

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления (ИУ)»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии (ИУ7)»

ОТЧЕТ

Лабораторная работа №1

по курсу «Методы вычислений» на тему: «Венгерский метод решения задачи о назначениях» Вариант № 9

Студент	ИУ7-12М (Группа)	(Подпись, дата)	<u> </u>
Преподав	атель	(Подпись, дата)	П.А. Власов (И. О. Фамилия)

1 Теоретическая часть

Цель работы: изучение венгерского метода решения задачи о назначениях.

Задание:

- 1. Реализовать венгерский метод решения задачи о назначениях в виде программы на ЭВМ.
- 2. Провести решение задачи с матрицей стоимостей, заданной в индивидуальном варианте, рассмотрев два случая:
 - задача о назначениях является задачей минимизации,
 - задача о назначениях является задачей максимизации.

1.1 Содержательная и математическая постановки задачи о назаначениях

Содержательная постановка: имеется n работ и n испытателей; стоимость выполнения i-ой работы j-ым исполнителем составляет $c_{ij} \geqslant 0$ единиц. Требуется распределить все работы между исполнителями так, чтобы

- каждый исполнитель выполнял 1 работу;
- каждую работу выполнял только 1 исполнитель;
- общая стоимость выполнения всех работ была min.

Введем управляемые переменные:

$$x_{ij} = \begin{cases} 1, \text{ если } i\text{-ую работу выполняет } j\text{-ый работник,} \\ 0, \text{ иначе;} \end{cases}$$
 $i, j = \overline{1; n}.$ (1.1)

Из переменных x_{ij} , $i, j = \overline{1; n}$, составим

$$X = (x_{ij})_{i,j=\overline{1:n}},\tag{1.2}$$

которую назовем матрицей назначений.

Стоимости выполнения работ также записываем в матрицу

$$C = (c_{ij})_{i,j=\overline{1:n}},\tag{1.3}$$

называемой матрицей стоимостей.

Тогда:

1. Стоимость выполнения работ:

$$f = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}.$$
 (1.4)

2. Условие того, что i-ую работу выполнит один работник:

$$\sum_{j=1}^{n} x_{ij} = 1, \ i = \overline{1; n}. \tag{1.5}$$

3. Условие того, что j-ый работник выполнит одну работу:

$$\sum_{i=1}^{n} x_{ij} = 1, \ j = \overline{1; n}. \tag{1.6}$$

Таким образом приходим к математической постановке:

$$\begin{cases}
f = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to min, \\
\sum_{j=1}^{n} x_{ij} = 1, \ i = \overline{1; n}, \\
\sum_{i=1}^{n} x_{ij} = 1, \ j = \overline{1; n}, \\
x_{ij} \in \{0, 1\}, \ i, j = \overline{1; n}.
\end{cases} (1.7)$$

1.2 Исходные данные конкретного варианта

Вариант 9:

$$C = \begin{bmatrix} 4 & 7 & 1 & 5 & 5 \\ 6 & 8 & 3 & 7 & 6 \\ 6 & 4 & 5 & 7 & 7 \\ 4 & 2 & 3 & 4 & 9 \\ 8 & 1 & 8 & 3 & 8 \end{bmatrix}$$
 (1.8)

1.3 Краткое описание венгерского метода

Схема венгерского метода решения задачи о назначениях представлена на рисунках 1.1–1.2.

Рисунок 1.1 – Схема венгерского метода решения задачи о назначениях (часть 1)

Рисунок 1.2 — Схема венгерского метода решения задачи о назначениях (часть 2)

2 Практическая часть

2.1 Текст программы

В листинге 2.1 представлен код программы.

