MDM Lista 10

Weronika Jakimowicz

ZAD. 2

- (a) Taki graf nie może istnieć, bo mamy 3 wierzchołki stopnia nieparzystego, a z hand shaking lemma wiemy, że wierzchołków stopnia nieparzystego musi być parzyście wiele.
- (b) Mamy 5 wierzchołków, w tym jeden stopnia 4, czyli musi być połączony ze wszystkimi pozostałymi. Na to połączenie używamy wszystkich możliwych połączeń wierzchołków stopnia 1 (bo mamy graf prosty, więc nie możemy go połączyć wielokrotnie z wierzchołkiem stopnia 3) i zostaje nam wierzchołek który chce mieć stopień 3. Szuka więc jeszcze 2 sąsiadów, ale już każdy inny wierzchołek ma dość sąsiadów i dlatego nie możemy spełnić jego oczekiwań. Czyli taki graf nie może istnieć.
- (c) Mamy 5 wierzchołków i graf dwudzielny. Możemy mieć więc albo jeden wierzchołek samotny i pozostałe 4 w jednej klasie albo klasę o 3 wierzchołkach i klasę o 2 wierzchołkach. Pierwszy pomysł nie jest możliwy, gdyż z klasy o jednym wierzchołku wychodzą dwie krawędzie, ale z większej klasy chce do niej wejść 8 krawędzi. Drugi graf obalamy w ten sam sposób: z mniejszej klasy wychodzi 4 krawędzie, ale z drugiej chce wejść tych krawędzi aż 6.

ZAD. 3.

Niech G będzie grafem takim, że d(G) > 3. Weźmy u, $v \in G$ takie, że d(u, v) = d(G) > 3. Chcemy pokazać, że odległość każdych dwóch wierzchołków w \overline{G} jest mniejsza niż 3. Niech więc x, y $\in \overline{G}$ będą dwoma dowolnymi wierzchołkami. Oczywiście pula wierzchołków G i \overline{G} jest taka sama.

Wierzchołki u, v na pewno nie mogą być połączone w G, czyli są połączone w \overline{G} . W zbiorze u, v, x, y mamy co najwyżej 4 różne wierzchołki. Jeżeli $xy \in \overline{G}$ to koniec. W przeciwnym wypadku istnieje $xy \in G$. Nie możemy mieć $xu, xv \in G$ bo wtedy $uxv \in G$ i jest $d(u,v) \le 2$. Tak samo dla uy, vy. Co więcej, jeśli $ux \in G$, to mamy $vx \in G$ i wtedy nie możemy mieć $vx \in G$, bo wtedy $vx \in G$ i jest $vx \in G$

ZAD. 6.

Zauważmy, że w drzewie jeśli mamy ścieżkę bez powtarzających się wierzchołków, to jest to unikalne takie połączenie. W naszym drzewie ab i cd są rozłączne, ale już ac i ad mają wspólne wierzchołki. Tak samo bc i bd. Teraz zauważmy, że ac i bc mają również co najmniej jeden wspólny wierzchołek. Teraz rozważmy przypadki pod względem czy $c \in bd$. Symetryczne przypadki $d \in bd$ albo a, $b \in bd$ są analogiczne.

Jeżeli $c \in bd$, to wystarczy, że do bc dokleimy ścieżkę cd i mamy bccd = $bd \ni c$ ma wspólny co najmniej wierzchołek c ze ścieżką ac.

Jeżeli zaś c ∉ bd, to wtedy również c ∉ ad, bo ad = abbd ∌ c (lub bd = baad). Wtedy mamy ac = addc i d jest wspólnym wierzchołkiem ac i bd.

ZAD. 13.

Graf Türana $T_2(n)$ to zupełny 2-dzielny graf o n wierzchołkach, który w każdej klasie ma $\lfloor \frac{n}{2} \rfloor$ lub $\lceil \frac{n}{2} \rceil$ wierzchołków. Graf $T_2(n)$ jest K_3 -wolny, czyli nie ma klik wielkości 3. Dodając jakąkolwiek krawędź do $T_2(n)$ dostajemy graf, który już nie jest K_3 -wolny. Jest tak, bo wszystkie połączenia między klasami wierzchołków zostały już użyte, więc łączymy dwa wierzchołki w jeden klasie, a te są już połączone ze wszystkimi wierzchołkami z drugiej klasy i mamy trójkąt. Z twierdzenia Türana (które poznałam na teorii grafów) możemy wyciągnąć wniosek, że jeżeli mielibyśmy graf |G|=n taki, że $e(G) \geq e(T_2(n))$ i G jest K_3 -wolny, to $G \simeq T_2(n)$, a więc jednak mamy tyle samo krawędzi. Czyli skoro już wiemy, że jeśli graf jest wolny od trójkątów i ma bardzo dużo krawędzi to jest dwudzielny, to możemy skorzystać z poprzedniej listy i zadania S, gdzie pokazywaliśmy, że graf dwudzielny o n wierzchołkach ma nie więcej niż $\lfloor \frac{n^2}{4} \rfloor$ wierzchołków.