第十章 微分方程

本章讨论一元函数 y = f(x), 其中 $y \in X$ 的函数.

§10.1 微分方程的基本概念

例 求一条曲线, 其切线斜率等于 2x, 且过点(1, 2).

解: 切线斜率就是导数, 即 y' = 2x, 且 $y|_{x=1} = 2$.

这里 y' = 2x 是含未知函数导数的方程.

例 求一个函数, 其导数等于它自身.

解: 即 y' = y.

一. 微分方程的定义

定义 含未知函数导数或微分的方程,称为微分方程.若方程中未知函数是一元函数,则称之为常微分方程(Ordinary Differential Equation——ODE),若方程中未知函数是多元函数,则称之为偏微分方程(Partial Differential Equation——PDE).

如 y' = 2x, y' = y, y'' + y = 0, y''' + y'y = x 等都是常微分方程;

$$\frac{\partial z}{\partial x} = x \cdot \frac{\partial z}{\partial y}$$
, $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ 等都是偏微分方程.

这里只讨论常微分方程,其一般形式为 $F(x, y, y', y'', \dots, y^{(n)}) = 0$.

定义 微分方程中所含未知函数导数的最高阶数, 称为微分方程的阶.

如 y' = 2x, y' = y 为一阶微分方程,

$$(y')^3 + (y')^2 + 5y' + 2y = 0$$
 为一阶微分方程,

$$y^{(3)} + y^{(2)} + 5y' + 2y = 0$$
 为三阶微分方程,

 $v'' = (\sin x)'''$ 为二阶微分方程,

(xy')' = xy'' + y 为一阶微分方程,

(xv)' = v + xv'不是微分方程.

注意: 微分方程的阶数与次数无关; 应先化简在判断阶数.

如果微分方程中所含未知函数及其各阶导数都是一次,则称之为线性微分方程,形式为

$$y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = f(x).$$

二. 微分方程的解

定义 使微分方程成为恒等式的函数, 称为微分方程的解.

如 y' = 2x, 有 $y = x^2$, $y = x^2 + 1$, $y = x^2 + C$ 都是其解; y' = y, 有 $y = e^x$, y = 0 是其解.

例 试证 $y = C_1 \cos x + C_2 \sin x$ 是二阶微分方程 y'' + y = 0 的解. $(C_1, C_2$ 是任意常数)

定义 若微分方程的解中所含独立任意常数的个数等于方程的阶,则称此解为微分方程的通解. 若解中不含任意常数,则称此解为微分方程的特解.

如 $y = x^2 + C$ 是 y' = 2x 的通解; $y = C_1 \cos x + C_2 \sin x$ 是 y'' + y = 0 的通解;

而 $v = x^2$, $v = x^2 + 1$ 是 v' = 2x 的特解; $v = e^x$, v = 0 是 v' = v 的特解.

注意: $y = C_1 \cos x + \sin x$, $y = (C_1 + C_2) \cos x + \sin x$ 不是 y'' + y = 0 的通解.

对于微分方程的通解,在一定的条件下,可确定 C 的值,而得到特解,所给的条件称为初始条件. 如 y' = 2x, $y|_{x=1} = 2$,这里 $y|_{x=1} = 2$ 为初始条件.

一般,一阶微分方程的初始条件为 $y|_{x=x_0} = y_0$,

二阶微分方程的初始条件为 $y|_{x=x_0} = y_0, y'|_{x=x_0} = y_1,$

n 阶微分方程的初始条件为 $y|_{x=x_0}=y_0,\ y'|_{x=x_0}=y_1,\ L\ ,\ y^{(n-1)}|_{x=x_0}=y_{n-1}$.

§10.2 一阶微分方程

一般形式为 y' = f(x, y)或 F(x, y, y') = 0,分别为显式、隐式.

一. 可分离变量的一阶微分方程

形式为y' = f(x)g(y)的方程称为可分离变量的微分方程.特点是变量x与y的函数可完全分开相乘除.

将导数写成微商 $\frac{dy}{dx} = f(x)g(y)$,

分离变量 $\frac{dy}{g(y)} = f(x)dx,$

两边积分 $\int \frac{dy}{g(y)} = \int f(x)dx + C.$

例 求解 v' = v.

解:一阶,可分离变量,

$$\frac{dy}{dx} = y$$
, $\frac{dy}{y} = dx$, $\int \frac{dy}{y} = \int dx + C$, $\ln |y| = x + C$, $|y| = e^{x+C} = e^C e^x$,

: $y = C_1 e^x$, $(C_1 = \pm e^C)$.

例 求解 $y' = \frac{1-x}{1+y}$.

解:一阶,可分离变量,

$$\frac{dy}{dx} = \frac{1-x}{1+y}$$
, $(1+y)dy = (1-x)dx$, $\int (1+y)dy = \int (1-x)dx + C$,

$$\therefore y + \frac{y^2}{2} = x - \frac{x^2}{2} + C$$
.

例 求解 $y' = e^{x+y}$, 且 $y|_{x=0} = -\ln 2$.