Листинг 2.1 — Код программы

```
function lab_01()
          clc;
2
3
          findMax = 0;
          debugFlg = 1;
          [base_color, red, green, yellow, blue, purple] = getColors();
6
         matr = [
7
              4 7 1 5 5;
              6 8 3 7 6;
9
              6 4 5 7 7;
10
              4 2 3 4 9;
11
              8 1 8 3 8
12
         ];
13
14
          fprintf('%sМатрица стоимостей для 9 варианта:%s\n', green, base_color);
15
          disp(matr);
16
17
         C = matr;
18
19
          if findMax == 1
20
21
              C = convertToMin(matr);
22
              if debugFlg == 1
23
24
                  fprintf('%s\nMaтрица после приведения к задаче минимизации:%s\n', blue,
         base_color);
                  disp(C);
              end
26
27
          end
          C = updateColumns(C);
29
          if debugFlg == 1
30
              fprintf('%s\nPeзультат вычитания наименьшего элемента по столбцам:%s\n',
         blue, base_color);
              disp(C);
32
33
          end
         C = updateRows(C);
35
          if debugFlg == 1
36
```

```
fprintf('%s\nРезультат вычитания наименьшего элемента по строкам:%s\n',
37
        blue, base_color);
             disp(C);
38
         end
39
40
         [numRows, numCols] = size(C);
41
42
         matrSIZ = getSIZInit(C);
43
         if debugFlg == 1
44
             fprintf('%s\nHaчальная CHH:%s\n', blue, base_color);
45
             printSIZ(C, matrSIZ);
46
         end
47
48
         k = sum(sum(matrSIZ));
49
         if debugFlg == 1
50
             fprintf('%s\nЧисло нулей в построенной СНН:%s k = %d\n', blue, base_color,
51
      \hookrightarrow k);
         end
52
53
         iteration = 1;
54
         while k < numCols
             if debugFlg == 1
56
                 fprintf('%s\n______ Итерация №%d
57
         _____\n%s', green, iteration, base_color);
             end
58
59
             matrStreak = zeros(numRows, numCols); % матрица, в которой отмечаются
         nosuuuu 0'
             selectedColumns = sum(matrSIZ);
61
             selectedRows = zeros(numRows);
             selection = getSelection(numRows, numCols, selectedColumns);
63
64
             if debugFlg == 1
                 fprintf('%s\nPeзyльтат выделения столбцов, в которых стоит 0*:%s\n',
66
         blue, base_color);
                 printMarkedMatr(C, matrSIZ, matrStreak, selectedColumns,
67
         selectedRows);
             end
68
69
             flag = true;
70
             streakPnt = [-1 -1];
71
             while flag
72
                 streakPnt = findStreak(C, selection);
73
                 if streakPnt(1) == -1
74
```

```
C = updateMatrNoZero(C, numRows, numCols, selection, selectedRows,
75
          selectedColumns);
76
                       if debugFlg == 1
77
                           fprintf('%s\nCpequ невыделенных элементов нет 0, преобразуем
78
          матрицу: %s\n', blue, base_color);
                           printMarkedMatr(C, matrSIZ, matrStreak, selectedColumns,
79
          selectedRows);
80
81
                       streakPnt = findStreak(C, selection);
82
                   end
83
84
                   matrStreak(streakPnt(1), streakPnt(2)) = 1;
85
                   if debugFlg == 1
86
                       fprintf("%s\nCpeди невыделенных элементов есть 0, отметим 0':%s\n",
87
          blue, base_color);
                       printMarkedMatr(C, matrSIZ, matrStreak, selectedColumns,
88
          selectedRows);
                   end
89
                   zeroStarInRow = getZeroStarInRow(streakPnt, numCols, matrSIZ);
91
                   if zeroStarInRow(1) == -1
92
                       flag = false;
                   else
94
                       % снять выделение со столбца с 0*
95
                       selection(:, zeroStarInRow(2)) = selection(:, zeroStarInRow(2)) -
         1;
                       selectedColumns(zeroStarInRow(2)) = 0;
97
                       % перенести выделение на строку с 0'
99
                       selection(zeroStarInRow(1), :) = selection(zeroStarInRow(1), :) +
100
         1;
                       selectedRows(zeroStarInRow(1)) = 1;
101
                       if debugFlg == 1
102
                           fprintf("%s\nB одной строке с 0' есть 0*, перебросим выделение
103
          со столбца на строку: %s\n", blue, base_color);
                           printMarkedMatr(C, matrSIZ, matrStreak, selectedColumns,
104
          selectedRows);
105
                       end
                   end
106
107
               end
108
               [matrStreak, matrSIZ] = createL(numRows, numCols, streakPnt, matrStreak,
109
         matrSIZ, debugFlg);
```

```
110
111
