Optimización de viajes compartidos en taxis utilizando algoritmos evolutivos

Gabriel Fagúndez de los Reyes Renzo Massobrio

Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Contenido

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Motivación

Car pooling

- Beneficios en el plano ecológico y económico, individuales y colectivos.
- Iniciativas para atender el interés del público: carriles exclusivos, campañas para compartir los viajes al trabajo y aplicaciones para encontrar compañeros de viaje.

Taxi pooling

- Los taxis son un medio de transporte rápido y confiable, especialmente en ciudades donde el transporte público es poco eficiente.
- Los taxis raramente viajan a capacidad completa, impactando en la congestión del tráfico y en la contaminación de las ciudades.
- Tarifas altas desalientan a los usuarios.
- 15 % de los accidentes fatales en Uruguay involucran a un conductor alcoholizado (UNASEV).

Motivación

Car pooling

- Beneficios en el plano ecológico y económico, individuales y colectivos.
- Iniciativas para atender el interés del público: carriles exclusivos, campañas para compartir los viajes al trabajo y aplicaciones para encontrar compañeros de viaje.

Taxi pooling

- Los taxis son un medio de transporte rápido y confiable, especialmente en ciudades donde el transporte público es poco eficiente.
- Los taxis raramente viajan a capacidad completa, impactando en la congestión del tráfico y en la contaminación de las ciudades.
- Tarifas altas desalientan a los usuarios.
- 15 % de los accidentes fatales en Uruguay involucran a un conductor alcoholizado (UNASEV).

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante *B* indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante *B* indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

Variante multiobjetivo del PVCT: formulación matemática

Se busca minimizar simultáneamente el costo total y la demora total.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right) \right] \right]$$
tiempo tolerado por el pasajero en la posición i del taxi t_i

- $time: \{\{O\} \cup D\} \times D \to \mathbb{R}^+_0$ indica el tiempo de recorrido.
- $tol: P \to \mathbb{R}^+_0$ indica el tiempo adicional tolerado por cada pasajero.

Variante multiobjetivo del PVCT: formulación matemática

Se busca minimizar simultáneamente el costo total y la demora total.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{dest}} \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t_i

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \underbrace{tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{tiemportolerado por el pasaiero en la posición } i del taxi transferencia.} \right]$$

- $time: \{\{O\} \cup D\} \times D \to \mathbb{R}^+_0$ indica el tiempo de recorrido.
- $tol: P \to \mathbb{R}^+_0$ indica el tiempo adicional tolerado por cada pasajero.

Variante multiobjetivo del PVCT: formulación matemática

Se busca minimizar simultáneamente el costo total y la demora total.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{dest}} \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi ti

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \underbrace{tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{tiempo tolerado por el pasajero en la posición } j \text{ del taxi } t_i \right]$$

- $time: \{\{O\} \cup D\} \times D \to \mathbb{R}^+_0$ indica el tiempo de recorrido.
- $tol: P \to \mathbb{R}^+_0$ indica el tiempo adicional tolerado por cada pasajero.

Complejidad del PVCT

Complejidad

Baldacci et al. (2004) estudiaron una variante del *Car Pooling Problem* (*CPP*) donde trabajadores desean compartir vehículos hacia y desde el lugar de trabajo.

Esta variante es un caso particular del *Vehicle Routing Problem (VRP)* con demanda unitaria, el cual es \mathcal{NP} -difícil [Letcheford et al. (2002)].

Estrategias de resolución

Cuando se utilizan instancias de tamaños realistas, los algoritmos exactos tradicionales no resultan útiles para una planificación eficiente.

Heurísticas y metaheurísticas permiten calcular soluciones de calidad aceptable en tiempos razonables.

Complejidad del PVCT

Complejidad

Baldacci et al. (2004) estudiaron una variante del *Car Pooling Problem* (*CPP*) donde trabajadores desean compartir vehículos hacia y desde el lugar de trabajo.

