K Sum Paths

Given a binary tree and an integer K. Find the number of paths in the tree which have their sum equal to K.

A path may start from any node and end at any node in the **downward** direction.

Since the answer may be very large, compute it modulo 10^9+7 .

Example 1:

Example 2:

```
K = 5
Output:
8
Explanation:
The following paths sum to K.
3 2
3 1 1
1 3 1
4 1
1 -1 4 1
-1 4 2
5
1 -1 5
```

Your Task:

You don't need to read input or print anything. Complete the function **sumK()** which takes root node and integer K as input parameters and returns the number of paths that have sum K.

Expected Time Complexity: O(N)

Expected Auxiliary Space: O(Height of Tree)

Constraints:

 $1 \leq N \leq 2*10^4$

 $-10^5 \le \text{Node Value} \le 10^5$

 $-10^9 \le K \le 10^9$