- **9.4.** In the op amp of Fig. 9.21(b),  $(W/L)_{1-8} = 100/0.5$ ,  $I_{SS} = 1$  mA, and  $V_{b1} = 1.7$  V. Assume that  $\gamma = 0$ .
  - (a) What is the maximum allowable input CM level?
  - (b) What is  $V_X$ ?
  - (c) What is the maximum allowable output swing if the gate of  $M_2$  is connected to the output?
  - (d) What is the acceptable range of  $V_{b2}$ ?

Reference: https://inst.eecs.berkeley.edu/~ee105/sp08/lectures/lecture24.pdf

 $V_{DD}$ 

⊸ V<sub>out</sub>

M<sub>8</sub>

 $I_{SS}$ 

(a)

## **Equilibrium Overdrive Voltage**

• The **equilibrium overdrive voltage** is defined as  $V_{\rm GS}$ - $V_{\rm TH}$  when  $M_1$  and  $M_2$  each carry a current of  $I_{\rm SC}/2$ .



## Minimum CM Output Voltage

- In order to maintain  $M_1$  and  $M_2$  in saturation, the common-mode output voltage cannot fall below  $V_{\rm CM}$ - $V_{\rm TH}$ .
- This value usually limits voltage gain.





| 9,4                                                     |                                                              | Known                                                                                                  |
|---------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| as Max CM?                                              |                                                              | $\mu_n C_{\text{OX}} = 1.34 E - 4$ $\frac{1}{2} 3.5 \times 4$ $\frac{1}{2} C_{\text{OX}} = 3.83 E - 5$ |
| Vcm, max - Vthz < V                                     |                                                              | $\frac{W}{L} = \frac{100}{0.5} = 200$                                                                  |
| VcM, max < Vb, - Vg.                                    |                                                              | λ=O → V <sub>th</sub> = V <sub>tho</sub>                                                               |
| Vasy 3 VIIO + V                                         | thn $\left  T_0 = \frac{T_{SS}}{2} = 0.5 \text{ mA} \right $ | Vthn = 0.7 V<br>Vthp = 0.8 V                                                                           |
| Vgs4 = √(210.5 mA) + (                                  | 0.7                                                          |                                                                                                        |
| Vgs4 = 0.193 + 0.7 =                                    |                                                              |                                                                                                        |
| VcM, max < Vb1 - Vg<br>VcM, max < <del>0.813</del> - 0: |                                                              |                                                                                                        |
| VcM, max < 1.507 V                                      | -                                                            |                                                                                                        |

b.) Figure A
$$V_{X} = V_{DO} - |V_{GS_{5}}| - |V_{GS_{7}}|$$

$$V_{GS_{7}} = \sqrt{\frac{2I_{O}}{\mu_{P}C_{OX}(\frac{W}{L})}} + V_{HP} = \frac{V_{X} = 3}{\sqrt{\frac{2(0.5 \text{ mA})}{3.83 \text{ E-5}(206)}}} + 0.8$$

$$V_{GS_{7}} = 0.361 + 0.8 = 0.8$$

$$V_{GS_{7}} = 1.161$$

$$V_{X} = V_{DO} - |V_{GS_{7}}|$$

$$V_{X} = 3 - 1.61$$

$$V_{X} = 1.839 \text{ V}$$

C.) Max Swing?

Vout, max = VCM, max < 1.507 V

VCM, min - Vthz > 
$$\sqrt{\frac{2ID}{\mu_{n}Cox}(\frac{W}{L})}$$

VCM, min >  $\sqrt{\frac{2ID}{\mu_{n}Cox}(\frac{W}{L})}$  + Vth n

VCM, min >  $\sqrt{\frac{2(0.5 \text{ mA})}{\mu_{n}Cax}(\frac{V}{L})}$  + 0.7

VCM, min > 0.139 + 0.7

VCM, min > 0.893

Vout, swing s VCM, max - VCM, min Vout, swing s 1.507 - 0.893

Vout, swing s 0.614 V

d.) 
$$V_{b_{2}}$$
, max  $= V_{4h_{5}} < |V_{05}|^{2}$ 
 $V_{b_{2}}$ , max  $< |V_{05}| + V_{4h_{5}}|^{2}$ 
 $< |V_{x} - (V_{00} - V_{057})| + V_{4h_{5}}|^{2}$ 
 $< |V_{x} - V_{00} + V_{057}| + V_{4h_{5}}|^{2}$ 
 $< |V_{x} - V_{00} + V_{057}| + V_{4h_{5}}|^{2}$ 
 $< |V_{x} - V_{x} - V_{x$ 

