Chapitre 3 : Topologie des espaces vectoriels normés

I Compléments sur les normes

Rappel:

Si E est un evn, alors $N: E \to \mathbb{R}$ est une norme lorsque :

(1)
$$\forall x \in E, N(x) \ge 0$$

$$(2) \forall x \in E, N(x) = 0 \Rightarrow x = 0$$

(3)
$$\forall x \in E, \forall \lambda \in \mathbb{K}, N(\lambda x) = |\lambda| N(x)$$

$$(4) \forall (x, y) \in E^2, N(x+y) \le N(x) + N(y)$$

Exemple:

Soit (E, N) un evn, et X un ensemble. On note B(X, E) l'ensemble des applications bornées de X dans E:

$$B(X, E) = \{ f \in E^X, \exists M \ge 0, \forall x \in X, ||f(x)|| \le M \}$$

Alors l'application $N_{\infty}: B(X,E) \to \mathbb{R}$ est une norme sur B(X,E). $f \mapsto \sup_{x \in X} \|f(x)\|$

Démonstration :

(1)
$$\forall f \in B(X, E), N_{\infty}(f) \ge 0$$

$$(2) \forall f \in B(X, E), N_{\infty}(f) = 0 \Rightarrow f = 0$$

(3) Soient
$$f \in B(X, E)$$
, $\lambda \in \mathbb{K}$:

$$\forall x \in X, \|\lambda f(x)\| = |\lambda| \|f(x)\|$$

Donc
$$N_{m}(\lambda f) = |\lambda| N_{m}(f)$$

(4) Soient
$$f, g \in B(X, E)$$

$$\forall x \in X, \|f(x) + g(x)\| \le \|f(x)\| + \|g(x)\| \le \sup_{x \in X} \|f(x)\| + \sup_{x \in X} \|g(x)\| \le N_{\infty}(f) + N_{\infty}(g)$$

Donc
$$N_{\infty}(f+g) \le N_{\infty}(f) + N_{\infty}(g)$$
.

A) Norme d'algèbre

Définition:

Soit $(A,+,\times,\cdot)$ une \mathbb{K} -algèbre. On appelle norme d'algèbre sur A toute norme N sur le \mathbb{K} -ev A qui vérifie de plus :

(5)
$$\forall (x, y) \in A^2, N(x \times y) \le N(x)N(y)$$

On dit alors que (A, N) est une algèbre normée.

Rappel:

On appelle \mathbb{K} -algèbre tout \mathbb{K} -ev $(A,+,\cdot)$ muni de plus d'une loi de composition interne \times vérifiant :

- × est distributive sur +
- × est associative

-
$$\forall (x, y) \in A^2, \forall \lambda \in \mathbb{K}, \lambda \cdot (xy) = (\lambda \cdot x) \times y = x \times (\lambda \cdot y)$$

On dit que *A* est unitaire lorsqu'il existe une unité *e*, élément neutre pour \times : $\forall x \in A. e \times x = x \times e = x$.

Exemple:

- $M_n(\mathbb{K})$ est une \mathbb{K} -algèbre unitaire (d'unité I_n)
- Si E est un \mathbb{K} -ev, $(L(E),+,\circ)$ est une \mathbb{K} -algèbre unitaire d'unité Id_E
- C est une R-algèbre unitaire.

Remarque:

Si A est un algèbre unitaire non nulle, alors $N(e) \ge 1$

En effet, on a alors $e \neq 0$, et $N(e) \leq N(e) \times N(e)$ donc $1 \leq N(e)$.

On appelle norme d'algèbre unitaire sur A toute norme d'algèbre N qui vérifie de plus N(e) = 1.

Exemple:

Soit X un ensemble, et $B(X,\mathbb{K})$ l'algèbre des fonctions bornées de X dans \mathbb{K} (pour la multiplication usuelle). Alors N_{∞} est une norme d'algèbre :

Soit
$$(f,g) \in B(X,\mathbb{K})^2$$

Alors
$$\forall x \in X, |f(x)g(x)| = |f(x)||g(x)| \le N_{\infty}(f)N_{\infty}(g)$$

D'où
$$N_{\infty}(fg) \le N_{\infty}(f)N_{\infty}(g)$$

Théorème:

Soit (A, N) une \mathbb{K} -algèbre normée, u et v deux suites de A.

Si u admet une limite $a \in A$ et v une limite $b \in A$, alors $(u_n v_n)_{n \in \mathbb{N}}$ converge, de limite ab.

Démonstration :

 $u_n \xrightarrow[n \to \infty]{} a$ et $v_n \xrightarrow[n \to \infty]{} b$, donc u et v sont bornées, disons par M > 0.

Par ailleurs, pour $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \ge n_0, \begin{cases} N(u_n - a) \le \frac{\varepsilon}{2M} \\ N(v_n - b) \le \frac{\varepsilon}{2M} \end{cases}$$
. De plus, $N(a) \le M$ et $N(b) \le M$.

Donc, pour $n \ge n_0$:

$$N(u_n v_n - ab) \le N(u_n v_n - u_n b) + N(u_n b - ab)$$

$$\le N(u_n) N(v_n - b) + N(u_n - a) N(b)$$

$$\le M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} \le \varepsilon$$

D'où la convergence et la limite.

B) Sous-espaces, produits cartésiens

Proposition, définition:

Soit F un sous-espace vectoriel d'un evn (E,N). Alors la restriction $N_{/F}$ est une norme sur F, appelée norme induite sur F.

Théorème:

Soit (E, N) un evn, F un espace vectoriel, et $j: F \to E$ une application linéaire injective. Alors $N \circ j: F \to \mathbb{R}$ est une norme sur F.

Démonstration :

(1)
$$\forall x \in F, (N \circ j)(x) = N(j(x)) \ge 0$$

$$(3) \forall x \in F, \forall \lambda \in \mathbb{K}, (N \circ j)(\lambda x) = N(\lambda \cdot j(x)) = |\lambda| N(j(x)) = |\lambda| (N \circ j)(x)$$

$$(4) \forall (x, y) \in F^2, (N \circ j)(x + y) = N(j(x) + j(y)) \le (N \circ j)(x) + (N \circ j)(y)$$

(2) Soit
$$x \in F$$
, supposons que $(N \circ j)(x) = 0$.

Alors
$$N(j(x)) = 0$$
, donc $j(x) = 0$, donc $x = 0$.

Définition:

Soient (E, N) et (F, N') deux evn.

Alors
$$N_1: E \times F \to \mathbb{R}$$
 et $N_{\infty}: E \times F \to \mathbb{R}$ sont deux normes $(x,y) \mapsto N(x) + N'(y)$ et $N_{\infty}: E \times F \to \mathbb{R}$ sont deux normes

sur $E \times F$. On les appelle normes produits.

C) Normes euclidiennes

Rappel:

On appelle produit scalaire sur un \mathbb{R} -ev E toute application $\varphi: E \times E \to \mathbb{R}$ bilinéaire, symétrique et définie-positive.

Définition:

Soit E un \mathbb{C} -ev. On appelle produit scalaire sur E toute application $\varphi: E \times E \to \mathbb{C}$ sesquilinéaire (« linéaire 1 fois et demi), hermitienne et définie-positive, c'est-à-dire :

(1)
$$\forall (x, y, z) \in E^3, \forall (\lambda, \mu) \in \mathbb{C}, \varphi(x, \lambda, y + \mu, z) = \lambda \varphi(x, y) + \mu \varphi(x, z)$$

$$\varphi(\lambda x + \mu y, z) = \overline{\lambda} \varphi(x, z) + \overline{\mu} \varphi(y, z)$$
 (semi–linéaire à gauche)

(2)
$$\forall (x, y) \in E^2, \varphi(x, y) = \overline{\varphi(y, x)}$$
 (hermitienne)

(3)
$$\forall x \in E, \varphi(x, x) \ge 0$$

(4)
$$\forall x \in E, \varphi(x, x) = 0 \Rightarrow x = 0$$

Remarque : (3) a bien un sens car $\varphi(x,x) = \overline{\varphi(x,x)} \in \mathbb{R}$.

Définition:

On appelle espace préhilbertien (réel ou complexe) tout \mathbb{K} -ev muni d'un produit scalaire (sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C})

Proposition (Cauchy–Schwarz):

Si φ est un produit scalaire sur le \mathbb{K} -ev E, alors :

$$\forall (x, y) \in E^2, |\varphi(x, y)|^2 \le \varphi(x, x)\varphi(y, y)$$

Démonstration:

Voir cours sur les espaces préhilbertiens.

Théorème:

Si φ est un produit scalaire sur le \mathbb{K} -ev E, alors $N: E \to \mathbb{R}$ est une norme $x \mapsto \sqrt{\varphi(x,x)}$

sur E, appelée norme euclidienne associée à φ .

Démonstration:

(1)
$$\forall x \in E, N(x) \ge 0$$

$$(2) \forall x \in E, N(x) = 0 \Rightarrow x = 0$$

(3)
$$\forall \lambda \in \mathbb{K}, \forall x \in E, \varphi(\lambda.x, \lambda.x) = \lambda.\varphi(\lambda x, x) = \lambda \overline{\lambda} \varphi(x, x) = |\lambda|^2 \varphi(x, x)$$

Donc
$$N(\lambda . x) = |\lambda| N(x)$$

(4) pour
$$(x, y) \in E^2$$
, on a : $\varphi(x + y, x + y) = \varphi(x, x) + 2 \operatorname{Re}(\varphi(x, y)) + \varphi(y, y)$

D'après la proposition de Cauchy-Schwarz, on a alors :

$$\varphi(x+y,x+y) \le \varphi(x,x) + 2\sqrt{\varphi(x,x)\varphi(y,y)} + \varphi(y,y)$$

C'est-à-dire
$$N(x+y)^2 \le N(x)^2 + 2N(y)N(x) + N(y)^2 = (N(x) + N(y))^2$$

D'où
$$N(x+y) \le N(x) + N(y)$$
.

Exemples:

-
$$E = \mathbb{C}^p$$
, $\varphi: E \times E \to \mathbb{C}$

$$(x,y) \mapsto \sum_{i=1}^{p} \overline{x}_{i} y_{i}$$

$$(x,y) \mapsto \sum_{i=1}^{p} \overline{x}_{i} y_{i}$$

$$- E = l^{2}(\mathbb{C}), \ \varphi : E \times E \to \mathbb{C}$$

$$(u,v) \mapsto \sum_{n=0}^{+\infty} \overline{u}_{n} v_{n}$$

$$- E = M_{n}(\mathbb{R}), \ \varphi : E \times E \to \mathbb{R}$$

$$(A,B) \mapsto Tr({}^{t}AB)$$

-
$$E = M_n(\mathbb{R}), \ \varphi : E \times E \to \mathbb{R}$$

 $(A,B) \mapsto Tr({}^tAB)$

D) Comparaison des normes

Problème:

Soit E un espace vectoriel muni de deux normes N_1 , N_2 . On a donc deux espaces vectoriels normés (E, N_1) et (E, N_2) .

A quelle condition une suite de E qui converge dans (E, N_1) converge t'elle dans (E, N_2) et réciproquement ?

Théorème:

Une condition nécessaire et suffisante pour qu'une suite convergente dans (E, N_1) soit convergente dans (E, N_2) est qu'il existe k > 0 tel que $N_2 \le kN_1$.

On dit alors que N_1 est plus fine que N_2 , et on note $N_1 \prec N_2$.

Démonstration:

Condition suffisante:

Soit k > 0 tel que $N_2 \le kN_1$ et $(u_n)_{n \in \mathbb{N}}$ une suite de E telle que $u \xrightarrow{(E,N_1)} l \in E$.

Montrons qu'alors $u \xrightarrow{(E,N_2)} l$.

Pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Rightarrow N_1(u_n - l) \le \frac{\varepsilon}{k}$

Donc, pour $n \ge n_0$, $N_2(u_n - l) \le kN_1(u_n - l) \le \varepsilon$

Condition nécessaire :

Supposons que non $(\exists k > 0, N_2 \le kN_1)$

Alors, pour tout $n \in \mathbb{N}$, il existe $x_n \in E$ tel que $N_2(x_n) > 3^n N_1(x_n)$ (et $x_n \neq 0$)

Posons alors
$$y_n = \frac{2^n}{N_2(x_n)} x_n$$

Alors la suite $(y_n)_{n\in\mathbb{N}}$ converge dans (E, N_1) car:

$$\forall n \in \mathbb{N}, N_1(y_n) = \frac{2^n}{N_2(x_n)} N_1(x_n) < \frac{2^n}{N_2(x_n)} \frac{N_2(x_n)}{3^n} = \left(\frac{2}{3}\right)^n$$

Et elle ne converge pas dans (E, N_2) :

$$N_2(y_n) = \frac{2^n}{N_2(x_n)} N_2(x_n) = 2^n$$

Donc $N_2(y_n) \to +\infty$, et $(y_n)_{n \in \mathbb{N}}$ n'est pas bornée, don non convergente.

L'ensemble des normes sur E est « presque » ordonné par la relation \prec (relation de préordre), c'est-à-dire qu'elle est :

- Réflexive $N \prec N$

- Transitive
$$\frac{N_1 \prec N_2}{N_2 \prec N_3} \Longrightarrow N_1 \prec N_3$$

On définit la relation d'équivalence des normes par :

$$N_1 \sim N_2 \iff N_1 \prec N_2 \text{ et } N_2 \prec N_1$$

$$\Leftrightarrow \exists (k,k') \in \mathbb{R}_{+}^{*^2}, kN_1 \leq N_2 \leq k'N_1$$

Deux normes équivalentes définissent les mêmes notions de convergence de suites.

Exemple:

• $E = \mathbb{R}^2$, normes N_1, N_2, N_{∞} . On a $N_1 \sim N_2 \sim N_{\infty}$.

En effet

-
$$N_1(x, y)^2 = (|x| + |y|)^2 = x^2 + 2|x||y| + y^2 \le x^2 + (x^2 + y^2) + y^2$$

Donc
$$N_1(x, y) \le \sqrt{2} \sqrt{x^2 + y^2} = \sqrt{2} N_2(x, y)$$
, c'est-à-dire $N_2 \prec N_1$

-
$$N_2(x, y) = \sqrt{x^2 + y^2} \le \sqrt{\sup(|x|, |y|)^2 + \sup(|x|, |y|)^2} \le N_\infty(x, y)$$

Donc $N_{\infty} \prec N_2$

$$- N_{\infty}(x, y) = \sup(|x|, |y|) \le |x| + |y| = N_{1}(x, y)$$

Donc $N_1 \prec N_{\infty}$

- Ainsi, $N_1 \prec N_\infty \prec N_2 \prec N_1$, d'où l'équivalence des trois normes.

