

Universidad Nacional de Colombia

Facultad de ciencias

Departamento de matemáticas

Cadenas de Markov 2025-II

Metodos para distribución estacionaria

Estudiantes:

Jose Miguel Acuña Hernandez Andres Puertas Londoño Guillermo Murillo Tirado

Docente: Freddy Hernandez

Contenido	
Marco Teórico Cadenas de Markov y Distribución Estacionaria Método del Autovector Método de Tiempos Medios de Primer Retorno Análisis Comparativo de Complejidad Computacional	1 2
Función de las 3 Cadenas Caminata Aleatoria Simple	3 3
Bloques de Código que Generan los Cambios en las Cadenas	4
Resultados de la Comparación con las Gráficas	4

1. Marco Teórico

1.1. Cadenas de Markov y Distribución Estacionaria

Una cadena de Markov es un proceso estocástico $\{X_n\}_{n\geq 0}$ con espacio de estados finito $S=\{0,1,\dots,n-1\}$ que satisface la propiedad de Markov: $P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},\dots,X_0=i_0)=P(X_{n+1}=j|X_n=i)$. La matriz de transición $P\in\mathbb{R}^{n\times n}$ está definida por $P_{ij}=P(X_{n+1}=j|X_n=i)$, donde cada elemento es no negativo y cada fila suma uno, constituyendo así una matriz estocástica.

La distribución estacionaria es un vector $\pi \in \mathbb{R}^n$ que satisface la ecuación fundamental $\pi = \pi P$ junto con las condiciones de normalización $\sum_{i=0}^{n-1} \pi_i = 1$ y no negatividad $\pi_i \geq 0$. Para matrices irreducibles y aperiódicas, el teorema de existencia y unicidad garantiza que existe una única distribución estacionaria π tal que $\lim_{n \to \infty} P^n = \mathbf{1}\pi^T$, donde $\mathbf{1}$ es el vector de unos.

1.2. Método del Autovector

1.2.1. Fundamentación Teórica

La distribución estacionaria π puede caracterizarse como el autovector izquierdo de la matriz P asociado al autovalor $\lambda=1$, expresado mediante la relación $\pi P=\pi\Leftrightarrow\pi^T P^T=\pi^T$. Esto equivale a resolver el problema de autovalores $P^T\mathbf{v}=\mathbf{v}$, donde $\mathbf{v}=\pi^T$ es el autovector derecho de P^T correspondiente a $\lambda=1$.

El Teorema de Perron-Frobenius establece que para una matriz estocástica irreducible P, el autovalor $\lambda=1$ es simple y dominante con $|\lambda_i|\leq 1$ para $i\geq 2$, existe un único autovector izquierdo positivo π normalizado asociado a $\lambda=1$, y todos los demás autovalores satisfacen $|\lambda_i|<1$ si P es aperiódica. Esta fundamentación teórica garantiza la existencia y unicidad de la solución buscada.

1.2.2. Implementación Algorítmica

El algoritmo utilizado en este trabajo emplea la descomposición espectral directa mediante np.linalg.eig(P.T), que calcula todos los autovalores y autovectores a través de tres etapas principales. Primero, se realiza la reducción a forma de Hessenberg usando transformaciones de Householder, seguida por la aplicación del algoritmo QR con desplazamientos para encontrar los autovalores, y finalmente el cálculo de autovectores por sustitución hacia atrás.

La complejidad temporal de este método es $\mathcal{O}(n^3)$ con contribuciones específicas: la reducción Hessenberg requiere aproximadamente $\frac{10n^3}{3}$ operaciones de punto flotante, las iteraciones QR demandan cerca de $6n^3$ operaciones en promedio, y el cálculo de autovectores consume alrededor de $3n^3$ operaciones, resultando en un total aproximado de $10n^3$ operaciones de punto flotante. La complejidad espacial es $\mathcal{O}(n^2)$ debido al almacenamiento de la matriz completa y los autovectores.

1.3. Método de Tiempos Medios de Primer Retorno

1.3.1. Fundamentación Teórica

El tiempo medio de primer retorno al estado j se define como $E[T_j] = E[\min\{n \geq 1 : X_n = j | X_0 = j\}]$. El teorema fundamental establece que para una cadena de Markov irreducible con distribución estacionaria π , se cumple la relación $\pi_j = \frac{1}{E[T_j]}$, indicando que la probabilidad estacionaria es inversamente proporcional al tiempo esperado de retorno.

