Grupo de Trabalho em Segurança de Redes Edição 27 - Uberlândia – UniAlgar 13 de Maio, 2016

Solução de detecção de intrusão usando técnicas de Big Data para a análise de logs com o uso de Software Livre

William Rennan de Castro Vidal

Roteiro

- * Motivação e Objetivos
- * Conceitos Básicos
- * Proposta e Implementação
- * Avaliação Experimental
- * Conclusão e Trabalhos Futuros

Roteiro

- * Motivação e Objetivos
- * Conceitos Básicos
- * Proposta e Implementação
- * Avaliação Experimental
- * Conclusão e Trabalhos Futuros

Motivação

- * Segurança em redes de computadores
 - * Sistema de detecção/prevenção de intrusão
 - * Há outras técnicas: Firewall, DMZ, etc.
- * Problemas IDS/IPS
 - Quantidade de logs
 - * Falta de padronização

Objetivos

- * Implementar um IDS
 - * Por meio de técnicas de Big Data
 - * Baseado, exclusivamente, em Software Livre

* Avaliar o desempenho da solução proposta a partir de logs de autenticação reais do PoP-RS

13/05/2016

Roteiro

- * Motivação e Objetivos
- * Conceitos Básicos
- * Proposta e Implementação
- * Avaliação Experimental
- * Conclusão e Trabalhos Futuros

Conceitos Básicos

- Segurança da Informação
 - * Base: Confidencialidade, Autenticidade e Disponibilidade
 - * Usando técnicas de detecção, e prevenção de intrusão
- Detecção de Intrusão
 - * Detecção Estatística de Anomalia
 - * Detecção Baseada em Regras
- Necessidade: Analisar logs em busca de padrões de atividade maliciosas
- Problema: Tamanho e variedade dos logs

13/05/2016

Conceitos Básicos

- * Grande Volume de dados (Big Data)
 - * Objetivo: Extrair de quantidade massivas de dados informações relevantes
 - Fases: Geração, aquisição, armazenamento e análise (Analytics)
- * Características:
 - Volume, velocidade, variedade e valor (4Vs)
 - Visualização

SCHROECK, M. et al. Analytics: The real world use of big data. ibm institute for business value—executive report. IBM Institute for Business Value, 2012. DIJCKS, J. P. Oracle: Big data for the enterprise. Oracle White Paper, 2012.

NIST BIG DATA WORKING GROUP (NBD-WG). Big data: The next frontier for innovation, competition, and productivity. 2011. Disponível em: https://bigdatawg.nist.gov/MGI big data full report.pdf>

37

Roteiro

- * Motivação e Objetivos
- * Conceitos Básicos
- * Proposta e Implementação
- * Avaliação Experimental
- * Conclusão e Trabalhos Futuros

Arquitetura Proposta do Sistema

HU, H. et al. Toward scalable systems for big data analytics: A technology tutorial. Access, IEEE, IEEE, v. 2, p. 652–687, 2014. KRUEGEL, C.; VALEUR, F.; VIGNA, G. Intrusion detection and correlation: challenges and solutions. [S.I.]: Springer Science & Business Media, 2005. v. 14.

Geração

- * Heterogêneos
- * Não Estruturado

Aquisição e Normalização

* Facility

Marca Temporal

Origem

Serviço com PID

Mensagem

2015-07-17T12:03:51-03:00

tcc-server

sshd[58807]

Accepted publickey for agulha from 10.10.10.10 port 45162 ssh2

Filtro

* Extração de informações relevantes

Regra:

"Accepted %{WORD:auth_method} for %{USER:username} from %{IP:src_ip} port %{INT:src_port} ssh2"

Accepted **publickey** for **agulha** from **10.10.10.10** port **45162** ssh2

13/05/2016

Filtro

logstash

Armazenamento

```
Syslog-NG Logstash ElasticSearch
Geração Aquisição Normalizador Filtro Armazenamento
```

```
{
    "message" => "2015-07-17T12:03:51-03:00 tcc-server sshd[58807]: Accepted publickey for agulha from 10.10.10.10 port 45162 ssh2",
    "auth_method" => "publickey",
    "username" => "agulha",
    "src_ip" => "10.10.10.10",
    "src_port" => "45162",
    "timestamp" => "17/Jul/2015 12:03:51 -0300",
    "target" => "tcc-server",
    "service" => "sshd",
    "pid" => "58807",
}
```


