1. Foundation: H and S Predicates

Core Definitions

H Predicate (Halting)

```
H(e,x,t) = "Program Pe(x) halts in t or fewer steps"
```

- Decidable can always determine true/false in finite time
- Used for: Domain concerns (does program halt?)
- Characteristic function: χH(e,x,t)

S Predicate (Step)

```
S(e,x,y,t) = "Program Pe(x) halts with output y in t or fewer steps"
```

- Decidable can always determine true/false in finite time
- Used for: Domain + codomain concerns (does program halt with specific output?)
- Characteristic function: χS(e,x,y,t)

Function Selection Logic

```
Use H when: Only care about halting (domain properties)
Use S when: Care about halting AND specific output (domain + codomain)
Use H A S: Complex relationships requiring both
```

2. Minimalization Structure

General Template

```
sc_A(x) = 1(\mu w. [condition using H/S functions])
```

Step-by-Step Construction

- 1. **Identify the property**: What makes $x \in A$?
- 2. **Determine variables needed**: inputs, outputs, steps, multiplicative factors
- 3. Choose H or S: Based on whether you need specific outputs
- 4. Bundle variables into w: w = (var₁, var₂, var₃, ...)
- 5. Replace variables with projections: $var_1 \rightarrow (w)_1$, $var_2 \rightarrow (w)_2$, etc.

3. Tuple Encoding Patterns

W-Encoding (95% of cases)

```
w = (var<sub>1</sub>, var<sub>2</sub>, var<sub>3</sub>, ...)
Access: (w)<sub>1</sub>, (w)<sub>2</sub>, (w)<sub>3</sub>, ...
```

Important:

- Each variable appears only once in w
- Don't include x (function parameter) in w
- Not injective, but we only care about finite description

π-Encoding (when specified)

```
Only use when exercise explicitly provides \pi(x,y) Example: \pi instead of w for pair encoding
```

Variable Bundling Rules

```
/ Correct: w = (y, t, k) where y, t, k are distinct
x Wrong: w = (y, t, y) (duplicate variable)
x Wrong: w = (x, y, t) (x is function parameter)
```

4. Exercise Type 3 Patterns (Standard)

Template Structure

```
sc_A(x) = 1(\mu w. H(e, x, (w)_1) \wedge S(e, x, y, (w)_2))
```

Example 1: Domain-Codomain Intersection

```
Set: A = \{x \mid Ex \cap B \neq \emptyset\} where B finite
```

Construction:

```
Property: \exists y \in Ex \text{ such that } y \in B

Variables needed: y \text{ (output)}, t \text{ (steps)}

H/S choice: S (need specific output y)

w encoding: w = \langle y, t \rangle

sc_A(x) = 1(\mu w. S(x, (w)_1, (w)_2, (w)_3) \land (y \in B))
```

```
Since B finite: (y \in B) = (y = b_1) \vee (y = b_2) \vee ... \vee (y = b_n)
```

Example 2: Basic Membership

Set: $A = \{x \mid x \in Wx\}$

Construction:

```
Property: Program x halts on input x

Variables needed: t (steps)

H/S choice: H (only need halting)

w encoding: w = (t)

sc_A(x) = 1(µw. H(x, x, (w)<sub>1</sub>))
```

5. Exercise Type 4 Patterns (Complex)

Template Structure

```
SC_A(x) = 1(\mu w. H(x, (w)_1, (w)_3) \wedge S(x, (w)_1, (w)_2, (w)_3) \wedge [constraints])
```

Example 1: Multiplicative Relations

Set: B = $\{x \mid \exists k \in \mathbb{N}. k \cdot x \in Wx\}$

Construction:

```
Property: \exists k such that program x halts on input k \cdot x Variables needed: k (multiplier), t (steps) H/S choice: H (only need halting) w encoding: w = \langle k, t \rangle sc_B(x) = 1(\mu w. H(x, (w)_1 \cdot x, (w)_2))
```

