial human ADAMTS-5 protein. Figure

3 shows one embodiment of a polynucleotide; SEQ ID NO: 5, which

- 10 encodes a full-length human ADAMTS-6 protein. Figure 4 shows one embodiment of a polynucleotide; SEQ ID NO: 7, which encodes a full-length human ADAMTS-7 protein. Figure 5 shows one embodiment of a polynucleotide; SEQ ID NO: 9, which encodes a full-length mouse ADAMTS-8 protein. Figure 6 shows one embodiment of a polynucleotide;
- 15 SEQ ID NO: 11, which encodes a partial human ADAMTS-8 protein.

 Figure 7 shows one embodiment of a polynucleotide; SEQ ID NO: 13,

 which encodes a full-length human ADAMTS-9 protein. Figure 8 shows

 one embodiment of a polynucleotide; SEQ ID NO: 15, which encodes a

 partial ADAMTS-9 protein. Figure 9 shows one embodiment of a
- 20 polynucleotide; SEQ ID NO: 17, which encodes a full-length human ADAMTS-10 protein. Figure 10 shows one embodiment of a polynucleotide; SEQ ID NO: 19, which encodes a partial mouse ADAMTS-10 protein. Figure 11 shows one embodiment of a polynucleotide; SEQ ID NO: 21, which encodes a full-length ADAMTS-R1 protein.
- Due to the known degeneracy of the genetic code wherein more than one codon can encode the same amino acid, a DNA sequence may vary from that shown in SEQ ID NO: 1 and still encode an ADAMTS-5 protein having the amino acid sequence of SEQ ID NO: 2. Similarly, a DNA sequence may vary from that shown in SEQ ID NO:5, and still encode an ADAMTS-6 protein having the amino acid sequence set forth

-14-

in SEQ ID NO:6. Similarly a DNA sequence may vary from that shown in SEQ ID NOS: 7, 9, 11, and 13, and still encode the amino acid sequences shown in SEQ ID NOS: 8, 10, 12, and 14, respectively. Such variant DNA sequence may result from silent mutations, such as for example those that occur during PCR amplification or from deliberate mutagenesis of a native sequence.

The present polynucleotides also encompass polynucleotides having sequences that are capable of hybridizing to the nucleotide sequences of FIGS 1 - 11 under stringent conditions, preferably 10 highly stringent conditions. Hybridization conditions are based on the melting temperature™ of the nucleic acid binding complex or probe, as described in Berger and Kimmel (1987) Guide to Molecular Cloning Techniques, Methods in Enzymology, vol 152, Academic Press. The term "stringent conditions, as used herein, is the "stringency" 15 which occurs within a range from about Tm-5 (5° below the melting temperature of the probe) to about 20° C below Tm. As used herein "highly stringent" conditions employ at least 0.2 x SSC buffer and at least 65° C. As recognized in the art, stringency conditions can be attained by varying a number of factors such as the length and 20 nature, i.e., DNA or RNA, of the probe; the length and nature of the target sequence, the concentration of the salts and other components, such as formamide, dextran sulfate, and polyethylene glycol, of the hybridization solution. All of these factors may be varied to generate conditions of stringency which are equivalent to the 25 conditions listed above.

The present polynucleotides also encompasses alleles of the ADAMTS-N and ADAMTS-R1 encoding sequences. As used herein, an allele or allelic sequence is an alternative form of an ADAMTS-N or ADAMTS-R1 encoding sequence which is present at the same gene locus. The 30 allele may result from one or more mutations in the ADAMTS-N or

-15-

ADAMTS-R1 encoding sequence. Such mutations typically arise from natural addition, deletion of substitution of nucleotides in the open reading frame sequences. Any gene which encodes an ADAMTS-N protein or ADAMTS-RI protein may have none, one, or several allelic forms.

5 Such alleles are identified using conventional techniques, such as

5 Such alleles are identified using conventional techniques, such as for example screening libraries with probes having sequences identical to or complementary with one or more ADAMTS-N polynucleotides.

The present polynucleotides also encompass altered

10 polynucleotides which encode ADAMTS-N proteins, ADAMTS-R1 proteins, and variants thereof. Such alterations include deletions, additions, or substitutions. Such alterations may produce a silent change and result in an ADAMTS-N protein having the same amino acid sequence as the ADAMTS-N protein encoded by the unaltered polynucleotide. Such alterations may produce a nucleotide sequence possessing nonnaturally occurring codons. For example, codons preferred by a particular prokaryotic or eucaryotic host may be incorporated into the nucleotide sequences showing Figures 1 -11 to increase the rate of expression of the proteins encoded by such sequences. Such 20 alterations may also introduce new restriction sites into the sequence or result in the production of an ADAMTS-N or ADAMTS-RI variant. Typically, such alterations are accomplished using sitedirected mutagenesis.

The polynucleotides are useful for producing ADAMTS-N or

25 ADAMTS-R1 proteins. For example, an RNA molecule encoding an ADAMTSN protein is used in a cell-free translation systems to prepare such
protein. Alternatively, a DNA molecule encoding an ADAMTS-N protein
is introduced into an expression vector and used to transform cells.
Suitable expression vectors include for example chromosomal,

30 nonchromosomal and synthetic DNA sequences, e.g., derivatives of

SV40, bacterial plasmids, phage DNAs; yeast plasmids, vectors derived from combinations of plasmids and phage DNAs, viral DNA such as vaccinia, adenovirus, fowl pox virus, pseudorabies, baculovirus, and retrovirus. The DNA sequence is introduced into the expression 5 vector by 5 conventional procedures.

Accordingly, the present invention also relates to recombinant constructs comprising one or more of the present polynucleotide sequences. Suitable constructs include, for example, vectors, such as a plasmid, phagemid, or viral vector, into which a sequence that, 10 encodes an ADAMTS-N protein or an ADAMTS-R1 protein has been inserted. In the expression vector, the DNA sequence which encodes the ADAMTS-N protein is operatively linked to an expression control sequence, i.e., a promoter, which directs mRNA synthesis. Representative examples of such promoters, include the LTR or SV40 15 promoter, the E. coli lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or in viruses. The promoter may also be the natural promoter of the ADAMTS-N encoding sequence. The expression vector, preferably, also contains a ribosome binding site for 20 translation initiation and a transcription terminator. Preferably, the recombinant expression vectors also include an origin of replication and a selectable marker, such as for example, the ampicillin resistance gene of E. coli to permit selection of transformed cells, i.e. cells that are expressing the heterologous 25 DNA sequences. The polynucleotide sequence encoding the ADAMTS-N protein is incorporated into the vector in frame with translation initiation and termination sequences.

The polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein are used to express recombinant protein using techniques well known 30 in the art. Such techniques are described in Sambrook, J. et al.

(1989) Molecular Cloning A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. and Ausubel, F. M. et al. (1989) Cuurent Protocols in Molecular Biology, John Wile & Sons, New York, NY.

Polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein may

5 also be used for diagnostic purposes. The polynucleotides may be

used to detect and quantify ADAMTS-N or ADAMTS-R1 gene transcripts in

biopsied tissues in which enhanced expression or reduced expression

of the corresponding ADAMTS-N or ADAMTS-RI gene is correlated with a

disease. The diagnostic assay may be used to determine whether

10 expression is absent, present, or altered and to determine whether

certain therapeutic agents modulate expression of the corresponding

ADAMTS-N or ADAMTS-R1 gene.

Also encompassed by the present invention, are single stranded polynucleotides, hereinafter referred to as antisense

- and RNA sequences which encode the ADAMTS-N or ADAMTS-R1 proteins.

 The term complementary as used herein refers to the natural binding of the polynucleotides under permissive salt and 5 temperature conditions by base pairing.
- The present invention also encompasses oligonucleotides that are used as primers in polyrnerase chain reaction (PCR) technologies to amplify transcripts of the genes which encode the ADAMTS-N and ADAMTSR-1 proteins or portions of such transcripts. Preferably, the primers comprise 18-30 nucleotides, more preferably 19-25
- 25 nucleotides. Preferably, the primers have a G+C content of 40% or greater. Such oligonucleotides are at least 98% complementary with a portion of the DNA strand, i.e., the sense strand, which encodes the respective ADAM-TS family protein or a portion of its corresponding antisense strand. Preferably, the primer has at least 99%
- 30 complementarity, more preferably 100% complementarity, with such

sense strand or its corresponding antisense strand. Primers which are which have 100% complementarity with the antisense strand of a double-stranded DNA molecule which encodes an ADAMTS-N protein have a sequence which is identical to a sequence contained within the sense 5 strand. The identity of primers which are 15 nucleotides in length and have full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences, shown in FIG I - 11 and described by the general formula a-b; where a is any integer between 10 I and the position number of the nucleotide which is located 15 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG 1 -11; where b is equal to a+14; and where both a and b correspond to the positions of nucleotide residues

The present invention also encompasses oligonucleotides that are useful as hybridization probes for for isolating and identifying cDNA clones and genomic clones encoding the ADAMTS-N or ADAMTS-R1 protein or allelic forms thereof. Such hybridization probes are also useful for detecting transcripts of the genes which encode the ADAMTS-N family proteins or for mapping of the genes which encode the ADAMTS-N proteins Preferably, such oligonucleotides comprise at least 210 nucleotides, more preferably at least 230, most preferably from about 210 to 280 nucleotides. Such hybridization probes have a sequence which is at least 90% complementary with a sequence 25 contained within the sense strand of a DNA molecule which encodes an ADAMTS-N protein or ADAMTS-R1 protein or with a sequence contained within its corresponding antisense strand. Such hybridization probes

bind to the sense strand under stringent conditions. The term

"stringent conditions" as used herein is the binding which occurs

30 within a range from about Tin 5'C (5'C below the melting temperature

Tm of the probe) to about 20°C to 25°C below Tm. The probes are used in Northern assays to detect transcripts of ADAMTS-N homologous genes and in Southern assays to detect ADAMTS-N homologous genes. The identity of probes which are 200 nucleotides 5 in length and have 5 full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences shown in FIG 1 - 10 and described by the general formula a-b; where a is any integer between I and the position number of the nucleotide which is located 200 .

10 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG 1 -10; b is equal to a +200; and where both a and b correspond to the positions of nucleotide residues of the cDNA sequences shown in FIG 1-10.

Such probes or primers are also useful for identifying tissues 15 or cells in which the corresponding ADAMTS-N or ADAMTS-R1 gene is preferentially expressed either constitutively or at particular state of tissue differentiation or development or in disease states. Expression of the ADAMTS-N or ADAMTS-R1 gene in a particular tissue or group of cells is determined using conventional procedures 20 including, but not limited to, Northern analysis, in situ hybridization to RNA or RT-PCR amplification. Isolated polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein are also useful as chromosome markers to map linked gene positions, to identify chromosomal aberrations such as translocations, inversions 25 and trisomies, to compare with endogenous DNA sequences in patients to identify potential genetic disorders, and as probes to hybridize and thus discover novel, related DNA sequences. For use in such studies and assays, the probes may be labeled with radioisotopes, fluorescent labels, or enzymatic labels. The assays include, but are 30 not limited to, Southern blot, in situ hybridization to DNA in cells

-20-

and chromosomes, PCR, and allele specific hybridization.

Antibodies

In another aspect, the present invention relates to antibodies which are specific for and bind to the ADAMTS-5 protein, the ADAMTS-6 5 protein, the ADAMTS-7 protein, the ADAMTS-8 protein, the ADAMTS-9 protein, the ADAMTS-10 protein, or the ADAMTS-R1 protein. Such antibodies are useful research tools for identifying *tissues that contain elevated levels of the respective protein and for purifying the respective protein from cell or tissue extracts, medium of 10 cultured cells, or partially purified preparations of intracellular and extracellular proteins by affinity chromatography. Such antibodies are also useful for identifying and diagnosing diseases associated with elevated or reduced levels of an ADAMTS-N protein or ADAMTS-R1 protein. Such antibodies are also useful for monitoring 15 the effect of therapeutic agents on the synthesis and secretion of ADAMTS-N proteins by cells in vitro and in vivo. Such antibodies may also be employed in procedures, such as co-immunoprecipitation and co-affinity chromatography, for identifying other proteins, activators and inhibitors which bind to an ADAMTS-N or ADAMTS-R1 20 protein.

The present invention also provides a method for detecting an ADAMTS-N or ADAMTS-R1 protein, in a bodily sample from a patient using antibodies immunospecific for an ADAMTS-N or ADAMTS-R1 protein. The method comprises contacting the antibody with a sample taken from the patient; and assaying for the formation of a complex between the antibody and the corresponding ADAMTS-N or ADAMTS-R1 protein present in the sample. The sample may be a tissue or a biological fluid, including but not limited to whole blood, serum, synovial fluid, stool, urine, cerebrospinal fluid, semen, diagnostic washes from trachea, stomach and other bowel segments, tissue biopsies or excised

-21-

tissue, cells obtained from swabs and smears. To monitor changes in expression of the ADAMTS-N protein during fetal development and pregnancy, it is preferred that the sample be amniotic fluid. To monitor changes in expression of the ADAMTS-N protein during joint 5 disorders, the preferred sample is synovial fluid. To monitor changes in expression of ADAMTS-N proteins during cancer, the preferred samples include, but are not limited to, serum, body fluids, or biopsy tissue. To monitor changes in expression of ADAMTS-N proteins during inflammation the preferred samples include; 10 but are not limited to, serum, body fluids, or biopsy tissue.

The sample may be untreated, or subjected to precipitation; fractionation, separation, or purification before combining with the anti-ADAMTS-N protein antibody. For ease of detection, it is

preferred that isolated proteins from the sample be attached to

15 a substrate such as. a column, plastic dish, matrix, or membrane,

preferably nitrocellulose. Preferably, the detection method employs
an enzyme-linked immunosorbent assay (ELISA) or a Western immunoblot

procedure.

Interactions between an ADAMTS-N protein in the sample and the

20 corresponding anti ADAMTS-N antibody are detected by radiometric,
colorimetric, or fluorometric means, size separation, or
precipitation. Preferably, detection of the antibody-ADAMTS-N
protein complex is by addition of a secondary antibody that is
coupled to a detectable tag, such as for example, an enzyme,

25 fluorophore, or chromophore. Formation of the complex is indicative
of the presence of the ADAMTS-N protein in the test sample. Thus,
the method is used to determine whether there is a decrease or
increase in the levels of the ADAMTS-N protein in a test sample as
compared to levels of the ADAMTS-N protein in a control sample and to

30 quantify the amount of the ADAMTS-N protein in the test sample.

Deviation between control and test values establishes the parameters for diagnosing the disease.

Preparing the ADAMTS-N proteins and the ADAMTS-R1 protein

The ADAMTS-N proteins and the ADAMT-SR1 protein may be produced 5 by conventional peptide synthesizers. The ADAMTS-N proteins and the ADAMTS-R1 protein may also be produced using cell-free translationsystems and RNA molecules derived from DNA constructs that encode an ADAMTS-N protein or an ADAMTS-RI protein. Alternatively, ADAMTS-N proteins are made by transfecting host cells with expression 10 vectors that comprise a DNA sequence that encodes the respective ADAMTS-N protein and then inducing expression of the protein in the host. cells. For recombinant production, recombinant constructs comprising one or more of the sequences which encode the ADAMTS-N protein or a variant thereof are introduced into host cells by 15 conventional methods such as calcium phosphate transfection, DEAEdextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape lading, ballistic introduction or infection.

The ADAMTS-N protein and the ADAMTS-R1 protein may be expressed 20 in suitable host cells, such as for example, mammalian cells, yeast, bacteria, insect cells or other cells under the control of appropriate promoters using conventional techniques. Suitable hosts include, but are not limited to, E. coli, P. pastoris, Cos cells and 293 HEK cells. Following transformation of the suitable host strain and growth of the host strain to an appropriate cell density, the cells are harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification of the ADAMTS-N protein or the ADAMTS-R1 protein.

Conventional procedures for isolating recombinant proteins from 30 transformed host cells, such as isolation by initial extraction from

cell pellets or from cell culture medium, followed by salting-out, and one or more chromatography steps, including aqueous ion exchange chromatography, size exclusion chromatography steps, and high performance liquid chromatography (HPLC), and affinity chromatography 5 may be used to isolate the recombinant ADAMTS-N protein or ADAMTS R1 protein

Preparation of Antibodies

The ADAMTS-N proteins, and variants thereof are used as immunogens to produce antibodies immunospecific for one or more

10 ADAMTS-N protein. The term "immunospecific" means the antibodies have substantially greater affinity for one or more ADAMTS-N protein than for other proteins. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, and Fab fragments.

- Antibodies are also prepared using an oligopeptide having a sequence which is identical to a portion of the amino acid sequence of an ADAMTS-N protein. Preferably the oligopeptide has an amino acid sequence of at least five amino acids, and more preferably, at least 10 amino acids that are identical to a portion of the amino
- 20 acid sequence of an ADAMTS-N protein. Such peptides are conventionally fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule. One preferred oligopeptide for preparing an antibody to mouse ADAMTS-5 has the sequence (C)HIKVRQFKAKDQTRF, SEQ ID NO: 30.
- 25 Another preferred oligopeptide for preparing an antibody to ADAMTS-5 is CEAKNGYQSDAKGVKTFVEWVPKYAG, SEQ ID NO: 3 1. One preferred oligopeptide for preparing an antibody to ADAMTS-6 has the sequence SVSIERFVETLVVADK(C), SEQ ID NO:23. One preferred oligopeptide for preparing an antibody to ADAMTS-7 has the sequence
- 30 (C) EVAEAANFLALRSEDPEKY, SEQ ID NO:24. One preferred oligopeptide for

preparing an antibody to ADAMTS-8 has the sequence CVKEDVENPKAVVDGDWGP, SEQ ID NO:25. One preferred oligopeptide for preparing an antibody to ADAMTS-9 has the sequence QHPFQNEDYRPRSASPSRTH, SEQ ID NO:26. Another preferred oligopeptide

- 5 for preparing an antibody to ADAMTS-9 has the sequence
 PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27. One preferred oligopeptide for
 preparing an antibody for ADAMTS-R1 has the sequence QELEEGAAVSEEPS,
 SEQ ID NO:28. Another preferred oligopeptide for preparing an
 antibody for ADAMTS-R1 has the sequence YYPENIKPKPKLQE; SEQ ID NO:29.
- 10 Polyclonal antibodies are generated using conventional techniques by administering the ADAMTS-N protein or achimeric molecule to a host animal. Depending on the host species, various adjuvants may be used to increase immunological response. Among adjuvants used in humans, Bacilli Calmette-Guerin (BCG), and
- 15 Corynebacterium parvum. are especially preferable. Conventional protocols are also used to collect blood from the immunized animals and to isolate the serum and or the IgG fraction from the blood.

For preparation of monoclonal antibodies, conventional hybridoma techniques are used. Such antibodies are produced by continuous cell lines in culture. Suitable techniques for preparing monoclonal antibodies include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV hybridoma technique.

Various immunoassays may be used for screening to identify

25 antibodies having the desired specificity. These include protocols which. involve competitive binding or immunoradiometric assays and typically involve the measurement of complex formation between the respective ADAMTS-N protein and the antibody.

Polynucleotides that encode ADAMTS-N proteins

30 Polynucleotides comprising sequences encoding an ADAMTS-N

-25-

protein or an ADAMTS-R1 protein may be synthesized in whole or in part using chemical methods. Polynucleotides which encode an ADAMTS-N protein, particularly alleles of the genes which encode the ADAMTS-N protein, may be obtained by screening a genomic library or 5 cDNA library with a probe comprising sequences identical or complementary to the sequences shown in Figures 1 - 10 or with antibodies immunospecific for a ADAMTS-N protein to identify clones containing such polynucleotide.

Example 1 ADAMTS-512 protein

A cDNA encoding mouse ADAMTS-5 protein was obtained using IMAGE 10 Clone 569515, purchased from Research Genetics, Huntsville, Alabama and 7 day old mouse embryo cDNA library from Clontech, Palo Alto, CA. A cDNA encoding human ADAMTS-5 protein was obtained using IMAGE Clone 345484 purchased from Research Genetics, Huntsville, Alabama 15 and a human fetal brain cDNA from Clontech. The clone inserts were sequenced in their entirety. Using oligonucleotide primers based on the sequences at the ends of the. clone inserts as template, successive rounds of RACE (Rapid Amplification of cDNA Ends) by PCR was performed at 5' and 3 ends. RACE primers were generated 50-200 20 bp from the ends of the sequences so that the contiguity of RACE clones with the I.M.A.G.E. clone could be clearly established. A single round of 5' and 3' 20 RACE sufficed for cloning of the entire coding sequence of the mouse ADAMTS-5 protein and part of the catalytic zinc binding site through to the stop codon of the human 25 ADAMTS-5 protein. Primers were designed with calculated Tm>72°C and RACE was performed with nested primers for each amplification. PCR used the Advantage PCR reagents (Clontech, Palo Alto, CA); the polymerase mix contained both Taq polymerase as well as proofreading polymerase to minimize PCR errors and employed "hot-start" PCR for 30 optimal efficiency. RACE used the following "touch-down" cycle

-26-

conditions; 95°C for 1 minute followed by 5 cycles of 95°C for 0.5 minutes, 72°C for 5 minutes, then 5 cycles of 95°C for 0.5 minutes, 70°C for 5 minutes and 20 cycles of 95°C for 0.5 minutes, 68°C for 5 minutes. The PCR products were analyzed by Southern blotting, 5 initially using [\alpha^{32}P]-dCTP labeled.

Hybridizing bands were ligated into pGEM-T Easy (Promega,
Madison, WI) and individual clones were selected by another round of
Southern analysis. Automated nucleotide sequencing of both strands
of each clone were done at the Molecular Biotechnology Core of the 10

Lerner Research Institute, Cleveland Clinic Foundation and nucleotide
sequence data were analyzed using the DNAStar software. By
integration of the overlapping sequences thus obtained, a contiguous
nucleotide sequence was determined. The nucleotide sequence of the
mouse ADAMTS-5 cDNA and the predicted amino acid sequence of the
15 protein encoded by this cDNA are shown in Fig. 1. The nucleotide
sequence of the human ADAMTS-5 cDNA and the predicted partial amino
acid sequence of the protein encoded by this cDNA are shown in Fig.
2.

The predicted molecular mass (Mr) of the mature ADAMTS-5

20 protein is 73717.50 daltons. It is expected that the actual Mr of the active ADAMTS-5 protein is different due to post-translational modification, which could potentially increase the Mr. The predicted domain organization of ADAMTS-5 protein relative to the cloned cDNA is shown in Figure 12. The pro-domain of the full-length mouse

25 ADAMTS-5 protein has 3 consensus cleavage signals for furin. The most carboxyl-terminal furin cleavage site in ADAMTS-5 predicts the processing site for generation of the mature protein The catalytic domain of the ADAMTS-5 protein contains eight cysteine residues and a reprolysin -zinc binding signature sequence, i.e., HEIGHLLGLSHD.

30 Five cysteine residues are upstream of the zinc binding sequence,

· while three residues are downstream, an arrangement that is shared with other ADAMTS members. The zinc binding signature is followed by a "Met-turn". The catalytic domain is followed by a domain with 35% similarity to snake venom disintegrins. The disintegrin domain 5 contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserved cysteine-rich sequence termed the cysteine-rich domain, designated "CRD", to distinguish it from the cysteine-free spacer domain. The CRD contains ten conserved cysteines and demonstrates high sequence homology with the CRD of -10 other ADAMTS-N proteins. The spacer domain of mouse ADAMTS-5 is 158 amino acids in length and is followed by a second TS module. ADAMTS-5 contains three potential glycosylation sites in the mature protease one of which is just upstream of the start of the spacer domain and the second lies within the spacer domain and the third is near the 15 start of the disintegrin domain. The human ADAMTS-5 protein and the mouse ADAMTS-5 protein have 96% sequence identity. ADAMTS-5 bears 46% sequence identity to ADAMTS-4 (KIAA0688), which is characterized as being involved in catabolism of aggrecan core protein in arthritis and 60% identity to ADAMTS-1 which is involved in inflammation.

20 Example 2 ADAMTS-6

30 within the ORF.

length ADAMTS-6 protein was obtained using IMAGE clone 742630, which encodes EST AA400393, and a human fetal brain cDNA from Clontech.

RACE was performed as described above in Example 1. The I.M.A.G.E.

25 clone 742630 contained an ORF flanked by consensus splice sequences, indicating the presence of introns. Two successive rounds of RACE at the 5' end and a single round of RACE at the 3' end provided the complete coding sequence of ADAMTS-6. The putative ATG codon is within a Kozak consensus sequence and encodes the first methionine

The nucleotide sequence of a human cDNA encoding the full-

-28-

The nucleotide sequence of the ADAMTS-6 DNA is shown in Fig. 3 The predicted amino acid sequence, SEQ ID NO:6, of the ADAMTS-6 protein is also shown in Fig. 3. The predicted Mr of the fulllength, unprocessed ADAMTS-6 protein is 97,115 daltons., and the 5 predicted Mr of the mature ADAMTS-6 protein is 68412.10 daltons. The domain organization of the ADAMTS-6 protein is shown in Fig. 12. The pro-domain of the full-length ADAMTS-6 protein has one consensus cleavage signal for furin. The catalytic domain of the ADAMTS-6 contains six cysteine residues and the reprolysin -zinc binding 10 signature sequence, HEIVHNFGMNHD, which is followed by a "Met-tum". The catalytic domain is followed by a domain with 35% similarity to disintegrins. The disintegrin domain contains snake venom eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserve CRD sequence which contains ten 15 conserved cysteines and demonstrates high sequence homology with the CRD of other ADAMTS proteins. The spacer domain of ADAMTS-6 is 127 amino acids in length and is followed by a second TS module. ADAMTS-6 contains four potential glycosylation sites within the pyo-domain and two in the mature protease one of which is in the cysteine rich 20 domain and the other of which is in the spacer domain. ADAMTS-6 bears 46% sequence identity to ADAMTS-1, which is involved in inflammation.

Example 3 ADAMTS-7.

The nucleotide sequence of a cDNA encoding an ADAMTS-7 protein

25 was obtained using IMAGE clone 272098, which encodes EST N4.8032, and
a human fetal brain cDNA from Clontech. RACE was performed as
described above in Example 1. The I.M.A.G.E. clone 272098 encoded a
putative pre-pro region and was extended in the 3'-direction by two
successive rounds of RACE. A typical signal peptide sequence lies

30 downstream of the first methionine in the translated ORF. This

methionine codon lies within a satisfactory Kozak consensus for translation initiation.

The nucleotide sequence of the ADAMTS-7 cDNA is shown in Fig.

4. The predicted amino acid sequence, SEQ ID NO: 8, of the ADAMTS-7

- 5 protein is also shown in Fig. 4. The predicted Mr of the hilllength, unprocessed ADAMTS-7 protein is 116,607 daltons, and the
 predicted Mr of the mature ADAMTS-7 protein is 84005 daltons. The
 domain organization of the ADAMTS-7 protein is shown in Fig. 12. The
 pro-domain of the full-length ADAMTS-7 protein has one consensus

 10 cleavage signal for furin. The catalytic domain of the ADAMTS-7
 protein contains eight cysteine residues and the reprolysin-zinc
 binding signature sequence, HELGHSFGIQHD, which is followed by a

 "Met-tum". The catalytic domain is followed by a domain with 30%
 similarity to snake venom disintegrins The disintegrin domain
 15 contains eight cysteine residues. The first TS repeat contains 52
 residues and is followed by a conserved CRD sequence which contains
 ten conserved cysteines. The spacer domain of ADAMTS-7 is 221 amino
 acids in length and is followed by a second TS module and a short
 sequence containing two cysteine residues. ADAMTS-7 contains three
- 20 potential glycosylation sites within the mature protease; one of which is just upstream of the spacer domain and one of which is within the spacer domain. ADAMTS-7 bears 35 % sequence identity to ADAMTS-1, which is characterized as being involved in inflammation and 32% identity to ADAMTS-2 which is a procollagen processing

25 enzyme.

Example 4: ADAMTS-8

The nucleotide sequence of a cDNA encoding a full-length, mouse ADAMTS-8 protein was obtained using IMAGE clone 1260693, which encodes EST AA855532, and a mouse embryo cDNA from Clonetech. The 30 nucleotide sequence of a cDNA encoding a partial ADAMTS-8 human

-30-

protein was obtained using IMAGE clone 2119838, which encodes EST A1400905, and a human fetal brain cDNA library from Clontech. RACE was performed, as described above in Example 1. The nucleotide sequence of the cDNA encoding the full-length ADAMTS-8 mouse protein and the amino acid sequence of such protein is shown in Fig. 5. The nucleotide sequence of the cDNA encoding the partial ADAMTS-8 human protein and the amino acid sequence of such protein is shown in Fig. 6.

The predicted Mr of the full-length, unprocessed ADAMTS-8 mouse 10 protein is 1260693 daltons, and the predicted Mr of the mature ADAMTS-8 protein is 68412.10 daltons. The pro domain of the fulllength ADAMTS-8 protein has one consensus cleavage signal for furing The catalytic domain contains eight cysteine residues and the reprolysm-zinc binding signature sequence, HELGHVLSMPHD, which is 15 followed by a "Met-turn". The catalytic domain is followed by a domain with 20-30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-8 is 146 amino 20 acids in length and is followed by a second TS module. The ADAMTS-8 protein contains 4 potential glycosylation sites within the mature protease: one is in the cysteine-rich domain; one is in the catalytic domain; and two are in the disintegrin-like domain. ADAMTS-8 bears 46% sequence identity to ADAMTS-1 and 42% identity to 25 ADAMTS-4.

Example 5: ADAMTS-9
The nucleotide sequence of a cDNA encoding a full-length, human
ADAMTS-9 protein was obtained using IMAGE clone 646675, which encodes
EST AA205581, and a human fetal brain cDNA from Clonetech. The
30 micleotide sequence of a cDNA encoding a partial ADAMTS-9 mouse

protein was obtained using IMAGE clone 535663, which encodes EST AAl 06215, and a mouse cDNA library obtained from Clonetech. RACE was performed as described above in Example 1. The nucleotide sequence of the cDNA encoding the full-length ADAMTS-9 human proteinand the amino acid sequence of such protein is shown in Fig.6. The nucleotide sequence of the cDNA encoding the partial ADAMTS-9 mouse protein and the amino acid sequence of such protein is shown in Fig. 7.

The predicted Mr of the mature human ADAMTS-9 protein is

10 189777.20 daltons. The prodomain of the predicted ADAMTS-9 protein
has 3 consensus cleavage signal for furin. The catalytic domain of
the ADAMTS-9 contains eight cysteine residues and the reprolysin zinc binding signature sequence, HELGHVFNMPHD, which is followed by a
"Met-turn". The catalytic domain is followed by a domain with 25-30%

15 similarity to snake venom disintegrins The disintegrin domain
contains eight cysteine residues. The first TS repeat contains is
followed by a conserved CRD sequence which. contains 10 conserved
cysteines. The spacer domain of ADAMTS-9 is 124 amino acids in
length and is followed by 14 additional TS modules and a C-terminal
20 domain. The ADAMTS-9 protein contains 6 potential glycosylation
sites within the mature protease: one in the spacer domain, one in
TSP 1 -7, one in TSPI-8, and 3 in the C-terminal domain. The ADAMTS9 bears 44% sequence identity to ADAMTS-4.

Example 6: ADAMTS-10

The nucleotide sequence of a cDNA encoding a fall-length
ADAMTS- 10 protein was obtained using IMAGE clone 110403, which
encodes EST AA588434, and a human fetal brain cDNA from Clonetech.
The nucleotide sequence of a cDNA encoding a partial, mouse ADAMTS-10
protein was obtained using IMAGE clone 1077653, which encodes EST

30 AA822090, and a mouse embryo cDNA library from Clonetech. RACE was

performed as described above in Example 1. The nucleotide sequence of the human ADAMTS-10 cDNA and the predicted amino acid sequence, SEQ ID 18, of the human ADAMTS-10 protein encoded by such DNA is shown in Fig. 9. The nucleotide sequence of the cDNA encoding the partial mouse ADAMTS-10 protein and the amino acid sequence of such protein is shown in Fig. 10.

The predicted Mr of the mature ADAMTS-10 protein is 95238

daltons. The pro-domain of the full-length ADAMTS-10 protein has no consensus cleavage signal for furin. The catalytic domain of the 10 ADAMTS-10 contains eight cysteine residues and the reprolysin-zinc binding signature sequence, HEIGHTFGMNHD, which is followed by a "Met-turn". The catalytic domain is followed by a domain with 30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by a conserved CRD sequence which contains 8 conserved cysteines. The spacer domain of ADAMTS-10 is followed by 4 additional TS modules and a Kunitz domain. The ADAMTS-10 protein contains 2 potential glycosylation sites within the mature protease: one in the catalytic domain, and one in the TS 1-3 domain. ADAMTS-10 bears approximately 40% sequence identity to ADAM-TS1, which is characterized as being involved in inflammation.

Comparison of the ADAMTS-N Proteins.

As shown in Figure 11, the ADAMTS-5. ADAMTS-6, and ADAMTS-7

proteins share a common domain organization. From amino to carboxyl

25 termini, they are as follows:

1. A pre-pro region. A typical signal sequence of variable length is followed by a putative pro-region of variable length but demonstrating short stretches of sequence identity. Three cysteine residues are, predicted within each novel pro-domain, of which the
30 most C-terminal is an "asymmetric" cysteine lying within a sequence

context similar to the cysteine "switch" of the MMPs. All three novel cDNAs predict consensus cleavage signals for furin, three in the case of ADAMTS-5, and one each in the case of ADAMTS-6 and ADAMTS-7. The most carboxyl-terminal furin cleavage site in ADAMTS-5 predicts the processing site for generation of the mature protease. The amino terminus of the mature proteins is predicted to start at the residue immediately following the cleavage sites.

- 2. A catalytic domain. The catalytic domains are very similar to each other and contain eight cysteine residues and a typical
- 10 reprolysin-type zinc binding signature followed by a "Met-turn".

 Five cysteine residues are upstream of the zinc binding sequence,
 while three residues are downstream, an arrangement that is shared
 with other ADAMTS members. The methionine of the met-turn is not at
 a constant distance from the zinc-binding signature, but in all three
 15 novel proteases, a constant cysteine residue is present in that
 interval.
- 3. A disintegrin-like domain. The catalytic domain is followed by a domain of 60-90 residues with 35-45% similarity to snake venom disintegrins, but without the canonical cysteine arrangement seen in 20 the latter. This disintegrin-like domain is of comparable length in ADAMTS-5 and ADAMTS-7, it is considerably shorter in ADAMTS-6.
- 4. A TS module. The first TS repeat is very similar in all three novel proteases and very similar to the first TS repeat of other ADAMTSs. It contains the same number of residues (fifty-two) in all 25 three novel proteins.
 - 5. The cysteine-rich domain. This TS domain is followed by a conserved cysteine-rich sequence termed the cysteine-rich domain (CRD).
- 6. The spacer domain. This domain is of variable length, in all 30 ADAMTSs and lacks the sequence landmarks so characteristic of all the

other domains. It shows the least homology of all the domains.

7. A C-terminal TS module. The sequence of the second TS module is more variant between the members of the ADAMTS family than the first TS module, despite the conservation of the number and spacing 5 of cysteine residues.

Overall, the predicted mature forms of these proteases show 20-30% similarity to each other and to ADAMTS1-4 although this may be considerably higher or lower for individual domains as described above.

- ADAMTS-9 and ADAM-TS10 contain all the domains present in ADAMTS-5 through ADAMTS-8. In addition, ADAMTS-9 and ADAMTS-10 contain the following domains:
- A. ADAMTS-9: After the c-terminal TS1 domain which is present in ADAMTS5-8, ADAMTS-9 contains 13 additional and homologous 15 TS11 domains, thus, ADAMTS-9 contains a total of 15 TS1 domains, of which 14 are adjacent to each other in the c-terminal half of the molecule. The 15th TS1 domain from the N-terminus is followed by a unique c-terminal domain which does not possess recognizable domain structure and contains 196 residues including 9 cysteine residues.
- B. ADAMTS-10: After the c-terminal TS1 domain which is present in ADAMTS 8, ADAMTS-10 contains 3 additional and homologous TS1 domains, thus, that ADAMTS-10 contains a total of 5 TS1 domains, of which 4 are adjacent to each other in the c-terminal half of the molecule. The 5th TS 1 domain from the N-terminus is followed by an additional 47 amino acid residues including six (6) cysteine residues. These 47 residues have sequence similarity of 30%-40% to the c-terminus of pro-hormone convertase 5 and 6, and to the Kunitz family of inhibitors.
- Northern Analysis

 Mouse embryo northern blots and multiple tissue northern blots

-35-

from human and mouse tissues (Clontech, Palo Alto, CA) were hybridized to the $\{\alpha^{32}P\}$ -dCTP labeled inserts of I.M.A.G.E. clones as per the manufacturer's recommendations followed by autoradiographic exposure for 3-7 days.

In situ hybridization used cryosections of mouse embryos of gestational age 8.5 days and 10.5 days. Embryos were collected with the inclusion of the surrounding uterus and fixed overnight in 4% paraformaldehyde. Sense and anti-sense probes continuously labeled with digoxigenin-UTP (Boehringer-Mannheim, Indianapolis, IN) were 10 transcribed with T7 and T3 RNA polymerases, respectively, using as template a 63 0 bp EcoRI-Sacl fragment from the Adamts-5 clone 569515 (Fig. 14) cloned into pBluescript SK+ (Stratagene, La Jolla, CA). In situ hybridization was done essentially as previously described in Apte, et al. (1997) J. Biol. Chem. 272:2551-25517, which is 15 specifically incorporated herein by reference, except that sections were predigested with proteinase K (Boehringer-Mannheim, Indianapolis, IN) at a lower, concentration (1 -5 μ g/ml) than reported in Apte, et al.. Bound, digoxigenin-labeled probe was detected using an alkaline phosphatase tagged anti-digoxigenin 20 antibody (Boehringer-Mannheim, Indianapolis, IN) and nuclei were

Specific hybridization of the antisense Adamts-5 probe to sections of 8.5 day-old mouse embryos was obtained, whereas only low background staining was noted with the control sense probe. Staining 25 was uniform throughout the 8.5 day old embryos. In addition, there was labeling of mRNA in trophoblastic cells lining the uterine cavity as well as in the developing placenta (Fig. 14). The decidual reaction within the uterus also showed upregulation of Adamts-5 mRNA relative to the negative controls. In sections from 10.5 day old 30 embryos, labeling was widespread but less intense compared to the 8.5

counterstained with methyl green.

day-old embryo. Labeled cells were seen in mesenchyme and somites as well as in the neural tube and developing hindgut. Northern analysis also indicated that mRNA encoding ADAMTS-5 was present in human placenta but was barely detectable in adult lung, heart, brain, 5 liver, skeletal muscle, kidney and pancreas.

Northern analysis showed undetectable expression of Adamts-6 during mouse embryo development. Northern analysis indicated that mRNA encoding ADAMTS-6 was present in human placenta but was barely detectable in adult lung, heart, brain, liver, skeletal 10 muscle, kidney and pancreas. Adamts-7 was expressed at low levels throughout mouse development. In adult human tissues examined with human cDNA probes, ADAMTS-7 mRNA was found in all tissues examined, i.e. in lung, heart, brain, liver, skeletal muscle, kidney, pancreas and placenta. The sizes of the mRNA species recognized by the probes 15 varied. ADAMTS-5 mRNA was approximately 10 kbp in size in human tissue. The most prominent Adamts-5 species was estimated at 7.5 kbp together with additional bands at 10 kbp and 4.5 kbp. The lone mRNA species detected by ADAMTS-6 probe was approximately 8.5 kbp, whereas the most common mRNA species detected by ADAMTS-7 probe 5 was 5 kbp 20 in size with an additional species seen at 7 kbp in skeletal muscle.

In mouse, ADAMTS-8 is expressed during fetal development (days 7, 11, 15, 17) and in adult mouse lung and heart with an mRNA size of approximately 3.8 kbp. In adult human tissue, ADAMTS-8 is expressed in lung and brain but not in heart, muscle, kidney, colon or thymus.

25 The mRNA size is 3.8 kbp.

ADAMTS-9 is expressed in lung, ovary placenta, heart, brain, muscle, kidney and pancreas with a mRNA size of 8 kb. In addition, kidney and ovary contain additional transcripts of size 3 kb and 4.4 kb respectively. These additional transcripts may represent 30 alternatively spliced or short forms of ADAMTS9.

ADAMTS-10 is expressed in thymus, prostate, testis, ovary, small intestine, colon, peripheral blood leukocytes, heart, brain, placenta, lung, liver, muscle, kidney and pancreas, as well as in many cell lines such as A549, HeLa and K562. There are two 5 transcripts of 5 kb and 8kb present in all tissues.

Example 7: ADAMTS-R1

The nucleotide sequence of a cDNA encoding a full-length ADAMTS-R1 protein was obtained using IMAGE clone 752797 which encodes EST AA, and a human fetal brain cDNA from Clontech. RACE was 10 performed as described above in Example 1. The nucleotide sequence, SEQ ID NO:21, of the ADAMTS-R1 cDNA and the predicted amino acid sequence, SEQ ID NO:22, of the ADAMTS-R1 protein encoded by such DNA is shown in Fig. 11.

The predicted Mr of the full-length, unprocessed ADAMTS-R1 15 protein is 58358.20 daltons. The domain organization of the ADAMTS-10 protein is shown in Fig. 15. In contrast to the ADAMTS-N proteins of examples 1-6, ADAMTS-R1 protein does not have a prometalloprotease or disintegrin-like domain or a consensus cleavage signal for furin. ADAMTS-R1 has a signal (pre) peptide which is 20 followed by a first TS module and a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-R1 is 115 amino acids in length and is followed by 3 additional TS modules and a short sequence of 33 amino acids. The ADAMTS-R1 protein contains one potential glycosylation sites which is in the spacer 25 domain. ADAMTS-R1 bears 30-40% sequence identity to ADAMTS1 and ADAMTS4 in the related domains. ADAMTS-R1 mRNA is present in human heart, brain, kidney, muscle, lung, placenta, testis, ovary, colon, intestine, and prostate. There are three transcripts of 2.5 kb, 4.7 kb and 6.5 kbp present in all such tissues. In mouse, expression is 30 seen in skeletal muscle, and the transcript size is 6.5 kb.

Although certain embodiments of this invention have been shown and described, various adaptations and modifications can be made without departing from the scope of the invention as defined in the appended claims.

CLAIMS

- 1. An isolated mammalian protein selected from the group consisting of an ADAMTS-5 protein an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein, and an ADAMTS-R1 protein.
- The isolated mammalian protein of claim 1 wherein said protein 2. comprises an amino acid sequence which is at least 95% identical to a sequence selected from the group consisting of: amino acid 262 through amino acid 930 of SEQ ID NO:2; amino / 10 acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245 through amino acid 860 of SEQ ID NO:6; amino acid 233 through amino acid 997 of SEQ ID NO:8; amino acid 229 through amino acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245 of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ 15 ID NO:14; amino acid 1 through amino acid 874 of SEO ID NO:16; amino acid 212 through amino acid 1081 of SEQ ID NO:18; amino acid 1 through amino acid 450 of SEQ ID NO:20; and amino acid 1 through amino acid 547 of SEQ ID NO:22.
- The isolated protein of claim 2 wherein said amino acid
 sequence further comprises a prepropeptide sequence at the amino terminus thereof.
 - 4. The isolated protein of claim 1 wherein said protein is a human ADAMTS-5 protein or a mouse ADAMTS-5 protein.
- The isolated protein of claim 1 wherein said protein is a humanADAMTS-6 protein.
 - 6. The isolated protein of claim 1 wherein said protein is a human ADAMTS-7 protein.
 - 7. The isolated protein of claim 1 wherein said protein is a mouse ADAMTS-8 or a human ADAMTS-8 protein.
- 30 8. The isolated protein of claim 1 wherein said protein is a human

10

- ADAMTS-9 or a mouse ADAMTS-9 protein.
- 9. The isolated protein of claim 1 wherein said protein is a human ADAMTS-10 or a mouse ADAMTS-10 protein.
- 10. The isolated protein of claim 1 wherein said protein is a human

 ADAMTS-R1 protein.
 - 11. An isolated polynucleotide comprising a sequence which encodes a mammalian protein selected from the group consisting of an ADAMTS-5 protein, an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein, and an ADAMTS-R1 protein.
- The isolated polynucleotide of claim 11 wherein said protein 12. comprises an amino acid sequence which is at least 95% identical to a sequence selected from the group consisting of: amino acid 262 through amino acid 930 of SEQ ID NO:2; amino acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245 15 through amino acid 860 of SEQ ID NO:6; amino acid 233 through amino acid 997 of SEQ ID NO:8; amino acid 229 through amino acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245 of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ ID NO:14; amino acid 1 through amino acid 874 of SEQ ID NO:16; 20 amino acid 212 through amino acid 1081 of SEQ ID NO:18; amino acid 1 through amino acid 450 of SEQ ID NO:20, and amino acid 1 through amino acid 547 of SEQ ID NO:22.
- 13. The isolated polynucleotide of claim 11 wherein said nucleotide
 25 sequence encodes a protein having a signal sequence at the
 amino terminus thereof.
 - 14. The isolated polynucleotide of claim 11 wherein said polynucleotide comprises a sequence selected from the group consisting of: nucleotide 800 through nucleotide 2810 of SEQ ID NO:1 of an allelic variant thereof; nucleotide 1 through

30

10

nucleotide 1519 of SEQ ID NO:3 or an allelic variant thereof; nucleotide 754 through nucleotide 2602 of SEQ ID NO:5 or an allelic variant thereof; nucleotide 708 through nucleotide 3003 of SEQ ID NO:7 or an allelic variant thereof; nucleotide 962 through nucleotide 2992 of SEQ ID NO:9 or an allelic variant thereof; nucleotide 1 through nucleotide 739 of SEQ ID NO:11 or an allelic variant thereof; nucleotide 708 through nucleotide 5648 of SEQ ID NO:13 or an allelic variant thereof; nucleotide 1 through nucleotide 2625 of SEQ ID NO:15 or an allelic variant thereof; nucleotide 634 through nucleotide 3243 of SEQ ID NO:17 or an allelic variant thereof; nucleotide 1 through nucleotide 1642 of SEQ ID NO:19 or an allelic variant thereof; and nucleotide 51 through nucleotide 1625 of SEQ ID NO:21 or an allelic variant thereof.

- 15 15. The isolated polynucleotide of claim 11 wherein said polynucleotide hybridizes under stringent conditions to a nucleic acid molecule comprising a sequence complementary to the protein encoding sequence of SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:13;

 20 SEQ ID NO:15; SEQ ID NO:17; SEQ ID NO:19; or SEQ ID NO:21.
 - 16. An isolated polynucleotide having a sequence which is complementary to the protein encoding sequence of the

polynucleotide of claim 11.

- 17. An expression vector comprising a polynucleotide of claim 11.
- 25 18. A host cell transformed or transfected with an expression vector of claim 17.
 - 19. A method for producing an ADAMTS-N protein or an ADAMTS-R1 protein, said method comprising the steps of
- (a) culturing a host cell of claim 18 under conditions30 suitable for expression of an ADAMTS-N protein or an ADAMTS-R1

1. 4 5. 5 V 1. 45 . 7 S.

protein; and

- (b) recovering said ADAMTS-N protein or said ADAMTS-R1 protein from the host cell culture.
- 20. An antibody that binds to a protein selected from the group

 5 consisting of an ADAMTS-5 protein, an ADAMTS-6 protein, an

 ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an

 ADAMTS-10 protein and an ADAMTS-R1 protein.
- 21. An oligopeptide for producing an antibody that binds to an ADAMTS-N protein or an ADAMTS-R1 protein wherein said

 10 oligopeptide has a sequence selected from the group consisting of:
 - a) SVSIERFVETLVVADK, SEQ ID NO:23;
 - b) EVAEAANFLALRSEDPDKY, SEQ ID NO:24;
 - c) VKEDVENPKAVVDGDWGP, SEQ ID NO:25;
- d) QHPFQNEDYRPRSASPSRTH, SEQ ID NO:26;
 - e) PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27;
 - f) OELEEGAAVSEEPS, SEQ ID NO:28;
 - g) YYPENIKPKPKLQE; SEQ ID NO:29;
 - h) HIKVRQFKAKDQTRF; and
- 20 i) CEAKNGYQSDAKGVKTFVEWVPKYAG, SEQ ID NO:30.

Fig. 1

FEATURES

Location/Qualifiers

source

1..3002

/organism="Mus musculus"
/db_xref="taxon:10090"
/chromosome="Mouse 16"

/map="58 cM (consensus position)"

gene

1..3002

/note="a disintegrin-like and metalloprotease domain with

thrombospondin type I repeats)*

/gene="Adamts5"

CDS

_18..2810

/gene='Adamts5'
/note='putative secreted metalloprotease'

/codon_start=1

/product="ADAM-TS5 (a disintegrin-like and metalloprotease

domain with thrombospondin type I repeats) *

/translation="MRLEWASLILLLLLLSASCLSLAADSPAAAPAQDKTRQPQAAAA
AAEPDQPQGEETREGHLQPLAGQRRSGGLVHNIDQLYSGGGKVGYLVYAGGRRFLLD
LERDDTVGAAGSIVTAGGGLSASSGHRGHCFYRGTVDGSPRSLAVFDLCGGLDGFFAV
KHARYTLKPLLRGSWAEYERIYGDGSSRILHVYNREGFSFEALPPRASCETPASPSGP
QESPSVHSRSRRRSALAPQLLDHSAFSPSGNAGPQTWWRRRRRSISRARQVELLLVAD
SSMARMYGRGLQHYLLTLASIANRLYSHASIENHIRLAVVKVVVLTDKDTSLEVSKNA
ATTLKNFCKWQHQHNQLGDDHEEHYDAAILFTREDLCGHHSCDTLGMADVGTICSPER
SCAVIEDDGLHAAFTVAHEIGHLLGLSHDDSKFCEENFGTTEDKRLMSSILTSIDASK
PWSKCTSATITEFLDDGHGNCLLDLPRKQILGPEELPGQTYDATQQCNLTFGPEYSVC
PGMDVCARLWCAVVRQGQMVCLTKKLPAVEGTPCGKGRVCLQGKCVDKTKKKYYSTSS
HGNWGSWGPWGQCSRSCGGGVQFAYRHCNNPAPRNSGRYCTGKRAIYRSCSVTPCPPN

BASE COUNT 726 a 788 c 845 g 643 t ORIGIN

1 ccggcgggca gcgcactatg cggctcgagt gggcgtcctt gttgctgcta ctgctgctgc 61 tgagcgcgtc ctgcctgtcc ctggccgctg acagccccgc cgcggcacct gcccaggata 121 aaaccaggca gcctcaggct gcagcagcgg ccgccgagcc ggaccagccg cagggggagg 181 aaacacggga gcgaggccat ttacaaccct tggccgggca gcgcaggagc ggcgggctgg 241 tecataatat agaccaacte tactetggeg gtggcaaagt gggctacett gtetacgegg 301 gcggccggag gttcctgctg gacctggaga gagatgacac agtgggtgct gctggtagca 361 tcgttactgc aggaggaggg ctgagcgcat cctctggcca ccggggtcac tgtttctaca 421 gaggcaccgt ggacggcagc cctcgatccc tagctgtctt tgacctctgc gggggtctcg 481 atggettett tgeagteaag catgegeget acaetetaaa gecaeteetg egtgggteet 541 gggcagagta tgaacgaatt tatggggatg gatcttcccg catcctgcat gtctacaacc 601 gcgagggett tagettegag geeetgeege caegegeeag ttgegagaet cetgeateee 661 catctgggcc ccaagagagc ccctcggtgc acagtagatc taggagacgc tcagcgctgg 721 ccccgcagct gctggaccac tcagctttct cgccatctgg gaacgcggga cctcagactt 781 ggtggaggcg taggcgccgt tccatctcca gggcccgcca ggtggagctc ctcttggtgg 841 ctgactcgtc catggccagg atgtatgggc ggggcctgca gcattacctg ctgaccctgg 901 cctccatcgc caacaggctg tacagtcatg caagcattga gaaccacatc cgcctggcgg 961 tggtgaaggt ggtggtgctg acggacaagg acacgagtct ggaggtgagc aagaatgcgg 1021 ccacgacct caagaacttt tgcaaatggc agcaccaaca taaccagcta ggggatgatc 1081 acgaagagca ctacgatgca gccatcctgt tcacccgaga ggatttatgt gggcatcatt 1141 catgtgacac cetgggaatg geagacgttg ggaccatatg tteteeggag egeagetgtg 1201 cagtgattga agatgatggc ctccatgcag ccttcactgt ggctcatgaa attgggcatc 1261 tacttggcct ttctcatgac gattccaaat tctgtgaaga gaacttcggt actacagaag 1321 acaagcgttt aatgtcttca atccttacca gcatcgatgc atccaagccc tggtccaaat 1381 gcacgtcagc caccatcaca gaattcctgg atgatggtca tggtaattgt ttgctagacc 1441 taccacggaa gcagattttg ggtcccgagg aactcccagg acagacctac gatgccaccc 1501 agcagtgcaa cttgacattt gggcctgagt actcggtgtg ccctggcatg gatgtctgtg 1561 cgcggctgtg gtgtgctgtg gtgcgccaag gccaaatggt gtgtctgacc aagaagctgc 1621 cggctgtgga gggcactccc tgtgggaagg gaagagtctg ccttcaaggc aaatgtgtgg 1681 acasaactaa gaaaaaatat tactcgacat caagccatgg aaattggggg tcctggggcc 1741 cctggggtca gtgttctcgc tcatgcgggg gaggagtgca gtttgcctac cgccattgta 1801 ataaccetge acctegaaac agtggeeget actgcacagg gaagagggee atataccgtt 1861 cctgcagtgt tacaccctgc ccacccaatg gtaaatcttt tcgccatgag cagtgtgaag 1921 ccaaaaatgg ctatcagtct gatgcaaaag gagtcaaaac atttgtagaa tgggttccca 1981 aatatgcagg tgtcctgccg gcagatgtgt gcaagcttac ctgcagagct aagggcacag 2041 gctactatgt ggtcttttct ccaaaggtta cggatgggac tgaatgcagg ccgtacagca 2101 actctgtgtg tgtccgagga cggtgtgtga gaactggatg tgacggcatt attggctcaa 2161 agctacaata tgacaagtgt ggagtgtgcg gaggggataa ctccagttgt acaaagatta 2221 toggaacott caataaaaaa agcaagggtt atactgacgt tgtgaggato cotgaaggag 2281 caacccacat aaaagtccga cagttcaaag ccaaagacca gactagattc cctgcctact 2341 tagccctgaa gaagaaaact ggcgagtacc ttatcaatgg caagtacatg atttccactt 2401 cagagaccat catcgacatc aatggtaccg tcatgaacta cagtggatgg agccacagag 2461 atgatttttt acatgggatg ggctattcag ccacaaaaga aatcctgatc gtgcagatcc 2521 ttgccacaga cccaactaaa gcgctaggcg tccgttacag cttttttgtt cccaagaaga 2581 ccactcaaaa agtaaactct gtcatcagcc atggcagcaa caaggtggga ccacactcta 2641 cacagetgea gtgggtgaca ggtecatgge tggeetgete caggacetgt gacacagget 2701 ggcacactag gaccgtgcag tgccaggatg gaaacaggaa attagctaaa ggatgccttc 2761 tototoagag goottotgoa titaagoaat gtotgotgaa gaaatgitag cotgtggttt 2821 actctaatgc acaaaaaaac aacaggagga tcatcgcaga tacagctgtg gtgaagacaa 2881 ggcctaccca aagcacagaa agtcatgcct tcatgtcatt gtcaccacga gtcgaattat 2941 gggcagaatc tgctctctgc gaccaaaagg tttactctac ttggtgaatg atggtaccgt 3001 ga

Fig. 2

```
FEATURES
                     Location/Qualifiers
     source
                     1..1520
                     /organism="Homo sapiens"
                     /db_xref="taxon:9606"
                     /chromosome="21"
BASE COUNT
                         372 c
                                  376 g
                                           352 t
                                                      4 others
ORIGIN
       1 ggacatttac ttggcctctc ccatgacgat tccaaattct gtgaagagac ctttggttcc
      61 acagaagata agcgcttaat gtcttccatc cttaccagca ttgatgcatc taagccctgg
     121 tecaaatgca etteageeac cateacagaa tteetggatg atggecatgg taactgtttg
     181 ctggacctac cacgaaagca gatcctgggc cccgaagaac tcccaggaca gacctacgat
     241 gccacccage agtgcaacct gacatteggg cetgagtact cegtgtgtee eggeanggat
     301 gtctgtgctc gcctgtggtg tgctgtggta cgccagggcc agatggtctg tctgaccaag
     361 gagtgcagtt tgcctatcgt cactgtaata accetgetce cagaaacaac ggacgctact
     421 gcacagggaa gagggccatc taccactcct gcagtctcat gccctgccca cccaatggta
     481 aatcatttcg tcatgaacag tgtgaggcca aaaatggcta tcagtctgat gcaaaaggag
     541 tcaaaacttt tgtggaatgg gttcccaaat atgcaggtgt cctgccagcg gatgtgtgca
     601 agctgacctg cagagecaag ggcactggct actatgtggt attttctcca aaggtgaccg
     661 atggcactga atgtaggccg tacagtaatt ccgtctgcgt ccgggggaag tgtgtgagaa
     721 ctggctgtga cggcatcatt ggctcaaagc tgcagtatga caagtgcgga gtatgtggag
     781 gagacaactc cagctgtaca aagattgttg gaacctttaa taagaaaagt aagggttaca
     841 ctgacgtggt gaggattcct gaaggggcaa cccacataaa agttcgacag ttcaaagcca
     901 aagaccagac tagattcact gcctatttag ccctgaaaaa gaaaaacggt gagtacctta
     961 tcaatggaaa gtacatgatc tccacttcag agactatcat tgacatcaat ggaacagtca
    1021 tgaactatag cggttggagc cacagggatg actteetgea tggcatggge tactetgeca
    1081 cgaaggaaat totaatagtg cagattottg caacagacco cactaaacca ttagatgtco
    1141 gttatagett ttttgttccc aagaagteca etecaaaagt aaactetgte actagteatg
    1201 gcagcaataa agtgggatca cacacttcgc agccgcagtg ggtcacgggc ccatggctcg
    1261 cctgctctag gacctgtgac acaggttggc acaccagaac ggtgcagtgc caggatggaa
    1321 accggaagtt agcaaaagga tgtcctctct cccaaaggcc ttctgcgttt aagcaatgct
    1381 tgttgaagaa atgttagcct gtgggttatg atcttattgc acaaaagata ctggaggatt
    1441 cancaccegt geaatenngg tgaacaggaa ggetacetta acgeacagaa agteatgett
    1501 taatgacatt gtcaaccagg
```

ar grande

Fig. 3

FEATURES

Location/Qualifiers

1..2848 source

/organism="Homo sapiens" /db_xref="taxon:9606"

/chromosome="5"

gene

1..2848 /note= * A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs 6°

/gene="ADAMTS6"

CDS

22..2602

/gene="ADAMTS6"

/note='zinc metalloprotease'

/codon_start=1

/product=' A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs-6 (ADAM-TS6)*

/translation="MEILWKTLTWILSLIMASSEFHSDHRLSYSSQEEFLTYLEHYQL TIPIRVDQNGAFLSFTVKNDKHSRRRRSMDPIDPQQAVSKLFFKLSAYGKHFHLNLTL ${\tt NTDFVSKHFTVEYWGKDGPQWKHDFLDNCHYTGYLQDQRSTTKVALSNCVGLHGVIAT}$ EDEEYFIEPLKWITEDSKHFSYENGHPHVIYKKSALQQRHLYDHSHCGVSDFTRSGKP wwlndtstvsyslpinnthihirokrsvsierfvetlvvadkmvgyhgrkdiehyil SVMNIVAKLYRDSSLGNVVNIIVARLIVLTEDQPNLEINHHADKSLDSFCKWQKSILS HQSDGNTIPENGIAHHDNAVLITRYDICTYKNKPCGTLGLASVAGMCEPERSCSINED IGLGSAFTIAHEIVHNFGMNHDGIGNSCGRKVMKQQNYGSSHYCEYQSFFLVCLQSRX HHQLFREVCRELWCLSKSNRCVTNSIPAAEGTLCQTGNIEKGWCYQGDCVPFGTWPQS IDGGWGPWSLWGECSRTCGGGVSSSLRHCDSPAPSGGGKYCLGERKRYRSCNTDPCPL GSRDFREKQCADFDNMPFRGKYYNWKPYTGGGVKPCALNCLAEGYNFYTERAPAVIDG TQCNADSLDICINGECKHVGCDNILGSDAREDRCRVCGGGGSTCDAIEGFFNDSLPRG

Fig. 3 (con't)

GYMEVVQIPRGSVHIEVREVAMSKNYIALKSEGDDYYINGAWTIDWPRKFDVAGTAFH YKRPTDEPESLEALGPTSENLIVMVLLQEQNLGIRYKFNVPITRTGSGDNEVGFTWNH QPWSECSATCAGGKMPTRQPTQRARWRTKHILSYALCLLKKLIGNISCRFASSCNLAK ETLL*

BASE COUNT 837 a 551 c 664 g 794 t 2 others ORIGIN 1 aatcatccag ttttctaaat tatggaaatt ttgtggaaga cgttgacctg gattttgagc 61 ctcatcatgg cttcatcgga atttcatagt gaccacaggc tttcatacag ttctcaagag 121 gaatteetga ettatettga acactaccag etaactatte caataagggt tgatcaaaat 181 ggagcatttc tcagctttac tgtgaaaaat gataaacact caaggagaag acggagtatg 241 gaccetattg atccacagea ggcagtatet aagttatttt ttaaacttte agectatgge 301 aagcactttc atctaaactt gactctcaac acagattttg tgtccaaaca ttttacagta 361 gaatattggg ggaaagatgg accccagtgg aaacatgatt ttttagacaa ctgtcattac 421 acaggatatt tgcaagatca acgtagtaca actaaagtgg ctttaagcaa ctgtgttggg 481 ttgcatggtg ttattgctac agaagatgaa gagtatttta tcgaaccttt aaagaatacc 541 acagaggatt ccaagcattt tagttatgaa aatggccacc ctcatgttat ttacaaaaag 601 tetgecette aacaacgaca tetgtatgat caeteteatt gtggggttte ggattteaca 661 agaagtggca aaccttggtg gctgaatgac acatccactg tttcttattc actaccaatt 721 aacaacaca atatccacca cagacagaag agatcagtga gcattgaacg gtttgtggag 781 acattggtag tggcagacaa aatgatggtg ggctaccatg gccgcaaaga cattgaacat 841 tacattttga gtgtgatgaa tattgttgcc aaactttacc gtgattccag cctaggaaac 901 gttgtgaata ttatagtggc ccgcttaatt gttctcacag aagatcagcc aaacttggag 961 ataaaccacc atgcagacaa gtccctcgat agcttctgta aatggcagaa atccattctc 1021 tcccaccaaa gtgatggaaa caccattcca gaaaatggga ttgcccacca cgataatgca 1081 gttcttatta ctagatatga tatctgcact tataaaaata agccctgtgg aacactgggc 1141 ttggcctctg tggctggaat gtgtgagcct gaaaggagct gcagcattaa tgaagacatt 1201 ggcctgggtt cagcttttac cattgcacat gagattgttc acaattttgg tatgaaccat 1261 gatggaattg gaaattcttg tggacgaaag gtcatgaagc agcaaaatta tggcagctca 1321 cattactgcg aataccaatc ctttttcctg gtctgcttgc agtcgagant acatcaccag 1381 ctttttagag aagtgtgtag agagctctgg tgtctcagca aaagcaaccg ctgtgtcacc 1441 aacagtatte cagcagetga ggggacactg tgtcaaactg ggaatattga aaaagggtgg 1501 tgttatcagg gagattgtgt tccttttggc acttggcccc agagcataga tgggggctgg 1561 ggtccctggt cactatgggg agagtgcagc aggacctgcg ggggaggcgt ntcctcatcc 1621 ctaagacact gtgacagtcc agcaccttca ggaggtggaa aatattgcct tggggaaagg 1681 aaacggtatc gctcctgtaa cacagatcca tgccctttgg gttcccgaga ttttcgagag 1741 aaacagtgtg cagactttga caatatgcct ttccgaggaa agtattataa ctggaaaccc 1801 tatactggag gtggggtaaa accttgtgca ttaaactgct tggctgaagg ttataatttc 1861 tacactgaac gtgctcctgc ggtgatcgat gggacccagt gcaatgcgga ttcactggat 1921 atctgcatca atggagaatg caagcacgta ggctgtgata atattttggg atctgatgct 1981 agggaagata gatgtcgagt ctgtggaggg ggcggaagca catgtgatgc cattgaaggg 2041 ttcttcaatg attcactgcc caggggaggc tacatggaag tggtgcagat accaagaggc 2101 tctgttcaca ttgaagttag agaagttgcc atgtcaaaga actatattgc tttaaaatct 2161 gaaggagatg attactatat taatggtgcc tggactattg actggcctag gaaatttgat 2221 gttgctggga cagcttttca ttacaagaga ccaactgatg aaccagaatc cttggaagct 2281 ctaggiccia ccicagaaaa ictcatcgic aiggitcigc itcaagaaca gaattiggga 2341 attaggtata agttcaatgt teccateact cgaactggca gtggagataa tgaagttgge 2401 tttacatgga atcatcagcc ttggtcagaa tgctcagcta cttgtgctgg aggtaagatg 2461 cccactagge agcccaccca gagggcaaga tggagaacaa aacacattet gagctatget 2521 ttgtgtttgt taaaaaagct aattggaaac atttcttgca ggtttgcttc aagctgtaat 2581 ttagcaaaag aaactttgct ttaattatat tatattccat ttgttttcaa cctcatgtaa 2641 tttgtgcaga tttgttggta aaatacatct tggcacaatg agtgtctctg ctggtgcttc 2701 toccaagact atottgaagg tgggctgttt gcctttcgtg aacacattct tggtaaagaa 2761 catcaaaagt tttaaaaaag aaaatgagca agaatcagac atcacagatg caacttcttg 2821 taatgggaga tgagaatgta cggctgtg

Last Callers

Fig. 4

FEATURES

source

Location/Qualifiers

1..3218

1..3218

/organism="Homo sapiens"
/db_xref="taxon:9606"

/chromosome="15"

gene

/gene="ADAMTS7"

CDS 13..3003

/gene="ADAMTS7"

/note="ZINC METALLOPROTEASE"

/codon_start=1

/product=" A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs-7 (ADAM-TS7)

/translation="MPGGPSPRSPAPLLRPLLLLCALAPGAPGPAPGRATEGRAALD IVHPVRVDAGGSFLSYELWPRALRKRDVSVRRDAPAFYELQYRGRELRFNLTANQHLL APGFVSETRRGGLGRAHIRAHTPACHLLGEVQDPELEGGLAAISACDGLKGVFQLSN EDYFIEPLDSAPARPGHAQPHVVYKRQAPERLAQRGDSSAPSTCGVQVYPELESRRER WEQRQQWRRPRLRRLHQRSVSKEKWVETLVVADAKMVEYHGQPQVESYVLTIMMVAG LFHDPSIGNPIHITIVRLVLLEDEEEDLKITHHADNTLKSFCKWQKSINMKGDAHPLH HDTAILLTRKDLCAAMNRPCETLGLSHVAGMCQPHRSCSINEDTGLPLAFTVAHELGH SFGIQHDGSGNDCEPVGKRPFIMSPQLLYDAAPLTWSRCSRQYITRFLDRGWGLCLDD PPAKDIIDFPSVPPGVLYDVSHQCRLQYGAYSAFCEDMDNVCHTLWCSVGTTCHSKLD AAVDGTRCGENKWCLSGECVPVGFRPEAVDGGWSGWSAWSICSRSCGMGVQSAERQCT QPTPKYKGRYCVGERKFRLCNLQACPAGRPSFRHVQCSHFDAMLYKGQLHTWVPVVN DVNPCELHCRPANEYFAKKLRDAVVDGTPCYQVRASRDLCINGICKNVGCDFEIDSGA MEDRCGVCHGNGSTCHTVSGTFEEAEGLGYVDVGLIPAGAREIRIQEVAEAANFLALR SEDPEKYFLNGGWTIQWNGDYQVAGTTFTYARRGNWENLTSPGPTKEPVWIQVPASRG

PGGGSRGVPRPSTLHGRSRPGGVSPGSVTEPGSEPGPPAAASTS
VHRGGWQQAPLGLGGWRRHLVLMGPRLPTQLLFQESNPGVHYEYT LHKLAUSHDEVFF
PVFSWHYGPWTKCTVTCGRGEKWGRHSPTCRGLVSGQGHWLQLPAHCWATTGLEVCFS
EPQFSICEMRLAIALCPRPAGRVHG*

BASE COUNT 584 a 1041 c 1003 g 590 t ORIGIN

1 ccggttcctg ccatgcccgg cggccccagt ccccgcagcc ccgcgccttt gctgcgcccc 61 ctcctcctgc tcctctgcgc tctggctccc ggcgcccccg gacccgcacc aggacgtgca 121 accgagggcc gggcggcact ggacatcgtg cacccggttc gagtcgacgc ggggggctcc 181 ttcctgtcct acgagctgtg gccccgcgca ctgcgcaagc gggatgtatc tgtgcgccga 241 gacgcgcccg ccttctacga gctacaatac cgcgggcgcg agctgcgctt caacctgacc 301 gccaatcage acctgctggc gcccggcttt gtgagcgaga cgcggcggcg cggcggcctg 361 ggccgcgcgc acatccgggc ccacaccccg gcctgccacc tgcttggcga ggtgcaggac 421 cctgagctcg agggtggcct ggcggccatc agcgcctgcg acggcctgaa aggtgtgttc 481 cageteteca acgaggaeta etteattgag eccetggaea gtgeecegge eeggeetgge 541 cacqcccaqc cccatgtggt gtacaagcgt caggccccgg agaggctggc acagcggggt 601 gattccagtg ctccaagcac ctgtggagtg caagtgtacc cagagctgga gtctcgacgg 661 gagcgttggg agcagcggca gcagtggcgg cggccacggc tgaggcgtct acaccagcgg 721 tcggtcagca aagagaagtg ggtggagacc ctggtagtag ctgatgccaa aatggtggag 781 taccacggac agccgcaggt tgagagctat gtgctgacca tcatgaacat ggtggctggc 841 ctgtttcatg accccagcat tgggaacccc atccacatca ccattgtgcg cctggtcctg 901 ctggaagatg aggaggagga cctaaagatc acgcaccatg cagacaacac cctgaagagc 961 ttctgcaagt ggcagaaaag catcaacatg aagggggatg cccatcccct gcaccatgac 1021 actgccatcc tgctcaccag aaaggacctg tgtgcagcca tgaaccggcc ctgtgagacc 1081 ctgggactgt cccatgtggc gggcatgtgc cagccgcacc gcagctgcag catcaacgag 1141 gacacgggcc tgccgctggc cttcactgta gcccacgagc tcgggcacag ttttggcatt 1201 cagcatgacg gaagcggcaa tgactgtgag cccgttggga aacgaccttt catcatgtct 1261 ccacagetee tgtacgacge egeteceete acetggteee getgeageeg ccagtatate 1321 accaggitee tigacegigg giggggeetg tgeetggacg accetecige caaggacatt 1381 atogactice coteggtgcc acctggcgtc ctctatgatg taagccacca gtgccgcctc 1441 cagtacgggg cctactctgc cttctgcgag gacatggata atgtctgcca cacactctgg 1501 tgctctgtgg ggaccacctg tcactccaag ctggatgcag ctgtggacgg cacccggtgt 1561 ggggagaata agtggtgtct cagtggggag tgcgtacccg tgggcttccg gcccgaggcc 1621 gtggatggtg gctggtctgg ctggagcgcc tggtccatct gctcacggag ctgtggcatg 1681 ggcgtacaga gcgccgagcg gcagtgcacg cagcctacgc ccaaatacaa aggcagatac 1741 tgtgtgggtg agcgcaagcg cttccgcctc tgcaacctgc aggcctgccc tgctggccgc 1801 ccctccttcc gccacgtcca gtgcagccac tttgacgcta tgctctacaa gggccagctg 1861 cacacatggg tgcccgtggt caatgacgtg aacccctgcg agctgcactg ccggcccgcg 1921 aatgagtact ttgccaagaa gctgcgggac gccgtggtcg atggcacccc ctgctaccag 1981 gtccgagcca gccgggacct ctgcatcaac ggcatctgta agaacgtggg ctgtgacttc 2041 gagattgact ccggtgctat ggaggaccgc tgtggtgtgt gccacggcaa cggctccacc 2101 tgccacaccg tgagcgggac cttcgaggag gccgagggtc tgggggtatgt ggatgtgggg 2161 ctgatcceag cgggcgcacg cgagatccgc atccaagagg ttgccgaggc tgccaacttc 2221 ctggcactgc ggagcgagga cccggagaag tacttcctca atggtggctg gaccatccag 2281 tggaacgggg actaccaggt ggcagggacc accttcacat acgcacgcag gggcaactgg 2341 gagaacctca cgtccccggg tcccaccaag gagcctgtct ggatccaggt gcctgcctcc 2401 cgtggcccag gcggggggag cagaggcgga gtccccaggc ccagcaccct ccatggcagg 2461 tctcgtcctg gaggagtgag ccctggttca gtcacagagc ctggctctga gccaggccct 2521 cctgctgcgg cctctacctc agtttcccca tctttaaaat ggcccaatct tgtagctgca 2581 gttcacagag gtggctgggg tcaagctcct ttaggactgg gtggatggag aagacacctt 2641 gtgctcatgg gcccccgcct gcccacccag ctgctgttcc aggagagcaa ccctggggtg 2701 cactacgagt acaccatcca cagggaggca ggtggccacg acgaggtccc gccgcccgtg 2761 ttctcctggc attatgggcc ctggaccaag tgcacagtca cctgcggcag aggtgagaag 2821 tggggcaggc acagccccac ctgcaggggc ttagtgtctg gacagggaca ctggcttcag 2881 ctcccagctc actgctgggc caccacgggt ttggaagttt gcttctctga gcctcagttc 2941 tocatotgtg agatgagget agegattgcc ctgtgtccca ggcccgctgg gagggtacat 3001 ggatgaggca ggtgggtgct ggctcgcggc gcatgttcag tgtgctccag ctcttggcgt 3061 teteceteca ggggacacag etececeteg atagaccagt ecagtggeec eteaceacac 3121 tgacttattt ccctaaacta tttataaaaa gtagggcaat ttcattaact ctgactctta 3181 cctgcccggg cggccgctcg agccgagtaa tcactagt

Fig. 5A

10 20 30 40 50 60 70
tagggcgactgcacgggacgccgcggaggacgcgcgctcgcgggccccggggcgccacgtgctcgagttctg 70
ctaggttggctggcgcaggaggggctgcgcgatccagaggggccgccaggggaccgccgcgccacgt 140
gccgctagccgagtcggcctccccatccgattgatcatttttcctggacagagcgacccggccgcctcgg 210
gccaccagcacctgcccgcgcgcgatcttcttccctctcccgcgctccgcagcactctgcccccATG 280
CTCCGCGACCCCACCACCGCGTGCCGCCCCTCCTGCTGCTGCTGCTGCTGCCGCCG
360 370 380 390 400 410 420
TCGTCTCCGGAGCCCCGGCGGGGCCGGGAACCGGGGCGCGGGGCCTCGGAGCTAGTGGTGCCCACGCGGTT 420
GCCCGCAGCGCGAGCTCGCCTTCCACCTGTCCGCCTTCGGCCAGGGCTTCGTGCTGCGCCTGGCG 490
CCTGACGCCAGCTTCCTGCGCCGGAATTCAAGATCGAGCGCCTCGGGGGCTCGAGCGCGGGCGG
GCGAGCCGGGACTGCCTGCCTCTTCTTCTCTGGCACAGTGAATGGAGAACGGGAGTCGCTGGCGCGAT 630
GAGCTGTGTCGCGGGCTGGAGCGGCTCGTTCTTGCTGGCAGGCGAGGAGTTCACCATCCAGCCACAGGGC 700
710 720 730 740 750 760 770
GCIGGGGACICCCTGGACCAGCCTCATCGCCTGCAGCGCTGGGGGCCCGGGACAGCGCCGGGAAGACCCCCG 770
GECTICGCTGCCGCCGAAGTTTTCCCCCTCCAAGGACTGGAGTGGGAGGTGGAGATGGGTAATGGGCA 840
GCGACACGAGAGAGTGACAACGAAGAGGACACGAAGCAGGACAAGGAGGGGTTGCTCAAAGAGACAGAA 910
GACTOCOGCAAAGTGCCACCACCCTTCGGATCCAAAACTAGAAGCAAGAGGTTTGTGTCCGAGGCTCGCT 980
TCGIGGAAACACITCIGGIGGCIGAIGCGICCATGGCIGCCITCIATGGGACCGACCIGCAGAACCACAT 1050
1060 1070 1080 1090 1100 1110 1120
<u> </u>
CCTCACGGTGATGTCAATGGCAGCCCGAATCTACAAGCACCCGAGCATCAGGAACTCCGTCAACCTTGTG 1120
GIGGIGAAAGIGCIAATAGIGGAAAAAGAAGATGGGGCCCGGAAGIGICCGACAACGGGGGGCTCACAC 1190
TCCCCAACTTCTCCACCTCCCAACCCCCTTTCAACAACCCCAGTCACCCCCCCC
TGCCATCTTGTTCACCAGACAGAACTTCTGTGGGAAGGGAGAGCAGTGTGACACCCTGGGGATGGCAGAC 1330
GITGGCACCATCIGIGACCCCGACAAGAGCIGCTCAGIGATCAAGGATGAGGGACIGCAGGCAGCCTACA 1400
1410 1420 1430 1440 1450 1460 1470
CCCIGGCCCATGAGCTAGGGCACGTTCTCAGCATGCCCCCATGATGATTCTAAGCCCTGTGTGAGATTGTT 1470
TEGECCCATGEGCAAGTACCACATGATGGCGCCATTCTTCATCCACGTGAACAAGACGCTGCCCTGGTCT 1540
CCCTGCAGTGCTGTCTACCTCACAGAGCTCCTGGATGATGGTCACGGAGATTGTCTTCTGGATGCCCCCA 1610
CCTCGGTTCTGCCCCTCCCCACAGGCCTCCCGGGCCACAGCACCCTCTACGAGCTGGACCAGCAGTGCAA 1680
GCAGATCTTTGGGCCTGATTTCCGACACTGCCCCAACACCTCTGTGGGAGGACATCTGTGTCCAGCTCTGT 1750

9/54 Fig. 5A (con't)

1766	`	1770	4500	4500			
1760		1770	1780	1790	1800	1810	1820
TITLL TITLL							
GCCCGTCATCG							
CACCCTGTGGC							
GGCTGTGGTAG							
ATACAATTCTC							
GAGTCAAGTAC						-	
2110		2120	2130	2140	2150	2160	2170
TEACA ATTACK							
TGAGAAATATA	AIGCCIA	CAACCACAC	CIGACCIGGAT	GGGAATTICC	TGCAGTGGGT	CCCCAAGTAI	TCA 2170
OGAGTGTCCCC	ACCEALEAC ACCERTAGE	CGATGCAAC	CIGITITICA	GAGCCCGTCC	GAGGAGIGAG	TICAAAGIGI	TTG 2240
AAGCTAAGGTG							
TAAGGCTGGCT							
GCACTGCCTG							
2460		2470	2480	2490	2500	2510	2520
management.							
TCCCAGCTGGT	JCCACAA	ACATIGATO	TGAAACAGCG	GAGICACCCA	LGGGGTCAGGA	ACGACGCAG	CTA 2520
CCTGGCGCTGA	AGACAGC	CAATGGGCA	GIACCIGCIC	AATGGTAACC	TGGCCATCTC	TGCCATAGAG	CAA 2590
GACATCTTGGT							
TCCAGGCCCTG							
CAGATATACCT					ATAGCAAGGA	AAGAGCAACC	ACC 2800
2810		2820	2830	2840	2850	2860	2870
				1111111 1		uluulu	
AACATCATTCA							
GAGGTAGCTGG	AGCGGC	GGACIGIGO	AATGCAGGGA	CCCCTCAGGI	CAGGCCTCTG	ACACCIGIGA	TGA 2940
GGCTCTGAAAC	-1GAGGA	TGCCAAGCC	CIGIGGAAGO	CAGCCGIGIC	CCCTCtgate	cccttggtgg	aaa 3010
tetettagget	alggat	ttgggctac	tggtgtaaca	gacaaaggtc	ccctccaagg	tgatactaca	tat 3080
caagatggcac		caggeett	ctattactac	aaccccttgg	gtactaccta	attcataagg	aag 3150
3160	•	3170	3180	3190	3200	3210	3220
agagaagaggg							
agaagtcggga							
uttgcaaagga	tttgcaaaggactagcaaagctaaatgaaaaagaagaatttttttt						
aatetaceteacagegggaaaaateagtatacaagaggtataaggecaggtgttggcagtgaaegceaa 3430 agcaagetecataggtatetecaagetatetteagaaatgteegtggetgtttteagtattaaaatetgt 3500							
aycaagctcca	caggtat	ctccaagct	atcttcagaa	atgtccgtgg	ctgttttcag	tattaaaatc	tgt 3500

10/54

Fig. 5A (con't)

3510	3520	3530	3540	3550	3560 LL	3570	
tgtctaaaagg	gcagcagtgtcca ttcaagtatttato	tcacagggtta	atagaaagcc	acttttctcag	ggctgccacct	gctgg 3570	

MOUSE HDAM 758 10 MLRDPTTTGWPPLLLLLLQLPPPPLVCGAPAGPGTGAOAS 40 ELVVPTRLPGSASELAFHLSAFGQGFVLRLAPDASFLAPE 80 FKIERLGGSSAAAGGEPGLRGCFFSGIVNGERESLAAMSC 120 VAGWSGSFILLAGEEFTIQPQGAGDSLDQPHRLQRWGPGQR 160 REDPGLAAAEVFPLPQGLEWEVEMGNGQGQERSDNEEDRK 200 210 220 230 N-terminus of mature QDKEGLLKETEDSRKVPPPFGSKTRSKRFVSEARFVETLL 240 VADASMAAFYGIDLONHILIVMSMAARIYKHPSIRNSVNL 280 WVKVLIVEKERWGPEVSDNGGLTLRNFCSWQRRFNKPSD 320 RHPEHYDTAILFIRONFOGKGEOCDILGMADVGTICDPDK 360 SCSVIKDEGLQAAYTLAHELGHVLSMPHDDSKPCVRLFGP 400 410 420 430 440 MGKYHMMAPFFIHVNKFLPWSPCSAVYLTELLDDGHGDCL 440 LDAPTSVLPLPTGLPCHSTLYELDOOCKOIFGPDFRHCPN 480 TSVEDICVQLCARHRDSDEPICHTKNGSLLWADGTPCGPG 520 8 4 HLCLDGSCVLKEDVENPKAVVDGDAGPARPAGOCSRTCGG 560 GIQFSNRECDNPMPQNGGRFCLGERVKYQSCNTEECPPNG 600 610 620 630 640 KSFREQQCEKYNAYNH DLDGNFLQWYPKYSGVSPRDRCK 640 LFCRARGRSEFKVFEAKVIDGILCGPDILSICVRGQCVKA 680 10 CY GCDHVVNSPKKLDKCGVCGGKGTACRKISGSFTPFSYGYN 720 spacer ~146aa DIVTIPAGATNIDVKORSHPGVRNDGSYLALKTANGOYLL 760 NGNLAISAIEQDILVKGTTLKYSGSMATTLERLQSFQALPE 800 810 820 830 840 PLTVQLLTVSGEVFPPKVRYTFFVPNDMDFSVQNSKERAT 840 INTIQSLPSAEWVLGDWSECPSTCRGSWORRTVECRDPSG 880 QASDICDEALKPEDAKPCGSQPCPL 905

Fig. 6A

	0.0-0.	A.	545 A 14 C	ANAm	T(-8	(HUMAN).	
				1101111	.5 0		
10	20	30	40				
CGAGGGCAGAAGGCGC							•
GGCCACGAGTAGGAC							
TICGIGGAGACGCIGC							
CCTTCTACGGGGCCG						•	•
AATGICIGIGGCAGC	CGAATCTAC	AAGCACCC	CAGCATC 2	200			
210	220	230	240				•
mulmulmul	لتبيطيين	سسلسب	حليتين				
AAGAATTCCATCAAC	TGATGGTGG	TAAAÀGTG	TIGATOG 2	240		•	
TAGAAGATGAAAAAT	3GGGCCCAGA	GGTGTCCG/	ACAATGG 2	280		•*	•
GGGCTTACACTGCG	CAACTTCTGC	AACTGGCAG	CCCCCT 3	320	•		
TTCAACCAGCCCAGC	3ACCGCCACC	CAGAGCAC	TACGACA	360			
CGGCCATCCTGCTCA	CAGACAGAA	CITCIGIG	GCAGGA 4	100		•	**
410	420	430	440				***
	ليسلسيا	ستأسب	للبيبا			-,	
GGGGCTGTGTGACAC	creecicie	GCAGACAT(OGGGACC 4	14 0			
ATTTGTGACCCCAAC							
AGGGGCTCCAGGCGG							
GCACGTCCTCAGCAT	GCCCCACGAC	GACTCCAA	SCOCTEC!	560			
ACACGGCTCTTCGGG							
610	620	630	640				
CACCGCTGTTCGTCC				640			
CCCCTGCAGCGCCAT							
TGGATCCATTTCAAG	_						
TAAAGIGIGATCITA							

HUMAN ADAM-TSE CATALYTIC DOMAIN

Fig. 6B

Fig. 7A

Fig. 7A (con't)

1760	1770	1780	1790	1800	1810	1820
لسيلسلسل	سيبيب	ىلىسىلىن	ىلىسىلىنى		ىلىسىلىپ	<u> </u>
CTGCAACACGGAGCC	ATGTCTCAAGC	'AGAAGCGAGA	CTTCCGAGAT	GAACAGIGIG	CICACITIGA	ACGGG 1820
AAGCATTTTAACATC	AACGGICIGCI	TCCCAATGIG	CGCTGGGTCC	CIAAATACAG	TGGAATTCTC	ATGA 1890
AGGACCGGTGCAAGT.	IGITCIGCAGA	GTGGCAGGGA	ACACAGCCTA	CIATCAGCII	CGAGACAGAG	FIGAT 1960
AGATGGAACICCTIG	IGGCCAGGACA	CAAATGATAT	CIGIGICCAG	GCCTTTGCC	GGCAAGCTGG	ATGC 2030
GATCATGITTTAAAC	ICAAAAGCCCCC	GAGAGATAAA	TGCCCCGTTT	GIGGIGGCGA	TAATICTICA	ATGCA 2100
2110	2120	2130	2140	2150	2160	2170
استلسلسا	بلينيلين	<u> بلينيان،</u>	بليبيلين	بلينيلين		
AAACAGTGGCAGGAAG	CATTTAATACA	GTACATTATG	GTTACAATAC	TGTGGTCCGA	ATTCCAGCTC	GTGC 2170
TACCAATATTGATGT	GCGCACCACA	GTTTCTCAGG	GGAAACAGAC	GATGACAACT	ACTTAGCTTI	ATCA 2240
AGCAGTAAAGGTGAA	ITCITGCTAAA	TGGAAACTTT	GITGICACAA	TGGCCAAAAG	GGAAATTCGC	ATTG 2310
GGAATGCTGTGGTAG	AGTACAGTGGG	TCCGAGACTG	CCGTAGAAAG	AATTAACTCA	ACAGATOGCA	TTGA 2380
GCAAGAACTTTTGCT	CAGGITTIGI	CGGTGGGAAA	GITGIACAAC	CCCGATGTAC	GCTATTCTTI	CAAT 2450
2460	2470	2480	2490	2500	2510	2520
	ىلىنىلىن	بلينيلين	بلينتيلين	بالتسليب	بسيست	ــــــــــــــــــــــــــــــــــــــ
ATTCCAATTGAAGATA	AAACCTCAGCA	GITITACTGG	AACAGTCATG	GGCCATGGCA	AGCATGCAGI	AAAC 2520
CCTGCCAAGGGGAAC	GAAACGAAAA	CITGITTCCA	CCAGGGAATC	TGATCAGCTT	ACIGITICIO	ATCA 2590
AAGATGCGATCGGCT	CCCCAGCCTC	GACACATTAC	TGAACCCTGT	GGTACAGGCT	GTGACCTGAC	GTGG 2660
CATGTTGCCAGCAGG	AGTGAATGTAG	TICCCCAGIGI	GCTTGCGTT	'ACCGCACATT	GGACATCTAC	TGTG 2730
CCAAATATAGCAGGC	IGGATGGGAAG	ACTGAGAAGG	TTGATGATGG	TTTTTGCAGC	AGCCATCCCA	AACC 2800
2810	2820	2830	2840	2850	2860	2870
استاستاستا	بالبنياليين		بليتتليين			
AAGCAACCGTGAAAA	ATGCTCAGGGG	AATGTAACAC	GGGIGGCIGG	CCTATTCTC	CCTGGACTGA	ATGT 2870
TCAAAAAGCTGTGAC	GTGGGACCCA	GAGGAGAAGG	GCTATTTGTG	TCAATACCCG	AAATGATGTA	CTGG 2940
ATGACAGCAAATGCAG	CACATCAAGAC	AAAGTTACCA	TTCAGAGGTG	CAGIGAGITC	CCTTGTCCAC	AGIG 3010
GAAATCTGGAGACTG	STCAGAGIGCI	TGGTCACCTG	TGGAAAAGGG	CATAAGCACC	GCCAGGICIC	GIGT 3080
CAGTITIGGIGAAGAT	CGATTAAATGA	TAGAATGTGT	GACCCTGAGA	CCAAGCCAAC	ATCTATGCAG	ACTT 3150
3160	3170	3180	3190	3200	3210	3220
استلسلسنا	بلينيلين	بليتبلين	بلينتلين	بليتيلين	بليينانين	
GTCAGCAGCCGGAATC	TICCATICCTIC	CAGGCGGGTC	CCTGGGTACA	GIGCAGIGIC	ACTIGIGGAC	AGGG 3220
ATACCAGCTAAGAGC	AGTGAAATGCA	TCATTGGGAC	TTATATGTCA	GTGGTAGATG	ACAATGACTO	TAAT 3290
GCAGCAACTAGACCA	ACTGATACCCA	GGACTGTGAA	TACCATCAT	GICATCCICC	CCCAGCIGCC	CCCGG 3360
AAACGAGGAGAAGCA	CATACAGIGCA	CCAAGAACCC	'AGTGGCGATT	TGGGTCTTGG	ACCCCATGCT	CAGC 3430
CACTTGTGGGAAAGG	PACCOGGATGA	GATACGICAG	CTCCCGAGAT	GAGAATGGCT	CIGIGGCIGA	ACGAG 3500

Fig. 7A (con't)

3510	3520	3530	3540	3550	3560	3570
لسيلسيلسي	لسيلس	لتبتليين	لتتبليين	التسليين	لمساسب	
AGIGCCIGIGCTACC	CTGCCTAGAC	CAGTGGCAAA	GGAAGAATGI	TCTGTGACAC	CCTGTGGGCA	ATGGA 3570
AGGCCTTGGACTGGA	CCTCTTGCTC	TGTGACCTGT	GGGCAAGGTA	GGGCAACCCG	CAAGTGATG	rgrgr 3640
CAACTACAGTGACCA	CGTGATCGAT	CCGAGTGAGT	GIGACCAGGA	TTATATCCCA	GAAACTGACC	AGGAC 3710
TGTTCCATGTCACCA	TGCCCTCAAA	GGACCCCAGA	CAGIGGCTTA	GCTCAGCACO	CCTTCCAAAA	TGAGG 3780
ACTATOGICCCOGGA	GCGCCAGCCC	CAGCCGCACC	CATGTGCTCG	KGTGGAAACCA	GIGGAGAACI	GGCCC 3,850
3860	3870	3880	3890	3900	3910	3920
لسيلسيلسي	ليبيليين	ليتقلين	لتتبليين	ليبتليب	ليستلسب	
CIGGGGAGCATGITC	CAGTACCIGI	GCTGGCGGAT	CCCAGCGGCC	TGITGITGTA	TGTCAGGATG	AAAAT 3920
GGATACACCGCAAAC	GACIGIGIGE	ACAGAATAAA	ACCIGATGAC	CAAAGAGCCT	GTGAATCCGG	CCCTT 3990
GTCCTCAGTGGGCTT	ATGGCAACTG	GGGAGAGTGC	ACTAAGCTGT	GIGGIGGAGG	CATAAGAACA	AGACT 4060
GGTGGTCTGTCAGCC	CICCAACGGI	GAACGGITTO	CAGATTIGAC	CIGIGAAATI	CTTGATAAAC	CTCCC 4130
GATCGIGAGCAGIGI	AACACACATO	CITGICCACA	CGACGCTGCA	TGGAGTACTG	GCCCTTGGAG	CICGI 4200
4210	4220	4230	4240	4250	4260	4270
لىنىلىنىلىنىل	ليسلسب	لسياس	ليتتبليني	muluul	لتستليين	
GPICIGICICITIGIC	XGTCGAGGGCA	TAAACAACGA	AATGITTACI	CCATGGCAAA	AGATGGAAGC	CATTT 4270
AGAAAGIGATTACTO	TAAGCACCTC	GCTAAGCCAC	ATGGGCACAC	GAAAGTGCCGA	GGAGGAAGAT	GCCCC 4340
AAATGGAAAGCTGG	CCTTCGAGTC	AGIGCICIGI	GICCIGIGG	CGAGGCGTAC	AGCAGAGGCA	TGTGG 4410
GCTGTCAGATCGGAZ	CACACAAAAT	ACCCAGAGAG	ACCGAGIGCA	ACCCATACAC	CAGACCGGAG	TCGGA 4480
ATGCGAATGCCAAGC	CCCACGGIGI	CCCCTTTACA	CTTGGAGGG	AGAGGAATGG	CAAGAATGCA	CCAAG 4550
4560	4570	4580	4590	4600	4610	4620
ليبتليبين	ليبيلينيا	لتتبليين	ليسلسن	لتسلسيا	لتسليب	
ACCTGCGGCGAAGGC	TCCAGGTACC	CAAGGIGGI	GIGIGIGGAT	IGACAACAAAA	ACGAGGIGCA	TGGGG 4620
CACGCTGTGACGTG	AGCAAGCGGCC	CGTGGACCGT	GAAAGCTGTA	AGTTTGCAACC	CTGCGAGTAT	GICIG 4690
GATCACAGGAGAAT	CICAGAGIC	YICAGIGACCI	GIGGAAAAG	CTACAAACAA	AGGCITGICI	CGIGC 4760
AGCGAGATITIACACC	COGGAAAGAG	ATTATGAATA	CAGCTACCA	AACCACCATCA	ACTGCCCAGG	CACGC 4830
AGCCCCCAGIGITC	CACCCCTGTT	ACCIGAGGGAC	Tecccieic.	CCCCACCIC	GAGAGIIGGC	AACTG 4900
4910	4920	4930	4940	4950	4960	4970
		ليبيليين	سيبليين	لتتتليييا	لتسليب	
GGGGAGCTGCTCAG:	referreres.	GITGGAGIGA	TCCAGAGAT	CIGIGCAAIG	ttaaccaatg	gaggac 4970
caacccagccactt	atoccacacto	gatetgaagee	cagaagaacg	aaaaacctgcc	gtaatgtcta	staact 5040
gtgagttaccccag	attocaago	aggtaaaaaga	acttaaaggtg	gccagtgaaga	itggtgaatat	effect 2110
gatgattagaggaa	agcttctgaag	gatattctgtg	geggggatge	actctgaccac	cccaaagagt	acgtg blev
acactggtgcatgg	agactctgag	atttctccga	aggtttatgg	gcacaggttac	cacaACCCAAC	CAGAAT 5250

Fig. 7A (con't)

	5260	5270	5280	5290	5300	5310	5320
للبينا	للسلسل	للسللسب	ليتتلين	للسلسل	ليبيليين	لتتبيلينيا	
GTCCC	TATAACGGGA	3CCGGCGCGA1	GACIGCCAA!	IGICGGAAGG?	ATTACACGGCC	CCTCCCTTT	rccag 5320
TTTTC	AGAAAATCAG	AATAGACCTG!	ACCAGCATGC/	AGATAATCACC	CACTGACTTAC	AGTITGCAAC	GACA 5390
AGCGA.	AGGACATOCO	FICCCITITIC	CACAGCCGC	GATICCTAC!	AGCGCTGCCAA	AGTGCCCACAC	EGGTC 5460
GITTI	AGCATCAACC.	TTATGGAACC	COCCUTOTOT	TAACTGAATC	TGCCAGATGC	ATATCACAA	3GGAA 5530
TTATG	CTGTCTCTGAG	CATCAAGAAGI	CGCCGGATGC	FIACCCGAGIC	CTACCGAAAI	GCCGTCGTTA	ACTGT 5600
	5610	5620	5630	5640	5650	5660	5670
<u> </u>							
GGAAAATGCACTCCATCCTCTGGTACTGGCCTGGAGGTGCGAGTTTTATAGCTAAGGTGCTTTGAAGAGG 5670							
AAGCC	ATTATOGATO	SATGAAGGATA	GTAATGCAAT	PACCICCACCI	TAATTIGGGI	GCATGIGIAT	GIGI 5740
GIGIG	IGITIGIGIG	GACTIGIATO	ETTGTGTGTC	FIAAATGTGTG	TACATATACA	TATATACA S	804

Fig. 7B

Fig. 7B (con't)

	1760	1770	1780	1790	1800	1810	1820
بلبين	بليبيليب	ليسلبب	ليتبلين	لتستلسب	لتستلينيا	لتسليب	
PYNGSF	RDDCQCRKDY	TAAGFSSFQ	KIRIDLTSMQ	IITTDLQFA	RTSEGHPVPFA	TAGDCYSAAF	KCPQGR 1820
FSINLY	/GTGLSLTESA	RWISQGNYA	VSDIKKSPDG	TRVVGKCGGY	CCKCTPSSGI	GLEVRVL.LF	CFEEE 1890
AIMDG.	RIVMQYLHLN	LGACVCVCV	FVCDLYACVC	KCVYIYIYT	1934		

Fig. 8

ORF=2 HTAVISLCSGMMGTFRSHDGDYFTEPLOSVDDQEDEEEON 40 mahne ADAMTS9 KPHITYRHSTPOREPSTGKHACATSELKNSHSKDKRKIRM 80 RKRRKRNSLADDVALLKSGLATKVLSGYSNOTNVTRDRWN 120 FLSYPRF ... HKRTKRFLSYPRFVEVMVVADHRMVLYHGANLQHYILILM 160 Mouse Apam-759 pout-al sequence (dee figure SIVASIYKDSSIGNLINIVIVNLVVIHNEQEGPYINFNAQ 200 TTLKNFCQWQHSKNYLGGIQHDTAVLVIREDICRAQDKCD 240 TLGLAELGTICDPYRSCSISEDSGLSTAFTIAHELGHVFN 280 MPHDDSNKCKEEGVKSPQHVMAPTLNFYINFWMWSKCSRK 320 YITEFLDIGYGECLLNEPASRTYPLPSQLPGLLYNVNKQC 360 ELIFGPGSQVCPYMMQCRRLWCNNVDGAHKGCRTQHTPWA 400 DGTBCEPGKHCKFGFCVPKEMBGPAIDGSWBGWSHFGTCS 440 RICGGGIKTAIRECNRPEPKNGGKYCVGRRMKFKSCNTEP 480 CMKQKRDFREEQCAHFDGKHFNINGLLPSVRWFPKYSGIL 520 MKDRCKLFCRVAGNTAYYQLRDRVIDGTPCGQDTNDICVQ 560 GLCRQAGCDHILNSKVRKDKCGICGGDNSSCKIVAGIFNI 600 VHYGYNIVVRIPAGATSIDVRQHSFSGKSEDDNYLALSNS 640 KGEFLLNGDFVVSMSKREVRVGSAVIEYSGSDNVVERLNC 680 TDRIEEELLLQVLSVGKLYNPDVRYSFNIPIEDKPQOFYW 720 NSHGPWQACSKPCQGERRRKLVCTRESDQLTVSDQRCDRL 760 POPGPVTEACGIDCDLRWHVASKSECSAQCGLGYRILDIH 800 CAKYSRMDGKTEKVDDSFCSSQPRPSNQEKCSGECSTGGW 840 RYSAWTECSRSCDGGTQRRRAICVNTRNDVLDDS 874

Created: Saturday, April 10, 1999 11:40 AM

Fig. 8 (con't)

360	370	380	390	400	410	420
لىسلىسلىسا	بسلسب	l	لتتبليين	سيبلس	لمبيليية	
ACAGATGGAACCACA	VAAAGAACCAA	ACCCITICIC.	ICCTACCCAC	CGITTGTAGA	EGIGATOGIC	GTGGC 420
TGACCACAGGATGGT	TTTATACCAC	GAGCAAACC.	ITCAACATTA	TATCITAACC	ITAATGTCCA	TIGTA 490
CCTTCTATCTATAA	GACTCAAGTA	TTGGAAATTT	TTATAATTAA	GITATIGIGA	ACTTAGTTGI	GATTC 560
ATAATGAACAGGAAC	GACCTTACATZ	AAATTTCAAT	3CCCAGACAA	CATTAAAGAA	CITTICCCAG	IGGCA 630
CCACTCAAAGAACT	CTTCCCTCCC	ATTCAGCACG	ACACAGCCGI	TCTGGTCACA	AGGGAAGATA'	ICIGC 700
710	720	730	740	750	760	770
لستلستست	لسسلسب	malaut	لىسلىس		Liui	
AGAGCTCAGGACAA						
GTTCCATTAGTGAAC	CACAGIGGGCIV	GAGCACAGCT.	TTCACAATAG	CICACGAGCI	EGGCCATGIG	ITTAA 840
TATGCCTCACGATG	CACCAATAAA	IGCAAAGAAG!	AAGGAGITAA	GAGTCCCCAG	CATGICATGG	CACCA 910
ACACTGAACTTCTAC	CACCAACCCCT	EGATGTOGTC	AAAGIGCAGI	CGGAAATACA'	ICACIGAGITI	CCTAG 980
ACACTGGGTACGGAC	AGIGCITCCI	GAATGAACCT	CATCCAGGA	CCTATCCTTTC	3CCTTCCCAA(CIGCC 1050
1060	1070	1080	1090	1100	1110	1120
لتتتليبيليين	لتستليين	لسبلس	لتسليب	لسطست	ليسلسن	ــــــــــــــــــــــــــــــــــــــ
CGGCCTTCTCTACAZ	CGTGAATAAA	CAATGIGAAC	IGATTTTTGG	SCCAGGCTCT	CAAGIGIGCC	CCTAT 1120
ATGATGCAGTGCAG	ACGGCTCTGGTV	CAATAATGI	GATGGAGCA	CACAAAGGCT	CAGGACTCA	GCACA 1190
CGCCCTGGGCAGATC	GAACCGAGIG	TGAGCCTGGA	AAGCACTGCA	AGTTTGGATT	rigigiiccc	AAAGA 1260
AATGGAGGCCCTCC	'AATTGATGGA'	TCCTGGGGAG	GITIGGAGCCA	CITIGGGACC	IGCICAAGAA	CGIGI 1330
GGAGGAGGCATCAA	ACAGCCATCA	GAGAGTGCAA	CAGACCAGAG	CCAAAAAATC	JIQQGAAGTA	CIGIG 1400
1410	1420	1430	1440	1450	1460	147 0
لسلسلسا	لسيلسا	للتنتليب	لتسلبين	لتتبيليين	لتبينليني	
TAGGAAGGAGAATG	AGTTCAAATC	CTGCAACACG	GAGCCCTGCA	TGAAGCAGAA	GCGAGACTTO	CGAGA 1470
GGAGCAGIGICCIC	ACTTTGATGGC	AAACACTTCA	ACATCAATGO	rerecreece	AGCGTACGCT	GGTTT 1540
CCTAAGTACAGCGG	ATTTTGATGA	AGGACCGGIG	CAAGITGITC	TGCAGAGTGG	CAGGAAACAC	ACCCT 1610
ACTACCAGCTCCGAC	CACAGAGIGAT	TGACGGAACC	CCTTGTGGCC	'AGGACACAAA'	IGACATCIGI	GICCA 1680
AGGCCTTTGCCGGCZ	AGCIGGAIGI	GATCATATIT	TAAACTCAAA	LCGTCCGGAAA	GATAAATGIG	GGATT 1750
1760	1770	1780	1790	1800	1810	1820
ليسلسلس	لسيلسا	لتتبليين	لبسلسي	ليتتلينن	ليتتليين	
TGTGGTGGAGATAA	TTCTTCATGCA	AAACAGTGGC	AGGAACATTT	AACACIGICC	ATTATGGTTA	CAATA 1820
CIGITGICCGAATIC	COGCIGGIGC	TACCAGCATI	GACGIGCGIC	AGCACAGCTI	CTCAGGGAAG	TCTGA 1890
GGATGACAACTACC	PAGCTTTATCA	AACAGTAAAG	GIGAATICCI	GCTAAATGGA	GACTITIGITG	TCTCC 1960
ATGTCCAAAAGGGAG	33100003166	GGAGCGCCGI	CATTGAGTAC	AGCGGATCGG	ACAATGTGGT	GGAAA 2030
GACTGAACTGTACG	GACCGTATCGA	GGAAGAACIT	CICCTICAGO	agrigicogi	GGGAAAGCTG	татаа 2100

Fig. 8 (con't)

	2110	2120	2130	2140	2150	2160	2170
عليتند	بليتينانين	لسبلس	ىلىبىلىن	بلينييلين	سلسسلس	ىلىنىلىن	
CCCAGA	TGTGCGGTAC	TCATTCAAT	ATTCCCATTGA	GGACAAACCI	CAGCAATITE	ACTGGAACAG	TCAC 2170
GGGCCG	TGGCAAGCAT	TGCAGCAAGC	CTCCCAAGC	GAGCOGAGAC	GAAAACTTGT	ITGCACCAGG	GAGT 2240
CTGATO	'AGCTAACCG	TTCTGATCA	AAGATGTGACC	GGCTGCCCCA	GCCAGGACCI	GICACTGAAG	CGIG 2310
CCCCAC	AGACTGTGAC	TTGAGGTGG	CACGITGCCAC	CAAGAGCGAA	TGCAGTGCCC	AGIGIGGITT	GGGC 2380
TACCGI	'ACTTTAGAC	ATCCACTGTG	CAAATACAGC	ACGATCGACG	GGAAGACGGA	GAAGGIGGAT	GACA 2450
	2460	2470	2480	2490	2500	2510	2520
بليبيد	لسياس	ليبيليين	بلينيابين	بليبيلين	<u>ىلىنىدلىن.</u>	بلينتانين	<u> </u>
GTTTCTGTAGCAGTCAACCCAGACCGAGTAACCAGGAGAAATGCTCAGGAGAGTGCAGCACAGGTGGATG 2520							
GCGCTATTCAGCCTGGACCGAATGTTCTAGAAGCTGTGATGGTGCTACCCAGAGAAGAAGAAGAGCAATTTGT 2590							
			ATGACAGCAA				

Fig. 9A

10	20	30	40	50	60	70
TCACGCACGCCTTCC						
CCCCGIGGACCACAA						· •
GGGCCACAGCCGAGI						
CCCACCICCCGICTA						
66666666666666						
360	370	380	390	400	410	420
					-	
CAGCACCIGIGGAGG						
GCIGGGCCCAAGGGI						,
GTCACCCCCACCTGC						
GCGGACCTTGAAGCC						
CGATCCGTCACCCGA						
710	720	730	740	750	760	770
GCCCCCGGATGTCC						
TCTGGGAAGCACCGT						
ATCACCCACCATGCC						-
GCCATGGCAATGCCA						
CATCTCCATCTACAA						
1060	1070	1080	1090	1100	1110	1120
لسلسلسل						
AGAGAAGCTGCAGCG						
CATTCGGCATGAACC						
GCTGCCCACATTAC						
TTTCTAGACTCGGGC	CIGGGGCICI	CCTGAACAAC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	GACAGGACTI	TGTGTACCCC	ACAG 1330
TGGCACCGGGCCAAG	CCTACGATGC	AGATGAGCAA1	GCCGCTTTCA	CATGGAGTC	AAATCGCGTC	AGTG 1400
1410	1420	1430	1440	1450	1460	1470
ليبيطينيطينيي	<u> </u>	بليينانين	بليستليب	بليستليين	بالتستاليين	
TAAATACGGGGAGGI	CTCCACCGAC	CIGIOGIGICI	GAGCAAGAGC	CAACCOGTGCA	TCACCAACAC	CATC 1470
CCGGCCGAGGGC	'ACGCTGTGCC	AGACGCACACC	ATOGACAAGO	OGTGGTGCTA	CAAACGGGTC	TGTG 1540
TCCCCTTTGGGTCGC	GCCCAGAGGG	TGTGGACGGAC	CCIGGGGGC	CICCACICCA	TGGGGGGACT	GCAG 1610
CCGGACCTGTGGCGC	ccccicicc	ICTICTAGICG	TCACTGCGAC	CAGCCCCAGGC	CAACCATCGC	1680 ggc
AAGTACTGTCTGGGT	GAGAGAAGGCY	GCACCCCTCC	TGCAACACGC	ATGACTGTCC	.ccc1ccc1cc	CAGG 1750

Fig. 9A (con't)

1760	1770	1780	1790	1800	1810	1820
ليبيلينيانين	للسلسا	لبييلين	لسبلسب	لسلسي	بليسانيسب	ш
ACTICAGAGAAGIGC	AGIGITCIGA!	ATTTGACAGC	ATCCCTTTCC	GIGGGAAATI	CTACAAGTGGA	AAAAC 1820
GTACCGGGGAGGGG	OGIGAAGGCC:	IGCICGCICA	CGAGCCTAGC	GGAAGGCTTC	AACITCIACA(CGGAG 1890
AGGGCGCAGCCGTG	JIGGACGGGA(CACCCTGCCG	TCCAGACACG	GIGGACATII	GCGICAGIGGC	GAAT 1960
GCAAGCACGIGGGCI	GCGACCGAGI	CIGGGCICO	GACCIGCGGG	AGGACAAGIG	CCGAGIGIGIC	3GCGG 2030
TGACGGCAGTGCCTG	CGAGACCATC	GAGGGGGTCT	TCAGCCCAGC	CTCACCTGGG	GCCGGGTACG?	AGGAT 2100
2110	2120	2130	2140	2150	2160	2170
السياسياسيا						
GTCGTCTGGATTCCC						
CCCTGAAGGGAGACC	AGGAGICCCIV	CTCCTCGAG	GGGCTGCCTG	GGACCCCCCA	GCCCCACCGIV	TIGCC 2240
TCTAGCTGGGACCAC	CTTTCAACTG	CGACAGGGGC	CAGACCAGGI	CCAGAGCCTO	GAAGCCCTGGC	EACCG 2310
ATTAATGCATCTCTC						
CCCCCATCGCCCGTG	ACTOGCTGCO	CCCCTACTCC	TGGCACTATG	CGCCCTGGAC	CAAGIGCICG	3CCCA 2450
2460	2470	2480	2490	2500	2510	2520
<u> </u>	لتتبليين	لتتبليين	لتتسليين	لسيلس	لسلسل	
GIGIGCAGGCGTAG	CCAGGIGCAG	GCGGTGGAGT	GCCGCAACCA	GCTGGACAGC	TCCGCGGTCGC	cccc 2520
CACTACTGCAGTGCC	CACAGCAAGC	TGCCCAAAAG	GCAGCGCGCC	TGCAACACGG	AGCCITGCCC	ICCAG 2590
ACTGGGTTGTAGGGA	ACTGGTCGCT	CTGCAGCCGC	ACCICCGAIC	CAGGCGTGCG	CAGICGCICG	GICGI 2660
GTGCCAGCGCCGCGT	CICIGCCGCG	GAGGAGAAGG	CGCTGGACGA	CAGCGCATGC	CCGCAGCCGC	GCCCA 2730
CCTGTACTGGAGGCC	TGCCACGGCC	CCACTIGCCC	TCCGGAGTGG	ECAACCCTCC	ACTGGTCTGAG	GIGIA 2800
2810	2820	2830	2840	2850	2860	2870
ليبيبليييا						
CCCCAAGCTGTGGGC	CIGGICICCG	CCACCGAGIC	GICCITIGIA	AGAGTGCAGA	TCAACGATĆT	ACICI 2870
GCCCCTGGGCACTG	CCTTCCTGCA	GCCAAGCCAC	CATCTACTAT	CCGATGTAAC	TICCCCCCC	GCCCT 2940
CCIGCCCGCIGGGIG	ACCAGIGAGI	GCCGTGAGTC	TICCACACAC	FIGIGGCCICC	XGCCAGCAGCA(GCGCA 3010
CAGTGCGCTGCACCA						
GCAGCAGIGIGAGGC	CAAGIGIGAC	AGIGIGGIGC	CGCCIGGAG!	ATGCCCAGAA	GAATGCAAGG	ATGTG 3150
3160	3170	3180	3190	3200	3210	3220
ليبيلينيليين	لتتطييب	ليتبيليين	ليتتليين	لىسلىسا	لسيلسي	
AACAAGGIGGCTTAC	TGCCCCCTGC	TGCTCAAATT	TCAGTTCTG	[AGCCGAGCC]	CACTTCCGCCA	GATGT 3220
GCTGCAAAACCTGCC	CAAGGCCGCta	gggtacctgg	jaaccaacct <u>c</u>	ggagcacaggc	tgaggcaggg	gacat 3290
cccactggagaggg	atgagggaaa	.ggggggcttg	gaattgaaggg	gtgagatgcag	gttgaaagtta	tttat 3360
tgggtaaccctacag	ggctcctgac	taaggggtgg	gagaagagctg	getacccage	gaccctctgc	tgtat 3430
cttgcccagttgata	igtgaagagag	gaggactcctt	gttgcacaca	atatttaagto	cctagcaccc	etccc 3500

Fig. 9A (con't)

				\			
	3510	3520	3530	3540	3550	3560	3570
لمسلا	mulmi	ليسلسب	لتنتانين	سياسي	ليبيلين	ليبيلينيا	البييا
accct	ttgatcggaa	tatgtactg t	.gaagagtggg	ggtggggagg	ggtgtgctgc	tgeeetgeee	ecetge 3570
							caccac 3640
	tgtagccctc						
							actcct 3780
caccaagaagccttacattaaaaaagttgtgttatcctacaaaaaaaa							
	3860	3870	3880	3890	3900	3910	3920
<u> </u>							
ggtacccaattcgcgctatagtagatngggtntta 3885							

26/54 Fig. 9B

human ADAM TS-8/10
10 20 30 40 4 /
SRTPSGLKMSSCPVWRAMRSPSPPAWITTGHCWPSRHLLP 40
GAAPRHOGHSRVPPLLQSGLASTHFLLNLTRSSRLLAGRV 80
sveywtreglawqraarphclyaghlqgqassshvalstc 120 gglhglivadeeeylieplhggpkgsrspeesgphvvykr 160
SSLRHPHLDTACGVRDEKPWKGRPWWLRTLKPPPARPLGN 200
210 220 230 240 Make prolease
ETERCOPCILKREVSRERYVETLVVADKMMVAYHCRRDVEQ 240
YVLAIMNIVAKLFQDSSLGSTVNILVIRLILLITEDQPTLE 280 SVSRERY
ITHHAGKSLDSFCKWQKSIVNHSGHCNAIPENGVANHDTA 320
VLITRYDICIYKNKPCGILGLARWAECVSAREAAASMRTL 360
AATSVHICHEIGHIFGMNHDGVGNSCGARGQDPAKLMAAH 400
410 420 430 440
ITMKTNPFVWSSCNRDYITSFLDSGLGLCLNNRPPRQDFV 440
YPTVAPGQAYDADEQCRFQHGVKSRQCKYGEVCSELWCLS 480
KSNRCITNSIPAAEGILCQIHTIDKGWCYKRVCVPFGSRP 520
EGVDGAWGPWTPWGDCSRTCGGGVSSSSRHCDSPRPTIGG 560
KYCLGERRRHRSCNIDDCPPGSQDFREVQCSEFDSIPFRG 600
610 620 630 640
KFYKWKTYRGGGVKACSLTSLAEGFNFYTERAAAVVDGTP 640
CRPDIVDICVSGECKHVCCDRVLGSDLREDKCRVCGGDGS 680
ACETIEGVFSPASPCAGYEDVVWIPKGSVHIFIQDLNLSL 720
SHLALKGDQESLLLEGLPGTPQPHRLPLAGTTFQLRQGPD 760
QVQSLFALGPINASLIVMVLARTELPALRYRFNAPIARDS 800
810 820 830 840
THE TARK THE TARK OF THE TARK
LPPYSWHYAFWTKCSAQCAGGSQVQAVECRNQLDSSAVAP 840
HYCSAHSKLPKRQRACNTEPCPPDWVVGWSLCSRSCDAG 880 VRSRSVVCQRRVSAAEEKALDDSACPQPRPPVLEACHGPT 920
CPPEWATLDWSECTPSCGPGLRHRWLCKSADQRSTLPPG 960
HCLPAAKPPSIMRCNLRRCPPARWVISEWGECSTQCGLGQ 1000
INTEREST POSTURATED OF TURBUS TOPINO CONTRACTOR TOPINO

WO 01/11074 PCT/US00/21223

27/54

Fig. 9B (con't)

1010 1020 1030 1040

QQRTVRCTSHTGQPSRECTEALRPSTMQQCFAKCDSVVPP 1040

GDGPEECKDVNKVAYCPLVLKFQFCSRAYFRQMCCKTCQG 1080

R 1081

Fig. 10A

partial requerce of mouse ADAM 75-10								
partial requerce of mouse ADAM 75-10 10 20 30 40 (See figure)								
AGCAGCAGCTGTGGTGGATGGAACACCCTGCCGCCCTGAC 40								
ACGGTGGACATTTGTGTCAGCGGCGAGTGCAAGCATGTAG 80								
GCTGTGACAGGTCCTGGGTTCTGATCTCCGAGAGGACAA 120								
ATGCCGTGTGTGGGGGTGATGCCAGTGCCTGTGAGACC 160								
ATTGAAGGIGICITTAGCCCAGCITTGCCAGGAACTGGGI 200								
210 220 230 240								
ATGAGGACGTCGGATCCCCAAAGGCTCGGTCCACAT 240								
TITCATCCAAGATCTGAACCTGTCCCTGAGTCACCTGGCC 280								
CTAAAGGGGACCAAGAGTCTCTGCTACTGGAGGGGCTAC 320								
CTGGGACCCCCAACCTNACCGCCTTCCCCTGGNTGGGAC 360								
CACATTICATCTACGGCAGGGCCGGACCAGGCACAGAGC 400								
410 420 430 440								
CIGGAAGCCCIGGGACCCATTAATGCATCICTCATCATCA 440								
TGGTGCTGGCCCAGGCAGGTTGCCTGCTCTCCACTACCG 480								
CITCAATGCACCCATTGCCCGGGATGCACTGCCTCCCTAC 520								
TCCTGGCACTATGCCCCCTGGACCAAATGCTCAGCCCAGT 560								
GIGCAGGCGGCAGGICCAAGIAGIGGAGIGCCGAAA 600								
610 620 630 640								
TCAGCTGGACAGCTCAGCAGTGGCCCCACACTACTGTAGT 640								
GGCCACAGTAAATTGCCCAAGAGGCAGCGTGCCTGCAACA 680								
CAGAACCATGTCCACCAGATTGGGTTGTAGGAAACTGGTC 720								
ACCCTGCAGCCGTAGCTGTGTGTGTGCGTAGCCGC 760								
TCAGIGGIGICCCAACGCCGGIGICIGCIGCAGAGGAAA 800								
810 820 830 840								
AAGCCTTAGACGACAGTGCCTGTCCACAGCCACGCCCCACC 840								
TGTCCTGCAGGCCTGCCAATGTGCCCTCCTGAG 880								
TGGCCAACCCTCGACTGTGTACCCCCAAGCTGTG 920								
GCCTGGTCTCCGCCACCGAGTGGTCCTTTGTAAGAGTGC 960								
AGATCAACGATCTACTCTGCCCCCTGGGCACTGCCTTCCT 1000								

29/54

Fig. 10A (con't)

1010 1020 1030	1040
	<u></u>
GCAGCCAAGCCACCATCTACTATGCGATGTAACTTGCG	GCC 1040
GCTGCCCTCCTGCCCGCTGGGTGACCAGTGAGTGGGGT	IGA 1080
GIGITCCACACAGIGIGGCCTCGGCCAGCAGCAGCCA	ACA 1120
GIGCGCIGCACCAGCCACCCACCCATCTCGAGA	AGT 1160
GCACTGAAGCCITGCGGCCATCCACCATGCAGCAGTGT	IGA 1200
1210 1220 1230	1240
maliinlanduuluuluuluulu	<u></u>
GCCCAAGTGTGACAGTGTGGTGCCCCCTGGAGATGCCC	CCA 1240
GAAGAATGCAAGGATGTGAACAAGGTGGCTTACTGCCC	CCC 1280
TGGIGCTCAAATTTCAGTTCTGTAGCCGAGCCTACTTC	CCG 1320
CCAGATGTGCTGCAAAACCTGCCAAGGCCGCTAGGGTA	ACC 1360
TGGAACCAACCTGGAGCACACGCTGAGGCAGGGGACAT	rcc 1400
1410 1420 1430	1440
	ш
CACTGGAGAGGCATGAGGGAAAGGGGGCTTGAATTG	GAA 1440
GGGTGAGATGCAAGTTGAAAGTATTTATTTGGGTAACC	CCC 1480
TACAGGGCTTCTGACTTAAGGGGTGGAGAANAGCTGGC	CTA 1520
CCCCAGGGACCCTTTTGTTGGATCTTGGCCCANITGAT	
TGAAGAGAGACTTCTTGGTGVACACATTTTTAAGT	rcc 1600
1610 1620 1630	1640
	ш
TTAGACCCTTCCACCIVITGATCGGATATGTCTGGGAAG	GAG 1640
QN 1642	• •

30/54

Fig. 10B

	10	20	30	4 0	monse	ADAM TSIO	
سيلينين	سلسست	بالبستانية	بلبيياب				
AAAVVDGI	PCRPDIVDI	CVSGECKHV	CORVLGSDLF	EDK 4	Ю		
CRVCGGDG	SACETIEGV	FSPALPGIG	YEDVVWIPKGS	3 IHV	10		
FIQDLNLS	LSHLALKGI	QESLLLEGL	PGTPQPXRLPI	XGT 1	.20		
TFHLRQGF	DQAQSLEAI	GPINASLIII	<i>I</i> VLAQAELPAI	HYR 1	-60		
FNAPIARE	ALPPYSWHY	'APWIKCSAQ	CAGGSQVQVVE	CRN 2	200		
	210	220	230	240			
سلسب	بيلينييل	علىبىلىب	بلينيلين	حلب			
QLDSSAVA	PHYCSCHSK	LPKRQRACIV	repcppdwvc	anns 2	240		
RCSRSCDA	GVRSRSVVC	QRRVSAAEE	KALDDSACPQE	RPP 2	280	•	
			GPGLRHRVVLC				₽
			RCPPARWVTSE				
CSTQCGLG	QQQRTVRC1	SHIGQPSRE	TEALRPSIM	XXCE 4	100	•	
	410	420	430	440			
سلسب	سلسسلب	بلينيلين	بالسالية	سلب			 .
AKCDSVVE	PGDGPEEC	OVNKVAYCP.	LVLKFQFCSRA	YFR 4	140		
QMCCKTCC	GR 450						

Fig. 11A

Ligated 459225+482392 with Sac I(168)&Eco RI(or Not I) Cloning site:5';Eco RI 3';Not I Vector; PI7T3 pac.

