19CSE337 Social Networking Security

Assignment - 1

S Abhishek AM.EN.U4CSE19147

- 1 Model the following friendship relation as an undirected graph.
 - **❖** John and Mary are friends.
 - John is also a friend of Aneesh.
 - **❖** Aneesh and Faisal are friends.
 - **❖** Mary and Priya are close friends.
 - * Raju is a mutual friend of Aneesh and Faisal.

• A - Give the adjacency matrix and adjacency list notation of the relationship.

Adjacency Matrix

,	John	many	Pniya	Anec5h	Faisol	Raju
John	Ó	1	0	1	0	0
many	1	0	7	0	0	0
Pniya	0	1	0	O	0	0
Ancesh	1	0	0	0	i	Ī
Faisal	0	0	0	1	0	1
Raju	0	0	0	1	9	0

```
1 print(nx.adjacency_matrix(Graph).todense())

[[0 1 0 1 0 0]
  [1 0 1 0 0 1]
  [0 1 0 0 0 1 0]
  [0 0 0 1 0 0]
  [0 1 1 0 0 0]]
```

John Many Ancesh John Marry Priya Pniya Many Adjacency List Raju Faisal Ancesh John Raju Forient Ancesh Forisal

```
1    Graph.adj
AdjacencyView({'John': {'Aneesh': {}, 'Mary': {}}, 'Aneesh': {'John': {}, 'Faisal': {},

AdjacencyView({
'John': {'Mary': {}, 'Aneesh': {}},

'Mary': {'John': {}, 'Priya': {}},

'Aneesh': {'John': {}, 'Faisal': {}, 'Raju': {}},

'Faisal': {'Aneesh': {}, 'Raju': {}},

'Priya': {'Mary': {}},

'Raju': {'Faisal': {}, 'Aneesh': {}}

})
```

 B - Model the graph using NetworkX. Write the code and include a screenshot of the output in the assignment.

nx.draw(Graph, with_labels = True)

• C - Compute the Degree Centrality, Betweenness Centrality, Closeness Centrality, and eigenvalue centrality manually.

Degree Centrality

Node	Score	Standardized Score
John	2	2/5 = 0.4
Aneesh	3	3/5 = 0.6
Faisal	2	2/5 = 0.4
Mary	2	2/5 = 0.4
Priya	1	1/5 = 0.2
Raju	2	2/5 = 0.4

Betweenness Centrality

Consider,

Node	Notation
John	A
Aneesh	В
Faisal	С
Mary	D
Priya	E
Raju	F

Betweenness Centrality of A - John

Pair	Shortest Distance?	Passes through A?	β(v)
ВС	1	0	0
BD	1	1	1
BE	1	1	1
BF	1	0	0
CD	1	1	1
CE	1	1	1
CF	1	0	0
DE	1	0	0
DF	1	1	1
EF	1	1	1

- $\bullet \quad \beta(v) = 6$
- $[\beta(\mathbf{v})/((N-1)(N-2)/2)] = 6/((5)(4)/2) = 6/10 = 0.6$

Betweenness Centrality of B - Aneesh

Pair	Shortest Distance?	Passes through B?	β(v)
AC	1	1	1
AD	1	0	0
AE	1	0	0
AF	1	1	1
CD	1	1	1

СЕ	1	1	1
CF	1	0	0
DE	1	0	0
DF	1	1	1
EF	1	1	1

- $\bullet \quad \beta(v) = 6$
- $[\beta(\mathbf{v})/((N-1)(N-2)/2)] = 6/((5)(4)/2) = 6/10 = 0.6$

Betweenness Centrality of C - Faisal

Pair	Shortest Distance?	Passes through C?	β(v)
AB	1	0	0
AD	1	0	0
AE	1	0	0
AF	1	0	0
BD	1	0	0
BE	1	0	0
BF	1	0	0
DE	1	0	0
DF	1	0	0
EF	1	0	0

 $\bullet \quad \beta(v) = 0$

• $[\beta(\mathbf{v})/((N-1)(N-2)/2)] = 0/((5)(4)/2) = 0/10 = 0$

Betweenness Centrality of D - Mary

Pair	Shortest Distance?	Passes through D?	β(v)
AB	1	0	0
AC	1	0	0
AE	1	1	1
AF	1	0	0
ВС	1	0	0
BE	1	1	1
BF	1	0	0
CE	1	1	1
CF	1	0	0
EF	1	1	1

$$\bullet \quad \beta(v) = 4$$

• $[\beta(v)/((N-1)(N-2)/2)] = 4/((5)(4)/2) = 4/10 = 0.4$

Betweenness Centrality of E - Priya

Pair	Shortest Distance?	Passes through E?	β(v)
AB	1	0	0
AC	1	0	0
AD	1	0	0
AF	1	0	0
ВС	1	0	0
BD	1	0	0
BF	1	0	0
CD	1	0	0
CF	1	0	0
DF	1	0	0

- $\beta(v) = 0$
- $[\beta(\mathbf{v})/((N-1)(N-2)/2)] = 0/((5)(4)/2) = 0/10 = 0$

Betweenness Centrality of F - Raju

Pair	Shortest Distance?	Passes through F?	β(v)
AB	1	0	0
AC	1	0	0
AD	1	0	0
AE	1	0	0

$$\bullet \quad \beta(v) = 0$$

ВС	1	0	0
BD	1	0	0
BE	1	0	0
CD	1	0	0
CE	1	0	0
DE	1	0	0

•
$$\beta(\mathbf{v}) = 0$$

•
$$[\beta(\mathbf{v})/((N-1)(N-2)/2)] = 0/((5)(4)/2) = 0/10 = 0$$

Notation	Node	Betweenness Centrality
A	John	0.6
В	Aneesh	0.6
С	Faisal	0
D	Mary	0.4
E	Priya	0
F	Raju	0

