PHẦN ĐỀ BÀI

Bài 31. SỰ TƯƠNG GIAO CỦA HAI ĐỒ THỊ

A. KIẾN THỰC CẦN NHỚ

Cho hàm số y = f(x) có đồ thị (C_1) và hàm số y = g(x) có đồ thị (C_2) .

- $oldsymbol{\Theta}$ Số nghiệm của phương trình f(x)=g(x) là số điểm chung của hai đồ thị (C_1) và (C_2) .
- $\mbox{\bf \Theta}$ Phương trình f(x)=g(x) được gọi là phương trình hoành độ giao điểm của hai đồ thi hàm số.

B. BÀI TẬP MẪU

VÍ DỤ 31 (Đề tham khảo BGD 2022-2023).

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Có bao nhiều giá trị nguyên của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt?

 (\mathbf{A}) 2.

(**B**) 5.

 (\mathbf{C}) 3.

D 4

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 1. Cho hàm số y = f(x) liên tục trên $\mathbb R$ có bảng biến thiên như sau

x	$-\infty$		-1		0		1		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞ ($\frac{1}{2}$, ⁵ \		$\frac{1}{2}$		+∞

Số nghiệm thực phân biệt của phương trình 2f(x) - 5 = 0 là

(A) 3.

B) 2

 (\mathbf{C}) 4

 \bigcirc 0.

CÂU 2. Đồ thi hàm số $y = x^3 + 2022x^2 - 2023x$ cắt truc hoành tai bao nhiêu điểm?

 (\mathbf{A}) 0.

B 2.

 $(\mathbf{C}) 1$

 (\mathbf{D}) 3.

CÂU 3. Số giao điểm của đồ thị hàm số $y = x^3 - 3x + 3$ và đường thẳng y = x.

(A) 2.

B 3.

 $(\mathbf{C}) 1$

(**D**) 0.

CÂU 4.

QU	ICK	NC	T

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình 3f(x) - 4 = 0 là

A 3.

B 1.

 (\mathbf{C}) 2

 $\bigcirc 0.$

CÂU 5. Cho hàm số y = f(x) có đồ thị như hình vẽ.

Số nghiệm thực của phương trình f(x) = 3 là

 (\mathbf{A}) 3.

B 1.

C 2.

 $\bigcirc 0.$

CÂU 6. Đồ thị hàm số $y=\frac{x+5}{x-1}$ cắt trục hoành tại điểm có hoành độ bằng

(A) x = -5.

 $(\mathbf{B}) x = 5.$

 $(\mathbf{c}) x = -1.$

CÂU 7. Số giao điểm của đồ thị hàm số $y=\frac{3x+1}{x-3}$ và đường thẳng y=3 là

(A) 3.

 \bigcirc 1

 $(c)^{2}$.

 \bigcirc 0.

CÂU 8. Số giao điểm của đồ thị hàm số $y = x^3 - x$ với trục hoành là

(A) 2.

B 0.

C 3.

1.

CÂU 9. Số giao điểm của đồ thị hàm số $y = 3x^3 - 6x^2 + 8x - 5$ và trục hoành.

A 1.

B 2

c 0

D 3.

CÂU 10. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Hỏi phương trình 3f(x)-4 = 0 có tất cả bao nhiêu nghiệm thực?

x	$-\infty$	$0 + \infty$
y	+∞	+∞

(A) 3.

B 0.

(c) 1.

 \bigcirc 2.

CÂU 11. Cho hàm số f(x) có bảng biến thiên như sau

x	$-\infty$		-1		0		1		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞		-4		_3		- 4		+∞

Số nghiệm thực của phương trình f(x) + 5 = 0 là

- (\mathbf{A}) 2.
- **(B)** 3.
- \bigcirc 1.
- \bigcirc 0.

CÂU 12. Cho hàm số y = f(x) có bảng biến thiên sau

x	$-\infty$		0		4		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		× ³ \		-5		+∞

Phương trình f(x) = 2 có bao nhiều nghiệm?

- (A) 2.
- **B**) 4.
- (\mathbf{C}) 1.
- **(D)** 3.

CÂU 13. Đồ thị của hàm số $y = x^3 + 2x^2 - x + 1$ và đồ thị của hàm số $y = x^2 - x + 3$ có bao nhiêu điểm chung?

- (A) 2.
- **B**) 1
- **(C)** 3
- \bigcirc 0.

CÂU 14. Số giao điểm của đồ thị hàm số $y=(x-3)\left(x^2+x+4\right)$ với trục hoành là

- **A** 2.
- **B**) 0.
- (\mathbf{c}) 1.
- (\mathbf{D}) 3.

CÂU 15.

Cho hàm bậc ba y=f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình f(x)=2 là

- (\mathbf{A}) 2.
- \bigcirc 0.
- **(C)** 3.
- \bigcirc 1.

CÂU 16.

Cho hàm số bậc bốn y=f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình f(x)+1=0 là

- \bigcirc 2.
- **(B)** 3.
- \bigcirc 4.
- \bigcirc 1.

CÂU 17. Cho hàm số y=f(x) có bảng biến thiên như sau

x	$-\infty$		-2		0		2		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞		-2		_ 1 \		-2		$+\infty$

Số nghiệm thực của phương trình 2f(x) + 3 = 0 là

- \bigcirc 2.
- \bigcirc 4.
- **C** 3.
- **D** 6.

CÂU 18. Cho hàm số y=f(x) xác định, liên tục trên $\mathbb R$ và có bảng biến thiên như hình vẽ

•	•	•	•						•	•	•	•	•	•						•

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•					•	•	•	•	•						•

.....

9 9	
	QUICK NOTE
• • • • • •	• • • • • • • • • • • • • • • • • • • •

x	$-\infty$		$-\sqrt{2}$		0		$\sqrt{2}$		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞		-4				-4		+∞

Tìm m để phương trình f(x) + 3 = m vô nghiệm.

(A)
$$m > -1$$
.

(c)
$$m \le -4$$
.

$$\bigcirc$$
 $m < -1$.

CÂU 19.

Cho hàm số y=f(x) có đồ thị là hình bên. Phương trình 4-3f(x)=0 có bao nhiêu nghiệm?

(A) 1.

B 3.

(c) 2.

 \bigcirc 0.

CÂU 20. Cho hàm số y = f(x) có bảng biến thiên như sau

Số nghiệm của phương trình 2f(x) - 5 = 0 là

$$\bigcirc$$
 0.

