DE19624268

Publication Title:

Gas generator has several chambers linked via open aperture to common gas chamber

Abstract:

Abstract of DE19624268

A process and assembly converts especially organic refuse into gas for energy conversion. Liquid or flowing bulk solids carrying an organic load passes under control from the inlet to the outlet, through a horizontal fermentation assembly which is subdivided into a number of chambers. The novelty is that all of the chambers (2) have an open aperture to a common gas chamber (4), such that the fermentation unit (1) forms a common gas chamber (4) for the gas. Each chamber (2) is separated from its neighbour by a wall (3) and incorporates assemblies such as heaters, mixers, valves and push-blades. The first chamber receives fresh air (f) enabling it to operate as an anaerobic hydrolysis reactor. One or all chambers are supplied with a nutrient (51). Contaminated wastes are introduced via an inlet to a mixer. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift

_® DE 196 24 268 A 1

196 24 268.1 18. 6.98

Anmeldetag: 10. 4.97 Offenlegungstag:

(6) Int. Cl.5: C12 P 5/02

C12 M 1/113 C02 F 11/04 C 05 F 17/00 C 05 F 17/02 C 05 F 9/04 C 05 F 9/02

DEUTSCHES PATENTAMT

(3) Unionspriorität: (3) (3) (3) 30.09.95 CH 2753/95

(3) Innere Priorität: (2) (3) (3) 25,04.98 DE 196165687

(71) Anmelder: Herhof Umwelttechnik GmbH, 35608 Solms, DE

(14) Vertreter: Rechts- und Patentanwälte Lorenz Seidler Gossel, 80538 München

@ Erfinder:

Hofmann, Hermann, 35606 Solms-Niederbiel, DE

Prūfungsantrag gem. § 44 PatG ist gestellt

(A) Verfahren und Vorrichtung zur Verwertung organischer Abfälle

 Ein Verfahren dient zur Verwertung von organischen Abfällen, insbesondere von biologisch verunreinigten Flüssigkeiten und/oder von Stoffen in fließfählger Form. Das Gärgut wird in einem vorzugsweise liegend angeordneten Fermenter, welcher unterhalb des Gasraumes durch Trennwände (3) in einzelne Kammern (2) unterteilt ist, vom Zulauf bis zum Ablauf von Kammer zu Kammer kontrolliert geführt. Um mit einer kompakten Anlage die verschiedenen Stufen des Gärprozesses flexibel regeln zu können, bildet der Fermenter (1) über seine ganze Länge für das Blogas einen gemeinsamen Gasraum (4) (Fig. 1).

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung bzw. eine Anlage zur mengenmäßigen Reduktion und Verwertung biologisch verunreinigter Flüssigkeiten und Stoffe in fließfähiger Form und zur Gewinnung von Flüssigdünger, flüssigem Bodenverbesserer und Biogas. Die Anlage besteht aus einem vorzugsweise liegend angeordneten Fermenter, welcher unterhalb des Gasraumes durch Trennwände in einzel- 10 ne Kammern unterteilt ist, wobei das Gärgut vom Zulauf bis zum Ablauf von Kammer zu Kammer kontrolliert geführt wird.

Die Reinigung von biologisch verunreinigten Flüssigkeiten und Stoffen in fließfähiger Form mittels Gärprozessen sind seit einigen Jahren gut bekannt und speziell im kommunalen Kläranlagenbau bestens eingeführt. Vielerorts werden heute Abfälle getrennt eingesammelt, so daß vermehrt biologisch verunreinigte Abfälle zu behandeln sind. Wirtschaftlichkeit und ökologische Gründe setzen den Akzent vermehrt auf Gärprozesse, welche gegenüber dem Verfahren der Kompostierung den Vorteil haben, Energie zu erzeugen. Für die Verwertung organischer Feststoffe kennt man Verfahren ten Fermentern arbeiten, z.B. aus dem Patent EP 0 476 217.

Einstufige Gäranlagen für Flüssigkeiten sind z.B. in Kläranlagen für den kommunalen Abfall und in industriellen Anlagen seit Jahren im Einsatz und gehören 30 heute zum Stand der Technik. Große Vorteile bieten solche einstufigen Fermenter, weil die Prozeßführung durch die Überwachung des Schwefelgehaltes (H2S) im Gas verhältnismäßig einfach ist. Der Schwefelgehalt (H₂S) wird am Austritt des Biogases gemessen und 35 durch Zudosieren von Luftsauerstoff, welcher mit dem Schwefel oxidiert und den Schwefelgehalt im Biogas damit reduziert, gesteuert. Sie weisen jedoch andere, im folgenden erläuterte Nachteile auf:

Die sedimentierten Stoffe, welche sich in Form von 40 Schlamm absetzen, mischen sich immer wieder mit dem geklärten und als rein zu bezeichnden Abwasser. Der Praktiker stellt dies fest, indem es für ihn schwierig ist, eine transparente Fraktion des geklärten Abwassers zu erhalten. Je größer die Höhendifferenz und die Distanz 45 zwischen den Abnahmestellen von geklärtem Abwasser und dem sedimentierten Schlammbett ist, desto besser wird die Trennung der beiden Fraktionen sein. Man arbeitet deshalb mit großen Volumina und großen hydraulischen Höhen, um für die Sedimentation günstige 50 und gegen die Rückmischung wirksame, laminare Strömungen mit langsamer Geschwindigkeit zu erhalten.

