Orthonormal Basis

Definition

Orthonormal Basis: We say that a set of vectors $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ is an orthonormal basis of some subspace W of \mathbb{R}^m if

- 1. $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ is an orthonormal set
- 2. $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ is a basis for W.

Theorem

Let $\{\mathbf{q}_1,\ldots,\mathbf{q}_n\}$ be an orthonormal basis of \mathbb{R}^n . Then, the \mathcal{B} coordinates for a vector $\mathbf{x}\in\mathbb{R}^n$ are given by

$$[\mathbf{x}]_{\mathcal{B}} = egin{bmatrix} \mathbf{q}_1^{ op} \mathbf{x} & \dots & \mathbf{q}_n^{ op} \mathbf{x} \end{bmatrix}$$

This means if we have a basis like this, then our lives are a lot easier!

Orthonormal Columns

Definition

Orthonormal Columns: We say that a matrix $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns if $Q^{\top}Q = I$. (Note: We don't necessarily have $QQ^{\top} = I!$)

This is just putting an orthonormal set into columns of a matrix!

Matrices with Orthonormal Columns and our Norm

Theorem

If $Q \in \mathbb{R}^{m \times n}$ such that Q has orthonormal columns, then for any $\mathbf{x} \in \mathbb{R}^n$, we have

$$\left\| \mathbf{Q}\mathbf{x} \right\|_2 = \left\| \mathbf{x} \right\|_2$$

Proof.

Let $\mathbf{x} \in \mathbb{R}^n$ and $Q \in \mathbb{R}^{m \times n}$ have orthonormal columns. Then see that

$$\left\| \mathbf{Q} \mathbf{x} \right\|_2 = \sqrt{\mathbf{x}^\top \mathbf{Q}^\top \mathbf{Q} \mathbf{x}} = \sqrt{\mathbf{x}^\top \mathbf{x}} = \left\| \mathbf{x} \right\|_2$$

Gram-Schmidt Process (Slightly Different Than Our Text!)

Another problem we want to do is take some basis of our space and convert it to a basis of orthonormal vectors. One method is the Gram-Schmidt Process, which is given below

Definition

Let $\mathbf{v}_1, \dots, \mathbf{v}_m$ be a basis for a subspace W of \mathbb{R}^n . Then the Gram-Schmidt Process computes $\mathbf{q}_1, \dots, \mathbf{q}_m$ such that

$$\mathsf{Span}\,(\mathbf{v}_1,\ldots,\mathbf{v}_m)=\mathsf{Span}\,(\mathbf{q}_1,\ldots,\mathbf{q}_m)\ \ \mathsf{and}\ \ \{\mathbf{q}_1,\ldots,\mathbf{q}_m\}\ \ \mathsf{is\ an\ orthonormal\ set}.$$

We compute the \mathbf{q}_{ℓ} vectors as follows:

$$\mathbf{u}_1 = \mathbf{v}_1 \qquad \mathbf{q}_1 = rac{\mathbf{u}_1}{\left\|\mathbf{u}_1
ight\|_2}$$

For $\ell = 2, \ldots, m$:

$$\textbf{u}_{\ell} = \textbf{v}_{\ell} - \left\langle \textbf{v}_{\ell}, \textbf{q}_{1} \right\rangle \textbf{q}_{1} - \dots - \left\langle \textbf{v}_{\ell}, \textbf{q}_{\ell-1} \right\rangle \textbf{q}_{\ell-1} \qquad \textbf{q}_{\ell} = \frac{\textbf{u}_{\ell}}{\|\textbf{u}_{\ell}\|_{2}}$$

Note: Here, we are using $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y}$

QR Decomposition (From Linear Algebra with Applications)

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be written as $A = \begin{bmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_n \end{bmatrix}$. There exists exist some $Q \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{n \times n}$ such that $Q^\top Q = I$ and R is upper triangular, and these matrices are of the form

$$Q = \begin{bmatrix} \mathbf{q}_1 & \dots & \mathbf{q}_n \end{bmatrix} \qquad R = \begin{bmatrix} \langle \mathbf{v}_1, \mathbf{q}_1 \rangle & \langle \mathbf{v}_2, \mathbf{q}_1 \rangle & \dots & \langle \mathbf{v}_n, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{v}_2, \mathbf{q}_2 \rangle & \dots & \langle \mathbf{v}_n, \mathbf{q}_2 \rangle \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \langle \mathbf{v}_n, \mathbf{q}_n \rangle \end{bmatrix}$$

Where each \mathbf{q}_{ℓ} is computed via the Gram-Schmidt process

We won't be proving this formula, but if you're interested in what this would look like, https://en.wikipedia.org/wiki/QR_decomposition#Using_the_Gram%E2%80% 93Schmidt_process has a write-up of what that proof would look like.

Alternative Orthogonal Transformation

Theorem

Let W be a subspace of \mathbb{R}^m such that $W = \operatorname{Col}(A)$ for some matrix $A \in \mathbb{R}^{m \times n}$. Then $\mathbf{x}_W = QQ^{\top}\mathbf{x}$ where A = QR from the previous slide.

Proof.

