We claim:-

10

- A printing ink for letterpress and/or offset printing, comprising at least one nonpolar solvent, a binder, a colorant absorbing in the visible spectral range and an NIR absorber which has substantially no absorption in the visible spectral range, wherein the solubility of the NIR absorber in the printing ink is at least 0.1% by weight, based on all components of the printing ink, with the proviso that the solubility of the NIR absorber is greater than or equal to the concentration of the NIR absorber in the printing ink.
 - 2. The printing ink according to claim 1, wherein the solubility of the NIR absorber is at least 0.2% by weight.
- The printing ink according to claim 1 or 2, wherein the NIR absorber is at least
 one NIR absorber selected from the group consisting of cyanines,
 naphthalocyanines, squaraines and croconates.
- 4. The printing ink according to claim 3, wherein the NIR absorber is an ionic absorber comprising a cyanine cation X⁺ and a corresponding anion ¹/_mY^{m-}, the cyanine cation having a general formula selected from the group consisting of (I) to (IV)

$$R^{5}$$
 R^{8}
 R^{7}
 R^{9}
 R^{1}
 R^{3}
 R^{4}
 R^{2}
 R^{6}
 R^{1}
 R^{3}
 R^{3}
 R^{4}
 R^{2}

$$R^{5}$$

$$R^{8}$$

$$R^{7}$$

$$R^{9}$$

$$R^{1}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{5}$$

$$R^{8}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

n is 1 or 2 and the radicals R¹ to R⁹ have the following meanings:

R¹ and R², independently of one another, are a linear or branched, optionally further substituted alkyl or aralkyl radical having 1 to 20 carbon atoms,

- R³ and R⁴, independently of one another, are H or CN,

The substituents selected from the group consisting of -H, -F, -Cl, -Br, -l, -NO₂, -CN, -CF₃, -R¹, -OR¹, aryl- or -O-aryl,

⁻ R⁷ is -H, -Cl, -Br, -I, -phenyl, -O-phenyl, - S-phenyl, -N(phenyl)₂, -pyridyl, a barbituric acid radical or a dimedone radical, it also being possible for the phenyl radicals to be further substituted,

- R⁸ and R⁹, independently of one another, are >C(CH₃)₂, -O-, -S-, > NR¹ or

-CH=CH-,
and the anion Y^{m-} has the general formula [AR¹⁰_k]^{m-} with a polar, ionic head group A and k nonpolar groups R¹⁰, k is 1, 2 or 3 and m is 1 or 2, and the nonpolar groups R¹⁰, independently of one another, are selected from the group consisting of

25 - linear, branched or cyclic alkyl groups having 6 to 30 carbon atoms and

alkylaryl groups of the general formula -aryl-R¹¹, where R¹¹ is a linear or branched alkyl group having 3 to 30 carbon atoms, and/or the anion Y^{m-} is a borate anion of the general formulae (V) or (VI)

- where R¹⁰ is as defined above and R¹² is at least one substituent selected from the group consisting of H and linear, cyclic or branched alkyl groups having 1 to 20 carbon atoms, and
- in the radicals R¹⁰, R¹¹ and R¹², even nonneighboring carbon atoms may optionally be substituted by O atoms and/or the radicals R¹⁰, R¹¹ and R¹² may be completely or partly fluorinated, with the proviso that the nonpolar character of the group is not substantially influenced thereby.
- 5. The printing ink according to claim 4, wherein the polar, ionic head group A is a monobasic or dibasic acid radical selected from the group consisting of—SO₃, -OSO₃, -COO⁻, -PO₃², -OPO₃² or (-O)(-O)PO₂.
 - 6. The printing ink according to claim 4 or 5, wherein R¹⁰ is a linear, branched or cyclic alkyl group having 6 to 12 carbon atoms.
 - 7. The printing ink according to claim 6, wherein R¹⁰ is a linear alkyl group.
 - 8. The printing ink according to claim 4 or 5, wherein R¹¹ has 6 to 12 carbon atoms.
- 25 9. The printing ink according to claim 8, wherein R¹¹ is a linear alkyl group.
 - 10. The printing ink according to any of claims 1 to 9, wherein the amount of the NIR absorber in the printing ink is from 0.05 to 4% by weight, based on the sum of all components of the ink.
- The use of a printing ink according to any of claims 1 to 10 in printing processes in which the curing of the printing ink is promoted by using IR radiation sources whose wavelength is not resonant with the absorption wavelengths of water.
- 35 12. An NIR absorber consisting of a cyanine cation X⁺ and a corresponding anion $^{1}/_{m}Y^{m-}$, the cation having a general formula selected from the group consisting of (I) to (IV)

$$R^{5}$$
 R^{8}
 R^{7}
 R^{9}
 R^{6}
 R^{1}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{2}

$$R^{5}$$

$$R^{8}$$

$$R^{7}$$

$$R^{9}$$

$$R^{1}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{5}$$
 R^{6}
 R^{9}
 R^{2}
 R^{1}
 R^{2}
 R^{2}

$$R^{5}$$

$$R^{8}$$

$$R^{9}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

10

15

n is 1 or 2 and the radicals R^1 to R^9 have the following meanings:

- R¹ and R², independently of one another, are a linear or branched, optionally further substituted alkyl or aralkyl radical having 1 to 20 carbon atoms,
- R³ and R⁴, independently of one another, are H or CN,

15

20

25

30

35

- R⁵ and R⁶, independently of one another, are one or more, identical or different substituents selected from the group consisting of -H, -F, -Cl, -Br, -I, -NO₂, -CN, -CF₃, -R¹, -OR¹, aryl- or -O-aryl,
- For the phenyl radicals to be further substituted,
 - R⁸ and R⁹, independently of one another, are >C(CH₃)₂, –O-, -S-, > NR¹ or
 -CH=CH-,

and the anion Y^{m-} has the general formula [AR¹⁰_k]^{m-} with a polar, ionic head group A and k nonpolar groups R¹⁰, k is 1, 2 or 3 and m is 1 or 2, and the nonpolar groups R¹⁰, independently of one another, are selected from the group consisting of

linear, branched or cyclic alkyl groups having 6 to 30 carbon atoms and alkylaryl groups of the general formula -aryl-R¹¹, where R¹¹ is a linear or branched alkyl group having 3 to 30 carbon atoms, and/or the anion Y^m is a borate anion of the general formulae (V) or (VI)

$$R'' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $R''' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $R''' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $R''' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $R''' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $R''' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

where R¹⁰ is as defined above and R¹² is at least one substituent selected from the group consisting of H and linear, cyclic or branched alkyl groups having 1 to 20 carbon atoms, and

in the radicals R^{10} , R^{11} and R^{12} , even nonneighboring carbon atoms may optionally be substituted by O atoms and/or the radicals R^{10} , R^{11} and R^{12} may be completely or partly fluorinated, with the proviso that the nonpolar character of the group is not substantially influenced thereby.

13. The NIR absorber according to claim 12, wherein the monobasic or dibasic acid radical A is selected from the group consisting of -SO₃, -OSO₃, -COO, -PO₃², -OPO₃² or (-O)(-O)PO₂.

- 14. The NIR absorber according to claim 12 or 13, wherein R¹⁰ is a linear or branched alkyl group having 6 to 12 carbon atoms.
- 15. The NIR absorber according to claim 14, wherein R¹⁰ is a linear alkyl group.
- 16. The NIR absorber according to claim 12 or 13, wherein R¹¹ has 6 to 12 carbon atoms.
- 17. The NIR absorber according to claim 16, wherein R¹¹ is a linear alkyl group.