

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE
Bureau international

AK

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁷ : C07K 2/00, A61K 47/48 // C07D 215/48		A1	(11) Numéro de publication internationale: WO 00/58344 (43) Date de publication internationale: 5 octobre 2000 (05.10.00)
(21) Numéro de la demande internationale: PCT/FR00/00757 (22) Date de dépôt international: 23 mars 2000 (23.03.00)		(81) Etats désignés: JP, PL, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Publiée <i>Avec rapport de recherche internationale.</i>	
(30) Données relatives à la priorité: 99/03791 26 mars 1999 (26.03.99) FR			
(71)(72) Déposant et inventeur: MALINA, Halina [FR/FR]; Résidence La Daunière, Bâtiment E app. 45, F-91940 Les Ulis (FR).			
(54) Title: PROTEINS MODIFIED BY XANTHURENIC ACID			
(54) Titre: PROTEINES MODIFIEES PAR L'ACIDE XANTHURENIQUE			
(57) Abstract			
The invention relates to the use of proteins that are modified by xanthurenic acid in order to induce an immune response. An immune response to said compounds is designed to prevent diseases that are triggered by an accumulation of badly folded proteins including diseases that are associated with ageing such as Alzheimer's disease, prion diseases, senile cataracts, atherosclerosis, rheumatism and degeneration of the retina with ageing.			
(57) Abrégé			
L'invention a pour but l'utilisation de protéines modifiées par l'acide xanthurénique pour induire une réponse immunitaire. Une réponse immunitaire contre ces composés a pour but une prévention des maladies déclenchées par l'accumulation de protéines mal repliées auxquelles peuvent appartenir des maladies associées au vieillissement comme par exemple la maladie d'Alzheimer, les maladies à prions, la cataracte sénile, l'athérosclérose, les rhumatismes, la dégénération de la rétine avec l'âge.			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	IS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lithuanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Biélorussie	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizstan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LJ	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

PROTEINES MODIFIEES PAR L'ACIDE XANTHURENIQUE

La présente invention a pour but l'induction d'une réponse immunitaire contre les pathologies induites par des modifications de physiologie cellulaire par l'acide xanthurénique. La présente invention concerne aussi une façon d'induction régulée de pathologie cellulaire en présence de l'acide xanthurénique. Elle est relative à une formation de protéines modifiées de façon covalente par l'acide xanthurénique *in vitro* ou dans un système cellulaire.

La base de l'invention est une observation du fait que l'acide xanthurénique mène à la modification covalente de protéines dans des cellules et provoque une modification de la physiologie cellulaire. Précédemment, il a été reporté que l'acide xanthurénique s'accumule dans le cristallin de l'œil bovin (Malina et al. Graefe's Arch. Clin. Exp. Ophthalmol. 1995, 233, 38-44), et humain (Malina et al. Graefe's Arch. Clin. Exp. Ophthalmol. 1996, 234, 723-730) avec l'âge, dans sa présence les α , β , γ - cristallines formes des agrégats (idem) et deviennent fluorescentes (Malina et al. Eur. J. Ophthalmol. 1996, 6, 250-256). Les conjugués covalents sont formés par la préparation des produits oxydés de l'acide xanthurénique, nommés DOXA et sa réaction avec des cristallines de l'œil (Malina et al. Graefe's Arch. Clin. Exp. Ophthalmol. 1996, 234, 723-730).

Récemment, les expériences ont montré que l'acide xanthurénique s'accumulant dans une cellule conduit à une modification de la physiologie cellulaire. Cette modification est due à une accumulation de protéines mal repliées. L'acide xanthurénique peut former des liaisons covalentes avec des protéines. En présence de l'acide xanthurénique qui a une couleur jaune, des protéines deviennent jaunes à cause de celui-ci. Cette couleur persiste après l'électrophorèse des protéines sur le gel dénaturant. Ces résultats montrent que l'acide xanthurénique est lié avec les protéines de façon covalente. Pour changer la conformation d'une protéine, il est suffisant de modifier un acide aminé; de nombreux exemples sont présents dans la littérature scientifique. En présence de l'acide xanthurénique comme l'indiquent les exemples donnés dans cette description, un à plusieurs acides aminés peuvent être modifiés. Pour cette raison, la présence de l'acide xanthurénique dans une cellule provoque une surexpression des protéines chaperonnes nommées "glucose regulated proteins 94" GRP94. La surexpression de ces protéines est connue comme étant provoquée par l'accumulation des protéines mal repliées (Kozutsumi Nature 1998, 332, 462-464).

