

Figure 55.11: Comparison of the four methods with $K = 1000, \tau = 10000$.

55.6 Elastic Net Regression

The lasso method is unsatisfactory when n (the dimension of the data) is much larger than the number m of data, because it only selects m coordinates and sets the others to values close to zero. It also has problems with groups of highly correlated variables. A way to overcome this problem is to add a "ridge-like" term $(1/2)Kw^{T}w$ to the objective function. This way we obtain a hybrid of lasso and ridge regression called the *elastic net method* and defined as follows:

Program (elastic net):

where K > 0 and $\tau \ge 0$ are two constants controlling the influence of the ℓ^2 -regularization and the ℓ^1 -regularization. Observe that as in the case of ridge regression, minimization is performed over ξ , w, ϵ and b, but b is not penalized in the objective function. The objective

¹Some of the literature denotes K by λ_2 and τ by λ_1 , but we prefer not to adopt this notation since we use λ, μ etc. to denote Lagrange multipliers.