

#### **IT900 MAIN FEATURES**

- Low-cost Powerline Communication (PLC) modem and application solution in a single chip
- Data rates up to 500 Kbps FCC and ARIB, 150 Kbps in CENELEC-A band
- HomePlug® Command and Control ready
- Transparent interface for IPv6, IPv4, 6lowpan; support for SE 2.0
- Implements DCSK and DCKS Turbo Modulation
- Incorporates Yitran's high performance Data Link Layer (DLL), Network Protocol (Y-Net) and extremely robust Physical Layer (PHY)
- M16C/60 microcontroller with 256KB Flash for protocol stack and application code.
- Chip Architecture options:
  - Protocol Controller Architecture: IT900 is accompanied by communication stack firmware
  - Open Solution Architecture: allows user to program application code together with the communication stack
- Full coverage even under adverse line conditions
- Fully backward compatible with IT700 and IT800 Series

#### **APPLICATIONS**

- Smart Grid Applications:
  - Automated Meter Reading (AMR)
  - Advanced Meter Management (AMM)
  - o Demand Response & Real-Time pricing
- Smart Home & Energy Management:
  - o Home & Building Automation
  - o Home Appliance Control & Diagnostics
  - o Security and Access Control
  - o Environmental Control
- Commercial Applications:
  - o Street Light Control
  - Vending Machine Control
  - Signage Control



Figure 1: IT900 Block Diagram

February 2011

Copyright © YITRAN Communications Ltd. www.vitran.com





# **Table of Contents**

| 1 | IT900 GEN      | NERAL DESCRIPTION                        | 4  |
|---|----------------|------------------------------------------|----|
| 2 | PIN DIAG       | RAM AND PIN DESCRIPTION                  | 5  |
|   | 2.1            | PIN DIAGRAM                              | 5  |
|   | 2.1            | PIN DESCRIPTION                          |    |
|   |                |                                          |    |
| 3 | IT900 FUN      | NCTIONAL DESCRIPTION                     |    |
|   | 3.1            | ANALOG FRONT END (AFE)                   | 11 |
|   | 3.1.1          | Transmit Path                            | 12 |
|   | 3.1.1.1        | Digital-to-Analog Converter (DAC)        |    |
|   | 3.1.1.1        |                                          |    |
|   | 3.1.1.2        | Line Driver                              | 14 |
|   | 3.1.1.2        |                                          |    |
|   | 3.1.1.2        |                                          |    |
|   | 3.1.1.2        |                                          |    |
|   | 3.1.1.2        |                                          |    |
|   | 3.1.1.2        |                                          |    |
|   | 3.1.2          | Receive path                             | 18 |
|   | 3.1.2.1        | Variable Gain Amplifier (VGA)            |    |
|   | 3.1.2.2        | Analog-to-Digital Converter (ADC)        |    |
|   | 3.2            | PHYSICAL LAYER (PHY)                     |    |
|   | 3.2.1          | Overview                                 |    |
|   | 3.2.2          | PHY Transmitter                          | 21 |
|   | 3.2.3          | PHY Receiver                             | 21 |
|   | 3.2.4          | PHY Operating Modes                      | 22 |
|   | 3.3            | ENHANCED M16/C60 MICROCONTROLLER         |    |
|   | 3.3.1          | Firmware Activity Monitoring             |    |
|   | 3.3.2          | Safe Mode                                |    |
|   | 3.4            | Y-NET PROTOCOL                           |    |
|   | 3.4.1          | Media Access Control (MAC)               |    |
|   | 3.4.1.1        | Introduction                             |    |
|   | 3.4.1.2        | Channel Access Method                    |    |
|   | 3.4.1.2        |                                          |    |
|   | 3.4.1.2        |                                          |    |
|   | 3.4.1.2        |                                          |    |
|   | 3.4.1.2        |                                          |    |
|   | 3.4.1.3        | MAC Packet Transmission Services         | 29 |
|   | 3.4.1.4        | IT900 Transmission Rate Modes            |    |
|   | 3.4.1.5        | MAC Addressing and Logical Networks      |    |
|   | 3.4.1.6        | Security: Encryption and Virtual Jamming |    |
|   | 3.4.1.7        | Coexistence with CEBus and X10 Nodes     |    |
|   | 3.4.1.8        | Statistics and Diagnostics               |    |
|   | 3.4.2          | Network Layer (NL)                       |    |
|   | 3.4.2.1        | Introduction                             |    |
|   | 3.4.2.2        | Data Services                            |    |
|   | 3.4.2.2        | 0                                        |    |
|   |                | ernetworking Unicast Service.            |    |
|   |                | ernetworking Broadcast Service           |    |
|   |                | ernetworking Security                    |    |
|   |                | ernetworking Authorization               |    |
|   | 3.4.2.2<br>Dir | ect Intranetworking Unicast              |    |
|   |                | uted Intranetworking Unicast             |    |
|   | 100            | 4004 HIMMION OTKING OMOGOL               |    |





|   | In      | tranet Broadcast Service                                             |            |
|---|---------|----------------------------------------------------------------------|------------|
|   |         | tranetworking Security                                               |            |
|   |         | tranetworking Authorization                                          |            |
|   |         | aximum Payload Size per NL Data Service                              |            |
|   | 3.4.2.3 |                                                                      |            |
|   | 3.4.2   | 11011 110111 1 01111011011 001 11000111111                           |            |
|   |         | ogical Network Creation                                              |            |
|   |         | etwork Admission Control                                             |            |
|   | 3.4.2   |                                                                      | 30         |
|   | 3.5     | HOST INTERFACE                                                       | 40         |
|   | 3.5.1   | Application Host Connection                                          |            |
|   | 3.5.2   | Communication Guidelines.                                            |            |
|   | 3.5.3   | IT900 Initialization – First Power-On                                |            |
|   | 3.5.4   | Host Initial Actions                                                 |            |
|   | 3.5.5   | Command Set General Description                                      |            |
|   |         |                                                                      |            |
| 4 | CLOCK   | CONFIGURATION                                                        |            |
|   | 4.1     | CLOCK CIRCUIT                                                        | 42         |
|   |         |                                                                      |            |
| 5 | RESET ( | CONFIGURATION                                                        | 44         |
|   |         | Introduction                                                         |            |
|   | 5.1     |                                                                      |            |
|   | 5.1.1   | Hardware Reset                                                       |            |
|   | 5.1.2   | Power-On Reset Function                                              |            |
|   | 5.1.3   | Voltage Monitor 0 Reset                                              |            |
|   | 5.1.4   | Oscillator Stop Detect Reset                                         |            |
|   | 5.1.5   | Watchdog Timer Reset                                                 |            |
|   | 5.1.6   | Software Reset                                                       | 48         |
|   | 5.1.7   | Cold/Warm Start Discrimination                                       |            |
|   | 5.2     | Notes on Resets                                                      | 50         |
|   | 5.2.1   | Power Supply Rising Gradient                                         | 50         |
|   | 5.2.2   | Power-On Reset                                                       | 50         |
|   | 5.2.3   | OSDR Bit (Oscillation Stop Detect Reset Detection Flag)              | 50         |
|   | 5.3     | NON VOLATILE MEMORY                                                  | 51         |
|   | 5.3.1   | Overview                                                             | 51         |
|   | 5.4     | EEPROM APPLICATION CIRCUIT                                           | 51         |
|   | 5.5     | APPLICATION CIRCUIT                                                  | 52         |
| , | ELECTD  | ICAL CHARACTERISTICS                                                 | <b>5</b> 7 |
| 6 |         |                                                                      |            |
|   | 6.1     | ABSOLUTE MAXIMUM OPERATING CONDITIONS                                | 53         |
|   | 6.2     | RECOMMENDED OPERATING CONDITIONS                                     | 54         |
|   | 6.3     | A/D CONVERSION CHARACTERISTICS.                                      | 57         |
|   | 6.4     | FLASH MEMORY ELECTRICAL CHARACTERISTICS                              | 59         |
|   | 6.5     | VOLTAGE DETECTOR AND POWER SUPPLY CIRCUIT ELECTRICAL CHARACTERISTICS | 62         |
|   | 6.6     | OSCILLATION CIRCUIT ELECTRICAL CHARACTERISTICS                       | 65         |
|   | 6.7     | ANALOG FRONT END ELECTRICAL CHARACTERISTICS                          |            |
|   | 6.8     | ELECTRICAL CHARACTERISTICS                                           |            |
|   | 6.9     | TIMING REQUIREMENTS (PERIPHERAL FUNCTIONS AND OTHERS)                |            |
|   | 6.9.1   | Reset Input (RESET Input)                                            |            |
|   | 6.9.2   | Timer A Input                                                        |            |
|   | 6.9.3   | Timer B Input                                                        |            |
|   | 6.9.4   | Serial Interface                                                     |            |
|   | 6.9.5   | External Interrupt INTi Input                                        |            |
|   | 6.10    | PHY Specifications                                                   |            |
|   | 0.10    | 1111 OF BOTHOMO                                                      |            |







| 7 ORD | DERING INFORMATION                         | 77  |
|-------|--------------------------------------------|-----|
| 0.13  | MECHANICAL DIMENSIONS & LACKAGE TOLERANCES | / 0 |
| 6.13  | MECHANICAL DIMENSIONS & PACKAGE TOLERANCES | 76  |
| 6.12  | CRYSTAL SPECIFICATIONS                     | 75  |
| 6.11  | NETWORK LAYER SPECIfiCATIONS               | /4  |
| (11   | Manuscon VI Lavan Characa di mana          | 7.4 |





# **Figures**

| Figure 1: IT900 Block Diagram                                          | 1  |
|------------------------------------------------------------------------|----|
| Figure 2: IT900 HTQFP100 Package Pinout                                | 5  |
| Figure 3: AFE Block Diagram                                            | 11 |
| Figure 4: AFE Transmitter Circuit                                      | 12 |
| Figure 5: Line Driver Amplitude                                        |    |
| Figure 6: Load Resistance and Transformer Output                       | 13 |
| Figure 7: External Line Driver Example                                 |    |
| Figure 8: Recommended Peripheral Circuit of Transmitter                |    |
| Figure 9: AFE Receiver Analog Circuit                                  | 18 |
| Figure 10: Recommended Input Filter                                    |    |
| Figure 11: PHY Transceiver Block Diagram                               | 20 |
| Figure 12: OSI Network Layer Model                                     |    |
| Figure 13: Internetworking Unicast Message Flow                        |    |
| Figure 14: Internetworking Broadcast Message Flow                      |    |
| Figure 15: Direct Intranetworking Unicast Message Flow                 |    |
| Figure 16: Routed Intranetworking Unicast Message Flow                 | 35 |
| Figure 17: Host Connection                                             | 40 |
| Figure 18: Clock Circuit                                               |    |
| Figure 19: Reset Circuit Block Diagram                                 | 44 |
| Figure 20: Reset Circuit Example                                       |    |
| Figure 21: Power-On Reset Circuit and Operation Example                | 47 |
| Figure 22: Cold/Warm Start Discrimination                              |    |
| Figure 23: SVCC Timing                                                 | 50 |
| Figure 24: IT900 to EEPROM Connection                                  |    |
| Figure 25: IT900 Typical Application Circuit                           | 52 |
| Figure 26: Ripple Waveform                                             | 56 |
| Figure 27: A/D Accuracy Measure Circuit                                |    |
| Figure 28: Power-On Reset Circuit Electric Characteristics.            |    |
| Figure 29: Power Supply Circuit Timing Diagram.                        |    |
| Figure 30: Reset Input (RESET Input)                                   |    |
| Figure 31: Timer A Input                                               |    |
| Figure 32: Timer A Input (Two-Phase Pulse Input in Event Counter Mode) |    |
| Figure 33: Timer B Input                                               |    |
| Figure 34: Serial Interface                                            |    |
| Figure 35: External Interrupt INTi Input                               | 73 |



# **Tables**

| Table 2.1: IT900 Pin Names                                                        | 6  |
|-----------------------------------------------------------------------------------|----|
| Table 2.2 Pin Functions                                                           | 8  |
| Table 2.3 Internal Pin Function for PLC Modem                                     | 10 |
| Table 3.1: DCSK Transmission Modes                                                | 23 |
| Table 3.2: Effective PHY Rate                                                     | 24 |
| Table 3.3: Microcontroller Functions                                              | 25 |
| Table 3.4: Packet Delivery Services                                               | 29 |
| Table 3.5: IT900 Transmission Rates                                               | 29 |
| Table 3.6: Maximum Payload Size per NL Data Service                               | 36 |
| Table 3.7: NC Admission Modes                                                     | 38 |
| Table 3.8: Host Interface Pins.                                                   |    |
| Table 3.9: Host Interface Parameters                                              | 41 |
| Table 5.1: Types of Resets                                                        | 44 |
| Table 5.2: I/O Pins                                                               | 45 |
| Table 6.1: Absolute Maximum Ratings                                               |    |
| Table 6.2: Recommended Operating Conditions (1/4)                                 | 54 |
| Table 6.3: Recommended Operating Conditions (2/4)                                 | 55 |
| Table 6.4: Recommended Operating Conditions (3/4)                                 | 56 |
| Table 6.5: Recommended Operating Conditions (4/4)*                                | 56 |
| Table 6.6: A/D Conversion Characteristics (1/2)*                                  |    |
| Table 6.7: A/D Conversion Characteristics (2/2)*                                  | 58 |
| Table 6.8: CPU Clock When Operating Flash Memory                                  | 59 |
| Table 6.9: Flash Memory (Program ROM 1, 2) Electrical Characteristics             | 59 |
| Table 6.10: Flash Memory (Data Flash) Electrical Characteristics                  | 61 |
| Table 6.11: Voltage Detector 0 Electrical Characteristics                         | 62 |
| Table 6.12: Power-On Reset Circuit                                                | 62 |
| Table 6.13: Power Supply Circuit Timing Characteristics                           | 64 |
| Table 6.14: 125 kHz On-Chip Oscillator Circuit Electrical Characteristics         | 65 |
| Table 6.15: AFE Electrical Characteristics                                        | 65 |
| Table 6.16: Electrical Characteristics (1)                                        | 66 |
| Table 6.17: Electrical Characteristics (3)                                        | 68 |
| Table 6.18: Reset Input (RESET Input)                                             | 70 |
| Table 6.19: Timer A Input (Counter Input in Event Counter Mode)                   | 70 |
| Table 6.20: Timer A Input (Gating Input in Timer Mode)                            |    |
| Table 6.21: Timer A Input (External Trigger Input in One-Shot Timer Mode)         | 70 |
| Table 6.22: Timer A Input (External Trigger Input in Pulse Width Modulation Mode) | 71 |
| Table 6.23: TableTitleTimer A Input (Two-Phase Input in Event Counter Mode)       | 71 |
| Table 6.24: Timer B Input (Counter Input in Event Counter Mode)                   |    |
| Table 6.25: Timer B Input (Pulse Period Measurement Mode)                         | 72 |
| Table 6.26: Timer B Input (Pulse Width Measurement Mode)                          | 72 |
| Table 6.27: Serial Interface                                                      | 73 |
| Table 6.28: External Interrupt INTi Input                                         | 73 |

# Powerline Communication Modem Preliminary Datasheet

**Proprietary Information** 

IT900-DS-001-R1.1

# 1 IT900 GENERAL DESCRIPTION

The IT900 is a highly integrated System-on-a-Chip (SoC) Powerline Communication (PLC) modem. It incorporates Yitran's extremely reliable Physical Layer (PHY), high-performance Data Link Layer (DLL) and Network (Y-Net) protocol.

An integrated microcontroller with M16C/60 core, 256KB Flash memory, 3KB RAM and 7 eight bit ports implement the protocol stack and offers the required flexibility to implement various protocols and applications. The microcontroller's UART interface provides the connection to an external Host and application controller. The I<sup>2</sup>C interface connects an optional external EEPROM for stack parameter storage.

The IT900 PLC modem core uses Yitran's patented DCSK and DCSK Turbo implementing advanced coherent spread spectrum modulation techniques for high speed and extremely robust communication with data rates up to 500 Kbps FCC and ARIB, 150 Kbps in CENELEC-A band. In addition to the inherent interference immunity provided by DCSK modulation, DCSK Turbo utilizes several mechanisms for enhanced communication speed such as adaptive symbol overlapping and Decision Feedback Equalization.

The integrated Analog Frontend provides differential inputs and line driver outputs to connect via an external line filter and coupler to the power transmission lines. An integrated Phase Locked Loop Circuit allows the operation of the IT900 with a choice of different crystal oscillators. An integrated Power-On-Reset (POR) circuit eliminates the need for any external reset components and provides an autonomous, safe power-up and power-down reset to the chip. The integrated 1.8V voltage regulator allows the IT900 to operate from a single 3.3V supply.

The IT900 complies with worldwide regulations (FCC part 15, ARIB and CENELEC bands) and is an ideal solution for a variety of command and control PLC applications.

The IT900 is available in two versions:

The **Protocol Controller Architecture** version is accompanied by Yitran's Y-Net network protocol firmware. A UART interface and simple command language provide seamless connection to an external Host controller and simplify application development. In this version, no access to the microcontroller's resources is provided.

The **Open Solution Architecture** version allows utilization of the IT900 microcontroller's peripheral functions such as timers, interrupts, communication interfaces, A/D, spare memory resources and general-purpose I/Os to implement the application code, thereby eliminating the requirement for an external host controller. An Application Programming Interface (API) enables easy integration of the application code with Yitran's code.

This Datasheet covers the Protocol Controller Architecture version only.

