Exam 3 Prep

Last Modified: 2019/11/05

Contents

Material outline:	1
Past exam problems 2.1 Evaluating limits (L'Hôpital) 2.2 Evaluating integrals 2.2.1 with initial conditions 2.2.2 for distance / displacement 2.3 Approximating integrals 2.4 FTC Part 1 2.5 Applied Optimization	2 3 4 5 5 6 6
Material outline:	
 Previous material: All derivative rules 	
 Applied optimization Closed interval method 1st derivative test 2nd derivative test 	
• L'Hôpital's rule $- \text{ Remember: the limit must be of type } \frac{0}{0} \text{ or type } \frac{\infty}{\infty} \text{ for L'Hôpital's to app}$	oly.
 Evaluating Integrals Visually/geometrically (area under a curve) Antiderivatives U-substitution 	
	Past exam problems 2.1 Evaluating limits (L'Hôpital) 2.2 Evaluating integrals 2.2.1 with initial conditions 2.2.2 for distance / displacement 2.3 Approximating integrals 2.4 FTC Part 1 2.5 Applied Optimization Material outline: • Previous material: - All derivative rules • Applied optimization - Closed interval method - 1st derivative test - 2nd derivative test • L'Hôpital's rule - Remember: the limit must be of type $\frac{0}{0}$ or type $\frac{\infty}{\infty}$ for L'Hôpital's to app • Evaluating Integrals - Visually/geometrically (area under a curve) - Antiderivatives

- Symmetry? (even/odd)
- Initial value problem
- \bullet Using integrals
 - "Net change theorem"
 - Calculating displacement / distance given a velocity function and endpoints in time.
- Approximating integrals
 - Left-Endpoint / Right-Endpoint / Midpoint
- Fundamental Theorem of Calculus (FTC)
 - Part 2:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

where F'(x) = f(x).

- Part 1:
 - * Usual version:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} g(t) \, \mathrm{d}t = g(x)$$

 $\ast\,$ In general:

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{f(x)} g(t) \, \mathrm{d}t = g(f(x)) \cdot f'(x)$$

2 Past exam problems

The following problems all have written solutions in my exam archive at http://www.math.ksu.edu/~winstonc/exams/calc1.

Note, I have rephrased some of the problems here, to ease typing. Unless I've made a mistake, the exam listed should be where the problem was originally found.

2.1 Evaluating limits (L'Hôpital)

- 1. (2018 Fall Exam 3) $\lim_{\theta \to 0} \frac{\sin(\theta^2)}{\theta^2}$
- 2. (2018 Fall Exam 3) $\lim_{x\to\infty} \frac{x \ln x}{x^2 + 3x}$
- 3. (2017 Fall Exam 3) $\lim_{t\rightarrow 0}\frac{1+t-\cos t}{t^2+\sin(2t)}$
- 4. (2017 Fall Exam 3) $\lim_{x \to \infty} x^2 2^{-x}$

5. (2017 Fall Exam 3)
$$\lim_{x\to 0^+} x^{2x}$$

6. (2017 Spring Exam 3)
$$\lim_{x \to \infty} \frac{e^x + 5x}{x + 3}$$

7. (2017 Spring Exam 3)
$$\lim_{\theta \to 0} \frac{\sin(\theta^2)}{3\theta^2}$$

8. (2016 Fall Exam 3)
$$\lim_{t\to 0} \frac{4t - \sin(2t)}{5t^2 + 3t}$$

9. (2016 Fall Exam 3)
$$\lim_{x\to\infty} x \sin\left(\frac{2}{x}\right)$$

10. (2016 Fall Exam 3)
$$\lim_{x \to \infty} (5x)^{1/x}$$

2.2 Evaluating integrals

Some may require u-sub. Some may require geometry / symmetry.

1. (2018 Fall Exam 3)
$$\int (\sqrt{x} + 6\sec^2(x) - 5) dx$$

2. (2018 Fall Exam 3)
$$\int_0^4 (e^x - 3) dx$$

3. (2018 Fall Exam 3)
$$\int_0^{\pi/2} 2 \sin^3(\theta) \cos(\theta) \, \mathrm{d}\theta$$

