(54) TOROIDAL WINDING MACHINE

(11) 63-40310 (A) (43) 20.2.1988

(21) Appl. No. 61-183632 (22) 5.8.1986

(71) ALPS ELECTRIC CO LTD (72) TAKAO IIHAMA(1)

(51) Int. Cl4. H01F41/08

PURPOSE: To make small size and simple structure and to surely insert a wire material in a winding hole by making an arm provided with a hand which holds or releases a wire material move with a turn table which supports the works.

CONSTITUTION: A wire material C is drawn out from a wire reel 44, the end of the wire material C is grasped by the fixed position hook and the movable hook of a hand 15 at the receding position of a moving arm 13 and a definite length is drawn out by the advance of the moving arm 13 to a definite position. Then, a cylinder device 47 is operated, a holder 45 and a cutter 46 are raised, the holder 45 holds the wire material C, the cutter 46 cuts the wire material C and then, the cylinder device 47 lowers the holder and the cutter. Then, the hand 15 is advanced by the moving arm 13 to the position of centering means 32, a shutter is moved toward the wire material C and the wire material C is positioned at the center of the winding hole of a magnetic head core W.

(54) MANUFACTRUE OF SMALL SIZE INDUCTOR

(11) 63-40311 (A)

(43) 20.2.1988 (19) JP

(21) Appl. No. 61-182777 (22) 5.8.1986

(71) TOHOKU METAL IND LTD (72) KATSUNORI TAKASAGO

(51) Int. Cl4. H01F41/10

PURPOSE: To accurately support an inductor element on a lead terminal by mounting the inductor element on the step of the piece for the lead terminal, by pushing a lead wire between the projection provided on the piece and the piece and by welding the lead wire and the piece after the insulation coating

of the lead wire is separated by heat.

CONSTITUTION: An inductor element 1 is held by pushing the four corners of the core 22 of the inductor element 1 on the steps consisting of projections $51\sim53$ of the piece 5 for a lead terminal until abutting to the projection 52. Then, a lead wire 33 is inserted under the projection 53, pushed with the projection 53 and the wire 33 is positioned and fixed. Then, immediately after the insulation coating of the lead wire 33 is separated by heat by causing a sufficient current to flow for the thermal separation, the connection of the wire 33 and the piece 5 for the lead terminal is completed by causing a sufficient current to flow for welding the wire 33 and the projection 53. Then, externally molded, separated from a frame 6 for positioning and a small size inductor with the lead terminal is completed.

2: ferrite core, 7: hole for positioning 7: bridge frame. 21: through hole. 61: guide

(54) MANUFACTURE OF THIN FILM BY CATALYTIC CVD METHOD AND DEVICE THEREFOR

(11) 6<u>3-40314</u> (A) (43) 20.2.1988 (19) JP

(21) Appl. No. 61-182827 (22) 5.8.1986 (71) HIROSHIMA UNIV (72) HIDEKI MATSUMURA

(51) Int. Cl⁴. H01L21/205,C23C16/24,C23C16/30,C23C16/44,H01L21/31//G03G5/08

PURPOSE: To form a thin film at low temperature by a method wherein a catalytic body is heated to a temperature lower than 800~2000°C and than the melting point thereof, a material gas is made to react therewith and, with a produced deposit used as a material, a thin film is deposited on a substrate

heated to a room temperature to 500°C.

CONSTITUTION: A catalytic body 4 heated to a temperature of 800~2000°C lower than the melting point thereof is disposed in the flow of a material gas supplied through a material gas supply conduit 1, and thereby at least part of the material gas is caused to show catalytic reaction or pyrolytic reaction, so as to produce a deposit or a precursor thereof. This material is carried onto a substrate held by a holder 5, and it is deposited thereon to form a thin film. By setting the temperature of the substrate at a room temperature to 500°C, preferably at about 150~400°C, efficient and accurate formation of the film is achieved.

⑩ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭63-40314

⑤Int Cl.⁴	識別	記号 庁内整	理番号 (3公開	昭和63年(198	38)2月20日
	1/205 6/24		9-5F 4-4K	·		
1	6/30 6/44	655	4-4K 4-4K			
	1/31 5/08 1 (8-5F l-2H 審査請求	有	発明の数 2	(全11頁)

②特 願 昭61-182827

20出 願 昭61(1986)8月5日

砂発 明 者 松 村 英 樹 広島県東広島市西条上市町3-5 本岡ビル205号

①出 願 人 広 島 大 学 長 広島県広島市中区東千田町1丁目1番89号

20代 理 人 弁理士 杉村 暁秀 外1名

PTO 2002-1721

S.T.I.C. Translations Branch

月 細 1

1. 発明の名称 触媒 C V D 法による薄膜の製造 法とその装置

2. 特許請求の範囲

- 1. 触媒体を800~2,000 で未満の範囲で且つその融点未満の温度に加熱し、該過熱触媒体により供給原料ガスの少なくとも一部を触媒反応もしくは熱分解反応させて生成した堆積種またはその前駆体を原料種として、室温乃至約500 での温度に加熱した基板上に熱でVD法によって薄膜を堆積させることを特徴とする触媒CVD法による薄膜の製造法。
- 2. 前記基板の過熱温度を約150 ~ 約400 ℃となす特許請求の範囲第1項記載の触媒 C V D 法による譲襲の製造法。
- 3. 前記供給原料ガスが、二フッ化ケイ素Sifz ガス、フッ化ケイ素Sin Fzn-z(但し、n は正 の整数) ガス、フッ水素化ケイ素Sin Fg Ha (但し、k, 1, m は2k+2= g+mの正の整数) ガスおよびそれらの少なくとも1種と水素と

の混合ガスよりなる群から選ばれた少なくとも1種のフッ化ケイ素系ガスを基本的堆積用ガスとして含んでなり、堆積する薄膜がアモルファス状、微結晶状または多結晶状のシリコン含有薄膜である特許請求の範囲第1項または第2項記載の触媒CVD法による薄膜の製造法。

- 4. 前記供給原料ガスが二水素化二フッ化ケイ 素ガスを含んでなる特許請求の範囲第3項記 載の触媒CVD法による薄膜の製造法。
- 5. 前記供給原料ガスがSizF。を含んでなる特許請求の範囲第3項記載の触媒CVD法による薄膜の製造法。
- 6. 前配供給原料ガスが、水素化ケイ素Si。 Hz n・z(但し、nは正の整数)、および水素化ケイ素と水素との混合ガスよりなる群から選ばれた少なくとも1種の水素化ケイ素系ガスを基本的堆積用ガスとして含んでなり、堆積する薄膜がアモルファス状、微結晶状または多結晶状のシリコン含有薄膜である特許請求の

範囲第1項または第2項記載の触媒CVD法による薄膜の製造法。

- 7. 前記水素化ケイ素がシランSiH4である特許 請求の範囲第6項記載の触媒CVD法による 薄膜の製造法。
- 8. 前記供給原料ガスが、さらに二フッ化ゲルマニウムGeFェガス、フッ化ゲルマニウム
 Ge。Fzn・z (但し、nは正の整数) ガス、水素化ゲルマニウムGe*F H。
 整数) ガス、フッ水素化ゲルマニウムGe*F H。
 (但し、k, l, mは2k+2= l+mの正の整数)
 ガスはびそれらの少なくとも1種と水素と
 の混合ガスよりなる群から選ばれた少な発し
 も1種のゲルマニウム系ガスを基本的堆積用
 ガスとしてなり、堆積する薄膜が到
 コンゲルマニウムSiGeである特許請求の範
 ソ
 D法による薄膜の製造法。
- 9. 前記供給原料ガスが、さらにCH2 ガス、 Cn H2n (但し、n は 2 以上の正の整数) ガ

- ス、C。 || z・z(但し、n は正の整数)ガス、Cz F₂ || lo (但し、k. e. m は2k+2= e+m の正の整数)ガスおよびそれらの少なくとも1種と水器との混合ガスよりなる群から遊ばれた少なくとも1種の炭化水器系ガスを基本的堆積用ガスとして含んでなり、堆積する薄膜がシリコンカーバイドSiC である特許請求の範囲第3項乃至第7項の何れかに記載の触媒CVD法による薄膜の製造法。
- 10. 前記供給原料ガスが、さらにSnFzガス、Snn Fzn-z (但しn は正の整数) ガス、Snn Hzn-z (但し、n は正の整数) ガス、Snx Fy Ha (但し、k. l. m は2k+2 = l+m の正の整数) ガスおよびそれらの少なくとも1種と水素との混合ガスよりなる群から選ばれた少なくとも1種の錫系ガスを基本的堆積用ガスとして含んでなり、堆積する薄膜がシリコン錫SiSnである特許請求の範囲第3項乃至第7項の何れかに記載の触媒CVD法による薄膜の製造法。
- 11. 前記供給原料ガスが、さらに、窒素ガス、 窒素水素化物および窒素ハロケン化物よりな る群から選ばれる少なくとも1種の窒素含有 ガスと、酸素ガスおよび酸化水素よりなる群 から選ばれる少なくとも1種の酸素含有ガス との少なくとも一方を含んでなり、堆積する 薄膜が窒化シリコン、酸化シリコンおよび 酸化シリコンの何れかである特許請求の範 第3項乃至第7項の何れかに記載の触媒CV D法による薄膜の製造法。
- 12. 前記窒素水素化物がアンモニアNH。およびヒドラジンNェH。であり、窒素ハロゲン化物が三フッ化窒素NF。であり、また酸化水素が水および過酸化水素である特許請求の範囲第11 項記載の触媒CVD法による薄膜の製造法。
- 13. 前記供給原料ガスが、炭化水素ガス、炭化水素と水素との混合ガス、およびハロゲン化炭素と水素との混合ガスよりなる群から選ばれた少なくとも1種の炭素系ガスを基本的堆積用ガスとして含んでなり、堆積する復膜が

