SUBSAMPLING STRATEGIES FOR SPEEDING UP MCMC

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

OUTLINE OF THE TALK

- ▶ Bayesian inference
- ► MCMC
- Distributed MCMC
- MCMC with unbiased likelihood estimators
- MCMC with data subsampling

CREDITS AND DISCLAIMER

Disclaimer: I will only cover a small (biased) subset of methods. This area is under active development.

My own activity in this area is joint work with my PhD student Matias Quiroz and Robert Kohn.

WHY SHOULD YOU CARE?

- ▶ Big data. Data sets are getting bigger and bigger.
- ▶ Bayesian inference is the way to go.
- ▶ Bayesian inference is usually implemented using MCMC.
- ▶ MCMC can be very slow on large data sets.
- ► The likelihood can be costly to evaluate (also on small data).
- ▶ Approximate solutions (VB, ABC, INLA, EP, BO,...) generally come without bounds on the error.

GREAT THEOREMS MAKE GREAT TATTOOS

BAYESIAN INFERENCE - ADVANTAGES

- ▶ Probabilistic. Nothing is ad hoc or black magic. It's a theory.
- ► Result in terms of complete probability distributions, e.g. **predictive distribution**.
- Marginalization of nuisance parameters. Predictive distributions include parameter uncertainty.
- Natural way to handle model uncertainty and selection. Model averaging.
- ▶ Natural connection to decision making. Maximize posterior expected utility.
- ► Prior information helps. Flexible ML models are impossible without smoothness priors.

MCMC - THE BASIC IDEA

- ▶ Explore complicated joint posterior distributions $p(\theta|\mathbf{y})$ by simulation.
- ▶ Set up Markov chain for θ with $p(\theta|\mathbf{y})$ as stationary distribution.
- ▶ Initialize $\theta^{(0)}$. Simulate Markov chain $\theta^{(i)}|\theta^{(i-1)}$ for i=1,2,...,N.
- ► The Markov chain eventually forgets its initial value $\theta^{(0)}$ and starts to produce draw from its stationary (invariant) distribution $p(\theta|\mathbf{y})$.
- ► Draw are autocorrelated ...
- ▶ ...but sample averages $(N^{-1}\sum_{i=1}^{N}\theta^{(i)})$ still converge to posterior expectations $(E(\theta|\mathbf{y}))$.
- ► High autocorrelation means fewer effective draws

$$Var(ar{ heta}) = rac{\sigma^2}{N} \left(1 + 2 \sum_{k=1}^{\infty}
ho_k
ight)$$

MCMC - THE BASIC IDEA

- ► Example: Discrete $\theta \in \{0, 1, 2\}$. $p(\theta|\mathbf{y}) = (0.545, 0.272, 0.181)$.
- ► Markov transition matrix

$$P = \left(\begin{array}{ccc} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{array}\right)$$

Markov chains with continuous state space when θ is continuous. Transition kernel: $Pr\left(\theta^{(i-1)} \to \text{Region in } \theta\text{-space}\right)$.

THE METROPOLIS-HASTINGS ALGORITHM

- ▶ Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample $heta_p \sim q\left(\cdot | heta^{(i-1)}
 ight)$ (the proposal distribution)
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_p\right)}{q\left(\theta_p|\theta^{(i-1)}\right)}\right)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

RANDOM WALK METROPOLIS ALGORITHM

- ▶ Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample $heta_p \sim extstyle N\left(heta^{(i-1)}, c \cdot \Sigma
 ight)$ (the proposal distribution)
 - 2. Compute the acceptance probability

$$\alpha = \min\left(1, \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})}\right)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

DISTRIBUTED MCMC

- ▶ Big data = when data don't fit on a single machine. Multi-machine.
- ▶ **Distributed computing**. Move computation to the data. Map-Reduce style. Minimal communication.
- Assuming data on separate machines are **independent** given θ :

$$\rho(\theta|\mathbf{y}) = \prod_{m=1}^{M} \rho(\mathbf{y}_m|\theta) \rho(\theta)^{1/M}$$

- ► Consensus Monte Carlo on *M* machines [1]:
 - ▶ Partition the data y into $y_1, ..., y_M$.
 - ▶ Run *M* separate Monte Carlo algorithms to sample $\theta_m^{(i)}, ..., \theta_m^{(N)}$ from

$$p_m(\theta|\mathbf{y}_m) \propto p(\mathbf{y}_m|\theta)p(\theta)^{1/M}$$
, for $m = 1, ..., M$.

