Flow Proofs

Proofs can be written in a variety of forms, including: (1) two-column form, (2) paragraph form, and (3) flow form. In a *flow proof*, a diagram with implication arrows (\rightarrow) shows the logical flow of the statements of a proof. The statements in the diagram are numbered and the reasons for each are given below the flow diagram.

Example 1 Given: $\angle 1 \cong \angle 2$;

 $\angle 3 \cong \angle 4$

Prove: $\angle 5 \cong \angle 6$

Flow Proof:

1.
$$\angle 1 \cong \angle 2 \rightarrow 2$$
. $\overline{AO} \cong \overline{BO}$
3. $\angle 3 \cong \angle 4$
4. $\angle AOD \cong \angle BOC$ \longrightarrow 5. $\triangle AOD \cong \triangle BOC \bigcirc$

$$6. \ \overline{DO} \cong \overline{CO} \rightarrow 7. \ \angle 5 \cong \angle 6$$

Reasons

- 1. Given
- 2. If $2 \leq of$ a \triangle are \cong , the sides opp. them are \cong .
- 3. Given
- 4. Vertical ∠ are ≅.
- 5. ASA Postulate
- 6. Corr. parts of $\cong A$ are \cong .
- 7. Isosceles △ Theorem

Because this flow proof is long, we have drawn an arrow connecting steps 5 and 6 to show that the proof continues below. You can do this or turn your paper sideways to accommodate a long proof.

One advantage of flow proof is that it shows clearly which steps depend on other steps. In the example above, for instance, we see that step 5 (whose justification is ASA) depends on steps 2, 3, and 4, each of which provides one of the three congruences needed for ASA. The next example shows how a complex proof can be understood more easily by organizing it into a flow proof.