由此可以,通过测量顶角 $\angle A$ 和最小偏向角 δ_{\min} ,便可以计算棱镜的折射率 n

实验报告 分光计的调节与使用

少年班学院 马天开 PB21000030 (2号) 2022 年 4月 17日

1 实验目的

学习分光计的基本使用,了解光学实验的一般过程,进行简单的实验设计和实验基本方法的训练,学会分光计的读数、进行误差分析。

2 实验器材

分光计、双面平面镜、三棱镜、汞灯。 分光计误差 $\Delta \theta \approx 10'$

3 实验原理

实验中使用的最小偏向角的方法原理如下:

一束单色光从 AB 面以 i_1 入射后,经过棱镜的两次折射,出射角为 i_2' ,记偏转角为 δ ,在顶角 $\angle A$ 保持一定时,显然 δ 随入射角 i_1 而改变,并且 δ 存在最小值,对应的 $i_1' = A/2$ 。

由几何关系,可以得到 $i_1=\frac{1}{2}(\delta_{\min}+A)$,由此折射率 $n=\frac{\sin i_i}{\sin A/2}=\frac{\sin(\delta+1)/2}{\sin A/2}$

4 实验方法

4.1 调整望远镜

- 调整望远镜目镜:调整目镜调焦手轮,使目镜中观察到的分划板刻线清晰
- 平行光对焦:将平面镜放在载物台上,粗调望远镜水平、载物台与望远镜垂直。在目镜中找寻镜面反射所成的绿十字的像,移动目镜筒直至清晰,并拧紧螺钉使其固定。
- 调整望远镜光轴使其垂直主轴: 当镜面与望远镜 光轴垂直时,绿十字的反射像应当落在上十字的 中心如果存在偏移,适当通过调整载物台倾角和 望远镜倾角可以使其回到中心。

4.2 调整平行光管

取下平面镜,将狭缝对准汞灯光源,调整望远镜与 平行光管对其,在目镜中观察狭缝像,移动狭缝筒,直 至像清晰。

为保证平行光管光轴与望远镜光轴共线,可以将狭缝旋转 90°,调整螺钉使像落在中心横线上,再将狭缝旋转回水平位置,锁紧螺钉。

4.3 测量棱镜顶角

对游标做标记,分别记为 K_1,K_2 ,保持望远镜和 刻度盘固定不动,转动游标盘,使棱镜 AC 垂直面向望远镜,分别记录下此时 K_1,K_2 的读数为 θ_1,θ_2 ,再转动游标盘,使得 AB 盘垂直面向望远镜,分别记录下此时 K_1,K_2 的读数为 θ_1',θ_2' 。对两次读数做差,即为载物台转过的角度: $\Phi = 1/2(|\theta_1 - \theta_1'| + |\theta_2 - \theta_2'|)$

4.4 测量三棱镜的最小偏向角

• 将平行光管对准前方光源

图 7.1.2-11 测最小偏向角方法

- 旋松望远镜止动螺钉和游标盘止动螺钉把载物台 及望远镜转至如上图中所示的位置(1)处,再左 右微微转动望远镜,找出棱镜出射的各种颜色的 汞灯光谱线(各种波长的狭缝像)
- 轻轻转动载物台(改变入射角 i₁),在望远镜中将看到谱线跟着动。改变 i₁,应使谱线往减小的方向移动(向顶角 ∠A 方向移动)。望远镜要跟踪光谱线转动,直到棱镜继续转动,而谱线开始要反向移动(即偏向角反而变大)为止。这个反向移动的转折位置,就是光线以最小偏向角射出的方向。固定载物台,再使望远镜微动,使其分划板上的中心竖线对准其中的那条绿谱线(546.1nm)。
- 记下此时两游标处的读数 θ_1 和 θ_2 。取下三棱镜(载物台保持不动),转动望远镜对准平行发光管,即上图中(2)的位置,以确定入射光的方向,再记下两游标处的读数 θ_1' 和 θ_2' 。此时绿谱线的最小偏向角:

$$\delta_{\min} = 1/2(|\theta_1 - \theta_1'| + |\theta_2 - \theta_2'|)$$

5 实验数据

5.1 顶角

θ_1	θ_2	θ_1'	θ_2'
211°08′	31°04′	92°08′	$272^{\circ}10'$
$334^{\circ}24'$	154°23′	213°20′	$33^{\circ}24'$
95°37′	277°36′	334°02′	153°57′

