Adopted Levels 1991Aj01

Type Author Citation Literature Cutoff Date
Update F. Ajzenberg-selove, J. H. Kelley and C. D. Nesaraja NP A523,1 (1991) 1-Jul-1990

 $Q(\beta^-)=-2.396\times 10^4$ 5; S(n)=23179 10; S(p)=4627.0 3; $Q(\alpha)=-10116.2$ 4 2012Wa38 Note: Current evaluation has used the following Q record 23176 10 4627.9728-10117.1 4 1997Au04.

¹⁴O Levels

Cross Reference (XREF) Flags

Α	$^{12}C(^{3}He,n)$	E	$^{14}N(p,n)$
В	$^{12}\text{C}(^{12}\text{C},^{10}\text{Be})$	F	$^{14}N(^{3}He,t)$
C	$^{13}\text{C}(p,\pi^{-})$	G	$^{16}O(p,t)$
D	$^{13}N(p,\gamma)$		

E(level)	J^{π}	T _{1/2}	XRE	EF	Comments
0.0	0+	70.606 s <i>18</i>	ABC I	EFG	$\%\varepsilon + \%\beta^{+} = 100$
					T=1
					T _{1/2} : Weighted average: 70.59 s <i>3</i> (1973C112), 70.613 s <i>25</i> (1978Wi04). Others: 70.43 s <i>18</i> (1974Az01), 70.48 s <i>5</i> (1972Al01).
5173 [†] <i>10</i>	1-	38.1 keV 18	A CDI	EFG	T=1
5920 10	0_{+}	≤50 keV	Α	FG	%p=100
6272 10	3-	103 keV 6	ABC	FG	T=1 %p=100
0272 10	3	103 KeV 0	ADC	rG	76p=100 T=1
6590 <i>10</i>	2+	≤60 keV	ABC	FG	%p=100
					T=1
6790? [†] <i>30</i>	_			F	
7768 10	2+	76 keV 10	A C I	EFG	%p=100
07000 + 40					T=1
8720? [†] <i>40</i>				FG	
9715 20	(2^{+})		A C	G	T=1
9915 [†] 20	4+	100 keV 50	ABC	F	T=1
10890 [†] <i>50</i>			C	F	
11240 [†] <i>50</i>				F	
11970 [†]			C	F	Possible multiplet.
12840 [†] <i>50</i>				F	
13010 [†] <i>50</i>				F	
14150 [†] <i>40</i>	(5^{-})		ВС	F	
14640 [†] <i>60</i>			С	F	
17400 [†] <i>60</i>			С	F	

[†] Decay mode unspecified.

Adopted Levels, Gammas 1993Ti07

Hist	ory
------	-----

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, D. R. Tilley, H. R. Weller and C. M. Cheves	NP 564 1 (1993)	31-Dec-1992

 $Q(\beta^-) = -15417 \ 9; \ S(n) = 15663.9 \ 5; \ S(p) = 1.213 \times 10^4; \ Q(\alpha) = -7162 \qquad \textbf{2012Wa38}$

Note: Current evaluation has used the following Q record -15417 8 15663.7 5 12127.41 1-7161.91 1 1997Au04.

See other reaction references in 1993 ${
m Ti}$ 07.

¹⁶O Levels

Cross Reference (XREF) Flags

Α	$^{12}C(\alpha,X)$	G	$^{15}N(p,n)$	M	$^{16}O(d,d')$
В	$^{13}C(^{3}He,X)$	H	$^{15}N(d,n)$	N	$^{16}O(^{3}He, ^{3}He)$
C	$^{13}C(^{6}Li,t)$	I	$^{15}N(^{3}He,d)$	0	$^{16}\mathrm{O}(\alpha,\alpha)$
D	$^{14}N(d,X)$	J	16 N β^- decay	P	$^{17}O(d,t)$
E	$^{14}N(^{3}He,p)$	K	$^{16}O(e,e')$	Q	$^{17}\text{O}(^3\text{He},\alpha)$
F	$^{15}N(p,X)$	L	$^{16}\mathrm{O}(\mathrm{p,p'})$		

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	0+	stable	ABCDEF HIJKLMNOPQ	T=0
6049.4 10	0_{+}	67 ps 5	ABC EF IJK M P	T=0
6129.89 <i>4</i>	3-	18.4 ps 5	ABC EF HIJKL NOPQ	$T=0; \mu=+1.668 \ 12 \ (1989Ra17)$
6917.1 <i>6</i>	2+	4.70 fs <i>13</i>	ABC EF HI KLMNOPQ	T=0
7116.85 <i>14</i>	1-	8.3 fs 5	AB EF HIJKLM OPQ	T=0
8871.9 <i>5</i>	2-	125 fs 11	A C E HIJKLMNOPQ	T=0
9585 11	1-	420 keV 20	A E IJ LMNO	%IT=6.7×10 ⁻⁶ 10; %α=100 Γ_{γ} =0.028 eV 4; T=0
9844.5 <i>5</i>	2+	0.62 keV 10	A C E HIJKLMNO Q	%IT=0.0016 3; % α =100 Γ_{γ} =0.0098 eV 8; T=0
10356 <i>3</i>	4+	26 keV 3	A C E I KLMNO Q	$\%$ IT=2.4×10 ⁻⁴ 4; $\%\alpha$ =100
10057 1	0=	5 5 C 25	F 117 1.W 0	$\Gamma_{\gamma} = 0.062 \text{ eV } 6; \text{ T} = 0$
10957 1	0-	5.5 fs 35	E HI LM Q	T=0 T=0
11080 3	3 ⁺ 4 ⁺	<12 keV 0.28 keV 5	E HI Q	T=0
11096.7 <i>16</i>	4	0.28 KeV 3	A C E KLMNO	$\%IT = 0.0020 \ 6; \ \%\alpha = 100$
11260?	(0^+)	2500 keV	A I	Γ_{γ} =0.0056 eV <i>14</i> ; T=0 % α =100
11200:	(0)	2500 KE V	A I	T=(0)
				α decay mode is tentative.
11520 4	2+	71 keV 3	A C E KLMNO	%IT= $9.4 \times 10^{-5} \ 3; \% \alpha = 100$
11320 7	2	/1 KC V 3	A C E REINO	$\Gamma_{\gamma} = 0.67 \text{ eV } 2; T = 0$
11600 20	3-	800 keV 100	A	$\%\alpha = 100$
11000 20	5	000 KC V 100	A	T=0
12049 2	0^{+}	1.5 keV 5	A C E KLMNO	$%IT=?; %\alpha=100$
12017 2	O	1.5 KC V 5	H C L REINO	T=0
12440 2	1-	91 keV 6	A EF HI K M O	%IT=0.0132 24; %p=0.9 1; %α=99.1 1
122	•) 1 no , o		Γ_{γ} =12 eV 2; T=0
12530 <i>I</i>	2-	0.111 keV 10	C EF HI KLM OP	%IT=3.2 3; %p=14 7; %α=83 3
	_	******		Γ_{γ} =3.5 eV 2; T=0
				Γ ,%IT,%p,%α: from 1986Zi08. 1993Ti07 adopt Γ =0.097 keV 10.
12796 4	0-	40 keV 4	EF HI L	%IT=0.0062 8; %p=100
12968.6 <i>4</i>	2-	1.34 keV <i>4</i>	C EF HI K PQ	Γ_{γ} =2.5 eV 2; T=1 %IT=0.28 3; %p=78 4; % α =22 4
12700.07	2	1.57 KC V 7	CLI III K IQ	$\Gamma_{\gamma} = 3.7 \text{ eV } 3; \text{ T} = 1$
				γ -3.7 eV 3, 1-1 %IT,%p,% α : from 1986Zi08.
				/011, /op, /ou. Hom 17002100.

