Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	7
1.2 Описание выходных данных	8
2 МЕТОД РЕШЕНИЯ	10
3 ОПИСАНИЕ АЛГОРИТМОВ	13
3.1 Алгоритм конструктора класса Original	13
3.2 Алгоритм метода disturb класса Original	13
3.3 Алгоритм метода pout класса Original	14
3.4 Алгоритм деструктора класса Original	14
3.5 Алгоритм конструктора класса Deriv	15
3.6 Алгоритм метода out класса Deriv	15
3.7 Алгоритм метода check класса Checklist	16
3.8 Алгоритм функции main	16
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	19
5 КОД ПРОГРАММЫ	28
5.1 Файл Checklist.cpp	28
5.2 Файл Checklist.h	28
5.3 Файл Deriv.cpp	29
5.4 Файл Deriv.h	29
5.5 Файл main.cpp	29
5.6 Файл Original.cpp	30
5.7 Файл Original.h	31
6 ТЕСТИРОВАНИЕ	32
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	3/1

1 ПОСТАНОВКА ЗАДАЧИ

Разработать систему, которая демонстрирует возможность использования объекта дружественного класса.

Система состоит из множества однотипных объектов. Объекты содержат характеристику, на которую влияет внешнее возмущение, что приводит к отклонению части значений за пределы допустимой нормы. В составе системы входит инструмент, который периодически анализирует состояние каждого объекта и при обнаружении недопустимых отклонений проводит необходимые корректировки, для восстановления режима нормального функционирования объектов.

Спроектировать объект, с свойствами в закрытом доступе:

- целого типа, для хранения размерности массива;
- целого типа, для хранения величины допустимого отклонения;
- указатель на объект целого типа.

С параметризированным конструктором. У конструктора есть параметр целого типа. Параметр передает (содержит) значение размерности целочисленного массива. У конструктора есть параметр целого типа. Параметр передает (содержит) значение величины допустимого отклонения. В конструкторе: фиксируются значения размерности массива и величины допустимого отклонения; создается целочисленный массив заданной размерности; вводится значения элементов массива. Класс данного объекта является родительским. Имеется функционал (методы) в открытом доступе:

• реализует возмущение значений элементов целочисленного массива. Метод имеет одни целочисленный параметр, который содержит величину возмущения для элементов массива. Каждому элементу массива добавляется величина возмущения;

• реализует вывод значений элементов массива.

В деструкторе освобождается память, выделенная для массива.

Спроектировать производный объект, на базе родительского объекта. У объекта в закрытом доступе имеется свойство:

• строкового типа, для хранения наименования объекта.

С параметризированным конструктором. У конструктора есть параметр целого типа. Параметр передает (содержит) значение размерности целочисленного массива. У конструктора есть параметр целого типа. Параметр передает (содержит) значение величины допустимого отклонения. В реализации конструктора вводится значение наименования объекта.

Имеется функционал (метод) в открытом доступе, который с новой строки выводит наименование объекта и значения элементов массива.

Спроектировать объект, который анализирует состояние производных объектов. Проверяет значения всех элементов массива. Если значение выходит за рамки интервала допустимости, то значение элемента меняет на ноль. Для этого у объекта имеется соответствующий метод. Допустимым интервалом является отрицательное и положительного значение величины отклонения. Например: [-5, 5].

Алгоритм конструирования и отработки системы:

- 1. Объявляются целочисленные переменные для хранения значений: количества объектов; размерности массива; величины допустимого отклонения; количество итераций.
 - 2. Объявляется строковая переменная, для хранения наименования объекта.
 - 3. Могут быть другие объявления.
- 4. Вводятся значения: количество объектов; размерность массива; величины допустимого отклонения; количество итераций.
 - 5. В цикле создаются производные объекты, согласно введенному

количеству.

