<u>Лабораторная работа №1. Определение теплоты растворения</u> неизвестной соли.

Лим Владимир, Розраенко Кирилл, группа Б04-202

<u>Цель работы</u>: определить суммарную теплоемкость системы (постоянную калориметрическую системы); определить интегральную теплоту растворения неизвестной соли.

Оборудование и реактивы: калориметр, пластиковый стакан на 250 мл, мерный цилиндр, мешалка, термометр, стакан с точно взвешенной навеской известной соли (KCl), стакан с точно взвешенной навеской неизвестной соли, дистиллированная вода.

Теоретическая справка

Интегральная теплота растворения — тепловой эффект, сопровождающий растворение 1 грамма (удельная) или 1 моля (молярная) твердого вещества в воде.

Для нахождения интегральной теплоты растворения воспользуемся методом калориметрии: будем фиксировать изменение температуры $m_{\rm B}=200~{\rm r}$ воды в калориметре при растворении в ней известной соли (KCl) с интегральной теплотой растворения ΔH_m в разных количествах, таким образом определим суммарную теплоемкость калориметрической системы K:

$$K = \frac{Q}{\Delta T} - c_{\scriptscriptstyle \rm B} m_{\scriptscriptstyle \rm B}$$

$$Q = -\frac{\Delta H_m m(KCl)}{\mu(KCl)}$$

Далее, растворяя уже неизвестную соль (индекс x), определяем теплоту, выделившуюся при ее растворении:

$$Q_{x} = (K + c_{\rm\scriptscriptstyle B} m_{\rm\scriptscriptstyle B}) \Delta T_{x}$$

Окончательно выражаем интегральную теплоту растворения следующим образом:

$$\Delta H_m = -\frac{Q_x \mu_x}{m_x}$$

Выполнение эксперимента

Для начала провели первый опыт с хлоридом калия.

На аналитических весах взвесили в стаканчике 2 г *КСl*. Затем мерным цилиндром отмерили 200 мл дистиллированной воды, вылили в пластиковый стакан 1, который установили в калориметре 2. Далее опустили в стакан с водой мешалку 7 и закрыли крышкой 4 (см. рис. 1).

puc. 1

По окончании подготовительных операций начали эксперимент по определению изменения температуры. Для этого с помощью мешалки непрерывно и равномерно перемешали воду в стакане и через каждую минуту записывали показания термометра 5 в течение 7 минут. За это время устанавливался равномерный ход температуры.

По истечении 7–8 минут равномерного изменения температуры высыпали соль в воду, продолжая перемешивать раствор. Во время главного периода также продолжали регистрацию и запись температуры, но изменение температуры происходило более интенсивно, поэтому и интервалы соседних измерений по времени были меньше.

Конец главного периода и начало заключительного периода находили по вновь установившемуся равномерному ходу температуры. Во время заключительного периода продолжали регистрировать и записывать температуру также через каждую минуту в течение 7 минут.

Эксперимент повторили еще четыре раза с 4, 6, 8 и 10 г соли *KCl* (см. табл. 1-5, граф. 1-5 в приложении, расположены в порядке возрастания массы KCl).

Далее, проделали аналогичные действия, только уже с использованием 4 г неизвестной соли (см. табл. 6, граф. 6 в приложении).

Результаты эксперимента

Результаты измерений для массы хлорида калия $m(KCl)_1 = 2,002$ г:

$$m_1 = \frac{m(KCl)_1}{\mu(KCl)m(H_2O)} = 0,134 \; \frac{ ext{моль}}{ ext{к}\Gamma} \Rightarrow \Delta H_{m1} = 17,56 \; \frac{ ext{кДж}}{ ext{моль}}$$

$$\Delta T_1 = -0.52$$
°C

$$K = -\frac{\Delta H_{m1} m(KCl)_1}{\mu(KCl)\Delta T_1} - c_{\rm\scriptscriptstyle B} m_{\rm\scriptscriptstyle B} = 67,50 \frac{\rm Дж}{\rm K}$$

