Билет 56

Автор1,, АвторN
20 июня 2020 г.

Содержание

0.1	Билет 56: Прост	ранство ℓ^{∞}	и его	полнота														1
-----	-----------------	-------------------------	-------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Билет 56 СОДЕРЖАНИЕ

0.1. Билет 56: Пространство ℓ^∞ и его полнота

Определение 0.1. Пространство $\ell^{\infty}(E)$.

$$\ell^{\infty}(E) := \{f: E \mapsto \mathbb{R} \mid \sup_{x \in E} \lvert f(x) \rvert < +\infty \}$$

с нормой $||f||_{\ell^\infty(E)} := \sup_{x \in E} |f(x)|$

Другими словами, нормированное пространство $\ell^{\infty}(E)$ состоит из ограниченных на E функций.

Замечание.
$$\sup_{x\in E}|f(x)|$$
 действительно норма
$$1. \ ||f||\geqslant 0 \ \text{и} \ ||f||=0 \iff \sup_{x\in E}|f(x)|\geqslant 0 \ \text{и} \ \sup_{x\in E}|f(x)|=0 \iff f\equiv 0$$

- 2. $\sup_{x \in E} |\lambda f(x)| = |\lambda| \sup_{x \in E} f(x) \quad \forall \lambda \in \mathbb{R} \quad \forall x \in X$
- 3. Неравенство треугольника

$$||f+g|| = \sup_{x \in E} |f(x) + g(x)| \leqslant \sup_{x \in E} (|f(x)| + |g(x)|) \leqslant \sup_{x \in E} |f(x)| + \sup_{x \in E} |g(x)| = ||f|| + ||g||$$

В доказательстве нер-ва треугольника пользовались тем, что $|a+b| \le |a| + |b|$ и $\sup(f+g) \le$ $\sup(f) + \sup(q)$

Замечание. Связь нормы с равномерной сходимостью

$$f_n \rightrightarrows f$$
 на $E \iff \lim_{n \to \infty} \sup_{x \in E} |f_n(x) - f(x)| = 0 \iff \lim_{n \to +\infty} ||f_n - f|| = 0 \iff$

 f_n сходится к f в пространстве $\ell^{\infty}(E)$

То есть про равномерную сходимость можно думать как про сходимость в специальном нормированном пространстве.

Теорема 0.1.

 $\ell^{\infty}(E)$ - полное нормированное пространство.

Доказательство.

Надо доказать, что каждая фундаментальная последовательность из ℓ^{∞} сходится к элементу этого же пространства.

Пусть f_n фундаментальная последовательность из ℓ^{∞} . Тогда

$$\forall \varepsilon > 0 \quad \exists N \quad \forall m, n \geqslant N \quad ||f_n - f_m|| < \varepsilon$$

Заметим, что
$$||f_n - f_m|| = \sup_{x \in E} |f_n(x) - f_m(x)| \geqslant |f_n(x) - f_m(x)|$$
 при $x \in E$.

То есть $|f_n(x) - f_m(x)| < \varepsilon$. Тогда по критерию Коши для равномерной сходимости $f_n \rightrightarrows f$, где $f: E \mapsto \mathbb{R}$ - некоторая функция.

Осталось понять, что $f \in \ell^{\infty}(E)$, т.е. что f - ограниченная функция.

Подставим $\varepsilon = 1$ в определение равномерной сходимости. Для него найдется N, т.ч. при $n \ge N |f_n(x) - f(x)| < 1$ при всех $x \in E$. Тогда по неравенству треугольника :

$$|f(x)| \le |f_n(x)| + |f(x) - f_n(x)| < |f_n(x)| + 1 \le ||f_n|| + 1$$

Но т.к. n - фиксированное число, то |f(x)| не превосходит какого-то фиксированного выражения. Значит f - ограниченная функция.