アモルファス状、微結晶状または多結晶状の 炭素含有薄膜である特許請求の範囲第1項ま たは第2項記載の触媒CVD法による薄膜の 製造法。

- 14. 前記供給原料ガスが、飽和炭化水素 Ca Hzaoz (但しn は正の整数)、不飽和炭化水素 Ca Hzao (但しn は正の整数) およびこれら炭化水素と水素との混合ガスより選ばれる特許請求の範囲第13項記載の触媒 C V D 法による薄膜の製造法。
- 15. 前記供給原料ガスが、アルミニウム化合物ガスと、水素の酸化物および窒化物より選ばれた水素化合物ガスとの混合ガスを基本的堆積用ガスとして含んでなり、堆積する薄膜が酸化アルミニウム、窒化アルミニウムおよび窒酸化アルミニウムの何れかである特許請求の範囲第1項または第2項記載の触媒CVD法による薄膜の製造法。
- 16. 前記アルミニウム化合物がトリメチルアル ミニウムおよびアルミニウムハライドより選

ばれ、水素の酸化物が水および過酸化水素よりなり、また水素の窒化物がアンモニアNB。およびヒドラジンNzBaである特許請求の範囲第15項記載の触媒CVD法による薄膜の製造法。

- 17. 前記触媒体がタングステン、トリア含有タングステン、白金、パラジウム、モリプデン、シリコン、アルミナ、炭化ケイ素、金属蒸着セラミックスよりなる群から選ばれた少なくとも1種の材料よりなる前記特許請求の範囲第1項乃至第16項の何れかに記載の触媒CVD法による薄膜の製造法。
- 18. 触媒体の加熱温度が1100~1800℃の範囲で 且つ触媒体の融点未満の温度である特許請求 の範囲第17項配載の触媒CVD法による薄膜 の製造法。
- 19. 触媒体の加熱を水素ガス雰囲気中で行う前記特許請求の範囲第1項乃至第18項の何れかに記載の触媒CVD法による薄膜の製造法。
- 20. 一端に原料ガス供給導管と水素ガス供給導

- 21. 特許請求の範囲第20項記載の装置において、前記加熱手段を有せず、且つ制御された温度に発熱した触媒体の熱輻射により基板温度が設定値に保持されるように触媒体と基板との関係配置を定めてなる触媒CVD法による薄膜の製造装置。
- 22. 前記耐熱性堆積室が筒状体であり、前記耐 熱性ホルダーがボートであって、それぞれ石 英、高純度炭化ケイ素または高純度アルミナ

よりなる特許請求の範囲第20項または第21項 記載の触媒CVD法による薄膜の製造装置。

- 23. 耐熱性堆積室および耐熱性ホルダーがステンレススチールよりなる特許請求の範囲第20項または第21項記載の触媒 C V D 法による薄膜の製造装置。
- 24. 触媒体が、タングステン、トリア含有タングステン、白金、パラジウム、モリブデン、シリコン、アルミナ、炭化ケイ素、金属蒸着セラミックスよりなる群から選ばれた少なくとも1種の材料よりなる前記特許請求の範囲第20項乃至第23項の何れかに記載の触媒CVD法による薄膜の製造装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明はシリコンなどの半導体またはセラミックスよりなる絶縁体、あるいは炭素または金属よりなる導電体などを気相堆積法 (以下 C V D 法という) により堆積させて形成した高品位の薄膜を製造する方法並びに装置に関し、特に、原料ガス

から触媒反応によって生成した原料種を低温域の 然CVD法によって基板上に堆積することよりな り、且つここに触媒CVD法と定義する薄膜の製 造法およびそれに用いる装置に関する。

(従来の技術)

SiHzClz + NH2 - SiaNe

. . .

という化学反応により、基板温度700 ~850 での高温で堆積するため、それよりも低融点の例えばアルミニウム配線上に形成することができず、従って斯かる面からも低温化は重要な問題であった。

近時、グロー放電によるプラズマを用いて原料が表別により原料するプラズマCVD法や特殊などの光により原料ガスを分解する光CVD法は下の表別をしたがなされている。しかし、プラグに関を堆積する場合はその界面が、それでした。、プラグス・ジを受け、その特性のおい、で限界を与えている。一方、光ではいい、基でといるの光の透過度が低下するとか、光源自体の安定性にも問題がある。

さらにまた、廉価な太陽電池の材料として、シ ランをグロー放電分解することにより得られるア モルファスシリコン等のシリコン含有薄膜が注目 されているが、太陽電池の効率向上のためにも、 何層かの薄膜を積み重ねる際に、その層間界面がプラズマグメージを受ける虚れのあるグロー放電分解法以外の、また光 C V D 法のもつ上述のような問題のない、新しい低温薄膜形成法の出現が望まれている。

(発明が解決しようとする問題点)

電池等の薄膜デバイスの高品質化を実現することを終局の目的とする。

(問題点を解決するための手段)

上述の目的を達成するための本発明方法は、触媒体を 800~ 2.000 で未満の範囲で且つその融点未満の温度に加熱し、該加熱触媒体により供給原料ガスの少なくとも一部を触媒反応もしくは熱分解反応させて生成した堆積種またはその前駆体を原料種として、室温乃至約500 で、好ましくは約150 ~約400 での温度に加熱した基板上に熱CV D法によって薄膜を堆積させることを特徴とする。かかる本発明による堆積法を、本掛においては

本発明は、本発明者の発明にかかる先願、昭和60年特許願第116762号発明を更に改良・発展せしめたものである。すなわち上記先願発明方法はニフッ化シリコン SiFz、単フッ化シリコンSiF などの中間状態の種に、水素 Hz、シランSiH4、ジシラン SizH4、アンモニア NH2又はヒドラジン NzH4 などを然反応、プラズマ反応又は

特に「触媒CVD法」と定義し呼称する。

光反応により分解した種を混ぜ、この混合ガスを 主成分とする素材ガスを熱分解して堆積させるこ とによりシリコン含有薄膜を形成することを特徴 とするシリコン含有薄膜の製造方法並びにそれに 用いる装置である。本発明者は、この方法におけ る処理条件等につき引続き研究検討を加えた結果、 本節冒頭に記したように、適宜に選択された触媒 体を800~2000℃未満の範囲で、しかも該触媒体 の融点未満という特定された範囲の温度に加熱し、 かかる加熱嫌媒体にソースガスすなわち供給原料 ガスを接触させて少なくともその一部を触媒反応 または熱分解反応により堆積種またはその前駆体 となし、それらを原料種として室温~約500 ℃、 好ましくは約150 ~約400 でという低温基板上に 堆積せしめる方法を適用することにより、プラズ マ或いは光エネルギによるガス励起を一切利用す ることなく、またはそれらの影響から基板を隔離 する特別な措置を要することもなしに、高品位の **薄膜を容易に形成することに成功し、本発明に到** 違したものである。加うるに、かかる本発明によ ' り、先願発明に特定された原料ガスの適用範囲を 大幅に拡大し、形成蒋膜の多様化を達成すること ができた。

, , ,

なお、然CVD法により作られる薄膜中に水素 を混入させる方法として、成膜時に基板近傍で加 然した金属と水紫分子ガスとの間で熱触媒反応を 生起させて水素原子を発生させることは、ダイヤ モンド状カーボン薄膜の形成などに以前から用い られており公知である。例えば、松本等は日本応 用物理学会欧文誌第21卷、第4号(1982年4月 号) L183~L185頁において、CH』と Hz 混合ガス を原料ガスとして用い、基板近傍に触媒体として タングステンを設置した装置により、基板温度 800 で以上タングステン加熱温度2000でなる条件 でダイヤモンド状カーボン薄膜を形成している。 しかし乍ら、この方法においては、基板温度は CH。が触媒の不存在下に、通常の熱CVD法によ り成膜し得る 800℃という高温に設定されている ことからも明白なように、触媒体による触媒反応 または熱分解反応を利用して通常の熱CVD 法にお ける堆積可能温度よりも著しく低温の領域で薄膜 を堆積させるという本発明の技術思想を包含して おらず、また示唆してもいない。またタングステ ン温度を2000℃に設定しているが、これは後述す るように膜中へのタングステンの混入を電気的特 性に影響を与えない程度に抑止し、高品質の膜を 形成するという観点からは高過ぎる。このことか らも、本発明方法の如く、触媒反応または触媒体 による熱分解反応を利用して低温で薄膜を熱CV D堆積し、且つ電気的特性を評価の基準とした時 の高品質膜を取得するという点は全く意図されて いなかったことが明らかである。要するに、従来 公知の触媒体を用いた熱CVD法によるダイヤモ ンド状薄膜の堆積法は、温度条件において本発明 の触媒CVD法と基本的に相違し、作用・効果を も異にする。

