

Focus of this lecture

Today's Plan

Session 1:

- 1. Representation
 - Word2Vec
 - Image: Visual BoW, deep network features
 - Audio : Spectrogram, Mel features
- 2. Dimensionality Reduction (PCA)
- 3. Visualization

Session 2:

- 5. Performance Metrics
- 6. Gradient Descent
- 7. MLP
- 8. SVM with Kernels
- 9. Clustering

Session 3:

Paper Reading

- Representing Image:
 Word2Vec, Visual BoW,
 deep network features
- Representing Audio : Spectrogram, Mel features
- Dimensionality Reduction (PCA)

Feature Engineering

Word2vec - Intuition

Marco saw a furry little wampimuk hiding in the tree

- What is Marco?
- What is wampimuk?

Animal

Variants

- Continuous Bag of Words (CBOW):
 - use a window of words to predict the missing word

CBOW

NSE talent Sprint IIIT Hyderabad

- Skip-gram (SG):
 - use a word to predict the surrounding ones in the specified window.

Word2vec – skip gram examples

Examples

Male-Female

Verb tense

Country-Capital

Visualising "Word-Arithmetic"

```
\begin{aligned} &Vec(Queen) \\ &= Vec(King) - Vec(Man) + Vec(Woman) \end{aligned}
```

 These fancy arithmetic were imagined (and shown) earlier also; but became popular with Word2Vec.

More Examples

FRANCE	JESUS	хвох	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

What words have embeddings closest to a given word? From Collobert et al. (2011) (https://arxiv.org/pdf/1103.0398v1.pdf)

Al and Problem of Perception

Possible Features: Handcrafting

MIN RED

MAX RED

MEAN RED

MIN GREEN

MAX GREEN

MEAN GREEN

MIN BLUE

MAX BLUE

MEAN BLUE

Concerns:

- Too naïve to capture the visual content?
- Too small to represent information?

9 X 1
FEATURE VECTOR
PER IMAGE

Possible Features: Raw Data Itself

FEATURE VECTOR

32 X 32 X 3 = 3072

DIMENSION

PER IMAGE (d = 3072)

CONCERNS:

- Too big?
- May be redundancy?
- Too rigid?

3072 X 1 vector

Visual BoW: Basic Idea

Source: wordpress.com/2013/04/24/research-bag-of-features-for-visual-recognition

Bag of Visual Words

Dictionary/Codebook

Histogram of Visual Words / **Image Representation**

Object-recognition: conventional approach

Object-recognition: conventional approach

Object Recognition: Deep Neural Networks

Data-driven, End-to-End learning, Task-specific feature hierarchy

Summary

Representation Learning Classification

Deep Learnt Features (2013-XXX)

 It's deep if it has more than one stage of non-linear feature transformation.

- Representing Image:
 Word2Vec, Visual BoW,
 deep network features
- Representing Audio : Spectrogram, Mel features
- Dimensionality Reduction (PCA)

Speech

(Brief Explanation)

Example Sound Signal

$$g(t) = \begin{cases} 2 * \sin(2\pi \cdot 39t), 0 \le t \le 1/2\\ \sin(2\pi \cdot 15t), 1/2 < t \le 1 \end{cases}$$

Spectrogram

Spectrogram of a piecewise monochromatic signal.

Lighter color 2 greater DFT magnitude

Representations

A: MFCC (Signal processing based; Classical)

Mel Frequency Cepstral Coefficients

B: CNN Based (Modern)

VGG Features on the Mel Spectrogram

Classical Feature (MFCC)

Any wave is a combination of many sine waves

Performance on VoxCeleb

Accuracy	Top-1 (%)	Top-5 (%)
I-vectors + SVM	49.0	56.6
I-vectors + PLDA + SVM	60.8	75.6
CNN-fc-3s no var. norm.	63.5	80.3
CNN-fc-3s	72.4	87.4
CNN	80.5	92.1

