







### 2021년 혁신성장 청년인재 집중양성 추경 사업 빅데이터 분야

# 자연어 처리

RNN (순환신경망)





# 순환 신경망 모델 (RNN, Recurrent Neural Network)

## 데이터



- 데이터의 정의
  - 추론과 추정의 근거를 이루는 사실 (옥스퍼드 대사전)
  - 데이터는
    - 객관적 사실
    - 추론, 예측, 전망, 추정을 위한 근거로 작용하는 것
    - 각각의 개별 데이터는 그 자체로 큰 의미가 없음 > 정보로 변환 필요
  - 데이터가 특정 기준에 따라 가공, 처리 및 분류되고 정리되어 데이터 간 연관 관계 속에서 의미를 가지며, 유용한 효과를 가지도록 한 것 → 정보

## 데이터의 종류: 속성에 따른 분류



#### • 데이터의 속성에 따른 분류



이 외에도 수치 데이터(Numerical)를 범위형(Interval), 비율형(Ratio) 등 데이터의 내용을 기준으로 분류하는 경우도 있음

## 데이터의 종류: 형태에 따른 분류



### • 테이블 데이터 (=레코드 데이터)

| Tid | Refund | Marital<br>Status | Taxable Income | Defaulted<br>Borrower |  |
|-----|--------|-------------------|----------------|-----------------------|--|
| 1   | Yes    | Single            | 125K           | No                    |  |
| 2   | No     | Married           | 100K           | No                    |  |
| 3   | No     | Single            | 70K            | No                    |  |
| 4   | Yes    | Married           | 120K           | No                    |  |
| 5   | No     | Divorced          | 95K            | Yes                   |  |
| 6   | No     | Married           | 60K            | No                    |  |
| 7   | Yes    | Divorced          | 220K           | No                    |  |
| 8   | No     | Single            | 85K            | Yes                   |  |
| 9   | No     | Married           | 75K            | No                    |  |
| 10  | No     | Single            | 90K            | Yes                   |  |

(a) Record data.

| TID | ITEMS                     |
|-----|---------------------------|
| 1   | Bread, Soda, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Soda, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Soda, Diaper, Milk        |

(b) Transaction data.

| Projection of x Load | Projection of<br>y Load | Distance | Load | Thickness |
|----------------------|-------------------------|----------|------|-----------|
| 10.23                | 5.27                    | 15.22    | 27   | 1.2       |
| 12.65                | 6.25                    | 16.22    | 22   | 1.1       |
| 13.54                | 7.23                    | 17.34    | 23   | 1.2       |
| 14.27                | 8.43                    | 18.45    | 25   | 0.9       |

(c) Data matrix.

|            | team | coach | play | ball | score | game | win | lost | timeout | season |
|------------|------|-------|------|------|-------|------|-----|------|---------|--------|
| Document 1 | 3    | 0     | 5    | 0    | 2     | 6    | 0   | 2    | 0       | 2      |
| Document 2 | 0    | 7     | 0    | 2    | 1     | 0    | 0   | 3    | 0       | 0      |
| Document 3 | 0    | 1     | 0    | 0    | 1     | 2    | 2   | 0    | 3       | 0      |

(d) Document-term matrix.

(그림 출처: Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesely, 2005)

# 데이터의 종류: 형태에 따른 분류



### • 그래프 기반 데이터



(그림 출처: Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesely, 2005)

## 데이터의 종류: 형태에 따른 분류



#### • 순서형 데이터

- Sequential Data (순차열 데이터)
  - Transaction Data + 시간
- Sequence Data
  - 데이터 개체 간 순서가 존재함
- Time Series Data (시계열 데이터)
  - 시간에 따라 속성이 변화하는 데이터 집합
  - Sequential Data의 특수한 형태
- Spatial Data
  - 데이터 개체가 공간 상의 위치정보와 연관되는 데이터 집합

| Time  | Customer | Items Purchased |  |  |
|-------|----------|-----------------|--|--|
| t1    | C1       | A, B            |  |  |
| t2    | C3       | A, C            |  |  |
| t2 C1 |          | C, D            |  |  |
| t3 C2 |          | A, D            |  |  |
| t4 C2 |          | E               |  |  |
| t5 C1 |          | A, E            |  |  |

| Customer | Time and Items Purchased    |
|----------|-----------------------------|
| C1       | (t1: A,B) (t2:C,D) (t5:A,E) |
| C2       | (t3: A, D) (t4: E)          |
| C3       | (t2: A, C)                  |

(a) Sequential transaction data.