Para derivar el sistema lineal correspondiente, sea $m_j^{(i)}$ el tiempo esperado de primer retorno al estado j comenzando desde el estado $i \neq j$. Entonces se cumple $m_j^{(i)} = 1 + \sum_{k \neq j} P_{ik} m_j^{(k)}$, lo que genera un sistema lineal de dimensión $(n-1) \times (n-1)$ expresado como $(I-P_{-j})\mathbf{m}_j = \mathbf{1}$, donde P_{-j} es la matriz P con la fila y columna j eliminadas, y \mathbf{m}_j es el vector de tiempos de retorno desde todos los estados excepto j. El tiempo medio de retorno desde j se calcula entonces como $E[T_j] = 1 + \sum_{k \neq j} P_{jk} m_j^{(k)}$.

1.3.2. Implementación y Análisis de Complejidad

El algoritmo estándar procede iterativamente para cada estado $j=0,1,\ldots,n-1$, construyendo la matriz reducida $P_{-j}\in\mathbb{R}^{(n-1)\times(n-1)}$, resolviendo el sistema lineal $(I-P_{-j})\mathbf{m}_j=\mathbf{1}$, calculando $E[T_j]=1+\mathbf{p}_{j,-j}^T\mathbf{m}_j$, y finalmente obteniendo $\pi_j=1/E[T_j]$.

La construcción de P_{-j} requiere eliminar la fila j copiando $n \times (n-1)$ elementos y eliminar la columna j copiando $(n-1) \times (n-1)$ elementos, resultando en una complejidad $\mathcal{O}(n^2)$ para cada matriz reducida. La resolución del sistema lineal se realiza mediante factorización LU, donde el costo de factorización es $\sum_{k=0}^{n-2} (n-1-k)^2 \approx \frac{(n-1)^3}{3} = \mathcal{O}(n^3)$, la sustitución hacia adelante $(L\mathbf{y}=\mathbf{1})$ tiene costo $\sum_{i=0}^{n-2} i = \frac{(n-1)(n-2)}{2} = \mathcal{O}(n^2)$, y la sustitución hacia atrás $(U\mathbf{m}_j = \mathbf{y})$ también requiere $\mathcal{O}(n^2)$ operaciones, resultando en un costo total por sistema de $\mathcal{O}(n^3)$.

Al considerar que este proceso debe repetirse para n estados, la complejidad total del algoritmo es $n \times \mathcal{O}(n^3) = \mathcal{O}(n^4)$. En términos de operaciones de punto flotante específicas, cada factorización LU requiere aproximadamente $\frac{2(n-1)^3}{3}$ flops, las sustituciones demandan cerca de $2(n-1)^2$ flops, resultando en un total por estado de aproximadamente $\frac{2n^3}{3}$ flops y un total para todo el algoritmo de cerca de $\frac{2n^4}{3}$ flops.

1.4. Análisis Comparativo de Complejidad Computacional

La comparación entre ambos métodos revela diferencias significativas en términos de eficiencia computacional. El método del autovector mediante descomposición espectral presenta complejidad temporal $\mathcal{O}(n^3)$ y espacial $\mathcal{O}(n^2)$ con excelente estabilidad numérica, mientras que el método de tiempos medios en su implementación estándar tiene complejidad temporal $\mathcal{O}(n^4)$ y espacial $\mathcal{O}(n^2)$ manteniendo también excelente estabilidad.

El análisis de constantes multiplicativas muestra que para una matriz $n \times n$, el método del autovector requiere aproximadamente $10n^3$ operaciones de punto flotante distribuidas entre la reducción Hessenberg $(\frac{10n^3}{3}$ flops), el algoritmo QR ($6n^3$ flops en promedio), y el cálculo de autovectores ($3n^3$ flops). En contraste, el método de tiempos en su implementación estándar demanda aproximadamente $0.67n^4$ flops, considerando $\frac{2(n-1)^3}{3}$ flops por factorización LU multiplicado por n estados.