Example 2: Universal Quantification

Set: B = $\{x \mid \forall k \in \mathbb{N}. k+x \in Wx\}$

Construction:

```
Property: For all k, program x halts on input k+x This is complement of \exists k \text{ such that } \neg H(x, k+x, t)
```

```
Use reduction: R ≤m B

Reduction function:
g(x,y) = {0 if ¬H(x,x,y)}
{↑ otherwise}

sc_B(x) shows B is not r.e.
```

Example 3: Self-Reference with Output

Set: $A = \{x \mid x \in Wx \cap Ex\}$

Construction:

```
Property: x \in Wx \ AND \ x \in Ex

Variables needed: z \ (input \ for \ Ex), \ t_1, \ t_2 \ (steps)

H/S choice: Both H and S

w encoding: w = \langle z, \ t_1, \ t_2 \rangle

sc_A(x) = 1(\mu w. \ H(x, \ x, \ (w)_2) \ \Lambda \ S(x, \ (w)_1, \ x, \ (w)_3))
```

6. Converting Predicates to Functions: The Mechanical Process

Core Transformation Rules

Step 1: Replace predicates with characteristic functions

```
H(e,x,t) \rightarrow \chi H(e,x,t) (1 if program halts, 0 otherwise)
 S(e,x,y,t) \rightarrow \chi S(e,x,y,t) (1 if program halts with output y, 0 otherwise)
```

Step 2: Handle equality and comparisons

```
a = b \rightarrow s\overline{g}(|a - b|) (0 if equal, 1 if different)

a \neq b \rightarrow sg(|a - b|) (1 if different, 0 if equal)

a > b \rightarrow sg(a \div b) (1 if a > b, 0 otherwise)

a \geq b \rightarrow sg(a + 1 \div b) (1 if a \geq b, 0 otherwise)

a < b \rightarrow sg(b \div a) (1 if a < b, 0 otherwise)
```

Note: $\dot{}$ denotes cut-off subtraction (a $\dot{}$ b = max(0, a-b))

Step 3: Transform logical operations

Step 4: Goal for minimization

- We want the expression to equal 0 when the condition is TRUE
- We want the expression to equal 1 when the condition is FALSE
- This makes µw stop when we find what we're looking for

Complete Transformation Example

Example: $A = \{x \mid Wx \cap Ex \neq \emptyset\}$

Step 1: Write in predicate form

```
x \in A \Leftrightarrow \exists y \exists t_1 \exists t_2 (H(x, y, t_1) \land S(x, z, y, t_2))
```

Meaning: ∃y that's in both domain and codomain

Step 2: Identify variables for w-encoding

```
Variables: y, z, t<sub>1</sub>, t<sub>2</sub>
w = (y, z, t<sub>1</sub>, t<sub>2</sub>)
```

Step 3: Replace variables with projections

```
H(x, (w)_1, (w)_3) \wedge S(x, (w)_2, (w)_1, (w)_4)
```

Step 4: Convert to characteristic functions

```
\chi H(x, (w)_1, (w)_3) \wedge \chi S(x, (w)_2, (w)_1, (w)_4)
```

Step 5: Apply logical transformation ($\land \rightarrow +$)

```
\chi H(x, (w)_1, (w)_3) + \chi S(x, (w)_2, (w)_1, (w)_4)
```

Step 6: Apply negated sign (want 0 when true)

```
s\overline{g}(\chi H(x, (w)_1, (w)_3) + \chi S(x, (w)_2, (w)_1, (w)_4))
```

Step 7: Complete semicharacteristic function

```
sc_A(x) = 1(\mu w. s\overline{g}(\chi H(x, (w)_1, (w)_3) + \chi S(x, (w)_2, (w)_1, (w)_4)))
```

More Complex Example: Finite Set Intersection

Example: $A = \{x \mid Ex \cap B \neq \emptyset\}$ where $B = \{b_1, b_2, b_3\}$ is finite

