

សៀទគៅគណិត១ធ្យាក់ម៉ែត១ធ្យាលយ

SERVING SER

- * សទ្ទេមមេរៀលសិចដស្លឹះដោះស្រាយសំខាន់ៗ
- * លំខាត់ច្រើសតែអមដោយជំណោះស្រាយគ្នោះគ្នាយ
- * លំខាត់ច្រើសរើសសម្រាប់តិច្ចការផ្លុះ

សម្រាប់ថ្នាក់និ១២ ថ្នាក់១ន្យាសាស្ត្រពិតនិ១ថ្នាក់១ន្យាសាស្ត្រសខ្លម

इङ्गान्ति विद्या विद्या

ង្រប់តាមកម្ម១ជីសិក្សាគោលរបស់ក្រសួចអប់យុ១០ពព៌លក្សា

ខំពុគឆី០១

សង្ខេបមេវៀនទាក់ទងនឹងសិក្សាអថេរតាពនៃអនុគមន៍

សខ្ទេមរួមមន្តដេះទេ

១.អត្រាមម្រែមម្រួលមធ្យម

បើអថេរ x ប្រែប្រួលពី x_1 ទៅ x_2 ហើយអនុគមន៍ y=f(x) ប្រែប្រួលពី $y_1=f(x_1)$ ទៅ $y_2=f(x_2)$ នោះគេជាផលធៀប

 $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ ហៅថាបម្រែបម្រួលមធ្យមនៃ

អនុគមន៍ y=f(x) កាលណា x ប្រែប្រួលពី x_1 ទៅ x_2 ។

ព្រះស្នេខទិងទិន្តឋានគិត

ដេរីវេ $f'(x_0)$ នៃអនុគមន៍ y = f(x) នៅត្រង់ចំណុច $x = x_0$

កំណត់ដោយ
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 ។

បើគេតាង $x-x_0=h$ ឬ $x=x_0+h$ នោះគេបាន ៖

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \quad \forall$$

៣.ភាពមានដើមែ សិខ ភាពខាម

សន្មតថាអនុគមន៍ f(x)កំនត់លើចន្លោះ I ហើយ x_0 ជាចំនួនពិតនៅក្នុង ចន្លោះ I និង h ជាចំនួនពិតមិនសូន្យដែល x_0+h ជាបេស់ I ។

st ចំនួនដេរីវេច្វេងត្រង់ចំនួន x_0 នៃអនុគមន៍ f(x)កំនត់តាងដោយ ៖

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$
 \gamma

st ចំនួនដេរីវេស្តាំត្រង់ចំនួន x_0 នៃអនុគមន៍ f(x)កំនត់តាងដោយ ៖

$$f'_{+}(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$
 \gamma

st ដេរីវេនៃអនុគមន៍ f(x) ត្រង់ x_0 (បើមាន)កំណត់តាងដោយ st

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

ហើយតម្លៃ $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ មានកាលណា

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h}$$
 \tag{7}

៤.អនុឝមន៍នៅទេ

និយមន័យ៖

- * បើ f ជាអនុគមន៍មួយកំនត់លើចន្លោះ I និងមានដេរីវេត្រង់គ្រប់ ចំណុចនៅក្នុងចន្លោះ I នោះគេថាអនុគមន៍ f មានដេរីវេលើចន្លោះ I ។
- * អនុគមន៍ដែលគ្រប់ $x \in I$ ផ្សំបានចំនួនដេរីវេនៃ f ត្រង់ x ហៅថា អនុគមន៍ដេរីវេនៃ f ដែលគេកំនត់សរសេរ $f: x \mapsto f'(x)$ ។
- *ដេរីវេ f'(x) នៃអនុគមន៍ y=f(x) គឺជាអនុគមន៍កំណត់ដោយ

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

គេអាចប្រើនិមិត្តសញ្ញា $y'=f'(x)=\frac{dy}{dx}=\frac{df(x)}{dx}$ សម្រាប់តាង ដេរីវេនៃអនុគមន៍ y=f(x) ។

៥.រួមមន្តដេរីទេនៃអនុគមន៍សំខាន់ៗ

អនុគមន៍

ដើរីវេ

1.
$$y = k$$

$$y' = 0$$

2.
$$y = x^n$$

$$y' = n x^{n-1}$$

3.
$$y = \frac{1}{x}$$

$$y' = -\frac{1}{x^2}$$

4.
$$y = \sqrt{x}$$

5.
$$y = e^x$$

6.
$$y = a^x$$

7.
$$y = \ln x$$

8.
$$y = \sin x$$

9.
$$y = \cos x$$

10.
$$y = \tan x$$

11.
$$y = \cot x$$

12.
$$y = \arcsin x$$

13.
$$y = \arccos x$$

14.
$$y = \arctan x$$

$y' = \frac{1}{2\sqrt{x}}$

$$y' = e^x$$

$$y' = a^x \ln a$$

$$y' = \frac{1}{x}$$

$$y = \cos x$$

$$y' = -\sin x$$

$$y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

$$y' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$$

$$y' = \frac{1}{\sqrt{1 - x^2}}$$

$$y' = -\frac{1}{\sqrt{1-x^2}}$$

$$y' = \frac{1}{1 + x^2}$$

៦.រួមមន្តអ្គីរនៃលើទេអនុគមន៍

អនុគមន៍

$$1. y = u^n$$

$$2. \ y = \sqrt{u}$$

3.
$$y = u.v$$

ដេរីវេ

$$y' = n.u'.u^{n-1}$$

$$y' = \frac{u'}{2\sqrt{u}}$$

$$y' = u'v + v'u$$

4.
$$y = \frac{u}{v}$$

$$5. \ y = \ln u$$

6.
$$y = \sin u$$

7.
$$y = \cos u$$

8.
$$y = e^{u}$$

9.
$$y = \tan u$$

10.
$$y = \arcsin u$$

11.
$$y = \arccos u$$

12.
$$y = \arctan u$$

13.
$$y = u^V$$

$$y' = \frac{u'v - v'u}{v^2}$$

$$y' = \frac{u'}{u}$$

$$y' = u' \cdot \cos u$$

$$y' = -u'\sin u$$

$$y' = u'.e^u$$

$$y' = u'(1 + \tan^2 u)$$

$$y' = \frac{u'}{\sqrt{1 - u^2}}$$

$$y' = -\frac{u'}{\sqrt{1 - u^2}}$$

$$y' = \frac{u'}{1 + u^2}$$

$$y' = u^V \left(v' \ln u + v \frac{u'}{u} \right)$$

៧.ខេត្តខេត្តឧស្សាត្

ឧបមាថាគេមាន f(x) ជាអនុគមន៍មានដេរីវេទី n លើចន្លោះ I ។ គេកំណត់ដេរីវេបន្តបន្ទាប់នៃអនុគមន៍នេះដូចតទៅ៖

- st អនុគមន៍ដេរីវេទីមួយកំណត់តាងដោយ f'(x)
- st អនុគមន៍ដេរីវេទីពីរកំណត់តាងដោយ f''(x)
- st អនុគមន៍ដេរីវេទីបីកំណត់តាងដោយ f'''(x)
- st អនុគមន៍ដេរីវេទីបួនកំណត់តាងដោយ $f^{(4)}(x)$

st អនុគមន៍ដេរីវេទី n កំណត់តាងដោយ $f^{(n)}(x)$ ។

៤.សនីអាមេន្ទាត់ម៉ះអ្រាមតាខអនុគមន៍មួយ

- \Leftrightarrow មេគុណប្រាប់ទិសនៃបន្ទាត់ប៉ះនឹងក្រាបតាងអនុគមន៍ y=f(x) ត្រង់ចំណុច x_0 គឺជាដេរីវេនៃ f ត្រង់ x_0 គឺ $m=f'(x_0)$ ។
- \Leftrightarrow សមីការបន្ទាត់ប៉ះនឹងក្រាបតាងអនុគមន៍ $y=f\left(x
 ight)$ ត្រង់ចំណុច x_0 គឺ $(T):y-f(x_0)=f'(x_0)(x-x_0)$ ។

៩.និសដៅអថេរភាពនៃអនុគមន៍

ក)អនុគមន៍កើន

- $\Leftrightarrow f$ ជាអនុគមន៍កើនលើចន្លោះ Iលុះត្រាតែ f'(x) > 0 គ្រប់ $x \in I$
- \Leftrightarrow លក្ខណះ បើ $\alpha,\beta\in I$ ដែល $\alpha>\beta$ នាំឲ្យ $f(\alpha)< f(\beta)$ ។

ខ)អនុគមន៍ចុះ

- $\Leftrightarrow f$ ជាអនុគមន៍កើនលើចន្លោះ Iលុះត្រាតែ f'(x) < 0 គ្រប់ $x \in I$
- \Leftrightarrow លក្ខណៈ បើ $\alpha, \beta \in I$ ដែល $\alpha > \beta$ នាំឲ្យ $f(\alpha) > f(\beta)$ ។

១០.៩៖ខេធ្លើ៩ខែអនុឝមន៍

- \diamondsuit អនុគមន៍ f មានអតិបរមាធៀបត្រង់ $x=x_0$ កាលណា $egin{cases} f'(x_0)=0 \\ f''(x_0)<0 \end{cases}$
- $\Leftrightarrow f(x_0) = M$ ជាតម្លៃអតិបរមាធៀប ។
- \Rightarrow អនុគមន៍ f មានអប្បបរមាធៀបត្រង់ $x=x_0$ កាលណា $\begin{cases} f'(x_0)=0 \\ f''(x_0)>0 \end{cases}$
- $\Leftrightarrow f(x_0) = m$ ជាតម្លៃអប្បបរមាធៀប ។

99.ភាពផត ម៉ោខ និខ ចំណុចរមត់

ក)អនុគមន៍ផត-ប៉្យាង

- \diamondsuit បើគ្រប់ $x \in I$ គេមាន f''(x) < 0 នោះគេថា f ជាអនុគមន៍ ប៉ោង(Convex function)លើបន្លោះ I ។
- \Leftrightarrow បើគ្រប់ $x \in I$ គេមាន f''(x) < 0 នោះគេថា f ជាអនុគមន៍ ប៉ោង(Concave function)លើចន្លោះ I ។