本発明方法に適用される原料ガスは、所定温度に加熱された触媒体の表面またはその近傍における温度で熱分解するか、もしくは触媒体との熱触媒反応により生成する水素原子により分解反応が

促進されるか、あるいは自ら触媒体との熱触媒反 応により分解するようなガス全てを包含する。

また、本発明方法により形成される薄膜としては、シリコンを含有する薄膜、カーボンを含有する薄膜、カーボンを含有する薄膜、アルミニウム、場等金属を含有する薄膜など、本発明に適用可能な原料ガスが作り出す全ての薄膜を包含する。

上記本発明方法に適用される原料ガスは、2,000 で未満の触媒体温度で触媒反応または熱分解反応を起こし得ることを基本的条件とし、その重要な付きしては、二フッ化ケイ素Sifzがス、フッ化ケイ素SinFzn・z(但し、nは1~4の整数)がス、イス、大人の変化ケイ素SinFzn・z(但し、nは1~4の整数)がス、は2k+2 m l+mの正の整数)がスおよびそれらの少なとも1種と水素との混合がスよりなる部から選ばれた少なくとも1種のフッ化ケイ素系が分離が入るとしてなるものでなるものをする。しかしてかかる原料ガスを用いて増するではそれらが微結晶化したもの、半導体、またはそれらが微結晶化したもの、

あるいはそれらが多結晶化したものである。かかる原料ガスのうち最も好ましく適用されるものとしては、ニフッ化ケイ素SiFzガス、二水素化ニフッ化ケイ素SiFzガスおよび六フッ化二ケイ素SizF。ガスを含むものが挙げられる。

また上記のシリコン半導体薄膜を形成する原料 ガスの他の好ましい例としては、水素化ケイ素 Sia Hzarz(但し、nは1~2の整数)、特にシラン SiHa 、およびかかる水素化ケイ素と水素との 混合ガスよりなる群から選ばれた少なくとも1種 のシラン系ガスを基本的堆積用ガスとして含んで なる。

上記フッ化ケイ素系ガスまたは水素化ケイ素ガスに対して更に、ニフッ化ゲルマニウムGeFzガス、フッ化ゲルマニウムGe。Fza-z (但し、nは1~3の整数)ガス、水素化ゲルマニウムGe。Hza-z (但し、nは正の整数)ガス、フッ水素化ゲルマニウムGe。Fe Ha (但し、k. e. mは2k+2= e の正の整数)ガスおよびそれらの少なくとも1種と水素との混合ガスよりなる群から選ばれた少な

くとも1種のゲルマニウム系ガスを添加した場合には、体積する薄膜はアモルファスーシリコンゲルマニウ(a-SiGe)またはその微結晶体あるいは多結晶化した半導体となる。

. , 7

また前記フッ化ケイ 聚系ガスまた は水素化ケイ 素ガスに対して更に、CH₂ ガス、C_nH_{2n} (但し、 n は 2 ~ 20の整数) ガス、特にC₂H₄ガス、C_nH_{2n-2} (但し、n は 1 ~ 20の整数) ガス、C₂F₂H_n

(但し、 k 、 l 、 m は 2k+2 = l +mの正の整数) ガスおよびそれらの少なくとも 1 種と水素との混合ガスよりなる群から選ばれた少なくとも 1 種の炭化水素系ガスを混入した場合には、堆積する薄膜はアモルファスシリコンカーバイド (a-SiC) 、またはその微結晶化あるいは多結晶化した半導体となる。

前記ファ化ケイ素系ガスまたは水素化ケイ素ガスに対して更に、 SnF_z ガス、 Sn_n $F_{z,n+z}$ (但しnは1~2の整数) ガス、 Sn_n $H_{z,n+z}$ (但し、n は正の整数) ガス、 Sn_k F_ℓ H_n (但し、k, ℓ , m は $2k+2=\ell+m$ の正の整数) ガスおよびそれらの少な

くとも1種と水素との混合ガスよりなる群から選ばれた少なくとも1種の錫系ガスを混入した場合には、堆積する薄膜はアモルファスーシリコン錫(a-SiSn)、またはその微結晶化あるいは多結晶化した半導体となる。

更に、上記フッ化ケイ素系ガスには水素化ケイ素系ガスに対して更に、窒素がススでは下すがよびに対して更に、窒素がススでは下って、ではアンモニアNH、およびにはアンマルで、窒素がスないないでは、なる群から選ばれる少なくとも1種の酸素ガスとのでは、なくとも1種の酸化素を用かなるには、堆積する薄膜は窒素含有ガスの場合にはで変素含有ガスの場合にはで変素含有ガスの場合には、堆積する薄膜は窒素含有ガスの場合にはで変素含有ガスの場合にはで変素含有ガスの場合にはで変素含有ガスの場合には変酸化シリコンとなる。

また、本発明方法に適用する供給原料ガスは、 炭化水素ガス、好ましくはC。Hzn.z(但しnは1 ~20の整数)で表されるパラフィン系炭化水素ま

たはCn Hzn で表わされる不飽和炭化水素:および炭化水素と水素との混合ガス:および炭素数2個までのハロゲン置換炭化水素と水素との混合ガス:よりなる群から選ばれた少なくとも1種の水素含有炭素系ガスを基本的堆積用ガスとして含むことができ、この場合に堆積する薄膜はアモルファスーカーボン(a - C)もしくはそれが微結晶化または多結晶化した、カーボン含有薄膜となる。

 を、また水素の酸化物としては水および過酸化水 素を、更に水素の窒化物としては、アンモニアNH、 およびヒドラジンN₂H₄を代表例として挙げること ができる。

.(作.用)

 が望まれる。

, , ,

触媒体の加熱温度は重要であり、金属触媒の場合、800で以上、その金属の融点未満、もししないは高融点材料の場合でも上限を2,000 で未満とのの 媒反応または熱分解反応が不充分となり、堆積に 変が低下する傾向が見られ、また2,000 であるいは はそれ以上となると、触媒体材料が堆積低下が はそれ以上となると、触媒体材料が堆積低下が はそれば、膜の電気的特性を阻害し、膜質低下が であるため不可である。また触媒材料の融点 上となれば、触媒体の形態、安定性が失われるので 遊りるべきは異なる。かかる温度の更に乃至 が聞は、触媒材料の融点未満且つ1100で乃至 1800でである。

かかる加熱触媒と接触して分解し、あるいは触 媒反応により生成する水素原子の促進作用により 分解生成した堆積種またはその前駆体よりなる原 料種は、新たな原料として基板上に運ばれて堆積 し薄膜を形成する。この際室温乃至約 500 ℃、好 ましくは約150 ~約 400 ℃の基板温度で効率的且 つ高棉度の成膜が達成される。通常の然CVD法における堆積温度が約 600~900 でを要するのに対し、プラズマまたは光エネルギ等によるガス励起をも必要とせずに、このような低温領域における熱CVDが可能であることは正に驚くべきことである。

基板温度が約400 で以上ではアモルファスシリコン等の非晶質半導体を製作する場合に水素等が放散され、電気的欠陥の増大傾向が現われ、更に基板温度が約500 でを超えると、低温プロセスにより作られる集積回路用のパッシベーション膜として用いた場合に、熱拡散の影響によってドーピング分布の特度が低下するという不都合が生ずる。

本発明方法は減圧下でもまた常圧下でも行うことができる。また、定常操作状態(供給原料ガス流通状態)においては、前記触媒体の温度条件が維持されている限り、堆積膜中への触媒体の混入は実質的に認められないが、原料ガスの供給を行う以前の触媒体の加熱は、屢々触媒体の膜中への混入を招く。このような不都合は、触媒体を水素

ガス雰囲気中で加熱することによって解消することが本発明者によって確認された。従って反応系を水素ガスで満たして触媒体を加熱し、次いで水 素ガスをキャリアとして原料ガスを供給すること が最も好ましい。

以下本発明方法の態様を、図面に示した本発明 装置の具体例に基づいて更に詳述する。

(実施例)

本発明装置の一例の概略図を示す第1図におい て、原料ガスおよび水素ガスはそれぞれ流量調整 器を具えた原料ガス供給導管1および水素ガス供 給導管1、を経て耐熱性堆積室2、例えばステン レンススチール好ましくは石英、高純度炭化ケイ **累または高純度アルミナよりなる筒状体の一端よ** りその内部に導入される。堆積室の他端は排気用 選管8により排気ポンプ等の排気手段に連結され る。堆積室2の内部には、基板を担持するための 耐熱性ホルダー3、例えばステンレススチール製、 好ましくは石英、高純度炭化ケィ素または高純度 アルミナよりなるサセプタまたはボートと、絃ホ ルダー3に適宜に近接し対峙して配設された触媒 体もとがそれぞれ収納されている。かかる装置は 更に、基板を加熱するための手段、例えば堆積室 を囲繞する外部加熱手段6、例えば電熱、赤外線 ランプ等を具えることができる。かかる基板加熱 手段は堆積室内部の前記基板ホルダーに熔接また は近接して設けることも可能である。

本発明装置はまた、基板温度の検知手段5、例

えば耐熱ホルダー3の横の石英封管中に格納を た熱電対を有し、更に触媒体を制御された温度に 発熱させるための発熱手段を有する。この実施例 にあっては、触媒体が導電物質よりなりそれ自体 抵抗発熱体であり、発熱手段として電熱手段7、 例えば可変抵抗を含む電気回路が示されている。 触媒体が不導体である場合には別途電熱線などの 発熱体を触媒体と共存添設して触媒体を加熱(発 熱)してもよい。

, . . .