Step 1: Write condition in predicate form

```
x \in A \Leftrightarrow \exists y \exists z \exists t (S(x, z, y, t) \land (y \in B))
```

Step 2: Handle finite set membership

```
y \in B \Leftrightarrow (y = b_1) \lor (y = b_2) \lor (y = b_3)
```

Step 3: Convert equalities

```
(y = b_1) \rightarrow s\overline{g}(|y - b_1|)
(y = b_2) \rightarrow s\overline{g}(|y - b_2|)
(y = b_3) \rightarrow s\overline{g}(|y - b_3|)
```

Step 4: Convert OR operation ($\lor \rightarrow \cdot$)

```
(y \in B) \rightarrow s\overline{g}(|y - b_1|) \cdot s\overline{g}(|y - b_2|) \cdot s\overline{g}(|y - b_3|)
```

Step 5: Complete condition with AND ($\land \rightarrow +$)

```
\chi S(x, z, y, t) + s\overline{g}(|y - b_1|) \cdot s\overline{g}(|y - b_2|) \cdot s\overline{g}(|y - b_3|)
```

Step 6: Apply negated sign and minimization

```
sc_A(x) = 1(\mu w. s\overline{g}(\chi S(x, (w)_2, (w)_1, (w)_3) + s\overline{g}(|(w)_1 - b_1|) \cdot s\overline{g}(|(w)_1 - b_2|) \cdot s\overline{g}(|(w)_1 - b_3|))
```

Advanced Example: Multiple Conditions

Example: $B = \{x \mid \exists k \in \mathbb{N}. k \cdot x \in Wx\}$

Step 1: Predicate form

```
x \in B \iff \exists k \exists t (H(x, k \cdot x, t))
```

Step 2: Variable identification

```
Variables: k, t
w = (k, t)
```

Step 3: Direct transformation

```
sc_B(x) = 1(\mu w. s\overline{g}(\chi H(x, (w)_1 \cdot x, (w)_2)))
```

Universal Quantification Example

Example: Set with ∀k condition (typically not r.e.)

Original: $C = \{x \mid \forall k \in \mathbb{N}. \ k+x \in Wx\}$

This is equivalent to: $\neg \exists k$ such that $\neg H(x, k+x, t)$

For reduction K
≤m C:

```
g(x,y) = \{0 \quad \text{if } \neg H(x,x,y) \\ \{\uparrow \quad \text{otherwise} \}
```

Transformation:

```
g(x,y) = \mu z. \chi H(x,x,y)
```

SMN application: \exists s total computable s.t. φ s(x)(y) = g(x,y)

9. Step-by-Step Transformation Walkthrough

Complete Example: $A = \{x \mid x \in Wx \cup Ex\}$

Step 1: Parse the condition

```
x \in Wx \cup Ex means: x \in Wx OR x \in Ex
```

Step 2: Express as predicates

```
x \in Wx: \exists t_1 H(x, x, t_1)

x \in Ex: \exists z \exists t_2 S(x, z, x, t_2)
```

Step 3: Combine with OR

```
(\exists t_1 \ H(x, x, t_1)) \ V \ (\exists z \ \exists t_2 \ S(x, z, x, t_2))
```

Step 4: Identify all variables

```
Variables: t<sub>1</sub>, z, t<sub>2</sub>
w = (t<sub>1</sub>, z, t<sub>2</sub>)
```

Step 5: Replace with projections

```
H(x, x, (w)_1) \vee S(x, (w)_2, x, (w)_3)
```

Step 6: Convert to characteristic functions

```
\chi H(x, x, (w)_1) \vee \chi S(x, (w)_2, x, (w)_3)
```

Step 7: Apply OR transformation ($\lor \rightarrow \cdot$)

```
\chi H(x, x, (w)_1) \cdot \chi S(x, (w)_2, x, (w)_3)
```

