Liên kết khác

k3751070033@gmail.com Bảng điều khiển Đăng xuất

Learning by practicing

Learning is an ongoing activity ... practicing makes it fun

Monday, August 3, 2015

Calculating the UDP Checksum, with a taste of scapy + Wireshark

In this post we will calculate the UDP checksum. To calculate the UDP checksum we first must understand, in addition to its own header, UDP checksum uses a pseudo header. This pseudo header consists of the original source IP, destination IP, reserved (identified as 0000 0000), protocol (x11) and the length from the UDP header.

UDP pseudo header. Reprinted with permission from tcpipguide.com

UDP header: Reprinted with permission from tcpipguide.com

Considering the above, let us craft a UDP Packet in scapy. We have the following Source IP = 192.168.0.31Destination = 192.168.0.30UDP source port = 20

UDP destination port = 10 Data (2 bytes) = "Hi"

>>> send(IP(src='192.168.0.31',dst='192.168.0.30')/UDP(sport=20,dport=10)/"Hi", count= Sent 1 packets.

Contributors

- Abdul
- Nik Alleyne, MSc | CISSP | GC|IA|IH|REM|PEN

Keep up-to-date with the latest posts Enter your email address:

Subscribe

Delivered by FeedBurner

Let's see what the receiving host got from a Wireshark perspective My Book Resume, SANS GCIA Gold Paper, etc Time Source Destination Protoc 1 0.000000000 192.168.0.31 192.168.0.30 UDP Protocol Length Info
UDP 60 Source port: 20 Destination port: 10 Grab a copy of Hack and Detect from nazon. Read the sample chapters. ☐ Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0
☐ Ethernet II, Src: Cadmusco.40:38:ef (08:00:27:40:38:ef), Dst: IntelCor_50:9d:3f (88:53:2e:50:9d:3f)
☐ Internet Protocol Version 4, Src: 192.168.0.31 (192.168.0.31), Dst: 192.168.0.30 (192.168.0.30)
☐ User Datagram Protocol, Src. Port: 20 (20), Dst Port: 10 (10) Source Port: 20 (20) Destination Port: 10 (10) Length: 10 Checksum: 0x35c5 [correct]

when adding, these values needs to be added 16 bits or 2 bytes at a time.

	Decimal	Binary	Hex
Source IP	192.168	1100 0000 1010 1000	CO AS
	0.31	0000 0000 0001 1111	00 1
Destination IP	192.168.	1100 0000 1010 1000	CO AS
	0.30	0000 0000 0001 1110	00 1
Reserved/UDP protocol	0/17	0000 0000 0001 0001	00 1
Padding/Length	0/10	0000 0000 0000 1010	00 0
Pseudo header ends h	ere so we v	will add the real UDP header to th	nis
UDP Source Port	20	0000 0000 0001 0100	00 14
UDP destination Port	10	0000 0000 0000 1010	00 0
UDP Length	10	0000 0000 0000 1010	00 0
UDP Data	Hi	0100 1000 0110 1001	48 69
Now that we have all	that inform	ation let's add	
Notice in our previous	entry our	1 1100 1010 0011 1001 values exceed 16 bits (2 bytes). T	
since our checksum ha from t to become 32 b	as to be 16 oits. Thus w		his will not work and the results). We will also
since our checksum ha from t to become 32 b find the binary value o Now that we have the	as to be 16 bits. Thus w of 000 and a	values exceed 16 bits (2 bytes). To bits. To get to 16 bits we will exp e will prepend hex 000 to 1 CA 39 add it to the binary column.	his will not work and the results). We will also 00 01 CA 3
since our checksum ha from t to become 32 b find the binary value o Now that we have the	as to be 16 bits. Thus w of 000 and a	values exceed 16 bits (2 bytes). T bits. To get to 16 bits we will exp e will prepend hex 000 to 1 CA 39 add it to the binary column. 1 1100 1010 0011 1001	his will not work and the results D. We will also 00 01 CA 3 and add them to
since our checksum ha from t to become 32 b find the binary value o Now that we have the	as to be 16 bits. Thus w of 000 and a	values exceed 16 bits (2 bytes). To bits. To get to 16 bits we will expe will prepend hex 000 to 1 CA 39 add it to the binary column. 1 1100 1010 0011 1001 The we take the upper half 00 01 a	his will not work and the results D. We will also 00 01 CA 33 and add them to
since our checksum ha from t to become 32 b find the binary value o Now that we have the	as to be 16 bits. Thus w of 000 and a	values exceed 16 bits (2 bytes). To bits. To get to 16 bits we will expe will prepend hex 000 to 1 CA 39 add it to the binary column. 1 1100 1010 0011 1001 The we take the upper half 00 01 are we take the upper half 00 0100 0000 0000 0000 0001	his will not work and the results D. We will also 00 01 CA 3 and add them to 00 0 + CA 3
since our checksum h from t to become 32 I find the binary value Now that we have the the lower half CA 39 We're getting there. N	as to be 16 its. Thus w of 000 and a 2 32 Bit valu	values exceed 16 bits (2 bytes). To bits. To get to 16 bits we will exp e will prepend hex 000 to 1 CA 39 add it to the binary column. 1 1100 1010 0011 1001 The we take the upper half 00 01 a 0000 0000 0000 0000 + 1100 1010 0011 1001	00 01 CA 33 nd add them to 00 01 CA 33 nd add them to 00 02 + CA 33 CA34 to find its one's

