Apprentissage par renforcement

Sommaire

• Présentation générale

Objectif

• L'algorithme du Q-learning

• Application simple : Le labyrinthe

- Application : Pendule inversé
 - Modèle de l'environnement
 - Résultats
 - Limite et conclusion

六

Présentation générale

Vue d'ensemble

<u>Définition</u>: Intelligence artificielle

L'ensemble des théories et des techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence

Pourquoi?

Résoudre des problèmes où la programmation classique est insuffisante

Reconnaissance de caractère

Détection de cancer

Voiture autonome

Optimisation procédé de production

L'apprentissage par renforcement

Plusieurs algorithmes basés sur un principe commun

Pendule inversé

Objectif : Reproduire l'exemple du pendule inversé

Sommaire

• Présentation générale

Objectif

• L'algorithme du Q-learning

• Application simple : Le labyrinthe

- Application : Pendule inversé
 - Modèle de l'environnement
 - Résultats
 - Limite et conclusion

L'algorithme du Q-learning

Q-Table		Actions					
		South (0) North (1)		East (2)	West (3)	Pickup (4)	Dropoff (5)
	0	0	0	0	0	0	0
				9			
		43					
			1.00				
States	328	-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017
			100				1.0
	499	9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603

Initialized

Q-Table		Actions					
		0	0	0	0	0	0
States		0	0	0	0	0	0
			,				
		0	0	0	0	0	0

Q-Table		Actions						
		South (0)				Pickup (4)		
		0	0	0	0	0	0	
			100			20		
States		-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017	
		9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603	

[1] R.S. SUTTON, A. BARTO: Reinforcement Learning: An Introduction, 1998, MIT Press

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Équation de Bellman

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

Application simple: Le labyrinthe

Élément	Rt	
Vide	-1	
Rocher	-10	
Sortie	+10	
Butée	-5	

Application simple: Le labyrinthe

L'environnement

L'agent/ Le Q-learning

Action A

Environnement class labyrinthe()

État(=State) S

Récompense R

État(=State) S

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

Récompense R

Élément	r
Vide	-1
Rocher	-10
Sortie	+10
Butée	-5

self.position=[1,1] self.fin=False

self.obtenir_id(x,y)
 #retoune 5 pour [1,1]
self.deplacer(3)

Exemple:

Application simple: Le labyrinthe

L'environnement

L'agent/Le Q-learning

Agent

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

$$S \leftarrow S'$$

until S is terminal

		Actions				
		0	1	2	3	
	0	0,846	0,657	0,214	0,981	
	1	0,624	0,321	0,247	0,458	
	2	0,148	0,854	0,312	0,174	
Etats	3	0,394	0,43	0,378	0,368	
	15	0,351	0,157	0,954	0,545	

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

$$S \leftarrow S'$$

until S is terminal

		Actions				
		0	1	2	3	
	0	0,846	0,657	0,214	0,981	
	1	0,624	0,321	0,247	0,458	
	2	0,148	0,854	0,312	0,174	
Etats	3	0,394	0,43	0,378	0,368	
	 15	0,351	0,157	0,954	0,545	

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

S=3

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s,a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

 $S \leftarrow S'$

until S is terminal

		Actions				
		0	, 1	2	3	
	0	0,846	0,657	0,214	0,981	
	1	0,624	0,321	0,247	0,458	
	2	0,148	0,854	0,312	0,174	
Etats	3	0,394	0,43	0,378	0,368	
	15	0,351	0,157	0,954	0,545	

S=3

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$ $S \leftarrow S'$

until S is terminal

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

until S is terminal

Variables de l'environnement

$$A_{t=1}$$
 $R_{t+1}=-5$ $S_{t=3}$ $S_{t+1}=3$

		Actions				
	0	1	2	3		
0	0,846	0,657	0,214	0,981		
1	0,624	0,321	0,247	0,458		
2	0,148	0,854	0,312	0,174		
3	0,378	0.43	0,394	0,368		
15	0,351	0,157	0,954	0,545		
֡	3	1 0,624 2 0,148 3 0,378	0 1 0 0,846 0,657 1 0,624 0,321 2 0,148 0,854 3 0,378 0.43	1 0,624 0,321 0,247 2 0,148 0,854 0,312 3 0,378 0.43 0,394		

