

Components and materials

Book C15

1987

Ceramic capacitors

CERAMIC CAPACITORS

																				p	age
Selection guide																	•		•	 •	3
Introduction																					
General																					5
Construction	1																				6
Equivalent c																					
Tangent of t																					
Reliability .																					8
Miniature ceran	nic plate	capac	itors																		
Device speci	fications																				9
General data																					
Maintenance																					
Ceramic multila	ayer capa	citors																			
Device speci	fications																			 . 1	05
Appendix I	(conver	sion li	st ty	ре і	nur	nbe	r-t	o-1	2N	۱C.	-ca	tal	og	ue	nι	ım	be	r;			
	standar	d pack	ing)																	 . 1	25
Appendix II																					
	100-pie		•	•									_					•		 . 1	51

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to vii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
Т3	Klystrons
T4	Magnetrons for microwave heating
Т5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
T6	Geiger-Müller tubes
Т8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
Т9	Photo and electron multipliers
T10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches
T16	Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection unit

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1	Diodes Small-signal silicon diodes, voltage regulator diodes ($<$ 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
S2a	Power diodes
S2b	Thyristors and triacs
S 3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S 5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Surface mounted semiconductors
S8a	Light-emitting diodes
S8b	Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
S9	Power MOS transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors
S12	Surface acoustic wave devices
S13	Semiconductor sensors

Liquid Crystal Displays

*S14

^{*}To be issued shortly.

INTEGRATED CIRCUITS (PURPLE SERIES)

The NEW SERIES of handbooks is now completed. With effect from the publication date of this handbook the "N" in the handbook code number will be deleted. Handbooks to be replaced during 1986 are shown below.

The purple series of handbooks comprises:

IC01	Radio, audio and associated systems Bipolar, MOS	new issue 1986 IC01N 1985
IC02a/b	Video and associated systems Bipolar, MOS	new issue 1986 IC02Na/b 1985
IC03	Integrated circuits for telephony Bipolar, MOS	new issue 1987 IC03N 1985
IC04	HE4000B logic family CMOS	new issue 1986 IC4 1983
IC05N	HE4000B logic family — uncased ICs CMOS	published 1984
IC06N	High-speed CMOS; PC74HC/HCT/HCU Logic family	published 1986
IC08	ECL 10K and 100K logic families	New issue 1986 IC08N 1984
IC09N	TTL logic series	published 1986
IC10	Memories MOS, TTL, ECL	new issue 1986 IC7 1982
IC11N	Linear LSI	published 1985
Supplement to IC11N	Linear LSI	published 1986
IC12	I ² C-bus compatible ICs	not yet issued
IC13	Semi-custom Programmable Logic Devices (PLD)	new issue 1986 IC13N 1985
IC14	Microcontrollers and peripherals Bipolar, MOS	published 1986
IC15	FAST TTL logic series	new issue 1986 IC15N 1985
IC16	CMOS integrated circuits for clocks and watches	first issue 1986
IC17	Integrated Services Digital Networks (ISDN)	not yet issued
IC18	Microprocessors and peripherals	new issue 1986

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C22 Film capacitors

C2	Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
C3	Loudspeakers
C4	Ferroxcube potcores, square cores and cross cores
C5	Ferroxcube for power, audio/video and accelerators
C6	Synchronous motors and gearboxes
C7	Variable capacitors
C8	Variable mains transformers
C9	Piezoelectric quartz devices
C11	Varistors, thermistors and sensors
C12	Potentiometers, encoders and switches
C13	Fixed resistors
C14	Electrolytic and solid capacitors
C15	Ceramic capacitors
C16	Permanent magnet materials
C17	Stepping motors and associated electronics
C18	Direct current motors
C19	Piezoelectric ceramics
C20	Wire-wound components for TVs and monitors

SELECTION GUIDE INTRODUCTION

SELECTION GUIDE

CERAMIC CAPACITORS

type	class	application	series number 2222	nominal capacitance pF	rated voltage (U _R) V	page
Plate; leads with flange		high-frequency circuits	678 to 683 688; 689	0,56 to 560	100	33
	1	temperature compensating high stability	652 653 654	0,47 to 270	500	21
		space saving	691	0,47 to 270	500	47
	2	general purpose coupling/decoupling	629 630 640	1000 to 22 000 180 to 4 700 1000 to 10 000	63 100 100	11
		space saving	655	100 to 2700	500	29
Multilayer; surface mounted	1	high-frequency circuits, temperature compensating high stability space saving		0,47 to 10 000	50	107
₩	2	general purpose coupling/decoupling space saving		180 to 1 000 000	50	107
Plate; maintenance types	1	high-frequency circuits temperature compensating	631, 638, 641, 642	0,56 to 560	100	79
	١	high stability space saving	650 651	0,47 to 270	500	93
	2	general purpose coupling/decoupling space saving	629 630 640	1000 to 22 000 180 to 4700 1000 to 10 000	63 100 100	69
		space saving	655	100 to 2700	500	101

INTRODUCTION

1. GENERAL

Ceramic capacitors are widely used in electronic circuitry for coupling and decoupling, and in filters. These different functions require specific capacitor properties.

Ceramic capacitors can be divided into two classes:

Class 1 In these capacitors dielectric materials are used which have very high specific resistance, very good Ω and linear temperature dependence (ϵ_r from 6 up to 250). They are used in such applications as oscillators and filters where low losses, capacitance drift compensation and high stability are required.

Class 2 These capacitors have higher losses and have non-linear temperature characteristics ($\epsilon_r > 250$). They are used for coupling and decoupling.

The survey below shows the various materials we use for plate capacitors and their basic chemical composition.

class 1 $\epsilon_{\rm r}$ = 6 up to 250, T.C. types	colour code T.Cvalue	body colour
P100 (+100 x 10 ⁻⁶ /K) MgTiO ₃ , Mg ₂ SiO ₄	red-violet	grey
NPO (0×10^{-6} /K) MgTiO $_3$	black	grey
N075 (-75 x 10 ⁻⁶ /K)	red	grey
N150 (-150 x 10 ⁻⁶ /K)	orange	grey
N220 (-220×10^{-6} /K) BaNd ₂ (Bi ₂)Ti ₅ O _x + TiO ₂	yellow	grey
N330 (-330 x 10 ⁻⁶ /K)	green	grey
N470 (-470 x 10 ⁻⁶ /K)	blue	grey
N750 (-750×10^{-6}) TiO ₂ + additions	violet	grey
N1500 (-1500×10^{-6} /K) CaTiO ₃ + additions	orange/orange	grey
class 2 $\epsilon_{ m r}$ $>$ 250, high-K types	colour code K-value	body colour
$\epsilon_{\rm r}$ = 2000 Ba(Bi)TiO ₃	yellow	tan
$\epsilon_{\rm r}$ = 5000 (Ba, Ca) (Ti, Zr) O ₃ + add.	blue	tan
$\epsilon_{\rm r}$ = 14000 (Ba, Ca) (Ti, Zr) O $_3$ + add.	green	tan

CERAMIC CAPACITORS

2. CONSTRUCTION

The capacitance of a ceramic capacitor depends on the area of the electrodes (A), the thickness of the ceramic dielectric (t) and the dielectric constant of the ceramic material (ϵ_r); and on the number of dielectric layers (n) with multilayer ceramic capacitors:

$$C = \epsilon_r \epsilon_O \frac{A}{t} (n)$$

The working voltage is dependent on the dielectric strength.

Two constructions are shown in the figures below:

end terminal ceramic material

Fig. 1 Plate capacitor.

Fig. 2 Cross-section of a multilayer capacitor.

The electrodes are normally silver or some other good electrical conductor. For multilayer capacitors palladium or platinum is used since the electrodes are applied before the ceramic is fired at a temperature where silver would oxidize.

The dielectric material

The raw materials are finely milled and carefully mixed. Thereafter the powders are calcined at temperatures between 1100 and 1300 °C to achieve the required chemical compositions. The resultant mass is reground and dopes and/or sintering means are added.

The finely ground material is mixed with a solvent and binding matter. Thin sheets are obtained by casting or rolling.

For plate capacitors these sheets are fired in a carefully controlled atmosphere at temperatures between 1200 and 1400 °C. For multilayer capacitors electrode material is printed on the sheets and after stacking and pressing of the sheets cofired with the ceramic compact at temperatures between 100 and 1400 °C.

To prevent silver migration under humid conditions plate capacitors have copper electrodes. The totally in the ceramic enclosed electrodes of a multilayer capacitor guarantee gold life test behaviour as well. As an extra precaution to ensure a good behaviour under humid conditions and to protect the electrodes the capacitors are lacquered.

The capacitance is marked on the body of the plate capacitors. The temperature coefficient or temperature dependence are indicated by colour coding in accordance with international standards (see the table on the preceding page).

3. EQUIVALENT CIRCUIT

Figure 3 shows the equivalent circuit of a capacitor.

- C is the capacitance between the two electrodes, plus the stray capacitances at the edges and between the leads.
- R_p is the insulation resistance of insulation and dielectric. Generally R_p is very high, and of decreasing importance with increasing frequency.

R_p also represents the polarization losses of the dielectric material in an alternating electric field.

- R_S is the losses in the leads, the electrodes and the contacts. Up to several hundreds of MHz the current penetration depth is greater than the conductor thickness so that no skin-effect occurs. For ceramic capacitors R_c is extremely low.
- L is the inductance of the leads and the internal inductance of the capacitor; the latter, however, is almost negligible.

The inductance is only important in high frequency applications, since the capacitor will act as an inductance when the frequency is higher than its resonance frequency.

Fig. 3.

4. TANGENT OF THE LOSS ANGLE

The losses of a capacitor are expressed in terms of $\tan \delta$ which is the relationship between the resistive and reactive parts of the impedance, specified as follows:

$$\tan \delta = \left| \frac{R}{X} \right| = \frac{R_p + R_s \left(1 + (\omega C R_p)^2 \right)}{\omega C R_p^2 - \omega L \left(1 + (\omega C R_p)^2 \right)}$$

From this formula, $\tan \delta$ can be derived for different frequency ranges as shown diagrammatically in the graph of Fig. 4.

CERAMIC CAPACITORS

Fig. 4.

→ 5. RELIABILITY

The failure rates shown below have a confidence level of 60% and refer to observations of plate capacitors up to and including 1984.

number of	failure rate						
component hours	catastrophic	degradation	field result				
17 290 000	6 FIT	42 FIT	< 0,2 FIT				

Notes

1 FIT = 1 failure rate within 109 component hours.

Catastrophic and degradation failure rates are given under normalized conditions, i.e. at $\frac{1}{2}$ x rated voltage (d.c.) and T_{amb} = 40 °C.

Catastrophic failures include capacitance, $\tan \delta$ and insulation resistance values, which do not meet the requirements after endurance test.

Degradation failures include capacitance, $\tan\delta$ and insulation resistance values, which are between initial values as given in the data sheet, and the requirements after endurance test.

The determination of failure rates is based on the rated conditions as stated in MIL-HDBK-217D. All the test results should be interpreted as results under rated conditions even if the temperature and voltage exceed the rated values.

The field result value has been obtained from measurements in applications with very low environmental stress, at $\frac{1}{2}$ x rated voltage (d.c.), continuous operation, and equipment temperature between 10 and 55 °C.

MINIATURE CERAMIC PLATE CAPACITORS

class 2

- General purpose
- Coupling and decoupling
- Space saving

١

QUICK REFERENCE DATA

	2222 629-series	2222 630-series	2222 640-series
Capacitance range	1000-22000 pF	180-4700 pF	1000-10000 pF
	E3 series	E12 series	E6 series
Rated d.c. voltage	63 V	100 V	100 V
Tolerance on capacitance	-20/+ 80%	± 10%	-20/+ 50%
Sectional specification	IEC 384-9	IEC 384-9 (2C2)	IEC 384-9 (2E2)
Climatic category (IEC 68)	10/055/21	55/085/21	55/085/21

APPLICATION

Electronic circuits where a non-linear change of capacitance with temperature is permissible and very low losses are not essential, e.g. coupling and decoupling.

Because of their small size and their availability with a pitch of 2,54 mm over the whole range, the capacitors are ideal for circuitry with a high component density.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides of which are metallized. The tinned connecting leads are secured with a high melting point solder. The leads are provided with a flange the guarantees leads without lacquer, making these capacitors perfectly suited for automatic insertion.

The capacitors are protected by several layers of tan lacquer that ensures a good behaviour under humid conditions and is resistant to all commonly used cleaning solvents.

No silver migration can occur.

MECHANICAL DATA Outlines

Dimensions in mm

Fig. 1.

Fig. 2.

For dimensions H and W see Table 2.
The lead length (L) is shown in Table 1 for bulk packed capacitors; for taped capacitors it can be found in section "Packing" of "General Data on Miniature ceramic plate capacitors".

DETAIL

2222 640 51 . .

2222 640 61 . . .

pitch	lead	Fig.	catalogue number *						
	diam		bulk pag	cked	on tape	on tape			
			L ≥ 13 mm	L = 4 ± 0,5 mm	on reel	in ammopack			
5,08 mm (0,2 in)	0,6 mm (0,024 in)	1	2222 629 09 2222 630 09 2222 640 09	2222 629 19 2222 630 19 2222 640 19	2222 629 53 2222 630 53 2222 640 53	2222 629 63 2222 630 63 2222 640 63			
2,54 mm	0,6 mm	2	2222 629 08	2222 629 18	2222 629 51	2222 629 61			

2222 640 18 . . .

2222 640 08 . .

Table 1

(0,1 in)

(0,024 in)

^{* 3} dots to be replaced by code for capacitance value, see Tables 3, 4 and 5.

Table 2

	W(mm)	. H(n	approx.	
size		Fig. 1	Fig. 2	g
i	3,6(-1,1)	6,3(-1,8)	5,0(-1,5)	0,14
IIA	3,9(-1,2)	6,7(-1,8)	5,3(-1,5)	0,15
IIB	4,5(-1,2)	7,3(-1,8)	6,0(-1,5)	0,15
111	5,1(-0,9)	7,9(-1,7)	6,6(-1,4)	0,17
IV	6,2(-1,0)	9,0(-1,7)	7,7(-1,4)	0,20

Note: Tolerances are given between brackets.

The thickness of the capacitors does not exceed 2,3 mm (0,08 in), except for one type as is indicated in Table 4.

Marking

The body of the capacitors is tan coloured. The capacitors also have a colour mark on top indicating the temperature dependence of the capacitance; green for type 2222 629, yellow for type 2222 630, and blue for type 2222 640. The capacitance value is indicated on the body by figures according to Tables 3, 4 and 5 in a contrasting colour.

Mounting

When bending and cutting or flattening the leads, one should relieve them of the applied load at the capacitor body.

Soldering conditions

max. 270 °C, max. 10 s

The capacitors are mounted on printed-wiring boards (hand mounting or automatic insertion). Due to the flange on the leads solder connections are free from lacquer. The flange is provided with a degassing groove.

PACKING

See "General Data on Miniature ceramic plate capacitors", section "Packing".

ELECTRICAL DATA

Capacitors 2222 629 (colour mark green)

The capacitors conform to IEC 384-9.

Unless otherwise specified all electrical values apply a at a temperature of 20 \pm 1 $^{\circ}$ C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values measured at 1 kHz, 1 V	1000-22 000 pF; E3 series (see Table 3)				
Tolerance on the capacitance	-20 to +80%				
Rated d.c. voltage at 55 °C	63 V				
Derated d.c. voltage at 85 °C	40 V				
Test voltage (d.c.) for 1 min	200 V				
Test voltage (d.c.) of coating for 1 min	200 V				
Insulation resistance at 10 V (d.c.) after 1 min	\geqslant 4000 M Ω				
► Tan δ at 1 kHz,1 V	≤ 3,5%				
Category temperature range	-10 to + 55 °C				
Storage temperature range	-55 to +85 °C				
Climatic category, IEC 68	10/055/21				

Table 3

cap. pF	size see Table 2	marking	code in catalogue number, see Table 1
1 000	ı	1n0	102
2 200	1	2n2	222
4 700	1	4n7	472
10 000	IIB	10n	103
22 000	IV	22n	223

Fig. 3 Typical capacitance change as a function of temperature for capacitance values 2200 pF to 22 000 pF; dotted lines give an indication of the behaviour at higher and lower temperatures.

Fig. 4 Typical capacitance change as a function of temperature for capacitance value 1000 pF; dotted lines give an indication of the behaviour at higher and lower temperatures.

Fig. 5 Typical capacitance change with respect to the capacitance value at 0 V, as a function of d.c. voltage, for capacitance values 2200 to 22 000 pF.

Fig. 6 Typical capacitance change with respect to the capacitance value at 0 V and 20 $^{\circ}$ C, as a function of temperature at different d.c. voltages, for capacitance values 2200 to 22 000 pF; V_{aC} = 0,1 V (r.m.s.).

Fig. 7 Typical tan δ as a function of temperature, for capacitance values 2200 to 22 000 pF.

ELECTRICAL DATA (continued)

Capacitors 2222 630 (colour mark vellow)

The capacitors conform to IEC 384-9 (2C2).

Unless otherwise specified all electrical values apply at a temperature of 20 \pm 1 $^{\rm o}$ C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values,

measured at 1 kHz, 1 V	180 — 4700 pF, E12 series (see Table 4)

300 V

-5%

Tolerance on the capacitance \pm 10% Rated d.c. voltage 100 V

Test voltage (d.c.) of coating for 1 min 300 V

Insulation resistance at 100 V (d.c.)

Test voltage (d.c.) for 1 min

after 1 min $\geqslant 4000 \, M\Omega$ Tan δ at 1 kHz, 1 V $\leqslant 3.5\%$

Maximum voltage dependence of the capacitance between 0 and 40 V

Category temperature range $-55 \text{ to} + 85 \text{ }^{\circ}\text{C}$ Storage temperature range $-55 \text{ to} + 85 \text{ }^{\circ}\text{C}$ Climatic category (IEC 68) 55/085/21

Table 4

pr Table 2 see Table 1 pr Table 2 see Table 1 180* I n18 181 1000 IIA 1n0 102 220 I n22 221 1200 IIA 1n2 122 270 I n27 271 1500 IIB 1n5 152 330 I n33 331 1800 IIB 1n8 182 390 I n39 391 2200 III 2n2 222 470 I n47 471 2700 III 2n7 272 560 I n56 561 3300 IV 3n3 332	Table 4							
220 I n22 221 1200 IIA 1n2 122 270 I n27 271 1500 IIB 1n5 152 330 I n33 331 1800 IIB 1n8 182 390 I n39 391 2200 III 2n2 222 470 I n47 471 2700 III 2n7 272 560 I n56 561 3300 IV 3n3 332	•	see Table	marking	catalogue number		see Table	marking	catalogue numbe
270 I n27 271 1500 IIB 1n5 152 330 I n33 331 1800 IIB 1n8 182 390 I n39 391 2200 III 2n2 222 470 I n47 471 2700 III 2n7 272 560 I n56 561 3300 IV 3n3 332	180*	ı	n18	181	1000	IIA	1n0	102
330 I n33 331 1800 IIB 1n8 182 390 I n39 391 2200 III 2n2 222 470 I n47 471 2700 III 2n7 272 560 I n56 561 3300 IV 3n3 332	220	ı	n22	221	1200	IIA	1n2	122
390 I n39 391 2200 III 2n2 222 470 I n47 471 2700 III 2n7 272 560 I n56 561 3300 IV 3n3 332	270	1	n27	271	1500	IIB	1n5	152
470 I n47 471 2700 III 2n7 272 2760 I n56 561 3300 IV 3n3 332	330	1	n33	331	1800	IIB	1n8	182
560 I n56 561 3300 IV 3n3 332	390	1 .	n39	391	2200	111	2n2	222
111 113	470	1	n47	471	2700	111	2n7	272
680 1 260 691 2000 177 220 202	560	1	n56	561	3300	IV	3n3	332
000 1 1100 001 3900 1V 319 392	680	1	n68	681	3900	IV	3n9	392
820 I n82 821 4700 IV 4n7 472	820	I	n82	821	4700	IV	4n7	472

Fig. 8 ΔC with respect to C at 20 °C as a function of temperature. V = 0,1 V, f = 1 kHz.

