Exercice 1

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction continue admettant une limite ℓ en $+\infty$. Montrer que $\int_0^{+\infty} f(t) dt$ est divergente si $\ell \neq 0$.

Exercice 2

Démontrer que $\int_0^\infty f(t) dt$ est convergente. On pourra faire une intégration par partie.

Exercice 3

Soit $\alpha \in \mathbb{R}$, déterminer une condition nécessaire et suffisante sur α pour que $\int_0^\infty t^{\alpha-1}e^{-t} dt$ soit convergente.

Exercice 4

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue.

- 1. Montrer que $\int_0^1 \frac{f(x)}{\sqrt{x}} dx$ est convergente. On pourra utiliser le théorème sur l'image d'un segment par une fonction continue.
- 2. Montrer que si f est strictement positive, $\int_0^1 \frac{f(x)}{x} dx$ est divergente.
- 3. Établir la même conclusion en supposant seulement que f(0) > 0.

Exercice 5

Pour x > 0, on note $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.

- 1. Montrer que cette intégrale est bien définie pour tout x > 0.
- 2. Justifier $\forall x > 1$, $\Gamma(x) = (x-1)\Gamma(x-1)$ et calculer $\Gamma(n)$ pour $n \in \mathbb{N}^*$.

Exercice 6

Calculer les intégrales suivantes :

$$\int_0^\infty \frac{\mathrm{d}t}{(t+1)(t+2)} \qquad \int_0^\infty \frac{\mathrm{d}t}{(e^t+1)(e^{-t}+1)}$$

$$\int_0^\infty \ln(1+\frac{1}{t^2}) \, \mathrm{d}t \qquad \int_0^\infty \exp(-\sqrt{t}) \, \mathrm{d}t$$

$$\int_0^\infty \frac{\mathrm{d}t}{\sqrt{e^t+1}} \qquad \int_0^\infty \frac{\mathrm{d}t}{\mathrm{sh}(t)}$$

$$\int_0^1 \frac{\ln(t)}{\sqrt{t}} \, \mathrm{d}t$$

Exercice 7

Soit $f: [0, +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ telle que } f \text{ et } f' \text{ soient intégrables sur } [0, +\infty[$. Montrer que f tend vers 0 en $+\infty$.

Exercice 8

Soit $f:[0,+\infty[$ une fonction continue par morceaux. On suppose que $\int_0^\infty f(t)\,\mathrm{d}t$ est convergente. Montrer que $\int_x^{x+1} f(t)\,\mathrm{d}t \xrightarrow[x\to+\infty]{} 0$

Exercice 9

Montrer l'existence et déterminer la valeur de $I(a) = \int_0^\infty \sin(t)e^{-at}$.

Exercice 10

Soit f définie par $f(a) = \int_1^\infty \frac{dt}{t^a + 1}$.

- 1. Pour quelles valeurs de a f est-elle bien définie?
- 2. Montrer que f est décroissante de limite nulle.