

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

BEST AVAILABLE COPY

Aktenzeichen: 101 48 302.3

Anmeldetag: 29. September 2001

Anmelder/Inhaber: Beiersdorf Aktiengesellschaft, 20253 Hamburg/DE

Bezeichnung: Kosmetische und dermatologische Stifte

IPC: A 61 K 7/48

CERTIFIED COPY OF
PRIORITY DOCUMENT

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 19. August 2004
Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Höß

Beiersdorf Aktiengesellschaft
Hamburg

Kosmetische und dermatologische Stifte

Beschreibung

Die vorliegende Erfindung betrifft kosmetische Stifte, welche sich durch einen hohen Wassergehalt und durch höhere Mengen an Hautbefeuchtungsmitteln auszeichnen und W/O-Emulsionen darstellen.

Insbesondere betrifft die vorliegende Erfindung Anti-Akne-Stifte sowie Stifte gegen unreine Haut.

Diese können zusätzlich Lichtschutzfilter, Pigmente, Puderstoffe, Wirkstoffe und/oder Repellentien enthalten.

Technisch betrachtet, sind die meisten Stiftformulierungen wasserfreie Fettmischungen aus festen oder halbfesten Wachsen und flüssigen Ölen, wobei die hochgereinigten Paraffinöle und -wachse die Lippenstiftgrundmasse darstellen. Auch wasserhaltige Zubereitungen sind bekannt, welche gelegentlich auch in Form von W/O-Emulsionen vorliegen.

Übliche Grundstoffe des Standes der Technik für stiftförmige Zubereitungen sind beispielsweise flüssige Öle (z.B. Paraffinöle, Ricinusöl, Isopropylmyristat), halbfeste Bestandteile (z.B. Vaseline, Lanolin), feste Bestandteile (z.B. Bienenwachs, Ceresin und mikrokristalline Wachse bzw. Ozokerit), hochschmelzende Wachse (z.B. Carnaubawachs, Candelillawachs).

Ein kosmetischer Stift soll schon bei leichtem Andruck einen nicht schmierigen, stumpfen oder klebrigen, aber dennoch gut haftenden Fettfilm an die abgeben. Durch diesen Fettfilm sollen die Lippen bzw. die Haut dann glatt und geschmeidig gemacht werden.

Die Haut der Lippen besitzt nur eine äußerst dünne Hornschicht. Schweißdrüsen sind auf den Lippen gar nicht, Talgdrüsen nur vereinzelt zu finden. Daher ist die Lippenhaut praktisch frei von Fett und neigt, besonders bei kaltem und trockenem Wetter, zum Austrocknen. Dabei können sich kleine Risse in der Haut bilden, und die Empfindlichkeit der Lippen

gegenüber chemischen, physikalischen und mikrobiellen Einwirkungen (z.B. Nahrungsmittel, Sonnenlicht, Herpes-Simplex-Viren) steigt.

Dies zu verhindern ist die Aufgabe von Lippenpflegestiften. Diese Produkte enthalten meist zu einem hohen Anteil Wachse und Fettkomponenten, die nach dem Auftragen eine abdeckende Schicht über den Lippen ausbilden.

In die Zubereitungen für Lippenpflegestifte können zusätzlich Wirkstoffe eingearbeitet werden, die der Lippenpflege oder dem Lippenschutz förderlich sind, z.B. Vitamine, Feuchtigkeit spendende Mittel, Lichtschutzmittel, abdeckende Pigmente usw.

Die Lederhaut der Lippen weist gut durchblutete Papillen auf, die bis dicht unter die Lippenoberfläche reichen. Daher sind die Lippen rötlich gefärbt und, je nach Teintfarbe der betreffenden Person, von der übrigen Gesichtshaut mehr oder weniger stark farblich abgesetzt. Ein Stilmittel der dekorativen Kosmetik ist dann auch, die Lippenfarbe durch entsprechende Kosmetika auf den Typ der Person abzustimmen.

Produkte dieser Art sind dekorative Lippenstifte, in welche verschiedenste Farbpigmente eingearbeitet werden können. Auch diese Stifte enthalten zu hohen Anteilen Wachse und Fettkomponenten, die nach dem Auftragen eine abdeckende Lipidschicht über den Lippen ausbilden.

Die Aufgabe dieser Schicht ist jedoch nicht vorhanden, die Lippenhaut vor dem Austrocknen zu schützen. Die Lipidschicht dient hier als auf den Lippen haftende Grundlage für die eingearbeiteten Pigmentstoffe; die Pigmente selbst können aus mancherlei Gründen nicht ohne eine solche Grundlage auf die Lippen aufgetragen werden.

Es ist auch möglich, die Eigenschaften der pflegenden und dekorativen Lippenstifte miteinander zu kombinieren, d.h., in dekorative Lippenstifte pflegende oder schützende Substanzen einzuarbeiten.

Lippenstifte des Standes der Technik mit einem Gehalt an Paraffinen und Bienenwachs sind in "Kosmetik, Entwicklung Herstellung und Anwendung kosmetischer Mittel", S. 105, Herausgeber: W. Umbach, Georg Thieme Verlag, Stuttgart - New York, 1988, beschrieben.

Da sowohl pflegende als auch vorwiegend dekorative Lippenstifte des Standes der Technik teilweise gravierende Mängel aufweisen, war eine weitere Aufgabe der vorliegenden Erfindung, diesen Mängeln Abhilfe zu schaffen.

Wegen der hohen Empfindlichkeit des Lippenbereiches, insbesondere gegenüber ultravioletter Strahlung infolge des praktisch völligen Mangels an Pigmenten, empfiehlt sich, zumal bei erhöhter UV-Exposition wie im Hochgebirge, dem Lippenbereich einen Schutz gegen UV-Strahlung in Form von entsprechenden stiftförmigen Lichtschutzzubereitungen zukommen zu lassen. Gerade in stiftförmigen Zubereitungen des Standes der Technik werden oft anorganischen Pigmente als UV-Absorber bzw. UV-Reflektoren zum Schutze des Lippenbereiches vor UV-Strahlen verwendet. Dabei handelt es sich insbesondere um Oxide des Titans, aber auch gelegentlich des Zinks, Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums, Cers und Mischungen davon, sowie Abwandlungen.

Ein erheblicher Mangel der Formulierungen des Standes der Technik besteht unter anderem darin, daß es wegen der niedrigen Wassergehalte an sich akzeptabler Emulsionsstifte praktisch unmöglich war, wasserlösliche UV-Filtersubstanzen in solche Formulierungen einzuarbeiten. Eine weitere Aufgabe der vorliegenden Erfindung war also, Stifte mit ausschließlich wasserlöslichen UV-Filtern oder wasserdispersier-baren Pigmenten (zum Beispiel Titandioxid) zugänglich zu machen beziehungsweise Kombinationen aus wasserlöslichen und fettlöslichen UV-Filtern.

Akne ist eine Hauterkrankung mit verschiedenen Formen und Ursachen, gekennzeichnet durch nicht entzündliche und entzündliche Knötchen, ausgehend von verstopften Haarfollikeln (Komedonen), die zur Pustel-, Abszeß- und Narbenbildung führen kann. Am häufigsten ist die Acne vulgaris, die vorwiegend in der Pubertät auftritt. Ursächliche Bedingungen für die Acne vulgaris sind die Verhornung und Verstopfung der Haarfollikel-Mündung, die vom Blutspiegel der männlichen Sexualhormone abhängige Talgproduktion und die Produktion freier Fettsäuren und gewebeschädigender Enzyme durch Bakterien (*Propionibacterium acnes*).

Anti-Akne-Wirkstoffe wie Octoxyglycerin sind beispielsweise in der US 6040347 und der DE 4240674 beschrieben. Zwar werden dort auch Stifte als denkbare Applikationsform genannt, allerdings sind darunter wasserfreie Fettstifte zu verstehen. Die Vorteile den Wirkstoff in einem wasserhaltigen W/O-Stift zu formulieren, wurde nicht erkannt.

Aus DE 23 35 549 ist ein Verfahren zur Herstellung eines kosmetischen Stiftes auf der Basis einer W/O-Emulsion bekannt. Nach dieser Lehre wird aus einer Polyhydroxyverbindung und einer nichtionogenen, oberflächenaktiven Verbindung ein Gel hergestellt, dieses mit einer kosmetischen Grundlage vermischt und Wasser in die Mischung emulgiert.

Die DE 41 28 748 beschreibt kosmetische Stifte, welche dadurch gekennzeichnet sind, daß sie Emulsionen darstellen und als wesentliche Bestandteile Bienenwachs, einen oder mehrere Ester aus einer gesättigten Carbonsäure mit 20 - 40 Kohlenstoffatomen und einem gesättigten Alkohol mit 14 - 34 Kohlenstoffatomen, Wasser, sowie gegebenenfalls weitere Lipide und/oder übliche Hilfs- und Zusatzstoffe enthalten.

Die US 4,719,103 beschreibt einen Antitranspirantstift auf der Basis einer W/O-Emulsion, welcher einen hohen Wasseranteil enthalte, welcher sich auszeichnet durch einen Gehalt an flüchtigen Silikonkomponenten, ein festes Alkanol sowie Polyglycerinfettsäureester, beispielsweise Polyglycerylisostearat, als Emulgator. Die US 4,704,271 und die US 4,725,431 beschreiben ähnliche Zubereitungen.

EP 0748622 beschreibt Stifte mit flüchtigen Ölen, wasserabweisenden Polymeren, die im flüchtigen Öl löslich sind und nichtflüchtigen Ölen sowie Puderinhaltstoffen.

Die GB 2162439 beschreibt paraffinhaltige Stifte, welche einen hohen Wasseranteil enthalten sollen, wobei die Emulgatoren aus der Gruppe der Metallsalze gewählt werden.

DE 19643237 beschreibt kosmetische Stifte, die sich durch einen höheren Wasseranteil auszeichnen. Diese enthalten unter anderem bestimmte Wachs- und Ölkomponenten, bestimmte W/O-Emulgatoren neben 30 bis 85 Gew.% Wasser. Der Einsatz von größeren Mengen an Hautbefeuuchtungsmitteln ist nicht beschrieben, in den Beispielen ist lediglich der Einsatz von 2 Gew.% Glycerin offenbart.

In DE 29919474 werden W/O-Emulsionsstifte beschrieben. Durch die Verwendung von Polysacchariden wird eine dreidimensionale Struktur erzeugt, die den Stiften mehr Stabilität verleihen soll. Die Verwendung hoher Mengen an Hautbefeuuchtungsmittel auch in Gegenwart von Pigmenten wird nicht beschrieben. Auch der Verzicht der Polysaccharide unter Erhalt der Stiftstruktur wird nicht als vorteilhaft angesehen.

In DE 20009445 werden Stifte beansprucht, die nur geringe Wassermengen enthalten (25%). Über Hautbefeuhtungsmittel wird nichts ausgesagt.

In EP 1064908 werden Emulsionsstifte beschrieben, die nur sehr geringe Anteile an Wasser enthalten (14%, S. 4, Bsp. 3). Der Gehalt an Hautbefeuhtungsmittel beträgt 9% (Glycerin, Butylenglycol, Sorbitol). Vorteilhaft insbesondere für den Einsatz in Anti-Akne Produkten wäre dagegen ein besonders geringer Anteil an Ölen oder Lipiden, da diese der Heilung der Akne entgegenwirken.

EP 0194887 beschreibt den Einsatz ethoxylierter Wachse oder auch Triglyceridwachse zur Herstellung von wasserfreien Stiften.

In WO 9817232 und in werden Lippenstifte beschrieben, die sich durch einen höheren Wasseranteil auszeichnen. Da neben dem beschriebenen Kühleffekt auch die Substantivität (beispielsweise bei Verwendung farbiger Pigmente oder Perlglanzpigmente) bei derartigen Stiften, die zusätzlich höhere Mengen an Hautbefeuhtungsmitteln enthalten sollen, wichtig ist, wurde in der Schrift nicht näher ausgeführt.

Dieses wurde auch nicht in den vorab beschriebenen Erfindungen dargelegt. Ferner wurde bisher nicht erwähnt, daß sich auch in Gegenwart von Triglyceridwachsen oder ethoxierten Wachsen kosmetische Stifte herstellen lassen.