Fig. 9 Typ. ΔC with respect to C at 300 Hz, as a function of frequency. V = 0,1 V.

^{*} Maximum thickness 2,5 mm.

2222 630 2222 640

Fig. 10 Typical capacitance change with respect to the capacitance value at 0 V, as a function of d.c. voltage.

Fig. 11 Typical capacitance change with respect to the capacitance value at 0 V and 20 °C, as a function of temperature at different d.c. voltages. $V_{ac} = 0.1 V (r.m.s.).$

Fig. 12 Typical tan δ as a function of temperature.

ELECTRICAL DATA (continued)

Capacitors 2222 640 (colour mark blue)

The capacitors meet the essential requirements of IEC 384-9 (2E2).

Unless otherwise specified all electrical values apply at a temperature of 20 \pm 1 $^{\rm oC}$, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values, measured at 1 kHz,1 V	1000-10 000 pF; E6 series (see Table 5)
Tolerance on the capacitance	-20 to + 50%
Rated d.c. voltage	100 V
Test voltage (d.c.) for 1 min	300 V
Test voltage (d.c.) of coating for 1 min	300 V
Insulation resistance at 100 V (d.c.) after 1 min	≥4000 MΩ

Tan δ at 1 kHz, 1 V \leqslant 3,5% Category temperature range -55 to +85 °C Storage temperature range -55 to +85 °C Climatic category (IEC 68) 55/085/21

Table 5

capacitance pF	size see Table 2	marking	code in catalogue number, see Table 1
1000	ı	1n0	102
1500	I	1n5	152
2200	. 1	2n2	222
3300	IIA	3n3	332
4700	IIB	4n7	472
6800	l, III	6n8	682
10000	IV .	10n	103

Graphs measured at

Fig. 13 Typical capacitance change versus temperature at 0 V (d.c.).

Fig. 14 Typical capacitance change with respect to the capacitance at 20 °C versus d.c. voltage.

Fig. 15 Typical capacitance change with respect to the capacitance value at 0 V and 20 °C, as a function of temperature at different voltages.

MINIATURE CERAMIC PLATE CAPACITORS

class 1, 500 V (d.c.)

- High-frequency circuits
- Temperature compensating
- High stability
- Space saving

QUICK REFERENCE DATA

Capacitance range Rated d.c. voltage

Tolerance on capacitance

Temperature coefficients Sectional specification

Climatic category (IEC 68)

0,47 to 270 pF (E12 series)

500 V

± 2% or ± 0,25 pF

P100, NP0, N150, N750, N1500

IEC 384-8, sub-class 1B

55/085/21

APPLICATION

In a great variety of electronic circuits, e.g. in filters and tuning circuits where high stability and/or temperature compensation are needed. Because of their small size the capacitors are very suitable for circuitry with high component density.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides of which are metallized and provided with connecting leads. They are insulated by a coating that ensures a good behaviour under humid conditions. The colour of the capacitor body is grey. The capacitors distinguish themselves by small dimensions and narrow tolerances on the lead spacing. The leads are provided with a flange, that guarantees leads without lacquer, making them perfectly suited for automatic insertion. The electrical properties are characterized by low losses, a very close standard tolerance on the capacitance (± 0,25 pF or 2%), high stability and, owing to the absence of silver, an extremely good d.c. behaviour

MECHANICAL DATA

Dimensions in mm

Outlines

Fig. 1.

DETAIL

For dimensions H and W see Table 2.

The lead length (L) is shown in Table 1 for bulk packed capacitors; for taped capacitors it can be found in section "Packing" of "General Data on Miniature ceramic plate capacitors".

Table 1

pitch lead diam			catalogue number *		
	diam	b	on tape		
		L ≥ 13 mm	L = 4 ± 0,5 mm	on reel	
5,08 mm (0,2 in)	0,6 mm (0,024 in)	2222 652	2222 653	2222 654	

Table 2

size	w	Н	approx. mass g
I	3,6(-1,1)	6,3(-1,8)	0,15
IIA	3,9(-1,2)	6,7(-1,8)	0,15
IIB	4,5(-1,2)	7,3(-1,8)	0,16
III	5,1(-0,9)	7,9(-1,7)	0,17
IV	6,2(-1,0)	9,0(-1,7)	0,21
V	6,2(-1,0)	11,2(-2,1)	0,23

Note: Tolerances are given between brackets.

Except for the types indicated in Tables 3 to 7, the thickness of the capacitor does not exceed 2,3 mm.

^{*} For catalogue number suffix see Tables 3 to 7.

Marking

The temperature coefficient is indicated by a colour code as per IEC and EIA recommendations. The capacitance value and the voltage are indicated on the body by figures in a contrasting colour, see Tables 3 to 7.

Mounting

When bending, cutting or flattening the leads, they should be relieved of the applied load at the capacitor body,

Soldering conditions

max. 270 °C, max. 10 s

The capacitors are mounted on printed-wiring boards (hand mounting or automatic insertion). Due to the flange on the leads solder connections are free from lacquer. The flange is provided with a degassing groove.

PACKING

See "General Data on Miniature ceramic plate capacitors", section "Packing".

ELECTRICAL DATA

The capacitors meet the essential requirements of IEC 384-8. Unless stated otherwise all electrical values apply at an ambient temperature of 20 \pm 1 $^{\rm o}$ C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values* and tolerances, measured at 1 MHz, \leq 5 V	0,47 to 270 pF, E12 series, see Tables 3 to 7
Rated d.c. voltage	500 V
Test voltage (d.c.) for 1 minute	1250 V
Test voltage (d.c.) of coating for 1 minute	1250 V
Insulation resistance at 500 V (d.c.) after 1 min	$>$ 10 000 M Ω
Tan δ^* at 1 MHz, \leqslant 5 V for C $<$ 50 pF	$\leq 15 \left(\frac{15}{C} + 0.7 \right) \cdot 10^{-4} \right)$
for C > 50 pF	≤ 15.10 ⁻⁴
Category temperature range	-55 to +85 °C
Storage temperature range	−55 to +85 °C
Climatic category (IEC 68)	55/085/21

^{*} Including 2 mm per connecting lead.

Capacitors with temperature coefficient P100

Capacitance range

0,47 to 33 pF (E12 series)

Temperature coefficient of the capacitance ($\frac{\Delta C}{C.\Delta T})$

 $+ 100 \times 10^{-6} / K$

→ Tolerance on the temperature coefficient

for C \leq 20 pF for C \geq 20 pF $(-40 \text{ to} + 120) \times 10^{-6}/\text{K}$

± 40 x 10⁻⁶/K red/violet

Marking colour of the temperature coefficient

Table 3

					suffix of
capacitance	tolerance	size	marl	king	catalogue number
pF		see Table 2			see Table 1
0,47*	± 0,25 pF	1 1	I p47 500		03477
0,68	± 0,25 pF	1	p68	500	03687
1,0	± 0,25 pF	1	1p0	500	03108
1,2	± 0,25 pF	1	1p2	500	03128
1,5*	± 0,25 pF	- 1	1p5	500	03158
1,8	± 0,25 pF	1	1p8	500	03188
2,2	± 0,25 pF	1 .	2p2	500	03228
2,7	± 0,25 pF	1	2p7	500	03278
3,3	± 0,25 pF	1	3p3	500	03338
3,9	± 0,25 pF	1	3p9	500	03398
4,7	± 0,25 pF	IIA	4p7	500	03478
5,6	± 0,25 pF	IIA	5p6	500	03568
6,8	± 0,25 pF	IIB	6p8	500	03688
8,2	± 0,25 pF	IIB	8p2	500	03828
10	± 2%	111	10p	500	04109
12	± 2%	111	12p	500	04129
15	± 2%	III	15p	500	04159
18	± 2%	IV	18p	500	04189
22	± 2%	IV	22p	500	04229
27	± 2%	V	27p	500	04279
33	± 2%	V	33p	500	04339

^{*} Maximum thickness 2,5 mm.

Capacitors with a temperature coefficient NPO

Capacitance range 0,82 to 47 pF (E12 series)

Temperature coefficient of the

capacitance
$$(\frac{\Delta C}{C.\Delta T})$$

 $0 \times 10^{-6}/K$

Tolerance on the temperature coefficient

Marking colour for the temperature coefficient

for C < 20 pF

 $(-40 + 120) \times 10^{-9} K$

for C \geqslant 20 pF \pm 30 x 10⁻⁶/K

black

Table 4

capacitance pF	tolerance	size see table 2	marl	king	suffix of catalogue number see Table 1
0,82*	± 0,25 pF	1	p82	500	09827
1 *	± 0,25 pF		1p0	500	09108
1,2	± 0,25 pF		1p2	500	09128
1,5	± 0,25 pF		1p5	500	09158
1,8	± 0,25 pF		1p8	500	09188
2,2	± 0,25 pF		2p2	500	09228
2,7	± 0,25 pF	l i	2p7	500	09278
3,3	± 0,25 pF	1	3p3	500	09338
3,9	± 0,25 pF	l i	3p9	500	09398
4,7	± 0,25 pF		4p7	500	09478
5,6	± 0,25 pF		5p6	500	09568
6,8	± 0,25 pF	IIA	6p8	500	09688
8,2	± 0,25 pF	IIA	8p2	500	09828
10	± 2%	IIB	10p	500	10109
12	± 2%	IIB	12p	500	10129
15	± 2%	IIB	15p	500	10159
18	± 2%	111	18p	500	10189
22	± 2%	111	22p	500	10229
27	± 2%	IV	27 p	500	10279
33	± 2%	iv	33p	500	10339
39	± 2%	iv	39p	500	10399
47	± 2%	V	47p	500	10479

^{*} Maximum thickness 2,5 mm.

Capacitors with a temperature coefficient N150

Capacitance range

2,2 to 56 pF (E12 series)

Temperature coefficient of the

capacitance ($\frac{\Delta C}{C.\Delta T}$)

-150 x 10⁻⁶/K

Tolerance on the temperature coefficient

for C < 20 pFfor $C \ge 20 pF$ $(-40 + 60) \times 10^{-6}/K$ ± $30 \times 10^{-6}/K$

Marking colour of the temperature coefficient

orange

Table 5

capacitance pF	tolerance	size see Table 2	marking		suffix of catalogue number see Table 1
2,2*	± 0,25 pF		2p2	500	33228
2,7*	± 0,25 pF	. 1	2p7	500	33278
3,3	± 0,25 pF	1	3p3	500	33338
3,9	± 0,25 pF	1 .	3p9	500	33398
4,7	± 0,25 pF	1	4p7	500	33478
5,6	± 0,25 pF	1	5p6	500	33568
6,8	± 0,25 pF	1	6p8	500	33688
8,2	± 0,25 pF	IIA	8p2	500	33828
10	± 2%	IIA	10p	500	34109
12	± 2%	IIB	12p	500	34129
15	± 2%	IIB	15p	500	34159
18	± 2%	IIB	18p	500	34189
22	± 2%	HI	22p	500	34229
27	± 2%	HI	27p	500	34279
33	± 2%	IV	33p	500	34339
39	± 2%	IV	39p	500	34399
47	± 2%	· IV	47p	500	34479
56	± 2 %	V	56p	500	34569

^{*} Maximum thickness 2,5 mm.

Capacitors with a temperature coefficient N750

Capacitance range

1,8 to 120 pF (E12 series)

Temperature coefficient of the

capacitance ($\frac{\Delta C}{C.\Delta T}$)

-750 x 10⁻⁶/K

Tolerance on the temperature coefficient

for $C \le 20 pF$ for $C \ge 20 pF$ $(-120 + 250) \times 10^{-6}$ /K

± 120 x 10⁻⁶/K

violet

Marking colour of the temperature coefficient

Table 6

***************************************			T		suffix of
capacitance pF	tolerance	size see Table 2	marking		catalogue number
1,8*	± 0,25 pF	1	1p8	500	57188
2,2**	± 0,25 pF	1	2p2	500	57228
2,7	± 0,25 pF	1	2p7	500	57278
3,3	± 0,25 pF	1	3p3	500	57338
3,9	± 0,25 pF	1	3p9	500	57398
4,7**	± 0,25 pF	1	4p7	500	57478
5,6	± 0,25 pF	I	5p6	500	57568
6,8	± 0,25 pF	1	6p8	500	57688
8,2	± 0,25 pF	1	8p2	500	57828
10	± 2%	1	10p	500	58109
12	± 2 %	1	12p	500	58129
15	± 2%	1	15p	500	58159
18	± 2 %	IIA	18p	500	58189
22	± 2 %	IIA	22p	500	58229
27	± 2 %	IIB	27p	500	58279
33	± 2 %	IIB	33p	500	58339
39	± 2%	IIB	39p	500	58399
47	± 2%	111	47p	500	58479
56	± 2%	III	56p	500	58569
68	± 2 %	IV	68p	500	58689
82	± 2 %	IV	82p	500	58829
100	± 2 %	IV	n10	500	58101
120	± 2%	V	n12	500	58121

Maximum thickness 2,7 mm.

^{**} Maximum thickness 2,5 mm.

Capacitance range

8,2 to 270 pF (E12 series)

Temperature coefficient of the

capacitance ($\frac{\Delta C}{C.\Delta T}$)

-1500 x 10⁻⁶/K

orange/orange

Tolerance on the temperature coefficient

 $(-0 + 500) \times 10^{-6}$ /K

Marking colour of the temperature coefficient

Table 7

capacitance pF	tolerance	size see Table 2	marl	king	suffix of catalogue number
bı		see Table 2			see Table 1
8,2*	± 0,25 pF		8p2	500	69828
10 **	± 2%		1 0 p	500	70109
12 **	± 2%	1	12p	500	70129
15	± 2%	1.1	15p	500	70159
18	± 2%	3 . I	18p	500	70189
22	± 2%		22p	500	70229
27	± 2%	1	27p	500	70279
33	± 2%	IIA	33p	500	70339
39	± 2%	IIA	39 p	500	70399
47	± 2%	IIA	47p	500	70479
56	± 2%	IIB	5 6 p	500	70569
68	± 2%	IIB.	68 p	500	70689
82	± 2%	IIB	82 p	500	70829
100	± 2%	III	n10	500	70101
120	± 2%	111	n12	500	70121
150	± 2%	IV	n15	500	70151
180	± 2%	IV	n18	500	70181
220	± 2%	IV	n22	500	70221
270	± 2%	V	n27	500	70271

^{*} Maximum thickness 3,0 mm.

^{**} Maximum thickness 2,5 mm.

MINIATURE CERAMIC PLATE CAPACITORS

class 2, 500 V (d.c.)

- General purpose
- Coupling and decoupling
- Space saving

APPLICATION

Electronic circuits where a non-linear change of capacitance with temperature is permissible and very low losses are not essential, e.g. coupling and decoupling.

Because of their small size the capacitors are ideal for circuitry with a high component density.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides of which are metallized. The tinned connecting leads are secured with a high melting point solder. The leads are provided with a flange that guarantees leads without lacquer, making these capacitors perfectly suited for automatic insertion.

The capacitors are protected by several layers of tan lacquer that ensures a good behaviour under humid conditions and is resistant to all commonly used cleaning solvents.

No silver migration can occur.

MECHANICAL DATA

Dimensions in mm

Outlines

For dimensions H and W see Table 2.

The lead length (L) is shown in Table 1 for bulk packed capacitors; for taped capacitors it can be found in section "Packing" of "General Data on Miniature ceramic plate capacitors".

Table 1

pitch	lead		catalogue n	umber *	
diam		bulk packed		on tape	on tape
		L ≥ 13 mm	L = 4 ± 0,5 mm	on reel	in ammopack
5,08 mm (0,2 in)	0,6 mm (0,024 in)	2222 655 09	2222 655 19	2222 655 53	2222 655 63

Table 2

size	w	Н	approx. mass
	3,6(-1,1)	6,3(-1,8)	0,15
HΑ	3,9(-1,2)	6,7(-1,8)	0,15
IIB	4,5(-1,2)	7,3(-1,8)	0,15
Ш	5,1(-0,9)	7,9(-1,7)	0,17
IV	6,2(-1,0)	9,0(-1,7)	0,21
<u>V</u>	6,2(-1,0)	11,2(-2,1)	0,23

Note: Tolerances are given between brackets.

Except for a few types as indicated in Table 3, the thickness of the capacitor does not exceed 2,3 mm.

^{* 3} dots to be replaced by code for capacitance value, see Table 3.

Marking

The body of the capacitors is tan coloured.

The temperature dependence is indicated by a yellow colour cap. Capacitance value and voltage are indicated on the body by figures according to Table 3 in a contrasting colour.

Mounting

When bending, cutting or flattening the leads, one should relieve them of the applied load at the capacitor body.

Soldering conditions

max. 270 °C, max. 10 s

The capacitors are mounted on printed-wiring boards (hand mounting or automatic insertion). Due to the flange on the leads solder connections are free from lacquer. The flange is provided with a degassing groove.

PACKING

See "General Data on Miniature ceramic plate capacitors", section "Packing".

ELECTRICAL DATA

Capacitance values

The capacitors meet the essential requirements of IEC 384-9. Unless stated otherwise all electrical values apply at an ambient temperature of 20 \pm 1 $^{\rm OC}$, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

measured at 1 kHz, 1 V	see Table 3
Tolerance on the capacitance	± 10%
Rated d.c. voltage	500 V
Test voltage (d.c.) for 1 min	1250 V
Test voltage (d.c.) of coating for 1 min	1250 V
Insulation resistance at 500 V (d.c.) after 1 min	$>$ 4000 M Ω
Tan δ at 1 kHz, 1 V	< 3,5%
Category temperature range	−55 to +85 °C
Climatic category	55/085/21
Storage temperature range	−55 to +85 °C
Capacitance change versus temperature	see Fig. 2
Capacitance change versus frequency	see Fig. 3

100 to 2700 pF. E12 series.

Table 3

capacitance pF	size see Table 2	m	marking	
100 *	ı	n10	500	101
120 **	. 1	n12	500	121
150	· 1 · 1	n15	500	151
180	1	n18	500	181
220	1	n22	500	221
270	1	n27	500	271
330	1	n33	500	331
390	IIA	n39	500	391
470	IIA	n47	500	471
560	IIB	n56	500	561
680	IIB	n68	500	681
820	IIB	n82	500	821
1000	III	1n0	500	102
1200	III .	1n2	500	122
1500	IV	1n5	500	152
1800	IV IV	1n8	500	182
2200	IV IV	2n2	500	222
2700	V	2n7	500	272

^{*} Maximum thickness 2,7 mm.

Fig. 2 Capacitance change with respect to the capacitance at 20 °C as a function of temperature.

7262089.1

AC
C
(9/o)
0

-55°C

-20°C

-85°C

-50
-100

-50

0

50

T(°C)
100

Fig. 3 Typical capacitance change with respect to the capacitance at 300 Hz as a function of frequency.

^{**} Maximum thickness 2,5 mm.