L'acide xanthurénique modifie des protéines de façon aléatoire et cette modification concerne aussi les protéines chaperonnes comme par exemple la GRP 94 et la calréticuline. Etant donné que ces protéines sont responsables de la conformation correcte des protéines, leur modification accélère l'accumulation des protéines mal

5 repliées et aussi parmi elles des immunoglobulines mal repliées. Ces modifications complexes des protéines par l'acide xanthurénique, permet de laisser fonctionner des cellules avec une physiologie modifiée. L'accumulation des protéines modifiées par l'acide xanthurénique dans différentes types de cellules (par exemple les cellules des astrocytes, les cellules épithéliales du cristallin) provoque par exemple une surexpression

10 des protéases, une dégradation du calréticuline, une modification du facteur nucléaire-kappaB, et une induction du β -amyloïde (A4).

Ces résultats montrent que la formation de protéines modifiées par l'acide xanthurénique mène à une pathologie cellulaire en induisant le changement de nombreuses protéines. Les changements observés sont en fonction du degré de la modification de protéines par 15 l'acide xanthurénique. Ces résultats montrent qu'il est possible d'induire une pathologie cellulaire de façon artificielle en augmentant dans les cellules le niveau de protéines modifiées par l'acide xanthurénique. Ce nouveau mécanisme est provoqué par la modification des protéines par l'acide xanthurénique dans une cellule. Dans une culture cellulaire des astrocytes une augmentation de niveau de protéines modifiée par l'acide 20 xanthurénique provoque l'induction de β -amyloïde (A4), qui est reconnu par anticorps monoclonaux de Dako, Danemark, utilisé pour la diagnostique de la maladie de Alzheimer. La raison de cette induction de β -amyloïde est une modification de la conformation de la protéine précurseur de l'amyloïde (PPA), due à la modification par l'acide xanthurénique. Cette modification donne le signal à une induction de protéases, qui dégradent le PPA 25 modifiée et induites la formation de β -amyloïde (A4).

L'acide xanthurénique est un acide aminé de la voie de dégradation du tryptophane et son accumulation dans différents types de cellules peut conduire à diverses pathologies. On peut prévoir que l'animal dans lequel on augmente le niveau de protéines modifiées par l'acide xanthurénique peut servir comme modèle pour étudier l'effet de médicaments.

30 Une introduction directe d'acide xanthurénique par voie orale ou d'autres voies, peut servir comme un modèle de développement de la maladie d'Alzheimer, les maladies à prion, la cataracte sénile, l'athérosclérose, les rhumatismes, la dégénération de la rétine avec l'âge.

L'observation du fait que l'acide xanthurénique provoque une dérégulation de la physiologie cellulaire permet une induction régulée de la pathologie cellulaire.

Des protéines modifiées par l'acide xanthurénique et injectées à un animal vont induire une

réponse immunitaire contre les protéines mal repliées. A cause de la modification du

5 système immunitaire par l'acide xanthurénique et à la suite d'une dégradation des protéines chaperonnes comme la GRP94, les cellules pathologiques ne sont pas éliminées. L'induction de la réponse immunitaire contre les protéines mal repliées peut prévenir l'effet pathologique qui a lieu à la formation de ces protéines au cours de vieillissement.

Les vaccins basés sur des protéines modifiées par l'acide xanthurénique vont avoir un rôle

10 préventif contre les maladies induites par des protéines ainsi modifiées. Les protéines modifiées par l'acide xanthurénique peuvent être administrer aux mammifères en utilisant tous les solvants non toxique dans lesquelles sont solubles. Des degrés des modifications de protéine par l'acide xanthurénique, et quantité de protéine à administrer va dépendre de protéine à modifier et de but recherché par vaccination. Les fragments de

15 protéines, des peptides ou des séquences synthétiques peuvent être utilisés pour former des produites conjugués avec l'acide xanthurénique. Ces composés sont introduits dans un mammifère pour induire une réponse immunitaire.

Exemple 1.

Formation de protéines modifiées par l'acide xanthurénique dans la culture de cellules
20 épithéliales.

