GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

January 21, 2004, 09:14:54; Search time 2.63862 Seconds Run on:

(without alignments)

601.551 Million cell updates/sec

Title: US-09-869-414A-64

Perfect score: 49

Sequence: 1 SEVKMDAEFR 10

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

1107863 seqs, 158726573 residues Searched:

Total number of hits satisfying chosen parameters: 1107863

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : A Geneseq 19Jun03:*

> /SIDS1/qcqdata/geneseq/geneseqp-emb1/AA1980.DAT:* 1:

> /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1981.DAT:* 2:

> 3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:*

> /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1983.DAT:* 4:

> /SIDS1/qcqdata/geneseq/geneseqp-embl/AA1984.DAT:* 5:

> /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1985.DAT:*

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1986.DAT:* 7:

/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1987.DAT:* /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1988.DAT:*

10: /SIDS1/gcgdata/geneseg/genesegp-embl/AA1989.DAT:*

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1990.DAT:*

12: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1991.DAT:*

13: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:*

14: /SIDS1/qcqdata/qeneseq/qeneseqp-embl/AA1993.DAT:*

15: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1994.DAT:*

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:*

17: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1996.DAT:*

/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1997.DAT:* 18:

/SIDS1/gcgdata/geneseg/genesegp-embl/AA1998.DAT:* 19:

/SIDS1/qcqdata/geneseq/geneseqp-embl/AA1999.DAT:* 20:

/SIDS1/gcqdata/geneseq/geneseqp-emb1/AA2000.DAT:* 21:

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2001.DAT:* 22:

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:* 23:

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2003.DAT:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

					SUMMARIE	.S
		8				
Result		Query				
No.	Score	Match	Length	DB 	ID 	Description
1	49	100.0	10	13	AAR24261	Human amyloidin pr
2	49	100.0	10	21	AAY69703	Beta-APP alpha-sec
3	49	100.0	10	22	AAE10654	Human wild-type AP
4	49	100.0	10	22	AAE06899	Human amyloid prec
5	49	100.0	10	22	AAU06628	Asp2 recognition s
6	49	100.0	10	22	AAU07227	Human beta-amyloid
7	49	100.0	10	22	AAE02606	Human wild-type AP
8	49	100.0	10	22	AAB66574	Synthetic peptide
9	49	100.0	10	22	AAB46208	Human APP derived
10	49	100.0	10	22	AAB61336	Sythetic peptide f
11	49	100.0	10	23	ABG78375	Human beta amyloid
12	49	100.0	10	23	ABG30940	Nogo/BACE method c
13	49	100.0	10	23	AAU99490	Peptide #1 used as
14	49	100.0	10	23	ABB78615	Beta-secretase spe
15	49	100.0	10	23	ABB06426	Human APP beta-sec
16	49	100.0	10	24	ABG76103	Amyloid precursor
17	49	100.0	11	22	AAB75143	APP beta-secretase
18	49	100.0	11	22	AAB75144	Asp 1 substrate se
19	49	100.0	11	22	AAB97468	Asp2 substrate wil
20	49	100.0	12	23	ABB08997	Amyloid precursor
21	49	100.0	12	23	ABB07592	Biotinylated synth
22	49	100.0	12	23	AAE16657	APP substrate pept
23	49	100.0	12	23	AAU74831	Synthetic amyloid
24	49	100.0	12	24	AA026795	Beta-secretase sub
25	49	100.0	13	19	AAW70869	Beta-amyloid pepti
26	49	100.0	13	23	AAM50891	Fluorescent substr
27	49	100.0	13	24	ABP71624	Beta-secretase act
28	49	100.0	13	24	ABG75934	Synthetic Amyloid
29	49	100.0	13	24	ABP71462	Beta-secretase act
30	49	100.0	13	24	ABP71263	Synthetic APP subs
31	49	100.0	13	24	AA016443	Beta-secretase syn
32	49	100.0	13	24	ABP57078	Synthetic amyloid
33	49	100.0	13	24	ABP58369	Synthetic amyloid
34	49	100.0	16	21	AAB06315	Human beta-amyloid
35	49	100.0	16	21	AAB06317	Human beta-amyloid
36	49	100.0	18	22	AAE00608	Beta-amyloid precu
37	49	100.0	20	21	AAY69713	Beta-APP alpha-sec
38	49	100.0	23	22	AAB75147	Asp 1 substrate se
39	49	100.0	23	22	AAB97473	Asp2 substrate wil
40	49	100.0	33	20	AAW98002	Amyloid precursor
41	49	100.0	39	21	AAY69717	Beta-APP alpha-sec
42	49	100.0	45	18	AAW26512	Amyloid precursor
43	49	100.0	45	18	AAW26392	Amyloid precursor
44	49	100.0	45	19	AAW44748	APP-REP 751 [BAP d
45	49	100.0	45	19	AAW42977	Deletion beta-amyl

```
RESULT 1
AAR24261
     AAR24261 standard; Protein; 10 AA.
XX
AC
     AAR24261;
XX
DT
     25-MAR-2003
                  (updated)
DT
     09-NOV-1992
                 (first entry)
XX
DE
     Human amyloidin protease substrate sequence #1.
XX
     Alzheimer's disease; beta amyloid precursor protein; APP; zinc;
KW
KW
     metalloprotease; hAP; protease inhibitor; APP592-601
XX
OS
     Synthetic.
XX
                     Location/Qualifiers
FH
     Kev
FT
     Modified-site
FT
                     /note= "Acetylated-Ser"
XX
PN
     WO9207068-A1.
XX
PD
     30-APR-1992.
XX
PF
     04-OCT-1991;
                    91WO-US07290.
XX
PR
     05-OCT-1990;
                    90US-0594122.
PR
     30-SEP-1991;
                    91US-0766351.
XX
PA
     (ATHE-) ATHENA NEUROSCIENCES INC.
     (ELIL ) LILLY & CO ELI.
PA
XX
PΙ
     Dovey HF,
                Johnstone EM,
                               Little SP, McConloque L, Seubert PA;
ΡI
     Sinha S;
XX
    WPI; 1992-167148/20.
DR
XX
     Human amyloidin protease - used for cleaving Met-Asp bond in
PT
PT
     amyloid-like substrate for identifying protease inhibitors
XX
    Claim 1; Page 52; 62pp; English.
PS
XX
CC
    Claimed human amyloidin protease is defined by its ability to
     cleave the Met-Asp bond of this synthetic substrate. The substrate,
CC
CC
    which corresponds to residues 592 to 601 of the 695 amino acid APP,
CC
     can be used in an assay for identifying inhibitors of proteases
    which cleave Met-Asp bonds, e.g. amyloidin, human skin chymase or
CC
CC
     rat mast cell protease I or II.
     See AAR24260-3, AAR24266-7 and AAQ24875-Q24887.
CC
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
                10 AA;
  Query Match
                          100.0%; Score 49; DB 13; Length 10;
 Best Local Similarity
                          100.0%; Pred. No. 0.00059;
           10; Conservative
                               0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
```

```
Qу
            1 SEVKMDAEFR 10
              Db
            1 SEVKMDAEFR 10
RESULT 2
AAY69703
ID
     AAY69703 standard; peptide; 10 AA.
XX
AC
     AAY69703;
XX
DT
     11-APR-2000 (first entry)
XX
     Beta-APP alpha-secretase substrate [KMD]-APP(-5,+5).
DE
XX
KW
     Nootropic; neuroprotective; beta-amyloid precursor protein; metabolism;
KW
     cleavage site; beta-secretase; neurodegenerative disease;
KW
     Alzheimer's disease.
XX
OS
     Homo sapiens.
XX
PN
     WO9964587-A1.
XX
PD
     16-DEC-1999.
XX
PF
     04-JUN-1999;
                    99WO-FR01326.
XX
PR
     05-JUN-1998;
                    98FR-0007068.
PR
     31-MAR-1999;
                    99US-0122599.
XX
PA
     (RHON ) RHONE-POULENC RORER SA.
PΑ
     (UYPA-) UNIV CURIE PARIS VI P & M.
XX
     Rholam M, Munoz-Gimenez N, Moutaouakil M, Cohen P, Bertrand P;
PΙ
XX
     WPI; 2000-097537/08.
DR
XX
     Polypeptide with beta-secretase activity, specific for wild-type
PT
     amyloid precursor protein, useful in treating Alzheimer's disease -
PT
XX
PS
     Example 3; Page 24; 44pp; French.
XX
     Peptides AAY69702-Y69718 represent synthetic peptide substrates for a
CC
     novel polypeptide with beta-secretase activity that can cleave
CC
     specifically the natural beta-amyloid precursor protein (bAPP). Normal
CC
CC
     cleavage of the protein occurs between amino acids Met596-Asp597 and
CC
     Val636-Ile637 (positions 4-5 and 44-45 of AAY69701). The novel
CC
     polypeptide is used to identify agents that interact specifically with
CC
     it. These agents regulate metabolism of APP, particularly they slow down
CC
     or reduce production of beta-amyloid, so can be used to treat
CC
     neurodegenerative diseases, particularly Alzheimer's disease.
XX
SQ
     Sequence
               10 AA;
  Query Match
                          100.0%; Score 49; DB 21; Length 10;
  Best Local Similarity
                          100.0%; Pred. No. 0.00059;
 Matches
           10; Conservative
                                                  0; Indels
                               0; Mismatches
                                                                 0; Gaps
                                                                             0;
```

```
Qу
             1 SEVKMDAEFR 10
               111111111
 Db
             1 SEVKMDAEFR 10
 RESULT 3
AAE10654
      AAE10654 standard; peptide; 10 AA.
XX
AC
     AAE10654;
XX
DT
      10-DEC-2001 (first entry)
XX
DE
     Human wild-type APP beta-secretase peptide, PHA-95812E.
XX
KW
     Human; aspartyl protease 1; Asp1; amyloid precursor protein;
     Alzheimer's disease; AD; dementia; neurofibrillary tangle; gliosis;
KW
     amyloid plaque; neuronal loss; proteolytic; nootropic; neuroprotective;
KW
KW
     APP beta-secretase peptide.
XX
OS
     Homo sapiens.
XX
FH
     Kev
                     Location/Qualifiers
     Cleavage-site
FT
                     5..6
XX
PN
     GB2357767-A.
XX
PD
     04-JUL-2001.
XX
PF
     22-SEP-2000; 2000GB-0023315.
XX
PR
     23-SEP-1999;
                    99US-0155493.
PR
     23-SEP-1999;
                    99US-0404133.
PR
     23-SEP-1999;
                    99WO-US20881.
PR
     13-OCT-1999;
                    99US-0416901.
PR
     06-DEC-1999;
                    99US-0169232.
XX
PΑ
     (PHAA ) PHARMACIA & UPJOHN CO.
XX
PI
     Bienkowkski MJ, Gurney M;
XX
DR
     WPI; 2001-444208/48.
XX
PT
     Polypeptide comprising fragments of human aspartyl protease with
PT
     amyloid precursor protein processing activity and alpha-secretase
PT
     activity, for identifying modulators useful in treating Alzheimer's
PT
     disease -
XX
PS
     Example 12; Page 84; 187pp; English.
XX
CC
     The patent discloses human aspartyl protease 1 (hu-Asp1) or modified
CC
    Aspl proteins which lack transmembrane domain or amino terminal
CC
    domain or cytoplasmic domain and retains alpha-secretase activity
CC
     and amyloid protein precursor (APP) processing activity. The proteins
    of the invention are useful for assaying hu-Aspl alpha-secretase
CC
CC
    activity, which in turn is useful for identifying modulators of
```

```
CC
     hu-Asp1 alpha-secretase activity, where modulators that increase
CC
     hu-Aspl alpha-secretase activity are useful for treating Alzheimer's
CC
     disease (AD) which causes progressive dementia with consequent
CC
     formation of amyloid plaques, neurofibrillary tangles, gliosis and
     neuronal loss. Hu-Asp1 protease substrate is useful for assaying
CC
CC
     hu-Aspl proteolytic activity, by contacting hu-Aspl protein with
CC
     the substrate under acidic conditions and determining the level of
CC
    hu-Aspl proteolytic activity. The present sequence is wild-type
CC
    human amyloid precursor protein (APP) beta-secretase specific
CC
     substrate peptide, PHA-95812E. This peptide is used for assaying
CC
     the beta-secretase activity of human Aspartyl protease 2a (Asp2a)
CC
    protein. The peptide is also used for determining the relationship
CC
    between Aspartyl protease 1 (Asp1) and APP protein.
XX
SQ
    Sequence
                10 AA;
  Query Match
                          100.0%; Score 49; DB 22;
                                                      Length 10;
  Best Local Similarity
                          100.0%;
                                  Pred. No. 0.00059;
           10; Conservative
                               0; Mismatches
                                                   0;
                                                      Indels
                                                                 0; Gaps
                                                                             0:
            1 SEVKMDAEFR 10
Qу
              1 SEVKMDAEFR 10
Db
RESULT 4
AAE06899
ID
    AAE06899 standard; peptide; 10 AA.
XX
AC
    AAE06899;
XX
DT
    23-OCT-2001 (first entry)
XX
DE
    Human amyloid precursor protein wild-type beta-secretase peptide.
XX
KW
    Human; aspartyl protease 2; Asp 2; beta-amyloid precursor protein; APP;
KW
    beta-secretase; Alzheimer's disease; dementia; amyloid plaque; gliosis;
KW
    neurofibrillary tangle; neuronal loss; amyloid-beta peptide; nootropic;
KW
    neuroprotective; antisense therapy; gene therapy.
XX
OS
    Homo sapiens.
XX
FH
                     Location/Qualifiers
    Key
FT
    Cleavage-site
                     5..6
XX
PΝ
    WO200150829-A2.
XX
PD
    19-JUL-2001.
XX
PF
    09-MAY-2001; 2001WO-IB00799.
XX
    09-MAY-2001; 2001WO-IB00799.
PR
XX
PA
     (BIEN/) BIENKOWSKI M J.
PA
     (GURN/) GURNEY M E.
PΑ
     (HEIN/) HEINRIKSON R L.
PA
     (PARO/) PARODI L A.
```

```
PA
     (YANR/) YAN R.
XX
PΙ
     Bienkowski MJ,
                     Gurney ME, Heinrikson RL, Parodi LA, Yan R;
ХX
     WPI; 2001-483072/52.
DR
XX
PT
     Novel purified polypeptide comprising fragment of mammalian aspartyl
PT
     protease 2, lacking Asp2 transmembrane domain and retaining beta
PT
     secretase activity of Asp2 useful for identifying inhibitors of Asp2
PT
     activity
XX
PS
     Claim 127; Page 80; 185pp; English.
XX
CC
     The invention relates to human aspartyl proteases (Hu-Asp), beta-amyloid
CC
     precursor protein (APP) isoforms and their corresponding DNA molecules.
CC
     Human aspartyl proteases can act as beta-secretase proteases useful for
CC
     treating Alzheimer's disease. APP isoforms are useful for identifying
CC
     modulators of amyloid-beta peptide production, for use in designing
CC
     therapeutics for the treatment and prevention of Alzheimer's disease,
     dementia, formation of amyloid plaques, neurofibrillary tangles, gliosis
CC
CC
     and neuronal loss. APP isoforms are also used in methods for identifying
     inhibitors and modulators of human Asp2 activity. The invention relates
CC
CC
     to a method for identifying agents that modulate the activity of human
CC
     aspartyl protease Asp2. Amyloid-beta peptides obtained from APP are used
CC
     as a means to screen in cellular assays for the inhibitors of beta- and
CC
     gamma- secretase. Hu-Asp DNA fragments are useful as probes or primers in
CC
     polymerase chain reactions (PCR). The probes are useful for detecting
CC
     Hu-Asp nucleic acids in in vitro assays and in Northern and Southern
CC
     blots. The present sequence is human amyloid precursor protein (APP)
CC
     wild type beta-secretase peptide used in beta-secretase assay.
XX
SQ
     Sequence
                10 AA;
                          100.0%; Score 49; DB 22; Length 10;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 0.00059;
           10; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                     Gaps
            1 SEVKMDAEFR 10
Qу
              111111111
Db
            1 SEVKMDAEFR 10
RESULT 5
AAU06628
ID
    AAU06628 standard; Peptide; 10 AA.
XX
AC
    AAU06628;
XX
DT
     24-OCT-2001 (first entry)
XX
DE
     Asp2 recognition site from wild-type APP.
XX
KW
     Aspartyl protease; Asp2; beta-secretase; nootropic;
KW
     neuroprotective; amyloid protein precursor; APP; Alzheimer's disease;
KW
     amyloid-beta; Abeta.
XX
OS
     Homo sapiens.
```

```
XX
FH
                     Location/Qualifiers
     Kev
     Cleavage-site
FΨ
FT
                     /label= Asp2 protease cleavage site
XX
ΡN
     WO200149098-A2.
XX
PD
     12-JUL-2001.
XX
ΡF
     09-MAY-2001; 2001WO-IB00798.
XX
PR
     09-MAY-2001; 2001WO-IB00798.
XX
     (BIEN/) BIENKOWSKI M J.
PΑ
     (GURN/) GURNEY M E.
PΑ
     (HEIN/) HEINRIKSON R L.
PA
PA
     (PARO/) PARODI L A.
PΑ
     (YANR/) YAN R.
XX
ΡI
     Bienkowski MJ, Gurney ME, Heinrikson RL, Parodi LA, Yan R;
XX
DR
     WPI; 2001-502549/55.
XX
PT
     Novel purified polypeptide comprising fragment of mammalian aspartyl
     protease 2, lacking Asp2 transmembrane domain and retaining beta
PΤ
PΨ
     secretase activity of Asp2 useful for identifying inhibitors of Asp2
PT
     activity
ХX
     Claim 127; Page 101; 185pp; English.
PS
XX
CC
     The invention relates to a purified polypeptide comprising a fragment of
CC
     mammalian aspartyl protease (Asp)2 protein which lacks the Asp2
CC
     transmembrane domain and the Asp2 protein, and where the polypeptide and
CC
     the fragment retain the beta-secretase activity of the mammalian Asp2
CC
     protein. The invention also details polynucleotides for the Asp
CC
     proteins and vectors expressing them, and a polypeptide (isoform of
CC
     amyloid protein precursor (APP)) comprising the amino acid sequence of an
CC
     APP or its fragment containing an APP cleavage site recognizable by a
CC
     mammalian beta-secretase, and further comprising two lysine residues at
CC
     the carboxyl terminus of the amino acid sequence of the mammalian APP or
CC
     APP fragment. Also included in the invention are methods of identifying
CC
     modulators or inhibitors of Asp2. Modulators and inhibitors of Asp2 are
CC
     useful for treating Alzheimer's disease. APP is useful in methods for
CC
     identifying inhibitors or modulators of human Asp2 activity and
CC
     amyloid-beta (Abeta) peptide production. APP is also useful in designing
CC
     therapeutics for the treatment or prevention of Alzheimer's disease.
     APP comprising the APP-Sw-beta-secretase peptide sequence (NLDA), which
CC
CC
     is associated with increased levels of Abeta processing is useful in
CC
     assays relating the Alzheimer's research. The expression vector is useful
CC
     for recombinantly expressing APP. Nucleic acids that hybridise to
CC
     Asp oligonucleotides are useful as probes or primers. The probes are
CC
     useful for detecting Hu-Asp nucleic acids in in vitro assays and in
CC
     Northern and Southern blots. The present sequence is a peptide substrate
```

for Asp2 corresponding to the wild-type APP beta-secretase site.

Sequence 10 AA;

CC

XX SO

```
Query Match
                          100.0%; Score 49; DB 22; Length 10;
  Best Local Similarity
                          100.0%; Pred. No. 0.00059;
            10; Conservative
                                 0: Mismatches
                                                    0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
            1 SEVKMDAEFR 10
Qу
              111111111
Db
            1 SEVKMDAEFR 10
RESULT 6
AAU07227
     AAU07227 standard; Peptide; 10 AA.
TD
XX
AC
     AAU07227;
XX
DΤ
     24-OCT-2001 (first entry)
XX
DE
     Human beta-amyloid protein precursor, APP-beta40 and 42 secretase site.
XX
KW
     Human; aspartyl protease 1; Asp-1; nootropic; neuroprotective;
KW
     aspartyl protease 2; Asp2; amyloid protein precursor; APP;
KW
     beta-secretase; Alzheimer's disease; APP-beta40; APP-beta42.
XX
OS
     Homo sapiens.
XX
PN
     WO200149097-A2.
XX
PD
     12-JUL-2001.
XX
PF
     09-MAY-2001; 2001WO-IB00797.
XX
PR
     09-MAY-2001; 2001WO-IB00797.
XX
PΑ
     (BIEN/) BIENKOWSKI M J.
PA
     (GURN/) GURNEY M E.
     (HEIN/) HEINRIKSON R L.
PΆ
PA
     (PARO/) PARODI L A.
PA
     (YANR/) YAN R.
XX
PI
     Bienkowski MJ, Gurney ME, Heinrikson RL, Parodi LA, Yan R;
XX
DR
     WPI; 2001-502548/55.
XX
PT
     Novel purified polypeptide comprising fragment of mammalian aspartyl
PT
     protease 2, lacking Asp2 transmembrane domain and retaining beta
PT
     secretase activity of Asp2 useful for identifying inhibitors of Asp2
РΤ
     activity
XX
PS
     Claim 127; Page 101; 185pp; English.
XX
CC
     The invention relates to a novel purified polypeptide comprising a
CC
     fragment of mammalian aspartyl protease 2 (Asp2) protein which lacks the
CC
     Asp2 transmembrane domain and the Asp2 protein, and where the polypeptide
CC
     and the fragment retain the beta-secretase activity of the mammalian Asp2
CC
     protein. Also included is an isoform of amyloid protein precursor (APP)
CC
     comprising the amino acid sequence of a APP or its fragment containing
CC
     an APP cleavage site recognisable by a mammalian beta-secretase, and
```

```
CC
     further comprising two lysine residues at the carboxyl terminus of the
CC
     amino acid sequence of the mammalian APP or APP fragment. The
CC
     polypeptides are used for assaying for modulators of beta-secretase
CC
     activity; identifying agents that inhibit the APP processing activity
     of human Asp2 aspartyl protease (Hu-Asp2); identifying agents that
CC
    modulate the activity of Asp2; and for reducing cellular production of
CC
CC
     amyloid beta (Abeta) from APP. Agents identified by the above methods
CC
     are useful for treating Alzheimer's disease; and for identifying
    modulators of amyloid-beta (Abeta) peptide production, for use in
CC
CC
    designing therapeutics for the treatment or prevention of Alzheimer's
CC
     disease. Probes and primers derived from Asp nucleic acid sequences
     are useful for detecting Hu-Asp nucleic acids in in vitro assays and in
CC
    Northern and Southern blots. The present sequence represents the
CC
     amino acid sequence of human amyloid protein precursor, APP-beta40
CC
CC
    and APP-beta42 secretase sites.
XX
SQ
    Sequence
                10 AA;
                          100.0%; Score 49; DB 22; Length 10;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 0.00059;
          10; Conservative
 Matches
                                0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
           1 SEVKMDAEFR 10
Qу
              Db
            1 SEVKMDAEFR 10
RESULT 7
AAE02606
TD
    AAE02606 standard; peptide; 10 AA.
XX
AC
    AAE02606;
XX
DT
    10-AUG-2001 (first entry)
XX
DE
    Human wild-type APP beta-secretase substrate peptide, PHA-95812E.
XX
KW
    Human; alpha-secretase; amyloid precursor protein; APP; therapy;
KW
    Alzheimer's disease; antialzheimer's; aspartyl protease 2a; Asp2a;
KW
    beta-secretase.
XX
OS
    Homo sapiens.
XX
FH
                     Location/Qualifiers
FT
    Cleavage-site
XX
PN
    WO200123533-A2.
XΧ
PD
    05-APR-2001.
XX
PF
    22-SEP-2000; 2000WO-US26080.
XX
PR
    23-SEP-1999;
                    99US-0155493.
PR
    23-SEP-1999;
                    99WO-US20881.
PR
    13-OCT-1999;
                    99US-0416901.
PR
    06-DEC-1999;
                    99US-0169232.
XX
```

```
PΑ
     (PHAA ) PHARMACIA & UPJOHN CO.
XX
PΙ
     Gurney M, Bienkowski MJ;
XX
     WPI; 2001-290516/30.
DR
XX
PT
     Enzymes that cleave the alpha-secretase site of the amyloid precursor
PT
     protein, useful for the treatment of Alzheimer's disease -
XX
PS
     Example 12; Page 85; 189pp; English.
XX
CC
     The present invention relates to enzymes for cleaving the alpha-
CC
     secretase site of the amyloid precursor protein (APP) and methods of
CC
     identifying those enzymes. The methods may be used to identify enzymes
CC
     that may be used to cleave the alpha-secretase cleavage site of the APP
CC
     protein. The enzymes may be used to treat or modulate the progress of
CC
     Alzheimer's disease. The present sequence is human wild-type amyloid
CC
     precursor protein (APP) beta-secretase specific substrate peptide,
     PHA-95812E. This peptide is used for assaying the beta-secretase activity
CC
CC
     of human Aspartyl protease 2a (Asp2a) protein. The peptide is also used
CC
     for determining the relationship between Aspartyl protease 1 (Asp1) and
CC
     APP protein.
XX
SQ
     Sequence
                10 AA;
  Query Match
                          100.0%; Score 49; DB 22;
                                                      Length 10;
  Best Local Similarity
                          100.0%; Pred. No. 0.00059;
 Matches
           10; Conservative
                                 0; Mismatches
                                                   0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SEVKMDAEFR 10
              111111111
Db
            1 SEVKMDAEFR 10
RESULT 8
AAB66574
     AAB66574 standard; Peptide; 10 AA.
XX
AC
    AAB66574;
XX
DT
     12-APR-2001 (first entry)
XX
DE
     Synthetic peptide derived from APP beta-secretase site.
XX
KW
     Memapsin 2; nootropic; neuroprotective; amyloid precursor protein;
KW
     APP; memapsin 2 inhibitor; Alzheimer's disease.
XX
OS
     Synthetic.
XX
PN
     WO200100665-A2.
XX
PD
     04-JAN-2001.
XX
PF
     27-JUN-2000; 2000WO-US17742.
XX
PR
     28-JUN-1999;
                    99US-0141363.
PR
     30-NOV-1999;
                    99US-0168060.
```

```
PR
     25-JAN-2000; 2000US-0177836.
     27-JAN-2000; 2000US-0178368.
PR
     08-JUN-2000; 2000US-0210292.
PR
ΧX
     (OKLA-) OKLAHOMA MEDICAL RES FOUND.
PΑ
PA
     (UNII ) UNIV ILLINOIS FOUND.
XX
PΙ
     Tang JJN, Hong L, Ghosh AK;
XX
DR
     WPI; 2001-137933/14.
XX
PT
     Novel memapsin 2 inhibitors which bind to active site of memapsin 2
     having 2 catalytic aspartic residues and substrate binding cleft, used
PT
PΤ
     to treat Alzheimer's disease by blocking amyloid precursor protein
PT
     cleavage
XX
     Disclosure; Page 11; 86pp; English.
PS
XX
CC
     The present sequence is given in a specification relating to an inhibitor
CC
     of catalytically active memapsin 2. The inhibitor binds to the memapsin 2
CC
     active site, which is defined by the presence of two catalytic aspartic
CC
     residues and a substrate binding cleft. The inhibitor is useful for
     the treatment and diagnosis of Alzheimer's disease. It is useful in
CC
CC
     screens for individuals with a genetic predisposition to Alzheimer's
CC
     disease. The inhibitor is useful as a reagent for specifically binding to
CC
     memapsin 2 or memapsin 2 analogues and for aiding in memapsin 2
CC
     isolation, purification and characterisation.
XX
SQ
     Sequence
                10 AA;
                                   Score 49; DB 22; Length 10;
                          100.0%;
  Query Match
                                   Pred. No. 0.00059;
  Best Local Similarity
                          100.0%;
            10; Conservative
                                 0; Mismatches
                                                                              0;
                                                    0; Indels
                                                                  0; Gaps
            1 SEVKMDAEFR 10
Qу
              1111111111
Db
            1 SEVKMDAEFR 10
RESULT 9
AAB46208
ID
     AAB46208 standard; peptide; 10 AA.
XX
AC
     AAB46208;
XX
DΤ
     04-APR-2001 (first entry)
XX
DE
     Human APP derived immunogenic peptide #4.
XX
KW
     Amyloid deposit; APP; Abeta; brain; human; clearing response; nootropic;
KW
     Fc receptor mediated phagocytosis; immunogenic response; neuroprotective;
KW
     amyloid precursor protein; Alzheimer's disease.
XX
OS
     Homo sapiens.
XX
PN
     WO200072880-A2.
XX
```

```
PD
     07-DEC-2000.
XX
PF
     26-MAY-2000; 2000WO-US14810.
XX
PR
     28-MAY-1999;
                    99US-0322289.
XX
PΑ
     (NEUR-) NEURALAB LTD.
XX
PΙ
     Schenk DB, Bard F, Vasquez NJ, Yednock T;
XX
DR
     WPI; 2001-032104/04.
XX
РΤ
     Preventing or treating a disease associated with amyloid deposits,
PT
     especially Alzheimer's disease, comprises administering amyloid
PT
     specific antibody
XX
PS
     Disclosure; Figure 19; 143pp; English.
XX
CC
     This invention describes a novel method of preventing or treating a
CC
     disease associated with amyloid deposits of amyloid precursor protein
CC
     (APP) Abeta fragments in the brain of a patient, which comprises
CC
     administering to the patient: (a) an antibody that binds to Abeta, the
     antibody binds to an amyloid deposit and induces a clearing response (Fc
CC
CC
     receptor mediated phagocytosis) against it (b) a polypeptide containing
CC
     an N-terminal segment of at least residues 1-5 of Abeta; or (c) an agent
CC
     that induces an immunogenic response against residues 1-3 to 7-11 of
CC
     Abeta. The products of the invention have nootropic and neuroprotective
CC
     activity. The method is also useful for monitoring a course of treatment
CC
     being administered to a patient e.g. active and passive immunization. The
CC
     methods are useful for prophylactic and therapeutic treatment of
CC
     Alzheimer's disease.
XX
SQ
     Sequence
              10 AA;
                          100.0%; Score 49; DB 22; Length 10;
 Query Match
                         100.0%; Pred. No. 0.00059;
  Best Local Similarity
 Matches
          10; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SEVKMDAEFR 10
Qy
              Db
            1 SEVKMDAEFR 10
RESULT 10
AAB61336
ID
     AAB61336 standard; peptide; 10 AA.
XX
    AAB61336;
АC
XX
DT
     02-APR-2001 (first entry)
XX
DE
     Sythetic peptide from beta amyloid precursor protein.
XX
KW
    Memapsin 2; catalyst; Alzheimer's.
XX
OS
     Unidentified.
XX
```

```
PN
     WO200100663-A2.
XX
PD
     04-JAN-2001.
XX
     27-JUN-2000; 2000WO-US17661.
PF
XX
     28-JUN-1999;
                    99US-0141363.
PR
PR
     30-NOV-1999;
                    99US-0168060.
PR
     25-JAN-2000; 2000US-0177836.
PR
     27-JAN-2000; 2000US-0178368.
PR
     08-JUN-2000; 2000US-0210292.
XX
     (OKLA-) OKLAHOMA MEDICAL RES FOUND.
PΑ
XX
PΙ
     Tang JJN, Lin X, Koelsch G;
XX
     WPI; 2001-102885/11.
DR
XX
PT
     Purified recombinant catalytically active memapsin 2, used to screen
\mathbf{PT}
     inhibitors of it, which are used to treat and prevent Alzheimer's
РΤ
     disease -
XX
     Claim 6; Page 11; 86pp; English.
PS
XX
CC
     The present invention relates to a purified recombinant
     catalytically active memapsin 2. The invention may be used for
CC
CC
     isolating inhibitors which are used to treat or prevent
     Alzheimer's disease. The invention may also be used to screen
CC
CC
     for individuals more genetically prone to develop Alzheimer's
CC
     disease.
XX
SQ
     Sequence
                10 AA;
                          100.0%; Score 49; DB 22; Length 10;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.00059;
           10; Conservative
                               0; Mismatches
  Matches
                                                  0; Indels
                                                                      Gaps
                                                                              0;
Qу
            1 SEVKMDAEFR 10
              111111111
Db
            1 SEVKMDAEFR 10
RESULT 11
ABG78375
ID
     ABG78375 standard; Peptide; 10 AA.
XX
AC
     ABG78375;
XX
DT
     15-NOV-2002 (first entry)
XX
DE
     Human beta amyloid precursor protein beta secretase site #1.
XX
KW
     Human; memapsin 2; aspartic protease; beta secretase;
KW
     degenerative disease; Alzheimer's disease; amyloid precursor protein;
KW
     APP; neuroprotective; nootropic; inhibitor; cleavage site;
     substrate side-chain preference.
KW
XX
```

```
OS
     Homo sapiens.
XX
PN
     WO200253594-A2.
XX
     11-JUL-2002.
PD
XX
PF
     28-DEC-2001; 2001WO-US50826.
XX
PR
     28-DEC-2000; 2000US-258705P.
PR
     14-MAR-2001; 2001US-275756P.
XX
PΑ
     (OKLA-) OKLAHOMA MEDICAL RES FOUND.
PA
    (UNII ) UNIV ILLINOIS FOUND.
XX
PΙ
     Tang JJN, Koelsch G, Ghosh AK;
XX
DR
     WPI; 2002-619088/66.
XX
РΤ
     New memapsin 2 activity inhibitor useful in treatment of e.g.
PT
     Alzheimer's disease -
XX
     Disclosure; Page 23; 74pp; English.
PS
XX
CC
     The invention relates to an inhibitor of catalytically active memapsin 2
CC
     (an aspartic protease which can cleave at beta secretase sites), which
     binds to the active site of memapsin 2 defined by the presence of two
CC
CC
     catalytic aspartic residues and substrate binding cleft. Also
CC
     included is a method of determination of the substrate side-chain
     preference in memapsin 2 sub-sites comprising: (a) reacting a mixture of
CC
CC
     memapsin 2 substrates with memapsin 2, and determining the sub-site
CC
     preference of memapsin 2 by determining relative initial hydrolysis rates
CC
     of the mixture of memapsin 2 substrates; or (b) preparing a combinatorial
CC
     library of memapsin 2 inhibitors containing a base sequence taken from
CC
     OM99-2 (Glu-Val-Asn-Leu-Ala-Ala-Glu-phe), probing the library of
CC
     inhibitors with memapsin 2 which binds to several inhibitors to generate
CC
     several bound memapsin 2, and detecting the bound memapsin 2 with an
CC
     antibody raised to memapsin 2 and an alkaline phosphatase conjugated
CC
     secondary antibody. The inhibitors may be used in the manufacture of a
CC
     medicament for the treatment of Alzheimer's disease since memapsin 2 may
CC
     be involved in the cleavage of amyloid precursor protein (APP), and for
CC
     determining the substrate side-chain preference in memapsin 2 sub-sites.
CC
     The present sequence represents a beta secretase cleavage site used
CC
     to determine the substrate specificity of human memapsin 2.
XX
SQ
     Sequence
                10 AA;
  Query Match
                          100.0%; Score 49; DB 23; Length 10;
 Best Local Similarity
                         100.0%; Pred. No. 0.00059;
 Matches
           10; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SEVKMDAEFR 10
              Db
           1 SEVKMDAEFR 10
```

```
ΙD
     ABG30940 standard; Peptide; 10 AA.
XX
AC
     ABG30940;
XX
DT
     21-OCT-2002 (first entry)
XX
DE
     Nogo/BACE method cleavage peptide #1.
XX
     Human; Nogo; BACE; acute neuronal injury; spinal injury; head injury;
KW
KW
     stroke; peripheral nerve damage; neoplastic disorder; glioblastoma;
     neuroblastoma; hyperproliferative disorder; dysproliferative disorder;
KW
KW
     cirrhosis; psoriasis; keloid formation; fibrocystic condition; cancer;
KW
     tissue hypertrophy; central nervous system; axon regeneration;
     Nogo-associated disease; metastasis; cleavage peptide.
KW
XX
OS
     Unidentified.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Cleavage-site
FT
                     /note= "Beta-secretase cleavage site"
XX
PN
     W0200257483-A2.
XX
PD
     25-JUL-2002.
XX
PF
     18-JAN-2002; 2002WO-GB00228.
XX
PR
     18-JAN-2001; 2001GB-0001312.
XX
PΑ
     (GLAX ) GLAXO GROUP LTD.
     (SMIK ) SMITHKLINE BEECHAM PLC.
PΑ
XX
PΙ
     Blackstock WP, Hale RS,
                              Prinjha R, Rowley A;
XX
DR
     WPI; 2002-599722/64.
XX
PT
     Identifying modulators of Nogo or BACE activity for treating acute
PT
     neuronal injuries, neoplastic or dysproliferative disorders, comprises
РΤ
     providing and monitoring interaction between Nogo and BACE polypeptides
PT
XX
ΡS
     Disclosure; Page 14; 68pp; English.
XX
CC
     The present invention relates to a new method of identifying modulators
CC
     of Nogo function or BACE activity. The method involves providing Nogo and
     BACE polypeptides capable of binding with each other, monitoring the
CC
CC
     interaction between these polypeptides, and determining if the test agent
CC
     is a modulator of Nogo or BACE activity. The method is useful in treating
CC
     acute neuronal injuries, such as spinal or head injury, stroke,
CC
     peripheral nerve damage, and in neoplastic (e.g. glioblastomas,
CC
     neuroblastomas), hyperproliferative or dysproliferative disorders (e.g.
CC
     cirrhosis, psoriasis, keloid formation, fibrocystic conditions, tissue
CC
     hypertrophy) of the central nervous system. The BACE polypeptide is
CC
     useful in screening methods to identify agents that may act as modulators
     of BACE activity and in particular agents that may be useful in treating
CC
CC
     Nogo-associated diseases. The modulators of Nogo or BACE polypeptides,
CC
     and the polynucleotide encoding the BACE polypeptide are useful in
```

```
CC
      manufacturing a medicament for the treatment or prevention of disorders
 CC
      responsive to the modulation of Nogo activity, in alleviating the
 CC
      symptoms or improving the condition of a patient suffering from this
 CC
      disorder, in axon regeneration, or in preventing metastasis or spreading
      of a cancer. The polynucleotide may also be an essential component in
 CC
      assays, a probe, in recombinant protein synthesis, and in gene therapy
 CC
 CC
      techniques. The present amino acid sequence represents a cleavage peptide
 CC
      that was used in the methods of the invention.
XX
 SO
      Sequence
                 10 AA;
  Query Match
                           100.0%;
                                    Score 49; DB 23; Length 10;
  Best Local Similarity
                           100.0%; Pred. No. 0.00059;
  Matches
            10; Conservative
                                 0; Mismatches
                                                    0; Indels
                                                                       Gaps
                                                                               0;
Qy
             1 SEVKMDAEFR 10
               111111111
Db
             1 SEVKMDAEFR 10
RESULT 13
AAU99490
ID
     AAU99490 standard; peptide; 10 AA.
XX
AC
     AAU99490;
XX
DT
     07-OCT-2002 (first entry)
XX
DE
     Peptide #1 used as substrate for human memapsin 2.
XX
KW
     Human; memapsin 2; beta secretase; aspartic protease; APP;
KW
     beta-amyloid precursor protein; amyloid plaque; Alzheimer's disease;
KW
     neuroprotective; nootropic.
XX
     Homo sapiens.
OS
OS
     Synthetic.
XX
PN
     US2002049303-A1.
XX
PD
     25-APR-2002.
XX
PF
     28-FEB-2001; 2001US-0796264.
XX
PR
     28-JUN-1999;
                    99US-141363P.
PR
     30-NOV-1999;
                    99US-168060P.
     25-JAN-2000; 2000US-177836P.
PR
PR
     27-JAN-2000; 2000US-178368P.
PR
     27-JUN-2000; 2000US-0604608.
XX
PA
     (TANG/) TANG J J N.
PΑ
     (LINX/) LIN X.
PΑ
     (KOEL/) KOELSCH G.
PA
     (HONG/) HONG L.
XX
PΙ
     Tang JJN, Lin X, Koelsch G, Hong L;
XX
DR
     WPI; 2002-507280/54.
```

```
XX
 PT
      New recombinant catalytically active memapsin 2, useful to screen for
 PT
      inhibitors of memapsin 2 which can be used to prevent and treat
 PT
      Alzheimer's disease -
XX
      Claim 6; Page 30; 44pp; English.
 PS
XX
CC
      The present invention relates to methods for the production of
CC
      purified, recombinant catalytically active, memapsin 2 (beta
      secretase). Memapsin 2, a member of the aspartic protease family,
CC
     cleaves beta-amyloid precursor protein (APP) found in amyloid plaques.
CC
     The recombinant memapsin 2 is useful for identifying inhibitors of
CC
CC
     memapsin 2 in the design of drugs for the treatment and/or prevention
     of Alzheimer's disease. The recombinant memapsin 2 can be used to
CC
CC
     immunise against Alzheimer's disease. The present sequence represents
CC
     a peptide used as a substrate for human memapsin 2.
XX
SQ
     Sequence
                10 AA;
  Query Match
                           100.0%; Score 49; DB 23; Length 10;
  Best Local Similarity
                          100.0%; Pred. No. 0.00059;
  Matches
           10; Conservative
                                 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SEVKMDAEFR 10
              Db
            1 SEVKMDAEFR 10
RESULT 14
ABB78615
ΙD
     ABB78615 standard; Peptide; 10 AA.
XX
AC
     ABB78615;
XX
DT
     16-JUL-2002 (first entry)
XX
DΕ
     Beta-secretase specific substrate PHA-95812E SEQ ID NO:64.
XX
KW
     Human; Asp-1; Asp-2; aspartyl protease; Alzheimer's disease;
KW
     proteolytic.
XX
OS
     Synthetic.
XX
PN
     GB2367060-A.
XX
PD
     27-MAR-2002.
XX
PF
     29-OCT-2001; 2001GB-0025934.
XX
PR
     23-SEP-1999;
                    99US-155493P.
PR
     23-SEP-1999;
                    99US-0404133.
PR
     23-SEP-1999;
                    99WO-US20881.
PR
     13-OCT-1999;
                    99US-0416901.
PR
     06-DEC-1999;
                    99US-169232P.
PR
     22-SEP-2000; 2000GB-0023315.
XX
PΑ
     (PHAA ) PHARMACIA & UPJOHN CO.
```

```
XX
PΙ
    Bienkowkski MJ, Gurney M;
XX
    WPI; 2002-396337/43.
DR
XX
    Human aspartyl protease 1 substrates useful in assays to detect
_{\rm Tq}
     aspartyl protease activity, e.g. for the diagnosis of Alzheimer's
PT
PT
    disease -
XX
     Example 15; Page 92; 182pp; English.
PS
XX
    The present invention describes a human aspartyl protease 1 (hu-Asp1)
CC
CC
     substrate (I) which comprises a peptide of no more than 50 amino acids,
     and which comprises the 8 amino acid sequence Gly-Leu-Ala-Leu-Ala-Leu-
CC
    Glu-Pro. Also described are: (1) a method (II) for assaying hu-Aspl
CC
    proteolytic activity, comprising: (a) contacting a hu-Aspl protein with
CC
     (I) under acidic conditions; and (b) determining the level of hu-Aspl
CC
    proteolytic activity; (2) a purified polynucleotide (III) comprising a
CC
CC
    nucleotide sequence that hybridises under stringent conditions to the
CC
    non-coding strand complementary to a defined 1804 nucleotide sequence
CC
     (see ABL52456) where the nucleotide sequence encodes a polypeptide having
    Asp1 proteolytic activity and lacks nucleotides encoding a transmembrane
CC
    domain); (3) a purified polynucleotide (III') comprising a sequence that
CC
    hybridises under stringent conditions to (III) (the nucleotide sequence
CC
CC
     encodes a polypeptide further lacking a pro-peptide domain corresponding
     to amino acids 23-62 of hu-Aspl (see ABB78589)); (4) a vector (IV)
CC
     comprising (III) or (III'); and (5) a host cell (V) transformed or
CC
     transfected with (III), (III') and/or (IV). The hu-Aspl protease
CC
     substrate (I) may be used as an enzyme substrate in assays to detect
CC
     aspartyl protease activity, (II) and therefore diagnose diseases
CC
     associated with aberrant hu-Asp1 expression and activity such as
CC
CC
    Alzheimer's disease. Hu-Aspl has been localised to chromosome 21, while
    hu-Asp2 has been localised to chromosome 11q23.3-24.1. The present
CC
CC
     sequence represents a beta-secretase specific substrate peptide which is
CC
     used in an example from the present invention.
XX
SQ
     Sequence
                10 AA;
                          100.0%; Score 49; DB 23; Length 10;
  Query Match
                          100.0%; Pred. No. 0.00059;
  Best Local Similarity
 Matches
                              0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
          10; Conservative
            1 SEVKMDAEFR 10
Qy
              1 SEVKMDAEFR 10
Db
RESULT 15
ABB06426
ID
     ABB06426 standard; Peptide; 10 AA.
XX
AC
    ABB06426;
XX
DT
     31-MAY-2002 (first entry)
XX
     Human APP beta-secretase cleavage sequence SEQ ID NO:20.
DE
XX
```

```
Beta-secretase; enzyme; cleavage site; amyloid protein precursor; APP;
 KW
      aspartyl protease; neuroprotective; nootropic; beta-secretase inhibitor;
 KW
 KW
      Alzheimer's disease.
 XX
 OS
      Homo sapiens.
 XX
 PN
      W0200206306-A2.
 XX
 PD
      24-JAN-2002.
 XX
 PF
      19-JUL-2001; 2001WO-US23035.
 XX
 PR
      19-JUL-2000; 2000US-219795P.
      12-MAR-2001; 2001US-275251P.
 PR
 XX
      (PHAA ) PHARMACIA & UPJOHN CO.
 PA
XX
 PΙ
      Yan R, Tomasselli AG, Gurney ME, Emmons TL, Bienkowski MJ;
 PΙ
     Heinrikson RL;
XX
 DR
     WPI; 2002-216995/27.
XX
PT
     Novel substrates for human aspartyl protease useful for identifying
PT
     modulators of beta secretase activity of aspartyl protease for treating
PT
     Alzheimer's disease -
XX
PS
     Claim 18; Page 126; 188pp; English.
XX
CC
     The present invention describes an isolated peptide (I) comprising a
CC
     sequence of at least four amino acids, where the peptide is a substrate
CC
     for conducting aspartyl protease assays. (I) has neuroprotective and
·CC
     nootropic activities, and can be used as an inhibitor of beta-secretase
CC
     activity. A beta-secretase modulator from the present invention can be
CC
     used for inhibiting beta-secretase activity in vivo, and in the
CC
     manufacture of a medicament for the treatment of Alzheimer's disease.
CC
     Pharmaceutical compositions from the present invention can be used for
CC
     treating a disease or condition characterised by an abnormal beta-
CC
     secretase activity. (I) is useful for identifying agents that modulate
CC
     the activity of human Asp2 aspartyl protease (Hu-Asp2). (I) is useful
CC
     as a core structure to construct derivatives. ABL49914 to ABL49925 and
CC
     ABB06409 to ABB06593 represent sequences used in the exemplification
CC
     of the present invention.
XX
SQ
     Sequence
                10 AA;
  Query Match
                          100.0%;
                                   Score 49; DB 23; Length 10;
  Best Local Similarity
                          100.0%; Pred. No. 0.00059;
  Matches
            10; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SEVKMDAEFR 10
Qv
              11111111
            1 SEVKMDAEFR 10
```

