Algorithms for Data Science CSOR W4246

Eleni Drinea Computer Science Department

Columbia University

More dynamic programming: sequence alignment

Outline

- 1 Recap
 - A Dynamic Programming solution

2 Sequence alignment

Today

- 1 Recap
 - A Dynamic Programming solution

2 Sequence alignment

Linear least squares fitting

A foundational problem in statistics: find a line of *best fit* through some data points.

A first problem: **linear** least squares fitting

Input: a set *P* of *n* data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n);$ we assume $x_1 < x_2 < ... < x_n.$

Output: the line L defined as y = ax + b that minimizes the sum of the vertical distances of the points from the line:

$$err(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$
 (1)

Linear least squares fitting: solution

Given a set P of data points, we can use calculus to show that the line L given by y = ax + b that minimizes

$$err(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$
 (2)

satisfies

$$a = \frac{n\sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}$$
(3)

$$b = \frac{\sum_{i} y_i - a \sum_{i} x_i}{n} \tag{4}$$

How fast can we compute a, b?

What if the data changes direction?

Formalizing Segmented Least Squares

Input: data set $P = \{p_1, \dots, p_n\}$ of points on the plane.

- ▶ A segment $S = \{p_i, p_{i+1}, \dots, p_j\}$ is a contiguous subset of P.
- Let \mathcal{A} be a partition of P into $m_{\mathcal{A}}$ segments $S_1, S_2, \ldots, S_{m_{\mathcal{A}}}$. For every segment S_k , use (2), (3), (4) to compute a line L_k that minimizes $err(L_k, S_k)$.
- ▶ Let C > 0 be a fixed multiplier. The cost of partition \mathcal{A} is

$$\sum_{S_k \in \mathcal{A}} err(L_k, S_k) + m_{\mathcal{A}} \cdot C$$

Output: a partition of minimum cost, and its cost.

A recurrence for the optimal solution

Notation: let $e_{i,j} = err(L, \{p_i, \dots, p_j\})$, for $1 \le i \le j \le n$.

- ▶ Applying the above expression recursively to remove the last segment, we obtain the recurrence

$$OPT(j) = \min_{1 \le i \le j} \left\{ e_{i,j} + C + OPT(i-1) \right\}$$
 (5)

Remark 1.

- 1. We can precompute and store all $e_{i,j}$ using equations (2), (3), (4) in $O(n^3)$ time. Can be improved to $O(n^2)$.
- 2. The natural recursive algorithm arising from recurrence (5) is **not** efficient (think about its recursion tree!).

Elements of DP in segmented least squares

- 1. Overlapping subproblems
- 2. An easy-to-compute recurrence (5) for combining solutions to the smaller subproblems into a solution to a larger subproblem in O(n) time (once smaller subproblems have been solved).
- 3. Iterative, bottom-up computations: compute the subproblems from smallest (0 points) to largest (n points), iteratively.
- 4. Small number of subproblems: we only need to solve n subproblems.

A dynamic programming approach

$$OPT(j) = \min_{1 \le i \le j} \left\{ e_{i,j} + C + OPT(i-1) \right\}$$

- ▶ The optimal solution to the subproblem on p_1, \ldots, p_j contains optimal solutions to smaller subproblems.
- ▶ Recurrence 5 provides an **ordering** of the subproblems from **smaller to larger**: the subproblem of size 0 is the smallest, the subproblem of size n is the largest.
- ▶ Boundary condition: OPT(0) = 0.
- \Rightarrow There are n+1 subproblems in total. Solving the j-th subproblem requires $\Theta(j) = O(n)$ time.
- \Rightarrow The overall running time is $O(n^2)$.
 - ▶ Segment $p_k, ..., p_j$ appears in the optimal solution when the minimum in the expression above is achieved for i = k.

An iterative algorithm for segmented least squares

Let M be an array with n entries such that

 $M[i] = \cos t$ of optimal partition of the first i data points

```
\begin{split} & \text{SegmentedLS}(n,\,P) \\ & M[0] = 0 \\ & \text{for all pairs } i \leq j \text{ do} \\ & \quad \text{Compute } e_{i,j} \text{ for segment } p_i, \ldots, p_j \text{ using } (2), \, (3), \, (4) \\ & \text{end for} \\ & \text{for } j = 1 \text{ to } n \text{ do} \\ & \quad M[j] = \min_{1 \leq i \leq j} \{e_{i,j} + C + M[i-1]\} \\ & \text{end for} \\ & \text{Return } M[n] \end{split}
```

Running time: time required to fill in dynamic programming array M is $O(n^3) + O(n^2)$. Can be brought down to $O(n^2)$.

