Correzione Esame di Calcolo Numerico 17/01/2020

1. 1a) Risulta $g(5.555 \cdot 10^9) = 0$ ma $s \neq \sqrt{s^2 - 1}$.

E' un errore di *cancellazione numerica*, ossia si ha perdita di cifre significative che si verifica quando si opera una sottrazione tra due numeri di macchina "quasi uguali".

- 1b) Risulta $p(5.555\cdot10^9) = 9.000900090009000e-11$ ma, analiticamente, p(s) = g(s). L'espressione di p(s) porta ad un risultato più accurato perchè il fenomeno della cancellazione numerica è evitato eliminando l'operazione di sottrazione.
- 2. Risoluzione di sistemi lineari.
 - 2a) Sia definito il metodo iterativo lineare

$$\begin{cases} x^{(0)} \text{ assegnato} \\ x^{(k+1)} = Bx^{(k)} + q \quad k = 0, 1, \dots \end{cases}$$

con $B \in \mathbb{R}^{n \times n}$ e $x^{(k)}, q \in \mathbb{R}^n$ per la risoluzione di un sistema lineare Ax = b con $A \in \mathbb{R}^{n \times n}$ e $x, b \in \mathbb{R}^n$.

Condizione necessaria e sufficiente affinché tale metodo sia convergente è che il raggio spettrale della matrice di iterazione $\rho(B)$ verifichi la condizione

$$\rho(B) < 1.$$

Inoltre, definita una norma matriciale $\|\cdot\|$ indotta da una norma vettoriale, condizione sufficiente affinché tale metodo sia convergente è che $\|B\| < 1$ infatti se $\|B\| < 1$ allora si dimostra che $\rho(B) < 1$.

2b) Il metodo di Gauss-Seidel si basa sullo splitting della matrice A nella somma di tre matrici A=D+E+F tali che

$$E = \begin{pmatrix} 0 & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & a_{32} & 0 \end{pmatrix} \quad D = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix} \quad F = \begin{pmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

L'algoritmo si può rappresentare nella seguente forma matriciale:

$$\begin{cases} x^{(0)} \text{ assegnato} \\ x^{(k+1)} = B_{GS}x^{(k)} + q_{GS} & k = 0, 1, \dots \end{cases}$$

con $B_{GS} = -(E+D)^{-1}F$ e $q_{GS} = (E+D)^{-1}b$.

2c) Primo passo:

$$E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad F = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad (E+D)^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ -1/4 & 0 & 1/2 \end{pmatrix}$$

$$x^{(1)} = -\begin{pmatrix} 0 & 1 & 1/2 \\ 0 & 0 & 0 \\ 0 & -1/2 & -1/4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 9/2 \\ 2 \\ 5/4 \end{pmatrix}$$

$$= -\begin{pmatrix} 3/2 \\ 0 \\ -3/4 \end{pmatrix} + \begin{pmatrix} 9/2 \\ 2 \\ 5/4 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$

3. I comandi Matlab necessari per lo svolgimento dei punti 3a), 3b), 3d), 3e) e 3f) sono implementati nel file **Es3.m** che richiama le funzioni **secant.m** e **chord.m**. 3a)-3b) Il grafico risultante sarà

3c) Dati una funzione $f:(a,b)\to\mathbb{R}$ e un valore s_0 iniziale, il metodo delle corde genera una successione di approssimanti della radice α attraverso l'algoritmo

$$s_{k+1} = s_k - f(s_k) \frac{b-a}{f(b) - f(a)}$$
 $k = 0, 1, \dots$

Il metodo delle corde è un metodo localmente convergente.

3e) Tabella metodo delle corde

n. iterazione	ascissa intersezione	$\operatorname{residuo}$
1	5.761209517034276e-01	1.844467274153772e-03
2	5.774556207612326e-01	1.580237530838247e-04
3	5.773412736992951e-01	1.349326177524368e-05
4	5.773510375152395e-01	1.152488229072546e-06
5	5.773502035669227e-01	9.843405601728250e- 08
6	5.773502747944748e-01	8.407273544008831e-09
7	5.773502687109144e-01	7.180669392425898e-10
8	5.773502692305126e-01	6.133027419252812e-11

3f)Tabella metodo delle secanti

n. iterazione	ascissa intersezione	$\operatorname{residuo}$
1	7.236067977499789e-01	2.128689119735212e-01
2	5.484337629654054e-01	4.364972179514726e-02
3	5.782415555690950e- 01	1.336671682582669e-03
4	5.773558826085947e-01	8.420118220220374e-06
5	5.773502681066194e-01	1.624509637920824e-09
6	5.773502691896272e-01	1.998401444325282e-15

3g) Il metodo delle corde si arresta dopo 8 iterazioni e il valore finale differisce dall'approssimazione ottenuta con il comando **fzero** di circa $4.1 \cdot 10^{-11}$.

Il metodo delle secanti si arresta dopo 6 iterazioni e il valore finale differisce dall'approssimazione ottenuta con il comando **fzero** di circa $1.3 \cdot 10^{-15}$.

Il metodo delle secanti risulta convergere più velocemente rispetto al metodo delle corde.