► Combine draws across machines using weighted averages:

$$heta^{(i)} = \left(\sum_{m} W_{m}\right)^{-1} \left(\sum_{m} W_{m} \theta_{m}^{(i)}\right)$$

DISTRIBUTED MCMC, CONT.

- Problems with consensus methods:
 - ▶ Only guaranteed to be correct if all $p(\theta|\mathbf{y}_m)$ are Gaussian.
 - Only for continuous θ .
 - ► Improper priors are problematic.
 - ightharpoonup Cannot be applied when θ can change in dimension, e.g. Dirichlet process mixtures.
 - Risk of collapsing multimodal posteriors.

Recent extensions:

- ightharpoonup Combining kernel density estimates rather than draws. [2] Hard when heta is not low-dimensional.
- Passing low-dim sufficient statistics between machines at runtime.
- Weierstrass transforms [3]
- Median of subset posteriors [4]

MCMC WITH AN UNBIASED LIKELIHOOD ESTIMATOR

- ▶ The full likelihood $p(y|\theta)$ is intractable or very costly to evaluate.
- ▶ Unbiased estimator $\hat{p}(y|\theta, u)$ of the likelihood is available

$$\int \hat{p}(\mathbf{y}|\theta,u)p(u)du = p(\mathbf{y}|\theta)$$

- $u \sim p(u)$ are auxilliary variables used to compute $\hat{p}(\mathbf{y}|\theta, u)$.
- ▶ Importance sampling/particle filters for latent variable (x) models

$$p(\mathbf{y}|\theta) = \int p(\mathbf{y}, \mathbf{x}|\theta) d\mathbf{x} = \int \frac{p(\mathbf{y}, \mathbf{x}|\theta)}{q_{\theta}(\mathbf{x})} q_{\theta}(\mathbf{x}) d\mathbf{x}$$

$$\hat{p}(\mathbf{y}|\theta, u) = \frac{1}{m} \sum_{k=1}^{m} \frac{p(\mathbf{y}, \mathbf{x}^{(k)}|\theta)}{q_{\theta}(\mathbf{x}^{(k)})} \text{ where } \mathbf{x}^{(i)} \stackrel{\textit{iid}}{\sim} q_{\theta}(\cdot)$$

- ► **Subsampling**: *u* are indicators for selected observations.
- \triangleright Let m be the number of u's (particles/subsample size).

MCMC WITH A UNBIASED LIKELIHOOD ESTIMATOR

- ▶ But is it OK to use a noisy estimate $\hat{p}(y|\theta, u)$ of the likelihood?
- ► The joint density

$$\tilde{p}(\theta, u|\mathbf{y}) = \frac{\hat{p}(\mathbf{y}|\theta, u)p(\theta)p(u)}{p(\mathbf{y})}$$

has the correct marginal density $p(\theta|y)$ if $\hat{p}(y|\theta, u)$ is **unbiased**

$$p(y|\theta) = \int \hat{p}(\mathbf{y}|\theta, u)p(u)du$$

► This is easily seen from

$$\int \tilde{p}(\theta, u|\mathbf{y}) du = \frac{p(\theta)}{p(\mathbf{y})} \int \hat{p}(\mathbf{y}|\theta, u) p(u) du = \frac{p(\theta)p(\mathbf{y}|\theta)}{p(\mathbf{y})} = p(\theta|\mathbf{y})$$

THE PSEUDO-MARGINAL MH ALGORITHM

- ▶ Initialize $\left(\theta^{(0)},u^{(0)}\right)$ and iterate for i=1,2,...
 - 1. Sample $heta_p \sim q\left(\cdot| heta^{(i-1)}
 ight)$ and $u_p \sim p_{ heta}(u)$ to obtain $\hat{p}(y| heta_p,u)$
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{\hat{\rho}\left(\mathbf{y} \middle| \theta_{p}, u_{p}\right) \rho(\theta_{p})}{\hat{\rho}\left(\mathbf{y} \middle| \theta^{(i-1)}, u^{(i-1)}\right) \rho(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)} \middle| \theta_{p}\right)}{q\left(\theta_{p} \middle| \theta^{(i-1)}\right)} \right)$$

