Sign Operator for (L_0, L_1) -Smooth Optimization with Heavy-Tailed Noise

Ikonnikov Mark

Moscow Institute of physics and Technology

Course: My first scientific paper (Strijov's practice)/Group 206
Expert: Alexander Beznosikov
Consultant: Nikita Kornilov

April 17, 2025

Goal of Research

Objectives

- ▶ Define (L_0, L_1) -smoothness.
- Develop sign-based methods (Sign-SGD, minibatch-SignSGD, momentum-SignSGD) for heavy-tailed (HT) noise.
- Establish theoretical convergence bounds under (L_0, L_1) -smoothness and HT noise.
- Validate results through computational experiments.

Idea

Convergence rates improve significantly with Sign-methods.

$$\|\nabla^2 f(x)\|_2 \le L_0 + L_1 \|\nabla f(x)\|$$

$$\mathbb{E}_{\xi}[|\nabla f(x,\xi)_{i} - \nabla f(x)_{i}|^{\kappa}] \leq \sigma_{i}^{\kappa}, \ \kappa \in (1,2]$$

Subjects: Sign-based methods, (L_0, L_1) -smoothness, high-probability convergence, heavy-tailed noise.

Literature

Title Sign Operator for Coping with Heavy-Tailed Noise		Authors Kornilov et al.	Paper arXiv
signSGD: Compressed Optimisation for Non-	2018	J. Bernstein et al.	PMLR
Convex Problems Methods for Convex (L0,L1)-Smooth Optimization	2024	Gorbunov et al.	arXiv
	2022	M. Crawshaw et al.	NeurIPS

Hypothesis and Model

Hypothesis

Sign-based optimization methods outperform traditional gradient-based methods in (L_0, L_1) -smooth problems with heavy-tailed noise, achieving faster convergence and robustness.

Model

 $f: \mathbb{R}^d \to \mathbb{R}$:

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}_{\xi \sim \mathcal{S}}[f(x, \xi)],$$

Consider a function $f: \mathbb{R}^d \to \mathbb{R}$ that is (L_0, L_1) -smooth:

$$\|\nabla f(x) - \nabla f(y)\| \le (L_0 + L_1 \|\nabla f(u)\|) \|x - y\|,$$

with gradient estimates $\nabla f(x,\xi)$ under HT noise:

- $\blacktriangleright \mathbb{E}_{\xi}[\nabla f(x,\xi)] = \nabla f(x),$
- $\mathbb{E}_{\xi}[|\nabla f(x,\xi)_i \nabla f(x)_i|^{\kappa}] \leq \sigma_i^{\kappa}, \ \kappa \in (1,2].$

Solution: Theoretical Part

Theorem (HP complexity for minibatch-L0L1-SignSGD)

Consider lower-bounded (L0, L1)-smooth function f and HT gradient estimates. Then Alg. minibatch-SignSGD requires the sample complexity N to achieve $\frac{1}{T}\sum_{k=1}^{T}\|\nabla f(x^k)\|_1 \leq \varepsilon$ with probability at least $1-\delta$ for:

Optimal tuning. In case $\varepsilon \geq \frac{8L_0}{L_1\sqrt{d}}$, we use stepsize

$$\gamma = \frac{1}{48L_1d\log\frac{1}{\lambda}\sqrt{d}} \Rightarrow 80L_0d\gamma\log(1\delta) \le \varepsilon/2$$
 and batchsize

$$B_k \equiv \max\left\{1, \left(rac{16\|\vec{\sigma}\|_1}{arepsilon}
ight)^{rac{\kappa}{\kappa-1}}
ight\}. \ T = O\left(rac{\Delta_1 L_1 \log rac{1}{\delta} d^{rac{3}{2}}}{arepsilon}
ight). \ The \ total number of oracle calls is:$$

$$\varepsilon \geq \frac{8L_0}{L_1\sqrt{d}} \Rightarrow N = O\left(\frac{\Delta_1 L_1 \log(1\delta) d^{\frac{3}{2}}}{\varepsilon} \left[1 + \left(\frac{\|\vec{\sigma}\|_1}{\varepsilon}\right)^{\frac{\kappa}{\kappa-1}}\right]\right),$$

$$\varepsilon < \frac{8L_0}{L_1\sqrt{d}} \Rightarrow N = O\left(\frac{\Delta_1 L_0 \log(1\delta) d}{\varepsilon^2} \left[1 + \left(\frac{\|\vec{\sigma}\|_1}{\varepsilon}\right)^{\frac{\kappa}{\kappa-1}}\right]\right).$$

Computational Experiment: Goals and Statistics

Convergence and accuracy rates improve significantly with Sign-methods.

Error Analysis

Error comparison

Method	Mean Loss	Mean Acc.	Loss Var.	Acc. Var.
M-SignSGD	3.63	82.86	73.56	135.77
M-SGD	7.72	73.46	209.46	341.58
SignSGD	6.71	79.12	155.10	140.47
SGD	16.44	62.96	234.20	70.55

Table: comparison of convergence of several methods under the assumptions

Results and Conclusions

Results

- ▶ Sign-based methods outperform SGD in convergence under (L_0, L_1) -smoothness and HT noise.
- ▶ minibatch-SignSGD reduces sample complexity for κ < 2.
- Momentum-SignSGD and minibatch-SignSGD convergence are bounded and proved.

Conclusions

- (L_0, L_1) -smoothness enables better rates under (L_0, L_1) and HT-noise assumptions.
- Sign-based methods are noise-robust and communication-efficient.