Page No.:

3

Amendment to the Claims:

Cancel Claim 52.

Add new Claims 53-56.

Listing of Claims:

A compound of structural formula I: 1. (original)

or a pharmaceutically acceptable salt thereof; wherein each n is independently 0, 1, or 2;

X, Y and Z are independently selected from the group consisting of:

- CR1, (1)
- NR², (2)
- (3) N,
- O, and (4)
- (5) S;

with the provisos that at least one of X, Y and Z is not CR1 and two of X, Y, and Z cannot be O and/or S;

Ar is phenyl substituted with one to five R³ substituents;

each R1 is independently selected from the group consisting of

hydrogen,

halogen,

hydroxy,

cyano,

C₁₋₁₀ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

1

Page No.: 4

C₁₋₁₀ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

- C₁₋₁₀ alkylthio, wherein alkylthio is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,
- C₂₋₁₀ alkenyl, wherein alkenyl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, COOH, and COOC₁₋₆ alkyl,

(CH₂)_nCOOH,

(CH2)nCOOC₁₋₆ alkyl,

(CH₂)_nCONR⁴R⁵, wherein R⁴ and R⁵ are independently selected from the group consisting of hydrogen, tetrazolyl, thiazolyl, (CH₂)_n-phenyl, (CH₂)_n-C₃₋₆ cycloalkyl, and C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; or R⁴ and R⁵ together with the nitrogen atom to which they are attached form a heterocyclic ring selected from azetidine, pyrrolidine, piperidine, piperazine, and morpholine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens;

(CH₂)_n-NR⁴R⁵,

(CH₂)_n-OCONR⁴R⁵,

(CH₂)_n-SO₂NR⁴R⁵,

(CH₂)_n-SO₂R⁶,

(CH₂)_n-NR⁷SO₂R⁶,

(CH₂)_n-NR⁷CONR⁴R⁵,

 $(CH_2)_n$ -NR⁷COR⁷,

(CH₂)_n-NR⁷CO₂R⁶,

(CH₂)_n-COR⁷,

(CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

 $(CH_2)_n$ -aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, cyano, hydroxy, NR⁷SO₂R⁶, SO₂R⁶, CO₂H, COOC₁₋₆ alkyl, C₁₋₆ alkyl, and

Page No.:

C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

(CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and

(CH₂)_n-heterocyclyl, wherein heterocyclyl is unsubstituted or substituted with one to three substituents independently selected from oxo, hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

wherein any methylene (CH₂) carbon atom in R¹ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens;

each R² is independently selected from the group consisting of hydrogen,

C₁₋₁₀ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

C₂₋₁₀ alkenyl, wherein alkenyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,

(CH₂)_nCOOH,

(CH₂)_nCOOC₁₋₆ alkyl,

(CH2)_nCONR⁴R⁵, wherein R⁴ and R⁵ are independently selected from the group consisting of hydrogen, tetrazolyl, thiazolyl, (CH2)_n-phenyl, (CH2)_n-C3-6 cycloalkyl, and C1-6 alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C1-6 alkyl, and C1-6 alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; or R⁴ and R⁵ together with the nitrogen atom to which they are attached form a heterocyclic ring selected from azetidine, pyrrolidine, piperidine, piperazine, and morpholine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, (CH2)_nCOOC₁₋₆ alkyl, C1-6 alkyl, and C1-6 alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens or one phenyl;

(CH₂)_n-COR⁷, (CH₂)_n-SO₂NR⁴R⁵,

Page No.:

6

(CH₂)_n-SO₂R⁶,

(CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

- (CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, cyano, hydroxy, NR⁷SO₂R⁶, SO₂R⁶, CO₂H, C₁₋₆ alkyloxycarbonyl, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens.
- (CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and
- (CH₂)_n-heterocyclyl, wherein heterocyclyl is unsubstituted or substituted with one to three substituents independently selected from oxo, hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

wherein any methylene (CH₂) carbon atom in R² is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens;

each R³ is independently selected from the group consisting of

hydrogen,

halogen,

cyano,

hydroxy,

C₁₋₆ alkyl, unsubstituted or substituted with one to five halogens, and

C₁₋₆ alkoxy, unsubstituted or substituted with one to five halogens;

