Algèbre 1 - RAISONNEMENT - ELEMENTS DE LA THEORIE DES ENSEMBLES -

1. ELEMENTS DE LOGIQUE

1.1 Propositions – Règles logiques

<u>Définition 1</u>: On appelle **propriété** ou **assertion** une affirmation à laquelle on peut attacher une valeur de vérité : soit **vraie** soit **fausse**

Soit P une assertion, on appelle $table \ de \ vérit\'e \ de \ P$ la table :

P V F

Exemples: 3 est un nombre impair (assertion vraie).

Paris est la capitale de l'Italie (assertion fausse).

<u>Définition 2 :</u> Un **théorème** ou **proposition** est une assertion vraie.

<u>Règles logiques</u>: on admet les règles suivantes

- **Principe de non contradiction** : on ne peut avoir P vraie et P fausse en même temps
- **Principe du tiers exclu** : une propriété qui n'est pas vraie est fausse, et une propriété qui n'est pas fausse est vraie.

1.2 Opérateurs logiques

Les opérateurs logiques permettent de combiner des propriétés pour en obtenir de nouvelles :

• **Négation :** la négation d'une propriété P est notée : non P ou \overline{P} ou \overline{P}

• Conjonction: 'et' notée \land

• **Disjonction inclusive :** 'ou' notée ∨

Implication : notée ⇒
 Equivalence : notée ⇔

Ils sont définis par la table de vérité:

P	Q	₽	P v Q	P ^ Q	$P \Rightarrow Q$	P⇔Q
V	V	F	V	V	V	V
V	F	F	V	F	F	F
F	V	V	V	F	V	F
F	F	V	F	F	V	V

Remarques:

- (i) Dans l'implication $P \Rightarrow Q$, P s'appelle **l'hypothèse** et Q la **conclusion**.
- (ii) On peut exprimer l'implication $P \Rightarrow Q$ de l'une des façons suivantes :
 - Pour que P, il faut Q ; Q est une **condition nécessaire** de P
 - Pour que Q, il suffit P; P est une **condition suffisante** pour Q
 - Si P, alors Q.
- (iii) L'implication $Q \Rightarrow P$ est appelée **réciproque** de $P \Rightarrow Q$
- (iv) On peut exprimer l'équivalence logique $P \Leftrightarrow Q$ de l'une des façons suivantes :
 - Pour que P, il faut et il suffit Q
 - P est une condition **nécessaire et suffisante** (CNS) pour Q
 - P si et seulement si Q

1.3 Tautologie

<u>Définition 3</u>: Un théorème de logique (appelé aussi **tautologie**) est une assertion vraie quelles que soient les valeurs de vérité des éléments qui la composent.

Exemples de tautologies :

- $\underline{\mathbf{1.3.1}} \qquad P \Rightarrow P$
- $1.3.2 \qquad \boxed{(\ \ P) \Leftrightarrow P}$
- 1.3.3 $P \lor (P)$ (c'est le principe du tiers exclu)

1.3.4 Lois de Morgan :

$$\mathbf{a}) \ \, \rceil (\ \, P \wedge Q) \ \, \Leftrightarrow (\ \, \rceil P \ \, \vee \ \, \rceil Q \,)$$

b)
$$\rceil (P \vee Q) \Leftrightarrow (\rceil P \wedge \rceil Q)$$

$$c) \ P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$$

d)
$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$$

1.3.5 L'implication :

a)
$$(P \Rightarrow Q) \Leftrightarrow (P \lor Q)$$

b)
$$(P \Rightarrow Q) \Leftrightarrow (Q \Rightarrow P)$$
 contraposée

1.3.6 Négation d'une implication :

2. ENSEMBLES

2.1 Quantificateurs

On introduit trois nouveaux opérateurs (appelés quantificateurs):

 \forall : se lit « quel que soit » ou « pour tout »

 \exists : se lit « il existe au moins un»

 \exists ! : se lit « il existe un unique»

Attention! • On peut permuter deux quantificateurs identiques, mais on ne peut pas permuter deux quantificateurs de nature différente.

<u>Définition 4</u>: On appelle **ensemble** une collection d'objets, appelés **éléments** de cet ensemble.

<u>Notation</u>: Lorsque x est un élément d'un ensemble E, on note $x \in E$; Lorsque x n'est pas un élément d'un ensemble E, on note $x \notin E$.

