Out[7]:	<pre>(342, 15) sns.set_style('darkgrid') survivedData['age'].hist() <matplotlib.axessubplots.axessubplot 0x2a4afdc3808="" at=""></matplotlib.axessubplots.axessubplot></pre>
	<pre><matplotlib.axessubplots.axessubplot 0x2a4afdc3808="" at=""></matplotlib.axessubplots.axessubplot></pre>
	Of the 342 people survived maimum number of the survivors are from the age group of 20 to 40 followed by age group of 0 to 10
<pre>In [8]: Out[8]:</pre>	<pre>sns.catplot(x="sex", kind="count", data=survivedData) <seaborn.axisgrid.facetgrid 0x2a4b00e0c88="" at=""></seaborn.axisgrid.facetgrid></pre>
	200 150 150 100
	50 female male sex
<pre>In [9]: Out[9]:</pre>	
	survived pclass age sibsp parch fare count 342.0 342.000000 290.00000 342.000000 342.000000 mean 1.0 1.950292 28.343690 0.473684 0.464912 48.395408 std 0.0 0.863321 14.950952 0.708688 0.771712 66.596998 min 1.0 1.000000 0.420000 0.000000 0.000000 0.000000 25% 1.0 1.000000 19.000000 0.000000 0.000000 12.475000
	1.0 1.000000 19.000000 0.000000 0.000000 26.000000 57.00
In [10]:	<pre>Problem2 autoData=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data", delim_white pace=True, names=['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'model_year', 'origin', 'car_n me'], na_values=['?'])</pre>
In [11]: Out[11]:	mpg cylinders displacement horsepower weight acceleration model_year origin car_name 0 18.0 8 307.0 130.0 3504.0 12.0 70 1 chevrolet chevelle malibu 1 15.0 8 350.0 165.0 3693.0 11.5 70 1 buick skylark 320 2 18.0 8 318.0 150.0 3436.0 11.0 70 1 plymouth satellite
In [12]: Out[12]:	3 16.0 8 304.0 150.0 3433.0 12.0 70 1 amc rebel sst 4 17.0 8 302.0 140.0 3449.0 10.5 70 1 ford torino autoData['horsepower'].isna().value_counts() False 392 True 6
In [13]: Out[13]:	Name: horsepower, dtype: int64 autoData.describe() mpg cylinders displacement horsepower weight acceleration model_year origin count 398.000000 398.000000 398.000000 398.000000 398.000000 398.000000 398.000000
	mean 23.514573 5.454774 193.425879 104.469388 2970.424623 15.568090 76.010050 1.572864 std 7.815984 1.701004 104.269838 38.491160 846.841774 2.757689 3.697627 0.802055 min 9.000000 3.000000 68.000000 46.000000 1613.000000 8.000000 70.000000 1.000000 25% 17.500000 4.000000 104.250000 75.000000 2223.750000 13.825000 73.000000 1.000000 50% 23.000000 4.000000 148.500000 93.500000 2803.500000 15.500000 76.000000 1.000000 75% 29.000000 8.000000 262.000000 126.000000 3608.000000 17.175000 79.000000 2.000000
In [14]: In [15]:	max 46.600000 8.000000 455.000000 230.000000 5140.000000 24.800000 82.000000 3.000000 print("The VARIANCE before applying imputing is {0}".format(autoData['horsepower'].var())) The VARIANCE before applying imputing is 1481.5693929745862 df1=autoData.copy()
In [16]:	<pre>simpleImputer=SimpleImputer(missing_values=np.nan, strategy='mean') df1['horsepower']=simpleImputer.fit_transform(df1[['horsepower']]) print("The VARIANCE after MEAN imputing is {0}".format(df1['horsepower'].var())) The VARIANCE after MEAN imputing is 1459.1779160026776 df2=autoData.copy() simpleImputer=SimpleImputer(missing_values=np.nan, strategy='median') df2['horsepower']=simpleImputer.fit transform(df2[['horsepower']])</pre>
In [17]:	<pre>df2['horsepower']=simpleImputer.fit_transform(df2[['horsepower']]) print("The VARIANCE after MEDIAN imputing is {0}".format(df2['horsepower'].var())) The VARIANCE after MEDIAN imputing is 1460.96905180816 df3=autoData.copy() simpleImputer=SimpleImputer(missing_values=np.nan,strategy='most_frequent') df3['horsepower']=simpleImputer.fit_transform(df3[['horsepower']]) print("The VARIANCE after MODE imputing is {0}".format(df3['horsepower'].var()))</pre>
	print("The VARIANCE after MODE imputing is {0}".format(df3['horsepower'].var())) The VARIANCE after MODE imputing is 1490.0361252104324 Mean imputing results in lowest variance as it repalces the value with the mena so the distribution of data doesnot change significantly The other strategy is to drop the missing values and building a model to predict the missing values by giving them as query points
In [18]: In [19]: Out[19]:	
In [20]: Out[20]: In [21]:	<pre>pandas.core.frame.DataFrame irisData.shape (150, 5) irisData.head()</pre>
Out[21]:	sepal_length sepal_width petal_width species 0 5.1 3.5 1.4 0.2 setosa 1 4.9 3.0 1.4 0.2 setosa 2 4.7 3.2 1.3 0.2 setosa 3 4.6 3.1 1.5 0.2 setosa
In [22]: Out[22]:	irisData.dtypes sepal_length float64 sepal_width float64 petal_length float64 petal_width float64
In [23]:	<pre>petal_width float64 species object dtype: object sns.pairplot(data=irisData, hue='species') plt.show()</pre>
	The state of the s
	4.0 #Bys 3.5 2.5 2.0
