0 功耗数据

Case	8800M	Unit
Deep sleep DTIM 1	< 600	uA
Deep sleep DTIM 10	122	uA
Tx MCS7/40MHz/18dbm	210	mA
Rx 802.11b 1M	21	mA
Idle	2.5	uA
Power off	1	uA

1 实网测试

DTIM1500uA

DTIM3 255uA

DTIM5 186uA

DTIM10 122uA

2 休眠console指令说明

- 2.1 输入help查看帮助信息
- 2.2 搜索可用热点: scan 0
- 2.3 **连接热点**: connect 0 SSID PSWD, 非加密不输入密码
- 2.4 测试不同DTIM下低功耗情况
 - 1) 在连接热点之前设置, setdsparam Interval, (E.g.: Interval: 1, 3, 5, 10)
 - 2)连接热点成功获取到IP地址后,进入休眠模式,hib

3 唤醒源

3.1 网络唤醒

空中单播包、组/广播包唤醒,休眠期间若不需要被组/广播包唤醒,可以在连接路由器之前,通过set_deepsleep_param,dont_wait_bcmc置1,默认0

3.2 RTC唤醒

可以设置睡眠时间,计时到达后,芯片被唤醒。参考co_main.c co_main_timer

3.3 IO唤醒

- 1) HIbernate模式,支持唤醒的GPIO是GPIOB4~7;
- 2)使用说明:首先调用gpiob_irq_init,使能对应的GPIO中断,以及触发沿,irq_handler可以设成NULL。比如:gpiob_irq_init(7,GPIOIRQ_TYPE_EDGE_RISE,NULL,0);使能gpiob7中断,上升沿触发,中断处理函数为NULL。使用user_sleep_wakesrc_set使能GPIO唤醒。user_sleep_wakesrc_set(WAKESRC_GPIO,1,0);系统进入睡眠之后被GPIO唤醒,使用gpiob_irq_history_get(),获取在睡眠期间产生中断的GPIO。假如获取的值是0x80,即bit7为1,即为GPIOB7在睡眠期间产生了中断。

注:唤醒源判断,timer唤醒/ GPIO唤醒aonsysctrl_hclkrs_cpuswset_getb == 0,若是wifi空中包唤醒 等于1

4 睡眠等级

4.1 Light sleep

clock gating,没有掉电,不需要唤醒

4.2 Deep sleep

Vcore电保持,其余掉电

4.3 Hibernate

RTC, GPIOB4~7保持