Grafo vaizdavimo kompiuteryje būdai II

GRAFŲ TEORIJA JULIAN DZISEVIČ

Briaunų (lankų) matrica

- (2 x m) formato matrica yra vadinama briaunų (lankų) matrica, jei (b_{1j}, b_{2j}) , $j=\overline{1,m}$ yra j-oji grafo briauna.
- Orientuoto grafo atveju b_{1i} žymi j-ojo lanko pradžią, o b_{2i} lanko pabaigą.
- Informacijos apimtis minimali matricos elementų skaičius yra lygus 2*m.
- Briaunų išdėstymo tvarka matricoje yra laisva.

Briaunų (lankų) matrica

• Pavyzdys:

$$B(G) = \begin{pmatrix} 1 & 1 & 2 & 2 & 2 & 4 \\ 2 & 5 & 5 & 4 & 3 & 5 \end{pmatrix}$$

$$B(H) = \begin{pmatrix} 1 & 5 & 2 & 5 & 5 & 4 \\ 2 & 1 & 3 & 2 & 4 & 2 \end{pmatrix}$$

Briaunų (lankų) matrica

• Viršūnės, gretimos viršūnei k, neorientuoto grafo atveju, yra randamos taip:

```
for j := 1 to m do

begin

if b[1, j] = k then "viršūnė b[2, j] gretima viršūnei k";

if b[2, j] = k then "viršūnė b[1, j] gretima viršūnei k";

end;
```

Orientuoto grafo atveju:

```
for j := 1 \ to \ m \ do

if \ b[1, j] = k \ then "viršūnė \ b[2, j] \ gretima \ viršūnei \ k";
```

Gretimumo struktūra

- Gretimumo struktūra yra vadinama gretimų viršūnių aibių (viršūnių aplinkų) šeima.
- Gretimumo struktūrą kompiuteryje atvaizduoti galima pavyzdžiui $(n \times \max_{v} d(v))$ formato matrica, čia d(v) - n-tosios viršūnės laipsnis. Tokiu atveju, matricos k-tosios eilutės nenuliniai elementai yra gretimos viršūnei k.

Neorientuoto grafo

Orientuoto grafo gretimumo struktūra

Gretimumo struktūra

• Jei gretimumo struktūra yra užrašyta matrica $T = [t_{ij}]$, $i = \overline{1, n}$, $j = \overline{1, \max_{v \in V} d(v)}$, tada viršūnei k gretimos viršūnės randamos taip:

```
for j := 1 to \max_{v \in V} d(v) do
if t[k, j] \neq 0 then "t[k, j] viršūnė gretima viršūnei k";
```

• Gretimumo struktūra bus naudojama formaliai užrašant algoritmus. Simboliu N(v) bus žymima viršūnės v gretimų viršūnių aibė. Norėdami pasakyti "nagrinėjame viršūnes, gretimas viršūnei v", rašysime:

for $u \in N(v)$ do "nagrinėti viršūnę u".

Nuoseklaus peržiūrėjimo masyvas

- Tai masyvas, turintis n + 2*m elementų neorientuoto ir n + m orientuoto grafo atveju, ir kuris sudaromas taip:
 - Iš eilės, pradedant pirmąja viršuje ir baigiant paskutiniąja, kiekvienai viršūnei rašomas viršūnės numeris su minuso ženklu, o po jo rašomos tai viršūnei gretimos viršūnės.
- Pažymėję šį masyvą raide P, tai gausime:
 - Neorientuoto grafo atveju: P: -1,2,5,-2,1,3,4,5,-3,2,-4,2,5,-5,1,2,4;
 - Orientuoto grafo atveju: P: -1,2,-2,3,-3,-4,2,-5,1,2,4;

Nuoseklaus peržiūrėjimo masyvas

- Ieškodami gretimų viršūnių viršūnei k, turėsime masyve P rasti elementą, lygų -k.
- Po -k esantys masyvo elementai bus gretimų viršūnių numeriai viršūnei k:

```
i := 1;
while \ p[i] \neq -k \ do \ i := i + 1;
l := i + 1;
while \ p[l] > 0 \ do
begin "viršūnė \ p[l] \ yra \ gretima \ viršūnei \ k";
l = l + 1
end;
```