Paramètre de l'algorithme

$$\alpha$$
 (Learning_rate) = 0.7 γ = 0.99

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

 $Q(S=3,A=1) = 0.43 +0.7^*[-5 +0.99 * 0.43 - 0.43] =-9.85$

		Actions				
		0	1	2	3	
	0	0,846	0,657	0,214	0,981	
	1	0,624	0,321	0,247	0,458	
C4-4-	2	0,148	0,854	0,312	0,174	
Etats	3	0,378	-9,85	0,394	0,368	
	15	0,351	0,157	0,954	0,545	

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

 \longrightarrow Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$ $S \leftarrow S'$

until S is terminal

		Actio <u>ns</u>				
		0	1	. 2	3	
Etats	0	0,846	0,657	0,214	0,981	_
	1	0,624	0,321	0,247	0,458	
	2	0,148	0,854	0,312	0,174	
	3	0,378	-9,85	0,394	0,368	5-3
	15	0,351	0,157	0,954	0,545	

Conclusion:

L'agent atteint la sortie en un minimum de coup (6 coups)

Sommaire

• Présentation générale

Objectif

• L'algorithme du Q-learning

• Application simple : Le labyrinthe

- Application : Pendule inversé
 - Modèle de l'environnement
 - Résultats
 - Limite et conclusion

Application : Pendule inversé

Objectif: Reproduire l'exemple du pendule inversé

Système simulé

Application : Pendule inversé

Modèle de l'environnement

Résultats

Améliorer les performances

Enviro

Environnement

<u>Hypothèse :</u> Liaisons parfaites

Modèle mécanique

On isole {chariot+barre}

Bilan des Actions Mécaniques Extérieures :

Force de traction F Poids de la barre Poids du chariot Réaction du support

On applique le Principe Fondamental de la Dynamique en O

$$\overrightarrow{x} \ \ \text{TRD sur x} \begin{cases} (M+m)\ddot{x} = F + ml\ddot{\theta}cos(\theta) - ml\dot{\theta}^2sin(\theta) \\ ml^2\ddot{\theta} = mgsin(\theta)l + mlcos(\theta)\ddot{x} \end{cases}$$

On découple les variables

$$temp = \frac{F - ml\dot{\theta}^2 sin(\theta)}{M + m}$$

$$\ddot{\theta} = \frac{\cos(\theta).temp + g\sin(\theta)}{l(1 - \frac{m\cos(\theta)^2)}{M+m})}$$

$$\ddot{x} = temp + \frac{ml\ddot{\theta}sin(\theta)}{M+m}$$

Système simulé

Fenêtre graphique de la bibliothèque pré-programmé

Résolution numérique : Méthode d'Euler

```
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
```

Agent

Identique à l'application simple du labyrinthe

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
until S is terminal
```


Application : Pendule inversé

Modèle de l'environnement

Résultats

Améliorer les performances

Paramètre de l'essai:

Discrétisation en 9 états

0 1 2 3 4 5 6 7 8

Apprentissage sur 2000 générations

Application : Pendule inversé

Modèle de l'environnement Résultats

Améliorer les performances

Dilemme Exploration/Exploitation Fonction d'exploration

<u>Problème</u>: L'agent tend à reproduire un comportement passé : il ne peut pas découvrir de nouvelles manières de résoudre le problème

```
## START Choose A from S using
a=np.argmax(Q[s[0],s[1],s[2],s[3],:])
## END Choose A from S using

