

# Natural Language Processing

Word Embeddings and Language Modeling



### GAI Motivation (for NLP tasks)

#### Supervised learning

- Text classification
- QA system
- 0

### Think about your learning strategies!

#### Issues

- Lack of training data
- Limitation of domain knowledge



# Natural Language Generation

The commonest way to generate sentences is by writing the words down, one after another.

e.g. Please turn your homework ...

The next could be?



# 語言模型 (Language Model)



Andrey Markov 1856 - 1922 [1913] The chance of a letter appearing depends on the letter before it.



Claude Shannon 1916 – 2001 [1951] Prediction and Entropy of Printed English

# Language Model

× J • •



Q 台南最好吃的

- 〇 台南最好吃的牛肉湯
- 公 台南最好吃的素食餐廳
- 〇 台南最好吃的鱔魚意麵
- 〇 台南最好吃的鹹水雞
- 〇 台南最好吃的鍋燒意麵
- 公 台南最好吃的臭豆腐
- 台南最好吃的火鍋
- 台南最好吃的肉燥飯
- 台南最好吃的餐廳
- 〇 台南最好吃的炸雞



- 新竹最好吃的
- 新竹最好吃的餐廳
- 新竹最好吃的牛肉麵
- 新竹最好吃的貢丸
- 新竹最好吃的滷肉飯
- Q 新竹最好吃的蛋糕
- Q 新竹最好吃的水餃
- Q 新竹最好吃的肉圓
- Q 新竹最好吃的牛排
- Q 新竹最好吃的米粉
- 新竹最好吃的炒飯

- G 台中最好吃
- Q 台中最好吃 Google 搜尋
- Q 台中最好吃義大利麵
- 〇 台中最好吃的鰻魚飯
- Q 台中最好吃燒肉
- Q 台中最好吃的水餃
- Q 台中最好吃牛肉麵
- Q 台中最好吃的餐廳
- Q 台中最好吃的便當
- Q 台中最好吃的太陽餅
- Q 台中最好吃的舒芙蕾



#### 妳說這一句。很有夏天的感覺

消失的下雨天

我用幾行字形容妳是我 的誰

為妳翹課的那一天 花落的

那一天

怎麼這樣子 雨還沒停妳就撐

傘要走

童年的紙飛機 現在終於飛回我 手裡

天青色等煙雨 而我在 等妳

P(説 | 妳) = 1/4 P (b | a) P(説 | 沒停妳) = 0 P (c | ab) 消失的下 翹課的那一天 花落 怎麼這樣子 雨還沒停妳 → 就撐 傘要走 用幾行字形容 為 說這一句 很有夏天的 是 的誰 感覺 童年的紙飛機 現在終於飛回我 手裡 天青色等煙雨 而 在等

7

### N-grams

An n-gram is a sequence of n words:
e.g. Please turn your homework ...
1-gram (unigram): "please", "turn", "your", or "homework"
2-gram (bigram): "please turn", "turn your", or "your homework"
3-gram (trigram): "please turn your", or "turn your homework"



We can use a naïve statistic method to model the language



In a bi-gram model we have to count the occurrences of each bi-gram.

```
e.g.
C(I want) = 2
C(want to) = 3
C(spend time) = 1
...
```

An example of bi-gram LM.

Draw a table of bigram counts for eight of the words in all of the sentences

|         | I  | want | to  | eat | Chinese | food | launch | speed |
|---------|----|------|-----|-----|---------|------|--------|-------|
| I       | 5  | 827  | 0   | 9   | 0       | 0    | 0      | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5      | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6      | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42     | 0     |
| Chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1      | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0      | 0     |
| launch  | 2  | 0    | 0   | 0   | 0       | 1    | 0      | 0     |
| speed   | 1  | 0    | 1   | 0   | 0       | 0    | 0      | 0     |

Apply add-k smoothing (k=1):

Compute Probability (relative frequency):

|         | I  | want | to  | eat | Chinese | food | launch | speed |
|---------|----|------|-----|-----|---------|------|--------|-------|
| I       | 6  | 828  | 1   | 10  | 1       | 1    | 1      | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6      | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7      | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43     | 1     |
| Chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2      | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1      | 1     |
| launch  | 3  | 1    | 1   | 1   | 1       | 2    | 1      | 1     |
| speed   | 2  | 1    | 2   | 1   | 1       | 1    | 1      | 1     |

|         | I       | want    | to      | eat     | Chinese | food    | launch  | speed   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| I       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.0075  |
| want    | 0.0013  | 0.00042 | 0.26    | 0.0084  | 0.0029  | 0.0029  | 0.0025  | 0.0015  |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| Chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| launch  | 0.0017  | 0.0056  | 0.00056 | 0.0056  | 0.00056 | 0.0011  | 0.0056  | 0.00056 |
| speed   | 0.0012  | 0.0058  | 0.0012  | 0.0058  | 0.0058  | 0.0058  | 0.0058  | 0.0058  |

