### Progress report

# Multiple Camera Tracking

3rd stage

### Content

- 1) SCT overview
- (2) MCT research problem proposal
- 3 Application scenarios
- (4) Detailed plan for phase 1

### 1. SCT overview

SCT = Detection + Tracking

### 1.1. Detection



#### YOLO:

- One-stage detector
- Detection is made on feature maps of different scales
- Anchor-based

#### YOLOv5:

- Backbone: CSPResBlock reduces FLOPs, while yield more informative gradient
- Inference in fp16
- Neck: PANet allow information propagation between detection layers more efficient
- Augmentation: Scaling, Color adjustment, Mosaic
- Auto learn anchor boxes

### 1.1. Person Detection

#### Dataset

- Class Person from COCO 2017
- 64,115 for training, 2,693 for validation

#### Model

- YOLOv5s
- Use default parameters
- Input size: 640

Training time: 100 epochs

- AP@0.5: 0.79836
- AP@0.5:0.95: 0.54389

#### Assessment on MOT17 (1920x1080):

- False Negative is very frequent
- False Positive is rare



## 1.2. Tracking (SORT)

#### Tracking-by-Detection approach



## 1.2. Tracking

#### Evaluation on MOT17

- Using previous trained person detection of YOLOv5
  - o confidence threshold: 0.5
- iou\_threshold: 0.3
- Using default Kalman Filter

## 1.3. Experiments

| Dete       | Detection  |                | Tracking        |        | Evaluation |        |         |        |        |      |  |  |
|------------|------------|----------------|-----------------|--------|------------|--------|---------|--------|--------|------|--|--|
| Input size | IoU thresh | max_age<br>(s) | min_hits<br>(s) | НОТА   | DetA       | AssA   | GT_Dets | GT_IDs | Dets   | IDs  |  |  |
| 640        | 0.45       | 1              | 1               | 31.103 | 20.637     | 47.117 | 336891  | 1638   | 90195  | 957  |  |  |
| 1280       | 0.45       | 1              | 1               | 35.668 | 26.745     | 47.899 |         |        | 117807 | 1215 |  |  |
| 1280       | 0.50       | 1              | 1               | 35.688 | 26.699     | 48.038 |         |        | 117693 | 1218 |  |  |
| 1280       | 0.55       | 1              | 1               | 35.833 | 26.76      | 48.312 |         |        | 118065 | 1224 |  |  |
| 1280       | 0.60       | 1              | 1               | 35.479 | 26.512     | 47.808 |         |        | 117474 | 1224 |  |  |
| 1280       | 0.55       | 0.5            | 1               | 36.021 | 27.468     | 47.591 |         |        | 120159 | 1347 |  |  |
| 1280       | 0.55       | 1.5            | 1               | 36.064 | 27.228     | 48.113 |         |        | 119547 | 1296 |  |  |
| 1280       | 0.55       | 2              | 1               | 36.043 | 27.195     | 48.114 |         |        | 119379 | 1290 |  |  |
| 1280       | 0.55       | 1.5            | 0.15            | 41.625 | 36.583     | 47.88  |         |        | 169167 | 2343 |  |  |
| 1280       | 0.55       | 1.5            | 0.25            | 40.728 | 34.763     | 48.18  |         |        | 157383 | 1974 |  |  |
| 1280       | 0.55       | 1.5            | 0.5             | 38.789 | 31.384     | 48.329 |         |        | 138270 | 1563 |  |  |

## MCT research problem proposal

### 2.1. MCT overview

(1) Re-ID:

Use appearance information (visual feature) to determine the same or different persons.

- 1. Feature learning: **OSNet**, FastReID
- 2. Metric Learning: Triplet Loss, Cross Entropy Loss, Center Loss
- 3. Matching to define same or different person based on gallery and query method.
- 2 Spatio-Temporal Association

Use spatial (camera layout, adjacent areas, ...) and temporal information (sequential of moving time) to matching person through many cameras.

### 2.1. MCT overview

### STA with non-overlapping field of view

[1] build assumption from statistic (histogram): 2 images are likely the same when ST difference is small, they are likely different when ST difference is large. Do Re-ID, then re-ranking.

$$ST(i,j) = \frac{|T_i - T_j|}{T_{max}} \times \frac{\delta(C_i, C_j)}{D_{max}}$$

[2] combines ST and visual feature for the ranking.

$$C(I_i, I_j) = \frac{\|T_i - T_j\|}{T_{max}} \times \frac{\delta(D_i - D_j)}{D_{max}} \times d(f(I_i), f(I_j))$$

With known physical distance between cameras, [3] estimate 3D speed of object from SCT then derive the travelling time between camera for each object.