- 6. Запускается цикл согласно количеству итераций.
- 6.1. С новой строки выводится: Iteration = «номер итерации»
- 6.2. С новой строки выводится: The original
- 6.3. Для каждого объекта выводиться значения элементов массива.
- 6.4. Вводится значение величины возмущения.
- 6.5. Для каждого объекта отрабатывает метод возмущения.
- 6.6. С новой строки выводится: After the outrage
- 6.7. Посредством объекта анализа и корректировки состояния производного объекта, проверяется и приводиться в нормальный режим работы каждый производный объект.
 - 6.8. С новой строки выводится: The result
 - 6.9. Для каждого объекта выводиться значения элементов массива.
- 7. После завершения цикла итераций, созданные производные объекты удаляются (уничтожаются).

1.1 Описание входных данных

Первая строка:

«целое число, количество объектов»

Вторая строка:

«целое число, размерность массива»

Третья строка:

«целое число, величина допустимого отклонения»

Четвертая строка:

«целое число, количество итераций»

Начиная с пятой строки, значения элементов массивов и имя очередного

объекта, согласно количеству объектов:

```
«целое число» «целое число» . . . «целое число» «строка»
```

Далее, построчно значения величины возмущения, согласно количества итерации.

«целое число, значение величины возмущения»

Пример ввода

```
2
5
6
4
1 -1 1 -1 1 object_1
-2 2 -2 2 -2 object_2
3
4
2
-7
```

1.2 Описание выходных данных

В процессе каждой итерации производится вывод.

```
Iteration = «номер итерации»
The original
«имя объекта» «целое число» «целое число» . . . «целое число»
```

Наименование объекта и значения элементов массива, согласно последовательности создания объектов.

```
After the outrage «имя объекта» «целое число» «целое число» . . . «целое число»
```

Наименование объекта и значения элементов массива, согласно последовательности создания объектов.

The result

Наименование объекта и значения элементов массива, согласно последовательности создания объектов.

Пример вывода

```
Iteration = 1
The original
object_1 1 -1 1 -1 1
object_2 -2 2 -2 2 -2
After the outrage
object_1 4 2 4 2 4 object_2 1 5 1 5 1
The result
object_1 4 2 4 2
                   4
object_2 1 5 1 5
Iteration = 2
The original
1
After the outrage
object_1 8 6 8 6
                   8
object_2 5 9 5 9
The result
object_1 0 6 0 6
                    0
object_2 5 0 5 0
Iteration = 3
The original
object_1 0 6 0 6 0
object_2 5 0 5 0
After the outrage
object_1 2 8 2 8 2
The result
object_1 2 0 2 0
                   2
object_2 0 2 0 2 0
Iteration = 4
The original
object_1 2 0 2 0 2 object_2 0 2 0 2 0
After the outrage
object_1 -5 -7 -5 -7
object_2 -7 -5 -7 -5
The result
object_1 -5 0 -5 0 -5 object_2 0 -5 0 -5 0
```

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект out класса Deriv* предназначен для хранения указателя на один из объектов в коллекции mass_of_objects;
- объект checker класса Checklist* предназначен для хранения указателя на объект, который будет использоваться для проверки;
- библиотека iostream;
- библиотека vector;
- объекты стандартного потока ввода/вывода данных cin/cout;
- оператор присваивания;
- условный оператор <;
- оператор инкремента;
- оператор .;
- оператор ->;
- оператор цикла со счетчиком for;
- условный оператор ветвления if...else;
- арифметический оператор сложения +;
- оператор проверки на равенство ==;
- оператор указателя;
- оператор получения адресса/ссылки.

Класс Original:

- свойства/поля:
 - о поле размерность массива:
 - наименование size;
 - тип int;
 - модификатор доступа private;

- о поле максимальное возмущение:
 - наименование deviation;
 - тип int;
 - модификатор доступа private;
- о поле хранит введенные элементы:
 - наименование mass;
 - тип *int;
 - модификатор доступа private;
- функционал:
 - о метод Original параметризированный конструктор;
 - о метод disturb добавляет ко всем элементам поля mass переданное
 - в параметр значение;
 - о метод pout выводит элементы поля mass;
 - о метод ~Original измененный деструктор.

Класс Deriv:

- свойства/поля:
 - о поле хранение метода объекта:
 - наименование name;
 - тип string;
 - модификатор доступа private;
- функционал:
 - о метод Deriv параметризированный конструктор;
 - о метод out выводит все элементы поля mass и имя объекта.

