

ADXL345

Overview

This lesson will teach you how to use the ADXL345 module, and display the three axis data on the LCD.

Specification Please view "ADXL345.pdf"

Path: \Public_materials\Datasheet\ ADXL345.pdf

Pin definition

ADXL345	Arduino
GND	->GND
VCC	->+5V
CS	->+5V
INT1	->null
INT2	->null
SDO	->null
SDA	->A4
SCL	->A5

Hardware required

Material diagram	Material name	Number
	ADXL345	1
-411)-	220/330Ω resistor	3
	USB Cable	1
24 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	UNO R3	1
	Breadboard	1
	Jumper wires	Several

1

Connection

Schematic

Connection diagram

Note: The middle pin of the potentiometer is connected to the LCD1602 port VO.

Sample code

```
Note: sample code under the Sample code folder
#include <Wire.h>
#include <LiquidCrystal.h>
#define Register ID 0 //Configuration Register Address
#define Register 2D 0x2D
#define Register X0 0x32
#define Register X1 0x33
#define Register Y0 0x34
#define Register_Y1 0x35
#define Register Z0 0x36
#define Register Z1 0x37
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);//LCD pin
int ADXAddress = 0xA7>>1; //Converted into 7-bit address
int reading = 0;
int val = 0;
int X0,X1,X out;
int Y0,Y1,Y out;
int Z1,Z0,Z_out;
double Xg,Yg,Zg;
void setup()
    lcd.begin(16, 2); //Initialization LCD
    delay(100);
    Wire.begin(); //Initialization IIC
    delay(100);
    Wire.beginTransmission(ADXAddress);
    Wire.write(Register 2D);
    Wire.write(8);
    Wire.endTransmission();
    lcd.print(" Welcome to ");
    lcd.setCursor(0,1);
    lcd.print("
                  Smraza");
    delay(2000);
    lcd.clear();
}
void loop()
    Wire.beginTransmission(ADXAddress);
    Wire.write(Register_X0);
    Wire.write(Register X1);
    Wire.endTransmission();
```



```
Wire.requestFrom(ADXAddress,2);
if(Wire.available() < = 2);</pre>
{
     X0 = Wire.read();
    X1 = Wire.read();
     X1 = X1 < <8;
     X \text{ out} = X0+X1;
}
Wire.beginTransmission(ADXAddress);
Wire.write(Register Y0);
Wire.write(Register Y1);
Wire.endTransmission();
Wire.requestFrom(ADXAddress,2);
if(Wire.available() < = 2);</pre>
     Y0 = Wire.read();
    Y1 = Wire.read();
    Y1 = Y1 < < 8;
     Y \text{ out} = Y0+Y1;
}
Wire.beginTransmission(ADXAddress);
Wire.write(Register_Z0);
Wire.write(Register Z1);
Wire.endTransmission();
Wire.requestFrom(ADXAddress,2);
if(Wire.available() < = 2);</pre>
{
     Z0 = Wire.read();
     Z1 = Wire.read();
    Z1 = Z1 < < 8;
     Z \text{ out} = Z0+Z1;
}
Xg = X \text{ out/} 256.00;
Yg = Y out/256.00;
Zg = Z_out/256.00;
lcd.clear();
lcd.print("X=");
lcd.print(Xg);
lcd.setCursor(8, 0);
lcd.print("Y=");
lcd.print(Yq);
lcd.setCursor(0, 1);
lcd.print("Z=");
```



```
lcd.print(Zg);
lcd.setCursor(10, 1);
lcd.print("Smraza");
delay(300); //Delay 0.3 seconds, the refresh rate is adjusted here
}
```

Example picture

Language reference

Tips: click on the following name to jump to the web page. If you fail to open, use the Adobe reader to open this document.

wire

wire.write

wire.read

WireEndTransmission

WireAvailable

WireRequestFrom

WireBeginTransmission

WireBegin

WireSend

WireReceive

Application effect

By turning the ADXL345 module, the data displayed on the LCD will be changed.

- * About Smraza:
- * We are a leading manufacturer of electronic components for Arduino and Raspberry Pi.
- * Official website: http://www.smraza.com/
- * We have a professional engineering team dedicated to providing tutorials and support to help you get started.
- * If you have any technical questions, please feel free to contact our support staff via email at support@smraza.com
- * We truly hope you enjoy the product, for more great products please visit our

Amazon US store: http://www.amazon.com/shops/smraza

Amazon CA store: https://www.amazon.ca/shops/AMIHZKLK542FQ
Amazon UK store: http://www.amazon.co.uk/shops/AVEAJYX3AHG8Q
Amazon FR store: http://www.amazon.fr/shops/AVEAJYX3AHG8Q
Amazon IT store: http://www.amazon.it/shops/AVEAJYX3AHG8Q

Amazon ES store: https://www.amazon.es/shops/AVEAJYX3AHG8Q
