Ontology Mining

Categories (Sub-Categories), Attributes, and Values **Overview and Introduction**

Knowledge Extraction

Knowledge Cleaning

Q&A

Break

Ontology Mining

25 min

Applications

Conclusion and Future Directions

Q&A

Why Ontology Mining?

- Living in a world that can't be fixed...
 - Emerging Product Categories

Anthony's Organic Coconut Flour, 4lbs, Batch Tested Gluten Free, Non GMO, Vegan, Keto Friendly

Fine-grained Product Categorization

New product attributes to model

Such as Footwear Height (e.g. "ankle")

Section Structure

- Problem Definition
 What is needed beyond techniques for building generic KGs?
- Short answer -- key intuition

 What are key intuitions for ontology mining?
- Long answer -- details
 What are practical tips?
- Reflection/short-answer
 Can we apply the techniques to other domains?

What is Product Ontology?

- Ontology defines...
 - The relationship between product categories -> Category Ontology
 - The relationship between product category and attribute -> Relation Ontology
- Questions to answer in this section

Category (Product Type) Ontology	Relation Ontology
"What is this product?" -> Product Type	"Can mug have a flavor?" -> Applicability
"What are the relationship between product types?" -> Type Hypernym/Synonyms	"Does size really matter, or is it only important for one product?" -> Importance
	"Are 2 ft and 24 inches the same length?" -> Value Variations/Synonyms

Techniques required

- Scarce direct supervisions
- Handling noisy labels
- Open-world learning

Ontology

- Categories & Sub-Categories
 - Category Name

Category Taxonomy

- Attributes
 - Facets/Asp

- Values
 - Possible va
 - E.g. for fiberglas

Product Type Ontology

Product Type, Synonyms, Hypernyms, and Taxonomies

Product Type

- Product Type tells what a product is
 - E.g. "Coffee":
 - Ground Coffee
 - Coffee Machine
 - Espresso Coffee Costume
 - Coffee-flavored Ice Cream
- A Product Type identifies a group of real-world products and defines their scope (i.e. "what the product is") based on visible and functional characteristics.
- Challenges
 - Emerging category, freshness is crucial
 - Lack of annotation, alleviate manual efforts

PT Extraction Methods — Closed-World

- Closed-word Learning Approaches
 - The product types are predefined
 - Formulated as a multi-class, multi-label classification problem
- Structured attribute values help define a product
 - Leveraging attribute information [Krishnan & Amarthaluri 2019]
- Product category label name possesses meaningful semantics
 - Leveraging label information [Meng+ 2020][Chen & Miyake 2021]

PT Extraction Methods – Open-World

- Open-world Learning Approaches
 - Product types not pre-defined
- Classification model with the capability to handle new classes
 - Classification-based with open-world learning [Xu+ 2019]
- Adopt advanced formulations (e.g. Seq-to-Seq model)
 - Generation-based [Li+ 2018] [Umaashankar+ 2019][Zahavy+ 2018] [Verma+ 2020]
- Utilize domain experts' knowledge
 - Active Learning [<u>Zhu+ 2020</u>]

PT Extraction Methods – Open-World

- Classification-based with open-world learning [Xu+ 2019]
 - Reject examples from unseen classes (not appeared in training)
 - Incrementally learn the new/unseen classes to expand the existing model.
- Maintains only a dynamic set of seen classes that allows new classes to be added or deleted with no need for model re-training.

$$p(c|x_t, x_{a_{1:k}}) = \sigma(W \cdot \text{BiLSTM}(r_{1:k}) + b). \qquad \hat{y} = \begin{cases} reject, \text{ if } \max_{c \in S} p(c|x_t, x_{a_{1:k}}) \leq 0.5; \\ \arg \max_{c \in S} p(c|x_t, x_{a_{1:k}}), \text{ otherwise.} \end{cases}$$

 Train a meta-classifier that uses the examples from seen classes (including the newly added classes) on-the-fly for classification and rejection