(c) Temperature time series.

(b) Genomic sequence data.



(d) Spatial temperature data.

(그림 출처: Pang-Ning Tan et al, Introduction to Data Mining, Addison-Wesely, 2005)

# 시계열 데이터(Time Series Data)



- 시간의 순서대로 일정한 주기에 따라 측정, 저장된 데이터
- 활용 분야
  - 데이터를 기반으로 한 예측 분야에 가장 많이 활용됨
  - 간혹 장애 검출에도 활용할 수 있다고 이야기하고 있으나 결국 데이터 기반 예측임
    - 입력 데이터를 순서대로 살펴보면 조금씩 어긋나는 데이터 발견 가능
    - 어긋나는 데이터의 범위가 특정 기준을 벗어나는 시점이 장애 발생 시점
    - 데이터의 변동을 기반으로 분석, 예측한 결과를 장애 검출, 장애 예측으로 표현하는 것뿐
  - 시계열 데이터는 시간에 따른 변화를 보고 패턴을 분석하여 이후에 어떤 데이터를 얻을 것인지 예측하는 것이 가장 큰 목적이자 활용분야

## 시계열 데이터(Time Series Data)



- •시계열 데이터는 어떤 영향을 주고 받으면서 구성되는가?
  - 시간의 흐름에 따른 데이터는 주변 환경과 특정 이벤트로부터 많은 영향을 받음
  - 따라서 단순히 데이터의 변화 패턴을 분석하는 것만으로는 예측이 어려움
  - 또한 어떤 값과 어떤 변수를 중심으로 분석하는가에 따라서도 큰 성능변화, 결과의 차이 발생



# 시계열 데이터(Time Series Data)



- 시계열 데이터를 이용한 예측은 어떤 개념인가?
  - 현재(t(0))의 데이터는 과거(t(-m) ~ t(-1))의 데이터가 누적된 결과
  - 가장 가까운 미래(t(1))의 데이터는 과거와 현재(t(-m) ~ t(-1) + t(0))의 데이터가 누적된 결과
  - 미래(t(n))의 데이터는 (t(-m) ~ t(0) ~ t(n-1)) 의 데이터가 누적된 결과
  - 여기에 각 시점에서 적용되는 특정이벤트(외부요인)의 반영으로 예측



## 시계열 데이터를 활용하기 위한 모델의 제안



- •모델 제안의 1단계
  - 시계열 데이터란 시간의 순서대로 일정한 주기에 따라 측정, 저장된 데이터
    - → 과거의 데이터가 현재, 미래의 데이터에 영향을 미침
    - → 즉, 과거의 데이터를 가지고 와서 현재, 미래의 데이터에 적용시켜야 함
    - → 이를 위해서는 과거의 데이터를 기억하고 있어야 함
    - → 과거 데이터를 저장, 참조할 수 있는 메모리 효과를 가진 모델이 필요함

### 시계열 데이터를 활용하기 위한 모델의 제안



#### •모델 제안의 2단계

- 현재의 데이터를 확인하기 위하여 과거의 데이터를 순차적으로 살펴보고
  - → t(1) 미래의 데이터를 확인하기 위하여 과거+현재의 데이터를 순차적으로..
  - → t(n) 미래의 데이터를 확인하기 위하여...
  - → 알고자 하는 시점의 데이터를 기준으로 과거의 데이터를 순서대로 확인 반복
  - → 즉, 동일한 과정, 모델이 계속적으로 반복되는 순환 과정을 가진 모델 필요
  - → 순환신경망 (RNN, Recurrent Neural Network) 제안됨

