Московский Государственный Университет имени М. В. Ломоносова

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ»

ЗАДАНИЕ № 2 Подвариант №2

«РЕШЕНИЕ КРАЕВОЙ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПО-РЯДКА, РАЗРЕШЕННОГО ОТНОСИТЕЛЬНО СТАРШЕЙ ПРОИЗВОДНОЙ»

ОТЧЕТ

о выполненном задании

студента 206 учебной группы факультета ВМК МГУ Оганисяна Эдгара Гагиковича

Цель работы

Освоить метод прогонки решения краевой задачи для дифференциального уравнения второго порядка

Постановка задачи

Рассматривается линейное дифференциальное уравнение второго порядка:

$$y'' + p(x) \cdot y' + q(x) \cdot y = f(x), 1 < x < 0,$$

с дополнительными условиями в начальных точках:

$$\begin{cases} \sigma_1 y(0) + \gamma_1 y'(0) = \delta_{1,} \\ \sigma_2 y(0) + \gamma_2 y'(0) = \delta_{2.} \end{cases}$$

Цели и задачи практической работы

- 1) Решить краевую задачу методом конечных разностей, аппроксимировав ее разностной схемой второго порядка точности (на равномерной сетке); полученную систему конечно-разностных уравнений решить методом прогонки;
- 2) Найти разностное решение задачи и построить его график;
- 3) Найденное разностное решение сравнить с точным решением дифференциального уравнения.

Описание метода решения

Сначала строим равномерную сетку с шагом h: $x_i = x_0 + i \cdot h$, $h = \frac{b-a}{n}$

Заменяем производные на разностные формулы:

$$y' = \frac{y_{i+1} - y_{i-1}}{2h}$$
 $y'' = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$

После преобразования этих формул получим систему уравнений:

$$A_{i} = 1 - p(x_{i}) \cdot \frac{h}{2}$$

$$B_{i} = 1 + p(x_{i}) \cdot \frac{h}{2}$$

$$C_{i} = 2 - q(x_{i}) \cdot \frac{h}{2}$$

$$F_{i} = f(x_{i}) \cdot h^{2}$$

$$A_{i} y_{i-1} - C_{i} y_{i} + B_{i} y_{i+1} = F_{i}, \quad i = 1, 2, ..., n-1$$

Она содержит n-I неизвестных, а матрица данной система является трехдиагональной, следовательно можем решить ее методом прогонки. Решения ищем рекуррентно: $y_i = \alpha_{i+1} y_{i+1} + \beta_{i+1}$, $0 \le i \le n-1$, где α u β — прогоночные коэффициенты, которые мы находим по рекуррентным формулам:

$$\alpha_{i+1} = -\frac{B_i}{A_i \alpha_i + C_i}, \quad \beta_{i+1} = \frac{F_i - A_i \beta_i}{A_i \alpha_i + C_i}, \quad i = 1, 2, ..., n-1$$

$$\alpha_1 = 0, \quad \beta_1 = q_0, \quad y_n = q_n$$

Остальные значения y_i находятся по указанной выше формуле.

Описание и листинг программы

Т.к программа достаточна велика, здесь приведем пояснения ко всем функциям. Текст программы будет доступен в приложении.

• В программе присутствуют две основные функции:

```
void alpha_beta_search(double *alpha, double *beta,
double a, double h, double s1, double g1, double d1,
double (*p)(double), double (*q)(double),
double (*f)(double), int n);
```

Данная ф-ция вычисляет коэффициенты α , β : $y_i = \alpha_{i+1} y_{i+1} + \beta_{i+1}$, $0 \le i \le n-1$

void sweep_method(double *y, double *alpha, double *beta, double s2, double g2, double d2, double h, int n); Данная ф-ция уже зная коэффициенты α , β находит у методом прогонки.

Имена всех параметров ф-ции соответствуют их значениям в теоретических расчетах представленных в описании метода и постановке задачи

• Вспомогательные / тестовые функции:

```
double f1(double x) {return 1;}
double p1(double x) {return 0;}
double q1(double x) {return 1;}
double f2(double x) {return 2.*x;}
double p2(double x) {return 0;}
double q2(double x) {return -1;}
double f3(double x) {return 0;}
double p3(double x) {return 0;}
```

• Точные решения дифференциальных уравнений:

```
double y1_{exac} (double x) {return 1 - sin(x) - cos(x);} double y2_{exac} (double x) {return sinh(x)/sinh(1) - 2*x;} double y3 exac(double x) {return pow(2.7182818284, x)-2;}
```

Тесты

Результаты тестов будут представлены в виде графиков с приближенными и точными решениями

Тест №1

$$y$$
" + $y = 1$; $y(0) = 0$; $y(\pi/2) = 0$ Решение: $y = 1 - \sin(x) - \cos(x)$

,	y-1, y(0)	y(n/2) = 0	cline. $y = 1$ $\sin(x)$	CO3(X)
	x	approximate y	real y	
	0.000	0.000	0.000	
	0.105	-0.099	-0.099	
	0.209	-0.186	-0.186	
	0.314	-0.260	-0.260	
	0.419	-0.321	-0.320	
	0.524	-0.366	-0.366	
	0.628	-0.397	-0.397	
	0.733	-0.413	-0.412	
	0.838	-0.413	-0.412	
	0.942	-0.397	-0.397	
	1.047	-0.366	-0.366	
	1.152	-0.321	-0.320	
	1.257	-0.260	-0.260	
	1.361	-0.186	-0.186	
	1.466	-0.099	-0.099	
	1.571	0.000	-0.000	

Тест №2

$$y'' - y = 2x$$
; $y(0) = 0$; $y(1) = -1$ Решение: $y = \frac{sh(x)}{sh(1)} - 2x$

x	approximate y	real y
0.000	0.000	0.000
0.100	-0.115	-0.115
0.200	-0.229	-0.229
0.300	-0.341	-0.341
0.400	-0.450	-0.450
0.500	-0.557	-0.557
0.600	-0.658	-0.658
0.700	-0.754	-0.755
0.800	-0.844	-0.844
0.900	-0.926	-0.927
1.000	-1.000	-1.000

• Тест №3

$$y'' - y' = 0$$
; $y(0) = -1$; $y'(1) - y(1) = 2$ Решение: $y = e^x - 2$

x	approximate y	real y
0.000	-0.100	-1.000
0.100	0.130	-0.895
0.200	0.384	-0.779
0.300	0.664	-0.650
0.400	0.975	-0.508
0.500	1.318	-0.351
0.600	1.696	-0.178
0.700	2.115	0.014
0.800	2.578	0.226
0.900	3.090	0.460
1.000	3.656	0.718

Выводы

Был освоен метод прогонки решения краевой задачи для дифференциального уравнения второго порядка. Экспериментально показана высокая точность вычислений.