

Broad Question

- How to organize the Web?
- First try: Human curated
 Web directories
 - □ Yahoo, DMOZ, 新浪
- Second try: Web Search
 - Information Retrieval ovestigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - <u>But:</u> Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - □ Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

6

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.ict.ac.cn
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

PageRank:
The "Flow" Formulation

Links as Votes

- Idea: Links as votes
- Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.ict.ac.cn has 12,300 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

B
38.4

C
34.3

D
10

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_i/n votes
- Page j's own importance is the sum of the votes on its in-links

10 r/3 r/4 r/3 r/3

PageRank: The "Flow" Model

A "vote" from an important page is worth more

- A page is important if it is pointed to by other important pages
 y/2
- Define a "rank" r_j for page j

The web in 1839 a/2

a

a/2

9 a/2 y/2
a a/2 m
a/2
"Flow" equations:

 $d_i \dots$ out-degree of node i

 $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$

 $r_m = r_a/2$

美采河平不样

推動十一樣(d)

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
- Flow equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$

 $r_{m} = r_{a}/2$

- No unique solution (linearly dependent)
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix *M*
 - ullet Let page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 Columns sum to 1
- Rank vector r: vector with an entry per page
 - $lue{r}_i$ is the importance score of page i
- $\sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r = \sum_{i} r_{i} M_{*i}$$

 $r_j = \sum_{i=1}^{\infty} \frac{r_i}{d}$

14

Example

- Remember the flow equation: $r_i = \sum_{j=1}^{n} \frac{1}{j}$
- Flow equation in the matrix form $\int_{i \to j}^{i} \frac{1}{d_i} d_i$

$$M \cdot r = r$$

□ Suppose page *i* links to 3 pages, including *j*

<u>r</u>

Eigenvector Formulation

- The flow equations can be written
 - $r = M \cdot r$
- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic (with non-negative entries)
 - $\begin{tabular}{ll} \square We know r is unit length and each column of M sums to one, so $Mr \leq 1$ \\ \end{tabular}$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

We can now efficiently solve for r! The method is called Power iteration

Example: Flow Equations & M

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

1/2	1/2	0	у
1/2	0	1	a
0	$\frac{1}{2}$	0	m
		/2 0	/2 0 1

17

Power Iteration Method

- Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages

• Initialize:
$$r^{(0)} = [1/N,....,1/N]^T$$

□ Iterate:
$$r^{(t+1)} = M \cdot r^{(t)}$$

□ Stop when
$$|r^{(t+1)} - r^{(t)}|_1 < \varepsilon$$

 $r_j^{(t+1)} = \sum_{i \to i} \frac{r_i^{(t)}}{d_i}$

d_i out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

18

PageRank: How to solve?

- Power Iteration for all *j*:
 - $\Box \operatorname{Set} r_i = 1/N$

 - **2:** $r_i = r'_i$
 - Goto 1
- **Example:**

)
N	
a₹	≥ m
	_

	y	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_{\rm m} = r_{\rm a}/2$$

PageRank: How to solve?

■ Power Iteration for all *j*:

$$\Box \operatorname{Set} r_i = 1/N$$

$$1: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

2:
$$r_i = r'_i$$

Exam	ple:

•						
$[r_y]$	1/3	1/3	5/12	9/24		6/15
	1/3	3/6	1/3	11/24	•••	6/15
$\lfloor_{\mathbf{r_m}}\rfloor$		1/6 0, 1, 2, .	3/12	1/6		3/15

20

 $r_v = r_v/2 + r_a/2$

 $r_a = r_v/2 + r_m$

 $r_m = r_a/2$

Why Power Iteration works? (1) Details

Power iteration:

A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

$$r^{(1)} = M \cdot r^{(0)}$$

$$r^{(2)} = M \cdot r^{(1)} = M(Mr^{(0)}) = M^2 \cdot r^{(0)}$$

$$\mathbf{r}^{(3)} = \mathbf{M} \cdot \mathbf{r}^{(2)} = \mathbf{M} (\mathbf{M}^2 \mathbf{r}^{(0)}) = \mathbf{M}^3 \cdot \mathbf{r}^{(0)}$$

Claim:

Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M

21

Why Power Iteration works? (2)

- Claim: Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M
- Proof:
 - Assume M has n linearly independent eigenvectors, $x_1, x_2, ..., x_n$ with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$
 - Vectors x_1,x_2,\dots,x_n form a basis and thus we can write: $r^{(0)}=c_1\,x_1+c_2\,x_2+\dots+c_n\,x_n$

$$Mr^{(0)} = M(c_1 x_1 + c_2 x_2 + \cdots + c_n x_n)$$

$$= c_1(Mx_1) + c_2(Mx_2) + \dots + c_n(Mx_n)$$

= $c_1(\lambda_1 x_1) + c_2(\lambda_2 x_2) + \dots + c_n(\lambda_n x_n)$

- Repeated multiplication on both sides produces
- $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \dots + c_n(\lambda_n^k x_n)$

22

Why Power Iteration works? (3) Details!