図示の装置における温度制御は、先ず、触媒体に通電して抵抗発熱せしめ設定温度に維持する。接外の際触媒体と基板とは適宜な間隔を隔か無にない、加熱された触媒体の熱幅財のおされる。基板温度は検知手段 5 によって検知され、その温度が所望温度に健康とない場合は加熱手段 6 を作動制御のみにより、で適正温度に保持し得るように触媒体と基板をではなく、それによって加熱手段 6 を全く

作動せしめることなく、場合によってはその付設 を省略し、装置の簡素化並びに操作の合理化を実 現することができる。

上記の温度制御は慣用手段を適用して自動化する。

本発明方法を実施する装置は図示のものに限定されず、例えば、ステンレススチール・チェンバ内に熱触媒体と基板サセプタを設置したような構造とし得ることは云うまでもない。

実施例1

第1図に示す本発明装置による薄膜成膜の一例として、原料ガスとして SiH_zF_z と H_z との混合ガスを用い、a - Si を成膜した場合の結果を第2図に示す。同図は SiH_zF_z 液量に対する H_z 流量の関数として成膜速度、暗導電率 σ_a 、光導電率 $\Delta\sigma_p$ 、光感度 $\Delta\sigma_p/\sigma_a$ を示したものである。基板温度 T_z は 300 C で、触媒体を基板直上約 2 C の距離に置き、熱輻射によりこの基板温度を得ている。触媒体としては 2 % トリアの入ったタングステンを用い、触媒体表面温度は約1400 C であ

る。SiH_zP_zガスの熱分解温度は500 で以上であり、 触媒体を設置しない単純な熱CVD法によっては 基板温度300 で程度ではほとんど膜堆積しないは ずであるが、本発明の触媒CVD法によれば10A/ sec を越える高速堆積をしていることが示されて いる。また、作られたa-Siの膜質も光感度が10⁴ と良好である。

実施例2

第3図は、原料ガスとしてシランSiHeと水素Heとの混合ガスを使用し、基板温度Teを300でから285での低温に保ち、トリア入りタングスス面の性媒体として用いた場合の、その触媒体とはである。シリコン(a-Si:H)ンは、変と作られるアモルファス・シリコン(a-Si:H)ンは、変と作られるアモルである。シラにはのである。シラにはのでは、なりには、の場合には、基板温度が300で以下の低温であるにも拘らず、10人/secを越える成膜速度がないないるにも拘らず、10人/secを越える成膜速度がないれたことが示されている。また触媒体を置かない単純な熱CVD法においては、原料ガスとしてSi

H.を用いた場合、500 で以下の低温ではシリコン が殆ど堆積しないことが知られており、低温堆積 法としての本発明方法の特長が示されている。 実施例3

第4図は、SiH 4の流量を 40sccm 、基板温度285 でから 300でとし、触媒体に直かに加熱のために流す電流を9.5 から10 A、つまり第3図に示されているように、触媒体表面温度を1200でから1350での間になるように設定した時に作られたアモルファスシリコン膜の成膜速度および光導電率Δσ,、略導電率σαを、混入するH 2流量の関数として示したものである。

一般的に同様な測定により、 Δ σ 。 が10-4 (Ω · ca) 「になることが良好なアモルファス - シリコンの条件の1つと言われており、本発明方法により作られたアモルファス - シリコンがそれを満たしていることを示している。

実施例4

本発明の触媒 C V D 法において高品質な薄膜を 得るためには、いかにして触媒体の膜中への混入 を抑止もしくは制御するかが鍵となる。第5図は 触媒としてクングステンを用い、原料ガスとして SiF*と B* 混合ガスを用いてa-Siを堆積した場合 の光感度をタングステン表面温度の関数として示 したものである。触媒体と基板との間に特別な工 夫にもとづく遮蔽板でも置かない限り、触媒体表 面温度が2000でを越えると触媒体の混入により光 感度が劣化していることが示されている。

実施例 5

. . . .

この触媒体の膜中への混入は、触媒体加熱時の雰囲気ガスによっても抑止または制御できる。第6図は触媒体としてタングステンを用いた場合で、薄膜の堆積を開始するまでの間の触媒体の加熱をHz流中およびAr流中で行った時の、形成子を、使中への触媒体タングステンWの混入の様子を、2.5MeVのHeをプローブイオンとする後方ト国図は、Land で触媒体を加熱した場合には膜中へのWの混入が抑止できているのに、Ar流中では膜堆積の初期、この場合は SiFz とBz混合ガスを膜堆積の

原料ガスとしているが、つまり Hz を含む原料ガスが流されるまではWが混入していることが示されている。

(発明の効果)

本発明の方法と装置により作られた薄膜は、プ ラズマなどによるダメージを受けていないので、 上記a-Siを例にとって示したように、低欠陥、高 品質なものである。そのため、形成された薄膜が アモルファス半導体である場合には、太陽電池、 電子写真感光体、薄膜トランジスタ、撮像管など に適用できる。また、形成された薄膜が窒化シリ コン、酸化シリコン、窒化アルミニウムなどの絶 緑体である場合には、集積回路のフィールド絶縁 膜、局部酸化のマスク、絶縁被覆膜、およびGaAs の熱処理時の被覆膜など電子デバイスに広く応用 される。また、本発明の方法と装置により作られ た薄膜がカーボン薄膜である場合には、耐薬品性 被覆膜、高抵抗膜および大面積発熱体などに応用 される。さらに、薄膜が金属膜である場合には、 **嫩装用金属コート膜などに応用できるほか、電子**

デバイスにおける配線金属としても用いられる。

このように、本発明は従来にない新しい薄膜製作技術を与えるもので、電子工業を中心としてその発明の効果は極めて大きい。

4. 図面の簡単な説明

第1図は、本発明装置の態様を示す概略図であ h

第2図は、本発明方法によりアモルファスーシ リコンを成膜した場合の原料ガス流量の関数とし ての成膜速度と光導電特性を示す線図、

第3図は、本発明方法の1例における触媒体表面温度と成膜速度との関係を示す線図、

第4図は、本発明方法の1例における成膜速度と光選電特性の Ha 波動依存性を示す線図、

第5図は、触媒体の堆積膜中への混入による光 感度の低下を示す線図であり、また

第6図は、本発明方法の好ましい態様によって、 堆積膜中への触媒混入を仰止する状態を示す線図 である。

1…原料ガス供給導管 1′…水紫ガス供給導管

2 … 堆積室

3 … ホルダー

4 …触媒体

5 … 基板温度検知手段

6 …加熱手段

8 … 排気用導管

7 … 発热手段

特許出願人 広島大学長

代理人弁理士

珍村. 暁 多

弁理士 杉村 興 竹

第1図

1-原料1人供給導管 1-水煮がス供給導管 2-・堆 頻 室 3-ホルダー 4-触媒体 5-基級温度検知4段

5 -- 基本证据状态与技 6 -- 加熱中段

7一発熱有段

8…排鱼用事管

第 2 図

第 3 図

第 4 図

第 5 図

第6図

PTO 02-1721

Japanese Kokai Patent Application No. Sho 63[1988]-40314

FILM-FORMING METHOD USING CATALYST CVD METHOD AND DEVICE THEREOF

Hideki Matsumura

UNITED STATES PATENT AND TRADEMARK OFFICE WASHINGTON, D.C. MARCH 2002
TRANSLATED BY THE RALPH MCELROY TRANSLATION COMPANY

JAPANESE PATENT OFFICE PATENT JOURNAL (A)

KOKAI PATENT APPLICATION NO. SHO 63[1988]-40314

H 01 L	21/205	
C 23 C	16/24	
	16/30	
	16/44	
H 01 L	21/31	
//G 03 G	5/08	
7739-5F		
6554-4K		
6708-5F		
7381-2H		
Sho 61[1986]-182827		
August 5, 1986		
	C 23 C H 01 L //G 03 G 7739-5F 6554-4K 6708-5F 7381-2H Sho 61[198	

Publication Date: February 20, 1988

No. of Inventions: 2 (Total of 11 pages)

Examination Request: Filed

FILM-FORMING METHOD USING CATALYST CVD METHOD AND DEVICE THEREOF

[Shokubai CVD ho niyoru hakumaku no seizoho to sonosochi]

Inventor: Hideki Matsumura

Applicant: University of Hiroshima

[There are no amendments to this patent.]