Adopted Levels, Gammas 1993Ti07 (continued)

¹⁶O Levels (continued)

E(level)	${f J}^\pi$	T _{1/2}	XI	REF	Comments
13020 10	2+	150 keV 10	A	KLMNO	%IT=?; %p=?; %α=?
13090 8	1-	130 keV 5	A E H	I K Q	T=0 %IT=0.026 4; %p=71; % α =29 Γ_{γ} =34 eV 5; T=1
13129 10	3-	110 keV 30	A E	I	%IT=?; %p=1; % α =99 T=0
13259 2	3-	21 keV <i>1</i>	A EF H	I KL PQ	%IT=?; %p=?; %α=? T=1
13664 <i>3</i>	1+	64 keV 3	EF	M	%IT<0.0015; %p=14; %α=86 T=0
13869 2	4+	89 keV 2	A EF	K NO	%IT=?; %p=0.6; % α =99.4 T=0 E(level): uncertainty taken from table 16.21 (M. J. Martin). Table 16.13 gives Δ E=20 keV.
13980 2	2-	20 keV 2	EF		$\%$ p=?; $\%\alpha$ =?
14032 15	0_{+}	185 keV 35	Α	K	$\%IT=?; \%\alpha=100$
$1410 \times 10^1 \ 10$	3-	750 keV 200	Α		%α=100
14302 [†] 3	$4^{(-)}$	34 keV 12	СЕ		
14399† 2	5 ⁺	27 keV 5	СЕ		
14620 20	4 ⁽⁺⁾	490 keV 15	A		%α=100
14660 20	5-	670 keV 15	A		$\%\alpha = 100$
14815.3 <i>16</i>	6 ⁺	70 keV 8	ACE	NO	$\%\alpha=100$
					T=0
14926 2	2+	54 keV 5	EF	K	$\%$ p=?; $\%\alpha$ =?
15097 5	0_{+}	166 keV 30	A EF		$\%p=?; \%\alpha=?$
15196 <i>3</i>	2-	63 keV 4	EF	KL N PQ	$\%$ p=?; $\%\alpha$ =? T=0
15260 <i>50</i>	2+	300 keV 100	F	KL N	$\%$ p=?; $\%\alpha$ =? T=(0)
15408 2	3-	132 keV 7	A EF	KL OPQ	$\%$ p=?; $\%\alpha$ =? T=0
15785 [†] 5	3 ⁺	40 keV 10	СЕ		
15828 30	3-	700 keV <i>120</i>	A	K	$\%\alpha = 100$
16200 90	1-	580 keV <i>60</i>	A EF		%IT=?; %p=?; %α=? T=0
16209 2	1+	19 keV 3	EFG	K	%IT=?; %n=?; %p=? T=1
16275 7	6+	420 keV 20	A		$\%\alpha=100$
16352 8	(2^{+})	61 keV 8	A EF	L NO	$\%$ p=?; $\%\alpha$ =?
16442.3 <i>16</i>	2+	25 keV 2	A EF	K	%ÎT=?; %n=?; %p=?; %α=? T=1
16817 2	(3+)	28 keV 3	C EF		%IT=?; %p=?; %α=? T=(1)
16844 <i>21</i>	4+	570 keV 60	A		$\%\alpha=100$
16930 <i>50</i>	2+	≈280 keV	Α		$\%\alpha = ?; \%^8 \text{Be} = ?$
17090 40	1-	380 keV 40	F		%IT=?; %p=100 T=1
17129 5	2+	107 keV 14	A		$%n=?; %p=?; %\alpha=?$
17140 <i>10</i>	1+	34 keV <i>3</i>	A FG	K	%IT=?; $\sqrt[6]{n}$ =?; %p=?; % α =? T=1
17197 <i>17</i>	2+	160 keV 60	A	I L NO	$\%\alpha = ?; \%^8 \text{Be} = ?$
17282 11	1-	78 keV 5	A FG	K	%IT=?; %n=?; %p=?; %α=? T=1
17510 26	1-	180 keV 60	A		%α=100
17555 <i>21</i>	(6 ⁺)	180 keV 70	A		%n=?; %α=?

Adopted Levels, Gammas 1993Ti07 (continued)

¹⁶O Levels (continued)

