Apuntes Asbética Industrial &

Tema 3 (Parte 2) & Commutation towers a del robote

TEORTA

Ortonormalidad de una matriz de banstirmación homogenea Priva

EDEMPLOS

1 Obtener la cinematica riversa de un robot de 3 Grados De Libertad.

2 Obtener la cinematica inversa de un robot de 4 Grados De Libertud.

ī	O;	di	ar	di
1	q,	L,	0	0
2	90°	dz	0	90°
3	0	<i>q</i> ³	0	0
4	94	Ly	0	0

Total las ecitarios previos se han routizado en el gemplo 4 del Tema 3 (Rute 1) o

$$T = {}^{\circ}A_{1} {}^{\dagger}A_{2} {}^{2}A_{3} {}^{3}A_{4} = \begin{pmatrix} -\sec(q_{1})\cos(q_{4}) & \cos(q_{1})\sin(q_{4}) & \cos(q_{1}) & \cos(q_{1})(\partial_{3} + U_{4}) \\ \cos(q_{1})\cos(q_{4}) & -\cos(q_{1})\sin(q_{4}) & \sin(q_{1}) & \sin(q_{1})(\partial_{3} + U_{4}) \\ \sin(q_{1})\cos(q_{1}) & \cos(q_{1}) & \cos(q_{1})(\partial_{3} + U_{4}) \\ \cos(q_{1})\cos(q_{1}) & \cos(q_{1}) & \cos(q_{1}) \\ \cos(q_{1})\cos(q_{1}) & \cos(q_{1}) & \cos(q_{$$

(3) Obbase la conemitació toursa de un robut esterico de 3 Grados Do Libertad definido pe la siguente table de parametris D-H ransdouris solla la

·	Or.	dī	a:	di
1	9,	Li	0	90°
2	92	0	0	- 90°
3	0	93	0	0

$${}^{\circ}A_{i} = \begin{pmatrix} \cos{(q_{i})} & -\sin{(q_{i})} & 0 & 0 \\ \cos{(q_{i})} & \cos{(q_{i})} & 0 & 0 \\ \cos{(q_{i})} & \cos{(q_{i})} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos{(q_{i})} & 0 & \sin{(q_{i})} & 0 \\ \sin{(q_{i})} & 0 & \cos{(q_{i})} & 0 \\ \sin{(q_{i})} & 0 & \cos{(q_{i})} & 0 \\ \cos{(q_{i})} & 0 & \cos{(q_{i})} & \cos{(q_{i})} & 0 \\ \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})} \\ \cos{(q_{i})} & \cos{(q_{i})}$$

$${}^{\dagger}A_{2} = \begin{pmatrix} \cos(q_{2}) & -\sin(q_{2}) & 0 & 0 \\ \sin(q_{2}) & \cos(q_{2}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-q_{0}^{*}) & -\sin(-q_{0}^{*}) & 0 \\ 0 & \sin(-q_{0}^{*}) & \cos(-q_{0}^{*}) & 0 \\ 0 & \cos(-q_{0}^{*}) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_{2}) & 0 & -\sin(q_{2}) & 0 \\ \sin(q_{2}) & 0 & \cos(q_{2}) & 0 \\ \cos(q_{2}) & 0 & \cos(q_{2}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{C}A_{1} {}^{1}A_{2} {}^{2}A_{3} = \begin{pmatrix} ccc(q_{1})ccc(q_{2}) & -scn(q_{1}) & -ccc(q_{1})scn(q_{2}) & -q_{3}ccc(q_{1})scn(q_{2}) \\ scn(q_{1})ccc(q_{2}) & ccc(q_{1}) & -scn(q_{1})scn(q_{2}) & -q_{3}scn(q_{1})scn(q_{2}) \\ scn(q_{2}) & 0 & ccc(q_{2}) & q_{3}ccc(q_{2}) + l_{1} \\ 0 & 0 & 0 \end{pmatrix}$$

Aptroach (°A₁) -1 T = ¹A₂²A₃, so these que & Ser(q₁) P_x - cos(q₁) P_y = 0 => to (q₁) =
$$\frac{ser(q_1)}{cos(q_1)} = \frac{P_y}{P_x}$$
 => q₁ = arcty ($\frac{P_y}{P_x}$)

Y per siltimo, apticardo $(A_2)^{-1}(A_1)^{-1} T = {}^2A_3$, so puedo obtener la significate 6

$$\Rightarrow t_{9}(q_{2}) = \frac{son(q_{2})}{cos(q_{2})} = -\frac{cos(q_{1})p_{x} + son(q_{1})p_{y}}{(p_{2} - L_{1})}$$

93 = - ser (92) cos (91) Px - ser (92) ser (91) Py + cos (92) P2 - cos (92) (P2 - (1) - ser (92) (cos (91) Px + ser (91) Px)

IMPORTANTE: Descripto consmittre pera un robot de 6 Grades de Libertad = 3R6 = (°R3) T [noa], dente R es una materia de roteutión.

