MathTools HW 3

1. **Concentration of the degree in a random graph.** Consider a random graph $G \sim \mathcal{G}(n, p)$ with $p = n^{-1/2}$. Show that one can find a constant C > 0 such that the following holds with high probability:

$$d_i \le C \cdot (n \log n)^{1/2}$$
 holds simulatenously for all $i \in [n]$,

where d_i is the degree of vertex i.

Remark: A previous version of the problem used C = 2.01 explicitly.

2. **Threshold for the appearance of a clique.** Fix an integer $k \ge 3$. Show that the threshold for the appearance of a k-clique (copy of K_k) in $\mathcal{G}(n,p)$ is $p=n^{-\frac{2}{k-1}}$.

Hint: Basically repeat the same argument you did in the lecture, for k=4 (for the easier direction, you basically proved it in HW2 Q6 - make sure you see why). It might be convenient to use estimates like $\binom{n}{k} = \Theta(n^k)$ for k constant, etc.

3. **Arithmetic progressions in random sets.** Let $S \subset \{1, \ldots, n\}$ be a uniformly chosen random subset of size |S| = k. We say that S contains an ℓ -**arithmetic progression** if it contains ℓ numbers a_1, \ldots, a_ℓ such that

$$a_2 - a_1 = a_3 - a_2 = \ldots = a_{\ell} - a_{\ell-1}$$
.

Notice that in what follows, ℓ is fixed and k grows with n.

- (a) (Warm-up). Let $T \subset [n]$ with |T| = t, t being constant (e.g, t = 7). Prove that $\Pr(T \subset S) = \Theta((k/n)^t)$.
- (b) Suppose that $k = \omega(n^{1/3})$. Prove that w.h.p, S contains $\Omega(k^3/n)$ 3-arithmetic progressions.
- (c) Suppose that $k = o(\sqrt{n})$. Prove that w.h.p *S* does not contain any 4-arithmetic progressions.

¹Notice there are $\binom{n}{k}$ possible such subsets. We simply take one in random.