Material related to Open Solution Architecture version is documented separately



# 2 PIN DIAGRAM AND PIN DESCRIPTION

#### 2.1 PIN DIAGRAM

The following figure shows the IT900 HTQFP100 lead-free package pinout:



Figure 2: IT900 HTQFP100 Package Pinout



# 2.2 PIN DESCRIPTION

The functionality of the IT900 pins is described in Table 2.1, Table 2.2 and Table 2.3

Table 2.1: IT900 Pin Names

| Pin | Power | Clock | Control | Port |           | I/O    | O Pin for Peripheral Functi | on     |     |
|-----|-------|-------|---------|------|-----------|--------|-----------------------------|--------|-----|
| No. |       |       | Pin     |      | Interrupt | Timer  | Serial Interface            | PLC    | ADC |
| 1   |       |       |         | P9 4 |           | TB4IN  |                             |        |     |
| 2   |       |       |         | P9_3 |           | TB3IN  |                             |        |     |
| 3   |       |       |         | P9_2 |           | TB2IN  | SOUT3                       |        |     |
| 4   |       |       |         | P9_1 |           | TB1IN  | SIN3                        |        |     |
| 5   |       |       |         | P9 0 |           | TB0IN  | CLK3                        |        |     |
| 6   |       |       | TMOD    |      |           |        |                             |        |     |
| 7   |       |       | CNVSS   |      |           |        |                             |        |     |
| 8   |       | XCIN  |         | P8_7 |           |        |                             |        |     |
| 9   |       | XCOUT |         | P8_6 |           |        |                             |        |     |
| 10  |       |       | RESET   |      |           |        | 9/79                        |        |     |
| 11  |       | XOUT  |         |      |           |        |                             |        |     |
| 12  | VSS   |       |         |      |           |        |                             |        |     |
| 13  |       | XIN   |         |      |           |        |                             |        |     |
| 14  | VCC1  |       |         |      |           |        |                             |        |     |
| 15  |       |       |         | P8_5 | NMI       |        |                             |        |     |
| 16  |       |       |         | P8_4 | INT2      | ZP     |                             |        |     |
| 17  |       |       |         | P8_3 | INT1      |        |                             |        |     |
| 18  |       |       |         | P8_2 |           |        |                             |        |     |
| 19  |       |       |         | P8_1 |           | TA4IN  | CTS5/RTS5                   |        |     |
| 20  |       |       |         | P8_0 |           | TA4OUT | RXD5/SCL5                   |        |     |
| 21  |       |       |         | P7_7 |           | TA3IN  | CLK5                        |        |     |
| 22  |       |       |         | P7_6 |           | TA3OUT | TXD5/SDA5                   |        |     |
| 23  |       |       | (       | P7_5 |           | TA2IN  |                             |        |     |
| 24  |       |       |         | P7_4 |           | TA2OUT |                             |        |     |
| 25  |       |       |         | P7_3 |           | TA1IN  | CTS2/RTS2                   |        |     |
| 26  |       |       |         | P7_2 |           | TA1OUT | CLK2                        |        |     |
| 27  |       |       |         | P7_1 |           | TB5IN  | RXD2/SCL2SCLMM              |        |     |
| 28  |       |       |         | P7_0 | ~         |        | TXD2/SDA2/SDAMM             |        |     |
| 29  | VCCA  |       |         |      |           |        |                             |        |     |
| 30  | VCCA  |       |         |      |           |        |                             |        |     |
| 31  | VCCA  |       |         |      |           |        |                             |        |     |
| 32  |       |       |         |      |           |        |                             | VOUTN  |     |
| 33  |       |       |         |      |           |        |                             | VOUTN  |     |
| 34  |       |       |         |      |           |        |                             | VOUTN  |     |
| 35  | VSSA  |       |         |      |           |        |                             |        |     |
| 36  | VSSA  |       |         |      |           |        |                             |        |     |
| 37  | VSSA  |       |         |      |           |        |                             |        |     |
| 38  |       |       |         |      |           |        |                             | VOUTP  |     |
| 39  |       |       |         |      |           |        |                             | VOUTP  |     |
| 40  |       |       |         |      |           |        |                             | VOUTP  |     |
| 41  | VCCA  |       |         |      |           |        |                             |        |     |
| 42  | VCCA  |       |         |      |           |        |                             |        |     |
| 43  | VCCA  |       |         |      |           |        |                             |        |     |
| 44  |       |       |         |      |           |        |                             | EXTLDN |     |
| 45  |       |       |         |      |           |        |                             | EXTLDP |     |
| 46  |       |       |         |      |           |        |                             | TESTN  |     |
| 47  |       |       |         |      |           |        |                             | TESTP  |     |



| Pin | Power     | Clock  | Control     | Port  |           | 1/0   | O Pin for Peripheral Function | NP NP  |       |
|-----|-----------|--------|-------------|-------|-----------|-------|-------------------------------|--------|-------|
| No. | 1 OWEI    | Clock  | Pin         | 1011  | Interrupt | Timer | Serial Interface              | PLC    | ADC   |
| 48  |           |        | 1111        |       | interrupt | Timer | Serial Interface              | VCMTX  | ADC   |
| 49  |           |        |             |       |           |       |                               | OC     |       |
| 50  |           |        |             |       |           |       |                               | OC EN  |       |
| 51  |           |        |             |       |           |       |                               | VCM    |       |
| 52  |           |        |             |       |           |       |                               | VINN   |       |
| 53  |           |        |             |       |           |       |                               | VIIVIV |       |
| 54  | VSSA      |        |             |       |           |       |                               |        |       |
| 55  | VCCA      |        |             |       |           |       |                               |        |       |
| 56  | 7 0 0 1 1 |        |             |       |           |       |                               | VRB    |       |
| 57  |           |        |             |       |           |       |                               | VRT    |       |
| 58  |           |        |             |       |           |       |                               | VCC15  |       |
| 59  |           |        |             |       |           |       |                               | TS     |       |
| 60  | VCC2      |        |             |       |           |       |                               | 12     |       |
| 61  | , 002     |        | UROM EN     |       |           |       |                               |        |       |
| 62  | VSS       |        | 0110111_211 |       |           |       |                               |        |       |
| 63  |           | CLKOUT |             | P6 7  |           |       | TXD1/SDA1                     |        |       |
| 64  |           |        |             | P6 6  |           |       | RXD1/SCL1                     |        |       |
| 65  |           |        |             | P6 5  |           |       | CLK1                          |        |       |
| 66  |           |        |             | P6 4  |           |       | CTS1/RTS1/CTS0/CLKS1          |        |       |
| 67  |           |        |             | P6 3  |           |       | TXD0/SDA0                     |        |       |
| 68  |           |        |             | P6 2  |           |       | RXD0/SCL0                     |        |       |
| 69  |           |        |             | P6 1  |           |       | CLK0                          |        |       |
| 70  |           |        |             | P6 0  |           | TRHO  | CTS0/RTS0                     |        |       |
| 71  |           |        |             | P1 7  | INT5      |       |                               |        |       |
| 72  |           |        |             | P1 6  | INT4      |       | /                             |        |       |
| 73  |           |        |             | P1 5  | INT3      |       |                               |        |       |
| 74  |           |        |             | P1 4  |           |       |                               |        |       |
| 75  |           |        |             | P1 3  |           |       | TXD6/SDA6                     |        |       |
| 76  |           |        |             | P1 2  |           |       | RXD6/SCL6                     |        |       |
| 77  |           |        |             | P1 1  |           |       | CLK6                          |        |       |
| 78  |           |        |             | P1 0  |           |       | CTS6/RTS6                     |        |       |
| 79  |           |        |             | P0 7  |           |       |                               |        | AN0 7 |
| 80  |           |        |             | P0 6  |           |       |                               |        | AN0 6 |
| 81  |           |        |             | P0 5  |           |       |                               |        | AN0 5 |
| 82  |           |        |             | P0_4  |           |       |                               |        | AN0_4 |
| 83  |           |        |             | P0_3  |           |       |                               |        | AN0_3 |
| 84  |           |        |             | P0_2  |           |       |                               |        | AN0_2 |
| 85  |           |        |             | P0_1  |           |       |                               |        | AN0_1 |
| 86  |           |        |             | P0_0  |           |       |                               |        | AN0_0 |
| 87  |           |        |             | P10_7 | KI3       |       |                               |        | AN7   |
| 88  |           |        |             | P10_6 | KI2       |       |                               |        | AN6   |
| 89  |           |        |             | P10_5 | KI1       |       |                               |        | AN5   |
| 90  |           | *      |             | P10_4 | KI0       |       |                               |        | AN4   |
| 91  |           |        |             | P10_3 | KI7       |       |                               |        | AN3   |
| 92  |           |        |             | P10_2 | KI6       |       |                               |        | AN2   |
| 93  |           |        |             | P10_1 | KI5       |       |                               |        | AN1   |
| 94  | AVSS      |        |             |       |           |       |                               |        |       |
| 95  |           |        |             | P10_0 | KI4       |       |                               |        | AN0   |
| 96  |           |        |             |       |           |       |                               |        | VREF  |
| 97  | AVCC      |        |             |       |           |       |                               |        |       |
| 98  |           |        |             | P9_7  |           |       | SIN4                          |        | ADTRG |
| 99  |           |        |             | P9_6  |           |       | SOUT4                         |        | ANEX1 |
| 100 |           |        |             | P9_5  |           |       | CLK4                          |        | ANEX0 |

#### **Table 2.2 Pin Functions**

| Pin                       | Signal Name                   | Pin Name                 | I/O | Power  | Description                                                                                        |
|---------------------------|-------------------------------|--------------------------|-----|--------|----------------------------------------------------------------------------------------------------|
| Numbers                   |                               |                          |     | Supply |                                                                                                    |
| 14, 60, 62                | Digital power supply input    | VCC1, VCC2, VSS          | I   | -      | Apply 2.7 V to 3.6 V to pins VCC1 and NCC2, and 0 V to the VSS pin under the condition VCC1 = VCC2 |
| 97, 94                    | MCU ADC power supply input    | AVCC, AVSS               | I   | VCC1   | Power supply input for A/D converter, Connect AVCC pin to VCC1 and the AVSS pin to VSS.            |
| 29-31,<br>41-43,<br>35-37 | PLC analog power supply input | VCCA, VSSA               | I   | -      | Power supply input for AFE. Connect VCCA pin to VCC1 and VSSA pin to VSS.                          |
| 10                        | Reset input                   | RESET                    | I   | VCC1   | Driving this pin Low resets the MCU.                                                               |
| 7, 6                      | Mode setting input            | CNVSS, TMOD              | I   | VCC1   | Pins to set an operating mode. Connect both CNVSS and TMOD pins to VSS via resistors.              |
| 61                        |                               | UROM_EN                  | I   | VCC2   | Connect to VSS via a resistor.                                                                     |
| 13                        | Main clock input              | XIN                      | I   | VCC1   | I/O for the main clock oscillation                                                                 |
| 11                        | Main clock output             | XOUT                     | О   | VCC1   | circuit. Connect crystal oscillator between pins XIN and XOUT.                                     |
| 8                         | Sub clock input               | XCIN                     | I   | VCC1   | I/O for the sub clock oscillation                                                                  |
| 9                         | Sub clock output              | XCOUT                    | О   | VCC1   | circuit. Connect crystal oscillator between pins XCIN and XOUT.                                    |
| 63                        | Clock output                  | CLKOUT                   | О   | VCC2   | This pin outputs the clock having the same frequency as fC, f1, f8 or f32.                         |
| 17, 16                    | INT interrupt input           | INT1, INT2               | I   | VCC1   | Input for the INT interrupt.                                                                       |
| 71-73                     |                               | INT3 to INT5             | I   | VCC2   |                                                                                                    |
| 15                        | NMI interrupt input           | NMI                      | I   | VCC1   | Input for the NMI interrupt.                                                                       |
| 87-93, 95                 | Key input interrupt input     | KI0 to KI7               | I   | VCC1   | Input for the key input interrupt.                                                                 |
| 26, 24, 22, 20            | Timer A                       | TA1OUT to TA4OUT         | I/O | VCC1   | I/O for timers A1 to A4.                                                                           |
| 25, 23, 21, 19            |                               | TA1IN to TA4IN           | I   | VCC1   | Input for timers A1 to A4.                                                                         |
| 16                        |                               | ZP                       | I   | VCC1   | Input for Z-phase.                                                                                 |
| 1-5, 27                   | Timer B                       | TB0IN to TB5INT          | I   | VCC1   | Input for timers B0 to B5.                                                                         |
| 70                        | Real-time clock output        | TRHO                     | О   | VCC2   | Output for the real-time clock.                                                                    |
| 25, 19                    | Serial interface              | CTS2, CTS5               | I   | VCC1   | Input to control data transmission                                                                 |
| 66, 78                    | UART0 to UART2,               | CTS0, CTS1, CTS6         | I   | VCC2   |                                                                                                    |
| 25, 19                    | UART5 to UART 6               | RTS2, RTS5               | 0   | VCC1   | Output to control data reception.                                                                  |
| 70, 66, 78                |                               | RTS0, RTS1, RTS6         | O   | VCC2   |                                                                                                    |
| 26, 21                    |                               | CLK2, CLK5               | I/O | VCC1   | Transmit/receive clock I/O.                                                                        |
| 69, 65, 77                |                               | CLK0, CLK1, CLK6         | I/O | VCC2   |                                                                                                    |
| 27, 20<br>68, 64, 76      |                               | RXD2, RXD5               | I   | VCC1   | Serial data input.                                                                                 |
| 28, 22                    |                               | RXD0, RXD1, RXD6         | I   | VCC2   |                                                                                                    |
| 67, 63, 75                |                               | TXD2*, TXD5              | 0   | VCC1   | Serial data output.                                                                                |
| 66                        |                               | TXD0, TXD1, TXD6         | 0   | VCC2   |                                                                                                    |
| ·                         |                               | CLKS1                    | О   | VCC1   | Output for transmit/receive clock multiple-pin output function.                                    |
| 28, 22                    | UART0 to UART2,               | SDA2 <sup>†</sup> , SDA5 | I/O | VCC1   | Serial data I/O for I <sup>2</sup> C mode.                                                         |

<sup>\*</sup> TXD2 is an N-channel open drain output pin. TXDi (i=0, 1, 5, 6) can be selected as a CMOS output pin or N-channel open drain output pin by a program.



| Pin                                             | Signal Name                                 | Pin Name                                                          | I/O | Power  | Description                                                                                                                                                                                                                               |
|-------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Numbers                                         | J                                           |                                                                   |     | Supply | •                                                                                                                                                                                                                                         |
| 67, 63, 75                                      | UART5, UART6                                | SDA0, SDA1, SDA6                                                  | I/O | VCC2   |                                                                                                                                                                                                                                           |
| 27, 20                                          | I <sup>2</sup> C mode                       | SCL2, SCL5                                                        | I/O | VCC1   | Transmit/receive clock I/O for I <sup>2</sup> C                                                                                                                                                                                           |
| 68, 64, 76                                      |                                             | SCL0, SCL1, SCL6                                                  | I/O | VCC2   | mode.                                                                                                                                                                                                                                     |
| 5, 100                                          | Serial interface                            | CLK3, CLK4                                                        | I/O | VCC1   | Transmit/receive clock I/O.                                                                                                                                                                                                               |
| 4, 98                                           | SI/O3, SI/O4                                | SIN3, SIN4                                                        | I   | VCC1   | Serial data input                                                                                                                                                                                                                         |
| 3, 99                                           |                                             | SOUT3, SOUT4                                                      | О   | VCC1   | Serial data output.                                                                                                                                                                                                                       |
| 28<br>27                                        | Multi-master I <sup>2</sup> C-bus interface | SDAMM                                                             | I/O | VCC1   | Serial data I/O. (Output is N-channel open drain)                                                                                                                                                                                         |
|                                                 |                                             | SCLMM                                                             | I/O | VCC1   | Transmit/receive clock I/O. (Output is N-channel open drain)                                                                                                                                                                              |
| 96                                              | Reference voltage input                     | VREF                                                              | I   | VCC1   | Reference voltage input for the A/D converter.                                                                                                                                                                                            |
| 79-86                                           | A/D converter                               | AN0 to AN7                                                        | I   | VCC1   | Analog input for the A/D converter.                                                                                                                                                                                                       |
|                                                 |                                             | ANO 0 TO ANO 7                                                    | I   | VCC2   |                                                                                                                                                                                                                                           |
| 98                                              |                                             | ADTRG                                                             | I   | VCC2   | External activation source input.                                                                                                                                                                                                         |
| 99, 100                                         |                                             | ANEX0, ANEX1                                                      | I   | VCC1   | Extended analog input for the AD converter.                                                                                                                                                                                               |
| 79-86                                           | I/O ports                                   | P0_0 to P0_7,                                                     | I/O | VCC2   | 8-bit CMOS I/O ports. Each port has                                                                                                                                                                                                       |
| 71-78                                           |                                             | P1_0 to P1_7,                                                     |     |        | a direction register, allowing each                                                                                                                                                                                                       |
| 63-70                                           |                                             | P6_0 to P6_7                                                      |     |        | pin in the port to be directed for input or output individually. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.                                                                                            |
| 21-28<br>15-20, 8-9<br>1-5, 98-100<br>87-93, 95 |                                             | P7_0 to P7_7,<br>P8_0 to P8_7,<br>P9_0 to P9_7,<br>P10_0 to P10_7 | I/O | VCC1   | 8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1 and P8_5 are N-channel open drain output ports.  No Pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI. |

 $Copyright @ \ Yitran \ Communications \ Ltd.$ 

Page 9

 $<sup>^{\</sup>dagger}$  YXD2, SDA2, SCL2, SDAMM and SCLMM are N-channel open drain output pins. TXDi, SDAi and SCLi (all where i = 0, 1, 5, 6) can be selected as CMOS output pins or N-channel open drain output pins by a program.