Die zu klärenden Stoffe werden im Fermenter bekanntlich in flüssiger Form bearbeitet. Das heißt, in jeder einstufigen Gäranlage werden sich neu eingespeiste, 55 verunreinigte Stoffe sofort mit bereits gereinigten und für die Entnahme bestimmten Fraktionen vermischen, wie dies in jedem mit Flüssigkeit gefüllten Behälter geschieht. Eine definierte Aufenthaltszeit für die einzelnen Teilchen zu gewährleisten ist deshalb schwierig. Teile 60 die direkt vom Einlauf in den Ablauf gelangen sind nicht nur unvergoren, sondern auch hygienisch nicht sauber. Dies erklärt, weshalb mit einem einstufigen Verfahren die verlangten Anforderungen an gereinigte Abwässer bezüglich Hygienisierung nur bedingt und mit Mühe 65 und Aufwand erreicht werden können.

Man erreicht das z. B. durch Weglassen einer Rühroder Mischvorrichtung und verzichtet damit auf bessere

Gärung und muß dies mit längerer Verweilzeit kompensieren. Deshalb werden solche Fermenter, wie von den Kläranlagen her bekannt, normalerweise sehr große Volumen aufweisen. Die großen Behälter, die erforderlich sind, um die Flüssigkeitsmengen zu behandeln, kosten viel. Aufgrund der Größe der Behälter ist ferner der Platzbedarf für solche Anlagen sehr groß.

Die großen Volumina in einer solchen Anlage haben zur Folge, daß das Verhalten des ganzen verfahrenstechnischen Prozesses sehr schwerfällig wird. Änderungen der Eigenschaften von verunreinigten Stoffen, die zugeführt werden, werden spät erkannt. Notwendige Maßnahmen werden dadurch zu spät eingeleitet. Durch ihre Größe sind die Anlagen schlecht regel- und kontrollierbar, so daß eine Verminderung der Effizienz der Anlage die logische Folge ist.

Diesen Tatsachen versuchen die Hersteller auszuweichen, welche mehrstufige Anlagen anbieten. Man erreicht mit der Mehrstufigkeit, daß keine Vermischung zwischen frisch zugeführtem Zulauf und gereinigtem Ablauf entsteht. Ein weiterer Vorteil solcher mehrstufiger Anlagen liegt darin, daß man in den einzelnen Stufen relativ kurze Verweilzeiten hat. Sie werden dadurch besser überblickbar und die Anlage kann flexibler und und Vorrichtungen, welche mit horizontal angeordne- 25 bei wechselndem Gärgut (der Normalfall für Abwasseranlagen dieser Art) effizienter und mit kürzeren Verweilzeiten gefahren werden.

Ein großer Nachteil mehrstufiger Anlagen ist der gro-Be anlagetechnische Aufwand. Die in Bezug auf Pumpfähigkeit zum Teil problematischen Zwischenprodukte müssen entweder mit entsprechenden mechanischen Mitteln von einem Behälter zum anderen gepumpt werden, oder die Behälter müssen derart angeordnet sein, daß man die fließfähigen Stoffe mittels Überlauf in den nächsten Behälter fließen läßt. All dies stellt nicht zu unterschätzende Anforderungen an den planerischen Aufwand, zieht man in Betracht, daß man bei einer anaeroben Gärung unter leichtem Überdruck mit einem in sich und gegen die Atmosphäre in jeder Stufe geschlossenen Fermentationsraum arbeitet.

Ein weiterer Nachteil dieser Art des Anlagenaufbaus mit mehreren Stufen ist die Trennung der verschiedenen Gasräume. Durch die in den verschiedenen Fermentationsbehältern für die effiziente Gärung erwünschten unterschiedlichen Bedingungen wird das zu gewinnende Biogas verschiedene Qualitäten aufweisen. Eine Durchmischung der in einzelnen Gärkammern gewonnenen Biogase kann z. B. in einer zusätzlichen Sammelkammer erfolgen, was einen zusätzlichen Anlagenaufwand mit sich bringt. Die gute Durchmischung der verschiedenen Biogasqualitäten ist eine Voraussetzung, um mittels H2S-Oxidation direkt durch Anlagenführung eine gute Biogas-Qualität zu erhalten. Aus wirtschaftlichen Gründen ist die günstige Art der Anlageführung mittels H2S-Oxidation für mehrstufige Anlagen keine vertretbare Möglichkeit.

Die vorliegende Erfindung stellt sich nunmehr die Aufgabe, ein Verfahren und eine Vorrichtung bzw. eine Anlage zur Verwertung von biologisch verunreinigten Flüssigkeiten und Stoffen in fließfähiger Form der eingangs genannten Art derart zu verbessern, daß mit einer kompakten Anlage die verschiedenen Stufen des Gärprozesses flexibel geregelt werden können. Die ganze Anlage soll gleichzeitig über die einfache Kontrolle des Schwefelgehaltes im Biogas kontrolliert und geregelt werden können.

Erfindungsgemäß wird diese Aufgabe bei einem Verfahren der eingangs angegebenen Art dadurch gelöst, daß alle Kammern zu einem gemeinsamen Gasraum hin offen sind, so daß der Fermenter für das Biogas einen gemeinsamen Gasraum bildet.

Vorteilhafte Weiterbildungen des erfindungsgemä-Ben Verfahrens sind in den Unteransprüchen beschrie-

ben.

