Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMID42214
Project Name	Project - Web Phishing Detection
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values
1.	Metrics	Random Forest Classifier Accuracy score-96.653
2.	Tune the Model	Hyperparameter Tuning - Validation Method -

1.METRICS

Classification Report:

```
[ ] #classification report of Randomm Forest model
    print(metrics.classification_report(y_test,y_test_rf))
```

	precision	recall	f1-score	support
-1	0.98	0.95	0.96	1014
1	0.96	0.98	0.97	1197
accuracy			0.97	2211
macro avg	0.97	0.97	0.97	2211
weighted avg	0.97	0.97	0.97	2211

Performance:

```
training_accuracy=[]
    test accuracy=[]
    depth=range(1,20)
    for n in depth:
      rf test=RandomForestClassifier(n estimators=n)
      rf_test.fit(x_train,y_train)
      training_accuracy.append(rf_test.score(x_train,y_train))
      test_accuracy.append(rf_test.score(x_test,y_test))
    plt.figure(figsize=None)
    plt.plot(depth,training_accuracy,label="Taining accuracy")
    plt.plot(depth,test_accuracy,label="Test accuracy accuracy")
    plt.ylabel("Accuracy")
    plt.xlabel("max_depth")
    plt.legend();
С→
       1.00
       0.99
       0.98
       0.97
       0.96
       0.95
       0.94
                                         Taining accuracy
                                         Test accuracy accuracy
                2.5
                      5.0
                            7.5
                                 10.0
                                       12.5
                                             15.0
                                                   17.5
                                                                      completed at 1:37 PM
                                                              ✓ 1s
```

2.Tune the model

[] ML Model Accuracy f1_score Recall Precision 91.814 0 Logistic Regression 92.567 94,496 94.496 1 Random Forest 96.653 96.942 100.000 100.000 2 XgbClassifier 94.754 95.207 96.714 96.714 3 Decision tree 95.206 95.605 100.000 100.000

[] sorted_result=result.sort_values(by=['Accuracy', 'f1_score'],ascending=False).reset_index(drop=True) sorted_result

	ML Model	Accuracy	f1_score	Recall	Precision
0	Random Forest	96.653	96.942	100.000	100.000
1	Decision tree	95.206	95.605	100.000	100.000
2	XgbClassifier	94.754	95.207	96.714	96.714
3	Logistic Regression	91.814	92.567	94.496	94.496