Concours National Commun Épreuve de Mathématiques II Session 2022 - Filière MP

L'énoncé de cette épreuve, particulière aux candidats de la filière MP. L'usage de tout matériel électronique, y compris La calculatrice, est interdit Durée : 4 heures

Les candidats sont informés que la qualité de la rédaction et de la présentation, la clarté et la précision des raisonnements constitueront des éléments importants pour l'appréciation des copies. n convient en particulier de rappeler avec précision les références des questions abordées.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Le sujet de cette épreuve est composé d'un exercice et d'un problème indépendants entre eux.

Exercice

Construction d'une base orthonormée d'un sous-espace vectoriel de \mathbb{R}^n

(Noté 4 points sur 20)

Dans cet exercice, \mathbb{R} désigne le corps des nombres réels et n un entier naturel, avec n>2. On munit le \mathbb{R} -espace vectoriel \mathbb{R}^n de son produit scalaire canonique note (. | .) et on note (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n : pour tout $k \in \{1, \ldots, n-1\}$, on pose $v_k = e_k - e_{k+1}$. On note H la partie de \mathbb{R}^n définie par $: H = \{(x_1, \ldots, x_n) \in \mathbb{R}^n; x_1 + \cdots + x_n = 0\}$.

0.1 Structure de H.

On considère l'application $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}$, $(x_1, \dots, x_n) \to x_1 + \dots + x_n = \sum_{k=1}^n x_k$.

- **0.1.1** Vérifier que ψ est, une forme linéaire non nulle sur \mathbb{R}^n .
- $\mathbf{0.1.2}$ En déduire que H est un sous-espace vectoriel de \mathbb{R}^n et déterminer sa dimension..
- **0.2** Montrer que la famille (v_1, \ldots, v_{n-1}) est une base de H.
- 0.3 Construction d'une base orthogonale de H

Dans cette section, on cherche à construire une base orthogonale, noté $(\varepsilon_1, \ldots, \varepsilon_{n-1})$, de H en appliquent le procédé de Schmidt à la famille libre (v_1, \ldots, v_{n-1}) . Pour tout $k \in \{1, \ldots, n-1\}$, on pose $F_k = \text{Vect}(v_1, \ldots, v_k)$ et on note p_k la projection orthogonale sur le sous-espace vectoriel F_k .

0.3.1 Montre que, pour tout $(j, k) \in \{1, ..., n-1\}^2$,

$$(v_j \mid v_k) = \begin{cases} -1 & \text{si } k \in \{j-1, j+1\} \\ 2 & \text{si } k = j, \\ 0 & \text{si } k \neq \{j-1, j, j+1\} \end{cases}$$

- **0.3.2** Vérifier que $\varepsilon_1 = v_1$ et que, pour tout $k \in \{2, \dots, n-1\}, \varepsilon_k = v_k p_{k-1}(v_k)$.
- **0.3.3** Détermination de ε_k pour $k \in \{2 \dots, \dots, 1\}$

Soit
$$k \in \{2, ..., n-1\}$$
; on pose $\varepsilon_k = v_k - \sum_{j=1}^{k-1} \alpha_j v_j$.

- (i) Montrer que $(\alpha_1, \ldots, \alpha_{k-1})$ est solution du système linéaire $A_k X = B_k$, où $A_k = ((v_j \mid v_\ell))_{1 \leq j,\ell \leq k-1}$ est la matrice de Gram associée à la famille (v_1, \ldots, v_{k-1}) , et B_k désigne le vecteur colonne de composantes $(v_1 \mid v_k), \ldots, (v_{k-1} \mid v_k)$.
- (ii) Montrer que le système $A_k X = B_k$ s'écrit

$$\begin{cases} 2x_1 - x_2 & = 0 \\ -x_1 + 2x_2 - x_3 & = 0 \end{cases}$$

$$\vdots$$

$$-x_{k-3} + 2x_{k-2} - x_{k-1} & = 0$$

$$-x_{k-2} + 2x_{k-1} & = -1$$

1

- (iii) Résoudre le système $A_kX=B_k$ et en déduire que $\varepsilon_k=\left(\frac{1}{k},\ldots,\frac{1}{k},-1,0,\ldots,0\right)$, le -1 étant situé à la (k+1)-ième place.
- Donner une base orthonormée de H.