               k = sum(sum(matrSIZ));
               if debugFlg == 1
112
                   fprintf("%s\nB пределах L-цепочки 0* заменем на 0, а 0' на 0*:\n%s",
113
          blue, base_color);
                   printSIZ(C, matrSIZ);
114
                   fprintf('%s\nЧисло нулей в построенной СНН:%s k = %d\n', blue,
115
          base_color, k);
               end
116
117
               iteration = iteration + 1;
118
           end
119
120
           if debugFlg == 1
121
               fprintf('%s\nKонечная СНН:\n%s', blue, base_color);
122
               printSIZ(C, matrSIZ);
123
           end
124
125
           fprintf('%s\nX =\n%s', green, base_color);
126
           disp(matrSIZ);
127
128
           fOpt = getFOpt(matr, matrSIZ);
129
           fprintf('%s\nf opt = %s%d\n', green, base_color, fOpt);
130
131
      end
132
      % Найти первый нулевой элемент среди невыделенных, в одной строке с которым не
133

→ cmoum 0*

      function [streakPnt] = findStreak(matr, selection)
134
           streakPnt = [-1 -1];
135
           [numRows, numCols] = size(matr);
136
           for i = 1 : numCols
137
               for j = 1 : numRows
138
                  if selection(j, i) == 0 && matr(j, i) == 0
139
                       streakPnt(1) = j;
140
                       streakPnt(2) = i;
141
                       return;
142
                  end
143
               end
144
145
           end
146
147
      function [] = printSIZ(matr, matrSIZ)
148
           [base_color, red, green, yellow, blue, purple] = getColors();
149
           [numRows, numCols] = size(matr);
150
151
```

```
for i = 1 : numRows
152
               for j = 1 : numCols
153
                   if matrSIZ(i, j) == 1
154
                        fprintf("%s\t%d*\t%s", purple, matr(i, j), base_color);
155
156
                   else
                        fprintf("\t%d\t", matr(i, j));
157
158
                   end
159
               end
               fprintf("\n");
160
161
           end
      end
162
163
      function [] = printMarkedMatr(matr, matrSIZ, matrStreak, selectedCols,
164
           selectedRows)
           [base_color, red, green, yellow, blue, purple] = getColors();
165
           [numRows, numCols] = size(matr);
166
167
           for i = 1 : numRows
168
               if selectedRows(i) == 1
169
                   fprintf("%s+%s", green, base_color);
170
171
               end
172
               for j = 1 : numCols
173
                   if matrSIZ(i, j) == 1
                        fprintf("%s\t%d*\t%s", purple, matr(i, j), base_color);
175
                   elseif matrStreak(i, j) == 1
176
177
                        fprintf("%s\t%d'\t%s", red, matr(i, j), base_color);
                   else
178
                        fprintf("\t%d\t", matr(i, j));
179
180
                   end
               end
181
               fprintf('\n');
182
           end
183
184
           for i = 1 : numCols
185
               if selectedCols(i) == 1
186
                   fprintf("%s\t+\t%s", green, base_color);
187
               else
188
                   fprintf(" \t\t");
189
190
               end
           end
191
           fprintf('\n');
192
193
194
195
       🖔 Приведение задачи максимизации к задаче минимизации
```

```
function matr = convertToMin(matr)
196
197
          maxElem = max(max(matr));
          matr = matr * (-1) + maxElem;
198
      end
199
200
201
      % Нахождение наименьшего элемента в каждом столбце матрицы С
      % и вычитание его из соответствующего столбца
202
      function matr = updateColumns(matr)
203
          minElemArr = min(matr);
204
          for i = 1 : length(minElemArr)
205
               matr(:, i) = matr(:, i) - minElemArr(i);
206
           end
207
      end
208
209
      % Нахождение наименьшего элемента в каждой строке матрицы С
210
211
      % и вычитание его из соответствующей строки
      function matr = updateRows(matr)
212
          minElemArr = min(matr, [], 2);
213
          for i = 1 : length(minElemArr)
214
               matr(i, :) = matr(i, :) - minElemArr(i);
215
216
           end
      end
217
218
      % Начальное состояние СНН (системы независимых нулей)
219
      function matrSIZ = getSIZInit(matr)
220
           [numRows, numCols] = size(matr);
221
222
          matrSIZ = zeros(numRows, numCols);
223
          for i = 1 : numCols
224
               for j = 1 : numRows
225
                   if matr(j, i) == 0
226
                       count = 0;
227
                       for k = 1 : numCols
228
                           count = count + matrSIZ(j, k);
229
                       end
230
                       for k = 1 : numRows
231
