CS311: Lab Report Assignment 6 - L1 Cache Simulation

B Siddharth Prabhu 200010003@iitdh.ac.in

Devdatt N 200010012@iitdh.ac.in

4 November 2022

1 Introduction

In this assignment, we added caches to the simulated memory system.

- One cache (instCache) was added between the IF stage and the main memory. Let us call this the "level 1 instruction cache" or the Lli-cache.
- One cache (dataCache) was added between the MA stage and the main memory. Let us call this the "level 1 data cache" or the L1d-cache.

2 Input and Output of the Program

Inputs include:

- 1. Full path to configuration file, src/configuration/config.xml .
- 2. Full path to statistics file, stats.txt, which stores statistics of the simulation run.
- 3. Full path to object file, for example text_cases/descending.out whose execution is to be simulated.

We run the program for a given object file (e.g. descending.out) using the following command-line argument(s), which have been put into a shell script for simplicity:

```
#!/bin/bash
ant;
ant make-jar;
java -jar jars/simulator.jar src/configuration/config.xml stats.txt

    test_cases/descending.out;
```

Output includes the statistics file which must be created at the required location. (ant; and ant make-jar; do not have to be used in runs after the first simulation.) Pre-existing jar/bin folders may raise minor issues, which can be overcome by simply removing them (since they are generated again anyway).

3 Cache Configurations

Cache size	16B	128B	512B	1kB		
Latency	1 cycle	2 cycles	3 cycles	4 cycles		
Line Size	4B					
Associativity	2					
Write Policy	Write Through					

Table 1: Cache Configurations

4 Analysis and Tabulation

4.1 Varying Instruction Cache

First we fix the size of the L1d-cache at 1kB. Then, we vary the size of the L1i-cache from 16B to 1kB (remember to change latency accordingly), and study the performance (instructions per cycle). Plots are included later.

Assembly Program	IPC					
	Without Cache	L1i = 16B	L1i = 128B	L1i = 512B	L1i = 1kB	
descending.asm	0.02493	0.02293	0.08848	0.07804	0.06977	
evenorodd.asm	0.02439	0.02238	0.02158	0.02083	0.02013	
fibonacci.asm	0.02482	0.02291	0.05864	0.05313	0.04850	
prime.asm	0.02463	0.02375	0.05022	0.04576	0.04202	
palindrome.asm	0.02462	0.02315	0.06947	0.06113	0.05458	

Table 2: Throughput (IPC) with L1d-cache fixed at 1kB

4.2 Varying Data Cache

Now, we fix the size of the L1i-cache at 1kB. We vary the size of the L1d-cache from 16B to 1kB. Plots are included later.

Assembly Program	IPC					
	Without Cache	L1d = 16B	L1d = 128B	L1d = 512B	L1d = 1kB	
descending.asm	0.02493	0.06490	0.07075	0.07025	0.06977	
evenorodd.asm	0.02439	0.02013	0.02013	0.02013	0.02013	
fibonacci.asm	0.02482	0.04903	0.04885	0.04867	0.04850	
prime.asm	0.02463	0.04202	0.04202	0.04202	0.04202	
palindrome.asm	0.02462	0.05458	0.05458	0.05458	0.05458	

Table 3: Throughput (IPC) with Lli-cache fixed at 1kB

5 Graphical Representation

5.1 Varying Instruction Cache

Figure 1: Varying L1i-cache

5.2 Varying Data Cache

Figure 2: Varying L1d-cache

6 Observations

- Cache latency has been modeled. It is reflected in IF stage and during load/store processes of the MA stage. Separate classes
 Cache.java and CacheLine.java were created within Processor.memorysystem.
- From the graphs, we observe that introduction of an L1i_cache decreases IPC initially, followed by a sharp increase (except in the case of evenorodd.asm). This later steadily decreases with increase in L1i_cache size.
- Also, it could be observed that introduction of an L1d_cache sharply increases IPC initially, followed by tapering off of the IPC on further increase in size of L1d_cache.
- We can conclude that with a considerable amount of data, we can find an optimal amount of L1i_cache and L1d_cache to maximize IPC.