Problème

Étude des morphismes de la \mathbb{C} -algèbre $\mathcal{M}_n(\mathbb{C})$. Notations et rappels

Dans tout ce problème, \mathbb{C} désigne le corps des nombres complexes et n un entier naturel supérieur ou égal à 2. Si $p \in \mathbb{N}^*$, on note $\mathcal{M}_{n,p}(\mathbb{C})$ l'espace vectoriel des matrices à coefficients complexes, à n lignes et p colonnes. Si $p=n,\mathcal{M}_{n,p}(\mathbb{C})$ est noté simplement $\mathcal{M}_n(\mathbb{C})$, c'est l'algèbre des matrices carrées d'ordre n a coefficients complexes; la matrice identité de $\mathcal{M}_n(\mathbb{C})$ est notée I_n .

Si $A \in \mathcal{M}_n(\mathbb{C})$, on note χ_A sont polynôme caractéristique; on rappelle qu'il est défini par :

$$\forall x \in \mathbb{C}$$
, $\chi_A(x) = \det(xI_n - A)$.

Si E est un \mathbb{C} -espace vectoriel de dimension finie, $\mathcal{L}(E)$ désigne le \mathbb{C} -espace vectoriel des endomorphismes de E. Si $u, v \in \mathcal{L}(E)$, $u \circ v$ se note uv et l'identité est notée id_E . Pour $u \in \mathcal{L}(E)$, les endomorphismes itérés u^p de u sont définis par les relations $u^0 = id_E$ et $u^p = uu^{p-1}$ pour tout $p \in \mathbb{N}^*$.

On pose $w = e^{\frac{2i\pi}{n}}$ et on considère dans $\mathcal{M}_n(\mathbb{C})$ les deux matrices, notées C_n et D_n , définies par :

$$C_n = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1\\ 1 & 0 & 0 & \cdots & 0\\ 0 & \ddots & \ddots & \ddots & \vdots\\ \vdots & \ddots & 1 & 0 & 0\\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad D_n = \begin{pmatrix} 1 & 0 & \cdots & 0\\ 0 & w & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ 0 & \cdots & 0 & w^{n-1} \end{pmatrix}$$

1^{ère} Partie

Quelques résultats préliminaires sur les matrices C_n et D_n

Étude des matrices C_3 et D_3 . On pose $j=e^{\frac{2t\pi}{3}}$.

- **1.1.1** Écrire les matrices C_3 et D_3 .
- **1.1.2** Vérifier que $D_3^3 = I_3 = C_3^3$ et que $D_3C_3 = jC_3D_3$.
- 1.1.3 Montrer que la famille (I_3, D_3, D_3^2) est libre et qu'elle engendre le sous-espace vectoriel des matrices diagonales de $\mathcal{M}_3(\mathbb{C})$.
- 1.1.4 Calculer le polynôme caractéristique de C_3 . La matrice C_3 est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?

1.2 Étude préliminaire sur les matrices C_n et D_n dans le cas général

- **1.2.1** Vérifier que $D_n^n = I_n$.
- **1.2.2** Montrer que $D_n C_n = w C_n D_n$.
- **1.2.3** Montrer que la famille $(I_n, D_n, \dots, D_n^{n-1})$ est libre et qu'elle engendre le sous-espace vectoriel des matrices diagonales de $\mathcal{M}_n(\mathbb{C})$.
- **1.2.4** Calculer le polynôme caractéristique de C_n . La matrice C_n est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{C})$?
- **1.2.5** Justifier que $C_n^n = I_n$.
 - 1.3 Une base de $M_n(\mathbb{C})$ construite a partir des matrices C_n et D_n On note (e_1, \ldots, e_n) la base canonique de $\mathcal{M}_{n,1}(\mathbb{C})$ et u (resp. v) l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{C})$ canoniquement associé à la matrice C_n (resp. D_n).
- **1.3.1** Vérifier que $u(e_n) = e_1$ et que $u(e_k) = e_{k+1}$ pour tout $k \in \{1, ..., n-1\}$
- **1.3.2** Montrer que, pour tout $k \in \{1..., n-1\}$, $u^{k}(e_{1}) = e_{k+1}$ et que $u^{n}(e_{1}) = e_{1}$.
- **1.3.3** Calculer u^n et en déduire que $C_n^n = I_n$.
- **1.3.4** Montrer que la famille $(id_E, u, \ldots, u^{n-1})$ est libre en déduire le polynôme minimal de la matrice C_n .
- **1.3.5** Vérifier que vu = w.uv et que $v(e_k) = w^{k-1}.e_k$, pour tout $k \in \{1, ..., n\}$.

1.3.6 Montrer que la famille $(C_n^k D_n^{\ell})_{0 \le k, \ell \le n-1}$ est une base de $\mathcal{M}_n(\mathbb{C})$. On pourra raisonner en. terme d'endomorphismes.

