Statistical modelling of development of executive function in early childhood

Ivonne Solis-Trapala, Peter Diggle, Charlie Lewis

Lancaster University, UK

Introduction

We investigate the development of executive control in young children:

- A group of 87 children were presented with a battery of executive function (Fig. 1) and false-belief tests at three time periods.
- We aim to examine the effects of task modifications (there are at least two different versions of each task) and explore interrelations between executive functions.

Figure 1: Materials for a) the day/night and abstract pattern tasks [these tests are designed to measure inhibitory control]; b) the boxes task [aimed to measure working memory]

Approach

- · We assume the existence of an unobservable underlying cognitive ability, within each domain, for each child. We represent such unobservable ability by a latent variable.
- Conditional on the latent variable we use dynamic path analysis (Foren et al., 2004) to model, jointly, the series of dependent outcomes within each domain.
- We extend the model to include the effect of time between test sessions.

Inhibitory control

First we restrict our attention to the executive function inhibitory control. Two individual paths of 16 binary outcome data (from day/night and abstract pattern tasks) at each time period were observed.

Model

We developed a dynamic logistic regression model with random intercepts. Fig. 2 shows the graphical representation of the fitted model.

Statistical inference

- Statistical inference for the regression parameters based on a conditional likelihood approach is suitable because it does not make distributional assumptions about the subject-specific effects; however
- · regression coefficients of covariates that do not change within cluster are nonidentifiable.
- . Therefore we adopted a random effects model, but compared results with the conditional approach.

Results -inhibitory control data

Parameters	Model 1		Model 2	
	Estimate	SE	Estimate	SE
Age β	0.12	0.016		
Age bet β_B			0.11	0.016
Age wit $\beta_{\mathbf{W}}$			0.18	0.037
Test δ_1	-1.083	0.098	-1.082	0.098
Group δ_2	0.35	0.19	0.38	0.19
Pr ob η_1	2.05	0.075	2.05	0.075
Trial in η_2	-0.043	0.008	-0.043	0.008
T(2 vs. 1) γ ₂	0.34	0.12	-0.031	0.23
T(3 vs. 1) γ ₃	0.52	0.21	-0.23	0.44
Tst \times gp δ_{12}	0.21	0.14	0.21	0.14

Figure 2: Dynamic logistic regression model with random intercepts

Working memory

We now consider the executive function working memory. Sequences of failures and successes until children retrieved 6 sweets were recorded at three time periods.

Model

Let $Z_{ik} = (z_{iik}, \dots, z_{n,ik})$ be fail/succ to retrieve a sweet in n_i trials at time period k. Let $S_{ijk} = 5 - \sum_{l=1}^{i} z_{ljk}$ be the no. of sweets that remain to be retrieved at trial i^{th} and time period k. We model $P_{ijk} = Pr(z_{ijk} = 1 | s_{ijk} = s)$, for s = 1, ..., 5 as

$$logit(P_{ijk}) = \alpha_s + \mathbf{X}'_{ijk} \boldsymbol{\beta}_k + \gamma_k + U_j$$

Statistical inference

The parameters of primary interest are the regression parameters and the subject-specific effects are regarded as nuisance parameters. The likelihood function is:

$$L(\boldsymbol{\alpha}_{s},\boldsymbol{\beta};\boldsymbol{Z}_{jk}) = \prod_{jk} \int \prod_{s>1} \left\{ \left[\prod_{failures} (1 - P_{ijk}) \right] P_{ijk} \right\} f(U_i;\boldsymbol{\theta}) dU_j,$$

where $f(U_i; \theta)$ is the density function of the latent variable U_i

Results -working memory data

Parameters	Estimate	SE		
Age β	0.057	0.018		
Test (Scr vs. Sta) δ_1	-0.013	0.19		
Group (2 vs. 1) δ_2	0.56	0.25		
Time (2 vs. 1) γ_2	0.33	0.25		
Time (3 vs. 1) γ_3	0.27	0.33		
Test*group δ_{12}	-0.93	0.22		
Time (2 vs. 1)*Test $\gamma_2 \delta_1$	-0.75	0.28		
Time (3 vs. 1)*Test $\gamma_3 \delta_1$	-1.018	0.30		
Table 2: MLE of regression parameters				

Figure 3: Plots of overall logodds

Relationships between executive functions

Figure 4:Inhibitory control and atten- Figure 5: Planning is the superortional flexibility are closely related skills that form the basis of plan- hibitory control, attentional flexibility ning and are underpinned by working and working memory. memory.

dinate executive skill requiring in-

Acknowledgements: UK Economic and Social Research Council (RES-576-