An Introduction to Data Science for Sensory and Consumer Scientists

John Ennis, Julien Delarue, and Thierry Worch

2020-12-29

Contents

P	refac	e	7
A	bout	the Authors	9
Ir	ntro	duction	13
1	Inti	$\operatorname{roduction}$	13
	1.1	Core principles in Sensory and Consumer Science	13
	1.2	How should sensory and consumer scientists learn data science? .	14
	1.3	Caution: Don't that everybody does	14
	1.4	Example projects	14
2	Wh	at is Data Science?	15
	2.1	History	15
	2.2	Workflow	15
	2.3	Benefits of data science	15
	2.4	How to learn data science	15
	2.5	How to use this book	15
	2.6	Recommended data science tools	15
3	Get	ting Started with R	17
	3.1	R	17
	3.2	RStudio	17
	3.3	Git	17
	9.4	C:+II1	17

4	CONTENTS

D	ata	Scientific Workflow		21	
4	Exa	ample Project		21	
	4.1	Background		21	
	4.2	Other details		21	
	4.3	Conclusions?		21	
5	Dat	ta Preparation		23	
	5.1	Importation		23	
	5.2	Organization		23	
	5.3	Inspection		23	
	5.4	Manipulation		23	
	5.5	Cleaning		23	
6	Data Analysis				
	6.1	Transformation		25	
	6.2	Exploration		25	
	6.3	Modeling		25	
7	Dat	ta Visualization		27	
	7.1	Principles		27	
	7.2	Table Mechanics		27	
	7.3	Chart Mechanics		27	
	7.4	Examples		27	
8	Insi	ight Delivery		29	
	8.1	Design principles		29	
	8.2	Scientific inquiry vs storytelling		29	
	8.3	Research reformulation		29	
	8.4	Interactive reporting		29	

CONTENTS	F
CONTENIOS	5
CONTENIO	· ·

R	epro	ducible Research	33
9	Too	ls for Collaboration	33
	9.1	Principles	33
	9.2	Tools	33
	9.3	Documentation	33
	9.4	$\label{thm:prop} \mbox{Version control} $	33
	9.5	Online repositories for team collaboration $\ldots \ldots \ldots$	33
	9.6	Building a code base	33
10) Aut	omated Reporting	35
	10.1	Excel	35
	10.2	Word	35
	10.3	PowerPoint	35
	10.4	HTML	35
		ional Topics	39
11		chine Learning	39
		Concepts and general workflow (training/test)	40
		Unsupervised learning	40
		Semisupervised learning	40
		Supervised learning	40
		Predictive modeling	40
		Interpretability	40
		Cmputer vision	40
	11.8	Other methods and resources	40
12	2 Text	t Analysis	41
	12.1	Data import	41
	12.2	Analysis	41

6	CONTENTS
Conclusion	47
14 Conclusion	47

Preface

Welcome to the website for $Introduction\ to\ Data\ Science\ for\ Sensory\ and\ Consumer\ Scientists.$ This book being written in the open and is currently under development.

8 CONTENTS

About the Authors

John Ennis ... Julien Delarue ... Thierry Worch ...

10 CONTENTS

Introduction

Introduction

Sensory and consumer science (SCS) is consider as a pillar of food science and technology and is useful to product development, quality control and market research. Most scientific and methodological advances in the field are applied to food. This book makes no exception as we chose a cookie formulation dataset as a main thread. However, SCS widely applies to many other consumer goods so are the content of this book and the principles set out below.

1.1 Core principles in Sensory and Consumer Science

1.1.1 Measuring and analyzing human responses

Sensory and consumer science aims at measuring and understanding consumers' sensory perceptions as well as the judgements, emotions and behaviors that may arise from these perceptions. SCS is thus primarily a science of measurement, although a very particular one that uses human beings and their senses as measuring instruments. In other words, sensory and consumer researchers measure and analyze human responses. To this end, SCS relies essentially on sensory evaluation which comprises a set of techniques that mostly derive from psychophysics and behavioral research. It uses psychological models to help separate signal from noise in collected data [ref O'Mahony, D.Ennis, others?]. Besides, sensory evaluation has developed its own methodological framework that includes most refined techniques for the accurate measurement of product sensory properties while minimizing the potentially biasing effects of brand identity and the influence of other external information on consumer perception [Lawless & Heymann, 2010]. A detailed description of sensory methods is beyond the scope of this book and many textbooks on sensory evaluation methods are available to

