Intro to Probability

Spring 2018

Contents

1	Random Variables	1
2	Conditional Probability 2.1 Bayes' Formula	1 2
3	Independent Trials	3
4	Expectation	4
	4.1 Gaussian Distribution	5
	4.2 Binomial Approximation	5
	4.2.1 Continuity Correction	6
	4.3 Confidence Intervals	6
5	Poisson Distribution	6
	5.1 Exponential Distribution	7
6	Moment Generating Function	7
7	Joint Distributions	8
	7.1 Independence	8
	7.2 Covariance	9
	7.3 Correlation	9
	7.4 Independence Revisited	9
	7.5 Convolution	10
8	Poisson Process	10
	8.1 Waiting Times	10
9	Tail Inequalities	11

Random Variables 1

Definition 1.1. A probability model is a mathematical description of an uncertain situation. It is composed of

- a) a sample space Ω which is the set of all possible outcomes. A subset of Ω is called an event, and the set of all possible events is denoted by \mathcal{F} .
- b) a probability measure $P: \mathcal{F} \to \mathbb{R}$ satisfying
 - $P(A) \ge 0$ for all $A \in \mathcal{F}$;
 - $P(\Omega) = 1$ and $P(\emptyset) = 0$; and
 - if A_1, A_2, \ldots is a sequence of disjoint events, then $P(\cup A_i) = \sum P(A_i)$.

The triple (Ω, \mathcal{F}, P) is called a **probability space**.

Theorem 1.2. For any events A, B,

- $P(A^C) = 1 P(A)$.
- If A ⊆ B, then P(A) ≤ P(B).
 P(A∪B) ≤ P(A) + P(B).
- $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B).$

Definition 1.3. A random variable is a function $X:\Omega\to\mathbb{R}$. We say X is a discrete random variable if the range of X is countable, otherwise, X is a continuous random variable. The **probability distribution** of a random variable X defines

$$P(X \in B)$$
 for all $B \subseteq \mathbb{R}$.

In particular, if X is a discrete, then the p.m.f. of X, denoted p_X , is defined by $p_X(k) = P(X = k)$ for all $k \in \text{range}(X)$.

Proposition 1.4. The probability distribution of a discrete random variable is completely determined by its p.m.f.

Conditional Probability 2

Definition 2.1 (Conditional Probability). Let A, B be events with $P(B) \neq 0$, then

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Proposition 2.2. If Ω has finitely many equally likely outcomes, then $P(A|B) = \frac{\#(A \cap B)}{\#B}$.

Proposition 2.3. For events A_1, \ldots, A_n having nonzero probability,

$$P(\bigcap_{i=1}^{n} A_i) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\dots P(A_n|\bigcap_{i=1}^{n-1} A_i).$$

Theorem 2.4 (Law of Total Probability). Let $B_1, B_2, ...$ be a sequence of events that partitions Ω . Then for any event A, we have $A \cap B_1, A \cap B_2, ...$ are disjoint, $A = \bigcup_i (A \cap B_i)$, and

$$P(A) = \sum_{i} P(A \cap B_i).$$

2.1 Bayes' Formula

Theorem 2.5. For events A, B,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)}.$$

If A_1, A_2, \ldots , is a sequence of events that partitions Ω , then

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_i P(B|A_i)P(A_i)}.$$

Definition 2.6. Events A_1, \ldots, A_n are **independent** if

$$P\bigg(\bigcap_{i} A_{i}\bigg) = \prod_{i \in S} P(A_{i}),$$

for all $S \subseteq \{1, ..., n\}$. The infinite set of events $A_1, A_2, ...$ is independent if any finite subset is independent.

Theorem 2.7. The following are equivalent:

- A and B are independent;
- A^C and B are independent;
- A and B^C are independent;
- A^C and B^C are independent.

Definition 2.8. The random variables X_1, \ldots, X_n are independent if

$$P(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i),$$

for all $B_i \subset R$.

