Yu et al Psych Science - Data Analysis

Shuying Yu

April 21, 2020

SAMPLE SIZES

TOTAL

- Young = 85
 - -39 female
 - -46 males
- Old = 66
 - 40 females
 - 26 males

LOOP:

- Young = 52
 - -25 females
 - 27 males
- Old = 56
 - -33 females
 - 23 males

MAZE:

- Young = 50
 - 26 females
 - 24 males
- Old = 39
 - $-\ 25\ {\rm females}$
 - 14 males

DSP:

- Young = 54
 - 26 females
 - -28 males
- Old = 40
 - 19 females
 - 21 males

LOOP

Position Error

Length of the straight line distance between the actual start of the circle and where participants thought was the start of the circle.

Expressed in meters (m).

```
#Read dataframe
df_loop <- read.csv("LOOP_ALL_2020_removed.csv")</pre>
names(df_loop)[1] <- "SubjectID"</pre>
df_loop$SubjectID <- as.factor(df_loop$SubjectID)</pre>
#Load the data and show some random ros by groups
set.seed(123)
df_loop %>% sample_n_by(Group, Sex, size=1)
## # A tibble: 4 x 25
##
     SubjectID Group
                       Age Sex
                                 Status Radius Total_trials mean_dist1
     <fct>
               <fct> <int> <fct> <fct>
                                          <int>
                                                       <int>
                                                                   <dbl>
                                                                   0.709
## 1 371
               Midl~
                        46 Fema~ pre
                                                           8
                                              1
## 2 359
               Midl~
                        48 Male
                                              1
                                                          10
                                                                   1.19
                                 men
                        18 Fema~ ""
                                                          10
## 3 86S
               Young
                                              1
                                                                   0.472
## 4 75S
                        18 Male ""
                                                                   0.618
               Young
                                              1
## # ... with 17 more variables: mean_dist2 <dbl>, mean_dist3 <dbl>,
       pstd_dist1 <dbl>, pstd_dist2 <dbl>, pstd_dist3 <dbl>,
## #
       mean_angl1 <dbl>, mean_angl2 <dbl>, mean_angl3 <dbl>,
## #
       pstd_angl1 <dbl>, pstd_angl2 <dbl>, pstd_angl3 <dbl>,
       mean degrees1 <dbl>, mean degrees2 <dbl>, mean degrees3 <dbl>,
## #
## #
       pstd_degrees1 <dbl>, pstd_degrees2 <dbl>, pstd_degrees3 <dbl>
#Gather columns meandist1,2,3 into long format
#convert SubjectID into factor
df_loop <- df_loop %>%
  gather(key="Radius", value="PE", mean_dist1, mean_dist2, mean_dist3) %>%
  convert_as_factor(SubjectID, Radius)
#Inspect some random rows of the data by groups
set.seed(123)
df_loop %>% sample_n_by(Group, Sex, Radius, size=1)
## # A tibble: 12 x 23
##
      SubjectID Group
                                  Status Total_trials pstd_dist1 pstd_dist2
                        Age Sex
##
      <fct>
                <fct> <int> <fct> <fct>
                                                 <int>
                                                            <dbl>
                                                                        <dbl>
## 1 371
                                                            0.371
                                                                        1.30
                Midl~
                         46 Fema~ pre
                                                     8
## 2 338
                Midl~
                         54 Fema~ post
                                                     7
                                                            0.438
                                                                        0.698
## 3 347
                                                    10
                                                            0.298
                Midl~
                         49 Fema~ pre
                                                                        0.386
## 4 357
                Midl~
                         50 Male men
                                                    10
                                                            0.279
                                                                        0.816
## 5 321
                Midl~
                         51 Male men
                                                     2
                                                                        0.773
                                                           NA
## 6 346
                Midl~
                         55 Male men
                                                     5
                                                            0.261
                                                                        1.13
                         19 Fema~ ""
## 7 76S
                Young
                                                    10
                                                            0.553
                                                                        1.08
                Young
## 8 94S
                         19 Fema~ ""
                                                    10
                                                            0.228
                                                                        0.558
## 9 518
                Young
                         18 Fema~ ""
                                                    8
                                                            0.340
                                                                        0.471
## 10 516
                Young
                         19 Male
                                                    10
                                                            0.258
                                                                        0.729
                                  11 11
## 11 83S
                Young
                         19 Male
                                                     8
                                                            0.350
                                                                        0.556
                         18 Male ""
## 12 75S
                Young
                                                                        0.404
                                                     6
                                                            0.517
## # ... with 15 more variables: pstd_dist3 <dbl>, mean_angl1 <dbl>,
```

```
mean_angl2 <dbl>, mean_angl3 <dbl>, pstd_angl1 <dbl>,
## #
       pstd_angl2 <dbl>, pstd_angl3 <dbl>, mean_degrees1 <dbl>,
## #
       mean_degrees2 <dbl>, mean_degrees3 <dbl>, pstd_degrees1 <dbl>,
       pstd_degrees2 <dbl>, pstd_degrees3 <dbl>, Radius <fct>, PE <dbl>
## #
aov_pe <- anova_test(</pre>
  data=df_loop, dv=PE, wid=SubjectID,
  within=c(Radius),
  between=c(Group, Sex),
  effect.size = "pes"
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98,113,124,143,14
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects
## variables. Automatic unique id will be created
#get_anova_table(aov_pe)
aov_pe
## ANOVA Table (type III tests)
## $ANOVA
##
               Effect DFn DFd
                                    F
                                              p p<.05
                                                        pes
## 1
                                0.918 3.41e-01
                                                      0.011
                Group
                        1 85
## 2
                  Sex
                        1 85
                                2.840 9.60e-02
                                                      0.032
## 3
                        2 170 328.573 3.92e-59
               Radius
                                                    * 0.794
## 4
            Group:Sex
                        1 85
                                1.211 2.74e-01
                                                      0.014
## 5
         Group:Radius
                        2 170
                                4.152 1.70e-02
                                                    * 0.047
## 6
           Sex:Radius
                        2 170
                               7.127 1.00e-03
                                                    * 0.077
## 7 Group:Sex:Radius
                        2 170
                               2.675 7.20e-02
                                                      0.031
##
## $`Mauchly's Test for Sphericity`
##
               Effect
                          W
                                   p p<.05
## 1
               Radius 0.711 6.05e-07
## 2
         Group: Radius 0.711 6.05e-07
           Sex:Radius 0.711 6.05e-07
## 4 Group:Sex:Radius 0.711 6.05e-07
## $`Sphericity Corrections`
                                            p[GG] p[GG]<.05
##
               Effect
                        GGe
                                 DF [GG]
                                                              HFe
                                                                        DF[HF]
## 1
               Radius 0.776 1.55, 131.9 1.67e-46
                                                          * 0.788 1.58, 133.89
## 2
         Group:Radius 0.776 1.55, 131.9 2.70e-02
                                                          * 0.788 1.58, 133.89
           Sex:Radius 0.776 1.55, 131.9 3.00e-03
## 3
                                                          * 0.788 1.58, 133.89
## 4 Group:Sex:Radius 0.776 1.55, 131.9 8.60e-02
                                                            0.788 1.58, 133.89
        p[HF] p[HF]<.05
## 1 3.63e-47
## 2 2.60e-02
                      *
## 3 3.00e-03
## 4 8.50e-02
library(apaTables)
## Warning: package 'apaTables' was built under R version 3.6.3
```

##

```
## Attaching package: 'apaTables'
## The following objects are masked from 'package: WRS2':
##
##
       goggles, viagra
get.ci.partial.eta.squared(5.46, 1, 36, conf.level = .95)
## $LL
## [1] 0
##
## $UL
## [1] 0.3328341
Post-hoc
Sex:Radius
# Two-way ANOVA at each age group level
# Effect of Sex at each level of Radius
one.way <- df_loop %>%
 group_by(Radius) %>%
 anova_test(dv = PE, wid = SubjectID, between = Sex) %>%
  get_anova_table() %>%
 adjust_pvalue(method = "bonferroni")
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98.
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects
## variables. Automatic unique id will be created
## Coefficient covariances computed by hccm()
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98.
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects variables. Automatic unique
## Coefficient covariances computed by hccm()
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98.
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects variables. Automatic unique
## Coefficient covariances computed by hccm()
one.way
## # A tibble: 3 x 9
                                             p `p<.05`
    Radius
            Effect
                        DFn
                              DFd
                                       F
                                                         ges p.adj
    <fct>
               <chr> <dbl> <dbl> <dbl> <dbl> <chr>
                                                       <dbl> <dbl>
## 1 mean_dist1 Sex
                         1
                               87 0.114 0.736 ""
                                                       0.001 1
                               87 0.453 0.503 ""
## 2 mean_dist2 Sex
                          1
                                                       0.005 1
                             87 5.60 0.02 *
                                                       0.06
## 3 mean_dist3 Sex
                          1
                                                            0.06
```

