Introduction To Graph Theory

- → DFS Tree applications
- → Bridge, Articulation Points ←
- ✓- Topological Sorting ←

The DFS Tree

Running dfs in an undirected graph will always generate a tree. (assuming only 1 component)

The DFS Tree

Span edge: Edges of the DFS tree

Back edge: Not part of the tree (ignored edges during dfs)

The DFS Tree

Span edge: Edges of the DFS tree

Back edge: Not part of the tree (ignored edges during dfs)

This also means that back edges will go to an active node in dfs stack

Fixing cycle printing from last day

Bridges in Undirected Graphs

Edges which upon deletion increase the number of connected components.

Bruteforce? For all edge \rightarrow try removing and then $O(E * (V+E)) \approx O(E^2)$

Finding Bridges Quickly

Lemma: A span edge u-v is a bridge iff there exists no back-edge that connects a descendent of u-v with an ancestor of u-v.

Finding Bridges Quickly Observation: A back-edge is never a bridge.

Bridge Finding Algorithm

Define,

d(u) = depth of node u from root in dfs tree.

low(u) = min depth node u that can be reached from u's subtree, using at most 1 back-edge

Bridge Finding Algorithm

Define,

d(u) = depth of node u from root in dfs tree.

low(u) = min depth node u that can be reachedfrom u's subtree, using at most 1 back-edge

An edge u-v is a bridge iff v can't reach d(u) or higher from its subtree

$$(assuming h(u) < h(v))$$

How to calculate low(u)?

low(u) = min depth node u that can be reached from u's subtree, using at most 1 back-edge

initially
$$low(u) = d(u) \forall u$$
.

$$u - v$$
 (tree edge): $low(u) = min(low(u), low(v))$

Implementation

Handling Multi-Edges and Self Loops

Fix by making a list of all bridges.

Sort all edges.

If for any (u,v) you find the same (u,v) adjacent to it,

delete all copies.

Articulation Points in Undirected Graph

-> cut point/verte

Nodes which upon deletion increase the number of connected components.

Articulation Point Finding Algorithm

re is cut point as long as it

Implementation

Some Problems

- Find the minimum number of edges to add in a graph so that no bridges exist.
- Find the maximum number of edges you can mark so that there exists a path between two nodes which MUST use all the marked edges. (1000E CF)

Implementation Practice: LightOJ 1063, 1026

DFS Tree on Directed Graphs

Cycles in Directed Graph

Observe that cross edges can't create cycles (?).

Only back-edges can create cycles.

Thus our previous cycle finding algorithm works here as well.

Topological Sort

Given a list of dependencies (a -> b) which represent: a must be done before b is started find an ordering that completes all the tasks.

When is it impossible?

If there is a cycle in the directed graph.

Topological Sort using DFS

Run a dfs.

Whenever a node finishes, we know all tasks that were supposed to happen after u is done. So we can do this task u before all of them.

10

- void dfs (int u) {
- vis[u] = true; for (int v : g[u])
- if (!vis[v])
- dfs(v); order.push back(u);

 ←

- ▼ void(topsort)()

reverse(order.begin(), order.end());

- for (int i = 1; i <= n; ++i) 13 if (!vis[i]) 14 dfs(i);

Problems

- CF510C
- CSES1679, 1680, 1681

$$\frac{d\rho[u]}{d\rho[u]} = \max dist from a$$

$$\frac{d\rho[u]}{d\rho[u]} = \max dist from a$$

$$\frac{d\rho[u]}{d\rho[u]} = \min dist from a$$

dp[2] = 2 dp[3] = 3 dp[i] = 1 + 3 = 0

DFS Timers

Timers are an easy way to keep track of which edge is which type. Also has some cool properties.

```
int Timer, in[N], out[N];
int state[N], pi[N];
void dfs (int u) {
    in[u] = Timer++;
    state[u] = 1:
    for (int v : g[u]) {
         if (v == pi[u]) continue; // remember to ignore immediate edge to parent
        if (state[v] == 0) {
             pi[v] = u;
        else if (state[v] == 1) {} // back-edge else {} // forward-edge, cross-edge
    state[u] = 2;
    out[u] = Timer++;
```

DFS Timers

DFS Timers and Edge Types

DFS Timers and Edge Types

WAIT!!!

Span edges and Back edges look like the same?

How to differentiate?

DFS Timers and Edge Types

$$\frac{T}{BE} = \frac{1}{100} \times \frac{1}{$$

CE out vi < in u

DFS Timers and Edge Types