Search completed: January 21, 2004, 09:22:25 Job time: 3.63862 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 21, 2004, 09:19:55; Search time 0.898662 Seconds

(without alignments)

470.821 Million cell updates/sec

Title: US-09-869-414A-64

Perfect score: 49

Sequence: 1 SEVKMDAEFR 10

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 328717 seqs, 42310858 residues

Total number of hits satisfying chosen parameters: 328717

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: Issued Patents AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/6A COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*

5: /cgn2 6/ptodata/1/iaa/PCTUS COMB.pep:*

6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1	49	100.0	10	4	US-09-548-372D-64	Sequence 64, Appl
2	49	100.0	10	4	US-09-548-367D-64	Sequence 64, Appl
3	49	100.0	10	4	US-09-551-853D-64	Sequence 64, Appl
4	49	100.0	10	4	US-09-604-608-4	Sequence 4, Appli
5	49	100.0	11	5	PCT-US94-07043A-7	Sequence 7, Appli
6	49	100.0	12	5	PCT-US94-07043A-2	Sequence 2, Appli
7	49	100.0	16	5	PCT-US94-07043A-1	Sequence 1, Appli
8	49	100.0	27	1	US-08-141-324-11	Sequence 11, Appl
9	49	100.0	27	1	US-08-541-902-11	Sequence 11, Appl
10	49	100.0	45	1	US-08-462-859A-5	Sequence 5, Appli
11	49	100.0	45	1	US-08-123-659A-5	Sequence 5, Appli

12	49	100.0	45	1	US-08-464-247A-5	Sequence 5, Appli
13	49	100.0	45	1	US-08-464-248A-5	Sequence 5, Appli
14	49	100.0	58	1	US-08-371-930-25	Sequence 25, Appl
15	49	100.0	58	5	PCT-US94-01712-25	Sequence 25, Appl
16	49	100.0	63	1	US-08-462-859A-3	Sequence 3, Appli
17	49	100.0	63	1	US-08-462-859A-4	Sequence 4, Appli
18	49	100.0	63	1	US-08-123-659A-3	Sequence 3, Appli
19	49	100.0	63	1	US-08-123-659A-4	Sequence 4, Appli
20	49	100.0	63	1	US-08-464-247A-3	Sequence 3, Appli
21	49	100.0	63	1	US-08-464-247A-4	Sequence 4, Appli
22	49	100.0	63	1	US-08-464-248A-3	Sequence 3, Appli
23	49	100.0	63	1.	US-08-464-248A-4	Sequence 4, Appli
24	49	100.0	105	2	US-08-729-345-1	Sequence 1, Appli
25	49	100.0	117	2	US-08-729-345-3	Sequence 3, Appli
26	49	100.0	152	6	5187153-4	Patent No. 5187153
27	49	100.0	162	6	5220013-4	Patent No. 5220013
28	49	100.0	162	6	5223482-4	Patent No. 5223482
29	49	100.0	264	1	US-07-990-893-5	Sequence 5, Appli
30	49	100.0	487	1	US-08-462-859A-9	Sequence 9, Appli
31	49	100.0	487	1	US-08-123-659A-9	Sequence 9, Appli
32	49	100.0	487	1	US-08-464-247A-9	Sequence 9, Appli
33	49	100.0	487	1	US-08-464-248A-9	Sequence 9, Appli
34	49	100.0	492	1	US-08-462-859A-7	Sequence 7, Appli
35	49	100.0	492	1.	US-08-123-659A-7	Sequence 7, Appli
36	49,	100.0	492	1	US-08-464-247A-7	Sequence 7, Appli
37	49	100.0	492	1	US-08-464-248A-7	Sequence 7, Appli
38	49	100.0	537	1	US-08-453-552-4	Sequence 4, Appli
39	49	100.0	537	2	US-08-710-637-4	Sequence 4, Appli
40	49	100.0	537	5	PCT-US93-00907-4	Sequence 4, Appli
41	49	100.0	656	1	US-08-371-930-23	Sequence 23, Appl
42	49	100.0	656	5	PCT-US94-01712-23	Sequence 23, Appl
43	49	100.0	676	1	US-08-371-930-24	Sequence 24, Appl
44	49	100.0	676	5	PCT-US94-01712-24	Sequence 24, Appl
45	49	100.0	694	1	US-08-339-152A-18	Sequence 18, Appl
						- , , , ,

ALIGNMENTS

```
RESULT 1
US-09-548-372D-64
; Sequence 64, Application US/09548372D
; Patent No. 6420534
; GENERAL INFORMATION:
; APPLICANT: GURNEY ET AL.
; TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR
; TITLE OF INVENTION: THEREOF
; FILE REFERENCE: 29915/6280I
; CURRENT APPLICATION NUMBER: US/09/548,372D
; CURRENT FILING DATE: 2000-04-12
; PRIOR APPLICATION NUMBER: US 60/155,493
; PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: US 09/404,133
; PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: PCT/US99/20881
; PRIOR FILING DATE: 1999-09-23
```

```
; PRIOR APPLICATION NUMBER: US 60/101.594
  PRIOR FILING DATE: 1998-09-24
; NUMBER OF SEQ ID NOS: 73
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial sequence
    FEATURE:
   OTHER INFORMATION: Synthetic peptide
US-09-548-372D-64
  Query Match
                         100.0%; Score 49; DB 4; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.00061;
          10; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
Qу
           1 SEVKMDAEFR 10
              1111111111
Db
           1 SEVKMDAEFR 10
RESULT 2
US-09-548-367D-64
; Sequence 64, Application US/09548367D
; Patent No. 6440698
; GENERAL INFORMATION:
; APPLICANT: GURNEY ET AL.
; TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR
AND USES
  TITLE OF INVENTION: THEREOF
   FILE REFERENCE: 29915/6280H
  CURRENT APPLICATION NUMBER: US/09/548,367D
; CURRENT FILING DATE: 2000-04-12
  PRIOR APPLICATION NUMBER: US 60/155,493
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: US 09/404,133
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: US 60/101,594
  PRIOR FILING DATE: 1998-09-24
;
; NUMBER OF SEQ ID NOS: 73
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial sequence
   FEATURE:
   OTHER INFORMATION: Synthetic peptide
US-09-548-367D-64
 Query Match
                        100.0%; Score 49; DB 4; Length 10;
 Best Local Similarity 100.0%; Pred. No. 0.00061;
 Matches 10; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SEVKMDAEFR 10
```

```
RESULT 3
US-09-551-853D-64
; Sequence 64, Application US/09551853D
; Patent No. 6500667
; GENERAL INFORMATION:
 ; APPLICANT: GURNEY ET AL.
  TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR
AND USES
  TITLE OF INVENTION: THEREOF
   FILE REFERENCE: 29915/6280L
   CURRENT APPLICATION NUMBER: US/09/551,853D
   CURRENT FILING DATE: 2000-04-18
; PRIOR APPLICATION NUMBER: US 60/155,493
; PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: US 09/404,133
   PRIOR FILING DATE: 1999-09-23
   PRIOR APPLICATION NUMBER: PCT/US99/20881
   PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: US 60/101,594
  PRIOR FILING DATE: 1998-09-24
   NUMBER OF SEQ ID NOS: 73
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 64
   LENGTH: 10
    TYPE: PRT
    ORGANISM: Artificial sequence
    FEATURE:
    OTHER INFORMATION: Synthetic peptide
US-09-551-853D-64
  Query Match
                         100.0%; Score 49; DB 4; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.00061;
          10; Conservative
  Matches
                               0; Mismatches 0; Indels 0; Gaps
                                                                           0;
Qу
            1 SEVKMDAEFR 10
             1 SEVKMDAEFR 10
Db
RESULT 4
US-09-604-608-4
; Sequence 4, Application US/09604608
; Patent No. 6545127
; GENERAL INFORMATION:
; APPLICANT: Tang, Jordan J.N.
  APPLICANT: Lin, Xinli
  APPLICANT: Koelsch, Gerald
  TITLE OF INVENTION: Catalytically Active Recombinant Memapsin and Methods
; TITLE OF INVENTION: of Use Thereof
; FILE REFERENCE: OMRF 179
; CURRENT APPLICATION NUMBER: US/09/604,608
; CURRENT FILING DATE: 2000-06-27
; PRIOR APPLICATION NUMBER: 60/141,363
; PRIOR FILING DATE: 1999-06-28
```

```
PRIOR APPLICATION NUMBER: 60/168,060
  PRIOR FILING DATE: 1999-11-30
  PRIOR APPLICATION NUMBER: 60/177,836
  PRIOR FILING DATE: 2000-01-25
; PRIOR APPLICATION NUMBER: 60/178,368
 PRIOR FILING DATE: 2000-01-27
; PRIOR APPLICATION NUMBER: 60/210,292
 PRIOR FILING DATE: 2000-06-08
; NUMBER OF SEQ ID NOS: 31
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 4
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Primer
US-09-604-608-4
  Query Match
                         100.0%; Score 49; DB 4; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.00061;
                              0; Mismatches
  Matches 10; Conservative
                                                0; Indels
                                                               0; Gaps
                                                                         0;
           1 SEVKMDAEFR 10
QУ
             1 SEVKMDAEFR 10
Db
RESULT 5
PCT-US94-07043A-7
; Sequence 7, Application PC/TUS9407043A
  GENERAL INFORMATION:
    APPLICANT: Tamburini, Paul P.; Benz, G nter; H bich,
    APPLICANT: Dieter; Dreyer, Robert N.; Koenig, Gerhard
    TITLE OF INVENTION: CATHEPSIN D IS AN AMYLOIDOGENIC
    TITLE OF INVENTION: PROTEASE IN ALZHEIMER S DISEASE
    NUMBER OF SEQUENCES: 11
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Miles Inc.
      STREET: 400 Morgan Lane
      CITY: West Haven
      STATE: Connecticut
      COUNTRY: USA
      ZIP: 06516
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette, 3.50 inch, 800 kb storage
      COMPUTER: Sharp PC 4600
      OPERATING SYSTEM: MS-DOS
      SOFTWARE: WordPerfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: PCT/US94/07043A
      FILING DATE: June 21, 1994
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/US93/10889
      FILING DATE: November 12, 1993
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 07/995,660
```

```
FILING DATE: December 16, 1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 07/880,914
      FILING DATE: May 11, 1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Pamela A. Simonton
      REGISTRATION NUMBER: 31,060
      REFERENCE/DOCKET NUMBER: MTI 224.3
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (203) 937-2340
      TELEFAX: (203) 937-2795
  INFORMATION FOR SEQ ID NO: 7:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 11 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
PCT-US94-07043A-7
 Query Match
                         100.0%; Score 49; DB 5; Length 11;
 Best Local Similarity 100.0%; Pred. No. 0.00067;
          10; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
           1 SEVKMDAEFR 10
Qу
             1111111111
           2 SEVKMDAEFR 11
Db
RESULT 6
PCT-US94-07043A-2
; Sequence 2, Application PC/TUS9407043A
  GENERAL INFORMATION:
    APPLICANT: Tamburini, Paul P.; Benz, G nter; H bich,
    APPLICANT: Dieter; Dreyer, Robert N.; Koenig, Gerhard
    TITLE OF INVENTION: CATHEPSIN D IS AN AMYLOIDOGENIC
    TITLE OF INVENTION: PROTEASE IN ALZHEIMER S DISEASE
    NUMBER OF SEQUENCES: 11
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Miles Inc.
      STREET: 400 Morgan Lane
      CITY: West Haven
      STATE: Connecticut
      COUNTRY: USA
      ZIP: 06516
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette, 3.50 inch, 800 kb storage
      COMPUTER: Sharp PC 4600
      OPERATING SYSTEM: MS-DOS
      SOFTWARE: WordPerfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: PCT/US94/07043A
      FILING DATE: June 21, 1994
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/US93/10889
      FILING DATE: November 12, 1993
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 07/995,660
```

```
FILING DATE: December 16, 1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 07/880,914
      FILING DATE: May 11, 1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Pamela A. Simonton
      REGISTRATION NUMBER: 31,060
      REFERENCE/DOCKET NUMBER: MTI 224.3
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (203) 937-2340
      TELEFAX: (203) 937-2795
  INFORMATION FOR SEQ ID NO: 2:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 12 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
PCT-US94-07043A-2
                         100.0%; Score 49; DB 5; Length 12;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0.00073;
 Matches 10; Conservative 0; Mismatches
                                               0; Indels
                                                              0; Gaps
           1 SEVKMDAEFR 10
Qу
             1111111111
           2 SEVKMDAEFR 11
Dh
RESULT 7
PCT-US94-07043A-1
; Sequence 1, Application PC/TUS9407043A
  GENERAL INFORMATION:
    APPLICANT: Tamburini, Paul P.; Benz, G nter; H bich,
    APPLICANT: Dieter; Dreyer, Robert N.; Koenig, Gerhard
    TITLE OF INVENTION: CATHEPSIN D IS AN AMYLOIDOGENIC
    TITLE OF INVENTION: PROTEASE IN ALZHEIMER S DISEASE
    NUMBER OF SEQUENCES: 11
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Miles Inc.
      STREET: 400 Morgan Lane
      CITY: West Haven
      STATE: Connecticut
      COUNTRY: USA
      ZIP: 06516
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette, 3.50 inch, 800 kb storage
      COMPUTER: Sharp PC 4600
      OPERATING SYSTEM: MS-DOS
      SOFTWARE: WordPerfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: PCT/US94/07043A
      FILING DATE: June 21, 1994
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/US93/10889
      FILING DATE: November 12, 1993
    PRIOR APPLICATION DATA:
  APPLICATION NUMBER: 07/995,660
```

```
FILING DATE: December 16, 1992
;
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 07/880,914
;
      FILING DATE: May 11, 1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Pamela A. Simonton
      REGISTRATION NUMBER: 31,060
      REFERENCE/DOCKET NUMBER: MTI 224.3
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (203) 937-2340
      TELEFAX: (203) 937-2795
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 16 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
PCT-US94-07043A-1
 Query Match
                         100.0%; Score 49; DB 5; Length 16;
 Best Local Similarity 100.0%; Pred. No. 0.001;
                              0; Mismatches
                                                0; Indels
          10; Conservative
                                                                0; Gaps
                                                                           0;
           1 SEVKMDAEFR 10
Qу
             1111111
           2 SEVKMDAEFR 11
Db
RESULT 8
US-08-141-324-11
; Sequence 11, Application US/08141324
; Patent No. 5475097
  GENERAL INFORMATION:
    APPLICANT: Travis, James
    APPLICANT: Potempa, Jan S.
    APPLICANT: Barr, Philip J.
    APPLICANT: Pavloff, Nadine
    APPLICANT: Pike, Robert N.
    TITLE OF INVENTION: Lysine-specific Porphyromonas gingivalis
    TITLE OF INVENTION: Protease
    NUMBER OF SEQUENCES: 28
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Greenlee and Winner, P.C.
      STREET: 5370 Manhattan Circle, Suite 201
      CITY: Boulder
      STATE: CO
      COUNTRY: US
      ZIP: 80303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/141,324
      FILING DATE: 21-OCT-1993
      CLASSIFICATION: 424
    ATTORNEY/AGENT INFORMATION:
```

```
NAME: Ferber, Donna M.
       REGISTRATION NUMBER: 33,878
      REFERENCE/DOCKET NUMBER: 44-93
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 303-499-8080
      TELEFAX: 303-499-8089
  INFORMATION FOR SEQ ID NO: 11:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 27 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
US-08-141-324-11
                         100.0%; Score 49; DB 1; Length 27;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.0017;
          10; Conservative
                             0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
           1 SEVKMDAEFR 10
Qу
             1111111111
           4 SEVKMDAEFR 13
Db
RESULT 9
US-08-541-902-11
; Sequence 11, Application US/08541902
; Patent No. 5707620
  GENERAL INFORMATION:
    APPLICANT: Travis, James
    APPLICANT: Potempa, Jan S.
    APPLICANT: Barr, Philip J.
    APPLICANT: Pavloff, Nadine
    APPLICANT: Pike, Robert N.
    TITLE OF INVENTION: Lysine-specific Porphyromonas gingivalis
    TITLE OF INVENTION: Protease
    NUMBER OF SEQUENCES: 28
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Greenlee and Winner, P.C.
      STREET: 5370 Manhattan Circle, Suite 201
      CITY: Boulder
      STATE: CO
      COUNTRY: US
      ZIP: 80303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/541,902
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US/08/141,324
```

```
FILING DATE: 21-OCT-1993
    ATTORNEY/AGENT INFORMATION:
      NAME: Ferber, Donna M.
      REGISTRATION NUMBER: 33,878
      REFERENCE/DOCKET NUMBER: 44-93
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 303-499-8080
      TELEFAX: 303-499-8089
  INFORMATION FOR SEQ ID NO: 11:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 27 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
US-08-541-902-11
  Ouerv Match
                         100.0%; Score 49; DB 1; Length 27;
  Best Local Similarity 100.0%; Pred. No. 0.0017;
 Matches 10; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
           1 SEVKMDAEFR 10
Qγ
             111111111
Db
           4 SEVKMDAEFR 13
RESULT 10
US-08-462-859A-5
; Sequence 5, Application US/08462859A
; Patent No. 5652092
  GENERAL INFORMATION:
    APPLICANT: Jacobsen, J. S.
    APPLICANT: Vitek, M. P.
    TITLE OF INVENTION: No. 5652092el Amyloid Precursor and Method of
    TITLE OF INVENTION: Using Same to Access Agents Which Down-Regulate
Formation
    TITLE OF INVENTION: of B-Amyloid Peptide
    NUMBER OF SEQUENCES: 19
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: American Cyanamid Company
      STREET: One Cyanamid Plaza
      CITY: Wayne
      STATE: New Jersey
      COUNTRY: United States
      ZIP: 07470-8426
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/462,859A
      FILING DATE: 05-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
```

```
NAME: Barnhard, Elizabeth M.
       REGISTRATION NUMBER: 31,088
       REFERENCE/DOCKET NUMBER: 31,844-04
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (201)831-3246
       TELEFAX: (201)831-3305
  INFORMATION FOR SEQ ID NO: 5:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 45 amino acids
       TYPE: amino acid
       STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-462-859A-5
  Query Match
                         100.0%; Score 49; DB 1; Length 45;
  Best Local Similarity
                         100.0%; Pred. No. 0.003;
 Matches 10; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                           0;
           1 SEVKMDAEFR 10
Qу
             111111111
Db
           5 SEVKMDAEFR 14
RESULT 11
US-08-123-659A-5
; Sequence 5, Application US/08123659A
; Patent No. 5656477
  GENERAL INFORMATION:
    APPLICANT: Jacobsen, J. S.
    APPLICANT: Vitek, M. P.
    TITLE OF INVENTION: No. 5656477el Amyloid Precursor and Method of
    TITLE OF INVENTION: Using Same to Access Agents Which Down-Regulate
    TITLE OF INVENTION: of B-Amyloid Peptide
    NUMBER OF SEQUENCES: 19
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Anne Rosenblum
      STREET: 163 Delaware Avenue, Suite 212
      CITY: Delmar
      STATE: New York
      COUNTRY: U.S.A.
      ZIP: 12054
;
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/123,659A
      FILING DATE: 20-SEP-1993
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Rosenblum, Anne M.
      REGISTRATION NUMBER: 30,419
      REFERENCE/DOCKET NUMBER: 31,844-01
    TELECOMMUNICATION INFORMATION:
```

```
TELEPHONE: (518) 475-0611
      TELEFAX: (518) 475-0619
  INFORMATION FOR SEQ ID NO: 5:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 45 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-123-659A-5
  Query Match
                         100.0%; Score 49; DB 1; Length 45;
  Best Local Similarity 100.0%; Pred. No. 0.003;
 Matches 10; Conservative
                              0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           1 SEVKMDAEFR 10
             1111111111
Db
           5 SEVKMDAEFR 14
RESULT 12
US-08-464-247A-5
; Sequence 5, Application US/08464247A
; Patent No. 5693478
  GENERAL INFORMATION:
    APPLICANT: Jacobsen, J. S.
    APPLICANT: Vitek, M. P.
    TITLE OF INVENTION: No. 5693478el Amyloid Precursor and Method of
    TITLE OF INVENTION: Using Same to Access Agents Which Down-Regulate
Formation
    TITLE OF INVENTION: of B-Amyloid Peptide
    NUMBER OF SEQUENCES: 19
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: American Cyanamid Company
      STREET: One Campus Drive
      CITY: Parsippany
      STATE: New Jersey
      COUNTRY: United States
      ZIP: 07054
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/464,247A
      FILING DATE: 05-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Barnhard, Elizabeth M.
      REGISTRATION NUMBER: 31,088
      REFERENCE/DOCKET NUMBER: 31,844-03
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 201-683-2158
      TELEFAX: 201-683-4117
  INFORMATION FOR SEQ ID NO: 5:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 45 amino acids
```

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 21, 2004, 09:16:55; Search time 0.917782 Seconds

(without alignments)

1047.838 Million cell updates/sec

Title: US-09-869-414A-64

Perfect score: 49

Sequence: 1 SEVKMDAEFR 10

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283308 seqs, 96168682 residues

Total number of hits satisfying chosen parameters: 283308

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: PIR 76:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	49	100.0	57	2	E60045	Alzheimer's diseas
2	49	100.0	57	2	F60045	Alzheimer's diseas
3	49	100.0	57	2	G60045	Alzheimer's diseas
4	49	100.0	57	2	D60045	Alzheimer's diseas
5	49	100.0	57	2	A60045	Alzheimer's diseas
6	49	100.0	57	2	B60045	Alzheimer's diseas
7	49	100.0	82	2	PQ0438	Alzheimer's diseas
8	49	100.0	695	1	A49795	Alzheimer's diseas
9	49	100.0	770	1	QRHUA4	Alzheimer's diseas
10	44	89.8	33	2	S23094	beta-amyloid prote
1.1	44	89.8	695	2	A27485	Alzheimer's diseas
12	44	89.8	695	2	S00550	Alzheimer's diseas
13	43	87.8	747	2	JH0773	Alzheimer's diseas

14	39	79.6	142	2	E89026
15	35	71.4	774	2	AG1565
16	34	69.4	626	2	AF0358
17	34	69.4	3562	2	A47171
18	34	69.4	4563	1	LPHUB
19	33	67.3	927	2	T38127
20	33	67.3	1245	2	G86404
21	32	65.3	263	2	D84226
22	32	65.3	354	2	S51143
23	32	65.3	392	2	T49471
24	32	65.3	426	2	G75187
25	32	65.3	625	2	D86244
26	32	65.3	700	2	E84131
27	32	65.3	929	2	T52517
28	32	65.3	1044	2	Н97186
29	32	65.3	1265	2	T51498
30	32	65.3	1906	2	AD2443
31	32	65.3	2514	2	T37320
32	32	65.3	2619	2	T24588
33	31	63.3	87	2	A97842
34	31	63.3	155	2	F75040
35	31	63.3	178	2	C64168
36	31	63.3	182	2	AC0449
37	31	63.3	183	2	S56460
38	31	63.3	183	2	AD1056
39	31	63.3	183	2	C86121
40	31	63.3	183	2	C91280
41	31	63.3	198	2	S48290
42	31	63.3	199	2	F72060
43	31	63.3	199	2	C86564
44	31	63.3	226	2	G69129
45	31	63.3	279	2	T41124

protein F13A2.1 [i autolysin (amidase conserved hypothet chondroitin sulfat apolipoprotein B-1 phosphoprotein - f probable P-glycopr hypothetical prote FMO-protein - Chlo mucin (muc3) relat probable trehalose protein Ser/Thr pr transcription anti hypothetical prote glycosyltransferas hypothetical prote hypothetical prote ataxia telangiecta hypothetical prote hypothetical prote hypothetical prote hypothetical prote conserved hypothet probable alpha hel conserved hypothet probable alpha hel probable alpha hel OX40 ligand - mous conserved hypothet CT471 hypothetical hypothetical prote single-stranded DN

ALIGNMENTS

RESULT 1 E60045

Alzheimer's disease amyloid beta/A4 protein precursor - sheep (fragment)

C; Species: Ovis sp. (sheep)

C;Date: 01-Dec-1992 #sequence revision 01-Dec-1992 #text change 28-Jul-1995

C; Accession: E60045

R; Johnstone, E.M.; Chaney, M.O.; Norris, F.H.; Pascual, R.; Little, S.P.

