Second Committee Meeting Report — Septemer 22, 2021

MD Catchen

Summary

- 4 This is the annual report for my committee meeting, year two, Sept 22 2021. What is in this document? A brief
- 5 recap of the status/outline of each chapter, timeline for the next year of work, and a prospectus on the next steps
- 6 re (3rd meeting/future courses/ta-ing) etc.

7 Introduction

- Developing a predictive theory of ecology is an imperative, both to root our understanding of ecosystem function
- 9 in predictive capacity (Dietze 2017), but also because of the applied need to make robust, actionable forecasts of
- how ecosystem composition and functioning will change in the future (**Dietze2017?**).
- 11 Effective prediction has long evaded ecological systems as they are variable, high-dimensional, and the intrinsic
- dynamics are often unknown (**SymbolicRegression?**), and some (**Pennekamp?**).
- ¹³ Inference and forecasting in ecology. Simulation based inference has proven effective in the modeling of complex
- 14 systems (numerical weather prediction; (Num?)). Core theme of my dissertation is understanding how simulation
- tools and methods can aid predictive ecology.
- 16 The purpose of this document is to: briefly outline of each dissertation chapter, with in-progress work for what's
- done, goal-figures for what isn't.
- One-sentence per chapter here.
- 19 Then to present a timetable of work for the next year. A discussion of other side projects. A discussion of courses
- 20 and TAing for the next year.

Figure 1: todo

Dissertation status

22 Disseration Introduction

- What's the deal with community ecology and global change. Wild stuff.
- ²⁴ Chapter one (The missing link: differentiating true from false negatives when sampling
- 25 species interactions)
- This opening chapters serves as a vignette of how simulation can have pragmatic use in ecology.

Figure 2: todo

- 27 Include some of the better figs.
- 28 Chapter two (Generative learning for predictive ecology)
- ²⁹ We need to predict interactions between species.
- Data on species interactions is limited. Many conceptual models have been proposed to explain food-web structure

Figure 3: todo

- which fit data reasonably well.
- 32 Predictive models could feasibly be trained on simulated data to predict interactions in empirical systems.
- 33 In this chapter we (hopefully) show training a model on entirely simulated data can enable effective prediction of
- interactions.

Figure 4: todo

Chapter three (Optimizing corridor placement)

- ³⁶ Corridors to increase landscape connectivity. In an ideal world we could build corridors between each pair of
- ₃₇ locations, but the realities of funding mean we have a limited amount of Earth's surface for which we can change
- the surface cover. So where is the best place to put a corridor given a constraint on how much area you can
- 39 change?

Figure 5: todo

40 Chapter four ("software chapter.... maybe")

Disseration Conclusion

Half summary, half future directions for this work

Time table

44 Here's

	Month	Courses	TAing	Drafts	Submission	
September 2021						
October 2021						
November 2021						
December 2021						CH1 Submitted
January 2022				Spring 20	021 TA	QUALS
February 2022						
March 2022						
April 2022						

		Month	Courses	TAing	Drafts	Submission	
May	2022						CH2 Draft 1
June	2022	BIOS2 sur	nmer schoo	ol (3cr)			
July 2	2022						
Augu	ıst 2022						CH2 Draft 2
Septe	ember 2022						
Octo	ber 2022						CH3 Draft 1
Nove	mber 2022						
Dece	mber 2022						CH2 Preprint
Janua	ary 2023						CH2 Submitted
Febru	uary 2023						
Marc	h 2023						CH3 Draft 2
April	2023						
May 202	3						Dissertation Submitted

Additional notes on Phd Stuff

TAing: 2 terms required Bios2: GEO BON contract - 6 credits: BIOS2 summer (3 cr),

47 Conclusion

- Dietze, Michael C. 2017. "Prediction in Ecology: A First-Principles Framework." Ecological Applications 27
- 49 (7): 2048–60. https://doi.org/10.1002/eap.1589.