Propriété: Négation d'une phrase quantifiée

Soit P une proposition dépendant d'une variable x et E un ensemble, alors :

Exemples:

- **1.** La négation de la proposition $(\forall x \in E, x.0 = 0)$ est $(\exists x \in E, x.0 \neq 0)$.
- **2.** La négation de la proposition : [$\forall a \in E, \forall \epsilon > 0, \exists \eta > 0, \forall x \in E, (|x a| \le \eta \Rightarrow |f(x) f(a)| \le \epsilon$)] est : [$\exists a \in E, \exists \epsilon > 0, \forall \eta > 0, \exists x \in E, (|x a| \le \eta) \land (|f(x) f(a)| > \epsilon)$]

2.2 Ensemble ₽ (E)

<u>Définition 5</u>: Soient A et B deux ensembles. On dit que A est **inclus** dans B ou que A est une **partie** de B si pour tout x de A, x est élément de B ($\forall x \in A, x \in B$). On note alors $A \subset B$. On note $\mathcal{P}(E)$ l'ensemble des parties de l'ensemble E, et on note \emptyset la partie vide de E.

<u>Exemple</u>: Pour E = $\{a; b\}, \mathcal{P}(E) = \{\emptyset; \{a\}, \{b\}; \{a; b\}\}$

Propriétés:

- $A \subset B \Leftrightarrow (x \in A \Rightarrow x \in B)$; on a $\emptyset \subset A$, $A \subset A$ pour tout ensemble A.
- $A = B \Leftrightarrow ((A \subset B) \land (B \subset A))$.
- La négation de $A \subset B$ est notée $A \not\subset B$ ceci veut dire : $\exists x \in A, x \notin B$.
- $A \neq B \Leftrightarrow ((A \not\subset B) \lor (B \not\subset A)).$
- $((A \subset B) \land (B \subset C)) \Rightarrow (A \subset C)$ transitivité

Définition 6 : Soient E un ensemble, A et B des parties de E, on note :

 $\begin{array}{ll} C_E(A) = \overline{A} = \{ \ x \in E, \, x \not\in A \} & \textbf{complémentaire} \ de \ A \ dans \ E \\ A \cap B = \{ x \in E, \, x \in A \ \ \textbf{et} \ \ x \in B \} & \textbf{intersection} \ de \ A \ et \ B \\ A \cup B = \{ x \in E, \, x \in A \ \ \textbf{ou} \ \ x \in B \} & \textbf{réunion} \ de \ A \ et \ B \\ A \setminus B = \{ x \in A, \, x \not\in B \} = A \cap C_E(B) & \textbf{différence} \ A \ moins \ B \\ A \Delta B = (A \setminus B) \cup (B \setminus A) & \textbf{différence symétrique} \ de \ A \ et \ B \end{array}$

Propriétés : lois de Morgan

Soient A, B et C des ensembles :

- $A \cup B = B \cup A$ et $A \cap B = B \cap A$ (commutativité)
- $A \cup (B \cup C) = (A \cup B) \cup C$ et $A \cap (B \cap C) = (A \cap B) \cap C$ (associativité)
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ et $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributivité)
- $A \cap B = A \cup B$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$

soit $(E_i)_{i \in \mathbb{N}}$ une famille de parties de E, on note :

$$\bigcup_{i\in\mathbb{N}} E_i = \{x\in E \ / \ \exists \ i\in \mathbb{N} \ , \ x\in E_i \ \} \qquad \text{et} \qquad \bigcap_{i\in\mathbb{N}} E_i = \{x\in E \ / \ \forall \ i\in \mathbb{N} \ , \ x\in E_i \ \}$$

2.3 Partition

<u>Définition 7 :</u> $I \subset \mathbb{N}$; $(E_i)_{i \in I}$ une famille de parties d'un ensemble E est une **partition** de E si :

$$\begin{cases} \bigcup_{i \in I} E_i = E \\ \forall (i; j) \in I^2 / i \neq j, \quad E_i \cap E_j = \emptyset \\ \forall i \in I, \quad E_i \neq \emptyset \end{cases}$$

<u>Exemple</u>: $E = \{1; 2; 3; 4; 5; 6\}$ $E_1 = \{1; 2; 3\}$ $E_2 = \{4; 5\}$ $E_3 = \{6\}$ $(E_i)_{i \in \{1,2,3\}}$ est une partition de E.