Brain Res. Mol. Brain Res. 10, 299-305, 1991

A;Title: Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis.

A; Reference number: A60045; MUID: 92017079; PMID: 1656157

A;Accession: E60045 A;Molecule type: mRNA A;Residues: 1-57 <JOH>

A; Cross-references: EMBL: X56130

C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type

proteinase inhibitor homology

C; Keywords: alternative splicing; Alzheimer's disease; amyloid; brain

```
Query Match
                          100.0%; Score 49; DB 2; Length 57;
  Best Local Similarity
                          100.0%; Pred. No. 0.0018;
            10; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                             0;
            1 SEVKMDAEFR 10
Qу
              Db
            1 SEVKMDAEFR 10
RESULT 2
F60045
Alzheimer's disease amyloid beta/A4 protein precursor - pig (fragment)
C; Species: Sus scrofa domestica (domestic pig)
C;Date: 01-Dec-1992 #sequence revision 01-Dec-1992 #text change 13-Aug-1999
C; Accession: F60045
R; Johnstone, E.M.; Chaney, M.O.; Norris, F.H.; Pascual, R.; Little, S.P.
Brain Res. Mol. Brain Res. 10, 299-305, 1991
A; Title: Conservation of the sequence of the Alzheimer's disease amyloid peptide
in dog, polar bear and five other mammals by cross-species polymerase chain
reaction analysis.
A; Reference number: A60045; MUID: 92017079; PMID: 1656157
A; Accession: F60045
A; Molecule type: mRNA
A; Residues: 1-57 < JOH>
A;Cross-references: EMBL:X56127; NID:g1895; PIDN:CAA39592.1; PID:g1896
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; Alzheimer's disease; amyloid; brain
  Query Match
                          100.0%; Score 49; DB 2; Length 57;
  Best Local Similarity
                          100.0%; Pred. No. 0.0018;
           10; Conservative
                              0; Mismatches
                                                0; Indels
                                                                 0; Gaps
                                                                             0:
Qу
            1 SEVKMDAEFR 10
              Db
            1 SEVKMDAEFR 10
RESULT 3
G60045
Alzheimer's disease amyloid beta/A4 protein precursor - guinea pig (fragment)
C; Species: Cavia porcellus (guinea pig)
C;Date: 01-Dec-1992 #sequence_revision 01-Dec-1992 #text change 28-Jul-1995
C; Accession: G60045
R; Johnstone, E.M.; Chaney, M.O.; Norris, F.H.; Pascual, R.; Little, S.P.
Brain Res. Mol. Brain Res. 10, 299-305, 1991
A; Title: Conservation of the sequence of the Alzheimer's disease amyloid peptide
in dog, polar bear and five other mammals by cross-species polymerase chain
reaction analysis.
A; Reference number: A60045; MUID: 92017079; PMID: 1656157
A; Accession: G60045
A; Molecule type: mRNA
A; Residues: 1-57 < JOH>
A; Cross-references: EMBL: X56126
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; Alzheimer's disease; amyloid; brain
```

```
Query Match
                           100.0%; Score 49; DB 2; Length 57;
  Best Local Similarity
                           100.0%; Pred. No. 0.0018;
  Matches
            10; Conservative
                                  0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SEVKMDAEFR 10
Qy
               Db
            1 SEVKMDAEFR 10
RESULT 4
D60045
Alzheimer's disease amyloid beta/A4 protein precursor - bovine (fragment)
C; Species: Bos primigenius taurus (cattle)
C;Date: 01-Dec-1992 #sequence revision 01-Dec-1992 #text_change 28-Jul-1995
C; Accession: D60045
R; Johnstone, E.M.; Chaney, M.O.; Norris, F.H.; Pascual, R.; Little, S.P.
Brain Res. Mol. Brain Res. 10, 299-305, 1991
A; Title: Conservation of the sequence of the Alzheimer's disease amyloid peptide
in dog, polar bear and five other mammals by cross-species polymerase chain
reaction analysis.
A; Reference number: A60045; MUID: 92017079; PMID: 1656157
A; Accession: D60045
A; Molecule type: mRNA
A; Residues: 1-57 < JOH>
A; Cross-references: EMBL: X56124
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; Alzheimer's disease; amyloid; brain
  Query Match
                          100.0%; Score 49; DB 2; Length 57;
  Best Local Similarity 100.0%; Pred. No. 0.0018;
  Matches
            10; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SEVKMDAEFR 10
              111111111
Db
            1 SEVKMDAEFR 10
RESULT 5
A60045
Alzheimer's disease amyloid beta/A4 protein precursor - dog (fragment)
C; Species: Canis lupus familiaris (dog)
C;Date: 01-Dec-1992 #sequence revision 01-Dec-1992 #text change 28-Jul-1995
C; Accession: A60045
R; Johnstone, E.M.; Chaney, M.O.; Norris, F.H.; Pascual, R.; Little, S.P.
Brain Res. Mol. Brain Res. 10, 299-305, 1991
A; Title: Conservation of the sequence of the Alzheimer's disease amyloid peptide
in dog, polar bear and five other mammals by cross-species polymerase chain
reaction analysis.
A; Reference number: A60045; MUID: 92017079; PMID: 1656157
A; Accession: A60045
A; Molecule type: mRNA
A; Residues: 1-57 < JOH>
A; Cross-references: EMBL: X56125
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
```

```
C; Keywords: alternative splicing; Alzheimer's disease; amyloid; brain
   Query Match
                           100.0%; Score 49; DB 2; Length 57;
   Best Local Similarity
                           100.0%; Pred. No. 0.0018;
  Matches
           10; Conservative
                                 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
 Qу
            1 SEVKMDAEFR 10
               11111111
 Db
            1 SEVKMDAEFR 10
RESULT 6
B60045
Alzheimer's disease amyloid beta/A4 protein precursor - polar bear (fragment)
C; Species: Ursus maritimus (polar bear)
C;Date: 01-Dec-1992 #sequence revision 01-Dec-1992 #text change 13-Aug-1999
C; Accession: B60045
R; Johnstone, E.M.; Chaney, M.O.; Norris, F.H.; Pascual, R.; Little, S.P.
Brain Res. Mol. Brain Res. 10, 299-305, 1991
A; Title: Conservation of the sequence of the Alzheimer's disease amyloid peptide
in dog, polar bear and five other mammals by cross-species polymerase chain
reaction analysis.
A; Reference number: A60045; MUID: 92017079; PMID: 1656157
A; Accession: B60045
A; Molecule type: mRNA
A; Residues: 1-57 < JOH>
A; Cross-references: EMBL: X56128; NID: g2165; PIDN: CAA39593.1; PID: g2166
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; Alzheimer's disease; amyloid; brain
  Query Match
                          100.0%; Score 49; DB 2; Length 57;
  Best Local Similarity
                          100.0%; Pred. No. 0.0018;
  Matches
            10; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SEVKMDAEFR 10
Qу
              1 SEVKMDAEFR 10
RESULT 7
PQ0438
Alzheimer's disease amyloid A4 protein precursor - rabbit (fragment)
C; Species: Oryctolagus cuniculus (domestic rabbit)
C;Date: 30-Sep-1993 #sequence_revision 19-Oct-1995 #text_change 19-Oct-1995
C; Accession: PQ0438; C60045
R; Davidson, J.S.; West, R.L.; Kotikalapudi, P.; Maroun, L.E.
Biochem. Biophys. Res. Commun. 188, 905-911, 1992
A; Title: Sequence and methylation in the beta/A4 region of the rabbit amyloid
precursor protein gene.
A; Reference number: PQ0438; MUID: 93075180; PMID: 1445331
A; Accession: PO0438
A; Molecule type: DNA
A; Residues: 1-82 < DAV>
A;Cross-references: GB:M83558; GB:M83657
R; Johnstone, E.M.; Chaney, M.O.; Norris, F.H.; Pascual, R.; Little, S.P.
Brain Res. Mol. Brain Res. 10, 299-305, 1991
```

```
A; Title: Conservation of the sequence of the Alzheimer's disease amyloid peptide
 in dog, polar bear and five other mammals by cross-species polymerase chain
 reaction analysis.
A; Reference number: A60045; MUID: 92017079; PMID: 1656157
A; Accession: C60045
A; Molecule type: mRNA
A; Residues: 12-68 < JOH>
A; Cross-references: EMBL: X56129
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; Alzheimer's disease; amyloid; Down's syndrome
  Query Match
                           100.0%; Score 49; DB 2; Length 82;
  Best Local Similarity
                          100.0%; Pred. No. 0.0027;
            10; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SEVKMDAEFR 10
              111111111
Db
           12 SEVKMDAEFR 21
RESULT 8
A49795
Alzheimer's disease amyloid beta protein precursor - crab-eating macaque
C; Species: Macaca fascicularis (crab-eating macaque)
C; Date: 10-Sep-1999 #sequence revision 10-Sep-1999 #text change 10-Sep-1999
C; Accession: A49795
R; Podlisny, M.B.; Tolan, D.R.; Selkoe, D.J.
Am. J. Pathol. 138, 1423-1435, 1991
A; Title: Homology of the amyloid beta protein precursor in monkey and human
supports a primate model for beta amyloidosis in Alzheimer's disease.
A; Reference number: A49795; MUID: 91273117; PMID: 1905108
A; Accession: A49795
A; Status: preliminary
A; Molecule type: mRNA
A; Residues: 1-695 < POD>
A; Cross-references: GB: M58727; NID: g342062; PIDN: AAA36829.1; PID: g342063
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing
  Query Match
                          100.0%; Score 49; DB 1; Length 695;
  Best Local Similarity
                          100.0%; Pred. No. 0.028;
  Matches
           10; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                              0;
Qу
            1 SEVKMDAEFR 10
              592 SEVKMDAEFR 601
RESULT 9
ORHUA4
Alzheimer's disease amyloid beta protein precursor [validated] - human
N; Alternate names: Alzheimer's disease amyloid A4 protein; coagulation factor
XIa inhibitor; proteinase nexin II (PN-II)
```

```
N; Contains: amyloid beta protein long, plaque form; amyloid beta protein short,
 vascular form; amyloid protein precursor splice form APP(695); amyloid protein
 precursor splice form APP(751); amyloid protein precursor splice form APP(770)
 C; Species: Homo sapiens (man)
 C;Date: 30-Jun-1987 #sequence revision 28-Jul-1995 #text change 15-Sep-2000
 C; Accession: S02260; S05194; A32277; A33260; A35486; I39452; I39451; I39453;
159562; A44017; B44017; A03134; A29030; A47584; A47585; S02638; S00707; S00925;
A38949; A30320; B30320; C30320; A31087; A24668; A28583; A29302; A60805; JL0038;
S06121; A60355; A59011; A38384; S29076; S38252; S32539; S48148; S48692; S51186;
$51185; $51184; $51183; A54238; I58075; I52250; $09010; $10737; $24127; $43644
R; Lemaire, H.G.; Salbaum, J.M.; Multhaup, G.; Kang, J.; Bayney, R.M.; Unterbeck,
A.; Beyreuther, K.; Mueller-Hill, B.
Nucleic Acids Res. 17, 517-522, 1989
A; Title: The PreA4(695) precursor protein of Alzheimer's disease A4 amyloid is
encoded by 16 exons.
A; Reference number: S02260; MUID: 89128427; PMID: 2783775
A; Accession: S02260
A; Molecule type: DNA
A; Residues: 1-288, 'V', 365-770 < LEM1>
A; Cross-references: EMBL: X13466
A; Note: alternative splice form APP(695)
R; Lemaire, H.G.
submitted to the EMBL Data Library, November 1988
A; Reference number: S05194
A; Accession: S05194
A; Molecule type: DNA
A; Residues: 1-14, 'VW', 17-288, 'V', 365-770 < LEM2>
A; Cross-references: EMBL:X13466; NID:g35598; PIDN:CAA31830.1; PID:g871360
A; Note: alternative splice form APP(695)
R; La Fauci, G.; Lahiri, D.K.; Salton, S.R.J.; Robakis, N.K.
Biochem. Biophys. Res. Commun. 159, 297-304, 1989
A; Title: Characterization of the 5'-end region and the first two exons of the
beta-protein precursor gene.
A; Reference number: A32277; MUID: 89165870; PMID: 2538123
A; Accession: A32277
A; Molecule type: DNA
A; Residues: 1-75 <LAF>
A; Cross-references: GB:M24546; GB:M24547; NID:g341202; PIDN:AAC13654.1;
PID:q516074
R; Johnstone, E.M.; Chaney, M.O.; Moore, R.E.; Ward, K.E.; Norris, F.H.; Little,
Biochem. Biophys. Res. Commun. 163, 1248-1255, 1989
A; Title: Alzheimer's disease amyloid peptide is encoded by two exons and shows
similarity to soybean trypsin inhibitor.
A; Reference number: A33260; MUID: 89392030; PMID: 2675837
A; Accession: A33260
A; Molecule type: DNA
A; Residues: 656-737 < JOH>
A; Cross-references: GB: M29270; NID: g178863; PIDN: AAA51768.1; PID: g178865
R; Prelli, F.; Levy, E.; van Duinen, S.G.; Bots, G.T.A.M.; Luyendijk, W.;
Frangione, B.
Biochem. Biophys. Res. Commun. 170, 301-307, 1990
A; Title: Expression of a normal and variant Alzheimer's beta-protein gene in
amyloid of hereditary cerebral hemorrhage, Dutch type: DNA and protein
diagnostic assays.
A; Reference number: A35486; MUID: 90321244; PMID: 2196878
A; Accession: A35486
```

```
A; Molecule type: DNA
A; Residues: 672-710 < PRE1>
 A; Note: 693-Gln was found in DNA isolated from HCHWA-D patients
 R; Yoshikai, S.I.; Sasaki, H.; Doh-ura, K.; Furuya, H.; Sakaki, Y.
 Gene 87, 257-263, 1990
A; Title: Genomic organization of the human amyloid beta-protein precursor gene.
A; Reference number: I39451; MUID: 90236318; PMID: 2110105
A; Accession: I39452
A; Status: nucleic acid sequence not shown; translation not shown; translated
from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-770 <YOS1>
A;Cross-references: GB:M33112; NID:g178613; PIDN:AAB59502.1; PID:g178616
A; Accession: I39451
A; Status: nucleic acid sequence not shown; translation not shown; translated
from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-530, 'QWLMPVIPAFWEAKVGR' <YOS2>
A; Cross-references: GB: M34875; NID: g178608; PIDN: AAB59501.1; PID: g178615
R; Yoshikai, S.I.; Sasaki, H.; Doh-ura, K.; Furuya, H.; Sakaki, Y.
Gene 102, 291-292, 1991
A; Reference number: A59020; MUID: 91340168; PMID: 1908403
A; Contents: annotation; erratum
A; Note: revised physical map for reference I39451
R; Levy, E.; Carman, M.D.; Fernandez-Madrid, I.J.; Power, M.D.; Lieberburg, I.;
van Duinen, S.G.; Bots, G.T.; Luyendijk, W.; Frangione, B.
Science 248, 1124-1126, 1990
A; Title: Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral
hemorrhage, Dutch type.
A; Reference number: I39453; MUID: 90260663; PMID: 2111584
A; Accession: I39453
A; Status: translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 656-737 <LEV>
A;Cross-references: GB:M37896; NID:g178618; PIDN:AAA51727.1; PID:g178620
A; Note: a mutation with 693-Gln is presented
R; Murrell, J.; Farlow, M.; Ghetti, B.; Benson, M.D.
Science 254, 97-99, 1991
A; Title: A mutation in the amyloid precursor protein associated with hereditary
Alzheimer's disease.
A; Reference number: I59562; MUID: 92022553; PMID: 1925564
A; Accession: I59562
A; Status: translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 689-716, 'F', 718-737 < MUR>
A; Cross-references: GB:S57665; NID:g236720; PIDN:AAB19991.1; PID:g236721
R; Kamino, K.; Orr, H.T.; Payami, H.; Wijsman, E.M.; Alonso, M.E.; Pulst, S.M.;
Anderson, L.; O'dahl, S.; Nemens, E.; White, J.A.; Sadovnick, A.D.; Ball, M.J.;
Kaye, J.; Warren, A.; McInnis, M.; Antonarakis, S.E.; Korenberg, J.R.; Sharma,
V.; Kukull, W.; Larson, E.; Heston, L.L.; Martin, G.M.; Bird, T.D.;
Schellenberg, G.D.
Am. J. Hum. Genet. 51, 998-1014, 1992
A; Title: Linkage and mutational analysis of familial Alzheimer disease kindreds
for the APP gene region.
A; Reference number: A44017; MUID: 93035397; PMID: 1415269
A; Accession: A44017
A; Molecule type: DNA
```

```
A; Residues: 687-692, 'G', 694-718 < KAM1>
A; Cross-references: GB:S45135; NID:g257377; PIDN:AAB23645.1; PID:g257378
A; Experimental source: familial Alzheimer disease family SB
A; Note: sequence extracted from NCBI backbone (NCBIP:115374)
A; Accession: B44017
A; Molecule type: DNA
A; Residues: 687-718 < KAM2>
A;Cross-references: GB:S45136; NID:q257379; PIDN:AAB23646.1; PID:q257380
A; Experimental source: familial Alzheimer disease family LIT
A; Note: sequence extracted from NCBI backbone (NCBIP:115376)
A; Note: this sequence has a silent mutation
R; Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.;
Grzeschik, K.H.; Multhaup, G.; Beyreuther, K.; Muller-Hill, B.
Nature 325, 733-736, 1987
A; Title: The precursor of Alzheimer's disease amyloid A4 protein resembles a
cell-surface receptor.
A; Reference number: A03134; MUID: 87144572; PMID: 2881207
A; Accession: A03134
A; Molecule type: mRNA
A: Residues: 1-288, 'V', 365-770 < KAN>
A; Cross-references: GB: Y00264; NID: q28525; PIDN: CAA68374.1; PID: q28526
A; Note: alternative splice form APP(695)
R; Robakis, N.K.; Ramakrishna, N.; Wolfe, G.; Wisniewski, H.M.
Proc. Natl. Acad. Sci. U.S.A. 84, 4190-4194, 1987
A; Title: Molecular cloning and characterization of a cDNA encoding the
cerebrovascular and the neuritic plaque amyloid peptides.
A; Reference number: A29030; MUID: 87231971; PMID: 3035574
A; Accession: A29030
A; Molecule type: mRNA
A; Residues: 284-288, 'V', 365-646, 'E', 648-770 < ROB>
A; Cross-references: GB:M16765; NID:g178539; PIDN:AAA51722.1; PID:g178540
A; Note: the authors translated the codon GAG for residue 647 as Asp
R; Goldgaber, D.; Lerman, M.I.; McBride, O.W.; Saffiotti, U.; Gajdusek, D.C.
Science 235, 877-880, 1987
A; Title: Characterization and chromosomal localization of a cDNA encoding brain
amyloid of Alzheimer's disease.
A; Reference number: A47584; MUID: 87120328; PMID: 3810169
A; Accession: A47584
A; Molecule type: mRNA
A; Residues: 674-756, 'S', 758-770 <GOL>
A; Cross-references: GB:M15533; NID:g178706; PIDN:AAA35540.1; PID:g178707
A; Experimental source: brain
R; Tanzi, R.E.; Gusella, J.F.; Watkins, P.C.; Bruns, G.A.P.; St George-Hyslop,
P.; Van Keuren, M.L.; Patterson, D.; Pagan, S.; Kurnit, D.M.; Neve, R.L.
Science 235, 880-884, 1987
A; Title: Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage
near the Alzheimer locus.
A; Reference number: A47585; MUID: 87120329; PMID: 2949367
A; Accession: A47585
A; Molecule type: mRNA
A; Residues: 674-703 <TAN1>
A; Cross-references: GB: M15532; NID: q177957; PIDN: AAA51564.1; PID: q177958
R; Dyrks, T.; Weidemann, A.; Multhaup, G.; Salbaum, J.M.; Lemaire, H.G.; Kang,
J.; Mueller-Hill, B.; Masters, C.L.; Beyreuther, K.
EMBO J. 7, 949-957, 1988
A; Title: Identification, transmembrane orientation and biogenesis of the amyloid
A4 precursor of Alzheimer's disease.
```

```
A; Reference number: S02638; MUID: 88296437; PMID: 2900137
A; Accession: S02638
A; Molecule type: mRNA
A; Residues: 672-678 < DYR>
R; Tanzi, R.E.; McClatchey, A.I.; Lamperti, E.D.; Villa-Komaroff, L.; Gusella,
J.F.; Neve, R.L.
Nature 331, 528-530, 1988
A; Title: Protease inhibitor domain encoded by an amyloid protein precursor mRNA
associated with Alzheimer's disease.
A; Reference number: S00707; MUID: 88122640; PMID: 2893290
A; Accession: S00707
A; Molecule type: mRNA
A; Residues: 286-344, 'I', 365-366 < TAN2>
A; Cross-references: EMBL: X06982; NID: q28817; PIDN: CAA30042.1; PID: q929612
A; Experimental source: promyelocytic leukemia cell line HL60
A; Note: alternative splice form APP (751)
R; Ponte, P.; Gonzalez-DeWhitt, P.; Schilling, J.; Miller, J.; Hsu, D.;
Greenberg, B.; Davis, K.; Wallace, W.; Lieberburg, I.; Fuller, F.; Cordell, B.
Nature 331, 525-527, 1988
A; Title: A new A4 amyloid mRNA contains a domain homologous to serine proteinase
inhibitors.
A; Reference number: S00925; MUID: 88122639; PMID: 2893289
A; Accession: S00925
A; Molecule type: mRNA
A; Residues: 1-344, 'I', 365-770 < PO2>
A; Cross-references: GB: X06989; EMBL: Y00297; NID: q28720; PIDN: CAA30050.1;
PID: q28721
A; Note: alternative splice form APP (751)
R; Kitaguchi, N.; Takahashi, Y.; Tokushima, Y.; Shiojiri, S.; Ito, H.
Nature 331, 530-532, 1988
A; Title: Novel precursor of Alzheimer's disease amyloid protein shows protease
inhibitory activity.
A; Reference number: A38949; MUID: 88122641; PMID: 2893291
A; Accession: A38949
A; Molecule type: mRNA
A; Residues: 287-367 <KIT>
A;Cross-references: GB:X06981; NID:g28816; PIDN:CAA30041.1; PID:g929611
A; Experimental source: glioblastoma cell line
A; Note: alternative splice form APP (770)
R; Vitek, M.P.; Rasool, C.G.; de Sauvage, F.; Vitek, S.M.; Bartus, R.T.; Beer,
B.; Ashton, R.A.; Macq, A.F.; Maloteaux, J.M.; Blume, A.J.; Octave, J.N.
Brain Res. Mol. Brain Res. 4, 121-131, 1988
A; Title: Absence of mutation in the beta-amyloid cDNAs cloned from the brains of
three patients with sporadic Alzheimer's disease.
A; Reference number: A30320
A; Accession: A30320
A; Status: not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 284-288, 'V', 365-770 <VIT1>
A; Accession: B30320
A; Status: not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 122-288, 'V', 365-770 < VIT2>
A; Accession: C30320
A; Status: not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 606-770 < VIT3>
```

```
R; Zain, S.B.; Salim, M.; Chou, W.G.; Sajdel-Sulkowska, E.M.; Majocha, R.E.;
Marotta, C.A.
Proc. Natl. Acad. Sci. U.S.A. 85, 929-933, 1988
A; Title: Molecular cloning of amyloid cDNA derived from mRNA of the Alzheimer
disease brain: coding and noncoding regions of the fetal precursor mRNA are
expressed in the cortex.
A; Reference number: A31087; MUID: 88124954; PMID: 2893379
A; Accession: A31087
A; Molecule type: mRNA
A; Residues: 507-770 <ZAI>
A; Cross-references: GB:M18734; NID:q178572; PIDN:AAA51726.1; PID:q178573
A; Note: the authors translated the codon GAA for residue 599 as Gly, ACC for
residue 603 as Val, GTG for residue 604 as Glu, GAG for residue 605 as Leu, CTT
for residue 607 as Pro, CCC for residue 608 as Val, GTG for residue 609 as Asn,
AAT for residue 610 as Gly, and GGT for residue 655 as Ser
A; Note: the cited Genbank accession number, J03594, is not in release 101.0
R; Masters, C.L.; Multhaup, G.; Simms, G.; Pottgiesser, J.; Martins, R.N.;
Beyreuther, K.
  Ouerv Match
                          100.0%; Score 49; DB 1; Length 770;
  Best Local Similarity 100.0%; Pred. No. 0.032;
          10; Conservative
                               0; Mismatches
                                                0; Indels
                                                                             0;
  Matches
                                                                 0; Gaps
            1 SEVKMDAEFR 10
Qу
              11111111
Db
          667 SEVKMDAEFR 676
RESULT 10
S23094
beta-amyloid protein precursor - rat
C; Species: Rattus norvegicus (Norway rat)
C;Date: 22-Nov-1993 #sequence revision 10-Nov-1995 #text change 03-May-1996
C; Accession: S23094
R; Kojima, S.; Omori, M.
FEBS Lett. 304, 57-60, 1992
A; Title: Two-way cleavage of beta-amyloid protein precursor by multicatalytic
proteinase.
A; Reference number: S23094; MUID: 92316198; PMID: 1618299
A; Accession: S23094
A; Molecule type: protein
A; Residues: 1-33 < KOJ>
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
  Query Match
                          89.8%; Score 44; DB 2; Length 33;
  Best Local Similarity
                         100.0%; Pred. No. 0.011;
                               0; Mismatches
 Matches
           9; Conservative
                                                0; Indels
                                                                 0; Gaps
                                                                             0;
Qν
           1 SEVKMDAEF 9
              Db
            1 SEVKMDAEF 9
RESULT 11
A27485
Alzheimer's disease amyloid beta/A4 protein homolog precursor - mouse
```

```
N; Alternate names: proteinase nexin II
C; Species: Mus musculus (house mouse)
C;Date: 31-Mar-1989 #sequence revision 31-Mar-1989 #text change 13-Aug-1999
C; Accession: A27485; S19727; I49485
R; Yamada, T.; Sasaki, H.; Furuya, H.; Miyata, T.; Goto, I.; Sakaki, Y.
Biochem. Biophys. Res. Commun. 149, 665-671, 1987
A; Title: Complementary DNA for the mouse homolog of the human amyloid beta
protein precursor.
A; Reference number: A27485; MUID:88106489; PMID:3322280
A; Accession: A27485
A; Molecule type: mRNA
A; Residues: 1-695 < YAM>
A; Cross-references: GB:M18373; NID:g191568; PIDN:AAA37139.1; PID:g309085
A: Experimental source: brain
R; de Strooper, B.; van Leuven, F.; van den Berghe, H.
Biochim. Biophys. Acta 1129, 141-143, 1991
A; Title: The amyloid beta protein precursor or proteinase nexin II from mouse is
closer related to its human homolog than previously reported.
A; Reference number: S19727; MUID: 92096458; PMID: 1756177
A: Accession: S19727
A; Molecule type: mRNA
A; Residues: 1-210, 'G', 212-220, 'S', 222-396, 'A', 398-402, 'T', 404-448, 'A', 450-695
<STR>
A; Cross-references: EMBL: X59379
R; Izumi, R.; Yamada, T.; Yoshikai, S.; Sasaki, H.; Hattori, M.; Sakaki, Y.
Gene 112, 189-195, 1992
A; Title: Positive and negative regulatory elements for the expression of the
Alzheimer's disease amyloid precursor-encoding gene in mouse.
A; Reference number: I49485; MUID: 92209998; PMID: 1555768
A; Accession: I49485
A; Status: translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-19 < RES>
A; Cross-references: GB:D10603; NID:g220328; PIDN:BAA01456.1; PID:g220329
C; Genetics:
A; Map position: 16C3
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; amyloid; transmembrane protein
                          89.8%; Score 44; DB 2; Length 695;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.33;
 Matches
            9; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SEVKMDAEF 9
Qу
              1111111
Db
          592 SEVKMDAEF 600
RESULT 12
S00550
Alzheimer's disease amyloid beta protein precursor - rat
N; Alternate names: beta-A4 amyloid protein
C; Species: Rattus norvegicus (Norway rat)
C;Date: 30-Jun-1989 #sequence revision 30-Jun-1989 #text change 13-Aug-1999
C; Accession: S00550; A41245; A39820; S46251
```

```
R; Shivers, B.D.; Hilbich, C.; Multhaup, G.; Salbaum, M.; Beyreuther, K.;
 Seeburg, P.H.
 EMBO J. 7, 1365-1370, 1988
A; Title: Alzheimer's disease amyloidogenic glycoprotein: expression pattern in
 rat brain suggests a role in cell contact.
A; Reference number: S00550; MUID: 88312583; PMID: 2900758
A; Accession: S00550
A; Molecule type: mRNA
A; Residues: 1-695 <SHI>
A; Cross-references: EMBL:X07648; NID:g55616; PIDN:CAA30488.1; PID:g55617
R; Schubert, D.; Schroeder, R.; LaCorbiere, M.; Saitoh, T.; Cole, G.
Science 241, 223-226, 1988
A; Title: Amyloid beta protein precursor is possibly a heparan sulfate
proteoglycan core protein.
A; Reference number: A41245; MUID: 88264430; PMID: 2968652
A; Accession: A41245
A; Molecule type: protein
A; Residues: 18-37, 'X', 39-40, 'X', 42-44 <SCH>
A; Note: evidence for heparan sulfate attachment
R; Hesse, L.; Beher, D.; Masters, C.L.; Multhaup, G.
FEBS Lett. 349, 109-116, 1994
A; Title: The beta-A4 amyloid precursor protein binding to copper.
A; Reference number: S46251; MUID: 94320627; PMID: 7913895
A; Contents: annotation; copper binding sites
A; Note: rat peptides were isolated but not sequenced
R; Potempska, A.; Styles, J.; Mehta, P.; Kim, K.S.; Miller, D.L.
J. Biol. Chem. 266, 8464-8469, 1991
A; Title: Purification and tissue level of the beta-amyloid peptide precursor of
rat brain.
A; Reference number: A39820; MUID: 91217087; PMID: 1673681
A; Accession: A39820
A; Status: preliminary
A; Molecule type: protein
A; Residues: 18-32 <POT>
A; Experimental source: brain
C; Comment: Deposition of amyloid protein as neurofibrillary tangles and/or
plaques is characteristic of both Alzheimer's disease and Down's syndrome.
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; amyloid; glycoprotein; transmembrane protein
F;625-648/Domain: transmembrane #status predicted <TMM>
  Query Match
                          89.8%; Score 44; DB 2; Length 695;
  Best Local Similarity
                          100.0%; Pred. No. 0.33;
  Matches
             9; Conservative
                                0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SEVKMDAEF 9
              Db
          592 SEVKMDAEF 600
RESULT 13
JH0773
Alzheimer's disease amyloid beta protein precursor - African clawed frog
C; Species: Xenopus laevis (African clawed frog)
C;Date: 10-Jun-1993 #sequence_revision 10-Jun-1993 #text_change 13-Aug-1999
C; Accession: JH0773
```

```
R;Okado, H.; Okamoto, H.
Biochem. Biophys. Res. Commun. 189, 1561-1568, 1992
A; Title: A Xenopus homologue of the human beta-amyloid precursor protein:
developmental regulation of its gene expression.
A; Reference number: JH0773; MUID: 93129227; PMID: 1282805
A; Accession: JH0773
A; Molecule type: mRNA
A; Residues: 1-747 < OKA>
A; Cross-references: GB: S52417; NID: g263150; PIDN: AAB24853.1; PID: g263151
A; Experimental source: larva
C; Superfamily: Alzheimer's disease amyloid beta protein; animal Kunitz-type
proteinase inhibitor homology
C; Keywords: alternative splicing; amyloid
F;287-337/Domain: animal Kunitz-type proteinase inhibitor homology <BPI>
                          87.8%; Score 43; DB 2; Length 747;
  Query Match
                          80.0%; Pred. No. 0.59;
  Best Local Similarity
            8; Conservative 2; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
            1 SEVKMDAEFR 10
Qу
              111111:1:1
          644 SEVKMDSEYR 653
Db
RESULT 14
E89026
protein F13A2.1 [imported] - Caenorhabditis elegans
C; Species: Caenorhabditis elegans
C; Date: 10-May-2001 #sequence revision 10-May-2001 #text change 10-May-2001
C; Accession: E89026
R; anonymous, The C. elegans Sequencing Consortium.
Science 282, 2012-2018, 1998
A; Title: Genome sequence of the nematode C. elegans: a platform for
investigating biology.
A; Reference number: A75000; MUID: 99069613; PMID: 9851916
A; Note: see websites genome.wustl.edu/qsc/C elegans/ and
www sanger.ac.uk/Projects/C elegans/ for a list of authors
A; Note: published errata appeared in Science 283, 35, 1999; Science 283, 2103,
1999; and Science 285, 1493, 1999
A; Accession: E89026
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-142 <STO>
A; Cross-references: GB: chr V; PIDN: AAB69895.1; PID: q2384795; GSPDB: GN00023;
CESP:F13A2.1
C; Genetics:
A; Gene: F13A2.1
A; Map position: 5
  Query Match
                          79.6%; Score 39; DB 2; Length 142;
  Best Local Similarity 77.8%; Pred. No. 0.67;
             7; Conservative
                                 1; Mismatches
                                                                  0; Gaps
                                                                              0;
                                                   1; Indels
            2 EVKMDAEFR 10
Qу
              1:1 11111
           56 EIKODAEFR 64
```

```
RESULT 15
AG1565
autolysin (amidase) homolog lin1064 [imported] - Listeria innocua (strain
Clip11262)
C; Species: Listeria innocua
C;Date: 27-Nov-2001 #sequence_revision 27-Nov-2001 #text_change 27-Nov-2001
C; Accession: AG1565
R;Glaser, P.; Frangeul, L.; Buchrieser, C.; Amend, A.; Baquero, F.; Berche, P.;
Bloecker, H.; Brandt, P.; Chakraborty, T.; Charbit, A.; Chetouani, F.; Couve,
E.; de Daruvar, A.; Dehoux, P.; Domann, E.; Dominguez-Bernal, G.; Duchaud, E.;
Durand, L.; Dussurget, O.; Entian, K.D.; Fsihi, H.; Garcia-Del Portillo, F.;
Garrido, P.; Gautier, L.; Goebel, W.; Gomez-Lopez, N.; Hain, T.; Hauf, J.;
Jackson, D.; Jones, L.M.; Karst, U.
Science 294, 849-852, 2001
A; Authors: Kreft, J.; Kuhn, M.; Kunst, F.; Kurapkat, G.; Madueno, E.;
Maitournam, A.; Mata Vicente, J.; Ng, E.; Nordsiek, G.; Novella, S.; de Pablos,
B.; Perez-Diaz, J.C.; Remmel, B.; Rose, M.; Rusniok, C.; Schlueter, T.; Simoes,
N.; Tierrez, A.; Vazquez-Boland, J.A.; Voss, H.; Wehland, J.; Cossart, P.
A; Title: Comparative genomics of Listeria species.
A; Reference number: AB1077; MUID: 21537279; PMID: 11679669
A; Accession: AG1565
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-774 <GLA>
A; Cross-references: GB:AL592022; PIDN:CAC96295.1; PID:g16413523; GSPDB:GN00178
A; Experimental source: strain Clip11262
C; Genetics:
A; Gene: lin1064
  Query Match
                          71.4%; Score 35; DB 2; Length 774;
  Best Local Similarity 75.0%; Pred. No. 32;
           6; Conservative 2; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            3 VKMDAEFR 10
              :1:1111
Db
         123 IKIDAEFR 130
Search completed: January 21, 2004, 09:26:08
```

