18MAB101T- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

MCQ FROM DRIVE LINK

https://drive.google.com/drive/folders/1Xff0Se6DZ60Fwx60G0Y0D2G4y3dvHoOB?usp=s haring

ALL MATERIALS ARE AVAILABEL HERE

UNITWISE IMPORTANT TOPICS

UNIT-1-PARTIAL DIFFERENTIAL EQUATIONS

Compulsory Topics: Lagrange, Clairaut's form, Second order PDE

	LAGRANGE'S MULTIPLIER METHOD (Most Important)	
1.	$x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2).$	
2.	Solve $(mz - ny) p + (nx - lz) q = ly - mx$	
3.	x(y-z)p+y(z-x)q=z(x-y).	
	CLAIRAUT'S FORM(Most Important)	
4.	$z = px + qy + \sqrt{1 + p^2 + q^2}$	
5.	Find the singular solution of $z = px + qy + p^2 + q^2$.	
6.	Solve: $z = px + qy + p^2 + pq + q^2$	
7.	Find the singular solution of $z = px + qy + p^2q^2$.	
	HOMOGENEOUS DIFFERENTIAL EQUATIONS.(Most Important)	
8.	$(D^2 - 2DD' + D^{12})z = \cos(x - 3y)$	
9.	$(D^2 - DD^{1/2})z = e^{x+2y}.$	
10.	Solve $(D^3 - 2D^2D')z = \sin(x+2y) + 3x^2y$.	
11.	Solve $(D^2 - 2DD')z = x^3y + e^{2x}$.	

12.	Solve $(D^3 - 2D^2D')z = \sin(x + 2y) + 3x^2y$
13.	Solve (i) $\left(D^2 + DD' - 6D'^2\right)z = x^2y + e^{3x+y}$ (ii) $z^2(p^2 + q^2) = x^2 + y^2$.
l	FORM PARTIAL DIFFERENTIAL EQUATIONS
14.	Form the PDE by eliminating the arbitrary constants 'ā' and 'b' from $z = (x^2 + a)(y^2 + b)$.
15.	Form the partial differential equation by eliminating arbitrary constants 'a' and 'b' from $log(az-1) = x+ay+b$.
16.	Form the partial differential equation by eliminating the arbitrary function from the relation $\phi(x^2+y^2+z^2, lx+my+nz)=0$.
17.	Find the partial differential equation of all planes cutting equal intercepts form the x and y axes.
18.	From the Partial Differential Equation by eliminating the arbitrary functions f_t , $z = f(x+ct) + \phi(x-ct)$.
19.	Form the Partial Differential Equation, by eliminating arbitrary constants from $(x-a)^2 + (y-b)^2 + z^2 = r^2$, where a and b are arbitrary constants.

UNIT-2-FOURIER SERIES

Compulsory Topic: Harmonic Analysis

1.	Find the Fourier series of $f(x) = x + x^2 \ln(-\pi, \pi)$ of periodicity 2π . Hence deduce $\sum \frac{1}{n^2} = \frac{\pi^2}{6}$.
2.	Find the Fourier series expansion of period 2 for the function $f(x) = \begin{cases} \pi x & \text{in } 0 \le x \le 1 \\ \pi (2 - x) & \text{in } 1 \le x \le 2 \end{cases}$
3.	Expand $f(x) = x(2l-x)$ in $(0,2l)$ as a Fourier series of period 21. Hence deduce the sum $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$
4.	Expand $f(x) = x(2\pi - x)$ as Fourier series in $(0, 2\pi)$ and hence deduce that the sum of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$
5.	Find the Fourier series of $f(x) = (\pi - x)^2$ in $(0, 2\pi)$ of periodicity 2π .
6.	Obtain the Fourier series of periodicity 3 for $f(x) = 2x - x^2$ in $0 < x < 3$.
7.	Find the Fourier series of x^2 in $-\pi < x < \pi$. Hence deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + = \frac{\pi^4}{90}.$
8.	Obtain the Fourier series to represent the function $f(x) = x $, $-\pi < x < \pi$ and deduce $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.
9.	Obtain the Fourier series for the function $f(x)$ given by $f(x) = \begin{cases} 1-x, & -\pi < x < 0 \\ 1+x, & 0 < x < \pi \end{cases}$. Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + = \frac{\pi^2}{8}$.