Класс Checklist:

- функционал:
 - о метод check проверяет значения всех элементов поля mass переданного объекта.

Таблица 1 – Иерархия наследования классов

No	Имя класса	Классы- наследники	Модификатор доступа при	Описание	Номер
		наследники	наследовании		
1	Original			исходный класс	
		Deriv	public		2
2	Deriv			производный класс	
3	Checklist			дружественный класс	

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Original

Функционал: параметризированный конструктор.

Параметры: целый - sz, размерность массива; целый - dev, максимальное отклонение.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса Original

N₂	Предикат	Действия	N₂
			перехода
1		присвоение значению поля size значения	2
		параметра sz	
2		присвоение значению поля deviation значения	3
		параметра dev	
3		выделение памяти под массив mass размера sz	4
4		инициализация переменной і со значением 0	5
5	i < sz?	ввод значения для і элемента массива mass	6
			Ø
6		вызов оператора инкремента для і	5

3.2 Алгоритм метода disturb класса Original

Функционал: добавляет ко всем элементам поля mass переданное в параметр значение.

Параметры: целый - dist, добавляет это значение всем элементам поля mass.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода disturb класса Original

N₂	Предикат	Действия	No
			перехода
1		инициализация переменной і со значением 0	2
2	i < size?	добавление значения параметра dist к значению і	3
		элемента массива mass	
			Ø
3		вызов оператора инкремента для і	2

3.3 Алгоритм метода pout класса Original

Функционал: выводит элементы поля mass.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода pout класса Original

N₂	Предикат	Действия	N₂
			перехода
1		инициализация переменной і со значением 0	2
2	i < size?	вывод " ", і элемента массива mass	3
			4
3		вызов оператора инкремента для і	2
4		переход на новую строку	Ø

3.4 Алгоритм деструктора класса Original

Функционал: измененный деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 5.

Таблица 5 – Алгоритм деструктора класса Original

N₂	Предикат	Действия	N₂
			перехода
1		освобождение выделенной под поле mass памяти	Ø

3.5 Алгоритм конструктора класса Deriv

Функционал: параметризированный конструктор.

Параметры: целый - sz, размерность массива; целый - dev, максимальное отклонение.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса Deriv

No	Предикат	Действия	Nº
			перехода
1		ввод значения для поля name	Ø

3.6 Алгоритм метода out класса Deriv

Функционал: выводит все элементы поля mass и имя объекта.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода out класса Deriv

No	Предикат	Действия	No
			перехода
1		вывод поля пате	2
2		вызов метода pout() исходного класса	Ø

3.7 Алгоритм метода check класса Checklist

Функционал: проверяет значения всех элементов поля mass переданного объекта.

Параметры: Original&, obj, объект для проверки.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода check класса Checklist

N₂	Предикат	Действия	N₂
			перехода
1		инициализация переменной і со значением 0	2
2	i < size?		3
			Ø
3	модуль і элемента массива	значение і элемента массива mass прирванивается	4
	mass объекта obj больше	к нулю	
	максимального волнения		
	объекта obj?		
			4
4		вызов оператора инкремента для переменной і	2

3.8 Алгоритм функции main

Функционал: главная функция программы.

Параметры: нет.

Возвращаемое значение: целое число, идентификатор работоспособности программы.

Алгоритм функции представлен в таблице 9.

Таблица 9 – Алгоритм функции таіп

Nº	Предикат	Действия	№ перехода
1		объявление целочисленных переменных	
		amm_of_objects, size, deviation, iter	
2		объявление строковой переменной пате	3
3		ввод значений для переменных amm_of_objects,	4
		size, deviation, iter	
4		создание последовательного контейнера (вектора)	5
		mass_of_objects хранящего коллекцию объектов	
		типа Deriv*	
5		инициализация переменной і со значением 0	6
6	i < amm_of_objects?	добавляем элемент в коллекцию mass_of_objects c	7
		помощью метода push_back с параметром, в	
		котором была выделена память под объект класса	
		Deriv, инициализированного с помощью	
		параметризированного конструктора с	
		параметрами size, deviation	
			8
7		вызов оператора инкремента для переменной і	6
8		объявление целочисленной переменной dev	9
9		инициализация переменной і со значением 1	10
10	i <= iter?	вывод "Iteration = ", значение переменной i,	11
		переход на новую строку	
			29
11		вывод "The original", переход на новую строку	12
12		инициализация переменной ј со значением 0	
13	j < amm_of_objects?	вызов метода out для ј элемента коллекции	
		mass_of_objects	
			15
14		вызов оператора инкремента для переменной ј	13

