Some details ASZ's calculation of Landau level Hall viscosity

D.B.

1. Berry curvature in space of flat metrics

We calculate the adiabatic curvature resulting from varying the LLL wavefunctions with respect to the torus geometry, as parametrized by flat metrics

$$g(V,\tau) = \frac{V}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}$$

Starting from the Landau level wavefunctions on the torus (ASZ 14), we can calculate the Berry curvature using (ASZ 6),

$$F_{ij} = \operatorname{Im} \sum_{\ell=1}^{N} \left\langle \partial_{i} \phi_{\ell} \middle| \partial_{j} \phi_{\ell} \right\rangle,$$

where ℓ indexes the single particle wavefunctions, and N is the number of particles. We will focus on obtaining this curvature for a particular index ℓ . We will find that F does not depend on ℓ , so the result for multiple particles filling N levels follows trivially.

The normalized lowest Landau level wavefunction for a given metric $g(V, \tau)$ is

$$\phi_{\ell}(\mathbf{x}) = \frac{(2\tau_2 B)^{1/4}}{\sqrt{V}} \sum_{n=-\infty}^{\infty} e^{i\pi\tau B(\widetilde{y}+n)^2} e^{-2i\pi \left(\varphi_2 + B/2\right)(\widetilde{y}+n\right)} e^{2i\pi (nB+\ell)x}$$

with $\tilde{y} = y + y_{\ell} = y + \ell/B + \varphi_1/B + 1/2$.

To compute components of F involving τ_1 , τ_2 , we note

$$\phi_{\ell}(\mathbf{x}) = \frac{(2\tau_2 B)^{1/4}}{V^{1/2}} \Phi_{\ell}(\mathbf{x})$$

with Φ holomorphic in τ . Therefore

$$\partial_{\tau_1}\phi_\ell(\mathbf{x}) = \frac{(2\tau_2 B)^{1/4}}{V^{1/2}} \partial_\tau \Phi_\ell(\mathbf{x})$$

and

$$\partial_{\tau_2}\phi_\ell(x,y) = \frac{(2\tau_2 B)^{1/4}}{V^{1/2}} \left[\frac{1}{4\tau_2} \Phi_\ell(\mathbf{x}) + i \partial_\tau \Phi_\ell(\mathbf{x}) \right].$$

Explicitly,

$$\partial_{\tau}\Phi_{\ell}(\mathbf{x}) = \sum_{n=-\infty}^{\infty} \left(i\pi B(\widetilde{y}+n)^2 \right) e^{i\pi\tau B(\widetilde{y}+n)^2} e^{-2i\pi \left(\varphi_2+B/2\right)(\widetilde{y}+n)} e^{2i\pi (nB+\ell)x}.$$

2 D.B.

For F_{V,τ_2}^{ℓ} ,

$$\begin{split} F_{V,\tau_2}^\ell &= -F_{\tau_2,V}^\ell = \operatorname{Im} \left[\left\langle \partial_V \phi_\ell \middle| \partial_{\tau_2} \phi_\ell \right\rangle \right] \\ &= \operatorname{Im} \left[\int\limits_Q \sqrt{\det g} \, \mathrm{d}x \, \mathrm{d}y \, \partial_V \phi_\ell^*(\mathbf{x}) \partial_{\tau_2} \phi_\ell(\mathbf{x}) \right] \\ &= \operatorname{Im} \left[-\frac{1}{2V} \int\limits_Q \mathrm{d}x \, \mathrm{d}y \, \phi_\ell^*(\mathbf{x}) \left(\frac{1}{4\tau_2} \phi_\ell(\mathbf{x}) + i \sqrt{2\tau_2 B} \, \partial_\tau \Phi_\ell(\mathbf{x}) \right) \right], \end{split}$$

where the integral is over $Q = [0, 1] \times [0, 1]$. The first term in the integral is clearly real, so

$$F_{V,\tau_2}^{\ell} = \frac{\sqrt{2\tau_2 B}}{2V} \operatorname{Im} \left[i \int_{Q} dx \, dy \, \Phi_{\ell}^{*}(\mathbf{x}) \partial_{\tau} \Phi_{\ell}(\mathbf{x}) \right]$$
$$\equiv \frac{\sqrt{2\tau_2 B}}{2V} \operatorname{Im} \left[iI_1 \right].$$

The integral I_1 is

$$\begin{split} I_1 &= \int\limits_{Q} \mathrm{d}x\,\mathrm{d}y\,\Phi_{\ell}^*(\mathbf{x})\partial_{\tau}\Phi_{\ell}(\mathbf{x}) = \int\limits_{Q} \mathrm{d}x\,\mathrm{d}y\,\left[\sum_{m=-\infty}^{\infty} e^{-i\pi\tau^*B(\widetilde{y}+m)^2}e^{2i\pi(\varphi_2+B/2)(\widetilde{y}+m)}e^{-2i\pi(mB+\ell)x}\right] \\ &\times \left[\sum_{n=-\infty}^{\infty} \left(i\pi B(\widetilde{y}+n)^2\right)e^{i\pi\tau B(\widetilde{y}+n)^2}e^{-2i\pi(\varphi_2+B/2)(\widetilde{y}+n)}e^{2i\pi(nB+\ell)x}\right] \\ &= \int\limits_{Q} \mathrm{d}x\,\mathrm{d}y\,\sum_{m,n} i\pi B(\widetilde{y}+n)^2e^{i\pi B\left(\tau(\widetilde{y}+n)^2-\tau^*(\widetilde{y}+m)^2\right)}e^{2i\pi(\varphi_2+B/2)(m-n)}e^{2i\pi Bx(n-m)} \end{split}$$

