Tensorflow_CNN

<Excerpt in index | 首页摘要>

使用Tensorflow搭建CNN,熟悉一些经典的网络。

1, GoogleNet 2, ResNet 3, DenseNet 4, VGG

Github: Tensorflow

Resource:深度学习理论与实战(基于TensorFlow实现)

<The rest of contents | 余下全文>

卷积神经网络

1、卷积的一些基本知识

在一般的情况中,固定ksize和stride时我们可以通过下面的公式计算出输出结果的形状:

$$W_{out} = (W - K + 2P)/S + 1$$

1	6	5
7	10	9
7	10	8

2、卷积层

一个卷积核就可以得到一个输出,那么多个卷积核就可以得到多个输出.因此,一个卷积层一般由若干个卷积核排列而成.

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

上面这个图就是一个卷积层的过程,输入是 $32 \times 32 \times 30$ RGB 通道图片,通过6个 $5 \times 5 \times 3$ 的卷积核得到 $28 \times 28 \times 6$ 的输出.现在来解读一下里面出现的数值

- 输入图片大小是3-通道的,以后我们成为深度为3,为了能够让卷积核和图片进行滑动点乘,所以卷积核的深度也是3,而卷积核的大小随意,这里是5×5
- 通过上面计算卷积输出形状的公式,一个 $32 \times 32 \times 3$ 的图片经过一个 $5 \times 5 \times 3$ 的卷积核得到一个 28×28 的输出
- 一共有6个卷积核, 所以最后的输出是28 × 28 × 6的形状

代码示例

卷积在原生的 tensorflow 中的 API 是 tf.nn.conv2d()

- 第一个参数 input 是输入,要求一定一个形状为(a,b,c,d)的 tensor,也就是通常说的4维张量。它具有两种形式:NHWC , NCHW,表示输入的通道在第二维或者是第四维,在后面的参数 data_format 中可以进行选择
- 第二个参数 filter 就是参与卷积的 卷积核,要求是一个4维张量,形状是 [height, width, in_depth, out_depth]. 其中 height, width 表示卷积核本身的大小,in_depth必须和 input 的通道数保持一致,out_depth 表示卷积核的个数
- 第三个参数 strides 是卷积核滑动的步长,要求是一个4维张量,第二维和第三维表示卷积核的大小,对于 MHWC 的输入来说形状是 (1, stride_h, stride_w, 1),对于 MCHW 的输入来说是 (1, 1, stride_h, stride_w)
- 第四个参数 padding 是补洞策略,可以选择 "SAME" 或者是 "VALID",区别之后会解释
- 后面几个参数暂时不用管它, 大家可以自己探索

```
# 将图片矩阵转化为 tensor,并适配卷积输入的要求
im = tf.constant(im.reshape((1, im.shape[0], im.shape[1], 1)), name='inpu
t')

# 定义一个边缘检测算子`sobel_kernel`, 并规范形状
sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype=
np.float32)
sobel_kernel = tf.constant(sobel_kernel, shape=(3, 3, 1, 1))
# 进行卷积
```

```
## padding='SAME' 的卷积
edge1 = tf.nn.conv2d(im, sobel_kernel, [1, 1, 1, 1], 'SAME', name='same_c
onv')

## padding='VALID' 的卷积
edge2 = tf.nn.conv2d(im, sobel_kernel, [1, 1, 1, 1], 'VALID', name='valid
_conv')
```

3、池化层

池化层是一个下采样的操作,用以快速地减小输入的大小同时不至于丢失重要的信息.现在一般都有两种池化层:

- max pooling(最大值池化层)
- average pooling(平均值池化层)

AlexNet

1、基本概念

特点:

- 更深的网络
- 数据增广
- ReLU
- dropout
- LRN

AlexNet用到训练技巧:

- 数据增广技巧来增加模型泛化能力。
- 用ReLU代替Sigmoid来加快SGD的收敛速度
- **Dropout**:Dropout原理类似于浅层学习算法的中集成算法,该方法通过让全连接层的神经元(该模型在前两个全连接层引入Dropout)以一定的概率失去活性(比如0.5)失活的神经元

不再参与前向和反向传播,相当于约有一半的神经元不再起作用。在测试的时候,让所有神经元的输出乘0.5。Dropout的引用,有效缓解了模型的过拟合。

2、代码示例

编写一个上层的卷积接口来调用

```
构造一个卷积层
Args:
   x: 输入
   ksize: 卷积核的大小, 一个长度为2的`list`, 例如[3, 3]
   output_depth: 卷积核的个数
   strides: 卷积核移动的步长,一个长度为2的`list`,例如[2,2]
   padding: 卷积核的补0策略
   act: 完成卷积后的激活函数, 默认是`tf.nn.relu`
   scope: 这一层的名称(可选)
   reuse: 是否复用
Return:
   out: 卷积层的结果
# 这里默认数据是NHWC输入的
in_depth = x.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=reuse):
   # 先构造卷积核
   shape = ksize + [in_depth, out_depth]
   with tf.variable_scope('kernel'):
       kernel = variable_weight(shape)
   strides = [1, strides[0], strides[1], 1]
   # 生成卷积
   conv = tf.nn.conv2d(x, kernel, strides, padding, name='conv')
   # 构造偏置
   with tf.variable_scope('bias'):
       bias = variable_bias([out_depth])
   # 和偏置相加
   preact = tf.nn.bias_add(conv, bias)
   # 添加激活层
   out = act(preact)
   return out
```

