

Прикладная статистика и анализ данных _{Съезд II}

Обобщенная модель линейной регрессии

Пуассоновское распределение

$$Pois(\lambda): p(x) = \frac{\lambda^{x}}{x!}e^{-\lambda}, x \in \mathbb{Z}_{+}$$

Смысл: число событий,

произошедших за единицу времени

Условия:

- 1. события происходят с фиксированной интенсивностью λ .
- 2. независимо друг от друга.

Утверждение: время между двумя событиями имеет распр. $Exp(\lambda)$ (см. пуассоновские случайные процессы)

Примеры:

- 1. число клиентов в час
- 2. число запросов на сервер за минуту

Интенсивность не постоянна, может зависеть от каких-то факторов.

Обобщенная модель линейной регрессии

Гауссовская линейная модель

Generalized Linear Models (GLM)

Ожидаемый отклик:

$$y = \mu_{\theta}(x) = x^{T}\theta.$$

Наблюдаемый отклик:

$$Y_i = x_i^T \theta + arepsilon_i, \quad arepsilon_i \sim \mathcal{N}(0, \sigma^2).$$
или $Y_i \sim \mathcal{N}(\mu_{ heta}(x_i), \sigma^2)$

Оценка отклика:

$$\widehat{y} = x^T \widehat{\theta}.$$

Ожидаемый отклик:

$$y = \mu_{\theta}(x)$$
, причем $g(\mu_{\theta}(x)) = x^{T}\theta$,
т.е. g — линеаризация ожид. отклика

Наблюдаемый отклик:

$$Y_i \sim \mathsf{P}_{\mu_{\theta}(\mathsf{x}_i)},$$

где
$$\{\mathsf{P}_{\psi} \mid \psi \in \mathsf{\Psi}\}$$
 — семейство распр.

Оценка отклика:

$$\widehat{y} = g^{-1} \left(x^T \widehat{\theta} \right).$$

()

Натуральный отклик

$$y\in\mathbb{Z}_+$$
 — значения наблюдаемого отклика $\mu_{ heta}(x)=\mathsf{E}_xY$ — ожидаемый отклик $Y_i\sim Pois(\mu_{ heta}(x_i))=\mathsf{P}_{\mu_{ heta}(x_i)}$ — наблюдаемый отклик

Линеаризация ожид. отклика:
$$g(z) = \ln z$$
 т.е. $g(\mu_{\theta}(x)) = \ln \mathsf{E}_x Y = x^T \theta$ Тогда $\mu_{\theta}(x) = g^{-1}(x^T \theta) = \exp(x^T \theta)$ \Longrightarrow это пуассоновская регрессия

Смысл: пытаемся приблизить интенсивность с помощью регрессии.

Примечание. Интенсивность имеет неравномерный масштаб. Пусть $\lambda=1$. В два раза чаще это $\lambda=2$, в два раза реже это $\lambda=1/2$. Логарифмирование это исправляет.

Свойства GLM

В качестве $\widehat{\theta}$ берется ОМП (ищется численно)

$$L_X(\theta) = \prod_{i=1}^n p_{\mu_{\theta}(x_i)}(Y_i) = \prod_{i=1}^n p_{g^{-1}(x_i^T\theta)}(Y_i) \longrightarrow \max_{\theta} X_i$$

Если $\{\mathsf{P}_{\psi}\mid \psi\in \mathsf{\Psi}\}$ лежит в экспоненциальном классе, то $\widehat{ heta}$:

- 1. существует и единственна;
- 2. состоятельна;
- 3. асимптотически нормальна: $\sqrt{I(\theta)}\left(\widehat{\theta}-\theta\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,I_d),$ где $I(\theta) = \left(-\mathsf{E} \frac{\partial^2 \log L_X(\theta)}{\partial \theta_j \partial \theta_k}\right)_{jk}$ информационная матрица Фишера.

Для пуассоновской регрессии $I(\theta) = \sum_{i=1}^n e^{x_i^T \theta} x_i x_i^T = X^T V(\theta) X$, где $V(\theta) = \text{diag}\left[e^{x_i^T \theta}\right]$.

Асимпт. доверительные интервалы в GLM

Для параметров (\Longrightarrow критерий для гипотезы $\mathsf{H}_0\colon\theta_j=0$)

$$\theta_{j} \ \in \ \left(\widehat{\theta}_{j} \pm z_{1-\alpha/2} \sqrt{\left(I^{-1}(\widehat{\theta})\right)_{jj}}\right)$$

Для преобразованного ожидаемого отклика

$$x_0^T \theta \in \left(x_0^T \widehat{\theta} - \delta, x_0^T \widehat{\theta} + \delta\right)$$

Для ожидаемого отклика

$$\mu(x_0) = g^{-1}(x_0^T \theta) \in \left[g^{-1} \left(x_0^T \widehat{\theta} - \delta \right), g^{-1} \left(x_0^T \widehat{\theta} + \delta \right) \right],$$
$$\delta = z_{1-\alpha/2} \sqrt{x_0^T I^{-1}(\widehat{\theta}) x_0}$$