• $E = C([a,b],\mathbb{R})$ muni de N_1, N_2, N_{∞}

On a:

$$N_1(f) \leq (b-a)N_{\infty}(f)$$

$$N_2(f) \le \sqrt{b-a} N_{\infty}(f)$$

$$N_1(f) = \varphi(1,|f|) \le N_2(1)N_2(f) \le \sqrt{b-a}N_2(f)$$

Donc $N_{\infty} \prec N_2 \prec N_1$

Mais ces normes ne sont pas équivalentes :

On pose, pour $n \in \mathbb{N}$, $f_n : [a,b] \to \mathbb{R}$. Alors:

$$x \mapsto \left(\frac{t-a}{b-a}\right)^n$$

$$N_1(f_n) = \int_a^b |f_n(t)| dt = \int_a^b \left(\frac{t-a}{b-a}\right)^n dt = \int_0^1 u^n (b-a) du = \frac{b-a}{n+1}$$

$$N_2(f_n) = \sqrt{\int_a^b f_n(t)^2 dt} = \sqrt{(b-a) \int_0^1 x^{2n} dt} = \frac{b-a}{\sqrt{2n+1}}$$

$$N_{\infty}(f_n) = \sup_{[a,b]} |f_n| = 1$$

Supposons que $N_2 \prec N_{\infty}$. Alors il existe k > 0 tel que $\forall f \in E, N_{\infty}(f) \leq kN_2(f)$,

c'est-à-dire pour
$$f \neq 0$$
 $\frac{N_{\infty}(f)}{N_{2}(f)} \leq k$

Or,
$$\forall n \in \mathbb{N}, \frac{N_{\infty}(f)}{N_2(f)} = \frac{\sqrt{2n+1}}{b-a} \to +\infty$$
. On a donc une contradiction

De même, $N_1 \not\prec N_2$ et $N_1 \not\prec N_m$

II Compléments sur la topologie élémentaire

A) Distance, espace métrique

Définition:

Soit A un ensemble quelconque.

On appelle distance sur A toute application $d: A \times A \to \mathbb{R}$ telle que :

$$(1) \ \forall (x,y) \in A^2, d(x,y) \ge 0$$

$$(2) \forall (x, y) \in A^2, d(x, y) = 0 \Leftrightarrow x = y$$

$$(3) \forall (x,y) \in A^2, d(x,y) = d(y,x)$$

$$(4) \,\forall (x, y, z) \in A^3, d(x, z) \leq d(x, y) + d(y, z)$$

On appelle espace métrique le couple (A, d), où d est une distance sur A.

Exemples:

(1) Soit A une partie d'un espace vectoriel E.

Alors
$$d: A \times A \to \mathbb{R}$$
 est une distance sur A .
 $(x,y) \mapsto ||x-y||$

(2) Distance induite : Soit (X,d) un espace métrique, et A une partie de X. Alors $d_{A\times A}$ est une distance sur A.

(3) Soit *A* un ensemble.

Alors
$$d: A \times A \to \mathbb{R}$$
 est une distance sur A .
$$(x,y) \mapsto \begin{cases} 0 \text{ si } x = y \\ 1 \text{ sinon} \end{cases}$$

- (4) $A = \mathbb{N}$ muni de la distance induite par la valeur absolue d(n, p) = |n p| est un espace métrique.
- (5) $A = \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. On définit $d(x, y) = |\operatorname{th}(y) \operatorname{th}(x)|$, où on a posé $\operatorname{th}(+\infty) = 1$ et $\operatorname{th}(-\infty) = -1$. Alors d est une distance sur $\overline{\mathbb{R}}$.

Rappel:

Si (A,d) est un espace métrique, on définit naturellement les notions de boule ouverte, fermée, sphère, voisinage d'un point, d'ouvert, de fermé, d'intérieur, d'adhérence...

Vocabulaire:

Soit (A, d) un espace métrique, B une partie de A et $a \in A$ un point adhérent à B.

On appelle voisinage de a dans B toute partie V de B qui contient l'intersection avec B d'une boule ouverte de centre a:

$$V \in V_B(A) \Leftrightarrow \exists r > 0, B \cap B(a,r) \subset V$$

Remarque:

Ici, on n'a pas nécessairement $a \in V$, mais les axiomes des voisinages restent vérifiés.

En particulier, $V \neq \emptyset$ car a est adhérent à B.

Vocabulaire:

On dit qu'une propriété P est vraie « au voisinage de a » lorsqu'il existe un voisinage V de a tel que P est vraie sur V.

Exemple:

Soit $V \subset \mathbb{R}$. On dit que V est un voisinage de $+\infty$ (dans \mathbb{R} vu comme partie de $\overline{\mathbb{R}}$) lorsqu'il existe $M \in \mathbb{R}$ tel que M, $+\infty$ C.

B) Applications lipschitziennes

Définition:

Soit $f: A \to B$ où (A, d_A) et (B, d_B) sont des espaces métriques. On dit que f est lipschitzienne lorsqu'il existe k > 0 tel que $\forall (x, y) \in A^2, d_B(f(x), f(y)) \le kd_A(x, y)$

Théorème:

La composée d'applications lipschitziennes est lipschitzienne.

Démonstration:

Soient $f: A \to B$ k-lipschitzienne, et $g: B \to C$ k'-lipschitzienne.

Alors $\forall (x, y) \in A^2, d_C(g \circ f(x), g \circ f(y)) \le k' d_B(f(x), f(y)) \le k' k d_A(x, y)$

Exemples:

- Soit $f: I \to \mathbb{R}$ de classe C^1 où I est un intervalle de \mathbb{R} .

Alors f est lipschitzienne si et seulement si |f'| est bornée.

Soit (E, N) un evn. Alors N est 1-lipschitzienne : $|N(x) - N(y)| \le N(x - y)$

De même, dans (A,d), d est 1-lipschitzienne. $|d(x,y)-d(y,z)| \le d(x,y)$ (à y fixé)

- Soit E un \mathbb{K} -ev, deux normes N_1, N_2 sur E. Alors:

 $N_1 \prec N_2 \Leftrightarrow \mathrm{Id}_E : (E, N_1) \to (E, N_2)$ est lipschitzienne.

Démonstration:

Si $N_1 \prec N_2$, il existe k > 0 tel que $N_2 \le kN_1$.

Donc $\forall (x, y) \in E^2$, $N_2(\text{Id}(x) - \text{Id}(y)) \le kN_1(\text{Id}(x) - \text{Id}(y)) \le kN_1(x - y)$

Réciproquement, si $\operatorname{Id}_E:(E,N_1)\to(E,N_2)$ est lipschitzienne, alors il existe k>0 tel que $\forall (x,y)\in E^2, N_2(\operatorname{Id}(x)-\operatorname{Id}(y))\leq kN_1(x-y)$, et donc $\forall x\in E,N_2(x)\leq kN_1(x)$ (avec y=0), c'est-à-dire $N_1\prec N_2$.

C) Propriétés algébriques des limites

On fixe dans toute la suite E un evn, A une partie de E, a un point adhérent à A, et F un evn.

Rappel:

Soient $f: A \to F$, $b \in F$. On dit que f admet b pour limite en a lorsque:

$$\forall V \in V_{\scriptscriptstyle F}(b), \exists U \in V_{\scriptscriptstyle A}(a), f(U) \subset V$$

Généralisation de la notion de limite :

Si A est une partie non majorée de \mathbb{R} , on dit que $f \rightarrow b$ lorsque :

$$\forall V \in V_F(b), \exists U \in V_A(+\infty), f(U) \subset V$$

Idem pour $-\infty$.

On définit de même $f \rightarrow \pm \infty$

Enfin, si A=E, et pour un point b de F, on dit que $f\xrightarrow{\|x\|\to +\infty} b$ lorsque :

 $\forall V \in V_F(b), \exists M \ge 0, \forall x \in E, ||x|| \ge M \Rightarrow f(x) \subset V$

Ou encore : $\forall \varepsilon > 0, \exists M \ge 0, \forall x \in E, ||x|| \ge M \Rightarrow ||f(x) - b|| \le \varepsilon$

Définition:

On suppose que $a \notin A$. Soit $f: A \to F$ une application. On dit que f est prolongeable par continuité en a s'il existe une application $\bar{f}: A \cup \{a\} \to F$ continue en a et telle que $\bar{f}_{/A} = f$.

Théorème:

 $f: A \to F$ est prolongeable par continuité en a si et seulement si f admet une limite en a, auquel cas ce prolongement \bar{f} est unique, et $\bar{f}(a) = \lim_{x \to a} f(x)$.

Chapitre 3 : Topologie des espaces vectoriels normés Suites et fonctions

Démonstration:

 \Rightarrow soit \bar{f} un prolongement par continuité de f en a.

Posons
$$b = \bar{f}(a)$$
, et soit $V \in V_F(b)$

Comme \bar{f} est continue en a, il existe $U \in V_{A \cup \{a\}}(a)$ tel que $\bar{f}(U) \subset V$

Mais $U \setminus \{a\}$ est un voisinage de a dans A, et $f(U \setminus \{a\}) = \bar{f}(U \setminus \{a\}) \subset V$

Donc
$$\forall V \in V_F(b), \exists U \in V_A(a), f(U) \subset V$$
.

Donc
$$f \underset{V_A(a)}{\longrightarrow} b$$
. Ainsi, $\bar{f}(a) = \lim_{x \to a} f(x)$

$$\Leftarrow \text{ Si } f \xrightarrow{A} b, \text{ alors } \bar{f} : A \cup \{a\} \to F \\ x \mapsto \begin{cases} f(x) \text{ si } x \neq a \\ b \text{ si } x = a \end{cases} \text{ est continue en } a \text{ (même)}$$

raisonnement que précédemment), et coïncide avec f sur A.

Théorème:

Soit $f: A \to F$. Les propositions suivantes sont équivalentes :

- (1) f a une limite en a.
- (2) Pour toute suite u de A qui converge vers a, $(f(u_n))_{n\in\mathbb{N}}$ converge dans F.

Démonstration :

- $(1) \Rightarrow (2)$: déjà vu.
- $(2) \Rightarrow (1)$: supposons (2), montrons que la limite de $(f(u_n))_{n \in \mathbb{N}}$ ne dépend pas du choix de u.

Soient $u, v \in A^{\mathbb{N}}$ telles que $u \to a$ et $v \to a$.

Notons
$$b = \lim_{n \to +\infty} f(u_n)$$
 et $c = \lim_{n \to +\infty} f(v_n)$.

On définit alors
$$w_n = \begin{cases} w_{2n} = u_n \\ w_{2n+1} = v_n \end{cases}$$
. Alors clairement $w \xrightarrow[+\infty]{} a$.

Donc $(f(w_n))_{n \in \mathbb{N}}$ converge dans F.

En particulier,
$$f(w_{2n+1}) - f(w_{2n}) \xrightarrow[n \to +\infty]{} 0$$
, c'est-à-dire $f(v_n) - f(u_n) \xrightarrow[n \to +\infty]{} 0$

Donc
$$\lim_{n\to+\infty} f(v_n) = \lim_{n\to+\infty} f(u_n)$$

Ainsi, pour tout
$$v \in A^{\mathbb{N}}$$
 tel que $v \to a$, on a $f(v_n) \xrightarrow[n \to +\infty]{} b$. Donc $f \xrightarrow[a]{} b$.

Donc f a une limite en a.

Théorème : propriétés opératoires classiques

• Soient $\hat{f}: \hat{A} \to F$ et $g: A \to F$ tels que $f \to l$ et $g \to m$.

Soient $(\lambda, \mu) \in \mathbb{K}^2$. Alors $\lambda f + \mu g \xrightarrow{a} \lambda l + \mu m$

• Soient $f: A \to F$ et $\alpha: A \to \mathbb{K}$.

Si
$$f \xrightarrow{a} l$$
 et $\alpha \xrightarrow{a} \lambda$, alors $\alpha f \xrightarrow{a} \lambda l$.

• Soient $f: A \to B$ et $g: A \to B$ où B est une \mathbb{K} -algèbre normée.

Si
$$f \xrightarrow{a} l$$
 et $g \xrightarrow{a} m$, alors $fg \xrightarrow{a} lm$.

Démonstration : par caractérisation séquentielle des limites : (2^{ème} point)

Supposons que $f \rightarrow l$ et $\alpha \rightarrow \lambda$.

Soit $u \in A^{\mathbb{N}}$ qui converge vers a.

Alors $f(u) \xrightarrow[+\infty]{} l$ et $\alpha(u) \xrightarrow[+\infty]{} \lambda$

Donc $\alpha(u) f(u) \xrightarrow{+\infty} \lambda l$.

Comme c'est valable pour toute suite de A qui converge vers a, on a bien $\alpha f \to \lambda l$.

Théorème:

Soient $B \subset F$, et $f: A \to F$ telle que $f(A) \subset B$.

Soit G un evn, et $g: B \to G$.

Si f admet une limite b en a, alors $b \in \overline{B}$. Si de plus g admet en b une limite $c \in G$, alors $g \circ f$ admet en a la limite c.

Démonstration : toujours la caractérisation séquentielle des limites.

D) Relations de comparaison

Définition:

Soient E un evn, $u, v \in E^{\mathbb{N}}$ et $\alpha \in \mathbb{R}_{+}^{\mathbb{N}}$

(1) Prépondérance:

On dit que u est négligeable devant α , et on note $u = o(\alpha)$, lorsque :

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, ||u_n|| \leq \varepsilon \alpha_n$

(2) Domination:

On dit que u est dominée par α , et on note $u = O(\alpha)$ lorsque :

 $\exists A > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, ||u_n|| \leq A \alpha_n$

(3) Equivalence:

On dit que u et v sont équivalentes, et on note $u \sim v$ lorsque u - v = o(||u||).

En pratique :

Si $\alpha_n > 0$ à partir d'un certain rang, on a les équivalences :

$$u_n = \underset{n \to +\infty}{o} (\alpha_n) \Leftrightarrow \frac{u_n}{\alpha_n} \xrightarrow[n \to +\infty]{} 0$$

$$u_n = \underset{n \to +\infty}{O}(\alpha_n) \Leftrightarrow \frac{u_n}{\alpha_n}$$
 est bornée.

