Consider the algorithms of MERGESORT and QUICKSORT.

```
QUICKSORT(A)
```

```
\begin{aligned} &\text{if } |A| > 1 \text{ then} \\ &\text{pivot} \leftarrow A[i] \\ &\text{partition } A \text{ into multisets} \\ &L = \{\text{elements in } A < \text{ pivot}\} \\ &E = \{\text{elements in } A = \text{ pivot}\} \\ &G = \{\text{elements in } A > \text{ pivot}\} \\ &\text{QUICKSORT}(L) \\ &\text{QUICKSORT}(G) \\ &A \leftarrow L, E, G \end{aligned} fi
```

Let G(n) = "For all arrays A with n elements from a totally ordered domain, if QUICKSORT(A) is performed, . . . unchanged."

We proceed by induction.

Let $n \in \mathbb{N}$ be arbitrary.

Let A be an arbitrary array with n elements from a totally ordered domain.

Base Case

If n = 0 or n = 1, the test on line 1 fails and thus A is unchanged and vacuously sorted.

Inductive Step

Suppose G(n') is true for all $n' \in \mathbb{N}$ with n' < n.

The test on line 1 succeeds.

By partitioning, all elements in L are less than all elements in E, which are less than all elements in G. A multiset of elements in A is the union of the multiset of elements in L, E, G.

```
A[i] \in E, so |L| and |G| are less than |A|.
```

By the IH, after $\mathrm{QUICKSORT}(L)$ and $\mathrm{QUICKSORT}(G)$ are performed L and G are sorted in nondecreasing order and the multiset of elements in L and G are unchanged.

After the assignment on line 6, A is sorted in a non-decreasing order. All elements in L are therefore less than all elements in E, which in turn are less than all elements in G, and thu multiset of elements in A is unchanged. By generalisation, P(n).

By induction, for any $n \in \mathbb{N}.P(n)$.

1 Divide and Conquer Algorithms

- divide the problem into smaller parts, often of roughly equal size
- solve each part independently
- combine the solutions for the parts into a solution for the whole problem

1.1 Correctness of Iterative Algorithms

```
\begin{array}{c} z \leftarrow 0 \\ w \leftarrow y \\ \text{while } w \neq 0 \text{ do} \\ z \leftarrow z + x \\ w \leftarrow w - 1 \\ \text{od} \end{array}
```

What are the values of the variables immediately after iteration i of the loop? (w = y - i, z = ix)

Let P(i) ="if the loop is executed at least i times, then immediately after the iteration i we have w = y - i and z = ix".

Note that, by convention, when we talk about the 0th iteration, we are talking about the state immediately before the 1st iteration.

Lemma 1.1

Let $x, y \in \mathbb{Z}$. For all $i \in \mathbb{N}$, we have P(i).

Proof:

Let W_i and z_i denote the values of w and z immediately after iteration i.

Base Case

```
w_0 = y = y - 0 by line 2.

z_0 = 0 = 0 \cdot x by line 1,

so P(0) is true.
```

Inductive Hypothesis

Let $i \geq 0$ and assume P(i) is true.

Then $w_i = y - i$ and $z_i = ix$.

From lines 4 and 5, we have that $z_{i+1} = z_i + x$ and $w_{i+1} = w_i - 1$, which by inductive hypothesis means that $z_{i+1} = (i+1)x$ and $w_{i+1} = y - (i+1)$, and hence P(i+1) holds.

By induction, we have that $\forall i \in \mathbb{N}.P(i)$.

Corollary 1.2

If the algorithm runs and halts, then at the end z = xy.

Proof:

Suppose the loop halts immediately after the iteration i.

From the termination condition of the loop on line 3 we have that $W_i = 0$. By Lemma $1.1, w_i = y - i$ and $z_i = ix$, so i = y and $z_i = xy$.

A **loop invariant** is a predicate that is true each time a particular place in the loop is reached (often the beginning or end).

Lemma 1.3

z = x(y - w) is a loop invariant which is true at the beginning and end of every iterations.

Proof:

Initially, yrom lines 1 and 2 we can see that z = 0 and w = y, so x(y - w) = 0 = z.

Consider an arbitrary iteration of the loop.

Let w' and z' denote the values of w and z before the iterations. Let w'' and z'' denote their variable at the end of the iteration.

Suppose the claim holds at the beginning of the iteration so z' = x(y - w').

