Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

# САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

## Индивидуальное задание № 2

по дисциплине "Математический анализ"

Вариант № 20

Выполнила: студентка гр. R3138

Нечаева А. А.

Преподаватель:  $<\Phi \mathit{ИO}\ \mathit{\PiPE} \mathit{\PiO} \mathit{\square} \mathit{ABATE} \mathit{\square} \mathit{A}>$ 

## 1 Сходимость числовых рядов

Исследовать ряды на сходимость. Для знакопеременных рядов исследовать абсолютную и условную сходимость.

#### 1.1 a

$$\sum_{n=1}^{\infty} \frac{(2n)!!}{n^{n+\frac{3}{2}}} \cdot \ln \frac{2^n + 1}{2^n} \tag{1}$$

- 1. Ряд знакопостоянный
- 2. Воспрользуемся признаком д'Аламбера в предельной форме

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(2n+2)!! \cdot \ln \frac{2^{n+1}+1}{2^{n+1}} \cdot n^{n+\frac{3}{2}}}{(2n)!! \cdot \ln \frac{2^{n}+1}{2^{n}} \cdot (n+1)^{n+1+\frac{3}{2}}} =$$

$$= \lim_{n \to \infty} \frac{(2n)!! \cdot (2n+2) \cdot \ln \left(1 + \frac{1}{2^{n}+1}\right) \cdot n^{n+\frac{3}{2}}}{(2n)!! \cdot (n+1) \cdot \ln \left(1 + \frac{1}{2^{n}}\right) \cdot (n+1)^{n+\frac{3}{2}}} = \lim_{n \to \infty} \frac{2 \cdot \frac{1}{2^{n+1}} \cdot n^{n+\frac{3}{2}}}{\frac{1}{2^{n}} \cdot (n+1)^{n+\frac{3}{2}}} =$$

$$= \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{n+\frac{3}{2}} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^{n+\frac{3}{2}} = \lim_{n \to \infty} \left(\left(1 - \frac{1}{n+1}\right)^{-(n+1)}\right)^{-\frac{n+\frac{3}{2}}{n+1}} =$$

$$= \frac{1}{e} < 1$$

Ответ: ряд сходится по признаку д'Аламбера

#### **1.2** б

$$\sum_{n=1}^{\infty} \left( arctg \frac{n+1}{n^2} - ln \left( 1 + tg \frac{1}{n} \right) \right)^2 \tag{2}$$

1. Ряд знакопостоянный

2. Воспрользуемся разложением функций в ряд Маклорена при  $n \to \infty$ 

$$\begin{split} arctg\frac{n+1}{n^2} &= \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^3}\right) \\ tg\frac{1}{n} &= \frac{1}{n} + o\left(\frac{1}{n^3}\right) \\ ln\left(1 + \frac{1}{n} + o\left(\frac{1}{n^3}\right)\right) &= \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^3}\right) \end{split}$$

Тогда подставляя получаем:

$$\left(\frac{1}{n} + \frac{1}{n^2} + O\left(\frac{1}{n^3}\right) - \left(\frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right)\right)^2 = \left(\frac{3}{2n^2} + O\left(\frac{1}{n^3}\right)\right)^2 =$$

$$= \frac{9}{4n^4} + \frac{3}{n^2} \cdot O\left(\frac{1}{n^3}\right) + O\left(\frac{1}{n^6}\right) \quad (3)$$

В силу сходимости рядов  $\frac{9}{4n^4}$ ,  $\frac{3}{n^2} \cdot o\left(\frac{1}{n^3}\right)$  и  $o\left(\frac{1}{n^6}\right)$  и согласно арифметическим свойствам рядов их сумма тоже сходится.

Ответ: ряд сходится

#### 1.3 B

$$\sum_{n=1}^{\infty} \frac{(n+1)\cos 2n}{n^2 - \ln n} \tag{4}$$

- 1. Ряд знакопеременный
- Заметим, что перемена знака вызвано только  $\cos 2n$ , так как  $n^2 > \ln n$
- 2. Исследуем его на абсолютную сходимость
- 3. Исследуем его на условную сходимость

### 1.4 г

$$\sum_{n=1}^{\infty} \left( \arccos\left(1 - \frac{1}{n}\right) \right)^{\frac{1}{n}} \tag{5}$$

- 1. Ряд знакопостоянный
- 2. Проверим, выполнен ли neofxodumый признак сходимости числового ряда  $\lim_{n\to\infty}a_n=0$

$$\lim_{n \to \infty} \left( \arccos\left(1 - \frac{1}{n}\right) \right)^{\frac{1}{n}} = \left\| 0 \le 1 - \frac{1}{n} \le 1 \right\| =$$

$$= \lim_{n \to \infty} \left( \arcsin\sqrt{1 - \left(1 - \frac{1}{n}\right)^2} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left( \arcsin\sqrt{\frac{2}{n} - \frac{1}{n^2}} \right)^{\frac{1}{n}} =$$

$$= \lim_{n \to \infty} \left( \sqrt{\frac{2}{n} + O\frac{1}{n^2}} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left( \sqrt{\frac{2}{n}} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left( \frac{2}{n} \right)^{\frac{1}{2n}} = \lim_{n \to \infty} e^{\frac{1}{2n} \cdot \ln \frac{2}{n}} =$$

$$= e^{\lim_{n \to \infty} \frac{1}{2n} \cdot \ln \frac{2}{n}}$$

Далее вычислим предел степени экспоненты, применив теорему Штольца

$$\lim_{n \to \infty} \frac{1}{2n} \ln \frac{2}{n} = \lim_{n \to \infty} \frac{\ln \frac{2}{n} - \ln \frac{2}{n-1}}{2n - 2n + 2} = \lim_{n \to \infty} \frac{\ln \frac{n-1}{n}}{2} = \lim_{n \to \infty} \frac{\ln \left(1 - \frac{1}{n}\right)}{2} = \lim_{n \to \infty} \frac{-\frac{1}{n}}{2} = 0$$

Подставляя вычисленное значение, получим

$$\lim_{n \to \infty} \left( \arccos\left(1 - \frac{1}{n}\right) \right)^{\frac{1}{n}} = e^0 = 1 \neq 0 \tag{6}$$

Следовательно, ряд расходится.

Ответ: ряд расходится