Trading wind energy based on probabilistic forecasts of wind generation and market quantities

M. Zugno, P. Pinson and T. Jo nsson

Nicolas CLOAREC

January 31, 2019

What is the article about ?

Context

- Portfolio of wind energy (can be solar)
- Liberalized electricity markets

Goals

- Propose an operational trading strategy (based on the quantile of wind power production)
- Assess its performance

Inputs of the model

Forecasts of

- Wind power production
- Spot market prices
- Imbalance prices (regulating market prices)

Remark: Not a forecasting problem!

What are the main assumptions?

Assumptions

- Price-taker
- No practical limitations
- Don't care about the risk: only the long run matters, ie we may face severe losses on the short run
- No curtailment
- PTU (Program Time Units) are independent: no market dynamic.
- Imbalance volumes are never rewarded

Notations

Notations

- k: a specific PTU
- ullet W_k : amount of energy contracted in the spot market
- W_k : stochastic production of wind energy
- ρ_k : revenue
- $\rho_k^{(S)}$: revenue from spot
- $ho_k^{\left(\uparrow/\downarrow\right)}$: revenue from balancing
- $\pi_k^{(S)}$: spot market price
- $\pi_k^{(\downarrow)}$: down-regulation price
- $\pi_k^{(\uparrow)}$: up-regulation price

Some relations

Relations that hold

•
$$\rho_k = \rho_k^{(S)} + \rho_k^{(\uparrow/\downarrow)}$$

$$\bullet \ \rho_k^{(S)} = \pi_k^{(S)} \widetilde{W}_k$$

•
$$\pi_k^{(\downarrow)} \leq \pi_k^{(S)} \leq \pi_k^{(\uparrow)}$$

Reformulating the revenue

Reformulating the revenue

•
$$\rho_k = \pi_k^{(S)} W_k + C_k^{(\uparrow/\downarrow)}$$

$$\bullet \ C_k^{(\uparrow/\downarrow)} = \left\{ \begin{array}{l} \psi_k^{(\downarrow)} \left(W_k - \widetilde{W}_k \right), \quad W_k \ge \widetilde{W}_k \\ \psi_k^{(\uparrow)} \left(W_k - \widetilde{W}_k \right), \quad W_k < \widetilde{W}_k \end{array} \right.$$

- $\bullet \ \psi_k^{(\downarrow)} = \pi_k^{(\downarrow)} \pi_k^{(S)}$
- $\bullet \ \psi_k^{(\uparrow)} = \pi_k^{(\uparrow)} \pi_k^{(S)}$

Idea

ullet revenue $=\left(ext{term ind. from }\widetilde{W}_k
ight)+\left(\Delta ext{price }\cdot\Delta ext{imb. volumes}
ight)$

Maximazing the revenue

Expected Utility Maximization (EUM)

- We want to find $\widetilde{W}_k = \operatorname*{arg\,max} \mathbb{E}\left\{
 ho_k \right\}$ \widetilde{W}_k
- ullet . . . which becomes $\widetilde{W}_k = rg\max_{\overline{W}_k} \left\{ C_k^{(\uparrow/\downarrow)}
 ight\}$

Reformulating $C_k^{(\uparrow/\downarrow)}$

•
$$\mathbb{E}\left\{C_{k}^{(\downarrow/\uparrow)}\right\} = \underbrace{\int_{0}^{+\infty} \int_{0}^{\widetilde{W}_{k}} \psi_{k}^{(\uparrow)} \left(W_{k} - \widetilde{W}_{k}\right) dP_{W_{k}} dP_{\psi_{k}^{(\uparrow)}}}_{\widetilde{W}_{k} \geq W_{k}: \text{ short position}} + \underbrace{\int_{-\infty}^{0} \int_{\widetilde{W}_{k}}^{W^{(max)}} \psi_{k}^{(\downarrow)} \left(W_{k} - \widetilde{W}_{k}\right) dP_{W_{k}} dP_{\psi_{k}^{(1)}}}_{\widetilde{W}_{k} < W_{k}: \text{ long position}}$$

