

### KONGU ENGINEERING COLLEGE (Autonomous)

PERUNDURAI ERODE - 638 060

Course Plan Revision-2.1 01-12-2018

IQAC

DEPARTMENT OF CSE ENGINEERING

| Name of the Faculty,<br>Designation & Dept. | Dr.R.C.Suganthe,<br>Professor, CSE        | Programme & Department of the<br>Students | BE(CSE), CSE                   |
|---------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------|
| Course Code & Name                          | Programming and Linear<br>Data structures | Academic Year, Semester & Section         | 2018-19 /II Semester / CSE 'A' |
| Type of Course                              | Theory cum Practical                      |                                           |                                |

## OUTCOME BASED EDUCATIONAL DETAILS - COURSE WISE

#### COURSE OUTCOMES:

|       | _                                                                |                                                                                                |           |          | its will be |         |          |          |                      |     |                |      |      | BT M:<br>(Highes | apped<br>t Level) |
|-------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------|----------|-------------|---------|----------|----------|----------------------|-----|----------------|------|------|------------------|-------------------|
| CO1:  | Ma                                                               | ake use                                                                                        | of poi    | nters to | perfor      | m arra  | v and st | tring or | erations             | e   |                |      |      | 2                |                   |
| CO2:  | Im                                                               | plemer                                                                                         | nt funct  | ions ar  | nd struc    | tures w | ith poi  | nters    | cration              | 3   |                |      |      | 3                |                   |
| CO3:  | De                                                               | monstr                                                                                         | rate file | operat   | tions ar    | d prep  | rocesso  | r direct | ives                 |     |                |      |      | 3                |                   |
| CO4:  | De                                                               | Demonstrate file operations and preprocessor directives Describe the operations of linked list |           |          |             |         |          |          |                      |     |                |      | 3    |                  |                   |
| CO5:  | Ma                                                               | Manipulate the operations on stacks and queues                                                 |           |          |             |         |          |          |                      |     |                |      | 2    |                  |                   |
| CO6:  | Imp                                                              | Implement programs to solve problems using pointers to arrays and structures                   |           |          |             |         |          |          |                      |     |                | -    | 3    |                  |                   |
| CO7:  | De                                                               | Develop programs using files and preprocessor directives                                       |           |          |             |         |          |          |                      |     |                |      | 3    |                  |                   |
| CO8:  | Use appropriate linear data structure for solving given problems |                                                                                                |           |          |             |         |          |          |                      |     | 3              |      |      |                  |                   |
|       |                                                                  |                                                                                                |           |          | area our    |         |          |          |                      |     |                |      |      | 3                | 3                 |
| COs   | /                                                                | PO1                                                                                            | PO2       | PO3      | PO4         | PO5     | pping or | COs with | POs, PS              | Os  |                |      |      |                  |                   |
| POs&P | SOs                                                              | 3                                                                                              | 4         | 5        | 5           | 6       | PO6      | PO7      | PO8                  | PO9 | PO10           | PO11 | PO12 | PSO1             | PSO2              |
| CO1   |                                                                  | 3                                                                                              | 2         | 1        | 1           |         |          |          |                      |     |                |      |      |                  |                   |
| CO2   |                                                                  | 3                                                                                              | 2         | 1        | 1           |         |          |          |                      |     |                |      |      |                  |                   |
| CO3   |                                                                  | 3                                                                                              | 2         | 1        | 1           |         |          |          |                      |     |                |      |      |                  |                   |
| CO4   | -                                                                | 2                                                                                              | 1         | HAR      |             |         |          |          |                      |     |                |      |      |                  |                   |
| CO5   |                                                                  | 3                                                                                              | 2         | 1        | 1           |         |          |          |                      |     |                |      |      |                  |                   |
| CO6   |                                                                  | 3                                                                                              | 2         | 1        | 1           |         |          |          |                      |     |                |      |      |                  |                   |
| CO7   |                                                                  | 3                                                                                              | 2         | 1        | 1           |         |          |          |                      |     |                |      |      |                  |                   |
| CO8   |                                                                  | 3                                                                                              | 2         | 1        | 1           |         |          |          |                      |     |                |      |      |                  |                   |
| CP L  | 2                                                                |                                                                                                | te, 3-5   |          | 300         |         | 1200     |          | Land State of London |     | and the second |      |      |                  | 1                 |

# COURSE PLAN FOR THEORY COURSE / THEORY CUM PRACTICAL (THEORY COMPONENT):

| S. No. | Intended learning Outcomes                                          | CO(s)<br>Mapped | Cognitive<br>Level | Plan   | ned*   | Actual* |        |
|--------|---------------------------------------------------------------------|-----------------|--------------------|--------|--------|---------|--------|
|        |                                                                     |                 | Level              | Date   | Period | Date    | Period |
| 1.     | ILO1.1 Discuss the need for pointers                                | CO1             | K2                 | 18-1   | 1      | 18-1    | 1      |
| 2.     | ILO1.2 Illustrate the simple programs using pointers                | COI             | K2                 | 19-1   | 1      | 19-1    | 1      |
| 3.     | ILO1.3 Employ arithmetic operations on pointer variables            | CO1             | КЗ                 | 23-1   | 3      | 23-1    | 3      |
| 4.     | ILO1.4 Outline the usage of NULL pointers and generic pointers      | CO1             | K2                 | 24-1   | 1      | 24-1    | 1      |
| 5.     | ILO1.5 Develop programs for<br>manipulating 1D array using pointers | CO1             | КЗ                 | . 25-1 | 1      | 25-1    |        |

Cognitive Process Knowledge Dimension

: K1 - Remembering K2 - Understanding K3 - Applying K4 - Analyzing K5 - Evaluating : F - Factual C - Conceptual P - Procedural MC - Meta Cognitive K6 - Creating

Psychomotor Domain

: S1-Imitation S2-Manipulation S3-Precision S4-Articulation S5-Naturalization

| 6.     | ILO1.6 Implement operations on 2D arr                                                                 | ay CO  | 1 K3     |              |     |             |    |
|--------|-------------------------------------------------------------------------------------------------------|--------|----------|--------------|-----|-------------|----|
| -      | using pointers                                                                                        |        |          | 30           | -1  | 3 30        | -1 |
| 7.     | ILO1.7 Solve problems using 1D array an argument to function                                          | as CO  | 1 K3     | 31-          | -1  | 4 31        | -1 |
| 8.     | ILO1.8 Solve problems using 2D array a an argument to function                                        | is COI | K3       | 31-          | 1   |             |    |
| 9.     | ILO1.9 Demonstrate returning 1D array<br>from a function with simple programs                         | COI    | K3       | 1.0          |     | 4 31-       | -1 |
| 0.     | ILO1.10 Demonstrate returning 2D arra                                                                 | y CO1  | K3       | 1-2          |     | 1 1-2       | 2  |
| 1.     | from a function with simple programs ILO1.11 Design simple applications using                         |        | K3       | 1-2          |     | 1 1-2       |    |
| -      | array of pointers                                                                                     |        |          | 2-2          | 1   | 2-2         |    |
|        | ILO1.12 Explain the basics of pointers ar                                                             |        | K2       | 2-2          | 1   | 22          |    |
|        | ILO1.13 Implement string manipulation functions using pointers                                        |        | КЗ       | 6-2          | 3   | 2-2         | 1  |
| -      | ILO1.14 Demonstrate the usage of pointer<br>in 2D character array                                     |        | K3       | 7-2          | 1   | 6-2         | 3  |
|        | ILO1.15 Express the given problem usin array of pointers to strings ILO1.16 Elaborate the concepts of | g CO1  | K2       | 8-2          | 1   | 7-2         | 4  |
| 1      | Dynamic memory allocation                                                                             | of CO1 | K2       | 13-2         | 1   | 8-2         | 1  |
|        | LO1.17 Solve the given problem using dynamic memory allocation                                        |        | K3       | 14-2         | 4   | 13-2        | 3  |
| II     | LO2.1 Relate the use of function pointers  LO2.2 Employ function pointer for                          |        | K2       | 15-2         | 1   | 14-2        | 4  |
| П      | LO2.3 Outline the usage of structures and                                                             | CO2    | К3       | 16-2         | 1   | 15-2        | 1  |
| II     | O2.4 Implement the given problem                                                                      |        | K2       | 20-2         | 3   | 20-2        | 1  |
| IL     | O2.5 Use structure as areas                                                                           |        | K3       | 21-2         | 4   | 21-2        | 3  |
| IL     | O2.6 Demonstrate the uses of                                                                          | CO2    | K3       | 22-2         | 1   | 22-2        | 4  |
| IL     | O3.1 Discuss the need and basics of files                                                             | CO2    | K3       | 27-2         | 3   | 27-2        | 1  |
| IL     | O3.2 Make use of files for storing and rieving information                                            | CO3    | K2<br>K3 | 20-3         | 5   | 20-3        | 5  |
| ILC    | O3.3 Demonstrate operations on uential file access                                                    | CO3    |          | 21-3         | 4   | 21-3        | 4  |
| III    | O3.4 Demonstrate operations on<br>ndom access file                                                    | CO3    | K3       | 23-3         | 1   | 23-3        | 1  |
| ILC    | 03.5 Employ a mechanism for detecting end of file                                                     | CO3    | K3       | 27-3         | 3   | 27-3        | 3  |
| ILO    | 03.6 Discuss rename and removing a file                                                               |        | К3       | 28-3         | 4   | 28-3        | 4  |
| pre    | processor directive                                                                                   | CO3    | K2<br>K2 | 29-3<br>30-3 | 1   | 29-3        | 1  |
| prep   | 03.8 Describe the different types of processor directives                                             | CO3    | K2       | 30-3         | 1   | 30-3        | 1  |
| solvi  | ing the given problem                                                                                 | CO3    | K3       | 3-4          | 1 3 | 30-3<br>3-4 | 1  |
| line   | arguments arguments                                                                                   | CO3    | K2       | 4-4          |     |             | 3  |
| ILO    | 4.1 Explain the importance of data ctures and its classification                                      | CO4    | K2       | 5-4          | 4   | 4-4         | 4  |
| List   | 4.2 Differentiate arrays and Linked                                                                   | CO4    | K2       | 10-4         | 1   | 5-4         | 1  |
| ILO.   | 4.3 Show the structure of Linked List                                                                 | CO4    | K2       | 11-4         | 3   | 10-4        | 3  |
|        | 4.4 Discuss the memory allocation for ded List                                                        | CO4    | K2       | 12-4         | 4   | 11-4        | 4  |
| Link   | 4.5 Classify the different types of ed List                                                           | CO4    | K2       | 13-4         | 1   | 12-4        | 1  |
| rue o  | 4.6 1 Illustrate with simple program,<br>perations on Singly Linked List                              | CO4    | K2       | 24-4         | 3   | 13-4        | 1  |
| 11/1/6 | 5.1 Explain the concept of stack                                                                      |        |          |              |     | 24-4        | 3  |

K3

25-4

26-4

CO5

ILO5.2 Implement the operations of stack using array

41.

| 42. | ILO5.3 Use Linked List for implementing stack operations    | CO5 | K3 | 27-4 | 1 | 27-4 | 1 |
|-----|-------------------------------------------------------------|-----|----|------|---|------|---|
| 43. | ILO5.4 Discuss the applications of stack                    | CO5 | K2 | 1-5  | 4 | 2-5  | 4 |
| 44. | ILO5.5 Outline the concept of Queue                         | CO5 | K2 | 2-5  | 4 | 2-5  | 4 |
| 45. | ILO5.6 Implement the operations of Queue using array        | CO5 | К3 | 3-5  | 4 | 3-5  | 1 |
| 46. | ILO5.7 Use Linked List for implementing<br>Queue operations | CO5 | К3 | 3-5  | 1 | 3-5  | 1 |
| 47. | ILO5.8 Discuss the applications of Queue                    | CO5 | K2 | 4-5  | 1 | 4-5  | 1 |
|     | Content beyond syllabus                                     |     |    | 4-5  | 8 | 4-5  | 8 |

Note: Content beyond syllabus if any may be included.

## OUTCOME BASED EDUCATIONAL ACTIVITIES FOR THEORY / THEORY CUM PRACTICAL / PRACTICAL COURSE:

| S. No. | Name of the Activity                | CO(s) Mapped | Cognitive,<br>Knowledge, | PO based<br>Performance | Actual Date(s) |      |
|--------|-------------------------------------|--------------|--------------------------|-------------------------|----------------|------|
|        | and or the receiving                | CO(s) Mapped | Psychomotor<br>Dimension | Indicators              | From           | To   |
| 1      | Flipped Class Room/Think pair share | CO1,CO2,CO3  | K3, P, S3                | 1.7.1                   | 28-3           | 29-3 |

# RUBRICS FOR CONTINUOUS ASSESSMENT – THEORY CUM PRACTICAL / PRACTICAL / PROJECT: Fill for Integrated lab course and Practical course (No Need to fill for theory course)

| Practical<br>Component      | Indicator                                                                                       | Outstanding<br>(90-100)                                                                                                                     | Excellent (80-89)                                                                                                                                              | Very Good<br>(70-79)                                                                                                       | Good<br>(60-69)                                                                                   | Average<br>(50-59)                                                                                          | Poor<br>(< 50)                                                           |
|-----------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                             | Identify the requirements and analyze the given problem (3)                                     | Exemplifies in identifying the requirements and clearly analyzes information for accuracy, relevance and validity for the given problem (3) | Excellent in identifying the requirements and for the given problem and analyzes it for accuracy, relevance and validity. (2.5)                                | Requirements<br>are identified but<br>the relevance,<br>accuracy are<br>analyzed upto<br>the minimum<br>context (2)        | Good in identifying the requirements but not analyzed upto the context (1.5)                      | Partially<br>identifies the<br>requirements<br>for the given<br>problem (1)                                 | Difficulty in identifying the requirements for the given problems (0.5)  |
| Conduct of Experiments (10) | Ability to<br>understand<br>and follow<br>the rules of<br>the<br>programming<br>language<br>(3) | Program compiles and contains no evidence of misinterpreting the syntax of the language (3)                                                 | Program compiles,<br>and is free from<br>major syntactic<br>misunderstandings,<br>but may contain<br>non-standard usage<br>or superfluous<br>elements<br>(2.5) | Program compiles, and free from misinterpretation of syntax usage but contain some non- conventional usage of language (2) | Program contain some syntactic errors due to misunderstanding of the programming language (1.5)   | Program does<br>not compile<br>and contains<br>typographical<br>errors leading<br>to undefined<br>names (1) | Program does<br>not compile<br>due to major<br>syntax errors<br>(0.5)    |
|                             | Ability to use programming constructs that are appropriate for the problem domain (4)           | Program logic is correct, with no known boundary errors, and no redundant or contradictory conditions (4)                                   | Program logic is correct, but may contain an occasional boundary error or redundant or contradictory conditions (3.5)                                          | Program logic is identified, but minor error in boundary conditions (3)                                                    | Good in identifying the program logic but difficulty in identifying the boundary conditions (2.5) | Program contains some conditions and logics that are inappropriate for the problem (2)                      | Difficulty in identify the program logic and boundary conditions (0.5-1) |
| Viva-voce<br>(5)            | Viva voce<br>(5)                                                                                | Able to<br>understand the<br>questions, and<br>answer<br>effectively<br>(5)                                                                 | Able to understand<br>the questions, and<br>answer relevantly<br>(4)                                                                                           | Able to somewhat understand the question and difficulty in giving suitable answers.                                        | Difficulty in understanding the questions, and inappropriately answers.  (3)                      | Minimal ability in understanding the questions.                                                             | No ability in understanding the questions. (0.5-1)                       |

Cognitive Process : K1 - Remembering K2 - Understanding K3 - Applying K4 - Analyzing K5 - Evaluating K6 - Creating

Knowledge Dimension : F - Factual C - Conceptual P - Procedural MC - Meta Cognitive

Psychomotor Domain : S1-Imitation S2-Manipulation S3-Precision S4-Articulation S5-Naturalization

(3.5)

# COGNITIVE PROCESS DISTRIBUTION IN PERCENTAGE : (Percentage of questions to be asked in each CATs)

| -  | 222     | 1 1/3                                 | K4     | K5                               | K6                                    |
|----|---------|---------------------------------------|--------|----------------------------------|---------------------------------------|
| K1 | K2      |                                       |        |                                  |                                       |
| 3  | 7       | 90                                    |        |                                  |                                       |
| 3  | 7       | 90                                    |        |                                  |                                       |
|    |         |                                       |        |                                  |                                       |
|    | K1<br>3 | K1     K2       3     7       3     7 | 3 7 90 | K1     K2       3     7       90 | K1     K2     K3       3     7     90 |

#### QUESTION PAPER PATTERN:

| Test     | Section(s) & Type of Question        | No. of<br>Questions | No. of Choices | Maximum<br>Marks /<br>Question | Total mark<br>in this<br>section |
|----------|--------------------------------------|---------------------|----------------|--------------------------------|----------------------------------|
| CAT-I    | Part A & Short, MCQ, Fill Ups        | 10                  | No choice      | 2                              | 20                               |
|          | Part B & Descriptive                 | 5                   | Either or      | 12                             | 60                               |
|          | Part C & Descriptive with Case study | 1                   | Either or      | 20                             | 20                               |
|          | Part A & Short, MCQ, Fill Ups        | 10                  | No choice      | 2                              | 20                               |
| CAT - II | Part B & Descriptive                 | 5                   | Either or      | 12                             | 60                               |
|          | Part C & Descriptive with Case study | 1                   | Either or      | 20                             | 20                               |

| Num         | OURSE PLAN FOR THEORY CUM PRACTICAL (PRACTICAL Control of students per batch*:                            |                 | batches/session*                                     |                         |                        |
|-------------|-----------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------|-------------------------|------------------------|
| Exp.<br>No. | Name of the Experiment                                                                                    | CO(s)<br>Mapped | Cognitive,<br>Knowledge,<br>Psychomotor<br>Dimension | Planned*  Date & Period | Actual*  Date & Period |
| 1.          | Demonstration of programs to access an 1D and 2D arrays using pointers                                    | CO6             | K3,P,S3                                              | 22-1<br>29-1            | 22-1                   |
| 2.          | Demonstration of programs to manipulate strings using pointers                                            | CO6             | K3,P,S3                                              | 5-2                     | 5-2                    |
| 3.          | Program to demonstrate dynamic memory allocation for 1D and 2D array                                      | CO6             | K3,P,S3                                              | 12-2                    | 12-2                   |
| 4.          | Demonstration of programs to pass an array as an argument to function and access the array using pointers | CO6             | K3,P,S3                                              | 19-2<br>26-2            | 19-2                   |
| 5.          | Demonstration of programs using pointers and structures                                                   | CO6             | K3,P,S3                                              | 5-3                     | 5-3                    |
| 6.          | Demonstration of programs to perform operations on files                                                  | CO7             | K3,P,S3                                              | 26-3<br>2-4             | 26-3                   |
| 7.          | Demonstration of programs using conditional preprocessor directives                                       | CO7             | K3,P,S3                                              | 9-4                     | 9-4                    |
| 3.          | Program to implement singly linked list                                                                   | CO8             | K3,P,S3                                              | 16-4                    | 16-4                   |
| ).          | Program to implement Stack using array and linked list                                                    | CO8             | K3,P,S3                                              | 23-4                    | 23-1                   |
| 0.          | Program to implement Queue using array and                                                                | CO8             | K3,P,S3                                              | 30-4                    | 30-4                   |

| S. No           | N FOR OTHER ASSESSMENTS -  Description             | CO(s)<br>Mapped            | Cognitive,<br>Knowledge,<br>Psychomotor<br>Dimension | Planned<br>Date* | Actual<br>Date* |
|-----------------|----------------------------------------------------|----------------------------|------------------------------------------------------|------------------|-----------------|
| Assessment 1: ( | Case study / Mini Project / Online Test / Industri | al Training / Paper Presen | tation / Others)                                     |                  |                 |
|                 | MiniProject                                        | CO1 to                     | K3,P,S3                                              | 15,4.2019        | 15-4-19         |

linked list

: K1 - Remembering K2 - Understanding K3 - Applying K4 - Analyzing K5 - Evaluating K6 - Creating

**Knowledge Dimension** 

: F - Factual C - Conceptual P - Procedural MC - Meta Cognitive : S1-Imitation S2-Manipulation S3-Precision S4-Articulation S5-Naturalization Psychomotor Domain