

SOFTWARE DEVELOPMENT & OPERATIONS

Prof. Dr. Bruno Volckaert – bruno.volckaert@ugent.be

LECTURER

- Prof. Dr. Bruno Volckaert (<u>bruno.volckaert@ugent.be</u>)
- IDLab
 - https://www.ugent.be/ea/idlab/en
 - http://idlab.technology/
- Department of Information Technology (INTEC)
- Ghent University IMEC
- E-mail DevOps: <u>devops@lists.ugent.be</u>
- Teaching
 - 2nd bach
 - System programming
 - 3rd bach
 - Software development & operations
 - Distributed Data Processing
 - Summer of Code
 - Master
 - System administration
 - Cloud storage & computing (Major data engineering)
 - Network security (Major cybersecurity)

COURSE SPECIFICATIONS

— Course size: 3 credits

— Study time: 90h

— Contact hours: 30h

— Lectures: 12h

— Seminars: 18h

- Written examination
- Final grade calculation
 - 50% on exam
 - 50% on end-result labs (project)
- Individual scores (exam / project) minimally 9/20
 - Otherwise score maximum 9/20
- Important: labs cannot be done from scratch in 2nd term due to evolution Kubernetes cluster
- Note: PPT slides require the UGent Panno font to be shown correctly
 - Explanation on install: https://styleguide.ugent.be/basisprincipes/typografie.html

COURSE SPECIFICATIONS

- Learning material
 - Slides on Ufora
- Initial competences
 - Object oriented programming (C#, Java), software development
 - Basic knowledge of web technologies and data formats (HTTP, JSON, YAML)
 - Basic knowledge of Linux
- Final competences
 - 1. Students can extract software requirements for a problem
 - 2. Students can choose an appropriate software development model for a new software project
 - 3. Students can collaborate on a software project through Git
 - 4. Students can set up a CI/CD pipeline for a software project
 - 5. Students know how software can be managed in production

SCHEDULE

Schema DevOps 2024-2025	day / hours	date	content
week 1	do 9:30-12:30	26-Sep	Theorie 1
week 2	do 9:30-12:30	03-Oct	Theorie 2
week 3	do 9:30-12:30	10-Oct	Lab 1
week 4	do 9:30-12:30	17-Oct	Theorie 3
week 5	do 9:30-12:30	24-Oct	Lab 2
week 6	do 9:30-12:30	31-Oct	vrijaf
week 7	do 9:30-12:30	07-Nov	Theorie 4
week 8	do 9:30-12:30	14-Nov	Lab 3
week 9	do 9:30-12:30	21-Nov	Theorie 5
week 10	do 9:30-12:30	28-Nov	Theorie 6
week 11	do 9:30-12:30	05-Dec	Lab 4
week 12	do 9:30-12:30	12-Dec	Lab 5

QUESTIONS / REMARKS

- During lectures and labs
 - Check Ufora for updates on planning of labs and lectures
- Ufora
 - Announcements
 - Lab solutions via Git
 - Feedback
- General e-mail list: <u>devops@lists.ugent.be</u>
 - Mailing list is not public

LAB RESPONSIBLES

ir. Thomas Dupont

ir. Wannes Kerckhove

ing. Jasper Vaneessen

SOFTWARE = COMPLEX

Air quality

Microservices work on data

- Area
- Metric
- Precision

Calculate statistics

- Per hour
- For each geohash
- Different granularites

Specialized datastores

PREVENT

LIVE MAP

TRAFFIC

WEATHER

INTERVENTIONS

SECTORS

FLANDERS MAKE COLLABORATION

Fleet monitoring of machines

with degrading bearings

Cloud data ingestion, storage and offering

Open, flexible and elastic

Dynamic dashboard for decision support at

any location

Low-cost monitoring hardware

Local data reduction by smart algorithms

GHENT

UNIVERSITY

OBELISK - HTTPS://GITHUB.COM/IDLAB-DISCOVER/OBELISK

Who?

Smart City, IoT, science experiments, ...

What? Time series!

Sensors/events/... (°C, dB, lm, ...) Location-based (lat/lon/z, geohash) Timestamped (high precision)

Citizens, apps, backends, ...

Goals?

Public web pages Analysis tools **Post-processors** Governance support

OBELISK ARCHITECTURE

OBELISK TECHNOLOGIES

CI/CD PIPELINES

UNIVERSITY

SO WHERE IS ALL THIS DEPLOYED?

GHENT UNIVERSITY

REFERENCES

- This course extracts, combines and evolved information from a range of courses and books
 - Course "Software Engineering" Industrial Engineer Electronics ICT Bruno Volckaert
 - Industrial course "Microservices & containers" Bruno Volckaert
 - Software Engineering 10th edition Ian Sommerville Pearson
 - Site reliability Engineering Betsy Beyer, Chris Jones O'Reilly
 - Various tutorials of product websites: Docker, Kubernetes, etc.

