2.1 - O Problema da Tangente

A palavra tangente vem do latim tangens, que significa "tocando". Assim, uma tangente a uma curva é uma reta que toca a curva. Uma reta secante, do latim secans, significando corte, é uma linha que corta a curva (atravessa). Veja que uma reta pode ser tangente a secante ao mesmo tempo. Então, quando falamos de tangente estamos de tangente em um ponto.

EXEMPLO 1 Encontre uma equação da reta tangente à parábola $y = x^2$ no ponto P(1, 1).

$$m_{PQ} = \frac{x^2 - 1}{x - 1}$$

x-1Por exemplo, para o ponto Q(1,5, 2,25), temos

$$m_{PQ} = \frac{2,25-1}{1,5-1} = \frac{1,25}{0,5} = 2,5$$

Fazer $Q(x,x^2)$ se aproximar de P(1,1) equivale a fazer x se aproximar de P(1,1) equivale P(1,1) equiv

m_{PQ}	,
3	
2,5	
2,1	
2,01	-
2,001	
	3 2,5 2,1 2,01

Fazendo Q se aproximar de P pela esquerda:

-	x	m_{PQ}	y
-	0	1	
	0,5 0,9	1,5 1,9	Q P
	0,99 0,999	1,99	0 x
-	0,999	1,999	

Pelas aproximações, quando 'x' se aproxima de 1, 'm' parece se aproximar de 2.

Se isso de fato ocorre, ou seja, a inclinação da tangente é exatamente 2, dizemos quando 'x' tende a 1 o limite de 'm' é 2. Simbolicamente, escrevemos

$$\lim_{x \to 1} m = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Mas como saber se o limite é este mesmo?

Há duas formas de se fazer isso. Uma delas é uma demostração formal com as técnicas mostradas na seção 2.4. Mas essa é uma aborgem complexa e de aplicabilidade limitada. A outra forma é deduzir o limite a partir de suas propriedades e por analogia com limites conhecidos.

A mais importante propriedade dos limites se refere aos pontos no domínio da função.

Para as funções simples, sempre que um ponto 'a' f(x) tende a pertence ao domínio de uma função f(x), temos que f(a).

f(x) tende a f(a) Ouando x tende a a

$$\lim_{x \to a} f(x) = f(a)$$

'simples' \neq 'composta'

Essa propriedade é tão importante que recebe uma nomenclatura própria:

1 Definição Uma função f é contínua em um número a se

$$\lim_{x \to a} f(x) = f(a)$$

3 Definição Uma função f é **contínua em um intervalo** se for contínua em todos os números do intervalo. (Se f for definida somente de um lado da extremidade do intervalo, entendemos *continuidade* na extremidade como *continuidade* à *direita* ou à esquerda.)

O que não pode ter no gráfico de uma

função contínua?

Buracos, saltos e assíntotas verticais

Intuitivamente, a função é contínua se, ao desenhar seu gráfico, a caneta não sai do papel nenhuma vez.

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

Os pontos onde a função não é contínua são chamados de descontinuidades.

Onde a função a seguir é descontínua?

7	Teorema	Os	seguintes	tipos	de	funções	são	contínuas	para	todo	o	número	de
seus domínios:													

polinômios funções racionais funções raízes funções trigonométricas funções trigonométricas inversas

funções exponenciais funções logarítmicas

Teorema Se $f \in g$ forem contínuas em a e se c for uma constante, então as seguintes funções também são contínuas em a:

1.
$$f + g$$

2.
$$f - g$$
 3. cf

$$5. \ \frac{f}{g} \quad \text{se } g(a) \neq 0$$

9 Teorema Se
$$g$$
 for contínua em a e f for contínua em $g(a)$, então a função composta $f \circ g$ dada por $(f \circ g)(x) = f(g(x))$ é contínua em a .

8 Teorema Seja
$$f$$
 contínua em b e $\lim_{x\to a} g(x) = b$, então $\lim_{x\to a} f\big(g(x)\big) = f(b)$. Em outras palavras,

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)).$$