

Computational Physics

numerical methods with C++ (and UNIX)

Fernando Barao

Instituto Superior Tecnico, Dep. Fisica email: barao at lip.pt

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (1)

Computational Physics Monte-Carlo methods

Fernando Barao, Phys Department IST (Lisbon)

Generating random variables

✓ The common problem is to have a variable x distributed according a given distribution function p(x) we are going to make a change of variable such that the number of events (randoms) generated is independent of the used variable

$$dN = p(x)dx = p(y)dy$$

✓ Suppose that y is a random variable distributed in [0, 1] and x starts at x_0

$$p(y) = 1$$
 \Rightarrow $\int_0^y dy' = \int_{x_0}^x p(x')dx'$ \Rightarrow $y = \int_{x_0}^x p(x')dx'$

✓ For generating a random variable x in a interval $[x_0, x_1]$ we just make sure that:

$$\int_{x_0}^{x_1} p(x)dx = 1$$

and we invert the relation above (boxed) giving us x(y).

Provided a random y in [0, 1] we generate a random x in $[x_0, x_1]$.

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (3)

uniform [0,1] → uniform [a,b]

- Let's transform a variable
 y uniformly distributed in [0, 1]
 into a variable
 x uniformly distributed in [a, b]
- ✓ Normalization of p(x):

$$p(x) = \frac{1}{b - a}$$

Transformation:

$$y = \int_{a}^{x} \frac{1}{b-a} dx' = \frac{x-a}{b-a}$$
$$\Rightarrow x - a = (b-a)y$$

$$x = a + (b - a) y$$

uniform [0,1] \rightarrow exponential $[0,\infty]$

- Let's transform a variable
 - y uniformly distributed in [0, 1] into a variable
 - x distributed according to

$$p(x) \propto e^{-x}$$
 in $[0, \infty]$

✓ Normalization of p(x):

$$k \int_0^{+\infty} e^{-x} dx = 1$$

$$\Rightarrow k \left[-e^{-x} \right]_0^{\infty} = 1 \Rightarrow k = 1$$

$$p(x) = e^{-x}$$

Transformation:

$$y = \int_0^x e^{-x'} dx' = \left[-e^{-x'} \right]_0^x = 1 - e^{-x}$$

$$x = -\ln(1 - y)$$

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (5)

🕰 MC integration: acceptance-rejection

- For applying the method before said we need to integrate the pdf and invert it
- ✓ In case it is not possible we can use the more generic but less efficient method of acceptance-rejection
- \checkmark For generating a x variable in the interval [a, b] distributed according to a pdf p(x)wo do the following:
 - \square generate a uniform random x_R between [a, b]
 - \bowtie compute $p(x_R)$ and the ratio $\frac{p(x_R)}{p_{max}}$
 - \square generate a second random u_R from U(0,1)

if $u_R \leq \frac{p(x_R)}{p_{max}}$ accept the variable x_R

MC integration example: cos(x)

- ✓ method introduced by von Neumann
- for integrating the function we define an envelope with an area

$$A = (x_{max} - x_{min}) * f_{max}$$

- generate two random variables
 - $\bowtie x_R$ in in range $[x_{min}, x_{max}]$
 - $rac{1}{2} f_R$ in in range $[0, f_{max}]$
- ✓ count the number of events N_R that $f_R \le f(x_R)$
- ✓ the integral $I = (x_{max} x_{min}) f_{max} \frac{N_R}{N}$
- ✓ the integral error

$$\sigma_I = \frac{(x_{max} - x_{min}) f_{max}}{N} \sqrt{N_R \left(1 - \frac{N_R}{N}\right)}$$

Using 100 randoms:

$$\int_{0.2\pi}^{0.5\pi} \cos(x) \ dx = 0.435 \pm 0.037$$

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (7)

MC integration example: $f(x) = 3x^2$

- ✓ The acceptance-rejection method is inefficient if the function varies quickly
- ✓ The number of randoms accepted (efficiency) is given by:

$$\varepsilon = \frac{\int_{a}^{b} f(x) \, dx}{(b-a) \, f_{max}}$$

✓ The efficiency can be improved using an auxiliar function S(x) that has a shape close to the one we want to sample

$$\varepsilon_S = \frac{\int_a^b f(x) \, dx}{\int_a^b q(x) \, dx}$$

where $q(x) = C S(x) \ge f(x)$ for x in [a, b]

efficiencies:

$$\varepsilon = \frac{N_R}{N} \simeq 0.535$$

$$\varepsilon_S = \frac{N_R}{N} \simeq 0.91$$

MC integration: acc-rej with auxiliar function

For generating a random variable x distributed according to f(x) in the interval [a,b]

- 1. Find auxiliar function S(x) with a shape close to the function f(x) we want to sample
 - integrable, invertible
 - from S(x) we define a pdf p(x) and we apply the transformation $y \in U[0,1] \rightarrow x \in U(p(x))$
 - \square invert transformation equation: x(y)
 - using x(y) and generating y uniformly between [0, 1] we obtain the random variable x_R distributed according to p(x)
- **2.** Define a function q(x) = C S(x) such that $q(x) \ge f(x)$ in the interval [a, b]
- **3.** Generate random variable x_R according to p(x) and compute $\frac{q(x_R)}{f(x_R)}$
- **4.** Generate random $u_R \in U[0,1]$ and accept x_R if:

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (9)

MC integration: $f(x) = 3x^2$

We want to generate a variable according to a function

$$f(x) = 3x^2$$

1. Define the auxiliar function S(x) to improve acceptance-rejection efficiency

$$S(x) = 30x - 63$$

generate random in [3,7] interval according to auxiliar function

get pdf(x):
$$S(x) \rightarrow p(x)$$
 with $\int_3^7 p(x)dx = 1$
 $k \int_3^7 S(x) dx = 348$ \Rightarrow $k = \frac{1}{348}$

$$p(x) = \frac{1}{348} \left(30x - 63 \right)$$

make transformation: $y[0, 1] \rightarrow x$ according to p(x) $y = \int_3^x p(x') dx' = 348$

Solve x(y): $15x^2 - 63x + 54 - 348y = 0$

- **2.** define q(x) which in this case is = S(x) and generate x_R according to p(x)
- **3.,4.** generate $u_R \in u[0,1]$ and accept x_R if $u_R \leq \frac{q(x_R)}{f(x_R)}$

Multidimensional MC integration

A multi-dimensional integral:

$$I = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} dx_2 \int_{a_3}^{b_3} \cdots \int_{a_n}^{b_n} dx_n f(x_1, x_2, \cdots, x_n)$$

✓ Brute-force

generate random variables $x_1, x_2, \dots, x_n \in U[0, 1]$ in the interval $[a_i, b_i]$

$$x_i = a_i + (b_i - a_i)x_R \qquad \text{with } x_R \in [0, 1]$$

- \square calculate the function at the random variables: $f(x_1, x_2, \dots, x_n)$
- the Monte-Carlo integration:

$$I = \frac{\prod_{k=1}^{n} (b_k - a_k)}{N} \sum_{i=1}^{N} f(x_1, x_2, \dots, x_n)_i$$

N = number of random set of n variables

Computational Physics (Phys Dep IST, Lisbon)

Fernando Barao (11)

Multidimensional MC integration (cont.)

✓ Importance sampling

$$I = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} dx_2 \int_{a_3}^{b_3} \cdots \int_{a_n}^{b_n} dx_n \frac{f(x_1, x_2, \cdots, x_n)}{p(x_1, x_2, \cdots, x_n)} p(x_1, x_2, \cdots, x_n)$$