• If X_1, \ldots, X_n are discrete, then they are independent if

$$P(X_1 = c_1, \dots, X_n = c_n) = \prod_{i=1}^n P(X_i = c_i),$$

for all $c_i \in R$.

• If X_1, \ldots, X_n are continuous, then they are independent if

$$P(X_1 \le c_1, \dots, X_n \le c_n) = \prod_{i=1}^n P(X_i \le c_i),$$

for all $c_i \in R$.

3 Independent Trials

Definition 3.1 (Bernoilli Distribution). Let $0 \le p \le 1$. A random variable X has the Bernoulli distribution with success parameter p if X is $\{0,1\}$ -valued and P(X=1)=p. We write $X \sim Ber(p)$.

Definition 3.2 (Binomial Distribution). Let $0 \le p \le 1$. A random variable X has the binomial distribution with parameters (n,p) if $P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$. We write $X \sim Bin(n,p)$.

Models the number of successes in a sample of size n drawn with replacement with success probability p.

Definition 3.3 (Geometric Distribution). Let 0 . A random variable X has the geometric distribution with success parameter <math>p if $P(X = k) = p(1 - p)^{k-1}$. We write $X \sim Geom(n, p)$.

Gives the probability distribution of the number X of Bernoulli trials needed to get one success.

Definition 3.4 (Hypergeometric Distribution). A random variable X has the hypergeometric distribution with parameters (N, K, n) if $P(X = k) = {K \choose k} {N-k \choose k} / {N \choose n}$. We write $X \sim Hypergeo(n, p)$.

Describes the probability of k successes in n draws, without replacement, from a finite population of size N that contains exactly K objects with a desired feature, wherein each draw is either a success or a failure.

Definition 3.5 (Cumulative Distribution Function). Let X be a random variable. The cdf of X is a function F_X defined by

$$F_X(t) = P(X \le t).$$

Theorem 3.6.

- 1) F is non-decreasing
- 2) F is right-continuous
- 3) $\lim_{t\to-\infty} F(t) = 0$ and $\lim_{t\to\infty} F(t) = 1$.

If X is a discrete random variable with pmf p_X , then

$$F_X(t) = \sum_{\substack{x \in X(\Omega) \\ x \leqslant t}} p_X(x),$$

Expectation Intro to Probability

and if X is continuous with pdf f_x , then

$$F_X(t) = \int_{-\infty}^t f_X(x) \mathrm{d}x.$$

Given a finite interval [c,d]. Let X be a random variable with pdf $f(x) = \frac{1}{d-c}$ if $x \in [c,d]$, and 0 otherwise. Then $X \sim Unif[c,d]$.

Expectation 4

For a discrete random variable X with pmf p, the expectation of X is

$$\mathbb{E}(X) = \sum kp(k),$$

where k ranges over $X(\Omega)$. If X is a continuous random variable with pdf f, then the expectation of X is

$$\mathbb{E}(X) = \int_{R} x f(x) \, \mathrm{d}x.$$

- If X ~ Ber(p), then E(X) = p.
 If X ~ Bin(n, p), then E(X) = np.
 If X ~ Unif[a, b], then E(X) = ½(a + b).

Law of the Unconscious Statistician. Given a function $g: R \to R$, $\mathbb{E}(g(X)) = \sum g(k)p(X = k)$, if X is a discrete rv, or $\mathbb{E}(g(X)) = \int_{R} g(x) f(x) dx$, if X is a continuous rv.

Let X be a random variable with expectation $\mu = E(X)$. Then the variance of X is

$$Var(X) = \mathbb{E}((X - \mu)^2).$$

Proposition 4.1. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$.

Example. If $X \sim Unif[a, b]$, then $Var(X) = \frac{1}{12}(b - a)^2$.

Proposition 4.2. Let X, Y be random variables and let $a, b \in R$.

- 1) $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$.
- 2) $Var(aX + b) = a^2 Var(X)$.
- 3) $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$
- 4) $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$

where $Cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$, the covariance of X and Y.