Features from Mel Spectrogram

MFCC (Hand coded Classic Features)

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/

- Representing Image: Word2Vec, Visual BoW, deep network features
- Representing Audio :Spectrogram, Mel features
- Dimensionality Reduction (PCA)

Principal Component Analysis

Simplifying Representations

PCA

Dimensionality and Representation

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\widehat{\sum} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu}) (x_i - \widehat{\mu})^T$$

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sum_{i=1}^{N} \sum_{i=1}^{N} (x_i - \widehat{\mu}) (x_i - \widehat{\mu})^T$$

$$\begin{bmatrix} V_a & C_{a,b} & C_{a,c} & C_{a,d} & C_{a,e} \\ C_{a,b} & V_b & C_{b,c} & C_{b,d} & C_{b,e} \\ C_{a,c} & C_{b,c} & V_c & C_{c,d} & C_{c,e} \\ C_{a,d} & C_{b,d} & C_{c,d} & V_d & C_{d,e} \\ C_{a,e} & C_{b,e} & C_{c,e} & C_{d,e} & V_e \end{bmatrix}$$

Review: Eigenvector and Eigenvalue

$$Ax = \lambda x$$

A: Square Matrix

λ: Eigenvalue or characteristic value

x: Eigenvector or characteristic vector

- A is d X d
- x is d x 1
- Lambda is scalar
- Max of d nonzero lambda
- Min (N,d)

$$\begin{bmatrix} 3 & 4 & -2 \\ 1 & 4 & -1 \\ 2 & 6 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 6 \end{bmatrix}$$

PCA based Feature Extraction

 X_1 X_2 X_3

 X_{d}

Representing with EigenFaces

Any face in the database can be represented as a linear combination of the eigen faces.

PCA/Eigen Face Algorithm: Detail

1. Compute the mean feature vector

$$\mu = \frac{1}{p} \sum_{k=1}^{p} x_k$$
, where, x_k is a pattern $(k = 1 \text{ to } p)$, $p = \text{number of patterns}$, x is the feature matrix

2. Find the covariance matrix

$$C = \frac{1}{p} \sum_{k=1}^{p} \{x_k - \mu\} \{x_k - \mu\}^T \text{ where, } T \text{ represents matrix transposition}$$

3. Compute Eigen values λ_i and Eigen vectors v_i of covariance matrix

$$Cv_i = \lambda_i v_i$$
 $(i = 1, 2, 3,...,q), q = \text{number of features}$

- 4. Estimating high-valued Eigen vectors
 - (i) Arrange all the Eigen values (λ_i) in descending order
 - (ii) Choose a threshold value, θ
 - (iii) Number of high-valued λ_i can be chosen so as to satisfy the relationship

$$\left(\sum_{i=1}^{s} \lambda_i\right) \left(\sum_{i=1}^{q} \lambda_i\right)^{-1} \ge \theta$$
, where, $s = \text{number of high valued } \lambda_i \text{ chosen}$

- (iv) Select Eigen vectors corresponding to selected high valued λ_i
- 5. Extract low dimensional feature vectors (principal components) from raw feature matrix. $P = V^T x$, where, V is the matrix of principal components and x is the feature matrix

- BoW, deep network features
 - Representing Audio: Spectrogram, Mel features
 - Dimensionality Reduction (PCA)

Data Visualization

When Data is High-Dimensional

PLOT ON 2 PRINCIPLE COMPONENTS

MDS (Multidimensional scaling)

 Minimize an objective function that measures the discrepancy between similarities in the data and similarities in the map.

• Distance between samples in "high" dimension and "low" dimension is same (or D-d) is minimized.

ISOMAP (Isometric Mapping)

- $d(\bullet, \circ) > d(\bullet, \circ)$
- Is Euclidean metric the right distance metric?
- How to robustly measure distances along the manifold?