Closeness Centrality

$$C_{c(5)} = \frac{n-1}{2}$$

Node	A	В	С	D	Е	F	Total Distance	Score	Standardized Score
A	0	1	2	1	2	2	8	1/8	5/8 = 0.625
В	1	0	1	2	3	1	8	1/8	5/8 = 0.625
С	2	1	0	3	4	1	11	1/11	5/11 = 0.4545
D	1	2	3	0	1	3	10	1/10	5/10 = 0.5
E	2	3	4	1	0	4	14	1/14	5/14 = 0.3571
F	2	1	1	3	4	0	11	1/11	5/11 = 0.4545

Eigenvector Centrality

AV-
$$\lambda v = (P - \lambda I) \cdot V = 0$$
 Equation has a non zero solution if and only if the $(P - \lambda I) = 0$

$$det (A-\lambda I) = \begin{vmatrix} 0-\lambda & 1 & 0 & 1 & 0 & 0 \\ 1 & 0-\lambda & 0 & 0 & 0 & 0 \\ 0 & 1 & 0-\lambda & 0 & 0 & 0 \\ 1 & 0 & 0 & 0-\lambda & 0 & 0 \\ 0 & 0 & 0 & 0 & 0-\lambda & 0 \end{vmatrix}$$

Principle Eigen value is 2.228

$$A - \lambda_5 I = \begin{bmatrix} -2.228 & 0 & 0 & 6 & 0 & 0 \\ 1 & -2.228 & 0 & 0 & 6 & 0 \\ 0 & 0 & -2.228 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2.228 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2.228 & 0 & 0 \end{bmatrix}$$

Using gaussian elimination, solve the linear equations.

After occupal steps, we will got the final mouthix.

• D - Compute question c using NetworkX and compare the values.

Note: Include code and a screenshot of the output obtained.

Degree Centrality
print(nx.degree_centrality(Graph))

Betweenness Centrality

print(nx.betweenness_centrality(Graph))

Closeness Centrality

print(nx.closeness_centrality(Graph))

```
▼ Closeness Centrality

[32] 1 print(nx.closeness_centrality(Graph))

{'A': 0.625, 'B': 0.625, 'C': 0.4545454545454545453, 'D': 0.5, 'E': 0.35714285714285715, 'F': 0.454545454545453}
```

Eigenvalue Centrality

for i in nx.eigenvector_centrality(Graph).items():
 print(i)

```
▼ Eigenvalue Centrality

[40] 1 for i in nx.eigenvector_centrality(Graph).items():
2 print(i)

('A', 0.35721095952083237)
('B', 0.5952478351966989)
('C', 0.4845986001361692)
('D', 0.2007328565922937)
('E', 0.09008362153176391)
('F', 0.4845986001361692)
```

- 2 Consider the following bank network of lending money. Model it as a directed graph (a Manual model is enough).
 - **❖** Bank A lends money from Bank B and Bank C.
 - **❖** Bank C lends money from Bank D and Bank B.
 - **❖** Bank D lends money from Bank B.
 - ***** Bank B lends money from Bank E.
 - ***** Bank E lends money from Bank A.
 - **Second Second S**
 - Compute the PageRank of each node in the graph and report the largest and smallest PageRank.

(i)
$$A = \frac{1}{6}$$

Incoming: B, C.

 $A = \frac{1}{6}$, $B = \frac{1}{6}$, $C = \frac{1}{6}$, $C = \frac{1}{6}$, $E = \frac{1}{6}$, $E = \frac{1}{6}$

$$B = \frac{1}{3}$$

$$C = 1$$

$$A = \frac{1}{3} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{1} = \frac{1}{18} + \frac{1}{6} = \frac{1+3}{18} = \frac{1}{18} = \frac{2}{9}$$

$$\frac{8= \frac{1}{6} \times \frac{1}{2}}{6 \times \frac{1}{2}} = \frac{1}{12}$$

$$C = \frac{1}{6} \times \frac{1}{3} + \frac{1}{6} \times \frac{1}{6} = \frac{1}{18} + \frac{1}{6}$$

$$=\frac{2}{9}=0.22$$

$$\frac{D}{18} = 0.055$$

$$F = \frac{1}{b} \times \frac{1}{a} = \frac{1}{12} = 0.083$$

(2)
$$A = \frac{2}{9}$$
, $B = \frac{1}{12}$ $C = \frac{2}{9}$ $D = \frac{1}{18}$, $E = \frac{1}{6}$ $F = \frac{1}{12}$

Capito a 1- ay

$$B = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

$$C = \frac{1}{3} \times \frac{1}{12} + \frac{1}{1} \times \frac{1}{18} = \frac{3}{36} = \frac{1}{12}$$

$$\mathcal{E} = \frac{2}{9} = \frac{2}{9}$$

B A=
$$\frac{1}{4}$$
 B= $\frac{1}{12}$ C= $\frac{1}{12}$ D= $\frac{1}{36}$ E= $\frac{2}{9}$ F= $\frac{1}{12}$

$$A = \frac{1}{3} \times \frac{1}{12} + 1 \times \frac{1}{12} = \frac{1}{3} \times \frac{1}{12} = \frac{1}{9} = 0.111$$

$$8 = \frac{1}{2} \times \frac{2}{q} = \frac{1}{q} = 0.111$$

$$C = \frac{1}{3} \times \frac{1}{12} + \frac{1}{36} = \frac{2}{36} = \frac{1}{18} = 0.055$$

$$F = \frac{1}{2} \times \frac{2}{9} = \frac{1}{9} = 0.111$$

After 3 iterations, Bank E has the highest Page Rank and the Bank D has the lowest Page Rank. Thankyou!!