4. (2018 Fall Exam 3)
$$\int x\sqrt{5+x}\,\mathrm{d}x$$

5. (2017 Fall Exam 3)
$$\int \frac{\sqrt{x} - \sqrt{2}x^5}{x} dx$$

6. (2017 Fall Exam 3)
$$\int 3x \sin(5x^2) dx$$

7. (2017 Fall Exam 3)
$$\int x\sqrt{x+2}\,\mathrm{d}x$$

8. (2017 Fall Exam 3)
$$\int_{-2}^{2} \sin^3(5x) + \sqrt{4 - x^2} \, dx$$

9. (2016 Fall Exam 3)
$$\int \frac{x^2 - 7x}{x^3} dx$$

10. (2016 Fall Exam 3)
$$\int \sqrt{\tan x} \sec^2 x \, dx$$

- 11. (2016 Fall Exam 3) $\int \frac{(\ln x)^3}{x} dx$
- 12. (2016 Fall Exam 3) $\int_{-2}^{2} \left(\frac{\sin x}{1+x^2} + \cos \left(\frac{\pi}{4} x \right) \right) dx$
- 13. (2016 Spring Exam 3) $\int (\sec^2 x + 4) \, dx$
- 14. (2016 Spring Exam 3) $\int (\sqrt{x} + 5e^x) dx$
- 15. (2015 Fall Exam 3) $\int (x^2 + 4)^2 dx$
- 16. (2015 Fall Exam 3) $\int_{1}^{2} 2^{t} dt$
- 17. (2015 Fall Exam 3) $\int \tan^3 x \sec^2 x \, \mathrm{d}x$
- 18. (2015 Fall Exam 3) Suppose that $\int_0^6 f(x) dx = 9$, $\int_4^6 f(x) dx = 5$, and $\int_0^4 g(x) dx = 8$. Compute $\int_0^4 (5f(x) 3g(x)) dx$.
- 19. (2015 Spring Exam 3) Find the most general antiderivative of $\sec^2 x + 3x^4 + 2$.
- 20. (2014 Fall Exam 3) $\int \left(\cos x + 4x + \frac{1}{x}\right) dx$
- 21. (2014 Fall Exam 3) $\int (3e^x + 4\sin x + 7\sec^2 x) dx$
- 22. (2014 Spring Exam 3) $\int (7 + 2x + 3e^x) dx$
- 23. (2014 Spring Exam 3) $\int (\sec^2 \theta + \cos \theta) d\theta$

2.2.1 with initial conditions

- 1. (2018 Fall Exam 3) Find f(x) if f''(x) = 6x, f'(0) = 1, and f(0) = 2.
- 2. (2017 Fall Exam 3) Solve the initial value problem for f(t): $f'(t) = 2e^{-2t}$, f(0) = 1.
- 3. (2016 Fall Exam 3) Solve the initial value problem for f(t): $f'(t) = 4e^{3t}$, f(0) = 5.

- 4. (2016 Spring Exam 3) Find the function v(x) satisfying v''(x) = 2, v'(0) = -3, and v(0) = 5.
- 5. (2015 Fall Exam 3) A ball thrown vertically from the roof of a building 150 feet tall hits the ground 3 seconds later. Was the ball thrown upward or downward? With what speed was it thrown? (Recall that acceleration due to gravity is $a = -32 \mathrm{ft/sec^2}$.)
- 6. (2015 Spring Exam 3) Find the function g(x) satisfying $g'(x) = \sin x + 1$ and g(0) = 3.
- 7. (2014 Fall Exam 3) Find v(x) if v''(x) = 6x + 2, v'(0) = 1, and v(0) = 2.
- 8. (2014 Spring Exam 3) Find the function k(x) provided that $k'(x) = 2x^3 + 3x + 2$ and k(0) = 2.

2.2.2 for distance / displacement

- 1. (2018 Fall Exam 3) Suppose a particle has position s(t) feet at time t seconds and a velocity function $s'(t) = 3\cos(t)$ ft/s. Find the displacement from time t = 0 seconds to time $t = \pi/2$ seconds.
- 2. (2016 Fall Exam 3) An object moves along a straight line with velocity $v(t) = 4 t^2$ m/sec. Find the displacement of the object over the time interval [0, 3] seconds. Find the total distance the object travels over the same time interval.
- 3. (2015 Fall Exam 3) An object moves along the x-axis with velocity $v = 12t^3 12t^2$ cm/sec. Find the total distance traveled for the interval $-1 \le t \le 2$ seconds.

2.3 Approximating integrals

- 1. (2017 Fall Exam 3) Estimate the area below the curve $y = \sqrt{x}$ over the interval [1, 4] using L_3 . Sketch a graph of the curve and illustrate the rectangles used on the graph.
- 2. (2016 Fall Exam 3) Estimate the area below the curve $y = \sqrt{x} + 1$ over the interval [0, 6] using R_3 . Sketch a graph of the curve and illustrate the rectangles used on the graph.
- 3. (2015 Fall Exam 3) Approximate the area under the curve $y = 12x 4x^2$ between x = 0 and x = 2 using four rectangles and the right endpoint method.
- 4. (2015 Spring Exam 3) Estimate the area between $y = x^2$ and the x-axis over the interval [0,4]. Use n = 2 rectangles, taking the sampling points to be the midpoints (in other words, compute M_2). Sketch the rectangles on the graph.

