Broadband Microstrip Antennas

Prof. Girish Kumar

Electrical Engineering Department, IIT Bombay

gkumar@ee.iitb.ac.in (022) 2576 7436

MSA – BW Variation with h and f

(a) Variation of percentage BW and efficiency of a square MSA versus h/λ_0 . (---) $\epsilon_r = 2.2$, (---) $\epsilon_r = 10$ and (b) variation of percentage BW with frequency for three values of h and $\epsilon_r = 2.32$: (---) 0.318, (---) 0.159, (---) 0.079 cm.

MSA – Broadband Using Multi-Resonators

VSWR plots of two coupled resonators having (a) narrow and (b) wide BW: $(\cdot \cdot \cdot)$ individual resonators and (----) overall response.

Broad bandwidth using multi-resonator concept.

Two resonators are optimally coupled to obtain broad bandwidth

Two Gap Coupled RMSA

Frequency (GHz)

Effect of Feed-Point - Two Gap Coupled RMSA

As x increases from 0.7 to 1.1 cm, input impedance plot shifts right and the loop is inside VSWR = 2 circle.

For x = 1.1 cm, BW for VSWR ≤ 2 is 207 MHz (~7%). This BW is more than three times the BW of a single RMSA.

Effect of Length L₁ - Two Gap Coupled RMSA

As L_1 decreases from 3.0 to 2.8 cm, its resonance frequency increases, so the loop in the input impedance plot shifts towards higher frequency region, i.e. in clockwise direction.

Effect of Gap S - Two Gap Coupled RMSA

As gap *S* increases from 0.05 to 0.15 cm, the coupling between the two patches is reduced and hence size of the loop in the input impedance plot reduces.

Radiation Pattern of Two Gap Coupled RMSA

L = 3 cm and W = 4 cm, $\varepsilon_r = 2.55 \text{ and } h = 0.159 \text{ cm},$ $L_1 = 2.9 \text{ cm}, W = 4 \text{ cm},$ s = 0.1 cm and x = 1.1 cm.

BW for VSWR \leq 2 is 2.895 to 3.102 GHz

In the E-plane, the beam maxima shifts away from the broadside as frequency increases from 2.9 to 3.1 GHz. (-

Radiation Pattern:

—) E-plane and (- - -) H-plane

Three Gap Coupled RMSA – Effect of Gap S

L = 3 cm, W = 4 cm, $\varepsilon_r = 2.55$ and h = 0.159 cm, $L_t = 2.9$ cm, W = 4 cm, and x = 1.1 cm.

S: (---) 0.1, (---) 0.15, and (----) 0.2 cm

Radiation Pattern of Three Gap Coupled RMSA

For S = 0.15 cm, Radiation pattern at (a) 2.89 and (b) 3.09 GHz (——) E-plane and (- - -) H-plane.

Gain of Three Gap Coupled RMSA is 9.4 dB at 3 GHz, which is 2.7 dB more than the single RMSA.

Three Gap Coupled RMSA – Effect of Length L₁

h = 3.18 mm, $\varepsilon_r = 2.55$, L = W = 30 mm, x = 14 mm, s = 3mm, two values of L_1 (---) 29 mm and (------) 27.5 mm For $L_1 = 27.5$ mm, the loop is completely inside VSWR = 2 circle yielding BW of 335 MHz (11.3%)

Non-Radiating Edge Gap Coupled RMSA

h: (——) 0.159 cm

L = 3 cm, W = 4 cm, $\varepsilon_r = 2.55$ s = 0.05 cm, $L_1 = L_2 = 2.9$ cm, W = 4 cm, and x = 1.1 cm. h: (---) 0.318 cm

L = 3 cm, W = 3 cm, $\varepsilon_r = 2.55$ s = 0.05 cm, $L_1 = L_2 = 2.7$ cm, W = 3 cm, and x = 1.4 cm.

h: (----) 0.159 cmBW = 159 MHz (5.3%)

h: (- - -) 0.318 cm BW = 390 MHz (12.7%)

Gap Coupled RMSA Configurations

(b) Non-radiating edges coupled

(c) Four edges coupled

Four Edges Gap Coupled RMSA

 $\varepsilon_r = 2.55, h = 3.18 \text{ mm}, L = W = 30 \text{ mm},$ $L_1 = 27.5 \text{ mm}, s_1 = 2.5 \text{ mm},$ $L_2 = 25.5 \text{ mm}, s_2 = 0.5 \text{ mm}, x = 14 \text{ mm}$

Two loops in Smith chart within VSWR = 2 circle. BW for VSWR < 2 is 569 MHz (18%)

Four Edges Coupled MSA–Radiation Pattern

Directly Coupled RMSA

Gap Coupled Circular MSA

Gap Coupled Semi-Circular MSA

(a) Two gap-coupled SCMSA and (b) its input impedance plot: (- - -) theoretical and (——) measured.