La razón de tiempos de ejecución entre ambos métodos puede expresarse como $\frac{\text{Tiempo}(\text{Tiempos})}{\text{Tiempo}(\text{Autovector})} \approx \frac{0.67n^4}{10n^3} = 0.067n$, lo que implica que para matrices de tamaño n=100 el método de tiempos es aproximadamente 6.7 veces más lento, para n=500 es 33.5 veces más lento, y para n=1000 alcanza una razón de 67 veces más lento que el método del autovector.

1.4.1. Efectos de Optimizaciones Computacionales

Las bibliotecas BLAS/LAPACK proporcionan optimizaciones significativas incluyendo manejo eficiente de caché y vectorización, paralelización automática para operaciones matriciales, y un speedup típico de 10-100 veces comparado con implementaciones ingenuas. Varios factores afectan las mediciones empíricas: para tamaños pequeños (n<100) los términos de orden inferior dominan el comportamiento asintótico, la jerarquía de memoria hace que matrices que

caben en caché L2/L3 sean significativamente más rápidas, BLAS puede utilizar múltiples threads automáticamente, y el overhead del intérprete constituye una constante aditiva significativa para valores pequeños de n.

1.4.2. Consideraciones de Estabilidad Numérica

El condicionamiento de la matriz P afecta sustancialmente la precisión de los resultados. El número de condición $\kappa(P)=\frac{\sigma_{\max}}{\sigma_{\min}}$ determina la calidad numérica: cuando $\kappa(P)<10^{12}$ es posible alcanzar precisión de máquina, mientras que $\kappa(P)>10^{12}$ resulta en pérdida significativa de dígitos significativos. La propagación de errores se rige por la desigualdad $\frac{\|\Delta\pi\|}{\|\pi\|}\leq \kappa(P)\frac{\|\Delta P\|}{\|P\|}$, donde el método del autovector es generalmente más robusto ante perturbaciones en P que el método de tiempos medios.

Para la selección algorítmica, matrices pequeñas $(n \le 100)$ se benefician de la descomposición espectral directa donde el overhead de configuración es despreciable y se obtiene máxima precisión numérica. Para matrices medianas $(100 < n \le 1000)$ se recomienda la descomposición espectral cuando se requiere precisión, evitando el método de tiempos no optimizado. En matrices grandes (n > 1000) conviene considerar métodos iterativos especializados que puedan explotar estructura dispersa cuando sea aplicable.

2. Función de las 3 Cadenas

2.1. Caminata Aleatoria Simple

La caminata aleatoria simple implementada corresponde a un proceso en una estructura cíclica de n estados, donde las probabilidades de transición están definidas por p (probabilidad de avanzar al siguiente estado) y q=1-p (probabilidad de retroceder al estado anterior). La matriz de transición P presenta la forma donde cada estado i puede transitar al estado (i+1) mod n con probabilidad p, o al estado (i-1) mod n con probabilidad q.

La implementación se realiza mediante la función generar_caminata_aleatoria(n, p) que construye la matriz de transición correspondiente:

```
def generar_caminata_aleatoria(n, p):
    """
    Genera matriz de transición para caminata aleatoria cíclica.

Args:
        n: Número de estados
        p: Probabilidad de ir al siguiente estado (q = 1-p al anterior)

Returns:
        P: Matriz de transición
    """
    q = 1 - p
    P = np.zeros((n, n))

for i in range(n):
        P[i, (i + 1) % n] = p # Probabilidad de ir al siguiente (mod n para ciclo)
        P[i, (i - 1) % n] = q # Probabilidad de ir al anterior (mod n para ciclo)
    return P
```

La configuración experimental utiliza un rango de estados desde n=10 hasta n=560 con incrementos de 50, y cuatro valores de probabilidad $p=[0.2,\ 0.4,\ 0.6,\ 0.8]$. Para cada combinación de parámetros, se genera la matriz de transición correspondiente y se aplican ambos métodos de cálculo de distribución estacionaria, midiendo los tiempos de ejecución mediante perf_counter() y calculando el error de convergencia entre los resultados obtenidos por ambos métodos.

- 3. Bloques de Código que Generan los Cambios en las Cadenas
- 4. Resultados de la Comparación con las Gráficas