

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level in Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024

Question Paper Log Number P74322A

Publications Code WST02_01_2401_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation. To earn the M mark, the equation (i) should have the correct number of terms

(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - o the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark

- isw means ignore subsequent working
- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- *_ means the answer is printed on the question paper
- L means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number		Scheme	Marks				
1 (a)	Mean	=] 2.95	B1				
	[Variance =] $\frac{2091}{180} - ("2.95")^2$						
		$= 2.914$ ($s^2 = 2.930$) awrt 2.91 (2.93)	A1				
	2.51 (5 2.550)						
(b)	The me	ean is close to the variance	B1 (1)				
(c)	<i>W</i> ∼ Po	<i>V</i> ∼ Po(3)					
(i)	P(W)	(3) =]1 - P(W, 2) = 0.5768 awrt 0.577	M1 A1				
(ii)	P(4 <	(W < 8) = P(W, 7) - P(W, 4) or P(W = 5) + P(W = 6) + P(W = 7)	M1				
		= 0.1728 awrt 0.173	A1				
(4)	V N(2	1 21)	(4)				
(d)	<i>X</i> ~N(2		B1				
	$P(X \cdot$	<19) = $P(Z_{,,} \frac{18.5 - 21}{\sqrt{21}}) = -0.5455$ or	N (1) (1 A 1				
	[D(V)	$_{22}$ $_{1}^{7}$ $_{1}^{6}$ $_{2}^{7}$ $_{23.5-21}$ $_{1}^{6}$ $_{23.5-21}$	M1M1A1				
	P(X)	$> 23) = P\left(Z \dots \frac{23.5 - 21}{\sqrt{21}}\right) [= 0.5455]$					
	= 0.2912 (calc 0.29268)*						
	- 0.2912 (caic 0.29208)						
(e)	$Y \sim B(13, \text{``}0.29\text{''})$						
	$\left[P(Y=5) = \right]^{13} C_5 ("0.29")^5 (1-"0.29")^8 = 0.170465 \text{ (calc } 0.17317) $ awrt 0.17						
			(3)				
		Notes	Total 16				
(a)	B1	cao allow exact equivalents $\sum_{i=1}^{n} C_i^2$					
	M1	Ft their mean. Using $\frac{\sum fx^2}{180}$ – (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$					
	A1	Allow with a square root – may be implied by awrt 1.71					
	A1cso	awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible	values				
(b)	B1	calculated, then B0. Condone the use of 'closed' for 'close'	values				
(c)(i)	M1	for $1-P(W_{,,} 2)$ or $1-0.4232$					
	A1	awrt 0.577					
(ii)	for $P(W_{,,}, 7) - P(W_{,,}, 4)$ or $P(W=5) + P(W=6) + P(W=7)$						
(11)		M1 or 0.9881 - 0.8153 or 0.1008 + 0.0504 + 0.0216					
(1)	A1 awrt 0.173						
(d)	B1	for writing or using N(21,21). May be seen in a standardisation expression.	22 22 5 24				
	M1	for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 23, 23.5, 24, 24.5					
	M1	for using 19 ± 0.5 or 23 ± 0.5					
	A1						
	A1*	awrt 0.291 or 0.293 from correct working seen	R				
(e)	for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$						
	B # 4	ft their 0.29 (Must be 2 sf or better). Condone B(0.29, 13) for $\frac{13}{2}$ () $\frac{5}{2}$ (1) $\frac{8}{2}$ a with 0 cm of Allow 1287 for $\frac{13}{2}$ G					
	M1	for ${}^{13}C_5(p)^5(1-p)^8$ oe with $0 Allow 1287 for {}^{13}C_5$					
	A1	awrt 0.17 (0.17168 from using 0.2912)					

