Datalog

Nicoleta Preda (based on the book Abiteboul & al: Foundations of Databases)

December 6, 2017

Example: Database Instance

Links	Line	Station	Next Station
	4	StGermain	Odeon
	4	Odeon	StMichel
	4	StMichel	Chatelet
	1	Chatelet	Louvre
	1	Louvre	Palais-Royal
	1	Palais-Royal	Tuileries
	1	Tuileries	Concorde
	9	Pont de Sevres	Billancourt
	9	Billancourt	Michel-Ange
	9	Michel-Ange	Iena
	9	Iena	F. D. Roosevelt
	9	F. D. Roosevelt	Republique
	9	Republique	Voltaire

Example: Queries

 Q_1 : Can we go from Odeon to Chatelet?

 Q_2 : What are the stations reachable from Odeon?

Q₃: What lines can be reached from Odeon?

Example: Queries

 Q_1 : Can we go from Odeon to Chatelet?

 Q_2 : What are the stations reachable from Odeon?

Q₃: What lines can be reached from Odeon?

- None of the above queries can be expressed in SQL!
- ▶ We need a query language where we can express recursion.

Conjunctive Queries

Definition: Rule (Rule-Based Conjunctive Query)

Let ${\mathcal R}$ be a database schema. A rule-based conjunctive query over ${\mathcal R}$ is an expression of the form

$$q(u) \leftarrow R_1(u_1), ..., R_n(u_n)$$

where

- $ightharpoonup n \geq 0$,
- q is a relation name not in R;
- $ightharpoonup R_1, \ldots, R_n$ are relation names in \mathcal{R} ;
- u, u_1, \ldots, u_n are free tuples (i.e., may use either variables or constants)
- ▶ and each variable occurring in u must also occur at least once in u, u_1, \ldots, u_n .

Semantics

Let q be the query given earlier, var(q) be the set of variables in the head, and dom be the set of constants and let I(R) be an instance of R.

Query Answer

The image of I under q is $q(I) = \{v(u)|v$ is a valuation over var(q) and $v(u_i) \in I(R_i)$, for each $i \in [1, n]$.

¹A valuation is a function.

Equivalence Theorem

The rule-based conjunctive queries and satisfiable SPJR algebra are equivalent.

SPJR algebra: algebra with 4 operators:

- Selection,
- Projection,
- ▶ (natural) Join,
- Renaming

Incorporating Union: Non-Recursive Datalog

A nonrecursive datalog program over schema ${\mathcal R}$ is a set of rules where

- no relation name in R occurs in a rule head;
- ▶ the same relation name may appear in more than one rule head;
- ▶ and there is some ordering $r_1, ..., r_m$ of the rules so that the relation name in the head of r_i does not occur in the body of a rule r_j whenever $j \le i$.

Introducing Recursive Rules

Example:

 $ancestor(x, z) \leftarrow parent(x, y), ancestor(y, z)$

Exercise:

Define the transitive closure for the graph:

Links	Line	Station	Next Station
	_		
	4	StGermain	Odeon
	4	Odeon	StMichel
	4	StMichel	Chatelet
	1	Chatelet	Louvre
	1	Louvre	Palais-Royal
	1	Palais-Royal	Tuileries
	1	Tuileries	Concorde
	9	Pont de Sevres	Billancourt

Datalog (with recursion)

Definition: Datalog Rule

A (datalog) rule is an expression of the form

$$R_1(u_1) \leftarrow R_2(u_2), ..., R_n(u_n)$$

where

- $ightharpoonup R_1, \ldots, R_n$ are relation names;
- u_1, \ldots, u_n are free tuples (i.e., may use either variables or constants)
- lacktriangle and each variable occurring in u_1 must also occur at least once in u_2,\ldots,u_n .

A datalog program is a finite set of datalog rules.

Extensional versus Intensional

Let P be a datalog program.

- An extensional relation is a relation occurring only in the body of the rules.
- ▶ An *intensional* relation is a relation occurring in the head of some rule of *P*.
- edb(P): the extensional (database) schema, which consists of the set of all extensional relation names;
- idb(P): the intensional schema, which consists of all the intensional relation names;
- ▶ $sch(P) = edb(P) \cup idb(P)$ is the schema of P.

Datalog Semantics

The semantics of a datalog program is a mapping from database instances over edb(P) to database instances over idb(P).

We call the input data the extensional database and the program the intensional database.

Datalog └─ Datalog

Exercise

Given an extensional database schema consisting of the relation name

Links(Line, Station, NextStation)

propose a Datalog Program that can answer the following three queries:

Q₁: Can we go from Odeon to Chatelet?

Q₂: What are the stations reachable from Odeon?

Q₃: What lines can be reached from Odeon?

Datalog versus Logic Programming

Logic programming permits function symbols, but datalog does not.

Evaluation: Fix-Point Solution

Let P be a datalog program and K an instance over sch(P).

A fact A is an immediate consequence for K and P if

- ▶ either $A \in K(R)$ for some *edb* relation R,
- ▶ or $A \leftarrow A_1, ..., A_n$ is an instantiation of a rule in P and each A_i is in K.

The immediate consequence operator of P, denoted T_P , is the mapping from inst(sch(P)) to inst(sch(P)) defined as follows. For each K, TP(K) consists of all facts A that are immediate consequences for K and P.

- ightharpoonup The operator T_P is monotone.
- K is a fix point of T if $T_P(K) = K$
- ▶ For each P and instance I, T_P has a minimum fixpoint containing I.

Example: Datalog program with negation and no fix point

Consider the following program in Datalog⁻

$$R(x) \leftarrow S(x), \neg R(x)$$
 (1)

and suppose that the EDB S has input $\{S(1)\}$. In this case, neither $\{R(1)\}$ nor $\{\neg R(1)\}$ are fixpoints! In fact, the above program does not have any fixpoint if we follow the standard definition.

Evaluation: Proof-Theoretic Solution

Idea: The answer of a program P on I consists of the set of facts that can be proven using P and I.

A proof tree of a fact A from I and P is a labeled tree where

- 1. each vertex of the tree is labeled by a fact;
- 2. each leaf is labeled by a fact in I;
- 3. the root is labeled by A; and
- 4. for each internal vertex, there exists an instantiation $A_1 \leftarrow A_2, \ldots, A_n$ of a rule in P such that the vertex is labeled A_1 and its children are respectively labeled A_2, \ldots, A_n .

Such a tree provides a proof of the fact A.

Example

Consider query boolean query S(1,6) and the following Datalog program

- 1. $S(x_1, x_3) \leftarrow T(x_1, x_2), R(x_2, a, x_3)$
- 2. $T(x_1, x_4) \leftarrow R(x_1, a, x_2), R(x_2, b, x_3), T(x_3, x_4)$
- 3. $T(x_1, x_3) \leftarrow R(x_1, a, x_2), R(x_2, a, x_3)$

and the instance $\{R(1, a, 2), R(2, b, 3), R(3, a, 4), R(4, a, 5), R(5, a, 6)\}.$

Top-Down Evaluation

How the proof is generated? (algorithm in Abiteboul & al: Foundations of Databases page 316, Section 13.2 Top-Down Techniques)

(a) Datalog proof

Further Readings

Abiteboul & al: Foundations of Databases

- Section 13.1 Semi-naive Evaluation
- Section 13.3 Magic-Set Evaluation