Rings.Know

Uncultured Tramp

September 10, 2016

Contents

1	Basic Rings	
	1.1	Rings
	1.2	Ideals
	1.3	Morphisms
	1.4	Quotients
	1.5	Polynomials and generating functions
		1.5.1 Content and proimitive polinomials
		1.5.2 Irreducibility over field of fractions
		1.5.3 Division Algorithm
2	Cha	uracteristic
3	Classes of Commutative rings	
	3.1	Integral Domains
	3.2	Unique Factorization Domain
	3.3	PID
	3 /	Fuelideen Domeins

- 1 Basic Rings
- 1.1 Rings
- 1.2 Ideals
- 1.3 Morphisms
- 1.4 Quotients

1.5 Polynomials and generating functions

$$\begin{split} \operatorname{Polynomial}: \operatorname{CommutativeRing} &\to \operatorname{CommutativeRing} \\ &\operatorname{Polynomial}((R) = R[x] := (\\ \{p: \mathbb{Z}_+ \to R: \exists N \in \mathbb{Z}_+: \forall n \in \mathbb{Z}_+: n \geq N : p_n = 0\}, \\ &p + q := \Lambda n \in \mathbb{Z}_+: p_n + q_n, \\ &pq := \Lambda n \in \mathbb{Z}_+: \sum_{i \in \mathbb{Z}_+: j \in \mathbb{Z}_+: i + j = n} p_i q_j) \end{split}$$

$$\label{eq:degree} \operatorname{degree}:: R[x] \to \mathbb{Z}_+|-\infty$$

$$\operatorname{degree}(p) = \deg p := \text{if } p = 0 \text{ then } -\infty \text{ else } \max\{n \in \mathbb{Z}_+ : p_n \neq 0\}$$

$${\tt leadingCoeficient} :: R[x] \to R$$

$${\tt leadingCoeficient}(p) = {\tt lc}(p) := {\tt if} \ p = 0 \ {\tt then} \ 0 \ {\tt else} \ p_{\deg p}$$

$$\begin{aligned} & \texttt{Monic} :: ?R[x] \\ & p : \texttt{Monic} \iff \operatorname{lc}(p) = 1 \end{aligned}$$

$$\begin{split} \operatorname{moprhPolyExtension} &:: \mathcal{M}_{\mathsf{Ring}}(R,S) \to \mathcal{M}_{\mathsf{Ring}}(R[x],S[x]) \\ & \operatorname{moprhPolyExtension}(\phi)(p) = p^\phi = \sum_{i=0}^\infty \phi(p_i) x^i \end{split}$$

Irreducable ::
$$?R[x]$$

$$f: \texttt{Irreducable} \iff f ! \texttt{Unit}([R(x)]) \ \& \ \forall p,q \in R[x] : pq = f \ . \ p : \texttt{Unit}([R(x)]) | q : \texttt{Unit}($$

1.5.1 Content and proimitive polinomials

Assume R: UFD

$$\begin{array}{c} {\tt Content}: R[x] \to ?R \\ r: {\tt Content}(p) \iff r \in C(p) \iff r: {\tt GCD}(\{p_i: i \in \deg p\}) \end{array}$$

$$\begin{aligned} & \text{Primitive}:?R[x] \\ & p: \text{Primitive} \iff C(p) = \{1\} \end{aligned}$$

Content: Frac
$$R[x] \rightarrow ?$$
Frac R

$$\mathtt{Content}(f) = C(f) := \{u\Pi | u : \mathtt{Units}(R)\}$$

$$\begin{split} \Pi &= \prod_{P: \texttt{Prime}(R)} P^{e(P)} \\ e(P) &= \min_{i \in \deg f} \{ \exp(f_i, P) \} \end{split}$$

Primitive :: $\operatorname{Frac}R[x]$

$$p: \texttt{Primitive} \iff 1 \in C(p)$$

 $\texttt{ContentFact1} :: \forall f \in \operatorname{Frac} R \;.\; \forall a \in C(f) \;.\; \exists p \in \texttt{Primitive}(R) : f = ap$

 $Proof \approx$

Let $a = u\Pi$ as in definition of content. Then, by definition of Π

$$(u\Pi)^{-1}f = \sum_{i=0}^{\deg f} r_i x^i = p$$

with each $r_i \in R$ such that gcd(r) = 1 which means that p is Primitive and in $R[x]\square$.

 ${\tt ContentFact2} :: \forall p : {\tt Primitive}(\operatorname{Frac} R) \;.\; p : {\tt Primitive}(\operatorname{Frac} R)$

 $Proof \approx$

We know that $1 \in (p)$ so by ContentFact1 p = 1p lies in R[x].