Bei einer Vorrichtung bzw. Anlage der eingangs angegebenen Art wird die der Erfindung zugrundeliegende Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 6 gelöst. Alle Kammern sind zu einem gemeinsamen Gasraum hin offen, so daß der Fermenter für das Biogas einen gemeinsamen Gasraum bildet.

Vorteilhafte Weiterbildungen der erfindungsgemä-Ben Vorrichtung bzw. Anlage sind Gegenstand der wei-

teren Unteransprüche.

Durch die Erfindung wird eine Anlage zur mengenmäßigen Reduktion und Verwertung biologisch verunreinigter Flüssigkeiten und Stoffe in fließfähiger Form und zur Gewinnung von Flüssigdünger, flüssigem Bodenverbesserer und Biogas geschaffen, die aus einem vorzugsweise liegend angeordneten Fermenter besteht, welcher unterhalb des Gasraumes durch Trennwände in einzelne Kammern unterteilt ist, wobei das Gärgut vom Zulauf bis zum Ablauf von Kammer zu Kammer kontrolliert geführt wird. Alle Kammern sind zu einem gemeinsamen Gasraum hin offen, wobei der Fermenter dadurch über seine ganze Länge für das zu gewinnende und nach oben strebende Biogas einen gemeinsamen, nicht unterteilten Gasraum bildet.

Vorzugsweise sind die die Kammern abtrennenden 30 Trennwände so ausgebildet, daß die einzelnen Kammern mit gleichen oder unterschiedlichen Vorrichtungen wie Heizungen, Rührwerken, Ventilen und/oder Schiebern ausgerüstet sind.

Dem Fermenter kann ein Zirkulationskreislauf mit 35 schaltbaren Ventilen zu jeder Kammer, einem Mischer und einem Wärmetauscher angeschlossen sein.

Vorzugsweise hat der Fermenter eine zylindrische Form. Er weist ferner vorzugsweise in seiner Längsachse einen zentral angeordneten und drehbar gelagerten und angetriebenen Rotor auf, der alle Kammern durchquert.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß der Rotor im Bereich einer dem Zulauf nahe liegenden Kammer mit Schaufeln bestückt 45 ist. Die Schaufeln drehen sich mit dem Rotor. Sie sind vorzugsweise entgegen der Drehrichtung nach hinten winklig verstellbar angeordnet.

Vorzugsweise ist im Bereich einer dem Zulauf nahe liegenden Kammer eine in einen Sammelbehälter führende Öffnung angeordnet, die sich vorzugsweise zentral unterhalb der Mittelachse des Fermenters befindet.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß im Bereich einer dem Zulauf nahe liegenden Kammer auf der Höhe des Füllstandes eine tangentiale, in einen Sammelbehälter führende Öffnung angeordnet ist.

Vorzugsweise weist der Sammelbehälter seitlich einen Grobfilter auf.

Der Rotor kann mit Rührarmen ausgestattet sein.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß jede durch eine Trennwand definierte Kammer mit einem Monoblock ausgerüstet ist, welcher mindestens aus einem gasdicht verschließbaren Deckel und einem rohrförmigen, mit Heizmantel versehenen Wärmetauscherelement besteht. Der Fermenter kann bei dieser vorteilhaften Weiterbildung eine beliebige Form aufweisen.

Auf der zentralen Achse des rohrförmigen Wärmetauscherlements befindet sich vorzugsweise eine Fördervorrichtung.

Vorteilhaft ist es, wenn der Inhalt der ersten Kammer durch Zuführung von Frischluft als anaerober Hydrolysereaktor gefahren werden kann. Vorzugsweise ist die erste Kammer durch eine Trennwand vom Gasraum der nachfolgenden Kammern gasdicht abgeschlossen. Ferner ist vorzugsweise jede Kammer über einen Zirkulationskreislauf mit schaltbaren Ventilen an einen Mischer und/oder an einen Wärmetauscher anschließbar.

Vorteilhaft ist es, wenn jede Kammer mit Nährstoffen versorgt werden kann. Dies geschieht vorzugsweise dadurch, daß dem Mischer Nährstoffe beigemischt werden, was vorzugsweise durch eine Dosierpumpe erreicht wird. Die Nährstoffe werden über einen Zirkulationskreislauf mit schaltbaren Ventilen den Kammern

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß kontaminierte Abfallstoffe über eine Zuführung in den Mischer geführt werden und über den Zirkulationskreislauf mit einer Pumpe und einen bzw. den Wärmetauscher sterilisiert oder hygienisiert werden, wobei die Zudosierung vorzugsweise geregelt erfolgt.

Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß dem Fermenter eine Hydrolysestufe vorgeschaltet ist.

Vorzugsweise ist eine Materialverschiebeeinrichtung vorhanden, die vorzugsweise einen Pumpbehälter umfaßt.

Ausführungsbeispiele der Erfindung werden nachstehend anhand der beigefügten Zeichnung im einzelnen erläutert. In der Zeichnung zeigt:

Fig. 1 eine geschnittene Darstellung des runden Fermenters mit einem Rotor und den Kammern von der Seite.