## 시계열 데이터와 RNN의 관계



- RNN (Recurrent Neural Network, 순환 신경망)
  - 전체 네트워크 안에서 순환적으로 데이터를 처리하는 신경망 모델
  - 과거의 데이터를 끊임없이 참조하여 현재의 데이터를 학습하는 모델
  - 시간의 흐름에 따라 과거의 데이터의 특징과 패턴을 반영하여 현재의 데이터 를 학습하는 모델
  - 순차열, 즉 순서가 있는 일련의 값을 처리하는 것에 특화된 모델

## RNN 모델



### • 기존의 신경망

• Feed Forward 방식

• 데이터 처리의 흐름이 한 방향

학습 과정에 한해서 가중치의 수정, 갱신을 위하여 뒤로 돌아가기 는 하지만 완성된 신경망의 기본적인 데이터의 흐름은 순방향

그럼 오류역전파(Error Back-Propagation)는?

### RNN 모델



- 기존의 신경망의 단점
  - 한 방향으로만 데이터를 처리하므로 시계열 데이터의 처리가 어려움
  - 시계열 데이터는 신경망의 학습이 완료된 후에도 실제 사용 도중에 지속적으로 과거의 데이터를 참조하고 활용하여야 함
  - 학습 과정에서도 시계열 데이터의 성질, 패턴을 제대로 학습할 수 없음
  - 순환 신경망(Recurrent Neural Network, RNN) 등장의 이유 (앞에서의 설명과 연관됨)

### RNN 모델



- RNN (Recurrent Neural Network, 순환 신경망)
  - 전체 네트워크 안에서 순환적으로 데이터를 처리하는 신경망 모델
  - 순차열, 즉 순서가 있는 일련의 값을 처리하는 것에 특화된 모델
  - 순환 처리를 하기 위해서는 닫힌 경로(=순환하는 경로)가 필수
  - 경로가 닫혀 있기 때문에 → 데이터가 순환하고, 데이터의 저장이 가능함
  - 순환하기 때문에 > 끊임없이 데이터가 갱신됨



- RNN의 기본 단위: RNN 계층
  - 순환경로를 포함한다.
  - 계속적인 참조가 반영된다.
  - 과거의 정보를 기억한다.







시간 흐름에 따라 계속 이어지므로 세로로 길어짐 !!!

표현하기 편하게 돌려서 씁시다.



• 순환 구조를 알기 쉽게 펼쳐보면



• 데이터는 시간이 흐르는 방향으로 나열됨 (인덱스 t는 시간이 아니라 시각)





- 각 시각의 RNN 계층은 그 계층으로의 입력과 1개 전의 RNN 계층으로부터의 출력을 입력으로 받음
- 두 개의 입력을 기반으로 현 시각의 출력을 계산함
- 각 RNN 계층에서의 출력 계산에는 기존 신경망과 동일하게 경로 별 가중치, 편향 값이 포함됨



• 경로별 가중치와 편향치의 적용





22

• RNN 계층은 기존 신경망과 동일하다 → 어떻게 처리되나?





• 참고





- RNN 모델의 학습 방법
  - RNN 계층은 가로로 펼쳐 놓은 신경망과 동일하다고 가정할 수 있음 →학습 방법도 동일하게 적용할 수 있음(오류 역 전파 방식 등) → BPTT 방법



BPTT: Back Propagatopn Through Time



- BPTT (Back Propagation Through Time)의 문제점
  - 긴 시계열 데이터를 학습할 때
    - 시계열 데이터의 시간 크기가 커질수록 BPTT가 소비하는 컴퓨팅 자원도 비례하여 증가함
    - 시간의 크기가 커질수록 역 전파 시의 비율 조정을 위한 기울기가 불안정해짐

BPTT를 이용하여 기울기를 구할 때, 매 시각의 RNN 계층의 중간 데이터를 메모리에 유지해 두어야 함

→ 시계열 데이터가 길어질 수록 계산 량 및 메모리의 사용량이 증가함

• 개선을 위하여 Truncated BPTT 기법 제안



#### Truncated BPTT

- 시간축의 방향으로 길어진 신경망을 적당한 지점에서 잘라내어 여러 개의 작은 신경망으로 만듦
- 잘라낸 작은 신경망에서 BPTT를 수행함
- 주의점
  - 신경망을 잘라낼 때 역전파의 연결만 절단해야 함 (순전파의 연결은 반드시 유지)
  - 순전파의 연결이 사라지면 네트워크 자체가 성립되지 않음
- 역전파가 연결된 RNN 계층의 모임을 블록이라고 하여 다른 블록과 구분하여 처리함







dh(10) dh(11) dh(19)

RNN ... RNN

dX(10) dX(11) dX(19)

두 번째 블록의 순 전파와 역 전파



실습





- 시계열 데이터의 학습에서 장기 의존 관계의 학습이 어렵다
  - BPTT에서 기울기 소실 또는 기울기 폭발 발생
    - 기울기 소실: 역 전파 처리 시 기울기 값이 점점 작아지다가 사라지는 현상
    - 기울기 폭발: 역 전파 처리시 기울기 값이 점점 커지다가 수직에 가까워지는 현상
  - → 게이트 구조를 적용하여 개선 가능
  - → 또는 RNN 모델에서 활성화 함수로 tanh 대신 ReLU를 사용하면 기울기 소 실 현상을 줄일 수 있음



#### • 기울기 소실, 폭발의 원인

- RNN 모델 학습 시 RNN 계층은 과거의 정보를 기억하고 있어야 하며, 정답 레이블이 주어지면 과거 방향으로 의미 있는 기울기를 전달하여 시간 방향의 의존 관계를 학습함
- RNN은 활성화 함수로 tanh를 주로 사용함
- 역전파 시, 시간 방향의 기울기를 살펴 보면 tanh, +, 행렬곱의 순서대로 연산을 수행함 (+는 큰 영향이 없음)





- tanh의 미분 값은 1.0 이하이고 x가 0에서 멀어질수록 작아짐
  - → 역전파 시, 기울기가 tanh를 지날 때마다 계속 작아짐
  - → 행렬곱의 결과가 큰 영향을 미침
- 행렬곱에는 계속 동일한 가중치가 적용되고, L2거리를 계산하여 미분 시 적용
  - → 기울기의 크기가 시간에 비례하여 지수증가 / 감소
  - → 폭발 또는 소실



tanh 그래프(파란색), tanh의 미분 그래프(주황색)



- 기울기 소실, 폭발 대책
  - 가중치 초기화
  - 수렴하지 않는 활성화 함수 사용
  - 배치 정규화
  - 기울기 클리핑





- 가중치 초기화
  - 기울기 소실, 폭발을 막으려면 각 층의 출력에 대한 분산이 입력에 대한 분산과 같아야 함
     → 입력과 출력의 연결 개수가 같아야 함
  - 가중치의 초기화를 통해 기울기의 폭주를 막을 수 있음
    - 세이비어 초기화(Xavier Initialization)(또는 글로럿 초기화(Glorot Initialization))
      - 세이비어 추기값은 활성화 함수가 선형이라고 가정함
      - 여러 층의 기울기 분산의 균형을 유지해 줌
      - sigmoid, tanh 활성화 함수에 좋은 성능 보임, ReLU와 사용될 때는 성능이 좋지 않음
    - He 초기화
      - ReLU 활성화 함수에 대한 초기화 전략
      - ReLU는 입력이 음수일때 출력이 모두 0 → 이를 고르게 분포시켜서 폭주 예방
    - 르쿤(LeCun) 초기화
      - SeLU를 사용하는 겨우 초기화 전략.
      - 입력 개수=출력 개수 이면 세이비어 초기화와 동일



- 수렴하지 않는 활성화 함수 (ReLU의 변형들) 사용
  - LeakyReLU
    - $LeakyReLU_{\alpha}(x) = \max(ax, x)$ ,  $\alpha$ : 새는 정도, z < 0일 때 함수의 기울기는 보통 0.01
  - RReLU (Randomized Leaky ReLU)
    - $\alpha$ 를 무작위로 선택, 테스트 시에는 평균을 사용
  - PReLU (Parametric Leaky ReLU)
    - 훈련하는 동안  $\alpha$ 가 학습되는 활성화 함수.
    - 대규모 데이터 셋에서는 성능이 좋으나 소규모 데이터 셋에서는 과적합 가능



ELU (Exponential Linear Unit)

• 
$$ELU(z) = \begin{cases} \alpha(\exp(x) - 1), & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