Reconstructing an optimal segmentation

We can reconstruct the optimal partition recursively, using array M and error matrix e.

```
\begin{split} & \text{OPTSegmentation}(j) \\ & \text{if } (j == 0) \text{ then } \text{return} \\ & \text{else } \ / / \text{ find the first point of the segment where } p_j \text{ belongs} \\ & \text{Find } 1 \leq i \leq j \text{ such that } M[j] = e_{i,j} + C + M[i-1] \\ & \text{OPTSegmentation}(i-1) \\ & \text{Output segment } \{p_i, \dots, p_j\} \\ & \text{end if} \end{split}
```

- ▶ Initial call: OPTSegmentation(n)
- ► Running time?

Obtaining efficient algorithms using DP

- 1. Optimal substructure: the optimal solution to the problem contains optimal solutions to the subproblems.
- A recurrence for the overall optimal solution in terms of optimal solutions to appropriate subproblems. The recurrence should provide a natural ordering of the subproblems from smaller to larger and require polynomial work for combining solutions to the subproblems.
- 3. Iterative, bottom-up computation of subproblems, from smaller to larger.
- 4. Small number of subproblems (polynomial in n).

Dynamic programming vs Divide & Conquer

- ▶ They both combine solutions to subproblems to generate the overall solution.
- ▶ However, divide and conquer starts with a large problem and divides it into small pieces.
- While dynamic programming works from the bottom up, solving the smallest subproblems first and building optimal solutions to steadily larger problems.

Today

- 1 Recap
 - A Dynamic Programming solution

2 Sequence alignment

String similarity

This problem arises when comparing strings.

Example: consider an online dictionary.

- ▶ Input: a word, e.g., "ocurrance"
- ► Output: did you mean "occurrence"?

Similarity: intuitively, two words are similar if we can "almost" line them up by using gaps and mismatches.

Aligning strings using gaps and mismatches

We can align "ocurrance" and "occurrence" using

▶ one gap and one mismatch

О	c	_	u	r	r	a	n	c	е
О	\mathbf{c}	c	u	r	r	e	n	c	е

▶ or, three gaps

(О	_	c	u	r	r	_	a	n	c	е
(О	\mathbf{c}	\mathbf{c}	u	r	r	e	_	n	c	е

Strings in biology

- ► Similarity of english words is rather intuitive.
- ▶ Determining similarity of biological strings is a central computational problem for molecular biologists.
 - ► Chromosomes again: an organism's genome (set of genetic material) consists of chromosomes (giant linear DNA molecules)
 - ▶ We may think of a chromosome as an enormous linear tape containing a string over the alphabet $\{A, C, G, T\}$.
 - The string encodes instructions for building protein molecules.

Why similarity?

Why are we interested in similarity of biological strings?

- Roughly speaking, the sequence of symbols in an organism's genome determines the properties of the organism.
- So similarity can guide decisions about biological experiments.

How do we define similarity between two strings?

Similarity based on the notion of "lining up" two strings

Informally, an alignment between two strings tells us which pairs of positions will be lined up with one another.

Example: X = GCAT, Y = CATG

x_1	x_2	x_3	x_4	
G	С	A	Т	-
-	С	A	Т	G
	y_1	y_2	y_3	y_4

The set of pairs $\{(2,1),(3,2),(4,3)\}$ is an **alignment** of X,Y: these are the pairs of positions in X,Y that are **matched**.

Definition of alignment of two strings

An alignment L of $X = x_1 \dots x_m$, $Y = y_1 \dots y_n$ is a set of **ordered** pairs of indices (i, j) with $i \in [1, m]$, $j \in [1, n]$ such that the following two properties hold:

- P1. every $i \in [1, m], j \in [1, n]$ appears at most once in L;
- P2. pairs do not *cross*: if $(i, j), (i', j') \in L$ and i < i', then j < j'.

Example: X = GCAT, Y = CATG

x_1	x_2	x_3	x_4	
G	С	A	Τ	-
-	С	A	Т	G
	y_1	y_2	y_3	y_4

- 1. $\{(2,1),(3,2),(4,3)\}$ is an alignment; but
- 2. $\{(2,1),(3,2),(4,3),(1,4)\}$ is **not** an alignment (violates P2).

