BP神经网络

张敏

下列鸢尾花分别属于哪一类: setosa、versicolor、virginica

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

$$y = f(x_1, x_2, x_3, x_4, x_5,...)$$

巴普洛夫关于神经反射的实验

4

生物神经元结构

数学神经元结构

 x_j 为输入信号,f为传递函数, $w_{i,j}$ 表示与神经元 x_j 连接的权值, y_i 表示输出值,q表示阈值

BP网络结构

$$E = \frac{1}{2} \mathop{a}_{j=1}^{l} (\hat{y}_{j} - y_{j})^{2}$$

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

→第j个输出层神经元的输出:

$$\hat{\mathbf{y}}_j = f(\beta_j - \theta_j)$$

→第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

→第h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

BP网络结构

$$E = \frac{1}{2} \mathop{a}_{j=1}^{l} (\hat{y}_{j} - y_{j})^{2}$$

网络训练目标:

找出合适的权值和阈值,

使得误差 Е 最小

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$
輸出层
$$\hat{y}_{j} = f(\beta_{j} - \theta_{j})$$

$$\hat{y}_{j} = f(b_{j} - q_{j})$$

$$E = \frac{1}{2} \stackrel{\circ}{\underset{j=1}{\circ}} (\hat{y}_{j} - y_{j})^{2} \rightarrow \frac{\parallel E}{\parallel \hat{y}_{j}} = \hat{y}_{j} - y_{j}$$
輸入层
$$Dw_{hj} = -h \frac{\partial E}{\partial w_{hj}} \frac{\parallel E}{\parallel w_{hj}} = \frac{\parallel E}{\parallel \hat{y}_{j}} \times \frac{\parallel \hat{y}_{j}}{\parallel b_{j}} \times \frac{\parallel b_{j}}{\parallel b_{j}}$$

$$\frac{\hat{y}_{j}}{\parallel y_{j}} = \hat{y}_{j} + \hat{y}_{j}$$

$$\frac{\P E}{\P w_{hj}} = \frac{\P E}{\P \hat{y}_j} \times \frac{\P \hat{y}_j}{\P b_j} \times \frac{\P b_j}{\P w_{hj}}$$

$$\frac{\P b_j}{\P w_{hj}} = b_h \quad \frac{\P E}{\P \hat{y}_j} = \hat{y}_j - y_j$$

$$\frac{\Re \hat{y}_j}{\P b_j} = f'(b_j - q_j) \qquad f'(x) = f(x)(1 - f(x))$$

$$= f(b_j - q_j)(1 - f(b_j - q_j))$$

$$= \hat{y}_j(1 - \hat{y}_j)$$

$$= (\hat{y}_j - y_j)\hat{y}_j(1 - \hat{y}_j)$$

$$= (\hat{y}_j - y_j)\hat{y}_j(1 - \hat{y}_j)$$

$$= hg_j b_h$$

$$\frac{\Re h + \Re E + \Re$$

$$Dw_{hj} = h\hat{y}_j(1-\hat{y}_j)(y_j-\hat{y}_j)b_h$$

$$\mathsf{D}q_j = -h\hat{y}_j(1-\hat{y}_j)(y_j-\hat{y}_j)$$

$$Dv_{ih} = hb_h(1 - b_h)\sum_{j=1}^{l} w_{hj}g_jx_i$$

$$Dg_h = -hb_h(1 - b_h)\sum_{i=1}^l w_{hi}g_i$$

网络训练过程

输入:训练集数据、学习速率yita

过程:

- 在(0,1)范围内随机初始化网络中所有连接权和阈值
- repeat
 - 根据网络输入和当前参数计算网络输出值y
 - 计算输出层神经元梯度项 g_i
 - 计算隐层神经元梯度项 e_h
 - 更新连接权值和阈值
- until达到停止条件
- 输出:连接权值和阈值

BP神经网络实现

$$y = x_1^2 + x_2^2$$

训练集数据: BPdata_tr.txt

测试集数据: BPdata_te.txt

	x_1	x_2	y
0	0.29	0.23	0.14
1	0.50	0.62	0.64
2	0.00	0.53	0.28
3	0.21	0.53	0.33
4	0.10	0.33	0.12
5	0.06	0.15	0.03
6	0.13	0.03	0.02
7	0.24	0.23	0.11
8	0.28	0.03	0.08
9	0.38	0.49	?
10	0.29	0.47	?

BP神经网络实现

映射函数

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

def sigmoid(x): #映射函数

return 1/(1+math.exp(-x))

import math

import numpy as np

import pandas as pd

from pandas import DataFrame,Seres

中间层神经元输入和输出层神经元输入

#中间层神经元输入和输出层神经元输入

 $Net_in = np.array([0,0,-1])$

Out_in = np.array([0,0,0,0,-1])

中间层和输出层神经元权值及其变化量

#中间层和输出层神经元权值及其变化量

w_mid = np.zeros([3,4])
w_out = np.array([0.3,0.3,0.3,0.3,0.3])
delta_w_mid = np.zeros([3,4])
delta w out = np.array([0,0,0,0,0])

中间层的输出

#中间层的输出

for i **in** range(4):

Out_in[i] = sigmoid(sum(w_mid[:,i]*Net_in))

#输出层的输出/网络输出

res = sigmoid(sum(Out_in*w_out))
error = abs(res-real)

输出层权值变化量

$$Dw_{hj} = h\hat{y}_j(1 - \hat{y}_j)(y_j - \hat{y}_j)b_h$$

$$Dq_{j} = -h\hat{y}_{j}(1-\hat{y}_{j})(y_{j}-\hat{y}_{j})$$

#输出层权值变化量

delta_w_out = yita*res*(1-res)*(real-res)*Out_in
delta_w_out[4] = -(yita*res*(1-res)*(real-res))
w out = w out+delta w out

中间层权值变化量

$$Dv_{ih} = hb_h(1 - b_h)\sum_{j=1}^{l} w_{hj}g_jx_i$$

$$Dg_h = -hb_h(1 - b_h)\sum_{j=1}^l w_{hj}g_j$$

#中间层权值变化量

for i **in** range(4):

delta_w_mid[:,i] = yita*Out_in[i]*(1-Out_in[i])*w_out[i]*res*(1-res)*(real-res)*Net_in
 delta_w_mid[2,i] = -(yita*Out_in[i]*(1-Out_in[i])*w_out[i]*res*(1-res)*(real-res))
w mid = w mid+delta w mid

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

$$y = f(x_1, x_2, x_3, x_4, x_5,...)$$

代码实现

Python (sklearn)

- Net = MLPClassifier(hidden_layer_sizes=10,max_iter=1000).fit(tr_data.ix[:,0:6],tr_data.ix[:,6])
- res = Net.predict(te_data.ix[:,0:6])

R (nnet)

nnet(x, y, size, softmax = FALSE, maxit = 100)

Thank you!