Αποτελέσματα πειραμάτων

Άγγελος Βενέτης Φανουράκης Α.Μ.: 1115201300022

1 Random σημείο

Για την εισαγωγή τυχαίου σημείου, αρχικά δημιούργησα μια συνάρτηση που τοποθετεί ένα σημείο γύρω από το περίκεντρο ενός αμβλυγωνίου τριγώνου με χρήση κατανομής Gauss. Ενσωμάτωσα τη συνάρτηση αυτή στο local search για να αξιολογήσω την απόδοσή της συγκριτικά με τις άλλες συναρτήσεις. Ωστόσο, έπειτα από αρκετά tests, διαπίστωσα ότι δεν προσφέρει βελτίωση. Αυτό είναι αναμενόμενο, καθώς η προσθήκη ενός σημείου εντός του τριγώνου δημιουργεί τρεις νέες γωνίες $a_1+a_2+a_3=360$, εκ των οποίων τουλάχιστον δύο είναι αμβλείες $(a_i<180)$.

Στη συνέχεια, αποφάσισα να προβάλω το τυχαίο σημείο στην μεγαλύτερη πλευρά του τριγώνου. Με αυτόν τον τρόπο, η μεγαλύτερη γωνία του τριγώνου διαιρείται σε δύο μικρότερες. Ακολούθως, καλούσα τη συνάρτηση reduce_obtuse_by_flips(), η οποία πραγματοποιεί edge flips στην τριγωνοποίηση, αν αφαιρούν κάποια αμβλεία γωνία. Με τα flips μπορεί να αφαιρέσουμε την πιθανή καινούργια αμβλεία γωνιά στο γειτονικό τρίγωνο. Ωστόσο, η συγκεκριμένη προσέγγιση για την εισαγωγή Steiner points δεν αποδείχθηκε ιδιαίτερα αποτελεσματική, καθώς συχνά αντικαθιστούσε μία αμβλεία γωνία με μια άλλη.

Η επόμενη προσέγγιση ήταν η χρήση της παραπάνω μεθόδου μόνο όταν μία από τις τρεις συναρτήσεις (local search, ant colony, simulated annealing) ολοκλήρωνε χωρίς να εξαλείψει όλα τα αμβλυγώνια τρίγωνα. Δημιούργησα τη συνάρτηση reduce_random_local(), η οποία επιλέγει τυχαία ένα αμβλυγώνιο τρίγωνο με πιθανότητα 1/n (n= αριθμός αμβλυγώνιων τριγώνων) και τοποθετεί ένα τυχαίο σημείο στη μεγαλύτερη πλευρά του. Έπειτα, εφαρμόζει edge flips και καλεί τη local search. Αυτή η διαδικασία επαναλαμβάνεται 10 φορές. Εάν σε κάποια στιγμή ο αριθμός των αμβλέων γωνιών μειωθεί, η τριγωνοποίηση cdt που πήρε ως όρισμα αντικαθίσταται από την τρέχουσα.

Η χρήση αυτής της συνάρτησης είχε κάποια επιτυχία, καθώς κατάφερε να μειώσει τον αριθμό των αμβλυγώνιων σε ορισμένα instances. Ωστόσο, σε πιο περίπλοκα instances με μεγάλο αριθμό σημείων, απαιτεί σημαντικό χρόνο επεξεργασίας και προσθέτει πολλά νέα σημεία. Παρόλο που όλες οι παραπάνω συναρτήσεις έχουν

υλοποιηθεί στο αρχείο Random.cpp, δεν τις χρησιμοποιώ, καθώς είναι χρονοβόρες και συχνά μειώνουν μόνο 1-8 αμβλυγώνια, προσθέτοντας μεγάλο αριθμό Steiner points.

2 Local Search

Εκτελώντας Local Search σε όλα τα instances του διαγωνισμού, παρατηρούμε ότισε κανένα από αυτά δεν μηδενίζεται ο αριθμός των αμβλυγώνιων. Αυτό συμβαίνει διότι, μόλις ο αλγόριθμος φτάσει σε κάποιο τοπικό ελάχιστο, σταματά να προσθέτει νέα σημεία. Το Local Search σε κάθε επανάληψη δοκιμάζει όλες τις δυνατές μεθόδους και επιλεγεί αυτί που μειώνει περισσότερο τον αριθμό των αμβλυγώνιων. Για αυτό τον λόγο η μείωση τον μεθόδων οδήγησε σε χειρότερα αποτελέσματα.