MINIATURE CERAMIC PLATE CAPACITORS

class 1

- High-frequency circuits
- Temperature compensating
- High stability
- Space saving

QUICK REFERENCE DATA

Capacitance range	0,56 to 560 pF (E12 series)
Rated d.c. voltage	100 V
Tolerance on capacitance	± 2% or ± 0,25 pF
Temperature coefficients	P100, NP0, N075, N150, N220 N330, N470, N750, N1500
Sectional specification	IEC 384-8, sub-class 1B
Climatic category (IEC 68)	55/085/21

APPLICATION

In a wide variety of electronic equipment, e.g. as temperature compensating capacitors in tuning circuits and filters, as coupling and decoupling capacitors in high-frequency circuits where low losses and good d.c. behaviour are required.

Because of their small size and their availability with a pitch of 2,54 mm over the whole range, the capacitors are ideal for circuitry with a high component density.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides of which are metallized and provided with connecting leads. They are insulated by a coating that ensures a good behaviour under humid conditions. The colour of the capacitor body is grey. The capacitors distinguish themselves by small dimensions and narrow tolerances on the lead spacing. They are available with different lead shapes. The leads are provided with a flange, that guarantees leads without lacquer, making them perfectly suited for automatic insertion.

The electrical properties are characterized by low losses, a very close standard tolerance on the capacitance (\pm 0,25 pF or 2%), high stability and, owing to the absence of silver, an extremely good d.c. behaviour.

(Capacitors with silver electrodes suffer from the "silver migration" effect. Silver particles move from one electrode to the other under the influence of a d.c. voltage and moisture. Capacitors with silver electrodes are considerably larger.)

MECHANICAL DATA

Dimensions in mm

Outlines

Fig. 1.

Fig. 2.

For dimensions H and W see Table 2. The lead length (L) is shown in Table 1 for bulk packed capacitors; for taped capacitors it can be found in section "Packing" of "General Data on Miniature ceramic plate capacitors".

DETAIL

Table 1

pitch lead		Fig.	catalogue number *				
	diam		bulk packed		on tape	on tape	
			L ≥ 13 mm	L = 4 ± 0,5 mm	•	in ammopack	
5,08 mm (0,2 in)	0,6 mm (0,024 in)	1	2222 681	2222 683	2222 679	2222 689	
2,54 mm (0,1 in)	0,6 mm (0,024 in)	2	2222 680	2222 682	2222 678	2222 688	

^{*} For catalogue number suffix see Tables 3 to 11.

2222 678 to 2222 683; 2222 688; 689

Table 2

	W (mm)	H (mm)		approx.
size		Fig. 1	Fig. 2	g
ı	3,6(-1,1)	6,3(-1,8)	5,0(-1,5)	0,14
IIA	3,9(-1,2)	6,7(-1,8)	5,3(-1,5)	0,15
IIB	4,5(-1,2)	7,3(-1,8)	6,0(-1,5)	0,15
111	5,1(-0,9)	7,9(-1,7)	6,6(-1,4)	0,17
IV	6,2(-1,0)	9,0(-1,7)	7,7(-1,4)	0,20
V	6,2(-1,0)	11,2(-2,1)	9,9(-1,8)	0,20

Note: Tolerances are given between brackets.

The thickness of the capacitors does not exceed 2,3 mm (0,08 in), except for a few types as is indicated in Tables 3 to 11.

Marking

The temperature coefficient is indicated by a colour code as per IEC and EIA recommendations. The capacitance value is indicated on the body by figures in a contrasting colour.

Mounting

When bending, cutting or flattening the leads, they should be relieved of the applied load of the capacitor body,

Soldering conditions max. 270 °C, max. 10 s

The capacitors are mounted on printed-wiring boards (hand mounting or automatic insertion). Due to the flange on the leads solder connections are free from lacquer. The flange is provided with a degassing groove.

PACKING

See "General Data on Miniature ceramic plate capacitors", section "Packing".

ELECTRICAL DATA

The capacitors meet the essential requirements of IEC 384-8. Unless stated otherwise all electrical values apply at an ambient temperature of 20 \pm 1 $^{\rm OC}$, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values* and tolerances, measured at 1 MHz, \leq 5 V	see Tables 3 to 11
Rated d.c. voltage	100 V
Test voltage (d.c.) for 1 min	300 V
Test voltage (d.c.) of coating for 1 min	300 V
Insulation resistance after 1 min at 100 V (d.c.)	≥ 10 000 MΩ
Tan δ^* at 1 MHz, \leqslant 5 V for C \leqslant 50 pF	$\leq 15 \left(\frac{15}{C} + 0.7\right) \times 10^{-4}$; max. 55 x 10 ⁻⁴
for C $>$ 50 pF	≤ 15 x 10 ⁻⁴
Category temperature range	–55 to + 85 °C
Storage temperature range	–55 to + 85 °C
Climatic category, IEC 68	55/085/21

^{*} Including 2 mm per connecting lead.

2222 678 to 2222 683; 2222 688; 689

Capacitors with a temperature coefficient P100, rated voltage 100 V (d.c.)

Capacitance range

0,56 to 47 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

 $+ 100 \times 10^{-6}/K$

Tolerance on the temperature coefficient

for C < 20 pFfor $C \ge 20 pF$ $(-40 \text{ to} + 120) \times 10^{-6}/\text{K}$ $\pm 40 \times 10^{-6}/\text{K}$

Marking colour of the temperature coefficient

red/violet

Table 3

		T		
		size		suffix of
cap.	tolerance	see	marking	catalogue number
pF		Table 2		see Table 1
0,56*	± 0,25 pF	1	p56	03567
0,68 * *	± 0,25 pF	1	p68	03687
0,82 * * *	± 0,25 pF	1	p82	03827
1,0 * * *	± 0,25 pF	1	1p0	03108
1,2	± 0,25 pF	1	1p2	03128
1,5	± 0,25 pF	1	1p5	03158
1,8	± 0,25 pF	1	1p8	03188
2,2	± 0,25 pF	1	2p2	03228
2,7	± 0,25 pF	1	2p7	03278
3,3	± 0,25 pF	1	3p3	03338
3,9	± 0,25 pF	1	3p9	03398
4,7	± 0,25 pF		4p7	03478
5,6	± 0,25 pF	1	5p6	03568
6,8	± 0,25 pF	1	6p8	03688
8,2	± 0,25 pF	IIA	8p2	03828
10	± 2%	IIA	10p	04109
12	± 2%	IIB	12p	04129
15	± 2%	IIB	15p	04159
18	± 2%	111	18p	04189
22	± 2%	III	22p	04229
27	± 2%	IV	27p	04279
33	± 2%	IV	33 p	04339
39	± 2%	V	39 p	04399
47	± 2%	V	47p	04479

Maximum thickness 3,0 mm.

^{**} Maximum thickness 2,7 mm.

^{***} Maximum thickness 2,5 mm.

Capacitors with a temperature coefficient NPO, rated voltage 100 V (d.c.)

Capacitance range

1,8 to 120 pF (E12 series)

Temperature coefficient of the capacitance ($\frac{\Delta C}{C.\Delta T})$

 $0 \times 10^{-6}/K$

Tolerance on the temperature coefficient

for C \leq 20 pF for C \geq 20 pF

 $(-40 \text{ to} + 120) \times 10^{-6}/\text{K}$

 $\pm 30 \times 10^{-6}/K$

Marking colour of the temperature coefficient

black

Table 4

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
1,8	± 0,25 pF	ı	1p8	09188
2,2	± 0,25 pF	1	2p2	09228
2,7	± 0,25 pF	. 1	2p7	09278
3,3	± 0,25 pF	1	3p3	09338
3,9	± 0,25 pF	. 1	3p9	09398
4,7	± 0,25 pF	1	4p7	09478
5,6	± 0,25 pF		5p6	09568
6,8	± 0,25 pF	1	6p8	09688
8,2	± 0,25 pF	1	8p2	09828
10	± 2%	1	10p	10109
12	± 2%	1	12p	10129
15	± 2 %	1	15p	10159
18	± 2%	1	18p	10189
22	± 2%	1	22 p	10229
27	± 2%	1	27p	10279
33	± 2%	1	33 p	10339
39	± 2%	IIA	39p	10399
47	± 2%	IIA	47p	10479
56	± 2%	IIA	56p	10569
68	± 2%	IIB	68p	10689
82	± 2%	IIB	82p	10829
100	± 2%	111	n10	10101
120	± 2%	111	n12	10121

2222 678 to 2222 683; 2222 688; 689

Capacitors with a temperature coefficient N075, rated voltage 100 V (d.c.)

Capacitance range

3,9 to 120 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

 $-75 \times 10^{-6}/K$

Tolerance on the temperature coefficient

for C \leq 20 pF for C \geq 20 pF $(-40 \text{ to} + 60) \times 10^{-6}/\text{K}$

 $\pm 30 \times 10^{-6}/K$

Marking colour of the temperature coefficient

red

Table 5

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
3,9	± 0,25 pF	1	3p9	27398
4,7	± 0,25 pF	1	4p7	27478
5,6	± 0,25 pF	1	5p6	27568
6,8	± 0,25 pF	1	6p8	27688
8,2	± 0,25 pF	1	8p2	27828
10	± 2%	1	10p	28109
12	± 2%		12p	28129
15	± 2%	1	15p	28159
18	± 2%	1	18p	28189
22	± 2%	IIA	22 p	28229
27	± 2%	IIA	27p	28279
33	± 2%	IIB	33 p	28339
39	± 2%	IIB	39p	28399
47	± 2%	111	47p	28479
56	± 2%	.111,	56p	28569
68	± 2%	IV	68p	28689
82	± 2%	IV	82p	28829
100	± 2%	V	n10	28101
120	± 2%	V	n12	28121

Capacitors with a temperature coefficient N150, rated voltage 100 V (d.c.)

Capacitance range

3,9 to 150 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C.\Delta T})$

 -150×10^{-6} /K

Tolerance on the temperature coefficient

for C < 20 pF for $C \ge 20 pF$

 $(-40 \text{ to} + 60) \times 10^{-6}/\text{K}$ ± $40 \times 10^{-6}/\text{K}$

Marking colour of the temperature coefficient

orange

Table 6

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
3,9*	± 0,25 pF	ı	3p9	33398
4,7	± 0,25 pF	i i	4p7	33478
5,6	± 0,25 pF		5p6	33568
6,8	± 0,25 pF	1	6p8	33688
8,2	± 0,25 pF	1.1	8p2	33828
10	± 2%	ı	10p	34109
12	± 2%	1	12p	34129
15	± 2%	I	15p	34159
18	± 2%	1	18p	34189
22	± 2%	1	22p	34229
27	± 2%	I	27p	34279
33	± 2%	1	33p	34339
39	± 2%	IIA	39p	34399
47	± 2%	IIA	47p	34479
56	± 2%	IIB	56p	34569
68	± 2%	IIB	68p	34689
82	± 2%	IIB	82p	34829
100	± 2%	III	n10	34101
120	± 2%	III .	n12	34121
150	± 2%	IV	n15	34151

^{*} Maximum thickness 2,5 mm.

2222 678 to 2222 683; 2222 688; 689

Capacitors with a temperature coefficient N220, rated voltage 100 V (d.c.)

Capacitance range

3,9 to 150 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

-220 x 10⁻⁶/K

Tolerance on the temperature coefficient

for
$$C < 20 pF$$

for $C \ge 20 pF$

 $(-40 \text{ to } + 60) \times 10^{-6}/\text{K}$

 $\pm 40 \times 10^{-6}/K$

Marking colour of the temperature coefficient

yellow

Table 7

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
3,9*	± 0,25 pF	1	3p9	39398
4,7	± 0,25 pF	1	4p7	39478
5,6	± 0,25 pF	1	5p6	39568
6,8	± 0,25 pF	1	6p8	39688
8,2	± 0,25 pF	1	8p2	39828
10	± 2%	I	10p	40109
12	± 2%	1	12p	40129
15	± 2%	1	15p	40159
18	± 2%	1	18p	40189
22	± 2%	1	22 p	40229
27	± 2%	IIA	27p	40279
33	± 2%	IIA	33 p	40339
39	± 2%	IIB	39p	40399
47	± 2%	IIB	47p	40479
56	± 2%	111	56p	40569
68	± 2%	HI	68p	40689
82	± 2%	IV	82p	40829
100	± 2%	IV	n10	40101
120	± 2%	V	n12	40121
150	± 2%	V	n15	40151

^{*} Maximum thickness 2,5 mm.

Capacitors with a temperature coefficient N330, rated voltage 100 V (d.c.)

Capacitance range

4,7 to 180 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

 -330×10^{-6} /K

Tolerance on the temperature coefficient

± 60 x 10⁻⁶/K

Marking colour of the temperature coefficient

green

Table 8

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
4,7	± 0,25 pF	ı	4p7	45478
5,6	± 0,25 pF	1	5p6	45568
6,8	± 0,25 pF	l	6p8	45688
8,2	± 0,25 pF	ı	8p2	45828
10	± 2%	. 1	10p	46109
12	± 2%	1	12p	46129
15	± 2%	1	15p	46159
18	± 2%	1	18p	46189
22	± 2%	1	22p	46229
27	± 2%	1	27p	46279
33	± 2%	IIA	33p	46339
39	± 2%	IIA	39p	46399
47	± 2%	IIB	47p	46479
56	± 2%	IIB	56p	46569
68	± 2%	111	68p	46689
82	± 2%	111	82p	46829
100	± 2%	IV	n10	46101
120	± 2%	IV	n12	46121
150	± 2%	V	n15	46151
180	± 2%	V	n18	46181

2222 678 to 2222 683; 2222 688; 689

Capacitors with a temperature coefficient N470, rated voltage 100 V (d.c.)

Capacitance range

6,8 to 220 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

 -470×10^{-6} /K

Tolerance on the temperature coefficient

for C \leq 20 pF for C \geq 20 pF $(-90 \text{ to} + 250) \times 10^{-6}/\text{K}$

 $\pm 60 \times 10^{-6}/K$

Marking colour of the temperature coefficient

blue

Table 9

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
6,8	± 0,25 pF	1	6p8	51688
8,2	± 0,25 pF	1	8p2	51828
10	± 2%	1	1 0 p	52109
12	± 2%	1	12 p	52129
15	± 2%	1	15p	52159
18	± 2%	1	18 p	52189
22	± 2%	1	22 p	52229
27	± 2%	1	27p	52279
33	± 2%	1	33 p	52339
39	± 2%	IIA	39p	52399
47	± 2%	IIA	47p	52479
56	± 2%	IIB	56p	52569
68	± 2%	IIB	68 p	52689
82	± 2%	III	82 p	52829
100	± 2%	III	n10	52101
120	± 2%	IV	n12	52121
150	± 2%	IV	n15	52151
180	± 2%	V	n18	52181
220	± 2%	V	n22	52221

Capacitors with a temperature coefficient N750, rated voltage 100 V (d.c.)

Capacitance range

3,9 to 330 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

 $-750 \times 10^{-6}/K$

Tolerance on the temperature coefficient

for $C \le 20 pF$ for $C \ge 20 pF$

 $(-120 \text{ to } + 250) \times 10^{-6}/\text{K}$

± 120 x 10⁻⁶/K

violet

Marking colour of the temperature coefficient

Table 10

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
3,9	± 0,25 pF		3p9	57398
4,7	± 0,25 pF	1	4p7	57478
5,6	± 0,25 pF	1	5p6	57568
6,8	± 0,25 pF	1	6p8	57688
8,2	± 0,25 pF	1	8p2	57828
10	± 2%	1	10p	58109
12	± 2%	1	12p	58129
15	± 2%	1	15p	58159
18	± 2%	1	18p	58189
22	± 2%	1	22p	58229
27	± 2%	1	27p	58279
33	± 2%	1	33p	58339
39	± 2%	1	39p	58399
47	± 2%	1	47p	58479
56	± 2%	IIA	56p	58569
68	± 2%	IIA	68p	58689
82	± 2%	IIB	82p	58829
100	± 2%	IIB	n10	58101
120	± 2%	III	n12	58121
150	± 2%	III.	n15	58151
180	± 2%	IV	n18	58181
220	± 2%	IV	n22	58221
270	± 2%	V	n27	58271
330	± 2%	V	n33	58331

2222 678 to 2222 683; 2222 688; 689

Capacitors with a temperature coefficient N1500, rated voltage 100 V (d.c.)

Capacitance range

18 to 560 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C, \Delta T})$

 $-1500 \times 10^{-6}/K$

Tolerance on the temperature coefficient

(0 to + 500) x 10⁻⁶/K

Marking colour of the temperature coefficient

orange/orange

Table 11

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
18*	± 2%	ı	18p	70189
22	± 2%	1	22p	70229
27	± 2%	1	27p	70279
33	± 2%	1	33p	70339
39	± 2%	1	39p	70399
47	± 2%	1	47p	70479
56	± 2%	1	56p	70569
68	± 2%	1	68p	70689
82	± 2%	1	82p	70829
100	± 2%	IIA	n10	70101
120	± 2%	IIA	n12	70121
150	± 2%	IIB	n15	70151
180	± 2%	IIB	n18	70181
220	± 2%	111	n22	70221
270	± 2%	III	n27	70271
330	± 2%	IV	n33	70331
390	± 2%	IV	n39	70391
470	± 2%	V	n47	70471
560	± 2%	V	n56	70561

^{*} Maximum thickness 2,5 mm,

MINIATURE CERAMIC PLATE CAPACITORS

class 1, 500 V (d.c.)

- High-frequency circuits
- Temperature compensating
- High stability
- Space saving

QUICK REFERENCE DATA

 Capacitance range
 0,47 to 270 pF (E12 series)

 Rated d.c. voltage
 500 V

 Tolerance on capacitance
 ± 2% or ± 0,25 pF

 Temperature coefficients
 P100, NP0, N150, N750, N1500

 Sectional specification
 IEC 384-8, sub-class 1B

 Climatic category (IEC 68)
 55/085/21

APPLICATION

In a great variety of electronic circuits, e.g. in filters and tuning circuits where high stability and/or temperature compensation are needed. Because of their small size the capacitors are very suitable for circuitry with high component density.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides of which are metallized and provided with connecting leads. They are insulated by a coating that ensures a good behaviour under humid conditions. The colour of the capacitor body is grey. The capacitors distinguish themselves by small dimensions and narrow tolerances on the lead spacing. The leads are provided with a flange, that guarantees leads without lacquer, making them perfectly suited for automatic insertion. The electrical properties are characterized by low losses, a very close standard tolerance on the capacitance (± 0,25 pF or 2%), high stability and, owing to the absence of silver, an extremely good d.c. behaviour.

MECHANICAL DATA Outlines N18 N18 N18 Dimensions in mm 0,25 0,05+0,03 1,4+0,2 0,25 1,0+0,3 7296419 Fig. 1. DETAIL

For dimensions H and W see Table 1.

The lead length (L) is shown in section "Packing" of "General Data on Miniature ceramic plate capacitors".

Table 1

	W	Н	approx. mass g
ı	3,6(-1,1)	6,3(-1,8)	0,15
HΑ	3,9(-1,2)	6,7(-1,8)	0,15
IIB	4,5(-1,2)	7,3(-1,8)	0,16
111	5,1(-0,9)	7,9(-1,7)	0,17
IV	6,2(-1,0)	9,0(-1,7)	0,21
٧	6,2(-1,0)	11,2(-2,1)	0,23

Except for the types indicated in Tables 2 to 6, the thickness of the capacitor does not exceed 2,3 mm.

Marking

The temperature coefficient is indicated by a colour code as per IEC and EIA recommendations. The capacitance value and the voltage are indicated on the body by figures in a contrasting colour, see Tables 2 to 6.

