ELECTROTECNIA TEÓRICA

MEEC IST

2° Semestre 2017/18

5° TRABALHO LABORATORIAL

PARÂMETROS DISTRIBUÍDOS Linha Bifilar e Linha Coaxial

Prof. V. Maló Machado
Prof. M. Guerreiro das Neves
Prof. Ma Eduarda Pedro

ELECTROTECNIA TEÓRICA

NOTA INTRODUTÓRIA

Este trabalho de laboratório, relativo ao estudo de estruturas de parâmetros distribuídos, é composto por duas partes:

Parte I – Na primeira parte analisa-se o regime impulsivo (domínio do tempo), medindo-se
 o tempo de atraso e a velocidade de propagação de impulsos num cabo coaxial.

Parte II – Na segunda parte obtém-se, por medida, o diagrama de onda estacionária numa linha bifilar aérea, em curto-circuito, a funcionar em regime forçado alternado sinusoidal de alta frequência.

Nota: Cada parte do trabalho terá a duração de trinta minutos, devendo os grupos circular nas respectivas bancadas. Cada parte tem um <u>dimensionamento</u> próprio.

O dimensionamento deve ser entregue na aula de laboratório, antes da realização do trabalho, sem o que o mesmo não poderá ser realizado!

- Parte I -

PROPAGAÇÃO DE IMPULSOS NUM CABO COAXIAL

1. OBJECTIVO

- Medição da velocidade de propagação de impulsos num cabo coaxial.
- Observação da reflexão de impulsos num cabo coaxial terminado em vazio e em curtocircuito. Absorção de impulsos numa carga adaptada.

2. ESQUEMA DE LIGAÇÕES E LISTA DE MATERIAL

2.1 Esquema de ligações

2.2 Lista de Material

GER — Gerador de funções / Gerador de impulsos (impedância interna 50Ω)

OSC – Osciloscópio Digital, com impressora.

CABO – Cabo coaxial ($R_w = 50 \Omega$) de 20 m de comprimento.

TER — Terminação para adaptação de cabo de $R_w = 50 \Omega$.

C_a – Condensador de 10 nF

Observação: A Lista de Material acima descrita poderá não ser comum a todas as bancadas. Anote, no seu relatório, a lista de material efectivamente disponível na sua bancada.

3. MÉTODO DE MEDIDA

O gerador produz impulsos de tensão, que são visualizados no osciloscópio (CH1). Os impulsos propagam-se ao longo do cabo coaxial, reflectem-se na extremidade do mesmo (carga desadaptada) e propagam-se de volta à entrada onde poderão ser visualizados no osciloscópio. É assim possível determinar a velocidade de propagação ν no cabo através de

$$v = \frac{2\ell}{\Delta t}$$

em que ℓ é o comprimento do cabo e Δt é o atraso temporal entre a emissão do impulso (onda incidente) e a recepção do impulso (onda reflectida), ambos visualizados no osciloscópio (CH1).

4. <u>DIMENSIONAMENTO</u>

Considere que o dieléctrico do cabo coaxial tem uma constante dieléctrica relativa ε_r = 2,35 .

- 4.1 Determine e registe na tabela **R I 4.1** os valores das seguintes grandezas:
 - Velocidade de propagação dos impulsos no cabo coaxial.
 - Tempo de propagação Δt correspondente a um percurso de ida e volta $2\ell = 40 \text{ m}$.
 - O período de repetição de impulsos e a respectiva largura (supondo que o gerador produz periodicamente impulsos) com o seguinte critério:
 - $T_{\rm W}$ Largura do impulso = $3\Delta t/20$.
 - $T_{\rm R}$ Período de repetição dos impulsos = 5 Δt .
- 4.2 Considere agora o gerador adaptado (resistência de saída igual à resistência característica da linha) com a linha terminada por um condensador de capacidade $C_a = 10$ nF. Considere ainda que a largura dos impulsos $T_{\rm W}$ é bastante maior que o tempo de propagação na linha e bastante maior que a constante de tempo τ de carga do condensador, de maneira que, para cada impulso, a tensão do gerador possa ser tratada como um escalão. Obtenha a expressão da tensão no condensador. Determine a constante de tempo de carga do condensador e o valor final da mesma e registe estes valores na tabela **R I 4.2**.
- 4.3 Mostre por aplicação das leis fundamentais que, sendo a linha sem perdas e sendo u_g , u_c , i_g e i_c (Fig. 2) limitadas no tempo, se verifica:

$$\int_{-\infty}^{+\infty} u_g(t)dt = \int_{-\infty}^{+\infty} u_c(t)dt$$

- Fig. 2 -

5. CONDUÇÃO DO TRABALHO

Seleccione o modo de geração de impulsos de 2 V de amplitude, um período de repetição de 1 µs e uma largura de impulsos de 30 ns,

