Dynamics (continued)

Hsiu-Chin Lin

September 15, 2020

Welcome

Lecture Recordings This lecture will be recorded. By attending the live sessions, you agree to the recording, and you understand that your image, voice, and name may be disclosed to classmates

During the lecture

I will mute the audience Ask questions through 'Chat'

Last Time

Kinematics

Redundancy Resolution

Dynamics

Rigid Body Dynamics: equation of motion

Inverse Dynamics Control: given $\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}^*$ find au

Outline

ERROR DYNAMICS

TASK-SPACE DYNAMICS

REDUNDANCY RESOLUTION IN DYNAMICS

FORCE CONTROL

Outline

ERROR DYNAMICS

TASK-SPACE DYNAMICS

REDUNDANCY RESOLUTION IN DYNAMICS

FORCE CONTROL

What are stiffness and damping

Question: What are stiffness and damping and how to tune it?

Let's start with our high school/UG physics!

A mass-spring system

An object attached to a spring, on a frictionless table

m: mass

k: spring constant

 \tilde{x} : displacement from an equilibuirum

A mass-spring system

An object attached to a spring, on a frictionless table

m: mass

k: spring constant

 \tilde{x} : displacement from an equilibuirum

Pull and release the object! Without friction and gravity, the system will oscillate!

Kinetic Energy
$$\mathbf{K} = \frac{1}{2}m\ddot{\tilde{x}}^2$$
,

Potential Energy $\mathbf{P} = \frac{1}{2}m\tilde{x}^2$

Euler Lagurange equation $\frac{d}{dt}\frac{\partial L}{\partial \dot{\mathbf{q}}} - \frac{\partial L}{\partial \mathbf{q}} = m\ddot{\tilde{x}} + k\tilde{x} = 0$

Kinetic Energy
$$\mathbf{K} = \frac{1}{2}m\dot{\tilde{x}}^2$$
,

Potential Energy $\mathbf{P} = \frac{1}{2}m\tilde{x}^2$

Euler Lagurange equation $\frac{d}{dt}\frac{\partial L}{\partial \dot{\mathbf{q}}} - \frac{\partial L}{\partial \mathbf{q}} = m\ddot{\tilde{x}} + k\tilde{x} = 0$

Kinetic Energy
$$\mathbf{K} = \frac{1}{2}m\ddot{x}^2$$
,

Potential Energy $\mathbf{P} = \frac{1}{2}m\tilde{x}^2$

Euler Lagurange equation $\frac{d}{dt}\frac{\partial L}{\partial \dot{\mathbf{q}}} - \frac{\partial L}{\partial \mathbf{q}} = m\ddot{x} + k\tilde{x} = 0$

At Rest
$$K = 0, P = 0$$

$$\textbf{K}=\textbf{0},\textbf{P}\uparrow$$

Question: What happened?

Kinetic Energy
$$\mathbf{K} = \frac{1}{2}m\ddot{x}^2$$
,

Potential Energy $\mathbf{P} = \frac{1}{2}m\tilde{x}^2$

Euler Lagurange equation $\frac{d}{dt}\frac{\partial L}{\partial \dot{\mathbf{q}}} - \frac{\partial L}{\partial \mathbf{q}} = m\ddot{x} + k\tilde{x} = 0$

$$K = 0, P = 0$$

Hold it

$$K = 0, P \uparrow$$

Release it

Question: What is the relationship between the oscillation and m, k

From $m\ddot{\tilde{x}} + k\tilde{x} = 0$

Bigger $m o \text{smaller } \ddot{\tilde{x}} o \text{smaller frequency}$

smaller $k \to \text{smaller } \tilde{x} \to \text{smaller frequency}$

Question: What is the relationship between the oscillation and m, k

From $m\ddot{\tilde{x}} + k\tilde{x} = 0$

Bigger $m o \text{smaller } \ddot{\tilde{x}} o \text{smaller frequency}$

smaller $k o \text{smaller } \tilde{x} o \text{smaller frequency}$

Natural Frequency

The frequency at which a system oscillates in the absence of any force.

$$\omega_N = \sqrt{\frac{k}{n}}$$

Oscillation A transfer between potential and kinetic energy Without friction, the object will oscillate with a frequency of ω_N

Oscillation A transfer between potential and kinetic energy Without friction, the object will oscillate with a frequency of ω_N

