Preliminaries

Start by importing these Python modules

Overview: the conceptual DataFrame model

<u>Series object</u>: an ordered array of data with an index. Series arithmetic is vectorised after first aligning the Series (row) index of each of the operands.

```
s1 = Series(range(0,4)) # --> 0, 1, 2, 3
s2 = Series(range(1,5)) # --> 1, 2, 3, 4
s3 = s1 + s2 # --> 1, 3, 5, 7
S4 = Series(['a','b'])*3 # --> 'aaa', 'bbb'
```

<u>DataFrame object</u>: is a table of data with column and row indexes. The columns are made up of pandas Series objects.

Get your data into a DataFrame

Play data (useful for testing)

```
df = DataFrame(np.random.randn(26,5),
    columns=['col'+str(i) for i in range(5)],
    index=list("ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
df['cat'] = list('aaaabbbccddef' * 2)
```

Get a DataFrame from a CSV file

```
df = pd.read_csv('file.csv')
# see: help(pd.read_csv) for options
```

Get a DataFrame from a Microsoft Excel file

```
# put each Excel workbook in a dictionary
workbook = pd.ExcelFile('file.xls')
dictionary = {}
for name in workbook.sheet_names:
    df = workbook.parse(name)
    dictionary[name] = df
# see: help(pd.ExcelFile) for options
```

Get a DataFrame from a Python dictionary

Working with indexes

The Index object

Both the column index and the row index are a pandas Index object. Broadly speaking, this will be one of a number of pandas data types:

- 1. <u>Int64Index</u> integer indexes,
- 2. Float64Index float indexes
- 3. DatetimeIndex a timestamp/point in time
- 4. PeriodIndex a timespan/period of time.

 This is the preferred index for time series data where the period is longer than ms.
- 5. <u>Index</u> of any other <u>hashable</u> Python object (often a string, can be anything hashable).
- MultiIndex for Hierarchical indexing (not covered in these notes)

<u>Hint</u>: Typically, the column index is a list of strings (the observed variable names) or integers. As a guide, the row index might be

- Integers for case or row numbers
- Strings for case names
- DatetimeIndex or PeriodIndex for time series data (more on these indexes below)

Get column labels

```
index = df.columns  # get column labels
label = df.column[0]  # the 1<sup>st</sup> column label
```

Change column labels

```
df.columns = ['a','b'] # set all column names
df.rename(columns={'old':'new'},inplace=True)
# more than one col can be changed via dict
df = df.rename(columns = {'a':'a1','b':'b2'})
```

Get the (row) index

Change the (row) index

```
df.index = index
df.index = range(len(df))  # set with list
df = df.reset_index()
df = df.reindex(index=range(len(df)))
df = df.set_index(keys='col1') # set with col
df = df.set_index(keys=['col1','col2','etc'])
df.rename(index={'old':'new'}, inplace=True)
```

The default (row) index

An integer index numbered (0, 1, 2 ... n-1)

Working with the whole DataFrame

Peek at the DataFrame

```
summary_df = df.describe()
head_df = df.head(); tail_df = df.tail()
top_left_corner_df = df.iloc[:5, :5]
```

Transpose rows and columns

```
df = df.T
```

Joining/Combining DataFrames

Merge on columns

```
df_new = pd.merge(left=df1, right=df2,
how='left', left_on='col1', right_on='col2')
How: 'left', 'right', 'outer', 'inner'
How: outer=union/all; inner=intersection
```

Merge on indexes

```
df_new = pd.merge(left=df1, right=df2,
  how='inner', left_index=True,
  right_index=True)
```

Join on indexes (another way of merging)

```
df new = df1.join(other=df2, how='left')
```

Working with columns (axis=1)

Selecting columns (by label or num)

```
s = df['colName']  # select column by name
df = df[['a','b']]  # select 2 or more cols
df = df[['b','a','c']]# change col order
s = df[df.columns[0]] # select column by num
# cols numbered from 0 to len(df.columns)-1
```

Select a slice of columns by label

```
df = df.loc[:, 'col1':'col2'] #inclusive "to"
Can also use df.ix[:, 'col1':'col2']
```

Select a slice of columns by integer position

```
df = df.iloc[:, 0:2] #exclusive "to"
Can also use df.ix[:, 0:2], but ix will do an
inclusive "to" with integer labelled columns.
```