- 3. With probability α set $\left(\theta^{(i)}, u^{(i)}\right) = \left(\theta_p, u_p\right)$ and $\left(\theta^{(i)}, u^{(i)}\right) = \left(\theta^{(i-1)}, u^{(i-1)}\right)$ otherwise.
- ▶ This MH has $\tilde{p}(\theta, u|\mathbf{y})$ as stationary distribution with marginal $p(\theta|\mathbf{y})$.
- ► This result holds irrespective of the variance of $\hat{p}(y|\theta, u)$.
- ▶ It's OK to replace the likelihood with an unbiased estimate! [5]

THE NUMBER OF PARTICLES IN A STATE-SPACE MODEL

OPTIMAL *m* - KEEP THE VARIANCE AROUND 1

- ▶ Large $m \Rightarrow$ costly $\hat{p}(y|\theta, u)$, but efficient MCMC.
- ▶ Small $m \Rightarrow$ inexpensive $\hat{p}(y|\theta, u)$, but inefficient MCMC.
- Define the estimation error

$$z = \ln \hat{p}(y|\theta, u) - \ln p(y|\theta, u)$$

- ► Assumptions:
 - \triangleright z is independent of θ
 - z is Gaussian
- ► Optimal *m*:
 - ▶ For good proposals for θ , use $\sigma_z \approx 1$.
 - ▶ For bad proposals for θ , use $\sigma_z \approx 1.7$.
 - ► Targeting $\sigma_z \approx 1.7$ when $\sigma_z \approx 1$ is optimal is much worse than targeting $\sigma_z \approx 1$ when $\sigma_z \approx 1.7$ is optimal.
 - A good compromise: $\sigma_z \approx 1.2$. [6] [7]

OPTIMAL *m* - KEEP THE VARIANCE AROUND 1

ightharpoonup Computing time as a function of σ_z

- ightharpoonup Squares IF = 1
- ightharpoonup Crosses IF = 4
- ► Circles *IF* = 20
- ► Triangles *IF* = 80
- ► Solid Perfect proposal

ESTIMATING THE LIKELIHOOD BY SUBSAMPLING

► Log-likelihood for independent observations:

$$\ell(\theta) = \ln p(y_1, ..., y_n | \theta) = \sum_{i=1}^n \ln p(y_i | \theta)$$

► Log-likelihood contribution of *i*th observation:

$$\ell_i(\theta) = \ln p(y_i|\theta)$$

- Applicable as long as we have independent pieces of data:
 - Longitudinal data. Subjects are independent, the observations for a given subject are not.
 - ▶ **Time series** with kth order Markov structure: $y_t | y_{t-1}, ..., y_{t-k}$.
 - ► **Textual data**. Documents are independent. Words within documents are not.
- ► Estimating the log-likelihood (a sum) is like estimating a population total. Survey sampling.

SIMPLE RANDOM SAMPLING DOES NOT WORK

▶ **Simple random sampling (SRS)** with replacement. At the *j*th draw:

$$Pr(u_j = k) = \frac{1}{n}, \ k = 1, ..., n \text{ and } j = 1, ..., m$$

- ▶ Let $u = (u_1, ..., u_m)$ record the sampled observations.
- Unbiased estimator of the log-likelihood

$$\hat{\ell}_{SRS}(\theta) = \frac{n}{m} \sum_{i=1}^{m} \ell_{u_i}(\theta)$$

- $\hat{\ell}_{SRS}(\theta)$ is **extremely variable**, even when the sampling fraction m/n is large.
- ▶ PMCMC gets stuck as soon as $\hat{\ell}_{SRS}(\theta)$ is sampled in the extreme right tail.
- ► Sampling without replacement does not help.

PPS SAMPLING

- ► The problem with SRS is that all elements have the same inclusion probability, $p_k = \Pr(u_j = k) = \frac{1}{n}$.
- ▶ Some $\ell_k(\theta)$ are much larger than other, and the risk of missing those in the sample inflates the variance of $\hat{\ell}_{SRS}(\theta)$.
- ▶ Probability proportional-to-size (PPS) sampling uses a size proxy $w_k(\theta)$ to sample large elements with larger probabilities

$$p_k \propto w_k(\theta)$$

Hansen-Hurwitz estimator

$$\hat{\ell}_{HH}(\theta) = rac{1}{m} \sum_{j=1}^{m} rac{\ell_{u_j}(\theta)}{p_{u_j}}$$

- $\hat{\ell}_{HH}(\theta)$ is unbiased for the **log-likelihood** $\ell(\theta)$. Easy-to-compute unbiased estimator of $Var(\hat{\ell}_{HH}(\theta))$.
- ▶ m can be easily chosen adaptively at runtime.[8]