Claims

1. A film-forming method using catalyst CVD method characterized by the following facts: a catalyst is heated to a temperature in the range of 800°C to lower than 2000°C and lower than its melting point; with the aid of the superheated catalyst, at least part of the supplied raw material gas enables a catalytic reaction or a pyrolytic reaction; with the generated deposition

seed or its precursor used as the raw material seed, a thin film is deposited using the hot CVD method on a substrate that has been heated [in a range] from room temperature to about 500°C.

- 2. The film-forming method using the catalyst CVD method described in Claim 1 characterized by the fact that the superheating temperature of the aforementioned substrate is in the range of about 150-400°C.
- 3. The film-forming method using the catalyst CVD method described in Claim 1 or 2 characterized by the following facts: the aforementioned supplied raw material gas contains a basic gas for deposition, which is at least one type of silicon fluoride type gas selected from the group of silicon difluoride SiF_2 gas, silicon fluoride Si_nF_{2n+2} (where, n is a positive integer) gas, silicon fluorohydride $Si_kF_lH_m$ (where, k, l, m are positive integers, and 2k+2=l+m) gas, and a gas mixture consisting of hydrogen and at least one of the aforementioned gases; the deposited film contains amorphous, microcrystalline, or polycrystalline silicon.
- 4. The film-forming method using the catalyst CVD method described in Claim 3 characterized by the fact that the aforementioned supplied raw material gas contains silicon dihydride difluoride.
- 5. The film-forming method using the catalyst CVD method described in Claim 3 characterized by the fact that the aforementioned supplied raw material gas contains Si₂F₆.
- 6. The film-forming method using the catalyst CVD method described in Claim 1 or 2 characterized by the following facts: the aforementioned supplied raw material gas contains a basic gas for deposition, which is at least one type of silicon hydride type gas selected from the group of silicon hydride Si_nH_{2n+2} (where, n is a positive integer) and a gas mixture consisting of hydrogen and silicon hydride; the deposited film contains amorphous, microcrystalline, or polycrystalline silicon.
- 7. The film-forming method using the catalyst CVD method described in Claim 6 characterized by the fact that the aforementioned silicon hydride is silane SiH₄.
- 8. The film-forming method using the catalyst CVD method described in any of Claims 3-7 characterized by the following facts: the aforementioned supplied raw material gas contains a basic gas for deposition, which is at least one type of germanium type gas selected from the group of germanium difluoride GeF_2 gas, germanium fluoride Ge_nF_{2n+2} (where, n is a positive integer) gas, germanium hydride Ge_nH_{2n+2} gas (where, n is a positive integer), germanium fluorohydride $Ge_kF_{[1]}H_m$ (where, k, l, m are positive integers, and 2k+2=l+m) gas, and gas mixture consisting of hydrogen and at least one of the aforementioned gases; the deposited film is silicon germanium SiGe.

/2*

[[]Numbers in margin represent pagination in the foreign document.]

- 9. The film-forming method using the catalyst CVD method described in any of Claims 3-7 characterized by the following facts: the aforementioned supplied raw material gas contains a basic gas for deposition, which is at least one type of hydrogen carbon gas selected from the group of CH_2 gas, C_nH_{2n} (where, n is a positive integer of 2 or larger) gas, C_nH_{2+2} (where, n is a positive integer), $C_kF_1h_m$ (where, k, l, m are positive integers, and 2k+2=l+m) gas, and gas mixture consisting of hydrogen and at least one of the aforementioned gases; the deposited film is silicon carbide SiC.
- 10. The film-forming method using the catalyst CVD method described in any of Claims 3-7 characterized by the following facts: the aforementioned supplied raw material gas contains a basic gas for deposition, which is at least one type gas containing tin selected from the group of S_nF_2 gas, Sn_nF_{2n+2} (where, n is a positive integer), Sn_nH_{2n+2} (where, n is a positive integer), $Sn_kF_1h_m$ (where, k, l, m are positive numbers, and 2k+2=1+m) gas, and a gas mixture consisting of hydrogen and at least one of the aforementioned gases; the deposited film is silicon tin SiSn.
- 11. The film-forming method using the catalyst CVD method described in any of Claims 3-7 characterized by the following facts: the aforementioned supplied raw material gas contains at least one type of nitrogen-containing gas selected from the group of nitrogen gas, nitrogen hydride, and nitride halide and/or at least one type of oxygen-containing gas selected from the group of oxygen gas and hydrogen oxide; the deposited film contains silicone nitride, silicon oxide, or silicon nitride oxide.
- 12. The film-forming method using the catalyst CVD method described in Claim 11 characterized by the fact that the aforementioned nitrogen hydride is ammonia NH₃ and hydrazine N₂H₄, the nitrogen halide is nitrogen trifluoride NF₃, and the hydrogen oxide is water and hydrogen peroxide.
- 13. The film-forming method using the catalyst CVD method described in Claim 1 or 2 characterized by the following facts: the aforementioned supplied raw material gas contains a basic gas for deposition, which is at least one type of carbon type gas selected from the group of hydrocarbon gas, gas mixture of hydrocarbon and hydrogen, and gas mixture of carbon halide and hydrogen; the deposited film is contains amorphous, microcrystalline, or polycrystalline silicon.
- 14. The film-forming method using the catalyst CVD method described in Claim 13 characterized by the fact that the aforementioned supplied raw material gas is selected from saturated hydrocarbon C_nH_{2n+2} (where, n is a positive integer), unsaturated hydrocarbon (C_nH_{2n} (where, n is a positive integer), and gas mixtures consisting of the aforementioned hydrocarbons and hydrogen.
- 15. The film-forming method using the catalyst CVD method described in Claim 1 or 2 characterized by the fact that the aforementioned supplied raw material gas contains a basic gas

for deposition, which is a gas mixture consisting of an aluminum compound gas and a hydrogen compound gas selected from the oxides and nitrides of hydrogen, and the deposited film is aluminum oxide, aluminum nitride, or aluminum nitride oxide.

11

- 16. The film-forming method using the catalyst CVD method described in Claim 15 characterized by the fact that the aforementioned aluminum compound is selected from trimethyl aluminum and aluminum halide, the hydrogen oxide is selected from water and hydrogen peroxide, and the hydrogen nitride is selected from ammonia NH₃ and hydrazine N₂H₄.
- 17. The film-forming method using nitride catalyst CVD method described in any of Claims 1-16 characterized by the fact that the aforementioned catalyst is made of at least one type of material selected from the group of tungsten, thoria-containing tungsten, platinum, palladium, molybdenum, silicon, alumina, silicon carbide, and metal deposited ceramics.
- 18. The film-forming method using nitride catalyst CVD method described in Claim 17 characterized by the fact that the heating temperature of the catalyst is in the range of 1100-1800°C and is lower than the melting point of the catalyst.
- 19. The film-forming method using nitride catalyst CVD method described in any of Claims 1-18 characterized by fact that the catalyst is heated in a water spray atmosphere.
- 20. A film forming device using nitride catalyst CVD method characterized by the following facts: the device is constituted with a heat-resistant deposition chamber, which has a raw material supply pipe and a hydrogen gas supply pipe at one end and an exhaust pipe at the other end; a heat-resistant holder for carrying the substrate and a catalyst body that is arranged at an appropriate close distance to the holder and opposite to the holder are accommodated in the deposition chamber; the device also has a heating means, which can heat the substrate to a controlled temperature, and a means for detecting the temperature of the substrate; heat radiation of the catalyst body and the temperature of the substrate heated by the aforementioned heating means are detected, and the aforementioned heating means is controlled appropriately to keep the temperature of the substrate on the set level.
- 21. The film forming device using nitride catalyst CVD method described in Claim 20 characterized by the fact that the aforementioned heating means is absent, and the arrangement between the catalyst body and the substrate is fixed so that the temperature of the substrate is kept on the set level depending on the heat radiation of the catalyst body which has been heated to a controlled temperature.
- 22. The film forming device using the catalyst CVD method described in Claim 20 or 21 characterized by the fact that the aforementioned heat-resistant deposition chamber is a cylinder, the aforementioned heat-resistant holder is a boat, and both of them are made of quartz, highly-pure silicon carbide, or highly-pure alumina.

- 23. The film forming device using the catalyst CVD method described in Claim 20 or 21 characterized by the fact that the heat-resistant deposition chamber and the heat-resistant holder are made of stainless steel.
- 24. The film forming device using the catalyst CVD method described in any of Claims 20-23 characterized by the fact that the catalyst body is made of at least one type of material selected from the group of tungsten, thoria-containing tungsten, platinum, palladium, molybdenum, silicon, alumina, silicon carbide, and metal deposited ceramics.

