CONSUMER CREDIT RISK

WILL THEY BE PAYING ON TIME?

BY: JEN, MANU, POOJITA, RISHA, VERLISA

MAY 05, 2018

UCB BOOTCAMP, DATA ANALYTICS

FINANCE 101 ON CREDIT CARD DEFAULT

- Credit card default happens when you've become severely delinquent on your credit card payment; if you miss the minimum credit card payment six months in a row.
- In most cases, delinquency can be remedied by simply paying the overdue amount, plus any fees or charges resulting from the delinquency.
- In contrast, default status usually triggers the remainder of your loan balance to be due in full, ending installment payments set forth in the original loan agreement.
- Delinquency adversely affects the borrower's credit score, but default reflects extremely negatively on it and on the borrower's consumer credit report, which makes it difficult to borrow money in the future.
- Credit card default borrower may have trouble obtaining a mortgage, purchasing homeowners insurance, getting approval to rent an apartment.

CREDIT CARD DELINQUENCY STATISTICS

Transunion's Q4 2017 Industry Insights Reports

Q4 2017 Credit Card Performance by Age Group

Q4 2017 Credit Card Trends

Generation	90 + DPD	Annual Pct. Change	Average Loan Balances Per Consumer	Annual Pct. Change	Credit Card Lending Metrics	Q4 2017	Q4 2016	Q4 2015	Q4 2014
Gen Z (1995 - present)	2.69%	+4.3%	\$1,189	+26.5%	Number of Credit Cards	419M	404M	381M	364M
Millennials (1980 - 1994)	2.77%	+0.7%	\$4,243	+11.2%	Borrower-level Delinquency Rate (90 + DPD)	1.87%	1.79%	1.59%	1.48%
Gen X (1965 - 1979)	2.35%	+2.6%	\$7,212	+4.6%	Average Debt Per Borrower (\$)	5,644	5,486	5,337	5,329
Baby Boomers (1946 - 1964)	1.21%	+5.2%	\$6,501	+0.8%	Prior Quarter Originations	16.3M	17.5M	15.4M	14.4M
Silent (Until 1945)	0.78%	+6.8%	\$4,025	+0.2%	Average New Account Credit Lines (\$)	5,194	5,373	5,068	+0.2%

CREDIT CARD DELINQUENCY STATISTICS

Based on Transunion's insights, Credit Card delinquency has been a cause for concern in the United States which is reflective in the QoQ trendline

HIGH RATES:

States with High Delinquency Rates	Rate
Mississippi	3.14%
Louisiana	2.46%
Arkansas	2.41%
Georgia	2.37%
West Virginia	2.28%

LOW RATES:

States with Low Delinquency Rates	Rate
Wisconsin	1.11%
Washington	1.12%
Utah	1.14%
Minnesota	1.15%
Montana	1.19%

DATASET SUMMARY

DATASET SU		1		
TRAIN DATAS	ET	REAL DATASET		
Timeframe:	04/2005 - 09/2005	Timeframe:	2018	
Transactions:	зоК	Transactions:	30	
Attributes:	24	Attributes:	24	
Location:	Taiwan	Location:	USA	
Source:	Center of ML & Intelligent Systems, UCI	Source:	Team Personal Transactions	

PROJECT WORKFLOW

TO DEFAULTER STATUS

ATTRIBUTE RELATIONSHIPS

CONSUMERS BETWEEN 25-35 HAVE MOST TRANSACTIONS

MALE DEFAULTER RATE IS SLIGHTLY HIGHER THAN FEMALES

HIGHER EDUCATION IS RELATED TO LOW DEFAULTER RATE

MARRIED DEFAULTER STATUS TENDS TO BE SLIGHTLY HIGHER

HIGHER AGE BINS ARE RELATED TO HIGHER DEFAULTER RATE

LOWER CREDIT CARD LIMITS RELATE TO HIGH DEFAULTER RATE

MACHINE LEARNING MODELS FOR

PREDICTABILITY & CLASSIFICATION

FEATURE ENGINEERING

Process of using domain knowledge of the data to create features that make machine learning algorithms work.

