CSCI 466: Networks

Network Layer – Routing (Control Plane)

Reese Pearsall Fall 2023

Announcements

Wireshark Lab 3 posted. Due a week from today (11/1)

It's easy

PA3 Posted. Due on November 8th

Quiz 5 on Friday (due at 5 PM)

- → IP addresses, Subnets, Subnet Masks
- → Private/Public IP addresses, NAT
- → IPv4, IPv6, Tunneling
- \rightarrow SDN
- → Routing (Link State vs Distance Vector)
- → OSPF, BGP, ICMP

NO CLASS ON FRIDAY AND MONDAY

Things to do while reese is gone

- Take quiz 5Watch Monday's lecture
- Work on lab 3/PA3 Party hard

you vs the guy she told you not to worry about:

I'll be available via email/DMs if you need anything

Wireshark Lab 3

Forwarding refers to moving packets from a **router's input** to appropriate **router output**, and is implemented in the <u>data plane</u>.

Ideally, this output links are the most optimal path to get to the destination

Routing refers to determining the route taken by packets from **source** to **destination**, and is implemented in the <u>control plane</u>.

What is the best way to get from **u** to **z**?

Generalized Forwarding and Software Defines Network (SDN)

There are two types of routing algorithms

There are two types of routing algorithms

Centralized/Global- we know the edge costs of the network

Link State algorithms

(Dijkstra's Algorithm)

We can compute the shortest path from one node, to all other nodes in roughly O(n^2) time.

Once we know the shortest path from A to B, we can update routing tables to reflect that shortest path

There are two types of routing algorithms

Decentralized- we do not know the edge costs of the entire network.

Only know edge costs to neighbors

Distance Vector algorithms

There are two types of routing algorithms

Distance Vector Routing Summary

Every so often, neighbors will exchange their local distances

Using these distances, routers will update their local distances if they find a new shortest path

There are two types of routing algorithms

Distance Vector Routing Summary

All nodes:

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

"News spreads slowly"

There are two types of routing algorithms

Centralized/Global- we know the edge costs of the network

Link State algorithms

(Dijkstra's Algorithm)

Decentralized- we do not know the edge costs of the entire network.

Only know edge costs to neighbors

Distance Vector algorithms

There are two types of routing algorithms

Centralized/Global- we know the edge costs of the network

Link State algorithms

(Dijkstra's Algorithm)

These are not network protocols, these are simply general routing/shortest path algorithms

Decentralized- we do not know the edge costs of the entire network.

Only know edge costs to neighbors

Distance Vector algorithms

There are two types of routing algorithms

An **autonomous system** is a group of routers that are under the same administrative control

Open Shortest Path First

OSPF is a link-state protocol that uses flooding of link-state information and Dijkstra's least-cost algorithm

An **autonomous system** is a group of routers that are under the same administrative control

Open Shortest Path First

OSPF is a link-state protocol that uses flooding of link-state information and Dijkstra's least-cost algorithm

1. Each router constructors a topological map of the AS

An **autonomous system** is a group of routers that are under the same administrative control

Open Shortest Path First

OSPF is a link-state protocol that uses flooding of link-state information and Dijkstra's least-cost algorithm

- 1. Each router constructors a topological map of the AS
- 2. Run Dijikstra's to determine shortest path to each subnet

(Edge costs will be set by a network administrator)

If I wanted to find the path with the shortest amount of hops, what should edge cost be?