Mounting

When bending, cutting or flattening the leads, they should be relieved of the applied load at the capacitor body,

Soldering conditions

max. 270 °C, max. 10 s

The capacitors are mounted on printed-wiring boards (hand mounting or automatic insertion). Due to the flange on the leads solder connections are free from lacquer. The flange is provided with a degassing groove.

PACKING

The capacitors are supplied on tape in ammunition packing; see "General Data on Miniature ceramic plate capacitors", section "Packing".

ELECTRICAL DATA

The capacitors meet the essential requirements of IEC 384-8. Unless stated otherwise all electrical values apply at an ambient temperature of 20 \pm 1 °C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values* and tolerances, measured at 1 MHz, ≤ 5 V	0,47 to 270 pF, E12 series, see Tables 2 to 6
Rated d.c. voltage	500 V
Test voltage (d.c.) for 1 minute	1250 V
Test voltage (d.c.) of coating for 1 minute	1250 V
Insulation resistance at 500 V (d.c.) after 1 min	$>$ 10 000 M Ω
Tan δ^* at 1 MHz, \leqslant 5 V for C $<$ 50 pF	$\leq 15 \left(\frac{15}{C} + 0.7 \right) . 10^{-4} \right)$
for C > 50 pF	≤ 15.10 ⁻⁴
Category temperature range	−55 to +85 °C
Storage temperature range	-55 to +85 °C
Climatic category (IEC 68)	55/085/21

^{*} Including 2 mm per connecting lead.

Capacitance range

0,47 to 33 pF (E12 series)

Temperature coefficient of the

capacitance ($\frac{\Delta C}{C.\Delta T}$)

 $+ 100 \times 10^{-6} / K$

Tolerance on the temperature coefficient

for $C \le 20 pF$ for $C \ge 20 pF$

 $(-40 \text{ to} + 120) \times 10^{-6}/\text{K}$ ± $40 \times 10^{-6}/\text{K}$

red/violet

Marking colour of the temperature coefficient

Table 2

capacitance pF	tolerance	size see Table 1	marking		catalogue number
0,47*	± 0,25 pF	ı	p47	500	2222 691 03477
0,68	± 0,25 pF	. 1	p68	500	03687
1,0	± 0,25 pF	1	1p0	500	03108
1,2	± 0,25 pF		1p2	500	03128
1,5*	± 0,25 pF	1 .	1p5	500	03158
1,8	± 0,25 pF	1	1p8	500	03188
2,2	± 0,25 pF	1	2p2	500	03228
2,7	± 0,25 pF	1	2p7	500	03278
3,3	± 0,25 pF		3p3	500	03338
3,9	± 0,25 pF	1	3p9	500	03398
4,7	± 0,25 pF	IIA	4p7	500	03478
5,6	± 0,25 pF	IIA	5p6	500	03568
6,8	± 0,25 pF	IIB	6p8	500	03688
8,2	± 0,25 pF	IIB	8p2	500	03828
10	± 2%	III	1 0 p	500	04109
12	± 2%	111	12p	500	04129
15	± 2%	111	15p	500	04159
18	± 2%	IV	18p	500	04189
22	± 2%	IV	22p	500	04229
27	± 2%	V	27p	500	04279
33	± 2%	V	33p	500	04339

^{*} Maximum thickness 2,5 mm.

Capacitance range

0,82 to 47 pF (E12 series)

Temperature coefficient of the

capacitance
$$(\frac{\Delta C}{C.\Delta T})$$

Tolerance on the temperature coefficient

for
$$C \le 20 pF$$

for $C \ge 20 pF$

Marking colour for the temperature coefficient

black

Table 3

capacitance pF	tolerance	size see Table 1	marking		catalogue number
0,82*	± 0,25 pF	1	p82	500	2222 691 09827
1 *	± 0,25 pF	1	1p0	500	09108
1,2	± 0,25 pF	1	1p2	500	09128
1,5	± 0,25 pF	1	1p5	500	09158
1,8	± 0,25 pF	l l	1p8	500	09188
2,2	± 0,25 pF	1	2p2	5 0 0	09228
2,7	± 0,25 pF	1	2p7	500	09278
3,3	± 0,25 pF	1	3p3	500	09338
3,9	± 0,25 pF	1	3p9	500	09398
4,7	± 0,25 pF	1	4p7	500	09478
5,6	± 0,25 pF	1	5p6	500	09568
6,8	± 0,25 pF	IIA	6p8	500	09688
8,2	± 0,25 pF	IIA	8p2	500	09828
10	± 2%	IIB	10p	500	10109
12	± 2%	IIB	12p	500	10129
15	± 2%	IIB	15p	500	10159
18	± 2%	111	18p	500	10189
22	± 2%	HI	22p	500	10229
27	± 2%	IV	27p	500	10279
33	± 2%	IV	33p	500	10339
39	± 2%	IV	39p	500	10399
47	± 2%	V	47p	500	10479

^{*} Maximum thickness 2,5 mm.

Capacitance range

2,2 to 56 pF (E12 series)

Temperature coefficient of the

capacitance $(\frac{\Delta C}{C.\Delta T})$

 -150×10^{-6} /K

Tolerance on the temperature coefficient

for $C \le 20 pF$ for $C \ge 20 pF$ $(-40 + 60) \times 10^{-6}/K$ ± 30 × 10⁻⁶/K

Marking colour of the temperature coefficient

orange

Table 4

capacitance pF	tolerance	size see Table 1	marking		catalogue number
2,2*	± 0,25 pF		2p2	500	2222 691 33228
2,7*	± 0,25 pF		2p7	500	33278
3,3	± 0,25 pF	1	3p3	500	33338
3,9	± 0,25 pF	1	3p9	500	33398
4,7	± 0,25 pF	1	4p7	500	33478
5,6	± 0,25 pF	1 1	5p6	500	33568
6,8	± 0,25 pF	1	6p8	500	33688
8,2	± 0,25 pF	IIA	8p2	500	33828
10	± 2%	IIA	1 0 p	500	34109
12	± 2%	IIB	12p	500	34129
15	± 2%	IIB	15p	500	34159
18	± 2%	IIB	18p	500	34189
22	± 2%	111	22p	500	34229
27	± 2%	111	27p	500	34279
33	± 2%	IV	33p	500	34339
39	± 2%	IV	39p	500	34399
47	±.2%	IV	47p	500	34479
56	± 2%	V	56p	500	34569

^{*} Maximum thickness 2,5 mm.

Capacitance range

1,8 to 120 pF (E12 series)

Temperature coefficient of the

capacitance
$$(\frac{\Delta C}{C.\Delta T})$$

Tolerance on the temperature coefficient

for C
$$\leq$$
 20 pF
for C \geq 20 pF

$$(-120 + 250) \times 10^{-6}/K$$

 $\pm 120 \times 10^{-6}/K$

Marking colour of the temperature coefficient

violet

Table 5

capacitance pF	tolerance	size see Table 1	mari	king	catalogue number
1,8*	± 0,25 pF	ı	1p8	500	2222 691 57188
2,2**	± 0,25 pF	1	2p2	500	57228
2,7	± 0,25 pF		2p7	500	57278
3,3	± 0,25 pF	1	3p3	500	57338
3,9	± 0,25 pF	1	3p9	500	57398
4,7**	± 0,25 pF	1	4p7	500	57478
5,6	± 0,25 pF		5p6	500	57568
6,8	± 0,25 pF	1	6p8	500	57688
8,2	± 0,25 pF	1	8p2	500	57828
10	± 2%	1	1 0 p	500	58109
12	± 2%	1	12p	500	58129
15	± 2%	1	15p	500	58159
18	± 2%	IIA	18p	500	58189
22	± 2%	IIA	22 p	500	58229
27	± 2%	IIB	27 p	500	58279
33	± 2%	IIB	33 p	500	58339
39	± 2%	IIB	39 p	500	58399
47	± 2%	111	47p	500	58479
56	± 2%	111	56p	500	58569
68	± 2%	IV	68p	500	58689
82	± 2%	IV	82p	500	58829
100	± 2%	· IV	n10	500	58101
120	± 2%	V	n12	500	58121

^{*} Maximum thickness 2,7 mm.

^{**} Maximum thickness 2,5 mm.

Capacitance range

Temperature coefficient of the

capacitance
$$(\frac{\Delta C}{C.\Delta T})$$

Tolerance on the temperature coefficient

Marking colour of the temperature coefficient

8,2 to 270 pF (E12 series)

$$-1500 \times 10^{-6}$$
/K

 $(-0 + 500) \times 10^{-6} / K$ orange/orange

Table 6

capacitance pF	tolerance	size see Table 1	mari	king	catalogue number
8,2*	± 0,25 pF	1	8p2	500	2222 691 69828
10 **	± 2 %	1	1 0 p	500	70109
12 **	± 2%	1	12p	500	70129
15	± 2 %	- 1	15p	500	70159
18	± 2%	. 1	18p	500	70189
22	± 2%		22p	500	70229
27	± 2%	1	27p	500	70279
33	± 2%	IIA	33p	500	70339
39	± 2 %	IIA	39 p	500	70399
47	± 2%	IIA	47p	500	70479
56	± 2%	IIB	56 p	500	70569
68	± 2%	IIB	68 p	500	70689
82	± 2%	IIB	82p	500	70829
100	± 2%	111	n10	500	70101
120	± 2 %	111	n12	500	70121
150	± 2%	IV	n15	500	70151
180	± 2%	IV	n18	500	70181
220	± 2 %	IV	n22	500	70221
270	± 2%	V	n27	500	70271

^{*} Maximum thickness 3,0 mm.

^{**} Maximum thickness 2,5 mm.

GENERAL DATA ON MINIATURE CERAMIC PLATE CAPACITORS

Packing

Tests and requirements

GENERAL DATA

PACKING

The miniature ceramic plate capacitors are supplied in bulk packing (cardboard boxes) and in tape on reels or ammunition packing. The number of capacitors per box, per reel and per ammunition packing is given below.

-i	number of capacitors			
size	per box	per reel	per ammunition packing	
I, IIA, IIB, III	1000	4000	4000	
IV, V	500	4000	4000	

MINIATURE CERAMIC PLATE CAPACITORS

Capacitors on tape, lead pitch 5,08 mm (0,2 in)

Fig. 1 Capacitors, lead pitch 5,08 mm, on tape; see Table 1 for dimensions.

Table 1

		dimensions	
	symbol	nominal	tolerance
Lead diameter	d	0,6	+0,06/-0,05
Pitch between capacitors	P	12,7	± 1,0
Feed-hole pitch	Po	12,7	± 0,2*
Feed-hole centre to lead centre	P ₁	3,85	± 0,5
Feed hole centre to component centre	P ₂	6,35	± 1,0
Lead-to-lead distance	F	5,0	+ 0,6/-0,2
	Fo	5,08	+ 0,5/0,1
Component alignment	Δĥ	0	± 1,0
Tape width	w	18,0	-0,5
Hold-down tape width	w _o	6,0	± 0,5
Hole position	W ₁	9,0	± 0,5
Hold-down tape position	W ₂	0	+ 2
Flange to tape centre	H ₀	18,25	± 0,5
Component height	H ₁	31	max.
	•	22	min.
Length of snipped lead	L	11	max.
Feed-hole diameter	D ₀	4,0	± 0,2
Total tape thickness	t	0,65	± 0,2

^{*} Cumulative pitch error: $\pm \le 1$ mm/20 pitches.

Extraxtion force for component in the tape plane, vertically to direction of unreeling min. 5 N Break force of tape min. 15 N Pull-off force main tape — reel max. 2,5 N

Maximum 0,5% of the total number of capacitors per reel may be missing. A maximum of 3 consecutive vacant positions is followed by at least 6 consecutive components. The tape begins and ends with 5 empty positions.

Fig. 2 Connection of tapes, lead pitch 5,08 mm.

Fig. 3 Reel with capacitors on tape.

Fig. 4 Ammunition packing with capacitors on tape.

MINIATURE CERAMIC PLATE **CAPACITORS**

Capacitors on tape, lead pitch 2,54 mm (0,1 in)

Fig. 5 Capacitors, lead pitch 2,54 mm, on tape; see Table 2 for dimensions.

Table 2

	aumbal	dimensions	
	symbol	nominal	tolerance
Lead diameter	d	0,6	+ 0,06/-0,05
Pitch between capacitors	P	12,7	± 1,0
Feed-hole pitch	Po	12,7	± 0,2*
Feed-hole centre to lead centre	P ₁	5,1	± 0,5
Feed-hole centre to component centre	P ₂	6,35	± 1,0
Lead-to-lead distance	F	2,54	± 0,3
	Fo	2,54	± 0,3
Component alignment	Δĥ	0	± 1,0
Tape width	w	18,0	-0,5
Hold-down tape width	w _O	6,0	± 0,5
Hole position	W ₁	9,0	± 0,5
Hold-down tape position	W ₂	0	+ 2
Flange to tape centre	Ho	18,25	± 0,5
Component height	H ₁	30	max.
	'	21	min.
Length of snipped lead	L	11	max.
Feed-hole diameter	D _O	4,0	± 0,2
Total tape thickness	t	0,65	± 0,2

^{*} Cumulative pitch error: ± ≤ 1 mm/20 pitches.

MINIATURE CERAMIC PLATE CAPACITORS

Extraction force for component in the tape plane, vertically to direction of unreeling min. 5 N
Break force of tape min. 15 N
Pull-off force main tape — reel max. 2.5 N

Maximum 0,5% of the total number of capacitors per reel may be missing. A maximum of 3 consecutive vacant positions is followed by at least 6 consecutive components. The tape begins and ends with 5 empty positions.

Fig. 6 Connection of tapes, lead pitch 2,54 mm.

Fig. 7 Reel with capacitors on tape.

Fig. 8 Ammunition packing with capacitors on tape.

TESTS AND REQUIREMENTS

Class 1 capacitors

After manufacture, each capacitor is checked on capacitance, $\tan \delta$ and test voltage. Apart from this the following quality checks are carried out by frequent inspections.

Essentially all tests mentioned in the schedule of IEC publication 384-8, category 55/085/21 (temperature range -55/+ 85 °C; damp heat, long term, 21 days) are carried out along the lines of IEC publication 68.

IEC 384-8 clause	IEC 68-2 test method	name of test	procedure	requirements
<u> </u>	— Ua	Robustness of terminations Pull-off Tensile strength	pull velocity 15 cm/min, load 5 N axial force 10 N	no wire breakage or complete damage of capacitor
10.1	Ub	Bending	load 5 N, 4 x 90°	no wire breakage
10.2.1	Ta method 1	Soldering	solderability: 2 s 235 °C	good tinning
10.2.2	Tb method 1A	Resistance to soldering heat	270 °C, 10 s	no visible damage $\Delta C/C \pm \leq 0,5\%$ or 0,5 pF after 1 h to 2 h
10.3	Na	Rapid change of temperature	30 min -55 °C/30 min + 85 °C, 5 cycles	no damage, after 24 h $\Delta C/C \pm \leq 0,5\%$ or 0,5 pF
10.4	Fc	Vibration	10-55-10 Hz 0,75 mm displacement 3 directions, 6 h	no visible damage
10.5	Eb	Bump	4000 bumps in 2 directions, 40g; pulse time 6 ms	no visible damage
_	_	Inflammability	15 s, 35 mm above bunsen burner with flame-height 40-60 mm	self-extinguishing within 15 s after removal of bunsen burner
9.5		Temperature coefficient	between + 20 and -55 °C, and between + 20 and + 85 °C	within tolerance as specified for each particular material

IEC 384-8 clause	IEC 68-2 test method	name of test	procedure	requirements
		Climatic sequence		
10.6.2	В	Dry heat	16 h + 85 °C	no visible damage
10.6.3	Db	Damp heat (accel.) 1st cycle	12 h + 55 °C, 90 to 96% R.H. 12 h + 25 °C, 95 to 100% R.H.	after recovery of 1-2 h immediately followed by cold test
10.6.4	Α	Cold	2 h -55 °C	no visible damage
10.6.5	М	Low air pressure	1 h 8,5 kPa, last 2 min rated voltage	no breakdown or flashover
10.6.6	Db	Damp heat (accel.) remaining cycle	12 h + 55 °C, 90 to 96% R.H. 12 h + 25 °C, 95 to 100% R.H.	Δ C/C ± \leq 1% or 1 pF tan $\delta \leq$ 2 x specified tan δ R _{ins} after 1-2 h: > 5000 M Ω for 2222 650 to 654, 691, > 100 M Ω for other types
10.7	Ca	Damp heat, steady state (half number of the lot at rated voltage, other half at zero voltage)	21 days + 40 °C 90 to 95% R.H.	Δ C/C ± \leq 1% or 1 pF tan $\delta \leq$ 2 x specified tan δ R _{ins} after 1-2 h: > 5000 M Ω for 2222 650 to 654, 691, > 100 M Ω for other types
10.8	_	Endurance	1000 h at + 85 °C; 2222 650 to 654, 691: 750 V (d.c.), other types: 150 V (d.c.)	Δ C/C ± \leq 1% or 1 pF tan $\delta \leq$ 1,5 x specified tan δ R _{ins} : > 3000 M Ω for 2222 650 to 654, 691, > 300 M Ω for other types
_	_	Resistance to solvents	3 min ultrasonic washing in trichloroethylene 1 min drying, 30 °C 10 brush strokes	marking and colour code must remain legible and not be discoloured; no mechanical or electrical damage or deterioration of the material
_	Н	Storage	72 h –65 °C, recovery 1-2 h	electrical parameters within specification

October 1986

Class 2 capacitors

After manufacturing each capacitor is checked on capacitance, $\tan \delta$ and test voltage. Apart from this the following quality checks are carried out by frequent inspections.

Essentially all tests mentioned in the schedule of IEC publication 384-9, category 55/085/21 (temperature range -55/85 °C; damp heat; long term,

IEC 384-9 clause	IEC 68-2 test method	name of test	procedure	requirements
10.1	Ua	Robustness of terminations Pull-off Tensile strength	pull velocity 15 cm/min, load 5 N axial force 10 N	no wire breakage or complete damage of capacitor
10.1	Ub	Bending (half number of samples)	load 5 N, 4 x 90°	no wire breakage
10.2.1	Ta method 1	Soldering (solder bath)	solderability: 2 s at 235 °C	good tinning
		Pre-conditioning	2222 629 : 1 h + 55 °C 2222 630/640/655: 1 h + 85 °C reference measurements after 24 h	
10.2.2	Tb method 1A	Resistance to soldering heat	270 °C, 10 s	no visible damage, Δ C/C after 24 h, 2222 630: $\pm \le 10\%$ 2222 629, 2222 640: $\pm \le 20\%$ 2222 655: between -10 and $+20\%$
		Pre-conditioning		
10.3	Na	A CONTRACTOR AND A CONT	5 cycles, 2222 630, 2222 640, 2222 655: ½ h -55 °C/½ h + 85 °C 2222 629: ½ h -10 °C/½ h + 55 °C	no damage, ΔC/C after 24 h, 2222 630, 2222 655: \pm ≤ 10% 2222 629, 2222 640: \pm ≤ 20%

2222 655: $> 1000 \text{ M}\Omega$

IEC 384-9 clause	IEC 68-2 test method	name of test	procedure	requirements	AMIC F
		Pre-conditioning			유근
10.7	Ca	Damp heat (steady state) half number of samples rated voltage, half number of samples no voltage applied	21 days + 40 °C, 90 to 95% R.H.	no visible damage; after 24 h: Δ C/C, 2222 630, 2222 655: \pm \leq 10% 2222 629, 2222 640: \pm \leq 20% tan δ \leq 7% R _{ins} , 2222 629/630/640: $>$ 100 M Ω 2222 655: $>$ 1000 M Ω	ATE
		Pre-conditioning			
10.9.3	_	Endurance	1000 h (IEC) 2222 630, 2222 640: +85 °C, 150 V (d.c.) 2222 629: +55 °C, 100 V (d.c.), 2222 655: +85 °C, 750 V (d.c.)	after 24 h at $20 \pm 1^{\circ}$ C ΔC/C, 2222 630, 2222 655: $\pm \le 10\%$ 2222 629, 2222 640: $\pm \le 20\%$ tan $\delta \le 5\%$ (2222 629 $\le 6,5\%$) R _{ins} , 2222 629/630/640: $>$ 300 MΩ 2222 655: $>$ 1000 MΩ	
		Pre-conditioning			
_	Н	Storage	72 h –65 °C, recovery 1 - 2 h	electr. parameters within specification	

MINIATURE CERAMIC PLATE CAPACITORS MAINTENANCE TYPES

MINIATURE CERAMIC PLATE CAPACITORS

class 2

- General purpose
- Coupling and decoupling
- Space saving

QUICK REFERENCE DATA

Capacitance range	2222 629-series 1000-22000 pF	2222 630-series 180-4700 pF	2222 640-series 1000-10000 pF
	E3 series	E12 series	E6 series
Rated d.c. voltage	63 V	100 V	100 V
Tolerance on capacitance	-20/+ 80%	± 10%	-20/+ 50%
Sectional specification	IEC 384-9	IEC 384-9 (2C2)	IEC 384-9 (2E2)
Climatic category (IEC 68)	10/055/21	55/085/21	55/085/21

APPLICATION

In a great variety of electronic circuits where a non-linear change of capacitance with temperature is permissible and very low losses are not of major importance, e.g. coupling and decoupling purposes. Because of their small dimensions and close tolerance on lead-spacing the capacitors are very suitable for circuitry with a high component density.

