UEG - Universidade Estadual de Goiás.

Pesquisa Operacional Prof. Gleisson Santana

Aluno(a):	Data:	/ / 2024
-----------	-------	----------

RESOLUÇÃO DE EXERCÍCIOS DE SIMPLEX

QUESTÃO 01:

Considere o seguinte problema de programação linear:

Min
$$z = x_1 - 3x_2 + x_3$$

s.a

$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 - x_3 = 2$$

$$x_j \ge 0, j = 1,...,3$$

Resolva pelo método simplex.

Troque o sinal da primeira restrição para ' <= ' e resolva o problema novamente.

QUESTÃO 02:

Dado o modelo abaixo, resolva-o através do Método Simplex.

Max.
$$z = 3x_1 + 5x_2$$

s.a.
$$2x_1 + 4x_2 \le 10$$
$$6x_1 + x_2 \le 20$$
$$x_1 - x_2 \le 30$$
$$x_1 e x_2 \ge 0$$

QUESTÃO 03:

Dado o modelo abaixo, resolva-o através do Método Simplex.

Max.
$$z = 4x_1 + 3x_2$$

s.a.
$$x_1 + 3x_2 \le 7$$
$$2x_1 + 2x_2 \le 8$$
$$x_1 + x_2 \le 3$$
$$x_1 e x_2 \ge 0$$

QUESTÃO 04:

Dado o modelo abaixo, resolva-o através do Método Simplex.

Max.
$$z = 5x_1 + 2x_2$$

s.a.
 $x_1 \le 3$
 $x_2 \le 4$
 $x_1 + 2x_2 \le 9$
 $x_1 e x_2 \ge 0$

QUESTÃO 05:

Dado o modelo abaixo, resolva-o através do Método Simplex.

Max.
$$z = 4x_1 + 8x_2$$

s.a. $3x_1 + 2x_2 \le 18$
 $x_1 + x_2 \le 5$
 $x_1 \le 4$
 $x_1 e x_2 \ge 0$

QUESTÃO 06:

Resolva o seguinte problema de programação linear usando o método simplex:

$$\min z = x_1 - 2x_2 + x_3$$

sujeito a

$$x_1 + 2x_2 - 2x_3 \le 4$$
$$2x_1 - 2x_3 \le 6$$
$$2x_1 - x_2 + 2x_3 \le 2$$
$$x_1, x_2, x_3 \ge 0.$$

QUESTÃO 07:

Usando simplex, determine a solução do problema:

$$\max z = 2x_1 + 3x_2$$

sujeito a

$$x_1 + 3x_2 \le 6$$
$$3x_1 + 2x_2 \le 6$$
$$x_1, x_2 \ge 0.$$

QUESTÃO 08:

Determine, caso haja solução (ões), quais os valores das variáveis x_1 e x_2 que maximizam a função $Z = 2x_1 + 2x_2$ sujeita às restrições:

$$x_1 + x_2 \ge 200$$
$$-x_1 + 2x_2 \le 200$$

QUESTÃO 09:

Suponha que uma dieta alimentar esteja restrita a leite desnatado, carne magra bovina, carne de peixe e uma salada. A tabela abaixo expressa os requisitos nutricionais em termos das vitaminas A, C e D, dados por suas quantidades mínimas, bem como a quantidade de tais nutrientes presente em uma porção de cada alimento (em peso ou volume).

Vitamina	\mathbf{A}	\mathbf{C}	\mathbf{D}	Custo
Leite (L)	2 mg	50 mg	80 mg	R\$ 2
Carne (kg)	2 mg	20 mg	70 mg	R\$ 4
Peixe (kg)	10 mg	10 mg	10 mg	R\$ 1,50
Salada $(100g)$	20 mg	$30~\mathrm{mg}$	80 mg	R\$ 1
Requisito				
nutricional	11 mg	70 mg	250 mg	
mínimo				

Tendo em mãos o custo de cada porção dos componentes da dieta, faça a modelagem do problema, visando atender os requisitos nutricionais e gastando-se o mínimo possível.

QUESTÃO 10:

Uma central de reciclagem usa 2 tipos de sucata de alumínio, A e B, para produzir uma liga. A sucata A contém 6% de alumínio, 3% de silício e 4% de carbono. A sucata B contém 3% de alumínio, 6% de silício e 3% de carbono. A e B custam \$100/ton e \$80/ton, respectivamente.

As normas de qualidade requerem que o teor de alumínio na liga esteja entre 3% e 6%; que o teor de silício fique entre 3% e 5% e o de carbono, entre 3% e 7%. Determine a mistura de menor custo a ser empregada para produzir 1000 toneladas da liga.