## Probability of a Sequence

Let's begin with the task of computing the probability

$$P(w|h) = rac{C(w,h)}{C(h)}$$
 h: some history C: the times the pattern show up in the dataset

w: the word to be generated

e.g., Compute the probability of the word "the" given the history "its water is so transparent that".

$$P(the|its\ water\ is\ so\ transparent\ that) = rac{C(its\ water\ is\ so\ transparent\ that\ the)}{C(its\ water\ is\ so\ transparent\ that)}$$

## Probability of a Sequence

Compute probabilities of entire sequences like  $w_1 \dots w_n$  N-gram model(Chain Rule of Probabilities)

$$egin{aligned} P(w_1 \dots w_n) &= P(w_1) P(w_2 | w_1) P(w_3 | w_{1:2}) \dots P(w_n | w_{n-N+1}) \ &= \prod_{k=1}^n P(w_k | w_{k-N+1}) \end{aligned}$$

e.g., Bi-gram model

$$egin{aligned} P(w_1 \dots w_n) &= P(w_1) P(w_2 | w_1) P(w_3 | w_2) \dots P(w_n | w_{n-1}) \ &= \prod_{k=1}^n P(w_k | w_{k-1}) \end{aligned}$$

## Language Models

Language Models (LMs):

Models that assign probabilities to sequences of words are called LMs.

Including:

#### **N-Gram Language Models:**

A purely statistical model of language.

#### **Neural Language Models:**

Use neural networks to predict the likelihood of sequences.

# Perplexity (困惑度)

Perplexity (PPL) is a quantitative criterion used to evaluate the capacities/effectiveness of language modeling models.

• Given the sequence of words  $W=w_1w_2\dots w_N$  and an N-gram model. The PPL of the model was computed by:

$$Perplexity(W) = P(w_1w_2 \ldots w_N)^{-rac{1}{N}} = \sqrt[N]{\prod_{k=1}^n rac{1}{P(w_k|w_{k-N+1:k})}}$$

The **lower** the value of perplexity, the **better** the language modeling capability of the model.

# Perplexity meaning

A Measure of Uncertainty: Perplexity quantifies the level of uncertainty or unpredictability that a model experiences when making predictions.

**An Average Branching Factor**: Perplexity can be viewed as an "average branching factor" of possible choices at each step in the sequence.

**Quantification of Model Performance**: In language modeling, perplexity reflects how well the model understands the rules and structure of the language.

• A lower perplexity indicates better language comprehension and prediction ability, signifying the model's efficiency in capturing language patterns.

**Compression Efficiency Indicator**: Perplexity can also be seen as a measure of how well the model compresses the test data.

 Lower perplexity means that the model predicts with higher probabilities, reducing the uncertainty and effectively compressing the information.



#### Bigram model

Approximates the probability of a word given all the previous words  $P(w_n|w_{1:n-1})$  by using only the conditional probability of the preceding word  $P(w_n|w_{n-1})$ 

i.e., Instead of computing the probability  $P(the|its\ water\ is\ so\ transparent\ that)$ Bigram model approximates it with the probability  $P(the|its\ water\ is\ so\ transparent\ that)$ 

The assumption that the probability of a word depends only on the previous word is called a Markov assumption.

## Shortcomings of N-gram LMs

#### **Limited context**

N-gram models are unable to capture longer-distance (>>N) language dependencies.

#### **Data sparsity (High time/space complexity)**

As the N value increases, the number of parameters to store and compute grows exponentially.

#### Ignoring word order / context information

 N-gram models assume independence between words, neglecting the influence of word order on semantics.

#### Low flexibility

N-gram language models struggle with *synonyms* and have limited ability to adapt to varying conditions. (e.g. dialogue).

### Sparse Vectors

Sparse vector embeddings represent words as high-dimensional vectors with mostly zero values.

Each dimension corresponds to a unique feature (word), measured by some well-designed methods.

- TF-IDF
- PPMI

### Distributional Hypothesis

Words that occur in similar contexts tend to have similar meanings.

