CS-225: Discrete Mathematics Quiz 1 Solution

1) Is the following a proposition?

Adding 3 to both sides of x-3 = 37 gives x = 42.

Yes, it's a proposition with truth value false.

2) Is the following a proposition? $4^{n+1} \ge 100$

No, as n is unknown.

3) Is the following a proposition? Call me Abraham.

No. It's an imperative sentence.

4) Is the following a proposition? If it does not walk like a duck and it does not talk like a duck, then it is not a duck.

Yes, it's a complex proposition.

5) A conditional statement is logically equivalent to its converse. –

Answer: False.

Question 6

Give the converse, the contrapositive, and the inverse of the following statements-

- 1) If the number is 64 then it is both even and a power of 4.
- 2) Having a microscope is a necessary condition for (our) seeing viruses.
- 3) John will break the world's record for the mile run only if he runs the mile in under four minutes.

Answer:

1) "If the number is 64, then it is both even and a power of 4."

Let p = "The number is 64"

g = "The number 64 is even "

r = " The number 64 is a power of 4"

The statement can be written as $p \rightarrow (q \land r)$

- Converse $(q \land r) \rightarrow p$: If the number is both even and a power of 4, then it is 64.
- Contrapositive ~ (q ∧ r) → ~ p: If the number is not even or not a power of 4, then it is not 64.
 (By De Morgan's Law)
- Inverse ~ p → ~ (q ∧ r): If the number is not 64, then it is not even or a not power of 4. (By De Morgan's Law)
- 2) "Having a microscope is a necessary condition for (our) seeing viruses."

```
Let p = "We can see viruses"
q = "We have a microscope"
```

The statement can be expressed as $p \rightarrow q$

- Converse $q \rightarrow p$: If we have a microscope, then we can see viruses.
- Contrapositive $\sim q \rightarrow \sim p$: If we do not have a microscope, then we can't see viruses.
- Inverse $\sim p \rightarrow \sim q$: If we can't see viruses, then we don't have a microscope.
- 3) John will break the world's record for the mile run only if he runs the mile in under four minutes.

```
Let p = "John will break the world's record for the mile run" q = "John runs the mile in under four minutes"
```

The statement can be expressed as $p \rightarrow q$

- Converse q → p: If John runs the mile in under four minutes, then he will break the world's record for the mile run.
- Contrapositive ~ q → ~p: If John does not run the mile in under four minutes, then he will not break the world's record for the mile run.
- Inverse ~p → ~q:" If John will not break the world's record for the mile run, then he does not run
 the mile in under four minutes "

Question 7:

Negate the following statements

- i) In order for it to rain it is sufficient that there be clouds.
- $_{
 m ii)}$ A necessary condition for this computer program to be correct is that it not produce error messages during translation.
- iii) It is neither raining nor sleeting.
- iv) If the security code is not entered, then the door will not open.
- v) Only if Marc studies will he pass the test.

Answer:

i) In order for it is sufficient that there be clouds.

```
Let p = "There are clouds" and q = "It will rain"

If-else: "If there are clouds, then it will rain."

By De Morgan's Law, its negation is equal to: (p \( \sigma \) \( \sigma \)
```

This translates to: "There are clouds and it will not rain."

ii) A necessary condition for this computer program to be correct is that it not produce error messages during translation.

Let p = "The computer program is correct" and q = "The computer program produces error messages during translation."

If—then form: If the computer program is correct then it does not produce error messages during translation.

By De Morgan's Law, its negation is equal to:
$$\sim$$
 (p $\rightarrow\sim$ q) $\equiv\sim$ ((\sim p) $\vee\sim$ q) $\equiv\equiv$ p \wedge q

This translates to: "the computer program is correct and it produces error messages during translation".

iii)It is neither raining nor sleeting.

