Applications des réseaux euclidiens à la cryptanalyse

Plan

Résolution de programmes linéaires entiers

Cryptanalyse de RSA avec Petits exposants secrets

Cryptanalyse des générateurs linéaires congruentiels tronqués

Résolution de Subset-Sum

Chiffrement homomorphe sur les entiers

Algorithme de Coppersmith

Plan

Résolution de programmes linéaires entiers

Cryptanalyse de RSA avec Petits exposants secrets

Cryptanalyse des générateurs linéaires congruentiels tronqués

Résolution de Subset-Sum

Chiffrement homomorphe sur les entiers

Algorithme de Coppersmith

« Programmation » linéaire

RSA avec petits exposants secrets

$$\begin{cases} ed - k(N+1) + y = 0 \\ 0 \le d \le N^{\alpha} \\ 0 \le k \le N^{\alpha} \\ 0 \le y \le 2N^{\frac{1}{2} + \alpha} \end{cases}$$

Généralisation

$$(\mathcal{S}) \left\{ \begin{array}{l} \sum_{i=1}^{n} a_{i} \mathbf{x}_{i} = 0 \\ |\mathbf{x}_{i}| \leq B_{i} \qquad (1 \leq i \leq n) \\ \mathbf{x} \neq 0 \end{array} \right.$$

Géométriquement

$$(S) \left\{ \begin{array}{l} \sum_{i=1}^{n} a_i x_i = 0 \\ |x_i| \le B_i & (1 \le i \le n) x \ne 0 \end{array} \right.$$

$$M = \begin{pmatrix} 1 & & a_1 \\ & 1 & & a_2 \\ & & \ddots & & \vdots \\ & & 1 & a_n \end{pmatrix}$$

- ▶ Vecteur court dans $\mathcal{L}(M) \rightsquigarrow$ solution de (S)?

$$(S) \begin{cases} \sum_{i=1}^{n} a_i x_i = 0 \\ |x_i| \le B_i & (1 \le i \le n) x \ne 0 \end{cases}$$

$$M = \begin{pmatrix} 1 & & a_1 \\ & 1 & & a_2 \\ & & \ddots & & \vdots \\ & & 1 & & a_n \end{pmatrix}$$

- ightharpoonup Idée: $\mathbf{x}M = (\mathbf{x} \mid 0)$
- ▶ Vecteur court dans $\mathcal{L}(M) \rightsquigarrow$ solution de (S)?
- ▶ PB #1 : $(????? | y) \in \mathcal{L}(M)$ avec $y \neq 0$, de norme faible

$$(S) \begin{cases} \sum_{i=1}^{n} a_{i} x_{i} = 0 \\ |x_{i}| \leq B_{i} & (1 \leq i \leq n) x \neq 0 \end{cases}$$

$$M = \begin{pmatrix} 1 & \lambda a_{1} \\ 1 & \lambda a_{2} \\ \vdots & \vdots \\ 1 & \lambda a_{n} \end{pmatrix}$$

- ▶ Vecteur court dans $\mathcal{L}(M) \rightsquigarrow$ solution de (S)?
- ▶ PB #1 : $(????? | y) \in \mathcal{L}(M)$ avec $y \neq 0$, de norme faible
 - $\mathbf{y} \neq 0 \implies \|(???? \mid \mathbf{y})\| \ge \lambda$

$$(S) \begin{cases} \sum_{i=1}^{n} a_{i} x_{i} = 0 \\ |x_{i}| \leq B_{i} & (1 \leq i \leq n) x \neq 0 \end{cases}$$

$$M = \begin{pmatrix} 1 & \lambda a_{1} \\ 1 & \lambda a_{2} \\ \vdots & \vdots \\ 1 & \lambda a_{n} \end{pmatrix}$$

- ldée : $\mathbf{x}M = (\mathbf{x} \mid 0)$
- ▶ Vecteur court dans $\mathcal{L}(M) \rightsquigarrow$ solution de (\mathcal{S}) ?
- ▶ PB #1 : $(????? | y) \in \mathcal{L}(M)$ avec $y \neq 0$, de norme faible ▶ $y \neq 0 \implies \|(????? | y)\| \ge \lambda$
- ▶ PB #2 : $B_i \ll B_j$ et SVP « sacrifie » x_i pour réduire x_j

$$(S) \left\{ \begin{array}{l} \sum_{i=1}^{n} a_{i} x_{i} = 0 \\ |x_{i}| \leq B_{i} & (1 \leq i \leq n) x \neq 0 \end{array} \right.$$

$$M = \begin{pmatrix} \frac{B}{B_{1}} & \lambda a_{1} \\ \frac{B}{B_{2}} & \lambda a_{2} \\ \vdots & \vdots \\ \frac{B}{B_{n}} & \lambda a_{n} \end{pmatrix} \qquad B = \prod_{i} B_{i}$$

- ▶ Vecteur court dans $\mathcal{L}(M) \rightsquigarrow$ solution de (S)?
- ▶ PB #1 : $(????? | y) \in \mathcal{L}(M)$ avec $y \neq 0$, de norme faible ▶ $y \neq 0 \implies ||(????? | y)|| \ge \lambda$
- ▶ PB #2 : $B_i \iff B_j$ et SVP « sacrifie » x_i pour réduire x_j $\Rightarrow xM \approx (B, B, \dots, B, 0)$

$$(S) \left\{ \begin{array}{l} \sum_{i=1}^{n} a_{i} x_{i} = 0 \\ |x_{i}| \leq B_{i} & (1 \leq i \leq n) x \neq 0 \end{array} \right.$$

$$M = \begin{pmatrix} \frac{B}{B_{1}} & \lambda a_{1} \\ \frac{B}{B_{2}} & \lambda a_{2} \\ \vdots & \vdots \\ \frac{B}{B_{n}} & \lambda a_{n} \end{pmatrix} \qquad B = \prod_{i} B_{i}$$