OPERATING MODE – PULSE OUTPUT – RECTANGULAR

FUNCTION – AMPL – 2V

 $PULSE - PER - 1 \mu s$

PULSE - WIDTH - 30 ns

- 5.1 Mantendo o cabo coaxial **em vazio** registe na tabela **R I 5** os seguintes valores: o intervalo de tempo Δt entre o instante de saída do impulso incidente e o instante de chegada do eco produzido pela reflexão na carga; o intervalo de tempo $\Delta t'$ entre o instante de saída do impulso incidente e o instante da sua chegada à carga; os valores máximos das tensões no gerador ($U_{g_{max}}$) e na carga ($U_{c_{max}}$). Obtenha cópia em papel das figuras visualizadas no osciloscópio, referentes às tensões quer à entrada do cabo (CH1) quer no fim do mesmo (CH2).
- 5.2 Visualize no osciloscópio a forma do impulso reflectido quando o cabo está **em curto- circuito**. Registe na tabela **R I 5** os seguintes valores: o intervalo de tempo Δ*t* entre o instante de saída do impulso incidente e o instante de chegada do eco produzido pela reflexão na carga; os valores, máximo e mínimo, da tensão no gerador. Obtenha cópia em papel da figura visualizada no osciloscópio, referente à evolução temporal da tensão observada à entrada do cabo (CH1).
- 5.3 Com o **cabo adaptado** registe na tabela **R I 5** os seguintes valores: o tempo $\Delta t'$ entre o instante de saída do impulso incidente e o instante da sua chegada à carga; os valores máximos da tensão no gerador e na carga. Obtenha cópia em papel das figuras visualizadas no osciloscópio, referentes às tensões à entrada do cabo e na carga.

5.4 Regule o gerador de modo a ter:

$$PULSE - PER - 20 \mu s$$

Com o cabo terminado pelo condensador C_a visualize as tensões à saída do gerador e na carga. Com o auxílio dos cursores de tensão determine as amplitudes, inicial e final, da tensão no gerador (u_{g_i} e u_{g_f}) e a amplitude final da tensão na carga (u_{c_f}). Com o auxílio dos cursores de tempo determine a constante de tempo da tensão na carga. Registe estes valores na tabela **R I 5**. Obtenha cópia em papel das figuras visualizadas no osciloscópio, referentes às tensões à entrada do cabo e na carga.

6. RESULTADOS

- 6.1 Para cada uma das terminações usadas complete o preenchimento da tabela **R I 6** com os valores teóricos esperados. Comente os resultados obtidos, justificando, em particular, as formas dos impulsos observados no osciloscópio, nos casos das terminações em vazio, curto-circuito e com carga capacitiva. No último caso compare as tensões obtidas experimentalmente com as obtidas no ponto **4.2** do dimensionamento.
- 6.2 Determine a velocidade de propagação dos impulsos no cabo e registe o seu valor na tabela **R I 6**.
- 6.3 Determine a constante dieléctrica relativa do material do cabo e registe o seu valor na tabela **R I 6**.

- Parte II -

LINHA DE TRANSMISSÃO – ONDAS ESTACIONÁRIAS

1. OBJECTIVO

É objectivo deste trabalho laboratorial o estudo duma linha de transmissão em regime forçado alternado sinusoidal de alta-frequência. Em particular, pretende-se obter o diagrama de onda estacionária duma linha em curto-circuito.

2. ESQUEMA DE LIGAÇÕES E LISTA DE MATERIAL

2.1 Esquema de Ligações (Fig. 1)

2.2 Lista de Material

- GER Gerador Sintetizador TTI Modelo TGR1040 impedância de saída 50Ω. Frequência de operação a seleccionar: $f_0 = 185$ MHz.
- AMP Amplificador MINI-CIRCUITS Modelo ZHL-1-2W impedância de entrada e de saída $50~\Omega$ (necessita de fonte de alimentação de 24V).
- GAL Galvanómetro Ferrari e caixa de resistências shunt (usar a sensibilidade de $2 \mu A/div$).
- DT Detector de tensão (sonda móvel).
- L₁ Cabo coaxial (c/ etiqueta azul) de resistência característica 50 Ω , de comprimento igual a $3\lambda/2$ à frequência f_0 .

