УДК 519.7

Об одном алгоритме синтеза сетей Петри из односчетчиковых контуров

Н. В. Лебедева, В. А. Башкин

Ярославский государственный университет им. П. Г. Демидова E-mail: natali25lebedeva@gmail.com, v bashkin@mail.ru

Аннотация

Представлен новый алгоритм синтеза сетей Петри из односчетчиковых контуров (односчётчиковых сетей с сильно связной диаграммой управляющих состояний). Для поиска эквивалентных структур в диаграмме состояний используется модифицированный метод регионов.

Ключевые слова: односчетчиковые контуры, сети Петри, синтез, распараллеливание, метод регионов.

Введение

Фундаментальная проблема распараллеливания — это задача построения параллельного алгоритма, эквивалентного данному последовательному. В общем случае универсальных вычислительных моделей (машин Тьюринга, языков программирования) она, очевидно, неразрешима, поскольку содержит как подзадачу проблему функциональной эквивалентности, которая неразрешима по теореме Райса [1]. Возможны лишь какие-то эвристики и/или алгоритмы для более простых частных случаев.

В частности, на текущий момент одно из максимальных продвижений в данной области — алгоритм синтеза [2], позволяющий построить сеть Петри [3] по произвольному конечному автомату. Этот алгоритм (называемый также методом регионов) позволяет находить в диаграмме переходов автомата так называемые регионы — множества сходных состояний, и на их основе формировать множество позиций сети Петри.

Целью данной работы является поиск возможностей применения данного автоматного подхода к новому классу неограниченных систем — односчётчиковым контурам [4]. Это гораздо более выразительный формализм, обладающий не только конечным управлением (как конечный автомат), но ещё и одной неограниченной

© Лебедева Н. В., Башкин В. А., 2020

переменной-счётчиком. Диаграмма переходов любой такой системы может быть представлена в виде «контура» из Δ связанных между собой конечных автоматов (где Δ —это «период» контура, вычисляемый как НОД эффектов всех его циклов). В пределах одного сектора переходы не меняют значение счётчика, таким образом, мы можем попытаться синтезировать из них сеть Петри.

Сети Петри

Сеть Петри — двудольный ориентированный мультиграф, который содержит вершины двух типов — места p, обозначающиеся кружками, и переходы t, обозначающиеся прямоугольниками или планками. Любая дуга ведет либо от места в переход, либо наоборот [3]. Перенос фишек производится по следующей схеме:

- 1. Если в каждом входном месте перехода содержится по крайней мере одна фишка, то переход является активным.
- 2. Сработать может только активный переход. При срабатывании он забирает по одной фишке с каждого своего входного места и размещает по одной фишке на каждое свое выходное место.
- 3. В каждый момент времени для срабатывания из всех активных переходов недетерминированным образом выбирается один. Если же активные переходы отсутствуют, то работа сети на этом завершается.

Рис. 1: Пример работы сети Петри.

У сетей Петри существует несколько свойств: ограниченность, безопасность, консервативность. Следует обратить внимание на такое свойство ограниченности. Оно связано с тем, что вводится ограничение на число меток в позициях. Если количество фишек в позиции p_i не может превышать некоторого целого числа k, тогда

данная позиция называется k-ограниченной. Сеть Петри называется ограниченной, если все ее позиции ограничены.

Регионы

Метод регионов позволяет синтезировать из данной конечной системы переходов (то есть конечного автомата) эквивалентную сеть Петри. Заметим, что, в отличие от конечного автомата, сеть Петри представляет собой распределённую стстему—в ней могут быть активны несколько переходов одновременно. То есть, фактически, метод регионов—это алгоритм распараллеливания последовательного алгоритма.

Регионом называют подмножество состояний, в которых все переходы, помеченные одним и тем же событием *е*, имеют одинаковое отношение «вход/выход». Оно станет отношением предшественника/преемника в сети Петри. Событие всегда может быть либо событием входа для региона, либо событием выхода, либо никогда не «пересекать» границы региона [2].

