

The North American Membrane Society (NAMS)

V

Tuscaloosa, Alabama, May 2023

morphology-performance in polyamide membranes:

Visualization under controlled reaction conditions

1 Civil & Environmental Engineering, Technion – Israel Institute of Technology

2 Nano-science and Nano-Technology program, Technion – Israel Institute of Technology

Intro.

Our concept

Methods

Results

Concl.

Interfacial Polymerization (IP)

Intro.

Our concept

Methods

Results

Concl.

Desalination by RO

The product of IP:

Crumpled polyamide film

Synthesis — Morphology — Performance

In-situ monitoring

Ukrainsky and Ramon, JMS (2018)

Contradicting transf

Our concept

Methods

Results

Concl.

Motivation

Synthesis — Morphology — Performance

Why?

- ✓ Improve existing membranes
- ✓ Move towards 'green materials'

Park et al., Green Chem. 2021

Synthesis — Morphology

V

Intro.

The Concept

Our concept

Methods

Results

Concl.

Smooth= Stable

V

Intro.

Our concept

Methods

Results

Concl.

Instability mechanisms

Ma et al., Environ. Sci. Technol. Lett. (2018)

Our concept

Intro.

Methods

Results

Concl.

Gradients in interfacial tension drive a flow: Marangoni flow

Instability mechanisms During IP

Our concept

Intro.

Methods

Results

Concl.

Hydrodynamic instability

A 'phase diagram' of synthesis-morphology relations in IP

Susceptibility to instability

A 'phase diagram' of synthesis-morphology relations in IP

Our concept

Methods

Results

A 'phase diagram' of synthesis-morphology relations in IP

Our concept

Methods

Results

A 'phase diagram' of synthesis-morphology relations in IP

Our concept

Methods

Results

Instability mechanisms During IP

Our concept

Intro.

Methods

Results

Our concept

Methods

Results

Concl.

How can we observe a flow in IP?

Microfluidic device

Aqueous phase: fluorescent

particles (1µm) + MPD

Organic phase: Isopar-G + TMC

Videos of 2D image over time ~39 frames/sec

Particle Tracking

Intro.

Our concept

Methods

Results

Manzo et al., Rep. on Prog. in Phys. (2015)

- Acquisition of the displacement using confocal microscopy
- Tracking particles
 using TrackMate
 plugin, Fiji (Meijering et
 al., Meth. Enzymol. (2012))

Our concept

Methods

Results

Concl.

What do we expect to see?

Random motion

- No bulk flow.
- The motion is thermal-driven.

Directed motion

- Particles act as tracers that move with the bulk.
- Brownian + bulk directed motion

Intro.

Our concept

Methods

Results

Concl.

Motion Parameters

1. Linearity = net distance travelled

0 < Linearity < 1

"Confined" movement~ Brownian motion Directed motion

total distance travelled = $\sum d_{i,i+1}$

max distance travelled = Max d_{ii}

mean directional change = $1/N \sum \alpha_{i,i+1}$

Intro. Our concept **Methods Results** Concl.

Results

Blank = No reaction Increasing MPD concentration

'Brownian like' motion without an IP reaction when MPD diffusion increases

Intro.

Our concept

Methods

Results

Concl.

Low concentrations:

0.02% MPD; 0.001% TMC

Standard concentrations:

2% MPD; 0.1% TMC

Intro. Our concept **Methods Results** Concl.

Increasing monomers concentrations

% Standard monomer concentration

- Very low concentration: 'Brownian like' motion
- Increasing concentration more directed motion towards the interface

Instability-Morphology

Intro.

Our concept

Methods

Results

Our concept

Methods

Results

Concl.

A co-solvent + Increasing monomers concentrations

- Adding a co-solvent increasing directionality and speed of motion.
- Stronger effect in lower monomer concentrations.

Instability-Morphology

Intro.

Our concept

Polymer Formation rate

Methods

Results

Increasing surfactant concentration

Intro.

Our concept

Methods

Results

Concl.

Above the CMC: 'Brownian like' motion

Instability-Morphology Intro. RMS= 149.23<u>±</u>44.56nm Oolymer Formation rate RMS= 64.27 ± 16.67nm Our concept RMS= 108.73 <u>+</u> 15.21nn 5 μm RMS= 175.26 ± 13.12 nm. RMS= 16.16 ± 2.34 nm Morphology Polymer formation rate Methods 5 μm **Surfactant Co-solvent** Results RMS= 3.88 ± 0.52 nm Concl. Susceptibility to instability

Instability mechanisms During IP

Intro.

Our concept

Methods

Results

Concl.

Hydrodynamic instability= flow in IP system

Intro.

Our concept

Methods

Results

Concl.

Synthesis	Increasing monomer concentrations	Adding a co-solvent	Adding a surfactant
Instability	More directed	More directed	Below CMC - More
	motion	motion	directed motion
			Above CMC – 'Brownian like' motion
Morphology	More crumpled	More crumpled	Muti-layered
	morphology	morphology	morphology

Tracking particles provides us with new insights about IP

Acknowledgements

