```
In [1]: library(tidyverse)
        Warning message in system("timedatectl", intern = TRUE):
        "running command 'timedatectl' had status 1"
        - Attaching packages -

    tidyverse

        1.3.2 —

✓ ggplot2 3.4.0

                          ✓ purrr 1.0.0
        ✓ tibble 3.1.8
                           ✓ dplyr 1.0.10

✓ tidyr 1.2.1

                           ✓ stringr 1.5.0
        ✓ readr 2.1.3
                            ✓ forcats 0.5.2
        — Conflicts —

    tidyverse conflic

        ts() —
        * dplyr::filter() masks stats::filter()
        * dplyr::lag() masks stats::lag()
```

Question 1

Part a. State null and alternate hypotheses

 H_0 : There is no relationship between gender and the decision to consider energy efficiency labeling when purchasing large home appliances

 H_1 : There is a relationship between gender and the decision to consider energy efficiency labeling when purchasing large home appliances

Part b. Compute test statistic

```
In [2]: |# create a table from data
        h_app <- matrix(c(115, 32, 8, 135, 16, 8), ncol=3, byrow=TRUE)
        colnames(h_app) <- c("Yes", "No", "Undecided")</pre>
        rownames(h app) <- c("Men", "Women")</pre>
        h_app <- as.table(h_app)</pre>
        h app
        # perform chi-squared test
        chisq.test(h_app)
               Yes No Undecided
               115 32
                                8
        Men
        Women 135 16
                                8
                 Pearson's Chi-squared test
        data: h app
        X-squared = 6.8835, df = 2, p-value = 0.03201
        Test statistic: X^2 = 6.8835
```

Part c. Compute p-value

p-value = 0.03201

Part d. Conclusion using significance level of α = 0.05

Since the p-value is less than $\alpha = 0.05$, we reject the null hypothesis and conclude that the data give evidence that there is a relationship between gender and the decision to consider energy efficiency labeling when purchasing large home appliances.

Question 2

Let's denote the proportion of Canadian workers using a certain type of transportation by p, and the proportion of American workers using that same type of transportation by p_0 . Then, our hypotheses are:

 H_0 : The proportion of Canadian workers using a certain type of transportation is equal to the proportion of American workers using that same type of transportation, given by:

$$p_1 = p_{10}, \ldots, p_6 = p_{60}$$

 H_1 : The proportion of Canadian workers using a certain type of transportation is different from the proportion of American workers using that same type of transportation in at least one transportation category, given by:

At least one
$$p_1 \neq p_{10}, ..., p_6 \neq p_{60}$$

```
In [3]: # create two vectors for data, length is 6
    ca_counts = c(320, 100, 30, 20, 10, 20)
    usa_proportions = c(.757, .122, .047, .029, .012, .033)
    chisq.test(ca_counts, p=usa_proportions)
```

Chi-squared test for given probabilities

```
data: ca_counts
X-squared = 41.269, df = 5, p-value = 8.278e-08
```

Test statistic: $X^2 = 41.269$

p-value = 8.278×10^{-8}

Conclusion: Since the p-value is less than $\alpha = 0.01$, we reject the null hypothesis and conclude that the data give evidence that the proportion of Canadian workers using a certain type of transportation is different from the proportion of American workers using that same type of transportation in at least one transportation category.

Question 3

```
In [4]: # set counter
    counter = 0
    # set iteration
    iter = 1000
    # read the pre-made csv
    gh = read.csv("q3.csv", header=TRUE, sep=",")
    gh
```

Observation	Greenhouse	Humidity.Level	Plant
<int></int>	<int></int>	<chr></chr>	<chr></chr>
1	1	Н	Northern Light
2	1	Н	Northern Light
3	1	Н	B52
4	1	Н	B52
5	2	Н	Northern Light
6	2	Н	Northern Light
7	2	Н	B52
8	2	Н	B52
9	3	L	Northern Light
10	3	L	Northern Light
11	3	L	B52
12	3	L	B52
13	4	L	Northern Light
14	4	L	Northern Light
15	4	L	B52
16	4	L	B52

```
In [5]: # count the number of unique of greenhouses
num.gh = unique(gh$Greenhouse) # 1,2,3,4
num.gh = length(num.gh) # 4
num.gh
```

