VIRTUAL LAB EXPERIMENT-1

AIM:-To verify the voltage divider rule (VDR) and the current divider rule (CDR).

RESULT:-

VERIFICATION OF VOLTAGE DIVIDER RULE:

1.

Voltage Divider Calculator

A voltage divider circuit is a very common circuit that takes a higher voltage and converts it to a lower one by using a pair of resistors. The formula for calculating the output voltage is based on Ohms Law and is shown below.

$$V_{out} = \frac{V_s \times R_2}{(R_1 + R_2)}$$

where:

- V_S is the source voltage, measured in volts (V),
- R_i is the resistance of the 1st resistor, measured in Ohms
 (Ω).
- R₂ is the resistance of the 2nd resistor, measured in Ohms (Ω).
- Vout is the output voltage, measured in volts (V),

Enter any three known values and press "Calculate" to solve for the other.

Voltage Source (Vs)	5	Volts (V)
Resistance ! (R _i)	20	kilohms (kΩ) 🔻
Resistance 2 (R ₂)	10	kilohms (kΩ) 🔻
Output Voltage (Vout)	1.667	Valts (V)
Output Voltage (Vout)	1.667	Volts (V)

Resistor (R)

Resistor (R.

Source Voltage (V_s) 3.

VERIFICATION OF CURRENT DIVIDER RULE:

This tool calculates the current flow through each of up to 10 parallel-connected resistances connected to a current source.

2.

This tool calculates the current flow through each of up to 10 parallel-connected resistances connected to a current source.

3.

This tool calculates the current flow through each of up to 10 parallel-connected resistances connected to a current source.

