SAMB for "graphene"

Generated on 2024-08-08 23:13 by MultiPie $1.2.18\,$

- Generation condition
 - model type: tight_bindingtime-reversal type: electric
 - irrep: [A1g]
 spinless
- Unit cell:

$$a=1.0,\ b=1.0,\ c=4.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$a_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

 $a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$
 $a_3 = \begin{pmatrix} 0 & 0 & 4.0 \end{pmatrix}$

Table 1: High-symmetry line: Γ -K-M- Γ .

symbol	position	symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	M	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	K	$\left(\begin{array}{ccc} \frac{1}{3} & \frac{1}{3} & 0 \end{array}\right)$

• Kets: dimension = 2

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket
1	$p_z@\mathrm{C}_1$	2	$p_z@C_2$

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
$S_1 [2c: -6m2]$	C_1	$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$	[1,6,7,8,9,10,14,15,16,17,23,24]
	C_2	$\begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$	[2,3,4,5,11,12,13,18,19,20,21,22]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B ₁ [3f: mmm]	b_1	C_1	C_2	1	1	$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	[1,-2,-3,6,-13,14,17,-18]
	b_2	C_1	C_2	1	1	$\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & 0 \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$	[-4,7,10,-11,15,-19,-22,23]
	b_3	C_1	C_2	1	1	$\begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix}$	[-5,8,9,-12,16,-20,-21,24]
B ₂ [6l: mm2]	b_4	C_1	C_1	2	1	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & 0 \end{pmatrix}$	[1,-7,-15,17]
	b_5	C_2	C_2	2	1	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{2}{3} & \frac{5}{6} & 0 \end{pmatrix}$	[-2,4,-13,19]
	b_6	C_2	C_2	2	1	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{6} & \frac{5}{6} & 0 \end{pmatrix}$	[-3,12,-18,21]
	b_7	C_2	C_2	2	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & 0 \end{pmatrix}$	[5,-11,20,-22]
	b_8	C_1	C_1	2	1	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & 0 \end{pmatrix}$	[6,-9,14,-24]
	b_9	C_1	C_1	2	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{5}{6} & \frac{2}{3} & 0 \end{pmatrix}$	[-8,10,-16,23]
B ₃ [1a: 6/mmm]	b ₁₀	C_1	C_2	3	1	$\begin{pmatrix} \frac{4}{3} & \frac{2}{3} & 0 \end{pmatrix} @ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[1,-2,-4,7,-13,15,17,-19]