Performing the *x* integration, we have, since *B* is an integer

$$\int_{0}^{1} \mathrm{d}x \, e^{2i\pi Bx(n-m)} = \delta_{n,m},$$

and so

$$I_{1} = \int_{0}^{1} dy \sum_{n} i\pi B(\tilde{y} + n)^{2} e^{i\pi B(\tau - \tau^{*})(\tilde{y} + n)^{2}}$$

$$= i\pi B \sum_{n = -\infty}^{\infty} \int_{0}^{1} dy (\tilde{y} + n)^{2} e^{-2\pi B \tau_{2}(\tilde{y} + n)^{2}}$$

$$= i\pi B \sum_{n = -\infty}^{\infty} \int_{y_{\ell} + n}^{y_{\ell} + n + 1} du u^{2} e^{-2\pi B \tau_{2} u^{2}}$$

$$= i\pi B \int_{-\infty}^{\infty} du u^{2} e^{-2\pi B \tau_{2} u^{2}}$$

$$= i\pi B \left(\frac{1}{4\sqrt{2}\pi (B\tau_{2})^{3/2}}\right)$$

$$= \frac{i}{4\tau_{2}\sqrt{2\tau_{2}B}}$$

ASZ notes 3

Since I_1 is pure imaginary,

$$F_{V,\tau_2}^{\ell} = \frac{\sqrt{2\tau_2 B}}{2V} \text{Im}[iI_1] = 0.$$

For F_{V,τ_1}^{ℓ} ,

$$F_{V,\tau_1}^{\ell} = \operatorname{Im} \left[-\frac{\sqrt{2\tau_2 B}}{2V} \int_{Q} dx \, dy \, \Phi_{\ell}^*(\mathbf{x}) \, \partial_{\tau} \Phi_{\ell}(\mathbf{x}) \right]$$
$$= -\frac{\sqrt{2\tau_2 B}}{2V} \operatorname{Im} [I_1]$$
$$= -\frac{1}{8\tau_2 V} \neq 0 \, [???]$$

For F_{τ_1,τ_2}^{ℓ} ,

$$\begin{split} F_{\tau_{1},\tau_{2}}^{\ell} &= -F_{\tau_{2},\tau_{1}}^{\ell} = \operatorname{Im}\left[\left\langle\partial_{\tau_{1}}\phi_{\ell}|\partial_{\tau_{2}}\phi_{\ell}\right\rangle\right] \\ &= \operatorname{Im}\left[\int_{Q} \sqrt{\det g} \, \,\mathrm{d}x \, \,\mathrm{d}y \, \partial_{\tau_{1}}\phi_{\ell}^{*}(\mathbf{x})\partial_{\tau_{2}}\phi_{\ell}(\mathbf{x})\right] \\ &= \operatorname{Im}\left[\sqrt{2\tau_{2}B}\int_{Q} \, \,\mathrm{d}x \, \,\mathrm{d}y \, \partial_{\tau}\Phi_{\ell}^{*}(\mathbf{x}) \left(\frac{1}{4\tau_{2}}\Phi_{\ell}(\mathbf{x}) + i\partial_{\tau}\Phi_{\ell}(\mathbf{x})\right)\right] \\ &= \operatorname{Im}\left[\sqrt{2\tau_{2}B}\left(\frac{1}{4\tau_{2}}\int_{Q} \, \,\mathrm{d}x \, \,\mathrm{d}y \, \partial_{\tau}\Phi_{\ell}^{*}(\mathbf{x})\Phi_{\ell}(\mathbf{x}) + i\int_{Q} \, \,\mathrm{d}x \, \,\mathrm{d}y \, \partial_{\tau}\Phi_{\ell}^{*}(\mathbf{x})\partial_{\tau}\Phi_{\ell}(\mathbf{x})\right)\right] \\ &= \operatorname{Im}\left[\sqrt{2\tau_{2}B}\left(\frac{1}{4\tau_{2}}I_{1}^{*} + i\int_{Q} \, \,\mathrm{d}x \, \,\mathrm{d}y \, \partial_{\tau}\Phi_{\ell}^{*}(\mathbf{x})\partial_{\tau}\Phi_{\ell}(\mathbf{x})\right)\right] \\ &= \sqrt{2\tau_{2}B}\operatorname{Im}\left[\frac{1}{4\tau_{2}}I_{1}^{*} + iI_{2}\right] \end{split}$$