2.4 Produit cartésien

Définition 8 : Soient E et F deux ensembles. On appelle **produit cartésien** de E et F

l'ensemble : $E \times F = \{ x = (x_1 : x_2), x_1 \in E, x_2 \in F \}$

Exemple: Soient
$$E = \{1; 2\}, F = \{a; b; c\}.$$

 $E \times F = \{(1; a); (1; b); (1; c); (2; a); (2; b); (2; c)\}$ mais $(a; 1) \notin E \times F$.

Remarques:

- Cette définition s'étend au produit cartésien d'une famille d'ensembles. (i)
- On note $E \times E = E^2$. (ii)

3. PRINCIPAUX TYPES DE RAISONNEMENT

3.1 Transitivité

De $[(P \Rightarrow Q) \land (Q \Rightarrow R)]$ on déduit $(P \Rightarrow R)$.

3.2 Syllogisme

De $[P \land (P \Rightarrow Q)]$ on déduit Q

3.3 Disjonction des cas

De [
$$(P \Rightarrow Q) \land (P \Rightarrow Q)$$
] on déduit Q

<u>Remarque</u>: La démonstration de ($P \Rightarrow Q$) peut également faire l'objet d'une disjonction de cas.

3.4 Contraposition

De $(P \Rightarrow Q)$ on déduit que $(Q \Rightarrow P)$

3.5 Raisonnement par l'absurde

Pour montrer (P \Rightarrow Q), on suppose (P \land \rceil Q), et on montre que cela entraı̂ne une contradiction.

<u>Remarque</u>: le raisonnement par l'absurde utilise le résultat suivant : $(P \Rightarrow Q) \Leftrightarrow (P \land Q)$

3.6. Méthode du contre exemple

Pour montrer $(P \Rightarrow Q)$, il suffit d'exhiber **un** cas $(P \land Q)$

3.7 Démonstration par récurrence

<u>Théorème 1</u> : (principe de récurrence)

Si une partie A de \mathbb{N} vérifie la propriété : $0 \in A$ et $\forall n \in \mathbb{N}$ $(n \in A) \Rightarrow (n+1 \in A)$, alors $A = \mathbb{N}$.

Ce principe fondamental permet de démontrer des propriétés dépendant d'un entier naturel n.

Récurrence simple :

Soit $n_0 \in \mathbb{N}$ et P(n) une propriété portant sur un entier n tel que $n \ge n_0$.

Pour prouver la validité de P(n) pour tout $n \ge n_0$ il faut et il suffit que l'on ait :

- $P(n_0)$ vraie (initialisation)
- $\forall n \ge n_0$: $[P(n) \Rightarrow P(n+1)]$ (hérédité).

Récurrence forte :

Soit $n_0 \in \mathbb{N}$ et P(n) une propriété portant sur un entier n tel que $n \ge n_0$.

Pour prouver la validité de P(n) pour tout $n \ge n_0$ il faut et il suffit que l'on ait :

- P(n₀) vraie
- $\forall n \ge n_0$: $[(\forall k \in [n_0; n] P(k)) \Rightarrow P(n+1)].$

<u>Définition 9 : </u> Ce type de raisonnement s'appelle **raisonnement par récurrence**.

4. RELATIONS

4.1 Définitions

<u>Définition 10:</u> Soient E et F deux ensembles, on appelle **relation binaire** \mathcal{Z} de E vers F un triplet (E; F; G) où G est une partie de E \times F (appelé **graphe** de la relation).

On dit que le couple $(x; y) \in E \times F$ vérifie la relation \mathcal{Z} lorsque $(x; y) \in G$. On le note $x \mathcal{Z} y$. Si E = F une relation binaire de E vers E est simplement dite relation sur E.

<u>Définition 11</u>: Soit \mathcal{R} une relation sur un ensemble E. On dit que :

 \mathcal{R} est **réflexive** si $\forall x \in E \ x \ \mathcal{R} x$

 $\boldsymbol{\mathcal{R}}$ est **symétrique** si $\forall (x ; y) \in E^2 \ x \boldsymbol{\mathcal{R}} \ y \Rightarrow y \boldsymbol{\mathcal{R}} x$

 \mathcal{R} est transitive si $\forall (x; y; z) \in E^3$, $(x \mathcal{R} y) \land (y \mathcal{R} z) \Rightarrow x \mathcal{R} z$

 $\mathbf{\mathcal{R}}$ est antisymétrique si $\forall (x; y) \in E^2$, $(x \mathbf{\mathcal{R}} y) \land (y \mathbf{\mathcal{R}} x)) \Rightarrow x = y$

4.2 Relation d'équivalence

Définition 12 : Soit \mathcal{R} une relation sur un ensemble E.

