From the INTERNATIONAL BUREAU

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

Tn٠

TOHEI, Masamichi Idemitsu Kosan Co., Ltd. 24-4, Anesakikaigan Ichihara-shi Chiba 299-0107 **JAPON**

Date of mailing (day/month/year) 23 October 2000 (23.10.00)	
Applicant's or agent's file reference CN00042	IMPORTANT NOTIFICATION
nternational application No. PCT/JP00/04142	International filing date (day/month/year) 23 June 2000 (23.06.00)
ternational publication date (day/month/year)	Priority date (day/month/year)
Not yet published	24 June 1999 (24.06.99)

- The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

<u>Priority date</u>	Priority application No.	Country or regional Office or PCT receiving Office	Date of receipt of priority document
24 June 1999 (24.06.99)	11/178659	JP	11 Augu 2000 (11.08.00)
20 Apri 2000 (20.04.00)	2000/119890	JP	11 Augu 2000 (11.08.00)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

THIS PAGE BLANK (USPTO)

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

TOHEI, Masamichi Idemitsu Kosan Co., Ltd. 24-4, Anesakikaigan Ichihara-shi Chiba 299-0107 JAPON

Date of mailing (day/month/year) 04 January 2001 (04.01.01)			
Applicant's or agent's file reference CN00042		IMPORTANT NOTICE	
International application No. PCT/JP00/04142	International filing date (day/month/year) 23 June 2000 (23.06.00)		Priority date (day/month/year) 24 June 1999 (24.06.99)
Applicant IDEMITSU PETROCHEN	AICAL CO. LTD. et	t al	

Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application
to the following designated Offices on the date indicated above as the date of mailing of this Notice:
KR,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

CN,EP,SG

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

 Enclosed with this Notice is a copy of the international application as published by the International Bureau on 04 January 2001 (04.01.01) under No. WO 01/00693

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent international Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

J. Zahra

Telephone No. (41-22) 338.83.38

THIS PAGE BLANK (USPTO)

International application No.

PCT/JP00/04142

	SSIFICATION OF SUBJECT MATTER COSF 10/06, COSF 4/64		
According	to International Patent Classification (IPC) or to both	national classification and IPC	
	DS SEARCHED	·	
Int	documentation searched (classification system follows . C1 ⁷ C08F 10/00-10/14		
Jit: Koka	ation searched other than minimum documentation to suyo Shinan Koho 1926-1996 ai Jitsuyo Shinan Koho 1971-2000	Jitsuyo Shinan Toroku F Toroku Jitsuyo Shinan F	Koho 1996-2000 Koho 1994-2000
	data base consulted during the international search (na ONLINE	ume of data base and, where practicable, sea	rch terms used)
	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
Х	JP, 11-130807, A (Idemitsu Pet 18 May, 1999 (18.05.99), Claims (Family: none)	crochem Co., Ltd.),	1-11
х	EP, 818458, A1 (IDEMITSU KOSAN 14 January, 1998 (14.01.98), Claims; implementation example & WO, 96/30380, A1		1-11
х	JP, 6-329726, A (Ube Industrie 29 November, 1994 (29.11.94), Claims; implementation example		1,7
х	JP, 8-231640, A (Hoechst Aktie 10 September, 1996 (10.09.96), comparison example 1(C1) & EP, 719802, A2 & DE, 4446		1,7
A	US, 5708101, A (John E. Bercaw 13 January, 1998 (13.01.98), Claims (Family: none)	et al),	1-11
Further	documents are listed in the continuation of Box C.	See patent family annex.	
"A" docume consider	A" document defining the general state of the art which is not considered to be of particular relevance understand the priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		e application but cited to
date	document but published on or after the international filing	"X" document of particular relevance; the ci considered novel or cannot be considered	laimed invention cannot be
	nt which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the cl	aimed invention cannot be
special r	reason (as specified) nt referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	when the document is
means "P" documen	nt published prior to the international filing date but later priority date claimed	combination being obvious to a person document member of the same patent fa	skilled in the art
	ctual completion of the international search eptember, 2000 (04.09.00)	Date of mailing of the international searce 12 September, 2000 (h report 12.09.00)
Name and ma Japar	niling address of the ISA/ nese Patent Office	Authorized officer	
Facsimile No.		Telephone No.	

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/04142

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	EP, 721954, A1 (IDEMITSU KOSAN CO.,LTD.), 17 July, 1996 (17.07.96), Claims & WO, 95/09172, A1 & CA, 2172635, A & US, 5854165, A	1-11
PA	WO, 99/67303, A1 (Idemitsu Petrochem Co., Ltd.), 29 December, 1999 (29.12.99), Claims; implementation example & JP, 11-166084, A & JP, 11-302474, A & JP, 2000-95820, A	1-11

THIS PAGE BLANK (USPTO)

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年1 月4 日 (04.01.2001)

PCT

(10) 国際公開番号 WO 01/00693 A1

(51) 国際特許分類7:

101

WO 01/00693 A1

(21) 国際出願番号:

C08F 10/06, 4/64 PCT/JP00/04142

(22) 国際出願日:

2000年6月23日(23.06.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/178659 1999年6月 特願2000/119890 2000年4月

1999年6月24日(24.06.1999) JP 2000年4月20日(20.04.2000) JP

- (71) 出願人 (米国を除く全ての指定国について): 出光石油 化学株式会社 (IDEMITSU PETROCHEMICAL CO., LTD.) [JP/JP]; 〒130-0015 東京都墨田区横網一丁目6 番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 金丸正美 (KANA-MARU, Masami) [JP/JP]. 南 裕 (MINAMI, Yutaka)

[JP/JP]. 垣上康治 (KAKIGAMI, Koji) [JP/JP]. 船橋英雄 (FUNABASHI, Hideo) [JP/JP]; 〒299-0107 千葉県市原市姉崎海岸1番地1 Chiba (JP).

- (74) 代理人: 弁理士 東平正道(TOHEI, Masamichi); 〒 299-0107 千葉県市原市姉崎海岸24番地4 出光興産株式会社内 Chiba (JP).
- (81) 指定国 (国内): CN, KR, SG, US.
- (84) 指定国 *(*広域*)*: ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: PROPYLENE POLYMER, MOLDED OBJECT THEREOF, AND PROCESS FOR PRODUCING PROPYLENE POLYMER

) (54) 発明の名称: プロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法

(57) Abstract: A propylene polymer which is excellent in low-temperature heat sealability, transparency, scratch resistance, etc. and is advantageously usable in the field of packaging films, wherein (1) the melting point Tm (°C) as measured with a differential scanning calorimeter is $110 \le \text{Tm} \le 140$, (2) the heat of fusion Δ H (J/g) and the melting point Tm (°C) satisfy the relationship Δ H $\ge 0.45\text{xTm} + 22$, (3) when analyzed by the temperature-rising fractionation method, the polymer gives an elution curve wherein the peak top has a half band width Th (°C) satisfying the relationship Th ≤ 5 , and (4) the intrinsic viscosity [η] (dl/g) as measured at 135°C in tetralin solvent is 0.5 to 5.

(57) 要約:

本発明のプロピレン系重合体は、低温ヒートシール性、透明性及び耐スクラッチ性等に優れ、包装用フィルム分野に好適に用いられるもので、(1)示差走査型熱量計により測定した融点Tm ($\mathbb C$) が $110 \le Tm \le 140$ であり、(2)融解熱 ΔH (J/g) と融点Tm ($\mathbb C$) が $\Delta H \ge 0$. $45 \times Tm + 22$ の関係を満たし、(3)昇温分別法により測定した溶出曲線のピークトップの半値幅Th ($\mathbb C$) が $Th \le 5$ の関係を満たし、(4) $135 \mathbb C$ 、テトラリン溶媒中で測定した極限粘度 $[\eta]$ (d1/g) が $0.5 \sim 5$ である。

明細書

プロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法

技術分野

本発明は、プロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法に関し、詳しくは融解温度と弾性率のバランスに優れ、低温での成形性や加工性が良好でありかつ機械的強度のバランスにも優れるプロピレン系重合体及び該重合体を成形して得られる成形体並びに該プロピレン系重合体の製造方法に関する。本発明のプロピレン系重合体は、低温ヒートシール性に優れかつ透明性及び耐スクラッチ性並びに機械的強度にも優れる包装用フィルムに好適に用いられる。

背景技術

ポリオレフィンの中で、ポリプロピレンは安価で優れた物理的性質を有しており、包装用フィルム等広範な用途に用いられている。包装用フィルムの用途においては、ポリプロピレンは融点が比較的高いので、低温度におけるヒートシール性を向上させるため、従来は、いわゆるチタン化合物或いはマグネシウム化合物にチタン化合物を担持したものと有機アルミニウム化合物からなるチーグラー・ナッタ触媒の存在下、プロピレンにエチレン或いは炭素数4~20のαーオレフィンを共重合させることが一般的に行われている。

しかしながら、このようにして得られるプロピレンーαーオレフィン共 重合体からなる包装用フィルムは、低密度ポリエチレンからなるフィルム と比較して透明性、耐スクラッチ性には優れているものの、低温ヒートシ ール性が充分ではないことが知られている(特許第268562号公報、 特開平9-241439号公報、特開平2-255812号公報)。低温 ヒートシール性をさらに改善するため、共重合体におけるαーオレフィン 含量を増加しようとすると、組成分布が広がり、また、分子量が低くなる ので溶媒可溶部量が増加し、耐ブロッキング性が悪くなるという欠点があ る。さらに、ヘイズが大きくなり、透明性も低下するという問題もある。

一方、メタロセン触媒を用いると分子量分布の狭いポリオレフィンが得られることが報告されている(J. Polym. Sci., Polym. Chem. Ed. 23, 2117 (1985))。しかしながら、メタロセン触媒では、低温ヒートシール性と機械的強度のバランスに優れるプロピレン系重合体は得られていないのが現状である。

本発明は、融解温度と弾性率のバランスに優れ、低温での成形性や加工性が良好でありかつ機械的強度のバランスにも優れるプロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法を提供することを目的とするものである。

発明の開示

本発明者らは、上記の目的を達成するため鋭意検討した結果、融点と融解エンタルピーが特定の関係を満たし、また、さらに昇温分別法により測定した溶出曲線のピークトップの半値幅が特定の範囲にあるプロピレン系重合体が本目的を達成できることを見い出し、この知見に基づき、本発明を完成するに至った。すなわち、本発明は、以下のプロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法を提供する。

1. 示差走査型熱量計により測定した融解熱 △H (J/g) と融点 Tm (°C) が

ΔH ≥ 0. 45 × Tm + 22
 の関係を満たすプロピレン系重合体。

2. 下記(1)、(2)及び(3)で示される性状を有する上記1 に記載のプロピレン系重合体。

- (1) 示差走査型熱量計により測定した融点Tm(℃)が110≦Tm≦ 140であり、
- (2) 昇温分別法により測定した溶出曲線のピークトップの半値幅Th ($^{\circ}$ C) が $Th \leq 5$
- の関係を満たし、
- (3) 135℃、テトラリン溶媒中で測定した極限粘度 [η] (d1/g))が0.5~5である。
- 3. 示差走査型熱量計により測定した融点 Tm (℃) が 1 2 0 ≦ T m ≦ 1 4 0 である上記 2 に記載のプロピレン系重合体。
- 4. 示差走査型熱量計により測定した融点 Tm (°C) が 1 2 0 ≦ T m ≤ 1 3 5 である上記 2 に記載のプロピレン系重合体。
- 5. プロピレン系重合体がプロピレン単独重合体であって、アイソタクチックペンタッド分率 [mmmm] が65~85モル%である上記1~4のいずれかに記載のプロピレン系重合体。
- 6. プロピレン系重合体がプロピレン単独重合体であって、アイソタクチックペンタッド分率 [mmmm] が70~80モル%である上記1~4のいずれかに記載のプロピレン系重合体。
- 7. 上記1~6のいずれかに記載のプロピレン系重合体を成形してなる成形体。
- 8. 上記1~6のいずれかにプロピレン系重合体を製造する方法であって、(A)下記一般式(1)で表される周期律表第4族の遷移金属化合物、(B)(B-1)アルミニウムオキシ化合物及び(B-2)上記遷移金属化合物と反応してカチオンに変換しうるイオン性化合物の中から選ばれた少なくとも一種とを含有してなるオレフィン重合触媒の存在下、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のαーオレフィンを重合させるプロピレン系重合体の製造方法。

[式中、R¹~R¹¹, X¹及びX²は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、酸素含有基、イオウ含有基、窒素含有基又はリン含有基を示し、R³とR⁴及びR²とR³はたがいに結合して環を形成してもよい。Y¹は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20の炭化水素基、炭素数1~20のパロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、一〇一、一〇〇一、一〇〇一、一〇〇2一、一〇〇2 下2一、一〇四尺12一、一〇四尺12一、一〇四尺12一、一〇四尺12一、一〇四尺12一下一个下2000分化水素基、炭素数1~20のハロゲン含有炭化水素基を示す。M¹はチタン、ジルコニウム又はハフニウムを示す。]

9. 上記1~6のいずれかに記載のプロピレン系重合体を製造する 方法であって、(A) 下記一般式(2)で表される周期律表第4族の遷移 金属化合物、(B) (B-1)アルミニウムオキシ化合物及び(B-2) 上記遷移金属化合物と反応してカチオンに変換しうるイオン性化合物の中 から選ばれた少なくとも一種とを含有してなるオレフィン重合触媒の存在 下、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のα オレフィンを重合させるプロピレン系重合体の製造方法。

 ${ { 式中、M'} はチタン、ジルコニウム又はハフニウムを示し、<math>E^1$ 及び E^2 は それぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデ ニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロ シクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素 含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を 形成しており、またそれらはたがいに同一でも異なっていてもよく、X3は σ結合性の配位子を示し、X³が複数ある場合、複数のX³は同じでも異な っていてもよく、他の X^3 , E^1 , E^2 又は Y^2 と架橋していてもよい。 Y^2 は ルイス塩基を示し、 Y^2 が複数ある場合、複数の Y^2 は同じでも異なってい てもよく、他の Y^2 , E^1 , E^2 又は X^3 と架橋していてもよく、 A^1 及び A^2 は 二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水 素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニ ウム含有基、スズ含有基、ーOー、-CO-、-S-、-SOゥ-、-NR¹² -、 $-PR^{12}-$ 、-P (O) $R^{12}-$ 、 $-BR^{12}-$ 又は $-A1R^{12}-$ を示し、 R^{12} は水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~2 0のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なって いてもよい。qは1~5の整数で〔 $(M^1$ の原子価) -2〕を示し、rは0 ~3の整数を示す。}

10. 上記8または9に記載のプロピレン系重合体の製造方法であって、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のα

ーオレフィンを気相重合させるプロピレン系重合体の製造方法。

11. 上記8または9に記載のプロピレン系重合体の製造方法であって、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のαーオレフィンを液体プロピレンの存在下で重合させるプロピレン系重合体の製造方法。

発明を実施するための最良の形態

本発明は、前記のようなプロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法である。さらに詳しくは、本発明は、立体規則性が中程度(例えば、アイソタクチックペンタッド分率で表される立体規則性が85モル%以下、好ましくは80モル%以下)であって、べたつきが少なく、融解温度が低く、なおかつ柔軟性(引張弾性率が、600~1,600MPa,好ましくは700~1,200MPa、特に好ましくは80~1,100MPa)に優れるプロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法に関する。

以下、本発明について詳細に説明する。

1. プロピレン系重合体

本発明のプロピレン系重合体は、示差走査型熱量計により測定した融解 熱 Δ H (J / g) と融点 T m (℃) が

 $\Delta H \ge 0$. $4.5 \times Tm + 2.2$

の関係を満たすプロピレン系重合体である。

この要件を満たさないと、融解温度と弾性率のバランスがくずれ、低温 での成形性や加工性と機械的強度のバランスがくずれる。すなわち、本重 合体をフィルム用に用いる際の低温ヒートシール性と得られるフィルムの 機械的強度のバランスが低下し好ましくない。