搭建AlexNet

```
def alexnet(inputs, reuse=None):
"""构建 Alexnet 的前向传播
Args:
```

```
inpus: 输入
        reuse: 是否需要重用
    Return:
       net: alexnet的结果
   with tf.variable_scope('AlexNet', reuse=reuse):
       net = conv(inputs, [5, 5], 64, [1, 1], padding='VALID', scope='co
nv1')
       net = max_pool(net, [3, 3], [2, 2], padding='VALID',
name='pool1')
       net = conv(net, [5, 5], 64, [1, 1], scope='conv2')
        net = max_pool(net, [3, 3], [2, 2], padding='VALID',
name='pool2')
       net = tf.reshape(net, [-1, 6*6*64])
       net = fc(net, 384, scope='fc3')
       net = fc(net, 192, scope='fc4')
       net = fc(net, 10, scope='fc5', act=tf.identity)
        return net
```

3、结果

AlexNet在训练集和测试集分别达到了0.97和0.72的准确率

```
[train]: step 0 loss = 2.3719 acc = 0.1094 (0.0101 / batch)
[val]: step 0 loss = 2.3539 acc = 0.1562
[train]: step 1000 loss = 1.2158 acc = 0.6250 (0.0299 / batch)
[train]: step 2000 loss = 1.1322 acc = 0.6719 (0.0300 / batch)
[train]: step 3000 loss = 0.6507 acc = 0.7969 (0.0300 / batch)
[train]: step 4000 loss = 0.3704 acc = 0.8750 (0.0299 / batch)
[val]: step 4000 loss = 0.9157 acc = 0.7188
[train]: step 5000 loss = 0.2648 acc = 0.9062 (0.0300 / batch)
[train]: step 6000 loss = 0.4816 acc = 0.8438 (0.0299 / batch)
[train]: step 7000 loss = 0.2262 acc = 0.9062 (0.0300 / batch)
[train]: step 8000 loss = 0.2691 acc = 0.9375 (0.0301 / batch)
[val]: step 8000 loss = 1.1058 acc = 0.7812
[train]: step 9000 loss = 0.3104 acc = 0.9219 (0.0300 / batch)
[train]: step 10000 loss = 0.4133 acc = 0.8594 (0.0300 / batch)
[train]: step 11000 loss = 0.0668 acc = 0.9688 (0.0299 / batch)
[train]: step 12000 loss = 0.0874 acc = 0.9844 (0.0299 / batch)
[val]: step 12000 loss = 1.3469 acc = 0.7656
[train]: step 13000 loss = 0.2461 acc = 0.9375 (0.0300 / batch)
[train]: step 14000 loss = 0.0157 acc = 1.0000 (0.0300 / batch)
[train]: step 15000 loss = 0.5685 acc = 0.9688 (0.0300 / batch)
[train]: step 16000 loss = 0.1240 acc = 0.9375 (0.0300 / batch)
[val]: step 16000 loss = 2.1229 acc = 0.7031
[train]: step 17000 loss = 0.2062 acc = 0.9219 (0.0300 / batch)
[train]: step 18000 loss = 0.0268 acc = 0.9844 (0.0301 / batch)
[train]: step 19000 loss = 0.0972 acc = 0.9844 (0.0284 / batch)
[train]: step 20000 loss = 0.0555 acc = 0.9844 (0.0306 / batch)
[val]: step 20000 loss = 1.1873 acc = 0.7031
                 -----Over all Result-
[TRAIN]: loss = 0.0892 acc = 0.9716
[VAL]: loss = 1.8936 acc = 0.7366
```

高层API-keras和TF-Slim的使用

1. keras

大部分时候人们都倾向于使用对tensorflow底层代码进行封装的**高层api**,比如 **keras,slim,tflearn,skflow**等等.在这里,我们来分别使用**keras和slim**这两个非常流行的高层api尝试构造AlexNet

构建Keras模型

Keras网络层

Keras为了方便用户搭建神经网络模型, 把很多常用的层, 比如Conv2d, MaxPooling2d, 封装起来, 使得输入更加简单明了.

Keras模型

Keras提供Sequential和Model两种模型的构建方法,使用他们搭建模型就像搭积木一样非常直观简单.

```
model.add(Conv2D(64, (5, 5), input_shape=(32, 32, 3)))
model.add(Activation('relu'))
```

```
model.add(MaxPooling2D([3, 3], 2))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D([3, 3], 2))
model.add(Flatten())
model.add(Dense(384, activation='relu'))
model.add(Dense(192, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

模型编译

模型构建完成之后,我们需要用compile来配置训练过程 model.compile()接受三个参数:

- optimizer: 优化方法, 有"sgd","rmsprop","adgrad"等这样的字符串, 也可以是 keras.Optimizers对象
- loss: 损失函数, 有categorical_crossentropy, mes等这样的字符串, 也可以是函数形式
- metrics: 评价函数, 如['accuracy'], 也支持自定义

```
sgd = optimizers.SGD(lr=0.01, momentum=0.9)
model.compile(optimizer=sgd, loss="categorical_crossentropy", metrics=['a
ccuracy'])
```

训练

