

# PLUMED Masterclass

## 21.5: Replica-exchange methods

Giovanni Bussi SISSA - Trieste bussi@sissa.it







open-source freely-available C++ library

- enhanced-sampling methods
- free-energy methods
- analysis MD data



www.plumed.org



@plumed\_org



Bonomi et al. CPC 2009 Tribello et al. CPC 2014

| Class * | Topic \$                   | Lecture I 💠       | Lecture II 💠      | Instructor 🖣 |
|---------|----------------------------|-------------------|-------------------|--------------|
| 21.1    | PLUMED syntax and analysis | January 18, 2021  | January 25, 2021  | M. Bonomi    |
| 21.2    | Statistical errors in MD   | February 1, 2021  | February 8, 2021  | G. Tribello  |
| 21.3    | Umbrella sampling          | February 15, 2021 | February 22, 2021 | G. Bussi     |
| 21.4    | Metadynamics               | March 1, 2021     | March 8, 2021     | M. Bonomi    |
| 21.5    | Replica exchange methods   | March 15, 2021    | March 22, 2021    | G. Bussi     |
| 21.6    | Dimensionality reduction   | April 12, 2021    | April 19, 2021    | G. Tribello  |
| 21.7    | Performance optimization   | April 26, 2021    | May 3, 2021       | M. Bonomi    |
| 21.8    | Poster session             | May 10, 2021      |                   |              |

#### Multiple replicas

Today, we will discuss algorithms where multiple replicas are simulated

Algorithms classified based on:

Are replicas coupled?
Are simulation protocols equivalent?

(we will focus on coupled replicas with inequivalent protocols)

If simulation protocols are non-equivalent:

How are the different protocols chosen?

#### Uncoupled, equivalent replicas



Repeat the same simulation protocol N times:

- Error estimation (cfr. Block analysis<sup>&</sup>)
- Parallelization
- Start from different states, analyse with Markov state models\*
- Steered molecular dynamics analysed with Jarzynki equality

• ...

\*Flyvbjerg, Petersen, JCP (1989)\*Chodera and Noe, COSB (2014)+Jarzynski, PRL (1997)

#### Coupled, equivalent replicas



Perform N simulations simultaneously. They communicate each other, but they behave in a (statistically) identical manner:

- Replica-average methods (communicate at every step to compute averages)&
- Multiple-walkers metadynamics (share history dependent potential)\*
- Altruistic metadynamics+

• ...

```
Lindorff-Larsen et al Nature (2005)*Raiteri et al, JPCB (2006)+Hosek et al JPCB (2016)
```

#### Uncoupled, non-equivalent replicas



Simulations are performed under different conditions:

- Multiple-windows umbrella sampling<sup>&</sup>
- Alchemical transformations\*

Typically, they are combined with WHAM or related methods (see masterclass 21.3)

#### Coupled, non-equivalent replicas



The typical coupling is "replica exchange": from time to time, coordinate exchanges are attempted and accepted or rejected using Metropolis Monte Carlo:

- Parallel tempering (different temperatures)<sup>&</sup>
- Hamiltonian replica exchange (different Hamiltonians)\*
- Umbrella sampling or alchemical replica exchange

• ...

## Replica exchange

X X X X X X

Every N<sub>x</sub> steps, propose a coordinate swap. Exchange pattern depends on chosen ensembles.

Acceptance:

$$\alpha = \min\left(1, \frac{P_i(x_j)P_j(x_i)}{P_i(x_i)P_j(x_j)}\right)$$

Different temperatures

$$\alpha = \min\left(1, e^{\Delta\beta\Delta U}\right)$$

Different potentials

$$\alpha = \min\left(1, e^{-\beta(U_i(x_j) + U_j(x_i) - U_i(x_i) - U_j(x_j))}\right)$$

The method is an *equilibrium* method. Since exchanges satisfy detailed balance, there's no need to equilibrate after an exchange has been accepted.

N<sub>x</sub> can be as small as one wishes. In most cases, the smallest the better\* (though one should balance with computational overhead).

Much smaller than "autocorrelation time" is usually not giving much advantage.



<sup>\*</sup>Sindhikara et al JCTC (2010)

## "Demuxing" trajectories



Trajectories produced during the simulation

Temperature/Hamiltonian are constant

Coordinates jump

"Demuxed"\* (continuous) trajectories

Temperature/Hamiltonian are changing

Coordinates are continuous

<sup>\*</sup>name borrowed from the demux.pl tool in GROMACS

### Rationale for choosing the ensembles



Replica exchange recommended

Replica exchange required

Usually, exchanges between adjacent pairs

Exchanges between random pairs

## "Bridging" between states



Restraints at intermediate positions (to enhance sampling)



Alchemically changes (to compute FE differences)



Two end states



Grid (2D/3D)



#### Tempering methods



Demux replicas follow an annealing procedure# (temperature increases then decreases)

Often, only lower replica is analysed, but it is possible to use WHAM

It is possible to scale
Hamiltonian (e.g. REST2,
partial tempering)\* or to
add index-dependent
biases&

Entropic barriers are not affected by raised temperature

#Kirkpatrick et al, Science (1983)

\*Wang et al JPCB (2011); Bussi Mol Phys (2014)

&Curuksu and Zacharias, JCP (2009); Gil-Ley and Bussi JCTC (2015)

### Mixed ensembles - bias exchange metadynamics



$$\alpha = \min\left(1, e^{-\beta(U_i(x_j) + U_j(x_i) - U_i(x_i) - U_j(x_j))}\right)$$

Each replica runs a metadynamics on one CV

Optionally, a neutral replica (no metadynamics) is included

Sampling enhanced if one of the CVs can approximately single-out a transition state

Analysis is done using WHAM#

Too frequent exchanges might lead to suboptimal performance (empirical)\*

Piana and Laio, JPCB (2007)

- \*Marinelli et al PCB (2009); also binless, see tutorial
- \*Cossio et al, JPCB (2010)

## Parallel-tempering + metadynamics



Each replica runs a metadynamics on the same CVs, but at a different T

Usually, Gaussian height chosen proportional to temperature T

Parallel tempering enhances all transitions (but requires many replicas!)
Metadynamics enhances selected transitions

Parallel tempering can be replaced with REST2#

Metadynamics might be used to balance states (not enhance transitions)\*

Bussi et al, JACS (2006)

#Camilloni et al, Proteins (2008)

\*Bottaro et al, JPCL (2016)

#### Pay attention to block analysis



Original (discontinuous) trajectories might contain long-time correlation that are difficult to detect. The same conformation might appear again in a given replica after some time spent in other replicas.

"Demuxed" (continuous) trajectories are more smooth. My recommendation:

- Check that they display transitions
- Difference between them might suggest problems
- Can be used as quasi-independent blocks (see tutorial)

## Multiple replicas with plumed + gromacs

attention to shell globbing

mpiexec -np 8 gmx\_mpi mdrun -multidir dir? dir?? plumed ../plumed.dat

```
# a single plumed file
plumed.dat
dir0/topol.tpr
dir1/topol.tpr
...
dir15/topol.tpr
```

topol.tpr might be generated with:

- different initial coordinates
- different temperatures/pressure
- different lambdas (alchemical)

If bias potential for different replicas is different, it will affect acceptance

NB also with a single file it could be different, e.g. depending on history of each replica!

mpiexec -np 8 gmx\_mpi mdrun -multidir dir? dir?? -p umed plumed.dat

```
# separate plumed files

dir0/topol.tpr dir0/plumed.dat
dir1/topol.tpr dir1/plumed.dat
...
dir15/topol.tpr dir15/plumed.dat
```

(for codes without multidir, use plumed.0.dat, plumed.1.dat, etc.)

output files will be suffixed in both cases (e.g. colvar.0.dat, colvar.1.dat)

$$\alpha = \min\left(1, e^{\Delta\beta\Delta U - (\beta_i V_i(x_j) + \beta_j V_j(x_i) - \beta_i V_i(x_i) - \beta_j V_j(x_j))}\right)$$

### Use a single plumed.dat when possible

```
# replicas run metadynamics with height proportional to T
# (as in parallel-tempering metadynamics)
phi: TORSION ATOMS=5,6,7,8
METAD ARG=phi TAU=2.0 SIGMA=0.3 # TAU instead of HEIGHT
Use "@replicas:" syntax to make small variations
# replicas have restraints at different positions
# (as in multiple windows umbrella sampling)
phi: TORSION ATOMS=5,6,7,8
RESTRAINT ARG=phi KAPPA=100 AT=@replicas:1.0,1.5,2.0,2.5
# replicas run metadynamics on different collective variables
# (as in bias-exchange metadynamics)
d: DISTANCE ATOMS=1,2
phi: TORSION ATOMS=5,6,7,8
METAD ARG=@replicas:d,phi HEIGHT=1.0 SIGMA=@replicas:0.1,0.3
```

In any case, maximum flexibility with separate plumed.dat files

#### Instructions



| Class * | Topic \$                   | Lecture I 🕴       | Lecture II 💠      | Instructor \$ |
|---------|----------------------------|-------------------|-------------------|---------------|
| 21.1    | PLUMED syntax and analysis | January 18, 2021  | January 25, 2021  | M. Bonomi     |
| 21.2    | Statistical errors in MD   | February 1, 2021  | February 8, 2021  | G. Tribello   |
| 21.3    | Umbrella sampling          | February 15, 2021 | February 22, 2021 | G. Bussi      |
| 21.4    | Metadynamics               | March 1, 2021     | March 8, 2021     | M. Bonomi     |
| 21.5    | Replica exchange methods   | March 15, 2021    | March 22, 2021    | G. Bussi      |
| 21.6    | Dimensionality reduction   | April 12, 2021    | April 19, 2021    | G. Tribello   |
| 21.7    | Performance optimization   | April 26, 2021    | May 3, 2021       | M. Bonomi     |
| 21.8    | Poster session             | May 10, 2021      |                   |               |

- I. Go to <a href="https://www.plumed.org">www.plumed.org</a>
- 2. Click on the Masterclass tab
- 3. Click on the Topic of class 21.5
- 4. I week to complete the exercises
- 5. Questions/discussions on Slack channel masterclass-21-5
- 6. Lecture I and II available on YouTube