ISOMAP

- How does ISOMAP measure the MD?
- Connect each data point to its K nearest neighbors in the high-dimensional space.
- Link weights: True Euclidean distances.
- MD(A,B) = ShortestPath(A,B) in this neighborhood graph.
- Compute the low-dimensional embedding as in Metric MDS.

LLE: Locally Linear Embedding

Idea: Preserve the structure of local neighbourhood

$$\mathbf{x}_i \approx \sum w_{ij} \mathbf{x}_j$$

- Approach:
 - Approacn:

 Represent each point as a weighted combination of its Neighbours in HD. Remember the $w_{ij}s$.
 - —Find a LD representation that minimize the representation error:

$$Cost = \sum_{i} \|\mathbf{y}_{i} - \sum_{j \in N(i)} w_{ij} \mathbf{y}_{j}\|^{2}$$

- The weights w_{ij} refer to the amount of contribution the point x_i has while reconstructing the point x_i . The cost function is minimized under two constraints: (a) Each data point x_i is reconstructed only from its neighbors, thus enforcing w_{ij} to be zero if point x_i is not a neighbor of the point x_i and (b) The sum of every row of the weight matrix equals 1.
- Also ys should have unit variance across each dimension.

SNE and t-SNE

- Idea is simple: Instead of distance think about probabilities. P_{ij} as the probability of j in the neighborhood of i.
- For each point, we have now a probability vector (of size N).
 - SNE uses Gaussian. T-SNE uses another t-distribution (with 1 degree of freedom).
- We want these prob vectors to be the same in low dimensional.
- Optimize using gradient descent.

Computing the LD Embedding

$$Cost = \sum_{i} KL(P_j \parallel Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

- For points where P_{ij} is large and q_{ij} is small we lose a lot.
 - Nearby points in high-D really want to be nearby in low-D

PCA on MNIST (0-9)

SNE on MNIST *(0-5)*

Word2vec

http://nlp.yvespeirsman.be/blog/visualizing-word-embeddings-with-tsne/

Performance Metrics

Key accuracy measures and terminologies

• Classification Error =
$$\frac{errors}{total}$$

= $\frac{FP + FN}{TP + TN + FP + FN}$

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

• Accuracy = 1 - Error =
$$\frac{correct}{total}$$

= $\frac{TP + TN}{TP + TN + FP + FN}$

Revisiting scenarios where metrics are appropriate

- When you do cancer screening what do you care?
 - High TP and Low FN
- When you classify between "apple" and "orange"
 - High Accuracy
- Automatic Firing on detecting a violation.
 - Very low FP

Precision and Recall

$$Precision = \frac{TP}{(TP + FP)}$$

$$Recall = \frac{TP}{(TP + FN)}$$

Precision and Recall – examples

- A system which needs to launch a missile at a terrorist hideout located in a dense urban area.
 - Precision not 100%
 civilian casualties
- A system which needs to identify cancer-risk patients
 - Recall not 100% → some patients will die of cancer

F-measure: Combines Precision and Recall

- What to do when one classifier has better Precision but worse Recall, while other classifier behaves exactly opposite?
 - F-measure (Information Retrieval)

$$F_1 = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

F-measure

- What to do when one classifier has better Precision but worse Recall, while other classifier behaves exactly opposite?
 - F-measure (Information Retrieval)

$$F_1 = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

$$Precision = \frac{TP}{(TP + FP)}$$

$$Recall = \frac{TP}{(TP + FN)}$$

- F1 measure punishes extreme values more!
- Definition of Recall and Precision have same numerator, different denominators. A sensible way to combine them is harmonic mean.