A stochastic optimization problem

A stochastic optimization problem

- Idea: getting rid of $\psi_k^{(\downarrow)}$ and $\psi_k^{(\uparrow)}$
- $\mathbb{E}\left\{C_{k}^{(\downarrow\uparrow\uparrow)}\right\} = \widehat{\psi}_{k}^{(\uparrow)} \int_{0}^{W_{k}} \left(W_{k} \widetilde{W}_{k}\right) dP_{W_{k}} + \widehat{\psi}_{k}^{(\downarrow)} \int_{\widetilde{W}_{k}}^{W(max)} \left(W_{k} \widetilde{W}_{k}\right) dP_{W_{k}}$
- \bullet ... where $\hat{\psi}_k^{(\uparrow)} = \int_0^{+\infty} \psi_k^{(\uparrow)} dP_{\psi_k^{(\uparrow)}}$
- ... and $\widehat{\psi}_k^{(\downarrow)} = \int_{-\infty}^0 \psi_k^{(\downarrow)} dP_{\psi_k^{(\downarrow)}}$

Remark

• Are $\left\{\psi_{k,t}^{(\downarrow)}\right\}_t$ and $\left\{\psi_{k,t}^{(\uparrow)}\right\}_t$ stationary ?

Solution of the SOP

Solution

$$\bullet \ \widetilde{W}_k = F_{W_k}^{-1} \left(\frac{\left| \widehat{\psi}_k^{(\downarrow)} \right|}{\widehat{\psi}_k^{(\uparrow)} + \left| \widehat{\psi}_k^{(\downarrow)} \right|} \right)$$

• F_{W_k} cumulative distribution function of W_k .

Remark

ullet A probabilistic forecast of W_k is needed

Probabilistic forecast of W_k

How to compute unknown values ?

Estimators of unknown values

- spot price: $\widehat{\pi}_k^{(S)} = \mathbb{E}\left\{\pi_k^{(S)}\right\}$
- spread between spot and imbalance prices :

$$\bullet \ \, \mathsf{Down}: \, \widehat{\psi}_{k|\psi_{k}^{(\downarrow)}<0}^{(\downarrow)} = \mathbb{E}\left\{\psi_{k}^{(\downarrow)}|\psi_{k}^{(\downarrow)}<0\right\}$$

$$\bullet \ \mathsf{Up}: \ \widehat{\psi}_{k|\psi_{k}^{(\uparrow)}>0}^{(\uparrow)} = \mathbb{E}\left\{\psi_{k}^{(\uparrow)}|\psi_{k}^{(\uparrow)}>0\right\}$$

Remark

- $P_k^{(\downarrow)}=P\left\{\psi_k^{(\downarrow)}<0\right\}$ and $P_k^{(\uparrow)}=P\left\{\psi_k^{(\uparrow)}>0\right\}$ need to be computed
- ... since $\widehat{\psi}_{k}^{(\downarrow)} \neq \widehat{\psi}_{k|\psi_{k}^{(\downarrow)}<0}^{(\downarrow)}$ but $\widehat{\psi}_{k}^{(\downarrow)} = \widehat{\psi}_{k|\psi_{k}^{(\downarrow)}<0}^{(\downarrow)} \cdot P_{k}^{(\downarrow)}$
- ... same for $\widehat{\psi}_{\mathbf{k}}^{(\uparrow)}$...

How to compute unknown values?

Estimators of $P_k^{(\downarrow)}$ and $P_k^{(\uparrow)}$

- $P_k^{(\downarrow)} = P\left\{\psi_k^{(\downarrow)} < 0\right\}$
- $P_k^{(\uparrow)} = P\left\{\psi_k^{(\uparrow)} > 0\right\}$

Example of forecast probabilities of up and down

Conclusion

A successful strategy?

- Simulation results show a PNL of 100K euros /MW from the 1st March 2008 to the 31st December 2008.
- not modeling its interaction with the system. An aggresive position can make the system switch . . .
- Model improvements ?
 - Imposing new constraints through a risk-aversion parameter...
 - $\bullet \ \ \widetilde{W}_{k}^{\nu,a_{\nu}} = \min \left\{ \max \left\{ \widetilde{W}_{k}, \widehat{W}_{k} \cdot (1-a_{\nu}) \right\}, \widehat{W}_{k} \cdot (1+a_{\nu}) \right\}$
 - ... where $a_v \in \{0.1, 0.2\}$