

面向未知世界的机器学习

赵知临

赵知临 副教授/博士生导师 国家级高层次青年人才

- □ 2012.09 2016.06 中山大学 计算机学院 学士
- □ 2016.09 2018.06 中山大学 计算机学院 硕士
- □ 2018.08 2022.08 悉尼科技大学 工程与信息技术学院 博士
- □ 2022.08 2024.12 悉尼科技大学 / 麦考瑞大学 博士后

代表性成果 (第一作者)

期刊与会议名称	篇数
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)	3
Annual Conference on Neural Information Processing Systems (NeurIPS)	2
Artificial Intelligence Journal (AIJ) / Machine Learning Journal (MLJ)	2
IEEE Transactions on Neural Networks and Learning Systems (TNNLS)	2
Association for the Advancement of Artificial Intelligence (AAAI)	1
International Joint Conference on Artificial Intelligence (IJCAI)	1
Transactions on Machine Learning Research (TMLR)	1

人工智能中"未知世界"的探索历程

1950. 智能判别

图灵提出图灵测试,首次用 "在未知输入下的反应"来 定义机器智能。

1988. 不确定性建模

Pearl系统化提出贝叶斯网络, 为AI应对不完全信息和因果未 知性提供数学工具。

1995. 开放世界假设

在知识表示领域提出"开放世界假设",标志AI开始面向真实世界的不完备知识建模。

2002. 开放集识别

开放集识别概念提出,机器学习开始处理"未见类别"的识别问题。

2016. 外分布检测

深度学习下的外部分布检测 方法兴起,揭示AI系统对未 知数据缺乏鲁棒性。

2025. 开放环境泛化

面向具身智能与多智能体协作, AI迈向能在开放世界中自主适 应与泛化的新时代。

探索未知世界的智能学习闭环框架

高风险场景下的智能泛化应用

在天气预测、医学诊断、具身智能等 不确定性强的任务中验证模型的鲁棒 性与安全性。

外分布机器学习理论

聚焦未知分布的界定、不确定性建模与泛化理论,奠定面向开放世界学习的理论基础。

大模型驱动的泛化学习算法

发展生成模型、多智能体机制与大模型指令泛化方法,实现面向未知任务的自主建模与推理。

理论机制建构

• 外分布界定

构建形式化测度方法,明确训练与测试分布之间的偏移类型和边界。

• 外分布检测

设计判别准则与不确定性指标,实现未知样本与异常输入的识别。

• 外分布利用

探索利用外分布样本提升模型泛化与迁移能力的理论机制。

目标: 刻画未知世界的数学结构与推理边界, 为模型设 计与学习算法提供基础认知框架。 Class 2 Class 1 Maximum Mean Discrepancy Feature Space Reproducing Kernel Hilbert Space Inference Training In-distribution samples Out-of-distribution samples

算法模型设计

目标: 构建可感知未知、可泛化任务、可协作适应的智能学习系统。

生成式内容生成

利用扩散模型等生成方法对未知 分布建模,支持异常检测、类别 外推与数据增强。

大模型的任务泛化

通过大语言模型与多模态模型实现任务重组与知识迁移,提升系统对未知任务的理解与响应能力。

多智能体协作与对抗

设计具备协作、对抗与语言通信能力的智能体群体,实现开放环境下的自主适应与任务泛化。

关键应用验证

目标:在高不确定性、强开放性的现实任务中验证理论与算法的有效性与鲁棒性。

极端天气预测

泛化强、具不确定性提示的气象模型,用于早期极端天气的预警与策略调整。

医学诊断泛化

高置信辅助诊断系统,应对跨设备、跨人群、跨病种不一致问题, 提供可靠异常提示。

具身智能迁移

基于多模态感知与多智能体协作, 实现开放环境中的任务适应与策 略泛化。