Table 2.3 Internal Pin Function for PLC Modem<sup>‡</sup>

| Signal Name                 | Pin Name         | I/O    | Description                                        |
|-----------------------------|------------------|--------|----------------------------------------------------|
| Internal interrupt input    | INT0, INT6, INT7 | I      | INT interrupt input from PLC modem.                |
| Internal timer A connection | TA0OUT           | I/O    | Timer A0 I/O form/to PLC modem.                    |
|                             | TA0IN            | I      | Timer A0 input from PLC modem.                     |
| Internal serial connection  | TXD7             | O      | Serial data output to PLC modem.                   |
|                             | RXD7             | I      | Serial data input from PLC modem.                  |
|                             | CLK7             | I/O    | Transmit/receive clock I/O from/to PLC modem.      |
| Internal ports              | P2_0 to P2_7,    | I/O    | Ports to connect PLC modem. Used as                |
|                             | P3_0 to P3_7,    |        | addresses, data, control signals, and status       |
|                             | P4_0 to P4_7,    |        | signals to access registers of PLC modem and       |
|                             | P5_0 to P5_7     |        | AFE.                                               |
| RX signal                   | VINP             | Analog | Input pins for differential reception signals.     |
|                             | VINN             | input  |                                                    |
| TX signal                   | VOUTP            | Analog | Output pins for differential transmission signals. |
|                             | VOUTN            | output |                                                    |
| Analog pin                  | EXTLDP           | Analog | Differential transmission output pins for the      |
|                             | EXTLDN           | output | external line driver as optional specifications.   |
|                             | VCMTX            | Analog | Reference voltage output pin for the analog        |
|                             |                  | output | circuit of the transmitter block. Connect to a     |
|                             |                  |        | bypass capacitor for VSSA.                         |
|                             | VRT              | Analog | Reference voltage output pins for ADC of PLC       |
|                             | VRB              | output | block. Connect to a bypass capacitor for VSSA.     |
|                             | VCM              | Analog | Reference voltage output pin for the analog        |
|                             |                  | output | circuit of receiver block.                         |
|                             |                  |        | Connect to a bypass capacitor for VSSA.            |
| Testing Pins                | TESTP            | Analog | I/O for testing. Leave open.                       |
|                             | TESTN            | I/O    |                                                    |
| Digital Pins                | OC_EN            | I      | Connect to VCCA via a register when using          |
|                             |                  |        | internal line driver for enabling over current     |
|                             |                  |        | protection. Connect VSSA via register when         |
|                             |                  |        | using external line driver for disabling over      |
|                             |                  |        | current protection.                                |
|                             | OC               | О      | Status output pin for the over current protection  |
|                             |                  |        | circuit.                                           |
|                             | TS               | О      | Pin to turn off/on the external line driver.       |
| Regulator Output            | VCC15            | Analog | Regulator output pin (1.5 V) for the digital       |
|                             |                  | output | circuit of PLC block. Connect only to a bypass     |
|                             |                  |        | capacitor for VSSA. Do not use this pin to         |
|                             |                  |        | provide power to other circuits.                   |

<sup>&</sup>lt;sup>‡</sup> On-chip PLC modem should be controlled by DLL software released by Yitran. Do no access the PLC control registers directly by any user program.



# 3 IT900 FUNCTIONAL DESCRIPTION

The following chapters describe the different functional blocks shown in the IT900 block diagram in more detail. Functional blocks are described starting with the Analog Front End (AFE) from the right side of the block diagram, followed by the PHY and microcontroller.

# 3.1 ANALOG FRONT END (AFE)

The IT900 interfaces to the power line medium via an integrated Analog Front End (AFE). The AFE consists of the following main building blocks as shown in Figure 3:

- 1. Digital-to-Analog Converter (DAC) that converts the digital transmit-data from the PHY into an analog waveform to be transmitted over the power line.
- 2. Line Driver to amplify the analog signal provided by the DAC before it is coupled onto the power line
- 3. Variable Gain Amplifier (VGA) to amplify the analog receive-data waveform coming from the power line coupler, thereby better utilizing the full dynamic range of the ADC.
- 4. Analog-to-Digital Converter (ADC) that converts the analog receive-data waveform, which is amplified by the VGA, into digital data that are then sent to the PHY.
- 5. Digital interface to and from the PHY transmitter and receiver blocks.

Analog front end (AFE) is the circuit located between PLC PHY and a power line. There are the following two signal paths in the AFE.

- Transmitting path: Consists of a DAC driven by the internal port, a low-pass filter (LPF), a differential Line Driver amplifier and a line coupling circuit which drives the power line.
- Receiving path: Consists of a line coupling circuit, an input filter, a differential VGA amplifier, a LPF) and an ADC. The line coupling circuit is common to both transmission and reception.



Figure 3: AFE Block Diagram



#### 3.1.1 Transmit Path

The IT900 transmit path is shown in Figure 4.



**Figure 4: AFE Transmitter Circuit** 

#### Notes:

- \*When not using an external line drive amplifier, leave EXTLP and EXTLDN open.
- \*At AFE default register settings, the Line Driver (LD) is turned off if the internal temperature exceeds 125 °C.

#### 3.1.1.1 Digital-to-Analog Converter (DAC)

The 10-bit DAC features a 16MS/s conversion speed and a Signal-to-Noise Ratio (SNR) of better than 70dB. It is used to convert the digital transmit-data from the PHY transmitter into an analog waveform, which is then amplified by the differential Line Driver before it is transmitted over the power line.

#### 3.1.1.1.1 Adjustment of Output Amplitude

Transmission output amplitude can be changed by changing the VREF setting of the DAC. The relation between DACVREF code (4 bits) and amplitude is shown in Figure 5.





**Figure 5: Line Driver Amplitude** 

DACVREF is the part of AFE75 register which is inside the AFE block. The relation between Load Resistance and Transformer output Amplitude is shown below.



Figure 6: Load Resistance and Transformer Output



#### 3.1.1.2 Line Driver

The Output Line Driver is a fully integrated class AB driver with differential outputs that is capable of driving a wide range of loads and delivering  $1A_{peak-peak}$  of output current.

#### 3.1.1.2.1 Short-circuit Protection (Over current Protection Circuit)

If DC over current flows due to a short across pins on the IT900, the on-chip protection circuit stops the line drive output. Once the over current protection circuit operates, no transmission can be performed until the over current protection circuit is reset.

This circuit is reset by setting the OC\_EN pin to low, or setting bit 5 to "1" in the AFE71 register which is inside the AFE block, or an MCU reset. To resume the over current protection states, setting the OC\_EN pin to high and setting the bit 5 to "0" in the AFE71 register.

OC\_EN pin enable/disable the over current protection circuit. Set the OC\_EN to "H" for enabling the over current protection circuit. When you use external line drive you need to disable over current protection circuit by setting OCLEN to "L".

\* Note: The AFE registers should be written in 8-bit units. Write the same value not to change the value of bits other than the corresponding bit.

# 3.1.1.2.2 Peripheral Circuit When Using External Line Driver

When using a driver circuit which is located externally, connect pins EXTLDP and EXTLDN to the external driver input. To turn off the internal line driver, set bits 3 and 4 in the AFE72 register to "1" and bits 5 and 6 to "0". The EXTLDP and EXTLDP pin has an internal resistor for protection. Please add the internal resistor value, when calculating an external driver amplifier gain.



Figure 7: External Line Driver Example



The external line driver LSI of this circuit is ACPL-0820 (by AVAGO Technologies). Internal resistance:  $250 \Omega$  (typ).

### 3.1.1.2.3 Short-circuit Protection (Over current Protection Circuit)

If DC over current flows due to a short across pins on the IT900, the on-chip protection circuit stops the line drive output. Once the over current protection circuit operates, no transmission can be performed until the over current protection circuit is reset.

This circuit is reset by setting the OC\_EN pin to low, or setting bit 5 to "1" in the AFE71 register which is inside the AFE block, or an MCU reset. To resume the over current protection states, setting the OC\_EN pin to high and setting the bit 5 to "0" in the AFE71 register.

OC\_EN pin enable/disable the over current protection circuit. Set the OC\_EN to "H" for enabling the over current protection circuit. When you use external line drive you need to disable over current protection circuit by setting OCLEN to "L".

\* Note: The AFE registers should be written in 8-bit units. Write the same value not to change the value of bits other than the corresponding bit.

# 3.1.1.2.4 High-temperature Protection (Temperature Sensor Circuit)

To set the temperature sensor circuit for high-temperature protection, use the following steps:

- 1. Set the value of TSDUREF CNTL of AFE76 register to the required temperature.
- 2. Set INT7 mode to rising edge.

The maximum temperature is indicated by interrupt INT7.

Once an interrupt was generated by either the over current detector or temperature sensor, the other interrupt source for interrupts cannot generate an additional interrupt because both interrupt factor share the same interrupt vector.

A recommended peripheral circuit of the transmitter is shown in Figure 8.





Figure 8: Recommended Peripheral Circuit of Transmitter

#### 3.1.1.2.5 Notes on Mounting

IT900 has an embedded power line driver that can generate a large amount of heat when operating at a heavy load. If the chip will be mounted on the PCB, the thermally enhanced design of the footprint is needed. An example of the thermally enhanced footprint is provided in the IT900 Layout Designs document. The IT900 thermal pad located at the bottom of the IT900 package should be soldered to the thermal pad on the PCB. To improve the heat spreading of the IT900 package it is strongly recommended to use a PCB with at least four layers fabricated with FR4 material.

The printed wires supplying power to the IT900 line driver must have calculated width and thickness according to the current specifications provided in electrical characteristic section. Failure to follow this requirement can cause the line driver output signal degradation in terms of its amplitude and distortions. Use of PCB polygons is recommended for power supply connections.

Pins of the line driver power supply and outputs must be grouped together according to their functions and connected together using short and wide wires. No pins can be left open.

Line driver output VOUTN – pins 32, 33, 34 Line driver output VOUTP – pins 38, 39, 49 +3.3V power VCCA – pins 29, 30, 31 (Group 1), 41, 42, 43 (Group 2) GND potential VSSA – pins 35, 36, 37



When using power and ground PCB polygons, each power and ground pin can be connected to their respective polygons, independently.

Use a transformer whose transfer ratio is 1:1.





# 3.1.2 Receive path

The IT900 receiver path is shown in Figure 9. A recommended input filter is shown in Figure 10.



Figure 9: AFE Receiver Analog Circuit



Figure 10: Recommended Input Filter



#### Variable Gain Amplifier (VGA) 3.1.2.1

The VGA is a switched-capacitor, fully differential amplifier with digitally controlled variable gain. The gain is variable in 6dB steps from -6dB to 42dB. Gain is automatically controlled by the IT900 to scale the incoming power line signal amplitude to the Analog-to-Digital Converter's available resolution. Total harmonic distortion is better than 70dB and the input referred noise is  $<15\mu V_{RMS}$  at maximum gain.

#### 3.1.2.2 **Analog-to-Digital Converter (ADC)**

The ADC is a high resolution, 13-bit, 2.56MS/s successive approximation Analog-to-Digital Converter with a typical integrated and differential non linearity of ±0.5LSb each. The ADC converts the received analog data waveform, which is amplified by the VGA, into a digital stream that is transferred to the PHY receiver.



# 3.2 PHYSICAL LAYER (PHY)

#### 3.2.1 Overview

The PHY layer is a communication transceiver that is optimized for the power line medium. The PHY layer employs the DCSK (Differential Code Shift Keying) and DCSK turbo modulation techniques.

The PHY Layer consists of four major functional blocks:

- 1. **Transmitter** Manages all aspects of physical transmission: encoding, interleaving, data modulation, spectrum shaping and power leveling.
- 2. **Receiver** Manages all aspects of physical reception: packet synchronization, data demodulation, de-interleaving and decoding.
- 3. **PHY Manager** A packet management unit and state machine that, together with the **Error** Correction Code Unit, manages all aspects of logic packet transmission and reception such as cyclic redundancy check, header decoding, etc.
- 4. **Hardware Data Link Layer** Provides and manages the interface from the PHY block to the Software Data Link Layer that is implemented in the microcontroller firmware.

The block diagram of the PHY transmit and receive paths is shown in Figure 11.



Figure 11: PHY Transceiver Block Diagram



#### 3.2.2 PHY Transmitter

The transmitter block diagram is shown at the top of Figure 11. The transmitter is composed of the following main modules:

- **Encoder** Receives data bits from the PHY Manager, encodes them and sends the encoded data to the Interleaver.
- **Interleaver** Receives the code words from the encoder module, mixes them and sends the interleaved code words to the modulator.
- **Modulator** Receives the interleaved code words from the interleaver, modulates them and sends the modulated symbols to the output shaping filter.
- **Output Filter** Receives the modulated symbols from the modulator and filter the modulated symbol.
- **Preamble** Generates the synchronization sequence that precedes the PHY packet.

#### 3.2.3 PHY Receiver

The receiver block diagram is shown at the bottom of Figure 11. The receiver is composed of the following main modules:

- **Decoder** Receives the data bits from the de-interleaver, decodes them and sends the decoded data to the PHY Manager.
- **De-Interleaver** Receives the interleaved code words from the demodulator module, extracts the code blocks and sends the de-interleaved code blocks to the decoder.
- **Demodulator** Receives the code blocks from the input filter, demodulates them and sends the demodulated symbols to the de-interleaver.
- **Input Filter** Receives the modulated data symbols from the power line, filters the modulated symbol and sends the resulting code blocks to the demodulator.

A physical carrier sense is provided by the receiver to the higher layer. The following carrier sense features are supported:

- Carrier Detect (CD) indicates detection of a symbol on the channel.
- Sync indicates detection of a valid preamble sequence.



# 3.2.4 PHY Operating Modes

The following table details PHY operating modes:

| Item                    |              | Specification                                                |  |  |  |
|-------------------------|--------------|--------------------------------------------------------------|--|--|--|
| Modulation technique    |              | DCSK, DCSK Turbo (DSCKT)                                     |  |  |  |
| Error correction        |              | Short-block error correction, CRC-16                         |  |  |  |
| Compliant worldwide reg | ulations     | FCC, ARIB, EN50065-1-CENELEC                                 |  |  |  |
| Maximum Data rate       | FCC and ARIB | 120kHz to 400kHz                                             |  |  |  |
|                         |              | <ul> <li>Up to 500 kbps in DCSK Turbo Modulation</li> </ul>  |  |  |  |
|                         |              | <ul> <li>Up to 7.5 kbps in DCSK Modulation</li> </ul>        |  |  |  |
|                         | CENELEC      | A Band: 9 kHz to 95 kHz                                      |  |  |  |
|                         |              | <ul> <li>Up to 150 kbps in DCSK Turbo Modulation</li> </ul>  |  |  |  |
|                         |              | <ul> <li>Up to 2.5 kbps DCSK Modulation</li> </ul>           |  |  |  |
|                         |              | A2 Band: 71 kHz to 94 kHz                                    |  |  |  |
|                         |              | <ul> <li>Up to 37.5 kbps in DCSK Turbo Modulation</li> </ul> |  |  |  |
|                         |              | <ul> <li>Up to 1.88 kbps DCSK Modulation</li> </ul>          |  |  |  |
|                         |              | A4 Band: 45 kHz to 95 kHz                                    |  |  |  |
|                         |              | <ul> <li>Up to 150 kbps in DCSK Turbo Modulation</li> </ul>  |  |  |  |
|                         |              | B Band: 95 kHz to 125 kHz                                    |  |  |  |
|                         |              | <ul> <li>Up to 50 kbps in DCSK Turbo Modulation</li> </ul>   |  |  |  |
|                         |              | Up to 2.5 kbps DCSK Modulation                               |  |  |  |

Each signal band requires suitable configuration of the PLC modem, adjusting the input filter to a signal band and output amplitude, setting.

Refer to the following standards about the regulation of a signal level outside the band.

- U.S.: FCC standard, part 15
- Europe: CENELEC standard, EN 50065-1
- Japan: ARIB, STD-T84





The PHY layer supports the following basic transmission modes:

- DSCK Modes
- DCSK Turbo Modes

The transmission mode determines the encoding scheme, interleaving scheme and modulation scheme as detailed in Table 3.1.

**Table 3.1: DCSK Transmission Modes** 

| Mode         | Encoding                             | Modulation  | Symbol            | Supported Band    |
|--------------|--------------------------------------|-------------|-------------------|-------------------|
| Wiode        | Lincoung                             | Wioddiation | Rate <sup>§</sup> | Supported Danu    |
| DCSKT 0      | (26,32)                              | QAM         | 1                 | FCC, ARIB, CA     |
| DCSKT 1      | (11,16)                              | QAM         | 1                 | FCC, ARIB, CA     |
| DCSKT 2      | (26,32)                              | QAM         | 2                 | FCC, ARIB, CA, CB |
| DCSKT 3      | (11,16)                              | QAM         | 2                 | FCC, ARIB, CA, CB |
| DCSKT 4      | (11,16)                              | QPSK        | 1                 | FCC, ARIB, CA, CB |
| DCSKT 5      | (11,16)                              | QPSK        | 2                 | FCC, ARIB, CA, CB |
| DCSKT 6      | (11,16)                              | QPSK        | 3                 | FCC, ARIB, CA, CB |
| DCSKT 7      | (11,16)                              | BPSK        | 3                 | FCC, ARIB, CA, CB |
| DCSKT 8      | (11,16)                              | QPSK        | 4                 | FCC, ARIB, CA, CB |
| DCSKT 9      | (11,16)                              | BPSK        | 4                 | FCC, ARIB, CA, CB |
| DCSKT 10     | (11,16)                              | QPSK        | 5                 | FCC, ARIB         |
| DCSKT 11     | (4,8)                                | BPSK        | 4                 | FCC, ARIB, CA, CB |
| DCSKT 12     | (4,8)                                | BPSK        | 5                 | FCC, ARIB         |
| DCSKT_TD **1 | $(11,16)$ with $\times 2$ repetition | QAM         | 2                 | FCC, ARIB, CA, CB |
| DCSKT_TD 2   | $(11,16)$ with $\times 2$ repetition | QPSK        | 1                 | FCC, ARIB, CA, CB |
| DCSKT_TD 3   | $(11,16)$ with $\times 2$ repetition | QPSK        | 2                 | FCC, ARIB, CA, CB |
| DCSKT_TD 4   | $(11,16)$ with $\times 2$ repetition | QPSK        | 3                 | FCC, ARIB, CA, CB |
| DCSKT_TD 5   | $(11,16)$ with $\times 2$ repetition | BPSK        | 3                 | FCC, ARIB, CA, CB |
| DCSKT_TD 6   | $(11,16)$ with $\times 2$ repetition | QPSK        | 4                 | FCC, ARIB, CA, CB |
| DCSKT_TD 7   | $(11,16)$ with $\times 2$ repetition | BPSK        | 4                 | FCC, ARIB, CA, CB |
| DCSKT_TD 8   | $(11,16)$ with $\times 2$ repetition | QPSK        | 5                 | FCC, ARIB         |
| DCSKT_TD 9   | $(4,8)$ with $\times 2$ repetition   | BPSK        | 4                 | FCC, ARIB, CA, CB |
| DCSKT_TD 10  | $(4,8)$ with $\times 2$ repetition   | BPSK        | 5                 | FCC, ARIB         |
| DCSK* - ERM  | (5,7) with ×4 repetition             | DCSK4       | -                 | FCC, ARIB, CA, CB |
| DCSK* - RM   | (5,7)                                | DCSK4       | -                 | FCC, ARIB, CA, CB |
| DCSK* - SM   | (7,9)                                | DCSK6       | -                 | FCC, ARIB         |

<sup>\*</sup>The DCSK transmission modes are fully back compatible with Yitran's IT800 and IT700 series.

