Response to Office Action Serial No. 10/591,389 (National Phase of PCT/JP2005/022085) Page 3 of 28

AMENDMENTS TO THE SPECIFICATION

Please replace Paragraph [0004] with the following amended paragraph:

[0004] In addition, there are caused parasitic capacitance 107 between a ground [[41]] 108 of the transmission circuit 105 and a living body [[109]] 104 and parasitic capacitance 110 between the living body 104 and the earth ground 116. The living body 104 and a mobile terminal 100 are connected with each other via a transmission electrode 111 and an insulator 112. In order to increase a voltage to be applied to the living body by causing resonance with the parasitic capacitances, a reactance section 106 is inserted between the transmission circuit and a transmission/reception electrode. In an electric field communication transceiver for use in electric field communication that is floating from the earth ground, there is known reactance adjustment that adjusts reactance of a variable reactance that has been inserted between the transmission/reception electrode and the transmission circuit by means of an amplitude monitor and a control signal generator in order to efficiently induce an electric field in a living body even when the parasitic capacitances are fluctuated (See the above-mentioned patent documents).

Please replace Paragraph [0005] with the following amended paragraph:

[0005] When such a circuit illustrated in FIG. 1 is used, a voltage amplitude $|V_b|$ to be applied to the living body at the time of resonance is expressed by the following equation:

$$|V_{b}| = \underline{1} |V_{s}|$$

$$[[2_{nf}R_{s}]] \underline{2\pi R_{s}} \{ C_{b} + C_{sb} (1 + C_{b}/C_{g}) \}$$
(14)

where R_s represents an output resistance of the transmission circuit and $|V_s|$ represents an amplitude of an output signal from the transmission circuit. In addition, the parasitic capacitances 107, 109, 110 are designated by C_{sb} , C_g , and C_b , respectively.

Response to Office Action

Serial No. 10/591,389

(National Phase of PCT/JP2005/022085)

Page 4 of 28

Please replace paragraph [0010] with the following amended paragraph:

[0010] In FIG. 3, a variable capacitance reactance section 601 is provided with alternating signal terminals 609, 610, an inductor 687, a buffer amplifier 686, a variable capacitance diode 671 such as a varicap diode or the like, capacitors 685, 690, resistors 688, 691. The variable capacitance diode 671 and the inductor 687 compose a resonance circuit and electrostatic capacitance of the variable capacitance diode 671 is varied by a control signal inputted from the control signal input 610 a control signal 611 inputted from the control signal generation section 143, thereby enabling adjustment of a resonance frequency. By the way, since there is a limit to a voltage applicable (withstand voltage), the variable capacitance diode 671 has to be used in a voltage range not exceeding the withstand voltage.

Please replace paragraph [0014] with the following amended paragraph:

[0014] FIG. 5 illustrates a system in which the transceiver illustrated in FIG. 4 is used as an installed terminal side transceiver to which electric power is supplied. In a transceiver 701 as illustrated in FIG. 4, a ground 711 of a transmission circuit 703 that modulates data to be transmitted by a predetermined frequency f and outputs the modulated data is apart away from an earth ground 702, thereby causing parasitic capacitance C_g [[104]] $\underline{704}$ therebetween.

Please replace paragraph [0015] with the following amended paragraph:

[0115] In addition, there is caused parasitic capacitance [[706]] $\underline{C_{sb}}$ 704 between the ground 711 of the transmission circuit 703 and a living body 700 and parasitic capacitance C_b 705 between the living body 700 and the earth ground 702. In order to increase a voltage applied to the living body by causing resonance with these parasitic capacitances, a reactance section 710 is inserted between the transmission circuit 703 and a transmission/reception electrode 713.

Response to Office Action Serial No. 10/591,389 (National Phase of PCT/JP2005/022085) Page 5 of 28

Please replace paragraph [0016] with the following amended paragraph:

[0016] FIG. 5 is a schematic view of a system enabling an electric power transmission employing the transceiver 701 of FIG. 4. In FIG. 5, [[C_{sg} 724]] $\underline{C_{gs}}$ 726 represents parasitic capacitance between the transmission/reception electrode 727 and an earth ground 730; C_b 723 represents parasitic capacitance between the living body and the earth ground; C_g 722 represents parasitic capacitance between a ground 725 of the mobile terminal side transceiver 716 and the earth ground 730; and Z_L 718 ($Z_L = R_L + X_L$) represents impedance of the mobile terminal side transceiver 716.