Convex Optimization Homework Solutions

Andres Espinosa

September 5, 2024

Contents

Homework 1				
1.1	Exercise 2.1			2
1.2	Exercise 2.2			2
1.3	Exercise 2.5			2
1.4	Exercise 2.7			2
1.5	Exercise 2.8			2
1.6	Exercise 2.11			2
1.7	Exercise 2.12			2
1.8	Exercise 2.15			2

1 Homework 1

1.1 Exercise 2.1

Showing the definition of convexity for arbitrary k. $\theta_1 x_1 + \cdots + \theta_k x_k \in C$.

$$\theta_1 x_1 + \dots + \theta_k x_k = \theta_1 x_1 + (1 - \theta_1)(\mu_2 x_2 + \mu_3 x_3 + \dots + \mu_k x_k)$$
(1)

Where each $\mu_n = \frac{\theta_n}{1-\theta_1}$

$$\sum_{i} \mu_{i} = \frac{\sum_{i} \theta_{i}}{1 - \theta_{1}} = \frac{1 - \theta_{1}}{1 - \theta_{1}} = 1$$
(2)

- 1.2 Exercise 2.2
- 1.3 Exercise 2.5
- 1.4 Exercise 2.7
- 1.5 Exercise 2.8
- 1.6 Exercise 2.11
- 1.7 Exercise 2.12
- 1.8 Exercise 2.15