0) Measure **BoW** on Holidays **Done**

sift=128, dictionary=64

norm2 (8 tryals) 0.3009±0.002 norm1 (8 tryals) 0.2925±0.002 term frequency (3 tryals) 0.2710±0.005 term frequency + norm2 (3 tryals) 0.2808±0.0038

norm2 (10 tryals) 0.6129/0.6167+0.0024/0.6212 term frequency + norm2 (10 tryals) 0.6293/0.6343+0.0024/0.6372

rootSifts=128, dictionary=64 term frequency (10 tryals) 0.6264/0.6309±0.0025/0.6350 term frequency + norm2 (10 tryals) 0.6293/**0.6343**±0.0024/0.6372

sift=128, dictionary=256 term frequency + norm2 (10 tryals) 0.6293/0.6343+0.0024/0.6372 sift=128, dictionary=1024 term frequency + norm2 - launch failed, cause is yet to be uncovered.

0) Measure color histograms on Holidays Done

Histogram size	4	6	8	12	16	24	32
mAP	0.3049	0.3274	0.3381	0.3418	0.3395	0.3378	0.3356
mAP	0.3980	0.4306	0.4433	0.4540	0.4584	0.4549	0.4538

1) Measure **VLAD** on Holidays **Done** sift=128 dictionary=64 using soft assignment [w=1/(d^2+1)] tested 100 clusterizations: $mAP = 0.3837/0.4088 \pm 0.0119/0.4387$ (=min/avg±std/max) using hard assignment [w=0/1] tested 100 clusterizations: $mAP = \frac{0.3837}{0.4088 \pm 0.0119} \frac{0.4387}{0.4387}$ (the same) rootSifts, tested 7 clusterizations: $MAP = \frac{0.3684}{0.3709 \pm 0.002} + \frac{0.3684}{0.3709 \pm 0.002} = \frac{0.3684}{0.002} = \frac{0.3684}{0.00$ rootSifts (shift -127), tested 9 clusterizations: $MAP = 0.3723/0.3921 \pm 0.0105/0.4124$ using hard assignment [w=0/1] rootVLAD $mAP = 0.4279 \ 0.7166 \ (preliminary)$ VLAD+norm2 mAP = 0.4088 (preliminary) rootVLAD+component norm2 (options 'SquareRoot' and 'NormalizeComponents') mAP = 0.2950 (preliminary) VLAD 'NormalizeComponents' mAP = 0.2868 (preliminary) rootSifts. rootVLAD mAP = 0.7166 (preliminary)

2) Implement **FV**, measure on Holidays **Skipped**

3) Multiple codebook VLAD +PCA Partially

- Created 100 different clusterization
- Created function to measure distance between them and measured 100x100
- Sergey and me implemented bunch of algorithms to select the best sample/selection.
 We used two metrics to score samples:
 - 1. sum(d(i,j)) -> max
 - 2. $min(d(i,j)) \rightarrow max$

And several approaches to select the best sample:

- sort clusterizations by distance from the rest of examples (sum_d, min_d) and select clusterizations that are the farest
- 2. 1st clusterization = the farest from the whole set, 2nd the farest from the 1st, and so on next is the farest(sum_d, min_d) from previously selected

clusterizations.

- 3. brute force = exhausting search
- 4. random search pick the best from several (about 1M) random samples.

So far looks like 2nd metric and 2nd approach are the best.

- 4) vI sift vs vI phow Skipped
- 5) rootSIFT Done

(6.1 here:

http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf)

6) Intranormalization Done

http://lear.inrialpes.fr/pubs/2010/JDSP10/jegou_compactimagerepresentation.pdf http://www.axes-project.eu/wp-content/uploads/2013/08/arandjelovic13.pdf http://hal.inria.fr/docs/00/86/46/84/PDF/iccv13 tolias.pdf

7) Product quantization (16x16) on PCA VLAD RootSITFs Done

Exhaustive search (1M + Holidays): (measuring expense 0.599 s)

	mAP	time per query, sec
no PQ (pca baseline)	0.5134	3.701
no PQ (pca, dot product dist)	0.3887	0.429
symmetric	0.3597	0.736
asymmetric	0.3953	0.852

BoW, Phow, VLAD, FV VLAD adapt+innorm MultiVLAD, MultivocVLAD

Discriminative Query Expansion + Spatial Augmentation