E(level)	${ m J}^{\pi}$	$T_{1/2}$		XR	REF		Comments
17609 7	2+	114 keV <i>14</i>	A	F		_	%α=?
170077	_	111 KC V 11		•			T=(1)
17720	$(0^+,2^+)$	≈75 keV	Α				$\%$ p=?; $\%\alpha$ =?; $\%$ 8Be=?
17775 11	4-	45 keV 7	· C		KL N	0P0	%p=100
1,,,611	•	10 110 1 7				01 Q	T=0
17784 <i>15</i>	4+	400 keV 40	Α		K		$\%$ n=?; $\%\alpha$ =?; $\%$ 8Be=?
17877 6	(2)-	24 keV 3		F			$%IT=?$; $%p=?$; $%\alpha=?$
1,0,, 0	(=)	2 . 110 . 5					T=(1)
							The α decay mode is tentative.
18016 <i>1</i>	4+	14 keV 2	A C				%n=?; $%$ p=?; $%$ a=?; $%$ Be=?
10010 1	'	11 KC V 2					T=(0)
18029 5	3(-)	26 keV 4	С	FG	K	P	%IT=?; %n=?; %p=?; %α=?
1002) 3	5	20 KC V 1		10		•	T=1
18089 25	(0^+)	288 keV 44	Α	G	L	0	%IT=?; %n=?; %p=?; %α=?
1000) 25	(0)	200 Ke (77		•	_	•	The IT decay mode is tentative.
18202 8	2+	220 keV 50		F	KL	0	%IT=?; %p=100
18290	-	≈380 keV	Α	•		•	%IT=?; %p=?; % α =?
18404 <i>12</i>	5-	550 keV <i>40</i>	A				$\%\alpha=100$
18430 <i>15</i>	2+	90 keV <i>40</i>		F	LN	0	%p=100
							T=0
18484 <i>6</i>	$(1^-,2^-)$	35 keV 6		F			%p=100
18600	$(1^-,5^-)$	≈150 keV	Α				$\%\alpha=100$
18600	(4 ⁺)	≈300 keV	Α				$\%\alpha = ?; \%^8 \text{Be} = ?$
18640 <i>15</i>	(5 ⁺)	22 keV 7	С		K		%n=?; %p=?
	(-)						The neutron and proton decay modes are tentative.
18773 22	1-	215 keV 45	Α				%p=?; %α=?
18785 <i>6</i>	4+	260 keV 20	Α				$\%$ n=?; $\%$ p=?; $\%\alpha$ =?; $\%$ ⁸ Be=?
18790 <i>10</i>	1+	120 keV 20		F	K		%IT=?; %p=100
							T=1
18977 <i>6</i>	4-	8 keV 4	C	F	KL N	PQ	$%IT=?; %p=?; %\alpha=?$
							T=1
19001 <i>24</i>	2-	420 keV 50		F	K		%IT=?; %p=100
	- 1						T=1
19080 <i>30</i>	2+	≈120 keV	A	F			%IT=?; %n=?; %p=?; % α =?
							T=(1)
							The neutron decay mode is tentative.
19206 [†] <i>12</i>	3-	68 keV 10			K	PQ	T=1
19253 <i>30</i>	(5^{-})	50 keV 45	Α				$%$ n=?; $%\alpha$ =?
19257 9	2+	155 keV 25	Α	F			$%IT=?; %p=?; %\alpha=?$
							T=(1)
19319 <i>14</i>	(6 ⁺)	65 keV <i>35</i>	Α				$%p=?; %\alpha=?; %^8Be=?$
19375 2	4+	23 keV 4	A	_			$\%$ p=?; $\%\alpha$ =?
19470 <i>30</i>	1-	200 keV 70		F	K		%IT=?; %p=100
10520 10	2+	255 lXI 75				^	T=1
19539 <i>19</i>	2.	255 keV 75	A		L	U	$%$ n=?; $%\alpha$ =?
19754 16	2+	290 keV 50	Α				T=0 $\%$ p=?; $\%\alpha$ =?
19808 [†] 11						ъ.	-
	4-	32 keV 4	C	_	L	PQ	T=0
19895 7	3	42 keV 9		F			$%IT=?; %p=?; %\alpha=?$
20055 13	2+	400 keV 32	٨		N	·O	T=1 %IT-2: %n-2:
20033 13	<i>L</i>	400 KEV 32	A		N	U	%IT=?; %n=?; %p=?; % α =? T=0
20412 17	$(2^-,4^+)$	190 keV 20		FG	K	PQ	%IT=?; %n=?; %p=?
20112 17	(~ ,¬)	170 RC V 20		10	10	. Q	T=1
20510 25	(4^{-})	50 keV 30			K		%IT=100
	` /						

Adopted Levels, Gammas 1993Ti07 (continued)

¹⁶O Levels (continued)

E(level)	${ m J}^{\pi}$	$T_{1/2}$		XF	REF		Comments
20541 2	5-	11 keV 2	A				$T=(1)$ %p=?; % α =? $T=1$
20560 2	‡	<5 keV	Α				$\%$ p=?; $\%\alpha$ =?
20615 <i>3</i>	‡	<10 keV	Α				$\%\alpha$ =100
20800?	•	≈60 keV	A				$\%$ n=?; $\%$ p=?; $\%$ α =?
20000:		~00 KC V	Λ				$T_{1/2}$: author quotes $\Gamma = (\approx 60)$.
20857 14	7-	900 keV 60	Α				$6\alpha = 100$
20945 20	1-	300 keV 10	А	FG	K		%IT=?; %n=?; %p=?
20743 20	1	300 RC V 10		10	K		T=1
21050 [†] <i>50</i>	(2^{+})	298 keV <i>43</i>			L	0	T=(0)
21052 6	6 ⁺	205 keV 15	Α			O	$\%\alpha = 100$
21175 [†] <i>15</i>	U	203 RC V 13	Λ				/cu=100
	(1 , 4)	120.1.37		-			07 100
21500	(1 to 4)	120 keV		F			%p=100
21623 11	7-	60 keV 30	A				$%n=?; %p=?; %\alpha=?$
21648 3	6 ⁺	115 keV 8	A				$%$ n=?; $%\alpha$ =?
21776 9	3-	43 keV 20	A				$%n=?; %p=?; %\alpha=?$
22040	0+	60 keV	A	D EC			%n=?; %d=?; %α=?
22150 <i>10</i>	1-	680 keV <i>10</i>		D FG			%IT=?; %n=?; %p=?; %d=?; %α=? T=1
22350	2+	175 keV		D			$\%$ n=?; $\%$ d=?; $\%\alpha$ =?
$2250 \times 10^{1} 10$	3-	400 keV <i>50</i>		D		0	$\%$ p=?; $\%$ d=?; $\%\alpha$ =?
22650 30	3	60 keV	Α	ט		U	%p=:, $%$ a=:, $%$ a=: $%$ n=?; $%$ a=?; $%$ 8Be=?
22721 3	0^{+}	12.5 keV 25		D			$\%$ n=?; $\%$ p=?; $\%$ d=?; $\%\alpha$ =?
22/21 3	U	12.5 KC V 25	А	ט			T=2
22890 10	1-	300 keV 10		D F			%IT=?; %p=?; %d=?
220)0 10	1	300 KC (10		D 1			T=1
$2300 \times 10^{1} 10$	6+	≤500 keV		D			$\%d=?; \%\alpha=?; \%^8Be=?$
							The deuteron decay mode is tentative.
23100		≈20 keV	Α	D			$%n=?; %d=?; %\alpha=?; %^8Be=?$
							The neutron decay mode is tentative.
23235 62	(1^{-})	560 keV 150		D G	L		%n=?; %p=?; %d=?
							T=(1)
23510 <i>30</i>	(5^{-})	300 keV	Α	D		N	%p=?; %d=?; %α=?
23879 6	6+	26 keV 4	Α				$%p=?; %\alpha=?; %^{8}Be=?$
24070 <i>30</i>	1-	550 keV 40	В	F	L		%IT=?; %p=?; % ³ He=?
							T=1
24360 70	$(2^+,3^-)$	424 keV <i>45</i>		G		0	%n=?; %p=?
							T=0
24522 [†] 11	2+	<50 keV					T=2
24760 <i>50</i>	$(2,4)^{+}$	340 keV <i>60</i>		FG			%IT=?; %n=?; %p=?
							T=1
25120 <i>50</i>	1-	3000 keV <i>300</i>	В	F			%IT=?; %p=?; % 3 He=?; % α =?
2552 401 75		4000 1 77 000					T=1
$2550 \times 10^1 \ 15$	1-	1300 keV <i>300</i>			KL	N	%IT=?
• • • • • • • • • • • • • • • • • • • •	(0-)	450 1 77					T=1
25600	(3^{-})	450 keV	AB				$%^{3}$ He=?; $%\alpha$ =?
acon1							T=1
$2600 \times 10^{1} 10$	1-	750 keV <i>250</i>	В				%IT=?; $\%^3$ He=?; $\%\alpha$ =?
							T=(1)
26262 62	(2.4)+	550 L 37 70		EC			$T_{1/2}$: author quotes Γ =500-1000.
26363 62	$(2,4)^+$	550 keV 70	Α	FG			%İT=?; %n=?; %p=?; %α=?
							T=1