<sup>§</sup> Symbol Rate indicates the rate of the DCSKT symbols where 1 is highest rate, and 5 is lowest rate.

\*\*\* TD (Time Diversity) is a mode is used when there is strong periodic noise on the channel



The following table details the IT900 PHY Payload Rates for the different Transmission bands per Tx mode:

**Table 3.2: Effective PHY Rate** 

| TX Mode    | Effective PHY Rate [kbps] |           |           |  |  |
|------------|---------------------------|-----------|-----------|--|--|
|            | FCC                       | CENELEC-A | CENELEC-B |  |  |
| DCSKT 0    | 346                       | 104       | N/A       |  |  |
| DCSKT 1    | 293                       | 88        | N/A       |  |  |
| DCSKT 2    | 260                       | 65        | 32.5      |  |  |
| DCSKT 3    | 220                       | 55        | 27.5      |  |  |
| DCSKT 4    | 146                       | 44        | 27.5      |  |  |
| DCSKT 5    | 110                       | 27.5      | 13.75     |  |  |
| DCSKT 6    | 55                        | 13.75     | 6.88      |  |  |
| DCSKT 7    | 28                        | 6.88      | 3.44      |  |  |
| DCSKT 8    | 28                        | 6.88      | 3.44      |  |  |
| DCSKT 9    | 14                        | 3.44      | 1.72      |  |  |
| DCSKT 10   | 14                        | 2.5       | 1.25      |  |  |
| DCSKT 11   | 10                        | N/A       | -         |  |  |
| DCSKT 12   | 5                         | N/A       | -         |  |  |
| DCSKT_TD 0 | 109                       | 27.14     | 13.57     |  |  |
| DCSKT_TD 1 | 72                        | 21.58     | 13.49     |  |  |
| DCSKT_TD 2 | 54                        | 13.57     | 6.79      |  |  |
| DCSKT_TD 3 | 27                        | 6.71      | 3.36      |  |  |
| DCSKT_TD 4 | 14                        | 3.36      | 1.68      |  |  |
| DCSKT_TD 5 | 13                        | 3.15      | 1.57      |  |  |
| DCSKT_TD 6 | 7                         | 1.57      | 0.79      |  |  |
| DCSKT_TD 7 | 6                         | 1.14      | 0.57      |  |  |
| DCSKT_TD 8 | 5                         | N/A       | N/A       |  |  |
| DCSKT_TD 9 | 2                         | N/A       | N/A       |  |  |
| DCSK - SM  | 5.83                      | N/A       | N/A       |  |  |
| DCSK - RM  | 3.57                      | 1.8       | 1.8       |  |  |
| DCSK - ERM | 0.9                       | 0.45      | 0.45      |  |  |



# 3.3 Enhanced M16/C60 Microcontroller

The IT900 features an integrated, enhanced M16/C60 microcontroller, running at a system clock frequency of 46.08 MHz with 256KBytes of Flash program memory and 31KBytes RAM data memory.

**Table 3.3: Microcontroller Functions** 

| Item                          | Function             | Description                                                                                                                                       |  |
|-------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CPU                           | Central processing   | M16C/60 Series core                                                                                                                               |  |
|                               | unit                 | (multiplier: $16$ -bit $\times$ $16$ -bit = $32$ -bit, multiply and accumulate instruction: $16$ -bit $\times$ $16$ -bit + $32$ -bit = $32$ -bit) |  |
|                               |                      | Number of basic instructions: 91                                                                                                                  |  |
|                               |                      | Minimum instruction execution time:                                                                                                               |  |
|                               |                      | 32.6 ns (f(BCLK) = 30.72 MHz, VCC1 = VCC2 = 3.0 to 3.6 V)                                                                                         |  |
|                               |                      | 41.7 ns (f(BCLK) = 24 MHz, VCC1 = VCC2 = 2.7 to 3.0 V)                                                                                            |  |
| Memory                        | ROM, RAM, data flash |                                                                                                                                                   |  |
| Clock                         | Clock generator      | • 4 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), PLL                                                                  |  |
|                               |                      | frequency synthesizer                                                                                                                             |  |
|                               |                      | Oscillation stop detection: Main clock oscillation stop/re-oscillation detection                                                                  |  |
|                               |                      | • Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, 16                                                                          |  |
|                               |                      | Power saving features: Wait mode, stop mode                                                                                                       |  |
|                               |                      | Real-time clock                                                                                                                                   |  |
| I/O Ports                     | Programmable I/O     | CMOS I/O ports: 53 (selectable pull-up resistors)                                                                                                 |  |
|                               | ports                | • N-channel open drain ports: 3                                                                                                                   |  |
| Interrupts                    |                      | • Interrupt vectors: 70                                                                                                                           |  |
| •                             |                      | • External interrupt inputs: 14 (NMI, INT × 5, key input × 8)                                                                                     |  |
|                               |                      | • Interrupt priority levels: 7                                                                                                                    |  |
| Watchdog Time                 | r                    | 15-bit timer × 1 (with prescaler)                                                                                                                 |  |
| C                             |                      | Automatic reset start function selectable                                                                                                         |  |
| DMA                           | DMAC                 | • 4 channels, cycle steal mode                                                                                                                    |  |
|                               |                      | • Trigger sources: 43                                                                                                                             |  |
|                               |                      | • Transfer modes: 2 (single transfer, repeat transfer)                                                                                            |  |
| Timers                        | Timer A              | 16-bit timer × 5                                                                                                                                  |  |
|                               |                      | Timer mode, event counter mode, one-shot timer mode, pulse width modulation                                                                       |  |
|                               |                      | (PWM) mode, Event counter two-phase pulse signal processing (two-phase encoder                                                                    |  |
|                               |                      | input) $\times$ 3, programmable output mode $\times$ 3                                                                                            |  |
|                               | Timer B              | 16-bit timer × 6                                                                                                                                  |  |
|                               |                      | Timer mode, event counter mode, pulse period measurement mode, pulse width                                                                        |  |
|                               |                      | measurement mode                                                                                                                                  |  |
|                               | Real-time clock      | Count: seconds, minutes, hours, days of the week, months, years                                                                                   |  |
| Serial                        | UART0 to UART2,      | Clock synchronous/asynchronous × 5 channels, PLC connection × 1 channel,                                                                          |  |
| Interface                     | UART 5 to UART7      | Special mode emulation for I2C-bus, IEBus, SIM, and multi device                                                                                  |  |
|                               |                      | communication                                                                                                                                     |  |
|                               | SI/O3, SI/O4         | Clock synchronization only × 2 channels                                                                                                           |  |
| Multi-master I <sup>2</sup> C | C-bus interface      | 1 channel                                                                                                                                         |  |
| A/D Converter                 |                      | 10-bit resolution × 18 channels, including sample and hold function                                                                               |  |
|                               |                      | Conversion time: 1.4 µs                                                                                                                           |  |
| CRC Calculator                |                      | CRC-CCITT (X16 + X12 + X5 + 1), CRC-16 (X16 + X15 + X2 + 1) compliant                                                                             |  |
| Encryption AES                |                      | AES Encryption (Key length: 128 bits)                                                                                                             |  |
| Flash Memory                  |                      | • Erase/write power supply voltage: 2.7 to 3.6 V                                                                                                  |  |
|                               |                      | • Erase/write cycles:                                                                                                                             |  |
|                               |                      | 1,000 times (program ROM 1, program ROM 2),                                                                                                       |  |
|                               |                      | 10,000 times (data flash)                                                                                                                         |  |
|                               |                      | Program security: ROM code protect, ID code check                                                                                                 |  |
|                               |                      | 1 -0                                                                                                                                              |  |



#### 3.3.1 Firmware Activity Monitoring

It is recommended to implemented firmware activity monitoring logic by periodically polling the External Host Interface, and verifying correct response from the IT900. If no response is received from the IT900, the Host should issue a reset sequence.

For devices that require very high reliability, the IT900 provides an "activity monitor" Pin (P1\_0), that may be used by an external circuitry to monitor correct operation. This pin generates pulse (1 mS width - active high) every  $0.8 \pm 0.1$  seconds for all bands, except for CA2 that generates pulse every  $1.2 \pm 0.1$  seconds.

If the pulse is not generated for more than 1.7 sec, then the IC should get a reset sequence. The monitoring circuitry may be implemented by watchdog element.

#### 3.3.2 Safe Mode

As part of the startup sequence after reset, IT900 loads parameters stored in the non-volatile memory. The host application may inadvertently set the values of the parameters such as to cause bad startup sequence of IT900, which may result in repeated resets. Safe mode allows IT900 to startup using the default parameter values stored in the firmware, thus guaranteeing successful completion of the startup sequence. The host application may then read and correct corrupt values stored in the non-volatile memory.

The procedure for recovery from parameters corruption in IT900 is as follows:

- To enter Safe Mode, set IT900 pin P1\_4 to logical "0".
- Resetting IT900 will cause it to wake up with default parameters.
- Set pin P1 4 to logical "1" (P1 4 as an internal pull-up).
- Apply proper configuration to IT900 and save settings to NVM.





#### 3.4 Y-NET PROTOCOL

In the Protocol Architecture version, the IT900 is accompanied by Yitran's Y-Net protocol firmware. The Y-Net protocol stack firmware implements Media Access Control (MAC) and Network Layer (NL), which are layers 2 and 3 of the seven-layer OSI model highlighted in grey in Figure 12. The following sections provide an overview of the Y-Net protocol stack features and capabilities.



Figure 12: OSI Network Layer Model

# 3.4.1 Media Access Control (MAC)

#### 3.4.1.1 Introduction

The MAC layer implements a highly efficient channel access management function, which enables occupation of the channel by a single node at a given time, while providing fair Quality of Service (QoS) among nodes and at the same time maintaining high overall network throughput.

In addition, the MAC layer supports low-level services as detailed below:

- Packet Transmission Services
- Addressing and Logical Networks
- Virtual Jamming
- Coexistence with CEBus and X-10 Nodes
- Statistics and Diagnostics

#### 3.4.1.2 Channel Access Method

The MAC uses a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol with an adaptive back-off scheme and channel access prioritization to manage channel access in such a way that only a single sending node occupies the communication channel at any given time. The channel access method is optimized for the power line medium. It provides optimal performance for network sizes ranging from a few nodes to thousands of nodes.



The media access control is based on:

- Super-Frame Time Intervals
- Carrier Sense Mechanism
- Packet Prioritization and Quality of Service (QoS)
- Adaptive Back-off Algorithm

#### 3.4.1.2.1 Super-Frame Time Intervals

A super-frame is the time between the end of packet transmission (EOP) and the start of the next packet transmission. The super frame is sub-divided into time intervals for signaling MAC events, a back-off period and/or message transmission period.

#### 3.4.1.2.2 Carrier Sense Mechanism

The PHY layer provides Carrier Detection (CD) indication to the MAC. The output of the PHY CD signal to the MAC indicates an ongoing transmission on the line.

#### 3.4.1.2.3 Packet Prioritization and Quality of Service (QoS)

The upper layer can assign priorities to packets as follows:

- Emergency
- High
- Normal

The MAC signals the priority of packets to be transmitted as part of the super frame (no signal for normal priority packets). The MAC ensures that only transmitters that have packets with the highest priority will contend for channel access in each super-frame.

#### 3.4.1.2.4 Adaptive Back-off Algorithm

The adaptive back-off algorithm manages the contention for the channel by multiple transmitters. The MAC continuously updates the size of the back-off randomization range. The back-off range is optimally set for maximizing the throughput as a function of the number of simultaneous nodes contending for channel access.

If the MAC is unable to transmit the packet within a timeout period set by the upper layer, it discards the packet as blocked and informs the upper layer.



#### 3.4.1.3 MAC Packet Transmission Services

The MAC layer encapsulates the payload received from the Upper Layer and provides various types of packet transmission services to and from the Upper Layer.

The MAC protocol supports the packet delivery services detailed in Table 3.4.

**Table 3.4: Packet Delivery Services** 

| Service            | Description                                                                   |  |  |
|--------------------|-------------------------------------------------------------------------------|--|--|
| Unicast with       | Intranetworking Unicast transmission in which the receiving node sends        |  |  |
| Acknowledgment     | an acknowledgment to the transmitting node to indicate the successful         |  |  |
|                    | reception or a lack of resources to receive the packet.                       |  |  |
| Unicast Repetitive | Intranetworking Unicast transmission service in which the packet is           |  |  |
| Un-acknowledgment  | retransmitted a specified number of times, regardless of its successful or    |  |  |
|                    | unsuccessful delivery. The receiving node does not send a packet              |  |  |
|                    | reception acknowledgment.                                                     |  |  |
| Broadcast          | ne MAC provides two types of broadcast services:                              |  |  |
|                    | (1) Intranetworking Broadcast – The packet is transmitted to all node         |  |  |
|                    | in the same logical network.                                                  |  |  |
|                    | (2) <b>Internetworking Broadcast</b> – The packet is transmitted to all nodes |  |  |
|                    | regardless of their logical network.                                          |  |  |
|                    | Broadcast packets may also be retransmitted repetitively, using the           |  |  |
|                    | repetitive un-acknowledgment service.                                         |  |  |

#### 3.4.1.4 IT900 Transmission Rate Modes

The IT900 supports multiple transmission rate modes which are dynamically selected by the IT900 MAC layer according to channel quality and statistics. In addition, the IT900 supports Yitran's IT700/IT800 modulation (DCSK) and rates which will be activated automatically when target device is IT800/IT700 or when channel conditions require.

The table below details the range of transmission rates supported by the IT900 for each operation band:

**Table 3.5: IT900 Transmission Rates** 

| TX Mode             | Data Rate [kbps]           |                     |                     |
|---------------------|----------------------------|---------------------|---------------------|
|                     | FCC                        | CENELEC-A           | CENELEC-B           |
| DCSKT Turbo (DCSKT) | Up to 500                  | Up to 150           | Up to 50            |
| DCSK                | 7.5 (SM), 5(RM), 1.25(ERM) | 2.5(RM), 0.625(ERM) | 2.5(RM), 0.625(ERM) |



#### 3.4.1.5 MAC Addressing and Logical Networks

The IT900 MAC layer uses a 16-byte Serial Number (S/N), which is unique among all IT900 devices. The S/N is used by Internetworking broadcast transmissions to identify the transmitter.

In addition, the IT900 MAC layer defines an 11-bit logical node address (Node ID) and a 10-bit logical network address (Network ID). The logical node and network addresses are local to the specific logical network. The network address must be unique between different logical networks on the same physical network and the node address must be unique within the same logical network. A node can only use a single logical address. The network and node addresses can be configured by the Upper Layer. Communication services within the same logical network use logical addressing.

#### 3.4.1.6 Security: Encryption and Virtual Jamming

The MAC layer provides security services, including 128-bit AES encryption operating in CTR mode<sup>††</sup>, CBC-MAC 32 message authentication, as well as message and encryption counters for message uniqueness.

These security services allow the implementation of a secured platform that provides a high level of confidentiality for the information transmitted over the power line medium.

Virtual jamming can be used to identify an impostor node attempting to infiltrate the network using the logical address of a valid network node. The node whose logical address is spoofed by another node sends an impostor packet to inform the network of the impostor, thus preventing the execution of commands that the impostor has issued.

#### 3.4.1.7 Coexistence with CEBus and X10 Nodes

The IT900 PHY detects CEBus and X10 packets on the medium. The MAC layer defers transmission if the PHY indicates that such transmission is ongoing.

#### 3.4.1.8 Statistics and Diagnostics

The PHY and MAC layers collect and provide channel quality information and statistics to the Upper Layer.

<sup>††</sup> Encryption is not currently supported, but will be available in future versions of the Y-Net stack.



# 3.4.2 Network Layer (NL)

#### 3.4.2.1 Introduction

The NL transparently creates and maintains a tree-type topology network and releases the Upper Layer from the responsibility of handling the constantly changing conditions of the power line medium.

The logical network contains a Network Coordinator (NC) node responsible for network formation activities. The NC is expected to remain online for proper operation of the network. All other nodes in the logical network are Remote Stations (RS). RS may serve as a router that routes packets to or from the NC and may also implement remote application functionality. RS-to-RS communication is supported as long as there is physical connectivity between the two nodes and no need for routing the packets.

The NL provides the following networking services:

- Data Services Provides advanced intranetworking and internetworking transmission services.
- Management Services, as follows:
  - Network Formation Services Enable users without any prior networking or protocol knowledge to easily install, create and maintain logical networks.
  - O Dynamic Routing Service The NL creates a tree topology, enabling the NC to communicate with all nodes in the same logical network and vice versa (via intermediate nodes if required). This service provides complete transparency of the communication between all the devices and the NC, and makes them appear like standard peer-to-peer. Peer-to-peer communication between any two devices is also supported, as long as they have direct physical connectivity.

#### 3.4.2.2 Data Services

Data services are responsible for transmission and reception of upper layer payload. The data services used by the NL are as follows:

- Internetworking: Transmission of data between nodes in any logical network.
- Intranetworking: Transmission of data (may be over multiple hops) between nodes in the same network.

#### 3.4.2.2.1 Internetworking Services

#### Internetworking Unicast Service

The Internetworking Unicast Service allows a source node from one logical network to transmit packets to an individual destination node in any logical network. The figure below shows an internetworking Unicast transmission where filtering is performed by the receiver according to the S/N.





