Thursday Reading Assessment: Unit 9, Torque and Angular Momentum

Prof. Jordan C. Hanson

November 18, 2021

1 Memory Bank

- $\tau = rF \sin \theta$... Definition of torque.
- Torque is the angular version of force. It is the result of a force F, separated from a pivot by a distance r, that rotates the system about the pivot. The angle between the force F and the distance r is θ .
- For sytems in static equilibrium, the net force is zero, and the net torque is zero.
- $\tau = I\alpha$... I is the moment of inertia, and α is the angular acceleration.
- $I = mr^2$... For a particle of mass m rotating about a point from a radius r, I is the moment of inertia.

Figure 1: A person lifts a weight with their leg via an exercise machine.

2 Torque

- 1. A device for exercising the upper leg muscle is shown in Figure 1, together with a schematic representation of an equivalent lever system. Calculate the force exerted by the upper leg muscle to lift the mass at a constant speed.
- 2. Show using the following steps that $\tau = I\alpha$.
 - Start with the definition of torque: $\tau = rF\sin\theta$, and assume $\theta = 90$ degrees.
 - \bullet Use Newton's 2nd law to substitute for the net force F.
 - Use $a = r\alpha$, the relationship between tangential acceleration a and angular acceleration α , to eliminate a.
 - Define $I = mr^2$, and substitute it into the current expression.
 - Do you see that $\tau = I\alpha$?