

Lösungsblatt 8

Vorbereitungsaufgaben

Vorbereitungsaufgabe 1

Das Pumping-Lemma besagt, dass jede reguläre Sprache L über einem Alphabet Σ eine gewisse Eigenschaft P(L) besitzt. Intuitiv besagt P(L), dass jedes Wort aus L, das lang genug ist, sich am Anfang des Wortes beliebig auf- und abpumpen lässt, ohne die Sprache zu verlassen.

Formal hat P(L) die Form:

- 1. Füllen Sie die leeren Felder so mit den Symbolen \exists , \forall , \Longrightarrow , \land , \in und \notin aus, dass die entstehende Aussage äquivalent zur
 - (a) Eigenschaft P(L) ist.
 - (b) Negation $\neg P(L)$ der Eigenschaft P(L) ist.
- 2. Kann man etwas über die Regularität einer Sprache L sagen, wenn P(L)
 - (a) gilt?
 - (b) nicht gilt?

Lösung

Die Aussage des Pumping-Lemmas ist, dass für jede reguläre Sprache L ein $n \in \mathbb{N}$ existiert, sodass für alle $x \in L$ mit $|x| \ge n$ Wörter $u, v, w \in \Sigma^*$ mit $x = uvw, |v| \ge 1$ und $|uv| \le n$ existieren, sodass für alle $i \in \mathbb{N}$ das Wort uv^iw in L enthalten ist.

1. (a) P(L) ist äquivalent zu:

(b) $\neg P(L)$ ist äquivalent zu:

2. (a) Nein. Jede reguläre Sprache L erfüllt P(L), aber es gibt auch nichtreguläre Sprachen, die das tun. Beispielsweise erfüllt die Sprache

$$L = \{ a^k b^\ell c^m \, | \, k = 0 \lor \ell = m \}$$

über $\Sigma = \{a, b, c\}$ die Aussage P(L), obwohl sie nicht regulär ist.

(b) Ja. L ist mit Sicherheit nicht regulär.

Vorbereitungsaufgabe 2

Eine binäre Relation \sim auf einer Menge S heißt \ddot{A} quivalenzrelation, falls sie (1) reflexiv, (2) symmetrisch und (3) transitiv ist, d. h.:

- (1) $\forall x \in S : x \sim x$
- (2) $\forall x, y \in S : (x \sim y \implies y \sim x)$
- (3) $\forall x, y, z \in S : ((x \sim y \land y \sim z) \implies x \sim z)$

Sei Σ ein Alphabet. Welche der folgenden Relationen \sim sind Äquivalenzrelationen auf Σ^* und welche nicht? Beweisen Sie Ihre Antworten.

- 1. $x \sim y \iff \exists m, n > 1 \colon x^m = y^n$
- 2. $x \sim y :\iff \exists w \in \Sigma^* : wx = y^2$

Lösung

1. \sim ist eine Äquivalenzrelation. Beweis:

Reflexivität

Sei $x \in \Sigma^*$ beliebig. Wähle $m = n \ge 1$ beliebig (z. B. m = n = 1). Dann gilt $x^m = x^n$.

Symmetrie

Seien $x,y\in \Sigma^*$ beliebig mit $x\sim y$. Dann existieren $m,n\geq 1$ mit $x^m=y^n$. Wähle m'=n und n'=m. Dann sind $m',n'\geq 1$ und es gilt: $y^{m'}=y^n=x^m=x^{n'}$. Somit ist $y\sim x$.

Transitivität

Seien $x, y, z \in \Sigma^*$ beliebig mit $x \sim y$ und $y \sim z$. Dann existieren Zahlen $m, m', n, n' \geq 1$ mit $x^m = y^n$ und $x^{m'} = y^{n'}$. Wähle $m'' = m \cdot m'$ und $n'' = n \cdot n'$. Dann sind $m'', n'' \geq 1$ und es gilt:

$$x^{m''} = x^{m \cdot m'} = (x^m)^{m'} = (y^n)^{m'} = (y^{m'})^n = (z^{n'})^n = z^{n \cdot n'} = z^{n''}.$$

Somit ist $x \sim z$.

