Inertial Odometry on Handheld Smartphones

Arno Solin¹ Santiago Cortés¹ Esa Rahtu² Juho Kannala¹

¹ Aalto University ² Tampere University of Technology

21st International Conference on Information Fusion

July 12, 2018

Introduction

- Phones have accelerometers and gyroscopes
- Should in theory enable inertial navigation
- Cheap and small sensors
- Low quality data
 - inertial navigation not possible
- We demonstrate that it can be done

Inertial navigation: How it should work

- Velocity is the integral of acceleration.
- Position is the integral of velocity.
- We can observe acceleration and angular velocity in the mobile phone.

Inertial navigation: Why it does not work

- All inertial navigation systems suffer from integration drift.
- Small errors in the measurement of acceleration and angular velocity...
- Progressively larger errors in velocity...
- Even greater errors in position.
- The dominating component in acceleration is gravity.
- Even slight error in orientation makes the gravity 'leak'.
- The sequential nature of the problem makes the errors accumulate.

Inertial navigation: How to make it work

- ▶ Input: accelerometer data \mathbf{a}_k and gyroscope data ω_k .
- Accelerometer and gyroscope biases part of the state:

$$ilde{\mathbf{a}}_k = \mathsf{T}_k^{\mathsf{a}}\, \mathbf{a}_k - \mathsf{b}_k^{\mathsf{a}} \qquad ilde{\omega}_k = \omega_k - \mathsf{b}_k^{\omega}$$

Dynamical model:

$$\begin{pmatrix} \mathbf{p}_k \\ \mathbf{v}_k \\ \mathbf{q}_k \end{pmatrix} = \begin{pmatrix} \mathbf{p}_{k-1} + \mathbf{v}_{k-1} \Delta t_k \\ \mathbf{v}_{k-1} + [\mathbf{q}_k(\tilde{\mathbf{a}}_k + \varepsilon_k^{\mathbf{a}})\mathbf{q}_k^* - \mathbf{g}] \Delta t_k \\ \Omega[(\tilde{\omega}_k + \varepsilon_k^{\mathbf{a}})\Delta t_k]\mathbf{q}_{k-1} \end{pmatrix}$$

for position \mathbf{p}_k , velocity \mathbf{v}_k , and orientations \mathbf{q}_k at time t_k .

▶ Inference by an Extended Kalman filter / smoother

Inertial navigation: How to make it work

- Additional constraints (observations) are required
- This framework can use
 - Zero-velocity updates (ZUPTs)
 - Position fixes
 - Loop-closures
 - Barometric air pressure for relative height
- A pseudo-measurement keeping the velocity component from exploding
- Sensor timing info
- A matter of learning the biases

How does this compare to previous approaches?

On mobile devices PDR typically based on:

- Movement detection
- Step and heading systems
- Visual features
- All of these are limited in some way

Example studies

- Equipment used:
 - Off-the-shelf iPhone 6
- Sensors:
 - Built-in gyroscope and accelerometer
 - Sampling rate: 100 Hz
- ► Computations:
 - Off-line (runnable on device hardware)

Example: Conventional PDR

Example: Conventional PDR

Example: Conventional PDR

Example: General dead-reckoning

Example: General dead-reckoning

The video is available on YouTube: https://youtu.be/L-E9fNsrvII

Example: Inertial measurements

The video is available on YouTube: https://youtu.be/L-E9fNsrvII

14/20

Example: Inertial measurements

(a) Measurement #1

(b) Measurement #2

Recap

- Inertial navigation on a smartphone is possible
- The key is learning the sensor transformations (biases)
- Not possible without measurements (consraints)
 - ZUPTs
 - pseudo-speed
- Future work towards relaxing these further

- ► Homepage: http://arno.solin.fi
- Twitter: @arnosolin