In [6]: # generate the error terms for between greenhouses (1 kg) error1 = rnorm(num.gh, mean=0, sd=1) gh\$error1 = rep(error1, each=num.gh) gh

Observation	Greenhouse	Humidity.Level	Plant	error1
<int></int>	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>
1	1	Н	Northern Light	-0.9985371
2	1	Н	Northern Light	-0.9985371
3	1	Н	B52	-0.9985371
4	1	Н	B52	-0.9985371
5	2	Н	Northern Light	-1.0684437
6	2	Н	Northern Light	-1.0684437
7	2	Н	B52	-1.0684437
8	2	Н	B52	-1.0684437
9	3	L	Northern Light	1.8086484
10	3	L	Northern Light	1.8086484
11	3	L	B52	1.8086484
12	3	L	B52	1.8086484
13	4	L	Northern Light	0.7632905
14	4	L	Northern Light	0.7632905
15	4	L	B52	0.7632905
16	4	L	B52	0.7632905

```
In [7]: # generate the error terms for within greenhouses (0.5 kg)
num.plants = length(gh$Observation)
gh$error2 = rnorm(num.plants, mean = 0, sd=0.5)
gh
```

Observation	Greenhouse	Humidity.Level	Plant	error1	error2
<int></int>	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	1	Н	Northern Light	-0.9985371	0.205707113
2	1	Н	Northern Light	-0.9985371	-0.263541164
3	1	Н	B52	-0.9985371	-0.547475391
4	1	Н	B52	-0.9985371	0.044597098
5	2	Н	Northern Light	-1.0684437	-0.368651355
6	2	Н	Northern Light	-1.0684437	1.185826310
7	2	Н	B52	-1.0684437	-0.203617268
8	2	Н	B52	-1.0684437	-0.472470849
9	3	L	Northern Light	1.8086484	0.300097391
10	3	L	Northern Light	1.8086484	0.412981977
11	3	L	B52	1.8086484	-0.022067605
12	3	L	B52	1.8086484	-0.235413058
13	4	L	Northern Light	0.7632905	0.066038654
14	4	L	Northern Light	0.7632905	0.594986745
15	4	L	B52	0.7632905	0.211189843
16	4	L	B52	0.7632905	0.001598197

In [8]: # generate the effects for humidity, # difference can by anything but considered 1 kg # the df has 8 Hs followed by 8 Ls gh\$humidity.effect[1:8] = 2 gh\$humidity.effect[9:16] = 1 # not showing LHS df becaues of larger-size printing issue gh[, 5:7]

error1	error2	humidity.effect
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-0.9985371	0.205707113	2
-0.9985371	-0.263541164	2
-0.9985371	-0.547475391	2
-0.9985371	0.044597098	2
-1.0684437	-0.368651355	2
-1.0684437	1.185826310	2
-1.0684437	-0.203617268	2
-1.0684437	-0.472470849	2
1.8086484	0.300097391	1
1.8086484	0.412981977	1
1.8086484	-0.022067605	1
1.8086484	-0.235413058	1
0.7632905	0.066038654	1
0.7632905	0.594986745	1
0.7632905	0.211189843	1
0.7632905	0.001598197	1

