0,25

0,25

0,5

0,25

0,75

0,5

0.5

0,5

0,5

0,5

0.75

0.5

0.5

0,5

0,5

Durée: 4 heures

O Exercice 01:(03 points)

⇒ Dans l'ensemble C, on considère l'équation suivante :

$$(E)$$
: $z^2 - (1 + im + \overline{m})z + \overline{m} + i |m|^2 = 0$, où $m \in \mathbb{C}^* - \{i\}$.

- 1)- a)- Vérifier que u = m est solution de l'équation (E).
 - **b)-** En déduire que l'autre solution de l'équation (E) est : v = 1 + im.
- 2)- On suppose dans cette question que : $m = e^{i \cdot \theta}$ ou $\theta \in \left| \frac{\pi}{2}, \pi \right|$.
 - \checkmark Ecrire le nombre complexe $\frac{v}{}$ sous forme trigonométrique .
- 3)- Dans le plan complexe n on considère les points : A(u) et B(v) .
 - ✓ Déterminer l'ensemble des points M(m) tel que $: (\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{2} [\pi]$.
- 4)- On suppose que : $m = a + \frac{1}{2}i$ ou $a \in \mathbb{R}$. et on considère la transformation R
 - Qui lie tout point M(z) avec le point M'(z') tel que : z' = -iz + 1 + 2ia.
 - a)- Montrer que R est une rotation en précisant l'affixe de son centre Ω et donner Une mesure de son angle.
 - **b)-** Montrer que : R(A) = B , puis en déduire que : $\frac{z_B z_\Omega}{z_B z_D} = -i$.
 - c)- Montrer que les points O, A, B et Ω sont cocycliques.

O Exercice 02: (04 points)

- \Rightarrow On rappel que $(IM_2(\mathbb{R}), +, \times)$ est un anneau unitaire et que $(IM_2(\mathbb{R}), +, \cdot)$ est un espace vectoriel réel.
- I- On pose: $E = \left\{ M(a,b) = \begin{pmatrix} a+b & b \\ b & a+b \end{pmatrix} / (a,b) \in \mathbb{R}^2 \right\}.$
- 1)- Montrer que $(E, +, \cdot)$ est un espace vectoriel réel.
- **2)-** On pose : $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
 - ✓ Montrer que (I,J) est une base de $(E,+,\cdot)$, puis en déduire dim (E).

Durée: 4 heures

- 3)- Vérifier que : $J^2 = 2.J$, puis montrer que E est stable dans $(IM_2(\mathbb{R}),\times)$.
- **4)-** Montrer que $(E, +, \times)$ est un anneau unitaire non intègre. 0.75
- **5)-** Montrer que la matrice M(a,b) est inversible dans $(E,+,\times)$ si et seulement si : 0.5 $a \neq 0$ et $a \neq -2b$.
 - II- On considère l'ensemble :

$$F = \left\{ A(x) = I + \frac{3^{x} - 1}{2} J / x \in \mathbb{Z} \right\}.$$

- 1)- Montrer que F est une partie stable de $(\mathrm{IM}_2(\mathbb{R}),\times)$.
- 2)- Pout tout $x \in \mathbb{Z}$, on pose: f(x) = A(x).
 - a)- Montrer que f est un isomorphisme de $(\mathbb{Z},+)$ vers (F,\times)
 - b)- En déduire la structure de (F,\times) et préciser son élément neutre et l'inverse de la matrice A(x) pour tout $x \in \mathbb{Z}$.

O Exercice 03: (03 points)

- 1)- a)- Résoudre dans \mathbb{Z}^2 , l'équation : (E): 4x-5y=1. 0.5
 - **b)-** En déduire l'ensemble des solutions dans \mathbb{Z} , du système : S: $\begin{cases} x \equiv 3[5] \\ x \equiv 2[4] \end{cases}$
 - **2)-** Pour tout $n \in \mathbb{N}$, On pose : a = 4n + 3 et b = 3n + 1.
 - a)- Montrer que : $(\forall n \in \mathbb{N}), a \land b = (n+2) \land 5$, puis en déduire les valeurs de l'entier naturel n tel que : $(\forall n \in \mathbb{N}), a \land b = 5$.
 - **b)-** Montrer que : $2^a + 3^b \equiv 0[5] \Leftrightarrow 2^{a+b} \equiv 4[5]$.
 - (n > 2018)c)- Déterminer le plus petit entier naturel n tel que : (S') : $2^a + 3^b \equiv 0[5]$. $a \wedge b = 5$
 - 3)- Soit $p \ge 5$ un nombre premier.
 - Montrer que : $2^p + 3^p \equiv 0 [p] \Leftrightarrow p = 5$.