Результаты измерений для массы хлорида калия $m(KCl)_2 = 4,000$ г:

$$m_2 = \frac{m(KCl)_2}{\mu(KCl)m(H_2O)} = 0,268 \frac{\text{моль}}{\text{кг}} \Rightarrow \Delta H_{m2} = 17,56 \frac{\text{кДж}}{\text{моль}}$$

$$\Delta T_2 = -1.06$$
°C

$$K = -\frac{\Delta H_{m2} m(KCl)_2}{\mu(KCl)\Delta T_2} - c_{\scriptscriptstyle \rm B} m_{\scriptscriptstyle \rm B} = 49,45 \frac{\rm Дж}{\rm K}$$

Результаты измерений для массы хлорида калия $m(KCl)_3 = 6,001$ г:

$$m_3=rac{m(\mathit{KCl})_3}{\mu(\mathit{KCl})m(\mathit{H}_2\mathit{O})}=0$$
,403 $rac{ ext{моль}}{ ext{к}\Gamma}\Rightarrow \Delta \mathit{H}_{m3}=1$ 7,50 $rac{ ext{кДж}}{ ext{моль}}$

$$\Delta T_3 = -1.57$$
°C

$$K = -\frac{\Delta H_{m3} m(KCl)_3}{\mu(KCl)\Delta T_3} - c_{\rm\scriptscriptstyle B} m_{\rm\scriptscriptstyle B} = 57,85 \frac{\rm Дж}{\rm K}$$

Результаты измерений для массы хлорида калия $m(KCl)_4 = 8,003$ г:

$$m_4=rac{m(\mathit{KCl})_4}{\mu(\mathit{KCl})m(\mathit{H}_2\mathit{O})}=0$$
,537 $rac{\mathsf{MОЛЬ}}{\mathsf{K}\Gamma}\Rightarrow \Delta \mathit{H}_{m4}=1$ 7,44 $rac{\mathsf{K} \mathrm{Д} \mathsf{Ж}}{\mathsf{MОЛЬ}}$

$$\Delta T_4 = -2,07^{\circ} \text{C}$$

$$K = -\frac{\Delta H_{m4} m(KCl)_4}{\mu(KCl)\Delta T_4} - c_{\scriptscriptstyle \rm B} m_{\scriptscriptstyle \rm B} = 65,05 \ \frac{\rm Дж}{\rm K}$$

Результаты измерений для массы хлорида калия $m(KCl)_5 = 10,002$ г:

$$m_5 = \frac{m(KCl)_5}{\mu(KCl)m(H_2O)} = 0,671 \; \frac{\text{моль}}{\text{кг}} \Rightarrow \Delta H_{m5} = 17,36 \; \frac{\text{кДж}}{\text{моль}}$$

$$\Delta T_5 = -2,60$$
°C

$$K = -\frac{\Delta H_{m5} m(KCl)_5}{\mu(KCl)\Delta T_5} - c_{\rm\scriptscriptstyle B} m_{\rm\scriptscriptstyle B} = 56,41 \frac{\rm Дж}{\rm K}$$

Таким образом:

$$\langle K \rangle = 59,25 \frac{\text{Дж}}{\text{K}}$$

Результаты измерений для массы неизвестной соли $m_x = 4,001$ г:

$$\Delta T_r = -1.28$$
°C

$$q_{\scriptscriptstyle X} = \frac{(K + c_{\scriptscriptstyle \mathrm{B}} m_{\scriptscriptstyle \mathrm{B}}) \Delta T_{\scriptscriptstyle X}}{m_{\scriptscriptstyle Y}} = -287,69 \; \frac{\mathrm{Дж}}{\mathrm{\Gamma}}$$

Из того, что теплота растворения неизвестной соли отрицательна, остается два варианта: NH_4Cl и KNO_3 .

В случае КNO₃:

$$m = \frac{m_{\chi}}{\mu(KNO_3)m(H_2O)} = 0.198 \frac{\text{моль}}{\text{кг}} \Rightarrow \Delta H_m^{\text{таб}} = 34.61 \frac{\text{кДж}}{\text{моль}}$$

$$\Delta H_m = -q_x \mu(KNO_3) = 29,06 \frac{\kappa Дж}{MOJIb}$$

$$\Delta(KNO_3) = \frac{\left|\Delta H_m^{\text{Ta6}} - \Delta H_m\right|}{\Delta H_m^{\text{Ta6}}} * 100\% = 16,0\%$$