Detailed explanation of the invention

Industrial application field

The present invention pertains to method and device for forming high-quality films by depositing silicon or other semiconductor, or insulator made of ceramics, or conductor made of carbon or metals using a chemical vapor deposition (referred to as CVD hereinafter) method. In particular, the present invention pertains to a film-forming method defined as a catalyst CVD method, in which the raw material seed generated from a raw material gas as a result of a catalytic reaction is deposited on a substrate by using a hot CVD method in a low temperature region, and pertains to the device used for this method.

Prior art

As a method for forming films, especially, silicon films, the CVD method has been used widely for formation of gate electrode wiring, resistor, interlayer insulating film, or other electronic devices. Along with development of highly-functional devices in recent years, many technologies are being studied in order to achieve complete crystal epitaxy to form films with few internal defects. However, due to thermal diffusion, the high-temperature CVD method is unable to meet the demand on film thickness and highly-accurate doping distribution corresponding to development of superfine devices. How to lower the temperature of the CVD method is a serious problem in the industrial field. Also, it is a well-known fact that silicon oxide SiO_2 or silicon nitride Si_3N_4 film is a desirable choice for the passivation film formed on wiring layers. However, since Si_3N_4 film is usually deposited at a high substrate temperature in the range of $700-850^{\circ}C$ as a result of a chemical reaction $SiH_2Cl_2+NH_3 \rightarrow Si_3N_4$ by using the reduced pressure CVD method, it cannot be formed on aluminum wiring with a lower melting point than silicon nitride. Consequently, it is also important to lower the temperature from this point of view.

In recent years, the plasma CVD method, which uses plasma generated by means of glow discharge to excite and decompose raw material gas, and the optical CVD method, which uses light with a special wavelength to decompose the raw material gas, have been developed as

methods for lowering the temperature. In the case of the plasma CVD method, however, the formed film itself or the interface when the film is formed in multiple layers will be damaged by the plasma. As a result, improvement in the characteristics of the film is limited. On the other hand, in the optical CVD method, since film is deposited on a window through which light is transmitted, problems related to a decrease in the transmissivity of the light to the substrate and stability of the light source itself might occur.

In addition, silicon-containing film containing amorphous silicon, etc. obtained by glow discharge decomposing silane has attracted a lot of attentions as an inexpensive material for a solar battery. However, when several layers of films are laminated in order to improve the efficiency of the solar battery, the interface between the layers might be damaged by the plasma. Consequently, it is desired to develop a new low-temperature film-forming method free of the problems of the aforementioned glow discharge decomposition method and optical CVD method.

Problems to be solved by the invention

The main objective of the present invention is to solve the aforementioned problems of the conventional technologies by providing a method which can form high-quality semiconductor, insulator, or conductor films with significantly reduced internal defects at an appropriate deposition rate by using a hot CVD method in low temperature region to avoid high temperature that might cause problems due to thermal diffusion and without using plasma that is harmful to quality or the gas excitation method that uses optical energy, etc. and has technical difficulties. The ultimate objective of the present invention is to not only realize the possibility of fine processing of super LSI, etc. and develop highly-integrated and high-quality electronic devices, but also to develop high-quality solar batteries or other thin film devices by performing film deposition in a simple manner at low cost to form films with highly-accurate film thickness and doping distribution particularly in the industrial field of electronics by stabilizing the film forming process and simplifying the film forming device.

Means to solve the problems

In order to realize the aforementioned objectives, the present invention provides a method characterized by the following facts: characterized by the following facts: a catalyst is heated to a temperature in the range of 800°C to lower than 2000°C and lower than its melting point; with the aid of the superheated catalyst, at least part of the supplied raw material gas has a catalytic reaction or a pyrolytic reaction; with the generated deposition seed or its precursor used as the raw material seed, a thin film is deposited using the hot CVD method on a substrate that has been heated from room temperature to about 500°C, preferably, about 150-400°C.

In the present specification, the deposition method disclosed in the present invention is defined and called the "catalyst CVD method".

The present invention is a result of further improving and developing a previous invention proposed by the present inventor, that is, Japanese Patent Application No. Sho 60[1985]-116762. The aforementioned previous invention pertains to a silicon-containing filmforming method and a device used for this method characterized by the following facts: a seed obtained by decomposing hydrogen H₂, silane SiH₄, disilane Si₂H₆, ammonia NH₃, or hydrazine N₂H₄ with a thermal reaction, plasma reaction, or optical reaction is mixed with silicon difluoride SiF₂, silicon monofluoride SiF, or other seed in an intermediate state; the raw material gas mainly composed of the aforementioned gas mixture is pyrolyzed and deposited to form a silicon-containing film. The present inventor has performed extensive research on the processing conditions of this method. The following results were discovered as a result of this research. As described at the beginning of the present section, an appropriately selected catalyst is heated to a temperature in a specific range, that is, in the range of 800°C to lower than 2000°C and lower than the melting point of the catalyst. The source gas, that is, the supplied raw material gas is brought into contact with the heated catalyst, and at least part of the raw material gas becomes a deposition seed or its precursor as a result of the catalytic reaction or pyrolytic reaction. With the obtained deposition seed or its precursor used as the raw material seed, a film is deposited on a low-temperature substrate, which has been heated from room temperature to about 500°C, preferably, about 150-400°C. When this method is used, a high-quality film can be formed easily without using plasma or gas excitation performed with optical energy or requiring special measures for isolating the substrate from the influences of the aforementioned plasma and optical energy. The present invention was achieved based on the aforementioned research. Also, the present invention significantly expands the application range of the raw material gas specified in the previous invention to diversify the types of the films that can be formed.

The method, which starts a hot catalytic reaction between the heated metal and hydrogen gas near the substrate during film formation to generate hydrogen atoms as a method for mixing hydrogen into the film formed with the hot CVD method, has been used conventionally to form a diamond-like carbon film, etc. For example, as described in Matsumoto, et al.: Association of Applied Physics of Japan, Vol. 21, No. 4 (April 1982) L183-L185, by using a gas mixture of CH₄ and H₂ as a raw material gas and a device having tungsten arranged as a catalyst near a substrate, a diamond-like carbon film is formed under the conditions of substrate temperature: 800°C or higher and tungsten heating temperature: 2000°C. However, based on the fact that the substrate temperature is set at a high temperature of 800°C at which CH₄ can form film using the conventional hot CVD method in the absence of catalyst, it is clear that the aforementioned method does not include or suggest the technical idea of the present invention; that is, by taking

/5.

advantage of the catalytic reaction or pyrolytic reaction realized by using a catalyst, it is possible to deposit film in a temperature range that is significantly lower than the temperature at which deposition can be performed in the conventional hot CVD method. Although the tungsten heating temperature is set at 2000°C, as to be described later, this temperature is too high from the point of forming high-quality film and suppressing mixing of tungsten into the film to such a degree that the mixed tungsten will not affect the electrical characteristics of the film. Based on this fact, it is clear that the aforementioned method has no intention at all to approach the main idea of the present invention, that is, by taking advantage of a catalytic reaction or a pyrolytic reaction carried out using a catalyst, high-quality films with excellent electrical characteristics can be deposited at low temperature using the hot CVD method. In particular, the CVD method using the conventional catalyst has basically different temperature conditions from the catalyst CVD method disclosed in the present invention. The functions and effects of these two methods are also different.

The raw material gas that is applicable to the method of the present invention includes all of the gases which can be pyrolyzed on the surface or near a catalyst that has been heated to a prescribed temperature, or whose decomposition reaction can be accelerated by the hydrogen atoms generated as a result of the hot pyrolytic reaction with a catalyst, or which can have a hot catalytic reaction with a catalyst themselves.

The films that can be formed with the method of the present invention include silicon-containing films, carbon-containing films, films containing aluminum, germanium, tin, or other metals, and all of the films that can be formed using the raw material gases that are applicable to the present invention.

As a basic requirement for the raw material gas that is applicable to the method of the present invention, the raw material gas should be able to have a catalytic reaction or a pyrolytic reaction at a catalyst temperature lower than 2000° C. The important examples of the raw material gas that can be used in the present invention include those containing a basic gas for deposition, which is at least one type of silicon fluoride gas selected from the group of silicon difluoride SiF_2 gas, silicon fluoride Si_nF_{2n+2} (where, n is a positive integer in the range of 1-4) gas, silicon fluorohydride $Si_kF_1H_m$ (where, k, l, m are positive integers, and 2k+2=l+m) gas, and a gas mixture consisting of hydrogen and at least one of the aforementioned gases. The films deposited using these raw material gases include amorphous semiconductors of amorphous silicon (a-Si), or their microcrystallized products, or their polycrystallized products. The most preferred raw material gases among the aforementioned examples are those containing silicon difluoride SiF_2 gas, silicon dihydride difluoride SiF_2H_2 gas, or disilicon hexafluoride Si_2F_6 gas.

Other preferred examples of the raw material gases used for forming the aforementioned silicon semiconductor films include those containing a basic gas for deposition, which is at least

one type of silane-based gas selected from the group of silicon hydride Si_nH_{2n+2} (where, n is an integer in the range of 1-2), especially, SiH_4 , and a gas mixture consisting of the silicon hydride and hydrogen.