Adopted Levels, Gammas 1993Ti07 (continued)

¹⁶O Levels (continued)

E(level)	${ m J}^{\pi}$	T _{1/2}		XREF	Comments
2735×10 ¹ 10	(2,4)+	830 keV <i>110</i>	В	F	%IT=?; %p=?; % 3 He=?; % α =?; % 8 Be=?
27500	(3-)	≈2500 keV	В		T=1 %IT=?; % ³ He=100 T=(0)
28200	7-	1000 keV	A		$\%\alpha=100$
$2860 \times 10^{1} \ 20$			В		$%IT=?; %^{3}He=100$
29000	7-	1000 keV	Α		$\%$ p=?; $\%\alpha$ =?
2980×10 ¹ 10	9- & 8+	750 keV 250	В		$\%^3$ He=?; $\%\alpha$ =?
					$T_{1/2}$: author quotes Γ =500-1000.
3180×10 ¹ 60					$\%IT=?; \%\alpha=?$
34000	$10^{+},(9^{-})$	2300 keV	Α		$\%\alpha = 100$
35000	, ,		Α		$\%\alpha = 100$

 $^{^{\}dagger}$ Decay mode not specified. ‡ $\pi=$ even.

 γ (16O)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${ m I}_{\gamma}$	\mathbf{E}_f	J_f^{π}	Mult.	δ^{\ddagger}	$I_{(\gamma+ce)}$	Comments
6049.4	0+	6048.2 10		0.0	0+	[E0]		100	
6129.89	3-	6128.63 4	100	0.0	0+	[E3]			B(E3)(W.u.)=13.5 7
6917.1	2+	787.2 <i>6</i>	≤0.008	6129.89	3-	[E1]			$B(E1)(W.u.) \le 4 \times 10^{-5}$
		867.7 12	0.027 3	6049.4	0^{+}	[E2]			B(E2)(W.u.)=27 3
		6915.5 6	100	0.0	0^{+}	[E2]			B(E2)(W.u.)=3.1 I
7116.85	1-	986.93 <i>15</i>	0.070 14	6129.89	3-	[E2]			B(E2)(W.u.)=21 5
		1067.5 10	$<6\times10^{-4}$	6049.4	0^{+}	[E1]			$B(E1)(W.u.) \le 6 \times 10^{-7}$
		7115.15 <i>14</i>	100	0.0	0^{+}	[E1]			$B(E1)(W.u.)=3.5\times10^{-4}$ 2
8871.9	2-	1754.9 6	14.7 <i>7</i>	7116.85	1-	[M1+E2]	2.1 4		$B(M1)(W.u.)=7\times10^{-4} 3;$
						. ,			B(E2)(W.u.)=10.3 15
		1954.7 8	4.6 7	6917.1	2+	[E1]			$B(E1)(W.u.)=4.7\times10^{-5}$ 9
		2741.5 5	100 2 <i>1</i>	6129.89	3-	[M1+E2]	2.9 2		$B(M1)(W.u.)=6.9\times10^{-4} 9;$
									B(E2)(W.u.)=8.2 7
		2822.2 12	0.15 5	6049.4	0_{+}	[M2]			B(M2)(W.u.)=0.18 6
		8869.3 <i>5</i>	9.3 10	0.0	0_{+}	[M2]			B(M2)(W.u.)=0.050 8
9585	1-	2688 11	12 4	6917.1	2+	[E1]			$B(E1)(W.u.)=3.5\times10^{-4} 12$
		9582 11	100 16	0.0	0^{+}	[E1]			$B(E1)(W.u.)=6.6\times10^{-5}$ 11
9844.5	2+	2927.1 8	34 7	6917.1	2+	[M1]			B(M1)(W.u.)=0.0042 8
		3794.6 <i>12</i>	30 7	6049.4	0_{+}	[E2]			B(E2)(W.u.)=1.2 3
		9841.2 5	100 7	0.0	0_{+}	[E2]			B(E2)(W.u.)=0.031 3
10356	4+	3439 <i>3</i>	100 10	6917.1	2+	[E2]			B(E2)(W.u.)=65 6
		4225 3	<1.6	6129.89	3-	[E1]			$B(E1)(W.u.) < 3 \times 10^{-5}$
		10352 <i>3</i>	$9 \times 10^{-5} \ 3$	0.0	0_{+}	[E4]			B(E4)(W.u.)=3.7 13
10957	0_{-}	3839.6 10	100	7116.85	1-	[M1]			B(M1)(W.u.)=0.07 4
11096.7	4+	4179.0 <i>17</i>	81 20	6917.1	2+	[E2]			B(E2)(W.u.)=1.0 3
		4966.0 <i>16</i>	100 42	6129.89	3-	[E1]			$B(E1)(W.u.)=5.9\times10^{-5} 25$
11520	2+	4402 <i>4</i>	≤0.9	7116.85	1-	[E1]			$B(E1)(W.u.) \le 1 \times 10^{-4}$
		4602 4	4.4 11	6917.1	2+	[M1]			B(M1)(W.u.)=0.014 4
		5470 5	4.6 8	6049.4	0_{+}	[E2]			B(E2)(W.u.)=3.1 5
		11516 <i>4</i>	100.0 13	0.0	0+	[E2]			B(E2)(W.u.)=1.5 5
12049	0_{+}	12044.1 20		0.0	0^{+}	[E0]		100	
12440	1-	6389.2 <i>23</i>	1.2 4	6049.4	0_{+}	[E1]			B(E1)(W.u.)=0.0011 4

Adopted Levels, Gammas 1993Ti07 (continued)

$\gamma(^{16}O)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	Comments
12440	1-	12434.8 20	100	0.0 0+	[E1]	B(E1)(W.u.)=0.014 2
12530	2-	3657.7 12	67 [†] 4	8871.9 2-	[M1]	B(M1)(W.u.)=1.2 I
		5412.1 <i>10</i>	24.5 [†] <i>14</i>	7116.85 1-	[M1]	B(M1)(W.u.)=0.12 I
		5611.8 <i>12</i>	<2 [†]	6917.1 2+	[E1]	$B(E1)(W.u.) < 4.5 \times 10^{-4}$
		6398.7 10	100 [†] 4	6129.89 3-	[M1]	B(M1)(W.u.)=0.31 2
		12524.7 10	12.2 [†] <i>12</i>	$0.0 0^{+}$	[M2]	B(M2)(W.u.)=1.12 17
12796	0_	5678 <i>4</i>	100	7116.85 1	[M1]	B(M1)(W.u.)=0.65 6
12968.6	2^{-}	4096.1 7	84 [†] 4	8871.9 2-	[M1]	B(M1)(W.u.)=1.04 12
		5850.7 5	12 [†] 2	7116.85 1	[M1]	B(M1)(W.u.)=0.05 1
		6837.1 <i>4</i>	100 [†] 4	6129.89 3-	[M1]	$B(M1)(W.u.)=0.27 \ 3$
		12963.0 <i>4</i>	4.2 [†] 8	$0.0 0^{+}$	[M2]	B(M2)(W.u.)=1.0 3
13020	2+	13014 10	100	$0.0 0^{+}$		$\Gamma_{\gamma 0} = 0.7 \text{ eV } 2.$
13090	1-	5972 8	3.1 8	7116.85 1-	[M1]	B(M1)(W.u.)=0.31 9
		7039 8	0.58 12	6049.4 0 ⁺	[E1]	B(E1)(W.u.)=0.0017 6
		13084 8	100	$0.0 0^{+}$	[E1]	B(E1)(W.u.)=0.033 5

 $^{^{\}dagger}$ From 1986Zi08. ‡ The signature has been changed, where necessary, from that given in 1993Ti07 in order to conform to the convention used in the nuclear data sheets.