- ▶ Vecteur court dans $\mathcal{L}(M) \rightsquigarrow$ solution de (\mathcal{S}) ?
- ▶ PB #1 : $(????? | y) \in \mathcal{L}(M)$ avec $y \neq 0$, de norme faible ▶ $y \neq 0 \implies \|(????? | y)\| \ge \lambda$
- ▶ PB #2 : $B_i \iff B_j$ et SVP « sacrifie » x_i pour réduire x_j $\Rightarrow xM \approx (B, B, \dots, B, 0)$ et $||xM|| \leq \sqrt{n}B \Rightarrow \lambda = 2\sqrt{n}B$ est OK

$$(\mathcal{S}) \left\{ \begin{array}{l} \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{x}_{i} = 0 \\ |\mathbf{x}_{i}| \leq \mathbf{B}_{i} & (1 \leq i \leq \mathbf{n}) \mathbf{x} \neq 0 \end{array} \right.$$

$$M = \begin{pmatrix} \frac{B}{B_1} & & & \lambda a_1 \\ & \frac{B}{B_2} & & \lambda a_2 \\ & \ddots & & \vdots \\ & & \frac{B}{B_n} & \lambda a_n \end{pmatrix} \qquad B = \prod_i B_i, \quad \lambda = 2\sqrt{n}B$$

- ightharpoonup Calculer $\mathbf{y} \leftarrow \mathsf{ShortestVector}(M)$
- \triangleright $y_{n+1} \neq 0$ ou bien $y_i > B \Rightarrow$ pas de solution
- Sinon renvoyer $x_i \leftarrow y_i \frac{B_i}{B}$ $(1 \le i \le n)$

$$(\mathcal{S}) \left\{ \begin{array}{l} \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{x}_{i} = 0 \\ \sum_{i=1}^{n} \mathbf{b}_{i} \mathbf{x}_{i} = 0 \\ |\mathbf{x}_{i}| \leq \mathbf{B}_{i} \quad (1 \leq i \leq n) \mathbf{x} \neq 0 \end{array} \right.$$

$$M = \begin{pmatrix} \frac{B}{B_1} & \lambda a_1 & \lambda b_1 \\ \frac{B}{B_2} & \lambda a_2 & \lambda b_2 \\ \vdots & \vdots & B_i, & \lambda a_n & \lambda b_n \end{pmatrix} \qquad B = \prod_i B_i, \quad \lambda = 2\sqrt{n}B$$

- ightharpoonup Calculer $\mathbf{y} \leftarrow \mathsf{ShortestVector}(M)$
- \triangleright $y_{n+1} \neq 0$, $y_{n+2} \neq 0$ ou bien $y_i > B \Rightarrow$ pas de solution
- Sinon renvoyer $x_i \leftarrow y_i \frac{B_i}{B}$ $(1 \le i \le n)$

$$(\mathcal{S}) \left\{ \begin{array}{l} \mathbf{x} \mathbf{A} = 0 \\ |\mathbf{x}_i| \le \mathbf{B}_i \end{array} \right. \quad (1 \le i \le \mathbf{n}) \mathbf{x} \ne 0$$

$$M = \begin{pmatrix} \frac{B}{B_1} & & & & \\ & \frac{B}{B_2} & & & \\ & & \ddots & & \\ & & \frac{B}{B_0} & & \end{pmatrix} \qquad B = \prod_i B_i, \quad \lambda = 2\sqrt{n}B$$

- ightharpoonup Calculer $\mathbf{y} \leftarrow \mathsf{ShortestVector}(M)$
- $ightharpoonup y_{n+i} \neq 0$ ou $y_i > B \Rightarrow$ pas de solution
- Sinon renvoyer $x_i \leftarrow y_i \frac{B_i}{B}$ $(1 \le i \le n)$

$$(S) \begin{cases} \mathbf{x}A = \mathbf{b} \\ |\mathbf{x}_i| \le B_i \end{cases} \quad (1 \le i \le n)\mathbf{x} \ne 0$$

$$M = \begin{pmatrix} \frac{B}{B_1} & & & & \\ & \frac{B}{B_2} & & & \\ & & \ddots & & \\ & & & \frac{B}{B_n} & & \end{pmatrix} \qquad B = \prod_i B_i, \quad \lambda = 2\sqrt{n}B$$

$$z = \begin{pmatrix} 0 & 0 & \dots & 0 & & \\ & & & \lambda b & \end{pmatrix}$$

- ► Calculer $\mathbf{y} \leftarrow \mathsf{ClosestVector}(M, z)$
- \triangleright $y_{n+i} \neq b_i$ ou $y_i > B \Rightarrow$ pas de solution
- Sinon renvoyer $x_i \leftarrow y_i \frac{B_i}{B}$ $(1 \le i \le n)$

Géométriquement

$$(\mathcal{S}) \left\{ \begin{array}{l} \mathbf{x} A = \mathbf{b} \mod p \\ |\mathbf{x}_i| \le B_i \qquad (1 \le i \le n) \mathbf{x} \ne 0 \end{array} \right.$$

$$M = \begin{pmatrix} \frac{B}{B_1} & & & & & & & \\ & \frac{B}{B_2} & & & & & & \\ & & \ddots & & & & \\ & & & \frac{B}{B_n} & & & \\ & & & & \lambda p & & \\ & & & & \ddots & & \\ z = \begin{pmatrix} 0 & 0 & \dots & 0 & & & \lambda b \end{pmatrix}$$

$$\mathbf{B} = \prod_{i} \mathbf{B}_{i}, \quad \lambda = 2\sqrt{\mathsf{n}}\mathbf{B}$$

Algorithme

idem

Plan

Résolution de programmes linéaires entiers

Cryptanalyse de RSA avec Petits exposants secrets

Cryptanalyse des générateurs linéaires congruentiels tronqués

Résolution de Subset-Sum

Chiffrement homomorphe sur les entiers

Algorithme de Coppersmith

Signature RSA

Génération de clef classique

- 1. Choisir $p, q \approx 2^{n/2}$ aléatoires, premiers.
- 2. Calculer N = pq et $\phi(N) = (p-1)(q-1)$
- 3. Choisir e = 3
- 4. Si e n'est pas inversible modulo $\phi(N)$, retourner en 1.
- 5. Calculer $d \leftarrow e^{-1} \mod \phi(N)$

À la fin, $ed \equiv 1 \mod \phi(N)$

Bilan : $N \approx 2^n$, e = 3, $d \approx 2^n$.

- ▶ Signature = 2n multiplications $\text{mod} N \rightsquigarrow \mathcal{O}(n^3)$.
- ▶ Vérification = 2 multiplications $mod N \rightsquigarrow \mathcal{O}(n^2)$.

Signer est plus lent que vérifier

La CB signe, le terminal vérifie... dommage! Peut-on faire l'inverse?