Figure 13: Internetworking Unicast Message Flow



#### Internetworking Broadcast Service

The Internetworking Broadcast Service allows a source node to transmit packets to all surrounding nodes in any logical network. The figure below shows an internetworking broadcast transmission where all nodes receive the packet.



Figure 14: Internetworking Broadcast Message Flow

# Internetworking Security<sup>‡‡</sup>

Internetworking messages can be secured through encryption of the payload on the transmitter side and decryption on the receiver side.

# Internetworking Authorization§§

The Upper Layer can configure internetworking data services authorization for received packets that are marked as destined for the Upper Layer to one of the following:

- All Authorize all internetworking data packets to the Upper Layer to be forwarded.
- **Encrypted Only** Authorize only encrypted internetworking data packets to the Upper Layer to be forwarded. Unencrypted internetworking data packets to the Upper Layer are discarded.
- None No internetworking data are allowed to be forwarded to the Upper Layer. All internetworking data packets to the Upper Layer are discarded.

<sup>\*\*</sup> Security is currently not supported, but will be available in future versions of the Y-Net stack.

<sup>§§</sup> Authorization is currently not supported, but will be available in future versions of the Y-Net stack.



#### 3.4.2.2.2 Intranetworking Services

#### **Direct Intranetworking Unicast**

The Direct Intranetworking Unicast service allows a source node to transmit packets to an individual destination node in the same logical network if they can communicate directly. The figure below shows Direct Intranetworking Unicast transmission where filtering of the packet is performed by the receiver according to the logical address.



Figure 15: Direct Intranetworking Unicast Message Flow

#### Routed Intranetworking Unicast

The NL routing capabilities extend the MAC transmission service to allow nodes from the same logical network, which have no direct connection, to communicate via intermediate nodes.

In the routing process each node along the route, from the originating node to the final destination node, retransmits the packet using one of the MAC Unicast transmission services (acknowledged or repetitive unacknowledged). The originating node defines which MAC transmission service to use. All intermediate nodes use the same MAC service to retransmit the packet to the next node along that route.

The source node can encrypt the message prior to transmission and only the final destination node will decrypt it.





Figure 16: Routed Intranetworking Unicast Message Flow

The NL routing function selects the next node along the route to the final destination and retransmits the packet to that node as shown in Figure 16.

#### Intranet Broadcast Service

The Intranetworking Broadcast service allows a source node to transmit packets to all nodes in the same the same logical network.

#### Intranetworking Security\*\*\*

Intranetworking messages can be secured by the NL through encryption of the payload on the transmitter side and decryption on the receiver side. The security services include 128-bit AES encryption operating in CTR mode, CBC-MAC 32 message authentication and message and encryption counters for message uniqueness.

#### Intranetworking Authorization †††

The Intranetworking packets authorization applies to all intranetworking packets. The following authorization modes are available:

<sup>\*\*\*</sup> Security is currently not supported, but will be available in future versions of the Y-Net stack.

<sup>†††</sup> Authorization is currently not supported, but will be available in future versions of the Y-Net stack.



- None Only unencrypted intranetworking packets are received. Encrypted packets are discarded.
- **Secure** Only encrypted intranetworking packets are received. Unencrypted packets are discarded.

#### Maximum Payload Size per NL Data Service

The maximum payload size supported per NL data service is as follows:

Table 3.6: Maximum Payload Size per NL Data Service

| # | Service                                | Max Payload Size –<br>DCSK Turbo rates | _         | /load Size –<br>SK rates |  |
|---|----------------------------------------|----------------------------------------|-----------|--------------------------|--|
|   |                                        | Encrypted/Non Encrypted                | Encrypted | Non Encrypted            |  |
| 1 | Internetworking Unicast                | Up to 1522 bytes (Enc' is N/A)         | N/A       | 87 bytes                 |  |
| 2 | Internetworking Broadcast              | Up to 1522 bytes (Enc' is N/A)         | N/A       | 103 bytes                |  |
| 3 | Intranetworking source routing service | Up to 1522 bytes                       | 67 bytes  | 76 bytes                 |  |
| 4 | Intranetworking table routing service  | Up to 1522 bytes                       | 97 bytes  | 106 bytes                |  |
| 5 | Intranetworking direct Unicast service | Up to 1522 bytes                       | 100 bytes | 109 bytes                |  |
| 6 | Intranetworking Broadcast service      | Up to 1522 bytes                       | 100 bytes | 109 bytes                |  |
| 7 | Fragmented Intranetworking services    | 1522 bytes                             |           |                          |  |

<sup>\*</sup>Note: the payload size allows for full Ethernet/IPv6 packets.

The actual size of single fragment varies according to the transmission rate mode and regulation. When the payload size exceeds the actual single fragment size the Y-Net splits the transmission into multiple fragments that are then reassembled in the receiving node. This mechanism is called **fragmentation** at the transmitting node and **reassembly** at the receiving node.



#### 3.4.2.3 NL Management Services

The NL management module provides two primary services:

- Network Formation Services
- Dynamic Routing Service

#### 3.4.2.3.1 Network Formation Services

The NL network formation services consist of the following:

- Logical network creation
- Network admission control
- Logical addressing management
- Networking indications to host

#### Logical Network Creation

The logical network creation service enables an NC to select a unique Network ID (automatically or manually by configuration) and create a logical network, thereby enabling RS nodes to join the logical network of the NC.

#### **Network Admission Control**

The network admission control services enable and assist the end user to (automatically or in conjunction with the application):

- Associate nodes that should belong to the same logical network together.
- Prevent hostile or incorrect nodes from joining a logical network.
- Prevent nodes from joining a hostile or incorrect logical network.

Two services enable the above to be performed in a simple and quick manner:

- Admission Process (in NC) The NC admits only allowed nodes to its network based on its admission mode configuration (i.e. only nodes that should belong to the logical network are admitted and potentially hostile or incorrect nodes are rejected). The admission modes are described in Table 3.7.
- Approval Process (in RS) The RS needs to approve the NC's decision to admit it to its logical network thereby preventing it from joining a hostile or incorrect logical network. When the NC admits a new node to the network, it attaches an 8-byte Node Key field to the admission approval packet sent to the RS. The Node Key can be set per RS by the NC application in "Application Mode" admission mode or by default using the Node Key configured to the NC. If the Node Key configured in the RS matches the one received from the NC, the RS approves the admission of the NC to its logical network. Otherwise, the RS rejects the admission of the NC and does not join the network. The Node Key mechanism can be used for auto-segmentation of overlapping logical networks by configuring the same Node Key to an NC and all RS that should be associated with the



logical network of that NC. The RS optionally can disable the use of the Node Key mechanism, thereby accepting admission of any admitting NC by setting all the bytes of its configured Node Key to 0x00.

**Table 3.7: NC Admission Modes** 

| Admission Mode                   | Description                                                                                                                                                                                                                                |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto Mode                        | When an admission request arrives to the NC from any RS, the NC immediately admits the RS to its network.                                                                                                                                  |
|                                  | There is no admission restrictions or host application involvement.                                                                                                                                                                        |
| S/N Range Mode                   | When an admission request arrives to the NC from an RS, the NC admits only RS whose MSB of their S/N are within the S/N range configured in the NC (number of MSB to use is configurable in the NC).                                       |
|                                  | The host application is responsible to configure the S/N range, and the number of MSB to be used prior to the admission process.                                                                                                           |
| Application Mode                 | When an admission request arrives to the NC from an RS, the NL sends an indication to the host application. The host application is responsible to decide whether to admit the RS based on the S/N of the RS provided by the NL of the NC. |
|                                  | Note that in this mode, if the application recognizes the RS and admits the RS, the application may also provide the Node Key of the RS to the NL of the NC (otherwise, the default Node Key configured in the NC will be used).           |
| S/N Range or Application<br>Mode | When an admission request arrives to the NL of the NC from an RS, the NC attempts to admit the RS using the S/N Range mode. If the RS is rejected at the S/N Range mode, the NC uses the Application Mode admission mode to admit the RS.  |



#### Logical Addressing Management

The logical addressing management services are responsible for ensuring that each node is assigned with a unique logical address. The logical addressing management services consist of:

- Allocating logical addresses to nodes that guarantee unique logical address within a physical network (where are a logical address is the combination of Network ID and Node ID).
- Maintaining logical addressing uniqueness and resolving conflicts (both Network ID and Node ID).

#### 3.4.2.3.2 Dynamic Routing

The NL creates a tree topology in which RS and NC maintain an optimal symmetric bi-directional route between them (in terms of number of hops from NC).

The NL dynamic routing services are:

- Route Discovery: Each RS discovers its route to the NC and vice versa.
- Route Maintenance: Each RS maintains the integrity of its route to the NC and vice versa.
- **Route Optimization**: The route to the NC is continuously optimized, by searching and selecting shorter routes to the NC.
- NC Reset Recovery: When powered up, the NC retrieves the last known topology from its non-volatile memory.



#### 3.5 HOST INTERFACE

The IT900 Protocol Controller Architecture version is accompanied by Yitran's Y-Net protocol stack prefirmware. In this mode, the device operates as a PLC modem chip with interface to an external host application. The external host application is required to implement the application layer functionality. The host controller connects to the IT900 through a full-duplex UART physical interface. A command set provides the logical interface from the host application to the IT900 network layer.

The following sections detail the physical host connection and provide an overview of the command set and logical interface, which are described further in the IT900 Host Interface Command Set User Guide (IT900-UM-001-R1.0).

#### 3.5.1 Application Host Connection



**Figure 17: Host Connection** 

**Table 3.8: Host Interface Pins** 

| Pin Name | Pin    | Interface | Description                                |
|----------|--------|-----------|--------------------------------------------|
|          | Number | Function  |                                            |
| P6_3     | 67     | TXD       | UART data output (IT900 → Host)            |
| P6_2     | 68     | RXD       | UART data input (Host $\rightarrow$ IT900) |
| RESET    | 10     | RESET     | RESET (active low)                         |



The communication parameters of the UART Host interface are set to the values listed in the table below:

**Table 3.9: Host Interface Parameters** 

| Parameter                | Value           |
|--------------------------|-----------------|
| Communication Rate [bps] | 960000 or 38400 |
| Data [bits]              | 8               |
| Parity [bits]            | 0               |
| Stop [bits]              | 1               |
| Flow Control             | Off             |

Fast/Slow baud rate select:

uC which don't support fast UART baud rates may use P6 0 to select slow baud rate mode.

P6 0 selects the fast/slow UART baud rate:

P6 0 = 1: Fast baud rate (default value is 960000)

P6 0 = 0: Slow band rate (default value is 38400)

#### 3.5.2 Communication Guidelines

The host software should follow the implementation guidelines described below.

- Full-Duplex Operation: Communication over the UART interface is full duplex. While the host transfers data to the IT900, the IT900 may at the same time transfer data to the host. Therefore the host software should be designed to handle full-duplex communication.
- Command Response: The IT900 transmits a response to each received host command. While waiting for a command response, the host software should still be able to handle data packets received from the IT900.
- Unique Task: The host may only issue a single task to the IT900 at a time. This means that the host should not issue a new command until the command response of the previous command has been received from the IT900.

#### 3.5.3 IT900 Initialization – First Power-On

Upon the **very first power-on**, the default values stored in the IT900 code are loaded and stored in both the on-chip RAM and the non-volatile (NV) memory storage.

The Host controller may change these values using the proper commands. The Host uses the "Set Device Parameters" command to change parameter values in the on-chip RAM and the "Save Device Parameters" command to store them in the NV memory. The new values override those previously stored in the NV



memory and will be loaded after subsequent RESET or power-on events. Values that were changed only in the RAM will not be retained after RESET.

#### 3.5.4 Host Initial Actions

The host is required to implement the actions described in this section in order to properly communicate over the power line. For further details, see the IT900-V1 Host Interface Command Set User Guide (IT900-UM-001-R1.0).

- 1. **Device Reset:** A RESET indication is issued to the host upon every reset of the IT900, including Power-On. The Host should detect this indication to validate proper wake-up of the device.
- 2. **Parameter Configuration:** The initialization process of the IT900 includes configuration of parameters for all nodes type and a separate configuration for the BST and for RMT.
- 3. **Save Parameters to NV Memory:** Save parameter settings by sending the "Save Device Parameters" command. Once the parameters are stored, the IT900 will retrieve the required settings from the NV memory storage on each subsequent power-on or reset.
- 4. **Online Mode:** Set the device to an online mode by sending the "Go Online" command. Once the device is online, the NL processes will begin.

## 3.5.5 Command Set General Description

The Host interface supports three packet types:

- **Request:** A Request packet is sent from an Upper Layer application to the NL to request a service be initiated.
- **Response:** A Response packet is sent from the NL to the Upper Layer application in response to the Request.
- **Indication:** An Indication packet is sent by the NL when it has to inform the Upper Layer of significant NL events (for example, admission result).

The Interface Commands are separated into a number of groups:

- **Embedded Services Commands:** These commands provide interface to cross-layer and general services, such as Free Memory, Write/Read from NV Memory, Get Version, etc.
- Stack Services Commands: These commands provide interface to cross-layer services required by the Y-NET stack, such as Reset, Go Online, etc.
- Configuration and Monitoring Commands: These commands set, get or save parameters from one of the IT900 configuration tables.
- NL Management Commands and Indications: These commands monitor the NL Management Database, interface to NL Management services that require information from upper layers (set Private Key, Admission Response, etc.) and report significant NL Management events (Admission Result, Connected to NC, and Disconnected from NC).
- NL Data Commands and Indications: These commands handle transmission and reception of data packets. They also provide access to the routing tables.



# 4 CLOCK CONFIGURATION

## 4.1 CLOCK CIRCUIT



Figure 18: Clock Circuit

## Notes:

- 1. The recommended value for Cx should be taken from the IT900 reference design.
- 2. The crystal should be located as close as possible to the Xin and Xout pins.



## RESET CONFIGURATION

#### Introduction

The following resets can be used to reset the MCU: hardware reset, power-on reset, voltage monitor 0 reset, oscillator stop detect reset, watchdog timer reset, and software reset.

Table 5.1 lists the Types of Resets; Figure 6.1 shows the Reset Circuit Block Diagram, and Table 6.2 lists the I/O Pins.

| Reset Name                   | Trigger                                                 |
|------------------------------|---------------------------------------------------------|
| Hardware reset               | A low-level signal is applied to the RESET pin.         |
| Power-on reset               | The rise in voltage on VCC1.                            |
| Voltage monitor 0 Reset      | The drop in voltage on VCC1 (reference voltage: Vdet0). |
| Oscillator stop detect reset | A stop in the main clock oscillator is detected.        |
| Watchdog timer reset         | The watchdog timer underflows.                          |
| Software reset               | Setting the PM03 bit in the PM0 register to 1.          |

**Table 5.1: Types of Resets** 



Figure 19: Reset Circuit Block Diagram



#### Table 5.2: I/O Pins

| Pin   | I/O   | Function                                                                                      |
|-------|-------|-----------------------------------------------------------------------------------------------|
| RESET | Input | Hardware reset input.                                                                         |
| VCC1  | Input | Power input. The power-on reset and voltage monitor 0 reset are generated by monitoring VCC1. |
| XIN   | Input | Main clock input. The oscillator stop detect reset is generated by monitoring the main clock. |

#### **5.1.1** Hardware Reset

This reset is triggered by the RESET pin. When the power supply voltage meets the recommended operating conditions, the MCU resets the pins, CPU, and SFRs when a low-level signal is applied to the RESET pin.

When changing the signal applied to the RESET pin from low to high, the MCU executes the program at the address indicated by the reset vector. fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The HWR bit in the RSTFR register becomes 1 (hardware reset detected) after hardware reset.

The internal RAM is not reset. When a low-level signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM becomes undefined.

The procedures for generating a hardware reset are as follows:

When the power supply is stable

- (1) Apply a low-level signal to the RESET pin.
- (2) Wait for tw(RSTL).
- (3) Apply a high-level signal to the RESET pin.

When the power is turned on

- (1) Apply a low-level signal to the RESET pin.
- (2) Raise the power supply voltage to the recommended operating level.
- (3) Wait for td (P-R) until the internal voltage stabilizes.
- (4) Wait for  $\frac{1}{fOCO-S} \times 20$  cycles.
- (5) Apply a high-level signal to the RESET pin.

<sup>&</sup>quot;Special Function Registers (SFRs)" for the rest of the SFR states after reset.





Figure 20: Reset Circuit Example

#### 5.1.2 Power-On Reset Function

The power-on reset function can be used on the system in which VCC1 is Vdet0 or higher. When the RESET pin is connected to VCC1 via a pull-up resistor and the VCC1 voltage level rises while the rise gradient is trth or more, the power-on reset function is enabled and the MCU resets the pins, CPU, and SFRs.

When the input voltage to the VCC1 pin reaches Vdet0 or above, the fOCO-S count starts. When the fOCO-S count reaches 32, the internal reset signal becomes high and the MCU executes the program at the address indicated by the reset vector. fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The CWR bit in the RSTFR register becomes 0 (cold start) after power-on reset. Refer to 4. "Special Function Registers (SFRs)" for the remaining SFR states after reset.

The internal RAM is not reset.

Use the voltage monitor 0 reset together with the power-on reset. Set the LVDAS bit in the OFS1 address to 0 (voltage monitor 0 reset enabled after hardware reset) to use the power-on reset. In this case, the voltage monitor 0 reset is enabled (the VW0C0 bit and bit 6 in the VW0C register are 1 and the VC25 bit in the VCR2 register is 1). Do not set these bits to 0.

Figure 21 shows Power-On Reset Circuit and Operation Example. When a capacitor is connected to the RESET pin, always keep voltage to the RESET pin at 0.8 VCC1 or more.





Figure 21: Power-On Reset Circuit and Operation Example

#### **5.1.3** Voltage Monitor 0 Reset

This reset is triggered by the MCU's on-chip voltage detector 0. The voltage detector 0 monitors the voltage applied to the VCC1 pin (Vdet0). The MCU resets the pins, CPU, and SFRs when the voltage applied to the VCC1 pin drops to Vdet0 or below.

