T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte V)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Vimos que o escalonamento de atributos ajuda a acelerar o aprendizado do algoritmo do gradiente descendente quandos os atributos têm intervalos de variação muito diferentes.
- Aprendemos que *funções hipótese polinomiais* podem ser utilizadas para aproximar dados que não são lineares.
- Porém, precisamos encontrar a ordem ideal para o polinômio aproximador.
 - Polinômios de ordem baixa podem não têm flexibilidade o suficiente para aproximar os dados, o que causa subajuste.
 - Polinômios de ordem alta podem ser tão flexíveis que acabam memorizando os dados de treinamento, o que causa sobreajuste.
- Hoje veremos como escolher a ordem da função hipótese polinomial quando não conhecemos o mapeamento verdadeiro.

Validação cruzada

- Validação cruzada é uma das formas de se avaliar quantitativamente o sobreajuste ou subajuste de um modelo e, com isso, encontrar sua ordem ótima.
 - Ou seja, podemos verificar quais ordens fazem o modelo se ajustar demais ou insuficientemente aos exemplos de treinamento.
- Na *validação cruzada*, nós dividimos o conjunto de exemplos em 2 outros conjuntos, o de treinamento e o de validação (ou teste) do modelo.
- O objetivo da validação cruzada é encontrar um ponto de equilíbrio entre a flexibilidade e o grau de generalização da função hipótese polinomial.
 - Flexibilidade o suficiente para se ajustar à função verdadeira (medida através do erro de treinamento).
 - Grau de generalização: capacidade de gerar saídas próximas às verdadeiras para exemplos não usados durante o treinamento (medido através do erro de validação).
- As estratégias para validação cruzada mais utilizadas são:
 - Holdout
 - k-fold
 - Leave-p-out

Holdout

- Divide-se aleatoriamente o conjunto total de dados em p % para treinamento e (100 p) % para validação.
 - Normalmente, divide-se o conjunto total de dados em 70/80% para treinamento e 30/20% para validação.
- É a estratégia mais simples das três e não acarreta em aumento da complexidade computacional, pois tem-se apenas um único par de conjuntos de treinamento e validação.
- Entretanto, devemos nos assegurar que os conjuntos de treinamento e validação sejam suficientemente *representativos* do mapeamento verdadeiro que se pretende aproximar.

Desvantagem

- Pode sofrer com o problema do *viés de seleção*: a qualidade do modelo pode depender muito de quais exemplos vão para o conjunto de treinamento e quais vão para o conjunto de validação.
- Portanto, o desempenho do modelo pode ser significativamente diferente dependendo de como a divisão é feita, ou seja, os resultados podem depender de uma escolha aleatória particular dos exemplos dos conjuntos de treinamento e validação.

Holdout: Exemplo

Função observável é um polinômio de segunda ordem mais ruído Gaussiano branco, w.

$$y_{noisy} = 2 + x + 0.5x^2 + w$$

- 70% para conjunto de treinamento e 30% para conjunto de validação.
- Tempo médio para execução com N = 100 é de aproximadamente 160 ms.
- Erro de treinamento diminui conforme a ordem do polinômio aumenta.
- Erro de validação *aumenta* conforme a ordem do polinômio aumenta.
- Qual ordem escolher?
 - O ponto onde ambos os erros sejam mínimos (balanço entre flexibilidade e grau de generalização).

 Exemplo: validação cruzada.ipynb

k-Fold

• Estratégia mais elaborada que a anterior.

Consiste em dividir o conjunto total de dados em k subconjuntos (os folds do nome da estratégia) de tamanhos iguais (se possível) e realizar k treinamentos distintos, onde cada um dos k treinamentos considera k-1 folds para treinamento e 1 fold para validação.

←					
Treinamento 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Treinamento 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Treinamento 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Treinamento 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Treinamento 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

- Cada exemplo entra em um conjunto de validação exatamente 1 vez e em um conjunto de treinamento k-1 vezes.
- O desempenho do modelo é dado pela média dos erros de validação calculados para cada um dos k folds.

k-Fold

- Reduz significativamente o problema do *viés de seleção* em relação ao *holdout*:
 - Todos os exemplos do conjunto total de dados aparecem nos conjuntos de treinamento e validação.
- Como regra geral e evidência empírica, normalmente, utiliza-se $\mathbf{k} = 5$ ou 10.
- Porém, tenham em mente que o valor de k é escolhido de forma que os conjuntos de treinamento e validação sejam grandes o suficiente para serem estatisticamente representativos do mapeamento verdadeiro.
- K-Fold é bastante útil quando se tem conjuntos de dados pequenos.

Desvantagem

O treinamento deve ser executado novamente do zero k vezes, o que significa que leva-se aproximadamente k vezes mais tempo que o holdout para se realizar a avaliação do modelo (treinamento + validação).