Nº	Предикат	Действия	№ перехода
15		ввод значения для переменной dev	16
16		инициализация переменной ј со значением 0	17
17	j < amm_of_objects?	вызов метода disturb с переданным параметром	18
		dev для і элемента коллекцииmass_of_objects	
			19
18		вызов оператора инкремента для переменной ј	17
19		вывод "After the outrage", переход на новую строку	20
20		инициализация переменной ј со значением 0	21
21	j < amm_of_objects?	вызов метода out для ј элемента коллекции	22
		mass_of_objects	
			23
22		вызов оператора инкремента для переменной ј	21
23		вывод "The result", переход на новую строку	24
24		инициализация переменной ј со значением 0	25
25	j < amm_of_objects?	объявление объекта checker класса Checklist 26	
		10	
26		вызов метода check с переданным параметром j 27	
		элемента коллекции mass_of_objects для объекта	
		checker	
27		вызов метода out для ј элемента коллекции	28
		mass_of_objects	
28		вызов оператора инкремента для переменной ј	25
29		инициализация переменной і со значением 0	
30	<amm_of_objects? delete="" td="" вызов="" для="" коллекці<="" оператора="" элемента="" і=""><td>31</td></amm_of_objects?>		31
		mass_of_objects	
			Ø
31		вызов оператоора инкремента для переменной і	30

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-9.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

Рисунок 7 – Блок-схема алгоритма

Рисунок 8 – Блок-схема алгоритма

Рисунок 9 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Checklist.cpp

Листинг 1 – Checklist.cpp

```
#include "Checklist.h"
#include "Original.h"

void Checklist::check(Original& obj){
   for (int i = 0; i < obj.size; i++){
     if (abs(obj.mass[i]) > obj.deviation){
       obj.mass[i] = 0;
     }
   }
}
```

5.2 Файл Checklist.h

Листинг 2 – Checklist.h

```
#ifndef __CHECKLIST__H
#define __CHECKLIST__H
#include "Original.h"

class Checklist{
  public:
    void check(Original& obj);
};

#endif
```

5.3 Файл Deriv.cpp

```
#include "Deriv.h"

Deriv::Deriv(int sz, int dev) : Original(sz, dev){
    cin >> name;
}

void Deriv::out(){
    cout << name;
    this->pout();
}
```

5.4 Файл Deriv.h

Листинг 4 – Deriv.h

```
#ifndef __DERIV__H
#define __DERIV__H
#include <string>
#include "Original.h"

class Deriv:public Original{
    string name;
public:
    Deriv(int sz, int dev);
    void out();
};

#endif
```

5.5 Файл таіп.срр

Листинг 5 – main.cpp

```
#include "Deriv.h"
#include "Checklist.h"

int main()
{
   int amm_of_objects, size, deviation, iter;
```

```
string name;
  cin >> amm_of_objects >> size >> deviation >> iter;
  vector <Deriv*> mass_of_objects;
  for (int i = 0; i < amm_of_objects; i++){
     mass_of_objects.push_back(new Deriv(size, deviation));
  }
  int dev;
  for (int i = 1; i \le iter; i++){
     cout << "Iteration = " << i << endl;</pre>
     cout << "The original" << endl;</pre>
     for (int j = 0; j < amm_of_objects; <math>j++){
        mass_of_objects[j]->out();
     cin >> dev;
     for (int j = 0; j < amm_of_objects; <math>j++){
        mass_of_objects[j]->disturb(dev);
     }
     cout << "After the outrage" << endl;</pre>
     for (int j = 0; j < amm_of_objects; <math>j++){
        mass_of_objects[j]->out();
     }
     cout << "The result" << endl;</pre>
     for (int j = 0; j < amm_of_objects; <math>j++){
        Checklist checker;
        checker.check(*mass_of_objects[j]);
        mass_of_objects[j]->out();
     }
  for (int i = 0; i < amm_of_objects; i++){
     delete mass_of_objects[i];
  }
  return(0);
}
```