PT Extraction Methods – Open-World

Generation-based multi-modal model [<u>Umaashankar+ 2019</u>]

Valid Category Paths

Women >Western Wear >Jackets Women >Western Wear > Blazers&Suits

PT Extraction

- Dealing with scarce annotations
- Abundant unlabeled data is available
 - Semi-supervised Self-training approaches [<u>Liu+ 2018</u>]
- Different modeling has unique inductive biases, thus good to combine together
 - Co-training with text and graph information [Zhang+ 2021]
- Augment existing data when unlabeled data is not available
 - Data augmentation methods [<u>Du+ 2021</u>]
- Improve model generalization so it handles unseen classes
 - Zero-shot learning [Ye+ 2020]

Self-training based methods

• Used the trained model to generate pseudo labels on unlabeled data

Co-training based methods

Co-training with text and networked-text (graph) information [<u>Zhang+</u>
 2021]

Resources

- Rakuten SIGIR2018 Dataset
- <u>icecat</u>
- WDC Product Data Corpus and Gold Standard for Large-Scale Product Matching - Version 2.0
- WDC-25 Gold Standard for Product Categorization
- WDC-222 Gold Standard for Hierarchical Product Categorization
- Amazon
- Amazon Berkeley Objects (ABO) Dataset

Product Taxonomy

- We now have Product Type terms extracted/classified from new products. Why it is important to have a product taxonomy?
 - Organize emerging Product Types
 - Capture relations between Product Types
- Challenges
 - Taxonomy not incomplete
 - Manual curation for thousands of PTs
- Taxonomy Enrichment
 - Synonym
 - Hypernym

Type Synonym

- Why?
 - A duplication-free taxonomy
 ...
 Footwear Shoes ...

• Improve downstream applications, e.g. recall in product search

• [Fei+ 2019] [Boteanu+ 2019]

Type Synonym

Leveraging local and structure features to train a synonym classifier
 [Boteanu+ 2019]

Local Features

- Local features:
 - Word frequency in search queries
 - Character and word edit distance
 - Cosine similarity
- Structure features:
 - The node's parent name
 - The name of the taxonomy root
- Row WFedit(SC, N)d(SC, N)d(SC, P) $\overline{d}(SC,ci)$ d(SC, R)F-1 0.92 0.790.85X x x x 0.87 0.73 0.79X X X 0.90 0.41 0.56 x x 0.90 0.94 0.92x X 0.940.90 0.920.940.88 0.910.950.67 0.79X x 0.940.89 0.92X X 0.89 0.940.91X x X 0.87 0.9510 0.91X X X X 11 0.70 0.77 12 0.07 0.13X

Structural Features

Metrics

• The average distance to the node's direct children

Type Hypernym

- Why?
 - Capture the *is-a* relation between products
 - Help navigate customers thru the shopping funnel
- Different Settings

- Leveraging lexical patterns such as "Hiking shoes is a type of athletic shoes".
 - Pattern-based [<u>Hearst 1992</u>][<u>Jurgens & Pilehvar 2015</u>][<u>Roller+ 2018</u>]
- Leveraging distributed semantic embeddings
 - Distributional models [Wang+ 2014] [Yamane+ 2016] [Espinosa-Anke+ 2016]
 [Nguyen+ 2017] [Chang+ 2018] [Le+ 2019] [Mao+ 2020] [Manzoor+ 2020]
- Leveraging user search behaviors
 - Search query based [<u>Liu+ 2012</u>] [<u>Shalom+ 2019</u>]

- Pattern-based [Roller+ 2018]
 - /[NP] such as [NP] (and [NP])?/
 - animals such as cats and dogs
 - Cats, dogs, and other animals
- Provide high-quality and robust predictions on large corpora by capturing important contextual constraints, which are not yet modeled in distributional methods.