Adopted Levels, Gammas 1993Ti0

Level Scheme

Intensities: Relative photon branching from each level

7

Adopted Levels, Gammas

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Tilley, Weller, Cheves, Chasteler	NP A595,1 (1995)	31-Oct-1994

 $Q(\beta^{-})=-1655.9\ 5;\ S(n)=8045;\ S(p)=15942\ 15;\ Q(\alpha)=-6228$ 2012Wa38

Note: Current evaluation has used the following Q record \$-1665.50 638044.39 7815941 15 1993Au05.

¹⁸O Levels

Cross Reference (XREF) Flags

Α	$^{10}B(^{9}Be,p), ^{11}B(^{9}Be,d)$	Q	$^{17}O(^{12}C,^{11}C)$	AF	$^{18}O(^{12}C,^{12}C), (^{13}C,^{13}C)$
В	$^{12}\mathrm{C}(^{7}\mathrm{Li},\mathrm{p})$	R	18 N β^- decay	AG	$^{18}O(^{16}O,^{16}O)$
C	$^{13}C(^{6}Li,p)$	S	¹⁸ O(γ ,n), (γ ,2n), (γ ,p), (γ ,t)	AH	¹⁸ O(¹⁷ O, ¹⁷ O), (¹⁸ O, ¹⁸ O)
D	$^{13}\mathrm{C}(^{9}\mathrm{Be},\alpha)$	T	$^{18}\mathrm{O}(\gamma,\gamma)$	ΑI	$^{18}O(^{19}F,^{19}F)$
E	$^{13}C(^{17}O,^{12}C)$	U	$^{18}O(e,e)$	AJ	$^{18}O(^{24}Mg,^{24}Mg), (^{26}Mg,^{26}Mg)$
F	$^{14}\mathrm{C}(\alpha,\gamma)$	V	$^{18}O(\pi,\pi)$	AK	$^{18}O(^{27}Al,^{27}Al)$
G	$^{14}C(\alpha,\alpha), (\alpha,n)$	W	$^{18}O(n,n)$	AL	$^{18}O(^{28}Si,^{28}Si)$
Н	$^{14}\text{C}(^{6}\text{Li,d})$	X	$^{18}O(p,p)$	AM	¹⁸ O(⁴⁰ Ca, ⁴⁰ Ca), (⁴⁴ Ca, ⁴⁴ Ca)
Ι	$^{14}\mathrm{C}(^{7}\mathrm{Li},\mathrm{t})$	Y	$^{18}O(d,d)$	AN	18 F β^+ decay
J	$^{14}\text{C}(^{14}\text{C},^{10}\text{Be})$	Z	$^{18}O(t,t)$	AO	19 F(γ ,p)
K	$^{14}\text{C}(^{16}\text{O},^{12}\text{C})$	Other		AP	$^{19}F(n,d)$
L	$^{16}O(t,p)$	AA	$^{18}O(^{3}He,^{3}He)$	AQ	$^{19}F(p,2p)$
M	$^{16}O(\alpha,2p)$	AB	$^{18}\mathrm{O}(\alpha,\alpha)$	AR	19 F(d, 3 He)
N	$^{16}O(^{10}B, ^{8}B), (^{13}C, ^{11}C)$	AC	$^{18}O(^{6}Li, ^{6}Li), (^{7}Li, ^{7}Li)$	AS	19 F(t, α)
0	$^{17}O(d,p)$	AD	$^{18}O(^{9}Be, ^{9}Be)$	AT	²² Ne(d, ⁶ Li)
P	$^{17}\mathrm{O}(\alpha,^3\mathrm{He})$	AE	$^{18}O(^{10}B, ^{10}B), (^{11}B, ^{11}B)$		

E(level)	J^{π}	$T_{1/2}$		XRE	EF		Comments
0.0	0+	stable	BCDEFGHI	JKL (OPQRS	TUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL, AM, AN, AO, AP, AQ, AR, AS, AT T=1
1982.07 9	2+	1.94 ps 5	ABCDEFGHI	J L NO	OPQR	UVWXY	XREF: Others: AA, AB, AG, AH, AJ, AL, AM, AO, AP, AQ, AR, AS, AT %IT=100 g=-0.287 15
3554.84 40	4+	17.2 ps 8	BC F HI	LMN	OPQR	U X	g=-0.28/13 XREF: Others: AB, AG, AH, AS, AT %IT=100 g=-0.62 10
3633.76 11	0^+	0.96 ps <i>11</i>	BC F HI	L (O R	U X	XREF: Others: AB, AG, AH, AR, AS, AT %IT=100
3920.44 <i>14</i>	2+	18.4 fs 20	BC F HI	L (O R	U X	XREF: Others: AB, AG, AS %IT=100
4455.54 10	1-	45 fs <i>10</i>	BC F HI	L (O R	U X	XREF: Others: AB, AG, AH, AR, AS %IT=100
5097.78 <i>54</i>	3-	43 fs <i>17</i>	BC F HI	L (O R	UVWX	XREF: Others: AB, AG, AH, AM, AS, AT %IT=100
5254.8 9	2+	7.0 fs <i>3</i>	BC F HI	L NO	0	U X	XREF: Others: AB, AR, AS %IT=100
5336.4 6	0_{+}	139 fs 28	вс н	L (0	U	XREF: Others: AB, AS %IT=100
5377.8 12	3 ⁺	<21 fs	ВС	L (OP		XREF: Others: AS %IT=100
5530.24 29	2-	<17 fs	ВС	L	R	U X	XREF: Others: AB, AS %IT=100
6198.22 40	1-	2.6 fs 4	вс н	L (O R	TU	XREF: Others: AB, AS

¹⁸O Levels (continued)