	species setosa versicolor virginica
	25 20 10 10 10 10 10 10 10 10
In [24]:	0.5 4 6 8 2 3 4 5 2 4 6 8 0 1 2 3 sepal_length sepal_width petal_length petal_width pca=PCA(n_components=3)
	<pre>pca.fit_transform(irisData.iloc[:,:-1]) print(pca.explained_variance_ratio_) [0.92461872 0.05306648 0.01710261] allVariance=list() for column in range(len(irisData.columns)-1): allVariance.append(irisData.iloc[:,column].var()) print("Variance of the {0} is {1}".format(irisData.columns[column],irisData.iloc[:,column].var()))</pre>
-	print("Total Variance is {0}".format(sum(allVariance))) Variance of the sepal_length is 0.6856935123042505 Variance of the sepal_width is 0.1899794183445188 Variance of the petal_length is 3.1162778523489942 Variance of the petal_width is 0.5810062639821029 Total Variance is 4.572957046979867
in [26]:	<pre>for column in range(len(allVariance)): print("percentage of variance expalined by FEATURE {0} is {1}".format(irisData.columns[column], allVariance[column]/sum(allVariance))) percentage of variance expalined by FEATURE sepal_length is 0.14994532099467353 percentage of variance expalined by FEATURE sepal_width is 0.04154410732328823 percentage of variance expalined by FEATURE petal_length is 0.681457931997653 percentage of variance expalined by FEATURE petal_width is 0.12705263968438513</pre>
In [27]:	From the features the petal_length has maximum variance followed by petal_width.so these two are the important features to classify the Irsis flowers this cape seen through the pair plot for i in range(len(pca.explained_variance_ratio_)): print("percentage variance expalined by principal component {0} is {1}".format(i+1,pca.explained_variance_ratio
	percentage variance expalined by principal component 1 is 0.9246187232017271 percentage variance expalined by principal component 2 is 0.053066483117067825 percentage variance expalined by principal component 3 is 0.01710260980792976 The Principal component 1 has maximum variance i.e. 92.4% followed by principal component 2 i.e. 5.3% and the principal component 3 has least variance and explains 1% of the total data.
In [28]:	The max vauriance expalined by the features is 68.14 % by the Petal_length where as the Principal component 1 expalins 92.4%. So from this we can say the Principal component 1 explains more about the data than the petal_length. Problem 4 pcaDataPoints=pd.DataFrame(pca.fit_transform(irisData.iloc[:,:-1]))
In [28]: In [29]: Out[29]:	pcaDataPoints[0]
_	145 1.944110 146 1.527167 147 1.764346 148 1.900942 149 1.390189 Name: 0, Length: 150, dtype: float64
In [30]:	<pre>for column in range(len(irisData.columns)-1): plt.scatter(x=irisData.iloc[:,column],y=pcaDataPoints[0]) plt.xlabel(irisData.columns[column]) plt.ylabel("PC1") plt.show()</pre>
	3 2 1 2 0 -1 -2
	4 3 2
	2 1 2 0 -1 -2 -3
	20 25 3.0 3.5 4.0 4.5 sepal_width
	-1 -2 -3 1 2 3 4 5 6 7
	-1 -2 -3 1 2 3 4 5 6 7 4 3 2 1
	-1 -2 -3 1 2 3 4 5 6 7 petal_length 4 3
In [31]:	for column in range(len(irisData.columns)-1): print("The corelation B/W {0} & Principal Component1 is {1}".format(irisData.columns].np.corrcoef(irisData.iloc[:,column],paDataPoints[0])[0][1])) The corelation B/W sepal_length & Principal Component1 is 0.8974017619582983 The corelation B/W sepal_width & Principal Component1 is -0.3987484724557002 The corelation B/W petal_length & Principal Component1 is 0.9978739422413107
In [31]:	for column in range(len(irisbata.columns)-1): print("The corelation B/W {0} & Principal Component1 is {1}".format(irisData.columns[column],np.corrcoef(irisData.iocl:,column],pcabataPoints[0])[0][1])) The corelation B/W sepal_length & Principal Component1 is 0.8974017619582983 The corelation B/W sepal_width & Principal Component1 is 0.8987484724557002 The corelation B/W petal_length & Principal Component1 is 0.9978739422413107 The corelation B/W petal_width & Principal Component1 is 0.9665475167083069 We can see the petal_length has highest corelation coefficient followed by petal_width,sepal_ength,sepal_width. We can observe that the sepal width has inverse relation. The above scattler plot show the same i.e. higher the corelation closer the points
