Aula 5b – Segmentação: limiarização

Prof. João Fernando Mari joaof.mari@ufv.br

Limiarização global simples

- 1. Selecionar uma estimativa inicial para o limiar global, T.
- 2. Segmentar a imagem usando T:

$$g(x,y) = \begin{cases} 1 & se \ f(x,y) > T \\ 0 & se \ f(x,y) \le T \end{cases}$$

- Isso dará origem a dois grupos de pixels:
 - G₁, pixels com valores de intensidade > T;
 - G_2 , pixels com valores $\leq T$.
- 3. Calcular os valores de intensidade média $\rm m_1$ e $\rm m_2$ para os pixels em $\rm G_1$ e $\rm G_2$, respectivamente.
- 4. Calcular um novo valor de limiar:

$$T = \frac{1}{2}(m_1 + m_2)$$

5. Repetir as etapas 2 a 4 até que a diferença entre os valores de T em iterações sucessivas seja menor que o parâmetro predefinido ΔT .

Limiarização global simples

lma	gem	I		
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
T_0	= mi	n(I)	= 0	_'

 $\Delta T = 0.001$

$$\begin{split} T_0 &= \min(I) = 0 \\ G_1 &= [2,3,6,5,3,1,1,1,6,7,6,3,5,7,3] \\ G_2 &= [0] \\ m_1 &= (2+3+6+5+3+1+1+1+6+7+6+3+5+7+3) \, / \, 15 = 59 \, / \\ 15 &= 3.9333 \\ m_2 &= 0 \, / \, 1 = 0 \\ T_1 &= (3.9333+0) \, / \, 2 = 1.9667 \\ |T_1 - T_0| &= |1.9667-0| = 1.9667 > \Delta T \text{, então nova iteração.} \end{split}$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PEO 2020-2)

Limiarização global simples

 $T_0 = \min(I) = 0$

Imagem I

2 3 6 5

3 1 1 1

6 7 6 3

5 7 0 3

$$T_0 = min(I) = 0$$
 $\Delta T = 0.001$

$$\begin{split} G_1 &= [2,3,6,5,3,1,1,1,6,7,6,3,5,7,3] \\ G_2 &= [0] \\ m_1 &= (2+3+6+5+3+1+1+1+6+7+6+3+5+7+3) \, / \, 15 = 59 \, / \, 15 = 3.9333 \\ m_2 &= 0 \, / \, 1 = 0 \\ T_1 &= (3.9333+0) \, / \, 2 = 1.9667 \\ |T_1 - T_0| &= |1.9667-0| = 1.9667 > \Delta T \text{, então nova iteração.} \\ \end{split}$$

$$T_1 &= 1.9667 \\ G_1 &= [2,3,6,5,3,6,7,6,3,5,7,3] \\ G_2 &= [1,1,1,0] \\ m_1 &= (2+3+6+5+3+6+7+6+3+5+7+3) \, / \, 12 = 56 \, / \, 12 = 4.6667 \\ m_2 &= (1+1+1+0) \, / \, 4 = 3 \, / \, 4 = 0.75 \\ T_2 &= (4.6667+0.75) \, / \, 2 = 2.7084 \\ |T_2 - T_1| &= |2.7084-1.9667| = 0.7417 > \Delta T \text{, então nova iteração.} \end{split}$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PEO 2020-2)

Limiarização global simples

Ima	gem	I		
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
T_0	= mi	n(I)	= 0	_

 $\Delta T = 0.001$

$$\begin{split} T_2 &= 2,7084 \\ G_1 &= [3,6,5,3,6,7,6,3,5,7,3] \\ G_2 &= [2,1,1,1,0] \\ m_1 &= (3+6+5+3+6+7+6+3+5+7+3) \: / \: 11 = 54 \: / \: 11 = 4.9091 \\ m_2 &= (2+1+1+1+0) \: / \: 5 = 1 \\ T_3 &= (4.9091+1) \: / \: 2 = 2.9546 \\ |T_3 - T_2| &= |2.9546-2,7084| = 0.2462 > \Delta T, \, \text{então nova iteração.} \end{split}$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PEO 2020-2)

Limiarização global simples

$$T_2 = 2,7084$$

$$G_1 = [3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$$

$$G_2 = [2, 1, 1, 1, 0]$$

$$m_1 = (3 + 6 + 5 + 3 + 6 + 7 + 6 + 3 + 5 + 7 + 3) / 11 = 54 / 11 = 4.9091$$

$$m_2 = (2 + 1 + 1 + 1 + 0) / 5 = 1$$

$$T_3 = (4.9091 + 1) / 2 = 2.9546$$

$$|T_3 - T_2| = |2.9546 - 2,7084| = 0.2462 > \Delta T, \text{ então nova iteração.}$$

$$\begin{split} T_3 &= 2.9546 \\ G_1 &= [3,6,5,3,6,7,6,3,5,7,3] \\ G_2 &= [2,1,1,1,0] \\ m_1 &= (3+6+5+3+6+7+6+3+5+7+3) \: / \: 11 = 54 \: / \: 11 = 4.9091 \\ m_2 &= (2+1+1+1+0) \: / \: 5 = 1 \\ T_4 &= (4.9091+1) \: / \: 2 = 2.9546 \\ |T_4 - T_3| &= |2.9546 - 2.9546| = 0.0 <= \Delta T, \, \text{então, fim do algoritmo.} \end{split}$$

