SEGUNDO PARCIAL (T1)

ANÁLISIS MATEMÁTICO II

Noviembre 16 de 2017

Tiempo máximo para la realización de la evaluación: 2hs.

P1) Calcular la masa del cuerpo definido por: $x^2 + y^2 + z^2 \le 18$, $z \ge \sqrt{x^2 + y^2}$ si su densidad en cada punto es proporcional a la distancia desde el punto al plano xy.

Dado el campo $\vec{f}(x, y) = (x^2 + \varphi(y - x), x^2 - \varphi(y - x))$ con $\varphi \in C^1$, calcular la circulación de \vec{f}

a lo largo de la curva frontera de $D = \{(x, y) \in \Re^2 / x^2 \le y \le x\}$

P3) Dado el campo $\overline{f}(x, y, z) = (y^2, z^2 + x^2, x^2)$, calcular el flujo de \overline{f} a través de la superficie de ecuación y = x tal que $x^2 + y^2 + 2z^2 \le 2$.

Calcular el flujo de $\vec{f}(x,y,z) = (y,x,2z)$ a través de la superficie Σ frontera del cuerpo definido por $z \le 9 - x^2$, $x \le y \le 3$ y el 1° octante. Indicar la orientación adoptada para Σ T1) Enunciar y demostrar la condición necesaria para la existencia de función potencial de un

campo vectorial. Verificar si $\vec{f}(x, y) = (2xy, y^2)$ admite función potencial.

T2) Demostrar que si y_1 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x)$ e

 y_2 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_2(x)$

entonces $y_1 - y_2$ es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x) - f_2(x)$