Signature RSA

Génération de clef avec petit exposant secret

- 1. Choisir $p, q \approx 2^{n/2}$ aléatoires, premiers
- 2. Calculer N = pq et $\phi(N) = (p-1)(q-1)$
- 3. Choisir $d \approx 2^{128}$ aléatoire
- 4. Si d n'est pas inversible modulo $\phi(N)$, retourner en 1.
- 5. Calculer $e \leftarrow d^{-1} \mod \phi(N)$ À la fin, $ed \equiv 1 \mod \phi(N)$

Bilan : $N \approx 2^n$, $e \approx 2^n$, $d \approx 2^{128}$.

- ▶ Signature = 256 multiplications $\operatorname{mod} N \rightsquigarrow \mathcal{O}\left(n^2\right)$.
- ▶ Vérification = 2n multiplications $mod N \rightsquigarrow \mathcal{O}(n^3)$.

C'est 16× plus rapide, mais...

Est-ce sûr?

Application #1

RSA avec petit exposant secret

Attaque de Michael J. Wiener, 1989

Situation

- ► ENTRÉE : e, N
- ▶ PROMESSES : $ed = 1 + k \cdot \phi(N)$ et $d \leq N^{\alpha}$ (« petit »)
- ▶ BUT : retrouver d ou $\phi(N)$.

$$B = \begin{pmatrix} \sqrt{N} & -e \\ 0 & N \end{pmatrix} \qquad \text{[Pourquoi?} \to \text{poly]}$$

Vecteur (inconnu) « intéressant » : $\mathbf{x} = (d, k)B = (d\sqrt{N}, kN - ed)$

Applications des diapos précédentes

- Volume du réseau : $Vol(\mathcal{L}) = |\det B| = N\sqrt{N} = N^{3/2}$.
- ▶ Heuristique gaussienne suggère $\lambda_1(\mathcal{L}) \approx \sqrt{\operatorname{Vol}(\mathcal{L})} \approx N^{3/4}$.

$$\implies$$
 Si $\|\mathbf{x}\| \ll N^{3/4}$, on retrouve \mathbf{x} avec SVP \implies d

RSA avec petit exposant secret (suite & fin)

Michael J. Wiener, 1989

Situation

- ightharpoonup $ed = 1 + k \cdot \phi(N)$

$$B = \begin{pmatrix} \sqrt{N} & -e \\ 0 & N \end{pmatrix}$$

CLAIM: $\|\mathbf{x}\| \approx d\sqrt{N}$

Il suffit de montrer $kN - ed \approx d\sqrt{N}$.

- 1. $kN ed = \frac{k(N \phi(N))}{1} 1$.
- 2. $k = (ed 1)/\phi(n) < ed/\phi(N) < d$
- 3. $N \phi(N) = N (p 1)(q 1) = p + q 1 \approx \sqrt{N}$. CQFD

Conclusion : si $d < N^{1/4}$, alors...

- $\|\mathbf{x}\| < N^{3/4} \rightsquigarrow \mathbf{x} = \text{plus court vecteur}$
- ▶ Résoudre SVP en dim. 2 révèle d

Debriefing et retour sur les réseaux

▶ Paramètres proposés ($N \approx 2048$ bits, $d \approx 128$ bits) cassés!

```
import fpyll1  # cf. https://github.com/fplll/fpylll
def attack(N, e):  # temps d'exécution : 1.5ms
    M = fpylll.IntegerMatrix(2, 2)
    s = int(sqrt(N))
    M[0, 0] = s
    M[0, 1] = -e
    M[1, 1] = N
    x = fpylll.SVP.shortest_vector(M)
    return abs(x[0] // s)
```

- On peut construire une mauvaise base du réseau avec les informations publiques (vecteurs de taille $\approx N$)
- \Rightarrow Le plus court vecteur est de taille $\ll N^{3/4}$
- Une super base contient directement les vecteurs courts...

Partir sur de bonnes bases (SVP)

Plan

Résolution de programmes linéaires entiers

Cryptanalyse de RSA avec Petits exposants secrets

Cryptanalyse des générateurs linéaires congruentiels tronqués

Résolution de Subset-Sum

Chiffrement homomorphe sur les entiers

Algorithme de Coppersmith

Norme POSIX : spécification (obligatoire) de mrand48()

```
uint64_t rand48_state;

void srand48(uint32_t seed) {
  rand48_state = seed;
  rand48_state = 0x330e + (rand48_state << 16);
}

uint32_t mrand48() { /* renvoie 32 bits ``aléatoires'' */
  rand48_state = (0x5deece66d * rand48_state + 11) & 0xfffffffffff;
  return (rand48_state >> 16);
}
```

Spécification de C : suggestion d'implantation de rand()

```
static unsigned long int next = 1;

void srand(unsigned int seed) {
    next = seed;
}

int rand(void) { /* renvoie 15 bits `aléatoires'' */
    next = next * 1103515245 + 12345;
    return ((unsigned)(next/65536) % 32768);
}
```

Utilisation typique des réseaux en cryptanalyse

Procédure habituelle #1

- 1. Infos publiques → base d'un réseau
- 2. vecteur spécial x est « anormalement court »
- 3. Résoudre SVP → obtenir x
- 4. Extraire secrets de x

Procédure habituelle #2

- 1. Infos publiques → base d'un réseau et y
- 2. vecteur spécial x est « anormalement proche » de y
- 3. Résoudre CVP sur y → obtenir x
- 4. Extraire secrets de x
- ▶ PB #1 : être sûr que x est bien le plus court/proche
- ► PB #2 : résoudre SVP/CVP (potentiellement difficile)

Utilisation typique des réseaux en cryptanalyse

Problème #1

Comment être sûr que x est bien le plus court?

Heuristique gaussienne

$$\lambda_1(\mathcal{L}) \approx \sqrt{n} \left(\operatorname{Vol}(\mathcal{L}) \right)^{\frac{1}{n}}.$$

Si on sait d'avance que le réseau contient un vecteur spécial x sensiblement plus court que ce que « prédit » l'heuristique gaussienne, alors c'est **probablement** le plus court du réseau.

Application #2

Générateur congruentiel linéaire tronqué (Knuth, 1980)

- ► Graine = X_0
- $ightharpoonup X_{i+1} = aX_i \bmod m \quad \text{et} \quad Y_i = \lfloor X_i/k \rfloor$
- ► Sortie = $Y_0, Y_1, Y_2, ...$

Les bits de poids faibles des X_i sont masqués

Propriété attendue

Sortie indistinguable de bits « vraiment » aléatoires

Attaque

- Si on peut prédire la sortie, alors on a un distingueur
 - (Il suffit de vérifier si la prédiction est correcte)
- Si on récupère la graine, on peut prédire la sortie...