解:一阶,可分离变量,

$$\frac{dy}{dx} = e^x e^y$$
, $e^{-y} dy = e^x dx$, $\int e^{-y} dy = \int e^x dx + C$, $-e^{-y} = e^x + C$,

 $\therefore v|_{x=0} = -\ln 2$,

$$\mathbb{E}[1 - e^{\ln 2}] = e^{0} + C, \qquad C = -3,$$

 $\therefore -e^{-y} = e^x - 3.$

例 求解 $(xy^2 + x)dx + (x^2y - y)dy = 0$.

解:一阶,可分离变量,

$$x(y^2+1)dx = -y(x^2-1)dy$$
, $\frac{x}{x^2-1}dx = -\frac{y}{y^2+1}dy$, $\int \frac{x}{x^2-1}dx = -\int \frac{y}{y^2+1}dy + \frac{1}{2}\ln|C|$,

$$\frac{1}{2}\ln|x^2 - 1| = -\frac{1}{2}\ln|y^2 + 1| + \frac{1}{2}\ln|C|, \quad \ln|(x^2 - 1)(y^2 + 1)| = \ln|C|,$$

$$\therefore (x^2-1)(y^2+1)=C.$$

二. 齐次微分方程

形式为 $y' = \varphi(\frac{y}{x})$ 的方程,称为齐次微分方程. 特点是函数为x与y的零次齐次函数.

注: 若 $f(\lambda x, \lambda y) = f(x, y)$, 则称f(x, y)为零次齐次函数.

代入原方程
$$u + xu' = \varphi(u)$$
, 可分离变量,

$$x\frac{du}{dx} = \varphi(u) - u$$
, $\frac{du}{\varphi(u) - u} = \frac{dx}{x}$, $\int \frac{du}{\varphi(u) - u} = \int \frac{dx}{x} + C$.

例 求解
$$y' = \frac{y}{x} + \frac{x}{y}$$
.

解:一阶,零次齐次,

$$\diamondsuit u = \frac{y}{x}, \quad f(y) = xu, \quad y' = u + xu',$$

$$u + xu' = u + \frac{1}{u}$$
, $x \frac{du}{dx} = \frac{1}{u}$, $udu = \frac{dx}{x}$, $\int udu = \int \frac{dx}{x} + C$, $\frac{1}{2}u^2 = \ln|x| + C$,

$$\therefore \frac{y^2}{2x^2} = \ln|x| + C.$$

例 求解
$$y' = \frac{y^2}{xy - x^2}$$
, 且 $y|_{x=1} = e$.

解: 一阶,零次齐次,分子分母同除以
$$x^2$$
, $y' = \frac{\frac{y^2}{x^2}}{\frac{y}{x}-1}$,

$$\diamondsuit u = \frac{y}{x}, \quad f(y) = xu, \quad y' = u + xu',$$

$$u + xu' = \frac{u^2}{u - 1}$$
, $x \frac{du}{dx} = \frac{u^2}{u - 1} - u = \frac{u}{u - 1}$, $\frac{u - 1}{u} du = \frac{dx}{x}$, $\int (1 - \frac{1}{u}) du = \int \frac{dx}{x} + C$,

$$u - \ln |u| = \ln |x| + C$$
, $\frac{y}{x} - \ln |\frac{y}{x}| = \ln |x| + C$, $\frac{y}{x} - \ln |y| = C$,

$$y|_{x=1} = e$$
, $|x| = 1$ $|x| = 1$, $|x| = 1$

$$\therefore \frac{y}{x} - \ln|y| = e - 1.$$

注意: 当分子、分母同为m次齐次函数,则函数为零次齐次函数,

此时分子、分母同除以x^m,可化为标准形式.

三. 线性微分方程

形式为v' + p(x)v = q(x)的方程,称为一阶线性微分方程.特点是v'与v都是一次.

当 $q(x) \equiv 0$ 时, y' + p(x)y = 0 称为一阶线性齐次微分方程;

当 $q(x) \neq 0$ 时,y' + p(x)y = q(x) 称为一阶线性非齐次微分方程.

先解齐次,y'+p(x)y=0,可分离变量,

$$\frac{dy}{dx} = -p(x)y$$
, $\frac{dy}{y} = -p(x)dx$, $\int \frac{dy}{y} = -\int p(x)dx + C$,

$$\ln |y| = -\int p(x)dx + C$$
, $|y| = e^{-\int p(x)dx + C} = e^{-\int p(x)dx} e^{C}$,

$$\therefore y = C_1 e^{-\int p(x)dx}, \quad (C_1 = \pm e^C).$$

再解非齐次,y'+p(x)y=q(x),用常数变异法,

令
$$y = u(x)e^{-\int p(x)dx}$$
, 代入非齐次方程 $y' + p(x)y = q(x)$,

有
$$u'(x)e^{-\int p(x)dx} + u(x)e^{-\int p(x)dx} \cdot [-p(x)] + p(x) \cdot u(x)e^{-\int p(x)dx} = u'(x)e^{-\int p(x)dx} = q(x)$$
,
$$u'(x) = q(x)e^{\int p(x)dx}, \qquad \text{即 } u(x) = \int q(x)e^{\int p(x)dx} dx + C,$$

一阶线性微分方程的求解公式: $y = [\int q(x)e^{\int p(x)dx}dx + C]e^{-\int p(x)dx}$.

