1a	1b	1c	1d	2a	2b	2c	2d	2e	3a	3b	\sum

ATENÇÃO: Não é permitido destacar as folhas

 $2^{\underline{a}}$ Prova de MA327 — 23/05/2023, **16:00–18:00 hs**

NOME:	TT.	TD 4
N()MH:	Turma:	RA:
1101/1D:	Turina.	107.

- 1. (4 pt) a) Definir transformação linear entre dois espaços vetoriais. Definir isomorfismo entre dois espaços vetoriais. Definir núcleo e imagem de uma transformação linear.
- b) Definir produto interno num espaço vetorial sobre o corpo dos reais. Enunciar a desigualdade de Cauchy-Schwarz. Quando ocorre igualdade nesta?
- c) Seja $V = \mathbb{R}^4$ com o produto interno usual e sejam $v_1 = (1, -2, 2, -3)$ e $v_2 = (2, -3, 2, 4)$ dois vetores em V (as coordenadas são dadas em relação à base canônica). Encontrar uma base ortogonal do subespaço $W = [v_1, v_2]$ e encontrar o complemento ortogonal W^{\perp} de W.
 - d) Encontrar uma base ortonormal de W^{\perp} .
- 2. (2,5 pt) Verificar se as afirmações abaixo são verdadeiras ou falsas. (Respostas sem justificativa não serão consideradas.) Considerar $T:V\to V$ uma transformação linear e $\dim V<\infty$.
 - a) Se N(T) e Im(T) são o núcleo e a imagem de T então $V = N(T) \oplus Im(T)$.
 - b) Se $T^3 = T$ e $T \neq 0$ então $T^2 = Id$, a identidade de V.
- c) Se B e C são duas bases de V e X e Y são as matrizes de T nas bases B e C, respectivamente, então $\det(X) = \det(Y)$.
- d) Se V está munido de um produto interno e T^* denota a adjunta de T então T^* é sempre invertível.
- e) Se V é um espaço com produto interno, W um subespaço de V e dim $V<\infty$ então $(W^\perp)^\perp=W$.
- 3. Seja $V = \mathbb{R}^2$ com sua base canônica v_1 e v_2 e consideremos os vetores $w_1 = (1, 1)$, $w_2 = (-2, 1)$,
- a) (1,5 pt) Mostrar que existe uma única transformação linear $T:V\to V$ tal que para todos $x_1,\,x_2\in\mathbb{R}$ tem-se

$$T(x_1v_1 + x_2v_2) = x_1v_1 + (-x_1 + 2x_2)v_2.$$

Encontrar a matriz de T na base canônica.

b) (2 pt) Mostrar que w_1 e w_2 formam uma base de V, e encontrar a matriz de T nesta base.

Incluir na prova, por favor, **todas** as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!