A Zero-Knowledge Architecture for Client-Side Encryption

This presentation outlines the design and evaluation of a secure cloud storage system that removes trust from the cloud provider, ensuring user data privacy.

The Cloud's Privacy Deficit ••

Standard cloud services present a fundamental privacy deficit. Even with server-side encryption, providers manage keys, allowing access or forced handover of your data. This creates vulnerabilities to breaches and surveillance.

Bridging the Gap: Learning from Past Challenges

Trust vs. Accessibility

Browser-based apps are easy to use, but their encryption code comes from the very server you distrust.

The Adoption Paradox

Technically brilliant security tools often fail due to complex key management for average users.

Our solution addresses these historical failures by balancing robust security with pragmatic usability.

Our Solution: A Zero-Knowledge Architecture

We designed a system where the server has zero knowledge of your unencrypted data or decryption keys. All cryptographic operations occur on your device before data is sent to the cloud.

The Client (Trusted Zone)

Your browser performs all security operations using the built-in Web Crypto API.

The Server (Untrusted Utility)

The server acts as a "dumb" storage utility, only storing and retrieving opaque, encrypted data blobs.

How It Works: The Cryptographic Protocol

01

Master Key Creation

Your password, combined with a unique salt, creates a strong Master Key via PBKDF2 (100,000 iterations).

02

File Encryption

Each file is encrypted with a new, random File Key using AES-256-GCM for confidentiality and integrity. 03

Key Wrapping

The unique File Key is encrypted by your Master Key before being sent to the server.

Key Findings & Evaluation

We conducted rigorous security tests based on the OWASP Web Security Testing Guide.

Zero-Knowledge Confirmed

Server only handles unintelligible ciphertext.

Guaranteed Data Integrity

Client detects and fails decryption on tampered data.

The Critical Trade-Off

The system's zero-knowledge strength is also its biggest usability challenge. Because the server has no access to your key, there is **no** "Forgot Password" option. Forgetting your password leads to permanent, irreversible data loss.

Conclusion & Future Work

This project provides a validated blueprint for private-by-design cloud applications using standard web technologies.

Future Work

Designing user-friendly key recovery systems, such as social recovery, that do not compromise the zero-knowledge principle.