- **9.6.** If in Fig. 9.23,  $(W/L)_{1-8} = 100/0.5$  and  $I_{SS} = 1$  mA,
  - (a) What CM level must be established at the drains of  $M_3$  and  $M_4$  so that  $I_{D5} = I_{D6} = 1$  mA? How does this constrain the maximum input CM level?
  - (b) With the choice made in part (a), calculate the overall voltage gain and the maximum output swing.



Figure 9.23 Simple implementation of a two-stage op amp.

9.6

Note 1.34 E-4

$$V_{CM_1} m_{NX} - V_{4h_2} < V_{DD} - \frac{V_{QS_C}}{V_{DS_{TT}}}$$
 $V_{CM_1} m_{NX} < V_{DD} - V_{QS_C} + V_{4h_2}$ 
 $V_{4h_1} = 0.7$ 
 $V_{4h_2} = 0.8$ 
 $V_{4S_C} = \sqrt{\frac{2(1mh)}{\mu_T Cox(\frac{1}{2})}} + V_{4h_2}$ 
 $V_{4h_2} = 0.8$ 
 $V_{4S_C} = \sqrt{\frac{2(1mh)}{\mu_T Cox(\frac{1}{2})}} + 0.8$ 
 $V_{4S_C} = 0.511 + 0.8$ 
 $V_{4S_C} = 1.311 V$ 
 $V_{4S$ 

b.) Vout, swing = 
$$V_{DD} - 2V_{DSat}$$

Vout, swing =  $V_{DD} - |V_{DSg}| - |V_{DSg}|$ 
 $V_{DSg} = \sqrt{\frac{2T_D}{\mu_P \text{Cox}(\frac{N}{L})}} |_{T_D = (mA)} = \sqrt{\frac{2(1mA)}{3.83E-5(2\alpha)}} = 0.511 \text{ V}$ 
 $V_{DSg} = \sqrt{\frac{2T_D}{\mu_n \text{Cox}(\frac{N}{L})}} |_{T_D = (mA)} = \sqrt{\frac{2(1mA)}{1.34E-4(2\alpha)}} = 0.273 \text{ V}$ 
 $V_{Out}$ , swing =  $3 - 0.511 - 0.273$ 
 $V_{Out}$ , swing =  $2.215 \text{ V}$ 

$$A_{V} = A_{V_{1}} \cdot A_{V_{2}} \qquad \qquad \frac{W}{L} = \frac{(\omega)}{0.5} = 2\pi0$$

$$A_{V} = g_{M_{2}} (r_{02} / r_{04}) \cdot g_{M_{6}} (r_{06} / r_{08}) \qquad \lambda_{n} = 0.1$$

$$\lambda_{p} = 0.2$$

$$g_{M_{2}} = \sqrt{2 \mu_{n} \cos(\frac{W}{L}) T_{0}} \qquad |T_{0} = \frac{T_{55}}{2} = 0.5 \text{ nA}$$

$$g_{M_{0}} = \sqrt{2 (1.34 \text{ fe-4}) (0.5 \text{ mA}) (200)} = 0.00518$$

$$g_{M_{0}} = \sqrt{2 (2.383 \text{ fe-5}) (200) (1 \text{ nA})} = 0.00391$$

$$r_{01} = \frac{1}{\lambda_{n} T_{0}} |T_{0} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{10} = 1_{1$$

- **9.10.** Suppose that in Fig. 9.88,  $I_1 = 100 \mu A$ ,  $I_2 = 0.5 \text{ mA}$ , and  $(W/L)_{1-3} = 100/0.5$ . Assuming that  $I_1$  and  $I_2$  are implemented with PMOS devices having  $(W/L)_P = 50/0.5$ ,
  - (a) Calculate the gate bias voltages of  $M_2$  and  $M_3$ .
  - (b) Determine the maximum allowable output voltage swing.
  - (c) Calculate the overall voltage gain and the input-referred thermal noise voltage.