The NLP approaches utilize the context around the word to define its meaning.

e.g.

- I enjoy coding and I do it everyday!
- I like coding and I do it everyday!

"enjoy" and "like" are synonym and they are in the same context.

### TF-IDF (recap)

The mathematical representation of TF-IDF:

$$TF-IDF=TF imes IDF$$
 where  $TF_{i,j}=rac{n_{i,j}}{\sum_k n_{k,j}}$   $IDF_i=lgrac{|D|}{|\{j:t_i\in d_j\}|}$ 

• Where  $n_{i,j}$  is the i-th word in j-th text in the dataset.

#### TF (Term Frequency)

• Represents the "frequency" of a term appearing in a text.

#### IDF (Inverse Document Frequency)

 Aims for terms to have higher specificity, meaning the fewer texts in the dataset contain the term, the better.

### TF-IDF (recap)

After computing the scores of every terms, we get a sparse vector to represent the text.



### TF-IDF (recap)

#### Preprocessing text (optional)

#### Stemming

• By removing the suffixes from words (e.g. "cats," "catlike," "catty" all have "cat" as their base), we can revert the words back to their root forms.

#### Feature Selection

- Filter and select which parts of speech to retain, such as verbs or nouns.
- Analyze the frequency of the terms using statistical methods or algorithms like TF-IDF.

### PPMI

#### Mutual Information (MI)

• It is a measure of how often two events x and y occur:

$$I(x,y) = log_2 rac{P(x,y)}{P(x)P(y)}$$

#### PMI (Pointwise MI)

• The mutual information between a target word w and a context word c:

$$PMI(w,c) = I(w,c)$$

### PPMI

#### PPMI (Positive PMI)

PPMI replaces all negative PMI values with zero

$$PPMI(w,c) = max(PMI(w,c),0)$$

e.g. Co-occurrence counts for 4 words in 5 contexts

|                | computer | data | result | pie | sugar | count(w) |
|----------------|----------|------|--------|-----|-------|----------|
| cherry         | 2        | 8    | 9      | 442 | 25    | 486      |
| strawberry     | 0        | 0    | 1      | 60  | 19    | 80       |
| digital        | 1670     | 1683 | 85     | 5   | 4     | 3447     |
| information    | 3325     | 3972 | 378    | 5   | 13    | 7003     |
| count(context) | 4997     | 5673 | 473    | 512 | 61    | 11716    |

### PPMI

#### Replacing the counts in with joint probabilities:

|             |          | p(w)   |        |        |        |        |
|-------------|----------|--------|--------|--------|--------|--------|
|             | computer | data   | result | pie    | sugar  | p(w)   |
| cherry      | 0.0002   | 0.0007 | 0.0008 | 0.0377 | 0.0021 | 0.0415 |
| strawberry  | 0.0000   | 0.0000 | 0.0001 | 0.0051 | 0.0016 | 0.0068 |
| digital     | 0.1425   | 0.1436 | 0.0073 | 0.0004 | 0.0003 | 0.2942 |
| information | 0.2838   | 0.3399 | 0.0323 | 0.0004 | 0.0011 | 0.6575 |
| p(context)  | 0.4265   | 0.4842 | 0.0404 | 0.0437 | 0.0052 |        |

#### Compute the PPMI matrix

computer data result pie sugar cherry 3.30 0 0 0 4.38 strawberry 0 4.10 5.51 digital 0 0 0.18 0.01 0 0 information 0.02 0.09 0.28 0

Sparse vectors are obtained cherry=(0,0,0,4.38,3.30)

 $=\log_2(0.0021/(0.0415*0.0052))$ 

# Word embedding

|             |    | Concept space |       |                |       |       |       |                |                |  |
|-------------|----|---------------|-------|----------------|-------|-------|-------|----------------|----------------|--|
|             | ı  |               |       |                |       |       |       |                |                |  |
|             |    | ما            | ما    | ما             | ۵     | ۵     | ۵     | ۵              | ا              |  |
|             |    | $d_1$         | $d_2$ | d <sub>3</sub> | $d_4$ | $d_5$ | $d_6$ | d <sub>7</sub> | d <sub>8</sub> |  |
|             | 便宜 | 1             | 3     | 2              | 3     | 0     | -2    | 2              | 0              |  |
|             | 有名 | 3             | 1     | 4              | 2     | 0     | 2     | 0              | 1              |  |
|             | 讃  | 0             | 0     | 1              | 0     | 0     | 1     | -1             | 0              |  |
| Term vector | 嫩  | 1             | 3     | 0              | 1     | 0     | 0     | 0              | 0              |  |
|             | 難吃 | 0             | 0     | 0              | 0     | 1     | 0     | 2              | 0              |  |
|             | 太貴 | 0             | 0     | 0              | 0     | 3     | 1     | 0              | 1              |  |
|             | 差  | -1            | 0     | 1              | -1    | 0     | 2     | 1              | 0              |  |
|             | 老  | 0             | -2    | -1             | 0     | 1     | 3     | 2              | 1              |  |



