Metodi Matematici della Fisica

Istituzioni di Fisica Teorica Lezione 1

Metodi - Lezione 1

- Forma polare dei numeri complessi: $z = \rho(\cos \phi + i \sin \phi)$
- ▶ $arg(z) = \{\phi + 2\pi k, k \in \mathbb{Z}\}$ ("funzione" polidroma)
- ▶ $Arg(z) = arg(z) \cap [-\pi, \pi)$ (funzione monodroma)
- $ightharpoonup \cos \phi + i \sin \phi = e^{i\phi}$ (identità di Eulero)
- $(\cos \phi + i \sin \phi)^n = \cos n\phi + i \sin n\phi$ (Formule di de Moivre)
- ► Funzioni elementari: $\exp(z)$, $\sin(z)$, $\cos(z)$, $\tan(z)$
- Condizioni di Cauchy-Riemann e def di funzione olomorfa

Condizioni di Cauchy-Riemann

▶ Criterio: Una funzione f(z) = u(x,y) + iv(x,y) è differenziabile se tutte le derivate parziali di u e v sono continue e inoltre soddisfano le condizioni di Cauchy-Riemann

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \tag{2}$$

▶ Def: Una funzione f(z) è olomorfa in z se è differenziabile in un intorno di z

Caratterizzazione funzioni differenziabili

• Se una funzione complessa f(z) è differenziabile allora soddisfa anche

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \tag{3}$$

$$\frac{\partial f}{\partial \overline{z}} = 0 \tag{4}$$

L'equazione (4) è utile per controllare quando una funzione non è differenziabile

Esercizi Lezione 1

Esercizio - Valore assoluto

Dimostrare che |zw| = |z||w|

Hint: Dalla definizione di modulo: se X è un numero complesso allora $|X| = \sqrt{\overline{X}X}\dots$

Esercizio - Forma polare 1

Dimostrare che se $z\neq 0$ allora esistono $\rho\in\mathbb{R}^+$ e $\phi\in\mathbb{R}$ tali che

$$z = \rho \left(\cos \phi + \mathrm{i}\sin \phi\right)$$

Hint: Partite da $z=a+\mathrm{i} b$ e ricordando che $|z|\neq 0$, potete definire $1/|z|\ldots$

Esercizio - Forma polare 2

- ▶ Calcolare $\left(\frac{1}{\sqrt{2}} + \frac{\mathrm{i}}{\sqrt{2}}\right)^{2019}$;
- Esprimere i seguenti numeri complessi in forma cartesiana (i.e. $\operatorname{Re} z + \operatorname{i} \operatorname{Im} z$) e polare (i.e. $|z| \operatorname{e}^{\operatorname{i} \operatorname{Arg} z}$):

$$(2+3i)^3;$$
 $(3+i)^4.$

Può tornare utile:

$$n=0:$$
 1
 $n=1:$ 1 1
 $n=2:$ 1 2 1
 $n=3:$ 1 3 3 1
 $n=4:$ 1 4 6 4 1

Esercizio - Piano complesso

Determinare l'insieme dei punti del piano complesso definiti dalle relazioni

- ▶ |z 3i| < 2;
- $Re \frac{z+i}{z-i} = 0;$
- $\operatorname{Im} \frac{z+\mathrm{i}}{z-\mathrm{i}} = 0.$

Hint: scrivere z = x + iy...

Esercizio - Formula di de Moivre

Usare la formula di de Moivre per calcolare $\cos 2\theta$ e $\sin 2\theta$.

$$(\cos \phi + i \sin \phi)^n = (\cos n\phi + i \sin n\phi)$$

Hint: Uguagliare parte reale e immaginaria...

Esercizio - Radici dell'unità

Calcolare tutti gli $z \in \mathbb{C}$ che soddisfano:

$$z^4 = 1$$

Hint: scrivere $z=\rho~{
m e}^{{
m i}\,{
m Arg}(z)}$ e $1={
m e}^{{
m i}\,2\pi n}$ per n intero. . .

Esercizio - Funzioni trigonometriche

Vale anche per le funzioni trigonometriche complesse il fatto che

$$|\sin z| \le 1 \qquad |\cos z| \le 1?$$

Hint: scrivere $\sin e \cos in$ funzione di e^z e poi sostituire z = x + iy...

Esercizio - Funzioni olomorfe 1

Provare che la funzione $f(z)=z^2$ è olomorfa in ${\Bbb C}$ e se ne calcoli la derivata prima.

Hint: scrivere f(z) come f(x+iy)=u(x,y)+iv(x,y)...

Esercizio - Funzioni olomorfe 2

- ▶ Provare che la funzione $f(z)=\frac{1}{z}$ è olomorfa in $\mathbb{C}\setminus\{0\}$ e se ne calcoli la derivata prima.
- Provare che le funzioni trigonometriche $\sin z, \cos z$ e quelle iperboliche definite da (notate niente i)

$$\cosh z = \frac{e^z + e^{-z}}{2} \qquad \sinh z = \frac{e^z - e^{-z}}{2} \tag{5}$$

sono olomorfe

ightharpoonup Sia f olomorfa. Dimostrare che se f(z) assume solo valori reali allora f è costante.

Hint: Se f assume solo valori reali allora $f(z) = u(x, y) \dots$