```
model.fit(x=x_train, y=onehot_train, epochs=25, batch_size=64)
```

2, Slim

slim中的高级层

slim也对tensorflow的底层API进行了层的封装,像Keras一样,它也具有

- slim.conv2d
- · slim.max pool2d
- · slim.flatten
- · slim.fully_connected
- · slim.batch norm

arg_scope

在构建模型的时候会遇到很多相同的参数,比如说很多卷积层或者池化层的补零策略都是"VALID"或者"SAME",很多变量的初始化函数都是tf.truncated_normal_initializer或者tf.constant_initializer,如果全部手动写就会显得非常麻烦.这个时候,可以通过python的with语句和slim.arg_scope()构成一个参数域,在这个域下一次性定义好所有函数的一些默认参数,就会非常方便了

使用arg scope分为两个步骤:

- 定义你要对哪些函数使用默认参数
- 定义你要使用的默认参数的具体值

VGG

1、基本概念

VGG16相比AlexNet的一个改进是采用**连续的几个3x3的卷积核代替AlexNet中的较大卷积核** (11x11, 7x7, 5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。

vgg 的一个关键就是使用很**多层 3 x 3** 的卷积然后再使用一个**最大池化层**,这个模块被使用了很多次

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv. 256	3x3 conv, 256
3x3 conv. 256	3x3 conv, 256
Pool	Pool
3x3 conv., 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 canv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

2、代码实现

vgg是一个**不断堆叠的网络结构**,由**多个block**组成,我们先编写**单个block**:

```
def vgg_block(inputs, num_convs, out_depth, scope='vgg_block', reuse=Non e):

"""构建vgg_block.

一个 vgg_block 由`num_convs`个卷积层和一个最大值池化层构成.

Args:

inputs: 输入

num_convs: 这一个block里卷积层的个数

out_depth: 每一个卷积层的卷积核个数

scope: 变量域名

reuse: 是否复用

"""

in_depth = inputs.get_shape().as_list()[-1]

with tf.variable_scope(scope, reuse=reuse) as sc:

net = inputs

# 循环定义`num_convs`个卷积层

for i in range(num_convs):
```

```
net = conv(net, ksize=[3, 3], out_depth=out_depth, strides=
[1, 1], padding='SAME', scope='conv%d' % i, reuse=reuse)
net = max_pool(net, [2, 2], [2, 2], name='pool')
return net
```

然后把很多个不同的vgg_block堆叠在一起

```
def vgg_stack(inputs, num_convs, out_depths, scope='vgg_stack', reuse=Non
e):

"""构建vgg_stack.

一个 vgg_stack 将若干个不同的`vgg_block`进行`stack`(堆叠)
Args:

inputs: 输入

num_convs: 每一个block里卷积层的个数, 列表. 如`[1, 2, 3]`

out_depths: 每一个block的卷积核个数, 列表, 如`[64, 128, 256]`

scope: 变量域名

reuse: 是否复用

"""

with tf.variable_scope(scope, reuse=reuse) as sc:

net = inputs

for i, (n, d) in enumerate(zip(num_convs, out_depths)): #将对象中
对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

net = vgg_block(net, n, d, scope='block%d' % i)

return net
```

通过几个全连接层将vgg搭建完成

```
def vgg(inputs, num_convs, out_depths, num_outputs, scope='vgg', reuse=No
ne):
   """构建vgg.
   一个 vgg 先经过`vgg_stack`后再连接两个全连接层.
   Args:
       inputs: 输入
       num_convs: 每一个 vgg_block 的卷积层的个数
       out_depths: 每一个 vgg_block 卷积核个数
       num_outputs: 最后输出向量的维数
       scope: 变量域名
       reuse: 是否复用
   with tf.variable_scope(scope, reuse=reuse) as sc:
       net = vgg_stack(inputs, num_convs, out_depths)
       with tf.variable_scope('classification'):
           net = tf.reshape(net, (batch_size, -1))
           net = fc(net, 100, scope='fc1')
           net = fc(net, num_outputs, act=tf.identity, scope='classifica
tion')
       return net
```

3、结果

VGG 在训练集和测试集分别达到了 0.97 和 0.75 的准确率

```
[train]: step 3000 loss = 0.9806 acc = 0.6875 (0.0408 / batch)
[train]: step 4000 loss = 0.7159 acc = 0.7344 (0.0407 / batch)
[val]: step 4000 loss = 0.7271 acc = 0.8125
[train]: step 5000 loss = 0.3444 acc = 0.8750 (0.0409 / batch)
[train]: step 6000 loss = 0.6834 acc = 0.8281 (0.0408 / batch)
[train]: step 7000 loss = 0.1895 acc = 0.9375 (0.0409 / batch)
[train]: step 8000 loss = 0.3990 acc = 0.8594 (0.0411 / batch)
[val]: step 8000 loss = 0.7746 acc = 0.8125
[train]: step 9000 loss = 0.3234 acc = 0.8906 (0.0411 / batch)
[train]: step 10000 loss = 0.2788 acc = 0.9219 (0.0409 / batch)
[train]: step 11000 loss = 0.2191 acc = 0.9219 (0.0409 / batch)
[train]: step 12000 loss = 0.0847 acc = 0.9844 (0.0406 / batch)
[val]: step 12000 loss = 1.2664 acc = 0.7344
[train]: step 13000 loss = 0.1677 acc = 0.9531 (0.0410 / batch)
[train]: step 14000 loss = 0.0701 acc = 0.9688 (0.0410 / batch)
[train]: step 15000 loss = 0.1077 acc = 0.9688 (0.0412 / batch)
[train]: step 16000 loss = 0.3446 acc = 0.9375 (0.0410 / batch)
[val]: step 16000 loss = 1.3316 acc = 0.7031
[train]: step 17000 loss = 0.0582 acc = 0.9844 (0.0405 / batch)
[train]: step 18000 loss = 0.1029 acc = 0.9844 (0.0408 / batch)
[train]: step 19000 loss = 0.2331 acc = 0.9375 (0.0407 / batch)
[train]: step 20000 loss = 0.0586 acc = 0.9844 (0.0409 / batch)
[val]: step 20000 loss = 1.7949 acc = 0.7188
  ----Over all Result---
[TRAIN]: loss = 0.0524 acc = 0.9849
```

[VAL]: loss = 1.2592 acc = 0.7644

GoogleNet

1、基本概念

InceptionNet采用了一种非常有效的 inception 模块,得到了比 VGG 更深的网络结构,但是 却比 VGG 的参数更少,因为其去掉了后面的全连接层,所以参数大大减少,同时有了很高的计算 效率。

- 1.深度,层数更深,文章采用了22层,为了避免上述提到的梯度消失问题,googlenet巧妙的 在不同深度处增加了两个loss来保证梯度回传消失的现象。
- 2. 宽度,增加了多种核 1x1, 3x3, 5x5,还有直接max pooling的,但是如果简单的将这些 应用到feature map上的话, concat起来的feature map厚度将会很大, 所以在googlenet中为 了避免这一现象提出的inception具有如下结构,在3x3前,5x5前,max pooling后分别加上 了1x1的卷积核起到了降低feature map厚度的作用。

一个 inception 模块的四个并行线路如下:

- 1.一个 1 x 1 的卷积,一个**小的感受野进行卷积提取特征**
- 2.一个 1 x 1 的卷积加上一个 3 x 3 的卷积, 1 x 1 的卷积**降低输入的特征通道**,减少参数计算量,然后接一个 3 x 3 的卷积做一个**较大感受野的卷积**
- 3.一个1x1的卷积加上一个5x5的卷积,作用和第二个一样
- 4.一个3x3的最大池化加上1x1的卷积,最大池化**改变输入的特征排列**,1x1的卷积进 行特征提取

2、代码实现

构建一个inception模块