                           count = count + matrSIZ(k, i);
232
                       end
233
                       if count == 0
234
                            matrSIZ(j, i) = 1;
235
                       end
236
237
                   end
               end
238
           end
239
240
      end
```

```
241
       % Выделение столбцов, в которых стоит 0*
242
      function [selection] = getSelection(numRows, numCols, selectedColumns)
243
           selection = zeros(numRows, numCols);
244
           for j = 1 : numCols
245
               if selectedColumns(j) == 1
246
                   selection(:, j) = selection(:, j) + 1;
247
248
               end
           end
249
      end
250
251
252
      % Изменить матрицу в случае, если среди невыделенных элементов нет нуля
      function [matr] = updateMatrNoZero(matr, numRows, numCols, selection, selectedRows,
253
          selectedColumns)
           h = 1e5; % Наименьший элемент среди невыделенных
254
           for i = 1 : numCols
255
               for j = 1 : numRows
256
                   if selection(j, i) == 0 && matr(j, i) < h</pre>
257
                        h = matr(j, i);
258
                   end
259
260
               end
           end
261
262
           for i = 1 : numCols
263
               if selectedColumns(i) == 0
264
                   matr(:, i) = matr(:, i) - h;
265
               end
266
           end
267
           for i = 1 : numRows
268
               if selectedRows(i) == 1
269
                   matr(i, :) = matr(i, :) + h;
270
               end
271
272
           end
      end
273
274
      % Найти 0* в той же строке, что и 0'
275
      function [zeroStarInRow] = getZeroStarInRow(streakPnt, numCols, matrSIZ)
276
           j = streakPnt(1);
277
           zeroStarInRow = [-1 -1];
278
           for i = 1 : numCols
279
              if matrSIZ(j, i) == 1
280
                  zeroStarInRow(1) = j;
281
                  zeroStarInRow(2) = i;
282
                  break
283
284
              end
```

```
285
           end
286
       end
287
       % Построить L-цепочку
288
      function [matrStreak, matrSIZ] = createL(numRows, numCols, streakPnt, matrStreak,
289

→ matrSIZ, debugFlg)

           [base_color, red, green, yellow, blue, purple] = getColors();
290
291
           if debugFlg == 1
292
               fprintf('%s\nПостроенная L-цепочка: %s', blue, base_color);
293
           end
294
295
           i = streakPnt(1);
296
           j = streakPnt(2);
297
           while i > 0 && j > 0 && i \le numRows && j \le numCols
298
               % Снять *
299
               matrStreak(i, j) = 0;
300
               % Заменить ' на *
301
               matrSIZ(i, j) = 1;
302
303
               if debugFlg == 1
304
                    fprintf("[%d, %d] ", i, j);
305
               end
306
307
               % Дойти до 0* no столбцу от 0'
308
               kRow = 1;
309
310
               while kRow <= numRows && (matrSIZ(kRow, j) ~= 1 || kRow == i)
                   kRow = kRow + 1;
311
               end
312
313
               if (kRow <= numRows)</pre>
314
                    % Дойти до 0' по строке от 0*
315
                   1Col = 1;
316
                    while lCol <= numCols && (matrStreak(kRow, lCol) ~= 1 || lCol == j)
317
                        1Col = 1Col + 1;
318
319
                    end
320
                    if lCol <= numCols</pre>
321
                        matrSIZ(kRow,j) = 0;
322
323
                        if debugFlg == 1
324
                            fprintf("-> [%d, %d] -> ", kRow, j);
325
                        end
326
                    end
327
                    j = 1Col;
328
```

```
end
329
                i = kRow;
330
           end
331
332
           if debugFlg == 1
333
                fprintf('\n');
334
           end
335
       \quad \text{end} \quad
336
337
       function [fOpt] = getFOpt(matr, matrSIZ)
338
           fOpt = 0;
339
            [numRows, numCols] = size(matr);
340
341
           for i = 1 : numCols
342
                for j = 1 : numRows
343
                     if matrSIZ(j, i) == 1
344
                         fOpt = fOpt + matr(j, i);
345
346
                end
347
           end
348
       end
349
350
       function [base_color, red, green, yellow, blue, purple] = getColors()
351
           base_color = "\x1B[0m";
352
           red
                        = "\x1B[31m";
353
                        = "\x1B[32m";
           green
354
           yellow
                        = "\x1B[33m";
355
           blue
                        = "\x1B[34m";
356
                        = "\x1B[35m";
           purple
357
       \quad \text{end} \quad
```