Stifte, die zusätzlich neben höheren Wassermengen größere Konzentrationen an wasserlöslichen Wirkstoffen, hohen Konzentrationen an Hautbefeuhtungsmitteln (3-50% Glycerin z.B.) und an fettlöslichen Wirkstoffen enthalten, sind nicht beschrieben. Es sind zwar Stifte mit größeren Wassermengen bekannt. Eine aktive Befeuchtung der Haut die zudem länger anhalten soll und biophysikalisch messbare Befeuchtungswerte wie eine klassische O/W oder W/O-Emulsion aufweist, ist allerdings unbekannt. Dies liegt wohl daran, daß durch Wasser nur eine extrem kurzzeitige Befeuchtung hervorgerufen gerufen wird. Ferner sind wasserarme oder wasserfreie Stiftrezepturen nur deshalb passiv befeuchtend, weil okklusive Wachse verwendet werden, die einen Wasserstau in der Haut hervorrufen. Eine aktive Befeuchtung durch einen Hydrolipidfilm aus Wasser, der zusätzlich größere Mengen an Hautbefeuhtungsmitteln statt eines okklusiven Lipidfilms enthält oder eines nur wasserhaltigen Stiftes ist bisher nicht beschrieben worden. Solche Stifte wären aber vorteilhaft, weil sich dann wirkstoffhaltige Hydrolipidfilme statt Lipidfilme bilden könnten.

Der Stand der Technik hat weitere Nachteile. Dazu zählt die Tatsache, daß wasserlösliche Wirkstoffe häufig nicht gut genug fettlöslich sind, als daß sie in nennenswertem Maße in die kosmetischen Grundlagen einzubauen wären. Andererseits wäre ein gewisser Wassergehalt durchaus erwünscht, um die Kompatibilität des kosmetischen Stiftes mit der menschlichen Haut zu erhöhen. Ferner sind Stifte mit sehr hohen Wasseranteilen nach dem Stand der Technik deshalb nicht machbar, weil das Wasser mit der hydrophoben Öl/Wachs/Emulgator-Matrix nicht kompatibel ist.

Ferner war bisher nicht bekannt, dass wasserhaltige Stifte zusätzlich Abdeckpigmente enthalten können oder auch Kombinationen aus Abdeckpigmenten und Perlglanzpigmenten oder ausschließlich Perlglanzpigmente. Perlglanzpigmente sind beispielsweise deshalb schwer in wasserhaltige Rezepturen zu integrieren, weil sie scherempfindlich sind, so daß der Perlglanzeffekt ausbleibt oder nur instabile Rezepturen entstehen. Ferner müssen generell die verwendeten Pigmente mit der Wasser/Befeuchtungsmittel/Lipid/Wachs-Matrix kompatibel gemacht werden.

Nach dem idealen Anforderungsprofil sollen sich kosmetische oder dermatologische Stifte glatt und ohne großen Reibungswiderstand auftragen lassen. Darüber hinaus muss eine solche Formulierung auch noch die Anforderungen erfüllen, daß der betreffende Stift bruchfest und temperaturbeständig sein muss und die Formulierung nicht ausölen darf.

Sollen kosmetische oder pharmazeutische Stifte bestimmte Wirkstoffe enthalten, ist denkbar, daß die übrigen Bestandteile mit den Wirkstoffen nicht kompatibel sind. Dies ist besonders häufig der Fall, wenn wasserlösliche Lichtschutzfilter in größeren Mengen im Stift enthalten sein sollen, wenn zur Herstellung eines Antiakne-Stifts wasserlösliche Antiakne-Wirkstoffe in dem Fachmann bekannten Mengen eingearbeitet werden sollen, wenn wasserlösliche Hautbefeuchtungsmittel in größeren Mengen im Stift enthalten sein sollen oder wenn zur Herstellung eines Stifts zusätzlich weitere fett- oder wasserlösliche Wirkstoffe wie Lichtschutzfilter, Pigmente, Perlglanzpigmente, Puder oder Vitamine und Antioxidantien eingearbeitet werden sollen.

Für einen Antiakne-Stift beispielsweise wäre es aber gerade besonders vorteilhaft, wenn der Anteil an fettlöslichen Bestandteilen möglichst niedrig läge.

Perlglanzpigmente sind schwer in wasserhaltige Rezepturen zu integrieren, weil sie scherempfindlich sind, so daß der Perlglanzeffekt ausbleibt oder nur instabile Rezepturen entstehen. Ferner müssen generell die verwendeten Pigmente mit der Wasser/Befeuchtungsmittel/Lipid/Wachs-Matrix kompatibel gemacht werden.

Da Anti-Akne-Stifte des Standes der Technik teilweise gravierende Mängel aufweisen, war eine weitere Aufgabe der vorliegenden Erfindung, diesen Mängeln Abhilfe zu schaffen.

Ein erheblicher Mangel der Formulierungen des Standes der Technik besteht unter anderem darin, daß es wegen der niedrigen Wassergehalte an sich akzeptabler Emulsionsstifte praktisch unmöglich war, wasserlösliche Anti-Akne-Wirkstoffe in solche Formulierungen einzuarbeiten. Beispielsweise können wasserlösliche oder dispergierbare Wirkstoffe wie Milchsäure, Salicylsäure, kurzkettige Mono-, Di-, und Triglycerinester (C8-12 Fettsäuren), Aluminiumsalze, Glycerinether, Zinkverbindungen, Alkyl-verzweigte Fettsäuren nur schwer nach dem Stand der Technik als Anti-Akne-Wirkstoffe eingearbeitet werden.

Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, feste W/O-Emulsionen so zu formulieren, daß neben hohen Wasseranteilen und einem hohen Gehalt an Hautbefeuchtungsmitteln sowie wasserlöslichen Anti-Akne-Wirkstoffen beziehungsweise Kombinationen aus wasserlöslichen und fettlöslichen Anti-Akne-Wirkstoffen auch Feststoffe wie Pigmente, Puderstoffe und UV-Filter sowie sowohl wasserlösliche bzw. in Wasser dispergierbare Wirkstoffe neben lipidlöslichen bzw. in Lipiden dispergierbare Wirkstoffe, insbesondere Antioxidantien, UV-Filter, Repellentien stabil eingearbeitet werden können.

Es war nach all diesem überraschend und nicht vorhersehbar, daß bei Raumtemperatur feste W/O-Emulsionen enthaltend

- (a) eine Fettphase, welche
 - (a1) mindestens eine Ölkomponente
 - (a2) mindestens eine Wachskomponente umfaßt,
- (b) eine Wasserphase, welche
 - (b1) 30 bis 85 Gew.% Wasser sowie
 - (b2) 5 bis 50 Gew.% eines Hautbefeuchtungsmittels gewählt aus der Gruppe Glycerin, Chitosan, Polyethylenglycol, Fucogel, Propylenglycol, Dipropylenglycol, Butylenglycol, Mannitol, Milchsäure, Natriumpyrrolidoncarbonsäure, Hyaluronsäure, Glycin, Salze der angegebenen Säuren sowie, Harnstoff und Salze von Metallen der ersten und zweiten Hauptgruppe umfaßt,

- (c) mindestens ein gegen Akne wirksamer Stoff,
- (d) einen W/O-Emulgator oder ein Gemisch aus mehreren W/O-Emulgatoren, gewählt aus der Gruppe der grenzflächenaktiven Substanzen der allgemeinen Struktur A-B-A', wobei A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen und B eine hydrophile Gruppe bedeutet, den Mängeln des Standes der Technik abhilft.

Dabei ist es bevorzugt, wenn der erfindungsgemäße W/O-Emulgator oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel

- A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, insbesondere 5 bis 40 darstellt,
- X eine Einfachbindung oder die Gruppe

- darstellt,
- R_1 und R_2 unabhängig voneinander so gewählt werden H, Methyl, daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R_3 gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylresten mit 1 - 20 Kohlenstoffatomen, oder daß der oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Fettalkohole mit 8 - 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren, einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder

unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Propylenglycolester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester von Polyolen, insbesondere des Glycerins, Pentaerythritylester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerin Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, der Glycerylfettsäure Citrate, Cetyl Dimethicon Copolyole, der Alkyl Methicon Copolyole, der Alkyl Dimethicon Ethoxy Glucoside, oder daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich in der Weise polyethoxyliert und/oder polypropoxyliert sind, daß sie ethoxylierte und/oder propoxylierte W/O-Emulgatoren darstellen.

Besonders bevorzugt ist es, wenn der erfindungsgemäße W/O-Emulgator oder die W/O-Emulgatoren so gewählt werden, daß die Reste A und A' werden vorteilhaft gewählt aus der Gruppe der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste und Hydroxyacyleste mit 10 - 30 Kohlenstoffatomen sowie ferner aus der Gruppe der über Esterfunktionen miteinander verbundenen Hydroxyacylgruppen, nach dem Schema.

wobei R' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 20 Kohlenstoffatomen und R'' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylengruppen mit 1 bis 20 Kohlenstoffatomen und b Zahlen von 0 bis 200 annehmen kann.

Ganz besonders bevorzugt ist es, wenn der oder die erfindungsgemäßen W/O-Emulgatoren gewählt werden aus der Gruppe PEG-30 Dipolyhydroxystearat, Decaglycerylheptaoleat, Polyglyceryl-3-Diisostearat, PEG-8 Distearat, Diglycerin Dipolyhydroxystearat, Glycerinisostearat, Sorbitanisostearat, Polyglyceryl-3 methylglucose distearat, Steareth-2.

Vorteilhaft ist es weiterhin, wenn zusätzlich Stabilisatoren enthalten sind, die gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel

- A'' und A''' gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, darstellt,
- X eine Einfachbindung oder die Gruppe

- darstellt,

- R_1 und R_2 unabhängig voneinander aus der Gruppe H, Methyl gewählt werden, daß aber nicht beide Reste gleichzeitig Methyl darstellen,

- R_3 gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 20 Kohlenstoffatomen, wobei die Reste A'' und A''' können gleich oder verschieden sein und gewählt werden aus der Gruppe

wobei R_8 und R_9 gleich oder verschieden sein können und gewählt werden aus der Gruppe der gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen, p eine Zahl von 1 - 20 darstellt und Y eine Einfachbindung oder die Gruppe

darstellt,

wobei R_3 gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen.

Ferner können die Gruppe A''' und A'''' unabhängig voneinander auch Alkylreste oder Acylreste darstellen.

Bevorzugt wird als Stabilisator das PEG-45 /Dodecylglycolcopolymer und/oder das PEG-22 / Dodecylglycolcopolymer und/oder das Methoxy PEG-22/Dodecyl Glycol Copolymer verwendet.

Weiterhin ist es bevorzugt, wenn die Ölkomponente oder die Gesamtheit der Ölkomponenten gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten,

verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 30 C-Atomen sofern die Ölkomponente oder die Gesamtheit der Ölkomponenten bei Raumtemperatur eine Flüssigkeit darstellen.

Besonders bevorzugt ist es, wenn die Ölkomponente oder die Gesamtheit der Ölkomponenten gewählt wird aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe, der Silikonöle, Lanoline, der Adipinsäureester, der Butylenglycoldiester, der Dialkylether oder -carbonate, der Gruppe der gesättigten oder ungesättigten, verzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, wobei die Triglycerinester bevorzugt aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle wie Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl gewählt werden.

Weiterhin ist es bevorzugt, wenn die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten, aliphatischen bzw. aromatischen Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 1 bis 80 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten, aliphatischen bzw. aromatischen Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,

- der natürlichen Wachse,
- der Diester von Polyolen und C10-C80 Fettsäuren,
- der Diester von Dimersäuren
- der ethoxylierten Wachse,
- der Triglyceridwachse,
- der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.

Besonders bevorzugt ist es, wenn die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe der Ester aus gesättigten, unverzweigten oder verzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten verzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,
der natürlichen Wachse,
der Diester von Polyolen und C10-C80 Fettsäuren,
der Diester von Dimersäuren
der ethoxylierten Wachse,
der Triglyceridwachse,
der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.

Weiterhin ist es bevorzugt, wenn ein zusätzlicher Gehalt an einem oder mehreren wasserlöslichen und/oder mit Wasser quellbaren Polymeren vorhanden ist, insbesondere mit Alkylgruppen veretherte Cellulose- und/oder Stärkederivate, bevorzugt β -Glucane, Xanthan-Alkylgruppen veretherte Cellulose- und/oder Stärkederivate, bevorzugt β -Glucane, Xanthan-gummi, Dextrane, Hydroxymethylcellulose, Hydroxyethylcellulose und/oder Hydroxypropylcellulose, Methoxy-PEG-22/ Dodecyl-Glycol-Copolymere, Poloxamere, mit einem oder mehreren n-Octenylsuccinatresten veresterter hydrophiler Stärke.

Bevorzut werden die erfindungsgemäßen Emulsionen als kosmetische Zubereitungen zur Behandlung an Akne erkrankter Haut verwendet.

Dabei ist es bevorzugt, die Emulsionen als Stifte herzustellen.