Ways to obtain the proxy for $\ln p(y_i|\theta)$

- Surrogate models
 - Problem-specific approximation to the data density.
- Cruder numerical solution of the likelihood
 - Larger tolerance in numerical integration
 - ► Larger steps length when solving PDEs
 - ► Fewer Newton steps in optimization
- Surface fit (thin-plate spline or Gaussian process)
 - ▶ Use small subset of data to fit surface $(y, \mathbf{x}) \rightarrow \ell(\theta; y, \mathbf{x})$
 - ▶ Predict $\ell(\theta; y, \mathbf{x})$ for remaining observations using the fitted surface.
 - ► Tune surface smoothness parameters before MCMC. Predictions by matrix-vector product. Fast.

BIAS-CORRECTION

► Consider subsampling estimators of the log-likelihood of the form

$$\hat{\ell}_{HH}(\theta) = \frac{1}{m} \sum_{j=1}^{m} \frac{\ell_{u_j}(\theta)}{p_{u_j}}$$

where $p_k = \Pr(u = k)$ are the selection probabilities.

▶ Let z denote the **error** in the log-likelihood estimate:

$$\hat{\ell}_{HH}(\theta) = \ell(\theta) + z$$

and $\sigma_z^2 = \operatorname{Var}(z)$.

Assume $z \sim N(0, \sigma_z^2)$ and that σ_z^2 known. Then

$$\exp\left[\hat{\ell}_{HH}(\theta) - \sigma_z^2/2\right]$$

is unbiased for the likelihood.

• What if z is not Gaussian and σ_z^2 is estimated unbiasedly by

$$\hat{\sigma}_{\mathsf{z}}^2 = \frac{1}{\mathsf{m}(\mathsf{m}-1)} \sum_{j=1}^{\mathsf{m}} \left(\frac{\ell_{\mathsf{u}_j}(\theta)}{\mathsf{p}_{\mathsf{u}_j}} - \hat{\ell}_{\mathsf{HH}}(\theta) \right)^2$$

MCMC WITH A BIASED LIKELIHOOD ESTIMATOR

Biased likelihood estimator:

$$\hat{p}_{m}(y|\theta,u) = \exp\left[\hat{\ell}_{HH}(\theta) - \hat{\sigma}_{z}^{2}/2\right]$$

- ▶ Define:
 - ▶ Perturbed likelihood: $p_m(y|\theta) = \int \hat{p}_m(y|\theta, u)p(u)du$
 - ▶ Perturbed marginal data density: $p_m(y) = \int p_m(y|\theta)p(\theta)d\theta$
 - ▶ Perturbed posterior: $p_m(\theta|y) = p_m(y|\theta)p(\theta)/p_m(y)$.
- ► A PMCMC scheme targeting

$$\tilde{\pi}_m(\theta, u|\mathbf{y}) = \frac{\hat{p}_m(\mathbf{y}|\theta, u)p(\theta)p(u)}{p(\mathbf{y})}$$

has $p_m(\theta|y)$ as invariant distribution.

THEOREM

$$\frac{|p_m(\theta|y) - p(\theta|y)|}{p(\theta|y)} \le \frac{C}{\sqrt{m}}$$

APPLICATION: FIRM BANKRUPTCY

- ▶ Discrete-time Weibull survival model.
- ► The **hazard** probability for firm *i* at time period *j*

$$h_t(x_{ij}) = 1 - \exp\left(-\lambda \left(t_{ij}^{\rho} - t_{i(j-1)}^{\rho}\right)\right)$$

where

$$\log(\lambda) = \gamma_i + x_{ij}^T \beta_{\lambda} \text{ and } \log(\rho) = x_{ij}^T \beta_{\rho}, \text{ with } \gamma_i \stackrel{iid}{\sim} N(0, \tau^2)$$

- ► Five explanatory variables (profits, leverage, liquidity, firm age, sales)
- ► The **log-likelihood** for *n* firms

$$\log p(\mathbf{y}_1, ..., \mathbf{y}_n | \beta_{\gamma}, \beta_{\rho}) = \sum_{i=1}^n \log \left(\int p(\mathbf{y}_i | \beta_{\gamma}, \beta_{\rho}, \gamma_i) p(\gamma_i) d\gamma_i \right)$$

where $y_i = (y_{i1}, ... y_{in_i})$.

n = 2000, m = 20.