- Usa-se a mesma função observável do exemplo anterior.
- **k** = 10 folds: 10 iterações com 9 grupos para treinamento e 1 para teste.
- Tempo médio para execução com N = 100 exemplos é de aproximadamente 1.9 s.
- Gráficos mostram a média e desvio padrão do MSE para as 10 etapas de treinamento/validação.
- Média e desvio padrão do MSE aumentam com a ordem do polinômio.
- Qual ordem escolher?
 - O ponto onde ambos, média e desvio padrão do MSE, sejam mínimos.

Exemplo: validacao cruzada.ipynb

Leave-p-out

- Valida um modelo usando todas as combinações possíveis de p exemplos como conjunto de validação e os N-p exemplos restantes como conjunto de treinamento.
- Para um conjunto de dados com N amostras, essa estratégia produz

$$\binom{N}{p} = \frac{N!}{p!(N-p)!},$$
 Quantos subconjuntos de p exemplos posso criar a partir de N exemplos?

pares de conjuntos treinamento/teste, portanto, a complexidade computacional desta estratégia aumenta drasticamente com o aumento de p. Exemplos para N=100:

- p = 1 -> 100 combinações
- p = 2 -> 4.950 combinações
- p = 5 -> 75.287.520 combinações
- Fornece estimativas de erro e desvio padrão mais precisas do que as abordagens anteriores, pois tem-se mais etapas de treinamento/validação.

Desvantagem

- É uma estratégia exaustiva no sentido de que ela treina e valida o modelo para todas as combinações possíveis e, para uma base de dados grande e um valor de p moderadamente grande, pode se tornar inviável computacionalmente.
- No caso do k-Fold, quando fazemos k=N (número folds igual ao número total de exemplos), então o k-Fold é equivalente à estratégia do leave-one-out, ou seja, p = 1.

Leave-p-out: Exemplo

- Para ordem igual a 1, a média e desvio padrão são elevados: subajuste.
- Conforme a ordem aumenta, ambos diminuem, atingindo o ponto ótimo quando igual a 2.
- Porém, conforme a ordem continua a aumentar, ambos aumentam, indicando **sobreajuste**.

- Usa-se a mesma função observável do exemplo anterior.
- **p** = 2: 4950 combinações possíveis com 98 exemplos para treinamento e 2 para validação.
- Tempo médio para execução com N = 100 é de aproximadamente 810 [s] (+ de 13 [m]).
- Gráficos mostram a média e desvio padrão do MSE para as 4950 etapas de treinamento/validação.
- Média e desvio padrão do MSE aumentam com a ordem do polinômio.
- Qual ordem escolher?
 - O ponto onde *ambos*, média e desvio padrão do MSE, sejam mínimos.

Exemplo: validacao cruzada.ipynb

Qual estratégia utilizar?

- O leave-p-out dá indicações mais claras de qual ordem usar, pois usa um número maior de pares treinamento/validação, aumentando a confiabilidade da média e do desvio padrão do MSE.
- Porém, ele é bastante custoso em relação ao tempo necessário para se executá-lo, mesmo com uma base de 100 amostras leva-se mais de 13 minutos!
- Portanto, deve-se utilizá-lo com bases relativamente pequenas.
- Para bases maiores, o k-fold é uma opção melhor e mais eficiente do que o holdout.
- Para bases muito grandes, o **holdout** já daria boas indicações sobre qual ordem utilizar (maior probabilidade dos conjuntos serem representativos).

Qual ordem escolher para o modelo?

- E se os erros de treinamento e validação são pequenos, similares e praticamente constantes para várias ordens de polinômio?
- Uma resposta é usar o princípio da navalha de Occam.
- A *navalha de Occam* é um *princípio lógico* que postula que de múltiplas explicações adequadas e possíveis para o mesmo conjunto de fatos, deve-se optar pela mais simples daquelas.
- Ou seja, deve-se preferir explicações mais simples às mais complicadas.
- Portanto, escolhemos modelos usando a **navalha de Occam**: escolhemos a *função hipótese* menos complexa que se ajusta bem aos dados.

- Mesma função observável dos exemplos anteriores.
- Base de dados com 10000 exemplos.
- Holdout com 30% para validação.
- Vejam que teoricamente, qualquer ordem maior ou igual a 2 já seria uma boa escolha.
- Qual ordem escolher?

Tarefas

- Quiz: "T319 Quiz Regressão: Parte V" que se encontra no MS Teams.
- Exercício Prático: Laboratório #6.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser feitos em grupo, mas as entregas devem ser individuais.

Projeto Final

- Projeto pode ser feito em grupo de no máximo 3 alunos.
- Entrega: 12/12/2021.
- Vídeo com explicação sobre o projeto se encontra na pasta "Projeto Final" em "Recordings".
- Leiam os enunciados atentamente.

Obrigado!

FIGURAS

Treinamento

Validação

