

# HR Analytics Predictions

Hilman Bin Zurin

Github link: https://github.com/hilman1998/HR-Analytics



### **Problem Statement**

- Over the years, employee attrition has been a massive problem for companies the world over.
- One paper (Chen 2023) notes that the overall employee turnover rate in 2021 was as high as 53.7%, with many industries experiencing rates near 19%, significantly above the 10% basic standard.
- The aim of this research is to determine the probability that an employee will leave a company.



### Why is this important?

#### To help companies:

- identify important factors influencing attrition.
- make the right steps to keep employees loyal and happy.

#### **Data Source**

Data will be from Kaggle.

#### What are the features?

The features are a mix of employee and employer survey results and general data about the employee such as age, years at company...



## Data cleaning

generaldata.head()

|   | Age | Attrition | BusinessTravel    | Department                | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeID | Gender | JobLevel | JobRole                      |
|---|-----|-----------|-------------------|---------------------------|------------------|-----------|----------------|---------------|------------|--------|----------|------------------------------|
| 0 | 51  | No        | Travel_Rarely     | Sales                     | 6                | 2         | Life Sciences  | 1             | 1          | Female | 1        | Healthcare<br>Representative |
| 1 | 31  | Yes       | Travel_Frequently | Research &<br>Development | 10               | 1         | Life Sciences  | 1             | 2          | Female | 1        | Research<br>Scientist        |
| 2 | 32  | No        | Travel_Frequently | Research &<br>Development | 17               | 4         | Other          | 1             | 3          | Male   | 4        | Sales<br>Executive           |
| 3 | 38  | No        | Non-Travel        | Research &<br>Development | 2                | 5         | Life Sciences  | 1             | 4          | Male   | 3        | Human<br>Resources           |
| 4 | 32  | No        | Travel_Rarely     | Research &<br>Development | 10               | 1         | Medical        | 1             | 5          | Male   | 1        | Sales<br>Executive           |

- Many columns were categorical and needed to be changed into numerical.
- Some cells which had empty data were replaced with the mean or mode of the column (depending on the nature of the column)
- One hot encoding was done on some of the columns so that the full extent of the data can be analysed and modeled properly.



# Data preparation

|      | Age | DistanceFromHome | Gender | JobLevel | MonthlyIncome | NumCompaniesWorked | PercentSalaryHike | TotalWorkingYears | YearsAtCompany | YearsSince |
|------|-----|------------------|--------|----------|---------------|--------------------|-------------------|-------------------|----------------|------------|
| 2640 | 40  | 1                | 1      | 2        | 50710         | 8.0                | 17                | 8.0               | 1              |            |
| 3476 | 28  | 1                | 1      | 2        | 63470         | 1.0                | 15                | 4.0               | 4              |            |
| 4006 | 28  | 7                | 1      | 1        | 89660         | 1.0                | 16                | 3.0               | 3              |            |
| 1436 | 38  | 1                | 1      | 4        | 64720         | 0.0                | 12                | 17.0              | 16             |            |
| 3265 | 40  | 10               | 1      | 2        | 65670         | 1.0                | 13                | 8.0               | 8              |            |
|      |     |                  |        |          |               |                    |                   |                   |                |            |
| 3331 | 37  | 13               | 0      | 3        | 35640         | 5.0                | 11                | 10.0              | 5              |            |
| 71   | 33  | 4                | 1      | 4        | 47880         | 3.0                | 11                | 9.0               | 7              |            |
| 133  | 43  | 10               | 0      | 1        | 46170         | 1.0                | 11                | 25.0              | 25             |            |
| 2015 | 33  | 9                | 0      | 2        | 46490         | 0.0                | 12                | 4.0               | 3              |            |
| 1932 | 47  | 18               | 0      | 2        | 55820         | 1.0                | 16                | 9.0               | 9              |            |

After splitting the data into train and test splits, and after the data cleaning stage is completed, the X\_train obtained is shown above.





A heatmap was generated and some columns were removed as they were shown to have high correlation with other columns. The removed columns were

BusinessTravel\_Travel\_Frequently and Department\_Research & Development



## Data modelling

```
Scaler X = StandardScaler()
X train sc = Scaler X.fit transform(X train)
X test sc = Scaler X.transform(X test)
logreg = LogisticRegression()
logreg.fit(X train sc, y train)
print(f'Logistic Regression Intercept: {logreg.intercept }')
print(f'Logistic Regression Coefficient: {logreg.coef }')
Logistic Regression Intercept: [-2.04181057]
Logistic Regression Coefficient: [[-0.28362326 -0.04007846 0.08881057 -0.06001248 -0.01787243 0.3546515
  0.05264093 -0.47833252 -0.37469418 0.45347952 -0.43449832 -0.31261611
 0.0837167 -0.02140927 -0.17299768 -0.10563411 0.26781622 0.0848534
  -0.07753161 0.01054999 -0.03113248 0.03881248 0.01541005 0.06187383
  0.06823067 -0.07178405 -0.00810698 -0.25222044 0.12786333 -0.09199236]]
```

After the data prep, the data was scaled and fitted into a logistic regression model.



### Data evaluation

| <pre>print(classification_report(y_test,y_pred))</pre> |           |        |          |         |  |  |  |
|--------------------------------------------------------|-----------|--------|----------|---------|--|--|--|
|                                                        | precision | recall | f1-score | support |  |  |  |
| 0                                                      | 0.84      | 0.98   | 0.91     | 731     |  |  |  |
| 1                                                      | 0.54      | 0.09   | 0.15     | 151     |  |  |  |
| accuracy                                               |           |        | 0.83     | 882     |  |  |  |
| macro avg                                              | 0.69      | 0.54   | 0.53     | 882     |  |  |  |
| veighted avg                                           | 0.79      | 0.83   | 0.78     | 882     |  |  |  |



#### Class 0 (Employees Who Stay):

- Precision: 0.84 When the model predicts an employee will stay, it is correct 84% of the time.
- Recall: 0.98 The model correctly identifies 98% of the employees who actually stay.
- F1-Score: 0.91 A high F1-score indicates a good balance between precision and recall for this class.

#### Class 1 (Employees Who Leave):

- Precision: 0.54 When the model predicts an employee will leave, it is correct 54% of the time.
- Recall: 0.09 The model correctly identifies only 9% of the employees who actually leave.
- F1-Score: 0.15 A low F1-score indicates that the model is not performing well in predicting this class.

#### **Overall Model Performance:**

- Accuracy: 0.83 Overall, the model correctly predicts the status (stay or leave) of 83% of the employees.
- Macro Average: Averages for precision, recall, and F1-score are 0.69, 0.54, and 0.53 respectively, indicating moderate performance.
- Weighted Average: Averages for precision, recall, and F1-score are 0.79, 0.83, and 0.78 respectively, weighted for class imbalance.



# Moving Forward

- This model can be used to create an internal tool (application) to help HR departments predict which of their employees will stay or leave.
- This can go a long way to helping companies keep and get the best talent.
- It can also help companies determine the right amount of bonuses by looking at past data and future expectations.



# Risks Moving Forward

• Questions may be asked whether using AI is ethical for making big HR-related decisions for a company.



# Thank you