Stat 571B Experimental Design

Topic 3: Basic concepts – part 2

Montgomery: chapter 2

Prof. Lingling An University of Arizona

Outline

- Type I, II error
- Choice of sample size
- Summary of tests on means & variances
- Confidence interval and normality check

Illustration of Types of error

Two types of error

Truth	H ₀ Correct	H ₁ Correct
Data	(no disease)	(disease)
Decide H ₀	1- α	β
"fail to reject H ₀ "	True Negative	False Negative
(test shows no disease)		
Decide H ₁	α	1- β
"reject H ₀ "	False Positive	True Positive
(test shows disease)		

- Type I error False positive rate
- $\alpha = P(\text{ reject } H_0 | H_0 \text{ true})$
 - Probability reject the true null hypothesis
- α is significance level

- Type II error--False negative rate
- $\beta = P(\text{ do not reject } H_0 \mid H_1 \text{ true })$
 - Probability not reject a false null hypothesis
- Power = $1-\beta$ = P(reject H₀ | H₁ true)

One sample test – type I, II error

- H_0 : μ = μ_0 , H_1 : $\mu \neq \mu_0$, and assume variance σ^2 is known
- Let δ=μ- μ₀
- Let Z₀= (x_bar- μ₀)/(σ/√n), then under H₀: Z₀ ~N(0,1) and under H₁: Z₀ ~N(δ√n/σ, 1)

- Type II error depend on:
 - $-\alpha$
 - sample size
 - population variance
 - difference between actual and hypothesized means
- To decrease β (type II error) for a fixed α (type I error), we need increase sample size n.

Why we have such distributions in the previous slide?

Consider the two-sided hypothesis

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu \neq \mu_0$

Suppose that the null hypothesis is false and that the true value of the mean is $\mu = \mu_0 + \delta$, say, where $\delta > 0$. The test statistic Z_0 is

$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{X} - (\mu_0 + \delta)}{\sigma / \sqrt{n}} + \frac{\delta \sqrt{n}}{\sigma}$$

Therefore, the distribution of Z_0 when H_1 is true is

$$Z_0 \sim N\left(\frac{\delta\sqrt{n}}{\sigma}, 1\right)$$

Choice of sample size (one sample)

$$\beta = \Phi \left(z_{\alpha/2} - \frac{\delta \sqrt{n}}{\sigma} \right) - \Phi \left(-z_{\alpha/2} - \frac{\delta \sqrt{n}}{\sigma} \right)$$

$$n \simeq \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{\delta^2}$$

Choice for sample size (two samples case, known variances)

- H_0 : $\mu_1 = \mu_2 + \Delta_0$, H_1 : $\mu_1 \neq \mu_2 + \Delta_0$
- Assume two samples have the same size n, then

$$n \simeq \frac{(z_{\alpha/2} + z_{\beta})^2(\sigma_1^2 + \sigma_2^2)}{(\Delta - \Delta_0)^2}$$

where Δ is the true difference in means.

 An alternative way for calculating sample size is operating characteristic curve (read p41-42) • For *one-sided test* of two-sample case,

$$n = \frac{(z_{\alpha} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\Delta - \Delta_0)^2}$$

Example

- A product developer is interested in reducing the drying time of a primer paint. Two formulations of the paint are tested: formulation 1 is the standard chemistry, and formulation 2 has a new drying ingredient that should reduce drying time.
- From experience, it is known that the standard deviation of drying time is 8 minutes, and this inherent variability should be unaffected by the addition of the new ingredient.
- Suppose that if the true difference in drying times is as much as 10 minutes. He wants to detect this with probability at least 0.90.

• Under the null hypothesis Δ_0 =0 and onesided alternative hypothesis is with Δ =10. Since the power is 0.9, β =0.10 (Z_{β} = $Z_{0.10}$ =1.28). Given α =0.05 (so Z_{α} =1.645),

$$n = \frac{(Z_{\alpha} + Z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\Delta - \Delta_0)^2} = \frac{(1.645 + 1.28)^2 (8^2 + 8^2)}{(10 - 0)^2} = 11$$