Dynamics in terms of natural frequency

$$\ddot{\tilde{x}} + \omega_N^2 \tilde{x} = 0$$

A mass-spring-damper System

An object attached to a spring, on a table with friction

m: mass

k: spring constant

d: viscous damping coefficient

 \tilde{x} : displacement from an equilibuirum

A mass-spring-damper System

An object attached to a spring, on a table with friction

m: mass

k: spring constant

d: viscous damping coefficient

 \tilde{x} : displacement from an equilibuirum

Still oscillates, but friction slows down the system

$$f_{friction} = -d\dot{\tilde{x}}$$

Kinetic Energy
$$\mathbf{K}=\frac{1}{2}m\ddot{\tilde{x}}^2,$$
 Potential Energy $\mathbf{P}=\frac{1}{2}m\tilde{x}^2$ Euler Lagurange equation $m\ddot{\tilde{x}}+k\tilde{x}=f_{friction}$

Question: What happened?

Kinetic Energy
$$\mathbf{K}=\frac{1}{2}m\dot{\tilde{x}}^2,$$
 Potential Energy $\mathbf{P}=\frac{1}{2}m\tilde{x}^2$ Euler Lagurange equation $m\ddot{\tilde{x}}+k\tilde{x}=f_{friction}$

Second-Order Error Dynamics

$$m\ddot{\tilde{x}} + k\tilde{x} = -d\dot{\tilde{x}}$$

$$m\ddot{\tilde{x}} + d\dot{\tilde{x}} + k\tilde{x} = 0$$

Error Dynamics

Question: What is the relationship between the oscillation and $\it d$

From $m\ddot{\tilde{x}} + d\dot{\tilde{x}} + k\tilde{x} = 0$

bigger $d \to \text{system}$ may not return to the equilibuirum smaller $d \to \text{system}$ still oscillates but eventually stops

Error Dynamics

Question: What is the relationship between the oscillation and $\it d$

From $m\ddot{\tilde{x}} + d\dot{\tilde{x}} + k\tilde{x} = 0$

bigger $d \to \text{system}$ may not return to the equilibuirum smaller $d \to \text{system}$ still oscillates but eventually stops

Natural Damping Ratio ζ

A parameter that characterizes the frequency response of a second-order error dynamics

$$\zeta_{\textit{N}} = rac{d}{2\omega_{\textit{N}} m}, \; egin{cases} \zeta > 1, ext{over-damped} \ \zeta = 1, ext{critically-damped} \ \zeta < 1, ext{under-damped} \end{cases}$$

Second-Order Error Dynamics

Damping coeffient with a Critically-damped Ratio

$$\zeta_N = \frac{d}{2\omega_N m} = 1, \ d = 2m\omega_N = 2\sqrt{km}$$

Why?

$$\ddot{\tilde{x}}+2\zeta_N\omega_N\dot{\tilde{x}}+\omega_N^2\tilde{x}=0$$

$$x(t)=ce^{-\zeta_N\omega_Nt}\cos(\omega_Nt\sqrt{1-\zeta_N^2}+\phi)$$
 if $\zeta_N=1,cos(0)=0,$ only the exponentail function left the system oscillates with a frequency $\omega_Nt\sqrt{1-\zeta_N^2}$

Proportional-Derivative Control (PD)

$$m\ddot{\tilde{x}} + d\dot{\tilde{x}} + k\tilde{x} = 0$$

$$\ddot{\tilde{x}} + \frac{d}{m}\dot{\tilde{x}} + \frac{k}{m}\tilde{x} = 0$$

PD controller

$$ilde{ heta} = heta - heta^{ref}$$

$$\ddot{\tilde{\theta}} + \frac{\mathsf{D}}{m}\dot{\tilde{\theta}} + \frac{\mathsf{K}}{m}\tilde{\theta} = 0$$

PD controller imitatess the mass-spring-damper system We have an imaginary spring at the joint, that brings the joint to the desired position. we need to select k and d

Proportional-Derivative Control (PD) for a Single Joint

Question: How to choose the parameters?

- ► Choose an equilibuirum point
- ► Choose your *k*, depending how fast the system should react to the system
- lacksquare Calculate the natural frequency $\omega_{N}=\sqrt{rac{k}{m}}$
- ightharpoonup We want a critically damped system: $\zeta_N=1$

$$\zeta_N = \frac{d}{2\omega_N m} = 1, \quad \rightarrow d = \sqrt{2km}$$

Proportional-Derivative Control (PD) for Multiple Joints

How to choose the parameters?

Single joint: find k and d as 2 constant Multiple joints: find K and D as 2 diagonal matrices

Proportional-Derivative Control (PD) for Multiple Joints

How to choose the parameters?

Single joint: find k and d as 2 constant Multiple joints: find K and D as 2 diagonal matrices

In reality?

- ► Start with a small k, $\mathbf{K} = k\mathbf{I}$
- ► Slowly increase *k*
- ▶ The joint friction is relatively higher, normally $d < \sqrt{2km}$

Example

Let's try

Outline

ERROR DYNAMICS

TASK-SPACE DYNAMICS

REDUNDANCY RESOLUTION IN DYNAMICS

FORCE CONTROL

Question: Given Task-space trajectory, how to find the torques?

Can we describe the equation of motion in terms of the task-space positions, velocities, and accelerations

Task space

$$\mathbf{x} \in \mathbb{R}^6 = \begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{p} \end{bmatrix}, \quad \dot{\mathbf{x}} \in \mathbb{R}^6 = \begin{bmatrix} \boldsymbol{\omega} \\ \dot{\mathbf{p}} \end{bmatrix}, \quad \ddot{\mathbf{x}} \in \mathbb{R}^6 = \begin{bmatrix} \dot{\boldsymbol{\omega}} \\ \ddot{\mathbf{p}} \end{bmatrix}$$

Task space

$$\mathbf{x} \in \mathbb{R}^6 = egin{bmatrix} m{ heta} \\ m{p} \end{bmatrix}, \quad \dot{\mathbf{x}} \in \mathbb{R}^6 = egin{bmatrix} m{\omega} \\ \dot{m{p}} \end{bmatrix}, \quad \ddot{\mathbf{x}} \in \mathbb{R}^6 = egin{bmatrix} \dot{m{\omega}} \\ \ddot{m{p}} \end{bmatrix}$$

Spatial Force/ Wrench

$$\mathbf{F} \in \mathbb{R}^6 = egin{bmatrix} \mathbf{m} \\ \mathbf{f} \end{bmatrix}$$
 $\mathbf{m} \in \mathbb{R}^3$ angular force / moment $\mathbf{f} \in \mathbb{R}^3$ linear force

Question: What is the relationship between f and τ ?

Question: What is the relationship between f and τ ?

Question: Can we describe the rigid-body dynamics in terms of f and $\ddot{\textbf{x}}\textbf{?}$

$\textbf{Configuration} \rightarrow \textbf{Task-space}$

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{J}\dot{\mathbf{q}} \\ \ddot{\mathbf{x}} &= \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}} \end{split}$$

$\textbf{Configuration} \rightarrow \textbf{Task-space}$

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$

$$\ddot{\mathbf{x}} = \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}}$$

$\textbf{Task-space} \rightarrow \textbf{Configuration}$

$$\dot{\mathbf{a}} = \mathbf{J}^{\dagger}\dot{\mathbf{x}}$$

$$\begin{split} \dot{q} &= J^{\dagger} \dot{x} \\ \ddot{q} &= J^{\dagger} \ddot{x} - J^{\dagger} \dot{J} \dot{q} \end{split}$$

Configuration \rightarrow Task-space

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$

$$\ddot{\mathbf{p}}\dot{\mathbf{L}} = \ddot{\mathbf{J}}\ddot{\mathbf{q}} + \dot{\ddot{\mathbf{J}}}\dot{\mathbf{q}}$$

Task-space → **Configuration**

$$\dot{\mathbf{q}} = \mathbf{J}^{\dagger}\dot{\mathbf{x}}$$

$$\begin{split} \dot{q} &= J^{\dagger} \dot{x} \\ \ddot{q} &= J^{\dagger} \ddot{x} - J^{\dagger} \dot{J} \dot{q} \end{split}$$

Substitute $\dot{\mathbf{q}}$ and $\ddot{\mathbf{q}}$ into the equation of motion $\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$

$$au = \mathsf{M}(\mathsf{J}^\dagger \ddot{\mathsf{x}} - \mathsf{J}^\dagger \dot{\mathsf{J}} \dot{\mathsf{q}}) + \mathsf{h}$$

