Measurement of the Electric Permittivity of Free Space

DATA	Capacitance (F) x	Plate Seperation (m) y	x = 1/Distance	y = C/Area
	1	.1E-10 0.	003 333.333333	3 3.54839E-09
	8.5	52E-11 0.	004 25	0 2.74839E-09
	7.3	22E-11 0.	005 20	0 2.32903E-09
	6.3	L6E-11 0.	006 166.66666	7 1.9871E-09
	5.4	19E-11 0.	007 142.857142	9 1.77097E-09
	4.9	96E-11 0.	008 12	5 1.6E-09
	4.5	56E-11 0.	009 111.111111	1 1.47097E-09
	4.3	23E-11 (0.01 10	0 1.36452E-09
	3.9	98E-11 0.	011 90.9090909	1 1.28387E-09
	3.7	75E-11 0.	012 83.3333333	3 1.20968E-09
	3.!	56E-11 0.	013 76.9230769	2 1.14839E-09
Measured Electric Permitivity -	> 9.341	Percent Difference	e = 0.0	6 %
Theoretical Constant -		L9E-12	t = 10.6377896	5
LINEST OUTPUT	·			
Slope -	> 9.3414	11E-12 4.33315I	-10 <- y intercept	
Uncertainty -	> 4.580	L6E-14 7.82284I	E-12 <- uncert of y-int	
R^2 -	> 0.9997	83686 1.16115	-11 <- Variance	
Fisher -	> 41597.	27035	9	
	5.6084	13E-18 1.21344I	-21	

Measurement of the Electric Permittivity of Free Space

A.1 Yes, the slope is very close to the theoretical constant. A difference of 0.6% I would say is within a reasonable tolerance.

A.2 I would assert that averaging out the distance/capacitance measurement would minimize most human error. I would further hypothesize that a "constant" source of environmental electro-magnetic "noise" could be a source of random error. This "noise" could originate from over head lighting or humans. I do believe that this is a good way to **demonstrate** the permittivity constant but an electro-magnetically shielded room that is able to create a vacuum would be an optimal place to do precise measurements.

Randy McMillan

rmcmillan1@mail.usf.edu