# Attaque du système de cryptage d'El Gamal

### Plan:

I/ Présentation du problème et des algorithmes.

II/ Un outil indispensable : les tables de hachage.

III/ Efficacité et limites de l'algorithme de Shank.

## <u>I/a) a) Crypto-système d'El Gamal et problème du logarithme discret.</u>

<u>Propriété 1 :</u> Pour p un nombre premier,  $(({}^{\mathbb{Z}}/p_{\mathbb{Z}})^*$ , .) est un groupe.

De plus, ce groupe est cyclique, c'est-à-dire qu'il existe ∝ tel que :

$$\left(\mathbb{Z}/p_{\mathbb{Z}}\right)^* = \{\alpha^0, \alpha^1, \dots, \alpha^{p-2}\}$$



<u>Définition 1</u>: Soit G un groupe cyclique d'ordre *p* dont la loi est notée multiplicativement, soit *g* un élément générateur de G et *y* un élément de G. On appelle logarithme discret le plus petit entier *k* tel que :

$$y = g^k$$

#### I / b) Algorithme naïf.

<u>Principe</u>: On calcule les puissances successives de *g* jusqu'à tomber sur *y*.

$$\rightarrow g^0, g^1, g^2, ..., y$$
.

- $\rightarrow$  Complexité en O(p).
- $\rightarrow$  Construction d'une liste de valeurs de p à tester :
  - <u>Problème 1 :</u> méthode de recherche d'éléments générateurs pas assez efficace.
  - *Problème 2 :* exponentiations trop importantes.

Tests pour  $y = 647et g \in \{11; 539; 8624\}$  selon p:

#### Test algorithme naïf

pour g=11, g=539 et g=8624



#### I / c) Une méthode plus efficace : Algorithme de Shank.

**Exemple**: p = 19, g = 2 et y = 18.

1: 
$$n = 5$$
 ( $E(\sqrt{p})+1$ )

 $\downarrow$ 
2:  $2^{\circ}$  |  $1 \longrightarrow 3$ :  $2^{\circ}$  |  $32=13 \longrightarrow 4$ :  $18x3^{\circ}$  |  $18$ 

Baby-  $2^{\circ}$  |  $2 \longrightarrow 4$ :  $18x3^{\circ}$  |  $2 \longrightarrow 4$ :  $18x3^{\circ}$  |  $2 \longrightarrow 4$ :  $18x3^{\circ}$  |  $2 \longrightarrow 4$ :  $2 \longrightarrow 4$ 

|        | Naïf | Shank |  |
|--------|------|-------|--|
| Espace | O(1) | O(√p) |  |
| Temps  | O(p) | O(√p) |  |

Comment stocker les données ? → Tables de hachage

#### II / a) Définition d'une table de hachage.

<u>«Univers des clés»</u>:  $U = \{0, ..., p-1\}$ 

Ensemble des clés de U qu'on va stocker :  $K = \{g^0 \mod p , \dots, g^{n-1} \mod p\}$ 

<u>Définition 2</u>: On définit une **table de hachage** comme un tableau de taille l dont la case numéro i (nommée **alvéole**) est :

- Soit vide.
- Soit contient un élément  $z \in U$  tel que h(z) = i.

L'application  $h: U \to [0; l-1]$  est appelée fonction de hachage.



#### II / b) Gestion des collisions par chainage.

<u>Définition 3:</u> Soit  $(u, v) \in U^2$ . On dit qu'il y a « collision » si  $u \neq v$  et h(u) = h(v).



#### II / c) Etude d'une fonction de hachage.

Fonction de hachage:  $h: x \to \lfloor ((x \times \theta) \bmod 1) \times l \rfloor$  avec  $\theta \in [0; 1]$ .



#### Théoriquement:

$$\theta_{optimal} = \frac{\sqrt{5} - 1}{2}$$

$$\approx 0.6180339887498949$$

#### III / Efficacité et limites de l'algorithme de Shank.

Test Algorithme de Shank



Table de hachage pour y = 647, g = 539 et p = 10000103:

