

Deep Convolutional Neural Networks – Part 1

Machine Learning for Engineering Applications

Fall 2023

Purpose

- Convolutional neural networks (CNNs) are a family of models that were inspired by how the visual cortex of human brain works when recognizing objects
- CNNs break down features to learn "shapes" of the deconstructed input
- Weights in the ANN-structure of the CNN are adjusted to each feature and learns how to recognize many pieces in parallel

Learning Features

- Neural networks are able to automatically learn the features from raw data that are most useful for a particular task.
- It's common to consider a neural network as a feature extraction technique
- CNNs construct a so-called <u>feature hierarchy</u>
- Combining the low-level features in a layer-wise fashion to form high-level features

Feature map:

- This local patch of pixels is referred to as the <u>local receptive field</u>
- Sparse-connectivity: A single element in the feature map is connected to only a small patch of pixels.

- Parameter-sharing: The same weights are used for different patches of the input image.
- This helps to reduce the computation
- Assumption: neighboring pixels look the same

- CNNs are composed of several Convolutional (conv) layers
- Subsampling (aka Pooling (Pool))
- Dropout layers (overfitting fix)
- Fully Connected (FC) layers at the end

- Pooling: It does not have a learning components
- Technique to "pool" the pixel values and determine a representation of it

1-Dimentional Convolution

 A discrete convolution for two one-dimensional vectors x and w is denoted by :

$$y = x * w$$

- "*" Not the multiplication operation, it is the convolution operations
- Vector x is the input
- w is called the filter or kernel

 A discrete convolution for two one-dimensional vectors x and w is denoted by :

$$y = x * w$$

The mathematical representation:

$$y = x * w \rightarrow y[i] = \sum_{k=-\infty}^{+\infty} x[i-k]w[k]$$

The index i runs through each element of the output vector y

Problem: The input is not infinite

$$y = x * w \rightarrow y[i] = \sum_{k=-\infty}^{+\infty} x[i-k]w[k]$$

- To correctly compute the summation → it is assumed that x and w are filled with zeros.
- This will result in an output vector y that also has infinite size with lots of zeros as well
- This is what is known as zero-padding (or just padding)

This is what is known as zero-padding (or just padding)

- Assume (as an example):
- The original input x and filter w have n and m-elements, respectively, where m ≤ n
- The padded vector x^p has size n + 2p, therefore:

$$y = x * w \rightarrow y[i] = \sum_{k=0}^{k=m-1} x^{p}[i+m-k]w[k]$$

 The problem of indexing is still a problem with x and w indexed in two different direction.

(cont. example):

- Flip the filter w to get the rotated filter w^r
- The dot product x[i : i + m] . w is computed to get one element y[i]
 - x[i:i+m] is a patch of x with size m
- x = (3, 2, 1, 7, 1, 2, 5, 4)

•
$$w = \left(\frac{1}{2}, \frac{3}{4}, 1, \frac{1}{4}\right)$$

- In the last slide: the padding size is zero (p = 0).
- The shift is another hyperparameter of a convolution, the stride (s)
- In the last slide: the stride is two, s = 2.
- The stride has to be <u>a positive number smaller than the size</u> of the input vector.

- There are 3 types of padding:
- **Full mode**: the padding parameter p is set to p = m-1. Full padding increases the dimensions of the output
- **Same** padding: the size of the output the same as the input vector *x*. In this case, the padding parameter *p* is computed according:
 - filter size, the input size, & output size are the same
- Valid mode: the case where p = 0 (no padding).

Full padding

Same padding

Valid padding

Input image

- The output size of a convolution is determined by <u>the total</u>
 # of times what we shift the filter w along the input vector
- The size of the output resulting from x * w with padding p
 and stride s is determined:

$$o = \left\lfloor \frac{n+2p-m}{s} \right\rfloor + 1$$

 The <u>floor operation</u> returns the largest integer that is equal or smaller to the input The <u>floor operation</u> returns the largest integer that is equal or smaller to the input

$$n = 10, m = 5, p = 2, s = 1 \rightarrow o = \left[\frac{10 + 2 \times 2 - 5}{1}\right] + 1 = 10$$

$$n=10, m=3, p=2, s=2 \rightarrow o = \left[\frac{10+2\times2-3}{2}\right]+1=6$$

2-Dimentional Convolution

- X and the filter matrix W_{m1×m2}
 - where $m_1 \le n_1$ and $m_2 \le n_2$
 - then the matrix Y = X*W is the result of 2D convolution of X with W.

$$Y = X * W \to Y[i,j] = \sum_{k_1 = -\infty}^{+\infty} \sum_{k_2 = -\infty}^{+\infty} X[i-k_1,j-k_2]W[k_1,k_2]$$

Input image

Filter Feature map

1 _{×1}	1 _{×0}	1 _{×1}	0	0
0 _{×0}	1,	1 _{×0}	1	0
0 _{×1}	0,×0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature Using padding @ p=(1,1)

• Stride @ s=(2,2)

• Kernel: 3x3

Rotate the filter

Rotation != Transpose

W

0.5	0.7	0.4
0.3	0.4	0.1
0.5	1	0.5

$$W^r = \begin{bmatrix} 0.5 & 1 & 0.5 \\ 0.1 & 0.4 & 0.3 \\ 0.4 & 0.7 & 0.5 \end{bmatrix}$$