Cost of an alignment

Let L be an alignment of $X = x_1 \dots x_m$, $Y = y_1 \dots y_n$.

- 1. Gap penalty δ : there is a cost δ for every position of X and every position of Y that is not matched.
- 2. Mismatch cost: there is a cost α_{pq} for every pair of alphabet symbols p, q that are matched in L.
 - ▶ So every pair $(i,j) \in L$ incurs a cost of $\alpha_{x_i y_j}$.
 - ▶ **Assumption:** $\alpha_{pp} = 0$ for every symbol p (matching a symbol with itself incurs no cost).

The cost of alignment L is the sum of all the gap and the mismatch costs.

Cost of alignment in symbols

In symbols, given alignment L, let

- ▶ $X_i^L = 1$ iff position i of X is not matched (gap),
- ▶ $Y_j^L = 1$ iff position j of Y is not matched (gap).

Then the cost of alignment L is given by

$$cost(L) = \sum_{1 \le i \le m} X_i^L \delta + \sum_{1 \le j \le n} Y_j^L \delta + \sum_{(i,j) \in L} \alpha_{x_i y_j}$$

Example 1.

Let L_1 be the alignment shown below.

x_1			x_3	x_4	x_5	x_6	x_7	x_8	x_9
О	c	-	u		r	a	n	c	e
О	c	c	u	r	r	e	n	c	e
y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}

Example 1.

Let L_1 be the alignment shown below.

x_1	x_2		x_3	x_4	x_5	x_6	x_7	x_8	x_9
О	c	-	u	r	r	a	n	c	e
О	c	\mathbf{c}	u	r r	\mathbf{r}	e	\mathbf{n}	c	e
y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}

$$L_1 = \{(1,1), (2,2), (3,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10)\}$$

$$cost(L_1) = \delta + \alpha_{ae} \quad \text{(This is } Y_3^{L_1} + \alpha_{x_6y_7}.\text{)}$$

Example 2.

Let L_2 be the alignment shown below.

x_1		x_2	x_3	x_4	x_5		x_6	x_7	x_8	x_9
О	-	c		r	r	-	a	n	c	e
О	c	c	u	r	r	e	-	n	c	e
y_1	y_2	y_3	y_4	y_5	y_6	y_7		y_8	y_9	y_{10}

Example 2.

Let L_2 be the alignment shown below.

x_1					x_5		x_6	x_7	x_8	x_9
О	-	\mathbf{c}	u	r	r	-	a	n	${f c}$	e
О	\mathbf{c}	\mathbf{c}	u	r	r r	e	-	n	c	e
y_1	y_2	y_3	y_4	y_5	y_6	y_7		y_8	y_9	y_{10}

$$L_1 = \{(1,1), (2,3), (3,4), (4,5), (5,6), (7,8), (8,9), (9,10)\}$$

$$cost(L_2) = 3\delta \quad \text{(This is } X_6^{L_2} + Y_2^{L_2} + Y_7^{L_2}.\text{)}$$

Example 3.

Let L_3 , L_4 be the alignments shown below.

x_1	x_2	x_3	x_4
G	C	A	T
\mathbf{C}	A	T	G
y_1	y_2	y_3	y_4

x_1	x_2	x_3	x_4	
G	С	A	Т	-
-	С	A	Τ	G
	y_1	y_2	y_3	y_4

Example 3.

Let L_3 , L_4 be the alignments shown below.

x_1	x_2	x_3	x_4
G	C	A	T
\mathbf{C}	A	T	G
y_1	y_2	y_3	y_4

x_1	x_2	x_3	x_4	
G	С	A	Т	-
-	С	A	Т	G
	y_1	y_2	y_3	y_4

$$L_{3} = \{(1,1), (2,2), (3,3), (4,4)\}$$

$$L_{4} = \{(2,1), (3,2), (4,3)\}$$

$$cost(L_{3}) = \alpha_{GC} + \alpha_{CA} + \alpha_{AT} + \alpha_{TG}$$

$$cost(L_{4}) = 2\delta$$

The sequence alignment problem

Input:

- ▶ **two** strings X, Y consisting of m, n symbols respectively; each symbol is from some alphabet Σ
- the gap penalty δ
- the mismatch costs $\{\alpha_{pq}\}$ for every pair $(p,q) \in \Sigma^2$

Output: the **minimum** cost to align X and Y, and an optimal alignment.