5.2 最小偏向角

θ_1	θ_2	θ_1'	θ_2'
280°36′	100°40′	219°00′	39°01′
137°30′	317°30′	75°04′	255°10′
86°31′	266°30′	24°42′	204°41′

6 实验结果

6.1 数据处理

测量顶角的实验中,每组的 $\angle A$ 分别计算为:

	1	2	3
$\angle A$	118.95°	121.03°	122.62°

测量偏转角的实验中,每组的 δ_{\min} 分别计算为:

	1	2	3
δ_{\min}	61.63°	62.38°	61.82°

6.2 不确定度分析

注: P = 0.95

顶角 $\angle A$ 的展伸不确定度:

顶角 $\angle A$ 的 A 类不确定度:

A 的样本标准差

$$\begin{split} \sigma_{\angle A} &= \sqrt{\frac{\sum_{i=1}^{n}(\angle A_i - \overline{\angle A})}{n-1}} \\ &= 1.83^{\circ} \\ \mu_{\angle A} &= \sigma_{\angle A}/\sqrt{3} = 1.06^{\circ} \end{split}$$

注意到 θ 的测定是用类似游标卡尺的结构测定的,故置信系数取 $C=\sqrt{3}$,最大允差 $\Delta=1'$,代入公式可以得到:

$$\mu_{\angle A_B} = \Delta/C = 0.010^{\circ}$$

根据顶角的计算方法: $\pi - A = 1/2(\mid \theta_1 - \theta_1' \mid + \mid \theta_2 - \theta_2' \mid)$,可以得到: $\frac{-\Delta A}{\pi - A} = \frac{\Delta \theta_1 + \Delta \theta_1' + \Delta \theta_2 + \Delta \theta_2'}{\mid \theta_1 - \theta_1' \mid + \mid \theta_2 - \theta_2' \mid}$ 因此 B 类不确定度为:

$$u_B = \frac{\pi - A}{\mid \theta_1 - \theta_1' \mid + \mid \theta_2 - \theta_2' \mid} \sqrt{(4\mu_{\angle A_B})^2} = 0.002^\circ$$

因为测量次数为 3, $t_{3_{0.95}}=4.30, k_p=1.96$,代人公式计算 $\angle A$ 的不确定度为:

$$U_{A0.95} = \sqrt{(t_p \mu_A)^2 + (k_p \mu_b)^2} = 0.452^\circ$$
 用同样的办法计算 δ_{\min} 的展伸不确定度: $U_{\delta_{\min}0.95} = \sqrt{(t_p \mu_A)^2 + (k_p \mu_b)^2} = 0.976^\circ$

6.3 结论

由
$$\bar{n}=rac{\sinrac{ar{\sigma}_{\min}+ar{A}}{2}}{\sinrac{ar{A}}{2}}$$
 可以计算出, $\bar{n}=1.698$

不确定度分析可以得到:

$$\begin{split} \Delta n/\bar{n} &= 1/2((\cot\frac{\bar{\delta}_{\min}+\bar{A}}{2}-\cot\frac{A}{2})\Delta A \\ &+\cot\frac{\bar{\delta}_{\min}+\bar{A}}{2}\Delta\delta_{\min}) \end{split}$$

类似的,不确定度存在如下关系:

$$\begin{split} U_n/\bar{n} &= 1/2((\cot\frac{\bar{\delta}_{\min}+\bar{A}}{2}-\cot\frac{\bar{A}}{2})U_A\\ &+\cot\frac{\bar{\delta}_{\min}+\bar{A}}{2}U_{\delta\min})\\ &= 0.0034 \end{split}$$

因此最终测量的三棱镜折射率的结果为 $n=1.698\pm0.0034, P=0.95$

标准不确定度为 0.34%

7 实验分析

7.1 总结

虽然误差在允许范围内,但注意到实验中存在以下问题:

- 实际上不方便确定最小偏向角的位置,因为"最小值"本身难以肉眼鉴定
- 在观察绿光时……其宽度产生了一定的影响(难以确定中心点)
- 游标卡尺的读数区域有时会被支撑结构挡住,此时只能放弃这次测量,重做下一组,较为浪费时间

7.2 思考题

已调好望远镜光轴垂直主轴,若将平面镜取下后,又放到载物台上(放的位置与拿下前的位置不同),发现两镜面又不垂直望远镜光轴了,这是为什么?是否说明望远镜光轴还没调好?

并不。通过观察双面平面镜来调整望远镜光轴时, 并未真正调平载物台,只是保证了双面镜两侧的螺钉同 一高度,在平行于双面镜的方向上并未调平。