D. BẢNG ĐÁP ÁN

1.	C	2.	D	3.	В	4.	A	5.	C	6.	A	7.	D	8.	C
9.	A	10.	C	11.	D	12.	D	13.	В	14.	C	15.	A	16.	C
				17.	В	18.	D	19.	В	20.	В				

Bài 32. XÉT TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ

A. KIẾN THỰC CẦN NHỚ

1. Định nghĩa

- $oldsymbol{\Theta}$ Hàm số y=f(x) được gọi là đồng biến (tăng) trên \mathcal{K} khi $f'(x)\geq 0 \ \forall x\in\mathcal{K}$.
- $oldsymbol{\Theta}$ Hàm số y=f(x) được gọi là nghịch biến (giảm) trên \mathcal{K} khi $f'(x)\leq 0 \ \forall x\in\mathcal{K}$.

2. Các bước thực hiện khi xét tính đơn điệu của hàm số

- **O Bước 1.** Tính y' = f'(x). Cho f'(x) = 0 tìm nghiệm (nếu có).
- ❷ Bước 2. Lập bảng biến thiên của hàm số.
- $\ensuremath{ \Theta}$ Bước 3. Dựa vào bảng biến thiên, kết luận miền đơn điệu của hàm số.

☑ TÔNG ÔN THPTQG 2023

QUICK NOTE

B. BÀI TẬP MẪU

VÍ DU 32 (Đề tham khảo BGD 2022-2023). Cho hàm số f(x) có đạo hàm $f'(x) = (x+1)^2 (x-1)^3 (2-x)$. Hàm số f(x) đồng biến trên khoảng nào dưới đây?

(A) (-1;1).

 (\mathbf{B}) $(2; +\infty)$.

 (\mathbf{C}) (1; 2).

(D) $(-\infty; -1)$.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 1. Cho hàm sốf(x) có đạo hàm $f'(x) = x (x-1)^3 \ \forall x \in \mathbb{R}$ nghịch biến trên khoảng nào?

 $(\mathbf{A}) (-\infty; 0).$

(B) (-1;1).

 $(\mathbf{C})(0;1).$

(D) $(1; +\infty)$.

CÂU 2. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2 + 1$. Khẳng định nào sau đây đúng?

(A) Hàm số nghịch biến trên $(-\infty; +\infty)$. (**C**) Hàm số đồng biến trên $(-\infty; +\infty)$.

(B) Hàm số nghịch biến trên (-1;1). (**D**) Hàm số nghịch biến trên $(-\infty; 1)$.

CÂU 3. Cho hàm số y = f(x)có đạo hàm liên tục trên \mathbb{R} và $y = f'(x) < 0 \ \forall x \in (-3, 5)$. Khẳng định nào sau đây đúng?

(A) f(0) < f(5).

(B) f(-3) > f(5).

(C) f(-3) < f(5). **(D)** f(-2) = f(2).

CÂU 4. Hàm số f(x) có $f'(x) = (x-1)(x-2), \forall x \in \mathbb{R}$ nghịch biến trên khoảng nào dưới

(A) $(2; +\infty)$.

 (\mathbf{B}) $(-\infty; -1)$.

 (\mathbf{C}) (-2;-1).

CÂU 5. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x^2 - 1)(x + 1)(5 - x)$. Mệnh đề nào sau đây đúng?

(A) f(2) < f(1) < f(4).

(B) f(4) < f(2) < f(1).

(**C**) f(1) < f(4) < f(2).

 $(\mathbf{D}) f(1) < f(2) < f(4).$

CÂU 6. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm $f'(x) = (x+1)^2 (x-1)^3 (2-x)$. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

(A) $(2; +\infty)$.

(B) $(-\infty; -1)$.

 $(\mathbf{C})(-1;1).$

 $(\mathbf{D})(1;2).$

CÂU 7. Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} là $f'(x) = x^2(x-1)$. Hàm số y = f(x)đồng biến trên khoảng nào sau đây?

 $(\mathbf{A}) (-\infty; +\infty).$

(B) $(1; +\infty)$.

 (\mathbf{C}) $(-\infty; 1)$.

 $(\mathbf{D})(0; 1).$

CÂU 8. Cho hàm số y = f(x)có đạo hàm $f'(x) = x(x-2)^3$, với mọi $x \in \mathbb{R}$. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

(A) (0;1).

(B) (-2;0).

 (\mathbf{C}) (1; 3).

 $(\mathbf{D})(-1;0).$

CÂU 9. Hàm số y = f(x)có đạo hàm $y' = x^2$. Mệnh đề nào sau đây đúng?

(A) Hàm số nghich biến trên $(-\infty; 0)$ và đồng biến trên $(0; +\infty)$.

(B) Hàm số đồng biến trên \mathbb{R} .

(**C**) Hàm số đồng biến trên $(-\infty; 0)$ và nghịch biến trên $(0; +\infty)$.

 (\mathbf{D}) Hàm số nghich biến trên \mathbb{R} .

CÂU 10. Hàm số y = f(x) có đạo hàm $f'(x) = x^2 + 1$. Khẳng định nào sau đây đúng?

(A) Hàm số nghich biến trên $(-\infty; +\infty)$.

(**B**) Hàm số nghịch biến trên (-1;1).

(**C**) Hàm số đồng biến trên $(-\infty; +\infty)$.

(**D**) Hàm số nghịch biến trên $(-\infty; 1)$.

CÂU 11. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2 + 1$, $\forall x \in \mathbb{R}$. Mệnh đề nào dưới đây đúng?

(A) Hàm số nghịch biến trên khoảng (-1;1).

(B) Hàm số đồng biến trên khoảng $(-\infty; +\infty)$.

(**C**) Hàm số nghịch biến trên khoảng $(-\infty; 0)$.

(**D**) Hàm số nghịch biến trên khoảng $(1; +\infty)$.

CÂU 12. Cho hàm số y = f(x) có đạp hàm $f'(x) = x^2 + 1 \ \forall x \in \mathbb{R}$. Mệnh đề nào dưới đây đúng?

(A) Hàm số nghịch biến trên khoảng (-1;1).

(**B**) Hàm số đồng biến trên khoảng $(-\infty; +\infty)$.

