

Mãos à obra!

Variáveis indexadas e laços encadeados

2/3

Exercício 1

Neste primeiro exercício, precisamos criar um algoritmo que preencha a matriz **XADREZ** [8X8], da forma que vocês estão vendo nesta imagem:

	1	2	3	4	5	6	7	8
1	X		X		X		X	
2		X		X		X		X
3	X		X		X		X	
4		X		X		X		X
5	X		X		X		X	
6		X		X		X		X
7	X		X		X		X	
8		X		X		X		X

A resposta é a seguinte:

```
INICIO
    Declarar XADREZ[1:8, 1:8] Alfanumérica
Declarar l Numérica
Declarar c Numérica

PARA 1 = 1, 1 < 8, 1 = 1 + 2
    PARA c = 1, c < 8, c = c + 2
        XADREZ[1, c] = "X"
        XADREZ[1 + 1, c + 1] = "X"
        Próximo c
Próximo l

FIM</pre>
```

Mãos à obra!

Introdução à Lógica de Programação

3/3

Começamos declarando as variáveis que temos certeza que iremos utilizar no algoritmo. São elas:

• A matriz XADREZ, alfanumérica;

Matriz: XADREZ[1:8, 1:8]

• Uma variável para representar as linhas da matriz. Vamos chamá-la de L;

Linhas: L

• Uma variável para representar as colunas da matriz, chamada de C.

Colunas: C

A declaração das variáveis fica assim:

INÍCIO

Declarar XADREZ[1:8, 1:8] Alfanumérica Declarar I Numérica Declarar c Numérica

Para evitar o trabalho que teríamos ao preencher todas as posições da matriz, uma por uma, podemos utilizar uma estrutura de laço encadeado para fazer isso automaticamente para nós. A forma mais fácil de montar essa matriz é preenchendo duas linhas a cada iteração do laço encadeado.

	1	2	3	4	5	6	7	8
1	X		X		X		X	
2		X		X		X		X

Introdução à Lógica de Programação

4/3

Para fazer isso, primeiramente montamos o laço principal, dando o valor 1 para a variável que representa as linhas, já que vamos começar a preencher a partir da primeira linha. Não existem mais que 8 linhas, que é o limite da matriz, então devemos deixar isso bem claro na condição de execução do laço. Ficou faltando o incremento da variável linha, que, neste caso, será de dois em dois, já que cada execução desse laço vai preencher duas linhas.

PARA
$$I = 1, I < 8, I = I + 2$$

Pronto, temos o nosso primeiro laço. Logo abaixo dele, vamos criar mais um, só que desta vez manipulando a variável das colunas, **C**. Como o preenchimento das colunas também será de dois em dois, vamos utilizar exatamente as mesmas condições que utilizamos no primeiro laço.

PARA
$$c = 1, c < 8, c = c + 2$$

Chegamos na parte mais importante do algoritmo, onde vamos automatizar o preenchimento da matriz. Vamos utilizar a nossa variável indexada XADREZ para guardar os valores de cada posição. A primeira posição da matriz, LINHA 1 - COLUNA 1, será a primeira a ser preenchida com um X, afinal o valor inicial das variáveis de linha e coluna é 1, como definimos nos laços.

$$XADREZ[I, c] = "X"$$

Depois disso, conseguimos preencher a posição que está logo na diagonal da primeira, LINHA 2 - COLUNA 2. Veja que para chegar lá, basta adicionar uma posição na linha e na coluna. Da mesma forma, atribuímos o valor X para marcar essa posição da matriz.

$$XADREZ[I + 1, c + 1] = "X"$$

Para finalizar, inserimos o comando de incremento, primeiro no laço mais interno, o que representa as colunas, e depois no externo, que representa as linhas.

Próximo c Próximo l

Como nós aprendemos durante a aula, ao entrar em um laço, o compilador primeiro irá verificar a condição proposta e, se for válida, irá executar o trecho que está dentro do laço. Neste caso, há outro laço dentro do primeiro e, se sua condição também for válida, o laço interno será executado até que a condição deixe de ser verdade, para então voltar para o primeiro laço, executando sua segunda iteração.

Mãos à obra!

Introdução à Lógica de Programação

5/3

Se mudarmos as variáveis pelos valores numéricos, vamos ver como ficaria em um teste de mesa?