La culture primaire des cellules épithéliales bovins de dans un milieu du type milieu essentiel minimal (MEM) a été traitée par l'acide xanthurénique. L'acide xanthurénique a été ajouté dans ce milieu à concentration 0, 1, 2, 4 mM . Après 24 heures des cultures les cellules ont été lavées en utilisant un tampon PBS (5 mM sodium phosphate, 150 mM
25 NaCl, pH 7.1) et lysé dans un tampon contenant 50 mM Tris-HCl (pH8), 150 mM NaCl 100µg/ml PMSF, 1% Triton X-100. Des extraits ont été appliqués sur une colonne des Sephadex G-50 et élus en utilisant 0,005 M NaHCO₃. L'acide xanthurénique a été quantifié dans les extraits de protéines par la spectrométrie UV. La concentration de protéines a été calculée en utilisant une gamme étalonnée des mesures de l'absorption des
30 quantités connues de l'albumines du bovin ayant le poids moléculaire de 67,5 kD après une incubation avec l'acide xanthurénique $\lambda=342$ nm ($E_{\lambda \text{ max}} 6\,500$ selon Merck Index, Merck and Co., édition White House Station, New York, 1996). La concentration de

l'acide xanthurénique a correspondu respectivement au 0, 1, 3, 9 moles par mole de protéines. L'analyses des protéines après un transfère de gel SDS-PAGE sur une membrane de nylon (Western blot) en présence des différents anticorps ont montré qu'en présence de protéines modifiées par l'acide xanthurénique les niveaux de facteur nuclaiare- κ B, β -amyloïde (A4), et calpain Lp82 ont été changés.

Exemple 2

Formation de protéines modifiées par l'acide xanthurénique dans la culture cellulaire des astrocytes.

La culture d'astrocytes de rat dans le milieu MEM a été traité par l'acide xanthurénique à concentration 0, 2, 4, 8 mM. La concentration de l'acide xanthurénique (XA) dans des extraits a été calculée comme dans l'exemple 1, et a correspondu respectivement au 0 ; 1 mole XA par 8 moles de protéines ; 3 moles de XA par 2 moles de protéines ; 1 mole XA par moles de protéines par mole de 5 protéines.

En présence de protéines modifiées par d'acide xanthurénique, le facteur nucléaire - κ B ont eu de poids moléculaire de 50 kD, 52kD, et 55 kD au lieu de la taille normale 50 kD. La formation β -amyloïde (A4), qui n'était pas détectable sans la présence de l'acide xanthurénique, a été fortement induite. Ces résultats ont montré qu'une augmentation de l'acide xanthurénique dans la cellule va provoquer une dérégulation de la physiologie cellulaire. Ces résultats montrent qu'il est possible d'induire artificiellement une pathologie cellulaire en augmentant dans une cellule le niveau des protéines modifiées par l'acide xanthurénique. Le nouveau mécanisme décrit est provoqué par la modification covalente des protéines par l'acide xanthurénique.

Exemple 3. Formation de protéines modifiées par l'acide xanthurénique dans un extrait cellulaire de la rétine.

L'acide xanthurénique à 0, 2, 4, 8 mM a été incubés avec des extraits de protéines de la rétine pendant une semaine et les extraits ont été traités comme décrit dans l'exemple 1, et les concentrations ont correspondues respectivement au 0; 2 mole XA par 1 mole de protéines; 3 moles de XA par 1 mole de protéines; 5 moles XA par moles de protéines.

Exemple 4.

Formation de protéines modifiées par l'acide xanthurénique dans la culture de tissus.

Les cristallins de porc ont été incubés dans les solutions d'acide xanthurénique 0 et 2 mM pendant une semaine. L'acide xanthurénique a été diffusé dans le cristallin. Le cortex du cristallin a été homogénéisé dans un tampon phosphate de 7.4. La partie non soluble de protéines a été séparée par centrifugation à 10 000g. La concentration des protéines a été mesurée à 280 nm, les parties insolubles des protéines ont été dissoutes dans 4 mM urée ou dans 8 mM d'urée. L'acide xanthurénique était présent dans tous les extraits et sa quantité a augmenté avec l'insolubilité des protéines : les concentrations en acide xanthurénique dans les protéines correspondaient à 1 mole XA pour 1 mole de protéines dans la partie soluble du tampon phosphate, 2 moles de XA dans les protéines solubles dans

10 4mM d'urée, et 3 moles de XA dans les protéines solubles dans 8 mM d'urée.