Théorème :

Soient $u \in E^{\mathbb{N}}$ et $\alpha \in \mathbb{R}_{+}^{\mathbb{N}}$. Alors :

- (1) u est négligeable devant α si et seulement si il existe $n_0 \in \mathbb{N}$ et une suite $(w_n)_{n \geq n_0}$ de E tels que $w_n \xrightarrow[n \to +\infty]{} 0$ et $\forall n \geq n_0, u_n = \alpha_n w_n$.
- (2) u est dominée par α si et seulement si il existe $n_0 \in \mathbb{N}$ et une suite $(w_n)_{n \ge n_0}$ bornée de E tels que $\forall n \ge n_0, u_n = \alpha_n w_n$

Démonstration : voir cours de sup

Théorème:

La relation $\underset{n\to+\infty}{\sim}$ est une relation d'équivalence.

Démonstration pour la symétrie :

Si
$$u_n - v_n = o(\|u_n\|)$$
, comme $\|u_n\| - \|v_n\| \le \|u_n - v_n\|$, on a $\|u_n\| - \|v_n\| = o(\|u_n\|)$

Donc, à partir d'un certain rang, $||u_n|| - ||v_n||| \le \frac{1}{2} ||u_n||$, soit $\frac{1}{2} ||u_n|| \le ||v_n|| \le \frac{3}{2} ||u_n||$

Donc $u_n - v_n = o(||v_n||)$, c'est-à-dire $v \sim u$.

Définition:

Soit A une partie d'un evn E, $a \in \overline{A}$, $f: A \to F$, $g: A \to F$ où F est un evn, et $\varphi: A \to \mathbb{R}^+$. Alors :

$$(1) \ f = \underset{V_A(a)}{o}(\varphi) \Leftrightarrow \forall \varepsilon > 0, \exists U \in V_A(a), \forall x \in U, \|f(x)\| \le \varepsilon \varphi(x)$$

(2)
$$f = \underset{V_A(a)}{O}(\varphi) \Leftrightarrow \exists A > 0, \exists U \in V_A(a), \forall x \in U, ||f(x)|| \le A\varphi(x)$$

(3)
$$f \sim g \Leftrightarrow f - g = o(\|f\|)$$

En pratique:

Si $\varphi(x) > 0$ au voisinage de a,

$$- f(x) = \underset{x \in A}{o} (\varphi(x)) \text{ équivaut à } \frac{1}{\varphi(x)} f(x) \xrightarrow{a} 0$$

-
$$f(x) = \mathop{O}_{x \to a \atop x \neq a}(\varphi(x))$$
 équivaut à $\frac{1}{\varphi(x)} f(x)$ est borné au voisinage de a .

Théorème:

Avec les notations précédentes,

- (1) $f = \underset{V_a(a)}{o}(\varphi)$ si et seulement si il existe un voisinage V de A et $h: V \to F$ de limite nulle en a tels que $\forall x \in V, f(x) = \varphi(x)h(x)$
- (2) $f = \underset{V_a(a)}{O}(\varphi)$ si et seulement si il existe $V \in V_A(a)$ et $h: V \to F$ bornée tels que $\forall x \in V, f(x) = \varphi(x)h(x)$

Théorème:

 $\underset{x \to a}{\sim}$ est une relation d'équivalence.

E) Continuité globale

Rappel:

Soit A une partie d'un evn E, F un evn et $f: A \to F$. On dit que f est continue sur A si f est continue en tout point de A.

Définition:

Si B est une partie de A, on dit que f est continue sur B si $f_{/B}$ est continue.

Attention : ça n'équivaut pas à dire que f est continue en tout point de B.

Théorème:

Avec les notations précédentes, on a l'équivalence :

- (1) f est continue en A
- (2) Pour toute suite $(u_n)_{n\in\mathbb{N}}$ de A qui converge (dans A), la suite $(f(u_n))_{n\in\mathbb{N}}$ converge dans F.

Démonstration:

C'est le théorème équivalent sur la continuité en un point pour tous les points de A.

Théorème (propriétés opératoires):

- Toute combinaison linéaire de fonctions continues est continue.
- Si $\alpha: A \to \mathbb{K}$ et $f: A \to F$ sont continues, alors αf est continue.
- Si $f: A \to B$ et $g: A \to B$ où B est une algèbre normée sont continues, alors fg est continue.
- Soient $f: A \to F$, B une partie de F contenant f(A), $g: B \to G$ où G est un evn. Si f et g sont continues, alors $g \circ f: A \to G$ est continue.

Démonstration:

Conséquence du théorème du paragraphe précédent sur les fonctions continues en un point.

Théorème:

Soient F, G, H des evn, $\varphi: F \times G \to H$ une application bilinéaire continue, $f: A \to F$ et $g: A \to G$ continues. Alors $h: A \to H$ est continue sur A.

(Où on a muni $F \times G$ de la norme produit $N_{F \times G}(x, y) = \sup(N_F(x), N_G(y))$)

Démonstration:

Caractérisation séquentielle.

F) Continuité globale : propriétés topologiques

Rappel:

Deux applications continues qui coïncident sur une partie dense sont égales.

L'image réciproque d'un ouvert (resp. fermé) par une application continue est un ouvert (resp. fermé)

G) Topologie et produits cartésiens

Soient (E, N_E) et (F, N_F) deux evn. On munit $E \times F$ de la norme définie par $\forall (x, y) \in E \times F, N_{F \times G}(x, y) = \sup(N_F(x), N_G(y))$

Proposition:

Soient $(x, y) \in E \times F$, r > 0.

Chapitre 3 : Topologie des espaces vectoriels normés Suites et fonctions

Alors
$$B_{E\times F}((x,y),r) = B_E(x,r)\times B_F(y,r)$$
.

En effet

$$||(x', y') - (x, y)|| < r \Leftrightarrow \sup(||x' - x||, ||y' - y||) < r$$

$$\Leftrightarrow \begin{cases} ||x' - x|| < r \\ ||y' - y|| < r \end{cases}$$

Théorème:

Si O_1 et O_2 sont deux ouverts de E et F, alors $O_1 \times O_2$ est un ouvert de $E \times F$

Démonstration:

Soit $(x, y) \in O_1 \times O_2$

Il existe alors $r_1 > 0$ et $r_2 > 0$ tels que $B(x, r_1) \subset O_1$ et $B(y, r_2) \subset O_2$.

En posant $r = \min(r_1, r_2)$, $B((x, y), r) = B(x, r) \times B(y, r) \subset O_1 \times O_2$.

Théorème:

Si F_1 et F_2 sont des fermés de E et F, alors $F_1 \times F_2$ est un fermé de $E \times F$.

Démonstration :

Posons $O_1 = C_E F_1$ et $O_2 = C_E F_2$. Alors O_1 et O_2 sont ouverts, et :

$$C_{E \times F}(F_1 \times F_2) = \underbrace{(O_1 \times F)}_{\text{ouvert}} \cup \underbrace{(E \times O_2)}_{\text{ouvert}}, \text{ donc } C_{E \times F}(F_1 \times F_2) \text{ est ouvert, et } F_1 \times F_2 \text{ est}$$

un fermé de $E \times F$.

Théorème:

Si $f: A \to F \times G$ est une application (où A est une partie d'un evn E, et où F et G sont des evn), alors f est continue si et seulement si $f_1: A \to F$ et $f_2: A \to G$ sont continues, où f_1 et f_2 sont les applications composantes de f.

Démonstration : caractérisation séquentielle.

III Continuité des applications linéaires et bilinéaires

A) Continuité des applications linéaires

Théorème:

Soient E et F deux evn munis des normes N et N' (qu'on notera $\| \|$), et $f: E \to F$ une application linéaire. Alors f est continue sur E si et seulement si elle l'est en 0.

Démonstration :

Le premier sens est déjà évident (si une application est continue sur E, elle l'est en particulier en 0).

Supposons maintenant f continue en 0.

Soit $x \in E$. Pour tout $y \in E$, on a ||f(x) - f(y)|| = ||f(x - y)||.

Pour tout $\varepsilon > 0$, il existe r > 0 tel que $\forall z \in E, ||z|| < r \Rightarrow ||f(z)|| \le \varepsilon$

Donc $\forall y \in E, ||y-x|| < r \Rightarrow ||f(x)-f(y)|| \le \varepsilon$. Donc f est continue en x.

D'où la continuité de f sur E.

Chapitre 3 : Topologie des espaces vectoriels normés Suites et fonctions Théorème:

Soient (E, N) et (F, N') des evn, $f: E \to F$ une application linéaire.

Les propriétés suivantes sont équivalentes :

- (1) f est continue
- (2) f est lipschitzienne
- (3) Il existe k > 0 tel que $\forall x \in E, N'(f(x)) \le kN(x)$.

Démonstration:

 $(3) \Rightarrow (2)$: Supposons (3);

Pour tout $(x, y) \in E^2$, on a alors $N'(f(y) - f(x)) = N'(f(y - x)) \le kN(x - y)$.

 $(2) \Rightarrow (1)$: c'est vrai même pour une application non linéaire.

 $(1) \Rightarrow (3)$: Supposons (1). Ainsi, f est continue en 0.

Soit $\varepsilon > 0$. Il existe r > 0 tel que $\forall x \in E, N(x) \le r \Rightarrow N'(f(x)) \le \varepsilon$

Pour tout $y \in E \setminus \{0\}$, on pose $x = \frac{r}{N(y)}y$. On a alors N(x) = r.

Donc
$$N'(f(x)) \le \varepsilon$$
. D'où $N'(f(y)) = N'\left(\frac{N(y)}{r}f(x)\right) = \frac{N(y)}{r}N'(f(x))$

Donc $N'(f(y)) \le \frac{\mathcal{E}}{r} N(y)$, d'où (3) avec $k = \frac{\mathcal{E}}{r}$ (l'inégalité est vraie aussi pour y = 0)

Application: comparaison des normes.

Théorème:

Soient N_1 , N_2 deux normes sur E. Alors :

- (1) $N_1 \prec N_2 \Leftrightarrow \operatorname{Id}_E : (E, N_1) \to (E, N_2)$ est continue.
- (2) $N_1 \sim N_2 \Leftrightarrow \mathrm{Id}_E : (E, N_1) \to (E, N_2)$ est un homéomorphisme linéaire.

Démonstration:

On a déjà vu que $N_1 \prec N_2 \Leftrightarrow \operatorname{Id}_E : (E, N_1) \to (E, N_2)$ est lipschitzienne.

Corollaire:

Si $N_1 \sim N_2$, alors (E, N_1) et (E, N_2) on les mêmes ouverts, les mêmes fermés (la même topologie : voisinages, limites,...)

Démonstration:

Si Ω est un ouvert de (E, N_1) , alors $\Omega = \operatorname{Id}_E^{-1}(\Omega)$ est un ouvert de (E, N_2) car $\operatorname{Id}_E : (E, N_2) \to (E, N_1)$.

B) Norme d'une application linéaire continue

Théorème:

L'ensemble $L_C(E,F)$ des applications linéaires continues de l'evn (E,N) dans (F,N') est un sous-espace vectoriel de L(E,F).

De plus, l'application $\| \| : L_C(E,F) \to \mathbb{R}$ est une norme sur $L_C(E,F)$, $f \mapsto \sup_{N(x) \le 1} N'(f(x))$

appelée norme subordonnée aux normes N et N'.

Démonstration:

- Déjà, $0 \in L_C(E, F)$
- Pour tous $f, g \in L_C(E, F)$ k et k' lipschitziennes, pour tous $\lambda, \mu \in \mathbb{K}^2$ et pour tout $x \in E$,

Comme
$$\begin{cases} ||f(x)|| \le k||x|| \\ ||g(x)|| \le k'||x|| \end{cases}$$
, on a alors $||(\lambda f + \mu g)(x)|| \le (|\lambda|k + |\mu|k')||x||$.

Donc $\lambda f + \mu g$ est continue

- $\bullet \quad$ Montrons maintenant que $\| \ \| \$ est une norme :
- (1) $\forall f \in L_C(E, F), ||f|| \ge 0$
- (2) Soit $f \in L_C(E, F)$, supposons que ||f|| = 0.

Alors, pour
$$y \in E \setminus \{0\}$$
, posons $x = \frac{1}{N(y)}y$.

Ainsi, $N'(f(x)) \le ||f|| = 0$. Donc f(x) = 0, et f(y) = 0 par linéarité.

Donc $\forall y \in E \setminus \{0\} \forall y \in E \setminus \{0\}, f(y) = 0$.

De plus, f(0) = 0.

Donc f = 0

(3) Par le calcul précédent, pour $f \in L_{\mathcal{C}}(E,F)$:

On a, pour tout $x \in \overline{B}(0,1)$, $N'(\lambda f(x)) = |\lambda| N'(f(x))$

Donc en passant au sup, $\|\lambda f\| = |\lambda| \|f\|$.

(4) De même, pour $f, g \in L_C(E, F)$ et pour $x \in \overline{B}(0,1)$:

$$N'(f(x)+g(x)) \le N'(f(x))+N'(g(x)) \le |||f||+||g||$$

D'où
$$||f+g|| \le ||f|| + ||g||$$

Théorème:

Soit $f \in L_C(E, F)$, où E et F sont deux evn.

Alors
$$\forall x \in E, ||f(x)|| \le |||f||||x||$$
.

Démonstration :

Si on pose, pour
$$x \neq 0$$
, $y = \frac{x}{\|x\|}$, on a alors $\|y\| = 1$,

donc
$$||f(x)|| = ||x|| . ||f(y)|| \le |||f||||x||$$

Théorème:

Pour $f \in L_{\mathbb{C}}(E,F)$ où E et F sont deux evn, on a :

$$|||f|| = \sup_{\|x\| \le 1} ||f(x)|| = \sup_{\|x\| = 1} ||f(x)|| = \sup_{x \in E \setminus \{0\}} \frac{||f(x)||}{\|x\|}$$

Démonstration:

- Montrons que $\sup_{\|x\| \le 1} \|f(x)\| \le \sup_{\|x\| = 1} \|f(x)\|$.

On a, pour $x \in E$ tel que $||x|| \le 1$:

Soit
$$x = 0$$
, et $||f(0)|| = 0 \le \sup_{\|y\|=1} ||f(y)||$

Soit
$$x \neq 0$$
 et $x = ||x|| \underbrace{\left(\frac{1}{||x||}x\right)}_{\text{normal}}$

Donc
$$||f(x)|| = ||x|| \int_{\le 1} \int_{=\infty}^{\infty} \int_{=\infty}^{\infty} \int_{=\infty}^{\infty} ||f(y)|| \le \sup_{\|y\|=1} ||f(y)||$$

D'où l'inégalité en passant au sup.