### Dense Vectors

Dense vector embeddings represent words in a continuous vector space Semantically similar words are closer together.

Word2Vec

Contextualized Embeddings

## Properties of Embeddings

Vectors for representing words are called embeddings

Analogy/Relational Similarity



# Properties of Embeddings

- Historical Semantics
  - Embeddings can also be a useful tool for studying how meaning changes over time





- Skip-gram
  - Use words to predict their contexts.
- > CBOW
  - Use the context to predict the target word.



- 1. Treat the target word and a neighboring context word as positive examples.
- 2. Randomly sample other words in the lexicon to get negative samples.
- 3. Use logistic regression to train a classifier to distinguish those two cases.
- 4. Use the learned weights as the embeddings.

Calculate the co-occurrence matrix from the corpus, where each element represents how often a word appears in the context of another word within a certain window size.

Assume window size = 2

Deep learning is a method in artificial intelligence that teaches computers to ...

Deep learning is a method in artificial intelligence that teaches computers to ...

Deep learning is a method in artificial intelligence that teaches computers to ...

Deep learning is a method in artificial intelligence that teaches computers to ...



#### Skip-gram:

Assume c is the word id in the context, w is the center word, u and v are vectors of c and w.

$$P(c|w) = rac{exp(u_c^ op v_w)}{\sum_t exp(u_{c_t}^ op v_w)}$$

### Model Parameters

#### word2vec uses a single hidden layer feedforward neural network



Input to hidden layer matrix has our target word embeddings  $\mathbf{v}_i$ 

Hidden to output layer matrix has another set of word embeddings called output embeddings  $\mathbf{u}_i$ 

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



# Contextualized Embeddings

- Contextualized embeddings
  - o capture the meaning of a word in its context within a sentence or a larger body of text.
- Contextualized embeddings allows words to have different representations depending on their usage in different contexts.
  - o Traditional word embeddings assign a fixed vector to each word.
  - Contextualized embeddings generate a vectors based on the surrounding words.
- Contextualized embeddings are widely used in various NLP tasks. (e.g., BERT, GPT)

### Word context



蘋果

公司

蘋果

派

蘋果改變了 他的一生, 對<mark>牛頓</mark>來 說

蘋果改變了 他的一生, 對<mark>賈伯斯</mark> 來說



## Contextualized Word Embeddings

- Learn word vectors using long contexts instead of a context window
- Learn a deep Neural LM and use all its layers in prediction

The probability of a sequence becomes:

$$P(w_1...w_n) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})...P(w_n|w_{1:n-1})$$

$$= \prod_{k=1}^n P(w_k|w_{1:k-1})$$

## Contextualized Word Embeddings

- > The embedding is designed to be a part of the model.
- When the downstream task provides a preferred context, it can be adjusted during the training process, incorporating the relevant information from the task context.



## Neural Language Models

A model structure is needed to process the hidden feature in the embeddings.

Neural LMs leverage neural networks to learn and represent complex language patterns.

#### **Basic Definitions**

- FFN (Feedforward network)
- RNN Recurrent Neural Networks)

### **Basic Definitions**

➤ In a deep learning project, there are some fundamental components.

#### 1. Model

 A model refers to the architecture or structure used to represent relationships between input data and output predictions.

### 2. Optimizer

 An optimizer is an algorithm used to adjust the parameters of the model during training in order to minimize the error between predicted and actual output values.

#### 3. Loss function

A loss function (objective function) measures the difference between the predicted output of a model and the true target output.



## Training Neural Networks

The training process typically involves the following steps:

- 1. Data Preparation: Prepare training and testing datasets.
- 2. Model Construction: Construct the model using a deep learning framework (TensorFlow, PyTorch, ...)
- 3. Loss Function Definition: Select an appropriate loss function. (Cross-entropy, Logloss, ...)
- 4. Optimizer Selection: Choose a suitable optimization algorithm. (Adam, SGD, ...)
- 5. Model Training: Train the model using the training dataset.
- **6. Model Evaluation:** Evaluate the trained model using the testing dataset. (F1, LCS, ...)