```
def inception(x, d0_1, d1_1, d1_3, d2_1, d2_5, d3_1, scope='inception', reuse=None):
    with tf.variable_scope(scope, reuse=reuse):
        # 我们把`slim.conv2d`,`slim.max_pool2d`的默认参数放在`slim`的参数域里
        with slim.arg_scope([slim.conv2d, slim.max_pool2d], stride=1, pad
ding='SAME'):
        # 第一个分支
        with tf.variable_scope('branch0'):
            branch_0 = slim.conv2d(x, d0_1, [1, 1], scope='conv_1x1')
        # 第二个分支
        with tf.variable_scope('branch1'):
            branch_1 = slim.conv2d(x, d1_1, [1, 1], scope='conv_1x1')
            branch_1 = slim.conv2d(branch_1, d1_3, [3, 3], scope='conv_3x3')

# 第三个分支
    with tf.variable_scope('branch2'):
        branch_2 = slim.conv2d(x, d2_1, [1, 1], scope='conv_1x1')
        branch_2 = slim.conv2d(branch_2, d2_1, [5, 5], scope='conv_5x5')
```

使用单个inception模块去构建整个googlenet

```
def googlenet(inputs, num_classes, reuse=None, is_training=None, verbose=
   with tf.variable_scope('googlenet', reuse=reuse):
       with slim.arg_scope([slim.batch_norm], is_training=is_training):
            with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_p
ool2d], padding='SAME', stride=1):
               net = inputs
               with tf.variable_scope('block1'):
                   net = slim.conv2d(net, 64, [5, 5], stride=2, scope='c
                    if verbose:
                        print('block1 output: {}'.format(net.shape))
               with tf.variable_scope('block2'):
                   net = slim.conv2d(net, 64, [1, 1], scope='conv_1x1')
                    net = slim.conv2d(net, 192, [3, 3], scope='conv_3x3')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='m
                   if verbose:
                        print('block2 output: {}'.format(net.shape))
               with tf.variable_scope('block3'):
                   net = inception(net, 64, 96, 128, 16, 32, 32, scope
                   net = inception(net, 128, 128, 192, 32, 96, 64, scope
                   net = slim.max_pool2d(net, [3, 3], stride=2, scope='m
                   if verbose:
                        print('block3 output: {}'.format(net.shape))
               with tf.variable_scope('block4'):
                   net = inception(net, 192, 96, 208, 16, 48, 64, scope
                   net = inception(net, 160, 112, 224, 24, 64, 64, scope
                   net = inception(net, 128, 128, 256, 24, 64, 64, scope
```

```
net = inception(net, 112, 144, 288, 24, 64, 64, scope
                   net = inception(net, 256, 160, 320, 32, 128, 128, sco
                   net = slim.max_pool2d(net, [3, 3], stride=2, scope='m
                    if verbose:
                        print('block4 output: {}'.format(net.shape))
                with tf.variable_scope('block5'):
                    net = inception(net, 256, 160, 320, 32, 128, 128, sco
                   net = inception(net, 384, 182, 384, 48, 128, 128, sco
                   net = slim.avg_pool2d(net, [2, 2], stride=2, scope='a
                    if verbose:
                        print('block5 output: {}'.format(net.shape))
                with tf.variable_scope('classification'):
                    net = slim.flatten(net)
                    net = slim.fully_connected(net, num_classes, activati
                    if verbose:
                        print('classification output: {}'.format(net.shap
e))
                return net
```

3、结果

