Réponses aux Questions de Devoirs

Question 1: Langages de programmation

Citez au moins 5 langages que vous connaissez :

JavaScript

Création: 1995

Créateur: Brendan Eich

Domaine: Développement web, applications

Python

Création: 1991

Créateur: Guido van Rossum

Domaine: IA, data science, web

Java

Création: 1995

Créateur: Sun Microsystems

Domaine: Applications d'entreprise

C++

Création: 1985

Créateur: Bjarne Stroustrup

Domaine: Systèmes, jeux

Go

Création: 2009

Créateur: Google

Domaine: Services cloud, microservices

Question 2: Comparaison de langages

JavaScript vs Python:

Syntaxe

JavaScript: Syntaxe C-like, accolades obligatoires **Python:** Syntaxe basée sur l'indentation, plus lisible

Facilité d'apprentissage

JavaScript: Courbe d'apprentissage moyenne **Python:** Très facile pour débuter, syntaxe intuitive

Utilisation en entreprise

JavaScript: Omniprésent (front-end, back-end, mobile) **Python:** Dominant en IA, data science, automatisation

Avantages

JavaScript: Écosystème vaste, performance, flexibilité

Python: Lisibilité, bibliothèques scientifiques, rapidité de développement

Questions 3-5: Concepts avancés

3. Qu'est-ce qu'un framework?

Un framework est une structure logicielle qui fournit une base et des outils pour développer des applications plus efficacement.

Exemples web:

• React: Bibliothèque JavaScript pour interfaces utilisateur

• • Django: Framework Python full-stack pour développement web rapide

4. Langage compilé vs interprété

Compilé (C++): Le code source est traduit en code machine avant l'exécution. Plus rapide à l'exécution, optimisé.

Interprété (**Python**): Le code est lu et exécuté ligne par ligne. Plus flexible, développement plus rapide.

5. Bibliothèques en programmation

Une bibliothèque est un ensemble de fonctions pré-écrites réutilisables.

Exemples concrets: NumPy (calculs scientifiques Python), Lodash (utilitaires JavaScript)

Question ouverte 6: Spécialisation en programmation

Recommandation: Maîtriser un seul langage d'abord

Il est préférable de maîtriser parfaitement un langage avant d'en apprendre d'autres. Cela permet de:

- Comprendre en profondeur les concepts de programmation
- Développer une logique solide et des bonnes pratiques
- Être plus efficace et productif dans ce langage
- Faciliter l'apprentissage de nouveaux langages par la suite

Une fois un langage maîtrisé, les concepts acquis se transfèrent facilement vers d'autres langages.

Questions 1-2: Modèle OSI

1. Qu'est-ce que le modèle OSI ?

Le modèle OSI (Open Systems Interconnection) est un modèle conceptuel qui standardise les fonctions de communication d'un système de télécommunication.

- À quoi sert-il ? Faciliter l'interopérabilité entre différents systèmes
- Organisation: ISO (International Organization for Standardization)
- Année: Développé dans les années 1980

2. Les 7 couches du modèle OSI7. Application

Couche 7

Interface utilisateur, services réseau (HTTP, FTP, SMTP)

Exemple: Navigateur web, client email

6. Présentation

Couche 6

Chiffrement, compression, traduction de données

Exemple: SSL/TLS, JPEG, ASCII

5. Session

Couche 5

Gestion des sessions, connexions

Exemple: SQL sessions, NetBIOS

4. Transport

Couche 4

Transport fiable des données

Exemple: TCP, UDP

3. Réseau

Couche 3

Routage, adressage logique

Exemple: IP, routeurs

2. Liaison

Couche 2

Contrôle d'accès au support, détection d'erreurs

Exemple: Ethernet, Wi-Fi, switches

1. Physique

Couche 1

Transmission des bits, support physique

Exemple: Câbles, hubs, signaux électriques

Questions 3-4: OSI vs TCP/IP

3. Différence OSI vs TCP/IP

Nombre de couches

OSI: 7 couches (modèle théorique) **TCP/IP:** 4 couches (modèle pratique)

Niveaux d'abstraction

OSI: Couches Application, Présentation, Session

TCP/IP: Regroupées en une seule couche Application

Utilisation actuelle

OSI: Référence théorique pour l'enseignement

TCP/IP: Standard de facto d'Internet

4. Exemples pratiques en entreprise

Situation 1: Problème de connectivité réseau

L'approche OSI aide à diagnostiquer méthodiquement chaque couche

Situation 2: Configuration firewall d'entreprise

La compréhension des couches permet de bloquer le trafic aux bons niveaux

Questions 5-6: Applications pratiques

5. Association couches OSI - équipements

Couche 1 (Physique): Hub, câble Ethernet

Couche 2 (Liaison): Switch, pare-feu, navigateur web

Couche 3 (Réseau): Routeur

6. Envoi d'e-mail selon OSI

Explication simple du processus:

- 1. **Application:** L'utilisateur écrit l'e-mail dans le client
- 2. **Présentation:** Chiffrement et formatage du message
- 3. **Session:** Établissement de la session SMTP
- 4. **Transport:** TCP segmente et garantit la livraison
- 5. **Réseau:** IP route vers le serveur de destination
- 6. **Liaison:** Ethernet encapsule les trames
- 7. **Physique:** Transmission électrique sur le réseau

Questions bonus: Adressage IP et serveurs

Adresse IP publique vs privée

IP Publique: 203.0.113.42 (accessible depuis Internet)

IP Privée: 192.168.1.100 (réseau local uniquement)

Types de serveurs

• Web: Apache, Nginx

• Base de données: MySQL, PostgreSQL

Protocoles de communication réseau

HTTP/HTTPS

Navigation web sécurisée

FTP/SFTP

Transfert de fichiers

DNS