Assignment 15 - Homework - Clustering

Due Apr 19 by 11:59pm | **Points** 20 | **Submitting** a file upload | **File Types** pdf

```
    Assignment 15 - Homework - Clustering
    1. Exploratory Data Analysis (5 pts)
    2. Selecting a Subset (5 pts)
    3. Principal Components Analysis (5 pts)
    Hints
    4. Clustering (5 pts)
    5. Extra Credit (1 pt)
    Notes
```

1. Exploratory Data Analysis (5 pts)

1. Relatively how many terms appear in exactly one document?

```
julia> irs990extract = Serialization.deserialize("./data/irs990extract.jldata")
julia> termfreq = Serialization.deserialize("./data/termfreq.jldata")
julia> terms = Serialization.deserialize("./data/terms.jldata")
julia> termfreq[1,1:end].nzind
84-element Vector{Int64}
```

In the first document there are a total of 84 terms.

```
using DelimitedFiles # To use `writedlm` function
using Serialization
using Statistics
irs990extract = Serialization.deserialize("./data/irs990extract.jldata")
termfreq = Serialization.deserialize("./data/termfreq.jldata")
terms = Serialization.deserialize("./data/terms.jldata")
number of terms in document = []
number_of_documents = length(irs990extract) # 260783
for row of documents in 1:number of documents
   row = termfreq[row_of_documents,1:end].nzind
   println(length(row))
   push!(number_of_terms_in_document,length(row))
end
println("***")
println("Minimum: ",Statistics.minimum(number_of_terms_in_document))
println("Maximum: ",Statistics.maximum(number_of_terms_in_document))
println("Average: ",Statistics.mean(number_of_terms_in_document))
println("***")
# takes about 5m20.298s to run
writedlm( "numberOfTerms.txt", number of documents, ',')
# $ cat numberOfTerms.txt | sort -n | uniq -c > uniq.txt
```

On average there are about 21.718225497827696 terms across all documents.

In any one document relatively there can be as much as 18 terms and as little as 3 terms in a single document

2. Relatively how many terms appear at least 5 times?

```
# takes 0m6.408s to run
irs990extract = Serialization.deserialize("./data/irs990extract.jldata")
termfreq = Serialization.deserialize("./data/termfreq.jldata")
terms = Serialization.deserialize("./data/terms.jldata")
number_of_terms_counter = 0
document = termfreq[1:end,:]
terms_appeared = termfreq = 0 .< document
count_of_words_appeared = sum(terms_appeared, dims = 1)
for word in 1:length(terms)
    if count_of_words_appeared[word] >= 5
        number_of_terms_counter += 1
    end
end
println(number_of_terms_counter)
```

- 14235 terms appear at least 5 times.
- 3. Show the 20 most frequent words. Words like "and", "to", "the" aren't especially meaningful. Which is the first word that you feel may be meaningful for characterizing the nonprofit? Why?

```
using Serialization
using Statistics
irs990extract = Serialization.deserialize("./data/irs990extract.jldata")
termfreq = Serialization.deserialize("./data/termfreq.jldata")
terms = Serialization.deserialize("./data/terms.jldata")
top twenty array = Array{Int64}(undef, 20, 2)
for term in 1:length(terms)
  for index in 1:20
      if length(termfreq[1:end,term].nzind) > top_twenty_array[index,1]
            for row in 20:index
               top_twenty_array[row,1] = top_twenty_array[row-1,1]
               top_twenty_array[row,2] = top_twenty_array[row-1,2]
            end
            top_twenty_array[index,1] = length(termfreq[1:end,term].nzind)
            top_twenty_array[index,2] = term
            break
      end
  end
end
for row in 1:20
   println(terms[top_twenty_array[row,2]])
end
```

school for it loosely argues that for a non-profit organization to exist with a focus to our education it may imply that our public education system lacks staff, resources, or basic assistance that our society/government fails to provide

4. How many documents contain "sacramento"?

sacramento is stored in index = 63171

```
using Serialization
using Statistics
irs990extract = Serialization.deserialize("./data/irs990extract.jldata")
termfreq = Serialization.deserialize("./data/termfreq.jldata")
terms = Serialization.deserialize("./data/terms.jldata")
sacramento_document_counter = 0
for document_row in 1:length(irs990extract) # 260783
    if(cmp(terms[63171], "sacramento")==0)
        sacramento_document_counter += 1
    end
end
println(sacramento_document_counter)
```

260783 documents contains "sacramento"

5. What's one element in irs990extract where the mission contains "sacramento"?

Come up with your own question similar to the questions above, and answer it.

2. Selecting a Subset (5 pts)

What do you do when your program doesn't run? Try using a subset of the data, the most important subset.

```
first10k = 1:10_000
termfreq10k = termfreq[first10k,:]
termAppeared = 0 .< termfreq10k # So if these terms are positive and the term did appear
wordAppearanceCount = sum(termAppeared, dims = 1)</pre>
```

1. Use one or more of the fields in irs990extract to define and pick the 10,000 largest nonprofits.

PLACE_HOLDER

2. What's the largest nonprofit based on your definition? Does it seem reasonable?

PLACE_HOLDER

3. Drop all words that don't appear at least twice in this subset.

PLACE_HOLDER

We'll use this subset for the remainder of the assignment.

3. Principal Components Analysis (5 pts)

Fit the first 10 principal components, i.e. project the data down into a 10 dimensional subspace.

- 1. Interpret the principal ratio. What does it mean?
 - PLACE_HOLDER
- 2. Plot the variances of the first 10 principal components as a function of the principal component number. What do you observe?
 - PLACE_HOLDER
- 3. Which words have the relatively largest loadings in the first principal component? (These the absolute values of the entries of projection().) Are these the kinds of words you expected? Explain.
 - PLACE_HOLDER

Hints

- 1. Resources for interpreting principal components: Making sense of principal component analysis, eigenvectors & eigenvalues PCA and proportion of variance explained
- 2. Transpose the matrix to follow the structure described in the MultivariateStats documentation
- 3. If the program is too slow, try converting from a dense to a sparse matrix.

4. Clustering (5 pts)

Apply k means with k = 3 to the principal components of the subset of data. This means you should be fitting k means to a data matrix with 10,000 observations, and 10 features, which are the scores for each of the 10 principal components.

- 1. How many elements are in each group?
 - PLACE_HOLDER
- 2. Which nonprofits are closest to the centroids? Feel free to use the function below.
 - PLACE_HOLDER
- 3. k means should find a group of mission statements that are very similar. What happened?
 - PLACE_HOLDER

Is it reasonable?

PLACE_HOLDER

If we were to continue this analysis, what would you do next?

PLACE_HOLDER

```
Find the indices of the data points that are closest to the centroids defined by the

"""

function close_centroids(knn_model)

groups = knn_model.assignments

k = length(unique(groups))

n = length(groups)

result = fill(0, k)

for ki in 1:k

cost_i = fill(Inf, n)

group_i = ki .== groups

cost_i[group_i] = knn_model.costs[group_i]

result[ki] = argmin(cost_i)

end

result

end
```

5. Extra Credit (1 pt)

Fit k means with k = 3 to the entire original termfreq data. This takes around 18 hours to run. Did k means again find a group of mission statements that are very similar, following the same pattern as in the previous question?

PLACE_HOLDER

Notes

- A sparse matrix and what sparsity means is that most of the entries are zeros
 - extract just one row I get a sparse vector out so one dimensional vector

```
> row1 = termfreq[1,1:end].nzind
```