	ecture 16: MLE Asymptotics
_	
Back	to estimation:
	For a finite sample we looked at estimates
	For a finite sample we looked at estimatess that are 1) unbiased and 2) low variance.
	Asymptotically we also want estimaters
	(1) asymptotically unliased [consistency]
	2) asymptotic variance to be small
Trea	ven: MLEs are consistant reputarty conditions (works for Exp. fam)
1+0	ic my ME for T(0) then $\hat{O} T(0)$.
ا للم	
pepn.	Asymptotic Normality
We.	say that On is asymptotically normal w/
We	Say that On is asymptotically normal w/ (1) asymptotic Wear T(0) (2) asymptotic variance N(0)

(X) $(\hat{\theta}_N - T(\theta)) \xrightarrow{d} N(0, U(\theta))$ and we write Indahin for above $\hat{\Theta}_{N} \sim AN(\tau(\theta), \tau(\theta)/N)$ Defu. Asymptotic Relative Efficiency (ARE) If TN and WN ove est. for T(0) $T_N \sim AN(T(0), G_T^2(0))$ $W_N \sim AN(T(0), \sigma_N^2(0))$ then we define the ARE of WN wit TN as $ARE(W_N, T_N) = \frac{5^2_T(\theta)}{5^2_M(\theta)}$ idea: of ARE < 1 the we prefer TN ARE> 1 Ex. Kniid Pois(x) and let T(x) = e-x $= |P(\chi_n = 0)|$ $=\frac{\lambda^{0}e^{-\lambda}}{\Omega^{1}}$

Notice: X is the IME for A ad so e is the MLE for e Alt: If $y_n = 1(x_n = 0) \sim Bern(p)$ $(p) = P(y_n = 1)$ So $EY_n = p = e^{-\lambda}$ $= \mathbb{P}(X^{N} = 0)$ so FY = p = e 1 pct. of zeros array &n Q! Which is better asymptotically?. (i) X ~ AN(x, N/N) by CLT What about e^{-x} ? g(x) when $g(x)=e^{-x}$ Osc FO A-method; 9(x)=-e-x $g(\bar{x}) \sim AN(g(x), g'(x))^2 \lambda/N)$ $e^{-\frac{1}{2}} \sim AN(e^{-\lambda}, e^{-2\lambda} \lambda/N)$ 1n = 1(Xn=0) ad y= 12 /n ~ Bern(e-x)

Y~AN(e, e, (1-ex)) asymp. Jar e asymp, var. y 1-e-x(1-e-x)/X X+X2+X3+X4+... $=\frac{\lambda}{\lambda + santhy}$ asymp. var e asymp. var Y i.l. we prefer e-x.

Defu: Asymptotic Efficiency We say ên is asymptotically efficient for T(0) if ÔN~AN(T(0) B(0)) CPLB $|3(0) = \left(\frac{\partial L}{\partial \theta}\right) / I_{N}(\theta)$ Prev. Ex e-X ~ AN(e-x)(e-x) D'is this asmpt eff.? CPLB: f(x) = \xexx e/x! $\rightarrow log f = \chi log \lambda - \lambda - log(XI.)$ >> 2/gf = x/ -1 $\Rightarrow \frac{1^2 \log 1}{2 \chi^2} = -\frac{\chi}{\chi^2}$ $\rightarrow I(\lambda) = -E\left[\frac{\partial^2}{\partial \lambda}...\right] = \frac{1}{\lambda^2}E[X]$ $=\frac{\lambda}{\lambda^2}=\frac{1}{\lambda}$ So $I_N(\lambda) = NI(\lambda) = N/\lambda$

So $T(\lambda) = e^{-\lambda}$ then $\left(\frac{\partial T}{\partial x}\right) = \left(-e^{-\lambda}\right)^2 = \left(e^{-\lambda}\right)^2$ and $D = \frac{\partial L}{\partial x} I_{N}(x) = \frac{(e^{-\lambda})^{\lambda}}{N}$ So my est. e is asymp. eff. for e Theorem: MLEs are asymptotically efficient? OMLE $\sim AN(T(0)) \frac{(\partial T/\partial \theta)^2}{T_N(\theta)}$ under some res. carditions Hypothesis testing Defn: Hypothesis a hypothesis is a statement about a parameter H: 0 e Co v. Ha: 0 e Co nul hypothesis Constraint! (1) (7) (7) (2) (-) = (-) o U (7) a

Ex. Let & be pet. of defeative items in my monwfacterity process.

 $\left(\right) = \left[0, 1 \right]$

might test:

Ha: 0 = 1 V. Ha: 0 > 1

 $(-)_{0} = (0, 1), (-)_{0} = (0, 1)$

Ex. Let & denste the chaze in TOP after taking some medicine.

might test

 $H_a: \theta = 0$ V. $H_a: \theta \neq 0$

)=R, (-) = {0}; (-) = R \ [0]

If Q is a 1-D parameter OFR then
(1) a test of the form
$H_0: 0 \leq c v. \ H_a: 0 > c$
Ho: 0 < C V. Ha: 0 > C
is called a one-sided hypothesis test.
2) A test of the form
Ho: 0 = C V. Ha: 0 + C
(to:0 ¢ c u, Ha:0 = C
is called a two-sided test.
(3) A test of the form
H. 10=0 V. Ha: 0=6
is called a simple hypothesis test

De	fn: Hypothesis Testing Procedure
10	ea: want to determine if $0 \in \bigcirc_0 v. 0 \in \bigcirc_a$
	·
	based on some data I collect,