### Activation functions

- The core idea of using activation functions is to introduce **nonlinearity** into neural networks.
- Neural network models aim to avoid the final processing stage being merely a linear transformation of the inputs, so that the model is able to have good performance on complex problems.
- > Commonly used activation functions include: Sigmoid, ReLU, tanh, GeLU...

## Activation functions

|         | Range                   | Applications                                                                                                                              |
|---------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| softmax | [0, 1]<br>(sum up to 1) | It is commonly used in multi-class classification tasks where<br>the model needs to predict the probability distribution<br>over classes. |
| sigmoid | [0, 1]                  | It often used in binary classification tasks where a threshold is needed to predict probabilities of belonging to one of the two classes. |
| tanh    | [-1, 1]                 | It is often preferred over sigmoid for hidden layers as it produces zero-centered output                                                  |
| ReLU    | [0, +inf]               | It introduce nonlinearity and avoid gradient vanishing                                                                                    |

## Training Neural Networks





### FFN

Feedforward network (FFN) is a multilayer feedforward network in which the units are connected with no cycles.

$$h = \sigma(Wx + b)$$
  $z = Uh$   $y = softmax(z)$ 



## Short comings of FFN

### Lack of Sequence Modeling:

 In NLP tasks, understanding the sequence of words and their dependencies is crucial for accurate predictions.

### Fixed Input Size:

 FFNs require fixed-size inputs, which can be problematic for NLP tasks where input sequences vary in length.

### Limited Contextual Information:

 Many NLP tasks benefit from capturing long-range dependencies and understanding the broader context of a text, which is better addressed by models capable of modeling sequential data effectively.

### RNN

- ➤ Recurrent Neural Networks (RNNs) are a type of artificial neural network designed to handle sequential data by capturing temporal dependencies.
  - The same set of weights and biases are used across all time steps



## RNN

> The equation on step t is:

$$egin{aligned} y_t &= g(Vh_t) \ h_t &= f(Ux_t + Wh_{t-1}) \end{aligned}$$

where f and g are activation functions



## Properties of RNNs

### > Sequential Processing:

• RNNs handle sequences, allowing them to model temporal dependencies in data.

#### > Recurrent Connections:

RNNs maintain internal memory, facilitating the capture of long-term dependencies.

### > Parameter Sharing:

 RNNs share parameters across time steps, enhancing efficiency in learning sequential data.

### Vanishing Gradient Problem:

 Traditional RNNs may face vanishing gradient issues, hindering learning of long-term dependencies.

# Example: Name Entity Recognition

- > Name Entity Recognition (NER) is a fundamental task in NLP.
- > The model needs to identify named entities within the sequence, such as countries, organizations, and individuals.



## RNNs for NER

- ➤ In token classification task, every output should be mapped to a one-hot vector.
- > A feed forward network is added to the RNN model.



# RNNs for Sequence Classification

- > RNNs classify the entire sequences rather than the tokens within them.
- > Take the hidden layer for the last token of the text.



## Stacked RNNs

> Stacked RNNs consist of multiple networks where the output of one layer serves as the input to a subsequent layer



Figures are from https://reurl.cc/1389mD



## Stacked RNNs

- > Stacked RNNs generally outperform single-layer networks.
  - The network induces representations at differing levels of abstraction across layers
  - The initial layers of stacked networks induce representations that serve as useful abstractions for further layers
- ➤ However, as the number of stacks is increased the training costs rise quickly.

## **Bidirectional RNNs**

- > In many applications, RNNs have to access the entire input sequence.
- Bidirectional RNN was introduced.
  - o It combines two independent bidirectional RNNs, one where the input is processed from the start to the end, and the other from the end to the start



## Bidirectional RNNs for Sequence Classification

- > The final hidden units from the forward and backward passes are combined to represent the entire sequence.
- > This combined representation serves as input to the subsequent classifier.



## Summary

- > LM: Models that assign probabilities to sequences of words
- > N-gram LM: Traditional statistical model of language

Embedding approaches:

- > Sparse vectors: Use contexts to encode the word embedding. (TF-IDF, PPMI)
- Dense vectors: Apply self-supervised training. (Word2Vec, Contextualized Embeddings)

#### Neural LMs:

- > FFN: Fully-connected dense neural network.
- > RNN: Recurrent, store temporal hidden-state.