## START Choose A from S using

## Choisir action optimisée

## Choisir action optimisée

## END Choose A from S using

## END Choose A from S using

## END Choose A from S using
```


Problème : L'agent a un comportement trop grossier dû au découpage trop faible

Discrétisation en 41 états

0 1 2 3 4 5 6 7 8

Apprentissage sur 20000 générations

Observation secondaire: Influence du learning_rate

Limites

Augmenter le nombre d'états possibles => Amélioration des performances

Problème : Temps de calcul très important et limites des capacités machines atteintes

<u>Solution/ Ouverture</u>: Se libérer des contraintes de discrétisations pour traiter des états continus par les réseaux de neurones

Conclusion

<u>Problématique retenue</u>: Comprendre et utiliser l'apprentissage par renforcement

Conclusion

<u>Problématique retenue</u>: Comprendre et utiliser l'apprentissage par renforcement

Annexe

Système réel

Système réel

Problème 1 : Problème de communication entre le logiciel et le système

Pilotage par MATLAB

Solution : Réinstallation du système d'exploitation

Problème 2: Communication du module impossible

Pilotage par MATLAB

Solution: Non trouvée

Système réel

Modèle plus fin prenant en compte les frottements

m_{tot} . $\ddot{x} + m_2 J. \ddot{\psi}$. $\cos \psi - m_2 J. \dot{\psi}^2$. $\sin \psi$	= $F_m - F_f$.sign(\dot{x}) - $f_v . \dot{x}$
$I.\ddot{\psi} + m_2 l.\ddot{x}.\cos\psi = m_2.g.l.\sin\psi$	$-C_{f_2}$.sign($\dot{\psi}$) - f_{ω_2} . $\dot{\psi}$

Composant	Modèle linéaire
CNA de la carte de commande	$\varepsilon_3(\dagger) = \varepsilon_2(\dagger)$
Carte de puissance	$u(\dagger) = B.\epsilon_3(\dagger)$
Moteur linéaire équivalent	
Pendule	$I.\ddot{\psi}(\dagger) + m_2.l.\ddot{x}(\dagger) = m_2.g.l.\psi(\dagger) - f_{\omega_2}.\dot{\psi}(\dagger)$

46

nouvelle position[0]+=1

Code Python du labyrinthe

L'environnement

```
##Verifier si bordures
       if nouvelle position[0]<0 or nouvelle position[0]>=len(self.
           recompense=self.Recompenses[3]
           None
       ##Verifier si mur
       elif nouvelle position in self.Mur:
           recompense=self.Recompenses[3]
           None
       ##Verifier si rocher
       elif nouvelle position in self.Rocher:
           recompense=self.Recompenses[1]
           self.position=nouvelle position
       ##Verifier si sortie
       elif nouvelle position == self.sortie:
           recompense=self.Recompenses[2]
           self.fin=True
           self.position=nouvelle position
       ##Aucun problème donc on autorise le déplacement
           self.position=nouvelle position
           recompense=self.Recompenses[0]
       return recompense
   def afficher(self):
       ##Affiche l'état du labvrinthe
       for i in range(len(self.Grille)):
           for j in range(len(self.Grille[0])):
               if [i,j] in self.Mur:
                   self.Grille[i][j]='x'
               elif [i,j] in self.Rocher:
                   self.Grille[i][i]='0'
               elif [i,j] == self.position:
                   self.Grille[i][j]='#'
               elif [i,j]==self.sortie:
                   self.Grille[i][j]='S'
               else:
                   self.Grille[i][j]='-'
       print(self.Grille)
                                                           2/2
# FIN Définition de l'environnement
```

FIN Algorithme d'apprentissage

##START Algorithm parameters: step size...

```
Coups: 0
[['-' '0' '-' ['S']
 ['-' 'x' '0']
 ['x' '-' '-' '-']
 ['-' '#' 'x' '-']]
Coups: 1
[['-' '0' '-' 'S']
 ['-' 'v' 'x' 'O']
 ['x' '#' '-' '-']
 ['-' '-' 'x' '-']]
Coups: 2
[['-' '0' '-' 'S']
 ['-' 'v' 'x' 'O']
['x' '-' '#' '-']
 ['-' '-' 'x' '-']]
Coups: 3
[['-' '0' '-' 'S']
 ['-' '0' 'x' '0']
 ['x' '-' '-' '#']
 ['-' '-' 'x' '-']]
Coups: 4
[['-' '0' '-' 'S']
 ['-' 'v' 'x' '0']
 ['x' '-' '-' '-']
 ['-' '-' 'x' '-']]
Coups: 5
[['+' '-' '0' '-' |#']
 ['-' 'x' '0']
 ['x' '-' '-' '-']
 ['-' '-' 'x' '-']]
>>>
```


Mesure rendant compte de l'influence des deux paramètres de l'algorithme

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Gamma pour Learning_rate fixé

Learning_rate pour Gamma fixé

Visualisation de la propagation de la récompense de la sortie vers les états précédents

Capture d'écran de la conférence de R.S Sutton [2]

class CartPoleEnv(gym.Env):

Code Python du pendule inversé L'environnement

