Diabetes Risk: The Prediction of Diabetes Risk Through Supervised Learning

By: Katherine Nguyen

Outline/Agenda Introduction Approach Data Rundown Data Cleaning Models Model Analysis Results Conclusion

Agenda

Introduction

Problem

- Diabetes is prevalent and being able to predict whether one has diabetes is useful
- How can we predict diabetes based on potential risk factors of diabetes?

Purpose

 To understand the diabetes risk factors that can help predict whether an individual will acquire diabetes based on those risk factors in the future

Why Is it Important?

 To raise awareness and potential address prevention strategies for earlier stages before diabetes

	Α	ge (Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring	Itching	Irritability	delayed healing	partial paresis	muscle stiffness	Alopecia	Obesity	class
	0	40	1	0	1	0	1	0	0	0	1	0	1	0	1	1	1	1
	1	58	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	1
	2	41	1	1	0	0	1	1	0	0	1	0	1	0	1	1	0	1
	3	45	1	0	0	1	1	1	1	0	1	0	1	0	0	0	0	1
	4	60	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
51	5	39	0	1	1	1	0	1	0	0	1	0	1	1	0	0	0	1
51	5	48	0	1	1	1	1	1	0	0	1	1	1	1	0	0	0	1
51	7	58	0	1	1	1	1	1	0	1	0	0	0	1	1	0	1	1
51	В	32	0	0	0	0	1	0	0	1	1	0	1	0	0	1	0	0
51	9	42	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
520	row	/S × 1	17 colur	mns														

ennini)

	Age	Gender	Polyuria	Polydipsia	sudden weight loss	partial paresis	class
0	40	1	0	1	0	0	1
1	58	1	0	0	0	1	1
2	41	1	1	0	0	0	1
3	45	1	0	0	1	0	1
4	60	1	1	1	1	1	1

Approach: Models

Logistic Regression

Decision Tree Classifier

Results: Model Analysis

Learning Curve

- Evaluate model performance:
 - Logistic Regression: Converges, meaning it is performing ideally for supervised learning
 - Decision Tree Classifier: Converges but starts diverging, meaning through more training examples, it starts to overfit