QUICK NOTE	$igcepsilon$ Hàm số nghịch biến trên khoảng $(-\infty;0)$.	
	$lackbox{\textbf{D}}$ Hàm số nghịch biến trên khoảng $(1;+\infty)$.	
	CÂU 13. Hàm số $f(x)$ liên tục trên \mathbb{R} và có đạo hàm $f'(x) = x^2 + 4$	với mọi $x \in \mathbb{R}$. Khẳng
	định nào sau đây là đúng về sự biến thiên của hàm số $f(x)$?	
	(A) $f(x)$ đồng biến trên \mathbb{R} .	
	$igoplus f(x)$ chỉ đồng biến trên khoảng $(-2;2)$ trong tập \mathbb{R} .	
	\mathbf{C} $f(x)$ nghịch biến trên \mathbb{R} .	
	$lackbox{\textbf{D}} f(x)$ chỉ nghịch biến trên khoảng $(-2;2)$ trong tập \mathbb{R} .	
	CÂU 14. Cho hàm số $y = f(x)$ có $f'(x) = (x+2)(x+1)(x^2-1)$. If	Hàm số y = f(x) đồng
	biến trên khoảng nào sau đây?	
	A $(-2;-1)$. B $(-1;1)$. C $(0;+\infty)$.	
	CÂU 15. Hàm số $f(x)$ có đạo hàm $f'(x) > 0 \ \forall x \in \mathbb{R}$. Khi đó hàm số	đã cho
	$lack$ đồng biến trên \mathbb{R} .	
	(B) nghịch biến trên ℝ.	
	$igcepsilon$ là hàm hằng trên $\Bbb R$.	
	\bigcirc đồng biến trên $(-\infty;0)$ và nghịch biến trên $(0;+\infty)$.	
	CÂU 16. Cho hàm số $y = f(x)$ liên tục trên $\mathbb R$ và có đạo hàm $f'(x) =$	$(1-x)^2 (x+1)^3 (3-x).$
	Hàm số $y = f(x)$ đồng biến trên khoảng nào dưới đây?	(A)
	A $(-\infty; -1)$. B $(1; 3)$. C $(3; +\infty)$.	
	CÂU 17. Cho hàm số $f(x)$ có đạo hàm là $f'(x) = x(x+1)^2$. Hàm số	đồng biến trên khoảng
	nào dưới đây?	\bigcirc (1. \bot 20)
		0
	CÂU 18. Cho hàm số $y = f(x)$ liên tục trên \mathbb{R} và có đạo hàm $f'(x) = Hàm$ số $y = f(x)$ đồng biến trên khoảng nào dưới đây?	$(x+1)^2 (x-1)^3 (2-x).$
		\bigcirc $(-\infty;-1).$
		_
	CÂU 19. Cho hàm số $y = f(x)$ có đạo hàm $f'(x) = (x-1)^2, \forall x \in $ đây là sai?	R. Mệnh để nào dưới
	A Hàm số đồng biến trên khoảng $(1; +\infty)$.	
	\blacksquare Hàm số đồng biến trên khoảng $(-\infty; +\infty)$.	
	\bigcirc Hàm số nghịch biến trên khoảng $(-\infty; 1)$.	
	$lackbox{lack}{lack}$ Hàm số đồng biến trên khoảng $(-\infty;1)$.	
	CÂU 20. Cho hàm số $y = f(x)$ liên tục trên \mathbb{R} , có đạo hàm $f'(x) = f(x)$	$=(x-2)^4+1$. Khẳng
	định nào sau đây đúng?	(w 2) 11 11111118
	$lack A$ Hàm số $y=f(x)$ đồng biến trên khoảng $(2;+\infty)$ và nghịch biến	ı trên khoảng $(-\infty; 2)$.
	$lackbox{\textbf{B}}$ Hàm số $y=f(x)$ đồng biến trên khoảng $(-\infty;+\infty)$.	
	\bigcirc Hàm số $y = f(x)$ nghịch biến trên khoảng $(-\infty; +\infty)$.	
	$lackbox{\textbf{D}}$ Hàm số $y=f(x)$ đồng biến trên khoảng $(-\infty;2)$ và nghịch biến	ı trên khoảng $(2; +\infty)$.
	D. BẢNG ĐÁP ÁN	
		7. B 8. A
		15. A 16. B
	17. A 18. C 19. C 20. A	10. 5
	X X	
	Bài 33. XÁC SUẤT	
	A. KIẾN THỰC CẦN NHỚ	
	A. KIEN THUC CAN NHU	
	1 Dinh nghĩa vác cuất	
	1. Định nghĩa xác suất Xác suất của biến cố 4 được tính bởi công thức	

$$P(A) = \frac{n(A)}{n(\Omega)}.$$

Trong đó

- \bigcirc n(A) là số kết quả thuận lợi của biến cố A;
- \odot $n(\Omega)$ là số kết quả có thể xảy ra của phép thử.

2. Tính chất

- $\ensuremath{\mathbf{\Theta}}$ Giả sử A và B là các biến cố liên quan đến một phép thử có một số hữu hạn kết quả đồng khả năng xuất hiện. Khi đó, ta có
 - a) $P(\emptyset) = 0, P(\Omega) = 1.$
 - b) $0 \le P(A) \le 1$, với mọi biến cố A.
 - c) Nếu A và B xung khắc, thì $P(A \cup B) = P(A) + P(B)$ (công thức cộng xác $su\hat{a}t$).
- ❷ Các biến cố A và B là xung khắc nếu và chỉ nếu chúng không khi nào cùng xảy
- Θ Với mọi biến cố A, ta có

$$P(\overline{A}) = 1 - P(A).$$

❷ Với hai biến cố bất kỳ, ta có mối quan hệ sau (công thức nhân xác suất):

A và B là hai biến cố độc lập $\Leftrightarrow P(A \cdot B) = P(A) \cdot P(B)$.

B. BÀI TẬP MẪU

VÍ DỤ 33 (Để tham khảo BGD 2022-2023). Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 1. Cho một hộp chứa 9 viên bi được đánh số từ 1 đến 9. Chọn ngẫu nhiên 3 viên bi rồi cộng các số trên 3 viên đó với nhau. Xác suất để số thu được là số lẻ bằng

- $\frac{3}{4}$
- **B** $\frac{11}{21}$

CÂU 2. Một hộp chứa 6 bi vàng, 5 bi đỏ và 4 bi xanh. Lấy ngẫu nhiên 8 bi trong hộp. Xác suất để trong 8 bi lấy ra có số bi vàng và số bi đỏ khác nhau là

- \bigcirc $\frac{344}{}$

- \bigcirc $\frac{334}{429}$.

CÂU 3. Có 3 chiếc hộp. Mỗi hộp chứa 4 tấm thẻ được đánh số từ 1 đến 4. Lấy ngẫu nhiên từ mỗi hộp một thẻ. Tính xác suất để 3 thẻ được lấy ra đều mang số chẵn.

CÂU 4. Gọi S là tập hợp các số tự nhiên có 3 chữ số được lập từ tập $A = \{0; 1; 2; 3; \dots; 9\}$. Chọn ngẫu nhiên một số từ tập S, tính xác suất để chọn được số tự nhiên có tích các chữ số bằng 30.

- $\bigcirc \frac{1}{75}$.

CAU 5. Một hộp chứa 11 viên bị được đánh số từ 1 đến 11. Chon ngẫu nhiên 6 viên bị từ hộp. Tính xác suất để tổng các số trên các viên bi là một số lẻ?

