Topologie et calcul différentiel

Espaces de Hilbert

Question 1/5

Lien entre V et E dans le cas où V est un sev fermé de E

Réponse 1/5

$$E = V \oplus V^{\perp}$$

Question 2/5

Espace de Hilbert sur $\mathbb R$

Réponse 2/5

Espace de Banach dont la norme provient d'un produit scalaire

Question 3/5

Projection orthogonale sur un convexe fermé

Réponse 3/5

Si C est un convexe fermé alors il existe un unique $c \in C$ tel que d(x,C) = ||x-c||

Question 4/5

Espace en bijection isomorphique avec un espace de Hilbert

Réponse 4/5

Si l'espace est de dimension finie alors in est en bijection isomorphe avec \mathbb{R}^n muni de la norme euclidienne

Si l'espace est de dimension infinie alors in est en bijection isomorphe avec $\ell^2(\mathbb{R})$ muni de la norme euclidienne

Question 5/5

 $\operatorname{pr}_V(x)$ pour V de dimension finie

Réponse 5/5

Si
$$(v_1, \dots, v_n)$$
 est une bon de V

$$\operatorname{pr}_V(x) = \sum_{i=1}^n (\langle x, v_i \rangle v_i)$$

k=1