

DEEP LEARNING WORKSHOP

Dublin City University 21-22 May 2018

Day 1 Lecture 2

Deep Neural Networks

Eva Mohedano
eva.mohedano@insight-centre.org

Postdoctoral Researcher
Insight Centre for Data Analytics
Dublin City University

Overview

- Limitations the perceptron model
- Principle of deep learning
- Multilayer perceptron
- Convolutional neural networks

Overview

- Limitations the perceptron model
- Principle of deep learning
- Multilayer perceptron
- Convolutional neural networks

Perceptron (Neuron)

If the weighted sum of the input exceeds a threshold the neuron fires a signal.

Binary Classification task Bias Activation Output function Inputs $x_3 \circ$ Decision boundary can be calculated by: Weights $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$

Linear decision decision boundary

2D input space data

$$f(x) = egin{cases} 1 & ext{if } w \cdot x + b > 0 \ 0 & ext{otherwise} \end{cases}$$

 \mathbf{x}_1

Linear decision decision boundary

2D input space data

Parameters of the line.
They are find based on training data
- Learning Stage.

$$f(x) = \left\{egin{array}{ll} 1 & ext{if}(w) \cdot x + b > 0 \ 0 & ext{otherwise} \end{array}
ight.$$

X₁

Limitations: XOR problem

XOR logic table

Input 1	Input 2	Desired Output
0	0	0
0	1	1
1	0	1
1	1	0

Data might be non linearly separable

→ One single neuron is not enough

Non-linear decision boundaries

Linear models can only produce linear decision boundaries

Real world data often needs a non-linear decision boundary

- Images
- Audio
- Text

Non-linear decision boundaries

What can we do?

- Use a non-linear classifier
 - Decision trees (and forests)
 - K nearest neighbours
- 2. Engineer a suitable representation
 - One in which features are more linearly separable
 - Then use a linear model
- 3. Engineer a kernel
 - Design a kernel $K(x_1, x_2)$
 - Use kernel methods (e.g. SVM)
- 4. Learn a suitable representation space from the data
 - Deep learning, deep neural networks
 - o Boosted cascade classifiers like Viola Jones also take this approach

Overview

- Limitations the perceptron model
- Principle of deep learning
- Multilayer perceptron
- Convolutional neural networks

Principle of deep learning

- Old style machine learning:
 - Engineer features (by some unspecified method)
 - Create a representation (descriptor)
 - Train shallow classifier on representation
- Example:
 - SIFT features (engineered)
 - BoW representation (engineered + unsupervised learning)
 - SVM classifier (convex optimization)
- Deep learning
 - Learn layers of features, representation, and classifier in one go based on the data alone
 - Primary methodology: deep neural networks (non-convex)

Example: feature engineering in computer vision

Neural networks: single neuron

We already seen the single neuron. This is just a linear classifier (or regressor)

Inputs:

• X₁, X₂

Parameters

• w₁, w₂, b

Neural networks

A **composition** of these simple neurons into several layers

Each neuron simply computes a **linear combination** of its inputs, adds a bias, and passes the result through an **activation function** g(x)

The network can contain one or more **hidden** layers. The outputs of these hidden layers can be thought of as a new **representation** of the data (new features).

The final output is the **target** variable (y = f(x))

Activation functions

g() - transfer functions, nonlinearities, units

They act as a threshold

Desirable properties

- Mostly smooth, continuous, differentiable
- Fairly linear

Common nonlinearities

- Sigmoid
- Tanh
- ReLU = max(0, x)

Why do we need them?

If we only use linear layers we are only able to learn linear transformations of our input.

Overview

- Limitations the perceptron model
- Principle of deep learning
- Multilayer perceptron
- Convolutional neural networks

Multilayer perceptrons

When each node in each layer is a linear combination of all inputs from the previous layer then the network is called a multilayer perceptron (MLP)

Weights can be organized into matrices.

Forward pass computes

$$\mathbf{h}_0 = \mathbf{x}$$

$$\mathbf{h}^{(t)} = g(W^{(t)}\mathbf{h}^{(t-1)} + \mathbf{b}^{(t)})$$

$$f(\mathbf{x}) = \mathbf{h}^{(L)}$$

Multilayer perceptrons

 W_1

W ₁₁	W ₁₂	W ₁₃	W ₁₄
W ₂₁	W ₂₂	W ₂₃	W ₂₄
W ₃₁	W ₃₂	W ₃₃	W ₃₄
W ₄₁	W ₄₂	W ₄₃	W ₄₄

 h_0

x₁
x₂
x₃
x₄

 b_1

 $h_{11} = g(wx + b)$

 $\mathsf{h}_{\scriptscriptstyle 1}$

 h_0

$$\mathbf{h}_0 = \mathbf{x}$$

$$\mathbf{h}^{(t)} = g(W^{(t)}\mathbf{h}^{(t-1)} + \mathbf{b}^{(t)})$$

$$f(\mathbf{x}) = \mathbf{h}^{(L)}$$

Multilayer perceptrons

 W_1

W ₁₁	W ₁₂	W ₁₃	W ₁₄
w ₂₁	W ₂₂	W ₂₃	W ₂₄
W ₃₁	W ₃₂	W ₃₃	W ₃₄
W ₄₁	W ₄₂	W ₄₃	W ₄₄

 h_0

x₁
x₂
x₃
x₄

 b_1

 $h_{11} = g(wx + b)$

$$h_{12} = g(wx + b) h_2$$

 h_1

 h_0

$$\mathbf{h}_0 = \mathbf{x}$$

$$\mathbf{h}^{(t)} = g(W^{(t)}\mathbf{h}^{(t-1)} + \mathbf{b}^{(t)})$$

$$f(\mathbf{x}) = \mathbf{h}^{(L)}$$

Universal approximation theorem

<u>Universal approximation theorem</u> states that "the standard multilayer feed-forward network with **a single hidden layer**, which contains **finite number of hidden neurons**, is a **universal approximator** among continuous functions on compact subsets of Rⁿ, under mild assumptions on the activation function."