 R^6 is independently selected from the group consisting of tetrazolyl, thiazolyl, $(CH_2)_n$ -phenyl, $(CH_2)_n$ - C_{3-6} cycloalkyl, and C_{1-6} alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C_{1-6} alkyl, and C_{1-6} alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and wherein any methylene (CH₂) carbon atom in R^6 is unsubstituted or substituted with one to two groups independently selected from halogen,

Case No.:
Page No.:

7

hydroxy, C₁₋₄ alkyl, and C₁₋₄ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens;

each R⁷ is hydrogen or R⁶;

R8, R9 and R10 are each independently selected from the group consisting of

hydrogen,

cyano,

(CH₂)_nCOOH,

(CH₂)_nCOOC₁₋₆ alkyl,

C₁₋₆ alkyloxycarbonyl,

- C₁₋₁₀ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens,
- (CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
- (CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
- (CH₂)_n-heterocyclyl, wherein heterocyclyl is unsubstituted or substituted with one to three substituents independently selected from oxo, hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
- (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and
- (CH₂)_nCONR⁴R⁵, wherein R⁴ and R⁵ are independently selected from the group consisting of hydrogen, tetrazolyl, thiazolyl, (CH₂)_n-phenyl, (CH₂)_n-C₃₋₆ cycloalkyl, and C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; or R⁴ and R⁵ together with the nitrogen atom to which they are attached form a heterocyclic ring selected from azetidine, pyrrolidine, piperidine, piperazine, and

Page No.:

morpholine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, (CH2)nCOOC₁₋₆ alkyl, C₁₋ 6 alkyl, and C1-6 alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens or one phenyl; and

wherein any methylene (CH2) carbon atom in R8, R9 or R10 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens.

2. (original) The compound of Claim 1 of the structural formula Ia wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{\text{NH}_2} O R^8$$

$$R^9 X X$$

$$(Ia) R^{10}$$

3. (original) The compound of Claim 1 of the structural formula Ib

The compound of Claim 3 of the structural formula Ic wherein 4. (original) the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} R^1$$

$$R^9 \xrightarrow{R^{10}} S$$

The compound of Claim 3 wherein R9 and R10 are hydrogen. 5. (original)

Page No.:

6. (original) The compound of Claim 1 of the structural formula Ie

7. (original) The compound of Claim 6 of the structural formula If wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \underbrace{\begin{array}{c} NH_2 & O \\ * \\ R^9 \\ (If) \end{array} \begin{array}{c} R^8 \\ R^1 \\ N \\ R^2 \end{array}}_{R}$$

8. (original) The compound of Claim 6 wherein R9 and R10 are hydrogen.

9. (original) The compound of Claim 1 of the structural formula Ih

$$\begin{array}{c|cccc} NH_2 & O & R^8 & R^2 \\ \hline Ar & N & N & N \\ \hline R^9 & N & N \\ \hline (lh) & R^{10} & R^1 \end{array}$$

10. (original) The compound of Claim 9 of the structural formula Ii wherein the carbon atom marked with an * has the R stereochemical configuration

11. (original) The compound of Claim 9 wherein R9 and R10 are hydrogen.

Page No.: 10

12. (original) The compound of Claim 1 of the structural formula Ik

13. (original) The compound of Claim 12 of the structural formula II wherein the carbon atom marked with an * has the R stereochemical configuration

- 14. (original) The compound of Claim 12 wherein R⁹ and R¹⁰ are hydrogen.
- 15. (original) The compound of Claim 1 of the structural formula In

16. (original) The compound of Claim 15 of the structural formula Io wherein the carbon atom marked with an * has the R stereochemical configuration

17. (original) The compound of Claim 15 wherein R⁹ and R¹⁰ are hydrogen.

18. (original) The compound of Claim 1 of structural formula Iq

$$Ar \xrightarrow{NH_2} O R^8$$

$$R^9 \xrightarrow{N} N$$

$$(Iq) R^{10}$$

19. (original) The compound of Claim 18 of the structural formula Ir wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{\mathsf{NH}_2} O \underset{\mathsf{R}^9}{\mathsf{R}^8} S \underset{\mathsf{N}}{\mathsf{R}^1}$$

20. (original) The compound of Claim 18 wherein R⁹ and R¹⁰ are hydrogen.