 $^{^{1}}$ This is a neat problem.

5. (2014 Fall Exam 3) Estimate $\int_0^6 (x^2 + 1) dx$ by using n = 3 subintervals, taking the sampling points to be midpoints (in other words, compute M_3). Sketch the rectangles on a graph.

2.4 FTC Part 1

1. (2018 Fall Exam 3)
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_3^x e^{2t} \sin(t^3) \,\mathrm{d}t$$

2. (2017 Fall Exam 3)
$$\frac{d}{dx} \int_{2}^{x} \frac{\cos(t^2)}{2+t} dt$$

3. (2017 Fall Exam 3)
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{x^3}^5 \frac{\cos(t^2)}{2+t} \, \mathrm{d}t$$

4. (2016 Fall Exam 3)
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_2^x \frac{\sin t}{1+t} \, \mathrm{d}t$$

5. (2016 Fall Exam 3)
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_2^{x^3} \frac{\sin t}{1+t} \, \mathrm{d}t$$

6. (2015 Fall Exam 3) Define
$$F(x) = \int_1^x \frac{\sin(\frac{\pi t}{6})}{t^2} dt$$
. Find an equation of the tangent line to $y = F(x)$ at $x = 1$.

2.5 Applied Optimization

In these problems, one must justify why the min/max is an *absolute* min/max. Include units!

- 1. (2018 Fall Exam 3) A rectangular open-topped aquarium is to have a square base and volume 8 m³. The material for the base costs \$2 per m², and the material for the sides costs \$1 per m². What dimensions minimize the cost of the aquarium?
- 2. (2017 Fall Exam 3) A box with square base and open top is formed from two materials. The base costs \$4 per square foot, while the four sides cost \$1 per square foot. If the total cost for the base and four sides is fixed to ber \$120, find the dimensions that maximize the volume of the box.
- 3. (2017 Spring Exam 3) Let p(x) = 100 2x be the price in dollars per cake a bakery can charge if it sells x cakes. What cake price will maximize revenue?
- 4. (2017 Spring Exam 3) A rectangular open-topped aquarium is to have a square base and volume $5\,\mathrm{m}^3$. The material for the base costs \$10 per m^2 , and the material for the sides costs \$1 per m^2 . What dimensions minimize the cost of the aquarium?

 $^{^2}$ interesting twist

- 5. (2016 Fall Exam 3) A rectangular fence consists of three sides costing \$2 per meter and one side costing \$1 per meter. If the area of the rectangle is 12 square meters, find the dimensions that minimize the cost of the fence.
- 6. (2016 Spring Exam 3) A farmer has 24 feet of fencing and wants to fence off a rectangular area that borders a straight river. The farmer needs no fencing along the river. What dimensions will maximize the fenced-in area?
- 7. (2016 Spring Exam 3) A rectangular open-topped aquarium is to have a square base and volume 8 m³. The material for the base costs \$2 per m², and the material for the sides costs \$1 per m². What dimensions minimize the cost of the aquarium?
- 8. (2015 Fall Exam 3) A landscaper is designing a fence along the four sides of a rectangular garden, which is to have an area of 5000 square feet. The fencing for three sides costs \$10 per foot, but the fencing along the front side of the garden will cost \$30 per foot. Find the length and width of the garden in order to minimize the total cost.
- 9. (2015 Spring Exam 3) If a bakery charges x dollars per cake, it makes a total profit of $P(x) = -x^2 + 100x 30$. If the bakery wants to maximize profit, what should it charge per cake?
- 10. (2015 Spring Exam 3) Find the dimensions of the box with square base that has volume 8 and minimal surface area.
- 11. (2014 Fall Exam 3) A homeowner with 16 feet of fencing wants to enclose a rectangular area against the side of her house. What dimensions will maximize the fenced-in area? (Note that 3 sides of the rectangle will be formed from fencing, and the house will serve as the fourth side of the rectangle.)
- 12. (2014 Fall Exam 3) A rectangular open-topped box is to have a square base and volume 12 ft³. If material for the base costs \$3 per ft² and material for the sides costs \$1 per ft², what dimensions minimize the cost of the box?
- 13. (2014 Spring Exam 3) What is the smallest perimeter possible for a rectangle of area 4 ft²?