$2^{ m ème}$ Partie Une question de réduction

Dans cette partie, E désigne un \mathbb{C} -espace vectoriel de dimension n, et f,g deux endomorphismes de E tels que

$$f^n = g^n = id_E$$
 et $fg = w.gf$.

- **2.1** Justifier que les endomorphisme f et g sont inversibles.
- **2.2** Montrer que les endomorphismes f et g sont diagonalisables et que leurs valeurs propres sont des racines n-ièmes de l'unité.
- 2.3 Étude des valeurs propres et des sous-espace propres de l'endomorphisme f .

Soit λ une valeur propre de f et $x_0 \in E$ un vecteur propre associé.

- **2.3.1** Montrer que $w\lambda$ est aussi une valeur propre de f. On pourra calculer $f(g(x_0))$.
- **2.3.2** En déduire que, pour tout $k \in \{0, \dots, n-1\}, w^k \lambda$ est une valeur propre de f.
- **2.3.3** Montrer que le spectre de f est l'ensemble de toutes les racines n-ièmes de l'unité.
- **2.3.4** Préciser la dimension de chaque sous-espace propre de f.
- **2.4** Une base de E, convenable pour les endomorphisme f et g.

On vient d'établir précédemment que le spectre de f, noté $\operatorname{Sp}(f)$, vérifie : $\operatorname{Sp}(f) = \{1, w, \dots, w^{n-1}\}$. Soit e un vecteur propre de f associé à la valeur propre 1.

- **2.4.1** Montrer que, pour tout $k \in \{0, ..., n-1\}$, $f(g^k(e)) = w^k g^k(e)$.
- **2.4.2** En déduire que $(e, g(e), \dots, g^{n-1}(e))$ est une base de E, formée de vecteurs propres de f.
- **2.4.3** On note $\mathcal{B} = (e, g(e), \dots, g^{n-1}(e))$ cette base de E. Vérifier que la matrice de f (resp. g) dans la base \mathcal{B} est D_n (resp. C_n).

3^{ème} Partie

Application à la détermination des endomorphismes de l'algèbre $\mathcal{M}_n(\mathbb{C})$

Soit $\Phi: \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{M}_n(\mathbb{C})$ un morphisme d'algèbres, c'est-à-dire un endomorphisme du \mathbb{C} -espace vectoriel $\mathcal{M}_n(\mathbb{C})$ vérifiant $\Phi(I_n) = I_n$ et tel que :

$$\forall (A, B) \in \mathcal{M}_n(C)^2, \quad \Phi(AB) = \Phi(A)\Phi(B).$$

- **3.1** Soit M une matrice de $\mathcal{M}_n(\mathbb{C})$. Montrer que pour entier naturel $p, \Phi(M^P) = \Phi(M)^P$.
- **3.2** Vérifier que les matrices $\Phi(D_n)$ et $\Phi(C_n)$ vérifient les relations

$$\Phi(D_n)^n = \Phi(C_n)^n = I_n \quad \text{et } \Phi(D_n) \Phi(C_n) = w, \Phi(C_n) \Phi(D_n).$$

- **3.3** On note f_1 et g_1 les endomorphismes de $\mathcal{M}_{n,1}(\mathbb{C})$ canoniquement associés aux matrices $\Phi(D_n)$ et $\Phi(C_n)$ respectivement
 - **3.3.1** Justifier que les endomorphismes f_1 et g_1 de $\mathcal{M}_{n,1}(\mathbb{C})$ vérifient les relations

$$f_1^n = g_1^n = id_{\mathcal{M}_n(\mathbb{C})}$$
 et $f_1g_1 = w.g_1f_1$

- **3.3.2** Montrer qu'il existe une base de $\mathcal{M}_{n,1}(\mathbb{C})$ dans laquelle la matrice de f_1 est D_n et celle de g_1 est C_n .
- **3.3.3** En déduire qu'il existe une matrice inversible P de $\mathcal{M}_n(\mathbb{C})$ telle que $\Phi(D_n) = PD_nP^{-1}$ et $\Phi(C_n) = PC_nP^{-1}$.
- **3.4** Montrer que, pour toute matrice M de $\mathcal{M}_n(\mathbb{C}), \Phi(M) = PMP^{-1}$.
- **3.5** Vérifier que les applications ainsi trouvées sont bien des morphismes de la \mathbb{C} -algèbre $\mathcal{M}_n(\mathbb{C})$.

FIN DE L'ÉPREUVE