Job time : 1.91778 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

January 21, 2004, 09:25:15; Search time 2.00765 Seconds Run on:

(without alignments)

1018.511 Million cell updates/sec

Title: US-09-869-414A-64

Perfect score: 49

Sequence: 1 SEVKMDAEFR 10

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 762491 seqs, 204481190 residues

Total number of hits satisfying chosen parameters: 762491

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: Published Applications AA:*

> 1: /cgn2_6/ptodata/2/pubpaa/US07 PUBCOMB.pep:*

> /cgn2_6/ptodata/2/pubpaa/PCT NEW PUB.pep:* 2:

3: /cgn2_6/ptodata/2/pubpaa/US06 NEW PUB.pep:*

4: /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*

5: /cgn2 6/ptodata/2/pubpaa/US07 NEW PUB.pep:*

6: /cgn2 6/ptodata/2/pubpaa/PCTUS PUBCOMB.pep:*

/cgn2 6/ptodata/2/pubpaa/US08 NEW_PUB.pep:* 7:

8: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*

9: /cgn2 6/ptodata/2/pubpaa/US09A PUBCOMB.pep:*

10: /cgn2 6/ptodata/2/pubpaa/US09B PUBCOMB.pep:*

/cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:* 11: 12:

/cgn2_6/ptodata/2/pubpaa/US09 NEW PUB.pep:* 13:

/cgn2_6/ptodata/2/pubpaa/US10A PUBCOMB.pep:* 14: /cgn2 6/ptodata/2/pubpaa/US10B PUBCOMB.pep:*

15: /cgn2 6/ptodata/2/pubpaa/US10C PUBCOMB.pep:*

16: /cgn2 6/ptodata/2/pubpaa/US10 NEW PUB.pep:*

17: /cgn2_6/ptodata/2/pubpaa/US60 NEW PUB.pep:*

/cgn2_6/ptodata/2/pubpaa/US60 PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ક્ર

Result Query

> No. Score Match Length DB ID

Description

						
1	49	100.0	10	9	US-09-794-927-64	Sequence 64, Appl
2	49	100.0	10	9	US-09-795-847-64	Sequence 64, Appl
3	49	100.0	10	9	US-09-794-743-64	Sequence 64, Appl
4	49	100.0	10	9	US-09-794-748-64	Sequence 64, Appl
5	49	100.0	10	9	US-09-796-264-4	Sequence 4, Appli
6	49	100.0	10	9	US-09-794-925~64	Sequence 64, Appl
7	49	100.0	10	9	US-09-681-442-64	Sequence 64, Appl
8	49	100.0	10	10	US-09-845-226-4	Sequence 4, Appli
9	49	100.0	10	10	US-09-795-903A-4	Sequence 4, Appli
10	49	100.0	10	11	US-09-869-414-64	Sequence 64, Appl
11	49	100.0	10	11	US-09-548-366-64	Sequence 64, Appl
12	49	100.0	10	12	US-10-427-208-53	Sequence 53, Appl
13	49	100.0	10	15	US-10-032-818-7	Sequence 7, Appli
14	49	100.0	11	12	US-10-354-955-1	Sequence 1, Appli
15	49	100.0	11	12	US-10-354-955-3	Sequence 3, Appli
16	49	100.0	12	9	US-09-896-874-2	Sequence 2, Appli
17	49	100.0	12	10	US-09-896-139-2	Sequence 2, Appli
18	49	100.0	12	10	US-09-895-843-2	Sequence 2, Appli
19	49	100.0	12	11	US-09-895-871-2	Sequence 2, Appli
20	49	100.0	12	12	US-10-427-208-54	Sequence 54, Appl
21	49	100.0	13	12	US-10-160-777-2	Sequence 2, Appli
22	49	100.0	13	12	US-10-337-075-2	Sequence 2, Appli
23	49	100.0	13	15	US-10-084-380A-7	Sequence 7, Appli
24	49	100.0	13	15	US-10-192-625-2	Sequence 2, Appli
25	49	100.0	13	15	US-10-192-424-2	Sequence 2, Appli
26	49	100.0	13	15	US-10-183-126A-2	Sequence 2, Appli
27	49	100.0	13	15	US-10-171-343-2	Sequence 2, Appli
28	49	100.0	13	15	US-10-264-707-2	Sequence 2, Appli
29	49	100.0	14	12	US-10-427-208-55	Sequence 55, Appl
30	49	100.0	16	12	US-10-427-208-56	Sequence 56, Appl
31	49	100.0	23	12	US-10-354-955-6	Sequence 6, Appli
32	49	100.0	67	12	US-10-437-706-1	Sequence 1, Appli
33	49	100.0	82	11	US-09-848-616-173	Sequence 173, App
34	49	100.0	82	12	US-10-050-898-219	Sequence 219, App
35	49	100.0	82	12	US-10-050-902-219	Sequence 219, App
36	49	100.0	534	12	US-09-998-491-2	Sequence 2, Appli
37	49	100.0	695	9	US-09-794-927-10	Sequence 10, Appl
38	49	100.0	695	9	US-09-794-927-14	Sequence 14, Appl
39	49	100.0	695	9	US-09-795-847-10	Sequence 10, Appl
40	49	100.0	695	9	US-09-795-847-14	Sequence 14, Appl
41	49	100.0	695	9	US-09-794-743-10	Sequence 10, Appl
42	49	100.0	695	9	US-09-794-743-14	Sequence 14, Appl
43	49	100.0	695	9	US-09-794-748-10	Sequence 10, Appl
44	49	100.0	695	9	US-09-794-748-14	Sequence 14, Appl
45	49	100.0	695	9	US-09-794-925-10	Sequence 10, Appl

ALIGNMENTS

RESULT 1 US-09-794-927-64

- ; Sequence 64, Application US/09794927
- ; Patent No. US20010016324A1
- ; GENERAL INFORMATION:
- ; APPLICANT: Gurney, Mark E.

```
APPLICANT: Bienkowski, Michael J.
  APPLICANT: Heinrikson, Robert L.
  APPLICANT: Parodi, Luis A.
  APPLICANT: Yan, Rigiang
  TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND
  TITLE OF INVENTION: USES
  TITLE OF INVENTION: THEREFOR
 FILE REFERENCE: 28341/6280FG
  CURRENT APPLICATION NUMBER: US/09/794,927
  CURRENT FILING DATE: 2001-02-27
  PRIOR APPLICATION NUMBER: 09/416,901
  PRIOR FILING DATE: 1999-10-13
; PRIOR APPLICATION NUMBER: 60/155,493
; PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: 09/404,133
; PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: 60/101,594
  PRIOR FILING DATE: 1998-09-24
; NUMBER OF SEQ ID NOS: 73
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-794-927-64
  Query Match
                         100.0%; Score 49; DB 9; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.0017;
          10; Conservative
                              0; Mismatches 0; Indels
                                                              0; Gaps
           1 SEVKMDAEFR 10
QУ
             1 SEVKMDAEFR 10
Db
RESULT 2
US-09-795-847-64
; Sequence 64, Application US/09795847
; Patent No. US20010018208A1
; GENERAL INFORMATION:
; APPLICANT: Gurney, Mark E.
  APPLICANT: Bienkowski, Michael J.
; APPLICANT: Heinrikson, Robert L.
  APPLICANT:
              Parodi, Luis A.
  APPLICANT: Yan, Rigiang
  TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND
  TITLE OF INVENTION: USES
 TITLE OF INVENTION: THEREFOR
; FILE REFERENCE: 28341/6280DE
; CURRENT APPLICATION NUMBER: US/09/795,847
; CURRENT FILING DATE: 2001-02-28
```

```
PRIOR APPLICATION NUMBER: 09/416,901
 PRIOR FILING DATE: 1999-10-13
  PRIOR APPLICATION NUMBER: 60/155,493
 PRIOR FILING DATE: 1999-09-23
 PRIOR APPLICATION NUMBER: 09/404,133
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
 PRIOR APPLICATION NUMBER: 60/101,594
  PRIOR FILING DATE: 1998-09-24
; NUMBER OF SEQ ID NOS: 73
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-795-847-64
  Query Match
                         100.0%; Score 49; DB 9; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.0017;
                             0; Mismatches
                                               0; Indels
 Matches 10; Conservative
                                                               0; Gaps
                                                                          0:
           1 SEVKMDAEFR 10
QУ
             1111111111
           1 SEVKMDAEFR 10
RESULT 3
US-09-794-743-64
; Sequence 64, Application US/09794743
; Patent No. US20010021391A1
; GENERAL INFORMATION:
; APPLICANT: Gurney, Mark E.
 APPLICANT: Bienkowski, Michael J.
  APPLICANT: Heinrikson, Robert L.
  APPLICANT: Parodi, Luis A.
  APPLICANT: Yan, Rigiang
  TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND
; TITLE OF INVENTION: USES
; TITLE OF INVENTION: THEREFOR
; FILE REFERENCE: 28341/6280BC
  CURRENT APPLICATION NUMBER: US/09/794,743
  CURRENT FILING DATE: 2001-02-27
  PRIOR APPLICATION NUMBER: 09/416,901
  PRIOR FILING DATE: 1999-10-13
  PRIOR APPLICATION NUMBER: 60/155,493
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: 09/404,133
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: 60/101,594
; PRIOR FILING DATE: 1998-09-24
; NUMBER OF SEQ ID NOS: 73
```

```
SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-794-743-64
  Query Match
                         100.0%; Score 49; DB 9; Length 10;
                         100.0%; Pred. No. 0.0017;
  Best Local Similarity
          10; Conservative 0; Mismatches
                                                                           0;
                                                 0; Indels
                                                               0; Gaps
           1 SEVKMDAEFR 10
Qу
             Db
           1 SEVKMDAEFR 10
RESULT 4
US-09-794-748-64
; Sequence 64, Application US/09794748
; Patent No. US20020037315A1
; GENERAL INFORMATION:
  APPLICANT: Gurney, Mark E.
  APPLICANT: Bienkowski, Michael J.
  APPLICANT: Heinrikson, Robert L.
             Parodi, Luis A.
  APPLICANT:
  APPLICANT: Yan, Rigiang
  TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND
; TITLE OF INVENTION: USES
 TITLE OF INVENTION: THEREFOR
; FILE REFERENCE: 28341/6280JL
  CURRENT APPLICATION NUMBER: US/09/794,748
  CURRENT FILING DATE: 2001-02-27
  PRIOR APPLICATION NUMBER: 09/416,901
  PRIOR FILING DATE: 1999-10-13
  PRIOR APPLICATION NUMBER: 60/155,493
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: 09/404,133
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: 60/101,594
; PRIOR FILING DATE: 1998-09-24
  NUMBER OF SEQ ID NOS: 73
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-794-748-64
 Query Match
                         100.0%; Score 49; DB 9; Length 10;
 Best Local Similarity 100.0%; Pred. No. 0.0017;
```

```
Matches 10; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           1 SEVKMDAEFR 10
              1 SEVKMDAEFR 10
RESULT 5
US-09-796-264-4
; Sequence 4, Application US/09796264
; Patent No. US20020049303A1
; GENERAL INFORMATION:
; APPLICANT: Tang, Jordan J.N.
  APPLICANT: Lin, Xinli
  APPLICANT: Koelsch, Gerald
  TITLE OF INVENTION: Catalytically Active Recombinant Memapsin and Methods
; TITLE OF INVENTION: of Use Thereof
; FILE REFERENCE: OMRF 179
; CURRENT APPLICATION NUMBER: US/09/796,264
  CURRENT FILING DATE: 2001-02-28
  PRIOR APPLICATION NUMBER: 09/604,608
  PRIOR FILING DATE: 2000-06-27
; PRIOR APPLICATION NUMBER: 60/168,060
; PRIOR FILING DATE: 1999-11-30
  PRIOR APPLICATION NUMBER: 60/177,836
  PRIOR FILING DATE: 2000-01-25
  PRIOR APPLICATION NUMBER: 60/178,368
  PRIOR FILING DATE: 2000-01-27
  PRIOR APPLICATION NUMBER: 60/210,292
  PRIOR FILING DATE: 2000-06-08
 NUMBER OF SEQ ID NOS: 31
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 4
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Primer
US-09-796-264-4
 Query Match
                         100.0%; Score 49; DB 9; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.0017;
         10; Conservative
                             0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           1 SEVKMDAEFR 10
             111111111
Db
           1 SEVKMDAEFR 10
RESULT 6
US-09-794-925-64
; Sequence 64, Application US/09794925
; Patent No. US20020064819A1
; GENERAL INFORMATION:
; APPLICANT: Gurney, Mark E.
; APPLICANT: Bienkowski, Michael J.
; APPLICANT: Heinrikson, Robert L.
```

```
APPLICANT: Parodi, Luis A.
  APPLICANT: Yan, Rigiang
  TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND USES
  TITLE OF INVENTION: THEREFOR
  FILE REFERENCE: 28341/6280HI
  CURRENT APPLICATION NUMBER: US/09/794,925
  CURRENT FILING DATE: 2001-02-27
  PRIOR APPLICATION NUMBER: 09/416,901
  PRIOR FILING DATE: 1999-10-13
  PRIOR APPLICATION NUMBER: 60/155,493
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: 09/404,133
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: 60/101,594
; PRIOR FILING DATE: 1998-09-24
; NUMBER OF SEQ ID NOS: 73
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-794-925-64
  Query Match
                         100.0%; Score 49; DB 9; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.0017;
  Matches 10; Conservative
                              0; Mismatches
                                               0; Indels
                                                                0; Gaps
                                                                           0;
           1 SEVKMDAEFR 10
Qу
             1111111111
Db
           1 SEVKMDAEFR 10
RESULT 7
US-09-681-442-64
; Sequence 64, Application US/09681442
; Patent No. US20020081634A1
; GENERAL INFORMATION:
; APPLICANT: Gurney, Mark E.
; APPLICANT: Bienkowski, Michael J.
; APPLICANT: Heinrikson, Robert L.
; APPLICANT: Parodi, Luis A.
  APPLICANT: Yan, Rigiang
  TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND USES
; TITLE OF INVENTION: THEREFOR
  FILE REFERENCE: 28341/6280FG
  CURRENT APPLICATION NUMBER: US/09/681,442
  CURRENT FILING DATE: 2001-04-05
  PRIOR APPLICATION NUMBER: 09/416,901
; PRIOR FILING DATE: 1999-10-13
; PRIOR APPLICATION NUMBER: 60/155,493
; PRIOR FILING DATE: 1999-09-23
```

```
PRIOR APPLICATION NUMBER: 09/404,133
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
 PRIOR APPLICATION NUMBER: 60/101,594
 PRIOR FILING DATE: 1998-09-24
; NUMBER OF SEQ ID NOS: 73
 SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
    TYPE: PRT
   ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-681-442-64
  Query Match
                          100.0%; Score 49; DB 9; Length 10;
  Best Local Similarity
                         100.0%; Pred. No. 0.0017;
  Matches 10; Conservative
                              0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
           1 SEVKMDAEFR 10
Qу
              11111111
           1 SEVKMDAEFR 10
RESULT 8
US-09-845-226-4
; Sequence 4, Application US/09845226
; Patent No. US20020115600A1
; GENERAL INFORMATION:
; APPLICANT: Tang, Jordan J.N.
  APPLICANT: Hong, Lin
  APPLICANT:
              Ghosh, Arun K.
  TITLE OF INVENTION: Inhibitors of Memapsin 2 and Use Thereof
  FILE REFERENCE: OMRF 182
  CURRENT APPLICATION NUMBER: US/09/845,226
; CURRENT FILING DATE: 2001-04-30
  PRIOR APPLICATION NUMBER: 09/603,713
  PRIOR FILING DATE: 2000-06-27
  PRIOR APPLICATION NUMBER: 60/168,060
  PRIOR FILING DATE: 1999-11-30
  PRIOR APPLICATION NUMBER: 60/177,836
  PRIOR FILING DATE: 2000-01-25
  PRIOR APPLICATION NUMBER: 60/178,368
  PRIOR FILING DATE: 2000-01-27
  PRIOR APPLICATION NUMBER: 60/210,292
  PRIOR FILING DATE: 2000-06-08
  NUMBER OF SEQ ID NOS: 31
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 4
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Primer
US-09-845-226-4
```

```
Query Match 100.0%; Score 49; DB 10; Length 10; Best Local Similarity 100.0%; Pred. No. 0.0017;
                              0; Mismatches 0; Indels
          10; Conservative
                                                                0; Gaps
                                                                           0;
           1 SEVKMDAEFR 10
Qy
             1 SEVKMDAEFR 10
Db
RESULT 9
US-09-795-903A-4
; Sequence 4, Application US/09795903A
; Patent No. US20020164760A1
; GENERAL INFORMATION:
; APPLICANT: Tang, Jordan J.N.
; APPLICANT: Lin, Xinli
; APPLICANT: Koelsch, Gerald
; TITLE OF INVENTION: Catalytically Active Recombinant Memapsin and Methods
; TITLE OF INVENTION: of Use Thereof
; FILE REFERENCE: OMRF 179
; CURRENT APPLICATION NUMBER: US/09/795,903A
; CURRENT FILING DATE: 2001-02-28
; PRIOR APPLICATION NUMBER: 09/604,608
  PRIOR FILING DATE: 2000-06-27
  PRIOR APPLICATION NUMBER: 60/168,060
; PRIOR FILING DATE: 1999-11-30
; PRIOR APPLICATION NUMBER: 60/177,836
; PRIOR FILING DATE: 2000-01-25
; PRIOR APPLICATION NUMBER: 60/178,368
; PRIOR FILING DATE: 2000-01-27
; PRIOR APPLICATION NUMBER: 60/210,292
; PRIOR FILING DATE: 2000-06-08
; NUMBER OF SEQ ID NOS: 31
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 4
  LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Description of Artificial Sequence: Primer
US-09-795-903A-4
                         100.0%; Score 49; DB 10; Length 10;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.0017;
                              0; Mismatches 0; Indels 0; Gaps
          10; Conservative
                                                                            0;
Qу
           1 SEVKMDAEFR 10
             1111111111
Db
           1 SEVKMDAEFR 10
RESULT 10
US-09-869-414-64
; Sequence 64, Application US/09869414
; Publication No. US20030077226A1
; GENERAL INFORMATION:
; APPLICANT: Beinkowski et al.
```

```
; TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND USES
  TITLE OF INVENTION: THEREFOR
  FILE REFERENCE: 28341/6280M
; CURRENT APPLICATION NUMBER: US/09/869,414
; CURRENT FILING DATE: 2001-06-27
  PRIOR APPLICATION NUMBER: 09/416,901
; PRIOR FILING DATE: 1999-10-13
; PRIOR APPLICATION NUMBER: 60/155,493
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: 09/404,133
  PRIOR FILING DATE: 1999-09-23
  PRIOR APPLICATION NUMBER: PCT/US99/20881
  PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: 60/101,594
; PRIOR FILING DATE: 1998-09-24
; NUMBER OF SEQ ID NOS: 73
; SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-869-414-64
                         100.0%; Score 49; DB 11; Length 10;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.0017;
  Matches 10; Conservative 0; Mismatches 0; Indels
                                                            0; Gaps
                                                                           0;
          1 SEVKMDAEFR 10
Qу
             Db
           1 SEVKMDAEFR 10
RESULT 11
US-09-548-366-64
; Sequence 64, Application US/09548366
; Publication No. US20030104365A1
; GENERAL INFORMATION:
; APPLICANT: Gurney, Mark E.
; APPLICANT: Bienkowski, Michael J.
; APPLICANT: Heinrikson, Robert L.
; APPLICANT: Parodi, Luis A.
; APPLICANT: Yan, Rigiang
; TITLE OF INVENTION: ALZHEIMER'S DISEASE SECRETASE, APP SUBSTRATES THEREFOR,
AND
; TITLE OF INVENTION: USES THEREFOR
  FILE REFERENCE: 28341/6280A
  CURRENT APPLICATION NUMBER: US/09/548,366
  CURRENT FILING DATE: 2000-04-12
  PRIOR APPLICATION NUMBER: 60/155,493
; PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: 09/404,133
; PRIOR FILING DATE: 1999-09-23
; PRIOR APPLICATION NUMBER: PCT/US99/20881
; PRIOR FILING DATE: 1999-09-23
```

```
; PRIOR APPLICATION NUMBER: 60/101,594
  PRIOR FILING DATE: 1998-09-24
  NUMBER OF SEQ ID NOS: 65
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 64
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Description of Artificial Sequence: synthetic
US-09-548-366-64
                        100.0%; Score 49; DB 11; Length 10;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0.0017;
 Matches 10; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
           1 SEVKMDAEFR 10
Qу
             Db
           1 SEVKMDAEFR 10
RESULT 12
US-10-427-208-53
; Sequence 53, Application US/10427208
; Publication No. US20030200555A1
; GENERAL INFORMATION:
; APPLICANT: Merck & Co., Inc.
; APPLICANT: Hazuda, Daria J
; APPLICANT: Chen Dodson, Elizabeth
  APPLICANT: Lai, Ming-Tain
  APPLICANT: Xu, Min
; APPLICANT: Shi, Xiao-Ping
; APPLICANT: Simon, Adam J.
; APPLICANT: Wu, Guoxin
; APPLICANT: Li, Yueming
; APPLICANT: Register, Robert B.
  TITLE OF INVENTION: ASSAYS USING AMYLOID PRECURSOR PROTEINS WITH MODIFIED
; TITLE OF INVENTION: BETA-SECRETASE CLEAVAGE SITES TO MONITOR BETA-SECRETASE
ACTIVITY
; FILE REFERENCE: 21052
; CURRENT APPLICATION NUMBER: US/10/427,208
; CURRENT FILING DATE: 2003-04-30
; NUMBER OF SEQ ID NOS: 75
  SOFTWARE: PatentIn version 3.2
; SEQ ID NO 53
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-427-208-53
 Query Match
                        100.0%; Score 49; DB 12; Length 10;
 Best Local Similarity 100.0%; Pred. No. 0.0017;
 Matches
          10; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
           1 SEVKMDAEFR 10
Qу
            Db
           1 SEVKMDAEFR 10
```

```
RESULT 13
US-10-032-818-7
; Sequence 7, Application US/10032818
; Publication No. US20030092629A1
; GENERAL INFORMATION:
; APPLICANT: Tang, Jordan J.N.
  APPLICANT:
              Koelsch, Gerald
  APPLICANT:
              Ghosh, Arun K.
  TITLE OF INVENTION: Inhibitors of Memapsin 2 and Use Thereof
  FILE REFERENCE: 2932.1006-007
  CURRENT APPLICATION NUMBER: US/10/032,818
  CURRENT FILING DATE: 2001-12-28
  PRIOR APPLICATION NUMBER: US 60/275,756
  PRIOR FILING DATE: 2001-03-14
; PRIOR APPLICATION NUMBER: US 60/258,705
  PRIOR FILING DATE: 2000-12-28
  NUMBER OF SEQ ID NOS: 83
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 7
   LENGTH: 10
   TYPE: PRT
   ORGANISM: Artificial Sequence
    FEATURE:
   OTHER INFORMATION: Synthetic peptide
US-10-032-818-7
  Query Match
                         100.0%; Score 49; DB 15; Length 10;
  Best Local Similarity 100.0%; Pred. No. 0.0017;
 Matches
          10; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           1 SEVKMDAEFR 10
              31111111
Db
           1 SEVKMDAEFR 10
RESULT 14
US-10-354-955-1
; Sequence 1, Application US/10354955
; Publication No. US20030171291A1
; GENERAL INFORMATION:
; APPLICANT: Gary Christie
; APPLICANT: Ishrut Hussain
  APPLICANT: David J. Powell
  TITLE OF INVENTION: No. US20030171291Alel Treatment
  FILE REFERENCE: P32448
  CURRENT APPLICATION NUMBER: US/10/354,955
  CURRENT FILING DATE: 2003-01-30
  PRIOR APPLICATION NUMBER: 09/693,744
  PRIOR FILING DATE: 2000-10-20
  PRIOR APPLICATION NUMBER: 9925136.5
  PRIOR FILING DATE: 1999-10-22
; NUMBER OF SEQ ID NOS: 9
; SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 1
  LENGTH: 11
```

```
TYPE: PRT
   ORGANISM: human
US-10-354-955-1
  Query Match
                        100.0%; Score 49; DB 12; Length 11;
  Best Local Similarity 100.0%; Pred. No. 0.0019;
          10; Conservative 0; Mismatches 0; Indels
                                                                          0;
  Matches
                                                              0; Gaps
           1 SEVKMDAEFR 10
QУ
             2 SEVKMDAEFR 11
Db
RESULT 15
US-10-354-955-3
; Sequence 3, Application US/10354955
; Publication No. US20030171291A1
; GENERAL INFORMATION:
; APPLICANT: Gary Christie
; APPLICANT: Ishrut Hussain
 APPLICANT: David J. Powell
  TITLE OF INVENTION: No. US20030171291A1el Treatment
; FILE REFERENCE: P32448
  CURRENT APPLICATION NUMBER: US/10/354,955
  CURRENT FILING DATE: 2003-01-30
  PRIOR APPLICATION NUMBER: 09/693,744
  PRIOR FILING DATE: 2000-10-20
 PRIOR APPLICATION NUMBER: 9925136.5
 PRIOR FILING DATE: 1999-10-22
; NUMBER OF SEQ ID NOS: 9
  SOFTWARE: FastSEQ for Windows Version 3.0
; SEQ ID NO 3
   LENGTH: 11
   TYPE: PRT
   ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: fusion protein with maltose binding protein attached at
residue 1'
US-10-354-955-3
                         100.0%; Score 49; DB 12; Length 11;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.0019;
  Matches 10; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
           1 SEVKMDAEFR 10
Qу
             1111111111
           2 SEVKMDAEFR 11
Search completed: January 21, 2004, 09:41:42
Job time : 3.00765 secs
```

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 21, 2004, 09:16:19; Search time 2.06501 Seconds

(without alignments)

1249.644 Million cell updates/sec

Title:

US-09-869-414A-64

Perfect score: 49

Sequence: 1 SEVKMDAEFR 10

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched:

830525 segs, 258052604 residues

Total number of hits satisfying chosen parameters:

830525

Minimum DB seq length: 0

Maximum DB seg length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

SPTREMBL 23:*

1: sp archea:*

2: sp bacteria:*

3: sp fungi:*

4: sp human:*

5: sp invertebrate:*

6: sp mammal:*

7: sp mhc:*

8: sp organelle:*

9: sp phage:*

10: sp_plant:*

11: sp rodent:*

12: sp virus:*

13: sp vertebrate:*

14: sp unclassified:*

15: sp rvirus:*

16: sp bacteriap:*

17: sp archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

Score Match Length DB ID

Description

1	49	100.0	35	4	Q8WZ99	Q8wz99 homo sapien
2	49	100.0	82	4	Q16020	Q16020 homo sapien
3	49	100.0	82	4	Q16014	Q16014 homo sapien
4	49	100.0	82	4	Q16019	Q16019 homo sapien
5	49	100.0	113	13	Q8JH58	Q8jh58 chelydra se
6	49	100.0	534	13	093296	093296 gallus gall
7	49	100.0	569	13	Q9PVL1	Q9pvl1 gallus gall
8	49	100.0	695	11	Q60496	Q60496 cavia sp. p
9	49	100.0	695	13	Q9DGJ8	Q9dgj8 gallus gall
10	49	100.0	751	13	Q9DGJ7	Q9dgj7 gallus gall
11	49	100.0	770	6	Q9TUI0	Q9tui0 sus scrofa
12	44	89.8	79	11	035463	035463 cricetulus
13	44	89.8	218	11	Q8BPV5	Q8bpv5 mus musculu
14	44	89.8	384	11	Q8BPC7	Q8bpc7 mus musculu
15	44	89.8	607	11	Q99K32	Q99k32 mus musculu
16	44	89.8	695	11	P97487	P97487 mus musculu
17	43	87.8	693	13	Q985G0	Q98sg0 xenopus lae
18	43	87.8	695	13	Q98SF9	Q98sf9 xenopus lae
19	43	87.8	747	13	Q91963	Q91963 xenopus. ap
20	42	85.7	423	2	052379	O52379 ralstonia s
21	42	85.7	423	2	Q45693	Q45693 burkholderi
22	39	79.6	142	5	016896	016896 caenorhabdi
23	36	73.5	630	2	Q93IK4	Q93ik4 vibrio sp.
24	35	71.4	317	17	Q96ZT2	Q96zt2 sulfolobus
25	35	71.4	419	2	Q8GHI9	Q8ghi9 pigmentipha
26	35	71.4	774	16	Q92CV7	Q92cv7 listeria in
27	35	71.4	2148	5	Q8IPL5	Q8ipl5 drosophila
28	34	69.4	239	10	Q9FNG2	Q9fng2 arabidopsis
29	34	69.4	254	5	Q8IK90	Q8ik90 plasmodium
30	34	69.4	605	16	Q9L1F6	Q911f6 streptomyce
31	34	69.4	626	16	Q8ZCN4	Q8zcn4 yersinia pe
32	34	69.4	1192	10	Q94BS1	Q94bsl arabidopsis
33	34	69.4	1261	10	Q9LU30	Q9lu30 arabidopsis
34	34	69.4	3262	4	Q13788	Q13788 homo sapien
35	33	67.3	302	9	Q37840	Q37840 bacteriopha
36	33	67.3	438	2	Q9AIK4	Q9aik4 bilophila w
37	33	67.3	449	1.6	Q8D1Z2	Q8d1z2 wiggleswort
38	33	67.3	582	16	Q8KFP0	Q8kfp0 chlorobium
39	33	67.3	621	4	Q9H9Y1	Q9h9y1 homo sapien
40	33	67.3	711	16	Q8EFW4	Q8efw4 shewanella
41	33	67.3	1027	4	Q9BWX2	Q9bwx2 homo sapien
42	33	67.3	1245	10	Q9C7F8	Q9c7f8 arabidopsis
43	32	65.3	143	4	Q9H935	Q9h935 homo sapien
44	32	65.3	161	16	Q98FZ2	Q98fz2 rhizobium 1
45	32	65.3	286	2	Q8VNV1	Q8vnv1 chlorobium
10	52	00.0	200	_	50 +14 A T	Zoviivi ciiiotopiuii

