

Chapter — Foundations of Phasor Rotation and Projection in Time & Frequency

How advancing in time and angle on the unit circle reveals the cosine and sine components of a signal

1. The Core Idea

When we multiply a signal x[n] by a **complex exponential**:

$$e^{j2\pi f_m n/f_s}$$

we are **rotating a phasor** around the **unit circle** at a speed determined by f_m (mixer frequency) while **sampling in discrete time** n at intervals of $1/f_s$.

2. Breaking it Down

- a. Time step per sample
 - Each sample *n* occurs at time:

$$t_n=rac{n}{f_s}$$

- The ${f gap}$ between samples = $1/f_s$ seconds.

b. Rotation step per sample

The phase increment per sample is:

$$\Delta heta = rac{2\pi f_m}{f_s} \quad ext{(in radians)}$$

 This tells us how much the phasor rotates on the unit circle between two samples.

3. Visualizing the Journey

Think of it like this:

- 1. Time Axis (horizontal):
 - You step forward in **equal time steps** of $1/f_s$ seconds.
- 2. Unit Circle (phase space):
 - At each step, you rotate the arrow by $\Delta heta$ radians.
 - After several steps, you complete a full revolution if the total phase = 2π radians.

4. What's Happening with the Multiplication

When you multiply x[n] by $e^{j2\pi f_m n/f_s}$:

- Real part (cosine) \rightarrow captures in-phase component of x[n]
- Imag part (sine) \rightarrow captures quadrature component of x[n]

Mathematically:

$$x[n]\cdot e^{j2\pi f_m n/f_s} = x[n]\cdot \left[\cos(2\pi f_m n/f_s) + j\sin(2\pi f_m n/f_s)
ight]$$

So you're really **projecting** x[n] onto two perpendicular axes:

- Cos axis → "how much like cosine" the signal is.
- Sin axis \rightarrow "how much like sine" the signal is.

5. A Simple Code View

Sample Output

```
Time (s): [0. 0.125 0.25 0.375]

Phase (rad): [0. 1.571 3.142 4.712]

Complex exponential: [1.000+0.000j 0.000+1.000j -1.000+0.000j -0.000-1.000j]
```

6. Key Takeaways

- Time advances in $1/f_s$ steps.
- Phase advances by $2\pi f_m/f_s$ radians per step.
- Real part = cos projection, Imag part = sin projection.
- The process is the backbone of mixing, modulation, and demodulation in DSP.