Entscheidungsbaum-Lernen: Übersicht

- Entscheidungsbäume als Repräsentationsformalismus
 - Semantik: Klassifikation
- Lernen von Entscheidungsbäumen
 - vollst. Suche vs. TDIDT
 - Tests, Ausdrucksfähigkeit
 - Maße: Information Gain, Information Gain Ratio, Gini Index
 - Overfitting: Pruning
 - weitere Aspekte: Kosten, fehlende Attribute, Trsf. in Regeln

2 Verfahren: ID3 und C4.5

Repräsentationsformalismus

Ein Entscheidungsbaum ist ein Baum mit:

- Jeder interne Knoten enthält einen Test
 - für jeden Ausgang des Testes gibt es eine Kante.
- Jedes Blatt enthält einen Klassifikationwert

Realer Beispielbaum für medizinische Diagnose

(C-Section: Kaiserschnitt)

Gelernt aus medizinischen Befunden von 1000 Frauen

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | Birth_Weight < 3349: [201+,10.6-] .95+ .05-
| | | Birth_Weight >= 3349: [133+,36.4-] .78+ .22-
| | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```

Klassifikation

Beginnend mit der Wurzel:

- Wenn in innerem Knoten:
 - Führe Test aus
 - Verzweige entsprechend Testausgang und gehe zum Anfang
- Wenn in Blatt:
 - Gib den Klassifikationswert als Ergebnis zurück

outlook	sunny		
temperature	hot		
humidity	normal		
windy	false		
play	?		

Lernen von Entscheidungsbäumen

gegeben: Menge von Daten (Attribut-Wertpaare) zusammen mit der Zielklasse (binär)

Naiver Ansatz (so wird's NICHT gemacht!)

- Erzeuge alle möglichen Entscheidungsbäume und wähle den besten.
- ? Wie viele Entscheidungsbäume sind zu durchsuchen?
- ? Was heißt hier 'bester'?

Welcher Baum ist besser? Warum?

Top-Down Induktion of Decision Trees (TDIDT)

- Erzeuge Wurzelknoten *n*
- Berechne TDIDT(n,Beispielmenge)

$\mathsf{TDIDT}(n, Beispielmenge)$:

- 1. Wenn der Baum genügend groß ist: weise dem Blatt n eine Klasse zu
- 2. Sonst:
 - (a) Bestimme "besten" Test (Attribut) A für die Beispielmenge
 - (b) Weise dem Knoten n den Test A zu
 - (c) Bestimme Menge TA aller Testausgänge (Werte) von A
 - (d) Für jeden Testausgang $t \in TA$:
 - erzeuge einen neuen Knoten n_t
 - ullet erzeuge eine Kante von n nach n_t und beschrifte sie mit t
 - ullet initialisiere $\mathit{Bsp}_t = \emptyset$
 - (e) Für jedes Beispiel b aus der Beispielmenge:
 - ullet Wende den Test A auf b an und bestimme den Testausgang t
 - Füge b zur Menge Bsp_t hinzu
 - (f) Für jeden Nachfolgeknoten n_t von n: Berechne $\mathsf{TDIDT}(n_t, \mathit{Bsp}_t)$

Heuristische Suche im Hypothesenraum

Fragestellungen

- 1. Was sind Tests?
- 2. Wie bestimmt man den "besten" Test?
- 3. Wann ist der Baum genügend groß?

Ziele

- entstehender Baum sollte möglichst klein sein
- Beispiele sollten möglichst gleichmäßig über den Baum verteilt sein

Frage 1: Tests

Wir benutzen beim Lernen von Entscheidungsbäumen ausschließlich die folgenden Tests:

für nominale Attribute:

- Test ist das Attribut selbst
- Testausgang ist jeder der möglichen Attributwerte
- Beispiel: outlook, Ausgänge: sunny, overcast, rainy

für numerische Attribute:

- Test ist Vergleich mit Konstante
- 2 Ausgänge
- Beispiel: kontostand <= 1000, Ausgänge: yes, no

Repräsentationsfähigkeit

Warum keine anderen Tests?

