# Paper Reading Design and Analysis of Single-Cell Sequencing Experiments

Kuei-Yueh (Clint) Ko 12.06.2017

## **Authors**

### **Dominic Grun**

#### **Research Interests**

- Quantitative single cell biology
- Regulation of gene expression during cellular differentiation
- The role of biological gene expression noise during cellular differentiation



## **Authors**

### Alexander van Oudenaarden

#### **Research Interests**

- Stochastic gene expression
- Developing novel tools to quantify gene expression in single cells
- MicroRNAs



## Contents

- Isolating Single Cells for Sequencing
- Comparison of Whole-Genome Amplification Techniques
- Analysis of Single-Cell Genome Sequencing Data
- Comparison of Single-Cell Transcriptome Sequencing Techniques
- Data Analysis of Single-Cell Transcriptome Data Preprocessing and Read Mapping
- Expression Quantification and Filtering
- Data Normalization
- Biological Insights from Single-Cell Transcriptome Data Identification of Cell Types
- Identification of Marker Genes
- Inference of Differentiation Dynamics
- Measuring Gene expression Noise
- Investigating Allelic Expression

## Contents

- Isolating Single Cells for Sequencing
- Comparison of Whole-Genome Amplification Techniques
- Analysis of Single-Cell Genome Sequencing Data
- Comparison of Single-Cell Transcriptome Sequencing Techniques
- Data Analysis of Single-Cell Transcriptome Data
   Preprocessing and Read Mapping
- Expression Quantification and Filtering
- Data Normalization
- Biological Insights from Single-Cell Transcriptome Data Identification of Cell Types
- Identification of Marker Genes
- Inference of Differentiation Dynamics
- Measuring Gene expression Noise
- Investigating Allelic Expression

## **Experimental Technique**

Data **Processing** 

**Biological Applications** 

**Isolating Single Cells for Sequencing** 

## Isolating Single Cells for Sequencing

- FACS
- Micromanipulation
  - Glass micropipette
- Microfluidic devices
  - o Islam et al., 2014
  - o Pollen et al., 2014

#### Fluidigm C1 autoprep system





Average capture: 72 ± 5 single cells per chip



- Single cell -> extract DNA
  - If DNA < 10 pg:</li>
    - Perform whole-genome amplification
- Whole-genome amplification
  - o PCR
  - Multiple displacement amplification (MDA)
- Multiple annealing and looping based amplification cycles (MALBAC)

Multiple displacement amplification (MDA)



Multiple displacement amplification (MDA)



#### PCR vs MDA

|            | PCR                                                                                     | MDA                                               |
|------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|
| Polymerase | Taq Polymerase                                                                          | Phi 29 polymerase                                 |
| Process    | <ul> <li>Denature (94-95°C)</li> <li>Anneal (50-56°C)</li> <li>Extend (72°C)</li> </ul> | Reaction of phi 29 polymerase carried out at 30°C |

Products of MDA have lower error rate and larger sizes compared to PCR based Taq amplification.

#### **Allele Dropout**

amplification failure of one of the two alleles at a given locus

Blais et al., 2015

#### **Factors of Allele Dropout**

"failure of amplification of one of two alleles at any single target locus may be due to either **sequence independent factors** or **allele-specific sequence variations**"

Blais et al., 2015

sequence independent factors or allele-specific sequence variations

#### **Factors of Allele Dropout**

"failure of amplification of one of two alleles at any single target locus may be due to either **sequence independent factors** or **allele-specific sequence variations**"

#### **Sequence independent factors**

- variations in DNA extraction quantity or quality
- presence of PCR inhibitors
- variations in pipetting volumes of reagents or templates
- imprecisions in thermocycler temperatures

#### allele-specific sequence variations

DNA Secondary structure (ex: GC rich sequences)

#### **Allele Dropout Rate**

```
PCR
MDA (~31%-65%)
MALBAC (~1%)
```

Therefore, MALBAC shows higher detection efficiency for SNPs and CNVs

Note: I haven't fully understand the process of MALBAC.

# Analysis of Single-Cell Genome Sequencing Data

## **Analysis of Single-Cell Genome Sequencing Data**

- First step: Mapping to a ref genome
  - Ex: UCSC genome browser
- Prior to mapping
  - It is advisable to inspect the read quality and trim low-quality bases as well as remaining
  - If the remaining read length is too short, reads should be discarded
- After reading is performed, reads that map to more than a single locus should be discards or counted with reduced uiform weight
- CNVs
- Circular binary alsegmentation algorithm
  - T-stat with a permutation reference distribution to infer p values for break points

0

## Analysis of Single-Cell Genome Sequencing Data

- First step: Mapping to a ref genome
  - Ex: UCSC genome browser
- Prior to mapping
  - It is advisable to inspect the read quality and trim low-quality bases as well as remaining
  - If the remaining read length is too short, reads should be discarded
- After reading is performed, reads that map to more than a single locus should be discards or counted with reduced uiform weight
- CNVs
- Circular binary alsegmentation algorithm
  - T-stat with a permutation reference distribution to infer p values for break points

0

**Comparison of Single-Cell** 

**Transcriptome Sequencing Technique** 



The first protocol for single-cell sequencing was published in 2009 by the Surani laboratory (Tang et al., 2009)

Tang et al., 2009



Single cell tagged reverse transcription (STRT seq)



IAAAAA...

