Εργασία 2

ΕΝΣΩΜΑΤΩΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΡΑΓΜΑΤΙΚΟΥ ΧΡΟΝΟΥ

Μάιος 2018

του φοιτητή

Παπαδόπουλου Κωνσταντίνου ΑΕΜ 8677

Εισαγωγή:

Εγκατάσταση λειτουργικού συστήματος στη συσκευή Zsun

Αρχικά είναι απαραίτητη η εγκατάσταση του OpenWrt στο Zsun ακολουθώντας τις οδηγίες στην ιστοσελίδα που δίνεται (https://wiki.hackerspace.pl/projects:zsun-wificard-reader:factory-update).

- Η δημιουργία του φακέλου .update και η επικόλληση σε αυτόν του αρχείου SD100-openwrt.tar έγινε μέσω της mobile εφαρμογής.
- > Εισαγωγή 192.168.1.1 στο browser για το configuration του OpenWrt.
- Για την είσοδο στο OpenWrt κάνουμε SSH connection στο 192.168.1.1

Ζητούμενα:

<u>Γενικά</u>

Στη συγκεκριμένη εργασία στόχος είναι η πραγματοποίηση τακτικής δειγματοληψίας, με χαρακτηριστικά πραγματικού χρόνου, δηλαδή με τη μικρότερη δυνατή απόκλιση από τον πραγματικό χρόνο. Επιθυμούμε σωστό αριθμό δειγμάτων και με σωστή απόσταση μεταξύ τους.

Κώδικας

Λαμβάνουμε υπόψη ότι:

- > Τα δείγματα θα είναι τα timestamps που επιστρέφει η συνάρτηση gettimeofday().
- Ο κώδικας (γραμμένος σε C) θα εκτελείται σε ενσωματωμένη συσκευή, οπότε πρέπει να ελαχιστοποιηθεί η κατανάλωση ενέργειας.
- Δεχόμαστε ως ορίσματα το πλήθος των δειγμάτων και το διάστημα δειγματοληψίας σε δευτερόλεπτα.
- Αποθηκεύεται το timestamp σε πίνακα με το τέλος κάθε διαστήματος δειγματοληψίας.
- Εξάγονται τα timestamps, έτσι ώστε να κατασκευάσουμε διαγράμματα με τις στατιστικές της χρονικής απόστασης ανάμεσα στα δείγματα (ελάχιστο, μέγιστο, μέσος όρος, διάμεσος, τυπική απόκλιση).
- Πρέπει να γίνει σωστή χρήση της sleep και των διακοπών (interrupts alarms) για εξοικονόμηση ενέργειας.

Σχόλια:

- > Το πρόγραμμα χρησιμοποιεί τη συνάρτηση *clock_nanosleep* για να εξοικονομήσει ενέργεια ξυπνώντας μόνο όταν πρέπει να κάνει τη δειγματοληψία.
- Θέλουμε να αποφύγουμε το drifting, την ολίσθηση, των δειγμάτων, για αυτό και σε κάθε επόμενη δειγματοληψία ξανά υπολογίζουμε το πόση ώρα το πρόγραμμα θα κοιμάται.
- Κάνουμε πρώτα compile το πρόγραμμά μας στον cross-compiler και μετά scp στο OpenWrt στο Zsun (πχ σε terminal: scp /home/moi/server_thr root@192.168.1.1:~).
- ➤ Κατά το cross-compiling χρειάστηκε να προστεθούν τα flags -std=gnu99 (λόγω error: CLOCK_REALTIME undeclared) και -lrt (λόγω error: undefined reference clock_nanosleep).
- Ελέγχουμε το CPU usage κατά τη διάρκεια του προγράμματός μας (με την εντολή uptime) και επιθυμούμε να είναι κοντά στο 0% (δεν θέλουμε να υπάρχουν λούπες).

^{*}Παρατίθενται και μετρήσεις που έγιναν πάνω στην εικονική συσκευή MIPS, εκτός από αυτές που έγιναν στο Zsun.

Bonus:

Σύνδεση του Zsun σε powerbank και σχολιασμός της ενεργειακής απόδοσης του προγράμματος.

Χωρητικότητα της μπαταρίας (σε mAh): 4400 mAh

Συνολικός χρόνος λειτουργίας: Επειδή ο χρόνος λειτουργίας φαίνεται να είναι αρκετά μεγάλος, το αποτέλεσμα του συνολικού χρόνου λειτουργίας θα βρίσκεται στο Dropbox (στον παρακάτω σύνδεσμο) στο φάκελο **BONUS – POWERBANK**, στο αρχείο **battery_duration.txt.**

***Ο κώδικας της εργασίας, τα διαγράμματα, καθώς και άλλο υλικό βρίσκονται στο:

https://www.dropbox.com/sh/uxztng9vmsjkztp/AABuwSgVbF16q9vjcEnAi1x5a?dl=0