

Glasgow: J Knapper, F Whiteford Bath: E Meng, K Bumke, K Harrington, J Stirling, J Collins, W Wadsworth, N Campbell, Y Wang, B Vodenicharski

Cambridge: S McDermott, F

Ayazi, P Cicuta

IHI: C Mkindi, V Mayagaya, J

Mduda

STICLab: V Sanga, P Nyakyi, G

Mwakajinga

Microscopy for everyone

Quality Assurance

Training

Local Production

A global community project

Easily to build for reproducibility, accessibility, and improvement

Open hardware & software development

Culture, infrastructure, and effort to **build community**

Smart scanning & tiling

Align the foot under the microscope so that the letter faces outwards

Documentation, documentation, do...

@CERNopenlab @journalopenhw @OKFN @OpenFlexure @OpenUc2 etc.

Jul 1 2021

492806200692736

OpenFlexure Microscope

An open-source, 3D-printed microscope, including a precise

mechanical stage to move the sample and focus the ontics

University of Glasgow Friendly interface

Smarter, better-connected labs

Architecture in detail

- Simple GUI
- Easily scriptable
- Script & GUI simultaneous
- Headless/unattended operation
- One computer, many microscopes

Software implementation

- Server: Python, FastAPI, LabThings (was Flask et al.)
 - Things are Python classes
 - Actions & properties are Python descriptors
 - The signature of a Thing and a ThingClient are ~compatible
 - FastAPI dependency injection for inter-thing dependencies
- GUI: Vue.js + Axios
 - Actions are started by a custom Vue component
 - Properties are read/written by another Vue component
 - Not (yet) using node-wot, I can't seem to use it with webpack (?)
- Thing Descriptions: multiple things (camera/stage/plugins)
 - Example from v3 pre-release: https://gist.github.com/rwb27/7e0c0b70a2e9b32cfa35a67fe1d7ae33

Connecting open projects

W Ouyang et al. An Open-Source Modular Framework for Automated Pipetting and Imaging Applications bioRxiv 2021

Easy automation with blockly

Live preview

To start using OpenFlexure with Blockly, connect to your microscope.

Logic Loops Math Text Lists Colour **Variables Functions** OpenFlexure

LabThings, OpenFlexure, & WoT

- Learned about WoT when searching for ReST interface advice, ~4 years ago. Credit to postdoc Joel Collins for that.
- What has it solved?
 - Clear way to control hardware with HTTP
 - Nice documentation for hardware API
 - Cross-language, cross-platform hardware control
 - (future) linking up frameworks/ontologies with semantic types
- Pain points
 - Standard ways of dealing with long/interactive actions
 - Synchronisation e.g. an Event that's associated with an Action
 - Detail on protocol bindings (e.g. websockets)
 - Where is Swagger for my Thing Description?
 - Thing Description is not quite JSON Schema

General control frameworks

- Top-down taxonomy of instrument types, as classes
 - Advantage: abstraction
 - Disadvantage: not flexible
- Language-specific
- Complicated to install/set up environment
- Only one process at a time

ImSwitch: Generalizing microscope control in Python

Xavier Casas Moreno¹, Staffan Al-Kadhimi¹, Jonatan Alvelid¹, Andreas Bodén¹, and Ilaria Testa¹

1 SciLifeLab, KTH Royal Institute of Technology

How to not be a framework?

- Standardised, cross-platform, language-independent way to run and document actions, get/set properties, watch for events [WoT – TD & protocol binding]
- Opt-in taxonomies, allowing frameworks to align gradually over time [WoT semantic types]
- Neat ways to determine compatibility of devices [TD?]
- Needs to be useful immediately without huge up-front time investment
- Gradually becomes more useful as it's more fully implemented

2 OpenFlowers Microscope

http://openflexure.org/

OpenFlexure Forum

Join the discussion! Get help, request features, and share knowhow on the OpenFlexure Forum.

OpenFlexure Microscope

An open-source, 3D-printed microscope, including a precise mechanical stage to move the sample and focus the optics.

Tobias Wenzel 🎎 🧣 💇 🛱 @MakerTobey Our new #openhardware preprint is out 9 @jenny molloy @WenzelLab of interest to @jimhaseloff @GOSHCommunity @oshwassociation @OK Maps @CERNopenlab @journalopenhw @OKFN @OpenFlexure @OpenUc2 etc. https://twitter.com/M_Oellermann/status/1410 492806200692736 0 5

Jul 1, 2021

Tweets by @OpenFlexure

OpenFlexure Retweeted

OpenFlexure Retweeted

delta stage

Site Feedback

General

Testing 3D printed condenser lens

Dring Alternatives - hair ties?

ditable CAD files

ost links on the site ould the logo say "microscope"?

New forum Section for New Builds

Request Help

Potential Bug During Stack and Scan ■ LED grid illumination

■ Delta microscope RMS optics

Build Reports