Σχήμα 1: Αριθμός αμβλυγώνιων μετά από Local Search σε όλα τα instances

Energy Statistics for Local Search:

Mean: 150.24Median: 92.20

• Standard Deviation: 168.94

Min: 3.60Max: 816.40

3 Ant colony

Σχήμα 2: Αριθμός αμβλυγώνιων μετά από Ant colony σε όλα τα instances

Energy Statistics for Ant colony:

Mean: 156.21Median: 97.20

• Standard Deviation: 172.23

Min: 3.60Max: 827.00

Παρόμοια συμπεριφορά παρατηρείται και με τον αλγόριθμο Ant Colony. Όπως φαίνεται η απόδοση του ήταν ελαφρώς χειρότερη σε σύγκριση με το Local Search. Αυτό οφείλεται στο γεγονός ότι ο αλγόριθμος επίσης "κολλάει" σε τοπικά ελάχιστα. Επιπλέον, λόγω της τυχαιοποίησης στη διαδικασία επιλογής των μεθόδων, είναι πιθανό να καταλήξει σε διαφορετικό τοπικό ελάχιστο, καθώς η σειρά εφαρμογής των μεθόδων μπορεί να διαφέρει.

4 Simulated Annealing

Επειδή καμία από τις δύο αλλες μεθόδους δεν κατάφερε να μηδενίσει τον αριθμό των αμβλυγώνιων για κανένα instance, συνέχισα τα πειράματά μου χρησιμοποιώντας τον αλγόριθμο Simulated Annealing. Για τα πειράματα μου χρησιμοποίησα α=3.0, β =0.2 και 300 επαναλήψεις και τους ακόλουθους συνδυασμούς μεθόδων εισαγωγής steiner:

- All methods
- only Projections
- Projections and Circumcenter
- Projections, Circumcenter, Midpoint of longest edge
- No centroid
- No merge

Ο λόγος που επέλεξα αυτούς τους συνδυασμούς μεθόδων ήταν επειδή μετρώντας σε tests το πόσες φόρες χρησιμοποιούσα χάθε μέθοδο η σειρά ήταν : projection, circumcenter, midpoint, merge ,circumcenter με τα projections να είναι με διαφορά τα ποιο αποτελεσματικά.

4.1 Α. Κυρτό boundary (που ταυτίζεται με το Κυρτό Περίβλημα) χωρίς περιορισμούς.

Σχήμα 3: Αριθμός αμβλυγώνιων σε κυρτό boundary (που ταυτίζεται με το Κυρτό Περίβλημα) χωρίς περιορισμούς

Instances with Zero Obtuse Triangles:

• Projections: 6/40 (15.00%)

• Proj_Mid_Circ: 3/40 (7.50%)

• Proj_Circ: 5/40 (12.50%)

• No_Merge: 3/40 (7.5%)

• No_Centroid: 5/40 (12.50%)

• All: 1/40 (2.50%)

Table 1: Energy of Instances with non-Zero Obtuse Triangles:

Category	Mean	Median	Min	Max
Category	Mean	Median	Min	Max
Projections	177.6294	134.4000	7.2000	727.2000
Proj_Mid_Circ	164.1730	121.2000	6.6000	696.6000
Proj_Circ	169.7200	112.2000	5.2000	716.4000
No_Merge	163.3676	119.0000	9.8000	698.0000
No_Centroid	171.8400	134.4000	6.6000	698.0000
All	154.9436	85.2000	5.6000	700.0000

Table 2: Convergence Rates for Instances with Zero Obtuse

Category	Mean	Median	Min	Max
Projections	0.9068	0.7974	0.6248	1.2818
Proj_Mid_Circ	0.6671	0.7135	0.3743	0.9134
Proj_Circ	0.8869	1.0659	0.5133	1.1691
No_Merge	0.7047	0.8020	0.3743	0.9380
No_Centroid	0.7516	0.8446	0.3700	0.9411
All	1.2390	1.2390	1.2390	1.2390

4.2 Β. Κυρτό boundary με «ανοιχτούς» περιορισμούς.

Σχήμα 5: Όλα τα πειράματα έλυσαν το ίδιο instance

Number of Steiner points used by each method:

- Projections: 11
- Proj_Circ: 13
- No_Merge: 18
- \bullet No_Centroid: 12
- All: 11

Figure 6

Table 3: Energy Statistics for Non-Zero Obtuse Instances for Convex with Open Constraints

Category	Mean	Median	Min	Max
Projections	138.8667	157.6000	14.8000	294.0000
Proj_Mid_Circ	139.1333	158.7000	15.6000	296.2000
Proj_Circ	137.5000	152.4000	13.4000	295.6000
No_Merge	137.2000	148.9000	14.2000	296.0000
No_Centroid	133.8000	149.4000	15.4000	289.4000
All	140.9000	157.7000	17.6000	286.4000

4.3 Γ. Κυρτό boundary με περιορισμούς που αποτελούν ακμές πολυγώνων που σχηματίζονται εντός του boundary, συμπεριλαμβανομένων των ακμών που βρίσκονται επί του boundary («κλειστοί περιορισμοί»).