10.	1. Find the half-range cosine series for $f(x) = x \ln(0,\pi)$. Hence deduce the value of $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
	2. Find the half range cosine series of the function $f(x) = x(\pi - x)$ in the interval
	$0 < x < \pi$. Hence deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + = \frac{\pi^4}{90}$.
	3. Find the half-range Fourier cosine series of $f(x) = (\pi - x)^2$ in the interval $(0,\pi)$.
	Hence find the sum of the series $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \infty$.
11.	Find the half-range sine series of $f(x) = 4x - x^2$ in the interval $(0,4)$. Hence deduce
	the value of the series $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \infty$.
	HARMONIC ANALYSIS (Most Important)
12.	Compute the first two harmonics of the fourier series $f(x)$ given by the following table.
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
10	
13.	The values of x and the corresponding values of f(x) over a period T are given below. Show that $f(x) = 0.75 + 0.37\cos\theta + 1.004\sin\theta$ where $\theta = \frac{2\pi x}{T}$.
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	f(x) 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98
14.	Determine the first three harmonics of the Fourier series for the following data:
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	y 1.96 1.3 1.05 1.3 -0.88 -0.25
1.5	0.00 -0.25
15.	Find the Fourier series upto second harmonic for the following data.
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	f(x) 1.0 1.4 1.9 1.7 1.05 1.2
16.	Find the Fourier series as far as the second harmonic to represent the function $f(x)$
	with the period 6, given in the following table.
	x 0 1 2 3 4 5
	f(x) 9 18 24 28 26 20

UNIT-3 -APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Compulsory Topics: One dimensional wave or one dimensional Heat

ONE DIMENSIONAL WAVE EQUATION (Most Important)

A tightly stretched string with fixed end point x = 0 and x = l is initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity 3x(l-x). Find the displacement.

2.	1. A string is stretched and fastened to points at a distance ℓ apart. Motion is started by
	displacing the string in the form $y = a \sin\left(\frac{\pi x}{\ell}\right)$, $0 < x < \ell$, from which it is released
	at time $t=0$. Find the displacement at any time t .
	2. A tightly stretched string with fixed end points $x = 0$ and $x = \ell$ is initially in a position
	given by $y(x,0) = y_0 \sin^3\left(\frac{\pi x}{\ell}\right)$. It is released from rest from this position. Find the
	expression for the displacement at any time $ t . $
	3. A uniform string is stretched and fastened to two points ' ℓ ' apart. Motion is started by
	displacing the string into the form of the curve $y = kx(\ell - x)$ and then released from
	this position at time $t=0$. Derive the expression for the displacement of any point of the string at a distance X from one end at time t .
3.	A tightly stretched string between the fixed end points $x = 0$ and $x = \ell$ is initially at rest in its equilibrium position. If each of its points is given a velocity $kx(\ell - x)$, find
	the displacement $y(x, t)$ of the string.
	ONE DIMENSIONAL HEAT EQUATIONS(Most Important)
4.	A rod of length l has its ends A and B kept at 0°C and 100°C respectively unit steady state conditions prevail. If the temperature at B is reduced suddenly to 0°C and kept so, while that of A is maintained. Find the temperature $u(x, t)$.
5.	A rod, 30 cm long has its ends A and B kept at 20°C and 80°C respectively, until steady
	state conditions prevail. The temperature at each end is then suddenly reduced to 0°C
	and kept so. Find the resulting temperature function is a regular function $u(x,t)$ taking
	X = 0 at A.