BW for VSWR \leq 2 is 143 MHz at 2.72 GHz, which is more than twice the BW of CMSA on same substrate but gain is not uniform over the bandwidth.

RMSA with U-Slot

By cutting a U-slot inside a RMSA, BW is increased without increasing the volume of the antenna.

Resonance of U-slot should be close to that of RMSA Disadvantage – gain is not uniform over the bandwidth

Electromagnetically Coupled MSA (ECMSA)

Microstrip line fed MSA (Rectangular and Circular MSA)

Two MSA are stacked. Only bottom patch is fed

Electromagnetically Coupled RMSA

Resonance frequency of the top patch should be slightly more than the bottom patch. Gap between the substrates control the coupling between the patches.

Electromagnetically Coupled RMSA - Results

 $L_1 = 2.5$ cm, $L_2 = 2.5$ cm, x = 1.1 cm, $\varepsilon_r = 2.22$, h = 0.159 cm Gap Δ : (---) 0.1 cm, (---) 0.3 cm, and (---) 0.4 cm

BW for VSWR \leq 2 is 816 MHz (20.6%) for gap = 0.3 cm and gain is 8.3 dB at 3.95 GHz.

Electromagnetically Coupled SMSA for GSM 900

L ₁= 15.2cm, L₂ = 12.8cm, Δ_1 = 1.1cm, Δ_2 = 1.3cm, x = 6.5cm, and L_g = 24cm

Measured BW for $VSWR \le 2$ is from 872 to 1000 MHz

Aperture Coupled MSA

Aperture shape: rectangular, H shape, dog-bone, hour-glass

Advantages: Large BW, design flexibility

Disadvantages: Back radiation, multi-layer substrates, alignment

Stacked Planar MSA – 1B3T

 $L= 4.0 \text{ cm}, L_1 = 3.6 \text{ cm}, s = 0.25 \text{ cm}, x = 1.4 \text{ cm},$ $\varepsilon_r = 2.22, h = 0.159 \text{ cm}, \text{ and } h_1 = 0.4 \text{ cm}$

BW for VSWR \leq 2 is 782 MHz (26.1%) and gain is more than 10 dB

Stacked Planar MSA – 1B2T

Variation of BW and Gain of 1B2T RMSA with h_1 (L = 5 cm, W = 3 cm, x = 2.4 cm, and h = 0.5 cm)

<i>h</i> ₁ (cm)	<i>L</i> ₁ (cm)	<i>ox</i> (cm)	BW (MHz)	Gain (dB)
0.4	3.8	4.7	650	11.3
0.5	3.7	4.5	789	11.3
0.6	3.6	4.4	819	11.2
0.7	3.6	4.3	847	11.1
0.8	3.4	4.0	958	10.9
0.9	3.4	3.7	1,043	10.8
1.0	3.4	3.4	1,011	10.7
1.1	3.2	2.5	997	10.0

Stacked Planar MSA – 1B4T

Variation of BW and Gain of the 1B4T RMSA with h_1 (L = 5 cm, W = 3 cm, $W_1 = 2$ cm, x = 2.4 cm, and h = 0.5 cm)

h ₁ (cm)	L ₁ (cm)	ox, oy (cm)	f ₀ (GHz)	BW (MHz)	Gain (dB)
0.4	3.9	3.8, 2.3	2.938	816	12.7
0.5	3.9	3.7, 2.2	2.915	868	12.2
0.6	3.8	3.6, 2.1	2.930	910	12.3
0.7	3.7	3.5, 2.0	2.955	933	12.0
0.8	3.6	3.2, 1.7	2.958	1,070	11.5

Broadband Circular Monopole Antenna

Metallic circular plate is fed by a co-axial feed

BW for VSWR \leq 2 is from 1.17 to 12 GHz (BW ratio 1:10.2)

Disadvantage – pattern variation over the bandwidth.

Broadband Triangular Monopole - RF Harvesting

CONCLUSIONS

- Broadband Antenna Technology is rapidly changing.
 - Planar coupled, stacked, planar and stacked
 - Broadband monopole antennas
- ➤ Requirement for innovative thinking to meet future challenges:
 - Broadband directional high gain antenna
 - Uniform pattern over the broad bandwidth
- > Design is the key thing.
- ➤ Low cost without sacrifice in performance.