21. (original) The compound of Claim 1 of the structural formula It

$$Ar \xrightarrow{NH_2 O R^8} N \xrightarrow{R^1} R^9 \xrightarrow{R^{10}} S$$

Page No.: 12

22. (original) The compound of Claim 21 of the structural formula Iu wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{\text{NH}_2} O \xrightarrow{\text{R}^8} N \xrightarrow{\text{N}} R^1$$

$$(Iu) \xrightarrow{\text{R}^{10}} S$$

23. (original) The compound of Claim 21 wherein R⁹ and R¹⁰ are hydrogen.

24. (original) The compound of Claim 1 of the structural formula Iw

25. (original) The compound of Claim 24 of the structural formula Ix wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{\mathsf{NH}_2} O \qquad \mathsf{R}^8 \\ \mathsf{N} \qquad \mathsf{N} \qquad \mathsf{R}^1 \\ \mathsf{N} \qquad \mathsf{N} \qquad \mathsf{N} \\ \mathsf{N} \qquad \mathsf{N}$$

26. (original) The compound of Claim 24 wherein R⁹ and R¹⁰ are hydrogen.

27. (original) The compound of Claim 1 of the structural formula Iz

$$\begin{array}{c|c} & NH_2 & O & R^8 \\ \hline Ar & N & O & R^1 \\ \hline & R^9 & N & R^1 \\ \hline & (Iz) & R^{10} & \end{array}$$

28. (original) The compound of Claim 27 of the structural formula Iaa wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{NH_2} O R^8$$

$$R^9 \xrightarrow{N} N R^1$$

$$(laa) R^{10}$$

29. (original) The compound of Claim 27 wherein R⁹ and R¹⁰ are hydrogen.

30. (original) The compound of Claim 1 of the structural formula Iac

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} \overset{R^2}{\underset{N}{\bigvee}} R^2$$

$$R^9 \xrightarrow{R^{10}} N$$

31. (original) The compound of Claim 30 of the structural formula Iad wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{NH_2} O \xrightarrow{R^8} \overset{R^2}{\underset{N}{\bigvee}} R^1$$

$$(lad) \overset{R^{10}}{\underset{N}{\bigvee}} R^1$$

32. (original) The compound of Claim 30 wherein R⁹ and R¹⁰ are hydrogen.

33. (original) The compound of Claim 1 of the structural formula Iaf

Ar
$$NH_2$$
 O R^8 N R^1 R^9 R^{10} R^2

34. (original) The compound of Claim 33 of the structural formula Ig wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{\mathsf{NH}_2} O \qquad \mathsf{R}^8 \qquad \mathsf{N} \qquad \mathsf{R}^1 \qquad \mathsf{R}^9 \qquad \mathsf{N} \qquad \mathsf{R}^1 \qquad \mathsf{R}^2 \qquad \mathsf{R}^2$$

35. (original) The compound of Claim 33 wherein R⁹ and R¹⁰ are hydrogen.

36. (original) The compound of Claim 1 of the structural formula Iai

37. (original) The compound of Claim 36 of the structural formula Iaj wherein the carbon atom marked with an * has the R stereochemical configuration

$$Ar \xrightarrow{NH_2} O R^8 R^2$$

$$R^9 N N$$

$$R^{10} N$$

$$R^{10}$$

38. (original) The compound of Claim 36 wherein R⁹ and R¹⁰ are hydrogen.

Page No.: 15

39. (original) The compound of Claim 1 of the structural formula Ial

$$\begin{array}{c|c} & NH_2 & O & R^8 \\ Ar & & & N & N \\ \hline & & & & N & N \\ R^9 & & & & N & N \\ \hline & & & & & & N^2 \\ \hline & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$

40. (original) The compound of Claim 39 of the structural formula Iam wherein the carbon atom marked with an * has the R stereochemical configuration

- 41. (original) The compound of Claim 39 wherein R⁹ and R¹⁰ are hydrogen.
- 42. (original) The compound of Claim 1 wherein R³ is selected from the group consisting of hydrogen, fluoro, chloro, bromo, trifluoromethyl, and methyl.
- 43. (original) The compound of Claim 1 wherein \mathbb{R}^1 is selected from the group consisting of:

hydrogen,

halogen,

hydroxy,

- C₁₋₁₀ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,
- C₂₋₁₀ alkenyl, wherein alkenyl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, COOH, and COOC₁₋₆ alkyl,
- (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and

Page No.:

16

(CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, cyano, hydroxy, NR⁷SO₂R⁶, SO₂R⁶, CO₂H, COOC₁₋₆ alkyl, C₁₋₆ alkyl, and

C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and

wherein any methylene (CH₂) carbon atom in R¹ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens;