改写为
$$ye^{\int p(x)dx} = \int q(x)e^{\int p(x)dx}dx + C$$
,

关键式
$$P(x) = e^{\int p(x)dx}$$
, 即公式为 $yP(x) = \int q(x)P(x)dx + C$ 或 $y = \frac{1}{P(x)}[\int q(x)P(x)dx + C]$.

例 求解
$$y' + \frac{y}{x} = \ln x$$
.

解: 一阶线性,
$$p(x) = \frac{1}{x}$$
, $q(x) = \ln x$, 有 $e^{\int p(x)dx} = e^{\int \frac{1}{x}dx} = e^{\ln x} = x$,

则 $yx = \int \ln x \cdot x dx + C = \int \ln x \cdot d\frac{x^2}{2} + C = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} dx + C = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C$,

 $\therefore y = \frac{x}{2} \ln x - \frac{x}{4} + \frac{C}{x}$.

注意: 使用一阶线性微分方程求解公式,积分时,不加任意常数 C,对数也不用绝对值. 例 求解 $xy'-2y=2x^4$,且 $y|_{x=1}=0$.

解: 一阶线性,
$$y' - \frac{2}{x}y = x$$
, $p(x) = -\frac{2}{x}$, $q(x) = 2x^3$, 有 $e^{\int p(x)dx} = e^{-\int \frac{2}{x}dx} = e^{-2\ln x} = \frac{1}{x^2}$,
则 $y \cdot \frac{1}{x^2} = \int 2x^3 \cdot \frac{1}{x^2} dx + C = x^2 + C$, $y = x^4 + Cx^2$,
 $\therefore y|_{x=1} = 0$, 即 $0 = 1 + C$, $C = -1$,
 $\therefore y = x^4 - x^2$.

例 求解
$$(1+x^2)y' = xy + \sqrt{1+x^2}$$
.

解: 一阶线性,
$$y' - \frac{x}{1+x^2}y = \frac{1}{\sqrt{1+x^2}}$$
, $p(x) = -\frac{x}{1+x^2}$, $q(x) = \frac{1}{\sqrt{1+x^2}}$,

有
$$e^{\int p(x)dx} = e^{-\int \frac{x}{1+x^2}dx} = e^{-\frac{1}{2}\ln(1+x^2)} = \frac{1}{\sqrt{1+x^2}}$$
,

则
$$y \cdot \frac{1}{\sqrt{1+x^2}} = \int \frac{1}{\sqrt{1+x^2}} \cdot \frac{1}{\sqrt{1+x^2}} dx + C = \arctan x + C$$
,

$$\therefore y = (\arctan x + C)\sqrt{1 + x^2}.$$

此外还有关于 x 的一阶线性微分方程, $\frac{dx}{dy} + p(y)x = q(y)$,

特点是 dx 与 x 都是一次,此时将 x 看作 y 的函数求解.

例 求解
$$y' = \frac{y}{y^3 + x}$$
.

解: 一阶, 关于
$$x$$
 线性, $\frac{dy}{dx} = \frac{y}{v^3 + x}$, $\frac{dx}{dy} = \frac{y^3 + x}{v}$, 即 $\frac{dx}{dy} - \frac{x}{v} = y^2$,

$$p(y) = -\frac{1}{y}$$
, $q(y) = y^2$, $f(e^{\int p(y)dy}) = e^{-\int \frac{1}{y}dy} = e^{-\ln y} = \frac{1}{y}$,

则
$$x \cdot \frac{1}{y} = \int y^2 \cdot \frac{1}{y} dy + C = \frac{y^2}{2} + C$$
,

$$\therefore x = \frac{y^3}{2} + Cy.$$

例 求解
$$y' = \frac{y^2}{x + 2xy - y^2}$$
.

解: 一阶, 关于
$$x$$
 线性, $\frac{dy}{dx} = \frac{y^2}{x + 2xy - y^2}$, $\frac{dx}{dy} = \frac{x + 2xy - y^2}{y^2}$, 即 $\frac{dx}{dy} - \frac{(1 + 2y)}{y^2}x = -1$,

$$p(y) = -\frac{1+2y}{y^2}$$
, $q(y) = -1$, $finite e^{\int p(y)dy} = e^{-\int \frac{1+2y}{y^2}dy} = e^{\frac{1}{y}-2\ln y} = e^{\frac{1}{y}} \cdot \frac{1}{y^2}$,

则
$$x \cdot e^{\frac{1}{y}} \cdot \frac{1}{v^2} = \int (-1)e^{\frac{1}{y}} \cdot \frac{1}{v^2} dy + C = e^{\frac{1}{y}} + C$$
,

$$\therefore x = y^2 + Cy^2 e^{-\frac{1}{y}}.$$

贝努里方程: $y' + p(x)y = q(x)y^n$, $(n \neq 0, 1)$, 有 $y^{-n}y' + p(x)y^{1-n} = q(x)$,

$$\Leftrightarrow z = y^{1-n}$$
, 有 $z' = (1-n)y^{-n}y'$,

方程化为 $\frac{1}{1-n}z'+p(x)z=q(x)$,化为关于 z 的一阶线性微分方程.