ខ)ចំណុចរបត់នៃខ្សែកោង

- \Leftrightarrow គេថាចំណុច $I\left(x_{0},y_{0}\right)$ ជាចំណុចរបត់នៃខ្សែកោងតាងអនុគមន៍ y=f(x) កាលណាខ្សែកោងប៉ោង(ឬផត) នៅលើ $\left[a,x_{0}\right]$ ហើយផត(ឬប៉ោង)នៅលើ $\left[x_{0},b\right]$ ។
- \diamondsuit របៀបរកចំណុចរបត់របស់ខ្សែកោងតាង y=f(x) គេត្រូវ ៖
- \mathcal{F} គណនាដើរីវេទីពីរ y'' = f''(x)
- \mathcal{F} ដោះស្រាយសមីការ f'(x) = 0
- $m{\varphi}$ សិក្សាសញ្ញានៃ f''(x)
 - -បើ f"(x)ប្តូរសញ្ញានៅសងខាងនៃឬស x_0 នោះខ្សែកោង មានចំណុចរបត់ $I\left(x_0,f\left(x_0\right)\right)$ ។
 - -បើ f"(x)មិនប្តូរសញ្ញានោះខ្សែកោងគ្មានចំណុចរបត់ទេ ។

សខ្ទេមគខ្លឹះសំខាត់ៗតួខភារសិត្សាអនុគមន៍

១.សនីភាអេស៊ីនឌូឌនៃខ្សែនោខ

១.១.រេស៊ីនដូតឈរ

គេថាបន្ទាត់ x=a ជាអាស៊ីមតូតឈរនៃក្រាប (C): y=f(x) លុះត្រាតែ $\lim_{x\to a} f(x)=\infty$ ។

១.២.អាស៊ីមគូតនេត

គេថាបន្ទាត់ y=b ជាអាស៊ីមតូតឈរនៃក្រាប (C): y=f(x)

លុះត្រាំតែ
$$\lim_{x \to \infty} f(x) = b$$
 ឬ $\lim_{x \to \infty} [f(x) - b] = 0$ ។

១.៣.អាស៊ីមតូតច្រេត

គេថាបន្ទាត់ y = ax + b ជាអាស៊ីមតូតឈរនៃក្រាប (C): y = f(x)

លុះត្រាតែ
$$\lim_{x\to\infty} [f(x)-(ax+b)]=0$$
 ។

រូបមន្តកំណត់រកសមីការនៃអាស៊ីមតូតទ្រេត y=ax+b

នៃក្រាប
$$(C)$$
: $y = f(x)$ គឺ $a = \lim_{x \to \infty} \left\lceil \frac{f(x)}{x} \right\rceil$ និង $b = \lim_{x \to \infty} \left\lceil f(x) - ax \right\rceil$ ។

បើអនុគមន៍ f អាចសរសេរជាទម្រង់ f(x) = ax + b + g(x)

ដែល $\lim_{x\to\infty} \left[g(x)\right] = 0$ នោះបន្ទាត់មានសមីការ y = ax + b ហៅថា

អាស៊ីមតូតទ្រេតនៃខ្សែកោង (C): y = f(x) ។

២.១.នីតាំ១នៃខ្សែគោ១មៀបនៅទី១អាស៊ីមគុត ២.១.នីតាំ១នៃខ្សែគោ១មៀបតី១អាស៊ីមគុតនេក

ឧបមាថាគេមានខ្សែកោង(C): y=f(x)និងបន្ទាត់(d): y=b ជាអាស៊ីមតូត ដេកនៃក្រាប (C)។

ដើម្បីសិក្សាទីតាំងនៃខ្សែកោង(C)ធៀបទៅនឹងអាស៊ីមតូតដេករបស់វាគេត្រូវ៖

- ullet គណនាផលដក $f(x)-y_d=f(x)-b$ រួចសិក្សាសញ្ញារបស់វា។
- សន្និដ្ឋានលទ្ធផល៖
 - •បើ $f(x)-y_d<0$ នោះខ្សែកោង Cស្ថិតនៅខាងក្រោមបន្ទាត់(d)។
 - •បើ $f(x) y_d = 0$ នោះខ្សែកោង (C)ប្រសព្ធជាមួយបន្ទាត់(d)។
 - •បើ $f(x)-y_d>0$ នោះខ្សែកោង Cស្ថិតនៅខាងលើបន្ទាត់d។

២.២.នីតាំទនៃខ្សែអោទធៀមនឹអាស៊ីមតុតន្រត

ឧបមាថាគេមានខ្សែកោង (C): y = f(x) និងបន្ទាត់(d): y = ax + b ជាអាស៊ីមតូតទ្រេតនៃក្រាប (C)។

ដើម្បីសិក្សាទីតាំងនៃខ្សែកោង(C)ធៀបទៅនឹងអាស៊ីមតូតទ្រេតរបស់វាគេត្រូវ៖

- ullet គណនាផលដក $f(x) y_d = f(x) (ax + b)$ រួចសិក្សាសញ្ញារបស់វា។
- សន្និដ្ឋានលទ្ធផល៖
 - \cdot បើ $f(x)-y_d<0$ នោះខ្សែកោង Cស្ថិតនៅខាងក្រោមបន្ទាត់(d)។
 - •បើ $f(x) y_d = 0$ នោះខ្សែកោង (C)ប្រសព្ធជាមួយបន្ទាត់(d)។
 - •បើ $f(x)-y_d>0$ នោះខ្សែកោង Cស្ថិតនៅខាងលើបន្ទាត់(d)។

៣.ផ្ចិតឆ្លុះសិទអ័ត្សឆ្លុះសៃខ្សែអោទ

៣.១.ឆ្ចិនឆ្លុះ

ឧបមាថាគេមានខ្សែកោង (C): y=f(x) និងចំណុច I(a,b) ដើម្បីស្រាយបញ្ជាក់ថាចំណុច I(a,b)ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C)គេត្រូវស្រាយ ឲ្យឃើញថាចំពោះគ្រប់ $x_0 \in D_f$: $f(x_0) + f(2a - x_0) = 2b$ ។

ಚ್ಚುಚ್ಚುಚ್ಚು ಚಿತ್ರಾಣ್ಯ

ឧបមាថាគេមានខ្សែកោង (C): y = f(x) និងបន្ទាត់ (d): x = a ដើម្បីស្រាយបញ្ជាក់ថាបន្ទាត់ (d)ជាអ័ក្សឆ្លុះនៃខ្សែកោង(C)គេត្រូវស្រាយឲ្យ ឃើញថាចំពោះគ្រប់ $x_0 \in D_f$: $f(x_0) = f(2a - x_0)$ ។

៤.ចំណុចមេដូច្នេះសាច

ក)អនុគមន៍ផត-ប៉ោង

 \diamondsuit បើគ្រប់ $x \in I$ គេមាន f''(x) < 0 នោះគេថា f ជាអនុគមន៍ ប៉ោង(Convex function)លើចន្លោះ I ។

 \diamondsuit បើគ្រប់ $x \in I$ គេមាន f''(x) < 0 នោះគេថា f ជាអនុគមន៍ ប៉ោង(Concave function)លើចន្លោះ I ។

ខ)ចំណុចរបត់នៃខ្សែកោង

 \Leftrightarrow គេថាចំណុច $I\left(x_{0},y_{0}\right)$ ជាចំណុចរបត់នៃខ្សែកោងតាងអនុគមន៍ y=f(x) កាលណាខ្សែកោងប៉ោង(ឬផត) នៅលើ $\left[a,x_{0}\right]$ ហើយផត (ឬប៉ោង)នៅលើ $\left[x_{0},b\right]$ ។

- \diamondsuit របៀបរកចំណុចរបត់របស់ខ្សែកោងតាង y=f(x) គេត្រូវ ៖
- \mathcal{F} គណនាដេរីវេទីពីរ y'' = f''(x)
- \mathcal{F} ដោះស្រាយសមីការ f'(x) = 0
- \mathcal{F} សិក្សាសញ្ញានៃ f''(x)

-បើ f"(x) ប្តូរសញ្ញានៅសងខាងនៃឬស x_0 នោះខ្សែកោង មានចំណុចរបត់ $I\left(x_0\,,f\left(x_0\right)\right)$ ។

-បើ f''(x)មិនប្តូរសញ្ញានោះខ្សែកោងគ្មានចំណុចរបត់ទេ ។

៥.សនីអារ៉េសមស្គាត់ប៉ះ

៥.១.សន្ទឹការខត្តាឌុត្តៈនៅខ្លួចទៅមេរាទនៃចុត្តឋានគិត

ឧបមាថាគេមានខ្សែកោង (C): y = f(x)

ដើម្បីរកសមីការនៃបន្ទាត់(T)ដែលប៉ះទៅនឹងក្រាប(C)ត្រង់ចំណុចមានអាប់ ស៊ីស $x=x_0$ គេត្រូវ ៖

- ulletប្រើរូបមន្តសមីការបន្ទាត់ប៉ះ $(T): y = f'(x_0)(x x_0) + y_0$
- ulletគណនាដេរីវេ y' = f'(x) រួចទាញរក $f'(x_0)$
- ulletគណនាអរដោនេនៃចំណុចប៉ះគឺ $y_0 = f(x_0)$
- ulletយកតម្លៃ x_{0} , y_{0} និង $f'(x_{0})$ ជំនួសក្នុងរូបមន្តសមីការខាងលើ។

៥.២.សនីភារមឆ្លាត់គូសចេញពីចំណុចមួយម៉ះនៅខ្សែភោខ

ឧបមាថាគេមានខ្សែកោង (C): y = f(x)

ដើម្បីរកសមីការនៃបន្ទាត់(T)ដែលគូសចេញពីចំណុច $A(x_{\scriptscriptstyle A},y_{\scriptscriptstyle A})$ ហើយប៉ះ

ទៅនិងខ្សែកោង(C)គេត្រូវ៖

- ulletតាង $M_{_0}(x_{_0},y_{_0})$ ជាចំណុចប៉ះរវាងបន្ទាត់(T)និងខ្សែកោង(C)
- ulletសមីការបន្ទាត់ប៉ះអាចសរសេរតាមរូបមន្ត $(T): y = f'(x_0)(x-x_0) + y_0$
- ullet ដោយបន្ទាត់(T) ដែលគូសចេញពីចំណុច $A(x_A,y_A)$ នោះកូអរដោននៃ ចំណុច A ត្រូវផ្ទៀងផ្ទាត់នឹងសមីការនៃ(T) ។ ដោយយកកូអរដោននៃ ចំណុច A ជំនួសក្នុងសមីការនៃ(T) រួចដោះស្រាយរក x_0 បន្ទាប់មកយកតម្លៃ នៃ x_0 ដែលទើប រកឃើញទៅជំនួសក្នុងសមីការនៃ(T) នោះគេទទួលបាន សមីការនៃបន្ទាត់ប៉ះដែលត្រូវកេ។