The fOCO-S count starts when the voltage applied to the VCC1 pin rises to Vdet0 or above. The internal reset signal becomes high after 32 cycles of fOCO-S, and then the MCU executes the program at the address indicated by the reset vector. fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The CWR bit in the RSTFR register becomes 0 (cold start) after voltage monitor 0 reset. The internal RAM is not reset. When the voltage applied to the VCC1 pin drops to Vdet0 or below while writing data to the internal RAM, the internal RAM becomes undefined.



#### 5.1.4 Oscillator Stop Detect Reset

The MCU resets and stops the pins, CPU, and SFRs when the CM27 bit in the CM2 register is 0 (reset when oscillator stop detected), if it detects that the main clock oscillator has stopped.

The OSDR bit in the RSTFR register becomes 1 (oscillator stop detect reset detected) after oscillator stop detect reset. Some SFRs are not reset at oscillator stop detect reset.

The internal RAM is not reset. When the main clock oscillator stop is detected while writing data to the internal RAM, the internal RAM becomes undefined.

Oscillator stop detect reset is canceled by hardware reset or voltage monitor 0 reset.

## 5.1.5 Watchdog Timer Reset

The MCU resets the pins, CPU, and SFRs when the PM12 bit in the PM1 register is 1 (reset when watchdog timer underflows) and the watchdog timer underflows. Then the MCU executes the program at the address determined by the reset vector. fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The WDR bit in the RSTFR register becomes 1 (watchdog timer reset detected) after watchdog timer reset. Some SFRs are not reset at watchdog timer reset.

The internal RAM is not reset. When the watchdog timer underflows while writing data to the internal RAM, the internal RAM becomes undefined.

#### 5.1.6 Software Reset

The MCU resets the pins, CPU, and SFRs when the PM03 bit in the PM0 register is 1 (MCU reset). Then the MCU executes the program at the address determined by the reset vector. fOCO-S divided by 8 is automatically selected as the CPU clock after reset.

The SWR bit in the RSTFR register becomes 1 (software reset detected) after software reset. Some SFRs are not reset at software reset.

The internal RAM is not reset.



#### **Cold/Warm Start Discrimination** 5.1.7

The cold/warm start discrimination detects whether or not voltage applied to the VCC1 pin drops to the RAM hold voltage or below. The reference voltage is Vdet0. Therefore, the voltage monitor 0 reset is used for cold/warm start discrimination.

The CWR bit in the RSTFR register is 0 (cold start) when power is turned on. The CWR bit also becomes 0 after power-on reset or voltage monitor 0 reset. The CWR bit becomes 1 (warm start) by writing 1, and remains unchanged at hardware reset, oscillator stop detect reset, watchdog timer reset, or software reset.

In the cold/warm start discrimination, the Vdet0 level can be selected by setting the VDSEL1 bit in the OFS1 address.

- When power-on reset or voltage monitor 0 reset is used, set the VDSEL1 bit to 0 (Vdet0 = 2.85 V (Vdet0 2)).
- When neither power-on reset nor voltage monitor 0 reset is used as the user system, set the VDSEL1 bit to 1 (Vdet0 = 1.90 V (Vdet0 0)). In this case, voltage monitor 0 reset and its cancellation are based on Vdet0 0. Therefore, execute hardware reset after cancelling the voltage monitor 0 reset.

Figure 22 shows the Cold/Warm Start Discrimination example.



Figure 22: Cold/Warm Start Discrimination



#### **5.2** Notes on Resets

## 5.2.1 Power Supply Rising Gradient

When supplying power to the MCU, make sure that the power supply voltage applied to the VCC1 pin meets the SVCC conditions.

| Symbol | Parameter                                                       |      | Standard |      |      |  |
|--------|-----------------------------------------------------------------|------|----------|------|------|--|
| Symbol | Falanietei                                                      | Min. | Тур.     | Max. | Unit |  |
| SVCC   | Power supply VCC1 rising gradient (Voltage range: 0 V to 2.0 V) | 0.05 |          |      | V/ms |  |



**Figure 23: SVCC Timing** 

#### 5.2.2 Power-On Reset

Use the voltage monitor 0 reset together with the power-on reset. To use the power-on reset, set the LVDAS bit in the OFS1 address to 0 (voltage monitor 0 reset enabled after hardware reset). In this case, the voltage monitor 0 reset is enabled (the VW0C0 bit and bit 6 in the VW0C register are 1, and the VC25 bit in the VCR2 register is 1) after power-on reset. Do not disable these bits.

#### **5.2.3** OSDR Bit (Oscillation Stop Detect Reset Detection Flag)

When an oscillation stop detect reset is generated, the MCU is reset and then stopped. This state is canceled by hardware reset or voltage monitor 0 reset.

Note that the OSDR bit in the RSTFR register value is not affected by a hardware reset, but becomes 0 (not detected) from a voltage monitor 0 reset.



## 5.3 NON VOLATILE MEMORY

#### 5.3.1 Overview

The Non-Volatile Memory holds all the IT900's configurable parameters and sustainable data. There are two options for Non-Volatile storage: Internal Flash and External EEPROM. Internal Flash is a lower-cost option, but has the disadvantage of limited memory space and number of erase cycles. The use of the internal Flash is most appropriate for RMT devices, while the use of external EEPROM is advised for BST devices.

## 5.4 EEPROM APPLICATION CIRCUIT

The EEPROM is mandatory for IT900 NC and for any application that requires Remote Version Download support (firmware upgrade through power line).

For a RS or for any application which does not rely on IT900 YNET Network Layer, the EEPROM is optional.

When using an EEPROM, a 24Cxx serial EEPROM is recommended. The required EEPROM connection to the IT900 is shown in the following figure:



Figure 24: IT900 to EEPROM Connection

Note: The EEPROM device used must have a 64-Byte page write mode.



## 5.5 APPLICATION CIRCUIT

Figure 25 below shows a typical schematic connections for the IT900 application circuit (the EEPROM is optional – see section 5.4).



Figure 25: IT900 Typical Application Circuit



# **6 ELECTRICAL CHARACTERISTICS**

## 6.1 ABSOLUTE MAXIMUM OPERATING CONDITIONS

**Table 6.1: Absolute Maximum Ratings** 

| Symbol | Parameter         |                             | Condition            | Rated Value         | Unit |
|--------|-------------------|-----------------------------|----------------------|---------------------|------|
| VCC1   | Supply voltage    |                             | VCC1= AVCC           | -0.3 to 4.6         | V    |
| VCC2   | Supply voltage    |                             | VCC1= AVCC           | -0.3 to VCC1 +      | V    |
|        |                   |                             |                      | 0.1 (*)             |      |
| VCCA   | Supply voltage    |                             |                      | -0.3 to 4.6         | V    |
| AVCC   | Analog supply vol | ltage                       | VCC1= AVCC           | -0.3 to 4.6         | V    |
| VREF   | Analog supply vol | Analog supply voltage       |                      | -0.3 to VCC1 +      | V    |
|        |                   |                             |                      | 0.1 (*)             |      |
| VI     | Input voltage     | RESET, CNVSS, TMOD          |                      | -0.3 to VCC1 +      | V    |
|        |                   | P7_2 to P7_7,               |                      | 0.3 (*)             |      |
|        |                   | P8_0 to P8_4, P8_6, P8_7,   |                      |                     |      |
|        |                   | P9_0 to P9_7, P10_0 to      |                      |                     |      |
|        |                   | P10_7, XIN                  |                      |                     |      |
|        |                   | P0_0 to P0_7, P1_0 to P1_7, |                      | -0.3 to VCC2 +      | V    |
|        |                   | P6_0 to P6_7, UROM_EN       |                      | 0.3 (*)             |      |
|        |                   | P7_0, P7_1, P8_5            |                      | -0.3 to 4.6         | V    |
|        |                   | VINP, VINN, TESTP,          |                      | -0.3 to VCCA +      | V    |
|        |                   | TESTN, OC_EN                |                      | 0.3(*)              |      |
| VO     | Output voltage    | P7_2 to P7_7,               |                      | -0.3 to VCC1 +      | V    |
|        |                   | P8_0 to P8_4, P8_6, P8_7,   |                      | 0.3 (*)             |      |
|        |                   | P9_0 to P9_7, P10_0 to      |                      |                     |      |
|        |                   | P10_7, XOUT                 |                      | 0.0                 | **   |
|        | A                 | P0_0 to P0_7, P1_0 to P1_7, |                      | -0.3 to VCC2 +      | V    |
|        |                   | P6_0 to P6_7, TS            |                      | 0.3 (*)             | * 7  |
|        |                   | P7_0, P7_1, P8_5            |                      | -0.3 to 4.6         | V    |
|        |                   | VOUTP, VOUTN, EXTLDP,       |                      | -0.3 to VCCA +      | V    |
|        |                   | EXTLDN,                     |                      | 0.3(*)              |      |
|        |                   | VCM, VCMTX, VRT, VRB,       |                      |                     |      |
|        |                   | TESTP,                      |                      |                     |      |
|        |                   | TESTN, OC                   |                      | 0.242.20            | 17   |
| Pd     | Dower consumetic  | VCC15                       | -40°C ≤ Topr ≤       | -0.3 to 2.0<br>1000 | V    |
| Pu     | Power consumption | )II                         | -40°C ≤ 1 opr ≤ 85°C | 1000                | V    |
| Topr   | Operating         | When MCU is operating       | 65 C                 | -40 to 85           | mW   |
| торі   | temperature       | Flash program erase         |                      | -40 to 85           | °C   |
| Tota   |                   | 1 6                         |                      |                     | °C   |
| Tstg   | Storage temperatu | 16                          |                      | -65 to 150          | 1    |

<sup>\*</sup> Maximum value is 4.6 V.



## **Proprietary Information**

## **6.2** RECOMMENDED OPERATING CONDITIONS

## Table 6.2: Recommended Operating Conditions (1/4)

VCC1 = VCC2 = 2.7 to 3.6 V at Topr = -40 to 85°C unless otherwise specified.

|        | 2.710 3.0 7 0 |             | unicss otherwise specified. | S       | tandard |      |      |
|--------|---------------|-------------|-----------------------------|---------|---------|------|------|
| Symbol |               | Para        | ameter                      | Min     | Type    | Max  | Unit |
| VCC1   | Supply        | PLC         | VCC1 = VCC2 = VCCA          | 3.0     |         | 3.6  | V    |
|        | voltage       | operation   |                             |         |         |      |      |
|        |               | No PLC      | VCC1 = VCC2 = VCCA          | 2.7     |         | 3.6  |      |
|        |               | operation   |                             |         |         |      |      |
| VCC2   | Supply volta  | ige         | VCC1 = VCC2 = VCCA          |         | VCC1    |      | V    |
| VCCA   | Supply volta  | ige         | VCC1 = VCC2 = VCCA          |         | VCC1    |      | V    |
| AVCC   | Analog supp   | oly voltage |                             |         | VCC1    |      | V    |
| VSS    | Supply volta  | ige         |                             |         |         |      |      |
| VSSA   | Supply volta  | ige         |                             | 6/      | 0       |      |      |
| AVSS   | Analog supp   | oly voltage |                             |         | 0       |      | V    |
| VIH    | High input    | P0_0 to     | P0_7, P1_0 to P1_7, P6_0 to | 0.8     | 0       | VCC2 | V    |
|        | voltage       | P6_7, U     | ROM_EN                      | VCC2    |         |      |      |
|        |               | P7_2 to     | P7_7, P8_0 to P8_7, P9_0 to | 0.8     |         | VCC1 | V    |
|        |               | P9_7, P1    |                             | VCC1    |         |      |      |
|        |               | P10_7,      | XIN, RESET, CNVSS,          |         |         |      |      |
|        |               | TMOD        |                             |         |         |      |      |
|        |               | P7_0, P7    | 7_1, P8_5                   | 0.8     |         | 4.6  | V    |
|        |               |             |                             | VCC1    |         |      |      |
|        |               | OC_EN       |                             | 0.8VCCA |         | VCCA | V    |
| VIL    | Low input     | P0_0 to     | P0_7, P1_0 to P1_7, P6_0 to | 0       |         | 0.2  | V    |
|        | voltage       | P6_7, U     | ROM_EN                      |         |         | VCC2 |      |
|        |               | P7_0 to     | P7_7, P8_0 to P8_7, P9_0 to | 0       |         | 0.2  | V    |
|        |               | P9_7,       |                             |         |         | VCC1 |      |
|        |               | P10_0       | to P10_7, XIN, RESET,       |         |         |      |      |
|        |               | CNVSS.      | , TMOD                      |         |         |      |      |
|        |               | OC_EN       |                             | 0       |         | 0.2  | V    |
|        |               |             |                             |         |         | VCCA |      |



## Table 6.3: Recommended Operating Conditions (2/4)

VCC1 = VCC2 = 2.7 to 3.6 V at Topr = -40 to 85°C unless otherwise specified.

|              |             | -40 to 65 C unicss otherwise specified.                 | 5   | d    |       |       |
|--------------|-------------|---------------------------------------------------------|-----|------|-------|-------|
| Symbol       |             | Parameter                                               | Min | Type | Max   | Unit  |
| IOH(sum)     | High peak   | Sum of IOH(peak) at P0_0 to P0_7,                       |     |      | -40.0 | mA    |
|              | sum output  | P1_0 to P1_7,                                           |     |      |       |       |
|              | current     | P6_0 to P6_7                                            |     |      |       |       |
|              |             | Sum of IOH(peak) at P7_2 to P7_7,                       |     |      | -40.0 | mA    |
|              |             | P8_0 to P8_4, P8_6,                                     |     |      |       |       |
|              |             | P8_7, P9_0 to P9_7, P10_0 to P10_7                      |     |      | Ó     |       |
| IOH(peak)    | High peak   | P0_0 to P0_7, P1_0 to P1_7, P6_0 to                     |     |      | -10.0 | mΑ    |
|              | output      | P6_7,                                                   |     |      |       |       |
|              | current     | P7_2 to P7_7, P8_0 to P8_4, P8_6,                       |     |      |       |       |
|              |             | P8_7, P9_0 to P9_7,                                     |     |      |       |       |
| 1011/        |             | P10_0 to P10_7                                          |     |      |       |       |
| IOH(avg)     | High        | P0_0 to P0_7, P1_0 to P1_7, P6_0 to                     |     |      | -5.0  | mA    |
|              | average     | P6_7,                                                   |     | ,    |       |       |
|              | output      | P7_2 to P7_7, P8_0 to P8_4, P8_6,                       |     |      |       |       |
|              | current (*) | P8_7, P9_0 to P9_7,                                     |     |      |       |       |
| 101 (2.1122) | т 1         | P10 0 to P10 7                                          |     |      | 00.0  | A     |
| IOL(sum)     | Low peak    | Sum of IOL(peak) at P0_0 to P0_7,                       |     |      | 80.0  | mA    |
|              | sum output  | P1_0 to P1_7, P6_0 to                                   |     |      |       |       |
|              | current     | P6_7                                                    |     |      | 90.0  | m A   |
|              |             | Sum of IOL(peak) at P7_0 to P7_7, P8 0 to P8 7, P9 0 to |     |      | 80.0  | mA    |
|              |             | P9 7, P10 0 to P10 7                                    |     |      |       |       |
| IOL(peak)    | Low peak    | P0 0 to P0 7, P1 0 to P1 7, P6 0 to                     |     |      | 10.0  | mA    |
| IOL(peak)    | output      | P6 7,                                                   |     |      | 10.0  | 111/5 |
|              | current     | P7 0 to P7 7, P8 0 to P8 7, P9 0 to                     |     |      |       |       |
|              | Current     | P9 7,                                                   |     |      |       |       |
|              |             | P10 0 to P10 7                                          |     |      |       |       |
| IOL(avg)     | Low         | P0_0 to P0_7, P1_0 to P1_7, P6_0 to                     |     |      | 5.0   | mA    |
| (5.19)       | average     | P6 7,                                                   |     |      |       |       |
|              | output      | P7_0 to P7_7, P8_0 to P8_7, P9_0 to                     |     |      |       |       |
|              | current (*) | P9 7,                                                   |     |      |       |       |
|              |             | P10_0 to P10_7                                          |     |      |       |       |

<sup>\*</sup>The average output current is the mean value within 100 ms.



#### Table 6.4: Recommended Operating Conditions (3/4)

VCC1 = VCC2 = 2.7 to 3.6 V at Topr = -40 to 85°C unless otherwise specified.

|          |                                  |                       |       |        | Standard |     |  |
|----------|----------------------------------|-----------------------|-------|--------|----------|-----|--|
| Symbol   | Parameter                        | Min                   | Type  | Max    | Unit     |     |  |
| f(XIN)   | Main clock oscillation frequency |                       |       | 15.36  |          | MHz |  |
| f(XCIN)  | Sub clock oscillation frequency  |                       | 30    | 32.768 | 35       | kHz |  |
| f(PLL)   | PLL clock oscillation frequency  | VCC = 2.7  to  2.6  V | 11.52 |        | 30.72    | MHz |  |
| f(BCLK)  | CPU operation clock              |                       | 2     |        | 32       | MHz |  |
| fsu(PLL) | PLL frequency synthesizer        | VCC1 = 3.0 V          |       |        | 3        | ms  |  |
|          | stabilization wait time          |                       |       |        |          |     |  |

#### Table 6.5: Recommended Operating Conditions (4/4)\*

 $VCC1 = VCC2 = 2.7 \ to \ 3.6 \ V, \ Vss = 0 \ V, \ and \ Topr = -40 \ to \ 85^{\circ}C \ unless \ otherwise \ specified.$  The ripple voltage must not exceed Vr(VCC1) and/or dVr(VCC1)/dt.

|              |                                 | Standard |      |     |      |
|--------------|---------------------------------|----------|------|-----|------|
| Symbol       | Parameter                       | Min      | Type | Max | Unit |
| Vr(VCC1)     | Allowable ripple voltage        |          |      | 0.3 | Vp-p |
| dVr(VCC1)/dt | Ripple voltage failing gradient |          |      | 0.3 | V/ms |

<sup>\*</sup>The device is operationally guaranteed under these operating conditions.