```
metadata = {
    'render.modes': ['human', 'rgb array'],
    'video.frames per second' : 50
def init (self):
    #Paramètres de la modélisation:
    self.gravitv = 9.8
    self.masscart = 1.0
    self.masspole = 0.1
    self.total mass = (self.masspole + self.masscart)
    self.length = .5 # actually half the pole's length
    self.polemass length = (self.masspole * self.length)
    self.force mag = 10.0
   self.tau = 0.02 # dt pour euler
    self.dt system= 0.02  # temps de réaction du système
    #Paramètres de l'instance
    self.Recompenses=[-10,0,1,5] #Récompenses associées à [Zône rouge, Neutre, Zô
    #Limite de fin d'instance et d'intervalle de dicrétisation
    self.x limit= 1 #Zône rouge pour le chariot
   self.theta limit= 30 * 2 * math.pi / 360 #Cône rouge pour la barre
    self.x dot limit=15
    self.theta dot limit=15
    #Paramètre de discrétisation
    self.nb discretisation x=12
    self.nb discretisation x dot=self.nb discretisation theta=self.nb discretisat
    #Intervalles de dicrétisation
    self.X=np.linspace(-self.x limit, self.x limit, self.nb discretisation x)
    self.X dot=np.linspace(-self.x dot limit, self.x dot limit, self.nb discretis
    self.THETA=np.linspace(-self.theta limit, self.theta limit, self.nb discretis
    self.THETA dot=np.linspace(-self.theta dot limit, self.theta dot limit, self.
    high = np.array([
       self.x limit,
       np.finfo(np.float32).max,
       self.theta limit,
       np.finfo(np.float32).max])
    #Autres paramètres
   self.action_space = spaces.Discrete(2)
    self.observation space = spaces.Box(-high, high, dtype=np.float32)
    done=False #Valeur déclarant la fin de l'instance
    self.seed()
    self.viewer = None
    self.state = None
    self.steps beyond done = None
def seed(self, seed=None):
    self.np_random, seed = seeding.np_random(seed)
    return [seed]
```

```
def step(self, action):
    #Modélisation du pendule
    for i in range(int(self.dt system/self.tau)):
        state = self.state
        x, x dot, theta, theta dot = state
        force = self.force mag if action == 1 else -self.force mag
        costheta = math.cos(theta)
        sintheta = math.sin(theta)
        temp = (force - self.polemass length * theta dot * theta dot * sintheta) / self.1
        thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (1 - self
        xacc = temp - self.polemass length * thetaacc * costheta / self.total mass
        x dot = x dot + self.tau * xacc
        x = x + self.tau * x dot
        theta dot = theta dot + self.tau * thetaacc
        theta = theta + self.tau * theta dot
        self.state = (x, x dot, theta, theta dot)
        #Associer etat(state) continue à ceux discrets
        self.state discrete=self.continu to discrete(self.state)
    pos cart, vit cart, pos pole, vit pole=self.state discrete
    #Condition de fin de partie, si valeur sors des limites autorisés
    last index state=len(self.X)
    mid index state=len(self.X)//2
    if pos pole==0 or pos pole==last index state or vit pole==0 or vit pole==last index :
        done=True
    else:
        done=False
    #Attribution des récompenses
    negative reward, neutral reward, positive reward, outstanding reward=self.Recompenses
    if (pos pole==5 and (pos cart in [mid index state-1,mid index state,mid index state+
        reward=positive reward
    elif pos pole==mid index state:
        reward=outstanding reward
    elif pos pole==0 or pos pole==last index state or vit pole==0 or vit pole==last index
        reward=negative reward
        reward=neutral reward
    return self.state discrete, reward, done
def reset(self):
    self.state = self.np random.uniform(low=-0.05, high=0.05, size=(4,))
    self.steps beyond done = None
    self.state discrete=self.continu to discrete(self.state)
    return np.array(self.state discrete)
def continu to discrete(self, state):
    state discrete=[0,0,0,0]
    x,x dot,theta,theta dot=state
    for i in range(len(self.X)-1):
        if self.X[i] <= x < self.X[i+1]:</pre>
            state discrete[0]=i
        if self.X dot[i] <= x dot < self.X dot[i+1]:</pre>
            state discrete[1]=i
        if self.THETA[i] <= theta < self.THETA[i+1]:</pre>
            state discrete[2]=i
        if self.THETA dot[i] <= theta dot < self.THETA dot[i+1]:</pre>
            state discrete[3]=i
    return state_discrete
```