In [32]:	for column in range(len(irisData.columns)-1): print("The corelation B/N {0} & Principal Component1 is {1}".format(irisData.columns[column], np.corrcoef(irisData.ioloc); column], npadapoints[0][0][1]) The corelation B/N sepal_length & Principal Component1 is 0.8974917619582993 The corelation B/N sepal_length & Principal Component1 is 0.3987484724557902 The corelation B/N petal_length & Principal Component1 is 0.3987484724557902 The corelation B/N petal_length & Principal Component1 is 0.3978739422413107 The corelation B/N petal_width & Principal Component1 is 0.39874873657902 We can see the petal_length has highest corelation coefficient followed by petal_width.sepal_length,sepal_width. We can observe that the sepal width has inverse relation. The above scattler plot show the same i.e. higher the corelation closer the points Problem 5 Problem 5 Pal=PCA(n_components=4) pcal.fit_transform(irisData.iloc[:,:-1]) pcals.fit_transform(irisData.iloc[:,:-1]) pcals.fit_transform(irisData.iloc[:,:-1]) pcals.fit_transform(irisData.iloc[:,:-1]) pcals.components_ array([[0.36138659, -0.88452251, 0.85667661, 0.3582892],
In [32]: Out[32]:	for column in range [len [risbata.columns]-1]: print("The corelation B/W {0} & Principal Component1 is {1}".format(irisData.columns].np.corrcoef(irisData.iloc[:,column],peabtarPoints[0])[0][1])) The corelation B/W sepal_length & Principal Component1 is 0.8974017619582983 The corelation B/W sepal_width & Principal Component1 is 0.8974047619582983 The corelation B/W petal_length & Principal Component1 is 0.9978739422413187 The corelation B/W petal_length & Principal Component1 is 0.9978739422413187 The corelation B/W petal_width & Principal Component1 is 0.9978739422413187 We can see the petal_length has highest corelation coefficient followed by petal_width.sepal_length.sepal_width. We can observe that the sepal width has inverse relation. The above scatter plot show the same i.e. higher the corelation closer the points Problem 5 Pcal=PCA(n_components=4) pcal=PCA(n_components=4) pcal=PCA(n_components=4) pcal-ifit_transform(irisData.iloc[:,:-1]) pcala-components array([[0.36138659, -0.88452251, 0.85667061, 0.3582892],
In [32]: Out[32]: In [33]:	for column in range(len(irisData.columns)-1): print('The corelation 80% (0) & Principal Componenti is (1)".format(irisData.columns[column].np.corrcoef(irisData.iolori, column], npabatarboints[0])[0][1]) The corelation 80% sepal.indth & Principal Componenti is 0.8974817630582983 The corelation 80% sepal.indth & Principal Componenti is 0.89874817635982983 The corelation 80% petal.length & Principal Componenti is 0.8987481724557802 The corelation 80% petal.indth & Principal Componenti is 0.8987481724557802 The corelation 80% petal.indth & Principal Componenti is 0.8987481724557802 The corelation 80% petal.indth & Principal Componenti is 0.8987481724557802 The corelation 80% petal.indth & Principal Componenti is 0.898647536783899 We can see the petal.ingth has highest corelation coefficient followed by petal.width.sepal.length.sepal.width. We can observe that the sepal width has inverse relation. The above scatter piot show the same i.e. higher the corelation closer the points Problem 5 Problem 5 Pcal=PCA(n_components=4) pcal.fit.transform(irisData.iloc[:,:-1]) pcal.components. array([[0.838658] -0.88452251, 0.85667661, 0.3582892], [0.85682895], [0.85682895], 0.87648192], [0.85682895], 0.87688193], [0.85688733], [0.85688733], [0.85688733], [0.85688733], [0.85688733], [0.85688733], [0.85688733], [0.85688733], [0.85688733], [0.85688733], [0.8568
In [32]: Out[32]: In [34]:	for column an range [len [in:Solata.columns]-1]: print("Whe corelation BVM (%) & Principal Component1 is (1)".format(in:solata.columns]column], np.corrcoef(in:Solata.iol.column), np.corrc
In [32]: Out[32]: In [34]:	for column in range(len(irisData.columns)-1): for column in range(len(irisData.columns)-1): a.lloc[:.column].ncanaecants[0][0][15]).ol The corelation (MV sepal.angle MV
In [32]: Out[32]: In [34]:	for column is range(infrishests.columns)-1): print("frie corclation EVA" (0) & Principal Component1 is (1)".format(irisbats.columns[column], np.corrccef(irisbats.infried corclation EVA" (0) & Principal Component1 is 0.8094027519828823 the corclation MAY sepal.length & Principal Component1 is 0.8094027519828823 the corclation MAY sepal.length & Principal Component1 is 0.8094027519828823 the corclation MAY sepal.length & Principal Component1 is 0.8094027519828823 We can see the pead_mough test highest condition coefficient followed by pead_with.copal_moght.sepal_with. We can delense that the sepal width has investe relation. The above sented the sepal width has investe relation. Problem S Problem S Problem S position of the delense of the condition coefficient followed by pead_with.copal_moght.sepal_with. The above sented the remove found in the condition coefficient followed by pead with.copal_moght.sepal_with. The above sented the remove found in the condition coefficient followed by pead with.copal_moght.sepal_with. Problem S Problem S Problem S position of the delense of the condition coefficient followed by pead_with.copal_moght.sepal.moght.sep
