## 武汉大学数学与统计学院

# 2015-2016 学年第一学期《离散数学》考试试卷 B 卷

| 学号: | 姓名: | 成绩: |
|-----|-----|-----|
|     |     |     |
|     |     |     |

注意: 所有答案均写在答题纸上。

## 一、填空题(共20分,每小题4分)

- 1. 某班有学生 80 人,其中 30 人参加日语考试,42 人参加法语考试,25 人两门考试均没参加,则有 人参加了两门考试。
- 2. 设|A| = n,则A上不同的二元关系有\_\_\_\_\_个,其中有\_\_\_\_个不同的自反关系。
- 3. n 个结点的有向完全图有 \_\_\_\_\_\_条边,无向完全二分图  $K_{n,m}$  有 \_\_\_\_\_\_条边。
- 4. 若设T(x): x 是火车,C(y): y 是汽车,F(x,y): x 比 y 快,则"所有火车都比某些汽车快"可符号化为:
- 5. 实数集R上的运算\*定义为

$$x * y = 6 - 2x - 2y + xy$$
,  $\forall x, y \in \mathbf{R}$ .

则运算\*的单位元是\_\_\_\_\_,\*的零元是\_\_\_\_\_。

### 二、简答题(共36分,每小题6分)

1. 下图 1 是集合  $A = \{1, 2, 3, 4\}$  上关系 R 的关系图,它是一个偏序关系,试画出它所对应的 Hasse 图,(A, R) 是否为格,说明理由。





2. 设有向图  $G = \langle V, E \rangle$  如上图 2 所示,求 G 的邻接矩阵 A 和可达性矩阵 P 。

- 3. 设集合  $A = \{a, b, c, d\}$  上的关系  $R = \{ < a, a >, < a, c >, < c, b >, < c, d >, < d, b > \}$  ,说明 R 所 具有的性质(自反、反自反、对称、反对称、传递),写出 R 的关系矩阵,并给出 R 的自反闭包 r(R) ,对称闭包 s(R) ,传递闭包 t(R) 。
- 4. 写出无向树的至少三种不同定义。
- 5. 用等值演算法证明下式为重言式:

$$(P \to Q) \land (Q \to R) \to (P \to R)$$

6. 利用 CP 规则证明:

$$\forall x (P(x) \lor Q(x)) \Rightarrow \exists x \neg P(x) \rightarrow \exists x Q(x)$$

三、(共8分) 设R是非空集合A上的关系,证明:

R传递的充分必要条件是:  $R^2 \subset R$ 。

**四、(共 8 分)**设  $f: X \to Y$  ,  $X' \subseteq X$  ,  $Y' \subseteq Y$  , 下列各式是否成立, 若成立, 则给 出证明, 若不成立, 请举反例:

(1) 
$$f(f^{-1}(Y')) = Y';$$
 (2)  $f^{-1}(Y - Y') = X - f^{-1}(Y').$ 

五、(共8分)设简单平面图G中顶点数n=7,边数m=15,证明:

- (1) *G* 是连通的;
- (2) G 的每个面均由 3 条边围成。

六、(共10分) 设整数集Z上的二元运算 \* 定义为:

$$a * b = a + b - 2$$
,  $\forall a, b \in \mathbf{Z}$ 

试证明:  $\langle \mathbf{Z}, * \rangle$ 是群。

七、(共 10 分) 求 $(P \land Q) \lor (\neg P \land R)$ 的主合取范式和主析取范式。

# 2015-2016 学年第一学期《离散数学》考试试卷 B 卷 答 案

#### 一、填空题

1. 
$$\underline{17}$$
 2.  $\underline{2^{n^2}}$   $\underline{2^{n^2-n}}$  3.  $\underline{n(n-1)}$   $\underline{nm}$ 
4.  $\forall x \left( T(x) \to \exists y \left( C(y) \land H(x,y) \right) \right)$  5.  $\underline{3}$   $\underline{2}$ 