The integral I_2 is

$$\begin{split} I_2 &= \int\limits_{Q} \mathrm{d}x \, \mathrm{d}y \, \partial_{\tau} \Phi_{\ell}^*(\mathbf{x}) \partial_{\tau} \Phi_{\ell}(\mathbf{x}) \\ &= \int\limits_{Q} \mathrm{d}x \, \mathrm{d}y \, \sum_{m,n} \left(-i\pi B (\widetilde{y} + m)^2 \right) \left(i\pi B (\widetilde{y} + n)^2 \right) e^{i\pi B \left(\tau (\widetilde{y} + n)^2 - \tau^* (\widetilde{y} + m)^2 \right)} e^{2i\pi (\phi_2 + B/2)(m-n)} e^{2i\pi Bx(n-m)} \\ &= \pi^2 B^2 \sum_{n=-\infty}^{\infty} \int\limits_{0}^{1} \mathrm{d}y \, (\widetilde{y} + n)^4 e^{-2\pi B\tau_2(\widetilde{y} + n)^2} \\ &= \pi^2 B^2 \int\limits_{-\infty}^{\infty} \mathrm{d}u \, u^4 e^{-2\pi B\tau_2(u)^2} \\ &= \pi^2 B^2 \frac{3}{16\sqrt{2}\pi^2 (B\tau_2)^{5/2}} \\ &= \frac{1}{\sqrt{2\tau_2 B}} \frac{3}{16\tau_2^2}. \end{split}$$

4 D.B.

So that

$$\begin{split} F_{\tau_1,\tau_2} &= \sqrt{2\tau_2 B} \, \mathrm{Im} \, \left[\frac{1}{4\tau_2} \left(\frac{-i}{4\tau_2 \sqrt{2\tau_2 B}} \right) + i \frac{1}{\sqrt{2\tau_2 B}} \frac{3}{16\tau_2^2} \right] \\ &= \mathrm{Im} \, \left[i \left(-\frac{1}{16\tau_2} + \frac{3}{16\tau_2^2} \right) \right] \\ &= \frac{1}{8\tau_2^2} \end{split}$$

2. Variations of strain in terms of metric variations

We want to determine how u varies under infinitesimal variations in V and τ . Importantly, we note that we'd like to produce *independent* variations in the components of u, varying one component while keeping the others fixed. To vary u_{11} independently of u_{12} and u_{22} , we perform an overall scaling of the system (vary V) and then vary τ_2 while keeping the area of the system fixed. This method can similarly be used to vary u_{22} . Consider a system initially with $\tau_1 = 0$, but V and τ_2 left general. This yields the most general *independent* variations of u_{11} and u_{22} because variation of V or τ_2 at nonzero τ_1 will simultaneously vary u_{12} The coordinates at nonzero V and τ_2 are scaled from those on $Q = [0,1] \times [0,1]$ by

$$\Delta x = \sqrt{\frac{V}{\tau_2}}$$
$$\Delta y = \sqrt{V\tau_2}$$

If we now take $V \to V' = V + dV$, $\tau_2 \to \tau_2' = \tau_2 + d\tau_2$ to obtain $\Delta x'$ and $\Delta y'$ then

$$du_{11} = \frac{\Delta x' - \Delta x}{\Delta x} = \frac{\sqrt{\frac{V + dV}{\tau_2 + d\tau_2}} - \sqrt{\frac{V}{\tau_2}}}{\sqrt{\frac{V}{\tau_2}}} = \frac{1}{2} \left(\frac{dV}{V} - \frac{d\tau_2}{\tau_2} \right)$$

and

$$du_{22} = \frac{\Delta y' - \Delta y}{\Delta y} = \frac{\sqrt{(V + dV)(\tau_2 + d\tau_2)} - \sqrt{V\tau_2}}{\sqrt{V\tau_2}} = \frac{1}{2} \left(\frac{dV}{V} + \frac{d\tau_2}{\tau_2} \right)$$

[I'm sure this can be made rigorous, but this captures the general idea.]

To vary u_{12} , we vary $\tau_1 \rightarrow d\tau_1$ keeping V, τ_2 fixed. Then

$$du_{12} = \frac{1}{2} \frac{\Delta x' - \Delta x}{\Delta y} = \frac{1}{2} \frac{\sqrt{\frac{V}{\tau_2}} (1 + d\tau_1) - \sqrt{\frac{V}{\tau_2}}}{\sqrt{V\tau_2}} = \frac{1}{2} \frac{d\tau_1}{\tau_2}$$

We'd like to write the Berry curvature in terms of these strain differentials rather than dV and $d\tau$ so that we can pick out the Hall viscosity component. Inverting the above,

$$dV = V (du_{11} + du_{22})$$

$$d\tau_1 = 2\tau_2 du_{12}$$

$$d\tau_2 = \tau_2 (du_{22} - du_{11})$$

If we write the "viscosity part" of the Berry curvature as ASZ do,

$$\Omega = \frac{B}{4\tau_2^2} d\tau_1 \wedge d\tau_2 = \frac{B}{4\tau_2^2} \left[2\tau_2 du_{12} \right] \wedge \left[\tau_2 (du_{22} - du_{11}) \right] = \frac{B}{2} du_{12} \wedge (du_{22} - du_{11})$$