<u>Islam et al., 2011</u>









Read 1

Read 2

- The first protocol for single-cell sequencing was published in 2009 by the Surani laboratory (Tang et al., 2009)
  - Trace the derivation of mouse embryonic stem cells from the inner cell mass with single-cell resolution (Tang et al., 2010)
- Single cell tagged reverse transcription (STRT seq)
  - Islam et al., 2011
  - Template-switching property of the reverse transcriptase to tag the 5' end of polyadenylated mRNA molecules
- Cell expression by linear amplification and sequencing (CEL-seq)
- Smart-seq and Smart-seq2 methods are a more recent alternative
  - Nextera technology
  - Tn5 transposes simulatneously fragments the cDNA adn ligates seq adaptors to all fragments
- Quartz-seg method

**Data Analysis of Single-Cell Transcriptome Data** 

**Preprocessing and Read Mapping** 

## Data Analysis of Single-Cell Transcriptome Data Preprocessing and Read Mapping

- Data processing and filtering steps -> reduce the impact of technical noise
- First analysis step: quality filtering or trimming of the sequencing reads prior to mapping the reads to a reference database
  - Standard tools
    - Fastqc
    - Standard mapping tools: bwa
      - Trimming of low-quality bases from the end of the reads
    - Mapping
      - Garber et al., 2011
- Due to the low read coverage of the gene body in single-cell sequencing experiments, isoform quantification with standard methods such as Cufflinks can be problematic
  - o If isoform info is not essential for the study

# Data Analysis of Single-Cell Transcriptome Data Preprocessing and Read Mapping

**Expression Quantification and Filtering** 

## **Expression Quantification and Filtering**

Barcode (UMI)

Transcripts per one million reads (TPM)

**RPKM** 

Spike-in

## **Expression Quantification and Filtering**

Sequenced cell barcode

unique molecular identifiers



## Data Normalization

## **Data Normalization**

## Biological Insights from Single-Cell Transcriptome Data Identification of Cell types

## Biological Insights from Single-Cell Transcriptome Data Identification of Cell types

- Most important application of single-cell mRNA sequencing
  - Identification of cell types in a complex mixture



# Biological Insights from Single-Cell Transcriptome Data Identification of Cell types

- Examples
  - Spleen (Jaitin et al., 2014)
  - Lung Epithelium (Treutlein et al., 2014)
  - Retina (Macosko et al., 2015)
  - Mouse hippocampus (also uncovered novel cell types) (Zeisel et al., 2015)

# Biological Insights from Single-Cell Transcriptome Data Identification of Cell types

- One general problem
  - Confounding factors
    - technical variability
    - biological variability
      - Ex: cell-to-cell differences in the cell cycle phase
  - o => batch effects

### Identification of Marker Genes

#### Identification of Marker Genes



#### Marker genes

- Cell surface markers
- Fluorescent reporter genes

#### **Question: How to identify marker genes?**

- Identification of differentially expressed genes
  - DESeq

#### Identification of Marker Genes

#### **DESeq**

#### **Assumption**

Most genes are not differentially expressed.

#### **Probabilistic Model**

Negative Binomial Distribution

$$K_{ij}$$
 ~NB $(\mu_{ij}, \sigma_{ij}^2)$ ,

the number of reads in sample j that are assigned to gene i can be modeled by a negative binomial (NB) distribution



<u>Spatiotemporal transcriptomics</u> <u>reveals the evolutionary history of</u> <u>the endoderm germ layer</u>

Example: Cell differentiation of *C. elegans* 



Example: Cell differentiation of *C. elegans* 





Example: Cell differentiation of *C. elegans* 















Gene Activation



- Gene Activation
- Sequencing Noise
- Noise Components



Gene Activation

#### **Paper**

Stochastic mRNA Synthesis in Mammalian Cells

#### Aim

cell-to-cell variation in gene expression in mammalian cells by accurately counting single molecules of mRNA through the use of fluorescence in situ hybridization (FISH)

#### **Material**

Chinese Hamster Ovary (CHO) Cells

- high growth rate
- high protein productivity









Reporter gene mRNA

Sequencing Noise





- Gene Activation
- Sequencing Noise
- Noise Components



Noise Components



- Gene Activation
- Sequencing Noise
- Noise Components



## Thank you

## Investigating Allelic Expression

## Investigating Allelic Expression

### Investigating Allelic Expression

Example: parental X chromosome

## **Concluding Remarks**