Thesis Plan

Jack Kennedy

November 25, 2021

1 Thesis Structure

- 1 Introduction
 - Thesis aims and outline
 - Athena model
 - Bayesian methods I am concerned with decision making and elicitation
- 2 Emulators/GPs Statistical analysis of complex computer models
 - Introduction to Emulators: prior over functions (vs prior over individual parameters)
 - Stochastic vs deterministic, the nugget effect
 - Literature review on various emulation approaches
 - HetGPs important special case
 - * Gramacy/Goldberg's HetGP
 - * "implied" HetGPs e.g. DAH paper with 2 emulators, quantile kriging etc
 - * Might be agood place to put some initial Athena emulators in e.g. the one used in my early talks?
 - Review on applications of emulators: focus on sensitivity, uncertainty propagation and decision making
 - Diagnostics
- 3 Stochastic ML Emulators
 - This will be very similar to paper
 - I can go into more detail though. I have used an EB approach to fit emulators but I could include the MAP estimate work for the full picture
- 4 Sensitivity analysis for complex models
 - Review of key approaches. Oakley and O'Hagan paper + Marrel paper v important

- Also mentions other types of SA e.g. local SA?
- Put my sensitivity analysis via hetgp and sml in here
- 5 Bayesian Optimisation & Decision support
 - Outline bayesian optimisation
 - Outline history matching optimisation
 - Discuss decision making Vs decision support
- 6 Wind farm optim problem
 - Set scene with wind farm problem
 - Give and discuss results of my approach to the problem
 - Similar to a "data analysis" chapter
- 7 Conclusions/discussion
 - Summary of each thesis chapter (about 1 paragraph each)
 - Loop back to start: "In chapter X we did Y"
 - Future work
 - * Designs for SML Emulators
 - * We could investigate sensitivity to the optimal decision using Oakley's method. NB this would be tricky because we have a discrete simplex valued component i.e. correlated inputs.

2 Work timeline

The plan is to spend ~ 3 weeks constructing a first draft of each chapter. Roughly as follows

- January emulators
- Janury/Febuary SML emulators and HetGPs
- Revise emulators
- Febuary/March Sensitivity analysis
- Revise SML/HGP
- March Bayesian Optimisation, Decision support
- Revise SA
- April Wind farm optimisation problem
- Revise BayesOpt/DS

- April/June Intro
- $\bullet\,$ Revise wind farm optim
- June/July Conclusions
- Revise intro
- Revise conclusions