实验一 单管放大电路 份真及实验

实验目的

- · 熟悉基于Multisim的电路设计与测量方法;
- 掌握放大电路静态工作点的调整与测量方法;
- 掌握放大电路主要性能指标的测量方法;
- 了解静态工作点对放大电路动态特性的影响。

2017/2/27

实验电路图

2017/2/27

仿真实验内容

在Multisim中绘制电路图,其中三极管选用实际元件,型号为MRF9011L,模型参数中的β(即BF) 为**你的实测值**;其它元件都选用虚拟元件。

- ✓ 测试晶体管 9011 输出特性曲线及β值。
- ✓ **静态工作点仿真:** $EI_{CQ}=1$ mA和2mA时,测量并记录 U_{CQ} 、 U_{EQ} 以及 R_{W} ,并计算出 U_{CEQ} 的值。
- ✓ **动态特性仿真:** 在 I_{CQ} =1mA和2mA时,测量放大电路的各项动态特性。包括电压放大倍数 A_{ui} ,输入电阻 R_i 和输出电阻 R_o , A_{us} 的上限截止频率 f_H 和下限截止频率 f_L ,其中输入正弦电压信号 u_s 的峰-峰值为20mV,频率为10kHz。
- ✓ **射极负反馈电阻对动态特性的影响**:将电容 C_E 改为与 R_{E2} 并联,测量此时放大电路在静态工作点 I_{CO} =2mA下的 A_{ui} , R_i 和 R_o 。
- ✓ 静态工作点对最大不失真输出电压 U_{om} 的影响:分别在静态工作点 I_{CQ} =1mA和2mA下,失真度为10%时测试放大电路的 U_{om} 并与理论值比较。

硬件实验内容

✓ 首先测试晶体管 9011 输出特性曲线及β值,然后

在自己的面包板上完成电路连接:

✓ 静态工作点调整

调节 R_W ,分别使 I_{CQ} =1mA和2mA,记录相应的 U_{CQ} 、 U_{EQ} 以及 R_W ,并计算出 U_{CEQ} 的值。

✓ 动态特性测量

在 I_{CQ} =1mA和2mA时,测量放大电路的各项动态特性。包括电压放大倍数 A_{ui} ,输入电阻 R_i 和输出电阻 R_o , A_{us} 的上限截止频率 f_H 和下限截止频率 f_L ,其中输入正弦电压信号 u_s 的峰-峰值为20mV,频率为10kHz。

✓ 射极负反馈电阻对动态特性的影响

将电容 C_E 改为与 R_{E2} 并联,测量此时放大电路在静态工作点 I_{CQ} =2mA下的 A_{ui} , R_i 和 R_o 。

* 红色字体为选做内容。

三极管9011的β值测量 接CH2 接CH1 晶体管输出特性测试电路 I_{B4} $I_{
m B3}$ $\Delta i_{
m C}$ $\Delta i_{
m B}$ =5 μ A 1mA/V $I_{\rm B1}$

$$eta = rac{\Delta i_{
m C}}{\Delta i_{
m B}}$$

1、 I_{CO} 的测量

实验中需要测电流时,一般都通过测电阻两端电压,然后算出被测电流。本实验通过测量 $R_{\rm C}$ 两端的电压,把 $I_{\rm CQ}$ 调节到一定的值。

2、Rw值的测量和记录

实验中测量Rw阻值时,注意要断开电源和并联支路再进行测量。

3、输入信号及Aui、Aus的测量

测量小信号的幅度时,请打开示波器的"带宽限制", 并用示波器的光标进行手动测量。

4. 输入电阻R_i和输出电阻R_o的测量

调节R_{Lw},当R_{Lw}=R_o时,u_{oL}是u_{oo}的一半

须在输入和输出信号不失真的前提下进行测量。

- 5、幅频特性的测量
- 1) 在高频段(100kHz以上),探头应该选用×10档;
- 2) 请关闭示波器的"带宽限制"。

实验总结报告

请在网络学堂提交电子版实验报告,报告内容包括:

- 仿真电路图、仿真波形及数据记录;
- 硬件实验内容、测试方法和步骤、实验数据记录及相应分析;
- 理论估算、仿真和硬件实验结果的比较分析;
- 在实验中遇到的问题及解决方法(出现的故障、原因查找、解决方法等);
- 实验体会(如有)。