Es war erstaunlich, daß die erfindungsgemäßen Zubereitungen die Einarbeitung hoher Wassermengen, selbst bei Gegenwart nur geringer Mengen an erfindungsgemäß verwendeten Emulgatoren erlaubt. Die Freisetzung insbesondere wasserlöslicher Wirkstoffe ist gegenüber den herkömmlicher Zubereitungen deutlich erhöht. Erfindungsgemäß in die Formulierung eingearbeitete Akne-Wirkstoffe sind in geringerer Konzentration besser wirksam, als die Zubereitungen des Standes der Technik, also zum Beispiel im Vergleich zu W/O-Stiften mit niedrigem Wassergehalt oder im Vergleich zu wasserfreien

Suspensionstiften. Es zeigte sich, daß Hautbefeuuchtungswerte resultieren, die man üblicherweise nur von fließfähigen O/W oder W/O Emulsionen her kennt (Nivea). Ferner lassen sich in Gegenwart von höheren Konzentrationen an Wasser und Befeuchtungsmittel Pigmente oder sogar Perlglanzpigmente einarbeiten. Erstaunlich war, daß die Adhäsion derartiger Stiftformulierungen ausgezeichnet ist, bei Gegenwart von entsprechenden Pigmenten eine das unreine Hautareal abdeckende Wirkung erzielt wird, ein Kühleffekt resultiert, die Produkte nicht klebrig sind. Dies war insofern bemerkenswert, da durch die Verwendung größerer Anteile an Wasser und größerer Konzentrationen an Befeuchtungsmitteln (3-60%) wesentlich weniger haftende Inhaltsstoffe wie Ölkomponenten und Wachse pro abgeriebene Stiftmenge im Vergleich zu wasserfreien Stiften oder nur wasserhaltigen Stiften zu Verfügung steht. Ferner weisen derartige farbige Stifte ebenfalls sehr gute befeuchtende Eigenschaften aus und unterscheiden sich daher von üblichen Marktprodukten, deren Befeuchtungseffekte nur durch Okklusion hervorgerufen wird. Die Wasserphase in derartigen Stiften hat mehrere Vorteile: Sie erzeugt einen Kühleffekt, ist ein Medium zum Lösen der Hautbefeuuchtungsmittel, erlaubt die Auflösung wasserlöslicher Wirkstoffe, verleiht dem Stift eine angenehme Sensorik und erlaubt es, kostengünstigere Rezepturen im Vergleich zu reinen Fettstiften anzubieten.

Aber auch die kosmetischen Eigenschaften der erfindungsgemäßen wasserreichen Stifte erweisen sich gegenüber denen des Standes der Technik deutlich verbessert. Beispielsweise lässt sich selbst ohne weitere Zusätze eine angenehme Kühlwirkung auf der Haut durch bloßes Auftragen erzielen, was sich insbesondere bei der Verwendung als Antiaknestift angenehm bemerkbar macht.

Bei der Verwendung als Foundationstifte oder Abdeckstifte mit einem Gehalt an gegen Akne wirksamen Stoffen machen sich deutliche Verbesserungen gegenüber dem Stande der Technik dadurch bemerkbar, daß beispielsweise zur Herstellung dieser Stifte es möglich ist, wasserdispergierbares Titandioxid einzusetzen beziehungsweise auch Kombinationen aus lipiddispersierbaren und wasserdispergierbaren Metalloxiden.

Die Herstellung erfindungsgemäßer Stifte ist dabei sehr einfach, da es sich um ein Ein-Schritt-Verfahren handelt, bei der beispielsweise die Wasserphase zur heißen Fettpfase gegeben und anschließend auf Raumtemperatur abgekühlt wird.

Ferner zeichnet sich das erfindungsgemäße Verfahren dadurch aus, daß zur Herstellung der erfindungsgemäßen Stifte eine Vielzahl von Emulgatoren beziehungsweise Ölkomponenten eingesetzt werden können.

Es hat sich in erstaunlicher Weise herausgestellt, daß die erfindungsgemäß verwendeten wasserlöslichen und/oder mit Wasser quellbaren Polymere darüber hinaus die Freundlichkeit der erfindungsgemäßen kosmetischen Zubereitungen erhöhen. Es wird ein angenehmeres Gefühl beim Auftragen der Stiftmasse auf die Haut erzielt.

Die Ölkomponente oder die Gesamtheit der Ölkomponenten der erfindungsgemäßen wasserhaltigen, kosmetischen Stifte sollen bei Raumtemperatur eine Flüssigkeit darstellen, die Wachskomponente oder die Gesamtheit der Wachskomponente sollen bei Raumtemperatur einen Festkörper bilden.

Die Ölkomponente oder die Gesamtheit der Ölkomponenten der erfindungsgemäßen wasserhaltigen, kosmetischen Stifte wird bevorzugt gewählt aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 30 C-Atomen sofern die Ölkomponente oder die Gesamtheit der Ölkomponenten bei Raumtemperatur eine Flüssigkeit darstellen.

Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyoleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z.B. Jojobaöl.

Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe, der Silikonöle, Lanoline, der Adipinsäureester, der Butylenglycoldiester, der Dialkylether oder -carbonate, der Gruppe der gesättigten oder ungesättigten, verzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Trigly-

cerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkan-carbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z.B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr.

Vorteilhaft kann die Ölphase ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.

• Vorteilhaft wird Cyclomethicon (Octamethylcyclotetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, beispielsweise Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan).

Ganz besonders vorteilhafte Ölkomponenten können aus der Gruppe Ethylhexyl Cocoate, Myristyl Myristate, Dicaprylylcarbonat, Cetearyl Isononanoat, Octyldodecanol, Polydencene, Squalan, Dicaprylylether, Triisostearin, Butylenglycol Dicaprylat/Dicaprat, Ricinusöl, Capryl-Caprinsäure-triglycerid, Di-(2-Ethylhexyl)adipat), Lanolinöl, Isopropylpalmitat, Cocoglycerid gewählt werden. Ferner sind auch natürliche Öle wie Avocadoöl und Macadamiaöl besonders vorteilhaft. Von diesen sind von besonders ausgezeichnetem Vorteil Dicaprylylcarbonat, Cetearyl Isononanoat, Octyldodecanol, Capryl-Caprinsäuretriglycerid, Di-(2-Ethylhexyl)adipat), Avocadoöl und Macadamiaöl.

Die Ölkomponenten können vorteilhaft in einem Gehalt von 0,5 bis 80 Gew.-%, bezogen auf die Gesamtzubereitung vorliegen, bevorzugt sind etwa 1 bis 20 Gew.-%.

Als Wachse können unverzweigte, gesättigte und/oder ungesättigte aliphatische Fettalkohole oder Fettsäuren eingesetzt werden, die eine Kettenlänge von C22 bis C60 haben, wobei die genannten Alkohole bzw Fettsäuren sowohl einzeln als auch im Gemisch vorliegen können. Behensäuren sowie noch längerkettige Fettsäuren (C-24-60 Fettsäuren) sind besonders vorteilhaft zu verwenden. Ferner können diese auch verzeigt sein.

Die langkettigen Fettsäuren können auch in Form Ihrer Salze eingesetzt werden (Seifen von einwertigen, zwei oder dreiwertigen Kationen wie beispielsweise Kalziumbehenat)

Vorteilhaft im Sinne der vorliegenden Erfindung sind insbesondere Fettalkohole bzw. Fettalkoholgemische, welche durch Verseifung von Wachsen oder Wachsgemischen erhältlich sind. Die als Ausgangsprodukt verwendeten Wachse bzw. Wachsgemische können als natürliche Produkte unterschiedlich zusammengesetzt sein.

Vorteilhafte Fettalkohole bzw. Fettalkoholgemische sind beispielsweise aus Bienenwachs, Chinawachs, Hummelwachs und anderen Insektenwachsen erhältlich.

Auch Fettalkohole bzw. Fettalkoholgemische, welche aus Pflanzenwachsen erhältlich sind, sind vorteilhaft im Sinne der vorliegenden Erfindung. Vorzugsweise verwendbar sind Cuticularwachse niederer und höherer Pflanzen, Algen, Flechten, Moose und Pilze, wie beispielsweise Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Reiswachs, Zuckerrohrwachs, Fruchtwachse, z. B. Apfelwachs, Blütenwachse, Blattwachse von Nadelhölzern, Kaffeewachs, Flachswachs, Sesamwachs, Jojobaöl und dergleichen mehr.

Ferner können auch Reiswachse, Fruchtwachse wie Apfelwachs, Orangenwachs, Zitronenwachs, Grapefruitwachs, Lorbeerwachs (= Bayberrywax) und dergleichen, vorteilhaft verwendet werden. Außerdem können diese natürlichen Wachse auch ohne synthetische Wachse allein eingesetzt werden.

Ferner können auch Wachse von Diestern der C10-C80 Fettsäuren eingesetzt werden, wobei als Alkoholkomponente Propylenglycol, Ethylenglycol, Polyethylenglycol, Polypropylenglycol, Polyglycerin gewählt ist. Ferner können auch Pentaerythritol tri orthotetra-ester von C10 bis C80 Fettsäuren oder auch entspr. Fettsäuren der Sorbitantriester sowie Sucrosepolyester mit 3-8 mol Substitutionsgrad eingesetzt werden.

Beispielsweise ist der Ethylenglycolester von C18-36-Fettsäuren (Syncrowax ERL-C) oder auch Ethylenglycoldistearate und Glycol Distearat geeignet.

Ferner können Wachse aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten, aliphatischen bzw. aromatischen Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 1 bis 80 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten, aliphatischen bzw. aromatischen Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen, gewählt werden.

Bevorzugt ist, die Wachskomponenten zu wählen aus der Gruppe der

- Ester aus gesättigten, unverzweigten oder verzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 60 C-Atomen und gesättigten unverzweigten Alkoholen einer Kettenlänge von 1 bis 60 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen, und/oder der
- Ester aus gesättigten, unverzweigten oder verzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 60 C-Atomen und gesättigten verzweigten Alkoholen einer Kettenlänge von 1 bis 60 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen.

Insbesondere vorteilhaft können die Wachskomponenten aus der Gruppe der C₁₆₋₃₆-Alkylstearate, der C₁₀₋₄₀-Alkylstearate, der C₂₀₋₄₀-Alkylosstearate, der C₂₀₋₄₀-Dialkyldimerate, der C₁₈₋₃₈-Alkylhydroxystearoylsteare, der C₂₀₋₄₀ Dialkyldimerate, der C₂₀₋₄₀-Alkylerucate gewählt werden, ferner C₃₀₋₅₀-Alkylbienenwachs, Cetylpalmitat, Methylpalmitat, Cetearylbehenat, Octacosanyl Stearate. Auch Siliconwachse wie beispielsweise Stearyltrimethylsilan/Stearylalkohol sind gegebenenfalls vorteilhaft.

Vorteilhaft im Sinne der vorliegenden Erfindung sind außerdem Esterwachse, die Ester aus
1. gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Mono- und/oder
Dicarbonsäure mit 10 bis 50 Kohlenstoffatomen, bevorzugt 15 - 45 Kohlenstoffatomen
und
2. Glycerin
darstellen. Dabei können Mono-, Di- und Triglyceride vorteilhaft sein.

Besonders vorteilhaft sind die im folgenden aufgelisteten Glyceride:

Glycerid	Handelsname	erhältlich bei
C ₁₆₋₁₈ -Triglycerid	Cremeol HF-52-SPC	Aarhus Oliefabrik
Glycerylhydroxystearat	Naturchem GMHS	Rahn
Hydrierte Coco-Glyceride	Softisan 100	Hüls AG
Caprylisäure/Caprinsäure/Isostearinsäure/	Softisan 649	Dynamit Nobel
Adipinsäure Triglycerid		
C ₁₈₋₃₆ Triglycerid	Syncrowax HGLC	Croda GmbH
Glyceryltribehenat	Syncrowax HRC	Croda GmbH
Glyceryl-tri-(12-hydroxystearat)	Thixcin R	Rheox / NRC
Hydriertes Ricinusöl	Cutina HR	Henkel KGaA
C ₁₆₋₂₄ -Triglycerid	Cremeol HF-62-SPC	Aarhus Oliefabrik

Besonders bevorzugt ist, die Wachskomponenten zu wählen aus der Gruppe der Triglyceridwachse wie C18-38 Triglycerid oder Tribehenin zu wählen.

Ferner hat sich herausgestellt, daß ethoxylierte Wachse wie beispielsweise PEG-8 Bienenwachs, PEG 6 Sorbitanbienenwachs, PEG-2 hydrogeniertes Castoröl, PEG-12 Carnaubawachs vorteilhaft sind, da sie die Stiftmatrix weicher machen und ferner eine bessere Solubilisierung wasserlöslicher Inhaltsstoffe ermöglichen.