STA with overlapping field of view

#### Mapping strategies:

- Without calibration: Homography
- With calibration:
  - Epipolar line constraint
  - Pixel to Physical coordinate

[4] use GMM and EM algorithm to learn the entry/exit zone between cameras, then learn the probability of someone moving from exit of camera A to entry of camera B.

[5] map trajectories from different image planes to a same physical coordinate, then compute **direction similarity** and distance among them, combine both for the ranking.

.... the falking.

Goal: Research and develop solutions for STA with overlapping field of view.

## 2.2. Proposal: Camera Setup



2D camera



## 2.2. Proposal: Approaches

## 1 Homography (without calibration)

- 1. Find a homography H between 2 cameras in the overlapping area.
- 2. For track T, transform its trajectory in overlapping area of camera 1 to the view of camera 2 using H.
- 3. Filter all the tracks in camera 2 that is created before t, take the part of it in the overlapping area
- 4. Match the closest valid track as correspondence of T.





### 2.2. Proposal: Approaches

- (2) Epipolar line constraint (with calibration)
  - 1. Find intrinsic parameter of camera 1 and camera 2.
  - 2. Calculate the transition and orientation of the 2 cameras with a specific world coordinate frame.
  - 3. For every tracklet in camera 1:
    - a. Find the part of its trajectory in the overlapping area
    - b. Its correspondence must lies on (or very close to) an epipolar line in camera 2, and vice versa. We apply this constraint for all points in a track.



### 2.2. Proposal: Approaches

### (3) Pixel to Physical coordinates (with calibration)

- 1. Find intrinsic parameter of camera 1 and camera 2 and their extrinsic parameters w.r.t a specific world coordinate frame.
- 2. Calculate the equation of floor in space.
- 3. For every bounding box in image plane, derive the foot pixel. We know this pixel's correspondence in space must satisfy the equation of floor.
- 4. Transform the trajectory part in the overlapping area to physical coordinates.
- 5. Do assignment as in approach 1.





## 3. Application scenarios

### 2.1. Application scenarios

(1) Crowd Insights

Recognize abnormal event in public places (company, schools, parks, events, etc.) in COVID-19:

- Trace trajectory and contacts of a person (positive case)
- Alert when someone does not wear mask
- Alert when a group exceeds a recommended number of people

## 2 Retail Insights

Build customer profile in retail stores:

- Record customer staying time at some specific areas
- Record customer attributes: age, gender, etc
- Recognize customer behaviours, e.g touching, buying preferences
- (3) Manage staff

Performance tracking for employee management:

- Record staff's staying time in areas of store
- Record staff's behaviours

## 4. Detailed plan for phase 1

| Task                                             | Week 1<br>(24/10 -<br>30/10) | Week 2<br>(31/10 -<br>06/11) | Week 3<br>(07/11 -<br>13/11) | Week 4<br>(14/11 -<br>20/11) | Week 5<br>(21/11 -<br>27/11) | Week 6<br>(28/11 -<br>04/12) | Week 7<br>(05/12 -<br>11/12) | Week 8<br>(12/12 -<br>18/12) | Week 9<br>(19/12 -<br>25/12) | Week 10<br>(26/12 -<br>30/12) |
|--------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|
| Prerequisites for Spatio-Temporal                | Associatio                   | n                            |                              |                              |                              |                              |                              |                              |                              |                               |
| Setup camera, collect video                      |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
| Run SCT, save database                           |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
| Make evaluation metrics and ground-truth for MCT |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
|                                                  |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
| Do experiments with Spatio-Temporal Association  |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
| Homography w/o calib, cam 2D                     |                              |                              |                              |                              |                              |                              | Report                       |                              |                              |                               |
| Homography w/o calib, cam 360                    |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
| Epipolar line constraint, cam 2D                 |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
| Pixel to physical coord, cam 2D                  |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |
| Report                                           |                              | 1                            |                              |                              |                              |                              |                              |                              |                              |                               |
|                                                  |                              |                              |                              |                              |                              |                              |                              |                              |                              |                               |

### References

- [1] PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance
- [2] Multi-attribute driven vehicle re-identification with spatial-temporal re-ranking
- [3] Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features
- [4] An Adaptive Learning Method for Target Tracking across Multiple Cameras
- [5] Spatio-temporal consistency and hierarchical matching for multi-target multi-camera vehicle tracking

### Progress report

# Multiple Camera Tracking

3rd stage