```
def render(self, mode='human'):
    screen width = 600
    screen height = 400
    world width = self.x limit*2
    scale = screen width/world width
    carty = 100 # TOP OF CART
    polewidth = 10.0
    polelen = scale * (2 * self.length)
    cartwidth = 50.0
    cartheight = 30.0
    if self.viewer is None:
        from gym.envs.classic control import rendering
        self.viewer = rendering.Viewer(screen width, screen height)
        1,r,t,b = -cartwidth/2, cartwidth/2, cartheight/2, -cartheight/2
        axleoffset =cartheight/4.0
        cart = rendering.FilledPolygon(((1,b), (1,t), (r,t), (r,b)))
        self.carttrans = rendering.Transform()
        cart.add attr(self.carttrans)
        self.viewer.add geom(cart)
        1,r,t,b = -polewidth/2,polewidth/2,polelen-polewidth/2,-polewidth/2
        pole = rendering.FilledPolygon([(1,b), (1,t), (r,t), (r,b)])
        pole.set color(.8,.6,.4)
        self.poletrans = rendering.Transform(translation=(0, axleoffset))
        pole.add attr(self.poletrans)
        pole.add attr(self.carttrans)
        self.viewer.add geom(pole)
        self.axle = rendering.make circle(polewidth/2)
        self.axle.add attr(self.poletrans)
        self.axle.add attr(self.carttrans)
        self.axle.set color(.5,.5,.8)
        self.viewer.add geom(self.axle)
        self.track = rendering.Line((0,carty), (screen width,carty))
        self.track.set color(0,0,0)
        self.viewer.add geom(self.track)
        self. pole geom = pole
    if self.state is None: return None
    # Edit the pole polygon vertex
    pole = self. pole geom
    1,r,t,b = -polewidth/2,polewidth/2,poleen-polewidth/2,-polewidth/2
    pole.v = [(1,b), (1,t), (r,t), (r,b)]
    x = self.state
    cartx = x[0]*scale+screen width/2.0 # MIDDLE OF CART
    self.carttrans.set_translation(cartx, carty)
    self.poletrans.set rotation(-x[2])
    return self.viewer.render(return rgb array = mode=='rgb array')
def close(self):
    if self.viewer:
        self.viewer.close()
        self.viewer = None
```


Code Python du pendule inversé *L'environnement*

FIN environnement

Code Python du pendule inversé *L'environnement*

```
def step(self, action):
    #Modélisation du pendule
    for i in range(int(self.dt_system/self.tau)):
       state = self.state
       x, x dot, theta, theta dot = state
       force = self.force mag if action == l else -self.force mag
        costheta = math.cos(theta)
        sintheta = math.sin(theta)
        temp = (force - self.polemass length * theta dot * theta dot * sintheta) / self.total mass
        thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (1 - self.masspole * costheta * costheta / self.total mass))
        xacc = temp - self.polemass length * thetaacc * costheta / self.total mass
        x dot = x dot + self.tau * xacc
        x = x + self.tau * x dot
        theta_dot = theta_dot + self.tau * thetaacc
        theta = theta + self.tau * theta dot
        self.state = (x,x_dot,theta,theta_dot)
        #Associer etat(state) continue à ceux discrets
        self.state discrete=self.continu to discrete(self.state)
```

Résolution par Euler

