NAME	
NAME	

Which way will the equilibrium shift when each of the following changes is made to the system at equilibrium?

50 kcal +
$$NO_2(g)$$
 + $CO(g)$ \longleftrightarrow $CO_2(g)$ + $NO(g)$

- 1. Increase [NO]
- 2. Increase the pressure no shift
- 3. Add a catalyst no shift
- 4. Increase [CO]

- 5. Decrease temperature
- 6. Decrease [CO₂]
- 7. Increase the volume of the container $0.0 \le 1.1 \le$

$$Heat$$
 + 2 $H_2O_2(aq)$ \rightleftharpoons 2 $H_2O(1) + O_2(g)$ $\Delta H = +15$ kcal $\in A_2O(1)$

- 2. Increase [H2O] no shift
- 3. Increase [H₂O₂]

- 4. Increase the pressure
- 5. Increase the partial pressure of O_2
- 6. Decrease the volume PT

$$3 \text{ mul } 5^{-5}$$
 $3 \text{ mul } 5^{-5}$
 $Fe_2O_3(s) + 3 H_2(g) \longrightarrow 3 H_2O(g) + 2 Fe(s) + 36.3 \text{ kcal}$

- 1. Increase [Fe] no shift
- 2. Increase the temperature \leftarrow
- 3. Increase the pressure no shift
- 4. Decrease [H₂O]
- 5. Decrease the partial pressure of H_2
- 6. Add a sample of Ne gas no shift

$$E+O$$
 2 K⁺(aq) + SO₄²⁻(aq) \longleftrightarrow K₂SO₄(s) $\Delta H = -200$ kcal

- 3. Increase $[SO_4^{2-}]$
- 4. Decrease [K⁺] <
- 1. Decrease the pressure of Shift 5. Decrease the volume of Shift 6. Add K₂SO₄ (solid) of Shift 6.

 - 7. Decrease temperature

[SO42-] 10~2~1,2 10~2~1,2