Fig. 1a eine geschnittene Darstellung entsprechend derjenigen der Fig. 1, jedoch mit einer vorgeschalteten, aeroben Hydrolysestufe,

Fig. 2 eine geschnittene Darstellung des kubischen Fermenters mit einzelnen kubischen Kammern von der Seite gesehen,

Fig. 2a eine geschnittene Darstellung entsprechend derjenigen der Fig. 2, jedoch mit einer vorgeschalteten, aeroben Hydrolysestufe,

Fig. 3 einen Querschnitt über die erste Kammer nach dem Zulauf (gemäß Fig. 1 und Fig. 1a) und

Fig. 4 einen Fermenter mit vorgeschalteter Hydrolysestufe und Materialverschiebeeinrichtung.

Wie Fig. 1 zeigt, ist der Fermenter 1 mittels Trennwänden 3 in einzelne Kammern 2¹⁻ⁿ unterteilt. Das verunreinigte Gärgut wird dem Fermenter 1 beim Zulauf a eingegeben und das biologisch gereinigte Gärgut 39 wird über Ablauf b dem Fermenter 1 entnommen und unter Umständen einer weiteren Reinigungsstufe zugeführt.

Bei dem Durchlauf der verunreinigten Flüssigkeit wird deren Anteil an biologischer Verunreinigung von Kammer 2^I zur Kammer 2ⁿ kontinuierlich kleiner. Während z. B. in der dem Zulauf a am nächsten liegenden Kammer 2¹ noch am meisten Schlamm- und Schmutzstoffe dem Gärgut 39 entnommen werden müssen, ist dasselbe in der letzten, dem Ablauf am nächsten liegenden Kammer 2ⁿ gereinigt, und meist von sämtlichen Feststoffen befreit beinahe transparent. Es liegt deshalb auf der Hand, daß die einzelnen Kammern 2^{I-n} mit unterschiedlichen Vorrichtungen wie Heizungen, Rühr-

werken, Ventilen, Pumpen etc. ausgerüstet werden müssen, um die Prozesse in den einzelnen Kammern 21-n auf den für die entsprechende Stufe optimalen Bedingungen fahren zu können.

Ebenfalls in Fig. 1 ist zu sehen, daß der gemeinsame Gasraum 4 über allen Kammern 2¹⁻ⁿ verbunden und offen ist. Dies hat zur Folge, daß man in diesem großen, vollständig offenen Gasraum 4 eine langsame Strömung des Gases erreichen kann, welche für die definierbare Gasqualität am Gasdom 36 zuverlässig als durchschnitt- 10 liche Meßgröße und Basis zur Kontrolle und Regelung

des Fermenters gelten kann.

Um von diesem, als absolut repräsentativ zu bezeichnenden, Meßresultat des Gases die Anlage steuern zu Meßbox 25 gebracht und dort nochmals nach Menge und Eigenschaft beurteilt werden. Je nach Bedarf kann dem Gasgemisch mittels Gebläse 26 Luft oder Sauerstoff beigefügt werden. Das Gemisch Luft und Biogas wird dann in die vom Gasdom 36 am entferntesten lie- 20 gende Kammer 2^I eingepumpt.

Der zugeführte Sauerstoff reagiert mit dem im Biogas enthaltenen Schwefel. Durch Oxidation wird der Schwefel dem Biogas entnommen und als elementarer Schwefel mit dem Gärgut 39 ausgebracht. Die Reaktion er- 25

folgt dabei nach folgender Formel:

$H_2S + 1/2O_2 \rightarrow S + H_2O$

Luft oder Sauerstoff kann dem Prozeß über in den 30 Zeichnungen nicht gezeigte Einlaßdüsen direkt in das Gärgut eingegeben werden. Um den anaeroben Prozeß nicht zu stören und trotzdem die angestrebte Wirkung zu haben, muß dies sehr gezielt und kontrolliert erfol-

Wie bereits erwähnt, werden in den Kammern 2^{l-n} je nach Art und dem verbleibenden Grad der biologischen Verunreinigung andere Bedingungen für Temperatur, Durchmischung, Impfung, etc. erforderlich. Durch gezielte und dem Grad der biologischen Verunreinigung 40 des Gärgutes 39 angepaßte Führung der Reaktionsbedingungen, kann der Gärprozeß in der entsprechenden

Kammer 2 effizient ablaufen.

Um z. B. die Temperatur und/oder die Impfung des Gärgutes 39 zu beeinflussen, ist jede Kammer 2 verbunden mit einem Heizkreislauf d, der entweder mit gereinigtem Abwasser oder mit frischem Wasser betrieben wird. In diesem Kreislauf d sorgt eine Pumpe 23 dafür, daß das vorhandene Wasser durch einen Wärmetauscher 27 geführt wird. Über die Ventile 11 kann das im 50 Heizkreislauf d verwendete Medium entweder den Kammern zugeführt werden oder der Gärkammer-Flüssigkeit entzogen werden. Mit diesem Kreislauf kann die Temperatur und die Biozönose in den einzelnen Kammern beeinflußt und gesteuert werden. Aus den dem 55 Ablauf näher liegenden Kammern, z. B. der Kammer 2n, kann auch Gärgut 39 entnommen und zur Impfung den dem Einlauf am nächsten liegenden Kammern, z. B. der Kammer 2^I, zugeführt werden. Nährstoffe, pH-regelnde Substanzen und andere Impfstoffe können über Mi- 60 scher 35 dem Kreislauf d zugegeben und in eine der Kammern 2 geführt werden.