Die Wachskomponenten können vorteilhaft in einem Gehalt von 0,5 bis 80 Gew.-%, bezogen auf die Gesamtzubereitung vorliegen, bevorzugt sind etwa 1 bis 20 Gew.-%.

Es ist von Vorteil, das Verhältnis von Öl- und Wachskomponenten zueinander ungefähr aus dem Bereich der Gewichtsverhältnisse zwischen 4 : 1 bis 1 : 4, insbesondere 3 : 1 bis 1 : 3, ganz besonders bevorzugt 2 : 1 bis 1 : 2, einzustellen.

Die Wassermenge kann bis zu etwa 85 Gew.-% betragen, bezogen auf das Gesamtgewicht der Zubereitungen, wobei üblicherweise optimale Wassergehalte im Bereich zwischen 20 und 80 Gew.-%, bevorzugt zwischen 30 und 75 Gew.-% gewählt werden. Gewünschtenfalls kann der Mindestwassergehalt zwar 10 Gew.-% unterschreiten. Es ist aber von größerem Vorteil, erfindungsgemäße Emulsionsstifte mit Gehalt von über 10 Gew.-% Wasser

auszustatten insbesondere dann, wenn wasserlösliche oder wasserdispergierbare Wirkstoffe wie Hautbefeuhtungsmittel, Anti-Akne Wirkstoffe, UV-Filter, Abdeckpigmente, und wasserdispergierbare Pigmente in dem Fachmann bekannten Konzentrationen eingesetzt werden sollen.

Als Hautbefeuhtungsmittel lassen sich vorteilhaft Glycerin, Chitosan, Fucogel, Propylenglycol, Dipropylenglycol, Butylenglycol, Mannitol, Polyethylenglycol, Milchsäure, Natriumpyrrolidoncarbonsäure, Hyaluronsäure, Salze der angegebenen Säuren sowie Glycin, Harnstoff und Salze von Metallen der ersten und zweiten Hauptgruppe verwenden.

Besonders geeignet sind Glycerin, Milchsäure, Butylenglycol, Harnstoff, Hyaluronsäure.

Der Gehalt an Hautbefeuhtungsmitteln beträgt vorteilhaft 3 Gew.-% bis 60 Gew.-%, vorzugsweise 4 bis 50 Gew.-%, insbesondere 5 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen.

Die erfindungsgemäßen wasserreichen Stifte sind hervorragende Vehikel für dermatologische Wirkstoffe. Insbesondere eignen sie sich als Träger für gegen Akne wirksame Substanzen. So ist es vorteilhaft, den erfindungsgemäß verwendeten Zubereitungen gegen Akne wirksame Substanzen zuzugeben, beispielsweise gegen *Propionibacterium acnes* wirksame Stoffe (etwa solche, die in DE-OS 42 29 707, DE-OS 43 05 069, DE-OS 43 07 976, DE-OS 43 37 711, DE-OS 43 29 379 beschrieben werden) aber auch andere gegen Akne wirksame Substanzen, beispielsweise all-trans-Retinsäure, 13-cis-Retinsäure und verwandte Stoffe) oder antientzündliche Wirkstoffe, beispielsweise Batylalkohol (α -Octadecylglycerylether), Selachylalkohol (α -9-Octadecenylglycerylether), Chimylalkohol (α -Hexadecylglycerylether), Bisabolol, saure Aluminium- und/oder Zirkoniumsalze, Glycerylcaprinat, 2-Butyloktansäure, Milchsäure, Salicylsäure, Zinksalze, Citronensäure, Diglycerinmonocaprinat, Glycerylcaprylat, Polyglyceryl-3-caprylat und/oder Octoxyglycerin.

Besonders bevorzugte Anti-Akne Wirkstoffe davon sind saure Aluminium- und/oder Zirkoniumsalze, Milchsäure, Salicylsäure, Zinksalze, Citronensäure, Diglycerinmonocaprinat, Glycerylcaprinat, 2-Butyloktansäure, Glycerylcaprylat, Polyglyceryl-3-caprylat und/oder Octoxyglycerin. Insbesondere sind auch Kombinationen der genannten Wirkstoffe vorteilhaft.

Die Menge der Antiaknemittel (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,01 bis 30 Gew.-%, besonders bevorzugt 0,1 - 20 Gew.-%, insbesondere 1 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Ferner zeichnet sich das erfindungsgemäße Verfahren dadurch aus, daß zur Herstellung der erfindungsgemäßen Stifte eine Vielzahl von Emulgatoren beziehungsweise Ölkomponenten eingesetzt werden können.

Der erfindungsgemäß verwendete W/O-Emulgator bzw. die W/O-Emulgatoren aus der Substanzgruppe A-B-A' wird oder werden erfindungsgemäß vorteilhaft gewählt aus der Gruppe der Substanzen der allgemeinen Formel

- A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, insbesondere 5 bis 40 darstellt,
- X eine Einfachbindung oder die Gruppe

darstellt,

- R_1 und R_2 unabhängig voneinander aus der Gruppe H, Methyl gewählt werden daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R_3 gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 20 Kohlenstoffatomen.

Die Strukturformel ist nicht so zu interpretieren, daß durch den Index a alle in der Klammer repräsentierten Reste R_1 , R_2 bzw R_3 im gesamten Molekül jeweils gleich sein müssen. Vielmehr können diese Reste in jedem der a Fragmente

frei gewählt werden

Die Reste A und A' werden vorteilhaft gewählt aus der Gruppe der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste und Hydroxyacylreste mit 10 - 30 Kohlenstoffatomen sowie ferner aus der Gruppe der über Esterfunktionen miteinander verbundenen Hydroxyacylgruppen, nach dem Schema

wobei R' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 20 Kohlenstoffatomen und R'' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylengruppen mit 1 bis 20 Kohlenstoffatomen und b Zahlen von 0 bis 200 annehmen kann.

Beispiele für besonders vorteilhaft im Sinne der vorliegenden Erfindung zu verwendende W/O-Emulgatoren des A-B-A'-Typs sind PEG-30-Dipolyhydroxystearat, Decaglycerylheptoleat, Polyglyceryl-3-Diisostearat, PEG-8-Distearat, Diglycerindipolyhydroxystearat.

Erfnungsgemäß können der oder die W/O-Emulgatoren allerdings auch gewählt werden aus der Gruppe Fettalkohole mit 8 - 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter

Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Propylenglycolester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester von Polyolen, insbesondere des Glycerins, Pentaerythritylester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerin Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Cetyl Dimethicon Copolyole, Alkyl Methicon Copolyole, Alkyl Diemethicon Ethoxy Glucoside, Glycerylfettsäure Citrate.

Es kann erfindungsgemäß von Vorteil sein, daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich polyethoxyliert und/oder polypropoxylert sind, oder daß auch andere polyethoxylierte und/oder polypropoxylerte Produkte Verwendung finden, beispielsweise polyethoxyliertes hydrogeniertes oder nichthydrogeniertes Ricinusöl, ethoxyliertes Cholesterin, ethoxilierte Fettalkohole wie Steareth- 2, ethoxylierte Fettsäuren, ethoxylierte

Dicarbonsäuren, ethoxylierte Wachse wie PEG (-6, -8, -12, -20) Bienenwachs, PEG (-6, -8, -20 Sorbitanbienenwachs), ethoxylierte Carnaubawachse (PEG-12 Carnaubawachs).

Insbesondere vorteilhafte W/O-Emulgatoren sind Glyceryllanolat, Glycerylmonostearat, Glycerylmonoisostearat, Glycerylmonomyristat, Glycerylmonooleat, Diglycerylmonostearat, Diglycerylmonoisostearat, Diglyceryldiisostearat, Propylenglycolmonoisostearat, Propylenglycolmonolaurat, Sorbitanmonoisostearat, Sorbitanmonolaurat, Sorbitanmonocaprylat, Sorbitanmonoisooleat, Saccharosedistearat, Cetylalkohol, Stearylalkohol, Arachidylalkohol, Behenylalkohol, Isobehenylalkohol, 2-Ethylhexylglycerinether, Selachylalkohol, Chimylalkohol, Polyethylenglycol(2)stearylether (Steareth-2), Glycerylmonolaurat, Glycerylmonocaprinat, Glycerylmonocaprylat, Glycylsorbitanstearat Polyglyceryl-4 Isostearat, Polyglyceryl-2-sesquioleat, PEG-7 hydrogeniertes Castoröl, PEG-40-Sorbitanperisostearat, Isostearylidi-glycerylsuccinat, PEG-5-Cholesterylether, Triglycerindiisostearat.

Der erfindungsgemäß verwendete W/O-Emulgator bzw. die erfindungsgemäß verwendeten W/O-Emulgatoren, welcher oder welche in das Schema A-B-A' passen, liegt bzw. liegen vorteilhaft in Konzentrationen von 0,1 - 25 Gew.-% vor, wobei es allerdings möglich und vorteilhaft ist, den Gehalt an Emulgatoren niedrig zu halten, etwa bis 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung. Es ist vorteilhaft, die Gesamtkonzentration der W/O-Emulgatoren, was auch diejenigen Emulgatoren einschließt, die nicht in das Schema A-B-A' passen, nicht größer als etwa 25 - 30 Gew.-% und nicht geringer als etwa 0,1 Gew.-% zu wählen, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.

Es kann erfindungsgemäß von Vorteil sein, daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich polyethoxyliert und/oder polypropoxylert sind, oder daß auch andere polyethoxylierte und/oder polypropoxylierte Produkte Verwendung finden, beispielsweise polyethoxyliertes hydrogeniertes oder nichthydrogeniertes Ricinusöl, ethoxyliertes Cholesterin, ethoxlierte Fettalkohole wie Steareth- 2.

Die erfindungsgemäß verwendeten Stabilisatoren werden erfindungsgemäß vorteilhaft gewählt aus der Gruppe der Substanzen der allgemeinen Formel

A'' und A'''' gleiche oder verschiedene hydrophobe organische Reste darstellen,
 a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, darstellt,
 X eine Einfachbindung oder die Gruppe

darstellt,
 R_1 und R_2 unabhängig voneinander aus der Gruppe H, Methyl gewählt werden daß
aber nicht beide Reste gleichzeitig Methyl darstellen,
 R_3 gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, ge-
sättigten und ungesättigten Alkyl- und Acylreste mit 1 - 20 Kohlenstoffatomen.

Die Strukturformel ist nicht so zu interpretieren, daß durch den Index a alle in der Klammer
repräsentierten Reste R_1 , R_2 bzw R_3 im gesamten Molekül jeweils gleich sein müssen.
Vielmehr können diese Reste in jedem der a Fragmente

frei gewählt werden.

Die Reste A'' und A'''' können gleich oder verschieden sein und werden bevorzugt gewählt
aus der Gruppe

wobei R₈ und R₉ gleich oder verschieden sein können und gewählt werden aus der Gruppe der gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen, p eine Zahl von 1 - 20 darstellt und Y eine Einfachbindung oder die Gruppe

darstellt, wobei R₃ gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen.(alt)

Bevorzugter Stabilisator ist das PEG-45 /Dodecylglycolcopolymer, welches die Struktur

besitzt. Es wird von der Gesellschaft Akzo Nobel Chemicals GmbH unter der Bezeichnung ELFACOS® ST 9 angeboten. Aber auch das entsprechende PEG-22 / Dodecylglycolcopolymer ist vorteilhaft zu verwenden.

Ferner können die Gruppe A“ und A“unabhängig voneinander auch Alkylreste oder Acylreste darstellen. Besonders vorteilhaft ist auch als Stabilisator das Methoxy-PEG-22-Dodecyl Glycol Copolymer zu verwenden. Es wird von der Gesellschaft Akzo Nobel Chemicals GmbH unter der Bezeichnung ELFACOS® E 200 angeboten.

Der Stabilisator bzw. die Stabilisatoren liegen vorteilhaft in Konzentrationen von 0,01 - 25 Gew.-% vor, wobei es allerdings möglich und vorteilhaft ist, den Gehalt an Stabilisatoren niedrig zu halten, etwa bis 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zusammensetzung.

Es ist insbesondere dann vorteilhaft, Stabilisatoren zu wählen, wenn erfindungsgemäße Zubereitungen einen hohen Gehalt an destabilisierenden Substanzen, beispielsweise Lichtschutzfilter enthalten sollen. Ist der Gehalt an destabilisierenden Substanzen gering, kann man auf den Stabilisator verzichten.

Die einsetzbaren Pigmente können organischen und anorganischen Ursprungs sein, wie beispielsweise organische vom Azo-Typ, Indigoide, Triphenylmethan-artige, Anthrachinone, und Xanthin Farbstoffe, die als D&C and FD&C blues, browns, greens, oranges, reds, yellows bekannt sind. Anorganische bestehen aus unlöslichen Salzen von zertifizierten Farbstoffen, die als Lakes oder Eisenoxide bezeichnet werden.

