The Integral

The definite integral $\int_{a}^{b} f(x)dx$ is the area under the function y = f(x) between points a and b:

$$A = \int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

where $F(x) = \int f(x)dx$ is the antiderivative of f(x).

Antiderivatives of some common functions in engineering:

Function, $f(x)$	Antiderivative, $F(x) = \int f(x)dx$
$\sin(\omega x)$	$-\frac{1}{\omega}\cos(\omega x) + C$
$\cos(\omega x)$	$\frac{1}{\omega}\sin(\omega x) + C$
e^{sx}	$\frac{1}{s}e^{sx} + C$
x^n	$\frac{x^{n+1}}{n+1} + C$
cf(x)	$c \int f(x) dx$
$f_1(x) + f_2(x)$	$\int f_1(x)dx + \int f_2(x)dx$

• In the above table, ω , s, n, c and C are constants (not functions of x)

TABLE OF INTEGRALS

BASIC FORMS

$$1. \int u \, dv = uv - \int v \, du$$

2.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

3.
$$\int \frac{du}{u} = \ln|u| + C$$

4.
$$\int e^{u} du = e^{u} + C$$

$$5. \int a^u du = \frac{a^u}{\ln a} + C$$

$$6. \int \sin u \, du = -\cos u + C$$

7.
$$\int \cos u \, du = \sin u + C$$

8.
$$\int \sec^2 u \, du = \tan u + C$$

$$9. \int \csc^2 u \ du = -\cot u + C$$

$$10. \int \sec u \, \tan u \, du = \sec u + C$$

11.
$$\int \csc u \cot u \, du = -\csc u + C$$

$$12. \int \tan u \, du = \ln |\sec u| + C$$

$$13. \int \cot u \, du = \ln |\sin u| + C$$

$$14. \int \sec u \, du = \ln |\sec u + \tan u| + C$$

$$15. \int \csc u \, du = \ln|\csc u - \cot u| + C$$

16.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + C$$

17.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

18.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{u}{a} + C$$

19.
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + C$$

20.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C$$

FORMS INVOLVING $\sqrt{a^2+u^2},\ a>0$

21.
$$\int \sqrt{a^2 + u^2} \, du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln(u + \sqrt{a^2 + u^2}) + C$$

22.
$$\int u^2 \sqrt{a^2 + u^2} \, du = \frac{u}{8} \left(a^2 + 2u^2 \right) \sqrt{a^2 + u^2} - \frac{a^4}{8} \ln \left(u + \sqrt{a^2 + u^2} \right) + C$$

23.
$$\int \frac{\sqrt{a^2 + u^2}}{u} du = \sqrt{a^2 + u^2} - a \ln \left| \frac{a + \sqrt{a^2 + u^2}}{u} \right| + C$$

24.
$$\int \frac{\sqrt{a^2 + u^2}}{u^2} du = -\frac{\sqrt{a^2 + u^2}}{u} + \ln(u + \sqrt{a^2 + u^2}) + C$$

25.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \ln(u + \sqrt{a^2 + u^2}) + C$$

26.
$$\int \frac{u^2 du}{\sqrt{a^2 + u^2}} = \frac{u}{2} \sqrt{a^2 + u^2} - \frac{a^2}{2} \ln(u + \sqrt{a^2 + u^2}) + C$$

27.
$$\int \frac{du}{u\sqrt{a^2 + u^2}} = -\frac{1}{a} \ln \left| \frac{\sqrt{a^2 + u^2} + a}{u} \right| + C$$

28.
$$\int \frac{du}{u^2 \sqrt{a^2 + u^2}} = -\frac{\sqrt{a^2 + u^2}}{a^2 u} + C$$

29.
$$\int \frac{du}{(a^2 + u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 + u^2}} + C$$