2. \sim ist zwar reflexiv (man wählt w=x), aber weder symmetrisch (da z. B. $\varepsilon \sim a$ und $a \not\sim \varepsilon$) noch transitiv (da z. B. $aaa \sim aa$, $aa \sim a$ und $aaa \not\sim a$) und somit keine Äquivalenzrelation.

2

Vorbereitungsaufgabe 3

Ist \sim eine Äquivalenzrelation auf S und x ein beliebiges Element aus S, dann heißt $[x]_{\sim} := \{y \in S \mid x \sim y\}$ die Äquivalenzklasse von x bezüglich \sim . Für beliebige $x, y \in S$ gilt dann:

$$x \sim y \iff [x]_{\sim} = [y]_{\sim}.$$

Die Menge $S/\sim := \{[x]_\sim | x \in S\}$ aller Äquivalenzklassen heißt Quotientenmenge oder Faktormenge und bildet eine Partition von S, d. h. jedes Element aus S ist in genau einer Äquivalenzklasse enthalten. Die Mächtigkeit $|S/\sim|$ der Quotientenmenge wird Index von \sim genannt und gelegentlich mit $Index(\sim)$ notiert.

Eine Menge $R\subseteq S$ heißt Repräsentanten- oder Vertretersystem von \sim , wenn sie genau ein Element aus jeder Äquivalenzklasse enthält, d.h. wenn $|R\cap [x]_{\sim}|=1$ für alle $x\in S$ gilt. Für jedes Repräsentantensystem R von \sim gilt dann:

$$S/\sim = \{[x]_{\sim} \mid x \in R\}.$$

Sei $\Sigma = \{a, b\}$. Gegeben seien folgende Äquivalenzrelationen auf Σ^* :

- 1. $x \sim y \iff |x|_a \equiv |y|_a \mod 3$
- $2. x \sim y \iff |x| = |y|$
- 3. $x \sim y \iff |x|_a + |y|_b = |y|_a + |x|_b$

Geben Sie zu jeder Äquivalenzrelation folgendes an:

- (a) ein Repräsentantensystem R
- (b) die Äquivalenzklasse $[x]_{\sim}$ von jedem $x \in R$
- (c) die Quotientenmenge Σ^*/\sim
- (d) der Index $|\Sigma^*/\sim|$

Lösung

Eine Äquivalenzrelation kann im Allgemeinen mehrere Repräsentantensysteme haben. Für jede der obigen Äquivalenzrelationen wird hier dasjenige Repräsentantensystem gewählt, das von jeder Äquivalenzklasse das *längenlexikografisch* kleinste Element enthält.

- 1. (a) Mögliches Repräsentantensystem: $R = \{\varepsilon, a, aa\}$
 - (b) Äquivalenzklassen:
 - $\bullet \ [\varepsilon]_{\sim} = \{\varepsilon, a^3, a^6, a^9, \dots\} = \{w \in \Sigma^* \, | \, |w|_a \equiv 0 \mod 3\}$
 - $[a]_{\sim} = \{a, a^4, a^7, a^{10}, \dots\} = \{w \in \Sigma^* \mid |w|_a \equiv 1 \mod 3\}$
 - $[aa]_{\sim} = \{a^2, a^5, a^8, a^{11}, \dots\} = \{w \in \Sigma^* \mid |w|_a \equiv 2 \mod 3\}$
 - (c) Quotientenmenge: $\Sigma^*/\sim = \{[\varepsilon]_{\sim}, [a]_{\sim}, [aa]_{\sim}\}$
 - (d) Index: $|\Sigma^*/\sim| = 3$.
- 2. (a) Mögliches Repräsentantensystem: $R = \{\varepsilon, a, aa, \dots\} = \{a^n \mid n \in \mathbb{N}\}$

- (b) Äquivalenzklassen: $[a^n]_{\sim} = \Sigma^n$ für alle $n \in \mathbb{N}$
- (c) Quotientenmenge: $\Sigma^*/\sim = \{[a^n]_{\sim} \mid n \in \mathbb{N}\}$
- (d) Index: $|\Sigma^*/\sim| = \infty$.
- 3. (a) Mögliches Repräsentantensystem:

$$R = \{\dots, bb, b, \varepsilon, a, aa, \dots\} = \{x^n \mid x \in \Sigma \land n \in \mathbb{N}\}.$$