- Montrons que $\sup_{\|x\|=1} \|f(x)\| \le \sup_{x \in E \setminus \{0\}} \frac{\|f(x)\|}{\|x\|}$

On a $\sup_{\|x\|=1} \|f(x)\| = \sup_{\|x\|=1} \frac{\|f(x)\|}{\|x\|}$, et $\{x \in E, \|x\|=1\} \subset E \setminus \{0\}$ d'où l'inégalité.

- Enfin, l'inégalité $\sup_{x \in E \setminus \{0\}} \frac{\|f(x)\|}{\|x\|} \le \|f\|$ résulte du théorème précédent.

Théorème:

Soient E, F, G des evn. Si $f: E \to F$ et $g: F \to G$ sont des applications linéaires continues, alors $g \circ f$ est une application linéaire continue, et de plus $\|g \circ f\| \le \|g\| \|f\|$.

Démonstration:

Déjà, $g \circ f$ est linéaire puisque composée d'applications linéaires, et continue car composée d'applications continue.

Pour tout $x \in E$, on a $||(g \circ f)(x)|| = ||g(f(x))|| \le ||g|| ||f(x)|| = ||f(x)||$

Donc
$$||g \circ f|| = \sup_{x \in E \setminus \{0\}} \frac{||(g \circ f)(x)||}{||x||} \le ||g|||||f|||.$$

Théorème:

Soit E un evn. $L_C(E)$, algèbre des endomorphismes continus de E, est une algèbre unitaire normée (pour $\| \cdot \| \cdot \|$)

Démonstration:

Déjà,
$$\operatorname{Id}_{E} \in L_{C}(E)$$
, et $\|\operatorname{Id}_{E}\| = 1$.

On a de plus les autres résultats d'après les théorèmes précédents.

Donc $L_{\mathbb{C}}(E)$ est unitaire, et $\| \| \|$ est une norme d'algèbre unitaire.

Définition :

L'espace $E' = L_C(E, \mathbb{K})$ est appelé le dual topologique de E.

Attention: à priori, $E' \neq E^*$.

Exemple:

$$E = C([a,b],\mathbb{R})$$
, norme $\| \cdot \|_{\infty}$.

- Soit $c \in [a,b]$, et $\varphi_c : E \to \mathbb{R}$. Alors φ_c est une forme linéaire continue, et $\|\boldsymbol{\varphi}_{c}\| = 1$.

En effet:

Déjà φ_c est une forme linéaire.

Pour
$$f \in E$$
, on a $|\varphi_c(f)| = |f(c)| \le N_{\infty}(f)$, donc φ_c est continue, et $||\varphi_c|| \le 1$

De plus, il existe $f \in E$ à valeurs positives et atteignant son maximum 1 en c (par exemple la fonction constante égale à 1)

Donc
$$|\varphi_c(f)| = 1$$
, et $||\varphi_c|| \ge 1$.

Donc
$$\|\boldsymbol{\varphi}_c\| = 1$$
.

- On pose $I:E \to \mathbb{R}$. Alors I est une forme linéaire continue, et $f \mapsto \int_0^b f(t) dt$

$$||I||=b-a$$
.

En effet:

$$\left|I(f)\right| = \left|\int_a^b f(t)dt\right| \le \int_a^b \left|f(t)\right|dt \le \int_a^b N_\infty(f)dt \le (b-a)N_\infty(f)$$

Donc déjà I est continue et $||I|| \le b-a$, et si on prend f=1, on obtient |I(f)| = b - a, donc ||I|| = b - a.

- On munit maintenant E de la norme $\| \cdot \|_{1}$.

Alors *I* est encore continue, et ||I|| = 1:

$$|I(f)| \le N_1(f)$$
 donc I est continue, et $||I|| \le 1$

Et
$$|I(\widetilde{1})| = b - a = N_1(\widetilde{1})$$
 donc $||I|| = \sup_{f \neq 0} \frac{|I(f)|}{N_1(f)} \ge 1$

- Mais φ_c n'est plus continue :

On va chercher une suite $(f_n)_{n \in \mathbb{N}}$ de $E \setminus \{0\}$ telle que $\frac{|\varphi_c(f_n)|}{N(f)} \xrightarrow[n \to +\infty]{} +\infty$.

On pose, pour
$$n \in \mathbb{N}$$
, $f_n : [a,b] \to \mathbb{R}$

$$t \mapsto \begin{cases} 0 \text{ si } |t-c| \ge 1/2^n \\ 1-2^n |t-c| \text{ sinon} \end{cases}$$

Alors pour tout $n \in \mathbb{N}$, f_n est continue, et:

$$N_1(f_n) = \int_a^b |f_n(t)| dt \le \int_{c-1/2^n}^{c+1/2^n} 1 - 2^n |t - c| dt \le \frac{1}{2^n}$$

D'où
$$\frac{|\varphi_c(f_n)|}{N_1(f_n)} \ge 2^n \xrightarrow[n \to +\infty]{} +\infty$$
.

Donc il n'existe pas k > 0 tel que $\forall f \in E, |\varphi_c(f_n)| \le kN_1(f_n)$, donc φ_c n'est pas continue.

C) Applications bilinéaires

Théorème:

Soient E, F, G des evn, on munit $E \times F$ de la norme produit $\sup(N_E, N_F)$. (On note dans la suite toutes les normes $\| \cdot \|$; ce qui est à l'intérieur permet de distinguer)

Alors une application $\varphi: E \times F \to G$ bilinéaire est continue si et seulement si il existe k > 0 tel que $\forall x \in E, \forall y \in F, \|\varphi(x, y)\| \le k \|x\| \|y\|$.

Dans ce cas, φ est lipschitzienne sur toute partie bornée de $E \times F$.

Démonstration:

• Si φ est continue, alors elle l'est en particulier en 0.

Soit $\varepsilon > 0$. Il existe alors r > 0 tel que $\forall (x, y) \in E \times F, \frac{\|x\| \le r}{\|y\| \le r} \Rightarrow \|\varphi(x, y)\| \le \varepsilon$.

Pour $(x, y) \in E \times F$ non nuls, on pose $x' = \frac{r}{\|x\|} x$ et $y' = \frac{r}{\|y\|} y$.

Alors ||x'|| = ||y'|| = r. Ainsi:

$$\|\varphi(x,y)\| = \frac{\|x\|\|y\|}{r^2} \|\varphi(x',y')\| \le \frac{\varepsilon}{r^2} \|x\|\|y\|.$$

• Supposons qu'il existe k > 0 tel que $\forall x \in E, \forall y \in F, \|\varphi(x, y)\| \le k \|x\| \|y\|$.

Soit A une partie bornée de $E \times F$, disons $A_E \times A_F$. Soit M > 0 tel que $\forall (x,y) \in A_E \times A_F$, $\|(x,y)\| \leq M$ (c'est-à-dire tel que $B_f((0,0),M) \subset A$)

Soient alors $(x, y), (x', y') \in A_E \times A_F$ (ainsi, $||(x, y)|| \le M$ et $||(x', y')|| \le M$)

Alors:

$$\begin{aligned} \|\varphi(x',y') - \varphi(x,y)\| &\leq \|\varphi(x',y') - \varphi(x',y)\| + \|\varphi(x',y) - \varphi(x,y)\| \\ &\leq \|\varphi(x',y'-y)\| + \|\varphi(x'-x,y)\| \\ &\leq kM\|y'-y\| + kM\|x'-x\| \\ &\leq 2kM\|(x',y') - (x,y)\| \end{aligned}$$

Donc φ est lipschitzienne sur A. Donc φ est lipschitzienne sur toute partie bornée de $E \times F$. Soit maintenant $(x, y) \in E \times F$:

Alors φ est lipschitzienne sur B((x, y), 1), donc continue sur cette boule, et en particulier, comme B((x, y), 1) est un voisinage de (x, y), φ est continue en (x, y).

Remarque:

Le résultat se généralise à des applications *p*-linéaires.

Exemples:

- (1) $\mathbb{K} \times E \to E$ où E est un \mathbb{K} -evn est bilinéaire continue (avec k = 1). $(\lambda, x) \mapsto \lambda x$
- (2) $A \times A \rightarrow A$ où A est une algèbre normée est bilinéaire continue (avec k = 1) $(x,y) \mapsto xy$
- (3) $L_C(E) \times L_C(E) \rightarrow L_C(E)$ est bilinéaire continue. $(g,f) \mapsto g \circ f$

IV Complétude

A) Espace de Banach, de Hilbert

Rappel:

Soit u une suite d'un evn E. Elle est dite de Cauchy lorsque :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, \forall p \in \mathbb{N}, ||u_{n+p} - u_n|| \le \varepsilon.$$

Alors:

- Si *u* est de Cauchy, alors *u* est bornée.
- Si *u* est convergente, alors elle est de Cauchy, mais la réciproque est fausse ! Exemple :

Soit $E = C([0,1], \mathbb{R})$ muni de N_1 .

On pose, pour $n \in \mathbb{N}$, $f_n : [0,1] \to \mathbb{R}$

$$x \mapsto \begin{cases} 1 \text{ si } x \ge \frac{1}{2} + \frac{1}{2^{n+1}} \\ 0 \text{ si } x \le \frac{1}{2} - \frac{1}{2^{n+1}} \\ \frac{1}{2} + 2^{n} (x - \frac{1}{2}) \text{ sinon} \end{cases}$$

- Alors déjà $\forall n \in \mathbb{N}, f_n \in E$.
- La suite $(f_n)_{n\in\mathbb{N}}$ est de Cauchy dans (E,N_1) :

Pour $n \in \mathbb{N}$ et $p \in \mathbb{N}$, f_{n+p} et f_n coïncident sur $[0, \frac{1}{2} - \frac{1}{2^{n+1}}]$ et $[\frac{1}{2} + \frac{1}{2^{n+1}}, 1]$.

D'où
$$N_1(f_{n+p}-f_n) = \int_0^1 \left| f_{n+p}(t) - f_n(t) \right| dt \le \int_{\frac{1}{2} - \frac{1}{n+1}}^{\frac{1}{2} + \frac{1}{2^{n+1}}} \left| f_{n+p}(t) - f_n(t) \right| dt$$
.

De plus, pour $t \in [0,1]$, $|f_{n+p}(t) - f_n(t)| \le 1$.

Donc
$$N_1(f_{n+p} - f_n) \le \frac{1}{2^n}$$
.

Ainsi, pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $\frac{1}{2^{n_0}} \le \varepsilon$.

Donc pour tout $n \ge n_0$ et tout $p \in \mathbb{N}$, $N_1(f_{n+p} - f_n) \le \varepsilon$.

Donc $(f_n)_{n\in\mathbb{N}}$ est de Cauchy.

- Mais $(f_n)_{n\in\mathbb{N}}$ ne converge pas :

Supposons qu'elle est convergente, disons vers $f \in E$. Soit $\varepsilon > 0$.

Alors f est nulle sur $[0, \frac{1}{2} - \varepsilon]$. En effet :

Soit
$$n_0 \in \mathbb{N}$$
 tel que $\frac{1}{2^{n_0+1}} \le \varepsilon$.

Alors pour $n \ge n_0$, f_n est nulle sur $[0, \frac{1}{2} - \mathcal{E}]$.

Donc
$$N_1(f - f_n) \ge \int_0^{1/2 - \varepsilon} |f(t) - f_n(t)| dt = \int_0^{1/2 - \varepsilon} |f(t)| dt$$

Or,
$$N_1(f-f_n) \xrightarrow[n \to +\infty]{} 0$$
. Donc $\int_0^{1/2-\varepsilon} |f(t)| dt = 0$.

Et, comme f est continue, $f_{/[0,\frac{1}{2}-\varepsilon]} = 0$

D'où comme c'est vrai pour tout $\varepsilon>0$, $f_{/[0,\frac{1}{2}[}=0$ et par continuité $f(\frac{1}{2})=0$.

Par le même raisonnement, on montre que $f_{/[\frac{1}{2},1]}=1$, d'où $f(\frac{1}{2})=1$, ce qui est impossible.

Donc $(f_n)_{n \in \mathbb{N}}$ ne converge pas (dans E)

Définition:

- Un evn E est dit complet si toute suite de Cauchy de E a une limite dans E.
- On appelle espace de Banach tout evn complet, et algèbre de Banach toute algèbre normée complète.
- On appelle espace de Hilbert tout espace préhilbertien complet (pour la norme euclidienne)

Exemples: R et C sont des evn complets.

Définition :

Si X est une partie d'un evn E, on dit que X est complète si toute suite de Cauchy de X converge dans X.

Théorème:

Soit *E* un evn. Toute partie complète de *E* est un fermé de *E*.

Démonstration:

Soit X une partie complète de E, et soit $a \in E$ adhérent à X.

Alors a est limite d'une suite $(x_n)_{n\in\mathbb{N}}$ de X. La suite converge dans E, donc elle est de Cauchy. Par complétude de X, elle admet donc une limite l dans X; par unicité de la limite, a = l. Donc $a \in X$.

Donc X est une partie fermée de E.

Attention : la réciproque est fausse en général.

Théorème:

Toute partie fermée d'un espace de Banach est complète.

Démonstration:

Si X est fermée dans le Banach E, soit $u \in X^{\mathbb{N}}$ de Cauchy.

Alors u admet une limite l dans E, et comme X est fermée, $l \in X$.

Donc *u* converge dans *X*.

B) Exemples à connaître

- \mathbb{R}^n et \mathbb{C}^n sont complets (vu plus tard)
- Théorème :

Soit X un ensemble, et E un espace de Banach.

Alors l'espace B(X, E) muni de la norme N_{∞} est de Banach.

Démonstration :

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy de B(X,E). Alors :

- $(f_n)_{n\in\mathbb{N}}$ est de Cauchy, donc bornée ; soit $M\geq 0$ tel que $\forall n\in\mathbb{N}, N_\infty(f_n)\leq M$.

De plus, pour $x \in X$, on a :

$$\forall n \in \mathbb{N}, \forall p \in \mathbb{N}, \left\| f_{n+p}(x) - f_n(x) \right\| \le N_{\infty} (f_{n+p} - f_n).$$

Or, pour $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \forall p \in \mathbb{N}, N_{\infty}(f_{n+p} - f_n) \le \varepsilon$

On a donc
$$\forall n \ge n_0, \forall p \in \mathbb{N}, ||f_{n+p}(x) - f_n(x)|| \le \varepsilon$$
.

Ainsi, $(f_n(x))_{n\in\mathbb{N}}$ est de Cauchy dans E, donc converge.

