Física Matemática II Primeira Lista de Exercícios e Tarefas

Louis Bergamo Radial 8992822

23 de junho de 2024

Exercício 1

Definição 1: Isometria

Sejam (M_1,d_1) e (M_2,d_2) dois espaços métricos. Uma aplicação $h:M_1\to M_2$ é dita uma *isometria* se

$$d_2(h(x), h(y)) = d_1(x, y)$$

para todos $x, y \in M_1$.

Proposição 1: Isometrias são injetoras

Sob as hipóteses anteriores, uma isometria $h: M_1 \rightarrow M_2$ é injetora.

Demonstração. Suponhamos que existam $x, y \in M_1$ tais que h(x) = h(y). Assim, $d_2(h(x), h(y)) = 0$. Como h é uma isometria, temos $d_1(x, y) = 0$, logo x = y. □

Proposição 2: A aplicação inversa de uma isometria bijetora é uma isometria

Sob as hipóteses anteriores, se $h: M_1 \to M_2$ é uma isometria bijetora, então $h^{-1}: M_1 \to M_2$ é uma isometria.

Demonstração. Sejam $x, y \in M_2$ e sejam $\xi = h^{-1}(x)$ e $\eta = h^{-1}(y)$. Como h é uma isometria, vale $d_1(\xi, \eta) = d_2(h(\xi), h(\eta)) = d_2(x, y)$. Desse modo, vale $d_1(h^{-1}(x), h^{-1}(y)) = d_2(x, y)$. Como x e y são arbitrários, temos que h^{-1} é uma isometria.

Definição 2: Espaços métricos isométricos

Dois espaços métricos (M_1, d_1) e M_2, d_2 são *isométricos* se existir uma isometria bijetora $h: M_1 \to M_2$.

Lema 1: Isometria e completeza

Sejam (M_1, d_1) e (M_2, d_2) espaços métricos isométricos. Se (M_1, d_1) é completo, então (M_2, d_2) é completo.

Demonstração. Seja $s: \mathbb{N} \to M_2$ uma sequência de Cauchy em relação à métrica d_2 . Como os espaços métricos são isométricos, existe uma isometria bijetora $h: M_2 \to M_1$ e com isso podemos definir a sequência $x = h \circ s$.

Mostremos que x é de Cauchy em relação à métrica d_1 . Como s é de Cauchy em relação à métrica d_2 , dado $\varepsilon > 0$, existe N > 0 tal que para todo n, m > N

$$d_2(s_n, s_m) < \epsilon$$
.

Desse modo, temos

$$d_1(x_n, x_m) = d_1(h(s_n), h(s_m)) = d_2(s_n, s_m) < \epsilon,$$

isto é, x é de Cauchy em (M_1, d_1) .

Como (M_1, d_1) é completo, existe $\tilde{x} \in M_1$ tal que dado $\epsilon > 0$, existe M > 0 tal que

$$n > M \implies d_1(x_n, \tilde{x}) < \epsilon$$
.

Ainda, como h é bijetora, existe $\tilde{s} = h^{-1}(\tilde{x}) \in M_2$, de modo que

$$n > M \implies d_1(h(s_n), h(\tilde{s})) < \epsilon$$

 $\implies d_2(s_n, \tilde{s}) < \epsilon$.

Assim, s é convergente em (M_2, d_2) .

Exercício 3

Definição 3: Mapa logístico

A aplicação

$$T_a: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto ax(1-x)$

é chamada de *mapa logístico* ao parâmetro $a \in \mathbb{R}$.

Proposição 3: Pontos fixos do mapa logístico

Os pontos fixos do mapa logístico T_a são dados por

$$x^{\alpha} = 0$$
 e $x^{\beta} = \frac{a-1}{a}$,

onde x^{β} claramente só está definido para $a \neq 0$. O ponto fixo x^{β} pertence a [0, 1] se e somente se $a \geq 1$.

Demonstração. A equação de ponto fixo para T_a é dada por

$$x = ax(1-x) \implies x(a-1-ax) = 0$$

cujas soluções são justamente x^{α} e x^{β} , com x^{β} definido apenas para $a \neq 0$.

Notemos que $x^{\beta} = 1 - \frac{1}{a}$, portanto para $a \ge 1$, temos $x^{\beta} \in [0,1) \subset [0,1]$, uma vez que x^{β} é crescente para a > 0. Para $x^{\beta} \in [0,1]$, temos

$$x^{\beta} \in [0,1] \implies 1 - \frac{1}{a} \ge 0 \land 1 - \frac{1}{a} \le 1$$

 $\implies a \notin [0,1) \land a \ge 1$
 $\implies a \ge 1$,

como desejado.

Proposição 4: Restrição do mapa logístico

Seja A = [0, 1]. Se $a \in [0, 4]$, a aplicação $T_a|_A : A \to \mathbb{R}$ é um endomorfismo.

Demonstração. Trivialmente, se a=0 então $T_a(\mathbb{R})=\{0\}\subset A$, logo $T_0|_A:A\to A$. Assim, podemos supor $a\neq 0$.

Como T_a é uma função suave, pelo teorema de Weierstrass esta função admite valor máximo e mínimo no compacto A. Como

$$\frac{\mathrm{d}T_a}{\mathrm{d}x}=0 \implies x=\frac{1}{2}\in A,$$

segue que os valores de máximo e mínimo de T_a em A só podem ocorrer em x=0, x=1 e $x=\frac{1}{2}$, cujos valores são $T_a(0)=T_a(1)=0$ e $T_a(\frac{1}{2})=\frac{a}{4}$. Desse modo, para a>0 temos que o máximo global de $T_a|_A$ ocorre em $x=\frac{1}{2}$. Assim, segue que

$$a \in (0,4] \implies 0 \le T_a(x) \le \frac{a}{4} \le 1$$

3

para todo $x \in A$. Concluímos portanto que $T_a(A) \subset A$ para $a \in [0,4]$.

Proposição 5: Pontos fixos da restrição do mapa logístico

Para $a \in [0,1]$, a aplicação $T_a|_A : A \to A$ tem um único ponto fixo, a saber, x = 0. Para $a \in (1,4]$, a aplicação apresenta dois pontos fixos distintos, x = 0 e $x = x^{\beta}$.

Demonstração. Para a=0, a imagem da aplicação é o conjunto $\{0\}$, portanto o único ponto fixo é x=0.

Consideremos $a \in (0,4]$. Pela Proposição 3, os pontos fixos de $T_a : \mathbb{R} \to \mathbb{R}$ são $x^{\alpha} = 0$ e x^{β} , com $x^{\beta} \in A \iff a \geq 1$. Desse modo, para $a \in (0,1)$, o único ponto fixo de $T_a|_A : A \to A$ é x = 0. Ainda, para a = 1, $x^{\beta} = 0$, de modo que para $a \in [0,1]$, temos o único ponto fixo x = 0 em A. Para $a \in (1,4]$, $x^{\beta} \neq 0$, de modo que $T_a|_A$ apresente dois pontos fixos distintos em A.

Proposição 6: Condições para a restrição do mapa logístico ser uma contração

Para $a \in [0,1)$, a aplicação $T_a|_A : A \to A$ é uma contração. Para $a \in (1,4]$, a aplicação não é contrativa.

Demonstração. □