Solving Nonlinear Systems of Equations

Mei-Chen Yeh

Announcement

• No class next week (校運動會)

Today

Solving nonlinear systems of equations

$$x^{2} - 2xy + y^{2} = 3$$
$$x^{2} + xy + y^{2} = 12$$

$$2u^{2} - 4u + v^{2} + 3w^{2} + 6w + 2 = 0$$

$$u^{2} + v^{2} - 2v + 2w^{2} - 5 = 0$$

$$3u^{2} - 12u + v^{2} + 3w^{2} + 8 = 0$$

Today

- Solving nonlinear systems of equations
 - -代課老師小陳答應幫忙改100份數學考卷,題目為給定三個點,計算通過此三點的圓,求其圓心。但粗心的小陳忘記要參考答案!請你寫一個程式,輸入三個點(三點不會在同一直線上),輸出通過此三點的圓之圓心位置。

Solving nonlinear systems

- 未知數?
 - -x, y, R(圓心座標及半徑)
- 方程式?
 - 三個
 - -題目給的三個點到圓心的距離為R
- Multivariate Newton's method

Review: One-variable Newton's method

Given a scalar differentiable function f(x),

- 1. Start from an initial guess x_0
- 2. For i = 0, 1, 2, ... compute

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

until x_{i+1} satisfies some termination criterion

Extending to more variables

Suppose we have 3 unknowns, 3 nonlinear equations:

$$f_1(u, v, w) = 0$$

 $f_2(u, v, w) = 0$
 $f_3(u, v, w) = 0$

$$2u^{2} - 4u + v^{2} + 3w^{2} + 6w + 2 = 0$$

$$u^{2} + v^{2} - 2v + 2w^{2} - 5 = 0$$

$$3u^{2} - 12u + v^{2} + 3w^{2} + 8 = 0$$

Define the vector-valued function:

$$F(\underline{x}) = F(u, v, w) = (f_1, f_2, f_3)$$
 where
$$\underline{x} = (u, v, w).$$

Jacobian matrix

- 3 variables: x = (u, v, w)
- 3 functions: f_1 , f_2 , f_3

$$D_{F}(\underline{x}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial v} & \frac{\partial f_{1}}{\partial w} \\ \frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v} & \frac{\partial f_{2}}{\partial w} \\ \frac{\partial f_{3}}{\partial u} & \frac{\partial f_{3}}{\partial v} & \frac{\partial f_{3}}{\partial w} \end{bmatrix}$$

Example: 2 unknowns, 2 equations

$$v - u^3 = 0$$

$$u^2 + v^2 - 1 = 0$$

$$\underline{x} = (u, v)$$

$$\underline{x} = (u, v)$$

•
$$f_1 = v - u^3$$

•
$$f_2 = u^2 + v^2 - 1$$

•
$$\partial f_1/\partial u = -3u^2$$

•
$$\partial f_1/\partial v = 1$$

•
$$\partial f_2/\partial u = 2u$$

•
$$\partial f_2/\partial v = 2v$$

$$D_{F}(\underline{x}) = \begin{bmatrix} -3u^{2} & 1\\ 2u & 2v \end{bmatrix}$$

Multivariate Newton's method

• The Taylor expansion for F(x) around x_0 is

$$F(\underline{x}) = F(\underline{x}_0) + D_F(\underline{x}_0) \cdot (\underline{x} - \underline{x}_0) + O(\underline{x} - \underline{x}_0)^2.$$

• Let r be the root, x_0 be the current guess,

$$\underline{0} = F(\underline{r}) \approx F(\underline{x}_0) + D_F(\underline{x}_0) \cdot (\underline{r} - \underline{x}_0)$$

$$-F(\underline{x}_0) \approx D_F(\underline{x}_0) \cdot (\underline{r} - \underline{x}_0)$$

$$-D_F(\underline{x}_0)^{-1} F(\underline{x}_0) \approx (\underline{r} - \underline{x}_0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
destination current guess

