Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2017/2018 Corso di Laurea in Ingegneria Fisica Dividi di Anglici III. 14 proposito 2017. Prof. I. EDACALÀ

Prova intermedia di Analisi III, 14 novembre 2017 – Prof. I. FRAGALÀ

ESERCIZIO 1. (8 punti) (indicare solo le risposte senza il procedimento seguito)

(a) Sviluppare $f(z) = \frac{1}{z^3 - z^4}$ in serie di Laurent di potenze di z, nel cerchio di centro 0 e raggio 1 (privato dell' origine).

$$\sum_{k=-3}^{+\infty} z^k$$

(b) Calcolare $\int_{\gamma} \frac{\sin z}{z-i} dz$ dove $\gamma(t) = 2e^{it}, t \in [0, 2\pi]$.

$$\pi(e^{-1}-e)$$

ESERCIZIO 2. (8 punti) (indicare solo le risposte senza il procedimento seguito)

Stabilire quali delle seguenti affermazioni sono vere:

- (a) $L^{\infty}(\mathbb{R})$ munito della norma esssup $_{x\in\mathbb{R}}|f(x)|$ è uno spazio di Banach.
- (b) $L^1(\mathbb{R})$ munito della norma $\int_{\mathbb{R}} |f(x)| \, dx$ è uno spazio di Hilbert.
- (c) La funzione di Heaviside H(x) che vale 1 se $x \ge 0$ e 0 se x < 0 appartiene allo spazio $L^1_{loc}(\mathbb{R})$.
- (d) La funzione di Heaviside H(x) di cui al punto precedente appartiene allo spazio di Sobolev $H^1(\mathbb{R})$.

Sono vere (a) e (c)

ESERCIZIO 3. (8 punti) (indicare non solo le risposte ma anche il procedimento seguito)

Si consideri la successione di funzioni definita da

$$f_n(x) := \frac{n}{\pi(1 + n^2 x^2)}, \quad x \in \mathbb{R}.$$

Stabilire se f_n converge:

- (a) puntualmente quasi ovunque su \mathbb{R}
- (b) in $L^1(\mathbb{R})$
- (c) in $L^{\infty}([1,+\infty))$
- (d) in $\mathcal{D}'(\mathbb{R})$,

e nei casi affermativi determinare il limite.

Soluzione.

- (a) Per ogni $x \neq 0$ si ha $\lim_{n \to +\infty} f_n(x) = 0$. Pertanto il limite puntuale quasi ovunque di f_n è la funzione f(x) = 0.
- (b) Si ha, utilizzando il cambio di variabile nx = y,

$$||f_n||_{L^1(\mathbb{R})} = \int_{\mathbb{R}} |f_n(x)| dx = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{1+y^2} dy = 1.$$

Pertanto f_n non converge in $L^1(\mathbb{R})$ (se convergesse, per il punto (a), il limite dovrebbe essere 0, ma la norma in $L^1(\mathbb{R})$ vale 1 per ogni $n \in \mathbb{N}$).

(c) Poiché $f_n(x)$ è monotona decrescente si ha, per ogni $x \geq 1$

$$0 = f_n(x) = |f_n(x)| \le |f_n(1)|.$$

Pertanto

$$||f_n||_{L^{\infty}([1,+\infty))} = |f_n(1)| = \frac{n}{\pi(1+n^2)},$$

e quindi f_n converge a 0 in $L^{\infty}([1, +\infty))$.

(d) Sia $\varphi \in \mathcal{D}(\mathbb{R})$ una funzione test. Si ha, usando di nuovo il cambio di variabile nx = y

$$\int_{\mathbb{D}} f_n(x)\varphi(x) dx = \frac{1}{\pi} \int_{\mathbb{D}} \frac{n}{(1+n^2x^2)} \varphi(x) dx = \frac{1}{\pi} \int_{\mathbb{D}} \frac{1}{(1+y^2)} \varphi(\frac{y}{n}) dy.$$

La successione

$$g_n(y) := \frac{1}{(1+y^2)} \varphi\left(\frac{y}{n}\right)$$

converge puntualmente a

$$g(y) := \frac{1}{(1+y^2)} \varphi(0),$$

ed è maggiorata in modulo da

$$\|\varphi\|_{\infty} \frac{1}{1+y^2} \in L^1(\mathbb{R}).$$

Pertanto, per il teorema di convergenza dominata si ha

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x) \varphi(x) \, dx = \frac{1}{\pi} \lim_{n \to +\infty} \int_{\mathbb{R}} g_n(y) \, dy = \frac{1}{\pi} \int_{\mathbb{R}} \lim_{n \to +\infty} g_n(y) \, dy = \frac{\varphi(0)}{\pi} \int_{\mathbb{R}} \frac{1}{(1+y^2)} \, dy = \varphi(0) = \langle \delta_0, \varphi \rangle \, .$$

Concludiamo che

$$f_n \to \delta_0$$
 in $\mathcal{D}'(\mathbb{R})$.

TEORIA. (7 punti)

- (a) Enunciare la definizione di funzione assolutamente continua.
- (b) Enunciare e dimostrare la disuguaglianza di Cauchy-Schwarz in uno spazio di Hilbert.