Information partagée par deux variables

Dans l'épisode précédent...

- Notion de valeur / prix de l'information :
 - L'information est-elle facile à obtenir ?
 - Y a-t-il beaucoup de possibilités et d'incertitude ?
 - Mesure de quantité d'information (relative à un évènement) : $I = log_2(N/n)$

Dans l'épisode précédent...

- Notion de valeur / prix de l'information :
 - L'information est-elle facile à obtenir ?
 - Y a-t-il beaucoup de possibilités et d'incertitude ?

- Entropie
- $H(I) = -\sum_{i \in I} p_i \log_2(p_i)$

Information partagée par deux variables

Nous pouvons considérer deux types d'information :

- La couleur de la boîte $c \in C = \{bleue, grise, jaune, orange, verte\}$
- La taille de la boîte $t \in T = \{\text{petite, moyenne, grande}\}$

Comment définir une probabilité pour une paire de deux variables aléatoires $\{c, t\}$?

Comment définir la quantité d'information et l'entropie pour une paire de deux variables aléatoires $\{c, t\}$?

• Probabilité conjointe :

Si on considère deux variables aléatoires, il s'agit de la probabilité que leur tirages respectifs génèrent une paire de valeur.

• Probabilité conjointe :

Si on considère deux variables aléatoires, il s'agit de la probabilité que leur tirages respectifs génèrent une paire de valeur.

Exemple:

- 1. Variable « couleur de la boîte », avec valeurs {bleue, grise, jaune, rouge}
- 2. Variable « taille de la boîte », avec valeurs {petite, grande}

Probabilité conjointe
$$p_{bleue,petite} = \frac{n_{bleue\&petite}}{N}$$

• Probabilité marginale :

Si on considère deux variables aléatoires, il s'agit de la probabilité sur le tirage d'une des variables, quelque soit le tirage de l'autre.

• Probabilité marginale :

Si on considère deux variables aléatoires, il s'agit de la probabilité sur le tirage d'une des variables, quelque soit le tirage de l'autre.

Exemple:

- 1. Variable « couleur de la boîte », avec valeurs {bleue, grise, jaune, rouge}
- 2. Variable « taille de la boîte », avec valeurs {petite, grande}

Probabilité marginale
$$p_{bleue} = \frac{n_{bleue\&petite}}{N} + \frac{n_{bleue\&grande}}{N}$$

• Table de probabilités :

Présentation « graphique » des probabilités conjointes et marginales

	Petite	Grande	Proba marginale
Bleue			
Grise			
Jaune			
Rouge			
Proba marginale			

• Table de probabilités :

Présentation « graphique » des probabilités conjointes et marginales

	Petite	Grande	Proba marginale
Bleue	1/8	1/8	2/8
Grise	2/8	2/8	4/8
Jaune	1/8	0	1/8
Rouge	0	1/8	1/8
Proba marginale	4/8	4/8	

Probabilité conditionnelle :

Si on considère deux variables aléatoires, il s'agit de la probabilité sur le tirage d'une des variables quand on sait que l'autre variable a tiré une valeur donnée.

Probabilité conditionnelle :

Si on considère deux variables aléatoires, il s'agit de la probabilité sur le tirage d'une des variables quand on sait que l'autre variable a tiré une valeur donnée.

Formule de Bayes :

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

ou encore : $P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$

Probabilité conditionnelle :

Si on considère deux variables aléatoires, il s'agit de la probabilité sur le tirage d'une des variables quand on sait que l'autre variable a tiré une valeur donnée.

Exemple:

- 1. Variable « couleur de la boîte », avec valeurs {bleue, grise, jaune, rouge}
- 2. Variable « taille de la boîte », avec valeurs {petite, grande}

Probabilité conditionnelle
$$p_{grand|gris} = \frac{p_{grand\&gris}}{p_{gris}}$$

Entropie conjointe

Nous pouvons considérer deux types d'information :

- La couleur de la boîte $c \in C = \{bleue, grise, jaune, orange, verte\}$
- La taille de la boîte $t \in T = \{\text{petite, moyenne, grande}\}$

Une paire $\{c, t\}$ a une probabilité conjointe $p_{c,t} = \frac{n_{c,t}}{N}$.

L'entropie se généralise donc comme :

$$H(C,T) = -\sum_{c \in C,t \in T} p_{c,t} \log_2(p_{c,t})$$

Rappel: entropie = valeur moyenne de l'information (conjointe)

Entropie conjointe

Quelques propriétés :

• Il est plus dur de connaitre la couleur ET la taille, que la couleur seule (ou la taille seule) :

$$H(C,T) \ge H(C)$$
 $H(C,T) \ge H(T)$
Rappel: entropie = valeur moyenne de l'information

Entropie conjointe

Quelques propriétés :

• Il est plus dur de connaître la couleur ET la taille, que la couleur seule (ou la taille seule) :

$$H(C,T) \ge H(C)$$

$$H(C,T) \ge H(T)$$

• Il ne peut *pas* être plus de dur déterminer la couleur ET la taille **ensemble**, **conjointement**, que de déterminer la couleur **seule**, puis la taille **seule**, **séparément** :

$$H(C,T) \le H(C) + H(T)$$

Quantité d'information commune à deux événements

Rappel : mesure de quantité d'information relative à un évènement (bit) :

$$I = \log_2(\frac{N}{n})$$

I est une mesure (sous-)additive :