Step 8: Apply negated sign (want 0 when true)

```
s\overline{g}(\chi H(x, x, (w)_1) \cdot \chi S(x, (w)_2, x, (w)_3))
```

Step 9: Complete function

```
sc_A(x) = 1(\mu w. s\overline{g}(\chi H(x, x, (w)_1) \cdot \chi S(x, (w)_2, x, (w)_3)))
```

Verification of Logic

Check OR operation (A \vee B \rightarrow A·B with negation):

```
• If A true, B false: \chi A = 1, \chi B = 0 \rightarrow \chi A \cdot \chi B = 0 \rightarrow s\overline{g}(0) = 1 \times
```

• If A false, B true:
$$\chi A = 0$$
, $\chi B = 1 \rightarrow \chi A \cdot \chi B = 0 \rightarrow s\overline{g}(0) = 1 \times$

- If both false: $\chi A = 0$, $\chi B = 0 \rightarrow \chi A \cdot \chi B = 0 \rightarrow s\overline{g}(0) = 1 \checkmark$
- If both true: $\chi A = 1$, $\chi B = 1 \rightarrow \chi A \cdot \chi B = 1 \rightarrow s\overline{g}(1) = 0$

Correct OR with characteristic functions:

```
A v B should be: s\overline{g}(s\overline{g}(\chi A) \cdot s\overline{g}(\chi B))
```

Simplified OR for minimization:

```
A V B as: s\overline{g}(\chi A) + s\overline{g}(\chi B) - s\overline{g}(\chi A) \cdot s\overline{g}(\chi B)
```

10. Common Mistakes and Debugging

Mistake 1: Wrong Logical Operations

Wrong: A \wedge B \rightarrow χ A \cdot χ B (multiplication for AND) **Correct**: A \wedge B \rightarrow χ A + χ B (addition for AND)

```
Wrong: A \vee B \rightarrow \chiA + \chiB (addition for OR)
```

Correct: A ∨ B → χA · χB (multiplication for OR)

Mistake 2: Variable Duplication in w

Wrong: $w = \langle y, t, y \rangle$ (y appears twice) **Correct**: $w = \langle y, t \rangle$ (each variable once)

Mistake 3: Including Function Parameters

Wrong: $w = \langle x, y, t \rangle$ (x is the function parameter) **Correct**: $w = \langle y, t \rangle$ (exclude x)

Mistake 4: Forgetting Negated Sign

Wrong: μw. $\chi H(x, x, (w)_1)$ (stops when $\chi H = 1$) **Correct**: μw. $s\overline{g}(\chi H(x, x, (w)_1))$ (stops when $\chi H = 1$, returns 0)

Mistake 5: Wrong Equality Conversion

Wrong: $a = b \rightarrow sg(|a - b|)$ (1 when equal) **Correct**: $a = b \rightarrow s\overline{g}(|a - b|)$ (0 when equal)

Debugging Checklist

1. Check logical operations:

```
AND \rightarrow Addition (+)

OR \rightarrow Multiplication (·)

NOT \rightarrow Negated sign (s\overline{g})
```

2. Verify minimization goal:

```
Want 0 when condition is TRUE (so μw stops)
Want 1 when condition is FALSE
```

3. Test simple cases:

```
If H(x,x,t) is true, \chi H = 1, s\overline{g}(\chi H) = 0 \forall
If H(x,x,t) is false, \chi H = 0, s\overline{g}(\chi H) = 1 \forall
```

4. Check variable encoding order:

```
w = \langle var1, var2, var3 \rangle

var1 \rightarrow (w)_1, var2 \rightarrow (w)_2, var3 \rightarrow (w)_3
```

11. Quick Reference Tables

Function Selection Guide

Concern	Use	Example
Only halting	H(e,x,t)	x ∈ Wx
Halting + output	S(e,x,y,t)	x ∈ Ex
Both	H∧S	$x \in Wx \cap Ex$