- (b) Äquivalenzklassen:
 - $[\varepsilon]_{\sim} = \{w \in \Sigma^* \mid |w|_a = |w|_b\}$
 - $[a^n]_{\sim} = \{ w \in \Sigma^* \mid |w|_a |w|_b = n \}$ für alle $n \in \mathbb{N}$
 - $[b^n]_{\sim} = \{w \in \Sigma^* \mid |w|_b |w|_a = n\}$ für alle $n \in \mathbb{N}$
- (c) Quotientenmenge: $\Sigma^*/\sim = \{[x^n]_\sim | x \in \Sigma \land n \in \mathbb{N}\}$
- (d) Index: $|\Sigma^*/\sim| = \infty$.

Vorbereitungsaufgabe 4

Seien Σ ein Alphabet, L eine Sprache über Σ , $x,y \in \Sigma^*$ zwei beliebige Wörter und R_L die Myhill-Nerode-Äquivalenz. Füllen Sie die leeren Felder so mit den Symbolen \exists , \forall , \in und \notin aus, dass die entstehende Aussagen wahr sind. Dabei besagt $x \not R_L y$, dass $x R_L y$ nicht gilt, d. h. dass x und y nicht in Relation bezüglich R_L stehen.

1.
$$x R_L y \iff w \in \Sigma^* : (xw L \iff yw L)$$

2.
$$x \not\in L y \iff w \in \Sigma^* : (xw \bigcup L \iff yw \bigcup L)$$

Lösung

1. Es gibt zwei mögliche Lösungen:

$$x R_L y \iff \boxed{\forall} w \in \Sigma^* : \left(xw \boxed{\in} L \iff yw \boxed{\in} L \right)$$
$$\iff \boxed{\forall} w \in \Sigma^* : \left(xw \boxed{\notin} L \iff yw \boxed{\notin} L \right)$$

2. Es gibt zwei mögliche Lösungen:

$$x \mathcal{B}_L y \iff \boxed{\exists} w \in \Sigma^* : \left(xw \boxed{\in} L \iff yw \boxed{\notin} L \right)$$

$$\iff \boxed{\exists} w \in \Sigma^* : \left(xw \boxed{\notin} L \iff yw \boxed{\in} L \right)$$

Hinweis: Man nennt dann w einen Zeugen für die Inäquivalenz von x und y.

Präsenzaufgaben

Präsenzaufgabe 1

Zeigen Sie mithilfe des Pumping-Lemmas, dass keine der folgenden Sprachen L über dem entsprechenden Alphabet Σ regulär ist.

1.
$$L = \{w \in \Sigma^* \mid |w|_a = |w|_b\}, \ \Sigma = \{a, b\}$$

2.
$$L = \{a^{3^k} \mid k \in \mathbb{N}\}, \Sigma = \{a\}$$

3.
$$L = \left\{ a^{\lfloor \sqrt{k} \rfloor} b^{\ell} c^k \mid k, \ell \in \mathbb{N} \right\}, \ \Sigma = \{a, b, c\}$$

Lösung

Wir zeigen für jede Sprache L, dass sie die Eigenschaft des Pumping-Lemmas nicht besitzt und somit nicht regulär sein kann (siehe Vorbereitungsaufgabe 1).

Formal zeigen wir also:

$$\forall n \in \mathbb{N} \colon \exists x \in L \colon \Big(|x| \ge n \land \forall u, v, w \in \Sigma^* \colon \big(x = uvw \land |v| \ge 1 \land |uv| \le n \Big)$$
$$\implies \exists i \in \mathbb{N} \colon uv^i w \notin L\Big)\Big).$$

1. Sei $n \in \mathbb{N}$ beliebig. Wähle $x = a^n b^n$. Dann ist $x \in L$ mit $|x| = 2n \ge n$. Seien $u, v, w \in \Sigma^*$ beliebig mit (1) x = uvw, (2) $|uv| \le n$ und (3) $|v| \ge 1$. Wegen (1) und (2) ist $v = a^j$ für ein $j \le n$. Wegen (3) ist $j \ge 1$. Für i = 0 ist $uv^i w \notin L$, da

$$|uv^{0}w|_{a} = |uw|_{a} = n - j < n = |uw|_{b} = |uv^{0}w|_{b}.$$

Hinweis: Man hätte hier $i \neq 1$ beliebig wählen können. Die Anzahl der as in uv^iw ist n + (i-1)j und die Anzahl der bs in uv^iw ist n. Diese Werte sind für alle $i \neq 1$ ungleich.