You can put this construct to pcDNA3.1(+) for transfection 5'-UTR is 50bp &3'-UTR is 175bp

210-215; in 482392 it's TCCTAC(SY).

	10	20	30	40		
سلسب	سلسسلب	لتستليد	لتستليب	ــــــــــــــــــــــــــــــــــــــ		
gaattcg	gcacgaggca	gtgtccga	ttctgattco	oggcaa 40		
ggatcca	agcATGGAAT	GCTGCCGT	CGGGCAACTC	CCIGGC 80		
ACACTGC:	ICCICITICI	GCTTTCC	TGCTCCTGAC	FITCCA 120		
GGACCGC	ACgctCCGAG	GAGGACCG	GGACGGCCII	ATGGGA 160		
TGCCTGG	GCCCATCGA	GTGAATGC	TCACGCACCI	rgcggg 200		
	210	220	230	240		
سلسب	بيلينيلي	لبينانيا	لتتبليين	<u> </u>		
GCIGGGG	CCCCAACTC	TCTGAGGO	GCTGCCTGAC	CAGCA 240		
AGAGCIG.	IGAAGGAAGA	AATATCCG	ATACAGAACA	ATGCAG 280		
TAATGIG	GACIGCCCAC	CAGAAGCA	GGTGATTTCC	GAGCT 320		
CAGCAAT	GCTCAGCTCA	TAATGATG	TCAAGCACCA	ATGGCC 360		i
AGITITA	IGAAIGGCTI	CCIGIGIC	TAATGACCCI	GACAA 400		
	410	420	430	440		
سلسب	سلسسلب	لتستليد	لتتبليين	ــــــــــــــــــــــــــــــــــــــ		
CCCATGIT	ICACICAAGI	GCCAAGCC	AAAGGAACAA	ACCCTG 440		
	. 					
GIIGIIG	AACTAGCACC	TAAGGICT	TAGATOGTAC	CCCTT 480		:
	ACTACCACC AGAATCTTTG			- -		:
GCTATACA		GATATGTO	CATCAGIGGI	TTATG 520		:
GCTATACA CCAAATTO	AGAATCTTTG	GATATGTG ATCACCAG	CATCAGIGGI CIGGGAAGCA	TTATG 520 ACCGTC 560		
GCTATACA CCAAATTO	AGAATCTTTG STTGGCTGCG	GATATGTG ATCACCAG	CATCAGIGGI CIGGGAAGCA	TTATG 520 ACCGTC 560		; •
GCTATACA CCAAATTO	AGAATCTTTG FTTGGCTGCG ATAACTGTGG	GATATGTG ATCACCAG GGICTGCA	CATCAGIGGI CTGGGAAGCA ACGGAGATGG	TTATG 520 ACCGTC 560 ACCGTCA 600		•
GCTATACZ CCAAATTO AAGGAAGZ	AGAATCTTTG FTTGGCTGCG ATAACTGTGG	GATATGIO ATCACCAG GGICIGCA 620	CATCAGIGGI CTGGGAAGCA ACGGAGATGG 630	TTATG 520 ACCGTC 560 ACCGTCA 600 640		
GCTATACZ CCAAATTO AAGGAAGZ CCTGCCGC CGCAACCZ	AGAATCTTTG STTGGCTGCG ATAACTGTGG 610	GATATGIO ATCACCAG GGICIGCA 620 LLLLLLLL GGGCAGTA ATACTGIO	CATCAGIGGI CIGGGAAGCA ACOGAGATOG 630 LLLLLL IAAATCCCAG GITGCAATTC	TTATG 520 ACCGIC 560 AGICCA 600 640 ACTICIC 640 ACCITAT 680	·	·
GCTATACZ CCAAATTO AAGGAAGZ CCTGCCGC CGCAACCZ GGAAGTAC	AGAATCTTTG STTGGCTGCG ATAACTGTGG 610 CTGGTCCGA AATCGGATG	GATATGIO ATCACCAG GGICIGCA 620 LLLLLLL GGGCAGTA ATACTGIG	CATCAGIGGI CTGGGAAGCA ACGGAGATGG 630 LLLLLLLL IAAATCCCAG GTTGCAATTC	TTATG 520 ACCGTC 560 EGICCA 600 640 ECICIC 640 ECICIC 640 ECICAT 680 ETGATC 720		·
GCTATACA CCAAATTC AAGGAAGA CCTGCCGC CGCAACCA GGAAGTAC ACTTATATA	AGAATCTTTG ETTGCTGCG ATAACTGTGG 610	GATATGTO ATCACCAG GGTCTGCA 620 LLLLLLLL GGGCAGTA ATACTGTG CCTTGTCT AAAACCCT	CATCAGTEGT CTGGGAAGCA ACGGAGATEG 630 LLLLLLLL TAAATCCCAG GTTGCAATTC TAAAAGGTCC CCAGGGGACT	ACCGTC 560 ACCGTC 560 ACCGTC 640 ACTCTC 640 ACCTAT 680 ACCTAT 680 ACCTAT 720 AAAAGG 760		·
GCTATACA CCAAATTC AAGGAAGA CCTGCCGC CGCAACCA GGAAGTAC	AGAATCTTTG STTGGCTGCG ATAACTGTGG 610 CTGGTCCGA AATCGGATG	GATATGTO ATCACCAG GGTCTGCA 620 LLLLLLLL GGGCAGTA ATACTGTG CCTTGTCT AAAACCCT	CATCAGTEGT CTGGGAAGCA ACGGAGATEG 630 LLLLLLLL TAAATCCCAG GTTGCAATTC TAAAAGGTCC CCAGGGGACT	ACCGTC 560 ACCGTC 560 ACCGTC 640 ACTCTC 640 ACCTAT 680 ACCTAT 680 ACCTAT 720 AAAAGG 760		•

The second section of

32/54 Fig. 11A (con't)

810 820 830 840	
AATTCTAGTGTGGACTTCCAGAAATTTCCAGACAAAGAGA 840	
TACTGAGAATGGCTGGACCACTCACAGCAGATTTCATTGT 880	•
CAAGATTCGTAACICGGGCTCCGCTGACAGTACAGTCCAG 920	
TICATCITCTATCAACCCATCATCCACCGATGGACGGAGA 960	
CGGATTTCTTCCTTGCTCAGCAACCTGTGGAGGAGGTTA 1000	
1010 1020 1030 1040	
<u> </u>	
TCAGCTGACATCGGCTGAGTGCTACGATCTGAGGAGCAAC 1040	
CGTGTCGTTCCTGACCAATACTGTCACTATTACCCAGAGA 1080	
ACATCAAACCCAAACCTTCAGGAGTGCAACTTGGA 1120	
TCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGCCT 1160	
TATGACCICTACCATCCCCTTCCTCGGIGGGAGGCCACCC 1200	
1210 1220 1230 1240	
<u> </u>	
CATGGACCGCGTGCTCCTCGTGTGGGGGGGGCATCCA 1240	
GAGCCGGCAGTTTCCTGTGTGGAGGAGGACATCCAGGGG 1280	
CATGICACTICAGIGGAAGAGIGGAAATGCATGTACACCC 1320	
CTAAGATGCCCATCGCGCAGCCCTGCAACATTTTTGACTG 1360	
CCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTG 1400	
1410 1420 1430 1440	
ACGIGIGGCCAGGCCICAGATACCGIGIGGICCICIGCA 1440	
TCGACCATCGACGACACACACGACGCTGTAGCCCAAA 1480	
AACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACT 1520	
CCCTGCTATAAACCCAAAGAAACTTCCAGTCGAGGCCA 1560	
AGTTGCCATGGTTCAAACAAGCTCAAGAGCTAGAAGAAGG 1600	
1610 1620 1630 1640	
ACCTCCTGTCACACGACCCCTCGTAAgttgtaaaagca 1640	
cagactgttctatatttgaaacttttgtttaaagaaagca 1680	
gtgtctcactggttgtagctttcatgggttctgaactaag 1720	
tgtaatcatctcaccaaagctttttggctctcaaattaaa 1760	
gattgattagtttcaaaaaaaaaaaaaaaaaagatgcggc 1800	

WO 01/11074

PCT/US00/21223

33/54 g. 11A (con't)

1810 1820 1830 1840

ogc 1803

•••

34/54 Fig. 11B

	Asp(D)	30	# cua	Leu(L)	3	# uca	Ser(S)		_	Val(V)	6
ugc	Cys (C)	26	# cuc	Leu(L)	11	# ucc	Ser(S)	10	#	Val(V)	29
ugu	Cys(C)	10	# cug	Leu(L)	14	# ucg	Ser(S)	5	# nnn	??? (X)	0
	Cys(C)	36	# cuu	Leu(L)	6	# ucu	Ser(S)	5	# TOTA	L	526
caa	Gln(Q)	7	# uua	Leu(L)	4	#	Ser(S)	43	# .		
	· -										

Created: Wednesday, May 5, 1999 10:19 AM

Ligated 459225+482392 with Sac I(168)&Eco RI(or Not I) Cloning site:5';Eco RI 3';Not I Vector; PI7T3 pac.

human ADAM-TSRI Adam-75 related protein-1.

10 20 30 40	
MECCRRATEGILLELAFILLSSRTARSEEDRDGLWDAWG 40	Signal pephole
PWSECSRTCGCGAANSLRRCLSSKSCEGRNIRYRTCSNVD 80	1,700
CPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCS 120	
LKCQAKGITLVVELAPKVLDGTRCYTESLDMCISGLCQIV 160	
GCDHQLGSTVKEDNCGVCNGDGSTCRLVRGQYKSQLSATK 200	
210 220 230 240	
SDDIVVAIPYGSRHIRLVLKGPDHLYLEIKTLQGIKGENS 240	
LSSIGTFLVDNSSVDFQKFPDKEILRMAGPLTADFIVKIR 280	
NSGSADSTVQFIFYQPIIHRWREIDFFPCSATCGGGYQLT 320	
SAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCP 360	(C) YYPENIKPKFKLQE
ASDGYKQIMPYDLYHPLPRWEATPWIACSSSCGGGIQSRA 400	_
410 420 430 440	·
VSCVEEDIQGHVISVEEWKCMYTPKMPIAQPCNIFDCPKW 440	(C) QELEEGAAV
LAQEWSPCIVICGQGLRYRVVLCIDHRGMHICGCSPKIKP 480	and company from Al
HIKEECIVPTPCYKPKEKLPVEAKLPWFKQAQELEEGAAV 520	C- term not epitope for AL
SEEPS. 526	4 1 laces the
SEEPS. 526 Similar to ADAM-TS farm	ly one
31000lax 10	parin domain. Om
monetalloprolease and assure	inwhiler of the
humberie is that this may	re a
prometalloprolease and disinter hypothesis is that this may	
formily	
V	

d .	
* MRLEWASILILILILSASCISIAADSPAAAPAQDKTRQPQAAAAAAEPDQPQGEETRERGHLQPLAGQRRSGGLVHNIDQ	80
LYSGGGKVGYLVYAGGRRFLLDLERDDIVGAAGSIVIAGGGLSASSGHRGHCFYRGIVDGSPRSLAVFDLCGGLDGFFAV	160
KHARYTLKPLLRGSWAEYERIYGDGSSRILHVYNREGFSFEALPPRASCETPASPSGPQESPSVHSRSRRRSALAPOLLD	040
	240
• •	
HSAFSPSCNAGPQTWWRRRRRSISRARQVELLLVADSSMARMYGRGLQHYLLJTLASIANRLYSHASTENHTRLAVVKVVV	320
* * * * *	
LIDKDISLEVSKNAATILKNFCKWQHQHNQLGDDHEEHYDAAILFIREDLCGHHSCDILCMADVGIICSPERSCAVIEDD	400
GLHAAFTVÆHEIGHLIGLSHIDEKFÖEENFGTTEDKRIMESILTSIDASKEWSKÖTSATITEFLIDGHGVÖLLDLERKQI	480
GHLIGLSHDDSKFCEETFGSTELKRIMSSILTSIDASKPWSKCTSATTTEFLDDGHGNCLLDLPRKQI	
<u></u> →Dis * * * * * * * *	
LGPEEL PGQTYDATQQCNLTFGPEYSVCPGMDVCARLWCAVVRQGQMVCLTKKLPAVEGTPCGKGRVCLQGKCVDKTKKK	560
LGPEELFGQTYDATQQCNLTFGPEYSVCPGXDVCARLWCAVVRQGQMVCLTKKLPAVEGTPCGKGRICLQGKCVDKTKKK	
YYSTSSHENWGSWGPWGQCSRSCOGGVQFAYRHCNNPAPRNSGRYCTGKRAIYRSCSVTPCPPNGKSFRHDQCEAKNGYQ	640
YYSTSSHCMMGSWGSWGOCSRSCGGGVOFAYRHONDAPRINGRYCTGKRAIYHSCSIMPCPPNGKSFRHDQCEAKNGYQ	010
* * * * *	
SDAKGVKTFVEWVPKYAGVLPADVCKLICRAKGTGYYVVFSPKVTDGTECRPYSNSVCVRGRCVRTGCDGIIGSKLQYDK	7 20
SDAKGVKTFVEMVPKYAGVLPADVCKLITCRAKGIGYYVVFSPKVTDGTECRPYSNSVCVRGKCVRTGCDGLIGSKLQYDK	
* ** Spacer domain CGVCGCDNSSCTKIIGTFNKKSKGYTDVVRIPEGATHIKVRQFKAKDQTRFPAYLALKKKTGEYLINGKYMISTSETTID	800
CGVCGCINSSCIKIUGIFNKKSKGYIDVVRIPEGATHIKVRQFKAKDQIRFTAYLALKKKNGEYLINGKYMISTSETIID	800
INGTVMNYSGWSHRDDFLHGYGYSATKEILIVQILATDPIKALGVRYSFFVPKKTTQKVNSVISHGSNKVGPHSTQLQWV	880
$\textbf{INGIVMNYSGWSHRDDFLHGMGYSATKEILIVQILAIDPTKPLDVRYSFFVPKKSIPKVNSVTSHGSNKVGSHTSQPQ\underline{\textbf{MV}}$	
* * * * * * * * * * * * *	000
TGPWLACSRTCDTGWHTRTVQCQDGNRKLAKGCLLSQRPSAFKQCLLKKC TGPWLACSRTCDTGWHTRTVOCODGNRKLAKGCPLSQRPSAFKQCLLKKC	930
SOURCE AND	

Fig. 13

Hurskainen et al[^]. Fig. 2a

METIMKTLTWILSLIMASSEFHSDHRLSYSSQEEFLTYLEHYQLTTPIRVDQXGAFLSFTVKNEKHSRRRRSMDPIDPQQ 80

AVSKLFFKLSAYGKHFHLNLTTMTDFVSKHFTVEYWGKDGPQWKHDFLLNCHYTGYLQDQRSTTKVALSNCVGLHGVTAT 160

EDEEYFTEPLKNTTEDSKHFSYENGHPHVIYKKSALQQRHLYDHSHCGVSDFTRSGKPWMINDTSTVSYSLPINWTHIHH 240

RQKRSVSTERFVETLVVALKMMVGYHCRKDIEHYTLSVMNIVAKLYRDSSLGWVNITVARLIVLTTEDQPALEINHADK 320

SLDSFCKWQKSTLSHQSDGNTTPENGIAHHDNAVLITRYDICTYKNKPCGTLGLASVAGNCEPFRSCSINEDIGLGSAFT 400

LAHEIVHNFGMHDETGNSCCRKVMQQNYGSSHYCEYQSFFLVCLQSRLHHQLFREVCRELWCLSKSNRCVTNSTPAAE 480

GTLCQTGNIEKGWCYQCDCVPFGTWFQSIDGGWGPWSLWCECSRTCGGGVSSSLRHCDSPAPSGGGKYCLGERKRYRSCN 560

TDPCPLGSRDFREKQCADFDNMPFRGKYYNWKPYTGGGVKPCALWCLABGYNFYTERAPAVIDGTQCNADSLDICTNGEC 640

KHVGCINILGSDAREDRCRVCGGGGSTCDATEGFFNDSLFRGGYMEVVQIPRGSVHIEVREVAMSKNYTALKSBCDDYYT 720

NCAWTILWPRKFDVAGTAFHYKRPTDEPESLEALGPTSENLIVWILLQEQNLGTRYKFNVPITRTGSGDNEVGFTMHQP 800

WSECSATCAGGKMPTRQPTQRARWRIKHILLSYALCILLKKLIGNISCRFASSCNLAKETIL 860

MFGGPSPRSPAPILRPLLLLCALAPGAPGPAPGRATEGRAALDIVHPVRVDAGGSFLSYELWPRALRKRDVSVRRDAPA 80

FYELQYRGRELRFNLTANQHLLAPGFVSETRRRGGLGRAHIRAHTPACHILGEVQDPELEGGLAAISACDGLKGVFQLSN 160

EDYFIEPLDSAPARRCHAQPHWYKRQAPERLAQRGDSSAPSTCGVQVVPELESRRERWEDRQQWRRPRLRRLHQRSVSK 240

EKWWETLWADAKWEYHGQPQVESYVLTIMMWAGLFHDPSIGNPIHITTIVRIVLLEDEEEDLKITHHADWILKSFCKW 320

QKSINMKEDAHPLHHDTAILLITRKDLCAAMMRPCETLGLSHVAGMCQPHRSCSINEDIGLPLAFTVAHELGHSEGIQHIG 400

SCANDCEPVGKRPFIMPQLLYDAAPLIWSRCSRQYITRFLDRGWGLCLDDPPAKDIIDFPSVPPGVLYDVSHQCRLQYGA 480

YSAFCEDMINVCHILWCSVGTTCHSKLDAAVDGTRGGENKWCLSGECVPVGFRPEAVDGWSGWSAWSICSRSCGMGVOS 560

AERQCTOPTTPKYKGRYCVGERKRFRLCNLQACPAGRPSFRHVQCSHFDAMLYKGQLHTWPVWNDVNPCELHCRPANEYF 640

AKKLRDAVVDGTPCYQVRASRDLCINGICKNVGCDFEIDSGAMEDRGGVCHANGSTCHIVSGTFEEAEELGYVDVGLIPA 720

GAREIRIQEVAFAANFLALRSEDPEKYFLNGGWTQWNGDYQVAGTTFTYARRGWWENLTSPGPTKEFWWIQVPASRGPG 800

GCSRGGVPRPSTTHRSRRPGGVSPGSVTEPGSEPGPPAAASTSVSPSLKWPNLWAAVHROGWQAPLGLCGWRRHLVIMG 880

PRLPTQLLFQESNRGVHYEYTTHREAGGHDEVPPPVFSWHYGFWIKCTVTCCRGEKWRHSPTCRGLVSCQGHWLQLPAH 960

CWATTGLEVCFSEPQFSICEMRLAIALCPRPAGRUNG 997

Fig. 13 (con't)

		adamalysin II atrolysin A	HELGHNLGME HD HELGHNLGMV HD	
		hADAM-9 hADAM-10 hADAM-15 hADAM-17 mADAM-19	HELGHNLGMNHD HEVGHNFGSPHD HELGHSLGLDHD HELGHNFGAEHD HEIGHNFGMSHD	
	a	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 mADAM-TS5 hADAM-TS6 hADAM-TS7	HELGHVFNMP HD HETGHVLGME HD HETGHVLGME HD HELGHVFNML HD HELGHL LG LS HD HEIVHN FGMNHD HELGH S FG I Q HD	
	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	W G P W G W G A W S W G A W S W G P W G W G P W S W S G W S	W G D C S R T C G G G V Q Y 20 F G S C S R T C G T G V K F 20 F G S C S R T C G G G V Q F 20 W G D C S R S C G G G V Q F 20 W G E C S R T C G G G V S S 20 W S I C S R S C G M G V Q S 20	0 0 0 0
b	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	T M R E C R T R Q C R T R Q C S S R D C A Y R H C S L R H C A E R Q C		0 0 0 0
	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	R V R Y R A Y D F Q A Y D F Q R T R F R R A I Y H R K R Y R R K R F R	C S R O D C 5 C N T E D C 5 C S L M P C 5 C N T D P C 5	2 2 2 2 2 2 2

Fig. 13 (con't)

Hurskainen et al^. Fig. 3

Fig. 15

ADAM-TS RELATED PROTEIN-1 (ADAM-TSR1)

FIGURE 16 Pa

MSSCPWRAMRSPSPPAWITTCHCWPSRHLLP 40 GAAPRHGGHSRVPPLLOSGLASTHFLLNLTRSSRLLAGRV 80 SVEYWTREGLAWQRAARPHCLYAGHLQGQASSSHVAISTC 120 GGLHGLIVADEFEYLIEPLHGGPKGSRSPEESGPHVVYKR 160 SSLRHPHLDTACGVRDEKPWKGRPWWLRTLKPPPARPLGN 200 ETERGOPGLKRSVSRERYVETLVVADKMMVAYHGRRDVEQ 240 YVLAIMNIVAKLFODSSLGSTVNILVIRLILLIEDQPILE 280 ITHHAGKSLDSFCKWQKSIVNHSGHGNAIPENGVANHDTA 320 VLITRYDICIYKNKPCGTLGLARWAECVSAREAAASMRTL 360 AATSVHICHEIGHTFGMNHDGVGNSCGARGODPAKLMAAH 400 ITMKTNPFVWSSCNRDYITSFLDSGLGLCLNNRPPRQDFV 440 YPTVAPGOAYDADEOCRFOHGVKSROCKYGEVCSELWCLS 480 KSNRCITNSIPAAEGILCOIHIIDKGWCYKRVCVPFGSRP 520 EGVDGAWGPWIPWGDCSRTCGGGVSSSSRHCDSPRPTIGG 560 KYCLGERRRHRSCNIDDCPPGSQDFREVQCSEFDSIPFRG 600 KFYKWKTYRGGGVKACSLTSLAEGFNFYTERAAAVVDGTP 640 CRPDIVDICVSGECKHVGCDRVLGSDLREDKCRVCGGDGS 680 ACETIEGVFSPASPGAGYEDVVWIPKGSVHIFIQDLNLSL 720 SHLALKGDQESLLLEGLPGTPQPHRLPLAGTTFQLRQGPD 760 OVOSLEALGPINASLIVMVLARTELPALRYRFNAPIARDS 800 LPPYSWHYAPWIKCSAOCAGGSOVOAVECRNOLDSSAVAP 840 HYCSAHSKLPKRORACNTEPCPPDWVGNWSLCSRSCDAG 880 VRSRSVVCQRRVSAAEEKALDDSACPQPRPPVLEACHGPT 920 CPPEWAALDWSECTPSCGPGLRHRVVLCKSADHRATLPPA 960 HCSPAAKPPATMRCNLRRCPPARWAGEWGECSAQCGVGQ 1000 RORSVRCTSHIGOASHECTEALRPPITOOCEAKCDSPTPG 1040 DGPEECKDVNKVAYCPLVLKFOFCSRAYFROMCCKTCOGH 1080 Created: Thursday, October 01, 1998 11:05 PM

•	10	20	30	40	
بليبيد	سلسلس	سلسسلت	<u></u>	ш	
tcacgc	acgccttccgg	tctcaagATG	AGTICCIGIC	AG 40	
TCTGGA	GAGCTATGAGA	ICCCCTTCCCC	CACCCGCGTGC	AC 80	
CACAAO	GGGGCACTGCT	GCCTTCTCC	CACCICCIC	CC 120	
GGAGCA	GCGCCGCGCA	CGGGGGCCAC	AGCCGAGTCC	CC 160	
CICITO	TACAAAGIGGO	CTCGCCAGCA	CCACTICCIO	CT 200	

FIGURE						Pa		
						 .		
210	220	230	240)				
GAACCTGACCCGCAG			ACCIL.	240				
TCCGTGGAGTACTGG								
GGGGGGCCGGCCCC								
GGCCAGCCAGCAG								
GGAGGCCTGCACGGC	CIGATOGIGO	CAGACGAGGA	AGAGT	400				
4 10	420	430	440					
سيطسيطسي	لتتبيلينين	ليسلسب	للسب			- <u>-</u>		
ACCTGATTGAGCCCC	TGCACGGTGC	XGCCCAAGGGI	TCTCG	440			,	
GAGCCCGGAGGAAAG	TGGACCACAT	GIGGIGIACA	AGCGT	480			•	
TCCTCTCTGCGTCAC	CCCCACCTGC	ACACAGCCIC	TGGAG	520				
TGAGAGATGAGAAAC	CGIGGAAAGC	ECCGCCATGC	TGGCT	560				
GCGGACCTTGAAGCC	ACCGCCTGCC	AGACCCCTGC	XGGAAT	600				
610	620	630	640				•	٠
		لسلسلسا						
GAAACAGAGCGIGGC								
GCCGAGAGCGCTACC								
GATGATGGTGGCCTA								
TATGICCIGGCCATC		_	– -					
AGGACTCGAGTCTGG	GAAGCACCG1	TAACATCCTC	GIAAC	800				
810	820	830	840	•				
		ليبيليينا						
TCGCCTCATCCTGCT								
ATCACCCACCATGCC				-				
AGTGGCAGAAATCCA								
TGCCATTCCAGAGAA		•						
GTGCTCATCACACGC	TATGACATC	IGCATCTACAA	GAACA	1000				
1010	1020	1030	1040)				
						· · · · · · · · · · · · · · · · · · ·		
AACCCTGCGGCACAC								
TGTGAGCGCGAGAGA							•	
GCTGCCACAAGCGTT				,				
CATTCGGCATGAACC								
GGCCCGIGGICAGGA	CCCAGCCAAC	CICATGGCI	ECCCAC	1200	·			

FIGURE 16 (continued)
1210 1220 1230 1240
ATTACCATGAAGACCAACCCATTCGTGTGGTCATCCTGCA 1240
ACCGIGACTACATCACCAGCTTTCTAGACTCGGGCCTGGG 1280
GCTCTGCCTGAACAACCGGCCCCCAGACAGGACTTTGTG 1320
TACCCGACAGTGGCACCGGGCCAAGCCTACGATGCAGATG 1360
AGCAATGCCGCTTTCAGCATGGAGTCAAATCGCGTCAGTG 1400
1410 1420 1430 1440
<u> </u>
TAAATACGGGGAGGICIGCAGCGAGCIGIGGIGICIGAGC 1440
AAGAGCAACCGGTGCATCACCAACAGCATCCCGGCCGCCG 1480
AGGCACGCTGTGCCAGACGCACCATCGACAAGGGGTG 1520
GIGCTACAAACGGGICTGTGTCCCCTTTGGGTCGCGCCCA 1560
GAGGTGTGGACGGACCTGGGGCCGTGGACTCCATGGG 1600
1610 1620 1630 1640
GCGACTGCAGCCGGACCTGTGCCGGCGGCGTGTCCTCTTC 1640
TAGTCGTCACTGCGACAGCCCAGGCCAACCATCGGGGGC 1680
AAGTACTGTCTGGGTGAGAGAGGCGGCACCGCTCCTGCA 1720
ACACGGATGACTGTCCCCTGGCTCCCAGGACTTCAGAGA 1760
AGIGCAGIGITCIGAATTIGACAGCATCCCITTCCGIGGG 1800
1810 1820 1830 1840
AAATTCTACAAGTGGAAAACGTACCGGGGGGGGGGGGGG
AGGCCTGCTCGCGACGCCTAGCGGAAGGCTTCAACTT 1880
CTACACGGAGAGGGCGCAGCCGTGGTGGACGGGACACCC 1920
TGCCGTCCAGACACGGTGGACATTTGCGTCAGTGGCGAAT 1960
GCAAGCACGTGGGCTGCGACTCCTGGGCTCCGACCT 2000
2010 2020 2030 2040
GCGGGAGGACAAGIGCCGAGIGIGIGGCGGIGACGCCAGI 2040
GCCTGCGAGACCATCGAGGGCGTCTTCAGCCCAGCCTCAC 2080
CTGGGGCCGGGTACGAGGTCTGGATTCCCAAAGG 2120
CICCGICCACATCITCATCCAGGATCIGAACCICICICTC 2160

AGICACTIGGCCCIGAAGGGAGACCAGGAGTCCCTGCTGC 2200

FIGURE 16 (continued)

2210 2220 2230 2240
TO DO CO CONTROLOGICA CONTROLOG
TGGAGGGCTGCCTGGGACCCCCAGCCCCACCGTCTGCC 2240
TCTAGCTGGGACCACCTTTCAACTGCGACAGGGGCCAGAC 2280
CAGGTCCAGAGCCTCGAAGCCCTGGGACCGATTAATGCAT 2320
CTCTCATCGTCATGGTGCTGGCCCGGACCGAGCTGCCTGC
CCTCCGCTACCGCTTCAATGCCCCCATCGCCCGTGACTCG 2400
2410 2420 2430 2440
CIGCCCCCTACICCTGGCACTATGCGCCCTGGACCAAGT 2440
GCTCGGCCCAGTGTGCAGCCGGTAGCCAGGTGCAGGCGGT 2480
GGAGTGCCGCAACCAGCTGGACAGCTCCGCGGTCGCCCCC 2520
CACTACTGCAGTGCCCACAGCTGCCCAAAAGGCAGC 2560
GCGCCTGCAACACGGAGCCTTGCCCTCCAGACTGGGTTGT 2600
2610 2620 2630 2640
AGGGAACTGGTCGCTGCGAGCCGCAGCTGCGATGCAGGC 2640
GIGCGCAGICGCICGIGIGCCAGCGCCGCGICICIG 2680
CCGCGGAGGAGGCGCTGGACGACAGCGCATGCCCGCA 2720
GCCGCGCCACCIGIACTGGAGGCCTGCCACGGCCCCACT 2760
TGCCCTCCGGAGTGGGCCCTCGACTGGTCTGAGTGCA 2800
2810 2820 2830 2840
CCCCAGCIGCGGCCGCCACCGCGIGGICCT 2840
TTGCAAGAGCGCAGCCACGCTGCCCCCGGCG 2880
CACTGCTCACCCGCCCAAGCCACCGGCCACCATGCGCT 2920
GCAACTTGCGCCGCCCCCCGGCCCGCTGGGTGGCTGG 2960
CGAGTGGGTGAGTGCTCTGCACAGTGCGGCGTCGGGCAG 3000
3010 3020 3030 3040
CGCCAGCGCTCGGTGCCACCAGCCACACGGGCCAGG 3040
CGTCGCACGAGTGCACGGGCCCTGCGGCCCCACCAC 3080
GCAGCAGTGTGAGGCCAAGTGCGACAGCCCCAACCCCCGGG 3120
GACGGCCTGAAGAGTGCAAGGTGGAACAAGGTCGCCT 3160
ACIGCCCCIGGIGCICAAATTICAGITCIGCAGCCGAGC 3200

FIGURE 16 (continued)		F) E
3210 3220 3230	3240		_
CTACTTCCGCCAGATGTGCTGCAAAACCTGCCA	•		_
taggggggggggggacccggagccacagctgg	i		
tegecgceagectgcagegggccggccaaag		·	
cgggggggggaactgggagggaagggtgaga			
ggaagttatttattgggaacccctgcagggccc			
3410 3420 3430	3440		
	ــــــــــــــــــــــــــــــــــــــ		_
ggggataga 3409	•		

FIGURE 17

Molecular Weight 216301.30 Daltons

- 1934 Amino Acids
- 234 Strongly Basic(+) Amino Acids (K,R)
- 216 Strongly Acidic(-) Amino Acids (D,E)
- 477 Hydrophobic Amino Acids (A,I,L,F,W,V)
- 657 Polar Amino Acids (N,C,Q,S,T,Y)

7.734 Isolectric Point

24.102 Charge at PH 7.0

MQFVSWATLLTLLVRDLAFMGSPDAAAAVRKDRLHPRQVKLLETLSEYEIVSPIRVNALG	60
EPFPINVHFKRTRRSINSATDPWPAFASSSSSSTSPQAHYRLSAFGQQFLFNLTANAGFI	
A DE THE THE CONTROL BY COMMENT OF THE COMMENT OF T	
GGYFIEPLQSMDEQEDEEEQNKPHITYRRSAPQREPSTGRHACDTSEHKNRHSKDKKKTR	
ARKWGER INLAGDVAALNSGLATEAFSAYGNKTDNTREKRTHRRTKRFLSYPRFVEVLVV	
ADNRMVSYHGENLQHYILIILMSIVASIYKDPSIGNLINIVIVNLIVIHNEQDGPSISFNA	360
QTTLKNFCQWQHSNSPGGIHHDTAVLLTRQDICRAHDKCDTLGLAELGTTCDPYRSCSIS	
EDSGLSTAFTIAHELGHVFNMPHDDNNKCKEEGVKSPQHVMAPTLNFYTNPWMWSKCSRK	480
YITEFLDIGYGECLLNEPESRPYPLPVQLPGILYNVNKQCELIFGPGSQVCPYMMQCRRL	540
WCNNVNGVHKGCRTQHTPWADGTECEPGKHCKYGFCVPKEMDVPVTDGSWGSWSPFGTCS	
RTCGGGIKTAIRECNRPEPKNGGKYCVGRRMKFKSCNTEPCLKQKRDFRDEQCAHFDGKH	660
FNINGLLPNVRWVPKYSGILMKDRCKLFCRVACNTAYYQLRDRVIDGTPCGQDTNDICVQ	720
GLCRQAGCDHVLNSKARRDKCGVCGGDNSSCKTVAGTFNIVHYGYNIVVRIPAGATNIDV	
RQHSFSGETDDDNYLALSSSKGEFLLNGNFVVIMAKREIRIGNAVVEYSGSETAVERINS	840
TDRIEQELLLQVLSVGKLYNPDVRYSFNIPIEDKPQQFYWNSHGPWQACSKPCQGERKRK	900
LVCTRESDQLTVSDQRCDRLPQPGHITEPCGTGCDLRWHVASRSECSAQCGLGYRTLDTY	960
CAKYSRLDGKTEKVDDGFCSSHPKPSNREKCSGECNTGGWRYSAWTECSKSCDGGTQRRR	1020
AICVNTRNDVLDDSKCTHQEKVTTQRCSEFPCPQWKSGDWSECLVTCGKGHKHRQVWCQF	
GEDRLNDRMCDPETKPTSMQTCQQPECASWQAGPWVQCSVTCGQGYQLRAVKCIIGTYMS	
VVDDNDCNAATRPTDTQDCELPSCHPPPAAPETRRSTYSAPRTQWRFGSWIPCSATCGKG	
TRMRYVSCRDENGSVADESACATLPRPVAKEECSVTPCGQWKALDWSSCSVTCGQGRATR	
QVMCVNYSDHVIDRSECDQDYIPETDQDCSMSPCPQRTPDSGLAQHPFQNEDYRPRSASP	
SRTHVLGGNQWRTGFWGACSSTCAGGSQRRVVVCQDENGYTANDCVERIKPDEQRACESG	1380
PCPQWAYGWGECTKLCGGGIRTRLVVCQRSNGERFPDLSCETLDKPPDREQCNTHACPH	1440
DAAWSTGFWSSCSVSCGRGHKQRNVYCMAKDGSHLESDYCKHLAKPHGHRKCRGGRCPKW	1500
KAGAWSQCSVSCGRGVQQRHVGCQIGTHKLARETECNPYTRPESECECQGPRCPLYTWRA	1560
EEWQECTKTCGEGSRYRKVVCVDDNKNEVHGARCDVSKRPVDRESCSLQPCEYVWITGEW	1620
SECSVTCGKGYKQRLVSCSEIYIGKENYEYSYQITINCPGIQPPSVHPCYLRECPVSATW	
TH YOU. TO COME TO SEE THE TO SEE	1740
VKRLKGASEDGEYFLMIRCKLLKIFCACMHSDHPKEYVTLVHGDSENFSEVYGHRLHNPT	
ECPYNGSRRDDYYCRKDYTAACESSEOKTRTDI JISMOTTTITDI OEADTSECHIA DEADAG	1060

FIGURE 17 (cc inued)

Pa

DCYSAAKCPQGRFSINLYGTGLSLTESARWISQGNYAVSDIKKSPDGTRVVGKCGGYCGK 1920 CTPSSGTGLEVRVL 1934

10	20	30	40			
سيسلسسلس	لسيسلسم	سيطيب	لجسيا			
tgggggcagcggaggg	aggggtggg	raagcaccAT(CAGIT	40		
TGTATCCTGGGCCACA	CIGCTAACC	CICCIGGIG	CGGGAC	80		
CTGGCCGAGATGGGGA	GCCCAGACC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CCCTCC	120		
GCAAGGACAGGCTGCA	CCCGAGGCA	AGIGAAATT	ATTAGA	160		
GACCCTGAGCGAATAC	GAAATCGTC	TCTCCCATC	CAGIG	200		
210	220	230	240) '		
بالتنبالينيان	ليتبلين		لتتنيا		<u> </u>	· · · · · · · · · · · · · · · · · · ·
AACGCTCTCGGAGAAC	CCTTTCCCA	CGAACGTCC	ACTICA	240		*4
AAAGAACGCGACGGAG	CATTAACTC	TGCCACTGAC	CCCIG	280		
GCCTGCCTTCGCCTCC	TCCTCTTCC	TOCTOTACO	rcccc	320		
CAGGCGCATTACCGCC	TCTCTGCCT	TOGGCCAGC	AGITIC	360		•
TATTTAATCTCACCGC	CAATGCCGC	ATTTATCCC	ICCACT	400		
410	420	430	440)	•	
	لببيابي	سيلس	لسبل			
GITCACTGTCACCCTC	CTCGGGACC	CCCGGGGIG	AATCAG	440	•	
ACCAAGITITATICCG				480		
GITTCTACAAAGGCTA				520		
GCCGTCATCAGCCTC				560		
CGGTCTCATGATGGGG	GTTATTTY	ATTGAACCAC	TACAGT	600		
610	620	630	640)		
	<u></u>	سيلسب	لسبا			
CTATGGATGAACAAGA	AGATGAAG/	AGGAACAAAA	CAAACC	640		
CCACATCATTTATAGG	XCGCAGCGC(CCCCAGAGA	GAGCCC	680		
TCAACAGGAAGGCATG	CATGTGAC	ACCTCAGAAC	ACAAAA	720		
ATAGGCACAGTAAAGA	CAAGAAGA	AAACCAGAGC	AAGAAA	760		
ATGGGGAGAAAGGATT	'AACCTGGC.	rggigacgia	GCAGCA	800		
810	820	830	840)		
				-		
TTAAACAGCGGCTTAG	CAACAGAG	CATTITCIG	CTTATG	840	•	
GTAATAAGACGGACAA		_				
AAGGACAAAACGITITI						
GICITGGIGGIGGCAG						
GAGAAAACCTTCAACA	CTATATTT	CAACTTTAAT	GICAAT	1000)	

FIGURE 17 (col lued)

1010 1020 1030 104	
TGTAGCCTCTATCTATAAAGACCCAAGTATTGGAAATTTA	1040
ATTAATATTGTTATTGTGAACTTAATTGTGATTCATAATG	
AACAGGATGGGCCTTCCATATCTTTTAATGCTCAGACAAC	
ATTAAAAAACTTITGCCAGIGGCAGCATTCGAACAGTCCA	
GGIGGAATCCATCATGATACIGCIGITCTCTTAACAAGAC	
1210 1220 1230 124	
1210 1220 1230 124	±U
AGGATATCTGCAGAGCTCACGACAAATGTGATACCTTAGG	1240
CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC	-
TGITCTATTAGIGAAGATAGIGGATTGAGIACAGCTTTTA	
CGATCGCCCATGAGCTGGGCCCATGTGTTTAACATGCCTCA	
TGATGACAACAAATGTAAAGAAGAAGAGTTAAGAGT	
1410	
1410 1420 1430 144	TO.
CCCCAGCATGICATGGCTCCAACACTGAACTTCTACACCA	1440
ACCCTGGATGTGGTCAAAGTGTAGTCGAAAATATATCAC	
TGAGITTTTAGACACTGGTTATGGCGAGTGTTTGCTTAAC	
GAACCIGAATCCAGACCCIACCCITIGCCIGICCAACIGC	
CAGGCATCCTTTACAACGIGAATAAACAATGIGAATTGAT	
1610	
1610 1620 1630 164	
TTTTGGACCAGGTTCTCAGGTGTGCCCATATATGATGCAG	1640
TGCAGACGGCTCTGGTGCAATAACGTCAATGGAGTACACA	
AAGGCTGCCGGACTCAGCACACCCTGGGCCGATGGGAC	
GGAGIGCGAGCCIGGAAAGCACIGCAAGIATGGATTTTGT	
GTTCCCAAAGAAATGGATGTCCCCGTGACAGATGGATCCT	
1810 1820 1830 184	
GGGGAAGITGGAGTCCCTTTGGAACCTGCTCCAGAACATG	
TGGAGGGGCATCAAAACAGCCATTCGAGAGTGCAACAGA	_
CCAGAACCAAAAATGGTGGAAAATACTGTGTAGGACGTA	
GAATGAAATTTAAGICCTGCAACACGAGCCATGICTCAA	
GCAGAAGCGAGACTTCCGAGATGAACAGTGTGCTCACTTT	
	2000

₽s

50/54

FIGURE 17 (continued)

*	
2010 2020 2030 2040	
GACGGGAAGCATTTTAACATCAACGGTCTGCTTCCCAATG 2040	
TGCGCTGGGICCCTAAATACAGTGGAATTCTGATGAAGGA 2080	
CCGCTGCAAGTTGTTCTGCAGAGTGGCAGCGAACACAGCC 2120	
TACTATCAGCTTCGAGACAGTGATAGATCGAACTCCTT 2160	
GTGGCCAGGACACAAATGATATCTGTGTCCAGGGCCTTTG 2200	
2210 2220 2230 2240	
<u> </u>	_
CCGCCAAGCTGGATCATGTTTTAAACTCAAAAGCC 2240	
CGGAGAGATAAATGCGGGGGTTTGTGGGGGGGGTAATTCTT 2280	
CATGCAAAACAGTGGCAGGAACATTTAATACAGTACATTA 2320	,
TGGITACAATACTGTGGTCCGAATTCCAGCTGGTGCTACC 2360	
AATATIGATGTGCGGCAGCAGTTTCTCAGGGGAAACAG 2400	
2410 2420 2430 2440	
<u> </u>	
ACGATGACAACTACTTAGCTTTATCAAGCAGTAAAGGTGA 2440	
ATTCTTGCTAAATGGAAACTTTGTTGTCACAATGGCCAAA 2480	
AGGGAAATTCGCATTGGGAATGCTGTGGTAGAGTACAGTG 2520	
GGICCGAGACTGCCGTAGAAAGAATTAACTCAACAGATCG 2560	
CATTGAGCAAGAACTTTTGCTTCAGGTTTTGTCGGTGGGA 2600	
2610 2620 2630 2640	
· and the little of the little	
AAGITGTACAACCCCGATGTACGCTATTCTTTCAATATTC 2640	
CAATTGAAGATAAACCTCAGCAGTTTTACTGGAACAGTCA 2680	
TGGGCCATGCAGCAGCAGCAGCCAAGGGGAA 2720	
CGGAAACGAAAACTTGTTTGCACCAGGGAATCTGATCAGC 2760	
TTACTGTTTCTGATCAAAGATGCGATCGGCTGCCCCAGCC 2800	
2810 2820 2830 2840	
<u> </u>	
TOGACACATTACTGAACCCTGTGGTACAGGCTGTGACCTG 2840	
AGGIGGCATGITGCCAGCAGGAGTGAATGTAGTGCCCAGT 2880	
GIGGCTTGGGTTACCGCACATTGGACATCTACTGTGCCAA 2920	
ATATAGCAGGCIGGATGGGAAGACTGAGAAGGTIGATGAT 2960	
GGITTITGCAGCAGCCAACCCAAGCAAGCAACCGTGAAA 3000	

FIGURE 17 (continued)

3010 3020 3030 3040 AATGCTCAGGGGAATGTAACACGGGTGGCTGGCGCTATTC 3040 TGCCTGGACTGAATGTTCAAAAAGCTGTGACGGTGGGACC 3080 CAGAGGAGAAGGCTATTTGTGTCAATACCCGAAATGATG 3120 TACTGGATGACAGCAAATGCACACATCAAGAGAAAGTTAC 3160 CATTCAGAGGIGCAGIGAGITCCCTTGICCACAGIGGAAA 3200 · 3210 3220 3230 3240 TCTGGAGACTGGTCAGAGTGCTTGGTCACCTGTGGAAAAG 3240 GCATAAGCACCGCCAGGICIGGIGICAGTTTGGIGAAGA 3280 TCGATTAAATGATAGAATGTGTGACCCTGAGACCAAGCCA 3320 ACATCTATGCAGACTTGTCAGCAGCCGGAATGTGCATCCT 3360 GGCAGGCGGICCCIGGGIACAGIGCAGIGICACTIGIGG 3400 3410 3420 3430 3440 ACAGGATACCAGCTAAGAGCAGTGAAATGCATCATTGGG 3440 ACTTATATGTCAGIGGTAGATGACAATGACTGTAATGCAG 3480 CAACTAGACCAACTGATACCCAGGACTGTGAATTACCATC 3520 ATGICATCCTCCCCAGCTGCCCCGGAAACGAGGAGAAGC 3560 ACATACAGIGCACCAAGAACCCAGIGGCGATTIGGGICIT 3600 3610 3620 3630 A CHARLES TO A CONTRACT OF THE GGACCCCATGCTCAGCCACTTGTGGGAAAGGTACCCGGAT 3640 GAGATACGICAGCIGCCGAGATGAGAATGCCICIGIGCT 3680 GACGAGAGTGCCTGCCTACCCTGCCTAGACCAGTGGCAA 3720 AGGAAGAATGTTCTGTGACACCCTGTGGGCAATGGAAGGC 3760 CTTGGACTGGAGCTCTTGCTCTGTGACCTGTGGGCCAAGGT 3800 3810 3820 3830 3840 AGGGCAACCCGGCAAGTGATGTGTGTCAACTACAGTGACC 3840 ACGICATCGAGCGAGTGAGCGACCAGGATTATATCCC 3880 AGAAACTGACCAGGACTGTTCCATGTCACCATGCCCTCAA 3920 AGGACCCCAGACAGIGGCITAGCICAGCACCCCTTCCAAA 3960 ATGAGGACTATCGTCCCCGGAGCGCCAGCCCAGCCGCAC 4000

FIGURE 17 (continued)

FIGUR	E 17 (contin	ued)			Pε
					
4010	4020	4030	4040		
ليسلسيلسن	ليتبطيين	ليستليبنا		<u> </u>	
CCATGIGCICGGIGG	AAACCAGIGC	AGAACTGGCC	CCTCG 4040		
GGAGCATGTTCCAGT	ACCIGIGCIC	ECGGATCCC	AGCGGC 4080		
GIGITGITGITATGIC	AGGATGAAAA	TGGATACACC	CCAAA 4120		
CGACTGTGTGGAGAG	SAATAAAACCI	GATGAGCAA	AGAGCC 4160		
TGTGAATCCGGCCCT	TGICCICAGI	GGGCTTATGC	CAACT 4200		
4210	4220	4230	4240		
ليستلينياسيا	ليتبيلينين	لسلسب	ــــــــــــــــــــــــــــــــــــــ		
GGGGAGAGTGCACTZ	AGCTGTGTG	TGGAGGCATZ	AAGAAC 4240		
AAGACTGGTGGTCTC	FICAGCGGICC	CAACGGIGAAC	GGTTT 4280	·	
CCAGATTIGAGCIGI	GAAATICITO	ATAAACCTC	CCGATC 4320		
GIGAGCAGIGIAACA	ACACATGCTTC	FICCACACGAC	CGCTGC 4360		
ATGGAGTACTGGCCC	TTGGAGCTCC	argricigic.	CTIGT 4400		
4410	4420	4430	4440		
لسبلسيلسب	ليبلين	<u> عبيطينين</u>	Lill	· · · · · · · · · · · · · · · · · · ·	
GGTCGAGGGCATAA	ACAACGAAAT(FITTACTGCA	rggcaa 4440		
AAGATGGAAGCCAT.	TAGAAAGIG/	ATTACTGTAA	SCACCT 4480		
GGCTAAGCCACATG	CCACAGAAA	FIGCCGAGGA	3GAAGA 4520		
TGCCCCAAATGGAA	AGCTGGCGCT.	rggagicagiy	SCICIG 4560		
TGTCCTGTGGCCGA	GCGTACAGC	AGAGGCATGT(GGCTG 4600		
4610	4620	4 630	4640	•	
سيلسيلسب	سيلسب	سيلسد	Liul		
TCAGATCGGAACAC					
AACCCATACACCAG					
GCCCACGGTGTCCCC			۵		
GCAAGAATGCACCA					
CGCAAGGIGGIGIG	IGIGGATGAC	AACAAAAACG	AGGIGC 4800		
4 810	4820	4 830	4840		
mulmulmu	Lulluu	Luuluu	Luul		
ATGGGGCACGCTGT					
TGAAAGCTGTAGTT					
ACAGGAGAATGGTC				·	
GCTACAAACAAAGG					
CGGGAAAGAGAATT	ATGAATACAG	CTACCAAACC	ACCATC 5000		

FIGURE 17 (cc nued)

5010 5020 5030 5040
AACTGCCCAGGCAGCCCCCCAGTGTTCACCCCTGTT 5040
ACCTGAGGGAGTGCCCTGTCTCGGCCACCTGGAGAGTTGG 5080
CAACIGGGGAGCIGCTCAGIGTCITGIGGIGTTGGAGIG 5120
ATGCAGAGATCTGTGCAATGTTTAACCAATGAGGACCAAC 5160
CCAGCCACTTATGCCACACTGATCTGAAGCCAGAAGAACG 5200
5210 5220 5230 5240
<u> </u>
AAAAACCTGCCGTAATGTCTATAACTGTGAGTTACCCCAG 5240
AATTGCAAGGAGGTAAAAAGACTTAAAGGTGCCAGTGAAG 5280
ATGGTGAATATTTCCTGATGATTAGAGGAAAGCTTCTGAA 5320
GATATTCTGTGCGGGGATGCACTCTGACCACCCCAAAGAG 5360
TACGIGACACICGIGCATGGAGACICTGAGAATITCICCG 5400
5410 5420 5430 5440
AGGITTATGGGCACAGGITACACAACCCAACAGAATGICC 5440
CTATAACGGGAGCCGGCGATGACTGCCAATGTCGGAAG 5480
GATTACACGCCGCTGGGTTTTCCAGTAAAATCA 5520
GAATAGACCTGACCAGCATGACTACTT 5560
ACAGTTTGCAAGGACAAGGACATCCCGTCCCTTTT 5600
5610 5620 5630 5640
GCCACAGCCGGGATTGCTACAGCGCTGCCAAGTGCCCAC 5640
AGGCICGITTTAGCATCAACCTTTATGGAACCGCCTTGTC 5680
TTTAACTGAATCTGCCAGATGGATATCACAAGGGAATTAT 5720
GCIGICICIGACATCAAGAAGICGCCGGATGGIACCCGAG 5760
TCGTAGGGAAATGCGGGAAAATGCACTCC 5800
5810 5820 5830 5840
ATTYCTICATION CONCOURAGE CONTROL OF THE PARTY OF THE PART
ATCCTCTGGTACTGGCCTGGAGGTGCGAGTTTTAtagcta 5840
aggtgctttgaagaggaagccattatggatggatgaagga 5880
tagtaatgcaatacctccaccttaatttgggtgcatgtgt 5920 atgtgtgtgtgtgttgtgtgacttgtatgcttgtgtg 5960
tgtaaatgtgtgtacatatacatataca 5990
-33-3-3-3-4-4-4-4-4-4-4-4-4-3770


```
SEQUENCE LISTING
```

```
<110> Apte, Suneel
        Hurskainen, Tiina L.
        Hirohata, Satoshi
   <120> Nucleic Acids Encoding Zinc Metalloproteases
   <130> 26473-04007
   <140> 09/369,364
   <141> 1999-08-06
   <160> 26
15
   <170> PatentIn Ver. 2.1
   <210> 1
   <211> 3002
20 <212> DNA
   <213> mus musculus ADAMTS-5
   <220>
   <221> CDS
25 <222> (18) .. (2810)
   ccggcgggca gcgcact atg cgg ctc gag tgg gcg tcc ttg ttg ctg cta
                   Met Arg Leu Glu Trp Ala Ser Leu Leu Leu
30
   ctg ctg ctg age geg tee tge ctg tee ctg gee get gae age eee
   Leu Leu Leu Ser Ala Ser Cys Leu Ser Leu Ala Ala Asp Ser Pro
   gcc gcg gca cct gcc cag gat aaa acc agg cag cct cag gct gca gca
   Ala Ala Pro Ala Gln Asp Lys Thr Arg Gln Pro Gln Ala Ala Ala
194
   Ala Ala Ala Glu Pro Asp Gln Pro Gln Gly Glu Glu Thr Arg Glu Arg
                           50
   ggc cat tta caa ccc ttg gcc ggg cag cgc agg agc ggc ggg ctg gtc
                                                                  242
45 Gly His Leu Gln Pro Leu Ala Gly Gln Arg Arg Ser Gly Gly Leu Val
    60
   cat aat ata gac caa ctc tac tct ggc ggt ggc aaa gtg ggc tac ctt
                                                                  290
   His Asn Ile Asp Gln Leu Tyr Ser Gly Gly Gly Lys Val Gly Tyr Leu
50
                   80
   gtc tac gcg ggc ggc cgg agg ttc ctg ctg gac ctg gag aga gat gac
                                                                  338
   Val Tyr Ala Gly Gly Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp
                                  100
55
   aca gtg ggt gct gct ggt agc atc gtt act gca gga gga ggg ctg agc
                                                                  386
   Thr Val Gly Ala Ala Gly Ser Ile Val Thr Ala Gly Gly Leu Ser
           110
60 gca tcc tct ggc cac cgg ggt cac tgt ttc tac aga ggc acc gtg gac
                                                                  434
   Ala Ser Ser Gly His Arg Gly His Cys Phe Tyr Arg Gly Thr Val Asp
                          130
                                             135
   ggc agc cct cga tcc cta gct gtc ttt gac ctc tgc ggg ggt ctc gat
                                                                   482
65 Gly Ser Pro Arg Ser Leu Ala Val Phe Asp Leu Cys Gly Gly Leu Asp
                      145
```

5						aag Lys											530
J	cgt Arg	999 Gly	tcc Ser	Trp 175	gca Ala	gag Glu	tat Tyr	gaa Glu	cga Arg 180	att Ile	tat Tyr	G1y 999	gat Asp	gga Gly 185	tct Ser	tcċ Ser	578
10				cat	gtc	tac Tyr											626
15						tgc Cys											674
20						cac His 225											722
25						cac His											770
	cct Pro	cag Gln	act Thr	tgg Trp 255	tgg Trp	agg Arg	cgt Arg	agg Arg	cgc Arg 260	cgt Arg	tcc Ser	atc Ile	tcc Ser	agg Arg 265	gcc Ala	cgc Arg	818
30						ttg Leu											866
35						cat His											914
40	agg Arg 300	ctg Leu	tac Tyr	agt Ser	cat His	gca Ala 305	agc Ser	att Ile	gag Glu	aac Asn	cac His 310	atc Ile	cgc Arg	ctg Leu	gcg Ala	gtg Val 315	962
45	gtg Val	aag Lys	gtg Val	gtg Val	gtg Val 320	ctg Leu	acg Thr	gac Asp	aag Lys	gac Asp 325	acg Thr	agt Ser	ctg Leu	gag Glu	gtg Val 330	agc Ser	1010
	aag Lys	aat Asn	gcg Ala	gcc Ala 335	acg Thr	acc Thr	ctc Leu	aag Lys	aac Asn 340	ttt Phe	tgc Cys	aaa Lys	tgg Trp	cag Gln 345	cac His	caa Gln	1058
50						gat Asp											1106
55						gat Asp											1154
60	gga Gly 380	atg Met	gca Ala	gac Asp	gtt Val	999 Gly 385	acc Thr	ata Ile	tgt Cys	tct Ser	ccg Pro 390	gag Glu	cgc Arg	agc Ser	tgt Cys	gca Ala 395	1202
6 5	gtg Val	att Ile	gaa Glu	gat Asp	gat Asp 400	ggc Gly	ctc Leu	cat His	gca Ala	gcc Ala 405	ttc Phe	act Thr	gtg Val	gct Ala	cat His 410	gaa Glu	1250
65	att	999	cat	cta	ctt	ggc	ctt	tct	cat	gac	gat	tcc	aaa	ttc	tgt	gaa	1298

	Ile	Gly	His	Leu 415	Leu	Gly	Leu	Ser	His 420	Asp	Asp	Ser	Lys	Phe 425	Cys	Glu	
5															atc Ile	ctt. Leu.	1346
10		_		_	_		_					_			gcc Ala		1394
15															gac Asp		1442
			_	_		_				-				_	acc Thr 490		1490
20	-	_		_	_	_		_							tcg Ser		1538
25															gtg Val		1586
30				_		_	-								gag Glu		1634
35															gtg Val		1682
33															tgg Trp 570		1730
40															gga Gly		1778
45	_		_		_		-				_		_		agt Ser		1826
50	_		_			_		-			_		_	-	gtt Val		1874
55															gaa Glu		1922
33															gta Val 650		1970
60															aag Lys		2018
65															cca Pro		2066

				•													
5	gtt Val	acg Thr 685	gat Asp	999 999	act Thr	gaa Glu	tgc Cys 690	agg Arg	ccg Pro	tac Tyr	agc Ser	aac Asn 695	tct Ser	gtg Val	tgt Cys	gtc Val	2114
,	cga Arg 700	gga Gly	cgg Arg	tgt Cys	gtg Val	aga Arg 705	act Thr	gga Gly	tgt Cys	gạc Asp	ggc Gly 710	att Ile	att Ile	ggc Gly	tca Ser	aag Lys 715	2162
10	cta Leu													tcc Ser			2210
15	aca Thr	aag Lys	att Ile	atc Ile 735	gga Gly	acc Thr	ttc Phe	aat Asn	aaa Lys 740	aaa Lys	agc Ser	aag Lys	ggt Gly	tat Tyr 745	act Thr	gac Asp	2258
20	gtt Val	gtg Val	agg Arg 750	atc Ile	cct Pro	gaa Glu	gga Gly	gca Ala 755	acc Thr	cac His	ata Ile	aaa Lys	gtc Val 760	cga Arg	cag Gln	ttc Phe	2306
25	aaa Lys	gcc Ala 765	aaa Lys	gac Asp	cag Gln	act Thr	aga Arg 770	ttc Phe	cct Pro	gcc Ala	tac Tyr	tta Leu 775	gcc Ala	ctg Leu	aag Lys	aag Lys	2354
25	aaa Lys 780	act Thr	ggc Gly	gag Glu	tac Tyr	ctt Leu 785	atc Ile	aat Asn	ggc Gly	aag Lys	tac Tyr 790	atg Met	att Ile	tcc Ser	act Thr	tca Ser 795	2402
30	gag Glu	acc Thr	atc Ile	atc Ile	gac Asp 800	atc Ile	aat Asn	ggt Gly	acc Thr	gtc Val 805	atg Met	aac Asn	tac Tyr	agt Ser	gga Gly 810	tgg Trp	2450
35	agc Ser													gcc Ala 825			2498
40	gaa Glu	atc Ile	ctg Leu 830	atc Ile	gtg Val	cag Gln	atc Ile	ctt Leu 835	gcc Ala	aca Thr	gac Asp	cca Pro	act Thr 840	aaa Lys	gcg Ala	cta Leu	2546
· 4 E	ggc Gly	gtc Val 845	cgt Arg	tac Tyr	agc Ser	ttt Phe	ttt Phe 850	gtt Val	ccc Pro	aag Lys	aag Lys	acc Thr 855	act Thr	caa Gln	aaa Lys	gta Val	2594
45	aac Asn 860	tct Ser	gtc Val	atc Ile	agc Ser	cat His 865	ggc Gly	agc Ser	aac Asn	aag Lys	gtg Val 870	gga Gly	cca Pro	cac His	tct Ser	aca Thr 875	2642
50	cag Gln	ctg Leu	cag Gln	tgg Trp	gtg Val 880	aca Thr	ggt Gly	cca Pro	tgg Trp	ctg Leu 885	gcc Ala	tgc Cys	tcc Ser	agg Arg	acc Thr 890	tgt Cys	2690
55	gac Asp	aca Thr	ggc Gly	tgg Trp 895	cac His	act Thr	agg Arg	acc Thr	gtg Val 900	cag Gln	tgc Cys	cag Gln	gat Asp	gga Gly 905	aac Asn	agg Arg	2738
60	Lys	tta Leu	gct Ala 910	Lys	gga Gly	tgc Cys	ctt Leu	ctc Leu 915	tct Ser	cag Gln	agg Arg	cct Pro	tct Ser 920	gca Ala	ttt Phe	aag Lys	2786
	Gln	_		-		aaa Lys		tag	cct	gtgg	ttt	actc	taat	gc a	caaa	aaaac	2840
65		agga	gga	tcat	cgca	ga t	acag	ctgt	g gt	gaag	acaa	ggc	ctac	cca	aagc	acagaa	2900

```
agtcatgcct tcatgtcatt gtcaccacga gtcgaattat gggcagaatc tgctctctgc 2960
   gaccaaaagg tttactctac ttggtgaatg atggtaccgt ga
                                                                    3002
   <210> 2
   <211> 930
   <212> PRT
10 <213> mus musculus ADAMTS-5
   <400> 2
   Met Arg Leu Glu Trp Ala Ser Leu Leu Leu Leu Leu Leu Leu Ser
                                       10
15 Ala Ser Cys Leu Ser Leu Ala Ala Asp Ser Pro Ala Ala Ala Pro Ala
               20
                                    25
   Gln Asp Lys Thr Arg Gln Pro Gln Ala Ala Ala Ala Ala Glu Pro
                               40
   Asp Gln Pro Gln Gly Glu Glu Thr Arg Glu Arg Gly His Leu Gln Pro
                                               60
   Leu Ala Gly Gln Arg Arg Ser Gly Gly Leu Val His Asn Ile Asp Gln
                       70
                                           75
   Leu Tyr Ser Gly Gly Gly Lys Val Gly Tyr Leu Val Tyr Ala Gly Gly
                    85
                                       90
25 Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp Thr Val Gly Ala Ala
               100
                                  105
                                                      110
   Gly Ser Ile Val Thr Ala Gly Gly Gly Leu Ser Ala Ser Ser Gly His
                              120
                                                 125
   Arg Gly His Cys Phe Tyr Arg Gly Thr Val Asp Gly Ser Pro Arg Ser
      130
                          135
                                             140
   Leu Ala Val Phe Asp Leu Cys Gly Gly Leu Asp Gly Phe Phe Ala Val
                      150
                                          155
   Lys His Ala Arg Tyr Thr Leu Lys Pro Leu Leu Arg Gly Ser Trp Ala
                  165
                                      170
35 Glu Tyr Glu Arg Ile Tyr Gly Asp Gly Ser Ser Arg Ile Leu His Val
               180
                                  185
                                                      190
   Tyr Asn Arg Glu Gly Phe Ser Phe Glu Ala Leu Pro Pro Arg Ala Ser
                              200
          195
                                                  205
   Cys Glu Thr Pro Ala Ser Pro Ser Gly Pro Gln Glu Ser Pro Ser Val
                          215
                                              220
   His Ser Arg Ser Arg Arg Ser Ala Leu Ala Pro Gln Leu Leu Asp
                       230
                                           235
   His Ser Ala Phe Ser Pro Ser Gly Asn Ala Gly Pro Gln Thr Trp Trp
                  245
                                      250
45 Arg Arg Arg Arg Ser Ile Ser Arg Ala Arg Gln Val Glu Leu Leu
              260
                                  265
                                                     270
   Leu Val Ala Asp Ser Ser Met Ala Arg Met Tyr Gly Arg Gly Leu Gln
           275
                               280
   His Tyr Leu Leu Thr Met Ala Ser Ile Ala Asn Arg Leu Tyr Ser His
                           295
                                              300
   Ala Ser Ile Glu Asn His Ile Arg Leu Ala Val Val Lys Val Val Val
                      310
                                           315
   Leu Thr Asp Lys Asp Thr Ser Leu Glu Val Ser Lys Asn Ala Ala Thr
                  325
                                       330
55 Thr Leu Lys Asn Phe Cys Lys Trp Gln His Gln His Asn Gln Leu Gly
               340
                                  345
   Asp Asp His Glu Glu His Tyr Asp Ala Ala Ile Leu Phe Thr Arg Glu
                               360
                                                  365
   Asp Leu Cys Gly His His Ser Cys Asp Thr Leu Gly Met Ala Asp Val
                                              380
                          375
   Gly Thr Ile Cys Ser Pro Glu Arg Ser Cys Ala Val Ile Glu Asp Asp
                      390
                                          395
   Gly Leu His Ala Ala Phe Thr Val Ala His Glu Ile Gly His Leu Leu
                  405
                                      410
65 Gly Leu Ser His Asp Asp Ser Lys Phe Cys Glu Glu Asn Phe Gly Thr
```

Thr Glu Asp Lys Arg Leu Met Ser Ser Ile Leu Thr Ser Ile Asp Ala Ser Lys Pro Trp Ser Lys Cys Thr Ser Ala Thr Ile Thr Glu Phe Leu 5 Asp Asp Gly His Gly Asn Cys Leu Leu Asp Leu Pro Arg Lys Gln Ile. Leu Gly Pro Glu Glu Leu Pro Gly Gln Thr Tyr Asp Ala Thr Gln Gln Cys Asn Leu Thr Phe Gly Pro Glu Tyr Ser Val Cys Pro Gly Met Asp Val Cys Ala Arg Leu Trp Cys Ala Val Val Arg Gln Gly Gln Met Val . 520 Cys Leu Thr Lys Lys Leu Pro Ala Val Glu Gly Thr Pro Cys Gly Lys 15 Gly Arg Val Cys Leu Gln Gly Lys Cys Val Asp Lys Thr Lys Lys Tyr Tyr Ser Thr Ser Ser His Gly Asn Trp Gly Ser Trp Gly Pro Trp Gly Gln Cys Ser Arg Ser Cys Gly Gly Gly Val Gln Phe Ala Tyr Arg His Cys Asn Asn Pro Ala Pro Arg Asn Ser Gly Arg Tyr Cys Thr Gly Lys Arg Ala Ile Tyr Arg Ser Cys Ser Val Thr Pro Cys Pro Pro Asn 25 Gly Lys Ser Phe Arg His Glu Gln Cys Glu Ala Lys Asn Gly Tyr Gln Ser Asp Ala Lys Gly Val Lys Thr Phe Val Glu Trp Val Pro Lys Tyr Ala Gly Val Leu Pro Ala Asp Val Cys Lys Leu Thr Cys Arg Ala Lys Gly Thr Gly Tyr Tyr Val Val Phe Ser Pro Lys Val Thr Asp Gly Thr Glu Cys Arg Pro Tyr Ser Asn Ser Val Cys Val Arg Gly Arg Cys Val 35 Arg Thr Gly Cys Asp Gly Ile Ile Gly Ser Lys Leu Gln Tyr Asp Lys Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys Thr Lys Ile Ile Gly Thr Phe Asn Lys Lys Ser Lys Gly Tyr Thr Asp Val Val Arg Ile Pro Glu Gly Ala Thr His Ile Lys Val Arg Gln Phe Lys Ala Lys Asp Gln Thr Arg Phe Pro Ala Tyr Leu Ala Leu Lys Lys Lys Thr Gly Glu Tyr 45 Leu Ile Asn Gly Lys Tyr Met Ile Ser Thr Ser Glu Thr Ile Ile Asp Ile Asn Gly Thr Val Met Asn Tyr Ser Gly Trp Ser His Arg Asp Asp Phe Leu His Gly Met Gly Tyr Ser Ala Thr Lys Glu Ile Leu Ile Val Gln Ile Leu Ala Thr Asp Pro Thr Lys Ala Leu Gly Val Arg Tyr Ser Phe Phe Val Pro Lys Lys Thr Thr Gln Lys Val Asn Ser Val Ile Ser 55 His Gly Ser Asn Lys Val Gly Pro His Ser Thr Gln Leu Gln Trp Val Thr Gly Pro Trp Leu Ala Cys Ser Arg Thr Cys Asp Thr Gly Trp His Thr Arg Thr Val Gln Cys Gln Asp Gly Asn Arg Lys Leu Ala Lys Gly Cys Leu Leu Ser Gln Arg Pro Ser Ala Phe Lys Gln Cys Leu Leu Lys 920 -Lys Cys

BNSDOCID: <WO__0111074A2_I_>

```
<210> 3
   <211> 1520
   <212> DNA
 5 <213> homo sapiens ADAMTS-5
   <400> 3
   ggacatttac ttggcctctc ccatgacgat tccaaattct gtgaagagac ctttggttcc 60
   acagaagata agcgcttaat gtcttccatc cttaccagca ttgatgcatc taagccctgg 120
10 tccaaatgca cttcagccac catcacagaa ttcctggatg atggccatgg taactgtttg 180
   ctggacctac cacgaaagca gatcctgggc cccgaagaac tcccaggaca gacctacgat 240
   gccacccage agtgcaacct gacatteggg cetgagtact eegtgtgtee eggcanggat 300
   gtctgtgctc gcctgtggtg tgctgtggta cgccagggcc agatggtctg tctgaccaag 360
   gagtgcagtt tgcctatcgt cactgtaata accetgetee cagaaacaac ggacgctact 420
15 gcacagggaa gagggccatc taccactcct gcagtctcat gccctgccca cccaatggta 480
   aatcatttcg tcatgaacag tgtgaggcca aaaatggcta tcagtctgat gcaaaaggag 540
   tcaaaacttt tgtggaatgg gttcccaaat atgcaggtgt cctgccagcg gatgtgtgca 600
   agctgacctg cagagccaag ggcactggct actatgtggt attttctcca aaggtgaccg 660
   atggcactga atgtaggccg tacagtaatt ccgtctgcgt ccggggggaag tgtgtgagaa 720
20 ctggctgtga cggcatcatt ggctcaaagc tgcagtatga caagtgcgga gtatgtggag 780
   gagacaactc cagctgtaca aagattgttg gaacctttaa taagaaaagt aagggttaca 840
   ctgacgtggt gaggattcct gaaggggcaa cccacataaa agttcgacag ttcaaagcca 900
   aagaccagac tagattcact gcctatttag ccctgaaaaa gaaaaacggt gagtacctta 960
   tcaatggaaa gtacatgatc tccacttcag agactatcat tgacatcaat ggaacagtca 1020
25 tgaactatag cggttggagc cacagggatg acttcctgca tggcatgggc tactctgcca 1080
   cgaaggaaat tctaatagtg cagattettg caacagacce cactaaacca ttagatgtcc 1140
   gttatagett ttttgtteec aagaagteea etecaaaagt aaactetgte actagteatg 1200
   gcagcaataa agtgggatca cacacttcgc agccgcagtg ggtcacgggc ccatggctcg 1260
   cctgctctag gacctgtgac acaggttggc acaccagaac ggtgcagtgc caggatggaa 1320
30 accggaagtt agcaaaagga tgtcctctct cccaaaggcc ttctgcgttt aagcaatgct 1380
   tgttgaagaa atgttagcct gtgggttatg atcttattgc acaaaagata ctggaggatt 1440
   cancaccegt gcaatenngg tgaacaggaa ggctacetta acgcacagaa agtcatgett 1500
   taatgacatt gtcaaccagg
35
   <210> 4
   <211> 2848
   <212> DNA
   <213> Homo sapiens ADAMTS-6
40
   <220>
   <221> CDS
   <222> (22)..(2601)
45 <220>
   <221> misc_feature
   <222> (1369)..(1371)
   <400>4
50 aatcatccag ttttctaaat t atg gaa att ttg tgg aag acg ttg acc tgg
                           Met Glu Ile Leu Trp Lys Thr Leu Thr Trp
   att ttg agc ctc atc atg gct tca tcg gaa ttt cat agt gac cac agg
55 Ile Leu Ser Leu Ile Met Ala Ser Ser Glu Phe His Ser Asp His Arg
                                        20
   ctt tca tac agt tct caa gag gaa ttc ctg act tat ctt gaa cac tac
                                                                      147
   Leu Ser Tyr Ser Ser Gln Glu Glu Phe Leu Thr Tyr Leu Glu His Tyr
60
                                    35
   cag cta act att cca ata agg gtt gat caa aat gga gca ttt ctc agc
                                                                      195
   Gln Leu Thr Ile Pro Ile Arg Val Asp Gln Asn Gly Ala Phe Leu Ser
                                50
65
   ttt act gtg aaa aat gat aaa cac tca agg aga aga cgg agt atg gac
```

	Phe	Thr 60	Val	Lys	Asn	Asp	Lys 65	His	Ser	Arg	Arg	Arg 70	Arg	Ser	Met	Asp	
5	cct Pro 75	att Ile	gat Asp	cca Pro	cag Gln	cag Gln 80	gca Ala	gta Val	tct Ser	aag Lys	tta Leu 85	ttt Phe	ttt Phe	aaa Lys	ctt Leu	tca Ser 90	291
10	gcc Ala	tat Tyr	ggc	aag Lys	cac His 95	ttt Phe	cat His	cta Leu	aac Asn	ttg Leu 100	act Thr	ctc Leu	aac Asn	aca Thr	gat Asp 105	ttt Phe	339
15	gtg Val	tcc Ser	aaa Lys	cat His 110	ttt Phe	aca Thr	gta Val	gaa Glu	tat Tyr 115	tgg Trp	G1y 999	aaa Lys	gat Asp	gga Gly 120	ccc Pro	cag Gln	387
13	tgg Trp	aaa Lys	cat His 125	gat Asp	ttt Phe	tta Leu	gac Asp	aac Asn 130	tgt Cys	cat His	tac Tyr	aca Thr	gga Gly 135	Tyr	ttg Leu	caa Gln	435
20	gat Asp	caa Gln 140	cgt Arg	agt Ser	aca Thr	act Thr	aaa Lys 145	gtg Val	gct Ala	tta Leu	agc Ser	aac Asn 150	tgt Cys	gtt Val	999 Gly	ttg Leu	483
25	cat His 155	ggt Gly	gtt Val	att Ile	gct Ala	aca Thr 160	gaa Glu	gat Asp	gaa Glu	gag Glu	tat Tyr 165	ttt Phe	atc Ile	gaa Glu	cct Pro	tta Leu 170	531
30	aag Lys	aat Asn	acc Thr	aca Thr	gag Glu 175	gat Asp	tcc Ser	aag Lys	cat His	ttt Phe 180	agt Ser	tat Tyr	gaa Glu	aat Asn	ggc Gly 185	cac His	579
35	cct Pro	cat His	gtt Val	att Ile 190	tac Tyr	aaa Lys	aag Lys	tct Ser	gcc Ala 195	ctt Leu	caa Gln	caa Gln	cga Arg	cat His 200	ctg Leu	tat Tyr	627
33	gat Asp	cac His	tct Ser 205	cat His	tgt Cys	61 y 999	gtt Val	tcg Ser 210	gat Asp	ttc Phe	aca Thr	aga Arg	agt Ser 215	ggc Gly	aaa Lys	cct Pro	6.75
40	tgg Trp	tgg Trp 220	Leu	aat Asn	gac Asp	act Thr	cca Pro 225	ctg Leu	ttt Phe	ctt Leu	att Ile	cac His 230	tac Tyr	caa Gln	att Ile	aac Asn	723
45	aac Asn 235	aca Thr	cat His	atc Ile	cac His	cac His 240	aga Arg	cag Gln	aag Lys	aga Arg	tca Ser 245	gtg Val	agc Ser	att Ile	gaa Glu	cgg Arg 250	771
50	Phe	gtg Val	gag Glu	aca Thr	ttg Leu 255	gta Val	gtg Val	gca Ala	gac Asp	aaa Lys 260	atg Met	atg Met	gtg Val	ggc Gly	tac Tyr 265	cat His	819
.	Gly	cgc Arg	aaa Lys	gac Asp 270	att Ile	gaa Glu	cat His	tac Tyr	att Ile 275	ttg Leu	agt Ser	gtg Val	atg Met	aat Asn 280	att Ile	gtt Val	867
55	gcc	aaa Lys	ctt Leu 285	Tyr	cgt Arg	gat Asp	tcc Ser	agc Ser 290	Leu	gga Gly	aac Asn	gtt Val	gtg Val 295	Asn	att Ile	ata Ile	915
60	gtg Val	gcc Ala 300	Arg	tta Leu	att Ile	gtt Val	ctc Leu 305	Thr	gaa Glu	gat Asp	cag Gln	cca Pro 310	Asn	ttg Leu	gag Glu	ata Ile	963
65	aac Asn 315	His	cat His	gca Ala	gac Asp	aag Lys 320	Ser	ctc Leu	gat Asp	ago Ser	Phe 325	Cys	aaa Lys	tgg Trp	cag Gln	aaa Lys 330	1011

5															aat Asn 345		1059 •
3															atc Ile		1107
10															gtg Val		1155
15		_	_			_		_	-	_			_	_	att Ile		1203
20	_			_				_		-		_			ttt Phe		1251
25	_			_						-		_		_	atg Met 425	_	1299
															ttt Phe		1347
30	_	_	_	_	_	_	_				_			_	gaa Glu		1395
35	-	-				_		_		_		_	_	_	acc Thr		1443
40				-	-				_	-					att Ile	_	1491
45															tgg Trp 505		1539
		_		_											gag Glu	_	1587
50															tgt Cys		1635
55															agg Arg		1683
60															cga Arg		1731
65															cga Arg 585		1779
33	aag	tat	tat	aac	tgg	aaa	ccc	tat	act	gga	ggt	999	gta	aaa	cct	tgt	1827

	Lys	Tyr	Tyr	Asn 590	Trp	Lys	Pro	Tyr	Thr 595	Gly	Gly	Gly	Val	Lys 600	Pro	Cys	
5	gca Ala	tta Leu	aac Asn 605	tgc Cys	ttg Leu	gct Ala	gaa Glu	ggt Gly 610	tat Tyr	aat Asn	ttc Phe	tac Tyr	act Thr 615	gaa Glu	cgt Arg	gct. Ala	1875
10	cct Pro	gcg Ala 620	gtg Val	atc Ile	gat Asp	999 Gly	acc Thr 625	cag Gln	tgc Cys	aat Asn	gcg Ala	gat Asp 630	tca Ser	ctg Leu	gat Asp	atc Ile	1923
15	tgc Cys 635	atc Ile	aat Asn	gga Gly	gaa Glu	tgc Cys 640	aag Lys	cac His	gta Val	ggc Gly	tgt Cys 645	gat Asp	aat Asn	att Ile	ttg Leu	gga Gly 650	1971
13	tct Ser	gat Asp	gct Ala	agg Arg	gaa Glu 655	gat Asp	aga Arg	tgt Cys	cga Arg	gtc Val 660	tgt Cys	gga Gly	999 Gly	ggc Gly	gga Gly 665	agc Ser	2019
20	aca Thr	tgt Cys	gat Asp	gcc Ala 670	att Ile	gaa Glu	999 999	ttc Phe	ttc Phe 675	aat Asn	gat Asp	tca Ser	ctg Leu	ccc Pro 680	agg Arg	gga Gly	2067
25	ggc Gly	tac Tyr	atg Met 685	gaa Glu	gtg Val	gtg Val	cag Gln	ata Ile 690	cca Pro	aga Arg	ggc Gly	tct Ser	gtt Val 695	cac His	att Ile	gaa Glu	2115
30	gtt Val	aga Arg 700	gaa Glu	gtt Val	gcc Ala	atg Met	tca Ser 705	aag Lys	aac Asn	tat Tyr	att Ile	gct Ala 710	tta Leu	aaa Lys	tct Ser	gaa Glu	2163
25	gga Gly 715	gat Asp	gat Asp	tac Tyr	tat Tyr	att Ile 720	aat Asn	ggt Gly	gcc Ala	tgg Trp	act Thr 725	att Ile	gac Asp	tgg Trp	cct Pro	agg Arg 730	2211
35	aaa Lys	ttt Phe	gat Asp	gtt Val	gct Ala 735	999 Gly	aca Thr	gct Ala	ttt Phe	cat His 740	tac Tyr	aag Lys	aga Arg	cca Pro	act Thr 745	gat Asp	2259
40	gaa Glu	cca Pro	gaa Glu	tcc Ser 750	ttg Leu	gaa Glu	gct Ala	cta Leu	ggt Gly 755	Pro	acc Thr	tca Ser	gaa Glu	aat Asn 760	ctc Leu	atc Ile	2307
45	gtc Val	atg Met	gtt Val 765	ctg Leu	ctt Leu	caa Gln	gaa Glu	cag Gln 770	aat Asn	ttg Leu	gga Gly	att Ile	agg Arg 775	tat Tyr	aag Lys	ttc Phe	2355
50	Asn	gtt Val 780	Pro	atc Ile	act Thr	cga Arg	act Thr 785	ggc Gly	agt Ser	gga Gly	gat Asp	aat Asn 790	gaa Glu	gtt Val	ggc Gly	ttt Phe	2403
	Thr 795	Trp	aat Asn	cat His	cag Gln	cct Pro 800	Trp	tca Ser	gaa Glu	tgc Cys	tca Ser 805	Ala	act Thr	tgt Cys	gct Ala	gga Gly 810	2451
55	aat	aag Lys	atg Met	ccc Pro	act Thr 815	Arg	cag Gln	ccc Pro	acc Thr	cag Gln 820	Arg	gca Ala	aga Arg	tgg Trp	aga Arg 825	aca Thr	2499
60	aaa Lys	cac	att Ile	ctg Leu 830	Ser	tat	Ala	ttg Leu	tgt Cys 835	Leu	tta Leu	aaa Lys	aag Lys	cta Leu 840	Ile	gga Gly	2547
65	aac Asn	att Ile	Ser 845	Arg	ttt Phe	gct Ala	tca Ser	ago Ser 850	Cys	aat Asn	tta Leu	gca Ala	aaa Lys 855	Glu	act Thr	ttg Leu	2595

```
ctt taa ttatattata ttccatttgt tttcaacctc atgtaatttg tgcaqatttg
 5
   ttggtaaaat acatettgge acaatgagtg tetetgetgg tgetteteee aagactatet 2711
   tgaaggtggg ctgtttgcct ttcgtgaaca cattcttggt aaagaacatc aaaagtttta 2771
10 aaaaagaaaa tgagcaagaa tcagacatca cagatgcaac ttcttgtaat gggagatgag 2831
   gagaatgtac ggctgtg
                                                                     2848
15 <210> 5
   <211> 859
   <212> PRT
   <213> Homo sapiens ADAMTS-6
20 <400> 5
   Met Glu Ile Leu Trp Lys Thr Leu Thr Trp Ile Leu Ser Leu Ile Met
                                       10
   Ala Ser Ser Glu Phe His Ser Asp His Arg Leu Ser Tyr Ser Ser Gln
                                    25
25 Glu Glu Phe Leu Thr Tyr Leu Glu His Tyr Gln Leu Thr Ile Pro Ile
                                40
                                                    45
   Arg Val Asp Gln Asn Gly Ala Phe Leu Ser Phe Thr Val Lys Asn Asp
                           55
                                                60
   Lys His Ser Arg Arg Arg Ser Met Asp Pro Ile Asp Pro Gln Gln
                        70
   Ala Val Ser Lys Leu Phe Phe Lys Leu Ser Ala Tyr Gly Lys His Phe
                                       90
   His Leu Asn Leu Thr Leu Asn Thr Asp Phe Val Ser Lys His Phe Thr
               100
                                   105
                                                      110
35 Val Glu Tyr Trp Gly Lys Asp Gly Pro Gln Trp Lys His Asp Phe Leu
           115
                               120
                                                   125
   Asp Asn Cys His Tyr Thr Gly Tyr Leu Gln Asp Gln Arg Ser Thr Thr
       130
                           135
                                              140
   Lys Val Ala Leu Ser Asn Cys Val Gly Leu His Gly Val Ile Ala Thr
                       150
                                           155
   Glu Asp Glu Glu Tyr Phe Ile Glu Pro Leu Lys Asn Thr Thr Glu Asp
                   165
                                     170
                                                           175
   Ser Lys His Phe Ser Tyr Glu Asn Gly His Pro His Val Ile Tyr Lys
               180
                                   185
45 Lys Ser Ala Leu Gln Gln Arg His Leu Tyr Asp His Ser His Cys Gly
           195
                               200
                                                   205
   Val Ser Asp Phe Thr Arg Ser Gly Lys Pro Trp Trp Leu Asn Asp Thr
                           215
                                               220
   Pro Leu Phe Leu Ile His Tyr Gln Ile Asn Asn Thr His Ile His His
                       230
                                          235
   Arg Gln Lys Arg Ser Val Ser Ile Glu Arg Phe Val Glu Thr Leu Val
                   245
                                       250
   Val Ala Asp Lys Met Met Val Gly Tyr His Gly Arg Lys Asp Ile Glu
               260
                                   265
                                                      270
55 His Tyr Ile Leu Ser Val Met Asn Ile Val Ala Lys Leu Tyr Arg Asp
                               280
                                                   285
   Ser Ser Leu Gly Asn Val Val Asn Ile Ile Val Ala Arg Leu Ile Val
                           295
                                               300
  Leu Thr Glu Asp Gln Pro Asn Leu Glu Ile Asn His His Ala Asp Lys
                       310
                                           315
                                                               320
   Ser Leu Asp Ser Phe Cys Lys Trp Gln Lys Ser Ile Leu Ser His Gln
                   325
                                       330
   Ser Asp Gly Asn Thr Ile Pro Glu Asn Gly Ile Ala His His Asp Asn
               340
                                  345
                                                      350
65 Ala Val Leu Ile Thr Arg Tyr Asp Ile Cys Thr Tyr Lys Asn Lys Pro
                               360
```

```
Cys Gly Thr Leu Gly Leu Ala Ser Val Ala Gly Met Cys Glu Pro Glu
                          375
                                              380
  Arg Ser Cys Ser Ile Asn Glu Asp Ile Gly Leu Gly Ser Ala Phe Thr
                     390
 5 Ile Ala His Glu Ile Val His Asn Phe Gly Met Asn His Asp Gly Ile
                                     410
                  405
   Gly Asn Ser Cys Gly Arg Lys Val Met Lys Gln Gln Asn Tyr Gly Ser
                                  425
                                                    430
   Ser His Tyr Cys Glu Tyr Gln Ser Phe Phe Leu Val Cys Leu Gln Ser
                             440
    435
   Arg Xaa His His Gln Leu Phe Arg Glu Val Cys Arg Glu Leu Trp Cys
                         455
                                             460
   Leu Ser Lys Ser Asn Arg Cys Val Thr Asn Ser Ile Pro Ala Ala Glu
                      470
                                         475
15 Gly Thr Leu Cys Gln Thr Gly Asn Ile Glu Lys Gly Trp Cys Tyr Gln
                                     490
                  485
   Gly Asp Cys Val Pro Phe Gly Thr Trp Pro Gln Ser Ile Asp Gly Gly
                                505
             500
  Trp Gly Pro Trp Ser Leu Trp Gly Glu Cys Ser Arg Thr Cys Gly Gly
          515
                             520
  Gly Val Ser Ser Ser Leu Arg His Cys Asp Ser Pro Ala Pro Ser Glu
                         535
                                             540
   Val Glu Lys Tyr Cys Leu Gly Glu Arg Lys Arg Tyr Arg Ser Cys Asn
                      550
                                          555
25 Thr Asp Pro Cys Pro Leu Gly Ser Arg Asp Phe Arg Glu Lys Gln Cys
                                     570
                 565
   Ala Asp Phe Asp Asn Met Pro Phe Arg Gly Lys Tyr Tyr Asn Trp Lys
                          585
  Pro Tyr Thr Gly Gly Gly Val Lys Pro Cys Ala Leu Asn Cys Leu Ala
                              600
   Glu Gly Tyr Asn Phe Tyr Thr Glu Arg Ala Pro Ala Val Ile Asp Gly
                         615
   Thr Gln Cys Asn Ala Asp Ser Leu Asp Ile Cys Ile Asn Gly Glu Cys
                      630
                                         635
35 Lys His Val Gly Cys Asp Asn Ile Leu Gly Ser Asp Ala Arg Glu Asp
                                     650
   Arg Cys Arg Val Cys Gly Gly Gly Ser Thr Cys Asp Ala Ile Glu
                                 665
              660
   Gly Phe Phe Asn Asp Ser Leu Pro Arg Gly Gly Tyr Met Glu Val Val
                             680
                                                 685
         675
   Gln Ile Pro Arg Gly Ser Val His Ile Glu Val Arg Glu Val Ala Met
                          695
                                             700
   Ser Lys Asn Tyr Ile Ala Leu Lys Ser Glu Gly Asp Asp Tyr Tyr Ile
                                          715
45 Asn Gly Ala Trp Thr Ile Asp Trp Pro Arg Lys Phe Asp Val Ala Gly
                  725
                                      730
   Thr Ala Phe His Tyr Lys Arg Pro Thr Asp Glu Pro Glu Ser Leu Glu
                                  745
  Ala Leu Gly Pro Thr Ser Glu Asn Leu Ile Val Met Val Leu Leu Gln
                             760
                                                 765
   Glu Gln Asn Leu Gly Ile Arg Tyr Lys Phe Asn Val Pro Ile Thr Arg
                          775
                                              780
   Thr Gly Ser Gly Asp Asn Glu Val Gly Phe Thr Trp Asn His Gln Pro
                                          795
                      790
55 Trp Ser Glu Cys Ser Ala Thr Cys Ala Gly Gly Lys Met Pro Thr Arg
                                     810
                  805
   Gln Pro Thr Gln Arg Ala Arg Trp Arg Thr Lys His Ile Leu Ser Tyr
                                  825
   Ala Leu Cys Leu Leu Lys Lys Leu Ile Gly Asn Ile Ser Arg Phe Ala
         835
                             840
   Ser Ser Cys Asn Leu Ala Lys Glu Thr Leu Leu
                          855
```

<210> 6

	<212	1> 32 2> Di 3> Ho	AV	sapi	ens i	ADAM"	rs-7										
5		1> Ci		. (30	03)												
10		0> 6 gttco	ctg (er P			ct ttg ro Leu	51
15													ccc Pro				99
20													gca Ala				147
25	gtg Val	cac His	ccg Pro	gtt Val	cga Arg 50	gtc Val	gac Asp	gcg Ala	Gly 999	ggc Gly 55	tcc Ser	ttc Phe	ctg Leu	tcc Ser	tac Tyr 60	gag Glu	195
													gtg Val				243
30	gcg Ala	ccc Pro	gcc Ala 80	ttc Phe	tac Tyr	gag Glu	cta Leu	caa Gln 85	tac Tyr	cgc Arg	999 Gly	cgc Arg	gag Glu 90	ctg Leu	cgc Arg	ttc Phe	291
35													ttt Phe				339
40	acg Thr 110	cgg Arg	cgg Arg	cgc Arg	ggc Gly	ggc Gly 115	ctg Leu	ggc Gly	cgc Arg	gcg Ala	cac His 120	atc Ile	cgg Arg	gcc Ala	cac His	acc Thr 125	387
45													gag Glu				435
													ggt Gly			cag Gln	483
50													agt Ser 170				531
55	cgg Arg	cct Pro 175	ggc Gly	cac His	gcc Ala	cag Gln	ccc Pro 180	cat His	gtg Val	gtg Val	tac Tyr	aag Lys 185	cgt Arg	cag Gln	gcc Ala	ccg Pro	579
60													agc Ser				627
65	gtg Val	caa Gln	gtg Val	tac Tyr	cca Pro 210	gag Glu	ctg Leu	gag Glu	tct Ser	cga Arg 215	cgg Arg	gag Glu	cgt Arg	tgg Trp	gag Glu 220	cag Gln	675
J J	cgg	cag	cag	tgg	cgg	cgg	cca	cgg	ctg	agg	cgt	cta	cac	cag	cgg	tcg	723

	Arg	Gln	Gln	Trp 225	Arg	Arg	Pro	Arg	Leu 230	Arg	Arg	Leu	His	Gln 235	Arg	Ser	
5	gtc Val	agc Ser	aaa Lys 240	gag Glu	aag Lys	tgg Trp	tgt Cys	gag Glu 245	acc Thr	ctg Leu	gta Val	gta Val	gct Ala 250	gat Asp	gcc Ala	aaa Lys	771
10	atg Met	gtg Val 255	gag Glu	tac Tỳr	cac His	gga Gly	cag Gln 260	ccg Pro	cag Gln	gtt Val	gag Glu	agc Ser 265	tat Tyr	gtg Val	ctg Leu	acc Thr	819
15	atc Ile 270	atg Met	aac Asn	atg Met	gtg Val	gct Ala 275	ggc Gly	ctg Leu	ttt Phe	cat His	gac Asp 280	ccc Pro	agc Ser	att Ile	G1 Y 999	aac Asn 285	867
13	ccc Pro	atc Ile	cac His	atc Ile	acc Thr 290	att Ile	gtg Val	cgc Arg	ctg Leu	gtc Val 295	ctg Leu	ctg Leu	gaa Glu	gat Asp	gag Glu 300	gag Glu	915
20	gag Glu	gac Asp	cta Leu	aag Lys 305	atc	acg Thr	cac His	cat His	gca Ala 310	gac Asp	aac Asn	acc Thr	ctg Leu	aag Lys 315	agc Ser	ttc Phe	963
25	tgc Cys	aag Lys	tgg Trp 320	cag Gln	aaa Lys	agc Ser	atc Ile	aac Asn 325	atg Met	aag Lys	Gly 999	gat Asp	gcc Ala 330	cat His	ccc Pro	ctg Leu	1011
30	His	cat His 335	gac Asp	act Thr	gcc Ala	atc Ile	ctg Leu 340	ctc Leu	acc Thr	aga Arg	aag Lys	gac Asp 345	ctg Leu	tgt Cys	gca Ala	gcc Ala	1059
25	Met 350	aac Asn	cgg Arg	ccc Pro	tgt Cys	gag Glu 355	acc Thr	ctg Leu	gga Gly	ctg Leu	tcc Ser 360	cat His	gtg Val	gcg Ala	ggc Gly	atg Met 365	1107
35	tac	cag Gln	ccg Pro	cac His	cgc Arg 370	agc Ser	tgc Cys	agc Ser	atc Ile	aac Asn 375	gag Glu	gac Asp	acg Thr	ggc Gly	ctg Leu 380	ccg Pro	1155
40	ctg Leu	gcc Ala	ttc Phe	act Thr 385	gta Val	gcc Ala	cac His	gag Glu	ctc Leu 390	999 Gly	cac His	agt Ser	ttt Phe	ggc Gly 395	att Ile	cag Gln	1203
45	cat His	Asp	gga Gly 400	Ser	Gly	Asn	Asp	Cys	Glu	ccc Pro	gtt Val	GJ A BBB	aaa Lys 410	cga Arg	cct Pro	ttc Phe	1251
50	Ile	atg Met 415	Ser	cca Pro	cag Gln	ct <i>c</i> Leu	ctg Leu 420	tac Tyr	gac Asp	gcc Ala	gct Ala	ccc Pro 425	ctc Leu	acc Thr	tgg Trp	tcc Ser	1299
	Arg	Cys	agc Ser	cgc Arg	cag Gln	tat Tyr 435	atc Ile	acc Thr	agg Arg	ttc Phe	ctt Leu 440	gac Asp	cgt Arg	Gly 999	tgg Trp	99c Gly 445	1347
55	cta	tgc Cys	ctg Leu	gac	gac Asp 450	Pro	cct Pro	gcc Ala	aag Lys	gac Asp 455	Ile	atc Ile	gac Asp	ttc Phe	ccc Pro 460	Ser	1395
60	gtg Val	cca Pro	cct Pro	ggc Gly 465	Val	ctc Leu	tat Tyr	gat Asp	gta Val 470	Ser	cac His	cag Gln	tgc Cys	cgc Arg 475	Leu	cag Gln	1443
65	tac Tyr	ggg Gly	gcc Ala	Туг	tct Ser	gcc Ala	ttc Phe	tgc Cys	Glu	gac Asp	atg Met	gat Asp	aat Asn 490	Val	tgc Cys	cac His	1491

5	Thr	ctc Leu 495	tgg Trp	tgc Cys	tct Ser	gtg Val	999 Gly 500	acc Thr	acc Thr	tgt Cys	cac His	tcc Ser 505	aag Lys	ctg Leu	gat Asp	gca Ala	1539
	gct Ala 510	gtg Val	gac Asp	ggc Gly	acc Thr	cgg Arg 515	tgt Cys	999 999	gag Glu	aat Asn	aag Lys 520	tgg Trp	tgt Cys	ctc Leu	agt Ser	999 Gly 525	1587
10	gag Glu	tgc Cys	gta Val	ccc Pro	gtg Val 530	ggc Gly	ttc Phe	cgg Arg	ccc Pro	gag Glu 535	gcc Ala	gtg Val	gat Asp	ggt Gly	ggc Gly 540	tgg Trp	1635
15	tct Ser	ggc	tgg Trp	agc Ser 545	gcc Ala	tgg Trp	tcc Ser	atc Ile	tgc Cys 550	tca Ser	cgg Arg	agc Ser	tgt Cys	99c Gly 555	atg Met	ggc Gly	1683
20	gta Val	cag Gln	agc Ser 560	gcc Ala	gag Glu	cgg Arg	cag Gln	tgc Cys 565	acg Thr	cag Gln	cct Pro	acg Thr	ccc Pro 570	aaa Lys	tac Tyr	aaa Lys	1731
25	Gly	aga Arg 575	tac Tyr	tgt Cys	gtg Val	ggt Gly	gag Glu 580	cgc Arg	aag Lys	cgc Arg	ttc Phe	cgc Arg 585	ctc Leu	tgc Cys	aac Asn	ctg Leu	1779
	cag Gln 590	gcc Ala	tgc Cys	cct Pro	gct Ala	ggc Gly 595	cgc Arg	ccc Pro	tcc Ser	ttc Phe	cgc Arg 600	cac His	gtc Val	cag Gln	tgc Cys	agc Ser 605	1827
30	cac His	ttt Phe	gac Asp	gct Ala	atg Met 610	ctc Leu	tac Tyr	aag Lys	ggc Gly	cag Gln 615	ctg Leu	cac His	aca Thr	tgg Trp	gtg Val 620	ccc Pro	1875
35	gtg Val	gtc Val	aat Asn	gac Asp 625	gtg Val	aac Asn	ccc Pro	tgc Cys	gag Glu 630	ctg Leu	cac His	tgc Cys	cgg Arg	ccc Pro 635	gcg Ala	aat Asn	1923
40	gag Glu	tac Tyr	ttt Phe 640	gcc Ala	aag Lys	aag Lys	ctg Leu	cgg Arg 645	gac Asp	gcc Ala	tgt Cys	gtc Val	gat Asp 650	ggc Gly	acc Thr	ccc Pro	1971
45	Cys Cys	tac Tyr 655	cag Gln	gtc Val	cga Arg	gcc Ala	agc Ser 660	cgg Arg	gac Asp	ctc Leu	tgc Cys	atc Ile 665	aac Asn	ggc Gly	atc Ile	tgt Cys	2019
	Lys 670	Asn	Val	Gly	Сув	Asp 675	Phe	Glu	Ile	Asp	Ser 680	Gly	Ala	Met		Asp 685	2067
50	cgc Arg	tgt Cys	ggt Gly	gtg Val	tgc Cys 690	cac His	ggc Gly	aac Asn	ggc ggc	tcc Ser 695	acc Thr	tgc Cys	cac His	acc Thr	gtg Val 700	agc Ser	2115
55	G1y 999	acc Thr	ttc Phe	gag Glu 705	gag Glu	gcc Ala	gag Glu	ggt Gly	ctg Leu 710	G1 y 999	tat Tyr	gtg Val	gat Asp	gtg Val 715	999 Gly	ctg Leu	2163
60	atc Ile	cca Pro	gcg Ala 720	ggc Gly	gca Ala	cgc Arg	gag Glu	atc Ile 725	cgc Arg	atc Ile	caa Gln	gag Glu	gtt Val 730	gcc Ala	gag Glu	gct Ala	2211
65	gcc Ala	aac Asn 735	ttc Phe	ctg Leu	gca Ala	ctg Leu	cgg Arg 740	agc Ser	gag Glu	gac Asp	ccg Pro	gag Glu 745	aag Lys	tac Tyr	ttc Phe	ctc Leu	2259
-	aat	ggt	ggc	tgg	acc	atc	cag	tgg	aac	999	gac	tac	cag	gtg	gca	999	2307