Générateur congruentiel linéaire tronqué (Knuth, 1980)

- ► Graine = X_0
- $ightharpoonup X_{i+1} = aX_i \bmod m \quad \text{et} \quad Y_i = |X_i/k|$
- ► Sortie = $Y_0, Y_1, Y_2, ...$

Hypothèses : a, m connus, b = 0

Stratégie : construire un réseau qui contient X₀

- $ightharpoonup \mathbf{x} = (X_0, X_1, \dots)$ (inconnu)
- $\mathbf{y} = \mathbf{k} \times (\mathbf{Y}_0, \mathbf{Y}_1, \dots)$ (connu, « approximation » de \mathbf{x})

Application de la stratégie standard # 2

Application de la stratégie standard # 2

Application de la stratégie standard # 2

Stratégie : construire un réseau qui contient X₀

- $ightharpoonup \mathbf{x} = (X_0, X_1, \dots)$ (inconnu)
- $\mathbf{y} = \mathbf{k} \times (\mathbf{Y}_0, \mathbf{Y}_1, \dots)$ (connu, « approximation » de \mathbf{x})

$$X_{i+1} = aX_i \mod m \qquad \Longleftrightarrow \qquad X_{i+1} = a^iX_0 + q_im$$

Par conséquent :

$$(X_0, q_1, \dots, q_{n-1}) egin{pmatrix} 1 & a & a^2 & \dots & a^{n-1} \\ & m & & & \\ & & m & & \\ & & & \ddots & \\ & & & & m \end{pmatrix} = (X_0, X_1, \dots, X_{n-1})$$

(technique générale pour ramener les problèmes mod m à des problèmes sur les entiers)

Situation

$$\begin{pmatrix}
1 & a & a^2 & \dots & a^{n-1} \\
 & m & & & \\
 & & m & & \\
 & & & \ddots & \\
 & & & m & & \\
 & & & & m
\end{pmatrix}$$

Problème potentiel

Est-ce que x est le plus proche vecteur de y dans le réseau?

Application de la stratégie standard # 2

Application de la stratégie standard # 2

Situation

$$\mathbf{x} = (\mathbf{X}_0, \mathbf{X}_1, \dots)$$

$$\begin{pmatrix} 1 & \mathsf{a} & \mathsf{a}^2 & \dots & \mathsf{a}^{n-1} \\ & \mathsf{m} & & & \\ & & \mathsf{m} & & \\ & & & \ddots & \\ & & & & \mathsf{m} \end{pmatrix}$$

Problème potentiel

Est-ce que x est le plus proche vecteur de y dans le réseau?

Solution

- ► Si $\|\mathbf{y} \mathbf{x}\| < \frac{1}{2}\lambda_1(\mathcal{L})$, c'est garanti
- ▶ Heuristique gaussienne $\rightsquigarrow \lambda_1(\mathcal{L})$

Situation

$$ightharpoonup Y_i = \lfloor X_i/k \rfloor$$

$$ightharpoonup \mathbf{x} = (X_0, X_1, \dots)$$

$$ightharpoonup \mathbf{y} = \mathbf{k} \times (\mathbf{Y}_0, \mathbf{Y}_1, \dots)$$

$$\|\mathbf{y} - \mathbf{x}\| < \frac{1}{2}\lambda_1(\mathcal{L})?$$

$$\begin{pmatrix}
1 & a & a^2 & \dots & a^{n-1} \\
 & m & & & \\
 & & m & & \\
 & & & \ddots & \\
 & & & m
\end{pmatrix}$$

Primo :
$$\|\mathbf{x} - \mathbf{y}\| < k\sqrt{n}$$

$$X_i - kY_i = X_i \mod k < k$$
, donc $\|\mathbf{x} - \mathbf{y}\| < \sqrt{k^2 + \dots + k^2} = k\sqrt{n}$

Secundo :
$$\lambda_1(\mathcal{L}) \approx m^{1-1/n} \sqrt{n}$$

$$\operatorname{Vol}(\mathcal{L}) = m^{n-1}$$
. Heuristique gaussienne : $\lambda_1(\mathcal{L}) \approx \sqrt{n} \operatorname{Vol}(\mathcal{L})^{1/n}$.

Calculer CVP sur y renvoie bien x si...

$$k\sqrt{n} < m^{1-1/n}\sqrt{n}$$
, donc $n > \frac{\log m}{\log m - \log k}$

Discussion

- Observer n sorties du PRG puis résoudre CVP en dim. n
- $ightharpoonup n > \log m/(\log m \log k)$
 - $ightharpoonup X_i$ grand ightharpoonup plus dur
 - $ightharpoonup Y_i$ petit ightharpoonup plus dur
- Paramètres proposés ($m = 2^{128}, k = 2^{120}$) $\rightsquigarrow n > 16$.
- ► CVP en dimension ≈ 20 = facile \implies cassé!

```
import fpyll1  # cf. https://github.com/fplll/fpylll
def attack(y):  # temps d'exécution : 8ms
    # [----REDACTED----]
    fpylll.LLL.reduction(M)  # requis par CVP.closest_vector()
    x = fpylll.CVP.closest_vector(M, y)
    return x[0]
```

CVP en grande dimension?

Plan

Résolution de programmes linéaires entiers

Cryptanalyse de RSA avec Petits exposants secrets

Cryptanalyse des générateurs linéaires congruentiels tronqués

Résolution de Subset-Sum

Chiffrement homomorphe sur les entiers

Algorithme de Coppersmith

Fonction à sens unique subset sum

- I Génère n entiers (A_i) aléatoires sur m bits
 - Pas de trucs supercroissants bizarres
- V Sur une entrée de n bits (x_1, x_2, \dots, x_n) , calcule :

$$\mathcal{F}_{(A_i)}(x) = \sum_{i=1}^n x_i A_i \mod 2^m$$

But (rappel : c'est NP-dur)

Étant donné $\mathbf{y} \leq 2^m$, trouver $\mathbf{x} \in \{0,1\}^n$ tel que $\mathbf{F}(\mathbf{x}) = \mathbf{y}$

Fonction à sens unique subset sum

- I Génère n entiers (A_i) aléatoires sur m bits
 - Pas de trucs supercroissants bizarres
- V Sur une entrée de n bits (x_1, x_2, \dots, x_n) , calcule :

$$\mathcal{F}_{(A_i)}(x) = \sum_{i=1}^n x_i A_i \mod 2^m$$

But (rappel : c'est NP-dur)

Étant donné $\mathbf{y} \leq 2^m$, trouver $\mathbf{x} \in \{0,1\}^n$ tel que $\mathbf{F}(\mathbf{x}) = \mathbf{y}$

Question à 1000 points

- ightharpoonup n = 128 (suffisamment grand)
- Est-ce dur quelle que soit la taille des A_i (m bits)?