In [32]: Out[32]: In [34]:	for column in range(len(sirsbata.columns)-1): print("The Corolation Box As SealLength A Frincipal Component is (1)".format(irisbata.columns(column).nb.corrocef(irisbata.iocic.column).peabate/boxnis(9))[0][1]) for column in range(len(sirsbata.columns)-1): print("The Corolation Box SealLength A Frincipal Component is 0.8074017610582083) The corelation Box SealLength A Frincipal Component is 0.8074017610582083) The corelation Box SealLength A Frincipal Component is 0.8094076210587002 The corelation Box SealLength A Frincipal Component is 0.8094076220587002 The corelation Box SealLength A Frincipal Component is 0.8094076220587002 The corelation Box SealLength A Frincipal Component is 0.8094076220587002 The corelation Box SealLength A Frincipal Component is 0.8094076220587002 The corelation Box SealLength A Frincipal Component is 0.8094076220587002 The corelation Box SealLength A Frincipal Component is 0.8094076220587002 The corelation Box SealLength A Frincipal Component is 0.8094076220587002 The corelation Box SealLength A Frincipal Component is 0.80940762002 The above scalar pdd show the same is. Right the coresion closer the points Problem S Problem S Problem S praint(" components=4) poal fit transform(irisbata.ioc[::-1]) poalt-dominated box SealLength A Frincipal Components
In [32]: Out[32]: In [34]:	for calums in range(len(triabata.calumn).1): print("The corelation DAY (0) a Principal Component1 is 0.0074073842843327 the corelation DAY (0) a Principal Component1 is 0.007407384382000 The corelation DAY (0) a Principal Component1 is 0.007407384382000 The corelation DAY (0) a Principal Component1 is 0.0074073842843337 The corelation DAY potal length & Principal Component1 is 0.0074073842843337 The corelation DAY potal length & Principal Component1 is 0.0074073842843337 The core lation DAY potal length & Principal Component1 is 0.0074073842843337 The core lation DAY potal length & Principal Component1 is 0.00647857033000 We can rostey path be signed and the series evolun. The slove seating ploy show the same is, higher the corelation chase the plant with the rest evolun. Problem 5 Problem 5 Froblem 5 From the core of the same is, higher the corelation chase the plant potal potal problem of the same is, higher the corelation chase the plant potal pot
In [32]: Out[32]: In [34]:	for column in rampecler(initiotis, columns)-13) a. 16c1; column; producted with a principal Component is (1)** formac(initiotis, column), mp. corrood (initiotis, column), mp. column), column), corrood (initiotis, column), mp. column), corrood (initiotis, column), cor
In [32]: In [33]: In [35]:	For column in named interface solutions (1) in a component is at (1) format (initiate, column) (column), no connect (initiate action) (column) (col
In [32]: Out[32]: In [34]:	for column in range (any principle of the column (a) (b) for real principle column (a) correct (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
In [32]: Out[32]: In [34]:	for calls an in-equipment of a control of the calls of th
In [32]: In [33]: In [35]:	For extension in compell (mark) to the control of t
In [32]: Out[32]: In [34]:	For start in a regular transaction of a Principal Comment of a City For extitutional account polymera principal account of the Comment of a City For extitutional account of the Comment of a City For extity of the Comment of the
In [32]: Out[32]: In [34]:	For example and a respective of the second content to (1) format (crised at a burne) of the content to (1) and (1) format (crised at a burne) of the content to (1) and (1) format (crised at a burne) of the content to (1) and (1) format (crised at a burne) of the content to (1) and (1) format (crised at a burne) of the content to (1) and (1) format (crised at a burne) of the content to (1) and (1) format (crised at a burne) of the content to (1) and (1) format (crised at a burne) of the content to (1) format (crised at a b
In [32]: Out[32]: In [34]:	For contains in Property of Lincoln Contains of the Contains o
In [32]: Out[32]: In [34]:	The solution recognition of the control of the cont
In [32]: Out[32]: In [34]:	The content county of Colonians and a security of the colonian
Out[32]: In [33]: In [34]:	The content of the property of the content of the c
In [32]: Out [32]: In [34]: In [36]:	Security in the processory of the control of the co
In [32]: In [33]: In [36]:	Recipitation of the properties
In [32]: In [33]: In [36]:	The control of the co
In [32]: In [33]: In [36]:	For content of the co
In [32]: In [33]: In [36]:	The control of the co
In [32]: Out [32]: In [34]: In [36]:	The control of the co