例 求解
$$y' = xy + x^3y^2$$
.

解: 一阶,
$$n=2$$
 的贝努里方程, $y'-xy=x^3y^2$, $\frac{1}{v^2}y'-x\frac{1}{y}=x^3$, 即 $-\left(\frac{1}{y}\right)'-x\frac{1}{y}=x^3$,

令
$$z = \frac{1}{v}$$
 , 有 $z' + xz = -x^3$, 关于 z 的一阶线性, $p(x) = x$, $q(x) = -x^3$, 有 $e^{\int p(x)dx} = e^{\int xdx} = e^{\frac{x^2}{2}}$,

$$\text{If } ze^{\frac{x^2}{2}} = \int (-x^3)e^{\frac{x^2}{2}}dx + C = \int (-x^2)de^{\frac{x^2}{2}} + C = -x^2e^{\frac{x^2}{2}} + \int e^{\frac{x^2}{2}}dx^2 + C = -x^2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}} + C = -x^2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}} + C = -x^2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}} + C = -x^2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}} + C = -x^2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}} + 2e^{\frac{x^2}{2}}$$

$$\therefore z = \frac{1}{y} = -x^2 + 2 + Ce^{-\frac{x^2}{2}}.$$

§10.3 高阶微分方程

- 二阶微分方程一般形式为 y'' = f(x, y, y')或 F(x, y, y', y'') = 0. n 阶微分方程一般形式为 $y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$ 或 $F(x, y, y', y'', \dots, y^{(n)}) = 0$.
- 一. 可降阶的高阶微分方程
- 1. 可以直接积分的微分方程 形式为 $y^{(n)} = f(x)$ 的方程,可以直接 n 次积分求解.

一般,若 $[F(x)]^{(n)} = f(x)$,则方程的通解为 $y = F(x) + C_1 x^{n-1} + \cdots + C_{n-1} x + C_n$.

例 求解 $y''' = \frac{1}{x^2}$.

解: $y'' = \int \frac{1}{x^2} dx + C_1 = -\frac{1}{x} + C_1$, $y' = \int (-\frac{1}{x} + C_1) dx + C_2 = -\ln|x| + C_1 x + C_2$, $\therefore y = \int (-\ln|x| + C_1 x + C_2) dx + C_3 = -(x \ln|x| - x) + C_1 \frac{x^2}{2} + C_2 x + C_3.$

2. 不显含未知函数 v 的二阶微分方程

形式为y'' = f(x, y')的方程,可以将y'看作新的未知函数,而降为一阶.

设 y' = z(x), 有 y'' = z', 原方程化为一阶微分方程 z' = f(x, z),

若解得 $z = \varphi(x, C_1)$, 即 $y' = \varphi(x, C_1)$, 故 $y = \int \varphi(x, C_1) dx + C_2$.

例 求解 $x y'' + y' = x^3$.

解: 设 y' = z(x), 有 y'' = z', 原方程化为 $xz' + z = x^3$, 即 $z' + \frac{1}{x}z = x^2$, 一阶线性,

$$p(x) = \frac{1}{x}$$
, $q(x) = x^2$, $fin e^{\int p(x)dx} = e^{\int \frac{1}{x}dx} = e^{\ln x} = x$,

则
$$zx = \int x^2 \cdot x dx + C_1 = \frac{x^4}{4} + C_1$$
, 即 $y' = z = \frac{x^3}{4} + \frac{C_1}{x}$,

$$\therefore y = \int (\frac{x^3}{4} + \frac{C_1}{x}) dx + C_2 = \frac{x^4}{16} + C_1 \ln|x| + C_2.$$

3. 不显含自变量 x 的二阶微分方程

形式为 y'' = f(y, y')的方程,可以将 y 看作自变量,y' 看作新的未知函数,而降为一阶.设 y' = z(y),有 $y'' = z'(y) \cdot y' = z'z$,原方程化为一阶微分方程 z'z = f(y, z).

若解得
$$z = \varphi(y, C_1)$$
,即 $y' = \frac{dy}{dx} = \varphi(y, C_1)$, $\frac{dy}{\varphi(y, C_1)} = dx$,故 $\int \frac{dy}{\varphi(y, C_1)} = x + C_2$.

例 求解 $yy'' = 2(y')^2$.

解: 设 y' = z(y), 有 y'' = z'y' = z'z, 原方程化为 $y \cdot z'z = 2z^2$, 即 $y \frac{dz}{dy} = 2z$, 可分离变量,

$$\frac{dz}{z} = \frac{2dy}{y}$$
, $\int \frac{dz}{z} = \int \frac{2dy}{y} + \ln C_1$, $\ln z = 2\ln y + \ln C_1 = \ln C_1 y^2$,

$$\text{If } z = C_1 y^2, \qquad \text{If } y' = \frac{dy}{dx} = C_1 y^2 \;, \qquad \frac{dy}{y^2} = C_1 dx \;, \qquad \int \frac{dy}{y^2} = \int C_1 dx + C_2 \;,$$

$$\therefore -\frac{1}{y} = C_1 x + C_2, \qquad y = -\frac{1}{C_1 x + C_2}.$$

二. 二阶常系数线性微分方程

形式为y'' + ay' + by = f(x)的方程, 称为二阶常系数线性微分方程.