E(level)	\mathbf{J}^{π}	T _{1/2}			XF	REF	F			Comments
										%IT=100
6351.3 6	(2^{-})	<24 fs	BC		L	0	R	U		XREF: Others: AB, AS, AT %IT=100
6404.4 12	3-	21 fs <i>10</i>	ВС		L					XREF: Others: AB, AS %IT=100
6880.45 27	0-	<17 fs	ВС		L		R			XREF: Others: AB, AR, AS %IT=100
7116.9 <i>12</i>	4+	<17 fs	ВС	F HI	L	NO	P	U	X	XREF: Others: AB, AF, AG, AH, AS %IT=?; $\%\alpha$ =?
7615.9 7	1-	<2.5 keV	ВС	F H	L		R	U		XREF: Others: AB, AF, AG, AH, AS %IT=?; $\%\alpha$ =?
7771.07 50	2-	<50 keV	ВС		L		R	U		XREF: Others: AS %IT=100
7864 5	5-		ВС	F HI	L	0	P	U		XREF: Others: AB, AF, AG, AH, AS, AT %IT=100
7977 4	$(3^+,4^-)$		ВС		L	0)			XREF: Others: AS %IT=100
8037.8 7	1-	<2.5 keV	BC	FG	LM	IN	R	U		XREF: Others: AF, AG, AH, AS %IT=?; $\%\alpha$ =?
8125 2	5-		BC	F HI	L			U		XREF: Others: AS %IT=?; $\%\alpha$ =?
8213 4	2+	1.0 keV 8	ВС	FG	L			U	X	XREF: Others: AB, AF, AG, AH, AS %IT=?; %n=?; % α =? T=(1)
8282 <i>3</i>	3-	8 keV 1	ВС	FGHI	L			U		XREF: Others: AB, AS %IT=?; $\%$ n=?; $\%$ α =?
8410 8	(2-)	8 keV 6		G	L			U		XREF: Others: AS $\%$ n=?; $\%\alpha$ =?
8521 6					L			U		XREF: Others: AS %IT=100
8660 <i>6</i> 8817 <i>12</i>	(1+)	70 keV <i>12</i>		G	L		P		X	XREF: Others: AS XREF: Others: AB
8955 4		43 keV 3		G	L			U		$%$ n=?; $%\alpha$ =? XREF: Others: AB
900×10 ¹ † 20	(1-)						R			$%$ n=?; $%\alpha$ =? $%\alpha$ =?
9030 9100					L	0)			Level uncertain. XREF: Others: AB XREF: Others: AB
9270 [†] <i>20</i> 9361 <i>6</i>	$(0,1,2)^-$ (3^-)	27 keV <i>15</i>		GI	L		R	U		XREF: Others: AB, AF, AG, AH %IT=?; $\%$ n=?; $\%$ α =?
9414 <i>18</i>		≈120 keV		GΙ	L					XREF: Others: AB $\%$ n=?; $\%\alpha$ =?
9480 <i>24</i> 9672 <i>7</i>	(3-)	≈65 keV 60 keV <i>30</i>		G G	L L					%n=?; % α =? XREF: Others: AB, AF, AG, AH
9713 7					L			U		$%$ n=?; $%\alpha$ =? XREF: Others: AB
9890 11		≈150 keV		G	L					%IT=100 XREF: Others: AB
10118 <i>10</i>	3-	16 keV 4		GH	L					$%$ n=?; $%\alpha$ =? XREF: Others: AB $%$ n=?; $%\alpha$ =?
10240 [†] 20 10295 14	(0,1,2) ⁻ 4 ⁺	<50 keV		GHI	LM	I	R	U		%n=100 XREF: Others: AB, AF, AG, AH $\%$ IT=?; $\%$ n=?; $\%$ α =?

¹⁸O Levels (continued)

E(level)	${ m J}^{\pi}$	T _{1/2}	XREI	-	Comments
10396 9	3-		G L		XREF: Others: AB
					$%n=?; %\alpha=?$
10430 40	(2^{-})	<50 keV		U	%IT=100
10595 15	(2-)	450 1V	G L		$%$ n=?; $%\alpha$ =?
10670 <i>20</i> 10820 <i>20</i>	(2^{-})	<50 keV	G	U	%IT=100 %n=?; $%\alpha$ =?
10820 20			G I		$\%$ n=?; $\%\alpha$ =?
10990 20	(2^{-})	<50 keV	G	U	$\%IT=?; \%n=?; \%\alpha=?$
11060	(6-)	100 110 1		P	, , , , , , , , , , , , , , , , , , , ,
11130 20	,		GI		XREF: Others: AR
					$%n=?; %\alpha=?$
11390 20	(2^{+})		GH		$%$ n=?; $%\alpha$ =?
11410 20	(4^{+})		GH		$%n=?; %\alpha=?$
11490 [†] <i>30</i>	$(0,1,2)^{-}$			R	%n=100
11520 <i>50</i>	(2^{-})	<50 keV		U	%IT=100
11620 20	5-		GHI	U	XREF: Others: AB, AF, AG, AH
11670 20	(2-)	112 00 17/ 2			$%$ n=?; $%\alpha$ =?
11670 <i>20</i> 11690 <i>20</i>	(3 ⁻) 6 ⁺	112.00 keV 2	GHI	U	XREF: Others: AB
11090 20	U		GIII		$% = ?$; $% \alpha = ?$
11820 20	(3^{-})		G		$%$ n=?; $%\alpha$ =?
11900 <i>30</i>	(2^{-})	<50 keV		U	%IT=100
12040 20	(2^{+})		GH		%IT=?; %n=?; %α=?
12090 20	$(1^-,2^+)$	<50 keV		U	
12250 20	(1^{-})		GH		$%$ n=?; $%\alpha$ =?
12330 20	5-	1401 1704	GHI		$%$ n=?; $%\alpha$ =?
12410 20	(3 ⁻) 4 ⁺	143 keV 24	C	U	%IT=100
12500 20	4 '		G		XREF: Others: AF, AG, AH
12520 20		<50 keV		U	$%$ n=?; $%\alpha$ =? $%$ IT=100
12530 20	6+	<50 RC V	GHI	O	XREF: Others: AF, AG, AH
12000 20			0112		$%$ n=?; $%\alpha$ =?
12660 20	(2^{-})	<50 keV		U	%IT=100
12990 20	(4^{-})	68 keV 18		U	%IT=100
13100	1-	700 keV		S	%IT=?; %n=?
13400 20	(2^{-})	108 keV 20		U	%IT=100
13800	1-	600 keV		S	%IT=?; %n=?
13850 <i>13</i> 14170 <i>40</i>	(6 ⁻)	≈200 keV 140 keV <i>50</i>		P U P U	%IT=100 %IT=100
14470 40	(6 ⁻)	≈1070 keV		r U	%IT=100 %IT=100
14700	1-	800 keV		S	%IT=?; %n=?
15230 40	•	≈300 keV		U	%IT=100
15800	1-	700 keV		S	%IT=?; %n=?
15950 <i>30</i>		<50 keV		U	%IT=100
16210 <i>10</i>	1(-)			U	%IT=100
16315 <i>10</i>	$(3,2)^{-}$			U	%IT=100
16399 <i>5</i>	2-	<20 keV		U X	%IT=100
16000 20	(4- 2-)	450 1V			T=2
16880 <i>30</i>	$(4^-,2^-)$	<50 keV		U	%IT=100 T=(1)
16948 <i>10</i>	$(3,2)^{-}$			U	%IT=100
17025 10	$(3,2)$ (3^{-})	20 keV 6		U	%IT=100 %IT=100
	(-)	,		-	T=2
17050	(7^{-})	≈350 keV	H		
17398 <i>10</i>	1-	600 keV		S U	%IT=?; %n=?; %p=?
					T=(2)

