

분할정복법 Divide and Conquer

분할 정복법: Divide and Conquer

- 1. [Divide] 해결하고자 하는 문제를 하나 혹은 그 이상의 더 작은 크기의 동일한 문 제들로 분할한다.
- 2. [Conquer] 각각의 분할된 문제들을 순환적으로 해결한다.
- 3. [Combine] 분할된 문제들에 대한 해를 결합하여 원래 문제의 해를 구한다.

- ◎ 이진검색(binary search)
- 합병정렬(merge sort)
- 빠른정렬(quicksort)
- ∅ 거듭제곱(power)

$$power(x,n) = \begin{cases} 1 & n = 0 \\ power(x^2, n/2) & n \text{ is even} \\ x * power(x^2, (n-1)/2) & n \text{ is odd} \end{cases}$$

종이 자르기

예제

1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
0	0	0	0	1	1	0	0
0	0	0	0	1	1	0	0
1	0	0	0	1	1	1	1
0	1	0	0	1	1	1	1
0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1

N=8인 경우 (N은 항상 2의 거듭제곱수)

모든 조각들이 단일 색이 될 때 까지 4등분하면 몇개의 조각으로 나뉘어 지는가?

예제

1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
0	0	0	0	1	1	0	0
0	0	0	0	1	1	0	0
1	0	0	0	1	1	1	1
0	1	0	0	1	1	1	1
0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1

4등분한 후 각각의 subsquare에 대해서 카운트하여 더 한다.

Designing Recursion

S

```
int count( a square S )
{
  if S is uni-coloured
    return 1;
  else
    let S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub> be 4 sub-squares;
    return count(S<sub>0</sub>) + count(S<sub>1</sub>) + count(S<sub>2</sub>) + count(S<sub>3</sub>);
}
```

예제

```
(x,y)
int count( int x, int y, int size )
                                                                    size
  if (unicolor(x, y, size))
      return 1;
  else
      return count(x,y,size/2)
               + count(x,y+size/2, size/2)
               + count(x+size/2, y, size/2)
               + count(x+size/2, y+size/2, size/2);
```

시간 복잡도

unicolor 테스트

$$T(N) = 4T(N/2) + N^{2}$$

$$= 4\{4T(N/4) + (N/2)^{2}\} + N^{2} = 4^{2}T(N/2^{2}) + 2N^{2}$$

$$= 4^{2}\{4T(N/2^{3}) + (N/4)^{2}\} + 2N^{2} = 4^{3}T(N/2^{3}) + 3N^{2}$$
...
$$= 4^{k}T(N/2^{k}) + kN^{2}.$$

Let
$$N = 2^k$$
, then
$$T(N) = N^2 + N^2 \log N = O(N^2 \log N)$$

Better Solution

```
(x,y)
int count( int x, int y, int size )
   if (size==1)
                                                                   size
      return 1;
  else {
      int sum = count(x,y,size/2);
               + count(x,y+size/2, size/2)
               + count(x+size/2, y, size/2)
               + count(x+size/2, y+size/2, size/2);
      int tmp = grid[x][y] + grid[x][y+size/2]
              + grid[x+size/2][y] + grid[x+size/2][y+size/2];
      return (sum>4 | tmp!=0 && tmp!=4 ? sum : 1);
```

시간 복잡도

상수 시간
$$T(N) = 4T(N/2) + C$$

$$= 4\{4T(N/4) + C\} + C = 4^2T(N/2^2) + (1+4)C$$

$$= 4^2\{4T(N/2^3) + C\} + 5C = 4^3T(N/2^3) + (1+4+4^2)C$$

$$\cdots$$

$$= 4^kT(N/2^k) + C\sum^{k-1} 4^i = 4^kT(N/2^k) + \frac{4^k-1}{3}C$$

Let
$$N=2^k$$
, then
$$T(N)=N^2+\frac{N^2-1}{3}C=\Theta(N^2)$$

Counting Inversion

Counting Inversion

- ø i<j인데 a_i>a_j인 경우 (a_i,a_j)는 역전(inverted)되었다고 말한다.