Área de Tecnología Electrónica

EJERCICIOS DEL TEMA 3 - PARTE 2

Cinemática inversa del robot

Ejercicio 1. Obtén la representación gráfica y resuelve el problema cinemático inverso para el robot de 3 grados de libertad definido por la siguiente tabla de parámetros D-H, considerando sólo la posición (x,y,z) del elemento terminal (sin la orientación).

i	θί	di	a _i	αι
1	0	q ₁	0	0
2	q ₂	0	0	-90
3	0	q ₃	0	0

Ejercicio 2 Obtén la representación gráfica y resuelve el problema cinemático inverso para el robot esférico definido por la siguiente tabla de parámetros D-H, considerando sólo la posición (x,y,z) del elemento terminal (sin la orientación):

1	θί	di	ai	αί
1	q ₁	l ₁	0	90
2	q ₂	0	0	-90
3	0	q ₃	0	0

Ejercicio 3. Obtén la representación gráfica y resuelve el problema cinemático inverso para el robot esférico de 4 grados de libertad definido por la siguiente tabla de parámetros D-H, considerando sólo la posición (x,y,z) del elemento terminal (sin la orientación):

i	O _i	di	aį	αί
1	q ₁	0	0	-90
2	q ₂	0	0	90
3	0	q ₃	0	0
4	Q ₄	0	0	0

Ejercicio 4. Obtén la representación gráfica y resuelve el problema cinemático inverso para el robot de 3 grados de libertad definido por la siguiente tabla de parámetros D-H, considerando sólo la posición (x,y,z) del elemento terminal (sin la orientación):

i	θi	di	ai	ai
1	q ₁	11	0	90
2	q ₂	0	12	-90
3	0	q ₃	0	0

Área de Tecnología Electrónica

Ejercicio 5. Se dispone de un robot definido por la siguiente tabla de parámetros D-H:

i	θί	di	aı	αί
1	q ₁	0	0	-90
2	q ₂	0	0	90
3	0	q ₃	0	0

Obtén la representación gráfica aproximada del robot. Resuelve el problema cinemático inverso, considerando sólo la posición (x,y,z) del elemento terminal. Indica cómo es el espacio de trabajo.

Ejercicio 6. Se dispone de un robot definido por la siguiente tabla de parámetros D-H:

i	θi	di	aı	αί
1	q ₁	0	0	-90
2	0	q ₂	0	90
3	0	q ₃	0	0

Obtén la representación gráfica aproximada del robot. Resuelve el problema cinemático inverso, considerando sólo la posición (x,y,z) del elemento terminal.

Ejercicio 7. Se dispone de un robot definido por la siguiente tabla de parámetros D-H:

i	θι	di	ai	αι
1	q ₁	0	0	0
2	-90	q ₂	0	-90
3	0	q ₃	0	0

Obtén la representación gráfica aproximada del robot. Resuelve el problema cinemático inverso, considerando sólo la posición (x,y,z) del elemento terminal.

Ejercicio 8. Se dispone de un robot definido por la siguiente tabla de parámetros D-H:

i	θί	di	aı	αί
1	0	q ₁	0	-90
2	q ₂	100	200	0
3	0	q ₃	0	0

- a) Obtén la representación gráfica aproximada del robot. Resuelve el problema cinemático inverso, considerando sólo la posición (x,y,z) del elemento terminal.
- b) ¿Se encuentra el punto (x,y,z) = (100,200,300) dentro del espacio de trabajo del robot? En caso afirmativo, ¿para qué valores de las coordenadas articulares?

