Robotika in računalniško zaznavanje (RRZ)

Ujemanje slik

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Literatura: W. Burger, M. J. Burge (2008).

Digital Image Processing, poglavje 17

v6.0

Interpretacija slik

- Ultimativni cilj računalniškega (spoznavnega) vida
- Razumeti kaj se na sliki nahaja
 - Zaznati
 - Spoznati

Razpoznavanje objektov

- Različni položaji na sliki
- Različne orientacije
- Različne velikosti
- Različne osvetlitve
- Prekrivanja
- Deformacije

Kategorizacija objektov

Velika vizualna variabilnost znotraj kategorije

Interpretacija slik

Koliko stolov je na sliki?

MPIK Tübingen

Ujemanje slik

Ali sta sliki (ali del slike) "enaki"?

Ujemanje slik

- Precej bolj enostaven problem
- Cilj ni semantična interpretacija slike
- Primerjamo slike na nivoju slikovnih elementov
- Iščemo dele slik na večji sliki
- Zelo uporabno
 - Za iskanje korespondenčnih točk na stereo slikah
 - Iskanje določenih vzorcev na sliki
 - Za sledenje predmetov
 - Za registracijo slik
 - Za razpoznavanje značilnih delov slik
- Kakšno metriko uporabiti
 - Invariance?

Ujemanje vzorcev v intenzitetnih slikah

- Lokalizacija referenčne slike (vzorca) R v večji intenzitetni (sivinski) sliki I
 - Poišči lokacije (r,s) na sliki I, kjer sta R in ustrezna podslika na sliki I najbolj podobni

Razlika med slikovnimi vzorci

- Referenčno sliko pomikamo po glavni sliki
 - V vsaki točki izračunamo razliko

Mere podobnosti

- Različne mere podobnosti se lahko uporabljajo:
- Vsota absolutnih razlik:

$$d_A(r,s) = \sum_{(i,j)\in R} |I(r+i,s+j) - R(i,j)|$$

Maksimalna razlika:

$$d_M(r, s) = \max_{(i,j) \in R} |I(r+i, s+j) - R(i,j)|$$

- Vsota kvadratov razlik:
 - Evklidska razdalja

$$d_E(r,s) = \left[\sum_{(i,j)\in R} (I(r+i,s+j) - R(i,j))^2 \right]^{1/2}$$

Razdalja in korelacija

Kvadrat evklidske razdalje:

$$\mathbf{d}_{E}^{2}(r,s) = \sum_{(i,j)\in R} \left(I(r+i,s+j) - R(i,j) \right)^{2}$$

$$= \sum_{(i,j)\in R} I^{2}(r+i,s+j) + \sum_{(i,j)\in R} R^{2}(i,j) - 2\sum_{(i,j)\in R} I(r+i,s+j) \cdot R(i,j)$$

$$A(r,s) \xrightarrow{B} C(r,s)$$

- Linearna prečna korelacija
 - Zanemarimo vpliv lokalne intenzitete slike

$$(I \circledast R)(r,s) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(r+i,s+j) \cdot R(i,j)$$

$$w_{R}-1 \ h_{R}-1$$

$$\sum_{i=0}^{w_{R-1}} \sum_{j=0}^{n_{R-1}} I(r+i, s+j) \cdot R(i, j) = \sum_{(i,j) \in R} I(r+i, s+j) \cdot R(i, j)$$

Normalizirana prečna korelacija

- Normaliziramo z vrednostjo lokalne intenzitete slike
 - Postanemo invariantni na lokalne spremembe v intenziteti
 - Lokalna mera

$$C_{N}(r,s) = \frac{C(r,s)}{\sqrt{A(r,s) \cdot B}} = \frac{C(r,s)}{\sqrt{A(r,s) \cdot \sqrt{B}}}$$

$$= \frac{\sum_{(i,j) \in R} I(r+i,s+j) \cdot R(i,j)}{\left[\sum_{(i,j) \in R} I^{2}(r+i,s+j)\right]^{1/2} \cdot \left[\sum_{(i,j) \in R} R^{2}(i,j)\right]^{1/2}}$$

- Vrednost
 - 0 ni ujemanja
 - 1 popolno ujemanje
- Ni invariantna na spremembo intenzitete celotne slike