本発明のプロピレン系重合体としては、△H (J/g)と融点Tm (℃)が

$\Delta H \ge 0$. $45 \times Tm + 25$

の関係を満たすことが好ましい。

また、本発明のプロピレン系重合体としては、下記(1)、(2)及び

- (3) で示される性状を有するプロピレン系重合体がさらに好ましい。
- (1) 示差走査型熱量計により測定した融点Tm (°C) が110≦Tm≦ 140であり、
- (2) 昇温分別法により測定した溶出曲線のピークトップの半値幅Th(℃)がTh≤5
- の関係を満たし、
- (3) 135℃、テトラリン溶媒中で測定した極限粘度 [η] (d l/g))が0.5~5である。

前記の要件を満たさないと、本発明の目的を達成することは困難なことがある。例えば、(1)のTmが110℃未満であると本重合体を医療分野や食品分野の用途に用いた場合、煮沸消毒時に製品が融着するなどの不都合が生じることがある。また、融点が140℃を超えると軟質材料として十分でないことがある。また、(2)の要件を満たさないと、例えば、べたつき成分が増える傾向となり得られるフィルムにとっては好ましくないことがある。(3)における $[\eta]$ が、0.5d1/g未満では機械的強度が低く好ましくないことがある。また、5.0d1/gを超えると成形性が低下し好ましくないことがある。

本発明のプロピレン系重合体としては、下記(1)、(2)、(3)及び(4)で示される性状を有するものが特に好ましい。

(1) 示差走査型熱量計により測定した融解熱 △H (J/g) と融点 Tm (℃) が

 $\Delta H \ge 0$. $45 \times Tm + 22$

の関係を満たし、

(2) 示差走査型熱量計により測定した融点Tm (℃) が120≦Tm≦

135であり、

(3) 昇温分別法により測定した溶出曲線のピークトップの半値幅Th(℃) がTh≤5

の関係を満たし、

(4) 135℃、テトラリン溶媒中で測定した極限粘度 [η] (d l/g))が0.5~5である。

前記Tm ($^{\circ}$) としては、 $120 \le Tm \le 140$ が好ましく、 $120 \le Tm \le 135$ がさらに好ましい。また、 $\begin{bmatrix} \eta \end{bmatrix}$ としては、 $0.5 \sim 4d1$ /gが好ましく、 $1.0 \sim 3d1/g$ がさらに好ましい。

なお、前記の各種パラメーターの測定方法については実施例において詳 しく述べる。

さらに、本発明のプロピレン系重合体としては、上記で述べた要件の他に、ゲルパーミエーション(GPC)法により測定した分子量分布(Mw/Mn)が4以下が好ましく、3.5以下がさらに好ましく、3以下が特に好ましい。分子量分布(Mw/Mn)が4を超えると、べたつきが発生することがある。また、沸騰ジエチルエーテル抽出量が5質量%以下であることが好ましい。5質量%を超えると、フィルムにべたつきが発生することがある。なお、沸騰ジエチルエーテル抽出量の測定方法については、実施例において詳しく述べる。また、昇温分別法により測定した溶出曲線のピーク位置の温度Tpが、60~95℃であることが好ましい。また、Tp±5℃の温度範囲にて溶出する成分量が70質量%以上が好ましい。

本発明のプロピレン系重合体としては、プロピレンの単独重合体であってもよく、またはプロピレンとエチレン及び/又は炭素数 $4 \sim 200 \alpha - 4$ レフィンとの共重合体(以下、プロピレン系共重合体ともいう)であってもよい。炭素数 $4 \sim 200 \alpha - 4$ レフィンとしては、1 - 7 テン, 1 - 4 ペンテン, 4 - 4 チルー1 - 4 ペンテン, 1 - 4 ナルー1 - 4 アンテン, 1 - 4

クタデセン, 1-エイコセンなどが挙げられ、本発明においては、これら のうち一種又は二種以上を用いることができる。

プロピレンの単独重合体の場合は、アイソタクチックペンダッド分率 [mmmm] が65~85モル%であることが好ましく、70~80モル%がさらに好ましい。本発明で用いられるアイソタクチックペンダッド分率とは、エイ・ザンベリ(A. Zambelli)等により「Macromolecules, 6,925(1973)」で提案された、「3C核磁気共鳴スペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック分率を意味する。「3C核磁気共鳴スペクトルの測定は、エイ・ザンベリ(A. Zambelli)等により「Macromolecules, 8,687(1975)」で提案されたピークの帰属に従い、下記の装置及び条件にて行った。

装置:日本電子(株)製JNM-EX400型13C-NMR装置

方法:プロトン完全デカップリング法

濃度:220mg/ミリリットル

溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容

量比) 混合溶媒

温度:130℃

パルス幅:45°

パルス繰り返し時間:4秒

積算:10,000回

一方、プロピレン系共重合体である場合は、前記の要件のほかにプロピレン以外のコモノマー含有量が1.0モル%以下であることが好ましい。また、プロピレン部のアイソタクチックトライアッド分率 [mm] で表される立体規則性指標が80~92モル%であることが好ましい。この値が大きいほど、立体規則性が高いことを意味し、80モル%未満では、弾性率が低下しすぎるため成形性が不良となることがある。また92モル%を

WO 01/00693

超えると硬質となり軟質ではなくなることがある。なお、 [mm] は、¹³C -NMRスペクトルにより前記の [mmmm] と同様に測定して求められる。詳しくは、実施例にて述べる。また、プロピレン系共重合体としては、ランダム構造であることが好ましい。

ところで、一般にプロピレンの重合においては、プロピレンモノマーのメチレン側の炭素原子が触媒の活性点と結合し、順次同じようにプロピレンモノマーが配位して重合してゆくいわゆる 1、2挿入の重合が通常行われるが、まれに 2、1挿入又は 1、3挿入すること(異常挿入とも言う)がある。本発明のプロピレン系重合体は、この 2、1挿入又は 1、3挿入が少ないと好ましい。また、これらの挿入の割合が、下記の関係式(1) [(m-2, 1) + (r-2, 1) + (1, 3)] ≤ 5 . 0 (%) … (1) [式中、(m-2, 1) は 13 C - NMRで測定したメソー 2、1挿入含有率(%)、(1, 3) は 13 C - NMRで測定したラセミー 2、1挿入含有率(%)、(1, 3) は 13 C - NMRで測定した 1、3挿入含有率(%)。

 $[(m-2, 1) + (r-2, 1) + (1, 3)] \le 1.0$ (%) … (2) を満足するするものがより好ましい。特に関係式(3)

〔(m-2, 1) + (r-2, 1) + (1, 3) 〕 ≤ 0. 1 (%) … (3)
を満足するするものが最も好ましい。この関係式 (1) を満足しないと、
予想以上に結晶性が低下し、べたつきの原因となる場合がある。

なお、(m-2, 1)、(r-2, 1) 及び(1, 3) はGrassi らの報告 (Macromolucules, 21, p. 617 (1988)) 及びBusicos の報告 (Macromolucules, 27, p. 7538 (1994)) に基づいて $^{13}C-NMR$ スペクトルのピークの帰属を決定し、各ピークの積分強度から求めた各挿 入含有率である。すなわち、(m-2, 1) は、全メチル炭素領域における積分強度に対する17.2 ppm付近に現れる $P\alpha$, γ threo に帰属するピークの積分強度の比から算出されるメソー2, 1 挿入含有率 (%) で

ある。(r-2, 1)は、全メチル炭素領域における積分強度に対する1 5. 0 p p m付近に現れる $P\alpha$, γ threo に帰属するピークの積分強度の比から算出されるラセミー2, 1挿入含有率(%)である。(1, 3)は、全メチン炭素領域における積分強度に対する31. 0 p p m付近に現れる $T\beta$, γ +に帰属するピークの積分強度の比から算出される1, 3挿入含有率(%)である。

さらに、本発明におけるプロピレン系重合体は「3C-NMRスペクトルの 測定において、2,1挿入に由来する分子鎖未端(nーブチル基)に帰属 されるピークが実質的に観測されないものがより好ましい。この2,1挿入に由来する分子鎖末端に関しては、Junglingらの報告(J. Polym. Sci.: Part A: Polym. Chem.,33,p1305 (1995))に基づいて「3C-NMRスペクトルのピークの帰属を決定し、各ピークの積分強度 から各挿入含有率を算出する。なお、アイソタクチックポリプロピレンでは、18.9ppm付近に現れるピークがnーブチル基の未端メチル基炭素に帰属される。また、異常挿入又は分子鎖末端測定に関する「3C-NMRの測定は、前記の装置及び条件で行えばよい。

2. プロピレン系重合体の製造方法

本発明のプロピレン系重合体の製造方法は、(A)周期律表第4族の遷移金属化合物、(B)(B-1)アルミニウムオキシ化合物及び(B-2)上記遷移金属化合物と反応してカチオンに変換しうるイオン性化合物の中から選ばれた少なくとも一種とを含有してなるオレフィン重合触媒の存在下、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20の α -オレフィンを重合させる製造方法である。

最初に、本発明におけるオレフィン重合触媒の各成分、調製法について 説明する。

本発明における (A) 成分は、下記A群から選ばれる周期律表第4族の 遷移金属化合物である。 A群とは下記(A-1)又は(A-2)である。 (A-1)

下記一般式(1)で表される周期律表第4族の遷移金属化合物。

この遷移金属化合物は、単架橋型錯体である。

前記一般式 (1) において、 $R^1 \sim R^{11}$, X^1 及び X^2 のうちのハロゲン原子としては、塩素、臭素、フッ素、ヨウ素原子が挙げられる。炭素数 $1 \sim$

20の炭化水素基としては、例えばメチル基, エチル基, n-プロピル基, イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n -ヘキシル基, n-デシル基などのアルキル基、フェニル基, 1-ナフチ ル基、2-ナフチル基などのアリール基、ベンジル基などのアラルキル基 などが挙げられ、また炭素数1~20のハロゲン含有炭化水素基としては、 トリフルオロメチルなどの上記炭化水素基の水素原子の1個以上が適当な ハロゲン原子で置換された基が挙げられる。珪素含有基としては、トリメ チルシリル基, ジメチル (t-ブチル) シリル基などが挙げられ、酸素含 有基としては、メトキシ基、エトキシ基などが挙げられ、イオウ含有基と しては、チオール基、スルホン酸基などが挙げられ、窒素含有基としては、 ジメチルアミノ基などが挙げられ、リン含有基としては、フェニルホスフ ィン基などが挙げられる。また、R³とR⁴及びR8とR9はたがいに結合し てフルオレンなどの環を形成してもよい。R3とR4及びR8とR9の具体例 としては、上記R1~R1等において挙げたものから水素原子を除く基が挙 げられる。R³, R⁹ としては、水素原子及び炭素数6以下のアルキル基が 好ましく、水素原子、メチル基、エチル基、イソプロピル基、シクロヘキ シル基がより好ましく、水素原子がさらに好ましい。また、 R^3 , R^4 , R^8 及びR⁹としては、炭素数6以下のアルキル基が好ましく、メチル基、エチ ル基、イソプロピル基、シクロヘキシル基がより好ましく、イソプロピル 基がさらに好ましい。 R^4 , R^5 , R^7 , R^9 及び R^{10} としては水素原子が好 ましい。特に好ましい組合せとしては、R¹が水素以外のアルキル基であり、 R^7 が水素原子の場合である。 X^1 , X^2 としては、ハロゲン原子,メチル基, エチル基, プロピル基が好ましい。Y¹の具体例としては、メチレン、エチ レン、エチリデン、イソプロピリデン、シクロヘキシリデン、1,2-シ クロヘキシレン、ジメチルシリレン、テトラメチルジシリレン、ジメチル ゲルミレン、メチルボリリデン (CH3-B=)、メチルアルミリデン (C $H_3 - Al =)$ 、フェニルホスフィリデン (Ph - P =) 、フェニルホスホ

リデン (PhPO=)、1,2-フェニレン、ビニレン(-CH=CH-)、ビニリデン ($CH_2=C=$)、メチルイミド、酸素(-O-)、硫黄(-S-)などがあり、これらの中でも、メチレン、エチレン、エチリデン、イソプロピリデンが、本発明の目的達成の点で好ましい。

M¹ はチタン, ジルコニウム又はハフニウムを示すが、特にハフニウムが 好適である。

前記一般式(1)で表される遷移金属化合物の具体例としては、1,2 ーエタンジイル(1-(2-イソブチルインデニル))(2-インデニル) ハフニウムジクロリド、1,2-エタンジイル(1-(2-ブチルイン デニル)) (2-インデニル) ハフニウムジクロリド、1,2-エタンジ イル (1-(2-ブチルインデニル)) (2-(4, 7-ジメチルインデ ニル)) ハフニウムジクロリド、1,2-エタンジイル(1-(2-イソ プロピルインデニル)) (2-(4,7-ジメチルインデニル))ハフニ ウムジクロリド、1,2-エタンジイル(1-(2-イソプロピルインデ ニル)) (2-(4, 7-ジイソプロピルインデニル)) ハフニウムジク ロリド等、ジメチルシリレン (1-(2-イソブチルインデニル)) (2 ーインデニル) ハフニウムジクロリド、ジメチルシリレン(1 ー (2 ーブ チルインデニル)) (2-インデニル)ハフニウムジクロリド、ジメチル シリレン(1-(2-ブチルインデニル))(2-(4,7-ジメチルイ ンデニル)) ハフニウムジクロリド、メチルシリレン(1-(2-イソプ ロピルインデニル)) (2-(4, 7-ジメチルインデニル)) ハフニウ ムジクロリド、メチルシリレン(1-(2-イソプロピルインデニル)) (2-(4.7-ジイソプロピルインデニル))ハフニウムジクロリド等、 1. 3 - プロパンジイル(1 - (2 - イソプロピルインデニル))(2 -インデニル) ハフニウムジクロリド、1,3-プロパンジイル(1-(2 ーイソブチルインデニル)) (2ーインデニル)ハフニウムジクロリド、 1, 3-プロパンジイル (1-(2-ブチルインデニル)) (2-インデ

ニル) ハフニウムジクロリド、1、3-プロパンジイル(1-(2-ブチ ルインデニル)) (2-(4,7-ジメチルインデニル)) ハフニウムジ クロリド、1、3-プロパンジイル(1-(2-イソプロピルインデニル **))(2-(4,7-ジメチルインデニル))ハフニウムジクロリド、1,** 3-プロパンジイル(1-(2-イソプロピルインデニル))(2-(4,7-ジイソプロピルインデニル)) ハフニウムジクロリド等、1,2-エ タンジイル(1-(4,7-ジイソプロピルインデニル))(2-(4,7-ジイソプロピルインデニル)ハフニウムジクロリド、1,2-エタン ジイル(9-フルオレニル)(2-(4,7-ジイソプロピルインデニル) ハフニウムジクロリド、イソプロピリデン(1 - (4, 7 - ジイソプロ ピルインデニル)) (2-(4,7-ジイソプロピルインデニル)ハフニ ウムジクロリド、1, 2-エタンジイル(1-(4, 7-ジメチルインデ ニル)) (2-(4,7-ジイソプロピルインデニル)ハフニウムジクロ リド、1.2-エタンジイル(9-フルオレニル)(2-(4,7ージメ チルインデニル)) ハフニウムジクロリド、イソプロピリデン(1-(4, 7-ジメチルインデニル)) (2-(4,7-ジイソプロピルインデニル) ハフニウムジクロリド、1,2-エタンジイル(2-インデニル)(1 - (2-イソプロピルインデニル)) ハフニウムジクロリド、ジメチルシ リレン-(2-インデニル)(1-(2-イソプロピルインデニル))ハ フニウムジクロリドなど、及びこれらの化合物におけるハフニウムをジル コニウム又はチタンに置換したものを挙げることができるが、これらに限 定されるものではない。