On pose alors
$$f: X \to E$$

$$x \mapsto \lim_{n \to +\infty} f_n(x)$$

- On a alors, pour tout $x \in X$, $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$,

Et
$$\forall n \in \mathbb{N}, ||f_n(x)|| \le N_{\infty}(f_n) \le M$$
.

D'où, par passage à la limite, comme $\| \|$ est continue, $\| f(x) \| \le M$

Donc f est bornée sur X (et $N_{\infty}(f) \le M$), donc $f \in B(X, E)$.

- Montrons que $f_n \xrightarrow[n \to +\infty]{} f$.

Soit $\varepsilon > 0$. Il existe alors $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \forall p \in \mathbb{N}, N_{\infty}(f_{n+p} - f_n) \le \varepsilon$.

Soit $x \in X$, et $n \ge n_0$. On a:

$$\forall p \in \mathbb{N}, ||f_{n+p}(x) - f_n(x)|| \le \varepsilon$$

Donc, par passage à la limite quand $p \to +\infty$, $||f(x) - f_n(x)|| \le \varepsilon$.

Comme c'est valable pour tout $x \in X$, on a $\forall n \ge n_0, N_{\infty}(f - f_n) \le \varepsilon$.

Donc $(f_n)_{n\in\mathbb{N}}$ a une limite dans B(X,E) (à savoir f)

Donc B(X, E) est de Banach.

• Théorème :

Soit E un evn, et F un espace de Banach. Alors $L_{\mathbb{C}}(E,F)$ est un espace de Banach.

Démonstration:

Soit
$$(f_n)_{n\in\mathbb{N}}\in L_C(E,F)^{\mathbb{N}}$$
.

- Soit
$$x \in E$$
. On a: $\forall (n, p) \in \mathbb{N}^2, ||f_n(x) - f_p(x)|| \le ||f_n - f_p|| ||x||$.

Soit $\varepsilon > 0$. Comme $(f_n)_{n \in \mathbb{N}}$ est de Cauchy, il existe $n_0 \in \mathbb{N}$ tel que :

$$\forall n \ge n_0, \forall p \in \mathbb{N}, \left\| f_{n+p} - f_n \right\| \le \frac{\mathcal{E}}{\|x\|}$$

Ainsi, pour
$$n \ge n_0$$
 et $p \in \mathbb{N}$, $||f_{n+p}(x) - f_n(x)|| \le ||f_{n+p} - f_n|| ||x|| \le \varepsilon$.

Donc $(f_n(x))_{n\in\mathbb{N}}$ est de Cauchy dans F, donc converge.

On pose alors
$$f: E \to F$$

 $x \mapsto \lim_{n \to +\infty} f_n(x)$

- Montrons que $f \in L_C(E, F)$.

Déjà f est linéaire :

Soient $x, y \in E$ et $\lambda \in \mathbb{K}$; on a, pour tout $n \in \mathbb{N}$, $f_n(x + \lambda y) = f_n(x) + \lambda f_n(y)$.

Donc par passage à la limite $f(x + \lambda y) = f(x) + \lambda f(y)$.

De plus, f est continue :

La suite $(f_n)_{n\in\mathbb{N}}$ est de Cauchy, donc est bornée.

Soit M > 0 tel que $\forall n \in \mathbb{N}, ||f_n|| \le M$.

Alors, pour $x \in E$, on a:

$$\forall n \in \mathbb{N}, ||f_n(x)|| \le |||f_n||| ||x|| \le M ||x||$$

Donc par passage à la limite, $||f(x)|| \le M||x||$.

Donc f est continue.

Donc $f \in L_C(E, F)$.

- Montrons enfin que $f_n \xrightarrow{n \to +\infty} f$:

Soit $\varepsilon > 0$.

Il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \forall p \in \mathbb{N}, |||f_{n+p} - f_n||| \le \varepsilon$.

Alors, pour
$$x \in E$$
, $\forall n \ge n_0, \forall p \in \mathbb{N}, ||f_{n+p}(x) - f_n(x)|| \le ||f_{n+p} - f_n|| ||x|| \le \varepsilon ||x||$

Donc par passage à la limite quand $p \to +\infty$, $\forall n \ge n_0, \|f(x) - f_n(x)\| \le \varepsilon \|x\|$

Ainsi, si
$$x \in E \setminus \{0\}$$
, on a $\forall n \ge n_0$, $\frac{\|f(x) - f_n(x)\|}{\|x\|} \le \varepsilon$

Donc par passage au sup $\forall n \ge n_0, |||f - f_n||| \le \varepsilon$

Donc $(f_n)_{n \in \mathbb{N}}$ converge vers f.

Donc $L_C(E,F)$ est un espace de Banach.

- L'espace $C([a,b],\mathbb{R})$ muni de N_1 n'est pas complet (déjà vu)
- Mais l'espace $C([a,b],\mathbb{R})$ muni de N_{∞} est de Banach (vu plus tard)
- Théorème :

L'espace $l^1(\mathbb{K})$ des suites sommables de $\mathbb{K}(=\mathbb{R} \text{ ou } \mathbb{C})$ muni de N_1 est complet.

Démonstration :

Soit $(u^{(n)})_{n\in\mathbb{N}}$ une suite de Cauchy dans $l^1(\mathbb{K})$.

- Pour
$$n \in \mathbb{N}$$
, on a: $N_1(u^{(n)}) = \sum_{k=0}^{+\infty} |u_k^{(n)}|$.

Donc, pour tout $k \in \mathbb{N}$, $\left|u_k^{(n)}\right| \le N_1(u^{(n)})$.

Donc, de même que pour les théorèmes précédents, $(u_k^{(n)})_{k\in\mathbb{N}}$ est de Cauchy dans \mathbb{K} , donc converge. On pose alors $u:\mathbb{N}\to\mathbb{K}$

$$k \mapsto \lim_{n \to +\infty} u_k^{(n)}$$

- Montrons que $u \in l^1(\mathbb{K})$:

 $(u^{(n)})_{n\in\mathbb{N}}$ est de Cauchy, donc bornée. Soit M>0 tel que $\forall n\in\mathbb{N}, N_1(u^{(n)})\leq M$

Alors, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{+\infty} |u_k^{(n)}| \le M$.

Donc, pour tous $p \in \mathbb{N}$ et $n \in \mathbb{N}$, $\sum_{k=0}^{p} |u_k^{(n)}| \leq M$

Donc par passage à la limite, on a, pour tout $p \in \mathbb{N}$: $\sum_{k=0}^{p} |u_k| \le M$.

Donc $(u_k)_{k \in \mathbb{N}}$ est sommable.

- Montrons maintenant que $u^{(n)} \xrightarrow[n \to +\infty]{} u$.

Soit $\varepsilon > 0$. Soit $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \forall p \in \mathbb{N}, N_1(u^{(n+p)} - u^{(n)}) \le \varepsilon$.

On a alors, pour $q \in \mathbb{N}$ et $n \ge n_0$:

$$\forall p \in \mathbb{N}, \sum_{k=0}^{q} \left| u_k^{(n+p)} - u_k^{(n)} \right| \le N_1 (u^{(n+p)} - u^{(n)}) \le \varepsilon.$$

Donc par passage à la limite, $\sum_{k=0}^{q} |u_k - u_k^{(n)}| \le \varepsilon$

D'où, pour tout
$$n \ge n_0$$
, $N_1(u - u^{(n)}) = \sum_{k=0}^{+\infty} \left| u_k - u_k^{(n)} \right| \le \varepsilon$, c'est-à-dire $u^{(n)} \xrightarrow[n \to +\infty]{} u$.

Donc $l^1(\mathbb{K})$ est de Banach.

• En faisant la même démonstration, on peut montrer que $l^2(\mathbb{K})$ muni de N_2 est de Banach.

C) Critère de Cauchy-Complet; application aux séries

Théorème:

Soient A une partie de E, F un Banach. Soit $a \in \overline{A}$ et $f : A \to F$. Les propositions suivantes sont équivalentes :

- (1) f admet une limite en a.
- (2) f vérifie le critère de Cauchy en a, c'est-à-dire :

$$\forall \varepsilon > 0, \exists V \in V_A(a), \forall (x, y) \in V^2, ||f(x) - f(y)|| \le \varepsilon$$

Démonstration:

Utiliser la caractérisation séquentielle des limites.

Remarque:

Ceci vaut aussi pour une limite en $\pm \infty$ (dans \mathbb{R}) ou quand $||x|| \to +\infty$.

Définition:

- On appelle série de l'evn E tout couple (u_n, S_n) de suites de E tel que $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n u_k$, et on note cette série $\sum_{n>0} u_n$.
- On dit que $\sum_{n\geq 0} u_n$ converge lorsque $(S_n)_{n\in\mathbb{N}}$ converge.
- On dit que $\sum_{n\geq 0} u_n$ est absolument convergente lorsque $\sum_{n\geq 0} \|u_n\|$ converge dans $\mathbb R$

Théorème:

Si E est un espace de Banach, alors toute série absolument convergente est convergente dans E.

Démonstration:

La même que pour les séries numériques.

Théorème:

Soit A une algèbre de Banach, et $a \in A$. Alors la série $\sum_{n>0} \frac{1}{n!} a^n$ est absolument

convergente, et on note $\exp(a) = \sum_{n=0}^{+\infty} \frac{1}{n!} a^n$.

Démonstration:

On montre par récurrence sur n que $\forall n \in \mathbb{N}, ||a^n|| \le ||a||^n$.

Ainsi, $\left\| \frac{a^n}{n!} \right\| = O\left(\frac{\left\| a \right\|^n}{n!}\right)$, d'où le résultat, étant donné que $\frac{\left\| a \right\|^n}{n!}$ est le terme

général d'une série convergente (de R).

D) Théorème du point fixe

Théorème:

Soit X une partie complète non vide de E, et $f: X \to X$ une application contractante. Alors :

- (1) f admet un unique point fixe dans X.
- (2) Toute suite de X vérifiant $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ converge vers ce point fixe.

Démonstration : identique au cas où $\, X \subset \mathbb{R} \,$.

E) Application à la continuité uniforme

Définition:

Si (X,d) et (Y,d') sont des espaces métriques, on dit que $f:X\to Y$ est uniformément continue lorsque :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (x, x') \in X^2, d(x, x') < \eta \Rightarrow d'(f(x), f(x')) < \varepsilon$$

On dit alors que l'application

$$\omega_f : \varepsilon \mapsto \max \{ \eta > 0, \forall (x, x') \in X^2, d(x, x') < \eta \Rightarrow d'(f(x), f(x')) < \varepsilon \}$$

est le module de continuité uniforme de f.

Propriété:

- (1) Toute application lipschitzienne est uniformément continue
- (2) Toute application uniformément continue est continue.

Théorème:

Si X et Y sont des espaces métriques, A une partie dense de X et si Y est complet, alors toute application $f: A \to Y$ uniformément continue se prolonge en $\widetilde{f}: X \to Y$ uniformément continue de façon unique.

Démonstration:

- Unicité : claire car A est une partie dense, donc comme deux prolongements \tilde{f} et \tilde{f}_2 coïncident par définition sur A, ils coïncident aussi sur X (puisqu'ils sont en particulier continus)
- Existence:

Soit $x \in X$. Alors $x \in \overline{A}$. Montrons que f vérifie le critère de Cauchy–complet au voisinage de x:

Soit $\varepsilon > 0$. Soit $\eta > 0$ tel que $\forall (a,b) \in A^2, d(a,b) < 2\eta \Rightarrow d(f(a),f(b)) < \varepsilon$.

On pose $V = B(x, \eta)$. Pour $(a,b) \in (A \cap V)^2$, on a alors :

 $d(a,b) \le d(a,x) + d(x,b) < 2\eta$. Donc $d(f(a), f(b)) < \varepsilon$

Comme Y est complet, f admet une limite en $a \in X$.

Posons
$$\widetilde{f}: X \to Y$$
 . Alors $x \mapsto \lim_{x \to x} f(x)$

 \widetilde{f} est uniformément continue :

Soit $\varepsilon > 0$, et soit $\eta > 0$ tel que $\forall (a,b) \in A^2, d(a,b) \le 3\eta \Rightarrow d(f(a),f(b)) \le \varepsilon$.

Si $(x,y) \in X^2$ est tel que $d(x,y) < \eta$, alors $V = B(x,\eta) \cap A \neq \emptyset$, donc $\widetilde{f}(x) = \lim_{\substack{a \to x \\ a \in V}} f(a)$.

De même avec
$$W = B(y, \eta) \cap A$$
, $\widetilde{f}(y) = \lim_{\substack{b \to y \\ b \in W}} f(b)$.

Maintenant, pour $(a,b) \in V \times W$, $d(a,b) \le d(a,x) + d(x,y) + d(y,b) \le 3\eta$.

Donc $d(f(a), f(b)) \le \varepsilon$.

Maintenant, lorsque a tend vers x, par continuité de la distance :

$$\forall b \in W, d(\widetilde{f}(x), f(b)) \leq \varepsilon$$

D'où
$$d(\widetilde{f}(x), \widetilde{f}(y)) \le \varepsilon$$
.

Donc \widetilde{f} est uniformément continue.

Enfin, par définition de \widetilde{f} , comme f est continue sur A, on a pour $a \in A$:

$$\widetilde{f}(a) = \lim_{\substack{b \to a \\ b \in A}} f(b) = f(a)$$
.

Théorème:

Si $(C_n)_{n\in\mathbb{N}}$ est une suite décroissante (au sens de l'inclusion) de parties complètes non vides d'un evn dont le diamètre tend vers 0, alors $\bigcap_{n\in\mathbb{N}} C_n$ est un singleton.

(Le diamètre d d'une partie d'un espace métrique, c'est la borne supérieure des distances entre deux points de cette partie. Ainsi, $d \in \mathbb{R}^+ \cup \{+\infty\}$)

Démonstration:

On note, pour $n \in \mathbb{N}$, d_n le diamètre de C_n . Ainsi, $d_n \xrightarrow[n \to +\infty]{} 0$.

- Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $\forall n\in\mathbb{N}, u_n\in C_n$.

Alors $(u_n)_{n\in\mathbb{N}}$ est de Cauchy dans C_0 :

Soit $\varepsilon > 0$. Il existe alors $n_0 \in \mathbb{N}$ tel que $d_{n_0} \le \varepsilon$.

Ainsi, pour $n \ge n_0$ et $p \in \mathbb{N}$, on a $u_{n+p}, u_n \in C_{n_0}$, donc $||u_{n+p} - u_n|| \le d_{n_0} \le \varepsilon$.