			TES	TE DE MESA	A			
	1º itera	ção Linha	2º iteração Linha 3º iteraç		ção Linha	4º itera	ão Linha	
Valores:	Linha	Coluna	Linha	Coluna	Linha	Coluna	Linha	Coluna
1º iteração Coluna	1	1	3	1	5	1	7	1
1= iteração Colulia	2	2	4	2	6	2	8	2
20 !	1	3	3	3	5	3	7	3
2º iteração Coluna -	2	4	4	4	6	4	8	4
3º iteração Coluna	1	5	3	5	5	5	7	5
s= Reração Colulia	2	6	4	6	6	6	8	6
4º iteração Coluna	1	7	3	7	5	7	7	7
	2	8	4	8	6	8	8	8

O laço interno é executado quatro vezes e quando for entrar na quinta iteração, o compilador irá verificar que a condição não é mais válida, já que a variável C será maior que 8. Depois, a variável de linha, L, é incrementada e voltamos para o primeiro laço, repetindo todas as ações. Ao término da execução do algoritmo, a matriz **XADREZ** será completamente preenchida, passando por todas as iterações dos dois laços.

6/3

Exercício 2

No segundo exercício, precisamos preencher os espaços da matriz **RETANGULO** [14x11] (imagem a seguir) por meio de um algoritmo que utiliza laço encadeado.

1	2	3	4	5	6	7	8	9	10	11
1 [I	\perp								
2 3 4 5 6 7 8	+	R	R	R	R	R	R		+	
4 F	\top	R	R	R	R	R	R	\vdash	T	\vdash
śΓ		R	R	R	R	R	R		\top	
6 T		R	R	R	R	R	R			
7 C		R	R	R	R	R	R			
8Г		R	R	R	R	R	R			
9 F		R	R	R	R	R	R			
8		R	R	R	R	R	R			
īГ		R	R	R	R	R	R			
2 C										
зΓ	T				Т				T	
4										

A resposta é esta:

```
INICIO
   Declarar 1 Numérica
   Declarar c Numérica
   Declarar RETANGULO [ 1:14 , 1:11 ] alfanumérica

Para 1 = 3, 1 < 11, 1 = 1 + 1
        Para c = 3, c < 8, c = c + 1
            RETANGULO[1, c] = "R"
        Próximo C
   Próximo 1</pre>
```

Introdução à Lógica de Programação

7/3

Temos 14 linhas e 11 colunas. A primeira marcação será inserida na posição **linha 3, coluna 3**. Usando laços encadeados, podemos preencher todas as posições de uma vez só. Vamos preencher no sentido vertical, ou seja, inserimos todos os valores em uma coluna e depois disso passamos para a próxima linha. Aproveitando as variáveis de linha e coluna que utilizamos no exercício anterior, vamos declarar a matriz **RETANGULO**, que irá guardar os dados de cada posição.

INICIO

Declarar L Numérica Declarar C Numérica Declarar RETANGULO [1:14 , 1:11] alfanumérica

Agora já podemos criar o laço externo, que será responsável pela repetição do laço interno e pelo incremento das linhas sempre que uma coluna estiver completa.

Começamos inicializando a variável linha com o valor 3, já que esta será a primeira posição preenchida da linha. Veja, na linha a seguir, que iremos adicionar valores até a linha 11, então isso precisa ser indicado na condição desse laço. Não se esqueça também do incremento, que nesse caso será de uma linha por vez.

Para
$$I = 3, I < 11, I = I + 1$$

Falta o laço interno, que irá preencher cada coluna. O valor da variável coluna também será inicializado com 3, afinal essa será a primeira posição da coluna a ser preenchida. Os valores serão preenchidos até a coluna 8, então esta será a condição de execução do alço. Assim como as linhas, o incremento aqui também será de um, a cada iteração do laço interno.

Para
$$c = 3$$
, $c < 8$, $c = c + 1$

Agora basta inserir o comando que fará o preenchimento, utilizando a matriz **RETANGULO** que criamos no início do exercício:

$$RETANGULO[I, c] = "R"$$

Não se esqueça de fechar os dois laços. Primeiro o interno e depois, o externo.

Próximo C Próximo I

FIM