Análise

Visualização

Dificuldades

- Programação com o modelo MapReduce
 - * Complexidade em mapear a solução em duas primitivas
- * Solução possível:
 - Utilização do Pig
 - * Linguagem Script
 - * Abstração ao MapReduce

Dificuldade Adicional

- * Existem pacotes Pig para carregar informações específicas
 - * Log do Servidor Apache
- * Não é exaustivo
 - * Expressão Regular para caso específico
 - * Dificuldade de escrita

Novo Problema

- * Bug na utilização do Pig
 Elasticsearch for Apache Hadoop 2.1.1
 Bug fixes
- Load error from elasticsearch using Pig and the elasticsearch connector #499 https://www.elastic.co/downloads/past-releases/elasticsearch-apache-hadoop-2-1-1
- * Consequência: Perdida a ligação com o ElasticSearch

Implementação Final

Roteiro

- * Motivação e Objetivos
- * Conceitos Básicos
- * Proposta e Implementação
- * Avaliação Experimental
- * Conclusão e Trabalhos Futuros

Metodologia

- * Uso de logs reais do PoP-RS
- * Comparação: desempenho bash x Pig Latin
 - * Critério: tempo de execução
 - Diferentes volumes de dados
- * Validação estatística: Média e Desvio Padrão

Plataforma Experimental

- * Hardware
- * HP ProLiant DL380
- * Servidor Virtulizado
 - * 4 CPUs
 - * 4GB RAM
 - * 150GB Disco
- * Hypervisor: XenServer 6.5

- * Software
- * Ubuntu 12.04.5 LTS
- * Hadoop 2.7.0
- * Pig 0.15.0
- * *demais serviços (Syslog-NG, Logstash, ElasticSearch, etc.)

Cenários de Teste

- * Cenário I
 - * Busca em campo específico
 - * Busca em campo de strings
- * Cenário II
 - * Busca em 2 e 3 campos
- * Cenário III
 - * Busca com ordenação

Cenário I: Busca em um campo específico

* Busca por hospedeiro

Cenário I: Busca em um campo com strings

* Busca por usuário

Cenário II: Busca em dois campos

* Busca por data e usuário

Cenário II: Busca em três campos

* Busca por data, hospedeiro e usuário

Cenário III: Busca com ordenação

* Ordenação e busca por data e usuário

Roteiro

- * Motivação e Objetivos
- * Conceitos Básicos
- * Proposta e Implementação
- * Avaliação Experimental
- * Conclusão e Trabalhos Futuros

Conclusão

- * Estudo de viabilidade
 - * Funciona, implementado e testado
 - Integrada ao ambiente de produção do PoP-RS
 - * Análise manual por inspeção visual
- * Resultados
 - Baixo desempenho se comparado com grep no bash
 - * Camadas de Software (Hadoop+Pig)
 - * Volume de dados talvez seja pequeno
 - * Não foi usado em ambiente distribuído

Conclusão

- * Contribuição
 - Protótipo funcional para análise de logs para o PoP-RS
 - * Estudo de ferramentas em Software Livre para Big Data
 - * Logstash, ElasticSearh, Fluentd, Kibana, Hadoop, Flume, Pig,...

Trabalhos Futuros

- * Implementar em um ambiente distribuído
- Utilizar Apache Storm e Apache Spark para análise em tempo real
- * Implementar Regras e Filtros mais complexos
- * Analisar desempenho para volume de dados maiores

Agradecimento

Contatos

- * Linkedin: https://www.linkedin.com/in/william-vidal-317126105
- * E-mail: wrcvidal@gmail.com
- * TCC: http://www.lume.ufrgs.br/handle/10183/139086

Obrigado!

- * Perguntas?
- * Demonstração?

