2018학년도 2학기 언어와 컴퓨터

제17-18강 단순 베이즈 분류기와 감정분석 (2-3)

박수지

서울대학교 인문대학 언어학과

2018년 11월 21일 수요일, 26일 월요일

오늘의 목표

- 분류기를 평가하는 세 가지 척도를 각각 계산할 수 있다.
- 단순 베이즈 분류기를 파이썬에서 구현할 수 있다.
 - 데이터 전처리
 - 훈련: 로그사전확률 및 로그가능도 계산
 - 실험: 데이터에 대한 확률이 가장 높은 범주 선택

분류기를 평가하는 척도

정확도Accuracy 전체적으로 얼마나 맞추었는가?

정밀도Precision 특정 범주라고 예측된 것이 실제로 얼마나 맞았는가? 재현율Recall 실제로 그 범주인 것이 얼마나 제대로 예측되었는가? F1 정밀도와 재현율의 조화평균

주의

기준이 되는 범주에 따라 정밀도, 재현율, F1의 값이 달라진다.

정확도 정밀도 재현율의 예시

범죄자와 무고한 시민을 구별하는 문제 (Thanks to Derek Scott)

- 범죄자를 모두 잡고 무고한 시민을 모두 놓아주는 경우 이상적
- 범죄자를 모두 놓아주고 무고한 시민을 모두 잡는 경우 최악
- 무고한 시민을 놓아주느라 (일부) 범죄자까지 놓아주는 경우
 - 높은 정밀도: 일단 잡힌 사람만 놓고 보면 모두 범죄자이므로
 - 낮은 재현율: 범죄자 중에 잡히지 않은 사람이 있으므로
- 범죄자를 모두 잡느라 (일부) 무고한 시민까지 잡은 경우
 - 낮은 정밀도: 잡힌 사람 중에 무고한 시민이 포함되어 있으므로
 - 높은 재현율: 일단 범죄자만 놓고 보면 모두 잡았으므로

Confusion matrix

	실제	실제:
	양성	음성
예측:양성	진양성	위양성
예측:음성	위음성	진음성

통계적 분류기

 $arg \max P(c|d)$ 구하기 (d는 데이터, C는 가능한 범주의 집합)

$$\displaystyle rg \max_{c \in C} P(c|d) \ P(c|d)$$
가 최대일 때의 c 의 값

$$\blacksquare \text{ QL: } \arg\max_{x\in\mathbb{R}}[-(x-1)^2+3]=1$$

SciPy에서 함수 가져오기

```
>>> from scipy import argmax
>>> argmax([1,6,4,2]) # [1,6,4,2] 중 가장 큰 값의 인덱스
1
>>> argmax([2,1,6,4])
2
```

단순 베이즈 분류기

$$P(c|d) = \dots = \frac{P(c) \prod_{i=1}^{K} P(w_i|c)}{P(d)}$$

$$\arg\max_{c \in C} P(c|d) = \dots = \arg\max_{c \in C} \left[\log P(c) + \sum_{i=1}^{N} \log P(w_i|c) \right]$$

연습 문제

위에서 ... 에 들어갈 식을 도출해 보자.

박수지

단순 베이즈 분류기의 목표

$$rg \max_{c \in C} \left[\log P(c) + \sum_{i=1}^N \log P(w_i|c)
ight]$$
 구하기

계산할 것

 $\log P(c)$ 범주 c의 **로그사전확률**

 \blacksquare 훈련 집합에서 범주 c에 속한 문서가 차지하는 비율

 $\log P(w_i|c)$ 단어 w_i 에 대한 c의 로그가능도

■ 범주 c에서 단어 w_i 가 차지하는 비율 (+평탄화)

분류기 훈련

로그사전확률

훈련 집합에서 범주 c에 속한 문서가 차지하는 비율

$$\log P(c) = \log \frac{N_c}{N_{doc}}$$

 N_c 범주 c에 속한 문서의 개수 N_{doc} 훈련 집합 전체 문서의 개수

코딩에 필요한 것

- 훈련 집합: 문서(단어의 목록)의 목록
- 훈련 집합의 문서를 범주별로 분류해서 저장하기

분류기 훈련

로그가능도

범주 c에서 단어 w가 차지하는 비율 (+평탄화)

$$\log P(w|c) = \log \frac{count(w,c) + 1}{\sum_{w' \in V} \left[count(w',c) + 1 \right]}$$

count(w,c) 범주 c에서 단어 w가 출현한 횟수 V 훈련 집합의 어휘 목록

코딩에 필요한 것

- 범주별로 문서를 합쳐서 단어(token)를 세기
- 훈련 집합에 출현한 어휘 (type) 목록 만들기

200

훈련 결과 시험

훈련 결과 얻은 것

로그사전확률 $\log P(c)$, 로그가능도 $\log P(w|c)$

시험할 것

실험 집합의 문서 testdoc에 대한 arg max log P(c|testdoc)

$$\arg\max_{c\in C}\log P(c|testdoc)$$

$$= \arg\max_{c \in C} \left[\log P(c) + \sum_{w \in test doc \cap V} \log P(w|c) \right]$$


```
function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w|c)
for each class c \in C
                                 # Calculate P(c) terms
  N_{doc} = number of documents in D
  N_c = number of documents from D in class c
  logprior[c] \leftarrow log \frac{N_c}{N_c}
  V \leftarrow vocabulary of D
  bigdoc[c] \leftarrow \mathbf{append}(d) for d \in D with class c
  for each word w in V
                                            # Calculate P(w|c) terms
     count(w,c) \leftarrow \# of occurrences of w in bigdoc[c]
     loglikelihood[w,c] \leftarrow log \frac{count(w,c) + 1}{\sum_{w' in \ V} (count \ (w',c) + 1)}
return logprior, loglikelihood, V
function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best c
for each class c \in C
  sum[c] \leftarrow logprior[c]
  for each position i in testdoc
     word \leftarrow testdoc[i]
     if word \in V
        sum[c] \leftarrow sum[c] + loglikelihood[word,c]
return argmax sum[c]
```

Figure 4.2 The naive Bayes algorithm, using add-1 smoothing. To use add- α smoothing instead, change the +1 to + α for loglikelihood counts in training.

실습 코드: naivebayes_practice.py

주어진 것

- 코퍼스(훈련 집합 + 실험 집합)
- 범주 목록

산출할 것

- 로그사전확률 범주별
- 로그가능도 단어별, 범주별
- 사후확률이 가장 높은 범주 문서별

남은 문제

- 모든 단어(혹은 형태소)를 특성으로 쓰는 것이 적절한가?
- 세 가지 이상의 범주에 대한 분류

다른 분류기

로지스틱 회귀분석 / 최대 엔트로피 분류기

- P(d|c)를 사용하지 않고 P(c|d)를 직접 추정한다.
- 단어 이외의 특성을 다양하게 사용할 수 있다.