	Asn 750	Gly	Gly	Trp	Thr	Ile 755	Gln	Trp	Asn	Gly	Asp 760	Tyr	Gln	Val	Ala	Gly 765	
5	acc Thr	acc Thr	ttc Phe	aca Thr	tac Tyr 770	gca Ala	cgc Arg	agg Arg	ggc Gly	aac Asn 775	tgg Trp	gag Glu	aac Asn	ctc Leu	acg Thr 780	tcc . Ser	2355
10	ccg Pro	ggt Gly	ccc Pro	acc Thr 785	aag Lys	gag Glu	cct Pro	gtc Val	tgg Trp 790	atc Ile	cag Gln	gtg Val	cct Pro	gcc Ala 795	tcc Ser	cgt Arg	2403.
15	ggc Gly	cca Pro	ggc Gly 800	G1y 999	999 Gly	agc Ser	aga Arg	ggc Gly 805	gga Gly	gtc Val	ccc Pro	agg Arg	ccc Pro 810	agc Ser	acc Thr	ctc Leu	2451
13	cat His	99c Gly 815	agg Arg	tct Ser	cgt Arg	cct Pro	gga Gly 820	gga Gly	gtg Val	agc Ser	cct Pro	ggt Gly 825	tca Ser	gtc Val	aca Thr	gag Glu	2499
20	cct Pro 830	ggc Gly	tct Ser	gag Glu	cca Pro	ggc Gly 835	cct Pro	cct Pro	gct Ala	gcg Ala	gcc Ala 840	tct Ser	acc Thr	tca Ser	gtt Val	tcc Ser 845	2547
25	cca Pro	tct Ser	tta Leu	aaa Lys	tgg Trp 850	ccc Pro	aat Asn	ctt Leu	gta Val	gct Ala 855	gca Ala	gtt Val	cac His	aga Arg	ggt Gly 860	ggc Gly	2595
30	tgg Trp	ggt Gly	caa Gln	gct Ala 865	cct Pro	tta Leu	gga Gly	ctg Leu	ggt Gly 870	gga Gly	tgg Trp	aga Arg	aga Arg	cac His 875	ctt Leu	gtg Val	2643
35	ctc Leu	atg Met	ggc Gly 880	ccc Pro	cgc Arg	ctg Leu	ccc Pro	acc Thr 885	cag Gln	ctg Leu	ctg Leu	ttc Phe	cag Gln 890	gag Glu	agc Ser	aac Asn	2691
رد	cct Pro	999 Gly 895	gtg Val	cac His	tac Tyr	gag Glu	tac Tyr 900	acc Thr	atc Ile	cac His	agg Arg	gag Glu 905	gca Ala	ggt Gly	ggc Gly	cac His	2739
40	gac Asp 910	Glu	gtc Val	ccg Pro	ccg Pro	ccc Pro 915	gtg Val	ttc Phe	tcc Ser	tgg Trp	cat His 920	tat Tyr	Gl aaa	ccc Pro	tgg Trp	acc Thr 925	2787
45	aag Lys	tgc Cys	aca Thr	gtc Val	acc Thr 930	tgc Cys	ggc Gly	aga Arg	ggt Gly	gag Glu 935	aag Lys	tgg Trp	ggc Gly	agg Arg	cac His 940	agc Ser	2835
50	ccc	acc Thr	tgc Cys	agg Arg 945	ggc Gly	tta Leu	gtg Val	tct Ser	gga Gly 950	Gln	gga Gly	cac	tgg Trp	ctt Leu 955	Gln	ctc Leu	2883
	Pro	gct Ala	cac His 960	Cys	tgg Trp	gcc Ala	acc Thr	acg Thr 965	Gly	ttg Leu	gaa Glu	gtt Val	tgc Cys 970	Phe	tct Ser	gag Glu	2931
55	cct	cag Gln 975	Phe	tcc Ser	atc Ile	tgt Cys	gag Glu 980	Met	agg Arg	cta Leu	gcg Ala	att Ile 985	Ala	ctg Leu	tgt Cys	ccc Pro	2979
60	agg Arg 990	Pro	gct Ala	999	agg Arg	gta Val 995	His	gga	tga	ggca	ggt	gggt	gctg	gc t	cgcá	gcgca	3033
65	_	tcag	tgt	gctc	cago	tc t	tggc	gtto	t cc	ctcc	aggg	gac	acag	ctc	cccc	tcgata	3093
03	gad	cagt	cca	gtgg	cccc	tc a	ccac	acto	a ct	tatt	tccc	: taa	acta	ttt	ataa	aaagta	3153

	999	caat	ttc	atta	actc	tg a	ctct	tacc	t gc	ccgg	gcgg	ccg	ctcg	agc	cgag	taatca	3213
5	cta	gt														•	3218
10	<21 <21	0 > 7 1 > 9 2 > P 3 > H	97	sapi	ens i	ADAM'	TS-7										
		0> 7 Pro	Gly	Gly	Pro 5	Ser	Pro	Arg	Ser	Pro 10	Ala	Pro	Leu	Leu	Arg 15	Pro	
15	Leu	Leu	Leu	Leu 20	Leu	Cys	Ala	Leu	Ala 25	Pro	Gly	Ala	Pro	Gly 30	Pro	Ala	
20	Pro	Gly	Arg 35	Ala	Thr	Glu	Gly	Arg 40	Ala	Ala	Leu	Asp	Ile 45	Val	His	Pro	
	Val	Arg 50	Val	Asp	Ala	Gly	Gly 55	Ser	Phe	Leu	Ser	Туг 60	Glu	Leu	Trp	Pro	
25	Arg 65	Ala	Leu	Arg	Lys	Arg 70	qeA	Val	Ser	Val	Arg 75	Arg	Asp	Ala	Pro	Ala 80	
30	Phe	Tyr	Glu	Leu	Gln 85	Tyr	Arg	Gly	Arg	Glu 90	Leu	Arg	Phe	Asn	Leu 95	Thr	
	Ala	Asn	Gln	His 100	Leu	Leu	Ala	Pro	Gly 105	Phe	Val	Ser	Glu	Thr 110	Arg	Arg	
35			115					120					125		Ala	-	
		130					135					140		_	Leu		
40	145					150					155				Ser	160	_
45					165					170					Pro 175		
				180					185					190	Arg		
50			195					200					205		Gln		
		210					215					220			Gln		
55	225					230					235				Ser	240	
60					245					250					Val 255		
				260					265					270	Met		
65	Met	Val	Ala 275	Gly	Leu	Phe	His	Asp 280	Pro	Ser	Ile	Gly	Asn 285	Pro	Ile	His	

)	Ile	Thr 290	Ile	Val	Arg	Leu	Val 295	Leu	Leu	Glu	Asp	Glu 300	Glu	Glu	Asp	Leu
5	Lys 305	Ile	Thr	His	His	Ala 310	Asp	Asn	Thr	Leu	Lys 315	Ser	Phe	Cys	Lys	Trp 320
	Gln	Lys	Ser	Ile	Asn 325	Met	Lys	Gly	Asp	Ala 330	His	Pro	Leu	His	His 335	Asp
10	Thr	Ala	Ile	Leu 340	Leu	Thr	Arg	Lys	Авр 345	Leu	Cys	Ala	Ala	Met 350	Asn	Arg
15	Pro	Cys	Glu 355	Thr	Leu	Gly	Leu	Ser 360	His	Val	Ala	Gly	Met 365	Cys	Gln	Pro
	His	Arg 370	Ser	Cys	Ser	Ile	Asn 375	Glu	Asp	Thr	Gly	Leu 380	Pro	Leu	Ala	Phe
20	385	Val				390					395					400
		Gly			405					410					415	
25		Gln		420					425					430		
30		Gln	435					440					445			
		Asp 450	•				455					460				
35	465	Val		-	_	470					475					480
		Ser			485					490					495	
40	_	Ser		500					505					510		
45		Thr	515					520					525			
		Val 530					535					540				
50	545		_			550					555					Ser 560
		Glu			565					570					575	
55				580		٠			585					590		Cys
60			595					600					605			Asp
		610					615					620				Asn
65	Asp 625		Asn	Pro	Cys	Glu 630	Leu	His	cys	Arg	Pro 635	AIA	ASN	GIU	ryr	Phe 640

	Ala	Lys	Lys	Leu	Arg 645	Asp	Ala	Cys	Val	Asp 650	Gly	Thr	Pro	Cys	Tyr 655	Gln
5	Val	Arg	Ala	Ser 660	Arg	Asp	Leu	Cys	Ile 665	Asn	Gly	Ile	Cys	Lys 670	Asn	Val.
	Gly	Cys	Asp 675	Phe	Glu	Ile	Asp	Ser 680	Gly	Ala	Met	Glu	Asp 685	Arg	Cys	Gly
10	Val	Cys 690	His	Gly	Asn	Gly	Ser 695	Thr	Cys	His	Thr _.	Val 700	Ser	Gly	Thr	Phe
15	Glu 705	Glu	Ala	Glu	Gly	Leu 710	Gly	Tyr	Val	Asp	Val 715	Gly	Leu	Ile	Pro	Ala 720
	Gly	Ala	Arg	Glu	Ile 725	Arg	Ile	Gln	Glu	Val 730	Ala	Glu	Ala	Ala	Asn 735	Phe
20	Leu	Ala	Leu	Arg 740	Ser	Glu	Asp	Pro	Glu 745	Lys	Tyr	Phe	Leu	Asn 750	Gly	Gly
	Trp	Thr	11e 755	Gln	Trp	Asn	Gly	Asp 760	Tyr	Gln	Val	Ala	Gly 765	Thr	Thr	Phe
25	Thr	Tyr 770	Ala	Arg	Arg	Gly	Asn 775	Trp	Glu	Asn	Leu	Thr 780	Ser	Pro	Gly	Pro
30	Thr 785	Lys	Glu	Pro	Val	Trp 790	Ile	Gln	Val	Pro	Ala 795	Ser	Arg	Gly	Pro	Gly 800
	Gly	Gly	Ser	Arg	Gly 805	Gly	Val	Pro	Arg	Pro 810	Ser	Thr	Leu	His	Gly 815	Arg
35	Ser	Arg	Pro	Gly 820	Gly	Val	Ser	Pro	Gly 825	Ser	Val	Thr	Glu	Pro 830	Gly	Ser
	Glu ′	Prơ	Gly 835	Pro	Pro	Ala	Ala	Ala 840	Ser	Thr	Ser	Val	Ser 845	Pro	Ser	Leu
40	Lys	Trp 850	Pro	Asn	Leu	Val	Ala 855	Ala	Val	His	Arg	Gly 860	Gly	Trp	Gly	Gln
45	Ala 865	Pro	Leu	Gly	Leu	Gly 870	Gly	Trp	Arg	Arg	His 875	Leu	Val	Leu	Met	Gly 880
	Pro	Arg	Leu	Pro	Thr 885	Gln	Leu	Leu	Phe	Gln 890	Glu	Ser	Asn	Pro	Gly 895	Val
50	His	Tyr	Glu	Tyr 900	Thr	Ile	His	Arg	Glu 905	Ala	Gly	Gly	His	Asp 910	Glu	Val
	Pro	Pro	Pro 915	Val	Phe	Ser	Trp	His 920	Tyr	Gly	Pro	Trp	Thr 925	Lys	.Cys	Thr
55	Val	Thr 930	Cys	Gly	Arg	Gly	Glu 935	Lys	Trp	Gly	Arg	His 940	Ser	Pro	Thr	Cys
60	Arg 945	Gly	Leu	Val	Ser	Gly 950	Gln	Gly	His	Trp	Leu 955	Gln	Leu	Pro	Ala	His 960
	Cys	Trp	Ala	Thr	Thr 965	Gly	Leu	Glu	Val	Cys 970	Phe	Ser	Glu	Pro	Gln 975	Phe
65	Ser	Ile	Сув	Glu 980	Met	Arg	Leu	Ala	Ile 985	Ala	Leu	Cys	Pro	Arg 990	Pro	Ala

Gly Arg Val His Gly 995

5																	
	<210 <211 <212 <213	> 36 > DN	A	scul	us A	TMAC	'S-8										
10	<220 <221 <222	> CD		. (29	92)												
	<400 tagg		ct g	cacg	ggac	g cc	gcgg	agga	cgc	gcgc	tcg	cggc	ccgg	gg c	gcca	.cgtgc	60
	tcga	gttc	tg c	tagg	ttgg	c tg	gcgc	agga	gga	gcgg	gct	gcgc	gato	ca g	aggg	gccgc	120
20	cagg	gacc	gc c	gcgc	cacg	t go	cgct	agco	gag	tcgg	cct	cccc	atco	ga t	tgat	cattt	180
	ttcc	tgga	ca g	agcg	acco	g gc	cgcc	tcgg	gcc	acca	gca	cctg	cccg	cg c	gcgg	cgatc	240
25	ttct	tccc	tc t	cccg	cgct	c cg	cago	acto	tgc:	cccc	atg Met	Leu	cgc Arg	gac	ccc Pro	acc Thr	295
30	acc Thr	acc Thr	999 Gly	tgg Trp 10	ccg Pro	ccc Pro	ctc Leu	ctg Leu	ctg Leu 15	ctg Leu	cta Leu	ttg Leu	cag Gln	ctg Leu 20	ccg Pro	ccg Pro	343
35	ccg Pro	cca Pro	ctc Leu 25	gtc Val	tgc Cys	gga Gly	gcc Ala	ccg Pro 30	gcg Ala	G1y 999	ccg Pro	gga Gly	acc Thr 35	999 Gly	gcg Ala	cag Gln	391
33	gcc Ala	tcg Ser 40	gag Glu	cta Leu	gtg Val	gtg Val	ccc Pro 45	acg Thr	cgg Arg	ttg Leu	ccc Pro	ggc Gly 50	agc Ser	gcg Ala	agc Ser	gag Glu	439
40	ctc Leu 55	gcc Ala	ttc Phe	cac His	ctg Leu	tcc Ser 60	gcc Ala	ttc Phe	ggc Gly	cag Gln	ggc Gly 65	ttc Phe	gtg Val	ctg Leu	cgc Arg	ctg Leu 70	487
45	gcg Ala	cct Pro	gac Asp	gcc Ala	agc Ser 75	ttc Phe	ctg Leu	gcg Ala	ccg Pro	gaa Glu 80	ttc Phe	aag Lys	atc Ile	gag Glu	cgc Arg 85	ctc Leu	535
50	Gly 999	ggc Gly	tcg Ser	agc Ser 90	gcg Ala	gcg Ala	gcc Ala	999 Gly	ggc Gly 95	gag Glu	ccg Pro	gga Gly	ctg Leu	cgt Arg 100	ggc Gly	tgc Cys	583
55	ttc Phe	ttc Phe	tct Ser 105	ggc Gly	aca Thr	gtg Val	aat Asn	gga Gly 110	gaa Glu	cgg Arg	gag Glu	tcg Ser	ctg Leu 115	gcg Ala	gcg Ala	atg Met	631
22	agc Ser	tgt Cys 120	gtc Val	gcg Ala	ggc Gly	tgg Trp	agc Ser 125	ggc Gly	tcg Ser	ttc Phe	ttg Leu	ctg Leu 130	gca Ala	ggc Gly	gag Glu	gag Glu	679
60	ttc Phe 135	acc Thr	atc Ile	cag Gln	cca Pro	cag Gln 140	ggc Gly	gct Ala	GJ A aaa	gac Asp	tcc Ser 145	ctg Leu	gac Asp	cag Gln	cct Pro	cat His 150	727
65	cgc Arg	ctg Leu	cag Gln	cgc Arg	tgg Trp 155	G1y 999	ccg Pro	gga Gly	cag Gln	cgc Arg 160	cgc Arg	gaa Glu	gac Asp	ccc	999 Gly 165	ctc Leu	775

5	gct Ala	gcc Ala	gcc Ala	gaa Glu 170	gtt Val	ttc Phe	ccc Pro	ctc Leu	cct Pro 175	caa Gln	gga Gly	ctg Leu	gag Glu	tgg Trp 180	gag Glu	gtg Val	823
				aat Asn													871
10				gac Asp													919
15	aaa Lys 215	gtg Val	cca Pro	cca Pro	ccc Pro	ttc Phe 220	gga Gly	tcc Ser	aaa Lys	act Thr	aga Arg 225	agc Ser	aag Lys	agg Arg	ttt Phe	gtg Val 230	967
20	tcc Ser	gag Glu	gct Ala	cgc Arg	ttc Phe 235	gtg Val	gaa Glu	aca Thr	ctt Leu	ctg Leu 240	gtg Val	gct Ala	gat Asp	gcg Ala	tcc Ser 245	atg Met	1015
25				tat Tyr 250													1063
	tca Ser	atg Met	gca Ala 265	gcc Ala	cga Arg	atc Ile	tac Tyr	aag Lys 270	cac His	ccg Pro	agc Ser	atc Ile	agg Arg 275	aac Asn	tcc Ser	gtc Val	1111
30				gtg Val													1159
35				tcc Ser										Phe			1207
40				cgt Arg									ccg	gag			1255
45	gac Asp	act Thr	gcc Ala	atc Ile 330	ttg Leu	ttc Phe	acc Thr	aga Arg	cag Gln 335	aac Asn	ttc Phe	tgt Cys	G1 999	aag Lys 340	gga Gly	gag Glu	1303
				acc Thr			Met		Asp								1351
50	gac Asp	aag Lys 360	agc Ser	tgc Cys	tca Ser	gtg Val	atc Ile 365	aag Lys	gat Asp	gag Glu	gga Gly	ctg Leu 370	cag Gln	gca Ala	gcc Ala	tac Tyr	1399
55	acc Thr 375	ctg Leu	gcc Ala	cat His	gag Glu	cta Leu 380	Gly 999	cac His	gtt Val	ctc Leu	agc Ser 385	atg Met	ccc Pro	cat His	gat Asp	gat Asp 390	1447
60	tct Ser	aag Lys	ccc Pro	tgt Cys	gtg Val 395	aga Arg	ttg Leu	ttt Phe	G1y 999	CCC Pro 400	atg Met	ggc Gly	aag Lys	tac Tyr	cac His 405	atg Met	1495
65	atg Met	gcg Ala	cca Pro	ttc Phe 410	ttc Phe	atc Ile	cac His	gtg Val	aac Asn 415	aag Lys	acg Thr	ctg Leu	ccc Pro	tgg Trp 420	tct Ser	ccc Pro	1543
	tgc	agt	gct	gtc	tac	ctc	aca	gag	ctc	ctg	gat	gat	ggt	cac	gga	gat	1591

	Cys	Ser	Ala 425	Val	туг	Leu	Thr	Glu 430	Leu	Leu	Asp	Asp	Gly 435	His	Gly	Asp	٠
5	tgt Cys	ctt Leu 440	ctg Leu	gat Asp	gcc Ala	ccc Pro	acc Thr 445	tcg Ser	gtt Val	ctg Leu	ccc Pro	ctc Leu 450	ccc Pro	aca Thr	ggc Gly	ctc Leu	1639
10															cag Gln		1687
15															gac Asp 485		1735
13	tgt Cys	gtc Val	cag Gln	ctc Leu 490	tgt Cys	gcc Ala	cgt Arg	cat His	cgg Arg 495	gat Asp	agt Ser	gat Asp	gag Glu	ccc Pro 500	att Ile	tgc Cys	1783
20	cac His	aca Thr	aag Lys 505	aat Asn	ggt Gly	agc Ser	ctg Leu	ctc Leu 510	tgg Trp	gct Ala	gat Asp	ggt Gly	aca Thr 515	ccc Pro	tgt Cys	ggc Gly	1831
25	cct Pro	999 Gly 520	cac His	ctg Leu	tgc Cys	ctg Leu	gat Asp 525	ggt Gly	agc Ser	tgt Cys	gta Val	ctc Leu 530	aag Lys	gag Glu	gat Asp	gtg Val	1879
30															aga Arg		1927
35	tgg Trp	gga Gly	caa Gln	tgt Cys	tct Ser 555	cgc Arg	acc Thr	.tgt Cys	ggt Gly	gga Gly 560	G1y 999	ata Ile	caa Gln	ttc Phe	tcg Ser 565	aac Asn	1975
,,,	cgt Arg	gaa Glu	tgt Cys	gat Asp 570	aat Asn	cca Pro	atg Met	cct Pro	cag Gln 575	aat Asn	gga Gly	gga Gly	aga Arg	ttt Phe 580	tgc Cys	ctg Leu	2023
40	ggt Gly	gaa Glu	aga Arg 585	gtc Val	aag Lys	tac Tyr	caa Gln	tca Ser 590	tgc Cys	aac Asn	aca Thr	gag Glu	gaa Glu 595	tgt Cys	cca Pro	cca Pro	2071
45	aac Asn	gga Gly 600	aaa Lys	agc Ser	ttc Phe	cgg Arg	gag Glu 605	cag Gln	cag Gln	tgt Cys	gag Glu	aaa Lys 610	tat Tyr	aat Asn	gcc Ala	tac Tyr	2119
50	aac Asn 615	cac His	act Thr	gac Asp	ctg Leu	gat Asp 620	999 Gly	aat Asn	ttc Phe	ctg Leu	cag Gln 625	tgg Trp	gtc Val	ccc Pro	aag Lys	tat Tyr 630	2167
55	tca Ser	gga Gly	gtg Val	tcc Ser	ccc Pro 635	cga Arg	gac Asp	cga Arg	tgc	aag Lys 640	ctg Leu	ttt Phe	Cys	aga Arg	gcc Ala 645	cgt Arg	2215
,,,	999 999	agg Arg	agt Ser	gag Glu 650	ttc Phe	aaa Lys	gtg Val	ttt Phe	gaa Glu 655	gct Ala	aag Lys	gtg Val	atc Ile	gat Asp 660	ggc Gly	act Thr	2263
60	ctg Leu	tgt Cys	gga Gly 665	ccg Pro	gat Asp	act Thr	ctg Leu	tcc Ser 670	atc Ile	tgc Cys	gtc Val	cgg Arg	999 Gly 675	caa Gln	tgt Cys	gtt Val	2311
65	aag Lys	gct Ala 680	Gly	tgt Cys	gac Asp	cat His	gtg Val 685	gtg Val	aac Asn	tca Ser	cct Pro	aag Lys 690	aag Lys	ctg Leu	gac Asp	aaa Lys	2359

5											_		_		tcc Ser		2407
						_					_		_		atc Ile 725		2455
10															GJ À 333		2503
15															cag Gln		2551
20	_					_	-			_				_	atc Ile	_	2599
25		_				_	_		_			_	_		ctg Leu		2647
20		_	_	-		_	_	_						_	cag Gln 805		2695
30							_					_	-		acc Thr		2743
35															gaa Glu		2791
40															gtt Val		2839
45						_	_	_		_	-		-		cag Gln		2887
				_	_		_				_	_		_	acc Thr 885	_	2935
50															cag Gln		2983
55	tgt Cys			tgat	ccc	ett g	ggtgg	gaaat	c to	cttag	gctt	atg	gatt	tgg			3032
	gcta	actg	gtg t	aaca	agaca	aa ag	ggtco	ecto	caa	aggtg	gata	ctac	catat	ca a	agato	gcacg	3092
60	gcc	ettt	cag g	gcctt	ctat	t ac	ctaca	aacco	ctt	gggt	act	acct	aatt	ca t	aagg	gaagag	3152
	agaa	agago	ggt a	ataag	gggta	aa ca	agatt	gtaa	a agt	tgad	etgt	ctg	gtgga	act ç	ggaco	ttgct	3212
65	tate	gacca	aag a	aagto	9998	at ag	ggtta	aaaa	ggta	agaaç	gtgc	acti	tatto	gat d	ccaaa	tggga	3272
	gat	tcag	gag d	ccagt	ctct	t to	gcaaa	aggad	tag	gcaaa	agct	aaat	gaaa	aaa q	gaaga	aatttt	3332

ttttttttat ttggtttccc caataatcaa tctacctcac agcggggaaa aatcagtata 3392

				-55-												-	
S	caag	aggt	at a	aggc	cagg	t gt	tggc	agtg	aac	gcca	aag	caag	ctcc	at a	iggta	tctcc	3452
	aago	tatc	tt c	agaa	atgt	c cg	tggc	tgtt	ttc	agta	tta	aaat	ctgt	tg t	ctaa	aaggg	3512
	cago	agtg	tc c	atca	cagg	g tt	atag	aaag	сса	cttt	tct	cagg	ctgc	ca c	ctgc	tgggg	3572
ìo	cgga	ccca	tt t	caag	tatt	t at	gcaa	atat	gtc	tccg	aac	taaa	gtgt	gt d	ttac	accaa	3632
	aagr	gc															3638
15	<212	l> 90 2> PR	T	scul	us A	DAMI	`S - 8										
20	<400 Met 1		Arg	Asp	Pro 5	Thr	Thr	Thr	Gly	Trp 10	Pro	Pro	Leu	Leu	Leu 15	Leu	
25	Leu	Leu	Gln	Leu 20	Pro	Pro	Pro	Pro	Leu 25	Val	Cys	Gly	Ala	Pro 30	Ala	Gly	
	Pro	Gly	Thr 35	Gly	Ala	Gln	Ala	Ser 40	Glu	Leu	Val	Val	Pro 45	Thr	Arg	Leu	
30	Pro	Gly 50	Ser	Ala	Ser	Glu	Leu 55	Ala	Phe	His	Leu	Ser 60	Ala	Phe	Gly	Gln	
35	Gly 65	Phe	Val	Leu	Arg	Leu 70	Ala	Pro	Asp	Ala	Ser 75	Phe	Leu	Ala	Pro	Glu 80	
33	Phe	Lys	Ile	Glu	Arg 85	Leu	Gly	Gly	Ser	Ser 90	Ala	Ala	Ala	Gly	Gly 95	Glu	
40	Pro	Gly	Leu	Arg 100	Gly	Cys	Phe	Phe	Ser 105	Gly	Thr	Val	Asn	Gly 110	Glu	Arg	
	Glu	Ser	Leu 115	Ala	Ala	Met	Ser	Cys 120	Val	Ala	Gly	Trp	Ser 125	Gly	Ser	Phe	
45	Leu	Leu 130	Ala	Gly	Glu	Glu	Phe 135	Thr	Ile	Gln	Pro	Gln 140	Gly	Ala	Gly	Asp	
50	Ser 145		Asp	Gln	Pro		Arg				Trp 155	Gly	Pro	Gly	Gln	Arg 160	
	Arg	Glu	Asp	Pro	Gly 165	Leu	Ala	Ala	Ala	Glu 170	Val	Phe	Pro	Leu	Pro 175	Gln	
55	_			180					185					190	Glu		
			195					200					205			Lys	
60		210					215					220			Lys		-
65	225					230					235				Leu	240	٠.
	Val	Ala	Asp	Ala	Ser	Met	Ala	Ala	Phe	Tyr	Gly	Thr	Asp	Leu	Gln	Asn	•

					245					250					255	
5	His	Ile	Leu	Thr 260	Val	Met	Ser	Met	Ala 265	Ala	Arg	Ile	Tyr	Lys 270	His	Pro
3	Ser	Ile	Arg 275	Asn	Ser	Val	Asn	Leu 280	Val	Val	Val	Lys	Val 285	Leu	Ile	Val
10	Glu	Lys 290	Glu	Arg	Trp	GJA	Pro 295	Glu	Val	Ser	Asp	Asn 300	Gly	Gly	Leu	Thr
	Leu 305	Arg	.Asn	Phe	Cys	Ser 310	Trp	Gln	Arg	Arg	Phe 315	Asn	Lys	Pro	Ser	Asp 320
15	Arg	His	Pro	Glu	His 325	Tyr	Asp	Thr	Ala	Ile 330	Leu	Phe	Thr	Arg	Gln 335	Asn
20	Phe	Cys	Gly	Lys 340	Gly	Glu	Gln	Cys	Asp 345	Thr	Leu	Gly	Met	Ala 350	Asp	Val
	Gly	Thr	11e 355	Cys	Asp	Pro	Asp	Lys 360	Ser	Сув	Ser	Val	11e 365	Lys	Asp	Glu
25	Gly	Leu 370	Gln	Ala	Ala	Tyr	Thr 375	Leu	Ala	His	Glu	Leu 380	Gly	His	Val	Leu
	Ser 385	Met	Pro	His	Asp	Asp 390	Ser	Lys	Pro	Cys	Val 395	Arg	Leu	Phe	Gly	Pro 400
30	Met	Gly	Lys		His 405	Met	Met	Ala	Pro	Phe 410	Phe	Ile	His	Val	Asn 415	Lys
35	Thr	Leu	Pro	Trp 420	Ser	Pro	Cys	Ser	Ala 425	Val	Tyr	Leu	Thr	Glu 430	Leu	Leu
	Asp	Asp	Gly 435	His	Gly	Asp	Суз	Leu 440	Leu	Asp	Ala	Pro	Thr 445	Ser	Val	Leu
40	Pro	Leu 450	Pro	Thr	Gly	Leu	Pro 455	Gly	His	Ser	Thr	Leu 460	Tyr	Glu	Leu	Asp
	Gln 465	Gln	Cys	Lys	Gln	Ile 470	Phe	Gly	Pro	Asp	Phe 475	Arg	His	Cys	Pro	Asn 480
45	Thr	Ser	Val	Glu	Asp 485	Ile	Cys	Val	Gln	Leu 490	Cys	Ala	Arg	His	Arg 495	Asp
50	Ser	Asp	Glu	Pro 500	Ile	Cys	His	Thr	Lys 505	Asn	Gly	Ser	Leu	Leu 510	Trp	Ala
	Asp	Gly	Thr 515	Pro	Cys	Gly	Pro	Gly 520	His	Leu	Cys	Leu	Asp 525	Gly	Ser	Cys
55	Val	Leu 530	Lys	Glu	Asp	Val	Glu 535	Asn	Pro	Lys	Ala	Val 540	Val	Asp	Gly	Asp
	Trp 545	Gly	Pro	Trp	Arg	Pro 550	Trp	Gly	Gln	Cys	Ser 555	Arg	Thr	Cys	Gly	Gly 560
60	Gly	Ile	Gln	Phe	Ser 565	Asn	Arg	Glu	Cys	Asp 570	Asn	Pro	Met	Pro	Gln 575	Asn
65				580					585					590	Cys	
	Thr	Glu	Glu	Сув	Pro	Pro	Asn	Gly	Lys	Ser	Phe	Arg	Glu	Gln	Gln	Cys

600 605 Glu Lys Tyr Asn Ala Tyr Asn His Thr Asp Leu Asp Gly Asn Phe Leu Gln Trp Val Pro Lys Tyr Ser Gly Val Ser Pro Arg Asp Arg Cys Lys Leu Phe Cys Arg Ala Arg Gly Arg Ser Glu Phe Lys Val Phe Glu Ala 650 Lys Val Ile Asp Gly Thr Leu Cys Gly Pro Asp Thr Leu Ser Ile Cys 15 Val Arg Gly Gln Cys Val Lys Ala Gly Cys Asp His Val Val Asn Ser Pro Lys Lys Leu Asp Lys Cys Gly Val Cys Gly Gly Lys Gly Thr Ala Cys Arg Lys Ile Ser Gly Ser Phe Thr Pro Phe Ser Tyr Gly Tyr Asn 710 715 Asp Ile Val Thr Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Lys Gln Arg Ser His Pro Gly Val Arg Asn Asp Gly Ser Tyr Leu Ala Leu Lys 30 Thr Ala Asn Gly Gln Tyr Leu Leu Asn Gly Asn Leu Ala Ile Ser Ala Ile Glu Gln Asp Ile Leu Val Lys Gly Thr Ile Leu Lys Tyr Ser Gly Ser Met Ala Thr Leu Glu Arg Leu Gln Ser Phe Gln Ala Leu Pro Glu Pro Leu Thr Val Gln Leu Leu Thr Val Ser Gly Glu Val Phe Pro Pro 810 805 Lys Val Arg Tyr Thr Phe Phe Val Pro Asn Asp Met Asp Phe Ser Val 45 Gln Asn Ser Lys Glu Arg Ala Thr Thr Asn Ile Ile Gln Ser Leu Pro Ser Ala Glu Trp Val Leu Gly Asp Trp Ser Glu Cys Pro Ser Thr Cys Arg Gly Ser Trp Gln Arg Arg Thr Val Glu Cys Arg Asp Pro Ser Gly Gln Ala Ser Asp Thr Cys Asp Glu Ala Leu Lys Pro Glu Asp Ala Lys 890 Pro Cys Gly Ser Gln Pro Cys Pro Leu 60 <210> 10 <211> 739 <212> DNA 65 <213> Homo sapiens ADAMTS-8

		1> 0	DS 3)	(737	')												
5	cg	0> 1 agg Arg 1	gca	gaa Glu	ggc Gly	gct Ala 5	agc Ser	gag Glu	ccg Pro	cca Pro	ccg Pro 10	ccc Pro	ctg Leu	G1 y 999	gcc Ala	acg Thr 15	47
10	agt Ser	agg Arg	acc Thr	aag Lys	cgg Arg 20	ttt Phe	gtg Val	tct Ser	gag Glu	gcg Ala 25	Arg	ttc Phe	gtg Val	gag Glu	acg Thr 30	ctg Leu	95
15	ctg Leu	gtg Val	gcc Ala	gat Asp 35	Ala	tcc Ser	atg Met	gct Ala	gcc Ala 40	Phe	tac Tyr	999 Gly	gcc Ala	gac Asp 45	Leu	cag Gln	143
20	aac Asn	cac His	atc Ile 50	Leu	acg Thr	tta Leu	atg Met	tct Ser 55	Val	gca Ala	gcc Ala	cga Arg	atc Ile 60	Tyr	aag Lys	cac His	191
25	ccc Pro	agc Ser 65	atc Ile	aag Lys	aat Asn	tcc Ser	atc Ile 70	aac Asn	ctg Leu	atg Met	gtg Val	gta Val 75	Lys	gtg Val	ctg Leu	atc Ile	239
	gta Val 80	gaa Glu	gat Asp	gaa Glu	aaa Lys	tgg Trp 85	ggc	cca Pro	gag Glu	gtg Val	tcc Ser 90	gac Asp	aat Asn	999 Gly	999 Gly	ctt Leu 95	287
30	aca Thr	ctg Leu	cgt Arg	aac Asn	ttc Phe 100	tgc Cys	aac Asn	tgg Trp	cag Gln	cgg Arg 105	cgt Arg	ttc Phe	aac Asn	cag Gln	ccc Pro 110	agc Ser	335
35	gac Asp	cgc Arg	cac His	cca Pro 115	gag Glu	cac His	tac Tyr	Asp	acg Thr	gcc Ala	atc Ile	ctg Leu	ctc Leu	acc Thr 125	aga Arg	cag Gln	383
40	aac Asn	ttc Phe	tgt Cys 130	Gly	cag Gln	gag Glu	G1 y	ctg Leu 135	tgt Cys	gac Asp	acc Thr	ctg Leu	ggt Gly 140	gtg Val	gca Ala	gac Asp	431
45	atc Ile	999 Gly 145	acc Thr	att Ile	tgt Cys	gac Asp	ccc Pro 150	aac Asn	aaa Lys	agc Ser	tgc Cys	tcc Ser 155	gtg Val	atc Ile	gag Glu	gat Asp	479
	gag Glu 160	999 999	ctc Leu	cag Gln	gcg Ala	gcc Ala 165	cac His	acc Thr	ctg Leu	gcc Ala	cat His 170	gaa Glu	cta Leu	G1 y 999	cac His	gtc Val 175	527
50	ctc Leu	agc Ser	atg Met	ccc Pro	cac His 180	gac Asp	gac Asp	tcc Ser	aag Lys	ccc Pro 185	tgc Cys	aca Thr	cgg Arg	ctc Leu	ttc Phe 190	999 Gly	575
55	ccc Pro	atg Met	ggc Gly	aag Lys 195	cac His	cac His	gtg Val	atg Met	gca Ala 200	ccg Pro	ctg Leu	ttc Phe	gtc Val	cac His 205	ctg Leu	aac Asn	623
60	cag Gln	acg Thr	ctg Leu 210	ccc Pro	tgg Trp	tcc Ser	ccc Pro	tgc Cys 215	agc Ser	gcc Ala	atg Met	ttc Phe	tca Ser 220	ggc Gly	tgc Cys	cac His	671
65	ctg Leu	cag Gln 225	G 1y 999	tgg Trp	atc Ile	cat His	ttc Phe 230	aag Lys	tat Tyr	tta Leu	tgc Cys	aaa Lys 235	tgt Cys	gtc Val	tct Ser	gaa Glu	719
	cta	aag	tgt	gat	ctt	atg	cc										739

1. 25 5 %

```
Leu Lys Cys Asp Leu Met
5 <210> 11
   <211> 245
   <212> PRT
   <213> Homo sapiens ADAMTS-8
10 <400> 11
   Arg Ala Glu Gly Ala Ser Glu Pro Pro Pro Leu Gly Ala Thr Ser
  Arg Thr Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr Leu Leu
15
   Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Ala Asp Leu Gln Asn
20 His Ile Leu Thr Leu Met Ser Val Ala Ala Arg Ile Tyr Lys His Pro
                           55
   Ser Ile Lys Asn Ser Ile Asn Leu Met Val Val Lys Val Leu Ile Val
   Glu Asp Glu Lys Trp Gly Pro Glu Val Ser Asp Asn Gly Gly Leu Thr
   Leu Arg Asn Phe Cys Asn Trp Gln Arg Arg Phe Asn Gln Pro Ser Asp
   Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Leu Thr Arg Gln Asn
35 Phe Cys Gly Gln Glu Gly Leu Cys Asp Thr Leu Gly Val Ala Asp Ile
   Gly Thr Ile Cys Asp Pro Asn Lys Ser Cys Ser Val Ile Glu Asp Glu
   Gly Leu Gln Ala Ala His Thr Leu Ala His Glu Leu Gly His Val Leu
                                       170
   Ser Met Pro His Asp Asp Ser Lys Pro Cys Thr Arg Leu Phe Gly Pro
                                   185
   Met Gly Lys His His Val Met Ala Pro Leu Phe Val His Leu Asn Gln
                               200
50 Thr Leu Pro Trp Ser Pro Cys Ser Ala Met Phe Ser Gly Cys His Leu
   Gln Gly Trp Ile His Phe Lys Tyr Leu Cys Lys Cys Val Ser Glu Leu
                                           235
                       230
   225
   Lys Cys Asp Leu Met
           245
60
   <210> 12
   <211> 5804
   <212> DNA
   <213> Homo sapiens ADAMTS-9
```

65

<220>

```
<221> CDS
   <222> (3)..(5648)
   <220>
 5 <221> misc feature
   <222> (1563) . . (1565)
   <22û>
   <221> misc_feature
10 <222> (1404)..(1406)
   ga age ace atg cag ttt gta tee tgg gee aca etg eta acg ete etg
      Ser Thr Met Gln Phe Val Ser Trp Ala Thr Leu Leu Thr Leu Leu
   gtg cgg gac ctg gcc gag atg ggg agc cca gac gcc gcg gcc gtg
   Val Arg Asp Leu Ala Glu Met Gly Ser Pro Asp Ala Ala Ala Ala Val
   cgc aag gac agg ctg cac ccg agg caa gtg aaa tta tta gag acc ctg
   Arg Lys Asp Arg Leu His Pro Arg Gln Val Lys Leu Leu Glu Thr Leu
25 agc gaa tac gaa atc gtg tct ccc atc cga gtg aac gct ctc gga gaa
                                                                     191
   Ser Glu Tyr Glu Ile Val Ser Pro Ile Arg Val Asn Ala Leu Gly Glu
   ccc ttt ccc acg aac gtc cac ttc aaa aga acg cga cgg agc att aac
                                                                     239
30 Pro Phe Pro Thr Asn Val His Phe Lys Arg Thr Arg Arg Ser Ile Asn
                            70
   tot god act gad occ tgg oct god tto god too too tot too too tet
                                                                     287
   Ser Ala Thr Asp Pro Trp Pro Ala Phe Ala Ser Ser Ser Ser Ser
   ace tee tee cag geg cat tae ege ete tet gee tte gge cag cag ttt
                                                                     335
   Thr Ser Ser Gln Ala His Tyr Arg Leu Ser Ala Phe Gly Gln Gln Phe
   cta ttt aat ctc acc gcc aat gcc gga ttt atc gct cca ctq ttc act
                                                                     383
   Leu Phe Asn Leu Thr Ala Asn Ala Gly Phe Ile Ala Pro Leu Phe Thr
45 gtc acc ctc ctt ggg acg ccc ggg gtg aat cag acc aag ttt tat tcc
   Val Thr Leu Leu Gly Thr Pro Gly Val Asn Gln Thr Lys Phe Tyr Ser
           130
   gaa gag gaa gcg gaa cta aag cac tgt ttc tac aaa agg cta tgt caa
50 Glu Glu Glu Ala Glu Leu Lys His Cys Phe Tyr Lys Arg Leu Cys Gln
   tac caa ctc cga gca cac ggc cgt cat cag cct ctg ctc agg aat gaa
                                                                     527
   Tyr Gln Leu Arg Ala His Gly Arg His Gln Pro Leu Leu Arg Asn Glu
                                           170
   cac aaa aat agg cac agt aaa gac aag aag aaa acc aga gca aga aaa
   His Lys Asn Arg His Ser Lys Asp Lys Lys Lys Thr Arg Ala Arg Lys
   tgg gga gaa agg att aac ctg gct ggt gac gta gca gca tta aac agc
   Trp Gly Glu Arg Ile Asn Leu Ala Gly Asp Val Ala Ala Leu Asn Ser
65 ggc tta gca aca gag gca ttt tct gct tat ggt aat aag acg gac aac
   Gly Leu Ala Thr Glu Ala Phe Ser Ala Tyr Gly Asn Lys Thr Asp Asn
```

			210					215					220				
5	aca Thr	aga Arg 225	gaa Glu	aag Lys	agg Arg	acc Thr	cac His 230	aga Arg	agg Arg	aca Thr	aaa Lys	cgt Arg 235	ttt Phe	tta Leu	tcc Ser	tat Tyr	719
10	cca Pro 240	cgg Arg	ttt Phe	gta Val	gaa Glu	gtc Val 245	ttg Leu	gtg Val	gtg Val	gca Ala	gac Asp 250	aac Asn	aga Arg	atg Met	gtt Val	tca Ser 255	767
10	tac Tyr	cat His	gga Gly	gaa Glu	aac Asn 260	ctt Leu	caa Gln	cac His	tat Tyr	att Ile 265	tta Leu	act Thr	tta Leu	atg Met	tca Ser 270	att Ile	815
15	gta Val	gcc Ala	tct Ser	atc Ile 275	Tyr	aaa Lys	gac Asp	cca Pro	agt Ser 280	att Ile	gga Gly	aat Asn	tta Leu	att Ile 285	aat Asn	att Ile	863
20	gtt Val	att Ile	gtg Val 290	aac Asn	tta Leu	att Ile	gtg Val	att Ile 295	cat His	aat Asn	gaa Glu	cag Gln	gat Asp 300	999 Gly	cct Pro	tcc Ser	911
25	ata Ile	tct Ser 305	ttt Phe	aat Asn	gct Ala	cag Gln	aca Thr 310	aca Thr	tta Leu	aaa Lys	aac Asn	ttt Phe 315	tgc Cys	cag Gln	tgg Trp	cag Gln	959
30	cat His 320	tcg Ser	aac Asn	agt Ser	cca Pro	ggt Gly 325	gga Gly	atc Ile	cat His	cat His	gat Asp 330	act Thr	gct Ala	gtt Val	ctc Leu	tta Leu 335	1007
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	aca Thr	aga Arg	cag Gln	gat Asp	atc Ile 340	tgc Cys	aga Arg	gct Ala	cac His	gac Asp 345	aaa Lys	tgt Cys	gat Asp	acc Thr	tta Leu 350	ggc Gly	1055
35	ctg Leu	gct Ala	gaa Glu	ctg Leu 355	gga Gly	acc Thr	att Ile	tgt Cys	gat Asp 360	ccc Pro	tat Tyr	aga Arg	agc Ser	tgt Cys 365	tct Ser	att Ile	1103
40	agt Ser	gaa Glu	gat Asp 370	agt Ser	gga Gly	ttg Leu	agt Ser	aca Thr 375	gct Ala	ttt Phe	acg Thr	atc Ile	gcc Ala 380	cat His	gag Glu	ctg Leu	1151
45	ggc Gly	cat His 385	gtg Val	ttt Phe	aac Asn	atg Met	cct Pro 390	cat His	gat Asp	gac Asp	aac Asn	aac Asn 395	aaa Lys	tgt Cys	aaa Lys	gaa Glu	1199
50	gaa Glu 400	gga Gly	gtt Val	aag Lys	agt Ser	CCC Pro 405	cag Gln	cat His	gtc Val	atg Met	gct Ala 410	cca Pro	aca Thr	ctg Leu	aac Asn	ttc Phe 415	1247
50	tac Tyr	acc Thr	aac Asn	ccc Pro	tgg Trp 420	atg Met	tgg Trp	tca Ser	aag Lys	tgt Cys 425	agt Ser	cga Arg	aaa Lys	tat Tyr	atc Ile 430	act Thr	1295
55	gag Glu	ttt Phe	tta Leu	gac Asp 435	act Thr	ggt Gly	tat Tyr	ggc	gag Glu 440	tgt Cys	ttg Leu	ctt Leu	aac Asn	gaa Glu 445	cct Pro	gaa Glu	1343
60	tcc Ser	aga Arg	ccc Pro 450	tac Tyr	cct Pro	ttg Leu	Pro	gtc Val 455	caa Gln	ctg Leu	cca Pro	Gly	atc Ile 460	Leu	tac Tyr	aac Asn	1391
65	gtg Val	aat Asn 465	Lys	caa Gln	tgn Xaa	gaa Glu	ttg Leu 470	Ile	ttt Phe	gga Gly	cca Pro	ggt Gly 475	tct Ser	cag Gln	gtg Val	tgc Cys	1439

															aat Asn		1487
5															999 Gly 510		1535
10	gag Glu	tgc Cys	gag Glu	cct Pro 515	gga Gly	aag Lys	cac His	tgc Cys	aag Lys 520	nat Xaa	gga Gly	ttt Phe	tgt Cys	gtt Val 525	ecc Pro	aaa Lys	1583
15	gaa Glu	atg Met	gat Asp 530	gtc Val	ccc Pro	gtg Val	aca Thr	gat Asp 535	gga Gly	tcc Ser	tgg Trp	gga Gly	agt Ser 540	tgg Trp	agt Ser	ccc Pro	1631
20	ttt Phe	gga Gly 545	acc Thr	tgc Cys	tcc Ser	aga Arg	aca Thr 550	tgt Cys	gga Gly	GJA aaa	ggc	atc Ile 555	aaa Lys	aca Thr	gcc Ala	att Ile	1679
															tgt Cys		1727
25	gga Gly	cgt Arg	aga Arg	atg Met	aaa Lys 580	ttt Phe	aag Lys	tcc Ser	tgc Cys	aac Asn 585	acg Thr	gag Glu	cca Pro	tgt Cys	ctc Leu 590	aag Lys	1775
30															999 999		1823
35	cat His	ttt Phe	aac Asn 610	atc Ile	aac Asn	ggt Gly	ctg Leu	ctt Leu 615	ccc Pro	aat Asn	gtg Val	cgc Arg	tgg Trp 620	gtc Val	cct Pro	aaa Lys	1871
40	tac Tyr	agt Ser 625	gga Gly	att Ile	ctg Leu	atg Met	aag Lys 630	gac Asp	cgg. Arg	tgc Cys	aag Lys	ttg Leu 635	ttc Phe	tgc Cys	aga Arg	gtg Val	1919
	gca Ala 640	999 999	aac Asn	aca Thr	gcc Ala	tac Tyr 645	tat Tyr	cag Gln	ctt Leu	cga Arg	gac Asp 650	aga Arg	gtg Val	ata Ile	gat Asp	gga Gly 655	1967
45									Asp		Cys				ctt Leu 670		2015
50	cgg Arg	caa Gln	gct Ala	gga Gly 675	tgc Cys	gat Asp	cat His	gtt Val	tta Leu 680	aac Asn	tca Ser	aaa Lys	gcc Ala	cgg Arg 685	aga Arg	gat Asp	2063
55															gtg Val		2111
60	gga Gly	aca Thr 705	ttt Phe	aat Asn	aca Thr	gta Val	cat His 710	tat Tyr	ggt Gly	tac Tyr	aat Asn	act Thr 715	gtg Val	gtc Val	cga Arg	att Ile	2159
															tca Ser		2207
65															ggt Gly		2255

					740					745					750		
5	ttc Phe	ttg Leu	cta Leu	aat Asn 755	gga Gly	aac Asn	ttt Phe	gtt Val	gtc Val 760	aca Thr	atg Met	gcc Ala	aaa Lys	agg Arg 765	gaa Glu	att Ile	2303
	cgc Arg	att Ile	999 Gly 770	aat Asn	gct Ala	gtg Val	gta Val	gag Glu 775	tac Tyr	agt Ser	999 Gly	tcc Ser	gag Glu 780	act Thr	gcc Ala	gta Val	2351
10	gaa Glu	aga Arg 785	att Ile	aac Asn	tca Ser	aca Thr	gat Asp 790	cgc Arg	att Ile	gag Glu	caa Gln	gaa Glu 795	ctt Leu	ttg Leu	ctt Leu.	cag Gln	2399
15	gtt Val 800	ttg Leu	tcg Ser	gtg Val	gga Gly	aag Lys 805	ttg Leu	tac Tyr	aac Asn	ccc Pro	gat Asp 810	gta Val	cgc Arg	tat Tyr	tct Ser	ttc Phe 815	2447
20	aat Asn	att Ile	cca Pro	att Ile	gaa Glu 820	gat Asp	aaa Lys	cct Pro	cag Gln	cag Gln 825	ttt Phe	tac Tyr	tgg Trp	aac Asn	agt Ser 830	cat His	2495
25	ggg Gly	cca Pro	tgg Trp	caa Gln 835	gca Ala	tgc Cys	agt Ser	aaa Lys	ccc Pro 840	tgc Cys	caa Gln	999 Gly	gaa Glu	cgg Arg 845	aaa Lys	cga Arg	2543
2.0	aaa Lys	ctt Leu	gtt Val 850	tgc Cys	acc Thr	agg Arg	gaa Glu	tct Ser 855	gat Asp	cag Gln	ctt Leu	act Thr	gtt Val 860	tct Ser	gat Asp	caa Gln	2591
30	aga Arg	tgc Cys 865	gat Asp	cgg Arg	ctg Leu	ccc Pro	cag Gln 870	cct Pro	gga Gly	cac His	att Ile	act Thr 875	gaa Glu	ccc Pro	tgt Cys	ggt Gly	2639
35	aca Thr 880	ggc Gly	tgt Cys	gac Asp	ctg Leu	agg Arg 885	tgg Trp	cat His	gtt Val	gcc Ala	agc Ser 890	agg Arg	agt Ser	gaa Glu	tgt Cys	agt Ser 895	2687
40	gcc Ala	cag Gln	tgt Cys	ggc Gly	ttg Leu 900	ggt Gly	tac Tyr	cgc Arg	aca Thr	ttg Leu 905	gac Asp	atc Ile	tac Tyr	tgt Cys	gcc Ala 910	aaa Lys	2735
45	tat Tyr	agc Ser	agg Arg	ctg Leu 915	gat Asp	999 Gly	aag Lys	act Thr	gag Glu 920	aag Lys	gtt Val	gat Asp	gat Asp	ggt Gly 925	ttt Phe	tgc Cys	2783
	Ser	agc Ser	cat His 930	ccc Pro	aaa Lys	cca Pro	agc Ser	aac Asn 935	cgt Arg	gaa Glu	aaa Lys	tgc Cys	tca Ser 940	G1y 999	gaa Glu	tgt Cys	2831
50	aac	acg Thr 945	Gly	ggc Gly	tgg Trp	cgc Arg	tat Tyr 950	tct Ser	gcc Ala	tgg Trp	act Thr	gaa Glu 955	tgt Cys	tca Ser	aaa Lys	agc Ser	2879
55	tgt Cys 960	Asp	ggt Gly	999 Gly	acc Thr	cag Gln 965	Arg	aga Arg	agg Arg	gct Ala	att Ile 970	Cys	gtc Val	aat Asn	acc Thr	cga Arg 975	2927
60	aat Asn	gat Asp	gta Val	ctg Leu	gat Asp 980	Asp	agc Ser	aaa Lys	tgc Cys	aca Thr 985	His	caa Gln	gag Glu	aaa Lys	gtt Val 990	Thr	2975
65	Ile	cag Glr	agg Arg	tgc Cys 995	Ser	gag Glu	ttc Phe	Pro	tgt Cys 1000	Pro	cag Gln	tgg Trp	aaa Lys	ser 1005	gga Gly	gac Asp	3023

				Y Lys Gly His	aag cac agc c Lys His Ser G 1020	-
5		Gln Phe Gly		_	aga atg tgt g Arg Met Cys A	
10					cag ccg gaa t Gln Pro Glu C	ys
15					gtc act tgt gg Val Thr Cys G 1070	_
20	Gln Gly Tyr			s Cys Ile Ile	ggg act tat a Gly Thr Tyr Mo 1085	
				n Ala Ala Thr	aga cca act ga Arg Pro Thr As 1100	
25		Cys Glu Leu			cca gct gcc co Pro Ala Ala P	
30					cag tgg cga te Gln Trp Arg Pl	he
35				- · · · · · · · · · · · · · · · · · · ·	ggt acc cgg a Gly Thr Arg Me 1150	_
40	Arg Tyr Val			n Gly Ser Val	gct gac gag ag Ala Asp Glu S 1165	
				l Ala Lys Glu	gaa tgt tct g Glu Cys Ser V 1180	
45					tct tgc tct g Ser Cys Ser V	
50				g caa gtg atg	tgt gtc aac t	ac 3647
	Thr Cys Gly 1200	Gln Gly Arg 1205	•	g Gln Val Met 1210	Cys Val Asn T	4
55	1200 agt gac cac	1205 gtg atc gat	cgg agt gag	1210 g tgt gac cag	Cys Val Asn T	15 ca 3695
	agt gac cac Ser Asp His gaa act gac Glu Thr Asp	gtg atc gat Val Ile Asp 1220 cag gac tgt	cgg agt gag Arg Ser Gli	1210 g tgt gac cag u Cys Asp Gln 1225 a cca tgc cct r Pro Cys Pro	Cys Val Asn T 12 gat tat atc c Asp Tyr Ile P	15 ca 3695 ro
55 60	agt gac cac Ser Asp His gaa act gac Glu Thr Asp	gtg atc gat Val Ile Asp 1220 cag gac tgt Gln Asp Cys 1235 tta gct cag Leu Ala Gln	cgg agt gag Arg Ser Gla tcc atg tcc Ser Met Se: 124	1210 g tgt gac cag u Cys Asp Gln 1225 a cca tgc cct r Pro Cys Pro 0 c caa aat gag	Cys Val Asn T 12 gat tat atc c Asp Tyr Ile P 1230 caa agg acc c Gln Arg Thr P	15

	1265		127	70	1275	. ,	
5	aga act Arg Thr 1280	ggc ccc Gly Pro	tgg gga go Trp Gly Al 1285	ca tgt tcc la Cys Ser	agt acc tgt Ser Thr Cys 1290	gct ggc gga tcc Ala Gly Gly Ser 1295	3887
10	cag cgg Gln Arg	Arg Val	gtt gta to Val Val Cy 300	ys Gln Asp	gaa aat gga Glu Asn Gly 305	tac acc gca aac Tyr Thr Ala Asn 1310	3935
10	gac tgt Asp Cys	gtg gag Val Glu 1315	aga ata aa Arg Ile Ly	aa cct gat ys Pro Asp 1320	gag caa aga Glu Gln Arg	gcc tgt gaa tcc Ala Cys Glu Ser 1325	3983
15	Gly Pro	tgt cct Cys Pro 1330	cag tgg go Gln Trp Al	ct tat ggc la Tyr Gly 1335	Asn Trp Gly	gag tgc act aag Glu Cys Thr Lys 340	4031
20	ctg tgt Leu Cys 1345	ggt gga Gly Gly	ggc ata ag Gly Ile Ar 135	rg Thr Arg	ctg gtg gtc Leu Val Val 1355	tct cag cgg tcc Ser Gln Arg Ser	4079
25	aac ggt Asn Gly 1360	gaa cgg Glu Arg	ttt cca ga Phe Pro As 1365	at ttg agc sp Leu Ser	tgt gaa att Cys Glu Ile 1370	ctt gat aaa cct Leu Asp Lys Pro 1375	4127
30	ccc gat Pro Asp	Arg Glu	cag tgt aa Gln Cys As 1380	sn Thr His	gct tgt cca Ala Cys Pro 1385	cac gac gct gca His Asp Ala Ala 1390	4175
30	tgg agt Trp Ser	act ggc Thr Gly 1395	cct tgg ac Pro Trp Se	gc tcg tgt er Ser Cys 1400	tct gtc tct Ser Val Ser	tgt ggt cga ggg Cys Gly Arg Gly 1405	4223
35	His Lys	caa cga Gln Arg 1410	aat gtt ta Asn Val T	ac tgc atg yr Cys Met 1415	Ala Lys Asp	gga agc cat tta Gly Ser His Leu 1420	4271
40	gaa agt Glu Ser 1425	Asp Tyr	tgt aag c Cys Lys H	is Leu Ala	aag cca cat Lys Pro His 1435	ggg cac aga aag Gly His Arg Lys	4319
45	tgc cga Cys Arg 1440	gga gga Gly Gly	aga tgc co Arg Cys P: 1445	cc aaa tgg ro Lys Trp	aaa gct ggc Lys Ala Gly 1450	gct tgg agt cag Ala Trp Ser Gln 1455	4367
50	tgc tct Cys Ser	Val Ser	atg ggc c Met Gly A 1460	rg Gly Val	cag cag agg Gln Gln Arg 1465	cat gtg ggc tgt His Val Gly Cys 1470	4415
50	cag atc	gga aca Gly Thr 1475	cac aaa a His Lys I	ta gcc aga le Ala Arg 1480	gag acc gag Glu Thr Glu	tgc aac cca tac Cys Asn Pro Tyr 1485	4463
55	acc aga	ccg gag Pro Glu 1490	tcg gaa t Ser Glu C	gc gaa tgc ys Glu Cys 1495	Gln Gly Pro	cgg tgt ccc ctt Arg Cys Pro Leu 1500	4511
60	tac act Tyr Thr 1505	Trp Arg	Ala Glu G	aa tgg caa lu Trp Gln 10	gaa tgc acc Glu Cys Thr 1515	aag acc tgc ggc Lys Thr Cys Gly	4559
65	gaa ggo Glu Gly 1520	tcc agg	tac cgc a Tyr Arg L 1525	ag gtg gtg ys Val Val	tgt gtg gat Cys Val Asp 1530	gac aac aaa aac Asp Asn Lys Asn 1535	

				Gly					Val					Val	gac Asp 1550		4655
5	gaa Glu	agc Ser	Cys	agt Ser 1555	ttg Leu	caa Gln	ccc Pro	Cys	gag Glu 1560	tat Tyr	gtc Val	tgg Trp	Thr	aca Thr 1565	gga Gly	gaa Glu	4703
10	tgg Trp	Ser	gag Glu 1570	tgc Cys	tca Ser	gtg Val	Thr	tgt Cys 1575	gga Gly	aaa Lys	ggc Gly	Tyr	aaa Lys 1580	caa Gln	agg Arg	ctt Leu	4751
15	Val	tcg Ser 1585	tgc Cys	agc Ser	gag Glu	Ile	tac Tyr 1590	acc Thr	G 1y 999	aaa Lys	Glu	aat Asn 1595	tat Tyr	gaa Glu	tac Tyr	agc Ser	4799
- 20	tac Tyr 1600	Gln	acc Thr	acc Thr	Ile	aac Asn 1605	tgc Cys	cca Pro	ggc Gly	Thr	cag Gln 1610	ccc Pro	ccc Pro	agt Ser	gtt Val	cac His 1615	4847
20	ccc Pro	tgt Cys	tac Tyr	Leu	agg Arg 1620	gag Glu	tgc Cys	cct Pro	Val	tcg Ser 1625	gcc Ala	acc Thr	tgg Trp	Arg	gtt Val 1630	ggc Gly	4895
25	aac Asn	tgg Trp	Gly	agc Ser 1635	tgc Cys	tca Ser	gtg Val	Ser	tgt Cys 1640	ggt Gly	gtt Val	gga Gly	Val	atg Met 1645	cag Gln	aga Arg	4943
30	tct Ser	Val	caa Gln 1650	tgt Cys	tta Leu	acc Thr	Asn	gag Glu 1655	gac Asp	caa Gln	ccc Pro	Ser	cac His 1660	tta Leu	tgc Cys	cac His	4991
35	Thr	gat Asp 1665	ctg Leu	aag Lys	cca Pro	Glu	gaa Glu 1670	cga Arg	aaa Lys	acc Thr	Cys	cgt Arg 1675	aat Asn	gtc Val	tat Tyr	aac Asn	5039
40	tgt Cys 1680	Glu	tta Leu	ccc Pro	Gln	aat Asn 685	tgc Cys	aag Lys	gag Glu	Val	aaa Lys 1690	aga Arg	ctt Leu	aaa Lys	ggt Gly 1	gcc Ala .695	5087
40	agt Ser	gaa Glu	gat Asp	Gly	gaa Glu .700	tat Tyr	ttc Phe	ctg Leu	Met	att Ile 1705	aga Arg	gga Gly	aag Lys	Leu	ctg Leu 710	aag Lys	5135
45	ata Ile	ttc Phe	Cys	gcg Ala 715	G1y 999	atg Met	cac His	Ser	gac Asp 1720	cac His	ccc Pro	aaa Lys	Glu	tac Tyr 725	gtg Val	aca Thr	5183
50	ctg Leu	Val	cat His 730	gga Gly	gac Asp	tct Ser	Glu	aat Asn .735	ttc Phe	tcc Ser	gag Glu	Val	tat Tyr 740	999 999	cac His	agg Arg	5231
55	Leu	cac His .745	aac Asn	cca Pro	aca Thr	Glu	tgt Cys .750	ccc Pro	tat Tyr	aac Asn	Gly	agc Ser 755	cgg Arg	cgc Arg	gat Asp	gac Asp	5279
60	tgc Cys 1760	Gln	tgt Cys	cgg Arg	Lys	gat Asp .765	tac Tyr	acg Thr	gcc Ala	Ala	999 Gly .770	ttt Phe	tcc Ser	agt Ser	ttt Phe 1	cag Gln 775	5327
	aaa Lys	atc Ile	aga Arg	Ile	gac Asp .780	ctg Leu	acc Thr	agc Ser	Met	cag Gln 1785	ata Ile	atc Ile	acc Thr	Thr	gac Asp .790	Leu	5375
65	cag Gln	ttt Phe	gca Ala	agg Arg	aca Thr	agc Ser	gaa Glu	gga Gly	cat His	ccc Pro	gtc Val	cct Pro	ttt Phe	gcc Ala	aca Thr	gcc Ala	5423

			1	.795				1	800				18	305			
. 5	Gly .	Asp	tgc Cys 810	tac Tyr	agc Ser	gct (Ala	Ala 1	aag Lys 815	tgc Cys	cca Pro	cag (Gln (GLY A	egt 1 Arg 1 820	ttt Phe	agc Ser	atc Ile	5471
	aac Asn 1	ctt Leu 825	tat Tyr	gga Gly	acc Thr	Gly	ttg 1 Leu ! 830	tct Ser	tta Leu	act Thr	Glu	tct (Ser 1 835	gcc a Ala <i>i</i>	aga Arg	tgg Trp	ata Ile	5519
10	tca Ser 1840	Gln	G1 y 999	aat Asn	Tyr	gct Ala 845	gtc (Val :	tct Ser	gac Asp	Ile	aag Lys 850	aag Lys :	tcg (Ser	ccg Pro	Asp	ggt Gly .855	5567
15	acc Thr	cga Arg	gtc Val	Val	999 Gly .860	aaa Lys	tgc (Cys (ggt Gly	Gly	tac Tyr 865	tgt Cys	gga Gly	aaa Lys	Cys	act Thr 870	cca Pro	5615
20	tcc Ser	tct Ser	Gly	act Thr 1875	Gly	ctg Leu	gag Glu	Val	cga Arg 880	gtt Val	tta Leu	tagc	taag	gt ç	gettt	gaaga	5668
	ggaa	gcca	itt i	atgga	tggā	at ga	agga	tagt	aat	gcaa	tac	ctcc	acct	ta a	attt	ggtgc	5728
25	atgt	gtat	gt (gtgtg	gtgtg	gt tt	gtgt	gtga	ctt	gtat	gct	tgtg	tgtg	ta a	aatgt	gtgta	5788
	cata	taca	ata	tatac	ca												5804
30	<212	l> 18 2> PF	382 RT	sapi	ens <i>l</i>	ADAM1	rs-9										
35	<400 Ser 1)> 13 Thr	3 Met	Gln	Phe 5	Val	Ser	Trp	Ala	Thr 10	Leu	Leu	Thr	Leu	Leu 15	Val	
40				Ala 20					25					30			
	_		35					40					45				
45	Glu	50					55					60					
50	65			Asn		70					75					80	
	Ala	Thr	Asp	Pro	Trp 85		Ala	Phe	Ala	Ser 90	Ser	Ser	Ser	Ser	Ser 95	Thr	
55		Ser	Glr	n Ala 100		Tyr	Arg	Leu	Ser 105	Ala	Phe	Gly	Gln	Gln 110	Phe	Leu	
			119	5				120					125			Val	
60		130)	•			135					.140				Glu	
65	145	ı				150	1				155					160	
-	Gln	Lev	Ar	g Ala	a Hie	Gly	Arg	His	Glr	n Pro	Leu	Leu	Arg	Ası	ı Glı	ı His	

					165					170					175	
5		Asn	Arg	His 180	Ser	Lys	Asp	Lys	Lys 185		Thr	Arg	Ala	Arg		Trp
J		Glu	Arg 195		Asn	Leu	Ala	Gly 200		Val	Ala	Ala	Leu 205		Ser	Gly
10	Leu	Ala 210	Thr	Glu	Ala	Phe	Ser 215	Ala	Tyr	Gly	Asn	Lys 220	Thr	Asp	Asn	Thr
	Arg 225	Glu	Lys	Arg	Thr	His 230	Arg	Arg	Thr	Lys	Arg 235	Phe	Leu	Ser	Туг	Pro 240
15	Arg	Phe	Val	Glu	Val 245	Leu	Val	Val	Ala	Asp 250	Asn	Arg	Met	Val	Ser 255	Tyr
20	His	Gly	Glu	Asn 260	Leu	Gln	His	Tyr	Ile 265	Leu	Thr	Leu	Met	Ser 270	Ile	Val
	Ala	Ser	Ile 275	Tyr	Lys	Asp	Pro	Ser 280	Ile	Gly	Asn	Leu	11e 285	Asn	Ile	Val
25	Ile	Val 290	Asn	Leu	Ile	Val	Ile 295	His	Asn	Glu	Gln	Asp 300	Gly	Pro	Ser	Ile
	Ser 305	Phe	Asn	Ala	Gln	Thr 310	Thr	Leu	Lys	Asn	Phe 315	Cys	Gln	Trp	Gln	His 320
30					Gly 325					330					335	
35				340	Сув				345					350		
			355		Thr			360					365			
40		370			Leu		375		٠			380				
	385				Met	390					395					400
45					Pro 405					410					415	
50				420	Met	•			425					430		
			435		Gly			440					445			
55		450			Leu		455					460		_		
	465				Glu	470					475					480
60					Cys 485					490					495	
65				500	Arg				505					510		
	Cys	Glu-	Pro	Gly	Lys	His	Cys	Lys	Xaa	Gly	Phe	Cys	Val	Pro	Lys	Glu

			515					520					525			
	Met	Asp 530	Val	Pro	Val	Thr	Asp 535	Gly	Ser	Trp	Gly	Ser 540	Trp	Ser	Pro	Phe
5	Gly 545	Thr	Сув	Ser	Arg	Thr 550	Cys	Gly	Gly	Gly	Ile 555	Lys	Thr	Ala	Ile	Arg 560
10	Glu	Cys	Asn	Arg	Pro 565	Glu	Pro	Lys	Asn	Gly 570	Gly	Lys	Tyr	Cys	Val 575	Gly
	Arg	Arg	Met	Lys 580	Phe	Lys	Ser	Cys	Asn 585	Thr	Glu	Pro	Cys	Leu 590	Lys	Gln
15	Lys	Arg	Asp 595	Phe	Arg	Asp	Glu	Gln 600	Cys	Ala	His	Phe	Asp 605	Gly	Lys	His
20	Phe	Asn 610	Ile	Asn	Gly	Leu	Leu 615	Pro	Asn	Val	Arg	Trp 620	Val	Pro	Lys	Tyr
20	Ser 625	Gly	Ile	Leu	Met	Lys 630	Asp	Arg	Суз	Lys	Leu 635	Phe	Сув	Arg	Val	Ala 640
25	Gly	Asn	Thr	Ala	Tyr 645	Tyr	Gln	Leu	Arg	Asp 650	Arg	Val	Ile	Asp	Gly 655	Thr
	Pro	Cys	Gly	Gln 660	Asp	Thr	Asn	Asp	Ile 665	Cys	Val	Gln	Gly	Leu 670	Cys	Arg
30	Gln	Ala	Gly 675	Cys	Asp	His	Val	Leu 680	Asn	Ser	Lys	Ala	Arg 685	Arg	Asp	Lys
35	Сув	Gly 690	Val	Cys	Gly	Gly	Asp 695	Asn	Ser	Ser	Cys	Lys 700	Thr	Val	Ala	Gly
,,	Thr 705	Phe	Asn	Thr	Val	His 710	Tyr	Gly	туг	Asn	Thr 715	Val	Val	Arg	Ile	Pro 720
40	Ala	Gly	Ala	Thr	Asn 725	Ile	Asp	Val	Arg	Gln 730	His	Ser	Phe	Ser	Gly 735	Glu
	Thr	Asp	Asp	Asp 740	Asn	Tyr	Leu	Ala	Leu 745	Ser	Ser	Ser	Lys	Gly 750	Glu	Phe
45	Leu	Leu	Asn 755	Gly	Asn	Phe	Val	Val 760	Thr	Met	Ala	Lys	Arg 765	Glu	Ile	Arg
50	Ile	Gly 770	Asn	Ala	Val	Val	Glu 775	Tyr	Ser	Gly	Ser	Glu 780	Thr	Ala	Val	Glu
	Arg 785		Asn	Ser	Thr	Asp 790	Arg	Ile	Glu	Gln	Glu 795	Leu	Leu	Leu	Gln	Val 800
55	Leu	Ser	Val	Gly	Lys 805	Leu	Tyr	Asn	Pro	Asp 810	Val	Arg	Tyr	Ser	Phe 815	Asn
	Ile	Pro	Ile	Glu 820	Asp	Lys	Pro	Gln	Gln 825	Phe	Tyr	Trp	Asn	Ser 830	His	Gly
60	Pro	Trp	Gln 835	Ala	Cys	Ser	ГÀв	Pro 840	Сув	Gln	Gly	Glu	Arg 845	Lys	Arg	Lys
65	Leu	Val 850	-	Thr	Arg	Glu	Ser 855	Asp	Gln	Leu	Thr	Val 860	Ser	Asp	Gln	Arg
7.5	Cys	Asp	Arg	Leu	Pro	Gln	Pro	Gly	His	·Ile	Thr	Glu	Pro	Cys	Gly	Thr

	865					870					875					880
5	Gly	Сув	Asp	Leu	Arg 885	Trp	His	Val	Ala	Ser 890	Arg	Ser	Glu	Cys	Ser 895	Ala
,	Gln	Cys	Gly	Leu 900	Gly	Tyr	Arg	Thr	Leu 905	Asp	Ile	Tyr	Cys	Ala 910	Lys	Tyr
10	Ser	Arg	Leu 915	Asp	Gly	Lys	Thr	Glu 920	Lys	Val	Asp	Asp	Gly 925	Phe	Cys	Ser
	Ser	His 930	Pro	Lys	Pro	Ser	Asn 935	Arg	Glu	Lys	Cys	Ser 940	Gly	Glu	Cys	Asn
15	Thr 945	Gly	Gly	Trp	Arg	Tyr 950	Ser	Ala	Trp	Thr	Glu 955	Cys	Ser	Lys	Ser	Cys 960
20			Gly		965					970	_				975	
			Leu	980					985					990		
25			Сув 995				1	1000			_	_ 1	1005	-	-	-
	=	1010	Cys			1	1015	_		_	3	1020				
	1029	5	Gln		1	1030				. 3	1035					1040
35			Lys]	1045				1	1050				1	1055	
				1060	_		_	1	1065	-			1	1070	_	
40		:	Gln 1075				1	1080				3	.085			
45		1090	Asp			_ 1	1095				1	100			_	
43	1109	5	Cys		1	1110		-		1	1115				3	120
50			Arg	1	L125				3	130				1	135	
				1140	_			1	1145	_	•	-	1	1150		
55		. :	Ser 1155	_			3	1160	-]	165			
		L170	Thr			1	L175				1	L180	_			
60	1189	5	Gly		1	1190			_]	1195		-		1	L200
65			Gln		1205				1	1210				1	1215	
	Asp	His	Val	He	Asp	Arg	ser	GLu	Сув	Asp	GIN	Asp	Tyr	Ile	Pro	Glu

2000

1230 1225 1220 Thr Asp Gln Asp Cys Ser Met Ser Pro Cys Pro Gln Arg Thr Pro Asp 1240 1235 Ser Gly Leu Ala Gln His Pro Phe Gln Asn Glu Asp Tyr Arg Pro Arg 1255 Ser Ala Ser Pro Ser Arg Thr His Val Leu Gly Gly Asn Gln Trp Arg 1270 1275 10 1265 Thr Gly Pro Trp Gly Ala Cys Ser Ser Thr Cys Ala Gly Gly Ser Gln 1290 15 Arg Arg Val Val Val Cys Gln Asp Glu Asn Gly Tyr Thr Ala Asn Asp 1305 1300 Cys Val Glu Arg Ile Lys Pro Asp Glu Gln Arg Ala Cys Glu Ser Gly 1325 20 Pro Cys Pro Gln Trp Ala Tyr Gly Asn Trp Gly Glu Cys Thr Lys Leu Cys Gly Gly Gly Ile Arg Thr Arg Leu Val Val Ser Gln Arg Ser Asn 1355 25 1345 Gly Glu Arg Phe Pro Asp Leu Ser Cys Glu Ile Leu Asp Lys Pro Pro 1370 30 Asp Arg Glu Gln Cys Asn Thr His Ala Cys Pro His Asp Ala Ala Trp 1385 Ser Thr Gly Pro Trp Ser Ser Cys Ser Val Ser Cys Gly Arg Gly His 1400 35 Lys Gln Arg Asn Val Tyr Cys Met Ala Lys Asp Gly Ser His Leu Glu 1420 1415 Ser Asp Tyr Cys Lys His Leu Ala Lys Pro His Gly His Arg Lys Cys Arg Gly Gly Arg Cys Pro Lys Trp Lys Ala Gly Ala Trp Ser Gln Cys 1450 45 Ser Val Ser Met Gly Arg Gly Val Gln Gln Arg His Val Gly Cys Gln 1465 Ile Gly Thr His Lys Ile Ala Arg Glu Thr Glu Cys Asn Pro Tyr Thr 1480 1475 Arg Pro Glu Ser Glu Cys Glu Cys Gln Gly Pro Arg Cys Pro Leu Tyr 1500 1495 Thr Trp Arg Ala Glu Glu Trp Gln Glu Cys Thr Lys Thr Cys Gly Glu Gly Ser Arg Tyr Arg Lys Val Val Cys Val Asp Asp Asn Lys Asn Glu 1530 1525 60 Val His Gly Ala Arg Cys Asp Val Ser Lys Arg Pro Val Asp Arg Glu 1545 Ser Cys Ser Leu Gln Pro Cys Glu Tyr Val Trp Thr Thr Gly Glu Trp

1560

Ser Glu Cys Ser Val Thr Cys Gly Lys Gly Tyr Lys Gln Arg Leu Val

65

1570 1575 1580 Ser Cys Ser Glu Ile Tyr Thr Gly Lys Glu Asn Tyr Glu Tyr Ser Tyr 1590 1595 Gln Thr Thr Ile Asn Cys Pro Gly Thr Gln Pro Pro Ser Val His Pro 1610 Cys Tyr Leu Arg Glu Cys Pro Val Ser Ala Thr Trp Arg Val Gly Asn 1620 1625 Trp Gly Ser Cys Ser Val Ser Cys Gly Val Gly Val Met Gln Arg Ser 1640 15 Val Gln Cys Leu Thr Asn Glu Asp Gln Pro Ser His Leu Cys His Thr 1655 Asp Leu Lys Pro Glu Glu Arg Lys Thr Cys Arg Asn Val Tyr Asn Cys 1670 20 Glu Leu Pro Gln Asn Cys Lys Glu Val Lys Arg Leu Lys Gly Ala Ser 1690 Glu Asp Gly Glu Tyr Phe Leu Met Ile Arg Gly Lys Leu Leu Lys Ile 1700 1705 Phe Cys Ala Gly Met His Ser Asp His Pro Lys Glu Tyr Val Thr Leu 1720 . 30 Val His Gly Asp Ser Glu Asn Phe Ser Glu Val Tyr Gly His Arg Leu 1735 His Asn Pro Thr Glu Cys Pro Tyr Asn Gly Ser Arg Arg Asp Asp Cys 1745 1750 1755 35 Gln Cys Arg Lys Asp Tyr Thr Ala Ala Gly Phe Ser Ser Phe Gln Lys 1765 1770 Ile Arg Ile Asp Leu Thr Ser Met Gln Ile Ile Thr Thr Asp Leu Gln. 1785 Phe Ala Arg Thr Ser Glu Gly His Pro Val Pro Phe Ala Thr Ala Gly 1795 1800 45 Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg Phe Ser Ile Asn 1815 Leu Tyr Gly Thr Gly Leu Ser Leu Thr Glu Ser Ala Arg Trp Ile Ser 1835 50 Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser Pro Asp Gly Thr 1845 1850 Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys Cys Thr Pro Ser 55 Ser Gly Thr Gly Leu Glu Val Arg Val Leu 1875 1880

BNSDOCID: <WO___0111074A2_I_>

60

<210> 14

65 <213> Mus musculus ADAMTS-9

	<220> <221> CDS <222> (2)(2623)																
5	Hi	c ac	t go	g gt .a. Va	c at	c ag .e Se 5	ıc ct r Le	g tg u Cy	c to	er Gl	ja at .y Me .0	g at t Me	9 99 t Gl	c ac y Th	r Ph	c cgc ne Arg	49
10	tct Ser	cac His	gat Asp	gga Gly 20	gat Asp	tat Tyr	ttc Phe	att Ile	gaa Glu 25	cca Pro	ctg Leu	cag Gln	tct Ser	gtg Val 30	gat Asp	gag Glu	97
15	caa Gln	gag Glu	gat Asp 35	gaa Glu	gag Glu	gaa Glu	caa Gln	aac Asn 40	aaa Lys	ccc Pro	cac His	att Ile	att Ile 45	tat Tyr	agg Arg	cac His	145
20	agc Ser	acc Thr 50	cct Pro	cag Gln	agg Arg	gaa Glu	ccc Pro 55	tcc Ser	aca Thr	gga Gly	aag Lys	cat His 60	gcc Ala	tgt Cys	gcc Ala	acc Thr	193
25	tca Ser 65	gaa Glu	ctc Leu	aaa Lys	aat Asn	agt Ser 70	cac His	agt Ser	aaa Lys	gac Asp	aag Lys 75	cgg Arg	aaa Lys	atc Ile	aga Arg	atg Met 80	241
25	cga Arg	aaa Lys	cgg Arg	aga Arg	aag Lys 85	agg Arg	aat Asn	agc Ser	ctg Leu	gct Ala 90	gac Asp	gac Asp	gtg Val	gca Ala	ctg Leu 95	cta Leu	289
30	aag Lys	agc Ser	ggt Gly	ttg Leu 100	gca Ala	aca Thr	aag Lys	gtg Val	ctc Leu 105	tct Ser	ggc Gly	tat Tyr	agc Ser	aac Asn 110	cag Gln	aca Thr	337
35	aac Asn	aac Asn	aca Thr 115	agg Arg	gac Asp	aga Arg	tgg Trp	aac Asn 120	cac His	aaa Lys	aga Arg	acc Thr	aaa Lys 125	cgc Arg	ttt Phe	ctg Leu	385
40	tcc Ser	tac Tyr 130	cca Pro	cgg Arg	ttt Phe	gta Val	gag Glu 135	gtg Val	atg Met	gtg Val	gtg Val	gct Ala 140	gac Asp	cac His	agg Arg	atg Met	433
45	gtt Val 145	tta Leu	tac Tyr	cac His	gga Gly	gca Ala 150	aac Asn	ctt Leu	caa Gln	cat His	tat Tyr 155	atc Ile	tta Leu	acc Thr	tta Leu	atg Met 160	481
40	tcc Ser	att Ile	gta Val	gct Ala	tct Ser 165	atc Ile	tat Tyr	aaa Lys	gac Asp	tca Ser 170	agt Ser	att Ile	gga Gly	aat Asn	tta Leu 175	att Ile	529
50	aat Asn	att Ile	gtt Val	att Ile 180	gtg Val	aac Asn	tta Leu	gtt Val	gtg Val 185	att Ile	cat His	aat Asn	gaa Glu	cag Gln 190	gaa Glu	gga Gly	577
55	cct Pro	tac Tyr	ata Ile 195	Asn	ttc Phe	aat Asn	gcc Ala	cag Gln 200	aca Thr	aca Thr	tta Leu	aag Lys	aac Asn 205	ttt Phe	tgc Cys	cag Gln	625
60	tgg Trp	cag Gln 210	His	tca Ser	aag Lys	aac Asn	tac Tyr 215	ttg Leu	ggt Gly	G1y 999	att Ile	cag Gln 220	His	gac Asp	aca Thr	gcc Ala	673
65	Val 225	Leu	gtc Val	aca Thr	agg Arg	gaa Glu 230	Asp	atc Ile	tgc Cys	aga Arg	gct Ala 235	Gln	gac Asp	aaa Lys	tgt Cys	gac Asp 240	721
00	acc	tta	ggt	ctt	gct	gaa	ctg	gga	acc	att	tgc	gac	ccc	tac	cga	agc	769

	Thr	Leu	Gly	Leu	Ala 245	Glu	Leu	Gly	Thr	Ile 250		Asp	Pro	Tyr	Arg 255	Ser	
5	tgt Cys	tcc Ser	att Ile	agt Ser 260	gaa Glu	gac Asp	agt Ser	01 A 333	ctg Leu 265	agc Ser	aca Thr	gct Ala	ttc Phe	aca Thr 270	ata Ile	gct [.] Ala	817
10	His	gag Glu	ctg Leu 275	ggc Gly	cat His	gtg Val	ttt Phe	aat Asn 280	atg Met	cct Pro	cac His	gat Asp	gac Asp 285	agc Ser	aat Asn	aaa Lys	865
15	tgc Cys	aaa Lys 290	gaa Glu	gaa Glu	gga Gly	gtt Val	aag Lys 295	agt Ser	ccc Pro	cag Gln	cat His	gtc Val 300	atg Met	gca Ala	cca Pro	aca Thr	913
	ctg Leu 305	aac Asn	ttc Phe	tac Tyr	acc Thr	aac Asn 310	ccc Pro	tgg Trp	atg Met	tgg Trp	tca Ser 315	aag Lys	tgc Cys	agt Ser	cgg Arg	aaa Lys 320	961
20	tac Tyr	atc Ile	act Thr	gag Glu	ttc Phe 325	cta Leu	gac Asp	act Thr	999 Gly	tac Tyr 330	gga Gly	gag Glu	tgc Cys	ttg Leu	ctg Leu 335	aat Asn	1009
25	gaa Glu	cct Pro	gca Ala	tcc Ser 340	agg Arg	acc Thr	tat Tyr	cct Pro	ttg Leu 345	cct Pro	tcc Ser	caa Gln	ctg Leu	ccc Pro 350	ggc Gly	ctt Leu	1057
30	ctc Leu	tac Tyr	aac Asn 355	gtg Val	aat Asn	aaa Lys	caa Gln	tgt Cys 360	gaa Glu	ctg Leu	att Ile	ttt Phe	999 Gly 365	Pro	ggc Gly	tct Ser	1105
35	caa Gln	gtg Val 370	tgc Cys	ccc Pro	tat Tyr	atg Met	atg Met 375	cag Gln	tgc Cys	aga Arg	cgg Arg	ctc Leù 380	tgg Trp	tgc Cys	aat Asn	aat Asn	1153
	gtg Val 385	gat Asp	gga Gly	gca Ala	cac His	aaa Lys 390	ggc Gly	tgc Cys	aag Lys	act Thr	cag Gln 395	cac His	acg Thr	ccc Pro	tgg Trp	gca Ala 400	1201
40	gat Asp	gga Gly	acc Thr	gag Glu	tgt Cys 405	gag Glu	cct Pro	gga Gly	aag Lys	cac His 410	tgc Cys	aag Lys	ttt Phe	gga Gly	ttt Phe 415	tgt Cys	1249
45	gtt Val	ccc Pro	aaa Lys	gaa Glu 420	atg Met	gag Glu	ggc ggc	cct Pro	gca Ala 425	att Ile	gat Asp	gga Gly	tcc Ser	tgg Trp 430	gga Gly	ggt Gly	1297
50	tgg Trp	agc Ser	cac His 435	ttt Phe	G1 y	acc Thr	tgc Cys	tca Ser 440	aga Arg	acg Thr	tgt Cys	gga Gly	gga Gly 445	ggc Gly	atc Ile	aaa Lys	1345
55	aca Thr	gcc Ala 450	atc Ile	aga Arg	gag Glu	tgc Cys	aac Asn 455	aga Arg	cca Pro	gag Glu	cca Pro	aaa Lys 460	aat Asn	ggt Gly	G1 y 999	aag Lys	1393
	tac Tyr 465	tgt Cys	gta Val	gga Gly	agg Arg	aga Arg 470	atg Met	aag Lys	ttc Phe	aaa Lys	tcc Ser 475	tgc Cys	aac Asn	acg Thr	gag Glu	CCC Pro 480	1441
60 _.	tgc Cys	atg Met	aag Lys	cag Gln	aag Lys 485	cga Arg	gac Asp	ttc Phe	cga Arg	gag Glu 490	gag Glu	cag Gln	tgt Cys	gct Ala	cac His 495	ttt Phe	1489
65	gat Asp	ggc Gly	aaa Lys	cac His 500	ttc Phe	aac Asn	atc Ile	aat Asn	ggt Gly 505	ctg Leu	ctg Leu	ccc Pro	agc Ser	gta Val 510	cgc Arg	tgg Trp	1537

-			_		agc Ser			_	_	_	_		_		-		1585
5	tgc Cys	aga Arg 530	gtg Val	gca Ala	gga Gly	aac Asn	aca Thr 535	gcc Ala	tac Tyr	tac Tyr	cag Gln	ctc Leu 540	cga Arg	gac Asp	aga Arg	gtġ Val	1633
10					cct Pro												1681
15	ggc Gly	ctt Leu	tgc Cys	cgg Arg	caa Gln 565	gct Ala	gga Gly	tgt Cys	gat Asp	cat His 570	att Ile	tta Leu	aac Asn	tca Ser	aag Lys 575	gtc Val	1729
20					tgt Cys												1777
25	aca Thr	gtg Val	gca Ala 595	gga Gly	aca Thr	ttt Phe	aac Asn	act Thr 600	gtc Val	cat His	tat Tyr	ggt Gly	tac Tyr 605	aat Asn	act Thr	gtt Val	1825
23	gtc Val	cga Arg 610	att Ile	ccg Pro	gct Ala	ggt Gly	gct Ala 615	acc Thr	agc Ser	att Ile	gac Asp	gtg Val 620	cgt Arg	cag Gln	cac His	agc Ser	1873
30	ttc Phe 625	tca Ser	999 Gly	aag Lys	tct Ser	gag Glu 630	gat Asp	gac Asp	aac Asn	tac Tyr	cta Leu 635	gct Ala	tta Leu	tca Ser	aac Asn	agt Ser 640	1921
35	aaa Lys	ggt Gly	gaa Glu	ttc Phe	ctg Leu 645	cta Leu	aat Asn	gga Gly	gac Asp	ttt Phe 650	gtt Val	gtc Val	tcc Ser	atg Met	tcc Ser 655	aaa Lys	1969
40					gtg Val												2017
45	aat Asn	gtg Val	tgt Cys 675	gaa Glu	aga Arg	ctg Leu	aac Asn	tgt Cys 680	acg Thr	gac Asp	cgt Arg	atc Ile	gag Glu 685	gaa Glu	gaa Glu	ctt Leu	2065
43	ctc Leu	ctt Leu 690	cag Gln	gtg Val	ttg Leu	tcc Ser	gtg Val 695	gga Gly	aag Lys	ctg Leu	tat Tyr	aac Asn 700	cca Pro	gat Asp	gtg Val	cgg Arg	2113
50					att Ile												2161
55					ccg Pro 725												2209
60					ctt Leu												2257
65	tct Ser	gat Asp	caa Gln 755	aga Arg	tgt Cys	gac Asp	cgg Arg	ctg Leu 760	ccc Pro	cag Gln	cca Pro	gga Gly	cct Pro 765	gtc Val	act Thr	gaa Glu	2305
65	gcg	tgc	ggc	aca	gac	tgt	gac	ttg	agg	tgg	caċ	gtt	gcc	agc	aag	agc	2353

	Ala	Cys 770	Gly	Thr	Asp	Cys	Asp 775	Leu	Arg	Trp	His	Val 780	Ala	Ser	Lys	Ser	
5							ggt Gly										2401
10	tgt Cys	gcc Ala	aaa Lys	tac Tyr	agc Ser 805	agg Arg	atg Met	gac Asp	gly ggg	aag Lys 810	acg Thr	gag Glu	aag Lys	gtg Val	gat Asp 815	gac Asp	2449
15							ccc Pro										2497
1.7							gga Gly										2545
20							ggt Gly 855										2593
25			_		_	_	ctg Leu	_	_	_	aa						2625
30	<211 <212	0> 15 L> 87 2> PF B> Mu	74 RT	ıscul	lus A	MADA	rs-9									·	
)> 15															
35	1	Thr	Ala	Val	Ile 5	Ser	Leu	Сув	Ser	Gly 10	Met	Met	Gly	Thr	Phe 15	Arg	
	1				5		Leu Phe			10					15		
40	1 Ser	His Glu	Asp	Gly 20	5 Asp	туг	Phe	Ile	Glu 25	10 Pro	Leu	Gln	Ser	Val 30	15 Asp		
	1 Ser Gln	His Glu	Asp Asp 35	Gly 20 Glu	5 Asp Glu	Tyr Glu	Phe	Ile Asn 40	Glu 25 Lys	10 Pro	Leu His	Gln Ile	Ser Ile 45	Val 30 Tyr	15 Asp Arg	Glu His	
40	Ser Gln Ser	His Glu Thr 50	Asp Asp 35 Pro	Gly 20 Glu Gln	5 Asp Glu Arg	Tyr Glu Glu	Phe Gln Pro	Ile Asn 40 Ser	Glu 25 Lys Thr	10 Pro Pro Gly	Leu His Lys	Gln Ile His 60	Ser Ile 45 Ala	Val 30 Tyr Cys	15 Asp Arg Ala	Glu His	
40	Ser Gln Ser Ser	His Glu Thr 50 Glu	Asp Asp 35 Pro	Gly 20 Glu Gln Lys	5 Asp Glu Arg Asn	Tyr Glu Glu Ser 70	Phe Gln Pro 55	Ile Asn 40 Ser	Glu 25 Lys Thr	10 Pro Pro Gly Asp	Leu His Lys Lys 75	Gln Ile His 60 Arg	Ser Ile 45 Ala Lys	Val 30 Tyr Cys	Asp Arg Ala Arg	Glu His Thr Met 80	
40	Ser Gln Ser Ser 65 Arg	His Glu Thr 50 Glu Lys	Asp Asp 35 Pro Leu	Gly 20 Glu Gln Lys	Asp Glu Arg Asn Lys 85	Tyr Glu Glu Ser 70 Arg	Phe Gln Pro 55	Ile Asn 40 Ser Ser	Glu 25 Lys Thr Lys	10 Pro Pro Gly Asp Ala 90	Leu His Lys Lys 75 Asp	Gln Ile His 60 Arg	Ser Ile 45 Ala Lys	Val 30 Tyr Cys Ile	Asp Arg Ala Arg Leu 95	Glu His Thr Met 80 Leu	
40	Ser Gln Ser Ser 65 Arg	His Glu Thr 50 Glu Lys Ser	Asp 35 Pro Leu Arg	Gly 20 Glu Gln Lys Arg	Asp Glu Arg Asn Lys 85	Tyr Glu Glu Ser 70 Arg	Phe Gln Pro 55 His	Ile Asn 40 Ser Ser	Glu 25 Lys Thr Lys Leu Leu 105	Pro Pro Gly Asp Ala 90 Ser	Leu His Lys 75 Asp	Gln Ile His 60 Arg Asp	Ser Ile 45 Ala Lys Val	Val 30 Tyr Cys Ile Ala Asn 110	Asp Arg Ala Arg Leu 95 Gln	Glu His Thr Met 80 Leu	
40	Ser Gln Ser Ser 65 Arg Lys Asn	His Glu Thr 50 Glu Lys Ser	Asp Asp 35 Pro Leu Arg Gly Thr	Gly 20 Glu Gln Lys Arg Leu 100	Asp Glu Arg Asn Lys 85 Ala Asp	Tyr Glu Glu Ser 70 Arg Thr	Phe Gln Pro 55 His Asn	Ile Asn 40 Ser Ser Val Asn 120	Glu 25 Lys Thr Lys Leu Leu 105	Pro Pro Gly Asp Ala 90 Ser Lys	Leu His Lys 75 Asp Gly	Gln Ile His 60 Arg Asp Tyr	Ser Ile 45 Ala Lys Val Ser Lys 125	Val 30 Tyr Cys Ile Ala Asn 110	Asp Arg Ala Arg Leu 95 Gln	Glu His Thr Met 80 Leu Thr	
40 45 50	Ser Gln Ser Ser 65 Arg Lys Asn Ser	His Glu Thr 50 Glu Lys Ser Asn Tyr	Asp Asp 35 Pro Leu Arg Gly Thr 115	Gly 20 Glu Gln Lys Arg Leu 100 Arg	Asp Glu Arg Asn Lys 85 Ala Asp	Tyr Glu Glu Ser 70 Arg Thr Arg Val	Phe Gln Pro 55 His Asn Lys Trp Glu	Ile Asn 40 Ser Ser Val Asn 120 Val	Glu 25 Lys Thr Lys Leu 105 His	Pro Pro Gly Asp Ala 90 Ser Lys Val	Leu His Lys 75 Asp Gly Arg	Gln Ile His 60 Arg Asp Tyr Thr Ala 140	Ser Ile 45 Ala Lys Val Ser Lys 125 Asp	Val 30 Tyr Cys Ile Ala Asn 110 Arg	Asp Arg Ala Arg Solution Phe Arg	Glu His Thr Met 80 Leu Thr Leu	

the state of the s

	Asn	Ile	Val	Ile 180	Val	Asn	Leu	Val	Val 185		His	Asn	Glu	Gln 190	Glu	Gly
5	Pro	Tyr	Ile 195	Asn	Phe	Asn	Ala	Gln 200	Thr	Thr	Leu	Lys	Asn 205	Phe	Cys	Gln
10	Trp	Gln 210	His	Ser	Lys	Asn	Tyr 215	Leu	Gly	Gly	Ile	Gln 220	His	Asp	Thr	Ala
10	Val 225	Leu	Val	Thr	Arg	Glu 230	Asp	Ile	Сув	Arg	Ala 235	Gln	Asp	Lys	Cys	Asp 240
15	Thr	Leu	Gly	Leu	Ala 245	Glu	Leu	Gly	Thr	11e 250	Сув	Asp	Pro	Tyr	Arg 255	Ser
	Cys	Ser	Ile	Ser 260	Glu	Asp	Ser	Gly	Leu 265	Ser	Thr	Ala	Phe	Thr 270		Ala
20	His	Glu	Leu 275	Gly	His	Val	Phe	Asn 280	Met	Pro	His	Asp	Asp 285	Ser	Asn	Lys
25		290					295					300				Thr
	305					310					315			Ser		320
30	-				325					330				Leu	335	
				340					345					Pro 350		
35			355					360					365			Ser
40		370	-				375					380				Asn
	385					390					395					Ala 400
45					405					410				Gly	415	
				420					425					430		Gly
50	_		435					440					445			Lys
55		Ala 450	Ile	Arg	Glu	Cys	Asn 455		Pro	Glu	Pro	L ув 460	neA	Gly	Gly	Lys
	Tyr 465					470					475					Pro 480
60					485					490					495	
				500				-	505					510		Trp
65	Phe	Pro	Lys 515		Ser	Gly	Ile	Leu 520		Lys	Asp	Arg	Cys 525		Leu	Phe

	Cys	Arg 530	Val	Ala	Gly	Asn	Thr 535	Ala	Tyr ,	Tyr	Gln	Leu 540	Arg	Asp	Arg	Val
5	Ile 545	Asp	Gly	Thr	Pro	Cys 550	Gly	Gln	Asp	Thr	Asn 555	Asp	Ile	Cys	Val	Gln 560
10	Gly	Leu	Cys	Arg	Gln 565	Ala	Gly	Cys	Asp	His 570	Ile	Leu	Asn	Ser	Lys 575	Val
10	Arg	Lys	Asp	Lys 580	Cys	Gly	Ile	Cys	Gly 585	Gly	Asp	Asn	Ser	Ser 590	Cys	Lys
15	Thr	Val	Ala 595	Gly	Thr	Phe	Asn	Thr 600	Val	His	Tyr	Gly	Tyr 605	Asn	Thr	Val
	Val	Arg 610	Ile	Pro	Ala	Gly	Ala 615	Thr	Ser	Ile	Asp	Val 620	Arg	Gln	His	Ser
20	Phe 625	Ser	Gly	Lys	Ser	Glu 630	Asp	Asp	Asn	Tyr	Leu 635	Ala	Leu	Ser	Asn	Ser 640
25	Lys	Gly	Glu	Phe	Leu 645	Leu	Asn	Gly	Asp	Phe 650	Val	Val	Ser	Met	Ser 655	Lys
	Arg	Glu	Val	Arg 660	Val	Gly	Ser	Ala	Val 665	Ile	Glu	Tyr	Ser	Gly 670	Ser	Asp
30	Asn	Val	Cys 675	Glu	Arg	Leu	Asn	Cys 680	Thr	Asp	Arg	Ile	Glu 685	Glu	Glu	Leu
	Leu	Leu 690	GÌn	Val	Leu	Ser	Val 695	Gly	Lys	Leu	Tyr	Asn 700	Pro	Asp	Val	Arg
35	Tyr 705	Ser	Phe	Asn	Ile	Pro 710	Ile	Glu	Asp	Lys	Pro 715	Gln	Gln	Phe	Tyr	Trp 720
40	Asn	Ser	His	Gly	Pro 725	Trp	Gln	Ala	Суѕ	Ser 730	Lys	Pro	Cys	Gln	Gly 735	Glu
	Arg	Arg	Pro	Lys 740	Leu	Val	Cys	Thr	Arg 745	Glu	Ser	Asp	Gln	Leu 750	Thr	Val
45	Ser	Asp	Gln 755	Arg	Суѕ	Asp	Arg	Leu 760	Pro	Gln	Pro	Gly	Pro 765	Val	Thr	Glu
	Ala	Cys 770	Gly	Thr	Asp	Cys	Asp 775	Leu	Arg	Trp	His	Val 780	Ala	Ser	Lys	Ser
50	Glu 785	Cys	Ser	Ala	Gln	Сув 790	Gly	Leu	Gly	Tyr	Arg 795	Thr	Leu	Asp	Ϊle	His 800
55	Cys	Ala	Lys	Tyr	Ser 805	Arg	Met	Asp	Gly	Lys 810	Thr	Glu	Lys	Val	Asp 815	Asp
	Ser	Phe	Cys	Ser 820	Ser	Gln	Pro	Arg	Pro 825	Ser	Asn	Gln	Glu	Lys 830	Суѕ	Ser
60	Gly	Glu	Cys 835	Ser	Thr	Gly	Gly	Trp 840	Arg	Tyr	Ser	Ala	Trp 845	Thr	Glu	Сув
	Ser	Arg 850	Ser	Cys	Asp	Gly	Gly 855	Thr	His	Arg	Arg	Arg 860	Ala	Ile	Сув	Val
65	Asn 865	Thr	Arg	Asn	Asp	Val 870	Leu	Asp	Asp	Ser						

5	<211 <212)> 16 l> 38 2> DN 3> Ho	185 IA	sapie	ns A	TMACL	`S-10)									
10		L> CI		(3246	;)											•	
15	tca)> 16 cgc Arg	acg	cct Pro	tcc Ser 5	ggt Gly	ctc Leu	aag Lys	atg Met	agt Ser 10	tcc Ser	tgt Cys	cca Pro	gtc Val	tgg Trp 15	aga Arg	48
20	gct Ala	atg Met	aga Arg	tcg Ser 20	cct Pro	tcc Ser	cca Pro	ccc Pro	gcg Ala 25	tgg Trp	acc Thr	aca Thr	acg Thr	30 30	cac His	tgc Cys	96
25	tgg Trp	cct Pro	tct Ser 35	cgc Arg	cac His	ctc Leu	ctc Leu	ccc Pro 40	gga Gly	gca Ala	gcg Ala	ccg Pro	cgg Arg 45	cac His	999 Gly	ggc Gly	144
25	cac His	agc Ser 50	cga Arg	gtc Val	ccg Pro	cct Pro	ctt Leu 55	cta Leu	caa Gln	agt Ser	ggc Gly	ctc Leu 60	gcc Ala	agc Ser	acc Thr	cac His	192
30	ttc Phe 65	ctg Leu	ctg Leu	aac Asn	ctg Leu	acc Thr 70	cgc Arg	agc Ser	tcc Ser	cgt Arg	cta Leu 75	ctg Leu	gca Ala	999 Gly	cgc Arg	gtc Val 80	240
35	tcc Ser	gtg Val	gag Glu	tac Tyr	tgg Trp 85	aca Thr	cgg Arg	gag Glu	ggc Gly	ctg Leu 90	gcc Ala	tgg Trp	cag Gln	agg Arg	gcg Ala 95	gcc Ala	288
40	cgg Arg	ccc Pro	cac His	tgc Cys 100	ctc Leu	tac Tyr	gct Ala	ggt Gly	cac His 105	ctg Leu	cag Gln	ggc Gly	cag Gln	gcc Ala 110	agc Ser	agc Ser	336
	tcc Ser	cat His	gtg Val 115	gcc Ala	atc Ile	agc Ser	acc Thr	tgt Cys 120	gga Gly	ggc Gly	ctg Leu	cac His	ggc Gly 125	ctg Leu	atc Ile	gtg Val	384
45	gca Ala	gac Asp 130	gag Glu	gaa Glu	gag Glu	tac Tyr	ctg Leu 135	att Ile	gag Glu	ccc Pro	ctg Leu	cac His 140	ggt Gly	999 Gly	ccc Pro	aag Lys	432
50	ggt Gly 145	tct Ser	cgg Arg	agc Ser	ccg Pro	gag Glu 150	gaa Glu	agt Ser	gga Gly	cca Pro	cat His 155	tgt Cys	gtg Val	tac Tyr	aag Lys	cgt Arg 160	480
	tcc Ser	tct Ser	ctg Leu	cgt Arg	cac His 165	ccc Pro	cac His	ctg Leu	gac Asp	aca Thr 170	gcc Ala	tgt Cys	gga Gly	gtg Val	aga Arg 175	gat Asp	528
60	gag Glu	aaa Lys	ccg Pro	tgg Trp 180	aaa Lys	999 Gly	cgg Arg	cca Pro	tgg Trp 185	tgg Trp	ctg Leu	cgg Arg	acc Thr	ttg Leu 190	aag Lys	cca Pro	576
	ccg Pro	cct Pro	gcc Ala 195	aga Arg	ccc Pro	ctg Leu	999 Gly	aat Asn 200	Glu	aca Thr	gag Glu	cgt Arg	ggc Gly 205	cag Gln	cca Pro	ggc Gly	624
65	ctg	aag	cga	tcg	gtc	agc	cga	gag	cgc	tac	gtg	gag	acc	atg	gat	gtg	672

	Leu	Lys 210	Arg	Ser	Val	Ser	Arg 215	Glu	Arg	Tyr	Val	Glu 220	Thr	Met	Asp	Val	
5	gct Ala 225															cag Gln 240	720
10	tat Tyr	gtc Val	ctg Leu	gcc Ala	atc Ile 245	atg Met	aac Asn	att Ile	gtt Val	gcc Ala 250	aaa Lys	ctt Leu	ttc Phe	cag Gln	gac Asp 255	tcg Ser	768
15	agt Ser	ctg Leu	gga Gly	agc Ser 260	acc Thr	gtt Val	aac Asn	atc Ile	ctc Leu 265	gta Val	act Thr	cgc Arg	ctc Leu	atc Ile 270	ctg Leu	ctc Leu	816
						act Thr											864
20	cta Leu					aag Lys											912
25	cat His 305	ggc Gly	aat Asn	gcc Ala	att Ile	cca Pro 310	gag Glu	aac Asn	ggt Gly	gtg Val	gct Ala 315	aac Asn	cat His	gac Asp	aca Thr	gca Ala 320	960
30						tat Tyr											1008
35						gcc Ala											1056
	gct Ala	gca Ala	gcg Ala 355	tca Ser	atg Met	agg Arg	aca Thr	ttg Leu 360	gct Ala	gcc Ala	aca Thr	agc Ser	gtt Val 365	cac His	cat His	tgc Cys	1104
40	cac His					aca Thr											1152
45	agc Ser 385					ggt Gly 390											1200
50	att Ile	acc Thr	atg Met	aag Lys	acc Thr 405	aac Asn	cca Pro	ttc Phe	gtg Val	tgg Trp 410	tca Ser	tcc Ser	tgc Cys	aac Asn	cgt Arg 415	gac Asp	1248
55						cta Leu											1296
	cgg Arg	ccc Pro	ccc Pro 435	aga Arg	cag Gln	gac Asp	ttt Phe	gtg Val 440	tac Tyr	ccg Pro	aca Thr	gtg Val	gca Ala 445	ccg Pro	ggc Gly	caa Gln	1344
60	gcc Ala	tac Tyr 450	gat Asp	gca Ala	gat Asp	gag Glu	caa Gln 455	tgc Cys	cgc Arg	ttt Phe	cag Gln	cat His 460	gga Gly	gtc Val	aaa Lys	tcg Ser	1392
65	cgt Arg 465					999 Gly 470											1440

The second sections.

	aag Lys	agc Ser	aac Asn	cgg Arg	tgc Cys 485	atc Ile	acc Thr	aac Asn	agc Ser	atc Ile 490	ccg Pro	gcc Ala	gcc Ala	gag Glu	ggc Gly 495	acg Thr	1488
5	ctg Leu	tgc Cys	Gln	acg Thr 500	cac His	acc Thr	atc Ile	gac Asp	aag Lys 505	999 Gly	tgg Trp	tgc Cys	tac Tyr	aaa Lys 510	cgg Arg	gtc Val	1536
10	tgt Cys	gtc Val	ccc Pro 515	ttt Phe	G1y 999	tcg Ser	cgc Arg	cca Pro 520	gag Glu	ggt Gly	gtg Val	gac Asp	gga Gly 525	Ala	tgg Trp	G1y 999	1584 -
15	ccg Pro	tgg Trp 530	act Thr	cca Pro	tgg Trp	ggc Gly	gac Asp 535	tgc Cys	agc Ser	cgg Arg	acc Thr	tgt Cys 540	ggc Gly	ggc Gly	ggc Gly	gtg Val	1632
20	tcc Ser 545	tct Ser	tct Ser	agt Ser	cgt Arg	cac His 550	tgc Cys	gac Asp	agc Ser	ccc Pro	agg Arg 555	cca Pro	acc Thr	atc Ile	G17 999	ggc Gly 560	1680
	aag Lys	tac Tyr	tgt Cys	ctg Leu	ggt Gly 565	gag Glu	aga Arg	agg Arg	cgg Arg	cac His 570	cgc Arg	tcc Ser	tgc Cys	aac Asn	acg Thr 575	gat Asp	1728
25	gac Asp	tgt Cys	ccc Pro	cct Pro 580	ggc Gly	tcc Ser	cag Gln	gac Asp	ttc Phe 585	aga Arg	gaa Glu	gtg Val	cag Gln	tgt Cys 590	gct Ala	gaa Glu	1776
30	ttt Phe	gac Asp	agc Ser 595	atc Ile	cct Pro	ttc Phe	cgt Arg	600 Gly 999	aaa Lys	ttc Phe	tac Tyr	aag Lys	tgg Trp 605	aaa Lys	acg Thr	tac Tyr	1824
35	cgg Arg	gga Gly 610	G1y 999	ggc Gly	gtg Val	aag Lys	gcc Ala 615	tgc Cys	tcg Ser	ctc Leu	acg Thr	agc Ser 620	cta Leu	gcg Ala	gaa Glu	ggc Gly	1872
40	ttc Phe 625	aac Asn	ttc Phe	tac Tyr	acg Thr	gag Glu 630	agg Arg	gcg Ala	gca Ala	gcc Ala	gtg Val 635	gtg Val	gac Asp	ggg ggg	aca Thr	ccc Pro 640	1920
	tgc Cys	cgt Arg	cca Pro	gac Asp	acg Thr 645	gtg Val	gac Asp	att Ile	tgc Cys	gtc Val 650	agt Ser	ggc Gly	gaa Glu	tgc Cys	aag Lys 655	cac His	1968
45	gtg Val	ggc	tgc Cys	gac Asp 660	Arg	gtc Val	ctg Leu	ggc Gly	tcc Ser 665	Asp	ctg Leu	cgg Arg	gag Glu	gac Asp 670	aag Lys	tgc Cys	2016
50	cga Arg	gtg Val	tgt Cys 675	ggc Gly	ggt Gly	gac Asp	ggc Gly	agt Ser 680	Ala	tgc Cys	gag Glu	acc Thr	atc Ile 685	Glu	ggc	gtc Val	2064
55	ttc Phe	agc Ser 690	Pro	gcc Ala	tca Ser	cct Pro	999 Gly 695	Ala	999 Gly	tac Tyr	gag Glu	gat Asp 700	Val	gtc Val	tgg Trp	att Ile	2112
60	ccc Pro	Lys	ggc	tcc Ser	gtc	cac His 710	Ile	ttc Phe	atc	Gln	gat Asp 715	Leu	aac Asn	ctc Leu	tct Ser	ctc Leu 720	2160
	Ser	cac His	ttg Leu	gcc Ala	ctg Leu 725	Lys	gga Gly	gac Asp	cag Gln	gag Glu 730	Ser	ctg Leu	ctg Leu	ctg Leu	gag Glu 735	Gly	2208
65	ctg	cct	. ġgg	acc	ccc	cag	ccc	cac	cgt	ctg	cct	cta	gct	999	acc	acc	2256

	Leu	Pro	Gly	Thr 740	Pro	Gln	Pro	His	Arg 745	Leu	Pro	Leu	Ala	Gly 750	Thr	Thr	
5	ttt Phe										cag Gln						2304
10	gga Gly	ccg Pro 770	att Ile	aat Asn	gca Ala	tct Ser	ctc Leu 775	atc Ile	gtc Val	atg Met	gtg Val	ctg Leu 780	gcc Ala	cgg Arg	acc Thr	gag Glu	2352
15	ctg Leu 785	cct Pro	gcc Ala	ctc Leu	cgc	tac Tyr 790	cgc Arg	ttc Phe	aat Asn	gcc Ala	ccc Pro 795	atc Ile	gcc Ala	cgt Arg	gac Asp	tcg Ser 800	2400
	ctg Leu	ccc Pro	ccc Pro	tac Tyr	tcc Ser 805	tgg Trp	cac His	tat Tyr	gcg Ala	CCC Pro 810	tgg Trp	acc Thr	aag Lys	tgc Cys	tcg Ser 815	gcc Ala	2448
20	cag Gln	tgt Cys	gca Ala	99c Gly 820	ggt Gly	agc Ser	cag Gln	gtg Val	cag Gln 825	gcg Ala	gtg Val	gag Glu	tgc Cys	cgc Arg 830	aac Asn	cag Gln	2496
25	ctg Leu	gac Asp	agc Ser 835	tcc Ser	gcg Ala	gtc Val	gcc Ala	Pro 840	cac His	tac Tyr	tgc Cys	agt Ser	gcc Ala 845	cac His	agc Ser	aag Lys	2544
30	ctg Leu	ccc Pro 850	aaa Lys	agg Arg	cag Gln	cgc Arg	gcc Ala 855	tgc Cys	aac Asn	acg Thr	gag Glu	cct Pro 860	tgc Cys	cct Pro	cca Pro	gac Asp	2592
35	tgg Trp 865	gtt Val	gta Val	G1A aaa	aac Asn	tgg Trp 870	tcg Ser	ctc Leu	tgc Cys	agc Ser	cgc Arg 875	agc Ser	tgc Cys	gat Asp	gca Ala	880 Gly Ggc	2640
	gtg Val	cgc Arg	agt Ser	acg Thr	tcg Ser 885	gtc Val	gtg Val	tgc Cys	cag Gln	cgc Arg 890	cgc Arg	gtc Val	tct Ser	gcc Ala	gcg Ala 895	gag Glu	2688
40	gag Glu	aag Lys	gcg Ala	ctg Leu 900	gac Asp	gac Asp	agc Ser	gca Ala	tgc Cys 905	ccg Pro	cag Gln	ccg Pro	cgc Arg	cca Pro 910	cct Pro	gta Val	2736
45	ctg Leu	gag Glu	gcc Ala 915	tgc Cys	cac His	ggc Gly	ccc Pro	act Thr 920	tgc Cys	cct Pro	ccg Pro	gag Glu	tgg Trp 925	gca Ala	acc Thr	ctc Leu	2784
50	gac Asp	tgg Trp 930	tct Ser	gag Glu	tgt Cys	acc Thr	cca Pro 935	agc Ser	tgt Cys	G1y 999	cct Pro	ggt Gly 940	ctc Leu	cgc Arg	cac His	cga Arg	2832
55	gtg Val 945	gtc Val	ctt Leu	tgt Cys	aag Lys	agt Ser 950	gca Ala	gat Asp	caa Gln	cga Arg	tct Ser 955	act Thr	ctg Leu	ccc Pro	cct Pro	960 GJ A GG A	2880
	cac His	tgc Cys	ctt Leu	cct Pro	gca Ala 965	gcc Ala	aag Lys	cca Pro	cca Pro	tct Ser 970	act Thr	atg Met	cga Arg	tgt Cys	aac Asn 975	ttg Leu	2928
60	cgc Arg	cgc Arg	tgc Cys	cct Pro 980	cct Pro	gcc Ala	cgc Arg	tgg Trp	gtg Val 985	acc Thr	agt Ser	gag Glu	tgg Trp	ggt Gly 990	gag Glu	tgt Cys	2976
65	tcc Ser	aca Thr	cag Gln 995	tgt Cys	ggc Gly	ctc Leu	Gly	cag Gln .000	cag Gln	cag Gln	cgc Arg	Thr	gtg Val .005	cgc Arg	tgc Cys	acc Thr	3024