UNIT -4 FOURIER TRANSFORMS

Compulsory Topics: 1-|x|, $1-x^2$, $a-x^2$, evaluation by using convolution and parsevals

	(MOST IMPORTANT)	
1.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x & \text{if } x < 1 \\ 0 & \text{if } x \ge 1 \end{cases}$ and hence find the value of i)	
	$\int_0^\infty \frac{\sin^2 t}{t^2} dt \text{ii}) \int_0^\infty \frac{\sin^4 t}{t^4} dt.$	
2.	Find the Fourier transform of $f(x)$ given by $f(x) = \begin{cases} 1 & \text{for } x < a \\ 0 & \text{for } x > a > 0 \end{cases}$ and using	
	Parseval's identity prove that $\int_{0}^{\infty} \left(\frac{\sin t}{t} \right)^{2} dt = \frac{\pi}{2}.$	

3.	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & if x < 1 \\ 0 & if x > 1 \end{cases}$. Hence evaluate
	$\int_0^\infty \left(\frac{x\cos x - \sin x}{x^3}\right) \cos \frac{x}{2} \ dx.$
4.	Show that the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, & x \le a \\ 0, & x > a > 0 \end{cases}$ is
	$2\sqrt{\frac{2}{\pi}}\left(\frac{\sin as - as\cos as}{s^3}\right)$. Hence deduce that $\int_0^\infty \frac{\sin t - t\cos t}{t^3} dt = \frac{\pi}{4}$. Using
	Perserval's identity show that $\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^{3}} \right)^{2} dt = \frac{\pi}{15}.$
5.	Evaluate $\int_{0}^{\infty} \frac{dx}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ using Fourier transforms.
	Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$ using Fourier cosine transforms
6.	Use transform method to evaluate $\int_{0}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx.$

UNIT-5 Z-TRANSFORMS

Compulsory Topics: Solve difference equation, convolution, residue method, partial fraction, formula derivation

	(MOST IMPORTANT QUESTIONS)	
1	Find $Z(a^n)$ and $Z(n^2)$.	
2	Using residues find the inverse Z-transform of $\frac{z}{(z-1)(z-2)}$.	
3	Solve $y_{n+2} + 4y_{n+1} + 3y_n = 2^n$ with $y_0 = 0$ and $y_1 = 1$, using Z-transform.	
4	Solve: $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ given that $u_0 = 0, u_1 = 1$.	
5	Solve $u_{n+2}-3u_{n+1}+2u_n=4^n$, given that $u_0=0,u_1=1$.	

6	Find $Z\left(\frac{1}{n}\right)$.
	Find $Z\left(\frac{1}{n}\right)$. Find $Z^{-1}\left\{\frac{2z^2+4z}{(z-2)^3}\right\}$ by using residue theorem.
	Solve the equation $x_{n+2} - 5x_{n+1} + 6x_n = 36$, given that $x_0 = x_1 = 0$, using Z transform.
7	Find the Z – transform of $\frac{1}{n(n+1)}$, for $n \ge 1$.
	Find the Z-transform of $\frac{2n+3}{(n+1)(n+2)}$.
	Find $Z(\cos n heta)$ and $Z(\sin n heta)$.
8	Find the inverse Z – transform of $\frac{10z}{z^2-3z+2}$.
	Find the inverse Z -transform of $\dfrac{4z^2-2z}{(z-1)(z-2)^2}$ by method of partial fraction.
	Find the inverse Z -transform of $\frac{z^3}{(z-1)^2(z-2)}$ by method of partial fraction.
9	Using convolution theorem, find $Z^{-1} \left[\frac{z^2}{(z-a)(z-b)} \right]$.
10	Using Convolution theorem, find the inverse Z – transform of $\frac{8z^2}{(2z-1)(4z-1)}$.

MCQ FROM DRIVE LINK

https://drive.google.com/drive/folders/1Xff0Se6DZ60Fwx60G0Y0D2G4y3dvHoOB?usp=s haring

ALL MATERIALS ARE AVAILABEL HERE