Linear Algebra: Linear Combinations and Span

Steven Schmatz, University of Michigan: College of Engineering ${\rm August}\ 17,\ 2014$

stevenschmatz@gmail.com

Linear combination

A linear combination is a sum of vectors $v_1 \dots v_n \in \mathbb{R}^m$, with each multiplied by constants $c_1 \dots c_n \in \mathbb{R}$. For example, say we have two vectors:

$$\hat{\mathbf{a}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}}$$
$$\hat{\mathbf{b}} = 3\hat{\mathbf{i}}$$

For example, here are a few valid linear combinations of these vectors.

$$0\hat{\mathbf{a}} + 0\hat{\mathbf{b}} = \mathbf{0}$$
$$3\hat{\mathbf{a}} + (-2)\hat{\mathbf{b}} = 3\hat{\mathbf{i}}$$

Span

The span is the set of all the vectors you can represent by adding and subtracting vectors.

$$span(v_1, v_2, \dots v_n) = \{c_1v_1 + c_2v_2 \dots c_nv_n \mid c_i \in \mathbb{R}\}\$$

For example with vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$:

$$\operatorname{span}(\hat{\mathbf{a}}, \hat{\mathbf{b}}) = \mathbb{R}^m$$

If two vectors are collinear, their span is **not** all of \mathbb{R}^m ! It is $c\hat{\mathbf{a}}$.

$$\operatorname{span}(\mathbf{0}) = \mathbf{0}$$

The most familiar vectors that span the \mathbb{R}^2 vector space are the unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$. These form the *basis* of \mathbb{R}^2 .