calculating the Below metrics for points $[\ 2\ -1\ 0\ 2\ 0\ -3]$ and $[-1\ 1\ -1\ 0\ 0\ -1]$

The Cosine Similarity is 1.0 and angle between the points is 6.123233995736766e-17

From the above we can see for points

1) x = (1, 1, 1, 1), y = (2, 2, 2, 2)

2) x = (0, 1, 0, 1), y = (1, 0, 1, 0)

3) x=(0, -1, 0, 1), y=(1, 0, -1, 0)

4) x=(1, 1, 0, 1, 0, 1), y=(1, 1, 1, 0, 0, 1)

5) x=(2, -1, 0, 2, 0, -3), y=(-1, 1, -1, 0, 0, -1)

Question 19

cosine = 1.0correlation =nan Euclidean =2.0

correlation = -1.0Euclidean = 2.0 Jaccard = 0.0

correlation = 0.0Euclidean = 2.0

cosine = 0.75correlation = 0.25 Jaccard = 0.6

The Corelation Coefficient is -2.866583523299505e-17

cosine = 0 as(6.123233995736766e-17 is very negligible value)

cosine = 0 as(6.123233995736766e-17 is very negligible value)

cosine = 0 as(6.123233995736766e-17 is very negligible value)

correlation = 0 as(-2.866583523299505e-17 is very negligible value)

Problem1

In [82]: import seaborn as sns
 import numpy as np
 import matplotlib.pyplot as plt
 import pandas as pd
 import scipy
 from sklearn.impute import SimpleImputer
 from sklearn.decomposition import PCA
 from scipy import spatial
 from numpy.linalg import norm
 import math
 from sklearn.metrics import jaccard_score

In [2]: data=sns.load_dataset('titanic')

In [3]: data.head()

1

3

In [4]: data.shape

Out[4]: (891, 15)

Out[3]:

from sklearn.metrics import jaccard_score

survived pclass sex age sibsp parch

1 0 7.2500

0 0 8.0500

0 71.2833

0 7.9250

0 53.1000

1

3 male 22.0

1 female 38.0

3 female 26.0

1 female 35.0

3 male 35.0

fare embarked class who adult_male deck embark_town alive alone

False

С

True NaN Southampton no False

False NaN Southampton yes True

True NaN Southampton no True

C Southampton yes False

Cherbourg yes False

S Third man

C First woman

S Third woman

S First woman

S Third man