

Problemstellung & Relevanz

Suche nach kürzester Rundreise durch alle Städte

Start- und Endpunkt identisch

Große praktische Relevanz

Herausforderung der Komplexität

Bei n Städten: (n-1)!/2 mögliche Routen

Mathematische Analyse

- Darstellung als Graph G = (V,E):
- V: Städte (Knoten)
- E: Verbindungen (Kanten)
- Gewichtete Kanten (Distanzen)
- Ziel: Hamiltonkreis minimaler Länge

Branch and Bound

- Exakter Algorithmus für optimale Lösung
- Systematische Suche im Lösungsraum
- Ausschluss suboptimaler Teilbäume
- Garantiert optimales Ergebnis

Ant Colony Optimization

- Naturinspirierte Heuristik
- Simulation von Ameisenverhalten
- Pheromon-basierte Routenfindung
- Gut für große Probleme

Modifizierter Nearest Neighbor

- Erweiterung des Greedy-Ansatzes
- Kostenzonenmodell f
 ür reale Szenarien
- Schnelle, praxistaugliche Lösungen

Vergleichende

- Branch & Bound: Optimal, aber zeitintensiv
- ACO: Gute Balance Zeit/Qualität
- Mod. Nearest Neighbor: Schnell, praxisnah

Laufzeitvergleich der Algorithmen

-- Branch and Bound -- Ant Colony -- Nearest Neighbor