Machine Learning para Inteligencia Artificial

Resumir una distribución

Universidad ORT Uruguay

26 de Marzo, 2025

Media/esperanza/promedio

Empírico (datos
$$T = \{z_1, \ldots, z_N\}$$
)

- , ,

Teórico (distribución \mathcal{D})

$$\widehat{\mu} = \operatorname{Promedio}_{z \sim T} [z] = \frac{1}{N} \sum_{i=1}^{N} z_i$$

$$\mu = \underset{z \sim \mathcal{D}}{\mathsf{Promedio}}\left[z\right] = \underset{|\mathcal{T}| \rightarrow \infty}{\mathsf{lim}} \underset{z \sim \mathcal{T}}{\mathsf{Promedio}}\left[z\right]$$

Interpretación: centro de masa o punto de equilibrio

Varianza y desvío estándar

Empírico (datos $T = \{z_1, ..., z_N\}$) Teórico (distribución \mathcal{D})

$$\widehat{\sigma}^2 = \mathsf{V}_{z \sim T}[z] = \frac{1}{N} \sum_{i=1}^{N} (z_i - \widehat{\mu})^2$$

$$\sigma^2 = \mathsf{V}_{z \sim \mathcal{D}}[z]$$

Interpretación: dispersión entorno a la media

Desvío estándar: es la raíz de la varianza

Característica a observar: simetría

Fuente: Wikipedia

Mediana

Empírico (datos
$$T = \{z_1, ..., z_N\}$$
) Teórico (distribución \mathcal{D})

$$\widehat{m}=z_{\left\lfloor\frac{N}{2}\right\rfloor}^*$$

m es tal que $\mathsf{Prob}_{\mathcal{D}}[z \leq m] = \frac{1}{2}$

Interpretación: es el valor que divide en dos partes iguales la distribución

Simetría: media vs mediana

Fuente: Wikipedia

Características a observar: multimodalidad

Fuente: Climatology of High Wind Events in the Owens Valley, California

Resumen visual-numérico: el boxplot

Boxplot: comparación con la normal

- En la distribución normal $N(\mu, \sigma^2)$, el 99.73 % del área debajo la campana está a menos de 3σ de distancia de μ .
- El IQR es en este caso 1.349σ .
- Los brazos del boxplot contienen el 99.3 % del área.
- El valor 0.6745σ se conoce históricamente como *error probable*.