Question Number		Scheme	Marks			
2 (a)	$\left[P(D<108)=\right]P\left(Z<\frac{108-112.4}{\sigma}\right)=0.05$					
	$\Rightarrow \frac{108 - 112.4}{\sigma} = -1.6449$					
		$\sigma = 2.6749 \text{ days } (\text{calc } 2.67501)$ awrt 2.67/2.68	A1			
(b)	$I \sim \mathbf{R}I$	(25, 0.05)	(3)			
(0)	· ·					
	P(J)	(4) =]1 - P(J, 3) = 1 - 0.9659	M1			
		= 0.0341 (calc 0.034090) awrt 0.0341	A1			
	<i>m</i> D	5000 NO 00 (1 N 00 (1 C 0101)	(2) M1			
(c)	$T \sim \text{Po}[200 \times "0.0341"] = 6.82 \text{ (calc } 6.8181)$					
	$ [P(T2) =]1 - P(X, 1) = 1 - (e^{-"6.82"} + e^{-"6.82"} \times "6.82") $					
	= 0.99146 calc (0.99144) awrt 0.991					
		Notes	Total 8			
(a) (i)	M1 for standardisation using 108(Condone 107.5), 112.4 and σ set equal to z where 1.5 < $ z $ < 2.5					
	M1 for correct equation awrt –1.6449 (Allow awrt 1.6449 if compatible with their equation)					
	A1 awrt 2.67/2.68 NB M1 M0 A1 is possible					
(b)	M1 for $1-P(J, 3)$ or $1-0.9659$					
	A1 awrt 0.0341					
(c)	M1 for writing or using correct Poisson model ft their part (b) May be implied by 0.00853(73)					
	for writing or using $1 - (e^{-\lambda} + e^{-\lambda} \times \lambda)$ where $1 < \lambda < 200$ (may be implied by awrt 0.5)					
	M1	Allow $1-P(X, 1)$ if Poisson distribution is stated or used				
		dep on both method marks being awarded awrt 0.991				
	dA1	(NB Binomial gives awrt 0.992 and if no working shown awrt 0.992 will gain M0M0A0) Allow 0.9915 if both M marks are awarded)			

Question Number		Scheme	Marks				
3 (a)	The vacu	The vacuum tubes shatter independently					
- ()	The probability of a vacuum tube shattering is constant						
	1	<u>, </u>	(2)				
	$C \sim B(13)$	5,0.35) plus $[P(C_{3}, 9] =]0.0142 \text{ or } [P(C_{3}, 10) =]0.0124 \text{ or}$					
(b)			M1				
	-	9)=]0.9876					
	Critical	regions [0,,] C,, 1 or 10,, C [,, 15]	M1				
	[0,]	$C_{*,}$ 1 and 10,, $C_{*,}$ [., 15] plus	A 1				
	P(C ., 91	(1) = 0.0142 and $P(C 10) = 0.0124$	A1				
	,,,		(3)				
(c)	0.0266		B1ft				
(-)			(1)				
(d)	[4 is not	in the CR therefore] there is no evidence to reject Rowan's belief	B1ft				
		J J	(1)				
(e)	F ~B(40	, 0.35)					
. ,	H_0 : $p = 0$	0.35 and H_1 : $p < 0.35$	B1				
	P(F ., 8	$(r) = 0.0303$ or CR F_{1} , 8	M1A1				
		nt evidence to reject H ₀ or significant or 8 lies in the Critical region	M1				
		sufficient evidence to support that the proportion of type B vacuum tubes that					
		when exposed to alternating high and low temperatures is less than 35%	A1				
			(5)				
		Notes	Total 12				
(a)	B1	for one correct reason which must mention tube(s) and shatter/shattering	•				
(a)		or 2 correct reasons not in context					
	B1	for 2 correct reasons which must mention tube(s) and shatter/shattering at least once					
(b)	M1	for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is seen					
		for lower CR or C , 1 oe e.g. $C < 2$	C11				
	M1 or upper CR $C = 0.01$ on e.g. $C > 9$ Allow other notation and any letter(s) for CR						
	1,11	Do not allow CR written as a probability statement					
	for both CR correct with the relevant probabilities (3 of and must be seen in part (b))						
	A1	allow CR written as a probability statement					
(c)	B1ft	for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical re	gions" if				
(0)	Diit	seen. If no probabilities for their CR given then the answer must be 0.0266					
		for a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement consistent with the statement consistency with the statement consist					
(d)	B1ft	conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence suggest that the proportion/probability/number/amount (allow 35% as proportion)					
		that shatter has changed oe	or tubes				
(e)	B1	for both hypotheses correct in terms of p or π					
, ,	M1	for using or writing $P(F_{,,} 8)$ or awrt 0.0303					
	A1	for awrt 0.0303 or correct CR Allow F , 8 or $F < 9$ but not if part of a probability sta	atement				
		for a correct conclusion – need not be in context. ft their probability or CR. Ignore hyp					
	M1	do not allow contradicting non contextual comments. May be implied by a correct con	ntextual				
		statement on its own					
	A 4	for a correct conclusion – must be in context, with words highlighted in bold. ft their p					
	A1	or CR only. Independent of hypotheses. Do not allow contradicting statements. Allow					
		probability/number/amount/35% for proportion. Allow decreased for less than 35%					