ALIGNMENTS

RESULT 1 Q8WZ99 ID Q8WZ99 PRELIMINARY; PRT; 35 AA. AC Q8WZ99; DT 01-MAR-2002 (TrEMBLrel. 20, Created) DT 01-MAR-2002 (TrEMBLrel. 20, Last sequence update) DT 01-MAR-2002 (TrEMBLrel. 20, Last annotation update)

```
DE
     Amyloid protein (Fragment).
GN
     APP.
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
     NCBI TaxID=9606;
XO
RN
     SEQUENCE FROM N.A.
RP
     Wakutani Y., Ninomiya H., Iwata H., Tanaka S., Urakami K., Adachi Y.,
RA
    Wada-Isoe K., Yamagata K., Ohono K., Tsubuki S., Saido T.,
RA
     Hashimoto T., Iwatsubo T., Nakashima K.;
RA
RT
     "Novel missense mutation (D678N) of amyloid precursor protein gene in
     a Japanese pedigree of familial Alzheimer's disease.";
RT
     Submitted (JUL-2001) to the EMBL/GenBank/DDBJ databases.
RT.
     EMBL; AB066441; BAB71958.1; -.
DR
    NON TER
FT
                  1
                          1
                         35
     NON TER
                  35
FT
     SEQUENCE
              35 AA; 4084 MW; 49D7D17289743B71 CRC64;
SQ
                          100.0%; Score 49; DB 4; Length 35;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.0045;
                                                 0; Indels
  Matches
           10; Conservative
                               0; Mismatches
                                                                  0; Gaps
                                                                              0;
Qy
            1 SEVKMDAEFR 10
              1111111111
Db
           12 SEVKMDAEFR 21
RESULT 2
016020
     016020
                 PRELIMINARY;
                                   PRT;
                                           82 AA.
ΙD
AC
     016020:
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
DE
     Beta-amyloid peptide (Fragment).
GN
     BETA APP.
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     MEDLINE=93236601; PubMed=8476439;
RX 
RA
     Denman R.B., Rosenzcwaig R., Miller D.L.;
RT
     "A system for studying the effect(s) of familial Alzheimer disease
     mutations on the processing of the beta-amyloid peptide precursor.";
RТ
     Biochem. Biophys. Res. Commun. 192:96-103(1993).
RL
DR
     EMBL; S61383; AAB26265.2; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF03494; Beta-APP; 1.
FT
     NON TER
                   1
                          1
                  82
FT
     NON TER
                         82
     SEQUENCE 82 AA; 8882 MW; F534AA5AE5D9230A CRC64;
SO
                          100.0%; Score 49; DB 4; Length 82;
  Query Match
```

```
Best Local Similarity 100.0%; Pred. No. 0.011;
                               0; Mismatches
           10; Conservative
                                                0; Indels
                                                                0; Gaps
                                                                             0;
           1 SEVKMDAEFR 10
QУ
              1111111111
Db
           13 SEVKMDAEFR 22
RESULT 3
016014
                 PRELIMINARY;
                                   PRT;
                                           82 AA.
TD
     Q16014
AC
     Q16014;
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
DΤ
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DΕ
     Beta-amyloid peptide (Fragment).
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
    NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
    MEDLINE=93236601; PubMed=8476439;
RX
RA
     Denman R.B., Rosenzcwaig R., Miller D.L.;
     "A system for studying the effect(s) of familial Alzheimer disease
RT
     mutations on the processing of the beta-amyloid peptide precursor.";
RT
     Biochem. Biophys. Res. Commun. 192:96-103(1993).
RL
     EMBL; S60721; AAB26263.2; -.
DR
    HSSP; P05067; 1BA4.
DR
     InterPro; IPR001255; Beta-APP.
DR
DR
     Pfam; PF03494; Beta-APP; 1.
    NON TER
FT
                  1
FT
    NON TER
                  82
                         82
SO
     SEQUENCE
               82 AA; 8972 MW; F534AA5B3EA9230A CRC64;
  Query Match
                          100.0%; Score 49; DB 4; Length 82;
                         100.0%; Pred. No. 0.011;
 Best Local Similarity
           10; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
           1 SEVKMDAEFR 10
Qу
              111111111
Db
           13 SEVKMDAEFR 22
RESULT 4
Q16019
                 PRELIMINARY;
                                   PRT;
                                           82 AA.
     Q16019
ID
AC
     016019;
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DE
     Beta-amyloid peptide (Fragment).
GN
     BETA APP.
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
    NCBI TaxID=9606;
```

```
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=93236601; PubMed=8476439;
RA
     Denman R.B., Rosenzcwaig R., Miller D.L.;
     "A system for studying the effect(s) of familial Alzheimer disease
RT
     mutations on the processing of the beta-amyloid peptide precursor.";
RT
     Biochem. Biophys. Res. Commun. 192:96-103(1993).
RL
     EMBL; S61380; AAB26264.2; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
FT
     NON TER
                   1
FT
     NON TER
                  82
                         82
                        8938 MW; F534AA50E579230A CRC64;
SO
     SEQUENCE
                82 AA;
                          100.0%; Score 49; DB 4; Length 82;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.011;
                                                 0; Indels
                                                                              0;
           10; Conservative
                               0; Mismatches
                                                                  0; Gaps
            1 SEVKMDAEFR 10
Qу
              Db
           13 SEVKMDAEFR 22
RESULT 5
08JH58
ID
     08JH58
                 PRELIMINARY;
                                   PRT;
                                          113 AA.
AC
     Q8JH58;
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
     Amyloid beta protein (Fragment).
DE
     Chelydra serpentina serpentina (common snapping turtle).
OS
OC.
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Testudines; Cryptodira; Testudinoidea; Chelydridae; Chelydra.
OX
     NCBI TaxID=134619;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     MEDLINE=21876906; PubMed=11882478;
RX
RA
     Trudeau V.L., Chiu S., Kennedy S.W., Brooks R.J.;
     "Octylphenol (OP) alters the expression of members of the amyloid
RT
     protein family in the hypothalamus of the snapping turtle, Chelydra
RT
RT
     serpentina serpentina.";
     Environ. Health Perspect. 110:269-275(2002).
     EMBL; AF541917; AAN04908.1; -.
DR
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
DR
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     PRINTS; PR00203; AMYLOIDA4.
     PROSITE; PS00320; A4_INTRA; 1.
DR
FT
     NON TER
                   1
                          1
                113 AA; 12750 MW;
SQ
     SEQUENCE
                                   72515C930496E053 CRC64;
  Query Match
                          100.0%; Score 49; DB 13; Length 113;
                          100.0%; Pred. No. 0.015;
  Best Local Similarity
                                                                              0;
            10; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
  Matches
```

```
Qу
            1 SEVKMDAEFR 10
              111111111
           10 SEVKMDAEFR 19
Db
RESULT 6
093296
     093296
TD
                 PRELIMINARY;
                                   PRT;
                                          534 AA.
     093296;
AC
DT
     01-NOV-1998 (TrEMBLrel. 08, Created)
DT
     01-NOV-1998 (TrEMBLrel. 08, Last sequence update)
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Amyloid protein (Fragment).
OS
     Gallus gallus (Chicken).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
     Gallus.
     NCBI TaxID=9031;
OX
RN
RP
     SEQUENCE FROM N.A.
     MEDLINE=98337885; PubMed=9671674;
RX
RA
     Barnes N.Y., Li L., Yoshikawa K., Schwartz L.M., Oppenheim R.W.,
RA
     Milligan C.E.;
RT
     "Increased production of amyloid precursor protein provides a
RT
     substrate for caspase-3 in dying motoneurons.";
RL
     J. Neurosci. 18:5869-5880(1998).
DR
     EMBL; AF042098; AAC25052.1; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF02177; A4 EXTRA; 1.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     PRINTS; PR00203; AMYLOIDA4.
     PROSITE; PS00319; A4 EXTRA; 1.
DR
DR
     PROSITE; PS00320; A4 INTRA; 1.
     NON TER
FT
                   1
     SEQUENCE
SQ
                534 AA; 60597 MW; FB53ECC2E66D4C92 CRC64;
                          100.0%; Score 49; DB 13; Length 534;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.075;
 Matches
          10; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SEVKMDAEFR 10
Qу
              Db
          431 SEVKMDAEFR 440
RESULT 7
Q9PVL1
ΙD
     O9PVL1
                 PRELIMINARY;
                                   PRT;
                                          569 AA.
AC
     Q9PVL1;
DT
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Amyloid protein (Fragment).
GN
    APP.
OS
    Gallus gallus (Chicken).
```

```
OC
      Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC
      Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
 OC
      Gallus.
 OX
      NCBI TaxID=9031;
 RN
      [1]
 RΡ
      SEQUENCE FROM N.A.
 RC
      TISSUE=Brain;
      Coulson E.J., Paliga K., Beyreuther K., Masters C.L.;
 RA
 RT
      "What the evolution of the amyloid protein precursor supergene family
      tells us about its function.";
 RT
RL
      Neurochem. Int. 0:0-0(2000).
DR
      EMBL; AF030341; AAF12698.1; -.
DR
     HSSP; P05067; 1BA4.
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
DR
DR
     Pfam; PF02177; A4 EXTRA; 1.
DR
     Pfam; PF03494; Beta-APP; 1.
     PRINTS; PR00203; AMYLOIDA4.
DR
DR
     PROSITE; PS00319; A4 EXTRA; 1.
DR
     PROSITE; PS00320; A4 INTRA; 1.
FT
     NON TER
                    1
                          1
     SEQUENCE
SQ
                 569 AA; 64753 MW;
                                     0AB8BB851863A19D CRC64;
  Query Match
                           100.0%; Score 49; DB 13; Length 569;
  Best Local Similarity 100.0%; Pred. No. 0.08;
  Matches
                                0; Mismatches
           10; Conservative
                                                  0; Indels
                                                                  0; Gaps
                                                                               0;
Qу
            1 SEVKMDAEFR 10
              111111111
Db
          467 SEVKMDAEFR 476
RESULT 8
Q60496
ID
     Q60496
                 PRELIMINARY;
                                    PRT;
                                           695 AA.
AC
     Q60496;
DТ
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Putative amyloid precursor protein.
DE
OS
     Cavia sp.
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Caviidae; Cavia.
OC
OX
     NCBI TaxID=10143;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Brain:
RX
     MEDLINE=97236426; PubMed=9116031;
RA
     Beck M., Mueller D., Bigl V.;
RT
     "Amyloid precursor protein in Guinea pigs - complete cDNA sequence and
RT
     alternative splicing.";
RL
     Biochim. Biophys. Acta 1351:17-21(1997).
DR
     EMBL; X97631; CAA66230.1; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF02177; A4 EXTRA; 1.
```

```
Pfam; PF03494; Beta-APP; 1.
 DR
      PRINTS; PR00203; AMYLOIDA4.
 DR
      SMART; SM00006; A4 EXTRA; 1.
 DR
 DR
      PROSITE; PS00319; A4 EXTRA; 1.
 DR
     PROSITE; PS00320; A4 INTRA; 1.
                695 AA; 78701 MW; 5196A0C4017F16AB CRC64;
 SO
      SEQUENCE
  Query Match
                          100.0%; Score 49; DB 11; Length 695;
  Best Local Similarity 100.0%; Pred. No. 0.099;
            10; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SEVKMDAEFR 10
              Db
          592 SEVKMDAEFR 601
RESULT 9
Q9DGJ8
ID
     Q9DGJ8
                 PRELIMINARY;
                                   PRT;
                                          695 AA.
     Q9DGJ8;
AC
DT
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Beta-amyloid precursor protein 695 isoform.
OS
     Gallus gallus (Chicken).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
OC
     Gallus.
OX
     NCBI TaxID=9031;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Sarasa M., Rodolosse A., Sorribas V.;
     "Cloning of full-length chicken beta-amyloid precursor protein
RT
RT
     isoforms.";
     Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF289218; AAG00593.1; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001868; A4 APP.
     InterPro; IPR001255; Beta-APP.
DR
DR
     Pfam; PF02177; A4 EXTRA; 1.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     PRINTS; PR00203; AMYLOIDA4.
DR
     SMART; SM00006; A4 EXTRA; 1.
DR
     PROSITE; PS00319; A4 EXTRA; 1.
DR
     PROSITE; PS00320; A4 INTRA; 1.
SQ
     SEQUENCE 695 AA; 78565 MW; F201ED02AEC86D95 CRC64;
  Query Match
                         100.0%; Score 49; DB 13; Length 695;
  Best Local Similarity 100.0%; Pred. No. 0.099;
           10; Conservative
                              0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SEVKMDAEFR 10
             592 SEVKMDAEFR 601
```

```
Q9DGJ7
 ID
      O9DGJ7
                  PRELIMINARY;
                                    PRT;
                                           751 AA.
 AC
      Q9DGJ7;
      01-MAR-2001 (TrEMBLrel. 16, Created)
 DТ
      01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
 DT
      01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
 DT
 DE
      Beta-amyloid precursor protein 751 isoform.
      Gallus gallus (Chicken).
 OS
      Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC
      Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
 OC
 OC
      Gallus.
 OX
     NCBI TaxID=9031;
 RN
      [1]
 RΡ
      SEQUENCE FROM N.A.
 RA
      Sarasa M., Rodolosse A., Sorribas V.;
RT
      "Cloning of full-length chicken beta-amyloid precursor protein
RT
     isoforms.";
     Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF289219; AAG00594.1; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
DR
     InterPro; IPR002223; Kunitz BPTI.
DR
     Pfam; PF02177; A4 EXTRA; 1.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     Pfam; PF00014; Kunitz BPTI; 1.
     PRINTS; PR00203; AMYLOIDA4.
DR
DR
     PRINTS; PR00759; BASICPTASE.
DR
     ProDom; PD000222; Kunitz BPTI; 1.
DR
     SMART; SM00006; A4 EXTRA; 1.
DR
     SMART; SM00131; KU; 1.
DR
     PROSITE; PS00319; A4 EXTRA; 1.
DR
     PROSITE; PS00320; A4 INTRA; 1.
     PROSITE; PS00280; BPTI KUNITZ 1; 1.
DR
DR
     PROSITE; PS50279; BPTI KUNITZ 2; 1.
KW
     Protease inhibitor; Serine protease inhibitor.
SQ
     SEQUENCE
               751 AA; 84705 MW; E78E9413A8033D84 CRC64;
  Query Match
                          100.0%; Score 49; DB 13;
                                                       Length 751;
  Best Local Similarity 100.0%; Pred. No. 0.11;
  Matches
            10; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SEVKMDAEFR 10
              Db
          648 SEVKMDAEFR 657
RESULT 11
Q9TUI0
ID
     O9TUI0
                 PRELIMINARY;
                                   PRT;
                                          770 AA.
AC
     O9TUIO:
DT
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Amyloid precursor protein.
os
     Sus scrofa (Pig).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
```

```
OC
     Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus.
XO
     NCBI TaxID=9823;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Kimura A., Takahashi T.;
RT
     "Amyloid Precursor Protein 770.";
RL
     Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AB032550; BAA84580.1; -.
     HSSP; P05067; 1AAP.
DR
DR
     InterPro; IPR001868; A4 APP.
     InterPro; IPR001255; Beta-APP.
DR
     InterPro; IPR002223; Kunitz BPTI.
DR
     Pfam; PF02177; A4 EXTRA; 1.
DR
DR
     Pfam; PF03494; Beta-APP; 1.
     Pfam; PF00014; Kunitz BPTI; 1.
DR
DR
     PRINTS; PR00203; AMYLOIDA4.
DR
     PRINTS; PR00759; BASICPTASE.
DR
     ProDom; PD000222; Kunitz BPTI; 1.
DR
     SMART; SM00006; A4 EXTRA; 1.
     SMART; SM00131; KU; 1.
     PROSITE; PS00319; A4 EXTRA; 1.
     PROSITE; PS00320; A4 INTRA; 1.
DR
     PROSITE; PS00280; BPTI KUNITZ 1; 1.
DR
     PROSITE; PS50279; BPTI KUNITZ 2; 1.
DR
KW
     Protease inhibitor; Serine protease inhibitor.
SQ
     SEQUENCE
              770 AA; 86961 MW; 5F7A1DCB2BCC583E CRC64;
  Query Match
                          100.0%; Score 49; DB 6; Length 770;
  Best Local Similarity
                          100.0%; Pred. No. 0.11;
 Matches
           10; Conservative
                              0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SEVKMDAEFR 10
Qv
              667 SEVKMDAEFR 676
RESULT 12
035463
ID
    035463
                 PRELIMINARY;
                                   PRT;
                                           79 AA.
AC
    035463;
DT
     01-JAN-1998 (TrEMBLrel. 05, Created)
DT
     01-JAN-1998 (TrEMBLrel. 05, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DE
    Alzheimer's amyloid beta protein (Fragment).
GN
OS
    Cricetulus griseus (Chinese hamster).
OC.
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Cricetinae;
OC
    Cricetulus.
OX
    NCBI TaxID=10029;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Sambamurti K., Pinnix I., Gandhi S.;
RL
    Submitted (OCT-1997) to the EMBL/GenBank/DDBJ databases.
DR
    EMBL; AF030413; AAB86608.1; -.
DR
    HSSP; P05067; 1BA4.
    InterPro; IPR001255; Beta-APP.
DR
```

```
Pfam; PF03494; Beta-APP; 1.
DR
FT
     NON TER
                  1
                         1
FT
     NON TER
                  79
                         79
     SEQUENCE
                79 AA; 8538 MW;
                                 37F2C6C3BFF3F597 CRC64;
SQ
                         89.8%; Score 44; DB 11; Length 79;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.12;
                                                                             0;
                                                                 0; Gaps
            9; Conservative
                              0; Mismatches
                                                  0; Indels
            1 SEVKMDAEF 9
Qу
              111111111
           16 SEVKMDAEF 24
Db
RESULT 13
Q8BPV5
ID
                                   PRT;
                                         218 AA.
     O8BPV5
                 PRELIMINARY;
AC
     Q8BPV5;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Amyloid beta (Fragment).
DE
     Mus musculus (Mouse).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     STRAIN=C57BL/6J; TISSUE=Lung;
RC
     MEDLINE=22354683; PubMed=12466851;
RX
     The FANTOM Consortium,
RA
RA
     the RIKEN Genome Exploration Research Group Phase I & II Team;
RТ
     "Analysis of the mouse transcriptome based on functional annotation of
     60,770 full-length cDNAs.";
RT
     Nature 420:563-573(2002).
RL
     EMBL; AK052448; BAC34997.1; -.
DR
     NON TER
FT
                  1
                         1
                218 AA; 24118 MW; 95B55AFDAE1D0EF5 CRC64;
     SEQUENCE
SQ
                         89.8%; Score 44; DB 11; Length 218;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.34;
           9; Conservative 0; Mismatches
                                                 0; Indels 0; Gaps
                                                                             0;
  Matches
            1 SEVKMDAEF 9
Qу
              115 SEVKMDAEF 123
RESULT 14
Q8BPC7
     Q8BPC7
                 PRELIMINARY;
                                   PRT;
                                          384 AA.
ID
AC
     Q8BPC7;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Amyloid beta (Fragment).
     Mus musculus (Mouse).
OS
```

```
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     STRAIN=C57BL/6J; TISSUE=Head;
RC
     MEDLINE=22354683; PubMed=12466851;
RX
RA.
     The FANTOM Consortium,
RA
     the RIKEN Genome Exploration Research Group Phase I & II Team;
     "Analysis of the mouse transcriptome based on functional annotation of
RТ
RT
     60,770 full-length cDNAs.";
     Nature 420:563-573(2002).
RL
     EMBL; AK076506; BAC36369.1; -.
DR
FT
     NON TER
                  1
                         1
SO
     SEQUENCE
                384 AA; 43990 MW; A81B1AD8AE683173 CRC64;
 Query Match
                          89.8%; Score 44; DB 11; Length 384;
 Best Local Similarity 100.0%; Pred. No. 0.61;
 Matches
            9; Conservative
                              0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SEVKMDAEF 9
Qy
              11111111
          281 SEVKMDAEF 289
RESULT 15
Q99K32
                 PRELIMINARY;
                                   PRT;
                                          607 AA.
ID
     Q99K32
AC
     Q99K32;
     01-JUN-2001 (TrEMBLrel. 17, Created)
DT
DT
     01-JUN-2001 (TrEMBLrel. 17, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Hypothetical 68.4 kDa protein (Fragment).
GN
OS
     Mus musculus (Mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Strausberg R.;
RL
     Submitted (MAR-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; BC005490; AAH05490.1; -.
DR
     HSSP; P05067; 1AAP.
DR
     MGD; MGI:88059; App.
     InterPro; IPR001868; A4 APP.
     InterPro; IPR001255; Beta-APP.
DR
     InterPro; IPR002223; Kunitz BPTI.
DR
     Pfam; PF02177; A4 EXTRA; 1.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     Pfam; PF00014; Kunitz BPTI; 1.
DR
     PRINTS; PR00203; AMYLOIDA4.
DR
DR
     PRINTS; PR00759; BASICPTASE.
     ProDom; PD000222; Kunitz BPTI; 1.
DR
DR
     SMART; SM00131; KU; 1.
DR
     PROSITE; PS00319; A4 EXTRA; 1.
     PROSITE; PS00320; A4 INTRA; 1.
DR
```

```
DR
     PROSITE; PS00280; BPTI_KUNITZ 1; 1.
     PROSITE; PS50279; BPTI_KUNITZ 2; 1.
DR
     Hypothetical protein; Protease inhibitor; Serine protease inhibitor.
KW
FT
     NON TER
                 1
                        1
     SEQUENCE 607 AA; 68391 MW; BF802214CBA7D172 CRC64;
SQ
  Query Match 89.8%; Score 44; DB 11; Length 607; Best Local Similarity 100.0%; Pred. No. 0.98;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                            0;
Qу
           1 SEVKMDAEF 9
             Db
         504 SEVKMDAEF 512
```

Search completed: January 21, 2004, 09:25:08 Job time: 3.06501 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 21, 2004, 09:15:44; Search time 0.497132 Seconds

(without alignments)

945.960 Million cell updates/sec

Title: US-09-869-414A-64

Perfect score: 49

Sequence: 1 SEVKMDAEFR 10

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 127863 seqs, 47026705 residues

Total number of hits satisfying chosen parameters: 127863

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : SwissProt 41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	49	100.0	57	1	A4 URSMA	Q29149 ursus marit
2	49	100.0	58	1	A4 CANFA	Q28280 canis famil
3	49	100.0	58	1	A4 RABIT	Q28748 oryctolagus
4	49	100.0	58	1	A4 SHEEP	Q28757 ovis aries
5	49	100.0	59	1	A4 BOVIN	Q28053 bos taurus
6	49	100.0	751	1	A4 SAISC	Q95241 s amyloid b
7	49	100.0	770	1	A4 CAVPO	Q60495 c amyloid b
8	49	100.0	770	1	A4 HUMAN	P05067 h amyloid b
9	49	100.0	770	1	A4 MACFA	P53601 m amyloid b
10	49	100.0	770	1	A4 PIG	P79307 s amyloid b
11	44	89.8	770	1	A4 MOUSE	P12023 m amyloid b
12	44	89.8	770	1	A4 RAT	P08592 r amyloid b
13	37	75.5	269	1	T2S1 STRFI	O52512 streptomyce
14	34	69.4	3562	1	PGCV CHICK	Q90953 gallus gall
15	34	69.4	4563	1	APB HUMAN	P04114 homo sapien
16	33	67.3	927	1	$CC1\overline{5}$ SCHPO	Q09822 schizosacch
17	32	65.3	263	1	Y683_HALN1	Q9hri2 halobacteri

18	32	65.3	354	1	BCPA CHLLT	Q46135 chlorobium
19	32	65.3	365	1	BCPA CHLTE	Q46393 chlorobium
20	32	65.3	776	1	OSTA VIBVU	Q8ded5 vibrio vuln
21	32	65.3	1906	1	YFA0 ANASP	Q8ym40 anabaena sp
22	31	63.3	81	1	RS16 CLOPE	Q8xjp4 clostridium
23	31	63.3	178	1	YJGA HAEIN	P45076 haemophilus
24	31	63.3	183	1	YJGA ECOLI	P26650 escherichia
25	31	63.3	198	1	TNF4 MOUSE	P43488 mus musculu
26	31	63.3	279	1	RFA2 SCHPO	Q92373 schizosacch
27	31	63.3	346	1	PA6A_HUMAN	Q9npb6 homo sapien
28	31	63.3	346	1	PA6A MOUSE	Q9z101 mus musculu
29	31	63.3	416	1	TRPB_RHILO	Q98cn7 rhizobium l
30	31	63.3	479	1	Y098 MYCPN	P75535 mycoplasma
31	31	63.3	1024	1	Y075 MYCGE	P47321 mycoplasma
32	30	61.2	78	1	RL31_RICCN	Q92jd0 rickettsia
33	30	61.2	78	1	RL31_RICPR	Q9ze47 rickettsia
34	30	61.2	197	1	OM26_HAEIN	Q57483 haemophilus
35	30	61.2	351	1	HI82_RHIME	Q92121 rhizobium m
36	30	61.2	356	1	RF1_BACSU	P45872 bacillus su
37	30	61.2	394	1	EFTU_BUCAI	031297 buchnera ap
38	30	61.2	400	1	YF74_ARCFU	028698 archaeoglob
39	30	61.2	419	1	P47K_PSECL	P31521 pseudomonas
40	30	61.2	463	1	YDI4_SCHPO	Q92342 schizosacch
41	30	61.2	464	1	SPN5_SCHPO	P48010 schizosacch
42	30	61.2	595	1	SYK_MOUSE	Q99mn1 mus musculu
43	30	61.2	656	1	V091_FOWPV	072896 fowlpox vir
44	30	61.2	666	1	ZP2_RABIT	P48829 oryctolagus
45	30	61.2	681	1	THIC_YERPE	Q8zaq2 yersinia pe '

ALIGNMENTS

```
RESULT 1
A4 URSMA
ID
     A4 URSMA
                    STANDARD;
                                    PRT;
                                             57 AA.
AC
     Q29149;
\mathrm{D}\mathbf{T}
     01-NOV-1997 (Rel. 35, Created)
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     30-MAY-2000 (Rel. 39, Last annotation update)
     Alzheimer's disease amyloid A4 protein homolog [Contains: Beta-amyloid
DE
     protein (Beta-APP) (A-beta)] (Fragment).
GN
OS
     Ursus maritimus (Polar bear) (Thalarctos maritimus).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Carnivora; Fissipedia; Ursidae; Ursus.
OX
     NCBI TaxID=29073;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     TISSUE=Brain;
RX
     MEDLINE=92017079; PubMed=1656157;
RA
     Johnstone E.M., Chaney M.O., Norris F.H., Pascual R., Little S.P.;
RT
     "Conservation of the sequence of the Alzheimer's disease amyloid
RT
     peptide in dog, polar bear and five other mammals by cross-species
RT
     polymerase chain reaction analysis.";
     Brain Res. Mol. Brain Res. 10:299-305(1991).
RL
CC
     -!- FUNCTION: FUNCTIONAL NEURONAL RECEPTOR WHICH COUPLES TO
```

```
CC
         INTRACELLULAR SIGNALING PATHWAY THROUGH THE GTP-BINDING PROTEIN
CC
         G(O) (BY SIMILARITY).
CC
     -!- SUBCELLULAR LOCATION: Type I membrane protein.
CC
     -!- SIMILARITY: BELONGS TO THE APP FAMILY.
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     CC
     EMBL; X56128; CAA39593.1; -.
DR
DR
     PIR; B60045; B60045.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
     Pfam; PF03494; Beta-APP; 1.
DR
     PROSITE; PS00319; A4 EXTRA; PARTIAL.
DR
DR
     PROSITE; PS00320; A4 INTRA; PARTIAL.
KW
     Glycoprotein; Amyloid; Neurone; Transmembrane.
FT
     NON TER
               1
                       1
FT
    CHAIN
                 6
                       48
                               BETA-AMYLOID PROTEIN (POTENTIAL).
FT
    DOMAIN
                <1
                      33
                               EXTRACELLULAR (POTENTIAL).
               34 57
57 57
FT
    TRANSMEM
                               POTENTIAL.
    NON TER
FT
    SEQUENCE 57 AA; 6172 MW; 84209D88EBA82DFA CRC64;
SQ
  Query Match
                       100.0%; Score 49; DB 1; Length 57;
  Best Local Similarity 100.0%; Pred. No. 0.0019;
  Matches 10; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qу
           1 SEVKMDAEFR 10
            1 SEVKMDAEFR 10
RESULT 2
A4 CANFA
   A4 CANFA
                 STANDARD;
                              PRT; 58 AA.
AC
    Q28280;
DT
    01-NOV-1997 (Rel. 35, Created)
    01-NOV-1997 (Rel. 35, Last sequence update)
DT
    30-MAY-2000 (Rel. 39, Last annotation update)
    Alzheimer's disease amyloid A4 protein homolog [Contains: Beta-amyloid
DE
    protein (Beta-APP) (A-beta)] (Fragment).
GN
    APP.
OS
    Canis familiaris (Dog).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis.
OX
    NCBI TaxID=9615;
RN
    [1]
RP
    SEQUENCE FROM N.A.
RC
    TISSUE=Kidney;
RX
    MEDLINE=92017079; PubMed=1656157;
    Johnstone E.M., Chaney M.O., Norris F.H., Pascual R., Little S.P.;
RA
```

```
RT
      "Conservation of the sequence of the Alzheimer's disease amyloid
     peptide in dog, polar bear and five other mammals by cross-species
 RT
     polymerase chain reaction analysis.";
 RT
 RL
     Brain Res. Mol. Brain Res. 10:299-305(1991).
     -!- FUNCTION: FUNCTIONAL NEURONAL RECEPTOR WHICH COUPLES TO
 CC
         INTRACELLULAR SIGNALING PATHWAY THROUGH THE GTP-BINDING PROTEIN
 CC
 CC
         G(O) (BY SIMILARITY).
     -!- SUBCELLULAR LOCATION: Type I membrane protein.
 CC
     -!- SIMILARITY: BELONGS TO THE APP FAMILY.
CC
     CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
CC
     ______
DR
     EMBL; X56125; CAA39590.1; -.
DR
     HSSP; P05067; 1BA4.
     InterPro; IPR001868; A4_APP.
DR
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     PROSITE; PS00319; A4 EXTRA; PARTIAL.
DR
     PROSITE; PS00320; A4 INTRA; PARTIAL.
KW
     Glycoprotein; Amyloid; Neurone; Transmembrane.
     NON TER
FT
                  1
                        1
FT
     CHAIN
                  7
                        49
                                BETA-AMYLOID PROTEIN (POTENTIAL).
FT
     DOMAIN
                                EXTRACELLULAR (POTENTIAL).
                 <1
                        34
FT
     TRANSMEM
                 35
                        58
                                POTENTIAL.
FT
     NON TER
                 58
                        58
SQ
     SEQUENCE
               58 AA; 6285 MW; 8469D488A2E12DFA CRC64;
  Query Match
                         100.0%; Score 49; DB 1; Length 58;
  Best Local Similarity 100.0%; Pred. No. 0.0019;
           10; Conservative
                              0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SEVKMDAEFR 10
              111111111
Db
           2 SEVKMDAEFR 11
RESULT 3
A4 RABIT
ID
    A4 RABIT
                   STANDARD;
                                 PRT;
                                         58 AA.
AC
    Q28748;
    01-NOV-1997 (Rel. 35, Created)
    01-NOV-1997 (Rel. 35, Last sequence update)
    16-OCT-2001 (Rel. 40, Last annotation update)
DΤ
    Alzheimer's disease amyloid A4 protein homolog [Contains: Beta-amyloid
DE
DE
    protein (Beta-APP) (A-beta)] (Fragment).
GN
    APP.
OS
    Oryctolagus cuniculus (Rabbit).
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
    Mammalia; Eutheria; Lagomorpha; Leporidae; Oryctolagus.
OC
OX
    NCBI TaxID=9986;
RN
    [1]
```

```
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Brain:
RX
     MEDLINE=92017079; PubMed=1656157;
RA
     Johnstone E.M., Chaney M.O., Norris F.H., Pascual R., Little S.P.;
     "Conservation of the sequence of the Alzheimer's disease amyloid
RT
     peptide in dog, polar bear and five other mammals by cross-species
RT
RT
     polymerase chain reaction analysis.";
     Brain Res. Mol. Brain Res. 10:299-305(1991).
RL
     -!- FUNCTION: FUNCTIONAL NEURONAL RECEPTOR WHICH COUPLES TO
CC
CC
         INTRACELLULAR SIGNALING PATHWAY THROUGH THE GTP-BINDING PROTEIN
CC
         G(O) (BY SIMILARITY).
CC
     -!- SUBCELLULAR LOCATION: Type I membrane protein.
CC
     -!- SIMILARITY: BELONGS TO THE APP FAMILY.
     CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
DR
     EMBL; X56129; CAA39594.1; -.
DR
     HSSP; P05067; 1BA4.
     InterPro; IPR001868; A4 APP.
DR
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     PROSITE; PS00319; A4 EXTRA; PARTIAL.
DR
     PROSITE; PS00320; A4 INTRA; PARTIAL.
KW
     Glycoprotein; Amyloid; Neurone; Transmembrane.
FT
     NON TER
                  1
                        1
     CHAIN
FT
                 6
                        48
                                 BETA-AMYLOID PROTEIN (POTENTIAL).
FT
     DOMAIN
                 <1
                        33
                                EXTRACELLULAR (POTENTIAL).
FT
    TRANSMEM
                 34
                       57
                                POTENTIAL.
FΤ
    DOMAIN
                 58
                       >58
                                CYTOPLASMIC (POTENTIAL).
FT
     NON TER
                 58
                       58
     SEQUENCE 58 AA; 6300 MW; F434209D88EBA82D CRC64;
SQ
  Query Match
                        100.0%; Score 49; DB 1; Length 58;
  Best Local Similarity 100.0%; Pred. No. 0.0019;
           10; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SEVKMDAEFR 10
             111111
Db
           1 SEVKMDAEFR 10
RESULT 4
A4 SHEEP
ID
    A4 SHEEP
                   STANDARD:
                                 PRT;
                                         58 AA.
AC
    Q28757;
    01-NOV-1997 (Rel. 35, Created)
DT
    01-NOV-1997 (Rel. 35, Last sequence update)
DT
    30-MAY-2000 (Rel. 39, Last annotation update)
DΤ
    Alzheimer's disease amyloid A4 protein homolog [Contains: Beta-amyloid
ĎΕ
    protein (Beta-APP) (A-beta)] (Fragment).
GN
    APP.
```

```
OS
     Ovis aries (Sheep).
OC.
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
     Bovidae; Caprinae; Ovis.
OX
     NCBI TaxID=9940;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Heart;
     MEDLINE=92017079; PubMed=1656157;
RX
RA
     Johnstone E.M., Chaney M.O., Norris F.H., Pascual R., Little S.P.;
RT
     "Conservation of the sequence of the Alzheimer's disease amyloid
RT
     peptide in dog, polar bear and five other mammals by cross-species
RT
     polymerase chain reaction analysis.";
RL
     Brain Res. Mol. Brain Res. 10:299-305(1991).
CC
     -!- FUNCTION: FUNCTIONAL NEURONAL RECEPTOR WHICH COUPLES TO
CC
         INTRACELLULAR SIGNALING PATHWAY THROUGH THE GTP-BINDING PROTEIN
CC
         G(O) (BY SIMILARITY).
     -!- SUBCELLULAR LOCATION: Type I membrane protein.
CC
     -!- SIMILARITY: BELONGS TO THE APP FAMILY.
CC
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     DR
     EMBL; X56130; CAA39595.1; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF03494; Beta-APP; 1.
DR
     PROSITE; PS00319; A4 EXTRA; PARTIAL.
DR
     PROSITE; PS00320; A4 INTRA; PARTIAL.
KW
     Glycoprotein; Amyloid; Neurone; Transmembrane.
    NON TER
FT
                  1
                        1
FT
    CHAIN
                 6
                       48
                                BETA-AMYLOID PROTEIN (POTENTIAL).
FT
    DOMAIN
                 <1
                       33
                                EXTRACELLULAR (POTENTIAL).
FT
    TRANSMEM
                34
                      57
                                POTENTIAL.
FT
    DOMAIN
                 58 >58
                                CYTOPLASMIC (POTENTIAL).
FT
    NON TER
                 58
                       58
    SEQUENCE 58 AA; 6300 MW; F434209D88EBA82D CRC64;
SQ
  Query Match
                        100.0%; Score 49; DB 1; Length 58;
  Best Local Similarity 100.0%; Pred. No. 0.0019;
 Matches 10; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
Qу
           1 SEVKMDAEFR 10
             Db
           1 SEVKMDAEFR 10
RESULT 5
A4 BOVIN
TD
   A4 BOVIN
                  STANDARD;
                                 PRT;
                                        59 AA.
AC
    028053;
```

```
DT
     01-NOV-1997 (Rel. 35, Created)
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     30-MAY-2000 (Rel. 39, Last annotation update)
DT
DE
     Alzheimer's disease amyloid A4 protein homolog [Contains: Beta-amyloid
DE
     protein (Beta-APP) (A-beta)] (Fragment).
GN
     APP.
OS
     Bos taurus (Bovine).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
OC
     Bovidae; Bovinae; Bos.
OX
     NCBI TaxID=9913;
     [1]
RN
RР
     SEQUENCE FROM N.A.
RC
     TISSUE=Brain;
     MEDLINE=92017079; PubMed=1656157;
RX
     Johnstone E.M., Chaney M.O., Norris F.H., Pascual R., Little S.P.;
RA
     "Conservation of the sequence of the Alzheimer's disease amyloid
RT
RT
     peptide in dog, polar bear and five other mammals by cross-species
RT
     polymerase chain reaction analysis.";
     Brain Res. Mol. Brain Res. 10:299-305(1991).
RL
CC
     -!- FUNCTION: FUNCTIONAL NEURONAL RECEPTOR WHICH COUPLES TO
CC
         INTRACELLULAR SIGNALING PATHWAY THROUGH THE GTP-BINDING PROTEIN
CC
        G(O) (BY SIMILARITY).
     -!- SUBCELLULAR LOCATION: Type I membrane protein.
CC
CC
     -!- SIMILARITY: BELONGS TO THE APP FAMILY.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     DR
     EMBL; X56124; CAA39589.1; -.
DR
     EMBL; X56126; CAA39591.1; -.
DR
    HSSP; P05067; 1BA4.
DR
    InterPro; IPR001868; A4 APP.
DR
    InterPro; IPR001255; Beta-APP.
DR
    Pfam; PF03494; Beta-APP; 1.
    PROSITE; PS00319; A4_EXTRA; PARTIAL.
DR
    PROSITE; PS00320; A4 INTRA; PARTIAL.
KW
    Glycoprotein; Amyloid; Neurone; Transmembrane.
FT
    NON TER
                1
FT
    CHAIN
                 7
                       49
                                BETA-AMYLOID PROTEIN (POTENTIAL).
FT
    DOMAIN
                <1
                       34
                                EXTRACELLULAR (POTENTIAL).
FT
    TRANSMEM
                35
                      58
                                POTENTIAL.
FT
                59
    DOMAIN
                      >59
                                CYTOPLASMIC (POTENTIAL).
FT
    NON TER
                59
                      59
    SEQUENCE
               59 AA; 6414 MW; F43469D488A2E12D CRC64;
SQ
 Query Match
                        100.0%; Score 49; DB 1; Length 59;
 Best Local Similarity 100.0%; Pred. No. 0.0019;
 Matches 10; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                          0;
Qу
```

```
RESULT 6
A4 SAISC
ΙD
     A4 SAISC
                    STANDARD;
                                    PRT;
                                           751 AA.
     Q95241;
AC
DT
     15-DEC-1998 (Rel. 37, Created)
DT
     15-DEC-1998 (Rel. 37, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Amyloid beta A4 protein precursor (APP) (Alzheimer's disease amyloid
DE.
     protein homolog) [Contains: Soluble APP-alpha (S-APP-alpha); Soluble
     APP-beta (S-APP-beta); C99; Beta-amyloid protein 42 (Beta-APP42);
DE
DE
     Beta-amyloid protein 40 (Beta-APP40); C83; P3(42); P3(40); Gamma-
DE
     CTF(59) (Gamma-secretase C-terminal fragment 59); Gamma-CTF(57)
DE
     (Gamma-secretase C-terminal fragment 57); Gamma-CTF(50) (Gamma-
DΕ
     secretase C-terminal fragment 50); C31].
     APP.
GN
OS
     Saimiri sciureus (Common squirrel monkey).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Platyrrhini; Cebidae; Cebinae; Saimiri.
OX
     NCBI TaxID=9521;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Kidney, and Liver;
RX
     MEDLINE=96108492; PubMed=8532114;
RA
     Levy E., Amorim A., Frangione B., Walker L.C.;
RT
     "Beta-amyloid precursor protein gene in squirrel monkeys with
RT
     cerebral amyloid angiopathy.";
RL
     Neurobiol. Aging 16:805-808(1995).
CC
     -!- FUNCTION: Functions as a cell surface receptor and performs
CC
         physiological functions on the surface of neurons relevant to
CC
         neurite growth, neuronal adhesion and axonogenesis. Involved in
CC
         cell mobility and transcription regulation through protein-protein
CC
         interactions (By similarity). Can promote transcription activation
CC
         through binding to APBB1/Tip60 and inhibit Notch signaling through
CC
         interaction with Numb (By similarity). Couples to apoptosis-
CC
         inducing pathways such as those mediated by G(O) and JIP (By
CC
         similarity). Inhibits G(0) alpha ATPase activity (By similarity).
         Acts as a kinesin I membrane receptor, mediating the axonal
CC
CC
         transport of beta-secretase and presenilin 1 (By similarity). May
CC
         be involved in copper homeostasis/oxidative stress through copper
CC
         ion reduction. In vitro, copper-metallated APP induces neuronal
CC
         death directly or is potentiated through Cu(II)-mediated low-
CC
         density lipoprotein oxidation (By similarity). Can regulate
CC
         neurite outgrowth through binding to components of the
CC
         extracellular matrix such as heparin and collagen I and IV (By
CC
         similarity). The splice isoforms that contain the BPTI domain
         possess protease inhibitor activity (By similarity).
CC
CC
     -!- FUNCTION: Beta-amyloid peptides are lipophilic metal chelators
CC
         with metal-reducing activity. Bind transient metals such as
CC
         copper, zinc and iron (By similarity).
CC
    -!- FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved
CC
         peptides, including C31, are potent enhancers of neuronal
CC
         apoptosis (By similarity).
CC
    -!- SUBUNIT: Binds, via its C-terminal, to the PID domain of several
         cytoplasmic proteins, including APBB family members, the APBA
CC
```

family, MAPK8IP1, and SHC1, Numb and Dabl (By similarity). Binding to Dabl inhibits its serine phosphorylation (By similarity). Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains) (By similarity), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains (By similarity). Associates with microtubules in the presence of ATP and in a kinesin-dependent manner (By similarity).

