作业1:证明等价(真值表法或代数法)

$$A \oplus B \oplus C = A \odot B \odot C$$

$$A \oplus B \oplus C$$

$$= (A \oplus B)\overline{C} + \overline{(A \oplus B)}C$$

$$= \overline{(A \odot B)}\overline{C} + (A \odot B)C$$

$$= A \odot B \odot C$$

作业2:证明等价、函数化简

$$AB+\overline{A}C+\overline{B}C=AB+C$$

$$AB+\overline{A}C+\overline{B}C$$

$$=AB+\left(\overline{A}+\overline{B}\right)C$$

$$=AB+\overline{A}BC$$

$$=AB+C$$

$$F(A,B,C)=\overline{A}\overline{B}+AC+\overline{B}C$$

$$F(A,B,C)=\overline{A}\overline{B}+AC+\overline{B}C$$

= $\overline{A}\overline{B}+AC$ (包含律)

作业3: 化简函数 (有两种等价的结果)

$$Y = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$

$$Y = A\overline{B}\Big(C + \overline{C}\Big) + B\overline{C}\Big(A + \overline{A}\Big) + \overline{B}C\Big(A + \overline{A}\Big) + \overline{A}B\Big(C + \overline{C}\Big)$$

$$= A\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} + \overline{A}B\overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}BC$$

$$= A\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C + \overline{A}BC$$

$$Y = B\overline{C} + \overline{A}C + A\overline{B}$$

$$Y = \overline{B}C + \overline{A}B + A\overline{C}$$

作业4: 试分析下图所示逻辑电路的逻辑功能。

(1)列出逻辑函数并化简; (2)列出 真值表; (3)描述逻辑功能。

作业5: 试分析下图所示逻辑电路的逻辑功能。

(1)列出逻辑函数并化简; (2)列出真值表; (3)描述逻辑功能。

作业4: 试分析下图所示逻辑电路的逻辑功能。

(1) 列出逻辑函数并化简; (2) 列出真值表; (3) 描述逻辑功能。

解: (1) 分步骤写表达式

$$G_1 = \overline{A + B}$$

$$G_2 = A \bullet B$$

$$F = \overline{G_2 + G_1} = \overline{\overline{A + B} + AB}$$

$$\mathbf{F} - \mathbf{G}_2 + \mathbf{G}_1 - \mathbf{A} + \mathbf{B} + \mathbf{A}\mathbf{B}$$

化简

$$F = \overline{\overline{A} + B} + AB = (A + B)\overline{AB}$$
$$= (A + B)(\overline{A} + \overline{B}) = A\overline{B} + \overline{A}B = A \oplus B$$

(2) 列出真值表

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

(3) 通过真值表分析发现, 电路为异或功能。

作业5: 试分析下图所示逻辑电路的逻辑功能。

(1) 列出逻辑函数并化简; (2) 列出真值表; (3) 描述逻辑功能。

解: (1) 分步骤写表达式

$$G_3 = B_3$$
, $G_2 = B_3 \oplus B_2$, $G_1 = B_2 \oplus B_1$, $G_0 = B_1 \oplus B_0$

(2) 列出真值表

$B_3 B_2 B_1 B_0$	$G_3 G_2 G_1 G_0$
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000

(3)通过真值表分析发现,将输入的4位二进制码转换成4位格雷码输出。

作业6:

设计一个检测输入8421码的是否为偶数电路,当出现偶数时,电路输出1,否则为0。

解: 4个输入数据为A, B, C, D, 输出为F。 (1) 真值表:

Α	В	C	D	F	Α	В	$^{\rm C}$	D	F
0	0	0	0	d	1	0	0	0	0
0	0	0	1	d	1	0	0	1	1
0	0	1	0	d	1	0	1	0	0
0	0	1	1	0	1	0	1	1	1
0	1	0	0	0	1	1	0	0	1
0	1	0	1	0	1	1	0	1	d
0	1	1	0	0	1	1	1	0	d
0	1	1	1	1	1	1	1	1	d

列出0000、0001、0010、1101、1110、1111作为输入,F=d

(2) 表达式初步为:

$$F(A,B,C,D) = \sum m(7,9,11,12) + \sum d(0,1,2,13,14,15)$$

无关项会干扰输出结果,因此表达式化简时不能考虑无关项, 因此表达为:

$$F(A,B,C,D) = A\overline{B}D + AB\overline{C}\overline{D} + \overline{A}BCD$$

(3) 根据卡诺图判断

该设计不会产生象。

(4) 逻辑图


```
(5) 参考代码:
module heshu (A,B,C,D,F);
input A,B,C,D;
output F;
reg F;
assign F= (A&(~B)&(D))&((A)&B&(~C)&(~D))&((~A)&B&C&D);//数据流描述
endmodule
```

```
module heshu (A,B,C,D,F);
 input A,B,C,D;
 output F;
 reg F;
    always @(A or B or C or D)//行为描述
        begin
                 case({A,B,C,D})
                          4'b0111: F=1;
                          4'b1001: F=1;
                          4'b1011: F=1;
                          4'b1100: F=1;
                          default: F=0:
                 endcase
        end
endmodule
```

```
module heshu (A,B,C,D,F);
input A,B,C,D;
output F;
wire w1,w2,w3;
and u1(w1, ~A,B,D),//例化逻辑门
u2(w2, A,B,~C,~D),
u3(w3,~A,B,C,D);
or u4(F,w1,w2,w3);
endmodule
```