Korelacijski koeficient

 Ne primerjamo originalne vrednosti, ampak razlike do povprečnih vrednosti vzorca in podslike:

$$C_L(r,s) = \frac{\sum\limits_{(i,j)\in R} \left(I(r+i,s+j) - \bar{I}(r,s)\right) \cdot \left(R(i,j) - \bar{R}\right)}{\left[\sum\limits_{(i,j)\in R} \left(I(r+i,s+j) - \bar{I}_{r,s}\right)^2\right]^{1/2} \cdot \left[\sum\limits_{(i,j)\in R} \left(R(i,j) - \bar{R}\right)^2\right]^{1/2}}$$

$$K = |R|$$

$$\bar{I}_{r,s} = \frac{1}{K} \cdot \sum\limits_{(i,j)\in R} I(r+i,s+j) \quad \text{and} \quad \bar{R} = \frac{1}{K} \cdot \sum\limits_{(i,j)\in R} R(i,j)$$

- Vrednost
 - -1 ni ujemanja
 - 1 popolno ujemanje
- Je invariantna na spremembo intenzitete celotne slike

Korelacijski koeficient

- Hitrejše računanje korelacijskega koeficienta
 - $ar{R}$ in S_R izračunamo samo enkrat za celo sliko

$$S_{R}^{2} = K \cdot \sigma_{R}^{2} = \sum_{(i,j) \in R} (R(i,j) - \bar{R})^{2}$$

$$\sigma_{R} = \frac{1}{K} \sum R^{2}(i,j) - \bar{R}^{2}$$

$$S_{R}^{2} = \sum_{(i,j) \in R} R^{2}(i,j) - K \cdot \bar{R}^{2}$$

$$= \sum_{(i,j) \in R} R^{2}(i,j) - \frac{1}{K} \cdot \left(\sum_{(i,j) \in R} R(i,j)\right)^{2}$$

$$\sum_{(i,j) \in R} \left(I(r+i,s+j) \cdot R(i,j)\right) - K \cdot \bar{I}_{r,s} \cdot \bar{R}$$

$$C_{L}(r,s) = \frac{\left[\sum_{(i,j) \in R} I^{2}(r+i,s+j) - K \cdot \bar{I}_{r,s}^{2}\right]^{1/2} \cdot S_{R}}{\left[\sum_{(i,j) \in R} I^{2}(r+i,s+j) - K \cdot \bar{I}_{r,s}^{2}\right]^{1/2} \cdot S_{R}}$$

Algoritem

```
1: CorrelationCoefficient (I, R)
            I(u,v): search image of size w_I \times h_I
            R(i,j): reference image of size w_R \times h_R
           Returns C(r,s) containing the values of the correlation coefficient
           between I and R positioned at (r, s).
           STEP 1-INITIALIZE:
           K \leftarrow w_R \cdot h_R
 2:
           \Sigma_R \leftarrow 0, \ \Sigma_{R2} \leftarrow 0
           for i \leftarrow 0 \dots (w_R - 1) do
 5:
                  for j \leftarrow 0 \dots (h_R - 1) do
                       \Sigma_R \leftarrow \Sigma_R + R(i,j)
 6:
                       \Sigma_{R2} \leftarrow \Sigma_{R2} + (R(i,j))^2
 7:
           \bar{R} \leftarrow \Sigma_R/K
                                                                                                    ⊳ Eqn. (17.8)
           S_R \leftarrow \sqrt{\Sigma_{R2} - K \cdot \bar{R}^2} = \sqrt{\Sigma_{R2} - \Sigma_R^2 / K}
                                                                                                  ⊳ Eqn. (17.10)
            STEP 2—COMPUTE THE CORRELATION MAP:
            C \leftarrow \text{new map of size } (w_I - w_R + 1) \times (h_I - h_R + 1), C(r, s) \in \mathbb{R}
10:
11:
            for r \leftarrow 0 \dots (w_I - w_R) do
                                                                              \triangleright place R at position (r, s)
                  for s \leftarrow 0 \dots (h_I - h_R) do
12:
                        Compute correlation coefficient for position (r, s):
13:
                        \Sigma_I \leftarrow 0, \ \Sigma_{I2} \leftarrow 0, \ \Sigma_{IR} \leftarrow 0
14:
                        for i \leftarrow 0 \dots (w_R - 1) do
                              for j \leftarrow 0 \dots (h_R-1) do
15:
                                    a_I \leftarrow I(r+i,s+i)
16:
                                    a_R \leftarrow R(i,j)
17:
                                    \Sigma_I \leftarrow \Sigma_I + a_I
18:
                                    \Sigma_{I2} \leftarrow \Sigma_{I2} + a_I^2
19:
20:
                                    \Sigma_{IR} \leftarrow \Sigma_{IR} + a_I \cdot a_R
                        \bar{I}_{r,s} \leftarrow \Sigma_I/K
21:
                                                                                                   ⊳ Eqn. (17.8)
                       C(r,s) \leftarrow \frac{\Sigma_{IR} - K \cdot \bar{I}_{r,s} \cdot \bar{R}}{\sqrt{\Sigma_{I2} - K \cdot \bar{I}_{r,s}^2} \cdot S_R} = \frac{\Sigma_{IR} - \Sigma_I \cdot \bar{R}}{\sqrt{\Sigma_{I2} - \Sigma_I^2 / K} \cdot S_R}
22:
                                                                                             \triangleright C(r,s) \in [-1,1]
23:
            return C.
```