Limiarização global simples

	lma	gem	I		
	2	3	6	5	
	3	1	1	1	
	6	7	6	3	
	5	7	0	3	
`	, T ₀		in(I) $= 0.0$		•

Ima	gem	I'		
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	

$$\begin{split} T_2 &= 2,7084 \\ G_1 &= [3,6,5,3,6,7,6,3,5,7,3] \\ G_2 &= [2,1,1,1,0] \\ m_1 &= (3+6+5+3+6+7+6+3+5+7+3) \: / \: 11 = 54 \: / \: 11 = 4.9091 \\ m_2 &= (2+1+1+1+0) \: / \: 5 = 1 \\ T_3 &= (4.9091+1) \: / \: 2 = 2.9546 \\ |T_3 - T_2| &= |2.9546 - 2,7084| = 0.2462 > \Delta T, \: então \: nova \: iteração. \end{split}$$

$$\begin{split} T_3 &= 2.9546 \\ G_1 &= [3,6,5,3,6,7,6,3,5,7,3] \\ G_2 &= [2,1,1,1,0] \\ m_1 &= (3+6+5+3+6+7+6+3+5+7+3) \, / \, 11 = 54 \, / \, 11 = 4.9091 \\ m_2 &= (2+1+1+1+0) \, / \, 5 = 1 \\ T_4 &= (4.9091+1) \, / \, 2 = 2.9546 \\ |T_4 - T_3| &= |2.9546 - 2.9546| = 0.0 <= \Delta T, \, \text{então, fim do algoritmo.} \end{split}$$

JFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PEO 2020-2)

O método de Otsu

- Calcular o histograma normalizado da imagem de entrada:
 - Designar os componentes do histograma como p_i, i = 0, 1, ..., L-1.
- Calcular as somas acumuladas, P₁(k), para k=0, 1, 2, ..., L-1, de acordo com:
 - $P_1(k) = \sum_{i=0}^k p_i$
- Calcular as médias acumuladas m(k), para k=0, 1, 2, ..., L-1, de acordo com:
 - $-m(k)=\sum_{i=0}^{k}ip_{i}$
- Calcular a intensidade média global, m_G , de acordo com:
 - $m_G = \sum_{i=0}^{L-1} i p_i$
- Calcular a variância entre classes, $\sigma_B^2(k)$, para k=0, 1, 2, ..., L-1, de acordo com:
 - $\quad \sigma_B^2 = P_1(m_1 m_G)^2 + P_2(m_2 m_G)^2, \text{ reescrita como: } \sigma_B^2(k) = \frac{[m_G P_1(k) m(k)]^2}{P_1(k)[1 P_1(k)]}$
- O limiar de Otsu, k*, é valor de k para o qual $\sigma_B^2(k)$ é máxima.
 - Se ocorrer mais de uma máxima, K* é a média dos valores de k correspondentes
- Obter a medida de separabilidade, η*, considerando k = k* na equação:

-
$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_C^2}$$
, em que: $\sigma_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i$

[EX] O método de Otsu

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum\nolimits_{i=0}^k i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2}$$
, em que:

$$\sigma_G^2 = \sum\nolimits_{i = 0}^{L - 1} (i - m_G)^2 p_i$$

$$k^* = \frac{1}{2}(3+4) = 3.5$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$	
0	1	0.0625	0.0625	0.0	0.906510	
1	З	0.1875	0.2500	0.1875	2.876302	
2	1	0.0625	0.3125	0.3125	3.283026	
3	4	0.2500	0.5625	1.0625	4.159288	
4	0	0.0000	0.5625	1.0625	4.159288	
5	2	0.1250	0.6875	1.6875	3.344389	
6	3	0.1875	0.8750	2.8125	1.567522	
7	2	0.1250	1.0000	3.6875)	

$(i-m_G)^2 p_i$
0.84985
1.35425
0.17798
0.11816
0.00000
0.21533
1.00269
1.37158
2

$$\sigma_G^2 = 5.08984$$

$$\boldsymbol{\eta}(\boldsymbol{k}^*) = 0.81717$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PEO 2020-2

9

[EX] O método de Otsu

 $m_G = 3.6875$

Referências

MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.

Disponível para download no site do autor (Exclusivo para uso pessoal)

http://dainf.ct.utfpr.edu.br/~hvieir/pub.html

GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.

Disponível na Biblioteca Virtual da Pearson.

J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.

http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PEO 2020-2)

11