Рассмотрим систему переходов $TS=(S,E,A,s_{in})$, где S- множество состояний, E- множество событий (меток переходов), A- множество переходов, $s_{in}-$ начальное состояние.

Пусть $S'\subseteq S$ — подмножество состояний, а $e\in E$ — событие. Для S' и e определены следующие условия (в форме предикатов):

- $nocross(e, S') \equiv \exists (s_1, e, s_2) \in A : s_1 \in S' <=> s_2 \in S'$
- $enter(e, S') \equiv \exists (s_1, e, s_2) \in A : s_1 \notin S' \land s_2 \in S'$
- $exit(e, S') \equiv \exists (s_1, e, s_2) \in A : s_1 \in S' \land s_2 \notin S'$

Пример соответствия событий условиям рассмотрен на рис. 2.

- $enter(a, S') \equiv \exists (s_1, a, s_2) \in A : s_1 \notin S' \land s_2 \in S'$ $enter(a, S') \equiv \exists (s_3, a, s_4) \in A : s_3 \notin S' \land s_4 \in S'$
- $exit(c, S') \equiv \exists (s_4, c, s_5) \in A : s_4 \in S' \land s_5 \notin S'$
- $nocross(b, S') \equiv \exists (s_2, b, s_4) \in A : s_2 \in S' <=> s_4 \in S'$ $nocross(b, S') \equiv \exists (s_1, b, s_3) \in A : s_1 \notin S' <=> s_3 \notin S'$

Множество состояний $S' \subseteq S$ в системе переходов $TS = (S, E, A, s_{in})$ называется регионом, если для каждого события $e \in E$ выполняются следующие два условия:

- $enter(e, S') = \neg nocross(e, S') \land \neg exit(e, S')$
- $exit(e, S') = \neg nocross(e, S') \land \neg enter(e, S')$

Пример выполнения условий рассмотрен на рис. 2.

- $enter(a, S') = \neg nocross(a, S') \land \neg exit(a, S')$
- $exit(c, S') = \neg nocross(c, S') \land \neg enter(c, S')$

Рис. 2: Пример региона.

Пусть r и r' — регионы системы переходов. Регион r' называется субрегионом региона r, если $r' \subset r$. Регион r является минимальным регионом, если нет другого региона r', который являлся бы субрегионом r.

Метод регионов [5] позволяет получить (синтезировать) на выходе ограниченную сеть Петри. Пример выполнения алгоритма синтеза представлен на рис. 3. Заметим, что в сети Петри переходы a и b стали параллельными, то есть из последовательной системы мы получили распределённую. При этом её язык не поменялся.

Контур

(Непомеченной) односчетчиковой сетью называется пара N=(Q,T), где Q — конечное множество управляющих состояний, а $T\subset Q\times Q\times Z$ — конечное множество переходов.

Если диаграмма переходов односчетчиковой сети представляет собой сильно связный орграф, то такая сеть называется односчётчиковым контуром [4].

Пусть N = (Q, T) — сильно связная сеть. Сеть N называется:

- *увеличивающим* контуром, если она содержит по крайней мере один увеличивающий цикл;
- уменьшающим контуром, если она содержит по крайней мере один уменьшающий цикл и ни одного увеличивающего;
- нейтральным контуром в остальных случаях.

Рис. 3: Пример применения алгоритма синтеза на основе минимальных регионов.

Любую односчетчиковую сеть можно представить в виде диаграммы состояний, то есть пары q|c, где $q\in Q$ — текущее управляющее состояние, $c\in Nat$ — текущее значение счетчика.

Переход t=(q,q',z) активен в состоянии q|c, если $c+z\geq 0$. Активный переход может сработать, переводя сеть в состояние q'|c+z. Существует величина, показывающая изменение счетчика в результате его срабатывания. Для перехода t=(q,q',z) величина z также называется эффектом t (обозначается $\mathit{Eff}(t)$). Наибольший общий делитель эффектов всех циклов — период контура. Пример контура с обозначением эффектов представлен на рис. 4.