• Deux (types d')informations renforcent la définition d'un système

Rappel : $H(C,T) \ge H(C)$

Mais attention : pour « la boîte est bleue » + « la boîte est petite »

 $I_{global} \neq I_{bleue} + I_{petite}$ à cause du logarithme

Rappel : $H(C,T) \le H(C) + H(T)$

Entropie conditionnelle

$$H(T|C) = H(C,T) - H(C)$$

- H(C,T): quantité moyenne d'information, mesure de l'incertitude sur $\{c,t\}$
- H(T|C): incertitude restante sur T si on a déjà payé le prix de l'information sur C

Indépendance

On dit que deux variables (ou types d'information) sont indépendantes si la réalisation (ou valeur) de l'une n'apporte aucune information sur la réalisation de l'autre. [Wikipedia]

Indépendance

On dit que deux variables (ou types d'information) sont indépendantes si la réalisation (ou valeur) de l'une n'apporte aucune information sur la réalisation de l'autre. [Wikipedia]

Exemple de variables / types d'information indépendantes : la couleur et les propriétés nutritives des oursons

Exemple de variables / types d'information non indépendantes : la couleur et le goût (?) des oursons

Indépendance

On dit que deux variables (ou types d'information) sont indépendantes si la réalisation (ou valeur) de l'une n'apporte aucune information sur la réalisation de l'autre. [Wikipedia]

Entropie conjointe pour des variables indépendantes :

$$H(C,T) = H(C) + H(T)$$

Entropie conditionnelle pour des variables indépendantes :

$$H(T|C) = H(T)$$

• Si la couleur et la taille sont indépendantes :

$$H(C,T) = H(C) + H(T)$$

$$H(T|C) = H(T)$$

Pour connaitre {couleur, taille}, il faut encore payer le prix de l'information « taille »

• Si les boîtes bleues sont **toujours** petites :

Variables fortement dépendantes

Pour connaitre {couleur, taille}, il n'y a plus rien à payer car la couleur nous a aussi renseigné sur la taille.

• Si les boîtes bleues sont **souvent** petites :

Variables **partiellement** dépendantes

Pour connaitre {couleur, taille}, il faut encore payer le **prix de l'information « taille »**, mais sa valeur est **réduite** car la couleur nous a **partiellement** renseignés.

Définitions Information Mutuelle :

Mesure la quantité d'information en commun entre deux variables

•
$$IM(C,T) = H(C) + H(T) - H(C,T)$$

Prix pour connaître {couleur} et {taille} Prix pour connaître {couleur, taille} en tenant indépendamment l'un de l'autre compte de leur (éventuelle) dépendance

•
$$IM(C,T) = H(T) - H(T|C) = H(C) - H(C|T)$$

Prix pour connaitre {taille}, Incertitude restante quand on connait {couleur} incertitude sur sa valeur

$$IM(C,T) = H(C) + H(T) - H(C,T)$$

 $IM(C,T) = H(T) - H(T|C) = H(C) - H(C|T)$

• Variables indépendantes : IM(C,T) = 0

Rappel: H(C,T) = H(C) + H(T)

- Plus les variables sont dépendantes, et plus IM(C,T) est grande.
- $IM(C,T) \ge 0$

Information mutuelle entre deux signaux / messages

Même chose qu'entre deux variables :

$$IM(X,Y) = H(X) + H(Y) - H(X,Y)$$

$$IM(X,Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

X : signal d'origine

Y : signal après transmission

Information mutuelle

L'information mutuelle peut elle être négative ?

Cas à deux variables :

Pour des évènements donnés : oui ; mais en moyenne, sur les deux variables : non.

Exemple: Un canal de communication reçoit X, le transmet, et on récupère Y en sortie.

Pour un message donné x, il se peut que la sortie y soit ambiguë et ne permette pas de retrouver x.

Mais en moyenne, l'ensemble des messages reçus Y permet de comprendre l'entrée X (pour un canal de

transmission raisonnable).

Information mutuelle

• L'information mutuelle peut elle être négative ?

Cas à *n*>2 variables :

Oui

Il y a $2^n - 1$ degrés de liberté sur les interactions possibles entre variables. Ces interactions sont donc complexes et peuvent aboutir à une information mutuelle totale négative (ou nulle, ou positive).

Ce sera abordé dans un prochain cours.

Exemples d'applications : recalage / alignement

Mutual Information: 0.17

Exemples d'applications : clustering

Par exemple : Association de phrases et de contextes dans les moteurs de recherche

Exemples d'applications : synchronisation de séries temporelles / mesure du délai

Exemples d'applications : vérifier la dépendance de phénomènes

Par exemple : Les propriétés des galaxies sont-elles influencées par leur environnement intergalactique ?

[Pandey and Sarkar: How much a galaxy knows about its large-scale environment?: An information theoretic perspective, MNRAS 2018]

A creuser en TD et TP...

Utilisation de l'information mutuelle en pratique