Exemple 5. Préparation des conjugués de l'acide xanthurénique avec des protéines de bactéries.

Le mycelium de *Streptomyces incarnatus*, une bactérie mycelial Gram-positive, a été cultivée en l'absence ou en présence de 2 mM d'acide xanthurénique. 100 ml de chaque culture a été suspendue dans le tampon de phosphate à concentration 0.05 M, de pH 7, contenant 0.1% de β-mercaptopropanoïde. La suspension a été congelée dans un bain-marie contenant de la glace carbonique-méthanol. Les cellules congelées ont été casées dans la presse de Hinton avec une pression de 360 atmosphères. Les protéines de cytosol ont été séparées de la fraction des membranes par centrifugation de 100 000g pendant une heure. La solution a été traitée par l'addition de 2,5 % de streptomycine pour précipiter l'acide nucléique, qui ont été éliminé par centrifugation à 5000g pendant 10 min. Les concentrations d'acide xanthurénique dans les protéines ont été mesurées comme décrit dans l'exemple 1. Les concentrations en acide xanthurénique dans les protéines correspondaient à 0 et 0.5 mole d'acide xanthurénique pour une mole de protéines.

25 Exemple 6. Induction une réponse immunitaire contre la protéine modifiée par l'acide xanthurénique.

La calréticuline est modifiée par l'acide xanthurénique dans une cellule et partiellement dégradé. 3 mg de calréticuline dans le tampon phosphate stérile de pH 7,4 ont été incubés avec 4 mM d'acide xanthurénique pendant 72 heures, à température ambiante.

30 La calréticuline modifiée a été administré au souris. Six souris (pesant 100 g environ) ont été immunisées par injection sous-cutané en utilisant les même quantités 500µg de

calréticuline. Un autre groupe de souris est resté sans traitement. L'immunisation a été répétée trois fois par dans l'intervalle de deux semaines. La calréticuline a été analysée dans le plasma des animaux après trois mois. Des protéines de plasma de souris ont été analysées par électrophorèse sur un gel dénaturant (Laemmli , Nature 1970, 227, 680-685).

- 5 Des protéines ont été transférées sur une membrane. La détection de la calréticuline a été effectuée en utilisant un anticorps contre la calréticuline. Dans le plasma de souris non traités, la calréticuline dégradée présentait un poids moléculaire de 55 kD au lieu de 63kD. Chez les souris traitées le plasma a contenu de 60 pour-cent moins de la calréticuline dégradées.

10 Cette voie peut être utilisée pour retarder le vieillissement pathologique des cellules due à une modification de la conformation des protéines, parmi eux des chaperonne protéines.

Les injections des protéines modifiées par l'acide xanthurénique peuvent avoir un effet préventif contre de pathologie liées au vieillissement. Une immunothérapie utilisant les anticorps monoclonaux serait possible pour retarder l'effet de protéines mal repliées. Par 15 exemple un anticorps contre la protéine précurseur d'amyloïde modifiée par l'acide xanthurénique est supposée retarder le développement de la maladie d'Alzheimer.

Revendications

1. **1)** Composé destiné à provoquer des réactions immunitaires par introduction dans un organisme vivant caractérisé en ce qu'il est le produit de la réaction de l'acide xanthurénique avec une protéine.
2. **2)** Composé selon la revendication 1 caractérisé en ce que l'acide xanthurénique est lié 5. à une protéine, un péptide, ou une séquence de protéine.
3. **3)** Composé selon la revendication 1 caractérisé en ce que cette protéine est une protéine humaine ou une protéine d'un autre mammifère.
4. **4)** Composé selon la revendication 1 caractérisé en ce que cette protéine est une protéine bactérienne.
5. **5)** Composé selon la revendication 1 caractérisé en ce que la préparation est faite en ajoutant l'acide xanthurénique dans les milieux de culture de cellules de mammifères.
6. **6)** Composé selon la revendication 1 caractérisé en ce que la préparation est faite en ajoutant l'acide xanthurénique dans les milieux de culture de tissus.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR 00/00757

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07K2/00 A61K47/48 //C07D215/48