If a 2 layer NN is a universal approximator, then why do we need deep nets??

The universal approximation theorem:

- Says nothing about the how easy/difficult it is to fit such approximators
- Needs a "finite number of hidden neurons": finite may be extremely large

In practice, deep nets can usually represent more complex functions with less total neurons (and therefore, less parameters)

Example: MNIST digit classification

MNIST

- Popular dataset of handwritten digits
- 60,000 training examples
- 10,000 test examples
- 10 classes (digits 0-9)
- http://yann.lecun.com/exdb/mnist/
- 28x28 grayscale images (784D)

Objective

- Learn a function y = f(x) that predicts the digit from the image
- Measure accuracy on test set

```
0000000000000
222122222222222222222
833333333333333333333333
44444444444444444444
8888888888888P188884
```

Example: MNIST digit classification

Model

- 3 layer neural network (2 hidden layers)
- Tanh units (activation function)
- 512-512-10
- **Softmax** on top layer
- Cross entropy loss

Layer	#Weights	#Biases	Total
1	784 x 512	512	401,920
2	512 x 512	512	262,656
3	512 x 10	10	5,130
			669,706

Example: MNIST digit classification

Training:

- 40 epochs using mini-batch SGD
- Batch size: 128
- Learning rate: 0.1 (fixed)
- Weight decay $\lambda = 1e-5$
- Takes about 5 mins to train on a GPU

Accuracy:

- 98.12% (188 errors in 10,000 test examples)
- Linear classifier: 88% accuracy (1200 errors)
- Sigmoid units give 95.5%

Improving accuracy and speeding convergence:

- Replace sigmoid with ReLU
- Use RMSprop optimizer
- Add dropout (0.2) after each hidden layer
- Accuracy ~98.4%
- Trains in 20 epochs

Try it yourself!

 https://github.com/fchollet/keras/blob/m aster/examples/mnist_mlp.py

Permutation invariant MNIST

There is something interesting about our previous MNIST classifier example

- It is possible to apply a fixed permutation to the pixels in the image (shuffle them around)
- This does NOT in any way affect the classification accuracy!
- Yet the resulting images are completely unintelligible to humans
- It is difficult to imagine that a human could learn to recognize permuted images of images

What's going on?

- Fully connected layers assume no spatial neighbourhood relationships
- Maybe we can do better if we somehow embed these structural relationships into the algorithm...

Overview

- Limitations the perceptron model
- Principle of deep learning
- Multilayer perceptron
- Convolutional neural networks

Convolutional neural networks (CNNs, convnets)

Key idea: good features to learn for images are:

- Local: only depend on a small part of the image, not the whole image
- **Translation invariant**: if a feature is good for one part of an image, it should be good for others too.

Instead of a big matrix multiplication on the whole image, apply a whole lot of little matrix multiplications against each image patch and store the local activations.

This is called **convolution**

Parameters are **shared** across these convolutional **kernels** (translation invariance)

Hyperparameters

Zero padding=1 + Stride=2

Convolved signal has lower dimension (half) then the input signal

Convolution on a grid

Convolution on a volume

A 5x5 convolution on a volume of depth 3 (e.g. an image) needs a filter (kernel) with 5x5x3 elements (weights) + a bias

Andrej Karpathy's demo: http://cs231n.github.io/convolutional-networks/#

Convolution with multiple filters

Pooling layers

Max-pool kernel (3x3)

Stride 3

10	9
16	7

Convnets

Most convnets contain several convolutional layers, interspersed with pooling layers, and followed by a small number of fully connected layers

Pooling layers

- Reduce amount of data that needs to be processed by later layers
- Provide invariance to small local changes

Max pooling usually used in practice.

Alexnet

- 8 parameter layers (5 convolution, 3 fully connected)
- Softmax output
- 650,000 units
- 60 million free parameters
- Trained on two GPUs (two streams) for a week
- Ensemble of 7 nets used in ILSVRC challenge

Krizhevsky et al. ImageNet classification with deep convolutional neural networks. NIPS, 2012.

Features of Alexnet: Convolutions

Features of Alexnet: ReLu

Filters learnt by Alexnet

Visualization of the 96 11 x 11 filters learned by bottom layer

Krizhevsky et al. ImageNet classification with deep convolutional neural networks. NIPS, 2012.

Example: a convnet on MNIST

Layers:

- 32 (3x3) convolutions + ReLU
- 32 (3x3) convolutions + ReLU
- 2x2 max pooling
- Dropout p=0.25
- Fully connected 128 units
- Dropout p=0.5
- Fully connected 10 units
- Softmax
- Cross entropy loss

Train for 12 epochs

Accuracy 99.22% (78 errors in 10000)

https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py

Advantages of convnets

- Significantly less parameters to learn:
 - Small local kernels
 - Shared parameters
- Faster training
 - Weight sharing means gradients are averaged for every location of the kernel
- Local features
 - Can be used to detect object location
- Interpretability
 - Can visualize the little learned filters
- Accuracy
 - Structural neighborhood assumption: not permutation invariant. Usually results in better accuracy
- Biological plausibility

Summary

- A single perceptron (neuron) can only define linear decision boundaries.
- Multilayer neural networks are compositions of simple linear models with element-wise nonlinearities.
- Deep networks focus in learning non-linear transformation of the input data
- Fully connected neural networks (MLP) are permutation invariant
- Convolutional neural networks

Thank you!