PROBLEME 2 (extrait de CCP MP 2014)

Notations et rappels

Soit n un entier supérieur à 1. On désigne par $\operatorname{diag}(\alpha_1, \dots, \alpha_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux sont les réels $\alpha_1, \dots, \alpha_n$ dans cet ordre. Si $M \in \mathcal{M}_n(\mathbb{R})$, on note tM sa transposée.

On munit l'espace vectoriel $E = \mathbb{R}^n$ du produit scalaire canonique noté $\langle \ | \ \rangle$ et de la norme euclidienne $\| \ \|$ associée. On note $\mathcal{S}(E)$ le sous-espace des endomorphismes symétriques de E, c'est-à-dire l'ensemble des endomorphismes s de E vérifiant :

$$\forall (x,y) \in E^2, \ \langle s(x)|y\rangle = \langle x|s(y)\rangle.$$

Un endomorphisme symétrique s de E est dit symétrique positif (respectivement symétrique défini positif) si :

$$\forall x \in E, \langle s(x)|x \rangle \geqslant 0 \text{ (respectivement } \forall x \in E \setminus \{0\}, \langle s(x)|x \rangle > 0).$$

Une matrice S de $\mathcal{M}_n(\mathbb{R})$ est dite symétrique positive (respectivement symétrique définie positive) si :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ ^t X S X \geqslant 0 \ \text{(respectivement } \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ ^t X S X > 0).$$

On note $\mathcal{S}_n^+(\mathbb{R})$ (respectivement $\mathcal{S}_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques positives (respectivement symétriques définies positives) de $\mathcal{M}_n(\mathbb{R})$.

On rappelle qu'un endomorphisme s de E est symétrique (respectivement symétrique positif, symétrique défini positif) si, et seulement si, sa matrice dans toute base orthonormée de E est symétrique (respectivement symétrique positive, symétrique définie positive).

On admet que, pour tous réels positifs a_1, \dots, a_n ,

$$\left(\prod_{i=1}^{n} a_{i}\right)^{1/n} \leqslant \frac{1}{n} \sum_{i=1}^{n} a_{i} \quad \text{(inégalité arithmético-géométrique)}.$$

Objectif du problème

On se donne une matrice S de $\mathcal{S}_n^+(\mathbb{R})$ (ou $\mathcal{S}_n^{++}(\mathbb{R})$) et on étudie le maximum (ou minimum) de la forme linéaire $A \mapsto \operatorname{Tr}(AS)$ sur des ensembles de matrices.

Questions préliminaires

1.

- 1.a Enoncer (sans démonstration) le théorème de réduction des endomorphismes symétriques de l'espace euclidien E et sa version relative aux matrices symétriques réelles.
- **1.b** Toute matrice symétrique à coefficients complexes est-elle nécessairement diagonalisable? On pourra par exemple considérer la matrice de $\mathcal{M}_2(\mathbb{C})$:

$$S = \left(\begin{array}{cc} i & 1\\ 1 & -i \end{array}\right).$$

2. Soit $s \in \mathcal{S}(E)$, de valeurs propres (réelles) $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$$
.

Soit $\beta = (\varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée de E telle que, pour tout $i \in [1; n]$, ε_i est un vecteur propre associé à la valeur propre λ_i . Pour tout vecteur x de E, on pose :

$$R_s(x) = \langle s(x)|x\rangle.$$

- **2.a** Exprimer $R_s(x)$ à l'aide des λ_i et des coordonnées de x dans la base β .
- **2.b** En déduire l'inclusion : $R_s(S(0,1)) \subset [\lambda_1, \lambda_n]$ où S(0,1) désigne la sphère unité de E.

3.

- **3.a** On suppose dans cette question que s est symétrique positif (respectivement symétrique défini positif). Démontrer que les valeurs propres de s sont toutes positives (respectivement strictement positives).
- **3.b** Soit $S = (s_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$$
.

