Homework 9

Due: Wednesday, 10. Nov. 2021

Exercise 1. Let n > 1, and $0 \le i \le n$. Show that (in Grpd)

$$\operatorname{colim}_{\Delta^k \to \Lambda_i^n} E(k) \cong E(n)$$

where E(k) is the cosimplicial object from Homework 4, exercise 3.

Exercise 2. We call a morphism of simplicial sets $f: X \to Y$ a *inner fibration* if f has the right lifting property with respect to every *inner* horn inclusion $\Lambda_i^n \to \Delta^n$. Show that, for any functor of 1-categories $F: \mathsf{C} \to \mathsf{D}$, the nerve

$$N(F): N(\mathsf{C}) \to N(\mathsf{D})$$

is an inner fibration.

Definition. Recall the definition of a 2-category from Homework 1. Denote by Cat_2 the category whose objects are (small) 2-categories, and whose morphisms are strict 2-functors. Denote by Δ^n the 2-category with objects $0, 1, \ldots, n$, and such that

- For every $i \leq j$, there is a morphism $\phi_{i,j} : i \to j$ such that $\phi_{i,i} = \mathrm{id}_i$.
- For every $i = i_0 \le i_1 \le \cdots \le i_k = j$, there is a unique 2-morphism

$$\phi_{i_{k-1},j} \circ \cdots \circ \phi_{i_1,i_2} \circ \phi_{i_0,i_1} \Rightarrow \phi_{i,j}$$

Exercise 3. Show that the assignment

$$D: \Delta \longrightarrow \mathsf{Cat}_2$$
$$[n] \longmapsto \Delta^n$$

defines a functor. For a 2-category \mathbb{C} , let $N_2(\mathbb{C})$ be the simplicial set defined by

$$N_2(\mathbb{C})_n := \operatorname{Hom}_{\mathsf{Cat}_2}(D(n), \mathbb{C}).$$

What information is needed to specify a 2-simplex in $N_2(\mathbb{C})$? What information is necessary to specify a 3-simplex?

content...