

Лекция №8.

Устойчивость. Асимптотическая устойчивость.

Пусть система дифференциальных уравнений

$$\frac{dx_i}{dt} = f_i(t, x_1, \dots, x_n), \qquad i = \overline{1, n}$$
 (1)

имеет при $t\in [t_0,+\infty)$ решения $x_i=\varphi_i(t),\,i=\overline{1,n},$ удовлетворяющие начальным условиям

$$\varphi_i(t_0) = x_i^0, \qquad i = \overline{1,n}.$$
 (2)

Определение

Решение $\varphi(t)=(\varphi_1(t),\ldots,\varphi_n(t))$ дифференциальной задачи (1), (2) называется устойчивым (устойчивым по Ляпунову), если $\forall \varepsilon>0 \; \exists \; \delta(\varepsilon)>0$ такое, что для любого решения $x=x(t)=(x_1(t),\ldots,x_n(t))$ этой же задачи, удовлетворяющего неравенству

$$||x(t_0) - \varphi(t_0)|| < \delta(\varepsilon), \tag{3}$$

для $\forall t > t_0$ выполняется неравенство

$$||x(t) - \varphi(t)|| < \varepsilon. \tag{4}$$

Это означает, что близкие в начальный момент времени t_0 траектории x(t) и $\varphi(t)$ остаются близкими $\forall t > t_0$.

Определение

Если $\exists \varepsilon>0$ т.ч. $\forall \delta>0$ $\exists t>t_0$ т.ч. из неравенства (3) не следует (4), то решение $\varphi(t)$ называется неустойчивым в смысле Ляпунова.

Определение

Если решение $\varphi(t)$ устойчиво по Ляпунову и удовлетворяет условию

$$\lim_{t \to \infty} \|x(t) - \varphi(t)\| = 0, \tag{5}$$

то оно называется асимптотически устойчивым.

Приведение исследования устойчивости любого решения к исследованию устойчивости нулевого решения.

Замена $x=y+\varphi(t)$ делает равносильным исследование устойчивости решения $x=\varphi(t)$ и исследование устойчивости нулевого решения y=0.

Замечание

Из теоремы о непрерывной зависимости решений от начальных данных и правых частей следует, что если f(t,x) -непрерывна по (t,x) и удовлетворяет условию Липшица по x, то факт устойчивости или неустойчивости не зависит от выбора начального момента t_0 .

Условие устойчивости линейной системы.

$$\frac{dx}{dt} = A(t)x,\tag{6}$$

A(t) — непрерывно зависящая от t матрица. Будем исследовать устойчивость нулевого решения $x(t)\equiv 0$. Было, что любое решение $x(t)=X(t)x^0$, где X(t) — фундаментальная матрица системы такая, что X(0)=E.

Теорема

 $\mathcal{L}_{\Lambda \mathcal{R}}$ системы (6)

- нулевое решение устойчиво \Leftrightarrow каждое решение ограничено при $0\leqslant t<\infty$ и
- нулевое решение асимптототически устойчиво \Leftrightarrow каждое решение стремится к нулю при $t \to \infty$.

Доказательство.

Предположим, что каждое решение ограничено $\Rightarrow \|X(t)\| \leqslant m$. Пусть $\delta = \frac{\varepsilon}{m}$, тогда для любого решения x(t) с начальными условиями $|x(0)| < \delta$ получим $|x(t)| \leqslant \|X(t)\| \, |x(0)| \leqslant m\delta = \varepsilon$.

 $|x(0)| < \delta$ получим $|x(t)| \leqslant \|X(t)\| \|x(0)\| \leqslant m\delta = \varepsilon$. В обратную сторону: Пусть нулевое решение устойчиво т.е. из оценки $|x(0)| < \delta$ следует $|x(t)| < \varepsilon$. Система линейная однородная и следовательно если $|x(0)| \leqslant 2$, то $|x(t)| < \frac{2\varepsilon}{\delta} = k$. Рассмотрим решения входящие в фундаментальную матрицу. Начальные условия для каждого i – го столбца $|x^i(0)| = 1$ и $\Rightarrow |x^i(t)| < k$. $0 \leqslant t < \infty$. $\Rightarrow \|X(t)\| \leqslant kn$.

Пусть теперь каждое решение стремится к нулю при $t \to \infty$. Следовательно |x(t)| < 1 при $t > t_1$, а от t_0 до t_1 |x(t)| < m $\Rightarrow |x(t)| < \max{\{1,m\}}$ на (t_0,∞) . Тогда по доказанному нулевое решение устойчиво и следовательно асимптотически устойчиво. В обратную сторону: Пусть нулевое решение асимптотически устойчиво. Следовательно все решения с $|x(0)| < \delta$ стремятся к нулю. Пусть x(t) – любое решение. Возьмем константу $k = \frac{\delta}{2|x(0)|}$, kx(t) – тоже решение. $|kx(0)| < \frac{\delta}{2} < \delta \Rightarrow kx(t) \to 0$, $\Rightarrow x(t) \to 0$.

Следствие

Нулевое решение линейной однородной системы неустойчиво тогда и только тогда, когда система имеет неограниченное при $t \to \infty$ решение.

Следствие

Eсли нулевое решение устойчиво, то и любое решение устойчиво.

Рассмотрим неоднородную систему

$$\dot{x} = A(t)x + f(t)$$
, $A(t)$, $f(t)$ – непрерывны.

Так как разность 2-х решений неоднородной системы это решение однородной системы то, решение неоднородной системы устойчиво \Leftrightarrow устойчиво нулевое решение однородной системы.

Устойчивость нулевого решения линейной системы с постоянными коэффициентами.

$$\dot{x} = Ax, \quad x \in \mathbb{R}^{n}.$$
 (7)

Теорема

Нулевое решение системы (7)

- 1) асимптотически устойчиво \Leftrightarrow все $\operatorname{Re} \lambda_j < 0$,
- 2) устойчиво \Leftrightarrow все ${\rm Re}\,\lambda_j\leqslant 0$ и для $mex\,\lambda_j^-$ у которых ${\rm Re}\,\lambda_j=0$ все жардановы клетки размера 1.
- 3) не устойчиво ⇔

$$\left\{\begin{array}{l} unu \; \exists \, \mathrm{Re} \, \lambda_j > 0, \\ unu \; \exists \lambda_j \; y \; которой \; \mathrm{Re} \, \lambda_j = 0 \; u \; жоорданова \; клетка \; размера \; 1. \end{array}\right.$$

Замечание

Как узнать размер жордановых клеток не находя жорданову форму матрицы? $\operatorname{Re} \lambda_j = 0$, все жордановы клетки размера $1 \Leftrightarrow \operatorname{rang}(A - \lambda_j E) = n - k_j$, где k_j – кратность корня λ_j .

Условие отрицательности всех действительных частей корней уравнения

$$a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0, \quad a_0 > 0,$$
 (8)

с вещественными коэффициентами.

Необходимыми условиями отрицательности всех действительных частей корней уравнения (8) являются неравенства $a_i>0,\ i=\overline{0,n}.$ Матрица вида

$$\begin{pmatrix} a_1 & a_0 & 0 & 0 & 0 & 0 & \dots & 0 \\ a_3 & a_2 & a_1 & a_0 & 0 & 0 & \dots & 0 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & a_n \end{pmatrix}$$

[на диагонали a_1, \ldots, a_n направо уменьшаем индексы, а налево увеличиваем индексы, остальные нули] называется матрицей Гурвица. Критерий: Для отрицательности всех действительных частей корней уравнения (8) необходимо и достаточно, чтобы были положительны все главные диагональные миноры матрицы Гурвица.

$$\Delta_1 = a_1, \quad \Delta_2 = \begin{vmatrix} a_1 & a_0 \\ a_3 & a_2 \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a_1 & a_0 & 0 \\ a_3 & a_2 & a_1 \\ a_5 & a_4 & a_3 \end{vmatrix}, \quad \dots$$