Towards a recursive solution

Claim 1.

Let L be the optimal alignment. Then either

- 1. the last two symbols x_m, y_n of X, Y are matched in L, hence the pair $(m, n) \in L$; or
- 2. x_m, y_n are not matched in L, hence $(m, n) \notin L$. In this case, at least one of x_m, y_n is not matched in L, hence at least one of m, n does not appear in L.

Proof of Claim 1

By contradiction.

Suppose $(m, n) \notin L$ but x_m and y_n are **both** matched in L. That is,

- 1. x_m is matched with y_j for some j < n, hence $(m, j) \in L$;
- 2. y_n is matched with x_i for some i < m, hence $(i, n) \in L$.

Since pairs (i, n) and (m, j) cross, L is not an alignment.

Rewriting Claim 1

The following equivalent way of stating Claim 1 will allow us to easily derive a recurrence.

Fact 4.

In an optimal alignment L, at least one of the following is true

- 1. $(m,n) \in L$; or
- 2. x_m is not matched; or
- 3. y_n is not matched.

The subproblems for sequence alignment

Let

$$OPT(i, j) =$$
minimum cost of an alignment between $x_1 \dots x_i, y_1 \dots y_j$

We want OPT(m, n). From Fact 4,

- 1. If $(m,n) \in L$, we pay $\alpha_{x_m y_n} + OPT(m-1, n-1)$.
- 2. If x_m is not matched, we pay $\delta + OPT(m-1, n)$.
- 3. If y_n is not matched, we pay $\delta + OPT(m, n-1)$.

How do we decide which of the three to use for OPT(m, n)?

The recurrence for the sequence alignment problem

$$OPT(i,j) = \left\{ \begin{array}{ll} j\delta & \text{, if } i = 0 \\ \min \left\{ \begin{array}{ll} \alpha_{x_iy_j} + OPT(i-1,j-1) \\ \delta + OPT(i-1,j) & \text{, if } i,j \geq 1 \\ \delta + OPT(i,j-1) & \text{, if } j = 0 \end{array} \right. \\ i\delta & \text{, if } j = 0 \end{array} \right.$$

Remarks

- ▶ Boundary cases: $OPT(0, j) = j\delta$ and $OPT(i, 0) = i\delta$.
- ▶ Pair (i, j) appears in the optimal alignment for subproblem $x_1 \ldots x_i, y_1 \ldots y_j$ if and only if the minimum is achieved by the first of the three values inside the min computation.

Computing the cost of the optimal alignmen

- ▶ M is an $(m+1) \times (n+1)$ dynamic programming table.
- Fill in M so that all subproblems needed for entry M[i,j] have already been computed when we compute M[i,j] (e.g., column-by-column).

Pseudocode

```
SequenceAlignment(X, Y)
  Initialize M[i, 0] to i\delta
  Initialize M[0,j] to j\delta
  for j = 1 to n do
      for i = 1 to m do
         M[i,j] = min \Big\{ \alpha_{x_i y_j} + M[i-1,j-1],
                           \delta + M[i-1,j], \delta + M[i,j-1] 
      end for
  end for
  return M[m,n]
Running time?
```

Reconstructing the optimal alignment

Given M, we can reconstruct the optimal alignment as follows.

```
TraceAlignment(i, j)
  if i == 0 or j == 0 then return
  else
     if M[i,j] == \alpha_{x_iy_i} + M[i-1,j-1] then
        TraceAlignment(i-1, j-1)
        Output (i, j),
     else
        if M[i,j] == \delta + M[i-1,j] then TraceAlignment(i-1,j)
        else TraceAlignment(i, i-1)
        end if
     end if
  end if
Initial call: TraceAlignment(m, n)
Running time?
```

Resources used by dynamic programming algorithm

- ▶ Time: O(mn)
- ▶ Space: O(mn)
 - ▶ English words: $m, n \le 10$
 - ▶ Computational biology: m = n = 100000
 - ► Time: 10 billion ops
 - ► Space: 10GB table!
- ► Can we avoid using quadratic space while maintaining quadratic running time?

Using only O(m+n) space

1. First, suppose we are only interested in the **cost** of the optimal alignment.

Easy: keep a table M with 2 columns, hence 2(m+1) entries.

- 2. What if we want the optimal alignment too?
 - ▶ No longer possible in O(n+m) time.