-!- SUBCELLULAR LOCATION: Type I membrane protein. Cell surface protein that rapidly becomes internalized via clatherin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated). After alphasecretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface. GammaCTF(59) peptide is located to both the cytoplasm and nuclei of neurons (By similarity).

-!- ALTERNATIVE PRODUCTS:

Event=Alternative splicing; Named isoforms=2;

Comment=Additional isoforms seem to exist;

Name=APP770;

CC

IsoId=Q95241-1; Sequence=Displayed;

Name=APP695;

IsoId=Q95241-2; Sequence=Not described;

- -!- DOMAIN: The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells (By similarity).
- -!- DOMAIN: The NPXY sequence motif found in many tyrosinephosphorylated proteins is required for the specific binding of
 the PID domain. However additional amino acids either N- or Cterminal to the NPXY motif are often required for complete
 interaction. The PID domain-containing proteins which bind APP
 require the YENPTY motif for full interaction. These interactions
 are independent of phosphorylation on the terminal tyrosine
 residue. The NPXY site is also involved in clatherin-mediated
 endocytosis (By similarity).
- -!- PTM: Proteolytically processed under normal cellular conditions. Cleavage by alpha-secretase or alternatively by beta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, respectively, and the retention of corresponding membrane-anchored C-terminal fragments, C83 and C99. Subsequent processing of C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is nonamyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42), major components of amyloid plaques, and the cytotoxic C-terminal fragments, gammaCTF(50), gammaCTF(57) and gammaCTF(59) (By similarity).
- -!- PTM: Proteolytically cleaved by caspases during neuronal apoptosis (By similarity). Cleavage at Asp-720 by either caspase-3, -8 or -9 results in the production of the neurotoxic C31 peptide and the increased production of beta-amyloid peptides (By similarity).
- -!- PTM: N- and O-linked glycosylated (By similarity).
- -!- PTM: Phosphorylation in the C-terminal on tyrosine, threonine and serine residues is neuron-specific. Phosphorylation can affect APP

```
CC
         processing, neuronal differentiation and interaction with other
         proteins (By similarity).
CC
CC
     -!- MISCELLANEOUS: Chelation of metal ions, notably copper, iron and
CC
         zinc, can induce histidine-bridging between beta-amyloid molecules
         resulting in beta-amyloid-metal aggregates (By similarity).
CC
CC
         Extracellular zinc-binding increases binding of heparin to APP and
CC
         inhibits collagen-binding (By similarity).
     -!- SIMILARITY: BELONGS TO THE APP FAMILY.
CC
     -!- SIMILARITY: Contains 1 BPTI/Kunitz inhibitor domain.
CC
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
     the European Bioinformatics Institute. There are no restrictions on its
CC
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
DR
     EMBL; S81024; AAD14347.1; -.
DR
     HSSP; P05067; 1AAP.
DR
     InterPro; IPR001868; A4 APP.
DR
     InterPro; IPR001255; Beta-APP.
DR
     InterPro; IPR002223; Kunitz BPTI.
DR
     Pfam; PF02177; A4 EXTRA; 1.
     Pfam; PF03494; Beta-APP; 1.
DR
     Pfam; PF00014; Kunitz BPTI; 1.
DR
     PRINTS; PR00203; AMYLOIDA4.
DR
     PRINTS; PR00759; BASICPTASE.
     ProDom; PD000222; Kunitz BPTI; 1.
DR
DR
     SMART; SM00006; A4 EXTRA; 1.
DR
     SMART; SM00131; KU; 1.
     PROSITE; PS00319; A4_EXTRA; 1.
DR
DR
     PROSITE; PS00320; A4_INTRA; 1.
DR
     PROSITE; PS00280; BPTI KUNITZ 1; 1.
DR
     PROSITE; PS50279; BPTI KUNITZ 2; 1.
     Apoptosis; Endocytosis; Cell adhesion; Serine protease inhibitor;
ΚW
KW
     Coated pits; Neurone; Heparin-binding; Metal-binding; Copper; Iron;
KW
     Zinc; Signal; Transmembrane; Glycoprotein; Phosphorylation;
KW
     Proteoglycan; Amyloid; Alternative splicing.
FT
     SIGNAL
                  1
                        17
                                 BY SIMILARITY.
FT
     CHAIN
                 18
                       751
                                 A4 PROTEIN.
FT
    CHAIN
                 18
                       668
                                 SOLUBLE APP-ALPHA (POTENTIAL).
FT
    CHAIN
                 18
                                 SOLUBLE APP-BETA (POTENTIAL).
                       652
FT
    CHAIN
                653
                       751
                                 C99 (POTENTIAL).
FT
    CHAIN
                653
                       694
                                 BETA-AMYLOID PROTEIN 42 (POTENTIAL).
FT
    CHAIN
                653
                       692
                                 BETA-AMYLOID PROTEIN 40 (POTENTIAL).
FT
    CHAIN
                669
                       751
                                 C83 (POTENTIAL).
FT
    CHAIN
                669
                       694
                                 P3(42) (POTENTIAL).
FT
    CHAIN
                669
                       692
                                 P3(40) (POTENTIAL).
FT
    CHAIN
                693
                       751
                                 GAMMA-CTF(59) (POTENTIAL).
FT
    CHAIN
                695
                       751
                                 GAMMA-CTF(57) (POTENTIAL).
FT
    CHAIN
                702
                       751
                                 GAMMA-CTF(50) (POTENTIAL).
FT
    CHAIN
                721
                       751
                                 C31 (POTENTIAL).
FT
    DOMAIN
                 18
                       680
                                 EXTRACELLULAR (POTENTIAL).
                       704
FT
    TRANSMEM
                681
                                 POTENTIAL.
FT
                705
    DOMAIN
                       751
                                 CYTOPLASMIC (POTENTIAL).
FT
    DOMAIN
                 96
                       110
                                 HEPARIN-BINDING (BY SIMILARITY).
```

```
FT
      DOMAIN
                  181
                                    ZINC-BINDING (BY SIMILARITY).
                         188
FT
     DOMAIN
                  291
                         341
                                    BPTI/KUNITZ INHIBITOR.
FT
     DOMAIN
                  316
                         344
                                   HEPARIN-BINDING (BY SIMILARITY).
FT
     DOMAIN
                  363
                         428
                                   HEPARIN-BINDING (BY SIMILARITY).
FT
     DOMAIN
                  504
                                    COLLAGEN-BINDING (BY SIMILARITY).
                         521
FT
     DOMAIN
                  713
                         732
                                    INTERACTION WITH G(O)-ALPHA
FT
                                    (BY SIMILARITY).
FT
     DOMAIN
                  230
                         260
                                   ASP/GLU-RICH (ACIDIC).
FT
     DOMAIN
                  274
                         280
                                   POLY-THR.
FT
     SITE
                  144
                         144
                                   REQUIRED FOR COPPER(II) REDUCTION
FT
                                    (BY SIMILARITY).
FΤ
     ACT SITE
                  301
                         302
                                   REACTIVE BOND.
FT
     SITE
                  652
                         653
                                   CLEAVAGE (BY BETA-SECRETASE)
FT
                                    (BY SIMILARITY).
FT
     SITE
                  653
                         654
                                   CLEAVAGE (BY CASPASE-6) (BY SIMILARITY).
FT
     SITE
                  668
                         669
                                   CLEAVAGE (BY ALPHA-SECRETASE)
FT
                                    (BY SIMILARITY).
FT
     SITE
                  685
                         685
                                   INVOLVED IN FREE RADICAL PROPAGATION
FT
                                    (BY SIMILARITY).
FT
     SITE
                  687
                         687
                                   INVOLVED IN OXIDATIVE REACTIONS
FT
                                   (BY SIMILARITY).
FT
     SITE
                  692
                         693
                                   CLEAVAGE (BY GAMMA-SECRETASE; SITE 1)
FΤ
                                   (BY SIMILARITY).
FT
     SITE
                 694
                         695
                                   CLEAVAGE (BY GAMMA-SECRETASE; SITE 2)
FT
                                   (BY SIMILARITY).
FT
     SITE
                 701
                         702
                                   CLEAVAGE (BY GAMMA-SECRETASE; SITE 3)
FT
                                   (BY SIMILARITY).
FT
                 705
     SITE
                         715
                                   BASOLATERAL SORTING SIGNAL
FT
                                   (BY SIMILARITY).
FT
     SITE
                 720
                         721
                                   CLEAVAGE (BY CASPASES-3,-6,-8 OR -9)
FT
                                   (BY SIMILARITY).
FT
     SITE
                 738
                         741
                                   ENDOCYTOSIS SIGNAL.
FT
     SITE
                 740
                         743
                                   NPXY MOTIF.
FT
     METAL
                 137
                         137
                                   COPPER (BY SIMILARITY).
  Query Match
                           100.0%; Score 49; DB 1; Length 751;
  Best Local Similarity
                          100.0%; Pred. No. 0.024;
            10; Conservative
  Matches
                                 0; Mismatches
                                                    0; Indels
                                                                   0;
                                                                       Gaps
                                                                                0;
Qу
            1 SEVKMDAEFR 10
              Db
          648 SEVKMDAEFR 657
RESULT 7
A4 CAVPO
ID
     A4 CAVPO
                    STANDARD;
                                    PRT:
                                           770 AA.
AC
     Q60495; Q60496;
     15-SEP-2003 (Rel. 42, Created)
DT
DT
     15-SEP-2003 (Rel. 42, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DΤ
DΕ
     Amyloid beta A4 protein precursor (APP) (ABPP) (Alzheimer's disease
```

amyloid protein homolog) [Contains: Soluble APP-alpha (S-APP-alpha);

Soluble APP-beta (S-APP-beta); CTF-alpha; CTF-beta; Beta-amyloid protein 42 (Beta-APP42); Beta-amyloid protein 40 (Beta-APP40); P3(42);

P3(40); CTF(59) (Gamma-secretase C-terminal fragment 59); Gamma-

CTF(57) (Gamma-secretase C-terminal fragment 57); C31].

DE

DE

DE DE

DE

```
GN
     APP.
OS
     Cavia porcellus (Guinea pig).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Caviidae; Cavia.
OC
OX
     NCBI TaxID=10141;
RN
     [1]
RP
     SEQUENCE FROM N.A., AND ALTERNATIVE SPLICING.
RÇ
     TISSUE=Brain, and Liver;
RX
     MEDLINE=97236426; PubMed=9116031;
RA
     Beck M., Mueller D., Bigl V.;
RT
     "Amyloid precursor protein in Guinea pigs - complete cDNA sequence and
RT
     alternative splicing.";
RL
     Biochim. Biophys. Acta 1351:17-21(1997).
RN
RP
     INTERACTION OF BETA-APP40 WITH APOE.
RX
     MEDLINE=98007700; PubMed=9349544;
     Martel C.L., Mackic J.B., Matsubara E., Governale S., Miguel C.,
RA
RA
     Miao W., McComb J.G., Frangione B., Ghiso J., Zlokovic B.V.;
RT
     "Isoform-specific effects of apolipoproteins E2, E3, and E4 on
RT
     cerebral capillary sequestration and blood-brain barrier transport of
RT
     circulating Alzheimer's amyloid beta.";
RL
     J. Neurochem. 69:1995-2004(1997).
RN
     [3]
RP
     PROCESSING.
RX
     MEDLINE=20084499; PubMed=10619481;
     Beck M., Brueckner M.K., Holzer M., Kaap S., Pannicke T., Arendt T.,
RA
RA
     Biql V.;
RT
     "Guinea-pig primary cell cultures provide a model to study expression
RT
     and amyloidogenic processing of endogenous amyloid precursor
     protein.";
RT
RL
     Neuroscience 95:243-254(2000).
RN
RP
     GAMMA-SECRETASE PROCESSING.
     MEDLINE=20576391; PubMed=11035007;
RA
     Pinnix I., Musunuru U., Tun H., Sridharan A., Golde T., Eckman C.,
RA
     Ziani-Cherif C., Onstead L., Sambamurti K.;
     "A novel gamma -secretase assay based on detection of the putative
RT
     C-terminal fragment-gamma of amyloid beta protein precursor.";
RT
RL
     J. Biol. Chem. 276:481-487(2001).
CC
     -!- FUNCTION: Functions as a cell surface receptor and performs
CC
         physiological functions on the surface of neurons relevant to
CC
         neurite growth, neuronal adhesion and axonogenesis. Involved in
CC
         cell mobility and transcription regulation through protein-protein
CC
         interactions (By similarity). Can promote transcription activation
CC
         through binding to APBB1/Tip60 and inhibit Notch signaling through
CC
         interaction with Numb (By similarity). Couples to apoptosis-
CC
         inducing pathways such as those mediated by G(O) and JIP (By
CC
         similarity). Inhibits G(0) alpha ATPase activity (By similarity).
CC
         Acts as a kinesin I membrane receptor, mediating the axonal
CC
         transport of beta-secretase and presenilin 1 (By similarity). May
CC
         be involved in copper homeostasis/oxidative stress through copper
CC
         ion reduction (By similarity). In vitro, copper-metallated APP
CC
         induces neuronal death directly or is potentiated through Cu(II)-
CC
         mediated low-density lipoprotein oxidation (By similarity). Can
CC
         regulate neurite outgrowth through binding to components of the
CC
         extracellular matrix such as heparin and collagen I and IV (By
CC
         similarity). The splice isoforms that contain the BPTI domain
```

- CC possess protease inhibitor activity (By similarity).
- CC -!- FUNCTION: Beta-amyloid peptides are lipophilic metal chelators
 CC with metal-reducing activity. Bind transient metals such as
 CC copper, zinc and iron. Beta-amyloid peptides bind to lipoproteins
 CC and apoliproteins E and J in the CSF and to HDL particles in
 CC plasma, inhibiting metal-catalyzed oxidation of lipoproteins.
 - -!- FUNCTION: Applicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain (By similarity).
 - -!- FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis (By similarity).
 - -!- SUBUNIT: Binds, via its C-terminal, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1 and Numb and Dabl (By similarity). Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via BaSS) and DDB1 (By similarity). Associates with microtubules in the presence of ATP and in a kinesin-dependent manner (By similarity). Soluble Abeta40 binds all three isoforms of APOE, in vitro and in vivo. When lipidated, ApoE3 appears to be the preferred amyloid binding isoform, while the apoE4 isoform-beta-APP40 complex is capable of being transported across the blood-brain barrier.
 - -!- SUBCELLULAR LOCATION: Type I membrane protein. Cell surface protein that rapidly becomes internalized via clathrin-coated pits (By similarity). During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated) (By similarity). After alpha-secretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes (By similarity). Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface (By similarity). APP sorts to the basolateral surface in epithelial cells (By similatity).
 - -!- ALTERNATIVE PRODUCTS:

Event=Alternative splicing; Named isoforms=2; Comment=Additional isoforms, missing exons 7,8 and 15, seem to exist. The L-isoforms, missing exon 15, are referred to as appicans;

Name=APP770;

CC

CC

CC

CC

CC

CC

CC

CC

CC CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

IsoId=Q60495-1; Sequence=Displayed;

IsoId=Q60495-2; Sequence=VSP_007221, VSP_007222;

- -!- TISSUE SPECIFICITY: Isoform APP695 is the major isoform found in brain. The longer isoforms containing the BPTI domain are predominantly expressed in peripheral organs such as muscle and liver.
- -!- INDUCTION: Increased levels during neuronal differentiation.
- -!- DOMAIN: The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells.
- CC -!- DOMAIN: The NPXY sequence motif found in many tyrosinephosphorylated proteins is required for the specific binding of
 the PID domain. However additional amino acids either N- or Cterminal to the NPXY motif are often required for complete
 interaction. The PID domain-containing proteins which bind APP

- require the YENPTY motif for full interaction. These interactions are independent of phosphorylation on the terminal tyrosine residue (By similarity). The NPXY site is also involved in clatherin-mediated endocytosis.
- -!- PTM: Proteolytically processed under normal cellular conditions. Cleavage by alpha-secretase or alternatively by beta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, respectively, and the retention of corresponding membrane-anchored C-terminal fragments, CTF-alpha and CTF-beta. Subsequent processing of CTF-alpha by gamma-secretase yields P3 peptides. This is the major secretory pathway and is nonamyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of CTF-beta releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42), major components of amyloid plaques, and the corresponding cytotoxic C-terminal fragments (CTFs).
- -!- PTM: Proteolytically cleaved by caspase-3 during neuronal apoptosis (By similarity).
 - -!- PTM: N- and O-linked glycosylated. O-linkage of chondroitin sulfate to the L-APP isoforms produces the APP proteoglycan core proteins, the appicans (By similarity).
 - -!- PTM: Phosphorylation in the C-terminal on tyrosine, threonine and serine residues is neuron-specific (By similarity). Phosphorylation can affect APP processing, neuronal differentiation and interaction with other proteins.
 - -!- PTM: Extracellular binding and reduction of copper, results in a corresponding oxidation of Cys-144 and Cys-158, and the formation of a disulfide bond (By similarity).
 - -!- MISCELLANEOUS: Chelation of metal ions, notably copper, iron and zinc, can induce histidine-bridging between beta-amyloid molecules resulting in beta-amyloid-metal aggregates.
- -!- SIMILARITY: BELONGS TO THE APP FAMILY.

CC

CC CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

-!- SIMILARITY: Contains 1 BPTI/Kunitz inhibitor domain.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/or send an email to license@isb-sib.ch).

```
DR
     EMBL; X97631; CAA66230.1; -.
DR
     EMBL; X99198; CAA67589.1; -.
DR
     HSSP; P05067; 1BA4.
DR
     InterPro; IPR008155; A4 APP.
     InterPro; IPR008154; A4 extra.
DR
DR
     InterPro; IPR001255; Beta-APP.
DR
     Pfam; PF00014; Kunitz BPTI; 1.
DR
     PRINTS; PR00203; AMYLOIDA4.
DR
     ProDom; PD000222; Kunitz BPTI; 1.
DR
     SMART; SM00006; A4 EXTRA; 1.
DR
     SMART; SM00131; KU; 1.
     PROSITE; PS00319; A4_EXTRA; 1.
DR
     PROSITE; PS00320; A4 INTRA; 1.
DR
DR
     PROSITE; PS00280; BPTI KUNITZ 1; 1.
```

```
DR
      PROSITE; PS50279; BPTI KUNITZ 2; 1.
KW
     Apoptosis; Endocytosis; Cell adhesion; Serine protease inhibitor;
KW
     Coated pits; Neurone; Heparin-binding; Metal-binding; Copper; Iron;
     Zinc; Signal; Transmembrane; Glycoprotein; Phosphorylation;
KW
KW
     Proteoglycan; Alternative splicing; Amyloid.
FT
     SIGNAL
                    1
                          17
                                   BY SIMILARITY.
FΤ
     CHAIN
                   18
                         770
                                   AMYLOID BETA A4 PROTEIN.
FT
     CHAIN
                   18
                         687
                                   SOLUBLE APP-ALPHA (BY SIMILARITY).
FT
     CHAIN
                   18
                         671
                                   SOLUBLE APP-BETA (BY SIMILARITY).
FT
     CHAIN
                  672
                         770
                                   CTF-ALPHA (BY SIMILARITY).
FT
     CHAIN
                  672
                         713
                                   BETA-AMYLOID PROTEIN 42 (BY SIMILARITY).
FT
     CHAIN
                  672
                         711
                                   BETA-AMYLOID PROTEIN 40 (BY SIMILARITY).
FT
                                   CTF-BETA (BY SIMILARITY).
     CHAIN
                  688
                         770
FT
                  688
     CHAIN
                         713
                                   P3(42) (BY SIMILARITY).
FT
     CHAIN
                  688
                         711
                                   P3(40) (BY SIMILARITY).
FT
     CHAIN
                 712
                         770
                                   GAMMA-CTF(59) (BY SIMILARITY).
FT
     CHAIN
                 714
                         770
                                   GAMMA-CTF(57) (BY SIMILARITY).
FT
     CHAIN
                 740
                         770
                                   C31 (BY SIMILARITY).
  Query Match
                           100.0%; Score 49; DB 1; Length 770;
  Best Local Similarity
                           100.0%; Pred. No. 0.025;
  Matches
                                  0; Mismatches
            10;
                Conservative
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
Qу
            1 SEVKMDAEFR 10
              111111111
Db
          667 SEVKMDAEFR 676
RESULT 8
A4 HUMAN
ID
     A4 HUMAN
                    STANDARD;
                                    PRT;
                                           770 AA.
AC
     P05067; P09000; P78438; Q13764; Q13778; Q13793; Q16011; Q9BT38;
AC
     Q9UCB6; Q9UQ58;
     13-AUG-1987 (Rel. 05, Created)
DΤ
DT
     01-NOV-1991 (Rel. 20, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Amyloid beta A4 protein precursor (APP) (ABPP) (Alzheimer's disease
DΕ
     amyloid protein) (Cerebral vascular amyloid peptide) (CVAP) (Protease
DE
     nexin-II) (PN-II) (APPI) (PreA4) [Contains: Soluble APP-alpha (S-APP-
DΕ
     alpha); Soluble APP-beta (S-APP-beta); C99; Beta-amyloid protein 42
DE
     (Beta-APP42); Beta-amyloid protein 40 (Beta-APP40); C83; P3(42);
DE
     P3(40); Gamma-CTF(59) (Gamma-secretase C-terminal fragment 59)
DΕ
     (Amyloid intracellular domain 59) (AID(59)); Gamma-CTF(57) (Gamma-
DΕ
     secretase C-terminal fragment 57) (Amyloid intracellular domain 57)
DE
     (AID(57)); Gamma-CTF(50) (Gamma-secretase C-terminal fragment 50)
DΕ
     (Amyloid intracellular domain 50) (AID(50)); C31].
GN
     APP OR A4 OR AD1.
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
    NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A. (ISOFORM APP695).
RC
     TISSUE=Brain;
RX
    MEDLINE=87144572; PubMed=2881207;
RA
    Kang J., Lemaire H.-G., Unterbeck A., Salbaum J.M., Masters C.L.,
     Grzeschik K.-H., Multhaup G., Beyreuther K., Mueller-Hill B.;
RA
```

```
RT
      "The precursor of Alzheimer's disease amyloid A4 protein resembles a
      cell-surface receptor.";
RT
RL
     Nature 325:733-736(1987).
RN
     SEQUENCE FROM N.A. (ISOFORM APP751).
RP
RC
     TISSUE=Brain:
RX
     MEDLINE=88122639; PubMed=2893289;
RA
     Ponte P., Gonzalez-Dewhitt P., Schilling J., Miller J., Hsu D.,
     Greenberg B., Davis K., Wallace W., Lieberburg I., Fuller F.,
RA
RA
     Cordell B.;
     "A new A4 amyloid mRNA contains a domain homologous to serine
RT
RT
     proteinase inhibitors.";
RL
     Nature 331:525-527(1988).
RN
RP
     SEQUENCE FROM N.A. (ISOFORM APP695).
RX
     MEDLINE=89128427; PubMed=2783775;
RA
     Lemaire H.-G., Salbaum J.M., Multhaup G., Kang J., Bayney R.M.,
RA
     Unterbeck A., Beyreuther K., Mueller-Hill B.;
     "The PreA4(695) precursor protein of Alzheimer's disease A4 amyloid
RT
RT
     is encoded by 16 exons.";
RL
     Nucleic Acids Res. 17:517-522(1989).
RN
RΡ
     SEQUENCE FROM N.A. (ISOFORM APP770).
RX
     MEDLINE=90236318; PubMed=2110105;
RA
     Yoshikai S.-I., Sasaki H., Doh-Ura K., Furuya H., Sakaki Y.;
RT
     "Genomic organization of the human amyloid beta-protein precursor
RT
     gene.";
RL
     Gene 87:257-263(1990).
RN
     [5]
RP
     ERRATUM, AND REVISIONS.
     Yoshikai S.-I., Sasaki H., Doh-ura K., Furuya H., Sakaki Y.;
RA
RL
     Gene 102:291-292(1991).
RN
     [6]
RΡ
     SEQUENCE FROM N.A. (ISOFORM L-APP733).
RC
     TISSUE=Leukocyte;
     MEDLINE=92268136; PubMed=1587857;
RX
RA
     Koenig G., Moenning U., Czech C., Prior R., Banati R.,
RA
     Schreiter-Gasser U., Bauer J., Masters C.L., Beyreuther K.;
     "Identification and differential expression of a novel alternative
RT
RT
     splice isoform of the beta A4 amyloid precursor protein (APP) mRNA in
RT
     leukocytes and brain microglial cells.";
RL
     J. Biol. Chem. 267:10804-10809(1992).
RN
RP
     SEQUENCE FROM N.A. (ISOFORM APP770).
     MEDLINE=97263807; PubMed=9108164;
RX
RA
     Hattori M., Tsukahara F., Furuhata Y., Tanahashi H., Hirose M.,
RA
     Saito M., Tsukuni S., Sakaki Y.;
RT
     "A novel method for making nested deletions and its application for
RT
     sequencing of a 300 kb region of human APP locus.";
RL
     Nucleic Acids Res. 25:1802-1808(1997).
RN
RP
     SEQUENCE FROM N.A. (ISOFORM APP305).
RC
     TISSUE=Pancreas;
    MEDLINE=22388257; PubMed=12477932;
RX
     Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
RA
    Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
    Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
```

```
RA
     Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
     Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
     Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
RA
     Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
     Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
     Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
     Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
     Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
     Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
     Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
     Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M.,
RA
RA
     Butterfield Y.S.N., Krzywinski M.I., Skalska U., Smailus D.E.,
     Schnerch A., Schein J.E., Jones S.J.M., Marra M.A.;
RA
RT
     "Generation and initial analysis of more than 15,000 full-length
RT
     human and mouse cDNA sequences.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RN
RP
     SEQUENCE OF 1-10 FROM N.A.
RC
     TISSUE=Liver;
     MEDLINE=89016647; PubMed=3140222;
RX
     Schon E.A., Mita S., Sadlock J., Herbert J.;
RA
RT
     "A cDNA specifying the human amyloid beta precursor protein (ABPP)
RT
     encodes a 95-kDa polypeptide.";
     Nucleic Acids Res. 16:9351-9351(1988).
RL
RN
     ERRATUM, AND REVISIONS.
RP
RA
     Mita S., Sadlock J., Herbert J., Schon E.A.;
RL
     Nucleic Acids Res. 16:11402-11402(1988).
RN
RP
     SEQUENCE OF 1-75 FROM N.A.
RX
     MEDLINE=89165870; PubMed=2538123;
     La Fauci G., Lahiri D.K., Salton S.R., Robakis N.K.;
     "Characterization of the 5'-end region and the first two exons of the
RT
RT
     beta-protein precursor gene.";
RL
     Biochem. Biophys. Res. Commun. 159:297-304(1989).
RN
     [12]
RP
     SEQUENCE OF 18-50.
RC
     TISSUE=Fibroblast;
RX
     MEDLINE=87250462; PubMed=3597385;
RA
     van Nostrand W.E., Cunningham D.D.;
RT
     "Purification of protease nexin II from human fibroblasts.";
RL
     J. Biol. Chem. 262:8508-8514(1987).
RN
RP
     PARTIAL SEQUENCE FROM N.A. (ISOFORM APP751).
     TISSUE=Brain;
RX
     MEDLINE=89346754; PubMed=2569763;
RA
     de Sauvage F., Octave J.N.;
RT
     "A novel mRNA of the A4 amyloid precursor gene coding for a possibly
RT
     secreted protein.";
RL
     Science 245:651-653(1989).
RN
     [14]
RP
     PARTIAL SEQUENCE FROM N.A. (ISOFORM APP695).
RC
     TISSUE=Brain;
RX
     MEDLINE=87231971; PubMed=3035574;
RA
     Robakis N.K., Ramakrishna N., Wolfe G., Wisniewski H.M.;
     "Molecular cloning and characterization of a cDNA encoding the
```

```
RT
     cerebrovascular and the neuritic plaque amyloid peptides.";
     Proc. Natl. Acad. Sci. U.S.A. 84:4190-4194(1987).
RL
RN
RP
     SEQUENCE OF 286-366 FROM N.A.
     MEDLINE=88122640; PubMed=2893290;
RX
     Tanzi R.E., McClatchey A.I., Lamperti E.D., Villa-Komaroff L.,
RA
RA
     Gusella J.F., Neve R.L.;
     "Protease inhibitor domain encoded by an amyloid protein precursor
RT
RT
     mRNA associated with Alzheimer's disease.";
RL
     Nature 331:528-530(1988).
RN
     [16]
RP
     SEQUENCE OF 287-367 FROM N.A.
RX
     MEDLINE=88122641; PubMed=2893291;
RA
     Kitaquchi N., Takahashi Y., Tokushima Y., Shiojiri S., Ito H.;
RT
     "Novel precursor of Alzheimer's disease amyloid protein shows
     protease inhibitory activity.";
RT
RI.
     Nature 331:530-532(1988).
     [17]
RM
RP
     SEQUENCE OF 507-770 FROM N.A.
RC
     TISSUE=Brain cortex;
RX 
     MEDLINE=88124954; PubMed=2893379;
RA
     Zain S.B., Salim M., Chou W.G., Sajdel-Sulkowska E.M., Majocha R.E.,
RA
     Marotta C.A.;
     "Molecular cloning of amyloid cDNA derived from mRNA of the Alzheimer
RT
     disease brain: coding and noncoding regions of the fetal precursor
RT
RТ
     mRNA are expressed in the cortex.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 85:929-933(1988).
RN
     SEQUENCE OF 523-555, AND COLLAGEN-BINDING DOMAIN.
RP
     MEDLINE=96139497; PubMed=8576160;
RX
     Beher D., Hesse L., Masters C.L., Multhaup G.;
RA
     "Regulation of amyloid protein precursor (APP) binding to collagen and
RT
     mapping of the binding sites on APP and collagen type I.";
RT
RL
     J. Biol. Chem. 271:1613-1620(1996).
RN
     [19]
     SEQUENCE OF 656-737 FROM N.A.
RP
RX
     MEDLINE=89392030; PubMed=2675837;
RA
     Johnstone E.M., Chaney M.O., Moore R.E., Ward K.E., Norris F.H.,
     Little S.P.;
RA
RT
     "Alzheimer's disease amyloid peptide is encoded by two exons and shows
RT
     similarity to soybean trypsin inhibitor.";
     Biochem. Biophys. Res. Commun. 163:1248-1255(1989).
RL
RN
     SEQUENCE OF 672-681.
RP
RC
     TISSUE=Brain cortex;
RX
     MEDLINE=88035004; PubMed=3312495;
     Pardridge W.M., Vinters H.V., Yang J., Eisenberg J., Choi T.B.,
RA
RA
     Tourtellotte W.W., Huebner V., Shively J.E.;
     "Amyloid angiopathy of Alzheimer's disease: amino acid composition
RT
     and partial sequence of a 4,200-dalton peptide isolated from cortical
RT
     microvessels.";
RT
ŘT.
     J. Neurochem. 49:1394-1401(1987).
RN
     [21]
     SEQUENCE OF 674-770 FROM N.A.
RP
RC
     TISSUE=Brain;
RX.
     MEDLINE=87120328; PubMed=3810169;
RA
     Goldgaber D., Lerman M.I., McBride O.W., Saffiotti U., Gajdusek D.C.;
```

```
RT
     brain amyloid of Alzheimer's disease.";
  Query Match
                          100.0%; Score 49; DB 1; Length 770;
  Best Local Similarity
                          100.0%; Pred. No. 0.025;
  Matches
          10; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0:
Qу
            1 SEVKMDAEFR 10
              1111111
          667 SEVKMDAEFR 676
Db
RESULT 9
A4 MACFA
     A4 MACFA
                                          770 AA.
ID
                    STANDARD;
                                   PRT;
     P53601; Q95KN7;
AC
DT
     01-OCT-1996 (Rel. 34, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     Amyloid beta A4 protein precursor (APP) (ABPP) (Alzheimer's disease
DE
DE
     amyloid protein homolog) [Contains: Soluble APP-alpha (S-APP-alpha);
     Soluble APP-beta (S-APP-beta); C99; Beta-amyloid protein 42 (Beta-
DE
DE
     APP42); Beta-amyloid protein 40 (Beta-APP40); C83; P3(42); P3(40);
DE
     Gamma-CTF(59) (Gamma-secretase C-terminal fragment 59); Gamma-CTF(57)
DE
     (Gamma-secretase C-terminal fragment 57); Gamma-CTF(50) (Gamma-
DE
     secretase C-terminal fragment 50); C31].
GN
     APP.
OS
     Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Mammalia; Eutheria; Primates; Catarrhini; Cercopithecidae;
OC
     Cercopithecinae; Macaca.
     NCBI TaxID=9541;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A. (ISOFORMS APP695 AND APP770).
RC.
     TISSUE=Cerebellum;
RX
     MEDLINE=91273117; PubMed=1905108;
RA
     Podlisny M.B., Tolan D.R., Selkoe D.J.;
RT
     "Homology of the amyloid beta protein precursor in monkey and human
RT
     supports a primate model for beta amyloidosis in Alzheimer's
RT
     disease.";
RL
     Am. J. Pathol. 138:1423-1435(1991).
CC
     -!- FUNCTION: Functions as a cell surface receptor and performs
CC
        physiological functions on the surface of neurons relevant to
CC
        neurite growth, neuronal adhesion and axonogenesis. Involved in
CC
         cell mobility and transcription regulation through protein-protein
CC
         interactions (By similarity). Can promote transcription activation
CC
         through binding to APBB1/Tip60 and inhibit Notch signaling through
CC
         interaction with Numb (By similarity). Couples to apoptosis-
         inducing pathways such as those mediated by G(0) and JIP (By
CC
CC
         similarity). Inhibits G(0) alpha ATPase activity (By similarity).
CC
        Acts as a kinesin I membrane receptor, mediating the axonal
CC
        transport of beta-secretase and presentlin 1 (By similarity). May
CC
        be involved in copper homeostasis/oxidative stress through copper
CC
         ion reduction. In vitro, copper-metallated APP induces neuronal
CC
        death directly or is potentiated through Cu(II)-mediated low-
CC
        density lipoprotein oxidation (By similarity). Can regulate
CC
        neurite outgrowth through binding to components of the
```

