QUESTION BANK

Class & Semester: II BTech, I Semester

Subject Name: Data Structures **Subject Code:** S23AM302PC

Blooms Taxonomy Levels (BTL)

- 1. Remembering
- 2. Understanding
- 3. Applying
- 4. Analyzing
- 5. Evaluating
- 6. Creating

PART -B

• 10 - Long Questions from each Unit

Q. No.	Questions	Blooms Taxono my Levels	CO's	PO'S
	Unit-1			
1	Explain the Insert and Delete operations in a Singly Linked List.	Level-2	CO1	1, 2
2	Write an algorithm to insert new node at the beginning, at middle position and at the end of a Singly Linked List.	Level-3	CO1	1, 2, 3
3	Explain the search and display operations in a Singly Linked list.	Level-1	CO1	1, 2
4	Define Stack? Explain all the primitive operations performed on a stack.	Level-1	CO1	1, 2
5	The following numbers 10, 20, 50, 30, 90, 60 (Top) are present in a stack of size 10. Perform the following operations in sequence. pop(), push(30), push(40), pop(), push (60), pop(), pop() What is the peek element at last? Draw and explain it.	Level-1	CO1	1, 2
6	Transform the expression into its equivalent post fix expression: $K + L - M*N + (O^P)*W/U/V*T + Q$	Level-2	CO1	1, 2, 3
7	Convert following expression A+B*(C^D-E) in to postfix form.	Level-2	CO1	1, 2, 3
8	Explain the procedure to evaluate postfix expression 12 2 / 34 20 - + 5 +.	Level-3	CO1	1, 2, 3
9	Convert the infix expression $a / b - c + d * e - a * c$ into postfix expression and trace that postfix expression for given data $a = 6$, $b = 3$, $c = 1$, $d = 2$, $e = 4$.	Level-3	CO1	1, 2, 3
10	Explain different operations on a Queue using Singly Linked List.	Level-3	CO1	1, 2, 3
Unit-2				
1	Explain different operations performed on dictionaries on linked representation.	Level-2	CO2	1, 2
2	Explain how Insertion, Deletion and Search is done in skip lists with example.	Level-2	CO2	1, 2
3	What is a hash function? Explain types of hash functions.	Level-1	CO2	1, 2
4	What is hashing? Insert the following list of elements into the hash table by using Linear Probing (size of the hash table is 10) {43, 135, 72, 23, 99, 19, 82}	Level-3	CO2	1, 2, 3
5	Insert the following list of elements into the Hash table by using Quadratic probing (size of the table is 10) {42, 16, 91, 33, 18, 27, 36, 62}	Level-3	CO2	1, 2, 3
6	Explain the algorithm for implementing quadratic probing on a hash table.	Level-2	CO2	1, 2
7	Construct the hash table for the data: 20, 34, 45, 70, 56 using any hash function under division method by following double hashing technique.	Level-3	CO2	1, 2, 3
8	Using extendable hashing, hash the following data using h(k) where:	Level-3	CO2	1, 2, 3

	Data = {16, 4, 6, 22, 24, 10, 31, 7, 9, 20, 26}					
	Bucket limit = 3					
9	Insert the following sequence of keys in the hash table 24, 19, 32, 44, 56. Use separate chaining technique for collision resolution. Hash Table Size = 6	Level-3	CO2	1, 2, 3		
10	Consider we have to insert the elements 13, 15, 26, 6, 23, 24 and 7. Table size is 7 using rehashing technique.	Level-3	CO2	1, 2, 3		
	Unit-3					
1	Write an algorithm to insert an element into a binary search tree.	Level-2	CO3	1, 2		
2	Create binary search tree for the following elements (45, 15, 79, 90, 10, 55, 12, 20, 50). Discuss about the height of the above binary search tree.	Level-3	CO3	1, 2, 3		
3	Explain deletion operation in Binary Search Tree.	Level-2	CO3	1, 2		
4	Construct a Binary Search Tree by inserting the following sequence of elements 10, 12, 5, 4, 20, 8, 7, 15, 13 starting from an empty tree.	Level-3	CO3	1, 2, 3		
5	Write an algorithm for search operation in Binary search tree? Demonstrate it with an example.	Level-3	CO3	1, 2		
6	Explain Depth First Search (InOrder, PreOrder and postOrder) traversal techniques with example.	Level-2	CO3	1, 2		
7	What is an AVL Tree? Construct an AVL tree for the following elements: H, I, J, B, A, E, C, F, D, G, K, L	Level-3	CO3	1, 2, 3		
8	A binary tree has 9 nodes. The inorder and postorder traversal sequences are given below. Give the preorder traversal. Inorder: 4, 2, 5, 1, 6, 3, 7 Postorder: 4, 5, 2, 6, 7, 3, 1	Level-3	CO3	1, 2, 3		
9	Explain different operations on a B-tree. Demonstrate it with an example.	Level-3	CO3	1, 2		
10	Explain insertion operation of Red Black tree. Create a RED BLACK Tree by inserting following sequence of elements 10, 18, 7, 15, 16, 30, 25, 40 and 60	Level-3	CO3	1, 2, 3		
11	Explain different rotations on a SPLAY Tree. Construct a SPLAY Tree by inserting following sequence of elements 15, 10, 17, 7.	Level-3	CO3	1, 2, 3		
	Unit-4					
1	Define a graph data structure. Explain the types of graphs with suitable examples.	Level-2	CO4	1, 2		
2	Describe various ways to represent a graph with suitable examples.	Level-2	CO4	1, 2, 3		
3	Explain various graph traversal algorithms (BFS and DFS) with suitable examples.	Level-2	CO4	1, 2		
4	Demonstrate the technique of quick sort. Sort the following elements using quick sort. 24, 9, 29, 14, 19, 27.	Level-3	CO4	1, 2, 3		
5	Demonstrate the technique of merge sort. Sort the following elements using merge sort. 36, 25, 40, 2, 7, 80, 15.	Level-3	CO4	1, 2, 3		
6	Demonstrate the technique of Heap sort. Sort the following elements using Heap. 81, 89, 9, 11, 14, 76, 54, 22.	Level-3	CO4	1, 2, 3		
7	Illustrate the heap-sort on the following input sequence: (4, 3, 7, 1, 8, 5)	Level-2	CO4	1,2		
8	Explain External sorting? What is model for external sorting.	Level-1	CO4	1, 2		
9	Explain Merge Sort with an example and Write a C program to implement Merge sort?	Level-3	CO4	1, 2		
10	Explain Quick Sort with an example and Write a C program to implement Quick sort?	Level-3	CO4	1, 2		
	Unit-5					
1	What do understand by pattern matching? Describe Brute-Force algorithm with suitable example.	Level-2	CO5	1, 2, 3		

2	Demonstrate Boyer-Moore algorithm with suitable example.	Level-3	CO5	1, 2, 3
3	Demonstrate Knuth-Morris-Pratt (KMP) algorithm with suitable example.	Level-3	CO5	1, 2, 3
4	Define tries? Describe various applications of Tries.	Level-2	CO5	1, 2
5	How to build a suffix tries for a given text? Also explain how to search a pattern in the built suffix tries?	Level-2	CO5	1, 2
6	Draw the Standard Trie and Compressed Trie for the following Strings {bear, bell, bid, bull, buy, sell, stock, stop}	Level-3	CO5	1, 2, 3
7	Difference between Standard trie, Compact trie, and Suffix trie	Level-4	CO5	1, 2, 3