4 Expectation Intro to Probability

Distribution	Expectation	Variance	$M_X(t)$
Ber(p)	p	p(1 - p)	$pe^t + 1 - p$
Bin(n,p)	np	np(1-p)	$(pe^t + 1 - p)^n$
Geom(p)	$\frac{1}{n}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}, t < -\ln(1-p)$
Unif[a,b]	$\frac{1}{2}(a + b)$	$\frac{1}{12}(b^{r}-a)^{2}$	$\frac{pe^{t}}{1-(1-p)e^{t}}, t < -\ln(1-p)$ $\frac{1}{t(b-a)}(e^{bt} - e^{at}), t \neq 0$ $e^{\lambda(e^{t}-1)}$
$Poisson(\lambda)$	λ	λ	$e^{\lambda(e^t-1)}$
$Exp(\lambda)$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda - t}$, $t < \lambda$

4.1 Gaussian Distribution

Definition 4.3. Let $\mu \in \mathbb{R}$ and $\sigma^2 \geq 0$. A random variable X with pdf

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2},$$

has the Gaussian (normal) distribution with parameters μ and σ^2 . We write $X \sim \mathcal{N}(\mu, \sigma^2)$. If $Z \sim \mathcal{N}(0, 1)$, then we say that Z has the **standard normal distribution**. We denote its pdf and cdf by ϕ and Φ , respectively.

Theorem 4.4. Let $X = \sigma Z + \mu$. Then, $X \sim \mathcal{N}(\mu, \sigma^2)$ if and only if $Z \sim \mathcal{N}(0, 1)$.

Proof.

$$\begin{split} P(Z \leq t) &= P(X \leq \sigma t - \mu) \\ &= \int_{-\infty}^{\sigma t + \mu} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} \, \mathrm{d}x \\ &= \int_{-\infty}^t \frac{1}{\sqrt{2\pi\sigma^2}} e^{-y^2/2} \sigma \, \mathrm{d}y \qquad (y = \frac{x - \mu}{\sigma}) \\ &= \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \, \mathrm{d}y. \end{split}$$

Let $Z \sim \mathcal{N}(0,1)$ and $X = \sigma Z + \mu$. Then $\mathbb{E}Z = 0$, Var(Z) = 1 and $\mathbb{E}X = \mu$, $Var(X) = \sigma^2$.

4.2 Binomial Approximation

Let $S_n \sim Bin(n,p)$. Recall that $\mathbb{E}S_n = np$ and $Var(S_n) = np(1-p)$. Thus, $\mathbb{E}\left(\frac{S_n - np}{\sqrt{np(1-p)}}\right) = 0$ and $Var\left(\frac{S_n - np}{\sqrt{np(1-p)}}\right) = 1$. When np(1-p) is sufficiently large (at least > 10), we have

$$P\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le t\right) \approx \Phi(t).$$

5 Poisson Distribution Intro to Probability

In particular, we have

$$\left| P\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le t \right) - \Phi(t) \right| \le \frac{3}{\sqrt{np(1-p)}}.$$
 (4.1)

4.2.1 Continuity Correction

Example. Let $S_n \sim Bin(720, \frac{1}{6})$. Suppose we want to estimate $P(S_n = 113)$. We use a continuity correction to allow us to approximate the probability by normalization.

$$P(S_n = 113) = P(112.5 \le S_n \le 113.5)$$

$$\approx P(-0.75 \le Z \le -0.65)$$

$$= \Phi(0.75) - \Phi(0.65) = 0.312...$$

4.3 Confidence Intervals

Example. Suppose we have a possibly biased coin with P(h) = p. Let $S_n = \#$ of heads $\sim Bin(n,p)$. We estimate p by $\hat{p} = S_n/n$.

