CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

 Apologies, but we are not allowed to have students in the balcony.

CSci 127 (Hunter)

- Apologies, but we are not allowed to have students in the balcony.
- Lab will be closed Wednesday, 7 March, 4-6:30pm.

- Apologies, but we are not allowed to have students in the balcony.
- Lab will be closed Wednesday, 7 March, 4-6:30pm.
- Special Event: OpenData@Hunter

CSci 127 (Hunter)

- Apologies, but we are not allowed to have students in the balcony.
- Lab will be closed Wednesday, 7 March, 4-6:30pm.
- Special Event: OpenData@Hunter
 Wednesday, 7 March, 4:30-6pm, Cafe West.
 Free, but reservations required
 (http://www.open-data.nyc).

From lecture slips & recitation sections.

From lecture slips & recitation sections.

Where is the final? When are we taking it?

From lecture slips & recitation sections.

• Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.

3 / 26

CSci 127 (Hunter) Lecture 5 6 March 2017

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?

6 March 2017

3 / 26

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus).

6 March 2017

3 / 26

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 4, 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.

6 March 2017

3 / 26

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 4, 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?

6 March 2017

3 / 26

From lecture slips & recitation sections.

- Where is the final? When are we taking it? *Tuesday, 22 May, 9-11am, 118 North.*
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).

CSci 127 (Hunter) Lecture 5

From lecture slips & recitation sections.

- Where is the final? When are we taking it? *Tuesday, 22 May, 9-11am, 118 North.*
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 4, 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?

CSci 127 (Hunter) Lecture 5

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 4, 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables? Different kinds of information takes different amounts of space. Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables? Strings are surrounded by quotes (either single or double).

6 March 2017

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?
 Strings are surrounded by quotes (either single or double).
 Variables names (identifiers) for memory locations are not.

6 March 2017

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Tuesday, 22 May, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?
 Strings are surrounded by quotes (either single or double).
 Variables names (identifiers) for memory locations are not. Ex: 'num' vs. num.

₽ √99€

Today's Topics

- Recap: Indexing, Slicing, & Decisions
- Logical Expressions
- Circuits

Lecture Slip: In Pairs or Triples...

Some review:

```
motto = "Mihi cura futuri"
      print(motto[2:4])
      print(motto[2:4].upper())
1
      ER = "The future belongs to those who believe in the beguty of their dreams."
      print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")
      import turtle
      tess = turtle.Turtle()
      myWin = turtle.Screen()
                             #The graphics window
      commands = input("Please enter a command string: ")
      for ch in commands:
         #perform action indicated by the character
         if ch == 'F':
                               #move forward
             tess.forward(50)
         elif ch == 'L':
                               #turn left
             tess.left(90)
         elif ch -- 'R':
                               #turn right
             tess.right(90)
         elif ch -- '^':
                               #lift pen
             tess.penup()
         elif ch == 'v':
                               #lower pen
             tess.pendown()
         elif ch == 'B':
                               #ao backwards
             tess.backward(50)
         elif ch -- 'r':
                               #turn_red
             tess.color("red")
         elif ch == 'g':
                               #turn green
             tess.color("green")
         elif ch == 'b':
                               #turn blue
             tess.color("blue")
                              #for any other character
         else:
             print("Error: do not know the command:", c)
```

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

ſ	М	i	h	i	С	u	r	а	f	u	t	u	r	i
- [

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

1	M	i	h	i		С	u	r	а		f	u	t	u	r	i
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

6 / 26

CSci 127 (Hunter) Lecture 5 6 March 2017

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		С	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

4 D > 4 B > 4 E > 4 E > 9 Q C

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		С	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Output:

hi

CSci 127 (Hunter)

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		С	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Output:

hi

ΗI

```
ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")
```

ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	е		b	е		0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

4 L > 4 B > 4 E > 4 E > E 990

ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

T	h	е		f	u	t	u	r	e		b	e	- 1	0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

4 ロ ト 4 昼 ト 4 夏 ト 9 Q (や)

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

T	h	е		f	u	t	u	r	е		b	e		0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

4□ > 4□ > 4 = > 4 = > = 990

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	е		b	е	ı	0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 9 ○ ○

ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	е		b	е			0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	3	14	15	16	17

4 □ > 4 □ > 4 Ē > 4 Ē > Ē 9 Q O

CSci 127 (Hunter) Lecture 5 $6 \text{ March } 2017 \quad 12 \ / \ 26$

Recap: Indexing & Slicing

Т	h	е		f	u	t	u	r	е		b	е			0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	1	3	14	15	16	17

Output:

CSci 127 (Hunter) Lecture 5 6 March 2017 12 / 26

Recap: Indexing & Slicing

Т	h	е		f	u	t	u	r	е		b	е			0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	1	3	14	15	16	17

Output:

Eleanor R.

CSci 127 (Hunter) Lecture 5 6 March 2017 12 / 26

Python Tutor

```
import turtle
tess = turtle.Turtle()
myWin = turtle.Screen()
                         #The graphics window
commands = input("Please enter a command string: ")
for ch in commands:
   #perform action indicated by the character
    if ch = 'F':
                            Amove forward
       tess.forward(50)
                            #turn left
   elif ch - 'L':
       tess.left(90)
   elif ch - 'R':
                            #turn right
       tess.right(98)
   elif ch - 'A':
                            #lift pen
       tess.perup()
    elif ch - 'v':
                            #lower pen
       tess.pendown()
   elif ch - '8':
                            #ao backwards
       tess.backward(58)
   elif ch - 'r':
                            fiture red
       tess.color("red")
                           #turn green
   elif ch - 'a':
       tess.color("green")
    elif ch = 'b':
                           #turn blue
       tess.color("blue")
                           Afor any other character
       print("Error: do not know the command:", c)
```

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 5 6 March 2017 13 / 26

In Pairs or Triples...

Some challenges with types & decisions:

```
#What are the types:
v1 = 2017
y2 = "2018"
print(type(v1))
print(type("y1"))
print(type(2017))
print(type("2017"))
print(type(y2))
print(type(y1/4.0))
x = int(y2) - y1
if x < 0:
    print(y2)
else:
    print(y1)
```

```
cents = 432
dollars = cents // 100
change = cents % 100
if dollars > 0:
    print('$'+str(dollars))
if change > 0:
    quarters = change // 25
    pennies = change % 25
    print(quarters, "quarters")
    print("and", pennies, "pennies")
```

Python Tutor

```
#What are the types:
y1 = 2017
y2 = "2018"
print(type(y1))
print(type("y1"))
print(type("2017"))
print(type("2017"))
print(type(y2))
print(type(y2))
x = int(y2) - y1
if x < 0:
print(y2)
else:
print(y1)
```

(Demo with pythonTutor)

15 / 26

CSci 127 (Hunter) Lecture 5 6 March 2017

Decisions

Fig: Operation of if...elif...else statement

(programiz)

CSci 127 (Hunter) Lecture 5 6 March 2017 16 / 26

Side Note: Reading Flow Charts

(xkcd/518)

CSci 127 (Hunter) Lecture 5 6 March 2017 17 / 26

In Pairs or Triples

Predict what the code will do:

```
oriain = "Indian Ocean"
winds = 100
if (winds > 74):
    print("Major storm, called a ", end="")
    if origin == "Indian Ocean" or origin == "South Pacific":
        print("cyclone.")
    elif origin == "North Pacific":
        print("typhoon.")
    else:
        print("hurricane.")
visibility = 0.2
winds = 40
conditions = "blowing snow"
if (winds > 35) and (visibility < 0.25) and \setminus
      (conditions == "blowing snow" or conditions == "heavy snow"):
    print("Blizzard!")
```

Python Tutor

```
origin - "Indian Ocean"
winds - 180 ";
winds - 180 ";
if (est") file (est") for storm, called a ", end-")
if (est") file (est") for storm, called a ", end-")
if origin - "Indian Ocean" or origin - "South Pacific':
if origin - "Indian Ocean" or origin - "South Pacific':
if origin - "Indian Ocean" or origin - "South Pacific':
print("University on Ocific':
if origin - "South Pacific':
visitity - 0.2
winds - 0.3
vinds - 0.3
vi
```

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 5 6 March 2017 19 / 26

Logical Operators

and

	in2	returns:
and	False	False
and	True	False
and	False	False
and	True	True
	and and	and False and True and False

CSci 127 (Hunter) Lecture 5 6 March 2017 20 / 26

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

or

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

Logical Operators

and

in1		in2	returns:			
False	and	False	False			
False	and	True	False			
True	and	False	False			
True	and	True	True			
or						
in1		in2	returns:			

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

not

	in1	returns:
not	False	True
not	True	False

Circuit Demo

 $({\sf Demo\ with\ neuroproductions})$

CSci 127 (Hunter) Lecture 5 6 March 2017 21 / 26

In Pairs or Triples

Predict when these expressions are true:

• in1 or not in1:

• not(in1 or in2):

• (in1 and in2) and in3:

CSci 127 (Hunter)

Lecture 5

6 March 2017

22 / 26

Circuit Demo

(Demo with neuroproductions)

CSci 127 (Hunter) Lecture 5 6 March 2017 23 / 26

Lecture Slip: In Pairs or Triples

From Final Exam, Fall 2017, Version 3:

Name: EmpID: CSci 127 Final, V3, F17

1. (a) What will the following Python code print:

```
flist = "speech,worship,want,fear,fdr"
freedoms = flist.split(",")
pres = freedoms[-1]
print(pres.upper())
num = flist.count(",")
print(num, "Freedoms")
for i in range(0,4):
    if i < 2:
        print("\tof", end=" ")
    else:
        print("\tfrom", end=" ")
    print(freedoms[i])</pre>
```


Recap

 On lecture slip, write down a topic you wish we had spent more time (and why).

CSci 127 (Hunter) Lecture 5 6 March 2017 25 / 26

Recap

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:

25 / 26

CSci 127 (Hunter) Lecture 5 6 March 2017

Recap

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Decisions
 - Logical Expressions
 - ► Circuits

Lecture Slips & Writing Boards

• Turn in lecture slips & writing boards as you leave...

CSci 127 (Hunter) Lecture 5 6 March 2017 26 / 26