corrigé exercice 19 (colle S7)

On se donne une matrice $M=(m_{i,j})\in M_n(\mathbb{R})$, avec, pour tout $j, \sum_{k=1}^n m_{i,j}=1$, et, pour tout $(i,j), 0 \leq m_{i,j} \leq 1$.

1. Montrer que 1 est valeur propre de M, puis montrer que toutes les valeurs propres complexes de M vérifient $|\lambda| \leq 1$

Pour montrer que 1 est valeur propre, il suffit de considérer $X = {}^{T}(1 \ 1 \ \dots \ 1)$.

Soit $X = (x_i)$ un vecteur propre associé à la valeur propre λ . On note i_0 tel que $|x_{i_0}| = \max |x_i|$. (On note que $X \neq 0$ donc $x_{i_0} \neq 0$.)

On considère la i_0 -ième ligne de MX:

$$\lambda x_{i_0} = \sum_{j=1}^n m_{i_0,j} x_j$$

Ainsi, par inégalité triangulaire:

$$|\lambda| |x_{i_0}| \leqslant \sum_{j=1}^n m_{i_0,j} |x_j| \leqslant \sum_{j=1}^n m_{i_0,j} |x_{i_0}| = |x_{i_0}|$$

Dès lors, $\lambda \leq 1$.

2. Montrer que, si λ est valeur propre de module 1, alors $\lambda = 1$.

On reprend les notations de la question précédente.

Ainsi, les inégalités sont alors des égalités.

On a alors, pour tout j, $m_{i_0,j}x_j=m_{i_0,j}x_{i_0}$ (positivement colinéaires d'après l'inégalité triangulaire, de module constant par passage à la borne supérieure). Dès lors, $\lambda x_{i_0} = \sum_{j=1}^n m_{i_0,j}x_{i_0}$, d'où $\lambda = 1$.

3. Montrer que $ker(M - I_n) = ker(M - I_n)^2$

L'inclusion directe est immédiate.

On prend $X \in \ker(M - I_n)^2$.

$$M^k X = (M - I_n + I_n)^k X = \sum_{j=0}^k {k \choose j} (M - I_n)^j X = X + k(M - I_n) X$$

On en déduit $(M-I_n)X=\frac{M^kX-X}{k}$. De plus, on montre aisément (j'ai un peu la flemme) que M^k est stochastique, donc borné, d'où $(M-I_n)\to 0$, donc $X\in\ker(M-I_n)$. D'où l'égalité.