Table des matières

Table des matières	· · · · · · · · · · · · · · · · · · ·
Résumé du TP 3	
Objectifs du TP	
Rappel Théorique	
Condensateur et son fonctionnement :	
Temps nécessaire pour charger un condensateur :	
Vitesse de charge d'un condensateur :	
Vitesse de décharge d'un condensateur :	
Manipulation, Charge d'un condensateur	
Montage :	
Observation	
Analyse	
Manipulation, Décharge d'un condensateur	
Montage :	
Observation	
Analyse	

Résumé du TP 3

Objectifs du TP.

- 1. Mesurer temps de charge du condensateur.
- 2. Mesurer temps de décharge.
- 3. Observer phénomènes avec simplicité malgré précision approximative.

Rappel Théorique.

Condensateur et son fonctionnement :

 Le condensateur, composé de deux plaques conductrices séparées par un diélectrique, emmagasine de l'énergie électrique en accumulant des charges opposées lorsqu'une tension est appliquée à travers les plaques.

Temps nécessaire pour charger un condensateur :

- Lorsqu'on charge un condensateur à travers une résistance, la tension aux bornes du condensateur augmente progressivement. La constante de temps (τ) du circuit, déterminée par la résistance (R) et la capacité (C) du condensateur, influence le temps de charge. La tension aux bornes du condensateur (U_C) peut être exprimée par l'équation

 $Uc = E * (1 - e^{\frac{-t}{RC}})$, où E est la tension d'alimentation.

Vitesse de charge d'un condensateur :

- La vitesse de charge d'un condensateur dépend de sa constante de temps (τ) , résulte en une augmentation de 63% de la différence initiale entre la tension d'alimentation et celle du condensateur à chaque constante de temps, sous forme d'une courbe exponentielle croissante.

Vitesse de décharge d'un condensateur :

 La décharge d'un condensateur à travers une résistance suit une décroissance exponentielle, environ 63% de la tension initiale à chaque constante de temps, similaire à la charge.

Manipulation, Charge d'un condensateur.

Montage:

- 1 alimentation stabilisée dont la valeur de sortie est fixée à 10V (U) 1 condensateur électrochimique de valeur C = 20 μF

Observation

- Lorsqu'on ferme K : si condensateur est déchargé : U_c augmente et Ur diminue jusqu'à ce que U_r = U et U_c = 0V, tout le long U_c + U_r = U

Analyse

- En réalité U_r augmente comme une exponentielle,

$$U_r = U * \left(1 - e^{\frac{-t}{U_c}}\right) \implies U_r = 10 * \left(1 - e^{\frac{-t}{U_c}}\right)$$

Donc ici au plus le temps augmentera au plus U_r tendra vers 10V.

Manipulation, Décharge d'un condensateur.

Montage:

1 alimentation stabilisée dont la valeur de sortie est fixée à 10V (U)
1 condensateur électrochimique de valeur C = 20 μF

Observation

- U_c augmente et Ur diminue jusqu'à ce que U_c = U et U_r = 0V, tout le long U_r + U_c = U

Analyse

- En réalité Uc augmente comme une exponentielle,

$$U_c = U * \left(1 - e^{\frac{-t}{U_r}}\right) \implies U_c = 10 * \left(1 - e^{\frac{-t}{U_r}}\right)$$

Donc ici au plus le temps augmentera au plus U_c tendra vers 10V.