Donc $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.

Comme C_0 est complet, $(u_n)_{n\in\mathbb{N}}$ converge vers $x\in C_0$.

Alors $\{x\} \subset \bigcap_{n \in \mathbb{N}} C_n$. En effet, soit $n_0 \in \mathbb{N}$.

Alors $(u_n)_{n\geq n_0}$ est une suite de Cauchy dans $C_{n_0}\subset C_0$, extraite de $(u_n)_{n\in\mathbb{N}}$ (dans C_0), donc converge vers x. Donc $x\in C_{n_0}$ car C_{n_0} est complet. D'où l'inclusion, ce résultat étant valable pour tout $n_0\in\mathbb{N}$.

- Soit maintenant $y \in \bigcap_{n \in \mathbb{N}} C_n$, montrons que x = y.

Soit $(y_n)_{n\in\mathbb{N}}$ qui converge vers y telle que $\forall n\in\mathbb{N}, y_n\in C_n$ (on peut prendre par exemple la suite constante égale à y)

Montrons qu'alors $y_n \xrightarrow[n \to +\infty]{} x$, ce qui établira le résultat par unicité de la limite.

Soit $\varepsilon > 0$. Il existe alors $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, d_n \le \varepsilon$.

Ainsi, pour $n \ge n_0$, $||y_n - x|| \le d_n \le \varepsilon$ (car $y_n, x \in C_n \subset C_{n_0}$)

D'où la convergence de $(y_n)_{n \in \mathbb{N}}$ vers x et le résultat voulu.

On peut déduire de ce théorème la propriété de Baire :

Soit X une partie complète d'un evn. Alors toute intersection dénombrable d'ouverts denses dans X est dense dans X.

Démonstration:

Soit $x \in X$. Soit $(U_i)_{i \in I}$ une famille dénombrable d'ouverts denses dans X; on peut alors supposer que $I = \mathbb{N}$.

Soit $\varepsilon > 0$.

On construit une suite $(\overline{B}(x_n,r_n))_{n\in\mathbb{N}}$ par récurrence :

- Comme U_1 est dense dans X, $B(x, \varepsilon) \cap U_1 \neq \emptyset$.

Comme $B(x, \varepsilon) \cap U_1$ est de plus ouvert, il existe $r'_1 > 0$ et $x_1 \in X$ tels que $\overline{B}(x_1, r'_1) \subset B(x, \varepsilon) \cap U_1$.

Ainsi, en posant $r_1 = \min(r'_1, \varepsilon/2)$, on a toujours $\overline{B}(x_1, r_1) \subset B(x, \varepsilon) \cap U_1$.

- Soit $n \in \mathbb{N}$.

Supposons construits n éléments $x_1,...x_n$ de X et n réels $r_1,...r_n$ strictement positifs tels que $\forall i \in [1,n]$, $\overline{B}(x_i,r_i) \subset B(x_{i-1},r_{i-1}) \cap U_i \neq \emptyset$ et $r_i \leq \varepsilon/2^i$ (où on a posé $r_0 = \varepsilon$, $x_0 = x$). Comme U_{n+1} est dense dans X, on a $B(x_n,r_n) \cap U_{n+1} \neq \emptyset$.

Comme de plus $B(x_n,r_n)\cap U_{n+1}$ est ouvert, il existe $r'_{n+1}>0$ et $x_{n+1}\in X$ tels que $\overline{B}(x_{n+1},r'_{n+1})\subset B(x_n,r_n)\cap U_{n+1}\neq\varnothing$. Ainsi, on a bien en posant $r_{n+1}=\min(r'_{n+1},\varepsilon/2^{n+1})$ la construction au rang n+1.

La suite ainsi construite $(\overline{B}(x_n,r_n))_{n\in\mathbb{N}}$ est donc une suite décroissante de fermés dont le diamètre tend vers 0. Comme ces fermés sont des parties de X complet, c'est donc une suite décroissante de parties complètes dont le diamètre tend vers 0. l'intersection $\bigcap_{n\in\mathbb{N}} \overline{B}(x_n,r_n)$ est donc un singleton, disons $\{x_\infty\}$.

Or, par construction, on a $x_{\infty} \in B(x, \varepsilon)$ (car $B(x, \varepsilon) = B(x_0, r_0) \subset \overline{B}(x_0, r_0)$), et $\forall n \in \mathbb{N}, x_{\infty} \in U_n$ (car $\overline{B}(x_n, r_n) \subset U_n$)

Ainsi,
$$x_{\infty} \in B(x, \varepsilon) \cap \bigcap_{n \in \mathbb{N}} U_n$$

Donc
$$B(x, \varepsilon) \cap \bigcap_{n \in \mathbb{N}} U_n \neq \emptyset$$

Donc comme c'est valable pour tous $x \in X, \varepsilon > 0$, $\bigcap_{n \in \mathbb{N}} U_n$ est bien dense dans X.

V Compacité

A) Définition séquentielle

Définition:

On dit qu'une partie X d'un evn est compacte lorsque toute suite de X admet au moins une valeur d'adhérence dans X.

Remarque:

Si toute suite de X admet une valeur d'adhérence dans l'evn E, on dit que X est relativement compacte.

(On a ainsi l'équivalence : X est relativement compacte $\Leftrightarrow \overline{X}$ est compacte)

Théorème:

- (1) Toute partie compacte est complète (et en particulier fermée)
- (2) Toute partie compacte est bornée.

Démonstration:

(1) Soit X une partie compacte de E, et $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy de X.

Alors $(u_n)_{n\in\mathbb{N}}$ admet une valeur d'adhérence l. Montrons que $u \to l$.

Soit $\varepsilon > 0$. Il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0$, $p \in \mathbb{N}$, $\left\| u_{n+p} - u_n \right\| \le \varepsilon / 2$.

Il existe de plus $n \ge n_0$ tel que $||u_n - l|| \le \varepsilon/2$, d'où, pour tout $q \ge n$:

$$||u_q - l|| \le ||u_q - u_n|| + ||u_n - l|| \le \varepsilon$$
.

(2) Montrons la contraposée :

Supposons *X* non bornée.

Alors, pour tout $n \in \mathbb{N}$, il existe $x_n \in X$ tel que $||x_n|| \ge n$.

Montrons que la suite $(x_n)_{n\in\mathbb{N}}$ ainsi formée n'a pas de valeur d'adhérence.

Soit
$$l \in X$$
. On a : $\forall n \in \mathbb{N}, ||x_n - l|| \ge ||x_n|| - ||l|| \ge n - ||l||$

Ainsi, pour
$$\varepsilon = 1$$
 et $n_0 \ge ||l|| + 2$: $\forall p \ge n_0, ||x_p - l|| \ge n_0 - ||l|| \ge 2 > \varepsilon$

Donc l n'est pas une valeur d'adhérence de $(x_n)_{n \in \mathbb{N}}$.

Donc X n'est pas compacte.

Théorème:

- (1) Toute partie fermée d'un compact est compacte
- (2) Tout produit cartésien de compacts est compact

Démonstration:

(1) Soit *F* une partie fermée de *X* compact.

Pour toute suite $(x_n)_{n \in \mathbb{N}} \in F^{\mathbb{N}}$, on a $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$.

Il existe donc $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(x_{\varphi(n)})_{n \in \mathbb{N}}$ converge vers $l \in X$. Or, $\forall n \in \mathbb{N}, x_{\varphi(n)} \in F$. Donc, comme F est fermé, $l \in F$. Donc $(x_n)_{n \in \mathbb{N}}$ admet une valeur d'adhérence dans F (à savoir l). Comme c'est valable pour toute suite $(x_n)_{n \in \mathbb{N}} \in F^{\mathbb{N}}$, F est bien compact.

(2) Soit X une partie compacte d'un evn E, Y une partie compacte d'un evn F.

Montrons que $X \times Y$ est une partie compacte de $E \times F$ (pour la norme produit usuelle).

Soit
$$((x_n, y_n))_{n \in \mathbb{N}} \in (X \times Y)^{\mathbb{N}}$$
.

Comme X est compact, $(x_n)_{n\in\mathbb{N}}$ admet une sous suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ convergente dans X; comme Y est compact, $(y_{\varphi(n)})_{n\in\mathbb{N}}$ admet une sous suite $(y_{\varphi(\psi(n))})_{n\in\mathbb{N}}$ convergente dans Y. Ainsi, $((x_{\varphi\circ\psi(n)},y_{\varphi\circ\psi(n)}))_{n\in\mathbb{N}}$ converge. Donc $X\times Y$ est compact.

Par récurrence, on obtient le résultat pour tout produit cartésien fini.

B) Exemples: Compacts de \mathbb{R} , \mathbb{C} , \mathbb{R}^n , \mathbb{C}^n .

Théorème :

Les parties compactes de \mathbb{R} ou \mathbb{C} sont exactement les parties fermées bornées.

Démonstration:

Le premier sens résulte du sous paragraphe précédent.

Pour l'autre : d'après le théorème de Bolzano-Weierstrass, tout segment est compact, et tout partie fermée bornée est une partie fermée d'un segment donc compacte. On adapte pour C.

On munit \mathbb{R}^n et \mathbb{C}^n de la norme $\| \|_{\infty}$. Alors les parties compactes de \mathbb{R}^n et \mathbb{C}^n sont exactement les parties fermées bornées.

En effet:

Le premier sens résulte toujours du sous paragraphe précédent. Soit X une partie fermée bornée de \mathbb{K}^n . Il existe alors M > 0 tel que $X \subset \overline{B}(0, M)$

- Si $\mathbb{K} = \mathbb{R}$, on a $B_f(O, M) = [-M, M]^n$
- Si $\mathbb{K} = \mathbb{C}$, on a $B_f(O, M) = \{z \in \mathbb{C}, |z| \le M\}^n$

Dans les deux cas, $B_f(O,M)$ est compacte car produit cartésien de compacts.

Donc *X* est compact.

C) Compacité et continuité

Théorème :

L'image continue (c'est-à-dire par une fonction continue) d'un compact est un compact.

Démonstration :

Soit *X* une partie compacte d'un evn *E*, et *F* un evn.

Soit $f: X \to F$ une application continue sur X, et posons Y = f(X).

Chapitre 3 : Topologie des espaces vectoriels normés Suites et fonctions

Soit $(y_n)_{n\in\mathbb{N}}\in Y^{\mathbb{N}}$.

Pour tout $n \in \mathbb{N}$, il existe donc $x_n \in X$ tel que $f(x_n) = y_n$.

Comme $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$, cette suite admet une sous suite convergente $(x_{\varphi(n)})_{n\in\mathbb{N}}$.

Par continuité de f, $(y_{\varphi(n)})_{n\in\mathbb{N}}$ est une sous suite convergente de Y.

Donc Y est compact.

Corollaire:

Si X est un compact, et $f: X \to \mathbb{R}$ une application continue, alors f est bornée sur X et y atteint ses bornes.

En effet:

f(X) est un compact de \mathbb{R} , donc fermé borné ; notons $\alpha = \sup_{x \in X} f(x)$; comme

f(X) est fermé, $\alpha \in f(X)$, donc il existe $x_0 \in X$ tel que $f(x_0) = \alpha$.

De même, il existe $x_1 \in X$ tel que $f(x_1) = \inf_{x \in X} f(x)$.

Corollaire:

Si $f: X \to F$ est une application continue sur X compact, alors $x \mapsto \|f(x)\|$ est bornée, et il existe $x_0 \in X$ tel que $\|f(x_0)\| = \sup_{x \in X} \|f(x)\| = \max_{x \in X} \|f(x)\|$.

Théorème de Heine:

Toute application continue sur un compact est uniformément continue.

Démonstration :

Contraposée:

Soit X un compact, et $f: X \to F$ non uniformément continue. Montrons que f n'est pas continue.

Comme f n'est pas continue, il existe $\varepsilon > 0$ tel que :

 $\forall \eta > 0, \exists (x, y) \in X^2, d(x, y) < \eta \text{ et } d(f(x), f(y)) \ge \varepsilon$

Soit ε vérifiant cette propriété. Pour $\eta = \frac{1}{2^n}$, il existe alors $(x_n, y_n) \in X^2$ tel que

$$d(x_n, y_n) < \frac{1}{2^n}$$
 et $d(f(x), f(y)) \ge \varepsilon$.

Comme X est compact, il existe $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(x_{\varphi(n)})_{n \in \mathbb{N}}$ converge dans X. Soit l sa limite.

Comme $d(x_{\varphi(n)}, y_{\varphi(n)}) \xrightarrow[n \to +\infty]{} 0$, on a aussi $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} l$.

Si f était continue en l, on aurait $f(x_{\varphi(n)}) \xrightarrow[n \to +\infty]{} f(l)$ et $f(y_{\varphi(n)}) \xrightarrow[n \to +\infty]{} f(l)$.

 $\text{Donc } d(f(x_{\varphi(n)}), f(y_{\varphi(n)})) \xrightarrow[n \to +\infty]{} 0 \text{, ce qui est faux car } d(f(x_{\varphi(n)}), f(y_{\varphi(n)})) \geq \varepsilon$

Donc f n'est pas continue en l, donc pas continue.

Théorème:

Soit X une partie compacte d'un evn E, F un espace de Banach. Alors l'espace C(X,F) muni de la norme N_{∞} est de Banach.

Démonstration:

• Si $f \in C(X,F)$, alors f est bornée, donc $C(X,F) \subset B(X,F)$ et en est un sousespace vectoriel, et la norme N_{∞} induit une norme sur C(X,F) • Montrons que C(X,F) est un fermé du Banach B(X,F) (il sera ainsi complet)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues sur X, convergeant uniformément (c'est-à-dire convergeant au sens de N_{∞}) vers $f\in B(X,F)$. Montrons que f est uniformément continue.

Soit $\varepsilon > 0$. D'après le théorème de Heine, f_n est uniformément continue pour tout $n \in \mathbb{N}$.

Comme $f_n \xrightarrow[n \to +\infty]{} f$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \|f_n - f\| \le \varepsilon/3$. Par uniforme continuité de f_{n_0} , il existe $\eta > 0$ tel que :

$$\forall (x, y) \in X^2, ||x - y|| < \eta \Rightarrow ||f_{n_0}(x) - f_{n_0}(y)|| \le \varepsilon/3$$

D'où, pour $(x, y) \in X^2$ tel que $||x - y|| < \eta$,

$$||f(x) - f(y)|| \le ||f(x) - f_{n_0}(x)|| + ||f_{n_0}(y) - f_{n_0}(x)|| + ||f_{n_0}(y) - f(y)||$$

$$\le 3 \times \varepsilon / 3 \le \varepsilon$$

Donc f est uniformément continue, donc continue. Donc $f \in C(X,F)$, qui est donc fermé.