"Characterization and chromosomal localization of a cDNA encoding

RT

- CC extracellular matrix such as heparin and collagen I and IV (By cc similarity). The splice isoforms that contain the BPTI domain possess protease inhibitor activity (By similarity).
 - -!- FUNCTION: Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron (By similarity).
 - -!- FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis (By similarity).
 - -!- SUBUNIT: Binds, via its C-terminal, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, and SHC1, Numb and Dab1 (By similarity). Binding to Dab1 inhibits its serine phosphorylation (By similarity). Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains) (By similarity), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains (By similarity). Associates with microtubules in the presence of ATP and in a kinesin-dependent manner (By similarity).
 - -!- SUBCELLULAR LOCATION: Type I membrane protein. Cell surface protein that rapidly becomes internalized via clatherin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated). After alphasecretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface. GammaCTF(59) peptide is located to both the cytoplasm and nuclei of neurons (By similarity).
 - -!- ALTERNATIVE PRODUCTS:

Event=Alternative splicing; Named isoforms=2; Comment=Additional isoforms seem to exist;

Name=APP770;

CC

IsoId=P53601-1; Sequence=Displayed;
Name=APP695;

IsoId=P53601-2; Sequence=VSP 000010, VSP 000011;

- -!- DOMAIN: The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells (By similarity).
- -!- DOMAIN: The NPXY sequence motif found in many tyrosinephosphorylated proteins is required for the specific binding of
 the PID domain. However additional amino acids either N- or Cterminal to the NPXY motif are often required for complete
 interaction. The PID domain-containing proteins which bind APP
 require the YENPTY motif for full interaction. These interactions
 are independent of phosphorylation on the terminal tyrosine
 residue. The NPXY site is also involved in clatherin-mediated
 endocytosis (By similarity).
- -!- PTM: Proteolytically processed under normal cellular conditions. Cleavage by alpha-secretase or alternatively by beta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, respectively, and the retention of corresponding membrane-anchored C-terminal fragments, C83 and C99. Subsequent processing of C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is nonamyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta

```
CC
        proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42),
CC
        major components of amyloid plaques, and the cytotoxic C-terminal
CC
        fragments, gammaCTF(50), gammaCTF(57) and gammaCTF(59) (By
CC
        similarity).
CC
    -!- PTM: Proteolytically cleaved by caspases during neuronal apoptosis
CC
        (By similarity). Cleavage at Asp-739 by either caspase-3, -8 or -9
CC
        results in the production of the neurotoxic C31 peptide and the
CC
        increased production of beta-amyloid peptides (By similarity).
    -!- PTM: N- and O-linked glycosylated (By similarity).
CC
CC
    -!- PTM: Phosphorylation in the C-terminal on tyrosine, threonine and
CC
        serine residues is neuron-specific. Phosphorylation can affect APP
CC
        processing, neuronal differentiation and interaction with other
CC
        proteins (By similarity).
CC
    -!- MISCELLANEOUS: Chelation of metal ions, notably copper, iron and
CC
        zinc, can induce histidine-bridging between beta-amyloid molecules
CC
        resulting in beta-amyloid-metal aggregates (By similarity).
CC
        Extracellular zinc-binding increases binding of heparin to APP and
CC
        inhibits collagen-binding (By similarity).
CC
    -!- SIMILARITY: BELONGS TO THE APP FAMILY.
CC
    -!- SIMILARITY: Contains 1 BPTI/Kunitz inhibitor domain.
CC
    CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    DR.
    EMBL; M58727; AAA36829.1; -.
    EMBL; M58726; AAA36828.1; -.
    HSSP; P05067; 1AAP.
DR
    InterPro; IPR001868; A4 APP.
DR
    InterPro; IPR002223; Kunitz BPTI.
DR
DR
    Pfam; PF02177; A4 EXTRA; 1.
DR
    Pfam; PF03494; Beta-APP; 1.
DR
    Pfam; PF00014; Kunitz BPTI; 1.
    PRINTS; PR00759; BASICPTASE.
DR
DR
    ProDom; PD000222; Kunitz BPTI; 1.
DR
    SMART; SM00006; A4 EXTRA; 1.
DR
    SMART; SM00131; KU; 1.
    PROSITE; PS00319; A4 EXTRA; 1.
DR
DR
    PROSITE; PS00320; A4 INTRA; 1.
    PROSITE; PS00280; BPTI KUNITZ 1; 1.
DR
    PROSITE; PS50279; BPTI KUNITZ 2; 1.
KW
    Apoptosis; Endocytosis; Cell adhesion; Serine protease inhibitor;
KW
    Coated pits; Neurone; Heparin-binding; Metal-binding; Copper; Iron;
KW
    Zinc; Signal; Transmembrane; Glycoprotein; Phosphorylation;
KW
    Proteoglycan; Alternative splicing; Amyloid.
FT
    SIGNAL
                 1
                       17
                                BY SIMILARITY.
                 18
                      770
FT
    CHAIN
                                AMYLOID BETA A4 PROTEIN.
FT
    CHAIN
                 18
                      687
                                SOLUBLE APP-ALPHA (POTENTIAL).
FT
                18
                      671
    CHAIN
                                SOLUBLE APP-BETA (POTENTIAL).
```

C99 (POTENTIAL).

C83 (POTENTIAL).

BETA-AMYLOID PROTEIN 42 (POTENTIAL).

BETA-AMYLOID PROTEIN 40 (POTENTIAL).

770

713

711

770

672

672

672

688

FT

FT

FT

FΤ

CHAIN

CHAIN

CHAIN

CHAIN

```
FT
    CHAIN
                688
                      713
                                P3(42) (POTENTIAL).
                      711
FT
    CHAIN
                688
                                P3(40) (POTENTIAL).
FΤ
    CHAIN
                712
                      770
                                GAMMA-CTF(59) (POTENTIAL).
                714
                      770
FT
    CHAIN
                                GAMMA-CTF(57) (POTENTIAL).
                721
                      770
FT
    CHAIN
                                GAMMA-CTF(50) (POTENTIAL).
                740
                      770
FT
    CHAIN
                                C31 (POTENTIAL).
                      699
FT
    DOMAIN
                18
                                EXTRACELLULAR (POTENTIAL).
    TRANSMEM
                700
                      723
FT
                                POTENTIAL.
FT
    DOMAIN
                724
                      770
                                CYTOPLASMIC (POTENTIAL).
                96
FT
    DOMAIN
                      110
                                HEPARIN-BINDING (BY SIMILARITY).
                181
                                ZINC-BINDING (BY SIMILARITY).
FT
    DOMAIN
                      188
                291
FT
    DOMAIN
                      341
                                BPTI/KUNITZ INHIBITOR.
FT
    DOMAIN
                391
                      423
                                HEPARIN-BINDING (BY SIMILARITY).
                491
FТ
    DOMAIN
                      522
                                HEPARIN-BINDING (BY SIMILARITY).
                      522
540
    DOMAIN
FT
                523
                                COLLAGEN-BINDING (BY SIMILARITY).
                732
FT
    DOMAIN
                      751
                                INTERACTION WITH G(O)-ALPHA
FТ
                                (BY SIMILARITY).
                230
                      260
\mathbf{F}\mathbf{T}
    DOMAIN
                                ASP/GLU-RICH (ACIDIC).
FT
    DOMAIN
                274 280
                                POLY-THR.
TT
    SITE
                144
                      144
                                REQUIRED FOR COPPER(II) REDUCTION
FT
                                (BY SIMILARITY).
                301
                                REACTIVE BOND (BY SIMILARITY).
    ACT SITE
                      302
FT
    SITE
                671
                      672
                                CLEAVAGE (BY BETA-SECRETASE)
FT
FT
                                (BY SIMILARITY).
                672
                      673
FT
    SITE
                                CLEAVAGE (BY CASPASE-6) (BY SIMILARITY).
FT
    SITE
                687
                      688
                                CLEAVAGE (BY ALPHA-SECRETASE)
FT
                                (BY SIMILARITY).
                704
                      704
FT
    SITE
                                IMPLICATED IN FREE RADICAL PROPAGATION
FT
                                (BY SIMILARITY).
                706
                      706
FT
    SITE
                                INVOLVED IN OXIDATIVE REACTIONS
FT
                                (BY SIMILARITY).
FT
   SITE
               711
                      712
                                CLEAVAGE (BY GAMMA-SECRETASE; SITE 1)
FΤ
                                (BY SIMILARITY).
FT
   SITE
               713
                      714
                                CLEAVAGE (BY GAMMA-SECRETASE; SITE 2)
FT
                                (BY SIMILARITY).
               720
FT
   SITE
                      721
                                CLEAVAGE (BY GAMMA-SECRETASE; SITE 3)
FT
                                (BY SIMILARITY).
               724
FΤ
   SITE
                      734
                                BASOLATERAL SORTING SIGNAL
FT
                                (BY SIMILARITY).
               739
FΨ
   SITE
                      740
                                CLEAVAGE (BY CASPASES-3,-6,-8 OR -9)
FT
                                (BY SIMILARITY).
               757
                     760
FT
   SITE
                                ENDOCYTOSIS SIGNAL.
                759 762
   SITE
                                NPXY MOTIF.
 Query Match
                       100.0%; Score 49; DB 1; Length 770;
 Best Local Similarity 100.0%; Pred. No. 0.025;
 Matches 10; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qy
          1 SEVKMDAEFR 10
            667 SEVKMDAEFR 676
```

RESULT 10
A4_PIG
ID A4_PIG STANDARD; PRT; 770 AA.
AC P79307; Q29023; Q9TUI0;

```
DT
     01-NOV-1997 (Rel. 35, Created)
DТ
     15-SEP-2003 (Rel. 42, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DΤ
     Amyloid beta A4 protein precursor (APP) (ABPP) (Alzheimer's disease
DE
     amyloid protein homolog) [Contains: Soluble APP-alpha (S-APP-alpha);
DE
DE
     Soluble APP-beta (S-APP-beta); C99; Beta-amyloid protein 42 (Beta-
DE
     APP42); Beta-amyloid protein 40 (Beta-APP40); C83; P3(42); P3(40);
DΕ
     Gamma-CTF(59) (Gamma-secretase C-terminal fragment 59); Gamma-CTF(57)
DE
     (Gamma-secretase C-terminal fragment 57); Gamma-CTF(50) (Gamma-
DE
     secretase C-terminal fragment 50); C31].
OS
     Sus scrofa (Pig).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus.
OX
     NCBI TaxID=9823;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Kimura A., Takahashi T.;
     "Amyloid precursor protein 770.";
RT
RL
     Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
RN
RP
     SEQUENCE OF 1-136 FROM N.A.
RC.
     TISSUE=Small intestine;
RA
     Winteroe A.K., Fredholm M.;
RT
     "Evaluation and characterization of a porcine small intestine cDNA
RT
     library.";
RL
     Submitted (JAN-1997) to the EMBL/GenBank/DDBJ databases.
RN
     [3]
RP
     SEQUENCE OF 667-723 FROM N.A.
RC
     TISSUE=Brain;
     MEDLINE=92017079; PubMed=1656157;
RX
RA
     Johnstone E.M., Chaney M.O., Norris F.H., Pascual R., Little S.P.;
RT
     "Conservation of the sequence of the Alzheimer's disease amyloid
     peptide in dog, polar bear and five other mammals by cross-species
RТ
RT
     polymerase chain reaction analysis.";
RT.
     Brain Res. Mol. Brain Res. 10:299-305(1991).
CC
     -!- FUNCTION: Functions as a cell surface receptor and performs
CC
         physiological functions on the surface of neurons relevant to
CC
         neurite growth, neuronal adhesion and axonogenesis. Involved in
CC
         cell mobility and transcription regulation through protein-protein
CC
         interactions (By similarity). Can promote transcription activation
CC
         through binding to APBB1/Tip60 and inhibit Notch signaling through
CC
         interaction with Numb (By similarity). Couples to apoptosis-
CC
         inducing pathways such as those mediated by G(O) and JIP (By
CC
         similarity). Inhibits G(0) alpha ATPase activity (By similarity).
CC
         Acts as a kinesin I membrane receptor, mediating the axonal
CC
         transport of beta-secretase and presentlin 1 (By similarity). May
CC
         be involved in copper homeostasis/oxidative stress through copper
CC
         ion reduction (By similarity). In vitro, copper-metallated APP
CC
         induces neuronal death directly or is potentiated through Cu(II)-
CC
         mediated low-density lipoprotein oxidation (By similarity). Can
CC
         regulate neurite outgrowth through binding to components of the
CC
         extracellular matrix such as heparin and collagen I and IV (By
CC
         similarity).
CC
     -!- FUNCTION: Beta-amyloid peptides are lipophilic metal chelators
CC
         with metal-reducing activity. Bind transient metals such as
CC
         copper, zinc and iron (By similarity).
CC
     -!- FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved
```

CC peptides, including C31, are potent enhancers of neuronal CC apoptosis (By similarity).

CC

CC CC

CC

CC

CC

CC CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

- -!- SUBUNIT: Binds, via its C-terminal, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, and SHC1, Numb and Dab1 (By similarity). Binding to Dabl inhibits its serine phosphorylation (By similarity). Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains) (By similarity), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains (By similarity). Associates with microtubules in the presence of ATP and in a kinesin-dependent manner (By similarity).
- -!- SUBCELLULAR LOCATION: Type I membrane protein. Cell surface protein that rapidly becomes internalized via clatherin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated). After alphasecretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface. GammaCTF(59) peptide is located to both the cytoplasm and nuclei of neurons (By similarity).
- -!- DOMAIN: The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells (By similarity).
- -!- DOMAIN: The NPXY sequence motif found in many tyrosinephosphorylated proteins is required for the specific binding of
 the PID domain. However additional amino acids either N- or Cterminal to the NPXY motif are often required for complete
 interaction. The PID domain-containing proteins which bind APP
 require the YENPTY motif for full interaction. These interactions
 are independent of phosphorylation on the terminal tyrosine
 residue. The NPXY site is also involved in clatherin-mediated
 endocytosis (By similarity).
- -!- PTM: Proteolytically processed under normal cellular conditions. Cleavage by alpha-secretase or alternatively by beta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, respectively, and the retention of corresponding membrane-anchored C-terminal fragments, C83 and C99. Subsequent processing of C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is nonamyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42), major components of amyloid plaques, and the cytotoxic C-terminal fragments, gammaCTF(50), gammaCTF(57) and gammaCTF(59) (By similarity).
- -!- PTM: Proteolytically cleaved by caspases during neuronal apoptosis (By similarity). Cleavage at Asp-739 by either caspase-3, -8 or -9 results in the production of the neurotoxic C31 peptide and the increased production of beta-amyloid peptides (By similarity).
- -!- PTM: N- and O-linked glycosylated (By similarity).
- CC -!- PTM: Phosphorylation in the C-terminal on tyrosine, threonine and CC serine residues is neuron-specific. Phosphorylation can affect APP CC processing, neuronal differentiation and interaction with other proteins (By similarity).
 - -!- PTM: Extracellular binding and reduction of copper, results in a

```
CC
        of a disulfide bond (By similarity).
     -!- MISCELLANEOUS: Chelation of metal ions, notably copper, iron and
CC
CC
        zinc, can induce histidine-bridging between beta-amyloid molecules
CC
        resulting in beta-amyloid-metal aggregates (By similarity).
CC
        Extracellular zinc-binding increases binding of heparin to APP and
CC
        inhibits collagen-binding (By similarity).
     -!- SIMILARITY: BELONGS TO THE APP FAMILY.
CC
CC
     -!- SIMILARITY: Contains 1 BPTI/Kunitz inhibitor domain.
     _______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
     the European Bioinformatics Institute. There are no restrictions on its
CC
CC
     use by non-profit institutions as long as its content is in no way
    modified and this statement is not removed. Usage by and for commercial
CC
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
     or send an email to license@isb-sib.ch).
CC
CC
     EMBL; AB032550; BAA84580.1; -.
     EMBL; Z84022; CAB06313.1; -.
DR
DR
    EMBL; X56127; CAA39592.1; -.
    HSSP; P05067; 1AAP.
DR
DR
    InterPro; IPR008155; A4 APP.
DR
     InterPro; IPR008154; A4 extra.
     InterPro; IPR001255; Beta-APP.
DR
    InterPro; IPR002223; Kunitz BPTI.
DR
    Pfam; PF02177; A4 EXTRA; 1.
DR
    PRINTS; PR00203; AMYLOIDA4.
DR
    PRINTS; PR00759; BASICPTASE.
DR
DR
    ProDom; PD000222; Kunitz BPTI; 1.
     SMART; SM00006; A4 EXTRA; 1.
     SMART; SM00131; KU; 1.
DR
    PROSITE; PS00319; A4 EXTRA; 1.
DR
DR
    PROSITE; PS00320; A4 INTRA; 1.
    PROSITE; PS00280; BPTI KUNITZ 1; 1.
DR
    PROSITE; PS50279; BPTI KUNITZ 2; 1.
DR
KW
    Apoptosis; Endocytosis; Cell adhesion; Serine protease inhibitor;
KW
    Coated pits; Neurone; Heparin-binding; Metal-binding; Copper; Iron;
K₩
    Zinc; Signal; Transmembrane; Glycoprotein; Phosphorylation;
KW
    Amyloid.
                  1
TТ
    SIGNAL
                       17
                                BY SIMILARITY.
    CHAIN
                       770
FΤ
                 18
                                AMYLOID BETA A4 PROTEIN.
                       687
FΤ
    CHAIN
                 18
                                SOLUBLE APP-ALPHA (POTENTIAL).
FT
    CHAIN
                18
                       671
                                SOLUBLE APP-BETA (POTENTIAL).
FT
    CHAIN
                672
                       770
                                C99 (BY SIMILARITY).
FT
                672
                       713
                                BETA-AMYLOID PROTEIN 42 (BY SIMILARITY).
    CHAIN
                672
                       711
                                BETA-AMYLOID PROTEIN 40 (BY SIMILARITY).
FT
    CHAIN
FT
                688
                       770
                                C83 (BY SIMILARITY).
    CHAIN
FT
    CHAIN
                688
                       713
                                P3(42) (BY SIMILARITY).
FT
    CHAIN
                688
                       711
                                P3(40) (BY SIMILARITY).
    CHAIN
FT
                712
                       770
                                GAMMA-CTF (59).
FT
                714
                       770
    CHAIN
                                GAMMA-CTF(57).
    CHAIN
                721
                       770
FT
                                GAMMA-CTF(50) (BY SIMILARITY).
FT
    CHAIN
                740
                       770
                                C31 (DURING APOPTOSIS) (BY SIMILARITY).
                       699
                                EXTRACELLULAR (POTENTIAL).
FT
    DOMAIN
                18
FT
    TRANSMEM
                700
                       723
                                POTENTIAL.
FT
                724
                                CYTOPLASMIC (POTENTIAL).
    DOMAIN
                       770
```

corresponding oxidation of Cys-144 and Cys-158, and the formation

CC

```
FT
     DOMAIN
                   96
                         110
                                   HEPARIN-BINDING (BY SIMILARITY).
FΤ
     DOMAIN
                  135
                         155
                                   COPPER-BINDING (BY SIMILARITY).
FT
     DOMAIN
                 181
                         188
                                   ZINC-BINDING (BY SIMILARITY).
FT
     DOMAIN
                 291
                         341
                                   BPTI/KUNITZ INHIBITOR.
                         423
FT
     DOMAIN
                 391
                                   HEPARIN-BINDING (BY SIMILARITY).
FT
     DOMAIN
                 491
                         522
                                   HEPARIN-BINDING (BY SIMILARITY).
FT
     DOMAIN
                 523
                         540
                                   COLLAGEN-BINDING (BY SIMILARITY).
     DOMAIN
                 732
                         751
                                   INTERACTION WITH G(O)-ALPHA (BY
FT
FT
                                   SIMILARITY).
                 230
                         260
FT
                                   ASP/GLU-RICH (ACIDIC).
     DOMAIN
                 274
                         280
FΤ
     DOMAIN
                                   POLY-THR.
FT
     SITE
                 144
                         144
                                   REQUIRED FOR COPPER(II) REDUCTION
FT
                                    (BY SIMILARITY).
FT
     ACT SITE
                 301
                         302
                                   REACTIVE BOND (BY SIMILARITY).
FΤ
     SITE
                 671
                         672
                                   CLEAVAGE (BY BETA-SECRETASE)
FT
                                   (BY SIMILARITY).
     SITE
                 672
                         673
                                   CLEAVAGE (BY CASPASE-6) (BY SIMILARITY).
FT
FT
     SITE
                 687
                         688
                                   CLEAVAGE (BY ALPHA-SECRETASE)
                                   (BY SIMILARITY).
FΨ
FT
     SITE
                 704
                         704
                                   IMPLICATED IN FREE RADICAL PROPAGATION
FT
                                   (BY SIMILARITY).
                 706
                         706
FT
     SITE
                                   INVOLVED IN OXIDATIVE REACTIONS
FT
                                   (BY SIMILARITY).
FT
     SITE
                 711
                         712
                                   CLEAVAGE (BY GAMMA-SECRETASE; SITE 1)
FT
                                   (BY SIMILARITY).
                                   CLEAVAGE (BY GAMMA-SECRETASE; SITE 2)
                 713
FΤ
     SITE
                         714
FT
                                   (BY SIMILARITY).
  Query Match
                           100.0%;
                                    Score 49; DB 1; Length 770;
                           100.0%; Pred. No. 0.025;
  Best Local Similarity
            10; Conservative
                                  0; Mismatches
                                                     0; Indels
                                                                    0; Gaps
                                                                                 0;
Qу
            1 SEVKMDAEFR 10
              1111111111
Dh
          667 SEVKMDAEFR 676
A4 MOUSE
     A4 MOUSE
                    STANDARD;
                                    PRT;
                                            770 AA.
     P12023; P97487; P97942; Q99K32;
AC
DT
     01-OCT-1989 (Rel. 12, Created)
     15-SEP-2003 (Rel. 42, Last sequence update)
```

RESULT 11

DΤ

DT15-SEP-2003 (Rel. 42, Last annotation update)

Amyloid beta A4 protein precursor (APP) (ABPP) (Alzheimer's disease DE

DE amyloid protein homolog) (Amyloidogenic glycoprotein) (AG) [Contains:

DESoluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99

DE (APP-C99); Beta-amyloid protein 42 (Beta-APP42); Beta-amyloid protein

DE 40 (Beta-APP40); C83; P3(42); P3(40); Gamma-CTF(59) (Gamma-secretase

DE C-terminal fragment 59) (Amyloid intracellular domain 59) (AID(59))

DE (APP-C59); Gamma-CTF(57) (Gamma-secretase C-terminal fragment 57)

DE (Amyloid intracellular domain 57) (AID(57)) (APP-C57); Gamma-CTF(50)

DE (Gamma-secretase C-terminal fragment 50) (Amyloid intracellular domain

DE 50) (AID(50)); C31].

GN APP.

OS Mus musculus (Mouse).

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

```
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OX
     NCBI TaxID=10090;
RN
     [1]
     SEQUENCE FROM N.A. (ISOFORM APP695).
RΡ
RC
     TISSUE=Brain;
RX
     MEDLINE=88106489; PubMed=3322280;
RA
     Yamada T., Sasaki H., Furuya H., Miyata T., Goto I., Sakaki Y.;
RT
     "Complementary DNA for the mouse homolog of the human amyloid beta
RT
     protein precursor.";
     Biochem. Biophys. Res. Commun. 149:665-671(1987).
RL
RN
     REVISIONS.
RP
RA
     Yamada T.;
     Submitted (MAR-1988) to the EMBL/GenBank/DDBJ databases.
RL
RN
RP
     SEQUENCE FROM N.A. (ISOFORM APP695).
RC
     STRAIN=BALB/c; TISSUE=Brain;
RX
     MEDLINE=92096458; PubMed=1756177;
RA
     de Strooper B., van Leuven F., van den Berghe H.;
RT
     "The amyloid beta protein precursor or proteinase nexin II from mouse
     is closer related to its human homolog than previously reported.";
     Biochim. Biophys. Acta 1129:141-143(1991).
RT.
RN
     SEQUENCE FROM N.A. (ISOFORM APP695).
RP
RC
     STRAIN=SAMP8; TISSUE=Hippocampus;
RX
     PubMed=11235921;
     Kumar V.B., Vyas K., Franko M., Choudhary V., Buddhiraju C.,
RA
RA
     Alvarez J., Morley J.E.;
RT
     "Molecular cloning, expression, and regulation of hippocampal amyloid
RT
     precursor protein of senescence accelerated mouse (SAMP8).";
RL
     Biochem. Cell Biol. 79:57-67(2001).
RN
RP
     SEQUENCE OF 1-19 FROM N.A.
RX
     MEDLINE=92209998; PubMed=1555768;
     Izumi R., Yamada T., Yoshikai S.I., Sasaki H., Hattori M.,
RA
     Sakai Y.;
RA
RT
     "Positive and negative regulatory elements for the expression of the
RT
     Alzheimer's disease amyloid precursor-encoding gene in mouse.";
RL
     Gene 112:189-195(1992).
RN
RP
     PARTIAL SEQUENCE FROM N.A. (ISOFORM APP770).
RC
     TISSUE=Breast tumor;
RX
     MEDLINE=22388257; PubMed=12477932;
RA
     Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
     Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
     Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
     Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
     Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
RA
     Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
     Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
     Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
     Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
     Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
     Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
     Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
     Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
```

```
RA
     Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M.,
RA
     Butterfield Y.S.N., Krzywinski M.I., Skalska U., Smailus D.E.,
RA
     Schnerch A., Schein J.E., Jones S.J.M., Marra M.A.;
RT
     "Generation and initial analysis of more than 15,000 full-length human
RT
     and mouse cDNA sequences.";
     Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
RN
RP
     SEQUENCE OF 281-380 FROM N.A., AND ALTERNATIVE SPLICING.
RC
     TISSUE=Brain, and Kidney;
RX
     MEDLINE=89149813; PubMed=2493250;
RA
     Yamada T., Sasaki H., Dohura K., Goto I., Sakaki Y.;
RT
     "Structure and expression of the alternatively-spliced forms of mRNA
RT
     for the mouse homolog of Alzheimer's disease amyloid beta protein
RT
     precursor.";
RL
     Biochem. Biophys. Res. Commun. 158:906-912(1989).
RN
RP
     SEQUENCE OF 289-364 FROM N.A.
RC
     STRAIN=CD-1; TISSUE=Placenta;
     MEDLINE=89345111; PubMed=2569710;
RA
     Fukuchi K., Martin G.M., Deeb S.S.;
RТ
     "Sequence of the protease inhibitor domain of the A4 amyloid protein
RT
     precursor of Mus domesticus.";
     Nucleic Acids Res. 17:5396-5396(1989).
RL
RN
RP
     SEQUENCE OF 656-737 FROM N.A.
RC
     STRAIN=129/Sv:
     Wragg M.A., Busfield F., Duff K., Korenblat K., Capecchi M.,
RA
RA
     Loring J.F., Goate A.M.;
RT
     "Introduction of six mutations into the mouse genome using 'Hit and
RT
     Run' gene-targeting: introduction of familial Alzheimer's disease
RT
     mutations into the mouse amyloid precursor protein gene and
RT
     humanization of the A-beta fragment.";
RL
     Submitted (DEC-1996) to the EMBL/GenBank/DDBJ databases.
RN
     [10]
     TISSUE SPECIFICITY OF ALTERNATIVE SPLICED FORMS.
RP
RX
     PubMed=8510506;
     Sola C., Mengod G., Ghetti B., Palacios J.M., Triarhou L.C.;
RA
RT
     "Regional distribution of the alternatively spliced isoforms of beta
RT
     APP RNA transcript in the brain of normal, heterozygous and
RT
     homozygous weaver mutant mice as revealed by in situ hybridization
RT
     histochemistry.";
RL
     Brain Res. Mol. Brain Res. 17:340-346(1993).
RN
RP
     INTERACTION WITH KNS2.
RX
     PubMed=11144355;
RA
     Kamal A., Stokin G.B., Yang Z., Xia C.-H., Goldstein L.S.;
RT
     "Axonal transport of amyloid precursor protein is mediated by direct
     binding to the kinesin light chain subunit of kinesin-I.";
RT
RL
     Neuron 28:449-459(2000).
RN
     [12]
RP
     C-TERMINAL PROTEIN-PROTEIN INTERACTIONS, AND MUTAGENESIS OF TYR-728;
RP
     THR-743; TYR-757; ASN-759 AND TYR-762.
RX
     MEDLINE=21408156; PubMed=11517249;
RA
     Matsuda S., Yasukawa T., Homma Y., Ito Y., Niikura T., Hiraki T.,
RA
     Hirai S., Ohno S., Kita Y., Kawasumi M., Kouyama K., Yamamoto T.,
RA
     Kyriakis J.M., Nishimoto I.;
RT
     "C-jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1
```

```
scaffolds Alzheimer's amyloid precursor protein with JNK.";
RТ
RL
     J. Neurosci. 21:6597-6607(2001).
RN
     INTERACTION WITH MAPK8IP1, AND PHOSPHORYLATION.
RΡ
RX
     MEDLINE=22028091; PubMed=11912189;
     Taru H., Iijima K.-I., Hase M., Kirino Y., Yaqi Y., Suzuki T.;
RA
RT
     "Interaction of Alzheimer's beta-amyloid precursor family proteins
RT
     with scaffold proteins of the JNK signaling cascade.";
     J. Biol. Chem. 277:20070-20078(2002).
RL
RN
RP
     INTERACTION OF CTF PEPTIDES WITH NUMB.
RX
     PubMed=12011466:
RA
     Roncarati R., Sestan N., Scheinfeld M.H., Berechid B.E., Lopez P.A.,
RA
     Meucci O., McGlade J.C., Rakic P., D'Adamio L.;
     "The gamma-secretase-generated intracellular domain of beta-amyloid
RT
RT
     precursor protein binds Numb and inhibits Notch signaling.";
     Proc. Natl. Acad. Sci. U.S.A. 99:7102-7107(2002).
RN
     GAMMA-SECRETASE PROCESSING, AND INTERACTION WITH APBB1.
RP
RX
     PubMed=11553691;
     Cupers P., Orlans I., Craessaerts K., Annaert W., De Strooper B.;
RA
     "The amyloid precursor protein (APP)-cytoplasmic fragment generated by
RT
     gamma-secretase is rapidly degraded but distributes partially in a
RT
RT
     nuclear fraction of neurones in culture.";
RL
     J. Neurochem. 78:1168-1178(2001).
CC
     -!- FUNCTION: Functions as a cell surface receptor and performs
         physiological functions on the surface of neurons relevant to
CC
         neurite growth, neuronal adhesion and axonogenesis. Involved in
CC
CC
         cell mobility and transcription regulation through protein-protein
CC
         interactions. Can promote transcription activation through binding
CC
         to APBB1/Tip60 and inhibit Notch signaling through interaction
CC
         with Numb. Couples to apoptosis-inducing pathways such as those
CC
         mediated by G(O) and JIP. Inhibits G(O) alpha ATPase activity (By
CC
         similarity). Acts as a kinesin I membrane receptor, mediating the
CC
         axonal transport of beta-secretase and presentilin 1. May be
CC
         involved in copper homeostasis/oxidative stress through copper ion
CC
         reduction. Can regulate neurite outgrowth through binding to
CC
         components of the extracellular matrix such as heparin and
         collagen I and IV (By similarity). The splice isoforms that
CC
CC
         contain the BPTI domain possess protease inhibitor activity (By
CC
CC
     -!- FUNCTION: Beta-amyloid peptides are lipophilic metal chelators
         with metal-reducing activity. Bind transient metals such as
CC
CC
         copper, zinc and iron. Rat and mouse beta-amyloid peptides bind
CC
         only weakly transient metals and have little reducing activity due
CC
         to substitutions of transient metal chelating residues. Beta-APP42
CC
         may activate mononuclear phagocytes in the brain and elicit
CC
         inflammatory responses. Promotes both tau aggregation and TPK II-
CC
         mediated phosphorylation (By similarity).
```

-!- FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.