なお、前記一般式 (1) で表される遷移金属化合物は、例えば本出願人が先に出願した特開平 11-130807 号に記載された方法により製造することができる。 (A-1) 成分としては、これらの遷移金属化合物の中から 2 種類以上を組み合わせて用いてもよい。

(A-2)

下記一般式 (2) で表される周期律表第4族の遷移金属化合物。

{式中、M¹ はチタン、ジルコニウム又はハフニウムを示し、E¹ 及びE² は それぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデ ニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロ シクロペンタジエニル基, アミド基, ホスフィド基, 炭化水素基及び珪素 含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を 形成しており、またそれらはたがいに同一でも異なっていてもよく、 X^3 は σ結合性の配位子を示し、X³が複数ある場合、複数のX³は同じでも異な っていてもよく、他の X^3 , E^1 , E^2 又は Y^2 と架橋していてもよい。 Y^2 は ルイス塩基を示し、Y²が複数ある場合、複数のY²は同じでも異なってい てもよく、他の Y^2 , E^1 , E^2 又は X^3 と架橋していてもよく、 A^1 及び A^2 は 二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水 素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニ ウム含有基、スズ含有基、-O-、-CO-、-S-、 $-SO_2-$ 、 $-NR^{12}$ -、- P R^{12} -、- P (O) R^{12} -、- B R^{12} - 又は- A 1 R^{12} - を示し、 R^{12} は水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~2 0のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なって いてもよい。 qは $1\sim5$ の整数で〔(M^1 の原子価) -2〕を示し、rは0~3の整数を示す。}

前記一般式 (2) で表される遷移金属化合物 (以下、二重架橋型錯体と称することがある。) において、M¹ はチタン, ジルコニウム又はハフニウムを示すが、ジルコニウム及びハフニウムが好適である。 E¹ 及びE² は上

述のようにそれぞれ、シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換へテロシクロペンタジエニル基、アミド基(-N<)、ホスフィド基(-P<)、炭化水素基 [>CR-, >C<] 及び珪素含有基 [>SiR-, >Si<] (但し、Rは水素または炭素数 $1\sim20$ の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、 A^1 及び A^2 を介して架橋構造を形成している。また、 E^1 及び E^2 はたがいに同一でも異なっていてもよい。この E^1 及び E^2 としては、シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基及び置換インデニル基が好ましい。

また、 X^3 で示される σ 結合性配位子の具体例としては、ハロゲン原子, 炭素数 $1\sim 20$ の炭化水素基,炭素数 $1\sim 20$ のアルコキシ基,炭素数 6 ~ 20 のアリールオキシ基,炭素数 $1\sim 20$ のアミド基,炭素数 $1\sim 20$ の珪素含有基,炭素数 $1\sim 20$ のホスフィド基,炭素数 $1\sim 20$ のスルフィド基,炭素数 $1\sim 20$ のアシル基などが挙げられる。この X^3 が複数ある場合、複数の X^3 は同じでも異なっていてもよく、他の X^3 , E^1 , E^2 又は Y^2 と架橋していてもよい。

一方、 Y^2 で示されるルイス塩基の具体例としては、アミン類, エーテル類, ホスフィン類, チオエーテル類などを挙げることができる。この Y^2 が複数ある場合、複数の Y^2 は同じでも異なっていてもよく、他の Y^2 や E^1 , E^2 又は X^3 と架橋していてもよい。

次に、A¹ 及びA² で示される架橋基のうち少なくとも一つは、炭素数 1 以上の炭化水素基からなる架橋基であることが好ましい。これらの架橋基 としては、例えば一般式

$$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

(R¹³及びR¹⁴はそれぞれ水素原子又は炭素数 1 ~ 2 0 の炭化水素基で、それらはたがいに同一でも異なっていてもよく、またたがいに結合して環構造を形成していてもよい。 e は 1 ~ 4 の整数を示す。)

で表されるものが挙げられ、その具体例としては、メチレン基、エチレン基、エチリデン基、プロピリデン基、イソプロピリデン基、シクロヘキシリデン基、1, 2-シクロヘキシレン基、ビニリデン基($CH_2=C=$)などを挙げることができる。これらの中で、メチレン基、エチレン基及びイソプロピリデン基が好適である。この A^1 及び A^2 は、たがいに同一でも異なっていてもよい。

前記一般式(2)で表される遷移金属化合物において、 E^1 及び E^2 がシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又は置換インデニル基である場合、 A^1 及び A^2 の架橋基の結合は、(1, 1')(2, 2')二重架橋型であってもよく、(1, 2')(2, 1')二重架橋型であってもよい。このような一般式(2)で表される遷移金属化合物の中では、一般式(2-a)

$$R^{20}$$
 A^{1}
 R^{15}
 R^{16}
 R^{19}
 R^{18}
 R^{18}
 R^{17}
 R^{17}

で表される二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物が好ましい。

上記一般式(2-a)において、 M^1 , A^1 , A^2 , q及び r は上記と同じである。 X^3 は σ 結合性の配位子を示し、 X^3 が複数ある場合、複数の X^3 は同じでも異なっていてもよく、他の X^3 又は Y^2 と架橋していてもよい。この X^3 の具体例としては、一般式(2)の X^3 の説明で例示したものと同じものを挙げることができる。 Y^2 はルイス塩基を示し、 Y^2 が複数ある場合、複数の Y^2 は同じでも異なっていてもよく、他の Y^2 又は X^3 と架橋していてもよい。この Y^2 の具体例としては、一般式(2)の Y^2 の説明で例示したものと同じものを挙げることができる。 $R^{15}\sim R^{20}$ はそれぞれ水素原子,ハロゲン原子,炭素数 $1\sim 2$ 0 の炭化水素基,炭素数 $1\sim 2$ 0 のハロゲン含有炭化水素基,珪素含有基又はヘテロ原子含有基を示すが、その少なくとも一つは水素原子でないことが必要である。また、 $R^{15}\sim R^{20}$ はたがいに同一でも異なっていてもよく、隣接する基同士がたがいに結合して環を形成していてもよい。好ましくは、インデニル環を形成し、インデニル環上に置換基として芳香環が結合している場合である。

この二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物は、配位子が(1, 1') (2, 2') 二重架橋型及び(1, 2') (2, 1') 二重架橋型のいずれであってもよい。

この一般式(2)で表される遷移金属化合物の具体例としては、(1,1'ーエチレン)(2,2'ーエチレン)ービス(インデニル)ジルコニウムジクロリド,(1,2'ーエチレン)(2,1'ーエチレン)ービス(インデニル)ジルコニウムジクロリド,(1,1'ーメチレン)(2,2'ーメチレン)ービス(インデニル)ジルコニウムジクロリド,(1,2'ーメチレン)(2,1'ーメチレン)ービス(インデニル)ジルコニウムジクロリド,(1,1'ーイソプロピリデン)(2,2'ーイソプロピリデン)ービス(インデニル)ジルコニウムジクロリド,(1,2'ー

イソプロピリデン) (2,1'ーイソプロピリデン)ービス (インデニル) ジルコニウムジクロリド、(1、1'-エチレン)(2、2'-エチレ ン)-ビス(3-メチルインデニル)ジルコニウムジクロリド,(1,2 **'ーエチレン)(2, 1'ーエチレン)-ビス(3-メチルインデニル)** ジルコニウムジクロリド、(1,1'-エチレン)(2,2'-エチレン))ービス(4,5ーベンゾインデニル)ジルコニウムジクロリド,(1, 2'-エチレン) (2, 1'-エチレン) -ビス (4, 5-ベンゾインデ ニル) ジルコニウムジクロリド, (1, 1'-エチレン) (2, 2'-エ チレン)ービス(4ーイソプロピルインデニル)ジルコニウムジクロリド, (1, 2'ーエチレン) (2, 1'ーエチレン) ービス (4ーイソプロピ ルインデニル) ジルコニウムジクロリド、(1.1'-エチレン)(2. 2'-エチレン)-ビス(5,6-ジメチルインデニル)ジルコニウムジ クロリド, (1, 2' - x + y) (2, 1' - x + y) (5, 2' + y)6-ジメチルインデニル)ジルコニウムジクロリド、(1,1'-エチレ ン) (2, 2'ーエチレン)ービス(4, 7ージイソプロピルインデニル **)ジルコニウムジクロリド,(1,2'-エチレン)(2,1'-エチレ** ン) ービス (4, 7ージイソプロピルインデニル) ジルコニウムジクロリ ド, (1, 1'ーエチレン) (2, 2'ーエチレン) ーピス (4ーフェニ ルインデニル)ジルコニウムジクロリド, (1, 2'ーエチレン)(2, 1'ーエチレン)ービス(4ーフェニルインデニル)ジルコニウムジクロ リド、(1,1'ーエチレン)(2,2'ーエチレン)ービス(3ーメチ ルー4-イソプロピルインデニル)ジルコニウムジクロリド、(1,2) ーエチレン) (2, 1'ーエチレン)ービス(3ーメチルー4ーイソプロ ピルインデニル) ジルコニウムジクロリド、(1, 1'-エチレン)(2, 2'-エチレン)ービス(5,6-ベンゾインデニル)ジルコニウムジク ロリド, (1, 2'-エチレン) (2, 1'-エチレン) ービス (5, 6 ーベンゾインデニル)ジルコニウムジクロリド、(1,1'ーエチレン)

(2, 2'ーイソプロピリデン)ービス(インデニル)ジルコニウムジク ロリド, (1, 2'-エチレン) (2, 1'-イソプロピリデン) ービス (インデニル) ジルコニウムジクロリド, (1, 1'ーイソプロピリデン) (2, 2'ーエチレン)ービス(インデニル)ジルコニウムジクロリド。 (1, 2'-メチレン) (2, 1'-エチレン) - ビス (インデニル) ジ ルコニウムジクロリド、(1, 1'ーメチレン)(2, 2'ーエチレン) ービス (インデニル) ジルコニウムジクロリド、(1,1'ーエチレン) (2, 2'ーメチレン)ービス(インデニル)ジルコニウムジクロリド, (1, 1'ーメチレン) (2, 2'ーイソプロピリデン)ービス (インデ ニル) ジルコニウムジクロリド, (1, 2'ーメチレン) (2, 1'ーイ ソプロピリデン)ービス (インデニル) ジルコニウムジクロリド, (1, 1'ーイソプロピリデン)(2,2'ーメチレン)ービス(インデニル) ジルコニウムジクロリド、(1,1'-メチレン)(2,2'-メチレン) (3-メチルシクロペンタジエニル) (シクロペンタジエニル) ジルコ ニウムジクロリド、(1,1'ーイソプロピリデン)(2,2'ーイソプ ロピリデン) (3-メチルシクロペンタジエニル) (シクロペンタジエニ ル) ジルコニウムジクロリド, (1, 1'-プロピリデン) (2, 2'-プロピリデン) (3-メチルシクロペンタジエニル) (シクロペンタジエ ニル) ジルコニウムジクロリド, (1, 1'-エチレン) (2, 2'-メ チレン)ービス(3-メチルシクロペンタジエニル)ジルコニウムジクロ リド、(1,1'ーメチレン)(2,2'ーエチレン)ービス(3ーメチ ルシクロペンタジエニル)ジルコニウムジクロリド, (1, 1'ーイソプ ロピリデン) (2, 2'ーエチレン)ービス(3ーメチルシクロペンタジ エニル) ジルコニウムジクロリド、(1,1'-エチレン)(2,2'-イソプロピリデン)ービス(3-メチルシクロペンタジエニル)ジルコニ ウムジクロリド、(1, 1'ーメチレン)(2, 2'ーメチレン)ービス (3-メチルシクロペンタジエニル) ジルコニウムジクロリド, (1, 1

'ーメチレン)(2, 2'ーイソプロピリデン)-ビス(3-メチルシク ロペンタジエニル) ジルコニウムジクロリド, (1,1'ーイソプロピリ デン) (2, 2'-イソプロピリデン)ービス (3-メチルシクロペンタ ジエニル)ジルコニウムジクロリド, (1, 1'-エチレン) (2, 2' ーメチレン) ービス(3, 4ージメチルシクロペンタジエニル)ジルコニ ウムジクロリド, (1, 1'-エチレン) (2, 2'-イソプロピリデン)ービス(3,4ージメチルシクロペンタジエニル)ジルコニウムジクロ リド, (1, 1'-メチレン) (2, 2'-メチレン) ービス (3, 4-ジメチルシクロペンタジエニル) ジルコニウムジクロリド, (1, 1' -メチレン) (2, 2'ーイソプロピリデン) ービス (3, 4ージメチルシ クロペンタジエニル) ジルコニウムジクロリド, (1, 1'ーイソプロピ リデン) (2, 2'ーイソプロピリデン)ービス(3, 4ージメチルシク ロペンタジエニル) ジルコニウムジクロリド、(1,2'ーエチレン) (2, 1'ーメチレン)ービス(3-メチルシクロペンタジエニル)ジルコ ニウムジクロリド、(1, 2'-エチレン)(2, 1'-イソプロピリデ ン)ービス(3-メチルシクロペンタジエニル)ジルコニウムジクロリド, (1, 2'ーメチレン)(2, 1'ーメチレン)ービス(3ーメチルシク ロペンタジエニル) ジルコニウムジクロリド、(1,2'ーメチレン)(2, 1'ーイソプロピリデン)ービス(3-メチルシクロペンタジエニル) ジルコニウムジクロリド、(1, 2'-イソプロピリデン) (2, 1' ーイソプロピリデン)ービス(3-メチルシクロペンタジエニル)ジルコ ニウムジクロリド, (1, 2'-エチレン) (2, 1'-メチレン) ービ ス(3,4-ジメチルシクロペンタジエニル)ジルコニウムジクロリド. (1, 2'-エチレン) (2, 1'-イソプロピリデン) ービス (3, 4 ージメチルシクロペンタジエニル)ジルコニウムジクロリド. (1.2) ーメチレン) (2, 1'ーメチレン) ービス (3, 4ージメチルシクロペ ンタジエニル) ジルコニウムジクロリド, (1, 2'ーメチレン) (2,

1'ーイソプロピリデン)ービス(3,4-ジメチルシクロペンタジエニ ル) ジルコニウムジクロリド、(1, 2'ーイソプロピリデン) (2, 1 'ーイソプロピリデン)ービス(3、4ージメチルシクロペンタジエニル) ジルコニウムジクロリド、(1, 2'-エチレン)(2, 1'-エチレ ン) ビス (5, 5-フェニルインデニル) ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-エチレン) ビス (5, 6-フェニルインデ ニル) ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-エ チレン) ビス (6, 6-フェニルインデニル) ジルコニウムジクロリドな ど及びこれらの化合物におけるジルコニウムをチタン又はハフニウムに置 換したものや、ジメチルシリレン(1-(2-メチル-4,5-ベンゾイ ンデニル)) (2 -インデニル)ジルコニウムジクロリド、ジメチルシリ レン(1-(2-エチル-4、5-ベンゾインデニル)) (2-インデニ ル) ジルコニウムジクロリド、ジメチルシリレン(1-(2-ブチルー4, 5-ベンゾインデニル))(2-インデニル)ジルコニウムジクロリド、 ジメチルシリレン(1-(2-)チル-4,5-ベンゾインデニル))(2-4, 7-ジメチルインデニル) ジルコニウムジクロリド、ジメチルシ ジメチルインデニル)ジルコニウムジクロリド、ジフェニルシリレン(1- (2-メチル-4, 5-ベンゾインデニル)) (2-インデニル)ジ ルコニウムジクロリド、ジフェニルシリレン(1-(2-エチルー4,5 ーベンゾインデニル)) (2ーインデニル) ジルコニウムジクロリド、ジ フェニルシリレンシリレン (1-(2-ブチル-4,5-ベンゾインデニ ル)) (2-インデニル) ジルコニウムジクロリド、ジフェニルシリレン **(1-(2-メチル-4,5-ベンゾインデニル))(2-4,7-ジメ** チルインデニル)ジルコニウムジクロリド、ジフェニルシリレン(1-(2-xチル-4, 5-ベンゾインデニル)) (2-4, 7-ジメチルインデニル) ジルコニウムジクロリド、