Question	Scheme	Marks

Number		
4 (a)	1/3 3/20 2/15 -1 2 4	M1 A1
(b)	$\begin{split} & \left[P(G_{,,} 2) = \right] 1 - 2 \times \frac{3}{20} \left[= 0.7 \right] \text{ or } \frac{1}{2} \times 3 \times \left(\frac{2}{15} + \frac{1}{3} \right) \text{ or } \frac{1}{15} \int_{-1}^{2} (g+3) dg [= 0.7] \text{ or } \\ & \frac{1}{30} \times 2^{2} + \frac{1}{5} \times 2 + \frac{1}{6} \left[= 0.7 \right] \\ & \text{or } \\ & \left[P\left(G_{,,} \frac{1}{2}\right) \right] = \frac{1}{2} \times 1.5 \times \left(\frac{2}{15} + \frac{3.5}{15} \right) \left[= 0.275 \right] \text{ or } \frac{1}{15} \int_{-1}^{0.5} (g+3) dg [= 0.275] \text{ or } \\ & \frac{1}{30} \times 0.5^{2} + \frac{1}{5} \times 0.5 + \frac{1}{6} \left[= 0.275 \right] \\ & \text{or } \\ & \left[P\left(\frac{1}{2}_{,,} G_{,,} 2\right) = \right] \frac{1}{2} \times 1.5 \times \left(\frac{7}{30} + \frac{1}{3} \right) \left[= 0.425 \right] \text{ or } \frac{1}{15} \int_{0.5}^{2} (g+3) dg [= 0.425] \text{ or } \\ & \frac{1}{30} \times \left(2^{2} - 0.5^{2} \right) + \frac{1}{5} \times \left(2 - 0.5 \right) \left[= 0.425 \right] \end{split}$	M1
	$ [P(1,, 2G,, 6 G,, 2) =] \frac{P(\frac{1}{2}, G,, 2)}{P(G,, 2)} = \frac{0.425}{0.7} \text{ or } 1 - \frac{0.275}{0.7} \text{ oe} $	M1M1
	$=\frac{17}{28}$ or 0.607 awrt 0.607	A1
(c)	$[E(H^2)=]2.4+12^2[=146.4]$	(4) M1
	$\left[E(G) = \right] \int_{-1}^{2} \frac{1}{15} (g^2 + 3g) dg + \int_{2}^{4} \frac{3}{20} g dg$	M1
	$\left[E(G) = \left[\frac{1}{15}\left(\frac{1}{3}g^3 + \frac{3}{2}g^2\right)\right]_{-1}^2 + \left(\frac{3}{40}g^2\right)_{2}^4\right]$	M1
	$= \frac{1}{15} \left(\frac{8}{3} + \frac{12}{2} + \frac{1}{3} - \frac{3}{2} \right) + \left(\frac{48}{40} - \frac{12}{40} \right) [=1.4]$	dM1
	$\left[E(2H^2 + 3G + 3) = \right] 2 \times "146.4" + 3 \times "1.4" + 3$	M1
	= 300	A1 (6)
		Total 12

