(Almost) 200 Years of News-Based Economic Sentiment

Jules H. van Binsbergen, Svetlana Bryzgalova, Mayukh Mukhopadhyay, Varun Sharma

解读:王梦涵

2025年1月15日

Motivation

- Economic sentiment is important to understand the business cycle
 - Sentiment shocks can affect real economic activity (Shapiro et al., 2022).
- Existing economic sentiment measures are limited by short time spans or low granularity.
 - Surveys
 - Constructed from the text data of economic news
- Use a historical collection of 170 years of digitized newspapers to construct economic sentiment
 - 1 billion articles, 200 million pages from 13,000 local newspapers

Challenges

- Large size text corpus and focus on historical data
 - BERT and ChatGPT are not feasible
- Traditional dictionary methods rely on manually created dictionary and word-count techniques
 - Hard to create dictionary mutually for such a long period
 - May omit complex patterns of language by ignoring context, sequence of words
- Thus, this paper uses Word2vec + Sentprop + Smooth Inverse Frequency
 - Automatically constructed dictionary
 - Measure sentiment through a word vector approach

Question

- Q1: Does the new sentiment measure effective?
 - Yes
- Q2: Can economic sentiment predict GDP growth rates?
 - Yes, for nation-level and state-level
 - Its predictability surpasses the survey of professional forecasters.
 - It operates mainly through the labor channel rather than the capital one
- Q3: How does economic sentiment interact with the monetary policy?
 - Sentiment has a large influence on the key policy rate

Contribution

- Literature on economic sentiment measure derived from newspaper articles
 - Prior: National, short time series
 - Ext: Expands existing measures in both the time series and the cross-section
- Literature on Textual analysis in the economics and finance
 - Prior: Rely on manually created sentiment dictionary and simple word counts
 - Ext: Relies on automatically constructed dictionaries and word vector approach
- Literature on expectational distortions of fundamentals and/or financials and their importance for real outcomes
 - Prior: Focuse on predicting stock returns and behavioral biases
 - Ext: Predict future fundamentals and posits sentiment can be rational

Data

- Newspaper:1850-2020,47/50 states,city-level
 - 1 billion articles, 200 million pages from 13,000 local newspapers
- University of Michigan Consumer Sentiment survey()
- Macroeconomic data from FRED/Maddison Project Database(Quarter)
 - Real GDP per capita; CPI for all urban consumers;total non-farm payroll employment;gross private domestic investment; industrial production;real personal consumption expenditures
 - Forecasts of macroeconomic variables
- Federal funds rate (FFR)

Economic sentiment

- Word2vec
 - Generate word embeddings by capturing semantic relationships from context
 - Window: 10 words; Vector length:300
- Sentprop: a label propagation algorithm that
 - Classifies all the words in the dictionary, beginning with a few initial seeds
 - Assigns continuous polarity scores to each word
- Smooth Inverse Frequency(SIF): method for generating document vector
 - Computing a weighted average of word embeddings $(w_i = \frac{a}{a + p(w_i)})$
 - Remove the first principal component to reduce noise('a','the'..)

Data: Economic sentiment

How to measure economic sentiment?

Data: Economic sentiment

- Text-based sentiment has overall increasing negativity bias
- Original economic sentiment can be debiased by the non-economic sentiment

Q1: Does the new sentiment measure effective?

News-based sentiment VS survey sentiment

Q1: Does the new sentiment measure effective?

State-level economic sentiment

SC: decline during the dot-com crash; NY: decline during the GFC

Q2:Economic sentiment and economy- predict GDP

• $\Delta In(GDP)_t = \sum_{n=1,2,...,6} \theta_n \Delta Sent_{t-n} + \gamma \Delta In(GDP)_{t-1} + \beta TermSpread_{t-1} + \epsilon_t$