```
[train]: step 3000 loss = 0.6100 acc = 0.7500 (0.1268 / batch)
[train]: step 4000 loss = 0.6768 acc = 0.8125 (0.1269 / batch)
[val]: step 4000 loss = 0.9132 acc = 0.6719
[train]: step 5000 loss = 0.6148 acc = 0.8125 (0.1271 / batch)
[train]: step 6000 loss = 1.0494 acc = 0.6875 (0.1270 / batch)
[train]: step 7000 loss = 0.3237 acc = 0.8750 (0.1273 / batch)
[train]: step 8000 loss = 0.3010 acc = 0.8438 (0.1273 / batch)
[val]: step 8000 loss = 1.1506 acc = 0.7344
[train]: step 9000 loss = 0.2065 acc = 0.9531 (0.1274 / batch)
[train]: step 10000 loss = 0.2854 acc = 0.9062 (0.1271 / batch)
[train]: step 11000 loss = 0.2809 acc = 0.9062 (0.1272 / batch)
[train]: step 12000 loss = 0.2762 acc = 0.9062 (0.1267 / batch)
[val]: step 12000 loss = 1.8881 acc = 0.6562
[train]: step 13000 loss = 0.2256 acc = 0.9062 (0.1271 / batch)
[train]: step 14000 loss = 0.0982 acc = 0.9531 (0.1271 / batch)
[train]: step 15000 loss = 0.1602 acc = 0.9375 (0.1270 / batch)
[train]: step 16000 loss = 0.2146 acc = 0.9844 (0.1267 / batch)
[val]: step 16000 loss = 1.1134 acc = 0.8281
[train]: step 17000 loss = 0.0645 acc = 0.9688 (0.1272 / batch)
[train]: step 18000 loss = 0.0383 acc = 0.9844 (0.1249 / batch)
[train]: step 19000 loss = 0.0116 acc = 1.0000 (0.1246 / batch)
[train]: step 20000 loss = 0.1224 acc = 0.9688 (0.1248 / batch)
[val]: step 20000 loss = 1.0764 acc = 0.8125
        -----Over all Result----
```

[TRAIN]: loss = 0.0342 acc = 0.9886 [VAL]: loss = 1.2499 acc = 0.7835

ResNet

1、基本概念

ResNet 有效地解决了深度神经网络难以训练的问题,可以训练高达 1000 层的卷积网络。网络之所以难以训练,是因为存在着**梯度消失的问题**,离 **loss 函数越远的层,在反向传播的时候,梯度越小,就越难以更新**,随着层数的增加,这个现象越严重。之前有两种常见的方案来解决这个问题:

- 1.按层训练,先训练比较浅的层,然后在不断增加层数,但是这种方法效果不是特别好,而且比较麻烦
- 2.使用更宽的层,或者增加输出通道,而不加深网络的层数,这种结构往往得到的效果又不好

这就普通的网络连接跟跨层残差连接的对比图,使用普通的连接,上层的梯度必须要一层一层传回来,而是用残差连接,相当于中间有了一条更短的路,梯度能够**从这条更短的路传回来,避免了梯度过小**的情况。

假设某层的输入是 x,期望输出是 H(x), 如果我们直接把输入 x 传到输出作为初始结果,这就是一个更浅层的网络,更容易训练,而这个网络没有学会的部分,我们可以使用更深的网络 F(x) 去训练它,使得训练更加容易,最后希望拟合的结果就是 F(x) = H(x) - x,这就是一个残差的结构

2、代码实现

定义一个下采样函数

```
def subsample(x, factor, scope=None):
    if factor == 1:
        return x
    return slim.max_pool2d(x, [1, 1], factor, scope=scope)
```

构建resnet整体结构

```
net = slim.max_pool2d(net, [3, 3], 2, scope='max_poo
1')
                    net = residual_block(net, 32, 128, scope='residual_bl
ock1')
                    net = residual_block(net, 32, 128, scope='residual_bl
ock2')
                    if verbose:
                        print('block2: {}'.format(net.shape))
                with tf.variable_scope('block3'):
                    net = residual_block(net, 64, 256, stride=2, scope='r
esidual_block1')
                    net = residual_block(net, 64, 256, scope='residual_bl
ock2')
                    if verbose:
                        print('block3: {}'.format(net.shape))
                with tf.variable_scope('block4'):
                    net = residual_block(net, 128, 512, stride=2,
scope='residual_block1')
                    net = residual_block(net, 128, 512, scope='residual_b
lock2')
                    if verbose:
                        print('block4: {}'.format(net.shape))
                with tf.variable_scope('classification'):
                    net = tf.reduce_mean(net, [1, 2], name='global_pool',
 keep_dims=True)
                    net = slim.flatten(net, scope='flatten')
                    net = slim.fully_connected(net, num_classes, activati
on_fn=None, normalizer_fn=None, scope='logit')
                    if verbose:
                        print('classification: {}'.format(net.shape))
                return net
```

residual_block

```
def residual_block(x, bottleneck_depth, out_depth, stride=1, scope='resid ual_block'):
    in_depth = x.get_shape().as_list()[-1]
    with tf.variable_scope(scope):
        # 如果通道数没有改变,用下采样改变输入的大小
        if in_depth == out_depth:
            shortcut = subsample(x, stride, 'shortcut')
        # 如果有变化,用卷积改变输入的通道以及大小
        else:
            shortcut = slim.conv2d(x, out_depth, [1, 1], stride=stride, a
        ctivation_fn=None, scope='shortcut')
            residual = slim.conv2d(x, bottleneck_depth, [1, 1], stride=1, sco
        pe='conv1')
            residual = slim.conv2d(residual, bottleneck_depth, 3, stride, sco
        pe='conv2')
            residual = slim.conv2d(residual, out_depth, [1, 1], stride=1, act
        ivation_fn=None, scope='conv3')
```

3、结果

