Computer Networks

Lecture 8: Network layer Part III
Inter Domain Routing
(It's all about the Money)

Distance Vector Routing Algorithm

 Wait for change in local link cost or message from neighbor

2. Recompute distance table

If least cost path to any destination has changed, notify neighbors

Distance Vector Initialization

3

Node A

Dest.	Cost	Next
В	2	В
C	7	С
D	_∞	

Node B

Dest.	Cost	Next
Α	2	Α
C	1	C
D	3	D

Initialization:

- 2. **for all** neighbors *V* **do**
- **if** *V* adjacent to *A*
- 4. D(A, V) = c(A, V);
- 5. else
- 6. $D(A, V) = \infty;$

Node C

Dest.	Cost	Next
Α	7	Α
В	1	В
D	1	D

Node D

Dest.	Cost	Next
Α	œ	
В	3	В
С	1	C

Distance Vector: 1st Iteration

Distance Vector: End of 3rd Iteration

Time

Count to Infinity Problem

- If C routes through B to get to A
 - C tells B that D(C, A) = ∞
 - Thus, B won't route to A via C

Node B В N Node C B

A 60 Α C 1 В N 5 B 1

N

N **50**

60

1

Time

Outline

- Distance Vector Routing
 - RIP
- Link State Routing
 - OSPF
 - □ IS-IS

Flooding Details

- Each node periodically generates Link State Packet
 - ID of node generating the LSP
 - List of direct neighbors and costs
 - Sequence number (64-bit, assumed to never wrap)
 - Time to live
- Flood is reliable (ack + retransmission)
- Sequence number "versions" each LSP
- Receivers flood LSPs to their own neighbors
 - Except whoever originated the LSP
- I SPs also generated when link states change

Dijkstra's Algorithm

12

Step	Start S	□В	□С	□D	□E	□F
0	Α	2, A	5, A	1, A	∞	œ

Two different implementations of link-state routing

OSPF

- Favored by companies, datacenters
- More optional features

- Built on top of IPv4
 - LSAs are sent via IPv4
 - OSPFv3 needed for IPv6

IS-IS

- Favored by ISPs
- Less "chatty"
 - Less network overhead
 - Supports more devices
- Not tied to IP
 - Works with IPv4 or IPv6

Different Organizational Structure

OSPF

- Organized around overlapping areas
- Area 0 is the core network

IS-IS

- Organized as a 2-level hierarchy
- Level 2 is the backbone

Link State vs. Distance Vector

	Link State	Distance Vector	
Message Complexity	O(n²*e)	O(d*n*k)	
Time Complexity	O(n*log n)	O(n)	
Convergence Time	O(1)	O(k)	
Robustness	 Nodes may advertise incorrect link costs Each node computes 	 Nodes may advertise incorrect path cost Errors propagate due to 	

- Which is best?
- In practice, it depends.
- In general, link state is more popular.

Network Layer, Control Plane

Data Plane

Application

Presentation

Session

Transport

Network

Data Link

Physical

Function:

- Set up routes between networks
- Key challenges:
 - Implementing provider policies
 - Creating stable paths

- BGP Basics
- Stable Paths Problem
- BGP in the Real World
- Debugging BGP Path Problems

- Each AS identified by an ASN number
 - 16-bit values (latest protocol supports 32-bit ones)
 - 64512 65535 are reserved
- Currently, there are ~ 40000 ASNs
 - AT&T: 5074, 6341, 7018, ...
 - Sprint: 1239, 1240, 6211, 6242, ...
 - ELTE: 2012
 - Google 15169, 36561 (formerly YT), + others
 - Facebook 32934

Inter-Domain Routing

- Global connectivity is at stake!
 - Thus, all ASs must use the same protocol
 - Contrast with intra-domain routing
- What are the requirements?
 - Scalability
 - Flexibility in choosing routes
 - Cost
 - Routing around failures
- Question: link state or distance vector?
 - Trick question: BGP is a path vector protocol

- Border Gateway Protocol
 - De facto inter-domain protocol of the Internet
 - Policy based routing protocol
 - Uses a Bellman-Ford path vector protocol
- Relatively simple protocol, but...
 - Complex, manual configuration
 - Entire world sees advertisements
 - Errors can screw up traffic globally
 - Policies driven by economics
 - How much \$\$\$ does it cost to route along a given path?
 - Not by performance (e.g. shortest paths)

BGP Relationships

Tier-1 ISP Peering

Peering Wars

25 **Don't Peer** Peer Paduca unstraam Vou would rather Peering struggles in the ISP world are extremely contentious agreements are usually confidential Example: If you are a customer of my peer why should I peer with you? You should pay me too! Incentive to keep relationships private!