On note s l'endomorphisme de E représenté par S dans la base canonique $B=(e_1,\cdots,e_n)$. Exprimer le terme général $s_{i,j}$ de S comme un produit scalaire et démontrer que :

$$\forall i \in \{1, \dots, n\} \ \lambda_1 \leqslant s_{i,i} \leqslant \lambda_n.$$

Un maximum sur $\mathcal{O}_n(\mathbb{R})$

On note I_n la matrice unité de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{O}_n(\mathbb{R})$ le groupe des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

- **4.** Démontrer que l'application $M \mapsto {}^t M M I_n$ est continue de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$.
- 5. Justifier que, si $A=(a_{i,j})$ est une matrice orthogonale, alors :

$$\forall (i,j) \in [1;n]^2, |a_{i,j}| \leq 1.$$

- **6.** En déduire que le groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ est une partie compacte (= fermée bornée) de $\mathcal{M}_n(\mathbb{R})$.
- 7. Soit $S \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres (positives) $\lambda_1, \dots, \lambda_n$. On pose $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Si A est une matrice orthogonale, on note T(A) le nombre réel $T(A) = \operatorname{Tr}(AS)$.
 - **7.a** Soit $A \in \mathcal{O}_n(\mathbb{R})$. Démontrer qu'il existe une matrice orthogonale B telle que :

$$T(A) = \text{Tr}(B\Delta).$$

- **7.b** Démontrer que l'application T de $\mathcal{O}_n(\mathbb{R})$ dans \mathbb{R} admet un maximum sur $\mathcal{O}_n(\mathbb{R})$ que l'on notera t.
- **7.c** Démontrer que, pour toute matrice orthogonale A de $\mathcal{O}_n(\mathbb{R})$, $T(A) \leqslant \text{Tr}(S)$, puis déterminer le réel t.

Inégalité d'Hadamard

Soit $S = (s_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres (réelles positives) $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$0 \leqslant \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$$
.

8. Démontrer l'inégalité valable pour tout $S \in \mathcal{S}_n^+(\mathbb{R})$:

$$\det(S) \leqslant \left(\frac{1}{n} \operatorname{Tr}(S)\right)^n \quad (*).$$

9. Soit $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ et $S_\alpha = {}^tDSD$. Démontrer que $S_\alpha \in \mathcal{S}_n^+(\mathbb{R})$ et calculer $\operatorname{Tr}(S_\alpha)$.

10. Dans cette question, on suppose que les coefficients diagonaux $s_{i,i}$ de S sont strictement positifs et, pour $1 \le i \le n$, on pose $\alpha_i = \frac{1}{\sqrt{s_{i,i}}}$. En utilisant l'inégalité (*), démontrer que :

$$\det(S) \leqslant \prod_{i=1}^{n} s_{i,i}.$$

11. Pour tout réel $\varepsilon > 0$, on pose $S_{\varepsilon} = S + \varepsilon I_n$. Démontrer que $\det(S_{\varepsilon}) \leqslant \prod_{i=1}^{n} (s_{i,i} + \varepsilon)$, puis conclure que :

$$\prod_{i=1}^{n} \lambda_{i} \leqslant \prod_{i=1}^{n} s_{i,i} \text{ (inégalité d'Hadamard)}.$$

Application de l'inégalité d'Hadamard : détermination d'un minimum

Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$, de valeurs propres $0 < \lambda_1 \leqslant \cdots \leqslant \lambda_n$, et $\Delta = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Soit $\Omega \in \mathcal{O}_n(\mathbb{R})$ telle que $S = \Omega \Delta^t \Omega$. On désigne par \mathcal{U} l'ensemble des matrices de $\mathcal{S}_n^{++}(\mathbb{R})$ de déterminant égal à 1.

12. Démontrer que, pour tout $A \in \mathcal{U}$, la matrice $B = {}^t\Omega A\Omega$ est une matrice de \mathcal{U} vérifiant :

$$\operatorname{Tr}(AS) = \operatorname{Tr}(B\Delta).$$

- 13. Démontrer que $\{\operatorname{Tr}(AS), A \in \mathcal{U}\} = \{\operatorname{Tr}(B\Delta), B \in \mathcal{U}\}$, puis que ces ensembles admettent une borne inférieure que l'on notera m.
- **14.** Démontrer que, si $B = (b_{i,j}) \in \mathcal{U}$:

$$\operatorname{Tr}(B\Delta) \geqslant n(\lambda_1 \cdots \lambda_n)^{1/n} (b_{1,1} \cdots b_{n,n})^{1/n}$$

- **15.** En déduire que, pour $B = (b_{i,j}) \in \mathcal{U}$, $\operatorname{Tr}(B\Delta) \geqslant n(\det(S))^{1/n}$.
- **16.** Pour tout entier k tel que $1 \le k \le n$, on pose $\mu_k = \frac{1}{\lambda_k} (\det(S))^{1/n}$ et $D = \operatorname{diag}(\mu_1, \dots, \mu_n)$. Déterminer le réel m.