LDA final project

Kaitlin Maciejewski, Morgan de Ferrante, Bingnan Li, Volha Tryputsen

Contents

ploratory				
Smoking vs. Age, Sex		 		
(1): Smoking \sim age, sex				
Is there a relationship between age and smoking status?		 		
Does this relationship differ by sex?				
(2) number of cigarettes \sim age, sex				
Is there a relationship between the number of cigarettes smoked per day				
All		 		
Smokers only		 		
Does this relationship differ by sex?		 		
All		 		
Smokers only		 		
Smoking vs. health outcomes		 		
(1) The relationship between current smoking status and systolic blood pressu	ire.	 		
$smoking \sim sysbp$				
(2) The relationship between current smoking status and diastolic blood press				
smoking ~ diabp				
smoking \sim diabp, sex				
(3) The relationship between current smoking status and serum total choleste				
smoking ~ totchol				
smoking \sim totchol, sex [!!!]				
Cor plot				
Missingness				

Exploratory

Smoking vs. Age, Sex

(1): Smoking \sim age, sex

Is there a relationship between age and smoking status?

ANS: Yes, the proportion of smokers decreases with the age.

```
smoke_v_age = data %>%
select(cursmoke, age) %>%
ggplot(aes(x = age, y = cursmoke)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

Does this relationship differ by sex?

ANS: There is a higher proportion of smoker among men compared to women as both age ,but there is no interaction between age and sex.

```
smoke_age_sex = data %%%
select(cursmoke, age, sex) %>%
ggplot(aes(x = age, y = cursmoke, group = sex, color = sex)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

(2) number of cigarettes \sim age, sex

Is there a relationship between the number of cigarettes smoked per day and age?

ANS: Yes, number of sigarets smoked per day stays constant for 30-50 years old and decreases with age after 50 years old.

All

```
n_c_age_all = data %>%
select(cigpday, age) %>%
ggplot(aes(x = age, y = cigpday)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

Smokers only

```
n_c_age_smoke = data %>%
select(cigpday, age) %>%
filter(cigpday > 0) %>%
ggplot(aes(x = age, y = cigpday)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

Does this relationship differ by sex?

ANS: There is sex effect (men smoke higer number of sigarets per day than women across age), but there is no sex and age interaction.

All

```
n_c_age_s_all = data %>%
  select(cigpday, age, sex) %>%
  ggplot(aes(x = age, y = cigpday, group = sex, color = sex)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

Smokers only

```
n_c_age_s_smoke = data %>%
select(cigpday, age, sex) %>%
filter(cigpday > 0) %>%
ggplot(aes(x = age, y = cigpday, group = sex, color = sex)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

Smoking vs. health outcomes

(1) The relationship between current smoking status and systolic blood pressure.

```
smoking ~ sysbp
```

ANS: Proportion of smokers decreases with increase of systolic blood presure

```
smoke_sbp = data %>%
select(cursmoke, sysbp) %>%
ggplot(aes(x = sysbp, y = cursmoke)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

ANS: slightly higher sysbp for non-smokers

```
smoke_sysbp_status = data %>%
select(cursmoke, sysbp) %>%
mutate(cursmoke = factor(cursmoke)) %>%
ggplot(aes(y = sysbp, x = cursmoke)) +
geom_boxplot(outlier.colour = "white") +
theme_bw()
```

smoking ~ sysbp, sex

ANS: Proportion of smokers decreases with increase of systolic blood presure; the proportion is higher for men (sex effect).

```
smoke_sysbp_sex = data %>%
select(cursmoke, sysbp, sex) %>%
ggplot(aes(x = sysbp, y = cursmoke, group = sex, color = sex)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

ANS: no differences in sysbp between male and female smokers and non-smokers

(2) The relationship between current smoking status and diastolic blood pressure.

smoking ~ diabp

ANS: Proportion of smokers decreases with increase of diastolic blood presure for BP=100 ad then proportion increases again (latter could be due to not enough data)

```
smoke_dbp = data %>%
select(cursmoke, diabp) %>%
ggplot(aes(x = diabp, y = cursmoke)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

ANS: no difference

```
smoke_dbp_box = data %>%
select(cursmoke, diabp) %>%
mutate(cursmoke = factor(cursmoke)) %>%
ggplot(aes(y = diabp, x = cursmoke)) +
geom_boxplot(outlier.colour = "white") +
theme_bw()
```

smoking ~ diabp, sex

ANS: Proportion of smokers decreases with increase of diastolic blood presure; the proprtions are higher for men (sex effect).