- x < 0 이어도 기울기가 0이 아니므로 소실되지 않음
- 계산 속도가 느림
- SELU (Scaled ELU)
  - 모든 은닉층의 가중치를 르쿤 정규분포 초기화로 초기화 하여야 하며
  - 완전 연결 층만 쌓아서 신경망을 만들고
  - 모든 은닉층이 SELU 활성화를 사용한다면 네트워크가 자기 정규화됨

• 활성화 함수 성능 순위: SELU > ELU > LeakyReLU > ReLU > tanh > Ligistics



- 배치 정규화
  - ReLU 계열 활성화함수, He 초기화 등을 사용하면 훈련 초기의 기울기 폭주 예방 가능
  - 그러나 훈련 동안의 폭주에 대한 보장은 없음
  - 배치 정규화: 학습 과정에서 각 배치 단위마다 데이터가 다른 분포를 보이더라도 배치마다 평 균과 분산을 이용하여 정규화 함
  - 딥러닝 모델 학습 동안 각 층별로 입력 데이터 분포가 변하는 "내부 공변량 변화"가 발생함
    - → 기울기의 불안전성은 입력 데이터 분포의 변화로 발생함
    - → 배치 정규화로 인하여 모델의 안정적인 학습이 가능해 짐
  - 학습 속도 개선, 초기화 값에 의존도 감소, 과적합 방지
  - 은닉층 → 배치 정규화 → 활성화함수 순서로 적용됨

## RNN의 문제점



- 기울기 클리핑
  - 기울기 폭주를 방지하기 위해 임계값을 넘지 않도록 기울기 값을 잘라줌
  - 기울기의 모든 값을 -1.0 ~1.0 사이로 클리핑 함
  - Tensorflow 에서 사용

```
optimizer = keras.optimazers.SGD(clipvalue=1.0)
model.compile(loss="mse", optimizer=optimizer)
```

• PyTorch 에서 사용

```
import torch.optim as optim import torch.nn.utils as torch_utils
```

```
learning_rate = 1.
max_grad_norm = 5.
```

optimizer = optim.SGD(model.parameters(), lr=learning\_rate)
torch\_utils.clip\_grad\_norm\_(model.parameters(), max\_grad\_norm)
optimizer.step()

# RNN의 문제점



38

실습



## RNN 모델의 개선 및 응용



#### • 기본적인 RNN 모델을 개선한 다양한 RNN 모델이 존재함

- 게이트가 추가된 RNN 모델:
  - 게이트라는 구조를 활용하여 시계열 데이터의 장기 의존 관계를 학습할 수 있는 모델
  - 게이트를 통하여 입력 및 출력의 상태(범위)를 제어함
  - 데이터 기억을 위한 메모리 셀을 추가한 형태이며 데이터의 기억 여부, 상태도 제어함
  - LSTM (Long-Short Term Memory networks)
    - RNN의 장기 의존성 문제를 해결할 뿐만 아니라 학습 또한 빠르게 수렴함
  - GRU (Gated Recurrent Unit)
    - LSTM의 간소화된 버전이라고 볼 수 있음

## RNN 모델의 적용에 대하여



#### • 활용분야 간의 연관성

- 우리가 글을 읽거나 대화를 할 때, 지금 사용한 하나의 단어만이 의미가 있는가?
- 우리는 글을 읽거나 대화를 할 때, 이전의 맥락을 이해하면서 현재 사용된 단어를 이해함
- 같은 단어인데 다른 의미를 가지는 경우도 이런 맥락을 이용하여 문제없이 정확하게 이해함
- 수많은 단어로 이루어진 언어의 표현은 시간의 흐름에 따라 각 단어들이 배치, 연결됨
- 따라서 시간과 순서(순차) 정보를 잘 활용할 수 있는 RNN이 많이 사용됨

## RNN 모델의 적용에 대하여



- RNN 모델의 주요 사용 분야
  - 기상데이터 분석 및 예측, 주가 정보 예측 (시계열 데이터)
  - 자연어 처리, 번역, 언어 모델링 등 (순차 열 데이터)