F-measure

- Use when
 - FP and FN are 'equally costly'
 - You don't expect results to change when more data is added
 - TN is high (e.g. face detector)

$$\frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

$$Precision = \frac{TP}{(TP + FP)}$$

$$Recall = \frac{TP}{(TP + FN)}$$

Utility and Cost

- Sometimes, there is a cost for each error
 - E.g. Earthquake prediction
 - False positive: Cost of preventive measures
 - False negative: Cost of recovery

- Detection Cost (Event detection) -Can be applied to example above
 - $-\operatorname{Cost} = \operatorname{C}_{\operatorname{FP}} * \operatorname{FP} + \operatorname{C}_{\operatorname{FN}} * \operatorname{FN}$

How to use 2-class measures for multi-class?

Convert into 2-class problem(s)!

Multi-class problems - Confusion matrix

Predicted: Predicted: n=165 NO YES Actual: NO TN = 50FP = 1060 Actual: YES FN = 5TP = 100105 55 110

actual class

Avg. accuracy may not be very meaningful with imbalanced class label distribution

activity recognition from video

predicted class

Courtesy: vision.jhu.edu

Doctor Strange (2016)

G-13 | 1h 55min

Action, Adventure, Fantasy

4 November 2016 (USA)

While on a journey of physical and spiritual healing, a brilliant neurosurgeon is drawn into the world of the mystic arts.

Two Metrics for Multi-label case

• Jaccard Distance: 1-intersection/union

Hamming Loss: mismatches/total

Gradient Descent

The Problem

- Find \mathbf{w} , given examples: (x_i, y_i) , i = 1, 2, ..., n
- Supervised situation: output label y; is available for all training n samples
- Objective: predict y values for a novel input x that we have not seen before
 - Called generalization in Machine Learning
- How do we find w? Ans: Gradient descent!

Loss Function

• Error/Loss (L): A function of the difference between the actual value or label (y_i) and the predicted value ($f(w, x_i)$)

Total Loss:

$$J = \sum_{i=1}^{n} L(y_i, f(w, x_i))$$

the sum of loss over n labelled training samples: (x_i, y_i)

Strategy: Start with some initial values for w and bring the predicted values closer to the corresponding labels (or minimize J) by adjusting w.

Gradient Descent

- Minimum of the function lies in the opposite direction of gradient
- Start with a guess
- Take a step against gradient:
- $w' = w \eta \nabla J(w)$

Gradient Descent - Initialization

Gradient Descent - Initialization

Scale varied for better visibility

Gradient Descent - Learning rate

http://cs231n.github.io/neural-networks-3/#baby

Mini Batch Gradient Descent

```
Pseudo Code
model = initialization(...)
train_data = load_training_data()
for i in 1...n: // epochs
  Tb<sub>1</sub>, Tb<sub>2</sub>, Tb<sub>3</sub>, .....,Tb<sub>m</sub> = split_training_batches(train_data)
   for Tb<sub>i</sub> in Tb<sub>1</sub>, Tb<sub>2</sub>, Tb<sub>3</sub>, .....,Tb<sub>m</sub>: // mini batches
               error = 0
               for X, y in Tb<sub>i</sub>: // samples in mini batch Tb<sub>i</sub>
                       predictions = predict(X, model)
                      error += calculate_error(y, predictions)
               gradient = differentiate(model_params, error)
               model = update_model(model, gradient)
```


MLP

Eg. House price from attributes

Bedrooms	Sq. Feet	Neighborhood (no. of houses in the locality)	Price high or low? High (1), Low (0)
3	2000	90	1
2	800	143	0
2	850	167	0
1	550	267	0
4	2000	396	1

Initialize weights

Weights at the first neuron

Weights at the second neuron

Weights at the third neuron

Weights at the fourth neuron

Inputs to the next layer

Computations in next layer

A simpler view point

Learnable parameters
Matrix
Multiplication

Nonlinear functions (often non learnable)

