Příklad 1: Mějme úplný graf G na N vrcholech očíslovaných $1, \ldots, N$ s hranami obarvenými dvěma barvami, rozhodněte existenci kterých následujících struktur lze odvodit ze základních Ramseyových vět, pro dostatečně velká N.

- Jednobrevný K_k obsahující daný vrchol x
- \bullet Pro G se smyčkami jednobarevný K_n včetně smyček

Příklad 2: Mějme graf G na N vrcholech, rozhodněte existenci kterých následujících struktur lze odvodit ze základních Ramseyových vět, pro dostatečně velká N.

- $K_{n,n}$ jako podgraf G nebo doplňku G
- $K_{n,n}$ jako podgraf G nebo doplněk $K_{n,n}$ v G

Příklad 3: Ukažte, že pokud hrany K_9 obarvíme červeně a modře, najdeme buď modrý trojóhelník nebo červený čtyřcyklus jako podgraf. Dokažte i pro K_8 .

Příklad 4: Dokažte, že pro dostatečně mnoho bodů v rovině existuje podmnožina k bodů buď na přímce nebo v obecné poloze.

Příklad 5: Rozhodněte zda pro dostatečně velkou tabulku $N \times N$ jejíž pole jsou obarvená dvěma barvami existuje podtabulka P (výběr nějakých řádků a slooupců) splňující následující. Zkuste najít dobré odhady na N.

- \bullet P má rozměr $k \times k$ a jednobarevnou diagonálu
- P je jednobarevná rozměru $1 \times k$
- \bullet Pje jednobarevná rozměru $k\times k$ a jednobarevnou diagonáu

Příklad 6: Ukažte, že pro každé obarvení bodů euklidovské roviny třemi barvami vždy existují dva body stejné barvy v jednotkové vzdálenosti. Rozhodněte zda v obarvení roviny dvěma barvami bude vždy existovat trojice stejně obarvených bodů v jednotkových vzdálenostech.

Příklad 1: Mějme úplný graf G na N vrcholech očíslovaných $1, \ldots, N$ s hranami obarvenými dvěma barvami, rozhodněte existenci kterých následujících struktur lze odvodit ze základních Ramseyových vět, pro dostatečně velká N.

- \bullet Jednobrevný K_k obsahující daný vrchol x
- \bullet Pro G se smyčkami jednobarevný K_n včetně smyček

Příklad 2: Mějme graf G na N vrcholech, rozhodněte existenci kterých následujících struktur lze odvodit ze základních Ramseyových vět, pro dostatečně velká N.

- $K_{n,n}$ jako podgraf G nebo doplňku G
- $K_{n,n}$ jako podgraf G nebo doplněk $K_{n,n}$ v G

Příklad 3: Ukažte, že pokud hrany K_9 obarvíme červeně a modře, najdeme buď modrý trojóhelník nebo červený čtyřcyklus jako podgraf. Dokažte i pro K_8 .

Příklad 4: Dokažte, že pro dostatečně mnoho bodů v rovině existuje podmnožina k bodů buď na přímce nebo v obecné poloze.

Příklad 5: Rozhodněte zda pro dostatečně velkou tabulku $N \times N$ jejíž pole jsou obarvená dvěma barvami existuje podtabulka P (výběr nějakých řádků a slooupců) splňující následující. Zkuste najít dobré odhady na N.

- \bullet P má rozměr $k \times k$ a jednobarevnou diagonálu
- $\bullet~P$ je jednobarevná rozměru $1\times k$
- \bullet P je jednobarevná rozměru $k \times k$ a jednobarevnou diagonáu

Příklad 6: Ukažte, že pro každé obarvení bodů euklidovské roviny třemi barvami vždy existují dva body stejné barvy v jednotkové vzdálenosti. Rozhodněte zda v obarvení roviny dvěma barvami bude vždy existovat trojice stejně obarvených bodů v jednotkových vzdálenostech.