៥.៣.សន្ទីអារមស្លាត់ម៉ះនៅខ្សែអោទលើយស្រមស៊ិចមស្លាត់មួយ

ឧបមាថាគេមានខ្សែកោង (C): y = f(x)

ដើម្បីរកសមីការនៃបន្ទាត់(T)ប៉ះទៅនិងខ្សែកោង(C)ហើយស្របទៅនឹង បន្ទាត់(d)មានសមីការ: y=ax+b គេត្រូវ៖

- ulletតាង $M_0ig(x_0,y_0ig)$ ជាចំណុចប៉ះរវាងបន្ទាត់ig(Tig)និងខ្សែកោងig(Cig)
- ulletសមីការបន្ទាត់ប៉ះអាចសរសេរតាមរូបមន្ត (T) : $y=f'(x_0)(x-x_0)+y_0$
- ullet ដោយបន្ទាត់(T)//(d) : y=ax+b នោះគេបាន $f'(x_0)=a$ y ប្រដោះស្រាយរក x_0 បន្ទាប់មកយកតម្លៃនៃ x_0 ដែលបានរកឃើញទៅជំនួស x_0 ដែលមីការនៃ(T) នោះគេទទួលបានសមីការនៃបន្ទាត់ប៉ះដែលត្រូវរក។

៥.៤.សមីអារមស្លាត់ម៉ះនៅខ្សែអោទសើយតែខសិចមស្លាត់មួយ ឧបមាហិគេមានខ្សែកោង (C): y = f(x) ដើម្បីរកសមីការនៃបន្ទាត់(T)ប៉ះទៅនិងខ្សែកោង(C)ហើយស្របទៅនឹង បន្ទាត់(d)មានសមីការ: y=ax+b គេត្រូវ៖

- ulletតាង $M_0ig(x_0,y_0ig)$ ជាចំណុចប៉ះរវាងបន្ទាត់(T)និងខ្សែកោង(C)
- ulletសមីការបន្ទាត់ប៉ះអាចសរសេរតាមរូបមន្ត $(T): y = f'(x_0)(x-x_0) + y_0$
- ullet ដោយបន្ទាត់ $(T) \perp (d) \colon y = ax + b$ នោះគេបាន $a \times f'(x_0) = -1$ រួចដោះស្រាយរក x_0 បន្ទាប់មកយកតម្លៃនៃ x_0 ដែលបានរកឃើញទៅជំនួស ក្នុងសមីការនៃ(T)នោះគេទទួលបានសមីការនៃបន្ទាត់ប៉ះដែលត្រូវរក។

៥.៥.សនីភារមស្លាត់ម៉ះរួមនៅស៊ិខខ្សែកោខពីរ

ឧបមាថាគេមានខ្សែកោងពីរ (C_f) : y=f(x)និង (C_g) : y=g(x) ដើម្បីរកសមីការនៃបន្ទាត់(T)ប៉ះរួមទៅនិងខ្សែកោង (C_f) និង (C_g) គេត្រូវ៖

- ulletតាង(T): y = ax + b ជាសមីការនៃបន្ទាត់ប៉ះរួមទៅនិងខ្សែកោង (C_f) និង (C_g) ។
- ulletសរសេរសមីការអាប់ស៊ីសនៃចំណុចប្រសព្វរវាង(T)ជាមួយនឹង $\left(C_{_{\!f}}
 ight)$ និង $\left(C_{_{\!g}}
 ight)$
- ◆កំណត់លក្ខខណ្ឌឲ្យសមីការអាប់ស៊ីសទាំងនោះមានឬសឌុបរួចដោះស្រាយ រកលេខមេគុណ a និង b ។

៥.៦.សនីអារមស្លាត់ម៉ះរួមនៅសិចខ្សែអោចពីរគ្រច់ចំណុចមួយ

ឧបមាថាគេមានខ្សែកោងពីរ (C_f) : y=f(x) និង (C_g) : y=g(x) ខ្សែកោង (C_f) និង (C_g) មានបន្ទាត់ប៉ះរួម(T) ត្រង់ $M_0(x_0,y_0)$ លុះត្រាតែ៖ $f(x_0)=g(x_0)=y_0$ និង $f'(x_0)=g'(x_0)=a$ ។

សមីការបន្ទាត់ប៉ះរួមនេះគឺ $(T): y = a(x - x_0) + y_0$ ។

៥.៧.លង្គខណ្ឌមន្ទាត់និចខ្សែតោចម៉ះគ្នាគ្រច់ចំណុមមួយ

ឧបមាថាគេមានខ្សែកោង (C): y=f(x)និងបន្ទាត់ (d): $y=\alpha x+\beta$ ខ្សែកោង(C)និងបន្ទាត់ (d)ប៉ះគ្នាត្រង់ចំណុច $M_0(x_0,y_0)$ លុះត្រាតែ៖ $\int \!\! f'(x_0) = \alpha$

$\int f(x_0) = \alpha x_0 + \beta = y_0$ ဉ်းဆူးမေးဆေးဆေးဆိုသူအပြားမောက္ခ

៦.១.គូអេដោខេទំណុមប្រសព្វទោខខ្សែគោខខាមួយអ័គ្សគូអេ (xoy) :

ឧបមាថាគេមានខ្សែកោង (C) : y = f(x)

- \bullet បើ $(C) \cap (x'ox)$: នោះ y = f(x) = 0
- \bullet បើ $(C) \cap (y'oy)$: នោះ x = 0 និង y = f(0)

៦.២.គូអះសេះខេតិខេចំណុខម្រសព្វះខាខខ្សែអាខនិខមន្ទាគ់ ឧបមាថាគេមានខ្សែកោង (C): y = f(x)និងបន្ទាត់ (d): $y = \alpha x + \beta$ ដើម្បីរកកូអរដោនេនៃចំណុចប្រសព្វរវាង(C)និង(d)គេត្រូវ៖

- ulletសរសេរសមីការអាប់ស៊ីសដោយផ្ទឹមតម្លៃ y គឺ $f(x) = \alpha x + \beta$
- ulletដោះស្រាយសមីការខាងលើរកអាប់ស៊ីសxរួចទាញរកអរដោនេ $y=\alpha x+eta$

៦.៣.អូអរដោលខែចំណុចប្រសព្វទោខខ្សែអោខពីរ

ឧបមាថាគេមានខ្សែកោងពីរ (C_f) : y = f(x)និង (C_g) : y = g(x)

ដើម្បីរកកូអរដោនេនៃចំណុចប្រសព្វរវាង $(C_{\scriptscriptstyle f})$ និង $(C_{\scriptscriptstyle g})$ គេត្រូវ៖

- ulletសរសេរសមីការអាប់ស៊ីសដោយផ្ចឹមតម្លៃ y គឺ f(x) = g(x)
- ulletដោះស្រាយសមីការខាងលើរកអាប់ស៊ីសxរួចទាញរកអរដោនេ y=f(x) ឬ y=g(x)។

៧.សំឈុំចំណុចអូចមួច

៧.១.ឆិយមន័យ

ឧបមាថាគេមានចំណុច Mមានកូអរដោន x=u(m),y=v(m)ដែល $m\in\mathfrak{R}$ ជាប៉ារ៉ាម៉ែត្រមួយ ។ ទំនាក់ទំនងរវាងកូអរដោន x និង y ដែលមិនអាស្រ័យនឹងm គឺ $\varphi(x,y)=0$ ហៅថាសមីការនៃសំណុំនៃ M ក្នុងប្លង់។

៧.២.សំស៊ាំចំណុចខាមឆ្លាត់ខេត

ឧបមាថាគេមានចំណុច Mមានកូអរដោនេ $x=u(m),y=\beta$ ដែល $m\in\Re$ ជាប៉ារ៉ាម៉ែត្រមួយ និង β ជាចំនួនពិតថេរ។ដោយគ្រប់m គេមាន $y=\beta$ ថែរ នោះសំណុំនៃចំណុច M គឺជាបន្ទាត់ដេក $y=\beta$ ។

៧.៣.សំឈុំចំណុចខាមឆ្លាត់ឈ៖

ឧបមាថាគេមានចំណុច Mមានកូអរដោន $x=\alpha,y=v(m)$ ដែល $m\in\Re$ ជាប៉ារ៉ាម៉ែត្រមួយនិង α ជាចំនួនពិតថេរ។ ដោយគ្រប់m គេមាន $x=\alpha$ ថេរនោះសំណុំនៃចំណុច M គឺជាបន្ទាត់ឈរ ដែលមានសមីការ $x=\alpha$ ។

៧.៤.សំឈុំចំណុចខាមឆ្លាត់ទ្រេត

ឧបមាថាគេមានចំណុច Mមានកូអរដោនេ x=u(m),y=eta ដែល $m\in\Re$ ដោយបំបាត់ប៉ារ៉ាម៉ែត្រmបើគេបានទំនាក់ទំនង ៖

$$y = \alpha x + \beta, \alpha \neq 0, \alpha, \beta \in \Re$$

នោះគេថាសំណុំចំណុចMគឺជាបន្ទាត់ទ្រេត(d): $y = \alpha x + \beta$ ។

៧.៥.សំណុំចំណុចខារទូខ

បើកូអរដោនេនៃចំណុចM(x,y)ផ្ទៀងផ្ទាត់សមីការ ៖

$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

នោះគេថាសំណុំនៃចំណុចMគឺជារង្វង់ផ្ចិតI(lpha,eta)និងកាំr។

៧.៦.សំឈុំចំឈុចខាចារាមួយ

បើកូអរដោនេនៃចំណុចM(x,y)ផ្ទៀងផ្ទាត់សមីការ $\left(x-h
ight)^2=4p\left(y-k
ight)$

នោះគេថាសំណុំនៃចំណុច $oldsymbol{M}$ គឺជាប៉ារ៉ាបូល ។

៧.៧.សំឈុំចំណុចខាអេលីថ

បើកូអរដោនេនៃចំណុចM(x,y)ផ្ទៀងផ្ទាត់សមីការ ៖

$$\frac{\left(x-h\right)^2}{lpha^2} + \frac{\left(y-k\right)^2}{eta^2} = 1$$
 នោះគេថាសំណុំនៃចំណុច M គឺជាអេលីបមួយ។

៧.៨.សំឈុំចំណុចខាអ៊ីពេម្មឈ

បើកូអរដោនេនៃចំណុចM(x,y)ផ្ទៀងផ្ទាត់សមីការ៖

$$\frac{\left(x-h\right)^2}{lpha^2} - \frac{\left(y-k\right)^2}{eta^2} = \pm 1$$
 នោះគេថាសំណុំនៃចំណុច M គឺជាអ៊ីពែបូល។