L₂ - Cabo coaxial (c/ etiqueta azul) de resistência característica 50 Ω, de comprimento igual a $\lambda/2$ à frequência f_0 .

CC - Chapa metálica para definição do curto-circuito terminal da linha.

AT - Atenuador de 6 dB, resistência característica, $R_{at} = 50 \Omega$.

Observação: A Lista de Material acima descrita poderá não ser comum a todas as bancadas.

3. MÉTODO DE MEDIDA

3.1 Alimentação da Linha

A linha utilizada não se encontra isolada no espaço. Está ligada a uma estrutura de ferro, portanto condutora, simetricamente localizada em relação aos condutores da linha bifilar. É assim importante que a alimentação seja feita simetricamente em relação a essa estrutura.

Como não se dispõe de um gerador com saídas equilibradas, utiliza-se o esquema da Fig. 2. A tensão do gerador é aplicada entre um dos condutores da linha e a estrutura de suporte. Essa mesma tensão, mas desfasada de meio período pelo cabo de meio comprimento de onda (L₂ da Fig. 1), é aplicada entre o outro condutor e a mesma estrutura. Os dois condutores são assim alimentados com tensões simétricas em relação à estrutura. Caso este cuidado não fosse tomado o sistema comportar-se-ia como uma linha de três condutores com tensões diferentes (e desconhecidas) entre dois deles e o terceiro, sendo necessário considerar a sobreposição de dois modos de propagação independentes. A resolução do problema tornar-se-ia mais complexa.

3.2 Sonda de Detecção de Tensão

Este dispositivo, quando utilizado com um galvanómetro aos seus terminais, permite avaliar o valor eficaz da tensão entre os condutores da linha, em vários locais ao longo da co-ordenada longitudinal da linha.

A sonda tem a constituição indicada na Fig. 3. Aos terminais do galvanómetro aparece somente a componente contínua da tensão rectificada pelo díodo D. O comportamento quadrático dos detectores, consequente da não-linearidade da característica tensão-corrente do díodo, implicará que se deva proceder à correcção das tensões medidas no galvanómetro.

Fig. 3

4. DIMENSIONAMENTO

- 4.1 Considere que o oscilador está a trabalhar à frequência f_0 . Determine o comprimento de onda λ para essa frequência, considerando a velocidade de fase igual a c_0 (velocidade da luz no vazio). Determine também o valor da constante de fase β .
- 4.2 Sabendo que a linha tem as seguintes dimensões físicas:

r = 1.9 mm (raio dos condutores)

d = 4.9 cm (distância entre os eixos dos condutores)

 $\ell = 1.82$ m (comprimento da linha),

Calcule:

- a) O coeficiente de auto-indução e a capacidade da linha por unidade de comprimento.
- b) A resistência característica de onda.

4.3 Considere a linha bifilar (Fig. 4) terminada em curto-circuito.

Fig. 4

- a) Para $f = f_0$, construa o diagrama de onda estacionária da tensão normalizando-o ao respectivo valor eficaz máximo. Registe os resultados na tabela **R II 4.3 a**) e faça a representação gráfica na folha quadriculada apresentada em anexo.
- b) Calcule a impedância de entrada da linha, $\overline{Z}_0 = \overline{U}_0/\overline{I}_0$, para a frequência f_0 .
- c) Mostre que para $y = y_1 = \frac{1}{8}\lambda$ a linha apresenta uma impedância puramente indutiva. Calcule o valor do coeficiente de indução correspondente, bem como o valor eficaz normalizado da tensão, $U_N(y_1)$. Na tabela **R II 4.3 c**) registe os valores obtidos para y_1 e $U_N(y_1)$.
- d) Explique por que razão o curto-circuito terminal é efectuado usando uma chapa metálica e não um simples fio ligado entre os dois condutores.
- 4.4 A Fig. 5 representa o dispositivo utilizado para assegurar que os condutores aéreos (1) e (2), da Fig. 2, são excitados em modo anti-simétrico. A tensão do gerador \overline{U}_1 é aplicada entre o condutor (1) e o condutor de referência (0). À frequência de trabalho, o cabo coaxial que interliga (1) com (2), no lado da alimentação, tem um comprimento $\ell = \lambda/2$.

Demonstre que $\,\overline{U}_1=-\overline{U}_2=\frac{\overline{U}}{2}\,$, onde $\,\overline{U}\,$ é a tensão entre os condutores aéreos.