5	agc cac acc ggc cag cca tct cga gag tgc act gaa gcc ttg cgg cca Ser His Thr Gly Gln Pro Ser Arg Glu Cys Thr Glu Ala Leu Arg Pro 1010 1015 1020	3072
	tcc acc atg cag cag tgt gag gcc aag tgt gac agt gtg gtg ccg cct Ser Thr Met Gln Gln Cys Glu Ala Lys Cys Asp Ser Val Val Pro Pro 1025 1030 1035 1040	3120
10	gga gat ggc cca gaa gaa tgc aag gat gtg aac aag gtg gct tac tgc Gly Asp Gly Pro Glu Glu Cys Lys Asp Val Asn Lys Val Ala Tyr Cys 1045 1050 1055	3168
15	ccc ctg gtg ctc aaa ttt cag ttc tgt agc cga gcc tac ttc cgc cag Pro Leu Val Leu Lys Phe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gln 1060 1065 1070	3216
20	atg tgc tgc aaa acc tgc caa ggc cgc tag ggtacctgga accaacctgg Met Cys Cys Lys Thr Cys Gln Gly Arg 1075 1080	3266
	agcacaggct gaggcagggg acatcccact ggagagggca tgagggaaag gggggcttga	3326
~ ~	attgaagggt gagatgcagt tgaaagttat ttattgggta accctacagg gctcctgact	3386
25	aaggggtgga gaagagctgg ctacccaggg accctctgct gtatcttgcc cagttgatag	3446
	tgaagagaga ggactccttg ttgcacacat atttaagtcc ctagcacccc tcccaccctt	3506
30	tgatcggaat atgtactgtg aagagtgggg gtggggaggg gtgtgctggt gccctgcccc	3566
	ctgcactgtt ctatccctac actctgagct ggggggattt atatctgcta tggggggagt	3626
	aggettgata ceaecteeet gtageeetee eecagaetga egaaggggaa gateeaecee	3686
35	aacctctgcc ctgcctgccc caggggggag ttcaacatcc aggccgttcc ccatcatggt	3746
	gctacaagcc ctgccctggg gcccacacac tcctcaccaa gaagccttac attaaaaaag	3806
40	ttgtgttatc ctacaaaaaa aaaaaaaaac tcgaggggg gcccggtacc caattcgcgc	3866
	tatagtaaat ngggtntta	3885
45	<210> 17 <211> 1081 <212> PRT <213> Homo sapiens ADAMTS-10	
50	<pre><400> 17 Ser Arg Thr Pro Ser Gly Leu Lys Met Ser Ser Cys Pro Val Trp Arg</pre>	
	1 5 10 15 Ala Met Arg Ser Pro Ser Pro Pro Ala Trp Thr Thr Gly His Cys	
55	20 25 30 Trp Pro Ser Arg His Leu Leu Pro Gly Ala Ala Pro Arg His Gly Gly	
	35 40 45 His Ser Arg Val Pro Pro Leu Leu Gln Ser Gly Leu Ala Ser Thr His	
	50 55 60 Phe Leu Leu Asn Leu Thr Arg Ser Ser Arg Leu Leu Ala Gly Arg Val	
60	65 70 75 80	
	Ser Val Glu Tyr Trp Thr Arg Glu Gly Leu Ala Trp Gln Arg Ala Ala 85 90 95	
	Arg Pro His Cys Leu Tyr Ala Gly His Leu Gln Gly Gln Ala Ser Ser 100 105 110	
65	Ser His Val Ala Ile Ser Thr Cys Gly Gly Leu His Gly Leu Ile Val	

Ala Asp Glu Glu Tyr Leu Ile Glu Pro Leu His Gly Gly Pro Lys Gly Ser Arg Ser Pro Glu Glu Ser Gly Pro His Cys Val Tyr Lys Arg 5 Ser Ser Leu Arg His Pro His Leu Asp Thr Ala Cys Gly Val Arg Asp Glu Lys Pro Trp Lys Gly Arg Pro Trp Trp Leu Arg Thr Leu Lys Pro Pro Pro Ala Arg Pro Leu Gly Asn Glu Thr Glu Arg Gly Gln Pro Gly Leu Lys Arg Ser Val Ser Arg Glu Arg Tyr Val Glu Thr Met Asp Val Ala Asp Lys Met Met Val Ala Tyr His Gly Arg Arg Asp Val Glu Gln 15 Tyr Val Leu Ala Ile Met Asn Ile Val Ala Lys Leu Phe Gln Asp Ser Ser Leu Gly Ser Thr Val Asn Ile Leu Val Thr Arg Leu Ile Leu Leu Thr Glu Asp Gln Pro Thr Leu Glu Ile Thr His His Ala Gly Lys Ser Leu Asp Ser Phe Cys Lys Trp Gln Lys Ser Ile Val Asn His Ser Gly His Gly Asn Ala Ile Pro Glu Asn Gly Val Ala Asn His Asp Thr Ala 25 Val Leu Ile Thr Arg Tyr Asp Ile Cys Ile Tyr Lys Asn Lys Pro Cys Gly Thr Leu Gly Leu Ala Arg Trp Ala Glu Cys Val Ser Ala Arg Glu Ala Ala Ala Ser Met Arg Thr Leu Ala Ala Thr Ser Val His His Cys His Glu Ile Gly His Thr Phe Gly Met Asn His Asp Gly Val Gly Asn Ser Cys Gly Ala Arg Gly Gln Asp Pro Ala Lys Leu Met Ala Ala His 35 Ile Thr Met Lys Thr Asn Pro Phe Val Trp Ser Ser Cys Asn Arg Asp Tyr Ile Thr Ser Phe Leu Asp Ser Gly Leu Gly Leu Cys Leu Asn Asn Arg Pro Pro Arg Gln Asp Phe Val Tyr Pro Thr Val Ala Pro Gly Gln Ala Tyr Asp Ala Asp Glu Gln Cys Arg Phe Gln His Gly Val Lys Ser Arg Gln Cys Lys Tyr Gly Glu Val Cys Ser Glu Leu Trp Cys Leu Ser 45 Lys Ser Asn Arg Cys Ile Thr Asn Ser Ile Pro Ala Ala Glu Gly Thr Leu Cys Gln Thr His Thr Ile Asp Lys Gly Trp Cys Tyr Lys Arg Val Cys Val Pro Phe Gly Ser Arg Pro Glu Gly Val Asp Gly Ala Trp Gly Pro Trp Thr Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val Ser Ser Ser Ser Arg His Cys Asp Ser Pro Arg Pro Thr Ile Gly Gly 55 Lys Tyr Cys Leu Gly Glu Arg Arg Arg His Arg Ser Cys Asn Thr Asp Asp Cys Pro Pro Gly Ser Gln Asp Phe Arg Glu Val Gln Cys Ala Glu Phe Asp Ser Ile Pro Phe Arg Gly Lys Phe Tyr Lys Trp Lys Thr Tyr Arg Gly Gly Val Lys Ala Cys Ser Leu Thr Ser Leu Ala Glu Gly Phe Asn Phe Tyr Thr Glu Arg Ala Ala Ala Val Val Asp Gly Thr Pro 65 Cys Arg Pro Asp Thr Val Asp Ile Cys Val Ser Gly Glu Cys Lys His

```
Val Gly Cys Asp Arg Val Leu Gly Ser Asp Leu Arg Glu Asp Lys Cys
                             665
            660
  Arg Val Cys Gly Gly Asp Gly Ser Ala Cys Glu Thr Ile Glu Gly Val
                          680
5 Phe Ser Pro Ala Ser Pro Gly Ala Gly Tyr Glu Asp Val Val Trp Ile
                                      700
                      695
  Pro Lys Gly Ser Val His Ile Phe Ile Gln Asp Leu Asn Leu Ser Leu
                                     715
            710
  Ser His Leu Ala Leu Lys Gly Asp Gln Glu Ser Leu Leu Glu Gly
                     730
                725
  Leu Pro Gly Thr Pro Gln Pro His Arg Leu Pro Leu Ala Gly Thr Thr
                             745
                                        750
  Phe Gln Leu Arg Gln Gly Pro Asp Gln Val Gln Ser Leu Glu Ala Leu
                                            765
                           760
         755
15 Gly Pro Ile Asn Ala Ser Leu Ile Val Met Val Leu Ala Arg Thr Glu
              775
                                        780
  Leu Pro Ala Leu Arg Tyr Arg Phe Asn Ala Pro Ile Ala Arg Asp Ser
                                     795
                   790
  Leu Pro Pro Tyr Ser Trp His Tyr Ala Pro Trp Thr Lys Cys Ser Ala 805 810 815
                                 810
  Gln Cys Ala Gly Gly Ser Gln Val Gln Ala Val Glu Cys Arg Asn Gln
                                               830
                             825
          820
  Leu Asp Ser Ser Ala Val Ala Pro His Tyr Cys Ser Ala His Ser Lys
                                            845
         835
                          840
25 Leu Pro Lys Arg Gln Arg Ala Cys Asn Thr Glu Pro Cys Pro Pro Asp
                       855
                                       860
  Trp Val Val Gly Asn Trp Ser Leu Cys Ser Arg Ser Cys Asp Ala Gly
          870
                             875
  Val Arg Ser Thr Ser Val Val Cys Gln Arg Arg Val Ser Ala Ala Glu
                                 890
             885
  Glu Lys Ala Leu Asp Asp Ser Ala Cys Pro Gln Pro Arg Pro Pro Val
                              905
             900
  Leu Glu Ala Cys His Gly Pro Thr Cys Pro Pro Glu Trp Ala Thr Leu
                                     925
                          920
35 Asp Trp Ser Glu Cys Thr Pro Ser Cys Gly Pro Gly Leu Arg His Arg
     930
                       935
                                      940
  Val Val Leu Cys Lys Ser Ala Asp Gln Arg Ser Thr Leu Pro Pro Gly
                                    955
                  950
  His Cys Leu Pro Ala Ala Lys Pro Pro Ser Thr Met Arg Cys Asn Leu
         965
                                970
   Arg Arg Cys Pro Pro Ala Arg Trp Val Thr Ser Glu Trp Gly Glu Cys
                              985
                                               990
            980
   Ser Thr Gln Cys Gly Leu Gly Gln Gln Gln Arg Thr Val Arg Cys Thr
                         1000
                                          1005
45 Ser His Thr Gly Gln Pro Ser Arg Glu Cys Thr Glu Ala Leu Arg Pro
                            1020
                      1015
   Ser Thr Met Gln Gln Cys Glu Ala Lys Cys Asp Ser Val Val Pro Pro
          1030 1035
   Gly Asp Gly Pro Glu Glu Cys Lys Asp Val Asn Lys Val Ala Tyr Cys
            1045 1050 1055
   Pro Leu Val Leu Lys Phe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gln
                             1065
      1060
   Met Cys Cys Lys Thr Cys Gln Gly Arg
        1075
                         1080
```

<210> 18
 <211> 1642
60 <212> DNA
 <213> Mus musculus ADAMTS-10

<220>
 <221> CDS
65 <222> (2)..(1351)

		. > mi		eatu (34					•								
5		. > mi	_	eati (35													
10	a go		a go							co C					ır Va	tg gac al Asp 15	49
15	att Ile	_	_				_	_		_		tgt Cys	_			_	97
20												tgt Cys					145
25												cca Pro 60					193
23												ggc Gly					241
30	ttc Phe											ctg Leu					289
35	gac Asp											999 Gly					337
40												cta Leu					385
45												att Ile 140					433
13												gct Ala					481
50	ttc Phe											ccc Pro					529
55	tat Tyr											gca Ala					577
60												agc Ser					625
. -												aag Lys 220					673
65	tgc	aac	aca	gaa	сса	tgt	сса	cca	gat	tgg	gtt	gta	gga	aac	tgg	tca	721

	Cys 225	Asn	Thr	Glu	Pro	Cys 230	Pro	Pro	Asp	Trp	Val 235	Val	Gly	Asn	Trp	Ser 240	
5	cgc Arg	tgc Cys	agc Ser	cgt Arg	agc Ser 245	tgt Cys	gac Asp	gct Ala	ggt Gly	gtg Val 250	cgt Arg	agc Ser	cgc Arg	tca Ser	gtg Val 255	gtg Val	769
10	tgc Cys	caa Gln	cgc Arg	cgg Arg 260	gtg Val	tct Ser	gct Ala	gca Ala	gag Glu 265	gaa Glu	aaa Lys	gcc Ala	tta Leu	gac Asp 270	gac Asp	agt Ser	817
15	gcc Ala	tgt Cys	cca Pro 275	cag Gln	cca Pro	cgc Arg	cca Pro	cct Pro 280	gtg Val	ctg Leu	gag Glu	gcc Ala	tgc Cys 285	caa Gln	ggc Gly	cca Pro	865
13	atg Met	tgc Cys 290	cct Pro	cct Pro	gag Glu	tgg Trp	gca Ala 295	acc Thr	ctc Leu	gac Asp	tgg Trp	tct Ser 300	gag Glu	tgt Cys	acc Thr	cca Pro	913
20	agc Ser 305	tgt Cys	G1y 999	cct Pro	ggt Gly	ctc Leu 310	cgc Arg	cac His	cga Arg	gtg Val	gtc Val 315	ctt Leu	tgt Cys	aag Lys	agt Ser	gca Ala 320	961
25	gat Asp	caa Gln	cga Arg	tct Ser	act Thr 325	ctg Leu	ccc Pro	cct Pro	Gly 999	cac His 330	tgc Cys	ctt Leu	cct Pro	gca Ala	gcc Ala 335	aag Lys	1009
30	cca Pro	cca Pro	tct Ser	act Thr 340	atg Met	cga Arg	tgt Cys	aac Asn	ttg Leu 345	cgc Arg	cgc Arg	tgc Cys	cct Pro	cct Pro 350	gcc Ala	cgc Arg	1057
35	tgg Trp	gtg Val	acc Thr 355	agt Ser	gag Glu	tgg Trp	ggt Gly	gag Glu 360	tgt Cys	tcc Ser	aca Thr	cag Gln	tgt Cys 365	ggc Gly	ctc Leu	ggc	1105
33	cag Gln	cag Gln 370	cag Gln	cgc Arg	aca Thr	gtg Val	cgc Arg 375	tgc Cys	acc Thr	agc Ser	cac His	acc Thr 380	ggc Gly	cag Gln	cca Pro	tct Ser	1153
40	cga Arg 385	gag Glu	tgc Cys	act Thr	gaa Glu	gcc Ala 390	ttg Leu	cgg Arg	cca Pro	tcc Ser	acc Thr 395	atg Met	cag Gln	cag Gln	tgt Cys	gag Glu 400	1201
45	gcc Ala	aag Lys	tgt Cys	gac Asp	agt Ser 405	gtg Val	gtg Val	ccg Pro	cct Pro	gga Gly 410	gat Asp	ggc Gly	cca Pro	gaa Glu	gaa Glu 415	tgc Cys	1249
50	aag Lys	gat Asp	gtg Val	aac Asn 420	Lys	gtg Val	gct Ala	tac Tyr	tgc Cys 425	Pro	ctg Leu	gtg Val	ctc Leu	aaa Lys 430	ttt Phe	cag Gln	1297
.	Phe	tgt Cys	agc Ser 435	Arg	gcc Ala	tac Tyr	ttc Phe	cgc Arg 440	Gln	atg Met	agc Ser	tgc Cys	aaa Lys 445	acc Thr	tgc Cys	caa Gln	1345
55	ggc	cgc Arg 450		ggta	cct	ggaa	ccaa	cc t	ggag	caca	g gc	tgag	gcag	999	acat	ccc	1401
60	act	ggag	agg	gcat	gagg	ga a	aggg	gggc	t tg	aatt	gaag	ggt	gaga	tgc	aagt	tgaaag	1461
	tat	ttat	ttg	ggta	accc	ct a	cagg	gctt	c tg	actt	aagg	ggt	ggag	aan	agct	ggctac	1521
65		aggg	acc	cttt	tgtt	gg a	tctt	ggcc	c an	ttga	tagt	gaa	gaga	gag	gact	tcttgg	1581
03		acac	att	ttta	agto	ct t	agac	cctt	c ca	ccnt	tgat	. cgg	atat	gtc	tggg	aagagg	1641

n

1642

5	<212	l > 49 2 > PI	50	uscu)	lus <i>i</i>	ADAM:	rs-10	0			`					٠.
10	<400 Ala 1) Ala	Val	Val 5	Asp	Gly	Thr	Pro	Cys 10	Arg	Pro	Asp	Thr	Val	Asp
15	Ile	Cys	Val	Ser 20	Gly	Glu	Cys	Lys	His 25	Val	Gly	Сув	Asp	Arg 30	Leu	Leu
	Gly	Ser	Asp 35	Leu	Arg	Glu	Asp	Lys 40	Cys	Arg	Val	Cys	Gly 45	Gly	Asp	Gly
20	Ser	Ala 50	Cys	Glu	Thr	Ile	Glu 55	Gly	Val	Phe	Ser	Pro 60	Ala	Leu	Pro	Gly
25	Thr 65	Gly	Tyr	Glu	Asp	Val 70	Val	Trp	Ile	Pro	Lys 75	Gly	Ser	Val	His	Ile 80
	Phe	Ile	Gln	Asp	Leu 85	Asn	Leu	Ser	Leu	Ser 90	His	Leu	Ala	Leu	Lys 95	Gly
30	Asp	Gln	Glu	Ser 100	Leu	Leu	Leu	Glu	Gly 105	Leu	Pro	Gly	Thr	Pro 110		Pro
	Xaa	Arg	Leu 115	Pro	Leu	Xaa	Gly	Thr 120	Thr	Phe	His	Leu	Arg 125	Gln	Gly	Pro
35	Asp	Gln 130	Ala	Gln	Ser	Leu	Glu 135	Ala	Leu	Gly	Pro	Ile 140	Asn	Ala	Ser	Leu
40	Ile 145	Ile	Met	Val	Leu	Ala 150	Gln	Ala	Glu	Leu	Pro 155	Ala	Leu	His	Tyr	Arg 160
	Phe	Asn	Ala	Pro	Ile 165	Ala	Arg	Asp	Ala	Leu 170	Pro	Pro	Tyr	Ser	Trp 175	His
45	Tyr	Ala	Pro	Trp 180	Thr	Lys	Cys	Ser	Ala 185	Gln	Cys	Ala	Gly	Gly 190	Ser	Gln
	Val	Gln	Val 195	Val	Glu	Cys	Arg	Asn 200	Gln	Leu	Asp	Ser	Ser 205	Ala	Val	Ala
50	Pro	His 210	Tyr	Cys			His 215		Lys	Leu		Lys 220	_	Gln	Arg	Ala
55	Cys 225	Asn	Thr	Glu	Pro	Cys 230	Pro	Pro	Asp	Trp	Val 235	Val	Gly	Asn	Trp	Ser 240
	Arg	Сув	Ser	Arg	Ser 245	Суз	Asp	Ala	Gly	Val 250	Arg	Ser	Arg	Ser	Val 255	Val
60	Сув	Gln	Arg	Arg 260	Val	Ser	Ala	Ala	Glu 265	Glu	Lys	Ala	Leu	Asp 270	Asp	Ser
	Ala	Cys	Pro 275	Gln	Pro	Arg	Pro	Pro 280	Val	Leu	Glu	Ala	Cys 285	Gln	Gly	Pro
65	Met	Сув 290	Pro	Pro	Glu	Trp	Ala 295	Thr	Leu	Asp	Trp	Ser 300	Glu	Сув	Thr	Pro

	Ser 305	Cys	Gly	Pro	Gly	Leu 310	Arg	His	Arg	Val	Val 315	Leu	Cys	Lys	Seŗ	Ala 320	
5	Asp	Gln	Arg	Ser	Thr 325	Leu	Pro	Pro	Gly	His 330	Cys	Leu	Pro	Ala	Ala 335	Lys	
	Pro	Pro	Ser	Thr 340	Met	Arg	Cys	Asn	Leu 345	Arg	Arg	Cys	Pro	Pro 350	Ala	Arg	
10	Trp	Val	Thr 355	Ser	Glu	Trp	Gly	Glu 360	Cys	Ser	Thr	Gln	Cys 365	Gly	Leu	Gly	
15	Gln	Gln 370	Gln	Arg	Thr	Val	Arg 375	Сув	Thr	Ser	His	Thr 380	Gly	Gln	Pro	Ser	
	Arg 385	Glu	Cys	Thr	Glu	Ala 390	Leu	Arg	Pro	Ser	Thr 395	Met	Gln	Gln	Cys	Glu 400	
20		Lys	_		405					410					415		
25	-	Asp		420					425					430			
	Phe	Сув	Ser 435	Arg	Ala	Tyr	Phe	Arg 440	Gln	Met	Ser	Cys	Lys 445	Thr	Cys	Gln	
30	Gly	Arg 450															
35	<21 <21	0 > 20 1 > 10 2 > DI 3 > Ho	803 AN	sapi	ens i	adam'	rs-R	1									
40		0 > 1 > CI 2 > (!		.(16	34)												
45		0> 2: ttcg		cgag	gcag	tg t	ccga	ttct	g at	tccg	gcaa	gga	tcca	agc i	atg q Met (gaa Glu	56
50	tgc Cys	tgc Cys	cgt Arg 5	cgg Arg	gca Ala	act Thr	cct Pro	ggc Gly 10	Thr	ctg Leu	ctc Leu	ctc Leu	ttt Phe 15	ctg Leu	gct Ala	ttc Phe	104
	ctg Leu	ctc Leu 20	Leu	agt Ser	tcc Ser	agg Arg	acc Thr 25	gca Ala	cgc Arg	tcc Ser	gag Glu	gag Glu 30	gac Asp	cgg Arg	gac Asp	ggc Gly	152
55	cta Leu 35	_	gat Asp	gcc Ala	tgg Trp	ggc Gly 40	cca Pro	tgg Trp	agt Ser	gaa Glu	tgc Cys 45	tca Ser	cgc Arg	acc Thr	tgc Cys	999 50	200
60	ggt Gly	999 999	gcc Ala	gcc Ala	aac Asn 55	Ser	ctg Leu	agg Arg	cgc Arg	tgc Cys 60	Leu	agc Ser	agc Ser	aag Lys	agc Ser 65	Cys	248 :.
65	gaa Glu	gga Gly	aga Arg	aat Asn 70	Ile	cga Arg	tac Tyr	aga Arg	aca Thr	Cys	agt Ser	aat Asn	gtg Val	gac Asp 80	Cys	cca Pro	296

5															aat Asn		344
,	gtc Val	aag Lys 100	cac His	cat His	ggc Gly	cag Gln	ttt Phe 105	tat Tyr	gaa Glu	tgg Trp	ctt Leu	cct Pro 110	gtg Val	tct Ser	aat Asn	gac Asp	392
10	cct Pro 115	gac Asp	aac Asn	cca Pro	tgt Cys	tca Ser 120	ctc Leu	aag Lys	tgc Cys	caa Gln	gcc Ala 125	aaa Lys	gga Gly	aca Thr	acc Thr	ctg Leu 130	440
15	gtt Val	gtt Val	gaa Glu	cta Leu	gca Ala 135	cct Pro	aag Lys	gtc Val	tta Leu	gat Asp 140	ggt Gly	acg Thr	cgt Arg	tgc Cys	tat Tyr 145	aca Thr	488
20	gaa Glu	tct Ser	ttg Leu	gat Asp 150	atg Met	tgc Cys	atc Ile	agt Ser	ggt Gly 155	tta Leu	tgc Cys	caa Gln	att Ile	gtt Val 160	ggc Gly	tgc Cys	536
25															gtc Val		584
															aaa Lys		632
30	cag Gln 195	ctc Leu	tcc Ser	gca Ala	acc Thr	aaa Lys 200	tcg Ser	gat Asp	gat Asp	act Thr	gtg Val 205	gtt Val	gca Ala	att Ile	ccc Pro	tat Tyr 210	680
35	gga Gly	agt Ser	aga Arg	cat His	att Ile 215	cgc Arg	ctt Leu	gtc Val	tta Leu	aaa Lys 220	ggt Gly	cct Pro	gat Asp	cac His	tta Leu 225	tat Tyr	728
40	ctg Leu	gaa Glu	acc Thr	aaa Lys 230	acc Thr	ctc Leu	cag Gln	999 999	act Thr 235	aaa Lys	ggt Gly	gaa Glu	aac Asn	agt Ser 240	ctc Leu	agc Ser	776
45	tcc Ser	aca Thr	gga Gly 245	act Thr	ttc Phe	ctt Leu	gtg Val	gac Asp 250	aat Asn	tct Ser	agt Ser	gtg Val	gac Asp 255	ttc Phe	cag Gln	aaa Lys	824
	ttt Phe	cca Pro 260	gac Asp	aaa Lys	gag Glu	ata Ile	ctg Leu 265	aga Arg	atg Met	gct Ala	gga Gly	cca Pro 270	ctc Leu	aca Thr	gca Ala	gat Asp	872
50	ttc Phe 275	att Ile	gtc Val	aag Lys	att Ile	cgt Arg 280	aac Asn	tcg Ser	ggc Gly	tcc Ser	gct Ala 285	gac Asp	agt Ser	aca Thr	gtc Val	cag Gln 290	920
55	ttc Phe	atc Ile	ttc Phe	tat Tyr	caa Gln 295	ccc Pro	atc Ile	atc Ile	cac His	cga Arg 300	tgg Trp	agg Arg	gag Glu	acg Thr	gat Asp 305	ttc Phe	968
60	ttt Phe	cct Pro	tgc Cys '	tca Ser 310	gca Ala	acc Thr	tgt Cys	gga Gly	gga Gly 315	ggt Gly	tat Tyr	cag Gln	ctg Leu	aca Thr 320	tcg Ser	gct Ala	1016
65															tac Tyr		1064
	cac	tat	tac	cca	gag	aac	atc	aaa	ccc	aaa	ccc	aag	ctt	cag	gag	tgc	1112

100 - 1 100 K

	His	Tyr 340	Tyr	Pro	Glu	Asn	Ile 345	Lys	Pro	Lys	Pro	Lys 350	Leu	Gln	Glu	Cys	
5	aac Asn 355	ttg Leu	gat Asp	cct Pro	tgt Cys	cca Pro 360	gcc Ala	agt Ser	gac Asp	gga Gly	tac Tyr 365	aag Lys	cag Gln	atc Ile	atg Met	cct. Pro 370	1160
10	tat Tyr	gac Asp	ctc Leu	tac Tyr	cat His 375	ccc Pro	ctt Leu	cct Pro	cgg Arg	tgg Trp 380	gag Glu	gcc Ala	acc Thr	cca Pro	tgg Trp 385	acc Thr	1208
15	gcg Ala	tgc Cys	tcc Ser	tcc Ser 390	tcg Ser	tgt Cys	999 999	Gly 999	ggc Gly 395	atc Ile	cag Gln	agc Ser	cgg Arg	gca Ala 400	gtt Val	tcc Ser	1256
10	tgt Cys	gtg Val	gag Glu 405	gag Glu	gac Asp	atc Ile	cag Gln	999 Gly 410	cat His	gtc Val	act Thr	tca Ser	gtg Val 415	gaa Glu	gag Glu	tgg Trp	1304
20	aaa Lys	tgc Cys 420	atg Met	tac Tyr	acc Thr	cct Pro	aag Lys 425	atg Met	ccc Pro	atċ Ile	gcg Ala	cag Gln 430	ccc Pro	tgc Cys	aac Asn	att	1352
25	ttt Phe 435	gac Asp	tgc Cys	cct Pro	aaa Lys	tgg Trp 440	ctg Leu	gca Ala	cag Gln	gag Glu	tgg Trp 445	tct Ser	ccg Pro	tgc Cys	aca Thr	gtg Val 450	1400
30	acg Thr	tgt Cys	ggc Gly	cag Gln	ggc Gly 455	ctc Leu	aga Arg	tac Tyr	cgt Arg	gtg Val 460	gtc Val	ctc Leu	tgc Cys	atc Ile	gac Asp 465	cat His	1448
2.5	cga Arg	gga Gly	atg Met	cac His 470	aca Thr	gga Gly	ggc Gly	tgt Cys	agc Ser 475	cca Pro	aaa Lys	aca Thr	aag Lys	CCC Pro 480	cac His	ata Ile	1496
35	aaa Lys	gag Glu	gaa Glu 485	tgc Cys	atc Ile	gta Val	ccc Pro	act Thr 490	ccc Pro	tgc Cys	tat Tyr	aaa Lys	ccc Pro 495	aaa Lys	gag Glu	aaa Lys	1544
40	ctt Leu	cca Pro 500	gtc Val	gag Glu	gcc Ala	aag Lys	ttg Leu 505	cca Pro	tgg Trp	ttc Phe	aaa Lys	caa Gln 510	gct Ala	caa Gln	gag Glu	cta Leu	1592
45	gaa Glu 515	gaa Glu	gga Gly	gct Ala	gct Ala	gtg Val 520	tca Ser	gag Glu	gag Glu	ccc Pro	tcg Ser 525	taa		gta Val		,	1634
	aaa	gcac	aga	ctgt	tcta	ta t	ttga	aact	t tt	gttt	aaag	aaa	gcag	tgt	ctca	ctggtt	1694
50	gta	gctt	tca	tggg	ttct	ga a	ctaa	gtgt	a at	catc	tcac	caa	agct	ttt	tggc	tctcaa	1754
	atit	aaag	att	gatt	agtt	tc a	aaaa	aaaa	a aa	aaaa	aaga	tgc	ggcc	gc			1803
55	<21 <21	0 > 2 1 > 5 2 > P 3 > H	25	sapi	ens	ADAM	TS-R	1									•
60	Met 1		Cys		5					10					15		,
			Leu	20					25					30			
65	Asp	Gly	Leu 35		Asp	Ala	Trp	Gly 40		Trp	Ser	Glu	Cys 45		Arg	Thr	

```
Cys Gly Gly Ala Ala Asn Ser Leu Arg Arg Cys Leu Ser Ser Lys
  Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp
                                         75
 5 Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His
                                     90
   Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser
                                 105
  Asn Asp Pro Asp Asn Pro Cys Ser Leu Lys Cys Gln Ala Lys Gly Thr
                            120
                                               125
   Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys
                      135
                                            140
   Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val
                     150
                                        155
15 Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly
                 165
                                    170
   Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr
180 185 190
                              185
                                                    190
             180
  Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Ile
    195
                            200
   Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His
                         215
                                            220
   Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser
                     230
                                        235
25 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe
                           250
               245
   Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu Thr
             260
                        265
   Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser Thr
                             280
   Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr
                         295
   Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr
                    310
                                        315
35 Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn Arg Val Val Ala Asp Gln
                 325
                                     330
   Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln 340 345
   Glu Cys Asn Leu Asp Pro Cys Pro Ala Ser Asp Gly Tyr Lys Gln Ile
    355
                            360
                                                365
   Met Pro Tyr Asp Leu Tyr His Pro Leu Pro Arg Trp Glu Ala Thr Pro
                        375
                                            380
   Trp Thr Ala Cys Ser Ser Ser Cys Gly Gly Gly Ile Gln Ser Arg Ala
                     390
                                        395
45 Val Ser Cys Val Glu Glu Asp Ile Gln Gly His Val Thr Ser Val Glu
                 405
                                     410
   Glu Trp Lys Cys Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys
                               425
             420
   Asn Ile Phe Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys
435
440
445
                            440
     435
                                                445
   Thr Val Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile
                          455
                                            460
   Asp His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro
                      470
55 His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro Lys
                                     490
                  485
   Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln Ala Gln
                                505
              500
   Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser
                            520
```

<210> 22 65 <211> 518 <212> PRT <213> Homo sapiens ADAMTS-5

)> 22		•	~ 1	•	~	*** -	3	3	C	T	Dho	C	C1	C1
5	Gly 1	His	Leu	Leu	G1y 5	Leu	ser	ніѕ	Asp	Asp 10	ser	ьys	Pne	Cys	15	Glu.
	Thr	Phe	Gly	Ser 20	Thr	Glu	Asp	Lys	Arg 25	Leu	Met	Ser	Ser	I·le 30	Leu	Thr
10	Ser	Ile	Asp 35	Ala	Ser	Lys	Pro	Trp 40	Ser	Lys	Cys	Thr	Ser 45	Ala	Thr	Ile
15	Thr	Glu 50	Phe	Leu	Asp	Asp	Gly 55	His	Gly	Asn	Cys	Leu 60	Leu	Asp	Leu	Pro
	Arg 65	Lys	Gln	Ile	Leu	Gly 70	Pro	Glu	Glu	Leu	Pro 75	Gly	Gln	Thr	Tyr	Asp 80
20	Ala	Thr	Gln	Gln	Cys 85	Asn	Leu	Thr	Phe	Gly 90	Pro	Asp	Tyr	Ser	Val 95	Cys
	Pro	Gly	Xaa	Asp 100	Val	Cys	Ala	Arg	Leu 105	Trp	Cys	Ala	Val	Val 110	Arg	Gln
25	Gly	Gln	Met 115	Val	Cys	Leu	Thr	Lys 120	Lys	Leu	Pro	Ala	Val 125	Glu	Gly	Thr
30	Pro	Cys 130	Gly	Lys	Gly	Arg	11e 135	Cys	Leu	Gln	Gly	Lys 140	Cys	Val	Asp	Lys
	Thr 145	Lys	Lys	Lys	Tyr	Туг 150	Ser	Thr	Ser	Ser	His 155	Gly	Asn	Trp	Gly	Ser 160
35	Trp	Gly	Ser	Trp	Gly 165	Gln	Cys	Ser	Arg	Ser 170	Cys	Gly	Gly	Gly	Val 175	Gln
	Phe	Ala	Tyr	Arg 180	His	Cys	Asn	Asn	Pro 185	Ala	Pro	Arg	Asn	Asn 190	Gly	Arg
40			195	*				200					205	Leu		
45		210					215					220				Lys
	225					230					235			Val	•	240
50					245					250				Lys	255	
	Суѕ	Arg	Ala	Lys 260	Gly	Thr	Gly	Tyr	Tyr 265	Val	Val	Phe	Ser	Pro 270	Lys	Val
55	Thr	Asp	Gly 275	Thr	Glu	сув	Arg	Pro 280		Ser	Asn	Ser	Val 285	Cys	Val	Arg
60		290					295					300				Leu
	305	_				310					315			•		Thr 320
65	Lys	Ile	Val	Gly	Thr 325	Phe	Asn	Lys	Lys	Ser 330	Lys	Gly	Tyr	Thr	Asp 335	Val

	•••		110	340	GIU	Ory	ALU	****	345	116	цуз	Vai	Arg	350	FIIE	пур	
5	Ala	Lys	Asp 355	Gln	Thr	Arg	Phe	Thr 360	Ala	туг	Leu	Ala	Leu 365	Lys	Lys	Lys	
	Asn	Gly 370	Glu	Tyr	Leu	Ile	Asn 375	Gly	Lys	Tyr	Met	Ile 380	Ser	Thr	Ser	Glu	
10	Thr 385	Ile	Ile	Asp	Ile	Asn 390	Gly	Thr	Val	Met	Asn 395	Tyr	Ser	Gly	Trp	Ser 400	٠
15	His	Arg	Asp	Asp	Phe 405	Leu	His	Gly	Met	Gly 410	Tyr	Ser	Ala	Thr	Lys 415	Glu	
	Ile	Leu	Ile	Val 420	Gln	Ile	Leu	Ala	Thr 425	Asp	Pro	Thr	Lys	Pro 430	Leu	Asp	
20	Val	Arg	Tyr 435	Ser	Phe	Phe	Val	Pro 440	Lys	Lys	Ser	Thr	Pro 445	Lys	Val	Asn	
	Ser	Val 450	Thr	Ser	His	Gly	Ser 455	Asn	Lys	Val	Gly	Ser 460	His	Thr	Ser	Gln	
25	Pro 465	Gln	Trp	Val	Thr	Gly 470	Pro	Trp	Leu	Ala	Cys 475	Ser	Arg	Thr	Cys	Asp 480	
30	Thr	Gly	Trp	His	Thr 485	Arg	Thr	Val	Gln	Cys 490	Gln	Asp	Gly	Asn	Arg 495	Lys	
	Leu	Ala	Lys	Gly 500	Cys	Pro	Leu	Ser	Gln 505	Arg	Pro	Ser	Ala	Phe 510	Lys	Gln	
35	Cys	Leu	Leu 515	Lys	Lys	Cys											
40	<212	0> 23 L> 34 2> DN B> Ho	109	sapie	ens <i>l</i>	AD AM T	rs-10)									
45		l> CI	os 25)	. (324	10)												
)> 23 cgcac	gc c	ttco	ggto	et ca								gg a			51
50								1			•	5			5		
	atg Met 10	aga Arg	tcg Ser	cct Pro	tcc Ser	cca Pro 15	ccc Pro	gcg Ala	tgg Trp	acc Thr	aca Thr 20	acg Thr	999 Gly	cac His	tgc Cys	tgg Trp 25	99
55	cct Pro	tct Ser	cgc Arg	cac His	ctc Leu 30	ctc Leu	ccc Pro	gga Gly	gca Ala	gcg Ala 35	ccg Pro	cgg Arg	cac His	G1y 999	ggc Gly 40	cac His	147
60	agc Ser	cga Arg	gtc Val	ccg Pro 45	cct Pro	ctt Leu	cta Leu	caa Gln	agt Ser 50	ggc Gly	ctc Leu	gcc Ala	agc Ser	acc Thr 55	cac His	ttc Phe	199
65	ctg Leu	ctg Leu	aac Asn 60	ctg Leu	acc Thr	cgc Arg	agc Ser	tcc Ser 65	cgt Arg	cta Leu	ctg Leu	gca Ala	999 Gly 70	cgc Arg	gtc Val	tcc Ser	243

	gtg Val	gag Glu 75	tac Tyr	tgg Trp	aca Thr	cgg Arg	gag Glu 80	ggc	ctg Leu	gcc Ala	tgg Trp	cag Gln 85	agg Arg	gcg Ala	gcc Ala	cgg Arg	291
5	ccc Pro 90	cac His	tgc Cys	ctc Leu	tac Tyr	gct Ala 95	ggt Gly	cac His	ctg Leu	cag Gln	ggc Gly 100	cag Gln	gcc Ala	agc Ser	agc Ser	tcc Ser 105	339
10	cat His	gtg Val	gcc Ala	atc Ile	agc Ser 110	acc Thr	tgt Cys	gga Gly	ggc Gly	ctg Leu 115	cac His	ggc Gly	ctg Leu	atc Ile	gtg Val 120	gca Ala	387
15	gac Asp	gag Glu	gaa Glu	gag Glu 125	tac Tyr	ctg Leu	att Ile	gag Glu	ccc Pro 130	ctg Leu	cac His	ggt Gly	G1y 999	ccc Pro 135	aag Lys	ggt Gly	435
20	tct Ser	cgg Arg	agc Ser 140	ccg Pro	gag Glu	gaa Glu	agt Ser	gga Gly 145	cca Pro	cat His	gtg Val	gtg Val	tac Tyr 150	aag Lys	cgt Arg	tcc Ser	483
25	tct Ser	ctg Leu 155	cgt Arg	cac His	ccc Pro	cac His	ctg Leu 160	gac Asp	aca Thr	gcc Ala	tgt Cys	gga Gly 165	gtg Val	aga Arg	gat Asp	gag Glu	531
25	aaa Lys 170	ccg Pro	tgg Trp	aaa Lys	999 Gly	cgg Arg 175	cca Pro	tgg Trp	tgg Trp	ctg Leu	cgg Arg 180	acc Thr	ttg Leu	aag Lys	cca Pro	ccg Pro 185	579
30	cct Pro	gcc Ala	aga Arg	ccc Pro	ctg Leu 190	G1y 999	aat Asn	gaa Glu	aca Thr	gag Glu 195	cgt Arg	ggc Gly	cag Gln	cca Pro	ggc Gly 200	ctg Leu	627
35	aag Lys	cga Arg	tcg Ser	gtc Val 205	agc Ser	cga Arg	gag Glu	cgc Arg	tac Tyr 210	gtg Val	gag Glu	acc Thr	ctg Leu	gtg Val 215	gtg Val	gct Ala	675
40	gac Asp	aag Lys	atg Met 220	atg Met	gtg Val	gcc Ala	tat Tyr	cac His 225	G1y 999	cgc Arg	cgg Arg	gat Asp	gtg Val 230	gag Glu	cag Gln	tat Tyr	723
45	Val	ctg Leu 235	Ala	atc Ile	atg Met	aac Asn	att Ile 240	gtt Val	gcc Ala	aaa Lys	ctt Leu	ttc Phe 245	cag Gln	gac Asp	tcg Ser	agt Ser	771
43	cta	Gly	agc Ser	acc Thr	gtt Val	aac Asn 255	atc Ile	ctc Leu	gta Val	act Thr	cgc Arg 260	Leu	atc Ile	ctg Leu	ctc Leu	acg Thr 265	819
50	gag Glu	gac	cag Gln	ccc Pro	act Thr 270	Leu	gag Glu	atc Ile	acc Thr	cac His 275	His	gcc Ala	999 999	aag Lys	tcc Ser 280	cta Leu	867
55	gac Asp	ago Ser	ttc Phe	tgt Cys 285	Lys	tgg Trp	cag Gln	aaa Lys	Ser 290	· Ile	gtg Val	aac Asn	cac His	ago Ser 295	Gly	cat His	915
60	Gly	aat Asr	gcc Ala	Ile	cca Pro	gag Glu	aac Asn	ggt Gly 305	val	gct Ala	aac Asr	cat His	gac Asp 310	Thr	gca Ala	gtg Val	963
,,,	Leu	ato 1116 315	Th:	cgc Arg	tat Tyr	gac Asp	atc Ile 320	Cys	ato Ile	tac Tyr	aag Lys	aac Asn 325	Lys	ccc Pro	tgo Cys	ggc Gly	1011
69	aca	cta	a ggd	ctg	gco	cgg	tgg	gcg	g gaa	a tgt	gt	ago	gcg	aga	gaa	gct	1059

	Thr 330	Leu	Gly	Leu	Ala	Arg 335	Trp	Ala	Glu	Cys	Val 340	Ser	Ala	Arg	Glu	Ala 345	
5	gca Ala	gcg Ala	tca Ser	atg Met	agg Arg 350	aca Thr	ttg Leu	gct Ala	gcc Ala	aca Thr 355	agc Ser	gtt Val	cac His	cat His	tgc Cys 360	caç His	1107
10	gag Glu	atc Ile	999 999	cac His 365	aca Thr	ttc Phe	ggc Gly	atg Met	aac Asn 370	cat His	gac Asp	ggc Gly	gtg Val	gga Gly 375	aac Asn	agc Ser	1155
15	tgt Cys	61 Å 888	gcc Ala 380	cgt Arg	ggt Gly	cag Gln	gac Asp	cca Pro 385	gcc Ala	aag Lys	ctc Leu	atg Met	gct Ala 390	gcc Ala	cac His	att Ile	1203
	acc Thr	atg Met 395	aag Lys	acc Thr	aac Asn	cca Pro	ttc Phe 400	gtg Val	tgg Trp	tca Ser	tcc Ser	tgc Cys 405	aac Asn	cgt Arg	gac Asp	tac Tyr	1251
20	atc Ile 410	acc Thr	agc Ser	ttt Phe	cta Leu	gac Asp 415	tcg Ser	ggc Gly	ctg Leu	G1 y 999	ctc Leu 420	tgc Cys	ctg Leu	aac Asn	aac Asn	cgg Arg 425	1299
25	ccc Pro	ccc Pro	aga Arg	cag Gln	gac Asp 430	ttt Phe	gtg Val	tac Tyr	ccg Pro	aca Thr 435	gtg Val	gca Ala	ccg Pro	ggc Gly	caa Gln 440	gcc · Ala	1347
30	tac Tyr	gat Asp	gca Ala	gat Asp 445	gag Glu	caa Gln	tgc Cys	cgc Arg	ttt Phe 450	cag Gln	cat His	gga Gly	gtc Val	aaa Lys 455	tcg Ser	cgt Arg	1395
35	cag Gln	tgt Cys	aaa Lys 460	tac Tyr	999 999	gag Glu	gtc Val	tgc Cys 465	agc Ser	gag Glu	ctg Leu	tgg Trp	tgt Cys 470	ctg Leu	agc Ser	aag Lys	1443
	agc Ser	aac Asn 475	cgg Arg	tgc Cys	atc Ile	acc Thr	aac Asn 480	agc Ser	atc Ile	ccg Pro	gcc Ala	gcc Ala 485	gag Glu	ggc Gly	acg Thr	ctg Leu	1491
40	tgc Cys 490	cag Gln	acg Thr	cac His	acc Thr	atc Ile 495	gac Asp	aag Lys	999 999	tgg Trp	tgc Cys 500	tac Tyr	aaa Lys	cgg Arg	gtc Val	tgt Cys 505	1539
45	gtc Val	ccc Pro	ttt Phe	Gly 999	tcg Ser 510	cgc Arg	cca Pro	gag Glu	ggt Gly	gtg Val 515	gac Asp	gga Gly	gcc Ala	tgg Trp	999 Gly 520	ccg Pro	1587
50	tgg Trp	act Thr	cca Pro	tgg Trp 525	ggc Gly	gac Asp	tgc Cys	agc Ser	cgg Arg 530	acc Thr	tgt Cys	Gly	ggc Gly	ggc Gly 535	gtg Val	tcc Ser	1635
55	tct Ser	tct Ser	agt Ser 540	cgt Arg	cac His	tgc Cys	gac Asp	agc Ser 545	ccc Pro	agg Arg	cca Pro	acc Thr	atc Ile 550	999 Gly	ggc Gly	aag Lys	1683
	tac Tyr	tgt Cys 555	ctg Leu	ggt Gly	gag Glu	aga Arg	agg Arg 560	cgg Arg	cac His	cgc Arg	tcc Ser	tgc Cys 565	aac Asn	acg Thr	gat Asp	gac Asp	1731
60	tgt Cys 570	ccc Pro	cct Pro	ggc Gly	tcc Ser	cag Gln 575	gac Asp	ttc Phe	aga Arg	gaa Glu	gtg Val 580	cag Gln	tgt Cys	tct Ser	gaa Glu	ttt Phe 585	1779
65	gac Asp	agc Ser	atc Ile	cct Pro	ttc Phe 590	cgt Arg	G 1y 999	aaa Lys	ttc Phe	tac Tyr 595	aag Lys	tgg Trp	aaa Lys	acg Thr	tac Tyr 600	cgg Arg	1827

	gga Gly	G1y 999	ggc Gly	gtg Val 605	aag Lys	gcc Ala	tgc Cys	tcg Ser	ctc Leu 610	acg Thr	agc Ser	cta Leu	gcg Ala	gaa Glu 615	ggc Gly	ttc Phe	1875
5	aac Asn	ttc Phe	tac Tyr 620	acg Thr	gag Glu	agg Arg	gcg Ala	gca Ala 625	gcc Ala	gtg Val	gtg Val	gac Asp	630 999	aca Thr	ccc Pro	tgc Cys	1923
10	cgt Arg	cca Pro 635	gac Asp	acg Thr	gtg Val	gac Asp	att Ile 640	tgc Cys	gtc Val	agt Ser	ggc Gly	gaa Glu 645	tgc Cys	aag Lys	cac His	gtg Val	1971
15	ggc Gly 650	tgc Cys	gac Asp	cga Arg	gtc Val	ctg Leu 655	ggc Gly	tcc Ser	gac Asp	ctg Leu	cgg Arg 660	gag Glu	gac Asp	aag Lys	tgc Cys	cga Arg 665	2019
20	gtg Val	tgt Cys	ggc Gly	Gly	gac Asp 670	ggc Gly	agt Ser	gcc Ala	tgc Cys	gag Glu 675	acc Thr	atc Ile	gag Glu	ggc ggc	gtc Val 680	ttc Phe	2067
25	agc Ser	cca Pro	gcc Ala	tca Ser 685	cct Pro	999 999	gcc Ala	999 Gly	tac Tyr 690	gag Glu	gat Asp	gtc Val	gtc Val	tgg Trp 695	att Ile	ccc Pro	2115
23	aaa Lys	ggc Gly	tcc Ser 700	gtc Val	cac His	atc Ile	ttc Phe	atc Ile 705	cag Gln	gat Asp	ctg Leu	aac Asn	ctc Leu 710	tct Ser	ctc Leu	agt Ser	2163
30	cac His	ttg Leu 715	gcc Ala	ctg Leu	aag Lys	gga Gly	gac Asp 720	cag Gln	gag Glu	tcc Ser	ctg Leu	ctg Leu 725	ctg. Leu	gag Glu	G] À 333	ctg Leu	2211
35	cct Pro 730	GJ A 333	acc Thr	ccc Pro	cag Gln	ccc Pro 735	cac His	cgt Arg	ctg Leu	cct Pro	cta Leu 740	gct Ala	999 Gly	acc Thr	acc Thr	ttt Phe 745	2259
40	caa Gln	ctg Leu	cga Arg	cag Gln	999 Gl <u>y</u> 750	cca Pro	gac Asp	cag Gln	gtc Val	cag Gln 755	agc Ser	ctc Leu	gaa Glu	gcc Ala	ctg Leu 760	gga Gly	2307
45	ccg Pro	att Ile	aat Asn	gca Ala 765	Ser	ctc Leu	atc Ile	gtc Val	atg Met 770	gtg Val	ctg Leu	gcc	cgg Arg	acc Thr 775	gag Glu	ctg Leu	2355
43	cct Pro	gcc Ala	Ctc Leu 780	Arg	tac Tyr	cgc Arg	ttc Phe	aat Asn 785	gcc Ala	ccc Pro	atc Ile	gcc Ala	cgt Arg 790	gac Asp	tcg Ser	ctg Leu	2403
50	ccc Pro	Pro 795	Tyr	tcc Ser	tgg Trp	cac His	tat Tyr 800	gcg Ala	ccc Pro	tgg Trp	acc Thr	aag Lys 805	tgc Cys	tcg Ser	gcc Ala	cag Gln	2451
55	tgt Cys 810	Ala	ggc Gly	ggt	ago Ser	cag Gln 815	Val	cag Gln	gcg Ala	gtg Val	gag Glu 820	Сув	cgc Arg	aac Asn	cag Gln	ctg Leu 825	2499
60	Asp	ago Ser	tcc Ser	gcg Ala	gtc Val 830	. Ala	Pro	cac His	tac Tyr	tgc Cys 835	Ser	gcc Ala	cac His	ago Ser	aag Lys 840	ctg Leu	2547
. -	Pro	aaa Lys	agg Arg	Glr 845	ı Arg	g Ala	tgc Cys	aac Asr	ace Thr	Glu	cct Pro	tgc Cys	Pro	cca Pro 855	Asp	tgg Trp	2595
65	gtt	gta	a ggg	aac	tgg	tcg	cto	: tgc	ago	cgc	ago	tgc	gat	gca	ggc	gtg	2643

	Val	Val	Gly 860	Asn	Trp	Ser	Leu	Cys 865	Ser	Arg	Ser	Cys	Asp 870	Ala	Gly	Val	
5	cgc Arg	agt Ser 875	cgc Arg	tcg Ser	gtc Val	gtg Val	tgc Cys 880	cag Gln	cgc Arg	cgc Arg	gtc Val	tct Ser 885	gcc Ala	gcg Ala	gag Glu	gag. Glu	2691
10		gcg Ala										Arg					2739
15		gcc Ala															2787
	tgg Trp	tct Ser	gag Glu	tgc Cys 925	acc Thr	ccc Pro	agc Ser	tgc Cys	999 Gly 930	ccg Pro	ggc Gly	ctc Leu	cgc Arg	cac His 935	cgc Arg	gtg Val	2835
20		ctt Leu															2883
25		tca Ser 955															2931
30		tgc Cys															2979
35		cag Gln												Cys			3027
		acg Thr	Gly					Glu					Leu				3075
40		acg Thr					Ala					Pro					3123
45	Gly	cct Pro 1035				Lys					Val						3171
50		ctc Leu)			Gln					Ala					Met		3219
55		aaa Lys		Сув				tagg	1999¢	gc g	gegge	cacco	g ga	agcca	acago	:	3270
	tggd	9999	gtc t	ccg	ccgcc	ca go	ccto	gcago	999	ccgg	jcca	aagg	9999	ecc o	9999	19 99cg	3330
60		actgo tggct					gacgo	gaged	gga	agtt	att	tatt	9998	ac o	cct	gcaggg	
		-3901	ל ככי	יצצבי	990	•										*	3409
65	<213	0 > 24 l > 10 2 > PI 3 > Ho	72 RT	sapie	ens A	ADAM?	rs-10)									

The second of the second

		> 24		Cvs	Pro	Val	Tro	Ara	Ala	Met	Ara	Ser	Pro	Ser	Pro	Pro
5	1	561	501	Cys	5	•44		5		10	5				15	
J	Ala	Trp	Thr	Thr 20	Thr	Gly	His	Cys	Trp 25	Pro	Ser	Arg	His	Leu 30	Leu	Pro
10	Gly	Ala	Ala 35	Pro	Arg	His	Gly	Gly 40	His	Ser	Arg	Val	Pro 45	Pro	Leu	Leu
	Gln	Ser 50	Gly	Leu	Ala	Ser	Thr 55	His	Phe	Leu	Leu	Asn 60	Leu	Thr	Arg	Ser
15	Ser 65	Arg	Leu	Leu	Ala	Gly 70	Arg	Val	Ser	Val	Glu 75	Tyr	Trp	Thr	Arg	Glu 80
20	Gly	Leu	Ala	Trp	Gln 85	Arg	Ala	Ala	Arg	Pro 90	His	Cys	Leu	Tyr	Ala 95	Gly
20	His	Leu	Gln	Gly 100	Gln	Ala	Ser	Ser	Ser 105	His	Val	Ala	Ile	Ser 110	Thr	Cys
25	Gly	Gly	Leu 115	His	Gly	Leu	Ile	Val 120	Ala	Asp	Glu	Glu	Glu 125	Tyr	Leu	Ile
	Glu	Pro 130	Leu	His	Gly	Gly	Pro 135	Lys	Gly	Ser	Arg	Ser 140	Pro	Glu	Glu	Ser
30	Gly 145	Pro	His	Val	Val	Tyr 150	Lys	Arg	Ser	Ser	Leu 155	Arg	His	Pro	His	Leu 160
35	Asp	Thr	Ala	Суз	Gly 165	Val	Arg	Asp	Glu	Lys 170	Pro	Trp	Lys	Gly	Arg 175	Pro
	Trp	Trp	Leu	Arg 180	Thr	Leu	Lys	Pro	Pro 185	Pro	Ala	Arg	Pro	Leu 190	Gly	Asn
40			195					200					205	Ser		
		210					215					220		Val		
45	His 225	_				230					235					240
50		Ala	Lys	Leu	Phe 245	Gln	Asp	Ser	Ser	Leu 250		Ser	Thr	Val	Asn 255	Ile
50	Leu	Val	Thr	Arg 260		Ile	Leu	Leu	Thr 265	Glu	Asp	Gln	Pro	Thr 270	Leu	Glu
55		Thr	His 275		Ala	Gly	Lys	Ser 280		Asp	Ser	Phe	Сув 285		Trp	Gln
	Lys	Ser 290		Val	Asn	His	Ser 295		His	Gly	Asn	Ala 300		Pro	Glu	Asn
60	305					310					315					Ile 320
65	_	Ile	Tyr	Lys	Asn 325		Pro	Cys	Gly	Thr 330		Gly	Leu	Ala	Arg 335	Trp
-	Ala	Glu	Cys	Val	Ser	Ala	Arg	Glu	Ala	Ala	Ala	Ser	Met	Arg	Thr	Leu

				340					345					350		
5	Ala	Ala	Thr 355	Ser	Val	His	His	Cys 360	His	Glu	Ile	Gly	His 365	Thr	Phe	Gly
3	Met	Asn 370	His	Asp	Gly	Val	Gly 375	Asn	Ser	Cys	Gly	Ala 380	Arg	Gly	Gln	Asp
10	Pro 385	Ala	Lys	Leu	Met	Ala 390	Ala	His	Ile	Thr	Met 395		Thr	Asn	Pro	Phe 400
	Val	Trp	Ser	Ser	Cys 405	Asn	Arg	Asp	Tyr	Ile 410	Thr	Ser	Phe	Leu	Asp 415	Ser
15	Gly	Leu	Gly	Leu 420	Cys	Leu	Asn	Asn	Arg 425	Pro	Pro	Arg	Gln	Asp 430	Phe	Val
20	Tyr	Pro	Thr 435	Val	Ala	Pro	Gly	Gln 440	Ala	Tyr	Asp	Ala	Asp 445	Glu	Gln	Cys
	Arg	Phe 450	Gln	His	Gly	Val	Lys 455	Ser	Arg	Gln	Cys	Lys 460	туг	Gly	Glu	Val
25	Cys 465	Ser	Glu	Leu	Trp	Cys 470	Leu	Ser	Lys	Ser	Asn 475	Arg	Cys	Ile	Thr	Asn 480
	Ser	Ile	Pro	Ala	Ala 485	Glu	Gly	Thr	Leu	Cys 490	Gln	Thr	His	Thr	Ile 495	Asp
30	Lys	Gly	Trp	Cys 500	Tyr	Lys	Arg	Val	Cys 505	Val	Pro	Phe	Gly	Ser 510	Arg	Pro
35	Glu	Gly	Val 515	Asp	Gly	Ala	Trp	Gly 520	Pro	Trp	Thr	Pro	Trp 525	Gly	Asp	Суѕ
	Ser	Arg 530	Thr	Cys	Gly	Gly	Gly 535	Val	Ser	Ser	Ser	Ser 540	Arg	His	Cys	Asp
40	Ser 545	Pro	Arg	Pro	Thr	Ile 550	Gly	Gly	Lys	Tyr	Cys 555	Leu	Gly	Glu	Arg	Arg 560
	Arg	His	Arg	Ser	Суs 565	Asn	Thr	Asp	Asp	Cys 570	Pro	Pro	Gly	Ser	Gln 575	Asp
45	Phe	Arg	Glu	Val 580	Gln	Cys	Ser	Glu	Phe 585	Asp	Ser	Ile	Pro	Phe 590	Arg	Gly
50	,		595	-		_		600			_	_	605	Lys		•
	Ser	Leu 610	Thr	Ser	Leu	Ala	Glu 615	Gly	Phe	Asn	Phe	Tyr 620	Thr	Glu	Arg	Ala
55	Ala 625	Ala	Val	Val	Asp	Gly 630	Thr	Pro	Сув	Arg	Pro 635	Asp	Thr	Val	Asp	Ile 640
	Cys	Val	Ser	Gly	Glu 645	Сув	Lys	His	Val	Gly 650	Cys	Asp	Arg	Val	Leu 655	Gly
60	Ser	Asp	Leu	Arg 660	Glu	Asp	Lys.	Cys	Arg 665	Val	Cys	Gly	Gly	Asp 670	Gl <u>y</u>	Ser
65	Ala	Сув	Glu 675	Thr	Ile	Glu.	Gly	Val 680	Phe	Ser	Pro	Ala	Ser 685	Pro	Gly	Ala
	Gly	Tyr	Glu	Asp	Val	Val	Trp	Ile	Pro	Lys	Gly	Ser	Val	His	Ile	Phe

		690					695					700					
5	Ile 705	Gln	Asp	Leu	Asn	Leu 710	Ser	Ļеи	Ser	His	Leu 715	Ala	Leu	Lys	Gly	Asp 720	
5	Gln	Glu	Ser	Leu	Leu 725	Leu	Glu	Gly	Leu	Pro 730	Gly	Thr	Pro	Gln	Pro 735	His	
10	Arg	Leu	Pro	Leu 740	Ala	Gly	Thr	Thr	Phe 745	Gln	Leu	Arg	Gln	Gly 750	Pro	Asp	
	Gln	Val	Gln 755	Ser	Leu	Glu	Ala	Leu 760	Gly	Pro	Ile	Asn	Ala 765	Ser	Leu	Ile	
15	Val	Met 770	Val	Leu	Ala	Arg	Thr 775	Glu	Leu	Pro	Ala	Leu 780	Arg	Tyr	Arg	Phe	
20	Asn 785	Ala	Pro	Ile	Ala	Arg 790	Asp	Ser	Leu	Pro	Pro 795	Tyr	Ser	Trp	His	Tyr 800	
20	Ala	Pro	Trp	Thr	Lys 805	Cys	Ser	Ala	Gln	Cys 810	Ala	Gly	Gly	Ser	Gln 815	Val	
25	Gln	Ala	Val	Glu 820	Cys	Arg	Asn	Gln	Leu 825	Asp	Ser	Ser	Ala	Val 830	Ala	Pro	
	His	Tyr	Cys 835	Ser	Ala	His	Ser	Lys 840	Leu	Pro	Lys	Arg	Gln 845	Arg	Ala	Cys	
3 _. 0	Asn	Thr 850	Glu	Pro	Cys	Pro	Pro 855	Asp	Trp	Val	Val	Gly 860	Asn	Trp	Ser	Leu	
35	Cys 865	Ser	Arg	Ser	Cys	Asp 870	Ala	Gly	Val	Arg	Ser 875	Arg	Ser	Val	Val	Cys 880	
33	Gln	Arg	Arg	Val	Ser 885	Ala	Ala	Glu	Glu	Lys 890	Ala	Leu	Asp	Asp	Ser 895	Ala	
40	Cys	Pro	Gln	Pro 900	Arg	Pro	Pro	Val	Leu 905	Glu	Ala	Cys	His	Gly 910	Pro	Thr	
	Cys	Pro	Pro 915	Glu	Trp	Ala	Ala	Leu 920	Asp	Trp	Ser	Glu	Cys 925	Thr	Pro	Ser	
45	Cys	Gly 930	Pro	Gly	Leu	Arg	His 935	Arg	Val	Val	Leu	Cys 940	ГÀЗ	Ser	Ala	Asp	
50	945		Ala	Thr	Leu	Pro 950	Pro	Ala	His	Сув	Ser 955	Pro	Ala	Ala	Lys	Pro 960	
		Ala	Thr	Met	Arg 965	Сув	Asn	Leu	Arg	Arg 970	Cys	Pro	Pro	Ala	Arg 975	Trp	
55		Ala	Gly	Glu 980		Gly	Glu	Cys	Ser 985		Gln	Cys	Gly	Val 990		Gln	
	Arg	Gln	Arg 995		.Val	Arg		Thr 1000		His	Thr		Gln 1005		Ser	His	
60	Glu	Cys 1010		Glu	Ala		Arg 1015		Pro	Thr	Thr	Gln 1020		Cys	Glu	Ala	
65	102	_	Asp	Ser		Thr 1030		Gly	Asp		Pro 1035		Glu	Cys	Lys	Asp 1040	
J J	Val	Asn	Lys	Val	Ala	туг	Cys	Pro	Leu	Val	Leu	Lys	Phe	Gln	Phe	Cys	

1045

1055

1050

Ser Arg Ala Tyr Phe Arg Gln Met Cys Cys Lys Thr Cys Gln Gly His 1065 1070 <210> 25 <211> 5990 10 <212> DNA <213> Homo sapiens ADAMTS-9b <220> <221> CDS 15 <222> (33)..(5834) <400> 25 tgggggcagc ggagggaggg gtgggaagca cc atg cag ttt gta tcc tgg gcc Met Gln Phe Val Ser Trp Ala aca ctg cta acg ctc ctg gtg cgg gac ctg gcc gag atg ggg agc cca 101 Thr Leu Leu Thr Leu Leu Val Arg Asp Leu Ala Glu Met Gly Ser Pro gac gcc gcg gcc gtg cgc aag gac agg ctg cac ccg agg caa gtg Asp Ala Ala Ala Val Arg Lys Asp Arg Leu His Pro Arg Gln Val 30 30 aaa tta tta gag acc ctg agc gaa tac gaa atc gtg tct ccc atc cga 197 Lys Leu Leu Glu Thr Leu Ser Glu Tyr Glu Ile Val Ser Pro Ile Arg gtg aac gct ctc gga gaa ccc ttt ccc acg aac gtc cac ttc aaa aga 35 Val Asn Ala Leu Gly Glu Pro Phe Pro Thr Asn Val His Phe Lys Arg acg cga cgg agc att aac tot gcc act gac ccc tgg cct gcc ttc gcc Thr Arg Arg Ser Ile Asn Ser Ala Thr Asp Pro Trp Pro Ala Phe Ala tee tee tee tee tee ace tee eec cag geg cat tae ege etc tet Ser Ser Ser Ser Ser Thr Ser Pro Gln Ala His Tyr Arg Leu Ser 95 gcc ttc ggc cag cag ttt cta ttt aat ctc acc gcc aat gcc gga ttt 389 Ala Phe Gly Gln Gln Phe Leu Phe Asn Leu Thr Ala Asn Ala Gly Phe 110 115 50 atc gct cca ctg ttc act gtc acc ctc ctc ggg acg ccc ggg gtg aat Ile Ala Pro Leu Phe Thr Val Thr Leu Leu Gly Thr Pro Gly Val Asn 120 125 cag acc aag ttt tat tcc gaa gag gaa gcg gaa ctc aag cac tgt ttc 55 Gln Thr Lys Phe Tyr Ser Glu Glu Glu Ala Glu Leu Lys His Cys Phe 140 tac aaa ggc tat gtc aat acc aac tcc gag cac acg gcc gtc atc agc Tyr Lys Gly Tyr Val Asn Thr Asn Ser Glu His Thr Ala Val Ile Ser ctc tgc tca gga atg ctg ggc aca ttc cgg tct cat gat ggg ggt tat 581 Leu Cys Ser Gly Met Leu Gly Thr Phe Arg Ser His Asp Gly Gly Tyr 175 · 180 65 ttt att gaa cca cta cag tct atg gat gaa caa gaa gat gaa gag gaa

	Phe	Ile 185	Glu	Pro	Leu	Gln	Ser 190	Met	Asp	Glu	Gln	Glu 195	Asp	Glu	Glu	Glu	
5	caa Gln 200	aac Asn	aaa Lys	ccc Pro	cac His	atc Ile 205	att Ile	tat Tyr	agg Arg	cgc Arg	agc Ser 210	gcc Ala	ccc Pro	cag Gln	aga Arg	gag Glu 215	677
10	ccc Pro	tca Ser	aca Thr	gga Gly	agg Arg 220	cat His	gca Ala	tgt Cys	gac Asp	acc Thr 225	tca Ser	gaa Glu	cac His	aaa Lys	aat Asn 230	agg Arg	725
3.5	cac His	agt Ser	aaa Lys	gac Asp 235	aag Lys	aag Lys	aaa Lys	acc Thr	aga Arg 240	gca Ala	aga Arg	aaa Lys	tgg Trp	gga Gly 245	gaa Glu	agg Arg	773
15	att Ile	aac Asn	ctg Leu 250	gct Ala	ggt Gly	gac Asp	gta Val	gca Ala 255	gca Ala	tta Leu	aac Asn	agc Ser	ggc Gly 260	tta Leu	gca Ala	aca Thr	821
20	gag Glu	gca Ala 265	ttt Phe	tct Ser	gct Ala	tat Tyr	ggt Gly 270	aat Asn	aag Lys	acg Thr	gac Asp	aac Asn 275	aca Thr	aga Arg	gaa Glu	aag Lys	869
25	agg Arg 280	acc Thr	cac His	aga Arg	agg Arg	aca Thr 285	aaa Lys	cgt Arg	ttt Phe	tta Leu	tcc Ser 290	tat Tyr	cca Pro	cgg Arg	ttt Phe	gta Val 295	917
30	gaa Glu	gtc Val	ttg Leu	gtg Val	gtg Val 300	gca Ala	gac Asp	aac Asn	aga Arg	atg Met 305	gtt Val	tca Ser	tac Tyr	cat His	gga Gly 310	gaa Glu	965
	Asn	ctt Leu	caa Gln	cac His 315	tat Tyr	att Ile	tta Leu	act Thr	tta Leu 320	atg Met	tca Ser	att Ile	gta Val	gcc Ala 325	tct Ser	atc Ile	1013
35	tat	aaa Lys	gac Asp 330	Pro	agt Ser	att Ile	gga Gly	aat Asn 335	tta Leu	att Ile	aat Asn	att Ile	gtt Val 340	att Ile	gtg Val	aac Asn	1061
40	tta Leu	att Ile 345	Val	att Ile	cat His	aat Asn	gaa Glu 350	cag Gln	gat Asp	ggg Gly	cct Pro	tcc Ser 355	ata Ile	tct Ser	ttt Phe	aat Asn	1109
45	gct Ala 360	Glr	aca Thr	aca Thr	tta Leu	aaa Lys 365	Asn	ttt Phe	tgc Cys	cag Gln	tgg Trp 370	cag Gln	cat His	tcg Ser	aac Asn	agt Ser 375	1157
50	Pro	ggt Gly	gga Gly	atc Ile	cat His 380	His	gat Asp	act	gct Ala	gtt Val 389	Leu	tta Leu	aca Thr	aga Arg	Cag Gln 390	Asp	1205
	Ile	tgo Cys	aga Arg	gct Ala 395	His	gac Asp	aaa Lys	tgt	gat Asp 400	Thr	tta Leu	ggc Gly	ctg Leu	gct Ala 405	Glu	ctg Leu	1253
55	aaa	aco Thi	att Ile	Cys	gat Asp	ccc Pro	tat Tyr	aga Arg	Ser	tgt Cys	tct Ser	att Ile	agt Ser 420	GIU	gat Asp	agt Ser	1301
60	· Gly	t t t q 7 Let 42!	seı د	aca Thr	gct Ala	ttt Phe	ace Thr	Ile	gco Ala	cat His	gag Glu	ctg Leu 435	ι Gly	cat His	gtg Val	ttt. Phe	1349
65	aad Asi 440	n Me	g cct t Pro	cat His	gat S Asi	gad Asp 445) Asr	aad Asi	aaa Lys	a tgi	aaa 5 Lys 450	s Glu	gaa Glu	gga Gly	gtt Val	aag Lys 455	1397

5	agt Ser	ccc Pro	cag Gln	cat His	gtc Val 460	atg Met	gct Ala	cca Pro	aca Thr	ctg Leu 465	aac Asn	ttc Phe	tac Tyr	acc Thr	aac Asn 470	ccc Pro	1445
	tgg Trp	atg Met	tgg Trp	tca Ser 475	aag Lys	tgt Cys	agt Ser	cga Arg	aaa Lys 480	tat Tyr	atc Ile	act Thr	gag Glu	ttt Phe 485	tta Leu	gac Asp	1493
10	act Thr	ggt Gly	tat Tyr 490	ggc Gly	gag Glu	tgt Cys	ttg Leu	ctt Leu 495	aac Asn	gaa Glu	cct Pro	gaa Glu	tcc Ser 500	aga Arg	ccc Pro	tac Tyr	1541
15	cct Pro	ttg Leu 505	cct Pro	gtc Val	caa Gln	ctg Leu	cca Pro 510	ggc Gly	atc Ile	ctt Leu	tac Tyr	aac Asn 515	gtg Val	aat Asn	aaa Lys	caa Gln	1589
20	tgt Cys 520	gaa Glu	ttg Leu	att Ile	ttt Phe	gga Gly 525	cca Pro	ggt Gly	tct Ser	cag Gln	gtg Val 530	tgc Cys	cca Pro	tat Tyr	atg Met	atg Met 535	1637
25	cag Gln	tgc Cys	aga Arg	cgg Arg	ctc Leu 540	tgg Trp	tcg Ser	aat Asn	aac Asn	gtc Val 545	aat Asn	gga Gly	gta Val	cac His	aaa Lys 550	ggc Gly	1685
	tgc Cys	cgg Arg	act Thr	cag Gln 555	cac His	aca Thr	ccc Pro	tgg Trp	gcc Ala 560	gat Asp	G1 y 999	acg Thr	gag Glu	tgc Cys 565	gag Glu	cct Pro	1733
30	gga Gly	aag Lys	cac His 570	tgc Cys	aag Lys	tat Tyr	gga Gly	ttt Phe 575	tgt Cys	gtt Val	ccc Pro	aaa Lys	gaa Glu 580	atg Met	gat Asp	gtc Val	1781
35	ccc Pro	gtg Val 585	aca Thr	gat Asp	gga Gly	tcc Ser	tgg Trp 590	gga Gly	agt Ser	tgg Trp	agt Ser	ccc Pro 595	ttt Phe	gga Gly	acc Thr	tgc Cys	1829
40				tgt Cys													1877
45	aga Arg	cca Pro	gaa Glu	cca Pro	aaa Lys 620	aat Asn	ggt Gly	gga Gly	aaa Lys	tac Tyr 625	tgt Cys	gta Val	gga Gly	cgt Arg	aga Arg 630	atg Met	1925
	aaa Lys	ttt Phe	aag Lys	tcc Ser 635	tgc Cys	aac Asn	Thr	gag Glu	Pro	Cys	ctc Leu	Lys	cag Gln	Lys	Arg	gac Asp	1973
50	ttc Phe	cga Arg	gat Asp 650	gaa Glu	cag Gln	tgt Cys	gct Ala	cac His 655	ttt Phe	gac Asp	G1y 999	aag Lys	cat His 660	ttt Phe	aac Asn	atc Ile	2021
55	aac Asn	ggt Gly 665	ctg Leu	ctt Leu	ccc Pro	aat Asn	gtg Val 670	cgc Arg	tgg Trp	gtc Val	cct Pro	aaa Lys 675	tac Tyr	agt Ser	gga Gly	att Ile	2069
60	ctg Leu 680	atg Met	aag Lys	gac Asp	cgg Arg	tgc Cys 685	Lys	ttg Leu	ttc Phe	tgc Cys	aga Arg 690	gtg Val	gca Ala	G1y 999	aac Asn	aca Thr 695	2117
65	gcc Ala	tac Tyr	tat Tyr	cag Gln	ctt Leu 700	cga Arg	gac Asp	aga Arg	gtg Val	ata Ile 705	gat Asp	gga Gly	act Thr	cct Pro	tgt Cys 710	ggc Gly	2165
	cag	gac	aca	aat	gat	atc	tgt	gtc	cag	ggc	ctt	tgc	cgg	caa	gct	gga	2213

	Gln	Asp	Thr	Asn 715	Asp	Ile	Cys	Val	Gln 720	Gly	Leu	Cys	Arg	Gln 725	Ala	Gly	
5	tgc Cys	gat Asp	cat His 730	gtt Val	tta Leu	aac Asn	tca Ser	aaa Lys 735	gcc Ala	cgg Arg	aga Arg	gat Asp	aaa Lys 740	tgc Cys	G1 y 999	gtt Val	2261
10	tgt Cys	ggt Gly 745	ggc Gly	gat Asp	aat Asn	tct Ser	tca Ser 750	tgc Cys	aaa Lys	aca Thr	gtg Val	gca Ala 755	gga Gly	aca Thr	ttt Phe	aat Asn	2309
15	aca Thr 760	gta Val	cat His	tat Tyr	ggt Gly	tac Tyr 765	aat Asn	act Thr	gtg Val	gtc Val	cga Arg 770	att Ile	cca Pro	gct Ala	ggt Gly	gct Ala 775	2357
15	acc Thr	aat Asn	att Ile	gat Asp	gtg Val 780	Arg	cag Gln	cac His	agt Ser	ttc Phe 785	tca Ser	Gly 999	gaa Glu	aca Thr	gac Asp 790	gat Asp	2405
20	gac Asp	aac Asn	tac Tyr	tta Leu 795	gct Ala	tta Leu	tca Ser	agc Ser	agt Ser 800	aaa Lys	ggt Gly	gaa Glu	ttc Phe	ttg Leu 805	cta Leu	aat Asn	2453
25	gga Gly	aac Asn	ttt Phe 810	gtt Val	gtc Val	aca Thr	atg Met	gcc Ala 815	aaa Lys	agg Arg	gaa Glu	att Ile	cgc Arg 820	att Ile	Gly 999	aat Asn	2501
30	gct Ala	gtg Val 825	gta Val	gag Glu	tac Tyr	agt Ser	999 Gly 830	Ser	gag Glu	act Thr	gcc Ala	gta Val 835	gaa Glu	aga Arg	att Ile	aac Asn	2549
35	Ser 840	Thr	gat Asp	cgc Arg	att Ile	gag Glu 845	caa Gln	gaa Glu	ctt Leu	ttg Leu	ctt Leu 850	cag Gln	gtt Val	ttg Leu	tcg Ser	gtg Val 855	2597
33	gga	aag Lys	ttg Leu	tac Tyr	aac Asn 860	Pro	gat Asp	gta Val	cgc Arg	tat Tyr 865	tct Ser	ttc Phe	aat Asn	att Ile	cca Pro 870	att Ile	2645
40	gaa Glu	gat Asp	aaa Lys	cct Pro 875	Gln	cag Gln	ttt Phe	tac Tyr	tgg Trp 880	aac Asn	agt Ser	cat His	Gly 999	cca Pro 885	tgg Trp	caa Gln	2693
45	gca Ala	tgc Cys	agt Ser 890	aaa Lys	ccc Pro	tgc Cys	caa Gln	999 Gly 895	Glu	cgg Arg	aaa Lys	cga Arg	aaa Lys 900	ctt Leu	gtt Val	Cys Cys	2741
50	Thr	agg Arg 905	g Glu	tct Ser	gat Asp	cag Gln	ctt Leu 910	Thr	gtt Val	tct Ser	gat Asp	caa Gln 915	Arg	tgc Cys	gat Asp	cgg Arg	2789
**	Le:	Pro	c cag o Glr	g cct n Pro	gga Gly	cac His	Ile	act Thr	gaa Glu	ccc Pro	tgt Cys 930	Gly	aca Thr	ggc	tgt Cys	gac Asp 935	2837
55	cto	g ago	g tgg g Tr	g cat p His	gtt Val 940	Ala	agc Ser	agg Arg	ı agt ı Ser	gaa Glu 945	. Суа	agt Ser	gcc Ala	cag Glr	tgt Cys 950	ggc	2885
60	Let	g 99' u Gl	t tac y Ty:	cgc r Arg 95!	Thi	ttg Lev	g gad 1 Asp	ato	tac Tyr 960	. Cys	gco Ala	aaa Lys	tat Tyr	ago Ser 969	Arg	ctg Leu	2933
65	ga 5 As _l	t gg p Gl	g aaq y Ly: 97	s Thi	gaç r Glu	aaq Lys	g gtt s Val	gat Ası 979	Asp	ggt Gly	tti Phe	e Cys	ago Ser 980	: Sei	c cat	ccc Pro	2981

5	aaa Lys	cca Pro 985	agc Ser	aac Asn	cgt Arg	gaa Glu	aaa Lys 990	tgc Cys	tca Ser	999 999	gaa Glu	tgt Cys 995	aac Asn	acg Thr	ggt Gly	ggc Gly	3029
	tgg Trp 1000	Arg	tat Tyr	tct Ser	Ala	tgg Trp 1005	act Thr	gaa Glu	tgt Cys	Ser	aaa Lys 1010	agc Ser	tgt Cys	gac Asp	Gly	999 Gly 1015	3077
10	acc Thr	cag Gln	agg Arg	Arg	agg Arg 1020	gct Ala	att Ile	tgt Cys	Val	aat Asn 1025	acc Thr	cga Arg	aat Asn	Asp	gta Val 1030	ctg Leu	3125
15	gat Asp	gac Asp	Ser	aaa Lys 1035	tgc Cys	aca Thr	cat His	Gln	gag Glu 1040	aaa Lys	gtt Val	acc Thr	Ile	cag Gln 1045	agg Arg	tgc Cys	3173
20	Ser	Glu 1	Phe LO50	cct Pro	Cys	Pro	Gln	Trp 1055	Lys	Ser	Gly	Asp	Trp 1060	Ser	Glu	Cys	3221
25	Leu 1	Val L065	Thr	tgt Cys	Gly	Lys]	Gly 1070	His	Lys	His	Arg	Gln 1075	Val	Trp	Cys	Gln	3269
	Phe 1080	Gly)	Glu	gat Asp	Arg	Leu 1085	Asn	даА	Arg	Met 1	Cys 1090	Asp	Pro	Glu	Thr	Lys 1095	3317
30		Thr	Ser	Met	Gln 100	Thr	Cys	Gln	Gln 1	Pro 105	Glu	Met	Ala	Ser	Trp 1110	Gln	3365
35	Ala	Gly	Pro	1115	Val	Gln	Сув	Ser 1	Val 120	Thr	Cys	Gly	Gln	Gly 1125	Tyr	Gln	3413
40	Leu	Arg 1	Ala 130	gtg Val	Lys	Cys	Ile 1	11e 135	Gly	Thr	Tyr	Met]	Ser .140	Val	Val	Asp	3461
45	Asp 1	Asn 1145	Asp	tgt Cys	Asn	Ala 1	Ala 150	Thr	Arg	Pro	Thr 1	Asp 155	Thr	Gln	Asp	Cys	3509
	Glu 1160	Leu)	Pro	tca Ser	Cys 1	His .165	Pro	Pro	Pro	Ala 1	Ala 170	Pro	Glu	Thr	Arg 1	Arg	3557
50		Thr	Tyr	Ser]	Ala 180	Pro	Arg	Thr	Gln 1	Trp 185	Arg	Phe	Gly	Ser	Trp 190	Thr	3605
55	cca Pro	tgc Cys	Ser	gcc Ala 195	act Thr	tgt Cys	G1 y 999	Lys	ggt Gly 200	acc Thr	cgg Arg	atg Met	Arg	tac Tyr 205	gtc Val	agc Ser	3653
60	tgc Cys	Arg	gat Asp 210	gag Glu	aat Asn	ggc Gly	Ser	gtg Val 215	gct Ala	gac Asp	gag Glu	Ser	gcc Ala 220	tgt Cys	gct Ala	acc Thr	3701
65	Leu	ect Pro 225	aga Arg	cca Pro	gtg Val	Ala	aag Lys 230	gaa Glu	gaa Glu	tgt Cys	Ser	gtg Val 235	aca Thr	ccc Pro	tgt Cys	g1y ggg	3749
	caa	tgg	aag	gcc	ttg	gac	tgg	agc	tct	tgc	tct	gtg	acc	tgt	999	caa .	3797

	Gln Trp 1240	Lys	Ala		Asp .245	Trp	Ser	Ser		Ser 250	Val	Thr	Cys		Gln 255	
5	ggt agg Gly Arg	gca Ala	Thr	cgg Arg .260	caa Gln	gtg Val	atg Met	Cys	gtc Val 265	aac Asn	tac Tyr	agt Ser	Asp	cac His 270	gtg Val	3845
10	atc gat Ile Asp	Arg	agt Ser 1275	gag Glu	tgt Cys	gac Asp	Gln	gat Asp 280	tat Tyr	atc Ile	cca Pro	Glu	act Thr 285	gac Asp	cag Gln	3893
15	gac tgt Asp Cys	tcc Ser 1290	atg Met	tca Ser	cca Pro	Cys	cct Pro (295)	caa Gln	agg Arg	acc Thr	Pro	gac Asp 300	agt Ser	ggc Gly	tta Leu	3941
13	gct cag Ala Gln 1305	His			Gln					Arg						3989
20	ccc ago Pro Ser 1320	cgc Arg	acc Thr	His	gtg Val 1325	ctc Leu	ggt Gly	gga Gly	Asn	cag Gln .330	tgg Trp	aga Arg	act Thr	Gly	ccc Pro 335	4037
25	tgg gga Trp Gly	gca Ala	Cys	tcc Ser 1340	agt Ser	acc Thr	tgt Cys	Ala	ggc Gly L345	gga Gly	tcc Ser	cag Gln	Arg	cgt Arg L350	gtt Val	4085
30	gtt gta Val Val	Cys	cag Gln 1355	gat Asp	gaa Glu	aat Asn	Gly	tac Tyr 1360	acc Thr	gca Ala	aac Asn	Asp	tgt Cys 1365	gtg Val	gag Glu	4133
35	aga ata Arg Ile	aaa Lys 1370	cct Pro	gat Asp	gag Glu	Gln	aga Arg 1375	gcc Ala	tgt Cys	gaa Glu	Ser	ggc Gly 1380	cct Pro	tgt Cys	cct Pro	4181
33	cag tgg Gln Trp 1385	Ala	tat Tyr	ggc Gly	Asn	tgg Trp 1390	gga Gly	gag Glu	tgc Cys	Thr	aag Lys 1395	ctg Leu	tgt Cys	ggt Gly	gga Gly	4229
40	ggc ata Gly Ile 1400	aga Arg	aca Thr	Arg	ctg Leu 1405	gtg Val	gtc Val	tgt Cys	Gln	cgg Arg 1410	tcc Ser	aac Asn	ggt Gly	Glu	cgg Arg 415	4277
45	ttt cca Phe Pro	gat Asp	Leu	agc Ser 1420	Cys	Glu	Ile	Leu	Asp	Lys	cct Pro	ccc Pro	Asp	cgt Arg 1430	gag Glu	4325
50	cag tgt Gln Cys	s Asn	aca Thr 1435	cat His	gct Ala	tgt Cys	Pro	cac His 1440	gac Asp	gct Ala	gca Ala	Trp	agt Ser 1445	act Thr	ggc Gly	4373
.	cct tgo Pro Tr	g agc Ser 1450	Ser	tgt Cys	tct Ser	Val	tct Ser 1455	tgt Cys	ggt Gly	cga Arg	Gly	cat His 1460	aaa Lys	caa Gln	cga Arg	4421
55	aat gtt Asn Val	L Tyr	tgc Cys	atg Met	Ala	aaa Lys 1470	gat Asp	gga Gly	agc Ser	His	tta Leu 1475	gaa Glu	agt Ser	gat Asp	tac Tyr	4469
60	tgt aag Cys Lys 1480	g cac s His	ctg Leu	Ala	aag Lys 1485	cca Pro	cat His	Gly 999	His	aga Arg 1490	aag Lys	tgc Cys	cga Arg	Gly	gga Gly 1495	4517
65	aga tgo Arg Cyr	c ccc s Pro	Lys	tgg Trp 1500	Lys	gct Ala	ggc Gly	Ala	tgg Trp 1505	Ser	cag Gln	tgc Cys	Ser	gtg Val 1510	Ser	4565

5						tgt cag ato Cys Gln Ilo 152	e Gly Thr	4613
_		le Ala Arg	Asp Thr			tac acc aga Tyr Thr Arg 1540		4661
10					Cys Pro	ctt tac act Leu Tyr Th: 1555		4709
15		-		_	_	ggc gaa ggo Gly Glu Gly		4757
20			Cys Val	Asp Asp		aac gag gte Asn Glu Va		4805
25			-		Val Asp	cgt gaa age Arg Glu Se: 1609	Cys Ser	4853
		ro Cys Gli	Tyr Val			gaa tgg tca Glu Trp Se: 1620		4901
30					Gln Arg	ctt gtc tcg Leu Val Sei 1635		4949
35						agc tac caa Ser Tyr Gli		4997
40	_		Thr Gln	Pro Pro		cac ccc tgs His Pro Cys	_	5045
45		-			Arg Val	ggc aac tgg Gly Asn Trp 1689	Gly Ser	5093
		al Ser Cya	Gly Val		Met Gln	aga tct gte Arg Ser Va 1700		5141
50				Ser His	Leu Cys	cac act ga His Thr As 1715		5189
55		_	_	_	_	aac tgt gag Asn Cys Gl	-	5237
60			Val Lys	-		gcc agt gad Ala Ser Gl		5285
65	-				Leu Leu	aag ata tte Lys Ile Ph 176	e Cys Ala	5333
93	ggg atg ca	ac tct ga	cac ccc	aaa gag	tac.gtg	aca ctg gt	g cat gga	5381

	Gly Met His Ser Asp His Pro Lys Glu Tyr Val Thr Leu Val His Gly 1770 1775 1780	
5	gac tot gag aat tto too gag gtt tat ggg cac agg tta cac aac coa Asp Ser Glu Asn Phe Ser Glu Val Tyr Gly His Arg Leu His Asn Pro 1785 1790 1795	5429
10	aca gaa tgt ccc tat aac ggg agc cgg cgc gat gac tgc caa tgt cgg Thr Glu Cys Pro Tyr Asn Gly Ser Arg Arg Asp Asp Cys Gln Cys Arg 1800 1805 1810 1815	5477
	aag gat tac acg gcc gct ggg ttt tcc agt ttt cag aaa atc aga ata Lys Asp Tyr Thr Ala Ala Gly Phe Ser Ser Phe Gln Lys Ile Arg Ile 1820 1825 1830	5525
15	gac ctg acc agc atg cag ata atc acc act gac tta cag ttt gca agg Asp Leu Thr Ser Met Gln Ile Ile Thr Thr Asp Leu Gln Phe Ala Arg 1835 1840 1845	5573
20	aca age gaa gga cat eee gte eet tit gee aca gee ggg gat tge tae Thr Ser Glu Gly His Pro Val Pro Phe Ala Thr Ala Gly Asp Cys Tyr 1850 1855 1860	5621
25	agc gct gcc aag tgc cca cag ggt cgt ttt agc atc aac ctt tat gga Ser Ala Ala Lys Cys Pro Gln Gly Arg Phe Ser Ile Asn Leu Tyr Gly 1865 1870 1875	5669
30	acc ggc ttg tct tta act gaa tct gcc aga tgg ata tca caa ggg aat Thr Gly Leu Ser Leu Thr Glu Ser Ala Arg Trp Ile Ser Gln Gly Asn 1880 1885 1890 1895	5717
	tat gct gtc tct gac atc aag aag tcg ccg gat ggt acc cga gtc gta Tyr Ala Val Ser Asp Ile Lys Lys Ser Pro Asp Gly Thr Arg Val Val 1900 1905 1910	5765
35	ggg aaa tgc ggt ggt tac tgt gga aaa tgc act cca tcc tct ggt act Gly Lys Cys Gly Gly Tyr Cys Gly Lys Cys Thr Pro Ser Ser Gly Thr 1915 1920 1925	5813
40	ggc ctg gag gtg cga gtt tta tagctaaggt gctttgaaga ggaagccatt Gly Leu Glu Val Arg Val Leu 1930	5864
45	atggatggat gaaggatagt aatgcaatac ctccacctta atttgggtgc atgtgtatgt	
	gtgtgtgtgt ttgtgtgtga cttgtatgct tgtgtgtgta aatgtgtgta catatacata	5984
50	tataca	5990
50	<210> 26 <211> 1934 <212> PRT <213> Homo sapiens ADAMTS-9b	
55	<400> 26 Met Gln Phe Val Ser Trp Ala Thr Leu Leu Thr Leu Leu Val Arg Asp	
	1 5 10 15	
60	Leu Ala Glu Met Gly Ser Pro Asp Ala Ala Ala Ala Val Arg Lys Asp 20 25 30	
	Arg Leu His Pro Arg Gln Val Lys Leu Leu Glu Thr Leu Ser Glu Tyr 35 40 45	
65	Glu Ile Val Ser Pro Ile Arg Val Asn Ala Leu Gly Glu Pro Phe Pro	•

		50					55					60				
5	Thr 65	Asn	Val	His	Phe	Lys 70	Arg	Thr	Arg	Arg	Ser 75	Ile	Asn	Ser	Ala	Th:
•	Asp	Pro	Trp	Pro	Ala 85	Phe	Ala	Ser	Ser	Ser 90	Ser	Ser	Ser	Thr	Ser 95	Pr
10	Gln	Ala	His	Tyr 100	Arg	Leu	Ser	Ala	Phe 105	Gly	Gln	Gln	Phe	Leu 110	Phe	Ası
	Leu	Thr	Ala 115	Asn	Ala	Gly	Phe	Ile 120	Ala	Pro	Leu	Phe	Thr 125	Val	Thr	Le
15	Leu	Gly 130	Thr	Pro	Gly	Val	Asn 135	Gln	Thr	Lys	Phe	Tyr 140	Ser	Glu	Glu	Gİ
.· 20	Ala 145	Glu	Leu	Lys	His	Cys 150	Phe	Tyr	Lys	Gly	Туг 155	Val	Asn	Thr	Asn	Se:
	Glu	His	Thr	Ala	Val 165	Ile	Ser	Leu	Cys	Ser 170	Gly	Met ,	Leu	Gly	Thr 175	Phe
25	Arg	Ser	His	Asp 180	Gly	Gly	Tyr	Phe	Ile 185	Glu	Pro	Leu	Gln	Ser 190	Met	Ası
	Glu	Gln	Glu 195	Asp	Glu	Glu	Glu	Gln 200	Asn	Lys	Pro	His	Ile 205	Ile	Tyr	Arq
30	Arg	Ser 210	Ala	Pro	Gln	Arg	Glu 215	Pro	Ser	Thr	Gly	Arg 220	His	Ala	Cys	Ası
35	Thr 225	Ser	Glu	His	Lys	Asn 230	Arg	His	Ser	Lys	Asp 235	Lys	Lys	Lys	Thr	Arg 240
	Ala	Arg	Lys	Trp	Gly 245	Glu	Arg	Ile	Asn	Leu 250	Ala	Gly	Asp	Val	Ala 255	Ala
40	Leu	Asn	Ser	Gly 260	Leu	Ala	Thr	Glu	Ala 265	Phe	Ser	Ala	Tyr	Gly 270	Asn	Lys
	Thr	Asp	Asn 275	Thr	Arg	Glu	Lys	Arg 280	Thr	His	Arg	Arg	Thr 285	Lys	Arg	Phe
45	Leu	Ser 290	Tyr	Pro	Arg	Phe	Val 295	Glu	Val	Leu	Val	Val 300	Ala	Asp	Asn	Arg
50	Met 305	Val	Ser	Tyr	His	Gly 310	Glu	Asn	Leu	Gln	His 315	Tyr	Ile	Leu	Thr	Le:
	Met	Ser	Ile	Val	Ala 325	Ser	Ile	Tyr	Lys	Asp 330	Pro	Ser	Ile	Gly	Asn 335	Let
55	Ile	Asn	Ile	Val 340	Ile	Val	Asn	Leu	Ile 345	Val	Ile	His	Asn	Glu 350	Gln	Asp
	Gly	Pro	Ser 355	Ile	Ser	Phe	Asn	Ala 360	Gln	Thr	Thr	Leu	Lys 365	Asn	Phe	Cys
60	Gln	Trp 370	Gln	His	Ser	Asn	Ser 375	Pro	Gly	Gly	Ile	His 380	His	Asp	Thr	Ala
65	Val 385	Leu	Leu	Thr	Arg	Gln 390	Asp	Ile	Cys	Arg	Ala 395	His	Asp	Lys	Cys	As ₁
	Thr	Lan	Clar	T.O.	λla	Glu	T.Ou	Clv	Th~	Tla	CVE	N.c.	Dro	T1	7	C

					405					410					415	
_	Cys	Ser	Ile	Ser 420	Glu	Asp	Ser	Gly	Leu 425	Ser	Thr	Ala	Phe	Thr 430	Ile	Ala
5	His	Glu	Leu 435	Gly	His	Val	Phe	Asn 440	Met	Pro	His	Asp	Asp 445	Asn	Asn	Lys
10	Cys	Lys 450	Glu	Glu	Gly	Val	Lys 455	Ser	Pro	Gln		Val 460	Met	Ala	Pro	Thr
	Leu 465	Asn	Phe	Tyr	Thr	Asn 470	Pro	Trp	Met	Trp	Ser 475	Lys	Cys	Ser	Arg	Lys 480
15	Tyr	Ile	Thr	Glu	Phe 485	Leu	Asp	Thr	Gly	Tyr 490	Gly	Glu	Cys	Leu	Leu 495	Asn
20	Glu	Pro	Glu	Ser 500	Arg	Pro	Tyr	Pro	Leu 505	Pro	Val	Gln	Leu	Pro 510	Gly	Ile
20	Leu	Tyr	Asn 515	Val	Asn	Lys	Gln	Сув 520	Glu	Leu	Ile	Phe	Gly 525	Pro	Gly	Ser
25	Gln	Val 530	Cys	Pro	Tyr	Met	Met 535	Gln	Cys	Arg	Arg	Leu 540	Trp	Ser	Asn	Asn
	Val 545	Asn	Gly	Val	His	Lys 550	Gly	Cys	Arg	Thr	Gln 555	His	Thr	Pro	Trp	Ala 560
30	Asp	Gly	Thr	Glu	Сув 565	Glu	Pro	Gly	Lys	His 570	Cys	Lys	Tyr	Gly	Phe 575	Cys
35	Val	Pro	Lys	Glu 580	Met	Asp	Val	Pro	Val 585	Thr	Asp	Gly	Ser	Trp 590	Gly	Ser
	Trp	Ser	Pro 595	Phe	Gly	Thr	Сув	Ser 600	Arg	Thr	Cys	Gly	Gly 605	Gly	Ile	Lys
40	Thr	Ala 610	Ile	Arg	Glu	Cys	Asn 615	Arg	Pro	Glu	Pro	Lys 620	Asn	Gly	Gly	Lys
	Tyr 625	Сув	Val	Gly	Arg	Arg 630	Met	Ĺуs	Phe	Lys	Ser 635	Cys	Asn	Thr	Glu	Pro 640
45	Cys	Leu	Lys	Gln	Lув 645	Arg	Asp	Phe	Arg	Asp 650	Glu	Gln	Cys	Ala	His 655	Phe
50	Asp	Gly	Lys	His 660	Phe	Asn	Ile	Asn	Gly 665	Leu	Leu	Pro	Asn	Val 670	Arg	Trp
	Val	Pro	Lys 675	Tyr	Ser	Gly	Ile	Leu 680	Met	Lys	Asp	Arg	Cys 685	Lys	Leu	Phe
55	Cys	Arg 690		Ala	Gly	Asn	Thr 695	Ala	Tyr	Tyr	Gln	Leu 700	Arg	Asp	Arg	Val
	705					710					715					Gln 720
60					725					730					735	Ala
65				740					745					750		Lys
	Thr	Val	Ala	Gly	Thr	Phe	Asn	Thr	val	His	Tyr	Glý	Tyr	Asn	Thr	Val

			755					760					765			
5	Val	Arg 770	Ile	Pro	Ala	Gly	Ala 775	Thr	Asn	Ile	Asp	Val 780	Arg	Gln	His	Se
	Phe 785	Ser	Gly	Glu	Thr	Asp 790	Asp	Asp	Asn	Tyr	Leu 795	Ala	Leu	Ser	Ser	Se:
10	Lys	Gly	Glu	Phe	Leu 805	Leu	Asn	Gly	Asn	Phe 810	Val	Val	Thr	Met	Ala 815	Lys
-	Arg	Glu	Ile	Arg 820	Ile	Gly	Asn	Ala	Val 825	Val	Glu	Tyr	Ser	Gly 830	Ser	Glu
15	Thr	Ala	Val 835	Glu	Arg	Ile	Asn	Ser 840	Thr	Asp	Arg	Ile	Glu 845	Gln	Glu	Let
. 20	Leu	Leu 850	Gln	Val	Leu	Ser	Val 855	Gly	Lys	Leu	Tyr	Asn 860	Pro	Asp	Val	Arg
	Tyr 865	Ser	Phe	Asn	Ile	Pro 870	Ile	Glu	Asp	Lys	Pro 875	Gln	Gln	Phe	Tyr	880
25	Asn	Ser	His	Gly	Pro 885	Trp	Gln	Ala	Cys	Ser 890	Lys	Pro	Cys	Gln	Gly 895	Glu
	Arg	Lys	Arg	Lys 900	Leu	Val	Cys	Thr	Arg 905	Glu	Ser	Asp	Gln	Leu 910	Thr	Va]
30	Ser	Asp	Gln 915	Arg	Cys	qaA	Arg	Leu 920	Pro	Gln	Pro	Gly	His 925	Ile	Thr	Glu
35	Pro	Cys 930	Gly	Thr	Gly	Cys	Asp 935	Leu	Arg	Trp	His	Val 940	Ala	Ser	Arg	Ser
	Glu 945	Cys	Ser	Ala	Gln	Cys 950	Gly	Leu	Gly	Tyr	Arg 955	Thr	Leu	Asp	Ile	Ту1 960
40	Сув	Ala	Lys	Tyr	Ser 965	Arg	Leu	Asp	Gly	Lys 970	Thr	Glu	Lys	Val	Asp 975	Asp
	Gly	Phe	Cys	Ser 980	Ser	His	Pro	Lys	Pro 985	Ser	Asn	Arg	Glu	Lys 990	Cys	Sei
15	Gly	Glu	Сув 995	Asn	Thr	Gly		Trp .000	Arg	Tyr	Ser		Trp 1005	Thr	Glu	Cys
50		Lys 1010	Ser	Cys	Asp		Gly 1015	Thr	Gln	Arg	-	Arg 1020	Ala	Ile	Cys	Va]
	Asn 1029		Arg	Asn		Val .030	Leu	Asp	Asp		Lys 1035	Сув	Thr	His		Glu .040
55	Lys	Val	Thr		Gln 1045	Arg	Cys	Ser		Phe 1050	Pro	Cys	Pro	Gln 1	Trp .055	Lys
	Ser	Gly		Trp 1060	Ser	Glu	Cys		Val 1065	Thr	Cys	Gly		Gly 1070	His	Lys
50	His		Gln 1075	Val	Trp	Cys		Phe 1080	Gly	Glu	Asp		Leu 1085	Asn	Asp ·	Arç
65		Cys 1090	Asp	Pro	Glu		Lys 1095	Pro	Thr	Ser		Gln 100	Thr	Cys	Gln	Glr
	Pro	Glu	Met	Ala	Ser	Trp	Gln	Ala	Gly	Pro	Trp	Val	Gln	Cys	Ser	Va]

	1105	ļi			_	110					. 1 1 2				_	.120
_	Thr	Cys	Gly	Gln 1	Gly 125	Tyr	Gln	Leu		Ala .130	Val	Lys	Суз		Ile 135	Gly
5	Thr	Tyr		Ser 140	Val	Val	Asp		Asn 145	Asp	Cys	Asn		Ala 150	Thr	Arg
10	Pro		Asp 155	Thr	Gln	Asp		Glu 160	Leu	Pro	Ser		His 1165	Pro	Pro	Pro
		Ala 170	Pro	Glu	Thr	_	Arg	Ser	Thr	Tyr		Ala 1180	Pro	Arg	Thr	Gln
15	Trp 1185	_	Phe	Gly		Trp 190	Thr	Pro	Cys		Ala 195	Thr	Cys	Gly		Gly .200
20	Thr	Arg	Met	Arg 1	Tyr 1205	Val	Ser	Cys		Asp .210	Glu	Asn	Gly		Val 1215	Ala
	Asp	Glu		Ala 1220	Cys	Ala	Thr		Pro 1225	Arg	Pro	Val		Lys 230	Glu	Glu
25	-	1	.235	Thr		_	1	1240	_			1	1245			
		Ser .250	Val	Thr	Cys		Gln 1255	Gly	Arg	Ala		Arg 1260	Gln	Val	Met	Cys
30	Val 1265	;	_		1	1270	٠			1	1275				. 1	280
35					1285				1	290				1	1295	
			1	Asp 1300				1	1305				1	1310		
40		1	315	Arg			:	1320					1325			
	1	.330		Arg		1	1335					1340				
45	Gly 1345	;				1350				1	1355				3	360
50					1365				1	L370				1	1375	
			1	Gly 1380					1385				1	1390		
55	•	1	.395	Leu	-	_		1400					1405			-
	3	410		Asn		:	1415				:	1420				
60	Asp 1425	5				1430					1435				1	L440
65					1445		_		1	L450				:	1455	
	Gly	Arg	Gly	His	Lys	Gln	Arg	Asn	Val	Tyr	Сув	Met	Ala	Lys	Asp	Gly

			3	460				1	465				1	4 /0		
_	Ser		Leu 475	Glu	Ser	Asp		Cys 480	Lys	His	Leu		Lys 1485	Pro	His	Gly
5	His 1	Arg 490	Lys	Суз	Arg		Gly 495	Arg	Cys	Pro		Trp .500	Lys	Ala	Gly	Ala
10	Trp 1505		Gln	Cys		Val	Ser	Cys	Gly		Gly LS15	Val	Gln	Gln		His 520
	Val	Gly	Cys		Ile 1525	Gly	Thr	His		Ile 530	Ala	Arg	Asp		Glu .535	Cys
15	Asn	Pro		Thr L540	Arg	Pro	Glu		Glu 1545	Cys	Glu	Cys		Gly 1550	Pro	Arg
20	Cys		Leu 1555	Tyr	Thr	Trp		Ala 1560	Glu	Glu	Ser		Glu 1565	Cys	Thr	Lys
20		Cys .570	Gly	Glu	Gly		Arg 1575	Tyr	Arg	Lys		Val 1580	Сув	Val	Asp	Asp
25	Asn 1585	_	Asn	Glu		His 1590	Gly	Ala	Arg		Asp L595	Val	Ser	Lys		Pro 1600
	Val	Asp	Arg		Ser 1605	Cys	Ser	Leu		Pro 1610	Cys	Glu	Tyr		Trp 1615	Ile
30	Thr	Gly		Trp 1620	Ser	Glu	Cys		Val 1625	Thr	Cys	Gly		Gly 1630	Tyr	Lys
35	Gln	_	Leu 1635	Val	Ser	Cys		Glu 1640	Ile	Tyr	Thr		Lys 1645	Glu	Asn	Tyr
32		Tyr 1650	Ser	Tyr	Gln		Thr 1655	Ile	Asn	Cys		Gly 1660	Thr	Gln	Pro	Pro
40	Ser 1665		His	Pro		Tyr 1670	Leu	Arg	Glu		Pro 1675	Val	Ser	Ala		Trp 1680
	Arg	Val	Gly		Trp 1685	Gly	Ser	Cys		Val 1690	Ser	Cys	Gly		Gly 1695	Val
45	Met	Gln		Ser 1700	Val	Gln	Сув		Thr 1705	Asn	Glu	Asp		Pro 1710	Ser	His
50	Leu		His 1715		Asp	Leu		Pro 1720	Glu	Glu	Arg		Thr 1725	Cys	Arg	Asr
		Tyr 1730		Сув	Glu		Pro 1735	Gln	Asn	Сув		Glu 1740	Val	Lys	Arg	Let
55	Lys 174	-	Ala	Ser		Asp 1750		Glu	Tyr		Leu 1755	Met	Ile	Arg		Lys 1760
	Leu	Leu	Lys		Phe 1765		Ala	Gly		His 1770		Asp	His		Lys 1775	Glı
60	Tyr	Val	Thr	Leu 1780		His	Gly		Ser 1785		Asn	Phe		Glu 1790	Val	Ту
65	-	His	Arg 1795		His	Asn		Thr 1800		Суѕ	Pro	Tyr	Asn 1805		Ser	Arg
93	3				- C1 -	~	.	T	7.00	Т	Th-	- רא	בות	C1	Dho	e c .

1810 1815 1820

Ser Phe Gln Lys Ile Arg Ile Asp Leu Thr Ser Met Gln Ile Ile Thr 1825 1830 1835 1840

Thr Asp Leu Gln Phe Ala Arg Thr Ser Glu Gly His Pro Val Pro Phe 1845 1850 1855

Ala Thr Ala Gly Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg 10 1860 1865 1870

Phe Ser Ile Asn Leu Tyr Gly Thr Gly Leu Ser Leu Thr Glu Ser Ala 1875 1880 1885

15 Arg Trp Ile Ser Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser 1890 1895 1900

Pro Asp Gly Thr Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys 1905 1910 1915 1920

20 Cys Thr Pro Ser Ser Gly Thr Gly Leu Glu Val Arg Val Leu 1925 1930

25

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 February 2001 (15.02.2001)

PCT

(10) International Publication Number WO 01/011074 A2

(51) International Patent Classification7:

- (21) International Application Number: PCT/US00/21223
- (22) International Filing Date: 3 August 2000 (03.08.2000)
- (25) Filing Language:

English

C₁₂Q

(26) Publication Language:

English

(30) Priority Data: 09/369,364

6 August 1999 (06.08.1999)

- (71) Applicant (for all designated States except US): THE **CLEVELAND CLINIC FOUNDATION [US/US]; 9500** Euclid Avenue, Cleveland, OH 44195 (US).
- (71) Applicants and
- (72) Inventors: APTE, Suneel, S. [IN/US]; 19917 Malvern Road, Shaker Hts., OH 44122 (US). HURSKAINEN, Tiina, L. [F]/F]; Onnelantie 3A, FIN-90230 Oulu (FI). HI-ROHATA, Satoshi [JP/US]; 6809 Mayfield Road, #859, Mayfield Hts., OH 44124 (US).

- (74) Agent: DOCHERTY, Pamela, A.; Calfee, Halter & Griswold LLP, Suite 1400, 800 Superior Avenue, Cleveland, OH 44114 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TŢ, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG. CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: NUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

(57) Abstract: Isolated mammalian proteins having disintegrin-like and metalloprotease domains with thrombospondin type I motifs, i.e., ADAMTS proteins, are provided. The proteins are ADAMTS-5, ADAMTS-6, ADAMTS-7, ADAMTS-8, ADAMTS-9 and ADAMTS-10, collectively referred to as "ADAMTS-N". The present invention also provides isolated polynucleotides which encode an ADAMTS-N protein or a variant thereof, polynucleotide sequences complementary to such polynucleotides, vectors containing such polynucleotides, and host cells transformed or transfected with such vectors. The present invention also relates to antibodies which are immunospecific for one or more of the ADAMTS-N proteins. The present invention also relates to a protein referred to hereinafter as ADAMTS-R1 (ADAM-TS Related protein-1) and the polynucleotides which encode such protein.

WO 01/011074 A2

(48) Date of publication of this corrected version:

12 September 2002

(15) Information about Correction: see PCT Gazette No. 37/2002 of 12 September 2002, Section II For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A STATE OF THE STA

NUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

Background of the Invention

This invention relates to isolated nucleic acid -molecules

which encode proteins belonging to a zinc metalloprotease family.

The zinc metalloproteases have been implicated in a variety of diseases and development disorders that involve* enhanced or depressed proteolysis of components of the extracellular matrix, receptors, or other extracellular molecules.

More particularly, the invention relates to isolated nucleic acid molecules encoding proteins belonging to a subfamily of zinc metalloproteases referred to as "ADAMTS", an abbreviation for A Disintegrin-like And Metalloprotease domain with ThromboSpondin type I motifs. Proteins in the ADAMTS subfamily all possess a Zn protease catalytic site consensus sequence (HEXXH+H), which suggests an intact catalytic activity for each of these proteins. The ADAMTS proteins also have putative N-terminal signal peptides and lack transmembrane domains, which suggests that the proteins in this subfamily are secreted. The proteins in the ADAMTS subfamily also possess at least one thrombospondin type (TSP1) motif, which suggests a binding of these proteins to components of the extracellular matrix (ECM) or to cell surface components.