readers seeking more information. However, just to give a brief overview, it is worth remembering that sensory methods can be roughly divided into three categories, each of them bearing many variants: - Discrimination tests that aim at detecting subtle differences between two products. - Descriptive analysis (DA), also referred to as 'sensory profiling', aims at providing both qualitative and quantitative information about product sensory properties. - Hedonic tests. This category gathers affective tests that aim at measuring consumers' liking for the tested products or their preferences among a product set. Each of these test categories generates its own type of data and related statistical questions in relation to the objectives of the study. Typically, data from difference tests consist in series of correct/failed binary answers depending on whether judges successfully picked the odd sample(s) among a set of three or more samples. These are used to determine whether the number of correct choices is above the level expected by chance. Conventional descriptive analysis data consist in intensity scores given by each panelist to evaluated samples on a series of sensory attributes, hence resulting in a product x attribute x panelist dataset (Figure 1). Note that depending on the DA method, quantifying means other than intensity ratings can be used (ranks, frequency, etc.). Most frequently, each panelist evaluates all the samples in the product set. However, the use of balanced incomplete design can also be found when the experimenters aim to limit the number of samples evaluated by each subject. Eventually, hedonic test datasets consist in hedonic scores (ratings for consumers' degree of liking or preference ranks) given by each interviewed consumer to a series of products. As for DA, each consumer usually evaluates all the samples in the product set, but balanced incomplete designs are sometimes used too. In addition, some companies favor pure monadic evaluation of product (i.e. between-subject design or independent groups design) which obviously result in unrelated sample datasets. Sensory and consumer researchers also borrow methods from other fields, in particular from sociology and experimental psychology. Definitely a multidisciplinary area, SCS develops in many directions and reaches disciplines that range from genetics and physiology to social marketing, behavioral economics and computational neuroscience. So have diversified the types of data sensory and consumer scientists must deal with.

1.2 How should sensory and consumer scientists learn data science?

- 1.3 Caution: Don't that everybody does
- 1.4 Example projects

What is Data Science?

- 2.1 History
- 2.2 Workflow
- 2.2.1 Data preparation
- 2.2.2 Data analysis
- 2.2.3 Insight delivery
- 2.3 Benefits of data science
- 2.3.1 Reproducible research
- 2.3.2 Other benefits (machine learning?)
- 2.4 How to learn data science
- 2.5 How to use this book
- 2.6 Recommended data science tools

Getting Started with R

- 3.1 R
- 3.2 RStudio
- 3.3 Git
- 3.4 GitHub

Data Scientific Workflow

Example Project

- 4.1 Background
- 4.2 Other details
- 4.3 Conclusions?

Data Preparation

- 5.1 Importation
- 5.2 Organization
- 5.3 Inspection
- 5.4 Manipulation
- 5.5 Cleaning

Data Analysis

- 6.1 Transformation
- 6.2 Exploration
- 6.3 Modeling

Data Visualization

- 7.1 Principles
- 7.2 Table Mechanics
- 7.3 Chart Mechanics
- 7.4 Examples

Insight Delivery

- 8.1 Design principles
- 8.2 Scientific inquiry vs storytelling
- 8.3 Research reformulation
- 8.4 Interactive reporting

Reproducible Research

Tools for Collaboration

- 9.1 Principles
- 9.2 Tools
- 9.2.1 GitHub
- 9.2.2 R scripts
- 9.2.3 RMarkdown
- 9.2.4 Shiny
- 9.3 Documentation
- 9.4 Version control
- 9.5 Online repositories for team collaboration
- 9.6 Building a code base
- 9.6.1 Internal functions
- 9.6.2 Packages

Automated Reporting

- 10.1 Excel
- 10.2 Word
- 10.3 PowerPoint
- 10.3.1 Charts
- 10.3.2 Tables
- 10.3.3 Bullet Points
- **10.3.4** Images
- 10.4 HTML

Additional Topics

Machine Learning

- 11.1 Concepts and general workflow (training/test)
- 11.2 Unsupervised learning
- 11.2.1 Cluster analysis
- 11.2.2 Factor analysis
- 11.2.3 Principle components analysis
- 11.2.4 t-SNE
- 11.3 Semisupervised learning
- 11.3.1 PLS regression
- 11.4 Supervised learning
- 11.4.1 Regression
- 11.4.2 K-nearest neighbors
- 11.4.3 Decision trees
- 11.4.4 Black boxes
- 11.4.4.1 Random forests
- 11.4.4.2 SVMs
- 11.4.4.3 Neural networks

11.5 Predictive modeling

Text Analysis

12.1	Data	import

- 12.1.1 Data sources
- 12.1.2 Tokenizing
- 12.1.3 Lemmatization, stemming, and stop word removal
- 12.2 Analysis
- 12.2.1 Frequency counts and summary statistics
- 12.2.2 Word clouds
- 12.2.3 Contrast plots
- 12.2.4 Sentiment analysis
- 12.2.5 Bigrams and word graphs

Graph Databases

Conclusion

Conclusion

Appendices