Farbige Pigmente: Anorganische und Organische: Barium lakes, calcium lakes, aluminum lakes, titandioxide, mica and iron oxides. Als Al-Salze sind z.B Red 3 Aluminum Lake, Red 21 Aluminum Lake, Red 27 Aluminum Lake, Red 28 Aluminum Lake, Red 33 Aluminum Lake, Yellow 5 Aluminum Lake, Yellow 6 Aluminum Lake, Yellow 10 Aluminum Lake, Orange 5 Aluminum Lake, Blue 1 Aluminum Lake und Kombinationen einsetzbar.

Als Eisenoxide oder -oxidhydrate sind z.B. cosmetic yellow oxide C22-8073 (Suncemical) cosmetic oxide MC 33-120 (Suncemical), cosmetic brown oxide C33-115 (Nordmann & Rassmann), cosmetic russet oxide C33-8075 (Suncemical) bekannt und gegebenfalls vorteilhaft. Als Alumosilicat ist ultramarinblau (Les colorants Wacker) einsetzbar.

Auch Perlglanzpigmente lassen sich in die erfindungsgemäßen Emulsionen einarbeiten. Diese sind beispielsweise von den Firmen Costenoble (Cloisonne-Typ, Flamenco-Typ, Low Lustre-Typ), Merck (Colorona-Typen, Microna-Typ, Timiron-Typ, Colorona, Ronosphere), Les Colornats Wacker (Covapure, Vert oxyde de Chrome), Cadre (Colorona, Sicopearl), BASF (Sicopearl, Sicovit), Rona (Colorona) bekannt. Als besonders vorteilhaftes Perlglanzpigment haben sich beispielsweise Timiron Silk Gold und Colorona Red Gold bewährt.

Die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen können Farbstoffe und/oder Farbpigmente enthalten, insbesondere wenn sie in Form von dekorativen Lippenstiften, Lippenkonturenstiften, Abdeckstiften, Kajalstiften, Augenkonturenstiften und/oder Augenbrauenstiften vorliegen. Die Farbstoffe und -pigmente können aus der entsprechenden Positivliste der Kosmetikverordnung bzw. der EG-Liste kosmetischer Färbemittel ausgewählt werden. In den meisten Fällen sind sie mit den für Lebensmittel zugelassenen Farbstoffen identisch. Vorteilhafte Farbpigmente sind beispielsweise Titandioxid, Glimmer, Eisenoxide (z. B. Fe_2O_3 , Fe_3O_4 , $FeO(OH)$) und/oder Zinnoxid. Vorteilhafte Farbstoffe sind beispielsweise Carmin, Berliner Blau, Chromoxidgrün,

Ultramarinblau und/oder Manganviolett. Es ist insbesondere vorteilhaft, die Farbstoffe und/oder Farbpigmente aus der folgenden Liste zu wählen. (Die Stoffe sind nach ihrer Colour Index Number geordnet.)

Colour Index Number	Deutsche Bezeichnung	CAS-Nr. bzw. Summenfor- mel
10316	C-ext. Gelb 1	846-70-8
12075	C-Orange	3468-63-1
14700	C-Rot 57	4548-53-2
15510	C-ext.Orange 8	633-96-5
15585	C-Rot 55	2092-56-0
15585:1	C-Rot 55	5160-02-1
15800:1	C-ext. Rot 57	6371-76-2
15850	Lithol Rubin 8	5858-81-1
15850:1	C-Rot 12	5281-04-9
15880:1	C-ext. Rot 61	6417-83-0
15980	C-Orange 9	$C_{16}H_{10}N_2O_7S_2 \cdot 2Na$
15985	C-Orange 10	2783-94-0
16035	C-Rot 60	29956-17-6
17200	C-Rot 58	$C_{16}H_{13}N_3O_7S_2 \cdot 2Na$
19140	C-Gelb 10	1934-21-0
20170	C-ext. Braun 4	1320-07-6
		6371-84-2
26100	C-ext. Rot 56	85-86-9
42053	C-Grün 12	$C_{37}H_{36}N_2O_{10}S_3 \cdot 2Na$
42090	C-Blau 21	2650-18-2
42090	C-Blau 21 (Ammonium Salz)	2650-18-2 6371-85-3 37307-56-5
45170	C-Rot 59	81-88-9
45170:1	(Rhodamin B-stearat)	$C_{28}H_{31}N_2O_3 \cdot C_{18}H_{35}O_2$
45370:1	C-Rot 27	$C_{20}H_{10}Br_2O_5$
45380	C-Rot 30	17372-87-1
45380:2	Tetrabromfluoreszein	15086-94-9

Colour Index Number	Deutsche Bezeichnung	CAS-Nr. bzw. Summenfor- mel
45410	C-Rot 34	18472-87-2
45410:1	Tetrabromtetrachlorfluoreszein	13473-26-2
45425	C-Rot 35	$C_{20}H_{10}I_2O_5 \cdot 2Na$
45425:1	Fluoreszein-Gemisch	518-40-7 38577-97-8
47000	C-ext. Gelb 23	8003-22-3
47005	C-Gelb 11	8004-92-0
59040	C-ext. Gelb 24	6358-69-6
60725	C-ext. Violett 18	81-48-1
61565	C-Grün 10	128-80-3
61570	C-Grün 11	4403-90-1
73360	C-Rot 28	2379-74-0
75120	C-Orange 12	8015-67-6
75130	C-Orange 11	7235-40-7
75170	Guanin	68-94-0 73-40-50
75470	C-Rot 50	$C_{22}H_{20}O_{13}$
75480	Henna	$C_{10}H_6O_3$ (Lawson)
75810	C-Grün 8	11006-34-1
75810	C-Grün 7	479-61-8 519-62-0
77000	C-Pigment 1	Al
77007	C-Blau 16	57455-37-5
77019	C-Weiß 11	12001-26-2
77288	C-Grün 9	1308-38-9
77289	C-Grün 14	12001-99-9
77400	Bronze	7440-50-8
77491	C-Rot 45	1309-37-1
77492	C-Braun 3 (C-Gelb 8)	$Fe_2O_3 FeO(OH)$
77499	C-Schwarz 5	Fe_3O_4
77510/20	C-Blau 17	$C_6FeN_6 \cdot 4/3 Fe$

Colour Index Number	Deutsche Bezeichnung	CAS-Nr. bzw. Summenformel
77742	C-Violett 11	10101-66-3
77820	C-Pigment 2	7440-22-4
77891	C-Weiß 7	13463-67-7 (TiO_2)
77947	C-Weiß 8	1314-13-2

Die Farbstoffe und Pigmente können sowohl einzeln als auch im Gemisch vorliegen sowie gegenseitig miteinander beschichtet sein, wobei durch unterschiedliche Beschichtungsdicken im allgemeinen verschiedene Farbeffekte hervorgerufen werden.

 Die Liste der genannten Farbstoffe und Farbpigmente, die in den erfindungsgemäßen Emulsionsstiften verwendet werden können, soll selbstverständlich nicht limitierend sein.

Aufgrund des hohen Anteils der Wasserphase erfindungsgemäßer Emulsionen lassen sich sowohl große Mengen hydrophiler, als auch hydrophober Wirkstoffe in die Formulierungen einarbeiten. Derartige erfindungsgemäß vorteilhafte Wirkstoffe sind beispielsweise Acetylsalicylsäure, Azulen, Ascorbinsäure, Vitamin B₁, das Vitamin B₁₂ das Vitamin D₁, aber auch Bisabolol, ungesättigte Fettsäuren, namentlich die essentiellen Fettsäuren (oft auch Vitamin F genannt), insbesondere die γ -Linolensäure, Ölsäure, Eicosapentaënsäure, Docosahexaënsäure, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z.B. Nachtkerzenöl, Borretschöl oder Johannisbeer kernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen und so weiter.

Zusätzlich können Pflegewirkstoffe eingearbeitet werden, welche sich nicht wie bisher auf die fettlöslichen Wirkstoffe beschränken, sondern auch aus der Gruppe der wasserlöslichen Wirkstoffe gewählt werden können, beispielsweise Vitamine und dergleichen mehr.

Besonders bevorzugte Wirkstoffe im Sinne der vorliegenden Erfindung sind α -Glucosylrutin, Coenzym Q10, 3-Hydroxy-4-(trimethylammonio)-buttersäurebetain und Sericosid.

Vorteilhafte Wirkstoffe sind weiterhin Antioxidantien, insbesondere solche, welche nicht nur die Bestandteile der Formulierung, sondern auch die Haut vor oxidativer Beanspruchung schützen können.

Die Zubereitungen enthalten daher vorteilhaft eines oder mehrere Antioxidantien. Als günstige, aber dennoch fakultativ zu verwendende Antioxidantien können alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden. Es ist dabei vorteilhaft, Antioxidantien als einzige Wirkstoffklasse zu verwenden, etwa dann, wenn eine kosmetische oder dermatologische Anwendung im Vordergrunde steht wie die Bekämpfung der oxidativen Beanspruchung der Haut. Es ist aber auch günstig, die erfindungsgemäßen W/O-Emulsionsstifte mit einem Gehalt an einem oder mehreren Antioxidantien zu versehen, wenn die Zubereitungen einem anderen Zwecke dienen sollen, z.B. als Desodorantien oder Sonnenschutzmittel.

- Besonders vorteilhaft werden die Antioxidantien gewählt aus der Gruppe, bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α -Carotin, β -Carotin, Lycopin) und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioglycerin, Thiosorbitol, Thioglycolsäure, Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ -Linoleyl-, Cholesteryl - und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Pentat-, Hexa-, Heptahioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μ mol/kg), ferner (Metall)-Chelatoren (z.B. α -Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α -Hydroxysäuren (z.B. Zitronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. gamma-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitate, Mg - Ascorbylphosphate, Ascorbylacetate), Isoascorbinsäure und ihre Derivate, Tocopherole und Derivate (z.B. Vitamin E - acetat), Vitamin A und Derivate (Vitamin A - palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, Ferulasäure und deren Derivate, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophonen, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink

und dessen Derivate (z.B. ZnO, ZnSO₄) Selen und dessen Derivate (z.B. Selenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

Besonders vorteilhaft im Sinne der vorliegenden Erfindung können zwar öllösliche oder öldispersierbare Antioxidantien eingesetzt werden. Es hat sich jedoch herausgestellt, daß die Erfindung gerade dem Einsatz wasserlöslicher oder wasserdispersierbarer Antioxidantien in Stiftformulierungen die Pforten öffnet.

Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 - 20 Gew.-%, insbesondere 1 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist es vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Sofern Vitamin A, bzw. Vitamin-A-Derivate, bzw. Carotin und deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Erfindungsgemäß können Wirkstoffe auch sehr vorteilhaft gewählt werden aus der Gruppe der lipophilen Wirkstoffe, insbesondere aus folgender Gruppe:

Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z.B. Hydrocortison-17-valerat, Vitamine, z.B. Ascorbinsäure und deren Derivate, Vitamine der B- und D-Reihe, sehr günstig das Vitamin B₁, das Vitamin B₁₂ das Vitamin D₁, aber auch Bisabolol, ungesättigte Fettsäuren, namentlich die essentiellen Fettsäuren (oft auch Vitamin F genannt), insbesondere die γ -Linolensäure, Ölsäure, Eicosapentaënsäure, Docosahexaënsäure und deren Derivate, Chloramphenicol, Coffein, Prostaglandine, Thymol, Campher, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z.B. Nachtkerzenöl, Borretschöl oder Johannisbeer kernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen und so weiter.

Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl®, Eucerit® und Neocerit®.

Die erfindungsgemäßen Stifte tragen ferner in vorzüglicher Weise zur Hautglättung bei, insbesondere, wenn sie mit einer oder mehreren Substanzen versehen sind, die die Hautglättung fördern.

Eine erstaunliche Eigenschaft der erfindungsgemäße Zubereitungen ist, daß diese sehr gute Vehikel für kosmetische oder dermatologische Wirkstoffe in die Haut sind, wobei bevorzugte Wirkstoffe Antioxidantien sind, welche die Haut vor oxidativer Beanspruchung schützen können. Bevorzugte Antioxidantien sind dabei Vitamin E und dessen Derivate sowie Vitamin A und dessen Derivate.

Besonders vorteilhaft werden der oder die Wirkstoffe ferner gewählt aus der Gruppe der NO-Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut dienen sollen.

Bevorzugter NO-Synthasehemmer ist das Nitroarginin.

Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe, welche Catechine und Gallensäureester von Catechinen und wäßrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen umfaßt, die einen Gehalt an Catechinen oder Gallensäureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies *Camellia sinensis* (grüner Tee). Insbesondere vorteilhaft sind deren typische Inhaltsstoffe (wie z. B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide).

Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des „Catechins“ (Catechol, 3,3',4',5,7-Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicatechin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung.

Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen der Spezies Camellia spec., ganz besonders der Teesorten Camellia sinensis, C. assamica, C. taliensis bzw. C. irrawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica.

Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (-)-Catechin, (+)-Catechin, (-)-Catechingallat, (-)-Gallocatechingallat, (+)-Epicatechin, (-)-Epicatechin, (-)-Epicatechin Gallat, (-)-Epigallocatechin, (-)-Epigallocatechingallat.

Auch Flavon und seine Derivate (oft auch kollektiv „Flavone“ genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspositionen angegeben):

Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zubereitungen eingesetzt werden können, sind in der nachstehenden Tabelle aufgeführt:

	OH-Substitutionspositionen							
	3	5	7	8	2'	3'	4'	5'
Flavon	-	-	-	-	-	-	-	-
Flavonol	+	-	-	-	-	-	-	-
Chrysin	-	+	+	-	-	-	-	-
Galangin	+	+	+	-	-	-	-	-
Apigenin	-	+	+	-	-	-	+	-
Fisetin	+	-	+	-	-	+	+	-
Luteolin	-	+	+	-	-	+	+	-
Kämpferol	+	+	+	-	-	-	+	-
Quercetin	+	+	+	-	-	+	+	-
Morin	+	+	+	-	+	-	+	-
Robinetin	+	-	+	-	-	+	+	+
Gossypetin	+	+	+	+	-	+	+	-
Myricetin	+	+	+	-	-	+	+	+

In der Natur kommen Flavone in der Regel in glycosidierter Form vor.

Erfnungsgemäß werden die Flavonoide bevorzugt gewählt aus der Gruppe der Substanzen der generischen Strukturformel

wobei Z_1 bis Z_7 unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.

Erfindungsgemäß können die Flavonoide aber auch vorteilhaft gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

wobei Z₁ bis Z₆ unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei Gly gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.

Bevorzugt können solche Strukturen gewählt werden aus der Gruppe der Substanzen der generischen Strukturformel

wobei Gly₁, Gly₂ und Gly₃ unabhängig voneinander Monoglycosidreste oder darstellen. Gly₂ bzw. Gly₃ können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

Bevorzugt werden Gly₁, Gly₂ und Gly₃ unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Taurosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.

Vorteilhaft werden Z₁ bis Z₅ unabhängig voneinander gewählt aus der Gruppe H, OH, Methoxy-, Ethoxy- sowie 2-Hydroxyethoxy-, und die Flavonglycoside haben die Struktur

Besonders vorteilhaft werden die erfindungsgemäßen Flavonglycoside aus der Gruppe, welche durch die folgende Struktur wiedergegeben werden:

wobei Gly₁, Gly₂ und Gly₃ unabhängig voneinander Monoglycosidreste oder darstellen. Gly₂ bzw. Gly₃ können auch einzeln oder gemeinsam Absättigungen durch Wasserstoffatome darstellen.

Bevorzugt werden Gly₁, Gly₂ und Gly₃ unabhängig voneinander gewählt aus der Gruppe der Hexosylreste, insbesondere der Rhamnosylreste und Glucosylreste. Aber auch andere Hexosylreste, beispielsweise Allosyl, Altrosyl, Galactosyl, Gulosyl, Idosyl, Mannosyl und Taurosyl sind gegebenenfalls vorteilhaft zu verwenden. Es kann auch erfindungsgemäß vorteilhaft sein, Pentosylreste zu verwenden.

Besonders vorteilhaft im Sinne der vorliegenden Erfindung ist, das oder die Flavonglycoside zu wählen aus der Gruppe α -Glucosylrutin, α -Glucosylmyricetin, α -Glucosylisoquercitrin, α -Glucosylisoquercetin und α -Glucosylquercitrin.

Erfindungsgemäß besonders bevorzugt ist α -Glucosylrutin.

Erfindungsgemäß vorteilhaft sind auch Naringin (Aurantiin, Naringenin-7-rhamnoglucosid), Hesperidin (3',5,7-Trihydroxy-4'-methoxyflavanon-7-rutinosid, Hesperidosid, Hesperetin-7-O-rutinosid). Rutin (3,3',4',5,7-Pentahydroxyflyvon-3-rutinosid, Quercetin-3-rutinosid, Sophorin, Birutan, Rutabion, Taurutin, Phytomelin, Melin), Troxerutin (3,5-Dihydroxy-3',4',7-tris(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy- α -L-mannopyranosyl)- β -D-glucopyranosid), Monoxerutin (3,3',4',5-Tetrahydroxy-7-(2-hydroxyethoxy)-flavon-3-(6-O-(6-deoxy- α -L-mannopyranosyl)- β -D-glucopyranosid)), Dihydrorobinetin (3,3',4',5',7-Pentahydroxyflavanon), Taxifolin (3,3',4',5,7-Pentahydroxyflavanon), Eriodictyol-7-glucosid (3',4',5,7-Tetrahydroxyflavanon-7-glucosid), Flavanomarein (3',4',7,8-Tetrahydroxyflavanon-7-glucosid) und Isoquercetin (3,3',4',5,7-Pentahydroxyflavanon-3-(β -D-Glucopyranosid)).

Vorteilhaft ist es auch, den oder die Wirkstoffe aus der Gruppe der Ubichinone und Plastochinone zu wählen.

Ubichinone zeichnen sich durch die Strukturformel.

aus und stellen die am weitesten verbreiteten und damit am besten untersuchten Biochinone dar. Ubichinone werden je nach Zahl der in der Seitenkette verknüpften Isopren-Einheiten als Q-1, Q-2, Q-3 usw. oder nach Anzahl der C-Atome als U-5, U-10, U-15 usw. bezeichnet. Sie treten bevorzugt mit bestimmten Kettenlängen auf, z. B. in einigen Mikroorganismen und Hefen mit n=6. Bei den meisten Säugetieren einschließlich des Menschen überwiegt Q10.

Besonders vorteilhaft ist Coenzym Q10, welches durch folgende Strukturformel gekennzeichnet ist:

Plastochinone weisen die allgemeine Strukturformel

auf. Plastoschinone unterscheiden sich in der Anzahl *n* der Isopren-Reste und werden entsprechend bezeichnet, z. B. PQ-9 (*n*=9). Ferner existieren andere Plastochinone mit unterschiedlichen Substituenten am Chinon-Ring.

Auch Kreatin und/oder Kreatinderivate sind bevorzugte Wirkstoffe im Sinne der vorliegenden Erfindung. Kreatin zeichnet sich durch folgende Struktur aus:

Bevorzugte Derivate sind Kreatinphosphat sowie Kreatinsulfat, Kreatinacetat, Kreatinascorbat und die an der Carboxylgruppe mit mono- oder polyfunktionalen Alkoholen veresterten Derivate.

Ein weiterer vorteilhafter Wirkstoff ist L-Carnitin [3-Hydroxy-4-(trimethylammonio)-buttersäurebetain]. Auch Acyl-Carnitine, welche gewählt aus der Gruppe der Substanzen der folgenden allgemeinen Strukturformel

wobei R gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylreste mit bis zu 10 Kohlenstoffatomen sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Bevorzugt sind Propionylcarnitin und insbesondere Acetylcarnitin. Beide Entantiomere (D- und L-Form) sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Es kann auch von Vorteil sein, beliebige Enantiomerengemische, beispielsweise ein Racemat aus D- und L-Form, zu verwenden.

Weitere vorteilhafte Wirkstoffe sind Sericosid, Pyridoxol, Aminoguadin, Phytochelatin, Isoflavone (Genistein, Daidzein, Daidzin, Glycitin), Niacin, Tyrosinsulfat, Dioic Acid, Adenosin, Pyridoxin, Arginin, Vitamin K, Biotin und Aromastoffe.

Die Liste der genannten Wirkstoffe bzw. Wirkstoffkombinationen, die in den erfindungsgemäßen Zubereitungen verwendet werden können, soll selbstverständlich nicht limitierend sein. Die Wirkstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden.

Vorteilhafte Wirkstoffe sind weiterhin Antioxidantien, insbesondere solche, welche nicht nur die Bestandteile der Formulierung, sondern auch die Haut vor oxidativer Beanspruchung schützen können. Besonders vorteilhafte Antioxidantien sind Urocaninsäure, Carnosin, Carotinoide, Carotine, Liponsäure, α -Hydroxyfettsäuren, α -Hydroxsäuren, Ubichinon. Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 - 20 Gew.-%, insbesondere 1 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Es ist gegebenenfalls möglich und vorteilhaft, die erfindungsgemäßen Zubereitungen als Grundlage für pharmazeutische Formulierungen zu verwenden. Mutatis mutandis gelten entsprechende Anforderungen an die Formulierung medizinischer Zubereitungen. Die Übergänge zwischen reinen Kosmetika und reinen Pharmaka sind dabei fließend. Als

pharmazeutische Wirkstoffe sind erfundungsgemäß grundsätzlich alle Wirkstoffklassen geeignet, wobei lipophile Wirkstoffe bevorzugt sind. Beispiele sind: Antihistaminika, Antiphlogistika, Antibiotika, Antimykotika, die Durchblutung fördernde Wirkstoffe, Keratolytika, Antihistaminika, Antiphlogistika, Antibiotika, Antimykotika, die Durchblutung fördernde Wirkstoffe, Keratolytika, Hormone, Steroide, Vitamine, Hormone, Steroide, Vitamine usw.

Besonders vorteilhafte Repellent-Wirkstoffe im Sinne der vorliegenden Erfindung sind die obengenannten Wirkstoffe N,N-Diethyl-3-methylbenzamid, 3-(N-n-Butyl-N-acetyl-amino)-propionsäureethylester, 1-Piperidincarbonsäure-2-(2-hydroxyethyl)-1-methylpropylester und Dimethylphthalat.

Es ist auch möglich, zusätzliche Substanzen zu verwenden, welche die Konsistenz der erfindungsgemäßen Zubereitungen modifizieren, beispielsweise Verdicker, welche gewählt werden können aus der Gruppe der Substanzen welche mindestens zwei hydrophile Reste tragen, welche über eine hydrophobe Gruppierung miteinander verbunden sind, also den Molekülschemata

folgen.

Dabei stellen die Reste B mit den verschiedenen Indizes hydrophile Gruppen dar, die Reste A mit den verschiedenen Indizes hydrophobe Gruppen.

Solche Verdicker werden bevorzugt gewählt aus der Gruppe der Triblockcopolymere des Typs

wobei m eine Zahl von 10 bis 10000 darstellen kann, R_4 und R_5 gleich oder verschieden sein können und gewählt werden aus der Gruppe, die durch die allgemeine Struktur

repräsentiert wird. Dabei können R_6 und R_7 unabhängig voneinander so gewählt werden daß sie H und Methyl, daß aber nicht beide Reste gleichzeitig Methyl darstellen können. q ist eine Zahl von 2 bis 1000, bevorzugt von 10 bis 200.

R_4 und R_5 können auch Polyolreste darstellen (z.B. Glyceryl-, Polyglyceryl-, Sorbityl-, Celulosereste usw.).

- Insbesondere dann, wenn die erfindungsgemäßen Zubereitungen sich durch leichte oder erleichterte Abwaschbarkeit von menschlicher Haut auszeichnen sollen, ist es von Vorteil, den Zubereitungen wasserlösliche und/oder mit Wasser quellbare Polymere einzuverleiben, insbesondere mit Alkylgruppen veretherte Cellulose- und/oder Stärkederivate. Besonders vorteilhaft sind β -Glucane, Xanthangummi, Dextrane, Hydroxymethylcellulose, Hydroxyethylcellulose und/oder Hydroxypropylcellulose, Methoxy-PEG-22/Dodecyl-Glycol-Copolymere, Poloxamere.

Vorteilhafte wasserlösliche und/oder mit Wasser quellbare Polymere können auch gewählt werden als mit einem oder mehreren n-Octenylsuccinatresten veresterter hydrophiler Stärke enthalten. Solche Stärkederivate zeichnen sich aus durch eine Struktur

● Stärke- X_n , wobei X den Rest

Erfindungsgemäß vorteilhaft zu verwendende Stärkederivate tragen offiziell noch keinen INCI-Namen (International Nomenclature Cosmetic Ingredient) dieser müßte die Be-

zeichnung „Starch Sodium Octenyl Succinate“ tragen. Besonders vorteilhaft sind solche Produkte, welcher unter der Bezeichnung Amiogum®, insbesondere Amiogum®23 von der Gesellschaft Cerestar US verkauft werden.

