k-Nearest Neighbor

k-Nearest Neighbor

- □ In k-NN, given a labeled training set
- And, given a point that we want to classify
 - o That is, a point not in training set
- We'll let training data "vote"
- Who gets to vote?
 - That is, which data points in the training set get to vote?
- And how to count (weight) the votes?

k-NN

- Which data points get to vote?
 - If it's a "national" election, and majority rules, the most numerous class always wins
 - That's not very informative, so no universal suffrage in k-NN
- But what about "local" elections?
 - o Only the training data nearby gets to vote
 - o This might be more useful...

k-Nearest Neighbors

- Given a set of labeled training data...
- And given a point to classify
- Classify based on k nearest neighbors
 - o Where "neighbors" are in training set
 - Value of k is specified in advance
- The simplest ML method known to man
 - And, not to mention, woman
 - o Simple wrt training, since no training...

k-NN Example

- Red circles and blue squares are training data
- Note that we assume labeled training data
- Suppose we want to classify green diamond...
- And we want to keep it as simple as possible

1-NN Example

- □ 1-NN
 - Or more simply,nearest neighbor
- Since blue square b is nearest...
- Classify green diamond x as "blue"

3-NN Example

- 3-nearest neighbors
- Classify based on 3 nearest points
- □ 3 nearest to x are...
 - 2 red points, r₁, r₂, and 1
 blue point, b
- Using 3-NN, we classify x as "red"

k-NN Variations

- We could also weight by distance
 - E.g., use 1/d(x,b) for each blue b nearest neighbor, and 1/d(x,r) for red r
 - Sum these by color, biggest sum wins...
- We might weight by class frequency
 - \circ Suppose training set has B blue and R red, with R > B
 - Weight each red as 1, each blue as R/B (total # of red over total # of blue in the dataset)
- Might also consider a fixed radius

k-NN Weighted by Distance

- \square Suppose use 1/d(x,y)
- □ For this weight, 3-NN classifies x as "blue"...

Assuming

 $1/d(x,b) > 1/d(x,r_1) + 1/d(x,r_2)$

k-NN Weighted by Frequency

- Suppose we weight by frequency
- □ Then each red is 1
- And each blue is 2.5 (10 reds / 4 blues)
- □ In this case, 3-NN classifies x as blue
 - o Blue "score" is 2.5
 - o Red "score" is 2.0

k-NN Advantages

- k-NN is a "lazy learning" algorithm
 - o No training (none, nada, zippo) required
 - o All computation deferred to scoring phase
- □ In limit, k-NN tends to (near) optimal...
 - o ... as size of training set grows

- Works for multi-classification
 - o I.e., not restricted to binary classification

k-NN Disadvantages

- Scoring not entirely straightforward
 - In naïve approach, distances to all points needed for each score computation
 - o Can use fast neighbor search algorithms (e.g., Knuth's "post office problem")...
 - o ... but then lose some of the simplicity
- Very sensitive to local structure
 - Random variations in local structure of training set can have undesirable impact

Bottom Line

- k-NN is as simple as it gets
 - And simple is good, provided that it works
- Training is non-existent
- Scoring is somewhat more involved
 - o But still conceptually simple
- Lots of variations on the theme
- Can be combined with other techniques
 - o E.g., k-NN used in scoring phase of PCA

Do you remember bagging?

$$F(\mathcal{S}(x; V_1, \Lambda), \mathcal{S}(x; V_2, \Lambda), \dots, \mathcal{S}(x; V_\ell, \Lambda))$$

o Bagging is used when generating a random forest, where each individual scoring function is based on a decision tree structure

- Random forest (RF) is generalization of a decision tree
- Decision tree is really, really simple
 Very intuitive and can be useful
- □ So, why do we need to generalize?
- Decision trees tend to overfit data
- Random forest reduces overfitting
 - o But lose some of the intuitive simplicity

Decision Trees

- A decision tree is just what it says...
 - Tree that is used to make decisions
 - o Kind of like a flow chart
- Each node is a test condition
- Each branch is outcome of test represented by corresponding node
- Leaf nodes contain the final decision
 - o Simple, simple, ...

