

# Okruhy pro ústní část státní závěrečné zkoušky v akademickém roce 2023/2024

studijní program: B0613A140019 Informatika

specializace: Obecná informatika

typ: bakalářský forma: prezenční

Pro ústní zkoušku se stanovují následující okruhy. Student si vylosuje tři otázky, které do okruhů tematicky spadají (pro každý okruh jednu otázku). Zkouška trvá cca 30 minut.

## 1. Teoretické základy informatiky

Výroková logika, jazyk, formule, pravdivost, vyplývání, tautologie. Booleovské funkce a funkčně úplné systémy. Úplné konjunktivní a disjunktivní normální formy.

Množiny, množinové operace a vztahy, potenční množina, kartézský součin, číselné množiny. Relace, binární relace a jejich reprezentace, operace s relacemi. Funkce (zobrazení) a jejich vlastnosti. Binární relace na množině a jejich vlastnosti. Uzávěry binárních relací. Ekvivalence a rozklady. Uspořádání, Hasseovy diagramy, význačné prvky, svazy. Konečné a nekonečné množiny, spočetné množiny, příklady, existence nespočetné množiny, diagonální metoda. Porovnání velikosti množin, Cantorova-Bernsteinova věta, Cantorova věta.

Pravidlo součtu a součinu, permutace, variace, kombinace. Indukce a rekurze, matematická indukce a její varianty, definice indukcí, strukturální indukce.

Binomická věta. Princip inkluze a exkluze. Dirichletův princip. Základní syntaktické a sémantické pojmy výrokové logiky. Přehledově dokazatelnost ve výrokové logice. Syntax a sémantika predikátové logiky. Čísla a číselné obory. Vybrané číselné funkce a rychlosti jejich růstu. Dělitelnost, prvočísla, věty o jednoznačnosti. Největší společný dělitel a nejmenší společný násobek. Euklidův algoritmus. Kongruence modulo n a její vlastnosti.

Vektorové prostory a podprostory, lineární závislost a nezávislost, báze a dimenze vektorového prostoru. Lineární zobrazení a jejich vlastnosti. Eukleidovské vektorové prostory. Matice a determinanty: vlastnosti, operace s nimi. Řešení soustav lineárních rovnic. Matice přechodu a matice lineárního zobrazení.

Cyklické grupy a jejich podgrupy, permutační grupy, Cayleyho věta, alternující grupy, levé a pravé trídy grup, Lagrangeova věta, direktní součiny grup, konečně generované abelovské grupy, homomorfismy grup, faktorové grupy, Fermatova a Eulerova věta; podílová tělesa, okruhy polynomů, homomorfismy okruhů a faktorové okruhy, rozšíření pole, teorie svazů, posety, polosvazy, svazy, úplné svazy, modulární a distributivní svazy.

Posloupnosti a jejich limity. Funkce jedné reálné proměnné a jejich vlastnosti. Limita a spojitost funkce. Derivace funkce, geometrický význam. Vyšetřování průběhu funkce. Taylorův a Maclaurinův rozvoj. Číselné řady, konvergence a součty, kritéria konvergence.

Neurčitý integrál, základní vzorce a metody výpočtu (substituce, per partes, rozklad na parciální zlomky). Riemannův určitý integrál, jeho geometrický význam a přibližné metody výpočtu. Newtonův vzorec. Nevlastní integrály. Diferenciální rovnice a elementární metody jejich řešení. Metrické prostory. Diferenciální počet funkcí více proměnných. Lokální a globální extrémy funkce více proměnných.

Formální jazyky a jejich hierarchie. Regulární jazyky (definice, uzávěrové vlastnosti). Konečné automaty deterministické a nedeterministické. Regulární výrazy, automaty s  $\epsilon$ -přechody. Minimalizace konečného deterministického automatu. Pumping lemma. Bezkontextové jazyky a jejich vlastnosti (uzávěrové vlastnosti, jednoznačnost). Zásobníkové automaty. Deterministické zásobníkové automaty. Deterministické bezkontextové jazyky.

Turingův stroj (TS), nedeterministický TS. Jazyk přijímaný TS, jazyk rozhodovaný TS. Church-Turingova teze, varianty TS. Částečně rekurzivní a rekurzivní jazyky, jazyky a rozhodovací problémy. Vztah rekurzivních a částečně rekurzivních jazyků. Uzávěrové vlastnosti jazyků TS. Riceova věta.

Složitost algoritmu (časová a paměťová). Třída P, třída NP, důvody jejich zavedení, jejich vzájemný vztah. NP-úplné problémy. Cook-Levinova věta. Příklady NP-úplných problémů, dokazování NP-úplnosti. Třída PSPACE, její vztah k třídám P a NP, PSPACE-úplné problémy.

Jevy, algebra jevů, pravděpodobnostní míra, pravděpodobnostní prostor. Podmíněná pravděpodobnost, nezávislost jevů, Bayesova věta. Náhodná veličina, distribuční funkce. Rozdělení diskrétních a spojitých náhodných veličin, jejich příklady. Náhodné vektory: sdružené a marginální rozdělení, kovarianční matice, korelační matice. Střední hodnota náhodné veličiny a její vlastnosti. Zákon velkých čísel, centrální limitní věty.

