中华人民共和国国家标准

牛奶中碘-131 的分析方法

GB/T 14674-93

Analytical method for 131 I in milk

1 主題内容与适用范围

本标准规定了牛奶样品中碘-131 含量的分析方法。

本标准适用于牛奶样品中碘-131 含量的分析,也适用于羊奶等样品中碘-131 含量的分析。本方法 β 放射性的探测下限为 7×10^{-3} Bq/L 和测 γ 放射性的探测下限为 1×10^{-2} Bq/L。对环境中的裂变核素⁹⁹M- ^{99m}Tc 和总裂片的去污系数分别为 $5\cdot2\times10^4$ 和 $1\cdot3\times10^5$ 。

2 方法提要

牛奶样品中碘-131 用强碱性阴离子交换树脂浓集。次氯酸钠解吸,四氯化碳萃取,亚硫酸氢钠还原。 水反萃,制成碘化银沉淀源。用低本底 β 测量装置或低本底 γ 谱仪测量。

3 试剂和材料

所用试剂,除特别注明者外,均使用符合国家标准的分析纯试剂和蒸馏水或同等纯度的水。

3.1 碘载体溶液:

3.1.1 配制

溶解 13.070 g 碘化钾于蒸馏水中,转入 1L 容量瓶内,加少许无水碳酸钠,稀释至刻度。碘的浓度为 10 mg/ml。

3.1.2 标定

在 6 个 100 ml 烧杯中,用移液管分别吸取 5 ml 碘载体溶液 (3.1.1),加 50 ml 蒸馏水,搅拌下滴加浓硝酸。溶液呈金黄色,加 10 ml 硝酸银溶液 (3.8)。加热至微沸,冷却后,用 G4 玻璃砂坩埚抽滤。依次用 5 ml 水和 5 ml 无水乙醇各洗三次。在烘箱内 110 ℃烘干、冷却后称重。计算碘的浓度。

- 3.2 碘-131 参考溶液:核纯;
- 3.3 次氯酸钠 (NaClO): 活性氯含量 5.2%以上;
- 3.4 四氯化碳 (CCl₄): 99.5%;
- 3.5 盐酸羟胺溶液: c(NH₂OH·HCl)=3 mol/L;
- 3.6 硝酸 (HNO₃): ρ =1.40 g/ml;
- 3.7 硝酸溶液 (HNO₃): 1+1 (V/V);
- 3.8 硝酸银溶液 (AgNO₃): 1% (m/m);
- 3.9 亚硫酸氢钠溶液 (NaHSO₃): 5% (m/m);
- 3.10 氢氧化钠溶液 (NaOH); 5% (m/m);
- 3.11 盐酸溶液: c(HCl)=1 mol/L;
- 3.12 甲醛 (CH₂O): 37%;
- 3.13 氢氧化钠溶液: c(NaOH)=1 mol/L;
- 3.14 离子交换树脂:

3.14.1 树脂型号

201×7Cl-型阴离子交换树脂 20~50 目;

251×8Cl-型阴离子交换树脂 20~50 目。

3.14.2 树脂处理

将新树脂于蒸馏水中浸泡 2 h, 洗涤并除去漂浮在水面的树脂。用氢氧化钠溶液 (3.10) 浸泡 16 h, 弃氢氧化钠溶液。蒸馏水洗涤树脂至中性。再用盐酸溶液 (3.11) 浸泡 2 h 后, 弃盐酸溶液, 树脂转为 Cl⁻型。用蒸馏水洗至中性。

4 仪器和设备

- 4.1 低本底β测量装置:对铯-137平面源测量100 min,置信度为95%时,最小探测限为0.05 Bq;
- 4.2 低本底 γ 谱仪或 γ 测量装置: 对单一的铯-137 薄源测量 1 000 min, 置信度为 95%时,最小探测限为 0.1 Bq;
- 4.3 电动搅拌器;
- **4.4** 玻璃解吸柱:见附录 A (补充件)中图 A1;
- 4.5 分析天平: 感量 0.1 mg;
- 4.6 高频热合机;
- 4.7 玻璃可拆式漏斗:见附录 A(补充件)中图 A2;
- 4.8 不锈钢压源模具:见附录 A (补充件)中图 A3;
- 4.9 封源铜圈:见附录 A (补充件)中图 A4。