From lines 4 and 5,

w'' = w' - 1 and z'' = z' + x, so x(y - w'') = x(y - (w' - 1)) = x(y - w') + x = z' + x = z'', so the claim is true at the end of the iterations.

By induction, z = x(y - 0) is true after every iteration.

To prove that an algorithm terminates, we need to show that some nonnegative integral quantity decreases each time through the loop.

Lemma 1.4

If $x \in \mathbb{Z}$, $y \in \mathbb{N}$, and the algorithm runs, it eventually halts.

Proof:

Before the loop is executed, $w \leftarrow y \in \mathbb{N}$.

In each iteration of the loop, w is decreased by 1, so it is a smaller natural number.

Hence wmust eventually reach 0, which is the exiting condition of the loop. Thus the loop terminates and the algorithm halts.

Proof: [More Formal]

Suppose the loop does not terminate.

Let w_i be the value of wimmediately before the *i*th iteration of the loop.

In each iteration of the loop w is decreased by 1, so $w_{i+1} < w_i$.

Since the loop does not terminate, we have $w_i \neq 0$.

Thus, if $w_i \in \mathbb{N}$, then $w_{i+1} \in \mathbb{N}$.

Also, we know that $w_1 = y \in \mathbb{N}$.

By induction, $w_1, w_2, w_3,...$ is a decreasing sequence of natural numbers.

By the Well-Ordering Principle, the set of elements in this sequence has a smallest element.

Suppose that w_i is the smallest element.

But $w_{j+1} < w_j$, which contradicts the assumption that w_j is the smallest element. Thus, the loop eventually terminates.

Proof:

Prove by induction that $w_i = y - i$.

Then $w_y = 0$, and so the algorithm terminates.

Now we consider the algorithm of multiplication by shifting and addition.

$$\begin{split} & \text{MULT(m, n)} \\ & x \leftarrow m \\ & y \leftarrow n \\ & z \leftarrow 0 \\ & \text{while } x \neq 0 \text{ do} \\ & \text{if } x \mod 2 = 1 \\ & \text{then } z \leftarrow z + y \\ & x \leftarrow x \text{ div } 2 \\ & y \leftarrow y \cdot 2 \end{split}$$

od

return z

Preconditions: $m \in \mathbb{N}, n \in \mathbb{R}$

Postconditions: z = mn

To derive loop invariants, it is worthwhile to look at examples.

Suppose $m = 11 = 1011_2$, $n = 20 = 10100_2$.

Let $x, y \neq z$ denote the values of $x, y \neq z$ immediately after the iteration i.

Therefore,

7	i a	c_i (x_i)	$(x_i)_2 x_i$	$\mod 2$	y_i	z_i
() 1	1 10	11	1	20	0
-	L :	5 10)1	1	40	20
4	2 2	2 1	0	0	80	60
•	3	1 1	-	1	160	60
4	1 () ()	0	320	220

Let $m[k-1], \ldots, m[0]$ denote the binary representation of m:

$$m = \sum_{j=0}^{k-1} m[j]2^j.$$

Thus, $m[j] \in \{0, 1\}$ for j = 0, ..., k - 1.

Hence,
$$x_i = \sum_{i=1}^{k-1} m[j] 2^{k-i}$$
 and $\lfloor m/2 \rfloor = \lfloor \sum_{j=0}^{k-1} m[j] 2^{j-1} \rfloor = \sum_{i=1}^{k-1} m[j] 2^{j-1}$.

Note that $z_0 = 0$.

Therefore, $z_{i+1} = z_i + m[i] \cdot n2^i$, and thus

$$z_{i+1} = z_i + m[i] \cdot n2^i \tag{1}$$

$$= z_{i-1} + m[i-1] \cdot n2^{i-1} + m[i]n2^{i}$$
(2)

$$= n\sum_{i=0}^{i} m[i] \cdot 2^{i} \tag{3}$$

$$= n(\sum_{j=0}^{k-1} m[j]2^j - \sum_{j=i+1}^{k-1} m[j]2^j)$$
(4)

$$= n(m - x_{i+1}2^{i+1}) (5)$$

$$= nm - x_{i+1}y_{i+1} \tag{6}$$

Corollary 1.5 (Partial Correctness)

Let $m \in \mathbb{N}$ or $n \in \mathbb{R}$.

If the algorithm $\mathrm{MULT}(m,n)$ is run and it halts, then, when it halts, Z=nm.

Proof:

From the termination condition of the loop x = 0, so z = nm - xy, and by the result already obtained, z = nm - xy = nm.