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07K A61K C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	MALINA, HALINA ZOFIA ET AL: "Xanthurenic acid derivative formation in the lens is responsible for senile cataract in humans" GRAEFE'S ARCH. CLIN. EXP. OPHTHALMOL., vol. 234, no. 12, December 1996 (1996-12), pages 723-730, XP000867409 cited in the application the whole document	1-6
A	KOTAKE Y ET AL: "The physiological significance of the xanthurenic acid-insulin complex." JOURNAL OF BIOCHEMISTRY, vol. 77, no. 3, March 1975 (1975-03), pages 685-687, XP000867442 page 686, column 2, line 3 - line 7 the whole document	1-6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the International search report
---	--

28 June 2000

04/07/2000

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer
--	--------------------

Teyssier, B

INTERNATIONAL SEARCH REPORT

b International Application No
PCT/FR 00/00757

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	MURAKAMI E: "Purification of xanthurenic acid-insuline complex." ACTA VITAMINOLOGICA ET ENZYMOLOGICA, vol. 29, no. 1-6, 1975, pages 240-242, XP000867444 the whole document ---	5,6
A	KOBAYASHI K ET AL: "Influence of blood proteins on biomedical analysis. I. Interaction of xanthurenic acid with bovine serum albumin." CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 28, no. 10, October 1980 (1980-10), pages 2960-2966, XP002128451 page 2964, dernier paragraphe the whole document ---	1-6
P,X	MALINA H Z: "Xanthurenic acid provokes formation of unfolded proteins in endothelial reticulum of the lens epithelial cells" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 265, no. 2, 19 November 1999 (1999-11-19), pages 600-605, XP000867480 the whole document ---	1-3,5,6
A	SHIRAO Y ET AL.: "Glucoside of xanthurenic acid accumulates in brunescence but not in non-brunescence lens nuclei in human" IOVS, vol. 40, no. 4, 15 March 1999 (1999-03-15), page S 522 XP000907486 1999 Annual Meeting of the Association for Research in Vision and Ophthalmology, 9-14/5/1999, Fort Lauderdale, FL abstract 2752-B627 -----	

RAPPORT DE RECHERCHE INTERNATIONALE

Date Internationale No
PCT/FR 00/00757

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 C07K2/00 A61K47/48 //C07D215/48

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 C07K A61K C07D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CHEM ABS Data

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	MALINA, HALINA ZOFIA ET AL: "Xanthurenic acid derivative formation in the lens is responsible for senile cataract in humans" GRAEFE'S ARCH. CLIN. EXP. OPHTHALMOL., vol. 234, no. 12, décembre 1996 (1996-12), pages 723-730, XP000867409 cité dans la demande le document en entier	1-6
A	KOTAKE Y ET AL: "The physiological significance of the xanthurenic acid-insulin complex." JOURNAL OF BIOCHEMISTRY, vol. 77, no. 3, mars 1975 (1975-03), pages 685-687, XP000867442 page 686, colonne 2, ligne 3 - ligne 7 le document en entier ---	1-6
		-/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *E* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant poser un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- *X* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- *Y* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *&* document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

28 juin 2000

Date d'expédition du présent rapport de recherche internationale

04/07/2000

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patendaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epori, Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Teyssier, B

RAPPORT DE RECHERCHE INTERNATIONALE

C. (suite) DOCUMENTS CONSIDERES COMME PERTINENTS	Code International No PCT/FR 00/00757
--	--

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	MURAKAMI E: "Purification of xanthurenic acid-insuline complex." ACTA VITAMINOLOGICA ET ENZYMOLOGICA, vol. 29, no. 1-6, 1975, pages 240-242, XP000867444 le document en entier	5,6
A	KOBAYASHI K ET AL: "Influence of blood proteins on biomedical analysis. I. Interaction of xanthurenic acid with bovine serum albumin." CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 28, no. 10, octobre 1980 (1980-10), pages 2960-2966, XP002128451 page 2964, dernier paragraphe le document en entier	1-6
P,X	MALINA H Z: "Xanthurenic acid provokes formation of unfolded proteins in endothelial reticulum of the lens epithelial cells" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 265, no. 2, 19 novembre 1999 (1999-11-19), pages 600-605, XP000867480 le document en entier	1-3,5,6
A	SHIRAO Y ET AL.: "Glucoside of xanthurenic acid accumulates in brunescent but not in non-brunescent lens nuclei in human" IOVS, vol. 40, no. 4, 15 mars 1999 (1999-03-15), page S 522 XP000907486 1999 Annual Meeting of the Association for Research in Vision and Ophthalmology, 9-14/5/1999, Fort Lauderdale, FL résumé 2752-B627	