Quantitative Finance

Exo: Pricing under Historical Distributions

Patrick Hénaff

Version: 12 mars 2024

Contents

0.1	Construction de la distribution empirique
0.2	Nouvelle information
0.3	Smile
library	y(lubridate)
library	y(fExoticOptions)
library	y(kableExtra)
library	y(ggplot2)
library	y(stats)
library	y(nleqslv)
library	y(reshape)

Dans cet exercice, on teste la méthode Derman-Zou pour ajuster et rendre risque-neutre une distribution empirique. Utiliser l'algorithme contenu dans la note de cours pour calculer les q_i .

0.1 Construction de la distribution empirique

Sélectionner une série du SBF120 et générer 500 scénarios de rendement moyen sur 3 mois. En effectuant un tirage avec remise dans la serie des rendements quotidiens.

- Afficher la distribution empirique.
- Calculer l'espérance de rendement et la volatilité.

0.2 Nouvelle information

Le taux sans risque est 2%. Le spot est $S_0 = 100$. Incorporer les informations suivantes et observez à chaque fois l'effet sur la distribution ajustée.

- 1. Le straddle ATM est valorisé avec la volatilité empirique.
- 2. Le call 110 a une volatilité implicite égale à la volatilité empirique + 1%
- 3. Le call 85 a une volatilité implicite égale à la volatilité empirique + 0.5%

0.3 Smile

Calculez les volatilité implicites pour les strikes de 80 à 120 et tracer la courbe du smile.