DS3: Électricité - corrigé

Durée 2h, calculatrices interdites. Le DS est probablement trop long pour que vous puissiez tout faire, c'est normal, faites-en le maximum.

Exercice 1: Convertisseur Boost

- 1. Lorsque K est fermé, on a $u_L=u_{\rm in}=L\frac{{\rm d}\,i}{{\rm d}\,t}$. Donc $\frac{{\rm d}\,i}{{\rm d}\,t}=\frac{u_{\rm in}}{L}$.
- 2. D'après la question précédente, $\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$ est une constante, donc $i(t)=\frac{u_{\mathrm{in}}}{L}t+A$ où A est une constante. La condition $i(0)=i_{\mathrm{min}}$ donne $A=i_{\mathrm{min}}$. Donc finalement $i(t)=i_{\mathrm{min}}+\frac{u_{\mathrm{in}}}{L}t$ Au moment où l'interrupteur se ferme, $t=t_{\mathrm{on}}$ et donc :

$$i_{
m max} = i_{
m min} + rac{u_{
m in}t_{
m on}}{L}$$

- 3. Lorsque l'interrupteur est ouvert, la diode se comporte comme un fil, la loi des mailles donne $u_L = u_{\rm in} u_{\rm out} = L \frac{{\rm d}\,i}{{\rm d}\,t}$, donc $\frac{{\rm d}\,i}{{\rm d}\,t} = \frac{u_{\rm in} u_{\rm out}}{L}$.
- 4. Comme dans la question 2, on intègre $\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$ et on utilise $i(t_{\mathrm{on}})=i_{max}$ pour trouver :

$$i(t) = i_{ ext{max}} + rac{u_{ ext{in}} - u_{ ext{out}}}{L}(t - t_{ ext{on}})$$

5. L'énoncé indique que l'intensité i évolue de façon périodique, donc $i(T=t_{\rm on}+t_{\rm off})=i(0)=i_{\rm min}.$ On obtient l'évolution suivante :

- 6. La condition donnée à la question précédente implique que $u_{\rm out}=u_{\rm in}\frac{1}{1-r}$. Comme 0< r<1, on a bien $u_{\rm out}>u_{\rm in}$.
- 7. D'après la question 2, on a $\Delta i = \frac{u_{\rm in}t_{\rm on}}{L}$, on en déduit la formule demandée pour i(t) :

$$i(t) = i_{\min} + \frac{\Delta i}{t_{\text{on}}} t$$

En utilisant le résultat de la question 6, on peut montrer que $u_{\rm in} - u_{\rm out} = -\frac{r}{1-r}u_{\rm in}$, en utilisant la même expression de Δi qu'à la question précédente, on finit par trouver la formule demandée. (il faut utiliser $t_{\rm on} = rT$ et $t_{\rm off} = (1-r)T$).

8. Pendant la phase où l'interrupteur est fermé, l'énergie fournie par le générateur est

$$E_{
m on} = \int_{-0}^{-t_{
m on}} u_{
m in} i(t) {
m d}t = u_{
m in} i_{
m min} t_{
m on} + rac{1}{2} u_{
m in} t_{
m on} \Delta i$$

Pendant la phase où l'interrupteur est ouvert, le générateur fournit l'énergie :

$$E_{ ext{off}} = \int_{-t_{ ext{on}}}^{-t_{ ext{on}}+t_{ ext{off}}} u_{ ext{in}} i(t) \mathrm{d}t = u_{ ext{in}} i_{ ext{min}} t_{ ext{off}} + rac{1}{2} u_{ ext{in}} t_{ ext{off}} \Delta i$$

Sur un cycle complet, le générateur fournit l'énergie :

$$E_g = E_{\rm on} + E_{\rm off} = u_{\rm in} i_{\rm min} T + \frac{1}{2} u_{\rm in} T \Delta i$$

9. On trouve que l'énergie consommée par le circuit pendant un cycle complet est égale à l'énergie consommée pendant la phase où l'interrupteur est ouvert, et vaut :

$$E_{\text{out}} = \int_{t_{\text{on}}}^{t_{\text{on}}+t_{\text{off}}} u_{\text{out}} i(t) dt = u_{\text{out}} i_{\text{min}} t_{\text{off}} + \frac{1}{2} u_{\text{out}} t_{\text{off}} \Delta i$$
$$= u_{\text{in}} i_{\text{min}} T + \frac{1}{2} u_{\text{in}} T \Delta i = E_g$$

en utilisant la relation de la question 6 entre u_{in} et u_{out} .

Le rendement du système est donc égal à 1, ce qui n'est pas étonnant car il n'y a aucune source de dissipation d'énergie dans le circuit étudié, c'est un cas idéal, dans la réalité le rendement sera strictement inférieur à 1, de l'ordre de 80% pour ce type de convertisseur.

