Département STID - IUT Paris Descartes Probabilités - S2

TD 5 - Intégrales doubles

Théorème de Fubini pour le calcul d'une intégrale double $I = \iint_{\mathcal{D}} f(x, y) \, dx \, dy$:

(i) Quand le domaine $\mathcal{D} = \{(x, y) \in \mathbb{R}^2, \ a \leqslant x \leqslant b \text{ et } \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}, \ \varphi_1 \text{ et } \varphi_2 \text{ étant deux fonctions définies sur } [a; b],$

$$\int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \, \mathrm{d}y \right] \, \mathrm{d}x$$

(ii) Quand le domaine $\mathcal{D} = [a; b] \times [c; d]$ est un $pav\acute{e}$,

$$\int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] \, dx = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) \, dx \right] \, dy$$

(iii) Quand le domaine $\mathcal{D} = [a; b] \times [c; d]$ et que la fonction s'écrit $f(x, y) = g(x) \times h(y)$,

$$\iint_{\mathcal{D}} g(x) \times h(y) \ \mathrm{d}x \ \mathrm{d}y = \left[\int_a^b g(x) \ \mathrm{d}x \right] . \left[\int_c^d h(y) \ \mathrm{d}y \right]$$

Remarque: Cette année on n'utilise pas Fubini (i).

Exercice 1

Soit $\mathcal{D} = [1, 9] \times [6, 10]$ et f(x, y) = k.

1) A quoi k doit-il être égal pour que $\iint_{\mathcal{D}} f(x,y) dx dy = 1$?

Exercice 2

Soit $\mathcal{D} = [10; 20] \times [-1; 1]$ et $f(x, y) = \frac{e^{-y}}{r^2}$.

1) Calculer $\iint_{\mathcal{D}} f(x,y) \, dx \, dy$.

2) Calculer $\int_{10}^{20} \frac{1}{x^2} dx$, puis $\int_{-1}^{1} e^{-y} dy$. Que remarque-t-on?

Exercice 3

Soit le domaine $\mathcal{D} = [0; 2] \times [1; 4]$ et la fonction $f(x, y) = \frac{x^2}{y} - 2xy$.

- 1) Représenter le domaine \mathcal{D} .
- 2) Démontrer que la fonction f est définie sur \mathcal{D} .
- 3) Calculer $\iint_{\mathcal{D}} f(x,y) dx dy$.
- 4) Que dit le théorème de Fubini?

Exercice 4

Soit le domaine $\mathcal{D} = [2; 5] \times [1; 3]$ et la fonction $f(x, y) = \frac{4x}{y} - \frac{y}{x^2}$.

1) Démontrer que la fonction f est définie sur \mathcal{D} .

2) Calculer
$$I = \iint_{\mathcal{D}} f(x, y) \, dx \, dy$$
.

Exercice 5

Soit le domaine $\mathcal{D} = [0; 4] \times [1; 2]$ et la fonction $f(x, y) = e^{-(5x+3y)}$.

Calculer
$$I = \iint_{\mathcal{D}} f(x, y) \, dx \, dy$$
.

Exercice 6

NE PAS TRAITER, TROP COMPLIQUÉ

Exemple de fonction pour laquelle Fubini (iii) ne s'applique pas.

Soit le domaine $\mathcal{D} = [1; 2] \times [3; 5]$ et la fonction $f(x, y) = \frac{1}{x + y}$.

$$I = \iint_{\mathcal{D}} f(x,y) \, dx \, dy = \int_{1}^{2} \left[\int_{3}^{5} \frac{1}{x+y} \, dy \right] \, dx = \int_{1}^{2} \left[\ln(x+y) \right]_{y=3}^{y=5} \, dx$$

$$= \int_{1}^{2} (\ln(x+5) - \ln(x+3)) \, dx = \left[(x+5) \, \ln(x+5) - (x+5) + (x+3) \, \ln(x+3) - (x+3) \right]_{1}^{2}$$

$$= 7 \, \ln(7) - 7 + 5 \, \ln(5) - 5 - (6 \, \ln(6) - 6 + 4 \, \ln(4) - 4 \approx 3,3728$$

Corrigés

Corrigé exercice 1

L'intégrale est le volume d'un parallélépipè de rectangle dont la base est le rectangle \mathcal{D} et la hauteur k.

$$I = \iint_{\mathcal{D}} f(x, y) \, dx \, dy = \int_{1}^{9} \left[\int_{6}^{10} k \, dy \right] \, dx = \int_{1}^{9} \left[ky \right]_{y=6}^{y=10} \, dx$$
$$= \int_{1}^{9} 4k \, dx = \left[4ky \right]_{1}^{9} = 4k(9-1) = 32k$$
$$I = 1 \Rightarrow k = \frac{1}{32}$$

Corrigé exercice 2

Soit
$$\mathcal{D} = [10; 20] \times [-1; 1]$$
 et $f(x, y) = \frac{e^{-y}}{x^2}$.