Esta variante es un caso particular del *Vehicle Routing Problem (VRP)* con demanda unitaria, el cual es \mathcal{NP} -difícil [Letcheford et al. (2002)].

Estrategias de resolución

Cuando se utilizan instancias de tamaños realistas, los algoritmos exactos tradicionales no resultan útiles para una planificación eficiente.

Heurísticas y metaheurísticas permiten calcular soluciones de calidad aceptable en tiempos razonables.

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Car pooling problem (CPP)

Yan et al. (2011) CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP** estático con ventanas de tiempo Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real. 13 % de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one—to—many** y many—to—one Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one–to–many** y many–to–one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real.

 $13\,\%$ de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real.

 $13\,\%$ de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one–to–many** y many–to–one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real.

 $13\,\%$ de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumen

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Algoritmos evolutivos

Definición

- Los algoritmos evolutivos (AE) son técnicas estocásticas que emulan el proceso de evolución natural de las especies para resolver problemas de optimización, búsqueda y aprendizaje.
- Un AE es una técnica iterativa (cada iteración se denomina generación) que aplica operadores estocásticos sobre un conjunto de individuos (la población).
- Cada individuo en la población codifica una solución tentativa al problema y tiene un valor de fitness, dado por una función de evaluación que determina su adecuación para resolver el problema.
- El propósito del AE es mejorar el fitness de los individuos en la población mediante la aplicación iterativa de operadores evolutivos a individuos seleccionados según su fitness, guiando al AE hacia soluciones tentativas de mayor calidad.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

AE para el PVCT monoobjetivo

seqEA

AE secuencial. Utiliza selección proporcional.

Modelos paralelos en AE

Buscan mejorar el desempeño de los AE.

Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

AE paralelo con micro-población ($p\mu EA$

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona.
- Topología de anillo unidireccional.

AE para el PVCT monoobjetivo

seqEA

AE secuencial. Utiliza selección proporcional.

Modelos paralelos en AE

Buscan mejorar el desempeño de los AE.

Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

AE paralelo con micro-población ($p\mu EA$

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona.
- Topología de anillo unidireccional.

AE para el PVCT monoobjetivo

seqEA

AE secuencial. Utiliza selección proporcional.

Modelos paralelos en AE

Buscan mejorar el desempeño de los AE.

Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

AE paralelo con micro-población ($p\mu EA$)

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona.
- Topología de anillo unidireccional.

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT$$
,
 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C$

NSGA-L

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

NSGA-I

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

NSGA-II

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

NSGA-II

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

NSGA-II

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Generación de instancias

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- Instancias en Montevideo generadas manualmente.
- API para obtener tarifas TaxiFareFinder (TFF).

Instancias generadas

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing)
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo, y un total de 88 para el multiobjetivo, considerando distintas capacidades y tolerancias.

Generación de instancias

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- Instancias en Montevideo generadas manualmente.
- API para obtener tarifas TaxiFareFinder (TFF).

Instancias generadas

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo, y un total de 88 para el multiobjetivo, considerando distintas capacidades y tolerancias.

PVCT monoobjetivo

Entorno de ejecución

- La evaluación experimental fue realizada en el Cluster FING.
- seqEA: Dell Power Edge 2950, 1 núcleo de Intel Xeon E5430 2.66GHz, 8GB RAM.
- pμEA: HP Proliant DL585, 24 núcleos de AMD Opteron 2.09GHz, 48GB RAM.

Configuración paramétrica

- **seqEA**: 20 ejecuciones de 2000 generaciones sobre 3 instancias. $\#P \in \{150, 200, 250\}; p_C \in \{0,6,0,75,0,95\}; p_M \in \{0,001,0,01,0,1\}.$
- pμEA: micro-población de 15 individuos, torneo (m = 2, k = 1), migración cada 500 generaciones.
 20 ejecuciones de 100.000 generaciones sobre 5 instancias.
 p_C ∈ {0,6, 0,75, 0,95}; p_M ∈ {0,001, 0,01, 0,1}.