```
smoke_dbp_s = data %>%
  select(cursmoke, diabp, sex) %>%
  ggplot(aes(x = diabp, y = cursmoke, group = sex, color = sex)) +
  geom_jitter(height = 0.1, alpha = 0.1) +
  geom_smooth(lwd = 1.5) +
  theme_bw()
```

ANS: no difference

(3) The relationship between current smoking status and serum total cholesterol.

smoking ~ totchol

ANS: Proportion of smokers slightly decreases with increase of total cholesterol values

```
smoke_tc = data %>%
select(cursmoke, totchol) %>%
ggplot(aes(x = totchol, y = cursmoke)) +
```

```
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

ANS: no difference

```
smoke_tc_bp = data %>%
  select(cursmoke, totchol) %>%
  mutate(cursmoke = factor(cursmoke)) %>%
  ggplot(aes(y = totchol, x = cursmoke)) +
  geom_boxplot(outlier.colour = "white") +
  theme_bw()
```

smoking ~ totchol, sex [!!!]

ANS: Proportion of smokers has nonlinear relationship with total cholesterol for women; proprtions increases with increase in total cholesterol for men (sex by totchol interaction effect).

```
smoke_tc_sex = data %%
select(cursmoke, totchol, sex) %>%
ggplot(aes(x = totchol, y = cursmoke, group = sex, color = sex)) +
geom_jitter(height = 0.1, alpha = 0.1) +
geom_smooth(lwd = 1.5) +
theme_bw()
```

ANS: no difference

- ## Warning: Removed 409 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 409 rows containing missing values (geom_point).

Cor plot

Missingness

```
prop <- round(colSums(is.na(data))/dim(data)[1], 3)
knitr::kable(sort(prop, decreasing = TRUE)[1:9], col.names = "Proportion of NAs")</pre>
```

	Proportion of NAs
hdlc	0.740
ldlc	0.740
glucose	0.124
bpmeds	0.051
totchol	0.035
educ	0.025
cigpday	0.007
bmi	0.004
heartrte	0.001

```
prob.data <- data %>%
  group_by(period) %>%
  summarise(sysbp_prob = sum(sysbp, na.rm = TRUE)/n())
prob.data
```

```
## # A tibble: 3 x 2
## period sysbp_prob
```

```
<int>
                   <dbl>
##
## 1
           1
                    133.
## 2
           2
                    137.
## 3
           3
                    140.
table(data$period)
##
##
      1
            2
                  3
## 4434 3930 3263
```

Models

```
library(lme4)
library(dplyr)
```

(1) Is there a relationship between age and smoking status? Does this relationship differ by sex?

```
##
                                        as.factor(SEX)2 as.factor(educ)2
        (Intercept)
                                  AGE
##
       5.2810549757
                        -0.0570318456
                                          -0.7246241605
                                                             0.0503157656
##
   as.factor(educ)3 as.factor(educ)4
                                                                 DIABETES
                                                    BMI
##
      -0.2263406725
                        -0.2104931713
                                          -0.0940121564
                                                            -0.1114780579
##
           HEARTRTE
                              PREVCHD
                                               PREVSTRK
                                                                  PREVHYP
##
       0.0173911758
                        -0.0569530253
                                          -0.2633153119
                                                            -0.2252617826
##
            TIMEDTH
##
      -0.0001021991
```

knitr::kable(summary(model.q1)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	5.149	0.278	18.543
AGE	-0.051	0.002	-21.106
as.factor(SEX)2	-0.716	0.060	-11.892
as.factor(educ)2	0.083	0.071	1.168
as.factor(educ)3	-0.182	0.086	-2.116
as.factor(educ)4	-0.212	0.097	-2.185
BMI	-0.084	0.007	-12.152
DIABETES	-0.060	0.102	-0.595
HEARTRTE	0.009	0.001	6.031
PREVCHD	-0.259	0.090	-2.872
PREVSTRK	-0.189	0.176	-1.073
PREVHYP	-0.049	0.041	-1.187

	Estimate	Robust S.E.	Robust z
TIMEDTH	0.000	0.000	-6.341

model.q1[["working.correlation"]]

```
## [,1] [,2] [,3]
## [1,] 1.0000000 0.7563191 0.5136670
## [2,] 0.7563191 1.0000000 0.5713635
## [3,] 0.5136670 0.5713635 1.0000000
```

(2) Is there a relationship between the number of cigarettes smoked per day and age? Does this relationship differ by sex?