Figure 26: Ripple Waveform

IT900-DS-001-R1.2



## **6.3** A/D CONVERSION CHARACTERISTICS

#### Table 6.6: A/D Conversion Characteristics (1/2)\*

AVCC = VCC1 = VCC2 = 2.7 to 3.6 V > VREF, VSS = AVSS = 0 V at Topr = -40 to 85°C unless otherwise specified

|        |                   | -   | •                     | 9   | Standard |     |      |
|--------|-------------------|-----|-----------------------|-----|----------|-----|------|
| Symbol | Parameter         |     | Measuring Condition   | Min | Type     | Max | Unit |
| -      | Resolution        |     | AVCC = VCC1 = VCC2    |     |          | 10  | Bits |
|        |                   |     | ≥ VREF                |     |          |     |      |
| INL    | Integral non-     | 10  | AN0 to AN7 input,     |     |          | ±3  | LSB  |
|        | linearity error   | bit | AN0_0 to AN0_7 input, |     |          |     | 1    |
|        |                   |     | ANEX0, ANEX1          |     |          |     |      |
|        |                   |     | input**               |     |          |     |      |
| -      | Absolute accuracy | 10  | AN0 to AN7 input,     |     |          | ±3  | LSB  |
|        |                   | bit | AN0_0 to AN0_7 input, |     |          |     |      |
|        |                   |     | ANEX0, ANEX1          |     |          |     |      |
|        |                   |     | input**               |     |          |     |      |

<sup>\*</sup>Use when AVCC = VCC1.

<sup>\*\*</sup>Flash memory rewrite disabled. Except for the analog input pin, set pins to be measured as input ports and connect them to VSS. See Figure 27.



Figure 27: A/D Accuracy Measure Circuit



#### Table 6.7: A/D Conversion Characteristics (2/2)\*

AVCC = VCC1 = VCC2 = 2.7 to 3.6 V  $\geq$  VREF, VSS = AVSS = 0 V at Topr = -40 to 85°C unless otherwise specified.

|           | ,                          | •                                                 | 9    | Standard |       |      |
|-----------|----------------------------|---------------------------------------------------|------|----------|-------|------|
| Symbol    | Parameter                  | Measuring Condition                               | Min  | Type     | Max   | Unit |
| $\phi$ AD | A/D operating clock        | $3.2 \text{ V} \leq \text{VREF} \leq \text{AVCC}$ | 2    |          | 15.36 | MHz  |
|           | frequency                  | ≤3.6 V                                            |      |          |       |      |
|           |                            | $3.0 \text{ V} \leq \text{VREF} \leq \text{AVCC}$ | 2    |          | 11.52 | MHz  |
|           |                            | ≤3.6 V                                            |      |          |       |      |
|           |                            | $2.7 \text{ V} \leq \text{VREF} \leq \text{AVCC}$ | 2    |          | 5.72  | MHz  |
|           |                            | ≤3.6 V                                            |      |          |       |      |
| -         | Tolerance level impedance  |                                                   |      | 3        |       | kΩ   |
| DNL       | Differential non-linearity | ***                                               |      |          | ±1    | LSB  |
|           | error                      |                                                   |      |          |       |      |
| -         | Offset error               | ***                                               |      |          | ±3    | LSB  |
| -         | Gain error                 | ***                                               |      |          | ±3    | LSB  |
| tCONV     | 10-bit conversion time     | $VCC1 = 3.3 \text{ V, } \phi AD =$                | 2.8  |          |       | μs   |
|           |                            | 15.36 MHz                                         |      |          |       |      |
| tSAMP     | Sampling time              |                                                   | 0.98 |          |       | μs   |
| VREF      | Reference voltage          |                                                   | 2.7  |          | VCC1  | V    |
| VIA       | Analog input voltage**     |                                                   | 0    | _        | VREF  | V    |

<sup>\*</sup>Use when AVCC = VCC1=VCC2.

<sup>\*\*</sup> When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.

<sup>\*\*\*</sup>Flash memory rewrite disabled. Except for the analog input pin, set pins to be measured as input ports and connect them to VSS. See Figure 27



# 6.4 FLASH MEMORY ELECTRICAL CHARACTERISTICS

#### Table 6.8: CPU Clock When Operating Flash Memory

VCC1 = 2.7 to 3.6 V. Topr = -40 to 85°C unless otherwise specified.

|           |                                   |                                         | Standard |            |      |            |
|-----------|-----------------------------------|-----------------------------------------|----------|------------|------|------------|
| Symbol    | Parameter                         | Conditions                              | Min      | Type       | Max  | Unit       |
| -         | CPU rewrite mode                  |                                         |          |            | 10*  | MHz        |
| f(SLOW_R) | Slow read mode                    |                                         |          |            | 5    | MHz        |
| -         | Low current consumption read mode |                                         |          | fC(32.768) | 35   | kHz        |
| -         | Data flash read                   | 3.0 V < VCC1<br>< 3.6 V<br>2.7 V ≤ VCC1 |          |            | 20** | MHz<br>MHz |
|           |                                   | $\leq$ 3.0 V                            |          |            |      |            |

<sup>\*</sup> Set the PM17 bit in the PM1 register to 1 (one wait).

Table 6.9: Flash Memory (Program ROM 1, 2) Electrical Characteristics

VCC1 = 2.7 to 3.6 V, Topr = -40 to 85°C unless otherwise specified.

|        |                         |                      |       | Standard |            |       |
|--------|-------------------------|----------------------|-------|----------|------------|-------|
| Symbol | Parameter               | Conditions           | Min   | Type     | Max        | Unit  |
| -      | Program and erase       | VCC1 = 3.3 V, Topr = | 1,000 |          |            | times |
|        | cycles (1, 3, 4)        | 25°C                 | (2)   |          |            |       |
| -      | Two words program       | VCC1 = 3.3 V, Topr = |       | 150      | 4000       | μs    |
|        | time                    | 25°C                 |       |          |            |       |
| -      | Lock but program time   | VCC1 = 3.3 V, Topr = |       | 70       | 3000       | μs    |
|        |                         | 25°C                 |       |          |            |       |
| -      | Block erase time        | VCC1 = 3.3 V, Topr = |       | 0.2      | 3.0        | S     |
|        |                         | 25°C                 |       |          |            |       |
| td(SR- | Time delay from         |                      |       |          | 5 + CPU    | ms    |
| SUS)   | suspend request until   |                      |       |          | clock      |       |
|        | suspend                 |                      |       |          | × 3 cycles |       |
| -      | Interval from erase     |                      | 0     |          |            | μs    |
|        | start/restart           |                      |       |          |            |       |
|        | until following suspend |                      |       |          |            |       |
|        | request                 |                      |       |          |            |       |
| -      | Suspend interval        |                      | 20    |          |            | Ms    |
|        | necessary for           |                      |       |          |            |       |
|        | auto-erasure to         |                      |       |          |            |       |
|        | complete (7)            |                      |       |          |            |       |
| -      | Time from suspend       |                      |       |          | 30 + CPU   | μs    |
|        | until erase             |                      |       |          | clock      |       |
|        | restart                 |                      |       |          | × 1 cycle  |       |
| -      | Program, erase voltage  |                      | 2.7   |          | 3.6        | V     |

<sup>\*\*</sup> When the frequency is over this value, set FMR17 bit in the FMR1 register to 0 (one wait) or the PM17 bit in the PM1 register to 1 (one wait).



#### **Proprietary Information**

| -   | Read voltage                                 |                       | 2.7 | 3.6 | V    |
|-----|----------------------------------------------|-----------------------|-----|-----|------|
| -   | Program, erase                               |                       | 0   | 60  | °C   |
|     | temperature                                  |                       |     |     |      |
| tPS | Flash Memory Circuit Stabilization Wait Time |                       |     | 50  | μs   |
| -   | Data hold time (6)                           | Ambient temperature = | 20  |     | year |
|     |                                              | 55 °C                 |     |     |      |

#### Notes

- 1. Definition of program and erase cycles: The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are n (n = 1,000), each block can be erased n times. For example, if a 64 Kbyte block is erased after writing two word data 16,384 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).
- 2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. It is advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, and then execute the block erase command at least three times until the erase error does not occur.
- 5. Customers desiring program/erase failure rate information should contact their Renesas Electronics support representative.
- 6. The data hold time includes time that the power supply is off or the clock is not supplied.
- 7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.



#### Table 6.10: Flash Memory (Data Flash) Electrical Characteristics

VCC1 = 2.7 to 3.6 V, Topr = -40 to 85°C unless otherwise specified.

|        |                             |                       |        | Standa | rd         |       |
|--------|-----------------------------|-----------------------|--------|--------|------------|-------|
| Symbol | Parameter                   | Conditions            | Min    | Type   | Max        | Unit  |
| -      | Program and erase cycles    | VCC1 = 3.3 V, Topr =  | 10,000 |        |            | times |
|        | (1, 3, 4)                   | 25°C                  | (2)    |        |            |       |
| -      | Two words program time      | VCC1 = 3.3  V, Topr = |        | 300    | 4000       | μs    |
|        |                             | 25°C                  |        |        |            |       |
| -      | Lock but program time       | VCC1 = 3.3 V, Topr =  |        | 140    | 3000       | μs    |
|        |                             | 25°C                  |        | A      |            |       |
| -      | Block erase time            | VCC1 = 3.3 V, Topr =  |        | 0.2    | 3.0        | S     |
|        |                             | 25°C                  |        |        |            |       |
| td(SR- | Time delay from suspend     |                       |        |        | 5 + CPU    | ms    |
| SUS)   | request until suspend       |                       |        |        | clock      |       |
|        |                             |                       |        |        | × 3 cycles |       |
| -      | Interval from erase         |                       | 0      |        |            | μs    |
|        | start/restart               |                       |        |        |            |       |
|        | until following suspend     |                       |        |        |            |       |
|        | request                     |                       |        |        |            |       |
| -      | Suspend interval necessary  |                       | 20     |        |            | Ms    |
|        | for                         |                       |        |        |            |       |
|        | auto-erase to complete (7)  |                       |        |        |            |       |
| -      | Time from suspend until     |                       |        |        | 30 + CPU   | μs    |
|        | erase restart               |                       |        |        | clock      |       |
|        |                             |                       |        |        | × 1 cycle  |       |
| -      | Program, erase voltage      |                       | 2.7    |        | 3.6        | V     |
| -      | Read voltage                | ·                     | 2.7    |        | 3.6        | V     |
| -      | Program, erase              |                       | -20/-  |        | 85         | °C    |
|        | temperature                 |                       | 40     |        |            |       |
| tPS    | Flash Memory Circuit Stabil | ization Wait Time     |        |        | 50         | μs    |
| -      | Data hold time (6)          | Ambient temperature = | 20     |        |            | year  |
|        |                             | 55 °C                 |        |        |            |       |

#### Notes

- 1. Definition of program and erase cycles. The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are n (n = 10,000), each block can be erased n times. For example, if a 4 Kbyte block is erased after writing two word data 1,024 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).
- 2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 256 groups before erasing them all in one operation. In addition, averaging the erasure cycles between blocks A and B can further reduce the actual erasure cycles. It is also advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 5. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 6. The data hold time includes time that the power supply is off or the clock is not supplied.
- After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.



# 6.5 VOLTAGE DETECTOR AND POWER SUPPLY CIRCUIT ELECTRICAL CHARACTERISTICS

#### **Table 6.11: Voltage Detector 0 Electrical Characteristics**

The measurement condition is VCC1 = 2.7 to 3.6 V, Topr = -40 to 85°C, unless otherwise specified

|         |                                  |                      |      | Standard |      |      |
|---------|----------------------------------|----------------------|------|----------|------|------|
| Symbol  | Parameter                        | Condition            | Min  | Type     | Max  | Unit |
| Vdet0   | Voltage detection level Vdet0_0  | When VCC1 is         | 1.80 | 1.90     | 2.10 | V    |
|         | (1)                              | falling.             |      |          |      |      |
|         | Voltage detection level Vdet0_2  | When VCC1 is         | 2.70 | 2.85     | 3.00 | V    |
|         | (1)                              | falling.             |      |          |      |      |
| -       | Voltage detector 0 response time | When VCC1 falls      |      |          | 200  | μs   |
|         | (3)                              | from 3.6 V           |      |          |      |      |
|         |                                  | to (Vdet0_0 - 0.1) V |      |          |      |      |
| -       | Voltage detector self power      | VC25 = 1, VCC1 =     |      | 1.5      |      | μΑ   |
|         | consumption                      | 3.3 V                |      |          |      |      |
| td(E-A) | Waiting time until voltage       |                      |      |          | 100  | μs   |
|         | detector operation               |                      |      |          |      |      |
|         | starts (2)                       |                      |      |          |      |      |

#### Notes

- 1. Select the voltage detection level with the VDSEL1 bit in the OFS1 address.
- 2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC25 bit in the VCR2 register to 0.
- 3. Time from when passing the Vdet0 until when a voltage monitor 0 reset is generated.

#### **Table 6.12: Power-On Reset Circuit**

The measurement condition is VCC1 = 2.7 to 3.6 V, Topr = -40 to 85°C, unless otherwise specified.

|        |                                          |           | Standard |      |       |       |
|--------|------------------------------------------|-----------|----------|------|-------|-------|
| Symbol | Parameter                                | Condition | Min      | Type | Max   | Unit  |
| Vpor1  | Voltage at which power-on reset enables* |           |          |      | 0.1   | V     |
| Trth   | External power VCC1 rise gradient        |           | 2.0      | 1.5  | 50000 | mV/ms |

<sup>\*</sup> To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS but in the OFS1 address to 0.





#### Notes:

- V<sub>det0</sub> indicates the voltage detection level of the voltage detection 0 circuit. Refer to 7. "Voltage Detector" for details.
- 2. When using power-on reset, hold the external power  $V_{CC1}$  at or below  $V_{por}1$  during  $t_{W(por)}$ , and then turn it on.  $t_{W(por)}$  is 30 s or more when -20°C  $\leq T_{opr} \leq 85$ °C, and 3000 s or more when -40°C  $\leq T_{opr} < -20$ °C.

Figure 28: Power-On Reset Circuit Electric Characteristics



#### **Table 6.13: Power Supply Circuit Timing Characteristics**

The measurement condition is VCC1 = 2.7 to 3.6 V and Topr = 25°C unless otherwise specified.

|         |                                 |           |    | Standard     |     |    |
|---------|---------------------------------|-----------|----|--------------|-----|----|
| Symbol  | Parameter                       | Condition | Mi | Min Type Max |     |    |
| td(P-R) | Internal power supply stability |           |    |              | 5   | Ms |
|         | time when power is on*          |           |    |              |     |    |
| td(R-S) | STOP release time               |           |    |              | 150 | μs |
| td(W-S) | Low power mode wait mode        |           |    |              | 150 | μs |
|         | release time                    |           |    |              |     |    |

<sup>\*</sup> Waiting time until the internal power supply generator stabilizes when power is on



Figure 29: Power Supply Circuit Timing Diagram.



## 6.6 Oscillation Circuit Electrical Characteristics

#### Table 6.14: 125 kHz On-Chip Oscillator Circuit Electrical Characteristics

VCC1 = 2.7 to 3.6 V, Topr = -40 to 85°C unless otherwise specified.

|           |                                 |                        |     | Standar | d   |      |
|-----------|---------------------------------|------------------------|-----|---------|-----|------|
| Symbol    | Parameter                       | Condition              | Min | Type    | Max | Unit |
| tOCO-S    | 125 kHz on-chip oscillator      | Average frequency in a | 100 | 125     | 150 | kHz  |
|           | frequency                       | 10 ms period           |     |         |     |      |
| tsu(fOCO- | Wait time until 125 kHz on-chip |                        |     |         | 20  | μs   |
| S)        | oscillator stabilizes           |                        |     |         |     |      |

# 6.7 Analog Front End Electrical Characteristics

#### **Table 6.15: AFE Electrical Characteristics**

VCCA = 3.3 V, VSSA = 0 V, Topr = 25°C unless otherwise specified.

|                                    |                               |     | Standar | ·d   |       |
|------------------------------------|-------------------------------|-----|---------|------|-------|
| Symbol                             | Condition/Comments            | Min | Type    | Max  | Unit  |
| Analog supply voltage              | VCCA                          | 3.0 | 3.3     | 3.6  | V     |
| Digital supply voltage             | VCCA                          |     | 1.5     | 1.65 | V     |
| (internal output regulator supply) |                               |     |         |      |       |
| DC reference voltage               | VCMTX                         | 1.5 | 1.65    | 1.8  | V     |
|                                    | VCM                           |     | 1.5     |      | V     |
| Analog power supply                | VCCA = 3.3 V                  |     |         | 700  | mARMS |
| current                            | Load resistance = $1 \Omega$  |     |         |      |       |
| Cutoff frequency                   |                               |     | 1       |      | MHz   |
| Maximum output amplitude           | Load resistance = $50 \Omega$ |     |         | 5*   | Vpp   |
|                                    | DACVREF = 11                  |     |         |      |       |
| SFDR                               | Load resistance = $50 \Omega$ |     |         | TBD* | dBc   |
| (Spurious Free Dynamic             | f = 100  KHz                  |     |         |      |       |
| Range)                             | RBW = 9  kHz                  |     |         |      |       |
| Output impedance                   | During transmission           |     | TBD     |      | Ω     |
|                                    | While transmission is stopped |     | TBD     |      | Ω     |
| Operation stop temperature         | Internal silicon junction     |     | 125**   |      | °C    |
| Input impedance                    | DC                            |     | 1       |      | Kohms |
| Input amplitude                    | VINP, VINN                    |     |         | 2    | Vpp   |
| AGC gain range                     | CGA                           | -6  |         | 42   | dB    |
| AGC gain step                      | VGA                           |     | 6       |      | dB    |

<sup>\*</sup>These values are defined at M16C/6S1 Group output pin. Output amplitude and SFDR vary depending on the following conditions:

<sup>(1)</sup> Value of DACVREF.

<sup>(2)</sup> Condition of the transmission line and parameter of the coupling circuit.

<sup>\*\*</sup>As the AFE registers are set to default. The line driver turns off at the operation stop temperature. Ensure that temperature does not exceed 125°C during operation.