Group:Radius

```
# Two-way ANOVA at each age group level
# Effect of Group at each level of Radius
one.way2 <- df_loop %>%
  group by (Radius) %>%
  anova_test(dv = PE, wid = SubjectID, between = Group) %>%
  get_anova_table() %>%
  adjust_pvalue(method = "bonferroni")
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98.
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects
## variables. Automatic unique id will be created
## Coefficient covariances computed by hccm()
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98.
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects variables. Automatic unique
## Coefficient covariances computed by hccm()
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98.
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects variables. Automatic unique
## Coefficient covariances computed by hccm()
one.way2
## # A tibble: 3 x 9
                                             p `p<.05`
   Radius
              Effect
                         DFn
                               DFd
                                       F
                                                         ges p.adj
     <fct>
                <chr> <dbl> <dbl> <dbl> <dbl> <chr>
                                                       <dbl> <dbl>
                               87 1.42 0.237 ""
## 1 mean dist1 Group
                          1
                                                       0.016 0.711
## 2 mean_dist2 Group
                               87 0.123 0.727 ""
                                                       0.001 1
                           1
## 3 mean_dist3 Group
                               87 2.05 0.156 ""
                                                       0.023 0.468
                           1
Position Error Variability
#Read dataframe
df_loop1.1 <- read.csv("LOOP_ALL_2020_removed.csv")</pre>
names(df_loop1.1)[1] <- "SubjectID"</pre>
#Load the data and show some random ros by groups
df_loop1.1 %>% sample_n_by(Group, Sex, size=1)
## # A tibble: 4 x 25
    SubjectID Group Age Sex Status Radius Total_trials mean_dist1
              <fct> <int> <fct> <fct> <int>
                                                    <int>
                                                                 <dbl>
                                                                 0.709
## 1 371
              Midl~
                       46 Fema~ pre
                                            1
                                                          8
                       48 Male men
## 2 359
              Midl~
                                             1
                                                         10
                                                                 1.19
## 3 86S
              Young
                       18 Fema~ ""
                                             1
                                                         10
                                                                 0.472
## 4 75S
                       18 Male ""
                                                                 0.618
              Young
                                             1
                                                          6
## # ... with 17 more variables: mean dist2 <dbl>, mean dist3 <dbl>,
## # pstd_dist1 <dbl>, pstd_dist2 <dbl>, pstd_dist3 <dbl>,
```

```
mean_angl1 <dbl>, mean_angl2 <dbl>, mean_angl3 <dbl>,
## #
      pstd_angl1 <dbl>, pstd_angl2 <dbl>, pstd_angl3 <dbl>,
      mean_degrees1 <dbl>, mean_degrees2 <dbl>, mean_degrees3 <dbl>,
## #
      pstd_degrees1 <dbl>, pstd_degrees2 <dbl>, pstd_degrees3 <dbl>
## #
#Gather columns meandist1,2,3 into long format
#convert SubjectID into factor
df_loop1.1 <- df_loop1.1 %>%
  gather(key="Radius", value="PE_pstd", pstd_dist1, pstd_dist2, pstd_dist3) %>%
  convert_as_factor(SubjectID, Radius)
#Inspect some random rows of the data by groups
set.seed(123)
df_loop1.1 %>% sample_n_by(Group, Sex, Radius, size=1)
## # A tibble: 12 x 23
##
     SubjectID Group
                       Age Sex
                                 Status Total_trials mean_dist1 mean_dist2
##
      <fct>
               <fct> <int> <fct> <fct>
                                               <int>
                                                           <dbl>
                                                                      <dbl>
                                                           0.709
                                                                      2.02
## 1 371
               Midl~ 46 Fema~ pre
                                                   8
## 2 338
               Midl~ 54 Fema~ post
                                                   7
                                                           0.851
                                                                      1.76
## 3 347
               Midl~
                        49 Fema~ pre
                                                   10
                                                           0.427
                                                                      0.842
## 4 357
              Midl~
                        50 Male men
                                                  10
                                                          0.735
                                                                      2.11
## 5 321
              Midl~
                        51 Male men
                                                  2
                                                                      1.23
                                                         NΑ
## 6 346
              Midl~
                        55 Male men
                                                  5
                                                          0.481
                                                                      1.78
## 7 76S
               Young 19 Fema~ ""
                                                  10
                                                          0.976
                                                                      2.31
               Young 19 Fema~ ""
## 8 94S
                                                  10
                                                          0.378
                                                                      0.972
                       18 Fema~ ""
## 9 518
               Young
                                                  8
                                                          0.861
                                                                      1.10
## 10 516
                       19 Male ""
                                                  10
                                                          0.659
                                                                      0.998
               Young
## 11 83S
               Young
                        19 Male
                                 11 11
                                                   8
                                                           0.753
                                                                      1.40
                                 11 11
                        18 Male
## 12 75S
               Young
                                                   6
                                                           0.618
                                                                      0.513
## # ... with 15 more variables: mean_dist3 <dbl>, mean_angl1 <dbl>,
      mean_angl2 <dbl>, mean_angl3 <dbl>, pstd_angl1 <dbl>,
      pstd_angl2 <dbl>, pstd_angl3 <dbl>, mean_degrees1 <dbl>,
## #
      mean_degrees2 <dbl>, mean_degrees3 <dbl>, pstd_degrees1 <dbl>,
      pstd_degrees2 <dbl>, pstd_degrees3 <dbl>, Radius <fct>, PE_pstd <dbl>
aov_pestd <- anova_test(</pre>
 data=df_loop1.1, dv=PE_pstd, wid=SubjectID,
  within=c(Radius),
 between=c(Group, Sex),
  effect.size = "pes"
)
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98,113,124,143,14
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects
## variables. Automatic unique id will be created
#get_anova_table(aov_pe)
aov_pestd
## ANOVA Table (type III tests)
##
## $ANOVA
```

```
##
              Effect DFn DFd
                               F
                                            p p<.05
                                                         pes
## 1
                       1 85
                               0.454 5.02e-01
                                                    0.005000
               Group
## 2
                       1 85
                               0.080 7.79e-01
                                                    0.000935
                 Sex
## 3
              Radius
                       2 170 452.006 8.96e-69
                                                  * 0.842000
## 4
           Group:Sex
                       1 85
                               2.306 1.33e-01
                                                    0.026000
## 5
                                                    0.014000
        Group:Radius
                       2 170
                              1.196 3.05e-01
          Sex:Radius
                       2 170
                              1.258 2.87e-01
                                                    0.015000
                              1.031 3.59e-01
## 7 Group:Sex:Radius
                       2 170
                                                    0.012000
##
## $`Mauchly's Test for Sphericity`
              Effect
                        W
                               p p<.05
## 1
              Radius 0.871 0.003
## 2
        Group: Radius 0.871 0.003
## 3
          Sex:Radius 0.871 0.003
## 4 Group:Sex:Radius 0.871 0.003
##
## $`Sphericity Corrections`
##
              Effect
                                 DF [GG]
                                           p[GG] p[GG]<.05
## 1
              Radius 0.886 1.77, 150.64 2.90e-61
                                                         * 0.904
        Group:Radius 0.886 1.77, 150.64 3.02e-01
## 2
                                                           0.904
## 3
          Sex:Radius 0.886 1.77, 150.64 2.85e-01
                                                           0.904
## 4 Group:Sex:Radius 0.886 1.77, 150.64 3.52e-01
                                                           0.904
          DF[HF]
                    p[HF] p[HF]<.05
##
## 1 1.81, 153.61 2.04e-62
## 2 1.81, 153.61 3.02e-01
## 3 1.81, 153.61 2.85e-01
## 4 1.81, 153.61 3.53e-01
```