Apuntes Robotte Industrial &

Tema 3 (Parte 2) & Commuteu toversa del robot

EJERCICIOS

a)				
	t	0:	di	cut	olt
	1	0	9,	0	0
	2	92	0	0	-90°
	3	0	93	0	0

$$1A_2 = \begin{pmatrix} \cos(q_2) & -\sin(q_2) & 0 & 0 \\ \sin(q_2) & \cos(q_2) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-q_0^*) & -\sin(-q_0^*) & 0 \\ 0 & \sin(-q_0^*) & \cos(-q_0^*) & 0 \\ 0 & \cos(-q_0^*) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_2) & 0 & -\sin(q_3) & 0 \\ \cos(q_2) & 0 & -\sin(q_3) & 0 \\ \cos(q_2) & 0 & \cos(q_2) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{6}A_{1} {}^{1}A_{2} {}^{2}A_{3} = \begin{pmatrix} \cos{(q_{z})} & 0 & -\sin{(q_{z})} & -\sin{(q_{z})}q_{3} \\ -\sin{(q_{z})} & 0 & \cos{(q_{z})} & \cos{(q_{z})}q_{3} \\ 0 & -1 & \cos{(q_{z})}q_{3} \\ 0 & 0 & 0 \end{pmatrix} \begin{array}{c} x = -\sin{(q_{z})}q_{3} \\ y = \cos{(q_{z})}q_{3} \\ z = q_{1} \\ \end{array}$$

$$t_9(q_2) = \frac{x}{y} = \frac{-sen(q_2)q_3}{cos(q_2)q_3} = \frac{-sen(q_2)}{cos(q_2)} \Rightarrow q_2 = arctg(\frac{x}{y})$$

$$x^{2} + y^{2} = sen^{2}(q_{2})q_{3}^{2} + co^{2}(q_{2})q_{3}^{2} = q_{3}^{2}(sen^{2}(q_{2}) + cos^{2}(q_{2})) = q_{3} = \sqrt{x^{2} + y^{2}}$$

$$e_{A_{1}} = \begin{pmatrix} e_{xx}(q_{1}) & -e_{xx}(q_{1}) & 0 & 0 \\ -e_{xx}(q_{1}) & -e_{xx}(q_{1}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} e_{xx}(q_{1}) & 0 & e_{xx}(q_{1}) & 0 \\ -e_{xx}(q_{1}) & 0 & -e_{xx}(q_{1}) & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} \cos(q_{2}) & -\cos(q_{2}) & 0 & 0 \\ \cos(q_{2}) & \cos(q_{2}) & 0 & 0 \\ \cos(q_{2}) & \cos(q_{2}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-q_{0}) & -\sin(-q_{0}) & 0 \\ 0 & \sin(-q_{0}) & \cos(-q_{0}) & 0 \\ 0 & \cos(-q_{0}) & \cos(-q_{0}) & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cos(q_{2}) & 0 & -\cos(q_{2}) & 0 \\ \cos(q_{2}) & 0 & \cos(q_{2}) & 0 \\ 0 & -\cos(q_{2}) & -\cos(q_{2}) \\ 0 & -\cos(q$$

(3	0					
-	70	0:	dt	O.:	di	2 - 74
	1	9,	0	0	-90"	* 70
	2	92	0	0	90°	×
	3	0	93	0	0	
	1 2 3 4	94	0	0	0	
	= (tes (q,) scr (q,)				$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-90^{\circ}) & -\sin(-90^{\circ}) & 0 \\ 0 & \sin(-90^{\circ}) & \cos(-90^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_{1}) & 0 & -\sin(q_{1}) & 0 \\ -\sin(q_{1}) & 0 & \cos(q_{1}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
1 A :	= (=	ew (92) ser (92)	-scr(92) cor(92) 0	00-0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cos(90^{\circ}) & -\sin(90^{\circ}) & 0 & 0 \\ 0 & \sin(90^{\circ}) & \cos(90^{\circ}) & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(92) & 0 & \sin(92) & 0 \\ \sin(92) & 0 & -\cos(92) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
	,	0 0 0				
8 A.	- (cus (94) scr (94)	-son (94) cos (94)	0 0 -0	0 0)	
			A4 = (&	J (d') c	00 (92) 0	$\frac{(q_1) - sen(q_1) sen(q_4)}{sen(q_4)} = \frac{-cos(q_1) cos(q_2) sen(q_4) - sen(q_1) cos(q_4)}{sen(q_1) sen(q_2)} = \frac{cos(q_1) sen(q_2) cos(q_1) sen(q_2)}{sen(q_1) sen(q_2)} = \frac{(q_1) sen(q_2) cos(q_4)}{sen(q_2) sen(q_4)} = \frac{(q_2) cos(q_2) sen(q_4)}{sen(q_2) sen(q_4)} = \frac{(q_2) cos(q_2) cos(q_2)}{sen(q_2) cos(q_3)} = \frac{(q_2) cos(q_2)}{sen(q_2) cos(q_3)} = \frac{(q_2) cos(q_3) cos(q_2)}{sen(q_2) cos(q_3)} = \frac{(q_2) cos(q_3)}{sen(q_2) cos(q_3)} = \frac{(q_2) cos(q_3)}{sen(q_3) cos(q_3)} = \frac{(q_2) cos(q_3)}{sen(q_3) cos(q_3)} = \frac{(q_2) cos(q_3)}{sen(q_3) cos(q_3)} = \frac{(q_2) cos(q_3)}{sen(q_3) cos(q_3)} = \frac{(q_3) cos(q_3)}{sen(q_3)} = $
× =	cos (q	1.1 500 (92)	93			
Y =	5m (9	1. 1500 (90	192			

