Coverage of Point Clouds

S Krishna Savant

Definition

2 clouds: Cloud G and Cloud Q

 $\gamma_{\mathbf{G}}$ = fraction of total region covered

Examples

- Cloud G and Cloud Q are completely similar.
 - Cover each other completely

$$\implies \gamma_G = 0; \quad \gamma_Q = 0$$

- Cloud G has occluded portions
 Cloud Q covers parts that are occluded by G
 - \circ Cloud Q covers γ_Q fraction not covered by G

$$\implies \gamma_G = 0; \quad \gamma_Q = \alpha$$

Approach Step 1

Partition the points into regions which are covered by

- Only Cloud G
- Both Gloud G and Cloud Q
- Only Cloud Q

How?

Partitioning points into sets

(parameter : R_{mcd})

For each point p_a in Cloud Q,

If $\exists p_g$ in Cloud G such that $dist(p_q, p_g) < R_{mcd}$

|||y for each p'g in Cloud G,

If $\exists p'_q$ in Cloud Q such that $dist(p'_q, p'_g) < R_{mcd}$

then
$$p'_g \in$$

Example: Occluded Cube

Classify points as belonging to G_cloud, Q_cloud or both acc to nearest neighbor correspondence distance

Green => GCloud Blue => QCloud Red => Both

Case Study

Randomly delete parts from the surfaces of cube:

Occlusion Fractions: 0.476096 0.0206466 0.413397

0.130399 0.842922 0.787669

Total occluded fraction: 0.445188

Coverage Cloud: Correspondences

Find correspondences for each point

(using $R_{mcd} = 0.05$)

G: 6144

Q: 3417

Both: 6123

Gcl: 2019

Qcl: 1419

Effect of parameter

- R_{mcd} affects partitioning
- Very low R_{mcd} => both clouds will be treated as different from each other even if overlapping regions
- Very high R_{mcd} => regions not belonging to both clouds will be wrongly set as belonging to both.

Variation of classification with MCD

Approach Step 2

- Find the no. of nearest neighbours of point p in radius R_{mcd}. Let it be n_p
- Dividing a cross section area of NN sphere pi*R_{mcd}*R_{mcd} to each point, area corr to each point is proportional to the density of points (inv. prop. to n_p).
- $pi*R_{mcd}*R_{mcd}/n_{0,p} = A_{p}$

Histogram of NN

In above case: 1*1*1

max_correspondence_distance = **0.05**

11.31; 2.73 8.99; 0.43 2.31; 1.31 Histogram of NN:both Histogram of NN:gt 500 Histogram of NN:qd 1000 400 1500 800 Frednency 200 Frequency Frequency 600 1000 400 **500** 100 200 9 10 11 12 13 Value 10 12 14 16 18 Value Value

Variation of NN Hist. with MCD

Mean and SD of NN with MCD

Thresholding area factor

$$A_p = 1/n_p \text{ if } n_p > n_{\text{threshold}}$$

= 0 else

Another variation of area weightage

$$0.15$$
 0.10
 0.05
 $\eta = 0.8$
 $T = 10$

$$A(x) = rac{x(T-x)/K, \ x \leq \eta T}{1/x, \ x > \eta T}$$

Variation in fraction wrt \eta and T

Some Results (No thresholding) R_{mcd} =0.05

Target = $<0,\alpha>$

Some Results (WITH thresholding) R_{mcd} =0.05

Target = $<0,\alpha>$

Some Results (fancy function, η =0.8, T=10) R_{mcd}=0.05

Bridge models + Laser simulation (Credit: Daniel, Sankalp)