Fact. Let $\varepsilon > 0$. Then

$$P(|p - \hat{p}| < \varepsilon) \ge 2\Phi(2\sqrt{n}\varepsilon) - 1.$$

- 1) How many times should we flip the coin such that \hat{p} is within 0.05 of p with probability at least 0.99? Using the fact, we have $P(|p-\hat{p}|<0.05)\geq 0.99 \leftrightarrow \Phi(0.10\sqrt{n})\geq 0.995 \leftrightarrow n\geq 665.64$. So we should flip the coin 666 times.
- 2) Find the smallest interval around \hat{p} that contains p with probability 0.95. Again, applying the fact, we have $P(|p-\hat{p}|<\varepsilon)\geq 0.95\leftrightarrow \varepsilon\geq \frac{0.98}{\sqrt{n}}$. So the smallest such interval is $(\hat{p}-\varepsilon_0,\hat{p}+\varepsilon_0)$, where $\epsilon_0=\frac{0.98}{\sqrt{n}}$. This interval is called a 95% confidence interval for p.

5 Poisson Distribution

Example. A computer server receives 3 request/sec on average. Estimate the probability the server receives 5 requests in any given second.

For example, we can divide the interval into 10 seconds and define $S_{10} = \#$ of requests $\sim Bin(10, 3/10)$. Then $P(S_{10} = 5) = 0.1029$. In general, for $S_n \sim Bin(n, p)$ where $\mathbb{E}S_n = np = \lambda$ is a constant, we have

$$\lim_{n \to \infty} P(S_n = k) = \frac{e^{-\lambda} \lambda^k}{k!}.$$

Proof. Substitute $p = \frac{\lambda}{n}$. Factor out constants and use $(1 + \frac{x}{n})^n \to e^x$ as $n \to \infty$. Show the rest reduces to 1.

Definition 5.1 (Poisson Distribution). Let $\lambda > 0$. The random variable Y has Poisson

distribution if

$$P(Y = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$
 for $k = 0, 1, ...$

Write $Y \sim \text{Poisson}(\lambda)$. We may approximate a binomial distribution with the Poisson distribution $(\lambda = np)$ when $np^2 < 1$. We have the following

$$|P(S_n = k) - P(Y = k)| \le np^2.$$

5.1 **Exponential Distribution**

Definition 5.2 (Exponential Distribution). Let $\lambda > 0$. A random variable X with p.d.f.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

has the exponential distribution. We write $X \sim Exp(\lambda)$.

The exponential distribution has c.d.f.

$$F(t) = 1 - e^{-\lambda t}$$
 for $t \ge 0$.

Proposition 5.3. If $X \sim Exp(\lambda)$ then for any s, t > 0

$$P(X > s + t | X > t) = P(X > s).$$

Remark. If T_n is a random variable such that $nT_n \sim Geom(\frac{\lambda}{n})$, then $\lim_{n\to\infty} P(T_n < t) = 1 - e^{-\lambda t}$.

6 **Moment Generating Function**

Definition 6.1. The moment generating function of a random variable X is

$$M_X(t) = \mathbb{E}(e^{Xt}).$$

- $X \sim Ber(p)$. Then $M_X(t) = pe^t + 1 p$. $X \sim Poisson(\lambda)$. Then $M_X(t) = e^{\lambda(e^t 1)}$. $X \sim \mathcal{N}(0, 1)$. Then $M_X(t) = e^{t^2/2}$. $X \sim Exp(\lambda)$. Then $M_X(t) = \begin{cases} \frac{\lambda}{\lambda t} & t < \lambda \\ \infty & t \ge \lambda \end{cases}$.

