Prediction Report

Approach to the problem

Data Preprocessing Approaches

1. Handling Missing Values

Imputed missing numerical values with mean/median. Filled categorical missing values with the most frequent category. Dropped rows/columns with excessive missing data.

2. Converting Columns to Correct Data Types

Converted timestamps to datetime.

Encoded categorical variables (Label Encoding / One-Hot Encoding).

3. Dealing with Outliers

outliers using box plots and statistical thresholds.

Removed or capped extreme values.

Applied log transformation for normalization.

4. Feature Scaling

Applied StandardScaler or MinMaxScaler for normalization.

Ensured uniform feature importance and model stability.

Feature Engineering Approaches

5. Time-Based Feature Extraction

Extracted hour, day of week, and month from the timestamp.

6. Correlation-Based Feature Selection

Identified and selected features highly correlated with the target.

7. SHAP-Based Feature Importance (Post-modeling)

Used SHAP values to interpret model and rank top contributing features.

Modeling & Evaluation Approaches

8. Grid Search for Hyperparameter Tuning

Tuned models like XGBoost using GridSearchCV with different combinations of parameters.

9. Model Evaluation

Compared models using cross-validation scores.

Visualized results using heatmaps and bar charts.

10. Interpretability & Recommendations

Generated insights using SHAP.

Made recommendations based on top influential features.

Identified peak usage hours for load shifting strategies.

Key Insights from the Data:

- Target Variable Distribution: equipment_energy_consumption is concentrated around zero with less frequent large positive/negative values, indicating mostly low consumption with occasional spikes.
- Feature Importance: energy_roll_mean_3h is the most influential predictor, followed by hour, energy_lag_1, and energy_lag_3.
- **Temporal Patterns**: Energy consumption peaks around **18:00**, highlighting a period of high demand in Indore, Madhya Pradesh, India.
- Zone Characteristics: Average humidity is highest in zone6_humidity, and average temperature is highest in zone3_temperature.
- Missing Values: Significant missing data exists in temperature and humidity readings for several zones.
- Outliers: Outliers are present in equipment_energy_consumption,
 lighting_energy, outdoor_temperature, and atmospheric_pressure.
- Correlations: A strong positive correlation exists between equipment energy consumption and lighting energy.
- **'timestamp'** needs a datetime conversion: (Implicit from the need for temporal pattern analysis).
- random_variable1 and random_variable2 have low predictive importance:
 (From previous feature importance analysis).
- Limited Impact of Zone Environmental Factors: (Inferred from lower feature importance).
- Potential for Load Shifting Benefits: (Inferred from the peak consumption at 18:00).
- Need for Further Investigation of Outliers: (General data quality concern).

Model Performance Evaluation Observations:

Model	RMSE	MAE	R ²
Linear Regression	28.02	18.13	0.617
Random Forest	24.18	14.27	0.715
XGBoost	24.4	14.51	0.71
LightGBM	24.19	14.49	0.714

Model	colsample_bytree	learning_rat e	max_depth	n_estimators	subsampl e	num_leaves
XGBoost	0.8	0.1	6	100	1	N/A
LightGBM	N/A	0.1	-1	100	N/A	31

Tuned Model	RMSE	MAE	R²
Tuned XGBoost	24.38	14.61	0.71
Tuned LightGBM	24.29	14.57	0.712

- Tree-based models outperform Linear Regression.
- The initial performance of Random Forest and LightGBM is slightly better than **XGBoost**.
- Hyperparameter tuning provides marginal improvement for LightGBM.
- R² values around 0.71 indicate a reasonable predictive capability.

Recommendations for Reducing Equipment Energy Consumption

- 1. Optimize energy_roll_mean_3h Control Systems: Manage operational factors influencing this key predictor to smooth energy usage.
- 2. Monitor Hours During Peak **Hours** (**Around 18:00**): Analyze and manage energy use during peak demand periods.
- 3. Maintain energy_lag_1 Within Optimal Ranges: Control factors leading to high past energy consumption.
- 4. Consider Load Shifting: Reschedule non-critical energy use away from the 18:00 peak.