		Notes				
(a)	(a) for correct shape $\left(g = \frac{3}{20} \text{ must be below } \frac{1}{3}\right)$ with the lines not joining at $x = 2$ and below/touch the x -axis. Ignore any broken/dotted lines drawn					
	A1	for fully correct graph with labels on the x axis				
(b)	M1	For a correct method to find P(G,, 2) or P(G,, $\frac{1}{2}$) or P($\frac{1}{2}$, G , 2) May be implied by $0.7 / \frac{7}{10}$ or $0.425 = \frac{17}{40}$ or $0.275 / \frac{11}{40}$				
	M1	for $\frac{p}{0.7}$ where $0 or \frac{0.425}{q} where 0.425 < q < 1 or 1 - \frac{0.275}{r} where 0.275 < r < 1 Allow un-simplified probabilities$				
	M1	For $\frac{P(\frac{1}{2}, G, 2)}{P(G, 2)}$ or a correct ratio of probabilities				
	A1 $\frac{17}{28}$ oe or awrt 0.607					
(c)	M1	for a correct method to find $E(H^2)$				
	M1	for realising $\int xf(x)dx$ on both functions and adding together. Ignore limits				
	M1	for attempting to integrate $(x^n \to x^{n+1})$ at least one part of $xf(x)$				
	dM1	dep on previous M1 being awarded. For use of correct limits in one part of $xf(x)$ If working not shown, then this may be implied by 0.5 or 0.9 or 1.4. If integration is incorrect then working must be shown.				
	M1	For using $2 \times$ "their $E(H^2)$ "+3"their $E(G)$ +3, provided $E(H^2)$ and $E(G)$ have been shown. NB You may have to check their answer if no working is shown for $2 \times$ "their $E(H^2)$ "+3"their $E(G)$ +3 Cao				
	Λı	Cuo				

