Deep Neural Networks for Natural Language Processing (Al6127)

JUNG-JAE KIM

TUTORIAL 4: CONVOLUTIONAL NEURAL NETWORKS

Question 1

- Run the iPython notebook (Section 5.3, "Document classification with CNN") of the following site on your machine:
 - https://github.com/joosthub/PyTorchNLPBook (Repository of source codes explained in the book "Natural Language Processing with PyTorch" by Delip Rao and Brian McMahan)
 - It requires data file downloading and data pre-processing

Hint 1

- Download ag_news dataset (see data/get-all-data.sh)
 - cd data; python download.py 1hjAZJJVyez-tjaUSwQyMBMVbW68Kgyzn ./ag_news/news.csv
- Download Glove word embeddings
 - http://nlp.stanford.edu/data/glove.6B.zip: unzip and place it under data/glove
- Run 5_3_Munging_AG_News notebook
- Run 5_3_Document_Classification_with_CNN notebook
 - Fix load_glove_from_file function in section "general utilities"
 - with open(glove_filepath, "r", encoding='utf8') as fp:

Question 2: Answer the following questions about the notebook

- How many layers of 1D CNN are used in the model?
 - Hint: See Section "The Model: NewsClassifier", __init__ function
- What other layers are included in the model?
 - Hint: See Section "The Model: NewsClassifier", __init__ and forward functions
- How many channels does each 1D CNN produce as output?
 - Hints:
 - See Section "The Model: NewsClassifier", __init__ function
 - Sections "Initializations" and "Settings and some prep work"

Question 2: Answer the following questions about the notebook

- What is difference between the padding introduced in the lecture slides and the padding introduced in the notebook?
 - Hints:
 - Section "The vectorizer", vectorize function
 - Section "The dataset", ___init___ and ___getitem___ functions
 - Section "The Vocabulary", ___init___ function

A 1D convolution for text with padding = 1

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.2	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø ,t, d	-0.6
t,d,r	-1.1
d,r,t	-0.4
r,t,k	-3.9
t,k,g	-0.2
k,g,o	0.3
g,o, Ø	-0.5

3	1	2	-3
-1	2	1	-3
1	1	-1	1

Apply a **filter** of size 3

Question 2: Answer the following questions about the notebook

- What pooling method is used in the notebook?
 - Hint: See Section "The Model: NewsClassifier", forward function
- Which regularisation method is used in the notebook?
 - Hint: See Section "The Model: NewsClassifier", __init__ and forward functions

Regularization: dropout

- Create masking vector r of Bernoulli random variables with probability p (a hyperparameter) of being 1
- Delete features during training: $y = \operatorname{softmax}(W^{(S)}(r \circ z) + b)$
 - E.g. randomly set 50% of the inputs to each neuron to 0, at each instance
- Reasoning: Prevents co-adaptation (overfitting to seeing specific feature constellations)
 - See the link below for details
- At test time, no dropout, scale down final vector by probability p: $\widehat{W}^{(S)} = pW^{(S)}$

Regularization: l₂ norm

- Recall: $||v||_2 = \sqrt{v_1^2 + v_2^2 + v_3^2 + \cdots}$
- Constrain I_2 norms of weight vectors of each class (row in softmax weight $W^{(S)}$) to be upper-bounded by a fixed number s (also a hyperparameter)
 - If $\|W_c^{(S)}\|_2 > s$, then rescale it so that: $\|W_c^{(S)}\|_2 = s$
- Or, add regularization to loss function
 - Helps to prevent overfitting when we have a lot of features

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} -\log \left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_c}} \right) + \lambda \sum_{k} \theta_k^2$$

Hands-on

Question 2: Answer the following questions about the notebook

- Question 2.1: How many layers of 1D CNN are used in the model?
- Hint: See Section "The Model: NewsClassifier", __init__ function

Section "The Model: NewsClassifier"

```
__init__ function
  self.convnet = nn.Sequential(
        nn.Conv1d(in_channels=embedding_size,
           out_channels=num_channels, kernel_size=3),
        nn.ELU(),
        nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
            kernel size=3, stride=2),
        nn.ELU(),
        nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
            kernel size=3, stride=2),
        nn.ELU(),
        nn.Conv1d(in channels=num channels, out channels=num channels,
            kernel size=3),
        nn.ELU()
```

Question 2.2: What other layers are included in the model?