Application #3

$$\mathbf{y} = \mathbf{F}(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{A}_{i} \mod 2^{m}, \qquad \mathsf{donc}:$$

$$(\mathbf{k}, \mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) \cdot \begin{pmatrix} 2^{m} \\ \mathbf{A}_{1} & 2 \\ \mathbf{A}_{2} & 2 \\ \vdots & & \ddots \\ \mathbf{A}_{n} & & 2 \end{pmatrix} = (\mathbf{y}, 2\mathbf{x}_{1}, 2\mathbf{x}_{2}, \dots, 2\mathbf{x}_{n})$$

- Le vecteur $(y, 2x_1, 2x_2, \dots, 2x_n)$ appartient au réseau engendré par les lignes de la matrice, et il est proche de $(y, 1, 1, \dots, 1)$
- La distance entre les deux est \sqrt{n} (très, très faible)
- $\Rightarrow (\mathbf{y}, 2\mathbf{x}_1, ..., 2\mathbf{x}_n)$ certainement le + proche de $(\mathbf{y}, 1, ..., 1)$
- ▶ Résoudre CVP dans le réseau $\rightsquigarrow x_1, x_2, \dots, x_n$...

Obstacle

Le réseau est de **grande dimension** (n = 128). CVP est infaisable.

Utilisation de CVP approché

Situation

- cible y = (y, 1, 1, ..., 1)
- $\mathbf{x} = (\mathbf{y}, 2\mathbf{x}_1, \dots, 2\mathbf{x}_n)$
- $\|\mathbf{y} \mathbf{x}\| = \sqrt{n}$

$$\begin{array}{cccc}
 & \begin{pmatrix} 2^m & & & \\ A_1 & 2 & & \\ \vdots & & \ddots & \\ A_n & & & 2 \end{pmatrix}
\end{array}$$

Algorithmes pour APPROX-CVP $_{\gamma}$

- ► On sait qu'on récupère \mathbf{x}' t.q. $\|\mathbf{y} \mathbf{x}'\| \le \gamma \|\mathbf{y} \mathbf{x}\| \le \gamma \sqrt{n}$.
- ightharpoonup Que faire avec \mathbf{x}' ?

Utilisation de CVP approché

Situation

- cible y = (y, 1, 1, ..., 1)
- $\mathbf{x} = (\mathbf{y}, 2\mathbf{x}_1, \dots, 2\mathbf{x}_n)$
- $\|\mathbf{y} \mathbf{x}\| = \sqrt{n}$

$$\begin{array}{cccc}
 & \begin{pmatrix} 2^m & & & \\ A_1 & 2 & & \\ \vdots & & \ddots & \\ A_n & & & 2 \end{pmatrix}
\end{array}$$

Algorithmes pour APPROX-CVP $_{\gamma}$

- ► On sait qu'on récupère \mathbf{x}' t.q. $\|\mathbf{y} \mathbf{x}'\| \le \gamma \|\mathbf{y} \mathbf{x}\| \le \gamma \sqrt{n}$.
- ightharpoonup Que faire avec \mathbf{x}' ?

The power of approximation

- ► Si $\gamma \|\mathbf{y} \mathbf{x}\| \ll \lambda_1(\mathcal{L})$, alors $\mathsf{CVP}_{\gamma}(\mathbf{y})$ renvoie $\mathbf{x}' = \mathbf{x}$.
- Précisément, $(\gamma + 1) \|\mathbf{y} \mathbf{x}\| < \lambda_1(\mathcal{L})$ suffit

Utilisation de CVP approché

Situation

- cible y = (y, 1, ..., 1)
- $ightharpoonup \mathbf{x} = (\mathbf{y}, \mathbf{x}_1, \dots, \mathbf{x}_n)$
- **Banco** si $\gamma \sqrt{n} \ll \lambda_1(\mathcal{L})$

$$\begin{array}{cccc}
 & \begin{pmatrix} 2^m & & & \\ A_1 & 2 & & \\ \vdots & & \ddots & \\ A_n & & & 2 \end{pmatrix}
\end{array}$$

Primo: plus court vecteur

- $ightharpoonup \operatorname{Vol} \mathcal{L} = 2^{m+n}$
- ▶ Heuristique gaussienne $\rightsquigarrow \lambda_1(\mathcal{L}) \approx 2^{(m+n)/(n+1)} \sqrt{n+1}$

Secundo: facteur d'approximation

Méthode en temps polynomial : $\gamma=2^{cn}$.

Banco
$$\iff$$
 $\gamma \sqrt{n} \ll \lambda_1(\mathcal{L}) \iff \mathsf{cn}^2 \ll \mathsf{m}$

Discussion

Fonction à sens unique subset sum

- I Génère n entiers (A_i) aléatoires sur m bits
- V Sur une entrée de *n* bits (x_1, x_2, \dots, x_n) , calcule :

$$\mathcal{F}_{(A_i)}(x) = \sum_{i=1}^n x_i A_i \mod 2^m$$

- 🕨 🧝 cassé 🙎 (en temps polynomial) si *m* trop grand
 - Dépend du facteur d'approximation pour (H)SVP
- ► Facteur d'approximation $\gamma = 2^{cn} \rightsquigarrow 2$ cassé 2 si $m \ge cn^2$
- ► En pratique, plongement + LLL $\rightsquigarrow \gamma \approx 1.0219^n$
- \Rightarrow n = 128? \longrightarrow m \approx 512 bits...
- ▶ 128 entiers de ≈ 128 bits semble vraiment sûr

Plan

Résolution de programmes linéaires entiers

Cryptanalyse de RSA avec Petits exposants secrets

Cryptanalyse des générateurs linéaires congruentiels tronqués

Résolution de Subset-Sum

Chiffrement homomorphe sur les entiers

Algorithme de Coppersmith

Syntaxe du chiffrement symétrique

Trois algorithmes

- 1. Paramètre de sécurité $n \in \mathbb{N}$.
- **2.** G (key **G**eneration) : $k \leftarrow G(1^n)$.
- 3. E (Encryption) et D (Decryption)

G forcément probabiliste. E généralement aussi.