An **autonomous system** is a group of routers that are under the same administrative control

Open Shortest Path First

ospf is a link-state protocol that uses flooding of link-state information and Dijkstra's least-cost algorithm

- 1. Each router constructors a topological map of the AS
- 2. Run Dijikstra's to determine shortest path to each subnet

3. Fill in routing table

(Edge costs will be set by a network administrator)

(could set all edges to be a cost of 1)

Α	1
В	2
С	3
•••	•••

Border Gateway Protocol (BGP) is used for exchanging routing information between AS

Border Gateway Protocol (BGP) is used for exchanging routing information between AS

BGP allows a router to tell other AS's that it exists and needs to be connected

AS consists of gateway routers and internal routers

Border Gateway Protocol (BGP) is used for exchanging routing information between AS

BGP allows a router to tell other AS's that it exists and needs to be connected

AS consists of gateway routers and internal routers

Border Gateway Protocol (BGP) is used for exchanging routing information between AS

BGP allows a router to tell other AS's that it exists and needs to be connected

AS consists of gateway routers and internal routers

AS consists of gateway routers and internal routers

"A1 EXISTS AND FOUND THROUGH AS2"

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"
- allows subnet to advertise its existence, and the destinations it can reach, to rest of Internet: "I am here, here is who I can reach, and how"
- BGP provides each AS a means to:
 - obtain destination network reachability info from neighboring ASes (eBGP)
 - determine routes to other networks based on reachability information and policy
 - propagate reachability information to all AS-internal routers (iBGP)
 - advertise (to neighboring networks) destination reachability info

BGP is the routing protocol used for routing amongst different ISPs + AS

Two important functions

→ Obtain prefix reachability information from neighboring ASs (CIDR)

→ Determine the "best" routes to the prefixes

gateway routers run both eBGP and iBGP protools

BGP is the routing protocol used for routing amongst different ISPs + AS

Two important functions

→ Obtain prefix reachability information from neighboring ASs

→ Determine the "best" routes to the prefixes

Prefix X connect

External BGP (eBGP)

 $3a \rightarrow 2c$ "Hey I have X"

2a → 1c "Hey AS 3 has X and I have AS3"

Internal BGP (iBGP)

 $2c \rightarrow 2b$

 $2c \rightarrow 2d$

 $2c \rightarrow 2a$

gateway routers run both eBGP and iBGP protools

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages over semi-permanent TCP connection:
 - advertising paths to different destination network prefixes (BGP is a "path vector" protocol)

when AS3 gateway router 3a advertises path AS3,X to AS2 gateway router 2c:

AS3 promises to AS2 it will forward datagrams towards X

BGP protocol messages

- BGP messages exchanged between peers over TCP connection
- BGP messages [RFC 4371]:
 - OPEN: opens TCP connection to remote BGP peer and authenticates sending BGP peer
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs
 OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Path attributes and BGP routes

- BGP advertised route: prefix + attributes
 - prefix: destination being advertised
 - two important attributes:
 - AS-PATH: list of ASes through which prefix advertisement has passed
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS
- policy-based routing:
 - gateway receiving route advertisement uses *import policy* to accept/decline path (e.g., never route through AS Y).
 - AS policy also determines whether to advertise path to other other neighboring ASes

BGP path advertisement

- AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a
- based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all AS2 routers
- based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to AS1 router 1c

ICMP (Internet Control Message Protocol)

used by hosts & routers to	_	0 1	
communicate network-level			description
	0 3	0	echo reply (ping)
information		0	dest. network unreachable
error reporting: unreachable	3	1	dest host unreachable
host, network, port, protocol		2	dest protocol unreachable
echo request/reply (used by	3	3	dest port unreachable
	3	6	dest network unknown
ping)	3	7	dest host unknown
network-layer "above" IP:	4	0	source quench (congestion
ICMP msgs carried in IP			control - not used)
datagrams	8	0	echo request (ping)
ICMP message: type, code plus	9	0	route advertisement
	10	0	router discovery
first 8 bytes of IP datagram		0	TTL expired
causing error	12	0	bad IP header

Control Plane Wrap up

- approaches to network control plane
 - per-router control (traditional)
 - logically centralized control (software defined networking)
- traditional routing algorithms
 - routing: link state, distance vectors
 - implementation in Internet: OSPF, BGP
- Internet Control Message Protocol

Next:

- 1. Link Layer
- 2. Security
- 3. Random Topics in session, presentation, and physical layers