Donc C(X,F) est un espace de Banach.

Attention:

En général, un sous-espace vectoriel d'un evn n'est pas fermé!

D) Propriété de Borel-Lebesgue

Définition:

- Soit X une partie de E. On appelle recouvrement ouvert de X toute famille $(\Omega_i)_{i \in I}$ d'ouverts de E telle que $X \subset \bigcup_{i \in I} \Omega_i$ (C'est équivalent à la donnée d'une famille $(O_i)_{i \in I}$ d'ouverts de X telle que $X = \bigcup_i O_i$)
- On dit que X vérifie la propriété de Borel-Lebesgue si tout recouvrement ouvert admet un sous recouvrement fini.

Théorème:

Soit X une partie compacte de E, et $(\Omega_i)_{i \in I}$ un recouvrement d'ouverts de X. Alors il existe $\rho > 0$, appelé nombre de Lebesgue, tel que $\forall x \in X, \exists i \in I, B(x, \rho) \subset \Omega_i$.

Démonstration:

Supposons qu'il n'en existe pas.

Pour tout $n \in \mathbb{N}$, il existe alors $x_n \in X$ tel que $\forall i \in I, B(x_n, 1/2^n) \not\subset \Omega_i$.

La suite $(x_n)_{n\in\mathbb{N}}$ admet une valeur d'adhérence l (car X est compact)

Ainsi, il existe
$$i \in I$$
 tel que $l \in \Omega_i$ (puisque $X \subset \bigcup_{i \in I} \Omega_i$)

Mais Ω_i est ouvert; il existe donc $n_0 \in \mathbb{N}$ tel que $B(l, 1/2^{n_0}) \subset \Omega_i$.

On pose
$$\varepsilon = \frac{1}{2^{n_0+1}}$$
; il existe alors $p \ge n_0 + 1$ tel que $||x_p - l|| \le \frac{1}{2^{n_0+1}}$.

Mais alors
$$B(x_p, \frac{1}{2^p}) \subset B(x_p, \frac{1}{2^{n_0+1}}) \subset B(l, \frac{1}{2^{n_0}}) \subset \Omega_i$$

On a donc trouvé $i \in I$ tel que $B(x_p, \frac{1}{2^p}) \subset \Omega_i$, ce qui est contradictoire avec la définition de x_p . D'où l'existence de ρ .

Théorème:

Si X est compact, alors il vérifie la propriété de Borel–Lebesgue

Démonstration:

Par l'absurde:

Soit X compact, supposons que X possède un recouvrement d'ouverts $(\Omega_i)_{i \in I}$ mais n'admette pas de sous recouvrement fini.

On pose $\rho > 0$ un nombre de Lebesgue de ce recouvrement.

Pour $J \subset I$ fini, on a alors $X \subset \bigcup_{i \in I} \Omega_i$.

• Prenons $J = \emptyset$. Il existe alors $x_0 \in X \setminus \emptyset = X$.

Soit alors $i_0 \in I$ tel que $B(x_0, \rho) \subset \Omega_{i_0}$

• Prenons $J = \{i_0\}$. On a $X \not\subset \Omega_{i_0}$. Donc il existe $x_1 \in X \setminus \Omega_{i_0}$.

Soit $i_i \in I$ tel que $B(x_1, \rho) \subset \Omega_{i_1}$

• On construit par récurrence les suites $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ et $(i_n)_{n\in\mathbb{N}}\in I^{\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, x_n \notin \bigcup_{i \in \{i_0, i_1, \dots i_{n-1}\}} \Omega_i$$

 $\forall n \in \mathbb{N}, B(x_n, \rho) \subset \Omega_{i_n}$.

• Pour tous p, n tels que p > n, on a $x_p \notin \Omega_{i_n}$ et $B(x_n, \rho) \subset \Omega_{i_n}$

Donc
$$||x_p - x_n|| \ge \rho$$
.

Soit alors $\varphi: \mathbb{N} \to \mathbb{N}$ une extractrice.

Alors $\forall n \in \mathbb{N}, \|x_{\varphi(n+1)} - x_{\varphi(n)}\| \ge \rho > 0$. Donc $(x_{\varphi(n)})_{n \in \mathbb{N}}$ n'est pas de Cauchy, donc ne converge pas.

Donc $(x_n)_{n \in \mathbb{N}}$ n'admet pas de valeur d'adhérence.

• Donc X n'est pas compacte, ce qui est contradictoire avec les hypothèses.

(Remarque : on ne pouvait pas raisonner avec la contraposée car on utilise dans le raisonnement le fait que X est compact — avec le nombre de Lebesgue)

Théorème :

Réciproquement, si X vérifie la propriété de Borel-Lebesgue, alors X est compact.

Démonstration:

Par la contraposée :

Supposons *X* non compact.

Il existe alors $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ qui n'admet pas de valeur d'adhérence, c'est-à-dire :

$$\forall a \in X, \exists \varepsilon_a > 0, \exists n_a \in \mathbb{N}, \forall p \in \mathbb{N}, p \geq n_a \Rightarrow ||x_p - a|| \geq \varepsilon_a$$

On pose alors, pour tout $a \in X$, ε_a et n_a vérifiant la propriété précédente.

On pose de plus $\Omega_a = B(a, \mathcal{E}_a)$, qui est ouvert. Ainsi, $X \subset \bigcup_{a \in X} B(a, \mathcal{E}_a)$.

Chapitre 3 : Topologie des espaces vectoriels normés Suites et fonctions

Soit maintenant A une partie finie de X, posons $n_A = \max\{n_a, a \in A\}$

Pour $p \ge n_A$, on a $\forall a \in A, p \ge n_a$

Donc $\forall a \in A, x_p \notin B(a, \mathcal{E}_a)$.

Donc
$$x_p \notin \bigcup_{a \in A} B(a, \varepsilon_a) = \bigcup_{a \in A} \Omega_a$$

 $\begin{array}{l} \text{Donc} \ \ x_p \not\in \bigcup_{a \in A} B(a, \mathcal{E}_a) = \bigcup_{a \in A} \Omega_a \\ \text{Donc} \ \ X \not\subset \bigcup_{a \in A} \Omega_a \ , \ \text{et ceci est valable pour toute partie} \ A \ \text{de} \ X. \end{array}$

Donc X n'admet pas de sous recouvrement fini, donc X ne vérifie pas la propriété de Borel-Lebesgue.

Corollaire:

Soit X une partie d'un evn E. On a l'équivalence :

- (1) X est une partie compacte
- (2) Pour toute famille $(F_i)_{i \in I}$ de fermés de X telle que $\bigcap_{i \in I} F_i = \emptyset$, il existe $J \subset I$

fini tel que
$$\bigcap_{i \in J} F_i = \emptyset$$
.

Supposons (2), et soit $(O_i)_{i \in I}$ un recouvrement de X par des ouverts de X.

Posons, pour $i \in I$, $F_i = X \setminus O_i$. Ainsi, $(F_i)_{i \in I}$ est une famille de fermés de X.

Alors, comme
$$X = \bigcup_{i \in I} O_i$$
, on a $\bigcap_{i \in I} F_i = \emptyset$.

Alors, comme
$$X = \bigcup_{i \in I} O_i$$
, on a $\bigcap_{i \in I} F_i = \emptyset$.
Il existe donc $J \subset I$ fini tel que $\bigcap_{i \in J} F_i = \emptyset$, c'est-à-dire $X = \bigcup_{i \in J} O_i$

Donc X vérifie la propriété de Borel–Lebesgue, donc est compact.

Pour montrer $(1) \Rightarrow (2)$, on fait pareil.

E) Applications

Théorème:

Si $(C_n)_{n\in\mathbb{N}}$ est une suite décroissante (au sens de l'inclusion) de compacts non vides, alors $\bigcap C_n \neq \emptyset$ (généralisation du théorème des segments emboîtés)

Démonstration:

Si
$$(C_n)_{n\in\mathbb{N}}$$
 est une suite décroissante de compacts telle que $\bigcap_{n\in\mathbb{N}}C_n=\varnothing$, alors $(C_n)_{n\in\mathbb{N}}$ est une famille de parties fermées du compact C_0 telle que $\bigcap_{n\in\mathbb{N}}C_n=\varnothing$. Donc il existe $J\subset\mathbb{N}$ fini tel que $\bigcap_{n\in J}C_n=\varnothing$. En posant $p=\max J$, on obtient $\bigcap_{n\in J}C_n=C_p=\varnothing$.

Théorème:

Soit $(a_n)_{n\in\mathbb{N}}$ une suite convergente d'un evn E, de limite l.

Alors $K = \{a_n, n \in \mathbb{N}\} \cup \{l\}$ est un compact de E.

Démonstration:

Montrons que *K* vérifie la propriété de Borel–Lebesgue :

Soit $(\Omega_i)_{i \in I}$ un recouvrement d'ouverts de K.

Il existe alors $j \in I$ tel que $l \in \Omega_i$.

Alors Ω_j est un voisinage de l, et $a_n \xrightarrow[n \to +\infty]{} l$, donc il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, a_n \in \Omega_j$.

Pour $n < n_0$, il existe $i_n \in I$ tel que $a_n \in \Omega_i$.

Posons alors $J = \{j\} \cup \{i_n, n \in [0, n_0 - 1]\}$, fini.

Ainsi, $K \subset \bigcup_{i \in J} \Omega_i$.

Donc K vérifie la propriété de Borel-Lebesgue, donc est compact.

VI Cas de la dimension finie

A) Equivalence des normes

Théorème:

Soit $p \in \mathbb{N}$.

Toutes les normes sur \mathbb{K}^p sont équivalentes.

Démonstration :

Supposons $p \ge 1$. Soit N une norme sur \mathbb{K}^p , montrons que $N \sim N_{\infty}$.

• Montrons que $N: \mathbb{K}^p \to \mathbb{R}$ est lipschitzienne pour N_{∞} :

Soit $x = (x_1, x_2, ... x_p) \in \mathbb{K}^p$.

On note $(e_1, e_2, ... e_p)$ la base canonique de \mathbb{K}^p : ainsi, $x = \sum_{i=1}^p x_i e_i$.

Donc
$$N(x) \le \sum_{i=1}^{p} |x_i| N(e_i) \le N_{\infty}(x) \underbrace{\sum_{i=1}^{p} N(e_i)}_{k}$$

Ainsi, pour $(x, y) \in (\mathbb{K}^p)^2$, on a $|N(x) - N(y)| \le N(x - y) \le kN_{\infty}(x - y)$

Donc $N: (\mathbb{K}^p, N_{\infty}) \to (\mathbb{R}, |\cdot|)$ est *k*-lipschitzienne donc continue.

• Soit $S_{\infty} = \{x \in \mathbb{K}^p, N_{\infty}(x) = 1\}$, qui est fermée et bornée pour N_{∞} , donc compacte.

N est continue sur S_{∞} , elle y est donc bornée et atteint ses bornes ; il existe donc $x_0 \in S_{\infty}$ tel que $N(x_0) = \alpha = \inf_{t \in S_{\infty}} N(t)$ et $y_0 \in S_{\infty}$ tel que $N(y_0) = \beta = \sup_{t \in S_{\infty}} N(t)$.

Ainsi, $N_{\infty}(x_0) = 1$, donc $x_0 \neq 0$ et $\alpha = N(x_0) > 0$.

Donc, pour $x \in S_{\infty}$, $\alpha \le N(x) \le \beta$.

Pour tout $x \in \mathbb{K}^P \setminus \{0\}$, on a ainsi $\alpha \le N \left(\frac{x}{N_{\infty}(x)}\right) \le \beta$

Soit $\forall x \in \mathbb{K}^P$, $\alpha N_{\infty}(x) \le N(x) \le \beta N_{\infty}(x)$, donc $N \sim N_{\infty}$.

Corollaire:

Si E est un \mathbb{K} -ev de dimension finie p, toutes les normes sont équivalentes.

Démonstration :

Soit $(e_1, e_2, ... e_p)$ une base de E, on se donne un isomorphisme $\varphi : \mathbb{K}^p \to E$.

Si N est une norme sur E, elle induit une norme $N'=N\circ \varphi$ sur \mathbb{K}^p , équivalente à N_∞ .

D'autre part, N_{∞} induit une norme $N'_{\infty} = N_{\infty} \circ \varphi^{-1}$ sur E.

Comme $N' \sim N_{\infty}$, il est clair qu'alors $N \sim N'_{\infty}$.

Les notions d'ouvert, fermé, compact, continuité... sont donc indépendantes de la norme choisie en dimension finie.

B) Continuité des applications linéaires

Théorème:

Si E est un evn de dimension finie, et F un evn, alors $L_C(E,F) = L(E,F)$.

Démonstration :

On peut supposer que $E = \mathbb{K}^p$, ramené à sa base canonique $(e_1, e_2, ... e_p)$ et muni de la norme N_{∞} . Soit $f \in L(E, F)$.

Pour
$$x \in E$$
, disons $x = \sum_{i=1}^{p} x_i e_i$, on a:

$$||f(x)|| \le \sum_{i=1}^{p} |x_i|||f(e_i)|| \le N_{\infty}(x) \sum_{i=1}^{p} ||f(e_i)||.$$

Ainsi, f est continue, et $|||f||| \le \sum_{i=1}^{p} ||f(e_i)||$.

Donc $L(E,F) \subset L_c(E,F)$, d'où l'égalité, l'autre inclusion étant vraie en général.

Théorème:

Soient $E_1, E_2, ... E_n$ des evn de dimension finie, F un evn.

Soit $\varphi: E_1 \times E_2 \times ... \times E_n \to F$ *n*-linéaire. Alors φ est continue.

Démonstration (pour n = 2):

On peut toujours supposer que $E_1 = \mathbb{K}^p$ muni de sa base canonique $(e_1, e_2, ... e_p)$ et $E_2 = \mathbb{K}^q$ muni de sa base canonique $(f_1, f_2, ... f_q)$.

Soit
$$(x, y) \in E_1 \times E_2$$
, disons $x = \sum_{k=1}^p x_k e_k$, $y = \sum_{k=1}^q y_k f_k$.

Alors
$$\|\varphi(x,y)\| \le \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} |x_i| \|y_j\| \|\varphi(x_i,y_j)\| \le KN_{\infty}(x)N_{\infty}(y) = KN_{\infty}(x,y)$$

Où
$$K = \sum_{\substack{1 \le i \le p \\ 1 \le i \le q}} \| \varphi(x_i, y_j) \|$$
. Donc φ est continue.

