Unit: 1: Intro to Signaly

In the below expression you can replace t within * For doing x(At+B) X(1-2) -> Right Shift. ≈> x (3t+2) =) Do 'A' part first x(t+2) -> Left Shift i.e divide 't' axis 2(1-t-2) > Fold & left Shift =) Then right Shift or (-t+2) > Fold & Right shift or left shift B units, 2 in this case 2 => x-axis or time domain Compressed => Expanded by 2 times x(t/2) > 2+ of x110 => Amplitude Encreased by 2 x(+)=5 +, 05+ = 1 # Some important formulas: 12+22 Proble

$$\sum_{n=t}^{\infty} (a)^n = \begin{pmatrix} -a^t & \alpha < 1 \\ -a & \alpha < 1 \end{pmatrix}$$

(N-1)+1 (1-a) , a+1 (N-1)+1 , a=1

(Upper limital) Remember

```
Relation between Signals:
      i) S(t) = du(t)
                                  \Theta L \qquad h(t) = S(t) dt
     u(n) = \sum_{R=0}^{\infty} \int_{R=0}^{\infty} (n-R)
      iii) \frac{dy(t)}{dt} = u(t) or y(t) = \int u(t) dt
 ~> Periodicity:
     \Rightarrow A signal is periodic if x(n) = x(N+n)
                                         \chi(t) = \chi(T+t)
                       N → Period
          For CT Signal:
         In ans, -> First find the time period T, by Sub.
         generally whart inside part of functor to 2 to
         Cos(wt) get &, then I ise T
         Sin(wt)
Coefficient of t > Check of x(t+1) = x(t)
              If both equal, the given function by periodic with period T
         Note: If an is in Sin2 (w) or Cost (w)
               Convert it to Sin & Cos form first.
         If I functions in Summation, then find the
```


	Properties of a system:
•	
(i) ~>	Static (memoryless) & Dynamic (Memory) system:
	(y(t) = 2x(t) y(t) = x(t2)
Present	y(n) = 5x(n) $y(t) = x(t-2) - Past$
only	$y(n) = 5x(n)$ $y(t) = x(t-2) \rightarrow P\omega t$ $y(n) = n x(n)$ $y(n) = x(n+1) + x(n) + x(n-2)$
ð	$y(n) = \chi(n) + \mu(n-1) \qquad y(n) = \chi(2n) \qquad post$
In Problem	present
\\ *	Check the "IP & OIP @ n = -1,1,0
(2) ~>>	Causality: It is causal if O/P depends on
	present & past value & Not dependent on
	Future. It is non Causal if of depends
	on the queture ip
	Causal Mon Causal
	$\sqrt{2(n)}$
	$y(t) = 5x(t), y(n) = e^{x(n)}$ $y(t) = x(t+1)$
	y(t) = x(t) + x(t-2) $y(t) = x(t) + x(t+2)$
	$y(n) = 2\chi(n) + \chi(n-1) + \chi(n+2)$ $y(n) = 2\chi(n) + \chi(n-1) + \chi(n+2)$
	Present Future
_	
(3) ~>	Linear A System is linear if it satisfies Super
	position principle.
	70 . 0 . 0
(4) ~>	Jime invariance: IP & output doesn't change with
	time than time invarient System
	Method to Check:
	~ Shift ip by '-no' units obtain final op
	~ Shift if by -no units obtain final off. ~ Shift of by '-no' units obtain final off. ~ y ₂ (t-to)
	It both above expressions equal then System is Time invarient
	degree expressions capital many systems is time instantion

⑤ ~>	Stability: of bounded ip produces bounded op system
	$y(n) = n \times (n)$ anstable system, if $n \to \infty$
6 ~>	Invertiblity: A System is invertible if ilp can be
	recovered from the op-
*	Linear Jime Invarient System:
	(
	Note:
	of x(t) = S(t) => O/P is Impulse Response
	x(t) = u(t) => " " step "
	>(lt) = x(t) => " " ramp "
	sused to find of
	convolution et :
*	$y(n) = \sum_{k=1}^{\infty} h(k) \times (n-k) \longrightarrow RT dII signal)$
	N = - 00
	00
	$y(t) = \int x(x) h(t-x) dx \longrightarrow CT dTI Signal$
	7=-00
	4) <u>Memory:</u> y(m)=h(n)*x(n)= \sum h(k) x (n-k)
	$y(x) = \int_{-\infty}^{\infty} h(x)x(x+x) + \int_{-\infty}^{\infty} h(x)x(x+x) + \int_{-\infty}^{\infty} h(x)x(x+x)$
	h-0 k=0
	Left Side Origin Right side
	postion 1 postion Prosent 7
	Future Input Past Inputs
	:: LTI system is memory system
	α1 <u> </u>
	A Condition for momory less system:
	Romove all the fections & bast inputs
	$h(1):h(2): h(\infty) \Rightarrow 0 \longrightarrow h(k)=0, k > 0$ $h(-1):h(-2): h(-\infty) \Rightarrow 0 \longrightarrow h(k)=0, k < 0$ b+0
	h(-1); h(-2); h(-0) > 0 -> h(k)=0, k <0) k+0

1 First 2

a System by giving points.