$\textbf{Configuration} \rightarrow \textbf{Task-space}$

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$
 $\ddot{\mathbf{x}} = \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}}$

Task-space → **Configuration**

$$\begin{split} \dot{q} &= J^{\dagger} \dot{x} \\ \ddot{q} &= J^{\dagger} \ddot{x} - J^{\dagger} \dot{J} \dot{q} \end{split}$$

Substitute $\dot{\mathbf{q}}$ and $\ddot{\mathbf{q}}$ into the equation of motion $\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$

$$au = \mathsf{M}(\mathsf{J}^\dagger \ddot{\mathsf{x}} - \mathsf{J}^\dagger \dot{\mathsf{J}} \dot{\mathsf{q}}) + \mathsf{h}$$

Premultiply both sides by $(\mathbf{J}^{\top})^{\dagger}$, we get

$$(\mathbf{J}^\top)^\dagger \boldsymbol{\tau} = (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \ddot{\mathbf{x}} - (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^\top)^\dagger \mathbf{h}$$

$$(\mathbf{J}^{\top})^{\dagger} \tau = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \ddot{\mathbf{x}} - (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^{\top})^{\dagger} \mathbf{h}$$

$$(\mathbf{J}^{\top})^{\dagger} \tau = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \ddot{\mathbf{x}} - (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^{\top})^{\dagger} \mathbf{h}$$

Expressing
$$\mathbf{F} = (\mathbf{J}^{ op})^{\dagger} au$$

$$(\mathbf{J}^\top)^\dagger \tau = (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \ddot{\mathbf{x}} - (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^\top)^\dagger \mathbf{h}$$

Expressing
$$\mathbf{F} = (\mathbf{J}^{ op})^{\dagger} \mathbf{ au}$$

Dynamics equation expressed in taskspace

$$\mathbf{F} = \mathbf{\Lambda}\ddot{\mathbf{x}} + \boldsymbol{\eta}$$
 where $\mathbf{\Lambda} = (\mathbf{J}^{ op})^{\dagger}\mathbf{M}\mathbf{J}^{\dagger}$ $\boldsymbol{\eta} = (\mathbf{J}^{ op})^{\dagger}\mathbf{h} - \mathbf{\Lambda}\dot{\mathbf{J}}\dot{\mathbf{q}}$

Inputs:

- ► from motion plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$
- ► from forward kineamtics: x, x

Inputs:

- ► from motion plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$
- ► from forward kineamtics: x, x

Inputs:

- ► from motion plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$
- ► from forward kineamtics: x, x

Task-space Inverse Dynamics Controller

$$\ddot{\mathsf{x}}^* = \ddot{\mathsf{x}}^{ref} + \mathsf{D}(\dot{\mathsf{x}}^{ref} - \dot{\mathsf{x}}) + \mathsf{K}(\mathsf{x}^{ref} - \mathsf{x})$$

with feedback

Inputs:

- ► from motion plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$
- ► from forward kineamtics: x, x

Task-space Inverse Dynamics Controller

$$\ddot{\mathbf{x}}^* = \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x}) \qquad \text{with feedback}$$

$$\mathbf{\Lambda} = (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \qquad \text{task-space mass matrix}$$

Inputs:

- ightharpoonup from motion plannar: x^{ref} , \dot{x}^{ref} , \ddot{x}^{ref}
- ► from forward kineamtics: x, x

Task-space Inverse Dynamics Controller

$$\ddot{\mathbf{x}}^* = \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x})$$
 $\mathbf{\Lambda} = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger}$
 $\eta = (\mathbf{J}^{\top})^{\dagger} \mathbf{h} - \mathbf{\Lambda} \dot{\mathbf{J}} \dot{\mathbf{q}}$

with feedback task-space mass matrix task-space ${f h}$

Inputs:

- ightharpoonup from motion plannar: x^{ref} , \dot{x}^{ref} , \ddot{x}^{ref}
- ► from forward kineamtics: x, x

