Задача 1. Найдите все решения уравнения $y' = y^{2/3}$ и укажите два различных решения, удовлетворяющие начальному условию y(0) = 0.

Определение 1. (Постановка задачи.) Всюду в этом листке константа C, прямоугольник Π , «бабочка» $B_{\delta} \subset \Pi$, отрезок $D_{\delta} \ni x_0$ и пространство \mathcal{M}_{δ} непрерывных функций на D_{δ} с графиками внутри B_{δ} будут те же самые, что и в предыдущем листке. Мы докажем, что если правая часть дифференциального уравнения y' = F(x, y) удовлетворяет дополнительному условию:

 $\exists L \in \mathbb{R}: |F(x,y_1) - F(x,y_2)| < L \cdot |y_1 - y_2| \quad \forall x \in [a,b] \& \forall y_1,y_2 \in [c,d]$ то любые два решения дифференциального уравнения y' = F(x,y), графики которых проходят через точку (x_0,y_0) совпадают над некоторой δ -окрестностью точки x_0 .

Задача 2. (приближения Пикара) Будем строить последовательные приближения $\psi_k(x) \in \mathcal{M}_{\delta}$ (с $k=0,1,2,\ldots$) к решению уравнения y'=F(x,y), взяв $\psi_0(x)\equiv y_0$ и подбирая в качестве ψ_{k+1} такую дифференцируюмую функцию, производная от которой равна значениям функции F на графике предыдущего приближения ψ_k , т.е. удовлетворяющую при $x\in D_{\delta}$ уравнению $\psi'_{k+1}(x)=F(x,\psi_k(x))$ и

такую, что $\psi_{k+1}(x_0) = y_0$. Докажите, что $\psi_{k+1}(x) = y_0 + \int_{x_0}^x F(t, \psi_k(t)) dt$ и проверьте, что все $\psi_k \in \mathcal{M}_\delta$.

Задача 3. Явно вычислите все приближения Пикара для уравнения y' = y с начальным условием y(0) = 1 и честно найдите их предел.

Задача 4. Пусть функция F удовлетворяет условию (1). Докажите, что при достаточно малом δ правило $P:\psi(x)\longmapsto P\psi(x)=y_0+\int\limits_{x_0}^x F(t,\psi(t))\,dt$ определяет сжимающее отображение $\mathcal{M}_\delta\to^P\mathcal{M}_\delta$.

Задача 5. Докажите, что функция $\psi \in \mathcal{M}_{\delta}$ тогда и только тогда является решением уравнения y' = F(x,y), когда $P\psi = \psi$.

Задача 6. Докажите сформулированную в начале листка теорему единственности. Как она уживается с примером из 1?

Задача 7. Пусть отображение $\mathcal{M} \to^P \mathcal{M}$ (в произвольном метрическом пространстве) является сжимающим с константой 0 < l < 1 (т. е. $\rho(P\varphi, P\psi) \leqslant l\rho(\varphi, \psi) \; \forall \; \varphi, \psi \in \mathcal{M}$). Докажите, что расстояние от произвольной точки $\psi \in \mathcal{M}$ до неподвижной точки ψ_0 отображения P удовлетворяет неравенству $\rho(\psi, \psi_0) \leqslant \frac{\rho(\psi, P\psi)}{1-l}$.

Задача 8. Докажите, что если функция F удовлетворяет условию (1), то *вся* последовательность ломаных Эйлера из **??** равномерно (т. е. по метрике \mathcal{M}_{δ} , а не поточечно) сходится к решению уравнения y' = F(x, y).

Задача 9*. (теорема о непрерывной зависимости от начальных условий) Пусть функция F удовлетворяет условию (1). Докажите, что у точки (x_0,y_0) существует окрестность $\widetilde{H}\subset H$, такая что при некотором фиксированном $\delta>0$ и произвольных $(\widetilde{x}_0,\widetilde{y}_0)\in\widetilde{H}$ уравнение y'=F(x,y) будет обладать единственным решением y=f(x), определённым всюду на D_δ и удовлетворяющим начальному условию $f(\widetilde{x}_0)=\widetilde{y}_0$, и более того, сопоставление точке $(\widetilde{x}_0,\widetilde{y}_0)\in\widetilde{H}$ такого решения будет непрерывным отображением из \widetilde{H} в пространство непрерывных функций на D_δ .

1	2	3	4	5	6	7	8	9