That's it our UDP Checksum is 0x35C5 which matches what Wireshark provided us above

Hope this helps someone who wanted to know how to calculate the UDP Checksum

References:

http://www4.ncsu.edu/~mlsichit/Teaching/407/Resources/udpChecksum.html

http://www.tcpipguide.com/free/t_UDPMessageFormat-2.htm

http://www.secdev.org/projects/scapy/

https://www.wireshark.org/

https://www.ietf.org/rfc/rfc768.txt

Posted by Nik Alleyne, MSc | CISSP | GC|IA|IH|REM|PEN at 8:16 PM

9 comments:

Unknown October 28, 2017 at 1:32 AM

This comment has been removed by the author.

Reply

Replies

Unknown May 30, 2019 at 11:05 AM

Really ???? so sad :p

Reply

Unknown July 4, 2018 at 9:29 PM

Thank you for this tutorial.

Reply

Mastering TShark Network Forensics. Grab a copy: Get the Sample Chapters

View a PDF version of my resume

Presentation to the Ottawa Chapter of the High Technology Crimes Investigation (HTCIA) Association & ISC2 Toronto Chapter, SANS

@night, etc

Building a Forensically Capable Network Infrastructure

SANS Webcast

The Importance of Intrusion Detection in a compromise prone world

Presentation at Canada International Cyber Security Conference:

Threat Analysis and Investigative Techniques in the Modern world

SANS GCIA Gold Paper Building a Forensically Capable Network Infrastructure

Github Project QRadar ThreatIntel Qradar Threat Intel on the Cheap

Python/Scapy DNS Spoofing Tool/Tutorial

Masters Capstone Paper FROM PAPERLESS TO PLASTICLESS, EMV CARD SECURITY AND THE FUTURE OF PAYMENTS IN THE USA

asecure.cloud - Build a Secure Cloud

A free repository of customizable AWS security configurations and best practices

Generate custom CloudFormation and CLI deployment scripts by adding multiple configuration items to stacks go get it here

My GITHub

Blog Archive

- **2023** (3)
- **2022** (16)
- **2021** (32)
- **2020** (39)
- **2019** (27)
- **▶ 2018** (24)

Replies

Nik Alleyne, MSc | CISSP | GC|IA|IH|REM|PEN January 29, 2019 at 7:50 PM

Sonu,

You are welcome!

Reply

Anonymous October 27, 2020 at 2:56 PM

the tutorial helped loads! Thank you!

Reply

Replies

Nik Alleyne, MSc | CISSP | GC|IA|IH|REM|PEN October 27, 2020 at 2:58 PM

Really happy you found it beneficial.