2.2 Результаты расчетов для задач из индивидуального варианта

В листинге 2.2 представлены расчеты для задачи минимизации.

Листинг 2.2 — Задача минимизации

```
Матрица стоимостей для 9 варианта:
1
             1
2
          7
                 5
                    5
          8
       6
             3
                7
3
       6 4 5 7
       4 2 3 4 9
5
       8 1 8 3
6
7
    Результат вычитания наименьшего элемента по столбцам:
8
          6
             0
9
       2 7 2 4
                    1
10
       2 3 4 4 2
11
       0 1 2 1
12
          0
             7
13
14
    Результат вычитания наименьшего элемента по строкам:
15
          6
                    0
          6 1 3
17
         1 2 2
       0
                    0
18
       0 1
             2
                    4
          0 7 0
20
21
    Начальная СНН:
22
           0*
                                                   2
23
           1
                        6
                                      1
                                                   3
                                                                 0*
24
                                                   2
           0
                        1
                                                   1
26
                        0*
27
    Число нулей в построенной СНН: k = 3
29
30
    _____ Итерация №1
31
32
    Результат выделения столбцов, в которых стоит 0*:
33
           0*
                                                   2
                        6
                                                                 0
35
           1
                        6
                                                   3
           0
                        1
                                      2
                                                   2
                                                                 0
36
           0
                        1
                                                   1
37
                        0*
                                      7
39
```

Продолжение листинга 2.2

41	Среди невыделенных	элементов есть	0, отметим 0':			
42	0*	6	0'	2	0	
43	1	6	1	3	0*	
44	0	1	2	2	0	
45	0	1	2	1	4	
46	4	0*	7	0	3	
47	+	+			+	
48						
49	В одной строке с 0	' есть 0*, пере	бросим выделение	со столбца на с	троку:	
50	+ 0*	6	0'	2	0	
51	1	6	1	3	0*	
52	0	1	2	2	0	
53	0	1	2	1	4	
54	4	0*	7	0	3	
55		+			+	
56						
57	Среди невыделенных	элементов есть	0, отметим 0':			
58	+ 0*	6	0'	2	0	
59	1	6	1	3	0*	
60	0'	1	2	2	0	
61	0	1	2	1	4	
62	4	0*	7	0	3	
63		+			+	
64						
65	Построенная L-цепо	чка: [3, 1] ->	[1, 1] -> [1, 3]			
66						
67	В пределах L-цепоч					
68	0	6	0*	2	0	
69	1	6	1	3	0*	
70	0*	1	2	2	0	
71	0	1	2	1	4	
72	4	0*	7	0	3	
73		9 arrr 1	4			
74	Число нулей в пост	роеннои СНН: к	= 4			
75		11_	100			
76 77		ИТ	≈Һапия №7			
	Результат выделени	д столбиов в ж	OTODIY CTORT OX:			
78 79	гезультат выделени	я столоцов, в ко 6	оторых стоит о≁. 0*	2	0	
80	1	6	1	3	0*	
81	0*	1	2	2	0	
82	0	1	2	1	4	
83	4	0*	7	0	3	
84	+	+	+		+	
85						