In [9]: # generate the effects for plant variety, difference is 1 kg
the df has 2 Northern Lights followed by 2 B52s and is repeated 4 times
plant.effect = c(2,2,1,1)
gh\$plant.effect = rep(plant.effect, times=4)
gh[, 5:8]

error1	error2	humidity.effect	plant.effect
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-0.9985371	0.205707113	2	2
-0.9985371	-0.263541164	2	2
-0.9985371	-0.547475391	2	1
-0.9985371	0.044597098	2	1
-1.0684437	-0.368651355	2	2
-1.0684437	1.185826310	2	2
-1.0684437	-0.203617268	2	1
-1.0684437	-0.472470849	2	1
1.8086484	0.300097391	1	2
1.8086484	0.412981977	1	2
1.8086484	-0.022067605	1	1
1.8086484	-0.235413058	1	1
0.7632905	0.066038654	1	2
0.7632905	0.594986745	1	2
0.7632905	0.211189843	1	1
0.7632905	0.001598197	1	1

```
In [10]: # generate the yeilds
# yeild = humidity.effect + plant.effect + error1 + error2 (no interaction)
gh$yeild = gh$humidity.effect + gh$plant.effect + gh$error1 + gh$error2
gh[, 5:9]
```

error1	error2	humidity.effect	plant.effect	yeild
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-0.9985371	0.205707113	2	2	3.207170
-0.9985371	-0.263541164	2	2	2.737922
-0.9985371	-0.547475391	2	1	1.453988
-0.9985371	0.044597098	2	1	2.046060
-1.0684437	-0.368651355	2	2	2.562905
-1.0684437	1.185826310	2	2	4.117383
-1.0684437	-0.203617268	2	1	1.727939
-1.0684437	-0.472470849	2	1	1.459085
1.8086484	0.300097391	1	2	5.108746
1.8086484	0.412981977	1	2	5.221630
1.8086484	-0.022067605	1	1	3.786581
1.8086484	-0.235413058	1	1	3.573235
0.7632905	0.066038654	1	2	3.829329
0.7632905	0.594986745	1	2	4.358277
0.7632905	0.211189843	1	1	2.974480
0.7632905	0.001598197	1	1	2.764889

```
Error: Greenhouse:Humidity.Level
              Df Sum Sq Mean Sq F value Pr(>F)
Humidity.Level 1 7.787 7.787 52.01 0.0877 .
Residuals
             1 0.150
                         0.150
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Error: Within
                   Df Sum Sq Mean Sq F value Pr(>F)
Humidity.Level
                   1 3.319 3.319 17.541 0.00186 **
Plant
                    1 8.061 8.061 42.605 6.66e-05 ***
Humidity.Level:Plant 1 0.017 0.017 0.089 0.77138
Residuals
                  10 1.892 0.189
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Pr(>F)2: 1

```
In [12]: # repeat above procedure 1000 times
         # and check the proportions of time we reject null hypothesis
         for(i in 2:iter) {
             gh = read.csv("q3.csv", header=TRUE, sep=",")
             num.gh = unique(gh$Greenhouse)
             num.gh = length(num.gh)
             error1 = rnorm(num.gh, mean=0, sd=1)
             gh$error1 = rep(error1, each=num.gh)
             num.plants = length(gh$Observation)
             gh$error2 = rnorm(num.plants, mean = 0, sd=0.5)
             gh$humidity.effect[1:8] = 2
             gh$humidity.effect[9:16] = 1
             plant.effect = c(2,2,1,1)
             gh$plant.effect = rep(plant.effect, times=4)
             gh$yeild = gh$humidity.effect + gh$plant.effect + gh$error1 + gh$error2
             result = aov(yeild~Humidity.Level * Plant +
                          Error(Greenhouse:Humidity.Level), data=gh)
             x = summary(result)
             x = x$`Error: Within`
             z = unlist(x)
             pval = z[18]
             counter = counter + (pval<0.05)</pre>
```

```
In [13]: # compute proportion
    proportion = counter/iter
    proportion
```

Pr(>F)2: 0.957

Based on the simulation with this design, we have a power of 0.95 for the experiment, which is higher than the proposed power of 0.80. This indicates that we can confidently detect the effects of the different plant varieties on the mean yield within 1 kg. Therefore, we will need 2 greenhouses for each level of humidity, resulting in a total of 4 greenhouses for the two levels of humidity (i.e., high and low).