Degrees Traveled

```
#Read dataframe
df_loop2 <- read.csv("LOOP_ALL_2020_removed.csv")</pre>
names(df_loop2)[1] <- "SubjectID"</pre>
#Load the data and show some random ros by groups
set.seed(123)
df_loop2 %>% sample_n_by(Group, Sex, size=1)
## # A tibble: 4 x 25
                                 Status Radius Total trials mean dist1
     SubjectID Group Age Sex
                                         <int>
##
     <fct>
               <fct> <int> <fct> <fct>
                                                       <int>
                                                                  <dbl>
## 1 371
               Midl~
                        46 Fema~ pre
                                             1
                                                           8
                                                                  0.709
## 2 359
               Midl~
                        48 Male men
                                             1
                                                          10
                                                                  1.19
## 3 86S
                        18 Fema~ ""
                                                          10
                                                                  0.472
               Young
                                              1
                        18 Male ""
                                                           6
## 4 75S
                                                                  0.618
               Young
                                              1
## # ... with 17 more variables: mean_dist2 <dbl>, mean_dist3 <dbl>,
      pstd_dist1 <dbl>, pstd_dist2 <dbl>, pstd_dist3 <dbl>,
## #
       mean_angl1 <dbl>, mean_angl2 <dbl>, mean_angl3 <dbl>,
## #
       pstd_angl1 <dbl>, pstd_angl2 <dbl>, pstd_angl3 <dbl>,
## #
       mean_degrees1 <dbl>, mean_degrees2 <dbl>, mean_degrees3 <dbl>,
       pstd_degrees1 <dbl>, pstd_degrees2 <dbl>, pstd_degrees3 <dbl>
#Gather columns meandegrees1,2,3 into long format
#convert SubjectID into factor
```

```
df_loop2 <- df_loop2 %>%
  gather(key="Radius", value="DE", mean_degrees1, mean_degrees2, mean_degrees3) %>%
  convert_as_factor(SubjectID, Radius)
#Inspect some random rows of the data by groups
set.seed(123)
df loop2 %>% sample n by(Group, Sex, Radius, size=1)
## # A tibble: 12 x 23
##
                                  Status Total_trials mean_dist1 mean_dist2
      SubjectID Group
                        Age Sex
##
      <fct>
                <fct> <int> <fct> <fct>
                                                 <int>
                                                            <dbl>
                                                                        <dbl>
##
  1 371
                                                            0.709
                                                                        2.02
                Midl~
                         46 Fema~ pre
                                                     8
                         54 Fema~ post
                                                     7
## 2 338
                Midl~
                                                            0.851
                                                                        1.76
## 3 347
                Midl~
                         49 Fema~ pre
                                                    10
                                                            0.427
                                                                       0.842
## 4 357
               Midl~
                         50 Male men
                                                            0.735
                                                                       2.11
                                                    10
## 5 321
               Midl~
                         51 Male men
                                                     2
                                                           NΑ
                                                                       1.23
## 6 346
               Midl~
                         55 Male men
                                                     5
                                                            0.481
                                                                       1.78
                         19 Fema~ ""
## 7 76S
                                                    10
                                                            0.976
                                                                       2.31
                Young
## 8 94S
                Young
                        19 Fema~ ""
                                                    10
                                                            0.378
                                                                       0.972
                         18 Fema~ ""
## 9 518
                Young
                                                     8
                                                            0.861
                                                                       1.10
                                  11 11
                                                    10
## 10 516
                Young
                         19 Male
                                                            0.659
                                                                       0.998
                                  11 11
## 11 83S
                Young
                         19 Male
                                                     8
                                                            0.753
                                                                       1.40
                                  11 11
## 12 75S
                Young
                         18 Male
                                                     6
                                                            0.618
                                                                       0.513
## # ... with 15 more variables: mean_dist3 <dbl>, pstd_dist1 <dbl>,
       pstd_dist2 <dbl>, pstd_dist3 <dbl>, mean_angl1 <dbl>,
       mean_angl2 <dbl>, mean_angl3 <dbl>, pstd_angl1 <dbl>,
## #
       pstd_angl2 <dbl>, pstd_angl3 <dbl>, pstd_degrees1 <dbl>,
       pstd_degrees2 <dbl>, pstd_degrees3 <dbl>, Radius <fct>, DE <dbl>
aov_de <- anova_test(</pre>
  data=df_loop2, dv=DE, wid=SubjectID,
  within=c(Radius),
  between=c(Group, Sex),
  effect.size = "pes"
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98,113,124,143,14
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects
## variables. Automatic unique id will be created
#get_anova_table(aov_de)
aov_de
## ANOVA Table (type III tests)
## $ANOVA
##
               Effect DFn DFd
                                  F
                                            p p<.05
                                                      pes
## 1
                Group 1 85 0.611 0.437000
                                                    0.007
## 2
                  Sex
                        1 85 5.816 0.018000
                                                  * 0.064
## 3
               Radius
                        2 170 9.326 0.000144
                                                  * 0.099
## 4
            Group:Sex 1 85 0.328 0.568000
                                                    0.004
## 5
         Group:Radius
                        2 170 0.120 0.887000
                                                    0.001
```

```
Sex:Radius
                       2 170 1.165 0.315000
                                                   0.014
## 7 Group:Sex:Radius 2 170 2.066 0.130000
                                                   0.024
## $`Mauchly's Test for Sphericity`
                                  p p<.05
##
              Effect
## 1
              Radius 0.637 6.03e-09
        Group: Radius 0.637 6.03e-09
## 3
          Sex:Radius 0.637 6.03e-09
## 4 Group:Sex:Radius 0.637 6.03e-09
## $`Sphericity Corrections`
                                                                       DF[HF]
##
              Effect
                                  DF [GG]
                                           p[GG] p[GG]<.05 HFe
                       GGe
              Radius 0.734 1.47, 124.75 0.000722
## 1
                                                         * 0.744 1.49, 126.4
## 2
        Group:Radius 0.734 1.47, 124.75 0.823000
                                                           0.744 1.49, 126.4
          Sex:Radius 0.734 1.47, 124.75 0.303000
## 3
                                                           0.744 1.49, 126.4
## 4 Group:Sex:Radius 0.734 1.47, 124.75 0.144000
                                                           0.744 1.49, 126.4
      p[HF] p[HF]<.05
## 1 0.00068
## 2 0.82600
## 3 0.30400
## 4 0.14300
```

Degrees Traveled Variability

