Comparing
Search
Algorithms on
the Snake Game

Ben Greenfield & Ben Placzek

Project Overview

 We looked at the differences in efficiency and success for playing the game of Snake using DFS, BFS, A*, and UCS

- Snake starts as an open grid and slowly gets filled up with your tail (we can treat the squares with our tail as walls).
- We implemented each search algorithm
- We ran a series of trials of each searching algorithm and generated data
- Outputs: Bar graphs, text file data and line graphs

Code Summary

- Snake.py:
 - Game code (Inspired from online resources)
 - Search algorithms (Written by us)
 - runSearch function (snake eats food until dies)
 - Pandas/Dataframe code

A sample run

Calculated Score

- Calculated Score = (Score (Number of food eaten) / Sum of all actions) * 100
- To the right is data based on 5 runs total

Comparing Search Algorithms

- Overall, BFS performs the best
- Summary:
 - DFS: runs slowly with lots of actions, always lowest food score
 - BFS: runs quickly and linearly, good food score, low actions
 - Astar: runs quickly and diagonally, good food score, more actions
 - UCS: runs quickly and diagonally, good food score, more actions

Sources

- https://www.youtube.com/watch?v=CD4qAhfFuLo&t=1734s
- https://pastebin.com/embed js/jB6k06hG