DESCRIPTION

The capacitors consists of a thin rectangular ceramic plate, both sides being metallized and provided with solder-coated connecting leads that are fixed with solder having a high melting point.

The capacitors are protected by several layers of lacquer that ensures a good behaviour under humid conditions and is resistant against commonly used cleaning solvents. They are tan coloured. No silver migration can occur.

MECHANICAL DATA

Dimensions in mm

M = 0,6 | 2,54 | P | 1,5 | 1,

For dimensions H, L and W see Tables 1 and 2.

Fig. 1.

Table 1

			catalogue number *	
pitch	lead diameter	Fig.	L ≥ 15 mm	L = 6 +0 -2
5,08 mm (0,2 in)	0,6 mm (0,024 in)	1	2222 629 03 2222 630 03 2222 640 03	2222 629 06 2222 630 06 2222 640 06
2,54 mm (0,1 in)	0,6 mm (0,024 in)	2	2222 629 01 2222 630 01 2222 640 01	2222 629 05 2222 630 05 2222 640 05

^{* 3} dots to be replaced by code for capacitance value, see Tables 3, 4 and 5.

Table 2

size	W.	Н	approx. mass
	mm	mm	g
1	3,6(-1,1)	3,7(-1,2)	0,14
IIA	3,9(-1,2)	4,0(-1,3)	0,15
IIB	4,5(-1,2)	4,7 (-1,4)	0,16
Ш	5,1(-0,9)	5,3(-1,1)	0,17
IV	6.2(-1.0)	6,4(-1,2)	0,20

Note: Tolerances are given between brackets.

The thickness of the capacitors does not exceed 2,3 mm (0,09 in), except for the type as is indicated in Table 4.

Lacquer on the leads

When capacitors shown in Figs 1 and 2 are mounted on printed-wiring boards with a thickness of 1,5 mm and with holes of 1,3 mm diameter or on printed-wiring boards with a thickness of 1 mm and with holes of 0,8 mm diameter, there will be no lacquer on the leads at the lower side of the board. For the capacitance value indicated with an asterisk in Table 4, and lead pitch of 5,08 mm, the lacquer on the leads is less than 2 mm.

Marking

The body of the capacitors is tan coloured. The capacitors also have a colour mark on top indicating the temperature dependence of the capacitance; green for type 2222 629, yellow for type 2222 630, and blue for type 2222 640. The capacitance value is indicated on the body by figures according to Tables 3, 4 and 5 in a contrasting colour.

Mounting

When bending, cutting or flattening the leads, one should relieve them of the applied load at the capacitor body.

Soldering conditions

max. 270 °C, max. 10 s

PACKING

The capacitors are supplied in boxes of 1000 (sizes I, IIA, IIB, III) or 500 (size IV).

ELECTRICAL DATA

Capacitors 2222 629 (colour mark green)

The capacitors are in conformity with IEC 384-9.

Unless otherwise specified all electrical values apply a at a temperature of 20 \pm 1 o C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

p	
Capacitance values measured at 1 kHz, 1 V	1000-22 000 pF; E3 series (see Table 3)
Tolerance on the capacitance	-20 to +80%
Rated d.c. voltage at 55 °C	63 V
Derated d.c. voltage at 85 °C	40 V
Test voltage (d.c.) for 1 min	200 V
Test voltage (d.c.) of coating for 1 min	200 V
Insulation resistance at 10 V (d.c.) after 1 min	≥ 4000 MΩ
Tan δ at 1 kHz,1 V	≤ 3,5 %
Category temperature range	-10 to + 55 °C

Table 3

Storage temperature range

Climatic category, IEC 68

cap. pF	size see Table 2	marking	code in catalogue number, see Table 1
1 000	I	1n0	102
2 200	1	2n2	222
4 700	l I	4n7	472
10 000	IIB	10n	103
22 000	IV	22n	223

Fig. 3 Typical capacitance change as a function of temperature for capacitance values 2200 pF to 22 000 pF; dotted lines give an indication of the behaviour at higher and lower temperatures.

-55 to +85 °C

10/055/21

Fig. 4 Typical capacitance change as a function of temperature for capacitance value 1000 pF; dotted lines give an indication of the behaviour at higher and lower temperatures.

Fig. 5 Typical capacitance change with respect to the capacitance value at 0 V, as a function of d.c. voltage, for capacitance values 2200 to 22 000 pF.

100

AC
C
(%)

0

50

100

7269195,2

1 = 1 kHz
V_{ac} = 0,1 V (r.m.s.)
T = 20 °C

Fig. 6 Typical capacitance change with respect to the capacitance value at 0 V and 20 °C, as a function of temperature at different d.c. voltages, for capacitance values 2200 to 22 000 pF; V_{ac} = 0,1 V (r.m.s.).

Fig. 7 Typical tan δ as a function of temperature, for capacitance values 2200 to 22 000 pF.

ELECTRICAL DATA (continued)

Capacitors 2222 630 (colour mark yellow)

The capacitors are in conformity with IEC 384-9 (2C2).

Unless otherwise specified all electrical values apply at a temperature of 20 \pm 1 $^{\rm o}$ C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Cana	acitar	200	بادر	201
Cau	della	ice v	/ait	JUS.

measured at 1 kHz, 1 V	180 — 4700 pF, E12 ser	

Tolerance on the capacitance ± 10%

 Rated d.c. voltage
 100 V

 Test voltage (d.c.) for 1 min
 300 V

Test voltage (d.c.) of coating for 1 min 300 V

Insulation resistance at 100 V (d.c.)

after 1 min \geqslant 4000 M Ω

Tan δ at 1 kHz, 1 V \leq 3,5%

Maximum voltage dependence of the capacitance between 0 and 40 V

capacitance between 0 and 40 V -5% Category temperature range -55 to +85 °C

Storage temperature range —55 to +85 °C
Climatic category (IEC 68) 55/085/21

Table 4

Tubic 4							
cap. pF	size see Table 2	marking	code in catalogue number see Table 1	cap. pF	size see Table 2	marking	code in catalogue number see Table 1
180*	. 1	n18	181	1000	IIA	1n0	102
220	1	n22	221	1200	IIA	1n2	122
270	1	n27	271	1500	IIB	1n5	152
330	1	n33	331	1800	IIB	1n8	182
390	1	n39	391	2200	111	2n2	222
470	1	n47	471	2700	III	2n7	272
560	1	n56	561	3300	IV	3n3	332
680	1	n68	681	3900	IV	3n9	392
820	1	n82	821	4700	IV	4n7	472

Fig. 8 ΔC with respect to C at 20 $^{\circ}C$ as a function of temperature. V = 0,1 V; f = 1 kHz.

Fig. 9 Typ. ΔC with respect to C at 300 Hz, as a function of frequency. V = 0,1 V.

^{*} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

100

ACC
C(%)

0

-100

0

50

100

V_{dc} (V)

150

Fig. 10 Typical capacitance change with respect to the capacitance value at 0 V, as a function of d.c. voltage.

Fig. 11 Typical capacitance change with respect to the capacitance value at 0 V and 20 °C, as a function of temperature at different d.c. voltages. Vac = 0,1 V (r.m.s.).

Fig. 12 Typical tan δ as a function of temperature.

ELECTRICAL DATA (continued)

Capacitors 2222 640 (colour mark blue)

The capacitors meet the essential requirements of IEC 384-9 (2E2).

Unless otherwise specified all electrical values apply at a temperature of 20 \pm 1 $^{\rm o}$ C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capac		

measured at 1 kHz,1 V

1000-10 000 pF; E6 series (see Table 5)

Tolerance on the capacitance

-20 to + 50%

Rated d.c. voltage Test voltage (d.c.) for 1 min

300 V

Test voltage (d.c.) of coating for 1 min

300 V

Insulation resistance at 100 V (d.c.)

≥ 4000 MΩ

Tan δ at 1 kHz, 1 V

≤ 3,5%

Category temperature range

-55 to +85 °C

Storage temperature range

-55 to +85 °C

Climatic category (IEC 68)

55/085/21

Table 5

capacitance pF	size see Table 2	marking	code in catalogue number, see Table 1
1000	l	1n0	102
1500	1	1n5	152
2200	1	2n2	222
3300	IIA	3n3	332
4700	IIB	4n7	472
6800	.111	6n8	682
10000	IV ,	10n	103

Fig. 13 Typical capacitance change versus temperature at 0 V (d.c.).

Fig. 14 Typical capacitance change with respect to the capacitance at 20 °C versus d.c. voltage.

Fig. 15 Typical capacitance change with respect to the capacitance value at 0 V and 20 $^{\rm o}$ C, as a function of temperature at different voltages.

MINIATURE CERAMIC PLATE CAPACITORS

class 1,

- High-frequency circuits
- Temperature compensating
- High stability
- Space saving

QUICK REFERENCE DATA

Capacitance range	0,56 to 560 pF (E12 series)	
Rated d.c. voltage	100 V	
Tolerance on capacitance	± 2% or ± 0,25 pF	
Temperature coefficients	P100, NP0, N075, N150, N220 N330, N470, N750, N1500	
Sectional specification	IEC 384-8, sub-class 1B	
Climatic category (IEC 68)	55/085/21	

APPLICATION

In a wide variety of electronic equipment, e.g. as temperature compensating capacitors in tuning circuits and filters, as coupling and decoupling capacitors in high-frequency circuits where low losses and good d.c. behaviour are required.

Their small dimensions are an advantage in all cases where space-saving is important.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides being metallized and provided with connecting leads. They are insulated by a coating method that ensures an excellent behaviour under humid conditions. The colour of the capacitor body is grey. The capacitors distinguish themselves by small dimensions, narrow tolerances on the lead spacing and very little and well defined lacquer on the leads. The electrical properties are characterized by low losses, a very close standard tolerance on the capacitance (± 0,25 pF or 2%), high stability and, owing to the absence of silver, an extremely good d.c. behaviour.

(Capacitors with silver electrodes suffer from the "silver migration" effect. Silver particles move from one electrode to the other under the influence of a d.c. voltage and moisture. Capacitors with silver electrodes are considerably larger.)

MECHANICAL DATA

Dimensions in mm

For dimensions H, L and W see Tables 1 and 2.

Table 1

			catalogue number *	
pitch	lead diameter	Fig.	L ≥ 15 mm	L = 6 +0 -2
5,08 mm (0,2 in)	0,6 mm (0,024 in)	1	2222 638	2222 642
2,54 mm (0,1 in)	0,6 mm (0,024 in)	2	2222 631	2222 641

^{*} For catalogue number suffix, see Tables 3 to 11.

2222 631 2222 638 2222 641: 642

Table 2

size	W mm	H mm	approx. mass g
I	3,6 (-1,1)	3,7 (-1,2)	0,14
IIA	3,9 (-1,2)	4,0 (-1,3)	0,15
IIB	4,5 (-1,2)	4,7 (-1,4)	0,15
III	5,1 (-0,9)	5,3 (-1,1)	0,17
IV	6,2 (-1,0)	6,4 (-1,2)	0,20
V	6,2 (-1,0)	8,6 (-1,6)	0,20

Note: Tolerances are given between brackets.

The thickness of the capacitors does not exceed 2,3 mm (0,08 in), except for a few types as is indicated in Tables 3 to 11.

Lacquer on the leads

When capacitors shown in Figs 1 and 2 are mounted on printed-wiring boards with a thickness of 1,5 mm and with holes of 1,3 mm diameter, or on printed-wiring boards with a thickness of 1 mm and with holes of 0,8 mm diameter, there will be no lacquer on the leads at the lower side of the board.

For those capacitance values indicated with asterisks in Tables 3 to 10, and lead pitch of 5,08 mm, the lacquer on the leads is less than 2 mm.

Marking

The temperature coefficient is indicated by a colour code as per IEC and EIA recommendations. The capacitance value is indicated on the body by figures in a contrasting colour.

Mounting

When bending, cutting or flattening the leads, they should be relieved of the applied load at the capacitor body,

Soldering conditions

max. 270 °C, max. 10 s

PACKING

The capacitors are supplied in boxes of 1000 (sizes I, IIA, IIB, III) or 500 (sizes IV, V).

ELECTRICAL DATA

The capacitors meet the essential requirements of IEC 384-8. Unless stated otherwise all electrical values apply at an ambient temperature of 20 ± 1 °C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values* and tolerances,	T.11. D. 44
measured at 1 MHz, ≤ 5 V	see Tables 3 to 11
Rated d.c. voltage	100 V
Test voltage (d.c.) for 1 min	300 V
Test voltage (d.c.) of coating for 1 min	300 V
Insulation resistance after 1 min at 100 V (d.c.)	≥ 10 000 MΩ
Tan δ^* at 1 MHz, \leqslant 5 V for C \leqslant 50 pF	$\leq 15 \left(\frac{15}{C} + 0.7\right) \times 10^{-4}$; max. 55 x 10 ⁻⁴
for C $>$ 50 pF	≤ 15 x 10 ⁻⁴
Category temperature range	–55 to + 85 °C
Storage temperature range	–55 to + 85 °C
Climatic category, IEC 68	55/085/21

^{*} Including 2 mm per connecting lead.

2222 631 2222 638 2222 641; 642

Capacitors with a temperature coefficient P100, rated voltage 100 V (d.c.)

Capacitance range

0,56 to 47 pF (E12 series)

Temperature coefficient of the capacitance ($\frac{\Delta C}{C,\Delta T}$)

 $+ 100 \times 10^{-6} / K$

Tolerance on the temperature coefficient

for $C \le 20 pF$

 $(-40 \text{ to} + 120) \times 10^{-6}/K$

for $C \ge 20 \text{ pF}$

 $\pm 40 \times 10^{-6}/K$

Marking colour of the temperature coefficient

red/violet

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
0,56*	± 0,25 pF	1	p56	03567
0,68 * *	± 0,25 pF	1	p68	03687
0,82 * * *	± 0,25 pF	1	p82	03827
1,0 * * *	± 0,25 pF	1	1p0	03108
1,2	± 0,25 pF	1	1p2	03128
1,5	± 0,25 pF	t	1p5	03158
1,8	± 0,25 pF	1	1p8	03188
2,2	± 0,25 pF	I	2p2	03228
2,7	± 0,25 pF	1	2p7	03278
3,3	± 0,25 pF	1	3p3	03338
3,9	± 0,25 pF	1	3p9	03398
4,7	± 0,25 pF	1	4p7	03478
5,6	± 0,25 pF	1	5p6	03568
6,8	± 0,25 pF	1	6p8	03688
8,2	± 0,25 pF	IIA	8p2	03828
10	± 2%	IIA	10p	04109
12	± 2%	IIB	12p	04129
15	± 2%	IIB	15p	04159
18	± 2%	111	18p	04189
22	± 2%	111	22p	04229
27	± 2%	IV	27p	04279
33	± 2%	IV	33p	04339
39	± 2%	V	39p	04399
47	± 2%	V	47p	04479

 $[\]begin{array}{l} \text{Maximum thickness 3,0 mm, H}_{\text{max}} = 4,5 \text{ mm.} \\ \text{Maximum thickness 2,7 mm, H}_{\text{max}} = 4,5 \text{ mm.} \\ \text{Maximum thickness 2,5 mm, H}_{\text{max}} = 4,5 \text{ mm.} \end{array}$

Capacitors with a temperature coefficient NPO, rated voltage 100 V (d.c.)

Capacitance range 1,8 to 120 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$ 0 x 10⁻⁶/K

→ Tolerance on the temperature coefficient

for C < 20 pF (-40 to + 120) x 10⁻⁶/K for C \ge 20 pF ± 30 x 10⁻⁶/K

Marking colour of the temperature coefficient black

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue numbe see Table 1
1,8	± 0,25 pF	ı	1p8	09188
2,2	± 0,25 pF	ı	2p2	09228
2,7	± 0,25 pF	1	2p7	09278
3,3	± 0,25 pF	1	3p3	09338
3,9	± 0,25 pF	1	3p9	09398
4,7	± 0,25 pF	1	4p7	09478
5,6	± 0,25 pF	1	5p6	09568
6,8	± 0,25 pF	1	6p8	09688
8,2	± 0,25 pF	ı	8p2	09828
10	± 2%	1	10p	10109
12	± 2%	1	12p	10129
15	± 2%	4	15p	10159
18	± 2%	1	18p	10189
22	± 2%	1	22p	10229
27	± 2%	1	27p	10279
33	± 2%	1	33 p	10339
39	± 2%	IIA	39p	10399
47	± 2%	IIA P	47p	10479
56	± 2%	IIA .	56p	10569
68	± 2%	IIB	68p	10689
82	± 2%	IIB	82p	10829
100	± 2%	. 111	n10	10101
120	± 2%	111	n12	10121

2222 631 2222 638 2222 641; 642

Capacitors with a temperature coefficient N075, rated voltage 100 V (d.c.)

Capacitance range

3,9 to 120 pF (E12 series)

Temperature coefficient of the capacitance ($\frac{\Delta C}{C.\Delta T}$)

 $-75 \times 10^{-6}/K$

Tolerance on the temperature coefficient

for C \leq 20 pF for C \geq 20 pF $(-40 \text{ to} + 60) \times 10^{-6}/\text{K}$

 $\pm 30 \times 10^{-6} / K$

red

Marking colour of the temperature coefficient

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue numbe see Table 1
3,9	± 0,25 pF	1	3p9	27398
4,7	± 0,25 pF	1	4p7	27478
5,6	± 0,25 pF	1	5p6	27568
6,8	± 0,25 pF	1	6p8	27688
8,2	± 0,25 pF	1	8p2	27828
10	± 2%	1	10p	28109
12	± 2%	1	12p	28129
15	± 2%	1	15p	28159
18	± 2%		18p	28189
22	± 2%	IIA	22p	28229
27	± 2%	IIA	27p	28279
33	± 2%	IIB	33p	28339
39	± 2%	IIB	39p	28399
47	± 2%	III	47p	28479
56	± 2%	III	56p	28569
68	± 2%	IV	68p	28689
82	± 2%	IV	82p	28829
100	± 2%	V	n10	28101
120	± 2%	V	n12	28121

Capacitors with a temperature coefficient N150, rated voltage 100 V (d.c.)

