

Guía 1: Campo electrostático

<u>Problema 7</u>:Una distribución de carga en forma de anillo de radio R tiene una densidad de carga lineal λ .

- a)Hallar la expresión del campo eléctrico sobre puntos del eje del anillo si la densidad lineal es uniforme.
- b) Graficar la componente del vector eléctrico sobre el eje si R=5cm y $\lambda=+0.1\mu$ C/m.
- c) ¿Cuál es la dependencia funcional con la distancia al centro del anillo? Analice también la dependencia cuando la distancia es mucho mayor que el radio R.
- d) ¿Cómo cambiaría su planteo y la resolución si la densidad λ no fuera uniforme?

Problema 7: a) Hallar la expresión del campo eléctrico sobre puntos del eje del anillo si la densidad

lineal es uniforme.

- Antes de empezar a resolver:
- ¿Dónde debo calcular \vec{E} ? sobre el eje del anillo:

$$\overrightarrow{E(x,y,z)} = \overrightarrow{E(0,0,z)}$$

$$dq_1 = dq_2$$
$$\vec{E} = E\hat{k}$$

Problema 7: a)

Calculemos el campo eléctrico:

$$\overrightarrow{E(\vec{r})} = \int_{\substack{\text{sobre el}\\ \text{anillo}}} d\vec{E} = \frac{1}{4\pi\varepsilon_0} \int_{\substack{\text{sobre el}\\ \text{anillo}}} dq' \frac{(\vec{r} - \overrightarrow{r'})}{|\vec{r} - \overrightarrow{r'}|^3}$$

Donde:

- \vec{r} es la posición donde quiero calcular el campo, el punto P $\vec{r}=(0,0,z)$
- \overrightarrow{r} es la posición de cualquier punto genérico de la región cargada, P'(x',y',0)

$$\overrightarrow{r'} = (x', y', z') = (R\cos\varphi', R\operatorname{sen}\varphi', 0)$$

• $dq^{,}$ es un diferencial de carga que genera el campo $dq^{,}$ = $\lambda dl^{,}=\lambda Rd\varphi^{,}$

Problema 7: a)

Antes de reemplazar calculemos:

$$\vec{r} - \vec{r} = -R\cos\varphi\hat{\imath} - R\operatorname{sen}\varphi\hat{\jmath} + z\hat{k}$$

$$|\vec{r} - \vec{r'}|^3 = \left(\sqrt{R^2 + z^2}\right)^3$$

La integral del campo eléctrico queda:

$$\overrightarrow{E(\vec{r})} = \frac{1}{4\pi\varepsilon_0} \int_{0}^{2\pi} \frac{\lambda R d\varphi' \left(-R \cos\varphi' \hat{\imath} - R \sin\varphi' \hat{\jmath} + z\hat{k}\right)}{\left(\sqrt{R^2 + z^2}\right)^3}$$

OBS: Hay que resolver tres integrales!!!

La respuesta a la parte a):

$$E_x=0$$

$$E_y = 0$$

$$E_{z} = \frac{\lambda_{Rz}}{2\varepsilon_{0}(\sqrt{R^{2}+z^{2}})^{3}} \hat{k}$$

Problema 7:b) Graficar la componente del vector eléctrico sobre el eje si R=5cm y $\lambda=+0.1\mu C/m$.

Reemplazando los valores:

$$R=0.05m$$
, $\lambda=+0.1.10^{-6}$ C/m, $\varepsilon_0=8.85.$ 10^{-12} $\frac{c^2}{N.m^2}$

$$\overrightarrow{E(\vec{r})} = \frac{\lambda Rz}{2\varepsilon_0 (\sqrt{R^2 + z^2})^3} \hat{k} = 282,5 \frac{N.m^2}{C} \frac{z}{(\sqrt{(0.05m)^2 + z^2})^3} \hat{k}$$

- Analicemos algunas cuestiones antes de graficar:
- Dado que λ es positivo, si z>0, resulta $E_z>0$, mientras que si z<0, resulta $E_z<0$
- Si z = 0, resulta $E_z = 0$
- Si $z \to \infty$. la expresión del campo es proporcional a $^{1}/_{-2}$ v

Problema 7:b) Graficar la componente del vector eléctrico sobre el eje si R=5cm y $\lambda=+0.1\mu C/m$.

Problema 7:c) ¿Cuál es la dependencia funcional con la distancia al centro del anillo? Analice también la dependencia cuando la distancia es mucho mayor que el radio R.

- Como vimos en la parte b) la dependencia con z es de la forma: $\frac{z}{(R^2+z^2)^{3/2}}$
- Si reescribimos el campo:

$$\vec{E} = \frac{\lambda Rz}{2\varepsilon_0(\sqrt{R^2 + z^2})^3} \hat{k} = \frac{\lambda 2\pi Rz}{22\pi\varepsilon_0(\sqrt{z^2(\frac{R^2}{z^2} + 1)})^3} \hat{k}$$

Para el caso $z \gg R$ queda:

$$ec{E}=rac{Q_T}{4\piarepsilon_0 z^2}\hat{k}$$
 campo de una carga puntual en el origen

Problema 7:d) ¿Cómo cambiaría su planteo y la resolución si la densidad λ no fuera uniforme?

Por ser una distribución en forma de anillo, donde R es constante, λ si no fuera uniforme, sólo puede depender de φ , y en la resolución de las integrales del campo, deja de ser constante. Por ej si $\lambda = \lambda(\varphi) = \lambda_0 \operatorname{sen} \varphi$, analicemos la dirección del campo E, resulta $\overline{E(0,0,z)} = E\hat{\jmath}$

- ¿Cómo resolvemos un cuarto de anillo?
- ¿En qué cambia nuestro planteo si en lugar de un anillo es una corona?