The n^{th} moment of a random variable X is $\mathbb{E}X^n$. Assuming the m.g.f. $M_X(t)$ is well-behaved around the origin, we have

$$M_X^{(n)}(0) = \mathbb{E}X^n.$$

7 Joint Distributions Intro to Probability

7 Joint Distributions

Discrete Case. The **joint pdf** of discrete random variables X and Y is

$$p_{X,Y}(x,y) = P(X = x, Y = y).$$

Continuous Case. If X and Y are continuous random variables and $f: \mathbb{R}^2 \to \mathbb{R}$ is a function such that

$$P(a \le X \le b, c \le Y \le d) = \int_{a}^{d} \int_{a}^{b} f(x, y) \, dx dy$$

for all $a, b, c, d \in \mathbb{R}$, then X and Y are jointly continuous and f is the **joint pmf** of X and Y.

We can recover the **marginal pmf/pdfs** of X and Y. For example

$$p_x(x) = \sum_{y \in \text{range}(Y)} p_{X,Y}(x,y).$$

If X_1, \ldots, X_n are random variables, then (X_1, \ldots, X_n) is called a **random vector**. The random vector (X_1, \ldots, X_n) has the **multinomial distribution** with parameters n, r, p_1, \ldots, p_r with $p_1 + \ldots + p_r = 1$ if the joint pmf is

$$P(X_1 = k_1, \dots, X_r = k_r) = \binom{n}{k_1, \dots, k_r} p_1^{k_1} \dots p_r^{k_r}$$

for non-negative integers k_1, \ldots, k_r with $k_1 + \ldots + k_r = n$. Write $(X_1, \ldots, X_n) \sim Multi(n, r, p_1, \ldots, p_r)$. The motivation for this distribution is an experiment with n trials and r possible outcomes per trial.

7.1 Independence

Discrete Case. X_1, \ldots, X_n are independent if and only if $p_{X_1, \ldots, X_n}(k_1, \ldots, k_n) = p_{X_1}(k_1) \ldots p_{X_n}(k_n)$.

Continuous Case. X_1, \ldots, X_n are independent if and only if $f_{X_1, \ldots, X_n}(k_1, \ldots, k_n) = f_{X_1}(k_1) \ldots f_{X_n}(k_n)$.

Expectation of a Function of Two RVs.

$$\mathbb{E}(g(X,Y)) = \begin{cases} \sum_{k \in R(X)} \sum_{l \in R(Y)} g(k,l) p_{X,Y}(k,l) \\ \iint_{\mathbb{R}^2} g(x,y) f_{X,Y}(x,y) \, dx dy. \end{cases}$$
(7.1)

Indicator Random variables. Given an event A, the indicator random variable of A is

$$I_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$$

Note $\mathbb{E}[I_A] = P(A)$ and $I_A \sim Ber(P(A))$.

Example. Suppose we draw 5 cards from a standard deck. Let X be the number of aces. Label the aces i = 1, ..., 4. Let A_i be the event that ace i is drawn. Then $X = X_{A_1} + ... + X_{A_4}$. We can now easily compute $\mathbb{E}[X] = 4P(A_i) = \frac{5}{13}$.

Note. Know how to prove linearity of independence for continuous and discrete cases of 2 or 3 random variables.

7 Joint Distributions Intro to Probability

7.2 Covariance

Recall that for random variables X and Y,

$$Var(X) = \mathbb{E}[(X - \mu_X)^2]$$

and

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)].$$

We have the following:

- 1) $Cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$
- 2) Cov(aX + b, Y) = a Cov(X, Y) = Cov(X, aY + b)
- 3) For random variables X_i , Y_j , $Cov(\sum_i^m X_i, \sum_j^n Y_j) = \sum_{i,j} Cov(X_i, Y_j)$
- 4) $Cov(\sum_{i=1}^{m} (a_i X_i + c_i), \sum_{j=1}^{n} (b_j Y_j + d_j)) = \sum_{i,j} a_i b_j Cov(X_i, Y_j)$
- 5) $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y).$

7.3 Correlation

We say $X_1, ..., X_n$ are **uncorrelated** if $Cov(X_i, X_j) = 0$ whenever $i \neq j$. If $X_1, ..., X_n$ are uncorrelated, then $Var(\sum_i X_i) = \sum_i (Var(X_i))$.