- Vergleich zweier Attribute
 - Bsp: meinKontostand > KontostandDagobert
- Logische Verküpfungen
 - Bsp: outlook = sunny ∧ humidity = high
- Arithmetische Verküpfungen
 - Bsp: meinKontostand * meinAlter > log(KontostandDagobert)

Beispiel:

Baum mit atomaren Tests:

$$X \le 7: + X > 7: + Y \le 7: + Y \le 7: x$$

Baum mit komplexen Tests:

$$(X > 7 \land Y > 7) : X \rightarrow (X > 7 \land Y > 7) : +$$

Repräsentationsfähigkeit (cont.)

- Wie viele atomare Tests gibt es für das Beispiel?
- Wie viele komplexe Tests gibt es für das Beispiel?

Wie kann man folgende Formeln ausdrücken?

- ∧, ∨, XOR
- $\bullet \ (A \land B) \lor (C \land \neg D \land E)$
- ullet M von N

Repräsentationsfähigkeit (cont.)

- Jeder atomare Test legte eine achsenparallele Hyperebene in den Attributraum
- Logische Verküpfungen können durch Baumstruktur ausgedrückt werden
 - kein Verlust an Ausdrucksfähigkeit
 - Suche wird einfacher und schneller, wenn nur atomare Tests verwendet werden.

- Ein Entscheidungsbaum zerteilt den Attributraum in achsenparallele Hyperrechtecke
 - Je weiter oben ein Test im Baum steht, desto größeren Einfluß hat er

Frage 2: Wie bestimmt man "besten" Test?

- Heuristische Maße gesucht
 - Gute Trennung der Beispiele
 - * ergibt kleinen Baum
 - Gleichmäßige Aufteilung der Beispiele
- Eingabe:
 - S: Menge von Trainingsbeispielen
 - -A: ein Test
- Ergebnis: Zahl, je größer, desto besser ist der Test

Auswahl des besten Tests: Information-Gain

S: Menge von Trainingsbeispielen, A: ein Test

$$\frac{\textit{Gain}(S,A) \equiv \textit{Entropie}(S) - \sum_{v \in \textit{Testausgang}(A)} \frac{|S_v|}{|S|} \textit{Entropie}(S_v)$$

$$\textit{Entropie}(S) \equiv -\frac{|S_{\oplus}|}{|S|} \log_2 \frac{|S_{\oplus}|}{|S|} - \frac{|S_{\ominus}|}{|S|} \log_2 \frac{|S_{\ominus}|}{|S|}$$

 S_\oplus ist die Menge aller positiven Beispiele in S, S_\ominus die der negativen S_v ist die Teilmenge von S, für die der Test A den Ausgang (Wert) v hat

Gain(S,A) = erwartete Verringerung der Entropie nach Partitionierung bzgl. A

Entropie

Entropie
$$(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$
 $(p_{\oplus} = \frac{|S_{\oplus}|}{|S|}, p_{\ominus} = \frac{|S_{\ominus}|}{|S|})$

 $\bullet\,$ Entropie mißt die 'Unreinheit' von S

Entropie

Entropie(S) = erwartete Anzahl von Bits die benötigt werden, um die Klassifikation $(\oplus \text{ oder } \ominus)$ eines zufällig gezogenen Beispiels aus S zu kodieren (unter optimaler, kürzester Kodierung)

Warum?