If we think cig per day as count data, it follows poisson distribution. Then we can fit GEE model as well:

```
##
        (Intercept)
                                 AGE as.factor(SEX)2 as.factor(educ)2
##
       4.914149e+00
                       -3.395990e-02
                                         -7.680017e-01
                                                           5.765596e-02
## as.factor(educ)3 as.factor(educ)4
                                                               DIABETES
      -1.227240e-01
##
                       -8.833837e-02
                                         -4.493994e-02
                                                          -1.608903e-01
##
           HEARTRTE
                             PREVCHD
                                              PREVSTRK
                                                                PREVHYP
       1.281640e-02
                       -9.883049e-02
                                        -1.115583e-01
                                                          -1.079832e-01
##
##
            TIMEDTH
      -5.152275e-05
```

knitr::kable(summary(model.q2_1)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	4.523	0.170	26.626
AGE	-0.024	0.001	-15.826
as.factor(SEX)2	-0.795	0.039	-20.223
as.factor(educ)2	0.096	0.044	2.172
as.factor(educ)3	-0.072	0.057	-1.245
as.factor(educ)4	-0.067	0.063	-1.059
BMI	-0.039	0.005	-8.032
DIABETES	-0.110	0.072	-1.536
HEARTRTE	0.007	0.001	8.453
PREVCHD	-0.241	0.066	-3.635
PREVSTRK	-0.130	0.110	-1.181
PREVHYP	-0.017	0.028	-0.587
TIMEDTH	0.000	0.000	-5.505

```
model.q2_1[["working.correlation"]]
             [,1]
                       [,2]
                                 [,3]
## [1,] 1.0000000 0.7425318 0.5006078
## [2,] 0.7425318 1.0000000 0.6615306
## [3,] 0.5006078 0.6615306 1.0000000
Using mixed effect model using cig per day instead of smoking status:
#saturated model
model.saturated <- lmer(CIGPDAY ~ as.factor(SEX) + AGE</pre>
                            + BPMEDS + as.factor(educ)
                            + TOTCHOL + BMI + GLUCOSE + DIABETES + HEARTRTE + PREVAP
                            + PREVCHD + PREVMI + PREVSTRK +STROKE+ PREVHYP + (1 RANDID),
                              na.action = 'na.omit',
                              data = my.data)
summary(model.saturated)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## CIGPDAY ~ as.factor(SEX) + AGE + BPMEDS + as.factor(educ) + TOTCHOL +
       BMI + GLUCOSE + DIABETES + HEARTRTE + PREVAP + PREVCHD +
##
       PREVMI + PREVSTRK + STROKE + PREVHYP + (1 | RANDID)
##
     Data: my.data
##
## REML criterion at convergence: 67692.5
##
## Scaled residuals:
               1Q Median
                                3Q
      Min
                                       Max
## -4.4444 -0.3150 -0.1078 0.2067 6.2548
##
## Random effects:
## Groups
            Name
                         Variance Std.Dev.
## RANDID
             (Intercept) 95.78
                                  9.787
## Residual
                         35.77
                                  5.981
## Number of obs: 9310, groups: RANDID, 4213
## Fixed effects:
                    Estimate Std. Error t value
                    23.237579 1.393589 16.675
## (Intercept)
## as.factor(SEX)2 -7.062484 0.339110 -20.827
## AGE
                   -0.178024 0.013735 -12.962
## BPMEDS
                     0.147068 0.340662
                                         0.432
## as.factor(educ)2 0.602137 0.400578
                                          1.503
## as.factor(educ)3 -0.984441 0.482907 -2.039
## as.factor(educ)4 -1.015103 0.548951 -1.849
## TOTCHOL
                     0.011407
                                0.002557
                                          4.461
## BMI
                    -0.313257
                                0.035227 -8.893
                                0.004203 -2.419
## GLUCOSE
                   -0.010167
## DIABETES
                   -0.254321
                                0.570383 -0.446
## HEARTRTE
                     0.070622
                                0.008232
                                         8.579
## PREVAP
                   -3.058426
                               0.985947 -3.102
## PREVCHD
                    0.948740
                               1.050262
                                          0.903
## PREVMI
                   -2.594434 0.894896 -2.899
```