Pattern

X which is a (example class kind ...) of Y

X (and or) (any some) other Y

X which is called Y

X is JJS (most)? Y

X a special case of Y

X is an Y that

X is a !(member|part|given) Y

!(features properties) Y such as $X_1, X_2, ...$

(Unlike|like) (most|all|any|other) Y, X

Y including X_1, X_2, \ldots

- Advantage: leveraging co-occurrence information, robust, high precision
- Disadvantage: may not able to find match in e-commerce corpus, low recall
 - Hard to collect corpus containing "athletic shoe including hiking boots"

- Embedding-based distributional models
- Unsupervised methods mostly based on *Distributional Inclusion* Hypothesis [Weeds+ 2004] [Geffet & Dagan 2005] [Kotlerman+ 2010]
 [Santus+ 2014] [Lenci and Benotto 2012] [Shwartz+ 2017]
 - We assume that more general words like "animal" appear in a variety of different contexts, while more specific words like "cat" appear in a few specific contexts.
 - When the contexts of "animal" include all the contexts of "cat", we can assume that "animal" is a hypernym of "cat".

- Embedding-based distributional models
- Unsupervised methods mostly based on *Distributional Inclusion* Hypothesis [Weeds+ 2004] [Geffet & Dagan 2005] [Kotlerman+ 2010]
 [Santus+ 2014] [Lenci and Benotto 2012] [Shwartz+ 2017]
- Clustering based methods [<u>Zhang+ 2018</u>]

- Distributional models
- Supervised methods leverage various signals to improve embeddings
- Graph Neural Network models
- [Shen+ 2020] [Zeng+ 2021]

- Distributional models
- Supervised methods leverage various signals to improve embeddings
- Graph Neural Network models [Shen+ 2020] [Zeng+ 2021]

A graph propagation module

$$h_u^{(k)} = AGG^{(k)} \left(\{ h_v^{(k-1)} | v \in \widetilde{N(u)} \} \right), \quad k \in \{1, \ldots, K\},$$

A graph readout module

$$\text{READOUT}(\{h_u^{(K)} | u \in G\}) = \sum_{u \in G} \frac{\log(1 + \exp(\alpha_{p_u}))}{\sum_{u' \in G} \log(1 + \exp(\alpha_{p_u'}))} h_u^{(K)},$$

Resources

- SemEval-2015 Task 17: Taxonomy Extraction Evaluation
- SemEval-2016 Task 13: a Taxonomy Induction Method based on Lexico-Syntactic Patterns, Substrings and Focused Crawling
- SemEval-2016 Task 14: Semantic Taxonomy Enrichment
- SemEval-2018 Task 9: Hypernym Discovery

Overall workflow

- Data preprocessing
- Taxonomy Construction
 - Extraction: PT Phrase Extraction/Classification
 - Deduplication: Product type similarity calculation
 - Induction: clustering, attachment
- Mapping product to categorization labels

Product Type ontology workflow

Data preprocessing

Taxonomy Enrichment

Segmentation & Labeling

Building Types

Building Type Relations

Induction

Term Extraction/ Classification

Deduplication

Classification for term relations

Clustering/Attachment

Relation Ontology

Applicability, Importance, Variations/Synonyms

Attribute Applicability

"Can mug have a flavor?"

- Why?
 - Discover a new aspect of a product
 - Understand attribute applicability for downstream applications
 - Regularize attribute value extraction results

Attribute Applicability prediction methods

- Applicability Prediction [<u>Rukat+ 2017</u>]
- Aspect Extraction [Ramezani+ 2020] [Tian+ 2020]
- Commonsense Knowledge [<u>Luo+ 2020</u>]
 - ConceptNet [Speer+ 2017]

```
cheese has...

en a strong odor →
en a flavor →
en a lot of fat →
en benign bacteria →
```

Attribute Applicability

- Applicability Prediction methods [<u>Rukat+ 2017</u>]
- As a multi-label classification problem
- Works on a binary matrix between products and attributes
- Binary matrix factorization