¹⁸O Levels (continued)

E(level)	J^π	$T_{1/2}$	XREF		Comments
17450 10	$(2,1,3)^-$			U	%IT=100
17460 <i>30</i>	(4-)	≈600 keV		Ū	%IT=100
17.100 20	(.)	1000 110 1			T=1
17500		≈150 keV		U	%IT=100
17502 10	$(1,2,3)^{-}$	100 110 (Ū	%IT=100
$1760 \times 10^{1} \ 20$	(8^+)		Н	· ·	7011 100
17635 10	(0)		11	U	%IT=100
18049 <i>10</i>				Ŭ	%IT=100 %IT=100
18200		≈150 keV		U	%IT=100 %IT=100
18450 20	(3^{-})	≈130 keV 75 keV 27		U	%IT=100 %IT=100
18430 20	(3)	73 KeV 27		U	
10500		4200 1 37		**	T=(1)
18500	(4-)	≈4300 keV		U	%IT=100
18700 <i>20</i>	(4-)	<20 keV		U	%IT=100
10051 5					T=2
18871 <i>5</i>	1+			U	%IT=100
1000 70					T=2
18927 10	$(1,2^+)$			U	%IT=100
18950	(7^{-})	≈350 keV	Н		
19027 <i>10</i>	$(1,3)^{-}$			U	%IT=100
19150 <i>10</i>	$(1^-,2^+,3^-)$			U	%IT=100
19240 <i>20</i>	(≥3)	<20 keV		U	%IT=100
					T=2
19400	1-	900 keV		S	%IT=?; %p=?
					T=(2)
19700		≈200 keV		U	%IT=100
20200		≈180 keV		U	%IT=100
20360 20	(4^{-})	<20 keV		U	%IT=100
					T=2
20860 20		97 keV 41		U	%IT=100
21000	1-	≈150 keV		SU	%IT=?; %n=?; %p=?
					T=(1)
21420 20	(4^{-})	<50 keV		U	%IT=100
	. ,				T=(2)
22400 20	4-	91 keV 8		U	%IT=100
					T=2
22700	1-			S	%IT=?; %n=?; %p=?
23100 20		49 keV 24		U	%IT=100
23800	1-	≈1500 keV		SÜ	%IT=?; %n=?; %p=?
2000	•	1500 115 (T=(1)
27000	1-			S	%IT=?; %n=?; %p=?
					T=(2)
30000				S	%IT=?; %n=?
36000				S	%IT=100

 $^{^{\}dagger}$ See $^{18}{\rm N}$ β^- decay for disscusion of this level.

 γ (18O)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	Comments	
1982.07	2+	1982	100	0.0	0^{+}	E2		B(E2)(W.u.)=3.32 9
3554.84	4+	1573	100	1982.07	2+	E2		B(E2)(W.u.)=1.19 6
3633.76	0_{+}	1652	99.70 <i>6</i>	1982.07	2+	E2		B(E2)(W.u.)=17 2
		3634	0.30 6	0.0	0_{+}			$\Gamma(\pi)/\Gamma=3.0\times10^{-3}~6~(1975\text{So}05).$
3920.44	2+	1938	87.6 7	1982.07	2+	M1		B(M1)(W.u.)=0.14 2

γ ⁽¹⁸O) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
3920.44	2+	3920	12.4 7	0.0 0+	E2		B(E2)(W.u.)=1.3 2
4455.54	1-	535	2.5 9	3920.44 2+	E1		$\Gamma(\pi)/\Gamma=0.003$ 6. B(E1)(W.u.)=0.0035 11
		821	70.4 17	3633.76 0 ⁺	E1		B(E1)(W.u.)=0.027 7
		2473	27.1 26	1982.07 2+	E1	†	B(E1)(W.u.)=0.00041 10
5097.78	3-	1178	17.6 7	3920.44 2+	E1	†	B(E1)(W.u.)=0.0025 11
		1543	6.3 8	3554.84 4 ⁺	E1	†	B(E1)(W.u.)=0.00036 15
50540	2+	3116	76.1 8	1982.07 2+	E1	†	B(E1)(W.u.)=0.00057 23
5254.8	2'	799 1334	3.0 <i>3</i> 8.7 <i>4</i>	4455.54 1 ⁻ 3920.44 2 ⁺	E1 M1		B(E1)(W.u.)=0.0082 8 B(M1)(W.u.)=0.111 8
		1621	1.0 6	3633.76 0 ⁺	E2		$B(E2)(W.u.)=23 \ 15$
		1699	1.1 6	3554.84 4+	E2	0.4.7.4	B(E2)(W.u.)=21 <i>12</i>
		3272	55.9 10	1982.07 2+	M1+E2	0.15 <i>4</i> †	D/E0//W \ 0.15 II
5336.4	0+	5254 880	30.3 <i>9</i> 42 <i>2</i>	$0.0 0^{+} $ $4455.54 1^{-}$	E2 E1	ı	B(E2)(W.u.)=2.15 <i>11</i> B(E1)(W.u.)=0.0042 <i>9</i>
2220.1	Ü	3354	58 2	1982.07 2+	E2		B(E2)(W.u.)=2.0 4
		5336		$0.0 0^{+}$			$\Gamma(\pi)/\Gamma \leq 0.0023$.
5377.8	3 ⁺	1459	13.5 22	3920.44 2 ⁺		†	
		3396	86.5 22	1982.07 2+		† †	
5530.24	2-	1074 1610	27 2 24 2	4455.54 1 ⁻ 3920.44 2 ⁺		1	
		3548	49 2	1982.07 2 ⁺		†	
6198.22	1-	862	1.1 3	5336.4 0+	E1		B(E1)(W.u.)=0.0064 20
		943	3.6 4	5254.8 2+	E1		B(E1)(W.u.)=0.016 3
		1742 2564	4.1 <i>4</i> 2.5 <i>3</i>	4455.54 1 ⁻ 3633.76 0 ⁺	M1 E1		B(M1)(W.u.)=0.063 <i>13</i> B(E1)(W.u.)=0.00055 <i>12</i>
		6198	88.7 9	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00033 12 B(E1)(W.u.)=0.0014 3
6351.3	(2^{-})	1895	12 2	4455.54 1		†	
		2431	55 2	3920.44 2 ⁺		†	
		4369	32 2	1982.07 2+		†	
6404.4	3-	1149 1306	5.6 9 9.8 9	5254.8 2 ⁺ 5097.78 3 ⁻	E1 M1		B(E1)(W.u.)=0.0017 9 B(M1)(W.u.)=0.045 26
		1948	2.8 10	4455.54 1 ⁻	E2		B(E2)(W.u.)=9 6
		2484	6.3 10	3920.44 2 ⁺	E1	†	B(E1)(W.u.)=0.00020 11
		2849	7.4 12	3554.84 4+	E1		B(E1)(W.u.)=0.00015 8
		4422	68.1 <i>18</i>	1982.07 2+	E1	† †	B(E1)(W.u.)=0.00037 20
6880.45 7116.9	0 ⁻ 4 ⁺	2424 1857	100 0.30 <i>6</i>	4455.54 1 ⁻ 5254.8 2 ⁺		1	
/110.9	4	2019	1.3 2	5097.78 3 ⁻	E1		B(E1)(W.u.)=0.00029 8
		3197	2.1 2	3920.44 2+	E2		B(E2)(W.u.)=2.2 6
		3562	69.2 7	3554.84 4 ⁺	M1		B(M1)(W.u.)=0.071 16
		5135	27.1 <i>4</i>	1982.07 2+	E2+(M3)	-0.052 35	$\Gamma_{\gamma}/\Gamma \alpha = 0.9 \ I.$ B(E2)(W.u.)=3.2 6
7615.9	1-	1418	1 1	6198.22 1	M1		B(M1)(W.u.)=0.07 7
		2280	6 1	5336.4 0+	E1	0.027.0	B(E1)(W.u.)=0.0045 13
		3160 5634	8 <i>1</i> 62 <i>3</i>	4455.54 1 ⁻ 1982.07 2 ⁺	M1+E2 E1+M2	-0.027 <i>8</i> -0.21 <i>3</i>	
		7616	23 2	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00046 11
7771.07	2-	2673	36 3	5097.78 3-			
		3315 5789	11 2 53 <i>3</i>	4455.54 1 ⁻ 1982.07 2 ⁺			
7864	5-	4309	>75	3554.84 4 ⁺	E1		B(E1)(W.u.)>0.0009