៤.អនុគមន៍គើន អនុគមន៍ចុះ

៨.១.អនុគមន៍គើន

- $\Leftrightarrow f$ ជាអនុគមន៍កើនលើចន្លោះ Iលុះត្រាតែ f'(x) > 0 គ្រប់ $x \in I$
- \Leftrightarrow លក្ខណៈ បើ α , $\beta \in I$ ដែល $\alpha > \beta$ នាំឲ្យ $f(\alpha) < f(\beta)$ ។

ಚಿತ್ರ ಚಿತ್ರ

- $\Leftrightarrow f$ ជាអនុគមន៍កើនលើចន្លោះ Iលុះត្រាតែ f'(x) < 0 គ្រប់ $x \in I$
 - \diamondsuit លក្ខណ: បើ $\alpha, \beta \in I$ ដែល $\alpha > \beta$ នាំឲ្យ $f(\alpha) > f(\beta)$ ។

៩.អឌ្មតរខាញ់ត្រូចអសិតអសិត

៩.១.អគិចមេខៀថ

- \Rightarrow អនុគមន៍ f មានអតិបរមាធៀបត្រង់ $x=x_0$ កាលណា $egin{cases} f'(x_0)=0 \\ f''(x_0)<0 \end{cases}$
- $\Leftrightarrow f(x_0) = M$ ជាតម្លៃអតិបរមាធៀប ។

දෙකු සෙවූ පෑණ සම්ප

- \Rightarrow អនុគមន៍ f មានអប្បបរមាធៀបត្រង់ $x=x_0$ កាលណា $egin{cases} f'(x_0)=0 \\ f''(x_0)>0 \end{cases}$
- $\Rightarrow f(x_0) = m$ ជាតម្លៃអប្បបរមាធៀប ។

90.សិត្សាអថេរតាពនៃអនុគមន៍មួយនិទតារាខអថេរតាព

90.9.សិត្បានិសដៅអថេរភាពនៃអនុគមន៍មួយ

 $\mathbf{v} = \mathbf{v} \cdot \mathbf{v}$

ដើម្បីសិក្សាទិសដៅអថេរភាពនៃអនុគមន៍នេះគេត្រូវ៖

- ∗រកដែនកំណត់នៃអនុគមន៍
- ◆គណនាដើរីវេ y' = f'(x)
- \bullet គូសតារាងសញ្ញានៃ y' = f'(x)
- បញ្ជាក់ភាពកើនចុះនៃអនុគមន៍

១០.២.តារាទអទេអាព

ឧបមាថាគេមានអនុគមន៍ y = f(x)

ដើម្បីគូសអថេរភាពនៃអនុគមន៍នេះគេត្រូវ៖

- +រកដែនកំណត់នៃអនុគមន៍
- ◆គណនាដើរីវេ y' = f'(x)
- \bullet គូសតារាងសញ្ញានៃ y' = f'(x)
- ◆បញ្ជាក់តម្លៃបរមាធៀប(បើមាន)
- វកលីមីតចុងដែនកំណត់
- ◆គូសតារាងអថេរភាព

១១.មៀបសិត្សាអថេរភាពសិចសច់ខ្សែភោខភាខអលុគមស៍ផូនៅ

- \Leftrightarrow *កោដែនកំណត់នៃអនុគមន៍* ៖ សំណុំតម្លៃនៃ x ដែលអនុគមន៍ y = f(x) មានន័យ។
 - - ទៅក្ដើរីវេ y' = f'(x)
 - \mathcal{F} សិក្សាសញ្ញាដេរីវេy' = f'(x)

- 🕶 បញ្ជាក់ចំណុចបរមាធៀប (បើមាន)
- *ា*គណនាលីមីត
- ្**កំណត់សមីការអាស៊ីមតូត**
- **្**គូសតារាងអបើរកាព

- ្នាកអក្ស័ឆ្លុះ-ផ្ចិតឆ្លុះ-ចំណុចរបត់ (បើមាន)
- ☞រកកូអរដោនេចំណុចប្រសព្វជាមួយអក្ស័កូអរដោនេ
- $\mathscr F$ តារាងតម្លៃលេខត្រូវគ្នារវាង x និង y រួចគូសក្រាបតំណាងអនុគមន៍ ក្នុងតម្រុយអរតូនរម៉ាល់ $(o, \overset{
 ightarrow}{i}, \overset{
 ightarrow}{j})$ មួយ ។

www.mathtoday.wordpress.com

ි එෆුඝබ් 0 හ

កម្រងលំហាត់សិក្សាអនុគមន៍សនិទាននិងសំណង់ក្រាហ្វ

សំមាន់នី0១

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ពិត $x \neq 1$ ដោយ ៖

$$f(x) = \frac{x^2 - 3x + 6}{x - 1}$$
 តាង (C) ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

- ១.ចូរកំណត់បីចំនួនពិត m,n និង p ដើម្បីឲ្យបាន $f(x)=mx+n+\frac{p}{x-1}$ គ្រប់ $x\neq 1$ ។ គណនា $\lim_{x\to\infty}f(x)$ និង $\lim_{x\to 1}f(x)$ រួចទាញបញ្ជាក់សមីការនៃ អាស៊ីមតូតឈរនៃក្រាប(C) ។
- ២.ចូរស្រាយបញ្ជាក់ថាបន្ទាត់(d): y=x-2 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C) ។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 1$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = \frac{x^2 2x 3}{(x 1)^2}$ ។ គូសតារាងអឋេរភាពនៃអនុគមន៍ f ។
- ៤.កំណត់សមីការបន្ទាត់(T)ដែលប៉ះទៅនឹងខ្សែកោង(C)ត្រង់ចំណុចM មាន អាប់ស៊ីស x=2 ។
- ៥.តាងI ជាប្រសព្វរវាងអាស៊ីមតូតឈរនិងអាស៊ីមតូតទ្រេត ហើយ A និងB ជាចំណុចប្រសព្វរវាងបន្ទាត់(T)ជាមួយនឹងអាស៊ីមតូតឈរនិងអាស៊ីមតូតទ្រេត

រៀងគ្នារបស់ខ្សែកោង(C) ។ គណនាកូអរដោនេនៃចំណុច I,A និង B រួច ស្រាយបញ្ជាក់ថា I ជាផ្ចិតឆ្លុះនៃខ្សែកោង ។

៦.គណនា f(-2), f(0) និង f(5) រួចសង់ខ្សែកោង(C)និងបន្ទាត់(d)និង(T) ។ គណនាផ្ទៃក្រឡាត្រីកោណ IAB និងផ្ទៃក្រឡាផ្នែកប្លង់ខ័ណ្ឌដោយខ្សែកោង(C) ជាមួយបន្ទាត់(d)និងបន្ទាត់ឈរពីរ x=2 និង x=5 រួចប្រៀបធៀបផ្ទៃក្រឡាទាំងពីរនេះ ។ គេឲ្យ $\ln 2 \approx 0.69315$ ។

២០និត្តពេះខ្មែ

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ពិត $x \neq 2$ ដោយ ៖

$$f(x) = \frac{x^2 - 5x + 10}{x - 2}$$
 តាង (C) ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

- ១.ចូរកំណត់បីចំនួនពិត m,n និង p ដើម្បីឲ្យបាន $f(x) = mx + n + \frac{p}{x-2}$ គ្រប់ $x \neq 2$ ។ គណនា $\lim_{x \to \infty} f(x)$ និង $\lim_{x \to 2} f(x)$ រួចទាញបញ្ជាក់សមីការនៃ អាស៊ីមតូតឈរនៃក្រាប(C) ។
- ២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់(d): y=x-3 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោ(C) ។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 1$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = \frac{x^2 4x}{(x-2)^2}$ ។ គូសតារាងអឋេរភាពនៃអនុគមន៍ f ។
- ៤.កំណត់សមីការបន្ទាត់ (T_1) និង (T_2) ដែលប៉ះទៅនឹងខ្សែកោង(C)ត្រង់ចំណុច M មានអាប់ស៊ីស x=1 និង N មានអាប់ស៊ីស x=3 រៀងគ្នា។

៥.បន្ទាត់ (T_1) កាត់អាស៊ីមតូតឈរនិងអាស៊ីមតូតទ្រេតនៃ(C)ត្រង់ AនិងBហើយ បន្ទាត់ (T_2) កាត់អាស៊ីមតូតឈរនិងអាស៊ីមតូតទ្រេតនៃ(C)ត្រង់ CនិងD។ ចូរគណនាកូអរដោនេនៃចំណុច A,B,C,D រួចស្រាយថាចតុកោណABCD ជាប្រលេឡូក្រាម ។ គណនាផ្ទៃក្រឡានៃប្រលេឡូក្រាម ABCD ។ ៦.យក I ជាផ្ទិតនៃប្រលេឡូក្រាម ABCD ។ ចូរស្រាយថា I ជាផ្ទិតនូះនៃ (C) ។ ៧.គណនា f(-2) និង f(6) រួចសង់ខ្សែកោង(C)និងបន្ទាត់ $(d),(T_1),(T_2)$ ។

<u> លំមោត់ឆី០៣</u>

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ពិត $x \neq 3$ ដោយ $f(x) = \frac{x^2 - 5x + 10}{x - 3}$ តាង (C)ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

- ១.ចូរកំណត់បីចំនួនពិត m,n និង p ដើម្បីឲ្យបាន $f(x)=mx+n+\frac{p}{x-3}$ គ្រប់ $x \neq 3$ ។ គណនា $\lim_{x \to \infty} f(x)$ និង $\lim_{x \to 3} f(x)$ រួចទាញបញ្ជាក់សមីការនៃ អាស៊ីមតូតឈរនៃក្រាប(C) ។
- ២.ចូរស្រាយបញ្ជាក់ថាបន្ទាត់(d): y=x-2 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោ(C) ។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 3$ ចូរស្រាយបញ្ហាក់ថា $f'(x) = \frac{x^2 6x + 5}{(x 3)^2}$ ។ គូសតារាងអបើរភាពនៃអនុគមន៍ f ។

៤.គេឲ្យគ្រួសារបន្ទាត់ (Δ) : y=mx+m+5 ដែល m ជាប៉ារ៉ាម៉ែត្រ។

ក)កំណត់កូអរដោននៃចំណុចនឹង A របស់គ្រួសារនៃបន្ទាត់ (Δ) ។ 2)បង្ហាញថាមានបន្ទាត់ពីរ (Δ') និង (Δ'') នៃគ្រួសារបន្ទាត់ (Δ) ដែលប៉ះទៅ នឹងខ្សែកោង(C) ។ សរសេរសមីការ (Δ') និង (Δ'') រួចគណនាកូអរដោននៃ ចំណុចប៉ះ M និង N រវាងបន្ទាត់ (Δ') និង (Δ'') ជាមួយខ្សែកោង(C) ។ (គេដឹងថា (Δ'') ជាបន្ទាត់ (Δ') និង (Δ'') ជាមួយខ្សែកោង(C) ។ (គេដឹងថា (Δ'') ជាបន្ទាត់ (Δ'') ប្រសព្វបន្ទាត់(A) ត្រង់ចំណុច (A'') និង (A'') ប្រសព្វបន្ទាត់(A) ត្រង់ចំណុច (A'') និង (A'') ប្រសព្វបន្ទាត់(A'') ត្រង់ចំណុច (A'') និង (A'') ប្រសព្វបន្ទាត់(A'') គណនាកូអរដោននៃចំណុច (A'') និង (A'') គណនាកូអរដោននៃចំណុច (A'') លើ (A'') គណនាកូអរដោននៃចំណុច (A'') ជាថ្មីតេច្ចេះនៃខ្សែកោង (A'') ក្នុងតម្រុយតែមួយ ។ គណនាផ្ទៃក្រឡាជ្ជកប្លង់ខ័ណ្ឌដោយខ្សែកោង(A'') ជាមួយបន្ទាត់ប៉ះ (A'') និង បន្ទាត់ឈរពីរ (A'') និង (A''') ជាមួយបន្ទាត់ប៉ះ (A'') និង បន្ទាត់ឈរពីរ (A'') និង (A''') ជាមួយបន្ទាត់ប៉ះ (A''') និង បន្ទាត់ឈរពីរ (A''') និង (A'''') ជាមួយបន្ទាត់ប៉ះ (A''') និង បន្ទាត់ឈរពីរ (A'''') និង (A''''') និង (A''''') និង បន្ទាត់ឈរពីរ (A'''') និង (A''''') និង (A'''') និង (A'''') និង (A'''') និង (A'''') និង (A'''') និង (A''''') និង (A''''') និង (A'''') និង (A''') និង

សំមាន់នី០៤

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ពិត $x \neq \frac{1}{2}$ ដោយ $f(x) = \frac{2x^2 - 7x + 5}{2x - 1}$ តាង (C)ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

១.ចូរកំណត់បីចំនួនពិត m,n និង p ដើម្បីឲ្យបាន $f(x)=mx+n+\frac{p}{2x-1}$ គ្រប់ $x\neq \frac{1}{2}$ ។ គណនា $\lim_{x\to\infty}f(x)$ និង $\lim_{x\to \frac{1}{2}}f(x)$ រួចទាញបញ្ជាក់សមីការនៃ

អាស៊ីមតូតឈរនៃក្រាប(C) ។

- ២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់(d): y=x-3 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C) ។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{1}{2}$ ចូរស្រាយបញ្ហាក់ថា $f'(x) = \frac{4x^2 4x 3}{\left(2x 1\right)^2}$ ។ គូសតារាងអថេរភាពនៃអនុគមន៍ f ។
- ៤.ចូរសរសេរសមីការបន្ទាត់ (T_1) និង (T_2) ដែលប៉ះនឹងខ្សែកោង(C) រៀងគ្នាត្រង់ ចំណុចM និង N មានអាប់ស៊ីស x=0 និង x=1 រួចស្រាយបញ្ជាក់ថា បន្ទាត់ (T_1) និង (T_2) ស្របគ្នា ។
- ៥.តាងA និងB ជាចំណុចប្រសព្វរវាងបន្ទាត់(d) ជាមួយបន្ទាត់ (T_1) និង (T_2) រៀងគ្នា ។ យក I ជាចំណុចកណ្ដាលនៃអង្កត់[AB] ។ π .គណនាកូអរដោនេនៃចំណុចA,B និង I រួចស្រាយថាចតុកោណAMBN ជាប្រលេឡូក្រាម ។
 - ខ.ចូរស្រាយបញ្ហាក់ថាI ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C) ។
- ៦.គណនាf(-1) និងf(2) រួចសង់ខ្សែកោង(C)និងបន្ទាត់(d), $(T_{\scriptscriptstyle 1})$ និង $(T_{\scriptscriptstyle 2})$ ។

សំមាន់ខ្លួច

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ពិត $x \neq \frac{3}{2}$ ដោយ ៖

 $f(x) = \frac{2x^2 - 11x + 14}{2x - 3}$ តាង(C)ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

- ១.ចូរកំណត់បីចំនួនពិត m,n និង p ដើម្បីឲ្យបាន $f(x)=mx+n+\frac{p}{2x-3}$ គ្រប់ $x\neq \frac{3}{2}$ ។ គណនា $\lim_{x\to\infty}f(x)$ និង $\lim_{x\to \frac{3}{2}}f(x)$ រួចទាញបញ្ជាក់សមីការនៃ អាស៊ីមតូតឈរនៃក្រាប(C) ។
- ២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់(d): y=x-4 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបវៀងបន្ទាត់(d)និងខ្សែកោង(C) ។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{3}{2}$ ចូរស្រាយបញ្ហាក់ថា $f'(x) = \frac{(2x-1)(2x-5)}{(2x-3)^2}$ ។ គូសតារាងអថេរភាពនៃអនុគមន៍ f ។
- ៤.ចូរស្រាយបញ្ហាក់ថាចំណុច $I\!\left(rac{3}{2}, -rac{5}{2}
 ight)$ ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C) ។
- ៥.តាមចំណុច I គេគូសបន្ទាត់ (Δ) មានមេគុណប្រាប់ទិសa=5 ។ f) i ក) i ក) i ក) j ក) i ក) ក)
 - ខ)សរសេរសមីការបន្ទាត់ $\left(T_{_{1}}
 ight)$ និង $\left(T_{_{2}}
 ight)$ ប៉ះនឹងក្រាប $\left(C
 ight)$ ត្រង់A និង B ។

ទាញបញ្ជាក់ថាបន្ទាត់ $(T_{\scriptscriptstyle 1})$ និង $(T_{\scriptscriptstyle 2})$ ស្របគ្នា។

- ៦.ចូរសង់ខ្សែកោង(C)និងបន្ទាត់(d) , (Δ) , (T_1) និង (T_2) ក្នុងតម្រុយរួមគ្នា ។
- ៧.ដោយប្រើខ្សែកោង(C) ចូរសិក្សាអត្ថិភាពនៃឬសរបស់សមីការ ៖

$$\frac{2x^2-11x+14}{2x-3} = -3x+m$$
 ដែល m ជាប៉ារ៉ាម៉ែត្រ ។

60និត្តពេល

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{4}{3}$ ដោយ ៖

$$f(x) = \frac{3x^2 - 4x + 3}{3x - 4}$$
 តាង (C) ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

- ១.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{4}{3}$ ចូរស្រាយបញ្ជាក់ថា $f(x) = x + \frac{3}{3x 4}$ ។
 - គណនា $\lim_{x \to \infty} f(x)$ និង $\lim_{x \to \frac{4}{3}} f(x)$ រួចទាញបញ្ជាក់សមីការនៃអាស៊ីមតូតឈរ

នៃខ្សែកោង (C) ។

- ២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់ (d): y=x ជាសមីការអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x\to\infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C)
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{4}{3}$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = \frac{(3x-1)(3x-7)}{(3x-4)^2}$ ។ គូសតារាងអថេរភាពនៃអនុគមន៍ f ។
- ៤.ចូរស្រាយបញ្ជាក់ថាចំណុច $I\!\left(\frac{4}{3},\frac{4}{3}\right)$ ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C)។
- ៥.គេពិនិត្យបន្ទាត់ (Δ_m) : y = mx + 6 ដែល m ជាប៉ារ៉ាម៉ែត្រ។
 - ក.ចូរបង្ហាញថាគ្រប់ $m\in\mathbb{R}$ បន្ទាត់ $\left(\Delta_{m}\right)$ នីមួយៗសុទ្ធតែកាត់តាមចំណុចនឹង A មួយដែលគេនឹងបញ្ជាក់កូអរដោនេ ។
 - ខ.កំណត់តម្លៃ m ដើម្បីឲ្យបន្ទាត់ (Δ_m) ប៉ះនឹងខ្សែកោង(C)រួចកំណត់សមីការ នៃបន្ទាត់ប៉ះទាំងនោះ។
- ៦.គណនាf(-1) និង f(3) រួចសង់ខ្សែកោង(C)និងបន្ទាត់(d)ព្រមទាំងបន្ទាត់ ប៉ះទាំងអស់ទៅនឹងខ្សែកោង(C)ដែលគូសចេញពីចំណុច A ។

60និត្តាធម៌

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{4}{3}$ ដោយ ៖

$$f(x) = \frac{3x^2 - 4x + 3}{3x - 4}$$
 តាង (C) ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

- ១.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{4}{3}$ ចូរស្រាយបញ្ជាក់ថា $f(x) = x + \frac{3}{3x 4}$ ។
 - គណនា $\lim_{x \to \infty} f(x)$ និង $\lim_{x \to \frac{4}{3}} f(x)$ រួចទាញបញ្ជាក់សមីការនៃអាស៊ីមតូតឈរ

នៃខ្សែកោង (C) ។

- ២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់ (d): y=x ជាសមីការអាស៊ីមតូតទ្រេតនៃខ្សែកោង
 - (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C)។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{4}{3}$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = \frac{(3x-1)(3x-7)}{(3x-4)^2}$ ។

គូសតារាងអថេរភាពនៃអនុគមន៍f ។

៤.ចូរស្រាយបញ្ហាក់ថាចំណុច $I\!\left(\frac{4}{3},\!\frac{4}{3}\right)$ ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C)។

- ៥.គេពិនិត្យបន្ទាត់ (Δ_m) : y = mx + 6 ដែល m ជាប៉ារ៉ាម៉ែត្រ។
 - ក.ចូរបង្ហាញថាគ្រប់ $m\in\mathbb{R}$ បន្ទាត់ $\left(\Delta_{m}\right)$ នីមួយៗសុទ្ធតែកាត់តាមចំណុចនឹង Aមួយដែលគេនឹងបញ្ជាក់កូអរដោនេ ។
 - ខ.កំណត់តម្លៃ m ដើម្បីឲ្យបន្ទាត់ (Δ_m) ប៉ះនឹងខ្សែកោង(C)រួចកំណត់សមីការ នៃបន្ទាត់ប៉ះទាំងនោះ។
- ៦.គណនាf(-1) និង f(3) រួចសង់ខ្សែកោង(C)និងបន្ទាត់(d)ព្រមទាំងបន្ទាត់ ប៉ះទាំងអស់ទៅនឹងខ្សែកោង(C)ដែលគូសចេញពីចំណុច A ។

សំមាន់ខ្លួលព

គេឲ្យអនុគមន៍ f កំណត់ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{1}{2}$ ដោយ ៖

 $f(x) = \frac{(x-2)^2}{2x-1}$ តាង (C)ជាក្រាបនៃf ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

9.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{1}{2}$ ចូរស្រាយបញ្ហាក់ថា $f(x) = \frac{x}{2} - \frac{7}{4} + \frac{9}{4(2x-1)}$

គណនា $\lim_{x\to\infty}f(x)$ និង $\lim_{x\to \frac{1}{2}}f(x)$ រួចទាញបញ្ជាក់សមីការនៃអាស៊ីមតូតឈរ

នៃខ្សែកោង (C) ។

២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់ (d): $y = \frac{x}{2} - \frac{7}{4}$ ជាសមីការអាស៊ីមតូតទ្រេតនៃក្រាប

(C) កាលណា $x o \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C)

៣.ចំពោះគ្រប់ចំនួនពិត $x \neq \frac{1}{2}$ ចូរស្រាយបញ្ហាក់ថា $f'(x) = \frac{2(x+1)(x-2)}{\left(2x-1\right)^2}$ ។

គូសតារាងអឋេរភាពនៃអនុគមន៍ f ។

៤.ចូរស្រាយបញ្ហាក់ថាចំណុច $I\!\left(\frac{1}{2},\!-\frac{3}{2}\right)$ ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C)។

៥.គេមានបីចំណុចA , BនិងM ស្ថិតនៅលើខ្សែកោង (C) មានអាប់ស៊ីសរៀងគ្នា

$$x_a=0\,,x_b=1$$
 និង $x_m=-4$ ។

ក)គណនាកូអរដោនេនៃចំណុច A , B និង M ។

ខ)សរសេរសមីការបន្ទាត់ (T_1) និង (T_2) ដែលប៉ះទៅនឹងខ្សែកោងត្រង់ចំណុច A និង B រៀងគ្នា ។ បង្ហាញថាបន្ទាត់ (T_1) និង (T_2) ស្របគ្នា។

- គ)កំណត់កូអរដោនេនៃចំណុច $N \in (C)$ ដោយដឹងថាចតុកោណ AMBN ជាប្រលេឡូក្រាម ។
- ៦.ចូរសង់ខ្សែកោង(C)និងបន្ទាត់(d)ព្រមទាំងបន្ទាត់ប៉ះ $(T_{\scriptscriptstyle 1})$ និង $(T_{\scriptscriptstyle 2})$ ។

សំមាន់នី០៤

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = x - 1 + \frac{1}{x - 3}$ ដែល $x \neq 3$ ។

តាង (C)ជាក្រាបនៃf ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o,\overrightarrow{i},\overrightarrow{j}
ight)$ ។

- ១.គណនា $\lim_{x\to\infty}f(x)$ និង $\lim_{x\to 3}f(x)$ រួចទាញបញ្ហាក់សមីការនៃអាស៊ីមតូតឈរ នៃក្រាប(C) ។
- ២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់(d): y=x-1 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C) ។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 3$ ចូរស្រាយបញ្ហាក់ថា $f'(x) = \frac{(x-2)(x-4)}{(x-3)^2}$ ។ គូសតារាងអឋេរភាពនៃអនុគមន៍ f ។
- ៤.កំណត់សមីការបន្ទាត់(T)ដែលប៉ះទៅនឹងខ្សែកោង(C)ត្រង់ចំណុច A មាន អាប់ស៊ីស $x=rac{5}{2}$ ។
- ៥.ចូរស្រាយថាចំណុច I(3,2) ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C) ។
- ៦.ចូរសង់ខ្សែកោង(C)និងបន្ទាត់(d)និង(T)ក្នុងតម្រុយរួមគ្នា។ គណនាផ្ទៃក្រឡាផ្នែកប្លង់ខ័ណ្ឌដោយខ្សែកោង(C)និងបន្ទាត់ប៉ះ(T)និងបន្ទាត់ លរពីរ x=0 និង $x=\frac{5}{2}$ ។

សំមាង់ខ្លួំ០៩

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{-x^2 + 3x + 2}{x - 2}$ ដែល $x \neq 2$ ។ តាង (C)ជាក្រាបនៃ f ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$ ។

- ១.ចំពោះគ្រប់ $x \neq 2$ ចូរស្រាយថា $f(x) = -x + 1 + \frac{4}{x-2}$ ។ គណនា $\lim_{x \to \infty} f(x)$ និង $\lim_{x \to 2} f(x)$ រួចទាញបញ្ជាក់សមីការនៃអាស៊ីមតូតឈរ នៃក្រាប(C) ។
- ២.ស្រាយបញ្ហាក់ថាបន្ទាត់(d): y = -x + 1 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង(C)។ កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C) ។
- ៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 2$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = -\frac{(x-2)^2 + 4}{(x-2)^2}$ ។ បង្ហាញថា f ជាអនុគមន៍ចុះរួចគូសតារាងអឋេរភាពនៃអនុគមន៍ f ។
- ៤.ក)រកសមីការបន្ទាត់ (T_1) និង (T_2) ដែលប៉ះទៅនឹងខ្សែកោង(C)រៀងគ្នាត្រង់ ចំណុច M និង N មានអាប់ស៊ីសរៀងគ្នា $x_M=0$ និង $x_N=4$ ។ 2)ក្រៅពីចំណុច M និង N ចូរបង្ហាញថាមានបួនចំណុចទៀតស្ថិតនៅលើក្រាប (C)មានកូអរដោនេជាចំនួនគត់រឺឡាទីហ្វដែលត្រូវកំណត់។ រកប្រភេទនៃចតុកោណដែលបង្កើតដោយបួនចំណុចនោះ ។
- ៥.ចូរស្រាយថាចំណុច I(2,-1) ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C) ។
- ៦.ចូរសង់ខ្សែកោង(C)និងបន្ទាត់(d)រួចគណនាផ្ទៃក្រឡាផ្នែកប្លង់ខ័ណ្ឌដោយខ្សែ កោង(C)និងបន្ទាត់(d)និងបន្ទាត់ឈរពីរ x=-2 និង x=1 ។

លំខាត់គឺ១០

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{x^2 - 3x - 2}{x - 1}$ ដែល $x \neq 1$ ។

តាង (C)ជាក្រាបនៃf ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overset{
ightarrow}{i}, \overset{
ightarrow}{j}
ight)$ ។

១.ចំពោះគ្រប់ $x \neq 1$ ចូរស្រាយថា $f(x) = x - 2 - \frac{4}{x - 1}$ ។

គណនា $\lim_{x \to \infty} f(x)$ និង $\lim_{x \to 1} f(x)$ រួចទាញបញ្ហាក់សមីការនៃអាស៊ីមតូតឈរ នៃក្រាប(C) ។

២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់(d): y=x-2 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C) ។

៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 1$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = \frac{(x-1)^2 + 4}{(x-1)^2}$ ។

បង្ហាញថា f ជាអនុគមន៍កើនជានិច្ចរួចគូសតារាងអថេរភាពនៃអនុគមន៍f ។

៤.គេគូសូបន្ទាត់ (Δ) : y = 2x + 2 កាត់ខ្សែកោង(C)ត្រង់ពីចំណុចAនិងB។

ក)គណនាកូអរដោនេនៃចំណុច AនិងB ។

ខ)រកចំណុចទាំងអស់ស្ថិតនៅលើខ្សែកោង(C)ដែលបន្ទាត់ប៉ះត្រង់ចំណុចទាំង នោះស្របទៅនឹងបន្ទាត់ (Δ) ។

៥.ចូរស្រាយថាចំណុច I(1,-1) ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C) ។

៦.ចូរសង់ខ្សែកោង(C)និងបន្ទាត់(d)រួចគណនាផ្ទៃក្រឡាផ្នែកប្លង់ខ័ណ្ឌដោយខ្សែ កោង(C)និងបន្ទាត់(d)និងបន្ទាត់ឈរពីរ x=2 និង x=5 ។

សំមាន់នី១១

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{x^2 - 5x + 4}{x - 2}$ ដែល $x \neq 2$ ។

តាង (C)ជាក្រាបនៃf ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overset{
ightarrow}{i}, \overset{
ightarrow}{j}
ight)$ ។

១.ចំពោះគ្រប់ $x \neq 2$ ចូរស្រាយថា $f(x) = x - 3 - \frac{2}{x - 2}$ ។

គណនា $\lim_{x\to\infty}f(x)$ និង $\lim_{x\to 2}f(x)$ រួចទាញបញ្ហាក់សមីការនៃអាស៊ីមតូតឈរ នៃក្រាប(C) ។

២.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់(d): y=x-3 ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C) កាលណា $x \to \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C) ។

៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 2$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = \frac{(x-2)^2 + 2}{(x-2)^2}$ ។

បង្ហាញថា f ជាអនុគមន៍កើនជានិច្ចរួចគូសតារាងអថេរភាពនៃអនុគមន៍ f ។

៤.ខ្សែកោង(C)កាត់អ័ក្សអាប់ស៊ីស (ox) ត្រង់ពីរចំណុចAនិងB។

ក)គណនាកូអរដោនេនៃចំណុច AនិងB (គេដឹងថា $x_{\scriptscriptstyle A}$ < $x_{\scriptscriptstyle B}$)។

ខ)សរសេរសមីការបន្ទាត់ $(T_{\scriptscriptstyle 1})$ និង $(T_{\scriptscriptstyle 2})$ ប៉ះទៅនឹងខ្សែកោង (C)រៀងគ្នាត្រង់

ចំណុចAនិងBរួចគណនាកូអរដោនេនៃចំណុចSជាប្រសព្វរវាង $(T_{\scriptscriptstyle 1})$ និង $(T_{\scriptscriptstyle 2})$

៥.ចូរស្រាយថាចំណុច I(2,-1) ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C) ។

៦.ចូរសង់ខ្សែកោង(C)និងបន្ទាត់(d) , (T_1) , (T_2) រួចគណនាផ្ទៃក្រឡាផ្នែកប្លង់ ខ័ណ្ឌដោយខ្សែកោង(C)និងបន្ទាត់ (T_1) និងបន្ទាត់ឈរពីរ x=-2 និង x=1

យខេត្តមួយ

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{3 + 2x - x^2}{x - 2}$ ដែល $x \neq 2$ ។

តាង (C)ជាក្រាបនៃf ក្នុងតម្រុយអរតូនរម៉ាល់ $\left(o, \overrightarrow{i}, \overrightarrow{j}
ight)$ ។

១.ចំពោះគ្រប់ $x \neq 2$ ចូរស្រាយថា $f(x) = -x + \frac{3}{x-2}$ ។

គណនា $\lim_{x \to \infty} f(x)$ និង $\lim_{x \to 2} f(x)$ រួចទាញបញ្ហាក់សមីការនៃអាស៊ីមតូតឈរ នៃក្រាប(C) ។

២.ចូរស្រាយបញ្ជាក់ថាបន្ទាត់(d): y = -x ជាអាស៊ីមតូតទ្រេតនៃខ្សែកោង (C)

កាលណា $x o \infty$ ។ សិក្សាទីតាំងធៀបរវាងបន្ទាត់(d)និងខ្សែកោង(C) ។

៣.ចំពោះគ្រប់ចំនួនពិត $x \neq 2$ ចូរស្រាយបញ្ជាក់ថា $f'(x) = -\frac{(x-2)^2 + 3}{(x-2)^2}$ ។

បង្ហាញថា f ជាអនុគមន៍ចុះជានិច្ចរួចគូសតារាងអថេរភាពនៃអនុគមន៍f ។

៤.ចូរស្រាយថាចំណុច I(2,-1) ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C)រួចសង់ខ្សែកោង(C)។

៥.គេពិនិត្យបន្ទាត់ (Δ_m) : y=mx+m+4 ដែល m ជាប៉ារ៉ាម៉ែត្រ។

ក)ចូរបង្ហាញថាបន្ទាត់ $\left(\Delta_{m}\right)$ កាត់តាមចំណុចនឹងMមួយគ្រប់តម្លៃm។

ខ)កំណត់តម្លៃm ដើម្បីឲ្យបន្ទាត់ (Δ_m) ប៉ះនឹងខ្សែកោង(C)រួចកំណត់សមីការ នៃបន្ទាត់ប៉ះទាំងនោះនិងសង់វាក្នុងតម្រុយរួមគ្នាជាមួយខ្សែកោង(C)។

គ)កំណត់តម្លៃm ដើម្បីឲ្យបន្ទាត់ (Δ_m) កាត់ខ្សែកោង(C)តែមួយចំណុចគត់រួច សង់បន្ទាត់ (Δ_m) ចំពោះតម្លៃ m ដែលទើបរកឃើញ។

ឃ)កំណត់តម្លៃm ដើម្បីឲ្យបន្ទាត់ (Δ_m) កាត់ក្រាប(C)បានពីរចំណុចផ្សេងគ្នា A និង B រួចសរសេរទំនាក់ទំនងមិនអាស្រ័យនឹង m រវាងអាប់ស៊ីសx'និងx" នៃចំណុចA និងB ។

លំមាន់នី១៣

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x)=ax+b+\frac{c}{x-3}$ ដែល $x \neq 3$ ហើយ $a,b,c \in \mathbb{R}$ និង $c \neq 0$ ។

- ១.កំណត់លេខមេគុណ a,b,c ដោយដឹងថាខ្សែកោង(C)តាងf ក្នុងតម្រុយ អរតូនរម៉ាល់ $(O,\vec{i}\,,\vec{j}\,)$ កាត់តាមបីចំណុចA(0,-2),B(4,-2),C(6,2)។
- ២.ចំពោះតម្លៃលេខមេគុណa,b,c ទើបរកឃើញខាងលើចូរសិក្សាអថេរភាពនិង សង់ក្រាប(C) ។
- ៣.គេពិនិត្យគ្រួសារបន្ទាត់ (Δ_m) : y = mx 6 ដែល m ជាប៉ារ៉ាម៉ែត្រ។ π)ចូរបង្ហាញថាបន្ទាត់ (Δ_m) នីមួយៗកាត់តាមចំណុចនឹង M ដែលគេនិងបញ្ជាក់ កូអរដោនេរបស់វា។
 - ខ)តើគេត្រូវឲ្យm មានតម្លៃប៉ុន្មានទើបបន្ទាត់ (Δ_m) ប្រសព្វខ្សែកោង(C)
 - ខាងលើតែមួយចំណុចគត់រួចសង់បន្ទាត់ (Δ_m) ចំពោះតម្លៃm ទើបរកឃើញ។
 - គ)កំណត់តម្លៃ m ដើម្បីឲ្យ (Δ_m) ប៉ះទៅនឹងខ្សែកោង(C)រួចរកនិងសង់នូវ បន្ទាត់ប៉ះទាំងនោះក្នុងតម្រុយរួមគ្នាជាមួយខ្សែកោង(C)។
 - ឃ)ចូររកលក្ខខណ្ឌសម្រាប់m ដើម្បីឲ្យបន្ទាត់ $\left(\Delta_{m}\right)$ ប្រសព្វជាមួយខ្សែកោង $\left(C\right)$ បានពីរចំណុចផ្សេងគ្នា P និង Q ។
 - ង) កំណត់តម្លៃ m ដើម្បីឲ្យអាប់ស៊ីស x_1 និង x_2 នៃចំណុច P និង Q ផ្ទៀងផ្ទាត់ ទំនាក់ទំនង $x_1^2 + x_2^2 = 12$ ។

សំខាត់គី១៤

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{x^2 - 4x - 1}{x - 1}$ ដែល $x \neq 1$ ។

- ១.ចូរសិក្សាអថេរភាពនៃអនុគមន៍ fរួចគូសក្រាប(C)តាងអនុគមន៍ f ក្នុងតម្រុយ អរតូនរម៉ាល់ (O, \vec{i}, \vec{j}) ។
- ២.គេពិនិត្យបន្ទាត់ (Δ_m) : y = mx 5m ដែល m ជាប៉ារ៉ាម៉ែត្រ ។ ចូរបង្ហាញថាទោះបី m ប្រែប្រួលតម្លៃយ៉ាងណាក៏ដោយបន្ទាត់ (Δ_m) នីមួយៗ សុទ្ធតែកាត់តាមចំណុចនឹង K មួយជានិច្ចដែលគេនឹងបញ្ជាក់កូអរដោនេ ។
- ៣.កំណត់តម្លៃm តាងដោយ m_0 ដើម្បីឲ្យបន្ទាត់ (Δ_m) ប្រសព្វជាមួយខ្សែកោង(C) តែមួយចំណុចគត់ រួចសង់បន្ទាត់ (Δ_m) ចំពោះ $m=m_0$ ។
- ៤.ចំពោះ $m \neq m_0$ ចូរស្រាយបញ្ជាក់ថាបន្ទាត់ (Δ_m) ប្រសព្វជាមួយខ្សែកោង(C) បានពីរចំណុចផ្សេងគ្នា M និង N ជានិច្ច។
- ៥.ចូរស្រាយបញ្ជាក់ថាបន្ទាត់ដែលភ្ជាប់ពីចំណុច M និង N ទៅចំណុច A(0,1) ជាបន្ទាត់ពីរកែងនឹងគ្នាជានិច្ចគ្រប់តម្លៃ $m \neq m_0$ ។

<u>សំមាាគ់ឆ្នី១៥</u>

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{x^2 - 5x + 4}{x - 3}$ ដែល $x \neq 3$ ។

- ១.ចូរសិក្សាអថេរភាពនៃអនុគមន៍fរួចគូសក្រាប(C)តាងអនុគមន៍fក្នុងតម្រុយ អរតូនរម៉ាល់ $(O, \overrightarrow{i}, \overrightarrow{j})$ ។
- ២.គេពិនិត្យបន្ទាត់ (Δ_m) : y=mx-5m+1 ដែល m ជាប៉ារ៉ាម៉ែត្រ ។

ចូរបង្ហាញថាទោះបី m ប្រែប្រួលតម្លៃយ៉ាងណាក៏ដោយបន្ទាត់ (Δ_m) នីមួយៗ សុទ្ធតែកាត់តាមចំណុចនឹង K មួយជានិច្ចដែលគេនឹងបញ្ជាក់កូអរដោនេ ។

- ៣.កំណត់តម្លៃm តាងដោយ m_0 ដើម្បីឲ្យបន្ទាត់ (Δ_m) ប្រសព្វជាមួយខ្សែកោង(C) តែមួយចំណុចគត់ រួចសង់បន្ទាត់ (Δ_m) ចំពោះ $m=m_0$ ។
- ៤.ចំពោះ $m \neq m_0$ ចូរស្រាយបញ្ជាក់ថាបន្ទាត់ (Δ_m) ប្រសព្វជាមួយខ្សែកោង(C) បានពីរចំណុចផ្សេងគ្នា M និង N ជានិច្ច។
- ៥.សរសេរទំនាក់ទំនងគ្មានmរវាង x_1 និង x_2 ជាអាប់ស៊ីសនៃចំណុចM និង N។
- ៦.ចូរស្រាយបញ្ហាក់ថាបន្ទាត់ដែលភ្ជាប់ពីចំណុចM និង N ទៅចំណុច A(2,2) ជាបន្ទាត់ពីរកែងនឹងគ្នាជានិច្ចគ្រប់តម្លៃ $m \neq m_0$ ។

សំខាត់គឺ១៦

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{4x-2}{x^2-x-6}$ ។ គេតាង (C) ជាខ្សែកោង

តាងអនុគមន៍fក្នុងតម្រុយអរតូនរម៉ាល់ $(O, \overset{
ightarrow}{i}, \overset{
ightarrow}{j})$ ។

- ១.រកដែនកំណត់ D_f នៃអនុគមន៍ f ។
- ២.គណនាលីមីត $\lim_{x\to\pm\infty}f(x)$, $\lim_{x\to-2}f(x)$ និង $\lim_{x\to 3}f(x)$ រួចទាញបញ្ជាក់នូវសមីការ អាស៊ីមតូរដេកនិងសមីការអាស៊ីមតូតឈរនៃក្រាប(C)។
- \mathbb{M} .ក) បូរស្រាយបញ្ជាក់ថាគ្រប់ $x \in D_f$: $f'(x) = -\frac{2\left(2x^2-2x+13\right)}{\left(x^2-x-6\right)^2}$ ។
 - ខ)បង្ហាញថា $2x^2 2x + 13 = \frac{1}{2} \Big[\big(2x 1\big)^2 + 25 \Big]$ រួចទាញថា f ជាអនុគមន៍

ចុះជានិច្ចលើដែនកំណត់របស់វា។ គូសតារាងអថេរភាពនៃ f។

៤.គេគូសបន្ទាត់(d): $y=-x+rac{1}{2}$ កាត់ខ្សែកោង(C)ត្រង់បីចំណុចA , BនិងI ។

ក)គណនាកូអរដោនេនៃចំណុច A , B និង I ដែល I នៅចន្លោះ A និង B ។

ខ)ចូរស្រាយបញ្ជាក់ថាចំណុច I ជាផ្ចិតឆ្លុះនៃក្រាប(C)។

គ)ចូរស្រាយថាបន្ទាត់ប៉ះខ្សែកោង(C)ត្រង់ចំណុចA និងBជាបន្ទាត់ស្របគ្នា។

៥.សង់ខ្សែកោង(C)រួចគណនាផ្ទៃក្រឡានៃផ្នែកប្លង់ខ័ណ្ឌដោយ(C)និងអ័ក្ស (ox)និងបន្ទាត់ឈរពីរ x=-1 និង x=2 ។

<u> សំមាាគ់នី១៧</u>

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{3x-9}{x^2-6x+5}$ ។

គេតាង (C) ជាខ្សែកោងតាងអនុគមន៍ f ក្នុងតម្រុយអរតូនរម៉ាល់ $(O, \overrightarrow{i}, \overrightarrow{j})$ ។ ១.រកដែនកំណត់ D_f នៃអនុគមន៍ f ។

២.គណនាលីមីត $\lim_{x \to \pm \infty} f(x)$, $\lim_{x \to 1} f(x)$ និង $\lim_{x \to 5} f(x)$ រួចទាញបញ្ជាក់នូវសមីការ អាស៊ីមតូរដេកនិងសមីការអាស៊ីមតូតឈរនៃក្រាប(C)។

$$\mathbb{M}$$
.ក) បូរស្រាយបញ្ហាក់ថាគ្រប់ $x\in D_f:\ f'(x)=-rac{3\left[(x-3)^2+4
ight]}{\left(x^2-6x+5
ight)^2}$ ។

ខ)បង្ហាញថា f ជាអនុគមន៍ចុះជានិច្ចលើ D_f គូសតារាងអថេរភាពនៃ f ។

៤.គេពិនិត្យបន្ទាត់ (d_m) : y = mx - 3m ដែល m ជាប៉ារ៉ាម៉ែត្រ។

ក)កាលណាm ផ្លាស់ប្តូរតម្លៃចូរបង្ហាញថាបន្ទាត់ $(d_{\scriptscriptstyle m})$ នីមួយៗកាត់តាមចំណុច

នឹង I មួយដែលគេត្រូវបញ្ជាក់កូអរដោនេ ។ ផ្ទៀងផ្ទាត់ថា $I \in (C)$ ។

- ខ)ចូរស្រាយបញ្ជាក់ថាចំណុច I ជាផ្ចិតឆ្លុះនៃក្រាប(C)។
- គ)កំណត់តម្លៃm ដើម្បីឲ្យបន្ទាត់ (d_m) ប៉ះនឹងខ្សែកោង(C)។
- ឃ)ក្រៅពីចំណុច I ចូរកំណត់m ដើម្បីឲ្យបន្ទាត់ $(d_{\scriptscriptstyle m})$ ប្រសព្វនឹងខ្សែកោង(C)

បានពីរចំណុចផ្សេងទៀតតាងដោយ A និង B ។

- ង) កំណត់m ដើម្បីឲ្យអាប់ស៊ីស x_1 និង x_2 នៃចំណុចA និងB ផ្ទៀងផ្ទាត់ទំនាក់ ទំនង $x_1^2-x_1x_2+x_2^2=12$ ។
- ៥.ក)សរសេរសមីការបន្ទាត់(T)ប៉ះទៅនឹងខ្សែកោង(C)ត្រង់ x=2 ។
 - ខ)ចូរសង់ខ្សែកោង(C)និងបន្ទាត់ប៉ះ(T)រួចគណនាផ្ទៃក្រឡានៃផ្នែកប្លង់ខ័ណ្ឌ ដោយខ្សែកោង(C)និងបន្ទាត់ (T) និងបន្ទាត់ឈរពីរ x=2 និង x=4 ។

សំមាន់នី១៤

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{3x-3}{x^2-2x-3}$ ។

គេតាង (C) ជាខ្សែកោងតាងអនុគមន៍ f ក្នុងតម្រុយអរតូនរម៉ាល់ $(O, \overrightarrow{i}, \overrightarrow{j})$ ។ ១.រកដែនកំណត់ D_f នៃអនុគមន៍ f ។

២.គណនាលីមីត $\lim_{x \to \pm \infty} f(x)$, $\lim_{x \to -1} f(x)$ និង $\lim_{x \to 3} f(x)$ រួចទាញបញ្ហាក់នូវសមីការ អាស៊ីមតូរដេកនិងសមីការអាស៊ីមតូតឈរនៃក្រាប(C)។

៣.ក.ចំពោះគ្រប់
$$x \in D_f$$
 បង្ហាញថា $f'(x) = -\frac{3\left[\left(x-1\right)^2+4\right]}{\left(x^2-2x-3\right)^2}$ ។

ខ.បង្ហាញថា f ជាអនុគមន៍ចុះជានិច្ចលើ D_f រួចគូសតារាងអថេរភាពនៃ f ។ ៤.គេឲ្យពីរចំណុច A(-3,-1) និង B(5,1) ។

- ក)ចូរបង្ហាញថា $A \in (C)$ និង $B \in (C)$ ។
- ខ)យក Iជាចំណុចកណ្ដាលនៃigl[ABigr]។ចូរស្រាយថា Iជាផ្ចិតឆ្លុះនៃក្រាបigl(Cigr)។
- គ)ចូរបង្ហាញថាបន្ទាត់ប៉ះទៅនឹងខ្សែកោង(C)ត្រង់ចំណុចA និង B ជាបន្ទាត់ ស្របគ្នារួចសរសេរសមីការបន្ទាត់ប៉ះទាំងនោះ។
- ៥.តាងM ជាចំណុចប្រសព្វរវាងខ្សែកោង(C)ជាមួយអ័ក្ស(oy)និងNជាចំណុច \mathbf{g} ុះគ្នានៃចំណុច M ធៀបនឹងចំណុចI ។ ចូរស្រាយថាចតុកោណAMBN ជាប្រលេឡូក្រាម ។
- ៦.ចូរសង់ក្រាប(C)និងបន្ទាត់ប៉ះ(C)ត្រង់ចំណុចA និង B ក្នុងតម្រុយរួមគ្នា។

លំមាន់នី១៩

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{x^2 - 2x - 9}{x^2 - 4x - 5}$ ។

គេតាង (C) ជាខ្សែកោងតាងអនុគមន៍ f ក្នុងតម្រុយអរតូនរម៉ាល់ $(O, \overrightarrow{i}, \overrightarrow{j})$ ។ ១.រកដែនកំណត់ D_f នៃអនុគមន៍ f ។

២.គណនាលីមីត $\lim_{x\to\pm\infty}f(x)$, $\lim_{x\to-1}f(x)$ និង $\lim_{x\to 5}f(x)$ រួចទាញបញ្ហាក់នូវសមីការ អាស៊ីមតូរដេកនិងសមីការអាស៊ីមតូតឈរនៃក្រាប(C)។

៣.ក.ចំពោះគ្រប់ $x \in D_f$ បង្ហាញថា $f'(x) = -\frac{2\left[\left(x-2\right)^2+9\right]}{\left(x^2-4x-5\right)^2}$ ។

ខ.បង្ហាញថា f ជាអនុគមន៍ចុះជានិច្ចលើ D_f រួចគូសតារាងអថេរភាពនៃ f ។ ៤.ចូរស្រាយបញ្ជាក់ថាចំណុច I(2,1) ជាផ្ចិតឆ្លុះនៃខ្សែកោង(C) ។ ៥.សរសេរសមីការបន្ទាត់(T)ប៉ះនឹងខ្សែកោង(C)ត្រង់ចំណុច Iរួចសង់បន្ទាត់(T) និងខ្សែកោង(C) ក្នុងតម្រុយរួមគ្នា។ ៦.ដោយប្រើខ្សែកោង(C) ចូរពិភាក្សាតាមតម្លៃm នូវអត្ថិភាពនិងទីតាំងនៃប្ញស ធៀបនិងចំនួនពិតពីរ $\alpha=-1$ និង $\beta=5$ នៃសមីការខាងក្រោម ៖

0៧និត្តពេះខ្មែ

គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{2x^2 - 5x + 5}{x^2 - 4x + 3}$ ។

គេតាង (C) ជាខ្សែកោងតាងអនុគមន៍ f ក្នុងតម្រុយអរតូនរម៉ាល់ $(O, \overrightarrow{i}, \overrightarrow{j})$ ។ ១.រកដែនកំណត់ D_f នៃអនុគមន៍ f ។

 $(m-1)x^2-2(2m-1)x-5m+9=0$ ដែល m ជាប៉ារ៉ាម៉ែត្រ។

២.គណនាលីមីត $\lim_{x \to \pm \infty} f(x)$, $\lim_{x \to 1} f(x)$ និង $\lim_{x \to 3} f(x)$ រួចទាញបញ្ជាក់នូវសមីការ អាស៊ីមតូរដេកនិងសមីការអាស៊ីមតូតឈរនៃក្រាប(C)។

$$\mathbb{M}$$
.កិ.ចំពោះគ្រប់ $x \in D_f$ បង្ហាញថា $f'(x) = -\frac{3x^2 - 2x - 5}{(x^2 - 4x + 3)^2}$ ។

ខ.គូសតារាងអឋេរភាពនៃ f ។

៤.គេឲ្យចំណុច A(2,-3) ។ចូរស្រាយថា $A\in (C)$ រួចសរសេរសមីការបន្ទាត់(T) ដែលប៉ះនឹងខ្សែកោង (C) ត្រង់ចំណុច A ។

៥.ក្រៅពីចំណុច Aបន្ទាត់(T)ប្រសព្វខ្សែកោង(C)ត្រង់ចំណុច Bផ្សេងទៀត។ ក.គណនាកូអរដោនេនៃចំណុច B។

ខ.សរសេរសមីការបន្ទាត់(T')ប៉ះទៅនឹងខ្សែកោង(C)ត្រង់ចំណុចB។ ៦.ចូរសង់ខ្សែកោង (C) និងបន្ទាត់ប៉ះ (T) និង(T') ក្នុងតម្រុយរួមគ្នា។

www.mathtoday.wordpress.com