2 = cos (92) 93

x = -cw (q1) sen (q2) q3 + ccc (q1) cas (q2) (2 y = -sen (q1) sen (q2) q3 + sen (q1) cus (q2) (2

2 = cus (92) 93 + sen (92) 12 + 4

ĩ	Ot	dt	Q.;	di
1	9,	0	0	-90°
2	0	92	0	90°
3	0	93	0	0

$$cA_{i} = \begin{pmatrix} cos(q_{i}) & -scn(q_{i}) & 0 & 0 \\ sen(q_{i}) & cos(q_{i}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & cos(40^{\circ}) & -scn(-90^{\circ}) & 0 \\ 0 & scn(-90^{\circ}) & cos(-90^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} cos(q_{i}) & 0 & -scn(q_{i}) & 0 \\ scn(q_{i}) & 0 & -scn(q_{i}) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & Q_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q_{0^{\circ}}) & -\sin(q_{0^{\circ}}) & 0 \\ 0 & \sin(q_{0^{\circ}}) & \cos(q_{0^{\circ}}) & 0 \\ 0 & \cos(q_{0^{\circ}}) & \cos(q_{0^{\circ}}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & Q_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$2A_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{\circ}A_{1} {}^{1}A_{2} {}^{2}A_{3} = \begin{pmatrix} \cos(q_{1}) & -\sin(q_{1}) & 0 & -\sin(q_{1}) q_{2} \\ \sin(q_{1}) & \cos(q_{1}) & 0 & \cos(q_{1}) q_{2} \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{array}{c} \times = -\sin(q_{1}) q_{2} \\ Y = \cos(q_{1}) q_{2} \\ Y = \cos(q_{1}) q_{2} \\ Z = q_{3} \end{array}$$

$$\log\left(q_{1}\right) = \frac{x}{y} = \frac{-\sin\left(q_{1}\right)q_{2}}{\cos\left(q_{1}\right)q_{3}} = \frac{-\sin\left(q_{1}\right)}{\cos\left(q_{1}\right)} \Rightarrow q_{1} = \operatorname{corb}_{g}\left(-\frac{x}{y}\right)$$

$$x^2 + y^2 = 5cn^2(q_1) q_2^2 + cos^2(q_1) q_2^2 = q_2^2(son^2(q_1) + cos^2(q_1)) = q_2^2 \Rightarrow q_2 = \sqrt{x^2 + y^2}$$

$$c_{A_{i}} = \begin{pmatrix} cos(q_{i}) & + sen(q_{i}) & 0 & 0 \\ sen(q_{i}) & cos(q_{i}) & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & cos(-90^{\circ}) & -sen(-90^{\circ}) & 0 \\ 0 & sen(-90^{\circ}) & cos(q_{i}) & 0 & -sen(q_{i}) & 0 \\ 0 & cos(q_{i}) & 0 & cos(q_{i}) & 0 \\ 0 & 0 & 0 & i \end{pmatrix} = \begin{pmatrix} cos(q_{i}) & 0 & -sen(q_{i}) & 0 \\ sen(q_{i}) & 0 & -sen(q_{i}) & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} \cos(q_{2}) & -\sin(q_{2}) & 0 & 0 \\ \sin(q_{1}) & \cos(q_{2}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q_{0}^{\circ}) & -\sin(q_{0}^{\circ}) & 0 \\ 0 & \sin(q_{0}^{\circ}) & \cos(q_{0}^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_{1}) & 0 & \sin(q_{2}) & 0 \\ \sin(q_{2}) & 0 & -\cos(q_{2}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{\circ}A_{1} {}^{\circ}A_{2} {}^{2}A_{3} = \begin{pmatrix} \cos{(q_{1})}\cos{(q_{2})} & -\sin{(q_{1})} & \cos{(q_{1})}\cos{(q_{2})} & q_{3}\cos{(q_{1})}\sin{(q_{2})} \\ -\sin{(q_{1})}\cos{(q_{2})} & \cos{(q_{1})}\sin{(q_{2})} & q_{3}\sin{(q_{1})}\sin{(q_{2})} \\ -\sin{(q_{2})} & 0 & \cos{(q_{2})} & q_{3}\cos{(q_{2})} \end{pmatrix} \times = {}^{\circ}q_{3}\cos{(q_{1})}\sin{(q_{2})} \times = {}^{\circ}q_{3}\cos{(q_{2})} \times = {}^{$$

