

STATS 10: Introduction to Statistical Reasoning Chapter 6

Bingling Wang
Department of Statistics

Probability Distribution

Random Variable

Map outcomes of random processes to numbers

When the value of a variable is determined by a chance event, that variable is called a random variable.

- Discrete random variable: numerical values that can be listed or counted
 - The number of phone calls you will receive during the day
 - The number of burgers sold by In-N-Out daily
 - The number of bus lines that go to UCLA
- Continuous random variable: take any values in an interval and are often measurements.
 - The exact length of time your next phone call will last
 - The exact weight of a burger you ordered from In-N-Out
 - The exact time it takes to commute to school by bus

Probability Distribution

Probability distribution describes a random variable (r.v.).

It tells us:

- The possible outcomes of a random variable
- The probability that each outcome will occur

Depending on the variable type, we take different approaches to display or analyze the probability distribution of the variable.

Tables Graphs Equations

- All P(x) values must be between 0 and 1, i.e., $0 \le P(x) \le 1$
- The sum of all P(x) values must equal 1

STATS 10

Probability Distribution

Consider the random variable "The number of times a student changes major at a college."

X=# changes in major	0	1	2	3	4	5	6	7	8
Probability	0.135	0.271	0.271	0.180	0.090	0.036	0.012	0.003	0.002

Exercise

Suppose you roll a fair 6-sided die:

- You win 5 points if you roll a 5 or a 6.
- You lose 1 point if you roll a 1.
- For any other outcome you win or lose nothing.

Create a table showing the probability distribution for the points you will win by playing this game.

Let X be the random variable that represents the number of points you win.

X	P(x)
-1	
0	
5	

Discrete Probability Distribution

Probability Distributions Can Also Be Equations

Example: suppose we roll a fair die until we see a 6.

$$X = number of trials$$

X	1	2	3	
Probability	$\frac{1}{6}$	$\frac{5}{6} \times \frac{1}{6}$	$\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}$	

$$P(x) = \left(\frac{5}{6}\right)^{x-1} \left(\frac{1}{6}\right)$$

$$P(x = 10) = \left(\frac{5}{6}\right)^{10-1} \left(\frac{1}{6}\right) = 0.0323$$

$$P(x \le 3) = \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^2\left(\frac{1}{6}\right) = 0.4213$$

STATS 10

Transition to Continuous Random Variables

Continuous Probability Distribution

- The continuous probability distribution is usually visualized by a curve
 - -- Probability density curve
 - The density curve cannot lie below the x-axis
- The probability for a continuous random variable is represented as
 - -- Area under the curve
 - The total area under the curve must equal 1
 - The probability of any single value occurring is zero

Finding Probabilities

Example:

A bus arrives at a certain stop every 12 minutes. The graph shows the probability distribution for wait times before the bus arrives.

Use the distribution to find the probability of a wait time between 0 and 10 minutes.

The Normal Distribution

The most widely used probability model for continuous numerical variables.

Also called Gaussian distribution / Laplace-Gauss distribution

Defined by the **mean** and the **standard deviation**

Notation: $N(\mu, \sigma)$

-- a Normal distribution with mean μ , and standard deviation σ

Characteristics of the distribution:

- Unimodal
- Symmetric
- Bell shaped

Different Mean and Standard Deviation

The shape of the normal distribution is completely determined by the values of the mean and standard deviation.

The Empirical Rule

If X is a normal random variable with $N(\mu, \sigma)$, then the probability is

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.68$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.95$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.997$$

STATS 10

Example: Foot Length

Suppose that foot length of a randomly chosen adult male is a normal random variable with mean μ =11 and standard deviation σ =1.5.

Finding Normal Probabilities

The first and helpful step is usually to: sketch the curve, label it appropriately, and shade the area of interest.

1. Using the exact probability density function (pdf)

pdf for normal distribution:

$$P(a < x < b) = \int_{a}^{b} f(x) dx$$
 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{x-\mu}{\sigma})^{2}}$

2. With computer technology

In R: function pnorm(q, mean, sd) computes probabilities $P(x \le q)$ from a normal distribution with specified mean and sd.

3. With standard normal table -- Z-table

Standard Normal: the normal model with mean 0 and standard deviation 1, N(0,1).

Finding Normal Probabilities with Z-table

This approach requires us to convert the normal model to a standard normal model by converting the values to standard units — **standardization / z-transformation.**

Steps:

- 1. Convert the values to standard units, $z = \frac{x-\mu}{\sigma}$.
- 2. Find the probability using the Z-table.

Standardizing data into z-scores does not change the shape of the distribution.

STATS 10

Z Table

Table entries for z represent the area under the curve to the left of z. $Z \sim N(0, 1)$

Example: P(z < -2.72)

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
							,			

Z Table Continued

Let X be a normal random variable.

What is the probability of X taking a value less than 0.75 standard deviations above the mean (i.e. having a z-score of 0.75)?

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361

Z Table Exercises

Suppose X is a normal random variable, $X \sim N(\mu, \sigma)$.

- 1. What is the probability of X taking a value more than 1.57 standard deviations below its mean?
- 2. What is the probability of X taking a value within 1.57 standard deviations from its mean?
- 3. What is the probability of X taking a value between 1 standard deviation below and 1.57 standard deviation above its mean?

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441

Exercise

Suppose the distribution of teenagers' weights follows a normal distribution N(125, 10).

What is the probability that a randomly selected teenager weighs between 135.5 and 140.6 pounds?

1. Convert the values to standard units;

2. Use the Z-table to find the area under the curve between the two values.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817

Finding Percentiles

Given a probability, what is the associated value of the normal random variable?

Percentile

The *q*th percentile of a probability distribution is the value where q% of the distribution lies to the left and (100 - q)% lies to the right.

Finding Percentiles

To find the *q*th percentile of a $N(\mu, \sigma)$ distribution:

1. With computer technology

R function: qnorm(p, mean, sd) computes value for that probability value p from a normal distribution with specified mean and sd.

```
qnorm(0.5, 0, 1) qnorm(0.5, 1, 2) qnorm(0.84, 1, 2)
```

2. With z table

- I. Use the z-table to locate the given probability.
- II. Find the corresponding z-score.
- III. Convert the z-score to original units. qth percentile = $\mu + \sigma z$

Example

Suppose the heights of kindergarten children follow a N(39,2) normal distribution, how tall (in inches) does a child need to be in order to be in the 90th percentile?

1. Locate the given probability in the table

2. Find the z-score using standard normal table

z	.05	.06	.07	.08	.09
8.0	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9265	0.9279	0.9292	0.9306	0.9319

3. Convert the z-score into the original scale