X - Réduction des matrices

Définition 1 - Matrices diagonales

Soit $D \in \mathcal{M}_n(\mathbb{R})$. La matrice D est diagonale si tous ses éléments non diagonaux sont nuls.

Exercice 1. Donner des exemples de matrices diagonales.

Proposition 1 - Inversibilité des matrices diagonales

Soit D une matrice diagonale. La matrice D est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

I - Éléments propres

Définition 2 - Valeur propre, Vecteur propre

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Le réel λ est une valeur propre de M s'il existe un vecteur colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que $MX = \lambda X$.

Exercice 2.

- 1. Déterminer les valeurs propres de la matrice identité.
- **2.** Déterminer les valeurs propres de la matrice $\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$.
- 3. Déterminer les valeurs propres des matrices diagonales.

Définition 3 - Sous-espace propre

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et λ une valeur propre de M. Le sous-espace propre de M associé à la valeur propre λ est l'espace vectoriel $E_{\lambda}(M) = \text{Ker}(M - \lambda I_n)$.

Exercice 3.

- 1. Déterminer les sous-espaces propres de la matrice identité.
- **2.** Déterminer les sous-espaces propres de la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

II - Diagonalisation

II.1 - Définition

Définition 4 - Matrice diagonalisable

Exemple 1

Proposition 2 - Diagonalisation et endomorphismes

II.2 - Critères

Théorème 1

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Si M possède n valeurs propres distinctes, alors M est diagonalisable.

Exercice 4.

Théorème 2 - Matrices symétriques

Toute matrice symétrique réelle est diagonalisable.

Exercice 5.