Classification

By Saurav Poudel

Classification vs Linear Regression

Remember, in LR, we were predicting something that

was continuous.

	Two Class Classification				
$y \in \{0,1\}$	1 or Positive O or Negative Class				
Email	Spam	Not Spam			
Tumor	Malignant	Benign			
Transaction	Fraudulent	Not Fraudulent			

Why not use the linear regression method?

Probability of Output being 1 given the input.

$$P(Y=1/X)$$

Probability should always be between 0 and 1. Not more or less.

 $p(X) = \beta_0 + \beta_1 X.$

Sigmoid Function

$$\sigma(t)=\frac{e^t}{e^t+1}=\frac{1}{1+e^{-t}}$$

 $p(X) = \beta_0 + \beta_1 X.$

p(X) =

 $e^{\beta_0+\beta_1X}$

 $\overline{1+e^{\beta_0+\beta_1X}}$.

Concept of 'Activation Function'

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

Hence known as "Logistic Regression."

(with the LHS known as Log Odds)

What is the loss function of Logistic Regression?

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

		in	Logistic	Re	egression	?
--	--	----	----------	----	-----------	---

Why didn't we use the MSE as our Loss Function

So what should be the decision boundary?

P(Y = 1 | x) gives a probability only.

How to measure the model accuracy?

Is an accurate model necessarily a good model?

Hypothetical Diabetes Example

Confusion Matrix

Truth table (confusion matrix)

- Accuracy = $\frac{TP+TN}{P+N}$
- Sensitivity = $\frac{TP}{\text{Actual Positives}}$
- Specificity = $\frac{TN}{Actual Negatives}$

ROC and AUC

Recall

Precision