 Hint: See Section "The Model: NewsClassifier", __init__ and forward functions

init function

```
self._dropout_p = dropout_p
  self.fc1 = nn.Linear(num_channels, hidden_dim)
  self.fc2 = nn.Linear(hidden_dim, num_classes)

    forward function

  features = self.convnet(x_embedded)
  # average and remove the extra dimension
  remaining_size = features.size(dim=2)
  features = F.avg_pool1d(features, remaining_size).squeeze(dim=2)
  features = F.dropout(features, p=self._dropout_p)
  # mlp classifier
  intermediate_vector = F.relu(F.dropout(self.fc1(features), p=self._dropout_p))
  prediction_vector = self.fc2(intermediate_vector)
  if apply softmax:
        prediction_vector = F.softmax(prediction_vector, dim=1)
```

Question 2.3: How many channels does each 1D CNN produce as output?

• Hints:

- See Section "The Model: NewsClassifier", __init__ function
- Section "Initializations"
- Section "Settings and some prep work"

- Section "The Model: NewsClassifier"
- __init function self.convnet = nn.Sequential(nn.Conv1d(in_channels=embedding_size, out_channels=num_channels, kernel_size=3), nn.ELU(), nn.Conv1d(in_channels=num_channels, out_channels=num_channels, kernel size=3, stride=2), nn.ELU(), nn.Conv1d(in_channels=num_channels, out_channels=num_channels,

```
kernel_size=3, stride=2),
nn.ELU(),
nn.Conv1d(in_channels=num_channels,
        out_channels=num_channels,
        kernel_size=3),
nn.ELU()
)
```

- Section "Initializations"
 - classifier = NewsClassifier(..., num_channels=args.num_channels, ...)
- Section "Settings and some prep work"
 - args = Namespace(..., num_channels=100, ...)

Question 2.4: What is difference between the padding introduced in the lecture slides and the padding introduced in the notebook?

• Hints:

- Section "The vectorizer", vectorize function
- Section "The dataset", __init__ and __getitem__ functions
- Section "The Vocabulary", __init__ function

- Section "The vectorizer", vectorize function
 - o indices =
 [self.title_vocab.begin_seq_index]
 - indices.extend(self.title_vocab.lookup_t oken(token) for token in title.split(" "))
 - indices.append(self.title_vocab.end_seq _index)
 - if vector_length < 0: vector_length =
 len(indices)</pre>
 - out_vector = np.zeros(vector_length, dtype=np.int64)

- out_vector[:len(indices)] = indices
- out_vector[len(indices):] =
 self.title_vocab.mask_index
- Section "The dataset"
 - __init__ function
 - measure_len = lambda context: len(context.split(" "))
 - self._max_seq_length =
 max(map(measure_len, news_df.title)) + 2
 - __getitem__ function
 - title_vector =
 self._vectorizer.vectorize(row.title,
 self._max_seq_length)

- Section "The Vocabulary"
 - def __init__(self, token_to_idx=None, unk_token="<UNK>", mask_token="<MASK>", begin_seq_token="<BEGIN>", end_seq_token="<END>"):
 - self.mask_index = self.add_token(self._mask_token)
 - self.unk_index = self.add_token(self._unk_token)
 - self.begin_seq_index = self.add_token(self._begin_seq_token)
 - self.end_seq_index = self.add_token(self._end_seq_token)

Question 2.5: What pooling method is used in the notebook?

• Hint: See Section "The Model: NewsClassifier", forward function

features = F.avg_pool1d(features, remaining_size).squeeze(dim=2)

Question 2.6: Which regularisation method is used in the notebook?

 Hint: See Section "The Model: NewsClassifier", __init__ and forward functions

- Section "The Model: NewsClassifier"
- init function self.convnet = nn.Sequential(nn.Conv1d(in_channels=embedding_size, out channels=num_channels, kernel_size=3), nn.ELU(), nn.Conv1d(in_channels=num_channels, out_channels=num_channels, kernel size=3, stride=2), nn.ELU(), nn.Conv1d(in_channels=num_channels, out_channels=num_channels,

```
ELU activation function

6 - 4 - 2 0 2 4 6
```

```
kernel_size=3, stride=2),
nn.ELU(),
nn.Conv1d(in_channels=num_channels,
        out_channels=num_channels,
        kernel_size=3),
nn.ELU()
)
```

- forward function
 - features = F.dropout(features, p=self._dropout_p)
 - o intermediate_vector =
 F.relu(F.dropout(self.fc1(features),
 p=self._dropout_p))

Answer 2: Summary

- 4 layers of 1D CNN
- 4 non-linear layers; 2 fully connected layers; 1 avg pooling layer
- 100 output channels for each 1D CNN
- padding with special token (mask_index) is used in notebook, while padding of 0.0 is used in lecture slides
- average pooling method
- dropout regularization