Robert Bara Assignment 1-Boost Converter Analysis

Friday, January 28, 2022

10:43 AM

Assignment #1

- Assignment #1: For the boost converter shown below (considering losses at inductor resistance),
- 1) If $f_s = 10$ kHz, V = 40 V, $V_g = 20$ V, R = 5 Ω , $R_L = 0.2$ Ω (inductor resistance), D < 80%, please draw the waveforms of v_L and i_C (voltage and current ripples are not considered, the values of v_L and i_C should be shown in the waveforms).

$$M = \frac{V}{V_q} = \frac{V \cdot 0}{20} = \lambda$$

$$M = \frac{1}{1-0}$$
for Boost Conner

$$M = \frac{1}{1-0} = \lambda = \frac{1}{1-0} = \frac{1}{2} = -b = \frac{1}{2} - 1 = 2b = 1 = \frac{1}{2}$$

$$= 2 = \frac{1}{2} = -b = \frac{1}{2} - 1 = 2b = 1 = \frac{1}{2}$$

$$= 2 = \frac{1}{2} = -b = \frac{1}{2} - 1 = 2b = 1 = \frac{1}{2}$$

$$= 2 = \frac{1}{2} = -b = \frac{1}{2} - 1 = 2b = 1 = \frac{1}{2}$$

KUL:
$$-V_q + v_{LGS} + v_{R_LGS} = 0$$

 $v_LGS = V_q - iGSR_L$

Small Ripple approximation: Necto = 1 45 = I

Dosition L:

Find the Period of the signal

DTS= 1/2 (0.00) =500

DT5=(1-2)(-10)=500