Exemples:

- (1) Si E est de dimension finie, alors E'=E* (toutes les formes linéaires sont continues)
- Si $(e_1, e_2, ... e_p)$, $(e_1^*, e_2^*, ... e_p^*)$ est une famille de formes linéaires continues.

(2) Avec
$$E = M_{n,p}(\mathbb{K})$$
:

$$\Pi_{i,j}: M_{n,p}(\mathbb{K}) \to \mathbb{K}$$
 est continue.
 $A \mapsto a_{i,j}$

Ainsi, det:
$$M(\mathbb{K}) \to \mathbb{K}$$

Ainsi, det: $M_n(\mathbb{K}) \to \mathbb{K}$ est aussi continue.

$$A \mapsto \sum_{\sigma \in \mathfrak{S}_n} \mathcal{E}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

Application:

$$GL_n(\mathbb{K}) = \{A \in M_n(\mathbb{K}), \det(A) \neq 0\} = \det^{-1}(\mathbb{K} \setminus \{0\}).$$

Comme $\mathbb{K}\setminus\{0\}$ est un ouvert, et det est continue, $GL_n(\mathbb{K})$ est un ouvert dans $M_n(\mathbb{K})$.

Aussi, $SL_n(\mathbb{K}) = \{A \in M_n(\mathbb{K}), \det(A) = 1\}$ est fermé.

C) Convergence des suites, compacité, complétude

Théorème:

Soit E un evn, de dimension finie p. Soit $\mathcal{E} = (e_1, e_2, ..., e_p)$ une base de E, et $(x_n)_{n \in \mathbb{N}}$

une suite de
$$E$$
, avec $\forall n \in \mathbb{N}, x_n = \sum_{i=1}^p x_n^{(i)} e_i$.

Alors $(x_n)_{n\in\mathbb{N}}$ converge si, et seulement si $\forall i\in[1,p]$, $(x_n^{(i)})_{n\in\mathbb{N}}$ converge, auquel

$$\operatorname{cas} \lim_{n \to +\infty} x_n = \sum_{i=1}^{p} (\lim_{n \to +\infty} x_n^{(i)}) e_i.$$

Démonstration:

On identifie E à \mathbb{K}^p muni de N_{∞} .

Théorème:

Les parties compactes d'un evn de dimension finie sont exactement les parties fermées bornées.

Théorème:

Tout evn de dimension finie est complet.

Démonstration:

Si $(x_n)_{n\in\mathbb{N}}$ est de Cauchy, alors les suites $(x_n^{(i)}=e_i^*(x_n))_{n\in\mathbb{N}}$ sont de Cauchy, donc convergent dans \mathbb{K} , donc $(x_n)_{n\in\mathbb{N}}$ est de Cauchy.

Corollaire:

Tout sous-espace vectoriel de dimension finie d'un evn quelconque est fermé, car complet.

Proposition:

Soit F un sous-espace strict de dimension finie d'un evn E, et $v \in E$.

Alors il existe $y \in F$ tel que d(v, y) = d(v, F).

Si de plus F en est un sous-espace strict, il existe $v \in E$ tel que ||v|| = d(v, F) = 1.

En effet:

• Déjà, il existe $(y_n)_{n \in \mathbb{N}} \in F^{\mathbb{N}}$ telle que $d(v, y_n) \xrightarrow[n \to +\infty]{} d(v, F)$ (puisque $d(v, F) = \inf_{y \in F} (d(v, y))$)

Ainsi, la suite réelle $(d(v, y_n))_{n \in \mathbb{N}}$ converge, elle est donc bornée.

Soit M tel que $\forall n \in \mathbb{N}, d(v, y_n) \leq M$.

Ainsi, cela signifie que $(y_n)_{n \in \mathbb{N}}$ est bornée.

On peut donc en extraire une sous suite $(y_{\varphi(n)})_{n\in\mathbb{N}}$ convergente (car F est de dimension finie), disons vers $l\in F$.

On a donc $d(v, y_{\varphi(n)}) \xrightarrow[n \to +\infty]{} d(v, l)$, donc d(v, l) = d(v, F), d'où l'existence.

• Si maintenant F est un sous-espace strict :

Soit $x \in E \setminus F$. D'après le point précédent, il existe $y \in F$ tel que d(x, F) = ||x - y||Comme F est fermé, on a $||x - y|| \neq 0$.

Ainsi, si on prend $v = \frac{x - y}{\|x - y\|}$, on aura $\|v\| = 1$.

Soit maintenant $z \in F$. On a $||v-z|| = \left\| \frac{x-y}{||x-y||} - z \right\| = \frac{1}{||x-y||} ||x-y-z||x-y|||$

Or,
$$y + z ||x - y|| \in F$$
. Donc $||x - y - z||x - y|| \ge d(x, F) = ||x - y||$

Donc $||v-z|| \ge 1$

Comme 1 est atteint pour z = 0, on a donc $d(v, F) = \inf_{z \in F} ||v - z|| = 1 = ||v||$

Théorème de Riesz:

Soit *E* un evn.

Alors S(O,1) est compacte si, et seulement si, E est de dimension finie.

Démonstration:

Un premier sens est déjà évident.

Supposons maintenant *E* de dimension infinie.

Alors *E* n'est pas engendré par une famille finie.

Il existe donc une suite $(x_n)_{n \in \mathbb{N}^*}$ de vecteurs libres de E.

On pose alors $F_n = \text{Vect}((x_k)_{k \in [1,n]})$, de dimension n. $(F_0 = \{0\})$

D'après la proposition précédente, pour tout $n \in \mathbb{N}^*$, il existe $u_n \in F_n$ tel que :

 $||u_n|| = 1$ et $d(u_n, F_{n-1}) = 1$. Alors la suite ainsi définie est dans la sphère unité (S(O,1)), et n'a pas de valeur d'adhérence :

Pour n, m tels que n > m, on a $u_m \in F_m \subset F_{n-1}$, donc $||u_m - u_n|| \ge d(u_n, F_{n-1}) = 1$.

Ainsi, pour toute sous suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$, on a $\forall n\neq m, \|u_{\varphi(m)}-u_{\varphi(n)}\|\geq 1$ et donc $(u_{\varphi(n)})_{n\in\mathbb{N}}$ n'est pas de Cauchy, donc ne converge pas.

Donc S(O,1) n'est pas compacte.

D) Application

 $\mathbb{R}[X]$ n'est pas complet.

En effet:

Pour $n \in \mathbb{N}$, on note $F_n = \mathbb{R}_n[X]$. Alors F_n est fermé (car de dimension finie), et on pose $O_n = \mathbb{R}[X] \setminus F_n$, qui est ainsi ouvert.

Lemme : le complémentaire d'un sous-espace vectoriel F strict d'un evn E est dense dans E.

Démonstration:

Soit $x \in E$. Montrons qu'il existe $(x_n)_{n \in \mathbb{N}} \in (C_E F)^{\mathbb{N}}$ telle que $x_n \to x$.

- Si $x \in E \setminus F$, il suffit de prendre la suite constante égale à x.
- Si $x \in F$:

Soit $v \in C_E F$. On pose, pour $n \in \mathbb{N}$, $x_n = x + \frac{v}{n+1}$.

Ainsi, $\forall n \in \mathbb{N}, x_n \in C_E F$ (car sinon $v = (n+1)(x_n - x) \in F$)

Donc
$$(x_n)_{n\in\mathbb{N}}\in (C_EF)^{\mathbb{N}}$$
, et $x_n\xrightarrow[n\to+\infty]{} x$

Ainsi, dans ce cas, O_n est un ouvert, dense dans $\mathbb{R}[X]$.

Donc, si $\mathbb{R}[X]$ était complet, d'après le théorème de Baire, $\bigcap_{n\in\mathbb{N}}O_n$ serait dense

dans $\mathbb{R}[X]$. Or, $\bigcap_{n \in \mathbb{N}} O_n = \bigcap_{n \in \mathbb{N}} \mathbb{R}[X] \setminus F_n = \mathbb{R}[X] \setminus \bigcup_{n \in \mathbb{N}} F_n = \emptyset$

Donc $\mathbb{R}[X]$ n'est pas complet

VII Connexité par arcs (en dimension finie)

A) Connexité par arcs et convexité

Définition:

• Soit *E* un evn de dimension finie, *x* et *y* des points de *E*.

On appelle chemin (ou arc) continu d'origine x et d'extrémité y toute application continue $\gamma:[0;1] \to E$ telle que $\gamma(0) = x$ et $\gamma(1) = y$.

• Soit X une partie de E. On dit que X est connexe par arcs lorsque, pour tout $(x, y) \in X^2$, il existe un chemin continu γ reliant x à y et contenu dans X (c'est-à-dire tel que $\gamma([0;1]) \subset X$)

Définition:

- Soient $x, y \in E$. On appelle segment d'extrémités x et y l'ensemble $[x, y] = \{tx + (1-t)y, t \in [0;1]\} \subset E$
- Soit X une partie de E. On dit que X est convexe lorsque $\forall (x, y) \in X^2, [x, y] \subset X$

Théorème:

Toute partie convexe est connexe par arcs.

Démonstration:

Soit X convexe, et $(x, y) \in X^2$.

On pose
$$\gamma:[0;1] \to E$$

 $t \mapsto (1-t)x + ty$

Alors γ est continue, $\gamma(0) = x$, $\gamma(1) = y$ et $\gamma([0;1]) = [x, y] \subset X$.

Donc *X* est connexe par arcs.

Théorème :

Les parties connexes par arcs de $\mathbb R$ sont exactement les parties convexes, c'est-à-dire les intervalles.

Démonstration :

Soit X une partie de \mathbb{R} connexe par arcs, $(x, y) \in X^2$.

On peut supposer $x \le y$. Soit $z \in [x, y]$, montrons que $z \in X$.

Comme X est connexe par arcs, il existe un chemin continu γ reliant x et y, c'est-àdire $\gamma:[0;1] \to \mathbb{R}$ continue telle $\gamma(0) = x$ et $\gamma(1) = y$.

Ainsi, d'après le théorème des valeurs intermédiaires, il existe $c \in [0;1]$ tel que $\gamma(c) = z$. Donc $z \in X$.

Théorème:

- (i) Un produit cartésien de parties connexes par arcs est connexe par arcs.
- (ii) Si X et Y sont connexes par Y, et si $X \cap Y \neq \emptyset$, alors $X \cup Y$ est connexe par arcs
- (iii) L'image continue d'un connexe par arcs est connexe par arcs.

Démonstration:

• Soient *E* et *F* des evn de dimension finie.

Soient $X \subset E$ et $Y \subset F$ connexes par arcs. Montrons que $X \times Y \subset E \times F$ est connexe par arcs. (avec la norme produit $N_{E \times F} = \min(N_E, N_F)$)

Soit
$$((x, y), (x', y')) \in (X \times Y)^2$$
.

Il existe alors un chemin continu $\gamma_1:[0;1] \to X$ reliant $x \ à \ x'$, et un chemin $\gamma_2:[0;1] \to Y$ reliant $y \ à \ y'$.

Alors
$$\gamma:[0;1] \to X \times Y$$
 est continu, et relie (x, y) à (x', y') .
$$t \mapsto (\gamma_1(t), \gamma_2(t))$$

Donc $X \times Y$ est connexe par arcs.

• Soient X et Y connexes par arcs tels que $X \cap Y \neq \emptyset$.

Soit
$$(x, y) \in (X \cup Y)^2$$
.

Si
$$x, y \in X$$
 ou $x, y \in Y$ ok.

Sinon, on peut supposer que $x \in X$, $y \in Y$.

Soit alors $z \in X \cap Y$.

Soit γ_1 un chemin continu de x à z, γ_2 un chemin continu de z à y.

Alors
$$\gamma:[0;1] \to E$$
 est définie et continue sur $[0;1] \setminus \{1/2\}$;
$$t \mapsto \begin{cases} \gamma_1(2t) \text{ si } t \le 1/2 \\ \gamma_2(2t-1) \text{ si } t \ge 1/2 \end{cases}$$

Et comme $\gamma_1(2\times 1/2) = \gamma_1(1) = z$ et $\gamma_2(2\times 1/2 - 1) = \gamma_2(0) = z$, γ est aussi défini et continue en $\frac{1}{2}$.

De plus,
$$\gamma(0) = x$$
, $\gamma(1) = y$ et $\gamma([0;1]) = \gamma_1([0;1]) \cup \gamma_2([0;1]) \subset X \cup Y$.

Donc $X \cup Y$ est connexe par arcs.

Chapitre 3 : Topologie des espaces vectoriels normés Suites et fonctions

• Soit X une partie de E connexe par arcs, F de dimension finie et $f: X \to F$ continue. Montrons que Y = f(X) est connexe par arc.

Soit $(y, y') \in Y^2$. Il existe alors $(x, x') \in X^2$ tel que y = f(x) et y' = f(x').

Soit $\gamma:[0;1] \to X$ un chemin continu de $x \ge x$.

Alors $\gamma' = f \circ \gamma$ est un chemin continu de $y \ge y'$.

Donc *Y* est connexe par arcs.

B) Théorème des valeurs intermédiaires

Théorème:

Si X est connexe par arcs, et si $f: X \to \mathbb{R}$ est continue, alors f(X) est un intervalle de \mathbb{R} .

Ou encore : $\sin f$ prend $\sin X$ des valeurs positives et négatives, alors f s'annule.

Démonstration:

Résulte du cas plus général vu dans le 3^{ème} point du théorème précédent.

Application:

Si X est une partie connexe par arcs d'un evn E, alors les seules parties de X qui sont à la fois ouvertes et fermées sont X et \emptyset .

On dit dans ce cas que X est connexe

Démonstration:

Par l'absurde :

Si X possède une partie $A \notin \{X, \emptyset\}$ à la fois ouverte et fermée, alors A est fermée non vide, et $B = X \setminus A$ est fermée non vide (dans X). Posons $f: X \to \mathbb{R}$. $x \mapsto d(x,A) - d(x,B)$

Alors f est bien définie (car $A \neq \emptyset$ et $B \neq \emptyset$), et 2-lipschitzienne.

Donc f est continue.

Pour $x \in A$, on a f(x) = -d(x, B) < 0 (car B est fermée)

Pour $x \in B$, on a f(x) = d(x, A) > 0 (car A est fermée)

Or, $X = A \cup B$, donc f ne s'annule pas sur X, ce qui est impossible.