# BT209

# Bioreaction Engineering

19/01/2023

# Irreversible bimolecular type 2nd order reaction

Consider,  $A + B \rightarrow products$ 

with 
$$-r_A = -\frac{dC_A}{dt} = -\frac{dC_B}{dt} = kC_AC_B$$

$$-r_{A} = C_{A0} \frac{dX_{A}}{dt} = k(C_{A0} - C_{A0}X_{A})(C_{B0} - C_{A0}X_{A})$$

$$-r_{A} = C_{A0} \frac{dX_{A}}{dt} = kC_{A0}^{2} (1 - X_{A})(M - X_{A}) \qquad M = C_{B0}/C_{A0}.$$

$$\int_0^{X_{\rm A}} \frac{dX_{\rm A}}{(1 - X_{\rm A})(M - X_{\rm A})} = C_{\rm A0}k \int_0^t dt$$

$$\ln \frac{1 - X_{\rm B}}{1 - X_{\rm A}} = \ln \frac{M - X_{\rm A}}{M(1 - X_{\rm A})} = \ln \frac{C_{\rm B}C_{\rm A0}}{C_{\rm B0}C_{\rm A}} = \ln \frac{C_{\rm B}}{MC_{\rm A}}$$
$$= C_{\rm A0}(M - 1)kt = (C_{\rm B0} - C_{\rm A0})kt, \qquad M \neq 1$$





# Bimolecular type 2nd order reaction with equal initial concentration

#### Caution 1. $A + B \rightarrow products$

For 2<sup>nd</sup> order reaction with equal initial concentration  $C_{\rm A0}=C_{\rm B0}$ ,

$$-r_{A} = C_{A0} \frac{dX_{A}}{dt} = k(C_{A0} - C_{A0}X_{A})(C_{B0} - C_{A0}X_{A})$$

$$= kC_{A0}^{2} (1 - X_{A})^{2}$$

$$= kC_{A}^{2}$$

Change of  $A=C_{A0}X_A$ Change of  $B=C_{B0}X_B$ From stoichiometry ,  $C_{A0}X_A=C_{B0}X_B$ 

## 2<sup>ND</sup> ORDER

#### **SAME EXPRESSON**

 $2A \rightarrow products$ 



$$-r_{\rm A} = -\frac{dC_{\rm A}}{dt} = kC_{\rm A}^2 = kC_{\rm A0}^2 (1 - X_{\rm A})^2$$

$$\frac{1}{C_{A}} - \frac{1}{C_{A0}} = \frac{1}{C_{A0}} \frac{X_{A}}{1 - X_{A}} = kt$$





### CONT...

**Caution 2.** The integrated expression depends on the stoichiometry as well as the kinetics. To illustrate, if the reaction

$$A + 2B \rightarrow products$$

is first order with respect to both A and B, hence second order overall, or

$$-r_{A} = -\frac{dC_{A}}{dt} = kC_{A}C_{B} = kC_{A0}^{2} (1 - X_{A})(M - 2X_{A})$$

$$\ln \frac{C_{\rm B}C_{\rm A0}}{C_{\rm B0}C_{\rm A}} = \ln \frac{M - 2X_{\rm A}}{M(1 - X_{\rm A})} = C_{\rm A0}(M - 2)kt, \qquad M \neq 2$$

$$\frac{1}{C_{A}} - \frac{1}{C_{A0}} = \frac{1}{C_{A0}} \frac{X_{A}}{1 - X_{A}} = 2kt, \qquad M = 2$$

These two cautions apply to all reaction types. Thus, special forms for the integrated expressions appear whenever reactants are used in stoichiometric ratios, or when the reaction is not elementary.

### CONT...

$$A + 2B \rightarrow R$$
 with  $-r_A = -\frac{dC_A}{dt} = kC_A C_B^2$ 

$$\frac{dX_{A}}{dt} = kC_{A0}^{2} (1 - X_{A})(M - 2X_{A})^{2}$$

where  $M = C_{B0}/C_{A0}$ . On integration this gives

$$\frac{(2C_{A0} - C_{B0})(C_{B0} - C_{B})}{C_{B0}C_{B}} + \ln \frac{C_{A0}C_{B}}{C_{A}C_{B0}} = (2C_{A0} - C_{B0})^{2}kt, \qquad M \neq 2$$

or

$$\frac{1}{C_{\rm A}^2} - \frac{1}{C_{\rm A0}^2} = 8kt, \qquad M = 2$$

### CONT...

Similarly, for the reaction

$$A + B \rightarrow R$$
 with  $-r_A = -\frac{dC_A}{dt} = kC_A C_B^2$ 

integration gives

$$\frac{(C_{A0} - C_{B0})(C_{B0} - C_{B})}{C_{B0}C_{B}} + \ln \frac{C_{A0}C_{B}}{C_{B0}C_{A}} = (C_{A0} - C_{B0})^{2}kt, \qquad M \neq 1$$

or

$$\frac{1}{C_{\rm A}^2} - \frac{1}{C_{\rm A0}^2} = 2kt, \qquad M = 1$$

# Homogeneous catalyzed reaction

**Homogeneous Catalyzed Reactions.** Suppose the reaction rate for a homogeneous catalyzed system is the sum of rates of both the uncatalyzed and catalyzed reactions,  $k_1$ 

$$A \xrightarrow{k_1} R$$

$$A + C \xrightarrow{k_2} R + C$$

with corresponding reaction rates

$$-\left(\frac{dC_{A}}{dt}\right)_{1} = k_{1}C_{A}$$
$$-\left(\frac{dC_{A}}{dt}\right)_{2} = k_{2}C_{A}C_{C}$$

This means that the reaction would proceed even without a catalyst present and that the rate of the catalyzed reaction is directly proportional to the catalyst concentration. The overall rate of disappearance of reactant A is then

$$-\frac{dC_{A}}{dt} = k_{1}C_{A} + k_{2}C_{A}C_{C} = (k_{1} + k_{2}C_{C})C_{A}$$

## Cont.

On integration, noting that the catalyst concentration remains unchanged, we

have

$$-\ln \frac{C_{A}}{C_{A0}} = -\ln (1 - X_{A}) = (k_1 + k_2 C_{C})t = k_{\text{observed}} t$$



**Figure 3.8** Rate constants for a homogeneous catalyzed reaction from a series of runs with different catalyst concentrations.

Making a series of runs with different catalyst concentrations allows us to find  $k_1$  and  $k_2$ . This is done by plotting the observed k value against the catalyst concentrations as shown in Fig. 3.8. The slope of such a plot is  $k_2$  and the intercept  $k_1$ .