Любой контур возможно представить в виде круга с секторами, как на рис. 5. Это позволяет избавиться от изображения эффектов переходов на рисунке. Значение эффекта показывает, в каком направлении и сколько границ секторов пересекает данный переход. Переходы, идущие по часовой стрелке, увеличивают значение счетчика, а переходы, идущие против часовой стрелки, уменьшают данное значение.

Алгортм синтеза сети Петри из односчетчикового контура

- 1. Контур делится на Δ сектора обычным образом.
- 2. Все наименования переходов выписываются (в первом столбце таблицы). К каждому наименованию в качестве индекса

Рис. 4: Пример односчетчикого контура с обозначениями эффектов и наименованиями переходов.

приписывается пара номеров секторов (сектор, из которого выходит переход, и сектор, в который он входит). Во втором столбце, напротив наименования перехода, проставляется соответствующее значение эффекта.

- 3. Рассматривается поочередно каждый сектор и, при помощи метода регионов, выделяются состояния.
- 4. На основе полученных данных строится СП с дополнительной позицией (счетчиком). Счётчик соединяется с каждым переходом таким количеством дуг, каков эффект данного перехода (если эффект положительный, то дуги идут в счётчик, если отрицательный, то из счётчика).

Пример работы алгоритма синтеза сети Петри приведён на рисунках. Изначальный контур показан на рис. 6, синтезированная сеть Петри — на рис. 7. Промежуточные таблицы представлены на рис. 8. В итоге строится сеть Петри с отдельным счетчиком h.

Корректность алгоритма синтеза

Заметим, что в результате алгоритма формируется сеть Петри, имеющая ту же секторную структуру, что и исходный контур. Все регионы выделяются только внутри секторов, а два перехода с одинаковой меткой считаются неразличимыми только в том случае, если ещё и начинаются и заканчиваются в одних и тех же секторах. Таким образом, очевидно, что в результате применения данного

Рис. 5: Пример секторного представления односчетчикого контура.

Рис. 6: Пример увеличивающего контура.

алгоритма работа со счётчиком никак не меняется. Корректность структуры управляющих переходов гарантируется корректностью самого метода регионов.

Заключение

Предложен алгоритм синтеза сети Петри по диаграмме переходов односчётчикового контура. Используется модификация метода регионов, учитывающая эффекты и секторную принадлежность переходов, то есть соответствующие изменения счётчика и пересекаемые границы секторов.

Рис. 7: Синтезированная сеть Петри.

c01		c01	+1		
a11		a11	0	lι	$P1 = \{S_0\}$
a11 b11	=>	b11	0	$P2 = \{S_1, S_3\}$ $P3 = \{S_1, S_2\}$	
b11		d12	+1		
d12		e20	+2		$P4 = \{S_2, S_4\}$
e20 i20		j20	-2		$P5 = \{S_3, S_4\}$
f03		f03	-1		$P6 = {S_5}$
g32		g32	-1]	$P7 = {S_6}$

Рис. 8: Таблицы со значениями переходов, эффектов и состояний.

Список литературы

- 1. *Кузнецов О.*, *Адельсон-Вельский Г.* Дискретная математика для инженера. М. : Энергоатомиздат, 1988. 344 с.
- Carmona J., Kishinevsky M., Cortadella J. A Region-Based Algorithm for Discovering Petri Nets from Event Logs // Business Process Management. BPM 2008. Springer, 2008. P. 358–373.
- 3. $\it Komoo\ B.\ E.\ Ceти\ Петри.\ M.: Hayka, 1984.$ 158 с.
- 4. $\it Faukuh B. A. \ Oб эффективном моделировании неограниченного ресурса при помощи односчетчиковых контуров // Моде-$

- лирование и анализ информационных систем. 2013. Т. 20,
 № 2. С. 139—156.
- 5. Cortadella J. [et al.]. Deriving Petri Nets from Finite Transition Systems // IEEE Transactions on Computers. 1998. Vol. 47, no. 8. P. 859–882.