Stat 154: Elementary Statistics

Jongyun Jung

Minnesota State University, Mankato

Ch 9: Association between Two Variables

jongyun.jung@mnsu.edu

April 12, 2019

Overview

- Correlation Coefficient
 - Testing for the significance of the correlation coefficient

- Simple Linear Regression
 - Testing for the significance of the regression line
 - $(1 \alpha) \times 100\%$ confidence interval

Correlation Coefficient

- The correlation coefficient measures the strength of the linear relationship between two variables. Let X and Y be two different measurements on an individual subject.
- The population correlation coefficient is measured as

$$\rho = \frac{\mathsf{Covariance\ between}\ \ X\ \ \mathsf{and}\ \ Y}{\sqrt{(\mathsf{Variance\ of}X)(\mathsf{Variance\ of}Y)}}$$

- where $-1 \le \rho \le 1$.
- The covariance between X and Y is the mean of the product of the deviations from the respective means.
 - $\rho = 0$ indicates that there is no linear relationship between X and Y.
 - $\rho=1$ indicates that there is a perfect positive linear relationship between X and Y.
 - $\rho = -1$ indicates that there is a perfect negative linear relationship between X and Y.
- Other values are interpreted about how strong the relationship is depending on how close the value is to -1 or +1.

Correlation Coefficient

• Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be n pairs of measurements on X and Y. Then the sample correlation coefficient is computed as

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$
$$= \frac{\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}}{\sqrt{(\sum_{i=1}^{n} X_i^2 - n \overline{X}^2)(\sum_{i=1}^{n} Y_i^2 - n \overline{Y}^2)}}$$

Correlation Coefficient

EXAMPLE 9.1

A college administers a student evaluation questionnaire for all its courses. For a random sample of 12 courses, the accompanying table and the student evaluation data file show both the average student ratings of the instructor (on a scale of 1 to 5) and the average expected grades of the students (on a scale from A=4 to F=0). Find the sample correlation coefficient between instructor ratings and expected grades.

Instructor rating: 2.8 3.7 4.4 3.6 4.7 3.5 4.1 3.2 4.9 4.2 3.8 3.3 Expected grade: 2.6 2.9 3.3 3.2 3.1 2.8 2.7 2.4 3.5 3.0 3.4 2.5

Solution: Here.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{46.2}{12} = 3.85, \overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} = \frac{35.4}{12} = 2.95, \sum_{i=1}^{n} X_i Y_i = 138.09,$$

$$\sum_{i=1}^{n} X_i^2 = 182.22, \text{ and } \sum_{i=1}^{n} Y_i^2 = 105.86.$$

Then,

$$r = \frac{\sum_{i=1}^{n} X_{i}Y_{i} - n\bar{X}\bar{Y}}{\sqrt{\left(\sum_{i=1}^{n} X_{i}^{2} - m\bar{X}^{2}\right)\left(\sum_{i=1}^{n} Y_{i}^{2} - n\bar{Y}^{2}\right)}} = \frac{138.09 - 12(3.85)(2.95)}{\sqrt{\left(182.22 - 12(3.85)^{2}\right)\left(105.86 - 12(2.95)^{2}\right)}}$$

$$= \frac{1.8}{\sqrt{(4.35)(1.43)}} = 0.7217,$$

there is a moderate positive correlation between instructor ratings and expected grades.

Figure: Ex 9-1

Testing for the significance of the correlation coefficient

- Case 1 is to test whether there is any significant negative correlation between the variables.
- Case 2 is to test whether there is any significant positive correlation between the variables.
- Case 3 is to test whether there is any significant correlation between the variables.
- The corresponding test statistic is

$$T = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}\tag{1}$$

• will have a *t*-distribution with n-2 degrees of freedom.

Let Y be the dependent variable and X be the independent variable.
 Then, the value of Y depends on the value of X. The relationship can be any nature or functional form of

$$Y = \beta_0 + \beta_1 X + \epsilon$$

, where β_0 is the intercept coefficient and β_1 is the slope coefficient. ϵ is the random fluctuation from the line that follows normal distribution with mean zero and variance σ^2 .

• For a random sample of size *n*, the sum of squared errors can be written as

$$SSE = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

• The SSE is minimized when β_1 is estimated as

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X}) Y_i}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sum_{i=1}^n X_i Y_i - n \overline{X} \overline{Y}}{\sum_{i=1}^n X_i^2 - n \overline{X}^2}$$

• β_0 is estimated as $\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}$. $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are known as the least square estimates for β_0 and β_1 , respectively.

Testing for the significance of the regression line

- Case 1 is to test whether there is any inverse linear relation between the variables.
- Case 2 is to test whether there is any direct linear relation between the variables.
- Case 3 is to test whether there is any significant linear relation between the variables.
- The corresponding test statistic is

$$T = \frac{\widehat{\beta}_1 - 0}{\frac{s_e}{\sqrt{\sum_{i=1}^n X_i^2 - n\overline{X}^2}}} \tag{2}$$

• will have a t-distribution with n-2 degrees of freedom.

Testing for the significance of the regression line

The corresponding test statistic is

$$T = \frac{\widehat{\beta}_1 - 0}{\sqrt{\sum_{i=1}^n X_i^2 - n\overline{X}^2}}$$
 (3)

• will have a *t*-distribution with n-2 degrees of freedom, where the standard error of estimate s_e is

$$s_e = \sqrt{\frac{\sum_{i=1}^n (Y_i - \widehat{Y}_i)^2}{n-2}}$$

Testing for the significance of the regression line

• Similar tests involving β_0 , the intercept coefficient, can also be obtained. The test statistic is

$$T = \frac{\widehat{\beta}_0 - 0}{s_e \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n X_i^2 - n\overline{X}^2}}} \tag{4}$$

• which has *t*-distribution with n-2 degrees of freedom.