When at least one type of germanium type gas selected from the group of germanium difluoride GeF_2 gas, germanium fluoride Ge_nF_{2n+2} (where, n is a positive integer in the range of 1-3) gas, germanium hydride Ge_nH_{2n+2} gas (where, n is a positive integer), germanium fluorohydride $Ge_kF_lH_m$ (where, k, l, m are positive integers, and 2k+2=l[+m]) gas, and gas mixture consisting of hydrogen and at least one of the aforementioned gases is added into the aforementioned silicon fluoride gas or silicon hydride gas, the deposited film becomes amorphous silicon germanium (a-SiGe) or its microcyrallized or polycrystallized semiconductor.

When at least one type hydrocarbon gas selected from the group of CH_2 gas, C_nH_{2n} (where, n is a positive integer in the range of 2-20) gas, especially, C_2H_4 gas, C_nH_{2n+2} (where, n is a positive integer in the range of 1-20) gas, $C_kF_1h_m$ (where, k, l, m are positive integers, and 2k+2=l+m) gas, and gas mixture consisting of hydrogen and at least one type of the aforementioned gases is added into the aforementioned silicon fluoride gas or silicon hydride gas, the deposited semiconductor becomes amorphous silicon carbide (a-SiC), or its microcrystallized or polycrystallized semiconductor.

When at least one type of gas containing tin selected from the group of SnF_2 gas, Sn_nF_{2n+2} (where, n is a positive integer in the range of 1-2), Sn_nH_{2n+2} (where, n is a positive integer), $Sn_kF_1h_m$ (where, k, l, m are positive numbers, and 2k+2=l+m) gas, and a gas mixture consisting of hydrogen and at least one of the aforementioned gases is added into the aforementioned silicon fluoride gas or silicon hydride gas, the deposited film becomes amorphous silicon tin (a-SiSn), or its microcrystallized or polycrystallized semiconductor.

When a gas mixture prepared by adding at least one type of nitrogen-containing gas selected from the group of nitrogen gas; nitrogen hydride, preferably, ammonia NH₃ and hydrazine N₂H₄; and nitrogen halide, preferably, nitrogen trifluoride NF₃; and/or at least one type of oxygen-containing gas selected from the group of oxygen gas and oxygen hydride, preferably, water and hydrogen peroxide, into the aforementioned silicon fluoride gas or silicon hydride gas is used, the deposited film becomes silicon nitride in the case of using nitrogen-containing gas, or silicon oxide in the case of using oxygen-containing gas, or silicon nitride oxide in the case of using both.

Also, the supplied raw material gas that is applicable to the method of the present invention can contain a basic gas for deposition, which is at least one type of hydrogen-containing carbon type gas selected from the group of hydrocarbon gas, preferably, paraffin type hydrocarbon represented by C_nH_{2n+2} (where, n is an integer in the range of 1-20) or unsaturated hydrocarbon represented by C_nH_{2n} ; gas mixture of hydrocarbon and hydrogen; and

gas mixture consisting of hydrogen and halogen substituted hydrocarbon having up to two carbon atoms in each molecule. In this case, the deposited film becomes an amorphous carbon (a-C) or its microcrystallized or polycrystallized carbon-containing film.

The raw material gas can also contain a gas mixture, which consists of an aluminum compound gas and a hydrogen compound gas selected from the oxides and nitrides of hydrogen, as the basic gas for deposition. The film deposited in this case becomes an insulating film made of aluminum oxide in the case of using a gas mixture formed with a hydrogen oxide, or made of aluminum nitride in the case of using a gas mixture formed with a hydrogen nitride, or made of aluminum nitride oxide in the case of using a gas mixture formed with both. Examples of the aluminum compounds that can be used in this case include trimethyl aluminum Al(CH₃)₃ or hexamethyl aluminum Al₂(CH₃)₆, and aluminum halide, such as AlCl₃, AlF₃, etc. Typical examples of hydrogen oxide include water and hydrogen peroxide. Typical examples of hydrogen nitride include ammonia NH₃ and hydrazine N₂H₄.

Operation

In the method of the present invention, a heated catalyst is first arranged in the flow of the aforementioned raw material gas that reaches a substrate where the film is to be deposited. When the raw material gas makes contact with the catalyst, a catalytic reaction or pyrolytic reaction occurs in at least part of the raw material gas to generate a deposition seed or its precursor. The substrate is usually supported on a holder, such as quartz boat or susceptor. The catalyst is set at an appropriate distance to the substrate and opposite to the substrate. In this case, it is preferred that the catalyst be made of at least one type material selected from the group of tungsten, thoria-containing tungsten, platinum, palladium, molybdenum, silicon, alumina, silicon carbide, and metal deposited ceramics. It is particularly preferred that the catalyst itself is a resistance heating element. In most cases, it is used together with another heating element.

The heating temperature of the catalyst is important. In the case of a metal catalyst, the heating temperature must be 800°C or higher and lower than the melting point of the metal or have an upper limit lower than 2000°C if the material has a high melting point. If the heating temperature is lower than 800°C, the catalytic reaction or pyrolytic reaction of the raw material gas becomes insufficient, and the deposition rate tends to become low. If the heating temperature is 2000°C or higher, the catalyst material will mix into the deposited film to adversely affect the electrical characteristics of the film. As a result, the quality of the film will deteriorate significantly. If the heating temperature is higher than the melting point of the catalyst material, the form stability of the catalyst will be lost. Therefore, such a situation must be avoided. It is preferred that the heating temperature be lower than the melting point of the catalyst material and in the range of 1100-1800°C.

The raw material seed composed of the deposition seed or its precursor generated when the raw material gas is decomposed after having contact with the heated catalyst or generated under the accelerating function of the hydrogen atoms generated by the catalytic reaction is transferred onto the substrate as a new material and is deposited to form a film. In this case, the film can be formed efficiently and accurately at a substrate temperature in the range of room temperature to about 500°C, preferably, in the range of about 150-400°C. As opposed to the conventional hot CVD method that requires a deposition temperature of about 600-900°C, the fact that hot CVD can be carried out at such a low temperature without using plasma or gas excitation depending on optical energy, etc. is really amazing.

When manufacturing amorphous silicon or other amorphous semiconductors at a substrate temperature of about 400°C or higher, hydrogen will be diffused, aggravating the tendency toward electric defects. When the substrate temperature exceeds about 500°C, if the film is used as a passivation film for an integrated circuit produced with a low-temperature process, the accuracy of the doping distribution will deteriorate under the influence of thermal diffusion.

The method of the present invention can be carried out either under reduced pressure or under normal pressure. Also, in the regular operating state (while the raw material gas is being supplied), there is virtually no catalyst mixing into the deposited film as long as the aforementioned temperature condition of the catalyst is retained. However, heating the catalyst before the raw material gas is supplied will cause mixing of the catalyst into the film. It has been confirmed by the present inventor that this problem can be solved by heating the catalyst in a hydrogen gas atmosphere. Consequently, it is particularly preferred to first fill the reaction system with hydrogen gas and then heat the catalyst, followed by supplying the raw material gas with hydrogen gas used as carrier gas.

A preferable device used for embodying the aforementioned method is characterized by the following facts: the device is constituted with a heat-resistant deposition chamber, which has a raw material supply pipe and a hydrogen gas supply pipe at one end and an exhaust pipe at the other end; a heat-resistant holder for carrying the substrate and a catalyst body that is arranged at an appropriate close distance to the holder and opposite to the holder are accommodated in the deposition chamber; the device also has a heating means, which can heat the substrate to a controlled temperature, and a means for detecting the temperature of the substrate; heat radiation of the catalyst body and the temperature of the substrate heated by the aforementioned heating means are detected, and the aforementioned heating means is controlled appropriately to keep the temperature of the substrate on the set level.

In the following, the embodiment of the present invention will be explained in more detail with reference to a detailed example of the device of the present invention shown in figures.

Application example

Figure 1 is a schematic diagram illustrating an example of the device disclosed in the present invention. Raw material gas and hydrogen gas are fed into a heat resistant deposition chamber (2), such as a cylinder made of stainless steel, preferably, quartz, highly-pure silicon carbide, or highly-pure alumina, from one end through raw gas supply pipe (1) and hydrogen through supply pipe (1'), both of which are equipped with flow rate adjuster. The other end of the deposition chamber is connected to an exhaust means, such as an exhaust pump, by exhaust pipe (8). A heat-resistant holder (3), such as a susceptor or boat made of stainless steel, or preferably, quartz, highly-pure silicon carbide, or highly-pure alumina, used for the holding substrate as well as catalyst (4) that is set at an appropriate close distance and opposite to said holder (3) are accommodated in deposition chamber (2). The device may also have a means for heating the substrate, such as an external heating means (6) that surrounds the deposition chamber. The external heating means can be an electric heater or IR lamp, etc. The substrate heating means can also be arranged in contact with or close to the aforementioned substrate holder in the deposition chamber.