设计一个组合逻辑电路,用于判断以余3码表示的1位十进制数是否为合数(合数指自然数中除了能被1和本身整除外,还能被其他整数(0除外)整除的数)。(20分)

- (1) 列出真值表;
- (2) 写出逻辑表达式(提示:验证无关项是否会干扰输出结果);
- (3) 判断设计的电路是否产生险象,如有,请采取相应的办法进行消除;
 - (4) 画出逻辑电路图;
 - (5) Verilog HDL编写模块代码。

解: 4个输入数据为A, B, C, D, 输出为F。

(1) 真值表:

Α	В	C	D	F	Α	В	$^{\rm C}$	D	F
0	0	0	0	d	1	0	0	0	0
0	0	0	1	d	1	0	0	1	1
0	0	1	0	d	1	0	1	0	0
0	0	1	1	0	1	0	1	1	1
0	1	0	0	0	1	1	0	0	1
0	1	0	1	0	1	1	0	1	d
0	1	1	0	0	1	1	1	0	d
0	1	1	1	1	1	1	1	1	d

列出0000、0001、0010、1101、1110、1111作为输入,F=d (2)表达式初步为:

$$F\big(A,B,C,D\big) = \sum \! m \big(7,9,11,12\big) + \sum \! d \big(0,1,2,13,14,15\big)$$

无关项会干扰输出结果,因此表达式化简时不能考虑无关项,因此表达为:

$$F(A,B,C,D) = A\overline{B}D + AB\overline{C}\overline{D} + \overline{A}BCD$$

(3) 根据卡诺图判断

该设计不会产生险象。

(4) 逻辑图

(5) 用例化逻辑门、行为描述、数据流等方式进行代码设计均可。参考代码:

```
module heshu (A,B,C,D,F);
input A,B,C,D;
output F;
reg F;
assign F= (A&(~B)&(D))|((A)&B&(~C)&(~D))|
((~A)&B&C&D);//数据流描述
endmodule
```

```
module heshu (A,B,C,D,F);
input A,B,C,D;
output F;
wire w1,w2,w3;
and u1(w1, ~A,B,D),//例化逻辑门
u2(w2, A,B,~C,~D),
u3(w3,~A,B,C,D);
or u4(F,w1,w2,w3);
endmodule
```

```
module heshu (A,B,C,D,F);
 input A,B,C,D;
 output F;
 reg F;
    always @(A or B or C or D)//行为描述
         begin
                 case({A,B,C,D})
                          4'b0111: F=1;
                          4'b1001: F=1;
                          4'b1011: F=1;
                          4'b1100: F=1;
                          default: F=0;
                 endcase
         end
endmodule
```

作业7: 1、下降沿J-K触发器,初始状态为0,画出输出波形。 2、用Verilog HDL描述下降沿J-K触发器。

作业8:分析下图所示同步时序电路逻辑功能。初始状态为0,

画出X=01101010的时序波形图。

解题步骤:

- (1) 该电路是同步时序还是异步时序,是Moore型还是Mealy型;
- (2) 列出激励方程、输出方程、次态方程;
- (3) 列出真值表;
- (4) 列出状态表、画出状态图;
- (5) 分析电路逻辑功能;
- (6) 画时序图

解: (1) 该电路是同步时序电路, Mealy型;

(2) 列出激励方程、输出方程、次态方程

$$Z=X \oplus y$$

$$T = Z = X \oplus y$$

$$Q_{t+1} = T \oplus Q_t = X \oplus y \oplus y = X \oplus 0 = \overline{X}0 + X\overline{0} = X$$

(4) 作出状态表和状态图

y X	0	1
0	0/0	1/1
1	0/1	1/0

$$Z=X \oplus y$$

$$T = Z = X \oplus y$$

$$Q_{t+1} = T \oplus Q_t = X \oplus y \oplus y = X \oplus 0 = \overline{X}0 + X\overline{0} = X$$

(3) 列出电路次态真值表

X	\mathbf{y}	T	Q_{t+1}	Z
0	0	0	0	0
0	1	1	0	1
1	0	1	1	1
1	1	0	1	0

y X	0	1
0	0/0	1/1
1	0/1	1/0

- (5) 功能评述:数据变化检测电路,当输入数据有变化时,输出正脉冲。
 - (6) 画时序图:初始状态为0, X=01101010

作业9:

设计4位二进制同步加1计数器的Verilog HDL模型。

(要求:模块名称命名为counter,输入为时钟CP,上升沿有效,输出dataout,位宽为4,具备同步清零clr功能。)

作业10:

设计一个检测串行输入8421码的是否为偶数电路,输入顺序是先高位后低位,当出现偶数时,电路输出1,否则为0。(只画出原始状态图)