Детерминизация конечного автомата

Кузнецов А.Д.

Оглавление

1	Краткая теоретическая часть				
	1.1	Автомат	2		
	1.2		3		
2	Пос	становка задачи	3		
3	Алгоритм детерминизации автомата				
	3.1	Удаление λ -переходов	4		
	3.2	Детерминизация КНА	4		
		Оценка сложности алгоритма	4		
	3.4	Обоснование корректности работы алгоритма	4		
4	Реализация алгоритма детерминизации автомата				
	4.1	Кодирование автоматов (реализация классов)	4		
	4.2	Реализация алгоритма удаления λ -переходов	4		
	4.3	Реализация алгоритма детерминизации КНА	4		
	4.4	Уязвимые для критики места	4		
5	Тестирование				
	5.1	Unit-тестирование	4		
		Умное тестирование	4		

6	Использование алгоритма				
	6.1	Формат файла-автомата (.fsa)	4		
	6.2	Компиляция и запуск основной программы	4		
7	Зак	лючение	4		

1 Краткая теоретическая часть

Ниже приводятся определения и утверждения, которые будут использованы для дальнейших пояснений к реализации алгоритма детерминизации.

1.1 Автомат

Конечный недетерминированный автомат (КНА) M — это кортеж вида

$$M = (A, Q, q_0, F, \delta),$$

где

- $A = \{a_0, a_1, \dots, a_{m-1}\}$ входной алфавит, т.е. множество символов, причем конечное : |A| = m;
- $Q = \{q_0, q_1, \dots, q_{n-1}\}$ множество состояний автомата, тоже конечное: |Q| = n;
- q_0 начальное состояние автомата, то есть $q_0 \in Q$;
- $F \subset Q$ выходные состояния автомата;
- $\delta: Q \times A \to 2^Q$ функция переходов автомата.

Если в автомате разрешены переходы по пустому символу, то входной алфавит дополняется фиктивным символом λ (в иностранной литературе его чаще обозначают ε). В таком случае автомат называют λ -КНА

 $(\varepsilon\text{-FSA})$. Входной алфавит при этом будем обозначать так же, то есть если речь идет о $\lambda\text{-KHA}$, то подразумевается, что $A \leftarrow A \cup \{\lambda\}$, а мощность |A| = m+1.

Конечный детерминированный автомат (КДА) M — это такой КНА, где функция переходов δ выглядит так:

$$\delta: Q \times A \to 2^Q$$
,

т.е. из любого состояния по любой букве возможен переход в точности в одно состояние - это и обеспечивает детерминированность работы такого автомата.

1.2 Теорема Клини

Пусть $A = \{a_0, ..., a_{n-1}\}$ - произвольный алфавит. Язык $L \subseteq A^*$ является элементом полукольца регулярных языков R(A) в алфавите A тогда и только тогда, когда он допускается некоторым конечным автоматом.

2 Постановка задачи

Теперь сформулируем задачу в вышеуказанных терминах:

Реализовать алгоритм преобразования λ -КНА M в КНА \hat{M} так, чтобы распознаваемые ими языки совпадали, т.е. $L(M) = L(\hat{M})$.

3	А проритм	детерминизации	автомата
J	Алгоритм	детерминизации	abiomaia

- 3.1 Удаление λ -переходов
- 3.2 Детерминизация КНА
- 3.3 Оценка сложности алгоритма
- 3.4 Обоснование корректности работы алгоритма
- 4 Реализация алгоритма детерминизации автомата
- 4.1 Кодирование автоматов (реализация классов)
- 4.2 Реализация алгоритма удаления λ -переходов
- 4.3 Реализация алгоритма детерминизации КНА
- 4.4 Уязвимые для критики места
- 5 Тестирование
- 5.1 Unit-тестирование
- 5.2 Умное тестирование
- 6 Использование алгоритма
- 6.1 Формат файла-автомата (.fsa)
- 6.2 Компиляция и запуск основной программы
- 7 Заключение 4

Реализовано все круто, добавить нечего, почаще бы так писали код.