Revisão Prova 1 de Circuitos Digitais

Erickson Giesel Müller

16 de Maio de 2024

1 Conteúdos

- 1. Algebra de Boole
- 2. Circuitos, Tabela-Verdade e Expressões
- 3. Conversão de Expressões Booleanas (Soma de Produtos e Produtos de Soma)
- 4. Simplificação Algébrica
- 5. Mapas de Karnaugh

2 Algebra de Boole

Algebra de Boole é a matemática dos circuitos digitais, calculada usando variáveis e seus valores, é através dela que podemos demonstrar o que acontece nas portas lógicas. Uma variável pode assumir o valor 0 ou 1. Se a Variável A for 1, o complemento dessa variável será 0, denominado A negado ou \overline{A} .

2.1 Adição Booleana

É o equivalente à porta lógica OR. Se um dos dois termos à serem somados for 1, o resultado será 1.

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

2.2 Diferença entre $\overline{A} + \overline{B}$ e $\overline{A+B}$

A	В	$\overline{A} + \overline{B}$
0	0	1
0	1	1
1	0	1
1	1	0

A	В	A + B
0	0	1
0	1	0
1	0	0
1	1	0

2.3 Multiplicação Booleana

A multiplicação é equivalente à porta AND e o resultado será 1 quando todas as variáveis da multiplicação forem 1. A diferença entre $\overline{A}.\overline{B}$ e $\overline{A}.\overline{B}$ é que $\overline{A}.\overline{B}$ será 1 quando A e B forem 0, já $\overline{A}.\overline{B}$ será 1 quando A e B forem diferentes de 1.

Α	В	A.B
	ם	
0	0	0
0	1	0
1	0	0
1	1	1

A	В	$\overline{A}.\overline{B}$
0	0	1
0	1	0
1	0	0
1	1	0

A	В	$\overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

Podemos perceber que $\overline{A}+\overline{B}$ é igual a $\overline{A.B}$; e $\overline{A+B}$ é igual a $\overline{A.B}$. Teorema de DeMorgan.

3 Mapa de Karnaugh

O mapa de Karnaugh é muito utilizado em questões em que o professor pede para montar um circuito de acordo com tais requisitos, como por exemplo:

1. Monte um circuito em que a saída S tem sinal de **nível lógico ALTO** quando A é 0 e B e C são iguais

Nesse caso, o circuito que iremos montar tem 3 variáveis, portanto vamos fazer um mapa de Karnaugh 2x4, de 8 minitermos:

A seguir, um mapa de Karnaugh com 4 entradas:

4 Diferença entre Mintermo e Maxitermo

Soma de Produtos (Mintermo) Produto de Somas (Maxitermo)

5 Descobrindo a Expressão Booleana usando a Tabela-Verdade

Quando temos menos 1 que 0 na tabela-verdade, utilizamos soma de produtos com os mintermos que deram 1. Por exemplo:

$$ABC + A\overline{C} + AB$$

A	В	С	\mathbf{S}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Para obtermos a expressão, pegamos os mintermos que deu 1 e negamos a variável que está zerada. Por exemplo no mintermo 4. A, B, C = (1,0,0). Portanto, o primeiro item da soma de produtos é $A.\overline{B}.\overline{C}$.

Agora por produto de somas:

 $A.B + A.C + \overline{A}$

A	В	С	S
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Nesse caso, pegamos os maxitermos que deu 0 e negamos as

variáveis que está ALTA. Portanto, o primeiro item do produto de somas é $\overline{A} + B + C$.