ジルコニウムをハフニウムに変えたものを挙げることができる。もちろん これらに限定されるものではない。また、 (A-2) 成分としては、これ らの遷移金属化合物の中から2種類以上を組み合わせて用いてもよい。

本発明におけるオレフィン重合触媒に関しては、(A)成分としては、 前記(A-1)成分が好適である。

次に(B)成分について説明する。

本発明における(B)成分は、(B-1)アルミニウムオキシ化合物及び(B-2)前記遷移金属化合物と反応してカチオンに変換しうるイオン 性化合物の中から選ばれた少なくとも一種が用いられる。

上記(B-1)成分のアルミニウムオキシ化合物としては、一般式(3))

$$\frac{R^{21}}{R^{21}} > A \mid -O \leftarrow A \mid -O \rightarrow A \mid -R^{21} \qquad \cdots \qquad (3)$$

(式中、R²¹は炭素数1~20、好ましくは1~12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2~50、好ましくは2~40の整数である。なお、各R²¹は同じでも異なっていてもよい。)で示される鎖状アルミノキサン、及び一般式(4)

$$\begin{array}{c|c}
A & 1 - 0 \\
\downarrow \\
R^{21}
\end{array}$$
(4)

(式中、R²¹及びwは前記一般式 (3) におけるものと同じである。) で示される環状アルミノキサンを挙げることができる。 具体的には、メチルアルミノキサン、エチルアルミノキサン、イソブチルアルミノキサン等が挙げられる。

前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。例えば、①有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、②重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、③金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、④テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、さらに水を反応させる方法などがある。

なお、アルミノキサンとしては、炭化水素溶媒に不溶性のものであってもよいし、炭化水素溶媒に可溶であってもよい。好ましくは、炭化水素溶媒に可溶であって、かつ 「HーNMRより測定した残留有機アルミニウム化合物が10質量%以下の場合である。さらに好ましくは、残留有機アルミニウム化合物が3~5質量%以下、特に好ましくは、2~4質量%以下である。このようなアルミノキサンを用いると、アルミノキサンが担体に担持される割合(担持率とも言う)が増加し好ましい。炭化水素溶媒に可溶であるので、担持されなかったアルミノキサンをリサイクルして再使用することができるという利点もある。さらに、アルミノキサンの性状が安定しているので、使用に際して特に処理を必要としないという長所もある。また、重合により得られるポリオレフィンの平均粒径や粒径分布(総称してモルフォロジーとも言われる)が向上し、好ましい。残留有機アルミニウム化合物が10質量%を超えると担持率が低下し、重合活性が低下することがある。

このようなアルミノキサンを得る方法としては、例えば、アルミノキサンの溶液を加温減圧により溶媒を留去し乾固させる方法(ドライアップ法

とも言う)が挙げられる。ドライアップ法では、加温減圧による溶媒の留 去は80℃以下が好ましく、さらに好ましくは、60℃以下である。

また、アルミノキサンから炭化水素溶媒に不溶な成分を除去する方法としては、例えば、炭化水素溶媒に不溶な成分を自然沈降させ、その後デカンテーションにより分離する方法が挙げられる。或いは、遠心分離等の操作により分離する方法でもよい。その後、さらに回収した可溶解成分をG5ガラス製フィルター等を用い、窒素気流下にてろ過した方が不溶な成分が充分除去されるので好ましい。このようにして得られるアルミノキサンは時間の経過とともにゲル成分が増加することがあるが、調製後48時間以内に使用することが好ましく、調製後直ちに使用することが特に好ましい。アルミノキサンと炭化水素溶媒の割合は、特に制限はないが、炭化水素溶媒1リットルに対しアルミノキサン中のアルミニウム原子が0.5~10モルとなるような濃度で用いることが好ましい。

なお、前記の炭化水素溶媒溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメン等芳香族炭化水素やペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカン等脂肪族炭化水素やシクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタン等脂環式炭化水素やナフサ、ケロシン、ライトガスオイル等石油留分等が挙げられる。

これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて 用いてもよい。

一方、(B-2)成分としては、前記遷移金属化合物と反応してカチオンに変換しうるイオン性化合物であれば、いずれのものでも使用できるが、特に効率的に重合活性点を形成できるなどの点から、次の一般式(5)、

(6)

$$([L^{1}-R^{22}]^{h+})_{a}([Z]^{-})_{b} \cdots (5)$$

 $([L^{2}]^{h+})_{a}([Z]^{-})_{b} \cdots (6)$

(ただし、 L^2 は M^2 , $R^{23}R^{24}M^3$, R^{25} , C又は $R^{26}M^3$ である。)

〔(5)、(6)式中、L¹はルイス塩基、〔Z〕 は、非配位性アニオン $[Z^1]^-$ 又は $[Z^2]^-$ 、ここで $[Z^1]^-$ は複数の基が元素に結合したアニ オン、すなわち [M⁴ G¹ G² · · · · G^f] (ここで、M⁴ は周期律表第5~ 15族元素、好ましくは周期律表第13~15族元素を示す。G¹~G¹は それぞれ水素原子,ハロゲン原子,炭素数1~20のアルキル基,炭素数 2~40のジアルキルアミノ基,炭素数1~20のアルコキシ基,炭素数 6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~ 40のアルキルアリール基、炭素数7~40のアリールアルキル基、炭素 数1~20のハロゲン置換炭化水素基,炭素数1~20のアシルオキシ基, 有機メタロイド基、又は炭素数2~20のヘテロ原子含有炭化水素基を示 す。G¹~Gfのうち2つ以上が環を形成していてもよい。fは〔(中心金 属M⁴ の原子価) + 1] の整数を示す。) 、 [Z²] は、酸解離定数の逆数 の対数 (pK。) がー10以下のブレンステッド酸単独又はブレンステッド 酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義さ れる共役塩基を示す。また、ルイス塩基が配位していてもよい。また、 R²² は水素原子,炭素数1~20のアルキル基,炭素数6~20のアリール基, 炭素数7~40のアルキルアリール基又は炭素数7~40のアリールアル キル基を示し、R²³及びR²⁴はそれぞれシクロペンタジエニル基、置換シク ロペンタジエニル基、インデニル基又はフルオレニル基、R²⁵は炭素数1~ 20のアルキル基、炭素数6~20のアリール基、炭素数7~40のアル キルアリール基又は炭素数7~40のアリールアルキル基を示す。R[∞]はテ トラフェニルポルフィリン、フタロシアニンなどの大環状配位子を示す。 hは $[L^1-R^{22}]$, $[L^2]$ のイオン価数で $1\sim3$ の整数、aは1以上の整 数、 b = (h × a)である。M² は、周期律表第1~3、11~13、17 族元素を含むものであり、M³は、周期律表第7~12族元素を示す。] で表されるものを好適に使用することができる。

ここで、L¹の具体例としては、アンモニア、メチルアミン、アニリン、ジメチルアミン、ジエチルアミン、Nーメチルアニリン、ジフェニルアミン、N, Nージメチルアニリン、トリメチルアミン、トリエチルアミン、トリーnーブチルアミン、メチルジフェニルアミン、ピリジン、pーブロモーN、Nージメチルアニリン、pーニトローN、Nージメチルアニリンなどのアミン類、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル、ベンゾニトリルなどのニトリル類などを挙げることができる。

R²²の具体例としては水素、メチル基、エチル基、ベンジル基、トリチル基などを挙げることができ、R²³、R²⁴の具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などを挙げることができる。R²⁵の具体例としては、フェニル基、pートリル基、pーメトキシフェニル基などを挙げることができ、R²⁶の具体例としてはテトラフェニルポルフィリン、フタロシアニン、アリル、メタリルなどを挙げることができる。また、M²の具体例としては、Li、Na、K、Ag、Cu、Br、I、I₃などを挙げることができ、M³の具体例としては、Mn、Fe、Co、Ni、Znなどを挙げることができる。

また、 $\{Z^1\}^-$ 、すなわち $\{M^6G^1G^2\cdots G^f\}$ において、 M^6 の具体例としてはB、A1、Si、P、As、Sbなど、好ましくはB及びA1が挙げられる。また、 G^1 、 $G^2\sim G^f$ の具体例としては、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基など、アルコキシ基若しくはアリールオキシ基としてメトキシ基、エトキシ基、n-ブトキシ基、フェノキシ基など、炭化水素基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-プチル基、イソプロピル基、n-プチル基、n-プチル基、n-プチル基、n-プチル基、n-プチル基、n-プチル基、n-

ルフェニル基、3、5 - ジメチルフェニル基など、ハロゲン原子としてフッ素、塩素、臭素、ヨウ素、ヘテロ原子含有炭化水素基としてp - フルオロフェニル基、3、5 - ジフルオロフェニル基、ペンタクロロフェニル基、3、4、5 - トリフルオロフェニル基、ペンタフルオロフェニル基、3、5 - ビス(トリフルオロメチル)フェニル基、ビス(トリメチルシリル)メチル基など、有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニル硼素などが挙げられる。

また、非配位性のアニオンすなわち p K a が -1 0 以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基 $[Z^2]^-$ の具体例としてはトリフルオロメタンスルホン酸アニオン(CF_3 SO_3) 「、ビス(トリフルオロメタンスルホニル)メチルアニオン、ビス(トリフルオロメタンスルホニル)バンジルアニオン、ビス(トリフルオロメタンスルホニル)で、当塩素酸アニオン($C1O_4$) 「、トリフルオロ酢酸アニオン(CF_3 CO_2) へキサフルオロアンチモンアニオン(SbF_6) 、フルオロスルホン酸アニオ(FSO_3) 「、クロロスルホン酸アニオン($C1SO_3$)」、フルオロスルホン酸アニオン $(C1SO_3)^-$ 、フルオロスルホン酸アニオン $(FSO_3)^-$ 、フルオロスルホン酸アニオン $(FSO_3)^-$ 、アルオロスルホン酸アニオン $(FSO_3)^-$ 、アルオロスルホン酸アニオン $(FSO_3)^-$ 、アルオロスルホン酸アニオン $(FSO_3)^-$ 、アルオロスルホン酸アニオン $(FSO_3)^-$ 、トリフルオロメタンスルホン酸 $(FSO_3)^-$ 、トリフルオロメタンスルホン酸 $(FSO_3)^-$ などを挙げことができる。

このような(B-2) 成分化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸トリーnープチルアンモニウム、テトラフェニル硼酸トリメチルアンモニウム、テトラフェニル硼酸テトラエチルアンモニウム、テトラフェニル硼酸メチル(トリーnープチル)アンモニウム、テトラフェニル硼酸ベンジル(トリーnープチル)アンモニウム、テトラフェニル硼酸ジメチルジフェニルアンモニウム、テトラフェニル硼酸トリフェニル(メチル)アンモニウム、テトラフェニル

WO 01/00693 PCT/JP00/04142

硼酸トリメチルアニリニウム、テトラフェニル硼酸メチルピリジニウム、 テトラフェニル硼酸ベンジルピリジニウム,テトラフェニル硼酸メチル(2-シアノピリジニウム), テトラキス(ペンタフルオロフェニル)硼酸 トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸ト リーn-ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼 酸トリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼 酸テトラーn-ブチルアンモニウム, テトラキス (ペンタフルオロフェニ ル) 硼酸テトラエチルアンモニウム、テトラキス (ペンタフルオロフェニ ル) 硼酸ベンジル (トリーnーブチル) アンモニウム、テトラキス (ペン タフルオロフェニル) 硼酸メチルジフェニルアンモニウム, テトラキス (ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム,テ トラキス (ペンタフルオロフェニル) 硼酸メチルアニリニウム, テトラキ ス (ペンタフルオロフェニル) 硼酸ジメチルアニリニウム, テトラキス (ペンタフルオロフェニル)硼酸トリメチルアニリニウム,テトラキス(ペ ンタフルオロフェニル)硼酸メチルピリジニウム、テトラキス(ペンタフ ルオロフェニル) 硼酸ベンジルピリジニウム、テトラキス (ペンタフルオ ロフェニル) 硼酸メチル (2-シアノピリジニウム), テトラキス (ペン タフルオロフェニル)硼酸ベンジル(2-シアノピリジニウム),テトラ キス (ペンタフルオロフェニル) 硼酸メチル(4-シアノピリジニウム), テトラキス (ペンタフルオロフェニル) 硼酸トリフェニルホスホニウム, テトラキス〔ビス(3,5-ジトリフルオロメチル)フェニル〕硼酸ジメ チルアニリニウム、テトラフェニル硼酸フェロセニウム、テトラフェニル 硼酸銀,テトラフェニル硼酸トリチル,テトラフェニル硼酸テトラフェニ ルポルフィリンマンガン、テトラキス(ペンタフルオロフェニル)硼酸フ ェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸(1,1'-ジメチルフェロセニウム) , テトラキス (ペンタフルオロフェニル) 硼酸 デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸

銀、テトラキス(ペンタフルオロフェニル) 硼酸トリチル, テトラキス(ペンタフルオロフェニル) 硼酸リチウム, テトラキス(ペンタフルオロフェニル) 硼酸テトラフェニルがルフィリンマンガン, テトラフルオロ硼酸銀, ヘキサフルオロ燐酸銀, ヘキサフルオロ砒素酸銀, 過塩素酸銀, トリフルオロ酢酸銀, トリフルオロメタンスルホン酸銀などを挙げることができる。(B-2)成分としては、上記一般式(5)式で表されるイオン性化合物が好ましい。この(B-2)成分である、該(A)成分の遷移金属化合物と反応してカチオンに変換しうるイオン性化合物は一種用いてもよく、また二種以上を組み合わせて用いてもよい。

本発明におけるオレフィン重合触媒においては、(B)成分として、(B-1)成分のみを用いてもよいし、(B-2)成分のみを用いてもよく、また、(B-1)成分と(B-2)成分とを組み合わせて用いてもよい。

さらに、前記の(A)成分及び(B)成分を主成分として含有するものであってもよいし、また、(A)成分、(B)成分及び(C)有機アルミニウム化合物を主成分として含有するものであってもよい。

ここで、(C)成分の有機アルミニウム化合物としては、一般式(7) R^{27}_{v} A 1 Q_{3-v} ・・・(7)

(式中、 R^{27} は炭素数 $1\sim10$ のアルキル基、Qは水素原子、炭素数 $1\sim2$ 0のアルコキシ基,炭素数 $6\sim20$ のアリール基又はハロゲン原子を示し、vは $1\sim3$ の整数である)

で示される化合物が用いられる。

前記一般式 (7) で示される化合物の具体例としては、トリメチルアルミニウム, トリエチルアルミニウム, トリイソプロピルアルミニウム, トリイソプチルアルミニウム, ジメチルアルミニウムクロリド, ジエチルアルミニウムクロリド, メチルアルミニウムジクロリド, エチルアルミニウムジクロリド, ジイソプチルアルミニウムジクロリド, ジイソプチルアルミニ

ウムヒドリド, ジエチルアルミニウムヒドリド, エチルアルミニウムセス キクロリド等が挙げられる。

これらの有機アルミニウム化合物は一種用いてもよく、二種以上を組合 せて用いてもよい。

この重合触媒における(A)触媒成分と(B)触媒成分との使用割合は、(B)触媒成分として(B-1)化合物を用いた場合には、モル比で好ましくは $1:1 \circ 1:1 \circ$

また、(A) 触媒成分と所望により用いられる (C) 触媒成分との使用 割合は、モル比で好ましくは1:1~1:20,000、より好ましくは 1:5~1:2,000、さらに好ましくは1:10~1:1,000の 範囲が望ましい。該 (C) 触媒成分を用いることにより、遷移金属当たり の重合活性を向上させることができるが、あまり多い場合、特に上記範囲 を逸脱する場合は有機アルミニウム化合物が無駄になるとともに、重合体 中に多量に残存し、また少ない場合は充分な触媒活性が得られず、好まし くない場合がある。

