

I.	Course ID (department & number): MAT-114				
II.	Course Name: Introduction to Statistics and Probability				
III.	Number of Credits Awarded for Course: 3 credits				
IV.	Prerequisite or Co-requisite courses or academic standing (if applicable):				
	Pre-requisite: Exit through College Placement Test or Exit Academic Foundations Mathematics Coursework.				
V.	Indicate if New or Modified Course: New				
VI.	Semester and Year Course will First be Offered: Fall 2017				
VII.	Name and Telephone Number and/or e-mail address of department chair or other appropriate contact person:				
	Heather DeVries, Academic Representative to NJ Transfer 201-360-4660 hdevries@hccc.edu				
	Ahmed Rakki, Coordinator of Upper-Level Mathematics arakki@hccc.edu				
	Dr. Burl Yearwood, Associate Dean of STEM <u>byearwood@hccc.edu</u>				
VIII.	Detailed Course Description:				
	This course offers an analysis of the basic ideas and methods of collecting, tabulating, and representing data. Topics include frequency distributions, histograms and frequency polygons: measures of central tendency, variability percentiles; Z-scores, elementary probability, binomial and normal distributions; linear regression and correlation, and hypothesis testing.				
IX	Outline of Course Objectives:				
	 Analyze the issues and problems associated with collecting and interpreting data from surveys, polls, and other statistical studies. Apply the appropriate tabular and graphical formats for displaying univariate data sets and correctly summarize information about the centre and spread of a univariate data set. Apply the concepts of probability, random variables and their distributions, in 				
	particular the binomial distribution and normal distributions to data drawn from real- world statistical applications.				

4. Apply the concepts of estimation (confidence intervals) and hypothesis testing for population averages and percentages to datasets drawn from real-world statistical applications. 5. Select and produce the appropriate tabular and graphical formats for displaying bivariate data sets. 6. Analyze data using correlation, regression and chi-square analyses. Χ. Texts, Journals and Other Materials used in Course: Statistics, Charles Henry Brase, Corrine Pellilo Brase XI. **Grade Determinants** Three in class exams: 75% Final exam: 25% XII. Number of Papers & Examinations See XI. XIII. Schedule of Topics to be Covered See below.

Session	Chapter	Topic	SLO
1.		Frequency	1, 2
	Introduction	Distribution	
2.	Organizing Data	Stem-and-Leaf	
		Display	
3.		 Measures of Central 	2
	Averages and	Tendency	
	Variation	 Measures of 	
4.	Test #1	Variation	
		 Percentiles 	
		Scatter Diagrams and	1, 6
	Correlation	linear regression	
5.	and	 Linear Regression 	
	Regression	and the coefficient of	
		Determination	
6.		Introduction	3
	Elementary	 Compound Events 	
7.	Probability Theory	 Counting Techniques 	
	Test #2		

8. 9.	Binomial Probability Distribution	 Introduction to Random Variables and Probability Distributions Binomial Probabilities Additional Properties of the Binomial Distribution 	3
10. 11.	The Normal Curves and Sampling Distributions Test #3	 Graphs and the Standard Normal Distribution Nonstandard Normal Distribution The Central Limit Theorem Normal Approximation to the Binomial Distribution 	2, 3, 5, 6
13.	Estimation Hypothesis Testing	 Estimating μ When σ is known Estimating μ When σ is Unknown Estimating ρ in The Binomial Distribution Introduction to 	4
14.	Exam review Final exam	 statistical Tests Testing the mean μ Testing a Proportion ρ 	