LOGISTIC REGRESSION

Logistic regression

Command: Statistics

Regression

Logistic regression

$$logit(p) = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + \ldots + b_kX_k$$

where p is the probability of presence of the characteristic of interest. The logit transformation is defined as the logged odds:

$$odds = \frac{p}{1-p} = \frac{probability \ of \ presence \ of \ characteristic}{probability \ of \ absence \ of \ characteristic}$$

and

$$logit(p) = \ln\!\left(rac{p}{1-p}
ight)$$

LOGISTIC REGRESSION

K-NEAREST NEIGHBORS (KNN)

- Euclidean distance between the new point and its nearest neighbors
- Pythagorean Theorem: $a^2 + b^2 = c^2$
- Real data

Other distance functions:

- Manhattan
- Minkowski
- Hamming categorical data

TRAIN vs. REAL

TRAIN DATA

REAL DATA

SUMMARY: KNN, STRUCTURED, LAZY

ADVANTAGES

- Simple to use
- Follows familiar steps
 - Split data into test/train
 - Predict using trained model
- Use with multiple features
- High degree of accuracy
- Both Classification and Regression

DISADVANTAGES

- Time consuming
 - Run for each k
 - More features = more time
- Scaling affects results PCA
- Data must be clustered can't be too random
- Assumes straight line between points may not always be true

DECISION TREES

WHAT?

It looks at the variables in a data set, determines which are the most important, and then comes up with a tree of decisions that best partitions the data.

RELATED TERMS:

Impurity: level of uncertainty
Information Gain: how much uncertainty is reduced

GOAL:

Unmix the data to produce the purest possible distribution of the labels.

>90%

80%

DECISION TREES

ADVANTAGES:

- Implicility perform feature selection
- Can easily handle qualitative (categorical) features
- Requires little data preparation
- Nonlinear relationships between parameters do not affect tree performance

DISADVANTAGES:

- Prone to overfitting
- Unstable, small change in data can lead to a large change in structure
- Tree structure prone to sampling

RANDOM FOREST

Random Forests train each tree independently, using a random sample of the data. This randomness helps to make the model more robust than a single decision tree, and less likely to overfit on the training data. There are typically two parameters in RF - number of trees and no. of features to be selected at each node.

- RF is good for parallel or distributed computing.
- Almost always have lower classification error and better f-scores than decision trees.
- Almost always perform as well as or better than SVMs, but are far easier for humans to understand.
- Deal really well with uneven data sets that have missing variables.
- Gives you a really good idea of which features in your data set are the most important
- Generally train faster than SVMs.
- Not as easy to visually interpret

RANDOM FOREST

CONFUSION MATRIX:

SUPPORT VECTOR MACHINE (SVM)

Summary

- → Linear Classifier (SVM)
- → Features Used:
 - Total Pay Amount
 - Total Bill Amount
 - Education
 - Age
 - Credit Card Limit
- → Accuracy: 77.9%
- → Accuracy(Real Data): 73%

SUPPORT VECTOR MACHINE - FINDINGS AND ANALYSIS

- → Balanced data for accuracy in prediction model
- → Scaled data set for performance efficiency
- → Leverage appropriate feature set
- → Recommended : Yes

Advantages

- Enables Kernel engineering based on data and applications
- □ Accurate classifier
- Less overfitting

Disadvantages

- Limited on multi-class classification
- Computationally Expensive

MODEL PERFORMANCE SUMMARY

ALGORITHM	ACCURACY (TRAIN)	ACCURACY (REAL)
LOGISTIC REGRESSION	77.9%	73%
K-NEAREST NEIGHBORS (KNN)	77.9%	75%
DECISION TREE	>90%	80%
RANDOM FOREST	80.5%	80%
SUPPORT VECTOR MACHINE (SVM)	77.9%	73%

QUESTIONS?

https://github.com/jmtchen/Project3_Credit_Card_Fraud

APPENDIX

SYNOPSIS:

This project unfolds the following phases.

- Getting the Data
- Data Preparation
- Descriptive analytics
- Feature Engineering
- Dimensionality Reduction
- Modeling
- Explainability

MODELING:

We are comparing the predictive power of below algorithms.

- Logistic Regression (scikit-learn)
- Support Vector Machine (scikit-learn)
- KNN (scikit-learn)
- Decision Trees (scikit-learn)
- Random Forest (scikit-learn)

SOURCE:

The dataset is available at the Center for Machine Learning and Intelligent Systems, Bren School of Information and Computer Science, University of California, Irvine: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

SOURCE:

The dataset is availble at the Center for Machine Learning and Intelligent Systems, Bren School of Information and Computer Science, University of California, Irvine: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients