Graph Theory For Computing CS2150

RESEARCH CYCLE I

GROUP E5

160548R – P.C.P. SAMARAWICKRAMA

160224V – M.T.U. ISURANGA

160575V – S.M.S.D. SENARATHNA

160127C – I.M.M. DISSANAYAKA

160317J - M.C.N.U. KULATUNGE

Graph Theory For Computing CS2150

RESEARCH CYCLE I

CONTENT

•	DEFINITIONS	2-3
•	PROBLEM 2 O PART I O PART II	4 5-6
•	ADDITIONAL QUESTIONS & ANSWERS	7-8
•	REFERENCES	9
•	BIBILOGRAPHY	9

DEFINITIONS

GRAPH

A graph is a collection of points and lines connecting some (possibly empty) subset of them. [1]

VERTICES

The points of a graph are most commonly known as graph vertices, but may also be called "nodes" or simply "points."[1]

EDGES

The lines connecting the vertices of a graph are most commonly known as graph edges, but may also be called "arcs" or "lines."[1]

DEGREE

The degree (or the local degree) of a vertex of a graph is the number of graph edges which touch the graph vertex. [2]

ORDER OF A GRAPH

The number of nodes in a graph is called its order.

REGULAR GRAPH

A graph is said to be regular, if all local degrees are the same. [3]

GRAPH COMPLEMENT

The complement of a graph G (sometimes called the edge-complement), is the graph G', with the same vertex set but whose edge set consists of the edges not present in G. [4]

ISOMORPHIC

Two graphs which contain the same number of graph vertices connected in the same way are said to be isomorphic.

SELF-COMPLEMENTARY GRAPH

A self-complementary graph is a graph which is isomorphic to its graph complement. [5]

PROBLEM 2 - PART I

Is the complement of a regular graph, regular? If yes, prove it! If no, find a counterexample.

SOLUTION

YES

Let G be a regular graph with n vertices.

Assume an arbitrary vertex v with degree d.

Since G is regular d is a constant.

In the complement of G (G'), out of the n-1 other vertices v is adjacent only to the (n-1-d) to which v is not adjacent in G.

So the degree of v in G' is (n-1-d).

(n-1-d) is a constant as n and d, are constant.

So all vertices have degree (n-1-d) in complement of G.

So complement of G is complement.

PROBLEM 2 – PART II

Are there self-complementary graphs of order 3? Of order 4? Of order 5? In each case, if yes, give an example; if no, prove why it is not possible.

SOLUTION

Let's consider a self-complementary graph with n vertices and m edges.

So the total number of edges that can be in G, is $(n^*(n-1))/2$.

So the complement of G will have $(n^*(n-1))/2 - m$ edges.

Since G is self-complementary,

Number of edges in G = Number of edges in G'

$$m = n*(n-1)/2 - m$$

$$m = (n*(n-1)) / 4$$

m should be a non-negative integer.

n or n-1 is odd.

So n or n-1 should be a multiple of 4.

CASE I – ORDER 2

NO

$$n = 2$$
 $n-1 = 1$

neither n or n-1 is a multiple of 4.

so there cannot be self-complementary graphs of order 2.

CASE II – ORDER 3

NO

$$n = 3$$

$$n-1 = 2$$

neither n or n-1 is a multiple of 4.

so there cannot be self-complementary graphs of order 2.

CASE III – ORDER 4

YES

Example: -

CASE IV – ORDER 5

YES

Example: -

ADDITIONAL QUESTIONS & ANSWERS

QUESTIONS

- 1. Is there a complement for a complete graph?
- 2. For a graph to be self-complementary, should it be regular?
- 3. Give an example for graph with 4 edges which is not self-complementary. And explain why?

ANSWERS

1. Yes.

A **complete graph** is a graph in which each pair of graph vertices is connected by an edge.

Let's consider a complete graph, G of order n.

Assume an arbitrary vertex v

So its degree is (n-1).

So degree of v in G' is (n-1) - (n-1) = 0

So in G', degree of every vertex is 0. That means G' is edgeless. $E=\emptyset$

In a graph, set E should be subset of set V*V. Ø is a subset of V*V.

Hence, it is possible to a graph to be edgeless (null graph).

So complement of G exists.

2. No

Let's assume that, it should be regular for a graph to be self-complementary.

This graph G is self-complementary.

But in G, degree of A is 1 and degree of B is 2.

So G is not regular.

Hence our assumption is wrong.

There can be self-complementary graphs that are not regular.

3.

If a graph is self-complementary, then it and its complement should have same degree set. But in this scenario, degree set of G is $\{1,1,1,3\}$ and the degree set of G' is $\{0,2,2,2\}$. Those sets are different. So, G is not self-complementary.

REFERENCES

- [1] Weisstein, Eric W. (2017-02-14) "Graph." [online] From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Graph.html
- [2] Weisstein, Eric W. (2017-02-14)"Local Degree." [online] From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/LocalDegree.html
- [3] Meringer, Markus and Weisstein, Eric W. (2017-02-14)"Regular Graph." [online] From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RegularGraph.html
- [4] Weisstein, Eric W. (2017-02-14) "Graph Complement." [online] From MathWorld--A Wolfram Web Resource.
- $\underline{http://mathworld.wolfram.com/GraphComplement.html}$
- [5] Weisstein, Eric W. (2017-02-14) "Self-Complementary Graph." [online] From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/SelfComplementaryGraph.html

BIBILOGRAPHY

https://math.stackexchange.com/questions/1236576/complement-of-a-regular-graph

9