Informationstheorie: optimale Kodierung benötigt $-\log_2 p$ Bits um eine Nachricht mit der Wahrscheinlichkeit p zu kodieren

 \to erwartete Anzahl von Bits, um \oplus oder \ominus eines beliebig gezogenen Beispiels aus S zu kodieren:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$\textit{Entropie}(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Beispiel

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	_	<u>'</u>			
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Which attribute should be tested here?

$$\begin{split} S_{sunny} &= \{\text{D1,D2,D8,D9,D11}\} \\ Gain \left(S_{sunny} \;,\; Humidity\right) \; = \; .970 \; - \; (3/5) \; 0.0 \; - \; (2/5) \; 0.0 \; = \; .970 \\ Gain \left(S_{sunny} \;,\; Temperature\right) \; = \; .970 \; - \; (2/5) \; 0.0 \; - \; (2/5) \; 1.0 \; - \; (1/5) \; 0.0 \; = \; .570 \\ Gain \left(S_{sunny} \;,\; Wind\right) \; = \; .970 \; - \; (2/5) \; 1.0 \; - \; (3/5) \; .918 \; = \; .019 \end{split}$$

ID3

Das erste Lernverfahren ist fertig!

- Maß zur Auswahl des besten Tests: Gain
- Frage 3: Wann ist der Baum genügend groß?
 - Wenn alle Beispiele in Beispielmenge ein und dieselbe Klassifikation besitzen, dann höre auf und weise dem Blatt diese Klasse zu.
- Kein Backtracking
 - Lokale Minima...
- Statistikbasierte Suchentscheidungen
 - Robust gegenüber verrauschten Daten...
- Induktiver Bias: "bevorzuge kleine Bäume"
 - Occam's Razor: Wähle kleinste Hypothese, die die Daten widerspiegelt
 - * Warum? Was ist so besonders an kleinen Hypothesen?

Probleme mit ID3

- Wenn der Wertebereich eines Attributs sehr groß ist (d.h. sehr viele Testausgänge existieren), wird Gain dieses auswählen
 - Extrembeispiele: Kundennummer, Geburtsdatum, Name
- Baum wird aufgebaut, bis auch das letzte Beispiel abgedeckt ist
 - Was ist, wenn Daten fehlerhaft ("verrauscht") sind?

Auswahl des besten Tests: Information-Gain-Ratio

Besseres Maß: GainRatio

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

$$\textit{SplitInformation}(S,A) \equiv -\sum_{v \in Werte(A)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}$$

Auswahl des besten Tests: Gini-Index

Wähle das Attribut mit minimalem

$$gini(S, A) \equiv \sum_{v \in Werte(A)} \frac{|S_v|}{|S|} g(S_v)$$

$$g_i(S) = 1 - \left(\frac{|S_{\oplus}|}{|S|}\right)^2 - \left(\frac{|S_{\ominus}|}{|S|}\right)^2$$

 S_\oplus ist die Menge aller positiven Beispiele in S, S_\ominus die der negativen S_v ist die Teilmenge von S, für die der Test A den Ausgang (Wert) v hat

Overfitting bei Entscheidungsbäumen

Betrachte folgendes verrauschte Beispiel #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

Was passiert mit dem vorhin erzeugten Baum?

Overfitting

Betrachte Fehler von Hypothesen h über

- Trainingsdaten: $error_{train}(h)$
- ullet gesamter Verteilung ${\mathcal D}$ der Daten: $error_{\mathcal D}(h)$

Hypothese $h \in H$ overfits eine Trainingsmenge, wenn es eine alternative Hypothese $h' \in H$ gibt mit

$$error_{train}(h) < error_{train}(h')$$

und

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

Overfitting beim Entscheidungsbaumlernen

Overfitting: Ein Beispiel

'Gehorsamer' Entscheidungsbaum

```
x \le 6
x \le 1.51
x \le 1: -(2.0)
x \ge 1: +(2.0)
x \ge 1.51: -(5.0)
x \ge 6: +(3.0)
```

Wie kann man Overfitting verhindern?