Members of the ADAMTS subfamily of proteins are ADAMTS-1,
ADAMTS-2, ADAMTS-3, and ADAMTS-4. ADAMTS-1 protein is selectively
25 expressed in colon 26 adenocarcinoma cachexigenic sublines. ADAMTS-1
mRNA is induced by the inflammatory cytokine interleukin-1 in vitro
and by intravenous administration of lipopolysaccharide in vivo.
Thus, the ADAMTS-1 protein is believed to play a role in tumor
cachexia and inflammation.

The ADAMTS-2 protein is also known as procollagen I/H aminopropetide processing enzyme or PCINP. The ADAMTS-2 protein catalyzes cleavage of native triple-helical procollagen I and procollagen II.

The ADAMTS-2 protein also has an affinity for collagen XIV. Lack of the ADAMTS-2 protein is known to cause dermatosparaxis in cattle, or Ehlers-Danlos syndrome type VIIC (EDS-VIIC) in humans. EDS-VIIC is 5 characterized clinically by severe skin fragility, and biochemically by the presence in skin of procollagen which is incompletely processed at the amino terminus. Thus, it is believed that the ADAMTS-2 protein plays a role in processing of procollagen to mature collagen, an essential step for correct assembly of collagen into
10 collagen fibrils. The ADAMTS-3 protein is similar in sequence to ADAMTS-2 and may have similar function.

The ADAMTS-4 protein catalyzes cleavage of the core protein of the extracellular matrix proteoglycan, aggrecan. Aggrecan degradation is an important factor in the erosion of articular cartilage in arthritic disease. Aggrecan fragments have been identified in cultures undergoing cartilage matrix degradation and in arthritic synovial fluids. Therefore, overexpression or activation 10 of ADAMTS-4 protein may be related to both inflammatory and non-inflammatory arthritis.

- On the basis of the structure, location, and the demonstrated proteolytic activity of ADAMTS proteins 1-4, it is expected that other members of the ADAMTS subfamily play a role in the cleavage of proteoglycan core proteins that are found in the extracellular matrix, such as, for example, versican, brevican, neuracan, NG-2,
- 25 aggrecan, as well as molecules such as collagen. It is also expected that other members of the ADAMTS subfamily play a role in embryogenesis, implantation of a fertilized egg, angiogenesis, arthritic degradation of cartilage, inflammation, nerve regeneration, tumor growth, and metastases.
- 30 Thus, it is desirable to have other members of the ADAMTS

subfamily of proteins, the nucleic acids that encode such proteins, and antibodies that are specific for such proteins. Such molecules are useful research tools for studying development of the extracellular matrix during embryogenesis and fetal development, and for studying disorders or diseases that are characterized by improper development of the extracellular matrix or enhanced or reduced destruction of the extracellular matrix. Such molecules, particularly the nucleic acids and the antibodies, are also useful tools for diagnosing such diseases or for monitoring the efficacy of therapeutic agents that have been developed to treat such diseases.

Summary of the Invention

The present invention provides novel, isolated, and substantially purified proteins having the characteristics of an 15 ADAMTS protein. The novel proteins are referred to hereinafter individually as "ADAMTS-5", "ADAMTS-6", "ADAMTS-7", "ADAMTS-8", "ADAMTS-9" and "ADAMTS-10", and collectively as "ADAMTS-N". In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set 20 forth set forth in SEQ ID NO: 2. In another embodiment, ADAMTS-5 is a human ADAMTS-5 protein which comprises amino acid 1 through amino acid 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, mature human ADAMTS-6 protein comprises amino acid 245 through amino acid 860 of SEQ ID NO: 6. In one embodiment, mature 25 human ADAMTS-7 protein comprises amino acid 233 through amino acid 997 of the sequence set forth in SEQ ID NO: 8. In one embodiment, mature ADAMTS-8 protein is a mouse protein which comprises amino acid 229 through amino acid 905 of the sequence set forth in SEQ ID NO: 10. In another embodiment, ADAMTS-8 protein is a human protein which 30 comprises amino acid 1 through amino acid 245 of the sequence set forth in SEQ ID NO: 12. In one embodiment, mature ADAMTS-9 protein

PCT/US00/21223

is a human protein which comprises amino acid 236 through amino acid 1882 of the sequence set forth in SEQ ID NO: 14. In another embodiment, ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 974 of the sequence set forth in SEQ ID NO:

- 5 16. In one embodiment, mature ADAMTS 10 protein is a human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment, ADAMTS-10 protein is a mouse protein which comprises amino acid 1 through amino acid 547 of the sequence set forth in SEQ ID NO: 20.
- The present invention also provides isolated polynucleotides which encode an ADAMTS-N protein or a variant thereof, polynucleotide sequences complementary to such polynucleotides, vectors containing such polynucleotides, and host cells transformed or transfected with such vectors. The present invention also relates to antibodies which are immunospecific for one or more of the ADAMTS-N proteins. The
 - present invention also relates to a protein referred to hereinafter as ADAMTS-R1 (ADAM-T-S Related protein-1) and the polynucleotides which encode such protein. In one embodiment, the ADAMTS-R1 protein comprises amino acid 1 through amino acid 525 of the sequence set
- 20 forth in SEQ. ID NO: 22.

Brief Description of the Drawings
Figure 1 shows an amino acid sequence (SEQ ID NO:2) of a full-length
mouse ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 1)
which encodes such protein.

25 Figure 2 shows an amino acid sequence (SEQ ID NO:4) of a partial human ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 3) which encodes such protein.

Figure 3 shows an amino acid sequence (SEQ ID NO:6) of a full-length human ADAMTS-6 protein and a nucleic acid sequence (SEQ ID NO:5)

30 which encodes such protein.

Figure 4 shows an amino acid sequence (SEQ ID NO:8) of a full-length human ADAMTS-7 protein and a nucleic acid sequence (SEQ ID NO:7) which encodes such protein.

Figure 5 shows an amino acid sequence (SEQ ID NO: 10) of a full-

5 length mouse ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO:9) which encodes such protein.

Figure 6 shows an amino acid sequence (SEQ ID NO: 12) of a partial human ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO: 11) which encodes such amino acid sequence.

10 Figure 7 shows an amino acid sequence (SEQ ID NO: 14), of a full-length human ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 13) Which encodes such protein.

Figure 8 shows an amino acid sequence (SEQ ID NO: 16) of a partial mouse ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 15)

15 which encodes such amino acid sequence.

Figure 9 shows an amino acid sequence (SEQ ID NO:18) of a full-length human ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 17) which encodes such protein.

Figure 10 show's an amino acid sequence (SEQ ID NO:20) of a partial 20 mouse ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 19) which encodes such amino acid sequence.

Figure 11 shows an amino acid sequence (SEQ ID NO:22) of a full length ADAMTS-R1 protein and a nucleic acid sequence (SEQ ID NO: 21) which encodes such protein.

25 Figure 12 depicts the cloning strategy used for isolation of a. mouse and human ADAMTS-5 cDNAs b. human ADAMTS-6 cDNA and c. human ADAMTS-7 cDNA. The domain organization of each protein relative to the cDNA clones (thin line) is shown as is the extent of overlap between clones. The original I.M.A.G.E. clones are underlined. Intronic 30 regions of incompletely spliced transcripts are shown by the angled

and the state of the state of

dotted lines. DNA scale marker (in bp) and amino acid scale marker are at upper right. Location of the probe used for in situ hybridization (ISH) is shown in a.

Figure 13 shows the predicted amino acid sequences of a. the mouse 5 and human ADAMTS-5 proteins (alignment shows mouse sequence above, partial human sequence below) b. ADAMTS-6, and c. ADAMTS-7. The active-site sequences and proposed Met-turn are enclosed in boxes.

Potential furin cleavage site(s) are indicated by arrows.

Thrombospondin type-1 modules are underlined. Potential sites for N-

- 10 inked glycosylation are overlined. Cysteine residues within the context of an MMP-like "cysteine switch" are indicated by the solid circles. Other cysteine residues are indicated by asterisks. The prodomain extends until the furin cleavage site, and the catalytic domain extends from the furin cleavage site to the approximate start
- 15 of the disintegrin-like sequence (Dis). The start of the spacer domain is indicated; the region between the N-terminal TS domain and the spacer domain is the cysteine-rich domain. The single letter amino acid code is used.

Figure 14 shows Northern analysis of expression of ADAMTS-5, 6 and 7.

- 20 RNA kilobase markers are shown at left of each autoradiogram, and tissue origin is indicated above each lane. a. Mouse embryo northern blots. b. Human multiple adult tissue northern blots.
 - Figure 15 is a schematic representation of the domain structure of ADAMTS-R1 protein as compared to ADAMTS-1 protein.
- 25 Figure 16 shows an amino acid sequence (SEQ ID NO: 24) of an alternative embodiment of a full-length human ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 23) which encodes such protein.

 Figure 17 shows an amino acid sequence (SEQ ID NO: 26) of an alternative embodiment of human ADAMTS-9, which is a full-length

 30 protein designated as human ADAMTS-9b and a nucleic acid sequence

(SEQ ID NO: 25) which encodes such protein.

Figure 18 is a schematic representation of the domain structure of human ADAMTS-9b protein as compared to human and mouse ADAMTS-9 protein.

Detailed Description of the Invention

The present invention relates to novel, isolated, substantially purified, mammalian proteins belonging to the ADAMTS subfamily of metalloproteases. As used herein, the term "substantially purified" 10 refers to a protein that is removed from its natural environment, isolated or separated, and at least 60% free, preferably 75% free, and most preferably 90% free from other components with which it is naturally associated.

The novel mammalian proteins are ADAMTS-5, ADAMTS-6, ADAMTS-7, 15 ADAMTS-8, ADAMTS-9 and ADAMTS-10, collectively ADAMTS-N. In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set forth in SEQ ID NO: 2. In another embodiment, the ADAMTS-5 protein is a human protein which comprises amino acid 1 through amino acid 20 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, ADAMTS-6 protein is a mat-Lire human protein which comprises amino acid 245 through amino acid 860 of SEQ ID NO:6. In one embodiment, the ADAMTS-7 protein is a mature human protein which comprises amino acid 233 through amino acid 997 of the sequence set forth in SEQ ID 25 NO: 8. In one embodiment, the ADAMTS-8 protein is a mature mouse protein which comprises amino acid 229 through amino acid 905 of the sequence set forth in SEQ ID NO: 10. In another embodiment, the ADAMTS-8 protein is a human protein which comprises amino acid 1 through amino acid 245 of the sequence set forth in SEQ ID NO: 12. 30 In one embodiment, the ADAMTS-9 is a mature human protein which comprises amino acid 236 through amino acid 1882 of the sequence set

forth in SEQ ID NO: 14. In another embodiment, the ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 874 of the sequence set forth in SEQ ID NO: 16. In another embodiment, the ADAMTS-9 designated ADAMTS-9b is a human protein 5 which is comprised of 1934 amino acids as set forth in SEQ ID NO 26. In one embodiment, the ADAMTS-10 protein is a mature human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment the ADAMTS- 10 protein is a mouse protein which comprises amino acid 1.

10 through amino acid 525 of the sequence set forth in SEQ ID NO:20. In another embodiment, the ADAMTS-10 protein is a human protein which is comprised of 1072 amino acids as set forth in SEQ ID NO 24.

All of the novel ADAMTS-N proteins starting at the amino terminus comprise a signal sequence followed by a putative pro region 15 which contains a consensus sequence for furin cleavage (except for ADAMTS-10), a catalytic domain, a domain of 60-90 residues with 35 to 45% similarity to snake venom disintegrins, a TS module, a cysteine rich domain containing multiple conserved cysteine residues, a spacer domain, and one or multiple C terminal TS modules. (See Figure 12.)

20 As determined using the BLAST software from the National Center for Biotechnology Information, the predicted mature forms of the ADAMTS-N proteins show an overall 20-30% similarity to each other and to ADAMTS-1-4, although this may be considerably higher or lower for individual domains as described below.

25 The ADAMTS-N proteins also encompass variants of the ADAMTS-N proteins shown in Figs. 1-10. A "variant" as used herein, refers to a protein whose amino acid sequ nce is similar to one of the amino acid sequences shown in Figs. 1-10, hereinafter referred to as the reference amino acid sequence, but does not have 100% identity with 30 the reference sequence. The variant protein has an altered sequence

in which one or more of the amino acids in the reference sequence is deleted or substituted, or one or more amino acids are inserted into the sequence of the reference amino acid sequence. As a result of the alterations, the variant protein has an amino acid sequence which 5 is at least 95% identical to the reference sequence, preferably, at least 97% identical, more preferably at least 98% identical, most preferably at least 99% identical to the reference sequence. Variant sequences which are at least 95% identical have no more than 5 alterations, i.e. any combination of deletions, insertions or 10 substitutions, per 100 amino acids of the reference sequence. Percent identity is determined by comparing the amino acid sequence of the variant with the reference sequence using MEGALIGN project in the DNA STAR program. Sequences are aligned for identity calculations using the method of the software basic local alignment 15 search tool in the BLAST network service (the National Center for Biotechnology Information, Bethesda, MD) which employs the method of Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) J. Mol. Biol. 215, 403-410. Identities are calculated by the Align program (DNAstar, Inc.) In all cases, internal gaps and amino 20 acid insertions in the candidate sequence as aligned are not ignored when making the identity calculation.

while it is possible to have nonconservative amino acid substitutions, it is preferred that the substitutions be conservative amino acid substitutions, in which the substituted amino acid has similar structural or chemical properties with the corresponding amino acid in the reference sequence. By way of example, conservative amino acid substitutions involve substitution of one aliphatic or hydrophobic amino acids, e.g. alanine, valine, leucine and isoleucine, with another; substitution of one hydroxyl-containing amino acid, e.g. serine and threonine, with another; substitution of

-10-

one acidic residue, e.g. glutamic acid or aspartic acid, with another; replacement of one amide-containing residue, e.g. asparagine and glutamine, with another; replacement of one aromatic, residue, e.g. phenylalanine and tyrosine, with another; replacement of one basic residue, e.g. lysine, arginine and histidine, with another; and replacement of one small amino acid, e.g., alanine, serine, threonine, methionine, and glycine, with another.

The alterations are designed not to abolish the immunoreactivity of the variant protein with antibodies that bind to the reference protein. Guidance in determining which amino acid residues may be substituted, inserted or deleted without abolishing immunoreactivity of the variant protein with an antibody specific for the respective reference protein are found using computer programs well known in the art, for example, DNASTAR software.

The ADAMTS-N proteins also encompass fusion proteins comprising an ADAMTS-N protein and a tag, i.e., a second protein or one or more amino acids, preferably from about 2 to 65 amino acids, more preferably from about 34 to about 62 amino acids, which are added to the amino terminus of, the carboxy terminus of, or any point within 20 the amino acid sequence of an ADAMTS-N protein, or a variant of such protein. Typically, such additions are made to stabilize the resulting fusion protein or to simplify purification of an expressed recombinant form of the corresponding ADAMTS-N protein or variant of such protein. Such tags are known in the art. Representative 25 examples of such tags include sequences which encode a series of histidine residues, the epitope tag FLAG, the Herpes simplex glycoprotein D, beta-galactosidase, maltose binding protein, or glutathione S-transferase.

The ADAMTS-N proteins also encompass ADAMTS-N proteins in which 30 one or more amino acids, preferably no more than 10 amino acids, in

-11-

the respective ADAMTS-N protein are altered by posttranslation processes or synthetic methods. Examples of such modifications include, but are not limited to, acetylation, amidation, ADP-ribosylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or a lipid, cross-linking gamma-carboxylation, glycosylation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, sulfation, and transfer-RNA mediated additions of amino acids to proteins such as arginylation and ubiquitination.

The ADAMTS-N proteins are immunogenic and, thus, are useful for preparing antibodies. Such antibodies are useful for identifying and diagnosing disorders which are associated with decreased expression or activity or increased expression of an ADAMTS-N protein. The 15 ADAMTS-N protein may also be useful for treating such disorder.

Diseases involving enhanced or depressed proteolyisis of the core proteins of the extracellular may involve enhanced expression or activity or decreased expression or activity of one or more ADAMTS-N proteins. Thus, ADAMTS-N proteins may be used to identify drugs,

20 polypeptides, auto-antibodies, or other natural compounds which bind to an ADAMTS-N protein with sufficient affinity to block or facilitate its activity. The activity of the ADAMTS-N protein is assayed in the presence and the absence of the putative inhibitor or facilitator using any of a variety of protease assays known in the

25 art. In general, the activity of the ADAMTS-N protein is assayed through the use of a peptide or protein substrate having a known or putative cleavage site for the ADAMTS-N protein. To detect cleavage or to monitor the extent of cleavage, the substrate is tagged in a manner which provides a detectable signal upon cleavage. For

side of the cleavage site and with a fluorescence-quenching group on the opposite side of the cleavage site. Upon cleavage by the substrate, quenching is eliminated and a detectable signal is produced. Alternatively, the substrate is tagged with a colorimetric leaving group that more strongly absorbs upon cleavage. Agents which block ADAMTS-N-catalyzed cleavage of a protein substrate may be administered to a subject to block proteolysis of the corresponding protein substrate.

ADAMTS-R1 Protein

- The present invention also relates to a protein, referred to hereinafter as "ADAMTS-R1". From its amino to its carboxyl terminus, ADAMTS-R1 comprises a signal peptide sequence, a TS1 module, a cysteine-rich domain, a spacer domain, and three TS1 modules. Thus, ADAMTS-R1 has a structure which is related to or similar to an
- 15 ADAMTS-N protein, but which lacks a catalytic domain and a disintegrin-like domain. In one embodiment, ADAMTS-R1, protein comprises amino acid 1 through amino acid 525 of the amino acid sequence, SEQ ID N0:22, shown in Fig. 11. Such protein has a 30-40% overall sequence identity with similar regions of the ADAMTS-N
- 20 proteins. The ADAMTS-R1 proteins also encompass variants of the amino acid sequence shown in Fig. 11 and fusion proteins which contain the amino acid sequence shown in Fig. 11 or a variant thereof. On the basis of its domain organization, it is expected that ADAMTS-R1 can bind to extracellular matrix or cell surface
- 25 molecules, including ADAMTS-N substrates. Thus, it is expected that ADAMTS-R1 can be used as an cell-matrix or cell-cell adhesion molecule or an ADAMTS-N competitive inhibitor. The ADAMTS-R1 proteins are also useful for preparing antibodies. Such antibodies are useful for identifying tissues where ADAMTS-R1 is expressed and 30 for diagnosing disorders which are associated with decreased

-13-

expression or increased expression of. an ADAMTS-R1 protein.

Polynucleotides

The present invention also provides isolated polynucleotides which encode the mammalian ADAMTS-N proteins and the mammalian

- 5 ADAMTS-R1 protein. Figure 1 shows one embodiment of a polynucleotide, SEQ ID NO: 1, which encodes the full-length mouse ADAMTS-5 protein. Figure 2 shows one embodiment of a polynucleotide; SEQ ID NO: 3, which encodes a partial human ADAMTS-5 protein. Figure 3 shows one embodiment of a polynucleotide; SEQ ID NO: 5, which
- 10 encodes a full-length human ADAMTS-6 protein. Figure 4 shows one embodiment of a polynucleotide; SEQ ID NO: 7, which encodes a full-length human ADAMTS-7 protein. Figure 5 shows one embodiment of a polynucleotide; SEQ ID NO: 9, which encodes a full-length mouse ADAMTS-8 protein. Figure 6 shows one embodiment of a polynucleotide;
- 15 SEQ ID NO: 11, which encodes a partial human ADAMTS-8 protein.

 Figure 7 shows one embodiment of a polynucleotide; SEQ ID NO: 13,

 which encodes a full-length human ADAMTS-9 protein. Figure 8 shows

 one embodiment of a polynucleotide; SEQ ID NO: 15, which encodes a

 partial ADAMTS-9 protein. Figure 9 shows one embodiment of a
- 20 polynucleotide; SEQ ID NO: 17, which encodes a full-length human ADAMTS-10 protein. Figure 10 shows one embodiment of a polynucleotide; SEQ ID NO: 19, which encodes a partial mouse ADAMTS-10 protein. Figure 11 shows one embodiment of a polynucleotide; SEQ ID NO: 21, which encodes a full-length ADAMTS-R1 protein.
- Due to the known degeneracy of the genetic code wherein more than one codon can encode the same amino acid, a DNA sequence may vary from that shown in SEQ ID NO: 1 and still encode an ADAMTS-5 protein having the amino acid sequence of SEQ ID NO: 2. Similarly, a DNA sequence may vary from that shown in SEQ ID NO:5, and still so encode an ADAMTS-6 protein having the amino acid sequence set forth

in SEQ ID NO:6. Similarly a DNA sequence may vary from that shown in SEQ ID NOS: 7, 9, 11, and 13, and still encode the amino acid sequences shown in SEQ ID NOS: 8, 10, 12, and 14, respectively.

Such variant DNA sequence may result from silent mutations, such as for example those that occur during PCR amplification or from deliberate mutagenesis of a native sequence.

The present polynucleotides also encompass polynucleotides having sequences that are capable of hybridizing to the nucleotide sequences of FIGS 1 - 11 under stringent conditions, preferably 10 highly stringent conditions. Hybridization conditions are based on the melting temperature™ of the nucleic acid binding complex or probe, as described in Berger and Kimmel (1987) Guide to Molecular Cloning Techniques, Methods in Enzymology, vol 152, Academic Press. The term "stringent conditions, as used herein, is the "stringency" 15 which occurs within a range from about Tm-5 (5° below the melting temperature of the probe) to about 20° C below Tm. As used herein "highly stringent" conditions employ at least 0.2 x SSC buffer and at least 65° C. As recognized in the art, stringency conditions can be attained by varying a number of factors such as the length and 20 nature, i.e., DNA or RNA, of the probe; the length and nature of the target sequence, the concentration of the salts and other components, such as formamide, dextran sulfate, and polyethylene glycol, of the hybridization solution. All of these factors may be varied to generate conditions of stringency which are equivalent to the 25 conditions listed above.

The present polynucleotides also encompasses alleles of the ADAMTS-N and ADAMTS-R1 encoding sequences. As used herein, an allele or allelic sequence is an alternative form of an ADAMTS-N or ADAMTS-R1 encoding sequence which is present at the same gene locus. The 30 allele may result from one or more mutations in the ADAMTS-N or

ADAMTS-R1 encoding sequence. Such mutations typically arise from natural addition, deletion of substitution of nucleotides in the open reading frame sequences. Any gene which encodes an ADAMTS-N protein or ADAMTS-RI protein may have none, one, or several allelic forms.

5 Such alleles are identified using conventional techniques, such as for example screening, libraries with probes having sequences identical to or complementary with one or more ADAMTS-N polynucleotides.

The present polynucleotides also encompass altered

10 polynucleotides which encode ADAMTS-N proteins, ADAMTS-R1 proteins, and variants thereof. Such alterations include deletions, additions, or substitutions. Such alterations may produce a silent change and result in an ADAMTS-N protein having the same amino acid sequence as the ADAMTS-N protein encoded by the unaltered polynucleotide. Such 15 alterations may produce a nucleotide sequence possessing nonnaturally occurring codons. For example, codons preferred by a particular prokaryotic or eucaryotic host may be incorporated into the nucleotide sequences showing Figures 1 -11 to increase the rate of expression of the proteins encoded by such sequences. Such 20 alterations may also introduce new restriction sites into the sequence or result in the production of an ADAMTS-N or ADAMTS-RI variant. Typically, such alterations are accomplished using sitedirected mutagenesis.

The polynucleotides are useful for producing ADAMTS-N or

25 ADAMTS-R1 proteins. For example, an RNA molecule encoding an ADAMTSN protein is used in a cell-free translation systems to prepare such
protein. Alternatively, a DNA molecule encoding an ADAMTS-N protein
is introduced into an expression vector and used to transform cells.
Suitable expression vectors include for example chromosomal,

30 nonchromosomal and synthetic DNA sequences, e.g., derivatives of

-16-

SV40, bacterial plasmids, phage DNAs; yeast plasmids, vectors derived from combinations of plasmids and phage DNAs, viral DNA such as vaccinia, adenovirus, fowl pox virus, pseudorabies, baculovirus, and retrovirus. The DNA sequence is introduced into the expression 5 vector by 5 conventional procedures.

Accordingly, the present invention also relates to recombinant constructs comprising one or more of the present polynucleotide sequences. Suitable constructs include, for example, vectors, such as a plasmid, phagemid, or viral vector, into which a sequence that, 10 encodes an ADAMTS-N protein or an ADAMTS-R1 protein has been inserted. In the expression vector, the DNA sequence which encodes the ADAMTS-N protein is operatively linked to an expression control sequence, i.e., a promoter, which directs mRNA synthesis. Representative examples of such promoters, include the LTR or SV40 15 promoter, the E. coli lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or in viruses. The promoter may also be the . natural promoter of the ADAMTS-N encoding sequence. The expression vector, preferably, also contains a ribosome binding site for 20 translation initiation and a transcription terminator. Preferably, the recombinant expression vectors also include an origin of replication and a selectable marker, such as for example, the ampicillin resistance gene of E. coli to permit selection of transformed cells, i.e. cells that are expressing the heterologous 25 DNA sequences. The polynucleotide sequence encoding the ADAMTS-N

The polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein are used to express recombinant protein using techniques well known 30 in the art. Such techniques are described in Sambrook, J. et al

protein is incorporated into the vector in frame with translation

initiation and termination sequences.

(1989) Molecular Cloning A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. and Ausubel, F. M. et al. (1989) Cuurent Protocols in Molecular Biology, John Wile & Sons, New York, NY.

Polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein may

5 also be used for diagnostic purposes. The polynucleotides may be
used to detect and quantify ADAMTS-N or ADAMTS-R1 gene transcripts in
biopsied tissues in which enhanced expression or reduced expression
of the corresponding ADAMTS-N or ADAMTS-RI gene is correlated with a
disease. The diagnostic assay may be used to determine whether

10 expression is absent, present, or altered and to determine whether
certain therapeutic agents modulate expression of the corresponding
ADAMTS-N or ADAMTS-R1 gene.

Also encompassed by the present invention, are single stranded polynucleotides, hereinafter referred to as antisense

15 polynucleotides, having sequences which are complementary to the DNA and RNA sequences which encode the ADAMTS-N or ADAMTS-R1 proteins.

The term complementary as used herein refers to the natural binding of the polynucleotides under permissive salt and 5 temperature conditions by base pairing.

- The present invention also encompasses oligonucleotides that are used as primers in polyrnerase chain reaction (PCR) technologies to amplify transcripts of the genes which encode the ADAMTS-N and ADAMTSR-1 proteins or portions of such transcripts. Preferably, the primers comprise 18-30 nucleotides, more preferably 19-25
- 25 nucleotides. Preferably, the primers have a G+C content of 40% or greater. Such oligonucleotides are at least 98% complementary with a portion of the DNA strand, i.e., the sense strand, which encodes the respective ADAM-TS family protein or a portion of its corresponding antisense strand. Preferably, the primer has at least 99%

-18-

sense strand or its corresponding antisense strand. Primers which are which have 100% complementarity with the antisense strand of a double-stranded DNA molecule which encodes an ADAMTS-N protein have a sequence which is identical to a sequence contained within the sense 5 strand. The identity of primers which are 15 nucleotides in length and have full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences, shown in FIG I - 11 and described by the general formula a-b; where a is any integer between 10 I and the position number of the nucleotide which is located 15 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG 1 -11; where b is equal to a+14; and where both a and b correspond to the positions of nucleotide residues of the cDNA sequences shown in FIGS 1 - 11.

- The present invention also encompasses oligonucleotides that are useful as hybridization probes for for isolating and identifying cDNA clones and genomic clones encoding the ADAMTS-N or ADAMTS-R1 protein or allelic forms thereof. Such hybridization probes are also useful for detecting transcripts of the genes which encode the ADAMTS-N family proteins or for mapping of the genes which encode the ADAMTS-N proteins Preferably, such oligonucleotides comprise at least 210 nucleotides, more preferably at least 230, most preferably from about 210 to 280 nucleotides. Such hybridization probes have a sequence which is at least 90% complementary with a sequence 25 contained within the sense strand of a DNA molecule which encodes an ADAMTS-N protein or ADAMTS-P1 protein or with a sequence contained
- ADAMTS-N protein or ADAMTS-R1 protein or with a sequence contained within its corresponding antisense strand. Such hybridization probes bind to the sense strand under stringent conditions. The term "stringent conditions" as used herein is the binding which occurs 30 within a range from about Tin 5'C (5'C below the melting temperature

Tm of the probe) to about 20°C to 25°C below Tm. The probes are used in Northern assays to detect transcripts of ADAMTS-N homologous genes and in Southern assays to detect ADAMTS-N homologous genes. The identity of probes which are 200 nucleotides 5 in length and have 5 full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences shown in FIG 1 - 10 and described by the general formula a-b; where a is any integer between I and the position number of the nucleotide which is located 200 .

10 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG 1 -10; b is equal to a +200; and where both a and b correspond to the positions of nucleotide residues of the cDNA sequences shown in FIG 1-10.

Such probes or primers are also useful for identifying tissues 15 or cells in which the corresponding ADAMTS-N or ADAMTS-R1 gene is preferentially expressed either constitutively or at particular state of tissue differentiation or development or in disease states. Expression of the ADAMTS-N or ADAMTS-R1 gene in a particular tissue or group of cells is determined using conventional procedures 20 including, but not limited to, Northern analysis, in situ hybridization to RNA or RT-PCR amplification. Isolated polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein are also useful as chromosome markers to map linked gene positions, to identify chromosomal aberrations such as translocations, inversions 25 and trisomies, to compare with endogenous DNA sequences in patients to identify potential genetic disorders, and as probes to hybridize and thus discover novel, related DNA sequences. For use in such studies and assays, the probes may be labeled with radioisotopes, fluorescent labels, or enzymatic labels. The assays include, but are 30 not limited to, Southern blot, in situ hybridization to DNA in cells

-20-

and chromosomes, PCR, and allele specific hybridization.

Antibodies

In another aspect, the present invention relates to antibodies which are specific for and bind to the ADAMTS-5 protein, the ADAMTS-6 5 protein, the ADAMTS-7 protein, the ADAMTS-8 protein, the ADAMTS-9 protein, the ADAMTS-10 protein, or the ADAMTS-R1 protein. Such antibodies are useful research tools for identifying *tissues that contain elevated levels of the respective protein and for purifying the respective protein from cell or tissue extracts, medium of 10 cultured cells, or partially purified preparations of intracellular and extracellular proteins by affinity chromatography. Such antibodies are also useful for identifying and diagnosing diseases associated with elevated or reduced levels of an ADAMTS-N protein or ADAMTS-R1 protein. Such antibodies are also useful for monitoring 15 the effect of therapeutic agents on the synthesis and secretion of ADAMTS-N proteins by cells in vitro and in vivo. Such antibodies may also be employed in procedures, such as co-immunoprecipitation and co-affinity chromatography, for identifying other proteins, activators and inhibitors which bind to an ADAMTS-N or ADAMTS-R1 20 protein.

The present invention also provides a method for detecting an ADAMTS-N or ADAMTS-R1 protein, in a bodily sample from a patient using antibodies immunospecific for an ADAMTS-N or ADAMTS-R1 protein. The method comprises contacting the antibody with a sample taken from 25 the patient; and assaying for the formation of a complex between the antibody and the corresponding ADAMTS-N or ADAMTS-R1 protein present in the sample. The sample may be a tissue or a biological fluid, including but not limited to whole blood, serum, synovial fluid, stool, urine, cerebrospinal fluid, semen, diagnostic washes from 30 trachea, stomach and other bowel segments, tissue biopsies or excised

-

-21-

tissue, cells obtained from swabs and smears. To monitor changes in expression of the ADAMTS-N protein during fetal development and pregnancy, it is preferred that the sample be amniotic fluid. To monitor changes in expression of the ADAMTS-N protein during joint 5 disorders, the preferred sample is synovial fluid. To monitor changes in expression of ADAMTS-N proteins during cancer, the preferred samples include, but are not limited to, serum, body fluids, or biopsy tissue. To monitor changes in expression of ADAMTS-N proteins during inflammation the preferred samples include, to but are not limited to, serum, body fluids, or biopsy tissue.

The sample may be untreated, or subjected to precipitation; fractionation, separation, or purification before combining with the anti-ADAMTS-N protein antibody. For ease of detection, it is

preferred that isolated proteins from the sample be attached to

15 a substrate such as. a column, plastic dish, matrix, or membrane,

preferably nitrocellulose. Preferably, the detection method employs

an enzyme-linked immunosorbent assay (ELISA) or a Western immunoblot

procedure.

Interactions between an ADAMTS-N protein in the sample and the corresponding anti ADAMTS-N antibody are detected by radiometric, colorimetric, or fluorometric means, size separation, or precipitation. Preferably, detection of the antibody-ADAMTS-N protein complex is by addition of a secondary antibody that is coupled to a detectable tag, such as for example, an enzyme, 25 fluorophore, or chromophore. Formation of the complex is indicative of the presence of the ADAMTS-N protein in the test sample. Thus, the method is used to determine whether there is a decrease or increase in the levels of the ADAMTS-N protein in a test sample as compared to levels of the ADAMTS-N protein in a control sample and to 30 quantify the amount of the ADAMTS-N protein in the test sample.

Deviation between control and test values establishes the parameters for diagnosing the disease.

Preparing the ADAMTS-N proteins and the ADAMTS-R1 protein

The ADAMTS-N proteins and the ADAMT-SR1 protein may be produced 5 by conventional peptide synthesizers. The ADAMTS-N proteins and the ADAMTS-R1 protein may also be produced using cell-free translationsystems and RNA molecules derived from DNA constructs that encode an ADAMTS-N protein or an ADAMTS-RI protein. Alternatively, ADAMTS-N proteins are made by transfecting host cells with expression 10 vectors that comprise a DNA sequence that encodes the respective ADAMTS-N protein and then inducing expression of the protein in the host. cells. For recombinant production, recombinant constructs comprising one or more of the sequences which encode the ADAMTS-N protein or a variant thereof are introduced into host cells by 15 conventional methods such as calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape lading, ballistic introduction or infection.

The ADAMTS-N protein and the ADAMTS-R1 protein may be expressed 20 in suitable host cells, such as for example, mammalian cells, yeast, bacteria, insect cells or other cells under the control of appropriate promoters using conventional techniques. Suitable hosts include, but are not limited to, E. coli, P. pastoris, Cos cells and 293 HEK cells. Following transformation of the suitable host strain 25 and growth of the host strain to an appropriate cell density, the cells are harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification of the ADAMTS-N protein or the ADAMTS-R1 protein.

Conventional procedures for isolating recombinant proteins from 30 transformed host cells, such as isolation by initial extraction from

cell pellets or from cell culture medium, followed by salting-out, and one or more chromatography steps, including aqueous ion exchange chromatography, size exclusion chromatography steps, and high performance liquid chromatography (HPLC), and affinity chromatography may be used to isolate the recombinant ADAMTS-N protein or ADAMTS R1 protein

Preparation of Antibodies

The ADAMTS-N proteins, and variants thereof are used as immunogens to produce antibodies immunospecific for one or more

10 ADAMTS-N protein. The term "immunospecific" means the antibodies have substantially greater affinity for one or more ADAMTS-N protein than for other proteins. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, and Fab fragments.

- Antibodies are also prepared using an oligopeptide having a sequence which is identical to a portion of the amino acid sequence of an ADAMTS-N protein. Preferably the oligopeptide has an amino acid sequence of at least five amino acids, and more preferably, at least 10 amino acids that are identical to a portion of the amino
- 20 acid sequence of an ADAMTS-N protein. Such peptides are conventionally fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule. One preferred oligopeptide for preparing an antibody to mouse ADAMTS-5 has the sequence (C)HIKVRQFKAKDQTRF, SEQ ID NO: 30.
- 25 Another preferred oligopeptide for preparing an antibody to ADAMTS-5 is CEAKNGYQSDAKGVKTFVEWVPKYAG, SEQ ID NO: 3 1. One preferred oligopeptide for preparing an antibody to ADAMTS-6 has the sequence SVSIERFVETLVVADK(C), SEQ ID NO:23. One preferred oligopeptide for preparing an antibody to ADAMTS-7 has the sequence
- 30 (C) EVAEAANFLALRSEDPEKY, SEQ ID NO:24. One preferred oligopeptide for

preparing an antibody to ADAMTS-8 has the sequence

CVKEDVENPKAVVDGDWGP, SEQ ID NO:25. One preferred oligopeptide for

preparing an antibody to ADAMTS-9 has the sequence

QHPFQNEDYRPRSASPSRTH, SEQ ID NO:26. Another preferred oligopeptide

for preparing an antibody to ADAMTS-9 has the sequence

PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27. One preferred oligopeptide for

preparing an antibody for ADAMTS-R1 has the sequence QELEEGAAVSEEPS,

SEQ ID NO:28. Another preferred oligopeptide for preparing an

antibody for ADAMTS-R1 has the sequence YYPENIKPKPKLQE; SEQ ID NO:29.

10 Polyclonal antibodies are generated using conventional techniques by administering the ADAMTS-N protein or achimeric molecule to a host animal. Depending on the host species, various adjuvants may be used to increase immunological response. Among adjuvants used in humans, Bacilli Calmette-Guerin (BCG), and
15 Corynebacterium parvum. are especially preferable. Conventional protocols are also used to collect blood from the immunized animals and to isolate the serum and or the IgG fraction from the blood.

For preparation of monoclonal antibodies, conventional hybridoma techniques are used. Such antibodies are produced by 20 continuous cell lines in culture. Suitable techniques for preparing monoclonal antibodies include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV hybridoma technique.

Various immunoassays may be used for screening to identify
25 antibodies having the desired specificity. These include protocols
which. involve competitive binding or immunoradiometric assays and
typically involve the measurement of complex formation between the
respective ADAMTS-N protein and the antibody.

Polynucleotides that encode ADAMTS-N proteins

30 Polynucleotides comprising sequences encoding an ADAMTS-N

protein or an ADAMTS-R1 protein may be synthesized in whole or in part using chemical methods. Polynucleotides which encode an ADAMTS-N protein, particularly alleles of the genes which encode the ADAMTS-N protein, may be obtained by screening a genomic library or CDNA library with a probe comprising sequences identical or complementary to the sequences shown in Figures 1 - 10 or with antibodies immunospecific for a ADAMTS-N protein to identify clones containing such polynucleotide.

Example 1 ADAMTS-512 protein A cDNA encoding mouse ADAMTS-5 protein was obtained using IMAGE Clone 569515, purchased from Research Genetics, Huntsville, Alabama and 7 day old mouse embryo cDNA library from Clontech, Palo Alto, CA. A cDNA encoding human ADAMTS-5 protein was obtained using IMAGE Clone 345484 purchased from Research Genetics, Huntsville, Alabama 15 and a human fetal brain cDNA from Clontech. The clone inserts were sequenced in their entirety. Using oligonucleotide primers based on the sequences at the ends of the. clone inserts as template, successive rounds of RACE (Rapid Amplification of cDNA Ends) by PCR was performed at 5' and 3 ends. RACE primers were generated 50-200 20 bp from the ends of the sequences so that the contiguity of RACE clones with the I.M.A.G.E. clone could be clearly established. A single round of 5' and 3' 20 RACE sufficed for cloning of the entire coding sequence of the mouse ADAMTS-5 protein and part of the catalytic zinc binding site through to the stop codon of the human 25 ADAMTS-5 protein. Primers were designed with calculated Tm>72°C and RACE was performed with nested primers for each amplification. PCR used the Advantage PCR reagents (Clontech, Palo Alto, CA); the polymerase mix contained both Taq polymerase as well as proofreading polymerase to minimize PCR errors and employed "hot-start" PCR for 30 optimal efficiency. RACE used the following "touch-down" cycle

conditions; 95°C for 1 minute followed by 5 cycles of 95°C for 0.5
minutes, 72°C for 5 minutes, then 5 cycles of 95°C for 0.5 minutes,
70°C for 5 minutes and 20 cycles of 95°C for 0.5 minutes, 68°C for 5
minutes. The PCR products were analyzed by Southern blotting,
5 initially using [α³²P]-dCTP labeled.

Hybridizing bands were ligated into pGEM-T Easy (Promega, Madison, WI) and individual clones were selected by another round of Southern analysis. Automated nucleotide sequencing of both strands of each clone were done at the Molecular Biotechnology Core of the 10 Lerner Research Institute, Cleveland Clinic Foundation and nucleotide sequence data were analyzed using the DNAStar software. By integration of the overlapping sequences thus obtained, a contiguous nucleotide sequence was determined. The nucleotide sequence of the mouse ADAMTS-5 cDNA and the predicted amino acid sequence of the 15 protein encoded by this cDNA are shown in Fig. 1. The nucleotide sequence of the human ADAMTS-5 cDNA and the predicted partial amino acid sequence of the protein encoded by this cDNA are shown in Fig. 2.

The predicted molecular mass (Mr) of the mature ADAMTS-5

20 protein is 73717.50 daltons. It is expected that the actual Mr of the active ADAMTS-5 protein is different due to post-translational modification, which could potentially increase the Mr. The predicted domain organization of ADAMTS-5 protein relative to the cloned cDNA is shown in Figure 12. The pro-domain of the full-length mouse

25 ADAMTS-5 protein has 3 consensus cleavage signals for furin. The most carboxyl-terminal furin cleavage site in ADAMTS-5 predicts the processing site for generation of the mature protein The catalytic domain of the ADAMTS-5 protein contains eight cysteine residues and a reprolysin -zinc binding signature sequence, i.e., HEIGHLLGLSHD.

30 Five cysteine residues are upstream of the zinc binding sequence,

while three residues are downstream, an arrangement that is shared with other ADAMTS members. The zinc binding signature is followed by a "Met-turn". The catalytic domain is followed by a domain with 35% similarity to snake venom disintegrins. The disintegrin domain 5 contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserved cysteine-rich sequence termed the cysteine-rich domain, designated "CRD", to distinguish it from the cysteine-free spacer domain. The CRD contains ten conserved cysteines and demonstrates high sequence homology with the CRD of 10 other ADAMTS-N proteins. The spacer domain of mouse ADAMTS-5 is 158 amino acids in length and is followed by a second TS module. ADAMTS-5 contains three potential glycosylation sites in the mature protease one of which is just upstream of the start of the spacer domain and the second lies within the spacer domain and the third is near the 15 start of the disintegrin domain. The human ADAMTS-5 protein and the mouse ADAMTS-5 protein have 96% sequence identity. ADAMTS-5 bears 46% sequence identity to ADAMTS-4 (KIAA0688), which is characterized as being involved in catabolism of aggrecan core protein in arthritis and 60% identity to ADAMTS-1 which is involved in inflammation.

20 Example 2 ADAMTS-6

The nucleotide sequence of a human cDNA encoding the fulllength ADAMTS-6 protein was obtained using IMAGE clone 742630, which
encodes EST AA400393, and a human fetal brain cDNA from Clontech.
RACE was performed as described above in Example 1. The I.M.A.G.E.

25 clone 742630 contained an ORF flanked by consensus splice sequences,
indicating the presence of introns. Two successive rounds of RACE at
the 5' end and a single round of RACE at the 3' end provided the
complete coding sequence of ADAMTS-6. The putative ATG codon is
within a Kozak consensus sequence and encodes the first methionine
30 within the ORF.

3. 3

The nucleotide sequence of the ADAMTS-6 DNA is shown in Fig. 3 The predicted amino acid sequence, SEQ ID NO:6, of the ADAMTS-6 protein is also shown in Fig. 3. The predicted Mr of the fulllength, unprocessed ADAMTS-6 protein is 97,115 daltons., and the 5 predicted Mr of the mature ADAMTS-6 protein is 68412.10 daltons. domain organization of the ADAMTS-6 protein is shown in Fig. 12. pro-domain of the full-length ADAMTS-6 protein has one consensus cleavage signal for furin. The catalytic domain of the ADAMTS-6 contains six cysteine residues and the reprolysin -zinc binding 10 signature sequence, HEIVHNFGMNHD, which is followed by a "Met-tum". The catalytic domain is followed by a domain with 35% similarity to disintegrins. The disintegrin domain contains snake venom eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserve CRD sequence which contains ten 15 conserved cysteines and demonstrates high sequence homology with the CRD of other ADAMTS proteins. The spacer domain of ADAMTS-6 is 127 amino acids in length and is followed by a second TS module. ADAMTS-6 contains four potential glycosylation sites within the pyo-domain and two in the mature protease one of which is in the cysteine rich 20 domain and the other of which is in the spacer domain. ADAMTS-6 bears 46% sequence identity to ADAMTS-1, which is involved in inflammation.

Example 3 ADAMTS-7.

The nucleotide sequence of a cDNA encoding an ADAMTS-7 protein

25 was obtained using IMAGE clone 272098, which encodes EST N4.8032, and
a human fetal brain cDNA from Clontech. RACE was performed as
described above in Example 1. The I.M.A.G.E. clone 272098 encoded a
putative pre-pro region and was extended in the 3'-direction by two
successive rounds of RACE. A typical signal peptide sequence lies

30 downstream of the first methionine in the translated ORF. This

methionine codon lies within a satisfactory Kozak consensus for translation initiation.

The nucleotide sequence of the ADAMTS-7 cDNA is shown in Fig. 4. The predicted amino acid sequence, SEQ ID NO: 8, of the ADAMTS-7 5 protein is also shown in Fig. 4. The predicted Mr of the hilllength, unprocessed ADAMTS-7 protein is 116,607 daltons, and the predicted Mr of the mature ADAMTS-7 protein is 84005 daltons. The domain organization of the ADAMTS-7 protein is shown in Fig. 12. The pro-domain of the full-length ADAMTS-7 protein has one consensus 10 cleavage signal for furin. The catalytic domain of the ADAMTS-7 protein contains eight cysteine residues and the reprolysin-zinc binding signature sequence, HELGHSFGIQHD, which is followed by a "Met-tum". The catalytic domain is followed by a domain with 30% similarity to snake venom disintegrins The disintegrin domain 15 contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserved CRD sequence which contains ten conserved cysteines. The spacer domain of ADAMTS-7 is 221 amino acids in length and is followed by a second TS module and a short sequence containing two cysteine residues. ADAMTS-7 contains three 20 potential glycosylation sites within the mature protease; one of which is just upstream of the spacer domain and one of which is within the spacer domain. ADAMTS-7 bears 35 % sequence identity to

Example 4: ADAMTS-8

25 enzyme.

The nucleotide sequence of a cDNA encoding a full-length, mouse ADAMTS-8 protein was obtained using IMAGE clone 1260693, which encodes EST AA855532, and a mouse embryo cDNA from Clonetech. The 30 nucleotide sequence of a cDNA encoding a partial ADAMTS-8 human

ADAMTS-1, which is characterized as being involved in inflammation

and 32% identity to ADAMTS-2 which is a procollagen processing

-30-

protein was obtained using IMAGE clone 2119838, which encodes EST A1400905, and a human fetal brain cDNA library from Clontech. RACE was performed, as described above in Example 1. The nucleotide sequence of the cDNA encoding the full-length ADAMTS-8 mouse protein and the amino acid sequence of such protein is shown in Fig. 5. The nucleotide sequence of the cDNA encoding the partial ADAMTS-8 human protein and the amino acid sequence of such protein is shown in Fig. 6.

The predicted Mr of the full-length, unprocessed ADAMTS-8 mouse 10 protein is 1260693 daltons, and the predicted Mr of the mature ADAMTS-8 protein is 68412.10 daltons. The pro domain of the fulllength ADAMTS-8 protein has one consensus cleavage signal for furin. The catalytic domain contains eight cysteine residues and the reprolysm-zinc binding signature sequence, HELGHVLSMPHD, which is 15 followed by a "Met-turn". The catalytic domain is followed by a domain with 20-30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-8 is 146 amino 20 acids in length and is followed by a second TS module. The ADAMTS-8 protein contains 4 potential glycosylation sites within the mature protease: one is in the cysteine-rich domain; one is in the catalytic domain; and two are in the disintegrin-like domain. ADAMTS-8 bears 46% sequence identity to ADAMTS-1 and 42% identity to 25 ADAMTS-4.

Example 5: ADAMTS-9

The nucleotide sequence of a cDNA encoding a full-length, human ADAMTS-9 protein was obtained using IMAGE clone 646675, which encodes EST AA205581, and a human fetal brain cDNA from Clonetech. The 30 micleotide sequence of a cDNA encoding a partial ADAMTS-9 mouse

-31-

protein was obtained using IMAGE clone 535663, which encodes EST AAl 06215, and a mouse cDNA library obtained from Clonetech. RACE was performed as described above in Example 1. The nucleotide sequence of the cDNA encoding the full-length ADAMTS-9 human proteinand the amino acid sequence of such protein is shown in Fig.6. The nucleotide sequence of the cDNA encoding the partial ADAMTS-9 mouse protein and the amino acid sequence of such protein is shown in Fig. 7.

The predicted Mr of the mature human ADAMTS-9 protein is

10 189777.20 daltons. The prodomain of the predicted ADAMTS-9 protein
has 3 consensus cleavage signal for furin. The catalytic domain of
the ADAMTS-9 contains eight cysteine residues and the reprolysin zinc binding signature sequence, HELGHVFNMPHD, which is followed by a
"Met-turn". The catalytic domain is followed by a domain with 25-30%
15 similarity to snake venom disintegrins The disintegrin domain
contains eight cysteine residues. The first TS repeat contains is
followed by a conserved CRD sequence which. contains 10 conserved
cysteines. The spacer domain of ADAMTS-9 is 124 amino acids in
length and is followed by 14 additional TS modules and a C-terminal
20 domain. The ADAMTS-9 protein contains 6 potential glycosylation
sites within the mature protease: one in the spacer domain, one in
TSP 1 -7, one in TSPI-8, and 3 in the C-terminal domain. The ADAMTS9 bears 44% sequence identity to ADAMTS-4.

Example 6: ADAMTS-10

The nucleotide sequence of a cDNA encoding a fall-length

ADAMTS- 10 protein was obtained using IMAGE clone 110403, which

encodes EST AA588434, and a human fetal brain cDNA from Clonetech.

The nucleotide sequence of a cDNA encoding a partial, mouse ADAMTS-10

protein was obtained using IMAGE clone 1077653, which encodes EST

30 AA822090, and a mouse embryo cDNA library from Clonetech. RACE was

engler with the property as

-32-

performed as described above in Example 1. The nucleotide sequence of the human ADAMTS-10 cDNA and the predicted amino acid sequence, SEQ ID 18, of the human ADAMTS-10 protein encoded by such DNA is shown in Fig. 9. The nucleotide sequence of the cDNA encoding the partial mouse ADAMTS-10 protein and the amino acid sequence of such protein is shown in Fig. 10.

The predicted Mr of the mature ADAMTS-10 protein is 95238 daltons. The pro-domain of the full-length ADAMTS-10 protein has no consensus cleavage signal for furin. The catalytic domain of the , 10 ADAMTS-10 contains eight cysteine residues and the reprolysin-zinc binding signature sequence, HEIGHTFGMNHD, which is followed by a "Met-turn". The catalytic domain is followed by a domain with 30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by 15 a conserved CRD sequence which contains 8 conserved cysteines. The spacer domain of ADAMTS-10 is followed by 4 additional TS modules and a Kunitz domain. The ADAMTS-10 protein contains 2 potential glycosylation sites within the mature protease: one in the catalytic domain, and one in the TS 1-3 domain. ADAMTS-10 bears approximately 40% sequence identity to ADAM-TS1, which is characterized as being involved in inflammation.

Comparison of the ADAMTS-N Proteins.

As shown in Figure 11, the ADAMTS-5. ADAMTS-6, and ADAMTS-7 proteins share a common domain organization. From amino to carboxyl 25 termini, they are as follows:

1. A pre-pro region. A typical signal sequence of variable length is followed by a putative pro-region of variable length but demonstrating short stretches of sequence identity. Three cysteine residues are, predicted within each novel pro-domain, of which the
30 most C-terminal is an "asymmetric" cysteine lying within a sequence

context similar to the cysteine "switch" of the MMPs. All three novel cDNAs predict consensus cleavage signals for furin, three in the case of ADAMTS-5, and one each in the case of ADAMTS-6 and ADAMTS-7. The most carboxyl-terminal furin cleavage site in ADAMTS-5 predicts the processing site for generation of the mature protease. The amino terminus of the mature proteins is predicted to start at the residue immediately following the cleavage sites.

- 2. A catalytic domain. The catalytic domains are very similar to each other and contain eight cysteine residues and a typical
- 10 reprolysin-type zinc binding signature followed by a "Met-turn".

 Five cysteine residues are upstream of the zinc binding sequence,
 while three residues are downstream, an arrangement that is shared
 with other ADAMTS members. The methionine of the met-turn is not at
 a constant distance from the zinc-binding signature, but in all three
 15 novel proteases, a constant cysteine residue is present in that
 interval.
- 3. A disintegrin-like domain. The catalytic domain is followed by a domain of 60-90 residues with 35-45% similarity to snake venom disintegrins, but without the canonical cysteine arrangement seen in the latter. This disintegrin-like domain is of comparable length in ADAMTS-5 and ADAMTS-7, it is considerably shorter in ADAMTS-6.
- 4. A TS module. The first TS repeat is very similar in all three novel proteases and very similar to the first TS repeat of other ADAMTSs. It contains the same number of residues (fifty-two) in all 25 three novel proteins.
 - 5. The cysteine-rich domain. This TS domain is followed by a conserved cysteine-rich sequence termed the cysteine-rich domain (CRD).
- 6. The spacer domain. This domain is of variable length, in all 30 ADAMTSs and lacks the sequence landmarks so characteristic of all the

other domains. It shows the least homology of all the domains.

7. A C-terminal TS module. The sequence of the second TS module is more variant between the members of the ADAMTS family than the first TS module, despite the conservation of the number and spacing 5 of cysteine residues.

Overall, the predicted mature forms of these proteases show 20-30% similarity to each other and to ADAMTS1-4 although this may be considerably higher or lower for individual domains as described above.

- ADAMTS-9 and ADAM-TS10 contain all the domains present in ADAMTS-5 through ADAMTS-8. In addition, ADAMTS-9 and ADAMTS-10 contain the following domains:
- A. ADAMTS-9: After the c-terminal TS1 domain which is present in ADAMTS5-8, ADAMTS-9 contains 13 additional and homologous 15 TS11 domains, thus, ADAMTS-9 contains a total of 15 TS1 domains, of which 14 are adjacent to each other in the c-terminal half of the molecule. The 15th TS1 domain from the N-terminus is followed by a unique c-terminal domain which does not possess recognizable domain structure and contains 196 residues including 9 cysteine residues.
- B. ADAMTS-10: After the c-terminal TS1 domain which is present in ADAMTS 8, ADAMTS-10 contains 3 additional and homologous TS1 domains, thus, that ADAMTS-10 contains a total of 5 TS1 domains, of which 4 are adjacent to each other in the c-terminal half of the molecule. The 5th TS 1 domain from the N-terminus is followed by an 25 additional 47 amino acid residues including six (6) cysteine
- residues. These 47 residues have sequence similarity of 30%-40% to the c-terminus of pro-hormone convertase 5 and 6, and to the Kunitz family of inhibitors.

Northern Analysis

Mouse embryo northern blots and multiple tissue northern blots

from human and mouse tissues (Clontech, Palo Alto, CA) were hybridized to the $[\alpha^{32}P]$ -dCTP labeled inserts of I.M.A.G.E. clones as per the manufacturer's recommendations followed by autoradiographic exposure for 3-7 days.

In situ hybridization used cryosections of mouse embryos of gestational age 8.5 days and 10.5 days. Embryos were collected with the inclusion of the surrounding uterus and fixed overnight in 4% paraformaldehyde. Sense and anti-sense probes continuously labeled with digoxigenin-UTP (Boehringer-Mannheim, Indianapolis, IN) were 10 transcribed with T7 and T3 RNA polymerases, respectively, using as template a 63 0 bp EcoRI-Sacl fragment from the Adamts-5 clone 569515 (Fig. 14) cloned into pBluescript SK+ (Stratagene, La Jolla, CA). In situ hybridization was done essentially as previously described in Apte, et al. (1997) J. Biol. Chem. 272:2551-25517, which is 15 specifically incorporated herein by reference, except that sections were predigested with proteinase K (Boehringer-Mannheim, Indianapolis, IN) at a lower, concentration (1 -5 μ g/ml) than reported in Apte, et al.. Bound, digoxigenin-labeled probe was detected using an alkaline phosphatase tagged anti-digoxigenin 20 antibody (Boehringer-Mannheim, Indianapolis, IN) and nuclei were counterstained with methyl green.

Specific hybridization of the antisense Adamts-5 probe to sections of 8.5 day-old mouse embryos was obtained, whereas only low background staining was noted with the control sense probe. Staining 25 was uniform throughout the 8.5 day old embryos. In addition, there was labeling of mRNA in trophoblastic cells lining the uterine cavity as well as in the developing placenta (Fig. 14). The decidual reaction within the uterus also showed upregulation of Adamts-5 mRNA relative to the negative controls. In sections from 10.5 day old 30 embryos, labeling was widespread but less intense compared to the 8.5

day-old embryo. Labeled cells were seen in mesenchyme and somites as well as in the neural tube and developing hindgut. Northern analysis also indicated that mRNA encoding ADAMTS-5 was present in human placenta but was barely detectable in adult lung, heart, brain, 5 liver, skeletal muscle, kidney and pancreas.

Northern analysis showed undetectable expression of Adamts-6 during mouse embryo development. Northern analysis indicated that mRNA encoding ADAMTS-6 was present in human placenta but was barely detectable in adult lung, heart, brain, liver, skeletal 10 muscle, kidney and pancreas. Adamts-7 was expressed at low levels throughout mouse development. In adult human tissues examined with human cDNA probes, ADAMTS-7 mRNA was found in all tissues examined, i.e. in lung, heart, brain, liver, skeletal muscle, kidney, pancreas and placenta. The sizes of the mRNA species recognized by the probes 15 varied. ADAMTS-5 mRNA was approximately 10 kbp in size in human tissue. The most prominent Adamts-5 species was estimated at 7.5 kbp together with additional bands at 10 kbp and 4.5 kbp. The lone mRNA species detected by ADAMTS-6 probe was approximately 8.5 kbp, whereas the most common mRNA species detected by ADAMTS-7 probe 5 was 5 kbp 20 in size with an additional species seen at 7 kbp in skeletal muscle.

In mouse, ADAMTS-8 is expressed during fetal development (days 7, 11, 15, 17) and in adult mouse lung and heart with an mRNA size of approximately 3.8 kbp. In adult human tissue, ADAMTS-8 is expressed in lung and brain but not in heart, muscle, kidney, colon or thymus.

25 The mRNA size is 3.8 kbp.

ADAMTS-9 is expressed in lung, ovary placenta, heart, brain, muscle, kidney and pancreas with a mRNA size of 8 kb. In addition, kidney and ovary contain additional transcripts of size 3 kb and 4.4 kb respectively. These additional transcripts may represent 30 alternatively spliced or short forms of ADAMTS9.

ADAMTS-10 is expressed in thymus, prostate, testis, ovary, small intestine, colon, peripheral blood leukocytes, heart, brain, placenta, lung, liver, muscle, kidney and pancreas, as well as in many cell lines such as A549, HeLa and K562. There are two 5 transcripts of 5 kb and 8kb present in all tissues.

Example 7: ADAMTS-R1

The nucleotide sequence of a cDNA encoding a full-length ADAMTS-R1 protein was obtained using IMAGE clone 752797 which encodes EST AA, and a human fetal brain cDNA from Clontech. RACE was 10 performed as described above in Example 1. The nucleotide sequence, SEQ ID NO:21, of the ADAMTS-R1 cDNA and the predicted amino acid sequence, SEQ ID NO:22, of the ADAMTS-R1 protein encoded by such DNA is shown in Fig. 11.

The predicted Mr of the full-length, unprocessed ADAMTS-R1 15 protein is 58358.20 daltons. The domain organization of the ADAMTS-10 protein is shown in Fig. 15. In contrast to the ADAMTS-N proteins of examples 1-6, ADAMTS-R1 protein does not have a prometalloprotease or disintegrin-like domain or a consensus cleavage signal for furin. ADAMTS-R1 has a signal (pre) peptide which is 20 followed by a first TS module and a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-R1 is 115 amino acids in length and is followed by 3 additional TS modules and a short sequence of 33 amino acids. The ADAMTS-R1 protein contains one potential glycosylation sites which is in the spacer 25 domain. ADAMTS-R1 bears 30-40% sequence identity to ADAMTS1 and ADAMTS4 in the related domains. ADAMTS-R1 mRNA is present in human heart, brain, kidney, muscle, lung, placenta, testis, ovary, colon, intestine, and prostate. There are three transcripts of 2.5 kb, 4.7 kb and 6.5 kbp present in all such tissues. In mouse, expression is 30 seen in skeletal muscle, and the transcript size is 6.5 kb.

-38-

Although certain embodiments of this invention have been shown and described, various adaptations and modifications can be made without departing from the scope of the invention as defined in the appended claims.

5

CLAIMS

- 1. An isolated mammalian protein selected from the group consisting of an ADAMTS-5 protein an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein, and an ADAMTS-R1 protein.
- The isolated mammalian protein of claim 1 wherein said protein 2. comprises an amino acid sequence which is at least 95% identical to a sequence selected from the group consisting of: amino acid 262 through amino acid 930 of SEQ ID NO:2; amino , acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245 10 through amino acid 860 of SEQ ID NO:6; amino acid 233 through amino acid 997 of SEQ ID NO:8; amino acid 229 through amino acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245 of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ ID NO:14; amino acid 1 through amino acid 874 of SEQ ID NO:16; 15 amino acid 212 through amino acid 1081 of SEQ ID NO:18; amino acid 1 through amino acid 450 of SEQ ID NO:20; and amino acid 1 through amino acid 547 of SEQ ID NO:22.
- The isolated protein of claim 2 wherein said amino acid
 sequence further comprises a prepropeptide sequence at the amino terminus thereof.
 - 4. The isolated protein of claim 1 wherein said protein is a human ADAMTS-5 protein or a mouse ADAMTS-5 protein.
- 5. The isolated protein of claim 1 wherein said protein is a human25 ADAMTS-6 protein.
 - 6. The isolated protein of claim 1 wherein said protein is a human ADAMTS-7 protein.
 - 7. The isolated protein of claim 1 wherein said protein is a mouse ADAMTS-8 or a human ADAMTS-8 protein.
- 30 8. The isolated protein of claim 1 wherein said protein is a human

- ADAMTS-9 or a mouse ADAMTS-9 protein.
- 9. The isolated protein of claim 1 wherein said protein is a human ADAMTS-10 or a mouse ADAMTS-10 protein.
- 10. The isolated protein of claim 1 wherein said protein is a human ADAMTS-R1 protein.
- 11. An isolated polynucleotide comprising a sequence which encodes a mammalian protein selected from the group consisting of an ADAMTS-5 protein, an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein, and an ADAMTS-R1 protein.
- 12. The isolated polynucleotide of claim 11 wherein said protein comprises an amino acid sequence which is at least 95% identical to a sequence selected from the group consisting of: amino acid 262 through amino acid 930 of SEQ ID NO:2; amino 15 acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245 through amino acid 860 of SEQ ID NO:6; amino acid 233 through amino acid 997 of SEQ ID NO:8; amino acid 229 through amino acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245 of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ 20 ID NO:14; amino acid 1 through amino acid 874 of SEQ ID NO:16; amino acid 212 through amino acid 1081 of SEQ ID NO:18; amino acid 1 through amino acid 450 of SEQ ID NO:20, and amino acid 1 through amino acid 547 of SEQ ID NO:22.
- 13. The isolated polynucleotide of claim 11 wherein said nucleotide
 25 sequence encodes a protein having a signal sequence at the amino terminus thereof.
- 14. The isolated polynucleotide of claim 11 wherein said polynucleotide comprises a sequence selected from the group consisting of: nucleotide 800 through nucleotide 2810 of SEQ ID NO:1 of an allelic variant thereof; nucleotide 1 through

10

7.77

5

10

nucleotide 1519 of SEQ ID NO:3 or an allelic variant thereof; nucleotide 754 through nucleotide 2602 of SEQ ID NO:5 or an allelic variant thereof; nucleotide 708 through nucleotide 3003 of SEQ ID NO:7 or an allelic variant thereof; nucleotide 962 through nucleotide 2992 of SEQ ID NO:9 or an allelic variant thereof; nucleotide 1 through nucleotide 739 of SEQ ID NO:11 or an allelic variant thereof; nucleotide 708 through nucleotide 5648 of SEQ ID NO:13 or an allelic variant thereof; nucleotide 1 through nucleotide 2625 of SEQ ID NO:15 or an allelic variant thereof; nucleotide 634 through nucleotide 3243 of SEQ ID NO:17 or an allelic variant thereof; nucleotide 1 through nucleotide 1642 of SEQ ID NO:19 or an allelic variant thereof; and nucleotide 51 through nucleotide 1625 of SEQ ID NO:21 or an allelic variant thereof.

- 15 15. The isolated polynucleotide of claim 11 wherein said polynucleotide hybridizes under stringent conditions to a nucleic acid molecule comprising a sequence complementary to the protein encoding sequence of SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:13; SEQ ID NO:15; SEQ ID NO:17; SEQ ID NO:19; or SEQ ID NO:21.
 - 16. An isolated polynucleotide having a sequence which is complementary to the protein encoding sequence of the polynucleotide of claim 11.
 - 17. An expression vector comprising a polynucleotide of claim 11.
- 25 18. A host cell transformed or transfected with an expression vector of claim 17.
 - 19. A method for producing an ADAMTS-N protein or an ADAMTS-R1 protein, said method comprising the steps of
- (a) culturing a host cell of claim 18 under conditions

 30 suitable for expression of an ADAMTS-N protein or an ADAMTS-R1

5

protein; and

- (b) recovering said ADAMTS-N protein or said ADAMTS-R1 protein from the host cell culture.
- 20. An antibody that binds to a protein selected from the group consisting of an ADAMTS-5 protein, an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein and an ADAMTS-R1 protein.
- 21. An oligopeptide for producing an antibody that binds to an ADAMTS-N protein or an ADAMTS-R1 protein wherein said
- oligopeptide has a sequence selected from the group consisting of:
 - a) SVSIERFVETLVVADK, SEQ ID NO:23;
 - b) EVAEAANFLALRSEDPDKY, SEQ ID NO:24;
 - c) VKEDVENPKAVVDGDWGP, SEQ ID NO:25;
- d) QHPFQNEDYRPRSASPSRTH, SEQ ID NO:26;
 - e) PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27;
 - f) QELEEGAAVSEEPS, SEQ ID NO:28;
 - g) YYPENIKPKPKLQE; SEQ ID NO:29;
 - h) HIKVRQFKAKDQTRF; and
- 20 i) CEAKNGYQSDAKGVKTFVEWVPKYAG, SEQ ID NO:30.

Fig. 1

'MRLEWASLILILLLLSASCLSLAADSPAAAPAQDKTRQPQAAAA
AAEPDQPQGEETRERGHLQPLAGQRRSGLVHNIDQLYSGGKVGYLVYAGGRRFLLD
LERDDTVGAAGSIVTAGGGLSASSGHRGHCFYRGTVDGSPRSLAVFDLCGGLDGFFAV
KHARYTLKPLLRGSWAEYERIYGDGSSRILHVYNREGFSFEALPPRASCETPASPSGP
QESPSVHSRSRRRSALAPQLLDHSAFSPSGNAGPQTWWRRRRSISRARQVELLLVAD
SSMARMYGRGLQHYLLTLASIANRLYSHASIENHIRLAVVKVVLTDKDTSLEVSKNA
ATTLKNFCKWQHQHNQLGDDHEEHYDAAILFTREDLCGHHSCDTLGMADVGTICSPER
SCAVTEDDGLHAAFTVAHEIGHLLGLSHDDSKFCEENFGTTEDKRLMSSILTSIDASK
PWSKCTSATITEFLDDGHGNCLLDLPRKQILGPEELPGQTYDATQQCNLTFGPEYSVC
PGMDVCARLWCAVVRQGQMVCLTKKLPAVEGTPCGKGRVCLQGKCVDKTKKKYYSTSS
HGNWGSWGPWGQCSRSCGGGVQFAYRHCNNPAPRNSGRYCTGKRAIYRSCSVTPCPPN

Fig. 1 (con't)

GKSFRHEQCEAKNGYQSDAKGVKTFVEWVPKYAGVLPADVCKLTCRAKGTGYYVVFSP KVTDGTECRPYSNSVCVRGRCVRTGCDGIIGSKLQYDKCGVCGGDNSSCTKIIGTFNK KSKGYTDVVRIPEGATHIKVRQFKAKDQTRFPAYLALKKRTGEYLINGKYMISTSETI IDINGTVMNYSGWSHRDDFLHGMGYSATKEILIVQILATDPTKALGVRYSFFVPKKTT QKVNSVISHGSNKVGPHSTQLQWVTGPWLACSRTCDTGWHTRTVQCQDGNRKLAKGCL LSQRPSAFKOCILKKC*

BASE COUNT 726 a 788 c 845 g 643 t ORIGIN

```
1 ccggcgggca gcgcactatg cggctcgagt gggcgtcctt gttgctgcta ctgctgctgc
  61 tgagcgcgtc ctgcctgtcc ctggccgctg acagccccgc cgcggcacct gcccaggata
 121 aaaccaggca gcctcaggct gcagcagcgg ccgccgagcc ggaccagccg cagggggagg
 181 aaacacggga gcgaggccat ttacaaccct tggccgggca gcgcaggagc ggcgggctgg
 241 tocateatat agaccaacto tactotggcg gtggcaaagt gggctacott gtotacgcgg
 301 gcggccggag gttcctgctg gacctggaga gagatgacac agtgggtgct gctggtagca
 361 tcgttactgc aggaggaggg ctgagcgcat cctctggcca ccggggtcac tgtttctaca
 421 gaggcaccgt ggacggcagc cctcgatccc tagctgtctt tgacctctgc gggggtctcg
 481 atggettett tgeagteaag catgegeget acaetetaaa gecaeteetg egtgggteet
 541 gggcagagta tgaacgaatt tatggggatg gatcttcccg catcctgcat gtctacaacc
 601 gcgagggett tagettegag gccetgcege caegegeeag ttgcgagaet eetgcateee
 661 catctgggcc ccaagagagc ccctcggtgc acagtagatc taggagacgc tcagcgctgg
 721 ccccgcagct gctggaccac tcagctttct cgccatctgg gaacgcggga cctcagactt
 781 ggtggaggcg taggcgccgt tccatctcca gggcccgcca ggtggagctc ctcttggtgg
 841 ctgactcgtc catggccagg atgtatgggc ggggcctgca gcattacctg ctgaccctgg
 901 cctccatcgc caacaggctg tacagtcatg caagcattga gaaccacatc cgcctggcgg
 961 tggtgaaggt ggtggtgctg acggacaagg acacgagtct ggaggtgagc aagaatgcgg
1021 ccacgaccct caagaacttt tgcaaatggc agcaccaaca taaccagcta ggggatgatc
1081 acgaagagca ctacgatgca gccatcctgt tcacccgaga ggatttatgt gggcatcatt
1141 catgtgacac cctgggaatg gcagacgttg ggaccatatg ttctccggag cgcagctgtg
1201 cagtgattga agatgatggc ctccatgcag ccttcactgt ggctcatgaa attgggcatc
1261 tacttggcct ttctcatgac gattccaaat tctgtgaaga gaacttcggt actacagaag
1321 acaagcgttt aatgtcttca atccttacca gcatcgatgc atccaagccc tggtccaaat
1381 gcacgtcagc caccatcaca gaattcctgg atgatggtca tggtaattgt ttgctagacc
1441 taccacggaa gcagattttg ggtcccgagg aactcccagg acagacctac gatgccaccc
1501 agcagtgcaa cttgacattt gggcctgagt actcggtgtg ccctggcatg gatgtctgtg
1561 cgcggctgtg gtgtgctgtg gtgcgccaag gccaaatggt gtgtctgacc aagaagctgc
1621 cggctgtgga gggcactccc tgtgggaagg gaagagtctg ccttcaaggc aaatgtgtgg
1681 acaaaactaa gaaaaaatat tactcgacat caagccatgg aaattggggg tcctggggcc
1741 cctggggtca gtgttctcgc tcatgcgggg gaggagtgca gtttgcctac cgccattgta
1801 ataaccctgc acctcgaaac agtggccgct actgcacagg gaagagggcc atataccgtt
1861 cctgcagtgt tacaccctgc ccacccaatg gtaaatcttt tegccatgag cagtgtgaag
1921 ccaaaaatgg ctatcagtct gatgcaaaag gagtcaaaac atttgtagaa tgggttccca
1981 aatatgcagg tgtcctgccg gcagatgtgt gcaagcttac ctgcagagct aagggcacag
2041 gctactatgt ggtcttttct ccaaaggtta cggatgggac tgaatgcagg ccgtacagca
2101 actctgtgtg tgtccgagga cggtgtgtga gaactggatg tgacggcatt attggctcaa
2161 agctacaata tgacaagtgt ggagtgtgcg gaggggataa ctccagttgt acaaagatta
2221 tcggaacctt caataaaaa agcaagggtt atactgacgt tgtgaggatc cctgaaggag
2281 caacccacat aaaagtccga cagttcaaag ccaaagacca gactagattc cctgcctact
2341 tagccctgaa gaagaaaact ggcgagtacc ttatcaatgg caagtacatg atttccactt
2401 cagagaccat catcgacatc aatggtaccg tcatgaacta cagtggatgg agccacagag
2461 atgatttttt acatgggatg ggctattcag ccacaaaaga aatcctgatc gtgcagatcc
2521 ttgccacaga cccaactaaa gcgctaggcg tccgttacag cttttttgtt cccaagaaga
2581 ccactcaaaa agtaaactet gteateagee atggeageaa caaggtggga ccacacteta
2641 cacagetgea gtgggtgaca ggtecatgge tggeetgete caggaeetgt gacacagget
2701 ggcacactag gaccgtgcag tgccaggatg gaaacaggaa attagctaaa ggatgccttc
2761 tototcagag gcottotgca tttaagcaat gtotgctgaa gaaatgttag cotgtggttt
2821 actctaatgc acaaaaaaac aacaggagga tcatcgcaga tacagctgtg gtgaagacaa
2881 ggcctaccca aagcacagaa agtcatgcct tcatgtcatt gtcaccacga gtcgaattat
2941 gggcagaatc tgctctctgc gaccaaaagg tttactctac ttggtgaatg atggtaccgt
3001 ga
```

Fig. 2

```
FEATURES
                    Location/Qualifiers
                    1..1520
    source
                    . /organism="Homo sapiens"
                     /db_xref="taxon:9606"
                     /chromosome="21"
BASE COUNT
                                  376 g
                416 a
                        372 c
                                           352 t
                                                      4 others
ORIGIN
       1 ggacatttac ttggcctctc ccatgacgat tccaaattct gtgaagagac ctttggttcc
      61 acagaagata agegettaat gtettecate ettaceagea ttgatgeate taageeetgg
     121 tecamatgea etteageeae cateacagaa tteetggatg atggeeatgg tametgtttg
     181 ctggacctac cacgaaagca gatcctgggc cccgaagaac tcccaggaca gacctacgat
     241 gccacccage agtgcaacct gacatteggg cetgagtact eegtgtgtee eggcanggat
     301 gtctgtgctc gcctgtggtg tgctgtggta cgccagggcc agatggtctg tctgaccaag
     361 gagtgcagtt tgcctatcgt cactgtaata accetgetee cagaaacaac ggacgetact
      421 gcacagggaa gagggccatc taccactcct gcagtctcat gccctgccca cccaatggta
      481 aatcatttcg tcatgaacag tgtgaggcca aaaatggcta tcagtctgat gcaaaaggag
      541 tcaaaacttt tgtggaatgg gttcccaaat atgcaggtgt cctgccagcg gatgtgtgca
      601 agetgacetg cagagecaag ggcactgget actatgtggt attttctcca aaggtgaceg
      661 atggcactga atgtaggccg tacagtaatt ccgtctgcgt ccgggggaag tgtgtgagaa
      721 ctggctgtga cggcatcatt ggctcaaagc tgcagtatga caagtgcgga gtatgtggag
      781 gagacaactc cagctgtaca aagattgttg gaacctttaa taagaaaagt aagggttaca
      841 ctgacgtggt gaggattect gaaggggeaa cccacataaa agttcgacag ttcaaagcca
      901 aagaccagac tagattcact gcctatttag ccctgaaaaa gaaaaacggt gagtacctta
      961 tcaatggaaa gtacatgatc tccacttcag agactatcat tgacatcaat ggaacagtca
     1021 tgaactatag cggttggagc cacagggatg acttcctgca tggcatgggc tactctgcca
     1081 cqaaqqaaat totaataqtq caqattottq caacagacco cactaaacca ttagatqtoo
     1141 gttatagett ttttgttece aagaagteca etceaaaagt aaactetgte actagteatg
     1201 gcagcaataa agtgggatca cacacttcgc agccgcagtg ggtcacgggc ccatggctcg
     1261 cctgctctag gacctgtgac acaggttggc acaccagaac ggtgcagtgc caggatggaa
     1321 accggaagtt agcaaaagga tgtcctctct cccaaaggcc ttctgcgttt aagcaatgct
     1381 tgttgaagaa atgttagcct gtgggttatg atcttattgc acaaaagata ctggaggatt
     1441 cancaccegt gcaatenngg tgaacaggaa ggetacetta acgeacagaa agteatgett
     1501 taatgacatt gtcaaccagg
```

Fig. 3

FEATURES

Location/Qualifiers

source

1..2848

/organism="Homo sapiens"
/db_xref="taxon:9606"

/chromosome="5"

gene

1..2848
/note= A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs 6°

/gene='ADAMIS6'

CDS

22..2602 /gene=*ADAMTS6*

/note="zinc metalloprotease"

/codon_start=1

/product= A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs-6 (ADAM-TS6)*

/translation="MEILWKTLTWILSLIMASSEFHSDHRLSYSSQEEFLTYLEHYQL
TIPIRVDQNGAFLSFTVKNDKHSRRRSMDPIDPQQAVSKLFFKLSAYGKHFHLNLTL
NTDFVSKHFTVEYWGKDGPQWKHDFLDNCHYTGYLQDQRSTTKVALSNCVGLHGVIAT
EDEEYFIEPLKNTTEDSKHFSYENGHPHVIYKKSALQQRHLYDHSHCGVSDFTRSGKP
WWLNDTSTVSYSLPINNTHIHHRQKRSVSIERFVETLVVADKMMVGYHGRKDIEHYIL
SVMNIVAKLYRDSSLGNVVNIIVARLIVLTEDQPNLEINHHADKSLDSFCKWQKSILS
HQSDGNTIPENGIAHHDNAVLITRYDICTYKNKPCGTLGLASVAGMCEPERSCSINED
IGLGSAFTIAHEIVHNFGMNHDGIGNSCGRKVMKQQNYGSSHYCEYQSFFLVCLQSRX
HHQLFREVCRELWCLSKSNRCVTNSIPAAEGTLCQTGNIEKGWCYQGDCVPFGTWPQS
IDGGWGFWSLWGECSRTCGGGVSSSLRHCDSPAPSGGGKYCLGERKRYRSCNTDPCPL
GSRDFREKQCADFDNMPFRGKYYNWKPYTGGGVKPCALNCLAEGYNFYTERAPAVIDG
TQCNADSLDICINGECKHVGCDNILGSDAREDRCKVCGGGGSTCDAIEGFFNDSLPRG

1 . T. J. 18 16

Fig. 3 (con't)

GYMEVVQIPRGSVHIEVREVAMSKNYIALKSEGDDYYINGAWTIDWPRKFDVAGTAFH YKRPTDEPESLEALGPTSENLIVMVLLQEQNLGIRYKFNVPITRTGSGDNEVGFTWNH QPWSECSATCAGGKMPTRQPTQRARWRTKHILSYALCLLKKLIGNISCRFASSCNLAK ETIL.*

```
BASE COUNT
                837 a
                         551 c
                                  664 a
                                           794 t
                                                      2 others
ORIGIN
        1 aatcatccag ttttctaaat tatggaaatt ttgtggaaga cgttgacctg gattttgagc
       61 ctcatcatgg cttcatcgga atttcatagt gaccacaggc tttcatacag ttctcaagag
      121 gaatteetga ettatettga acactaccag etaactatte caataagggt tgatcaaaat
      181 ggagcatttc tcagctttac tgtgaaaaat gataaacact caaggagaag acggagtatg
      241 gaccetattg atccacagea ggcagtatet aagttatttt ttaaacttte ageetatgge
      301 aagcactttc atctaaactt gactctcaac acagattttg tgtccaaaca ttttacagta
      361 gaatattggg ggaaagatgg accccagtgg aaacatgatt ttttagacaa ctgtcattac
      421 acaggatatt tgcaagatca acgtagtaca actaaagtgg ctttaagcaa ctgtgttggg
      481 ttgcatggtg ttattgctac agaagatgaa gagtatttta tcgaaccttt aaagaatacc
      541 acagaggatt ccaagcattt tagttatgaa aatggccacc ctcatgttat ttacaaaaag
      601 tetgecette aacaacgaca tetgtatgat cacteteatt gtggggttte ggattteaca
      661 agaagtggca aaccttggtg gctgaatgac acatccactg tttcttattc actaccaatt
      721 aacaacaca atatccacca cagacagaag agatcagtga gcattgaacg gtttgtggag
      781 acattggtag tggcagacaa aatgatggtg ggctaccatg gccgcaaaga cattgaacat
      841 tacattttga gtgtgatgaa tattgttgcc aaactttacc gtgattccag cctaggaaac
      901 gttgtgaata ttatagtggc ccgcttaatt gttctcacag aagatcagcc aaacttggag
      961 ataaaccacc atgcagacaa gtccctcgat agcttctgta aatggcagaa atccattctc
     1021 toccaccaaa gtgatggaaa caccattoca gaaaatggga ttgoccacca cgataatgca
     1081 gttcttatta ctagatatga tatctgcact tataaaaata agccctgtgg aacactgggc
     1141 ttggcctctg tggctggaat gtgtgagcct gaaaggagct gcagcattaa tgaagacatt
     1201 ggcctgggtt cagcttttac cattgcacat gagattgttc acaattttgg tatgaaccat
     1261 gatggaattg gaaattcttg tggacgaaag gtcatgaagc agcaaaatta tggcagctca
     1321 cattactgcg aataccaatc ctttttcctg gtctgcttgc agtcgagant acatcaccag
     1381 ctttttagag aagtgtgtag agagctctgg tgtctcagca aaagcaaccg ctgtgtcacc
     1441 aacagtatte cagcagetga ggggacactg tgtcaaactg ggaatattga aaaagggtgg
     1501 tgttatcagg gagattgtgt tccttttggc acttggcccc agagcataga tgggggctgg
     1561 ggtccctggt cactatgggg agagtgcagc aggacctgcg ggggaggcgt ntcctcatcc
     1621 ctaagacact gtgacagtcc agcaccttca ggaggtggaa aatattgcct tggggaaagg
     1681 aaacggtatc gctcctgtaa cacagatcca tgccctttgg gttcccgaga ttttcgagag
     1741 aaacagtgtg cagactttga caatatgcct ttccgaggaa agtattataa ctggaaaccc
     1801 tatactggag gtggggtaaa accttgtgca ttaaactgct tggctgaagg ttataatttc
     1861 tacactgaac gtgctcctgc ggtgatcgat gggacccagt gcaatgcgga ttcactggat
     1921 atctgcatca atggagaatg caagcacgta ggctgtgata atattttggg atctgatgct
     1981 agggaagata gatgtcgagt ctgtggaggg ggcggaagca catgtgatgc cattgaaggg
     2041 ttcttcaatg attcactgcc caggggaggc tacatggaag tggtgcagat accaagaggc
     2101 tctgttcaca ttgaagttag agaagttgcc atgtcaaaga actatattgc tttaaaatct
     2161 gaaggagatg attactatat taatggtgcc tggactattg actggcctag gaaatttgat
     2221 gttgctggga cagcttttca ttacaagaga ccaactgatg aaccagaatc cttggaagct
     2281 ctaggtccta cctcagaaaa tctcatcgtc atggttctgc ttcaagaaca gaatttggga
     2341 attaggtata agttcaatgt teccateaet egaaetggea gtggagataa tgaagttgge
     2401 tttacatgga atcatcagcc ttggtcagaa tgctcagcta cttgtgctgg aggtaagatg
      2461 cccactagge ageceaecca gagggeaaga tggagaacaa aacacattet gagetatget
      2521 ttgtgtttgt taaaaaagct aattggaaac atttcttgca ggtttgcttc aagctgtaat
      2581 ttagcaaaag aaactttgct ttaattatat tatattccat ttgttttcaa cctcatgtaa
      2641 tttgtgcaga tttgttggta aaatacatct tggcacaatg agtgtctctg ctggtgcttc
      2701 toccaagact atcttgaagg tgggctgttt gcctttcgtg aacacattct tggtaaagaa
      2761 catcaaaagt tttaaaaaag aaaatgagca agaatcagac atcacagatg caacttcttg
```

2821 taatgggaga tgagaatgta cggctgtg

Fig. 4

FEATURES

Location/Qualifiers

source

1..3218

/organism="Homo sapiens"
/db_xref="taxon:9606"

./chromosome=*15*

gene

1..3218

/gene="ADAMTS7"

CDS

13..3003

/gene="ADAMTS7"

/note="ZINC METALLOPROTEASE"

/codon_start=1

/product=' A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs-7 (ADAM-TS7)

/translation="MPGGPSPRSPAPILRPLLLLICALAPGAPGPAPGRATEGRAALD IVHPVRVDAGGSFLSYELWPRALRKRDVSVRRDAPAFYELQYRGRELRFNLTANQHIL APGFVSETRRGGLGRAHIRAHTPACHLLGEVQDPELEGGLAAISACDGLRGVFQLSN EDYFIEPLDSAPARPGHAQPHVVYKRQAPERLAQRGDSSAPSTCGVQVYPELESRRER WEQRQQWRRPRLRRLHQRSVSKEKWVETLVVADAKMVEYHGQPQVESYVLTIMMVAG LFHDPSIGNPIHITIVRLVLLEDEEEDLKITHHALNTLKSFCKWQKSINMKGDAHPLH HDTAILLTRKDLCAAMNRPCETLGLSHVAGMCQPHRSCSINEDTGLPLAFTVAHELGH SFGIQHDGSGNDCEPVGKRPFIMSPQLLYDAAPLTWSRCSRQYITRFLDRGWGLCLDD PPAKDIIDFPSVPPGVLYDVSHQCRLQYGAYSAFCEDMDNVCHTLWCSVGTTCHSKLD AAVDGTRCGENKWCLSGECVPVGFRPEAVDGGWSGWSAWSICSRSCGMGVQSAERQCT QPTPKYKGRYCVGERKRFRLCNLQACPAGRPSFRHVQCSHFDAMLYKGQLHTWVPVVN DVNPCELHCRPANEYFAKKLRDAVVDGTPCYQVRASRDLCINGICKNVGCDFEIDSGA MEDRCGVCHGWGSTCHTVSGTFEEAEGLGYVDVGLIPAGAREIRIQEVAEAANFLALR SEDPEKYFLNGGWTIQWRGDYQVAGTTFTYARRGNWENLTSPGPTKEFVWIQVPASRG

Fig. 4 (con't)

PGGGSRGGVPRPSTLHGRSRPGGVSPGSVTEPGSEPGPPAAASTSVSPSLKWPNLVAA VHRGGWGQAPLGLGGWRRHLVLMGPRLPTQLLFQESNPGVHYEYTIHREAGGHDEVPP PVFSWHYGPWTKCTVTCGRGEKWGRHSPTCRGLVSGQGHWLQLPAHCWATTGLEVCFS EPQFSICEMRLAIALCPRPAGRVHG*

BASE COUNT 584 a 1041 c 1003 g 590 t ORIGIN

```
1 ccggttcctg ccatgcccgg cggccccagt ccccgcagcc ccgcgccttt gctgcgcccc
 61 etecteetge tectetgege tetggetece ggegeeeegg gaeeegeaee aggaegtgea
121 accgagggcc gggcggcact ggacatcgtg cacccggttc gagtcgacgc ggggggctcc
181 ttcctgtcct acgagetgtg geceegegea etgegeaage gggatgtate tgtgegeega
241 gacgcgcccg ccttctacga gctacaatac cgcgggcgcg agctgcgctt caacctgacc
301 gccaatcage acctgctggc gcccggcttt gtgagcgaga cgcggcggcg cggcggcctg
361 ggccgcgcgc acatecgggc ccacaceceg gcctgccace tgcttggcga ggtgcaggae
421 cctgagctcg agggtggcct ggcggccatc agcgcctgcg acggcctgaa aggtgtgttc
481 cageteteca acgaggacta etteattgag eccetggaca gtgeecegge eeggeetgge
541 cacgcccage cccatgtggt gtacaagegt caggccccgg agaggctggc acagcggggt
601 gattccagtg ctccaagcac ctgtggagtg caagtgtacc cagagctgga gtctcgacgg
661 gagcgttggg agcagcggca gcagtggcgg cggccacggc tgaggcgtct acaccagcgg
721 tcggtcagca aagagaagtg ggtggagacc ctggtagtag ctgatgccaa aatggtggag
781 taccacggac agccgcaggt tgagagctat gtgctgacca tcatgaacat ggtggctggc
841 ctgtttcatg accccagcat tgggaacccc atccacatca ccattgtgcg cctggtcctg
901 ctggaagatg aggaggagga cctaaagatc acgcaccatg cagacaacac cctgaagagc
961 ttctgcaagt ggcagaaaag catcaacatg aagggggatg cccatcccct gcaccatgac
1021 actgccatcc tgctcaccag aaaggacctg tgtgcagcca tgaaccggcc ctgtgagacc
1081 ctgggactgt cccatgtggc gggcatgtgc cagccgcacc gcagctgcag catcaacgag
1141 gacacgggcc tgccgctggc cttcactgta gcccacgagc tcgggcacag ttttggcatt
1201 cagcatgacg gaagcggcaa tgactgtgag cccgttggga aacgaccttt catcatgtct
1261 ccacagetee tgtacgaege egeteeete acctggteee getgeageeg ecagtatate
1321 accaggited tigacogigg giggggeetg tgeetggacg accetectge caaggacatt
1381 atcgacttcc cctcggtgcc acctggcgtc ctctatgatg taagccacca gtgccgcctc
1441 cagtacgggg cctactctgc cttctgcgag gacatggata atgtctgcca cacactctgg
1501 tgctctgtgg ggaccacctg tcactccaag ctggatgcag ctgtggacgg cacccggtgt
1561 ggggagaata agtggtgtct cagtggggag tgcgtacccg tgggcttccg gcccgaggcc
1621 gtggatggtg gctggtctgg ctggagcgcc tggtccatct gctcacggag ctgtggcatg
1681 ggcgtacaga gcgccgagcg gcagtgcacg cagcctacgc ccaaatacaa aggcagatac
1741 tgtgtgggtg agcgcaagcg ettecgcete tgcaacetge aggcetgeee tgetggeege
1801 ccctccttcc gccacgtcca gtgcagccac tttgacgcta tgctctacaa gggccagctg
1861 cacacatggg tgcccgtggt caatgacgtg aacccctgcg agctgcactg ccggcccgcg
1921 aatgagtact ttgccaagaa gctgcgggac gccgtggtcg atggcacccc ctgctaccag
 1981 gtccgagcca gccgggacct ctgcatcaac ggcatctgta agaacgtggg ctgtgacttc
 2041 gagattgact ccggtgctat ggaggaccgc tgtggtgtgt gccacggcaa cggctccacc
 2101 tgccacaccg tgagcgggac cttcgaggag gccgagggtc tggggtatgt ggatgtgggg
 2161 ctgatcccag cgggcgcacg cgagatccgc atccaagagg ttgccgaggc tgccaacttc
 2221 ctggcactgc ggagcgagga cccggagaag tacttcctca atggtggctg gaccatccag
 2281 tggaacgggg actaccaggt ggcagggacc accttcacat acgcacgcag gggcaactgg
 2341 gagaacctca cgtccccggg tcccaccaag gagcctgtct ggatccaggt gcctgcctcc
 2401 cgtggcccag gcggggggag cagaggcgga gtccccaggc ccagcacct ccatggcagg
 2461 tetegteetg gaggagtgag ecetggttea gteacagage etggetetga gecaggeeet
 2521 cctgctgcgg cctctacctc agtttcccca tctttaaaat ggcccaatct tgtagctgca
 2581 gttcacagag gtggctgggg tcaagctcct ttaggactgg gtggatggag aagacacctt
  2641 gtgctcatgg gcccccgcct gcccacccag ctgctgttcc aggagagcaa ccctggggtg
  2701 cactacgagt acaccateca cagggaggca ggtggccacg acgaggtece geegeeegtg
  2761 ttctcctggc attatgggcc ctggaccaag tgcacagtca cctgcggcag aggtgagaag
  2821 tggggcaggc acagcccac ctgcaggggc ttagtgtctg gacagggaca ctggcttcag
  2881 ctcccagete actgetggge caccaegggt ttggaagttt gettetetga geeteagtte
  2941 tocatctgtg agatgagget agegattgcc etgtgtccca ggcccgctgg gagggtacat
  3001 ggatgaggca ggtgggtgct ggctcgcggc gcatgttcag tgtgctccag ctcttggcgt
  3061 teteceteca ggggacacag etececeteg atagaccagt ccagtggece eteaceacac
  3121 tgacttattt ccctaaacta tttataaaaa gtagggcaat ttcattaact ctgactctta
  3181 cctgcccggg cggccgctcg agccgagtaa tcactagt
```

Fig. 5A

	10	20	30	40	50	60	70
بسلس	بلينيل	سلسسلس	سلسسلس	بليبيلب	بيلينيان	سلنسلب	<u></u>
tagggcgad	ctgcacgg	gacgccgcgga	aggacgcgcgc	tegeggeeeg	gggcgccacg	tgctcgagtt	ctg 70
ctaggttgg	gctggcgc	aggaggagcgc	gctgcgcgate	ccagaggggc	cgccagggac	cgccgcgcca	cgt 140
gccgctago	ccgagtcg	gcctccccato	cgattgatca	ttttcctgg	yacagagcgac	ccggccgcct	.cgg 210
gccaccago	cacctgcc	cgcgcgcggcg	gatettettee	ctctcccgcg	rctccgcagca	ctctgcccc	ATG 280
CICCGCGAC	CCCCACCA	CCACCGGGTGC	3CCGCCCCCICC	IGCIGCIGCI	ATTICCACCIG	caccacacac	CAC 350
	360	370	380	390	400	410 .	420
			سلسيلي				
TCGICIGO	3GAGCCCC	3603663333	CAACCCCCCCCC	3CAGGCCTCG	GAGCTAGTGG	TGCCCACGCC	GTT 420
GCCCGGCA(3CGCGAGO	GAGCICGCCIT	CCACCIGICO	300000000	AGGCTTCGT	CCICCCCCIC	GCG 490
CCTGACGC	CAGCTTCC	TGGCGCCGGAA	VITCAAGATCG	AGCGCCTCGC	EGGCTCGAGC	600000000	GGG 560
GCGAGCCG	3GACTGCG	TOGCTGCTTCT	TCTCTGGCAC	AGIGAATGGA	GAACGGGAGI	CCCIGCCGC	GAT 630
GAGCIGIG:	ICCCCCCCCC	TGGAGCGGCTC	GITCITGCIG	CAGGCGAGC	AGTTCACCAT	CCAGCCACAC	1990 700
•	710	720	730	740	750	760	770
سيلسب	عليتناء	بالبينايي	سلسسلت	بطبيبلي	سلسسلس	بالتنبلين	لب
			rcecciecaeo				
GCLCCCL	GCCGCCGA	AGTTTTCCCCC	CICCCTCAAGG	ACTOGAGTO(CACCICCACA	TOGGIAATO	GCA 840
GGGACAGG	AGAGAAGT	GACAACGAAG	AGGACAGGAAG	CAGGACAAG	:AGGGGTTGCT	CAAAGAGACA	GAA 910
GACICCCG	CAAAGIGC	CACCACCCTT	CCGATCCAAAA	CTAGAAGCA	AGAGGITIGIC	FICCGAGGCIC	GCT 980
TOGIOGAA	ACACTICI	GGIGGCIGAT	CGTCCATGGC	TGCCTTCTA	rgggaccgacc	TIGCAGAACC	ACAT 1050
1	L060	1070	1080	1090	1100	1110	1120
سيلنين	ىلىسىل	سسسس	سلسسلس	uluul	uluulu	uduul	
CCTCACGG	TGATGICA	ATGGCAGCCC	GAATCTACAAG	CACCCGAGC	ATCAGGAACIC	CCGICAACCI.	IGIG 1120
GIGGIGAA	AGIGCTAA	TAGTGGAAAA	AGAAAGATGGG	GCCCGGAAG	IGICCGACAAC	COCCCCCC	ACAC 1190
TGCGCAAC	TTCTGCAG	CIGGCAACGG	CGITICAACAA	GCCCAGTGA	CCGCCACCCC	EAGCACTATG	ACAC 1260
TGCCATCT	TGITCACC	'AGACAGAACT	TCTGTGGGAAG	GGAGAGCAG	TGTGACACCC	iGGGGAIGGC	AGAC 1330
GITGGCAC	CATCTGTG	ACCCCGACAA	GAGCIGCICAC	TGATCAAGG	ATGAGGGACT	CAGGCAGCC	FACA 1400
	1410	1420	1430	1440	1450	1460	1470
			ىبلىسىلىن				
			CICAGCAIGC				
			TGGCGCCATTC				
			CTCCTCCATC				
			.C1CCCGGGGCCX				
GCAGATCI	TIGGGCC	CATTTCCGAC	ACTGCCCCAAC	CACCICIGIG	GAGGACATCT	GIGICCAGCI	CIGT 1750

Fig. 5A (con't)

1760	1770	1780	1790	1800	1810	.1820
<u> ئىسلىسىلىسىل</u>						
GCCCGTCATCGCGATA	GTGATGAGCC	CATTIGCCAC	ACAAAGAATO	GIAGCCIGCI	CICCCCICAT	GGIA 1820
CACCCTGTGGCCCTGG						
GCTGTGGTAGATGGA						
ATACAATTCTCGAACC						
CAGTCAAGTACCAATC	ATGCAACACA	<i>LGAGGAATGTC</i>	CACCAAACG	AAAAAGCTIC	CGGGAGCAGC	AGTG 2100
2110	2120	2130	2140	2150	2160	2170
<u> سىلىسىلىسىل</u>	بلتستليب	بلينيلين	بلينيلين	بلينينليب	بليستلين	
TGAGAAATATAATGCC						
GCAGTGTCCCCCCGAG	ACCGATGCAA	CCIGITITICC	AGAGCCCCTC	CGAGGAGTGA	GITCAAAGIG	TTTG 2240
AAGCTAAGGTGATCGA						
TAAGGCTGGCTGTGAC						
CCCACTGCCTGTAGGA	AGATCTCCGG	TTCTTTCACO	CCCTTCAGTT	ATGGCTACAA	IGACATIGIC	ACCA 2450
2460	2470	2480	2490	2500	2510 [.]	2520
نلىسلسسلىس	بالمسلم	علىبتطنين	ىلىنىلىن	بلينينلين	طينطين	<u> </u>
TCCCAGCTGGTGCCAC	AAACATTGAT	CIGAAACACO	GGAGTCACCC	AGGGTTCAGG	AACGACGGCA(GCTA 2520
CCTGGCGCTGAAGACA	CCCAATCCCC	AGIACCICCI	CAATGGTAAC	CIGGCCAICI	CTGCCATAGA	GCAA 2590
GACATCTTGGTGAAGG	GGACCATCCI	GAAGTACAGT	GGCTCCATGG	CTACCCTGGA	GCGGCTGCAG	AGCT 2660
TCCAGGCCCTGCCTGA	GCCTCTTACA	GTACAGCTCC	TGACTGTGTC	TCCTCACCTC	TTCCCTCCAA	AAGT 2730
CAGATATACCTTCTTT	GICCCCAATG	ACATGGACTT	CAGCGIGCAG	AATAGCAAGG	AAAGAGCAAC	CACC 2800
2810	2820	2830	2840	2850	2860	2870
بيسيليسين	بلينيلين	سيسلس	uuluulu	بليتيايي	بليبيلين	
AACATCATTCAGTCAC	TGCCCTCTGC	CGAGTGGGTT	CTGGGAGACT	GGICIGAAIG	TCCGAGCACG	IGCA 2870
GAGGIAGCIGGCAGCG	GCGGACTGTG	CAATGCAGG	ACCCCTCAGG	TCAGGCCTCT	GACACCIGIG	ATGA 2940
GGCTCTGAAACCTGAG	GATGCCAAGC	CCTGTGGAAG	CCAGCCGIGI	CCCCTCtgat	ccccttggtg	gaaa 3010
tctcttaggcttatgg	atttg gg cta	ctggtgtaac	agacaaaggt	.cccctccaag	gtgatactac	atat 3080
caagatggcacggccc	tttcaggcct	tctattacta	caaccccttg	ggtactacct	aattcataag	gaag 3150
3160	3170	3180	3190	3200	3210	3220
<u> ئاسىلىسلىسلى</u>	بليينانين	بليستلين	بليستليب	بليستانين	بلينتلين	<u></u>
agagaagagggtataa	gggtaacaga	ittgtaaagtt	gactgtctgg	rtggactggac	cttgcttatg	acca 3220
agaagtcgggataggt						
tttgcaaaggactagc	aaagctaaat	gaaaaagaag	aattttttt	ttctatttgg	tttccccaat	aatc 3360
aatctacctcacagcg						
agcaagctccataggt	atctccaago	tatcitcaga.	aatgtccgtg	gctgttttca	gtattaaaat	ctgt 3500

Fig. 5A (con't)

	3510	3520	3530	3540	3550	3560	3570	
بيليين	بالتبيلين	علينتيلين	ruliuli	بالتبيلين	بلينتان	بليسيلين	<u> </u>	
tgtctaaaagggcagcagtgtccatcacagggttatagaaagccacttttctcaggctgccacctgctgg 3570								
ggcggac	ccatttcaac	gtatttatgo	aaatatgtcto	cgaactaaag	tgtgtcttac	caccaaaagng	rc 3638	

Fig. 5B

10 20 30 40	·
MLRDPITITGWPPLLLLLLQLPPPPLVCGAPAGPGIGAQAS 40	·
ELWPTRLPGSASELAFHLSAFQQGFVLRLAPDASFLAPE 80	
FKIERLOGSSAAAGGEPGLRGCFFSGIVNGERESLAAMSC 120	
VACWSGSFLLAGEEFTIQPQCACDSLDQPHRLQRWGFCQR 160	
REDPGLAAAEVFPLPQGLEWEVEMGNGQQQERSINEEDRK 200	
210 220 230 240	
<u></u>	
QDKEGLLKETEDSRKVPPPFGSKTRSKRFVSEARFVETIL 240 VADASMAAFYGTDLQNHTLTVMSMAARTYKHPSTRNSVNL 280	
VVVKVLIVEKERWGPEVSDNGGLTLRNFCSWQRRFNKPSD 320	
RHPEHYDIAILFTRONFOGKGEQCDILGMADVGTICDPDK 360	
SCSVIKDEGLQAAYILAHELGHVLSMPHDDSKPCVRLFGP 400	
410 420 430 440	
MGKYHMMAPFFTHVNKFLPWSPCSAVYLITELLDDGHGDCL 440	
LDAPISVLPLPIGLECHSTLYELDQQCKQIFGPDFRHCEN 480	
TSVEDICVOLCARHRDSDEPICHTKWSSLLWADGTFCGFG 520	
HLCLDGSCVLKEDVENFKAVVDGJWGFWRFWGQCSRICGG 560	·
GIQFSNRECINEMPQNGGRFCLGERVKYQSCNIEECPFNG 600	•
610 620 630 640	
KSFREQQCEKYNAYNFFDLDGNFLQWVPKYSGVSPRDRCK 640	
LFCRARGRSEFKVFEAKVIDGTLCGPDTLSICVRGQCVKA 680	
GCDHVVNSPKKLDKOGVCGGKGTACRKISGSFTPFSYGYN 720	·
DIVTIPAGATNIDVKQRSHPGVRNDGSYLALKTANGQYLL 760]	
NGNLAISAIEQDILVKGTTLKYSGSMATLERLQSFQALPE 800	
810 820 830 840	
and the land of th	
PLIVOLLIVSGEVFPPKVRYTFFVPNLMDFSVQNSKERAT 840	
TNIIQSLPSAEWVLCIWSECPSTCRGSWQRRIVECRDPSG 880	
OASDICDEALKPEDAKECGSOECPL 905	

Fig. 6A

. 10	20	30	40		
<u> سىلىسلىسىلىس</u>	بيلينيك	بالسلب			
CGAGGGCAGAAGGCGCTI	AGCGAGCCCC	CACCGCCCCT	GGG 40		
GGCCACGAGTIAGGACCA	CCCCTTCT	GICIGAGGGG	CGC 80	·	•
TTCGTGCAGACGCTGCTC	ETGCCCAT	GCGICCATCG	CTG 120		
CCTTCTACGGGGGGGACC	TGCAGAACC	ACATCCTGAO	GTT 160		
AATGTCTGTGGCAGCCCC	EAATCTACAA	GCACCCCAGC	ATC 200		•
210	220	230	240		
سيسلسيليس	بتلتيتك	برليبيلي			
AAGAATTCCATCAACCTC	ATOGTOGTA	AAAGIGCIGA	TCG 240		
TAGAAGATGAAAAATGG	CCCCAGAGG	TGTCCGACAA	TGG 280		
GGGGCTTACACTGCGTAA	CTTCTGCAA	CTGGCAGCCG	OGT 320	·	
TTCAACCAGCCCAGCGAC	COCCACCCA	GAGCACIACG	ACA 360		
CGGCCATCCTCACCA	GACAGAACT	TCTGTGGGCA	GGA 400	•	
410	420	430	440		
<u> سىسىسىلىسى</u>	بالبنياب	بيلتستلين	سلب		
CCCCTCTCTCTCACACCCT	receile i rece	AGACATCGGG	ACC 440	•	•
ATTTGTGACCCCAACAA	VAGCTGCTCC	GTCATCCACC	ATG 480		
AGGGGCTCCAGGCGGCCC	CACACCCIGG	CCCATGAACT	AGG 520		
GCACGTCCTCAGCATGCC	CCACGACGA	CTCCAAGCCC	TGC 560		•
ACACGGCTCTTCGGGCCC	CATGGGCAAG	CACCACGIGA	TGG 600		
610	620	ഒ0	640	•	
سلسلسلسلس	سلتسلب	برليتيلي			·
CACCGCTGTTCGTCCACC	TGAACCAGA	COCTOCCCTO	GTC 640		_
CCCCTGCAGCGCCATGTT	CICAGGCIG	CCACCTGCAG	GGG 680		
TGGATCCATTTCAAGTAT	MAKATOTATITI	IGIGICICIG	AAC 720		•
TAAAGIGIGAICTTAIGC	C 739				

	10	20,	30	<u>4</u> € ·		
لحسب	uuluul	بسياست	ليستليس			
RAEGA	SEPPPPLGATS	RIKHEVSEA	RFVEILLVAD	ASMAA 40		
FYGAD	LQNHILITLMSV	AARIYKHPS:	IKNSINLMVV	KVLIV 80 .		
EDEKW	GPEVSDNGGLT	LRNFONOR	RFNQPSDRHP	EHYDT 120		
ALLT	RQNFCGQEGLC	DTLGVADIG	TICDPNKSCS	VIEDE 160		**
GLQAAI	HILAHELGHVL	SMPHDDSKP	CTRLFGPMGK	HHVMA 200		
	210	220	230	240		₹.
لسب	بالسلسب	ليتبيلين	ليتبليين	<u> </u>		
PLFVHI	NOTLEWSPCS	AMFSGCHLQ	WIHFKYLCK	CVSEL 240	•	
KCDLM	245					

Fig. 6B

Fig. 7A

10 	. 20 	30 	<u>40</u> 	50	60	70
GAAGCACCATGCAGT						
GAGCCCAGACGCCGC	GCCGCCCTG	CGCAAGGACA	GGCTGCACCC	GAGGCAAGTG	AAATTATTAG	AGACC 140
CTGAGCGAATACCAA						
ACTTCAAAAGAACGO	GACGGAGCAT	TAACICTGCC	ACTGACCCCI	GGCCTGCCTT	CCCTCCTCC	TCTTC 280
CICCICIACCICCIO	CAGGCGCAT	IACCGCCICI	CIGCCTICGG	CCAGCAGTIT	CIATTIAATC	TCACC 350
360	370	380	390	400	410	420
<u> ئىسلىسىلىسىل</u>						
GCCAATGCCGGATTT						
AGITTTATTCCGAAG						
AGCACACGGCCGTCA						
ACCAGAGCAAGAAAA						
CAACAGAGGCATTTT	MCCTTATCG	DAATAAGACG	GACAACACAA	GAGAAAAGAG	3ACCCACAGA	AGGAC 700
710	· 720	730	740	750	760	770
استاستاست	للسلسل	لتسليب	ليسلبين	ليتبلينين	لتسليب	<u> </u>
AAAACGTTTTTTTATC						
CATGGAGAAAACCTT						
GIATIGGAAATTIAA						
CATATCTTTTAATGC						
ATCCATCATGATACTO	CIGITCICIT	DAACAAGACA	GCATAICIGC	AGAGCTCACG	ACAAATGTGA	PACCT 1050
1060	1070	1080	1090	1100	1110	1120
mulmulmul	لتسليب	لتسلسب	ليستليب	لسبلسب	<u> ئىنىدلىنى</u>	<u> </u>
TAGGCCTGGCTGAAC	TGGGAACCATT	rigigatece:	IATAGAAGCT	GITCTATTAG.	IGAAGATAGI	3GATT 1120
GAGTACAGCTTTTACC	ATCGCCCATC	AGCTGGGCC	ATGIGITIAA	CATOCCICATO	SATGACAACA	ACAAA 1190
TGTAAAGAAGAAGGA	TTAAGAGTC	CCACCATGI	CATGGCTCCA	ACACTGAACT:	ICTACACCAA(CCCT 1260
GGATGTGGTCAAAGT	FIAGTCGAAA	ATATATCACIO	GAGTTTTTAG	ACACTOGTIA:	receagigi	FTGCT 1330
TAACGAACCTGAATC	ZAGACCCTAC	cilieccie	TCCAACTGCC	AGGCATCCTT.	PACAACGIGA	ATAAA 1400
1410	1420	1430	1440	1450	1460	1470
					_	
CAATGNGAATTGATT						
GCAATAACGTCAATG						
CGAGCCTGGAAACCA					-	
TCCTGGGGAAGTTGG		-				
GAGAGIGCAACACAC	CAGAACCAAA	AAATOGTGCA	AAATACTGTG	TAGGACGTAG	AATGAAATTT	AAGTC 1750

Fig. 7A (con't)