-1.029740 0.917968 -1.122

PREVSTRK

```
## STROKE
                    0.943808 0.586941
## PREVHYP
                   #using variables that selected
model.mixed2 <- lmer(CIGPDAY~ AGE + as.factor(SEX) + SYSBP</pre>
                     + DIABP + TOTCHOL + as.factor(educ)
                     + (1|RANDID),
                     data = my.data,
                     na.action = "na.omit")
summary(model.mixed2)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## CIGPDAY ~ AGE + as.factor(SEX) + SYSBP + DIABP + TOTCHOL + as.factor(educ) +
##
      (1 | RANDID)
##
     Data: my.data
##
## REML criterion at convergence: 78607.2
## Scaled residuals:
##
      Min
             1Q Median
                              3Q
                                     Max
## -4.6343 -0.3025 -0.1015 0.1642 6.6280
##
## Random effects:
## Groups
                       Variance Std.Dev.
            (Intercept) 97.30
                                9.864
## RANDID
## Residual
                       36.52
                                6.043
## Number of obs: 10868, groups: RANDID, 4306
##
## Fixed effects:
                    Estimate Std. Error t value
## (Intercept)
                   -0.199583 0.012148 -16.429
## AGE
## as.factor(SEX)2 -6.448164 0.332812 -19.375
## SYSBP
                  -0.001364 0.006670 -0.205
## DIABP
                  -0.018833 0.011514 -1.636
## TOTCHOL
                    0.011959 0.002373
                                       5.039
## as.factor(educ)2 1.055542
                              0.392720
                                         2.688
## as.factor(educ)3 -0.625323 0.474072 -1.319
## as.factor(educ)4 -0.827192  0.539360 -1.534
## Correlation of Fixed Effects:
##
              (Intr) AGE a.(SEX SYSBP DIABP TOTCHO as.()2 as.()3
## AGE
              -0.490
## as.fc(SEX)2 -0.144 0.019
## SYSBP
              0.023 -0.460 -0.064
## DIABP
              -0.452 0.314 0.076 -0.679
## TOTCHOL
              -0.368 -0.095 -0.094 0.047 -0.154
## as.fctr(d)2 -0.225  0.110 -0.055  0.008  0.001  0.002
## as.fctr(d)3 -0.161 0.051 -0.092 0.028 -0.004 -0.007
## as.fctr(d)4 -0.175 0.044 0.074 0.032 -0.005 -0.002 0.301 0.244
library(dplyr)
##################
```

```
# Initial Models #
####################
# totchol_fit <- gee(totchol ~ cursmoke + age + factor(sex) + factor(educ) + bmi +
#
              diabetes + heartrie + prevchd + prevhyp + prevstrk + death,
#
            id = randid.
#
            family = "gaussian",
            na.action = "na.omit")
#
#
# round(2 * pnorm(abs(coef(summary(totchol_fit))[,5]), lower.tail = FALSE), 3)
#
#
\# sysbp_fit \leftarrow qee(sysbp \sim cursmoke + aqe + factor(sex) + factor(educ) + bmi +
                      diabetes + heartrie + prevchd + prevstrk + death,
#
#
                    id = randid,
#
                    family = "qaussian",
#
                    na.action = "na.omit")
# round(2 * pnorm(abs(coef(summary(sysbp_fit))[,5]), lower.tail = FALSE), 3)
# diabp_fit <- gee(diabp ~ cursmoke + age + factor(sex) + factor(educ) + bmi +
#
                      diabetes + heartrie + prevchd + prevstrk +death,
#
                    id = randid,
#
                    family = "gaussian",
                    na.action = "na.omit")
#
# round(2 * pnorm(abs(coef(summary(diabp_fit))[,5]), lower.tail = FALSE), 3)
# Models After Removing Non Significant Terms #
totchol_fit <- gee(totchol ~ cursmoke + age + factor(sex) + bmi +
                    diabetes + heartrte + prevhyp ,
                  id = randid,
                  family = "gaussian",
                  corstr = "unstructured",
                  na.action = "na.omit")
                                    age factor(sex)2
##
   (Intercept)
                  cursmoke
                                                             bmi
   162.1032803
##
                  2.3672102
                              0.6268036
                                          12.3710689
                                                       0.7814908
##
      diabetes
                  heartrte
                                prevhyp
##
    -5.8194286
                  0.1891382
                              5.2800067
knitr::kable(summary(totchol_fit)$coefficients[,c(1,4,5)], digits = 3)
```