$a = \sqrt{27 \times 12} - 6 \Rightarrow 12^* \text{or} a^2 + 12a - 288 = 0 \Rightarrow a = 12^*$ $(b)(i) \frac{12 - b}{18} = \frac{3}{5} \text{or} \frac{b + 6}{18} = \frac{2}{5}$ $b = 1.2$ $(ii) P(-6 < W < "0.6") = \frac{"0.6" + 6}{18}$ $= \frac{11}{30} \text{ or } 0.3666$ A $(c) \text{Let } C \text{ be the point where the wood is cut and } x \text{ is the distance } AC$ $\frac{x}{2} \text{ and } \left(\frac{160 - x}{2}\right)$ $\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \Rightarrow x = 30 \text{ or } 130$ $P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe} $ $P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe} $ A	Marks						
$a = \sqrt{27 \times 12} - 6 \Rightarrow 12^* \text{or} a^2 + 12a - 288 = 0 \Rightarrow a = 12^* \qquad \text{A}$ $(b)(i) \frac{12 - b}{18} = \frac{3}{5} \text{or} \frac{b + 6}{18} = \frac{2}{5} \qquad \qquad M$ $b = 1.2 \qquad \qquad A$ $(ii) P(-6 < W < "0.6") = \frac{"0.6" + 6}{18} \qquad \qquad M$ $= \frac{11}{30} \text{ or } 0.3666 \qquad A$ $(c) \text{Let } C \text{ be the point where the wood is cut and } x \text{ is the distance } AC$ $\frac{x}{2} \text{ and } \left(\frac{160 - x}{2}\right) \qquad \qquad L + W = 80 \text{ and } LW = 975 \qquad M$ $\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \Rightarrow x = 30 \text{ or } 130 \qquad L(80 - L) = 975 \Rightarrow L = 15 \text{ or } 65 \qquad M$ $P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oc} \qquad P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oc} \qquad A$ $= \frac{5}{8} \text{ oe} \qquad A$ $A1^* \text{for setting up the correct equation. Do not allow verification}$ $A1^* \text{for an un-simplified expression for } a \text{ leading to } a = 12 \text{ or for a correct } 3TQ = 0 \text{ leading to } a$ $A1^* \text{Condone any letter for } a$ $A1^* \text{Cao oe}$ $A1^* \text{If their value for } b, \text{ provided the answer is between 0 and 1}$ $\text{(c)} \text{M1} \text{For both expressions seen. Allow any letters e.g. } \frac{y}{2} \text{ for } \left(\frac{160 - x}{2}\right)$	M1	$\frac{\left(a+6\right)^2}{12} = 27$					
(b)(i) $\frac{12-b}{18} = \frac{3}{5} \text{or} \frac{b+6}{18} = \frac{2}{5}$ $b = 1.2$ (ii) $P(-6 < W < 0.6") = \frac{0.6"+6}{18}$ $= \frac{11}{30} \text{ or } 0.3666$ A (c) Let C be the point where the wood is cut and x is the distance AC $\frac{x}{2} \text{ and } \left(\frac{160-x}{2}\right)$ $\frac{x}{2} \times \left(\frac{160-x}{2}\right) = 975 \Rightarrow x = 30 \text{ or } 130$ $P(0.0" < x < 0.0") = \frac{0.300}{160} = \frac{5}{8} \text{ oe}$ $P(0.00" < x < 0.0") = \frac{0.300}{160} = \frac{5}{8} \text{ oe}$ $\frac{x}{80} = \frac{5}{8} \text{ oe}$ A (a) M1 for setting up the correct equation. Do not allow verification $\frac{x}{80} = \frac{5}{8} \text{ or } \frac{3}{8} = \frac{5}{8} = \frac$	A1*	$\Rightarrow 12^*$ or $a^2 + 12a - 288 = 0 \Rightarrow a = 12^*$	$a = \sqrt{27 \times 12} - 6 \Rightarrow 12^*$ or $a^2 + 12a - 288 = 0 \Rightarrow a = 12^*$				
(ii) $P(-6 < W < "0.6") = \frac{"0.6" + 6}{18}$ $= \frac{11}{30} \text{ or } 0.3666$ A (c) Let C be the point where the wood is cut and x is the distance AC $\frac{x}{2} \text{ and } \left(\frac{160 - x}{2}\right)$ $\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $P("30" < x < "130") = \frac{"130" - "30"}{160} \left[=\frac{5}{8}\right] \text{ oe}$ $P("15" < x < "65") = \frac{"65" - "15"}{80} \left[=\frac{5}{8}\right] \text{ oe}$ A (a) M1 for setting up the correct equation. Do not allow verification $A1^{*} = \frac{11}{160} \text{ for an un-simplified expression for } a \text{ leading to } a = 12 \text{ or for a correct } 3TQ = 0 $	(2)		,				
(ii) $P(-6 < W < "0.6") = \frac{"0.6" + 6}{18}$ $= \frac{11}{30} \text{ or } 0.3666$ A (c) Let C be the point where the wood is cut and x is the distance AC $\frac{x}{2} \text{ and } \left(\frac{160 - x}{2}\right)$ $\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $P("30" < x < "130") = \frac{"130" - "30"}{160} \left[=\frac{5}{8}\right] \text{ oe}$ $P("15" < x < "65") = \frac{"65" - "15"}{80} \left[=\frac{5}{8}\right] \text{ oe}$ A (a) M1 for setting up the correct equation. Do not allow verification $A1^{*} = \frac{11}{160} \text{ for an un-simplified expression for } a \text{ leading to } a = 12 \text{ or for a correct } 3TQ = 0 $	M1	$\frac{b+6}{18} = \frac{2}{5}$	$\frac{12-b}{18} = \frac{1}{1}$	(b)(i)			
(c) Let C be the point where the wood is cut and x is the distance AC $ \frac{x}{2} \text{ and } \left(\frac{160-x}{2}\right) \qquad L+W=80 \text{ and } LW=975 \qquad M $ $ \frac{x}{2} \times \left(\frac{160-x}{2}\right) = 975 \implies x = 30 \text{ or } 130 \qquad L(80-L) = 975 \implies L = 15 \text{ or } 65 \qquad M $ $ P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe} \qquad P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe} \qquad dr $ $ = \frac{5}{8} \text{ oe} \qquad A $ (a) M1 for setting up the correct equation. Do not allow verification A1* for an un-simplified expression for a leading to $a = 12$ or for a correct 3TQ = 0 leading to Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b, provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	A 1						
$= \frac{11}{30} \text{ or } 0.3666$ (c) Let C be the point where the wood is cut and x is the distance AC $\frac{x}{2} \text{ and } \left(\frac{160-x}{2}\right) \qquad L+W=80 \text{ and } LW=975 \qquad M$ $\frac{x}{2} \times \left(\frac{160-x}{2}\right) = 975 \implies x = 30 \text{ or } 130 \qquad L(80-L) = 975 \implies L = 15 \text{ or } 65 \qquad M$ $P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe} \qquad P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe} \qquad df$ $= \frac{5}{8} \text{ oe} \qquad A$ (a) M1 for setting up the correct equation. Do not allow verification $A1^* \qquad \text{for an un-simplified expression for } a \text{ leading to } a = 12 \text{ or for a correct } 3TQ = 0 \text{ leading to } Condone \text{ any letter for } a$ (b)(i) M1 for setting up the correct equation $A1 \qquad \text{for setting up the correct equation}$ $A1 \qquad \text{Cao oe}$ (ii) M1 for a correct method. Do not ISW $A1\text{ ft their value for } b, \text{ provided the answer is between 0 and 1}$ (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	(2)						