Correction

Si $k \leftarrow G(1^n)$, alors pour tout $m \in \{0, 1\}^*$

$$D(k, E(k, m)) = m.$$

Sécurité? Plus tard

One-time Pad

$$E(k,m) = k \oplus m$$
.

Problèmes bien connus (« one-time »).

One-time Pad

$$E(k,m)=k\oplus m$$
.

Problèmes bien connus (« one-time »).

One-time Pad avec clef recyclable

- ▶ $G(1^n) = x \approx 2^n$ aléatoire
- $ightharpoonup \mathcal{M} = \{0,1\}, \quad \mathcal{C} = \mathbb{Z}.$
- ► E(x, m) = m + kx avec $k \approx 2^{\alpha n}$ aléatoire
- $ightharpoonup D(x,c) = c \mod x$

Idée sous-jascente : Masques = kx avec x fixé et k aléatoire.

One-time Pad avec clef recyclable

- $ightharpoonup G(1^n) = x \approx 2^n$ aléatoire
- E(x,m) = m + kx avec $k \approx 2^{\alpha n}$ aléatoire
- $ightharpoonup D(x,c) = c \mod x$

Problème #1 : si x est pair

 $c \equiv m + 2k(x/2)$, donc $m \equiv c \mod 2$... (on déchiffre sans la clef!)

One-time Pad avec clef recyclable

- ► $G(1^n) = x \approx 2^n$ aléatoire impair
- ightharpoonup E(x,m) = m + kx avec $k \approx 2^{\alpha n}$ aléatoire
- $ightharpoonup D(x,c) = c \mod x$

Problème #2: factorisation

- Un chiffré : $c_1 = m_1 + k_1 x$
- ightharpoonup « Deviner » $m_1 \rightsquigarrow c_1 m_1 = k_1 x$.
- ▶ Factoriser k₁x?

One-time Pad avec clef recyclable

- ► $G(1^n) = x \approx 2^n$ aléatoire impair
- ► E(x, m) = m + kx avec $k \approx 2^{\alpha n}$ aléatoire
- $ightharpoonup D(x,c) = c \mod x$

Problème #2: factorisation

- Un chiffré : $c_1 = m_1 + k_1 x$
- ightharpoonup « Deviner » $m_1 \rightsquigarrow c_1 m_1 = k_1 x$.
- ► Factoriser k_1x ? \leadsto Prendre n > 1000 et $\alpha \ge 1$ est suffisant.

One-time Pad avec clef recyclable

- ► $G(1^n) = x \approx 2^n$ aléatoire impair
- ► E(x, m) = m + kx avec $k \approx 2^{\alpha n}$ aléatoire
- $ightharpoonup D(x,c) = c \mod x$

Problème #3: PGCD

- ▶ Deux chiffrés : $c_1 = m_1 + k_1 x$ et $c_2 = m_2 + k_2 x$
- « Deviner » $m_1, m_2 \rightsquigarrow k_1 x$ et $k_2 x$
- ▶ PGCD(k_1x, k_2x) $\rightsquigarrow x$...

One-time Pad avec clef recyclable (2010, récent!)

- $G(1^n) = x \approx 2^n$ aléatoire impair
- ightharpoonup E(x,m) = m + 2r + kx avec $k \approx 2^{\alpha n}$, $r \approx 2^{\beta n}$ aléatoires
- $D(x,c) = (c \bmod x) \bmod 2$

Ajout d'un « bruit » r. Déchiffrement correct si r < x/2.

BONUS!

- $ightharpoonup c_1 + c_2$ chiffré de $m_1 + m_2 \mod 2$.
- $ightharpoonup c_1c_2$ chiffré de m_1m_2 .
- + Augmente la taille du « bruit » de 1 bit.
- × Double la taille du « bruit ».

x grand et β petit \Rightarrow calculs (limités) sur les chiffrés!

One-time Pad avec clef recyclable (2010, récent!)

- ► $G(1^n) = x \approx 2^n$ (impair) aléatoire
- ightharpoonup E(x,m) = m + 2r + kx avec $k \approx 2^{\alpha n}$, $r \approx 2^{\beta n}$ aléatoires
- $\blacktriangleright D(x,c) = (c \bmod x) \bmod 2$

Exemple : $x \approx 1024$ bits, $k \approx 1024$ bits, $r \approx 128$ bits

Question

Est-ce sûr? (et qu'est-ce que ça veut dire?)

One-time Pad avec clef recyclable (2010, récent!)

- ► $G(1^n) = x \approx 2^n$ (impair) aléatoire
- ightharpoonup E(x,m) = m + 2r + kx avec $k \approx 2^{\alpha n}$, $r \approx 2^{\beta n}$ aléatoires
- $ightharpoonup D(x,c) = (c \mod x) \mod 2$

Exemple : $x \approx 1024$ bits, $k \approx 1024$ bits, $r \approx 128$ bits

Question

Est-ce sûr? (et qu'est-ce que ça veut dire?)

Problème sous-jascent : PGCD approché

Retrouver x à partir de multiples « bruités » de x.

- ► ENTRÉE : multiples bruités : $k_1x + r'_1$, ..., $k_\ell x + r'_\ell$ bornes sur les tailles de k_i , r'_i , x.
- ► SORTIE : x

Application #4

Chiffrement homomorphe sur les entiers

Problème sous-jascent : PGCD approché

Retrouver x à partir de multiples « bruités » de x.

