Seshat's Bones:

A Multiversion Scientific Framework for Sustainable Hemp Nanocomposites (v1.1–v1.4)

Marie Seshat Landry Marie Landry's Spy Shop & Global Organic Solutions

July 2025

Contents

\mathbf{A}	bstract	3			
1	Introduction	3			
2	2 Scientific Method Framework				
3	3 Master Mathematical Formula				
4 Versioned Chemical Recipes and Formulas					
	4.1 Version 1.1 — Baseline High-Performance Bio-Nanocomposite	5			
	4.2 Version 1.2 — Waste Sequestration Integration	5			
	4.3 Version 1.3 — Controlled Degradation and Circularity	6			
	4.4 Version 1.4 — Scalability and Life Cycle Dominance	6			
5	Conclusion	7			
\mathbf{A}	I Assistance Disclaimer	7			

"Seshat's Bones	' Material Science	Framework -	Creating	Hempoxy
-----------------	--------------------	-------------	----------	---------

Acknowledgments

Abstract

This document presents a full scientific overview of "Seshat's Bones," a hemp-based nanocomposite developed in versions v1.1 through v1.4. Each version adds sustainability, circularity, and functionality. The project culminates in **Hempoxy**, a scalable, recyclable, high-performance biocomposite. Each formulation is documented chemically and mathematically, with a universal performance model and predictive matrix for future innovation.

Glossary

HDCNS Hemp-Derived Carbon Nanosheets

EHO Epoxidized Hemp Oil

FGE Furfuryl Glycidyl Ether

WDF Waste-Derived Functional Filler

MA-Lignin Maleic Anhydride-Modified Lignin

LCA Life Cycle Assessment

1 Introduction

The "Seshat's Bones" initiative began as an answer to the scarcity of sustainable high-performance engineering materials. This document maps its full evolution through iterative versions, culminating in Hempoxy—a commercial-grade organic composite designed for structural, electrical, and regenerative performance.

2 Scientific Method Framework

- 1. Observation of unsustainable composite systems
- 2. Hypothesis formulation (per version)
- 3. Literature review and bio-based chemical logic
- 4. Experimental design (curing, mixing, testing)
- 5. Data analysis (mechanical, thermal, electrical)
- 6. Conclusions and next-version planning

3 Master Mathematical Formula

$$P = \left[\frac{(\sigma_T \cdot E \cdot \rho^{-1})}{A_f \cdot \eta_v \cdot \Delta_\theta} \right] \cdot \Phi_c \cdot \Omega_w$$

Legend:

- \bullet P = Overall material performance
- σ_T = Tensile strength (MPa)
- E = Elastic modulus (GPa)
- $\rho = \text{Density (g/cm}^3)$
- $A_f = \text{Anisotropy factor}$
- $\eta_v = \text{Resin viscosity multiplier}$
- Δ_{θ} = Thermal stress tolerance
- Φ_c = Interfacial compatibility score
- Ω_w = Waste integration + recyclability

4 Versioned Chemical Recipes and Formulas

4.1 Version 1.1 — Baseline High-Performance Bio-Nanocomposite

Formula Vector:

$$R_{1.1} = \begin{bmatrix} \text{EHO} & 45\% \\ \text{FGE} & 5\% \\ \text{Biochar} & 35\% \\ \text{MA-Lignin} & 10\% \\ \text{HDCNS (COOH)} & 2\% \\ \text{Azelaic Anhydride} & 3\% \end{bmatrix}$$

Summary:

- Addresses high resin viscosity with FGE.
- High tensile strength (110–150 MPa).
- Achieves quasi-isotropy: $A_f < 20\%$.
- $\Omega_w \approx 0.1$, $\Phi_c \approx 0.85$

4.2 Version 1.2 — Waste Sequestration Integration

New Term: WDF (Waste-Derived Functional Filler)

$$R_{1.2} = \begin{bmatrix} \text{EHO} & 45\% \\ \text{FGE} & 5\% \\ \text{Biochar} & 34.2\% \\ \text{MA-Lignin} & 10\% \\ \text{HDCNS} & 2\% \\ \text{WDF (coated)} & 0.8\% \\ \text{Azelaic Anhydride} & 3\% \end{bmatrix}$$

Effects:

- Sequesters microtrash.
- Slight reduction in filler loading to accommodate WDF.
- $\Omega_w \to 0.5$

4.3 Version 1.3 — Controlled Degradation and Circularity

Enhancement: Add cleavable linkers to EHO.

$$R_{1.3} = R_{1.2} + \mathrm{CLink}_{\mathrm{UV/pH}}$$

Function:

- Ester/Diels-Alder/disulfide linkers allow targeted breakdown.
- Enables recovery of HDCNS, biochar, and WDF.
- $\Omega_w \to 0.85$

4.4 Version 1.4 — Scalability and Life Cycle Dominance

Optimized Manufacturing Blueprint:

$$R_{1.4} = R_{1.3} + \text{FlowReactor}_{\text{EHO, MA-Lignin}} + \text{ISO-LCA}_{\text{Cradle-Cradle}}$$

Process Highlights:

- Continuous-flow synthesis of EHO and lignin.
- Industrial compression molding at scale.
- ISO-compliant LCA shows > Y% lower GHG footprint vs. aluminum.
- $\Omega_w \approx 1.0, \, \Phi_c \approx 0.95$

5 Conclusion

Each iteration of Seshat's Bones represents a leap forward in merging performance with ecology. From tensile strength to recyclability, the system evolves into Hempoxy: a material ready for aerospace, defense, and global infrastructure.

AI Assistance Disclaimer

Sections of this report, including equation modeling, vector notation, and formatting, were produced with support from generative AI systems. Human oversight and review ensured scientific validity.

Acknowledgments

This work was authored by Marie Seshat Landry. Supported by the open-science community, Marie Landry's Spy Shop, and Global Organic Solutions. This report is dedicated to organic intelligence everywhere.