Réalisé par MR: Belkh@tir @bdell@h | Lycée: Charif Al-idrissi | Benslimane.

Réalisé par MR: Belkhatir abdellah | Lycée: Charil Al-idrissi | Benslimane.

0,75

0,5

0,75

0,25

0.5

0.5

Durée: 4 heures

O Exercice 04: (03 points)

I- On considère la fonction F définie sur [0,1] par :

$$(\forall x \in]0,1]$$
, $F(x) = \int_x^1 \frac{e^{-t}}{t} dt$.

- 1)- Montrer que : $(\forall x \in]0,1]$, $F(x) \ge \frac{-\ln x}{a}$, puis en déduire $\lim_{x\to 0^+} F(x)$.
- 2)- Montrer que F est strictement décroissante sur l'intervalle [0,1]. 0,5
- 3)- Montrer que : $(\forall n \in \mathbb{N}^*)(\exists ! u_n \in]0,1[),F(u_n)=n$, puis calculer $\lim u_n$.

II- Soit g la fonction définie sur [0,1] par :

$$g(0) = -1 \text{ et } (\forall t \in]0,1], g(t) = \frac{e^{-t}-1}{t}.$$

- 1)- Montrer que g est continue sur l'intervalle [0,1].
- 2)- Pour tout $x \in [0,1]$, on pose : $G(x) = \int_{a}^{1} g(t) dt$.
 - a)- Montrer que G est continue sur [0,1].
 - **b)-** Montrer que: $(\forall n \in \mathbb{N}^*)$, $G(u_n) = n + \ln(u_n)$, puis en déduire $\lim_{n \to \infty} e^n u_n$.

O Exercice 05: (07 points)

0,25

0,75

0,75

0,5

0,25

0,5

I- On considère la fonction f définie par :

$$f(0) = 0 \text{ et } f(x) = \frac{e^x}{e^x - \ln x}, x > 0.$$

- 1)- Montrer que : $(\forall x \in \mathbb{R}^{*+}), x-1 \ge \ln x$, puis en déduire que : $D_f = \mathbb{R}^+$.
- 2)- Calculer $\lim_{x\to 0} f(x)$, puis interpréter géométriquement le résultat .
- 3)- a)- Montrer que est f continue à droite en 0.
 - **b)-** la fonction f est-elle dérivable à droite en 0? Interpréter le résultat .

Durée: 4 heures

4)- a)- Montrer que f est dérivable sur $]0, +\infty[$ et que :

$$(\forall x \in]0, +\infty[), f'(x) = \frac{g(x) \cdot e^x}{(e^x - \ln x)^2}, \text{ ou } g(x) = \frac{1}{x} - \ln x.$$

- b)- Montrer que l'équation g(x) = 0 admet une solution unique a dans $[0, +\infty]$ et que $a \in [1,2]$.
- c)- En déduire le signe de g sur $]0,+\infty[$ et dresser le tableau de variation de f.
- 5)- Tracer la courbe (C_f) dans un repère orthonormé (on donne $a \approx 1,5$).
- II- On considère la fonction F définie sur $[0, +\infty]$ par :

$$F(0) = 0$$
 et $(\forall x \in]0, +\infty[), F(x) = \frac{1}{x} \int_{x}^{2x} f(t) dt$.

- **1)- a)-** Montrer que : $(\forall x \in]0, \frac{a}{2}]$, $f(x) \le F(x) \le f(2.x)$.
 - **b)-** En déduire que F est continue à droite en 0, puis étudier la dérivabilité de F à droite en 0 et interpréter géométriquement le résultat .
- 2)- a)- Montrer que : $(\forall x \in [a, +\infty[), f(2.x) \le F(x) \le f(x))$
 - **b)-** En déduire $\lim_{x \to +\infty} F(x)$, puis interpréter géométriquement le résultat .
 - 3)- Montrer que F est dérivable sur $]0,+\infty[$ et que :

 $(\forall x \in]0,+\infty[),F'(x) = \frac{2.f(2.x)-F(x)-f(x)}{x}.$

Fin Du Swiet.