	bond	tail	head	n	#	$m{b}@m{c}$	mapping
	b ₁₁	C_1	C_2	3	1	$\left(-\frac{2}{3} \frac{2}{3} 0\right) @ \left(0 0 0\right)$	[-3,6,9,-12,14,-18,-21,2
	b_{12}	C_1	C_2	3	1	$\begin{pmatrix} -\frac{2}{3} & -\frac{4}{3} & 0 \end{pmatrix}$ @ $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[-5,8,10,-11,16,-20,-22,
B ₄ [3f: mmm]	b ₁₃	C_1	C_2	4	1	$\begin{pmatrix} \frac{4}{3} & \frac{5}{3} & 0 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix}$	[1,-2,-13,17]
	b_{14}	C_1	C_2	4	1	$\begin{pmatrix} \frac{1}{3} & \frac{5}{3} & 0 \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$	[-3,6,14,-18]
	b_{15}	C_1	C_2	4	1	$\begin{pmatrix} \frac{4}{3} & -\frac{1}{3} & 0 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix}$	[-4,7,15,-19]
	b_{16}	C_1	C_2	4	1	$ \left(-\frac{5}{3} -\frac{4}{3} 0 \right) @ \left(\frac{1}{2} 0 0 \right) $	[-5,8,16,-20]
	b_{17}	C_1	C_2	4	1	$\left(-\frac{5}{3} -\frac{1}{3} 0 \right) @ \left(\frac{1}{2} \frac{1}{2} 0 \right) $	[9, -12, -21, 24]
	b_{18}	C_1	C_2	4	1	$\left(\begin{array}{ccc} \frac{1}{3} & -\frac{4}{3} & 0 \end{array}\right) @ \left(\begin{array}{ccc} \frac{1}{2} & 0 & 0 \end{array}\right)$	[10, -11, -22, 23]
B_5 [6l: mm2]	b_{19}	C_1	C_1	5	1	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{5}{6} & \frac{2}{3} & 0 \end{pmatrix}$	[1,6,14,17]
	b_{20}	C_2	C_2	5	1	$\begin{pmatrix} -1 & -2 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & 0 \end{pmatrix}$	[2,3,13,18]
	b_{21}	C_2	C_2	5	1	$\begin{pmatrix} -1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{6} & \frac{5}{6} & 0 \end{pmatrix}$	[4,11,19,22]
	b_{22}	C_2	C_2	5	1	$\begin{pmatrix} 2 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{2}{3} & \frac{5}{6} & 0 \end{pmatrix}$	[5,12,20,21]
	b_{23}	C_1	C_1	5	1	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & 0 \end{pmatrix}$	[7,10,15,23]
	b_{24}	C_1	C_1	5	1	$\begin{pmatrix} -2 & -1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & 0 \end{pmatrix}$	[8,9,16,24]
$B_6 \ [2c: \ \text{-}6m2]$	b_{25}	C_1	C_1	6	1	$\begin{pmatrix} 2 & 2 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$	[1,-8,-16,17]
	b_{26}	C_2	C_2	6	1	$\begin{pmatrix} 2 & 2 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$	[-2,5,-13,20]
	b_{27}	C_2	C_2	6	1	$\begin{pmatrix} 0 & 2 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$	[-3,11,-18,22]
	b_{28}	C_2	C_2	6	1	$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$	[-4,12,-19,21]
	b_{29}	C_1	C_1	6	1	$\begin{pmatrix} 0 & 2 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$	[6, -10, 14, -23]
	b_{30}	C_1	C_1	6	1	$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$	[7,-9,15,-24]

• SAMB:

No. 2
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_{001}[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{002}[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_{001}[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{003}[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_{001}[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{004}[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{5} = \mathbb{X}_{001}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{Y}_{005}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{6} = \mathbb{X}_{001}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{Y}_{006}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_{001}[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{007}[\mathbb{Q}_0^{(b,A_{1g})}]$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	p_z	p_z

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	M_1	(1)

Table 7: Cluster SAMB.

symbol	type	cluster	form						
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$						
\mathbb{Y}_2	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$						
\mathbb{Y}_3	$\mathbb{Q}_0^{(b,A_{1g})}$	B_2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A_{1g})}$	B_3	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$						
\mathbb{Y}_5	$\mathbb{Q}_0^{(b,A_{1g})}$	B_4	$\left \begin{array}{cccc} \left(\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{array} \right) \right $						
\mathbb{Y}_6	$\mathbb{Q}_0^{(b,A_{1g})}$	B_5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
\mathbb{Y}_7	$\mathbb{Q}_0^{(b,A_{1g})}$	B_6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Table 8: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1

 \bullet Group info.: Generator = $\{3^{+}_{\ 001}|0\},\ \{2_{001}|0\},\ \{2_{110}|0\},\ \{-1|0\}$

Table 9: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 0\}$	$\{2_{001} 0\}$
$\{2_{100} 0\}$	$\{2_{100} 0\}, \{2_{010} 0\}, \{2_{110} 0\}$
$\{2_{120} 0\}$	$\{2_{120} 0\}, \{2_{210} 0\}, \{2_{1-10} 0\}$
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
$\{6^{+}_{001} 0\}$	$\{6^{+}_{001} 0\}, \ \{6^{-}_{001} 0\}$
$\{-1 0\}$	$\{-1 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$
$\{m_{001} 0\}$	$\{m_{001} 0\}$
$\{m_{120} 0\}$	$\{m_{120} 0\}, \{m_{210} 0\}, \{m_{1-10} 0\}$
$\{-3^{+}_{001} 0\}$	$\{-3^{+}_{001} 0\}, \{-3^{-}_{001} 0\}$
$\{-6^{+}_{001} 0\}$	$\{-6^{+}_{001} 0\}, \{-6^{-}_{001} 0\}$