- -> Apply parkal fraction to 2(3).
- 3 In x(8) multiply the Dr 3 back to RHS
- > Draw Circles & Check for causality
- > If that particular term or circle is Causal multiply with -u(-n-1)

For Easy method of partlal fraction refer Pg: 26, Q(3) of unit: 2 notes

Inverse Z transform 1 for function 3

$$|| Find I = T of X(z) = \frac{2^{2} + 2}{(2^{-1}a)(2^{-1}a)^{3}} || \frac{2a}{2a} || \frac{2a$$

Apply partial fraction to 2(13)
Apply partial fraction to 2(18) Jake IXT of ans. about 8 Siving
&: Am of P. Frank => 7+1/2 (Z) + 1/2 (Z) + 1/2 (Z) + 1/2 - 2
$ZT = 78(n)+1 (-1)^{n}u(n)+1 [u(n)+2 u(n)]$
Inverse Z.T of $\chi^R o S(n+R)$ Note: If Given funct ⁿ has $n^r > D^r \not\models ower$, then parhoal fract ⁿ Can't be applied for IZT.
Note: If given funct" has n' > D' power, then
prantal fracte Can't be applied for IXT.
: Do long division;
Quotient + Remainder
Whothent + Tremainant Divisor
Solution To différence Epo
7 ul. 1) - x-1 (ula)) -> 26 5 6 10 1 Co.
Z(yln-1)) = z-1(y(z)) -> No Enitial Cond.
$\chi(y(x-1)) = \chi'(y(x) + y(-1)\chi') \rightarrow \text{ with in tal Cond}$
Z(y(n-2)) = z-2(y(8)) -> without Inital Cond
X(y(n-2)) = 2-2 (y(3) + y(-1)x + y(-2)x)
V.V.V.V Jmp terms 2
System Function H(3) = Y(3) Ly Also the Z transfour x(3)
of impulse response


```
Diffrence Equation:
    Eg: (3y(n)-4y(n-1)+y(n-2) = 3x(n)
3y(eja)-4e^{-ja}y(eja)+e^{-2ja}y(eja) = 3x(eja)
    Note:
       Freq. Resp = 4(eiw)
                  X (ein)
      Inverse of Frey Response

Impulse Response = H(ejw) 7.
                                               > Write in this
                                                 format, apply
                                                  parkal fraction
       Sin(x) = e^{ix} - e^{-ix}
                                                 & take IDTFT
       \frac{2j}{\cos(x) = \frac{e^{jx} + e^{-jx}}{2j}}
                                              Formulag
        jo
e = Coso + j Sino
       e^{-j\theta} = \cos\theta - j\sin\theta
        1-e=2j\sin(\omega) Used in one 1-e=2j\sin(\omega) of the problem
    Properties of DTFT;
i) Jime Shift = 2(n-no) (DIFT jal-no) (eja)
ii) Freq. " = e xln) \ X(ei(r-ro))
ii) n x(n) (pîfî) jd [x(ejr)]
```


Methods under Circular Convolution

Scanned with CamScanner

Complex Mul = log N x N No. of Stage () CM per Stage Complex addition: Same formula as above It 5 pt FFT & only 5 pts of given, assume 3 other pts as 0 to make it standard 8 pt FFT Butterfly FFT: Complex multiplication = log_N » N addition = log Nx N Gen. Exb. of FFT For N point DFT: multiplier Complex multiplication = N2 X(k) = G(k) + WN H(k) Complex addition: (N-1) N , R= 0-7 * In FFT & JFFT, Both JP & OIP are Alote: Bit reversed In FFT, $\chi(n)$ as always given & $\chi(k)$ is form.

I TFFT, $\chi(k)$ " " $\chi(n)$ " " 11 TFFT, X(k) " 11 In FFT Right side Left side always x(k) always x(n) Frey domain time domain If DIT; JP de cimated & of Pretained If DIF; Of decimated & IP