1)
$$\iint_{\mathcal{D}} f(x,y) \, dx \, dy = \int_{10}^{20} \left[\int_{-1}^{1} \frac{e^{-y}}{x^2} \, dy \right] \, dx = \int_{10}^{20} \left[\frac{1}{x^2} \left(-e^{-y} \right) \right]_{y=-1}^{y=1} \, dx$$
$$= \int_{10}^{20} \left(e - e^{-1} \right) \, \frac{1}{x^2} \, dx = \left(e - e^{-1} \right) \left[-\frac{1}{x} \right]_{10}^{20} = \left(e - e^{-1} \right) \left(-\frac{1}{20} + \frac{1}{10} \right) \approx 0,11752$$

2)
$$\int_{10}^{20} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{10}^{20} = -\frac{1}{20} + \frac{1}{10} = 0,05$$

$$\int_{-1}^{1} e^{-y} \, dy = \left[-e^{-y} \right]_{1}^{1} = -e^{-1} + e^{1} \simeq 2,3504$$

On remarque que
$$\iint_{[10;20]\times[-1;1]} \frac{e^{-y}}{x^2} dx dy = \left(\int_{10}^{20} \frac{1}{x^2} dx\right) \left(\int_{-1}^{1} e^{-y} dy\right)$$

Corrigé exercice 4

Soit le domaine $\mathcal{D} = [2; 5] \times [1; 3]$ et la fonction $f(x, y) = \frac{4x}{y} - \frac{y}{x^2}$.

- 1) Représenter le domaine \mathcal{D} .
- 2) f n'est pas définie aux points (0; y) et (x; 0), ces points $\notin \mathcal{D}$.
- 3)

$$I = \int_{2}^{5} \left[\int_{1}^{3} \left(\frac{4x}{y} - \frac{y}{x^{2}} \right) dy \right] dx = \int_{2}^{5} \left[4x \ln y - \frac{y^{2}}{2x^{2}} \right]_{y=1}^{y=3} dx$$

$$= \int_{2}^{5} \left[4x \ln 3 - \frac{9}{2x^{2}} - 4x \ln 1 + \frac{1}{2x^{2}} \right] dx = \int_{2}^{5} \left[4x \ln 3 - \frac{4}{x^{2}} \right] dx$$

$$= \left[2x^{2} \ln 3 + \frac{4}{x} \right]_{2}^{5} = 50 \ln 3 + \frac{4}{5} - 8 \ln 3 - 2$$

$$= 42 \ln 3 - 1, 2 \approx 44, 94$$

 O_{11}

$$I = 4 \left[\int_{2}^{5} x \, dx \right] \cdot \left[\int_{1}^{3} \frac{1}{y} \, dy \right] + \left[\int_{2}^{5} \left(-\frac{1}{x^{2}} \right) \, dx \right] \cdot \left[\int_{1}^{3} y \, dy \right]$$
$$= 4 \left[\frac{x^{2}}{2} \right]_{2}^{5} \cdot \left[\ln y \right]_{1}^{3} + \left[\frac{1}{x} \right]_{2}^{5} \cdot \left[\frac{y^{2}}{2} \right]_{1}^{3} = \dots = 42 \ln 3 - 1, 2 \approx 44, 94$$

Corrigé exercice 5

Soit le domaine $\mathcal{D} = [0; 4] \times [1; 2]$ et la fonction $f(x, y) = e^{-(5x+3y)}$.

$$I = \iint_{\mathcal{D}} e^{-(5x+3y)} \, dx \, dy = \int_{0}^{4} \int_{1}^{2} e^{-(5x+3y)} \, dy \, dx = \int_{0}^{4} \int_{1}^{2} e^{-5x-3y} \, dy \, dx$$

$$= \int_{0}^{4} \int_{1}^{2} e^{-5x} \, e^{-3y} \, dy \, dx = \left(\int_{0}^{4} e^{-5x} \, dx \right) \cdot \left(\int_{1}^{2} e^{-3y} \, dy \right) = \left[-\frac{1}{5} e^{-5x} \right]_{0}^{4} \cdot \left[-\frac{1}{3} e^{-3y} \right]_{1}^{2}$$

$$= \left(-\frac{1}{5} e^{-20} + \frac{1}{5} e^{0} \right) \left(-\frac{1}{3} e^{-6} + \frac{1}{3} e^{-3} \right) \approx 0, 2 \times 0, 01577 \approx 0, 0031539$$