- ► ENTRÉE : multiples bruités $c_1 = k_1 x + r_1, \ldots, c_\ell = k_\ell x + r_\ell$ bornes $|x| < 2^n, |k_i| < X^\alpha, |r_i| < X^\beta$ (avec $\beta < 1$).
- ► SORTIE : x

Exemple : $x \approx 1024$ bits, $k_i \approx 1024$ bits, $r_i \approx 128$ bits

Retrouver les k (ou les r) permet de retrouver x

Stratégie

- ► « Bruit » petit : $\frac{c_i}{c_0} = \frac{k_i x + r_i}{k_0 x + r_0} \approx \frac{k_i}{k_0} \implies c_i k_0 \approx c_0 k_i$
- ▶ Donc $|c_ik_0 c_0k_i|$ est « petit »
- $|c_ik_0 c_0k_i| = |xk_ik_0 + r_ik_0 k_0k_ix r_0k_i| < X^{\alpha+\beta}$ $Comparer avec |c_ik_0| \approx X^{1+2\alpha}$

Maintenant vous devez commencer à avoir l'habitude

On pose :

pose:
$$\mathbf{x} = (k_0, k_1, \dots, k_{\ell-1}) \begin{pmatrix} 2X^{\beta} & c_1 & c_2 & \dots & c_{\ell-1} \\ & -c_0 & & & \\ & & -c_0 & & \\ & & & \ddots & \\ & & & -c_0 \end{pmatrix}$$

$$= \left(2X^{\beta}k_0, \ k_0r_1 - k_1r_0, \ \dots, \ k_0r_{\ell-1} - k_{\ell-1}r_0\right)$$

$$ightharpoonup |c_i k_0 - c_0 k_i| < 2X^{\alpha+\beta}$$
, donc $\|\mathbf{x}\| < 2X^{\alpha+\beta}\sqrt{\ell}$

Stratégie habituelle #1

On aimerait récupérer x en résolvant SVP dans le réseau engendré par les lignes de la matrice

Situation

$$\|\mathbf{x}\| < 2\mathbf{X}^{\alpha+\beta}\sqrt{\ell}$$

$$\begin{array}{c|ccccc} & c_1 & \ldots & c_{\ell-1} \\ & -c_0 & & & \\ & & \ddots & \\ & & & -c_0 \end{array}$$

Plus court vecteur?

- $Vol \mathcal{L} = 2X^{\beta} |c_0|^{\ell-1} \approx 2X^{\beta+(1+\alpha)(\ell-1)}$
- ► Heuristique gaussienne $\rightsquigarrow \lambda_1(\mathcal{L}) \approx X^{\beta/\ell + (1+\alpha)(\ell-1)/\ell} \sqrt{\ell}$

x devrait être le plus court vecteur si...

$$\mathbf{X}^{\alpha+\beta}$$
 \mathbf{X} $\mathbf{X}^{\beta/\ell+(1+\alpha)(\ell-1)/\ell}$ \mathbf{X}^{ℓ}

Qui se simplifie en $\ell > 1 + \alpha/(1 - \beta)$

Discussion

 $\mathbf{x} = (2\mathbf{X}^{\beta}\mathbf{k}_0,\dots)$ est le plus court vecteur du réseau si :

$$\ell > 1 + \alpha/(1 - \beta)$$

- Plus les multiples sont grands (α élevé), plus c'est dur
- Plus le bruit est important (β proche de 1), plus c'est dur
- ▶ ℓ petit (< 50) : on résout SVP exactement
- Paramètres proposés : $K, X \approx 1024$ bits, $R \approx 128$ bits

```
\sim \ell = 3. Cassé!
```

Discussion

Nouveaux paramètres (plus sûrs!)

- ▶ $x \approx 1024$ bits, $k_i \approx 65536$ bits, $r_i \approx 580$ bits
- \triangleright $\ell > 200$. Très dur de résoudre SVP exactement. LLL?

Situation

- $\mathbf{x} = (2\mathbf{X}^{\beta}\mathbf{k}_0, \dots)$, de norme $< 2\mathbf{X}^{\alpha+\beta}$
- x est le plus court vecteur du réseau si :

$$\ell > 1 + \alpha/(1 - \beta)$$

- $ightharpoonup \operatorname{Vol} \mathcal{L} \approx X^{\beta + (1+\alpha)(\ell-1)}$
- LLL permet d'approcher SVP avec facteur $\gamma = 2^{\ell/2}$
- LLL récupère (un multiple de) \mathbf{x} si $2^{\ell/2} \|\mathbf{x}\| < \lambda_2(\mathcal{L})$
- lacksquare $\lambda_2(\mathcal{L})=$ norme du 2ème vecteur le plus court

Hypothèse : il y a **un** vecteur spécial, et c'est **x**

Heuristique gaussienne : le **prochain** est de taille $\approx \operatorname{Vol}(\mathcal{L})^{1/\ell} \sqrt{\ell}$

 \Rightarrow LLL récupère **x** si $2^{\ell/2} X^{\alpha+\beta} \lll X^{\beta/\ell+(1+\alpha)(\ell-1)/\ell}$

Situation

- $\mathbf{x} = (2\mathbf{X}^{\beta}\mathbf{k}_0, \dots)$, de norme $< 2\mathbf{X}^{\alpha+\beta}$
- **x** est le plus court vecteur du réseau si $\ell > 1 + \alpha/(1 \beta)$

On utilise LLL pour approcher SVP

- LLL récupère x si $2^{\ell/2}X^{\alpha+\beta} \ll X^{\beta/\ell+(1+\alpha)(\ell-1)/\ell}$
- Ceci se simplifie en

$$\ell^2/2 - \ell n(1-\beta) + n(1-\beta+\alpha) < 0$$

Nouveau!

- ▶ ℓ trop grand = ça ne marche plus!
- Augmenter ℓ accroît l'écart entre $\lambda_1(\mathcal{L})$ et $\lambda_2(\mathcal{L})$
- ► Le facteur d'approximation pour SVP augmente plus vite...

Situation

- $\mathbf{x} = (2\mathbf{X}^{\beta}\mathbf{k}_0, \dots)$, de norme $< 2\mathbf{X}^{\alpha+\beta}$
- **x** est le plus court vecteur du réseau si $\ell > 1 + \alpha/(1 \beta)$
- LLL retrouve **x** si $\ell^2/2 \ell n(1-\beta) + n(1-\beta+\alpha) < 0$
- ▶ Discriminant : $\Delta = n^2(1-\beta)^2 2n(1-\beta+\alpha)$
- ▶ Il faut que $\Delta > 0$ pour qu'une solution existe, donc

$$n > 2\frac{1 - \beta + \alpha}{(1 - \beta)^2}$$

• Alors, on peut prendre $\ell = 1 + \frac{\alpha}{1-\beta} + \mathcal{O}\left(\mathbf{n}^{-1}\right)$

Discussion

- LLL casse le système si $n > 2(1 \beta + \alpha)/(1 \beta)^2$
- ▶ Réseau de dimension $\ell = 1 + \alpha/(1 \beta)$
- Paramètres proposés : $x \approx 1024$ bits, $k_i \approx 65536$ bits, $r_i \approx 580$ bits
- $\rightarrow \ell = 200$ et condition satisfaite \Rightarrow Cassé?