(a) original image I

(b) reference image R

(c) sum of absolute differences

(d) maximum difference

(e) sum of squared distances

(f) global cross correlation

(g) normalized cross correlation

(h) correlation coefficient

Spremenjena globalna intenziteta referenčnega vzorca

Original reference image: R

Modified reference image: R' = R + 50

(c) Euclidean distance

(d) correlation coefficient

 Iskanje maksimalnih vrednosti korelacijskega koeficienta z uporagovljenjem

Ujemanje binarnih slik

- Neposredno primerjanje binarnih slik ni primerno
 - Imamo samo dve možni vednosti sl. elementov
 - Že najmanjši premik ima zelo velik vpliv
 - Zelo nezvezno spreminjanje funkcije razlike z veliko lokalnimi maksimumi

Transformacija razdalje

- Distance transform
- Vsak slikovni element ozadja preslika v razdaljo do najbližjega slikovnega elementa ospredja

$$FG(I) = \{ \boldsymbol{p} \mid I(\boldsymbol{p}) = 1 \}$$

$$BG(I) = \{ \boldsymbol{p} \mid I(\boldsymbol{p}) = 0 \}$$

$$D(\boldsymbol{p}) = \min_{\boldsymbol{p}' \in FG(I)} \operatorname{dist}(\boldsymbol{p}, \boldsymbol{p}')$$

- Uporabimo lahko različne razdalje:
 - Evklidska razdalja:

$$d_E(\mathbf{p}, \mathbf{p}') = ||\mathbf{p} - \mathbf{p}'|| = \sqrt{(u - u')^2 + (v - v')^2} \in \mathbb{R}^+$$

Manhattanska razdalja:

$$d_M(\boldsymbol{p}, \boldsymbol{p}') = |u - u'| + |v - v'| \in \mathbb{N}_0$$

- Pretvorba binarne slike v transformacijo razdalje
- Manhattanska razdalja

- Neposredna implementacija tega algoritma je zelo časovno zahtevna
 - Za vsak slikovni element ozadja moramo poiskati najbližji slikovni element ospredja

Chamferjev algoritem

- Učinkovit algoritem za računanje transformacije razdalje
- Slikovne elemente slike obiskuje sekvenčno v dveh korakih:
 - Prvič od zgornjega levega kota proti spodnem desnemu
 - Drugič od spodnjega desnega kota do zgornjega levega
 - Vrednosti razdalj se propagirajo z uporabo mask razdalj
 - Opisujejo geometrično radaljo med trenutnim slikovnim elementom (x) in ostalimi

$$M^{L} = \begin{bmatrix} m_{2}^{L} & m_{3}^{L} & m_{4}^{L} \\ m_{1}^{L} & \times & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \qquad M^{R} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \times & m_{1}^{R} \\ m_{4}^{R} & m_{3}^{R} & m_{2}^{R} \end{bmatrix}$$

Maske razdalj

- Manhattanska razdalja
 - Vrne natančno manhattansko razdaljo

$$M_M^L = \begin{bmatrix} 2 & 1 & 2 \\ 1 & \times & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \qquad M_M^R = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \times & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

$$M_M^R = \begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \times & 1 \\ 2 & 1 & 2 \end{vmatrix}$$

- Evklidska razdalja
 - Računa približek evklidske razdalje

$$M_E^L = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{2} \\ 1 & \times & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$$

$$M_E^L = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{2} \\ 1 & \times & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \qquad M_E^R = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \times & 1 \\ \sqrt{2} & 1 & \sqrt{2} \end{bmatrix}$$

- Celoštevilske maske
 - Približek evklidske razdalje

$$M_{E'}^L = \begin{bmatrix} 4 & 3 & 4 \\ 3 & \times & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$$

$$M_{E'}^L = \begin{bmatrix} 4 & 3 & 4 \\ 3 & \times & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \qquad M_{E'}^R = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \times & 3 \\ 4 & 3 & 4 \end{bmatrix}$$

