Punkt-till-punkt-access

- HDLC (High-level Data Link Control)
- PPP (Point-to-Point Protocol)

HDLC (High-level Data Link Control)

- Används både till punkt-till-punkt och till multipunkt-förbindelser
- Använder ARQ (Automatic Repeat reQuest)

NRM (Normal Response Mode)

a. Point-to-point

b. Multipoint

De tre olika ramtyperna i HDLC

- Flaggfält (Flag Field)
 - 8 bitar för synkronisering
- Adressfält (Address Field)
- Styrfält (Control Field)
- Informationsfält (Information Field)
 - Användar- eller systeminformation
- Ramkontrollfält (Frame Check Sequence Field)

- I-frames (Information frames)
 - Förmedlar användardata från nätverkslagret
 - Kan innehålla information om flödes- och felkontroll (piggybacking)
- S-frames (Supervisor frames)
 - För flödes- och felkontrollinformation
- U-frames (Unnumbered frames)
 - Förmedlar system- och styrinformation

- PPP (Point-to-Point Protocol)
 - Vanligaste protokollet f\u00f6r punkt-till-punktf\u00f6rbindelser
 - Används för kontakt mellan användare och internetleverantör
 - Använder en variant av HDLC

Formatet på en PPP-ram

- Fälten i en PPP-ram
 - Flaggfälten för avgränsning (alltid 01111110 i PPP)
 - Adressfältet (HDLC:s broadcast 11111111)
 - Styrfältet (alltid 11000000)
 - Protokollfältet
 - Datafältet
 - FCS-fältet (CRC)

Tillståndsgraf för PPP

- Protokollstack f
 ör PPP
 - LCP (Link Control)
 - PAP (Password Authentification)
 - CHAP (Challenge Handshake Authentification)

Flera lager av protokoll

- LCP-paket i en PPP-ram
 - Kod (Code): typen av LCP-paket
 - ID: för matchning av förfrågan och svar
 - Längd (Length): Totala LCP-paketets längd
 - Information: extra information

PPP-kommunikation med PAP-autentisering

PAP-paket i PPP-ram

PPP-kommunikation med CHAP-autentisering

CHAP-paket i PPP-ram

• IPCP-paket i PPP-ram

• IP-paket i PPP-ram

ADSL

ADSL

- Bandbreddsutnyttjande vid ADSL
 - Assymmetri mellan uppströms och nedströms

ADSL

 Användning av s.k. splitter för uppdelning mellan tal och data genom filtrering

Multimedia and Quality of Service: What is it?

MM Networking Applications

Classes of MM applications:

- 1) stored streaming
- 2) live streaming
- 3) interactive, real-time

Jitter is the variability of packet delays within the same packet stream

Fundamental characteristics:

- * typically delay sensitive
 - end-to-end delay
 - delay jitter
- * loss tolerant: infrequent losses cause minor glitches
- antithesis of data, which are loss intolerant but delay tolerant.

Streaming Stored Multimedia

Stored streaming:

- * media stored at source
- transmitted to client
- * <u>streaming</u>: client playout begins before all data has arrived
 - timing constraint for still-to-be transmitted data: in time for playout

Streaming Stored Multimedia: Interactivity

- 10 sec initial delay OK
- 1-2 sec until command effect OK
- timing constraint for still-to-be transmitted data: in time for playout

Streaming Live Multimedia

Examples:

- Internet radio talk show
- live sporting event

Streaming (as with streaming stored multimedia)

- playback buffer
- playback can lag tens of seconds after transmission
- still have timing constraint

Interactivity

- * fast forward impossible
- rewind, pause possible!

Real-Time Interactive Multimedia

* applications: IP telephony, video conference, distributed interactive worlds

- audio: < 150 msec good, < 400 msec OK
 - includes application-level (packetization) and network delays
 - higher delays noticeable, impair interactivity

session initialization

 how does caller advertise its IP address, port number, encoding algorithms?

Multimedia Over Today's Internet

TCP/UDP/IP: "best-effort service"

* no guarantees on delay, loss

? ? ? ? ? Put you said multimedia apps requires ? QoS and level of performance to be ? effective! ? ?

Today's Internet multimedia applications use application-level techniques to mitigate (as best possible) effects of delay, loss

A few words about video compression

- video: sequence of images displayed at constant rate
 - e.g. 24 images/sec
- * digital image: array of pixels
 - each pixel represented by bits
- redundancy
 - spatial (within image)
 - temporal (from one image to next)

Examples:

- ❖ MPEG 1 (CD-ROM) 1.5 Mbps
- MPEG2 (DVD) 3-6 Mbps
- * MPEG4 (often used in Internet, < 1 Mbps)

Research:

- layered (scalable) video
 - adapt layers to available bandwidth

Streaming Stored Multimedia

application-level streaming techniques for making the best out of best effort service:

- client-side buffering
- use of UDP versus TCP
- multiple encodings of multimedia

Media Player

- jitter removal
- decompression
- error concealment
- graphical user interface w/ controls for interactivity

Streaming Multimedia: UDP or TCP?

UDP

```
server sends at rate appropriate for client (oblivious to
   network congestion!)
   often send rate = encoding rate = constant rate
   then, fill rate = constant rate - packet loss
short playout delay (2-5 seconds) to remove network jitter
error recover: time permitting
```

TCP

send at maximum possible rate under TCP fill rate fluctuates due to TCP congestion control larger playout delay: smooth TCP delivery rate HTTP/TCP passes more easily through firewalls

Summary: Internet Multimedia: bag of tricks

- use UDP to avoid TCP congestion control (delays) for time-sensitive traffic
- client-side adaptive playout delay: to compensate for delay
- server side matches stream bandwidth to available client-to-server path bandwidth chose among pre-encoded stream rates dynamic server encoding rate
- error recovery (on top of UDP) FEC, interleaving, error concealment retransmissions, time permitting
- CDN (Content Distribution Network): bring content closer to clients