- $\overline{231}$

QUICK NOTE	để có 5 tấm thẻ man		. 0	n 10 tấm thẻ. Tính xác suất có đúng 1 thẻ mang số chia
	hết cho $\frac{10}{99}$.	B 0, 1.	\bigcirc $\frac{48}{105}$.	D 0, 17.
	CÂU 7. Chọn ngẫu t vượt quá 2023, đồng			c suất để số được chọn không
	$lack A \frac{41}{1800}$.	B $\frac{99}{750}$.	\bigcirc $\frac{48}{1800}$.	$lefte$ $\frac{17}{105}$.
	nhau được lập từ các	c chữ số của tập A . (Chọn ngẫu nhiên một s	ác số gồm có 3 chữ số khác số từ S . Tính xác suất để số
	được chọn có chữ số \bigcirc		đầu. \bigcirc $\frac{2}{25}$.	\bigcirc $\frac{4}{5}$.
	CÂU 9. Có 6 học sin	nh lớp 11 và 3 học si	nh lớp 12. Tính xác su	ất để trong các cách sắp xếp
	nào ngồi cạnh nhau.		<u> </u>	shông có hai học sinh lớp 12
	$\mathbf{A} \frac{5}{72}$.	B $\frac{7}{72}$.	12	\bigcirc $\frac{1}{1728}$.
	chọn được hai số có	tổng là một số chẵn	bằng	dương đầu tiên. Xác suất để
	$\mathbf{A} \frac{13}{27}$.	B $\frac{14}{27}$.	L	$lefte$ $\frac{365}{729}$.
	$\{1; 2; 3; 4; 5\}$. Chọn n			nhau được tạo từ tập $E=$ t để số được chọn là một số
	$\frac{\text{chẵn?}}{\mathbf{A}} \frac{3}{4}.$	B $\frac{2}{5}$.	\bigcirc $\frac{3}{5}$.	$lackbox{0}\frac{1}{2}$.
			đánh số từ 1 đến 11. I suất để kết quả thu đ	Lấy ngẫu nhiên 4 viên bi, rồi
		B $\frac{11}{32}$.	$\mathbf{C} \frac{16}{33}.$	$\mathbf{D} \frac{21}{32}$.
	CÂU 13. Cho 14 tất số ghi trên 3 tấm thể			iên 3 thẻ. Xác suất để tích 3
	$\mathbf{A} \frac{30}{91}.$	B $\frac{61}{91}$.	\bullet $\frac{31}{91}$.	$\bigcirc \frac{12}{17}$.
			ên gồm hai chữ số kl	hác nhau lập từ các chữ số t để tích hai số được chọn là
	số chẵn.	B $\frac{2}{5}$.	$\bigcirc 5$	\bigcirc $\frac{3}{4}$.
	CÂU 15. Gọi A là t	ập hợp các số có ba c	chữ số khác nhau được	lập từ các chữ số $1, 2, 3, 4, 5$.
	mặt chữ số 4 bằng		_	lược chọn có đúng một số có
	$\mathbf{A} \frac{2484}{8555}$.	B $\frac{5}{17}$.	0000	$lefte{D} rac{4}{17}$.
	$\{0; 1; 2; 3; 4; 5; 6; 7\}$. H	Rút ngẫu nhiên một :	số từ S . Tính xác suất	ữ số được lập từ tập $X=$ t để rút được số mà trong số
	do, thu so dung sau $\frac{3}{32}$.	$\mathbf{B} \frac{2}{7}.$	áng chữ số đứng trước $\bigcirc \frac{3}{16}$.	$\mathbf{D} \frac{11}{64}$.
	CÂU 17. Một hộp c		ợc đánh số từ 1 đến 5	50. Chọn ngẫu nhiên từ một
	cho 3.		_	i thể lấy được là số chia hết 801
	$igain rac{409}{1225}.$		20	
		để lấy được 3 quả cầ	u có đúng 1 quả cầu g	chọn ngau nmên 3 qua cau chi số lẻ và tích 3 số ghi trên
	A $\frac{33}{116}$.		$ \bullet $ $ \frac{45}{116} $.	$\bigcirc \frac{6}{29}$.

CẦU 19. Gọi S là tập hợp các số tự nhiên gồm 4 chữ số đôi một khác nhau được lập nên từ các chữ số 0; 1; 2; 3; 4; 5. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được chọn có chứa ít nhất một trong hai chữ số 1 hoặc 2 bằng

CÂU 20. Có 6 học sinh nam và 3 học sinh nữ được xếp chỗ ngồi ngẫu nhiên vào một dãy gồm 9 ghế. Xác suất để mỗi học sinh nữ được xếp ngồi xen giữa hai học sinh nam là

- (A) 11,9%.
- **(B)** 58,33%.
- **(C)** 60,71%.
- (**D**) 6.94%.

D. BẢNG ĐÁP ÁN

1.	D	2.	D	3.	D	4.	A	5.	C	6.	A	7.	A	8.	C
9.	C	10.	A	11.	В	12.	C	13.	В	14.	C	15.	A	16.	C
				17.	В	18.	Α	19.	D	20.	Α				

Bài 34. PHƯƠNG TRÌNH MŨ

A. KIẾN THỰC CẦN NHỚ

Sử dụng kiến thức $a^x = b \Leftrightarrow x = \log_a b$ với $a, b > 0, a \neq 1$.

B. BÀI TẬP MẪU

VÍ DỤ 34 (Đề minh họa BGD 2022-2023). Tích tất cả các nghiệm của phương trình $\ln^2 x + 2 \ln x - 3 = 0$ bằng

- \bigcirc $\frac{1}{\alpha^2}$.

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 1. Khi đặt $3^x = t$ thì phương trình $9^{x+1} - 3^{x+1} - 30 = 0$ trở thành

 $(A) 3t^2 - t - 10 = 0.$

(B) $2t^2 - t - 1 = 0$.

 \mathbf{C} $9t^2 - 3t - 10 = 0.$

 $(\mathbf{D}) t^2 - t - 10 = 0.$

CÂU 2. Xét bất phương trình $5^{2x} - 3 \cdot 5^{x+2} + 32 < 0$. Nếu đặt $t = 5^x$ thì bất phương trình trở thành bất phương trình nào sau đây?

 $(\mathbf{A}) t^2 - 16t + 32 < 0.$

B) $t^2 - 6t + 32 < 0$.

 $(\mathbf{C}) t^2 - 75t + 32 < 0.$

 $(\mathbf{D}) t^2 - 3t + 32 < 0.$

CÂU 3. Phương trình $4^x - 3 \cdot 2^x + 2 = 0$ có nghiệm thuộc khoảng

- (A) (-1;0).
- **B**) (3; 6).
- $(\mathbf{D})(2;4).$

CÂU 4. Phương trình $4^x - 3 \cdot 2^x + 2 = 0$ có nghiệm thuộc khoảng **(a)** (3; 6). **(B)** $\left(\frac{1}{2}; 2\right)$. **(C)** (2; 4).