Es wird bevorzugt, den Gehalt an wasserlöslichen und/oder mit Wasser quellbaren Polymeren im Konzentrationsbereich von 0,01 - 5,0 Gew.-%, besonders bevorzugt 0,1 - 1,0 Gew.-%, zu wählen.

Die Einarbeitung solcher wasserlöslichen und/oder mit Wasser quellbaren Polymere erfolgt bevorzugt dadurch, daß sie der Wasserphase einverleibt und mit der Wasserphase, besonders bevorzugt nach vollständiger Auflösung bzw. Quellung in die aufgeschmolzene Fettphase der Zubereitungen gegeben werden.

Günstig sind auch solche kosmetischen und dermatologischen Zubereitungen, die in der Form eines Sonnenschutzmittels vorliegen. Vorzugsweise enthalten diese neben den erfindungsgemäßen Wirkstoffkombinationen zusätzlich mindestens eine UVA-Filtersubstanz und/oder mindestens eine UVB-Filtersubstanz und/oder mindestens ein anorganisches Pigment.

Vorteilhaft können erfindungsgemäße Zubereitungen Substanzen enthalten, die UV-Strahlung im UVB-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z.B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, insbesondere 1 bis 6 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische und/oder dermatologische Zubereitungen zur Verfügung zu stellen, die die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel dienen.

Bevorzugte anorganische Pigmente sind Metalloxide und/oder andere in Wasser schwerlösliche oder unlösliche Metallverbindungen, insbesondere Oxide des Titans (TiO_2), Zinks (ZnO), Eisens (z. B. Fe_2O_3), Zirkoniums (ZrO_2), Siliciums (SiO_2), Mangans (z. B. MnO), Aluminiums (Al_2O_3), Cers (z. B. Ce_2O_3), Mischoxide der entsprechenden Metalle sowie Abmischungen aus solchen Oxiden.

Solche Pigmente können im Sinne der vorliegenden Erfindung vorteilhaft oberflächlich behandelt („gecoatet“) sein, wobei beispielsweise ein amphiphiler oder hydrophober Cha-

rakter gebildet werden bzw. erhalten bleiben soll. Diese Oberflächenbehandlung kann darin bestehen, daß die Pigmente nach an sich bekannten Verfahren mit einer dünnen hydrophoben Schicht versehen werden.

Erfnungsgemäß vorteilhaft sind z. B. Titandioxidpigmente, die mit Octylsilanol beschichtet sind. Geeignete Titandioxidpartikel sind unter der Handelsbezeichnung T805 bei der Firma Degussa erhältlich. Besonders vorteilhaft sind ferner mit Aluminiumstearat beschichtete TiO₂-Pigmente, z. B. die unter der Handelsbezeichnung MT 100 T bei der Firma TAYCA erhältlichen.

Eine weitere vorteilhafte Beschichtung der anorganische Pigmente besteht aus Dimethylpolysiloxan (auch: Dimethicon), einem Gemisch vollmethylierter, linearer Siloxanpolymere, die endständig mit Trimethylsiloxy-Einheiten blockiert sind. Besonders vorteilhaft im Sinne der vorliegenden Erfindung sind Zinkoxid-Pigmente, die auf diese Weise beschichtet werden.

Vorteilhaft ist ferner eine Beschichtung der anorganischen Pigmente mit einem Gemisch aus Dimethylpolysiloxan, insbesondere Dimethylpolysiloxan mit einer durchschnittlichen Kettenlänge von 200 bis 350 Dimethylsiloxan-Einheiten, und Silicagel, welches auch als Simethicone bezeichnet wird. Es ist insbesondere von Vorteil, wenn die anorganischen Pigmente zusätzlich mit Aluminiumhydroxid bzw. Aluminiumoxidhydrat (auch: Alumina, CAS-Nr.: 1333-84-2) beschichtet sind. Besonders vorteilhaft sind Titandioxide, die mit Simethicone und Alumina beschichtet sind, wobei die Beschichtung auch Wasser enthalten kann. Ein Beispiel hierfür ist das unter dem Handelsnamen Eusolex T2000 bei der Firma Merck erhältliche Titandioxid.

Vorteilhaftes organisches Pigment im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol) [INCI: Bisoctyl-triazol], welches unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

Vorteilhafte UV-A-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Dibenzoylmethanderivate, insbesondere das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan (CAS-Nr. 70356-09-1), welches von Givaudan unter der Marke Parsol® 1789 und von Merck unter der Handelsbezeichnung Eusolex® 9020 verkauft wird.

Weitere vorteilhafte UV-A-Filtersubstanzen sind die Phenyl-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und ihre Salze, besonders die entsprechenden Natrium-, Kalium- oder Triethanolammonium-Salze, insbesondere das Phenyl-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure-bis-natriumsalz mit der INCI-Bezeichnung Bisimidazylate, welches beispielsweise unter der Handelsbezeichnung Neo Heliopan AP bei Haarmann & Reimer erhältlich ist.

Ferner vorteilhaft sind das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und dessen Salze (besonders die entsprechenden 10-Sulfato-verbindungen, insbesondere das entsprechende Natrium-, Kalium- oder Triethanolammonium-Salz), das auch als Benzol-1,4-di(2-oxo-3-bornylidenmethyl-10-sulfonsäure) bezeichnet wird.

Vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind ferner sogenannte Breitbandfilter, d.h. Filtersubstanzen, die sowohl UV-A- als auch UV-B-Strahlung absorbieren.

Vorteilhafte Breitbandfilter oder UV-B-Filtersubstanzen sind beispielsweise Bis-Resorcyltriazinderivate. Insbesondere bevorzugt sind das 2,4-Bis-[{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin (INCI: Aniso Triazin), welches unter der Handelsbezeichnung Tinosorb® S bei der CIBA-Chemikalien GmbH erhältlich ist.

Besonders vorteilhafte Zubereitungen im Sinne der vorliegenden Erfindung, die sich durch einen hohen bzw. sehr hohen UV-A-Schutz auszeichnen, enthalten bevorzugt mehrere UV-A- und/oder Breitbandfilter, insbesondere Dibenzoylmethanderivate [beispielsweise das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan], Benzotriazolderivate [beispielsweise das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol)], Phenyl-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und/oder ihre Salze, das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und/oder dessen Salze und/oder das 2,4-Bis-[{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, jeweils einzeln oder in beliebigen Kombinationen miteinander.

Auch andere UV-Filtersubstanzen, welche das Strukturmotiv

aufweisen, sind vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung, beispielsweise die in der Europäischen Offenlegungsschrift EP 570 838 A1 beschriebenen s- Triazinderivate, deren chemische Struktur durch die generische Formel

wiedergegeben wird, wobei

- R einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄- Alkylgruppen, darstellt,
- X ein Sauerstoffatom oder eine NH-Gruppe darstellt,
- R₁ einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄- Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe der Formel

bedeutet, in welcher

- A einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄-Alkylgruppen,
- R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,
- n eine Zahl von 1 bis 10 darstellt,
- R₂ einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄-Alkylgruppen, darstellt, wenn X die NH-Gruppe darstellt, und einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄-Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe der

Formel

bedeutet, in welcher

- A einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄-Alkylgruppen,
- R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,
- n eine Zahl von 1 bis 10 darstellt,
- wenn X ein Sauerstoffatom darstellt.

Besonders bevorzugte UV-Filtersubstanz im Sinne der vorliegenden Erfindung ist ferner ein unsymmetrisch substituiertes s-Triazin, dessen chemische Struktur durch die Formel

wiedergegeben wird, welches im Folgenden auch als Dioctylbutylamidotriazon (INCI: Dioctylbutamidotriazole) bezeichnet wird und unter der Handelsbezeichnung UVASORB HEB bei Sigma 3V erhältlich ist.

Vorteilhaft im Sinne der vorliegenden Erfindung ist auch ein symmetrisch substituiertes s-Triazin, das 4,4',4''-(1,3,5-Triazin-2,4,6-triyltriamino)-tris-benzoësäure-tris(2-ethylhexylester), synonym: 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1'-hexyloxy)]-1,3,5-triazin (INCI: Octyl Triazole), welches von der BASF Aktiengesellschaft unter der Warenbezeichnung UVINUL® T 150 vertrieben wird.

Auch in der Europäischen Offenlegungsschrift 775 698 werden bevorzugt einzusetzende Bis-Resorcinyltriazinderivate beschrieben, deren chemische Struktur durch die generische Formel

wiedergegeben wird, wobei R₁, R₂ und A₁ verschiedenste organische Reste repräsentieren.

Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner das 2,4-Bis-{[4-(3-sulfonato)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin Natriumsalz, das 2,4-Bis-{[4-(3-(2-Propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-[4-(2-methoxyethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-{[4-(3-(2-propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-[4-(2-ethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(1-methyl-pyrrol-2-yl)-1,3,5-triazin, das 2,4-Bis-{[4-(2-methylsiloxy-silylpropyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-{[4-(2"-methylpropenyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin und das 2,4-Bis-{[4-(1',1',1',3',5',5'-Heptamethylsiloxy-2"-methyl-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin.

Ein vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol), welches unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

Vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist ferner das 2-(2H-benzotriazol-2-yl)-4-methyl-6-[2-methyl-3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propyl]-phenol (CAS-Nr.: 155633-54-8) mit der INCI-Bezeichnung Drometrizole Trisiloxane.

Die UV-B- und/oder Breitband-Filter können öllöslich oder wasserlöslich sein. Vorteilhafte öllösliche UV-B- und/oder Breitband-Filtersubstanzen sind z. B.:

- 3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-Benzylidencampher;
- 4-Aminobenzoësäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoësäure(2-ethylhexyl)ester, 4-(Dimethylamino)benzoësäureamylester;
- 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethylhexyl)ester;
- Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester, 4-Methoxyzimtsäureisopentylester;

- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon
- sowie an Polymere gebundene UV-Filter.

Vorteilhafte wasserlösliche UV-B- und/oder Breitband-Filtersubstanzen sind z. B.:

- Salze der 2-Phenylbenzimidazol-5-sulfonsäure, wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz, sowie die Sulfonsäure selbst;
- Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.

• Eine weiterere erfindungsgemäß vorteilhaft zu verwendende Lichtschutzfiltersubstanz ist das Ethylhexyl-2-cyano-3,3-diphenylacrylat (Octocrylen), welches von BASF unter der Bezeichnung Uvinul® N 539 erhältlich ist.

Es kann auch von erheblichem Vorteil sein, polymergebundene oder polymere UV-Filter-substanzen in Zubereitungen gemäß der vorliegenden Erfindung zu verwenden, insbesondere solche, wie sie in der WO-A-92/20690 beschrieben werden.

Ferner kann es gegebenenfalls von Vorteil sein, erfindungsgemäß weitere UV-A- und/oder UV-B-Filter in kosmetische oder dermatologische Zubereitungen einzuarbeiten, beispielsweise bestimmte Salicylsäurederivate wie 4-Isopropylbenzylsalicylat, 2-Ethylhexylsalicylat (= Octylsalicylat), Homomenthylsalicylat.

Die Liste der genannten UV-Filter, die im Sinne der vorliegenden Erfindung eingesetzt werden können, soll selbstverständlich nicht limitierend sein.

Erfindungsgemäße Emulsionen können auch Puderstoffe enthalten. Als Puderstoffe werden beispielsweise Wismuthoxichlorid, titanisierter Glimmer, Siliciumdioxid (fumed silica), spherische Siliciumdioxid-Perlen, Polymethylmethacrylat-Perlen, micronisiertes Teflon, Bornitrid, Acrylatpolymere, Aluminumsilicat, Aluminum-Stärke-Octenylsuccinat, Bentonit, Calciumsilicat, Cellulose, Kreide, Maisstärke, Glycerylstärke, Hectorit, hydratisiertes Silica, Kaolin, Magnesiumhydroxide, Magnesiumoxid, Magnesiumsilicate, Magnesiumtrisilikat, Maltodextrin, Montmorillonit, microcrystalline Cellulose, Reisstärke, Silica, Talk, Mica,

Titaniumdioxid, Zinklaurate, Zinkmyristat, Zinkneodecanoat, Zinkrosinat, Zinkstearat, Polyehtylen, Aluminiumoxid, Attapulgit, Calciumcarbonat, Calciumsilicat, Dextran, Kaolin, Nylon, Silicasilylat, Seidenpuder, Serecit, Zinnoxid, Titaniumhydroxid, Trimagnesiumphosphat, Wallnusschalenpuder oder beliebige Mischungen eingesetzt werden.

In die erfindungsgemäßen Zubereitungen können vorteilhaft zusätzlich die üblichen Be- standteile kosmetischer Stifte eingearbeitet werden, z.B. die üblichen Hilfs- und Zusatzstoffe wie Parfümöl, Konservierungsmittel, Farbpigmente, Lichtschutzmittel, Stabilisatoren.