	Estimate	Robust S.E.	Robust z
(Intercept)	149.257	5.279	28.274
cursmoke	3.430	1.009	3.399
age	0.648	0.053	12.309
factor(sex)2	13.474	1.219	11.050
bmi	1.404	0.144	9.748
diabetes	-6.628	2.638	-2.513

	Estimate	Robust S.E.	Robust z
heartrte	0.117	0.032	3.626
prevhyp	3.451	0.903	3.820

```
knitr::kable(round(2 * pnorm(abs(coef(summary(totchol_fit))[,5]), lower.tail = FALSE), 3))
```

	X
(Intercept)	0.000
cursmoke	0.001
age	0.000
factor(sex)2	0.000
bmi	0.000
diabetes	0.012
heartrte	0.000
prevhyp	0.000

```
QIC(totchol_fit)
```

```
## QIC
## 84588.89
```

```
## (Intercept)
                  cursmoke
                                    age factor(sex)2
                                                             bmi
  162.1032803
                                         12.3710689
                  2.3672102
                              0.6268036
                                                       0.7814908
##
      diabetes
                  heartrte
                                prevhyp
    -5.8194286
                  0.1891382
                              5.2800067
```

knitr::kable(summary(totchol_fit2)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	157.548	5.162	30.518
cursmoke	3.824	1.035	3.696
age	0.402	0.051	7.824
factor(sex)2	13.291	1.222	10.874
bmi	1.656	0.143	11.578
diabetes	-7.648	2.322	-3.293
heartrte	0.118	0.033	3.607
prevhyp	2.423	0.894	2.710

knitr::kable(round(2 * pnorm(abs(coef(summary(totchol_fit2))[,5]), lower.tail = FALSE), 3))

	X
(Intercept)	0.000
cursmoke	0.000

```
age 0.000 factor(sex)2 0.000 bmi 0.000 diabetes 0.001 heartrte 0.000 prevhyp 0.007
```

```
QIC(totchol_fit2)
##
        QIC
## 84588.27
sysbp_fit <- gee(sysbp ~ cursmoke + age + factor(sex) + bmi +</pre>
                   diabetes + heartrte + prevchd + prevstrk + death,
                 id = randid,
                 family = "gaussian",
                 corstr = "unstructured",
                 na.action = "na.omit")
##
    (Intercept)
                                       age factor(sex)2
                                                                  bmi
                    cursmoke
                                 0.7236371
                                                            1.3070103
##
     40.1191453
                  -1.1246140
                                              2.9078810
##
       diabetes
                                   prevchd
                                                                death
                    heartrte
                                               prevstrk
##
      4.8530466
                   0.2464253
                                 2.4405511
                                              8.6116353
                                                            7.0492511
knitr::kable(summary(sysbp_fit)$coefficients[,c(1,4,5)], digits = 3)
```

	Estimate	Robust S.E.	Robust z
(Intercept)	42.702	2.163	19.740
cursmoke	-0.702	0.433	-1.619
age	0.741	0.022	33.618
factor(sex)2	3.272	0.542	6.042
bmi	1.373	0.062	22.301
diabetes	3.664	1.127	3.250
heartrte	0.175	0.016	11.231
prevchd	1.670	0.876	1.906
prevstrk	4.894	2.004	2.443
death	7.650	0.639	11.967

knitr::kable(round(2 * pnorm(abs(coef(summary(sysbp_fit))[,5]), lower.tail = FALSE), 3))

	X
(Intercept)	0.000
cursmoke	0.105
age	0.000
factor(sex)2	0.000
bmi	0.000
diabetes	0.001
heartrte	0.000
prevchd	0.057
prevstrk	0.015
death	0.000

```
QIC(sysbp_fit)
       QIC
## 68837.26
sysbp_fit2 <- gee(sysbp ~ cursmoke + age + factor(sex) + bmi +</pre>
                  diabetes + heartrte + prevchd + prevstrk + death,
                id = randid,
                family = "gaussian",
                corstr = "exchangeable",
                na.action = "na.omit")
##
    (Intercept)
                                     age factor(sex)2
                                                               bmi
                   cursmoke
##
     40.1191453
                 -1.1246140
                               0.7236371
                                            2.9078810
                                                         1.3070103
##
      diabetes
                  heartrte
                               prevchd
                                            prevstrk
                                                             death
      4.8530466
                  0.2464253
                               2.4405511
                                            8.6116353
                                                         7.0492511
knitr::kable(summary(sysbp_fit2)$coefficients[,c(1,4,5)], digits = 3)
```

