Subject: Digital Signal Processing (DSP)

Question no.1: Multiple Choice Questions (MCQs)

- 1. What is the use of random signal?
 - a) Test dynamic response statistically
 - b) Time duration
 - c) Impulse response
 - d) Both a, b.
- 2. When we use DFT?
 - a) When signal is periodic
 - b) When signal is Aperiodic
 - c) Both a, b.
 - d) None of the above
- 3. What do you mean by aliasing in DSP?
 - a) Through which different signals become indistinguishable.
 - Distortion in the reconstructed signal when it is reconstructed from the original continuous signal.
 - c) Both a, b.
 - d) None of the above
- 4. What is microprocessor?
 - a) Process control oriented tasks.
 - b) High performance and repetitive
 - c) Intensive task
 - d) All of the above.
- 5. What is convolution?
 - a) Technique of adding two signals in time domain.
 - b) Through FFT it is easy to change domain.
 - c) Both a, b
 - d) Technique of adding two signals in frequency domain.
- 6. What is FFT?
 - a) Fast way to measure DFT.
 - b) It is much efficient then DFT.
 - c) This technique is feasible.
 - d) All of the above
- 7. What is the advantage of a direct form II FIR over form I?
 - a) Requires half the number of delay units.
 - b) It is in $-\infty \ge \beta \ge \frac{\pi cos \phi}{sin\alpha}$ range
 - c) Both a, b
 - d) None of the above
- 8. What is interpolation?
 - a) Decreasing the sample rate in DSP.
 - b) Increasing the sample rate in DSP.
 - c) Same as Decimation
 - d) All of the above

- 9. How many complex multiplications are required to compute X (k)?
 - a) N(N+1)
 - b) $\frac{N(N-1)}{2}$
 - c) N2/2
 - d) N(N+1)/2
- 10. The total number of complex multiplications required to compute N point DFT by radix-2 FFT is?
- a) $\frac{N}{2}logN$
- b) $nlog_2N$
- c) $\frac{n}{2}\log_2 N$
- d) all of the above

Question no.2: (CLO-3)

Classify the following signal if it is power signal.

a.
$$f(t) = 1 - cost$$

Question no.3: (CLO-3)

Use the graphical interpretation of convolution to find the output y[n] for the input x[n] and impulse response h[n].

$$x[n] = 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0$$

 $h[n] = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1$

Question no.4: (CLO-3)

Find the linear convolution between

$$x(n) = 1,2,3,4 \ n \ge 0$$

$$h(n) = 4,3,2,1 \ge 0$$

Question no.5: (CLO-3)

Find the circular convolution between

$$x[n] = 1,2,3,4 \ge 0$$

$$h[n] = 4,3,2,1 \ n \ge 0$$