Comparativa de métodos de inicialización

Metodología

- Shapiro-Wilk afirma que los resultados no siguen una distribución normal.
- Se utilizó Kruskal-Wallis para comparar ambas inicializaciones.
- Kruskal-Wallis permite afirmar con un nivel de confianza del 95 % que una de las inicializaciones obtuvo mejores resultados que la otra.

seqEA con inicialización aleatoria vs. incialización ávida

La inicialización ávida supera a la inicialización aleatoria en 10 instancias de prueba, mientras que la inicialización aleatoria lo hace en tan solo 2.

$p\mu EA$ con inicialización aleatoria vs. incialización ávida

La inicialización ávida super a la inicialización aleatoria en 11 instancias de prueba, mientras que no hubo instancias en las que se pueda afirmar que la inicialización aleatoria haya alcanzado mejores soluciones.

Mejora seqEA sobre algoritmo ávido

Se alcanzaron mejores valores en **todas** las instancias. En el mejor caso se superó el costo del algoritmo ávido en un 35.9 %.

Mejora $p\mu EA$ sobre algoritmo ávido

Se alcanzaron mejores valores en **todas** las instancias. En el mejor caso se superó el costo del algoritmo ávido en un 41.0 %.

Comparativa seqEA vs. $p\mu EA$

Sobre un total de 22 instancias, $p\mu EA$ es capaz de encontrar mejores resultados que seqEA en 17. Únicamente en una instancia de prueba seqEA alcanzó mejores soluciones que $p\mu EA$.

instancia		seqEA		ρμΕΑ		12.147
		min(c)	$\overline{c} \pm std$	min(c)	$\overline{c} \pm std$	pvK–W
chicas	#1	164.4	165.6±2.0	164.4	164.4±0.0	0.2×10^{-3}
	#2	220.7	225.7 ± 5.0	220.7	220.7±0.0	9.7×10^{-6}
	#3	160.4	160.4 ± 0.0	160.4	160.4 ± 0.0	1.0
	#4	181.3	181.3 ± 0.1	181.3	182.4 ± 1.9	0.5×10^{-1}
	#5	152.1	155.6 ± 4.5	152.1	152.1 ± 0.0	5.1×10^{-6}
	#6	118.4	119.6 ± 2.5	118.4	118.4 ± 0.0	0.1×10^{-1}
	#1	211.9	216.0±4.2	211.9	211.9±0.0	5.2×10 ⁻¹¹
	#2	428.6	444.1 ± 11.7	427.9	429.4±1.6	7.0×10^{-10}
medianas	#3	361.7	378.7 ± 6.5	364.5	370.4±4.5	1.6×10^{-6}
medianas	#4	267.5	279.8 ± 5.5	266.8	266.8±0.0	7.6×10^{-12}
	#5	479.3	487.1 ± 6.5	479.6	479.8±0.2	5.1×10^{-7}
	#6	306.0	321.2 ± 7.7	306.0	307.7±3.4	2.0×10^{-9}
grandes	#1	421.9	435.1±5.0	425.9	437.7±3.2	0.1×10^{-1}
	#2	479.3	489.9 ± 4.3	477.0	481.1±2.3	1.9×10^{-9}
	#3	332.8	349.7 ± 7.7	326.3	331.7±4.0	2.6×10^{-10}
	#4	351.1	390.7±26.3	338.4	344.8 ± 6.1	5.1×10^{-11}
	#5	395.9	429.6±16.2	370.2	380.0±4.4	2.7×10^{-11}
	#6	360.8	382.4 ± 8.1	343.8	350.6 ± 3.8	2.6×10^{-11}
Montevideo	#1	168.4	168.4±0.0	168.4	168.4±0.0	1.0
	#2	319.3	331.2 ± 3.8	324.9	328.6 ± 3.2	5.6×10^{-6}
	#3	266.7	269.1 ± 2.3	266.7	266.7 ± 0.0	3.1×10^{-7}
	#4	303.2	304.7±0.5	304.1	304.5±0.4	0.1

Evolución del costo a lo largo de la ejecución

 $p\mu EA$ alcanza mejores soluciones que seqEA en menos tiempo. En el mejor caso la aceleración es de 7,5x (4,6x en promedio).

PVCT multiobjetivo

Entorno de ejecución

- La evaluación experimental fue realizada en el Cluster FING.
- pμMOEA/D: HP Proliant DL585, 24 núcleos de AMD Opteron 2.09GHz, 48GB RAM.
- NSGA-II: HP Proliant DL385 G7, 1 núcleo de AMD Opteron 6172 2.10GHz, 72GB RAM.

Configuración paramétrica

- pμMOEA/D: 30 ejecuciones de 20000 generaciones sobre 4 instancias.
 - $P = 15; p_C \in \{0,6, 0,75, 0,95\}; p_M \in \{0,001, 0,01, 0,1\};$ operador de migración cada 1000 generaciones.
- **NSGA-II**: 30 ejecuciones de 5000 generaciones sobre 4 instancias. P = 80; $p_C \in \{0,6,0,75,0,95\}$; $p_M \in \{0,001,0,01,0,1\}$.

Algoritmo ávido para minimizar demora

FALTA

Métricas multiobjetivo

$p\mu MOEA/D$

Se logra una buena convergencia y diversidad. Sin embargo, la cantidad de soluciones no dominadas es baja, indicando que se puede mejorar.

	#ND	DG	spacing	spread	RHV
chicas	8.5±2.1 (16.0)	3.1±2.5 (0.0)	740.2±746.3 (58.1)	0.6±0.2 (0.1)	0.9±0.1 (1.0)
medianas	$9.1\pm2.2\ (19.0)$	5.7±2.5 (0.0)	1448.5±1064.1 (141.6)	$0.6\pm0.1\ (0.1)$	$0.9\pm0.1\ (1.0)$
grandes	8.5±2.2 (17.0)	7.9 ± 3.4 (2.0)	2917.2±2041.5 (175.3)	$0.6\pm0.1\ (0.0)$	$0.8\pm0.1\ (1.0)$
Montevideo	8.0±2.1 (14.0)	3.0±2.0 (0.0)	663.5±542.4 (61.5)	0.6±0.2 (0.0)	0.9±0.0 (1.0)

NSGA-II

La cantidad de puntos no dominados es mayor. La distancia generacional indica una buena convergencia y se logra una mayor dispersión.

	#ND	DG	spacing	spread	RHV
chicas	32.6±9.5 (55.0)	0.3±0.6 (0.0)	236.2±222.7 (43.2)	0.9±0.1 (0.7)	1.0±0.0 (1.0)
medianas	54.5±4.2 (67.0)	$1.0\pm0.7\ (0.0)$	193.6±202.4 (26.2)	$0.7\pm0.2\ (0.4)$	1.0 ± 0.0 (1.0)
grandes	55.2±3.5 (67.0)	$1.8\pm1.1\ (0.4)$	243.6±229.8 (26.4)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
Montevideo	43.9±16.4 (61.0)	0.4±0.5 (0.0)	142.3±143.2 (20.8)	0.8±0.1 (0.5)	1.0±0.0 (1.0)

Mejora frente a algoritmos ávidos vs. tiempo de ejecución

El enfoque multiobjetivo explícito de NSGA-II permite alcanzar mejores resultados que el enfoque por descomposición de dominio aplicado en $p\mu MOEA/D$. Sin embargo, los tiempos de ejecución son significativamente mayores.

Frentes de Pareto: $p\mu MOEA/D$ vs. NSGA-II

NSGA-II alcanza mejores soluciones con una mayor cantidad de puntos no dominados distribuidos homogéneamente a lo largo del frente.

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Planificador de viajes compartidos en línea

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Conclusiones y trabajo futuro