Table 10: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
 1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{120} 0\}$	7	$\{2_{210} 0\}$	8	$\{2_{1-10} 0\}$	9	$\{3^{+}_{001} 0\}$	10	$\{3^{-}_{001} 0\}$
11	$\{6^{+}_{001} 0\}$	12	$\{6^{-}_{\ 001} 0\}$	13	$\{-1 0\}$	14	$\{m_{100} 0\}$	15	$\{m_{010} 0\}$
16	$\{m_{110} 0\}$	17	$\{m_{001} 0\}$	18	$\{m_{120} 0\}$	19	$\{m_{210} 0\}$	20	$\{m_{1-10} 0\}$
21	$\{-3^{+}_{001} 0\}$	22	$\{-3^{-}_{001} 0\}$	23	$\{-6^{+}_{001} 0\}$	24	$\{-6^{-}_{\ 001} 0\}$		

Table 11: Character table (point-group part).

	1	2001	2100	2120	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	-1	m ₁₀₀	m ₀₀₁	m_{120}	-3^{+}_{001}	-6^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1

Table 11

	1	2001	2_{100}	2_{120}	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	-1	m_{100}	m_{001}	m_{120}	-3^{+}_{001}	-6^{+}_{001}
A_{2g}	1	1	-1	-1	1	1	1	-1	1	-1	1	1
B_{1g}	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
E_{1g}	2	-2	0	0	-1	1	2	0	-2	0	-1	1
E_{2g}	2	2	0	0	-1	-1	2	0	2	0	-1	-1
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	1	-1	1	-1	1	-1	-1
B_{1u}	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	-1	-1	1	1	-1	1
E_{1u}	2	-2	0	0	-1	1	-2	0	2	0	1	-1
E_{2u}	2	2	0	0	-1	-1	-2	0	-2	0	1	1

Table 12: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_{1g} (A_{1u})$	$A_{2g} (A_{2u})$	B_{1g} (B_{1u})	$B_{2g} (B_{2u})$	E_{1g} (E_{1u})
$E_{2g} (E_{2u})$	$A_{1u} (A_{1g})$	$A_{2u} (A_{2g})$	$B_{1u} (B_{1g})$	$B_{2u} (B_{2g})$
$E_{1u} (E_{1g})$	$E_{2u} (E_{2g})$			

Table 13: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_{1u}	E_{2u}
B_{1g}			A_{1g}	A_{2g}	E_{2g}	E_{1g}	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_{2u}	E_{1u}
B_{2g}				A_{1g}	E_{2g}	E_{1g}	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_{2u}	E_{1u}
E_{1g}					$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$	E_{1u}	E_{1u}	E_{2u}	E_{2u}	$A_{1u} + A_{2u} + E_{2u}$	$B_{1u} + B_{2u} + E_{1u}$
E_{2g}						$A_{1g} + E_{2g}$	E_{2u}	E_{2u}	E_{1u}	E_{1u}	$B_{1u} + B_{2u} + E_{1u}$	$A_{1u} + A_{2u} + E_{2u}$
A_{1u}							A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}
A_{2u}								A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}
B_{1u}									A_{1g}	A_{2g}	E_{2g}	E_{1g}
B_{2u}										A_{1g}	E_{2g}	E_{1g}
E_{1u}											$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$
E_{2u}												$A_{1g} + E_{2g}$

Table 14: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A	l_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
	_	_	_	_	A_{2g}	A_{2g}	_	_	_	_	A_{2g}	A_{2g}

