Consequently, $B^{\sigma}(B^{\sigma})^{\top}$ is independent of the orientation of the underlying graph of G and L = D - W is symmetric and positive semidefinite; that is, the eigenvalues of L = D - W are real and nonnegative.

Another way to prove that L is positive semidefinite is to evaluate the quadratic form $x^{\top}Lx$.

Proposition 20.4. For any $m \times m$ symmetric matrix $W = (w_{ij})$, if we let L = D - W where D is the degree matrix associated with W (that is, $d_i = \sum_{j=1}^m w_{ij}$), then we have

$$x^{\top}Lx = \frac{1}{2} \sum_{i,j=1}^{m} w_{ij} (x_i - x_j)^2$$
 for all $x \in \mathbb{R}^m$.

Consequently, $x^{\top}Lx$ does not depend on the diagonal entries in W, and if $w_{ij} \geq 0$ for all $i, j \in \{1, ..., m\}$, then L is positive semidefinite.

Proof. We have

$$x^{T}Lx = x^{T}Dx - x^{T}Wx$$

$$= \sum_{i=1}^{m} d_{i}x_{i}^{2} - \sum_{i,j=1}^{m} w_{ij}x_{i}x_{j}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{m} d_{i}x_{i}^{2} - 2 \sum_{i,j=1}^{m} w_{ij}x_{i}x_{j} + \sum_{i=1}^{m} d_{i}x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{m} w_{ij}(x_{i} - x_{j})^{2}.$$

Obviously, the quantity on the right-hand side does not depend on the diagonal entries in W, and if $w_{ij} \geq 0$ for all i, j, then this quantity is nonnegative.

Proposition 20.4 immediately implies the following facts: For any weighted graph G = (V, W),

- 1. The eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_m$ of L are real and nonnegative, and there is an orthonormal basis of eigenvectors of L.
- 2. The smallest eigenvalue λ_1 of L is equal to 0, and 1 is a corresponding eigenvector.

It turns out that the dimension of the nullspace of L (the eigenspace of 0) is equal to the number of connected components of the underlying graph of G.