5 取样

按国家关于《环境辐射监测中生物采样的基本规定(HB)》执行。

6 分析步骤

6.1 吸附

将牛奶样品搅拌均匀,每份试样 4 L,装入 5 L 烧杯中。加入 30 mg 碘载体溶液 (3.1),用电动搅拌器 (4.3) 搅拌 15 min。加入 30 ml 阴离子交换树脂 (3.14.2),搅拌 30 min,静置 5 min,将牛奶转移到另一个 5 L 烧杯中,再加入 30 ml 阴离子交换树脂 (3.14.2),重复以上步骤。将树脂合并于 150 ml 烧杯中,用蒸馏水漂洗树脂中残余牛奶。

6.2 硝酸处理

向装有树脂的烧杯中,加入硝酸溶液(3.7)40 ml,在沸水浴中沸煮1h(不时搅拌)。冷却至室温,把树脂转入玻璃解吸柱(4.4)内,弃酸液。加入50 ml 蒸馏水洗涤树脂,弃洗液。

6.3 解吸

向玻璃解吸柱 (4.4) 内加入 30 ml 次氯酸钠 (3.3), 用电动搅拌器 (4.3) 搅拌 30 min。将解吸液 收集到 500 ml 分液漏斗中, 重复上次解吸程序。再用 15 ml 次氯酸钠 (3.3) 和 15 ml 蒸馏水搅拌解吸 20 min。合并三次解吸液。用 40 ml 蒸馏水分两次洗涤,每次搅拌 3~5 min, 将洗液与解吸液合并。

6.4 萃取

向解吸液中加入四氯化碳 30 ml (3.4),加 8 ml 盐酸羟胺溶液 (3.5)。搅拌下加硝酸 (3.6)调水相酸度,调 pH 值为 1,振荡 2 min (注意放气),静置。把四氯化碳转入 250 ml 分液漏斗中,再重复萃取两次。每次用四氯化碳 (3.4) 15 ml,合并有机相,弃水相,将有机相转人另一个分液漏斗中。

6.5 水洗

用等体积蒸馏水洗有机相。振荡 2 min, 静置分相。将有机相转人另一个分液漏斗中。

6.6 反萃

在有机相中加等体积蒸馏水,加8滴亚硫酸氢钠溶液(3.9)。振荡2 min(注意放气),紫色消退,静置分相,弃有机相。水相转人100 ml 烧杯中。

6.7 沉淀

将上述烧杯加热至微沸,除净剩余的四氯化碳。冷却后,在搅拌下滴加硝酸(3.6),当溶液呈金黄色时,立即加入7 ml 硝酸银溶液(3.8)。加热至微沸,冷却至室温。

6.8 制源

将碘化银沉淀转入垫有已恒重滤纸的玻璃可拆式漏斗中(4.7)抽滤。用蒸馏水和乙醇各洗三次。取下载有沉淀的滤纸,放上不锈钢压源模具(4.8),置烘箱中110℃烘干15 min。在干燥器中冷却后称重。 计算化学产额。

6.9 封源

将沉淀源夹在两层质量厚度为 3 mg/cm² 的塑料膜中间,放好封源铜圈 (4.9),将高频热合机 (4.6)的刀压在封源铜圈上 (4.9),加热 5 s,粘牢后取下样品源。剪齐外缘,待测。

- 6.10 测量和计算
- 6.10.1 β测量
- 6.10.1.1 绘制自吸收曲线

取 0.1 ml 适当活度的碘-131 参考溶液 (3.2) 滴在不锈钢盘内。加 1 滴碱溶液 (3.13),使其慢慢烘干,制成与样品测定条件一致的薄源。在低本底 β 测量装置上 (4.1) 测量,放射性活度为 I_0 。

取 6 个 100 ml 的烧杯,分别加入 0.5、1.0、1.5、2.0、2.5、3.0 ml 碘载体溶液(3.1.1)。各加入 0.1 ml 碘-131 参考溶液(3.2),按 6.7~6.9 操作制源。将薄源和制备的 6 个沉淀源,同时在低本底 β 测量装置上测定放射性活度。各源的放射性活度经化学产额校正为 I,以 I。为标准,求出不同厚度的碘化银沉淀源的自吸收系数 E。然后,以自吸收系数为纵坐标,以碘化银沉淀源质量厚度为横坐标,在方格坐标纸上绘制自吸收曲线。

