AIDAY RISING TO 2020 THE CHALLENGES

Predictive Coding for Locally Linear Control

Rui Shu*, Tung Nguyen*, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad Ghavamzadeh, Stefano Ermon, Hung Bui

SPEAKER:

Tung Nguyen – VinAl Resident

Motivation

Decision making from high-dimensional observations

Example: Robot arm manipulation from visual inputs

Problem Formulation

Control a high-dimensional Markov Decision Process

$$x_{t+1} = f_{\mathcal{X}}(x_t, u_t) + w$$

High-Dimensional Control is Challenging

General approach

Learning Controllable Embedding (LCE): A two-step framework

Existing LCE Models Use Explicit Prediction

Introduce an additional decoder D and learns to predict the next observation

Latent Variable Model

True environment dynamics

Contributions

Propose a decoder-free LCEbased model

Provide theoretical analysis for the learned embedding

Conduct extensive experiments

Learning an Embedding That is Good for Prediction

Learning an Embedding That is Good for Prediction

Predictive suboptimality of a representation:

The *best possible* prediction loss achievable by such this model family for a fixed choice of representation

Learning an Embedding That is Good for Prediction

Predictive suboptimality can be minimized in a decoder-free and information-theoretic manner

Learning an Embedding via Predictive Coding

Predictive coding maximizes a lower bound of $I(z_{t+1}; z_t, u_t)$

$$\ell_{ ext{cpc}} = \mathbb{E} rac{1}{K} \sum_{i} \ln rac{F\left(E\left(x_{t+1}^{(i)}
ight) | E\left(x_{t}^{(i)}
ight), u_{t}^{(i)}
ight)}{rac{1}{K} \sum_{j} F\left(E\left(x_{t+1}^{(i)}
ight) | E\left(x_{t}^{(j)}
ight), u_{t}^{(j)}
ight)}$$

For a fixed choice of E, if F is the true latent dynamics, the CPC objective is maximized

Estimating the Latent Dynamics via Consistency

Choosing $\,F$ to be the true latent dynamics maximizes the CPC objective

Choosing an F that maximizes the CPC objective does not imply F is the true latent dynamics model

Explicitly encourage F to estimate the true latent dynamics via a consistency objective

Enforcing Smooth Latent Dynamics via Curvature

$$egin{aligned} \ell_{ ext{curv}} &=& \mathbb{E}_{\eta \sim \mathcal{N}(0,\delta I)} \left[\| f_{\mathcal{Z}}(ar{z},ar{u}) - (
abla_z f_{\mathcal{Z}}(ar{z},ar{u}) \eta_z
ight. \ &+ & \left.
abla_u f_{\mathcal{Z}}(ar{z},ar{u}) \eta_u
ight) - f_{\mathcal{Z}}(z,u) \|_2^2
ight] \end{aligned}$$

Predictive Coding, Consistency, Curvature (PC3)

$$\ell_{ ext{cpc}} = \mathbb{E}rac{1}{K}\sum_{i} \lnrac{Fig(Eig(x_{t+1}^{(i)}ig)|Eig(x_{t}^{(i)}ig),u_{t}^{(i)}ig)}{rac{1}{K}\sum_{j} Fig(Eig(x_{t+1}^{(i)}ig)|Eig(x_{t}^{(j)}ig),u_{t}^{(j)}ig)}$$

$$\ell_{ ext{cons}} = \ln F(E(x_{t+1})|E(x_t), u_t)$$

$$egin{aligned} \ell_{ ext{curv}} &=& \mathbb{E}_{\eta \sim \mathcal{N}(0,\delta I)} \left[\| f_{\mathcal{Z}}(ar{z},ar{u}) - (
abla_z f_{\mathcal{Z}}(ar{z},ar{u}) \eta_z
ight. \ &+
abla_u f_{\mathcal{Z}}(ar{z},ar{u}) \eta_u) - f_{\mathcal{Z}}(z,u) \|_2^2
ight] \end{aligned}$$

$$\lambda_1 \ell_{
m cpc} + \lambda_2 \ell_{
m cons} + \lambda_3 \ell_{
m cur}$$

Maximize CPC

Maximize Consistency

Minimize curvature

Learn good embedding $\,E\,$

Learn good dynamics $\,F\,$

 $F\,$ is suitable for LLC

PCC vs PC3

Baseline

	<u>PC3</u>	PCC
Predictive Coding	*	×
Prediction	×	✓
Consistency	✓	✓
Curvature	✓	✓
iLQR Controller	~	~

PC3 is contrastive analog of PCC

PCC vs PC3

Control performance

Train 10 models, run 10 subtasks for each model (total 100 trials/method)

Task	PC3 (all)	PCC (all)	PC3 (top 1)	PCC (top 1)
Planar	74.35 ± 0.76	56.6 ± 3.15	75.5 ± 0.32	75.5 ± 0.32
Balance	99.12 ± 0.66	91.9 ± 1.72	100 ± 0	100 ± 0
Swing Up	58.4 ± 3.53	26.41 ± 2.64	84 ± 0	66.9 ± 3.8
Cartpole	96.26 ± 0.95	94.44 ± 1.34	97.8 ± 1.4	97.8 ± 1.4
3-link	42.4 ± 3.23	14.17 ± 2.2	78 ± 1.04	45.8 ± 6.4

PCC vs PC3

Ablation Analysis

Setting	$\ell_{ m cpc}$	$\ell_{ m cons}$	$\ell_{ m cur}$	Control
PC3	4.58	2.13	0.03	58.4 ± 3.53
w/o $\ell_{ m cons}$	5.03	-4.87	0.0025	7.46 ± 1.32
w/o $\ell_{ m cur}$	4.8	2.34	0.56	21.69 ± 2.73

Ablation Analysis

Setting	$\ell_{ m cpc}$	$\ell_{ m cons}$	$\ell_{ m cur}$	Control
PC3	4.58	2.13	0.03	58.4 ± 3.53
w/o $\ell_{ m cons}$	5.03	-4.87	0.0025	7.46 ± 1.32
w/o $\ell_{ m cur}$	4.8	2.34	0.56	21.69 ± 2.73

Conclusion

- ☐ Predictive Coding-Consistency-Curvature (PC3) outperforms existing LCE-based models
- ☐ Promising information-theoretic extension of the LCE framework
- ☐ Future work
 - ☐ Scale to more complicated domains
 - ☐ Predictive coding in conjunction with other control algorithms

Thank you for listening!

