

Universidade Federal de Ouro Preto Departamento de Computação - DECOM BCC241 – Projeto e Análise de Algoritmos Prof. Anderson Almeida Ferreira Exercícios – Teste de Primalidade

Turma: 11

Nome: Pedro Lucas Damasceno Silva

Matrícula: 20.1.4003

1.

divide(44,5)	(8,4)
divide(22,5)	(4,2)
divide(11,5)	(2,1)
divide(5,5)	(1,0)
divide(2,5)	(0,2)
divide(1,5)	(0,1)
divide(0,5)	(0,0)

2. if (y = 0) return 1; O(n) z = modexp(x, floor(y/2), N); Pior caso na divisão por 2: n shifts if $(y \% 2 = 0) O(n^2)$

return
$$z^2 \mod N$$
; $n^2 + n^2 = O(n^2)$

else

return x .
$$z^2 \mod N$$
; $n^2 + n^2 = O(n^2)$

No pior caso, são feitos n shifts à direita. Multiplicando pelo custo local (n^2) , temos: n . $O(n^2) = O(n^3)$.

3. Pick positive integers a1, a2, ..., ak < N at random; **k** if $(a_i^{N-1} \equiv 1 \pmod{N})$ for all i = 1, 2, ..., k; $O(n^3)^*$ return yes; O(1) else return no; O(1)

*No pior caso, todo laço de repetição é executado, realizando k+1 comparações. Multiplicando pelo custo de mod, temos: $kO(n^3) + n(k+1)$, considerando a comparação de custo n. Eliminando as constantes e prevalecendo o termo de maior grau: $O(n^3)$.