```
## DEBUT Algorithme d'apprentissage
def Q learning(env,learning rate,gamma,iteration):
    import random as r
    ##START Algorithm parameters: step size...
    1r=learning rate
    v=gamma
    iteration=iteration
    ##END Algorithm parameters: step size...
    ##START Initialize Q(s,a)...arbitrarly execpt that Q(terminal,.) =
    n states=env.nb discretisation x
    n actions=2
    Q=np.zeros([n states, n states, n states, n states, n actions])
    for i in range(len(Q)):
        for j in range(len(Q[0])):
                for k in range(len(Q[0][0])):
                    for 1 in range(len(Q[0][0][0])):
                            for m in range(len(Q[0][0][0][0])):
                                    Q[i,j,k,l,m]=r.random()
    ##END Initialize Q(s,a)...arbitrarly execpt that Q(terminal,.)=0
    ##START Loop for each episode
    for i in range (iteration):
        #Initialize S
        end=False
        s=env.reset()
        ##START Loop for each step of epsiode
        while end==False:
            ## START Choose A from S using
            a=np.argmax(Q[s[0],s[1],s[2],s[3],:])
            ## END Choose A from S using
            #Take action A
            observation=env.step(a)
            #Observe R,S'
            sl,r,end=observation
            \#Refresh Q: Q(S,A)=Q(S,A)+...
            Q[s[0], s[1], s[2], s[3], a] = Q[s[0], s[1], s[2], s[3], a] + 1r*(r + y * np.max(Q[s1]))
            #S becomes S'
            s=sl.copv()
        ##END Loop for each step of epsiode
    ##END Loop for each episode
    return Q
## FIN Algorithme d'apprentissage
env=CartPoleEnv()
learning rate=0.8
gamma=0.99
iteration=201
```

Q learning(env,learning rate,gamma,iteration)

Code Python du pendule inversé L'agent

```
self.viewer = None
Classic cart-pole system implemented by Rich Sutton et al.
                                                                                       self.state = None
Copied from http://incompleteideas.net/sutton/book/code/pole.c
permalink: https://perma.cc/C9ZM-652R
                                                                                       self.steps beyond done = None
import math
import gym
                                                                                  def seed(self, seed=None):
from gym import spaces, logger
                                                                                       self.np random, seed = seeding.np random(seed)
from gym.utils import seeding
import numpy as np
                                   Code Python du pendule inversé
                                                                                      return [seed]
class CartPoleEnv(gym.Env):
                                          L'environnement (alpha)
                                                                                  def step(self. action):
                                                                                       assert self.action space.contains(action), "%r (%s) invalid"%(action,
      A pole is attached by an un-actuated joint to a cart, which moves al
                                                                                       state = self.state
      This environment corresponds to the version of the cart-pole problem
                                                                                       x, x dot, theta, theta dot = state
   Observation:
                                                                                       force = self.force mag if action == 1 else -self.force mag
      Type: Box(4)
      Num Observation
                                   Min
                                                                                       costheta = math.cos(theta)
      0 Cart Position
                                  -4 8
                                               4 8
                                                                                       sintheta = math.sin(theta)
         Cart Velocity
                                -Inf
                                                Inf
         Pole Angle
                                  -24 deg
                                                24 dea
                                                                                       temp = (force + self.polemass length * theta dot * theta dot * sinthet;
            Pole Velocity At Tip -Inf
                                                                                       thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length *
                                                                                       xacc = temp - self.polemass length * thetaacc * costheta / self.total
   Actions:
      Type: Discrete(2)
                                                                                       if self.kinematics integrator == 'euler':
      Num Action
                                                                                           x = x + self.tau * x dot
            Push cart to the left
            Push cart to the right
                                                                                           x dot = x dot + self.tau * xacc
                                                                                           theta = theta + self.tau * theta dot
      Note: The amount the velocity that is reduced or increased is not fi
                                                                                           theta dot = theta dot + self.tau * thetaacc
   Reward:
      Reward is 1 for every step taken, including the termination step
                                                                                       else: # semi-implicit euler
   Starting State:
                                                                                           x dot = x dot + self.tau * xacc
      All observations are assigned a uniform random value in [-0.05..0.05
   Episode Termination:
                                                                                           x = x + self.tau * x dot
      Pole Angle is more than 12 degrees
                                                                                           theta dot = theta dot + self.tau * thetaacc
      Cart Position is more than 2.4 (center of the cart reaches the edge
      Episode length is greater than 200
                                                                                           theta = theta + self.tau * theta dot
      Solved Requirements
                                                                                       self.state = (x, x dot, theta, theta dot)
      Considered solved when the average reward is greater than or equal t
                                                                                       done = x < -self.x threshold \
                                                                                                or x > self.x threshold \
   metadata = {
                                                                                                or theta < -self.theta threshold radians \
       'render.modes': ['human', 'rgb array'],
       'video.frames per second' : 50
                                                                                                or theta > self.theta threshold radians
                                                                                       done = bool(done)
   def init (self):
      self.gravity = 9.8
                                                                                       if not done:
      self.masscart = 1.0
                                                                                           reward = 1.0
      self.masspole = 0.1
      self.total mass = (self.masspole + self.masscart)
                                                                                       elif self.steps beyond done is None:
      self.length = 0.5 # actually half the pole's length
                                                                                           # Pole just fell!
      self.polemass length = (self.masspole * self.length)
      self.force mag = 10.0
                                                                                           self.steps beyond done = 0
      self.tau = 0.02 # seconds between state updates
                                                                                           reward = 1.0
      self.kinematics integrator = 'euler'
                                                                                       else:
      # Angle at which to fail the episode
                                                                                           if self.steps beyond done == 0:
      self.theta threshold radians = 12 * 2 * math.pi / 360
                                                                                                logger.warn("You are calling 'step()' even though this environ
      self.x threshold = 2.4
                                                                                           self.steps beyond done += 1
      \sharp Angle limit set to 2 * theta threshold radians so failing observat
                                                                                           reward = 0.0
      high = np.array([
          self.x threshold * 2,
          np.finfo(np.float32).max,
                                                                                       return np.array(self.state), reward, done, {}
          self.theta threshold radians * 2,
          np.finfo(np.float32).max])
                                                                                  def reset(self):
      self.action_space = spaces.Discrete(2)
                                                                                       self.state = self.np random.uniform(low=-0.05, high=0.05, size=(4,))
      self.observation space = spaces.Box(-high, high, dtype=np.float32)
                                                                                       self.steps beyond done = None
      self.seed()
                                                                                       return np.array(self.state)
      self.viewer = None
      self.state = None
```