```
[val]: step 4000 loss = 1.2665 acc = 0.5938
[train]: step 5000 loss = 0.4954 acc = 0.8281 (0.1228 / batch)
[train]: step 6000 loss = 0.8432 acc = 0.7188 (0.1227 / batch)
[train]: step 7000 loss = 0.4143 acc = 0.8438 (0.1227 / batch)
[train]: step 8000 loss = 0.4730 acc = 0.8438 (0.1227 / batch)
[val]: step 8000 loss = 0.9876 acc = 0.7188
[train]: step 9000 loss = 0.2425 acc = 0.8906 (0.1226 / batch)
[train]: step 10000 loss = 0.2268 acc = 0.9375 (0.1225 / batch)
[train]: step 11000 loss = 0.6189 acc = 0.8125 (0.1226 / batch)
[train]: step 12000 loss = 0.3678 acc = 0.8750 (0.1224 / batch)
[val]: step 12000 loss = 1.9084 acc = 0.6719
[train]: step 13000 loss = 0.4811 acc = 0.8281 (0.1227 / batch)
[train]: step 14000 loss = 0.1818 acc = 0.9375 (0.1226 / batch)
[train]: step 15000 loss = 0.0622 acc = 0.9844 (0.1229 / batch)
[train]: step 16000 loss = 0.0944 acc = 0.9531 (0.1229 / batch)
[val]: step 16000 loss = 1.0909 acc = 0.8125
[train]: step 17000 loss = 0.0499 acc = 0.9844 (0.1235 / batch)
[train]: step 18000 loss = 0.3842 acc = 0.9219 (0.1234 / batch)
[train]: step 19000 loss = 0.0652 acc = 0.9688 (0.1231 / batch)
[train]: step 20000 loss = 0.1152 acc = 0.9688 (0.1235 / batch)
[val]: step 20000 loss = 2.2715 acc = 0.6094
                ----Over all Result--
[TRAIN]: loss = 0.1439 acc = 0.9498
[VAL]: loss = 1.5657 acc = 0.7276
```

DenseNet

1、基本概念

DenseNet 主要由 dense block 构成,先列下DenseNet的几个优点,感受下它的强大:

- 1、减轻了vanishing-gradient (梯度消失)
- 2、加强了feature的传递
- 3、更有效地利用了feature
- 4、一定程度上较少了参数数量

第一张图是 ResNet,第二张图是 DenseNet,因为是在通道维度进行特征的拼接,所以**底层的输出会保留进入所有后面的层**,这能够更好的保证梯度的传播,同时能够**使用低维的特征和高维的特征进行联合训练**,能够得到更好的结果。

Bottleneck layer

每个dense block的3*3卷积前面都包含了一个1*1的卷积操作,目的是减少输入的feature map数量,既能降维减少计算量,又能融合各个通道的特征,何乐而不为。

Translation layer

在每**两个dense block**之间又增加了**1*1的卷积操作**。该层的1*1卷积的输出channel默认是输入channel到一半,为了**进一步压缩参数**.

2、代码实现

residual_block

```
def bn_relu_conv(x, out_depth, scope='dense_basic_conv', reuse=None):
    # 基本卷积单元是: bn->relu-conv
    with tf.variable_scope(scope, reuse=reuse):
        net = slim.batch_norm(x, activation_fn=None, scope='bn')
        net = tf.nn.relu(net, name='activation')
```

```
net = slim.conv2d(net, out_depth, 3, activation_fn=None, normaliz
er_fn=None, biases_initializer=None, scope='conv')
return net
```

构建densenet的基本单元

```
def dense_block(x, growth_rate, num_layers, scope='dense_block', reuse=No
ne):
    in_depth = x.get_shape().as_list()[-1]
    with tf.variable_scope(scope, reuse=reuse):
        net = x
        for i in range(num_layers):
            out = bn_relu_conv(net, growth_rate, scope='block%d' % i)
            # 将前面所有的输出连接到一起作为下一个基本卷积单元的输入
            net = tf.concat([net, out], axis=-1)
        return net
```

构建transition层

```
def transition(x, out_depth, scope='transition', reuse=None):
    in_depth = x.get_shape().as_list()[-1]
    with tf.variable_scope(scope, reuse=reuse):
        net = slim.batch_norm(x, activation_fn=None, scope='bn')
        net = tf.nn.relu(net, name='activation')
        net = slim.conv2d(net, out_depth, 1, activation_fn=None, normaliz
er_fn=None, biases_initializer=None, scope='conv')
        net = slim.avg_pool2d(net, 2, 2, scope='avg_pool')
        return net
```

3、结果