Reply

lechercheur123 November 24, 2020 at 3:47 AM

This tutorial helped me to check that my checksum calculator program worked. It was very helpful :)

Reply

Replies

Nik Alleyne, MSc | CISSP | GC|IA|IH|REM|PEN November 24, 2020 at 6:10 AM

I'm glad you found it helpful lechercheur123!

Reply

hasnain July 9, 2021 at 11:31 PM

To calculate the UDP checksum we first must understand, in addition to its own header, UDP checksum uses a pseudo header. matrix calculator can be of great use here to make it easy.

Reply

Enter Comment

Newer Post Home Older Post

Subscribe to: Post Comments (Atom)

- **2017** (64)
- **▶ 2016** (42)
- **2015** (86)
 - ▶ December (5)
 - ► November (11)
 - October (4)
 - ► September (3)
 - ▼ August (7)

Windows 10 Recycle Bin Analys - RIFIUTI2

Calculating the TCP Checksum, with a taste of scap...

Calculating the UDP Checksum, with a taste of scap...

Calculating the IP Checksum, with a taste of scapy...

Stimulus and response revisited

Integrating RSA 8.1 (SNMPv3 traps) with Splunk on ...

Metadata - Telling the story

- ▶ July (6)
- ▶ June (9)
- ► May (7)
- ▶ April (8)
- ► March (9)
- February (8)
- ▶ January (9)
- **▶ 2014** (70)

Learning Sites:

http://www.securitytube.net

http://www.cybrary.it/

ENISA

Seed Labs

Open Security Training

Fuzzy Security

Honeynet Project

Corelan Exploiting Writing Tutorial

Mitre

Additional Readings

SANS Reading Room

https://www.us-cert.gov/

http://taosecurity.blogspot.ca/ http://krebsonsecurity.com/

http://securityweekly.com/

http://securityweekiy.com/

http://www.csoonline.com/blogs https://securosis.com/blog/

https://securosis.com/blog

http://threatpost.com/

http://nakedsecurity.sophos.com/

http://blog.zeltser.com/

https://www.schneier.com/

Morning Star Security

Infosec Industry

Intelligence Feeds - IPs/Domains/URLs

[MALICIOUS IPs]

Emerging Threats - Compromised IPs

 $\mathsf{My}\;\mathsf{IPs}$

Spamhause drop

Spamhause edrop

Emerging Threats Block IP

DShield

SANS ISC

Zonefiles.io

SSL IP Blokclist

SSL IP Blokclist - Aggressive

Feedotracker - recommended ip blocklist

Feedotracker - IP Blocklist

Block IP

[MALICIOUS DOMAINS]

Malware Domains Delisted

OpenPhish

Hostnames

Domains

Domains

[MALICIOUS URLS]

vxvault.net URL_List

[PHISHING URLS]

openphish

Below is a list of threat intelligence websites that you can use. Cymon.io is an excellent one as it searches around 200 different sources. If you're looking for a more exhaustive list of threat intel sites, check out

https://github.com/rshipp/awesome-malware-analysis

IP and Domain Reputation / Malicious

Activity Reports

http://cymon.io

https://www.recordedfuture.com/live/

http://urlquery.net/ (URL Scanner)

https://virustotal.com/

https://otx.alienvault.com/

https://exchange.xforce.ibmcloud.com/

IP Information (open ports, details, WHOIS,

etc)

https://www.censys.io

https://www.shodan.io/ https://centralops.net/co/

http://viewdns.info/

https://www.threatcrowd.org

Malware Analysis

https://malwr.com/

https://www.hybrid-analysis.com/

Misc

https://isc.sans.edu/services.html (Port

https://ransomwaretracker.abuse.ch/trac

information)

Malware / Malicious Site Samples:

https://malwr.com/

http://vxvault.net/ViriList.php

http://cybercrime-tracker.net/

ker/

http://malc0de.com/database/

OSINT Framework

Nik Alleyne (www.securitynik.com). Simple theme. Powered by Blogger.