#### 二、简答题:

1. 其 Hasse 图如右所示,(A,R)不是格,因为 1,2 两元素没有最大下界。

2. 
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$



3. R不自反,不反自反,不对称、反对称、不传递

$$M(R) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{split} r(R) &= \left\{ <\!\!a,a\!\!>,<\!\!b,b\!\!>,<\!\!c,c\!\!>,<\!\!d,d\!\!>,<\!\!a,c\!\!>,<\!\!c,b\!\!>,<\!\!c,d\!\!>,<\!\!d,b\!\!> \right\} \\ s(R) &= \left\{ <\!\!a,a\!\!>,<\!\!a,c\!\!>,<\!\!c,b\!\!>,<\!\!c,d\!\!>,<\!\!d,b\!\!>,<\!\!c,a\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,c\!\!>,<\!\!d,$$

- 4. (1) 连通没有回路的简单图为树
  - (2) 连通且m = n 1的简单图为树
  - (3) m = n 1且没有回路的简单图为树
  - (4) 若图是连通的,且任意两结点间存在惟一的基本通路,则为树
  - (5) 若在图中任意两结点间加上一条边,则图存在惟一一条基本回路,称为树。

5. 
$$(P \to Q) \land (Q \to R) \to (P \to R)$$
  
 $\Leftrightarrow \neg ((\neg P \lor Q) \land (\neg Q \lor R)) \lor (\neg P \lor R)$   
 $\Leftrightarrow ((P \land \neg Q) \lor (Q \land \neg R)) \lor \neg P \lor R$   
 $\Leftrightarrow ((P \land \neg Q) \lor \neg P) \lor ((Q \land \neg R) \lor R)$   
 $\Leftrightarrow (\neg Q \lor \neg P) \lor (Q \lor R)$   
 $\Leftrightarrow T$ 

故原式为重言式。

6.  $\bigcirc \exists x \neg P(x)$ 

附加前提

 $\bigcirc \neg P(c)$ 

**1**)ES

前提

 $\textcircled{4}P(c) \lor Q(c)$ 

(3)US

 $\bigcirc Q(c)$ 

②④析取三断论

 $\textcircled{6} \exists x Q(x)$ 

⑤EG

CP 规则

三、证: 若R传递,则 $\langle x, y \rangle \in R$ ,  $\langle y, z \rangle \in R$ ,因R传递,有,即 $R^2 \subseteq R$ 。

若 $R^2 \subset R$ , 对任意 $\langle x, y \rangle \in R$ ,  $\langle y, z \rangle \in R$ , 则。

四、(1) 错误。如:  $X=\{1,2,3\}$ ,  $Y=\{a,b,c\}$ ,  $Y'=\{a,b\}$ , f(x)=a,  $\forall x\in X$ ,则  $f(f^{-1}(Y'))=f(X)=\{a\}\neq Y'$ 

(2) 正确。 证明如下:

$$x \in f^{-1}(Y - Y') \Leftrightarrow f(x) \in Y - Y' \Leftrightarrow f(x) \in Y, f(x) \notin Y'$$
$$\Leftrightarrow x \notin f^{-1}(Y') \Leftrightarrow x \in X - f^{-1}(Y')$$

五、(1) 若G 不连通,设有k 个连通分支,则在k 个连通分支之间添加k-1 条边,从而新的图为一个连通的简单平面图,则平面通的性质有:  $m+k-1 \le 3n-6$ ,代入得 $k \le 1$ ,从而原图 G 是连通的。

(2) 由于G 是简单图,每个面至少由 3 条边构成,若存在一个面的次数超过 3,则有m < 3n - 6,与m = 15,n = 7矛盾。故所有面均由 3 条边构成。

六、显然运算是封闭的。

可以证明运算 \* 满足结合律, 即:  $\forall a,b,c \in \mathbb{Z}$ , 有a\*(b\*c)=(a\*b)\*c

2 为运算 \* 的单位元, 事实上, 有 a \* 2 = a + 2 - 2 = a = 2 \* a

对任意元素a, 4-a为其逆元, 事实上,

$$a*(4-a) = a + (4-a) - 2 = 2$$
,  $\mathbb{H}(4-a)*a = 2$ 

故 $\langle \mathbf{Z}, * \rangle$ 是群。

七、主析取范式:

$$(P \land Q \land R) \lor (P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

主合取范式:

$$(\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (P \lor Q \lor R) \land (P \lor \neg Q \lor R)$$