```
#Read dataframe
df_loop2.1 <- read.csv("LOOP_ALL_2020_removed.csv")</pre>
names(df_loop2.1)[1] <- "SubjectID"</pre>
#Load the data and show some random ros by groups
set.seed(123)
df_loop2.1 %>% sample_n_by(Group, Sex, size=1)
## # A tibble: 4 x 25
                                 Status Radius Total_trials mean_dist1
##
     SubjectID Group Age Sex
##
     <fct>
              <fct> <int> <fct> <int> <int> <int>
                                                                 <dbl>
## 1 371
              Midl~
                       46 Fema~ pre
                                           1
                                                        8
                                                                 0.709
## 2 359
              Midl~
                                                         10
                        48 Male men
                                             1
                                                                 1.19
## 3 86S
              Young
                       18 Fema~ ""
                                             1
                                                         10
                                                                 0.472
                       18 Male ""
## 4 75S
              Young
                                             1
                                                                 0.618
## # ... with 17 more variables: mean_dist2 <dbl>, mean_dist3 <dbl>,
      pstd_dist1 <dbl>, pstd_dist2 <dbl>, pstd_dist3 <dbl>,
      mean_angl1 <dbl>, mean_angl2 <dbl>, mean_angl3 <dbl>,
      pstd_angl1 <dbl>, pstd_angl2 <dbl>, pstd_angl3 <dbl>,
      mean_degrees1 <dbl>, mean_degrees2 <dbl>, mean_degrees3 <dbl>,
## #
      pstd_degrees1 <dbl>, pstd_degrees2 <dbl>, pstd_degrees3 <dbl>
#Gather columns meandegrees1,2,3 into long format
#convert SubjectID into factor
df_loop2.1 <- df_loop2.1 %>%
 gather(key="Radius", value="DE_pstd", pstd_degrees1, pstd_degrees2, pstd_degrees3) %>%
  convert_as_factor(SubjectID, Radius)
```

```
#Inspect some random rows of the data by groups
set.seed(123)
df loop2.1 %>% sample n by(Group, Sex, Radius, size=1)
## # A tibble: 12 x 23
                                  Status Total_trials mean_dist1 mean_dist2
##
     SubjectID Group
                        Age Sex
##
      <fct>
                <fct> <int> <fct> <fct>
                                                 <int>
                                                            <dbl>
                                                                       <dbl>
## 1 371
                Midl~
                         46 Fema~ pre
                                                            0.709
                                                                       2.02
                                                    8
## 2 338
                Midl~
                         54 Fema~ post
                                                    7
                                                            0.851
                                                                       1.76
## 3 347
                                                           0.427
               Midl~
                         49 Fema~ pre
                                                   10
                                                                       0.842
## 4 357
               Midl~
                         50 Male men
                                                   10
                                                           0.735
                                                                       2.11
## 5 321
               Midl~
                         51 Male men
                                                    2
                                                          NA
                                                                       1.23
## 6 346
               Midl~
                         55 Male men
                                                    5
                                                           0.481
                                                                       1.78
## 7 76S
                        19 Fema~ ""
                                                           0.976
               Young
                                                   10
                                                                       2.31
## 8 94S
                         19 Fema~ ""
                                                           0.378
                Young
                                                   10
                                                                       0.972
                         18 Fema~ ""
## 9 518
                                                    8
                                                           0.861
                Young
                                                                       1.10
                                 11 11
## 10 516
                Young
                         19 Male
                                                   10
                                                            0.659
                                                                       0.998
## 11 83S
                Young
                         19 Male
                                  11 11
                                                    8
                                                            0.753
                                                                       1.40
## 12 75S
                Young
                         18 Male
                                                    6
                                                            0.618
                                                                       0.513
## # ... with 15 more variables: mean_dist3 <dbl>, pstd_dist1 <dbl>,
      pstd_dist2 <dbl>, pstd_dist3 <dbl>, mean_angl1 <dbl>,
## #
       mean_angl2 <dbl>, mean_angl3 <dbl>, pstd_angl1 <dbl>,
## #
       pstd_angl2 <dbl>, pstd_angl3 <dbl>, mean_degrees1 <dbl>,
       mean_degrees2 <dbl>, mean_degrees3 <dbl>, Radius <fct>, DE_pstd <dbl>
aov destd <- anova test(</pre>
  data=df_loop2.1, dv=DE_pstd, wid=SubjectID,
  within=c(Radius),
  between=c(Group, Sex),
  effect.size = "pes"
## Warning: NA detected in rows: 5,16,35,41,42,63,70,71,88,89,90,91,92,93,94,95,96,97,98,113,124,143,14
## Removing this rows before the analysis.
## Warning: The 'wid' column contains duplicate ids across between-subjects
## variables. Automatic unique id will be created
#get_anova_table(aov_de)
aov_destd
## ANOVA Table (type III tests)
## $ANOVA
                                           p p<.05
##
               Effect DFn DFd
                                  F
                                                         pes
## 1
                Group 1 85 0.008 0.929000
                                                    9.46e-05
## 2
                        1 85 1.667 0.200000
                  Sex
                                                    1.90e-02
## 3
               Radius
                        2 170 9.287 0.000149
                                                  * 9.80e-02
## 4
            Group:Sex
                        1 85 3.078 0.083000
                                                   3.50e-02
## 5
         Group:Radius
                        2 170 1.473 0.232000
                                                   1.70e-02
## 6
           Sex:Radius
                        2 170 0.576 0.563000
                                                   7.00e-03
## 7 Group:Sex:Radius
                        2 170 0.053 0.949000
                                                   6.19e-04
##
## $`Mauchly's Test for Sphericity`
##
               Effect
                          W
                                p p<.05
## 1
               Radius 0.955 0.147
```

```
## 2
         Group: Radius 0.955 0.147
## 3
           Sex:Radius 0.955 0.147
## 4 Group:Sex:Radius 0.955 0.147
##
## $`Sphericity Corrections`
##
               Effect
                                             p[GG] p[GG]<.05
                        GGe
                                  DF [GG]
                                                               HFe
## 1
               Radius 0.957 1.91, 162.73 0.000192
                                                           * 0.979
         Group:Radius 0.957 1.91, 162.73 0.233000
## 2
                                                             0.979
           Sex:Radius 0.957 1.91, 162.73 0.556000
                                                             0.979
## 4 Group:Sex:Radius 0.957 1.91, 162.73 0.943000
                                                             0.979
           DF[HF]
                     p[HF] p[HF]<.05
## 1 1.96, 166.39 0.000169
## 2 1.96, 166.39 0.233000
## 3 1.96, 166.39 0.560000
## 4 1.96, 166.39 0.946000
```