5.6 Файл Original.cpp

Листинг 6 – Original.cpp

```
#include "Original.h"

Original::Original(int sz, int dev = 0){
    size = sz;
    deviation = dev;
    mass = new int[sz];
    for (int i = 0; i < sz; i++){</pre>
```

```
cin >> mass[i];
    }
}

void Original::pout(){
    for (int i = 0; i < size; i++){
        cout << " " << mass[i];
    }
    cout << endl;
}

void Original::disturb(int dist){
    for (int i = 0; i < size; i++){
        mass[i] += dist;
    }
}
Original::~Original(){
    delete[] mass;
}</pre>
```

5.7 Файл Original.h

Листинг 7 – Original.h

```
#ifndef __ORIGINAL__H
#define __ORIGINAL__H
#include <iostream>
#include <vector>
using namespace std;
class Original{
  friend class Checklist;
  int size;
  int deviation;
  int* mass;
public:
  Original(int sz, int dev);
  void disturb(int dist);
  void pout();
  virtual ~Original();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 10.

Таблица 10 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
2 5 6	Iteration = 1 The original object_1 1 -1 1	Iteration = 1 The original object_1 1 -1 1
4 1 -1 1 -1 1 object_1 -2 2 -2 2 -2	-1 1 object_2 -2 2 -2 2 -2	-1 1 object_2 -2 2 -2 2 -2
object_2	After the outrage	After the outrage
3 4	object_1 4 2 4 2 4	object_1 4 2 4 2 4
2 -7	object_2 1 5 1 5 1	object_2
	The result	The result
	object_1 4 2 4 2 4	object_1 4 2 4 2 4
	object_2 1 5 1 5 1	object_2
	Iteration = 2	Iteration = 2
	The original	The original
	object_1 4 2 4 2 4	object_1 4 2 4 2 4
	object_2	object_2
	After the outrage	After the outrage
	object_1 8 6 8 6 8	object_1
	object_2 5 9 5 9 5	object_2
	The result	The result
	object_1 0 6 0 6 0	object_1 0 6 0 6 0
	object_2 5 0 5 0 5	object_2
	Iteration = 3	Iteration = 3
	The original object_1 0 6 0 6	The original object_1 0 6 0 6
	0 object_2 5 0 5 0	0 object_2
	5 After the outrage	After the outrage
	object_1 2 8 2 8	object_1 2 8 2 8
	object_2	object_2
	The result object_1 2 0 2 0 2	The result object_1 2 0 2 0

данные object_2 0 2 0 Iteration = 4 The original	2 0 2	данныю 2 object_2 0		0	2
0 Iteration = 4 The original	2 0 2	object_2 0	0 2	0	2
2 object_2 0 2 0 After the outr object_1 -5 -7 -5 object_2 -7 -5 -7 The result object_1 -5 0 -5	2 0 2 age -7 -5 -5 -7 0 -5	object_1 2 object_2 0 After the object_1 -7 -5 object_2 -5 -7 The result object_1 0 -5 object_2	al 2 0 0 2 outra -5 -7	0 age -7 -5	
	2 object_2 0 2 0 After the outr object_1 -5 -7 -5 object_2 -7 -5 -7 The result object_1 -5 0 -5 object_2 0	2 object_2 0 2 0 2 0 After the outrage object_1 -5 -7 -5 -7 -5 object_2 -7 -5 -7 The result object_1 -5 0 -5 object_2 0 -5 0	2 object_2 0 2 0 2 0 2 0 object_2 0 object_2 0 object_2 0 object_2 0 object_2 0 object_1 -5 -7 -5 object_2 -7 -5 object_2 -5 -7 The result object_1 -5 0 object_1	2	2

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).