Capacitance range 3,9 to 150 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C.\Delta T})$ $-150 \times 10^{-6}/K$

Tolerance on the temperature coefficient

for C < 20 pF (-40 to + 60) x 10^{-6} /K for C \ge 20 pF \pm 40 x 10^{-6} /K

Marking colour of the temperature coefficient orange

Table 6

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue numbe see Table 1
3,9*	± 0,25 pF	ı	3p9	33398
4,7	± 0,25 pF	* 1	4p7	33478
5,6	± 0,25 pF	· 1	5p6	33568
6,8	± 0,25 pF	1	6p8	33688
8,2	± 0,25 pF	1	8p2	33828
10	± 2%	1	1 0 p	34109
12	± 2%	1	12 p	34129
15	± 2%	1	15p	34159
18	± 2%	1	18p	34189
22	± 2%	1	22p	34229
27	± 2%	I	27p	34279
33	± 2%	1	33 p	34339
39	± 2%	IIA	39p	34399
47	± 2%	IIA	47p	34479
56	± 2%	IIB	56p	34569
68	± 2%	IIB	68p	34689
82	± 2%	IIB	82p	34829
100	± 2%	HI	n10	34101
120	± 2%	111	n12	34121
150	± 2%	IV	n15	34151

^{*} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

Capacitors with a temperature coefficient N220, rated voltage 100 V (d.c.)

Capacitance range

3,9 to 150 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C.\Delta T})$

-220 x 10⁻⁶/K

Tolerance on the temperature coefficient

for C \leq 20 pF for C \geq 20 pF $(-40 \text{ to} + 60) \times 10^{-6}/\text{K}$

 $\pm 40 \times 10^{-6}/K$

Marking colour of the temperature coefficient

vellow

Table 7

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
3,9*	± 0,25 pF	ı	3p9	39398
4,7	± 0,25 pF	1	4p7	39478
5,6	± 0,25 pF	1	5p6	39568
6,8	± 0,25 pF	1	6p8	39688
8,2	± 0,25 pF	1	8p2	39828
10	± 2%	1	10 p	40109
12	± 2%	1	12 p	40129
15	± 2%	1	15p	40159
18	± 2%	1	18 p	40189
22	± 2%	1	22p	40229
27	± 2%	IIA	27 p	40279
33	± 2%	IIA	33 p	40339
39	± 2%	IIB	39 p	40399
47	± 2%	IIB	47p	40479
56	± 2%	HI	56p	40569
68	± 2%	III	68p	40689
82	± 2%	IV	82p	40829
100	± 2%	IV	n10	40101
120	± 2%	V	n12	40121
150	± 2%	V	n15	40151

^{*} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

Capacitors with a temperature coefficient N330, rated voltage 100 V (d.c.)

Capacitance range 4,7

4,7 to 180 pF (E12 series)

Temperature coefficient of the capacitance ($\frac{\Delta C}{C,\Delta T})$

 $-330 \times 10^{-6}/K$

Tolerance on the temperature coefficient

 $\pm 60 \times 10^{-6}/K$

Marking colour of the temperature coefficient

green

Table 8

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
4,7	± 0,25 pF	ı	4p7	45478
5,6	± 0,25 pF	1	5p6	45568
6,8	± 0,25 pF	1	6p8	45688
8,2	± 0,25 pF	ı	8p2	45828
10	± 2%	. 1	10p	46109
12	± 2%	1	12p	46129
15	± 2%	1	15p	46159
18	± 2%	į į	18p	46189
22	± 2%	!	22p	46229
27	± 2%	1	27p	46279
33	± 2%	IIA	33p	46339
39	± 2%	IIA	39 p	46399
47	± 2%	IIB	47p	46479
56	± 2%	IIB	56p	46569
68	± 2%	111	68p	46689
82	± 2%	111	82p	46829
100	± 2%	IV	n10	46101
120	± 2%	IV	n12	46121
150	± 2%	V	n15	46151
180	± 2%	V	n18	46181

Capacitors with a temperature coefficient N470, rated voltage 100 V (d.c.)

Capacitance range 6,8 to 220 pF (E12 series)

Tolerance on the temperature coefficient

for $C < 20 \,\mathrm{pF}$ (-90 to + 250) x $10^{-6}/\mathrm{K}$

for C \geq 20 pF \pm 60 x 10⁻⁶/K Marking colour of the temperature coefficient blue

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
6,8	± 0,25 pF	ı	6p8	51688
8,2	± 0,25 pF	1	8p2	51828
10	± 2%	1	10p	52109
12	± 2%	1	12p	52129
15	± 2%	1	15p	52159
18	± 2%	1	18p	52189
22	± 2%	1	22p	52229
27	± 2%	1	27p	52279
33	± 2%		33 p	52339
39	± 2%	IIA	39p	52399
47	± 2%	IIA	47p	52479
56	± 2%	IIB	56p	52569
68	± 2%	IIB	68p	52689
82	± 2%	111	82p	52829
100	± 2%	III	n10	52101
120	± 2%	IV	n12	52121
150	± 2%	IV	n15	52151
180	± 2%	V	n18	52181
220	± 2%	V	n22	52221

Capacitors with a temperature coefficient N750, rated voltage 100 V (d.c.)

Capacitance range

3,9 to 330 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

 $-750 \times 10^{-6}/K$

Tolerance on the temperature coefficient

for C \leq 20 pF for C \geq 20 pF $(-120 \text{ to } + 250) \times 10^{-6}/\text{K}$

± 120 x 10⁻⁶/K

Marking colour of the temperature coefficient

violet

Table 10

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
3,9	± 0,25 pF		3p9	57398
4,7	± 0,25 pF		4p7	57478
5,6	± 0,25 pF		5p6	57568
6,8	± 0,25 pF	1	6p8	57688
8,2	± 0,25 pF	1	8p2	57828
10	± 2%	1	10p	58109
12	± 2%	1	12p	58129
15	± 2%	1	15p	58159
18	± 2%	1	18p	58189
22	± 2%	1	22p	58229
27	± 2%	1	27p	58279
33	± 2%	1	33p	58339
39	± 2%	1	39p	58399
47	± 2%	1	47p	58479
56	± 2%	IIA	56p	58569
68	± 2%	IIA	68p	58689
82	± 2%	IIB	82p	58829
100	± 2%	IIB	n10	58101
120	± 2%	THE STATE OF THE S	n12	58121
150	± 2%	111	n15	58151
180	± 2%	IV	n18	58181
220	± 2%	IV	n22	58221
270	± 2%	V	n27	58271
330	± 2%	V	n33	58331

Capacitors with a temperature coefficient N1500, rated voltage 100 V (d.c.)

Capacitance range

18 to 560 pF (E12 series)

Temperature coefficient of the capacitance $(\frac{\Delta C}{C,\Delta T})$

 -1500×10^{-6} /K

Tolerance on the temperature coefficient

(0 to + 500) × 10⁻⁶/K

Marking colour of the temperature coefficient

orange/orange

cap. pF	tolerance	size see Table 2	marking	suffix of catalogue number see Table 1
18*	± 2%	1	18p	70189
22**	± 2%	1	22p	70229
27	± 2%	1	27p	70279
33	± 2%	1	33p	70339
39	± 2%	1	39p	70399
47	± 2%	1	47p	70479
56	± 2%	1	56p	70569
68	± 2%	1	68p	70689
82	± 2%	1	82p	70829
100	± 2%	IIA	n10	70101
120	± 2%	IIA	n12	70121
150	± 2%	IIB	n15	70151
180	± 2%	IIB	n18	70181
220	± 2%	111	n22	70221
270	± 2%	III	n27	70271
330	± 2%	IV	n33	70331
390	± 2%	IV	n39	70391
1 70	± 2%	V	n47	70471
560	± 2%	V	n56	70561

^{*} Maximum thickness 2,5 mm, H_{max} = 4,5 mm

^{**} H_{max} = 4,0 mm.

MINIATURE CERAMIC PLATE CAPACITORS

class 1, 500 V (d.c.)

- High-frequency circuits
- Temperature compensating
- High stability
- Space saving

QUICK REFERENCE DATA

Capacitance range	0,47 to 270 pF (E12 series)	
Rated d.c. voltage	500 V	
Tolerance on capacitance	± 2% or ± 0,25 pF	
Temperature coefficients	P100, NP0, N150, N750, N1500	
Sectional specification	IEC 384-8, sub-class 1B	
Climatic category (IEC 68)	55/085/21	

APPLICATION

In a great variety of electronic circuits, e.g. in filters and tuning circuits where high stability and/or temperature compensation are needed. Because of their small size the capacitors are very suitable for circuitry with high component density.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides of which are metallized and provided with connecting leads. They are insulated by a coating that ensures a good behaviour under humid conditions. The colour of the capacitor body is grey. The capacitors distinguish themselves by small dimensions and narrow tolerances on the lead spacing.

The electrical properties are characterized by low losses, a very close standard tolerance on the capacitance (\pm 0,25 pF or 2%), high stability and, owing to the absence of silver, an extremely good d.c. behaviour.

MECHANICAL DATA

Dimensions in mm

Outlines

Table 1			And the second	
pitch	lead diameter	catalogue number *		
piton	lead diameter	L ≥ 13 mm	L = 4 ± 0,5	
5,08 mm (0,2 in)	0,6 mm (0,024 in)	2222 650	2222 651	

Fig. 1.

For dimensions H, L and W, see Tables 1 and 2.

Ta	h	۵	2

size	W	Н	approx. mass g
I	3,6 (-1,1)	3,7(-1,2)	0,15
IIA	3,9 (-1,2)	4,0(-1,3)	0,15
IIB	4,5 (-1,2)	4,7(-1,4)	0,16
III	5,1 (-0,9)	5,3(-1,1)	0,17
IV	6,2 (-1,0)	6,4(-1,2)	0,21
V	6,2 (-1,0)	8,6(-1,5)	0,23

Note: Tolerances are given between brackets.

Except for the types indicated in Tables 3 to 7, the thickness of the capacitor does not exceed 2,3 mm.

Lacquer on the leads

When the capacitors are mounted on printed-wiring boards with a thickness of 1,5 mm and with holes of 1,3 mm diameter or on printed-wiring boards with a thickness of 1 mm and with holes of 0,8 mm diameter, there will be no lacquer on the leads at the lower side of the board. For those capacitance values indicated with asterisks in Tables 3 to 7, the lacquer on the leads is less than 2 mm.

Marking

The temperature coefficient is indicated by a colour code as per IEC and EIA recommendations. The capacitance value and the voltage are indicated on the body by figures in a contrasting colour, see Tables 3 to 7.

Mounting

When bending, cutting or flattening the leads, they should be relieved of the applied load at the capacitor body,

Soldering conditions

max. 270 °C, max. 10 s

PACKING

The capacitors are packed in boxes of 1000 (sizes I, IIA, IIB, III) or 500 (sizes IV and V).

* For catalogue number suffix, see Tables 3 to 7.

ELECTRICAL DATA

The capacitors meet the essential requirements of IEC 384-8. Unless stated otherwise all electrical values apply at an ambient temperature of 20 \pm 1 $^{\rm O}$ C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values* and tolerances, measured at 1 MHz, ≤ 5 V

Rated d.c. voltage

Test voltage (d.c.) for 1 minute

Test voltage (d.c.) of coating for 1 minute

Insulation resistance at 500 V (d.c.)

after 1 min

Tan δ^* at 1 MHz, \leq 5 V

for C < 50 pF

for C > 50 pF

Category temperature range

Storage temperature range

Climatic category (IEC 68)

0,47 to 270 pF, E12 series,

see Tables 3 to 7

500 V

1250 V

1250 V

> 10 000 M Ω

 $\leq 15 \left(\frac{15}{C} + 0.7\right).10^{-4}$

≤ 15.10⁻⁴

-55 to +85 °C

-55 to +85 °C

55/085/21

^{*} Including 2 mm per connecting lead.

Capacitors with temperature coefficient P100

Capacitance range

0,47 to 33 pF (E12 series)

Temperature coefficient of the

capacitance $(\frac{\Delta C}{C.\Delta T})$

 $+ 100 \times 10^{-6} / K$

Tolerance on the temperature coefficient

for $C \le 20 pF$ for $C \ge 20 pF$ $(-40 \text{ to} + 120) \times 10^{-6}/\text{K}$

 $\pm 40 \times 10^{-6}/K$

Marking colour of the temperature coefficient

red/violet

Table 3

capacitance pF	tolerance	size see Table 2	marking		suffix of catalogue number see Table 1
0,47*	± 0,25 pF	1	p47	500	03477
0,68	± 0,25 pF	1	p68	500	03687
1,0	± 0,25 pF	1	1p0	500	03108
1,2	± 0,25 pF	1	1p2	500	03128
1,5 *	± 0,25 pF	1	1p5	500	03158
1,8	± 0,25 pF	1	1p8	500	03188
2,2	± 0,25 pF	1	2p2	500	03228
2,7	± 0,25 pF	1	2p7	500	03278
3,3	± 0,25 pF	1	3p3	500	03338
3,9	± 0,25 pF	l l	3p9	500	03398
4,7	± 0,25 pF	IIA	4p7	500	03478
5,6	± 0,25 pF	IIA	5p6	500	03568
6,8	± 0,25 pF	IIB	6p8	500	03688
8,2	± 0,25 pF	IIB	8p2	500	03828
10	± 2%	111	10 p	500	04109
12	± 2%	111	12p	500	04129
15	± 2%	111	15p	500	04159
18	± 2%	IV	18p	500	04189
22	± 2%	IV	22p	500	04229
27	± 2%	V	27p	500	04279
33	± 2%	V	33 p	500	04339

^{*} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

Capacitors with a temperature coefficient NPO

Capacitance range 0,82 to 47 pF (E12 series)

Temperature coefficient of the

capacitance ($\frac{\Delta C}{C.\Delta T}$) 0 x 10⁻⁶/K

Tolerance on the temperature coefficient

for C \leq 20 pF $(-40 + 120) \times 10^{-6}$ /K for C \geq 20 pF \pm 30 \times 10⁻⁶/K Marking colour for the temperature coefficient black

Table 4

capacitance pF	tolerance	size see table 2	mark	ing	suffix of catalogue number see Table 1
0,82*	± 0,25 pF	1	p82	500	09827
1 *	± 0,25 pF	1	1p0	500	09108
1,2	± 0,25 pF	1	1p2	500	09128
1,5	± 0,25 pF	1	1p5	500	09158
1,8	± 0,25 pF	1	1p8	500	09188
2,2	± 0,25 pF	1	2p2	500	09228
2,7	± 0,25 pF	1	2p7	500	09278
3,3	± 0,25 pF	1	3p3	500	09338
3,9	± 0,25 pF	1	3p9	500	09398
4,7	± 0,25 pF	1	4p7	500	09478
5,6	± 0,25 pF	1	5p6	500	09568
6,8	± 0,25 pF	IIA	6p8	500	09688
8,2	± 0,25 pF	IIA	8p2	500	09828
10	± 2%	IIB	10p	500	10109
12	± 2%	IIB	12p	500	10129
15	± 2%	IIB	15p	500	10159
18	± 2%	111	18p	500	10189
22	± 2%	111	22p	500	10229
27	± 2%	IV	27p	500	10279
33	± 2%	IV	33p	500	10339
39	± 2%	IV	39p	500	10399
47	± 2%	V	47p	500	10479

^{*} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

Capacitors with a temperature coefficient N150

Capacitance range

2,2 to 56 pF (E12 series)

Temperature coefficient of the

capacitance
$$(\frac{\Delta C}{C.\Delta T})$$

 -150×10^{-6} /K

Tolerance on the temperature coefficient

for $C \le 20 pF$ for $C \ge 20 pF$ (-40 + 60) x 10⁻⁶/K ± 30 x 10⁻⁶/K

Marking colour of the temperature coefficient

orange

Table 5

capacitance pF	tolerance	size see table 2	marking		suffix of catalogue number see Table 1
2,2*	± 0,25 pF	1	2p2	500	2222 650 33228
2,7*	± 0,25 pF	1	2p7	500	33278
3,3	± 0,25 pF	1	3p3	500	33338
3,9	± 0,25 pF	1	3p9	500	33398
4,7	± 0,25 pF	1	4p7	500	33478
5,6	± 0,25 pF		5p6	500	33568
6,8	± 0,25 pF	1	6p8	500	33688
8,2	± 0,25 pF	IIA	8p2	500	33828
10	± 2%	IIA	10p	500	34109
12	± 2%	IIB	12p	500	34129
15	± 2%	IIB	15p	500	34159
18	± 2%	IIB	18p	500	34189
22	± 2%	111	22p	500	34229
27	± 2%	111	27p	500	34279
33	± 2%	IV	33p	500	34339
39	± 2%	IV	39p	500	34399
47	± 2%	IV	47p	500	34479
56	± 2%	V	56p	500	34569

^{*} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

Capacitors with a temperature coefficient N750

Capacitance range

1,8 to 120 pF (E12 series)

Temperature coefficient of the

capacitance
$$(\frac{\Delta C}{C.\Delta T})$$

-750 x 10⁻⁶/K

Tolerance on the temperature coefficient

for $C \le 20 pF$ for $C \ge 20 pF$

 $(-120 + 250) \times 10^{-6}/K$ ± $120 \times 10^{-6}/K$

violet

Marking colour of the temperature coefficient

Table 6

capacitance pF	tolerance	size see Table 2	marking		suffix of catalogue number see Table 1
1,8*	± 0,25 pF	1	1p8	500	57188
2,2**	± 0,25 pF	1	2p2	500	57228
2,7	± 0,25 pF	1	2p7	500	57278
3,3	± 0,25 pF	1	3p3	500	57338
3,9	± 0,25 pF	1	3p9	500	57398
4,7**	± 0,25 pF	1	4p7	500	57478
5,6	± 0,25 pF	1	5p6	500	57568
6,8	± 0,25 pF	I	6p8	500	57688
8,2	± 0,25 pF	1	8p2	500	57828
10	± 2%	1	10p	500	58109
12	± 2%	1	12p	500	58129
15	± 2%	1	15p	500	58159
18	± 2%	IIA	18p	500	58189
22	± 2%	IIA	22 p	500	58229
27	± 2%	IIB	27 p	500	58279
33	± 2%	IIB	33p	500	58339
39	± 2%	IIB	39 p	500	58399
47	± 2%	111	47p	500	58479
56	± 2%	111	56p	500	58569
68	± 2%	IV	68p	500	58689
82	± 2%	IV	82p	500	58829
100	± 2%	IV	n10	500	58101
120	± 2%	V	n12	500	58121

^{*} Maximum thickness 2,7 mm, H_{max} = 4,5 mm.