さらに、本発明においては、各触媒成分の少なくとも一種を適当な担体に担持して用いることができる。該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特にモルホロジー制御の点から無機酸化物担体あるいはそれ以外の無機担体が好ましい。無機酸化物担体としては、具体的には、SiO₂, Al_2O_3 , MgO, ZrO_2 , TiO_2 , Fe_2O_3 , B_2O_3 , CaO, ZnO, BaO, ThO_2 やこれらの混合物、例えばシリカアルミナ、ゼオ

ライト、フェライト、グラスファイバーなどが挙げられる。これらの中で は、特に SiO_2 または Al_2O_3 が好ましい。なお、上記無機酸化物担体は、 少量の炭酸塩、硝酸塩、硫酸塩などを含有してもよい。一方、上記以外の 担体として、 $MgCl_2$, $Mg(OC_2H_5)_2$ などのマグシウム化合物などで 代表される一般式MgR²⁸、X⁴。で表されるマグネシウム化合物やその錯塩 などを挙げることができる。ここで、R²⁸は炭素数1~20のアルキル基、 炭素数1~20のアルコキシ基又は炭素数6~20のアリール基、X⁴はハ ロゲン原子又は炭素数1~20のアルキル基を示し、xは0~2、yは0 ~ 2 であり、かつ x + y = 2 である。各 R^{28} 及び各 X^4 はそれぞれ同一でも よく、また異なってもいてもよい。また、有機担体としては、ポリスチレ ン、スチレンージビニルベンゼン共重合体、ポリエチレン、ポリプロピレ ン、置換ポリスチレン、ポリアリレートなどの重合体やスターチ、カーボ ンなどを挙げることができる。本発明において用いられる担体としては、 $MgCl_2$, MgCl (OC_2H_5) , Mg $(OC_2H_5)_2$, SiO_2 , Al_2O 。などが好ましい。また担体の性状は、その種類及び製法により異なるが、 平均粒径は通常1~300μm、好ましくは10~200μm、より好ま しくは20~100μmである。粒径が小さいと重合体中の微粉が増大し、 粒径が大きいと重合体中の粗大粒子が増大し嵩密度の低下やホッパーの詰 まりの原因になる。また、担体の比表面積は、通常 $1 \sim 1$, $0 \cdot 0 \cdot 0 \cdot m^2 / g$ 、 好ましくは $50\sim500\,\mathrm{m}^2/\mathrm{g}$ 、細孔容積は通常 $0.1\sim5\,\mathrm{cm}^3/\mathrm{g}$ 、好 ましくは0.3~3cm3/gである。比表面積又は細孔容積のいずれかが上 記範囲を逸脱すると、触媒活性が低下することがある。なお、比表面積及 び細孔容積は、例えばBET法に従って吸着された窒素ガスの体積から求 めることができる(J. Am. Chem. Soc, 第60巻, 第309ペ ージ (1983年) 参照)。さらに、上記担体は、通常150~1,00 0 ℃、好ましくは200 ~800 ℃で焼成して用いることが望ましい。

触媒成分の少なくとも一種を前記担体に担持させる場合、(A)触媒成

分及び(B) 触媒成分の少なくとも一方を、好ましくは(A) 触媒成分及び(B) 触媒成分の両方を担持させるのが、モルホロジー制御、気相重合などプロセスへの適用性などの点から望ましい。

該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方 法については、特に制限されないが、例えば① (A) 成分及び (B) 成分 の少なくとも一方と担体とを混合する方法、②担体を有機アルミニウム化 合物又はハロゲン含有ケイ素化合物(四塩化ケイ素、メチルトリクロロシ ラン、ジメチルジクロロシラン、トリメチルクロロシラン等)で処理した のち、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合 する方法、③担体と(A)成分又は(B)成分あるいはその両方と有機ア ルミニウム化合物又はハロゲン含有ケイ素化合物(四塩化ケイ素、メチル トリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等)反応させる方法、④(A)成分又は(B)成分を担体に担持させたのち、 (B) 成分又は(A) 成分と混合する方法、⑤(A) 成分と(B) 成分と の接触反応物を担体と混合する方法、⑥(A)成分と(B)成分との接触 反応に際して、担体を共存させる方法などを用いることができる。又、上 記④、⑤及び⑥の反応において、有機アルミニウム化合物を添加すること もできる。ここで、有機アルミニウム化合物としては、前記の(C)成分 の有機アルミニウム化合物から適宜選択すればよい。

なお、上記④、⑤及び⑥の反応において、(C)成分の有機アルミニウム化合物を添加することもできる。

本発明においては、前記化合物(B-1)成分と担体との使用割合は、質量比で好ましくは $1:0.5\sim1:1,000$ 、より好ましくは $1:1\sim1:50$ とするのが望ましく、(B-2)成分と担体との使用割合は、質量比で好ましくは $1:5\sim1:10,000$ 、より好ましくは $1:10\sim1:500$ とするのが望ましい。触媒成分(B)として二種以上を混合して用いる場合は、各(B) 成分と担体との使用割合が質量比で上記範囲

内にあることが望ましい。また、 (A) 成分と担体との使用割合は、質量比で、好ましくは $1:5\sim1:10$, 000、より好ましくは $1:10\sim1:500$ とするのが望ましい。

該 (B) 成分 [(B-1) 成分, (B-2) 成分] と担体との使用割合、又は (A) 成分と担体との使用割合が上記範囲を逸脱すると、活性が低下することがある。このようにして調製された本発明で用いる重合触媒の平均粒径は、通常2~200μm、好ましくは10~150μm、特に好ましくは20~100μmであり、比表面積は、通常20~1,000m²/g、好ましくは50~500m²/gである。平均粒径が2μm未満であると重合体中の微粉が増大することがあり、200μmを超えると重合体中の粗大粒子が増大することがある。比表面積が20m²/g未満であると活性が低下することがあり、1,000m²/gを超えると重合体の嵩密度が低下することがある。また、この重合触媒において、担体100g中の遷移金属量は、通常0.001~1g、特に0.001~0.1gであることが好ましい。遷移金属量が上記範囲外であると、活性が低くなることがある。このように担体に担持することによって工業的に有利な高い嵩密度と優れた粒径分布を有するオレフィン重合体を得ることができる。

前記(A)成分、(B)成分及び必要に応じて(C)成分及び/又は担体の接触は、窒素等の不活性気体中、ペンタン、ヘキサン、ヘプタン、トルエン、シクロヘキサン等の炭化水素溶媒中で行えばよい。接触温度はー30℃から溶媒の沸点までの温度範囲、好ましくは−10℃~100℃の温度範囲、接触時間は、通常30秒から10時間行えばよい。接触後、固体触媒成分は洗浄してもしなくてもよい。なお、接触においては、(A)成分における二種の互いに異なる遷移金属化合物は、いずれを先に用いてもよく、前もって混合して用いてもよい。

このようにして得られた触媒は、いったん溶媒留去を行って固体として 取り出してから重合に用いてもよく、そのまま重合に用いてもよい。

また、本発明においては、(A)成分及び(B)成分の少なくとも一方 の担体への担持操作を重合系内で行うことにより触媒を生成させることが できる。例えば(A)成分及び(B)成分の少なくとも一方と担体とさら に必要により前記(C)成分の有機アルミニウム化合物を加え、オレフィ ンを予備重合させて得られた触媒であってもよい。予備重合の際に用いら れるオイフィンとしては、エチレンおよび炭素数3~200αーオレフィ ン、例えばプロピレン、1ーブテン、1ーペンテン、4ーメチルー1ーペ ンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセンなどを例示できる。これらの中では、エチレン、プロピレン あるいはエチレンープロピレン重合の際に用いられる α ーオレフィンとの 組み合わせが特に好ましい。不活性炭化水素溶媒として具体的には、上述 の固体触媒成分の調製の際に使用した不活性炭化水素溶媒と同様のものが 使用できる。予備重合の際には、遷移金属に換算して通常10⁻⁶~2×10⁻ ²モル/リットル(溶媒)、好ましくは5×10⁻⁵~10⁻²モル/リットル(溶媒)の量で用いられ、担体1g当たり、遷移金属としてメチルアルミノ キサン(MAOともいう)のような有機アルミニウム化合物中のアルミニ ウムと遷移金属との原子比(Al/遷移金属)は、通常10~5,000 好ましくは20~1,000である。必要に応じて用いられる有機アルミ ニウム化合物のアルミニウム原子とMAO中のアルミニウム原子比は、通 常0.02~3、好ましくは0.05~1.5の範囲である。予備重合温 度は-20~60℃、好ましくは0~50℃であり、また予備重合時間は 0. 5~100時間、好ましくは1~50時間程度である。本発明におい ては、オレフィンを予備重合させて得られた触媒であることが好ましくい。 次に、上述した重合用触媒を用いて、プロピレンを単独重合、またはプ ロピレン並びにプロピレンとエチレン及び/又は炭素数4~20のαーオ レフィンとを共重合させる方法について述べる。

この場合、重合方法は特に制限されず、スラリー重合法, 気相重合法,

塊状重合法、溶液重合法、懸濁重合法などのいずれの方法を用いてもよいが、スラリー重合法、気相重合法が好ましい。なかでも、気相重合法が特に好ましい。

重合条件については、重合温度は通常 $-100\sim250$ ℃、好ましくは $-50\sim200$ ℃、より好ましくは $0\sim130$ ℃である。また、反応原料に対する触媒の使用割合は、原料モノマー/上記(a)成分(モル比)が好ましくは $1\sim10^8$ 、特に $100\sim10^5$ となることが好ましい。さらに、重合時間は通常 $5分\sim10$ 時間、反応圧力は好ましくは常圧 ~20 MPa ・ G、特に好ましくは常圧 ~10 MPa ・ Gである。

重合体の分子量の調節方法としては、各触媒成分の種類,使用量,重合 温度の選択、さらには水素存在下での重合などがある。

重合溶媒を用いる場合、例えば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素、ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素、クロロホルム、ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。また、αーオレフィンなどのモノマーを溶媒として用いてもよい。なお、重合方法によっては無溶媒で行うことができる。

重合に際しては、前記重合用触媒を用いて予備重合を行うことができる。 予備重合は、固体触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。予備重合に用いるオレフィンについては特に制限はなく、前記に例示したものと同様のもの、例えばエチレン、炭素数3~20のαーオレフィン、あるいはこれらの混合物などを挙げることができるが、該重合において用いるオレフィンと同じオレフィンを用いることが有利である。 また、予備重合温度は、通常-20~200℃、好ましくは-10~130℃、より好ましくは0~80℃である。予備重合においては、溶媒として、不活性炭化水素,脂肪族炭化水素,芳香族炭化水素,モノマーなどを用いることができる。これらの中で特に好ましいのは脂肪族炭化水素である。また、予備重合は無溶媒で行ってもよい。

予備重合においては、予備重合生成物の極限粘度 $[\eta]$ (135℃テトラリン中で測定)が0.2 デシリットル/ g以上、特に0.5 デシリットル/ g以上、触媒中の遷移金属成分1 ミリモル当たりに対する予備重合生成物の量が1~10,000g、特に10~1,000gとなるように条件を調整することが望ましい。

共重合においては、モノマーの添加順序は問わないが、 $\alpha-オレフィン$ をプロピレンより先に仕込んでおくことが好ましい。エチレンを用いる場合は、プロピレンとエチレンの混合気体を仕込むことが好ましい。コモノマーの仕込み比は、 $\alpha-オレフィン$ の場合には触媒1mo1に対して $1\sim10$,000,000mo1、好ましくは $1\sim1$,000,000mo1、さらに好ましくは $1\sim1$ 00,000mo1である。エチレンの場合は、(エチレン/プロピレン) mo1比が(0.01/100) \sim (99/100)、好ましくは(0.01/100) \sim (55/100)、さらに好ましくは(0.01/100) \sim (10/100) である。

3. 成形体

本発明の成形体は、前記のピロピレン系重合体を成形して得られるものである。本発明の成形体は、柔軟性の割に低温加工特性(特に低温ヒートシール性、エンボス加工性)に優れているという特徴がある。さらに、透明性にも優れている。本発明の成形体としては、フィルム、シート、繊維、容器、自動車内装材、家電製品のハウジング材等が挙げられる。なかでも、フィルム、シートが好適である。フィルムとしては、低温ヒートシール性に優れるために、食品包装用フィルムや農業用フィルム(ビニールハウス

の例)等が挙げられる。容器としては、透明性に優れているので、透明ケ ース、透明ボックス、化粧箱等が挙げられる。

成形体の成形方法としては、射出成形法、圧縮成形法、射出圧縮成形法、 ガスアシスト射出成形法、押し出し成形法、ブロー成形法、カレンダー成 形法等が挙げられる。フィルム、シートの成形方法としては、圧縮成形法、 押し出し成形法、ブロー成形法、キャスト成形法等が挙げられる。

以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の 実施例により何ら制限されるものではない。

まず、本発明の重合体の樹脂特性及び物性の評価方法について説明する。

- (1) [η] の測定
- (株)離合社のVMR-053型自動粘度計を用い、テトラリン溶媒中 135℃において測定した。
- (2) ペンタッド分率および異常挿入分率の測定 詳細な説明において記載した方法に従って測定した。
- (3) 共重合体中のコモノマーの含有量及び立体規則性指標 [mm] 日本電子社製のJNM-EX400型NMR装置を用い、以下の条件で¹³ C-NMRスペクトルを測定し、以下の方法により算出した。

試料濃度 : 220mg/NMR溶媒 3ml

NMR溶媒:1,2,4-トリクロロベンゼン/ベンゼン-d6 (90/10 vol%)

測定温度 :130℃

パルス幅 : 45°

パルス繰り返し時間:4秒

積算回数 :10,000回

(a) 1 - ブテン含有量

プロピレンと1ープテンのランダム共重合体について¹³C-NMRにより 測定したスペクトルの各シグナルの化学シフトと帰属を表1に示す。

表 1

	<u></u>		<u> </u>
番号	化学シフト	帰属	
Θ	45.7~47.4	PP	S α α
2	43.0~44.9	PB	S & &
3	42. 3	PPP	S α α
(4)	40.3	вв	S & &
(5)	38.6	PPP	Τατ
6	35.0	PPP	Sαβ 、及びPP <u>P</u> Ταβ
Ø	35. 5	8単位	Тββ
8	31.6	PPP	Τβγ
9	30.6	P <u>P</u> P	Sαβ
6	28.6~29.8	P単位	T & B
0	27.8-28.4	B単位	側鎖メチレン炭素
13	21.2-22.7	PBB	PPP (mm), PPB (mm), BPB (mm)
0	20.6~21.2	РВВ	PPP (mr) 、 PP8 (mr) 、 BP8 (mr)
			PPB (rr) , BPB (rr)
1	19.8-20.6	P # #	PPP (rr)
(3)	17.6	PaB	
(17.2	Par	
0	11.1	B単位	側鎖メチル炭素
	1	1	

注)Bは1-ブテン単位を示す

共重合体中の1-プテン単位の含有量 α (モル%) は、主鎖メチレン炭素に注目し、下記 (1) 式より求めた。

$$\alpha = \{ (2)/2 + (4) \}/((1) + (2) + (3) + (4) + 2 \times (9) \} \} \times 100 \cdot \cdot \cdot (1)$$

但し、例えば上式中の(1)、(2)・・・等は表1中の番号①、②・・

・等のシグナル強度で代用した。

また、共重合体の立体規則性指標 [mm] (モル%) は、表1中の丸付きの数字番号12~14のシグナル強度から頭-尾結合部のPPP連鎖のアイソタクチックトライアッド分率を下記 (2) 式により求めた。

$$P = \{ (12) / ((12) + (13) + (14)) \} \times 100$$

 \cdot · (2)

なお、 \underline{P} P P 連鎖 S α β 炭素のシグナルは P \underline{P} P 連鎖連鎖 S α β 炭素のシグナル強度で代用した。