	Estimate	Robust S.E.	Robust z
(Intercept)	43.000	2.176	19.758
cursmoke	-0.772	0.431	-1.789
age	0.741	0.021	34.477
factor(sex)2	3.321	0.545	6.093
bmi	1.370	0.063	21.783
diabetes	3.173	1.114	2.848
heartrte	0.172	0.016	10.967
prevchd	1.553	0.862	1.800
prevstrk	4.201	2.094	2.006
death	7.794	0.644	12.109

knitr::kable(round(2 * pnorm(abs(coef(summary(sysbp_fit2))[,5]), lower.tail = FALSE), 3))

	Х
(Intercept)	0.000
cursmoke	0.074
age	0.000
factor(sex)2	0.000
bmi	0.000
diabetes	0.004
heartrte	0.000
prevchd	0.072
prevstrk	0.045
death	0.000

```
id = randid,
              family = "gaussian",
              corstr = "unstructured",
              na.action = "na.omit")
                  cursmoke factor(sex)2 factor(educ)2 factor(educ)3
##
    (Intercept)
     47.3480563
                            -0.8594048
                                         0.7880155
##
                -1.0968017
                                                     0.6921165
## factor(educ)4
                      bmi
                              diabetes
                                          heartrte
                                                     prevstrk
                                         0.1550842
##
      4.3067909
##
         death
##
      2.8662538
```

knitr::kable(summary(diabp_fit)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	48.560	1.142	42.511
cursmoke	-0.607	0.243	-2.501
factor(sex)2	-0.591	0.295	-1.999
factor(educ)2	0.864	0.344	2.513
factor(educ)3	0.769	0.400	1.924
factor(educ)4	0.470	0.450	1.043
bmi	0.971	0.035	28.015
diabetes	-1.731	0.598	-2.895
heartrte	0.112	0.009	12.846
prevstrk	1.842	1.207	1.526
death	3.219	0.336	9.582

knitr::kable(round(2 * pnorm(abs(coef(summary(diabp_fit))[,5]), lower.tail = FALSE), 3))

	X
(Intercept)	0.000
cursmoke	0.012
factor(sex)2	0.046
factor(educ)2	0.012
factor(educ)3	0.054
factor(educ)4	0.297
bmi	0.000
diabetes	0.004
heartrte	0.000
prevstrk	0.127
death	0.000

```
QIC(diabp_fit)
```

```
##
        QIC
## 53507.67
diabp_fit2 <- gee(diabp ~ cursmoke + factor(sex) + factor(educ) + bmi +</pre>
                   diabetes + heartrte + prevstrk +death,
                 id = randid,
                 family = "gaussian",
                 corstr = "exchangeable",
```

na.action = "na.omit") ## (Intercept) cursmoke factor(sex)2 factor(educ)2 factor(educ)3 ## 47.3480563 -1.0968017 -0.8594048 0.7880155 0.6921165 ## factor(educ)4 prevstrk diabetes heartrte bmi 4.3067909 ## 0.5395935 0.9078065 -1.6162433 0.1550842 ## death ## 2.8662538

knitr::kable(summary(diabp_fit2)\$coefficients[,c(1,4,5)], digits = 3)

	Estimate	Robust S.E.	Robust z
(Intercept)	48.526	1.156	41.980
cursmoke	-0.525	0.242	-2.166
factor(sex)2	-0.518	0.298	-1.738
factor(educ)2	0.857	0.346	2.476
factor(educ)3	0.776	0.403	1.927
factor(educ)4	0.531	0.453	1.171
bmi	0.991	0.035	28.079
diabetes	-2.072	0.582	-3.564
heartrte	0.106	0.009	12.102
prevstrk	1.049	1.215	0.863
death	3.317	0.338	9.800

knitr::kable(round(2 * pnorm(abs(coef(summary(diabp_fit2))[,5]), lower.tail = FALSE), 3))

X
0.000
0.030
0.082
0.013
0.054
0.241
0.000
0.000
0.000
0.388
0.000

QIC(diabp_fit2)

QIC ## 53508