```
def render(self, mode='human'):
    screen width = 600
    screen height = 400
    world width = self.x threshold*2
    scale = screen width/world width
    carty = 100 # TOP OF CART
    polewidth = 10.0
    polelen = scale * (2 * self.length)
    cartwidth = 50.0
    cartheight = 30.0
    if self.viewer is None:
        from gym.envs.classic control import rendering
        self.viewer = rendering.Viewer(screen width, screen height)
        1,r,t,b = -cartwidth/2, cartwidth/2, cartheight/2, -cartheight/2
        axleoffset =cartheight/4.0
        cart = rendering.FilledPolygon([(1,b), (1,t), (r,t), (r,b)])
        self.carttrans = rendering.Transform()
        cart.add attr(self.carttrans)
        self.viewer.add geom(cart)
        1, r, t, b = -polewidth/2, polewidth/2, polelen-polewidth/2, -polewidth/2
        pole = rendering.FilledPolygon([(1,b), (1,t), (r,t), (r,b)])
        pole.set color(.8,.6,.4)
        self.poletrans = rendering.Transform(translation=(0, axleoffset))
        pole.add attr(self.poletrans)
        pole.add attr(self.carttrans)
        self.viewer.add geom(pole)
        self.axle = rendering.make circle(polewidth/2)
        self.axle.add attr(self.poletrans)
        self.axle.add attr(self.carttrans)
        self.axle.set color(.5,.5,.8)
        self.viewer.add geom(self.axle)
        self.track = rendering.Line((0,carty), (screen width,carty))
        self.track.set color(0,0,0)
        self.viewer.add geom(self.track)
        self. pole geom = pole
    if self.state is None: return None
    # Edit the pole polygon vertex
    pole = self. pole geom
   1,r,t,b = -polewidth/2,polewidth/2,polelen-polewidth/2,-polewidth/2
   pole.v = [(l,b), (l,t), (r,t), (r,b)]
    x = self.state
    cartx = x[0]*scale+screen width/2.0 # MIDDLE OF CART
    self.carttrans.set translation(cartx, carty)
    self.poletrans.set rotation(-x[2])
    return self.viewer.render(return rgb array = mode=='rgb array')
def close(self):
    if self.viewer:
                                                        3/3
        self.viewer.close()
        self.viewer = None
```


Code Python du pendule inversé *L'environnement (alpha)*

Code Python du pendule inversé *Mesures*