Jeu : trouvez des paramètres pas cassés!

Plan

Résolution de programmes linéaires entiers

Cryptanalyse de RSA avec Petits exposants secrets

Cryptanalyse des générateurs linéaires congruentiels tronqués

Résolution de Subset-Sum

Chiffrement homomorphe sur les entiers

Algorithme de Coppersmith

Problèmes algébrique

Polynômes bivariés sur $\mathbb Z$

- ▶ INPUT : P(X, Y) à coefficients dans \mathbb{Z} .
- ► SORTIE : liste de tous les $(x,y) \in \mathbb{Z}^2$ t.q. P(x,y) = 0
 - ightharpoonup (ou \perp s'il y en a une infinité).

Polynômes univariés modulo N

- ▶ INPUT : N et P(X) à coefficients modulo N.
- ▶ SORTIE : liste de tous les $x \in \mathbb{Z}_N$ t.q. $P(x) = 0 \mod N$
 - ► (ou ⊥ s'il y en a une infinité).

Racines de polynômes

$$P(X) = X^d + a_{d-1}X^{d-1} + \dots + x_2X^2 + a_1X + a_0$$

Racines de P?

- ightharpoonup FACILE sur $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}$
- ► FACILE modulo *p* (premier)
- DUR modulo N (factorisation inconnue)

Mais...

Algorithme de Coppersmith (1996)

- ► Il existe un algorithme polynomial qui trouve les *petites* racines de *P* modulo *N* (sans connaître la factorisation de *N*)
- « petites » : taille $\approx N^{\frac{1}{d}}$

Certains cas sont faciles (RSA avec e = 3)

Applications

RSA « textbook » avec e = 3

- Messages stéréotypés (« votre code secret est ... »)
- ► Padding aléatoire affine
- ... bref, toutes les situation où seule une fraction < 1/3 du message clair est inconnue.

$$P(X) = (aX + b)^3 - C$$

On retrouve tout en temps polynomial

Idées générales

$$P(X) = X^d + a_{d-1}X^{d-1} + \dots + x_2X^2 + a_1X + a_0$$

- 1. Si P a de petits coefficients :
 - ▶ Petite racine mod $N \rightsquigarrow$ petite racine sur \mathbb{Z} (facile à trouver)
 - Le modulo n'agit pas
 - équivalent à : $(a_0, a_1, \dots, a_{d-1})$ est un vecteur de norme faible
- 2. Sinon, on fabrique un nouveau polynôme Q(X) t.q.
 - $P(x) = 0 \mod N \iff Q(x) = 0 \text{ sur } \mathbb{Z} \text{ pour tout } |x| \leq \text{Borne}$
 - ightharpoonup (on cherche les racines de Q sur $\mathbb Z$ et c'est reglé)
 - Comment fabriquer Q?
 - a) Augmenter le modulo
 - b) Utiliser LLL

Step 1 : Augmenter le modulo

$$P(X) = X^{d} + a_{d-1}X^{d-1} + \dots + x_{2}X^{2} + a_{1}X + a_{0}$$

On fixe (par la méthode de la pensée magique) un entier k.

Si $P(x) \equiv 0 \mod N$, alors

- Autrement dit :

S'annulent sur x modulo N^k

Step 2 : Lemme de Howgrave-Graham

Petits coefficients + petite racine mod N^k = racine sur $\mathbb Z$

Theorem (Howgrave-Graham, 1997)

$$g(X) = \sum_i c_i X^i$$
 possède n monômes. B est une borne. Si :

- 1. $g(x_0) \equiv 0 \mod N^k$ et $|x_0| \leq B$
- 2. $\|g(BX)\| < N^k/\sqrt{n}$ (norme du vecteur formé par les coefficients du polynome) Alors $g(x_0) = 0$ (sur \mathbb{Z}).

Démonstration.

$$g(BX) = \sum_{i} c_{i}B^{i}X^{i} \text{ donc } ||g(BX)|| = ||(c_{0}, c_{1}B, c_{2}B^{2}, \dots)||.$$

$$|g(x_0)| = \left|\sum_{i} c_i x_0^i\right| \le \sum_{i} |c_i x_0^i| \le \sum_{i} |c_i| B^i \le \sqrt{n} ||g(BX)|| < N^k$$

Mais $g(x_0)$ est un multiple de N^k , donc c'est zéro...

Equivalence des normes

- $\|x\|_1 = |x_1| + \cdots + |x_n|$
- $\|x\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$

On a:

$$\|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$$

Démonstration.

- ▶ It faut prouver : $|x_1| + \cdots + |x_n| \le \sqrt{n} \sqrt{x_1^2 + \cdots + x_n^2}$.
- Conséquence directe de Cauchy-Schwartz \(\begin{aligned}
 &\text{\$\exititt{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\texit{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\}\exititt{\$\text{\$\text{\$\e

Equivalence des normes

- $\|x\|_1 = |x_1| + \cdots + |x_n|$
- $\|x\|_2 = \sqrt{x_1^2 + \cdots + x_n^2}$

On a:

$$\|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$$

Démonstration.

- ▶ It faut prouver : $|x_1| + \cdots + |x_n| \le \sqrt{n} \sqrt{x_1^2 + \cdots + x_n^2}$.
- ▶ Inégalité de Cauchy-Schwartz : $|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- ▶ Dans notre cas u = (1, 1, ..., 1) et $v = (|x_1|, ..., |x_n|)$.
- ▶ Borne atteinte par $x = (1/n, 1/n, \dots, 1/n)$.

Step 3 : Former un polynôme à petits coefficients

On cherche les racines de P de taille $\leq B$.

- ▶ On prend nos polynômes $Q_{ij} = N^i \cdot x^j \cdot P(x)^{k-i} \equiv 0 \mod N^k$
- On écrit les vecteurs des coefficients de Q_{ij}(BX)
 - ▶ Dans la base $1, X, X^2, X^3, \dots$
 - Les coefficients sur la colonne de X^i sont des multiples de B^i .
- On lance LLL sur le réseau qu'ils engendrent
- Ca donne un vecteur de norme faible, dont on peut déduire un polynôme à petits coefficients qui s'annule sur x mod N^k.