Table of contents

- Overview of models
- 2 General notation
- Model 1
- 4 Model 2
- Model 3
- 6 References

Overview of models

Overview of models

The following tables provide an overview of the specified models, with model extensions/changes highlighted in **bold**. For every model, the observed data are assumed to be complete (i.e., no missing data).

Model	Dependent variable	Class membership	Constant & trend component 1
1	continuous, Normal, iid err	time-independent	pooled, linear
2	continuous, Normal, iid err	time-independent	individual effects, linear
3	continuous, Normal, iid err	time-independent	individual effects, quadratic
4	count, Poisson, iid err	time-independent	individual effects, quadratic

Table 1: Overview of specified models

¹for each latent class

General notation

General notation

Individual n, for n = 1, ..., N, where N is the number of individuals

Time period t, for t = 1, ..., T, where T is the number of time periods

 \mathbf{Y}^{obs} is a $N \times T$ matrix representing the observed dependent variable, where obs refers to simulated or actual data

 $\textbf{\textit{X}}$ is a matrix of size $\textit{N} \times \textit{T}$ representing the explanatory variable (e.g., time periods, starting at zero)

General notation — continued

Latent class (aka, sub-population) c, for c=1,...,C, where C is the number of classes

 λ is a row vector of size C representing the mixture proportions, averaged over individuals and time periods; thus:

$$0 \le \lambda_c \le 1$$
 and $\sum_{c=1}^C \lambda_c = 1$ (1)

Model 1

Model 1 — dependent variable

Continuous

Normal (aka, Gaussian)

iid err: independent (i.e., uncorrelated over individuals and time periods) and identically distributed errors $\,$

No missing data

Model 1 — constant and trend component

Constant without interindividual differences within-class (i.e., the constant is allowed to vary between classes but not within classes)

Linear (i.e., non-stationary, deterministic) trend component without interindividual differences within-class (i.e., the trend component is allowed to vary between classes but not within classes)

Based on Koop (2003), the assumptions of no interindividual differences within-class regarding the constant and trend component correspond to a pooled model (i.e., a pooled model for each class)

According to Ram and Grimm (2009), latent class growth analysis (or LCGA for short) refers to a subset of GMMs assuming no interindividual differences within-class regarding the constant and trend component

Model 1 — likelihood

$$y_{n,t}^{obs} \sim \sum_{c=1}^{C} \lambda_c \, Normal(\mu_{c,n,t}, \sigma_c)$$
 (2)

where M is a C-tuple containing $N \times T$ matrices, and σ is a row vector of size C.

$$\mu_{c,n,t} = \beta_{0,c} + \beta_{1,c} \, x_{n,t} \tag{3}$$

where eta_0 is a row vector of size C representing the constant, and eta_1 is a row vector of size C with

$$\beta_{1,c} < \beta_{1,c+1} \tag{4}$$

for identification. In combination with ${\pmb X}$, ${\pmb \beta}_1$ represents the linear trend component.

Model 1 — deduction of likelihood

For each $y_{n,t}$, there is a latent discrete parameter $z_{n,t}$ in $\{1,...,C\}$, indicating that individual n belongs to class c at time period t:

$$z_{n,t} \sim extit{Categorical}(oldsymbol{\lambda})$$

where Z is a $N \times T$ matrix. Therefore, the likelihood presented in equation 2 is deduced by marginalizing out z_n :

$$p(y_{n,t}|z_n, \lambda, \beta_0, \beta_1, \sigma) = p(z_n|\lambda) p(y_{n,t}|z_n, \beta_0, \beta_1, \sigma)$$

$$= \sum_{c=1}^{C} \lambda_c p(y_{n,t}|\beta_{0,c}, \beta_{1,c}, \sigma_c)$$

$$= \sum_{c=1}^{C} \lambda_c Normal(\mu_{c,n,t}, \sigma_c)$$
(6)

where $\mu_{c,n,t}$ is defined by equation 3.

(5)

Model 1 — prior

$$\lambda \sim \textit{Dirichlet}(\alpha)$$
 (7)

where α is a row vector of size C with $\alpha_c=1$ (i.e., λ is assigned a proper flat prior).

$$\beta_{0,c} \sim Normal(0,10) \tag{8}$$

where the hyperparameters are advised to be specified based on the observed dependent variable.

$$\beta_{1,c} \sim Normal(0,1)$$
 (9)

where the hyperparameters are advised to be specified based on the observed dependent variable.