1760	, 1770	1780	1790	1800	1810	1820
ليبيلينيلينيا		لسيبليين	لسلس	لسبلسب	لسبلسب	
CTGCAACACGGAGCC	ATGTCTCAAG	CAGAAGCGAG	ACTTCCGAGA	IGAACAGIGI	SCICACITIC	ACGGG 1820
AAGCATTTTAACATC	AACGGTCTGC	TTCCCAATGI	GCGCTGGGTC	CCTAAATACA	GIGGAATTCI	CATCA 1890
AGGACCCGTGCAAGT	TGTTCTGCAG	AGTGGCAGGG	AACACAGOCT	ACTATCAGCT	TOGAGACAGA	GIGAT 1960
AGATGGAACTCCTTG	TGGCCAGGAC	ACAAATGATA	TCTGTGTCCA	GGGCCTTTGO	CGGCAAGCTC	GATGC 2030
GATCATGTTTTAAAC	TCAAAAGCCC	CGAGAGATAA	ATGCGGGGTT	TGTGGTGGCG	ATAATICITC	ATGCA 2100
2110	2120	2130	2140	2150	2160	2170
ليسلسيليس						
AAACAGTGGCAGGAA						
TACCAATATTGATGT						
AGCAGTAAAGGTGAA						
GGAATGCTGTGGTAG						
GCAAGAACTTTTGCT	TCAGGITTIG	TCGGTGGGAA	AGITGIACAA	CCCCGAIGIA	CGCTATICIT	TCAAT 2450
2460	2470	2480	2490	2500	2510	2520
ليسلسسلسم	لتشارين	ليستلينين	لتحتيليني	لتسليب	لسبلس	
ATTCCAATTGAAGAT	AAACCTCAGC	AGITTTACIG	GAACAGICAI	GGGCCATGGC	AAGCATGCAC	TAAAC 2520
CCTGCCAAGGGGAAC	GGAAACGAAA	ACTIGITIC	ACCAGGGAAT	CIGATCAGCI	TACIGITIC	GATCA 2590
AAGATGCGATCGGCT	CCCCAGCCI	GGACACATTA	CTGAACCCTG	TGGTACAGGC	TGTGACCTG	AGGIGG 2660
CATGITGCCAGCAGG	AGIGAATGIA	GIGCCCAGIG	TEECTTEEGI	TACCGCACAT	TGGACATCT	ACIGIG 2730
CCAAATATAGCAGGC	TOGATOGGA	GACTGAGAAC	GITGATCATC	GITTTTGCAG	CAGCCATCC	CAAACC 2800
2810	2820	2830	2840	2850	2860	2870
ليتبلينيلينيا						
AAGCAACCGIGAAAA						
TCAAAAAGCTGTGAC	CGTGGGACCC	CAGAGGAGAAC	GCTATTIGI	GICAATACCC	GAAATGATG	PACTOG 2940
ATGACAGCAAATGCA						
GAAATCTGGAGACTC	CTCAGAGTG	TTGGTCACCT	GIGGAAAAAGC	CCATAACCAC	CGCCAGGIC	regrer 3080
CAGTTTGGTGAAGAT	CGATTAAATC	ATAGAATGIC	FIGACCCIGAC	ACCAAGCCAA	CATCIAIGC	AGACTT 3150
3160	3170	3180	3190	3200	3210	3220
لتتبليسيانيين	ليتبليين	لستلسيا	لتسليتنا	ليسلسب	سيلس	Luul
GTCAGCAGCCGGAAT	TOTOCATOCTO	CAGGCGGG	CCCIGGGIAC	AGIGCAGIGI	CACITGIGG	ACAGGG 3220
ATACCAGCTAAGAG	CAGTGAAATG	CATCATTGGG	CTTATATGIC	'AGTGGTAGA'I	GACAATGAC	ICIAAT 3290
GCAGCAACTAGACC	ACTGATACC	CAGGACTGTG	VATTACCATCA	ATGICATCCT	CCCCAGCIG	CCCCCCGG 3360
AAACGAGGAGAAGC	ACATACAGIG	CACCAAGAACC	CACTOCCGAT	rrrecercire	GACCCCATG	CTCAGC 3430
CACTTGTGGGAAAG	FLACCCGGAT	GAGATACCIC	AGCTGCCGAG?	ATGAGAATGG	TCIGIGGCT	GACGAG 3500

Fig. 7A (con't)

3510	3520	3530	3540	3550	3560	3570
ليتبلينين	ليسلسي	uuluul	ليسلسب	لتسلبين	ليتبلينيا	
AGIGCCIGIGCIACC	CIGCCIAGAO	CAGTGGCAAA	<u> CCAACAATGT</u>	TCTGTGACAC	CCIGIGGGCA	ATGGA 3570
AGGCCTTGGACTGGA	CCTCTTCCTC	TGTGACCTGT	GGGCAAGGTA	GGGCAACCCG	GCAAGTGATG	TGTGT 3640
CAACTACAGTGACCA	CCTGATCCAT	CCCACTCACT	GTGACCAGGA	TTATATOCCA	GAAACTGACC	AGGAC 3710
TGTTCCATGTCACCA	TGCCCTCAAA	GGACCCCAGA	CAGIGGCITA	GCTCAGCACC	CCTTCCAAAA	IGAGG 3780
ACTATOGTOCCOGGA	GCGCCAGCCC	CAGCCGCACC	CATGTGCTCG	GTGGAAACCA	GIGGAGAACI	GGCCC 3850
3860	3870 -	3880	3890	3900	3910	3920
لتسليسلسي	لتسليب	لتتبليب	ليتبلينيا	لتتبيلينيا	لتستلسين	
CIGGGGAGCATGITC	CAGIACCIGI	GCTGGCGGAI	CCCAGCGGCG	TGTTGTTGLA	IGICAGGAIG	AAAAT 3920
GGATACACCGCAAAC	GACTGTGTGG	AGAGAATAAA	ACCTGATGAG	CAAAGAGCCT	GIGAATCCGG	CCCIT 3990
GTCCTCAGTGGGCTT	ATGGCAACTG	GGAGAGÌGC	ACTAAGCTGT	GTGGTGGAGG	CATAAGAACA	AGACT 4060
GGTGGTCTGTCAGCG	GTCCAACGGT	GAACGGTTTO	CAGATTTGAG	CTGTGAAATT	CTTGATAAAC	CTCCC 4130
GATCGTGAGCAGTGT	AACACACATG	CTTGTCCACA	CGACGCTGCÁ	TGCAGTACTG	GCCCTTGGAG	CTCGT 4200
4210	4220	4230	4240	4250	4260	4270
ليسلسيلسيد	لتسليب	لسبيلس	لتبتيلتين	لسلس	ليستليسا	
GITCIGICICITGIG	GTCGAGGGCA'	TAAACAACGA	AATGITTACN	GCATGGCAAA	AGATGGAAGC	CATIT 4270
AGAAAGIGATTACTG	TAAGCACCTG	GCTAAGCCAC	ATGGGCACAG	AAAGTGCCGA	CGACGAAGAT	GCCCCC 4340
AAATGGAAAGCTGGC	CCTTCCACTC	AGIGCICIGI	GICCIGIGGO	CCAGGCGIAC	AGCAGAGGCA	IGIGG 4410
GCTGTCAGATCGGAA	CACACAAAAT	AGCCAGAGAG	ACCGAGTCCA.	ACCCATACAC	CAGACCGGAG	TCGGA 4480
ATGCGAATGCCAAGG	CCCACGGIGI	CCCCTTTACA	CTTGGAGGGC	AGAGGAATGG	CAAGAATGCA	CCAAG 4550
4560	4570	4580	4590	4600	4610	4620
لسيلسلسل	لتتبيليين	لتسليب	لتبتليين	لتتتليين	ليتبليين	<u> </u>
ACCTGCGGCGAAGGC	TCCAGGIACO	GCAAGGIGGI	GIGIGIGGAT	GACAACAAAA	ACGAGGIGCA	TGGGG 4620
CACGCTGTGACGTGA	CCAAGCGGCC	GGIGGACCGI	GAAAGCIGIA	GITTGCAACC	CIGOGAGIAI	GICIG 4690
GATCACAGGAGAATG	GICAGAGIGC	TCAGTGACCT	GIGGAAAAGG	CTACAAACAA	AGGCTTGTCT	CGIGC 4760
AGCGAGATTTACACC	GGGAAAGAGA	ATTATGAATA	CAGCTACCAA	ACCACCATCA	ACTGCCCAGG	CACGC 4830
AGCCCCCCAGTGTTC	ACCCCIGITA	CCTGAGGGAG	TGCCCTGTCT	CGGCCACCIG	CAGAGITICCC	AACTG 4900
4910	4920	4930	4940	4950	4960	4970
	<u>l</u>	لتتتاييي	لببيلييي	لبيبالييي	لبيباأيين	
GGGGAGCTGCTCAGT	GICTIGIGGI	GTTGGAGTGA	TGCAGAGATC	TGTGĆAATGE	ttaaccaatg	raggac 4970
caacccagccactta						
gtgagttaccccaga						
gatgattagaggaaa						
acactggtgcatgga						

Fig. 7Å (con't)

	5260	١.	5270	5280	5290	_	300	5310	5320	
ىلىنىد	سسسب			بلينينلينيل						
GTCCCT	PODAKTA	GAGC	CCCCCC	GATGACTGCCAAT	GICGGAAC	XXATTI	ACACGG	CGCTGGGTTT	CCAG 5	320
TTTTC	GAAAATC	AGAA	TAGACC	TGACCAGCATGCA	GATAATC	ACCAC!	GACTT	ACAGTTTGCAAG	GACA 5	390
AGCGAA	AGGACATO	CCGI	CCCTTT	TGCCACAGCCGGG	CATTCCT?	ACAGO	CIGCC	AAGTGCCCACAC	EGIC 5	460
GTTTE	AGCATCAA	CTI	TATGGA	ACCGGCTTGTCTT	TAACIGA	ATCTG	CAGAI	GATATCACAAC	GGAA 5	530
TTATGO	TGICICIO	GACA	TCAAGA	AGTOGCOGGATGG	TACCCCAC	FICGIF	AGGGAA	AIGCGGIGGITA	CIGT 5	600
	5610		5620	5630	5640	_	650	5660	5670	-
				بلىسلىسل						
CCAAAA	TGCACTO	CATC	CICIGG	<u>IACTGGCCTGGAG</u>	GIGCGAGI	PTTTP:	PAGCIA	AGGIGCITIGAA	GAGG 5	670
AAGCCA	ATTATGGA.	IGGA	TGAAGG	ATAGTAATGCAAT	ACCICCAC	CTTA	ALLICC	ficcatgictat	erer 5	740
GIGIGI	GTTGIG	IGIG	ACTIGI	AIGCIIGIGIGIG	TAAATGT	TGTAC	ATATA	CATATATACA 5	804	

Fig. 7B

10 ئىيدالىيىلى	20 	30 	40 	5Ó 	60 	70 l
STADEVSWATTTITT						
FKRIRRSINSAIDPW						
FYSEEEAELKHOFYK						
TEAFSAYGNKIDVIR						
IGNLINIVIVNLIVI	HNEQDGPSIS	ENYOLLITKINE	COMOHENSEC	GIHDTAVLL	TRODICRAHD	KCDIL 350
360	370	380 .	ं १९६८	400	410	420 -
ليسلسبلسي	لتسليب	لتتبليين	لتسليب	لتستليبين	ليسلسب	
GLAELGTICDPYRSC	SISEDSGLSI	AFTIAHELGH	VFNMPHDDNN	KCKEEGVKSE	QHVMAPILNF	YINFW 420
MWSKCSRKYTTEFLD						
NVVNGVHKGCRIQHI	PWADGIECER	CKHCKXGFCV	PKEMDVPVID	GSWGSWSPFG	TCSRICGGGI	KTAIR 560
BONRPEPKNGGKYCV	GRRMKFKSON	TEPCLKQKRD	FRDEQCAHFD	GKHFNINGLL	PNVRWVPKYS	GILMK 630
DRCKLFCRVAGVIAY	YQLRDRVIDG	TPCGQDINDI	CVQGLCRQAG	CDHVLNSKAR	RDKCGVCGGD	NSSCIK 700
710	720	730	740	750	760	770
استلسلسا	لينتيلنين	ليتتأثيب				
TVAGTFNTVHYGYNT	VVRIPAGATN	IIDVROHSFSG	ETODONYLAL	SSSKGEFLLN	GNEVVIMAKR	EIRIG 770
NAVVEYSGSETAVER						
CQGERKRKLVCTRES						
KYSRLDGKTEKVDDG						
DSKCIHQEKVTIQRO						
1060	1070	1080	. 1090	1100	1110	1120
استاستاستا	ليسلسب			لىسىلىس	لىنىلىس	
QQPECASWQAGPWVQ	CSVICGOGYC	LRAVKCIIGI	YMSVVDDNDC	NAATRPIDIO	DCELPSCHPP	PAAPE 1120
TRRSTYSAPRICWRF						
ALDWSSCSVICGQGR						
YRPRSASPSRIHVLG	-					
PQWAYGNWGECTKLC			· · · · · · · · · · · · · · · · · · ·		· -	
1410	1420	1430	1440	1450	1460	1470
ليسلسيلسي	ليبيليين	لتسلسب	ليسلسن	لسياس	لستلتب	
SVSCGRGHKQRNVYC	MAKDGSHLES	DYCKHLAKPH	CHRKCROGRO	PKWKAGAWSC	CSVSCGRGVQ	ORHVG 1470
COIGTHKIARETECN						
RCDVSKRFVDRESCS						
PPSVHPCYLRECTVS						
ELPONCKEVKRLKGA						

Fig. 7B (con't)

1760 1770 1780 1790 1800 1810 1820

PYNGSRRDDCQCRKDYTAAGFSSFQKTRIDLTSMQIITTDLQFARTSEGHPVPFATAGDCYSAAKCPQGR 1820
FSINLYGTGLSLTESARWISQCNYAVSDLKKSPDGTRVVGKCGGYCGKCTPSSGTGLEVRVL.LRCFEEE 1890
AIMDG.RIVMQYLHINLGACVCVCVFVCDLYACVCKCVYTYIYT 1934

Fig. 8

HIAVISLOSOMGIFRSHDODYFIEPLOSVDEQEDEEEON 40 KPHIIYRHSTPOREPSTGKHACATSELKNSHSKDKRKIRM 80 PKRRKRNSLADDVALLKSGLATKVLSGYSNOINNIRDRWN 120 HERTKRELSYPREVEVMVVADHRMVLYHCANLOHYTLTLM 160 SIVASIYKOSSIGNLINIVIVNLVVIHNEQEGPYINFNAQ 200 TTLKNFCQWQHSKNYLGGIQHDTAVLVTREDICRAQDKCD 240 TLGLAELGTICDPYRSCSISEDSGLSTAFTIAHELGHVFN 280 MPHDDSNKCKEEGVKSPOHVMAPTLNFYINPWMWSKCSRK 320 YTTEFLDTGYGECLLNEPASRTYPLPSQLPGLLYNVNKQC 360 ELIFGPGSQVCPYMMQCRRLWCNNVDGAHKGCRTQHTPWA 400 DGTECEPGKHCKFGFCVPKEMEGPAIDGSWGGWSHFGTCS 440 RICGGGIKTAIREONRPEPKNGGKYCVGRRMKFKSCNTEP 480 CMKQKRDFREEQCAHFDGKHFNINGLLPSVRWFPKYSGIL 520 MKDRCKLFCRVAGNIAYYQLRDRVIDGIPCGQDINDICVQ 560 GLCRQAGCDHILNSKVRKDKCGICGCENSSCKIVAGIFNI 600 VHYGYNIVVRIPACATSIDVRQHSFSGKSEDDNYLALSNS 640 KGEFLLNGDFVVSMSKREVRVGSAVIEYSGSINVVERLNC 680 TDRIEEELLLQVLSVGKLYNPDVRYSFNIPIEDKPQOFYW 720 NSHGPWQACSKPCQGERRRKLVCTRESDQLTVSDQRCDRL 760 PQPGPVTEACGTDCDLRWHVASKSECSAQCGLGYRTLDIH 800 CAKYSRMDGKTEKVDDSFCSSQPRPSNQEKCSGECSTGGW 840 RYSAWTECSRSCDGGTQRRRAICVNTRNDVLDDS 874

Fig. 8 (con't)

360	370 ·		390	400	410	<u>4</u> 20
ليستلسيلسيا	بليسيلين	للتسليين	لبيبليب	لسسلسب	uuluul	
ACAGATOGAACCACA	AAAGAACCAA!	CCCTTCIC	ICCIACCCAC	CCTTICUAGA	SCICAICCIC	GTGGC 420
TGACCACAGGATGGT	TTATACCACC	GAGCAAACC	ITCAACATTA	TATCTTAACC	MAATGICCA	TIGIA 490
GCTTCTATCTATAAA	GACTCAAGEA	TTTAAAEDTT	TTATAATTAA	GITATIGIGA	ACTIAGITGI	GATTC 560
ATAATGAACAGGAAG	GACCITACATA	AATTTCAAT	GCCCAGACAA	CATTAAAGAA	TTTTTGCCAG	TGGCA 630
GCACTCAAAGAACTA	CTTGGGTGGG/	ATTCAGCACG	ACACAGCCGI	TCIGGICACA	AGGGAAGATA	ICIGC 700
710	720	730	740	750	760	770
لىسلىسلىس	لسبلس	لسبلين	لبسلسب	لسيلس	لبينليبيا	
AGAGCTCAGGACAAA	TGTGACACCT	PAGGICTICC	IGAACIGGGA	ACCATITGCG	ACCCCTACCG	AAGCT 770
GTTCCATTAGTGAAG	ACAGTGGGCT	GACACAGCT	TICACAATAC	CTCACGAGCT	GGCCATGIG	TTTAA 840
TATCCCTCACGATGA	CAGCAATAAA.	ICCAAAGAAG	AAGGAGITAA	CACTCCCCAG	CAIGICAIGG	CACCA 910
ACACIGAACTICIAC	ACCAACCCCI	CATGIGGIC	aaagigcagi	CGGAAATACA'	ICACIGAGI'I	CCTAG 980
ACACTGGGTACGGAG	AGTGCTTGCT	GAATGAACCT	GCATCCAGGA	CCIAICCITI	GCCTTCCCAA	CIGC 1050
1060	1070	1080	1090	1100	1110	1120
<u></u>	لتستلين	لتستليب	ليتتليين	لسيلس	لبيبليين	
CCCCTTCTCTACAA	CCTCAATAAA	CAATGTGAAC	TGATTTTTGG	GCCAGGCICI	CAAGIGIGCC	CCTAT 1120
ATGATGCAGTGCAGA	COGCTCTOGT	CAATAATGT	GGATGGAGC?	CACAAAGGCT	GCAGGACTCA	GCACA 1190
CCCCTCGGCAGATC	GAACCGAGIG	TGAGCCTGGA	AAGCACIGC	AGTTTCGATT	TIGIGITCCC	AAAGA 1260
AATGGAGGGCCTGC	'AATTGATGGA'	TCCTGGGGAG	CITCGACCC	ACTITICGGACC	IGCICAAGAA	CGIGI 1130
GCAGGAGGCATCAAA	ACAGOCATCA	GAGAGIGCAA	CAGACCAGAC	OLAAAAAOOC	GIGGGAAGI	ACIGIG 1400
1410	1420	1430	1440	1450	1460	1470
ليسلسلسل	لبسابين	لسسلس	سساست	لسلسل	····	
TAGGAAGGAGAATG	AGTTCAAATC	CIGCAACACC	GAGCCCIGC	ATGAAGCAGAA	GCGAGACTI	CCACA 1470
GGAGCAGTGTGCTC	CTTTGATGGC	AAACACTICA	ACATCAATC	FICIGCIGCC	AGCGLACGC	IGGITT 1540
CCTAAGTACAGCGG	ATTITGATGA	AGGACCGGTC	CAAGITGIT	TICCAGAGIC	CAGGAAACAC	CAGCCT 1610
ACTACCACCTCCGAC	ACACAGTGAT	TGACGGAACC	CCTIGICGC	CAGGACACAA	IGACAICIG.	IGICCA 1680
AGGCCTTTGCCGGC/	AGCTGGATGI	GATCATATTI	TAAACTCAA	AGGICCGGAAA	GATAAAIGI	333A11 1/50
1760	1770	1780	2.50	1800	1810	1820
	لتسلسنا	لتستليب	سنسلسب	Luuluu	<u> </u>	1020
TGIGGIGGAGATAA	TTCTTCATGC?	AAACAGIGG	CAGGAACATT	TAACACIGIC	ATTAIGGIT	ACAATA 1820
بلبية لا تحجيب المناسبين	ATTENDED TO THE	TACCAGCAT	IGACGIGCGI	CAGCACAGCI'	ICICAGGGAA	GICIGA 1650
CONTRACT ACTIVITY	بكلامينينكونا	AAACTEDADAA	GTGAATTCC	ICCTAAATG	ACACTITOTI	GICICC 1300
מבבבטע ע ע פירוניגענע	كالكاكاكالاللاك	TGCAGCGCCG	ICATIGACIA	CAGCGGAILCG	EACAATG166	AIGGAMM SOOO!
GACTGAACTGTACG	GACCGIATCG	AGGAAGAACT	ICICCTICAG	GIGITGICCG	I JEJAAASEE I	GIMIMM ZIUU

Fig. 8 (con't)

	2110	2120	2130	2140	2150	2160	2170
لسب		ببلينيلين	ببليستليب	بيلينينلين	سلسسلت	بالتسليب	<u>l.</u>
CCCAG	ATGTGCGGTAC	CATTCAATAT	TCCCATTGAG	GACAAACCTC	'AGCAATTITA	CTGGAACAGT	CAC 2170
cccccc	TIGGCAAGCAT	CAGCAAGCCC	TGCCAAGGG	AGCGGAGACG	AAAACTTGTT	TGCACCAGG	AGT 2240
CTGATO	CAGCTAACCGT	TCTGATCAAA	GATGTGACCC	GCTGCCCCAG	CCAGGACCIG	TCACTGAAGC	GTG 2310 ·
CCCCAC	CAGACTGTGACT	TGAGGIGGCA	LCGTTGCCAGC	'AAGAGCGAAT	GCAGTGCCCA	GIGIGGITIG	GGC 2380
TACCG	PACTITAGACA1	CCACTGTGCC	'AAATACAGCA	GGATGGACGG	GAAGACGGAG	AAGGIGGATG	ACA 2450
	2460	2470	2480	2490	2500	2510	2520
للتبيد	سلسسلس	ببلينيلين	بيلتسلين	بيلينينلين	بيليينيلين	بالبياب	<u></u>
GITTCI	IGTAGCAGTCA	LCCCAGACCGA	GTAACCAGGA	GAAATGCTCA	GGAGAGTGCA	GCACAGGTGG	ATG 2520
GCGCIZ	ATTCAGCCTGG#	CCGAATGTTC	TAGAAGCIGI	CATGGTGGTA	CCCAGAGAAG	AAGAGCAATT	TGT 2590
GTCAAC	CACCCGCAATGA	TETTETTET	GACAGCAA 2	625			

Fig. 9A

10	. 20	30	40	50	60	70 ·	
سيبلسيلسب	ليبيليينا	سيبليب	لتبتليينا	لتتبليينا	لتتبليين		_
TCACGCACGCCTTC	CGICICAAGAI	GAGTTCCT	FICCAGICIG	AGACCTATGA	GATCGCCTTC	CCCAC 70	
CCGCGTGGACCACA							
GGGCCACAGCCGAG:	recesserrerre	TACAAACT	GCCTCGCCAC	CACCCACTIC	CTGCTGAACC	TGACC 210	,
CCCVCCICCCCCICIA	ACTEGCAGEGG	CGTCTCCG	IGGAGI'ACIG	ACACGGGAGG	GCCIGGCCIG	CCAGA 280	
ecccccccccccc	CACIGCCICTÁC	GCTGGTCA(CTGCAGGGCC	'AGGCCAGCAG	CICCCAIGIC	GCCAT 350	
360	370	380	390	400	41 0 .	420	
المسلمسليسين	بلتتتيليتينا	لتستليب	لتسليسا	لتسليب	لتتتبليين		_
CAGCACCTGTGGAG	CCTGCACGGCC	TGATCGIC	CAGACGAGGA	AGAGTACCTG	ATTGAGCCCC	TGCAC 420	
GGIGGGCCCAAGGG	TTCTCGGAGCCC	GGAGGAAAC	TOGACCACAT	GIGGIGIACA	AGCGITCCIC	TCTGC 490	
GICACCCCCACCIG	EACACAGCCIGI	GCAGIGAG	AGATGAGAAAC	CGTGGAAAGG	CCCCCATGC	TGGCT 560	
GCGGACCTTGAAGCC							
CGATCGGTCAGCCG	AGAGCGCTIACGT	GGAGACCCI	GGIGGIGGCI	GACAAGATGA'	ICCICCCIA	ICACG 700	
710	720	730	740	750	760	770	
ليتتلينينا	ىلىسىلىسىا	لتسليب	ليتبليننا	لتتنابينا	لستلسب		- .
GGCGCCGGGATGTGC	AGCAGIAIGIC	CIGGCCAIC	ATGAACATIC	TTGCCAAACT	TTTCCAGGAC	TCGAG 770	
TCTGGGAAGCACCG	TAACATCCTCC	TAACTCGCC	CICATCCIGCI	CACGGAGGAO	CAGCCCACTC	TGGAG 840	
ATCACCCACCATGC	COGGAAGICCCI	'AGACAGCT'	CTGLAAGIGG	CAGAAATCCA	TCGTGAACCA	CAGCG 910	
GCCATGGCAATGCC	ATTCCAGAGAAC	GGTGTGGCT	TAACCATGACA	CAGCAGIGCI	CATCACACGC	TATGA 980	
CATCTGCATCTACA	AGAACAAACCCT	GCGGCACAC	TAGGCCTGGC	:CCGGIGGGCG	GAATGIGIGA	.cccc 1050	
1060	1070	1080	1090	1100	1110	1120	
ليسلسلسل	باستبلتست	لتنتليين	ليستلسنا	لبسيلست	لتستليبنا		-
AGAGAAGCTGCAGCC	FICAATGAGGAC	ATTOGCTCC	CACAAGCGII	CACCATTGCC	ACGAGATCGC	GCACA 1120	
CATTCGGCATGAACC	CATGACGGCGTG	CGAAACACC	TGTGGGGCCC	GIGGICAGGA	CCCAGCCAAG	CTCAT 1190	
GGCTGCCCACATTAC	CATGAAGACCA	ACCCATTCC	TGTGGTCATC	CIGCAACCGI	GACTACATCA	CCACC 1260	
TITCTAGACTCGGGC	cieeecicie	CCTGAACAA	rccaecacicac	'AGACAGGACT	TTGTGTACCC	GACAG 1330	
TGGCACCGGGCCAAC	OCTACGATGCA	GATGAGCA	AIGCCGCÌTIC	'AGCATGGAGT	CAAAICGCGI	CAGIG 1400	
1410	1420	1430	1440	1450	1460	1470	
ليسلسيلسا	بسيبينين	لتتتبليين	لتسلسنا	لسطست	لتستليب	ــــــــــــــــــــــــــــــــــــــ	-
TAAATACGGGGAGG	CTGCAGCGAGC	TCTCCTCT	TGAGCAAGAC	CAACCGGIGC	ATCACCAACA	GCATC 1470	
CCCGCCCGCCCACGGC	CACGCTGTGCCA	GACGCACAC	CATCGACAAC	CCCTCCTCCT	ACAAACGGGI	CIGIG 1540	
TCCCCTTTGGGTCGC	CCCCAGAGGGI	GIGGACGC	ACCCIGGGGGC	CGTGGACTCC	ATGGGGCGAC	TGCAG 1610	
CCCCACCTGTGGCGC							
AAGTACTGTCTGGG	TGAGAGAAGGCC	CCACCGCTC	CTGCAACACC	CATCACIGIC	CCCCIGGCIC	CCAGG 1750	

Fig. 9A (con't):

1760 1770	1780	1790	1800	1810	1820
ACTICAGAGAGTGCAGTGTTCT					
GTACCGGGGGGGGGGGGGGGAAGG					
ACCCCCACCCTCTTCCACCC					
GCAAGCACGTGGGCTGCGACCGA					
TGACGGCAGTGCCTGCGAGACCA					
. 2110 2120	2130	2140	2150	2160	2170
GTCGTCTGGATTCCCAAAGGCTC	•				•
CCCTGAAGGGAGACCAGGAGTCC					· -
TCTAGCTGGGACCACCTTTCAAC					
ATTAATGCATCTCTCATCGTCAT	GCTGCTGGCCCGC	ACCGAGCTG		CCTACCCCTT	
CCCCCATCGCCCGTGACTCGCTG	CCCCCCTACTCCT	GGCACTATG	CCCCTCGAC	CAAGIGCICG	GCCCA 2450
2460 2470	2480	2490	2500	2510	2520
بينا بينيا بينيا بينيانين	بليستلينين	لتسلبين	لنسلبب	<u></u>	
GIGIGCAGGCGGTAGCCAGGTGC	ACCCCCTCCACTC	CCGCAACCA	CTGGACAGC	TCCGCGGTCG	CCCCC 2520 ·
CACTACTGCAGTGCCCACAGCAA	GCTGCCCAAAAGG	CAGCGCGCC.	TGCAACACGC	AGCCTTGCCC	TCCAG 2590
ACTOGGTTGTAGGGAACTGGTCG	CTCTGCAGCCGCA	GCTGCGATG	CAGGCGTGCC	CAGTOGCTOG	GICGI 2660
GTGCCAGCGCCGCGTCTCTGCCG	CGGAGGAGAAGGC	CCTGGACGAC	CAGCGCATGC	.CCGCAGCCGC	GCCCA 2730
CCTGTACTGGAGGCCTGCCACGG	CCCCACTTGCCCT	CCGGAGIGG	CAACCCICC	ACIGGICIGA	GIGIA 2800
2810 2820	· 2830	2840	2850	2860	2870
<u>سيابي بالسيابيي</u>	بليستليسي	ليسابين	لتستليب	لتسلسيا	ــــــــــــــــــــــــــــــــــــــ
CCCCAAGCTGTGGGCCTGGTCTC	CGCCACCGAGTGC	FICCITIGIA	AGAGTGCAG	ATCAACGATCI	ACTCT 2870
GCCCCTGGGCACTGCCTTCCTG	CAGCCAAGCCACC	ATCIACIAT	CCATCIAAC	TTGCGCCGCT	GCCCT 2940
CCTGCCCGCTGGGTGACCAGTGA	GIGGGGIGAGIGI	TCCACACAG	IGTGGCCTCC	3GCCAGCAGCA	GCCCA 3010
CAGTGCGCTGCACCAGCCACACC	GGCCAGCCATCIC	CAGAGICCA	CIGAAGCCII	TGCGGCCATCC	ACCAT 3080
GCAGCAGTGTGAGGCCAAGTGTG	ACAGIGIGGIGCC	GCCIGGAGA:	TGGCCCAGA2	AGAATGCAAGG	ATGIG 3150
3160 3170	3180	3190	3200	3210	3220
سلسيباسياسيلس	<u>ىلىنىلىنىك</u>	ليبيلين	لتسليب	لينتطينينا	
AACAAGGIGGCTTACIGCCCCCI	GGIGCICAAATTI	CAGTICIGE	AGCCGAGCCT	L'ACTICCGCCA	GATGT 3220
GCTGCAAAACCTGCCAAGGCCGC	tagggtacctgga	accaacctg	gagcacaggo	tgaggcaggg	gacat 3290
cccactggagagggcatgaggga	aag gggg gcttga	attgaaggg	tgagatgcag	gttgaaagtta	itttat 3360
tgggtaaccctacagggctcctg	ractaaggggtgga	agaagagctg	gctacccagg	ggaccctctgc	tgtat 3430
cttgcccagttgatagtgaagag	ragaggactccttg	gttgcacaca	tatttaagto	cctagcacco	ctccc 3500

Fig. 9A (con't)

3510	352	20 3530	3540	3550	3560	3570	
بليتيلينين	لتستليب	سلسسلس	سلسسلب	سلسسلت	ببليسلين		
accetttgato	gaatatgt	actgtgaagagt	gggggtgggg	aggggtgtgc	tggtgccctgc	cccctgc 35	570"
actgttctatc	ctacactc	tgagctgggggg	atttatatct	gctatg ggg g	gagtaggcttg	rataccac 36	540
ctccctgtagc	ctcccca	gactgacgaagg	ggaagatcca	cccaaccto	tgccctgcctg	rccccagg 37	710
ggggagttcaa	atccaggo	cgttccccatca	itggtgctaca	agecetgeee	tggggcccaca	cacteet 37	780
caccaagaagc	ttacatta	aaaaagttgtgt	tatcctacaa	aaaaaaaaaa	aaactcgaggg	ggggccc 38	350
3860	387	0 3880	3890	3900	3910	3920	2
<u> باينيىلىيىلى</u>	لتستليب	بلينيلين	<u> بىلىرىلىر</u>	<u>بىلنىيىلى.</u>	بتبليبيلين	<u>ılıııl</u>	
ggtacccaatte	ococtata	otaaatnoootn	tta 3885		•	•	٠.

Fig. 9B

10	20 30	<u>4</u> 0 .		
- -	Linding L			
SRIPSGLKMSSCPVWRAM				
CAAPRHOCHSRVPPLLQS	GLASTHFLLNLTRSSRLI	ACRV 80		
SVEYWIREGLAWQRAARP	HCLYAGHLQGQASSSHVA	ISTC 120		
GGLHGLIVADEEEYLIEP	LHGGPKGSRSPEESGPHV	VYKR 160		
SSLRHPHLDTACGVRDEK	PWKGRPWWLRTLKPPPAR	PLON 200		
	220 230	240		,
andred parker.	donatura la reco	التا	-	·
ETERCOPCLKREVSRERY	ÆTLVVADKYMVAYHGRR	DVEQ 240	·	
YVLAIMNIVAKLFQDSSLO	SIVNILVIRLILLTEDO	PILE 280		
ITHHAGKSLDSFCKWQKS				
VLITRYDICIYKNKPCGT				•
AATSVHHCHEIGHTFGMV	-IDGVGNSCGARGQDPAKI	MAAH 400		
	120 430	440		
بيبليبيليين	_, _,			
ITMKINPFVWSSCNRDYIT				
YPTVAPGQAYDADEQCRFQ				
KSNRCITNSIPAAEGTLO			•	
EGVDGAWGFWIFWEDCSRI			•	
KYCLGERRRHRSCNIDDCI			•	
•	520 630	640		
mulmulmal, , , , , , , , , , , , , , , , , , , 				•
KFYKWKTYRGGGVKACSLI	SLAEGFNFYTERAAAVVI	CTP 640		
CRPDIVDICVSGECKHVGC				
ACETIEGVFSPASPGAGYE				
SHLALKGDQESLLLEGLPG				•
QVQSLEALGPINASLIVM				•
	820 830	840	•	
سيلسلسلس				
LPPYSWHYAPWIKCSAQCA				
HYCSAHSKLPKRORACVTE				
VRSRSVVCQRRVSAAFEKA				
CPPEWATLDWSECTPSCGE				
HCLPAAKPPSIMRCNLRRC				

Fig. 9B (con't)

	1010	1020	1030	1040			
	استاستاست	ببيليين	ليبيلينيا	Luul	 ·	 	_
•	QQRIVRCTSHTGQPS	RECTEAL RP	SIMQQCEAKCI	SVVPP 1040			
	GDGPEECKDVNKVAY	CPLVLKFQF	CSRAYFROMCC	KTCQG 1080	•	•	
	R 1081						

Fig. 10A

	10	20	30	40				
	3000000							
	AGCAGCAGCTGTGG							
	ACGGIGGACATTIG							
	GCTGTGACAGGGTC				•			2
	ATOCCGIGIGIGIG		•					
	ATTGAAGGTGTCTT	TAGCCCAGCT	MIGCCAGGAA	CIGGGT 200				·
	210	220	230	240				
						·		
	ATGAGGACGTCGTC					٠.		
	TTTCATCCAAGATC				•			
	CTAAAGGGGGACCA						-	
	CTCCCAA				•			
	CACATTTCATCTAC	GGCAGGGGCCC	3GACCAGGCA	CAGAGC 400				•
	410	420	430	44 0				
	سيلسيلسب	لتتتبليتيط	بتبيليتيا	ـــــلىنىك				
	CTGGAAGCCCTGGG	ACCCATTAATC	CATCICICA	TCATCA 440				
	TGGTGCTGGCCCAG	GCAGAGTTGCC	TIGOTOTOCA	CTACCG 480				•
•	CTTCAATGCACCCA	TTGCCCGGGAI	IGCACIGCCI	CCCTAC 520			-	
	TCCTGGCACTATGO	CCCCIGGACCA	AATGCTCAG	CCCAGT 560				
	GTGCAGGCGGCAGC	CAGGTCCAAGT	PAGTGGAGTG	CCGAAA 600				
	610	620	ഒ0	640				.,
		ليسلسين	سيلسب	ــــــا			<u>.</u>	
	TCAGCTGGACAGCT	CAGCAGTGGCC	CCACACTAC	TGTAGT 640				•
	GGCCACAGTAAATT							
	CAGAACCATGTCCA	CCAGATIGGGI	TGTAGGAAA	CIGGIC 720				
	ACGCTGCAGCCGTA						•	
	TCAGIGGIGIGCCA							
	810	820	830	840				
	·	1						
	AAGCCITAGACGAC	AGTGCCTGTCC	CACAGCCACG	CCCACC 840				
	TGTGCTGGAGGCCT	GCCAAGGCCC	AIGIGCCCT	CCTGAG 880				
	TGGGCAACCCTCGA	CIGGICIGAGI	IGIACCCCAA	ectigig 920			•	•
	GCCIGGICICCGC	CACCGACTOGI	CCTTTGTAA	CACTOC 960				•
	AGATCAACGATCIA	cicicoccci	reegcacieo	CTTCCT 1000)			

Fig. 10A (con't)

1010 1020 1030 1040	
GCAGCCAAGCCACCATCTACTATGCGATGIAACTTGCGCC 1040 GCTGCCCTCCTGCCCGCTGGGTGACCAGTGAGTGGGTGA 1080	
GIGITCCACACAGIGIGOCCICOGCCAGCAGCAGCACCACA 1120 GIGCGCIGCACCACCACACCACCACCATCICGAGAGI 1160 GCACIGAAGCCITGCGCCATCCACCATGCAGCAGIGIGA 1200	
1210 1220 1230 1240	
GCCCAAGTGTGACAGTGTGCCGCCTGGAGATGGCCCA 1240 GAAGAATGCAAGGTGTGAACAAGGTGGCTTACTGCCCCC 1280 TGGTGCTCAAATTTCAGTTCTGTAGCCGAGCCTACTTCCG 1320	
CCAGATGICCIGCAAAACCTGCCAAGGCCGCTAGGTTACC 1360 TGCAACCAACCTGGAGCACAGGCTGAGGCAGGGGACATCC 1400	·
1410 1420 1430 1440	
CACTOGAGAGGGCATGAGGCGAAAGGGGGGCTTGAATTGAA	
TGAAGAGAGACTTCTTGGTGNACACATTTTTAAGTCC 1600 1610 1620 1630 1640	:
TTAGACCCTTCCACCNTTGATCGGATATGTCTGGGAAGAG 1640 GN 1642	

Fig. 10B

	10	20	30	40
للتبيد	ليستليب	<u>سياست</u>	ليبيابينا	لبييا
AAAVVI	CTPCRPDIV	DICVSGECK	NGCDRVLGST	ILREDK 40
CRVCCC	EDGSACETIE	GVFSPALPG	GYEDVWIPK	CSVHI 80
FIQDLA	ULSLSHLALK	GEOGESLLLEC	LPGTPQPXRL	PLXGT 120
			IMVLAQAELE	
			QCAGGSQVQV	
	210	220	230	240
بليبيد	<u> </u>	ليستلبب	<u></u>	
QLDSSA	.VAPHYCSGH	SKLPKRQRAC	NTEPCPPDW	VONWS 240
			EKALDDSACP	
			CGPGLRHRVV	
			RRCPPARWT	
			ECTEALRPST	
	410	420	430	440
ىلىب	لسبلسا	ليبيليب		ــــــــــــــــــــــــــــــــــــــ
AKCDSV	VPPGDGPEE	KDVNKVAYC	PLVLKFQFCS	RAYFR 440
	COGR 450	•		

Fig. 11A

Ligated 459225+482392 with Sac I(168)&Eco RI(or Not I) Cloning site:5';Eco RI 3';Not I Vector; PT7T3 pac.

You can put this construct to pcDNA3.1(+) for transfection 5'-UTR is 50bp &3'-UTR is 175bp

210-215; in 482392 it's TCCTAC(SY).

		•	•	3		
10	20	30	40	•		•
ا بىنىلىنىد	uuluu	liiiliii				
gaatteggeaegagg	cagtgtccg	attctgattc	cggcaa 40		•	
ggatccaagcATGGA	ATGCTGCCG	TOGGGCAACT	cciocc 80 .			•
				•		
GGACCGCACgctCCG	AGGAGGACC	GGGACGGCCI	ATGGGA 160			
210	220	230	240			
		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	لىنىل	· · · · · · · · · · · · · · · · · · ·		
GCTGCGGCCGCCAAC	TCTCTCAGC	CCCTCCCTGA	GCAGCA 240			•
				•	Ÿ	•
						·
						•
		•				•
610				·		· .
						
ACTIVITATOTOGAA TGAAAACAGTOTOA						
	gaatteggeaegagg ggatecaageATGA ACACTGCTGCTCTTT GGACCGCACGetCGG TGCCTGGGGCCCCATG 210 LILLLILLL GGTGGGGCCGCCAAC AGACCTGTGAAGGAA TAATGTGGACTGCCC CAGCAATGCTCAGCT AGTTTTATGAATGGC GTTGTTGAACTAAC GTTGTTGAACTAGCA GTTGTTGAACTAGCA GCTATACAGAATCTT CCAAATTGTTGGCTC AAGGAAGATAACTGT CCGCAGCTGGTCC CGCAACCAAATCGGAAC GCGAACTAGACATATT ACTTATATCTGGAA	gaatteggeacgaggeagtgteeg ggateeaageATGAATGCTGCGG ACACTGCTCCTTTCTGGCTTTC GGACCGCACGCCCACGAGGAGCAC TGCCTGGGGCCCATGCAGTGAATG 210 220	gaattcggcacgaggcagtgtccgattctgattc ggatccaagcaTcGAATCTGCGGTCGGCAACT ACACTGCTCGTTTTCTGGCTTTCCTGCTCGGCACC GGACCGCACGCCCAGGAGGAGGACGCCCCTGAGGCCCCATGCAGTGAATGCTCACGCACC 210 220 230 GGTGGGGCCGCCAACTCTCTGAGGCGCTGCCTGA ACACTGTGAAGCAACTCTCTGAGGCGCTGCCTGA ACACTGTGAAGCAACAACTCTCTGAGGCGTGCATTTC CAGCAATGCTCAGCTCA	gaatteggeacgaggeagtgteegattetgatteeggeaa 40 ggatecaageATGAATGCTGCGTGGGCAACTCCTGC 80 ACACTGCTCCTCTTTCTGGCTTTCCTGCTCCTGAGTTCCA 120 GGACCGCACGECCGAGGAGGACGCCCTATGGGA 160 TGCCTGGGGCCCATGCAGTGAATGCTCACGCACCTGCGGG 200 210 220 230 240 GGTGGGGCCCGCAACTCTCTGAGGCGCTGCCTGAGCAGCA 240 AGACCTGTGAAGCAACAACATCACGAGACAACATGCAG 280 TAATGTGGACTGCCCACCAGGAAGCAGGTCATTTCCCAGCT 320 CAGCAATGCTCACCTCATAATGATGTCAAGCACCATGCCC 360 AGTTTTATGAATGCCTTCCTGTGTCTAATGACCCTGACAA 400 410 420 430 440 CCCATGTTCACTCAAGTCCCAAGCCAAAGCAACACCTG 440 GTTGTTGAACTACCACCTAAAGTCTTAGATGGTCACGCTT 480 GCTATACAGAATCTTTGGATATGTGCATCAGTGGTTTATG 520 CCAAATTGTTGGCTGCGATCACCAGCTGGAAGCACCGTC 560 AAGGAAGATAACTGTGGGGTCTGCAACGCAAACCACGTC 560 CCAAATTGTTGCCTGCGATCACCAGCTGGGAAGCACCGTC 560 CCCAACTAACTGTGGGGTCTGCAACGGAGATGGTCCA 600 610 620 630 640 CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTC 640 CCCCAACCAAATCGGAGGAGCAACAACCTAT 680 GCAAGTAGACATATTCGCATTGTGTTTAAAAGGTCCTGATC 720 ACTTATATCTGGAAACCAAAACCCTCCAGGGGACTAAAGG	gaatteggeacgaggeagtgteegattetgatteeggeaa 40 ggatecaageATGCAATGCTGCGTCGGGGAACTCCTGGC 80 ACACTGCTCCTTTTCTGGCTTTCCTGCTCCTGAGTTCCA 120 GGACCGCACGECCCAGGAGGACGCCCCCAGGCCCTATGGCA 160 TGCCTGGGGCCCATGCAGTGAATGCTCACGCACCTGCGGG 200 210 220 230 240 CTICCGGCCCCCAACTCTCTCAGGCCCTCCCTGAGCAGCA 240 ACACCTGTGAAGCAACAACTCTCTCAGGCCCTCCCAGCAGCAC ACACCTGTGAAGCAACAAATATCCGATACAGAACATCCAG 280 TAATGTGGACTGCCCACCAGAAGCAGGTGATTTCCCAGCT 320 ACGTTTATCAATGCCTTCCTGTGTCTAATGACCCTGACAA 400 410 420 430 440 CCCATGTTCACTCAAGTGCCAAGCCAAAGCAACACCCTG 440 GTTGTTGAACTACGCCCTCAAGGTCTTACATGGTACGCGTT 480 GCTATACAGAATCTTTGGATTATGTGCATCAGTGGTTTTATG 520 CCAAATTGTTGCTGCGATCACAGCTGCAACCACCGTC 560 AAGGAAGATAACTGTGGGGTCTGCAACGCAACCACCGTC 560 CCAAATTGTTGCCTGCGACGCACCCAACCAACCAACCACCGTC 560 CCCAACTAACTGTGGGGTCTGCAACGCAACCACCTTCC 640 CCCCCCCCCCCTGTGCCAGCGCCAAGTTCCCAGCTCTCTC 640 CCCCCCCCCCCTGTGCCAGCGCCAATGCTTCCAATCCCTCTCT 680 CCCCCAACTAATTCGCCTTGTGTTTTAAAACGTCCTGATC CCCCAACTAATTCGCCTTGTGTTTTAAAACGTCCTGATC CCCCAACTAATTCGCCTTGTGTTTTAAAACGTCCTGATC CCCAACTAAATCGGTTGATACTGTGGTTTCCAACTCCTATC CCCAACTAAATCGGTTCAACCCTTGTGTTTAAAACGTCCTGATC CCCAACCAAATCGGTTCATCACCTTGTGTTTAAAACGTCCTGATC CCCAACCAAATCGGTTCAAACCCTTCCAGGGGACTTAAAGG CCCAACCAAATCGGTTCAAACCCTTCTCAACGGACCTTCAACGG CCCAACTAAATCGGATCATTACTGTGGTTTCCAACTCCTGATC ACTTTATATCTGGAAACCAAAACCCTTCCAGGGGACTTAAAGG CCAACTAAATCGGATCATTATCGCCTTTTTAAAAACGTCCTGATC ACTTTATATCTGGAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTTATATCTGGAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTTATATCTGGAAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTTATATCTGGAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTTATATCTGGAAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTTATATCTGGAAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTTATATCTGGAAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTTATATCTGGAAAACCAAAAACCCTTCCAGGGGACTTAAAGG ACTTATATCTGGAAAACCAAAACCATCCCTCCAGGGGACTTAAAGG ACTTATATCTGGAAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTATATCTGGAAAACCAAAACCCTTCCAGGGGACTTAAAGG ACTTATATCTGGAAAACCAAAACCATCCCCCCAGGGCACTTAAAGGGTCTGATCAACACAACCATTATTCGCCTTTTAAAACCTTCCAGGGACCTTCAACGGACCTTCAACGGACCTTCAACGGACCTTCAACGGACCTTCAACACTTCAACACTTCCAGCTTCAACACTTCCAGCTTCAACACTTCCA	gaatteggeacgaggeagtgteegattetgatteeggeaa 40 ggateeaageArtgAArtocteectgTcGGCAACTCCTGC 80 ACACTGCTCCTTTTCTGGCTTTCCTGCTCTGAGTTCCA 120 GGACCGCACGGCACGACAGGACGGCACGGCCTATGGGA 160 TGCCTGGGGCCCATGCAGTGAATGCTCACGCACCTGCGGG 200 210 220 230 240 210 220 230 240 GGTGGGGCCCCAACTCTCTGAGGCGCTGCCTGAGCAGCA 240 AGACCTGTGAACGAACAACTCCAGC 280 AGACCTGTGAACGAACAACAACAACAACACACCAC 280 TAATGTGGACTCCCACCAGAACCAGGTCATTTCCCAGCT 320 CACCAATGCTCACCTCATAATGATGCAACACCACCACAA 400 410 420 430 440 410 420 430 440 CCCATGTTCACTCAAGTCCCAACCAAAGCAACACCCTG 440 GTTGTTGAACTACACACCAAAGCAAACAACCCTG 440 GTTGTTGAACTACACACCAAAGCAACACCACTG 480 GCTATACAGAATCTTTGCATATGTCCAACGTCTTAGTTTTATG 520 CCAAATTGTTCCTGCAACGCAAAGCAACACCCTG 560 AAGGAACATACTTTGCATCACTGCGAACCACAGCTCTC 640 CCCAACCAAATCGTGCGACCAACGCAACGACACCTCTC 640 CCCCAACCAAATCGTCCAACGCAACGAACAATCCCTCTC 640 CCCCAACCAAATCGTCCAACGCAACGAACAATCCCTCTC 640 CCCCAACCAAATCGTCCAACGCAACGAATCCCTCTC 640 CCCCAACCAAATCGTCCAACCCAAAACCAATCCCTCTC 640 CCCAACCAAATCGGACGAACAAACCCTTCTC 640 CCCCAACCAAATCGGACGAACAAACCCTTCCAGCTCTC 640 CCCCAACCAAATCGGACGAACAAACCCTTCTCAACGCTTCTC 640 CCCCAACCAAATCGGACGAACAAACCCTTCTCAACGCTTCTC 640 CCCAACCAAATCGGACGAACAAACCCTTCTCAGCTCTCTATCACCCTTATCAACCCTTATCACCCTTATCAACCCTTATCACCCTTCTCAACCCAAATCCCTATCACCCTTTTTAAAAACGTCCTCATC

1. 1. 1. 1. 1. 1.

Fig. 11A (con't)

810	820	830	840		
AATTCTAGTGTGGACT					
TACTGAGAATGGCTGG				•	
CAAGATTCGTAACTCG					
TICATCITCTATCAAC					
CCCATTTCTTTCCTTC	CICAGCAACC	TCTCCACCACC	TTA 1000		
1010	1020	1030	1040		
<u> ئىسىلىسىلىسىلى</u>	بلينيليب	بيلينيان		· · · · · · · · · · · · · · · · · · ·	
TCAGCTGACATCGGCT	GAGIGCTACG	ATCTGAGGAGC	AAC 1040		
CGIGIGGITGCIGACCI				•	
ACATCAAACCCAAACC					
TCCTTGTCCAGCCAGT		•			•
TATGACCICIACCATO	CCTTCCTCG	JTGGGAGGCÇA	CC 1200	•	
1210	1220	1230	1240		
mulmulmul					
CATGGACCGCGTGCTCC					
GAGCCGGGCAGTTTCCT				•	
CATGICACTTCAGTGG			-		
CTAAGATGCCCATCGC					
CCCTAAATGGCTGGCAC	CAGGAGTGGT	CTCCGTGCACA	GTG 1400		
1410	1420	1430	1440	·	•
					
ACGIGIGGCCAGGGCCI					•
TCGACCATCGACGAATC					•
AACAAAGCCCCACATAA					
CCCTGCTATAAACCCAA					
AGTIGCCATGGTTCAA				,	
1610	1620	1630	1640		•
					
AGCTGCTGTGTCAGAGC	-				
cagactgttctatattt					
gtgtctcactggttgta			_		
tgtaatcatctcaccaa		="			•
gattgattagtttcaaa	1888888888	adaaaaga (gc	AAC TROO		•

Fig. 11A (con't)

	1810	1820	1830	1840		
لسب ا	ليتبليب	لتتبليينا	لسيلسن	ــــلىسـ	 	
agc 18	303		-			

Fig. 11B

		•									
	Asp (D)	30	# cua	Leu(L)	3	# uca	Ser(S)	6	# guu	Val(V)	6
ugc	Cys (C)	26	# cuc	Leu(L)	11	# ucc	Ser(S)	10	#	Val(V)	29
ugu	Cys (C)	10	# cug	Leu(L)	14	# ucg	Ser(S)	5	# mm	???(X)	0
	Cys(C)	36	# cuu	Leu(L)	6	# ucu	Ser(S)	5	# TOTA	L	526
caa	Gln(Q)	7	# wua	Leu(L)	4	#	Ser(S)	43	#		

Created: Wednesday, May 5, 1999 10:19 AM

Ligated 459225+482392 with Sac I(168)&Eco RI(or Not I) Cloning site:5';Eco RI 3';Not I Vector; PT7T3 pac.

10 MECCRRATEGILLIFLAFLLLSSRTARSEEDROGLWDAWG 40 PWSECSRTCGGGAANSLRRCLSSKSCEGRNIRYRTCSNVD 80 CPPEAGDFRAQQCSAHNDVKHHGQFYEWLFVSNDFDNPCS 120 LKCQAKGITLVVELAPKVLDGTRCYTESLIMCISGLCQIV 160 GCDHQLGSTVKEDNCGVCNGDGSTCRLVRGQYKSQLSATK 200 210 220 230 Landard Landers Lander SDDTVVAIPYGSRHIRLVLKGPDHLYLETKTLQGTKGENS 240 LSSIGIFLVDNSSVDFQKFPDKETLRMAGPLTADFIVKIR 280 NSGSADSTVQFIFYQPIIHRWREIDFFPCSATCGGGYQLT 320 SAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCP 360 ASDGYKQIMPYDLYHPLPRWEATFWIACSSSCGGGIQSRA 400 410 420 430 440 uluuluuluuluuluuluu VSCVEEDIQCHVTSVEEWKCMYTPKMPIAQPCNIFDCPKW 440 LAQEWSPCTVTCGQGLRYRVVLCTDHRGMHTGGCSFKTXP 480 HIKEBCIVPTPCYKPKEKLPVEAKLPWFKQAQELEEGAAV 520

SEEPS. 526

SUBSTITUTE SHEET (RULE 26)

u ·	
MRLEWASILLLLLLL SASCILSLANDSPAAAAAPAQDKTRQPQAAAAAAEPDQPCGEETRERGFLQPLAGQRRSGGLVHNITIC	. 20
LYSGOGKVGYLVYAGGRRFLLDLERDDIVGAAGSIVTAGGGLSASSGHRGHČFYRGIVDGSPRSLAVFDLČGGLDGFFAV	160
KHARYTI.KPILIPGSWAEYERIYGIGSSRIIHVYNREGFSFEALPPRASCETPASPSGPQESPSVHSRSRRRSALAPQILD	240
HSAFSPSZNAGPOTWIPPERRSISRARQVEILLVADESMARMYGRGIQHYLLTLASTANRLYSHASTENHTRLAWKWW	•
LIDKDISLEVSKVAATTLKVFČKOHOHOLGIDHEEHYDAATLFTREDLÖGHISÜDTLGVADVGITČSPERSÖAVIEDO	400
GLHAAFTVHEIGHLIGISHDSKECEENFGTTEDKRIMESTLTSTDASKFWSKCTSATTTEFLDOGKSVILJILPRKQI GHLIGISHDSKECEETFGSTEDKRIMESTLTSTDASKFWSKCTSATTTEFLDOGKSVILJILPRKQI Dis	. 4 80
LGPEELFGQTYDATQQCNLTFGFEYSVCFGMDVCARLWCAVVRQGMVCLTKKLPAVEGTFCGKGRVCLQGKCVDKTRKK LGPEELFGQTYDATQQCNLTFGFEYSVCFGXDVCARLWCAVVRQGMVCLTKKLPAVEGTFCGKGRLCLQGKCVDKTRKK	560
YYSTSSHQMGSWGWGQCSRSCCCGVQFAYRHOWPAPRNGGRYCTGKRALYRSCSVTRCPPNGKSFRHEQCEAKNGYQ YYSTSSHQM <u>MGSWCSWGQCSRSCCCGVQFAYRHOWPAPRNGRYCTGKRALYHSCSLMRC</u> PRNGKSFRHEQCEAKNGYQ	640
SDAKGVKTFVEWFKYAGVLPADVČKLIČRAKGIGYYVVFSPKVIDGTEČRPYSNSVČVRGRČVRIGČDGI IGSKLQYDK SDAKGVKTFVEWPKYAGVLPADVCKLICRAKGIGYYVVFSPKVIDGTECRPYSNSVCVRGKCVRIGCDGI IGSKLQYDK * *4— Spacer domain	
CGVCGGLNSSCTKLIGTFNKKSKGYTDWRLPEGATHLKVRQFKAKDQTRFPAYLALKKKTGEYLINGKYMLSTSETTID CGVCGGLNSSCTKLVGTFNKKSKGYTDWRLPEGATHLKVRQFKAKDQTRFTAYLALKKKNGEYLINGKYMLSTSETTID	
INGIVANYSCWSHRODFI HOMGYSATKETLIVQILATOPIKALGVRYSFFVPKKTIQKVNSVISHGSNKVGPHSTQLQWV INGIVANYSGWSHRODFI HOMGYSATKETLIVQILATOPIKPLOVRYSFFVPKKSTFKVNSVISHGSNKVGSHISQFQWV	880
IGFWLACSRICDIGWHIRIVOCODONRKLAKGCILSORPSAFKOCILKKC IGFWLACSRICDIGWHIRIVOCODONRKLAKGCIPLSORPSAFKOCILKKC	930

Fig. 13

MEILWKILIWILSLIMASSEFHSLIKELSYSSQEETLIYLEHYQLITIPIRVOQGAFLSFTVMIKKISRRRRYDPIDFQQ 80

AVSKLIFIKLSAYGKIFHINLITUNDFVSKIFTVEYWKKDERWKHDFLINCYYTGYLQDRSTTKVALSKVEHGVIAT 160

EDETYFIEPLKNITELSKIFSYENGHENVIYKKSALQORHLYLHSHCGVEFTRSGKEWMINDISTVSYSLFINNIHIH 240

RQKFSVSIERFVETLWALKMAVGYHERKDIENYILSVANIVAKLYRDSSLQWWNILVARLIVLTEDQRALFINNHALK 320

SLDSFCKWKSILSHQSDNITPENGIAHINAVLITRYDICTYKKFGGTILG ASVANTEPERSCSINEDIGLGSAFT 400

LIFETVANFQAHDGIQASCERKIRQONYGSSHYCEYQSFFLWLQSRLHHQLFREVCREIWCLSKANCVINSTPAAE 480

GILQQUONEKGAYQGDVFFGIWPQSIIDSGHWSLWGECSRICGGGSSSSLRHCDSPASSGGKYLGERKRYFSÖN 560

TDPCPLGSRDFREKQÖADFINNFFRGKYMWRYTGGSVKPÖALNÜABGANFYTERAPAVIDGTQAADSIDICTNEE 640

TDPCPLGSRDFREKQÖADFINNFFRGKYMWRYTGGSVKPÖALNÜABGANFYTERAPAVIDGTQAADSIDICTNEE 640

MANGINILGSDAREIRCRVGGGSSTCHAIGFFRDSLFRGGMEWVQIPRGSVHIEVREVAMSKNYIALKSEGDDYYI 720

MANTIDWFRKEDVAGTAFHYKRPIDEPESLFALGPTSENLIVMVLQBONLGIRYKFNVPITRIGSGINEVEFTWHQP 800

CC

MEGGPSPRSPAFLIRPILLILLCALAFGARGPARGFATEERAALDIVHPVRVDAGGSFLSYELWFRALRKRUVSVRRDAPA 80

FYYELQYRGPELRFNLTANGHILAFGFVSETFRRGSLGRAHIFAHTPACHLIGEVQDFEIBGGAAISAÖCGLKGVFQLSN 160

EDYF IEPIDSAPARRHAQPHVVYKRQAPERLAQKGDSSAPSTCGVVYFELESRREWEGROAWRRPRIRRIHGRSVSK 240

EKWETLWADAKMVEYHQQPQVESYVLITDAMVAGLFHDPSIGQPIHTITVRIVILLEDEEDLKITHHAINTIKSFCTW 320

OKSINMKGDAHPEHHUTA II LITEKDI CAAMNREETILGLSHVARCDPHRSTSINFITGE ELAFTVARFI CHSESIGHTG 400

Fig. 13 (con't)

. CWATTGLEVCFSEPOFSICEMRLAIALCPPPAGRVHG 997

		adamalysin II atrolysin A	HELGHNLGME HD HELGHNLGMV HD	
	a	hADAM-9 hADAM-10 hADAM-15 hADAM-17 mADAM-19	HELGHNÌGMNHD HEVGHNFGSPHD HELGHSLGLDHD HELGHNFGAEHD HEIGHNFGMSHD	
	a	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 mADAM-TS5 hADAM-TS6 hADAM-TS7	HELGHVFNMP HD HETGHVLGME HD HETGHVLGME HD HELGHVFNML HD HEIGHL LG LS HD HEIVHN FGMNHD HELGH S FG I Q HD	
	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	W G P W G P W G A W S P W G P W G S W G S W G P W S L W S G W S A	W G D C S R T C G G G V Q Y F G S C S R T C G T G V K F F G S C S R T C G G G V Q F W G D C S R T C G G G V Q F W G E C S R T C G G G V S S W G E C S R T C G G G V S S W G E C S R T C G G G V S S	20 20 20 20 20 20 20 20
b	mADAM-TSI hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	T M R E C D R T R Q C D R T R Q C D S S R D C T A Y R H C D A E R Q C T		40 40 40 40 40 40
	mADAM-TSI hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	R V R Y R S A Y D F Q L A Y D F Q L R T R F R S R A I Y H S R K R Y R S R K R F R L	C N F D C C N S Q D C C N T E D C C N T E D C C N T E D C C N T D P C C N T D P C	52 52 52 52 52 52 52 52 52

Fig. 13 (con't)

SUBSTITUTE SHEET (RULE 26)

UNIQUE DOMAINS

DISINTEGRIN-LIKE DOMAIN

ADAM-TS RELATED PROTEIN-1 (ADAM-TSR1) 100 а.а. ADAM-TS1 951 a.a.

Fig. 15

THROMBOSPONDIŅ TYPE I REPEAT CYSTEINE-POOR DOMAIN CYSTEINE-RICH DOMAIN ADAM-TSR1 525 a.a. METALLOPROTEASE DOMAIN SIGNAL PEPTIDE PRO-DOMAIN

SUBSTITUTE SHEET (RULE 26)

FIGURE 16

MSSCPVWPAMRSPSPPAWTTTGHCWPSRHLLP 40 GAAPRHGGHSRVPPLLQSGLASTHFLLNLTRSSRLLAGRV 80 SVEYWIREGLAWQRAARPHCLYAGHLQGQASSSHVAISTC 120 GGLHGLIVADEEEYLIEPLHGGPKGSRSPEESGPHVVYKR 160 SSLRHPHLDTACGVRDEKPWKGRPWWLRTLKPPPARPLON 200 ETERGOPGLKRSVSRERYVETLVVADKMMVAYHGRRDVEQ 240 YVLAIMNIVAKLFQDSSLGSIVNILVIRLILLIEDQPILE 280 ITHHAGKSLDSFCKWQKSIVNHSGHGNAIPENGVANHDTA 320 VLITRYDICTYKNKPOGILGLARWAECVSAREAAASMRIL 360 AATSVHHCHEIGHIFGMVHDGVGNSCGARGQDPAKLMAAH 400 ITMKINPFVWSSCNRDYITSFLDSGLGLCLNNRPPRQDFV 440 YPTVAPGQAYDADEQCRFQHGVKSRQCKYGEVCSELWCLS 480 KSNRCIINSIPAAEGILQQIHTIDKGWCYKRVCVPFGSRP 520 EGVDGAWGPWTPWGDCSRTCGGGVSSSSRHCDSPRPTTGG 560 KYCLGERRRHRSCNIDDCPPGSQDFREVQCSEFDSIPFRG 600 KFYKWKTYRGGGVKACSLTSLAEGFNFYTERAAAVVDGTP 640 CRPDIVDICVSGECKHVGCDRVLGSDLREDKCRVCGGDGS 680 ACETIEGVFSPASPGAGYEDVVWIPKGSVHIFIQDLNLSL 720 SHLALKGDQESLLLEGLPGTPQPHRLPLAGTTFQLRQGPD 760 QVQSLEALGPINASLIVMVLARTELPALRYRFNAPIARDS 800 LPPYSWHYAPWIKCSAQCAGGSQVQAVECRNQLDSSAVAP 840 HYCSAHSKLPKRORACNTEPCPPDWVVGWSLCSRSCDAG 880 VRSRSVVCQRRVSAAEEKALDDSACPQPRPPVLEACHGPT 920 CPPEWAALDWSECTPSCGPGLRHRVVLCKSADHRATLPPA 960 HCSPAAKPPATMRCNLRRCPPARWAGEWGECSAQCGVGO 1000 RQRSVRCTSHTGQASHECTEALRPPTTQQCEAKCDSPTPG 1040 DGPEECKDVNKVAYCPLVLKFQFCSRAYFRQMCCKTCQGH 1080 Created: Thursday, October 01, 1998 11:05 PM

	10	20	30	40	
سلست	ستثلث	سيبلينين	سيلسين	لبيبيا	
tcacgca	acgccttc	cggtctcaag	ATGAGTTCC	TGTCCAG	40
TCTGGAC	SAGCTATG	AGATCGCCTT	CCCCACCCG	CGTGGAC	80
CACAACC	EGGGCACT	GCTGGCCTTC	TOGOCACCT	CCTCCCC	120
GGAGCAC	3CGCCCGCG	GCACGGGGG	CACAGCCGA	GTCCCCCC	160
CICTIC	CACAAAGI	GGCCTCGCCA	SCACCCACT	ICCIGCT	200

210	220	230	240	,	
بليبيليبيليين	لتتبليب	لتسلسيا			 .
GAACCTGACCCGCAGC					
TOOGTGGAGTACTGG					-
GGGCGGCCCCCCCCC					
GGGCCAGGCAGCAGC					
GGAGGCCTGCACGGC	TGATCGTG	3CAGACGAGGA	AGAGT 400		
410	420	430	44 0		•
لسلسلسلسد					
ACCTGATTGAGCCCC	IGCACGGIG	GCCCCAAGGGI	TCTCG 440		
GAGCCCCGAGGAAAG					
TCCTCTCTGCGTCAC					
TCAGAGATGAGAAAC					
GCGGACCTTGAAGCC	ACCGCCIGO	CAGACCCCIGG	XCAAT 600		
610	620	630	640		
لسلسسسس					
CAAACAGAGCGTGGC					•
GCCGAGAGCGCTACG				•	
GATGATGGTGGCCTA				•	
TATGTCCTGGCCATC				•	
AGGACTCGAGTCTGG	GAAGCACCC	TTAACATCCT	CGIAAC 800		
810	820	830	840		
لتتبلينيلتينا					
TOGCCTCATCCTGCT	CACGGAGG	ACCAGCCCACT	CIGGAG 840		
ATCACCCACCATGCC					
AGTGGCAGAAATCC					
TOCCATTCCAGAGA	ACCETETES	TAACCATGAC	ACAGCA 960		
GIGCICATCACACO	TATGACAT	TIGCATCTACA	AGAACA 1000		
1010	1020	1030	1040		
<u> سىلىسلىسى</u>					
AACCCTGCGGCACA	CTAGGCCTO	GCCCGGTGGGC	GGAATG 1040)	
TGTGAGCGCGAGAG	AAGCTGCAG	CGTCAATGAGC	ACATIG 1080		
GCTGCCACAAGCGT	TCACCATTG	CCACGAGATCC	3GGCACA 1120)	
CATTCGCCATGAAC	CATGACGGC	GIGGGAAACAC	SCICIOS 1160)	
GGCCCGTGGTCAGG	ACCCAGCCA	AGCTCATGGC:	rececae 1200	כ	

1210 1220 1230 1240
ATTACCATGAAGACCAACCCATTCGTGTGGTCATCCTGCA 1240
ACCGTGACTACATCACCAGCTTTCTAGACTCGGGCCTGGG 1280
GCTCTGCCTGAACAACCGGCCCCCCAGACAGGACTTTGTG 1320
TACCCGACAGTGGCACCGGGCCAAGCCTACGATGCAGATG 1360
AGCAATGCCGCTTTCAGCATGGAGTCAAATCGCGTCAGTG 1400
1410 1420 1430 1440
TAAATACGGGGGGTCTGCAGCGAGCTGTGGTGTCTGAGC 1440
AAGAGCAACCGGTGCATCACCAACAGCATCCCGGCCGCCG 1480
AGGGCACGCTGTGCCAGACGCACACCATCGACAAGGGGTG 1520
GIGCTACAAACGGGICIGIGCCCCTTTGGGICGCCCCA 1560
GAGGGTGTGGACCCAGGCCGTGGGCCCGTGGACTCCATGGG 1600
1610 1620 1630 1640
<u> </u>
GCGACTGCAGCCGGACCTGTGGCGGCGGCGTGTCCTCTTC 1640
TAGTCGTCACTGCGACAGCCCCAGGCCAACCATCGGGGGC 1680
AAGIACIGICIGGGGAGAAGGCCGCCACCGCTCCTGCA 1720
ACACGGATGACTGTCCCCCTGGCTCCCAGGACTTCAGAGA 1760
AGIGCAGIGITCTGAATTTGACAGCATCCCTTTCCGTGGG 1800
1810 1820 1830 1840
<u> </u>
AAATTCTACAAGTGGAAAACGTACCGGGGAGGGGGGGGGG
AGGCCTGCTCGCTCACGAGCCTAGCGGAAGGCTTCAACTT 1880
CTACACGGAGAGGGCGCAGCCGTGGTGGACGGGACACCC 1920
TGCCGTCCAGACACGGTGGACATTTGCGTCAGTGGCGAAT 1960
GCAAGCACGIGGGCIGCGACCGAGTCCIGGGCTCCGACCT 2000
2010 2020 2030 2040
<u> </u>
GCGGGACGACAAGTGCCCAGTGTGTGCCGGTGACGGCAGT 2040
GCCTGCGAGACCATCGAGGGCGTCTTCAGCCCAGCCTCAC 2080
CTGGGGCCGGGTACGAGGATGTCGTCTGGATTCCCAAAGG 2120
CICCGICCACATCITCATCCAGGATCTGAACCTCICICIC 2160
AGTCACTTGGCCCTGAAGCGAGACCAGGAGTCCCTGCTGC 2200

2210 2220 2230 2240
<u> milimbrudinihudinihudinih</u>
TGGAGGGCTGCCTGGGACCCCAGCCCACCGTCTGCC 2240
TCTAGCTGGGACCACCTTTCAACTGCGACAGGGGCCAGAC 2280
CAGGTCCAGAGCCTCGAAGCCCTGGGACCGATTAATGCAT 2320
CTCTCATCGTCATGGTGCTGGCCCGGACCGACCTGCCTGC
CCTCCCCTACCCCTTCAATGCCCCCATCGCCCGTGACTCG 2400
2410 2420 2430 2440
<u> </u>
CTGCCCCCTACTCCTGCCACTATGCGCCCTGGACCAAGT 2440
GCTCGGCCCAGTGTGCAGGCGGTAGCCAGGTGCAGGCGGT 2480
GGAGTGCCGCAACCAGCTGGACAGCTCCGCGGTCGCCCCC 2520
CACTACTGCAGTGCCCACAGCAAGCTGCCCAAAAGGCAGC 2560
GCGCCTGCAACACGGAGCCTTGCCCTCCAGACTGGGTTGT 2600
2610 2620 2630 2640
<u> </u>
AGGGAACTGGTCGCTCTGCAGCCGCAGCTGCGATGCAGGC 2640
GIGCGCAGTCGCTCGGTGTGCCCAGCGCCGCGTCTCTCTG 2680
CCGCGCAGAGAGCCGCTGGACGACAGCGCATGCCCGCA 2720
GCCGCCCCACCTGTACTGGAGGCCTGCCACGGCCCCACT 2760
TGCCCTCCGCAGTGGCCCCCTCGACTGGTCTGAGTGCA 2800
2810 2820 2830 2840
<u>introductional material de la companya della companya de la companya de la companya della companya della companya de la companya de la companya della compa</u>
CCCCCAGCTGCGGCCGCCCCCCCCCCGCGTGGTCCT 2840
TTGCAAGAGCGCAGACCACGCGCCACGCTGCCCCCGGCG 2880
CACTGCTCACCCGCCCAAGCCACCGGCCACCATGCGCT 2920
GCAACTIGCGCCGCCCCCCCGCCCGCTGGGTGGCTGG 2960
CGAGTCCCCTGCACACTCCCCCCCCCCCCCCCCCCCCCC
3010 3020 3030 3040
and market and an arrange of the second seco
CGGCAGCGCTCGGTGCGCTGCACCAGCCACACGGGCCAGG 3040
CGTCGCACGAGTGCACGGAGGCCCTGCGGCCGCCCACCAC 3080
GCAGCAGTGTGAGGCCAAGTGCCACAGCCCCAACCCCCGGG 3120
GACGGCCCTGAAGAGTGCAAGGATGTGAACAAGGTCGCCT 3160
ACTGCCCCTGGTGCTCAAATTTCAGTTCTGCAGCCGAGC 3200

3210	3220	3230	3240		
استلسلسل	نسيليي	تبسلست	Lud		
CTACTTCCGCCAGAT	GTGCTGCAA	AACCTGCCAG	3CCAC 3240		
tagggggcgcgcggc	acccggagc	cacagctggcg	ggggtc 3280		
tccgccgccagccct	gcagcgggc	cggccaaaggg	gggccc 3320		
cggggggggggaac	tgggagggaa	agggtgagacg	ggagcc 3360		
ggaagttatttattg	ggaacccct	gcagggccctg	gctgg 3400		
3410	3420	3430	3 <u>44</u> 0		
لسيلسيلسي	لتتسليب	سيلسب	<u> </u>		
ggggatgga 3409					

FIGURE 17

Molecular Weight 216301.30 Daltons 1934 Amino Acids 234 Strongly Basic(+) Amino Acids (K,R) 216 Strongly Acidic(-) Amino Acids (D,E) 477 Hydrophobic Amino Acids (A,I,L,F,W,V) 657 Polar Amino Acids (N,C,Q,S,T,Y)

7.734 Isolectric Point 24.102 Charge at PH 7.0

MQFVSWATLLTLLVRDLAEMGSPDAAAAVRKDRLHPRQVKLLETLSEYETVSPIRVNALG 60 EPFPINVHFKRTRRSINSATDFWPAFASSSSSSTSPQAHYRLSAFGQQFLFNLTANAGFI 120 APLFIVTLLGTPGVNQTKFYSEEEAELKHCFYKGYVNINSEHTAVISLCSGMLGTFRSHD 180 GGYFIEPLQSMDEQEDEEEQNKPHIIYRRSAPQREPSIGRHACDISEHKNRHSKDKKKTR 240 ARKWGERINLAGDVAALNSGLATEAFSAYGNKTDVIREKRTHRRIKRFLSYPREVEVLVV 300 ADVRMVSYHGENLQHYTLTIMSIVASIYKDPSIGNLINIVIVNLIVIHNEQDGPSISFNA 360 QTTLKNFCQWQHSNSPGGIHHDIAVLLTRQDICRAHDKCDTLGLAFLGTTCDPYRSCSIS 420 EDSGLSTAFTIAHELCHVFNMPHDDNNKCKEEGVKSPQHVMAPIINFYINFWMWSKCSRK 480 YTTEFLDIGYGECLLNEPESRPYPLPVQLPGILYNVNKQCELIFGPGSQVCPYMMQCRRL 540 WCNINVNGVHKGCRIQHIPWADGIECEPGKHCKYGFCVPKEMDVPVIDGSWGSWSPFGICS 600 RTCCCGIKTAIRECNRPEPKNOGKYCVGRRMKFKSCNTEPCLKQKRDFRDEQCAHFDGKH 660 FNINGLLPNVRWVPKYSGILMKDRCKLFCRVAGNIAYYQLRDRVIDGIPCGQDINDICVQ 720 GLCRQACCDHVLNSKARRDKCGVCGGDNSSCKIVAGIFNIVHYGYNIVVRIPAGAINIDV 780 RQHSFSGETDDDNYLALSSSKGEFLLNENFVVIMAKREIRIGNAVVEYSGSETAVERINS 840 TDRIEQELLLQVLSVGKLYNPDVRYSFNIPIEDKPQQFYWNSHGFWQACSKPCQGERKRK 900 LVCTRESDQLTVSDQRCDRLPQPGHTTEPCGTGCDLRWHVASRSECSAQCGLGYPTLDIY 960 CAKYSRLDGKTEKVDDGFCSSHPKPSNREKCSGECNIGGWRYSAWIECSKSCDGGTQRRR 1020 AICVNTRNDVLDDSKCTHQEKVTTQRCSEFPCPQWKSGDWSECLVTCGKGHKHRQVWCQF 1080 GEDRLNDRMCDPETKPTSMQTCQQPECASWQAGFWVQCSVTCGQGYQLRAVKCIIGTYMS 1140 WVDDNDCNAATRPTDTQDCELPSCHPPPAAPETRRSTYSAPRTQWRFGSWTPCSATCGKG 1200 TRMRYVSCRDENGSVADESACATLPRPVAKEECSVTPCGQWKALDWSSCSVTCGQGRATR 1260 QVMCVNYSDHVIDRSECDQDYIPEIDQDCSMSPCPQRIPDSGLAQHPFQNEDYRPRSASP 1320 SRTHVLGGNOWRTGPWGACSSTCAGGSQRRVVVCQDENGYTANDCVERTKPDEQRACESG 1380 PCPQWAYGNWGECTKLCGGGIRTRLVVCQRSNGERFPDLSCEILDKPPDREQCNIHACPH 1440 DAAWSTGPWSSCSVSCGRCHKQRNVYCMAKDGSHLESDYCKHLAKFHGHRKCRCGRCPKW 1500 KAGAWSQCSVSCGRGVQQRHVGCQIGTHKIARETECNPYTRPESECECQGPRCPLYTWRA 1560 EEWQECTKTCGEGSRYRKVVCVDDNKNEVHGARCDVSKRFVDRESCSLQPCEYVWITGEW 1620 SECSVICGKGYKQRLVSCSETYIGKENYEYSYQITINCPGIQPPSVHPCYLRECPVSAIW 1680 RVGNVGSCSVSCGVGVMQRSVQCLINEDQPSHLCHIDLKPEERKICRNVYNCELPQNCKE 1740 VKRLKGASEDGEYFLMTRGKLLKTFCAGMHSDHPKEYVTLVHGDSENFSEVYGHRLHNPT 1800 ECPYNGSRRDDCQCRKDYTAAGFSSFQKIRIDLTSMQIITTDLQFARTSEGHPVPFATAG 1860

DCYSAAKCPQGRFSINLYGIGLSLTESARWISQGNYAVSDIKKSPDGTRVVGKCGGYCGK 1920 CTPSSGIGLEVRVL 1934

10 20 30 40	
<u> </u>	<u>.</u>
tgggggcagcggagggagggtgggaagcaccATGCAGIT	40
TGTATCCTGGGCCACACTGCTAACGCTCCTGGTGCGGGAC	80
CTGGCCGAGATGGGGAGCCCAGACGCCGGGGGGGGGGGG	120
GCAAGGACAGCTGCACCGAGGCAAGTGAAATTATTAGA	160
GACCCIGAGCGAATACGAAATCGIGICTCCCATCCGAGIG	200
210 220 230 240	
mulandindindindindindind	·
AACGCTCTCGGAGAACCCTTTCCCACGAACGTCCACTTCA	240
AAAGAACGCGACGGAGCATTAACTCTGCCACTGACCCCTG	280
GCCTGCCTTCGCCTCCTCTTCCTCCTCTACCTCCCCC	320
CAGGCGCATTACCGCCTCTCTGCCTTCGGCCAGCAGTTTC	360
TATTTAATCTCACCGCCAATGCCGGATTTATCGCTCCACT	400
410 420 430 440	,
	·
GITCACIGICACCTCCTCGGGACGCCCGGGGTGAATCAG	440
ACCAAGTTTTATTCCGAAGAGGAAGCGGAACTCAAGCACT	480
GITTCTACAAAGGCTATGTCAATACCAACTCCGAGCACAC	520
GGCCGTCATCAGCCTCTGCTCAGGAATGCTGGGCACATTC	560
CGGTCTCATGATGGGGGTTATTTTATTGAACCACTACAGT	600
610 620 630 640	1
<u> </u>	
CTATGGATGAACAGAGATGAAGAGGAACAAAACAAACC	640
CCACATCATTTATAGGCGCAGCGCCCCCAGAGAGAGCCC	
TCAACAGGAAGGCATGCATGTGACACCTCAGAACACAAAA	
ATAGGCACAGTAAAGACAAGAAAACCAGAGCAAGAAA	
ATGGGGAGAAAGGATTAACCTGGCTGGTGACGTAGCACCA	
810 820 830 840	
<u> </u>	,
TIAAACAGCGGCTTAGCAACAGAGGCATTTTCTGCTTATG	840
GTAATAAGACGGACAACACAAGAGAAAAGAGGACCCACAG	
AAGGACAAAACGITITTTATCCTATCCACGGITTGTAGAA	
GTCTTGGTGGTGGCAGACAGAATGGTTTCATACCATG	
CACAAAACTTTCACATTTTTTTTTTTTTTTTTTTTTTT	

3010 3020 3030 3040	
<u> </u>	
AATGCTCAGGGGAATGTAACACGGGTGGCTGGCCCTATTC. 3040	
TGCCTGGACTGAATGTTCAAAAAGCTGTGACGGTGGGACC 3080	
CAGAGGAGAAGGCTATTTGTGTCAATACCCGAAATGATG 3120	
TACTOGATGACAGCAAATGCACACATCAAGAGAAAGTTAC 3160	•
CATTCAGAGGIGCAGTGAGTTCCCTTGTCCACAGTGGAAA 3200	. •
3210 3220 3230 3240	
TCTGGAGACTGGTCAGAGTGCTTGGTCACCTGTGGAAAAG 3240	
GGCATAAGCACCGCCAGGTCTGGTGTCAGTTTGGTGAAGA 3280	
TCGATTAAATGATAGAATGTGTGACCCTGAGACCAAGCCA 3320	
ACATCTATGCAGACTTGTCAGCAGCCGGAATGTGCATCCT 3360	
GGCAGGCGGGTCCCTGGGTACAGTGCAGTGTCACTTGTGG 3400	
3410 3420 3430 3440	
	
ACAGGGATACCAGCTAAGAGCAGTGAAATGCATCATTGGG 3440	
ACTTATATGTCAGTGGTAGATGACAATGACTGTAATGCAG 3480	
CAACTAGACCAACTGATACCCAGGACTGTGAATTACCATC 3520	•
ATGTCATCCTCCCCCAGCTGCCCCCGGAAACGAGGAGAAGC 3560	
ACATACAGTGCACCAAGAACCCAGTGGCGATTTGGGTCTT 3600	
3610 3620 3630 3640	
	
GGACCCCATGCTCAGCCACTTGTGGGAAAGGTACCCGGAT 3640	
GAGATACGTCAGCTGCCGAGATGAGAATGGCTCTGTGGCT 3680	
GACGAGAGTGCCTGCCTACCCTGCCTAGACCAGTGGCAA 3720	
AGGAAGAATGTTCTGTGACACCCTGTGGGCAATGGAAGGC 3760	· .
CTTGGACTGGAGCTCTTGCTGTGTGACCTGTGGGCCAAGGT 3800	
3810 3820 3830 3840	
and ordered and and and and and and and and and an	•
AGGGCAACCCGGCAAGTGATGTGTGTCAACTACAGTGACC 3840	
ACGIGATCGATCGGAGIGAGTGACCAGGATTATATCCC 3880	
AGAAACTGACCAGGACTGTTCCATGTCACCATGCCCTCAA 3920	
AGGACCCCAGACAGTGCCTTAGCTCAGCACCCCTTCCAAA 3960	
ATGAGGACTATOGICCCCGCAGCCCCAGCCCCAGCCGCAC 4000	

4010	4020	4030	4040) .			•
سىلىسلىسل	لستلسب		لسبل				
CCATGTGCTCGGTGG	AAACCAGTGG	'AGAACTGGC	CCTGG	4040			
GGAGCATGITCCAGI	ACCIGICCIC	GCGGATCCC	AGCGGC.	4080			
GIGITGITGIATGIC	AGGATGAAAA	TGGATACAC	CCAAA	4120			
CGACTGTGTGGAGAG	AATAAAACCT	GATGAGCAA	AGAGCC	4160	•		
TGTGAATCCGGCCCT	IGICCICAGI	GGCTTATG	3CAACT	4200		•	
4210	4220	4230	4240) ·			
استلشاسا	لسلس	سيلسب	سسل				
GGGGAGAGIGCACIA	AGCTGTGTGG	TGGAGGCAT	AAGAAC	4240			
AAGACIGGIGGICIG							
CCAGATTTGAGCTGT	SAAATTCTTG	ATAAACCIC	CCGATC	4320			
GIGAGCAGIGIAACA							
ATGGAGTACTGGCCC	TTGGAGCTCG	TGITCIGIC	ICTIGT	4400		•	
4410	4420	4430	4440)			
ليسلسلسل						· · · · · · · · · · · · · · · · · · ·	
GGTCGAGGGCATAAA							• •
AAGATGGAAGCCATT					•		
GGCTAAGCCACATGG							•
TGCCCCAAATGGAAA					•		
TGTCCTGTCGCCGAG	GCGTACAGCA	GAGGCATGI	GGGCTG	4600			
4610	4620	4630	464	0			
ليسلسلسيد					<u> </u>		
TCAGATCGGAACACA					•	·	
AACCCATACACCAGA							
GCCCACGGIGICCCC							
GCAAGAATGCACCAA							٠.
CGCAACGIGGIGIGI	GIGGAIGACA	ACAAAAACG	AGGIGC	4800			
4810	4820	4830	484	0		•	•
لسيلسيلسيد							
ATGGGGCACGCTGTG							
TGAAAGCTGTAGTTT							
ACAGGAGAATGGTCA	,					•	
GCTACAAACAAAGGC							
CCCCAAAGAGAATTA	TGAATACAG	TIACCAAACC	ACCATC	5000			

5010 5020 5030 5040
AACTGCCCAGGCAGCCCCCAGTGTTCACCCCTGTT 5040
ACCTGAGGGAGTGCCCTGTCTCGGCCACCTGGAGAGTTGG 5080
CAACTGGGGGAGCTGCTCAGTGTCTTGTGGTGTTGGAGTG 5120
ATGCAGAGATCTGTGCAATGTTTAACCAATGAGGACCAAC 5160
CCAGCCACTTATGCCACACTGATCTGAAGCCAGAAGAACG 5200
5210 5220 5230 5240
AAAAACCTGCCGTAATGTCTATAACTGTGAGTTACCCCAG 5240
AATTGCAAGGAGGTAAAAAGACTTAAAGGTGCCAGTGAAG 5280
ATGGTGAATATTTCCTGATGATTAGAGGAAAGCTTCTGAA 5320
GATATTCTGTGCGGGGATGCACTCTGACCACCCCAAAGAG 5360
TACGTGACACTGGTGCATCGAGACTCTGAGAATTTCTCCG 5400
5410 5420 5430 5440
AGGITTATGGGCACAGGITACACAACCCAACAGAATGTCC 5440
CTATAACGGGAGCCGCCGATGACTGCCAATGTCGGAAG 5480
GATTACACGGCCGCTGGGTTTTCCAGTTTTCAGAAAATCA 5520
GAATAGACCIGACCAGCAGCAGATAATCACCACTGACTT 5560
ACAGTTTGCAAGGACAAGGACATCCCGTCCCTTTT 5600
5610 5620 5630 5640
GCCACAGCCGGGGATTGCTACAGCGCTGCCAAGTGCCCAC 5640
AGGGTCGTTTTAGCATCAACCTTTATGGAACCGGCTTGTC 5680
TTTAACTGAATCTGCCAGATGGATATCACAAGGGAATTAT 5720
GCTGTCTCTGACATCAAGAAGTCGCCGGATGGTACCCGAG 5760
TCGTAGGGAAATGCGGTGGTTACTGTGGAAAATGCACTCC 5800
5810 5820 5830 5840
<u>l.,l.,l.,l.,l.,l.,l.,l.,l.,l.,l.,l.,l.,l.,l.,</u>
ATCCTCTCGTACTCCCCTGGACGTCCGACTTTTAtagcta 5840
aggtgctttgaagaggaagccattatggatggatgaagga 5880
tagtaatgcaatacctccaccttaatttgggtgcatgtgt 5920
atgtgtgtgtgtgtgtgtgtgacttgtatgcttgtgtg 5960
tgtaaatgtgtgtacatatacatataca 5990

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<120> Nucleic Acids Encoding Zinc Metalloproteases

<130> 26473-04007

10

<140> 09/369,364 <141> 1999-08-06

<160> 26

5

<170> PatentIn Ver. 2.1

<210> 1

<211> 3002

20 <212> DNA

<213> mus musculus ADAMTS-5

<220>

<221> CDS

25 <222> (18)..(2810)

-400 - 1

30

ccggcgggca gcgcact atg cgg ctc gag tgg gcg tcc ttg ttg ctg cta 50

Met Arg Leu Glu Trp Ala Ser Leu Leu Leu

10

ctg ctg ctg agc gcg tcc tgc ctg tcc ctg gcc gct gac agc ccc 98
Leu Leu Leu Ser Ala Ser Cys Leu Ser Leu Ala Ala Asp Ser Pro
20
25

5
gcc gcg gca cct gcc cag gat aaa acc agg cag cct cag gct gca gca 146
Ala Ala Ala Pro Ala Gln Asp Lys Thr Arg Gln Pro Gln Ala Ala Ala
30
40

ggc cat tta caa ccc ttg gcc ggg cag cgc agg agc ggc ggg ctg gtc 242 45 Gly His Leu Gln Pro Leu Ala Gly Gln Arg Arg Ser Gly Gly Leu Val 60 65 70 75

cat aat ata gac caa ctc tac tct ggc ggt ggc aaa gtg ggc tac ctt 290 His Asn Ile Asp Gln Leu Tyr Ser Gly Gly Gly Lys Val Gly Tyr Leu 50 85 90

gtc tac gcg ggc ggc cgg agg ttc ctg ctg gac ctg gag aga gat gac 338 Val Tyr Ala Gly Gly Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp 95 . 100 . 105

aca gtg ggt gct gct ggt agc atc gtt act gca gga gga ggg ctg agc 386 Thr Val Gly Ala Ala Gly Ser Ile Val Thr Ala Gly Gly Gly Leu Ser 110 115 120

60 gca tcc tct ggc cac cgg ggt cac tgt ttc tac aga ggc acc gtg gac
Ala Ser Ser Gly His Arg Gly His Cys Phe Tyr Arg Gly Thr Val Asp
125
130
135

ggc agc cct cga tcc cta gct gtc ttt gac ctc tgc ggg ggt ctc gat 482 65 Gly Ser Pro Arg Ser Leu Ala Val Phe Asp Leu Cys Gly Gly Leu Asp 140 145 150 155

 $(\mathcal{C}_{\mathcal{A}}(\mathcal{A})) = (\mathcal{A}_{\mathcal{A}}(\mathcal{A}) + (\mathcal{A}_{\mathcal{A}}(\mathcal{A})) +$

5			ttt Phe	_	-	_			_				_			-	530
J			tcc Ser	Trp 175													578
10	_		ctg Leu 190	cat	gtc			_				_				_	626
15	_		cgc Arg	_	_	-				_							674
20			ccc Pro														722
25	_	_	ctg Leu	_	_			_		_							770
			act Thr														818
30			gag Glu 270														866
35			ggc Gly														914
40		_	tac Tyr	_		-	_					_	_	_			962
45	_	_	gtg Val			_	_	_	_	_	_	_	_			_	1010
			gcg Ala														1058
50			cag Gln 350			_	_		-	_			-				1106
55			acc Thr														1154
60		-	gca Ala	_	_				-		_		_	_	_	_	1202
65			gaa Glu	_	-				-	_				_		_	1250
	att	999	cat	cta	ctt	ggc	ctt	tct	cat	gac	gat	tcc	aaa	ttc	tgt	gaa	1298

	Ile	Gly	His	Leu 415	Leu	Gly	Leu	Ser	His 420	Asp	Asp	Ser	Lys	Phe 425	Суз	Glu	
5	gag Glu	aac Asn	ttc Phe 430	ggt Gly	act Thr	aca Thr	gaa Glu	gac Asp 435	aag Lys	cgt Arg	tta Leu	atg Met	tct Ser 440	tca Ser	atc Ile	ctt Leu	1346
10	acc Thr	agc Ser 445	atc Ile	gat Asp	gca Ala	tcc Ser	aag Lys 450	ccc Pro	tgg Trp	tcc Ser	aaa Lys	tgc Cys 455	acg Thr	tca Ser	gcc Ala	acc Thr	1394
16	atc Ile 460	aca Thr	gaa Glu	ttc Phe	ctg Leu	gat Asp 465	gat Asp	ggt Gly	cat His	ggt Gly	aat Asn 470	tgt Cys	ttg Leu	cta Leu	gac Asp	cta Leu 475	1442
15	cca Pro	cgg Arg	aag Lys	cag Gln	att Ile 480	ttg Leu	ggt Gly	ccc Pro	gag Glu	gaa Glu 485	ctc Leu	cca Pro	gga Gly	cag Gln	acc Thr 490	tac Tyr	1490
20	gat Asp	gcc Ala	acc Thr	cag Gln 495	cag Gln	tgc Cys	aac Asn	ttg Leu	aca Thr 500	ttt Phe	G1 y 999	cct Pro	gag Glu	tac Tyr 505	tcg Ser	gtg Val	1538
25	tgc Cys	cct Pro	ggc Gly 510	atg Met	gat Asp	gtc Val	tgt Cys	gcg Ala 515	cgg Arg	ctg Leu	tgg Trp	tgt Cys	gct Ala 520	gtg Val	gtg Val	cgc Arg	1586
30	caa Gln	ggc Gly 525	Gln	atg Met	gtg Val	tgt Cys	ctg Leu 530	acc Thr	aag Lys	aag Lys	ctg Leu	ccg Pro 535	gct Ala	gtg Val	gag Glu	ggc Gly	1634
35	act Thr 540	ccc Pro	tgt Cys	999 Gly	aag Lys	gga Gly 545	aga Arg	gtc Val	tgc Cys	ctt Leu	caa Gln 550	ggc Gly	aaa Lys	tgt Cys	gtg Val	gac Asp 555	1682
22	aaa Lys	act Thr	aag Lys	aaa Lys	aaa Lys 560	tat Tyr	tac Tyr	tcg Ser	aca Thr	tca Ser 565	agc Ser	cat His	gga Gly	aat Asn	tgg Trp 570	G1 y 999	1730
40	tcc Ser	tgg Trp	ggc Gly	ccc Pro 575	tgg Trp	ggt Gly	cag Gln	tgt Cys	tct Ser 580	cgc Arg	tca Ser	tgc Cys	ggg ggg	gga Gly 585	gga Gly	gtg Val	1778
45	cag Gln	ttt Phe	gcc Ala 590	Tyr	Arg	cat His	Cys	Asn	Asn	cct Pro	gca Ala	cct Pro	cga Arg 600	Asn	agt Ser	ggc Gly	1826
50	cgc Arg	tac Tyr 605	Cys	aca Thr	ggg Gly	aag Lys	agg Arg 610	gcc Ala	ata Ile	tac Tyr	cgt Arg	tcc Ser 615	tgc Cys	agt Ser	gtt Val	aca Thr	1874
55	Pro 620	tgc Cys	cca Pro	ccc Pro	aat Asn	ggt Gly 625	aaa Lys	tct Ser	ttt Phe	cgc Arg	cat His 630	gag Glu	cag Gln	tgt Cys	gaa Glu	gcc Ala 635	1922
33	aaa	aat Asn	ggc	tat Tyr	cag Gln 640	tct Ser	gat Asp	gca Ala	aaa Lys	gga Gly 645	gtc Val	aaa Lys	aca Thr	ttt Phe	gta Val 650	gaa Glu	1970
60	tgg Trp					gca Ala											2018
65	acc Thr	tgc Cys	aga Arg 670	Ala	aag Lys	ggc Gly	aca Thr	ggc Gly 675	Tyr	tat Tyr	gtg Val	gtc Val	ttt Phe 680	tct Ser	cca Pro	aag Lys	2066

5	_	_	_			_	_		_		_				tgt Cys	_	2114
_	_			_		-			_	_					tca Ser	_	2162
10															agt Ser 730		2210
15															act Thr		2258
20															cag Gln		2306
25		_		-	_		_						_	_	aag Lys	_	2354
															act Thr		2402
30					_					_	_			_	gga Gly 810		2450
35															aca Thr		2498
40	-		_			_			_		_				gcg Ala		2546 ,
45		_	-		_			_		_	_				aaa Lys	_	2594
															tct Ser		2642
50															acc Thr 890		2690
55															aac Asn		2738
60															ttt Phe		2786
65		_	ctg Leu	_	_		_	tag	cct	gtggl	itt a	actci	taatq	gc ad	caaaa	aaac	2840
03	aaca	agga	gga (tcate	cgca	ga ta	acag	ctgt	ggt	gaaga	acaa	ggc	ctac	cca a	aagca	acagaa	2900

```
agtcatgcct tcatgtcatt gtcaccacga gtcgaattat gggcagaatc tgctctctgc 2960
  gaccaaaagg tttactctac ttggtgaatg atggtaccgt ga
   <210> 2
   <211> 930
   <212> PRT
10 <213> mus musculus ADAMTS-5
  Met Arg Leu Glu Trp Ala Ser Leu Leu Leu Leu Leu Leu Leu Ser
    1
                                       10
15 Ala Ser Cys Leu Ser Leu Ala Ala Asp Ser Pro Ala Ala Ala Pro Ala
                20
                                   25
   Gln Asp Lys Thr Arg Gln Pro Gln Ala Ala Ala Ala Ala Glu Pro
           35
                               40
   Asp Gln Pro Gln Gly Glu Glu Thr Arg Glu Arg Gly His Leu Gln Pro
                           55
                                              60
   Leu Ala Gly Gln Arg Arg Ser Gly Gly Leu Val His Asn Ile Asp Gln
                       70
                                          75
   Leu Tyr Ser Gly Gly Gly Lys Val Gly Tyr Leu Val Tyr Ala Gly Gly
                                       90
25 Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp Thr Val Gly Ala Ala
                                  105
                                                      110
              100
   Gly Ser Ile Val Thr Ala Gly Gly Gly Leu Ser Ala Ser Ser Gly His
                                                 125
           115
                              120
   Arg Gly His Cys Phe Tyr Arg Gly Thr Val Asp Gly Ser Pro Arg Ser
                          135
                                             140
   Leu Ala Val Phe Asp Leu Cys Gly Gly Leu Asp Gly Phe Phe Ala Val
                                          155
                      150
   Lys His Ala Arg Tyr Thr Leu Lys Pro Leu Leu Arg Gly Ser Trp Ala
                  165
                                     170
35 Glu Tyr Glu Arg Ile Tyr Gly Asp Gly Ser Ser Arg Ile Leu His Val
                                  185
                                                      190
   Tyr Asn Arg Glu Gly Phe Ser Phe Glu Ala Leu Pro Pro Arg Ala Ser
           195
                                                  205
                               200
   Cys Glu Thr Pro Ala Ser Pro Ser Gly Pro Gln Glu Ser Pro Ser Val
                                             220
                          215
   His Ser Arg Ser Arg Arg Ser Ala Leu Ala Pro Gln Leu Leu Asp
                                          235
                      230
   His Ser Ala Phe Ser Pro Ser Gly Asn Ala Gly Pro Gln Thr Trp Trp
                                       250
                                                          255
45 Arg Arg Arg Arg Ser Ile Ser Arg Ala Arg Gln Val Glu Leu Leu
                                  265
   Leu Val Ala Asp Ser Ser Met Ala Arg Met Tyr Gly Arg Gly Leu Gln
           275
                              280
                                                  285
   His Tyr Leu Leu Thr Met Ala Ser Ile Ala Asn Arg Leu Tyr Ser His
                           295
                                              300
   Ala Ser Ile Glu Asn His Ile Arg Leu Ala Val Val Lys Val Val Val
                                          315
                      310
   Leu Thr Asp Lys Asp Thr Ser Leu Glu Val Ser Lys Asn Ala Ala Thr
                   325
                                      330
55 Thr Leu Lys Asn Phe Cys Lys Trp Gln His Gln His Asn Gln Leu Gly
               340
                                   345
   Asp Asp His Glu Glu His Tyr Asp Ala Ala Ile Leu Phe Thr Arg Glu
                                                  365
                               360
   Asp Leu Cys Gly His His Ser Cys Asp Thr Leu Gly Met Ala Asp Val
                           375
                                               380
       370
   Gly Thr Ile Cys Ser Pro Glu Arg Ser Cys Ala Val Ile Glu Asp Asp
                                          395
                       390
   Gly Leu His Ala Ala Phe Thr Val Ala His Glu Ile Gly His Leu Leu
                   405
                                   410
```

65 Gly Leu Ser His Asp Asp Ser Lys Phe Cys Glu Glu Asn Phe Gly Thr

Thr Glu Asp Lys Arg Leu Met Ser Ser Ile Leu Thr Ser Ile Asp Ala Ser Lys Pro Trp Ser Lys Cys Thr Ser Ala Thr Ile Thr Glu Phe Leu 5 Asp Asp Gly His Gly Asn Cys Leu Leu Asp Leu Pro Arg Lys Gln Ile Leu Gly Pro Glu Glu Leu Pro Gly Gln Thr Tyr Asp Ala Thr Gln Gln Cys Asn Leu Thr Phe Gly Pro Glu Tyr Ser Val Cys Pro Gly Met Asp Val Cys Ala Arg Leu Trp Cys Ala Val Val Arg Gln Gly Gln Met Val Cys Leu Thr Lys Lys Leu Pro Ala Val Glu Gly Thr Pro Cys Gly Lys 15 Gly Arg Val Cys Leu Gln Gly Lys Cys Val Asp Lys Thr Lys Lys Tyr Tyr Ser Thr Ser Ser His Gly Asn Trp Gly Ser Trp Gly Pro Trp Gly Gln Cys Ser Arg Ser Cys Gly Gly Gly Val Gln Phe Ala Tyr Arg His Cys Asn Asn Pro Ala Pro Arg Asn Ser Gly Arg Tyr Cys Thr Gly Lys Arg Ala Ile Tyr Arg Ser Cys Ser Val Thr Pro Cys Pro Pro Asn 25 Gly Lys Ser Phe Arg His Glu Gln Cys Glu Ala Lys Asn Gly Tyr Gln Ser Asp Ala Lys Gly Val Lys Thr Phe Val Glu Trp Val Pro Lys Tyr Ala Gly Val Leu Pro Ala Asp Val Cys Lys Leu Thr Cys Arg Ala Lys Gly Thr Gly Tyr Tyr Val Val Phe Ser Pro Lys Val Thr Asp Gly Thr Glu Cys Arg Pro Tyr Ser Asn Ser Val Cys Val Arg Gly Arg Cys Val 35 Arg Thr Gly Cys Asp Gly Ile Ile Gly Ser Lys Leu Gln Tyr Asp Lys Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys Thr Lys Ile Ile Gly Thr Phe Asn Lys Lys Ser Lys Gly Tyr Thr Asp Val Val Arg Ile Pro Glu Gly Ala Thr His Ile Lys Val Arg Gln Phe Lys Ala Lys Asp Gln Thr Arg Phe Pro Ala Tyr Leu Ala Leu Lys Lys Lys Thr Gly Glu Tyr 45 Leu Ile Asn Gly Lys Tyr Met Ile Ser Thr Ser Glu Thr Ile Ile Asp Ile Asn Gly Thr Val Met Asn Tyr Ser Gly Trp Ser His Arg Asp Asp Phe Leu His Gly Met Gly Tyr Ser Ala Thr Lys Glu Ile Leu Ile Val Gln Ile Leu Ala Thr Asp Pro Thr Lys Ala Leu Gly Val Arg Tyr Ser Phe Phe Val Pro Lys Lys Thr Thr Gln Lys Val Asn Ser Val Ile Ser 55 His Gly Ser Asn Lys Val Gly Pro His Ser Thr Gln Leu Gln Trp Val Thr Gly Pro Trp Leu Ala Cys Ser Arg Thr Cys Asp Thr Gly Trp His Thr Arg Thr Val Gln Cys Gln Asp Gly Asn Arg Lys Leu Ala Lys Gly Cys Leu Leu Ser Gln Arg Pro Ser Ala Phe Lys Gln Cys Leu Leu Lys Lys Cys

```
<210> 3
   <211> 1520
   <212> DNA
 5 <213> homo sapiens ADAMTS-5
   <400> 3
   ggacatttac ttggcctctc ccatgacgat tccaaattct gtgaagagac ctttggttcc 60
   acagaagata agcgcttaat gtcttccatc cttaccagca ttgatgcatc taagccctgg 120
10 tocaaatgca cttcagccac catcacagaa ttcctggatg atggccatgg taactgtttg 180
   ctggacctac cacgaaagca gatectggge eeegaagaac teecaggaca gacetacgat 240
   gccacccagc agtgcaacct gacattcggg cctgagtact ccgtgtgtcc cggcanggat 300
   gtotgtgoto gootgtggtg tgotgtggta cgccagggco agatggtotg totgaccaag 360
   gagtgcagtt tgcctatcgt cactgtaata accetgetee cagaaacaac ggacgetact 420
15 gcacagggaa gagggccatc taccactcct gcagtctcat gccctgccca cccaatggta 480
   aatcatttcg tcatgaacag tgtgaggcca aaaatggcta tcagtctgat gcaaaaggag 540
   tcaaaacttt tgtggaatgg gttcccaaat atgcaggtgt cctgccagcg gatgtgtgca 600
   agctgacctg cagagccaag ggcactggct actatgtggt attttctcca aaggtgaccg 660
   atggcactga atgtaggccg tacagtaatt ccgtctgcgt ccgggggaag tgtgtgagaa 720
20 ctggctgtga cggcatcatt ggctcaaagc tgcagtatga caagtgcgga gtatgtggag 780
   gagacaactc cagctgtaca aagattgttg gaacctttaa taagaaaagt aagggttaca 840
   ctgacgtggt gaggattcct gaaggggcaa cccacataaa agttcgacag ttcaaagcca 900
   aagaccagac tagattcact gcctatttag ccctgaaaaa gaaaaacggt gagtacctta 960
   tcaatggaaa gtacatgatc tccacttcag agactatcat tgacatcaat ggaacagtca 1020
25 tgaactatag cggttggagc cacagggatg acttcctgca tggcatgggc tactctgcca 1080
   cgaaggaaat tctaatagtg cagattcttg caacagaccc cactaaacca ttagatgtcc 1140
   gttatagett ttttgttccc aagaagtcca ctccaaaagt aaactctgtc actagtcatg 1200
   gcagcaataa agtgggatca cacacttcgc agccgcagtg ggtcacgggc ccatggctcg 1260
   cctgctctag gacctgtgac acaggttggc acaccagaac ggtgcagtgc caggatggaa 1320
30 accggaagtt agcaaaagga tgtcctctct cccaaaggcc ttctgcgttt aagcaatgct 1380
   tgttgaagaa atgttagcct gtgggttatg atcttattgc acaaaagata ctggaggatt 1440
   cancacccgt gcaatcnngg tgaacaggaa ggctacctta acgcacagaa agtcatgctt 1500
   taatgacatt gtcaaccagg
35
   <210> 4
   <211> 2848
   <212> DNA
   <213> Homo sapiens ADAMTS-6
   <220>
   <221> CDS
   <222> (22)..(2601)
45 <220>
   <221> misc feature
   <222> (1369)..(1371)
50 aatcatccag ttttctaaat t atg gaa att ttg tgg aag acg ttg acc tgg
                            Met Glu Ile Leu Trp Lys Thr Leu Thr Trp
   att ttq aqc ctc atc atq qct tca tcg gaa ttt cat agt gac cac agg
55 Ile Leu Ser Leu Ile Met Ala Ser Ser Glu Phe His Ser Asp His Arg
                     15
   ctt tca tac agt tct caa gag gaa ttc ctg act tat ctt gaa cac tac
                                                                      147
   Leu Ser Tyr Ser Ser Gln Glu Glu Phe Leu Thr Tyr Leu Glu His Tyr
60
                30
                                                                      195
   cag cta act att cca ata agg gtt gat caa aat gga gca ttt ctc agc
   Gln Leu Thr Ile Pro Ile Arg Val Asp Gln Asn Gly Ala Phe Leu Ser
65
   ttt act gtg aaa aat gat aaa cac tca agg aga aga cgg agt atg gac
```

	Phe	Thr 60	Val	Lys	Asn	Asp	Lys 65	His	Ser	Arg	Arg	Arg 70	Arg	Ser	Met	Asp	
5															ctt Leu		291
10				_						_					gat Asp 105		339
15															ccc Pro		387
															ttg Leu		435
20			_	_					_		_		_	_	999 999	_	483
25					_		_	_	_					_	cct Pro		531
30	_					_		-			_		_		ggc Gly 185		579
35			_				_		_				_		ctg Leu		627
	-				_		_	_	_			_	-		aaa Lys		675
40			_		_			_							att Ile		723
45							_	_	_	_			_		gaa Glu		771
50															tac Tyr 265		819
55						-				_	_		_		att Ile	_	867
	-				_	_		_				_			att Ile		915
60															gag Glu		963
65	aac Asn 315	cac His	cat His	gca Ala	gac Asp	aag Lys 320	tcc Ser	ctc Leu	gat Asp	agc Ser	ttc Phe 325	tgt Cys	aaa Lys	tgg Trp	cag Gln	aaa Lys 330	1011

_	tcc Ser	att Ile	ctc Leu	tcc Ser	cac His 335	caa Gln	agt Ser	gat Asp	gga Gly	aac Asn 340	acc Thr	att Ile	cca Pro	gaa Glu	aat Asn 345	999 Gly	1059
5	att Ile	gcc Ala	cac His	cac His 350	gat Asp	aat Asn	gca Ala	gtt Val	ctt Leu 355	att Ile	act Thr	aga Arg	tat Tyr	gat Asp 360	atc Ile	tgc` Cys	1107
10	act Thr	tat Tyr	aaa Lys 365	aat Asn	aag Lys	ccc Pro	tgt Cys	gga Gly 370	aca Thr	ctg Leu	ggc Gly	ttg Leu	gcc Ala 375	tct Ser	gtg Val	gct Ala	1155
15	gga Gly	atg Met 380	tgt Cys	gag Glu	cct Pro	gaa Glu	agg Arg 385	agc Ser	tgc Cys	agc Ser	att Ile	aat Asn 390	gaa Glu	gac Asp	att Ile	ggc Gly	1203
20	ctg Leu 395	ggt Gly	tca Ser	gct Ala	ttt Phe	acc Thr 400	att Ile	gca Ala	cat His	gag Glu	att Ile 405	gtt Val	cac His	aat Asn	ttt Phe	ggt Gly 410	1251
25	atg Met	aac Asn	cat His	gat Asp	gga Gly 415	att Ile	gga Gly	aat Asn	tct Ser	tgt Cys 420	gga Gly	cga Arg	aag Lys	gtc Val	atg Met 425	aag Lys	1299
	cag Gln	caa Gln	aat Asn	tat Tyr 430	ggc Gly	agc Ser	tca Ser	cat His	tac Tyr 435	tgc Cys	gaa Glu	tac Tyr	caa Gln	tcc Ser 440	ttt Phe	ttc Phe	1347
30	ctg Leu	gtc Val	tgc Cys 445	ttg Leu	cag Gln	tcg Ser	aga Arg	nta Xaa 450	cat	cac His	cag Gln	ctt Leu	ttt Phe 455	aga Arg	gaa Glu	gtg Val	1395
35	tgt Cys	aga Arg 460	gag Glu	ctc Leu	tgg Trp	tgt Cys	ctc Leu 465	agc Ser	aaa Lys	agc Ser	aac Asn	cgc Arg 470	tgt Cys	gtc Val	acc Thr	aac Asn	1443
40	agt Ser 475	att Ile	cca Pro	gca Ala	gct Ala	gag Glu 480	999 Gly	aca Thr	ctg Leu	tgt Cys	caa Gln 485	act Thr	61 y 999	aat Asn	att Ile	gaa Glu 490	1491
45	aaa Lys	999 Gly	tgg Trp	tgt Cys	tat Tyr 495	cag Gln	gga Gly	gat Asp	tgt Cys	gtt Val 500	cct Pro	ttt Phe	ggc Gly	act Thr	tgg Trp 505	ccc Pro	1539
	cag Gln	agc Ser	ata Ile	gat Asp 510	999 Gly	ggc Gly	tgg Trp	ggt Gly	ccc Pro 515	tgg Trp	tca Ser	cta Leu	tgg Trp	gga Gly 520	gag Glu	tgc Cys	1587
50	agc Ser	agg Arg	acc Thr 525	tgc Cys	999 Gly	gga Gly	ggc Gly	gtn Val 530	tcc Ser	tca Ser	tcc Ser	cta Leu	aga Arg 535	cac His	tgt Cys	gac Asp	1635
55	agt Ser	cca Pro 540	gca Ala	cct Pro	tcg Ser	gag Glu	gtg Val 545	gaa Glu	aaa Lys	tat Tyr	tgc Cys	ctt Leu 550	999 999	ģaa Glu	agg Arg	aaa Lys	1683
60	cgg Arg 555	tat Tyr	cgc Arg	tcc Ser	tgt Cys	aac Asn 560	aca Thr	gat Asp	cca Pro	tgc Cys	cct Pro 565	Leu	ggt Gly	tcc Ser	cga Arg	gat Asp 570	1731
65	Phe	cga Arg	gag Glu	aaa Lys	cag Gln 575	tgt Cys	gca Ala	gac Asp	ttt Phe	gac Asp 580	Asn	atg Met	cct Pro	ttc Phe	cga Arg 585	gga Gly	1779
00		tat	tat	aac	tgg	aaa	ccc	tat	act	gga	ggt	999	gta	aaa	cct	tgt	1827