(7)				
i	0:	d:	Q.E	di
1	9,	0	0	0
2	-90°	92	0	-96°
3	0	93	0	0

$$e_{A_{i}} = \begin{pmatrix} e_{x_{i}}(q_{i}) & -e_{x_{i}}(q_{i}) & 0 & 0 \\ e_{x_{i}}(q_{i}) & e_{x_{i}}(q_{i}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$1_{A_2} = \begin{pmatrix} \cos(-90^\circ) & -\sin(-90^\circ) & 0 & 0 \\ \cos(-90^\circ) & \cos(-90^\circ) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 9z \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 9z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 9z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{2}A_{3} = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 93 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

$$T = {}^{\circ}A, {}^{1}A_{2} {}^{2}A_{3} = \begin{pmatrix} scn(q_{1}) & 0 & cos(q_{1}) & q_{3} \\ -cos(q_{1}) & 0 & scn(q_{1}) & scn(q_{1}) & q_{3} \\ 0 & -1 & 0 & q_{2} \\ 0 & 0 & 0 & q_{2} \end{pmatrix} \begin{array}{c} x = ccc(q_{1}) & q_{3} \\ y = scn(q_{1}) & q_{3} \\ z = q_{2} \end{array}$$

$$t_{9}(q_{1}) = \frac{\gamma}{x} = \frac{\sec(q_{1}) q_{3}}{\cos(q_{1}) q_{3}} = \frac{\sec(q_{1})}{\cos(q_{1})} \Rightarrow q_{1} = \operatorname{arcky}\left(\frac{\gamma}{x}\right)$$

$$x^2 + y^2 = \cos^2(q_1) q_3^2 + \sin^2(q_1) q_3^2 = q_3^2(\cos^2(q_1) + \sin^2(q_1)) = q_3^2 = q_3 = \sqrt{x^2 + y^2}$$

8

1	Θ;	di	ae	olt
1	0	9,	0	-90°
2	92	100	200	0
3	0	93	0	0

$${}^{\circ}A_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-90^{\circ}) & -\sin(-90^{\circ}) & 0 \\ 0 & \sin(-90^{\circ}) & \cos(-90^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & 0 \\ \sin{(q_{2})} & \cos{(q_{2})} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 100 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 200 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & 200 \cos{(q_{2})} \\ \sin{(q_{2})} & \cos{(q_{2})} & 0 & 200 \cos{(q_{2})} \\ \sin{(q_{2})} & \cos{(q_{2})} & 0 & 200 \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & 0 & 200 \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & 0 & 200 \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & 0 \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & 0 \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} & \cos{(q_{2})} \\ \cos{(q_{2})} & \cos{(q_{2}$$

$$t_{A_3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{\circ}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & 2\cos{\cos{(q_{2})}} \\ 0 & 0 & 1 & 100 + 93 \\ -\sin{(q_{2})} & \cos{(q_{2})} & 0 & q_{1} - 200 \sin{(q_{2})} \end{pmatrix} = \frac{100 + 93}{2}$$

$$z = q_{1} - 200 \sin{(q_{2})}$$

6)

$$(x_1, y_1, z) = (100, 200, 300) \Rightarrow \begin{cases} q_3 = y - 100 = 200 - 100 = 100 \\ q_2 = \arccos\left(\frac{x}{200}\right) = \arccos\left(\frac{100}{200}\right) = \arccos\left(0.5\right) = 60^{\circ} \\ q_1 = z + 200 \sin\left(\arccos\left(\frac{x}{200}\right)\right) = 300 + 200 \cdot \sin\left(60^{\circ}\right) = 473^{\circ}2 \end{cases}$$