В случае NH_4Cl :

$$m=rac{m_\chi}{\mu(NH_4Cl)m(H_2O)}=0$$
,374 $rac{ ext{моль}}{ ext{кг}}\Rightarrow \Delta H_m^{ ext{ra6}}=15$,26 $rac{ ext{кДж}}{ ext{моль}}$

$$\Delta H_m = -q_{\scriptscriptstyle X} \mu (N H_4 C l) = 15,39 \; rac{\kappa Дж}{ ext{моль}}$$

$$\Delta(NH_4Cl) = \frac{\left|\Delta H_m^{\text{Ta6}} - \Delta H_m\right|}{\Delta H_m^{\text{Ta6}}} * 100\% = 0.8\%$$

Т.к. в случае NH_4Cl погрешность определения существенно меньше, делаем вывод, что неизвестная соль — хлорид аммония.

Вывод

В ходе работы мы успешно измерили калориметрическую постоянную и интегральную теплоту растворения неизвестной соли. Соотнеся полученные результаты с табличными данными, смогли определить, что неизвестная соль – хлорид аммония. Данный эксперимент показал, что использование метода калориметрии при многократных повторах эксперимента позволяет оценивать термодинамические характеристики химических веществ с довольно неплохой точностью (в нашем случае ~1%).

Приложение (таблицы и графики)

t, мин	T, °C
0,00	26,70
1,00	26,70
2,00	26,65
3,00	26,65
4,00	26,65
5,00	26,65
6,00	26,65
7,00	26,65
7,17	26,15
7,33	26,15
7,50	26,15
7,67	26,15
7,83	26,15
8,00	26,15
8,50	26,20
9,00	26,20
10,00	26,20
11,00	26,20
12,00	26,20
13,00	26,20
14,00	26,20
15,00	26,20
16,00	26,20

табл. 1

граф. 1

† MIAH	T, °C
t, мин	1, C
0,00	26,90
1,00	26,90
2,00	26,90
3,00	26,90
4,00	26,90
5,00	26,90
6,00	26,95
7,00	26,95
7,17	26,00
7,33	25,90
7,50	25,90
7,67	25,90
7,83	25,95
8,00	25,95
8,50	25,95
9,00	25,95
10,00	25,95
11,00	26,00
12,00	26,00
13,00	26,00
14,00	26,05
15,00	26,05
16,00	26,05

табл. 2

граф. 2

t, мин	T, °C
0,00	26,95
1,00	26,95
2,00	26,95
3,00	26,95
4,00	26,95
5,00	27,00
6,00	27,00
7,00	27,00
7,08	26,30
7,17	25,60
7,25	25,40
7,33	25,40
7,42	25,40
7,50	25,45
7,67	25,45
7,83	25,50
8,00	25,50
8,50	25,50
9,00	25,50
10,00	25,50
11,00	25,55
12,00	25,60
13,00	25,60
14,00	25,60
15,00	25,65
16,00	25,65

табл. 3

граф. 3

T, °C
27,15
27,15
27,15
27,15
27,15
27,15
27,15
27,15
26,20
25,40
25,10
25,10
25,10
25,10
25,10
25,15
25,15
25,15
25,20
25,20
25,20
25,25
25,25
25,30
25,30
25,35

табл. 4

граф. 4

	T 0.0
t, мин	T, °C
0,00	27,05
1,00	27,05
2,00	27,05
3,00	27,05
4,00	27,05
5,00	27,10
6,00	27,10
7,00	27,10
7,08	25,90
7,17	24,80
7,25	24,50
7,33	24,50
7,42	24,50
7,50	24,55
7,67	24,55
7,83	24,55
8,00	24,55
8,50	24,60
9,00	24,60
10,00	24,60
11,00	24,60
12,00	24,65
13,00	24,70
14,00	24,70
15,00	24,75
16,00	24,75

табл. 5

граф. 5

t, мин	T, °C
0,00	26,15
1,00	26,15
2,00	26,15
3,00	26,15
4,00	26,10
5,00	26,10
6,00	26,10
7,00	26,10
7,08	25,20
7,17	24,80
7,25	24,80
7,33	24,80
7,42	24,80
7,50	24,80
7,67	24,80
7,83	24,80
8,00	24,80
8,50	24,80
9,00	24,80
10,00	24,80
11,00	24,80
12,00	24,80
13,00	24,80
14,00	24,80
15,00	24,80
16,00	24,80

табл. 6

граф. 6