Programming theory 1. midterm-exam group A

You are allowed to use the short form $(a_1, \ldots a_n)$ in order to denote the state $\{v_1: a_1, \ldots v_n: a_n\}$.

1. Let A = [1..5] be a statespace and $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ be the following program:

$$S = \begin{cases} 1 \to <1, 2, 1> & 1 \to <1, 4, 5, 1> \\ 2 \to <2, 4, 5, 2> & 3 \to <3, fail> & 3 \to <3, 2, 1> \\ 4 \to <4, 1, 5, 4, 2> & 4 \to <4, 3, 1, 2, 5> \\ 5 \to <5, 2, 1> & 5 \to <5, 3> & 5 \to <5> \end{cases}$$

Let $F \subseteq A \times A$ be the following problem: $F = \{ (1,1), (1,3), (2,2), (4,1), (4,5) \}$

- Determine the following four sets: S(1), $D_{p(S)}$, p(S)(5), p(S)
- Does *S* solve *F*? Detailed explanation is required.
- Determine the weak program function of *S*, provide its domain as well.

(12 points)

- 2. Consider the statespace A, program S and problem F that were given in task 1.
 - (a) Let $Q, R : A \to \mathbb{L}$ be logical functions given such that $\lceil R \rceil = \{1, 2, 5\}$ and $\lceil Q \rceil = \{5\}$.
 - Determine the truth-set $\lceil wp(S,R) \rceil$.
 - Decide whether 5 is an element of $\lceil wp(S,Q) \rceil$.

(6 points)

- (b) Provide a program $S_2 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$, such that S_2 is a function (deterministic relation) and S_2 solves problem F. Detailed explanation is required. (6 points)
- 3. (a) $A = (d:\mathbb{N})$

S			
	d := d - 1		
	$d \nmid 12$		
	d := d - 1		

- Write down the sequences assigned to the states $\{d:10\}$, $\{d:5\}$ and $\{d:1\}$ by the program S.
- What does the program function of S assign to the state $\{d:10\}$?

(6 points)

(b)
$$A = (x:\mathbb{N}, y:\mathbb{N})$$

S			
	s, y := 0, 0		
s < x			
	s := s + 1		
	y := y + 2s - 1		

A is the base-statespace and $s:\mathbb{N}$ is an auxiliary (temporary) variable of the program S.

Write down the sequences assigned to the states $\{x:3, y:5\}$ and $\{x:4, y:5\}$ by the program S. (6 points)

4. (a) $A = (i : \mathbb{N}, n : \mathbb{N})$

Write down the sequences that are assigned to the states

- $\{i:4, n:6\}$ and
- $\{i:5, n:7\}$

by the following S program.

S				
$i := 0$ $i \neq n$				
	$i := 2 \cdot i$	i := i + 1		

(5 points)

(b) Let A = [1..4] be a statespace and let $S_1, S_2 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ be programs over A.

$$S_1 = \begin{cases} 1 \to <1, \dots > & 2 \to <2, 1 > & 2 \to <2, 4 > \\ 3 \to <3, 1, 4 > & 3 \to <3, 2, fail > & 4 \to <4, 1, 3 > \end{cases}$$

$$S_2 = \begin{cases} 1 \to <1, 3, 2 > & 1 \to <1, 2, 4 > & 2 \to <2, \dots > \\ 3 \to <3 > & 4 \to <4, fail > & 4 \to <4, 2, 1 > \end{cases}$$

- Determine the sequence $(S_1; S_2)$ of the two given programs.
- Let $\pi_1, \pi_2 \in A \to \mathbb{L}$ logical functions, such that $\pi_1 = \{(1, false), (2, true), (3, true)\}$ and $\pi_2 = \{(1, true), (2, true)\}$. Determine the selection (branches, IF statement) $(\pi_1: S_1, \pi_2: S_2)$.

(7 points)

5. (a) Let $S_1, S_2 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ be any arbitrary programs over the same base-statespace A.

Decide whether $S_1 \cap S_2$ is a program over A as well.

(3 points)

- (b) Let $A=(x:\mathbb{N},h:\mathbb{N})$ be a statespace and $Q,R\in A\to\mathbb{L}$ be logical functions such that $Q=(d=1\land h=10)$ end $R=(h=10^d\land 10^{d-1}\leqslant x)$. Decide whether $Q\Longrightarrow R$ is true or not. (4 points)
- (c) Let A = [1..5], $S_0 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ be program, and $\pi \colon A \to \mathbb{L}$ such that $\lceil \pi \rceil = \{2, 3, 4\}$.

$$S_0 = \begin{cases} 1 \to <1, 2, 4 > & 2 \to <2 > & 3 \to <3, 4, 2 > \\ 3 \to <3, 5 > & 3 \to <3, 3, 3, \dots > & 4 \to <4, 5, 3, 4 > \\ 4 \to <4, 1, 3 > & 5 \to <5, 5, \dots > \end{cases}$$

Determine the loop (π, S_0) , we can denote by DO as well.

(5 points)