- $(\mathbf{D})(-1;0).$

CÂU 5. Xét bất phương trình $5^{2x} - 3 \cdot 5^{x+2} + 32 < 0$. Nếu đặt $t = 5^x$ thì bất phương trình trở thành bất phương trình nào sau đây?

(A) $t^2 - 6t + 32 < 0$.

(B) $t^2 - 75t + 32 < 0$.

 $(\mathbf{C}) t^2 - 3t + 32 < 0.$

 $(\mathbf{D}) t^2 - 16t + 32 < 0.$

CAU 6. Tập nghiệm S của bất phương trình $9^{x+\frac{1}{2}} - 10 \cdot 3^x + 3 \le 0$.

- (A) $S = (-\infty; -1] \cup [1; +\infty).$
- **(B)** $S = \{-1, 1\}.$

(**C**) S = (-1; 1).

 $(\mathbf{D}) S = [-1; 1].$

CĂU 7. Tìm tổng các nghiệm của phương trình $2^{2x+1} - 5 \cdot 2^x + 2 = 0$.

- (A) 2.
- (\mathbf{B}) 0.
- **(D)** 1.

CÂU 8. Khi đặt $3^x = t$ thì phương trình $9^{x+1} - 3^{x+1} - 30 = 0$ trở thành

(A) $t^2 - t - 10 = 0$.

(B) $2t^2 - t - 1 = 0$.

OUICK NOTE
QUICK NOTE

		 ₫	NG ÔN THPTQG 2023
).
CÂU 9. Bất phương trì (A) 1.	$ \begin{array}{c} \text{nh } 9^x - 4 \cdot 3^x + 3 \le 0 \\ \hline \textbf{B} \ 2. \end{array} $	có bao nhiêu nghiệm (C) 3.	nguyên? (D) 0.
CÂU 10. Tập nghiệm co (A) (0; 2). (C) (1; 2).	ủa bất phương trình	$4^{x} - 6 \cdot 2^{x} + 8 < 0$ là $\mathbf{B} (-\infty; 1) \cup (2; +\infty)$ $\mathbf{D} (2; 4).$	∞).
	B) $4 \log_5 3$.	(C) $3 \log_3 5$.	(D) $2 + \log_3 5$.
CÂU 12. Phương trình	$2^{\sin^2 x} + 3^{\cos^2 x} = 4 \cdot 3^s$	sin² x có bao nhiêu nghiệ	êm thuộc $[-2017; 2017]$.
A 1285.	B 4035.	© 1284.	D 4034.
CÂU 13. Tập nghiệm c \bullet $[-\infty; \log_2 5).$		$4^x - 3 \cdot 2^{x+1} + 5 \le 0$ là $(\mathbf{C}) [\log_2 5; +\infty).$	
CÂU 14. Tìm tập nghi	ệm S của phương trìn $oldsymbol{\mathbb{B}} S = \{0; \ln 2\}.$	$e^{6x} - 3e^{3x} + 2 = 0.$ $S = \{1; \ln 2\}.$	
CÂU 15. Tập nghiệm c A $(-\infty; 3) \cup (27; +\infty)$ C $(0; 3) \cup (27; +\infty)$.		$\log_3^2 x - 2\log_3 x^2 + 3 <$ B (3; 27). D [3; 27].	(0 là
CÂU 16. Tổng tất cả	các nghiệm của phư	$\operatorname{cong} \operatorname{trình} \log_2 \left(10 \cdot \left(\mathbf{v}\right)\right)$	$\sqrt{2019}$) ^x - 2019 ^x) = 4
	B $2\log_{2019} 10$.	$\bigcirc \log_{2019} 16.$	\bigcirc 2 $\log_{2019} 16$.
CÂU 17. Phương trình A 1.	$\log_2^2 x - 8\sqrt{\log_2\left(8x\right)}$ B 3.	$-12 = 0$ có tất cả bao \bigcirc 2.	nhiêu nghiệm? D 0.
CÂU 18. Cho $x > 1$	và thỏa mãn \log_3 (\log	$g_{27} x) = \log_{27} (\log_3 x).$. Khi đó giá trị $\log_3 x$
bằng	B 3.	$ \mathbf{C} 3\sqrt{3}. $	D 27.

CÂU 19. Biết phương trình $\log_2^2 x - 2\log_2(2x) - 1 = 0$ có hai nghiệm $x_1; x_2$. Tính x_1x_2 . (A) $x_1x_2 = \frac{1}{2}$. (B) $x_1x_2 = -3$. (C) $x_1x_2 = 4$.

A
$$x_1 x_2 = \frac{1}{2}$$
.

CÂU 20. Tìm tập nghiệm S của bất phương trình: $\log_2^2{(x-1)} - 4\log_2{(x-1)} + 3 \ge 0$

(A) S = [3; 9].

B $S = (1; 3] \cup [9; +\infty).$

 \mathbf{C} $S = (-\infty; 1] \cup [3; +\infty).$

$$(\mathbf{D}) S = (-\infty; 3] \cup [9; +\infty).$$

D. BẢNG ĐÁP ÁN

1. /	1	2.	C	3.	C	4.	В	5.	В	6.	D	7.	В	8.	C
9. E	3	10.	C	11.	A	12.	A	13.	D	14.	D	15.	В	16.	D
				17.	A	18.	С	19.	C	20.	В				

Bài 35. PHÉP ĐẾM

A. KIẾN THỰC CẦN NHỚ

& Phương pháp chung của bài toán tìm tập hợp điểm biểu diễn số phức l	8	Phương 1	oháp	chung	của	bài	toán	tìm	tâp	hơp	điểm	biểu	diễn	$\mathbf{s}\mathbf{\acute{o}}$	phức	lä
---	---	----------	------	-------	-----	-----	------	-----	-----	-----	------	------	------	--------------------------------	------	----

- Θ Gọi M(x;y) là điểm biểu diễn số phức z=x+yi.
- ❷ Thay vào điều kiện đề bài, ta được một phương trình biểu diễn theo hai biến x và y.

Chú ý các công thức

$$\overline{z} = x - yi.$$

$$|z| = \sqrt{x^2 + y^2}.$$

$$z^2 = x^2 - y^2 + 2xyi.$$

❷ Tùy thuộc vào phương trình thu được, ta kết luận tập hợp điểm chạy trên "đối tượng hình" tương ứng.