On dit que \mathbb{Z} est une **relation d'équivalence** si elle est réflexive, symétrique et transitive.

Si \mathbb{R} est une relation d'équivalence sur un ensemble E, pour tout $x \in E$ on appelle classe **d'équivalence** de x l'ensemble : $x = \{ y \in E, y \mathcal{R}x \}$.

Exemples:

- L'égalité dans R est une relation d'équivalence
- Dans \mathbb{N} la relation : $x \equiv y [5] \Leftrightarrow \exists k \in \mathbb{Z} / x y = 5k$ (congruence modulo 5)
- Dans \mathbb{R} la relation : $\mathbf{x} = \mathbf{y}[2\pi] \Leftrightarrow \exists \mathbf{k} \in \mathbb{Z} / \mathbf{x} \mathbf{y} = 2\mathbf{k}\pi$ (égalité modulo 2π)

4.3 Relation d'ordre

<u>Définition 13</u>: Soit ₹ une relation sur un ensemble E. On dit que ₹ est une relation d'ordre si elle est réflexive, antisymétrique et transitive.

Une relation d'ordre **?** sur E est dite **relation d'ordre total** lorsque :

$$\forall (x; y) \in E^2 (x \mathcal{R} y) \lor (y \mathcal{R} x)$$

Un ensemble muni d'une relation d'ordre total est appelé un **ensemble totalement ordonné**.

Exemples:

- 1. \leq dans \mathbb{R} (ou \mathbb{Z} ou \mathbb{Q} ...) est une relation d'ordre total;
- 2. \subset dans un ensemble E est une relation d'ordre partiel

<u>Notation</u>: on utilise souvent le symbole ' \leq ' pour une relation d'ordre, et lorsque x \leq y, on note également y≥x.

<u>Définition 14</u>: Soient (E, \le) un ensemble totalement ordonné et $A \subset E$.

On dit que $m \in A$ est le plus grand élément (resp. le plus petit élément) de A, on le note max A (resp. min A) si:

$$\forall x \in A \ x \le m \ (resp. \forall x \in A \ m \le x).$$

On dit que $m \in E$ est un majorant (resp. minorant) de A si :

$$\forall x \in A \ x \le m \ (resp. \ \forall x \in A \ m \le x).$$

On dit que A est **majorée** (resp. **minorée**) si il existe au moins un majorant (resp. minorant) de A dans E. Si A est majorée et minorée, on dit que A est bornée

On appelle **borne supérieure** (respectivement **borne inférieure**) de A, le plus petit des majorants (respectivement le plus grand des minorants) de A lorsqu'il existe; on le note sup A (respectivement **inf A**).

<u>Exemple</u>: A = [2; 5] n'admet pas dans \mathbb{R} de plus grand élément mais admet une borne supérieure : sup A = 5.

Théorème 2: Toute partie non vide minorée (resp. majorée) de (\mathbb{N}, \leq) admet un plus petit (resp. plus grand) élément.

5. APPLICATIONS

Dans l'ensemble du paragraphe, E, F, G et H désignent des ensembles.

5.1 Définitions

Définition 15 : On appelle application de E vers F toute relation entre E et F qui a un élément de E (appelé ensemble de départ) associe au plus un élément de F (appelé ensemble d'arrivée).

On note
$$f: E \rightarrow F$$

 $x \mapsto f(x)$

f(x) est appelé **l'image de x par f**, c'est l'unique élément de F associé à x par f. L'ensemble des applications de E vers F est noté F^E.

<u>Définition 16</u>: Soit $A \in \mathcal{P}(E)$. L'application $f : E \to \{0; 1\}$ définie par : $\forall x \in E, f(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases} \text{ est appelée fonction indicatrice de } A, \text{ et est notée } \mathbb{1}_A.$

Définition 17 : Soit $f \in F^E$.