Продолжение листинга 2.2

						_
86	Среди невыделен	ных элементов есть	0, отметим 0':			
87	0	6	0*	2	0	
88	1	6	1	3	0*	
89	0*	1	2	2	0	
90	0	1	2	1	4	
91	4	0*	7	0'	3	
92	+	+	+		+	
93						
94	В одной строке	с 0' есть 0*, переб	бросим выделение	со столбца на с	гроку:	
95	0	6	0*	2	0	
96	1	6	1	3	0*	
97	0*	1	2	2	0	
98	0	1	2	1	4	
99	+ 4	0*	7	0'	3	
100	+		+		+	
101						
102	Среди невыделен	ных элементов нет (), преобразуем м	атрицу:		
103	0	5	0*	1	0	
104	1	5	1	2	0*	
105	0*	0	2	1	0	
106	0	0	2	0	4	
107	+ 5	0*	8	0'	4	
108	+		+		+	
109						
110	Среди невыделен	ных элементов есть	0, отметим 0':			
111	0	5	0*	1	0	
112	1	5	1	2	0*	
113	0*	0'	2	1	0	
114	0	0	2	0	4	
115	+ 5	0*	8	0'	4	
116	+		+		+	
117						
118	В одной строке	с 0' есть 0*, переб	бросим выделение	со столбца на с	гроку:	
119	0	5	0*	1	0	
120	1	5	1	2	0*	
121	+ 0*	0'	2	1	0	
122	0	0	2	0	4	
123	+ 5	0*	8	0'	4	
124			+		+	
125						
126	Среди невыделен	ных элементов есть	0, отметим 0':			
127	0'	5	0*	1	0	
128	1	5	1	2	0*	
129	+ 0*	0'	2	1	0	
130	0	0	2	0	4	

Продолжение листинга 2.2

```
5
                                    0*
                                                                           0'
                                                       8
                                                                                              4
131
132
133
       В одной строке с 0' есть 0*, перебросим выделение со столбца на строку:
134
                 0'
                                    5
                                                       0*
                                                                           1
                                                                                              0
135
                 1
                                    5
                                                                           2
                                                                                              0*
136
                 0*
                                    0'
                                                       2
                                                                           1
                                                                                              0
137
                                                       2
                 0
                                    0
                                                                           0
                                                                                              4
138
                 5
                                    0*
                                                       8
                                                                           0'
139
140
141
       Среди невыделенных элементов есть 0, отметим 0':
142
                 0'
                                                        0*
                                                                           1
                                                                                              0
143
                                    5
                 1
                                                        1
                                                                           2
                                                                                              0*
144
                                    0'
                                                        2
                 0*
                                                                           1
145
                 0'
                                    0
                                                       2
146
                 5
                                                       8
                                    0*
                                                                           0'
147
148
149
       Построенная L-цепочка: [4, 1] \rightarrow [3, 1] \rightarrow [3, 2] \rightarrow [5, 2] \rightarrow [5, 4]
150
151
       В пределах L-цепочки 0* заменем на 0, а 0' на 0*:
152
                                                       0*
                 0
                                    5
                                                                           1
                                                                                              0
153
                 1
                                    5
                                                        1
                                                                           2
                                                                                              0*
154
                 0
                                    0*
155
                                                       2
                 0*
                                    0
                                                                           0
                                                                                              4
156
                                    0
                                                       8
157
                 5
                                                                           0*
158
       Число нулей в построенной СНН: k = 5
159
160
       Конечная СНН:
161
                 0
                                    5
                                                       0*
                                                                           1
                                                                                              0
162
                 1
                                    5
                                                                           2
                                                                                              0*
                                                        1
163
                 0
                                    0*
                                                        2
                                                                           1
164
                 0*
                                    0
                                                       2
                                                                           0
                                                                                              4
165
                 5
                                    0
                                                       8
                                                                           0*
166
167
168
       X =
                              0
169
           0
                0
                    1
                         0
                0
170
           0
                1
                    0
                         0
                              0
171
                0
                         0
                              0
172
           1
                    0
                              0
173
                    0
174
       f opt = 18
175
```

В листинге 2.3 представлены расчеты для задачи максимизации.