Summary of tests

■ TABLE 2.3

	Tests on Means w	vith Variance Known		
	Hypothesis	Test Statistic	Fixed Significance Level Criteria for Rejection	P-Value
One	$H_0\colon \mu=\mu_0 \ H_1\colon \mu eq\mu_0$		$ Z_0 > Z_{lpha/2}$	$P = 2[1 - \Phi(Z_0)]$
J	$egin{aligned} H_0 \colon \mu &= \mu_0 \ H_1 \colon \mu &< \mu_0 \ H_0 \colon \mu &= \mu_0 \ H_1 \colon \mu &> \mu_0 \end{aligned}$	$Z_0 = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}}$	$Z_0 < -Z_{\alpha}$	$P = \Phi(Z_0)$
	H_1 : $\mu > \mu_0$		$Z_0 > Z_{\alpha}$	$P=1-\Phi(Z_0)$
4	$H_0: \mu_1 = \mu_2 \ H_1: \mu_1 eq \mu_2 \ H_0: \mu_1 = \mu_2 \ H_1: \mu_1 < \mu_2$		$ Z_0 > Z_{\alpha/2}$	$P=2[1-\Phi(Z_0)]$
two samples	$H_0: \mu_1 - \mu_2 \ H_1: \mu_1 < \mu_2$	$Z_0=rac{\overline{y}_1-\overline{y}_2}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}$	$Z_0 < -Z_{\alpha}$	$P=\Phi(Z_0)$
	$H_0 \colon \mu_1 = \mu_2 \ H_1 \colon \mu_1 > \mu_2$		$Z_0 > Z_{\alpha}$	$P=1-\Phi(Z_0)$

■ TABLE 2.4

Tests on Means of Normal Distributions, Variance Unknown

	Hypothesis	Test Statistic	Fixed Significance Level Criteria for Rejection	P-Value	
	H_0 : $\mu = \mu_0$ H_1 : $\mu eq \mu_0$		$ t_0 > t_{\alpha/2, n-1}$	sum of the probability above t_0 and below $-t_0$	
One _ sample	$H_1: \mu \neq \mu_0 \ H_0: \mu = \mu_0 \ H_1: \mu < \mu_0$	$t_0 = \frac{\overline{y} - \mu_0}{S/\sqrt{n}}$	$t_0 < -t_{\alpha,n-1}$	probability below t_0	
	$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$		$t_0 > t_{\alpha,n-1}$	probability above t_0	<u> </u>
	H_0 : $\mu_1=\mu_2$ H_1 : $\mu_1 eq \mu_2$	if $\sigma_1^2 = \sigma_2^2$ $t_0 = \frac{\overline{y}_1 - \overline{y}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $v = n_1 + n_2 - 2$	$ t_0 > t_{\alpha/2,\nu}$	sum of the probability above t_0 and below $-t_0$	
two samples	$H_0: \mu_1 = \mu_2 \ H_1: \mu_1 < \mu_2$	if $\sigma_1^2 \neq \sigma_2^2$ $t_0 = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$t_0 < -t_{\alpha,\nu}$	probability below t_0	
	$H_0\colon \mu_1=\mu_2 \ H_1\colon \mu_1>\mu_2$	$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$	$t_0 > t_{\alpha,\nu}$	probability above t_0	14

Summary of tests -2

■ TABLE 2.7

Tests on Variances of Normal Distributions

	Hypothesis	Test Statistic	Fixed Significance Level Criteria for Rejection	
	$H_0: \sigma^2 = \sigma_0^2 \ H_1: \sigma^2 \neq \sigma_0^2 \ H_0: \sigma^2 = \sigma_0^2 \ H_1: \sigma^2 < \sigma_0^2 \ H_1: \sigma^2 < \sigma_0^2 \ H_0: \sigma^2 = \sigma_0^2 \ H_0: \sigma^2 > \sigma_0^2 \ H_0: \sigma^2 > \sigma_0^2$		$\chi_0^2 > \chi_{\alpha/2, n-1}^2$ or $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$	
One - sample	$H_0: \sigma^2 = \sigma_0^2 \ H_1: \sigma^2 < \sigma_0^2$	$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi_0^2 < \chi_{1-\alpha,n-1}^2$	
	H_0 : $\sigma^2 = \sigma_0^2$ H_1 : $\sigma^2 > \sigma_0^2$		$\chi_0^2 > \chi_{\alpha,n-1}^2$	
4 7770	$H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 eq \sigma_2^2 $ $H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 < \sigma_2^2 $ $H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 < \sigma_2^2 $	$F_0=\frac{{\mathcal S}_1^2}{{\mathcal S}_2^2}$	$F_0 > F_{\alpha/2,n_1-1,n_2-1}$ or $F_0 < F_{1-\alpha/2,n_1-1,n_2-1}$	
two samples -	$H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 < \sigma_2^2$	$F_0 = rac{S_2^2}{S_1^2}$	$F_0 > F_{\alpha,n_2-1,n_1-1}$	
	$egin{aligned} H_0 \colon m{\sigma}_1^2 &= m{\sigma}_2^2 \ H_1 \colon m{\sigma}_1^2 \! > \! m{\sigma}_2^2 \end{aligned}$	$F_0=\frac{S_1^2}{S_2^2}$	$F_0 > F_{\alpha,n_1-1,n_2-1}$	