	Lys	Tyr	Tyr	Asn 590	Trp	Lys	Pro	Tyr	Thr 595	Gly	Gly	Gly	Val	Lys 600	Pro	Cys	
5											ttc Phe						1875
10											gcg Ala						1923
15											tgt Cys 645						1971
13		-	_		_	-	_	_		-	tgt Cys					_	2019
20											gat Asp						2067
25											ggc						2115
30	_	_	_	_	-	_		_			att Ile	_				_	2163
25											act Thr 725						2211
35											tac Tyr						2259
40											acc Thr						2307
45	_	_	_	_			_	_		_	gga Gly				_		2355
50		_				_			_		gat Asp		-	_			2403
55											tca Ser 805						2451
,,											agg Arg						2499
60				_	-		_	_	_	_	tta Leu		_				2547
65						-		_	_		tta Leu			_		_	2595

2651

ctt taa ttatattata ttccatttgt tttcaacctc atgtaatttg tgcagatttg

Leu ttggtaaaat acatettgge acaatgagtg tetetgetgg tgetteteec aagactatet 2711 tgaaggtggg ctgtttgcct ttcgtgaaca cattcttggt aaagaacatc aaaagtttta 2771 10 aaaaagaaaa tgagcaagaa tcagacatca cagatgcaac ttcttgtaat gggagatgag 2831 gagaatgtac ggctgtg 15 <210> 5 <211> 859 <212> PRT <213> Homo sapiens ADAMTS-6 20 <400> 5 Met Glu Ile Leu Trp Lys Thr Leu Thr Trp Ile Leu Ser Leu Ile Met 10 Ala Ser Ser Glu Phe His Ser Asp His Arg Leu Ser Tyr Ser Ser Gln 25 Glu Glu Phe Leu Thr Tyr Leu Glu His Tyr Gln Leu Thr Ile Pro Ile 35 40 Arg Val Asp Gln Asn Gly Ala Phe Leu Ser Phe Thr Val Lys Asn Asp 55 60 Lys His Ser Arg Arg Arg Ser Met Asp Pro Ile Asp Pro Gln Gln 70 75 Ala Val Ser Lys Leu Phe Phe Lys Leu Ser Ala Tyr Gly Lys His Phe 85 His Leu Asn Leu Thr Leu Asn Thr Asp Phe Val Ser Lys His Phe Thr 105 100 35 Val Glu Tyr Trp Gly Lys Asp Gly Pro Gln Trp Lys His Asp Phe Leu 120 125 Asp Asn Cys His Tyr Thr Gly Tyr Leu Gln Asp Gln Arg Ser Thr Thr 135 Lys Val Ala Leu Ser Asn Cys Val Gly Leu His Gly Val Ile Ala Thr 150 155 Glu Asp Glu Glu Tyr Phe Ile Glu Pro Leu Lys Asn Thr Thr Glu Asp 165 170 Ser Lys His Phe Ser Tyr Glu Asn Gly His Pro His Val Ile Tyr Lys 185 45 Lys Ser Ala Leu Gln Gln Arg His Leu Tyr Asp His Ser His Cys Gly 200 Val Ser Asp Phe Thr Arg Ser Gly Lys Pro Trp Trp Leu Asn Asp Thr 215 220 Pro Leu Phe Leu Ile His Tyr Gln Ile Asn Asn Thr His Ile His His 235 230 Arg Gln Lys Arg Ser Val Ser Ile Glu Arg Phe Val Glu Thr Leu Val 250 245 Val Ala Asp Lys Met Met Val Gly Tyr His Gly Arg Lys Asp Ile Glu 265 270 260 55 His Tyr Ile Leu Ser Val Met Asn Ile Val Ala Lys Leu Tyr Arg Asp 280 285 Ser Ser Leu Gly Asn Val Val Asn Ile Ile Val Ala Arg Leu Ile Val 295 Leu Thr Glu Asp Gln Pro Asn Leu Glu Ile Asn His His Ala Asp Lys 310 315 320 Ser Leu Asp Ser Phe Cys Lys Trp Gln Lys Ser Ile Leu Ser His Gln 325 330 Ser Asp Gly Asn Thr Ile Pro Glu Asn Gly Ile Ala His His Asp Asn 345 350 65 Ala Val Leu Ile Thr Arg Tyr Asp Ile Cys Thr Tyr Lys Asn Lys Pro

```
Cys Gly Thr Leu Gly Leu Ala Ser Val Ala Gly Met Cys Glu Pro Glu
       370
                          375
   Arg Ser Cys Ser Ile Asn Glu Asp Ile Gly Leu Gly Ser Ala Phe Thr
                      390
                                         395
 5 Ile Ala His Glu Ile Val His Asn Phe Gly Met Asn His Asp Gly Ile
                  405
                                     410
   Gly Asn Ser Cys Gly Arg Lys Val Met Lys Gln Gln Asn Tyr Gly Ser
               420
                                  425
   Ser His Tyr Cys Glu Tyr Gln Ser Phe Phe Leu Val Cys Leu Gln Ser
                             440
                                               445
   Arg Xaa His His Gln Leu Phe Arg Glu Val Cys Arg Glu Leu Trp Cys
                       455
                                            460
   Leu Ser Lys Ser Asn Arg Cys Val Thr Asn Ser Ile Pro Ala Ala Glu
                      470
                                          475
15 Gly Thr Leu Cys Gln Thr Gly Asn Ile Glu Lys Gly Trp Cys Tyr Gln
                                     490
   Gly Asp Cys Val Pro Phe Gly Thr Trp Pro Gln Ser Ile Asp Gly Gly
              500
                                 505
   Trp Gly Pro Trp Ser Leu Trp Gly Glu Cys Ser Arg Thr Cys Gly Gly
          515
                              520
   Gly Val Ser Ser Ser Leu Arg His Cys Asp Ser Pro Ala Pro Ser Glu
                   535
   Val Glu Lys Tyr Cys Leu Gly Glu Arg Lys Arg Tyr Arg Ser Cys Asn
                      550
                                         555
25 Thr Asp Pro Cys Pro Leu Gly Ser Arg Asp Phe Arg Glu Lys Gln Cys
                 565
                                      570
   Ala Asp Phe Asp Asn Met Pro Phe Arg Gly Lys Tyr Tyr Asn Trp Lys
              580
                                 585
   Pro Tyr Thr Gly Gly Gly Val Lys Pro Cys Ala Leu Asn Cys Leu Ala
                              600
                                                 605
   Glu Gly Tyr Asn Phe Tyr Thr Glu Arg Ala Pro Ala Val Ile Asp Gly
                         615
                                             620
   Thr Gln Cys Asn Ala Asp Ser Leu Asp Ile Cys Ile Asn Gly Glu Cys
                  630
                                         635
35 Lys His Val Gly Cys Asp Asn Ile Leu Gly Ser Asp Ala Arg Glu Asp
                                     650
   Arg Cys Arg Val Cys Gly Gly Gly Ser Thr Cys Asp Ala Ile Glu
                                 665
                                                     670
   Gly Phe Phe Asn Asp Ser Leu Pro Arg Gly Gly Tyr Met Glu Val Val
       675
                              680
   Gln Ile Pro Arg Gly Ser Val His Ile Glu Val Arg Glu Val Ala Met
   Ser Lys Asn Tyr Ile Ala Leu Lys Ser Glu Gly Asp Asp Tyr Tyr Ile
                     710
                                         715
45 Asn Gly Ala Trp Thr Ile Asp Trp Pro Arg Lys Phe Asp Val Ala Gly
725 730 735
   Thr Ala Phe His Tyr Lys Arg Pro Thr Asp Glu Pro Glu Ser Leu Glu
              740
                                  745
   Ala Leu Gly Pro Thr Ser Glu Asn Leu Ile Val Met Val Leu Leu Gln
                              760
   Glu Gln Asn Leu Gly Ile Arg Tyr Lys Phe Asn Val Pro Ile Thr Arg
                          775
                                             780
   Thr Gly Ser Gly Asp Asn Glu Val Gly Phe Thr Trp Asn His Gln Pro
                      790
                                         795
55 Trp Ser Glu Cys Ser Ala Thr Cys Ala Gly Gly Lys Met Pro Thr Arg
                  805
                                     810
   Gln Pro Thr Gln Arg Ala Arg Trp Arg Thr Lys His Ile Leu Ser Tyr
                                 825
   Ala Leu Cys Leu Leu Lys Lys Leu Ile Gly Asn Ile Ser Arg Phe Ala
        835 840
   Ser Ser Cys Asn Leu Ala Lys Glu Thr Leu Leu
                          855
```

65

<210> 6

and the second of the second o

	<212	L> 32 2> DN 3> Ho	IA	sapie	ens A	ADAM?	rs-7										
5		L> CI	os L3)	. (300)3)												
10	<400 ccgg		etg d										er Pi			t ttg o Leu	51
15						ctg Leu											99
20						cgt Arg 35											147
25						gtc Val											195
25						ctg Leu											243
30						gag Glu											291
35						cag Gln											339
40						ggc Gly 115											387
45						ctt Leu											-435
43						agc Ser											483
50						tac Tyr											531
55					_	cag Gln						_	_	_	_	_	579
60						cgg Arg 195											627
			-			gag Glu	-			-			_			_	675
65	cgg	cag	cag	tgg	cgg	cgg	cca	cgg	ctg	agg	cgt	cta	cac	cag	cgg	tcg	723

	Arg	Gln	Gln	Trp 225	Arg	Arg	Pro	Arg	Leu 230	Arg	Arg	Leu	His	Gln 235	Arg	Ser	
5		agc Ser															771
10		gtg Val 255															819
15		atg Met															867
		atc Ile															915
20		gac Asp															963
25		aag Lys															1011
30		cat His 335															1059
35		aac Asn															1107
33	_	cag Gln	_		_	_	_	-				_	_		_	_	1155
40		gcc Ala															1203
45		gac Asp		_			_	_			-			_			1251
50		atg Met 415			_		_		_	-	_						1299
55		tgc Cys															1347
		tgc Cys															1395
60	gtg Val	cca Pro	cct Pro	ggc Gly 465	gtc Val	ctc Leu	tat Tyr	gat Asp	gta Val 470	agc Ser	cac His	cag Gln	tgc Cys	cgc Arg 475	ctc Leu	cag Gln	1443
65		999 999															1491

5	aca Thr	ctc Leu 495	tgg Trp	tgc Cys	tct Ser	gtg Val	999 Gly 500	acc Thr	acc Thr	tgt Cys	cac His	tcc Ser 505	aag Lys	ctg Leu	gat Asp	gca Ala	1539
	gct Ala 510	gtg Val	gac Asp	ggc	acc Thr	cgg Arg 515	tgt Cys	999 Gly	gag Glu	aat Asn	aag Lys 520	tgg Trp	tgt Cys	ctc Leu	agt Ser	999 Gly 525	1587
10	gag Glu	tgc Cys	gta Val	ccc Pro	gtg Val 530	ggc Gly	ttc Phe	cgg Arg	ccc Pro	gag Glu 535	gcc Ala	gtg Val	gat Asp	ggt Gly	ggc Gly 540	tgg Trp	1635
15	tct Ser	ggc Gly	tgg Trp	agc Ser 545	gcc Ala	tgg Trp	tcc Ser	atc Ile	tgc Cys 550	tca Ser	cgg Arg	agc Ser	tgt Cys	ggc Gly 555	atg Met	ggc Gly	1683
20															tac Tyr		1731
25	ggc Gly	aga Arg 575	tac Tyr	tgt Cys	gtg Val	ggt Gly	gag Glu 580	cgc Arg	aag Lys	cgc Arg	ttc Phe	cgc Arg 585	ctc Leu	tgc Cys	aac Asn	ctg Leu	1779
23	cag Gln 590	gcc Ala	tgc Cys	cct Pro	gct Ala	ggc Gly 595	cgc Arg	ccc Pro	tcc Ser	ttc Phe	cgc Arg 600	cac His	gtc Val	cag Gln	tgc Cys	agc Ser 605	1827
30	cac His	ttt Phe	gac Asp	gct Ala	atg Met 610	ctc Leu	tac Tyr	aag Lys	ggc Gly	cag Gln 615	ctg Leu	cac His	aca Thr	tgg Trp	gtg Val 620	ccc Pro	1875
35	gtg Val	gtc Val	aat Asn	gac Asp 625	gtg Val	aac Asn	cċc Pro	tgc Cys	gag Glu 630	ctg Leu	cac His	tgc Cys	cgg Arg	ccc Pro 635	gcg Ala	aat Asn	1923
40	gag Glu	tac Tyr	ttt Phe 640	gcc Ala	aag Lys	aag Lys	ctg Leu	cgg Arg 645	gac Asp	gcc Ala	tgt Cys	gtc Val	gat Asp 650	ggc Gly	acc Thr	ccc Pro	1971
45	tgc Cys	tac Tyr 655	cag Gln	gtc Val	cga Arg	gcc Ala	agc Ser 660	cgg Arg	gac Asp	ctc Leu	tgc Cys	atc Ile 665	aac Asn	ggc Gly	atc Ile	tgt Cys	2019
13	aag Lys 670	aac Asn	gtg Val	ggc Gly	tgt Cys	gac Asp 675	ttc Phe	gag Glu	Ile	gac Asp	Ser	Gly	gct Ala	atg Met	gag Glu	gac Asp 685	2067
50	cgc Arg	tgt Cys	ggt Gly	gtg Val	tgc Cys 690	cac His	ggc	aac Asn	ggc Gly	tcc Ser 695	acc Thr	tgc Сув	cac His	acc Thr	gtg Val 700	agc Ser	2115
55	G1y 999	acc Thr	ttc Phe	gag Glu 705	gag Glu	gcc Ala	gag Glu	ggt Gly	ctg Leu 710	G1 y 999	tat Tyr	gtg Val	gat Asp	gtg Val 715	999 Gly	ctg Leu	2163
60	Ile	cca Pro	gcg Ala 720	Gly	gca Ala	cgc Arg	gag Glu	atc Ile 725	Arg	atc Ile	caa Gln	gag Glu	gtt Val 730	gcc Ala	gag Glu	gct Ala	2211
.	Ala	aac Asn 735	Phe	ctg Leu	gca Ala	ctg Leu	cgg Arg 740	Ser	gag Glu	gac Asp	ccg Pro	gag Glu 745	aag Lys	tac Tyr	ttc Phe	ctc Leu	2259
65		ggt	ggc	tgg	acc	atc	cag	tgg	aac	999	gac	tac	cag	gtg	gca	999	2307

	Asn 750	Gly	Gly	Trp	Thr	Ile 755	Gln	Trp	Asn	Gly	Asp 760	Tyr	Gln	Val	Ala	Gly 765	
5	acc Thr	acc Thr	ttc Phe	aca Thr	tac Tyr 770	gca Ala	cgc Arg	agg Arg	ggc Gly	aac Asn 775	tgg Trp	gag Glu	aac Asn	ctc Leu	acg Thr 780	tcc Ser	2355
10				acc Thr 785													2403
15				999 Gly													2451
	cat His	99c Gly 815	agg Arg	tct Ser	cgt Arg	cct Pro	gga Gly 820	gga Gly	gtg Val	agc Ser	cct Pro	ggt Gly 825	tca Ser	gtc Val	aca Thr	gag Glu	2499
20	cct Pro 830	ggc Gly	tct Ser	gag Glu	cca Pro	99c Gly 835	cct Pro	cct Pro	gct Ala	gcg Ala	gcc Ala 840	tct Ser	acc Thr	tca Ser	gtt Val	tcc Ser 845	2547
25	cca Pro	tct Ser	tta Leu	aaa Lys	tgg Trp 850	ccc Pro	aat Asn	ctt Leu	gta Val	gct Ala 855	gca Ala	gtt Val	cac His	aga Arg	ggt Gly 860	ggc Gly	2595
30				gct Ala 865													2643
35	ctc Leu	atg Met	ggc Gly 880	ccc Pro	cgc Arg	ctg Leu	ccc Pro	acc Thr 885	cag Gln	ctg Leu	ctg Leu	ttc Phe	cag Gln 890	gag Glu	agc Ser	aac Asn	2691
	cct Pro	999 Gly 895	gtg Val	cac His	tac Tyr	gag Glu	tac Tyr 900	acc Thr	atc Ile	cac His	agg Arg	gag Glu 905	gca Ala	ggt Gly	ggc Gly	cac His	2739
40	gac Asp 910	gag Glu	gtc Val	ccg Pro	ccg Pro	ccc Pro 915	gtg Val	ttc Phe	tcc Ser	tgg Trp	cat His 920	tat Tyr	G1 y 999	ccc Pro	tgg Trp	acc Thr 925	2787
45	aag Lys	tgc Cys	aca Thr	gtc Val	acc Thr 930	tgc Cys	ggc Gly	aga Arg	ggt Gly	gag Glu 935	aag Lys	tgg Trp	ggc Gly	agg Arg	cac His 940	agc Ser	2835
50	ccc Pro	acc Thr	tgc Cys	agg Arg 945	ggc Gly	tta Leu	gtg Val	tct Ser	gga Gly 950	cag Gln	gga Gly	cac His	tgg Trp	ctt Leu 955	cag Gln	ctc Leu	2883
55	cca Pro	gct Ala	cac His 960	tgc Cys	tgg Trp	gcc Ala	acc Thr	acg Thr 965	ggt Gly	ttg Leu	gaa Glu	gtt Val	tgc Cys 970	ttc Phe	tct Ser	gag Glu	2931
	cct Pro	cag Gln 975	ttc Phe	tcc Ser	atc Ile	tgt Cys	gag Glu 980	atg Met	agg Arg	cta Leu	gcg Ala	att Ile 985	gcc Ala	ctg Leu	tgt Cys	ccc Pro	2979
60				Gly 999					tgag	gcag	gt g	ggtg	ctgg	jc to	gcgg	ıcgca	3033
65																cgata	
	gaco	agto	ca	tggc	ccct	c ac	caca	ctga	ctt	attt	CCC	taaa	ctat	tt a	taaa	aagta	3153

	9999	aatt	tc a	ttaa	ctct	gac	tctt	acct	gcc	cggg	cgg	ccgc	tcga	gc (cgagt	aatca	3213
5	ctac	gt.															3218
10	<212	l> 99 2> PF	TΣ	sapie	ens A	IMAGA	'S-7										•
15	<400 Met 1		Gly	Gly	Pro	Ser	Pro	Arg	Ser	Pro 10	Ala	Ýго	Leu	Leu	Arg 15	Pro	٠
13	Leu	Leu	Leu	Leu 20	Leu	Cys	Ala	Leu	Ala 25	Pro	Gly	Ala	Pro	Gly 30	Pro	Ala	
20	Pro	Gly	Arg 35	Ala	Thr	Glu	Gly	Arg 40	Ala	Ala	Leu	qaA	Ile 45	Val	His	Pro	•
	Val	Arg 50	Val	Asp	Ala	Gly	Gly 55	Ser	Phe	Leu	Ser	Tyr 60	Glu	Leu	Trp	Pro	
25	Arg 65	Ala	Leu	Arg	Lys	Arg 70	Asp	Val	Ser	Val	Arg 75	Arg	Asp	Ala	Pro	Ala 80	
20	Phe	Tyr	Glu	Leu	Gln 85	Tyr	Arg	Gly	Arg	Glu 90	Leu	Arg	Phe	Asn	Leu 95	Thr	
30	Ala	Asn	Gln	His 100	Leu	Leu	Ala	Pro	Gly 105	Phe	Val	Ser	Glu	Thr 110	Arg	Arg	
35	Arg	Gly	Gly 115	Leu	Gly	Arg	Ala	His 120	Ile	Arg	Ala	His	Thr 125	Pro	Ala	Cys	
	His	Leu 130	Leu	Gly	Glu	Val	Gln 135	Asp	Pro	Glu	Leu	Glu 140	Gly	Gly	Leu	Ala	
40	Ala 145	Ile	Ser	Ala	Сув	Asp 150	Gly	Leu	Lys	Gly	Val 155	Phe	Gln	Leu	Ser	Asn 160	
45	Glu	Asp	Tyr	Phe	Ile 165	Glu	Pro	Leu	Asp	Ser 170	Ala	Pro	Ala	Arg	Pro 175	Gly	
13	His	Ala	Gln	Pro 180	His	Val	Val	Tyr	Lys 185	Arg	Gln	Ala	Pro	Glu 190	Arg	Leu	
50	Ala	Gln	Arg 195	Gly	Asp	Ser	Ser	Ala 200	Pro	Ser	Thr	Сув	Gly 205	Val	Gln	Val	
	Tyr	Pro 210		Leu	Glu	Ser	Arg 215	Arg	Glu	Arg	Trp	Glu 220	Gln	Arg	Gln	Gln	•
55	Trp 225		Arg	Pro	Arg	Leu 230	Arg	Arg	Leu	His	Gln 235	Arg	Ser	Val	Ser	Lys 240	
60		Lys	Trp	Сув	Glu 245		Leu	Val	Val	Ala 250	Asp	Ala	Lys	Met	Val 255	Glu	
		His	Gly	Gln 260		Gln	Val	Glu	Ser 265	Tyr	Val	Leu	Thr	Ile 270	Met	Asn	
65		Val	Ala 275	_	Leu	Phe	His	Asp 280	Pro	Ser	Ile	Gly	Asn 285	Pro	Ile	His	

	Ile	Thr 290	Ile	Val	Arg	Leu	Val 295	Leu	Leu	Glu	Asp	Glu 300	Glu	Glu	Asp	Leu
5	Lys 305	Ile	Thr	His	His	Ala 310	Asp	Asn	Thr	Leu	Lys 315	Ser	Phe	Cys	Lys	Trp 320
	Gln	Lys	Ser	Ile	Asn 325	Met	Lys	Gly	Asp	Ala 330	His	Pro	Leu	His	His 335	Asp
10	Thr	Ala	Ile	Leu 340	Leu	Thr	Arg	Lys	Asp 345	Leu	Cys	Ala	Ala	Met 350	Asn	Arg
15	Pro	Cys	Glu 355	Thr	Leu	Gly	Leu	Ser 360	His	Val	Ala	Gly	Met 365	Cys	Gln	Pro
13	His	Arg 370	Ser	Cys	Ser	Ile	Asn 375	Glu	Asp	Thr	Gly	Leu 380	Pro	Leu	Ala	Phe
20	Thr 385	Val	Ala	His	Glu	Leu 390	Gly	His	Ser	Phe	Gly 395	Ile	Gln	His	Asp	Gly 400
	Ser	Gly	Asn	Asp	Cys 405	Glu	Pro	Val	Gly	Lys 410	Arg	Pro	Phe	Ile	Met 415	Ser
25	Pro	Gln	Leu	Leu 420	Tyr	Asp	Ala	Ala	Pro 425	Leu	Thr	Trp	Ser	Arg 430	Cys	Ser
30	Arg	Gln	Tyr 435	Ile	Thr	Arg	Phe	Leu 440	Asp	Arg	Gly	Trp	Gly 445	Leu	Cys	Leu
	Asp	Asp 450	Pro	Pro	Ala	Lys	Asp 455	Ile	Ile	Asp	Phe	Pro 460	Ser	Val	Pro	Pro
35	Gly 465	Val	Leu	Tyr	Asp	Val 470	Ser	His	Gln	Сув	Arg 475	Leu	Gln	Tyr	Gly	Ala 480
	Tyr	Ser	Ala	Phe	Cys 485	Glu	Asp	Met	Asp	Asn 490	Val	Cys	His	Thr	Leu 495	Trp
40	Cys	Ser	Val	Gly 500	Thr	Thr	Cys	His	Ser 505	Lys	Leu	Asp	Ala	Ala 510	Val	Asp
45	Gly	Thr	Arg 515	Cys	Gly	Glu	Asn	Lys 520	Trp	Сув	Leu	Ser	Gly 525	Glu	Cys	Val
	Pro	Val 530	Gly	Phe	Arg		Glu 535		Val	Asp	Gly	Gly 540	Trp	Ser	Gly	Trp
50	Ser 545	Ala	Trp	Ser	Ile	Cys 550	Ser	Arg	Ser	Cys	Gly 555	Met	Gly	Val	Gln	Ser 560
	Ala	Glu	Arg	Gln	Cys 565	Thr	Gln	Pro	Thr	Pro 570	Lys	Tyr	Lys	Gly	Arg 575	Tyr
55	Cys	Val	Gly	Glu 580	Arg	Lys	Arg	Phe	Arg 585	Leu	Cys	Asn	Leu	Gln 590	Ala	Cys
60	Pro	Ala	Gly 595	Arg	Pro	Ser	Phe	Arg 600	His	Val	Gln	Cys	Ser 605	His	Phe	Asp
	Ala	Met 610	Leu	Tyr	Lys	Gly	Gln 615	Leu	His	Thr	Trp	Val 620	Pro	Val	Val	Asn
65	Asp 625	Val	Asn	Pro	Cys	Glu 630	Leu	His	Cys	Arg	Pro 635	Ala	Asn	Glu	Tyr	Phe 640

	Ala	Lys	Lys	Leu	Arg 645	Asp	Ala	Cys	Val	Asp 650	Gly	Thr	Pro	Сув	Tyr 655	Gln
5	Val	Arg	Ala	Ser 660	Arg	Asp	Leu	Cys	Ile 665	Asn	Gly	Ile	Cys	Lys 670	Asn	Val
	Gly	Cys	Asp 675	Phe	Glu	Ile	Asp	Ser 680	Gly	Ala	Met	Glu	Asp 685	Arg	Сув	Gly
10	Val	Сув 690.		Gly	Asn	Gly	Ser 695	Thr	Cys	His	Thr	Val 700	Ser	Gly	Thr	Phe
15	Glu 705	Glu	Ala	Glu	Gly	Leu 710	Gly	Tyr	Val	Asp	Val 715	Gly	Leu	Ile	Pro	Ala 720
13	Gly	Ala	Arg	Glu	Ile 725	Arg	Ile	Gln	Glu	Val 730	Ala	Glu	Ala	Ala	Asn 735	Phe
20	Leu	Ala	Leu	Arg 740	Ser	Glu	Asp	Pro	Glu 745	Lys	Tyr	Phe	Leu	Asn 750	Gly	Gly
	Trp	Thr	Ile 755	Gln	Trp	Asn	Gly	Asp 760	Tyr	Gln	Val	Ala	Gly 765	Thr	Thr	Phe
25	Thr	Туг 770	Ala	Arg	Arg	Gly	Asn 775	Trp	Glu	Asn	Leu	Thr 780	Ser	Pro	Gly	Pro
30	Thr 785	Lys	Glu	Pro	Val	Trp 790	Ile	Gln	Val	Pro	Ala 795	Ser	Arg	Gly	Pro	Gly 800
30	Gly	Gly	Ser	Arg	Gly 805	Gly	Val	Pro	Arg	Pro 810	Ser	Thr	Leu	His	Gly 815	Arg
35	Ser	Arg	Pro	Gly 820	Gly	Val	Ser	Pro	Gly 825	Ser	Val	Thr	Glu	Pro 830	Gly	Ser
	Glu	Pro	Gly 835	Pro	Pro	Ala	Ala	Ala 840	Ser	Thr	Ser	Val	Ser 845	Pro	Ser	Leu
40	Lys	Trp 850	Pro	Asn	Leu	Val	Ala 855	Ala	Val	His	Arg	Gly 860	Gly	Trp	Gly	Gln
45	Ala 865	Pro	Leu	Gly	Leu	Gly 870	Gly	Trp	Arg	Arg	His 875	Leu	Val	Leu	Met	Gly 880
43	Pro	Arg	Leu	Pro	Thr 885	Gln	Leu	Leu	Phe	Gln 890	Glu	Ser	Asn	Pro	Gly 895	Val
50	His	Tyr	Glu	Tyr 900	Thr	Ile	His	Arg	Glu 905	Ala	Gly	Gly	His	Asp 910	Glu	Val
	Pro	Pro	Pro 915		Phe	Ser	Trp	His 920	Tyr	Gly	Pro	Trp	Thr 925	Lys	Cys	Thr
55	Val	Thr 930		Gly	Arg	Gly	Glu 935		Trp	Gly	Arg	His 940	Ser	Pro	Thr	Cys
60	945	_	Leu	Val	Ser	Gly 950		Gly	His	Trp	Leu 955		Leu	Pro	Ala	His 960
		Trp	Ala	Thr	Thr 965		Leu	Glu	Val	Cys 970		Ser	Glu	Pro	Gln 975	Phe
65		Ile	Сув	980		Arg	Leu	Ala	11e 985		Leu	аүЭ	Pro	Arg 990		Àlá

Gly Arg Val His Gly 995

5																	
	<21 <21	0 > 8 1 > 3 2 > D 3 > M	NA .	uscu	lus .	ADAM	TS-8									•	
10		1 > C		(2	9921							•					
			2,0,	(2	J J Z 1												
15		ggcg														acgtgc	
	tcga	agtt	ctg (ctag	gttg	gc t	ggcg	cagg	a gg	agcg	ggct	gcg	cgat	cca	gagg	ggccgc	120
20	cag	ggac	cgc (cgcg	ccac	gt g	ccgc	tagc	c ga	gtcg	gcct	CCC	catc	cga	ttga	tcattt	180
	ttc	ctgg	aca 🤄	gago	gacc	cg g	ccgc	ctcg	g gc	cacc	agca	cct	gccc	gcg	cgcg	gcgatc	240
25	ttc	ttcc	ctc	tece	gcgc	tc c	gcag	cact	c tg	cccc	Me				p Pro	c acc o Thr	295
30															ccg Pro		343
35	ccg Pro	cca Pro	ctc Leu 25	gtc Val	tgc Cys	gga Gly	gcc Ala	ccg Pro 30	gcg Ala	999 999	ccg Pro	gga Gly	acc Thr 35	G1y 999	gcg Ala	cag Gln	391
	gcc Ala	tcg Ser 40	gag Glu	cta Leu	gtg Val	gtg Val	ccc Pro 45	acg Thr	cgg Arg	ttg Leu	ccc Pro	ggc Gly 50	agc Ser	gcg Ala	agc Ser	gag Glu	439
40	ctc Leu 55	gcc Ala	ttc Phe	cac His	ctg Leu	tcc Ser 60	gcc Ala	ttc Phe	ggc Gly	cag Gln	ggc Gly 65	ttc Phe	gtg Val	ctg Leu	cgc Arg	ctg Leu 70	487
45	gcg Ala	cct Pro	gac Asp	gcc Ala	agc Ser 75	ttc Phe	ctg Leu	gcg Ala	ccg Pro	gaa Glu 80	ttc Phe	aag Lys	atc Ile	gag Glu	cgc Arg 85	ctc Leu	535
50	G1À aaa	ggc Gly	tcg Ser	agc Ser 90	gcg Ala	gcg Ala	gcc Ala	999 Gly	99c Gly 95	gag Glu	ccg Pro	gga Gly	ctg Leu	cgt Arg 100	ggc Gly	tgc Cys	583
55	ttc Phe	ttc Phe	tct Ser 105	ggc Gly	aca Thr	gtg Val	aat Asn	gga Gly 110	gaa Glu	cgg Arg	gag Glu	tcg Ser	ctg Leu 115	gcg Ala	gcg Ala	atg Met	631
33	agc Ser	tgt Cys 120	gtc Val	gcg Ala	ggc Gly	tgg Trp	agc Ser 125	ggc Gly	tcg Ser	ttc Phe	ttg Leu	ctg Leu 130	gca Ala	Gly ggc	gag Glu	gag Glu	679
60	ttc Phe 135	acc Thr	atc Ile	cag Gln	cca Pro	cag Gln 140	ggc Gly	gct Ala	G1 y 999	gac Asp	tcc Ser 145	ctg Leu	gac Asp	cag Gln	cct Pro	cat His 150	727
65	cgc Arg	ctg Leu	cag Gln	cgc Arg	tgg Trp 155	Gly 999	ccg Pro	gga Gly	cag Gln	cgc Arg 160	cgc Arg	gaa Glu	gac Asp	ccc Pro	999 Gly 165	ctc Leu	775

5	gct Ala	gcc Ala	gcc Ala	gaa Glu 170	gtt Val	ttc Phe	ccc Pro	ctc Leu	cct Pro 175	caa Gln	gga Gly	ctg Leu	gag Glu	tgg Trp 180	gag Glu	gtg Val	823
5	gag Glu	atg Met	ggt Gly 185	aat Asn	999 999	cag Gln	gga Gly	cag Gln 190	gag Glu	aga Arg	agt Ser	gac Asp	aac Asn 195	gaa Glu	gag Glu	gac Asp	871
10	aag Lys	aag Lys 200	cag Gln	gac Asp	aag Lys	gag Glu	999 Gly 205	ttg Leu	ctc Leu	aaa Lys	gag Glu	aca Thr 210	gaa Glu	gac Asp	tcc Ser	cgc Arg	919
15	aaa Lys 215	gtg Val	cca Pro	cca Pro	ccc Pro	ttc Phe 220	gga Gly	tcc Ser	aaa Lys	act Thr	aga Arg 225	agc Ser	aag Lys	agg Arg	ttt Phe	gtg Val 230	967
20	tcc Ser	gag Glu	gct Ala	cgc Arg	ttc Phe 235	gtg Val	gaa Glu	aca Thr	ctt Leu	ctg Leu 240	gtg Val	gct Ala	gat Asp	gcg Ala	tcc Ser 245	atg Met	1015
25	gct Ala	gcc Ala	ttc Phe	tat Tyr 250	999 999	acc Thr	gac Asp	ctg Leu	cag Gln 255	aac Asn	cac His	atc Ile	ctc Leu	acg Thr 260	gtg Val	atg Met	1063
	tca Ser	atg Met	gca Ala 265	gcc Ala	cga Arg	atc Ile	tac Tyr	aag Lys 270	cac His	ccg Pro	agc Ser	atc Ile	agg Arg 275	aac Asn	tcc Ser	gtc Val	1111
30	aac Asn	ctt Leu 280	gtg Val	gtg Val	gtg Val	aaa Lys	gtg Val 285	cta Leu	ata Ile	gtg Val	gaa Glu	aaa Lys 290	gaa Glu	aga Arg	tgg Trp	Gly	1159
35	ccg Pro 295	gaa Glu	gtg Val	tcc Ser	gac Asp	aac Asn 300	999 999	Gly ggg	ctc Leu	aca Thr	ctg Leu 305	cgc Arg	aac Asn	ttc Phe	tgc Cys	agc Ser 310	1207
40	tgg Trp	caa Gln	cgg Arg	cgt Arg	ttc Phe 315	aac Asn	aag Lys	ccc	agt Ser	gac Asp 320	cgc Arg	cac His	ccg Pro	gag Glu	cac His 325	tat Tyr	1255
45	gac Asp	act Thr	gcc Ala	atc Ile 330	ttg Leu	ttc Phe	acc Thr	aga Arg	cag Gln 335	aac Asn	ttc Phe	tgt Cys	999 Gly	aag Lys 340	gga Gly	gag Glu	1303
43	cag Gln	tgt Cys	gac Asp 345	acc Thr	ctg Leu	GJA aaa	atg Met	gca Ala 350	gac Asp	gtt Val	ggc Gly	acc Thr	atc Ile 355	tgt Cys	gac Asp	ccc Pro	1351
50	gac Asp	aag Lys 360	agc Ser	tgc Cys	tca Ser	gtg Val	atc Ile 365	aag Lys	gat Asp	gag Glu	gga Gly	ctg Leu 370	cag Gln	gca Ala	gcc Ala	tac Tyr	1399
55	acc Thr 375	ctg Leu	gcc Ala	cat His	gag Glu	cta Leu 380	999 Gly	cac His	gtt Val	ctc Leu	agc Ser 385	atg Met	ccc Pro	cat His	gat Asp	gat Asp 390	1447
60	tct Ser	aag Lys	ccc Pro	tgt Cys	gtg Val 395	aga Arg	ttg Leu	ttt Phe	999 Gly	ccc Pro 400	atg Met	ggc Gly	aag Lys	tac Tyr	cac His 405	Met	1495
	Met	gcg Ala	cca Pro	ttc Phe 410	Phe	atc Ile	cac His	gtg Val	aac Asn 415	Lys	acg Thr	ctg Leu	ccc Pro	tgg Trp 420	Ser	ccc Pro	1543
65		agt	gct	gtc	tac	ctc	aca	gag	ctc	ctg	gat	gat	ggt	cac	gga	gat	1591

	Cys	Ser	Ala 425	Val	Tyr	Leu	Thr	Glu 430		Leu	Asp	Asp	Gly 435	His	Gly	Asp	
5	tgt Cys	ctt Leu 440	ctg Leu	gat Asp	gcc Ala	ccc Pro	acc Thr 445	tcg Ser	gtt Val	ctg Leu	ccc Pro	ctc Leu 450	ccc Pro	aca Thr	ggc	ctc Leu	1639
10	.ccg Pro 455	ggc Gly	cac His	agc Ser	acc Thr	ctc Leu 460	tac Tyr	gag Glu	ctg Leu	gac Asp	cag Gln 465	Gln	tgc Cys	aag Lys	cag Gln	atc Ile 470	1687
15	ttt Phe	G1y 999	cct Pro	gat Asp	ttc Phe 475	cga Arg	cac His	tgc Cys	ccc Pro	aac Asn 480	acc Thr	tct Ser	gtg Val	gag Glu	gac Asp 485	atc Ile	1735
	tgt Cys	gtc Val	cag Gln	ctc Leu 490	tgt Cys	gcc Ala	cgt Arg	cat His	cgg Arg 495	gat Asp	agt Ser	gat Asp	gag Glu	ccc Pro 500	att Ile	tgc Cys	1783
20	cac His	aca Thr	aag Lys 505	aat Asn	ggt Gly	agc Ser	ctg Leu	ctc Leu 510	tgg Trp	gct Ala	gat Asp	ggt Gly	aca Thr 515	ccc Pro	tgt Cys	ggc Gly	1831
25	cct Pro	999 Gly 520	cac His	ctg Leu	tgc Cys	ctg Leu	gat Asp 525	ggt Gly	agc Ser	tgt Cys	gta Val	ctc Leu 530	aag Lys	gag Glu	gat Asp	gtg Val	1879
30	gag Glu 535	aat Asn	ccc Pro	aag Lys	gct Ala	gtg Val 540	gta Val	gat Asp	gga Gly	gac Asp	tgg Trp 545	ggt Gly	ccc Pro	tgg Trp	aga Arg	ccc Pro 550	1927
35	tgg Trp	gga Gly	caa Gln	tgt Cys	tct Ser 555	cgc Arg	acc Thr	tgt Cys	ggt Gly	gga Gly 560	Gly 999	ata Ile	caa Gln	ttc Phe	tcg Ser 565	aac Asn	1975
	cgt Arg	gaa Glu	tgt Cys	gat Asp 570	aat Asn	cca Pro	atg Met	cct Pro	cag Gln 575	aat Asn	gga Gly	gga Gly	aga Arg	ttt Phe 580	tgc Cys	ctg Leu	2023
40	ggt Gly	gaa Glu	aga Arg 585	gtc Val	aag Lys	tac Tyr	caa Gln	tca Ser 590	tgc Cys	aac Asn	aca Thr	gag Glu	gaa Glu 595	tgt Cys	cca Pro	cca Pro	2071
45	aac Asn	gga Gly 600	aaa Lys	agc Ser	ttc Phe	cgg Arg	gag Glu 605	cag Gln	cag Gln	tgt Cys	gag Glu	aaa Lys 610	tat Tyr	aat Asn	gcc Ala	tac Tyr	2119
50	aac Asn 615	cac His	act Thr	gac Asp	ctg Leu	gat Asp 620	999 Gly	aat Asn	ttc Phe	ctg Leu	cag Gln 625	tgg Trp	gtc Val	ccc Pro	aag Lys	tat Tyr 630	2167
55	tca Ser	gga Gly	gtg Val	tcc Ser	ccc Pro 635	cga Arg	gac Asp	cga Arg	tgc Cys	aag Lys 640	ctg Leu	ttt Phe	tgc Cys	aga Arg	gcc Ala 645	cgt Arg	2215
	G1A 888	agg Arg	agt Ser	gag Glu 650	ttc Phe	aaa Lys	gtg Val	ttt Phe	gaa Glu 655	gct Ala	aag Lys	gtg Val	atc Ile	gat Asp 660	ggc Gly	act Thr	2263
60	ctg Leu	tgt Cys	gga Gly 665	ccg Pro	gat Asp	act Thr	ctg Leu	tcc Ser 670	atc Ile	tgc Cys	gtc Val	cgg Arg	999 Gly 675	caa Gln	tgt Cys	gtt Val	2311
65	aag Lys	gct Ala 680	ggc Gly	tgt Cys	gac Asp	cat His	gtg Val 685	gtg Val	aac Asn	tca Ser	cct Pro	aag Lys 690	aag Lys	ctg Leu	gac Asp	aaa Lys	2359

5				tgt Cys													2407
,				ccc Pro													2455
10				aca Thr 730													2503
15				ggc Gly													2551 ·
20	ctg Leu	ctc Leu 760	aat Asn	ggt Gly	aac Asn	ctg Leu	gcc Ala 765	atc Ile	tct Ser	gcc Ala	ata Ile	gag Glu 770	caa Gln	gac Asp	atc Ile	ttg Leu	2599
25	gtg Val 775	aag Lys	999 Gly	acc Thr	atc Ile	ctg Leu 780	aag Lys	tac Tyr	agt Ser	ggc Gly	tcc Ser 785	atg Met	gct Ala	acc Thr	ctg Leu	gag Glu 790	2647
25				agc Ser													2695
30	ctg Leu	act Thr	gtg Val	tct Ser 810	ggt Gly	gag Glu	gtc Val	ttc Phe	cct Pro 815	cca Pro	aaa Lys	gtc Val	aga Arg	tat Tyr 820	acc Thr	ttc Phe	2743
35	ttt Phe	gtc Val	ccc Pro 825	aat Asn	gac Asp	atg Met	gac Asp	ttc Phe 830	agc Ser	gtg Val	cag Gln	aat Asn	agc Ser 835	aag Lys	gaa Glu	aga Arg	2791
40	gca Ala	acc Thr 840	acc Thr	aac Asn	atc Ile	att Ile	cag Gln 845	tca Ser	ctg Leu	ccc Pro	tct Ser	gcg Ala 850	gag Glu	tgg Trp	gtt Val	ctg Leu	2839
45				tct Ser													2887
4.3	cgg Arg	act Thr	gtg Val	gaa Glu	tgc Cys 875	agg Arg	gac Asp	ccc Pro	tca Ser	ggt Gly 880	cag Gln	gcc Ala	tct Ser	gac Asp	acc Thr 885	tgt Cys	2935
50				ctg Leu 890												ccg Pro	2983
55	-		ctc Leu 905		tece	ctt 9	ggtg	gaaa	tc t	ctta	ggcti	t at	ggat	ttgg			3032
	gct	actg	gtg	taac	agac	aa a	ggtc	ccct	с са	aggt	gata	cta	cata	tca	agat	ggcacg	3092
60	gcc	cttt	cag	gcct	tcta	tt a	ctac	aacc	c ct	tggg	tact	acc	taat	tca	taag	gaagag	3152
	aga	agag	ggt	ataa	gggt	aa c	agat	tgta	a ag	ttga	ctgt	ctg	gtgg	act	ggac	cttgct	3212
65	tat	gacc	aag	aagt	cggg	at a	ggtt	aaaa	g gt	agaa	gtgc	act	tatt	gat	ccaa	atggga	3272
	gat	ttca	gag	ccag	tctc	tt t	gcaa	agga	c ta	gcaa	agct	aaa	tgaa	aaa	gaag	aatttt	3332

ttttttctat ttggtttccc caataatcaa tctacctcac agcggggaaa aatcagtata 3392

caagaggtat aaggccaggt gttggcagtg aacgccaaag caagctccat aggtatctcc 3452

aagctatctt cagaaatgtc cgtggctgtt ttcagtatta aaatctgttg tctaaaaggg 3512

cagcagtgtc catcacaggg ttatagaaag ccacttttct caggctgcca cctgctgggg 3572

10 cggacccatt tcaagtattt atgcaaatat gtctccgaac taaagtgtgt cttacaccaa 3632

aagngc 3638

15 <210> 9 <211> 905 <212> PRT <213> Mus musculus ADAMTS-8

20 <400> 9
Met Leu Arg Asp Pro Thr Thr Gly Trp Pro Pro Leu Leu Leu
1 5 10 15

Leu Leu Gln Leu Pro Pro Pro Pro Leu Val Cys Gly Ala Pro Ala Gly
25 20 25 30

Pro Gly Thr Gly Ala Gln Ala Ser Glu Leu Val Val Pro Thr Arg Leu 35 40 45

30 Pro Gly Ser Ala Ser Glu Leu Ala Phe His Leu Ser Ala Phe Gly Gln
50 55 60

Gly Phe Val Leu Arg Leu Ala Pro Asp Ala Ser Phe Leu Ala Pro Glu 65 70 75 80

Phe Lys Ile Glu Arg Leu Gly Gly Ser Ser Ala Ala Ala Gly Gly Glu 85 90 95

Pro Gly Leu Arg Gly Cys Phe Phe Ser Gly Thr Val Asn Gly Glu Arg
100 105 110

Glu Ser Leu Ala Ala Met Ser Cys Val Ala Gly Trp Ser Gly Ser Phe
115 120 125

45 Leu Leu Ala Gly Glu Glu Phe Thr Ile Gln Pro Gln Gly Ala Gly Asp 130 135 140

Ser Leu Asp Gln Pro His Arg Leu Gln Arg Trp Gly Pro Gly Gln Arg 145 150 155 160

Arg Glu Asp Pro Gly Leu Ala Ala Ala Glu Val Phe Pro Leu Pro Gln
165 170 175

Gly Leu Glu Trp Glu Val Glu Met Gly Asn Gly Gln Gly Gln Glu Arg 55 180 185 190

Ser Asp Asn Glu Glu Asp Lys Gln Asp Lys Glu Gly Leu Leu Lys 195 200 205

60 Glu Thr Glu Asp Ser Arg Lys Val Pro Pro Pro Phe Gly Ser Lys Thr

Arg Ser Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr Leu Leu 225 230 235 240

Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Thr Asp Leu Gln Asn

50

and the second of the second

					245					250					255	
-	His	Ile	Leu	Thr 260	Val	Met	Ser	Met	Ala 265	Ala	Arg	Ile	Tyr	Lys 270	His	Pro
5	Ser	Ile	Arg 275	Asn	Ser	Val	Asn	Leu 280	Val	Val	Val	Lys	Val 285	Leu	Ile	Val [.]
10	Glu	Lys 290	Glu	Arg	Trp	Gly	Pro 295	Glu	Val	Ser	Asp	Asn 300	Gly	Gly	Leu	Thr
	Leu 305	Arg	Asn	Phe	Cys	Ser 310	Trp	Gln	Arg	Arg	Phe 315	Asn	Lys	Pro	Ser	Asp 320
15	Arg	His	Pro	Glu	His 325	Tyr	Asp	Thr	Ala	Ile 330	Leu	Phe	Thr	Arg	Gln 335	Asn
20	Phe	Сув	Gly	Lys 340	Gly	Glu	Gln	Cys	Asp 345	Thr	Leu	Gly	Met	Ala 350	Asp	Val
20	Gly	Thr	Ile 355	Cys	Asp	Pro	Asp	Lys 360	Ser	Cys	Ser	Val	11e 365	Lys	Asp	Glu
25	Gly	Leu 370	Gln	Ala	Ala	Tyr	Thr 375	Leu	Ala	His	Glu	Leu 380	Gly	His	Val	Leu
	Ser 385	Met	Pro	His	Asp	Asp 390	Ser	Lys	Pro	Cys	Val 395	Arg	Leu	Phe	Gly	Pro 400
30	Met	Gly	Lys	Tyr	His 405	Met	Met	Ala	Pro	Phe 410	Phe	Ile	His	Val	Asn 415	Lys
35	Thr	Leu	Pro	Trp 420	Ser	Pro	Cys	Ser	Ala 425	Val	Tyr	Leu	Thr	Glu 430	Leu	Leu
33	Asp	Asp	Gly 435	His	Gly	Asp	Cys	Leu 440	Leu	Asp	Ala	Pro	Thr 445	Ser	Val	Leu
40	Pro	Leu 450	Pro	Thr	Gly	Leu	Pro 455	Gly	His	Ser	Thr	Leu 460	Туг	Glu	Leu	Asp
	Gln 465	Gln	Сув	Lys	Gln	Ile 470	Phe	Gly	Pro	Asp	Phe 475	Arg	His	Cys	Pro	Asn 480
45	Thr	Ser	Val	Glu		Ile					Cys		Arg	His	Arg 495	Asp
50	Ser	Asp	Glu	Pro 500	Ile	Сув	His	Thr	Lys 505	Asn	Gly	Ser	Leu	Leu 510	Trp	Ala
50	Asp	Gly	Thr 515		Cys	Gly	Pro	Gly 520		Leu	Сув	Leu	Asp 525	Gly	Ser	Cys
55		Leu 530	_	Glu	Asp	Val	Glu 535		Pro	Lys	Ala	Val 540		Asp	Gly	Asp
	Trp 545		Pro	Trp	Arg	Pro 550		Gly	Gln	Суѕ	Ser 555	Arg	Thr	Cys	Gly	Gly 560
60	Gly	Ile	Gln	Phe	Ser 565		Arg	Glu	Сув	Asp 570		Pro	Met	Pro	Gln 575	Asn
65		Gly	Arg	Phe 580		Leu	Gly	Glu	Arg 585		Lys	Тyr	Gln	Ser 590	Cys	Asn
0.0		Glu	Glu	Cys	Pro	Pro	Asn	Gly	· Lys	Ser	Phe	Arg	Glu	Gln	Gln	Cys

595 600 605 Glu Lys Tyr Asn Ala Tyr Asn His Thr Asp Leu Asp Gly Asn Phe Leu 615 Gln Trp Val Pro Lys Tyr Ser Gly Val Ser Pro Arg Asp Arg Cys Lys Leu Phe Cys Arg Ala Arg Gly Arg Ser Glu Phe Lys Val Phe Glu Ala 650 Lys Val Ile Asp Gly Thr Leu Cys Gly Pro Asp Thr Leu Ser Ile Cys 660 665 15 Val Arg Gly Gln Cys Val Lys Ala Gly Cys Asp His Val Val Asn Ser Pro Lys Lys Leu Asp Lys Cys Gly Val Cys Gly Gly Lys Gly Thr Ala 695 Cys Arg Lys Ile Ser Gly Ser Phe Thr Pro Phe Ser Tyr Gly Tyr Asn Asp Ile Val Thr Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Lys Gln Arg Ser His Pro Gly Val Arg Asn Asp Gly Ser Tyr Leu Ala Leu Lys 30 Thr Ala Asn Gly Gln Tyr Leu Leu Asn Gly Asn Leu Ala Ile Ser Ala 760 Ile Glu Gln Asp Ile Leu Val Lys Gly Thr Ile Leu Lys Tyr Ser Gly 35 Ser Met Ala Thr Leu Glu Arg Leu Gln Ser Phe Gln Ala Leu Pro Glu Pro Leu Thr Val Gln Leu Leu Thr Val Ser Gly Glu Val Phe Pro Pro Lys Val Arg Tyr Thr Phe Phe Val Pro Asn Asp Met Asp Phe Ser Val 825 45 Gln Asn Ser Lys Glu Arg Ala Thr Thr Asn Ile Ile Gln Ser Leu Pro Ser Ala Glu Trp Val Leu Gly Asp Trp Ser Glu Cys Pro Ser Thr Cys 50 Arg Gly Ser Trp Gln Arg Arg Thr Val Glu Cys Arg Asp Pro Ser Gly 870 Gln Ala Ser Asp Thr Cys Asp Glu Ala Leu Lys Pro Glu Asp Ala Lys 55 890 Pro Cys Gly Ser Gln Pro Cys Pro Leu 900 60 <210> 10 <211> 739 <212> DNA 65 <213> Homo sapiens ADAMTS-8

. M. N

)> L> CE 2> (3		737)													
5	<400 cg a		ca c	jaa g Slu G	gc g	jct a Ala S 5	agc g Ser (gag o	ecg o	cca d Pro I	ccg o	ccc (Pro 1	ctg g Leu (31y <i>1</i> 399 9	gcc a Ala 7	acg Thr 15	47
10	agt Ser	agg Arg	acc Thr	aag Lys	cgg Arg 20	ttt Phe	gtg Val	tct Ser	gag Glu	gcg Ala 25	cgc Arg	ttc Phe	gtg Val	gag Glu	acg Thr 30	ctg Leu	95
15	ctg Leu	gtg Val	gcc Ala	gat Asp 35	gcg Ala	tcc Ser	atg Met	gct Ala	gcc Ala 40	ttc Phe	tac Tyr	999 Gly	gcc Ala	gac Asp 45	ctg Leu	cag Gln	143
20		cac His															191
25		agc Ser 65															239
		gaa Glu															287
30	aca Thr	ctg Leu	cgt Arg	aac Asn	ttc Phe 100	tgc Cys	aac Asn	tgg Trp	cag Gln	cgg Arg 105	cgt Arg	ttc Phe	aac Asn	cag Gln	ccc Pro 110	agc Ser	335
35	gac Asp	cgc Arg	cac His	cca Pro 115	gag Glu	cac His	tac Tyr	gac Asp	acg Thr 120	gcc Ala	atc Ile	ctg Leu	ctc Leu	acc Thr 125	aga Arg	cag Gln	383
40		ttc Phe															431
45		999 Gly 145															479
	gag Glu 160	Gly 999	ctc Leu	cag Gln	gcg Ala	gcc Ala 165	cac His	acc Thr	ctg Leu	gcc Ala	cat His 170	gaa Glu	cta Leu	999 Gly	cac His	gtc Val 175	527
50	ctc Leu	agc Ser															575
55	ccc Pro	atg Met	ggc Gly	aag Lys 195	cac His	cac His	gtg Val	atg Met	gca Ala 200	ccg Pro	ctg Leu	ttc Phe	gtc Val	cac His 205	ctg Leu	aac Asn	623
60	Gln	acg Thr															671
65	Leu	cag Gln 225						_			-		-	_			719
	cta	aag	tgt	gat	ctt	atg	cc										739

```
Leu Lys Cys Asp Leu Met
   240
 5 <210> 11
   <211> 245
   <212> PRT
   <213> Homo sapiens ADAMTS-8
10 <400> 11
   Arg Ala Glu Gly Ala Ser Glu Pro Pro Pro Pro Leu Gly Ala Thr Ser
   Arg Thr Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr Leu Leu
Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Ala Asp Leu Gln Asn
20 His Ile Leu Thr Leu Met Ser Val Ala Ala Arg Ile Tyr Lys His Pro
   Ser Ile Lys Asn Ser Ile Asn Leu Met Val Val Lys Val Leu Ile Val
   Glu Asp Glu Lys Trp Gly Pro Glu Val Ser Asp Asn Gly Gly Leu Thr
   Leu Arg Asn Phe Cys Asn Trp Gln Arg Arg Phe Asn Gln Pro Ser Asp
   Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Leu Thr Arg Gln Asn
35 Phe Cys Gly Gln Glu Gly Leu Cys Asp Thr Leu Gly Val Ala Asp Ile
                           135
   Gly Thr Ile Cys Asp Pro Asn Lys Ser Cys Ser Val Ile Glu Asp Glu
40
   Gly Leu Gln Ala Ala His Thr Leu Ala His Glu Leu Gly His Val Leu
                   165
                                       170
   Ser Met Pro His Asp Asp Ser Lys Pro Cys Thr Arg Leu Phe Gly Pro
   Met Gly Lys His His Val Met Ala Pro Leu Phe Val His Leu Asn Gln
           195
                               200
50 Thr Leu Pro Trp Ser Pro Cys Ser Ala Met Phe Ser Gly Cys His Leu
   Gln Gly Trp Ile His Phe Lys Tyr Leu Cys Lys Cys Val Ser Glu Leu
                                         235
55
   Lys Cys Asp Leu Met
60
   <210> 12
   <211> 5804
   <212> DNA
   <213> Homo sapiens ADAMTS-9
```

<220>

		> CI !> (3		5648	1)												
5		. > mi	_	eatu (1													
10		. > mi	-	eatu (1													
15	ga a		acc a	itg o													47
	gtg Val	cgg Arg	gac Asp	ctg Leu	gcc Ala 20	gag Glu	atg Met	G1y 999	agc Ser	cca Pro 25	gac Asp	gcc Ala	gcg Ala	gcg Ala	gcc Ala 30	gtg Val	95
20	cgc Arg	aag Lys	gac Asp	agg Arg 35	ctg Leu	cac His	ccg Pro	agg Arg	caa Gln 40	gtg Val	aaa Lys	tta Leu	tta Leu	gag Glu 45	acc Thr	ctg Leu	143
25	agc Ser	gaa Glu	tac Tyr 50	gaa Glu	atc Ile	gtg Val	tct Ser	ccc Pro 55	atc Ile	cga Arg	gtg Val	aac Asn	gct Ala 60	ctc Leu	gga Gly	gaa Glu	191
30	ccc Pro	ttt Phe 65	ccc Pro	acg Thr	aac Asn	gtc Val	cac His 70	ttc Phe	aaa Lys	aga Arg	acg Thr	cga Arg 75	cgg Arg	agc Ser	att Ile	aac Asn	239
35				gac Asp													287
40				cag Gln													335
				ctc Leu 115													383
45	gtc Val	acc Thr	ctc Leu 130	ctt Leu	ggg Gly	acg Thr	ccc Pro	999 Gly 135	gtg Val	aat Asn	cag Gln	acc Thr	aag Lys 140	ttt Phe	tat Tyr	tcc Ser	431
50	gaa Glu	gag Glu 145	gaa Glu	gcg Ala	gaa Glu	cta Leu	aag Lys 150	cac His	tgt Cys	ttc Phe	tac Tyr	aaa Lys 155	agg Arg	cta Leu	tgt Cys	caa Gln	479
55				cga Arg													527
60				agg Arg													575
				agg Arg 195													623
65				aca Thr													671

			210					215					220				
5															tcc Ser		719
10	cca Pro 240	cgg Arg	ttt Phe	gta Val	gaa Glu	gtc Val 245	ttg Leu	gtg Val	gtg Val	gca Ala	gac Asp 250	aac Asn	aga Arg	atg Met	gtt Val	tca Ser 255	767
															tca Ser 270		815
15															aat Asn		863
20															cct Pro		911
25															tgg Trp		959
30		_		_							_		_	_	ctc Leu		1007
															tta Leu 350		1055
35	ctg Leu	gct Ala	gaa Glu	ctg Leu 355	gga Gly	acc Thr	att Ile	tgt Cys	gat Asp 360	ccc Pro	tat Tyr	aga Arg	agc Ser	tgt Cys 365	tct Ser	att Ile	1103
40	_		_	_		_	_		_		_		_		gag Glu	_	1151
45															aaa Lys		1199
50															aac Asn		1247
	tac Tyr	acc Thr	aac Asn	ccc Pro	tgg Trp 420	atg Met	tgg Trp	tca Ser	aag Lys	tgt Cys 425	agt Ser	cga Arg	aaa Lys	tat Tyr	atc Ile 430	act Thr	1295
55	gag Glu	ttt Phe	tta Leu	gac Asp 435	act Thr	ggt Gly	tat Tyr	ggc Gly	gag Glu 440	tgt Cys	ttg Leu	ctt Leu	aac Asn	gaa Glu 445	cct Pro	gaa Glu	1343
60	tcc Ser	aga Arg	ccc Pro 450	tac Tyr	cct Pro	ttg Leu	cct Pro	gtc Val 455	caa Gln	ctg Leu	cca Pro	ggc	atc Ile 460	ctt Leu	tac Tyr	aac Asn	1391
65	gtg Val	aat Asn 465	aaa Lys	caa Gln	tgn Xaa	gaa Glu	ttg Leu 470	att Ile	ttt Phe	gga Gly	cca Pro	ggt Gly 475	tct Ser	cag Gln	gtg Val	tgc Cys	1439

	cca Pro 480	tat Tyr	atg Met	atg Met	cag Gln	tgc Cys 485	aga Arg	cgg Arg	ctc Leu	tgg Trp	tgc Cys 490	aat Asn	aac Asn	gtc Val	aat Asn	gga Gly 495	1487
5	gta Val	cac His	aaa Lys	ggc Gly	tgc Cys 500	cgg Arg	act Thr	cag Gln	cac His	aca Thr 505	ccc Pro	tgg Trp	gcc Ala	gat Asp	999 Gly 510	acg [°] Thr	1535
10															ccc Pro		1583
15	_	_	_	_				_					_		agt Ser		1631
20															gcc Ala		1679
	cga Arg 560	gag Glu	tgc Cys	aac Asn	aga Arg	cca Pro 565	gaa Glu	cca Pro	aaa Lys	aat Asn	ggt Gly 570	gga Gly	aaa Lys	tac Tyr	tgt Cys	gta Val 575	1727
25	gga Gly	cgt Arg	aga Arg	atg Met	aaa Lys 580	ttt Phe	aag Lys	tcc Ser	tgc Cys	aac Asn 585	acg Thr	gag Glu	cca Pro	tgt Cys	ctc Leu 590	aag Lys	1775
30	cag Gl'n	aag Lys	cga Arg	gac Asp 595	ttc Phe	cga Arg	gat Asp	gaa Glu	cag Gln 600	tgt Cys	gct Ala	cac His	ttt Phe	gac Asp 605	999 999	aag Lys	1823
35															cct Pro		1871
40	tac Tyr	agt Ser 625	gga Gly	att Ile	ctg Leu	atg Met	aag Lys 630	gac Asp	cgg Arg	tgc Cys	aag Lys	ttg Leu 635	ttc Phe	tgc Cys	aga Arg	gtg Val	1919
10															gat Asp		1967
45	act Thr	cct Pro	tgt Cys	ggc Gly	cag Gln 660	gac Asp	aca Thr	aat Asn	gat Asp	atc Ile 665	tgt Cys	gtc Val	cag Gln	ggc Gly	ctt Leu 670	tgc Cys	2015
50															aga Arg		2063
55	aaa Lys	tgc Cys	999 690	gtt Val	tgt Cys	ggt Gly	ggc Gly	gat Asp 695	aat Asn	tct Ser	tca Ser	tgc Cys	aaa Lys 700	aca Thr	gtg Val	gca Ala	2111
60															cga Arg	att Ile	2159
50	cca Pro 720	gct Ala	ggt Gly	gct Ala	acc Thr	aat Asn 725	att Ile	gat Asp	gtg Val	cgg Arg	cag Gln 730	cac His	agt Ser	ttc Phe	tca Ser	999 Gly 735	2207
65															ggt Gly		2255

					740					745					750		
5		_						_	_		_	-			gaa Glu		2303
7.0															gcc Ala		2351
10															ctt Leu		2399
															tct Ser		2447
20															agt Ser 830		2495
25					_	_	_			_			_		aaa Lys	_	2543
30			_	_			_		_	_			-		gat Asp		2591
30	_	_	_		_		_						_		tgt Cys		2639
35															tgt Cys		2687
40	_	-	-		_			_		_	_			_	gcc Ala 910		2735
45															ttt Phe		2783
50	_	_					_		_	_		_			gaa Glu	_	2831
		_				_			_				_		aaa Lys	_	2879
55															acc Thr		2927
60		_	-	-	_	_	-		_				_		gtt Val 990		2975
65		_		_	_			Pro	_		_		Lys		gga Gly	_	3023

	tgg tca gag Trp Ser Glu 1010	tgc ttg gtc Cys Leu Val	acc tgt gga Thr Cys Gly 1015	aaa ggg cat aag Lys Gly His Lys 1020	cac agc cag His Ser Gln	3071
5	gtc tgg tgt Val Trp Cys 1025	Gln Phe Gly	gaa gat cga Glu Asp Arg 030	tta aat gat aga Leu Asn Asp Arg 1035	atg tgt gac [.] Met Cys Asp	3119
10	cct gag acc Pro Glu Thr 1040	aag cca aca Lys Pro Thr 1045	tct atg cag Ser Met Gln	act tgt cag cag Thr Cys Gln Gln 1050	ccg gaa tgt Pro Glu Cys 1055	3167
15	gca tcc tgg Ala Ser Trp	cag gcg ggt Gln Ala Gly 1060	Pro Trp Val	cag tgc agt gtc Gln Cys Ser Val 1065	act tgt gga Thr Cys Gly 1070	3215
20	Gln Gly Tyr	cag cta aga Gln Leu Arg 1075	gca gtg aaa Ala Val Lys 1080	tgc atc att ggg Cys Ile Ile Gly	act tat atg Thr Tyr Met 1085	3263
	tca gtg gta Ser Val Val 1090	gat gac aat Asp Asp Asn	gac tgt aat Asp Cys Asn 1095	gca gca act aga Ala Ala Thr Arg 1100	cca act gat Pro Thr Asp	3311
25	acc cag gac Thr Gln Asp 1105	Cys Glu Leu	cca tca tgt Pro Ser Cys 1110	cat cct ccc cca His Pro Pro Pro 1115	gct gcc ccg Ala Ala Pro	3359
30	gaa acg agg Glu Thr Arg 1120	aga agc aca Arg Ser Thr 1125	tac agt gca Tyr Ser Ala	cca aga acc cag Pro Arg Thr Gln 1130	tgg cga ttt Trp Arg Phe 1135	3407
35	ggg tct tgg Gly Ser Trp	acc cca tgc Thr Pro Cys 1140	Ser Ala Thr	tgt ggg aaa ggt Cys Gly Lys Gly 1145	acc cgg atg Thr Arg Met 1150	3455
40	Arg Tyr Val	agc tgc cga Ser Cys Arg 1155	gat gag aat Asp Glu Asn 1160	ggc tct gtg gct Gly Ser Val Ala	gac gag agt Asp Glu Ser 1165	3503
	gcc tgt gct Ala Cys Ala 1170	Thr Leu Pro	aga cca gtg Arg Pro Val 1175	gca aag gaa gaa Ala Lys Glu Glu 1180	tgt tct gtg Cys Ser Val	3551
45	aca ccc tgt Thr Pro Cys 1185	Gly Gln Trp	aag gcc ttg Lys Ala Leu 1190	gac tgg agc tct Asp Trp Ser Ser 1195	tgc tct gtg Cys Ser Val	3599
50	acc tgt ggg Thr Cys Gly 1200	caa ggt agg Gln Gly Arg 1205	gca acc cgg Ala Thr Arg	caa gtg atg tgt Gln Val Met Cys 1210	gtc aac tac Val Asn Tyr 1215	3647
55	agt gac cac Ser Asp His	gtg atc gat Val Ile Asp 1220	cgg agt gag Arg Ser Glu	tgt gac cag gat Cys Asp Gln Asp 1225	tat atc cca Tyr Ile Pro 1230	3695
60	Glu Thr Asp	cag gac tgt Gln Asp Cys 1235	tcc atg tca Ser Met Ser 1240	cca tgc cct caa Pro Cys Pro Gln	agg acc cca Arg Thr Pro 1245	3743
00	gac agt ggc Asp Ser Gly 1250	Leu Ala Gln	cac ccc tto His Pro Phe 1255	c caa aat gag gac Gln Asn Glu Asp 1260	Tyr Arg Pro .	3791
65	cgg agc gcc Arg Ser Ala	agc ccc agc Ser Pro Ser	cgc acc cat	gtg ctc ggt gga Val Leu Gly Gly	aac cag tgg Asn Gln Trp	3839

WO 01/011074 PCT/US00/21223 34

	1265				1	270				1	L275					
5	aga act Arg Thr 1280			Trp					Ser					Gly		3887
10	cag cgg Gln Arg	_	Val	-		_	_	Āsp	_				Thr	_		3935
10	gac tgt Asp Cys	Val					Pro					Ala				3983
15	ggc cct Gly Pro 1	_		_		Ala					Gly		_		_	4031
20	ctg tgt Leu Cys 1345				Ile					Val						4079
25	aac ggt Asn Gly 1360	_		Phe		_	_	_	Cys	_			_	Lys		4127
30	ccc gat Pro Asp		Glu					His					Asp			4175
30	tgg agt Trp Ser	Thr					Ser					Cys				4223
35	cat aaa His Lys		_		_	Tyr	_	_	_		Asp		_			4271
40	gaa agt Glu Ser 1425	_		_	Lys		_	-	_	Pro				-	_	4319
45	tgc cga Cys Arg 1440			Arg					Lys					Ser		4367
50	tgc tct Cys Ser	gtg Val	Ser	atg Met 460	ggc Gly	cga Arg	ggc Gly	Val	cag Gln 1465	cag Gln	agg Arg	cat	Val	ggc Gly 1470	tgt Cys	4415
	cag atc Gln Ile	Gly					Ala					Сув				4463
55	acc aga Thr Arg					Cys					Pro					4511
60	tac act Tyr Thr 1505				Glu					Cys						4559
65	gaa ggc Glu Gly 1520			Tyr					Cys					Lys		4607

				Gly					Val				ccg Pro	Val			4655
5			Cys					Cys								gaa ' Glu'	4703
10		Ser		_			Thr					Tyr	aaa Lys 1580				4751
15	Val					Ile					Glu		tat Tyr				4799
20		Gln			Ile		_			Thr	-		ccc Pro	_	Val		4847
	ccc Pro	tgt Cys	tac Tyr	Leu	agg Arg 1620	gag Glu	tgc Cys	cct Pro	Val	tcg Ser 1625	gcc Ala	acc Thr	tgg Trp	Arg	gtt Val 1630	ggc Gly	4895
25			Gly					Ser					gtg Val				4943
30		Val					Asn					Ser	cac His 1660				4991
35	Thr					Glu					Cys		aat Asn				5039
40	_	Glu			Gln		_	_		Val		_	ctt Leu		Gly		5087
				Gly					Met				aag Lys	Leu			5135
45			Сув					Ser					gag Glu				5183
50		Val					Glu					Val	tat Tyr L740				5231
55	Leu					Glu					Gly		cgg Arg				5279
60		Gln			Lys					Ala			tcc Ser		Phe		5327
				Ile					Met				acc Thr	Thr		tta Leu	5375
65													ttt Phe				5423

			1	.795				1	800				1	805			
5	G1 y 999	Asp	tgc Cys 810	tac Tyr	agc Ser	gct Ala	Ala	aag Lys 815	tgc Cys	cca Pro	cag Gln	Gly	cgt Arg 820	ttt Phe	agc Ser	atc Ile	5471
10	Asn	ctt Leu 825	tat Tyr	gga Gly	acc Thr	Gly	ttg Leu .830	tct Ser	tta Leu	act Thr	Glu	tct Ser 835	gcc Ala	aga Arg	tgg Trp	ata Ile	5519
10	tca Ser 1840	Gln	999 Gly	aat Asn	Tyr	gct Ala .845	gtc Val	tct Ser	gac Asp	Ile	aag Lys 850	aag Lys	tcg Ser	ccg Pro	gat Asp 1	ggt Gly 855	5567
15	acc Thr	cga Arg	gtc Val	Val	999 Gly .860	aaa Lys	tgc Cys	ggt Gly	Gly	tac Tyr .865	tgt Cys	gga Gly	aaa Lys	Cys	act Thr 1870	cca Pro	5615
20	tcc [.] Ser	tct Ser	Gly	act Thr 1875	ggc Gly	ctg Leu	gag Glu	Val	cga Arg .880	gtt Val	tta Leu	tago	taag	gt g	gettt	gaaga	5668
	ggaa	gcca	tt a	atgga	tgga	at ga	agga	tagt	aat	gcaa	tac	ctcc	acct	ta a	atttg	ggtgc	5728
25	atgt	gtat	gt g	gtgtg	gtgtç	gt tt	gtgt	gtga	ctt	gtat	gct	tgtg	tgtg	ta a	aatgt	gtgta	5788
	cata	taca	ta t	tatac	a												5804
30	<212	> 18 > PF	882 RT	sapie	ens <i>l</i>	ADAM:	rs-9			-							
35	<400 Ser 1			Gln	Phe 5	Val	Ser	Trp	Ala	Thr 10	Leu	Leu	Thr	Leu	Leu 15	Val	
40				20					25					30	Val		
	Lys	Asp	Arg 35	Leu	His	Pro	Arg	Gln 40	Val	Lys	Leu	Leu	Glu 45	Thr	Leu	Ser	
45	Glu	Tyr 50		Ile	Val	Ser		Ile			Asn	Ala 60	Leu	Gly	Glu	Pro	
	Phe 65	Pro	Thr	Asn	Val	His 70	Phe	Lys	Arg	Thr	Arg 75	Arg	Ser	Ile	Asn	Ser 80	
50	Ala	Thr	Asp	Pro	Trp 85	Pro	Ala	Phe	Ala	Ser 90	Ser	Ser	Ser	Ser	Ser 95	Thr	
55	Ser	Ser	Gln	Ala 100	His	Tyr	Arg	Leu	Ser 105	Ala	Phe	Gly	Gln	Gln 110	Phe	Leu	
	Phe	Asn	Leu 115		Ala	Asn	Ala	Gly 120	Phe	Ile	Ala	Pro	Leu 125	Phe	Thr	Val	
60		130					135					140			Ser		
65	145	Glu	Ala	Glu	Leu	Lys 150	His	Cys	Phe	Tyr	Lys 155	Arg	Leu	Cys	Gln	Tyr 160	
		Leu	Arg	Ala	His	Gly	Arg	His	Gln	Pro	Leu	Leu	Arg	Asn	Glu	His	

					165					170					175	
_	Lys	Asn	Arg	His 180	Ser	Lys	Asp	Lys	Lys 185	Lys	Thr	Arg	Ala	Arg 190	Lys	Trp
5	Gly	Glu	Arg 195	Ile	Asn	Leu	Ala	Gly 200	Asp	Val	Ala	Ala	Leu 205	Asn	Ser	Gly
10	Leu	Ala 210	Thr	Glu	Ala	Phe	Ser 215	Ala	Tyr	Gly	Asn	Lys 220	Thr	Asp	Asn	Thr
	Arg 225	Glu	Lys	Arg	Thr	His 230	Arg	Arg	Thr	Lys	Arg 235	Phe	Leu	Ser	Tyr	Pro 240
15	Arg	Phe	Val	Glu	Val 245	Leu	Val	Val	Ala	Asp 250	Asn	Arg	Met	Val	Ser 255	Tyr
20	His	Gly	Glu	Asn 260	Leu	Gln	His	Tyr	Ile 265	Leu	Thr	Leu	Met	Ser 270	Ile	Val
	Ala	Ser	Ile 275	Tyr	Lys	Asp	Pro	Ser 280	Ile	Gly	Asn	Leu	Ile 285	Asn	Ile	Val
25	Ile	Val 290	Asn	Leu	Ile	Val	Ile 295	His	Asn	Glu	Gln	Asp 300	Gly	Pro	Ser	Ile
	Ser 305	Phe	Asn	Ala	Gln	Thr 310	Thr	Leu	Lys	Asn	Phe 315	Cys	Gln	Trp	Gln	His 320
30	Ser	Asn	Ser	Pro	Gly 325	Gly	Ile	His	His	Asp 330	Thr	Ala	Val	Leu	Leu 335	Thr
35	Arg	Gln	Asp	Ile 340	Суѕ	Arg	Ala	His	Asp 345	Lys	Сув	Asp	Thr	Leu 350	Gly	Leu
	Ala	Glu	Leu 355	Gly	Thr	Ile	Cys	Asp 360	Pro	Tyr	Arg	Ser	Cys 365	Ser	Ile	Ser
40	Glu	Asp 370		Gly	Leu	Ser	Thr 375	Ala	Phe	Thr	Ile	Ala 380	His	Glu	Leu	Gly
	His 385	Val	Phe	Asn	Met	Pro 390	His	Asp	Asp	Asn	Asn 395	Lys	Cys	Lys	Glu	Glu 400
45	-		_		405			•		410				Asn	415	
50				420				,	425					4,30		Glu
			435					440					445			Ser
55		450					455					460				Val
	465					470					475					Pro 480
60					485					490					495	Val
65				500					505					510		Glu
	Cys	Glu	Pro	Gly	Lys	His	Cys	Lys	Xaa	Glý	Phe	Cys	Val	Pro	Lys	Glu

			515					520					525			
5	Met	Asp 530	Val	Pro	Val	Thr	Asp 535	Gly	Ser	Trp	Gly	Ser 540	Trp	Ser	Pro	Phe
	Gly 545	Thr	Cys	Ser	Arg	Thr 550	Cys	Gly	Gly	Gly	Ile 555	Lys	Thr	Ala	Ile	Arg 560
10	Glu	Cys	Asn	Arg	Pro 565	Glu	Pro	Lys	Asn	Gly 570	Gly	Lys	Tyr	Cys	Val 575	Gly
	Arg	Arg	Met	Lys 580	Phe	Lys	Ser	Cys	Asn 585	Thr	Glu	Pro	Cys	Leu 590	Lys	Gln
15	Lys	Arg	Asp 595	Phe	Arg	Asp	Glu	Gln 600	Cys	Ala	His	Phe	Asp 605	Gly	Lys	His
20	Phe	Asn 610	Ile	Asn	Gly	Leu	Leu 615	Pro	Asn	Val	Arg	Trp 620	Val	Pro	Lys	Tyr
20	Ser 625	Gly	Ile	Leu	Met	Lys 630	Asp	Arg	Cys	Lys	Leu 635	Phe	Cys	Arg	Val	Ala 640
25	Gly	Asn	Thr	Ala	Tyr 645	Tyr	Gln	Leu	Arg	Asp 650	Arg	Val	Ile	Asp	Gly 655	Thr
	Pro	Cys	Gly	Gln 660	Asp	Thr	Asn	Asp	11e 665	Сув	Val	Gln	Gly	Leu 670	Cys	Arg
30	Gln	Ala	Gly 675	Cys	Asp	His	Val	Leu 680	Asn	Ser	Lys	Ala	Arg 685	Arg	Asp	Lys
35	Cys	Gly 690	Val	Cys	Gly	Gly	Asp 695	Asn	Ser	Ser	Cys	Lys 700	Thr	Val	Ala	Gly
	Thr 705	Phe	Asn	Thr	Val	His 710	Tyr	Gly	Tyr	Asn	Thr 715	Val	Val	Arg	Ile	Pro 720
40	Ala	Gly	Ala	Thr	Asn 725	Ile	Asp	Val	Arg	Gln 730	His	Ser	Phe	Ser	Gly 735	Glu
	Thr	Asp	Asp	Asp 740	Asn	Tyr	Leu	Ala	Leu 745	Ser	Ser	Ser	Lys	Gly 750	Glu	Phe
45	Leu	Leu	Asn 755	Gly	Asn	Phe	Val	Val 760	Thr	Met	Ala	Lys	Arg 765	Glu	Ile	Arg
50	Ile	Gly 770	Asn	Ala	Val	Val	Glu 775	Tyr	Ser	Gly	Ser	Glu 780	Thr	Ala	Val	Glu
	Arg 785	Ile	Asn	Ser	Thr	Asp 790	Arg	Ile	Glu	Gln	Glu 795	Leu	Leu	Leu	Gln	Val 800
55	Leu	Ser	Val	Gly	Lys 805	Leu	Tyr	Asn	Pro	Asp 810	Val	Arg	туг	Ser	Phe 815	Asn
	Ile	Pro	Ile	Glu 820	Asp	Lys	Pro	Gln	Gln 825	Phe	туг	Trp	Asn	Ser 830	His	Gly
60	Pro	Trp	Gln 835	Ala	Сув	Ser	Lys	Pro 840	Сув	Gln	Gly	Glu	Arg 845	Lys	Arg	Lys
65	Leu	Val 850	Сув	Thr	Arg	Glu	Ser 855	Asp	Gln	Leu	Thr	Val 860	Ser	Asp	Gln	Arg
00	Сув	Asp	Arg	Leu	Pro	Gln	Pro	Gly	His	Ile	Thr	Glu	Pro	Cys	Gly	Thr

	865					870					875					880
	Gly	Сув	Asp	Leu	Arg 885	Trp	His	Val	Ala	Ser 890	Arg	Ser	Glu	Cys	Ser 895	Ala .
5	Gln	Cys	Gly	Leu 900	Gly	Tyr	Arg	Thr	Leu 905	Asp	Ile	Tyr	Сув	Ala 910	Lys	Tyr
10	Ser	Arg	Leu 915	Asp	Gly	Lys	Thr	Glu 920	Lys	Val	Asp	Asp	Gly 925	Phe	Cys	Ser
	Ser	His 930	Pro	Lys	Pro	Ser	Asn 935	Arg	Glu	Lys	Сув	Ser 940	Gly	Glu	Cys	Asn
15	Thr 945	Gly	Gly	Trp	Arg	Tyr 950	Ser	Ala	Trp	Thr	Glu 955	Cys	Ser	Lys	Ser	Cys 960
20	Asp	Gly	Gly	Thr	Gln 965	Arg	Arg	Arg	Ala	Ile 970	Cys	Val	Asn	Thr	Arg 975	Asn
20	Asp	Val	Leu	Asp 980	Asp	Ser	Lys	Cys	Thr 985	His	Gln	Glu	Lys	Val 990	Thr	Ile
25	Gln	Arg	Cys 995	Ser	Glu	Phe		Cys 1000	Pro	Gln	Trp		Ser 1005	Gly	Asp	Trp
		Glu LO10	Cys	Leu	Val	Thr	Cys 1015	Gly	Lys	Gly		Lys 1020	His	Ser	Gln	Val
30	Trp 1025	_	Gln	Phe		Glu 1030	Asp	Arg	Leu		Asp 1035	Arg	Met	Cys		Pro 1040
	Glu	Thr	Lys		Thr 1045	Ser	Met	Gln		Cys 1050	Gln	Gln	Pro		Сув 1055	Ala
35	Ser	Trp		Ala 1060	Gly	Pro	Trp		Gln 1065	Cys	Ser	Val		Cys 1070	Gly	Gln
40	Gly	_	Gln 1075	Leu	Arg	Ala		Lys 1080	Cys	Ile	Ile		Thr 1085	Tyr	Met	Ser
		Val 1090	Asp	qaA	Asn	Asp	Cys 1095	Asn	Ala	Ala		Arg 1100	Pro	Thr	Asp	Thr
45	Gln 110	_	Cys	Glu		Pro 1110	Ser	Сув	His		Pro 1115	Pro	Ala	Ala		Glu 1120
50	Thr	Arg	Arg		Thr 1125	Tyr	Ser	Ala		Arg 1130	Thr	Gln	Trp		Phe 1135	Gly
	Ser	Trp		Pro 1140	Сув	Ser	Ala		Cys 1145	Gly	Lys	Gly		Arg 1150	Met	Arg
55	Tyr		Ser 1155	Cys	Arg	Asp		Asn 1160	Gly	Ser	Val		Asp 1165	Glu	Ser	Ala
	_	Ala 1170	Thr	Leu	Pro	Arg	Pro 1175		Ala	Lys		Glu 1180	Cys	Ser	Val	Thr
60	Pro 118	-	Gly	Gln	_	Lys 1190		Leu	Asp	_	Ser 1195	Ser	Сув	Ser		Thr 1200
65	_	Gly	Gln	_	Arg 1205		Thr	Arg		Val 1210		Суѕ	Val		Туг 1215	Ser
J.J		His	Val	lle	Asp	Arg	Ser	Glu	Сув	Asp	Gln	Asp	Tyr	Ile	Pro	Glu

1220 1225 1230 Thr Asp Gln Asp Cys Ser Met Ser Pro Cys Pro Gln Arg Thr Pro Asp 1240 5 Ser Gly Leu Ala Gln His Pro Phe Gln Asn Glu Asp Tyr Arg Pro Arg 1255 Ser Ala Ser Pro Ser Arg Thr His Val Leu Gly Gly Asn Gln Trp Arg 1270 1275 Thr Gly Pro Trp Gly Ala Cys Ser Ser Thr Cys Ala Gly Gly Ser Gln 1285 1290 15 Arg Arg Val Val Val Cys Gln Asp Glu Asn Gly Tyr Thr Ala Asn Asp 1305 Cys Val Glu Arg Ile Lys Pro Asp Glu Gln Arg Ala Cys Glu Ser Gly

Cys Val Glu Arg Ile Lys Pro Asp Glu Gln Arg Ala Cys Glu Ser Gly
1315 1320 1325

Pro Cys Pro Gln Trp Ala Tyr Gly Asn Trp Gly Glu Cys Thr Lys Leu 1330 1335 1340

Cys Gly Gly Gly Ile Arg Thr Arg Leu Val Val Ser Gln Arg Ser Asn 25 1345 1350 1355 1360

Gly Glu Arg Phe Pro Asp Leu Ser Cys Glu Ile Leu Asp Lys Pro Pro 1365 1370 1375

30 Asp Arg Glu Gln Cys Asn Thr His Ala Cys Pro His Asp Ala Ala Trp 1380 1385 1390

Ser Thr Gly Pro Trp Ser Ser Cys Ser Val Ser Cys Gly Arg Gly His 1395 1400 1405

Lys Gln Arg Asn Val Tyr Cys Met Ala Lys Asp Gly Ser His Leu Glu
1410 1415 1420

Ser Asp Tyr Cys Lys His Leu Ala Lys Pro His Gly His Arg Lys Cys 40 1425 1430 1435 1440

Arg Gly Gly Arg Cys Pro Lys Trp Lys Ala Gly Ala Trp Ser Gln Cys
1445 1450 1455

45 Ser Val Ser Met Gly Arg Gly Val Gln Gln Arg His Val Gly Cys Gln 1460 1465 1470

Ile Gly Thr His Lys Ile Ala Arg Glu Thr Glu Cys Asn Pro Tyr Thr 1475 1480 1485

Arg Pro Glu Ser Glu Cys Glu Cys Gln Gly Pro Arg Cys Pro Leu Tyr 1490 1495 1500

Thr Trp Arg Ala Glu Glu Trp Gln Glu Cys Thr Lys Thr Cys Gly Glu 55 1505 1510 1515 1520

Gly Ser Arg Tyr Arg Lys Val Val Cys Val Asp Asp Asn Lys Asn Glu 1525 1530 1535

60 Val His Gly Ala Arg Cys Asp Val Ser Lys Arg Pro Val Asp Arg Glu 1540 1545 1550

Ser Cys Ser Leu Gln Pro Cys Glu Tyr Val Trp Thr Thr Gly Glu Trp
1555 1560 1565

Ser Glu Cys Ser Val Thr Cys Gly Lys Gly Tyr Lys Gln Arg Leu Val

1575 1580 1570 Ser Cys Ser Glu Ile Tyr Thr Gly Lys Glu Asn Tyr Glu Tyr Ser Tyr 1595 1590 1585 Gln Thr Thr Ile Asn Cys Pro Gly Thr Gln Pro Pro Ser Val His Pro Cys Tyr Leu Arg Glu Cys Pro Val Ser Ala Thr Trp Arg Val Gly Asn 1625 1620 Trp Gly Ser Cys Ser Val Ser Cys Gly Val Gly Val Met Gln Arg Ser 1640 15 Val Gln Cys Leu Thr Asn Glu Asp Gln Pro Ser His Leu Cys His Thr 1655 Asp Leu Lys Pro Glu Glu Arg Lys Thr Cys Arg Asn Val Tyr Asn Cys 1675 Glu Leu Pro Gln Asn Cys Lys Glu Val Lys Arg Leu Lys Gly Ala Ser Glu Asp Gly Glu Tyr Phe Leu Met Ile Arg Gly Lys Leu Leu Lys Ile 1705 Phe Cys Ala Gly Met His Ser Asp His Pro Lys Glu Tyr Val Thr Leu 30 Val His Gly Asp Ser Glu Asn Phe Ser Glu Val Tyr Gly His Arg Leu His Asn Pro Thr Glu Cys Pro Tyr Asn Gly Ser Arg Arg Asp Asp Cys 1745 35 Gln Cys Arg Lys Asp Tyr Thr Ala Ala Gly Phe Ser Ser Phe Gln Lys 1770 Ile Arg Ile Asp Leu Thr Ser Met Gln Ile Ile Thr Thr Asp Leu Gln 1785 Phe Ala Arg Thr Ser Glu Gly His Pro Val Pro Phe Ala Thr Ala Gly 1795 1800 45 Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg Phe Ser Ile Asn Leu Tyr Gly Thr Gly Leu Ser Leu Thr Glu Ser Ala Arg Trp Ile Ser 1835 1830 Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser Pro Asp Gly Thr 1850 Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys Cys Thr Pro Ser 1865 Ser Gly Thr Gly Leu Glu Val Arg Val Leu 1875 60 <210> 14 <211> 2625 <212> DNA 65 <213> Mus musculus ADAMTS-9

	<220> <221> CDS <222> (2)(2623)																
5		c ac	t go							er Gl					ır Pi	c cgc ne Arg	49
10	tct Ser	cac His	gat Asp	gga Gly 20	gat Asp	tat Tyr	ttc Phe	att Ile	gaa Glu 25	cca Pro	ctg Leu	cag Gln	tct Ser	gtg Val 30	gat Asp	gag Glu	97
15	caa Gln	gag Glu	gat Asp 35	gaa Glu	gag Glu	gaa Glu	caa Gln	aac Asn 40	aaa Lys	ccc Pro	cac His	att Ile	att Ile 45	tat Tyr	agg Arg	cac His	145
20	agc Ser	acc Thr 50	cct Pro	cag Gln	agg Arg	gaa Glu	ccc Pro 55	tcc Ser	aca Thr	gga Gly	aag Lys	cat His 60	gcc Ala	tgt Cys	gcc Ala	acc Thr	193
25	tca Ser 65	gaa Glu	ctc Leu	aaa Lys	aat Asn	agt Ser 70	cac His	agt Ser	aaa Lys	gac Asp	aag Lys 75	cgg Arg	aaa Lys	atc Ile	aga Arg	atg Met 80	241
23	cga Arg	aaa Lys	cgg Arg	aga Arg	aag Lys 85	agg Arg	aat Asn	agc Ser	ctg Leu	gct Ala 90	gac Asp	gac Asp	gtg Val	gca Ala	ctg Leu 95	cta Leu	289
30	aag Lys	agc Ser	ggt Gly	ttg Leu 100	gca Ala	aca Thr	aag Lys	gtg Val	ctc Leu 105	tct Ser	ggc Gly	tat Tyr	agc Ser	aac Asn 110	cag Gln	aca Thr	337
35	aac Asn	aac Asn	aca Thr 115	agg Arg	gac Asp	aga Arg	tgg Trp	aac Asn 120	cac His	aaa Lys	aga Arg	acc Thr	aaa Lys 125	cgc Arg	ttt Phe	ctg Leu	385
40				cgg Arg													433
45				cac His													481
43	tcc Ser	att Ile	gta Val	gct Ala	tct Ser 165	atc Ile	tat Tyr	aaa Lys	gac Asp	tca Ser 170	agt Ser	att Ile	gga Gly	aat Asn	tta Leu 175	att Ile	529
50	aat Asn			att Ile 180													577
55	cct Pro																625
60				tca Ser													673
	Val 225			aca Thr			Asp									gac Asp 240	721
65		tta	ggt	ctt	gct	gaa	ctg	gga	acc	att	tgc	gac	ccc	tac	cga	agc	769

	Thr	Leu	Gly		Ala 245	Glu	Leu	Gly	Thr	Ile 250	Cys	Asp	Pro	Tyr	Arg 255	Ser	
5	tgt Cys	tcc Ser		agt Ser 260	gaa Glu	gac Asp	agt Ser	999 Gly	ctg Leu 265	agc Ser	aca Thr	gct Ala	ttc Phe	aca Thr 270	ata Ile	gct Ala	817
10	cac His	gag Glu	ctg Leu 275	ggc Gly	cat His	gtg Val	ttt Phe	aat Asn 280	atg Met	cct Pro	cac His	gat Asp	gac Asp 285	agc Ser	aat Asn	aaa Lys	865 ,
16	tgc Cys	aaa Lys 290	gaa Glu	gaa Glu	gga Gly	gtt Val	aag Lys 295	agt Ser	ccc Pro	cag Gln	cat His	gtc Val 300	atg Met	gca Ala	cca Pro	aca Thr	913
15	ctg Leu 305	aac Asn	ttc Phe	tac Tyr	acc Thr	aac Asn 310	ccc Pro	tgg Trp	atg Met	tgg Trp	tca Ser 315	aag Lys	tgc Cys	agt Ser	cgg Arg	aaa Lys 320	961
20	tac Tyr	atc Ile	act Thr	gag Glu	ttc Phe 325	cta Leu	gac Asp	act Thr	999 Gly	tac Tyr 330	gga Gly	gag Glu	tgc Cys	ttg Leu	ctg Leu 335	aat Asn	1009
25	gaa Glu	cct Pro	gca Ala	tcc Ser 340	agg Arg	acc Thr	tat Tyr	cct Pro	ttg Leu 345	cct Pro	tcc Ser	caa Gln	ctg Leu	ccc Pro 350	ggc Gly	ctt Leu	1057
30	ctc Leu	tac Tyr	aac Asn 355	gtg Val	aat Asn	aaa Lys	Gln	tgt Cys 360	gaa Glu	ctg Leu	att Ile	ttt Phe	999 Gly 365	cca Pro	ggc Gly	tct Ser	1105
	Gln	gtg Val 370	tgc Cys	ccc Pro	tat Tyr	atg Met	atg Met 375	cag Gln	tgc Cys	aga Arg	cgg Arg	ctc Leu 380	tgg Trp	tgc Cys	aat Asn	aat Asn	1153
35	ata	Asp	gga Gly	gca Ala	cac His	aaa Lys 390	ggc Gly	tgc Cys	aag Lys	act Thr	cag Gln 395	His	acg Thr	ccc Pro	tgg Trp	gca Ala 400	1201
40	gat Asp	gga Gly	acc Thr	gag Glu	tgt Cys 405	Glu	cct Pro	gga Gly	aag Lys	cac His 410	Cys	aag Lys	ttt Phe	gga Gly	ttt Phe 415	Cys	1249
45	gtt Val	Pro	aaa Lys	gaa Glu 420	Met	gag Glu	ggc Gly	CCt	gca Ala 425	Ile	gat Asp	gga Gly	tcc Ser	tgg Trp 430	gga Gly	ggt	1297
5(Trp	ago Ser	cac His	Phe	999 Gly	acc Thr	tgc Cys	tca Ser 440	Arg	acg Thr	tgt Cys	gga Gly	gga Gly 445	GIA	ato Ile	aaa Lys	1345
	Thr	gcc Ala 450	a Ile	aga Arg	gag Glu	tgc Cys	aac Asr 455	Arg	cca Pro	gag Glu	cca Pro	a aaa Lys 460	Asn	ggt Gly	G17	aag Lys	1393
5	tac	Cy:	gta Val	a gga l Gly	a agg	aga Arg 470	, Met	aaq Lys	g tto s Phe	aaa Lys	tco Ser 479	r Cya	aac Asr	acg Thr	gaç Glu	Pro 480	1441
6	O tgo 'Cys	ate Me	g aag	g cag s Gli	g aag n Lys 489	s Arg	a gad g Asj	p Pho	c cga e Arq	a gaç g Glu . 490	ı Glı	g cag u Gli	g tgt n Cys	gct Ala	Cac Hi:	ttt s Phe	1489
6	gat 5 Asj	t gg p Gl	c aaa y Ly:	a cad s Hi: 50	s Ph	c aad e Asi	ate n Ile	c aa e As	t gg n Gl _j 50	A Pér	g cte	g cco	c ago	c gta c Val	LAr	c tgg g Trp	1537

5	ttt Phe	cct Pro	aag Lys 515	tac Tyr	agc Ser	gga Gly	att Ile	ttg Leu 520	atg Met	aag Lys	gac Asp	cgg Arg	tgc Cys 525	aag Lys	ttg Leu	ttc Phe	1585
	tgc Cys	aga Arg 530	gtg Val	gca Ala	gga Gly	aac Asn	aca Thr 535	gcc Ala	tac Tyr	tac Tyr	cag Gln	ctc Leu 540	cga Arg	gac Asp	aga Arg	gtġ Val	1633
10	att Ile 545	gac Asp	gga Gly	acc Thr	cct Pro	tgt Cys 550	ggc Gly	cag Gln	gac Asp	aca Thr	aat Asn S55	gac Asp	atc Ile	tgt Cys	gtc Val	caa Gln 560	1681
15															aag Lys 575		1729
20	cgg Arg	aaa Lys	gat Asp	aaa Lys 580	tgt Cys	999 Gly	att Ile	tgt Cys	ggt Gly 585	gga Gly	gat Asp	aat Asn	tct Ser	tca Ser 590	tgc Cys	aaa Lys	1777
25	aca Thr	gtg Val	gca Ala 595	gga Gly	aca Thr	ttt Phe	aac Asn	act Thr 600	gtc Val	cat His	tat Tyr	ggt Gly	tac Tyr 605	aat Asn	act Thr	gtt Val	1825
	gtc Val	cga Arg 610	att Ile	ccg Pro	gct Ala	ggt Gly	gct Ala 615	acc Thr	agc Ser	att Ile	gac Asp	gtg Val 620	cgt Arg	cag Gln	cac His	agc Ser	1873
30															aac Asn		1921
35	aaa Lys	ggt Gly	gaa Glu	ttc Phe	ctg Leu 645	cta Leu	aat Asn	gga Gly	gac Asp	ttt Phe 650	gtt Val	gtc Val	tcc Ser	atg Met	tcc Ser 655	aaa Lys	1969
40	agg Arg	gag Glu	gtc Val	cgc Arg 660	gtg Val	999 Gly	agc Ser	gcc Ala	gtc Val 665	att Ile	gag Glu	tac Tyr	agc Ser	gga Gly 670	tcg Ser	gac Asp	2017
45	aat Asn	gtg Val	tgt Cys 675	gaa Glu	aga Arg	ctg Leu	aac Asn	tgt Cys 680	acg Thr	gac Asp	cgt Arg	atc Ile	gag Glu 685	gaa Glu	gaa Glu	ctt Leu	2065
	ctc Leu	ctt Leu 690	cag Gln	gtg Val	t tg Leu	tcc Ser	gtg Val 695	gga Gly	aag Lys	ctg Leu	tat Tyr	aac Asn 700	cca Pro	gat Asp	gtg Val	cgg Arg	2113
50	tac Tyr 705	tca Ser	ttc Phe	aat Asn	att Ile	ccc Pro 710	att Ile	gag Glu	gac Asp	aaa Lys	cct Pro 715	cag Gln	caa Gln	ttt Phe	tac Tyr	tgg Trp 720	2161
55	aac Asn	agt Ser	cac His	999 Gly	ccg Pro 725	tgg Trp	caa Gln	gca Ala	tgc Cys	agc Ser 730	aag Lys	ccc Pro	tgc Cys	caa Gln	999 Gly 735	gag Glu	2209
60	cgg Arg	aga Arg	cca Pro	aaa Lys 740	ctt Leu	gtt Val	tgc Cys	acc Thr	agg Arg 745	gag Glu	tct Ser	gat Asp	cag Gln	cta Leu 750	acc Thr	gtt Val	2257
65	tct Ser	gat Asp	caa Gln 755	aga Arg	tgt Cys	gac Asp	cgg Arg	ctg Leu 760	ccc Pro	cag Gln	cca Pro	gga Gly	cct Pro 765	gtc Val	act Thr	gaa Glu	2305
	gcg	tgc	.ggc	aca	gac	tgt	gac	ttg	agg	tgg	cac	gtt	gcc	agc	aag	agc	2353

	Ala	Cys 770	Gly	Thr	Asp	Cys	Asp 775	Leu	Arg	Trp	His	Val 780	Ala	Ser	Lys	Ser	
5	gaa Glu 785	tgc Cys	agt Ser	gcc Ala	cag Gln	tgt Cys 790	ggt Gly	ttg Leu	ggc Gly	tac Tyr	cgt Arg 795	act Thr	tta Leu	gac Asp	atc Ile	cac His	2401
10	tgt Cys	gcc Ala	aaa Lys	tac Tyr	agc Ser 805	agg Arg	atg Met	gac Asp	999 Gly	aag Lys 810	acg Thr	gag Glu	aag Lys	gtg Val	gat Asp 815	gac Asp	2449
	agt Ser	ttc Phe	tgt Cys	agc Ser 820	agt Ser	caa Gln	ccc Pro	aga Arg	ccg Pro 825	agt Ser	aac Asn	cag Gln	gag Glu	aaa Lys 830	tgc Cys	tca Ser	2497
15	gga Gly	gag Glu	tgc Cys 835	agc Ser	aca Thr	ggt Gly	gga Gly	tgg Trp 840	cgc Arg	tat Tyr	tca Ser	gcc Ala	tgg Trp 845	acc Thr	gaa Glu	tgt Cys	2545
20	tct Ser	aga Arg 850	agc Ser	tgt Cys	gat Asp	ggt Gly	ggt Gly 855	acc Thr	cac His	aga Arg	aga Arg	aga Arg 860	gca Ala	att Ile	tgt Cys	gtc Val	2593
25	aac Asn 865	acc Thr	cgc Arg	aat Asn	gat Asp	gtc Val 870	ctg Leu	gat Asp	gac Asp	agc Ser	aa						2625
30	<21 <21	0 > 1! 1 > 8' 2 > Pl 3 > Mi	74 RT	uscu	lus i	ADAM"	rs-9		•								
35		0> 19 Thr		Val	Ile 5	Ser	Leu	Cys	Ser	Gly 10	Met	Met	Gly	Thr	Phe 15	Arg	
	His 1	Thr	Ala	Val Gly 20	5					10					15		
35 40	His 1 Ser	Thr	Ala	Gly	5 Asp	туг	Phe	Ile	Glu 25	10 Pro	Leu	Gln	Ser	Val 30	15 Asp	Glu	
	His 1 Ser Gln	Thr His Glu	Ala Asp Asp 35	Gly 20	5 Asp Glu	Tyr Glu	Phe Gln	Ile Asn 40	Glu 25 Lys	Pro	Leu His	Gln	Ser Ile 45	Val 30 Tyr	15 Asp Arg	Glu His	
40	His 1 Ser Gln	Thr His Glu Thr 50	Asp Asp 35 Pro	Gly 20 Glu	5 Asp Glu Arg	Tyr Glu Glu	Phe Gln Pro 55	Ile Asn 40 Ser	Glu 25 Lys Thr	Pro Pro Gly	Leu His Lys	Gln Ile His 60	Ser Ile 45 Ala	Val 30 Tyr Cys	Asp Arg Ala	Glu His Thr	
40 45	His 1 Ser Gln Ser 65	Thr His Glu Thr 50	Asp Asp 35 Pro	Gly 20 Glu Gln	S Asp Glu Arg Asn	Tyr Glu Glu Ser 70	Phe Gln Pro 55	Ile Asn 40 Ser	Glu 25 Lys Thr	Pro Pro Gly Asp	Leu His Lys Lys 75 Asp	Gln Ile His 60 Arg	Ser Ile 45 Ala Lys	Val 30 Tyr Cys	Asp Arg Ala Arg	Glu His Thr Met 80	
40	His 1 Ser Gln Ser 65 Arg	Thr His Glu Thr 50 Glu Lys	Asp Asp 35 Pro Leu	Gly 20 Glu Gln Lys	Asp Glu Arg Asn Lys 85	Tyr Glu Glu Ser 70 Arg	Phe Gln Pro 55 His	Ile Asn 40 Ser Ser	Glu 25 Lys Thr Lys	Pro Pro Gly Asp Ala 90	Leu His Lys Lys 75 Asp	Gln Ile His 60 Arg	Ser Ile 45 Ala Lys Val	Val 30 Tyr Cys Ile	Asp Arg Ala Arg Leu 95	Glu His Thr Met 80 Leu	
40 45	His 1 Ser Gln Ser Ser 65 Arg	Thr His Glu Thr 50 Glu Lys Ser	Ala Asp Asp 35 Pro Leu Arg	Gly 20 Glu Gln Lys Arg Leu 100	Asp Glu Arg Asn Lys 85 Ala	Tyr Glu Glu Ser 70 Arg	Phe Gln Pro 55 His Asn	Ile Asn 40 Ser Ser	Glu 25 Lys Thr Lys Leu 105 His	Pro Pro Gly Asp Ala 90 Ser	Leu His Lys 75 Asp	Gln Ile His 60 Arg Asp	Ser Ile 45 Ala Lys Val	Val 30 Tyr Cys Ile Ala Asn 110	Asp Arg Ala Arg Leu 95 Gln	Glu His Thr Met 80 Leu Thr	
40	His 1 Ser Gln Ser 65 Arg Lys Asn	Thr His Glu Thr 50 Glu Lys Ser	Ala Asp Asp 35 Pro Leu Arg Gly Thr	Gly 20 Glu Gln Lys Arg Leu 100	Asp Glu Arg Asn Lys 85 Ala	Tyr Glu Glu Ser 70 Arg Thr	Phe Gln Pro 55 His Asn Lys	Ile Asn 40 Ser Ser Val Asn 120 Val	Glu 25 Lys Thr Lys Leu Leu 105	Pro Pro Gly Asp Ala 90 Ser Lys	Leu His Lys 75 Asp Gly	Gln Ile His 60 Arg Asp Tyr	Ser Ile 45 Ala Lys Val Ser Lys 125 Asp	Val 30 Tyr Cys Ile Ala Asn 110	Asp Arg Ala Arg Leu 95 Gln Phe	Glu His Thr Met 80 Leu Thr	
40 45 50	His 1 Ser Gln Ser 65 Arg Lys Asn	Thr His Glu Thr 50 Glu Lys Ser Asn Tyr 130 Leu	Ala Asp Asp 35 Pro Leu Arg Gly Thr	Gly 20 Glu Gln Lys Arg Leu 100 Arg	Asp Glu Arg Asn Lys 85 Ala Asp	Tyr Glu Glu Ser 70 Arg Thr Arg Val	Phe Gln Pro 55 His Asn Lys Trp Glu 135 Asn	Ile Asn 40 Ser Ser Val Asn 120 Val	Glu 25 Lys Thr Lys Leu 105 His	Pro Pro Gly Asp Ala 90 Ser Lys Val	Leu His Lys 75 Asp Gly Arg	Gln Ile His 60 Arg Asp Tyr Thr	Ser Ile 45 Ala Lys Val Ser Lys 125 Asp	Val 30 Tyr Cys Ile Ala Asn 110 Arg	Asp Arg Ala Arg Leu 95 Gln Phe	Glu His Thr Met 80 Leu Thr	

	Asn	Ile	Val	Ile 180	Val	Asn	Leu	Val	Val 185	Ile	His	Asn	Glu	Gln 190	Glu	Gly
.5	Pro	Tyr	Ile 195	Asn	Phe	Asn	Ala	Gln 200	Thr	Thr	Leu	Lys ·	Asn 205	Phe	Cys	Gln
10	Trp	Gln 210	His	Ser	Lys	Asn	Tyr 215	Leu	Gly	Gly	Ile	Gln 220	His	Asp	Thr	Ala
10	Val 225	Leu	Val	Thr	Arg	Glu 230	Asp	Ile	Cys	Arg	Ala 235	Gln	Asp	Lys	Cys	Asp 240
15	Thr	Leu	Gly	Leu	Ala 245	Glu	Leu	Gly	Thr	Ile 250	Cys	Asp	Pro	Tyr	Arg 255	Ser
	Cys	Ser	Ile	Ser 260	Glu	Asp	Ser	Gly	Leu 265	Ser	Thr	Ala	Phe	Thr 270	Ile	Ala
20	His	Glu	Leu 275	Gly	His	Val	Phe	Asn 280	Met	Pro	His	Asp	Asp 285	Ser	Asn	Lys
25	Cys	Lys 290	Glu	Glu	Gly	Val	Lys 295	Ser	Pro	Gln	His	Val 300	Met	Ala	Pro	Thr
	Leu 305	Asn	Phe	Tyr	Thr	Asn 310	Pro	Trp	Met	Trp	Ser 315	Lys	Cys	Ser	Arg	Lys 320
30	Tyr	Ile	Thr	Glu	Phe 325	Leu	Asp	Thr	Gly	Tyr 330	Gly	Glu	Cys	Leu	Leu 335	Asn
	Glu	Pro	Ala	Ser 340	Arg	Thr	Tyr	Pro	Leu 345	Pro	Ser	Gln	Leu	Pro 350	Gly	Leu
35	Leu	Tyr	Asn 355	Val	Asn	Lys	Gln	Cys 360	Glu	Leu	Ile	Phe	Gly 365	Pro	Gly	Ser
40	Gln	Val 370	Сув	Pro	Tyr	Met	Met 375	Gln	Сув	Arg	Arg	Leu 380	Trp	Cys	Asn	Asn
	Va1 385	Asp	Gly	Ala	His	Lys 390	Gly	Cys	Lys	Thr	Gln 395	His	Thr	Pro	Trp	Ala 400
45	_		Thr		405			_	-	410	-	_		•	415	-
			Lys	420			-		425		_	-		430	•	•
50			His 435		_		-	440				_	445			-
55		450	Ile	, _		-	455	_		•		460		-	-	-
	465	_	Val	_		470		-			475	_				480
60			Lys		485					490					495	
			Lys	500					505				•	510		•
65	Phe	Pro	Lys 515	Tyr	Ser	Gly	Ile	Leu 520	Met	Lys	Asp	Arg	Cys 525	Lys	Leu	Phe

	Cys	Arg 530	Val	Ala	Gly	Asn	Thr 535	Ala	Tyr	Tyr	Gln	Leu 540	Arg	Asp	Arg	Val
5	Ile 545	Asp	Gly	Thr	Pro	Cys 550	Gly	Gln	Asp	Thr	Asn 555	Asp	Ile	Cys	Val	Gln 560
10	Gly	Leu	Cys	Arg	Gln 565	Ala	Gly	Cys	Asp	His 570	Ile	Leu	Asn	Ser	Lys 575	Val
10	Arg	Lys	Asp	Lys 580	Cys	Gly	Ile	Cys	Gly 585	Gly	Asp	Asn	Ser	Ser 590	Сув	Lys
15	Thr	Val	Ala 595	Gly	Thr	Phe	Asn	Thr 600	Val	His	Tyr	Gly	Tyr 605	Asn	Thr	Val
	Val	Arg 610	Ile	Pro	Ala	Gly	Ala 615	Thr	Ser	Ile	Asp	Val 620	Arg	Gln	His	Ser
20	Phe 625	Ser	Gly	Lys	Ser	Glu 630	Asp	Asp	Asn	Tyr	Leu 635	Ala	Leu	Ser	Asn	Ser 640
25	Lys	Gly	Glu	Phe	Leu 645	Leu	Asn	Gly	Asp	Phe 650	Val	Val	Ser	Met	Ser 655	Lys
25	Arg	Glu	Val	Arg 660	Val	Gly	Ser	Ala	Val 665	Ile	Glu	Tyr	Ser	Gly 670	Ser	Asp
30	Asn	Val	Cys 675	Glu	Arg	Leu	Asn	Cys 680	Thr	Asp	Arg	Ile	Glu 685	Glu	Glu	Leu
	Leu	Leu 690	Gln	Val	Leu	Ser	Val 695	Gly	Lys	Leu	Tyr	Asn 700	Pro	Asp	Val	Arg
35	Tyr 705	Ser	Phe	Asn	Ile	Pro 710	Ile	Glu	Asp	Lys	Pro 715	Gln	Gln	Phe	Tyr	Trp 720
40	Asn	Ser	His	Gly	Pro 725	Trp	Gln	Ala	Cys	Ser 730	Lys	Pro	Сув	Gln	Gly 735	Glu
40	Arg	Arg	Pro	Lys 740	Leu	Val	Сув	Thr	Arg 745	Glu	Ser	Asp	Gln	Leu 750	Thr	Val
45	Ser	Asp	Gln 755	Arg	Cys	Asp	Arg	Leu 760	Pro	Gln	Pro	Gly	Pro 765	Val	Thr	Glu
	Ala	Cys 770		Thr	Asp	Сув	Asp 775	Leu	Arg	Trp	His	Val 780	Ala	Ser	Lys	Ser
50	Glu 785		Ser	Ala	Gln	Cys 790		Leu	Gly	Tyr	Arg 795		Leu	Asp	Ile	His 800
55		Ala	Lys	Tyr	Ser 805		Met	qaA	Gly	Lys 810		Glu	Lys	Val	Asp 815	Asp
,,	Ser	Phe	Сув	Ser 820		Gln	Pro	Arg	Pro 825		Asn	Gln	Glu	Lys		Ser
60		Glu	Cys 835		Thr	Gly	Gly	Trp 840		Tyr	Ser	Ala	Trp 845	Thr	Glu	Cyś
	Ser	Arg 850		Cys	Asp	Gly	6ly 855		His	. Arg	Arg	860		Ile	Сув	Val
65	Asr 865		Arg	Asn	Asp	Val 870		Asp	Asp	Ser	=					