Cat's Decision Tree

This one-level decision tree is also called a "decision stump"

Decision Trees

- Advantages?
 - Can be constructed with little/no data and can be tested if/when data available
 - Easy to understand, easy to use, easy to combine with other learning methods, ...
- Disadvantages?
 - o Constructing optimal tree is NP complete
 - Overfitting, complex trees, how to prune?
 - o Some concepts not easy to fit to trees

Decision Tree Example

- Suppose that we have labeled training data for malware and benign samples
 - o Features: file size and entropy
 - We observe that malware tends to be smaller in size with higher entropy
 - As compared to benign samples
- Easy to construct decision tree(s)
 - o Next slides...

Decision Tree Example

Large vs
small, high
vs low
thresholdsb
ased on
data

Decision Tree Example

Otherorderentropyworks too...

Which is better?

Decision Tree Decisions

- Generating optimal decision tree can be hard, so what to do?
- Approximate (how?)
- We'll use a simple greedy approach
 - Choose feature that provides most information gain and split data
 - From remaining features, select the one that provides most information gain
 - Continue until gain is below a threshold

Decision Tree

- □ Why greedy?
 - Want to use best classifiers first, so smaller trees have most the useful info
 - Want most info gain closer to root (good when we want to prune the tree)
 - o Fast and efficient to construct, since no backtracking or other complex algorithm
 - o Make use of most relevant information in training data

- "Gain" can be measured using entropy
 - o Recall, entropy measures uncertainty
- Information gain for feature A?
 - Entropy reduction if data is split on A
- We want to maximize information gain
 - o Compute gain for each remaining feature
 - o Split on feature with biggest info gain
 - o Repeat until gain is below some threshold

- \blacksquare Let $P(x_i)$ be probability of outcome x_i
- □ Then entropy of $X = (x_1, x_2, ..., x_n)$ is:

$$H(X) = \sum_{i=1}^{n} -P(x_i) \log_2 P(x_i)$$

- o "How many yes/no questions we need to ask to guess the outcome?"
 - Binary" question
- o The '-' gives a positive output from values in [0-1]

$$H(X) = \sum_{i=1}^{n} -P(x_i) \log_2 P(x_i)$$

- o "How many yes/no questions we need to ask to guess the outcome?"
- o If we have: "AAAAAAA" How many questions?
 - 0
- o If we have: "AABBCCDD" How many questions?
 - **2**
- o If we have: "ABCCDDDD" How many questions?

$$\frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{2}{8} * 3 = 1.75$$

Number of questions times the probability

$$H(X) = \sum_{i=1}^{n} -P(x_i) \log_2 P(x_i)$$

- o "How many yes/no questions we need to ask to guess the outcome?"
- o If we have: "ABCCDDDD" How many questions?

$$\frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{2}{8} * 3 = 1.75$$

First question in this case would be "Is it D?", because it could allow
us to be done with just 1 question 50% of the time!

- \blacksquare Let $P(x_i)$ be probability of outcome x_i
- □ Then entropy of $X = (x_1, x_2, ..., x_n)$ is:

$$H(X) = \sum_{i=1}^{n} -P(x_i) \log_2 P(x_i)$$

- Suppose that we have 10 malware and 10 benign samples
- Measure file size, entropy, and number of distinct opcodes for each

Training Data

- Notation
 - S(X) is size
 - O H(X) entropy
 - OD(X) opcodes
- How to set thresholds?
 - Midway between averages...

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Malware			Benign		
	$S(X_i)$	$H(X_i)$	$D(X_i)$	$S(Y_i)$	$H(Y_i)$	$D(Y_i)$
1	120	7	32	120	4	22
2	120	7	28	130	5	23
3	100	6	34	140	5	26
4	130	5	33	100	5	21
5	100	6	35	110	6	20
6	100	5	27	140	7	20
7	100	6	32	140	3	28
8	120	6	33	100	4	21
9	100	8	32	100	4	24
10	110	6	34	120	7	25
Average	110	6	32	120	5	23

