t-table (right tail)

For each row (degrees of freedom k) and column (right tail probability α), the table entry e satisfies $\Pr(t_k \ge e) = \alpha$. Note that the t-distribution is symmetric about 0.

degrees	right tail probability				
of freedom	0.25	0.10	0.05	0.025	0.01
1	1.000	3.078	6.314	12.706	31.821
2	0.816	1.886	2.920	4.303	6.965
3	0.765	1.638	2.353	3.182	4.541
4	0.741	1.533	2.132	2.776	3.747
5	0.727	1.476	2.015	2.571	3.365
6	0.718	1.440	1.943	2.447	3.143
7	0.711	1.415	1.895	2.365	2.998
8	0.706	1.397	1.860	2.306	2.896
9	0.703	1.383	1.833	2.262	2.821
10	0.700	1.372	1.812	2.228	2.764
11	0.697	1.363	1.796	2.201	2.718
12	0.695	1.356	1.782	2.179	2.681
13	0.694	1.350	1.771	2.160	2.650
14	0.692	1.345	1.761	2.145	2.624
15	0.691	1.341	1.753	2.131	2.602
16	0.690	1.337	1.746	2.120	2.583
17	0.689	1.333	1.740	2.110	2.567
18	0.688	1.330	1.734	2.101	2.552
19	0.688	1.328	1.729	2.093	2.539
20	0.687	1.325	1.725	2.086	2.528
21	0.686	1.323	1.721	2.080	2.518
22	0.686	1.321	1.717	2.074	2.508
23	0.685	1.319	1.714	2.069	2.500
24	0.685	1.318	1.711	2.064	2.492
25	0.684	1.316	1.708	2.060	2.485
26	0.684	1.315	1.706	2.056	2.479
27	0.684	1.314	1.703	2.052	2.473
28	0.683	1.313	1.701	2.048	2.467
29	0.683	1.311	1.699	2.045	2.462
30	0.683	1.310	1.697	2.042	2.457
35	0.682	1.306	1.690	2.030	2.438
40	0.681	1.303	1.684	2.021	2.423
45	0.680	1.301	1.679	2.014	2.412
50	0.679	1.299	1.676	2.009	2.403
gaussian	0.675	1.282	1.646	1.962	2.330