$(1-\alpha) \times 100\%$ confidence interval

• $(1-\alpha) \times 100\%$ confidence interval for β_1 can be computed as

$$\widehat{\beta}_1 \mp t_{\frac{\alpha}{2}; n-2} \cdot \frac{s_e}{\sqrt{\sum_{i=1}^n X_i^2 - n\overline{X}^2}}$$
 (5)

• $(1-\alpha) \times 100\%$ confidence interval for β_0 can be computed as

$$\widehat{\beta}_0 \mp t_{\frac{\alpha}{2}; n-2} \cdot s_e \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n X_i^2 - n\overline{X}^2}}$$
 (6)

$(1-\alpha) \times 100\%$ confidence interval

• $(1 - \alpha) \times 100\%$ confidence interval for the mean response at $x = x_0, y(x_0) = \beta_0 + \beta_1 x_0$ can be computed as

$$\widehat{\beta}_0 + \widehat{\beta}_1 x_0 \mp t_{\frac{\alpha}{2}; n-2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{X})^2}{\sum_{i=1}^n X_i^2 - n \overline{X}^2}}$$
 (7)

• $(1 - \alpha) \times 100\%$ prediction interval for the predicted response at $x = x_0, y(x_0) = \beta_0 + \beta_1 x_0$ can be computed as

$$\widehat{\beta}_0 + \widehat{\beta}_1 x_0 \mp t_{\frac{\alpha}{2}; n-2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{X})^2}{\sum_{i=1}^n X_i^2 - n\overline{X}^2}}$$
(8)

- ◆ロト ◆昼 ト ◆ 恵 ト · 恵 · かへで

Figure: Ex 9-3

X	Y	X ²	To do follow,			
			Y2	XY	Ŷ	$e = Y - \hat{Y}$
2.8	2.6	7.84	6.76	7.28	2.5155	
3.7	2.9	13.69	8.41	10.73	2.8880	0.0845
4.4	3.3	19.36	10.89	14.52		0.0120
3.6	3.2	12.96	10.24	11.52	3.1776	0.1224
4.7	3.1	22.09	9.61		2.8466	0.3534
3.5	2.8	12.25		14.57	3.3018	-0.2018
4.1			7.84	9.80	2.8052	-0.0052
	2.7	16.81	7.29	11.07	3.0535	-0.3535
3.2	2.4	10.24	5.76	7.68	2.6811	-0.2811
4.9	3.5	24.01	12.25	17.15	3.3845	0.1155
4.2	3.0	17.64	9.00	12.60	3.0949	-0.0949
3.8	3.4	14.44	11.56	12.92	2.9293	0.4707
3.3	2.5	10.89	6.25	8.25	2.7224	-0.2224
$\Sigma X = 46.2$	$\Sigma Y = 35.4$	$\Sigma X^2 = 182.22$	$\Sigma Y^2 = 105.86$	$\sum XY = 138.09$		$\Sigma e \approx 0$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n X_i Y_i - n \bar{X}^{\frac{7}{2}}}{\sum_{i=1}^n X_i^2 - n \bar{X}^2} = \frac{138.09 - 12 \times \frac{46.2}{12} \times \frac{35.4}{12}}{182.22 - 12 \times \left(\frac{46.2}{12}\right)^2} = \frac{1.80}{4.35} = 0.4138,$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} = \frac{35.4}{12} - 0.4138 \times \frac{46.2}{12} = 1.3569$$

Then the least square estimate of the regression line is $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X = 1.3569$

The computation for the estimate of the standard error,

$$s_e = \sqrt{\frac{\sum_{i=1}^{n} e^2}{n-2}} = \sqrt{\frac{0.6853}{12-2}} = 0.2618$$

Unexplained variation, SSE (sum of squared error) $\Sigma e^2 = 0.6853$. Total variation, SST (sum of squares total)

 $\sum Y^2 - n\overline{Y}^2 = 105.86 - 12 \left(\frac{35.4}{12}\right)^2 = 1.43$

Figure: Ex 9-3

Explained variation, SSR (sum of squares for regression) = SST - SSE = 1.43 - 0.6853 = 0.7447

Coefficient of determination,
$$R^2 = \frac{SSR}{SST} = \frac{0.7447}{1.43} = 0.5208$$

Thus, instructor rating in the fitted model explains 52.08% of the total variation in expected grade.

The 90% prediction interval for the predicted response at x = 4 can be computed as

$$\hat{\beta}_0 + \hat{\beta}_1 x_0 \mp t_{\alpha/2;n-2} \cdot s_r \sqrt{1 + \frac{1}{n} + \frac{\left(x_0 - \overline{X}\right)^2}{\sum_{i=1}^n X_i^2 - n\overline{X}^2}}$$

$$1.3569 + 0.4138(4) \mp 1.8125(0.2618)\sqrt{1 + \frac{1}{12} + \frac{\left(4 - 3.85\right)^2}{4.35}}$$

$$3.0121 \mp 0.4951 = (2.5170, 3.5072)$$

Figure: Ex 9-3

References

Mezbahur Rahman, Deepak Sanjel, Han Wu. Statistics Introduction, Revised Printing

KendallHunt