Outline of PhD manuscript

Victor Trappler

March 5, 2020

Contents

1	Intr	roduction
	1.1	Importance of the numerical model in predictions
	1.2	Need for good calibrated models
	1.3	Oceanic modelling
	1.4	Uncertainties in the modelling and classification
	1.5	Defining robustness
2	Dat	a Assimilation framework
	2.1	The link between Bayesian and Variational
		2.1.1 The calibration problem as a Bayesian inference problem
		2.1.2 MAP and MLE properties as point estimates
	2.2	Calibration of numerical models using adjoint method
		2.2.1 Using the adjoint to get the gradient of the cost function
		2.2.2 Minimization problem in high dimension: BFGS, M1QN3
3	Rob	oust estimators in the presence of uncertainties
	3.1	Localized optimisation pitfalls
	3.2	How to define robustness?
	3.3	Robustness based on the moment of an objective function
		3.3.1 Minimizing mean and variance
		3.3.2 Multiobjective alternatives and higher moments
	3.4	The relative regret estimators family
		3.4.1 Construction of the MPE
		3.4.2 Relaxing the optimality constraint
		3.4.3 Choosing the relaxation coefficient
	3.5	Profile posterior formulation
		3.5.1 Exponentiation of the profile posterior
		3.5.2 Ratio of profiles
4	Ada	aptative design enrichment for calibration using GP
	4.1	Mathematical background on Gaussian Processes
		4.1.1 GP as prior on functions
		4.1.2 Selecting covariance kernels and hyperparameters
		4.1.3 Using gradient information
	4.2	One-step lookahead: Stepwise Uncertainties Reduction
		4.2.1 Exploration based criteria
		4.2.2 Goal driven criteria for global optimisation
		4.2.3 Criteria for Contour Estimation / level sets
		4.2.4 Criterion to estimate jointly α_p and k_p
	4.3	Taking advantage of parallelism
	-	4.3.1 From one-step to q step lookahead variations of criteria

Ó	\mathbf{App}	ation to the numerical coastal regional model CROCO
	5.1	ysical parametrization of the bottom friction
	5.2	odelling the uncertainties
	5.3	nsitivity on the uncertainties
	5.4	mension reduction
		Ad-hoc segmentation based on soil
		GP based method of dimension reduction

1 Introduction

- 1.1 Importance of the numerical model in predictions
- 1.2 Need for good calibrated models
- 1.3 Oceanic modelling
- 1.4 Uncertainties in the modelling and classification
- 1.5 Defining robustness

2 Data Assimilation framework

- 2.1 The link between Bayesian and Variational
- 2.1.1 The calibration problem as a Bayesian inference problem
- 2.1.2 MAP and MLE properties as point estimates
- 2.2 Calibration of numerical models using adjoint method
- 2.2.1 Using the adjoint to get the gradient of the cost function
- 2.2.2 Minimization problem in high dimension: BFGS, M1QN3

3 Robust estimators in the presence of uncertainties

- 3.1 Localized optimisation pitfalls
- 3.2 How to define robustness?
- 3.3 Robustness based on the moment of an objective function
- 3.3.1 Minimizing mean and variance
- 3.3.2 Multiobjective alternatives and higher moments
- 3.4 The relative regret estimators family
- 3.4.1 Construction of the MPE
- 3.4.2 Relaxing the optimality constraint
- 3.4.3 Choosing the relaxation coefficient
- 3.5 Profile posterior formulation
- 3.5.1 Exponentiation of the profile posterior
- 3.5.2 Ratio of profiles

4 Adaptative design enrichment for calibration using GP

- 4.1 Mathematical background on Gaussian Processes
- 4.1.1 GP as prior on functions
- 4.1.2 Selecting covariance kernels and hyperparameters
- 4.1.3 Using gradient information
- 4.2 One-step lookahead: Stepwise Uncertainties Reduction
- 4.2.1 Exploration based criteria
 - Maximum of variance

- Reduce one-step IMSE
- 4.2.2 Goal driven criteria for global optimisation
 - Probability of Improvement
 - Expected Improvement
 - Informational Approach to Global Optimisation
- 4.2.3 Criteria for Contour Estimation / level sets
 - Margin definition
 - Vorob'ev mean and deviation
- 4.2.4 Criterion to estimate jointly α_p and k_p
 - Reduce modified IMSE
- 4.3 Taking advantage of parallelism
- 4.3.1 From one-step to q step lookahead variations of criteria
- 4.3.2 Sampling-based adaptive designs of experiments
- 5 Application to the numerical coastal regional model CROCO
- 5.1 Physical parametrization of the bottom friction
- 5.2 Modelling the uncertainties
- 5.3 Sensitivity on the uncertainties
- 5.4 Dimension reduction
- 5.4.1 Ad-hoc segmentation based on soil
- 5.4.2 GP based method of dimension reduction
- 6 Conclusion