MAZE

```
df_maze <- read.csv("MAZE_ALL_2020.csv")</pre>
```

Test against Chance Level

```
#Young female
df_maze_yf <- df_maze %>% filter(Group == "Young" & Sex == "Female")
t.test(df_maze_yf$AvgAccuracy, mu=.1111, alternative="greater", conf.level=0.95)
##
##
   One Sample t-test
##
## data: df_maze_yf$AvgAccuracy
## t = 3.3816, df = 25, p-value = 0.001186
## alternative hypothesis: true mean is greater than 0.1111
## 95 percent confidence interval:
## 0.1647714
                    Inf
## sample estimates:
## mean of x
## 0.2195538
mean(df_maze_yf$AvgAccuracy)
## [1] 0.2195538
sd(df_maze_yf$AvgAccuracy)
## [1] 0.1635327
CI(df_maze_yf$AvgAccuracy, ci = 0.95)
##
       upper
                  mean
                           lower
## 0.2856061 0.2195538 0.1535015
#Cohen's d: (mean - mu)/sd
(mean(df_maze_yf$AvgAccuracy) - .1111)/sd(df_maze_yf$AvgAccuracy)
```

```
## [1] 0.6631935
cohen.d.ci((mean(df_maze_yf$AvgAccuracy) - .1111)/sd(df_maze_yf$AvgAccuracy),
            n1=26, alpha = 0.05)
            lower
                     effect
                               upper
## [1,] 0.2321136 0.6631935 1.083447
#Young male
df maze ym <- df maze %>% filter(Group == "Young" & Sex == "Male")
t.test(df_maze_ym$AvgAccuracy, mu=.1111, alternative="greater", conf.level=0.95)
##
##
   One Sample t-test
##
## data: df_maze_ym$AvgAccuracy
## t = 8.7169, df = 23, p-value = 4.769e-09
## alternative hypothesis: true mean is greater than 0.1111
## 95 percent confidence interval:
## 0.5586763
## sample estimates:
## mean of x
## 0.6682125
mean(df_maze_ym$AvgAccuracy)
## [1] 0.6682125
sd(df_maze_ym$AvgAccuracy)
## [1] 0.3131015
CI(df_maze_ym$AvgAccuracy, ci = 0.95)
                  mean
                           lower
## 0.8004237 0.6682125 0.5360013
#Cohen's d: (mean - mu)/sd
(mean(df_maze_ym$AvgAccuracy) - .1111)/sd(df_maze_ym$AvgAccuracy)
## [1] 1.779335
cohen.d.ci((mean(df_maze_ym$AvgAccuracy) - .1111)/sd(df_maze_ym$AvgAccuracy),
            n1=24, alpha = 0.05)
##
           lower
                   effect
                             upper
## [1,] 1.122767 1.779335 2.420741
#Midlife female
df_maze_mf <- df_maze %>% filter(Group == "Midlife" & Sex == "Female")
t.test(df_maze_mf$AvgAccuracy, mu=.1111, alternative="greater", conf.level=0.95)
##
   One Sample t-test
##
## data: df_maze_mf$AvgAccuracy
## t = -1.2721, df = 24, p-value = 0.8922
## alternative hypothesis: true mean is greater than 0.1111
## 95 percent confidence interval:
## 0.0577265
                    Inf
```

```
## sample estimates:
## mean of x
## 0.08833867
mean(df_maze_mf$AvgAccuracy)
## [1] 0.08833867
sd(df_maze_mf$AvgAccuracy)
## [1] 0.08946311
CI(df_maze_mf$AvgAccuracy, ci = 0.95)
##
                              lower
        upper
                    mean
## 0.12526722 0.08833867 0.05141011
#Cohen's d: (mean - mu)/sd
(mean(df_maze_mf$AvgAccuracy) - .1111)/sd(df_maze_mf$AvgAccuracy)
## [1] -0.2544214
cohen.d.ci((mean(df_maze_mf$AvgAccuracy) - .1111)/sd(df_maze_mf$AvgAccuracy),
            n1=25, alpha = 0.05)
##
            lower
                      effect
                                 upper
## [1,] -0.650345 -0.2544214 0.1466089
#Midlife male
df_maze_mm <- df_maze %>% filter(Group == "Midlife" & Sex == "Male")
t.test(df_maze_mm$AvgAccuracy, mu=.1111, alternative="greater", conf.level=0.95)
##
##
   One Sample t-test
##
## data: df_maze_mm$AvgAccuracy
## t = 1.8569, df = 13, p-value = 0.04306
## alternative hypothesis: true mean is greater than 0.1111
## 95 percent confidence interval:
## 0.117946
## sample estimates:
## mean of x
## 0.2589286
mean(df_maze_mm$AvgAccuracy)
## [1] 0.2589286
sd(df_maze_mm$AvgAccuracy)
## [1] 0.2978704
CI(df_maze_mm$AvgAccuracy, ci = 0.95)
        upper
                    mean
## 0.43091380 0.25892857 0.08694334
#Cohen's d: (mean - mu)/sd
(mean(df_maze_mm$AvgAccuracy) - .1111)/sd(df_maze_mm$AvgAccuracy)
## [1] 0.4962849
```

```
cohen.d.ci((mean(df_maze_mm$AvgAccuracy) - .1111)/sd(df_maze_mm$AvgAccuracy),
            n1=14, alpha = 0.05)
##
              lower
                       effect
## [1,] -0.06890445 0.4962849 1.044746
Wayfinding Success / Accuracy
options(contrasts=c("contr.sum", "contr.poly"))
interaction_acc <- aov(AvgAccuracy~Group*Sex, data = df_maze)
Anova(interaction_acc, type="III")
## Anova Table (Type III tests)
##
## Response: AvgAccuracy
               Sum Sq Df F value
                                     Pr(>F)
## (Intercept) 7.9627 1 158.5503 < 2.2e-16 ***
## Group
              1.5251 1 30.3668 3.755e-07 ***
## Sex
               2.0019 1 39.8602 1.192e-08 ***
## Group:Sex
              0.4037 1
                           8.0374 0.005724 **
## Residuals
              4.2689 85
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
acc <- Anova(interaction_acc, type="III")</pre>
anova_stats(acc)
##
            term sumsq meansq df statistic p.value etasq partial.etasq
## 1 (Intercept) 7.963 7.963 1
                                   158.550 0.000 0.493
                                                                 0.263
## 2
           Group 1.525 1.525 1
                                    30.367
                                             0.000 0.094
## 3
             Sex 2.002 2.002 1
                                    39.860
                                             0.000 0.124
                                                                 0.319
## 4
                                     8.037
                                             0.006 0.025
                                                                 0.086
      Group:Sex 0.404 0.404 1
## 5
      Residuals 4.269 0.050 85
                                        NA
                                                                    NA
##
     omegasq partial.omegasq epsilonsq cohens.f power
## 1
      0.488
                       0.636
                                 0.490
                                          1.366 1.000
## 2
      0.091
                       0.246
                                 0.091
                                          0.598 1.000
## 3
      0.120
                       0.302
                                 0.121
                                          0.685 1.000
## 4
      0.022
                       0.073
                                 0.022
                                          0.308 0.809
## 5
         NA
                          NA
                                    NA
                                             NA
                                                   NA
#Based on bootstrapping
eta_sq(acc, partial = TRUE, ci.lvl = .95,
      n = 1000, method = "quantile")
##
            term partial.etasq conf.low conf.high
## 1 (Intercept)
                         0.651
                                  0.527
                                            0.729
## 2
           Group
                         0.263
                                  0.115
                                            0.401
## 3
                         0.319
                                  0.163
                                            0.452
             Sex
## 4
                                  0.008
                                            0.212
      Group:Sex
                         0.086
Post-hoc
# Effect of treatment at each level of Group
df maze %>%
 group_by(Group) %>%
```

```
anova_test(AvgAccuracy ~ Sex,
             type = "III",
             effect.size = "pes") %>%
  get_anova_table() %>%
  adjust_pvalue(method = "bonferroni")
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
           Effect DFn DFd
##
    Group
                                   F
                                                 p `p<.05`
                                                             pes
                                                                       p.adj
     <fct>
             <chr> <dbl> <dbl> <dbl> <
                                                                       <dbl>
                                             <dbl> <chr>
                                                           <dbl>
                 1 37 7.18 0.011
                                                           0.163 0.022
## 1 Midlife Sex
                            48 41.2 0.000000565 *
                                                           0.462 0.000000113
## 2 Young
            Sex
                       1
#Cohen's d
df_maze_midlife <- df_maze %>% filter(Group == "Midlife")
df_maze_young <- df_maze %>% filter(Group == "Young")
df_maze_female <- df_maze %>% filter(Sex == "Female")
df_maze_male <- df_maze %>% filter(Sex == "Male")
#Effect of Sex on Midlife
cohen.d(AvgAccuracy ~ Sex, group=Group, data=df_maze_midlife,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
## d estimate: -0.8945541 (large)
## 95 percent confidence interval:
       lower
                  upper
## -1.6013669 -0.1877414
#Effect of Sex on Young
cohen.d(AvgAccuracy ~ Sex, group=Group, data=df_maze_young,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
##
## d estimate: -1.818018 (large)
## 95 percent confidence interval:
      lower
                 upper
## -2.494441 -1.141596
mean(df_maze_midlife$AvgAccuracy)
## [1] 0.1495761
sd(df_maze_midlife$AvgAccuracy)
## [1] 0.2056247
CI(df_maze_midlife$AvgAccuracy, ci = 0.95)
##
        upper
                    mean
                              lower
## 0.21623188 0.14957607 0.08292026
```

```
mean(df_maze_young$AvgAccuracy)
## [1] 0.43491
sd(df_maze_young$AvgAccuracy)
## [1] 0.3330588
CI(df_maze_young$AvgAccuracy, ci = 0.95)
       upper
                  mean
                           lower
## 0.5295643 0.4349100 0.3402557
# Effect of treatment at each level of Sex
df_maze %>%
  group_by(Sex) %>%
  anova_test(AvgAccuracy ~ Group,
             type = "III",
             effect.size = "pes") %>%
  get_anova_table() %>%
  adjust_pvalue(method = "bonferroni")
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
     Sex
            Effect DFn
                         DFd
                                   F
                                            p `p<.05`
                                                        pes
                                                               p.adj
##
     <fct> <chr> <dbl> <dbl> <dbl> <
                                        <dbl> <dbl> <dbl>
                                                                <dbl>
                            49 12.5 0.000903 *
## 1 Female Group
                      1
                                                      0.203 0.00181
                            36 15.6 0.000343 *
                                                      0.303 0.000686
## 2 Male
          Group
                       1
#Effect of Age on Female
cohen.d(AvgAccuracy ~ Group, group=Sex, data=df_maze_female,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
##
## d estimate: -0.9900701 (large)
## 95 percent confidence interval:
       lower
                   upper
## -1.5864494 -0.3936909
#Effect of Age on Male
cohen.d(AvgAccuracy ~ Group, group=Sex, data=df_maze_male,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
## d estimate: -1.33019 (large)
## 95 percent confidence interval:
##
       lower
                 upper
## -2.079149 -0.581230
mean(df_maze_female$AvgAccuracy)
## [1] 0.1552327
```

```
sd(df_maze_female$AvgAccuracy)
## [1] 0.1469761
CI(df_maze_female$AvgAccuracy, ci = 0.95)
       upper
                  mean
                           lower
## 0.1965704 0.1552327 0.1138950
mean(df_maze_male$AvgAccuracy)
## [1] 0.5174237
sd(df_maze_male$AvgAccuracy)
## [1] 0.3635176
CI(df_maze_male$AvgAccuracy, ci = 0.95)
       upper
                  mean
                           lower
## 0.6369090 0.5174237 0.3979384
Moves
Correlation
#95% CI here is for the estimate (correlation)
cor.test(df_maze$Moves, df_maze$AvgAccuracy, method="pearson")
##
   Pearson's product-moment correlation
##
##
## data: df_maze$Moves and df_maze$AvgAccuracy
## t = 3.3184, df = 87, p-value = 0.001323
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1364572 0.5079852
## sample estimates:
         cor
## 0.3351885
#needs alternative and conf level
cor.test(df_maze$Moves, df_maze$AvgAccuracy, method="pearson",
         alternative="two.sided", conf.level = .95)
##
##
   Pearson's product-moment correlation
##
## data: df_maze$Moves and df_maze$AvgAccuracy
## t = 3.3184, df = 87, p-value = 0.001323
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1364572 0.5079852
## sample estimates:
##
         cor
## 0.3351885
```

