PAM

Medel Colorado Yoselin Merari

2022-06-05

PARTITION AROUND MEDOIDS (PAM)

Cargar libreria

```
library(cluster)
```

Cargar la matriz de datos.

```
X<-as.data.frame(state.x77)</pre>
colnames(X)
## [1] "Population" "Income"
                                    "Illiteracy" "Life Exp"
                                                                 "Murder"
## [6] "HS Grad"
                     "Frost"
                                    "Area"
                      \#1.\text{-} Transformación de las variables x1,x3 y x8 \# con la función de logaritmo.
X[,1] \leftarrow log(X[,1])
colnames(X)[1]<-"Log-Population"</pre>
X[,3] < -\log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"</pre>
X[,8] < -\log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
                       — # Metodo PAM #-
#1.- Separación de filas y columnas.
dim(X)
## [1] 50 8
n < -dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarización univariante.

```
X.s<-scale(X)</pre>
```

3.- Aplicación del algoritmo

```
pam.5<-pam(X.s,5)
```

4.- Clusters

```
cl.pam<-pam.5$clustering
cl.pam</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	4	5	5	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	4	4	3	3	4
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	4	1	1	5	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	4	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	4	2	5	3
	_	-	_	•	
##	New Mexico	New York	North Carolina	North Dakota	Ohio
## ##	New Mexico	New York	North Carolina	North Dakota	Ohio 3
	New Mexico 1 Oklahoma	New York 3 Oregon	1	4	Ohio 3 South Carolina
##	1	3	1	4	3
##	1	3	1	4	3
## ## ##	1 Oklahoma 3	3 Oregon 4	1 Pennsylvania 3	4 Rhode Island 5	3 South Carolina
## ## ##	1 Oklahoma 3	3 Oregon 4 Tennessee 1	1 Pennsylvania 3	4 Rhode Island 5	3 South Carolina 1 Vermont 5

#5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green","yellow","pink")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Representación gráfica de la eficacia de clasificación de una observacion dentro de un grupo.

1.- Generación de los calculos

Silhouette for PAM

Average silhouette width: 0.26