Restated: "It is neither raining nor sleeting" $\sim p \land \sim q$

By De Morgan's laws and the double negation law, this is equivalent to: $\sim(\sim p) \lor \sim(\sim q) \equiv p \lor q$

This translates to: "It is either raining or sleeting"

iv) If the security code is not entered, then the door will not open.

```
Let p = "The security code is entered" and q= " The door will open"
```

By De Morgan's Law, its negation is equal to:
$$\sim$$
 (\sim p \rightarrow \sim q) \equiv \sim (\sim (\sim p) \lor \sim q) \equiv \sim p \land q

This translates to: "The security code is not entered and the door will open."

v) Only if Marc studies will he pass the test.

```
Let p = "Marc passes the test" and q = "Marc studies well".
```

In if -else form: If Marc passes the test, then he studies well.

By De Morgan's Law, its negation is equal to: $\sim (p \rightarrow q) \equiv \sim ((\sim p) \lor q)) \equiv (p \land \sim q)$

This translates to: "Marc passes the test and he does not study well"

Question 8:

Determine whether the following statements are true or false -

```
1) 1 + 1 = 3 if and only if 3 + 4 = 9.
```

2)
$$1 + 1 = 2$$
 only if $3 + 4 = 9$.

Answer:

1) 1 + 1 = 3 if and only if 3 + 4 = 9.

Let p="1 + 1 = 3" and q = "3 + 4 = 9." And is saying $p \leftrightarrow q$

Here, both p is not true and q is not true so, which is true.

2) 1 + 1 = 2 only if 3 + 4 = 9. Here p="1+1=2" and q="3+4=9" so, p \rightarrow q and p is true, q is false, so p \rightarrow q is **false**.

.....

Question 9:

The following statements are not equivalent -

The following statements are not equivalent (You may need to apply a rule here . Use <u>Tables.png</u>☑)

"Alice is smart, or she is smart but honest.

and

"Alice is smart."

Answer: False. By the first absorption law, $(p \lor (p \land q)) \equiv p$ they are equivalent.

Question 10:

Let P, Q, and R be the propositions

- P: Grizzly bears have been seen in the area.
- Q: Hiking is safe on the trail.
- R: Berries are ripe along the trail.

Translate the following English sentences into compound logical propositions.

- a) It is necessary that berries are ripe for the fact that grizzly bears have seen in the area.
- b) Hiking is safe if and only if berries are ripe along the trail or grizzly bears have not been seen in the area.
- c) Neither hiking on the trail is safe nor are the berries ripe along the trail.

Answer:

a) It is necessary that berries are ripe for the fact that grizzly bears have been seen in the area.

$$P \rightarrow R \text{ (not } R \rightarrow P)$$

b) Hiking is safe if and only if berries are ripe along the trail or grizzly bears have not been seen in the area.

$$Q \leftrightarrow (R \lor \sim P)$$

c) Neither hiking on the trail is safe nor the berries are ripe along the trail.

Question 11:

(P --> Q) \vee R and \sim ((P \wedge \sim Q) \wedge \sim R) are logically equivalent using truth table method -

Answer:

$PQRP \rightarrow$	РΛ	(P ∧ ~Q) ∧	~ ((P ∧ ~Q) ∧R	$(P \rightarrow Q) \ V$
T T T T	F	F	Т	Т
TTFT	F	F	Т	Т
TFTF	Т	F	Т	Т
TFFF	Т	Т	F	F
FTTT	F	F	Т	Т
FTFT	F	F	Т	Т
FFTT	F	F	Т	Т
FFFT	F	F	Т	Т

The highlighted columns show that the expressions have the same truth values. So, they are equivalent.

Question 12:

Simplify the following equation (use the tables attached herewith Tables.png

] -

$$\sim ((P \land \sim Q) \lor \sim (P \lor Q))$$

Answer:

$$\sim ((P \land \sim Q) \lor \sim (P \lor Q))$$

$$\equiv \sim ((P \land \sim Q) \lor (\sim P \land \sim Q))$$
 (De Morgan's law)
 $\equiv \sim ((\sim Q \land P) \lor (\sim Q \land \sim P))$ (Commutative law

$$\equiv \sim (\sim Q \land T)$$
 (Negation law)
 $\equiv \sim (\sim Q)$ (Identity law)