Dropping columns (by label)

```
df = df.drop('col1', axis=1)
df = df.drop(df.columns[0], axis=1)
df = df.drop(['col1','col2'], axis=1) # multi
s = df.pop('col') # get col; drop from frame
```

Adding new columns

```
df['new_col'] = range(len(df))
df['index_as_column'] = df.index
df['row_sum'] = df.sum(axis=1)
df1[['b','c']] = df2[['e','f']]  # multi add
df3 = df1.append(other=df2)  # multi add
```

Vectorised arithmetic on columns

```
df['proportion'] = df['count'] / df['total']
df['percent'] = df['proportion'] * 100.0
```

Apply numpy mathematical functions to columns

```
df['log_data'] = np.log(df['col1'])
df['rounded'] = np.round(df['col2'], 2)
df['random'] = np.random.rand(len(df))
```

Vectorised if/else on columns (using where)

```
df['col'] = df['col'].where(cond, other=nan)
If condition is true return from the Series;
otherwise from the other (scalar or Series)
1 = range(10); s1 = Series(1); # 0 1 2 .. 9
1.reverse(); s2 = Series(1) # 9 8 7 .. 0
s = s1.where(s1>=5, s2) # 9 8 7 6 5 5 6 7 8 9
```

Column access by Python attributes

Trap: column names must be valid identifiers.

Iterating over the Dataframe cols

```
for (index, col) in df.iteritems():
Where index is the column label and col is a
pandas Series that contains the column data
```

Common column element-wise methods

```
s = df['col'].to_datetime()
s = df['col1'].isnull()
s = df['col1'].notnull() # not isnull()
s = df['col1'].round(decimals=0)
s = df['col1'].diff(periods=1)
s = df['col1'].shift(periods=1)
```

Common column-wide methods/attributes

```
type = df['col1'].dtype
value = df['col1'].size  # col dimensions
value = df['col1'].count()  # non-NA count
value = df['col1'].sum()
value = df['col1'].prod()
value = df['col1'].min()
value = df['col1'].mean()
value = df['col1'].median()
s = df['col1'].describe()
```

Group by a column

```
s = df.groupby('cat')['col1'].sum()
dfg = df.groupby('cat').sum()
```

Group by a row index (non-hierarchical index)

```
df = df.set_index(keys='cat')
s = df.groupby(level=0)['col1'].sum()
dfg = df.groupby(level=0).sum()
```

Working with rows (axis=0)

Adding rows

```
df = original_df.append(more_rows_in_df)
For a new row in a python dictionary or list,
convert it to a DataFrame and then append.
```

Dropping rows (by name)

```
df = df.drop('row_label')
df = df.drop(['row1','row2'])  # multi-row
```

Select a slice of rows by integer position

```
[inclusive-from : exclusive-to]
[inclusive-from : exclusive-to : step]
default start is 0; default end is len(df)
```

<u>Trap</u>: a single integer without a colon is an index and not a slice. Furthermore it will return a column and not a row.

Select a slice of rows by label/index

[inclusive-from : inclusive -to[: step]]

rows_df = df['a':'c'] # rows 'a' through 'c'

Select rows by value in a column

(row selection from a Boolean Series)

```
rows_df = df[df['col2'] >= 0.0]
df = df[(df['col3']>=1.0) | (df['col1']<0.0)]
```

<u>Trap</u>: bitwise "or" and "and" co-opted to be Boolean operators on a Series of Boolean --> also note parentheses around comparisons.

Iterating over DataFrame rows

```
for (index, row) in df.iterrows():
```

Trap: row data type may be coerced.

Sorting DataFrame rows by column values

df = df.sort(df.columns[0], ascending=False)
df.sort(['col1', 'col2'], inplace=True)

Working with rows and columns

Select cell by integer position (using .iloc)

```
value = df.iloc[0, 0]  # [row, col]
value = df.iloc[9, 3]  # [row, col]
value = df.iloc[len(df), len(df.columns)]
```

Slicing by integer position (using .iloc)

Note: exclusive "to" - same as list slicing.

Selecting and slicing on labels (with .loc)

```
df = df.loc['row1':'row3', 'col1':'col3']
Note: the "to" on this slice is inclusive.
```

Hybrid selecting and slicing (with .ix)

```
df = df.ix[0:5, 'col1':'col3']
```

Trap: integer indexes treated as labels

Views and copies

From the manual: The rules about when a view on the data is returned are entirely dependent on NumPy. Whenever an array of labels or a boolean vector are involved in the indexing operation, the result will be a copy. With single label / scalar indexing and slicing, e.g. df.ix[3:6] or df.ix[:, 'A'], a view will be returned.