Figure 9.88







$$|A_v| \approx g_{m1}[r_{O2} + (A_1 + 1)g_{m2}r_{O2}r_{O1} + r_{O1}]$$
  
  $\approx g_{m1}g_{m2}r_{O1}r_{O2}(A_1 + 1)$ 

|                   | 9,10                                                                                                                                             | Known                    | , and    |        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|--------|
| <b>a</b> .)       | Find Mg VG53:                                                                                                                                    | W= 100 =                 | 200      | [nmox] |
|                   |                                                                                                                                                  | V = 50 =                 | loo      | [pmus] |
|                   | $V_{GS_3} = \sqrt{\frac{2I_D}{\mu_n Cox(\frac{bd}{L})}} + V_{H_n}  _{I_D = I_t = 0.1 \text{ mA}}$                                                | Vthn = 0.7<br>Vthp = 0.8 | 3        |        |
|                   | $V_{6S_3} = \sqrt{\frac{2(0.1 \text{ mA})}{1.34E-4(200)}} + 0.7$                                                                                 | unlox = uplox = 3        | 1.34 E-4 |        |
|                   | VGS3 = 0.086 + 0.7 =                                                                                                                             |                          |          |        |
|                   | V <sub>GS3</sub> 5 0.786 V                                                                                                                       |                          |          |        |
|                   | Find VGS2:                                                                                                                                       |                          |          |        |
| •                 | $V_{GS_Z} = \sqrt{\frac{2ID}{\mu_n Co_x(\frac{U}{L})}} + V_{thn}   I_D = I_z = 0.5 \text{ mA}$                                                   |                          |          |        |
|                   | Vgsz= 0.193+0.7                                                                                                                                  |                          |          |        |
|                   | VGS2 = 0.893 V                                                                                                                                   |                          |          |        |
| b.)               | Vout, swing = VD - VDSIZ - VDSatz - VGS3                                                                                                         |                          |          |        |
|                   | $V_{DSAT}_{I_2} = \sqrt{\frac{2I_D}{\mu_P Cox(\frac{W}{L})_P}} = \sqrt{\frac{2(0.5 \text{ mA})}{3.83 \text{ E-S (100)}}} = I_0 = 0.5 \text{ mA}$ | 0.51 V                   |          |        |
|                   | $V_{DSat_2} = \sqrt{\frac{2I_D}{\mu_n Cox(\frac{W}{L})}}  _{I_D = 0.5 \text{ mA}} = \sqrt{\frac{2(0.5 \text{ mA})}{0.34 \text{ E-Y}}}$           | e (30)                   | 3 ∨      |        |
|                   | Vout, suings 3-0.51-0.193-0.786                                                                                                                  |                          |          |        |
| The second second | Vout swing = 1.51 V                                                                                                                              |                          |          |        |