(c) Let C be the point where the wood is cut and x is the distance AC $ \frac{x}{2} \text{ and } \left(\frac{160-x}{2}\right) \qquad L+W=80 \text{ and } LW=975 \qquad M $ $ \frac{x}{2} \times \left(\frac{160-x}{2}\right) = 975 \implies x = 30 \text{ or } 130 \qquad L(80-L) = 975 \implies L = 15 \text{ or } 65 \qquad M $ $ P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe} \qquad P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe} \qquad dr $ $ = \frac{5}{8} \text{ oe} \qquad A $ (a) M1 for setting up the correct equation. Do not allow verification A1* for an un-simplified expression for a leading to $a = 12$ or for a correct 3TQ = 0 leading to Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b, provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	M1	$0 = \frac{"0.6" + 6}{18}$	P(-6 < W	(ii)			
(c) Let C be the point where the wood is cut and x is the distance AC $\frac{x}{2} \text{ and } \left(\frac{160-x}{2}\right)$ $\frac{x}{2} \times \left(\frac{160-x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $E(80-L) = 975 \implies L = 15 \text{ or } 65$ $E(80-L) =$	A1ft	$=\frac{11}{30}$ or 0.3666					
$\frac{x}{2} \text{ and } \left(\frac{160-x}{2}\right)$ $\frac{x}{2} \times \left(\frac{160-x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $L(80-L) = 975 \implies L = 15 \text{ or } 65$ $P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe}$ $P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe}$ $\frac{5}{8} \text{ oe}$ $A1$ $A1*$ $\text{for setting up the correct equation. Do not allow verification}$ $A1*$ $\text{for an un-simplified expression for } a \text{ leading to } a = 12 \text{ or for a correct } 3TQ = 0 \text{ leading to } C \text{ ondone any letter for } a$ (b)(i) M1 $\text{for setting up the correct equation}$ A1 Cao oe (ii) M1 $\text{for a correct method. Do not ISW}$ A1ft $\text{ft their value for } b, \text{ provided the answer is between } 0 \text{ and } 1$ Co M1 $\text{For both expressions seen. Allow any letters e.g. } \frac{y}{2} \text{ for } \left(\frac{160-x}{2}\right)$	(2)						
$\frac{x}{2} \times \left(\frac{160-x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $L(80-L) = 975 \implies L = 15 \text{ or } 65$ $P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe}$ $P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe}$ A $\frac{5}{8} \text{ oe}$ $A1*$ (a) $M1$ $for setting up the correct equation. Do not allow verification$ $A1*$ $Condone any letter for a$ $A1$ $Cao \text{ oe}$ $A1$ $A1$ $Cao \text{ oe}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$				(c)			
$P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe } P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe } dP("15" < x < "65") = \frac{5}{8} e^{-15} e^{$	M1	L+W=80 and $LW=975$	$\frac{x}{2}$ and $\left(\right.$				
$= \frac{5}{8} \text{ oe}$ $= \frac{5}{8} \text{ oe}$ Notes Notes T (a) M1 for setting up the correct equation. Do not allow verification A1* for an un-simplified expression for a leading to $a = 12$ or for a correct $3TQ = 0$ leading to Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b, provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	M1	$\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $L(80 - L) = 975 \implies L = 15 \text{ or } 65$					
$= \frac{5}{8} \text{ oe}$ $= \frac{5}{8} \text{ oe}$ Notes Notes T (a) M1 for setting up the correct equation. Do not allow verification A1* for an un-simplified expression for a leading to $a = 12$ or for a correct $3TQ = 0$ leading to Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b, provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	dM1	$P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe } \left[P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe } \right]$	P("30" <				
(a) M1 for setting up the correct equation. Do not allow verification A1* for an un-simplified expression for a leading to $a = 12$ or for a correct $3TQ = 0$ leading to Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b , provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	A 1	$=\frac{5}{8}$ oe					
(a) M1 for setting up the correct equation. Do not allow verification A1* for an un-simplified expression for a leading to $a = 12$ or for a correct $3TQ = 0$ leading to Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b , provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	(4)						
for an un-simplified expression for a leading to $a = 12$ or for a correct $3TQ = 0$ leading to Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b , provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	Total 10		3.54	()			
Condone any letter for a (b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b , provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	12	<u>- </u>	M1	(a)			
(b)(i) M1 for setting up the correct equation A1 Cao oe (ii) M1 for a correct method. Do not ISW A1ft ft their value for b , provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	3a - 12						
(ii) A1 Cao oe (iii) M1 for a correct method. Do not ISW A1ft ft their value for b , provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$		· · · · · · · · · · · · · · · · · · ·					
A1ft ft their value for b , provided the answer is between 0 and 1 (c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$	A1 Cao oe						
(c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$		M1 for a correct method. Do not ISW					
May be implied by a correct equation for the area		(c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$					
		May be implied by a correct equation for the area					
1 1		M1 for a correct equation for area in terms of any letter. Condone an inequality					
dep on previous method mark awarded. For a fully correct method ft their x values provide to 160 or 80 Do not ISW	ded add	dep on previous method mark awarded. For a fully correct method ft their x values provided add to 160 or 80 Do not ISW					
A1 Cao							