Definition 7.1 (Correlation).

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X) Var(Y)}}$$

Proposition 7.2.

- 1) $-1 \leq \operatorname{Corr}(X, Y) \leq 1$
- 2) $\operatorname{Corr}(X,Y)=1$ if and only if Y=aX+b for a>0 and $b\in\mathbb{R}$.
- 3) $\operatorname{Corr}(X,Y) = -1$ if and only if Y = aX + b for a < 0 and $b \in \mathbb{R}$.

7.4 Independence Revisited

Proposition 7.3. If X_1, \ldots, X_n are independent, then $\mathbb{E}(\prod X_i) = \prod \mathbb{E}(X_i)$.

Corollary. If X and Y are independent, then Cov(X,Y) = 0. Note the converse statement does not necessarily hold.

Proposition 7.4. If X and Y are independent, then $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$.

Proposition 7.5. X and Y are equal in distribution if and only if $M_X(t) = M_Y(t)$ for all t in some open interval containing 0.

8 Poisson Process Intro to Probability

7.5 Convolution

If X and Y are discrete

$$p_{X+Y}(n) = \sum_{k \in R(X)} p_{X,Y}(k, n-k) = \sum_{l \in R(Y)} p_{X,Y}(n-l, l).$$

If X and Y are continuous

$$f_{X+Y}(t) = \int_{-\infty}^{\infty} f_{X,Y}(x, t - x) dx = \int_{-\infty}^{\infty} f_{X,Y}(t - y, y) dy.$$

8 Poisson Process

Let $k \in \mathbb{N}$ and 0 . A random variable X has the**negative binomial distribution**with parameters <math>(k, p) and support $\{k, k+1, \ldots\}$ if

$$P(X = n) = \binom{n-1}{k-1} p^k (1-p)^{n-k}$$

for all $n \geq k$. We write $X \sim Negbin(k, p)$. This distribution models the number of trials needed for k successes, where the probability of success in every trial is p.

A Poisson process models a sequence of events occurring randomly over a continuous time period starting a time t = 0. Let I denote the time interval, e.g. I = [a, b], and |I| denote the length of the interval. Let N(I) be the number of occurrences in interval I.

In a **Poisson process** with intensity rate λ

- $N(I) \sim Poisson(\lambda |I|)$ for any bounded $I \subset [0, \infty]$;
- if I_1, \ldots, I_n are disjoint (except possibly at their endpoints), then $N(I_1), \ldots, N(I_n)$ are independent.

Note it follows that $\mathbb{E}(N(I)) = \lambda |I|$.

8.1 Waiting Times

Let T_k be the time of the kth occurrence. Define $W_1 = T_1$ and $W_k = T_k - T_{k-1}$ for $k \ge 2$, so that $T_k = W_1 + \ldots + W_k$. Then W_i are i.i.d. exponential random variables with parameter λ . Note, by definition,

$$P(T_k > t) = P(N[0, t] < k).$$

Definition 8.1 (Gamma Distribution). Let $\lambda > 0$ and $k \in \mathbb{N}$. We say $X \sim Gamma(\lambda, k)$ if its pdf is

$$f(t) = \begin{cases} 0, & \text{if } x < 0; \\ \frac{\lambda^k t^{k-1} e^{-\lambda t}}{(k-1)!} & \text{if } x \ge 0. \end{cases}$$

Note this distribution can be generalized such to any real number k > 0.

Proposition 8.2. If $X \sim Gamma(\lambda, k)$ then $M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^k$, when t < k. In fact, if X_1, \ldots, X_n are independent and each $X_i \sim Gamma(\lambda, k_i)$, then $X_1 + \ldots + X_n \sim Gamma(\lambda, k)$ where $k = k_1 + \ldots + k_n$.

Therefore, we see that since $W_k \sim Exp(\lambda) \sim Gamma(\lambda, 1)$, so $T_k \sim Gamma(\lambda, k)$.