Task-space Inverse Dynamics Controller

$$\ddot{\mathbf{x}}^* = \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x})$$
 with feedback $\mathbf{\Lambda} = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger}$ task-space mass matrix $\mathbf{\eta} = (\mathbf{J}^{\top})^{\dagger} \mathbf{h} - \mathbf{\Lambda} \dot{\mathbf{J}} \dot{\mathbf{q}}$ task-space \mathbf{h} $\mathbf{F} = \mathbf{\Lambda} \ddot{\mathbf{x}}^* + \mathbf{\eta}$ task-space force to achieve $\ddot{\mathbf{x}}^*$

Inputs:

- ► from motion plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$
- ► from forward kineamtics: x, x

Task-space Inverse Dynamics Controller

$$\begin{split} \ddot{\mathbf{x}}^* &= \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x}) & \text{with feedback} \\ \mathbf{\Lambda} &= (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger & \text{task-space mass matrix} \\ \boldsymbol{\eta} &= (\mathbf{J}^\top)^\dagger \mathbf{h} - \mathbf{\Lambda} \dot{\mathbf{J}} \dot{\mathbf{q}} & \text{task-space h} \\ \mathbf{F} &= \mathbf{\Lambda} \ddot{\mathbf{x}}^* + \boldsymbol{\eta} & \text{task-space force to achieve } \ddot{\mathbf{x}}^* \\ \boldsymbol{\tau} &= \mathbf{J}^\top \mathbf{F} & \text{torque to achieve } \ddot{\mathbf{x}}^* \end{split}$$

Example

EXAMPLE (KINOVA JACO ARM)

Move_hand from position A to position B

 $\mathbf{q} \in \mathbb{R}^7$: joints

 $x \in \mathbb{R}^6$: hand position

Example

EXAMPLE (KINOVA JACO ARM)

Move hand from position A to position B

 $\mathbf{q} \in \mathbb{R}^7$: joints

 $\mathbf{x} \in \mathbb{R}^6$: hand position

We need to choose K and D again

K and **D** in task-space is not the same as **K** and **D** in joint-space Trial-and-error to get the appropriate PD gains

Example: Low PD gains

Example: High PD gains

Example: Good PD gains

Example

Low Gains Good Gains High Gains

Outline

ERROR DYNAMICS

TASK-SPACE DYNAMICS

REDUNDANCY RESOLUTION IN DYNAMICS

FORCE CONTROL

What is Redundancy?

Redundancy

More degree-of-freedom than what is required for your task There are more than one solutions to achieve the desired task

What is Redundancy?

Redundancy

More degree-of-freedom than what is required for your task There are more than one solutions to achieve the desired task

EXAMPLE

- keep your finger tip and the same position and move your elbows
- ▶ joint-space velocity but no task-space velocity

Redundancy Resolution

Question: What do we want?

Redundancy Resolution

Question: What do we want?

Kinematics

$$\begin{split} \dot{q}_{total} &= \dot{q}_{task} + \dot{q}_{null} \\ \dot{q}_{task} &= J^\dagger x \\ \dot{q}_{null} &= N \dot{q}^0 \\ \text{We want } \dot{x}^0 &= 0 \text{ for any } \dot{q}_{null} \\ \text{If } N &= I - J^\dagger J, \text{ then } \dot{x}^0 &= 0 \end{split}$$

Redundancy Resolution

Question: What do we want?

Kinematics

$$\begin{split} \dot{\mathbf{q}}_{total} &= \dot{\mathbf{q}}_{task} + \dot{\mathbf{q}}_{null} \\ \dot{\mathbf{q}}_{task} &= \mathbf{J}^{\dagger}\mathbf{x} \\ \dot{\mathbf{q}}_{null} &= \mathbf{N}\dot{\mathbf{q}}^{0} \\ &\text{We want } \dot{\mathbf{x}}^{0} = \mathbf{0} \text{ for any } \dot{\mathbf{q}}_{null} \\ &\text{If } \mathbf{N} = \mathbf{I} - \mathbf{J}^{\dagger}\mathbf{J} \text{, then } \dot{\mathbf{x}}^{0} = \mathbf{0} \end{split}$$

Dynamics

$$egin{aligned} & au_{total} = au_{task} + au_{null} \ & au_{task} = \mathbf{J}^{ op}(\mathbf{\Lambda}\ddot{\mathbf{x}} + \boldsymbol{\eta}) \ & au_{null} = \mathbf{P} au^0 \ & ext{We want } \ddot{\mathbf{x}}^0 = \mathbf{0} ext{ for any } au_{null} \ & ext{What is } \mathbf{P}? \end{aligned}$$