Bei der abgewandelten Ausführungsform gemäß Fig. 1 ist eine aerobe Hydrolysestufe vorgeschaltet. Bei dieser Ausführungsform können Nährstoffe wie z. B. Ei- 65 sen, Nickel, Kobalt oder Molybdän etc., pH-regelnde Substanzen und andere Impfstoffe in eine der Kammern 2 geführt werden. Dies geschieht über einen Vorratsbe-

hälter 51, in den diese Stoffe eingegeben werden können. Aus dem Vorratsbehälter 51 werden die Stoffe dann als Lösung mittels der Pumpe 52 über die Leitung h und über den Mischer 35 dem Kreislauf d zugegeben und in eine der Kammern 2 geführt. Werden dem Prozeß über die Zuleitung i kontaminierte Abfälle (z. B. Speisereste aus Großküchen oder Schlachthofabfälle) beigegeben, müssen diese aus seuchenhygienischen Gründen thermisch vorbehandelt werden. Dies geschieht je nach Abfallart und Anforderung des Gesetzgebers im Durchlauf- oder Batch-Betrieb über den Mischer 35, die Förderpumpe 23, den Kreislauf d und den Wärmetauscher bzw. Erhitzer 27.

In Fig. 1 ist ein zylindrischer Fermenter 1 dargestellt, können, kann ein Teilstrom über das Gebläse 24 in die 15 in dessen Zentrum ein Rotor 5, der durch alle Kammern 2 hindurch geht, dargestellt. An diesem Rotor sind in jeder Kammer einige Rührarme 10 befestigt, um das Abwasser stetig in Bewegung zu halten und eine minimale Durchmischung in den einzelnen Kammern zu ge-

währleisten.

In der in Fig. 1a dargestellten abgewandelten Ausführungsform ist gezeigt, daß sich in der dem Zulauf a am nächsten gelegenen Kammer durch Luftsauerstoffeintrag eine gesteuerte Versäuerung (Hydrolyse) einstellt. Der Luftsauerstoff wird mit dem Gebläse 49 angesaugt und über die Leitung f den am Behälterboden verteilten Lufteintragsdüsen 50 bis 50ⁿ zugeführt und in die Kammer 21 eingepreßt. Durch die Lufteinpressung wird eine exotherme, biologische Reaktion eingeleitet, welche, ähnlich der aus der Klärwerkstechnik bekannten aerobthermophilen Schlammstabilisierung, den Fermenterinhalt auf die gewünschte Prozeßtemperatur erhöht. Die geruchsbeladene Abluft wird über den Stutzen g einer Abluftbehandlung (z. B. Biofilter) zugeführt. Durch die Versäuerung und Temperaturerhöhung werden größere organische Teile aufgelöst sowie die mit Organik behaftenen Oberflächen von Störstoffen wie Plastik etc. abgereinigt. Ein langsam laufendes Rührwerk 5 unterstützt mit den durch die Paddel 10 eingeleiteten Scherkräften die gleichmäßige Luftverteilung in der Kammer 2^l. Die aerob betriebene Kammer 2^l wird von den nachfolgenden Kammern 211 bis 2n durch eine gasdichte Trennwand 48 abgetrennt.

In Fig. 3 ist gezeigt, daß in der dem Zulauf a am nächsten liegenden Kammer 2^I nebst Rührarm 10 auch noch eine Schaufel 6 am Rotor befestigt ist. Diese Schaufel kann nach hinten winklig verstellt werden. Fig. 3 zeigt ebenfalls, wie mit dieser winklig nach hinten verstellbaren Schaufel zum einen die sich unten befindenden Sinkstoffe 40 über eine zentral unterhalb der

Mittelachse des Fermenters 1 liegende Öffnung 7 in einen Sammelbehälter 8 gebracht werden können. Auf diese Art können Sinkstoffe 40 wie z. B. Sand und Steine leicht entsorgt werden. Um das mit den Sinkstoffen 40

mitgebrachte Wasser von denselben zu trennen, befindet sich seitlich an diesem Sammelbehälter 8 ein Grobfilter 9.

Ist dieser Sammelbehälter 8 mit Sinkstoffen 40 gefüllt, wird der Schieber 12 geschlossen. Nun wird der Sammelbehälter 8 via Grobfilter 9 in den Kreislauf d entwässert und die Sinkstoffe 40 mit Schieber 13 in Behälter 14^I abgelassen. Auf diese Art wird die Hauptmenge der Sinkstoffe 40 die schwerer sind als Wasser vom verunreinigten Gärgut 39 getrennt und aus dem Fermenter 1 entfernt. Der Schieber 13 wird sodann wieder geschlossen und Schieber 12 geöffnet, um die durch Schaufel 6 angeförderten Sinkstoffe 40 von neuem aus der Kammer 21 zu entfernen.

Ebenfalls in dieser dem Zulauf a am nächsten liegenden Kammer 21 bilden sich je nach Art der Verunreinigung des Abwassers mehr oder weniger Schwimmstoffe 41. Dieselbe Schaufel 6, die sich an einem Rührarm 10 befindet und winklig nach hinten angeordnet ist bringt diese Schwimmstoffe 41 über Öffnung 15 in den Sammelbehälter 16.