Mean and SD

```
describe.by(df_maze$Moves)
## Warning: describe.by is deprecated. Please use the describeBy function
## Warning in describeBy(x = x, group = group, mat = mat, type = type, ...):
## no grouping variable requested
##
      vars n
              mean
                        sd median trimmed
                                            mad min max range skew kurtosis
## X1
         1 89 268.08 39.94
                              273
                                    269.7 45.96 185 345
                                                           160 -0.32
##
## X1 4.23
#95% CI for mean
CI(df_maze$Moves, ci = 0.95)
##
      upper
                mean
                        lower
## 276.4911 268.0787 259.6662
#By Groups: Young vs Midlife
mean(df_maze_young$Moves)
## [1] 286.14
sd(df_maze_young$Moves)
## [1] 31.90868
CI(df_maze_young$Moves, ci = 0.95)
      upper
                mean
                        lower
## 295.2083 286.1400 277.0717
mean(df_maze_midlife$Moves)
## [1] 244.9231
sd(df_maze_midlife$Moves)
## [1] 37.4281
CI(df_maze_midlife$Moves, ci = 0.95)
      upper
                mean
                        lower
## 257.0559 244.9231 232.7903
#By Sex: Female vs Male
mean(df_maze_female$Moves)
## [1] 262.4314
sd(df_maze_female$Moves)
## [1] 39.07391
CI(df_maze_female$Moves, ci = 0.95)
      upper
                mean
                        lower
## 273.4211 262.4314 251.4417
mean(df_maze_male$Moves)
## [1] 275.6579
```

```
sd(df_maze_male$Moves)
## [1] 40.33527
CI(df_maze_male$Moves, ci = 0.95)
##
      upper
                        lower
                mean
## 288.9158 275.6579 262.4000
ANOVA
options(contrasts=c("contr.sum", "contr.poly"))
interaction moves <- aov(Moves~Group*Sex, data = df maze)
Anova(interaction_moves, type="III")
## Anova Table (Type III tests)
##
## Response: Moves
##
                Sum Sq Df
                            F value
                                       Pr(>F)
## (Intercept) 5937593 1 4998.9636 < 2.2e-16 ***
                            26.9895 1.383e-06 ***
## Group
                 32057 1
## Sex
                  1790 1
                             1.5070
                                       0.2230
## Group:Sex
                   674 1
                             0.5675
                                        0.4533
## Residuals
                100960 85
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
moves1 <- Anova(interaction_moves, type="III")</pre>
anova_stats(moves1)
##
            term
                       sumsq
                                  meansq df statistic p.value etasq
## 1 (Intercept) 5937592.884 5937592.884 1 4998.964
                                                         0.000 0.978
## 2
                                                         0.000 0.005
           Group
                   32057.189
                               32057.189 1
                                                26.990
## 3
             Sex
                    1789.947
                                1789.947 1
                                                 1.507
                                                         0.223 0.000
## 4
                     674.054
                                 674.054 1
                                                 0.567
                                                         0.453 0.000
       Group:Sex
       Residuals 100960.006
                                1187.765 85
## 5
                                                    NA
                                                            NA
    partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
## 1
             0.983
                     0.977
                                     0.982
                                               0.977
                                                         7.669 1.000
## 2
             0.241
                     0.005
                                     0.224
                                                0.005
                                                         0.563 0.999
## 3
             0.017
                     0.000
                                     0.006
                                                0.000
                                                         0.133 0.233
## 4
             0.007
                     0.000
                                     -0.005
                                                0.000
                                                         0.082 0.117
## 5
                NΑ
                                                            NΑ
                        NΑ
                                        NΑ
                                                   NΑ
                                                                  NΑ
#Based on bootstrapping
eta_sq(moves1, partial = TRUE, ci.lvl = .95,
       n = 1000, method = "quantile")
##
            term partial.etasq conf.low conf.high
## 1 (Intercept)
                         0.983
                                  0.976
                                             0.987
## 2
           Group
                         0.241
                                  0.098
                                             0.379
## 3
             Sex
                         0.017
                                  0.000
                                             0.105
## 4
       Group:Sex
                         0.007
                                  0.000
                                             0.078
```

ANCOVA

On Wayfinding Success/Accuracy controlling for Moves

```
options(contrasts=c("contr.sum", "contr.poly"))
interaction_acc2 <- aov(AvgAccuracy~Moves + Group*Sex, data = df_maze)
Anova(interaction_acc2, type="III")
## Anova Table (Type III tests)
##
## Response: AvgAccuracy
##
               Sum Sq Df F value
                                    Pr(>F)
## (Intercept) 0.0192 1 0.3832 0.537590
## Moves
               0.0520 1 1.0364 0.311585
## Group
               0.9291 1 18.5084 4.545e-05 ***
               1.8834 1 37.5185 2.804e-08 ***
               0.4248 1 8.4630 0.004637 **
## Group:Sex
## Residuals
               4.2168 84
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
acc2 <-Anova(interaction acc2, type="III")</pre>
anova_stats(acc2)
##
            term sumsq meansq df statistic p.value etasq partial.etasq
                                                                  0.005
## 1 (Intercept) 0.019 0.019 1
                                     0.383
                                             0.538 0.003
           Moves 0.052 0.052 1
                                     1.036
                                                                  0.012
## 2
                                             0.312 0.007
## 3
           Group 0.929
                       0.929 1
                                    18.508
                                             0.000 0.123
                                                                  0.181
## 4
             Sex 1.883
                       1.883 1
                                    37.518
                                             0.000 0.250
                                                                  0.309
## 5
                                     8.463
                                             0.005 0.056
                                                                  0.092
       Group: Sex 0.425 0.425 1
## 6
       Residuals 4.217 0.050 84
                                        NA
                                                NA
                                                      NΑ
                                                                     NA
##
     omegasq partial.omegasq epsilonsq cohens.f power
## 1
     -0.004
                      -0.007
                                -0.004
                                          0.068 0.095
## 2
       0.000
                       0.000
                                 0.000
                                          0.111 0.175
## 3
       0.116
                       0.163
                                 0.117
                                          0.469 0.990
## 4
       0.242
                       0.289
                                 0.244
                                          0.668 1.000
## 5
       0.049
                       0.077
                                 0.050
                                          0.317 0.829
## 6
                          NA
                                    NA
                                             NA
          NA
#Based on bootstrapping
eta_sq(acc2, partial = TRUE, ci.lvl = .95,
       n = 1000, method = "quantile")
##
            term partial.etasq conf.low conf.high
## 1 (Intercept)
                         0.005
                                  0.000
                                            0.071
## 2
                                            0.094
           Moves
                         0.012
                                  0.000
## 3
           Group
                         0.181
                                  0.054
                                            0.320
## 4
             Sex
                         0.309
                                  0.153
                                            0.443
## 5
                         0.092
                                  0.009
                                            0.219
       Group:Sex
Post-hoc effect sizes with adjusted means
#Adjusted means of wayfinding with associated 95%CI and SE
#Adjusted for the effect of the covariate Moves
adjustedmeans <- effect("Group*Sex", interaction_acc2, se=T)</pre>
summary(adjustedmeans)
##
## Group*Sex effect
```

```
##
            Sex
                Female
                            Male
## Group
##
     Midlife 0.1088111 0.2686762
           0.2078208 0.6539117
##
     Young
##
   Lower 95 Percent Confidence Limits
##
##
            Sex
## Group
                 Female
                             Male
##
     Midlife 0.01113781 0.1480834
##
     Young 0.11748420 0.5587694
##
##
   Upper 95 Percent Confidence Limits
##
            Sex
## Group
                Female
                            Male
##
     Midlife 0.2064844 0.3892689
##
            0.2981574 0.7490540
adjustedmeans$se
## [1] 0.04911638 0.04542702 0.06064174 0.04784363
SE order = midlife female, midlife male, young female, young male
#Adjusted SD from adjusted means for Group*Sex
adjustedmeans$se*sqrt(c(25, 14, 26, 24))
## [1] 0.2455819 0.1699723 0.3092134 0.2343850
#Effect size and CI for Simple efect of Sex - Midlife (midlife women and men)
#Effect sizes for the difference between midlife women and men
mes( 0.1088111, 0.2686762, 0.2455819, 0.1699723, 25, 14)
## Mean Differences ES:
##
##
    d [95 \%CI] = -0.72 [-1.42, -0.02]
##
     var(d) = 0.12
##
     p-value(d) = 0.04
     U3(d) = 23.57 \%
##
     CLES(d) = 30.53 \%
##
##
     Cliff's Delta = -0.39
##
##
   g [ 95 \%CI] = -0.71 [ -1.39 , -0.02 ]
##
     var(g) = 0.11
##
     p-value(g) = 0.04
     U3(g) = 24.02 \%
##
##
     CLES(g) = 30.89 \%
##
##
    Correlation ES:
##
##
   r [95 \%CI] = -0.33 [-0.59, 0]
##
     var(r) = 0.02
##
     p-value(r) = 0.05
##
## z [ 95 \%CI] = -0.34 [ -0.68 , 0 ]
##
    var(z) = 0.03
##
    p-value(z) = 0.05
```

```
##
##
    Odds Ratio ES:
##
  OR [ 95 \%CI] = 0.27 [ 0.08 , 0.96 ]
##
##
     p-value(OR) = 0.04
##
## Log OR [ 95 %CI] = -1.31 [ -2.57 , -0.04 ]
##
    var(10R) = 0.39
##
     p-value(Log OR) = 0.04
##
## Other:
##
## NNT = -7.1
## Total N = 39
#Effect size and CI for Simple efect of Sex - Young (young women and men)
#Effect sizes for the difference between young women and men
mes( 0.2078208, 0.6539117, 0.3092134, 0.2343850, 26, 24)
## Mean Differences ES:
##
## d [ 95 \%CI] = -1.62 [ -2.27 , -0.96 ]
##
     var(d) = 0.11
##
     p-value(d) = 0
     U3(d) = 5.3 \%
##
##
     CLES(d) = 12.65 \%
     Cliff's Delta = -0.75
##
##
    g [ 95 %CI] = -1.59 [ -2.24 , -0.95 ]
##
##
     var(g) = 0.1
##
     p-value(g) = 0
     U3(g) = 5.58 \%
##
     CLES(g) = 13.02 \%
##
##
## Correlation ES:
##
## r [ 95 \%CI] = -0.63 [ -0.77 , -0.42 ]
##
    var(r) = 0.01
##
     p-value(r) = 0
##
##
    z [ 95 \%CI] = -0.74 [ -1.03 , -0.45 ]
##
     var(z) = 0.02
##
     p-value(z) = 0
##
##
    Odds Ratio ES:
##
##
   OR [ 95 \%CI] = 0.05 [ 0.02 , 0.17 ]
     p-value(OR) = 0
##
##
##
  Log OR [ 95 %CI] = -2.93 [ -4.12 , -1.74 ]
    var(10R) = 0.35
##
##
     p-value(Log OR) = 0
##
## Other:
```

```
##
## NNT = -5.18
## Total N = 50
#Effect size and CI for Simple efect of age - women (young and midlife women)
#Effect sizes for the difference between midlife and yong women
mes(0.1088111, 0.2078208, 0.2455819, 0.3092134, 25, 26)
## Mean Differences ES:
##
   d [95 \%CI] = -0.35 [-0.92, 0.21]
##
##
    var(d) = 0.08
##
     p-value(d) = 0.22
    U3(d) = 36.18 \%
##
     CLES(d) = 40.12 \%
##
##
     Cliff's Delta = -0.2
##
##
    g [ 95 \%CI] = -0.35 [ -0.91 , 0.21 ]
##
    var(g) = 0.08
##
    p-value(g) = 0.22
##
    U3(g) = 36.38 \%
     CLES(g) = 40.27 \%
##
##
##
   Correlation ES:
##
## r [ 95 \%CI] = -0.17 [ -0.43 , 0.11 ]
##
    var(r) = 0.02
    p-value(r) = 0.23
##
##
##
    z [ 95 \%CI] = -0.18 [ -0.47 , 0.11 ]
##
    var(z) = 0.02
##
    p-value(z) = 0.23
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.53 [ 0.19 , 1.47 ]
    p-value(OR) = 0.22
##
##
## Log OR [ 95 %CI] = -0.64 [ -1.67 , 0.39 ]
    var(10R) = 0.26
##
##
    p-value(Log OR) = 0.22
##
## Other:
##
## NNT = -11.9
## Total N = 51
#Effect size and CI for Simple efect of age - men (young and midlife men)
#Effect sizes for the difference between midlife and yong men
mes(0.2686762, 0.6539117, 0.1699723, 0.2343850, 14, 24)
## Mean Differences ES:
```