2. Sei $n \in \mathbb{N}$ beliebig. Wähle $x = a^{3^n}$. Dann ist $x \in L$ mit $|x| = 3^n \ge n$. Seien $u, v, w \in \Sigma^*$ beliebig mit (1) x = uvw, (2) $|uv| \le n$ und (3) $|v| \ge 1$. Wegen (1) und (2) ist $v = a^j$ für ein $j \le n$. Wegen (3) ist $j \ge 1$. Für i = 2 ist $uv^i w = uvvw = a^{3^n + j}$. Wegen

$$3^n < 3^n + 1 \le 3^n + j \le 3^n + n \le 3^n + 3^n = 2 \cdot 3^n < 3 \cdot 3^n = 3^{n+1}$$

liegt 3^n+j echt zwischen 3^n und 3^{n+1} . Da die Folge der Dreierpotenzen $(3^n)_{n\in\mathbb{N}}=(1,3,9,27,81,\ldots)$ monoton wachsend ist, kann 3^n-j keine Dreierpotenz sein, d. h. $uv^iw\notin L$.

Hinweise:

• An zwei Stellen wurde die Ungleichung $3^n \ge n$ benutzt. Diese kann für alle $n \in \mathbb{N}$ per Induktion gezeigt werden:

Induktionsanfang

Es gilt $3^0 = 1 > 0$.

Induktionsschritt

Sei $n \in \mathbb{N}$ beliebig. Nach Induktionsvoraussetzung (IV) gilt $3^n \geq n$. Daraus folgt:

$$3^{n+1} = 3 \cdot 3^n \ge 2 \cdot 3^n = 3^n + 3^n \stackrel{\text{IV}}{\ge} n + 3^n \ge n + 1.$$

- Man hätte hier i=0 oder $2 \le i \le 6$ wählen können. Die Länge von uv^iw ist $3^n+(i-1)j$. Für i=0 liegt diese echt zwischen 3^{n-1} und 3^n und für $2 \le i \le 6$ echt zwischen 3^n und 3^{n+1} .
- 3. Sei $n \in \mathbb{N}$ beliebig. Wähle $x = a^n c^{n^2}$. Dann ist $x \in L$ mit $|x| = n + n^2 \ge n$. Seien $u, v, w \in \Sigma^*$ beliebig mit (1) x = uvw, (2) $|uv| \le n$ und (3) $|v| \ge 1$. Wegen (1) und (2) ist $v = a^j$ für ein $j \le n$. Wegen (3) ist $j \ge 1$. Für i = 0 ist $uv^i w \notin L$, da $uv^i w = a^{n-j} c^{n^2}$ mit $n j < n = |\sqrt{n^2}|$ ist.

Hinweis: Man hätte hier $i \neq 1$ beliebig wählen können. uv^iw hat die Form $uv^iw = a^{n+(i-1)j}c^{n^2}$ und die Gleichung $n+(i-1)j=\lfloor \sqrt{n^2} \rfloor$ ist nur für i=1 erfüllt.

Präsenzaufgabe 2

Sei M der folgende DFA und L die von M akzeptierte Sprache.

- 1. Geben Sie L an.
- 2. Welche der folgenden Aussagen sind wahr und welche falsch?
 - (a) $aab R_L abb$
- (c) $bab R_L aba$
- (e) $\varepsilon R_L aa$

- (b) $ab R_L ba$
- (d) $\varepsilon R_L bba$
- (f) $bb R_L \varepsilon$
- 3. Geben Sie Quotientenmenge und Index der Myhill-Nerode-Relation \mathcal{R}_L an.
- 4. Geben Sie den Myhill-Nerode-Automat grafisch an.
- 5. Geben Sie Quotientenmenge und Index der Relation R_M an.