Wie im Sammelbehälter 8 des schweren Schlammes 40 wird auch hier der Sammelbehälter 16 mit Schwimmstoffen 41 gefüllt, und während dieser Füllung wird über 10 den Grobfilter 17 das Wasser von den Schwimmstoffen 41 abgetrennt. Ist der Sammelbehälter 16 voll, schließt man Schieber 18, läßt die im Sammelbehälter 16 befindlichen Schwimmstoffe 41 abtropfen, öffnet den Schieber 19 und läßt es in den vorhandenen Behälter 14^{II} gleiten. 15 Darauf wird Schieber 19 wieder geschlossen, Schieber 18 geöffnet und neuerlich entstandene Schwimmstoffe 41 können in den Sammelbehälter 16 gefüllt werden.

Mit dem Heizkreislauf d wird die in den Sammelbehältern 8 und 16 vorhandene und über die Grobfilter 9 20 und 17 abgesonderte Flüssigkeit abgezogen. Mittels Anpassung der Druckverhältnisse im Heizkreislauf d werden die Grobfilter 9 und 17 während des Prozesses rück-

gespült und gereinigt.

Um das kontaminierte Abwasser nun vom Einlauf a 25 bis zum Auslauf b von einer Kammer zur nächsten zu befördern, sind verschiedene Mittel eingesetzt. Fig. 1 zeigt, daß das Fördermittel, welches das Abwasser von der ersten Kammer 2I in die zweite Kammer 2II befördert ein Zerkleinerer 28 sein kann. Das Abwasser kann 30 aber auch von einer Kammer zur nächsten mit einem Überlauf, einem Deckel 29 oder einer Verbindung 30 in die nächste Kammer befördert werden.

Der Fluß vom Einlauf a zum Auslauf b ist immer gewährleistet, weil der Füllstand beim Zulauf a höher 35 ist, als beim Ablauf b. Die Verbindungen zwischen den einzelnen Kammern 2 bilden Schieber 42, mittels welchen Öffnungen in den Trennwänden geöffnet und verschlossen werden können. Solche Schieber ermöglichen es, den Durchfluß zwischen den einzelnen Kammern $_{40}$ 2^{I-n} kontrolliert zu regeln, respektive an ganz bestimmten Stellen den Durchfluß zu beeinflussen. Weitere Möglichkeiten der Verbindungen zwischen den Kammern sind syphonartige Labyrinthe 33 und prallwandähnliche Durchgänge 34 wie sie in Fig. 1 und 2 darge- 45

Eine spezielle Art der Verbindung ist zwischen den Kammern 2^I und 2^{II} angeordnet. In der Kammer 2^I befinden sich normalerweise noch immer grobe Feststoffe im Gärgut 39. Um den Prozeß in Kammer 2^{II} verfeinern 50 zu können wird zwischen den beiden Kammern ein als Transportmittel wirkender Zerkleinerer 28 eingesetzt.

Wie Fig. 2 zeigt, kann ein erfindungsgemäßer Fermenter 1 auch eine beliebige Form aufweisen. Aus fertigungstechnischen Gründen wird er möglichst zylin- 55 drisch oder kubisch sein. In einem solchen Gerät wird in jeder Kammer 2^{I - n} vorzugsweise ein rohrförmiger, mit Heizmantel 22 versehener Wärmetauscher 21 eingebaut sein. Durch den in der Mitte des Wärmetauschers 21 se Umschichtung des Gärgutes 39 erreicht. Diese Bewegung zur Umschichtung des Gärgutes 39 in einer Kammer 2 kann durch verschiedene Mittel erzeugt werden.

Es ist z.B. denkbar, daß man wie in Fig. 2 in der über eine Pumpe 23 führt und im Zentrum des Wärmetauschers 21 der Kammer 21 mit Druck wieder zugibt. Auf diese Art wird die Geschwindigkeit des Flüssigkeitsstromes im Wärmetauscher 21 erhöht, der Wärmeübergang im Wärmetauscher 21 intensiviert und gleichzeitig die Umschichtung des Abwassers in dieser Kammer verbessert. Ob die Pumpe dabei außerhalb des Fermenters 1 liegt, wie in der dem Zulauf a am nächsten liegenden Kammer 21 der Fig. 2 gezeigt ist, oder ob sie wie in der Fig. 2 gezeigt in der zweiten Kammer 2^{II} innerhalb des Gärgutes 39 montiert ist, ist dabei für deren Wirkung unerheblich. Eine weitere Möglichkeit die Umschichtung in einer Kammer zu verbessern, ist das Einbauen einer Propellerpupmpe 31 im Zentrum des Wärmetauschers 21. Die Wirkung, wie sie die Fig. 2 in Kammer 2^{III} zeigt, ist ähnlich der oben beschriebenen, mit Pumpen 23.

In jeder Kammer, vor allem aber in der letzten Kammer 2ⁿ, die dem Ablauf b am nächsten liegt, bietet sich die Möglichkeit, das Biogas am Gasdom 36 abzunehmen, und über ein Gebläse 38 direkt ins Zentrum des Wärmetauschers 21 einzublasen. Durch den Venturi-Effekt entsteht in der Mitte des Wärmetauschers 21 eine Strömung, die eine Durchmischung der ganzen Kammer zur Folge hat. Unter Umständen kann dem Biogas an dieser Stelle auch Luftsauerstoff zugemischt werden. Der beigemischte Luftsauerstoff bewirkt die oben beschriebene Oxidation, um den Schwefelgehalt des Gases zu reduzieren.

