# 实验五 典型电信号的观察与测量

### 一、实验目的

- 1. 学习示波器、函数信号发生器和毫伏表的使用方法
- 2. 观察函数信号发生器产生的各类波形
- 3. 掌握用示波器定量测量电压的峰一峰值,周期的方法

#### 二、实验原理与说明

- 1. 示波器作为一种实用的时域仪器,可用来观察电信号的波形并定量测试被测波形的参数,例如幅度、频率、相位和脉宽等。
- 2. 信号发生器是一种能提供不同类型时变信号的电压源,电路实验常用的信号发生器是函数信号发生器,它能产生正弦波、方波、三角波、锯齿波和脉冲波等信号。
- 3. 毫伏表能对频率范围较宽的正弦电压进行测量,该仪表表面上的标度只是按正弦电压有效值进行刻度的。
- **4.** 用示波器进行电压测量,就是将被测电压信号输入给示波器,通过在荧光屏上的波形显示来进行定量或定性的分析。

## 七. 实验设备

|    | 名称          | 数量  | 型号                                 |
|----|-------------|-----|------------------------------------|
| 1. | 函数信号发生器     | 1 台 | 学校自备                               |
| 2. | 示波器         | 1 台 | 学校自备                               |
| 3. | 晶体管毫伏表      | 1 台 | 学校自备                               |
| 4. | 短接桥和连接导线    | 若干  | P8-1 和 50148                       |
| 5. | 实验用 9 孔插件方板 | 1 块 | $297\text{mm} \times 300\text{mm}$ |

### 八. 实验步骤

#### 1. 示波器自检

将示波器CH1 或CH2 测试线接到示波器"标准信号"输出端,测出该"标准信号"的峰一峰值与周期,并与示波器给出的标准值(一般为 $V_{P-P}=1V$ , f=1KHz, T=1ms)进行比较,结果记入表 5-1。表5-1 示波器自检

| 校验档位    | Y轴(峰     | <b>─</b> 峰值) | X 轴(每周期格数)  |             |  |  |
|---------|----------|--------------|-------------|-------------|--|--|
| 校验结果    | 1V/div 档 | 0.2V/div 档   | 0.5ms/div 档 | 0.2ms/div 档 |  |  |
| 应显示标准格数 | 1        | 5            | 2           | 5           |  |  |
| 实际显示格数  | 1.01     | 5.05         | 1.98        | 4.9         |  |  |
| 校验结论    | 在误差范围内符合 | 在误差范围内符合     | 在误差范围内符合    | 在误差范围内符合    |  |  |

#### 2. 三种典型波形的观察与测量

将函数信号发生器的输出分别调为 f=200Hz 和 500KHz,dB=0、10 和 20,输出细调电位器调到最大(右转到底)波形依次选择正弦波、方波、三角波。用示波器和毫伏表分别测出信号发生器输出电压的幅值及有效值,结果记入表 5-2,并进行比较。选取一组数据画出波形图,根据实验数据及有效值与电压幅值 $V_P$ 之间的关系。分别计算出各种波形的有效值将数据填表中相应的空格内。

按图 5-3 接线图连线,根据表格上的要求,进行测量。



图5-3 观测波形实验接线图

表5-2 (一) 三种波形观测实验数据 (f = 200Hz)

| 表5-Z (一) |          |      |       |      |       |       |          |       |        |       |
|----------|----------|------|-------|------|-------|-------|----------|-------|--------|-------|
|          | 波形       | Vp-p |       | 毫伏表  |       |       | 有效值 (理论) |       |        |       |
|          | ( dB)    |      |       | (V)  |       |       |          |       |        |       |
|          | <b>^</b> | 0 dB | 10dB  | 20dB | 0 dB  | 10dB  | 20dB     | 0 dB  | 10dB   | 20dB  |
| 正弦波      |          | 10   | 3.162 | 1    | 3.586 | 1.125 | 0.358    | 3.536 | 1.118  | 0.354 |
| 方波       | 0        | 10   | 3.162 | 1    | 5.074 | 1.595 | 0.496    | 5     | 1.581  | 0.500 |
| 三角波      | 0        | 10   | 3.162 | 1    | 2.931 | 0.919 | 0.295    | 2.5   | 0.7905 | 0.25  |

表5-2 (二) 三种波形观测实验数据 (f = 500KHz)

|     | 波形    |      | Vp    |      |       | 毫伏表    |       | 有效    | d值(理i  | 仑)    |
|-----|-------|------|-------|------|-------|--------|-------|-------|--------|-------|
|     | ( dB) | 0 dB | 10dB  | 20dB | 0 dB  | 10dB   | 20dB  | 0 dB  | 10dB   | 20dB  |
| 正弦波 |       | 10   | 3.162 | 1    | 3.554 | 1.121  | 0.356 | 3.536 | 1.118  | 0.354 |
| 方波  |       | 10   | 3.162 | 1    | 4.980 | 1.5714 | 0.499 | 5     | 1.581  | 0.500 |
| 三角波 |       | 10   | 3.162 | 1    | 2.901 | 0.913  | 0.291 | 2.5   | 0.7905 | 0.25  |

3. 调节示波器,显示如下图形,并写出调节过程,逐步熟悉示波器的使用。

表 5-3 示波器的使用实验数据

| 示波器显示图形 | 调节过程                                                              |
|---------|-------------------------------------------------------------------|
| o o     | 采用方形波,将示波器X增益旋钮调大,上下调至合适位置                                        |
|         | 采用方形波,将X增益旋钮调大直到屏幕中显示出两个圆点,再上下移<br>动波形,至两个圆点都消失                   |
|         | 采用三角波,将X增益旋钮调小至屏幕出现一条线,调Y增益旋钮至合适<br>位置                            |
|         | 采用方形波,将X增益旋钮调大,上下移动波形,直至屏幕中出现一条<br>横线                             |
|         | 采用三角波,将Y增益旋钮调大至屏幕中放不下完整三角波,上下移动<br>波形,将靠近上方和下方的波移至屏幕外,直至屏幕中出现目标图形 |
|         | 采用三角波,将Y增益旋钮调大至屏幕中只能放下一半的三角波,上下移动波形,直至上面的波形移至屏幕外,屏幕中即可出现目标图形      |

## 九. 注意事项

1、表5-2中, $V_p$ 为峰值,且数值上 $V_p = \frac{1}{2}Vp_p$ 



图5-4 Vp 与 Vp-p 的关系

- 2、用示波器测试前,示波器首先要自校。毫伏表使用前,应先调零。
- 3、峰值,峰一峰值与有效值的关系:

$$V_{p} = \sqrt{2} \cdot V$$

$$V_{p-p} = 2\sqrt{2} \cdot V$$

## 十. 分析和讨论

- 1. 为什么测量电压、频率时,一定要把"微调"旋钮旋到"标准"位置?如果没有置于"标准"位置,会有什么结果?
- 2. 通过对实验步骤 3 的练习,总结示波器的正确使用方法
  - 1、因为"微调"可以人为改变波形的大小,所以无法进行测定,只是要"校准"时 所显示的波形才是真实的波形。如果没有置于"标准"位置,所测的数据可能大 也可能小,取决于示波器微调是放大还是缩小。
  - 2、①首先把"微调"旋钮调至"标准"位置
    - ②选择Y轴耦合方式,将开关置于AC或DC
    - ③接入被测信号并观察