6.10.1.2 仪器探测效率

用已知准确活度的铯-137 参考溶液制备薄源用于测定 β 探测效率。

6.10.1.3 计算

用式(1)计算试样中碘-137放射性浓度。

$$A_{\beta} = \frac{n_{\rm c} - n_{\rm b}}{\eta_{\rm B} \cdot E \cdot Y \cdot V \cdot e^{-\lambda}} \tag{1}$$

式中: A_β---- ¹³¹I 放射性浓度, Bq/L;

n。——试样测得的计数率, 计数/s;

nb——试样空白本底计数率, 计数/s;

 η_a —— β 探测效率;

 E^{--131} I 的自吸收系数;

Y---化学产额:

V——所测试样的体积,L;

t——采样到测量的时间间隔;

λ----131 I 的衰变常数。

6.10.2 7测量

用低本底 ? 谱仪 (4.2) 测量 0.364 MeV 全能峰的计数率。 牛奶中碘-131 放射性浓度按式 (2) 计算:

$$A_{\gamma} = \frac{n_{c} - n_{b}}{\eta_{\gamma} \cdot Y \cdot V \cdot K \cdot e^{-k}} \tag{2}$$

式中: Ay---131 放射性浓度, Bq/L;

- n_c---0.364 MeV 全能峰的计数率, 计数/s;
- n_b ——0.364 MeV 全能峰相应的本底计数率,计数/s;
- η_r 谱仪对 0.364 MeV 左右 (ϕ 20 平面薄膜源) 全能峰的探测效率;
- K---0.364 MeV 全能峰的分之比。

6.11 空白试验

每当更换试剂时,必须进行空白试样试验,样品数不少于 6 个。取未污染的牛奶样 4 L 于 5 L 烧杯中,按分析步骤 $6.1\sim6.9$ 操作。并计算空白试样的平均计数率和标准偏差。

7 精密度

本精密度数据是在 1989 年 $4\sim10$ 月,由三家实验室对 4 个水平的试样所做的实验确定的。每个实验室对 4 个水平各做 4 个平行测试样品。

精密度测试结果			Bq
水 平1)	I	I	I
平均值 加	6.14	52. 10	112. 44
重复性で	0.87	5. 91	5. 96
再现性 R	1.51	23. 90	35. 31

注:1)本底水平原始测试数据结果小于探测限,不再列表。

附录A

设备图

(补充件)

图 A1 玻璃解吸柱

图 A2 玻璃可拆式漏斗

图 A3 不锈钢压源模具

图 A4 封源铜圈

附录B

正确使用标准的说明

(参考件)

- B1 牛奶鲜样应立即分析。如需放置时,要在牛奶中加 37%甲醛 (3.12) 防腐 (5 ml/L)。
- B2 若使用容易解吸的树脂,可以省去分析步骤中的 6.2。
- **B3** 本标准分析流程中用次氯酸钠溶液解吸。解吸与温度有关,适宜温度在 10~32 ℃。次氯酸钠在 35 ℃ 将分解失效。
- B4 本标准所采用次氯酸钠化学试剂必须在低温下保存。
- **B5** 按式 (B1) 决定样品测量的时间 t_c 。

$$t_{c} = \frac{N_{c} + \sqrt{N_{c} \cdot N_{b}}}{N^{2} \cdot S^{2}} \tag{B1}$$

式中: tc---样品计数时间, min;

N。——样品源加本底的计数率, 计数/min;

 N_b ——本底计数率, 计数/min;

N——样品源净计数率,计数/min;

S——预定的相对标准偏差。

- B6 碘化银源必须用塑料膜封源,膜的质量厚度为 3 mg/cm²。膜的本底在仪器涨落范围内。
- **B7** 如果没有高频热合机的条件,可将沉淀源夹在塑料膜内,盖上一层黄蜡绸,用 5 W 电烙铁沿沉淀源 周围画一圈封合,剪齐外缘,待测。
- **B8** 关于用铯-137 薄源代替碘-131 源测定 β 探测效率的问题。按铯-137 β 衰变的分之比,加权以后的 β 粒子平均最大能量值为 0.547 MeV,碘-131 β 粒子平均最大能量值为 0.576 MeV,二者相对偏差为 4.9%。由此引起探测效率(包括空气层自吸收、反散射等)偏差在实验误差范围之内,因此用铯-137 薄源刻度 β 探测效率是可行的。

附加说明:

本标准由国家环境保护局和中国核工业总公司提出。

本标准由中国原子能科学研究院负责起草。

本标准主要起草人杜秀领、胡征兰。