^{**} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

2222 650 2222 651

Capacitors with a temperature coefficient N1500

Capacitance range

8,2 to 270 pF (E12 series)

Temperature coefficient of the

capacitance
$$(\frac{\Delta C}{C,\Delta T})$$

 -1500×10^{-6} /K

Tolerance on the temperature coefficient

 $(-0 + 500) \times 10^{-6}/K$ orange/orange

Marking colour of the temperature coefficient

Table 7

capacitance pF	tolerance	size see Table 2	mar	king	suffix of catalogue number see Table 1
8,2*	± 0,25 pF	1	8p2	500	69828
10 **	± 2%	1	10p	500	70109
12 **	± 2%	1	12p	500	70129
15	± 2%	1	15p	500	70159
18	± 2%	l I	18p	500	70189
22	± 2%	l i	22 p	500	70229
27	± 2%	1	27p	500	70279
33	± 2%	IIA	33p	500	70339
39	± 2%	IIA	39 p	500	70399
47	± 2%	IIA	47p	500	70479
56	± 2%	IIB	56p	500	70569
68	± 2%	IIB	68p	500	70689
82	± 2%	IIB	82p	500	70829
100	± 2%	HI ·	n10	500	70101
120	± 2%	Ш	n12	500	70121
150	± 2%	IV	n15	500	70151
180	± 2%	IV	n18	500	70181
220	± 2%	IV	n22	500	70221
270	± 2%	V	n27	500	70271

^{*} Maximum thickness 3,0 mm, H_{max} = 4,5 mm.

^{**} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

MINIATURE CERAMIC PLATE CAPACITORS

class 2, 500 V (d.c.)

- General purpose
- Coupling and decoupling
- Space saving

QUICK REFERENCE DATA

Capacitance range	100 - 2700 pF (E12 series)
Rated d.c. voltage	500 V
Tolerance on capacitance	± 10%
Sectional specification	IEC 384-9 (2C2)
Climatic category (IEC 68)	55/085/21

APPLICATION

Electronic circuits where a non-linear change of capacitance with temperature is permissible and very low losses are not essential, e.g. coupling and decoupling.

Because of their small size the capacitors are ideal for circuitry with a high component density.

DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides of which are metallized. The tinned connecting leads are secured with a high melting point solder.

The capacitors are protected by several layers of tan lacquer that ensures a good behaviour under humid conditions and is resistant to all commonly used cleaning solvents.

No silver migration can occur.

MECHANICAL DATA

Dimensions in mm

Outlines

Table 1						
pitch	lead diameter	neter $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
prior	lead diameter					
5,08 mm (0,2 in)	0,6 mm (0,024 in)	2222 655 03	2222 655 06			

For dimensions H, L and W, see Tables 1 and 2.

Table 2

size	W	Н	approx. mass g
I	3,6 (-1,1)	3,7 (-1,2)	0,15
IIA	3,9 (-1,2)	4,0 (-1,3)	0,15
IIB	4,5 (-1,2)	4,7 (-1,4)	0,16
III	5,1 (-0,9)	5,3 (-1,1)	0,17
IV	6,2 (-1,0)	6,4 (-1,2)	0,21
V	6,2 (-1,0)	8,6 (-1,5)	0,23

Note: Tolerances are given between brackets.

Except for the types indicated in Table 3, the thickness of the capacitor does not exceed 2,3 mm.

Lacquer on the leads

When the capacitors are mounted on printed-wiring boards with a thickness of 1.5 mm and with holes of 1,3 mm diameter or on printed-wiring boards with a thickness of 1 mm and with holes of 0,8 mm diameter there will be no lacquer on the leads at the lower side of the board. For those capacitance values indicated with asterisks in Table 3, the lacquer on the leads is less than 2 mm.

Marking

The body of the capacitors is tan coloured.

The temperature dependence is indicated by a yellow colour cap. Capacitance value and voltage are indicated on the body by figures according to Table 3 in a contrasting colour.

Mounting

When bending, cutting or flattening the leads, one should relieve them of the applied load at the capacitor body.

Soldering conditions

max. 270 °C, max. 10 s

PACKING

The capacitors are supplied in boxes of 1000 (sizes I, IIA, IIB, III) or 500 (sizes IV and V).

* 3 dots to be replaced by code for capacitance value, see Table 3.

ELECTRICAL DATA

The capacitors meet the essential requirements of IEC 384-9. Unless stated otherwise all electrical values apply at an ambient temperature of 20 \pm 1 $^{\rm O}$ C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

Capacitance values, measured at 1 kHz, 1 V	100 to 2700 pF, E12 series see Table 3
Tolerance on the capacitance	± 10%
Rated d.c. voltage	500 V
Test voltage (d.c.) for 1 min	1250 V
Test voltage (d.c.) of coating for 1 min	1250 V
Insulation resistance at 500 V (d.c.) after 1 min	$>$ 4000 M Ω
Tan δ at 1 kHz, 1 V	< 3,5%
Category temperature range	−55 to + 85 °C
Climatic category	55/085/21
Storage temperature range	−55 to + 85 °C
Capacitance change versus temperature	see Fig. 2
Capacitance change versus frequency	see Fig. 3

Table 3

capacitance pF	size see Table 2	ma	rking	code in catalogue number, see Table 1
100 *	1	n10	500	101
120 **	1	n12	500	121
150	1	n15	500	151
180	1	n18	500	181
220	1	n22	500	221
270	1	n27	500	271
330	1	n33	500	331
390	IIA	n39	500	391
470	IIA	n47	500	471
560	IIB	n56	500	561
680	IIB	n68	500	681
820	IIB	n82	500	821
1000	111	1n0	500	102
1200	111	1n2	500	122
1500	IV	1n5	500	152
1800	IV	1n8	500	182
2200	IV	2n2	500	222
2700	V	2n7	500	272

^{*} Maximum thickness 2,7 mm, H_{max} = 4,5 mm.

^{**} Maximum thickness 2,5 mm, H_{max} = 4,5 mm.

Fig. 2 Capacitance change with respect to the capacitance at 20 °C as a function of temperature.

Fig. 3 Typical capacitance change with respect to the capacitance at 300 Hz as a function of frequency.

CERAMIC MULTILAYER CAPACITORS

SURFACE MOUNTED CERAMIC MULTILAYER CAPACITORS

Six standard sizes

Canacitance range

- High capacitance per unit volume
- Supplied in boxes or in tape on reel

QUICK REFERENCE DATA

Capacitance range	
class 1, NPO dielectric	0,47 to 10 000 pF (E12-series)*
N220 dielectric	4,7 to 820 pF (E12-series)*
N750 dielectric	6,8 to 1200 pF (E12-series)*
class 2, X7R dielectric	180 pF to 1 μ F (E12-series)
Y5V dielectric	2200 to 100 000 pF (E6-series)**
Rated voltage UR (d.c.)	63 V (IEC)
Tolerance on capacitance	
NPO, N220, N750 dielectrics	± 10%, ± 5%; below 10 pF: ± 0,5 or ± 0,25 pF
X7R dielectric	± 20%, ± 10%
Y5V dielectric	$-20 \text{ to} + 80\%, \pm 20\%$
Sectional specification	IEC 384-10, 40 (secretariat) 544
Climatic category (IEC 68)	
NPO, N220, N750 dielectrics	55/125/56
X7R dielectric	55/125/56
Y5V dielectric	25/085/56
Resistance to soldering heat	260 °C, 10 s

APPLICATION

These capacitors with high capacitance per unit volume are for surface mounted assembly. Their dimensions, performance, and reliability make them very attractive for a wide range of applications, specially where high package density is required.

Typical application areas are e.g. radio, television, cameras, pocket calculators, telecommunication and military equipment.

The taped versions are especially suitable for automatic placement.

- * Below 10 pF other values on request.
- ** Values up to 1 μ F under development.

DESCRIPTION

The capacitors consist of a rectangular block of ceramic dielectric in which a number of interleaved precious-metal electrodes yield a high capacitance per unit volume. They are AgPd (35/65) metallized or NiSn metallized at the terminations (see Fig. 1).

Fig. 1.

MECHANICAL DATA

Outlines

Dimensions in mm

Fig. 2.

Table 1

			-	Γ	,	4	С
size	L	W	min.	max.	min.	max.	min.
0805	2,0 ± 0,15	1,25 ± 0,15	0,51*	1,27*	0,25	0.75	0,4
1206	3,2 ± 0,15	1,6 ± 0,15	0,51*	1,60*	0,25	0,75	1
1210	3,2 ± 0,2	2,5 ± 0,2	0,51	1,90	0,3	1,0	
1808	4,5 ± 0,2	2,0 ± 0,2	0,51	1,90	0,3	1,0	
1812	4,5 ± 0,2	3,2 ± 0,2	0,51	1,90	0,3	1,0	
2220	5,7 ± 0,2	5,0 ± 0,2	0,51	1,90	0,3	1,0	

^{*} See also Table 2.

Table 2 Capacitor thickness for sizes 0805, 1206 and 1210

С		SI	ZE 08	05			s	IZE 12	06		SIZE	1210
рF	NP0	N220	N750	X7R	Y5V	NPO	N220	N750	X7R	Y5V	NPO	X7R
0,47												
0,56 0,68												-
0,82				-	-	.						-
1,0												
1,2												
1,5						ļ						
1,8 2,2				 								
2,7						-				-	_	
3,3												
3,9												
4,7 5,6						ļ						
6,8				-								-
8,2						 						
10												
12						ļ						
15 18				-	-							
22						 				-		<u> </u>
27						1				<u> </u>		
33												
39											mm	
47 56											41111	
68											HHH	-
82						1				-	11111	
100											7777	
120						ļ						
150 180											4444	
220										 	HHH	
270											11111	
330												
390												-
470 560											HHH	-
680											11111	
820											444	
1000	ШШ											
1200						,,,,,,						
1500 1800		-						-				-
2200						//////					444	11111
2700											11111	7777
3300												IIII
3900 4700												HHA
5600										-	 	444
6800												<i>77777</i>
8200												11111
10000												11111
12000 15000												4444
18000					-							444
22000												11114
27000												11117
33000				<i>[[][][]</i>	11/1//					ļ		4444
39000 47000												4111
56000												11111
68000												77/4
82000										<i>\\\\\\</i>		77777
100000										11/1//		11111
120000 150000					-				_			4444
180000		-				-						444
220000												4444

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of 20 \pm 1 °C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 63 to 67%.

NP0

N750

N220

Class 1

Capacitance range (E12-series)*	0,47	to 10 000 pF	4,7 to 820 pF	6,8 to 1200 pF		
Tolerance on capacitance $C \ge 10 \text{ pF}$ $5 \text{ pF} \le C < 10 \text{ pF}$ $C < 5 \text{ pF}$	± 0,	9%, ± 5%** 5 pF 25 pF				
Rated voltage UR (d.c.)	63 \	/ (IEC)				
Test voltage (d.c.) for 1 min	2,5	2,5 x U _R				
Tan δ , measured at 1,0 V, 1 MHz, C \leq 30 pF	10 ($\frac{10}{C}$ + 0,7) x 10	⁴ , max. 27 x 10	₁₋ 4		
1 MHz, 30 pF < C ≤ 1000 pF 1 kHz, C > 1000 pF		≤ 10 x 10 ⁻⁴ ≤ 10 x 10 ⁻⁴				
Insulation resistance	> 1	$>$ 100 000 M Ω				
Climatic category (IEC 68)	55/	125/56				
Temperature coefficient	NP0	N220		N750		

Temperature coefficient	
$0.47 \text{ pF} \leq C < 5 \text{ pF}$	$(0 \pm 150) \times 10^{-6} / K \left[(-220 \pm 60) \times 10^{-6} / K \right]$
5 pF ≤ C < 10 pF	$(0 \pm 150) \times 10^{-6} / \text{K} \left[(-220 \pm 60) \times 10^{-6} / \text{K} \right] (-750 \pm 250) \times 10^{-6} / \text{K}$
C ≥ 10 pF	$(0 \pm 30) \times 10^{-6} / K (-220 \pm 60) \times 10^{-6} / K (-750 \pm 250) \times 10^{-6} / K$
→ Terminations	AgPd or NiSn metallized ▲

^{*} Measured at 1,0 V, 1 MHz for C \leq 1000 pF, and at 1,0 V, 1 kHz for C > 1000 pF, by a four-gauge method.

^{** ± 2%} to special order.

[▲] For NPO and N220 NiSn metallized terminations are available in the course of 1987.

Fig. 3 Typical capacitance change with respect to the capacitance at 1 V as a function of d.c. voltage, for NPO dielectric.

Fig. 4 Typical tan δ as a function of temperature for NPO dielectric.

Fig. 5 Typical temperature coefficient as a function of temperature, for NPO dielectric. The dashed curves indicate sample limits, dotted lines indicate requirement levels.

Fig. 6 Typical ESR at high frequencies as a function of capacitance, for NPO dielectric, size 0805 (measuring equipment HP4191A).

Table 3 Selection chart for class 1 capacitors with AgPd and NiSn metallized terminations. Note: For NPO and N220 NiSn metallized terminations are available in the course of 1987.

					DIELE	CTRIC						
C pF		,	N	P0			N2	20	N7	750		
	0805	1206	1210	1808	1812	2220	0805	1206	0805	1206		
0,47												
0,56												
0,68												
0,82												
1,0						<u> </u>						
1,2 1,5			-						-			
1,8							 	 	ļ			
2,2	******		-			 						
2,7						-			l			
3,3												
3,9												
4,7												
5,6												
6,8												
8,2			-									
10 12												
15												
18						-						
22												
27												
33												
39												
47										******		
56												
68				-								
82			<u> </u>	,,,,,,								
100												
120 150												
180												
220												
270					-							
330					7////							
390												
470												
560										*******		
680					<i>\$4444</i>	<i>\\\\\\</i>	L					
820				/////	<i>\\\\\</i>	<i>\////</i>	l		L			
1000				<i>(/////</i>	<i>\\\\\</i>	<i>\}}}</i>	 		ļ			
1200					<i>\}}}</i>	<i>\////</i>	 			× 1		
1500 1800				<i>\\\\\</i>	<i>\\\\\</i>	<i>\\\\\</i>	 	 	 		500000000	available in bulk a
2200	 	,,,,,,			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	<i>\\\\\</i>				1		in 8 mm tape on r
2700			.		<i>\\\\\</i>	<i>\/////</i>	 		 	\vdash		
3300								 	 	 	7////	available in bulk
3900		111111	77777		<i>\\\\\</i>	<i>\\\\\\</i>	l	l		\vdash	VIIII	
4700							 		 			
5600						V/////			l			
6800												
8200												
10000							l				7290923.2	

Class 2, X7R dielectric

Capacitance range (E12-series)*

Tolerance on capacitance, at age of 1000 h

Rated voltage UR (d.c.)

Test voltage (d.c.) for 1 min

Tan δ , measured at 1 kHz, 1,0 V

Insulation resistance

 $C \le 10000 pF$

C > 10000 pF

Climatic category (IEC 68)

Maximum capacitance variation as a function of temperature

Ageing

Terminations

Fig. 7 Typical capacitance change with respect to the capacitance at 1 V as a function of d.c. voltage, for X7R dielectric.

63 V (IEC)

2,5 × U_R ≤ 2.5%

 $> 100\ 000\ M\Omega$ R_{ins} x C $> 1000\ s$ 55/125/56

± 15%, see Fig. 9
typ. 1% per time decade
AqPd or NiSn metallized

■

Fig. 8 Typical tan δ as a function of temperature, for X7R dielectric.

Fig. 9 Typical capacitance change as a function of temperature, for X7R dielectric.

Measured at 1,0 V, 1 kHz, by a four-gauge method.

^{** ± 2%} to special order.

Table 4 Selection chart for class 2 capacitors, X7R dielectric, with AgPd and NiSn metallized terminations.

С		DII	LECT	RIC X7	R			
pF	0805	1206	1210	1808	1812	2220		
180							-	
220								
270								
330								
390								
470								
560								
680								
820								
1000								
1200								
1500								
1800								
2200				/////				
2700				1////				
3300							1	
3900							i	
4700					77777			
5600						-		
6800								
8200								
10000								
12000						77777		
15000								
18000						<i>HHH</i>		
22000								
27000								
33000								
39000	***********							
47000								
56000				//////				
68000								
82000				<i>\\\\\</i>		<i>//////</i>		
100000		 		<i>\\\\\\</i>				
120000					<i>\\\\\</i>			
150000		 		<i>\/////</i>	<i>\\\\\</i>			
180000								available in bulk and
220000					<i>\\\\\</i>	/////		in 8 mm tape on reel
270000		 		<i>\\\\\\</i>	<i>\\\\\</i>	<i>//////</i>		
330000		-		11111	<i>\////</i>		7////	available in bulk
390000		 		-			V////	avanable in bulk
470000			<u> </u>			<i>\\\\\\</i>		
560000					11///	<i>//////</i>		
680000						/////		
				-		<i>\\\\\\</i>		
820000		<u> </u>						
1000000		L				<i>\////</i>	7290922.3	

Class 2, Y5V dielectric

Capacitance range (E6-series)*

Tolerance on capacitance at age of 1000 h

Rated voltage Up (d.c.)

Test voltage (d.c.) for 1 min

Tan δ , measured at 1 kHz, 1,0 V

Insulation resistance $C \le 25000 \text{ pF}$

 $C > 25\,000\,\text{pF}$

Climatic category (IEC 68)

Maximum capacitance variation with respect

to C at 20 °C (IEC) to C at 25 °C (EIA)

Ageing

Terminations

Fig. 10 Typical capacitance change with respect to the capacitance at 1 V as a function of d.c. voltage, for Y5V dielectric.

2200 to 100 000 pF (values up to 1 μ F under development) -20 to +80% and ±20%

63 V (IEC)

2,5 x U_R ≤ 2.5%

 $> 4000 \text{ M}\Omega$ R_{ins} x C > 100 s25/085/56

+ 30 to -80%, see Fig. 12

+ 22 to -82%

typ. 5% per time decade AgPd or NiSn metallized

Fig. 11 Typical tan δ as a function of temperature, for Y5V dielectric.

Fig. 12 Typical capacitance change as a function of temperature, for Y5V dielectric (hatched area according to IEC 384-10).

^{*} Measured at 1,0 V, 1 kHz, by a four-gauge method.

→ Table 5 Selection chart for class 2 capacitors, Y5V dielectric, with AgPd and NiSn metallized terminations.

С		D	IELECT	RIC YS	v	
pF	0805	1206	1210	1808	1812	2220
47						
68						
100						
150						
220						
330						
470						
680						
1000						
1500						
2200						
3300						
4700						
6800						
10000						
15000						
22000						
33000						
47000						
68000			ШШ	ШШШ	ШШШ	ШШШ
100000			ШШШ			ШШШ
150000						ШШШ
220000						ШШШ
330000						
470000						ШПППППППППППППППППППППППППППППППППППППП
680000						
1000000						

available in bulk and in 8 mm tape on reel under development

7290921.3

PACKING

The capacitors are supplied in bulk in cardboard boxes of 1000; the sizes 0805, 1206 and 1210 are also supplied in tape (cardboard or blister) on reels of 4000.

Capacitors with sizes 0805 and 1206 (with the smaller tolerance) are also available in bulkpacking of 100; see Appendix II.

Cardboard tape

	si	ze
dimensions	0805	1206
A _o	1,5 + + 0,2	1,85 + + 0,2
Во	2,25 + ^{+ 0,2} 0	3,45 + + 0,2

Fig. 13 Dimensions of carrier tape (mm).

Cumulative pitch error 0,2 mm over 10 pitches.

Fig. 14 Carboard tape.

Blister tape

	siz	e
dimension	0805	1206
Ao	1,55 ± 0,1	1,85 ± 0,1
Во	2,3 ± 0,1	3,55 ± 0,1

Fig. 15 Dimensions of carrier tape.

Cumulative pitch error 0,2 mm over 10 pitches.

Fig. 16 Blister tape.

Fig. 17 Reel.

At least 40 positions at the beginning and 75 at the end of the tape are not used. The tape has a 230 mm leader.

