

Navigation Autonome de Robot Mobile

<u>Réalisé par :</u>

Luc RUBIO
Hugo BREFEL
Sylvain GUILLAUME
Salah Eddine GHAMRI
Pierre BEAUHAIRE

M2 IARF - RODECO

TUTEURS:

MICHEL TAIX MICHAËL LAUER FRÉDÉRIC LERASLE

Enjeux de la navigation autonome

- Perception et modélisation de l'environnement
- Localisation du robot dans l'environnement
- Suivi de trajectoire
- Evitement d'obstacles
- Temps-réel

Sommaire

- I- Présentation du projet
- II- Travail existant
- III- Travail réalisé
- IV- Résultats
- V- Application

I- Présentation du projet

Cahier des charges

- Déplacement d'un TurtleBot (base mobile, capteur 3D, bumpers)
- Environnement intérieur (à l'AIP Primeca)
- Localisation grâce à des amers visuels
- Évitement d'obstacles statiques
- Suivi d'une trajectoire

I- Présentation du projet

Solution mise en place

- Reconnaissance d'amers et asservissement
- Génération et lissage de trajectoire
- Réalisation d'une commande
- Relocalisation du robot (filtre de Kalman)
- Détection d'obstacles

I- Présentation du projet

Gestion de projet

Environnement de travail

II-Travail existant

- Démonstration de la faisabilité d'un tel projet via les boîtes noires de ROS
- Construction de la carte via RViz

Création d'une nouvelle carte de l'environnement

plus précise

- Traitements sur la carte de l'environnement
- Assimilation du TurtleBot à un point

- Génération aléatoire de points sur la carte (méthode PRM Probabilistic RoadMap) pour discrétiser l'environnement
- Assimilation des amers à des points

- Génération de trajectoire (méthode A*)
- Passage par des points clés (amers visuels) pour la relocalisation

- Lissage de trajectoire (méthode des courbes de Bézier)
- Suivi de trajectoire avec localisation

IV- Résultats

Cahier des charges	Travail réalisé
Génération de la trajectoire	
Suivi de trajectoire	
Relocalisation grâce aux amers	
Évitement d'obstacles	

IV- Résultats

Points faibles:

- Roues du TurtleBot légèrement abimées, ce qui gène le déplacement du robot.
- Problèmes si luminosité trop importante.
- Nombre d'amers insuffissant.

V- Application

Courte vidéo (30-40 secondes max) de la réalisation d'un scénario complet de suivi de trajectoire d'un turtlebot (asservissement, génération de trajectoire, déplacement, détection d'obstacles).

Conclusion

- Retombées pédagogiques
 - TP de vision, d'estimation, de robotique (commande) sur un même support
- Améliorations
 - SLAM
 - Amélioration de la relocalisation
 - Amélioration du suivi de trajectoire
 - Scènes dynamiques

Merci de votre attention.