|     |                                                                                             | Known                                             |         |
|-----|---------------------------------------------------------------------------------------------|---------------------------------------------------|---------|
| C.) | Given perfect current source:                                                               | µn Cox = 1.34 E-4                                 |         |
|     | Av = gm, 9m2 (01 roz (A,+1)                                                                 | $\mu_{\rm p} C_{\rm ox} = 3.83 E-5$               | [nmos]  |
|     | A, is replaced with NMOS CS stage                                                           | $\frac{U}{L} = \frac{50}{0.5} = 100$              | 2 23    |
|     | 1A, (= gm3 (r03 // roI)                                                                     | λ <sub>n</sub> = 0.1                              | 7       |
|     | $g_{m_3} = \sqrt{2\mu_n lox(\frac{\omega}{L})^T} D \Big _{I_D} = I_1 = 0.1 \text{ mA}$      | λ <sub>p</sub> = 0.2                              |         |
|     |                                                                                             |                                                   |         |
|     | 9m3 = 1.34E-4 (200)(0.1mA) 2                                                                |                                                   |         |
|     | gm3 = 0.00164 = 0.00232                                                                     |                                                   |         |
|     | 9m, = 9m2 = \( \frac{2\mu_n \cox \left(\frac{w}{L}\right) I_D}{I_D = I_2 = 0} \)            | .5 mA                                             |         |
|     | $= \sqrt{(.34E-4 (200)(0.5 \text{ mA}) 2}$ $g_{m_1} = g_{m_2} = 6.00366  0.00518$           |                                                   |         |
| 1   |                                                                                             | •                                                 |         |
|     | $\Gamma_{01} = \Gamma_{02} = \frac{1}{\lambda_n I_0} = \frac{1}{0.1(0.5 \text{mA})} = 20,0$ |                                                   |         |
|     | $r_{03} = \frac{l}{\lambda_n I_0} = \frac{l}{0.1 (0.1 \text{ mA})} = 100,000$               |                                                   |         |
|     | $r_{OI_1} = \frac{1}{\lambda_{p} I_{D}} = \frac{1}{0.2 (0.1 \text{ mA})} = 50,000$          | 0.00232<br>= ( <del>0.0016</del> 4)(100 k // 50 k | .)      |
|     | Av= (0.00366)2(20,000)2(54.57+1) A1=<br>(0.00518)2 77.17                                    | <del>54.57</del> 77.17                            |         |
|     | $A_V = 297,847 \approx 300k $ % — — n                                                       | at correct                                        |         |
|     | A Vout is an parallel with Iz                                                               | [not perfect current                              | source) |
|     | Av = gm, [ roIz // gmz rol roz (A, +1)]                                                     | this is massive magnitude E7                      |         |
|     | $r_{\text{OI}_2} = \frac{1}{\lambda_p I_0} = \frac{1}{0.2 (0.5 \text{ mA})} = 10,000$       | )                                                 |         |
|     | ANA roIz // gmzro, roz (A,+1) ~ roI                                                         | 72                                                |         |
|     | Av = gm, roiz                                                                               |                                                   |         |
|     | 0.00518<br>Av= (0.00366)(10,000)                                                            |                                                   |         |
|     | Av = 36.6 //                                                                                |                                                   |         |

9.18. In this problem, we design a two-stage op amp based on the topology shown in Fig. 9.90. Assume a power budget of 6 mW, a required output swing of 2.5 V, and L<sub>eff</sub> = 0.5 μm for all devices.



Figure 9.90

- (a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to M<sub>5</sub> and M<sub>6</sub>, determine (W/L)<sub>5</sub> and (W/L)<sub>6</sub>. Note that the gate-source capacitance of M<sub>5</sub> is in the signal path, whereas that of M<sub>6</sub> is not. Thus, M<sub>6</sub> can be quite a lot larger than M<sub>5</sub>.
- (b) Calculate the small-signal gain of the output stage.
- (c) With the remaining 1 mA flowing through  $M_7$ , determine the aspect ratio of  $M_3$  (and  $M_4$ ) such that  $V_{GS3} = V_{GS5}$ . This is to guarantee that if  $V_{in} = 0$  and hence  $V_X = V_Y$ , then  $M_5$  carries the expected current
- (d) Calculate the aspect ratios of M<sub>1</sub> and M<sub>2</sub> such that the overall voltage gain of the op amp is equal to 500.



Stage 1: CS (pmos) Stage 2: CS (nmos)



Compare to Differential Two-Stage Op Amp

|                    | 9,18                                                                                                                                                           | Known                      |              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|
| a.)                | Find $\left(\frac{W}{L}\right)_5$ and $\left(\frac{W}{L}\right)_6$                                                                                             | Left = 0.5<br>Vout, swings |              |
|                    | VDS5 + VDS6 < VDD - Vout, swing                                                                                                                                | VD0 = 3V                   |              |
|                    | Vos 5 + Vos 6 < 3 - 2.5                                                                                                                                        |                            |              |
| V <sub>DS5</sub> ] | $V_{DS_5} + V_{DS_6} < 0.5 \text{ V}$ and $V_{DS_5} \approx 0.25 \text{ V} \approx \sqrt{\frac{2I_D}{\mu_N \cos(\frac{\omega}{L})}} \mid_{I_D} \approx I_{MA}$ | Vos <sub>6</sub> so ead    | n get 0.25 V |
|                    | 0.252 = 2IO<br>$\mu_n Cox(\frac{w}{L})$   L = Lepp = 0.5E-6                                                                                                    |                            |              |
|                    | $\frac{W}{L} = \frac{2I_D}{\mu_n c_{ox} (0.25)^2}$                                                                                                             |                            |              |
|                    | $W = \frac{2 I_0 \cdot L}{\mu_n C_{0x} (0.25)^2} = \frac{2 (lmA) (0.5 E-6)}{(.34 E-4) (0.25)^2}$                                                               | )                          |              |
|                    | W5 = 119 E-6 m                                                                                                                                                 |                            |              |
|                    | $W_6 = \frac{2 I_0 \cdot L}{\mu_p Cox (0.25)^2} = \frac{2(1 \text{mA})(0.5 \text{ E} - 6)}{3.83 \text{ E} - 5 (0.25)^2}$                                       |                            |              |
|                    | W6 = 418 E-6 M                                                                                                                                                 |                            |              |

