Задача 1.

Задержка по линии связи d будет ⅓ * 10^-7 с.

- а. Сначала используем все ресурсы, чтобы скачать первый объект.
 Это будет 3*200/150 + 10^5/150 + 4d с.
 Потом параллельно скачаем все. Это будет 3*200/15 + 10^5/15 + 4d с.
 Всего 7377 + 8d с.
- Так как постоянное соединение, то придется все качать по одному каналу.
 Получается: 3*200/150 + 10^5/150 + 4d + 10 * (200/150 + 10^5/150 + 2d)
 Всего 7350 + 24d с.
 Разница примерно 27 секунд. (d очень маленькое)

Задача 2. Для клиент-серверной раздачи минимальное время раздачи это max{NF/u_s, F/d_i}.

Задача 3.

- а. С сервера все уйдет минимум за NF / u_s. Так как d_min > u_s / N, то мы можем раздавать всем клиентам параллельно, и они успеют все скачать за NF / u_s.
- b. Клиенты все получат файлы минимум за F / d_min, так как самый медленный тоже должен скачать файл целиком. Если будем раздавать равномерно, то успеем раздать все за F / d_min.
- с. У нас либо один. либо другой случай. Оценку получили.