Fig. 5 Cabo com meio comprimento de onda

5. CONDUÇÃO DO TRABALHO (Fig. 1)

Seleccione para GER a frequência $f = f_0$ (fixando a respectiva tensão apropriadamente).

- 5.1. Desloque a sonda detectora de tensão e registe a distância à origem a que se verificam os nodos e os ventres da tensão. Registe esses valores na tabela **R II 5.1**.
- 5.2 Registe o andamento da tensão ao longo da linha de transmissão, anotando os valores lidos em GAL e respectivas distâncias ao fim da linha, a intervalos de 5 cm. Registe esses valores na tabela **R II 5.2**.
- 5.3 Determine experimentalmente a que distância do curto-circuito se verifica o valor de tensão normalizado obtido na alínea c) do dimensionamento e registe esse valor na tabela R II 5.3.

6. RELATÓRIO

- 6.1. Com base nos valores medidos na alínea 5.1, calcule o comprimento de onda e a partir do seu valor determine ainda a constante de fase e confirme o valor da frequência de operação. Registe os resultados na tabela R II 6.1.
- 6.2. Com base no ensaio realizado em $\bf 5.2$, calcule e registe na tabela $\bf R$ $\bf II$ $\bf 6.2$ os valores da tensão normalizados (U_N), corrigindo os resultados tendo em conta a característica quadrática do detector

$$U_N(y) = \sqrt{\frac{U(y)}{U_{\text{max}}}}$$

Faça a representação normalizada do andamento da tensão ao longo da linha $U_N(y)$ na folha quadriculada apresentada em anexo. Compare a curva experimental obtida (corrigida) com a curva do diagrama de onda estacionária de tensão determinada no dimensionamento.

- 6.3. Com base no ensaio realizado em 5.3 compare o valor da distância y_1 obtido experimentalmente com o valor teórico.
- 6.4. Comente os resultados obtidos.

REFERÊNCIAS

J. A. Brandão Faria, 'Electromagnetic Foundations of Electrical Engineering', Wiley, 2008.Cap. 9.

IST, Fevereiro 2018

ANEXO

RELATÓRIO DO 5º TRABALHO LABORATORIAL

Parte I

R I 4.1:

Valores calculados em 4.1.

v [ms ⁻¹]	Δt [μ s]	T _R [μs]	Tw [ns]

R I 4.2, R I 5 e R I 6:

Valores calculados em 4.2, valores medidos em 5 e determinados em 6.

Carga		Valores Experimentais	Valores Teóricos	v [ms ⁻¹]	Er
	$U_{g_{max}}[V]$				
Vazio	$U_{c_{max}}[V]$				
	∆ t [ns]				
	∆t' [ns]				
	$U_{g_{max}}[V]$				
Curto-Circuito	$U_{g_{min}}[{f V}]$				
	<i>∆t</i> [ns]				
	$U_{g_{max}}[V]$				
Adaptada	$U_{c_{max}}[{f V}]$				
	<i>∆t'</i> [ns]				
	$u_{g_i}[V]$				
Condensador	$u_{g_f}[V]$				
	$u_{c_f}[V]$				
	τ[ns]				
Comentários: _					

Parte II

R II 5.1 e R II 6.1:

Valores medidos em 5.1.

	d [cm]		
Nodos			
Ventres			

Valores calculados em 6.1.

λ [m]	β [rad m ⁻¹]	f [Hz]

R II 4.3 a), R II 5.2 e R II 6.2:

Valores medidos em 5.2, U(y); calculados em 6.2, $U_{N_{exp}}$; calculados em 4.3 a), $U_{N_{teo}}$

y [cm]	U(y)	$U_{N_{exp}}$	$U_{N_{teo}}$
0			
5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			
60			
65			
70			

y [cm]	U(y)	$U_{N_{exp}}$	$U_{N_{teo}}$
75			
80			
85			
90			
95			
100			
105			
110			
115			
120			
125			
130			
135			
140			
145			

R II 4.3 c) e R II 5.3:

Valores $U_N(y_1=\lambda/8)$ e $y_{1\text{teo}}$ calculados em 4.3 c) e valor $y_{1\text{exp}}$ medido em 5.3

	y _{1teo} [m]	y _{1exp} [m]
$U_N(y_1=\lambda/8) =$		

Comentários:	 	 	

Número	Nome	Auto-Aval. [%]

R II 4.3 a) e R II 6.2:

Diagrama da onda estacionária de tensão, normalizada:

