$$LL(x,\lambda) = \ln\left(\prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!}\right) = \sum_{i=1}^{n} \ln\left(\frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!}\right) = \sum_{i=1}^{n} \ln(e^{-\lambda}) + \ln(\lambda^{x_{i}}) - \ln(x_{i}!)$$

$$= \sum_{i=1}^{n} \ln(e^{-\lambda}) + \sum_{i=1}^{n} \ln(\lambda^{x_{i}}) - \sum_{i=1}^{n} \ln(x_{i}!)$$

$$= \sum_{i=1}^{n} -\lambda + \sum_{i=1}^{n} \ln(\lambda^{x_{i}}) - \sum_{i=1}^{n} \ln(x_{i}!)$$

$$= -n\lambda + \sum_{i=1}^{n} \ln(\lambda^{x_{i}}) - \sum_{i=1}^{n} \ln(x_{i}!)$$

$$\frac{d}{d\lambda} \left(-n\lambda + \sum_{i=1}^{n} \ln(\lambda^{x_{i}}) - \sum_{i=1}^{n} \ln(x_{i}!)\right) = 0$$

$$\frac{1}{d\lambda} \left(-n\lambda + \sum_{i=1} \ln(\lambda^{x_i}) - \sum_{i=1} \ln(x_i!) \right) = 0$$

$$-n + \frac{1}{\lambda} \sum_{i=1}^{n} x_i = 0 \to \lambda = \bar{x} \left(\text{mean of } (x_1, \dots, x_n) \right)$$

2. ידוע כי

$$P(A) = 0.4, P(B) = 0.2, P(C) = 0.3, P(D) = 0.1$$

, P(S) נסמן את ההסתברות שספינה אותרה

$$P(S|D) = 0.75$$
, $P(S|C) = 0.5$, $P(S|B) = 0.3$, $P(S|A) = 0.4$, ידוע

א. ההסתברות שספינה תאותר היא לפי נוסחת ההסתברות השלמה היא:

 $P(S) = P(S \cap A) + P(S \cap B) + P(S \cap C) + P(S \cap D)$

לפי נוסחת בייס ניתן לחשב:

$$P(T|R) = \frac{P(T \cap R)}{P(R)} \to P(R)P(T|R) = P(T \cap R)$$

$$P(S \cap A) = 0.4 * 0.75 = 0.3$$

$$P(S \cap B) = 0.2 * 0.5 = 0.1$$

$$P(S \cap C) = 0.3 * 0.3 = 0.09$$

$$P(S \cap D) = 0.1 * 0.4 = 0.04$$

ולכן

$$P(S) = 0.53$$

ב.

$$P(C|S) = \frac{P(S \cap C)}{P(S)} = \frac{0.09}{0.53} = \frac{9}{53} = 0.1698$$

.λ

$$P(D|S) = \frac{P(S \cap D)}{P(S)} = \frac{0.04}{0.53} = \frac{9}{53} = 0.0754$$

X = k $Y = l$	$1 \le k \le 5$	$6 \le k \le 10$	P(X=k)
$1 \le l \le 5$	0.18	0.12	0.3
$6 \le l \le 10$	0.12	0.58	0.7
P(Y = l)	0.3	0.7	1

מהיות ו- $P(1 \le X \le 5, 1 \le Y \le 5) = 0.18, P(1 \le X \le 5) * P(1 \le X \le 5) = 0.09$ ניתן לראות כי Y, X תלויים.

X = k	$1 \le k \le 5$	$6 \le k \le 10$
c = m		
0	0.4	0.6
1	1	0

Y = l	$1 \le l \le 5$	$6 \le l \le 10$
c = m		
0	0.4	0.6
1	1	0

 \mathcal{C} ב"ת בהינתן ,Y, $\forall k,l,c$ ולכן , $P(X=k,Y=l|\mathcal{C}=m)=P(X=k|\mathcal{C}=m)*P(Y=l|\mathcal{C}=m)$ מסויים.

X = k	Y = l	C = m	P(X = k, Y = l, C = m) = P(X = k, Y = l C = m) * P(C = m)
			$=\frac{1}{2} * P(X = k) * P(Y = l)$
$1 \le X \le 5$	$1 \le Y \le 5$	0	0.08
$1 \le X \le 5$	$6 \le Y \le 10$	0	0.12
$6 \le X \le 10$	$1 \le Y \le 5$	0	0.12
$6 \le X \le 10$	$6 \le Y \le 10$	0	0.18
$1 \le X \le 5$	$1 \le Y \le 5$	1	0.5
$1 \le X \le 5$	$6 \le Y \le 10$	1	0
$6 \le X \le 10$	$1 \le Y \le 5$	1	0
$6 \le X \le 10$	$6 \le Y \le 10$	1	0

נגדיר X מספר הארוחות ההוגנות.

$$X \sim B(5, 0.65)$$

א.

$$P(X = 3) = {5 \choose 3} * (0.65)^3 * (0.35)^2 = 0.3364$$

ב.

$$P(X \ge 2) = {}^{\text{aut'a}} 1 - P(X < 2) = 1 - [P(X = 0) + P(X = 1)]$$

$$1 - {5 \choose 1} * (0.65)^{1} * (0.35)^{4} - {5 \choose 0} * (0.65)^{0} * (0.35)^{5} = 0.9459$$

ג.

מהיות ויש לנו 300 סטודנטים במהלך 5 ימים סה"כ 1,500 סטודנטים . לכן

$$Y \sim B(1500, 0.65)$$

$$E(Y) = 1500 * 0.65 = 975$$

נחלק ב-300 על מנת למצוא את המספר הארוחות שכל סטודנט קיבל במהלך השבוע

$$\frac{975}{300} = 3.25$$

 $\mu_1 = 0.51164$

 $\mu_2 = -2.011801$

 $\sigma_1 = 0.99302$

 $\sigma_1 = 0.9969$

 $\rho = 0.66196$