Multivariate Newton's method: Algorithm

$$\underline{x}_{0} = \text{initial vector}$$

$$\underline{x}_{k+1} = \underline{x}_{k} - \left(D_{F}(\underline{x}_{k})\right)^{-1} F(\underline{x}_{k}) \text{ for } k = 0,1,2,...$$

$$\underline{s} = -\left(D_{F}(\underline{x}_{k})\right)^{-1} F(\underline{x}_{k})$$

$$\underline{s} = -F(\underline{x}_{k})$$

Multivariate Newton's method: Algorithm

$$\underline{x}_0 = \text{initial vector}$$

$$\underline{x}_{k+1} = \underline{x}_k - \left(D_F(\underline{x}_k)\right)^{-1} F(\underline{x}_k) \text{ for } k = 0,1,2,...$$

$$\underline{x}_0$$
 = initial vector
solve $D_F(\underline{x}_k)\underline{s} = -F(\underline{x}_k)$
 $\underline{x}_{k+1} = \underline{x}_k + \underline{s}$ for $k = 0,1,2,...$

Example

 Find a solution of the following system with starting guess (1, 2)

$$v - u^3 = 0$$
$$u^2 + v^2 - 1 = 0$$

•
$$f_1 = v - u^3$$

•
$$f_2 = u^2 + v^2 - 1$$

•
$$\partial f_1/\partial u = -3u^2$$

•
$$\partial f_1/\partial v = 1$$

•
$$\partial f_2/\partial u = 2u$$

•
$$\partial f_2/\partial v = 2v$$

$$D_{F}(u, v) = \begin{bmatrix} -3u^{2} & 1\\ 2u & 2v \end{bmatrix}$$

$$\underline{x}_0$$
 = initial vector
solve $\underline{D}_F(\underline{x}_k)\underline{s} = -F(\underline{x}_k)$
 $\underline{x}_{k+1} = \underline{x}_k + \underline{s}$ for $k = 0, 1, 2, ...$

$$F = \begin{bmatrix} v - u^3 \\ u^2 + v^2 - 1 \end{bmatrix}$$

$$D_F(u, v) = \begin{bmatrix} -3u^2 & 1 \\ 2u & 2v \end{bmatrix}$$

• Start point $\underline{x}_0 = (1, 2)$, solve

$$\left[\begin{array}{cc} -3 & 1 \\ 2 & 4 \end{array}\right] \left[\begin{array}{c} s_1 \\ s_2 \end{array}\right] = - \left[\begin{array}{c} 1 \\ 4 \end{array}\right]$$

- Get s = (0, -1)
- Update \underline{x} $x_1 = x_0 + s = (1, 2) + (0, -1) = (1, 1)$

$$\underline{x}_0$$
 = initial vector
solve $\underline{D}_F(\underline{x}_k)\underline{s} = -F(\underline{x}_k)$
 $\underline{x}_{k+1} = \underline{x}_k + \underline{s}$ for $k = 0, 1, 2, ...$

$$F = \begin{bmatrix} v - u^3 \\ u^2 + v^2 - 1 \end{bmatrix}$$

$$D_F(u, v) = \begin{bmatrix} -3u^2 & 1 \\ 2u & 2v \end{bmatrix}$$

•
$$\underline{x}_1 = (1, 1)$$
, solve

$$\left[\begin{array}{cc} -3 & 1 \\ 2 & 2 \end{array}\right] \left[\begin{array}{c} s_1 \\ s_2 \end{array}\right] = - \left[\begin{array}{c} 0 \\ 1 \end{array}\right]$$

- Get s = (-1/8, -3/8)
- Update \underline{x} $\underline{x}_2 = \underline{x}_1 + \underline{s} = (1, 1) + (-1/8, -3/8) = (7/8, 5/8)$

$$v - u^3 = 0$$

$$u^2 + v^2 - 1 = 0$$

step	и	v
0	1.000000000000000	2.0000000000000000
1	1.000000000000000	1.0000000000000000
2	0.875000000000000	0.625000000000000
3	0.82903634826712	0.56434911242604
4	0.82604010817065	0.56361977350284
5	0.82603135773241	0.56362416213163
6	0.82603135765419	0.56362416216126
7	0.82603135765419	0.56362416216126

程式練習

And, please upload your program on moodle.

Please return x, y and z of the following nonlinear system.

$$\begin{cases} x + y + z = 3 \\ x^{2} + y^{2} + z^{2} = 5 \\ e^{x} + xy - xz = 1 \end{cases}$$