(4) 分子量分布(Mw/Mn)の測定

Mw/Mnは、GPC法により、下記の装置及び条件で測定したポリエチレン換算の質量平均分子量Mw及び数平均分子量Mnより算出した値である。

GPC測定装置

カラム: TOSO GMHHR-H(S) HT

検出器 :液体クロマトグラム用RI検出器 WATERS

150C

測定条件

溶媒 : 1, 2, 4-トリクロロベンゼン

測定温度 : 145℃

流速 : 1. 0 ミリリットル/分

試料濃度 : 2.2 m g/ミリリットル

注入量:160マイクロリットル

検量線 : Universal Calibration

解析プログラム:HT-GPC (Ver. 1.0)

(5) DSC測定

示差走査型熱量計(パーキン・エルマー社製,DSC-7)を用い、試料 $10 \, \mathrm{mg}$ を窒素雰囲気下 $230 \, \mathrm{C}$ で3分間溶融した後、 $10 \, \mathrm{C}$ /分で $0 \, \mathrm{C}$ まで降温後、さらに、 $0 \, \mathrm{C}$ で3分間保持した後、 $10 \, \mathrm{C}$ /分で昇温させることにより得られる融解吸熱量を ΔH とした。また、このときに得られる融解吸熱カーブの最大ピークのピークトップを融点: $T \, \mathrm{m}$ (C) とした。

(6) 昇温分別クロマトグラフ

以下のようにして、溶出曲線におけるTREFのカラム温度25℃にお

WO 01/00693 PCT/JP00/04142

いて充填剤に吸着されないで溶出する成分の量(質量%)を求めた。

(a) 操作法

試料溶液を温度135℃に調節したTREFカラムに導入し、次いで降温速度5℃/時間にて徐々に0℃まで降温し、30分間ホールドし、試料を充填剤に吸着させる。その後、昇温速度40℃/時間にてカラムを135℃まで昇温し、溶出曲線を得た。溶出曲線のピーク位置の温度をTpとし、これよりTp±5℃の温度範囲にて溶出する成分量を求めた。また、溶出曲線のピーク位置の半値幅をTh(\mathbb{C})として求めた。

(b) 装置構成

TREFカラム:GLサイエンス社製 シリカゲルカラム

 $(4.6 \phi \times 150 \text{ mm})$

フローセル :GLサイエンス社製 光路長1mm KBrセル

送液ポンプ :センシュウ科学社製 SSC-3100ポンプ

バルブオーブン :GLサイエンス社製 MODEL554オーブン

(高温型)

TREFオーブン: GLサイエンス社製

二系列温調器 : 理学工業社製 REX-C100温調器

検出器:液体クロマトグラフィー用赤外検出器

FOXBORO社製 MIRAN 1A CVF

10方バルブ:バルコ社製 電動バルブ

ループ:バルコ社製 500マイクロリットルループ

(c) 測定条件

溶媒 : o - ジクロロベンゼン

試料濃度 : 7.5g/リットル

注入量:500マイクロリットル

ポンプ流量:2.0ミリリットル/分

検出波数 : 3. 4 1 μ m

カラム充填剤 : クロモソルブP (30~60メッシュ)

カラム温度分布 : ±0.2℃以内

(7) 引張弾性率

プロピレン系重合体をプレス成形して試験片を作成し、JIS K 7

- 113に準拠した引張試験により測定した。
 - 試験片(2号ダンベル) 厚み:1mm
 - クロスヘッド速度:50mm/min
 - ・ロードセル:100kg
- (8) 内部ヘイズ

プロピレン系重合体をプレス成形して試験片を作成し、JIS K 7 105に準拠した試験により測定した。

- ・試験片:15cm×15cm×1mm (試験片厚み=1mm)
- (9) 沸騰ジエチルエーテル抽出量の測定

ソックスレー抽出器を用い、以下の条件で測定する。

試料 : 1~2 g

試料形状:パウダー状

(ペレット化したものは粉砕し、パウダー化して用いる)

抽出溶媒:ジエチルエーテル

抽出時間:10時間

抽出回数:180回以上

抽出量の算出方法:以下の式により算出する。

[ジエチルエーテルへの抽出量(g)/仕込みパウダー質量(g)]×100

〔製造例1〕

- (1) (1、2'-エチレン) (2, 1'-エチレン) ビス(5-フェニルーインデニル) ハフニウムジクロリドの合成
- 3, 4-ジメチルビフェニルの合成

3, 4-ジメチルアニリン (50g, 0.41mol) およびベンゼン (1000ml) をマグネチックスターラーおよびジムロート管、滴下ロート付き2リットル丸底フラスコ中で混合し、窒素雰囲気下、80℃に昇温した。その後、加熱還流させながら、亜硝酸イソアミル (84ml, 0.63mol) を徐々に窒素ガスが発生するようにゆっくり滴下した。そのまま、48時間加熱還流した後ベンゼンを留去し残留物をカラム精製する (ヘキサン溶媒で目的物が先に流出してくる) ことにより目的物を54% の収率で得た (40.3g, 0.22mol)。

4-フェニルー o ーキシリレンジブロミドの合成

3, 4-ジメチルピフェニル(44.7g, 0.245mol)及びN -ブロモスクシンイミド(98.1g, 0.539mol)四塩化炭素(560ml)、アゾピスイソブチロニトリル(0.15g)をマグネチックスターラーおよびジムロート管付き1リットル丸底フラスコ中で混合し、 窒素雰囲気下、80℃、1時間加熱攪拌した。反応終了後、懸濁液をろ過し溶媒を留去することにより収率99%で目的物を得た(83g, 0.0 244mol)。

4-フェニルー0-キシリレンジニトリルの合成

マグネチックスターラーおよびジムロート管付き500ml丸底フラスコ中でメタノール(240ml)、水(80ml)、4ーフェニルーoーキシリレンジプロミド(83g, 0.0244mol)およびシアン化カリウム(41g, 0.625mol)を混合し、70℃で1時間加熱攪拌した。反応終了後、水(350ml)を投入し、反応生成物をジエチルエーテル(100ml)で3回抽出した。粗生成物をカラム精製(展開溶媒:塩化メチレン)を行い目的化合物を41%の収率で得た(23g, 0.099mol)。

<u>4-フェニルー1、2-二酢酸ベンゼンの合成</u>

ジムロート管およびマグネチックスターラー付き2リットルのナスフラ

スコに4-フェニル-o-キシリレンジニトリル (33g, 0.142m o1) および、酢酸 (130ml) 濃硫酸 (130ml)、水 (130m l)を投入し、45分間加熱還流した。反応終了後、水 (800ml)を加え沈殿物をグラスフィルターでろ過し、それを60℃で減圧乾燥することにより目的化合物を70%の収率で得た(27g, 0.100mol)。

4-フェニル-1、2-ビス(酢酸エチル)ベンゼンの合成

ジムロート管およびマグネチックスターラー付き1リットルのナスフラスコに4ーフェニルー1、2ー二酢酸ベンゼン(27g, 0.100mo1)および、脱水エタノール(400ml)、濃硫酸(16g)を投入し、8時間加熱還流した。反応終了後、水(500ml)を加えジエチルエーテル(400ml)で抽出することに粗生成物を得た。租生成物よりトルエン(300ml)で抽出操作することにより目的化合物を86%の収率で得た(28g, 0.086mol)。

6-フェニルー1-エトキシカルボニルー2-インダノンの合成

メカニカルスターラーおよびジムロート管、滴下ロート付き1リットルのセパラブルフラスコにナトリウム(1.95g,0.085mol)およびトルエン(400ml)を投入し、攪拌しながら110℃に加熱した。その中に、4ーフェニルー1、2ービス(酢酸エチル)(28g,0.086mol)のトルエン溶液(400ml)を2時間かけてゆっくり滴下した。滴下終了後さらに3時間加熱還流した。反応終了後、放冷しエタノール(50ml)を加え、続いて氷冷した10%酢酸水溶液(500ml)を加えた。有機相を分離、硫酸マグネシウムで乾燥した後、溶媒を留去し目的化合物を71%の収率で得た(20g、0.071mol)。

5-フェニルー2-インダノンの合成

マグネチックスターラー付き 1 リットルのナスフラスコに 6 ーフェニル -1 ーエトキシカルボニルー 2 ーインダノン (2 0 g, 0.071 mol) お よびジメチルスルホキシド (2 0 0 m l) 水 (5 g)、塩化ナトリウム (5g)を投入し、120℃で25分間加熱した。反応終了後、放冷し水(500ml)加えジエチルエーテル(500ml)で抽出した。有機相を分離、硫酸マグネシウムで乾燥した後、溶媒を留去し目的化合物を94%の収率で得た(14g、0.067mol)。

1-(5-フェニル-2-インデニル) 酢酸エチルの合成

2つの滴下ロートが付いた300m1三つロフラスコに水素化ナトリウム (1.7g, 0.071mol) およびTHF (テトラヒドロフラン: 100ml) を窒素気流下で投入した。ジエチルホスホノ酢酸エチル (15.0g, 0.067mol) およびTHF (50ml) を一方の滴下ロートに投入し、もう一方の滴下ロートに5-フェニルー2ーインダノン (14g, 0.067mol) およびTHF (50ml) を投入した。氷冷下でジエチルホスホノ酢酸エチルのTHF溶液を滴下し、30分間室温で攪拌した。次に、氷冷下で5-フェニルー2ーインダノンのTHF溶液を滴下し、1時間室温で攪拌した。反応終了後、水 (100ml) を加え、生成物をジエチルエーテル(500ml)で抽出することにより、目的化合物を91%の収率で得た(17g, 0.061mol)。

2- (1-ブロモエチル) -5-フェニルインデンの合成

滴下ロート付き300mlナスフラスコに窒素雰囲気下でLiAlH4(
2.0g,0.053mol)およびTHF50mlを投入した。その後、1-(5-フェニルー2ーインデニル)酢酸エチル(17g,0.061mol)のTHF溶液(50ml)をゆっくり自然還流する程度に滴下した。室温で30分間攪拌した後、希塩酸100mlを加えジエチルエーテル(300ml)で抽出することにより、粗2-(1-ヒドロキシエチル)-5-フェニルインデンを69%の収率で得た(10g,0.042mol)。得られた粗2-(1-ヒドロキシエチル)-5-フェニルインデンおよびトリフェニルフォスフィン(11.1g,0.042mol)、脱水塩化メチレン(200ml)を300mlナスフラスコに投入し。攪

拌しながら、N-ブロモスクシンイミド (7.5g, 0.042mol) をゆっくり加えた。その後、室温で1時間攪拌した後、減圧下で溶媒を留去し残留物をカラム精製 (ヘキサン/塩化メチレン=5/1) することにより、目的化合物を64%の収率で得た (8.1g, 0.027mol)。

ビス (1、2-エチレン)-ビス (5-フェニルインデン) の合成

滴下ロート付き500mlナスフラスコに窒素雰囲気下で2-(1-ブロモエチル)-フェニルインデン(8.1g,0.027mol)およびTHF(200ml)を投入した。-78℃でビス(トリメチルシリル)リチウムアミドのTHF溶液(1.0M,27.0ml,0.027mol)をゆっくり滴下した。滴下終了後、室温で1時間攪拌した。その後、減圧下で溶媒を留去し残留物をカラム精製(ヘキサン/塩化メチレン=8/1)することにより目的物を17%の収率で得た(1.0g,0.002mol)

<u>(1、2'-エチレン) (1'、2-エチレン) ビス (5-フェニルイ</u> ンデニル) ハフニウムジクロリドの合成

(1、2'-エチレン) (1'、2-エチレン) ビス (5-フェニルイン デン) (1.0g,0.002mol) 及びTHF (20ml)を200 mlのシュレンク中で混合し、その中に窒素気流下でn-ブチルリチウムの へキサン溶液 (1.66M,2.8ml,0.004mol)をゆっくり 滴下した。室温で1晩攪拌した後、溶媒を減圧留去し残留物を乾燥へキサン (100ml)で2回洗浄した。得られたLi塩の中にトルエン (30ml)を投入し、さらにその中に四塩化ハフニウム (0.73g,0.002mol)のトルエン溶液(30ml)を-78℃でゆっくり投入した。室温で1晩攪拌した後、溶媒をろ別した。このろ液を20mlに濃縮しへキサン (20ml)を加えた。生成した沈殿物をろ過乾燥することにより (1、2'-エチレン) (1'、2-エチレン) ビス (5-フェニルイン デニル) ハフニウムジクロリド (1)を4.3%の収率で得た (68.4

mg, 100mmol)。 'H-NMRで測定した結果は、以下のとおりである。

 $^{1}H-NMR$ (δ ppm) : 7. 60-7. 15 (m, 16H), 6. 41 (s, 2H), 3. 68 (bs, 8H)

[実施例1] プロピレンの気相重合

(1) MAO/SiO。担体の調製

十分に窒素置換された滴下ロート付き500m1ガラス製容器にトルエン(500m1)を仕込み、200℃、3時間、窒素気流下で焼成した富士シリシア製シリカ(4.04g)を加え、攪拌(400m・p・m)した。そして、0℃でアルベマール社製MAO(メチルアルミノキサン)/トルエン溶液(29.8m1)を45分間かけてゆっくり加えた。さらに0℃で1時間、室温で1時間、80℃で4時間攪拌した。反応終了後放冷し、60℃まで冷却した時点で上澄み液をトルエン(200m1)で3回、ヘプタン(200m1)で3回デカンテーションにより洗浄し目的物を得た。最後にヘプタンスラリーとして、シュレンクに保存した。A1担持量はUV定量法により定量した。(A1担持量:12.06%)

十分に窒素置換された 50m1シュレンクに窒素気流下でヘプタン(5m1)およびトリイソブチルアルミニウム(2M, 0.25m1, 0.5mmo1)を仕込み、その後、実施例1で得られた MAO/SiO_2 担体のヘプタンスラリー(A1換算:0.37mo1/1, 6.8m1, 2.5mmo1)および製造例1で得た(1、2'-x チレン)ビス(5-x エールインデニル)ハフニウムジクロリドのヘプタンスラリー($10\mu mo1/m1$, 0.5m1, $5\mu mo1$)を加え室温30分間攪拌し触媒を得た。

(2) プロピレンの気相重合

5リットルのオートクレーブに触媒分散剤としてポリプレピレンパウダー (ホモPP 720μm 以上、100g) を仕込み、70℃で20分間、

真空乾燥を行った。窒素で復圧した後、窒素気流下で攪拌(200 r. p. m) しながら、トリイソブチルアルミニウム(2M, 1. 25 ml, 2. 5 mm o l) を加えた。15分間攪拌した後、さらに先に調製したMAO / SiO₂ 担持触媒を加え5分間攪拌した。この時点(50℃、常圧、200 r. p. m) から、反応器温度70℃、プロピレン圧2.8MPa・G、回転数350 r. p. mまで、30分間かけて昇温、昇圧し、引き続き60分間気相重合を行った。その結果、壁に付着のないパウダー状のポリマーが得られた。得られたポリマーについて、前記の「樹脂特性」の評価を行った。また、得られたポリマーに以下の添加剤を処方し、短軸押出機(塚田樹機製作所製:TLC35-20型)にて押出し造粒し、ペレットを得た。ペレットを用いて前記「物性の評価方法」に従い測定した。得られた結果を表2に示した。

<酸化防止剤>

チバスペシャルティケミカルズ社製のイルガノックス1010:1,000ppm及びチバスペシャルティケミカルズ社製のイルガフォス168:1,000ppm

[製造例2]

1, 2-エタンジイル(2-インデニル)(1-(2-イソプロピルインデニル)) ハフニウムジクロリドの製造

100ml三つロフラスコに窒素気流下で、THF (20ml) および 2-イソプロピルインデニルリチウム (1.69g, 9.9mmol) を 投入し、-78℃に冷却した。そして、ヘキサメチルホスホラスアミド (1.74ml, 10mmol) を投入した。その後、滴下ロートより、THF (20ml) および1ーブロモー2ー (2ーインデニル) エタン (2g, 8.96mmol) の混合溶液を滴下した。そして、室温下8時間攪拌した後、水 (5ml) を投入した。エーテル (100ml) を投入し分液ロートを用いて、有機相を硫酸銅水溶液 (50ml) で3回洗浄した。

