Άσκηση 1 [4μ]

Η ταχύτητα ενός σώματος περιγράφεται από τις παρακάτω εξισώσεις:

$$v(t) = 2t, 1 \le t \le 5$$

 $v(t) = 5t^2 + 3, 5 < t \le 14$

όπου t ο χρόνος μετρούμενος σε δευτερόλεπτα και v δίνεται σε m/s. Χρησιμοποιήστε τη μέθοδο του Τραπεζίου με 2 υποδιαστήματα για να βρείτε τη μετατόπιση του σώματος μεταξύ της χρονικής στιγμής t=2 και t=9 δευτερόλεπτα.

Απ.: Σύμφωνα με τον κανόνα του Τραπεζίου το ολοκλήρωμα προσεγγίζεται ως:

$$\int_{a}^{b} v(t)dt \approx \frac{b-a}{2n} \left[v(a) + 2 \left\{ \sum_{i=1}^{n-1} v(a+ih) \right\} + v(b) \right]$$

όπου α=2, b=9, n=2 και $h=\frac{b-a}{n}=\frac{9-2}{2}=3.5$. Αντικατάσταση στην προηγούμενη εξίσωση δίνει

$$\int_{2}^{9} v(t)dt \approx \frac{9-2}{2\times 2} \left[v(2) + 2 \left\{ \sum_{i=1}^{2-1} v(2+i\times 3.5) \right\} + v(9) \right] = \frac{7}{4} \left[v(2) + 2v(5.5) + v(9) \right]$$

Αλλά:
$$v(2) = 2 \cdot 2 = \frac{4m}{s}$$
, $v(5.5) = 5 \cdot 5.5^2 + 3 = \frac{154.25m}{s}$ και $v(9) = 5 \cdot 9^2 + 3 = 408 \frac{m}{s}$.

Αντικαθιστώντας, η μετατόπιση θα είναι: $\int_2^9 v(t)dt \approx \frac{7}{4}[4+2\cdot 154.25+408] \approx 1261m$

Άσκηση 2 [4μ]

Υπολογίστε την μετατόπιση του σώματος της άσκησης 1 χρησιμοποιώντας την μέθοδο Simpson για δύο υποδιαστήματα.

Απ.: Ο κανόνας Simpson για πολλαπλά υποδιαστήματα γράφεται με την μορφή:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{3n} \left[f(x_0) + 4 \sum_{\substack{i=1, \\ \pi \in \rho \iota \tau \tau \acute{0}}}^{n-1} f(x_i) + 2 \sum_{\substack{i=2, \\ \acute{\alpha} \rho \tau \iota o}}^{n-2} f(x_i) + f(x_n) \right]$$

Στην προκειμένη περίπτωση έχουμε α=2, b=9, n=2 και επομένως $h=\frac{b-a}{n}=\frac{9-2}{2}=3.5$ Εφαρμογή στην εξίσωση της προσέγγισης του κανόνα Simpson θα δώσει:

$$\int_{2}^{9} v(t)dt \approx \frac{9-2}{3\cdot 2} \left[v(t_{0}) + 4 \sum_{\substack{i=1,\\ \pi \varepsilon \rho \iota \tau \tau \acute{o}}}^{2-1} v(t_{i}) + 2 \sum_{\substack{i=2,\\ \acute{a} \rho \tau \iota o}}^{2-2} v(t_{i}) + v(t_{2}) \right]$$

$$\int_{2}^{9} v(t)dt \approx \frac{9-2}{3\cdot 2} \left[v(t_{0}) + 4 \sum_{\substack{i=1,\\ \pi \varepsilon \rho \iota \tau \tau \acute{o}}}^{1} v(t_{i}) + 2 \sum_{\substack{i=2,\\ \acute{a} \rho \tau \iota o}}^{0} v(t_{i}) + v(t_{2}) \right]$$

$$\int_{2}^{9} v(t)dt \approx \frac{9-2}{3\cdot 2} \left[v(t_{0}) + 4 \cdot v(t_{1}) + v(t_{2}) \right]$$

Από τα δεδομένα της άσκησης έχουμε: $v(t_0) = v(2) = 2 \cdot 2 = \frac{4m}{s}$.

$$v(t_1) = v(2+3.5) = v(5.5) = 5 \cdot 5.5^2 + 3 = 154.25 \frac{m}{s} \text{ kal } v(t_2) = v(9) = 5 \cdot 9^2 + 3 = \frac{408m}{s}$$

$$\int_{2}^{9} v(t)dt \approx \frac{9-2}{3\cdot 2} [v(2) + 4\cdot v(5.5) + v(9)] = 1.1667(4+4\cdot 154.25+408) = 1200.5m$$

Άσκηση 3 [4μ]

Αναφέραμε ότι η μέθοδος Simpson είναι ακριβής για ένα πολυώνυμο 3^{ης} τάξης. Εξηγήστε γιατί ισχύει αυτό.