Working with dates, times and their indexes

Dates and time - points and spans

With its focus on time-series data, pandas provides a suite of tools for managing dates and time: either as a point in time (a Timestamp) or as a span of time (a Period).

```
timestamp = pd.Timestamp('2013-01-01')
period = pd.Period('2013-01-01', freq='M')
```

Dates and time - stamps and spans as indexes An index of Timestamps is a DatetimeIndex; and an index of Periods is a PeriodIndex. These can be constructed as follows:

From DatetimeIndex and PeriodIndex and back

```
spi = sdi.to_period(freq='M')# to PeriodIndex
sdi = spi.to_timestamp() # to DatetimeIndex
```

Note: from period to timestamp defaults to the point in time at the start of the period.

More examples on working with dates/times

DatetimeIndex can be converted to an array of Python native datetime.datetime objects using the to_pydatetime() method.

Error handling with dates

```
# first example returns string not Timestamp
s = pd.to_datetime('2014-02-30')
# second example returns NaT (not a time)
n = pd.to_datetime('2014-02-30', coerce=True)
# NaT is like NaN ... tests True for isnull()
b = pd.isnull(n) # --> True
```

Creating date/period indexes from scratch

```
dt_idx = pd.DatetimeIndex(pd.date_range(
    start='1/1/2011', periods=12, freq='M'))
p_idx = pd.period_range('1960-01-01',
    '2010-12-31', freq='M')
```

Frequency constants (not a complete list)

,	s (not a complete 115t)
Name	Description
U	Microsecond
L	Millisecond
S	Second
T	Minute
Н	Hour
D	Calendar day
В	Business day
W-{MON, TUE,}	Week ending on …
MS	Calendar start of month
М	Calendar end of month
QS-{JAN, FEB,}	Quarter start with year
	ending (QS - December)
Q-{JAN, FEB,}	Quarter end with year
	ending (Q - December)
AS-{JAN, FEB,}	Year start (AS - December)
A-{JAN, FEB,}	Year end (A - December)

Row selection with a time-series index

Also: year, month, day [of month], hour, minute, second, dayofweek [Mon=0 .. Sun=6], weekofmonth, weekofyear [numbered from 1], week starts on Monday], dayofyear [from 1], ... Note: this method works with both Series and DataFrame objects.

The tail of a time-series DataFrame

```
df = df.last("5M") # the last five months
```

Working with missing and non-finite data

Working with missing data

Pandas uses the not-a-number construct (np.nan and float('nan')) to indicate missing data. The Python None can arise in data as well. It is also treated as missing data; as is the pandas not-a-time (pd.NaT) construct.

Missing data in a Series

Missing data in a DataFrame

```
df = df.dropna() # drop all rows with a NaN
df = df.dropna(axis=1) # as above for cols
df=df.dropna(how='all') # only if all in row
df=df.dropna(thresh=2) # at least 2 NaN in r
# only drop row if NaN in a specified 'col'
df = df.dropna(df['col'].notnull())
```

Non-finite numbers

With floating point numbers, pandas provides for positive and negative infinity.

Pandas treats integer comparisons with plus or minus infinity as expected.

Testing for finite numbers

(using the data from the previous example)

```
np.isfinite(s) # False, False, False
```

Working with Categorical Data

Categorical data

The pandas Series has an R factors-like data type for encoding categorical data into integers.

```
c = pd.Categorical.from_array(list)
c.levels # --> the coding frame
c.labels # --> the encoded integer array
c.describe # --> the values and levels
```

Indexing categorical data

The categorical data can be indexed in a manner conceptually similar to that for Series.iloc[] above:

```
listy = ['a', 'b', 'a', 'b', 'b', 'c']
c = pd.Categorical.from_array(listy)
c.levels # --> ['a', 'b', 'c']
c.labels # --> [0, 1, 0, 1, 1, 2]
x = c[1] # --> 'b'
x = c[[0,1]] # --> ['a', 'b']
x = c[0:2] # --> ['a', 'b']
```

Categorical into DataFrame

You can put a column of encoded Categorical data in the DataFrame, but in the process the factor information will be lost; so you will need to hold this factor information outside of the DataFrame.

```
factor = pd.Categorical.from_array(df['cat'])
df['labels'] = factor.labels # integers only
df['cat2'] = factor # converts back to string
```