有機相を分離後、溶媒を留去し残留物をヘキサンを溶媒としたカラム精製することにより、1-(2-1)-10 (2 g) を得た。

次に、200m1シュレンクに窒素気流下で、ジエチルエーテル(20m1)および1-(2-4)ンデニル)-2-(1-(2-4))ロピルインデニル))エタン(2g)を投入し-78℃に冷却した。そして、n-1でにかります。 2m1 では、2m1 では、2m1

得られたリチウム塩(1.15g,3.18mmol)にトルエン(10ml)を投入し、-78℃に冷却した。そして、あらかじめ、-78℃に冷却しておいた四塩化ハフニウム(1.02g,3.18mmol)およびトルエン(10ml)のスラリーをカヌラーを用いて先の1ー(2ーインデニル)-2-(1-(2-4))ではいインデニル))エタンのリチウム塩に投入した。そして、室温で8時間攪拌し、上澄みをろ別した。ろ液を濃縮した後、塩化メチレン/ヘキサン混合溶媒より再結晶することにより、1,2-エタンジイル(2-4ンデニル)(1-(2-4)プロピルインデニル))ハフニウムジクロリドを得た(0.45g,0.83mmol)。 1 H-NMRで測定した結果は、以下のとおりである。

¹H-NMR (δ p p m): 7.8-7.0 (m, 8 H), 6.50 (s, 1 H), 6.11 (d, 1 H), 5.92 (d, 1 H), 3.65 (m, 4 H), 3.30 (m, 1 H), 1.50 (d, 3 H), 1.25 (d, 3 H)

[実施例2] プロピレンのスラリー重合

攪拌装置付き1リットルステレンレス製耐圧オートクレーブを80℃に

加熱し、充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。 乾燥窒素気流下、乾燥脱酸素ヘプタン400ml、トリイソブチルアルミ ニウムのヘプタン溶液 (2.0M) を0.5 ml (1.0 mm o l) 投入 し、350r. p. mでしばらく攪拌した。一方、十分に窒素置換された 50mlシュレンクに窒素気流下でトルエン(10ml) およびトリイソ ブチルアルミニウムヘプタン溶液 (2M, 0.5ml, 1.0mmol)を投入し、MAOのトルエン溶液 (2.0M, 1.0ml, 2.0mmo 1) および製造例2で得た1,2-エタンジイル(2-インデニル)(1 (2-イソプロピルインデニル)) ハフニウムジクロリドのヘプタンス ラリー $(10 \mu mol/l, 0.2 ml, 2.0 \mu mol)$ を加え、室温 で3分間攪拌した。そして、触媒スラリーをオートクレーブに素早く投入 した。その後、1,200r.p.mで攪拌を開始した。次に、プロピレ ンを全圧 O. 8MPa・Gにゆっくりと昇圧し、同時にゆっくりと温度を 50℃まで昇温した。60分間重合を実施した。反応終了後、未反応のプ ロピレンを脱圧により除去した。そして、反応混合物を2リットルのメタ ノールに投入してポリプロピレンを沈殿させ、ろ過乾燥することによりポ リプロピレンを得た。実施例1と同様に行い、得られた結果を表2に示し た。

〔比較例1〕

(1) マグネシウム化合物の調製

内容積約6リットルの攪拌装置付きガラス反応器を窒素ガスで十分に置換したのち、これにエタノール約2430g、ヨウ素16g及び金属マグネシウム160gを仕込み、かきまぜながら加熱して、還流条件下で系内からの水素ガスの発生がなくなるまで反応させ、固体状反応生成物を得た。この固体状生成物を含む反応液を減圧下で乾燥させることにより、マグネシウム化合物を得た。

(2) 団体触媒成分(A)の調製

窒素ガスで十分置換した内容積5リットルのガラス製反応器に、上記(1)で得られたマグネシウム化合物(粉砕していないもの)160g、精製ヘプタン800m1、四塩化ケイ素24m1及びフタル酸ジエテル23m1を仕込み、系内を80℃に保ち、かきまぜながら四塩化チタン770mlを加えて110℃で2時間反応させたのち、固体成分を分離して90℃の精製ヘプタンを洗浄した。さらに、四塩化チタン1220mlを加え、110℃で2時間反応させたのち、精製ヘプタンで十分に洗浄して固体触媒成分(A)を得た。

(3) 気相重合

内容積200リットルの重合槽に、上記(2)で得られた固体触媒成分6.0g/時間、トリイソブチルアルミニウム(TIBA)0.2モル/時間、1-アリルー3,4-ジメトキシベンゼン(ADMB)0.012モル/時間、シクロヘキシルメチルジメトキシシラン(CHMDMS)0.010モル/時間、プロピレン37kg/時間で供給し、70℃、20.8MPa・Gで重合を行った。得られたポリプロピレンパウダーについて、前記実施例1と同様に「樹脂特性の評価」を行った。また、得られたポリプロピレンパウダーに、2,5-ジメチルー2、5-ジー(t-ブチルパーオキシ)ーヘキサンを混合し、さらに酸化防止剤、安定剤、塩素補足剤を添加して混合した後、40mmφ押出機で押し出して、ペレットを得た。ペレットを用いて前記実施例1と同様に「物性の評価方法」を行った。得られた結果を表2に示した。プレス成形した試験片は、べたついた。

〔比較例2〕

比較例1において、シクロヘキシルメチルジメトキシシラン (CHMD MS) 0. 010モル/時間に変えてシクロヘキシルメチルジメトキシシラン (CHMDMS) 0. 025モルモル/時間に変えて行ったこと以外は比較例1と同様に行った。得られた結果を表2に示した。プレス成形した試験片は、べたついた。 [比較例3]

特許第2685262号公報の実施例1に従い製造したエチレンビス(インデニル)ハフニウムジクロリドを用いてプロピレンのスラリー重合を以下のように行った。

攪拌装置付き1リットルステレンレス製耐圧オートクレーブを80℃に 加熱し、充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。 乾燥窒素気流下、乾燥脱酸素トルエン400ml、トリイソブチルアルミ ニウムのヘプタン溶液 (2.0M) を0.5ml (1.0mmol)投入 し、350r. p. mでしばらく攪拌した。その後、MAOのトルエン溶 液 (2.03M, 0.13ml, 0.26mmol) およびエチレンビス (インデニル) ハフニウムジクロリドのヘプタンスラリー (5 μ m o 1 / $1、0.38ml, 1.9\mu mol)$ をオートクレーブに素早く投入した。 その後、1,200r,p,mで攪拌を開始した。次に、プロピレンを全 圧0. 7MPa・Gに3分間かけて昇圧し、同時に温度を50℃まで昇温 した。60分間重合を実施した。反応終了後、メタノール20mlをオー トクレーブに投入し、未反応のプロピレンを脱圧により除去した。そして、 反応混合物を4リットルのメタノールに投入してポリプロピレンを沈殿さ せ、ろ過乾燥することによりポリプロピレンを得た。実施例1と同様に評 価し、得られた結果を表2に示した。プレス成形した試験片は、透明性が 劣っていた。

[比較例4] プロピレンと1-ブテンのスラリー重合

攪拌装置付き1リットルステレンレス製耐圧オートクレーブを80℃に加熱し、充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。乾燥窒素気流下、乾燥脱酸素トルエン400ml、1ーブテン(30ml)、トリイソブチルアルミニウムのヘプタン溶液(2.0M)を0.5ml(1.0mmol)投入し、350r.p.mでしばらく攪拌した。その後、MAOのトルエン溶液(2.03M,0.13ml,0.26mmol)およびエチレンビス(インデニル)ハフニウムジクロリドのヘプタ

ンスラリー (5μmol/1、0.57ml, 2.9μmol)をオートクレーブに素早く投入した。その後、1,200r.p.mで攪拌を開始した。次に、0.7MPa・Gに3分間かけて昇圧し、同時に温度を50℃まで昇温した。60分間重合を実施した。反応終了後、メタノール20mlをオートクレーブに投入し、未反応のプロピレンを脱圧により除去した。そして、反応混合物を4リットルのメタノールに投入してポリマーを沈殿させ、ろ過乾燥することによりポリプロピレン/1ーブテン共重合体を得た。実施例1と同様に評価し、得られた結果を表2に示した。プレス成形した試験片は、べたついた。

[比較例5]

攪拌装置付き1リットルステレンレス製耐圧オートクレーブを80℃に 加熱し、充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。 乾燥窒素気流下、乾燥脱酸素トルエン400ml、トリイソブチルアルミ ニウムのヘプタン溶液 (2.0M)を0.5ml(1.0mmol)投入 し、350r. p. mでしばらく攪拌した。一方、十分に窒素置換された 50mlシュレンクに窒素気流下でトルエン(10ml)およびトリイソ ブチルアルミニウムヘプタン溶液 (2M, 0.5 ml, 1.0 mm o l) を投入し、MAOのトルエン溶液 (2.0M, 1.0ml, 2.0mmo 1) およびエチレンビスインデニルジルコニウムジクロリドのヘプタンス ラリー(10μmol/l, 0.2ml, 2.0μmol)を加え、室温 で3分間攪拌した。そして、触媒スラリーをオートクレーブに素早く投入 した。その後、1,200r.p.mで攪拌を開始した。次に、0.7M Pa・ Gにゆっくりと昇圧し、同時に温度を80℃まで昇温した。60分 間重合を実施した。反応終了後、未反応のプロピレンを脱圧により除去し た。そして、反応混合物を2リットルのメタノールに投入してポリプロピ レンマーを沈殿させ、ろ過乾燥することによりポリプロピレンを得た。実 施例1と同様に評価し、得られた結果を表2に示した。プレス成形した試

験片は、機械的強度が劣っていた。

[実施例3]

[ジメチルシリレン(2ーインデニル)(1ー(2ーメチルー4,5ーベン ゾインデニル))ハフニウムジクロリドの合成]

2-メチルー4, 5-ベンゾー1-インダノンの合成

窒素導入管付き300ml 三つロフラスコに塩化メチレン(100ml) およびナフタレン(5g, 0.039mol)、2ーブロモイソブチリルブロミド(9g, 0.039mol)を投入した。窒素気流下で、塩化アルミニウム(6g, 0.047mol)をゆっくりと投入した。1時間後、反応溶液を冷水(200ml)に投入し、分液ロートを用いて、有機相を分離した。その有機相を硫酸マグネシウムで乾燥しろ過、溶媒を留去することにより目的化合物(6.4g)を得た(収率84%)。

2-メチルー4, 5-ベンゾインデンの合成

2ーメチルー4,5ーベンゾー1ーインダノン(6.4g)をメタノール(100ml)に溶解した。その溶液中にナトリウムホウ素ヒドリド(1g,0.026mol)をゆっくりと投入した。30分後、水(100ml)およびエーテル(100ml)を投入し、抽出を行った。分液ロートを用いて有機相を分離した。その有機相を硫酸マグネシウムで乾燥しる過、溶媒を留去することにより2ーメチルー4,5ーベンゾインダノール(5.7g)を得た。得られた2ーメチルー4,5ーベンゾインダノール(5.7g)をトルエン(100ml)に溶解し、ピリジニウムpートルエンスルホン酸(0.5g)を加え、ディーンシュターク装置を用いて、30分還流し脱水反応を行った。反応終了後、溶媒を減圧留去し、残留物をカラム精製(溶媒:ヘキサン)することにより目的化合物(3g)を得た(収率48%)。

2-インデニルージメチルクロロシランの合成

マグネシウム粉 (1.3g) およびよう素 (0.01g)、脱水THF

(20m1)をジムロート管および滴下ロート付き200m1三つロフラスコに投入した。2ープロモインデン(ref: J. Org. Chem. 47, (4), 705 (1982)に従い合成) (5. 4g, 27. 2mmol) および脱水THF (40ml)を滴下ロートに投入し、窒素雰囲気下で軽く還流する程度にゆっくりと滴下した。滴下終了後、30分間室温で攪拌した。その後、ジクロロジメチルシラン (3. 1g, 28.5mmol) および脱水THF (20ml)を滴下ロートに投入し、-78℃でその溶液を滴下した。滴下終了後、8時間室温で攪拌した。溶媒を減圧下で留去し、脱水ヘキサン (100ml)で抽出した。溶媒を減圧ることにより目的化合物を5.3g得た(収率91%)。

(2-4)ンデニル)(1-(2-x+x)-4, 5-4)ンデニル)) ジメチルシランの合成

窒素置換した200mlシュレンクに2ーメチルー4,5ーベンゾインデン(1.26g,7mmol)および脱水へキサン(50ml)を投入した。その溶液にnーブチルリチウムのヘキサン溶液(1.50M,4.7ml,7mmol)を-78℃でで滴下した。滴下終了後、室温で8時間費拌したところ、2ーメチルー4,5ーベンゾインデニルリチウムが析出した。その懸濁液を静置してから上澄みをデカンテーションにより除去した。そこへ脱水THF(25ml)を加え、-78℃に冷却し、先に合成した2ーインデニルージメチルクロロシラン(1.46g,7mmol)の脱水THF溶液(25ml)を滴下した。滴下終了後、室温で4時間費拌した。反応終了後、水(50ml)を加え、エーテル(200ml)で抽出した。抽出溶液を分液ロートで分取し、得られた有機相を硫酸マグネシウムで乾燥しろ過、溶媒を留去することにより目的化合物(2.2g)を得た(収率89%)。

ジメチルシリレン (2-インデニル) (1-(2-メチルー4, 5-ベ ンゾインデニル)) ハフニウムジクロリドの合成 窒素置換した200m1シュレンクに、先に合成した(2-インデニル)(1-(2-メチル-4,5-ベンゾインデニル))ジメチルシラン(1.0g,2.8mmol)および脱水へキサン(40ml)を投入した。その溶液にn-ブチルリチウムのヘキサン溶液(1.50M,3.7ml,5.6mmol)を-78℃で滴下した。滴下終了後、室温で8時間攪拌したところ、(2-インデニル)(1-(2-メチル-4,5-ベンゾインデニル))ジメチルシランジリチウムが析出した。その懸濁液を静置してから上澄みをデカンテーションにより除去した。そこへ脱水トルエン(25ml)を加え、-78℃に冷却し、四塩化ハフニウム(0.9g,2.8mmol)の脱水トルエン(25ml)懸濁液を滴下した。滴下終了後、室温で6時間攪拌した。反応終了後、カヌラーでろ過し、ろ液を濃縮し脱水へキサンを加えた。生じた沈殿物をろ別、乾燥することにより、目的化合物を0.2g得た(収率12%)

¹HNMR(δ p p m/CDC l₃): 8. 0-7. 0 (m, 8 H), 6. 5 0 (s, 1 H), 6. 08 (d, 1 H), 5. 93 (d, 1 H), 2. 4 5 (s, 3 H), 1. 12 (s, 3 H), 0. 99 (s, 3 H) [プロピレンのスラリー重合]

攪拌装置付き1リットルステレンレス製耐圧オートクレーブを80℃に加熱し、充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。乾燥窒素気流下、乾燥脱酸素へプタン400ml、トリイソブチルアルミニウムのヘプタン溶液(2.0M)を0.5ml(1.0mmol)投入し、350r.p.mでしばらく攪拌した。その後、MAOのトルエン溶液(2.03M,0.13ml、0.26mmol)および前記で得たジメチルシリレン(2ーインデニル)(1ー(2ーメチルー4,5ーベンゾインデニル))ハフニウムジクロリドのヘプタンスラリー(10μmol /リットル、0.1ml、1.0μmol)をオートクレーブに素早く投入した。

