Automatic, Fine-Grained Algorithmic Choice for Differential Privacy

Jacob Imola (Advisor: Jean Yang)

Carnegie Mellon University

2017

Outline

- 1. Motivation
- 2. Vision & Challenges
- 3. Solution
- 4. Experiments

Motivation

Netflix wants to anonymize database and release it:

Titanic	Date	The Notebook	Date
8.5	1/17	7.5	3/20
6	3/5	5	3/7
2	1/21	9	2/26
4.5	4/5	9	3/7
	8.5 6 2	8.5 1/17 6 3/5 2 1/21	Titanic Date book 8.5 1/17 7.5 6 3/5 5 2 1/21 9

Motivation

Just cross out names!

	Titanic	Date	The Notebook	Date
User 1	8.5	1/17	7.5	3/20
User 2	6	3/5	5	3/7
User 3	2	1/21	9	2/26
User 4	4.5	4/5	9	3/7

Months later...

Motivation

Netflix					IMDB
	Titanic	Date	The Notebook	Date	Scott on 1/22: (1.5/5) Titanic was terrible! Jordan on 1/20: (4.0/5) Enjoyed Titanic!
User 1 User 2 User 3	6	3/5	5	3/20 3/7 2/26	Jean on 3/6: (2.0/5) The Notebook was pretty overrated :/
User 4	4.5	4/5	9	3/7	

Netflix promised that all movie ratings would be protected!

Differential Privacy

Definition

For all D and D' differing in 1 row: P is ϵ -DP if $Pr(P(D) = O) < e^{\epsilon} Pr(P(D') = O)$ for all O.

$$P \underbrace{ \begin{pmatrix} \text{Jordan} & 8.5 & 1/17 & 7.5 & 3/20 \\ \text{Jean} & 6 & 3/5 & 5 & 3/7 \\ \text{Scott} & 2 & 1/21 & 9 & 2/26 \\ \text{Serena} & 4.5 & 4/5 & 9 & 3/7 \end{pmatrix}}_{D} = \underbrace{ \begin{pmatrix} \text{User 1} & 8.5 & 1/17 & 7.5 & 3/20 \\ \text{User 2} & 6 & 3/5 & 5 & 3/7 \\ \text{User 3} & 2 & 1/21 & 9 & 2/26 \\ \text{User 4} & 4.5 & 4/5 & 9 & 3/7 \end{pmatrix}}_{Q} \\ P \underbrace{ \begin{pmatrix} \text{Jordan} & 8.5 & 1/17 & 7.5 & 3/20 \\ \text{Jean} & 6 & 3/5 & 5 & 3/7 \\ \text{Scott} & 2 & 1/21 & 9 & 2/26 \\ \text{Serena} & 8.5 & 4/6 & 3 & 1/20 \end{pmatrix}}_{Q'} = \underbrace{ \begin{pmatrix} \text{User 1} & 8.5 & 1/17 & 7.5 & 3/20 \\ \text{User 2} & 6 & 3/5 & 5 & 3/7 \\ \text{User 3} & 2 & 1/21 & 9 & 2/26 \\ \text{User 4} & 8.5 & 4/6 & 3 & 1/20 \end{pmatrix}}_{Q'}$$

Violation:
$$Pr(P(D) = O) = 1$$
 and $Pr(P(D') = O) = 0$

A representation change

 User 1
 8.5
 1/17
 7.5
 3/20

 User 2
 6
 3/5
 5
 3/7

 User 3
 2
 1/21
 9
 2/26

 User 4
 4.5
 4/5
 9
 3/7

Method 1

 $\Pr(P(D) = O) \approx 10^{-8}$ $\Pr(P(D') = O) \approx 2 \times 10^{-9}$ Seeing O, attacker cannot distinguish D and D'.

Method Two

▶ Sum into 4 buckets, add noise, divide by 4

Which is better?

DP complicates algorithm analysis due to noise, makes algorithm deployment hard.

Vision

Task: Remove burden of DP algorithm analysis—ChoiceMaker.

- 1. **Correctness** Differential privacy is never violated.
- 2. **Generalizability** Works on arbitrary code.
- 3. Performance Makes choice "close enough" to optimal.

Solution: A programming language!

- 1 $answerHistQueries = MkChoiceMaker among {Alg1, Alg2}$
- $2 \quad answers = answer Hist Queries (data, queries)$

Note on performance

Note on performance

Challenges

What's hard about writing this code?

- 1 answerHistQueries = MkChoiceMaker among $\{Alg1, Alg2\}$
- 2 answers = answerHistQueries (data, queries)
 - ▶ Generality ⇒ Can only run Alg1, Alg2
 - ▶ Meta-machine learning: function $f: DB \rightarrow Alg$
 - Intractable—data science cannot be automated well.

Existing Work

Existing Work

Solution Overview

- Metafeatures modeled after data science approach
- ▶ $f: DB \rightarrow Alg$ becomes $f: \mathcal{X} \rightarrow Alg$.

Important: Trainingset must have lots of DB's for training!

Solution Overview

```
Private DB Pvt. Metafts Alg

Metafeatures f: \mathcal{X} \to Alg
```

```
1 answerHistQueries =
2 MkChoiceMaker among {Alg1, Alg2}
3 informed by {dbSize, dbNumRows}
4 modeled by LinearModel with ErrorFunc
5 trained on TrainingSet}
6
7 answers = answerHistQueries(data, queries)
```

Experimental Setup

- ▶ **Algorithms** Stopping Criteria for Private Decision Trees.
- ▶ **Metafeatures** DB size, epsilon, domain size.
- Classification Linear Classifiers
- ► Training Set
 - 1. 300 real DB snapshots, 100 real DB snapshots
 - 2. 300 synth. DB snapshots, 100 synth. DB snapshots

Results

Always possible to have similar test DB in training DB set?

Conclusion

- ▶ Performs as well as Pythia [2] with same expressiveness as PINQ [3].
- Only as good as how well the programmer frames the ML problem.
- ► Future work: More data science or theorem-proving tools.

References

Kamalika Chaudhuri and Staal A. Vinterbo.

A stability-based validation procedure for differentially private machine learning.

In NIPS, 2013.

los Kotsogiannis, Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau

Pythia: Data dependent differentially private algorithm selection

In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD '17, pages 1323-1337, New York, NY, USA, 2017. ACM.

Frank McSherry.

Privacy integrated queries: An extensible platform for privacy-preserving data analysis.

Commun. ACM, 53(9):89-97, September 2010.