# Brute-forcing Monte Carlo Simulation

#### Radu Briciu

BSc Finance (Hons)
University of Westminster

City, University of London Faculty of Finance

February 1, 2025

#### Overview

In this session we explore a proposed method for estimating nonlinear stochastic functions in the context of path dependent financial derivatives

1. Financial Derivatives

2. Remedy

#### Financial Derivatives

What are financial derivatives?



#### Financial Derivatives

We can begin thinking about the problem by advancing on the illustrious concept of the Myron Black and Fischer Scholes pricing model for plain European call options.

$$C_t = S_t N(d_1) - Ke^{-r(T-t)} N(d_2)$$
 (1)

(2)

where

$$d_1 = \frac{\ln(\frac{S}{K}) + (r + \frac{\sigma^2}{2})(T - t)}{\sigma\sqrt{T - t}} \text{ and}$$
 (3)

$$d_2 = d_1 - \sigma \sqrt{T - t} \tag{4}$$

#### Financial Derivatives

Problems with the classical Black-Scholes model (as presented):

- Constant volatility
- Arbitrage free
- Instantaneous returns
- No dividends
- Cannot price complex financial derivatives

## The Heston (1993) Model

- Geometric Brownian Motion
- Arbitrary correlation between asset volatility and return

$$dS_t = \left(r - \frac{v_t}{2}\right)dt + \sqrt{v_t}\left(\rho dW_t + \sqrt{1 - \rho^2}dB_t\right)$$
 (5)

$$dv_t = \kappa(\theta - v_t)dt + \eta\sqrt{v_t}dW_t \tag{6}$$

- 1.  $v_0$  represents the initial variance,
- 2.  $\theta$  is the long-run variance,
- 3. ho is the correlation between the log-price process and its volatility,
- 4.  $\kappa$  is the mean reversion of the variance to  $\theta$ ,
- 5.  $\eta$  is the volatility of the variance process, and
- 6.  $B_t$ ,  $W_t$  are continuous random walks.

### **Applications**

Calibration of the Heston (1993) model permits usage of more sophisticated pricing algorithms in determining a correct asset price. We are able to leverage path-dependent dynamics of the underlying price to create more sophisticated financial derivative products. One such example is the *Asian* option:

$$C_t^{\text{Asian}} = e^{-r(T-t)} \times \frac{1}{m} \sum_{i=1}^m (S_T^{\text{avg}} - K)^+$$
 (7)

(8)

where  $S_{\mathcal{T}}^{\mathsf{avg}}$  is the average price of the underlying spot price

#### References

[1] Radu Briciu. "Estimating non-linear stochastic functions from generated structured data using multi-layer perceptron models with applications to pricing path-dependent financial derivatives". In: (Jan. 2025). DOI: 10.2139/ssrn.5104328. URL: https://papers.ssrn.com/abstract=5104328 (visited on 01/21/2025).

# The End