Confidence Intervals (See p 44)

- Hypothesis testing gives an objective statement concerning the difference in means, but it doesn't specify "how different" they are.
- General form of a confidence interval

$$L \le \theta \le U$$
 where $P(L \le \theta \le U) = 1 - \alpha$

• The 100(1- α)% confidence interval on the difference in two means:

$$\overline{y}_{1} - \overline{y}_{2} - t_{\alpha/2, n_{1} + n_{2} - 2} S_{p} \sqrt{(1/n_{1}) + (1/n_{2})} \leq \mu_{1} - \mu_{2} \leq \overline{y}_{1} - \overline{y}_{2} + t_{\alpha/2, n_{1} + n_{2} - 2} S_{p} \sqrt{(1/n_{1}) + (1/n_{2})}$$

Example

The actual 95 percent confidence interval estimate for the difference in mean tension bond strength for the formulations of Portland cement mortar is found by substituting in Equation 2.30 as follows:

$$16.76 - 17.04 - (2.101)0.284\sqrt{\frac{1}{10} + \frac{1}{10}} \leq \mu_1 - \mu_2$$

$$\leq 16.76 - 17.04 + (2.101)0.284\sqrt{\frac{1}{10} + \frac{1}{10}}$$

$$-0.28 - 0.27 \leq \mu_1 - \mu_2 \leq -0.28 + 0.27$$

$$-0.55 \leq \mu_1 - \mu_2 \leq -0.01$$

Thus, the 95 percent confidence interval estimate on the difference in means extends from -0.55 to -0.01 kgf/cm². Put another way, the confidence interval is $\mu_1 - \mu_2 = -0.28 \pm 0.27$ kgf/cm², or the difference in mean strengths is -0.28 kgf/cm², and the accuracy of this estimate is ± 0.27 kgf/cm². Note that because $\mu_1 - \mu_2 = 0$ is *not* included in this interval, the data do not support the hypothesis that $\mu_1 = \mu_2$ at the 5 percent level of significance (recall that the *P*-value for the two-sample *t*-test was 0.042, just slightly less than 0.05). It is likely that the mean strength of the unmodified formulation exceeds the mean strength of the modified formulation.

Checking normal assumptions

- There are two ways of testing normality.
 - Graphical methods:
 - visualize the distributions of random variables or differences between an empirical distribution and a theoretical distribution (e.g., the standard normal distribution).
 - Numerical methods:
 - present summary statistics such as skewness and kurtosis, or conduct statistical tests of normality.

	Graphical Methods	Numerical Methods
Descriptive	Stem-and-leaf plot, (skeletal) box plot,	Skewness
	dot plot, histogram	Kurtosis
Theory-driven	P-P plot	Shapiro-Wilk, Shapiro-Francia test
J	Q-Q plot	Kolmogorov-Smirnov test (Lillefors test)
		Anderson-Darling/Cramer-von Mises tests
		Jarque-Bera test, Skewness-Kurtosis test

Graphical methods are intuitive and easy to interpret, while numerical methods provide objective ways of examining normality.

Checking normal assumptions – The Normal Probability Plot

 Y_1, Y_2, \ldots, Y_n is a random sample from a population with mean μ and variance σ^2 .

Order Statistics: $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$ where $Y_{(i)}$ is the ith smallest value.

if the population is normal, i.e., $N(\mu,\sigma^2)$, then

$$E(Y_{(i)}) \approx \mu + \sigma r_{\alpha_i} \text{ with } \alpha_i = \frac{i-3/8}{n+1/4}$$
 where r_{α_i} is the 100 α_i th percentile of $N(0,1)$ for $1 \leq i \leq n$.

Given a sample y_1, y_2, \ldots, y_n , the plot of $(r_{\alpha_i}, y_{(i)})$ is called the normal probability plot

Checking normal assumptions – The Normal Probability Plot

■ FIGURE 2.11 Normal probability plots of tension bond strength in the Portland cement experiment

- the points falling around a straight line indicate normality of the population;
- Deviation from a straight line pattern indicates non-normality

- We discussed method for comparing two conditions or treatments.
- But how about compare more than two conditions or levels of a factor?

Last slide

• Read Sections: finish Ch2