特点是y''、y'、y 都是一次,且系数a、b 为常数.

当 $f(x) \equiv 0$ 时, y'' + ay' + by = 0 称为二阶常系数线性齐次微分方程;

当 $f(x) \neq 0$ 时, v'' + av' + bv = f(x) 称为二阶常系数线性非齐次微分方程.

1. 二阶常系数线性齐次微分方程

先解齐次, y'' + ay' + by = 0

定理 若函数 y_1 、 y_2 都是 y'' + ay' + by = 0 的解,则其线性组合 $y^* = C_1y_1 + C_2y_2$ 也是 y'' + ay' + by = 0 的解.

证明:函数 y_1 、 y_2 是 y'' + ay' + by = 0 的解,即 $y_1'' + ay_1' + by_1 = 0$, $y_2'' + ay_2' + by_2 = 0$,

则
$$y^{*"} + ay^{*'} + by^{*} = (C_1 y_1 + C_2 y_2)^{"} + a (C_1 y_1 + C_2 y_2)' + b (C_1 y_1 + C_2 y_2)$$

= $C_1(y_1^{"} + ay_1' + by_1) + C_2(y_2^{"} + ay_2' + by_2) = 0$, 得证.

定理 若函数 y_1 、 y_2 是 y'' + ay' + by = 0 的两个线性无关的特解(即 $y_1 \neq ky_2$),则线性组合 $y^* = C_1y_1 + C_2y_2$ 是 y'' + ay' + by = 0 的通解.

根据此定理,只需找到y'' + ay' + by = 0的两个线性无关解 y_1 、 y_2 ,即可求出其通解 $y^* = C_1y_1 + C_2y_2$.

找这种函数,其导数和二阶导数与它自身形式类似. 取 $y = e^{\lambda x}$, 有 $y' = \lambda e^{\lambda x}$, $y'' = \lambda^2 e^{\lambda x}$.

代入方程 y'' + ay' + by = 0 得: $(\lambda^2 + a\lambda + b)e^{\lambda x} = 0$, 即得 $\lambda^2 + a\lambda + b = 0$.

 $\delta \lambda^2 + a\lambda + b = 0$ 为 y'' + ay' + by = 0 的特征方程,特征方程 $\lambda^2 + a\lambda + b = 0$ 的根称为特征根.

设 λ 是特征方程 $\lambda^2 + a\lambda + b = 0$ 的特征根,则 $\nu = e^{\lambda x}$ 是 $\nu'' + a\nu' + b\nu = 0$ 的特解.

(1) 特征方程 $\lambda^2 + a\lambda + b = 0$ 有两个相异实根 λ_1 、 λ_2

则 $y_1 = e^{\lambda_1 x}$, $y_2 = e^{\lambda_2 x}$ 是 y'' + ay' + by = 0 的两个线性无关的特解,

$$y^* = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} \neq y'' + ay' + by = 0$$
 的通解.

例 求解 v'' + 5v' + 6v = 0.

解:特征方程 $\lambda^2 + 5\lambda + 6 = 0$,特征根 $\lambda_1 = -2$, $\lambda_2 = -3$, ∴通解为 $y^* = C_1 e^{-2x} + C_2 e^{-3x}$.

例 求解 v'' - v = 0.

解:特征方程 $\lambda^2 - 1 = 0$,特征根 $\lambda_1 = 1$, $\lambda_2 = -1$, :通解为 $\nu^* = C_1 e^x + C_2 e^{-x}$.

例 求解 y'' - 3y' = 0.

解:特征方程 $\lambda^2 - 3\lambda = 0$,特征根 $\lambda_1 = 3$, $\lambda_2 = 0$, ∴通解为 $y^* = C_1 e^{3x} + C_2$.

注意:特征根0对应的特解是常数.

(2) 特征方程 $\lambda^2 + a\lambda + b = 0$ 有唯一实根 λ_0 ,

则 $y_1 = e^{\lambda_0 x}$ 是 y'' + ay' + by = 0 的一个特解,可以证明 $y_2 = xe^{\lambda_0 x}$ 是另一个特解,

$$y^* = C_1 e^{\lambda_0 x} + C_2 x e^{\lambda_0 x} = (C_1 + C_2 x) e^{\lambda_0 x} \not\equiv y'' + ay' + by = 0$$
 的通解.

例 求解 y'' + 4y' + 4y = 0.

解:特征方程 $\lambda^2 + 4\lambda + 4 = 0$,特征根 $\lambda_1 = \lambda_2 = -2$, :通解为 $\nu^* = (C_1 + C_2 x)e^{-2x}$.