SOLDER CONDITIONS

Limiting conditions

Typical solder conditions

235 °C, min. 2 s, max. 100 s 260 °C, max. 30 s see Figs 19, 20 and 21

(The use of weakly CI-activated flux is advised).

Fig. 18 Resistance to leaching of AgPd metallized terminations (in static solder bath) at various temperatures. For NiSn metallized terminations the leaching resistance is 10 x better than shown in the graph.

Fig. 19 Reflow soldering.

Fig. 20 Wave soldering.
The capacitors may be soldered twice according to this method if necessary.

Fig. 21 Vapour phase soldering.

HOW TO ORDER

One can order the capacitors by quoting the 15-digit ordering code, which can be constructed as shown below*.

Check for availability with Tables 3, 4 and 5, and with section PACKING.

4 = 10000 x 5 = 100000 xExample

0 = 1 x 1 = 10 x 2 = 100 x 3 = 1000 x

8000 capacitors, 150 pF, \pm 5%, NP0 dielectric, size 1206, in tape, should be ordered as:

8000 x 1206CG151J9AP - .

^{*} If required the 12 NC-catalogue number can be found in Appendices I and II.

TESTS	REOL	JIREMENTS	LIFC.

11	EC			
384-10 par.	68-2 par.	test	procedure	requirements
4.5		Visual inspection and check of dimensions	any applicable method 10 X magnification	in accordance with specification
4.6.1		Capacitance	$C \le 1000 \text{ pF f} = 1 \text{ MHz}$ C > 1000 pF f = 1 kHz measuring voltage 1 V, T = +20 °C	within specified tolerance, class 2 1000 h after manufacturing date
4.6.2		Tan δ	see 9.1	in accordance with specification
4.6.3		Insulation resistance	at 10 V (d.c.), 1 min	in accordance with specification
4.6.4		Voltage proof	2,5 U _R , 1 min	no breakdown or flashover
4.7.1		Temperature coefficient, class 1	between min. and max. temperature	in accordance with specification
4.7.2		Temperature character- istic, class 2	X7R and Y5V between min. and max. temperature	in accordance with specification
4.11	Та	Solderability	Zero hour test, and test after storage (20 to 24 months) in original packing, in normal atmosphere; unmounted chips completely immersed for 2 ± 0.5 s in a solder bath of 235 ± 5 °C	the terminations must be well tinned.
4.10	Tb	Resistance to soldering heat	260 ± 5 °C, 10 ± 0,5 s	the terminations must be well tinned, after recovery. $\Delta C/C$, class 1: \leq ±0,5% or ±0,5 pF,whichever is greater X7R: $>$ -5% and \leq +10% Y5V: $>$ -10% and \leq +20%
		Resistance to leaching	260 \pm 5 °C, 30 \pm 1 s, in static solder bath	with visual enlargement of 10x: dissolution of terminations may not exceed 10%
4.8		Adhesion	a force of 5 N shall be applied normal to the line joining the terminations and in a plane parallel to the substrate	no visible damage.

11	EC	-		
384-10 par.	68-2 par.	test	procedure	requirements
4.9		Bond strength of end face plating	mounting according to 4.4; conditions: bending 1 mm at a rate of 1 mm/s	no visible damage; $\Delta C/C \le 10\%$.
4.1		Pre-conditioning class 2	X7R and Y5V : 1 h at 175 °C, then 24 h recovery	
4.12	Na	Rapid change of temperature	pre-conditioning (class 2 only) -55/+ 125 °C, 5 cycles	no visible damage; after 24 h recovery class 1: $\Delta C/C \le \pm 1\%$ or 1 pF * X7R : $\Delta C/C \le \pm 10\%$ Y5V : $\Delta C/C \le \pm 20\%$
4.13		Climatic sequence	pre-conditioning (class 2 only)	
4.13.3	Ba	Dry heat	16 h at max. temperature	no visible damage
4.13.4	Db	Damp heat accelerated, 1 cycle	24 h, R.H. 100% at + 55 °C	
4.13.5	Aa	Cold	2 h at min. temperature	no visible damage
4.13.6	Db	Damp heat accelerated, remaining cycles	at 55 °C, R.H. 100% 5 cycles of 24 h	after recovery, class 1 1-2 h, class 2 24 h $\Delta C/C, \text{class 1} : \leqslant \pm 2\% \text{ or 1 pF*} \\ X7R : \leqslant \pm 10\%; Y5V; \leqslant \pm 20\% \\ \text{tan } \delta, \text{class 1} : \leqslant 2 \times \text{specified value} \\ X7R : \leqslant 5\% \\ Y5V : \leqslant 7\% \\ R_{\text{ins}}, \text{ class 1} : \geqslant 2500 \text{ M}\Omega \text{ or } R_{\text{i}}C_{\text{R}} \geqslant 25 \text{ s**} \\ X7R, Y5V : \geqslant 1000 \text{ M}\Omega \text{ or } R_{\text{i}}C_{\text{R}} \geqslant 25 \text{ s**} \\ \end{cases}$
4.14	Ca	Damp heat, steady state	pre-conditioning (class 2 only) 56 days, R.H. 90-95% at 40 °C, 1,0 V applied	no visible damage; electrical: same as 4.13.6, except for $\Delta C/C$, Y5V: $\leqslant \pm30\%$

^{*} Whichever is greater.

^{**} Whichever is less.

nber 1985

Nove	
VOVe	-
VOVe	-
Vove	
Vove	
VOVe	-
VOVe	-
OVe	ے
ĕ	
6	റ
æ	-

TESTS AND REQUIREMENTS—IEC (continued)

test

Endurance

IEC

68-2

par.

384-10

par.

4.15

Pre-conditioning (class 2 only) 1000 h at 1,5 x rated voltage

procedure

at maximum temperature

no visible damage, after 24 h recovery

 $\Delta C/C$, class 1: $\leq \pm 2\%$ or 1 pF*

X7R : $\leq \pm 10\%$; Y5V: $\leq \pm 30\%$

tan δ , class 1: $\leq 2 \times \text{specified value}$

X7R : ≤5%, Y5V: ≤7% R_{ins} , class 1: \geq 4000 M Ω or \geq 40 s**

X7R : \geq 2000 M Ω or R_iC_R \geq 50 s** Y5V : \geq 2000 M Ω or R_iC_R \geq 50 s**

requirements

APPENDIXI

type number to 12NC-catalogue number for 1000-piece bulk and 4000-piece tape packing

Examples: A 63 V ceramic multilayer capacitor of 12 pF ± 10%, NPO, size 0805, with Ag/Pd terminations, supplied in tape, has the type number 0805CG120K9AB- and the 12NC-catalogue number 2222 861 13129, see next page.

A 63 V ceramic multilayer capacitor of 820 pF \pm 20%, X7R, size 1206, with Ni/Sn terminations, supplied in bulk, has the type number 12062B821M9BAB, and the 12NC-catalogue number 2222 581 06713.

NP₀ size 1206

Ag/Pd terminations

N220 size 0805

N750 size 0805

N750 size 1206

X7R size 1210

Y5V size 0805

APPENDIX II

CONVERSION LIST

type number to 12NC-catalogue number for 100-piece bulk packing (for sampling capacitors in sizes 0805 and 1206)

Note: This small packing quantity is available in sizes 0805 and 1206 in all dielectrics but limited to the smaller capacitance tolerances: ± 5% NPO, N220 and N750; ± 10% X7R; ± 20% Y5V.

Examples: A 63 V ceramic multilayer capacitor of 12 pF ± 5%, NPO, size 0805, with Ag/Pd terminations, supplied in bag of 100 pieces, has the type number 0805CG120J9AE- and the 12NC-catalogue number 2222 851 72129, see next page.

A 63 V ceramic multilayer capacitor of 820 pF \pm 20%, X7R, size 1206, with Ni/Sn terminations, supplied in bag of 100 pieces, has the type number 12062B821K9BEB, and the 12NC-catalogue number 2222 581 76613.

Ag/Pd terminations

	0805	NP0	C(pF)	C = ± 0,25 pl D = ± 0,5 pF J = ± 5%	63 V	Ag/Pd	E = bu	ilk, 100 pcs				
cap. < 10 pF				pe number					1:	2NC-catal	ogue nun	nber
0,47	0805	C1	478	C		9 A	E		2222	851	72	477
0,56 0,68 0,82			568 688 828									567 687 827
1,0 1,2 1,5 1,8 2,2 2,7			109 129 159 189 229 279									108 128 158 188 228 278
3,3 3,9 4,7 5,6 6,8			339 399 479 569 689	C D								338 398 478 568 688
8,2	0805	CJ	829	D		9 A	E		2222	851	72	828
≥ 10 pF			400							054	70	
10 12 15 18 22 7 33 39 47 56 68 82 100 120 150 180 220 330 390 470 560 680 820	0805	CG	100 120 150 150 220 330 390 470 560 680 820 101 121 151 181 221 331 391 471 561 681 821			9 A	E		2222	851	72	109 129 159 189 229 279 339 479 569 689 829 101 121 181 2271 331 391 471 561 681 821
1000	0805	CG	102	J		9 A	E		2222	851	72	102
1200 1500 1800 2200 2700												
3300 3900 4700 5600 6800 8200												
10000												

	0805	NP0	C(pF)	C = ± 0,25 pF D = ± 0,5 pF J = ± 5%	63 V Ni/Sn	E = bulk, 100 p	ocs			
ар. < 10 pF				oe number			12	NC-catal	ogue nun	nber
0,47	0805	C1	478	C	\	 Е	2222	851	75	477
0,56 0,68 0,82			568 688 828							567 687 827
1,0 1,2 1,5 1,8 2,2 2,7			109 129 159 189 229 279							108 128 158 188 228 278
3,3 3,9 4,7 5,6 6,8			339 399 479 569 689	C D						338 398 478 568 688
8,2	0805	CJ	829	D	9 B	Е	2222	851	75	828
≥ 10 pF										
10	0805	CG	100	J	9 B	Е	2222	851	75	109
12 15 18 22 27 33 39 47 56 58 82 1100 1150 1150 1150 2270 2270 2330 3390 4770 6660 6880 320	0805	CG	120 150 180 220 270 330 390 470 560 680 820 101 121 151 181 221 271 331 391 471 561 681 821 102		9 B	E	2222	851	75	129 155 189 222 279 339 399 477 477 155 168 822 271 331 399 471 566 688 821 121 151 151 161 161 161 161 161 161 161 16
200 500 800 2200 2700 3300 8900 1700 6600 8800 3200				•					,3	102

Ag/Pd terminations

	1206	NP0	C(pF)	C = ± 0,25 pF D = ± 0,5 pF J = ± 5%	63 V Ag/Pd	E = bulk	, 100 pcs				
cap. < 10 pF			ty	pe number				1:	2NC-catal	ogue nun	nber
0,47	1206	Cì	478	C	1 / 9 A	É		2222	853	72	477
0,56 0,68 0,82			568 688 828								567 687 827
1,0 1,2 1,5 1,8 2,2 2,7			109 129 159 189 229 279								108 128 158 188 228 278
3,3 3,9 4,7 5,6 6,8			339 399 479 569 689	C D D							338 398 478 568 688
8,2	1206	CJ	829	D	9 A	E		2222	853	72	828
≥ 10 pF											
10	1206	CG	100	J	9 A	E		2222	853	72	109
12 15 18 22 27			120 150 180 220 270								129 159 189 229 279
33 39 47 56 68 82			330 390 470 560 680 820								339 399 479 569 689 829
100 120 150 180 220 270			101 121 151 181 221 271								101 121 151 181 221 271
330 390 470 560 680 820			331 391 471 561 681 821								331 391 471 561 681 821
1000 1200 1500			102 122 152								102 122 152
1800			182								182
2200 2700			222 272	1		1			-	1	222 272
3300 3900 4700 5600 6800 8200	1206	CG	332	J	9 A	Е		2222	853	72	332

Ni/Sn terminations

NP0 size 1206

		T		D = ± 0,5 pF J = ± 5%	T	7				
ар. < 10 pF			ty	pe number			12	NC-catal	ogue nun	nber
0,47	1206	CJ	478	C	9 B	E	2222	853	75	477
0,56 0,68 0,82			568 688 828							567 687 827
1,0 1,2 1,5 1,8 2,2 2,7			109 129 159 189 229 279							108 128 158 188 228 278
3,3 3,9 4,7 5,6 6,8			339 399 479 569 689	C D						338 398 478 568 688
B,2	1206	CJ	829	D	9 B	E	2222	853	1 75	828
≥ 10 pF										
10	1206	CG	100	J	9 B	E	2222	853	75	109
12 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18			120 150 180 220 270 330 390 470 680 820 101 121 151 181 221 271 331 391 471 561 681 821 102 122 152 152 182							128 158 188 222 277 333 399 477 566 882 100 122 277 331 397 477 566 882 100 122 155 187 187 187 187 187 187 187 187 187 187
2200 2700			222 272							222
3300	1206	CG	332	J	9 B	E	2222	853	75	332
3900 4700 5600 6800 8200										

N220 size 0805

N750 size 0805

	1206 F)	N75	O C(pF)	$D = \pm 0.5 \text{ pF}$ $J = \pm 5\%$ /pe number	$\frac{63 \text{ V}}{\text{B} = \text{Ni/Sn}}$	E=	bulk, 100 pcs	12	NC-catalo	die bin	nhar
6,8	1206	UJ	689	T D	9 [A]	E		2222	[591]	7	4099
0,6	1200	UJ	009	U	g [B]	_		2222	581	′	4099
8,2	1206	UJ	829	D	9 [A]	Ε		2222	[591] [581]	7	4102
				tole	ance ± 5%						
10	1206	UJ	100	j	9 [A]	E		2222	[591] [581]	7	4104
12			120		1				1	ł	4106
15			150	1		- 1					4108
18 22			180 220	- 1						- 1	4111
27			270			1	packing			•	4113 4115
33			330	1	1	- 1					4117
39			390	1		j					4119
47			470	1							4122
56			560		-	+	terminations ———		-		4124
68			680	1						-	4126
82			820	İ	1	- 1					4128
100			101)	}	4131
120			121		1	ı					4133
150 180			151 181			-			1		4135
220			221								4137 4139
270			271	1		- 1			1	1	4142
				1					1	j	
330 390			331 391	1	1						4144
470			471	J					1	1	4146 4148
560			561			- 1				1	4148
680			681	1						ļ	4153
820			821	İ							4155
1000			102	i		l				j	4157
1200	1206	UJ	122	J	9 [A]	Ε	,	2222	[591] [581]	7	4159

Y5V size 0805

STANDARD SERIES OF VALUES IN A DECADE

for resistances and capacitances

according to IEC publication 63

100 100 100 169 169 169 287 287 287 487 487 487 825 825 835 101 172 291 493 493 493 835 845	18 25 66 99
101 172 291 493 835 102 102 174 174 294 294 499 499 845 845 104 176 298 505 505 856 866 105 105 105 178 178 178 301 301 511 511 511 866 866 86 88 106 180 305 517 876 876 876 877 876 887 887 887 887 887 887 887 887 887 887 887 887 887 888 887 887 887 888	66 09
104 176 298 505 856 105 105 105 178 178 178 301 301 301 511 511 511 866 866 86 81 106 180 305 517 876 876 876 876 876 876 876 887 887 887 887 887 887 887 887 887 887 887 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898 898	9
106 180 305 517 876 107 107 182 182 309 309 523 523 887 887 109 184 312 530 898 110 110 110 187 187 187 316 316 536 536 536 909 909 90 111 189 320 542 920 113 113 191 191 324 324 549 549 931 931 114 193 328 556 942 115 115 115 196 196 196 332 332 332 562 562 562 953 953 9 117 198 336 569 965 118 118 200 200 340 340 576 576 976 976	9
109 184 312 530 898 110 110 110 187 187 187 316 316 536 536 536 909 909 91 111 189 320 542 920 920 113 113 191 191 324 324 549 549 931 931 114 193 328 556 942 115 115 196 196 196 332 332 332 562 562 562 953 953 9 117 198 336 569 965 118 118 200 200 340 340 576 576 976 976	
111 189 320 542 920 113 113 191 191 324 324 549 549 931 931 114 193 328 556 942 115 115 115 196 196 196 332 332 332 562 562 562 953 953 9 117 198 336 569 965 118 118 200 200 340 340 576 576 976 976	
114 193 328 556 942 115 115 115 196 196 196 332 332 332 562 562 562 953 953 9 117 198 336 569 965 118 118 200 200 340 340 576 576 576 976 976	53
117 198 336 569 965 118 118 200 200 340 340 576 576 976 976	33
118 118 200 200 340 340 576 576 976 976	
121 121 121 205 205 205 348 348 348 590 590 590 123 208 352 597	
124 124 210 210 357 357 604 604 E24 E12 E6 126 213 361 E24 E12 E6	E3
127 127 127 215 215 215 365 365 365 619 619 619 10 10 10 129 218 370 626 11	10
130 130 221 221 374 374 634 634 12 12 132 223 379 642 13	
133 133 133 226 226 226 383 383 383 649 649 649 15 15 15 135 229 388 657 16	
137 137 232 232 392 392 665 665 18 18 138 234 397 673 20	
140 140 140 237 237 237 402 402 402 681 681 681 22 22 22 142 240 407 690 24	22
143 143 243 243 412 412 698 698 27 27 145 246 417 706 30	
147 147 147 249 249 249 422 422 422 715 715 715 33 33 33 149 252 427 723 36	,
150 150 255 255 432 432 732 732 39 39 152 258 437 741 43	
154 154 154 261 261 261 442 442 442 750 750 750 47 47 47 156 264 448 759 51	47
158 158 267 267 453 453 768 768 56 56 160 271 459 777 62	
162 162 162 274 274 274 464 464 464 787 787 787 68 68 68 164 277 470 796 75	
165 165 280 280 475 475 806 806 82 82 167 284 481 816 91	

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Australia: PHILIPS INDUSTRIES LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02)439 3322.

Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, A-1101 WIEN, Tel. (0222) 6291 11-0. Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 525-61-11 Brazil: CONSTANTA-IBRAPE; (Active Devices): Av. Brigadeiro Faria Lima, 1735-SAO PAULO-SP, Tel. (011) 211-2600, (Passive Devices & Materials): Av. Francisco Montelior, 702 - RIBEIRAO PIRES-SP, Tel. (011) 459-8211. Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 7738 16.

Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. (01) 2497624. Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 11 33. Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. (90) 17271. France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. (01) 43388000. Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894 911.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box, Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. (022) 4930311/4930590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 51 79 95. Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Elcoma Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355. Italy: PHILIPS S.p.A., Div. Componenti Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1 Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. (03) 448-5611.

(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chivoda-ku, TOKYO 102, Tel. (03) 230-1521. Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011. Malaysia: PHILIPS MALAYSIA SDN BHD, Elcoma Div., 345 Jalan Gelugor, 11700 PULAU PINANG, Tel. (04) 870044.
Mexico: ELECTRONICA, S.A de G.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 5014d, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 7837 49.

Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LID., Elcoma Div., To a Payoh, SINGAPORE 1231, Tel. 3502 000.

South Africa: S.A. PHILIPS (Pty) LID., EDAC Div., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001,

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541 - 7141 to 7747

Tel. (011) 402-4600/07.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. (02) 868951 to 59.

Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. (03) 301 63 12.

Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. (08) 7821000. Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. (01) 488 22 11 Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. (02) 7120500

New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914. Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveler 70, OSLO 6, Tel. (02) 680200.

Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772.

Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. (04) 926074.

United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive & Electromech. Dev.) MEPCO/CENTRALAB, INC., 2001 West Blue Heron Blvd, RIVIERA BEACH, Florida 33404, Tel. (305) 881-3200

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. (02) 98 53 95.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

© Philips Export B.V. 1987

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.