Die gasdichten Deckel 20 im Gasraum oben bildet eine Einheit mit dem Wärmetauscher 21, welcher an diesem Deckel 20 befestigt ist. Der Heizmantel 22 wird über diesen Deckel 20 mit einem Heizkreislauf e mit Heizmedium versorgt. Jede Einheit, am Deckel 20 befestigt, kann in jeder Kammer 21-n eingesetzt werden und ist austauschbar. Die Vorrichtungen wie Pumpen 43, 44, Propellerpumpe 31 oder Gaszuführung 37 bilden zusammen mit dem Wärmetauscher 21 und dem Deckel 20 einen austauschbaren Monoblock.

Die Fig. 4 zeigt ein Anlagesystem, das insbesondere zur Verarbeitung von organischen Feststoffen geeignet ist, welche einen Trockensubstanz-Gehalt (TS-Gehalt) von 20 bis 40% aufweisen. Im gesamten Prozeß werden diese Stoffe allerdings nach der im Vorzerkleinerer 61 durchgeführten Vorzerkleinerung durch Rückverdünnung mit Kreislaufwasser I auf einen TS-Gehalt von weniger als 25% eingestellt. Da solche Anlagen größere Dimensionen aufweisen, wird die Hydrolysestufe 1 (im Gegensatz zur Ausführungsform der Fig. 1a und 2a) vom Reaktor 11 getrennt.

Die Hydrolysestufe 1 besitzt einen Hydrolysereaktor mit Rührwerk und Antrieb sowie mit Belüftungseinheit und Entlüftung. Der separate Vergärungsreaktor (Mehrkammerreaktor) 1^I entspricht in allen Teilen demjenigen, der in Fig. 1 gezeigt ist. Wegen der anzunehmenden Größe kann dieser Reaktor (im Unterschied zur Ausführungsform gemäß Fig. 1) mit einem zweiteiligen Rührwerk $\mathbf{5^l}$, $\mathbf{5^{II}}$ (jeweils mit Motorantrieb) versehen werden, dessen Antriebseinheiten zentral in einem mittigen, begehbaren Antriebsschacht 3^I angeordnet sind, welcher zugleich als Umlenkkammer dient.

Der Reaktor 1^I weist mindestens vier Umlenkkamerzeugten Auftrieb wird in einer Kammer 2 eine gewis- 60 mern auf, die durch Trennwände 3 voneinander abgetrennt sind. Jede Kammer ist über einen Einstiegs-

schacht 54 begehbar.

Bei der Ausführungsform gemäß Fig. 4 ist ferner eine Materialverschiebeeinrichtung vorgesehen. Sie weist ei-Kammer 21 gezeigt der Kammer Gärgut 39 entnimmt, 65 nen Pumpbehälter 57 auf, welcher mit einer Gaspumpe 56 versehen ist. Die Gaspumpe 56 kann mittels (in der Zeichnung nicht dargestellten) Schiebern sowohl als Ansaugpumpe (Unterdruck) als auch als Druckpumpe Ç

wirken. Als Hilfsfördermedium dient das in einem Gasspeicher 60 befindliche Biogas, welches über eine Gas-

pendelleitung cl befördert wird.

Wird über den Behälter 57 Material angesaugt, wird zuerst über die Pumpe 56 Unterdruck erzeugt (Vakuum) und dann der entsprechende Schieber geöffnet. Zum Fördern wird zuerst mit der Druckpumpe 56 auf den Behälter 57 Druck gegeben und anschließend das entsprechende Förderventil 11 geöffnet, so daß das Substrat über die Materialpendelleitung d in den Fermenter 10 gedrückt wird. Über den Behälter 57 werden auch die Sinkstoffe aus dem Fermenter 1¹ über die entsprechenden Ventile und die Leitung d in den Behälter 57 gefördert. Die Schwerstoffe werden anschließend mit Überdruck über die Leitung d in die Auffangwanne 63 gefördert.

Am Ausgang b des Fermenters 1^I wird das Faulgut durch mindestens eine Entwässerungsanlage 59 in Rohkompost b^I und Abwasser b^{II} getrennt. Das Abwasser wird in dem von einem Mischer 35 gebildeten Auffangbecken mittels der Pumpe 23 über die Leitungen 1 bis 1^{IV} den verschiedenen Mischstellen zugeführt. Die Nährstoffe werden vom Nährstofftank 51 über die Pumpe 52 und über die Leitung h dem Mischer 35 zugeführt. Nötigenfalls kann Frischwasser oder Betriebswasser zur Verdünnung über die Leitung m und über die Leitungen 1 bis 1^{IV} dem Substrat zugeführt werden. Sämtliches Verdünnungswasser wird zur Temperaturanhebung zunächst über den Wärmetauscher 27 geführt.

Patentansprüche

1. Verfahren zur Verwertung von organischen Abfällen, insbesondere von biologisch verunreinigten Flüssigkeiten und/oder von Stoffen in fließfähiger 35 Form, bei dem das Gärgut in einem vorzugsweise liegend angeordneten Fermenter, welcher unterhalb des Gasraumes durch Trennwände in einzelne Kammern unterteilt ist, vom Zulauf bis zum Ablauf von Kammer zu Kammer kontrolliert geführt wird, 40 dadurch gekennzeichnet, daß alle Kammern (2) zu einem gemeinsamen Gasraum (4) hin offen sind, so daß der Fermenter (1) für das Biogas einen gemeinsamen Gasraum (4) bildet.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die die Kammern (2) abtrennenden Trennwände (3) so ausgebildet sind, daß die einzelnen Kammern (2) mit Vorrichtungen wie Heizungen, Rührwerken, Ventilen und/oder Schiebern

ausgerüstet sind.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in die erste Kammer Frischluft. (f) zugeführt werden kann, so daß die erste Kammer als anaerober Hydrolysereaktor gefahren werden kann.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß einer, mehreren oder allen Kammern Nährstoffe (51) zuführbar sind.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß kontaminierte Abfallstoffe über eine Zuführung in einen Mischer geführt werden.