Một số dạng thường gặp

- ▶ Dạng Ax + By + C = 0: tập hợp điểm là đường thẳng.
- ightharpoonup Dạng $(x-x_0)^2+(y-y_0)^2=R^2$: tập hợp điểm là đường tròn có tâm $I(x_0; y_0)$ và bán kính R.
- ▶ Dạng $(x-x_0)^2+(y-y_0)^2 \le R^2$: tập hợp điểm là hình tròn có tâm $I(x_0;y_0)$ và bán kính R.
- \blacktriangleright Dạng $x^2+y^2-2ax-2by+c=0, (a^2+b^2-c>0)$: tập hợp điểm là đường tròn có tâm I(a;b) và bán kính $R = \sqrt{a^2 + b^2 - c}$.
- ▶ Dạng $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$: tập hợp điểm là đường elip.
- ▶ Dạng $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$: tập hợp điểm là đường hyperbol.
- ▶ Dạng $y = ax^2 + bx + c$ $(a \neq 0)$: tập hợp điểm là đường parabol.

B. BÀI TẬP MẪU

VÍ DU 35 (Đề minh họa BGD 2022-2023). Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+2i|=1 là một đường tròn. Tâm của đường tròn đó có tọa độ là

(A)(0;2).

 $(\mathbf{D})(2;0).$

C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

CÂU 1. Cho số phức z thoả |z-1+i|=4. Phát biểu nào sau đây là đúng?

- (A) Tập hợp điểm biểu diễn số phức z là đường tròn có tâm I(1;-1) và bán kính bằng R=4.
- (**B**) Tập hợp điểm biểu diễn số phức z là một đường tròn có tâm I(-1;1) và bán kính R=2.
- (**C**) Tập hợp điểm biểu diễn số phức z là một đường parabol.
- (\mathbf{D}) Tập hợp điểm biểu diễn số phức z là một đường thẳng.

CÂU 2. Biết tập hợp điểm biểu diễn số phức z thoả |iz-1+2i|=4 là một đường tròn. Tìm toạ độ tâm I của đường tròn đó.

(A) I(1;2).

(B) I(-1;-2).

 $(\mathbf{C}) I(-2;-1).$

(D) I(2;1).

CÂU 3. Tập hợp điểm biểu diễn số phức z thoả $|z+4-4i| \le 2$ là

- (A) Hình tròn tâm I(4; -4) và bán kính R = 4.
- (**B**) Hình tròn tâm I(-4;4) và bán kính R=2.
- (**C**) Đường tròn tâm I(4; -4) và bán kính R = 4.
- (**D**) Đường tròn tâm I(-4;4) và bán kính R=2.

CÂU 4. Gọi (H) là hình gồm tập hợp điểm M biểu diễn số phức z thoả $|z+3|^2+|z-3|^2=50$. Tính diện tích hình (H).

(A) $S = 8\pi$.

B $S = 16\pi$.

(C) $S = 15\pi$.

(D) $S = 20\pi$.

CÂU 5. Biết tập hợp điểm biểu biến số phức z thoả |z-2i|-|2z+1|=0 là một đường tròn. Tính chu vi C của đường tròn đó.

© $C = \frac{17\pi}{9}$. **D** $C = \frac{4\sqrt{17}\pi}{3}$.

CÂU 6. Tập hợp các điểm biểu diễn số phức z thỏa mãn |(1-i)z-4+2i|=2 là một đường tròn. Tìm tọa độ tâm I và tính bán kính R của đường tròn đó.

(A) I(-3;-1), R=2.

(B) $I(3;1), R = \sqrt{2}$.

(**C**) I(3;1), R=2.