. 1			•	
N	0	ום ^י	ΓIC	n

- o S(X) is size
- o H(X) entropy
- OD(X) opcodes

For example, for <u>Size</u> ->

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		Malware		Benign		
	$S(X_i)$	$H(X_i)$	$D(X_i)$	$S(Y_i)$	$H(Y_i)$	$D(Y_i)$
1	120	7	32	120	4	22
2	120	7	28	130	5	23
3	100	6	34	140	5	26
4	130	5	33	100	5	21
5	100	6	35	110	6	20
6	100	5	27	140	7	20
7	100	6	32	140	3	28
8	120	6	33	100	4	21
9	100	8	32	100	4	24
10	110	6	34	120	7	25
Average	110	6	32	120	5	23

Average is 110 (MW) and 120 (BN)

 We can set the threshold to 115

Note that 115 is in between 110 and 120

|Malware < 11

- Notation
 - o S(X) is size
 - O H(X) entropy
 - OD(X) opcodes
- Now we have two sets
 - Benign and malware samples based on size

\overline{i}	Malware			Benign		
	$S(X_i)$	$H(X_i)$	$D(X_i)$	$S(Y_i)$	$H(Y_i)$	$D(Y_i)$
1	120	7	32	120	4	22
2	120	7	28	130	5	23
3	100	6	34	140	5	26
4	130	5	33	100	5	21
5	100	6	35	110	6	20
6	100	5	27	140	7	20
7	100	6	32	140	3	28
8	120	6	33	100	4	21
9	100	8	32	100	4	24
10	110	6	34	120	7	25
Average	110	6	32	120	5	23

$$T_{m} = \{X_{3}, X_{5}, X_{6}, X_{7}, X_{9}, X_{10}, Y_{4}, Y_{5}, Y_{8}, Y_{9}\}$$
classified as malware

$$T_b = \{X_1, X_2, X_4, X_8, Y_1, Y_2, Y_3, Y_6, Y_7, Y_{10}\}$$

classified as benign

□ Formula:

$$H(X) = \sum_{i=1}^{n} -P(x_i)\log_2 P(x_i)$$

i	Malware			Benign		
ι	$S(X_i)$	$H(X_i)$	$D(X_i)$	$S(Y_i)$	$H(Y_i)$	$D(Y_i)$
1	120	7	32	120	4	22
2	120	7	28	130	5	23
3	100	6	34	140	5	26
4	130	5	33	100	5	21
5	100	6	35	110	6	20
6	100	5	27	140	7	20
7	100	6	32	140	3	28
8	120	6	33	100	4	21
9	100	8	32	100	4	24
10	110	6	34	120	7	25
Average	110	6	32	120	5	23

$$T_{m} = \{X_{3}, X_{5}, X_{6}, X_{7}, X_{9}, X_{10}, Y_{4}, Y_{5}, Y_{8}, Y_{9}\} \text{ classified as }$$
 malware

$$T_b = \{X_1, X_2, X_4, X_8, Y_1, Y_2, Y_3, Y_6, Y_7, Y_{10}\}$$
 classified as benign

$$ightharpoonup C H(T_m) = H(T_b) = -\frac{3}{5} \cdot \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \cdot \log_2\left(\frac{2}{5}\right) = 0.9710$$

Entropy computed as

$$H(T_m) = H(T_b) = -\frac{3}{5} \cdot \log_2\left(\frac{3}{5}\right) - \frac{2}{5} \cdot \log_2\left(\frac{2}{5}\right) = 0.9710$$

- □ Information gain ?
 - o Entropy of parent node minus average weighted entropy of child nodes
- □ For "size" feature, information gain is

$$_{\rm O}$$
 $\rm G_{\rm S} = 1.0 - 0.9710 = 0.0290$

- Similarly, we compute
 - $_{O}G_{S} = 0.0290, G_{H} = 0.1952, G_{D} = 0.5310$
- Conclusion?
 - Want to make first split based on number of distinct opcodes, D(X)
 - 2. Then need to recalculate information gain for remaining features
 - To decide which to select for 2nd level

Bagging

- Decision trees good, maybe too good...
 - o Tend to overfit data
 - Overfitting is bad in ML (why?)
- What to do?
- Bagging (bootstrap aggregation)
 - o Multiple decision trees on subsets of data
 - Then combine results (e.g. majority vote)
 - Easy way to reduce overfitting

Bagging Example

- Suppose we have sample U to classify
 - We measure S(U) = 116 and H(U) = 7
- Note that based on training data
 - 5.5 is threshold for entropy H(X)
 - o 115 is threshold for size S(X)
- Suppose we classify using tree that splits first on entropy, then size
 - o Ignoring opcode feature in this example

Bagging Example

- Then U is classified as <u>benign</u>
- But this is suspect...
 - o Why?
- Suppose instead, use bagging
 - o As on next slide...