Question Number	Scheme Mark						Marks
6(a)	8, 11, 14, 17, 20				M1		
	[P(even	$=$ $\frac{1}{5}$ and $[P(odd)]$	$=$ $\frac{4}{5}$				M1
	P(X=8)	$=$ $\left[\left(\frac{4}{5}\right)^4\right]$ or $\left[P(\lambda)\right]$	$(x=20) = \left[\left(\frac{1}{5}\right)^4 \right]$				M1
	P(X=1)	$1) = \int 4 \times \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^3 dx$	or $P(X=17)$	$=$ $4 \times \left(\frac{4}{5}\right) \left(\frac{1}{5}\right)$)3		M1
	P(X=1)	$4) = \int_{0}^{4} C_{2} \times \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2}$	$\left(\frac{1}{5}\right)^2$				M1
	X	8	11	14	17	20	
	P(X=x)	8 256 625 (0.4096)	$\frac{256}{625}$ (0.4096)	$\frac{96}{625}$ (0.1536)	$\frac{16}{625}$ (0.0256)	$\frac{1}{625}$ (0.0016)	A1
		()	()	(1111)	, (,	(/	(6)
(b)	$1-(1-"0.1536")^n > 0.95$ or $("0.8464")^n < 0.05$				M1		
	$n > 17.96 \text{ or } n > \frac{\log(0.05)}{\log("0.8464")} \text{ or } n > \log_{"0.8464"}(0.05)$					M1	
	n=18					A1	
							(3)
	7.54		No				Total 9
(a)	M1	For at least 2 scores					
	M1 for writing or using $\frac{4}{5}$ and $\frac{1}{5}$. May be implied by a correct probability						
	M1	for p^4 where 0					
	M1	for $4 \times (1-p) p^3$ where 0					
	M1	for $6 \times (1-p)^2 p^2$ where $0 or probabilities that add to 1 (at least 2 but not more than 5)$					
	A1	for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total					
(b)	for using $1-(1-P(Y=0))^n > 0.95$ allow = instead of $>/\geqslant$. condone $ or allow for at least 2 trials for n between 10 and 20 ft their P(X=14)$					or at least 2	
	for $n > \text{awrt } 17.96 \text{ or } n > \frac{\log(0.05)}{\log("0.8464")}$ ft their 0.8464 or $n > \log_{"0.8464"}(0.05)$ ft 0.8464 or for the two trials for $n = 17$ and 18					t their	
		Allow = instead of >			ied by a correct	answer ft their (0.8464
	A1	Cao (Do not allow a					