(3) 特征方程 $\lambda^2 + a\lambda + b = 0$ 有两个共轭虚根 $\lambda = \alpha \pm \beta i$, $(i^2 = -1)$ 可以证明 $y_1 = e^{\alpha x} \cos \beta x$, $y_2 = e^{\alpha x} \sin \beta x$ 是 y'' + ay' + by = 0 的两个线性无关的特解, $y^* = (C_1 \cos \beta x + C_2 \sin \beta x) e^{\alpha x}$ 是 y'' + ay' + by = 0 的通解.

注:特征根为共轭虚根时,实部对应指数函数,虚部对应正余弦函数.

例 求解 y'' + 9y' + 13y = 0.

解:特征方程 $\lambda^2 + 9\lambda + 13 = 0$,即 $(\lambda + 3)^2 + 4 = 0$,特征根 $\lambda = -3 \pm 2i$,

∴通解为 $y^* = (C_1 \cos 2x + C_2 \sin 2x) e^{-3x}$.

例 求解 v'' + v = 0.

解:特征方程 $\lambda^2 + 1 = 0$,特征根 $\lambda = \pm i$, ∴通解为 $y^* = C_1 \cos x + C_2 \sin x$.

此方法可推广到更高阶的常系数线性齐次微分方程.

例 求解 $v^{(4)} - 5v'' + 4v = 0$.

解: 特征方程 $\lambda^4 - 5\lambda^2 + 4 = 0$, 特征根 $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = 2$, $\lambda_4 = -2$, ∴ 通解为 $y^* = C_1 e^x + C_2 e^{-x} + C_3 e^{2x} + C_4 e^{-2x}$.

例 求解 y''' + 3y'' + 3y' + y = 0.

2. 二阶常系数线性非齐次微分方程 再解非齐次,v'' + av' + bv = f(x)

定理 如果 \tilde{y} 是y'' + ay' + by = f(x)的一个特解,y*是y'' + ay' + by = 0的通解,则 $\tilde{v} + y*$ 是y'' + ay' + by = f(x)的通解.

证明: $\ddot{y}'' + a\ddot{y}' + b\ddot{y} = f(x)$, $y^{*''} + ay^{*'} + by^{*} = 0$,

则
$$(\widetilde{y} + y^*)'' + a(\widetilde{y} + y^*)' + b(\widetilde{y} + y^*) = (\widetilde{y}'' + a\widetilde{y}' + b\widetilde{y}) + (y^{*''} + ay^{*'} + by^*) = f(x)$$
,

即 $\tilde{v} + v^*$ 是 v'' + av' + bv = f(x)的解,且 v^* 中含两个独立的任意常数,

 $\therefore \widetilde{y} + y *$ 是 y'' + ay' + by = f(x)的通解.

求出 y'' + ay' + by = f(x)的一个特解 \tilde{y} 及 y'' + ay' + by = 0的两个特解 y_1 、 y_2 ,可得通解为 $\tilde{y} + C_1y_1 + C_2y_2$.

一般, \tilde{y} 与f(x)有类似的形式,用待定系数法可求得 \tilde{y} .

(1) 若 $f(x) = e^{rx}$, 则取 $\tilde{y} = Ax^k e^{rx}$, A为待定系数,

当r不是特征根、是单根或重根时,k分别取0、1、2.

例 求解 $y'' + 3y' + 2y = e^{2x}$.

解: 特征方程 $\lambda^2 + 3\lambda + 2 = 0$, 特征根 $\lambda_1 = -1$, $\lambda_2 = -2$, 有 $v^* = C_1 e^{-x} + C_2 e^{-2x}$,

 $f(x) = e^{2x}$, r = 2 不是特征根, 取 $\tilde{y} = Ae^{2x}$, 代入原方程,

有
$$\tilde{y}'' + 3\tilde{y}' + 2\tilde{y} = 4Ae^{2x} + 3 \cdot 2Ae^{2x} + 2 \cdot Ae^{2x} = 12Ae^{2x} = e^{2x}$$
,即 $A = \frac{1}{12}$, $\tilde{y} = \frac{1}{12}e^{2x}$,

∴ 通解为
$$\tilde{y} + y^* = \frac{1}{12}e^{2x} + C_1e^{-x} + C_2e^{-2x}$$
.

例 求解 $y'' - 3y' + 2y = e^{2x}$.

解:特征方程 $\lambda^2 - 3\lambda + 2 = 0$,特征根 $\lambda_1 = 1$, $\lambda_2 = 2$, 有 $v^* = C_1 e^x + C_2 e^{2x}$,

$$f(x) = e^{2x}$$
, $r = 2$ 是单根,取 $\tilde{y} = Axe^{2x}$,有 $\tilde{y}' = Ae^{2x} + 2Axe^{2x}$, $\tilde{y}'' = 4Ae^{2x} + 4Axe^{2x}$,

代入原方程,
$$\tilde{y}'' - 3\tilde{y}' + 2\tilde{y} = (4Ae^{2x} + 4Axe^{2x}) - 3(Ae^{2x} + 2Axe^{2x}) + 2Axe^{2x} = Ae^{2x} = e^{2x}$$
,

 $\mathbb{P} A = 1, \quad \widetilde{y} = xe^{2x},$

∴通解为
$$\tilde{y} + y^* = xe^{2x} + C_1e^x + C_2e^{2x}$$
.