6. Vorrichtung zur Verwertung von organischen Abfällen, insbesondere von biologisch verunreinigten Flüssigkeiten und/oder Stoffen in fließfähiger Form, bestehend aus einem vorzugsweise liegend angeordneten Fermenter, welcher unterhalb des

Gasraumes durch Trennwände in einzelne Kammern unterteilt ist, wobei das Gärgut vom Zulauf bis zum Ablauf von Kammer zu Kammer kontrolliert geführt wird, dadurch gekennzeichnet, daß alle Kammern (2) zu einem gemeinsamen Gasraum (4) hin offen sind, so daß der Fermenter (1) für das Biogas einen gemeinsamen Gasraum (4) bildet.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die die Kammern (2) abtrennenden Trennwände (3) so ausgebildet sind, daß die einzelnen Kammern (2) mit gleichen oder unterschiedlichen Vorrichtungen wie Heizungen, Rührwerken, Ventilen und/oder Schiebern ausgerüstet sind.

8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß dem Fermenter (1) ein Zirkulationskreislauf (d) mit schaltbaren Ventilen zu jeder Kammer (2), einem Mischer (35) und einem Wärmetauscher (27) angeschlossen ist.

9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß der Fermenter (1) eine zylindrische Form hat und in seiner Längsachse einen zentral angeordneten und drehbar gelagerten und angetriebenen Rotor (5) aufweist, der alle

Kammern (2) durchquert.

10. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß der Rotor (5) im Bereich einer dem Zulauf nahe liegenden Kammer (2) mit Schaufeln (6) bestückt ist, die mit dem Rotor (5) drehen und zum Radius entgegen der Drehrichtung nach hinten winklig verstellbar angeordnet sind.

11. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß sich im Bereich einer dem Zulauf (a) nahe liegenden Kammer (2ⁿ) zentral unterhalb der Mittelachse des Fermenters (1) eine in einen Sammelbehälter führende Öffnung (7) angeordnet ist.

12. Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß sich im Bereich einer dem Zulauf (a) nahe liegenden Kammer (2ⁿ) auf der Höhe des Füllstandes eine tangentiale, in einen Sammelbehälter führende Öffnung (7) angeordnet

ist

 Vorrichtung nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß der Sammelbehälter seitlich einen Grobfilter aufweist.

14. Vorrichtung nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß der Rotor (5) mit

Rührarmen ausgestattet ist.

15. Vorrichtung nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, daß jede durch eine Trennwand (3) definierte Kammer (2) mit einem Monoblock ausgerüstet ist, welcher mindestens aus einem gasdicht verschließbaren Deckel (20) und einem rohrförmigen, mit Heizmantel (22) versehenen Wärmetauscherelement (21) besteht.

16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß sich auf der zentralen Achse des rohförmigen Wärmetauscherelementes (21) eine

Fördervorrichtung (31, 38, 43, 44) befindet.

17. Vorrichtung nach einem der Ansprüche 6 bis 16, dadurch gekennzeichnet, daß in die erste Kammer (2¹) Frischluft (f) zuführbar ist, so daß der Inhalt der ersten Kammer als anaerober Hydrolysereaktor gefahren werden kann.

18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die erste Kammer (2¹) durch eine Trennwand (48) vom Gasraum der nachfolgenden Kammern (2) gasdicht abgeschlossen ist. 19. Vorrichtung nach einem der Ansprüche 6 bis 18, gekennzeichnet durch einen Mischer (35), dem Nährstoffe (51) beimischbar sind und durch den jede Kammer (2) mit Nährstoffen versorgt werden kann

20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß kontaminierte Abfallstoffe über eine Zuführung (i) in den Mischer (35) geführt werden können.

21. Vorrichtung nach einem der Ansprüche 6 bis 20, 10 dadurch gekennzeichnet, daß dem Fermenter eine Hydrolysestufe (1) vorgeschaltet ist.

22. Vorrichtung nach einem der Ansprüche 6 bis 21, gekennzeichnet durch eine Materialverschiebeeinrichtung.

Hierzu 6 Seite(n) Zeichnungen

20

25

30

35

40

45

50

55

60

65

- Leerseite -

1

4

Nummer: Int. Cl.8:

Offenlegungstag:

DE 196 24 268 A1

C 12 P 5/02 10. April 1997

Nummer: Int. Cl.⁶: Offenlegungstag: DE 196 24 268 A1 C 12 P 5/02 10. April 1997

Nummer:

Int. Cl.6:

Offenlegungstag:

DE 196 24 268 A1

C 12 P 5/02 10. April 1997

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 24 268 A1 C 12 P 5/02

tag: 10. April 1997

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 24 268 A1 C 12 P 5/02

C 12 P 5/02 10. April 1997

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.