- Soit $A \in \mathcal{P}(E)$; l'application $g : A \to F$ définie par : $\forall x \in A, g(x) = f(x)$ est appelée restriction de f à A et est notée f|A.
- Soit E' une partie contenant E; une application h : E' \rightarrow F telle que : $\forall x \in E$, h(x) = f(x) est appelée UN prolongement de f à E'.

<u>Exemple</u>: Soit $f: \mathbb{R}^* \to \mathbb{R}$ telle que $f(x) = \frac{e^x}{x}$; f admet <u>une infinité</u> de prolongements sur \mathbb{R} .

<u>Définition 18</u>: L'application f de E vers E définie pour tout x de E par f(x) = x est appelée **identité** de E. On la note Id_E.

<u>Définition 19</u>: Soient $f \in F^E$ et $g \in G^F$.

On définit une application de E vers G, appelée composée de f et g, notée g o f, définie pour tout x de E par g o f(x) = g(f(x)).

Propriété (associativité): Soient $f \in F^E$, $g \in G^F$ et $h \in H^G$. On a : $(h \circ g) \circ f = h \circ (g \circ f)$.

5.2 Applications injectives, surjectives

<u>Définition 20</u>: Soit f une application de E vers F. On dit que :

- f est **injective** (ou f est une **injection**) si \forall (a; b) \in E² (a \neq b) \Rightarrow (f(a) \neq f(b))
- f est surjective (ou f est une surjection) si $\forall y \in F$, $\exists x \in E$, f(x) = y
- f est bijective (ou f est une bijection) si f est injective et surjective

Lorsque f est bijective, on dit qu'elle admet une bijection réciproque de F vers E, notée f^{-1} , telle que : $\forall (x; y) \in E \times F$, $(y = f(x)) \Leftrightarrow (x = f^{-1}(y))$

Remarques:

- (i) f est injective si et seulement si $\forall (a; b) \in E^2 : (f(a) = f(b)) \Longrightarrow (a = b)$
- (ii) f est bijective si et seulement si $\forall y \in F, \exists ! x \in E, y = f(x)$.
- (iii) $f: E \to F$ est bijective si et seulement si il existe $g: F \to E$ telle que g o $f = Id_E$ et f o $g = Id_F$. On a alors $f^{-1} = g$.

Propriétés : Soient $f \in F^E$ et $g \in G^F$.

- Si g o f est injective, alors f est injective.
- Si g o f est surjective, alors g est surjective.
- La composée de deux injections est une injection.
- La composée de deux surjections est une surjection.
- La composée de deux bijections est une bijection et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

<u>Définition 21 :</u> Soient $f \in E^E$. Si f o $f = Id_E$, on dit que f est **involutive**.

<u>Remarque</u>: Si f est involutive, alors f est bijective, et $f^{-1} = f$.

<u>Exemple</u>: $f: \mathbb{R}^* \to \mathbb{R}^*$ définie par $f(x) = \frac{1}{x}$ est involutive.

5.3 Images directes et réciproques de parties par une application

<u>Définition 22</u>: Soit $f \in F^E$.

• Pour toute partie A de E on définit l'image directe de A par f, noté f(A), par :

$$f(A) = \{ f(x) / x \in A \}.$$

• Pour toute partie B de F on définit **l'image réciproque** de B par f, noté f - 1 (B), par :

$$f^{-1}(B) = \{ x \in E / f(x) \in B \}.$$

Propriétés : Soit $f \in F^E$.

- $\forall A \in \mathcal{P}(E) : A \subset f^{-1}(f(A))$
- $\forall A' \in \mathcal{P}(F) : f(f^{-1}(A')) \subset A'$.
- $\forall (A; B) \in (\mathcal{P}(E))^2$: $f(A \cup B) = f(A) \cup f(B)$ $f(A \cap B) \subset f(A) \cap f(B)$
- $\forall (A'; B') \in (\mathcal{P}(F))^2 : f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$ $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$ $f^{-1}(\overline{A'}) = \overline{f^{-1}(A')}$

Définition 23 : Soient $A \subset E$ et $f : E \to E$.

On dit que A est **stable** par f si $f(A) \subset A$, et que A est **invariant** par f si f(A) = A.

Exemple: Soit $f: \mathbb{R} \to \mathbb{R}$, définie par $f(x) = x^2$. [-1;1] est stable par f; [0;1] est invariant par f.