Topic: Exploratory Data Analysis (EDA)

Presentation of Bivariate Data

Part A: Two categorical variables

School of Mathematics and Applied Statistics

1/9

Bivariate data: Two Variables

Different tables / plots for different data types . . .

For two qualitative variables:

- two-way tables
- stacked bar graphs
- clustered bar graphs

For one quantitative and one qualitative variable:

- side-by-side box plots
- back-to-back stem & leaf plots

For two quantitative variable/s:

- scatterplots
- line plots (against time)

Exploratory Data Analysis Presentation of Bivariate Data 2 / 9

A two-way table or contingency table summarises bivariate data of two categorical variables.

Example: Titanic data

Survived	1 st Class	2 nd Class	3 rd Class	Crew	Total
No	122	167	528	673/	1490
Yes	203	118	178	212	711
Total	325	285	706	885	2201

Is there any association between the two variables?

Is the proportion of *Survived* the same for *Class of passenger*?

Contingency Table - Conditional probability

Example: Titanic: Observed data

Survived	1 st Class	2 nd Class	3 rd Class	Crew	Total
No	(122)	167	528	673	(1490)
Yes	203	118	178	212	(711)
Total	325	285	706	885	2201

$$f(1s+10) = \frac{122}{1490} = 0.082$$

Exercise: Determine the row percentages:

			3 rd Class		Total
No	122/1490=	167/1490=	528/1490 =	673/1490=	100%
,			354%		•
Yes	203/711 =	118/711=	178/711=	212/711 =	100%
	28.6%	16.6%	25-0%	29 . 8%.	

Exploratory Data Analysis

Presentation of Bivariate Data Two Qualitative Variables Two-way table Conditional probability Mosaic Plot Stacked Bar Graphs

Mosaic Plot

This mosaic plot displays counts of two-way table, as areas proportional to frequencies within a row.

Titanic Data

Exploratory Data Analysis Presentation of Bivariate Data 5 / 9

Example of a stacked bar chart

Stacked bar graphs are often used to represent parts of a whole.

Conditional probability - another look

Example: Phone carriers and Gender

	Optus	Telstra	Vodafone	Total
Female	(19)	9	4	32
Male	36	17	20	73
Total	55	26	24	105
	Male	Female 19 Male 36	Female 19 9 Male 36 17	Female 19 9 4 Male 36 17 20

Q1: Given a female, what is the probability that they

- Use Optus? P(0, 1 F) = 19/32 = 0.594
- Use Telstra? f(T IF) = 9/32 = 0.281
- Use Vodafone? $f(y|F) = \frac{1}{2}$

Q2: Write down

- P(Optus|Male)= 36/73= 0.443
- P(Telstra|Male)= (7/73 = 0.233
- P(Vodafone|Male) = 2 > /73 = 0.274

Q3: Is the pattern of usage the same for males and females?

Exploratory Data Analysis 7/9 Presentation of Bivariate Data

Stacked Bar Charts & Independence

The proportion of Males using Vodafone is than that for females. (27).)

For Optus, it is less than that for females.. 55%

Is this just the sample or is it a pattern evident in the population?

Stacked Bar Charts & Independence

When the pattern of use by males and females is the same then we have independence in the population

When we use a sample to infer something about the population then similar patterns imply independence.

BUT

How similar is similar?

Bar Charts can be: ... clustered

For two qualitative variables:

Year 3 Reading

Source: Lantites - Sample Questions p15, ACER

This graph shows the percentage of Year 3 students in six achievement bands for reading, for a selected school. It also shows comparable percentages for statistically similar schools and for all Australian schools.

Exploratory Data Analysis Presentation of Bivariate Data 10 / 11