Es ist dem Fachmanne natürlich bekannt, daß anspruchsvolle kosmetische Zubereitungen zumeist nicht ohne die üblichen Hilfs- und Zusatzstoffe denkbar sind. Darunter zählen beispielsweise Konsistenzgeber, Füllstoffe, Parfum, zusätzliche Wirkstoffe wie Vitamine oder Proteine, Insekten repellentien, Alkohol, Wasser, Salze, antimikrobiell, proteolytisch oder keratolytisch wirksame Substanzen usw.

Beispiele

Alle Mengenangaben, Prozentangaben oder Teile beziehen sich, soweit nicht anders angegeben, auf das Gewicht, insbesondere auf das Gesamtgewicht der Zubereitungen oder der jeweiligen Mischungen.

Die nachfolgenden Beispiele sollen die Erfindung erläutern, ohne sie einzuschränken.

Beispiel 1

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 2**Anti-Akne-Stift**

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Zinksulfat	0.70
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,00

Beispiel 3**Anti-Akne-Stift**

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Polyaminopropyl Biguanid	1.00
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 4**Anti-Akne-Stift**

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Alumininumchlorhydrat	4.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 5**Antiaknestift**

	Gew.-%
Polyglyceryl-3 Diisostearat	1,60
PEG-45/ Dodecyl Glycol Copolymer	1,60
Glycerylcaprate	0,50
Polyglyceryl-3 caprylat	0,50
Caprylic/Capric Triglyceride	4,00
Octyldodecanol	4,00
Dicaprylylether	4,00
Cetearylbehenat	6,00
Milchsäure	2,00
Octacosanylstearat	8,00
Glycerin	10,000
Wasser	ad 100,000

Beispiel 6

Antiaknestift

	Gew.-%
Polyglyceryl-3 Diisostearat	1,60
PEG-45/ Dodecyl Glycol Copolymer	1,60
Glycerylcaprat	3,00
Caprylic/Capric Triglyceride	4,00
Octyldodecanol	4,00
Dicaprylylcarbonat	4,00
Cetearylbehenat	6,00
Salicylsäure	1,00
Octacosanylstearat	6,00
Glycerin	10,00
Wasser	ad 100,00

Beispiel 7

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Milchsäure	2.00
Salicylsäure	0.50
Citronensäure	1.00
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 8

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
2-Ethylhexylglycerinether	1.00
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 9

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Milchsäure	2.00
Salicylsäure	0.50
Citronensäure	1.00
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,00

Beispiel 10**Anti-Akne-Stift**

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Sorbitanisostearat	1.60
Milchsäure	2.00
Salicylsäure	0.50
Citronensäure	1.00
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,00

Beispiel 11**Anti-Akne-Stift**

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
PEG-30 Dipolyhydroxystearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Methylpalmitat	1.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 12

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-2 Dipolyhydroxystearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 13

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
PEG-40 Sorbitanperisostearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin, Natriumpyroldioncarbonsäuresalz	10.00
10:1	
Konservierung	0.50
Wasser	ad 100,000

Beispiel 14**Anti-Akne-Stift**

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Cetylalkohol	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin, Hyaluronsäure 10:1	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 15**Anti-Akne-Stift**

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Propylenglycolisostearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin, NMF 10:1	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 16

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Steareth-2	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
PEG-8 Bienenwachs	1.00
Behenylbehenat	0,50
Glycerin, Harnstoff 10:1	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 17

Anti-Akne-Stift

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3 methylglucose distearat	1.60
Milchsäure	3.00
Salicylsäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
C ₁₈₋₃₆ -Acid Triglycerid	1,00
Glycerin, Fucogel 10:1	10.00
Konservierung	0.50
Wasser	ad 100,000

Beispiel 18

Anti-Akne-Stift als Concealer

	Gew.-%
Cetearyl Isononanoat	15.00
PEG-45/ Dodecyl Glycol Copolymer	1,60
Polyglyceryl-3-diisostearat	1.60
Milchsäure	3.00
2-Butyloktansäure	0.50
Abdeckende Pigmentmischung	10.00
Natronlauge (10% ig)	6.70
C ₂₀₋₄₀ -Alkylstearat	8.00
Glycerin	10.00
Konservierung	0.50
Wasser	ad 100,000

Patentansprüche

1. Bei Raumtemperatur feste W/O-Emulsionen enthaltend

- (a) eine Fettphase, welche
 - (a1) mindestens eine Ölkomponeute
 - (a2) mindestens eine Wachskomponente umfaßt,
- (b) eine Wasserphase, welche
 - (b1) 30 bis 85 Gew.% Wasser sowie
 - (b2) 5 bis 50 Gew.% eines Hautbefeuhtungsmittels gewählt aus der Gruppe Glycerin, Chitosan, Fucogel, Propylenglycol, Polyethylenglycol, Dipropylenglycol, Butylenglycol, Mannitol, Milchsäure, Natriumpyrrolidoncarbonsäure, Hyaluronsäure, Glycin, Salze der angegebenen Säuren sowie Harnstoff und Salze von Metallen der ersten und zweiten Hauptgruppe umfaßt,
- (c) mindestens ein gegen Akne wirksamer Stoff,
- (d) einen W/O-Emulgator oder ein Gemisch aus mehreren W/O-Emulgatoren, gewählt aus der Gruppe der grenzflächenaktiven Substanzen der allgemeinen Struktur A-B-A', wobei A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen und B eine hydrophile Gruppe bedeutet.

2. W/O-Emulsionen nach Anspruch 1, dadurch gekennzeichnet, daß der W/O-Emulgator oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Substanzen der allgemeinen Formel

- A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen,
- a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, insbesondere 5 bis 40 darstellt,
- X eine Einfachbindung oder die Gruppe

darstellt,

- R_1 und R_2 unabhängig voneinander so gewählt werden H, Methyl, daß aber nicht beide Reste gleichzeitig Methyl darstellen,
- R_3 gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 20 Kohlenstoffatomen, oder daß der oder die W/O-Emulgatoren gewählt werden aus der Gruppe der Fettalkohole mit 8 - 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Triglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen mit bis zu 10 Glycerineinheiten, Propylenglycolester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Sorbitanester von Polyolen, insbesondere des Glycerins, Pentaerythritylester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxyalkansäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-Atomen, Polyglycerin Methylglucose Ester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 8 - 24, insbesondere 12 - 18 C-

Atomen, Cetyl Dimethicon Copolyole, Alkyl Methicon Copolyole, Alkyl Diemethicon Ethoxy Glucoside, Glycerylfettsäure Citrate:

oder daß die vorstehend genannten Typen von W/O-Emulgatoren zusätzlich in der Weise polyethoxyliert und/oder polypropoxylert sind, daß sie ethoxylierte und/oder propoxylerte W/O-Emulgatoren darstellen.

3. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der W/O-Emulgator oder die W/O-Emulgatoren so gewählt werden, daß die Reste A und A' werden vorteilhaft gewählt aus der Gruppe der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste und Hydroxyacylresten mit 10 - 30 Kohlenstoffatomen sowie ferner aus der Gruppe der über Esterfunktionen miteinander verbundenen Hydroxyacylgruppen, nach dem Schema.

wobei R' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 20 Kohlenstoffatomen und R'' gewählt wird aus der Gruppe der verzweigten und unverzweigten Alkylengruppen mit 1 bis 20 Kohlenstoffatomen und b Zahlen von 0 bis 200 annehmen kann.

4. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der oder die W/O-Emulgatoren gewählt werden aus der Gruppe PEG-30 Dipolyhydroxystearat, Decaglycerylheptaoleat, Polyglyceryl-3-Diisostearat, PEG-8 Distearat, Diglycerin Dipolyhydroxystearat, Glycerinisostearat, Sorbitanisostearat, Polyglyceryl-3 methylglucose distearat, Steareth-2.

5. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der oder die Stabilisatoren gewählt wird aus der Gruppe der Substanzen der allgemeinen Formel

A'' und A''' gleiche oder verschiedene hydrophobe organische Reste darstellen,
 a eine Zahl von 1 bis 100, vorzugsweise 2 bis 60, darstellt,
 X eine Einfachbindung oder die Gruppe

darstellt,
 R_1 und R_2 unabhängig voneinander aus der Gruppe H, Methyl gewählt werden, daß aber nicht beide Reste gleichzeitig Methyl darstellen,
 R_3 gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 20 Kohlenstoffatomen,
wobei die Reste A'' und A''' können gleich oder verschieden sein und gewählt werden aus der Gruppe

wobei R_8 und R_9 gleich oder verschieden sein können und gewählt werden aus der Gruppe der gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen, p eine Zahl von 1 - 20 darstellt und Y eine Einfachbindung oder die Gruppe

darstellt,

wobei R₃ gewählt wird aus der Gruppe H, sowie der verzweigten und unverzweigten, gesättigten und ungesättigten Alkyl- und Acylreste mit 1 - 30 Kohlenstoffatomen.

Ferner können die Gruppe A''' und A'''' unabhängig voneinander auch Alkylreste oder Acylreste darstellen.

6. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß als Stabilisator das PEG-45 /Dodecylglycolcopolymer und/oder das PEG-22 / Dodecylglycolcopolymer und/oder das Methoxy PEG-22/Dodecyl Glycol Copolymer verwendet werden.

7. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ölkomponente oder die Gesamtheit der Ölkomponenten gewählt wird aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 1 bis 30 C-Atomen sofern die Ölkomponente oder die Gesamtheit der Ölkomponenten bei Raumtemperatur eine Flüssigkeit darstellen.

8. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ölkomponente oder die Gesamtheit der Ölkomponenten gewählt wird aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe, der Silikonöle, Lanoline, der Adipinsäureester, der Butylenglycoldiester, der Dialkylether, der Dialkylcarbonate, der Gruppe der gesättigten oder ungesättigten, verzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, wobei die Triglycerinester bevorzugt aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle wie Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl gewählt werden.

9. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe

der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten, aliphatischen bzw. aromatischen Alkancarbonsäuren oder Hydroxycarbonsäuren einer Kettenlänge von 1 bis 80 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten, aliphatischen bzw. aromatischen Alkoholen einer Kettenlänge von 1 bis 80 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,

- der natürlichen Wachse,
- der Diester von Polyolen und/oder C10-C80 Fettsäuren,
- der Diester von Dimersäuren
- der ethoxylierten Wachse,
- der Triglyceridwachse,
- der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.

10. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Wachskomponente oder die Gesamtheit der Wachskomponenten gewählt wird aus der Gruppe

- der Ester aus gesättigten, unverzweigten oder verzweigten Alkancarbonsäuren einer Kettenlänge von 1 bis 44 C-Atomen und gesättigten verzweigten Alkoholen einer Kettenlänge von 1 bis 44 C-Atomen, sofern die Wachskomponente oder die Gesamtheit der Wachskomponenten bei Raumtemperatur einen Festkörper darstellen,
- der natürlichen Wachse,
- der Diester von Polyolen und/oder C10-C80 Fettsäuren,
- der Diester von Dimersäuren
- der ethoxylierten Wachse,
- der Triglyceridwachse,
- der C16-C60 Fettsäuren (bzw. deren Salze) und/oder C16-C80 Fettalkohole.

11. W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche, durch einen zusätzlichen Gehalt an einem oder mehreren wasserlöslichen und/oder mit Wasser

quellbaren Polymeren gekennzeichnet, insbesondere mit Alkylgruppen veretherte Cellulose- und/oder Stärkederivate, bevorzugt β -Glucane, Xanthangummi, Dextrane, Hydroxymethylcellulose, Hydroxyethylcellulose und/oder Hydroxypropylcellulose, Methoxy-PEG-22/ Dodecyl-Glycol-Copolymere, Poloxamere, mit einem oder mehreren n-Octenylsuccinatresten veresterter hydrophiler Stärke.

12. Verwendung von W/O-Emulsionen nach mindestens einem der vorangehenden Ansprüche als kosmetische Zubereitungen zur Behandlung an Akne erkrankter Haut.

Zusammenfassung

Bei Raumtemperatur feste W/O-Emulsionen enthaltend eine Fettpfase, welche mindestens eine Ölkomponente und mindestens eine Wachskomponente umfaßt; eine Wasserphase, welche neben Wasser ein Hautbefeuchtungsmittel enthält; mindestens einen gegen Akne wirksamen Stoff; einen W/O-Emulgator oder ein Gemisch aus mehreren W/O-Emulgatoren, gewählt aus der Gruppe der grenzflächenaktiven Substanzen der allgemeinen Struktur A-B-A', wobei A und A' gleiche oder verschiedene hydrophobe organische Reste darstellen und B eine hydrophile Gruppe bedeutet.