Loss Functions

Range of predicted values: (-10,000 to 10,000) | True value: 100

Mean Squared Loss

- Actual value

Mean Absolute Loss

$$L(y, y') = |y - y'|$$

Loss Functions

Cross Entropy Loss

L(y, y') = -(ylog(y') + (1 - y)log(1 - y')) **y**

// - Actual value

- Predicted value

$$L(y, y') = max(0, 1 - y * y')$$

Softmax

```
Out[12]: array([ 6., 0., 5., 3., 8.])
In [8]:
            exp = (np.e)**(x)
            exp
          executed in 6ms, finished 01:47:23 2018-08-21
Out[8]: array([ 4.03428793e+02,
                                        1.00000000e+00,
                                                            1.48413159e+02,
                    2.00855369e+01,
                                        2.98095799e+03])
In [9]:
            sigma e = np.sum(exp)
            sigma e
          executed in 9ms, finished 01:47:25 2018-08-21
 Out[9]: 3553.8854765602264
In [11]:
            z = exp/sigma e
          executed in 8ms, finished 01:47:34 2018-08-21
Out[11]: array([ 1.13517669e-01,
                                                            4.17608165e-02,
                                        2.81382168e-04,
                    5.65171192e-03,
                                        8.38788421e-011)
```

- Normalizes the output.
- K is total number of

SVMs and Kernels

Kernel as Similarity Function

Linear Classifier

Decision boundary: Hyperplane

$$w^T x = 0$$

• Class 1 lies on the positive side $w^T x > 0$

• Class 0 lies on the negative side $w^T x < 0$

Why Linear? Generalization vs. Complexity

• Is it good to use a complex curve to reduce training error?

Are both solutions equally good?

Margin: The No-mans Band

- Margin: Width of a band around decision boundary without any training samples
- Margin varies with the position and orientation of the separating hyperplane

Margin Margin₁ Margin₂

Is a Larger Margin better? Why?

SVM: Formulation

- Let $g(X) = W^T X + b$
- We want to maximize margin:

$$-W^TX_i + b \le -1$$
 for $y_i = -1$

- $-W^TX_i + b \ge 1$ for $y_i = 1$
- Or $y_i(W^TX_i + b) \ge 1$ for i.

SVM Optimization: Convex Optimization

$$min \frac{1}{2}W^{T}W$$

$$y_{i}(W^{T}x_{i} + b) - 1 \ge 0 \forall i$$

$$y_{i} \in \{1, -1\}$$

$$J_d(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \alpha_i \alpha_j y_i y_j x_i^T x_j \sum_{i=1}^N \alpha_i y_i = 0$$

$$W = \sum_{i=1}^N \alpha_i y_i x_i \qquad \text{Only dot products}$$

$$W^T X = \sum_{i=1}^N \alpha_i y_i x_i^T x \qquad \text{Only dot products}$$

Nonlinearity with Feature Maps

 With a "smart" feature map, a linearly non-separable problem can be converted to a separable problem!!

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} r \\ \theta \end{array}\right)$$

Non-linear Mapping

Φ is a non-linear mapping into a possibly high-dimensional space

Kernel Strategy

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

What we need is only
$$w^Tx = \sum_{i=1}^{T} \alpha_i y_i x_i^Tx$$

We can do the same in a new feature space:

$$w^{T}x = \sum_{i=1}^{N} \alpha_{i} y_{i} \phi(x_{i})^{T} \phi(x)$$
 $w^{T}x = \sum_{i=1}^{N} \alpha_{i} y_{i} K(x_{i}, x)$

Clustering

Identifying Similar Patterns

K-Means

- You are given N points
- How do we find k clusters?
 - What if we know the cluster centers?

- How do we find the cluster centers?
 - What if we know the k clusters?

K-Means

- 1. Input: k (number of clusters)
- 2. Randomly select k centers
- 3. Distribute Points
- 4. Update Centers
- 5. Repeat 3,4 till convergence
- 6. Output: Cluster centers

Single-Link Algorithm

- Form a hierarchy for the data points (dendrogram), which can be used to partition the data
- The "closest" data points are joined to form a cluster at each step

Single-Link Algorithm

Summary

Thanks!!

Questions?