Pre-Pruning Aufhören, wenn Verfeinerung keine statistisch signifikante Verbesserung mehr bringt

Post-Pruning Erzeuge vollständigen Baum, danach verkleinere ihn wieder

Auswahl des "besten" Baums:

- Miß Verhalten auf Trainingsdaten
- Miß Verhalten auf separaten Validationsdaten
 - → Teile ursprüngliche Daten auf!!!
- MDL: minimiere size(tree) + size(misclassifications(tree))

MDL: Minimum Description Length Principle

Reduced-Error Pruning

Teile Daten auf in *Trainings*- und *Validierungsmenge*

Solange bis Pruning keine Verbesserung mehr bringt:

- 1. Für jeden Knoten n des Baumes
 - ullet entferne n (und alle darunter liegendenden Knoten) und bestimme Güte dieses Baumes bzgl. der Validierungsmenge
- Entferne denjenigen Knoten, der die meiste Verbesserung auf der Validierungsmenge bewirkt
- erzeugt kleinste Version des genauesten Baumes
- Was, wenn die Datenmenge beschränkt ist?

Effekt des Reduced-Error Prunings

C4.5 / J48

C4.5 = TDIDT mit Maß Information-Gain-Ratio, vollständigem Aufbau des Baumes und dann Reduced-Error-Pruning

weitere Features (siehe weitere Folien)

- Kontinuierliche Attribute möglich
- Unbekannte Attribute (unvollständige Beispiele) möglich
- Erzeugung von Regelmengen statt Bäumen
- Integration einiger Preprocessing- und Metalernschritte (siehe dort): Attribute Grouping, Windowing

Regel-Post-Pruning

- 1. Konvertiere Baum in äquivalente Menge von Regeln
- 2. Prune jede Regel unabhängig von den anderen
 - Einfach Bedingungen herausstreichen
- 3. Sortiere Endregeln in gewünschte Reihenfolge für Benutzung
 - Jetzt können mehrere Regeln gleichzeitig feuern

Häufig genutzte Methode (z.B. als Option in C4.5)

Konvertiere Baum in Regelmenge

$$\begin{array}{ll} \text{IF} & (Outlook = Sunny) \wedge (Humidity = High) \\ \text{THEN} & PlayTennis = No \end{array}$$

$$\begin{array}{ll} \text{IF} & (Outlook = Sunny) \wedge (Humidity = Normal) \\ \text{THEN} & PlayTennis = Yes \end{array}$$

. . .

Details: Kontinuierliche Attribute

Kontinuierliche Attribute werden mit Konstante verglichen

Mit welcher? (Es gibt überabzählbar unendlich viele)

Temperature:	40	48	60	72	80	90
PlayTennis:	No	No	Yes	Yes	Yes	No

- Es genügt, für jeden in den Daten vorkommenden Wert einen Test zu generieren
 - Warum?
 - Welchen?

Details: Unbekannte Attributwerte

Was wenn Wert von Attribut A fehlt?

Benutze Trainingsbeispiele s trotzdem: Wenn der Knoten n das Attribut A testet, dann

- ullet Nimm an, s hätte für A denjenigen Wert, der unter allen anderen Beispielen für Knoten n am haufigsten für A vorkommt
- ullet Weise A den Wert zu, den die meisten Beispiele mit der gleichen Klassifikation wie s haben
- ullet Weise Wahrscheinlichkeit p_i für jeden möglichen Wert v_i von A zu
 - Propagiere 'Anteile' p_i der Beispiele in die Teilbäume
 - * Beispiel: Attribut boolean, Anteil '+' = 60%, '-' = 40% Propagiere Beispiel mit Gewicht 0,6 in Zweig für '+', mit Gewicht 0,4 in Zweig für '-'

Klassifikation erfolgt in gleicher Weise.

Details: Attribute mit Kosten

Beispiele

- Medizinische Diagnose, BloodTest kostet \$150
- Robotik, Width_from_1ft kostet 23 Sekunden.

Wie kann man einen konsistenten Baum mit geringsten Kosten lernen? Ansatz: ersetze *Gain* bspw. durch

Tan and Schlimmer (1990)

$$\frac{Gain^2(S,A)}{Cost(A)}.$$

• Nunez (1988)

$$\frac{2^{Gain(S,A)}-1}{(Cost(A)+1)^w}$$

wobei $w \in [0,1]$ den Einfluß der Kosten beschreibt