$\gamma(^{18}\text{O})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$E_f \underline{J_f^{\pi}}$	Mult.	Comments
7977	$(3^+,4^-)$	2599	21 2	5377.8 3+		
	. , ,	2879	12 2	5097.78 3-		
		4422	67 2	3554.84 4 ⁺		
8037.8	1-	2783	4 1	5254.8 2 ⁺	E1	B(E1)(W.u.)=0.0043 14
		4404	10 <i>I</i>	3633.76 0+	E1	B(E1)(W.u.)=0.00028 8
		6057	70 2	1982.07 2 ⁺	E1	$B(E1)\downarrow = 0.0072 \ 15$
						$\Gamma \alpha \Gamma_{\gamma}/\Gamma = 0.89 \text{ eV}.$
		8038	16 <i>I</i>	$0.0 0^{+}$	E1	B(E1)(W.u.)=0.00070 17
8125	5-	3027	1 <i>1</i>	5097.78 3-	E2	B(E2)(W.u.)=5.5
		4570	99 <i>1</i>	3554.84 4 ⁺	E1	B(E1)(W.u.)=0.0061 11
						$\Gamma \alpha \Gamma_{\gamma}/\Gamma = 0.22 \text{ eV}.$
8213	2+	3115	17 <i>1</i>	5097.78 3-	E1	B(E1)(W.u.)=0.0050 11
		3757	29 <i>3</i>	4455.54 1	E1	B(E1)(W.u.)=0.0049 16
		4293	3 1	3920.44 2+	M1	B(M1)(W.u.)=0.0072 30
		4658	3 1	3554.84 4 ⁺	E2	B(E2)(W.u.)=2.4 10
		6231	29 <i>3</i>	1982.07 2+	M1	B(M1)(W.u.)=0.024 8
		8213	19 <i>4</i>	$0.0 0^{+}$	E2	B(E2)(W.u.)=0.9 3
8282	3-	3022	36 <i>3</i>	$5254.8 2^+$	E1	B(E1)(W.u.)=0.014 5
		3826	3 3	4455.54 1	E2	B(E2)(W.u.)=8 8
		4727	61 <i>3</i>	3554.84 4 ⁺	E1	B(E1)(W.u.)=0.0061 16

 $^{^{\}dagger}$ δ is consistent with 0.

Adopted Levels, Gammas

Level Scheme

Intensities: Type not specified

Legend

 ${}^{18}_{8}\mathrm{O}_{10}$ -7

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Type not specified

Legend

 ${}^{20}_{8}\text{O}_{12}$ -1

Adopted Levels, Gammas 1998Ti06

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. R. Tilley, C. Cheves, J. Kelley, S. Raman, H. Weller	NP A636,249 (1998)	21-Apr-1997

 $Q(\beta^{-})=3813.6 9$; S(n)=7608 3; S(p)=19348 17; $Q(\alpha)=-12323 4$ 2012Wa38

Note: Current evaluation has used the following Q record 3814.3 21 7608 3 19352 16-12322 4 1997Au04.

See other reaction references in 1998Ti06.

²⁰O Levels

Cross Reference (XREF) Flags

- $^{18}\mathrm{O}(t,p)$ A
- В
- ¹⁸O(α,2p) ¹⁸O(¹⁸O,¹⁶O)

${f J}^\pi$	T _{1/2}	XRE
0+	13.51 s 5	ABC
2+	7.3 ns. 3	ABC
2	7.5 ps 5	ADC
4+		ABC
2+		A C
0^+		A C
4+		Α
		Α
2+		Α
2+		Α
0_{+}		Α
(3^{-})		Α
(2)		Α
5-		Α
3- & 4+		Α
4 ⁺		AB
(5^{-})		AB
4+		A
3-		AB
(0^+)		A
0_{+}		A
2+		AB
	0+ 2+ 4+ 2+ 0+ 4+ 2+ 0+ (3-) (2) 5- 3- & 4+ (5-) 4+ 3- (0+) 0+	0 ⁺ 13.51 s 5 2 ⁺ 7.3 ps 3 4 ⁺ 2 ⁺ 0 ⁺ 4 ⁺ 2 ⁺ 2 ⁺ 0 ⁺ (3 ⁻) (2) 5 ⁻ 3 ⁻ & 4 ⁺ 4 ⁺ (5 ⁻) 4 ⁺ 3 ⁻ (0 ⁺) 0 ⁺

 $^{^{\}dagger}$ Decay mode not specified.

Comments $\%\beta^{-}=100$ T=2T_{1/2}: Weighted average: 13.49 s 5 (1974Al09) 13.57 s 1 (1970Ma42). μ =-0.70 3 (1989Ra17) Γ_{γ} =6.28×10⁻⁵ eV 24.

Adopted Levels, Gammas 1998Ti06 (continued)

 ${}^{20}_{8}\mathrm{O}_{12}$ -2

 γ (²⁰O)

 $\frac{\text{E}_{i}(\text{level})}{1673.68} \quad \frac{\text{J}_{i}^{\pi}}{2^{+}} \quad \frac{\text{E}_{\gamma}}{1673.60} \quad \frac{\text{I}_{\gamma}}{150} \quad \frac{\text{E}_{f}}{100} \quad \frac{\text{J}_{f}^{\pi}}{0^{+}} \quad \frac{\text{Mult.}}{0^{+}} \quad \frac{\text{Comments}}{\text{E2]}}$

Adopted Levels, Gammas 1998Ti06

Level Scheme

Intensities: Type not specified