Σχήμα 7

- Projections: 6/67 (8.96%)
- Proj_Mid_Circ: 4/67 (5.97%)
- Proj_Circ: 7/67 (10.45%)
- No_Merge: 6/67 (8.96%)
- No_Centroid: 4/67 (5.97%)
- All: 3/67 (4.48%)

Table 4: Energy Statistics for Non-Zero Obtuse Instances for Convex with Closed Constraints

Category	Mean	Median	Min	Max
Projections	212.9967	142.2000	6.8000	835.8000
Proj_Mid_Circ	206.7238	142.2000	7.0000	808.6000
Proj_Circ	214.4033	141.0000	7.2000	842.4000
No_Merge	215.4361	138.6000	6.0000	835.4000
No_Centroid	206.6762	126.6000	6.2000	814.8000
All	203.5938	127.4000	6.0000	843.4000

Table 5: Convergence Rate Statistics for Zero Obtuse Instances for Convex with Closed Constraints

Category	Mean	Median	Min	Max
Projections	0.9070	0.8020	0.2294	1.9541
Proj_Mid_Circ	0.9264	0.9617	0.6474	1.1348
Proj_Circ	0.8765	0.9469	0.1639	1.3430
No_Merge	0.8757	0.7676	0.2868	1.5310
No_Centroid	0.8652	0.8283	0.6723	1.1319
All	0.8798	0.8580	0.7293	1.0519

4.4 Δ . Μη κυρτό boundary με ευθύγραμμα τμήματα παράλληλα στους άξονες χωρίς περιορισμούς.

Σχήμα 9

- Projections: 5/13 (38.46%)
- Proj_Mid_Circ: 3/13 (23.08%)
- Proj_Circ: 6/13 (46.15%)
- No_Merge: 1/13 (7.69%)
- No_Centroid: 4/13 (30.77%)
- All: 2/13 (15.38%)

Table 6: Energy Statistics for Non-Zero Obtuse Instances for Non-Convex with Parallel Boundary Edges

Category	Mean	Median	Min	Max
Projections	92.3500	60.1000	33.0000	248.0000
Proj_Mid_Circ	83.2400	55.4000	9.8000	268.4000
Proj_Circ	99.6571	63.2000	35.2000	243.8000
No_Merge	74.7167	52.5000	10.0000	259.2000
No_Centroid	98.5556	54.0000	19.6000	268.8000
All	81.4545	60.2000	8.2000	238.8000

 $\hbox{ Table 7: Convergence Rate Statistics for Zero Obtuse Instances for Non-Convex with Parallel Boundary Edges } \\$

Category	Mean	Median	Min	Max
Projections	1.1903	1.2937	0.5501	1.7730
Proj_Mid_Circ	0.9588	0.7783	0.5006	1.5975
Proj_Circ	1.3150	1.2509	0.4198	2.3830
No_Merge	0.6011	0.6011	0.6011	0.6011
No_Centroid	0.8327	0.7832	0.3630	1.4016
All	0.7113	0.7113	0.3201	1.1024

4.5 Ε. Μη κυρτό boundary, ακανόνιστο, που δεν εντάσσεται στις κατηγορίες A- Δ .

Σχήμα 11

- Projections: 7/22 (31.82%)
- Proj_Mid_Circ: 5/22 (22.73%)
- \bullet Proj_Circ: 7/22 (31.82%)
- No_Merge: 3/22 (13.64%)
- No_Centroid: 5/22 (22.73%)
- All: 3/22 (13.64%)

Table 8: Energy Statistics for Non-Zero Obtuse Instances for Other Category

Category	Mean	Median	Min	Max
Projections	118.7600	108.8000	11.6000	296.6000
Proj_Mid_Circ	113.7529	113.2000	3.8000	305.2000
Proj_Circ	117.4933	108.4000	27.2000	293.0000
No_Merge	109.9368	79.8000	11.0000	333.8000
No_Centroid	115.2000	108.4000	14.0000	329.2000
All	108.7368	68.4000	9.0000	313.0000

Table 9: Convergence Rate Statistics for Zero Obtuse Instances for Other Category

Category	Mean	Median	Min	Max
Projections	1.2903	0.9809	0.3419	2.8562
Proj_Mid_Circ	0.9319	0.9940	0.3907	1.4896
Proj_Circ	1.1400	1.1986	0.3419	2.1853
No_Merge	0.8576	0.9682	0.2008	1.4037
No_Centroid	0.8699	0.8980	0.5682	1.2978
All	0.6531	0.6514	0.6017	0.7060