Evaluation of Autonomous Vehicle Speed Consistency Compared to Human-driven Vehicles in Work Zones

Lin Lyu, Wushuang Bai, Sean Brennan*

Intelligent Vehicles and Systems Group, The Pennsylvania State University

LARSON TRANSPORTATION INSTITUTE

Poster No. 12422

Research Question

How do autonomous vehicles (AV) perform in work zones compared to human-driven vehicles (HV)?

- Work zones create special challenges to the feasibility and performance of AVs on public roads including complex AV interactions with construction workers and surrounding human-vehicle (HV) traffic
- It is important to predict, measure, and compare AV and HV behaviors to understand their travel consistency and motions in work zones
- Rather than use actual collisions or safety violations, it is preferred to use safety metrics: object-avoidance, collision avoidance, sensing errors in traffic simulations.
- This research includes simulation-based and field-based experiments
 of AVs in work zones particularly the analysis of both AV
 performance and the AV impacts on HV traffic and work zone
 occupants. Evaluations include:
- 3 typical traffic flow regimes (highway, arterial, and urban), tested across 20 work zone configurations, for peak and off-peak flows. The most demanding situation highway flow is shown in this poster.

Simulation Methodology

Simulation Pipeline

Data Analytics Pipeline

Three Types of Simulations

- With traffic interaction:
- (1) One AV traveling within HVs flow
- Without traffic interaction:
- (2) One AV traveling in a free-flow state
- (3) One HV traveling in the free-flow state. Each type of simulation is run for *N* times

Car-following Models

- AVs behavior represented by a calibrated Wiedemann car-following model.
- HVs behavior represented by a Krauss carfollowing model calibrated to field-measured HV data.

Simulation Methodology

Use Surrogate Safety Metrics

Each metric calculated at each station from repeated simulations with randomness

- Site speed: speed of AV or HV
- Site speed disparity: speed disparity between AV and HV
- Speed disparity to follower/leading vehicle: AV/HV speed disparity to follower/leading vehicle
- Leading/ Follower spacing: spacing between AV and leading/follower HV
- Acceleration/Deceleration rates: acceleration/deceleration of AV or HV Note each metric is calculated for traffic with interaction and traffic without interaction, respectively, in each modality of peak or off-peak period

Statistics

- Average: $\overline{y}_{x} = \sum_{t=0}^{T} y_{x,t} / T$
- Standard deviation: $S = \sqrt{\sum_{t=0}^{T} (y_{x,t} \overline{y}_x)^2}/T$ where x is the station index, T is simulation time, y is evaluation metric

Experiments and Results

Traffic Demand and Sites

Flow calibration is via PennDOT field data: https://gis.penndot.gov/tire.

Modalities	Location Description	Site	Year	Peak	Peak Volume	Off-peak	Off-peak	Speed limit	Number of
(flow)		Number		Time (h)	(vehicles/h)	Time (h)	Volume		lanes in N
							(vehicles/h)		direction
Urban	Beaver Ave - 225 Feet	1135	2015	18	866	11	514	25(mph)	2
	North of Allen St. (NB							11.18(m/s)	
	Direction Only)								
Arterial	College Ave - 0.65 MILE	1136	2016	17	1526	11	617	45(mph)	2
	NORTHEAST OF SR-3022							20.12(m/s)	
	(UNIVERSITY DR)								
Highway	I-99 - 1.35 Mile North of	1180	2017	7	2147	11	1229	65(mph)	2
	Exit 71							29.05(m/s)	

Daily volume trends for urban, arterial and highway

AVs were also physically tested without traffic.

Experiments and Results Simulation Results of Each Safety Metric Traffic with interaction between Traffic without interaction between AV and HV AV and HV Site speed at station x Site speed disparity at station Acceleration in lateral direction Acceleration in longitudinal direction Speed disparity to follower/leading vehicle Spacing to follower/leading vehicle

Conclusions

This poster summarizes key results comparing HV and AV traffic flows and safety results. The results show that the AVs behavior versus the HVs behavior has, in nearly all metrics from each scenario, no statistically significant differences with 95% confidence bounds.