Table 15: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 3 & 1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} -3 & -1 & 1 \end{pmatrix}$	3	$\begin{pmatrix} 2 & -1 & -1 \end{pmatrix}$	4	$\begin{pmatrix} -3 & -2 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & 1 & -1 \end{pmatrix}$	7	$\begin{pmatrix} 3 & 2 & -1 \end{pmatrix}$	8	$\begin{pmatrix} -1 & -3 & -1 \end{pmatrix}$
9	$\begin{pmatrix} -1 & 2 & 1 \end{pmatrix}$	10	$\begin{pmatrix} -2 & -3 & 1 \end{pmatrix}$	11	$\begin{pmatrix} 2 & 3 & 1 \end{pmatrix}$	12	$\begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$
13	$\begin{pmatrix} -3 & -1 & -1 \end{pmatrix}$	14	$\begin{pmatrix} -2 & 1 & 1 \end{pmatrix}$	15	$\begin{pmatrix} 3 & 2 & 1 \end{pmatrix}$	16	$\begin{pmatrix} -1 & -3 & 1 \end{pmatrix}$
17	$\begin{pmatrix} 3 & 1 & -1 \end{pmatrix}$	18	$\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$	19	$\begin{pmatrix} -3 & -2 & 1 \end{pmatrix}$	20	$\begin{pmatrix} 1 & 3 & 1 \end{pmatrix}$
21	$\begin{pmatrix} 1 & -2 & -1 \end{pmatrix}$	22	$\begin{pmatrix} 2 & 3 & -1 \end{pmatrix}$	23	$\begin{pmatrix} -2 & -3 & -1 \end{pmatrix}$	24	$\begin{pmatrix} -1 & 2 & -1 \end{pmatrix}$

Table 16: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_{1g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						

Table 16

======										
symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_{1,0}^{(E_{1u})}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$						
$\mathbb{Q}_{1,1}^{(E_{1u})}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$
	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$
	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$						
$\mathbb{Q}_{2,0}^{(E_{1g})}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$
	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$						
$\mathbb{Q}_{2,1}^{(E_{1g})}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$
	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$
	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$						
$\mathbb{Q}_{2,0}^{(E_{2g})}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$
	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$
	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$						
$\mathbb{Q}_{2,1}^{(E_{2g})}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{2}{7}$	$-\frac{3}{28}$
	$-\frac{3}{28}$	$\frac{2}{7}$	$-\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$-\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$
	$\frac{2}{7}$	$-\frac{3}{28}$	$-\frac{3}{28}$	$\frac{2}{7}$						
$\mathbb{Q}_{3}^{(B_{1u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_3^{(B_{2u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(E_{2u})}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$
	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$
	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$						
$\mathbb{Q}_{3,1}^{(E_{2u})}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$\frac{2}{7}$	$-\frac{3}{28}$	$-\frac{5}{28}$	$\frac{2}{7}$	$-\frac{3}{28}$	$\frac{2}{7}$	$-\frac{3}{28}$
	$-\frac{3}{28}$	$\frac{2}{7}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$

Table 16

Table 16										
symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{3}{28}$	$-\frac{2}{7}$						
$\mathbb{Q}_4^{(B_{1g})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_4^{(B_{2g})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{4,0}^{(E_{2g},1)}$	$\frac{5}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$
	$\frac{3}{28}$	$-\frac{2}{7}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$
	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{3}{28}$	$-\frac{2}{7}$						
$\mathbb{Q}_{4,1}^{(E_{2g},1)}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$
	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$
	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$						
$\mathbb{Q}_{5,0}^{(E_{1u},1)}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$
	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$
	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$-\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$						
$\mathbb{Q}_{5,1}^{(E_{1u},1)}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$
	$-\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$
	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$						
$\mathbb{Q}_{5,0}^{(E_{2u},1)}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{5}{28}$	$\frac{2}{7}$	$-\frac{3}{28}$	$-\frac{5}{28}$	$\frac{2}{7}$	$-\frac{3}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$
	$\frac{3}{28}$	$-\frac{2}{7}$	$-\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$	$-\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$\frac{3}{28}$
	$\frac{2}{7}$	$-\frac{3}{28}$	$-\frac{3}{28}$	$\frac{2}{7}$						
$\mathbb{Q}_{5,1}^{(E_{2u},1)}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$
	$-\frac{13\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$
	$-\frac{\sqrt{3}}{42}$	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$						
$\mathbb{Q}_{6}^{(A_{2g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{6,0}^{(E_{1g},1)}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$

Table 16

symbol	1	2	3	4	5	6	7	8	9	10
	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{28}$	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$
	$\frac{\sqrt{7}}{14}$	$-\frac{3\sqrt{7}}{28}$	$\frac{3\sqrt{7}}{28}$	$-\frac{\sqrt{7}}{14}$						
$\mathbb{Q}_{6,1}^{(E_{1g},1)}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$
	$-\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$						
$\mathbb{Q}_{7}^{(A_{1u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						