

16 Channel Constant current output LED Driver

LD71D0016

Data Sheet

2004.4

DESCRIPTION

The LD71D0016 is specifically designed for LED and LED DISPLAY constant current drivers.

This constant current output circuit is able to set up external resistor (IOUT = 5mA to 90mA).

The devices consist of 16bit shift register, latch, and-gate and constant current driver.

FEATURES

- Output current : set-up at 5mA to 90mA with an external resistor
- · A little change of output current

OUT-GND VOLTAGE	A LITTLE CHANGE OF CHANNEL	IOUT (mA)
≥ 0.7V	+ 6%	5mA ~40mA
<u>≥</u> 1.0V	<u>+</u> 6%	5mA ~90mA

• 5V CMOS Compatible Input

• Package : SDIP-24, PDIP-24, SSOP-24, SOP-24

• Maximum Clock Frequency : $f_{MAX} = 25MHz$

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	GND	GND terminal for control logic driver
2	DIN	Serial data input terminal for shift register
3	CLOCK	Clock input terminal for data shift to up-edge
4	STROBE	"H" level : data through, "L" level : data hold
24	VDD	Supply voltage terminal
5~12 13~20	OUTn	Output terminals
21	OE	"H" level output off, "L" level : latch data = "H" level then output on, latch data = "L" level then output off
22	DOUT	Serial data output terminal for shift register
23	R-EXT	The resistor which connects between R-EXT and GND sets the constant output current.

BLOCK DIAGRAM

TIMING DIAGRAM

TRUTH TABLE

	INPUT				OUTPU	T OUTn (t =n)
CLOCK	STROBE	OE	DIN	OUT0	OUT7	OUT15	DOUT
	Н	L	Dn	Dn	D _{n-7}	D _{n-15}	D _{n-15}
	L	L	Dn		No change		D _{n-15}
	*	Н	Dn	OFF	OFF	OFF	D _{n-15}
	*	*	Dn	·	No change		No Change

(Note) Dn~Dn-15 = "H" then OUTn is ON, "L" then OUTn is OFF

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V _{DD}	0~7.0	V
Output Voltage	V _{OUT}	-0.5~8.0	V
Output current	Іоит	90	mA
Input Voltage	V _{IN}	-0.4~V _{DD} +0.4	V
GND Terminal Current	I _{GND}	1440	mA
Clock Frequency	f _{CK}	25	MHz
Power Dissipation	P _D	1.78	W
Operating Temperature	T _{opr}	-40~85	°C
Storage Temperature	T _{stg}	-55~150	°C

(Note) Ambient temperature delated above 25°C in the proportion of 14.2mW/ °C

RECOMMENDED OPERATING CONDITION (Ta = 25°C unless otherwise noted)

PARAMET	ER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage		V _{DD}	-	4.5	5.0	5.5	V
Output Voltage		Vout	-	-	-	8.0	-
	OUTn	lout	-	-	-	90	
Output Voltage	DOUT	Іон	-	-	-	-1.0	mA
	ססו	l _{OL}	-	-	-	1.0	
Input Voltage		V _{IN}	-	0	-	V_{DD}	V
Data Set Up Time)	t _{setup} (D)	-	20	-	1	ns
Data Hold Time		t _{hold} (D)	-	20	-	-	ns
STROBE Set UP	Time	t _{setup} (S)	-	20	-	-	ns
STROBE Hold Tir	me	thold (S)	-	20	-	1	ns
Clock Pulse Wid	lth.	t _w CLK	-	15	-	1	ns
Clock Pulse Wid	1U I	tw CLK	-	15	-	1	115
Strobe Pulse Width		t _w STB	-	20	-	-	20
		t _w STB	-	20	-	-	ns
Clock Pulse Width	1	fck	Cascade Operation	-	-	25.0	MHz
Power Dissipation	1	P _D	Ta = 85°C	-	-	0.74	W

ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted) (continued)