The device of the present invention also has a substrate temperature detecting means (5), such as a thermocouple arranged in the transverse sealed quartz tube of heat-resistant holder (3), and a heating means for heating the catalyst to the controlled temperature. In the present application example, the catalyst is made of an electroconductive substance and is a resistance heating element itself. An electric heating means (7), such as an electric circuit including a variable resistor, is used as the heating means. If the catalyst is an insulator, it is also possible to use a separate heating element, such as an electric heating wire, together with the catalyst to heat (heat) the catalyst.

In the device shown in the figure, the temperature is controlled by first supplying electric power to the catalyst to perform resistance heating to maintain the temperature at the set level. Since the catalyst and the substrate are arranged opposite to each other at an appropriate close distance, the substrate is heated by the heat radiation of the heated catalyst. The temperature of the substrate is detected by detecting means (5). If the temperature does not reach the desired level, heating means (6) is operated and controlled to maintain the substrate at an appropriate temperature. It is not difficult to a specialist to design the arrangement relationship between the catalyst and the substrate in such a way that the substrate can be maintained at an appropriate temperature only depending on the heat radiation of the catalyst. At that time, there is no need to

operate heating means (6) at all. In some cases, use of the heating means can be omitted to simplify the device and rationalize the operation.

The aforementioned temperature control can be automated by using a conventional means.

The device for embodying the method of the present invention is not limited to the one shown in the figure. For example, it is also possible to use a device with a hot catalyst and a substrate susceptor arranged in a stainless steel chamber.

Application Example 1

As an example of film formation using the device of the present invention shown in Figure 1, Figure 2 shows the results of forming an a-Si film using a gas mixture of SiH_2F_2 and H_2 as the raw material gas. The figure shows the film forming rate, dark conductivity σ_d , photoconductivity $\Delta\sigma$, and photosensitivity $\Delta\sigma p/\sigma_d$ as functions of H_2 flow rate versus the SiH_2F_2 flow rate. The substrate temperature Ts is 300°C, and the catalyst is set at a distance of about 2 cm right above the substrate. The substrate temperature is obtained from the heat radiation of the catalyst. Tungsten containing 2% thoria is used as the catalyst. The surface temperature of the catalyst is about 1400°C. The pyrolysis temperature of SiH_2F_2 gas is 500°C or higher. When using the conventional hot CVD method that uses no catalyst, there is almost no film deposited at a substrate temperature of 300°C. If the catalyst CVD method of the present invention is used, however, the film can be deposited at a high rate exceeding 10 Å/sec. The formed a-Si film also has a high quality with a photosensitivity of 10^4 .

<u>Application Example 2</u>

Figure 3 shows the relationship between surface temperature of the catalyst and the film forming rate of the amorphous–silicon (a-Si:H) film to be formed in the case of using a gas mixture of SiH₄ and H₂ as the raw material gas and keep the substrate temperature Ts in the range of 285-300°C and using thoria-containing tungsten as the catalyst. In the case of forming an a-Si:H film by glow discharge decomposing silane, the film forming rate is usually several Å/sec. In this case, however, even if the substrate temperature is 300°C or lower, a high film-forming rate exceeding 10 Å/sec can be obtained. If SiH₄ is used as the raw material gas in the conventional hot CVD method that uses no catalyst, it is known that almost no silicon is deposited at a low temperature of 500°C or lower. In the present application example, the features of the method of the present invention as a low-temperature deposition method are displayed.

Application Example 3

Figure 4 shows the film forming rate as well as photoconductivity $\Delta \sigma_p$ and dark conductivity σ_d as the functions of the mixing H_2 flow rate for an amorphous silicon film formed when the flow rate of SiH₄ is set at 40 sccm, the substrate temperature is set in the range of 285-300°C, the current used for directly heating the catalyst is in the range of 9.5-10 Å, and the surface temperature of the catalyst is set in the range of 1200-1350°C as shown in Figure 3.

Generally speaking, in the same measurement, a $\Delta \sigma_p$ of 10^{-4} ($\Omega \cdot \text{cm}$)⁻¹ is one of the conditions for good amorphous silicon. The amorphous silicon formed by the method of the present invention satisfies this condition.

Application Example 4

The key to obtaining high-quality film in the catalyst CVD method of the present invention is to suppress or control mixing of the catalyst into the film. Figure 5 shows the photosensitivity as a function of surface temperature of tungsten in the case of depositing a-Si using a gas mixture of SiF₂ and H₂ as the raw material gas and using tungsten as the catalyst. The figure shows deterioration in the photosensitivity caused by mixing of the catalyst into the film when the surface temperature of the catalyst exceeds 2000°C as long as there is no special shield plate placed between the catalyst and the substrate.

Application Example 5

Mixing of the catalyst into the film can be suppressed or controlled by the atmosphere gas used during catalyst heating. Figure 6 shows the results of observing the situation of mixing of a catalyst tungsten W into a film formed when tungsten is used as the catalyst that is heated in H₂ flow and Ar flow during the time before deposition of the film is started. The observation is made with the back scattering method with 2.5 MeV He used as probe ions. As shown in this figure, mixing of W into the film can be suppressed when the catalyst is heated in H₂ flow. On the other hand, in the initial stage of film deposition performed in Ar flow, although a gas mixture of SiF₂ and H₂ is used as the raw material gas for film deposition, mixing of W is observed until the raw material gas containing H₂ is supplied.

Effect of the invention

Since the film formed using the method and device of the present invention does not receive the damage caused by plasma, etc., the a-Si films obtained in the aforementioned examples have few defects and [are of] high quality. Consequently, if the formed film is an amorphous semiconductor, it can be used for a solar cell, electronic photoreceptor, thin film transistor, image pick-up tube, etc. Also, if the formed film is an insulator, such as silicon nitride,

silicon oxide, or aluminum nitride, it can be widely used as a field insulating film for an integrated circuit, mask for partial oxidation, insulation coating film, coating film used during heat treatment of GaAs, and other electronic devices. If the film formed with the method and device of the present invention is a carbon film, it can be used for a chemical resistant coating film, high resistance film, and large-area heating element, etc. In addition, if the film is a metal film, it can be used for a metal coating film or as wiring metal in electronic devices.

The present invention provides a unprecedented new film forming technology, and the effects of the present invention are significant in the electronic industry.

Brief description of the figures

Figure 1 is a schematic diagram illustrating the embodiment of the device disclosed in the present invention.

Figure 2 is a diagram illustrating the film-forming rate and photoconductive characteristics as the functions of the flow rate of the raw material gas in the case of forming an amorphous silicon film using the method of the present invention.

Figure 3 is a diagram illustrating the relationship between the surface temperature of the catalyst and the film-forming rate in an example of the method disclosed in the present invention.

Figure 4 is a diagram illustrating the dependency of film-forming rate and photoconductive characteristics on the H₂ flow in an example of the method disclosed in the present invention.

Figure 5 is a diagram illustrating deterioration in the photoconductivity caused by mixing of the catalyst into the deposited film.

Figure 6 is a diagram illustrating the situation of suppressing mixing of the catalyst into the deposited film in a preferable embodiment of the method disclosed in the present invention.

- 1 Raw material gas supply pipe
- 1' Hydrogen gas supply pipe
- 2 Deposition chamber
- 3 Holder
- 4 Catalyst
- 5 Substrate temperature detecting means
- 6 Heating means
- 7 Heat generating means
- 8 Exhaust pipe

Figure 1

- Raw material gas supply pipe Hydrogen gas supply pipe 1
- 1'
- Deposition chamber 2
- 3 Holder
- 4 Catalyst
- Substrate temperature detecting means 5
- Heating means 6
- 7 Heat generating means
- Exhaust pipe 8

Figure 2

Key:	1	Photoconductivity, dark conductivity	,

- 2 Film forming rate
- 3
- Substrate temperature
 Surface temperature of the catalyst
 (H₂ flow rate)/(SiH₂F₂ flow rate) 4-
- 5

Figure 3

Key:	1	Current of the catalyst heater
	2	Film forming rate
	3	Surface temperature of the catalyst
	4	Catalyst CVD
	5	SiH ₄ flow rate
	6	H ₂ flow rate
	7	Substrate temperature
	8	Gas pressure

Figure 4

Key:	1	Film forming rate
•	2	Photoconductivity
	2a	And
	3	Dark conductivity
	4	SiH ₄ flow rate
	5	Substrate temperature
	6	Current of the catalyst heater
	7	Gas pressure
	8	H ₂ flow rate

Figure 5

Key: 1 Photosensitivity

- 2 Case of forming a-Si with a gas mixture of SiF₂ and H₂ used as raw material gas
- 3 Surface temperature of the catalyst

Figure 6

Key: 1 Number of back scattering particles (number/channel)

- 2 Energy spectrum of back scattering method using 2.5 MeV helium ions as probe ions
- 3 Distribution of Si in the film
- 4 Distribution of W
- 5 In Ar flow
- 6 In H₂ flow
- 7 Energy of back scattering particles = number of channels (relative value)