Redundancy

Inverse Dynamics with Redundancy Resolution

$$egin{aligned} au_{total} &= au_{task} + au_{null} \ & au_{task} &= extsf{J}^ op (extsf{\Lambda} \ddot{ extsf{x}}^* + extsf{\eta}) \ & au_{null} &= extsf{P} au^0 \ & extsf{P} &= extsf{I} - extsf{J}^ op (extsf{JM}^{-1} extsf{J}^ op)^{-1} extsf{JM}^{-1} \end{aligned}$$

⁰ Proof available in Khatib, O (1995) Inertial properties in robotic manipulation: an object-level framework. The International Journal of Robotics Research 14(1): 19–36.

Redundancy

Inverse Dynamics with Redundancy Resolution

$$egin{aligned} au_{total} &= au_{task} + au_{null} \ & au_{task} &= extsf{J}^ op (extsf{\Lambda} \ddot{ extsf{x}}^* + extsf{\eta}) \ & au_{null} &= extsf{P} au^0 \ & extsf{P} &= extsf{I} - extsf{J}^ op (extsf{J} extsf{M}^{-1} extsf{J}^ op)^{-1} extsf{J} extsf{M}^{-1} \end{aligned}$$

Dynamically consistent projection matrix

 $au_{\it null}$ does not generate accelerations in the task space since

$$\mathsf{J}\mathsf{M}^{-1}\mathsf{P}=\mathbf{0}$$

⁰ Proof available in Khatib, O (1995) Inertial properties in robotic manipulation: an object-level framework. The International Journal of Robotics Research 14(1): 19–36.

Redundancy

Question: How do we choose au_{null} so we can go to the default position?

Let
$$\mathbf{q}^{ref}=\mathbf{q}^0, \dot{\mathbf{q}}^{ref}=\mathbf{0}, \ddot{\mathbf{q}}^{ref}=\mathbf{0}$$

$$\ddot{\mathbf{q}}^*=\ddot{\mathbf{q}}^{ref}+\mathsf{D}(\dot{\mathbf{q}}^{ref}-\dot{\mathbf{q}})+\mathsf{K}(\mathbf{q}^{ref}-\mathbf{q})$$

$$\tau_0=\mathsf{M}\ddot{\mathbf{q}}^*+\mathsf{h}$$

$$\tau_{null}=\mathsf{P}\tau_0$$

Outline

ERROR DYNAMICS

TASK-SPACE DYNAMICS

REDUNDANCY RESOLUTION IN DYNAMICS

FORCE CONTROL

Previously,...

$$au = \mathsf{M}\ddot{\mathsf{q}}^* + \mathsf{h}$$

What if my task has nothing to do with position error?

EXAMPLE

 $\dot{\mathbf{q}}, \ddot{\mathbf{q}} = \mathbf{0}$ since the hand is fixed at the same position

Force Control

$$au = \mathbf{h} + \mathbf{J}^{ op} \mathbf{f}^*$$
 where \mathbf{f}^* is the desired force

Force Control

 $\tau = \mathbf{h} + \mathbf{J}^{\mathsf{T}} \mathbf{f}^*$ where \mathbf{f}^* is the desired force

EXAMPLE

Force Control

 $\tau = \mathbf{h} + \mathbf{J}^{\top} \mathbf{f}^*$ where \mathbf{f}^* is the desired force

EXAMPLE

More details when we discuss contacts and grasping

Question: We have learnt a few classic controllers now. Which one to use?

Question: We have learnt a few classic controllers now. Which one to use?

What is the natural way to express your higher-level task?

Configuration level?

Task level?

Force level?

Question: We have learnt a few classic controllers now. Which one to use?

What is the natural way to express your higher-level task?

Configuration level?

Task level?

Force level?

Should I control with kinematics or dynamics?

	inverse kinematics	inverse dynamics
Input	×*	ÿ*, ÿ*, or f *
Output	q or q	τ
Parameters	None	K,D
Advantages	Simple	Compliance
		Natural way to control
Disadvantages	Potentially Dangerous	No garantee of convergence
	Cannot handle force	Harder to implement, more computations

Next time

Motion planning

Trajectory Generation Potential Field