$$Av_{2} = g_{M_{5}} \left( r_{05} // r_{0C} \right) \qquad \left( \frac{w}{L} \right)_{5}^{2} = \frac{119}{0.5} = 238.8$$

$$Av_{2} = g_{M_{5}} \left( r_{05} // r_{0C} \right) \qquad \left( \frac{w}{L} \right)_{5}^{2} = \frac{119}{0.5} = 238.8$$

$$Av_{2} = 0.008$$

$$r_{05} = \frac{1}{\lambda_{1}} \frac{1}{L_{0}} = \frac{1}{0.1 (1 m_{1})} = 10,000$$

$$r_{06} = \frac{1}{\lambda_{2}} \frac{1}{L_{0}} = \frac{1}{0.2 (1 m_{1})} = 5,000$$

$$r_{05} // r_{06} = 3.33 k$$

$$Av_{2} = (0.008)(5.33 k)$$

$$Av_{2} = (0.008)(5.33 k)$$

$$Av_{2} = 26.666 \quad V/V$$

$$C_{1} \qquad I_{D_{1}} = \frac{I_{D_{7}}}{2} = \frac{1 m_{1}}{2} = 0.5 m_{1}$$

$$Find \left( \frac{w}{L} \right)_{1} = \left( \frac{w}{L} \right)_{3}$$

$$V_{G}S_{3} = V_{G}S_{5}$$

$$\sqrt{\frac{2T_{0}}{\mu_{1}C_{0x}} \left( \frac{w}{L} \right)_{3}} + V_{1} / r_{1} = \sqrt{\frac{2T_{0}}{\mu_{1}C_{0x}} \left( \frac{w}{L} \right)_{5}} + V_{2} / r_{1} r_{1} = 1 / r_{2} + V_{3} / r_{1} r_{2} = 1 / r_{3} + V_{4} / r_{1} r_{3} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{2} + V_{4} / r_{1} r_{2} = 1 / r_{1} r_{2} =$$

Known:  $LQF = A_{V_1} \cdot A_{V_2} = 500$   $A_{V} = q_{M_2}(r_{O_2} / r_{O_4}) \cdot 26.6 \cdot 500$   $q_{M_2}(r_{O_2} / r_{O_4}) = \frac{500}{26.6 \cdot 6} = 18.75$   $q_{M_2} = \sqrt{2\mu_{P} \cos(\frac{W}{L_2} T_{D})} / T_{D} = 0.5 \text{ mA}$   $q_{M_2} = \sqrt{2(3.83 \cdot 5)(0.5 \cdot mA) / \frac{W}{L_2}}$   $q_{M_2} = \sqrt{3.83 \cdot 8 \cdot 8 \cdot \frac{W}{L_2}}$   $r_{O_2} = \frac{1}{\lambda_{P} T_{D}} = \frac{1}{(0.2)(0.5 \cdot mA)} = 10,000$   $r_{O_4} = \frac{1}{\lambda_{n} T_{D}} = \frac{1}{0.1(0.5 \cdot mA)} = 20,000$   $r_{O_2} / r_{O_4} = 6.67 \text{ k}$   $A_{V_1} = (\sqrt{3.83 \cdot 8 \cdot 8 \cdot \frac{W}{L_2}}) / (6.67 \text{ k}) = 18.75 \text{ V/V}$   $3.83 \cdot 8 \cdot 8 \cdot \frac{W}{L_2} = (\frac{18.75}{6.67 \text{ k}})^2$   $(\frac{W}{L})_2 = \frac{(18.75/6.67 \text{ k})^2}{3.83 \cdot 8 \cdot 8}$   $(\frac{W}{L})_1 = (\frac{W}{L_2})_2 = 206.56 \quad \longrightarrow \quad W = 206.56 \text{ Left} = 103 \cdot 6 \cdot 6 \text{ m}$