Bagging

Suppose we select subsets

$$A = \{1, 2, 3, 5, 10\}, B = \{3, 5, 7, 9, 10\}, \text{ and } C = \{1, 2, 6, 8, 10\}.$$

☐ Then subset A is:

•	Mal	ware	Benign		
$m{i}$	$S(X_i)$	$H(X_i)$	$S(Y_i)$	$H(Y_i)$	
1	120	7	120	4	
2	120	7	130	5	
3	100	6	140	5	
5	100	6	110	6	
10	110	6	120	7	
Average	110	6.4	124	5.4	

$$A = \{1, 2, 3, 5, 10\}, B = \{3, 5, 7, 9, 10\}, \text{ and } C = \{1, 2, 6, 8, 10\}.$$

- □ For subset A ...
- □ Threshold for S(X) is 117 and H(X) is 5.9
- And U classified as malwarell

	Mal	ware	Benign		
i	$S(X_i)$ $H(X_i)$		$S(Y_i)$	$H(Y_i)$	
1	120	7	120	4	
2	120	7	130	5	
3	100	6	140	5	
5	100	6	110	6	
10	110	6	120	7	
Average	110	6.4	124	5.4	

$$H(U) = 7 > 5.9$$

 $S(U) = 116 < 117$

Bagging

- Easy to show that U is classified as...
 - o Malware based on subset A
 - o Benign based on subset B
 - o Malware based on subset C
- So, by majority vote, U is <u>malware</u>
- Recall, U was benign based on all data
 - But that classification looked suspect
- Bagging better generalizes the data
 - o At least in this case...

- Random forest uses bagging in 2 ways
 - o Bagging of data (as on previous slide) ...
 - o ... and bagging of features

How to bag features?

- Select subset of features and ordering
 - RF training algorithm use heuristic to do smart bagging

Random Forest and k-NN

- Interesting connection between RF and k-NN algorithms
- □ As usual, let (X_i, z_i) , i=1,2,...,n be training set, and each z_i is -1 or +1
- Then define weight function

$$W_k(X_i, X) = \begin{cases} 1 & \text{if } X_i \text{ is one of the } k \text{ nearest neighbors to } X \\ 0 & \text{otherwise} \end{cases}$$

□ And define $\operatorname{score}_k(X) = \sum_{i=1}^n z_i W_k(X_i, X)$

Decision Tree and k-NN

□ For a given decision tree, define

$$W_t(X_i, X) = \begin{cases} 1 & \text{if } X_i \text{ is on the same leaf node as } X \\ 0 & \text{otherwise} \end{cases}$$

extstyle ext

□ So what?

Decision Tree and k-NN

- □ Then **k-NN** is equivalent to...
 - o Classify X as type +1 if $score_k(X) > 0$
 - o And type −1 otherwise
- □ And decision tree (DT) is same as...
 - o Classify X as type +1 if $score_t(X) > 0$
 - o And type -1 otherwise
- DT and k-NN are neighborhood-based
 - o But different neighborhood structure

Random Forest and k-NN

- Random forest is collection of DTs
 - So, same approach as on previous slides applies to RF
- Implies RF also neighborhood-based
 - o Like decision tree...
 - ...but neighborhood structure is significantly more complex
- Somewhat surprising connection...

Bottom Line

- Decision tree is a simple concept
- Bagging data generalizes decision tree
 Less prone to overfit
- Random forest further generalizes concept of bagging
 - Bagging for both data and features
- Often, RF gives very good results
 - o Perhaps more surprisingly, so does k-NN