- Shift the rotated filter matrix along the padded input matrix X padded like a sliding window
- Compute the sum of the element-wise product, which is denoted by the operator

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	7
0	101	98	104	102	100	
0	99	101	106	104	99	
0	104	104	104	100	98	
				- 31		

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

320			
			9823 <u>0</u>
	8.04.0000000000000000000000000000000000		ev (50)

Image Matrix

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1

Subsampling

- Subsampling is typically applied in two forms of pooling operations in CNNs:
 - max-pooling
 - mean-pooling
- Pooling (max-pooling) introduces local invariance.
 - Small changes in a local neighborhood do not change the
 - Result of max-pooling.
 - It helps generate features that are more robust to noise in the input data

 Pooling decreases the size of features, which results in higher computational efficiency.

 Reducing the number of features <u>may reduce</u> the degree of overfitting

$$\boldsymbol{X}_{1} = \begin{bmatrix} 10 & 255 & 125 & 0 & 170 & 100 \\ 70 & 255 & 105 & 25 & 25 & 70 \\ 255 & 0 & 150 & 0 & 10 & 10 \\ 0 & 255 & 10 & 10 & 150 & 20 \\ 70 & 15 & 200 & 100 & 95 & 0 \\ 35 & 25 & 100 & 20 & 0 & 60 \end{bmatrix}$$

$$\boldsymbol{X}_{2} = \begin{bmatrix} 100 & 100 & 100 & 50 & 100 & 50 \\ 95 & 255 & 100 & 125 & 125 & 170 \\ 80 & 40 & 10 & 10 & 125 & 150 \\ 255 & 30 & 150 & 20 & 120 & 125 \\ 30 & 30 & 150 & 100 & 70 & 70 \\ 70 & 30 & 100 & 200 & 70 & 95 \end{bmatrix}$$

$$\boldsymbol{X}_{3} = \begin{bmatrix} 100 & 255 & 125 & 170 & 100 & 1$$

DCNN

- Convolutional layer may contain one or more 2D arrays or matrices with dimensions N₁ × N₂
- These N₁ × N₂ matrices are called <u>channels</u>.
- Using multiple channels as input to a convolutional layer requires us to use a 3D-array:

, where C_{in} is the number of input channels

The overall process:

Given a sample
$$\mathbf{X}_{\mathbf{n}_1 \times \mathbf{n}_2 \times c_{\mathbf{in}'}}$$
 a kernel matrix $\mathbf{W}_{\mathbf{m}_1 \times \mathbf{m}_2 \times c_{\mathbf{in}'}}$ \Rightarrow
$$\begin{cases} \mathbf{Y}^{Conv} = \sum_{c=1}^{C_{in}} \mathbf{W}[:,:,c] * \mathbf{X}[:,:,c] \\ \text{pre-activation:} & \mathbf{A} = \mathbf{Y}^{Conv} + \mathbf{b} \\ \text{Feature map:} & \mathbf{H} = \phi(\mathbf{A}) \end{cases}$$

- For the RGB images: 3 channels
- Therefore, C_{in} = 3. However, each channels produces a different feature map

The overall process:

Given a sample
$$X_{n_1 \times n_2 \times C_{in}}$$
 kernel matrix $W_{m_1 \times m_2 \times C_{in} \times C_{out}}$ \Rightarrow
$$\begin{cases} Y^{Conv}[:,:,k] = \sum_{c=1}^{C_{in}} W[:,:,c,k] * X[:,:,c] \\ A[:,:,k] = Y^{Conv}[:,:,k] + b[k] \\ H[:,:,k] = \phi(A[:,:,k]) \end{cases}$$

Dropout Layers

- Choosing the size of a network, whether we are dealing with a dense NN or a CNN, has always been a challenging problem.
- The size of a weight matrix and the number of layers need to be tuned to achieve a reasonably good performance.
 - Small networks with a relatively small number of parameters →
 have a low capacity and are therefore likely to be under fit,
 resulting in poor performance.
 - Large networks may more easily result in overfitting → where the network will memorize the training data and do extremely well on the training set

- Since they cannot learn the underlying structure of complex datasets.
- Yet, very large networks may more easily result in overfitting
 - Where the network will memorize the training data and
 - Do extremely well on the training set <u>while achieving</u> <u>poor performance</u> on the held-out test set

- Dropout has emerged that works amazingly well <u>for regularizing</u> (deep) neural networks
- Dropout offers a workaround with an efficient way to train many models at once and compute their average predictions at test or prediction time.

Training: dropout probability p=50%

Evaluation: use all units

- Dropout is usually applied to the hidden units of higher layers.
- During training → a fraction of the hidden units is randomly dropped at every iteration with probability p_{drop}
- The probability is determined by the user and the common choice is p_{drop} =0.5

Evaluation: use all units

 The randomness forces the network to learn a redundant representation of the data.

- The network cannot rely on an activation of any set of hidden units since they may be turned off at any time during training
 - Forced to learn more general and robust patterns from the data

Training: dropout probability p=50%

Evaluation: use all units

 <u>During prediction</u>, all neurons will contribute to computing the preactivations of the next layer

Training: dropout probability p=50%

Evaluation: use all units