その後、1,200r.p.mで攪拌を開始した。次に、水素を0.0 1Mpa張り込んだ後、プロピレンを全圧0.7MPaに3分間かけて昇圧し、同時に温度を40℃まで昇温した。60分間重合を実施した。反応終了後、メタノール20mlをオートクレーブに投入し、未反応のプロピレンを脱圧により除去した。そして、反応混合物を2リットルのメタノールに投入してポリプロピレンを沈殿させ、ろ過乾燥することによりポリプロピレンを得た。実施例1と樹脂特性及び物性の評価同様に行ない、得られた結果を表3に示す。

[実施例4]

[プロピレンのバルク重合]

攪拌装置付き1リットルステレンレス製耐圧オートクレープを80℃に加熱し、充分減圧乾燥した後、プロピレン500mlを張り込み、触媒導入管を用いてトリイソプチルアルミニウムのヘプタン溶液(2.0M)を0.5ml(1.0mmol)投入し、200r.p.mでしばらく攪拌した。その後、ヘプタン(5ml)およびMAOのトルエン溶液(2.03M,0.13ml、0.26mmol)の混合物引き続き前記で得たジメチルシリレン(2ーインデニル)(1ー(2ーメチルー4,5ーベンゾインデニル))ハフニウムジクロリドのヘプタンスラリー(10μmol/リットル、0.1ml、1.0μmol)およびヘプタン(5ml)の混合物をオートクレープに素早く投入した。

その後、400 r. p. mで攪拌を開始した。そして、温度を40℃まで 昇温した。30分間重合を実施した。反応終了後、メタノール20 m l を オートクレーブに投入し、未反応のプロピレンを脱圧により除去した。そ して、残留物を乾燥することによりポリプロピレンを得た。実施例1と同 様に樹脂特性及び物性の評価を行ない、得られた結果を表3に示す。

[実施例5]

[ジメチルシリレン(2-インデニル)(1-(2-メチルー4,5-ベ

ンゾインデニル)) ジルコニウムジクロリドの合成]

窒素置換した200mリットルシュレンクに、先に合成した(2-インデニル)(1-(2-メチルー4,5-ベンゾインデニル))ジメチルシラン(1.0g,2.8mmol)および脱水へキサン(40ml)を投入した。その溶液にn-ブチルリチウムのへキサン溶液(1.50M,3.7ml,5.6mmol)を-78℃で滴下した。滴下終了後、室温で8時間攪拌したところ、(2-インデニル)(1-(2-メチルー4,5-ベンゾインデニル))ジメチルシランジリチウムが析出した。その懸濁液を静置してから上澄みをデカンテーションにより除去した。そこへ脱水トルエン(25ml)を加え、-78℃に冷却し、四塩化ジルコニウム(0.9g,2.8mmol)の脱水トルエン(25ml)懸濁液を滴下した。滴下終了後、室温で6時間攪拌した。反応終了後、カヌラーでろ過し、ろ液を濃縮し脱水へキサンを加えた。生じた沈殿物をろ別、乾燥することにより、目的化合物を0.2g得た(収率12%)
「HNMR(δppm/CDCl3):8.0-7.0(m,8H),6.5

'HNMR (δ p p m / CDC 1₃): 8. 0-7. 0 (m, 8H), 6. 5 0 (s, 1H), 6. 12 (d, 1H), 6. 02 (d, 1H), 2. 3 2 (s, 3H), 1. 10 (s, 3H), 0. 95 (s, 3H) [プロピレンのスラリー重合]

攪拌装置付き1リットルステレンレス製耐圧オートクレーブを80℃に加熱し、充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。乾燥窒素気流下、乾燥脱酸素へプタン400ml、トリイソブチルアルミニウムのヘプタン溶液(2.0M)を0.5ml(1.0mmol)投入し、350r.p.mでしばらく攪拌した。その後、メチルアルミノキサン(MAO)のトルエン溶液(2.03M,0.13ml、0.26mmol)および前記で合成したジメチルシリレン(2ーインデニル)(1ー(2ーメチルー4,5ーベンゾインデニル))ジルコニウムジクロリドのヘプタンスラリー(10μmol/リットル、0.1ml、1.0μmo

1)をオートクレープに素早く投入した。

その後、1,200r.p. mで攪拌を開始した。次に、プロピレンを全圧0.7MPaに3分間かけて昇圧し、同時に温度を50℃まで昇温した。60分間重合を実施した。反応終了後、メタノール20mlをオートクレーブに投入し、未反応のプロピレンを脱圧により除去した。そして、反応混合物を2リットルのメタノールに投入してポリプロピレンを沈殿させ、ろ過乾燥することによりポリプロピレンを得た。実施例1と同様に樹脂特性及び物性の評価を行ない、得られた結果を表3に示す。

表 2

	項目	実施例1	実施例 2	比較例 1	比較例 2	比較例 3	比較例 4	比較例 5
	[7] (dl/g)	1.0	1.7	1.8	1.9	2. 7	1.5	0.24
	[mmmm] (E#%)	79.0	78.0	60.3	72. 2	82. 9		79.5
	[mm] (₹4%)						90.2	
掛	2.1-ins (E#%)	0	0	0	0	0.6		0.7
	1.3-ins (E#%)	0.8	0.3	0	0	0.1		- 0.1
店	Me/Mn	2. 1	2. 2	2.4	2. 6	2. 3	2. 4	2. 2
	Tm (℃)	132	130	158	160	132	126	129
特	3モ/マ- 含量(モル%)						2. 0	
	沸騰エーテル抽出量(質量X)	0. 2	0. 2	34	12	0. 2	0. 5	0.3
性	Tp (℃)	85	86	115	116	91	83	- 81
	Tp±5 ℃の溶出量(質量%)	89	91	33	68	94	88	87
	Th (℃)	3. 6	3. 4	9. 2	7.7	4.1	3. 8	3. 8
	ΔH (J/g)	94	92	54	79	80.5	78.0	63. 5
	0.45 × Tm + 22	81.4	80. 5	93. 1	94. 0	81.4	78.7	80. 1
物	引張弾性率(Mpa)	1150	1200	440	514	1060	1040	破断
性	内部ヘイズ(%)	42. 5	43. 7	44. 9	15.8	52. 0	38.0	破断

	項目	実施例3	実施例4	実施例5
	[n] (d l /g)	1.9	2.2	1.7
	[mmmm] (モル%)	72.4	73.5	70.9
樹	2,1-ins (モル%)	0.2	0.1	0.2
	1,3-ins (モル%)	0	0	0
脂	(Mw/Mn)	2.2	2.1	2.1
718	Tm (°C)	120.5	121.4	118.4
	コモノマー含量 (モル%)	_	_	_
特	沸騰エーテル抽出量(質量%)	0.2	0.3	0.3
	Tp (°C)	75.6	76.2	74.2
	Tp±5℃の溶出量(質量%)	89	91	89
性	Th (°C)	3.4	3.5	3.5
	ΔH (J/g)	- 77.2	78.1	76.7
1	$0.45 \times \text{Tm} + 22$	76.2	76.6	75.3
物	引張弹性率(Mpa)	480	490	460
性	内部~イズ (%)	40.5	42.0	38.0

産業上の利用分野

本発明のオレフィン重合体はべとつかず、透明性、軟質性(弾性率が低い)に優れている。また、融解温度と弾性率のバランスに優れていることから、低温でも成形性や加工性がよく(例えば、低温ヒートシール特性)、エンボスやヒートシール、延伸フィルム、ブロー成形などの二次加工性にも優れる成形体を得ることができ、積層フィルム、ヒートシール剤、延伸フィルム、軟質用樹脂改質剤、ブロー成形体に好適である。

請求の範囲

示差走査型熱量計により測定した融解熱 △H (J/g)と融点Tm
 (℃)が

 $\Delta H \ge 0$. $4.5 \times Tm + 2.2$ ___

の関係を満たすプロピレン系重合体。

- 2. 下記(1)、(2)及び(3)で示される性状を有する請求項1記載のプロピレン系重合体。
- (1) 示差走査型熱量計により測定した融点Tm(℃)が110≦Tm≦ 140であり、
- (2) 昇温分別法により測定した溶出曲線のピークトップの半値幅Th(℃)がTh≤5

の関係を満たし、

- (3) 135℃、テトラリン溶媒中で測定した極限粘度 [n] (d1/g)が0.5~5である。
- 3. 示差走査型熱量計により測定した融点 Tm (℃) が120 ≤ Tm ≤ 140 である請求項2に記載のプロピレン系重合体。
- 4. 示差走査型熱量計により測定した融点 Tm (℃) が120≦Tm≦135である請求項2に記載のプロピレン系重合体。
- 5. プロピレン系重合体がプロピレン単独重合体であって、アイソタク チックペンタッド分率 [mmmm] が65~85モル%である請求項1~ 4のいずれかに記載のプロピレン系重合体。
- 6. プロピレン系重合体がプロピレン単独重合体であって、アイソタク チックペンタッド分率 [mmmm] が70~80モル%である請求項1~ 4のいずれかに記載のプロピレン系重合体。
- 7. 請求項1~6のいずれかに記載のプロピレン系重合体を成形してなる成形体。

8. 請求項1~6のいずれかにプロピレン系重合体を製造する方法であって、(A)下記一般式(1)で表される周期律表第4族の遷移金属化合物、(B)(B-1)アルミニウムオキシ化合物及び(B-2)上記遷移金属化合物と反応してカチオンに変換しうるイオン性化合物の中から選ばれた少なくとも一種とを含有してなるオレフィン重合触媒の存在下、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のαーオレフィンを重合させるプロピレン系重合体の製造方法。

「式中、R¹ ~ R¹¹, X¹ 及びX² は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、酸素含有基、イオウ含有基、窒素含有基又はリン含有基を示し、R³ とR⁴ 及びR⁸ とR⁹ はたがいに結合して環を形成してもよい。Y¹ は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20の炭化水素基、炭素数1~20の厂でン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、一〇一、一〇〇一、一〇〇一、一〇〇一、一〇〇十八一、一〇〇十八一、一〇〇十八一、一〇〇〇十八一、一〇〇〇十八一、一〇〇〇十八一、一〇〇〇十八一、一〇〇〇十八八十八一、八四ゲン原子、炭素数1~20の炭化水素基、炭素数

1~20のハロゲン含有炭化水素基を示す。M'はチタン,ジルコニウム又はハフニウムを示す。]

9. 請求項1~6のいずれかに記載のプロピレン系重合体を製造する方法であって、(A)下記一般式(2)で表される周期律表第4族の遷移金属化合物、(B)(B-1)アルミニウムオキシ化合物及び(B-2)上記遷移金属化合物と反応してカチオンに変換しうるイオン性化合物の中から選ばれた少なくとも一種とを含有してなるオレフィン重合触媒の存在下、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のαーオレフィンを重合させるプロピレン系重合体の製造方法。

ウム含有基、スズ含有基、-O-、-CO-、-S-、 $-SO_2-$ 、 $-NR^{12}$ -、 $-PR^{12}-$ 、-P (O) $R^{12}-$ 、 $-BR^{12}-$ 又は $-A1R^{12}-$ を示し、 R^{12} は水素原子、ハロゲン原子、炭素数 $1\sim2$ 0の炭化水素基、炭素数 $1\sim2$ 0のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。 qは $1\sim5$ の整数で [(M^1 の原子価) -2] を示し、rは $0\sim3$ の整数を示す。}

- 10. 請求項8または9に記載のプロピレン系重合体の製造方法であって、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のαーオレフィンを気相重合させるプロピレン系重合体の製造方法。
- 11. 請求項8または9に記載のプロピレン系重合体の製造方法であって、プロピレン又はプロピレンとエチレン及び/又は炭素数4~20のαーオレフィンを液体プロピレンの存在下で重合させるプロピレン系重合体の製造方法。

THIS PAGE BLANK (USPTO)

International application No.

PCT/JP00/04142

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C08F 10/06, C08F 4/64						
According to International Patent Classification (IPC) or to both national classification and IPC						
	OS SEARCHED					
Int	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C08F 10/00-10/14					
Jits Koka	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1996 Jitsuyo Shinan Toroku Koho 1996-2000 Kokai Jitsuyo Shinan Koho 1971-2000 Toroku Jitsuyo Shinan Koho 1994-2000					
CAS	lata base consulted during the international search (nan ONLINE	ne of data base and, where practicable, sea	rch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where a	····	Relevant to claim No.			
Х	JP, 11-130807, A (Idemitsu Pet. 18 May, 1999 (18.05.99), Claims (Family: none)	rochem Co., Ltd.),	1-11			
х	EP, 818458, A1 (IDEMITSU KOSAN COMPANY LIMITED), 1-11 14 January, 1998 (14.01.98), Claims; implementation example & WO, 96/30380, A1					
х	JP, 6-329726, A (Ube Industries 29 November, 1994 (29.11.94), Claims; implementation example		1,7			
х	JP, 8-231640, A (Hoechst Aktien 10 September, 1996 (10.09.96), comparison example 1(C1) & EP, 719802, A2 & DE, 4446		1,7			
A	US, 5708101, A (John E. Bercaw 13 January, 1998 (13.01.98), Claims (Family: none)	et al),	1-11			
	r documents are listed in the continuation of Box C.	See patent family annex.				
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art				
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means						
'P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed						
04 S	ectual completion of the international search eptember, 2000 (04.09.00)	Date of mailing of the international search report 12 September, 2000 (12.09.00)				
	ailing address of the ISA/ nese Patent Office	Authorized officer				
Facsimile No.		Telephone No.				

International application No.

PCT/JP00/04142

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	EP, 721954, A1 (IDEMITSU KOSAN CO.,LTD.), 17 July, 1996 (17.07.96), Claims & WO, 95/09172, A1 & CA, 2172635, A & US, 5854165, A	1-11	
PA		1-11	
		•	

国際出願番号 PCT/JP00/04142

A. 発明の属する分野の分類 (国際特許分類 (IPC))						
Int. C1', C08F 10/06, C08F 4/64						
	〒った分野 最小限資料(国際特許分類(IPC)) CO8F 10/00-10/14					
日本国実用第 日本国公開第 日本国実用第	最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-2000年 日本国実用新案登録公報 1996-2000年 日本国登録実用新案公報 1994-2000年					
	用した電子データベース(データベースの名称、 ONLINE	調査に使用した用語)				
C. 関連する	ると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	: きは、その関連する箇所の表示	関連する 請求の範囲の番号			
Х	JP, 11-130807, A(出 18.5月.1999(18.05 (ファミリーなし)		1-11			
X	EP, 818458, A1 (IDEMI 14.1月.1998 (14.01 実施例 &WO, 96/30380, A1		1-11			
x C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。			
もの 「E」国際出版 以後にな 「L」優先権 日若して 文献(F 「O」口頭に。	のカテゴリー 連のある文献ではなく、一般的技術水準を示す 顧日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 額日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献				
国際調査を完善	了した日 04.09.00	国際調査報告の発送日 12.(9.00			
日本国	の名称及びあて先 国特許庁 (ISA/JP) 郵便番号100-8915 都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 小出 直也 電話番号 03-3581-1101	内線 3493			

国際出願番号 PCT/JP00/04142

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号
X	JP, 6-329726, A (宇部興産株式会社) 29.11月.1994 (29.11.94), 特許請求の範囲, 実施例 (ファミリーなし)	1, 7
X	JP, 8-231640, A (ヘキスト・アクチェンゲゼルシャフト), 10.9月.1996 (10.09.96), 比較例1 (C1) & EP, 719802, A2&DE, 4446923, A	1, 7
A	US, 5708101, A (John E. Bercaw et al) 13.1月.1998 (13.01.98), 特許請求の範囲 (ファミリーなし)	1-11
A	EP, 721954, A1 (IDEMITSU KOSAN CO.,LTD.) 17. 7月. 1996 (17. 07. 96), 特許請求の範囲 &WO, 95/09172, A1&CA, 2172635, A &US, 5854165, A	1-11
PΑ	WO, 99/67303, A1 (出光石油化学株式会社) 29.12月.1999 (29.12.99), 特許請求の範 囲, 実施例	1-11
	&JP, 11-166084, A &JP, 11-302474, A &JP, 2000-95820, A	·
		·