CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

D. Patterson and J. Hennessy, Computer Organization and Design

Example

Show the symbol gate design for F

$$F = (x' + y + xz)'$$

Clicker Question

Which truth table is the correct one for the following system.

e: none of the above

Sum of Products

PRODUCT TERMS
$$x_0, x_2x_1, x_3x_1x_0'$$

SUM OF PRODUCTS (SP) $x_2' + x_3x_1' + x_3'x_1'x_0$

We can present them using symbols

$$x_0 = x_3 x_1 x_0$$

MINTERM NOTATION

$$x_i \longleftrightarrow 1; \qquad x_i' \longleftrightarrow 0$$

MINTERM m_j , j INTEGER

EXAMPLE: MINTERM $x_3x_2'x_1'x_0$ DENOTED m_9 BECAUSE 1001 = 9

EXAMPLE: $m_{11} = x_3 x_2' x_1 x_0$ - HAS VALUE 1 ONLY FOR $\underline{a} = (1, 0, 1, 1)$

MINTERM FUNCTIONS

$x_2x_1x_0$	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
	$x_2'x_1'x_0'$	$x_2'x_1'x_0$	$x_2'x_1x_0'$	$x_2'x_1x_0$	$x_2x_1'x_0'$	$x_2x_1'x_0$	$x_2x_1x_0'$	$x_2x_1x_0$
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

$\mathsf{Example} \quad : \, \mathsf{TABLE} \to \mathsf{SUM} \,\, \mathsf{OF} \,\, \mathsf{MINTERMS}$

j	$x_2 x_1 x_0$	f
0	000	0
1	001	0
2	010	1
3	011	1
4	100	0
5	101	1
6	110	0
7	111	0

Example

Present F and G in sum of minterms format

X	Y	Z	F	G
0	0	0	0	1
0	0	1	1	1
0	1	0	O	1
0	0 0 1 1 0	1 0	0	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

F = ?

G = ?

Clicker Question

Digital Design

X	Y	Z	F	X	Y	Z	F
0	0	0	1	1	0	0	0
0	0	1	0	1	0	1	1
0	1	0	0	1	1	0	1
0	1	1	1	1 1 1 1	1	1	0

Which is the correct sum of product form for F? (sum of minterms)

a
$$F = \bar{X}\bar{Y}Z + \bar{X}Y\bar{Z} + X\bar{Y}\bar{Z} + XYZ$$

b
$$F = \bar{X}\bar{Y}\bar{Z} + X\bar{Y}\bar{Z} + X\bar{Y}\bar{Z}$$

c
$$F = \bar{X}\bar{Y}\bar{Z} + \bar{X}YZ + X\bar{Y}Z + XY\bar{Z}$$

d
$$F = XY\bar{Z} + X\bar{Y}Z + \bar{X}\bar{Y}\bar{Z} + X\bar{Y}Z$$

e None of the above

CONVERSION TO SUM OF MINTERMS

1. CONVERT TO EQUIVALENT SUM OF PRODUCTS

$$E(x_2, x_1, x_0) = (x_2x_1)'x_0$$

$$= (x_2' + x_1')x_0$$

$$= x_2'x_0 + x_1'x_0$$

2. CONVERT PRODUCT TERMS TO MINTERMS

$$E(x_2, x_1, x_0) = x_2'x_0 + x_1'x_0$$

$$= x_2'x_0(x_1 + x_1') + x_1'x_0(x_2 + x_2')$$

$$= x_2'x_1x_0 + x_2'x_1'x_0 + x_2x_1'x_0 + x_2'x_1'x_0$$

3. ELIMINATE REPEATED MINTERMS

$$E(x_2, x_1, x_0) = x_2' x_1' x_0 + x_2' x_1 x_0 + x_2 x_1' x_0$$

Example: : CONVERSION TO SUM OF MINTERMS

$$E(x_2, x_1, x_0) = x_2 x_1' + x_2 x_0' + x_1 x_0'$$

Product of Sums

SUM TERMS $x_0, x_2 + x_1, x_3 + x_1 + x'_0$ PRODUCT OF SUMS $(x'_2 + x_3 + x'_1)(x'_3 + x_1)x_0$

Product of Sums

$$x_2 - x_4 - x_1$$
 $z = x_4 + x_2 + x_1$

MAXTERM NOTATION

$$x_i \longleftrightarrow 0; \qquad x_i' \longleftrightarrow 1$$

MAXTERM M_j , j INTEGER

EXAMPLE: MAXTERM
$$x_3 + x'_2 + x_1 + x'_0$$
 DENOTED M_5 BECAUSE $0101 = 5$

EXAMPLE: $M_5 = x_3 + x'_2 + x_1 + x'_0$ - HAS VALUE 0 ONLY FOR ASSIGNMENT 0101

 $\mathsf{Example} \quad : \; \mathsf{TABLE} \to \mathsf{PRODUCT} \; \mathsf{OF} \; \mathsf{SUMS}$

j	$x_2x_1x_0$	f
0	000	0
1	001	1
2	010	1
3	011	0
4	100	0
5	101	0
6	110	1
7	111	0

$$E(x_2, x_1, x_0) =$$

Example

Present F and G in product of maxterms format

X	Y	Z	F	G
0	0	0	0	1
0		1	1	1
0	1	0	0	1
0	1 0	1	0	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

$$F = ?$$

$$G = ?$$

Clicker Question

Product of Maxterms

X	Y	Z	F	X	Y	Ζ	F
0	0	0	1	1	0	0	0
0	0	1	0	1	0	1	1
0	1	0	0	1	1	0	1
0	1	1	1	1 1 1 1	1	1	0

Which one is correct?

- a) F = (x'+y+z). (x+y'+z). (x+y+z'). (x'+y'+z)
- b) F = (x'+y+z'). (x+y+z). (x'+y+z). (x'+y'+z)
- c) F = (x+y+z'). (x+y'+z). (x'+y+z). (x'+y'+z')
- d) F = (x+y'+z). (x+y+z'). (x+y'+z'). (x'+y+z)
- e) none

CONVERSION AMONG CANONICAL FORMS

SUM OF MINTERMS \longleftrightarrow one-set PRODUCT OF MAXTERMS \longleftrightarrow zero-set \Rightarrow CONVERSION STRAIGHTFORWARD

$$\sum m(\{j \mid f(j) = 1\}) = \prod M(\{j \mid f(j) = 0\})$$

EXAMPLE:

m-NOTATION:

$$f(x, y, z) = \sum m(0, 4, 7)$$

M-NOTATION:

$$f(x, y, z) = \prod M(1, 2, 3, 5, 6)$$