- RNN 모델의 사용 분야에 CNN 등의 모델을 적용한다면?
  - 시간의 흐름, 순서에 따른 맥락과 각 요소(단어) 사이의 인과관계를 처리 가능한가?
  - 가능하기는 하겠지만 매우 많은 노력과 자원이 소요됨

## RNN(Recurrent NN)과 RNN(Recursive NN)?



• Recurrent Neural Network(순환 신경망)과 Recursive Neural Network(재귀 신경망)을 같은 것이라고 설명하는 경우가 많음

- 순환 신경망과 재귀 신경망은 서로 다른 모델임
  - 영문 번역 시 Recurrent와 Recursive를 동일하게 순환의 의미로 번역하여 발생한 문제
  - 일본 도서의 번역서에서 자주 발견됨(국내 도서에도 존재함)

## RNN(Recurrent NN)과 RNN(Recursive NN)?



- 차이점
  - 재귀(Recursive) 신경망은 순환(Recurrent) 신경망의 또 다른 일반화 버전이 라고 보면 됨
  - 순환(Recurrent) 신경망은 체인 형태의 계산 그래프를 사용
  - 재귀(Recursive) 신경망은 트리 형태의 계산 그래프를 사용

• 일반적으로 말하는 RNN은 순환 신경망을 의미함

### **LSTM**



#### LSTM(Long-Short Term Memory)

- 기존의 RNN 모델
  - 가변 길이의 시퀀셜 데이터 형태 입력에 잘 동작함
  - 데이터가 길어지면 앞에서 입력된 데이터를 잊어버림

- **LSTM**: 기존의 RNN 모델에
  - 별도의 셀 상태(Cell State)변수 추가 → 기억 능력 증가
  - 다양한 게이트 추가 > 기억, 삭제, 데이터의 출력 등 다양한 상태를 제어
    - → 긴 길이의 데이터에 대해서 효율적인 대처 가능



### **LSTM**



#### • LSTM 수식

• 
$$i_t = \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi})$$

• 
$$f_t = \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf})$$

• 
$$g_t = tanh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg})$$

• 
$$o_t = \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho})$$

• 
$$c_t = f_t c_{(t-1)} + i_t g_t$$

• 
$$h_t = o_t \tanh(c_t)$$



### **LSTM**



#### • LSTM 구조

- 각 게이트 앞의 σ (0~1 값)
   → 얼마나 게이트를 열고 닫을 것인가 결정
- 결정된  $\sigma$ 에 따라 셀 상태  $c_{t-1}, g_t, c_t$ 가 새롭게 인코딩 됨



### **GRU**



- GRU(General Recurrent Unit)
  - LSTM의 간소화 버전. 기존의 LSTM보다 간단하지만 성능은 비슷함
  - LSTM과 마찬가지로
    - 시그모이드  $\sigma$ 로 구성된 리셋 게이트  $r_t$ 와 업데이트 게이트  $z_t$  보유
    - 게이트의 출력 값은 시그모이드 함수로 인해 0~1
    - 데이터의 흐름을 게이트를 열고 닫아서 제어 가능
  - 기존 LSTM보다 게이트 숫자가 줄어들고 게이트에 딸린 파라미터도 줄어듦

### **GRU**



#### • GRU 수식

• 
$$r_t = \sigma(W_{ir}x_t + b_{ir} + W_{hr}h_{(t-1)} + b_{hr})$$

• 
$$z_t = \sigma(W_{iz}x_t + b_{iz} + W_{hz}h_{(t-1)} + b_{hz})$$

• 
$$n_t = tanh(W_{in}x_t + b_{in} + r_t(W_{hn}h_{(t-1)} + b_{hn}))$$

•  $h_t = (1 - z_t)n_t + z_t h_{(t-1)}$ 



### **GRU**



#### • 활용 동향

- GRU는 LSTM보다 가볍지만 아직까지는 LSTM을 많이 사용하고 있음
- LSTM, GRU가 사용하는 학습률, 은닉상태 크기 등의 하이퍼 파라미터가 다름
  - → 사용 모델에 따라 파라미터 설정 등을 다시 찾아야 함
  - → 귀찮아서 그냥 LSTM을 쓰는 경우가 많음.
- 성능의 차이 등의 문제가 아니라 사용자의 성향에 따라 좌우되는 편