CC

CC

CC

CC

CC

CC

CC

CC

-!- SUBUNIT: Binds, via its C-terminal, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1, Numb and Dab1. Binding to Dab1 inhibits its serine phosphorylation. Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via

```
CC
          BaSS) and DDB1 (By similarity). In vitro, it binds MAPT via the
 CC
          MT-binding domains (By similarity). Associates with microtubules
 CC
          in the presence of ATP and in a kinesin-dependent manner (By
 CC
          similarity). Interacts, through a C-terminal domain, with GNAO1
 CC
          (By similarity). Amyloid beta-42 binds CHRNA7 in hippocampal
 CC
          neurons (By similarity). Beta-amyloid associates with HADH2 (By
 CC
          similarity).
 CC
      -!- SUBCELLULAR LOCATION: Type I membrane protein. Cell surface
 CC
          protein that rapidly becomes internalized via clatherin-coated
 CC
         pits. During maturation, the immature APP (N-glycosylated in the
CC
          endoplasmic reticulum) moves to the Golgi complex where complete
  Query Match
                           89.8%; Score 44; DB 1; Length 770;
  Best Local Similarity
                           100.0%; Pred. No. 0.26;
  Matches
              9; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                               0:
Qу
             1 SEVKMDAEF 9
               Db
           667 SEVKMDAEF 675
RESULT 12
A4 RAT
ID
     A4 RAT
                    STANDARD;
                                    PRT:
                                           770 AA.
     P08592;
AC
DT
     01-AUG-1988 (Rel. 08, Created)
DT
     01-DEC-1992 (Rel. 24, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Amyloid beta A4 protein precursor (APP) (Alzheimer's disease amyloid
DE
DE
     protein homolog) (Amyloidogenic glycoprotein) (AG) [Contains: Soluble
DE
     APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99; Beta-
DΕ
     amyloid protein 42 (Beta-APP42); Beta-amyloid protein 40 (Beta-APP40);
DΕ
     C83; P3(42); P3(40); Gamma-CTF(59) (Gamma-secretase C-terminal
     fragment 59); Gamma-CTF(57) (Gamma-secretase C-terminal fragment 57);
DΕ
     Gamma-CTF(50) (Gamma-secretase C-terminal fragment 50); C31].
DE
GN
     APP.
     Rattus norvegicus (Rat).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
OC
OX
     NCBI TaxID=10116;
RN
     SEQUENCE FROM N.A. (ISOFORM APP695).
RP
RC
     TISSUE=Brain:
RX
     MEDLINE=88312583; PubMed=2900758;
     Shivers B.D., Hilbich C., Multhaup G., Salbaum J.M., Beyreuther K.,
RA
RA
     Seeburg P.H.;
RT
     "Alzheimer's disease amyloidogenic glycoprotein: expression pattern
RT
     in rat brain suggests a role in cell contact.";
RL
     EMBO J. 7:1365-1370(1988).
RN
     SEQUENCE OF 289-364 FROM N.A.
RP
RC
     TISSUE=Liver;
RX
     MEDLINE=89183625; PubMed=2648331;
RA
     Kang J., Mueller-Hill B.;
RT
     "The sequence of the two extra exons in rat preA4.";
RL
     Nucleic Acids Res. 17:2130-2130(1989).
RN
     [3]
```

```
RP
      SEQUENCE OF 720-730, AND MASS SPECTROMETRY.
 RX
      PubMed=11483588;
 RA
      Gu Y., Misonou H., Sato T., Dohmae N., Takio K., Ihara Y.;
 RT
      "Distinct intramembrane cleavage of the beta-amyloid precursor protein
RT
      family resembling gamma-secretase-like cleavage of Notch.";
RL
      J. Biol. Chem. 276:35235-35238(2001).
RN
RP
      ALTERNATIVE SPLICING.
RX
      PubMed=8624099;
RA
      Sandbrink R., Masters C.L., Beyreuther K.;
RT
      "APP gene family. Alternative splicing generates functionally related
ŔŢ
      isoforms.";
     Ann. N.Y. Acad. Sci. 777:281-287(1996).
RL
RN
      [5]
RP
     TISSUE SPECIFICITY OF APPICAN.
RX
     PubMed=7744833;
     Shioi J., Pangalos M.N., Ripellino J.A., Vassilacopoulou D.,
RA
RA
     Mytilineou C., Margolis R.U., Robakis N.K.;
     "The Alzheimer amyloid precursor proteoglycan (appican) is present in
RT
     brain and is produced by astrocytes but not by neurons in primary
RT
RT
     neural cultures.";
RL
     J. Biol. Chem. 270:11839-11844(1995).
RN
     [6]
RP
     TISSUE SPECIFICITY OF ISOFORMS.
RX
     PubMed=8996834;
RA
     Sandbrink R., Monning U., Masters C.L., Beyreuther K.;
RT
     "Expression of the APP gene family in brain cells, brain development
RT
     and aging.";
     Gerontology 43:119-131(1997).
RL
RN
     INTERACTION WITH DDB1, AND MUTAGENESIS OF TYR-757; ASN-759 AND
RP
RP
     TYR-762.
RX
     PubMed=9930726;
RA
     Watanabe T., Sukegawa J., Tomita S., Iijima K.-I., Oguchi S.,
RA
     Suzuki T., Nairn A.C., Greengard P.;
RT
     "A 127-kDa protein (UV-DDB) binds to the cytoplasmic domain of the
RT
     Alzheimer's amyloid precursor protein.";
RL
     J. Neurochem. 72:549-556(1999).
RN
     [8]
RP
     INTERACTION WITH GNAO1, AND MUTAGENESIS OF HIS-732 AND HIS-733.
RX
     PubMed=10024358;
RA
     Brouillet E., Trembleau A., Galanaud D., Volovitch M., Bouillot C.,
RA
     Valenza C., Prochiantz A., Allinquant B.;
RT
     "The amyloid precursor protein interacts with Go heterotrimeric
RT
     protein within a cell compartment specialized in signal
     transduction.";
RT
RL
     J. Neurosci. 19:1717-1727(1999).
RN
     [9]
RP
    CHARACTERISTICS OF APPICAN, AND MUTAGENESIS OF SER-656.
    MEDLINE=95256193; PubMed=7737970;
RX
    Pangalos M.N., Efthimiopoulos S., Shioi J., Robakis N.K.;
RT
     "The chondroitin sulfate attachment site of appican is formed by
    splicing out exon 15 of the amyloid precursor gene.";
RT
RL
    J. Biol. Chem. 270:10388-10391(1995).
RN
     [10]
RP
    BETA-AMYLOID METAL-BINDING.
RX
    PubMed=10386999;
```

```
RA
     Huang X., Atwood C.S., Hartshorn M.A., Multhaup G., Goldstein L.E.,
RA
     Scarpa R.C., Cuajungco M.P., Gray D.N., Lim J., Moir R.D., Tanzi R.E.,
RA
RT
     "The A beta peptide of Alzheimer's disease directly produces hydrogen
     peroxide through metal ion reduction.";
RT
     Biochemistry 38:7609-7616(1999).
RL
RN
RP
     BETA-AMYLOID ZINC BINDING.
RX
     MEDLINE=99343552; PubMed=10413512;
     Liu S.T., Howlett G., Barrow C.J.;
RΑ
RT'
     "Histidine-13 is a crucial residue in the zinc ion-induced aggregation
RT
     of the A beta peptide of Alzheimer's disease.";
RL
     Biochemistry 38:9373-9378(1999).
RN
RP
     IMPORTANCE OF GLY-704 IN FREE RADICAL PROPAGATION, AND MUTAGENESIS OF
     GLY-704.
RP
     PubMed=11959460;
RX
RA
     Kanski J., Varadarajan S., Aksenova M., Butterfield D.A.;
RT
     "Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-
RT
     peptide 1-42-associated oxidative stress and neurotoxicity.";
RL
     Biochim. Biophys. Acta 1586:190-198(2001).
RN
     [13]
RP
     PHOSPHORYLATION.
     PubMed=9085254;
RX
RA
     Oishi M., Nairn A.C., Czernik A.J., Lim G.S., Isohara T., Gandy S.E.,
     Greengard P., Suzuki T.;
RT
     "The cytoplasmic domain of Alzheimer's amyloid precursor protein is
RT
     phosphorylated at Thr654, Ser655, and Thr668 in adult rat brain and
RT
     cultured cells.";
    Mol. Med. 3:111-123(1997).
RL
RN
     [14]
     PHOSPHORYLATION ON SER-730.
RP
     PubMed=10329382;
RX
RA
     Isohara T., Horiuchi A., Watanabe T., Ando K., Czernik A.J., Uno I.,
RA
     Greengard P., Nairn A.C., Suzuki T.;
RT
     "Phosphorylation of the cytoplasmic domain of Alzheimer's beta-amyloid
RT
     precursor protein at Ser655 by a novel protein kinase.";
RL
     Biochem. Biophys. Res. Commun. 258:300-305(1999).
RN
RP
     PHOSPHORYLATION, INDUCTION, SUBCELLULAR LOCATION, AND MUTAGENESIS OF
RP
     THR-743.
RX
     MEDLINE=99274744; PubMed=10341243;
RA
     Ando K., Oishi M., Takeda S., Iijima K.-I., Isohara T., Nairn A.C.,
RA
     Kirino Y., Greengard P., Suzuki T.;
RT
     "Role of phosphorylation of Alzheimer's amyloid precursor protein
RT
     during neuronal differentiation.";
RL
     J. Neurosci. 19:4421-4427(1999).
RN
     [16]
RP
     PHOSPHORYLATION ON THR-743.
RX
     PubMed=10936190;
RA
     Iijima K.-I., Ando K., Takeda S., Satoh Y., Seki T., Itohara S.,
RA
     Greengard P., Kirino Y., Nairn A.C., Suzuki T.;
RТ
     "Neuron-specific phosphorylation of Alzheimer's beta-amyloid precursor
RT
     protein by cyclin-dependent kinase 5.";
     J. Neurochem. 75:1085-1091(2000).
RL
RN
```

RP

CARBOHYDRATE STRUCTURE OF APPICAN.

RX PubMed=11479316; RA Tsuchida K., Shioi J., Yamada S., Boghosian G., Wu A., Cai H., RA Sugahara K., Robakis N.K.;

CC

CÇ

CC CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

RT"Appican, the proteoglycan form of the amyloid precursor protein, RTcontains chondroitin sulfate E in the repeating disaccharide region RTand 4-O-sulfated galactose in the linkage region."; RLJ. Biol. Chem. 276:37155-37160(2001).

- -!- FUNCTION: Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions (By similarity). Can promote transcription activation through binding to APBB1/Tip60 and inhibit Notch signaling through interaction with Numb (By similarity). Couples to apoptosisinducing pathways such as those mediated by G(O) and JIP. Inhibits G(0) alpha ATPase activity. Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1 (By similarity). May be involved in copper homeostasis/oxidative stress through copper ion reduction. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV (By similarity). The splice isoforms that contain the BPTI domain possess protease inhibitor activity (By similarity).
- -!- FUNCTION: Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. Rat and mouse beta-amyloid peptides bind only weakly transient metals and have little reducing activity due to substitutions of transient metal chelating residues. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK IImediated phosphorylation (By similarity).
- -!- FUNCTION: Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the CC brain.
- CC -!- FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal CC CC apoptosis (By similarity).
 - -!- SUBUNIT: Binds, via its C-terminal, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1 and Numb and Dab1 (By similarity). Binding to Dabl inhibits its serine phosphorylation (By similarity). Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via BaSS) (By similarity) and DDB1. In vitro, it binds MAPT via the MT-binding domains (By similarity). Associates with microtubules in the presence of ATP and in a kinesin-dependent manner (By similarity). Interacts, through a C-terminal domain, with GNAO1. Amyloid beta-42 binds CHRNA7 in hippocampal neurons (By similarity). Beta-amyloid associates with HADH2 (By similarity).
- CC -!- SUBCELLULAR LOCATION: Type I membrane protein. Cell surface CC protein that rapidly becomes internalized via clatherin-coated CC pits. During maturation, the immature APP (N-glycosylated in the

Query Match 89.8%; Score 44; DB 1; Length 770; Best Local Similarity 100.0%; Pred. No. 0.26; 9; Conservative 0; Mismatches 0; Indels

```
QУ
           1 SEVKMDAEF 9
             667 SEVKMDAEF 675
Db
RESULT 13
T2S1 STRFI
     T2S1 STRFI
                   STANDARD:
                                 PRT:
                                        269 AA.
     052512;
AC
     16-OCT-2001 (Rel. 40, Created)
DТ
     16-OCT-2001 (Rel. 40, Last sequence update)
DΤ
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
    Type II restriction enzyme SfiI (EC 3.1.21.4) (Endonuclease SfiI)
DE
     (R.SfiI).
GN
    SFIIR.
OS
    Streptomyces fimbriatus.
OC
    Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
     Streptomycineae; Streptomycetaceae; Streptomyces.
OX
    NCBI TaxID=68197;
RN
     [1]
RP
    SEQUENCE FROM N.A.
RA
    van Cott E.M., Moran L.S., Slatko B.E., Wilson G.G.;
RT
     "Characterization of the SfiI restriction and modification genes.";
RL
     Submitted (DEC-1997) to the EMBL/GenBank/DDBJ databases.
CC
    -!- FUNCTION: Recognizes the double-stranded sequence GGCCNNNNNGGCC
        and cleaves before N-9.
CC
CC
    -!- CATALYTIC ACTIVITY: Endonucleolytic cleavage of DNA to give
CC
        specific double-stranded fragments with terminal 5'-phosphates.
CC
     ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CÇ
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
DR
    EMBL; AF039750; AAB95365.1; -.
    REBASE; 1655; SfiI.
KW
    Restriction system; Hydrolase; Nuclease; Endonuclease.
SO
    SEQUENCE 269 AA; 31044 MW; 3C48499BAA5205EA CRC64;
                         75.5%; Score 37; DB 1; Length 269;
  Query Match
  Best Local Similarity 70.0%; Pred. No. 2.6;
                             2; Mismatches 1; Indels
 Matches
            7; Conservative
                                                              0; Gaps
                                                                          0;
Qу
           1 SEVKMDAEFR 10
             1:: | | | | | |
Dh
         115 SQLPMDAEFR 124
RESULT 14
PGCV CHICK
    PGCV CHICK
                   STANDARD;
                                 PRT; 3562 AA.
ID
    Q90953; Q90945;
AC
DT
    01-NOV-1997 (Rel. 35, Created)
    01-NOV-1997 (Rel. 35, Last sequence update)
```

```
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
     Versican core protein precursor (Large fibroblast proteoglycan)
DE
     (Chondroitin sulfate proteoglycan core protein 2) (PG-M).
DE
GN
     CPSG2.
OS
     Gallus gallus (Chicken).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
     Gallus.
OX
     NCBI_TaxID=9031;
RN
     [1]
RP
     SEQUENCE FROM N.A. (ISOFORMS VO AND V1).
     STRAIN=White leghorn; TISSUE=Limb bud;
RC
RX
     MEDLINE=93300846; PubMed=8314802;
RA
     Shinomura T., Nishida Y., Ito K., Kimata K.;
RT
     "cDNA cloning of PG-M, a large chondroitin sulfate proteoglycan
RΨ
     expressed during chondrogenesis in chick limb buds. Alternative
RТ
     spliced multiforms of PG-M and their relationships to versican.";
     J. Biol. Chem. 268:14461-14469(1993).
RL
CC
     -!- FUNCTION: May play a role in intercellular signaling and in
CC
         connecting cells with the extracellular matrix. May take part in
CC
         the regulation of cell motility, growth and differentiation. Binds
CC
         hyaluronic acid.
CC
     -!- SUBCELLULAR LOCATION: Secreted; extracellular matrix.
CC
     -!- ALTERNATIVE PRODUCTS:
CC
         Event=Alternative splicing; Named isoforms=2;
CC
           Comment=Additional isoforms seem to exist;
CC
         Name=V0;
CC
           IsoId=Q90953-1; Sequence=Displayed;
CC
         Name=V1;
           IsoId=Q90953-2; Sequence=VSP_003093;
CC
CC
     -!- TISSUE SPECIFICITY: Prechondrogenic condensation area of
CC
         developing limb buds.
     -!- DEVELOPMENTAL STAGE: Disappears after the cartilage development
CC
CC
         (By similarity).
CC
     -!- SIMILARITY: Contains 1 immunoglobulin-like V-type domain.
CC
     -!- SIMILARITY: Contains 2 link domains.
CC
     -!- SIMILARITY: Contains 2 EGF-like domains.
CC
     -!- SIMILARITY: Contains 1 C-type lectin family domain.
CC
     -!- SIMILARITY: Contains 1 Sushi (SCR) domain.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
CC
     or send an email to license@isb-sib.ch).
CC
DR
     EMBL; X60226; CAA42787.1; -.
DR
     EMBL; D13542; BAA02742.1; -.
DR
     PIR; A47171; A47171.
DR
     HSSP; P00740; 1EDM.
DR
     InterPro; IPR000152; Asx hydroxyl.
     InterPro; IPR000742; EGF 2.
DR
DR
     InterPro; IPR001881; EGF Ca.
     InterPro; IPR006209; EGF like.
DR
DR
     InterPro; IPR007110; Iq-like.
```

```
InterPro; IPR003599; Ig.
DR
     InterPro; IPR003006; Ig MHC.
DR
DR
     InterPro; IPR001304; Lectin C.
DR
     InterPro; IPR000538; Link.
     InterPro; IPR000436; Sushi SCR CCP.
DR
     Pfam; PF00008; EGF; 2.
DR
DR
     Pfam; PF00047; ig; 1.
     Pfam; PF00059; lectin c; 1.
DR
     Pfam; PF00084; sushi; 1.
DR
DR
     Pfam; PF00193; Xlink; 2.
DR
     PRINTS; PR01265; LINKMODULE.
DR
     ProDom; PD000918; Link; 2.
DR
     SMART; SM00032; CCP; 1.
DR
     SMART; SM00034; CLECT; 1.
     SMART; SM00179; EGF CA; 1.
DR
     SMART; SM00409; IG; 1.
DR
     SMART; SM00445; LINK; 2.
     PROSITE; PS00010; ASX HYDROXYL; 1.
DR
     PROSITE; PS00615; C TYPE LECTIN 1; 1.
DR
     PROSITE; PS50041; C_TYPE_LECTIN_2; 1.
DR
     PROSITE; PS00022; EGF_1; 2.
DR
DR
     PROSITE; PS01186; EGF_2; 1.
DR
     PROSITE; PS01187; EGF CA; 1.
DR
     PROSITE; PS50835; IG LIKE; 1.
     PROSITE; PS01241; LINK; 2.
DR
KW
     Glycoprotein; Proteoglycan; Lectin; Extracellular matrix; Sushi;
KW
     Signal; Repeat; EGF-like domain; Calcium; Immunoglobulin domain;
KW
     Hyaluronic acid; Alternative splicing.
FT
     SIGNAL
                   1
                          26
                                   POTENTIAL.
                  27
                                   VERSICAN CORE PROTEIN.
FT
     CHAIN
                        3562
                                   IG-LIKE V-TYPE.
FT
     DOMAIN
                  27
                         143
FT
     DOMAIN
                 166
                         243
                                   LINK 1.
FT
     DOMAIN
                 264
                         345
                                   LINK 2.
FT
     DOMAIN
                3254
                        3290
                                   EGF-LIKE 1.
FT
     DOMAIN
                3292
                        3328
                                   EGF-LIKE 2, CALCIUM-BINDING (POTENTIAL).
FT
                3341
                        3455
                                   C-TYPE LECTIN.
     DOMAIN
FT
                3460
     DOMAIN
                        3518
                                   SUSHI.
                         129
FT
     DISULFID
                  44
                                   BY SIMILARITY.
                                   BY SIMILARITY.
FT
     DISULFID
                 171
                         242
FT
     DISULFID
                 195
                         216
                                   BY SIMILARITY.
FT
     DISULFID
                 269
                         344
                                   BY SIMILARITY.
FT
     DISULFID
                 293
                         314
                                   BY SIMILARITY.
                3258
FT
     DISULFID
                        3269
                                   BY SIMILARITY.
FT
     DISULFID
                3263
                        3278
                                   BY SIMILARITY.
FΤ
     DISULFID
                3280
                        3289
                                   BY SIMILARITY.
FT
     DISULFID
                3296
                        3307
                                   BY SIMILARITY.
FT
                3301
     DISULFID
                        3316
                                   BY SIMILARITY.
FT
                3318
                        3327
     DISULFID
                                   BY SIMILARITY.
FΨ
     DISULFID
                3334
                        3345
                                   BY SIMILARITY.
FT
     DISULFID
                3362
                        3454
                                   BY SIMILARITY.
FΤ
     DISULFID
                3430
                        3446
                                   BY SIMILARITY.
FT
     DISULFID
                3461
                        3504
                                   BY SIMILARITY.
FT
     DISULFID
                3490
                        3517
                                   BY SIMILARITY.
                                   N-LINKED (GLCNAC. . .) (POTENTIAL).
FΤ
     CARBOHYD
                 163
                         163
FT
                         235
                                   N-LINKED (GLCNAC. . .) (POTENTIAL).
     CARBOHYD
                 235
FT
     CARBOHYD
                 329
                         329
                                   N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                 529
                         529
                                   N-LINKED (GLCNAC. . .) (POTENTIAL).
```

```
709
                        709
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                 948
                        948
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FΤ
     CARBOHYD
                1409
                       1409
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
     CARBOHYD
FT
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
                1479
                       1479
FT
     CARBOHYD
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
     CARBOHYD
                1523
                       1523
FΤ
                1530
                       1530
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
     CARBOHYD
                1625
                       1625
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                1751
                       1751
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
                1988
                       1988
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
FT
     CARBOHYD
                2088
                       2088
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                2089
                       2089
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                2507
                       2507
                2642
                       2642
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FΤ
     CARBOHYD
                2679
                       2679
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                2748
                       2748
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
FT
     CARBOHYD
                2762
                       2762
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
                3069
                       3069
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                3194
                       3194
                3232
                       3232
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
     CARBOHYD
                                  N-LINKED (GLCNAC. . .) (POTENTIAL).
                       3545
FТ
     CARBOHYD
                3545
                       1411
                                  Missing (in isoform V1).
FT
     VARSPLIC
                485
                                  /FTId=VSP 003093.
FT
SO
     SEQUENCE
                3562 AA; 388078 MW; 9BC566E88C1602D2 CRC64;
  Query Match
                          69.4%; Score 34; DB 1; Length 3562;
  Best Local Similarity
                          66.7%; Pred. No. 1.4e+02;
             6; Conservative
                                 2; Mismatches
                                                    1; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
            1 SEVKMDAEF 9
Qу
              1:1:11
         1709 STIKLDAEF 1717
Db
RESULT 15
APB HUMAN
     APB HUMAN
                    STANDARD;
                                   PRT; 4563 AA.
AC
     P04114; 000502; Q13787;
DТ
     01-NOV-1986 (Rel. 03, Created)
     01-NOV-1986 (Rel. 03, Last sequence update)
DΤ
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Apolipoprotein B-100 precursor (Apo B-100) [Contains: Apolipoprotein
DE
DE
     B-48 (Apo B-48)].
GN
     APOB.
OS
     Homo sapiens (Human).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI_TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=87016385; PubMed=3763409;
     Knott T.C., Wallis S.C., Powell L.M., Pease R.J., Lusis A.J.,
RA
     Blackhart B., McCarthy B.J., Mahley R.W., Levy-Wilson B., Scott J.;
RA
RT
     "Complete cDNA and derived protein sequence of human apolipoprotein
RT
     B-100.";
RL
     Nucleic Acids Res. 14:7501-7503(1986).
RN
RP
     SEQUENCE FROM N.A.
```

```
RX
     MEDLINE=88003974; PubMed=3652907;
      Ludwig E.H., Blackhart B.D., Pierotti V.R., Caiati L., Fortier C.,
RA
RA
      Knott T., Scott J., Mahley R.W., Levy-Wilson B., McCarthy B.J.;
RT
      "DNA sequence of the human apolipoprotein B gene.";
     DNA 6:363-372(1987).
RL
RN
     SEQUENCE FROM N.A.
RP
RX
     MEDLINE=87008488; PubMed=3759943;
     Chen S.-H., Yang C.-Y., Chen P.-F., Setzer D., Tanimura M., Li W.-H.,
RA
     Gotto A.M. Jr., Chan L.;
RA
     "The complete cDNA and amino acid sequence of human apolipoprotein
RT
RT
     B-100.";
     J. Biol. Chem. 261:12918-12921(1986).
RL
RN
     [4]
RP
     SEQUENCE FROM N.A.
     MEDLINE=87041416; PubMed=3464946;
RX
     Law S.W., Grant S.M., Higuchi K., Hospattankar A.V., Lackner K.J.,
RA
RA
     Lee N., Brewer H.B. Jr.;
RT
     "Human liver apolipoprotein B-100 cDNA: complete nucleic acid and
RT
     derived amino acid sequence.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 83:8142-8146(1986).
RN
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=87161758; PubMed=3030729;
     Cladaras C., Hadzopoulou-Cladaras M., Nolte R.T., Atkinson D.,
RA
RA
     Zannis V.I.;
RT
     "The complete sequence and structural analysis of human
RT
     apolipoprotein B-100: relationship between apoB-100 and apoB-48
RT
     forms.";
     EMBO J. 5:3495-3507(1986).
RL
RN
     [6]
RP
     SEQUENCE OF 709-906 FROM N.A.
RX
     MEDLINE=85270450; PubMed=3860836;
RA
     Deeb S.S., Motulsky A.G., Albers J.J.;
     "A partial cDNA clone for human apolipoprotein B.";
RТ
RL
     Proc. Natl. Acad. Sci. U.S.A. 82:4983-4986(1985).
RN
     [7]
RP
     SEQUENCE OF 3056-3159 FROM N.A.
RX
     MEDLINE=86041888; PubMed=3903660;
RA
     Mehrabian M., Schumaker V.N., Fareed G.C., West R., Johnson D.F.,
RA
     Kirchgessner T.G., Lin H.-C., Wang X., Ma Y., Mendiaz E., Lusis A.J.:
     "Human apolipoprotein B: identification of cDNA clones and
RT
     characterization of mRNA.";
RL
     Nucleic Acids Res. 13:6937-6953(1985).
RN
     SEQUENCE OF 1937-2018 AND 3811-4334 FROM N.A.
RP
     MEDLINE=86093680; PubMed=3841204;
RX
RA
     Carlsson P., Olofsson S.O., Bondjers G., Darnfors C., Wiklund O.,
RA
     Bjursell G.;
RT
     "Molecular cloning of human apolipoprotein B cDNA.";
RL
     Nucleic Acids Res. 13:8813-8826(1985).
RN
     [9]
RP
     SEQUENCE OF 3109-4563 FROM N.A.
RX
    MEDLINE=85300528; PubMed=2994225;
RA
     Knott T.J., Rall S.C. Jr., Innerarity T.L., Jacobson S.F.,
     Urdea M.S., Levy-Wilson B., Powell L.M., Pease R.J., Eddy R.,
RA
RA
     Nakai H., Byers M., Priestley L.M., Robertson E., Rall L.B.,
```

```
RA
     Betsholtz C., Shows T.B., Mahley R.W., Scott J.;
RT
     "Human apolipoprotein B: structure of carboxyl-terminal domains,
RT
     sites of gene expression, and chromosomal localization.";
RL
     Science 230:37-43(1985).
RN
RP
     SEQUENCE OF 1-291 FROM N.A.
RX
     MEDLINE=86149325; PubMed=3513177;
RA
     Protter A.A., Hardman D.A., Schilling J.W., Miller J., Appleby V.,
     Chen G.C., Kirsher S.W., McEnroe G., Kane J.P.;
RA
RT
     "Isolation of a cDNA clone encoding the amino-terminal region of
RT
     human apolipoprotein B.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 83:1467-1471(1986).
RN
RP
     SEQUENCE OF 1-1670 FROM N.A.
RX
     MEDLINE=86287319; PubMed=3461454;
     Protter A.A., Hardman D.A., Sato K.Y., Schilling J.W.,
RA
RA
     Yamanaka M., Hort Y.J., Hjerrild K.A., Chen G.C., Kane J.P.;
RT
     "Analysis of cDNA clones encoding the entire B-26 region of human
RT
     apolipoprotein B.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 83:5678-5682(1986).
RN
RP
     PARTIAL SEQUENCE, AND IDENTIFICATION OF APO-B48.
RX
     MEDLINE=88018019; PubMed=3659919;
     Chen S.-H., Habib G., Yang C.-H., Gu Z.-W., Lee B.R., Weng S.-H.,
RA
RA
     Silberman S.R., Cai S.-J., Deslypere J.P., Rosseneu M.,
     Gotto A.M. Jr., Li W.-H., Chan L.;
RA
RT
     "Apolipoprotein B-48 is the product of a messenger RNA with an organ-
RT
     specific in-frame stop codon.";
RL
     Science 238:363-366(1987).
RN
     [13]
RP
     DOMAINS.
RX
     MEDLINE=87039351; PubMed=3773997;
     Knott T.C., Pease R.J., Powell L.M., Wallis S.C., Rall S.C. Jr.,
RA
RA
     Innerarity T.L., Blackhart B., Taylor W.R., Marcel Y., Milne R.,
RA
     Johnson D., Fuller M., Lusis A.J., McCarthy B.J., Mahley R.W.,
RA
     Levy-Wilson B., Scott J.;
     "Complete protein sequence and identification of structural domains
RT
     of human apolipoprotein B.";
RT
RL
     Nature 323:734-738(1986).
RN
     [14]
RP
     DOMAINS.
RA
     Yang C.-Y., Chen S.-H., Gianturco S.H., Bradley W.A., Sparrow J.T.,
RA
     Tanimura M., Li W.-H., Sparrow D.A., Deloof H., Rosseneu M.,
RA
     Lee F.-S., Gu Z.-W., Gotto A.M. Jr., Chan L.;
RT
     "Sequence, structure, receptor-binding domains and internal repeats
RT
     of human apolipoprotein B-100.";
RL
     Nature 323:738-742(1986).
RN
     [15]
     CALCIUM-BINDING DATA.
RP
RX
     MEDLINE=86242245; PubMed=3087360;
RA
     Dashti N., Lee D.M., Mok T.;
RT
     "Apolipoprotein B is a calcium binding protein.";
RL
     Biochem. Biophys. Res. Commun. 137:493-499(1986).
RN
RP
     PALMITOYLATION OF CYS-1112.
RX
     MEDLINE=20143590; PubMed=10679026;
RA
     Zhao Y., McCabe J.B., Vance J., Berthiaume L.G.;
```

```
RT
     "Palmitoylation of apolipoprotein B is required for proper
RT
     intracellular sorting and transport of cholesteroyl esters and
RT
     triglycerides.";
RL
     Mol. Biol. Cell 11:721-734(2000).
RN
     [17]
RP
     VARIANT SER-4338.
     MEDLINE=91071750; PubMed=1979313;
RX
RA
     Navajas M., Laurent A.-M., Moreel J.-F., Ragab A., Cambou J.-P.,
RA
     Cunny G., Cambien F., Roizes G.;
RT
     "Detection by denaturing gradient gel electrophoresis of a new
RT
     polymorphism in the apolipoprotein B gene.";
RL
     Hum. Genet. 86:91-93(1990).
RN
     VARIANT FDB GLN-3527.
RP
RX
     MEDLINE=89098975; PubMed=2563166;
     Soria L.F., Ludwig E.H., Clarke H.R.G., Vega G.L., Grundy S.M.,
RA
RA
     McCarthy B.J.;
RT
     "Association between a specific apolipoprotein B mutation and
RT
     familial defective apolipoprotein B-100.";
     Proc. Natl. Acad. Sci. U.S.A. 86:587-591(1989).
RL
RN
     [19]
RP
     VARIANT LEU-2739.
RX
     MEDLINE=91016974; PubMed=2216805;
RA
     Huang L.-S., Gavish D., Breslow J.L.;
     "Sequence polymorphism in the human apoB gene at position 8344.";
RT
     Nucleic Acids Res. 18:5922-5922(1990).
RL
RN
     [20]
RP
     VARIANT FDB CYS-3558.
RX
     MEDLINE=95190020; PubMed=7883971;
RA
     Pullinger C.R., Hennessy L.K., Chatterton J.E., Liu W., Love J.A.,
RA
     Mendel C.M., Frost P.H., Malloy M.J., Schumaker V.N., Kane J.P.;
RT
     "Familial ligand-defective apolipoprotein B. Identification of a new
RT
     mutation that decreases LDL receptor binding affinity.";
RL
     J. Clin. Invest. 95:1225-1234(1995).
RN
     [21]
RP
    VARIANTS LEU-1437; SER-1914; LYS-2566; THR-3121; ALA-3945; MET-4128
    AND THR-4481.
RP
RX
    MEDLINE=97044521; PubMed=8889592;
RA
     Poirier O., Ricard S., Behague I., Souriau C., Evans A.E.,
    Arveiler D., Marques-Vidal P., Luc G., Roizes G., Cambien F.;
RA
     "Detection of new variants in the apolipoprotein B (Apo B) gene by
RT
     PCR-SSCP.";
RT
RL
    Hum. Mutat. 8:282-285(1996).
RN
     [22]
    VARIANTS FDB GLN-3527 AND CYS-3558.
RP
    MEDLINE=97403938; PubMed=9259199;
RX
     Rabes J.P., Varret M., Saint-Jore B., Erlich D., Jondeau G.,
RA
     Krempf M., Giraudet P., Junien C., Boileau C.;
RA
RT
     "Familial ligand-defective apolipoprotein B-100: simultaneous
RT
    detection of the ARG3500-->GLN and ARG3531-->CYS mutations in a
RT
     French population.";
RL
    Hum. Mutat. 10:160-163(1997).
RN
    VARIANTS SER-1914; ARG-1923; LEU-2739; ASP-3319; THR-3427; GLN-3432
RP
RΡ
    AND ILE-3921.
RX
    MEDLINE=98141125; PubMed=9490296;
RA
    Leren T.P., Bakken K.S., Hoel V., Hjermann I., Berg K.;
```

```
RT
     "Screening for mutations of the apolipoprotein B gene causing
RТ
     hypocholesterolemia.";
     Hum. Genet. 102:44-49(1998).
RL
     -!- FUNCTION: APOLIPOPROTEIN B IS A MAJOR PROTEIN CONSTITUENT OF
CC
CC
         CHYLOMICRONS, VLDL AND LDL. IT FUNCTIONS AS A RECOGNITION SIGNAL
CC
         FOR THE CELLULAR BINDING AND INTERNALIZATION OF LDL PARTICLES BY
CC
         THE APOB/E RECEPTOR.
  Query Match
  Query Match 69.4%; Score 34; DB 1; Length 4563; Best Local Similarity 66.7%; Pred. No. 1.8e+02;
 Matches
           6; Conservative 2; Mismatches
                                                   1; Indels
                                                                    0; Gaps
                                                                                 0;
            2 EVKMDAEFR 10
Qу
              111:1:11
Db
         1483 EVKIDGQFR 1491
```

Search completed: January 21, 2004, 09:23:05

Job time : 2.49713 secs