大数据算法第二次作业

2025年4月10日

Problem 1. 求矩阵 $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$ 的奇异值分解 U, Σ, V 矩阵。

Problem 2. 设 $\mathbf{Y} = (Y_1, Y_2, \dots, Y_p)^T$ 是 \mathbf{X} 的主成分向量, $Var(X) = \Sigma = PAP^T$, $\mathbf{Y} = P^T\mathbf{X}$,其中 P 为主成分分析的载荷矩阵。证明:

• 原始变量 X_k 与主成分 Y_i 的相关系数为

$$\rho_{kj} = \rho(X_k, Y_j) = \frac{\sqrt{\lambda_j}}{\sqrt{\sigma_{kk}}} p_{kj},$$

其中 $p_i = (p_1, p_2, ..., p_p)^T$ 是 P 的第 j 列, p_{kj} 是 P 的第 (k, j) 元素。

• 原始变量 X_k 与主成分 Y_i 的相关系数是

$$\sum_{j=1}^{p} \rho_{kj}^2 = 1, j = 1, 2, \dots, p.$$

Problem 3. 设 $\mathcal{X} \subset \{0,1\}^d$ 为二进制向量空间,赋予汉明距离度量。定义哈希函数族

$$H = \{h_i \mid h_i(u) = u_i, 1 \le i \le d\}$$

则该函数族是 $(r,(1+\epsilon)r,1-r/d,1-(1+\epsilon)r/d)$ -局部敏感哈希族。

Problem 4. 在度量空间 (T,d) 中,子集 K 被称为 ϵ — 分离的,当且仅当对任意不同的 $p,q \in K$,有 $d(p,q) > \epsilon$. 对于空间 T,记最大的 ϵ — 分离子集的势(大小)为 $\mathcal{N}(T,\epsilon)$,称作 T 的覆盖数。

- (1) 证明: $\mathcal{N}(T,\epsilon) \leq \frac{|B(\frac{\epsilon}{2})+T|}{|B(\frac{\epsilon}{2})|}$. 其中,"+"作用于两个集合, $A+B=\{a+b|a\in A,b\in B\}$. (提示:考虑分离子集的每个元素,以它们为中心半径为 ϵ 的球。)
- (2) (JL 变换的最优性)证明:对于任意给定的 $\epsilon \in (0,1)$, 存在 $P \subset \mathbb{R}^d$, $|P| = n \in \mathbb{N}_+$,如果存在一个映射 $f: \mathbb{R}^d \to \mathbb{R}^k$,使得对于任意两个向量 $x,y \in P$,有

$$(1 - \epsilon)||x - y||^2 \le ||f(x) - f(y)||^2 \le (1 + \epsilon)||x - y||^2,\tag{1}$$

则必有 $k = \Omega(\log d)$.

(提示:考虑集合 $P = \{0, e_1, \dots, e_d\}, e_k$ 为第 k 个标准正交基。则 f(P) 是否是 B(1) 的某个分离子集?)

Problem 5. 给定 N 个向量 $v_1,v_2,\ldots,v_N\in\mathbb{R}^d$,构造 jl 随机投影矩阵 $B\in\mathbb{R}^{k\times d}$,其每个元素独立采样自高斯分布 $\mathcal{N}(0,1/k)$ 。令投影维度 $k>\frac{24\log N}{\epsilon^2}$ 。已知引理:

对于任意独立重复采样自 $\mathcal{N}(0,\frac{1}{n})$ 的向量 $w\in\mathbb{R}^n$ 和常数 $\varepsilon\in(0,1)$ 有:

$$P(||w||^2 - 1| \ge \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2 n}{8}\right).$$

要求证明至少有 $\frac{N-1}{N}$ 的概率, 对于任意 $i \neq j$ 和常数 $\varepsilon \in (0,1)$,

$$(1 - \varepsilon) \|v_i - v_i\|^2 \le \|Bv_i - Bv_i\|^2 \le (1 + \varepsilon) \|v_i - v_i\|^2.$$

1 思考题

- 1. 我们讲过的 JL 变换都是线性变换。如何得出非线性变换,从而更好地配合数据所处的流形?(比如为了加速 SVM 再生核的计算)
- 2. 如何将随机化的次线性算法改为确定性算法?