Απ.: Ο κανόνας Simpson είναι ακριβής για πολυώνυμα $3^{\rm ou}$ ή μικρότερου βαθμού. Ο κανόνας εξάγεται προσεγγίζοντας την ολοκληρωτέα συνάρτηση με ένα πολυώνυμο δευτέρου βαθμού, εντούτοις η επιφάνεια που περικλείεται από την καμπύλη της συνάρτησης είναι ακριβής για ένα πολυώνυμο $3^{\rm ou}$ βαθμού. Όπως δείξαμε, το σφάλμα αποκοπής όρων από το ανάπτυγμα Taylor στην εξαγωγή του κανόνα Simpson είναι της τάξης της $4^{\rm ης}$ παραγώγου, $E_t = \frac{(b-a)^5}{2880} f^{(4)}(\zeta)$ για τιμές $a < \zeta < b$. Από τη στιγμή που η $4^{\rm η}$ παράγωγος μιας συνάρτησης $3^{\rm ou}$ βαθμού είναι 0, το σφάλμα αποκοπής θα είναι 0. Επομένως ο κανόνας Simpson είναι ακριβής για ολοκλήρωση πολυωνύμων $3^{\rm ou}$ και μικρότερου βαθμού.

Άσκηση 4 [3μ]

Ο παρακάτω πίνακας δείχνει μετρήσεις της ταχύτητας ενός σώματος συναρτήσει του χρόνου:

Time(s)	0	15	18	22	24
Velocity (m/s)	22	24	37	25	123

Χρησιμοποιώντας τη μέθοδο του Τραπεζίου με μη ίσα διαστήματα, να υπολογίσετε την μετατόπιση του σώματος στο χρονικό διάστημα που ορίζεται μεταξύ των χρονικών στιγμών t=12s και t=18s.

Απ.: Η χρήση της μεθόδου του Τραπεζίου με μη ίσα διαστήματα θα δώσει:

$$\int_{12}^{18} u(t)dt = \int_{12}^{15} u(t)dt + \int_{15}^{18} u(t)dt$$

Η ταχύτητα τις χρονικές στιγμές 15s και 18s είναι u(15)=24m/s και u(18)=37m/s. Θα χρειαστεί να υπολογίσουμε την ταχύτητα τη χρονική στιγμή 12s. Από τα δεδομένα, μπορούμε να χρησιμοποιήσουμε γραμμική παρεμβολή μεταξύ των χρονικών στιγμών 0 και 15s:

$$u(t) = a_0 + a_1 t \text{ yia } 0 \le t \le 15.$$

Τη χρονική στιγμή
$$t$$
 = 0s $u(0) = a_0 + a_1 0 = 22 \Rightarrow a_0 = \frac{22m}{s}$.

Τη χρονική στιγμή
$$t$$
 = 15s $u(15) = a_0 + a_1 15 = 24 \Rightarrow a_1 = \frac{\frac{24-22}{15}m}{s} \Rightarrow a_1 = 0.1333$.

Επομένως η ταχύτητα στο διάστημα $0 \le t \le 15$ προσεγγίζεται μέσω γραμμικής παρεμβολής ως u(t) = 22 + 0.13333t.

Τη χρονική στιγμή t=12s, η ταχύτητα θα είναι: $u(12) = 22 + 0.13333 \cdot 12 \Rightarrow u(12) = \frac{23.6m}{s}$ Επομένως η μετατόπιση του σώματος θα είναι:

$$\int_{12}^{18} u(t)dt = \int_{12}^{15} u(t)dt + \int_{15}^{18} u(t)dt \approx (15 - 12) \left[\frac{u(12) + u(15)}{2} \right] + (18 - 15) \left[\frac{u(18) + u(15)}{2} \right]$$

$$\int_{12}^{18} u(t)dt = (15 - 12) \left[\frac{23.6 + 24}{2} \right] + (18 - 15) \left[\frac{37 + 24}{2} \right] \Rightarrow \int_{12}^{18} u(t)dt = 162.9m$$

Σημείωση: Στην εκφώνηση της άσκησης εκ παραδρομής γράφηκε η χρονική στιγμή t=15s ως 5s. Επομένως οι μονάδες του ερωτήματος θα δοθούν σε όλους.