Two Types of BGP Neighbors

Full iBGP Meshes

- Question: why do we need iBGP?
 - OSPF does not include BGP policy info
 - Prevents routing loops within the AS
- iBGP updates do not trigger announcements

25

AS-path: sequence of ASs a route traverses

Like distance vector, plus additional information

Used for loop detection and to apply policy

E.g., pick cheapest/shortest path

Routing done based on longest prefix match
 AS 3

130.10.0.0/16

AS 5 110.10.0.0/16

AS 4

120.10.0.0/16

AS₂

AS₁

120.10.0.0/16: AS 2 \(\Bar{\circ}\) AS 3 \(\Bar{\circ}\) AS 4

130.10.0.0/16: AS 2 AS 3

110.10.0.0/16: AS 2 \(\text{AS} \) AS 5

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
- "d: path (2,1)"

 "d: path (1)"

 data traffic

 data traffic

Flexible Policies

- Each node can apply local policies
 - Path selection: Which path to use?
 - Path export: Which paths to advertise?
- Examples
 - Node 2 may prefer the path "2, 3, 1" over "2, 1"
 - Node 1 may not let node 3 hear the path "1, 2"

BGP Operations (Simplified)

Four Types of BGP Messages

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announce new routes or withdraw previously announced routes.

announcement = IP prefix + <u>attributes</u> <u>values</u>

BGP Attributes

- Attributes used to select "best" path
 - LocalPref
 - Local preference policy to choose most preferred route
 - Overrides default fewest AS behavior
 - Multi-exit Discriminator (MED)
 - Specifies path for external traffic destined for an internal network
 - Chooses peering point for your network
 - Import Rules
 - What route advertisements do I accept?
 - Export Rules
 - Which routes do I forward to whom?

Shortest AS Path != Shortest Path

Hot Potato Routing

Exporting Routes

37 \$\$\$ Customer and generating **ISP** routes To Provider To To Peer Peer To Customer Customers get all

Modeling BGP

- AS relationships
 - Customer/provider
 - Peer
 - Sibling, IXP
- Gao-Rexford model
 - AS prefers to use customer path, then peer, then provider
 Follow the money!
 - Valley-free routing
 - Hierarchical view of routing (incorrect but frequently used)

AS Relationships: It's Complicated

- GR Model is strictly hierarchical
 - Each AS pair has exactly one relationship
 - Each relationship is the same for all prefixes
- In practice it's much more complicated
 - Rise of widespread peering
 - Regional, per-prefix peerings
 - Tier-1's being shoved out by "hypergiants"
 - IXPs dominating traffic volume
- Modeling is very hard, very prone to error
 - Huge potential impact for understanding Internet behavior

- AS_SET
 - Instead of a single AS appearing at a slot, it's a set of Ases
- Communities
 - Arbitrary number that is used by neighbors for routing decisions
 - Export this route only in Europe
 - Do not export to your peers
 - Usually stripped after first interdomain hop
 - Why?
- Prepending
 - Lengthening the route by adding multiple instances of ASN
 - Why?

Outline

- BGP Basics
- Stable Paths Problem
- BGP in the Real World
- Debugging BGP PathProblems

- An instance of the SPP:
 - Graph of nodes and edges
 - Node 0, called the origin
 - A set of permitted paths from each node to the origin
 - Each set of paths is ranked

43

A solution is an assignment of permitted paths to each node such that:

Solutions need not use the shortest paths, or form a spanning tree

consistent with their neighbors

Simple SPP Example

Good Gadget

130

- That was only one round of oscillation!
- This keeps going, infinitely
- Problem stems from:
 - Local (not global) decisions
 - Ability of one node to improve its path selection

SPP Explains BGP Divergence

- BGP is not guaranteed to converge to stable routing
 - Policy inconsistencies may lead to "livelock"

BGP is Precarious

Unfortunately, SPP is NP-complete

These approaches are complementary

Transport Layer

Application Presentation Session Transport Network Data Link **Physical**

- Function:
 - Demultiplexing of data streams
- Optional functions:
 - Creating long lived connections
 - Reliable, in-order packet delivery
 - Error detection
 - Flow and congestion control
- Key challenges:
 - Detecting and responding to congestion
 - Balancing fairness against high utilization

Outline

- UDP
- TCP
- Congestion Control
- Evolution of TCP
- Problems with TCP

The Case for Multiplexing

- Datagram network
 - No circuits
 - No connections
- Clients run many applications at the same time
 - Who to deliver packets to?
- IP header "protocol" field
 - 8 bits = 256 concurrent streams
- Insert Transport Layer to handle demultiplexing

Endpoints identified by <src_ip, src_port, dest_ip, dest_port>

Layering, Revisited

- Lowest level end-to-end protocol
 - Transport header only read by source and destination
 - Routers view transport header as payload

User Datagram Protocol (UDP)

57

0	16		31
	Source Port	Destination Port	
	Payload Length	Checksum	

- Simple, connectionless datagram
 - C sockets: SOCK_DGRAM
- Port numbers enable demultiplexing
 - 16 bits = 65535 possible ports
 - Port 0 is invalid
- Checksum for error detection
 - Detects (some) corrupt packets
 - Does not detect dropped, duplicated, or reordered packets

- Invented after TCP
 - Why?
- Not all applications can tolerate TCP
- Custom protocols can be built on top of UDP
 - Reliability? Strict ordering?
 - Flow control? Congestion control?
- Examples
 - RTMP, real-time media streaming (e.g. voice, video)
 - Facebook datacenter protocol