##

```
d [95 \%CI] = -1.81 [-2.61, -1]
##
    var(d) = 0.16
##
    p-value(d) = 0
##
    U3(d) = 3.55 \%
##
    CLES(d) = 10.09 \%
    Cliff's Delta = -0.8
##
##
   g [ 95 \%CI] = -1.77 [ -2.55 , -0.98 ]
##
    var(g) = 0.15
##
##
    p-value(g) = 0
##
    U3(g) = 3.86 \%
##
    CLES(g) = 10.57 \%
##
##
   Correlation ES:
##
##
   r [ 95 \%CI] = -0.66 [ -0.81 , -0.42 ]
##
    var(r) = 0.01
##
    p-value(r) = 0
##
##
   z [ 95 \%CI] = -0.79 [ -1.13 , -0.44 ]
##
    var(z) = 0.03
##
    p-value(z) = 0
##
##
   Odds Ratio ES:
##
##
  OR [ 95 %CI] = 0.04 [ 0.01 , 0.16 ]
##
    p-value(OR) = 0
##
##
  Log OR [ 95 \%CI] = -3.27 [ -4.73 , -1.82 ]
    var(10R) = 0.51
##
##
    p-value(Log OR) = 0
##
##
   Other:
##
## NNT = -5.1
## Total N = 38
Post-hoc
# Effect of treatment at each level of Group
df_maze %>%
 group_by(Group) %>%
  anova_test(AvgAccuracy ~ Moves + Sex,
             type = "III",
             effect.size = "pes") %>%
  get_anova_table() %>%
 adjust_pvalue(method = "bonferroni")
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 4 x 9
##
    Group
            Effect
                      DFn
                            DFd
                                     F
                                                  p `p<.05`
                                                               pes
                                                                         p.adj
     <fct>
             <chr> <dbl> <dbl> <dbl>
                                              <dbl> <chr>
                                                             <dbl>
                                                                         <dbl>
## 1 Midlife Moves
                                                             0.117 0.14
                       1 36 4.77 0.035
```

```
1 36 5.46 0.025
## 2 Midlife Sex
                                                       0.132 0.1
                                          ↑
!!!!
                    1 47 0.098 0.756
          Moves
## 3 Young
                                                       0.002 1
                          47 40.6 0.0000000741 *
                                                     0.463 0.000000296
## 4 Young
           Sex
                     1
# Pairwise comparisons at level of Group
pwc.cov1 <- df_maze %>%
 group_by(Group) %>%
 emmeans_test(
   AvgAccuracy ~ Sex, covariate = Moves,
   p.adjust.method = "bonferroni",
   detailed = TRUE
pwc.cov1
## # A tibble: 2 x 13
## Group .y. group1 group2 estimate
                                              df conf.low conf.high
                                        se
## * <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <
                                                 <dbl>
                                                             <dbl>
## 1 Midl~ AvgA~ Female Male -0.160 0.0755
                                             84
                                                 -0.310 -0.00967
                           -0.446 0.0635
## 2 Young AvgA~ Female Male
                                              84
                                                 -0.572 -0.320
## # ... with 4 more variables: statistic <dbl>, p <dbl>, p.adj <dbl>,
## # p.adj.signif <chr>
# Effect of treatment at each level of Sex
df maze %>%
 group_by(Sex) %>%
 anova_test(AvgAccuracy ~ Moves + Group,
            type="III",
            effect.size = "pes") %>%
 get_anova_table() %>%
 adjust_pvalue(method = "bonferroni")
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 4 x 9
## Sex
        Effect DFn
                       DFd
                                 F
                                      p `p<.05` pes p.adj
    <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <
                       48 1.41 0.241 ""
## 1 Female Moves 1
                                                0.029 0.964
                   1 48 4.86 0.032 *
## 2 Female Group
                                                0.092 0.128
                    1 35 0.285 0.597 ""
## 3 Male Moves
                                               0.008 1
## 4 Male Group
                    1
                         35 11.3 0.002 *
                                                0.244 0.008
# Pairwise comparisons at level of Sex
pwc.cov2 <- df_maze %>%
 group_by(Sex) %>%
 emmeans_test(
   AvgAccuracy_Percent ~ Group, covariate = Moves,
   p.adjust.method = "bonferroni"
   )
pwc.cov2
## # A tibble: 2 x 9
                                                 p p.adj p.adj.signif
                group1 group2
                                 df statistic
          .у.
## * <fct> <chr> <chr> <chr> <dbl> <dbl>
                                                <dbl> <dbl> <chr>
## 1 Female AvgAcc~ Midli~ Young 84 -1.41 1.63e-1 1.63e-1 ns
## 2 Male AvgAcc~ Midli~ Young
                                84
                                       -4.88 5.01e-6 5.01e-6 ****
```

DSP

Solution Index

1 (Intercept)

```
Propensity (proportion) or preference to take more shortcuts (range is 0-1); expressed in % More likely to take shortcuts = >0.50 Less likely to take shortcuts = <0.50 Formula: (# of STRICT shortcuts/# of successful trials)
```

```
#Read dataframe
df_dsp <- read.csv("DSP_ALL_2020_removed.csv")</pre>
options(contrasts=c("contr.sum", "contr.poly"))
interaction_SI <- aov(SI_strict~Group*Sex, data = df_dsp)
Anova(interaction_SI, type="III")
## Anova Table (Type III tests)
##
## Response: SI_strict
##
               Sum Sq Df
                                     Pr(>F)
                         F value
## (Intercept) 3.6479 1 228.7033 < 2.2e-16 ***
## Group
               0.1249 1
                           7.8334 0.006274 **
## Sex
               0.0580 1
                           3.6385 0.059646 .
## Group:Sex
               0.1051 1
                           6.5912 0.011898 *
## Residuals
               1.4355 90
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
aov_si <- Anova(interaction_SI, type="III")</pre>
anova_stats(aov_si)
##
            term sumsq meansq df statistic p.value etasq partial.etasq
                       3.648 1
## 1 (Intercept) 3.648
                                   228.703
                                             0.000 0.679
                                                                  0.718
## 2
                                     7.833
                                             0.006 0.023
                                                                  0.080
           Group 0.125
                        0.125 1
## 3
             Sex 0.058
                        0.058 1
                                     3.639
                                             0.060 0.011
                                                                  0.039
## 4
       Group:Sex 0.105 0.105 1
                                     6.591
                                             0.012 0.020
                                                                  0.068
## 5
       Residuals 1.436 0.016 90
                                        NA
                                                                     NA
##
     omegasq partial.omegasq epsilonsq cohens.f power
       0.674
                       0.706
                                 0.676
## 1
                                          1.594 1.000
## 2
       0.020
                       0.067
                                 0.020
                                          0.295 0.799
## 3
       0.008
                       0.027
                                 0.008
                                          0.201 0.479
## 4
       0.017
                       0.056
                                 0.017
                                          0.271 0.728
          NA
                          NA
                                    NA
                                             NA
                                                    NA
#Based on bootstrapping
eta_sq(aov_si, partial = TRUE, ci.lvl = .95,
       n = 1000, method = "quantile")
            term partial.etasq conf.low conf.high
```