Model 1 — prior — continued

$$\sigma_c \sim Normal(0,1) \mathbf{1}(\sigma_c > 0)$$
 (10)

where the Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_c>0)$. Furthermore, the standard deviation hyperparameter (here set to one) is advised to be specified based on the observed dependent variable.

Model 2

Model 2 — dependent variable

Continuous

Normal (aka, Gaussian)

iid err: independent (i.e., uncorrelated over individuals and time periods) and identically distributed errors $\,$

No missing data

Model 2 — constant and trend component

Constant with interindividual differences within-class (i.e., the constant is allowed to vary between classes and within classes) $\,$

Linear (i.e., non-stationary, deterministic) trend component without interindividual differences within-class (i.e., the trend component is allowed to vary between classes but not within classes)

Based on Koop (2003), the assumptions of interindividual differences within-class regarding the constant and no interindividual differences within-class regarding the trend component correspond to an individual effects model (i.e., an individual effects model for each class)

Model 2 — likelihood

$$y_{n,t}^{obs} \sim \sum_{c=1}^{C} \lambda_c \, Normal(\mu_{c,n,t}, \sigma_c)$$
 (11)

where ${\pmb M}$ is a C-tuple containing $N \times T$ matrices, and ${\pmb \sigma}$ is a row vector of size C.

$$\mu_{c,n,t} = \beta_{0,n,c} + \beta_{1,c} \, x_{n,t} \tag{12}$$

$$\beta_{0,n,c} \sim Normal(\mu_{\beta_{0,c}}, \sigma_{\beta_{0,c}})$$
 (13)

where ${m B}_0$ is a N imes C matrix representing the constant, and ${m eta}_1$ is a row vector of size C with

$$\beta_{1,c} < \beta_{1,c+1} \tag{4}$$

for identification. In combination with ${\pmb X}$, ${\pmb \beta}_1$ represents the linear trend component.

Model 2 — deduction of likelihood

For each $y_{n,t}$, there is a latent discrete parameter $z_{n,t}$ in $\{1,...,C\}$, indicating that individual n belongs to class c at time period t:

$$z_{n,t} \sim extit{Categorical}(oldsymbol{\lambda})$$

where Z is a $N \times T$ matrix. Therefore, the likelihood presented in equation 11 is deduced by marginalizing out z_n :

$$p(y_{n,t}|z_n, \lambda, \beta_{0,n}, \beta_1, \sigma) = p(z_n|\lambda) p(y_{n,t}|z_n, \beta_{0,n}, \beta_1, \sigma)$$

$$= \sum_{c=1}^{C} \lambda_c p(y_{n,t}|\beta_{0,n,c}, \beta_{1,c}, \sigma_c)$$

$$= \sum_{c=1}^{C} \lambda_c Normal(\mu_{c,n,t}, \sigma_c)$$
(14)

where $\mu_{c,n,t}$ is defined by equation 12.

(5)

Model 2 — prior

$$\lambda_n \sim Dirichlet(\alpha)$$
 (7)

where α is a row vector of size C with $\alpha_c=1$ (i.e., λ_n is assigned a proper flat prior).

$$\mu_{\beta_{0,c}} \sim \textit{Normal}(0,10) \tag{15}$$

where the hyperparameters are advised to be specified based on the observed dependent variable.

$$\sigma_{\beta_{0,c}} \sim Normal(0,1) \mathbf{1}(\sigma_{\beta_{0,c}} > 0) \tag{16}$$

where the Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_{\beta_{0,c}}>0)$. Furthermore, the standard deviation hyperparameter (here set to one) is advised to be specified based on the observed dependent variable.

Model 2 — prior — continued

$$\beta_{1,c} \sim Normal(0,1)$$
 (9)

where the hyperparameters are advised to be specified based on the observed dependent variable.

$$\sigma_c \sim Normal(0,1) \mathbf{1}(\sigma_c > 0)$$
 (10)

where the Normal distribution is truncated to the left at zero, modeled via the indicator function $\mathbf{1}(\sigma_c>0)$. Furthermore, the standard deviation hyperparameter (here set to one) is advised to be specified based on the observed dependent variable.

Model 3

References

Koop, G. (2003). Bayesian Econometrics. Wiley.

Ram, N. & Grimm, K. J. (2009). Growth Mixture Modeling: A Method for Identifying Differences in Longitudinal Change Among Unobserved Groups. *International Journal of Behavioral* Development, 33(6), 565-576.