例 求解 $v'' - 4v' + 4v = e^{2x}$.

解:特征方程 $\lambda^2 - 4\lambda + 4 = 0$,特征根 $\lambda_1 = \lambda_2 = 2$, 有 $v^* = (C_1 + C_2 x)e^{2x}$,

$$f(x) = e^{2x}$$
, $r = 2$ 是重根,取 $\tilde{y} = Ax^2e^{2x}$,

有
$$\tilde{y}' = 2Axe^{2x} + 2Ax^2e^{2x}$$
, $\tilde{y}'' = 2Ae^{2x} + 8Axe^{2x} + 4Ax^2e^{2x}$, 代入原方程,

$$\widetilde{y}'' - 4\widetilde{y}' + 4\widetilde{y} = (2Ae^{2x} + 8Axe^{2x} + 4Ax^2e^{2x}) - 4(2Axe^{2x} + 2Ax^2e^{2x}) + 4Ax^2e^{2x} = 2Ae^{2x} = e^{2x},$$

$$\mathbb{E} A = \frac{1}{2}, \quad \widetilde{y} = \frac{1}{2} x^2 e^{2x},$$

∴通解为
$$\tilde{y} + y^* = \frac{1}{2}x^2e^{2x} + (C_1 + C_2x)e^{2x}$$
.

(2) 若 $f(x) = P_m(x)$ 为 m 次多项式,则取 $\tilde{y} = x^k Q_m(x)$,其中 $Q_m(x)$ 为 m 次多项式,

当 r=0 不是特征根、是单根或重根时,k 分别取 0、1、2.

例 求解 y'' + y' - 2y = x + 1.

解: 特征方程 $\lambda^2 + \lambda - 2 = 0$,特征根 $\lambda_1 = 1$, $\lambda_2 = -2$, 有 $y^* = C_1 e^x + C_2 e^{-2x}$,

f(x) = x + 1, r = 0 不是特征根, 取 $\tilde{y} = Ax + B$, 代入原方程,

有
$$\tilde{y}'' + \tilde{y}' - 2\tilde{y} = 0 + A - 2(Ax + B) = -2Ax + (A - 2B) = x + 1$$
,即 $A = -\frac{1}{2}$, $B = -\frac{3}{4}$, $\tilde{y} = -\frac{1}{2}x - \frac{3}{4}$,

∴ 通解为
$$\tilde{y} + y^* = -\frac{1}{2}x - \frac{3}{4} + C_1e^x + C_2e^{-2x}$$
.

例 求解 y'' + 3y' = 2x - 1.

解:特征方程 $\lambda^2 + 3\lambda = 0$,特征根 $\lambda_1 = -3$, $\lambda_2 = 0$, 有 $y^* = C_1 e^{-3x} + C_2$,

f(x) = 2x - 1, r = 0 是单根, 取 $\tilde{y} = x(Ax + B) = Ax^2 + Bx$, 代入原方程,

有
$$\tilde{y}'' + 3\tilde{y}' = 2A + 3(2Ax + B) = 6Ax + (2A + 3B) = 2x - 1$$
,即 $A = \frac{1}{3}$, $B = -\frac{5}{9}$, $\tilde{y} = \frac{1}{3}x^2 - \frac{5}{9}x$,

:通解为
$$\tilde{y} + y^* = \frac{1}{3}x^2 - \frac{5}{9}x + C_1e^{-3x} + C_2$$
.

(3) 若 $f(x) = \cos \beta x$ 或 $\sin \beta x$,则取 $\tilde{y} = x^k (A \cos \beta x + B \sin \beta x)$,

当 $r = \pm \beta i$ 不是特征根、是单根时,k 分别取 0、1.

(4) 若 $f(x) = P_m(x)e^{\alpha x}\cos\beta x$ 或 $P_m(x)e^{\alpha x}\sin\beta x$,则取 $\widetilde{y} = x^kQ_m(x)e^{\alpha x}(A\cos\beta x + B\sin\beta x)$,

当 $r = \alpha \pm \beta i$ 不是特征根、是单根或重根时,k 分别取 0、1、2.

§10.4 微分方程的应用

- 一. 人口模型
- 例 某地区每年人口出生率为m,死亡率为n,且人口的迁入与迁出平衡,初始时刻(t=0)人口数为 y_0 ,求人口数y与时间t的关系.

解: 人口增长率为m-n, 在 Δt 时间内,人口增长数为 $\Delta y = (m-n) y \Delta t$, 即 $\frac{\Delta y}{\Delta t} = (m-n) y$,

取极限
$$\frac{dy}{dt} = (m-n)y$$
,可分离变量,有 $\frac{dy}{v} = (m-n)dt$, $\int \frac{dy}{v} = \int (m-n)dt + C$,

 $\ln y = (m-n)t + \ln C$, $y = Ce^{(m-n)t}$, $\boxtimes t = 0$ \bowtie , $y = y_0$, $f(y_0) = C$,

 $\therefore y = y_0 e^{(m-n)t}$. 即人口呈几何增长.

