Morgan Baccus Cpt 80 317 Homework #1

1) * Regular Expression:

R. = 0 (10+0) * 11

The word which is present in R, is It contains starting with '0', in between any number of '10', 'O', or 'E' and ends with '11'.

Example: 010101011, 000011, 011, etc.

* The words not in R, are:

Example: 010011, 10011, 110011, etc.

* R2 = (0+110)* 1(01+1)*

The words which is present in Rz. Contains starting with either 'o', '110', 'E', in between 'I' and ending with any number of 'Ol's, 'I's, or 'E'.

Example: 11010101, 010101, 0111111 15 accepted.

* The words not in R2 are:

Example: 10110101 (starting '10' is not accepted) 00 110101 (Starting '00' is not accepted)

- 2 1. All strings containing more than two 0's:

 Regular expression: (0+1)*0(0+1)*0
 - 2. All strings do not contain 01:

 Regular expression: 1*00* (0+1)*
 - 3. All strings contain both 1011 and 0111 as substrings: Regular expression: [(0+0*11*00)!(1+1*011!) olige(0+1)*] Red [(1+1*00*11) o(0+0*11!) |||(0+1)*]
- 4. All strings do not ended with 01:

 Regular expression: (0+1)*(00+10+11)

3 1.
$$L_1L_1* = L_1* L_1L_1*$$

Suppose $L_1 = \{0,1\}$
 $L_2 = \{0,1,10,11,00\}$

1.
$$L_1L_1^* = L_1^*L_1L_1^*$$
 $L_1^* = \S E_1 0_1 1_1 01_1 10_1 100_1 \dots \S$
 $L_1^* = \S E_1 0_1 1_1 01_1 100_1 01_1 001_1 101_1 \dots \S$
 $L_1^* = \S E_1 0_1 1_1 00_1 01_1 001_1 101_1 \dots \S$
 $L_1^* = \S E_1^*L_1L_1^* = \S E_1^*L_1L_1^* = \S E_1^*L_1L_1^* = \S E_1^*L_1L_1^* = \S E_1^*L_1^*L_1^* = \S E_1^*L_1^*L_1^*L_1^* = \S E_1^*L_1^*L_1^* = \S E_1^*L_1^*L_1^* = \S E_1^*L_1^*L_1$

56,
$$L_1^* = \{ \mathcal{E}, a, aa, ... \}$$

 $L_1^* L_2 = \{ \mathcal{E}, a, aa, ... \} \cdot \{ b \}$
 $= \{ b, ab, aab, ... \}$

so, you can see:

Hence, it is proved.

- There are three promoters possibilities for end of every day. They are:
 - -3 damsels
 - 3 clowns
 - 2 clowns and I damsel

NOW, let damsels are represented as D and Clowns as C, then $(D)^m$ represents the sequence in regular expression here m=3.

Clowns are represented as (C)^m where m=3.

Then the last possibility is z clowns and I bamsel.

(c) " 0

Hence, the required regular expression is: $(D)^m + (c)^m + (c)^n D \quad \text{where } m=3$ n=2