(D) $I(-3;-1), R = \sqrt{2}.$

QUICK NOTE		nợp điểm biểu diễn số R . Khẳng định nào sa	phức z thoả $ \overline{z} + 2 - i =$	= 4 là một đường tròn có
	(A) I(-2;-1), R	_		4.
	(c) $I(2;-1), R =$		B $I(2;-1), R = 4$ D $I(-2;-1), R = 4$	= 2.
			$1)(\overline{z}-2i)$ là một số thuầ Fìm bán kính R của đườn	
	_		$\mathbf{C} R = \sqrt{5}.$	_
	$(\mathbf{A}) R = \frac{1}{2}.$	$\mathbf{B}) R = \overline{4}.$	$\mathbf{C} R = \sqrt{5}.$	$\mathbf{D}) R = \frac{1}{4}.$
			\hat{z} phức z thỏa $ z - i = \hat{z} $ \hat{z} $$	2-3i-z là một đường
			$\mathbf{C} d = \frac{3\sqrt{5}}{5}.$	
			các điểm biểu diễn số phư	$\text{fic } z \text{ thoå } 1 \leq z - 1 \leq 2.$
	Tính diện tích hình $(\mathbf{A}) S_{(H)} = 2\pi$		$(\mathbf{C}) S_{(H)} = 3\pi.$	$(\mathbf{D}) S_{(T)} \equiv \pi$
	_ ` '	- , ,	- , ,	_ , ,
			ức z thỏa mãn $ z+2 + $.	
	(A) Một đoạn th (C) Một đường c	_	(B) Một đường hy (D) Một đường pa	
	· Mọt dương t	ыр.	Wiệt dương pa	rabor.
	CÂU 12. Cho số r	ohức z thoả $(z-i)(2+$	-i) là một số thuần ảo. Tậ	ap hợp các điểm biểu diễn
	số phức z là			1 .1
	~ -	g có phương trình $2x$ -		
		có tâm $I(1;-1)$ và bá		
	\simeq	g có phương trình $x +$		
	D) Đường tròn	có tâm $I(2;-1)$ và bá	n kính $R=2$.	
	CÂU 13. Biết tập	hợp các điểm biểu di	ễn các số phức z thỏa mãi	n điều kiện $\left \frac{z}{z-1} \right = 3$ là
	một đường tròn. T	ìm toạ độ tâm I của ϵ	đường tròn đó.	1 1
	$\mathbf{A} I\left(\frac{9}{9};0\right).$	$lackbox{\textbf{B}} I\left(\frac{9}{4};0\right).$	$\bigcirc I\left(-\frac{9}{8};0\right).$	$(\mathbf{p}) I \left(-\frac{9}{2} : 0 \right)$.
	- (8)	(4)	0 (8)	\bigcirc 1 $(4, \circ)$.
	•		iết tập hợp điểm biểu diễ	
	CÂU 14. Cho số $w = 3 + i - (3 - 4i)$	phức z thoả $ z = 2$. B z là một đường tròn.	iết tập hợp điểm biểu diễ ${ m Tim}$ bán kính R của đườ	n số phức w thoả mãn ơng tròn đó.
	CÂU 14. Cho số l	phức z thoả $ z = 2$. B	iết tập hợp điểm biểu diễ	n số phức w thoả mãn
	CÂU 14. Cho số $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số y	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$.	iết tập hợp điểm biểu diễ ${f T}$ ìm bán kính R của đườ ${f C}$ $5\sqrt{2}$.	n số phức w thoả mãn ơng tròn đó. $\boxed{\mathbf{D}} \ 5\sqrt{5}.$ diễn số phức w thoả mãn
	CÂU 14. Cho số $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số $w = (1 + 2i)z + i$ là	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. à một đường tròn. Tìr	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ $\bigcirc 5\sqrt{2}$. Biết tập hợp điểm biểu $\bigcirc 0$ n bán kính r của đường t	n số phức w thoả mãn ởng tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó.
	CÂU 14. Cho số $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số y	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$.	iết tập hợp điểm biểu diễ ${f T}$ ìm bán kính R của đườ ${f C}$ $5\sqrt{2}$.	n số phức w thoả mãn ơng tròn đó.
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là (A) $r = 2\sqrt{5}$. CÂU 16. Xét các	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. à một đường tròn. Tìr (B) $r=\sqrt{5}$. số phức z thoả mãn	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{c} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{c} $r=10$. $ z-2i+1 =4$. Biết rằn	n số phức w thoả mãn rờng tròn đó.
	CÂU 14. Cho số $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số $w = (1 + 2i)z + i$ là (A) $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 + 2i)z + i$	phức z thoả $ z =2$. B z là một đường tròn. z là một đường tròn. Phức z thoả $ z =\sqrt{5}$. z một đường tròn. Tìn z một đường tròn. Tìn z một z thoả mãn z một z thoả mãn	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I c	n số phức w thoả mãn rọng tròn đó.
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là (A) $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 + 2i)z$.	phức z thoả $ z =2$. B z là một đường tròn. z là một đường tròn. Phức z thoả $ z =\sqrt{5}$. z một đường tròn. Từn z một đường tròn. Từn z thoả mãn z thoả mãn z thoả một z thoả một z thoả một	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$.	n số phức w thoả mãn rờng tròn đó.
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là (A) $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 + 2i)z$ (A) $I(-1; 2)$. CÂU 17. Cho số p	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. A một đường tròn. Từ (B) $r=\sqrt{5}$. số phức z thoả mãn 12-5i)z+3i là một (B) $I(-2;32)$.	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu d	n số phức w thoả mãn rọng tròn đó.
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là (A) $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (2i)$ (A) $I(-1;2)$. CÂU 17. Cho số p một đường tròn. T	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. à một đường tròn. Từ (B) $r=\sqrt{5}$. số phức z thoả mãn 12-5i)z+3i là một (B) $I(-2;32)$. phức z thoả $ z =3$. In toạ độ tâm của đư	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dờng tròn đó.	n số phức w thoả mãn trọn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc $\boxed{\mathbf{D}}$ $r=5$. In tập hợp các điểm biểu ủa đường tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $I(1;-5)$. Iiễn số phức $w=\overline{z}+i$ là
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là (A) $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 + 2i)z$ CÂU 17. Cho số p một đường tròn. The (A) $I(0;1)$.	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. à một đường tròn. Từ (B) $r=\sqrt{5}$. số phức z thoả mãn 12-5i)z+3i là một (B) $I(-2;32)$. phức z thoả $ z =3$. In toạ độ tâm của đư (B) $I(0;-1)$.	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dòng tròn đó. \mathbf{C} $I(1;0)$.	n số phức w thoả mãn trọn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc $\boxed{\mathbf{D}}$ $r=5$. Ing tập hợp các điểm biểu du đường tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $I(1;-5)$. The số phức $w=\overline{z}+i$ là \bigcirc $\boxed{\mathbf{D}}$ $I(-1;0)$.
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ A 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là A $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (2i)$ CÂU 17. Cho số p một đường tròn. The A $I(0;1)$. CÂU 18. Cho hai	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. à một đường tròn. Từ (B) $r=\sqrt{5}$. số phức z thoả mãn 12-5i)z+3i là một (B) $I(-2;32)$. phức z thoả $ z =3$. In toạ độ tâm của đư (B) $I(0;-1)$.	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dòng tròn đó. \mathbf{C} $I(1;0)$.	n số phức w thoả mãn trọn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc $\boxed{\mathbf{D}}$ $r=5$. In tập hợp các điểm biểu ủa đường tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $I(1;-5)$. Iiễn số phức $w=\overline{z}+i$ là
	CÂU 14. Cho số $w = 3 + i - (3 - 4i)$ (A) 10. CÂU 15. Cho số $w = (1 + 2i)z + i$ là (A) $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (2i)$ (A) $I(-1;2)$. CÂU 17. Cho số $w = (2i)$ (A) $I(0;1)$. CÂU 18. Cho hai phức $w = (2i)$	phức z thoả $ z =2$. B z là một đường tròn. z là một đường tròn. z thoả $ z =\sqrt{5}$. Phức z thoả z thoả mãn z thoả mãn z thoả mãn z thoả mãn z thoả mãn z thoả z là một z thoả z là một z thoả z la một	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dờng tròn đó. \mathbf{C} $I(1;0)$. \mathbf{C} $I(1;0)$.	n số phức w thoả mãn trọn đó. \bigcirc $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc \mathbf{D} $r=5$. Ing tập hợp các điểm biểu du đường tròn đó. \bigcirc \mathbf{D} $I(1;-5)$. The số phức $w=\overline{z}+i$ là \bigcirc \bigcirc O