9 Tail Inequalities

If $X \geq 0$, then $\mathbb{E}[X] \geq 0$ and if $X \geq Y$, then $\mathbb{E}[X] \geq \mathbb{E}[Y]$.

Theorem 9.1 (Markov). If X is a nonnegative random variable and a > 0, then

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}.$$

Proof.

$$\mathbb{E}[X] \ge \int_{t}^{\infty} x f(x) \, \mathrm{d}x \ge t \int_{t}^{\infty} f(x) \, \mathrm{d}x = t P(X \ge t).$$

Theorem 9.2 (Chebyshev). Let X be a random variable with finite mean μ and finite variance σ^2 . Then for any t > 0

$$P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}$$
 and $P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$

Proof. By Markov's inequality,

$$P(|X - \mu| \ge t) = P(|X - \mu|^2 \ge t^2) \le \frac{\sigma^2}{t^2},$$

the second part follows by setting $t = k\sigma$.

9 Tail Inequalities Intro to Probability

Appendix A - Estimators

Let X be a random variable with probability distribution depending on parameter θ . The **maximum likelihood function** $\mathcal{L}(\theta; x)$ is the probability that X = x for parameter θ . The **maximum likelihood estimate** (MLE) is

$$\hat{\theta} = \{\arg\max_{\theta \in \Theta} \mathcal{L}(\theta; x)\}.$$

In practice we often take the logarithm of the likelihood function, called log-likelihood

$$l = \ln \mathcal{L}(\theta; x)$$

or the average log-likelihood

$$\hat{l} = \frac{1}{n} \ln \mathcal{L}(\theta; x).$$

Example. Consider Unif[a, b] with unknown parameters a < b. Suppose we want the relative error estimate \hat{c} of c := b - a to satisfy

$$P(|c - \hat{c}| < \varepsilon c) \ge 1 - \delta \text{ for some } \delta \in (0, 1).$$
 (9.1)

Suppose we sample n times, $X_1, \ldots, X_n \sim \text{Unif}[0, c]$. Let $x_{(1)}, \ldots, x_{(n)}$ denote the order statistics. We have $\mathcal{L}(\theta; x) = \frac{1}{\theta^n}$, and $\frac{\text{d} \ln \mathcal{L}(\theta, x)}{\text{d} \theta} = -\frac{n}{\theta}$. So \mathcal{L} is decreasing for $\theta \geq x_{(n)}$, so \mathcal{L} is maximized at $x_{(n)} = \max\{X_1, \ldots, X_n\}$. We have

$$P(|c - \hat{c}| < \epsilon c) = 1 - (1 - \varepsilon)^n,$$

so we require

$$n \ge \frac{\ln \delta}{\ln(1-\varepsilon)}.$$

Thus, given δ and ε we should sample $\lceil \frac{\ln \delta}{\ln(1-\varepsilon)} \rceil$ times and return the maximum value.

Appendix B - Law of Large Numbers

Assume X_1, \ldots, X_n are i.i.d., with finite mean $\mathbb{E}[X_i] = \mu$ and finite variance $\operatorname{Var}(X_i) = \sigma^2$. Let $S_n = X_1 + \ldots + X_n$. Then the sample mean $\overline{X_n} = \frac{1}{n} S_n$. Note that $\mathbb{E}[\overline{X_n}] = \mu$ and $\operatorname{Var}(\overline{X_n}) = \frac{\sigma^2}{n}$.

(Weak) Law of Large Numbers. For any $\varepsilon > 0$, we have

$$\lim_{n \to \infty} P\left(|\overline{X_n} - \mu| < \varepsilon\right) = 1.$$

That is, the sample mean converges to the true mean with probability one.

Central Limit Theorem. If X_1, \ldots, X_n are i.i.d. with finite expectation μ and variance σ^2 , then

$$\lim_{n \to \infty} P\left(\left| \frac{\overline{X_n} - \mu}{\sigma} \right| \le t \right) = \Phi(t).$$