```
[train]: step 9000 loss = 0.0447 acc = 1.0000 (0.2206 / batch)
[train]: step 10000 loss = 0.0236 acc = 1.0000 (0.2205 / batch)
[train]: step 11000 loss = 0.0906 acc = 0.9531 (0.2207 / batch)
[train]: step 12000 loss = 0.0107 acc = 1.0000 (0.2208 / batch)
[val]: step 12000 loss = 1.3204 acc = 0.7500
[train]: step 13000 loss = 0.0167 acc = 1.0000 (0.2206 / batch)
[train]: step | 14000 | 1000 = 0.0025 acc = 1.0000 (0.2208 / batch) | 世紀(Alt + A) = 0.0003 acc = 1.0000 (0.2207 / batch)
[train]: step 16000 loss = 0.0041 acc = 1.0000 (0.2207 / batch)
[val]: step 16000 loss = 0.9162 acc = 0.8594
[train]: step 17000 loss = 0.0005 acc = 1.0000 (0.2207 / batch)
[train]: step 18000 loss = 0.0001 acc = 1.0000 (0.2206 / batch)
[train]: step 19000 loss = 0.0000 acc = 1.0000 (0.2207 / batch)
[train]: step 20000 loss = 0.0001 acc = 1.0000 (0.2206 / batch)
[val]: step 20000 loss = 0.7763 acc = 0.8750
                      ---Over all Result-
[TRAIN]: loss = 0.0000 acc = 1.0000
[VAL]: loss = 0.7788 acc = 0.8498
```

训练技巧

1、数据增强

常用的数据增强方法如下:

- 1.对图片进行一定比例缩放
- 2.对图片进行随机位置的截取
- 3.对图片进行随机的水平和竖直翻转
- 4.对图片进行随机角度的旋转
- 5.对图片进行亮度、对比度和颜色的随机变化

原图

比例缩放

tensorflow内置函数**tf.image.resize_images**可以处理图片的放缩.

- 第一个参数是输入图片,
- 第二个参数是目标大小, 格式是[height, width].
- 第三个参数是resize时使用的方法,默认是双先行插值,可以在tf.image.ResizeMethod中选择

resized_im = tf.image.resize_images(im, [100,200],method=tf.image.ResizeMethod.BILINEAR)

截取

随机位置截取能够提取出图片中局部的信息,使得网络接受的输入具有多尺度的特征,所以能够有较好的效果.

我们用tf.random_crop来实现.

- 第一个参数是输入图片,
- 第二个参数是截取区域的大小, 格式是[height, width, channel],
- 第三个参数是随机种子.

还可以用tf.image.central_crop来实现中心区域裁剪.

- 第一个参数是输入图片,
- 第二个参数是截取区域占原图比例, 也就是说默认是长宽同比例裁剪的

random_cropped_im2 = tf.random_crop(im, [150, 100, 3])

central_cropped_im = tf.image.central_crop(im, 1. / 3)

随机的水平和竖直方向翻转

对于上面这一张猫的图片,如果我们将它翻转一下,它仍然是一张猫,但是图片就有了更多的多样性,所以随机翻转也是一种非常有效的手段。在tensorflow中,随机翻转使用的是

tf.image.random_flip_up_and_down tf.image.random_flip_left_and_right

亮度、对比度和颜色的变化

除了形状变化外,颜色变化又是另外一种增强方式,其中可以设置亮度变化,对比度变化和颜色变化等,在 tensorflow 中主要使用

- tf.image.random_brightness
- tf.image.random_contrast
- tf.image.random_hue

把所有的图像增强操作放在一起

```
def train_aug(im, scope='train_aug'):
    with tf.variable_scope(scope):
        im = tf.image.resize_images(im, [120, 120])
        im = tf.image.random_flip_left_right(im)
        im = tf.random_crop(im, [96, 96, 3])
        im = tf.image.random_brightness(im, max_delta=0.5)
        im = tf.image.random_contrast(im, lower=0.0, upper=0.5)
        im = tf.image.random_hue(im, max_delta=0.5)
```

```
im = tf.image.per_image_standardization(im)
    return im

def test_aug(im, scope='test_aug'):
    with tf.variable_scope(scope):
        im = tf.image.resize_images(im, [96, 96])
        im = tf.image.per_image_standardization(im)
        return im
```

这里需要对一个batch中所有图片进行增强,我们需要用到tf.map_fn函数,这个函数和python的map函数功能非常类似,都能够对一个类似列表的数据结构进行函数操作,而且比较快

```
train_imgs_aug = tf.map_fn(lambda image: train_aug(image), train_imgs)
val_imgs_aug = tf.map_fn(lambda image: test_aug(image), val_imgs)
```

结果

对于训练集,不做数据增强跑 10000 次,准确率已经到了 82%,而使用了数据增强,跑 10次准确率只有 68%,说明数据增强之后变得更难了。

而对于测试集,使用数据增强进行训练的时候,准确率会比不使用更高,因为数据增强**提高了模型应对于更多的不同数据集的泛化能力**,所以有更好的效果。

2、学习率衰减

对于基于一阶梯度进行优化的方法而言,开始的时候更新的幅度是比较大的,也就是说开始的学习率可以设置大一点,但是当**训练集的 loss 下降到一定程度之后,,使用这个太大的学习率就会导致 loss 一直来回震荡**,比如

在tensorflow中学习率衰减非常方便,使用 tf.train.exponential_decay, 但是它只支持指数 式衰减和固定步长衰减

在这里, 我们用函数设计一个下降策略:

- 当训练步数小于12000时,输出0.01
- 大于12000时输出0.001

```
def lr_step(step, **kwargs):
    lr = tf.cond(tf.less(step, 12000), lambda: 0.1, lambda: 0.01)
    return lr
```

在这里我们用一个占位符来表示学习率,方便在训练过程中我们从外部修改它