Attribute	cup-size	closure-type	leather-type
Product types	Bra 22(10)%	Shoes 48(18)%	Shoes 48(15)%
with largest	Swimwear 3(2)%	Pants 24(10)%	Outerwear 3(3)%
p(apply)	Underwear 3(2)%	Shorts $6(3)\%$	Shorts $2(2)\%$
	Shoes 2(2)%	Outerwear 4(2)%	(<1%)
	Suit 2(2)%	Bra 2(2)%	

Attribute Value Variations/Synonyms

- "2 ft" vs. "24 inches"?
 - DALS Lighting 6000-ACCE24 **24"** Extension Cord for PowerLED Linear, Black
 - FIRMERST 1875W Flat Plug Extension Cord White 2ft UL Listed (15A 14AWG)
 - Value Synonyms [Shinzato & Sekine 2013]
- "64Gb" vs. "256Gb"?
 - Apple iPhone 12, **64G**B, White Fully Unlocked (Renewed)
 - Apple iPhone 12 Pro, **128GB**, Graphite Fully Unlocked (Renewed)
 - Value Variations [Embar+ 2020]

Value Variations

- Variations are the options that a customer can choose from when purchasing a product.
 - Size: 128GB, 256GB, 512GB
 - Color: Gold, Graphite, Pacific Blue, Silver

Value Variations

- Product with similar titles are likely variations
- Utilizing contrast features as value variation candidates [<u>Embar+ 2020</u>]

Apple iPhone 11 Pro 64 GB Apple iPhone 11 Pro 256 GB

• Improve product duplication performance

Magellan

Software		Without contrast features	CEL
Duplicates	F1	0.785	0.81
	APS	0.877	0.897
Variations	F1	0.677	0.695
	APS	0.761	0.777

Value Synonyms

- Feature-based Matching [Elmagarmid+ 2007]
 - Edit distance, Affine Gap Distance, Smith-Waterman Distance, Jaro Distance Metric, and Q-Gram Distance
- DL-based Matching [Mudgal+ 2018]

Attribute embedding (1) V		Options	
		Granularity: (1) Word-based (2) Character-based	Training: (3) Pre-trained (4) Learned
Attribute similarity representation	(1) Attribute summarization	(1) Heuristic-based (2) RNN-based (3) Attention-based (4) Hybrid	
	(2) Attribute comparison	(1) Fixed distance (cosine, Euclidean) (2) Learnable distance (concatenation, element-wise absolute difference, element-wise multiplication)	
Classifier		NN (multi-layer perceptron)	

DL-based Matching

Siamese network for learning good entity embeddings in vector space

using contrastive loss. [Neculoiu+ 2016]

$$L_{+}(x_{1}, x_{2}) = rac{1}{4}(1 - E_{\mathrm{W}})^{2}$$
 $L_{-}(x_{1}, x_{2}) = egin{cases} E_{\mathrm{W}}^{2} & ext{if } E_{\mathrm{W}} < m \ 0 & ext{otherwise} \end{cases}$

Attribute Importance

- "Does size really matter, or is it only important for one product?"
- From seller metadata
 - Manufacturer-provided attributes associated with product catalog
- From customer reviews
 - E.g. for an iPhone "old body style with a larger screen!"
 - Rule-based [<u>Popescu & Etzioni 2005</u>]
 - Graph-based ranking methods: using PageRank [Yan+ 2015] [Indrakanti & Singh 2018]
 - Fine-grained LDA with keywords [Wang+ 2014]
 - Opinion mining with Fuzzy-c-means clustering [Zimmermann+ 2016]
- From customer search query log [Pound+ 2011], and behavior data [Zhou+ 2020]

Attribute Importance

- Aspect Extraction from reviews
 - Aspect extraction
 via Dependency tree pruning

- Aspect graph construction
- Aspect ranking

Resources

 Web Data Commons - Gold Standard for Product Matching and Product Feature Extraction