# 2. Algoritmizace a programování

Orientované a neorientované grafy, izomorfismus, podgrafy, pojmy k cestování, souvislost, stupně vrcholů. Hledání nejkratší cesty, Dijkstrův algoritmus. Minimální kostra grafu, Kruskalův algoritmus. Stromy, alternativní definice stromu. Kořenové stromy, vztahy mezi výškou, počtem vrcholů a počtem listů.

Algoritmus, problém, časová složitost algoritmu v nejhorším a průměrném případě. O-notace a růst funkcí, definice, vlastnosti, příklady použití. Lineární datové struktury: seznam, zásobník, fronta. Problém třídění, rozdělení třídicích algoritmů, dolní mez složitosti třídění porováváním. Základní metody třídění: insert sort, select sort, bubble sort. Quick sort a jeho složitost. Merge sort a jeho složitost. Heap sort a jeho složitost. Další metody třídění: counting sort, radix sort, bucket sort. Vnější třídění. Pořádkové statistiky.

Vyhledávání v lineárních datových strukturách. Binární vyhledávací stromy, operace a jejich složitost. AVL stromy, operace a jejich složitost. B stromy, operace a jejich složitost. Hashovací tabulky, metody řešení kolizí. Základní grafové algoritmy: průchod do šířky, průchod do hloubky, topologické uspořádání.

Přehled a základní rysy programovacích paradigmat: funkcionální, procedurální, objektové. Symbolické výrazy a jejich vyhodnocování v jazyce Common Lisp. Rekurzivní funkce a rekurzivní výpočetní proces. Funkce vyššího řádu. Lexikální a dynamický rozsah platnosti proměnných. Makra. Líné vyhodnocování v datových strukturách, přísliby a proudy. Líné vyhodnocování v programovacích jazycích, aplikativní a normální model vyhodnocení. Zásobníkový model vyhodnocování.

Objektově orientované programování: třídy a objekty, zprávy a metody. Zapouzdření, polymorfismus, rozhraní, dědičnost (jednoduchá i vícenásobná). Pravidlo is-a, princip B. Liskovové, kontraktové programování. OOP založené na prototypech. Příklad jednoho nebo více objektově orientovaných jazyků (Java, C#, C++, Common Lisp, Python ...) a jejich objektově orientované rysy.

Relační model databáze: atributy, n-tice, relace, relační proměnné. Relační algebra: množinové operace, restrikce, projekce, přirozené spojení, přejmenování atributů, relační dělení. Operace rozšíření. SELECT výraz v SQL. Kontrola integrity: primární a alternativní klíče, cizí klíče. Funkční závislosti, Boyceho–Coddova normální forma, normalizace. Pohledy: pohledy v SQL, měnitelné pohledy. Agregace: slučování a rozdělování atributů, agregace v SQL.

## 3. Povinně volitelné předměty specializace Obecná informatika

Okruh je vymezen následujícími povinně volitelnými předměty specializace, student si z nich před zkouškou vybere předměty alespoň za 10 kreditů.

#### KMI/ALGO3 Algoritmy 3 (5 kr.)

Návrh algoritmů metodou rozděl a panuj, příklad algoritmu. Návrh algoritmů žravou metodou, příklad algoritmu. Návrh algoritmů metodou dynamického programování, příklad algoritmu. Návrh algoritmů metodou iterativního zlepšování, příklad algoritmu. Návrh algoritmů technikami backtracking a branchand-bound, příklad algoritmu.

#### KMI/VYTAL Vybraná témata z algoritmů (3 kr.)

SAT problém: Algoritmy založené na rezoluci. Speciální případy řešitelné v polynomickém čase. DPLL a Monien-Speckenmeyer algoritmus. Základní myšlenky CDCL solverů.

#### KMI/KOMBI Seminář z kombinatoriky (3 kr.)

Základní kombinatorické principy, binomické koeficienty, binomická věta, multimnožiny; množinové rozklady a Stirlingova čísla, permutace a Stirlingova čísla prvního druhu, číselné rozklady, Gaussovy koeficienty, formální řady, Catalanova čísla, nekonečné matice a inverzní vzorce.

#### KMI/DASTR Datové struktury (4 kr.)

Amortizovaná analýza. Prioritní fronty: binomická fronta, Fibonacciho fronta. Splay stromy. Červenočerné stromy. Van Emde Boas stromy. Suffixové stromy a jejich konstrukce.

#### KMI/POGR Počítačová grafika (3 kr.)

Reprezentace rastrového obrazu. Vzorkování a kvantování. Alias. Barevné modely. Snižování počtu barev. Úpravy obrazu v prostorové doméně. Geometrické transformace. Algoritmy pro kreslení úsečky a kružnice. Vyplňování oblastí. Ořezávání objektů.