```
train_step = tf.Variable(0, trainable=False, name='train_step')
lr = lr_step(train_step)
opt = tf.train.MomentumOptimizer(lr, momentum=0.9)
```

3, dropout

除了数据增强之外,改善过拟合的办法还有 dropout。

dropout 原理:在训练的时候以概率 p 保留每个神经元,也就是说在训练的时候,每次都会有神经元被随机设置为 0,如下图

左边是标准的神经网络,稠密连接,而右边就是使用了 dropout 的稀疏连接。我们可以看到每次训练的时候就会有某些神经元没有参与训练,所以在每个 batch 进行训练的时候模型都会有微小的区别,比如

使用 dropout 之前的输入是 x,那么使用完 dropout 之后输出的期望就是 px+(1-p)0=px,也就是说 $x\to px$ 。为了保证结果相同,非常简单,对输出做一下缩放,乘上 $\frac{1}{p}$ 就可以了。

tensorflow 中使用 dropout 的方法非常简答,使用 tf.nn.dropuout 就行了,第一个参数是输入,第二个参数 keep_prob 表示保留的概率。对于 dropout 在训练和测试时候的表现不同,只需要将预测时的 dropout 改成 1.0 即可.

4、正则化

正则化是机器学习中提出来的一种方法,有 L1 和 L2 正则化,目前使用较多的是 L2 正则化,引入正则化相当于在 **loss 函数上面加上一项**,比如

$$f = loss + \lambda \sum_{p \in params} ||p||_2^2$$

就是在 loss 的基础上加上了参数的二范数作为一个正则化,我们在训练网络的时候,不仅要最小化 loss 函数,同时还要最小化参数的二范数,也就是说**我们会对参数做一些限制,不让它变得太大。**

如果我们对新的损失函数 f 求导进行梯度下降, 就有

$$\frac{\partial f}{\partial p_i} = \frac{\partial loss}{\partial p_i} + 2\lambda p_j$$

那么在更新参数的时候就有

$$p_j \rightarrow p_j - \eta (\frac{\partial loss}{\partial p_i} + 2\lambda p_j) = p_j - \eta \frac{\partial loss}{\partial p_i} - 2\eta \lambda p_j$$

可以看到 $p_j - \eta \frac{\partial loss}{\partial p_j}$ 和没加正则项要更新的部分一样,而后面的 $2\eta\lambda p_j$ 就是正则项的影响,可以看到加完正则项之后会对参数做更大程度的更新,这也被称为**权重衰减(weight decay)**,在 tf-slim 中正则项可以通过 slim.arg_scope 和 slim.regularizers 来实现,因为卷积层,全连接层都具有参数 weight_regularzier,因此我们使用 slim.arg_scope([slim.conv2d, slim.fully_connected],weight_regularizers.l2_regularizer(weight_decay=0.0001)) 就可以实现所有卷积层的权重 l2 模衰减

注意正则项的系数的大小非常重要,如果**太大**,会**极大的抑制参数的更新**,导致欠拟合,如果**太小**,那么正则项这个部分**基本没有贡献**,所以选择一个合适的权重衰减系数非常重要,这个需要根据具体的情况去尝试,初步尝试可以使用 1e-4 或者 1e-3

给所有的slim.conv2d和slim.fully_connected添加默认权重衰减, 用slim.arg_scope统一 定义

5、批量标准化

数据预处理

目前数据预处理最常见的方法就是**中心化和标准化**,中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征。标准化也非常简单,在数据变成 0 均值之后,为了使得不同的特征维度有着相同的规模,可以除以标准差近似为一个标准正态分布,也可以依据最大值和最小值将其转化为 -1~1之间,下面是一个简单的图示

Batch Normalization

前面在数据预处理的时候,我们尽量输入特征不相关且满足一个标准的正态分布,这样模型的表现一般也较好。但是对于很深的网路结构,网路的非线性层会使得输出的结果**变得相关**,且不

再满足一个**标准的 N(0,1) 的分布**,甚至输出的中心已经发生了偏移,这对于模型的训练,特别是深层的模型训练非常的困难。

批标准化,简而言之,就是**对于每一层网络的输出,对其做一个归一化,使其服从标准的正态分布**,这样后一层网络的输入也是一个标准的正态分布,所以能够比较好的进行训练,加快收敛速度。

batch normalization 的实现非常简单,对于给定的一个 batch 的数据 $B=\{x_1,x_2,\cdots,x_m\}$ 算法的公式如下

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i$$

$$\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$y_i = \gamma \hat{x}_i + \beta$$

第一行和第二行是计算出一个 batch 中数据的**均值和方差**,接着使用第三个公式对 batch 中的每个数据点做**标准化**, ϵ 是为了计算稳定引入的一个小的常数,通常取 10^{-5} ,最后利用权重修正得到最后的输出结果,非常的简单

代码实现

使用批标准化在训练的时候能够很快地收敛

tensorflow.contrib 中内置了批标准化的函数 tf.contrib.layers.batch_norm, tf-slim 下有 slim.batch_norm, 它们的函数接口也非常简单.

同时,卷积层 slim.conv2d 具有输出标准化函数的参数 normalizer_fn=None, 默认是没有, 我们可以用 slim.arg_scope 来给每个卷积层附加一个批标准化函数.

```
def conv_bn_net(inputs, is_training, scope='conv_bn_net', reuse=None):
    with tf.variable_scope(scope, reuse=reuse):
        with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer
_fn=slim.batch_norm):
        with slim.arg_scope([slim.batch_norm], is_training=is_trainin
g):
        net = slim.conv2d(inputs, 6, 3, scope='conv1')
        net = tf.nn.relu(net, name='activation1')
        net = slim.max_pool2d(net, 2, stride=2, scope='max_pool
1')
        net = slim.conv2d(net, 16, 5, scope='conv2')
        net = tf.nn.relu(net, name='activation2')
        net = slim.max_pool2d(net, 2, stride=2, scope='max_pool
2')
        net = slim.flatten(net, scope='flatten')
```

net = slim.fully_connected(net, 10, activation_fn=None, s
cope='classification')
 return net

反馈与建议

微博: @柏林designer 邮箱: wwj123@zju.edu.cn