Math 267 Worksheet 7 - Fall 2021

1. Suppose we want to solve the nonhomogeneous second order differential equation

$$y'' + 25y = 10xe^x \tag{*}$$

by the method of undetermined coefficients.

(a) If we guess that the particular solution of the nonhomogeneous equation has the form $y_p = Ae^x + Bxe^x$, use the method of undetermined coefficients to find y_p .

$$Y'_{p} = Ae^{x} + Bxe^{x} + Be^{x} = (A+B)e^{x} + Bxe^{x}$$

=
$$(26A + 2B)e^{x} + 26Bxe^{x}$$

when
$$x = 0$$
: $0 = 26A + 2B \Rightarrow A = \frac{-1}{13}B$

when
$$X = 1$$
: $10e = (26A + 2B)e + 26Be$

$$\Rightarrow B = \frac{5}{13}$$
, $A = -\frac{5}{169}$

$$y_p = \frac{-5}{169} e^{x} + \frac{5}{13} x e^{x}$$

(b) Write down the general solution to the homogeneous differential equation corresponding to (*).

$$r^2 + 25 = 0$$

(a) If we guess that the particular
$$25 - 25 = 25$$

$$\Rightarrow$$
 $r = \pm 5i$

$$Y = C_1 \cos 5x + C_2 \sin 5x$$

(c) Write down the general solution to the nonhomogeneous differential equation (*).

$$-\frac{5}{139}e^{x} + \frac{5}{13}xe^{x}$$

2. Suppose we want to solve the nonhomogeneous second order differential equation

$$y'' \neq 2y' + y = 5e^x$$

by the method of undetermined coefficients. Since the general solution to the corresponding homogeneous equation is $y = C_1 e^x + C_2 x e^x$, we must guess that the particular solution has the form $y_p = Ax^2 e^x$. Find y_p .

$$y_{p'} = 2Axe^{x} + Ax^{2}e^{x}$$

$$y_{p''} = 2Ae^{x} + 2Axe^{x} + 2Axe^{x} + Ax^{2}e^{x}$$

$$= 2Ae^{x} + 4Axe^{x} + Ax^{2}e^{x}$$

$$5e^{x} = 2Ae^{x} + 4Axe^{x} + Ax^{2}e^{x} - 4Axe^{x} - 2Ax^{2}e^{x}$$

$$+ Ax^{2}e^{x}$$

$$\Rightarrow A = \frac{5}{2}$$

$$x = \frac{5}{2}$$

$$x = \frac{5}{2}$$

$$x = \frac{5}{2}$$

$$y_p = \frac{5}{2} x^2 e^X$$

3. In this problem, we will solve the differential equation

$$y'' + y = \csc^2 x \tag{**}$$

by variation of parameters.

(a) First, find linearly independent functions y_1 and y_2 that solve the corresponding homogeneous equation.

(b) We will then guess that the particular solution to the nonhomogeneous equation has the form $y_p = u_1y_1 + u_2y_2$ for some functions u_1 and u_2 satisfying:

$$u_1'y_1 + u_2'y_2 = 0 (***)$$

Plug y_p into the equation (**) and simplify the result as much as possible using (* * *) and the fact that y_1, y_2 solve the homogeneous equation.

$$y_{p'} = (u_{1}\sin x + u_{2}\cos x)'$$

= $u_{1}'\sin x + u_{1}\cos x + u_{2}'\cos x - u_{2}\sin x$

= $u_{1}\cos x - u_{2}\sin x$
 $y_{p''} = u_{1}'\cos x - u_{1}\sin x - u_{2}'\sin x - u_{2}\cos x$

$$csc^{2}x = yp'' + yp$$

$$= u_{1}'cosx - u_{1}sinx - u_{2}'sinx - u_{2}cosx + u_{1}sinx + u_{2}cosx$$

$$= u_{1}'cosx - u_{2}'sinx$$

(c) The simplified equation you found in the previous part together with (***) form a system of equations for the unknown functions u'_1 and u'_2 . Solve this system of equations for u'_1 and u'_2 .

$$0 = u_1' \sin x + u_2' \cos x \Rightarrow u_2' = -(\tan x) u_1'$$

$$csc^2 x = u_1' \cos x - u_2' \sin x \Rightarrow csc^2 x = (\cos x + \sin x + \cos x) u_1'$$

$$\Rightarrow u_1' = \frac{csc^2 x}{\cos x + \sin x + \cos x} = \frac{csc^2 x}{\cos^2 x + \sin^2 x} = \csc x \cot x$$

$$\Rightarrow u_2' = -\csc x$$

$$\Rightarrow u_2' = -\csc x$$

(d) Integrate u'_1 and u'_2 to find u_1 and u_2 .

$$u_1 = \int \csc x \cot x \, dx = -\csc x + C$$

$$u_2 = \int -\csc x \, dx = \int -\frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x} \, dx$$

$$w = \csc x + \cot x = \int \frac{1}{w} \, dw = \ln|w| + C$$

$$dw = -\csc x \cot x - \csc^2 x \, dx = \ln|\csc x + \cot x| + C$$

(e) What is the particular solution y_p ?

$$y_{p} = -\csc x \cdot \sin x + \ln|\csc x + \cot x| \cdot \cos x$$
$$= -1 + \ln|\csc x + \cot x| \cdot \cos x$$