- Claim: Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$ approaches the dominant eigenvector of M
- Proof (continued):
 - Repeated multiplication on both sides produces $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \dots + c_n(\lambda_n^k x_n)$

$$M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right]$$

- $\begin{array}{c} \hbox{ Since λ_1} > \lambda_2 \ \ \text{then fractions} \ \frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1} ... < 1 \\ \hbox{ and so} \left(\frac{\lambda_i}{\lambda_-}\right)^k = 0 \ \ \text{as $k \to \infty$} \ \ \text{(for all $i = 2 \dots n$).} \end{array}$
- Thus: $M^k r^{(0)} \approx c_1(\lambda_1^k x_1)$
 - Note if $c_1 = 0$ then the method won't converge i.e. r0 is orthogonal to the first eigenvector

Random Walk Interpretation

- Imagine a tandom web surfer
 - At any time t, surfer is on some page i
- □ At time t + 1, the surfer follows an out-link from i uniformly at random
- \Box Ends up on some page j linked from i
- □ Process repeats indefinitely
- Let:
- p(t) ... vector whose ith coordinate is the prob. that the surfer is at page i at time t
- ullet So, p(t) is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

 Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - ullet So, r is a stationary distribution for the random walk

Existence and Uniqueness

■ A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0

Perron-Frobenius theorem [all entries are positive, or Nonnegative Matrix, irreducible (connected), or

primitivity (k-connected)]

PageRank: **The Google Formulation**

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathrm{d}_i}$$
 or equivalently $r = Mr$

Does this converge?

- Does it converge to what we want?
- Are results reasonable?

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

■ Example:

Iteration 0, 1, 2, ...

29

Does it converge to what we want?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Iteration 0, 1, 2, ...

30

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

- Random walked gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

■ Power Iteration:

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate

)	
N	5	3
a	> m [→]	n

	y	a	
у	1/2	1/2	
a	1/2	0	
m	0	1/2	

m is a spider trap

 $r_y = r_y/2 + r_a/2$ $r_a = r_y/2$

 $r_m = r_a / 2 + r_m$

■ Example:

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

rank表列集之下的3

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - \square With prob. β , follow a link at random
 - □ With prob. 1- β , jump to some random page
 - ullet Common values for eta are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

- Power Iteration:

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate

	у	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$\begin{aligned} r_y &= r_y/2 + r_a/2 \\ r_a &= r_y/2 \end{aligned}$$

 $r_m = r_a/2$

■ Example:

$[r_y]$	1/3	2/6	3/12	5/24		0
$\begin{bmatrix} \mathbf{r}_{\mathbf{y}} \\ \mathbf{r}_{\mathbf{a}} \\ \mathbf{r}_{\mathbf{m}} \end{bmatrix} =$	1/3	1/6	2/12	3/24	•••	0
$\lfloor r_m \rfloor$	1/3	1/6	1/12	2/24		0

Here the PageRank "leaks" out since the matrix is not stochastic.

24

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

35

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem (converge), but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic (zero column) so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 At each step, random surfer has two options:
 - \square With probability β , follow a link at random
 - □ With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o j} eta \; rac{r_i}{d_i} + (1-eta) rac{1}{N} \; rac{ ext{d}_i \dots ext{out-degree}}{ ext{of node i}}$$

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends (add 1/N in M) or explicitly follow random teleport links with probability 1.0 from dead-ends (*B*=0).

37

The Google Matrix

■ PageRank equation [Brin-Page, '98] $r_j = \sum_{i \to i} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$

■ The Google Matrix A:

$$A=eta~M+(1-eta)\left[rac{1}{N}
ight]_{N imes N}$$
 [1/N] $_{N imes N}$ by N n where all entries a

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β ?
 - □ In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

38

How do we actually compute the PageRank?

Computing Page Rank

- Key step is matrix-vector multiplication
 - $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold A,
- Say N = 1 billion pages
- $A = \beta \cdot M + (1-\beta) [1/N]_{N \times N}$
- We need 4 bytes for each entry (say)
- 1/3 1/3 1/3 $A = 0.8 \frac{1}{2} 0 0 + 0.2 \frac{1}{3} \frac{1}{3} \frac{1}{3}$ 1/3 1/3 1/3
- 2 billion entries for vectors, approx 8GB
- 7/15 7/15 1/15 7/15 1/15 1/15
- Matrix A has N² entries
 - 10¹⁸ is a large number!