0.780

0.718

0.616

```
0.080
                                0.007
                                          0.200
## 2
          Group
## 3
            Sex
                        0.039
                                0.000
                                          0.141
      Group:Sex
                        0.068
                                0.003
                                          0.184
## 4
```

Post-hoc

```
# Effect of treatment at each level of Group
df_dsp %>%
  group_by(Group) %>%
  anova_test(SI_strict ~ Sex,
            type = "III",
            effect.size = "pes") %>%
  get anova table() %>%
  adjust_pvalue(method = "bonferroni")
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
           Effect DFn DFd
##
    Group
                                   F
                                          p `p<.05` pes p.adj
##
     <fct>
            <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Midlife Sex
                      1 38 0.228 0.636 ""
                                                     0.006 1
## 2 Young
           Sex
                        1
                            52 10.5 0.002 *
                                                    0.168 0.004
df_dsp_yf <- df_dsp %>% filter(Group == "Young" & Sex == "Female")
df_dsp_ym <- df_dsp %>% filter(Group == "Young" & Sex == "Male")
df_dsp_mf <- df_dsp %>% filter(Group == "Midlife" & Sex == "Female")
df_dsp_mm <- df_dsp %>% filter(Group == "Midlife" & Sex == "Male")
df dsp female <- df dsp %>% filter(Sex == "Female")
df_dsp_male <- df_dsp %>% filter(Sex == "Male")
df_dsp_young <- df_dsp %>% filter(Group == "Young")
df_dsp_midlife <- df_dsp %>% filter(Group == "Midlife")
mean(df_dsp_young$SI_strict)
## [1] 0.2385115
sd(df_dsp_young$SI_strict)
## [1] 0.1454005
CI(df_dsp_young$SI_strict, ci = 0.95)
##
       upper
                 mean
                           lower
## 0.2781982 0.2385115 0.1988249
mean(df_dsp_midlife$SI_strict)
## [1] 0.1620774
sd(df_dsp_midlife$SI_strict)
## [1] 0.1138854
CI(df_dsp_midlife$SI_strict, ci = 0.95)
      upper
                 mean
                          lower
## 0.1984998 0.1620774 0.1256551
```

```
mean(df_dsp_male$SI_strict)
## [1] 0.2346812
sd(df_dsp_male$SI_strict)
## [1] 0.1476932
CI(df_dsp_male$SI_strict, ci = 0.95)
       upper
                  mean
                           lower
## 0.2771036 0.2346812 0.1922587
mean(df_dsp_female$SI_strict)
## [1] 0.174741
sd(df_dsp_female$SI_strict)
## [1] 0.1195867
CI(df_dsp_female$SI_strict, ci = 0.95)
                           lower
       upper
                  mean
## 0.2106688 0.1747410 0.1388131
#Effect of Age on Female
cohen.d(SI_strict ~ Group, group=Sex, data=df_dsp_female,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
##
## d estimate: -0.05048343 (negligible)
## 95 percent confidence interval:
##
       lower
                   upper
## -0.6592487 0.5582819
#Effect of Age on Male
cohen.d(SI_strict ~ Group, group=Sex, data=df_dsp_male,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
## d estimate: -1.080236 (large)
## 95 percent confidence interval:
       lower
                   upper
## -1.7010809 -0.4593915
# Effect of treatment at each level of Sex
df_dsp %>%
 group_by(Sex) %>%
  anova_test(SI_strict ~ Group,
             type = "III",
             effect.size = "pes") %>%
  get_anova_table() %>%
 adjust_pvalue(method = "bonferroni")
```

Coefficient covariances computed by hccm()

```
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
    Sex
           Effect DFn
                           DFd
                                    F
                                             p `p<.05`
                                                                   p.adj
                                                            pes
     <fct> <chr> <dbl> <dbl>
                                                                   <dbl>
##
                                <dbl>
                                          <dbl> <chr>
                                                          <dbl>
                                                11 11
## 1 Female Group
                            43 0.028 0.868
                                                        0.00065 1
                       1
## 2 Male
            Group
                            47 14.0
                                     0.000496 *
                                                        0.23
                                                                0.000992
#Effect of Sex on Young
cohen.d(SI_strict ~ Sex, group=Group, data=df_dsp_young,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
##
## d estimate: -0.8811746 (large)
## 95 percent confidence interval:
        lower
                   upper
## -1.4535629 -0.3087864
#Effect of Sex on Midlife
cohen.d(SI_strict ~ Sex, group=Group, data=df_dsp_midlife,
        conf.level=0.95, pooled=T, paired=F)
##
## Cohen's d
## d estimate: 0.151286 (negligible)
## 95 percent confidence interval:
##
        lower
                   upper
## -0.4905993 0.7931713
```

Wayfinding Success / Proportion of successful trials

Number of trials they successed over total number of trials attempted which is usually 20 trials.

Expressed as a percent (range from 0-1).

##

```
options(contrasts=c("contr.sum", "contr.poly"))
interaction_success <- aov(Success_dec~Group*Sex, data = df_dsp)
Anova(interaction_success, type="III")
## Anova Table (Type III tests)
##
## Response: Success_dec
              Sum Sq Df
                          F value
                                     Pr(>F)
## (Intercept) 61.805 1 4300.6224 < 2.2e-16 ***
## Group
               0.619 1
                          43.0398 3.319e-09 ***
## Sex
               0.229 1
                          15.9545 0.0001324 ***
## Group:Sex
               0.006 1
                            0.3849 0.5365720
## Residuals
               1.293 90
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
success1 <- Anova(interaction_success, type="III")</pre>
anova_stats(success1)
```

term sumsq meansq df statistic p.value etasq partial.etasq

```
## 1 (Intercept) 61.805 61.805 1 4300.622 0.000 0.966
                                                                0.980
## 2
          Group 0.619 0.619 1 43.040 0.000 0.010
                                                                0.324
## 3
            Sex 0.229 0.229 1
                                    15.955
                                             0.000 0.004
                                                                0.151
## 4 Group:Sex 0.006 0.006 1
                                     0.385
                                             0.537 0.000
                                                                0.004
## 5
      Residuals 1.293 0.014 90
                                        NA
                                                NA
                                                                   NA
## omegasq partial.omegasq epsilonsq cohens.f power
## 1 0.966
                     0.978
                             0.966
                                      6.913 1.000
## 2 0.009
                      0.307
                                0.009
                                         0.692 1.000
## 3
     0.003
                     0.136
                                0.003
                                         0.421 0.979
## 4
      0.000
                     -0.007
                                0.000
                                         0.065 0.095
## 5
         NA
                         NA
                                   NA
                                            NA
                                                  NA
#Based on bootstrapping
eta_sq(success1, partial = TRUE, ci.lvl = .95,
      n = 1000, method = "quantile")
##
           term partial.etasq conf.low conf.high
                        0.980
## 1 (Intercept)
                                 0.971
                                           0.984
## 2
          Group
                        0.324
                                 0.172
                                           0.453
## 3
            Sex
                        0.151
                                 0.039
                                           0.283
## 4
                        0.004
                                 0.000
                                           0.067
      Group:Sex
#95%CI
mean(df dsp young$Success dec)
## [1] 0.9050926
sd(df_dsp_young$Success_dec)
## [1] 0.1091757
CI(df_dsp_young$Success_dec, ci = 0.95)
##
      upper
                 mean
                          lower
## 0.9348918 0.9050926 0.8752934
mean(df_dsp_midlife$Success_dec)
## [1] 0.7408333
sd(df_dsp_midlife$Success_dec)
## [1] 0.1529832
CI(df_dsp_midlife$Success_dec, ci = 0.95)
##
                          lower
      upper
                 mean
## 0.7897597 0.7408333 0.6919069
mean(df_dsp_female$Success_dec)
## [1] 0.7824074
sd(df_dsp_female$Success_dec)
## [1] 0.1520298
CI(df dsp female$Success dec, ci = 0.95)
##
      upper
                 mean
                          lower
```

```
## 0.8280822 0.7824074 0.7367326
mean(df_dsp_male$Success_dec)

## [1] 0.8836735
sd(df_dsp_male$Success_dec)

## [1] 0.1374575

CI(df_dsp_male$Success_dec, ci = 0.95)

## upper mean lower
## 0.9231559 0.8836735 0.8441911
```