Exercice 2 : DIAGRAMME DE BODE

1. Il s'agit d'un filtre passe-bande car $|\underline{\mathbf{H}}(\omega \to 0)| = 0$ et $|\underline{\mathbf{H}}(\omega \to \infty)| = 0$

2. On calcule
$$G_{\mathrm{dB}}(\omega) = 20\log\left(|\underline{\mathrm{H}}(\omega)|\right) = -10\log\left(1+Q^2\left(\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega}\right)^2\right)$$

- 3. Lorsque $\omega\to 0$, $G_{\rm dB}(\omega)\simeq -20\log(Q\omega_0)+20\log(\omega)$, ce qui correspond à une pente de 20dB/décade
 - Lorsque $\omega \to \infty$, $G_{\rm dB}(\omega) \simeq -20 \log(Q/\omega_0) 20 \log(\omega)$, ce qui correspond à une pente de -20dB/décade.
 - On a également $G_{\rm dB}(\omega=0)=0$

4.

5. Diagramme de Bode tracé avec Q=1 :

6. On cherche ω_1 et ω_2 telles que $G(\omega_1)=G(\omega_2)=\frac{1}{\sqrt{2}}$. On trouve que $\omega_2-\omega_1=\Delta\omega=\frac{\omega_0}{O}$ (fait dans le cours)

Exercice 3 : CIRCUIT RLC SÉRIE

I - Réponse à un échelon de tension

- 1. Pour t<0 on est en régime permanent, la bobine se comporte comme un fil donc $u_L(0^-)=0$ et le condensateur se comporte comme un interrupteur ouvert donc $i(0^-)=0$. On en déduit que $u_R(0^-)=Ri(0^-)=0$ et donc la loi des mailles donne $u_C(0^-)=0$.
- 2. La continuité de l'intensité qui traverse la bobine impose $i(0^+)=i(0^-)=0$ donc $u_R(0^+)=0$ et la continuité de la tension aux bornes du condensateur impose $u_C(0^+)=u_C(0^-)=0$. La loi des mailles donne enfin $u_L(0^+)=E$.
- 3. On applique la loi des mailles : $E=u_R+u_C+u_L$, la loi d'Ohm : $u_R=Ri$, du condensateur : $i=C\frac{\mathrm{d}\,u_C}{\mathrm{d}\,t}$ et de la bobine $u_L=L\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$. En combinant les trois (en partant de la loi de la bobine) on obtient l'équation différentielle :

$$\frac{\mathrm{d}^2 u_L}{\mathrm{d} t^2} + \frac{R}{L} \frac{\mathrm{d} u_L}{\mathrm{d} t} + \frac{1}{LC} u_L = 0$$

- 4. La pulsation propre du circuit est $\omega_0 = \frac{1}{\sqrt{LC}}$ et le facteur de qualité est $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$.
- 5. D'après le graphique on trouve $E \simeq 4\,\mathrm{V}$, $\omega_0 = 2\pi f \simeq 10^5\,\mathrm{rad/s}$ et $Q \simeq 10$. On donne ci-dessous l'évolution de la tension $u_L(t)$ pour t>0. Déterminer à partir de ce graphique une estimation des valeurs numériques de E, ω_0 et Q.
- 6. On a $\omega_0^2\simeq 10^{10}\,{\rm s}^{-2}=\frac{1}{LC}$. On peut donc par exemple prendre $L=0,1\,{\rm mH}$ et $C=1\,{\rm \mu F}$. Dans ces conditions on a $R=\frac{1}{Q}\sqrt{\frac{L}{C}}=\frac{1}{10}\sqrt{\frac{0.1}{1\cdot 10^{-3}}}=1\,\Omega$.

II - Régime sinusoïdal forcé

7. $\underline{e}(t) = Ee^{j(\omega t + \varphi)}$.

8. On a un pont diviseur de tension formé par l'impédance Z_L en série avec Z_C et Z_R . On a donc

$$\underline{u}_{L} = \underline{e} \frac{Z_{L}}{Z_{L} + Z_{R} + Z_{C}} = \underline{e} \frac{jL\omega}{jL\omega + \frac{1}{jC\omega} + R}$$

Avec les expressions de ω_0 et Q données on trouve bien :

$$\underline{u}_{L} = \underline{\mathbf{e}} \frac{jQ\frac{\omega}{\omega_{0}}}{1 + jQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}$$

9. On a:

$$U(\omega) = |\underline{u}_L| = E \frac{Q \frac{\omega}{\omega_0}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}}$$

On a $U(\omega_0)=QE$

- 10. Lorsque le facteur de qualité est grand, on a $U(\omega_0)>E$ il se produit un phénomène de résonance
- 11. Le déphasage est $\varphi = \arg(\underline{u}_L) \arg(\underline{e})$ soit :

$$\varphi = \arg \left(\frac{jQ\frac{\omega}{\omega_0}}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \right) = \frac{\pi}{2} - \arctan\left(Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right)$$

Lorsque $\omega = \omega_0, \varphi = \frac{\pi}{2}$.