PARAM	METER	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input	"H" Level	V _{IH}	-	-	0.7V _{DD}	-	V _{DD}	V
Voltage	"L" Level	V_{IL}	-	-	GND	-	0.3V _{DD}	V
Output Leaka	ge	I _{OZ}	-	V _{OH} = 6.0V		i	1	uA
Output	DOUT	V _{OL}	-	-	ı	1	0.2V _{DD}	V
Voltage	DOOT	VoH	1	-	0.8V _{DD}	1	-	V
Output Curren	ıt1	I _{OL1}	-	REXT = 14k	37	40.0	43.0	mA
	Delta IOUT	ΔI _{OL1}	-	REXT = 14 k IOUT = 40mA, V _{OUT} = 1V	-	<u>+</u> 1.5	<u>+</u> 6.0	%
Output Curren	ıt2	l _{OL2}	-	REXT = 7.0 k	70.0	75.0	80.0	mA
	Delta IOUT	Δ _{IOL2}	-	$R_{EXT} = 7.0 \text{ k}$ $I_{OUT} = 75\text{mA}, V_{OUT} = 1\text{V}$	-	<u>+</u> 1.5	<u>+</u> 6.0	%
Supply Voltag Regulation	е	%/V _{DD}	-	R _{EXT} = 14 k	1	1.5	5.0	%/V
Reference Vo	Itage	V_{ref}	-	R _{EXT} =14 k ,Ta =-40~85°C	-	1.12	-	V
Pull up resisto	Pull up resistor		-	-	100	200	400	kW
Pull down resistor		R _{IN} (down)	-	-	100	200	400	KVV
			-	R _{EXT} = OPEN, OUTn = OFF	-	0.3	0.6	V
Supply currer	nt	I _{DD} (off) 2	-	R _{EXT} = 14 kW, OUTn = OFF	0.5	1.0	1.5	A
		I _{DD} (off) 3	-	R _{EXT} = 7.0 kW, OUTn = OFF	1.0	2.0	3.0	mA

DC CHARACTERISTIC TEST CIRCUIT

AC CHARACTERISTIC TEST CIRCUIT

SWITCHING CHARACTERISTICS (Ta = 25°C unless otherwise noted)

PARAM	IETER	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	CK-DOUT				-	30	70	
Propagation	CK-OUTn				-	600	1500	
Delay Time ("L" to "H")	STROBE- OUTn	t _{PLH}	-		-	600	1500	ns
	OE-OUTn				-	600	1500	
	CK-DOUT				-	30	70	
Propagation	CK-OUTn				-	350	1000	
Delay Time ("H" to "L")	STROBE- OUTn	t _{PHL}	-		-	350	1000	ns
	OE-OUTn			$V_{DD} = 5.0V$	-	350	1000	
Maximum Cloc	k Frequency	f _{CKMAX} (*1)	-	V _{OUT} = 1.0V V _{IH} = VDD	-	10	25	MHz
Propagation	Clock	twck	-	V _{IL} = GND f _{CK} = 10MHz	-	20	50	
Delay Time ("H" to "L")	STROBE	t _W STB	-	R _{EXT} = 10 k	-	10	40	ns
Data Set Up T	Data Set Up Time		-	$I_{OUT} = 40 \text{mA}$ $V_L = 3.0 \text{V}$	-	10	30	
Data Hold Tim	е	thold (D)	-	$C_L = 10.0pF$ $R_L = 65$	-	10	30	ns
STROBE	LH			NL = 03	-	10	20	
Set up Time	HL	t STB setup	-		-	0	20	ns
STROBE	LH				-	10	20	
Hold Time	HL	t STB hold	-		-	0	20	ns
Maximum Clock Rise Time		t _r			-	-	10	
Maximum Clock Fall Time		t _f	-		-	-	10	ns
Minimum Outp	ut Rise Time	t _{or}			-	300	1000	
Minimum Outp	Minimum Output Rise Time		-		-	150	600	ns

^{*1 :} Cascade Operation

TIMING WAVE FORM

CLOCK-DOUT, OUTn

CLOCK-STROBE

ŌE

EQUIVALENT CIRCUIT OF INPUTS AND OUTPUTS

OUTPUT CURRENT vs. AMBIENT TEMPERATURE

OUTPUT CURRENT AND REXT

When RVAR is closing to 0 Ohm, the current through LED(ILED) reaches to maximum value then the Maximum Current Limitation(ILED_MAX) value can be determined with REXT resistor. The LD71D0016 has RINT resistor(1 kOhm) internally to protect device from excessive current and RINT is connected to REXT port serially.

```
I1 = (VREF - V1)/(RINT + REXT)
V1 = 16 * I1 * RVAR = 16 * [(VREF - V1)/(RINT + REXT)] * RVAR
ILED = 500 * I1 = 500 * (VREF - V1)/(RINT + REXT)
```

At RVAR is 0 Ohm(V1 voltage is 0 V), the ILED_MAX value can be measured. Knowing the ILED_MAX and ILED_MIN, the REXT and the RVAR value are calculated using above formula and determined with taking the operating tolerance into considerations.

REXT	IOUT
6 kOhm	85mA
7 kOhm	75mA
9 kOhm	60mA
11 kOhm	50mA
14 kOhm	40mA
19 kOhm	30mA
29 kOhm	20mA
59 kOhm	10mA

TYPICAL APPLICATION

PACKAGE INFORMATION

SDIP24-P-300-1.78

P-DIP 24

PACKAGE INFORMATION (continued)

SSOP 24 - 300

PACKAGE INFORMATION (continued)

SOP 24