二. 弹性问题——已知弹性求原函数

弹性计算公式 $y'\frac{x}{v}$,

例 已知需求量 Q 对价格 p 的弹性为 $-p\ln 2$,且最大需求量 (价格为 0 时的需求量) 为 1000,求需求函数.

解:目标函数: 需求量 Q = Q(p),其中 p 为价格,

弹性
$$\frac{dQ}{dp} \cdot \frac{p}{Q} = -p \ln 2$$
,可分离变量, 有 $\frac{dQ}{Q} = -\ln 2 \cdot dp$, $\int \frac{dQ}{Q} = -\int \ln 2 \cdot dp + C$,

 $\ln Q = -p \ln 2 + \ln C$, $Q = C e^{-p \ln 2} = C \cdot 2^{-p}$, 因 t = 0 时,Q = 1000, 有 1000 = C, ∴ $Q = 1000 \cdot 2^{-p}$.

- 三. 积分方程——含未知函数的原函数或积分的方程 对于积分方程,一般是通过求导化为微分方程处理.
- 例 已知 $\int_1^x tf(t)dt = x^2 f(x) x^4$, 求 f(x).
- 解: 两边关于 x 求导, 得: $xf(x) = 2xf(x) + x^2f'(x) 4x^3$, 即 $x^2f'(x) + xf(x) = 4x^3$,

设
$$y = f(x)$$
, 有 $y' + \frac{y}{x} = 4x$, 一阶线性, $p(x) = \frac{1}{x}$, $q(x) = 4x$, 关键式 $e^{\int p(x)dx} = e^{\int \frac{1}{x}dx} = e^{\ln x} = x$,

当
$$x = 1$$
 时, $0 = f(1) - 1$,有 $f(1) = 1$,即 $1 = \frac{4}{3} + C$, $C = -\frac{1}{3}$, $\therefore f(x) = \frac{4}{3}x^2 - \frac{1}{3x}$.

- 四. 辅助函数的设定——中值定理证明题中所需辅助函数
- 一般根据所证结论,建立微分方程求解,将解写成g(x,y) = C的形式,

则辅助函数设为F(x) = g(x, f(x)).

例 已知f(x)在闭区间[a,b]上连续,开区间(a,b)内可导,0 < a < b,且f(a) = f(b) = 0,试证:对任何实数 λ ,至少存在一点 $\xi \in (a,b)$,使得 $\xi f'(\xi) = \lambda f(\xi)$.

分析: 设 y = f(x),考虑微分方程 $xy' = \lambda y$,可分离变量,有 $x \frac{dy}{dx} = \lambda y$,即 $\frac{dy}{y} = \lambda \frac{dx}{x}$, $\int \frac{dy}{y} = \lambda \int \frac{dx}{x} + \ln C$,

得 $\ln y = \lambda \ln x + \ln C = \ln Cx^{\lambda}$, $y = f(x) = Cx^{\lambda}$, 有 $x^{-\lambda}f(x) = C$.

证明: 设辅助函数为 $F(x) = x^{-\lambda} f(x)$, F(x)在[a, b]上连续,(a, b)内可导,且 F(a) = 0 = F(b),由罗尔定理知至少存在一点 $\xi \in (a,b)$,使得 $F'(\xi) = 0$,

$$\overrightarrow{\mathrm{m}}\,F'(\xi) = \xi^{-\lambda}f'(\xi) - \lambda \cdot \xi^{-\lambda-1}f(\xi) = \xi^{-\lambda-1}[\xi f'(\xi) - \lambda f(\xi)] = 0 \ ,$$

∴
$$\xi f'(\xi) - \lambda f(\xi) = 0$$
, 得证.

例 已知f(x)在[a,b]上连续,(a,b)内可导,试证: 至少存在一点 $\xi \in (a,b)$,使得 $f'(\xi) = \frac{f(\xi) - f(a)}{b - \xi}$.

分析: 设y = f(x), 考虑微分方程 $y' = \frac{y - f(a)}{b - x}$, 可分离变量, 有 $\frac{dy}{y - f(a)} = \frac{dx}{b - x}$,

即
$$\int \frac{dy}{y-f(a)} = \int \frac{dx}{b-x} + \ln C$$
,得 $\ln[y-f(a)] = -\ln(b-x) + \ln C = \ln \frac{C}{b-x}$,有 $(b-x)[y-f(a)] = C$.

证明: 设辅助函数为 F(x) = (b-x)[f(x)-f(a)], F(x)在[a, b]上连续, (a,b)内可导,且 F(a) = 0 = F(b), 由罗尔定理知至少存在一点 $\xi \in (a,b)$, 使得 $F'(\xi) = 0$,

而
$$F'(\xi) = -[f(\xi) - f(a)] + (b - x)f'(\xi) = 0$$
, $f'(\xi) = \frac{f(\xi) - f(a)}{b - \xi}$, 得证.