Question Number	Scheme					
7(a)	f(x) = [h]	$k](a+3bx^2-4x^3)$			M1	
	[k](6bx)	$-12x^2)=0$			M1	
	9b-27	$=0 \Rightarrow b=3 \text{ or } 6 \times$	$3 \times 1.5 - 12 \times 1.5^2 = 0 \Rightarrow \therefore b = 3$	} *	A1*	
					(3)	
(b)	a+3-1	$-4 = 0$ oe $[\Rightarrow a =$	2]		B1*	
					(1)	
(c)		$k(2\times$	$2+3\times2^3-2^4-4)=1 \left[\Rightarrow k \right]$	$x = \frac{1}{8}$	M1	
		F(x) = 0.5	F(x) = 4	F(x) = 0		
	`	4) = 0.3988 5) = 0.5078	F(1.4) = 3.1904 F(1.5) = 4.0625	F(1.4) = -0.8(096) F(1.5) = 0.06(25)	M1A1	
	0.39	9 < 0.5 < 0.508	3.1904 < 4 < 4.0625	-0.8(096) < 0 < 0.06(25)		
	therefore, the median lies between 1.4 and 1.5		therefore, the median lies between 1.4 and 1.5	therefore, the median lies between 1.4 and 1.5	A1	
	ALTERNATIVE M1A1A1 for $F(x) = 0$					
	$x_1 = 2.91$ $x_2 = 1.49$ $x_3 = -0.70$ So $x = 1.49$ as $1 \le x \le 2$					
	1.4<1.49<1.5 [therefore, the median lies between 1.4 and 1.5]					
		T	Notes		Total 8	
(a)	M1		$fferentiate x^n \to x^{n-1} Condone$		2 nd M1)	
	M1		ntiating twice and equating to ze			
	A1* substituting $x = 1.5$ leading to a correct linear equation in b leading to $b = 3$					
(b)	B1*	b=3				
(c)	for using $F(2) = 1$ to form a correct equation in terms of k only. May be seen in any part of the question					
	M1	For a calculation of F(1.4) or F(1.5) correct to 2 sf (If F(x) =0 used then allow 1 sf or better) (Allow F(1.4) = awrt 3.190 k or F(1.5) = awrt 4.063 k)				
	A1	For a calculation of $F(1.4)$ and $F(1.5)$ correct to 2 sf (If $F(x) = 0$ used then allow 1 sf or better)				
	dA1	Dependent on previous A1. For a correct comparison and conclusion. Allow comparisons in words e.g. For $F(X) = 0$ a comment about a change in sign implies a comparison with 0				
		ALTERNATIVE				
	M1	For solving the given equation. May be implied by 2.91 or 1.49 or -0.70				
	A1	For $x = 1.49$ identified as being in the range specified by the CDF. May be implied by rejecting the other solutions				
	dA1	Dependent on previ	ous A1. For a correct comparison	on and conclusion		

Examples of other acceptable comparisons for 0.5

F(1.4) < 0.5 < F(1.5), Median lies between the range

F(1.4) < F(median) < F(1.5), so median lies between 1.4 and 1.5

 $F(1.4) \le F(Q2) \le F(1.5)$, therefore Q2 lies between 1.4 and 1.5

F(1.4) < F(m) < F(1.5), 1.4 < m < 1.5

F(1.4) < 0.5, F(1.5) > 0.5, so median of X lies between 1.4 and 1.5

Allow equivalent comparisons for 4 and 0