TECHNISCHE UNIVERSITÄT DRESDEN

FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK

Elemente der Modellbildung und Simulationstechnik

PRAKTIKUMSAUFGABE I

Gruppe 11

Cao, Bozhi Gao, Yue Jia, Xuehua Zhu, Jinyao

1. Aufgabe

1.1 Analytische Lösung($u_1 = 5, T_m = 10s, t_{step} = 1s$):

$$y(t) = u_1 \left(1 - e^{-\frac{1}{T_m}(t - t_{step})} \right) = 5 \left(1 - e^{-\frac{1}{10}(t - 1)} \right)$$

1.2 Simulationsergebnisse:

VPG ohne Schrittweitensteuerung($t_{step} = 1$ s, $u_1 = 5, h = 0.1$ s):

Abbildung 1: (a) Führungsverhalten; (b) Verhalten der Global-/Lokaldiskretisierungsfehler;

1.3 Verifizierung

Aus der Simulationsergebnisse kann die Zeitkonstante der PT_1 Glied (11-1=10s) abgelesen werden, welche der T_m entsprecht.

Verhalten der G/LDF an der Sprungstelle $(t=1\mathrm{s})$: die lokale Diskretisierungsfehler ändern sich sprungartig. Der LDF an der Sprungstelle ist deutlich größer als an der Ruhelager des Systems. Die GDF erreichen ihre Maxima zum Zeitpunkt $t\approx 11\mathrm{s}$.

2. Aufgabe

2.1 Bestimmung des Intervalls der Schrittweite:

Maximale Schrittweite h_{max} :

Charakteristische Gleichung von $G_1(s)$:

$$T_m \lambda + 1 = 0$$
, mit $T_m = 10$ s
 $\lambda = -\frac{1}{T_m} = -0.1$ s⁻¹

Nach der Stabilitätsgebiete für Verbesserte Polygonzugmethode:

$$\mu = h \cdot \lambda$$
, mit $|\mu|_{max} = 2.0$
 $\Rightarrow h_{max} = \frac{|\mu|_{max}}{|\lambda|} = 20$ s

Minimale Schrittweite h_{min} :

geschätzte LDF \hat{d} an der Sprungstelle:

wenn $t_i + \frac{h}{2} < t_{step} < t_i + h$:

$$\begin{cases} k_1 = 0 \\ k_2 = 0 \\ k_3 = \frac{u_1}{T_m} \end{cases} \Rightarrow \hat{d}_1 = \frac{h}{6} \cdot k_3 = \frac{h}{6} \cdot \frac{u_1}{T_m}$$

wenn $t_i < t_{step} < t_i + \frac{h}{2}$:

$$\begin{cases} k_1 = 0 \\ k_2 = \frac{u_1}{T_m} \\ k_3 = \frac{u_1}{T_m} \cdot \left(1 - \frac{2h}{T_m} \right) \end{cases} \Rightarrow \hat{d}_2 = \frac{h}{6} \cdot \left(-2k_2 + k_3 \right) = -\frac{h}{6} \cdot \frac{u_1}{T_m} \cdot \left(1 + \frac{2h}{T_m} \right)$$

Anforderung($\frac{2h}{T_m} \ll 1$):

$$|\hat{d}_1| = \left| \frac{h}{6} \cdot \frac{u_1}{T_m} \right| \approx |\hat{d}_2| \le \varepsilon_{LDF}$$

 $\mathrm{mit}\ u_1 = 5, T_m = 10\mathrm{s}, \varepsilon_{LDF} = 10^{-6}$

$$\Rightarrow h_{min} \le \frac{6}{\left|\frac{u_1}{T_m}\right|} \cdot \varepsilon_{LDF} = 1.2 \times 10^{-5} \text{s}$$

2.2 Simulationsergebnisse:

VPG mit Schrittweitensteuerung($t_{step} = 1$ s, $u_2 = 5$, $h_{init} = 0.5$ s, $\varepsilon_{LDF} = 10^{-6}$):

Abbildung 2: (a) Führungsverhalten; (b) Verhalten der Global-/Lokaldiskretisierungsfehler; (c) Verlauf der Schrittweite; (d) Verlauf der Schrittweite in der Nähe der Sprungstelle;

2.3 Verifizierung

Aus der Simulationsergebnisse kann die Zeitkonstante der PT_1 Glied ($\approx 10s$) abgelesen werden, welche der T_m entsprecht.

Verhalten der Schrittweite in der Nähe der Sprungstelle(t = 1s): die Schrittweite ändert sich nahe vor der Sprungstelle sprungartig und deutlich kleiner, nach der Sprungstelle vergrößert sie sich.

Verlauf der LDF: die LDF sind in der Simulation immer auf $\varepsilon_{LDF} = 10^{-6}$ begrenzt.

3. Aufgabe

3.1 Simulationsergebnisse:

VPG mit Schrittweitensteuerung($t_{step} = 1$ s, $u_2 = 0.17$, $h_{init} = 0.001$ s, $\varepsilon_{LDF} = 10^{-10}$):

Abbildung 3: (a) Eingang und alle Blockausgänge; (b) Verlauf der Schrittweite und LDF;

VPG ohne Schrittweitensteuerung($t_{step} = 1$ s, $u_2 = 0.17, h = 0.001$ s):

Abbildung 4: (a) Eingang und alle Blockausgänge; (b) Verlauf der Schrittweite und LDF;

3.2 Verifizierung

Aus der Gleichung:

$$\tau_e = -T_m \cdot \ln \left(1 - \frac{h_e - h_a}{1 + h_e - |u_2|} \right)$$

$$\tau_p = T_m \cdot \left[\ln \frac{1 - h_a/|u_2|}{1 - h_e/|u_2|} - \ln \left(1 - \frac{h_e - h_a}{1 + h_e - |u_2|} \right) \right]$$

mit

$$u_e = 0.17, h_a = 0.065, h_e = 0.085, T_m = 10s$$

erhält man:

$$\tau_e = 0.2210 \text{s}, \quad \tau_p = 2.3341 \text{s}$$

Aus Simulation(Abbildung 3):

$$\hat{\tau}_e = 0.21 \text{s}, \quad \hat{\tau}_p = 2.368 \text{s}$$

die Simulationsergebnisse den analytischen Werten entsprechen.

Vergleichen(mit/ohne Schrittweitensteurung des VPG-Algorithmus):

um eine ähnliche Genauigkeit(LDF Toleranz) zu erreichen, braucht das VPG-Algorithmus ohne Schrittweitensteurung deutlich mehr Rechenzeit als das mit Schrittweitensteurung.

3.3 Weitere Experimente mit $u_{22} = -0.25, u_{23} = 0.49$:

Abbildung 5: (a)
$$u_2 = u_{22} = -0.25$$
; (b) $u_2 = u_{23} = 0.49$;

	$ au_e(\mathrm{s})$	$\hat{ au}_e(\mathbf{s})$	$ au_p(\mathbf{s})$	$\hat{ au}_p(\mathbf{s})$
$u_2 = -0.25$	0.2424	0.24	1.3865	1.431
$u_2 = 0.49$	0.3419	0.34	0.8239	0.854