Lösung

- 1. $L = \{a^m b^n \mid m, n \in \mathbb{N}\}.$
- 2. (a) Wahr.

Für alle $w \in \Sigma^*$ gilt: $aabw \in L \iff w \in \{b\}^* \iff abbw \in L$.

6

(b) Falsch.

Für $w = \varepsilon$ gilt $abw = ab \in L$ und $baw = ba \notin L$.

(c) Wahr.

Für alle $w \in \Sigma^*$ sind die Aussagen $babw \in L$ und $abaw \in L$ beide falsch und somit äquivalent.

(d) Falsch.

Für $w = \varepsilon$ gilt $\varepsilon w = \varepsilon \in L$ und $bbaw = bba \notin L$.

(e) Wahr.

Für alle $w \in \Sigma^*$ gilt: $\varepsilon w \in L \iff w \in L \iff aaw \in L$.

- (f) Falsch. Für w=a gilt $bbw=bba\notin L$ und $\varepsilon w=a\in L$.
- 3. $\Sigma^*/R_L = \{ [\varepsilon]_{R_L}, [b]_{R_L}, [ba]_{R_L} \}$ mit
 - $[\varepsilon]_{R_L} = \{a^m \mid m \in \mathbb{N}\},\$
 - $[b]_{R_L} = \{a^m b^n \mid m, n \in \mathbb{N} \land n \ge 1\}$ und
 - $[ba]_{R_L} = \{ w \in \Sigma^* \mid ba \text{ ist Infix von } w \},$
 - d. h. Index $(R_L) = |\Sigma^*/R_L| = 3$.

4.

- 5. $\Sigma^*/R_M = \{ [\varepsilon]_{R_M}, [a]_{R_M}, [aa]_{R_M}, [b]_{R_M}, [bb]_{R_M}, [ba]_{R_M} \}$ mit
 - $[\varepsilon]_{R_M} = \{\varepsilon\},$
 - $[a]_{R_M} = \{a^m \mid m \text{ ungerade}\},$
 - $[aa]_{R_M} = \{a^m \mid m \ge 1 \land m \text{ gerade}\},$
 - $[b]_{R_M} = \{a^m b^n \mid n \ge 1 \land m + n \text{ ungerade}\},$
 - $[bb]_{R_M} = \{a^m b^n \mid n \ge 1 \land m + n \text{ gerade}\}$ und
 - $[ba]_{R_M} = \{ w \in \Sigma^* \mid ba \text{ ist Infix von } w \},$
 - d. h. $Index(R_M) = |\Sigma^*/R_M| = 6$.

Knobelaufgaben

Knobelaufgabe 1

In Präsenzaufgabe 2 aus Ergänzungsblatt 7 haben wir eine kontextfreie Grammatik für die Menge $RE(\Sigma)$ aller regulären Ausdrücke über einem Alphabet Σ angegeben. Zeigen Sie, dass $RE(\Sigma)$ für kein Alphabet Σ regulär ist.

 $\mathit{Hinweis}$: Da Alphabete nichtleer sind, kann von der Existenz eines Buchstaben $a \in \Sigma$ ausgegangen werden.

Knobelaufgabe 2

Sei Σ ein Alphabet. Zeigen Sie, dass die Relation \sim auf Σ^* mit

$$x \sim y :\iff \exists u, v \in \Sigma^* \colon x = uv \land y = vu$$

eine Äquivalenzrelation ist.

Knobelaufgabe 3

Zeigen Sie mithilfe des Pumping-Lemmas, dass die Sprache

$$L = \left\{ a^k b^\ell \,\middle|\, \operatorname{ggT}(k, \ell) = 1 \right\}$$

über dem Alphabet $\Sigma = \{a, b\}$ nicht regulär ist.

Hinweis: $\operatorname{ggT}(k,\ell)$ ist der $\operatorname{gr\"o}\beta$ te gemeinsame Teiler von k und ℓ mit $\operatorname{ggT}(k,0)=k$ und $\operatorname{ggT}(k,1)=1$ für alle $k\in\mathbb{N}$. $\operatorname{ggT}(k,\ell)=1$ besagt also, dass k und ℓ teilerfremd sind.