Recall that we say $\mathbf{x}_W = A\mathbf{c}$ where \mathbf{c} is a solution to $A^{\top}A\mathbf{c} = A^{\top}\mathbf{x}$. So we will show that if we replace $A\mathbf{c}$ with $QQ^{\top}\mathbf{x}$ we also solve this equation!

$$A^{\top}A\mathbf{c} = A^{\top}QQ^{\top}\mathbf{x} = R^{\top}Q^{\top}QQ^{\top}\mathbf{x} = R^{\top}Q^{\top}\mathbf{x} = (QR)^{\top}\mathbf{x} = A^{\top}\mathbf{x}$$

Matrix Associated With Orthogonal Projection

There are two ways to compute a matrix associated with our orthogonal projection T.

- 1. Using our normal equations and projecting the standard basis vectors
- 2. Form QQ^{\top} where Q is from the QR decomposition

We will demonstrate both of these methods using $W = \operatorname{Span}\left(\begin{bmatrix}1\\0\\-1\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix}\right)$

Computing Matrix Associated With Orthogonal Projection Method 1

$$W = \mathsf{Span}\left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right)$$

We need to compute $T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3)$. For convenience, we recall that $A^{\top}A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. We also have that

$$A^{ op}\mathbf{e}_1 = egin{bmatrix} 1 \ 1 \end{bmatrix} \qquad A^{ op}\mathbf{e}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix} \qquad A^{ op}\mathbf{e}_3 = egin{bmatrix} -1 \ 0 \end{bmatrix}$$

We now solve our systems!

$$\left[\begin{array}{cc|c}2&1&1\\1&2&1\end{array}\right]\rightarrow\left[\begin{array}{cc|c}1&0&\frac{1}{3}\\0&1&\frac{1}{3}\end{array}\right]\qquad \left[\begin{array}{cc|c}2&1&0\\1&2&1\end{array}\right]\rightarrow\left[\begin{array}{cc|c}1&0&-\frac{1}{3}\\0&1&\frac{2}{3}\end{array}\right]\qquad \left[\begin{array}{cc|c}2&1&-1\\1&2&0\end{array}\right]\rightarrow\left[\begin{array}{cc|c}1&0&-\frac{2}{3}\\0&1&\frac{1}{3}\end{array}\right]$$

So, we have our matrix

$$P = \frac{1}{3} \begin{bmatrix} A \begin{bmatrix} 1 \\ 1 \end{bmatrix} & A \begin{bmatrix} -1 \\ 2 \end{bmatrix} & A \begin{bmatrix} -2 \\ 1 \end{bmatrix} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

Computing Matrix Associated With Orthogonal Projection Method 2 Part 1

$$W = \mathsf{Span}\left(egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}, egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}
ight)$$

Following Gram-Schmidt, we get that

$$\mathbf{q}_1 = rac{1}{\sqrt{2}} egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$

$$\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \mathbf{q}_2 = \frac{\sqrt{2}}{2\sqrt{3}} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

If we put these in the columns of Q and simplify we get that $Q=\frac{1}{\sqrt{2}}\begin{bmatrix}1&\frac{1}{\sqrt{3}}\\0&\frac{2}{\sqrt{3}}\\-1&\frac{1}{\sqrt{3}}\end{bmatrix}$

Computing Matrix Associated With Orthogonal Projection Method 2 Part 2

Now, we compute QQ^{\top} !

$$\frac{1}{2} \begin{bmatrix} 1 & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{3}} \\ -1 & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} = \frac{1}{2} \left(\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \right)$$

$$= \frac{1}{2} \left(\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \right) = \frac{1}{6} \begin{bmatrix} 4 & 2 & -2 \\ 2 & 4 & 2 \\ -2 & 2 & 4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

Least-Squares Problem

What do we do if we can't solve the system below exactly?

$$A\mathbf{x} = \mathbf{b}$$

We could give up, but that's no fun! Instead, we want to get as close as possible. One way of saying this is pick an answer such that

$$\|A\mathbf{x} - \mathbf{b}\|_2$$

is as small as possible. This means we pick an $\hat{\mathbf{x}}$ such that $\mathbf{b} - A\hat{\mathbf{x}}$ is orthogonal to \mathbf{b} . But wait, this is very similar to orthogonal projections!

The Normal Equations are a Least Squares Solution!

Theorem

Let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. The solution to

$$A^{\mathsf{T}}A\mathbf{x} = A^{\mathsf{T}}\mathbf{b}$$

is an x such that

$$\|A\mathbf{x} - \mathbf{b}\|_2$$

is minimal.

QR Makes This Easier (For Computers)

Theorem

Let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. The solution to

$$R\mathbf{x} = Q^{\top}\mathbf{b}$$

is an x such that

$$\|A\mathbf{x} - \mathbf{b}\|_2$$

is minimal where $Q \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{n \times n}$ is a QR decomposition of A.

Proof.

As we discussed previously, we can always solve $A\mathbf{x} = \mathbf{b}_{\mathrm{Col}}(A)$. So, we use the fact that $QQ^{\top}\mathbf{b}$ projects \mathbf{b} onto the columnspace of A to get

$$A\hat{\mathbf{x}} = QQ^{\top}\mathbf{b} \to QR\hat{\mathbf{x}} = QQ^{\top}\mathbf{b} \to R\hat{\mathbf{x}} = Q^{\top}\mathbf{b}$$