44. (original) The compound of Claim 43 wherein R¹ is selected from the group consisting of hydrogen, methyl,

ethyl, trifluoromethyl, CH₂CF₃,

CF2CF3,

phenyl,

- 4-(methoxycarbonyl)phenyl,
- 4-fluorophenyl,
- 4-(trifluoromethyl)phenyl,
- 4-(methylsulfonyl)phenyl,

cyclopropyl,

fluoro,

chloro,

bromo, and

- 2-(methoxycarbonyl)vinyl.
- 45. (original) The compound of Claim 1 wherein R² is selected from the group consisting of

hydrogen,

- C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen or hydroxy,
- $(CH_2)_n\text{-aryl, wherein aryl is unsubstituted or substituted with one to five substituents} \\ independently selected from halogen, CN, hydroxy, NR^7SO_2R^6, SO_2R^6, CO_2H, \\ (CH_2)_n\text{-aryl, wherein aryl is unsubstituted or substituted with one to five substituents} \\ (CH_2)_n\text{-aryl, wherein aryl is unsubstituted or substituted with one to five substituents} \\ (CH_2)_n\text{-aryl, wherein aryl is unsubstituted or substituted with one to five substituents} \\ (CH_2)_n\text{-aryl, wherein aryl is unsubstituted or substituted with one to five substituted with one to f$

Page No.:

COOC₁₋₆ alkyl, C₁₋₆ alkyl, and

C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and

wherein any methylene (CH₂) carbon atom in R² is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens.

46. (original) The compound of Claim 45 wherein R² is selected from the group consisting of:

hydrogen,

methyl,

CH₂CF₃,

isobutyl,

- 4-(trifluoromethyl)benzyl, and
- 4-fluorobenzyl.

47. (original) The compound of Claim 1 wherein R⁸, R⁹, and R¹⁰ are independently selected from the group consisting of:

hydrogen,

- C₁₋₁₀ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens,
- (CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
- (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy,

wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, and wherein any methylene (CH₂) carbon atom in R⁸, R⁹ or R¹⁰ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens.

48. (original) The compound of Claim 47 wherein R⁸, R⁹, and R¹⁰ are each independently selected from the group consisting of

Page No.:

18

hydrogen, trifluoromethyl, methyl, ethyl, cyclopropyl, CH₂-Ph, and CH₂(4-F-Ph).

49. (original) The compound of Claim 48 wherein R⁹ and R¹⁰ are hydrogen.

50. (original) The compound of Claim 49 which is selected from the group consisting

of:

Case No.: Page No.:

20

or a pharmaceutically acceptable salt thereof.

51. (original) A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.

52. (cancelled)

- 53. (new) A method for treating non-insulin dependent (Type 2) diabetes in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.
- 54. (new) A method for treating hyperglycemia in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.
- 55. (new) A method for treating obesity in a mammal in need thereof which comprises the administration to the mammal of a therapeutically effective amount of a compound of Claim 1.
- 56. (new) The pharmaceutical composition of Claim 51 further comprising one or more additional active ingredients selected from the group consisting of:
 - (a) a second dipeptidyl peptidase IV inhibitor;
- (b) an insulin sensitizer selected from the group consisting of a PPAR γ agonist, a PPAR α/γ dual agonist, a PPAR α agonist, a biguanide, and a protein tyrosine phosphatase-1B inhibitor;
 - (c) an insulin or insulin mimetic;
 - (d) a sulfonylurea or other insulin secretagogue;
 - (e) an α-glucosidase inhibitor;
 - (f) a glucagon receptor antagonist;
 - (g) GLP-1, a GLP-1 mimetic, or a GLP-1 receptor agonist;
 - (h) GIP, a GIP mimetic, or a GIP receptor agonist;
 - (i) PACAP, a PACAP mimetic, or a PACAP receptor agonist;
- (j) a cholesterol lowering agent such as (i) HMG-CoA reductase inhibitor, (ii) sequestrant, (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonist, (v) PPARα/γ dual agonist, (vi) inhibitor of cholesterol absorption, (vii) acyl CoA:cholesterol acyltransferase inhibitor, and (viii) anti-oxidant;

Page No.: 21

(k) a PPARδ agonist;

- (I) an antiobesity compound;
- (m) an ileal bile acid transporter inhibitor;
- (n) an anti-inflammatory agent; and
- (o) an antihypertensive agent.