Листинг 2.3 — Задача максимизации

```
Матрица стоимостей для 9 варианта:
2
               1
           8
               3
                  7
                      6
3
         4 5 7
4
           2
              3
       4
                 4
5
       8
         1 8 3
                      8
6
7
    Матрица после приведения к задаче минимизации:
8
9
           2
               8
                      4
       3
           1
               6
                  2
                      3
10
           5
                      2
              4
11
           7
       5
               6
                 5
                      0
12
                  6
                      1
13
           8
              1
14
15
    Результат вычитания наименьшего элемента по столбцам:
           1
                  2
16
               7
           0
              5
                      3
17
       2
         4
             3
                      2
                 0
18
       4
           6
               5
                 3
                      0
19
       0
           7
               0
20
21
     Результат вычитания наименьшего элемента по строкам:
22
           0
               6
23
       2
           0
               5
                  0
                      3
24
                      2
       2
           4
               3
                 0
25
           6
              5
                      0
           7
               0
27
28
     Начальная СНН:
29
            3
                           0*
                                          6
                                                         1
                                                                       3
30
            2
                           0
                                          5
                                                        0*
                                                                       3
31
            2
                                          3
            4
                           6
                                          5
                                                         3
                                                                       0*
33
                           7
            0*
34
35
     Число нулей в построенной СНН: k = 4
36
37
     _____Итерация №1 _____
38
39
40
     Результат выделения столбцов, в которых стоит 0*:
                           0*
                                                         1
                                                                       3
42
            2
                           0
                                          5
                                                         0*
                                                                       3
                                          3
43
            2
                           4
                                                        0
                                                                       2
```

Продолжение листинга 2.3

ı												
44	4	6	5	3	0*							
45	0*	7	0	4	1							
46	+	+		+	+							
47												
48	Среди невыделенных элементов есть 0, отметим 0':											
49	3	0*	6	1	3							
50	2	0	5	0*	3							
51	2	4	3	0	2							
52	4	6	5	3	0*							
53	0*	7	0'	4	1							
54	+	+		+	+							
55												
56	В одной строке с	0' есть 0*, переб		е со столбца на ст								
57	3	0*	6	1	3							
58	2	0	5	0*	3							
59	2	4	3	0	2							
60	4	6	5	3	0*							
61	+ 0*	7	0'	4	1							
62		+		+	+							
63												
64					2							
65	1	0*	4 3	1	3 3							
66	0	0 4	3 1	0* 0	2							
67 68	2	6	3	3	2 0*							
69	+ 0*	9	0'	6	3							
70	1 04	+	O	+	+							
71		•		•	•							
72	Среди невыделенны	и элементов есть	0. отметим 0':									
73	1	0*	4	1	3							
74	0'	0	3	0*	3							
75	0	4	1	0	2							
76	2	6	3	3	0*							
77	+ 0*	9	0'	6	3							
78		+		+	+							
79												
80	В одной строке с	0' есть 0*, переб	бросим выделение	е со столбца на ст	гроку:							
81	1	0*	4	1	3							
82	+ 0'	0	3	0*	3							
83	0	4	1	0	2							
84	2	6	3	3	0*							
85	+ 0*	9	0'	6	3							
86		+			+							
87												
88	Среди невыделенны	х элементов есть	0, отметим 0':									

Продолжение листинга 2.3

i													
89		1				0*		4		1		3	
90	+	0	•			0		3		0*		3	
91		0	•			4		1		0		2	
92		2				6		3		3		0*	
93	+	0:	*			9		0'		6		3	
94						+						+	
95													
96	Построенная L-цепочка: [3, 1] -> [5, 1] -> [5, 3]												
97													
98	В пределах L-цепочки 0* заменем на 0, а 0' на 0*:												
99		1				0*		4		1		3	
100		0				0		3		0*		3	
101		0:	*			4		1		0		2	
102	2					6		3		3		0*	
103	0					9		0*		6		3	
104													
105	Число	нул	ей в	пост	гроенн	юй СНН: к	= 5						
106													
107	Конеч		CHH:										
108		1				0*		4		1		3	
109		0				0		3		0*		3	
110		0:				4		1		0		2	
111		2				6		3		3		0*	
112		0				9		0*		6		3	
113													
114	X =												
115	0	1	0	0	0								
116	0	0	0	1	0								
117	1	0	0	0	0								
118	0	0	0	0	1								
119	0	0	1	0	0								
120	.	_ 0'	7										
121	f opt	= 3	1										