WEIBULL REGRESSION - PPS SAMPLING APPROACH

WEIBULL REGRESSION - PPS SAMPLING APPROACH

THE DIFFERENCE ESTIMATOR

▶ Let $w_k(\theta)$ be an cheap approximation of $\ell_k(\theta)$. Trivial decomposition:

$$\ell(\theta) = \sum_{k \in F} w_k(\theta) + \sum_{k \in F} [\ell_k(\theta) - w_k(\theta)]$$
$$= \sum_{k \in F} w_k(\theta) + \sum_{k \in F} d_k(\theta)$$

- ► $\sum_{k \in F} w_k(\theta)$ is known.
- ▶ $\sum_{k \in F} d_k(\theta)$ can be estimated by sampling like any population total.
- ▶ If $w_k(\theta)$ is a decent proxy for $\ell_k(\theta)$, the **differences** $d_k(\theta)$ should be roughly equal in size. SRS works!
- ▶ **PPS**: size proxy $w_k(\theta)$ is used to sample large elements.
- ▶ Difference estimator: $w_k(\theta)$ is used to normalize the size of the elements. No fancy sampling scheme needed. [9]

OBTAINING THE PROXY BY DATA CLUSTERING

- ▶ Idea: $\ell(\theta; y, \mathbf{x})$ and $\ell(\theta; y', \mathbf{x}')$ are likely to be similar when (y, \mathbf{x}) and (y', \mathbf{x}') are close.
- ▶ Approximate $\ell(\theta; y, \mathbf{x}) \approx \ell(\theta; y_c, \mathbf{x}_c)$ where (y_c, \mathbf{x}_c) is the nearest cluster centroid.
- ▶ Even better: use **Taylor expansion** around $\ell(\theta; y_c, \mathbf{x}_c)$ as proxy.
- ▶ Difference estimator can be computed using computations only at the *C* centroids. Scalable.
- ► Curse of dimensionality can be dealt with by dimension reduction (clustering in PCA space). [9]

APPLICATION: MULTI-PERIOD LOGISTIC REGRESSION

► Predicting firm bankruptcy using multi-period logistic regression

$$p(y_k|x_k,\beta) = \left(\frac{1}{1 + \exp(x_k^T \beta)}\right)^{y_k} \left(\frac{1}{1 + \exp(-x_k^T \beta)}\right)^{1 - y_k}$$

▶ 0.5 million firms with a total of 4.5 million firm-year observations.

- Yellow = MCMC on full data set.
- ightharpoonup Orange = Difference estimator, updating u every draw.
- ightharpoonup Red = Orange = Difference estimator, updating u every 50th draw.

IDA MACHINE LEARNING SEMINARS

- S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George, and R. E. McCulloch, "Bayes and big data: The consensus monte carlo algorithm," in *EFaBBayes 250 conference*, vol. 16, 2013.
- W. Neiswanger, C. Wang, and E. Xing, "Asymptotically exact, embarrassingly parallel mcmc," arXiv preprint arXiv:1311.4780, 2013.
- X. Wang and D. B. Dunson, "Parallelizing mcmc via weierstrass sampler," arXiv preprint arXiv:1312.4605, 2013.
- S. Minsker, S. Srivastava, L. Lin, and D. B. Dunson, "Robust and scalable bayes via a median of subset posterior measures," *arXiv* preprint arXiv:1403.2660, 2014.
- C. Andrieu and G. O. Roberts, "The pseudo-marginal approach for efficient monte carlo computations," *The Annals of Statistics*, pp. 697–725, 2009.
- M. K. Pitt, R. dos Santos Silva, P. Giordani, and R. Kohn, "On some properties of markov chain monte carlo simulation methods based on

- the particle filter," *Journal of Econometrics*, vol. 171, no. 2, pp. 134–151, 2012.
- A. Doucet, M. Pitt, G. Deligiannidis, and R. Kohn, "Efficient implementation of markov chain monte carlo when using an unbiased likelihood estimator," *forthcoming in Biometrika*, 2012.
- M. Quiroz, M. Villani, and R. Kohn, "Speeding up mcmc by efficient data subsampling," arXiv preprint arXiv:1404.4178, 2014.
- M. Quiroz, M. Villani, and R. Kohn, "Scalable mcmc for large data problems using data subsampling and the difference estimator," *Manuscript*, 2015.