Algoritem

```
1: DistanceTransform (I)
         I: binary image of size M \times N.
         Returns the distance transform of image I.
         STEP 1—INITIALIZE:
 2:
         D \leftarrow \text{new } distance \ map \ \text{of size } M \times N, \ D(u,v) \in \mathbb{R}
 3:
         for all image coordinates (u, v) do
 4:
              if I(u,v)=1 then
                  D(u,v) \leftarrow 0
 5:
                                                     6:
              else
 7:
                   D(u,v) \leftarrow \infty

▷ background pixel (infinite distance)

         STEP 2—L\rightarrowR PASS (using distance mask M^L = m_i^L):
         for v \leftarrow 1, 2, \dots, N-1 do
 8:
                                                                           \triangleright top \rightarrow bottom
              for u \leftarrow 1, 2, \dots, M-2 do
 9:
                                                                              \triangleright left \rightarrow right
                   if D(u,v) > 0 then
10:
                       d_1 \leftarrow m_1^L + D(u-1,v)
11:
                       d_2 \leftarrow m_2^L + D(u-1, v-1)
12:
                       d_3 \leftarrow m_3^L + D(u, v-1)
13:
                       d_4 \leftarrow m_4^L + D(u+1, v-1)
14:
                        D(u, v) \leftarrow \min(d_1, d_2, d_3, d_4)
15:
         STEP 3—R\rightarrowL PASS (using distance mask M^R = m_i^R):
         for v \leftarrow N-2, \ldots, 1, 0 do
16:
                                                                           \triangleright bottom \rightarrow top
              for u \leftarrow M-2, \dots, 2, 1 do
                                                                              \triangleright right \rightarrow left
17:
                   if D(u,v) > 0 then
18:
                       d_1 \leftarrow m_1^R + D(u+1,v)
19:
                       d_2 \leftarrow m_2^R + D(u+1, v+1)
20:
                       d_3 \leftarrow m_3^R + D(u, v+1)
21:
                       d_4 \leftarrow m_4^R + D(u-1, v+1)
22:
23:
                        D(u, v) \leftarrow \min(D(u, v), d_1, d_2, d_3, d_4)
24:
         return D.
```

Original $Euclid.\ dist.\ (approx.)$ $Manhattan\ distance$ **Primer**

Chamferjevo ujemanje

- Uporabimo transformacijo razdalje za oceno podobnosti binarnih slik
- Seštevajo se vse vrednosti s slike transformacije razdalje, ki so istoležne s slikvonimi elementi ospredja na binarni vzorčni sliki

$$Q(r,s) = \frac{1}{K} \sum_{(i,j) \in FG(R)} D(r+i, s+j)$$
 $K = |FG(R)|$

Najboljša lokacija je tista, kjer je vsota razdalj (Q) najmanjša

$$\boldsymbol{p}_{\mathrm{opt}} = (r_{\mathrm{opt}}, s_{\mathrm{opt}}) = \operatorname*{argmin}_{(r,s)} Q(r,s)$$

 Namesto linearne vsote lahko uporabimo tudi koren povprečja kvadratov:

$$Q_{rms}(r,s) = \sqrt{\frac{1}{K} \sum_{(i,j) \in FG(R)} D^2(r+i,s+i)}$$

Algoritem

```
CHAMFERMATCH (I,R)
         I: binary search image of size w_I \times h_I
         R: binary reference image of size w_R \times h_R
         Returns a two-dimensional map of match scores.
         Step 1—initialize:
         D \leftarrow \text{DistanceTransform}(I)
                                                                             \triangleright see Alg. 17.2
         K \leftarrow number of foreground pixels in R
         Q \leftarrow \text{new } match \ map \ \text{of size} \ (w_I - w_R + 1) \times (h_I - h_R + 1), \ Q(r, s) \in \mathbb{R}
 4:
         STEP 2—COMPUTE THE MATCH SCORE:
         for r \leftarrow 0 \dots (w_I - w_R) do
                                                                         \triangleright place R at (r,s)
 5:
              for s \leftarrow 0 \dots (h_I - h_R) do
 6:
                  Get match score for template placed at (r, s):
 7:
                  q \leftarrow 0
                  for i \leftarrow 0 \dots (w_R - 1) do
                       for j \leftarrow 0 \dots (h_R - 1) do
 9:
                            if R(i,j) = 1 then \triangleright foreground pixel in template
10:
                                 q \leftarrow q + D(r+i, s+j)
11:
12:
                   Q(r,s) \leftarrow q/K
13:
         return Q.
```


- Gladka funkcija razlik
- Omogoča uporabo lokalnih metod za iskanje maksimumov

$direct\ comparison$

chamfer matching

 Ni toleranteno na premik, rotacijo, skalo