	$\Delta ln(GDP_t)$										
	I	II	III	IV	V	VI	VII	VIII	IX		
$\Delta ln(GDP_{t-1})$	0.355** (5.91)	** 0.356** (5.79)	•	0.333** (5.57)	* 0.335** (5.48)	•		0.327*** (5.17)	0.330*** (5.15)		
$Term\ Spread_{t-1}$		0.072* (1.97)			0.063* (1.69)			0.060 (1.59)	0.060 (1.58)		
$\Delta Sent_{t-1}$			0.333** (3.88)	** 0.255** (2.78)	* 0.242** (2.60)	* 0.421*** (4.05)	0.390*** (3.53)	0.288*** (2.73)	0.250** (2.23)		
$\Delta Sent_{t-2}$						0.167* (1.67)	0.176* (1.73)	-0.015 (-0.16)	-0.006 (-0.06)		
$\Delta Sent_{t-3}$						0.317*** (2.60)	0.316** (2.58)	0.225** (2.04)	0.223** (2.01)		
$\Delta Sent_{t-4}$						0.267** (2.23)	0.267** (2.20)	0.152 (1.37)	0.151 (1.35)		
$\Delta Sent_{t-5}$						0.074 (0.74)	0.055 (0.54)	0.007 (0.08)	-0.017 (-0.18)		
Q4 Dummy							-0.107 (-0.90)		-0.131 (-1.05)		
$\Delta Sent_{t-1} \times Q4Dummy$							0.051 (0.25)		0.057 (0.30)		
F statistic ($\Delta Sent$ (t-2 to t-n)) P-value (all $\Delta Sent$ (t-2 to t-n)) Observations Adjusted R-squared	290 0.12	290 0.13	290 0.04	290 0.14	290 0.15	2.235 0.065 290 0.06	2.242 0.065 290 0.06	2.499 0.043 290 0.16	2.435 0.048 290 0.16		

			$\Delta ln(G$	$SP_{s,t})$		
	I	П	Ш	IV	V	VI
$\Delta Sentiment_{s,t-1}$	0.263 (0.268)	0.648** (0.273)	0.723** (0.287)	-0.153 (0.320)	0.182 (0.342)	0.247 (0.357)
$\Delta Sentiment_{s,t-2}$		1.244** (0.246)	* 1.362** (0.273)	*	0.777** (0.274)	** 0.901** (0.302)
$\Delta Sentiment_{s,t-3}$		1.156** (0.289)	* 1.321** (0.329)	*	1.017** (0.289)	* 1.173** (0.330)
$\Delta Sentiment_{s,t-4}$		1.301** (0.283)	* 1.455** (0.288)	•	1.281** (0.289)	* 1.424** (0.293)
$\Delta Sentiment_{s,t-5}$			0.334 (0.257)			0.353 (0.266)
$\Delta Sentiment_{s,t-6}$			0.740** (0.319)			0.611* (0.321)
$\Delta ln(GSP_{s,t-1})$				0.028 (0.022)	0.013 (0.024)	0.010 (0.025)
$\Delta ln(GDP_{t-1})$				0.488** (0.055)	** 0.421** (0.071)	** 0.404** (0.075)
$\Delta National Sentiment_{t-1}$				0.229 (0.186)	0.276 (0.192)	0.305 (0.193)
Controls	No	No	No	Yes	Yes	Yes
Observations R-squared	$\frac{1,172}{0.00}$	1,172 0.03	$\frac{1,172}{0.03}$	$\frac{1,172}{0.03}$	1,172 0.04	$\frac{1,172}{0.05}$

Local and national sentiment changes predict GDP growth

Q2:Economic sentiment and economy- predict GDP

• GDPForecast: The Survey of Professional Forecasters(1968-)

	$GDP\ Forecast_{t,t+1}$										
	I	П	III	IV	V	VI	VII				
$GDP\ Forecast_{t-1}$	0.786*** (13.15)	0.727*** (12.52)		0.770*** (11.90)	0.716*** (11.82)		0.726*** (12.43)				
$Term\ Spread_{t-1}$		0.057*** (3.85)			0.054*** (3.68)		0.054*** (3.73)				
$\Delta Sent_{t-1}$			0.154*** (3.35)	0.094*** (3.10)	0.084*** (3.05)	0.205*** (3.98)	0.082*** (2.89)				
$\Delta Sent_{t-2}$						0.151*** (3.39)	-0.038 (-1.06)				
$\Delta Sent_{t-3}$						0.163*** (3.30)	0.020 (0.47)				
$\Delta Sent_{t-4}$						0.118** (2.31)	0.004 (0.12)				
$\Delta Sent_{t-5}$						0.058 (1.28)	-0.001 (-0.04)				
F statistic (ΔSent (t-2 to t-n))						3.708	0.971				
P-value ($\Delta Sent$ (t-2 to t-n))						0.006	0.425				
Observations	204	204	204	204	204	204	204				
Adjusted R-squared	0.62	0.65	0.05	0.63	0.67	0.11	0.67				

Economic sentiment leads the survey of professional forecasters:

Q2:Economic sentiment and economy- predict GDP

Source of the predictability: Capital and labor

		Δln	(Investm	ent_t)	Δ	dn(Indv	istrialPt	$strialProduction_t$)				
	I	П	Ш	IV	v	VI	VII	VIII	IX	X		
$\Delta ln(Investment_{t-1})$	0.738*** (13.70)			0.738*** (13.79)	0.743*** (13.83)							
$Term\ Spread_{t-1}$	-0.046** (-2.08)			-0.044** (-1.99)	-0.045** (-2.08)	0.225* (1.88)			0.226* (1.89)	0.215* (1.78)		
$\Delta Sent_{t-1}$		-0.073 (-0.90)	-0.073 (-0.66)	-0.038 (-0.72)	-0.019 (-0.34)		0.472 (0.99)	0.826* (1.74)	-0.039 (-0.09)	0.133 (0.33)		
$\Delta Sent_{t-2}$			0.016 (0.12)		0.108 (1.54)			0.739* (1.97)		0.213 (0.58)		
$\Delta Sent_{t-3}$			-0.043 (-0.32)		-0.024 (-0.38)			1.152** (3.27)		0.702* (1.81)		
$\Delta Sent_{t-4}$			-0.018 (-0.14)		0.032 (0.44)			0.450 (1.03)		-0.060 (-0.15)		
$\Delta Sent_{t-5}$			-0.030 (-0.24)		-0.006 (-0.10)			0.092 (0.25)		0.061 (0.20)		
$\Delta ln(IndustrialProduction_{t-1})$						0.409** (3.92)	•		0.410*** (4.13)	0.402** (4.04)		
F statistic ($\Delta Sent$ (t-2 to t-n)) P-value ($\Delta Sent$ (t-2 to t-n))			0.175 0.951		1.062 0.376			3.144 0.015		0.873 0.480		
Observations Adjusted R-squared	290 0.61	290 -0.00	290 -0.01	290 0.61	290 0.61	$\frac{399}{0.17}$	$\frac{399}{0.00}$	399 0.01	$\frac{399}{0.17}$	$\frac{399}{0.17}$		

		$\Delta ln(Employment_t)$						$\Delta ln(Consumption_t)$					
	I	П	Ш	IV	v	VI	VII	VIII	IX	X			
$\Delta ln(Employment_{t-1})$	0.757*** (14.73)			0.748*** (14.65)	0.748*** (16.61)								
$Term\ Spread_{t-1}$	0.042** (2.29)			0.036* (1.94)	0.036* (1.85)	0.068 (1.50)			0.064 (1.40)	0.05 (1.27)			
$\Delta Sent_{t-1}$		0.249** (3.11)	* 0.339*** (3.67)	0.154*** (3.06)	0.159*** (2.92)		0.135** (2.04)	0.202** (2.55)	0.106 (1.34)	0.17			
$\Delta Sent_{t-2}$			0.315*** (2.71)		0.005 (0.06)			0.185** (2.13)		0.16			
$\Delta Sent_{t-3}$			0.258* (1.79)		-0.014 (-0.16)			0.234** (2.21)		0.21			
$\Delta Sent_{i-4}$			0.241* (1.76)		0.049 (0.70)			0.126 (1.11)		0.11			
$\Delta Sent_{t-5}$			0.107 (0.97)		-0.029 (-0.52)			0.097 (1.19)		0.10			
$\Delta ln(Consumption_{t-1})$						0.083 (0.52)			0.071 (0.44)	0.03			
F statistic ($\Delta Sent$ (t-2 to t-n))			2.234		0.736			1.581		1.07			
P-value (\Delta Sent (t-2 to t-n))			0.065		0.568			0.179		0.36			
Observations	322	322	322	322	322	290	290	290	290	290			
Adjusted R-squared	0.56	0.02	0.06	0.57	0.57	0.01	0.01	0.02	0.02	0.03			

It predicts employment and consumption only.

Q3:Interaction between economic sentiment and monetary policy

- Taylor Rule: $i_t = r^* + \pi_t + \alpha(\pi_t \pi^*) + \beta(\mathbf{y}_t \mathbf{y}^*)$
- Sentiment could induce the Fed to deviate from the Taylor rule

	I	II	III	IV
$\Delta Sent_{t-1,t-7}$		0.063** (2.13)	0.037* (1.67)	0.032 (1.41)
$\Delta Sent_{t-1,t-7} \times Recession_{t-1}$			0.195* (1.95)	0.198** (1.98)
Predicted GDP Growth	0.197** (2.68)	* 0.119 (1.34)	0.113 (1.29)	0.072 (0.86)
Predicted GDP Growth (Two Quarters Ahead)				0.073 (1.10)
Specification	R&R	R&R	R&R	R&R
Observations	346	346	346	346
Adjusted R-squared	0.24	0.25	0.27	0.27

Sentiment remains predictive beyond its effect on GDP growth.

New ideas

- Explore the role of sector-specific sentiment in predicting economic outcomes
- Cross-regional sentiment dispersion in different country;eg: China VS US
- New approach to use dictionary method in textual analysis
 - Social media text
 - Other large text data...