Logical Conversion Table

Predicate	Characteristic	Goal (for µw)	
A∧B	χΑ + χΒ	$s\overline{g}(\chi A + \chi B)$	
AVB	χΑ · χΒ	s g (χA·χB)	
¬A	s g (χA)	χΑ	
a = b	s g (a - b)	a - b	
a ≠ b	sg(a - b)	s g (a - b)	

Exercise Type Recognition

Pattern	Type	H/S Choice	Complexity
Ex∩B≠∅	3	S	Simple
x ∈ Wx	3	Н	Simple
∃k. k·x ∈ Wx	4	Н	Medium
∀k. k+x ∈ Wx	4	Not r.e.	Complex
$x \in Wx \cap Ex$	4	ΗΛS	Complex

This comprehensive guide provides the systematic approach needed to master semicharacteristic function construction with proper H/S function usage, tuple encoding, and predicate-to-function transformations for computability exercises.

7. Complete Examples from Exams

Exercise Type 3: Ex \cap B $\neq \emptyset$

```
A = {x | Ex n B ≠ Ø}, B finite = {b₂, b₂, ..., bn}

Step 1: Property analysis
∃y ∈ Ex such that y ∈ B

Step 2: Variables
y (output), t (steps)

Step 3: Encoding
w = ⟨y, t⟩

Step 4: Construction
sc_A(x) = 1(μw. S(x, (w)₂, (w)₂, (w)₃) Λ ((w)₂ ∈ B))

Step 5: Finite set handling
(w)₂ ∈ B = ((w)₂ = b₂) ∨ ... ∨ ((w)₂ = bn)
= sg(|(w)₂ - b₂|) · ... · sg(|(w)₂ - bn|)
```

Exercise Type 4: $k \cdot x \in Wx$

```
B = {x | ∃k ∈ N. k·x ∈ Wx}

Step 1: Property analysis
∃k such that φx(k·x) halts

Step 2: Variables
k (multiplier), t (steps)

Step 3: Encoding
w = ⟨k, t⟩

Step 4: Construction
sc_B(x) = 1(μw. H(x, (w)<sub>1</sub> · x, (w)<sub>2</sub>))
```

Exercise Type 4: $x \in Wx \cup Ex$

```
A = {x | x ∈ Wx ∪ Ex}

Step 1: Property analysis
x ∈ Wx OR x ∈ Ex

Step 2: Variables
t₁ (steps for Wx), z (input for Ex), t₂ (steps for Ex)

Step 3: Encoding
w = (t₁, z, t₂)

Step 4: Construction
sc_A(x) = 1(μw. H(x, x, (w)₁) v S(x, (w)₂, x, (w)₃))
= 1(μw. χH(x, x, (w)₁) · χS(x, (w)₂, x, (w)₃))
```

8. Common Patterns Summary

Recognition Checklist

Exercise Type 3 Indicators:

- Direct domain/codomain operations (Wx, Ex)
- Finite set intersections
- Simple membership testing
- Single quantification level

Exercise Type 4 Indicators:

- Self-reference (x appears multiple times)
- Universal quantification (∀k)
- Multiplicative/additive relations (k·x, k+x)
- Complex logical combinations

Encoding Decision Tree

```
    Count distinct variables (excluding function parameters)
    Variables = {v₁, v₂, ..., vₙ} → w = ⟨v₁, v₂, ..., vₙ⟩
    Replace vᵢ with (w)ᵢ throughout
    If π provided explicitly → use π instead of w
```

Function Choice Strategy

```
Domain only? → H(program, input, steps)

Domain + specific output? → S(program, input, output, steps)

Both needed? → H(...) ∧ S(...)
```

This systematic approach covers 95% of computability exercise patterns and provides the mechanical process for constructing semicharacteristic functions using H and S predicates with proper tuple encoding.