1/15 7/15 13/15

Matrix Formulation

- Suppose there are N pages
- Consider page i, with d; out-links
- We have $M_{ii} = 1/|d_i|$ when $i \rightarrow j$ and $M_{ii} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a teleport link from i to every other page and setting transition probability to $(1-\beta)/N$
 - Reducing the probability of following each out-link from $1/|d_i|$ to $B/|d_i|$
 - **Equivalent:** Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Rearranging the Equation

- $r = A \cdot r$, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$
- $\mathbf{r}_i = \sum_{i=1}^N A_{ii} \cdot r_i$
- $r_j = \sum_{i=1}^N \left[\beta M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i$ $= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i$ $= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \qquad \text{since } \sum r_i = 1$

So we get: $r = \beta \ M \cdot r + \left[\frac{1-\beta}{N}\right]_{N}$

 $[x]_N$... a vector of length N with all entries x

Sparse Matrix Formulation

■ We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- where [(1-β)/N]_N is a vector with all N entries (1-β)/N
- M is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - □ Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
- Add a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize $r^{\rm new}$ so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - □ Directed graph *G* (can have spider traps and dead ends)
 - \square Parameter β
- Output: PageRank vector r^{new}

 - repeat until convergence: $\sum_{i} |r_{i}^{new} r_{i}^{old}| > \varepsilon$
 - $\forall j \colon r'^{new}_j = \sum_{i \to j} \beta \, \frac{r_i^{old}}{d_i}$
 - r'new = 0 if in-degree of j is 0
 Now re-insert the leaked PageRank:
 - $\forall j: r_i^{new} = r_i^{new} + \frac{1-S}{N}$
 - $r^{old} = r^{new}$

where: $S = \sum_{j} r'_{j}^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**. 45

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

46

Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - Store rold and matrix M on disk
- 1 step of power-iteration is:

Initialize all entries of $r^{\text{new}} = (1-\beta) / N$ For each page i (of out-degree d_i): Read into memory: i, d_i , $dest_i$, ..., $dest_{d^i}$, $r^{old}(i)$ For $j = 1...d_i$

 $r^{\text{new}}(\text{dest}_{j}) += \beta r^{\text{old}}(i) / d_{i}$

		. (~.	, p.	(', , '	<u>u</u>	_			
0		rnew	source	source degree destination					
1		ļ	0	3	1, 5, 6				
2		}	1	4	17, 64, 113, 117		-		
3 4	\vdash	ł	1	4			_		
5		İ	2	2	13, 23	H	_		
6		1				1	_		

Analysis

- Assume enough RAM to fit *r*^{new} into memory
 - Store rold and matrix M on disk
- In each iteration, we have to:
 - Read rold and M
 - Write rnew back to disk
 - Cost per iteration of Power method:

=2|r|+|M|

- Question:
 - What if we could not even fit r^{new} in memory?

Analysis of Block Update

- Similar to nested-loop join in databases
 - □ Break r^{new} into k blocks that fit in memory
 - Scan M and rold once for each block
- Total cost:
 - □ k scans of M and rold
 - Cost per iteration of Power method: k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- Can we do better?
 - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

50

Block-Stripe Update Algorithm | Src | degree | destination | O | 4 | 0, 1 | | 1 | 3 | 0 | 2 | 2 | 1 | | 2 | 3 | 0 | 4 | 3 | | 2 | 2 | 3 | 3 | | 4 | 5 | 5 | | Break M into stripes! Each stripe contains only destination nodes in the corresponding block of rnew | 51

Block-Stripe Analysis

- Break *M* into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration of Power method:
 - $=|M|(1+\varepsilon)+(k+1)|r|$

Application to Measuring Proximity in Graphs

Random Walk with Restarts: S is a single element

Good proximity measure?

Shortest path is not good:

- No effect of degree-1 nodes (E, F, G)!
- Multi-faceted relationships

Good proximity measure?

■ Network flow is not good:

■ Does not punish long paths

PageRank: Summary

- "Normal" PageRank:
 - □ Teleports uniformly at random to any node
- Topic-Specific PageRank also known as Personalized PageRank:
 - □ Teleports to a topic specific set of pages
 - Nodes can have different probabilities of surfer landing there: S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]
- Random Walk with Restarts:
 - □ Topic-Specific PageRank where teleport is always to the same node. S=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Questions?