计算方法实习题1

学号:161220026 姓名:崔子寒 2018年4月18日

实验提交文件清单:

其中:answer.txt 为实验题目答案导出的结果。

src.py 为算法源文件。

1.实验环境

	计算机型号	Window 系统 AMD64 架构计算机
硬件环境	Сри	Intel i5 6300HQ 四核处理器
	Cpu 主频	2.30GHZ
软件环境	算法语言	Python
	编译环境	Python2.7 + PyCharm + numpy

实验采用 python2.7 作为实现算法的语言,使用第三方库 numpy 完成有关 矩阵的科学计算。

2.实验过程

$$A_{1} = \begin{bmatrix} a_{ij} \end{bmatrix}_{(n+1)\times(n+1)} = \begin{bmatrix} 1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\ 1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\ 1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\ \vdots & & \ddots & & \ddots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n} \end{bmatrix}, b_{1} = \begin{bmatrix} \sum_{j=1}^{n+1} a_{1j} \\ \sum_{j=1}^{n+1} a_{2j} \\ \vdots \\ \sum_{j=1}^{n+1} a_{(n+1)j} \end{bmatrix}_{(n+1)\times 1}$$

$$A_{2} = \begin{bmatrix} a_{ij} \end{bmatrix}_{(n+1)\times(n+1)} = \begin{bmatrix} 1 & 1/2 & \cdots & 1/(n+1) \\ 1/2 & 1/3 & \cdots & 1/(n+2) \\ \vdots & \vdots & \ddots & \vdots \\ 1/(n+1) & 1/(n+2) & \cdots & 1/(2n+1) \end{bmatrix}, b_{2} = \begin{bmatrix} \sum_{j=1}^{n+1} a_{1j} \\ \sum_{j=1}^{n+1} a_{2j} \\ \vdots \\ \sum_{j=1}^{n+1} a_{(n+1)j} \end{bmatrix}_{(n+1)\times 1}$$

在 A_1 中取 $x_k = 1 + 0.2k, k = 0,1,2,\cdots n$ 以形成矩阵 A_1 . 遇到解

(1)取 n=2:8, 分别计算 A_1 和 A_2 的 2-条件数, 随 n 增大矩阵的性态变化如何?

解答:矩阵 A的 2-条件数的计算方法可以使用公式:

$$cond_{2}(A) = ||A^{-1}||_{2} \times ||A||_{2} = \sqrt{\frac{\lambda_{max}(A)}{\lambda_{min}(A)}}$$

计算结果如下:

	$cond_2(A1)$	$cond_2(A2)$	CPU 时间(微秒)
n=2	343.537831	524.056778	995.500000
n=3	4525.566840	15513.738739	995.500000
n=4	60973.908130	476607.250246	995.500000
n=5	890170.350288	14951058.642075	995.500000
n=6	14080388.555817	475367356.467742	995.500000
n=7	238889523.536956	15257576321.957924	995.500000
n=8	4316879329.919199	493153786012.416565	995.500000

结果分析:随着 n 的增大, A₁ 和 A₂ 的 2-条件数也急剧增大, 而且 A₂ 增大的更快。说明这两个矩阵的病态程度越来越大。

(2) 取 n=5, 分别求出两个方程组的解向量 $x_1, x_2 \in \mathbb{R}^6$ 。

解答:计算方程组 Ax=b 的解向量可以用公式: $x=A^{-1}b$ 来计算。

计算结果如下:

X ₁	$(1,1,1,1,1,1)^{-T}$
X ₂	$(1,1,1,1,1,1)^{-\intercal}$
CPU 用时(微秒)	975.000000

(3) 取 n=5, b_1 不变, 对 A_1 的元素 a_{22} 和 a_{66} 分别加一个扰动 10^{-12} , 求第一个方程的解向量 $\widetilde{x_1} \in R^6$ 。

解答:计算结果如下:

$\widetilde{x_1}$	(1, 1, 1.00000001, 1, 1, 1)
CPU 用时(微秒)	529.500000

可以看出对 A₁添加扰动几乎对解向量 x₁没有影响。

(4) 取 n=5, b_2 不变, 对 A_2 的元素 a_{22} 和 a_{66} 分别加一个扰动 10^7 , 求出第二个方程的解向量 $\widehat{x_2} \in R^6$;

对 b_2 的最后一个分量加扰动 10^{-4} , 求出 $\overline{x_2} \in R^6$ 。

解答:计算结果如下:

$\widetilde{x_2}$	$\begin{bmatrix} 1.00031939 \\ 0.9908345 \\ 1.06270197 \\ 0.8351252 \\ 1.18373632 \\ 0.92700485 \end{bmatrix}$
$\overline{x_2}$	$\begin{bmatrix} 0.7228 \\ 9.316 \\ -57.21200001 \\ 156.23200002 \\ -173.63600002 \\ 70.85440001 \end{bmatrix}$
CPU 用时	1021.000000 微秒

(5) 观察和分析系数矩阵 A 和右端向量 b 的微小扰动对解的影响,得出你的结论。

结果分析:

对 A_1 和 A_2 的元素添加轻微扰动对解向量 x_2 只是造成了轻微的扰动,可以理解成它们本身的 2-条件数已经很大,所以是病态的,对矩阵元素添加轻微扰动,不会使 $cond_2(A)$ 发生很大改变,因此对解向量的干扰也是很小的。

而由于 n=5 时, $cond_2(A_2)$ =14951058.642075, A_2 是病态的,所以对 b_2 添加轻微扰动会使解发生巨大变化。

结论:对于病态矩阵,对矩阵元素添加微小扰动只会对解向量造成很小的扰动, 而对于右端向量的扰动会使解向量产生巨大变化。

(6) 根据前面计算的结果分别计算 $\frac{||x_1-\widehat{x_1}||_{\infty}}{||x_1||_{\infty}}$, $\frac{||x_2-\widehat{x_2}||_{\infty}}{||x_2||_{\infty}}$, $\frac{||x_2-\overline{x_2}||_{\infty}}{||x_2||_{\infty}}$ 。并与理论估计值比较。

解答:计算结果如下:

$\frac{ x_1 - \widetilde{x_1} _{\infty}}{ x_1 _{\infty}}$	5.355104803571439 x 10 ⁻⁹
$\frac{ x_2 - \widetilde{x_2} _{\infty}}{ x_2 _{\infty}}$	0.18373632041389465
$\frac{ x_2 - \overline{x_2} _{\infty}}{ x_2 _{\infty}}$	174.6359998596497

可以看出: $\frac{||x_1-\widehat{x_1}||_{\infty}}{||x_1||_{\infty}}$ 和 $\frac{||x_2-\widehat{x_2}||_{\infty}}{||x_2||_{\infty}}$ 的值都接近 0,这与对 A 添加扰动对解产生的扰动很小相符合。

而 $\frac{||x_2-\overline{x_2}||_{\infty}}{||x_2||_{\infty}}$ 的值较大,符合对 b 添加扰动会对解产生较大扰动的预期。