1	2	3	4	5			
1	3	4	2	5			

Inversions 3-2, 4-2

- ◎ 역전된 쌍의 개수를 카운트하라.
- ◎ 응용: 어떤 두 수열이 얼마나 비슷한지에 대한 척도의 역할을 한다.

Counting Inversion

Brute Force

- ◎ 모든 쌍을 검사
- O(n²)

1. Divide: 둘로 나눈다.

Divide: O(1).

1. Divide: 둘로 나눈다. 2. 각각에서 역전된 쌍을 센다.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

1 5 4 8 10 2 6 9 12 11 3 7 Conquer: 2T(n/2)

5 blue-blue inversions

8 green-green inversions

5-4, 5-2, 4-2, 8-2, 10-2

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide: 둘로 나눈다.
 각각에서 역전을 센다.
 양쪽에 걸쳐있는 역전을 센다

Conquer: 2T(n/2)

Divide: O(1).

5 blue-blue inversions

8 green-green inversions

9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Combine: ???

Count: O(n)

- ∅ 각각을 정렬한다.
- ◎ 정렬된 두 리스트를 합병하면서 센다.

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

$$T(n) \leq T\Big(\left\lfloor n/2\right\rfloor\Big) + T\Big(\left\lceil n/2\right\rceil\Big) + O(n) \implies \mathrm{T}(n) = O(n\log n)$$

알고리즘

```
void count_and_sort( int data[], int s, int t )
 {
     if (t-s < 2)
         return 0;
     else {
         int mid = (s+t)/2;
         int x = count_and_sort( data, s, mid );
         int y = count_and_sort( data, mid+1, t);
         int z = merge_and_count( data, s, mid, t );
         return x+y+z;
```

합병정렬과 동일한 시간복잡도 O(NlogN)

merge_and_count

```
void merge_and_count( int data[], int s, int mid, int t )
{
    // Left as exercise
}
```

Closest Pair of Points

Closest Pair of Points

- ◎ 평면에 n개의 점들.
- ◎ 거리가 가장 가까운 한 쌍의 점을 찾아라.
- Brute Force: 모든 쌍을 검사. O(n²)
- 1차원 버전: O(nlog₂n). How?

First Attempt

☞ 평면을 4개의 영역으로 분할

◎ 각 영역이 동일한 개수의 점들을 가지도록 만들수 없음

1. 분할: 절반의 점들이 포함되도록 양분

1. 분할: 절반의 점들이 포함되도록 양분

2. 정복: 각 영역에서 가장 가까운 쌍을 찾음

1. 분할: 절반의 점들이 포함되도록 양분

2. 정복: 각 영역에서 가장 가까운 쌍을 찾음

3. 합병: 양쪽을 연결하는 가장 가까운 쌍을 찾은 후 셋 중 최소를 선택

양쪽을 연결하는 가장 가까운 쌍

◎ 양쪽에서 찾은 가장 가까운 쌍들중 거리의 최소값을 δ

- ◎ 분할선의 양쪽으로 거리 δ 이내의 점들만 보면 됨
- ∅ 서로간의 거리가 δ 이내인 점들만 보면 됨

양쪽을 연결하는 가장 가까운 쌍

- δ-strip 내의 점들을 y좌표를 기준으로 정렬
- ▼ 동일 영역에 속한 점들끼리는 최소한 δ만큼 떨어져 있음

양쪽을 연결하는 가장 가까운 쌍

<u>주장</u>: 만약 |i-j|≥12 이면, 두 점간의 거리는 δ이 상이다.

<u>증명</u>: $\delta/2*\delta/2$ 사각형 내에 두 점이 있을 수 없다.

즉, y좌표로 정렬된 순서상 서로 11칸 이내에 있는 점들간의 거리만 계산해서 비교하면 된다.

알고리즘

```
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                       O(n log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                       2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                       O(n)
                                                                       O(n log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                       O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

시간복잡도

$$T(n) \le 2T(\frac{n}{2}) + O(n\log n) = O(n\log^2 n)$$

- Q. O(nlog₂n)으로 가능?
- A. Yes, but 조금 더 복잡.

Convex Hull

Convex Hull

- ◎ 평면상에 n개의 점이 주어짐
- ☞ 출력: 다각형을 이루는 꼭지점들을 시계방향 순으로 출력

Convex Hull Algorithms

- Jarvis march O(nh)
 - \circ h: the number of points in the hull. Worst case $\Theta(n^2)$.
- Graham scan O(nlogn)
- Quickhull
 - average case O(nlogn), but O(n²) in the worst case.
- Divide and conquer O(nlogn)
- The ultimate planar convex hull algorithm O(nlogh)
 - The first optimal output-sensitive algorithm
- Chan's algorithm O(nlogh)

Divide and Conquer

1. Divide

- x좌표순으로 정렬한 후 절반으로 분할

Divide and Conquer

2. Conquer

- 각각에 대해서 convex hull을 recursion으로 구함

양쪽 convex hull에 속하는 꼭지점들의 시계 방향 리스트를 가지고 있다.

3. Merge

두 convex hull의 upper tangent line과 lower tangent line을 찾는다.

두 tangent line의 양 끝 꼭지점을 알면 전체 convex hull의 꼭지점을 시계방향으로 출력할 수 있다.

3. Merge

왼쪽 convex hull의 가장 오른쪽 꼭지점 q와 오른쪽 convex hull의 가장 왼쪽 꼭지점 p를 연결하는 선분을 생각해본다.

3. Merge

r은 왼쪽 convex hull에서 반시계방향으로 q 다음 꼭지점이다.

rightmost point q leftmost point p

p → q → r이 좌회전인지 우회전인지 판단한다. 이 예에서는 **우회전**이다. 만약 우회전이면 꼭지점 q를 포기하고 r이 새로운 q가 된다.

3. Merge

왼쪽 convex hull에서 r은 항상 반시계방향으로 q 다음 꼭지점이다.

rightmost point

다시 $p \rightarrow q \rightarrow r0$ 좌회전인지 우회전인지 판단한다. 이 예에서는 여전히 **우회전**이다. 만약 우회전이면 꼭지점 q를 포기하고 r이 새로운 q가 된다.

3. Merge

왼쪽 convex hull에서 r은 항상 반시계방향으로 q 다음 꼭지점이다.

다시 p → q → r이 좌회전인지 우회전인 지 판단한다. 이 예에서는 미세하지만 **작회전**이다. 그러면 OK.

3. Merge

오른쪽 convex hull에서 r은 항상 시계방향으로 p 다음 꼭지점이다.

q → p → r'이 좌회전인지 우회전인지 판단한다. 이 예에서는 **좌회전**이다. 만약 좌회전이면 꼭지점 p를 포기하고 r'가 새로운 p가 된다.

3. Merge

오른쪽 convex hull에서 r'는 항상 시계방향으로 p 다음 꼭지점이다.

 $q \rightarrow p \rightarrow r'$ 가 좌회전인지 우회전인지 판단한다. 이 예에서는 **우회전**이다. 그러면 OK.

3. Merge

하지만 p가 바뀌는 바람에 p→ q → r이 다시 우회전이 되어버렸다. 다시 이전 과정을 반복한다.

3. Merge

이런 과정을 좌우를 번갈아 가면서 p → q → r은 좌회전, q → p → r'은 우회전이 될때 까지 반복한다.

이렇게 해서 찾아진 q와 p를 연결 하는 선분이 두 convex hull의 upper tangent line이 된다.

3. Merge

Lower tangent line을 찾는 과정은 upper tangent line을 찾는 방법에서 좌·우, 그리고 시계방향·반시계방향만 반대로 바꾸면 된다.

3. Merge

Convex hull을 구성하는 꼭지점은 왼쪽 convex hull에서 시계방향으로 x에서 u까지, 그리고 오른쪽 convex hull에서 시계방향으로 v에서 y까지이다.

시간복잡도

2개의 tangent line을 찾아서 합병하는 일들이 O(n)시간이 되도록 구현하면 된다.

$$T(n) = 2T(\frac{n}{2}) + n = O(n\log n)$$

좌회전? 우회전?

(p2-p0)가 (p1-p0)로부터 시계방향인지 반시계방향인지 검사, 즉,

$$(p_1 - p_0) \times (p_2 - p_1) = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)$$

$$= \begin{cases} > 0 & \text{left turn} \\ < 0 & \text{right turn} \\ 0 & \text{colinear} \end{cases}$$