5	<211 <212	2 > DN	85 IA	apie	ens <i>l</i>	rmad <i>l</i>	`S-10)									
10	<220 <221 <222	L> CI) (3246	5)					٠							
15	tca		acg						atg Met								48
20									gcg Ala 25								96
25									gga Gly								144
23									caa Gln								192
30									tcc Ser								240
35									ggc Gly								288
40	cgg Arg	ccc Pro	cac His	tgc Cys 100	ctc Leu	tac Tyr	gct Ala	ggt Gly	cac His 105	ctg Leu	cag Gln	ggc Gly	cag Gln	gcc Ala 110	agc Ser	agc Ser	336
									gga Gly								384
45									gag Glu								432
50									gga Gly								480
55									gac Asp								528
60			_						tgg Trp 185		_				_		576
									gaa Glu								624
65	ctg	aag	cga	tcg	gtc	agc	cga	gag	cgc	tac	gtg	gag	acc	atg	gat	gtg	672

	Leu	Lys 210	Arg	Ser	Val	Ser	Arg 215	Glu	Arg	Tyr	Val	Glu 220	Thr	Met	Asp	Val	
5	gct Ala 225	gac Asp	aag Lys	atg Met	atg Met	gtg Val 230	gcc Ala	tat Tyr	cac His	G1 y 999	cgc Arg 235	cgg Arg	gat Asp	gtg Val	gag Glu	cag Gln 240	720
10	tat Tyr	gtc Val	ctg Leu	gcc Ala	atc Ile 245	atg Met	aac Asn	att Ile	gtt Val	gcc Ala 250	aaa Lys	ctt Leu	ttc Phe	cag Gln	gac Asp 255	tcg Ser	768
15	agt Ser	ctg Leu	gga Gly	agc Ser 260	acc Thr	gtt Val	aac Asn	atc Ile	ctc Leu 265	gta Val	act Thr	cgc Arg	ctc Leu	atc Ile 270	ctg Leu	ctc Leu	816
13	acg Thr	gag Glu	gac Asp 275	cag Gln	ccc Pro	act Thr	ctg Leu	gag Glu 280	atc Ile	acc Thr	cac His	cat His	gcc Ala 285	G1y 999	aag Lys	tcc Ser	864
20	cta Leu	gac Asp 290	agc Ser	ttc Phe	tgt Cys	aag Lys	tgg Trp 295	cag Gln	aaa Lys	tcc Ser	atc Ile	gtg Val 300	aac Asn	cac His	agc Ser	ggc Gly	912
25	cat His 305	ggc Gly	aat Asn	gcc Ala	att Ile	cca Pro 310	gag Glu	aac Asn	ggt Gly	gtg Val	gct Ala 315	aac Asn	cat His	gac Asp	aca Thr	gca Ala 320	960
30	gtg Val	ctc Leu	atc Ile	aca Thr	cgc Arg 325	tat Tyr	gac Asp	atc Ile	tgc Cys	atc Ile 330	tac Tyr	aag Lys	aac Asn	aaa Lys	ccc Pro 335	tgc Cys	1008
35	ggc Gly	aca Thr	cta Leu	ggc Gly 340	ctg Leu	gcc Ala	cgg Arg	tgg Trp	gcg Ala 345	gaa Glu	tgt Cys	gtg Val	agc Ser	gcg Ala 350	aga Arg	gaa Glu	1056
33	gct Ala	gca Ala	gcg Ala 355	tca Ser	atg Met	agg Arg	aca Thr	ttg Leu 360	gct Ala	gcc Ala	aca Thr	agc Ser	gtt Val 365	cac His	cat His	tgc Cys	1104
40	cac His	gag Glu 370	atc Ile	999 999	cac His	aca Thr	ttc Phe 375	ggc Gly	atg Met	aac Asn	cat His	gac Asp 380	ggc Gly	gtg Val	gga Gly	aac Asn	1152
45	agc Ser 385	Cys	G1y 999	gcc Ala	cgt Arg	ggt Gly 390	cag Gln	gac Asp	cca Pro	gcc Ala	aag Lys 395	ctc Leu	atg Met	gct Ala	gcc Ala	cac His 400	1200
50	att Ile	acc Thr	atg Met	aag Lys	acc Thr 405	aac Asn	cca Pro	ttc Phe	gtg Val	tgg Trp 410	tca Ser	tcc Ser	tgc Cys	aac Asn	cgt Arg 415	gac Asp	1248
55	tac Tyr	atc	acc Thr	agc Ser 420	ttt Phe	cta Leu	gac Asp	tcg Ser	ggc Gly 425	ctg Leu	Gly 999	ctc Leu	tgc Cys	ctg Leu 430	aac Asn	aac Asn	1296
<i></i>	cgg Arg	ccc Pro	ccc Pro 435	Arg	cag Gln	gac Asp	ttt Phe	gtg Val 440	tac Tyr	ccg Pro	aca Thr	gtg Val	gca Ala 445	ccg Pro	Gly	caa Gln	1344
60	gcc Ala	tac Tyr 450	Asp	gca Ala	gat Asp	gag Glu	caa Gln 455	Cys	cgc Arg	ttt Phe	cag Gln	cat His 460	gga Gly	gtc Val	aaa Lys	tcg Ser	1392
65	cgt Arg 465	Gln	tgt Cys	aaa Lys	tac Tyr	999 Gly 470	Glu	gtc Val	tgc Cys	agc Ser	gag Glu 475	Leu	tgg Trp	tgt Cys	ctg Leu	agc Ser 480	1440

.5						atc Ile											1488
	ctg Leu	tgc Cys	cag Gln	acg Thr 500	cac His	acc Thr	atc Ile	gac Asp	aag Lys 505	999 999	tgg Trp	tgc Cys	tac Tyr	aaa Lys 510	cgg Arg	gtċ Val	1536
10	tgt Cys	gtc Val	ccc Pro 515	ttt Phe	61 y 999	tcg Ser	cgc Arg	cca Pro 520	gag Glu	ggt Gly	gtg Val	gac Asp	gga Gly 525	gcc Ala	tgg Trp	999 999	1584
15	ccg Pro	tgg Trp 530	act Thr	cca Pro	tgg Trp	ggc Gly	gac Asp 535	tgc Cys	agc Ser	cgg Arg	acc Thr	tgt Cys 540	ggc Gly	ggc Gly	ggc Gly	gtg Val	1632
20	tcc Ser 545	tct Ser	tct Ser	agt Ser	cgt Arg	cac His 550	tgc Cys	gac Asp	agc Ser	ccc Pro	agg Arg 555	cca Pro	acc Thr	atc Ile	ggg Gly	ggc Gly 560	1680
25	aag Lys	tac Tyr	tgt Cys	ctg Leu	ggt Gly 565	gag Glu	aga Arg	agg Arg	cgg Arg	cac His 570	cgc Arg	tcc Ser	tgc Cys	aac Asn	acg Thr 575	gat Asp	1728
	gac Asp	tgt Cys	ccc Pro	cct Pro 580	ggc Gly	tcc Ser	cag Gln	gac Asp	ttc Phe 585	aga Arg	gaa Glu	gtg Val	cag Gln	tgt Cys 590	gct Ala	gaa Glu	1776
30	ttt Phe	gac Asp	agc Ser 595	atc Ile	cct Pro	ttc Phe	cgt Arg	600 GJA 333	aaa Lys	ttc Phe	tac Tyr	aag Lys	tgg Trp 605	aaa Lys	acg Thr	tac Tyr	1824
35	cgg Arg	gga Gly 610	G1 Y 999	ggc Gly	gtg Val	aag Lys	gcc Ala 615	tgc Cys	tcg Ser	ctc Leu	acg Thr	agc Ser 620	cta Leu	gcg Ala	gaa Glu	ggc Gly	1872
40	ttc Phe 625	aac Asn	ttc Phe	tac Tyr	acg Thr	gag Glu 630	agg Arg	gcg Ala	gca Ala	gcc Ala	gtg Val 635	gtg Val	gac Asp	999 999	aca Thr	ccc Pro 640	1920
45	tgc Cys	cgt Arg	cca Pro	gac Asp	acg Thr 645	gtg Val	gac Asp	att Ile	tgc Cys	gtc Val 650	agt Ser	ggc Gly	gaa Glu	tgc Cys	aag Lys 655	cac His	1968
	gtg Val	ggc Gly	tgc Cys	gac Asp 660	cga Arg	gtc Val	ctg Leu	ggc Gly	tcc Ser 665	gac Asp	ctg Leu	cgg Arg	gag Glu	gac Asp 670	aag Lys	tgc Cys	2016
50	cga Arg	gtg Val	tgt Cys 675	ggc Gly	ggt Gly	gac Asp	ggc Gly	agt Ser 680	gcc Ala	tgc Cys	gag Glu	acc Thr	atc Ile 685	gag Glu	ggc Gly	gtc Val	2064
55	ttc Phe	agc Ser 690	cca Pro	gcc Ala	tca Ser	cct Pro	999 Gly 695	gcc Ala	999 999	tac Tyr	gag Glu	gat Asp 700	gtc Val	gtc Val	tgg Trp	att Ile	2112
60	ccc Pro 705	aaa Lys	ggc Gly	tcc Ser	gtc Val	cac His 710	Ile	ttc Phe	atc Ile	cag Gln	gat Asp 715	ctg Leu	aac Asn	ctc Leu	tct Ser	ctc Leu 720	2160
65	agt Ser	cac His	ttg Leu	gcc Ala	ctg Leu 725	aag Lys	gga Gly	gac Asp	cag Gln	gag Glu 730	tcc Ser	ctg Leu	ctg Leu	ctg Leu	gag Glu 735	G1 y 999	2208
_	ctg	cct	999	acc	ccc	cag	ccc	cac	cgt	ctg	cct	cta	gct	999	acc	acc	2256

	Leu	Pro	Gly	Thr 740	Pro	Gln	Pro	His	Arg 745	Leu	Pro	Leu	Ala	Gly 750	Thr	Thr	
5	ttt Phe	caa Gln	ctg Leu 755	cga Arg	cag Gln	999 Gly	cca Pro	gac Asp 760	cag Gln	gtc Val	cag Gln	agc Ser	ctc Leu 765	gaa Glu	gcc Ala	ctg Leu	2304
10	gga Gly	ccg Pro 770	att Ile	aat Asn	gca Ala	tct Ser	ctc Leu 775	atc Ile	gtc Val	atg Met	gtg Val	ctg Leu 780	gcc Ala	cgg Arg	acc Thr	gag Glu	2352
	ctg Leu 785	cct Pro	gcc Ala	ctc Leu	cgc Arg	tac Tyr 790	cgc Arg	ttc Phe	aat Asn	gcc Ala	ccc Pro 795	atc Ile	gcc Ala	cgt Arg	gac Asp	ser 800	2400
15	ctg Leu	ccc Pro	ccc Pro	tac Tyr	tcc Ser 805	tgg Trp	cac His	tat Tyr	gcg Ala	ccc Pro 810	tgg Trp	acc Thr	aag Lys	tgc Cys	tcg Ser 815	gcc Ala	2448
20	cag Gln	tgt Cys	gca Ala	ggc Gly 820	ggt Gly	agc Ser	cag Gln	gtg Val	cag Gln 825	gcg Ala	gtg Val	gag Glu	tgc Cys	cgc Arg 830	aac Asn	cag Gln	2496
25	ctg Leu	gac Asp	agc Ser 835	tcc Ser	gcg Ala	gtc Val	gcc Ala	ccc Pro 840	cac His	tac Tyr	tgc Cys	agt Ser	gcc Ala 845	cac His	agc Ser	aag Lys	2544
30	ctg Leu	ccc Pro 850	aaa Lys	agg Arg	cag Gln	cgc Arg	gcc Ala 855	tgc Cys	aac Asn	acg Thr	gag Glu	cct Pro 860	tgc Cys	cct Pro	cca Pro	gac Asp	2592
7.5	tgg Trp 865	gtt Val	gta Val	999 Gly	aac Asn	tgg Trp 870	tcg Ser	ctc Leu	tgc Cys	agc Ser	cgc Arg 875	agc Ser	tgc Cys	gat Asp	gca Ala	ggc 61y 880	2640
35	gtg Val	cgc Arg	agt Ser	acg Thr	tcg Ser 885	gtc Val	gtg Val	tgc Cys	cag Gln	cgc Arg 890	cgc Arg	gtc Val	tct Ser	gcc Ala	gcg Ala 895	gag Glu	2688
40	gag Glu	aag Lys	gcg Ala	ctg Leu 900	gac Asp	gac Asp	agc Ser	gca Ala	tgc Cys 905	ccg Pro	cag Gln	ccg Pro	cgc Arg	cca Pro 910	cct Pro	gta Val	2736
45	ctg Leu	gag Glu	gcc Ala 915	tgc Cys	cac His	ggc Gly	ccc Pro	act Thr 920	Cys	cct Pro	ccg Pro	gag Glu	tgg Trp 925	gca Ala	acc Thr	ctc Leu	2784
50	Asp	tgg Trp 930	Ser	gag Glu	tgt Cys	acc Thr	cca Pro 935	agc Ser	tgt Cys	999 999	cct Pro	ggt Gly 940	ctc Leu	cgc Arg	cac	cga Arg	2832
55	Val 945	Val	ctt Leu	tgt Cys	aag Lys	agt Ser 950	Ala	gat Asp	caa Gln	cga Arg	tct Ser 955	Thr	ctg Leu	ccc Pro	cct Pro	960 960	2880
33	cac	tgc Cys	ctt Leu	cct Pro	gca Ala 965	Ala	aag Lys	cca Pro	cca Pro	ser 970	Thr	atg Met	cga Arg	tgt Cys	aac Asn 975	ttg Leu	2928
60	cgc	cgc Arg	tgc Cys	cct Pro	Pro	gcc Ala	cgc	tgg Trp	gtg Val 985	Thr	agt Ser	gag Glu	tgg Trp	ggt Gly 990	Glu	tgt Cys	2976
65	tco Sei	aca Thi	cag Glr 995	Cys	ggc Gly	cto Lev	ggc	cac Glr	ı Glr	cag Glm	cgc Arg	aca Thr	gtg Val	Arg	tgc Cys	acc Thr	3024

5	agc cac Ser His 1010	acc ggo Thr Gly	cag o	cca tct Pro Ser 1015	cga Arg	gag Glu	tgc Cys	Thr	gaa Glu L020	gcc Ala	ttg Leu	Arg	cca Pro	3072
	tcc acc Ser Thr 1025	atg cag Met Gln	Gln (tgt gag Cys Glu 030	gcc Ala	aag Lys	Cys	gac Asp 1035	agt Ser	gtg Val	gtg Val	Pro	cct Pro 1040	3120
10	gga gat Gly Asp					Asp					Ala			3168
15	ccc ctg Pro Leu	gtg ctc Val Leu 1060	Lys I	ttt cag Phe Gln	Phe	tgt Cys 1065	agc Ser	cga Arg	gcc Ala	Tyr	ttc Phe 1070	cgc Arg	cag Gln	3216
20	atg tgc Met Cys 1			Cys Gln			tag	ggta	ecct	gga a	accaa	accto	19	3266
	agcacagg	ct gagg	cagggg	g acatco	ccact	t gga	agagg	gca	tgag	ggaa	aag g	99999	gcttga	3326
25	attgaagg	gt gaga	tgcagt	t tgaaaq	gttai	t tta	attgg	gta	acco	ctaca	agg g	gctco	tgact	3386
	aaggggtg	ga gaag	agctgg	g ctacco	aggg	gaco	cctct	gct	gtat	ctt	gee o	cagtt	gatag	3446
	tgaagaga	iga ggad	tcctt	g ttgcad	cacat	att	taaç	jtcc	ctag	gcaco	ccc t	ccca	ccctt	3506
30	tgatcgga	at atgt	actgt	g aagagt	9999	ggtg	9999	1999	gtgt	gctg	gt g	gecet	gcccc	3566
	ctgcactg	tt ctat	ccctad	actct	gagct	gg9	ggga	ttt	atat	ctg	ta t	9999	ggagt	3626
	aggcttga	ta ccac	ctccct	gtage	cctco	c c c c	agac	etga	cgaa	19999	gaa g	gatco	acccc	3686
35	aacctctg	cc ctgc	ctgcc	c caggg	ggag	g tto	caaca	tcc	aggo	cgtt	ec o	cato	atggt	3746
	gctacaag	cc ctgc	cctggg	g gcccad	cacac	tco	ctcac	caa	gaag	geett	ac a	attaa	aaaag	3806
40	ttgtgtta	tc ctac	aaaaa	a aaaaa	aaaa	c tog	gaggg	999	gcc	ggta	acc o	aatt	cgcgc	3866
	tatagtaa	at nggg	tntta	,										3885
45	<210> 17 <211> 10 <212> PR <213> Ho	81 T	ens AI	DAMTS-10)									
50	<400> 17													•
	Ser Arg	Thr Pro	Ser (Gly Leu	Lys	Met	Ser 10	Ser	Cys	Pro	Val	Trp 15	Arg	
	Ala Met	Arg Ser 20		Ser Pro	Pro	Ala 25	Trp	Thr	Thr	Thr	Gly 30	His	Сув	
55	Trp Pro	Ser Arg	His I	Leu Leu	Pro	Gly	Ala	Ala	Pro	Arg	His	Gly	Gly	
	His Ser 50		Pro P	Pro Leu 55		Gln	Ser	Gly	Leu 60		Ser	Thr	His	
60	Phe Leu	Leu Asn	Leu 1		Ser	Ser	Arg	Leu 75		Ala	Gly	Arg	Val 80	
- •	Ser Val	Glu Tyr	Trp 1		Glu	Gly	Leu 90		Trp	Gln	Arg	Ala 95		
	Arg Pro	His Cys	Leu 1	Tyr Ala	Gly	His 105		Gln	Gly	Gln			Ser	
65	Ser His			Ser Thr	Cys 120		Gly	Leu	His	Gly	110 Leu	Ile	Val	

	Ala	Asp 130	Glu	Glu	Glu	Tyr	Leu 135	Ile	Glu	Pro	Leu	His 140	Gly	Gly	Pro	Lys
	Gly 145	Ser	Arg	Ser	Pro	Glu 150	Glu	Ser	Gly	Pro	His 155	Cys	Val	Tyr	Lys	Arg 160
5	Ser	Ser	Leu	Arg	His 165	Pro	His	Leu	Asp	Thr 170	Ala [.]	Cys	Gly	Val	Arg 175	Asp
		_		180					185					Leu 190		
10			195					200					205	Gln		
		210					215					220		Met		
	225					230					235			Val		240
15					245					250				Gln	255	
			_	260					265				-	11e 270		
20			275					280					285	Gly		
		290					295					300		His Asp		
25	305					310					315			Lys		320
25					325					330				Ala	335	
	_			340					345					350 His		
30			355					360					365	Val		
		370		_			375					380		Ala		
3 5	385					390					395			Asn		400
,,,					405					410				Leu	415	
	_			420					425					430 Pro		
40	_		435					440					445	Val		
		450					455					460		Cys		
45	465		_	-	_	470					475			Glu		480
	_				485					490				Lys	495	
		_		500					505					510		Gly
50	•		515					520					525			Val
		530					535					540				Gly
55	545 Lys	Tyr	Сув	Leu	Gly	550 Glu	Arg	Arg	Arg	His	555 Arg	Ser	Cys	Asn		560 Asp
	Asp	Cys	Pro	Pro	565 Gly	Ser	Gln	Asp	Phe	570 Arg	Glu	Val	Gln	Cys	575 Ala	Glu
	Phe	Asp	Ser	580 Ile		Phe	Arg				Tyr	Lys	Trp	590 Lys	Thr	Tyr
60	Arg				Val	Lys				Leu	Thr				Glu	Gly
				Tyr	Thr				Ala	Ala		620 Val		Gly	Thr	Pro
65	625 Cys		Pro	Asp	Thr 645			Ile	Cys	Val 650		Gly	Glu	Cys	Lys 655	640 His

```
Val Gly Cys Asp Arg Val Leu Gly Ser Asp Leu Arg Glu Asp Lys Cys
             660
                               665
                                       670
  Arg Val Cys Gly Gly Asp Gly Ser Ala Cys Glu Thr Ile Glu Gly Val
          675
                            680
                                             685
5 Phe Ser Pro Ala Ser Pro Gly Ala Gly Tyr Glu Asp Val Val Trp Ile
                        695
                                          700
  Pro Lys Gly Ser Val His Ile Phe Ile Gln Asp Leu Asn Leu Ser Leu
                    710
                                      715
  Ser His Leu Ala Leu Lys Gly Asp Gln Glu Ser Leu Leu Leu Glu Gly
           725
                                730
                                           735
  Leu Pro Gly Thr Pro Gln Pro His Arg Leu Pro Leu Ala Gly Thr Thr
             740
                             745
                                         750
  Phe Gln Leu Arg Gln Gly Pro Asp Gln Val Gln Ser Leu Glu Ala Leu
                            760
15 Gly Pro Ile Asn Ala Ser Leu Ile Val Met Val Leu Ala Arg Thr Glu
                      775
                                          780
  Leu Pro Ala Leu Arg Tyr Arg Phe Asn Ala Pro Ile Ala Arg Asp Ser
                    790
                                      795
  Leu Pro Pro Tyr Ser Trp His Tyr Ala Pro Trp Thr Lys Cys Ser Ala
                 805
                                  810
  Gln Cys Ala Gly Gly Ser Gln Val Gln Ala Val Glu Cys Arg Asn Gln
                              825
            820
  Leu Asp Ser Ser Ala Val Ala Pro His Tyr Cys Ser Ala His Ser Lys
         835
                           840
                                      845
25 Leu Pro Lys Arg Gln Arg Ala Cys Asn Thr Glu Pro Cys Pro Pro Asp
                        855
  Trp Val Val Gly Asn Trp Ser Leu Cys Ser Arg Ser Cys Asp Ala Gly
                    870
                                      875
  Val Arg Ser Thr Ser Val Val Cys Gln Arg Arg Val Ser Ala Ala Glu
               885
                                  890
  Glu Lys Ala Leu Asp Asp Ser Ala Cys Pro Gln Pro Arg Pro Pro Val
             900
                               905
                                                 910
  Leu Glu Ala Cys His Gly Pro Thr Cys Pro Pro Glu Trp Ala Thr Leu
         915
                           920
                                             925
35 Asp Trp Ser Glu Cys Thr Pro Ser Cys Gly Pro Gly Leu Arg His Arg
                      935
                                         940
  Val Val Leu Cys Lys Ser Ala Asp Gln Arg Ser Thr Leu Pro Pro Gly
                   950
                                      955
  His Cys Leu Pro Ala Ala Lys Pro Pro Ser Thr Met Arg Cys Asn Leu
                965
                                  970
                                                     975
  Arg Arg Cys Pro Pro Ala Arg Trp Val Thr Ser Glu Trp Gly Glu Cys
                               985
  Ser Thr Gln Cys Gly Leu Gly Gln Gln Arg Thr Val Arg Cys Thr
        995 1000
                                    1005
45 Ser His Thr Gly Gln Pro Ser Arg Glu Cys Thr Glu Ala Leu Arg Pro
   1010 1015 1020
  Ser Thr Met Gln Gln Cys Glu Ala Lys Cys Asp Ser Val Val Pro Pro 1025 1030 1035 1040
  Gly Asp Gly Pro Glu Glu Cys Lys Asp Val Asn Lys Val Ala Tyr Cys
              1045
                         1050
  Pro Leu Val Leu Lys Phe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gln
           1060
                  1065
  Met Cys Cys Lys Thr Cys Gln Gly Arg
        1075
                          1080
```

<210> 18
 <211> 1642
60 <212> DNA
 <213> Mus musculus ADAMTS-10

<220>
 <221> CDS
65 <222> (2)..(1351)

		. > mi		eatu .(34													
5		. > mi	-	eatu (35													
10	a go)> 18 a go .a Al 1	a go	et gt la Va	g gt	g ga al As 5	at gg sp Gl	ja ac .y Th	a co nr Pi	:0 C}	gc cg /s Ar	ge ed eg Pi	et ga	ac ac sp Tì	ır Va	g gac al Asp 15	49
15	att Ile	tgt Cys	gtc Val	agc Ser 20	ggc Gly	gag Glu	tgc Cys	aag Lys	cat His 25	gta Val	ggc Gly	tgt Cys	gac Asp	agg Arg 30	ctc Leu	ctg Leu	97
20	ggt Gly	tct Ser	gat Asp 35	ctc Leu	cga Arg	gag Glu	gac Asp	aaa Lys 40	Cys	cgt Arg	gtg Val	tgt Cys	999 Gly 45	ggt Gly	gat Asp	ggc Gly	145
25	agt Ser	gcc Ala 50	tgt Cys	gag Glu	acc Thr	att Ile	gaa Glu 55	ggt Gly	gtc Val	ttt Phe	agc Ser	cca Pro 60	gct Ala	ttg Leu	cca Pro	gga Gly	193
															cac His		241
30															aag Lys 95		289
35															caa Gln		337
40	nac Xaa	cgc Arg	ctt Leu 115	ccc Pro	ctg Leu	gnt Xaa	999 Gly	acc Thr 120	aca Thr	ttt Phe	cat His	cta Leu	cgg Arg 125	cag Gln	999 Gly	ccg Pro	385
45															tct Ser		433
43															tac Tyr		481
50															tgg Trp 175		529
55															agc Ser		577
60	gtg Val	caa Gln	gta Val 195	gtg Val	gag Glu	tgc Cys	cga Arg	aat Asn 200	cag Gln	ctg Leu	gac Asp	Ser	tca Ser 205	gca Ala	gtg Val	gcc Ala	625
															cgt Arg		673
65	tgc	aac	aca	gaa	сса	tgt	cca	cca	gat	tgg	gtt	gta	gga	aac	tgg	tca	721

	Cys 225	Asn	Thr	Glu	Pro	Cys 230	Pro	Pro	Asp	Trp	Val 235	Val	Gly	Asn	Trp	Ser 240	
5													cgc Arg				769
10													tta Leu				817
15	gcc Ala	tgt Cys	cca Pro 275	cag Gln	cca Pro	cgc Arg	cca Pro	cct Pro 280	gtg Val	ctg Leu	gag Glu	gcc Ala	tgc Cys 285	caa Gln	ggc Gly	cca Pro	865
		-					-			_			gag Glu	_			913
20													tgt Cys				961
25													cct Pro				1009
30					_	_	_		_	_	_	_	cct Pro		_	_	1057
35				_					_			_	tgt Cys 365				1105
,,,													ggc Gly				1153
40	_		_		_	_	_					_	cag Gln	_	_		1201
45													cca Pro				1249
50													ctc Leu				1297
55													aaa Lys 445				1345
33		cgc Arg 450	tagg	ggtad	cct g	ggaad	caac	c to	gago	cacaç	g gct	gagg	gcag	9998	cato	cc	1401
60	acto	ggaga	agg g	gcate	gaggg	ga aa	19999	ggct	tga	atto	gaag	ggtg	gagat	gc a	agtt	gaaag	1461
	tat	tatt	tg q	ggtaa	accc	ct ac	aggg	gctto	tga	actta	aagg	ggtg	ggaga	aan a	gctg	gctac	1521
65	ccca	1999	acc o	ettt	gtt	gg at	ctt	gcco	ant	tgat	agt	gaag	gagag	gag g	gactt	cttgg	1581
55	tgna	acaca	att 1	tta	agtco	ct ta	agaco	ctto	cac	cnt	gat	cgga	atato	gtc t	9998	agagg	1641

1642

5 <210> 19 <211> 450 <212> PRT <213> Mus musculus ADAMTS-10 10 <400> 19 Ala Ala Ala Val Val Asp Gly Thr Pro Cys Arg Pro Asp Thr Val Asp Ile Cys Val Ser Gly Glu Cys Lys His Val Gly Cys Asp Arg Leu Leu Gly Ser Asp Leu Arg Glu Asp Lys Cys Arg Val Cys Gly Gly Asp Gly 20 Ser Ala Cys Glu Thr Ile Glu Gly Val Phe Ser Pro Ala Leu Pro Gly Thr Gly Tyr Glu Asp Val Val Trp Ile Pro Lys Gly Ser Val His Ile 25 Phe Ile Gln Asp Leu Asn Leu Ser Leu Ser His Leu Ala Leu Lys Gly 90 Asp Gln Glu Ser Leu Leu Leu Glu Gly Leu Pro Gly Thr Pro Gln Pro 105 Xaa Arg Leu Pro Leu Xaa Gly Thr Thr Phe His Leu Arg Gln Gly Pro 120 35 Asp Gln Ala Gln Ser Leu Glu Ala Leu Gly Pro Ile Asn Ala Ser Leu Ile Ile Met Val Leu Ala Gln Ala Glu Leu Pro Ala Leu His Tyr Arg 150 155 Phe Asn Ala Pro Ile Ala Arg Asp Ala Leu Pro Pro Tyr Ser Trp His Tyr Ala Pro Trp Thr Lys Cys Ser Ala Gln Cys Ala Gly Gly Ser Gln 45 Val Gln Val Val Glu Cys Arg Asn Gln Leu Asp Ser Ser Ala Val Ala 200 50 Pro His Tyr Cys Ser Gly His Ser Lys Leu Pro Lys Arg Gln Arg Ala 215 Cys Asn Thr Glu Pro Cys Pro Pro Asp Trp Val Val Gly Asn Trp Ser Arg Cys Ser Arg Ser Cys Asp Ala Gly Val Arg Ser Arg Ser Val Val Cys Gln Arg Arg Val Ser Ala Ala Glu Glu Lys Ala Leu Asp Asp Ser Ala Cys Pro Gln Pro Arg Pro Pro Val Leu Glu Ala Cys Gln Gly Pro 280 65 Met Cys Pro Pro Glu Trp Ala Thr Leu Asp Trp Ser Glu Cys Thr Pro

300

	Ser 305	Cys	Gly	Pro	Gly	Leu 310	Arg	His	Arg	Val	Val 315	Leu	Cys	Lys	Ser	Ala 320	
5	Asp	Gln	Arg	Ser	Thr 325	Leu	Pro	Pro	Gly	His 330	Cys	Leu	Pro	Ala	Ala 335	Lys	
10	Pro	Pro	Ser	Thr 340	Met	Arg	Сув	Asn	Leu 345	Arg	Arg	Cys	Pro	Pro 350	Ala	Arg	
	Trp	Val	Thr 355	Ser	Glu	Trp	Gly	Glu 360	Cys	Ser	Thr	Gln	Cys 365	Gly	Leu	Gly	
15	Gln	Gln 370	Gln	Arg	Thr	Val	Arg 375	Сув	Thr	Ser	His	Thr 380	Gly	Gln	Pro	Ser	
٠	Arg 385	Glu	Cys	Thr	Glu	Ala 390	Leu	Arg	Pro	Ser	Thr 395	Met	Gln	Gln	Сув	Glu 400	
20	Ala	Lys	Cys	Asp	Ser 405	Val	Val	Pro	Pro	Gly 410	Asp	Gly	Pro	Glu	Glu 415	Cys	
25	Lys	Asp	Val	Asn 420	Lys	Val	Ala	Tyr	Cys 425	Pro	Leu	Val	Leu	Lys 430	Phe	Gln	
	Phe	Cys	Ser 435	Arg	Ala	Tyr	Phe	Arg 440	Gln	Met	Ser	Cys	Lys 445	Thr	Cys	Gln	
30	Gly	Arg 450			-												
35	<211 <212	2 > Di	303	sapie	ens A	rmad <i>k</i>	?S-R1	L									
40	<220 <221 <222	L> CI	os 51)	(163	34)												
45)> 2(:tcgc) gca c	gagg	ıcagt	g to	cgat	tctg	j att	ccgg	jcaa	ggat	ccaa		atg g Met C		56
50	tgc Cys	tgc Cys	cgt Arg 5	cgg Arg	gca Ala	act Thr	cct Pro	ggc Gly 10	aca Thr	ctg Leu	ctc Leu	ctc Leu	ttt Phe 15	ctg Leu	gct Ala	ttc Phe	104
	ctg Leu	ctc Leu 20	ctg Leu	agt Ser	tcc Ser	agg Arg	acc Thr 25	gca Ala	cgc Arg	tcc Ser	gag Glu	gag Glu 30	gac Asp	cgg Arg	gac Asp	ggc Gly	152
55	cta Leu 35	tgg Trp	gat Asp	gcc Ala	tgg Trp	ggc Gly 40	cca Pro	tgg Trp	agt Ser	gaa Glu	tgc Cys 45	tca Ser	cgc Arg	acc Thr	tgc Cys	999 Gly 50	200
60	ggt Gly	999 Gly	gcc Ala	gcc Ala	aac Asn 55	tct Ser	ctg Leu	agg Arg	cgc Arg	tgc Cys 60	ctg Leu	agc Ser	agc Ser	aag Lys	agc Ser 65	tgt Cys	248
65	gaa Glu	gga Gly	aga Arg	aat Asn 70	atc Ile	cga Arg	tac Tyr	aga Arg	aca Thr 75	tgc Cys	agt Ser	aat Asn	gtg Val	gac Asp 80	tgc Cys	cca Pro	296

5	cca Pro	gaa Glu	gca Ala 85	ggt Gly	gat Asp	ttc Phe	cga Arg	gct Ala 90	cag Gln	caa Gln	tgc Cys	tca Ser	gct Ala 95	cat His	aat Asn	gat Asp	344
J	gtc Val	aag Lys 100	cac His	cat His	ggc Gly	cag Gln	ttt Phe 105	tat Tyr	gaa Glu	tgg Trp	ctt Leu	cct Pro 110	gtg Val	tct Ser	aat Asn	gac` Asp	392
10	cct Pro 115	gac Asp	aac Asn	cca Pro	tgt Cys	tca Ser 120	ctc Leu	aag Lys	tgc Cys	caa Gln	gcc Ala 125	aaa Lys	gga Gly	aca Thr	acc Thr	ctg Leu 130	440
15															tat Tyr 145		488
20	gaa Glu	tct Ser	ttg Leu	gat Asp 150	atg Met	tgc Cys	atc Ile	agt Ser	ggt Gly 155	tta Leu	tgc Cys	caa Gln	att Ile	gtt Val 160	ggc Gly	tgc Cys	536
25	gat Asp	cac His	cag Gln 165	ctg Leu	gga Gly	agc Ser	acc Thr	gtc Val 170	aag Lys	gaa Glu	gat Asp	aac Asn	tgt Cys 175	gly Gly	gtc Val	tgc Cys	584
	aac Asn	gga Gly 180	gat Asp	G1 y 999	tcc Ser	acc Thr	tgc Cys 185	cgg Arg	ctg Leu	gtc Val	cga Arg	999 Gly 190	cag Gln	tat Tyr	aaa Lys	tcc Ser	632
30	cag Gln 195	ctc Leu	tcc Ser	gca Ala	acc Thr	aaa Lys 200	tcg Ser	gat Asp	gat Asp	act Thr	gtg Val 205	gtt Val	gca Ala	att	ccc Pro	tat Tyr 210	680
35	gga Gly	agt Ser	aga Arg	cat His	att Ile 215	cgc Arg	ctt Leu	gtc Val	tta Leu	aaa Lys 220	ggt Gly	cct Pro	gat Asp	cac His	tta Leu 225	tat Tyr	728
40	ctg Leu	gaa Glu	acc Thr	aaa Lys 230	acc Thr	ctc Leu	cag Gln	999 Gly	act Thr 235	aaa Lys	ggt Gly	gaa Glu	aac Asn	agt Ser 240	ctc Leu	agc Ser	776
45	tcc Ser	aca Thr	gga Gly 245	act Thr	ttc Phe	ctt Leu	gtg Val	gac Asp 250	aat Asn	tct Ser	agt Ser	gtg Val	gac Asp 255	ttc Phe	cag Gln	aaa Lys	824
	ttt Phe	cca Pro 260	gac Asp	aaa Lys	gag Glu	ata Ile	ctg Leu 265	aga Arg	atg Met	gct Ala	gga Gly	cca Pro 270	ctc Leu	aca Thr	gca Ala	gat Asp	872
50	ttc Phe 275	att Ile	gtc Val	aag Lys	att Ile	cgt Arg 280	aac Asn	tcg Ser	ggc	tcc Ser	gct Ala 285	gac Asp	agt Ser	aca Thr	gtc Val	cag Gln 290	920
55	ttc Phe	atc Ile	ttc Phe	tat Tyr	caa Gln 295	ccc Pro	atc Ile	atc Ile	cac His	cga Arg 300	tgg Trp	agg Arg	gag Glu	acg Thr	gat Asp 305	ttc Phe	968
60	Phe	cct Pro	tgc Cys	tca Ser 310	gca Ala	acc Thr	tgt Cys	gga Gly	gga Gly 315	ggt Gly	tat Tyr	cag Gln	ctg Leu	aca Thr 320	tcg Ser	gct Ala	1016
65	Glu	tgc Cys	tac Tyr 325	Asp	ctg Leu	agg Arg	agc Ser	aac Asn 330	cgt Arg	gtg Val	gtt Val	gct Ala	gac Asp 335	caa Gln	tac Tyr	tgt Cys	1064
		tat	tac	cca	gag	aac	atc	aaa	ccc	aaa	ccc	aag	ctt	cag	gag	tgc	1112

	His	Tyr 340	Tyr	Pro	Glu	Asn	Ile 345	Lys	Pro	Lys	Pro	Lys 350	Leu	Gln	Glu	Cys	
5	aac Asn 355	ttg Leu	gat Asp	cct Pro	tgt Cys	cca Pro 360	gcc Ala	agt Ser	gac Asp	gga Gly	tac Tyr 365	aag Lys	cag Gln	atc Ile	atg Met	cct Pro 370	1160
10	tat Tyr	gac Asp	ctc Leu	tac Tyr	cat His 375	ccc Pro	ctt Leu	cct Pro	cgg Arg	tgg Trp 380	gag Glu	gcc Ala	acc Thr	cca Pro	tgg Trp 385	acc Thr	1208
15	gcg Ala	tgc Cys	tcc Ser	tcc Ser 390	tcg Ser	tgt Cys	G1 y	G1 y 999	ggc Gly 395	atc Ile	cag Gln	agc Ser	cgg Arg	gca Ala 400	gtt Val	tcc Ser	1256
	tgt Cys	gtg Val	gag Glu 405	gag Glu	gac Asp	atc Ile	cag Gln	999 Gly 410	cat His	gtc Val	act Thr	tca Ser	gtg Val 415	gaa Glu	gag Glu	tgg Trp	1304
20	aaa Lys	tgc Cys 420	atg Met	tac Tyr	acc Thr	cct Pro	aag Lys 425	atg Met	ccc Pro	atc Ile	gcg Ala	cag Gln 430	ccc Pro	tgc Cys	aac Asn	att Ile	1352
25	ttt Phe 435	gac Asp	tgc Cys	cct Pro	aaa Lys	tgg Trp 440	ctg Leu	gca Ala	cag Gln	gag Glu	tgg Trp 445	tct Ser	ccg Pro	tgc Cys	aca Thr	gtg Val 450	1400
30	acg Thr	tgt Cys	ggc Gly	cag Gln	ggc Gly 455	ctc Leu	aga Arg	tac Tyr	cgt Arg	gtg Val 460	gtc Val	ctc Leu	tgc Cys	atc Ile	gac Asp 465	cat His	1448
35	cga Arg	gga Gly	atg Met	cac His 470	aca Thr	gga Gly	ggc Gly	tgt Cys	agc Ser 475	cca Pro	aaa Lys	aca Thr	aag Lys	ccc Pro 480	cac His	ata Ile	1496
,,	aaa Lys	gag Glu	gaa Glu 485	tgc Cys	atc Ile	gta Val	ccc Pro	act Thr 490	ccc Pro	tgc Cys	tat Tyr	aaa Lys	ccc Pro 495	aaa Lys	gag Glu	aaa Lys	1544
40	ctt Leu	cca Pro 500	gtc Val	gag Glu	gcc Ala	aag Lys	ttg Leu 505	cca Pro	tgg Trp	ttc Phe	aaa Lys	caa Gln 510	gct Ala	caa Gln	gag Glu	cta Leu	1592
45	gaa Glu 515	gaa Glu	gga Gly	gct Ala	gct Ala	gtg Val 520	tca Ser	gag Glu	gag Glu	ccc Pro	tcg Ser 525	taa	gtt Val	_			1634
	aaag	caca	iga c	tgtt	ctat	a tt	tgaa	actt	ttg	ttta	aag	aaag	cagt	gt c	tcac	tggtt	1694
50	gtag	cttt	ca t	999 t	tcte	a ac	taag	tgta	ato	atct	cac	caaa	gctt	tt t	ggct	ctcaa	1754
	atta	aaga	itt g	atta	gttt	c aa	aaaa	aaaa	aaa	aaaa	aga	tgcg	gccg	C			1803
55	<212	> 52 > PR	!5 !T	sapie	ens A	L MA D.	'S-R1									٠	
60	1	Glu	Сув		5	Arg				10					15		
				20		Ser			25					30		_	
65	Asp	Gly	Leu 35	Trp	Asp	Ala	Trp	Gly 40	Pro	Trp	Ser	Glu	Cys 45		Arg	Thr	

```
Cys Gly Gly Gly Ala Ala Asn Ser Leu Arg Arg Cys Leu Ser Ser Lys
                        55
  Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp
5 Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His
                                   90
                  85
  Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser
                              105
            100
  Asn Asp Pro Asp Asn Pro Cys Ser Leu Lys Cys Gln Ala Lys Gly Thr
                                           125
                           120
   115
  Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys
                                          140
                     135
  Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val
                    150
                                      155
15 Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly
                                   170
                165
  Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr
                             185
             180
  Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Ile
                        200 205
       195
   Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His
                        215
                                          220
   Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser
                   230
25 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe
                                   250
                245
   Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu Thr
                               265
             260
   Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser Thr
   275 280
   Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr
           295
   Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr
                                       315
                    310
35 Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn Arg Val Val Ala Asp Gln
                325
                                   330
   Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln
                               345
              340
   Glu Cys Asn Leu Asp Pro Cys Pro Ala Ser Asp Gly Tyr Lys Gln Ile
                                   365
                            360
         355
   Met Pro Tyr Asp Leu Tyr His Pro Leu Pro Arg Trp Glu Ala Thr Pro
                       375
                                          380
   Trp Thr Ala Cys Ser Ser Ser Cys Gly Gly Gly Ile Gln Ser Arg Ala
                                       395
            390
45 Val Ser Cys Val Glu Glu Asp Ile Gln Gly His Val Thr Ser Val Glu
                 405
                                  410
   Glu Trp Lys Cys Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys
                               425
                                                  430
              420
   Asn Ile Phe Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys
                            440
         435
   Thr Val Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile
                                          460
                        455
   Asp His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro
                    470
                                     475
55 His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro Lys
                                    490
                 485
   Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln Ala Gln
                               505
   Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser
         515 520 525
```

<210> 22 65 <211> 518 <212> PRT

	<213	8 > Ho	omo s	sapie	ens A	ADAMI	rs-5									
5)> 22 His		Leu	Gly 5	Leu	Ser	His	Asp	Asp 10	Ser	Lys	Phe	Cys	Glu 15	Glu
	Thr	Phe	Gly	Ser 20	Thr	Glu	Asp	Lys	Arg 25	Leu	Met	Ser	Ser	Ile 30	Leu	Thr
10	Ser	Ile	Asp 35	Ala	Ser	Lys	Pro	Trp 40	Ser	Lys	Cys	Thr	Ser 45	Ala	Thr	Ile
15	Thr	Glu 50	Phe	Leu	Asp	Asp	Gly 55	His	Gly	Asn	Cys	Leu 60	Leu	Asp	Leu	Pro
	Arg 65	Lys	Gln	Ile	Leu	Gly 70	Pro	Glu	Glu	Leu	Pro 75	Gly	Gln	Thr	Tyr	Asp 80
20	Ala	Thr	Gln	Gln	Cys 85	Asn	Leu	Thr	Phe	Gly 90	Pro	Asp	Tyr	Ser	Val 95	Cys
	Pro	Gly	Xaa	Asp 100	Val	Сув	Ala	Arg	Leu 105	Trp	Cys	Ala	Val	Val 110	Arg	Gln
25	Gly	Gln	Met 115	Val	Cys	Leu	Thr	Lys 120	Lys	Leu	Pro	Ala	Val 125	Glu	Gly	Thr
30	Pro	Cys 130	Gly	Lys	Gly	Arg	Ile 135	Cys	Leu	Gln	Gly	Lys 140	Cys	Val	Asp	Lys
	Thr 145	Lys	Lys	Lys	Туг	Tyr 150	Ser	Thr	Ser	Ser	His 155	Gly	Asn	Trp	Gly	Ser 160
35	Trp	Gly	Ser	Trp	Gly 165	Gln	Cys	Ser	Arg	Ser 170	Cys	Gly	Gly	Gly	Val 175	Gln
	Phe	Ala	Tyr	Arg 180	His	Сув	Asn	Asn	Pro 185	Ala	Pro	Arg	Asn	Asn 190	Gly	Arg
40	Tyr	Cys	Thr 195	Gly	Lys	Arg	Ala	Ile 200	Tyr	His	Ser	Cys	Ser 205	Leu	Met	Pro
45	Cys	Pro 210	Pro	Asn	Gly	Lys	Ser 215	Phe	Arg	His	Glu	Gln 220	Сув	Glu	Ala	Lys
	Asn 225	Gly	Tyr	Gln	Ser	Asp 230	Ala	Lys	Gly	Val	Lys 235	Thr	Phe	Val	Glu	Trp 240
50	Val	Pro	Lys	Tyr	Ala 245	Gly	Val	Leu	Pro	Ala 250	Asp	Val	Сув	Lys	Leu 255	Thr
	Cys	Arg	Ala	Lys 260	Gly	Thr	Gly	Tyr	Tyr 265	Val	Val	Phe	Ser	Pro 270	Lys	Val
55	Thr	Asp	Gly 275	Thr	Glu	Cys	Arg	Pro 280	Tyr	Ser	Asn	Ser	Val 285	Cys	Val	Arg
60	Gly	Lys 290	Cys	Val	Arg	Thr	Gly 295	Сув	Asp	Gly	Ile	Ile 300	Gly	Ser	Lys	Leu
	Gln 305	Tyr	Asp	Lys	Сув	Gly 310		Сув	Gly	Gly	Asp 315	Asn	Ser	Ser	Cys	Thr

Lys Ile Val Gly Thr Phe Asn Lys Lys Ser Lys Gly Tyr Thr Asp Val 325 330 335

1.00

	Val	Arg	Ile	Pro 340	Glu	Gly	Ala	Thr	His 345	Ile	Lys	Val	Àrg	Gln 350	Phe	Lys	
5	Ala	Lys	Asp 355	Gln	Thr	Arg	Phe	Thr 360	Ala	Tyr	Leu	Ala	Leu 365	Lys	Lys	Lys	
	Asn	Gly 370	Glu	Tyr	Leu	Ile	Asn 375	Gly	Lys	Tyr	Met	Ile 380	Ser	Thr	Ser	Glu	
10	Thr 385	Ile	Ile	Asp	Ile	Asn 390	Gly	Thr	Val	Met	Asn 395	Tyr	Ser	Gly	Trp	Ser 400	.,
	His	Arg	Asp	Asp	Phe 405	Leu	His	Gly	Met	Gly 410	Tyr	Ser	Ala	Thr	Lys 415	Glu	
15	Ile	Leu	Ile	Val 420	Gln	Ile	Leu	Ala	Thr 425	Asp	Pro	Thr	Lys	Pro 430	Leu	Asp	
20	Val	Arg	Tyr 435	Ser	Phe	Phe	Val	Pro 440	Lys	Lys	Ser	Thr	Pro 445	Lys	Val	Asn	
	Ser	Val 450	Thr	Ser	His	Gly	Ser 455	Asn	Lys	Val	Gly	Ser 460	His	Thr	Ser	Gln	
25	Pro 465	Gln	Trp	Val	Thr	Gly 470	Pro	Trp	Leu	Ala	Cys 475	Ser	Arg	Thr	Cys	Asp 480	
2.0	Thr	Gly	Trp	His	Thr 485	Arg	Thr	Val	Gln	Cys 490	Gln	Asp	Gly	Asn	Arg 495	Lys	
30	Leu	Ala	Lys	Gly 500	Cys	Pro	Leu	Ser	Gln 505	Arg	Pro	Ser	Ala	Phe 510	Lys	Gln	
35	Сув	Leu	Leu 515	Lys	Lys	Сув											
40	<213	0 > 2: 1 > 34 2 > DI 3 > Ho	409 NA	sapi	ens i	ADAM'	TS-10	0									
45		1 > C		. (32	40)					•							
50		0> 2: cgca		cttc	cggt	ct c	aag a	atg Met 1	agt Ser	tcc Ser	tgt Cys	cca q Pro '	gtc : Val '	tgg a Trp a	aga Arg	gct Ala	51
	atg Met 10	aga Arg	tcg Ser	cct Pro	tcc Ser	cca Pro 15	ccc Pro	gcg Ala	tgg Trp	acc Thr	aca Thr 20	acg Thr	G1y 999	cac His	tgc Cys	tgg Trp 25	99
55	cct Pro	tct Ser	cgc Arg	cac	ctc Leu 30	ctc Leu	ccc Pro	gga Gly	gca Ala	gcg Ala 35	Pro	cgg Arg	cac His	61 y 999	ggc Gly 40	cac His	147
60	agc Ser	cga Arg	gtc Val	ccg Pro 45	Pro	ctt Leu	cta Leu	caa Gln	agt Ser 50	Gly	ctc Leu	gcc Ala	agc Ser	acc Thr 55	cac His	ttc Phe	1,95
65	ctg Leu	ctg Leu	aac Asn 60	Leu	acc Thr	cgc	agc Ser	tcc Ser 65	Arg	cta Leu	ctg Leu	gca Ala	999 Gly 70	cgc Arg	gtc Val	tcc Ser	243

. 5	gtg Val	gag Glu 75	tac Tyr	tgg Trp	aca Thr	cgg Arg	gag Glu 80	ggc Gly	ctg Leu	gcc Ala	tgg Trp	cag Gln 85	agg Arg	gcg Ala	gcc Ala	cgg Arg	291
. 2	ccc Pro 90	cac His	tgc Cys	ctc Leu	tac Tyr	gct Ala 95	ggt Gly	cac His	ctg Leu	cag Gln	ggc Gly 100	cag Gln	gcc Ala	agc Ser	agc Ser	tcc Ser 105	339
10	cat His	gtg Val	gcc Ala	atc Ile	agc Ser 110	acc Thr	tgt Cys	gga Gly	ggc Gly	ctg Leu 115	cac His	ggc	ctg Leu	atc Ile	gtg Val 120	gca Ala	387
15	gac Asp	gag Glu	gaa Glu	gag Glu 125	tac Tyr	ctg Leu	att Ile	gag Glu	ccc Pro 130	ctg Leu	cac His	ggt Gly	G1 y 999	ccc Pro 135	aag Lys	ggt Gly	435
20	tct Ser	cgg Arg	agc Ser 140	ccg Pro	gag Glu	gaa Glu	agt Ser	gga Gly 145	cca Pro	cat His	gtg Val	gtg Val	tac Tyr 150	aag Lys	cgt Arg	tcc Ser	483
25	tct Ser	ctg Leu 155	cgt Arg	cac His	ccc Pro	cac His	ctg Leu 160	gac Asp	aca Thr	gcc Ala	tgt Cys	gga Gly 165	gtg Val	aga Arg	gat Asp	gag Glu	531
						cgg Arg 175											579
30	cct Pro	gcc Ala	aga Arg	ccc Pro	ctg Leu 190	G1y 999	aat Asn	gaa Glu	aca Thr	gag Glu 195	cgt Arg	ggc Gly	cag Gln	cca Pro	ggc Gly 200	ctg Leu	627
35	aag Lys	cga Arg	tcg Ser	gtc Val 205	agc Ser	cga Arg	gag Glu	cgc Arg	tac Tyr 210	gtg Val	gag Glu	acc Thr	ctg Leu	gtg Val 215	gtg Val	gct Ala	675
40	gac Asp	aag Lys	atg Met 220	atg Met	gtg Val	gcc Ala	tat Tyr	cac His 225	Gly 999	cgc Arg	cgg Arg	gat Asp	gtg Val 230	gag Glu	cag Gln	tat Tyr	723
45	gtc Val	ctg Leu 235	gcc Ala	atc Ile	atg Met	aac Asn	att Ile 240	gtt Val	gcc Ala	aaa Lys	ctt Leu	ttc Phe 245	cag Gln	gac Asp	tcg Ser	agt Ser	771
	Leu 250	Gly	Ser	Thr	Val	aac Asn 255	Ile	Leu	Val	Thr	Arg 260	Leu	Ile	Leū	Leu	Thr 265	819
50	gag Glu	gac Asp	cag Gln	ccc Pro	act Thr 270	ctg Leu	gag Glu	atc Ile	acc Thr	cac His 275	cat His	gcc Ala	G1 y 999	aag Lys	tcc Ser 280	cta Leu	867
55	gac Asp	agc Ser	ttc Phe	tgt Cys 285	aag Lys	tgg Trp	cag Gln	aaa Lys	tcc Ser 290	atc Ile	gtg Val	aac Asn	cac His	agc Ser 295	ggc Gly	cat His	915
60	ggc Gly	aat Asn	gcc Ala 300	att Ile	cca Pro	gag Glu	aac Asn	ggt Gly 305	gtg Val	gct Ala	aac Asn	cat His	gac Asp 310	aca Thr	gca Ala	gtg Val	963
65	ctc Leu	atc Ile 315	aca Thr	cgc Arg	tat Tyr	gac Asp	atc Ile 320	tgc Cys	atc Ile	tac Tyr	aag Lys	aac Asn 325	aaa Lys	ccc Pro	tgc Cys	ggc Gly	1011
	aca	cta	ggc	ctg	gcc	cgg	tgg	gcg	gaa	tgt	gtg	agc	gcg	aga	gaa	gct	1059

	Thr 330	Leu	Gly	Leu	Ala	Arg 335	Trp	Ala	Glu	Cys	Val 340	Ser	Ala	Arg	Glu	Ala 345	
5	gca Ala	gcg Ala	tca Ser	atg Met	agg Arg 350	aca Thr	ttg Leu	gct Ala	gcc Ala	aca Thr 355	agc Ser	gtt Val	cac His	cat His	tgc Cys 360	cac His	1107
10	gag Glu	atc Ile	999 Gly	cac His 365	aca Thr	ttc Phe	ggc Gly	atg Met	aac Asn 370	cat His	gac Asp	ggc	gtg Val	gga Gly 375	aac Asn	agc Ser	1155
15	tgt Cys	999 Gly	gcc Ala 380	cgt Arg	ggt Gly	cag Gln	gac Asp	cca Pro 385	gcc Ala	aag Lys	ctc Leu	atg Met	gct Ala 390	gcc Ala	cac His	att Ile	1203
15	acc Thr	atg Met 395	aag .Lys	acc Thr	aac Asn	cca Pro	ttc Phe 400	gtg Val	tgg Trp	tca Ser	tcc Ser	tgc Cys 405	aac Asn	cgt Arg	gac Asp	tac Tyr	1251
20	atc Ile 410	acc Thr	agc Ser	ttt Phe	cta Leu	gac Asp 415	tcg Ser	ggc Gly	ctg Leu	999 Gly	ctc Leu 420	tgc Cys	ctg Leu	aac Asn	aac Asn	cgg Arg 425	1299
25	ccc Pro	ccc Pro	aga Arg	cag Gln	gac Asp 430	ttt Phe	gtg Val	tac Tyr	ccg Pro	aca Thr 435	gtg Val	gca Ala	ccg Pro	ggc Gly	caa Gln 440	gcc Ala	1347
30	tac Tyr	gat Asp	gca Ala	gat Asp 445	gag Glu	caa Gln	tgc Cys	cgc Arg	ttt Phe 450	cag Gln	cat His	gga Gly	gtc Val	aaa Lys 455	tcg Ser	cgt Arg	1395
	Gln	tgt Cys	aaa Lys 460	tac Tyr	g1y	gag Glu	gtc Val	tgc Cys 465	agc Ser	gag Glu	ctg Leu	tgg Trp	tgt Cys 470	ctg Leu	agc Ser	aag Lys	1443
35	agc	aac Asn 475	Arg	tgc Cys	atc Ile	acc Thr	aac Asn 480	agc Ser	atc Ile	ccg Pro	gcc Ala	gcc Ala 485	gag Glu	ggc Gly	acg Thr	ctg Leu	1491
40	tgc Cys 490	cag Gln	acg Thr	cac His	acc Thr	atc Ile 495	gac Asp	aag Lys	999 999	tgg Trp	tgc Cys 500	tac Tyr	aaa Lys	cgg Arg	gtc Val	tgt Cys 505	1539
45	gtc Val	ccc Pro	ttt Phe	G1 y 999	tcg Ser 510	Arg	Pro	Glu	Gly	gtg Val 515	Asp	gga Gly	gcc Ala	tgg Trp	999 Gly 520	ccg Pro	1587
50	Trp	act Thr	cca Pro	tgg Trp 525	ggc Gly	gac Asp	tgc Cys	agc Ser	cgg Arg 530	Thr	tgt Cys	ggc Gly	ggc Gly	99c Gly 535	gtg Val	tcc Ser	1635
	Ser	tct Ser	agt Ser 540	Arg	cac His	tgc Cys	gac Asp	ago Ser 545	Pro	agg Arg	cca Pro	acc Thr	atc Ile 550	Gly	ggc Gly	aag Lys	1683
55	tac	tgt Cys 555	Leu	ggt Gly	gag Glu	aga Arg	agg Arg 560	Arg	Cac	cgc Arg	t c c Ser	tgc Cys 565	Asn	acg Thr	gat Asp	gac Asp	1731
60	tgt Cys 570	Pro	cct Pro	ggc Gly	tcc Ser	cag Gln 575	Asp	tto Phe	aga Arg	gaa Glu	gtg Val 580	cag Gln	tgt Cys	tct Ser	gaa Glu	ttt Phe 585	1779
65	gac Asp	ago Ser	ato [11e	cct Pro	ttc Phe 590	Arg	ggg Gly	aaa Lys	tto Phe	tac Tyr 595	Lys	tgg Trp	aaa Lys	acg Thr	tac Tyr 600	cgg	1827

5													gcg Ala				1875
,													630 G1y 999				1923
10													tgc Cys				1971
15													gac Asp				2019
20													gag Glu				2067
25	_										_	_	gtc Val				2115
													ctc Leu 710				2163
30													ctg Leu				2211
35													999 Gly				2259
40	caa Gln	ctg Leu	cga Arg	cag Gln	999 Gly 750	cca Pro	gac Asp	cag Gln	gtc Val	cag Gln 755	agc Ser	ctc Leu	gaa Glu	gcc Ala	ctg Leu 760	gga Gly	2307
45													cgg Arg				2355
	cct Pro	gcc Ala	ctc Leu 780	cgc Arg	tac Tyr	cgc Arg	ttc Phe	aat Asn 785	gcc Ala	ccc Pro	atc Ile	gcc Ala	cgt Arg 790	gac Asp	tcg Ser	ctg Leu	2403
50	ccc Pro	ccc Pro 795	tac Tyr	tcc Ser	tgg Trp	cac His	tat Tyr 800	gcg Ala	ccc Pro	tgg Trp	acc Thr	aag Lys 805	tgc Cys	tcg Ser	gcc Ala	cag Gln	2451
55													cgc Arg				2499
60	gac Asp	agc Ser	tcc Ser	gcg Ala	gtc Val 830	gcc Ala	ccc Pro	cac His	tac Tyr	tgc Cys 835	agt Ser	gcc Ala	cac His	agc Ser	aag Lys 840	ctg Leu	2547
65	ccc Pro	aaa Lys	agg Arg	cag Gln 845	cgc Arg	gcc Ala	tgc Cys	aac Asn	acg Thr 850	gag Glu	cct Pro	tgc Cys	cct Pro	cca Pro 855	gac Asp	tgg Trp	2595
	gtt	gta	999	aac	tgg	tcg	ctc	tgc	agc	cgc	agc	tgc	gat	gca	ggc	gtg	2643

	Val	Val	Gly 860	Asn	Trp	Ser	Leu	Cys 865	Ser	Arg	Ser	Суѕ	Asp 870	Ala	Gly	Val	
5	cgc Arg	agt Ser 875	cgc Arg	tcg Ser	gtc Val	gtg Val	tgc Cys 880	cag Gln	cgc Arg	cgc Arg	gtc Val	tct Ser 885	gcc Ala	gcg Ala	gag Glu	gag Glu	2691
10	aag Lys 890	gcg Ala	ctg Leu	gac Asp	gac Asp	agc Ser 895	gca Ala	tgc Cys	ccg Pro	cag Gln	ccg Pro 900	cgc Arg	cca Pro	cct Pro	gta Val	ctg Leu 905	2739
	gag Glu	gcc Ala	tgc Cys	cac His	ggc Gly 910	ccc Pro	act Thr	tgc Cys	cct Pro	ccg Pro 915	gag Glu	tgg Trp	gcg Ala	gcc Ala	ctc Leu 920	gac Asp	2787
15	tgg Trp	tct Ser	gag Glu	tgc Cys 925	acc Thr	ccc Pro	agc Ser	tgc Cys	930 939	ccg Pro	ggc Gly	ctc Leu	cgc Arg	cac His 935	cgc Arg	gtg Val	2835
20	gtc Val	ctt Leu	tgc Cys 940	aag Lys	agc Ser	gca Ala	gac Asp	cac His 945	cgc Arg	gcc Ala	acg Thr	ctg Leu	ccc Pro 950	ccg Pro	gcg Ala	cac His	2883
25	tgc Cys	tca Ser 955	ccc Pro	gcc Ala	gcc Ala	aag Lys	cca Pro 960	ccg Pro	gcc Ala	acc Thr	atg Met	cgc Arg 965	tgc Cys	aac Asn	ttg Leu	cgc Arg	2931
30	cgc Arg 970	tgc Cys	ccc Pro	ccg Pro	gcc Ala	cgc Arg 975	tgg Trp	gtg Val	gct Ala	ggc	gag Glu 980	tgg Trp	ggt Gly	gag Glu	tgc Cys	tct Ser 985	2979
2.5	gca Ala	cag Gln	tgc Cys	ggc Gly	gtc Val 990	GJ Y 999	cag Gln	cgg Arg	cag Gln	cgc Arg 995	tcg Ser	gtg Val	cgc Arg	Cys	acc Thr 1000	agc Ser	3027
35	cac His	acg Thr	ggc	cag Gln 1005	Ala	tcg Ser	cac His	Glu	tgc Cys 1010	Thr	gag Glu	gcc Ala	ctg Leu	cgg Arg 1015	ccg Pro	ccc Pro	3075
40	acc Thr	acg Thr	cag Gln 1020	Gln	tgt Cys	gag Glu	Ala	aag Lys 1025	Cys	gac Asp	agc Ser	Pro	acc Thr 1030	Pro	ggg Gly	gac Asp	3123
45	Gly	cct Pro	Glu	gag Glu	tgo Cys	aag Lys	gat Asp 1040	Val	aac Asn	aag Lys	gtc Val	gcc Ala 1045	Tyr	tgc Cys	ccc Pro	ctg Leu	3171
50	gtg Val	Leu	aaa Lys	ttt Phe	cag Glr	ttc Phe 1055	Cys	ago Ser	cga Arg	gcc Ala	tac Tyr 1060	Phe	cgc Arg	cag Gln	atg Met	tgc Cys 1065	3219
	Cys	aaa Lys	a acc	tgo Cyr	caç Glr 1070	Gly	cac His	tag	19999	gege	gcgg	gcacc	cg g	agcc	acaç	ıc	3270
55	tgg															19999c9	
							gace	gago	c gg	gaagt	tatt	tat	tggg	jaac	ccct	gcaggg	3390 3409
60) ccc	tgg	etgg	9999	gatg	ја											3403
6	<23 5 <23	12>	1072	sap	iens	ADAI	MTS'-	10	• .		,				÷		

		0 > 2														
5	Met 1	Ser	Ser	Cys	Pro 5	Val	Trp	Arg	Ala	Met 10	Arg	Ser	Pro	Ser	Pro 15	Pro
	Ala	Trp	Thr	Thr 20	Thr	Gly	His	Cys	Trp 25	Pro	Ser	Arg	His	Leu 30	Leu	Pro
10	Gly	Ala	Ala 35	Pro	Arg	His	Gly	Gly 40	His	Ser	Arg	Val	Pro 45	Pro	Leu	Leu
	Gln	Ser 50	Gly	Leu	Ala	Ser	Thr 55	His	Phe	Leu	Leu	Asn 60	Leu	Thr	Arg	Ser
15	Ser 65	Arg	Leu	Leu	Ala	Gly 70	Arg	Val	Ser	Val	Glu 7 5	Tyr	Trp	Thr	Arg	Glu 80
20	Gly	Leu	Ala	Trp	Gln 85	Arg	Ala	Ala	Arg	Pro 90	His	Cys	Leu	Tyr	Ala 95	Gly
	His	Leu	Gln	Gly 100	Gln	Ala	Ser	Ser	Ser 105	His	Val	Ala	Ile	Ser 110	Thr	Сув
25	Gly	Gly	Leu 115	His	Gly	Leu	Ile	Val 120	Ala	Asp	Glu	Glu	Glu 125	Туr	Leu	Ile
	Glu	Pro 130	Leu	His	Gly	Gly	Pro 135	Lys	Gly	Ser	Arg	Ser 140	Pro	Glu	Glu	Ser
30	Gly 145	Pro	His	Val	Val	Tyr 150	Lys	Arg	Ser	Ser	Leu 155	Arg	His	Pro	His	Leu 160
35	Asp	Thr	Ala	Cys	Gly 165	Val	Arg	Asp	Glu	Lys 170	Pro	Trp	Lys	Gly	Arg 175	Pro
	Trp	Trp	Leu	Arg 180	Thr	Leu	Lys	Pro	Pro 185	Pro	Ala	Arg	Pro	Leu 190	Gly	Asn
40	Glu	Thr	Glu 195	Arg	Gly	Gln	Pro	Gly 200	Leu	Lys	Arg	Ser	Val 205	Ser	Arg	Glu
	Arg	Tyr 210	Val	Glu	Thr	Leu	Val 215	Val	Ala	Asp	Lys	Met 220	Met	Val	Ala	Tyr
45	His 225	Gly	Arg	Arg	Asp	Val 230	Glu	Gln	Tyr	Val	Leu 235	Ala	Ile	Met	Asn	Ile 240
50	Val	Ala	Lys	Leu	Phe 245	Gln	Asp	Ser	Ser	Leu 250	Gly	Ser	Thr	Val	Asn 255	Ile
	Leu	Val	Thr	Arg 260	Leu	Ile	Leu	Leu	Thr 265	Glu	Asp	Gln	Pro	Thr 270	Leu	Glu
55	Ile	Thr	His 275	His	Ala	Gly	Lys	Ser 280	Leu	Asp	Ser	Phe	Сув 285	Lys	Trp	Gln
	Lys	Ser 290	Ile	Val	Asn	His	Ser 295	Gly	His	Gly	Asn	Ala 300	Ile	Pro	Glu	Asn
60	Gly 305	Val	Ala	Asn	His	Asp 310	Thr	Ala	Val	Leu	Ile 315	Thr	Arg	Tyr	Asp	11e 320
65	Cys	Ile	Tyr	Lys	Asn 325	Lys	Pro	Суѕ	Gly	Thr 330	Leu	Gly	Leu	Ala	Arg 335	Trp
	Ala	Glu	Cys	Val	Ser	Ala	Arg	Glu	Ala	Ala	Ala	Ser	Met	Arg	Thr	Leu

				340					345					350		
_	Ala	Ala	Thr 355	Ser	Val	His	His	Cys 360	His	Glu	Ile	Gly	His 365	Thr	Phe	Gly
5	Met	Asn 370	His	Asp	Gly	Val	Gly 375	Asn	Ser	Cys	Gly	Ala 380	Arg	Gly	Gln	Asp.
10	Pro 385	Ala	Lys	Leu	Met	Ala 390	Ala	His	Ile	Thr	Met 395	Lys	Thr	Asn	Pro	Phe 400
	Val	Trp	Ser	Ser	Cys 405	Asn	Arg	Asp	Tyr	Ile 410	Thr	Ser	Phe	Leu	Asp. 415	Ser
15	Gly	Leu	Gly	Leu 420	Cys	Leu	Asn	Asn	Arg 425	Pro	Pro	Arg	Gln	Asp 430	Phe	Val
20	Tyr	Pro	Thr 435	Val	Ala	Pro	Gly	Ġln 440	Ala	Tyr	Asp	Ala	Asp 445	Glu	Gln	Cys
	Arg	Phe 450	Gln	His	Gly	Val	Lys 455	Ser	Arg	Gln	Ċys	Lys 460	Tyr	Gly	Glu	Val
25	Cys 465	Ser	Glu	Leu	Trp	Cys 470	Leu	Ser	Lys	Ser	Asn 475	Arg	Cys	Ile	Thr	Asn 480
	Ser	Ile	Pro	Ala	Ala 485	Glu	Gly	Thr	Leu	Cys 490	Gln	Thr	His	Thr	Ile 495	Asp
30	Lys	Gly	Trp	Сув 500	Tyr	Lys	Arg	Val	Cys 505		Pro	Phe	Gly	Ser 510	Arg	Pro
35			515					520					525	Gly		
	Ser	Arg 530	Thr	Cys	Gly	Gly	Gly 535	Val	Ser	Ser	Ser	Ser 540	Arg	His	Cys	Asp
40	545		_			550					555			Glu		560
					565					570				Ser	575	
45				580					585					Phe 590		
50			595					600					605			Сув
		610					615					620				Ala
55	625					630					635					11e 640
	_				645					650					655	Gly
60				660	1				665					670		Ser
65	ı	_	675	i				680	1				685			Ala
	Gly	Туг	Glu	Asp	Val	Val	Trp	Ile	Pro	Lys	Gly	Ser	Val	His	Ile	Phe

		690					695					700				
5	Ile 705	Gln	Asp	Leu	Asn	Leu 710	Ser	Leu	Ser	His	Leu 715		Leu	Lys	Gly	Asp 720
,	Gln	Glu	Ser	Leu	Leu 725	Leu	Glu	Gly	Leu	Pro 730	Gly	Thr	Pro	Gln	Pro 735	His
10	Arg	Leu	Pro	<u>Leu</u> 740	Ala	Gly	Thr	Thr	Phe 745	Gln	Leu	Arg	Gln	Gly 750	Pro	Asp
	Gln	Val	Gln 755	Ser	Leu	Glu	Ala	Leu 760	Gly	Pro	Ile		Ala 765	Ser	Leu	Ile
15	Val	Met 770	Val	Leu	Ala	Arg	Thr 775	Glu	Leu	Pro	Ala	Leu 780	Arg	Tyr	Arg	Phe
20	Asn 785	Ala	Pro	Ile	Ala	Arg 790	Asp	Ser	Leu	Pro	Pro 795	Tyr	Ser	Trp	His	Tyr 800
	Ala	Pro	Trp	Thr	Lys 805	Cys	Ser	Ala	Gln	Cys 810	Ala	Gly	Gly	Ser	Gln 815	Val
25	Gln	Ala	Val	Glu 820	Cys	Arg	Asn	Gln	Leu 825	Asp	Ser	Ser	Ala	Val 830	Ala	Pro
	His	Tyr	Cys 835	Ser	Ala	His	Ser	Lys 840	Leu	Pro	Lys	Arg	Gln 845	Arg	Ala	Cys
30	Asn	Thr 850	Glu	Pro	Cys	Pro	Pro 855	Asp	Trp	Val	Val	Gly 860	Asn	Trp	Ser	Leu
35	Cys 865	Ser	Arg	Ser	Cys	Asp 870	Ala	Gly	Val	Arg	Ser 875	Arg	Ser	Val	Val	880 880
					885				÷	890			_	_	Ser 895	
40				900					905					910	Pro	
			915					920	•		•		925		Pro	
45		930					935					940			Ala	
50	945					950					955				Lys	960
					965					970					Arg 975	_
55				980					985					990	Gly	
			995				1	.000				1	.005		Ser	
60	1	010				3	.015]	L020		_	Glu	
65	1025	i			1	.030				1	.035					040
	Val	Asn	Lys	Val	Ala	Tyr	Сув	Pro	Leu	Val	Leu	Lvs	Phe	Gln	Phe	Cve

1055

1045

1050

Ser Arg Ala Tyr Phe Arg Gln Met Cys Cys Lys Thr Cys Gln Gly His 1065 <210> 25 <211> 5990 10 <212> DNA <213> Homo sapiens ADAMTS-9b <220> <221> CDS 15 <222> (33)..(5834) <400> 25 tgggggcagc ggagggaggg gtgggaagca cc atg cag ttt gta tcc tgg gcc Met Gln Phe Val Ser Trp Ala aca ctg cta acg ctc ctg gtg cgg gac ctg gcc gag atg ggg agc cca Thr Leu Leu Thr Leu Leu Val Arg Asp Leu Ala Glu Met Gly Ser Pro 15 gac gcc gcg gcg gcc gtg cgc aag gac agg ctg cac ccg agg caa gtg 149 Asp Ala Ala Ala Val Arg Lys Asp Arg Leu His Pro Arg Gln Val 30 aaa tta tta gag acc ctg agc gaa tac gaa atc gtg tct ccc atc cga Lys Leu Leu Glu Thr Leu Ser Glu Tyr Glu Ile Val Ser Pro Ile Arg gtg aac gct ctc gga gaa ccc ttt ccc acg aac gtc cac ttc aaa aga 35 Val Asn Ala Leu Gly Glu Pro Phe Pro Thr Asn Val His Phe Lys Arg 65 60 acg cga cgg agc att aac tot goo act gac coc tgg cot goo tto goo 293 Thr Arg Arg Ser Ile Asn Ser Ala Thr Asp Pro Trp Pro Ala Phe Ala tee tee tee tee tee tee tee cee cag geg cat tae ege ete tet 341 Ser Ser Ser Ser Ser Thr Ser Pro Gln Ala His Tyr Arg Leu Ser 100 95 45 389 gcc ttc ggc cag cag ttt cta ttt aat ctc acc gcc aat gcc gga ttt Ala Phe Gly Gln Gln Phe Leu Phe Asn Leu Thr Ala Asn Ala Gly Phe 110 50 atc get cca ctg ttc act gtc acc ctc ctc ggg acg ccc ggg gtg aat 437 Ile Ala Pro Leu Phe Thr Val Thr Leu Leu Gly Thr Pro Gly Val Asn 130 cag acc aag ttt tat tcc gaa gag gaa gcg gaa ctc aag cac tgt ttc 55 Gln Thr Lys Phe Tyr Ser Glu Glu Glu Ala Glu Leu Lys His Cys Phe 145 140 tac aaa ggc tat gtc aat acc aac tcc gag cac acg gcc gtc atc agc 533 Tyr Lys Gly Tyr Val Asn Thr Asn Ser Glu His Thr Ala Val Ile Ser 60 160 165 ctc tgc tca gga atg ctg ggc aca ttc cgg tct cat gat ggg ggt tat 581 Leu Cys Ser Gly Met Leu Gly Thr Phe Arg Ser His Asp Gly Gly Tyr 629 ttt att gaa cca cta cag tct atg gat gaa caa gaa gat gaa gag gaa

WO 01/011074 PCT/US00/21223

	Phe	Ile 185	Glu	Pro	Leu	Gln	Ser 190	Met	Asp	Glu	Gln	Glu 195	Asp	Glu	Glu	Glu	
5						atc Ile 205											677
10						cat His											725
						aag Lys											773
15						gac Asp											821
20	gag Glu	gca Ala 265	ttt Phe	tct Ser	gct Ala	tat Tyr	ggt Gly 270	aat Asn	aag Lys	acg Thr	gac Asp	aac Asn 275	aca Thr	aga Arg	gaa Glu	aag Lys	869
25	agg Arg 280	acc Thr	cac His	aga Arg	agg Arg	aca Thr 285	aaa Lys	cgt Arg	ttt Phe	tta Leu	tcc Ser 290	tat Tyr	cca Pro	cgg Arg	ttt Phe	gta Val 295	917
30	gaa Glu	gtc Val	ttg Leu	gtg Val	gtg Val 300	gca Ala	gac Asp	aac Asn	aga Arg	atg Met 305	Val	tca Ser	tac Tyr	cat His	gga Gly 310	gaa Glu	965
25						att Ile											1013
35						att Ile											1061
40						aat Asn	_		_								1109
45						aaa Lys 365											1157
50						cat His											1205
rr						gac Asp											1253
55				_	_	ccc Pro		_	-	_			_	_	_	-	1301
60						ttt Phe											1349
65		Met				gac Asp 445	Asn										1397

_	agt Ser	ccc Pro	cag Gln	cat His	gtc Val 460	atg Met	gct Ala	cca Pro	aca Thr	ctg Leu 465	aac Asn	ttc Phe	tac Tyr	acc Thr	aac Asn 470	ccc Pro	1445
5	tgg Trp	atg Met	tgg Trp	tca Ser 475	aag Lys	tgt Cys	agt Ser	cga Arg	aaa Lys 480	tat Tyr	atc Ile	act Thr	gag Glu	ttt Phe 485	tta Leu	gac '	1493
10	act Thr	ggt Gly	tat Tyr 490	ggc Gly	gag Glu	tgt Cys	ttg Leu	ctt Leu 495	aac Asn	gaa Glu	cct Pro	gaa Glu	tcc Ser 500	aga Arg	ccc Pro	tac Tyr	1541
15	cct Pro	ttg Leu 505	cct Pro	gtc Val	caa Gln	ctg Leu	cca Pro 510	ggc	atc Ile	ctt Leu	tac Tyr	aac Asn 515	gtg Val	aat Asn	aaa Lys	caa Gln	1589
20	tgt Cys 520	gaa Glu	ttg Leu	att Ile	ttt Phe	gga Gly 525	cca Pro	ggt Gly	tct Ser	cag Gln	gtg Val 530	tgc Cys	cca Pro	tat Tyr	atg Met	atg Met 535	1637
25	cag Gln	tgc Cys	aga Arg	cgg Arg	ctc Leu 540	tgg Trp	tcg Ser	aat Asn	aac Asn	gtc Val 545	aat Asn	gga Gly	gta Val	cac His	aaa Lys 550	ggc	1685
	Суѕ	Arg	Thr	Gln 555	His	Thr	Pro	Trp	Ala 560	Asp	Gly	Thr	Glu	Cys 565	gag Glu	Pro	1733
30	Gly	Lys	His 570	Cys	Lys	Tyr	Gly	Phe 575	Cys	Val	Pro	Lys	Glu 580	Met	gat Asp	Val	1781
35	Pro	Val 585	Thr	Asp	Gly	Ser	Trp 590	Gly	Ser	Trp	Ser	Pro 595	Phe	Gly	acc Thr	Сув	1829
40	tcc Ser 600	aga Arg	aca Thr	tgt Cys	gga Gly	605 999	ggc Gly	atc Ile	aaa Lys	aca Thr	gcc Ala 610	att Ile	cga Arg	gag Glu	tgc Cys	aac Asn 615	1877
45	Arg	Pro	Glu	Pro	Lys 620	Asn	Gly	Gly	Lys	Tyr 625	Cys	Val	Gly	Arg	aga Arg 630	Met	1925
	Lys	Phe	Lys	Ser 635	Cys	Asn	Thr	Glu	Pro 640	Cys	Leu	Lys	Gln	Lys 645	cga Arg	Asp	1973
50	Phe	Arg	Asp 650	Glu	Gln	Cys	Ala	His 655	Phe	Asp	Gly	Lys	His 660	Phe	aac Asn	Ile	2021
55	Asn	Gly 665	Leu	Leu	Pro	Asn	Val 670	Arg	Trp	val	Pro	Lys 675	Tyr	Ser	gga Gly	Ile	2069
60	Leu 680	Met	Lys	Asp	Arg	Сув 685	Lys	Leu	Phe	Cys	Arg 690	Val	Ala	Gly	aac Asn	Thr 695	2117
65	Ala	tac Tyr	tat Tyr	cag Gln	teu 700	Arg	gac	aga Arg	gtg Val	ata Ile 705	Asp	gga Gly	act Thr	cct Pro	tgt Cys 710	ggc Gly	2165
		gad	aca	aat	gat	· atc	tgt	gto	cag	990	ctt	tgo	cgg	caa	gct	gga	2213

	Gln	Asp	Thr	Asn 715	Asp	Ile	Cys	Val	Gln 720	Gly	Leu	Cys	Arg	Gln 725	Ala	Gly	
. 5	tgc Cys	gat Asp	cat His 730	gtt Val	tta Leu	aac Asn	tca Ser	aaa Lys 735	gcc Ala	cgg Arg	aga Arg	gat Asp	aaa Lys 740	tgc Cys	999 Gly	gtt Val	2261
10	tgt Cys	ggt Gly 745	ggc Gly	gat Asp	aat Asn	tct Ser	tca Ser 750	tgc Cys	aaa Lys	aca Thr	gtg Val	gca Ala 755	gga Gly	aca Thr	ttt Phe	aat Asn	2309
15	aca Thr 760	gta Val	cat His	tat Tyr	ggt Gly	tac Tyr 765	aat Asn	act Thr	gtg Val	gtc Val	cga Arg 770	att Ile	cca Pro	gct Ala	ggt Gly	gct Ala 775	2357
		aat Asn															2405
20		aac Asn															2453
25		aac Asn															2501
30	gct Ala	gtg Val 825	gta Val	gag Glu	tac Tyr	agt Ser	999 Gly 830	tcc Ser	gag Glu	act Thr	gcc Ala	gta Val 835	gaa Glu	aga Arg	att Ile	aac Asn	2549
35		aca Thr															2597
		aag Lys															2645
40	gaa Glu	gat Asp	aaa Lys	cct Pro 875	cag Gln	cag Gln	ttt Phe	tac Tyr	tgg Trp 880	aac Asn	agt Ser	cat His	G1 y 999	cca Pro 885	tgg Trp	caa Gln	2693
45	gca Ala	tgc Cys	agt Ser 890	aaa Lys	ccc Pro	tgc Cys	caa Gln	999 Gly 895	gaa Glu	cgg Arg	aaa Lys	cga Arg	aaa Lys 900	ctt Leu	gtt Val	tgc Cys	2741
50	acc Thr	agg Arg 905	gaa Glu	tct Ser	gat Asp	cag Gln	ctt Leu 910	act Thr	gtt Val	tct Ser	gat Asp	caa Gln 915	aga Arg	tgc Cys	gat Asp	cgg Arg	2789
55	ctg Leu 920	ccc Pro	cag Gln	cct Pro	gga Gly	cac His 925	att Ile	act Thr	gaa Glu	ccc Pro	tgt Cys 930	ggt Gly	aca Thr	ggc Gly	tgt Cys	gac Asp 935	2837
	ctg Leu	agg Arg	tgg Trp	cat His	gtt Val 940	gcc Ala	agc Ser	agg Arg	agt Ser	gaa Glu 945	tgt Cys	agt Ser	gcc Ala	cag Gln	tgt Cys 950	ggc Gly	2885
60		ggt Gly															2933
65	gat Asp	ggg Gly	aag Lys 970	act Thr	gag Glu	aag Lys	gtt Val	gat Asp 975	gat Asp	ggt Gly	ttt Phe	tgc Cys	agc Ser 980	agc Ser	cat His	ccc Pro	2981

-	aaa Lys	cca Pro 985	agc Ser	aac Asn	cgt Arg	gaa Glu	aaa Lys 990	tgc Cys	tca Ser	999 Gly	gaa Glu	tgt Cys 995	aac Asn	acg Thr	ggt (ggc Gly	3029
5	tgg Trp 1000	Arg	tat Tyr	tct Ser	Ala	tgg Trp 005	act Thr	gaa Glu	tgt Cys	Ser	aaa Lys .010	agc Ser	tgt Cys	gac Asp	ggt Gly 1	999 Gly 015	3077
10	acc Thr	cag Gln	agg Arg	Arg	agg Arg .020	gct Ala	att Ile	tgt Cys	Val	aat Asn 1025	acc Thr	cga Arg	aat Asn	Asp	gta Val 1030	ctg Leu	3125
15	gat Asp	gac Asp	Ser	aaa Lys 1035	tgc Cys	aca Thr	cat His	Gln	gag Glu 1040	aaa Lys	gtt Val	acc Thr	Ile	cag Gln .045	agg Arg	tgc Cys	3173
20	agt Ser	Glu	ttc Phe 1050	cct Pro	tgt Cys	cca Pro	Gln	tgg Trp .055	aaa Lys	tct Ser	gga Gly	Asp	tgg Trp 1060	tca Ser	gag Glu	tgc Cys	3221
25	Leu	gtc Val L065	acc Thr	tgt Cys	gga Gly	Lys	999 Gly L070	cat His	aag Lys	cac His	Arg	cag Gln L075	gtc Val	tgg Trp	tgt Cys	cag Gln	3269
	ttt Phe 1080	Gly	gaa Glu	gat Asp	Arg	tta Leu 1085	aat Asn	gat Asp	aga Arg	Met	tgt Cys 1090	gac Asp	cct Pro	gag Glu	acc Thr 1	aag Lys .095	3317
30	cca Pro	aca Thr	tct Ser	Met	cag Gln 1100	act Thr	tgt Cys	cag Gln	Gln	ccg Pro 1105	gaa Glu	atg Met	gca Ala	Ser	tgg Trp 1110	cag Gln	3365
35	gcg Ala	ggt Gly	Pro	tgg Trp 1115	gta Val	cag Gln	tgc Cys	Ser	gtc Val 1120	act Thr	tgt Cys	gga Gly	Gln	gga Gly 1125	tac Tyr	cag Gln	3413
40	cta Leu	aga Arg	gca Ala 1130	Val	aaa Lys	tgc Cys	Ile	att Ile 1135	999 Gly	act Thr	tat Tyr	Met	tca Ser 1140	gtg Val	gta Val	gat Asp	3461
45	Asp	aat Asn 1145	Asp	tgt Cys	aat Asn	Ala	gca Ala 1150	act Thr	aga Arg	cca Pro	Thr	gat Asp 1155	acc Thr	cag Gln	gac Asp	tgt Cys	3509
43	oaa	Leu	cca Pro	tca Ser	Cys	cat His 1165	cct Pro	ccc Pro	cca Pro	Ala	gcc Ala 1170	ccg Pro	gaa Glu	acg Thr	agg Arg	aga Arg 1175	3557
50	agc Ser	aca Thr	tac Tyr	Ser	gca Ala 1180	Pro	aga Arg	acc	cag Gln	tgg Trp 1185	Arg	ttt Phe	999 Gly	tct Ser	tgg Trp 1190	acc Thr	3605
55	cca Pro	tgc Cys	tca Ser	gcc Ala	Thr	tgt Cys	G1 y 999	aaa Lys	ggt Gly 1200	Thr	cgg Arg	atg Met	aga Arg	tac Tyr 1205	gtc Val	agc Ser	3653
60	Cys	cga Arg	gat Asp 1210	Glu	aat Asn	ggc	tct Ser	gtg Val 1215	Ala	gac Asp	gag Glu	Ser	gcc Ala 1220	Cys	gct Ala	acc Thr	3701
 .	Let	cct Pro	Arg	a cca g Pro	gtg Val	gca Ala	aag Lys 1230	Glu	gaa Glu	tgt Cys	tct Ser	gtg Val 1235	Thr	Pro	tgt Cys	999 Gly	3749
65	caa	ı tg	aag	ggc	ttg	gac	tgg	ago	tet	tgc	tct	gtg	acc	tgt	999	caa	3797

	Gln 1240		Lys	Ala		Asp 1245	Trp	Ser	Ser		Ser 1250	Val	Thr	Cys	Gly	Gln 1255	
5	ggt Gly	agg Arg	gca Ala	Thr	cgg Arg 1260	caa Gln	gtg Val	atg Met	Cys	gtc Val 1265	aac Asn	tac Tyr	agt Ser	Asp	cac His 1270	gtg Val	3845
10			Arg					Gln					Glu		gac Asp		3893
15		Cys					Cys					Pro			ggc Gly		3941
	Ala	cag Gln 1305	cac His	ccc Pro	ttc Phe	Gln	aat Asn 1310	gag Glu	gac Asp	tat Tyr	Arg	ccc Pro 1315	cgg Arg	agc Ser	gcc Ala	agc Ser	3989
20	ccc Pro 1320	Ser	cgc Arg	acc Thr	His	gtg Val 1325	ctc Leu	ggt Gly	gga Gly	Asn	cag Gln 1330	tgg Trp	aga Arg	act Thr	ggc Gly	ccc Pro 1335	4037
25	tgg Trp	gga Gly	gca Ala	Cys	tcc Ser L340	agt Ser	acc Thr	tgt Cys	Ala	ggc Gly 1345	gga Gly	tcc Ser	cag Gln	Arg	cgt Arg 1350	gtt Val	4085
30	gtt Val	gta Val	Cys	cag Gln 1355	gat Asp	gaa Glu	aat Asn	Gly	tac Tyr 1360	acc Thr	gca Ala	aac Asn	Asp	tgt Cys L365	gtg Val	gag Glu	4133
35	aga Arg	Ile	aaa Lys 1370	cct Pro	gat Asp	gag Glu	Gln	aga Arg 1375	gcc Ala	tgt Cys	gaa Glu	Ser	ggc Gly L380	cct Pro	tgt Cys	cct Pro	4181
33	Gln					Asn					Thr				ggt Gly		4229
40		Ile			Arg					Gln					gaa Glu 1		4277
45	ttt Phe	cca Pro	gat Asp	Leu	agc Ser 1420	tgt Cys	gaa Glu	att Ile	Leu	gat Asp 1425	aaa Lys	cct Pro	ccc Pro	Asp	cgt Arg 1430	gag Glu	4325
50	cag Gln	tgt Cys	Asn	aca Thr 1435	cat His	gct Ala	tgt Cys	Pro	cac His 1440	gac Asp	gct Ala	gca Ala	Trp	agt Ser 1445	act Thr	ggc Gly	4373
55	cct Pro	Trp	agc Ser 1450	tcg Ser	tgt Cys	tct Ser	Val	tct Ser 455	tgt Cys	ggt Gly	cga Arg	Gly	cat His 1460	aaa Lys	caa Gln	cga Arg	4421
,,,	Asn	gtt Val 1465	tac Tyr	tgc Cys	atg Met	Ala	aaa Lys 1470	gat Asp	gga Gly	agc Ser	His	tta Leu 1475	gaa Glu	agt Ser	gat Asp	tac Tyr	4469
60	tgt Cys 1480	Lys	cac His	ctg Leu	Ala	aag Lys 1485	cca Pro	cat His	999 999	His	aga Arg 1490	aag Lys	tgc Cys	cga Arg	gga Gly 1	gga Gly 1495	4517
65	aga Arg	tgc Сув	ccc Pro	Lys	tgg Trp 1500	aaa Lys	gct Ala	ggc Gly	Ala	tgg Trp 1505	agt Ser	cag Gln	tgc Cys	Ser	gtg Val 1510	tcc Ser	4565

5			Arg					Arg					Gln		gga Gly		4613
		Lys					Thr					Tyr			ccg Pro		4661
10						Gln					Pro				tgg Trp		4709
15	gca Ala 1560	Glu	_	_	Gln	_	_		_	Thr	_		_				4757
20			_	Val		_		_	Āsp					Val	cat His 1590		4805
25			Cys					Arg					Glu		tgt Cys		4853
		Gln					Val					Glu			gag Glu		4901
30				_		Lys					Arg		_	_	tgc Cys	_	4949
35	gag Glu 1640	Ile			Gly					Glu							4997
40	_		-	Pro		_	_		Pro	-	-			Cys	tac Tyr 1670	_	5045
45			Сув					Thr					Asn		Gly 999		5093
		Ser					Val					Arg			caa Gln		5141
50						Gln					Cys					aag Lys	5189
55	cca Pro 1720	Glu			Lys					Val							5237
60	_		_	Lys		_		_	Leu			_	_	Glu	gat Asp 1750		5285
65	_		Phe	_	_		_	Gly	_		_	_	Ile		tgt Cys		5333
ری	999	atg	cac	tct	gac	cac	ccc	aaa	gag	tac	gtg	aca	ctg	gtg	cat	gga	5381

	Gly Met His Ser Asp His Pro Lys Glu Tyr Val Thr Leu Val His Gly 1770 1775 1780	
5	gac tot gag aat tot too gag gtt tat ggg cac agg tta cac aac coa Asp Ser Glu Asn Phe Ser Glu Val Tyr Gly His Arg Leu His Asn Pro 1785 1790 1795	5429
10	aca gaa tgt ccc tat aac ggg agc cgg cgc gat gac tgc caa tgt cgg Thr Glu Cys Pro Tyr Asn Gly Ser Arg Arg Asp Asp Cys Gln Cys Arg 1800 1805 1810 1815	5477
15	aag gat tac acg gcc gct ggg ttt tcc agt ttt cag aaa atc aga ata Lys Asp Tyr Thr Ala Ala Gly Phe Ser Ser Phe Gln Lys Ile Arg Ile 1820 1825 1830	5525
	gac ctg acc agc atg cag ata atc acc act gac tta cag ttt gca agg Asp Leu Thr Ser Met Gln Ile Ile Thr Thr Asp Leu Gln Phe Ala Arg 1835 1840 1845	5573
20	aca agc gaa gga cat ccc gtc cct ttt gcc aca gcc ggg gat tgc tac Thr Ser Glu Gly His Pro Val Pro Phe Ala Thr Ala Gly Asp Cys Tyr 1850 1855 1860	5621
25	agc gct gcc aag tgc cca cag ggt cgt ttt agc atc aac ctt tat gga Ser Ala Ala Lys Cys Pro Gln Gly Arg Phe Ser Ile Asn Leu Tyr Gly 1865 1870 1875	5669
30	acc ggc ttg tct tta act gaa tct gcc aga tgg ata tca caa ggg aat Thr Gly Leu Ser Leu Thr Glu Ser Ala Arg Trp Ile Ser Gln Gly Asn 1880 1885 1890 1895	5717
35	tat gct gtc tct gac atc aag aag tcg ccg gat ggt acc cga gtc gta Tyr Ala Val Ser Asp Ile Lys Lys Ser Pro Asp Gly Thr Arg Val Val 1900 1905 1910	5765
33	ggg aaa tgc ggt ggt tac tgt gga aaa tgc act cca tcc tct ggt act Gly Lys Cys Gly Gly Tyr Cys Gly Lys Cys Thr Pro Ser Ser Gly Thr 1915 1920 1925	5813
40	ggc ctg gag gtg cga gtt tta tagctaaggt gctttgaaga ggaagccatt Gly Leu Glu Val Arg Val Leu 1930	5864
45	atggatggat gaaggatagt aatgcaatac ctccacctta atttgggtgc atgtgtatgt	
	gtgtgtgtgt ttgtgtgtga cttgtatgct tgtgtgtgta aatgtgtgta catatacata tataca	5984 5990
50		3990
50	<210> 26 <211> 1934 <212> PRT <213> Homo sapiens ADAMTS-9b	
55	<400> 26	
	Met Gln Phe Val Ser Trp Ala Thr Leu Leu Thr Leu Leu Val Arg Asp 1 10 15	
60	Leu Ala Glu Met Gly Ser Pro Asp Ala Ala Ala Ala Val Arg Lys Asp 20 25 30	
	Arg Leu His Pro Arg Gln Val Lys Leu Leu Glu Thr Leu Ser Glu Tyr 35 40 45	
65	Glu Ile Val Ser Pro Ile Arg Val Asn Ala Leu Gly Glu Pro Phe Pro	

		50					55					60				
5	Thr 65	Asn	Val	His	Phe	Lys 70	Arg	Thr	Arg	Arg	Ser 75	Ile	Asn	Ser	Ala	Thr 80
,	Asp	Pro	Trp	Pro	Ala 85	Phe	Ala	Ser	Ser	Ser 90	Ser	Ser	Ser	Thr	Ser 95	Pro
10	Gln	Ala	His	Tyr 100	Arg	Leu	Ser	Ala	Phe 105	Gly	Gln	Gln	Phe	Leu 110	Phe	Asn
	Leu	Thr	Ala 115	Asn	Ala	Gly	Phe	Ile 120	Ala	Pro	Leu	Phe	Thr 125	Val	Thr	Leu
15	Leu	Gly 130	Thr	Pro	Gly	Val	Asn 135	Gln	Thr	Lys	Phe	Tyr 140	Ser	Glu	Glu	Glu
20	Ala 145	Glu	Leu	Lys	His	Cys 150	Phe	Tyr	Lys	Gly	Tyr 155	Val	Asn	Thr	Asn	Ser 160
20	Glu	His	Thr	Ala	Val 165	İle	Ser	Leu	Сув	Ser 170	Gly	Met	Leu	Gly	Thr 175	Phe
25	Arg	Ser	His	Asp 180	Gly	Gly	Tyr	Phe	Ile 185	Glu	Pro	Leu	Gln	Ser 190	Met	Asp
	Glu	Gln	Glu 195	Asp	Glu	Glu	Glu	Gln 200	Asn	Lys	Pro	His	11e 205	Ile	Tyr	Arg
30	Arg	Ser 210	Ala	Pro	Gln	Arg	Glu 215	Pro	Ser	Thr	Gly	Arg 220	His	Ala	Cys	Asp
35	Thr 225	Ser	Glu	His	Lys	Asn 230	Arg	His	Ser	Lys	Asp 235	Lys	Lys	Lys	Thr	Arg 240
,,	Ala	Arg	Lys	Trp	Gly 245	Glu	Arg	Ile	Asn	Leu 250	Ala	Gly	Asp	Val	Ala 255	Ala
40	Leu	Asn	Ser	Gly 260	Leu	Ala	Thr	Glu	Ala 265	Phe	Ser	Ala	Tyr	Gly 270	Asn	Lys
	Thr	Asp	Asn 275	Thr	Arg	Glu	Lys	Arg 280		His	Arg	Arg	Thr 285	Lys	Arg	Phe
45	Leu	Ser 290	Tyr	Pro	Arg	Phe	Val 295	Glu	Val	Leu	Val	Val 300	Ala	Asp	Asn	Arg
50	Met 305	Val	Ser	Tyr	His	Gly 310	Glu	Asn	Leu	Gln	His 315	Tyr	Ile	Leu	Thr	Leu 320
30	Met	Ser	Ile	Val	Ala 325	Ser	Ile	Tyr	Lys	Asp 330	Pro	Ser	Ile	Gly	Asn 335	Leu
55	Ile	Asn	Ile	Val 340	Ile	Val	Asn	Leu	11e 345	Val	Ile	His	Asn	Glu 350	Gln	Asp
	Gly	Pro	Ser 355	Ile	Ser	Phe	Asn	Ala 360	Gln	Thr	Thr	Leu	Lys 365	Asn	Phe	Cys
60	Gln	Trp 370	Gln	His	Ser	Asn	Ser 375	Pro	Gly	Gly	Ile	His 380	His	Asp	Thr	Äla
65	Val 385	Leu	Leu	Thr	Arg	Gln 390	Asp	Ile	Cys	Arg	Ala 395	His	Asp	Lys	Cys	Asp 400
93	Thr	Leu	Gly	Leu	Ala	Glu	Leu	Gly	Thr	Ile	Cys	Asp	Pro	Tyr	Arg	Ser

					405					410					415	
5	Cys	Ser	Ile	Ser 420	Glu	Asp	Ser	Gly	Leu 425	Ser	Thr	Ala	Phe	Thr 430	Ile	Ala
J	His	Glu	Leu 435	Gly	His	Val	Phe	Asn 440	Met	Pro	His	Asp	Asp 445	Asn	Asn	Lys
10	Cys	Lys 450	Glu	Glu	Gly	Val	Lys 455	Ser	Pro	Gln	His	Val 460	Met	Ala	Pro	Thr
	Leu 465	Asn	Phe	Tyr	Thr	Asn 470	Pro	Trp	Met	Trp	Ser 475	Lys	Cys	Ser	Arg	Lys 480
15	Tyr	Ile	Thr	Glu	Phe 485	Leu	Asp	Thr	Gly	Tyr 490	Gly	Glu	Cys	Leu	Leu 495	Asn
20	Glu	Pro	Glu	Ser 500	Arg	Pro	Tyr	Pro	Leu 505	Pro	Val	Gln	Leu	Pro 510	Gly	Ile
20	Leu	Tyr	Asn 515	Val	Asn	Lys	Gln	Cys 520	Glu	Leu	Ile	Phe	Gly 525	Pro	Gly _/	Ser
25	Gln	Val 530	Cys	Pro	Tyr	Met	Met 535	Gln	Cys	Arg	Arg	Leu 540	Trp	Ser	Asn	Asn
	Val 545	Asn	Gly	Val	His	Lys 550	Gly	Сув	Arg	Thr	Gln 555	His	Thr	Pro	Trp	Ala 560
30	Asp	Gly	Thr	Glu	Сув 565	Glu	Pro	Gly	Lys	His 570	Сув	Lys	Туr	Gly	Phe 575	Cys
35	Val	Pro	Lys	Glu 580	Met	Asp	Val	Pro	Val 585	Thr	Asp	Gly	Ser	Trp 590	Gly	Ser
,,,	Trp	Ser	Pro 595	Phe	Gly	Thr	Cys ·	Ser 600	Arg	Thr	Cys	Gly	Gly 605	Gly	Ile	Lys
40	Thr	Ala 610	Ile	Arg	Glu	Cys	Asn 615	Arg	Pro	Glu	Pro	Lys 620	Asn	Gly	Gly	Lys
	Tyr 625	Cys	Val	Gly	Arg	Arg 630	Met	Lys	Phe	Lys	Ser 635	Cys	Asn	Thr	Glu	Pro 640
45	Cys	Leu	Lys	Gln	Lys 645	Arg	Asp	Phe	Arg	Asp 650	Glu	Gln	Сув	Ala	His 655	Phe
50	Asp	Gly	Lys	His 660	Phe	Asn	Ile	Asn	Gly 665	Leu	Leu	Pro	Asn	Val 670	Arg	Trp
	Val	Pro	Lys 675	туг	Ser	Gly	Ile	Leu 680	Met	Lys	Asp	Arg	Cys 685	Lys	Leu	Phe
55	Cys	Arg 690	Val	Ala	Gly	Asn	Thr 695	Ala	Tyr	Tyr	Gln	Leu 700	Arg	Asp	Arg	Val
	Ile 705	Asp	Gly	Thr	Pro	Сув 710	Gly	Gln	Asp	Thr	Asn 715	Asp	Ile	Суз	Val	Gln 720
60	Gly	Leu	Cys	Arg	Gln 725	Ala	Gly	Сув	Asp	His 730	Val	Leu	Asn	Ser	Lys 735	Ala
65	Arg	Arg	Asp	Lys 740	Cys	Gly	Val	Cys	Gly 745	Gly	Asp	Asn	Ser	Ser 750	Сув	Lys
0.5	Thr	Val	Ala	Gly	Thr	Phe	Asn	Thr	Val	His	Tyr	Gly	Tyr	Asn	Thr	Val

755 760 765 Val Arg Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Arg Gln His Ser 775 Phe Ser Gly Glu Thr Asp Asp Asp Asn Tyr Leu Ala Leu Ser Ser Ser Lys Gly Glu Phe Leu Leu Asn Gly Asn Phe Val Val Thr Met Ala Lys 810 Arg Glu Ile Arg Ile Gly Asn Ala Val Val Glu Tyr Ser Gly Ser Glu 825 15 Thr Ala Val Glu Arg Ile Asn Ser Thr Asp Arg Ile Glu Gln Glu Leu Leu Leu Gln Val Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val Arg 20 Tyr Ser Phe Asn Ile Pro Ile Glu Asp Lys Pro Gln Gln Phe Tyr Trp Asn Ser His Gly Pro Trp Gln Ala Cys Ser Lys Pro Cys Gln Gly Glu 890 Arg Lys Arg Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr Val 905 30 Ser Asp Gln Arg Cys Asp Arg Leu Pro Gln Pro Gly His Ile Thr Glu 920 Pro Cys Gly Thr Gly Cys Asp Leu Arg Trp His Val Ala Ser Arg Ser 935 35 Glu Cys Ser Ala Gln Cys Gly Leu Gly Tyr Arg Thr Leu Asp Ile Tyr Cys Ala Lys Tyr Ser Arg Leu Asp Gly Lys Thr Glu Lys Val Asp Asp Gly Phe Cys Ser Ser His Pro Lys Pro Ser Asn Arg Glu Lys Cys Ser 980 985 45 Gly Glu Cys Asn Thr Gly Gly Trp Arg Tyr Ser Ala Trp Thr Glu Cys 1000 Ser Lys Ser Cys Asp Gly Gly Thr Gln Arg Arg Ala Ile Cys Val 1015 Asn Thr Arg Asn Asp Val Leu Asp Asp Ser Lys Cys Thr His Gln Glu 1030 1035 Lys Val Thr Ile Gln Arg Cys Ser Glu Phe Pro Cys Pro Gln Trp Lys 1050 Ser Gly Asp Trp Ser Glu Cys Leu Val Thr Cys Gly Lys Gly His Lys 1065 60 His Arg Gln Val Trp Cys Gln Phe Gly Glu Asp Arg Leu Asn Asp Arg 1080 Met Cys Asp Pro Glu Thr Lys Pro Thr Ser Met Gln Thr Cys Gln Gln 1095 Pro Glu Met Ala Ser Trp Gln Ala Gly Pro Trp Val Gln Cys Ser Val

	1105		111	ס		1115		1120
5	Thr Cys		Gly Ty: 1125	r Gln Le	u Arg Ala 1130		Cys Ile	lle Gly
•	Thr Tyr	Met Ser 1140	Val Va	l Asp As	p Asn Asp 1145	Cys Asn	Ala Ala 1150	
10		Asp Thr 1155	Gln Ası	Cys Gl: 116	u Leu Pro O		His Pro 1165) Pro Pro
	1170			1175	r Thr Tyr	1180		
15	Trp Arg 1185	Phe Gly	Ser Tr		o Cys Ser	Ala Thr 1195	Cys Gly	Lys Gly
20	Thr Arg		Tyr Val 1205	. Ser Cyı	s Arg Asp 1210	Glu Asn	Gly Ser	Val Ala 1215
	Asp Glu	Ser Ala 1220	Cys Ala	Thr Le	Pro Arg 1225	Pro Val	Ala Lys 1230	
25		Val Thr 1235	Pro Cys	1240	n Trp Lys)		Asp Trp 1245	Ser Ser
	Cys Ser 1250	Val Thr	Cys Gly	Gln Gly	y Arg Ala	Thr Arg 1260	Gln Val	Met Cys
30	Val Asn 1265	Tyr Ser	Asp His		e Asp Arg	Ser Glu 1275	Cys Asp	Gln Asp 1280
35	Tyr Ile		Thr Asp 1285	Gln Ası	Cys Ser 1290	Met Ser	_	Pro Gln 1295
	Arg Thr	Pro Asp 1300	Ser Gly	Leu Ala	Gln His 1305	Pro Phe	Gln Asn 1310	
10		Pro Arg 1315	Ser Ala	Ser Pro	Ser Arg		Val Leu 1325	Gly Gly
	Asn Gln 1330	Trp Arg	Thr Gly	Pro Trp 1335	Gly Ala	Cys Ser 1340	Ser Thr	Cys Ala
15	Gly Gly 1345	Ser Gln	Arg Arg		. Val Cys	Gln Asp 1355	Glu Asn	Gly Tyr 1360
50	Thr Ala		Cys Val 1365	Glu Arg	Ile Lys 1370	Pro Asp		Arg Ala 1375
	Cys Glu	Ser Gly 1380	Pro Cys	Pro Glr	Trp Ala 1385	Tyr Gly	Asn Trp 1390	
55	Cys Thr	Lys Leu .395	Cys Gly	Gly Gly 1400	Ile Arg		Leu Val 1405	Val Cys
	Gln Arg 1410	Ser Asn	Gly Glu	Arg Phe	Pro Asp	Leu Ser 1420	Cys Glu	Ile Leu
50	Asp Lys 1425	Pro Pro	Asp Arg 1430	Glu Glr	Cys Asn	Thr His	Ala Cys	Pro His 1440
55		· 1	1445		Trp Ser 1450		;	1455
	Gly Arg	Gly His	Lys Gln	Arg Asn	Val Tyr	Cys Met	Ala Lys	Asp Gly

1460 1465 1470

Ser His Leu Glu Ser Asp Tyr Cys Lys His Leu Ala Lys Pro His Gly 1475 1480 1485

His Arg Lys Cys Arg Gly Gly Arg Cys Pro Lys Trp Lys Ala Gly Ala 1490 1495 1500

Trp Ser Gln Cys Ser Val Ser Cys Gly Arg Gly Val Gln Gln Arg His 10 1505 1510 1515 1520

Val Gly Cys Gln Ile Gly Thr His Lys Ile Ala Arg Asp Thr Glu Cys 1525 1530 1535

15 Asn Pro Tyr Thr Arg Pro Glu Ser Glu Cys Glu Cys Gln Gly Pro Arg 1540 1545 1550

Cys Pro Leu Tyr Thr Trp Arg Ala Glu Glu Ser Gln Glu Cys Thr Lys 1555 1560 1565

Thr Cys Gly Glu Gly Ser Arg Tyr Arg Lys Val Val Cys Val Asp Asp 1570 1575 1580

Asn Lys Asn Glu Val His Gly Ala Arg Cys Asp Val Ser Lys Arg Pro 25 1585 1590 1595 1600

Val Asp Arg Glu Ser Cys Ser Leu Gln Pro Cys Glu Tyr Val Trp Ile 1605 1610 1615

30 Thr Gly Glu Trp Ser Glu Cys Ser Val Thr Cys Gly Lys Gly Tyr Lys 1620 1625 1630

Gln Arg Leu Val Ser Cys Ser Glu Ile Tyr Thr Gly Lys Glu Asn Tyr 1635 1640 1645

Glu Tyr Ser Tyr Gln Thr Thr Ile Asn Cys Pro Gly Thr Gln Pro Pro 1650 1655 1660

Ser Val His Pro Cys Tyr Leu Arg Glu Cys Pro Val Ser Ala Thr Trp 40 1665 1670 1675 1680

Arg Val Gly Asn Trp Gly Ser Cys Ser Val Ser Cys Gly Val Gly Val 1685 1690 1695

45 Met Gln Arg Ser Val Gln Cys Leu Thr Asn Glu Asp Gln Pro Ser His 1700 1705 1710

Leu Cys His Thr Asp Leu Lys Pro Glu Glu Arg Lys Thr Cys Arg Asn 1715 1720 1725

Val Tyr Asn Cys Glu Leu Pro Gln Asn Cys Lys Glu Val Lys Arg Leu 1730 1735 1740

Lys Gly Ala Ser Glu Asp Gly Glu Tyr Phe Leu Met Ile Arg Gly Lys 55 1745 1750 1755 1760

Leu Leu Lys Ile Phe Cys Ala Gly Met His Ser Asp His Pro Lys Glu 1765 1770 1775

60 Tyr Val Thr Leu Val His Gly Asp Ser Glu Asn Phe Ser Glu Val Tyr 1780 1785 1790

Gly His Arg Leu His Asn Pro Thr Glu Cys Pro Tyr Asn Gly Ser Arg 1795 1800 1805

Arg Asp Asp Cys Gln Cys Arg Lys Asp Tyr Thr Ala Ala Gly Phe Ser

1810 1815 1820

Ser Phe Gln Lys Ile Arg Ile Asp Leu Thr Ser Met Gln Ile Ile Thr 1825 1830 1835 1840

Thr Asp Leu Gln Phe Ala Arg Thr Ser Glu Gly His Pro Val Pro Phe 1845 1850 1855

Ala Thr Ala Gly Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg 10 1860 1865 1870

Phe Ser Ile Asn Leu Tyr Gly Thr Gly Leu Ser Leu Thr Glu Ser Ala 1875 1880 1885

15 Arg Trp Ile Ser Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser 1890 1895 1900

Pro Asp Gly Thr Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys 1905 1910 1915 1920

Cys Thr Pro Ser Ser Gly Thr Gly Leu Glu Val Arg Val Leu 1925 1930

25

20