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ A 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là p	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. Từa (B) $r=\sqrt{5}$. số phức z thoả mãn $12-5i)z+3i$ là một (B) $I(-2;32)$. phức z thoả $ z =3$. Dùm toạ độ tâm của đư (B) $I(0;-1)$. số phức z , w thoả $ z $	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dòng tròn đó. \mathbf{C} $I(1;0)$. $=10$ và $\overline{z}=(3+4i)\overline{w}$. The same I co I	n số phức w thoả mãn trọn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc $\boxed{\mathbf{D}}$ $r=5$. Ing tập hợp các điểm biểu du đường tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $I(1;-5)$. The số phức $w=\overline{z}+i$ là \bigcirc $\boxed{\mathbf{D}}$ $I(-1;0)$.
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ A 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là A $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 + 2i)z + i$ là p	phức z thoả $ z =2$. B z là một đường tròn. z là một đường tròn. z thoả $ z =\sqrt{5}$. Phức z thoả $ z =\sqrt{5}$. z một đường tròn. Từ z là một z thoả mãn z là một z thoả z là một z thoả z là một z thoả z là mọt z thoả z là m toạ độ tâm của đư z là m toạ địch thoả là m toà m toà một đường tròn.	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường to \mathbf{C} $r=10$. $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dờng tròn đó. \mathbf{C} $I(1;0)$. \mathbf{C} $I(1;0)$. \mathbf{C} $I(1;0)$. \mathbf{C} $I(1;0)$.	n số phức w thoả mãn trọn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc $\boxed{\mathbf{D}}$ $r=5$. Ing tập hợp các điểm biểu du đường tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $I(1;-5)$. The số phức $w=\overline{z}+i$ là \bigcirc $\boxed{\mathbf{D}}$ $I(-1;0)$.
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ A 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là A $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 - 1; 2)$. CÂU 17. Cho số p một đường tròn. T A $I(0; 1)$. CÂU 18. Cho hai phức w là A Dường tròn p B Dường tròn p C Dường tròn p	phức z thoả $ z =2$. B) z là một đường tròn. (B) $2\sqrt{5}$. phức z thoả $ z =\sqrt{5}$. The most đường tròn. Từ (B) $r=\sqrt{5}$. số phức z thoả mãn 12-5i)z+3i là một (B) $I(-2;32)$. phức z thoả $ z =3$. Bàm toạ độ tâm của đư (B) $I(0;-1)$. số phức z,w thoả $ z $ tâm $I(2;0)$ và bán kín tâm $O(0;0)$ và bán kín tâm $I(0;2)$ và bán kín	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường tơn bán kính r của đường to $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dòng tròn đó. \mathbf{C} $I(1;0)$. $=10 \text{ và } \overline{z}=(3+4i)\overline{w}. \text{ Trunh } R=2.$ $\text{ch } R=2.$ $\text{ch } R=2.$	n số phức w thoả mãn trọn đó. \bigcirc $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc \mathbf{D} $r=5$. Ing tập hợp các điểm biểu du đường tròn đó. \bigcirc \mathbf{D} $I(1;-5)$. The số phức $w=\overline{z}+i$ là \bigcirc \bigcirc O
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ A 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là A $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 - 1; 2)$. CÂU 17. Cho số p một đường tròn. T A $I(0; 1)$. CÂU 18. Cho hai phức w là A Dường tròn p B Dường tròn p C Dường tròn p D Dường tròn p	phức z thoả $ z =2$. B z là một đường tròn. z là một đường tròn. z thoả $ z =\sqrt{5}$. This is a một đường tròn. Từ z là một đường tròn. Từ z là một z thoả mãn z la một z thoả z là một z là một z là một z là mọt z là là một z là là là một z là là một z là	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường tơn bán kính r của đường to $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dờng tròn đó. \mathbf{C} $I(1;0)$. $=10 \text{ và } \overline{z}=(3+4i)\overline{w}. \text{ Trunh } R=2.$ $\text{ch } R=2.$ $\text{ch } R=2.$ $\text{ch } R=1.$	n số phức w thoả mãn trọn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc $\boxed{\mathbf{D}}$ $r=5$. Ing tập hợp các điểm biểu ủa đường tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $I(1;-5)$. Iiễn số phức $w=\overline{z}+i$ là \bigcirc $\boxed{\mathbf{D}}$ $I(-1;0)$. Âp hợp điểm biểu diễn số
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ A 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là A $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 + 2i)z$ CÂU 17. Cho số p CÂU 17. Cho số p CÂU 17. Cho số p CÂU 18. Cho hai phức w là A Đường tròn p CÂU 19. Xét các	phức z thoả $ z =2$. B z là một đường tròn. z là một đường tròn. z thoả $ z =\sqrt{5}$. Phức z thoả z thoả mãn z thoả mãn z thoả z là một z thoả z là mọt z thoả z là một z thoả z là m toạ độ tâm của đư z là z là m toạ độ tâm của đư z là z là m z là z là m z là z là m z là	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường tơn bán kính r của đường to $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dờng tròn đó. \mathbf{C} $I(1;0)$. $=10 \text{ và } \overline{z}=(3+4i)\overline{w}. \text{ Trunh } R=2.$ $\text{ch } R=2.$ $\text{ch } R=2.$ $\text{ch } R=1.$	n số phức w thoả mãn trọn đó. \bigcirc $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc \mathbf{D} $r=5$. Ing tập hợp các điểm biểu du đường tròn đó. \bigcirc \mathbf{D} $I(1;-5)$. The số phức $w=\overline{z}+i$ là \bigcirc \bigcirc O
	CÂU 14. Cho số p $w = 3 + i - (3 - 4i)$ A 10. CÂU 15. Cho số p $w = (1 + 2i)z + i$ là A $r = 2\sqrt{5}$. CÂU 16. Xét các diễn số phức $w = (1 - 1; 2)$. CÂU 17. Cho số p một đường tròn. T A $I(0; 1)$. CÂU 18. Cho hai phức w là A Dường tròn p B Dường tròn p C Dường tròn p D Dường tròn p	phức z thoả $ z =2$. B z là một đường tròn. z là một đường tròn. z thoả $ z =\sqrt{5}$. Phức z thoả mãn thoả mãn thoả mãn thoả mãn thoả mãn thoả mãn thoả thoả thoả thoả thoả thoả thoả thoả	iết tập hợp điểm biểu diễ Tìm bán kính R của đườ \mathbf{C} $5\sqrt{2}$. Biết tập hợp điểm biểu cơn bán kính r của đường tơn bán kính r của đường to $ z-2i+1 =4$. Biết rằn đường tròn. Tìm tâm I co \mathbf{C} $I(2;-32)$. Biết tập hợp điểm biểu dờng tròn đó. \mathbf{C} $I(1;0)$. $=10 \text{ và } \overline{z}=(3+4i)\overline{w}. \text{ Trunh } R=2.$ $\text{ch } R=2.$ $\text{ch } R=2.$ $\text{ch } R=1.$	n số phức w thoả mãn rờng tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $5\sqrt{5}$. diễn số phức w thoả mãn ròn đó. \bigcirc $\boxed{\mathbf{D}}$ $r=5$. Ig tập hợp các điểm biểu ủa đường tròn đó. \bigcirc $\boxed{\mathbf{D}}$ $I(1;-5)$. iễn số phức $w=\overline{z}+i$ là \bigcirc $\boxed{\mathbf{D}}$ $I(-1;0)$. ập hợp điểm biểu diễn số

CÂU 20. Xét số phức z thỏa mãn $|z|=\sqrt{2}$. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức $w=\frac{4+iz}{1+z}$ là một đường tròn có bán kính bằng

B 26

© 34.

 \bigcirc $\sqrt{26}$.

D. BẢNG ĐÁP ÁN

1.	A	2.	C	3.	В	4.	В	5.	A	6.	В	7.	A	8.	A
9.	C	10.	C	11.	C	12.	A	13.	A	14.	A	15.	D	16.	В
				17.	Α	18.	В	19.	A	20.	A				

	ICK	NOT
SU	-	IVOI

GV VŨ	NGOC P	HÁT — ĐT	: 0962.940.81

13