 $\texttt{ContentFact3} :: f \in R[x] \iff C(f) \in R$

 $Proof \approx$

If $f \in R[x]$ when all her coefficients lie in R so by definition of content in field of fractions $C(f) \in R$. If $C(f) \in R$ when by definition of C no prime factor of any coefficient of f has strictly negative exponent which is the same as $f \in R[x]$.

 $\texttt{GausLemma} :: \forall f, g : \texttt{Primitive}(R) . fg : \texttt{Primitive}(R)$

 $Proof \approx$

Assume f, g are primitive polynomials.

Assume fg Is not primitive.

This means that there exists a prime element $p \in R$ such that $p \in C(fg)$.

Let $\pi_p: R \to \frac{R}{(p)}$ denote natural projection.

Then

$$0 = (fg)^{\pi_p} = f^{\pi_p} g^{\pi_p}$$

but as f and g are primitive $f^{\pi_p}g^{\pi_p} \neq 0$ so we have a contradiction.

ContentProduct :: $\forall f, g : \operatorname{Frac} R[x] . C(fg) = C(f)C(g)$

Proof ≈

For each $a \in C(f)$ and $b \in C(g)$ by ContentFact1 we write f = aF and g = aG where F and G are primitive and hence by GausLemma FG is primitive.

$$C(fg) = C(aFbG) = C(abFG) = ab\mathtt{Unit}(R) = a\mathtt{Unit}(R)b\mathtt{Unit}(R) = C(f)C(g)$$

PrimitiveFactorization :: $\forall f \in R[x] . \forall h \in \operatorname{Frac} R[x] . \forall p : \operatorname{Primitive}(R) : f = ph . h \in R[x]$ Proof $\approx \operatorname{By}$ ContentProduct and using permittivity of p we have

$$C(f) = C(ph) = C(p)C(h) = C(h)$$

so by contentFact3 $h \in R[x]$.

1.5.2 Irreducibility over field of fractions

FactorizationOver: $R[x] \to ?R \to ?(R[x] \times R[x])$ (a,b):FactorizationOver $(f)(S) \iff f = ab \land \forall i \in \deg a \ . \ a_i \in S \land \forall i \in \deg b \ . \ b_i \in S$

DegreewiseFactorization: $R[x] \rightarrow ?R \rightarrow ?(R[x] \times R[x])$ (a,b): DegreewiseFactorization $(f) \iff f = ab \land \deg a > 0 \land \deg b > 0$

DegreewiseIrrefucable :?R[x]

 $f: \texttt{DegreewiseIrreducable} \iff \forall (a,b) \in R[x] \times R[x] \cdot (a,b) ! \texttt{DegreewiseFactorization}(f)$

Proof ≈

One side is trivial.

Now assume that f is degreewise irreducible only in R. Assume that (a,b) is a degreewise factorisation of f in field of fractions. let α be an element from content of a such that $a = \alpha p$ where p is primitive. Then

$$f = ab = \alpha pb = (\alpha b)p.$$

As $f \in R[x]$ and p is primitive then by PrimitiveFactorization $(\alpha b) \in R[x]$ and by ContentFact2 $p \in R[x]$. So f is not irreducible over R, a contradiction.

Proof \approx

If f is not irreducible only in R then one of her factors must have a degree 0 which means that f is not primitive.

A contradiction.

If f is not irreducible only in field of fractions then it must be degreewise reducible and hence reducible in R also.

A contradiction. \square

1.5.3 Division Algorithm

If $\deg g > \deg f$ then just take q = 0 and r = f.

Otherwise we know that $\deg q = \deg f - \deg g$ so we can choose q_i to be unique to be unique solution of linear equation $((gq)_i = f_i)_{i=\deg g}^{\deg f}$ which always exists as g is monic and (R,+) is a group.

So $\deg r \leq \deg f$. \square .

Represent f = q(x - a) + r.

If a is root of f then 0 = f(a) = q(a-a) + r = r, so (x-a) is indeed a factor of f. Another side is trivial f(a) = q(a-a) = 0. \square .

MaximalRoots :: $\forall f \in R[x]$. $\# \ker f \leq \deg f$

 $Proof \approx number of factors of a polynomial cannot exceed her degree and number of roots cannot exceed her degree.$

- 2 Characteristic
- 3 Classes of Commutative rings
- 3.1 Integral Domains
- 3.2 Unique Factorization Domain
- 3.3 PID
- 3.4 Euclidean Domains