9 On bijections

9.1 Basic exercises

- 1. (a) Define a function that has (i) none, (ii) exactly one, and (iii) more than one retraction.
 - (i)
 - (ii)
 - (iii)
 - (b) Define a function that has (i) none, (ii) exactly one, and (iii) more than one section.
 - (i)
 - (ii)
 - (iii)
- 2. Let n be an integer
 - (a) How many sections are there for the absolute-value map $x \mapsto |x| : [-n \dots n] \to [0 \dots n]$?
 - (b) How many retractions are there for the exponential map $x\mapsto 2^x:[0\dots n]\to [0\dots 2^n]$?
- 3. Give an example of two sets A and B and a function $f: A \to B$ such that f has a retraction but no section. Explain how you know that f has these properties.
- 4. Prove that the identity function is a bijection and that the composition of bijections is a bijection.
- 5. For $F:A\to B$, prove that if there are $g,h:B\to A$ such that $g\circ f=\operatorname{id}_A$ and $f\circ h=\operatorname{id}_B$ then g=h. Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

9.2 Core exercises

- 1. We say that two functions $s:A\to B$ and $r:B\to A$ are a section-retraction pair whenever $r\circ s=\mathrm{id}_A$; and that a function $e:B\to B$ is an idempotent whenever $e\circ e=e$. This question demonstrates that section-retraction pairs and idempotents are closely connected: any section-retraction pair gives rise to an idempotent function, and any idempotent function can be split into a section-retraction pair.
 - (a) Let $f: C \to D$ and $g: D \to C$ be functions such that $f \circ g \circ f = f$.
 - (i) Can you conclude that $f\circ g$ is idempotent? What about $g\circ f$? Justify your answers.
 - (ii) Define a map g' using f and g that satisfies both

$$f \circ g' \circ f = f \text{ and } g' \circ f' \circ g' = g'$$
 (1)

- (iii) Show that if $s:A\to B$ and $r:B\to A$ are a section-retraction pair then the composite $s\circ r:B\to B$ is idempotent.
- (iv) Show that for every idempotent $e: B \to B$ there exists a set A (called a retract of B) and a section-retraction pair $s: A \to B$ and $r: B \to A$ such that $s \circ r = e$.

10 On equivalence relations

10.1 Basic exercises

- 1. Prove that the isomorphic relation \cong between sets is an equivalence relation.
- 2. Prove that the identity relation id_A on a set A is an equivalence relation, and that $A/\mathrm{id}_A\cong A$.
- 3. Show that, for a positive integer m, the relation $\equiv_m on\mathbb{Z}$ given by

$$x \equiv_m y \iff x \equiv y \pmod{m} \tag{2}$$

is an equivalence relation. What are the equivalence classes of this relation?

4. Show that the relation \equiv on $\mathbb{Z} \times \mathbb{Z}^+$ given by

$$(a,b) \equiv (x,y) \Longleftrightarrow a \cdot y = x \cdot b \tag{3}$$

is an equivalence relation. What are the equivalence classes of this relation?

10.2 Core exercises

- 1. Let E_1 and E_2 be two equivalence relations on a set A. Either prove or disprove the following statements
 - (a) $E_1 \cup E_2$ is an equivalence relation on A.
 - (b) $E_1 \cap E_2$ is an equivalence relation on A.
- 2. For an equivalence relation E on a set A, show that $[a_1]_E = [a_2]_E$ iff a_1Ea_2 , where

$$[a]_E = \{ x \in A | xEa \}. \tag{4}$$

3. For a function $f: A \to B$ define a relation \equiv_f on A by the rule: for all $a, a' \in A$,

$$a \equiv_f a' \iff f(a) = f(a') \tag{5}$$

- 4. Show that for every function $f:A\to B$, the relation \equiv_f is an equivalence relation on A.
- 5. Prove that every equivalence relation E in a set A is equal to \equiv_q , where $q:A \twoheadrightarrow A/E$ is the quotient function $q(a)=[a]_E$.
- 6. Prove that for every surjection $f: A \rightarrow B$,

$$B \cong (A/\equiv_f) \tag{6}$$