## 6.8 Electrical Characteristics

#### **Table 6.16: Electrical Characteristics (1)**

VCC1 = VCC2 = 2.7 to 3.6 V, VSS = 0 V at Topr = -40 to 85°C, f(BCLK) = 30.72 MHz unless otherwise specified.

|         |                     |                                                                                                                                                                                                                                                |                                                 | St         | andard |      |      |
|---------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|--------|------|------|
| Symbol  |                     | Parameter                                                                                                                                                                                                                                      | Measuring<br>Condition                          | Min        | Type   | Max  | Unit |
| VOH     | High output voltage | P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7                                                                                                                                                                           | IOH = -1<br>mA                                  | VCC1 - 0.5 |        | VCC1 | V    |
|         |                     | P0_0 to P0_7, P1_0 to P1_7, P6_0 to P6_7                                                                                                                                                                                                       | IOH = -1 $mA$                                   | VCC2 - 0.5 |        | VCC2 |      |
| VOH     | High output XOUT    | voltage High drive                                                                                                                                                                                                                             | $\begin{array}{c} IOH = -0.1 \\ mA \end{array}$ | VCC1 - 0.5 |        | VCC1 | V    |
|         | High output XCOUT   | voltage Low drive                                                                                                                                                                                                                              | IOH = -50<br>μA                                 | VCC1 - 0.5 |        | VCC1 |      |
| VOL     | Low output voltage  | P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7                                                                                                                                                                                       | IOL = 1<br>mA                                   |            |        | 0.5  | V    |
|         |                     | P0_0 to P0_7, P1_0 to P1_7, P6_0 to P6_7                                                                                                                                                                                                       | IOL = 1<br>mA                                   |            |        | 0.5  |      |
| VOL     | Low output XOUT     | voltage High drive                                                                                                                                                                                                                             | IOL = 0.1 mA                                    |            |        | 0.5  | V    |
|         | Low output XCOUNT   | voltage Low drive                                                                                                                                                                                                                              | IOL = 50<br>$\mu A$                             |            |        | 0.5  |      |
| VT+-VT- | Hysteresis          | TA1IN to TA4IN, TB0IN to TB5IN, INT1 to INT5, NMI, ADTRG, CTS0 to CTS2, CTS5 to CTS6, SCL0 to SCL2, SCL5 to SCL6, SDA0 to SDA2, SDA5 to SDA6, CLK0 to CLK6, TA1OUT to TA4OUT, KI0 to KI7, RXD0 to RXD2, RXD5 to RXD6, SIN3, SIN4, SCLMM, SDAMM |                                                 | 0.2        |        | 1.0  | V    |





| VT - VT | II4             | DECET                      |             | 0.2 | 1.0  | 17        |
|---------|-----------------|----------------------------|-------------|-----|------|-----------|
| VT+-VT- | Hysteresis      | RESET                      | T. T. G.G.1 | 0.2 | 1.8  | V         |
| IIH     | High input      | P0_0 to P0_7, P1_0 to P1_7 |             |     | 4.0  | μA        |
|         | current         | P6_0 to P6_7, P7_0 to      | VI = VCC1   |     | 4.0  | μΑ        |
|         |                 | P7_7,                      |             |     |      |           |
|         |                 | P8_0 to P8_7, P9_0 to      |             |     |      |           |
|         |                 | P9 7,                      |             |     |      |           |
|         |                 | P10 0  to  P10 7           |             |     |      |           |
|         |                 | XIN, RESET, CNVSS, TS,     |             |     |      |           |
|         |                 | OC EN                      |             |     |      |           |
| IIL     | Low input       | P0 0 to P0 7, P1 0 to      | VI = 0 V    |     | -4.0 | μA        |
|         | current         | P1 7,                      | , - , ,     |     |      | ,         |
|         | 00110110        | P6 0 to P6 7, P7 0 to      |             |     |      |           |
|         |                 | P7 7,                      |             |     |      |           |
|         |                 | P8 0 to P8 7, P9 0 to      |             |     |      |           |
|         |                 | P9 7,                      |             |     |      |           |
|         |                 | P10 0 to P10 7             |             |     |      |           |
|         |                 | XIN, RESET, CNVSS, TS,     |             |     |      |           |
|         |                 | OC EN                      |             |     |      |           |
| RPULLUP | Dull            |                            | VI = 0 V    |     | 500  | kΩ        |
| RPULLUP | Pull-up         | P0_0 to P0_7, P1_0 to      | V1 - 0 V    |     | 300  | K22       |
|         | resistance      | P1_7,                      |             |     |      |           |
|         |                 | P6_0 to P6_7, P7_2 to      |             |     |      |           |
|         |                 | P7_7,                      |             |     |      |           |
|         |                 | P8_0 to P8_4, P8_6, P8_7,  |             |     |      |           |
|         |                 | P9_0 to P9_7, P10_0 to     |             |     |      |           |
|         |                 | P10_7                      |             |     |      |           |
| RfXIN   | Feedback resist | tance XIN                  |             |     |      | ΜΩ        |
| RfXCIN  | Feedback resist | tance XCIN                 |             |     |      | $M\Omega$ |
| VRAM    | RAM retention   | voltage                    | In stop     |     |      | V         |
|         | A               |                            | mode        |     |      |           |



## **Proprietary Information**

## **Table 6.17: Electrical Characteristics (3)**

VCC1 = VCC2 = 2.7 to 3.6 V, VSS = 0 V at Topr = -40 to 85°C, f(BCLK) = 30.72 MHz unless otherwise specified.

|        | 22 = 2.7 to 3.6 V, VSS = 0 V                                    |                                           |                                                                                                                                                                                                    | Standard |      |     |      |
|--------|-----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----|------|
| Symbol | Parameter                                                       |                                           | Measuring<br>Condition                                                                                                                                                                             | Min      | Type | Max | Unit |
| ICC    | Power supply current                                            | High-speed<br>mode                        | f(BCLK) = 30.72 MHz<br>XIN = 15.36 MHz, PLL<br>operates<br>125 kHz on-chip                                                                                                                         |          | TBD  |     | mA   |
|        | PLL no operation, the output pin is open and other pins are VSS |                                           | oscillator stop<br>f(BCLK) = 15.36 MHz<br>XIN = 15.36 MHz<br>125 kHz on-chip<br>oscillator stop<br>PLL stops                                                                                       |          | 7.2  |     | mA   |
|        |                                                                 | 125 kHz on-<br>chip<br>oscillator<br>mode | Main clock stop Sub clock stop 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)                                                                                               |          | 300  |     | μΑ   |
|        |                                                                 | Low-power mode                            | f(BCLK) = 32 kHz<br>FMR 22 = FMR23 = 1 (in<br>low-current<br>consumption read mode)<br>On flash memory*<br>f(BCLK) = 30.72 kHz<br>XIN = 15.36 MHz, PLL<br>operates<br>125 kHz on-chip              |          | 80.0 |     | μΑ   |
|        |                                                                 | Wait mode                                 | oscillator stop Topr = 25°C  f(BCLK) = 32 kHz, Xein = 32 kHz Main clock stop 125 kHz on-chip oscillator on PM25 = 1 (peripheral function clock fC operating) Topr = 25°C Real-time clock operating |          | TBD  |     | μΑ   |
|        |                                                                 |                                           | f(BCLK) = 32 kHz<br>Main clock stop<br>125 kHz on-chip<br>oscillator stop                                                                                                                          |          | 8    |     | μА   |



|              | PM25 = 0 (peripheral       |      |    |
|--------------|----------------------------|------|----|
|              | function clock fC stop)    |      |    |
|              | $Topr = 25^{\circ}C$       |      |    |
| Stop mode    | Main clock stop            | TBD  | μΑ |
|              | Sub clock stop             |      |    |
|              | 125 kHz on-chip            |      |    |
|              | oscillator on, no division |      |    |
|              | peripheral function clock  |      |    |
|              | fC stop                    |      |    |
| During flash | f(BCLK) = 7.68  MHz,       | 20.0 | mA |
| memory       | PM17 = 1 (one wait)        |      |    |
| program      | VCC1 = 3.3 V               |      |    |
| During flash | f(BCLK) = 7.68  MHz,       | 30.0 | mA |
| memory       | PM17 = 1 (one wait)        |      |    |
| erase        | VCC1 = 3.3  V              | 1    |    |

<sup>\*</sup> This indicates the memory in which the program to be executed exists.



## 6.9 Timing Requirements (Peripheral Functions and Others)

 $(VCC1 = VCC2 = 2.7 \sim 3.6 \text{ V}, VSS = 0 \text{ V}, \text{ at Topr} = -40 \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$ 

#### 6.9.1 Reset Input (RESET Input)

**Table 6.18: Reset Input (RESET Input)** 

|          |                 | Standard |     |      |
|----------|-----------------|----------|-----|------|
| Symbol   | Parameter       | Min      | Max | Unit |
| tw(RSTL) | RESET input low | 10       |     | μs   |
|          | pulse width     |          |     |      |



Figure 30: Reset Input (RESET Input)

## 6.9.2 Timer A Input

**Table 6.19: Timer A Input (Counter Input in Event Counter Mode)** 

|         |                              | Stan | Standard |      |
|---------|------------------------------|------|----------|------|
| Symbol  | Parameter                    | Min  | Max      | Unit |
| tc(TA)  | TAiIN input cycle time       | 150  |          | ns   |
| tw(TAH) | TAiIN input high pulse width | 60   |          | ns   |
| tw(TAL) | TAiIN input low pulse width  | 60   |          | ns   |

Table 6.20: Timer A Input (Gating Input in Timer Mode)

|   |         |                              | Standard |     |      |
|---|---------|------------------------------|----------|-----|------|
| 1 | Symbol  | Parameter                    | Min      | Max | Unit |
|   | tc(TA)  | TAiIN input cycle time       | 600      |     | ns   |
|   | tw(TAH) | TAiIN input high pulse width | 300      |     | ns   |
|   | tw(TAL) | TAiIN input low pulse width  | 300      |     | ns   |

Table 6.21: Timer A Input (External Trigger Input in One-Shot Timer Mode)

|         |                              | Stan | Standard |      |
|---------|------------------------------|------|----------|------|
| Symbol  | Parameter                    | Min  | Max      | Unit |
| tc(TA)  | TAiIN input cycle time       | 300  |          | ns   |
| tw(TAH) | TAiIN input high pulse width | 150  |          | ns   |
| tw(TAL) | TAiIN input low pulse width  | 150  |          | ns   |



Table 6.22: Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

|         |                              | Standard |     |      |
|---------|------------------------------|----------|-----|------|
| Symbol  | Parameter                    | Min      | Max | Unit |
| tw(TAH) | TAiIN input high pulse width | 150      |     | ns   |
| tw(TAL) | TAiIN input low pulse width  | 150      |     | ns   |



Figure 31: Timer A Input

Table 6.23: TableTitleTimer A Input (Two-Phase Input in Event Counter Mode)

|                 |                         | Standard |     |      |
|-----------------|-------------------------|----------|-----|------|
| Symbol          | Parameter               | Min      | Max | Unit |
| tc(TA)          | TAiIN input cycle time  | 2        |     | μs   |
| tsu(TAIN-TAOUT) | TAiOUT input setup time | 500      |     | μs   |
| tsu(TAOUT-TAIN) | TAiIN input setup time  | 500      |     | μs   |



Figure 32: Timer A Input (Two-Phase Pulse Input in Event Counter Mode)



#### **Proprietary Information**

## 6.9.3 Timer B Input

**Table 6.24: Timer B Input (Counter Input in Event Counter Mode)** 

|         |                                     | Standard |     |      |
|---------|-------------------------------------|----------|-----|------|
| Symbol  | Parameter                           | Min      | Max | Unit |
| tc(TB)  | TBiIN input cycle timer (counted on | 150      |     | ns   |
|         | one edge)                           |          |     |      |
| tw(TBH) | TBiIN input high pulse width        | 60       |     | ns   |
|         | (counted on one edge)               |          |     |      |
| tw(TBL) | TBiIN input low pulse width         | 60       |     | ns   |
|         | (counted on one edge)               |          |     |      |
| tc(TB)  | TBiIN input cycle time (counted on  | 300      | 4   | ns   |
|         | both edges)                         |          |     |      |
| tw(TBH) | TBiIN input pulse width (counted on | 120      |     | ns   |
|         | both edges)                         |          |     |      |
| tw(TBL) | TBiIN input low pulse width         | 120      |     | ns   |
| ·       | (counted on both edges)             |          |     |      |

**Table 6.25: Timer B Input (Pulse Period Measurement Mode)** 

|         |                              | Standard |     |      |
|---------|------------------------------|----------|-----|------|
| Symbol  | Parameter                    | Min      | Max | Unit |
| tc(TB)  | TBiIN input cycle time       | 600      |     | ns   |
| tw(TBH) | TBiIN input high pulse width | 300      |     | ns   |
| tw(TBL) | TBiIN input low pulse width  | 300      |     | ns   |

**Table 6.26: Timer B Input (Pulse Width Measurement Mode)** 

|         |                              | Standard |     |      |
|---------|------------------------------|----------|-----|------|
| Symbol  | Parameter                    | Min      | Max | Unit |
| tc(TB)  | TBiIN input cycle time       | 600      |     | ns   |
| tw(TBH) | TBiIN input high pulse width | 300      |     | ns   |
| tw(TBL) | TBiIN input low pulse width  | 300      |     | ns   |



Figure 33: Timer B Input



#### 6.9.4 Serial Interface

**Table 6.27: Serial Interface** 

|          |                             | Standard |     |      |
|----------|-----------------------------|----------|-----|------|
| Symbol   | ymbol Parameter M           |          | Max | Unit |
| tc(CK)   | CLKi input cycle time       | 300      |     | ns   |
| tw(CKH)  | CLKi input high pulse width | 150      |     | ns   |
| tw(CKL)  | CLKi input low pulse width  | 150      |     | ns   |
| td(C-Q)  | TXDi output delay time      |          | 160 | ns   |
| th(C-Q)  | TXDi hold time              | 0        |     | ns   |
| tsu(D-C) | RCDi input setup time       | 100      |     | ns   |
| tn(C-D)  | RCDi input hold time        | 90       | ,   | ns   |



Figure 34: Serial Interface

## 6.9.5 External Interrupt INTi Input

Table 6.28: External Interrupt INTi Input

|        |                             | Standard |     |      |
|--------|-----------------------------|----------|-----|------|
| Symbo  | Parameter                   | Min      | Max | Unit |
| tw(INH | INTi input high pulse width | 380      |     | ns   |
| tw(INL | INTi input low pulse width  | 380      |     | ns   |



Figure 35: External Interrupt INTi Input



# **6.10 PHY Specifications**

| Parameter                         |                              | Value             |  |  |
|-----------------------------------|------------------------------|-------------------|--|--|
| Dynamic Range                     |                              | 95 dB             |  |  |
| Narrowband Interference rejection |                              | -60dB             |  |  |
| AWGN Interference rejection       |                              | -7dB              |  |  |
| Maximum Data Rate                 | ximum Data Rate FCC 500 Kbps |                   |  |  |
|                                   | ARIB                         | 500 Kbps*         |  |  |
|                                   | CENELEC A                    | 150Kbps*          |  |  |
|                                   | CENELEC B                    | 50 Kbps*          |  |  |
| Output Tx Power FCC               |                              | 1.1 dBm @ BW=1kHz |  |  |
|                                   | ARIB                         | -3 dBm @ BW=1kHz  |  |  |
|                                   | CENELEC A                    | 5.6 dBm @ BW=1kHz |  |  |
|                                   | CENLEC 3                     | TBD               |  |  |
|                                   | CENELEC B                    | 9.5 dBm @ BW=1kHz |  |  |

<sup>\*</sup>does not take into account the FEC.

# **6.11 Network Layer Specifications**

|                            | Value                 |            |
|----------------------------|-----------------------|------------|
| Maximum Network Depth      | 16                    |            |
| Maximum RMT Nodes in N     | 2000                  |            |
| Performance <sup>‡‡‡</sup> | RMT Connection to BST | < 30 sec   |
|                            | Route Fail Detection  | < 1 minute |

 $\begin{array}{c} \textbf{Copyright} @ \textbf{Yitran Communications Ltd.} \\ \underline{www.yitran.com} \end{array}$ 

For a network with 20 RS. For other network sizes, please consult Yitran's parameter configuration recommendation application note.



# **6.12 CRYSTAL SPECIFICATIONS**

| Parameter                    | Minimum | Nominal       | Maximum | Unit |
|------------------------------|---------|---------------|---------|------|
| Operating Frequency          |         | 5.12 or 15.36 |         | MHz  |
| Overall Accuracy (over time  |         | 120           |         | PPM  |
| and temperature)             |         |               |         |      |
| Drive Level                  |         |               | 150     | μW   |
| Equivalent Series Resistance |         |               | 100     | Ω    |
| Motional Capacitance         | 3       |               |         | fF   |
| Shunt Capacitance            |         |               | 7       | pF   |
| Load Capacitance             | 15      | 18            | 20      | рF   |



## 6.13 Mechanical Dimensions & Package Tolerances





# 7 ORDERING INFORMATION

The IT900 part naming convention for ordering parts is shown below:





## **Document Control**

| Rev | Date          | Description                                                                                |
|-----|---------------|--------------------------------------------------------------------------------------------|
| 1.0 | February 2011 | Initial Release                                                                            |
| 1.1 | November 2011 | <u>Table 3.6</u> : Internetworking Unicast and Internetworking  Broadcast values corrected |
| 1.2 | February 2012 | PHY Operating Modes : CENELEC A3 Removed                                                   |



## **Important Notice**

All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Yitran Communications Ltd. ("Yitran") reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

Yitran warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Yitran's standard warranty. Testing and other quality control techniques are utilized to the extent Yitran deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). Yitran's PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE—SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF Yitran's PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, the customer, to minimize inherent or procedural hazards, must provide adequate design and operating safeguards.

Yitran assumes no liability for applications assistance or customer product design. Yitran does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Yitran covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Yitran's publication of information regarding any third party's products or services does not constitute Yitran's approval, warranty or endorsement thereof.



9 Yehoshua Hatzoref St. Beer Sheva 84106 ISRAEL

T +972 8 623 5281 F +972 8 623 5282 yitran@yitran.com