Rotary Position Embeddings

arxiv.org/abs/2104.09864

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

$$\omega_k = rac{1}{10000^{2k/d}}$$

$$\psi'(w_t) = \psi(w_t) + \overrightarrow{p_t}$$

kazemnejad.com/blog/transformer_architecture_positional_encoding

kazemnejad.com/blog/transformer_architecture_positional_encoding

Trainable Position Embedding

Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multihead Attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Attention

$$egin{aligned} oldsymbol{q}_m &= f_q(oldsymbol{x}_m, m) \ oldsymbol{k}_n &= f_k(oldsymbol{x}_n, n) \end{aligned}$$

$$J_k(\boldsymbol{x}_n, n)$$

$$\boldsymbol{v}_n = f_v(\boldsymbol{x}_n, n)$$

$$\mathbf{o}_m = \sum_{n=1}^{\infty} a_{m,n} \mathbf{v}_n$$

$$a_{m,n} = \frac{\exp(\frac{\boldsymbol{q}_m^{\mathsf{T}} \boldsymbol{k}_n}{\sqrt{d}})}{\sum_{j=1}^{N} \exp(\frac{\boldsymbol{q}_m^{\mathsf{T}} \boldsymbol{k}_j}{\sqrt{d}})}$$

Relative Position Encoding

$$egin{align} f_q(oldsymbol{x}_m) &:= oldsymbol{W}_q oldsymbol{x}_m \ f_k(oldsymbol{x}_n, n) &:= oldsymbol{W}_k(oldsymbol{x}_n + ilde{oldsymbol{p}}_r^k) & r = ext{clip}(m-n, r_{ ext{min}}, r_{ ext{max}}) \ f_v(oldsymbol{x}_n, n) &:= oldsymbol{W}_v(oldsymbol{x}_n + ilde{oldsymbol{p}}_r^v) & \end{array}$$

Model	Position Information	EN-DE BLEU	EN-FR BLEU
Transformer (base)	Absolute Position Representations	26.5	38.2
Transformer (base)	Relative Position Representations	26.8	38.7
Transformer (big)	Absolute Position Representations	27.9	41.2
Transformer (big)	Relative Position Representations	29.2	41.5

Formulation

$$\langle f_q(\boldsymbol{x}_m, m), f_k(\boldsymbol{x}_n, n) \rangle = g(\boldsymbol{x}_m, \boldsymbol{x}_n, m - n)$$

Solution (2D)

$$f_q(\boldsymbol{x}_m, m) = (\boldsymbol{W}_q \boldsymbol{x}_m) e^{im\theta}$$

 $f_k(\boldsymbol{x}_n, n) = (\boldsymbol{W}_k \boldsymbol{x}_n) e^{in\theta}$

$$f_{\{q,k\}}(\boldsymbol{x}_m, m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \end{pmatrix}$$

General Solution

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \boldsymbol{R}_{\Theta,m}^d \boldsymbol{W}_{\{q,k\}} \boldsymbol{x}_m$$

$$\boldsymbol{R}_{\Theta,m}^{d} = \begin{pmatrix} \cos m\theta_{1} & -\sin m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ \sin m\theta_{1} & \cos m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos m\theta_{2} & -\sin m\theta_{2} & \cdots & 0 & 0\\ 0 & 0 & \sin m\theta_{2} & \cos m\theta_{2} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2}\\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{pmatrix}$$

$$\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, ..., d/2]\}$$

General Solution

$$\left| f_{\{q,k\}}(\boldsymbol{x}_m,m) = \boldsymbol{R}_{\Theta,m}^d \boldsymbol{W}_{\{q,k\}} \boldsymbol{x}_m \right| \quad \boldsymbol{R}_{\Theta,n-m}^d = (\boldsymbol{R}_{\Theta,m}^d)^\intercal \boldsymbol{R}_{\Theta,n}^d$$

$$oldsymbol{R}^d_{\Theta,n-m} = (oldsymbol{R}^d_{\Theta,m})^\intercal oldsymbol{R}^d_{\Theta,r}$$

$$\boldsymbol{q}_m^\intercal \boldsymbol{k}_n = (\boldsymbol{R}_{\Theta,m}^d \boldsymbol{W}_q \boldsymbol{x}_m)^\intercal (\boldsymbol{R}_{\Theta,n}^d \boldsymbol{W}_k \boldsymbol{x}_n) = \boldsymbol{x}^\intercal \boldsymbol{W}_q R_{\Theta,n-m}^d \boldsymbol{W}_k \boldsymbol{x}_n$$

Implementation

Implementation

$$\boldsymbol{R}_{\Theta,m}^{d}\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_1 \\ \cos m\theta_2 \\ \cos m\theta_2 \\ \vdots \\ \cos m\theta_{d/2} \\ \cos m\theta_{d/2} \end{pmatrix} + \begin{pmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ \vdots \\ -x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_1 \\ \sin m\theta_1 \\ \sin m\theta_2 \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \end{pmatrix}$$

Experiments: Pretraining

Experiments: Downstream Tasks

Model	MRPC	SST-2	QNLI	STS-B	QQP	MNLI(m/mm)
BERT[8]		93.5	90.5	85.8	71.2	84.6/83.4
RoFormer		90.7	88.0	87.0	86.4	80.2/79.8

Model	validation	test
BERT-512	64.13%	67.77%
WoBERT-512	64.07%	68.10%
RoFormer-512	64.13%	68.29%
RoFormer-1024	66.07 %	69.79 %

Model	BLEU
Transformer-base[37]	27.3
RoFormer	27.5

Experiments: Performer

Experiments: LM

Experiments: LM

Conclusion: Rotary Embeddings

- Relative position in self-attention encoded through rotation matrix
- No training
- Faster convergence
- Greater stability