5. Funktionen mit mehreren Veränderlichen

Funktionen mit mehreren Variablen

Definition n-dimensionaler Raum

Die Menge $R^n=\{x=(x_1,x_2,...,x_n)\,/\,x_i\in R, i=1,2,..,n\}$ heißt n-dimensionaler Raum. Ein $x\in R^n$ nennen wir Punkt oder auch Vektor. beschreibt Körper oder Fläche bei variablen (fläche)

Definition n-dimensionaler Raum

Sei $D_f \subseteq R^n$ eine Menge. Ordnet man jedem Punkt $x \in D_f$ eine Zahl f(x) zu, so ist eine Funktion $f \colon D_f \to R$ von n Variablen x_1, \dots, x_n mit dem Wertebereich W_f definiert.

Im folgenden diskutieren wir den Fall n=2 und nennen die Variablen statt x_1 und x_2 nun x und y.

Beispiel: $f(x, y) = x^2 + y^2 - 2$

Partielle Ableitungen und Gradient

Bei Funktionen einer Variablen spricht man von der ersten Ableitung. Bei Funktionen mit mehreren Variablen, muss gesagt werden, nach welcher abgeleitet wird.

Definition Partielle Ableitung

Sei $D_f \subseteq R^2 \to R$ eine Funktion von zwei Variablen x,y. Man erhält die **partielle Ableitung**

$$\frac{\partial f}{\partial x} = f_x$$

wenn man nach der Variablen <mark>x differenziert und dabei y (d.h. alle anderen Variablen) als konstant ansieht.</mark> Analog erhält man die partielle Ableitung nach y.

$$\frac{\partial f}{\partial y} = f_y$$

Auch existieren wie bei Funktionen mit einer Variablen auch partielle Ableitungen 2. und höherer Ordnung.

Partielle Ableitungen und Gradient

Partielle Ableitung 2. Ordnung

$$\frac{\partial^2 f}{\partial x^2} = f_{xx}$$

$$\frac{\partial^2 f}{\partial x \partial y} = f_{xy}$$

$$\frac{\partial^2 f}{\partial y^2} = f_{yy}$$

$$\frac{\partial^2 f}{\partial y \partial x} = f_{yx}$$

Im Allgemeinen gilt:

$$f_{xy}(x,y) = f_{yx}(x,y)$$

Partielle Ableitungen und Gradient

Gradient so wird partielle ableitung genannt

Sei $f: D_f \subseteq \mathbb{R}^2 \to \mathbb{R}$ eine Funktion von zwei Variablen x,y. Dann heißt der Vektor

$$\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right) = \begin{pmatrix} f_x(x,y)\\ f_y(x,y) \end{pmatrix} = grad\ f(x,y) = \nabla f(x,y)$$

Gradient von f.

Der Gradient $\nabla f(x_0,y_0)$ zeigt im Punkt (x_0,y_0) in die Richtung des stärksten Anstiegs der Funktion.

Hesse-Matrix

Die partiellen Ableitungen 2. Ordnung kann man zu einer Hesse-Matrix zusammenstellen.

$$H(x,y) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

Die Hesse-Matrix ist eine symmetrische (n,n)-Matrix (in unserem Fall (2,2)-Matrix) und ihre Elemente sind Funktionen von n Variablen (in unserem Fall 2 Variablen).

Extremwertbetrachtungen von Funktionen mit mehreren Variablen

Relative Extrema

Notwendige Bedingung:

Besitze $f\colon D_f\subseteq R^2\to R$ in einer Umgebung $U(x_0,y_0)$ stetige partielle Ableitungen bis zur Ordnung zwei und sei (x_0,y_0) Stelle eines relativen Extremums von f. Dann gilt

$$\nabla f(x_0,y_0)=0$$

Weiterhin gelte:

$$D = \begin{vmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix} = f_{xx}(x_0, y_0) \cdot f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0) > 0$$

Dann ist (x_0, y_0) Stelle eines relativen Extremums, und zwar eines relativen Minimums, falls $f_{xx}(x_0, y_0) > 0$

bzw. Stelle eines relativen Maximums, falls

$$f_{xx}(x_0, y_0) < 0$$

Im Fall D<0 ist (x_0,y_0) nicht Stelle eines relativen Extremums. Im Falle D=0 ist keine Entscheidung möglich.

Extremwertbetrachtungen von Funktionen mit mehreren Variablen

Absolute Extrema

Ob ein relatives Extremum sogar absolutes Extremum ist, lässt sich im allgemeinen nicht feststellen.

Aber es gilt der Satz über konvexe und konkave Funktionen:

Sei $f: D_f \subseteq \mathbb{R}^2 \to \mathbb{R}$ eine Funktion mit stetigen partiellen Ableitungen zweiter Ordnung und gelte

$$D = \begin{vmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{vmatrix} = f_{xx}(x,y) \cdot f_{yy}(x,y) - f_{xy}^{2}(x,y) \geq 0 \quad \forall \ (x,y) \in D_f$$

Im Falle

$$f_{xx}(x,y) \ge 0 \quad \forall \ (x,y) \in D_f$$

Ist f konvex und jeder stationäre Punkt (x_0, y_0) ist Stelle des **absoluten Minimums** von f.

Im Falle

$$f_{xx}(x,y) \le 0 \ \ \forall \ (x,y) \in D_f$$

Ist f konkav und jeder stationäre Punkt (x_0, y_0) ist Stelle des **absoluten Maximums** von f.

Funktionen mit mehreren Variablen

Totales Differential

Sei $f \colon D_f \subseteq R^2 \to R$ eine Funktion mit stetigen partiellen Ableitungen erster Ordnung. Dann heißt

$$df = f_x(x, y)dx + f_y(x, y)dy$$

totales oder vollständiges Differential von f. z.b. bei berechnung der gesamttoleranz

Die Größe df, genommen an einer Stelle (x_0,y_0) , steht für den linearen Anteil der Funktionswertänderung infolge Änderung von x und y um dx bzw. dy.

Daraus folgt eine mögliche Anwendung in der Fehlerrechnung:

Seien x und y fehlerbehaftet mit den absoluten Fehlern Δx bzw. Δy . Gesucht ist die Fortpflanzung dieser Fehler durch die Funktion f(x,y). Als gute Näherung für den absoluten Fehler Δf nimmt man

$$\Delta f = |f_x(x, y)| \Delta x + |f_y(x, y)| \Delta y$$