Midterm Exam 2-20-2020

Instructions

- Read these instructions and each question carefully.
- Answer all eight questions below on the answer sheets provided.
- Do not remove the stable holding the answer sheets together.
- Write your name, the date, and the course on each page of the answer sheet as a precaution in case they become separated somehow.
- Write only on the fronts of the answer sheets to keep the work neat and legible.
- Show your work and/or explain your answers.
- Organize your answers logically.
- Be NEAT! If it is too hard to read, it is wrong.
- Be both complete and concise. You will lose points for both errors of omission and commission.
- Use scratch paper to work answers out ahead of time if needed to ensure they are neat, concise, complete, and organized. Use the backs of the pages of questions and output as scratch paper.
- Turn in ONLY the answer sheets. The questions and output are yours to keep or dispose of.
- 1. (10%) What is meant by seasonality in a time series context? What is the simplest robust way to control for it?
- 2. (10%) What is covariance stationarity? Why do we care?
- 3. (10%) We discussed the Wold representation theorem and $AR \leftarrow \rightarrow MA$ invertibility at length. Explain why these things are important to our understanding of how to estimate accurate approximations of time series processes with simple and robust statistical procedures.
- 4. (10%) What does dynamically complete mean? Why do we care? How do we check whether a model is dynamically complete?
- 5. (10%) Consider the ARDL model $y_t = \alpha + \beta x_t + r_t$ where x is an exogenous predictor variable and the residual r follows the AR(1) process $r_t = \rho r_{t-1} + \varepsilon_t$ in which ε is a white noise disturbance. Derive the dynamically complete version of the model.

Questions 6-8 are on the following page.

Questions 6-8 refer to the statistical output provided. The output results from an analysis of the relationship of retail sector employment in the Lakeland-Winterhaven Metropolitan Statistical Area (MSA) to five non-seasonally adjusted monthly local time series and one for the U.S., for the period January 1990 through December 2019. The table below presents definitions and relevant context. In the output, the letters "ln" before one of these variable names refers to the natural logarithm of the variable.

Variable	Definition	Relevant Context
retail	Retail employment, thousands	Not a component of the local economic base. Rather, the presence of the economic base creates an induced or derived demand for retail employment
1f	Labor force, thousands	
uer	Unemployment rate	A measure local labor market strength
usuer	US unemployment rate	A measure of national labor market strength
whsto	Warehousing and storage employment, thousands	Part of the local economic base due to Lakeland's location relative to major transportation routes
lh	Leisure and hospitality employment, thousands.	Part of the local economic base because tourism is purchased by those outside the local area
bp	Building permits for single family residences, thousands	Part of the economic base because the need for more living space ties directly to immigrants, whose income comes from out of the local area

- 6. (10%) Interpret the output provided for question 6. Include an explanation of what that output implies for modeling relationships among these time series.
- 7. (20%) You are interested in whether the Warehousing and Storage industry or the Leisure and Hospitality industry contribute more to the area's economic base. You estimate Models 1 and 2 to shed light on this question, working under the assumption that the sector with the larger impact on the economic base will have a larger association with induced (or derived) retail employment. Note that variables are not in logarithmic form in these models.
- a. What is the difference between models 1 and 2? Why does it matter?
- b. What is the cumulative effect of a one unit increase in warehousing and storage employment on retail employment?
- c. What is the cumulative effect of a one unit increase in leisure and hospitality employment on retail employment?
- d. Provide and defend an answer to the question of which sector is more important to Lakeland's economic base based on this output.
- 8. (20%) Consider the output for models 3-6. Which is most promising as a basis for forecasting retail sector employment? Why? Thoroughly support your answer. Note that variables are in logarithmic form in these models.

Correlograms for Lakeland MSA Retail Employment

Shaded area indicates 95% Confidence Interval

. dfuller lnretail, lag(12)

Augmented Dickey-Fuller test for unit root Number of obs

Number of obs = 347

		Interpolated Dickey-Fuller				
	Test	1% Critical	5% Critical	10% Critical		
	Statistic	Value	Value	Value		
Z(t)	-1.598	-3.452	-2.876	-2.570		

MacKinnon approximate p-value for Z(t) = 0.4845

Output for Question 7

Model 1 $. \ \ \text{reg d.retail } 1 (0/2,12) \, \text{d.whsto } 1 (0/2,12) \, \text{d.lh i.month}$

Source	l SS	df	MS		per of obs	=	347
Model	+ 28.3297916	1 0	1.4910416		9, 327) >> F	=	8.71 0.0000
Residual		327	.17121927		quared	=	
	+				R-squared		
Total	84.3184949	346	.24369507	_	: MSE	=	.41379
	,						
D.retail	Coef.	Std. Err.	t	P> t	[95% Con	 f.	Interval]
whsto	+ 						
D1.	1.582245	.3176526	4.98	0.000	.957345		2.207146
LD.	.2982512	.3138155	0.95	0.343	3191008		.9156031
L2D.	2752693	.3171678	-0.87	0.386	8992162		.3486775
L12D.	.9301951	.3256653	2.86	0.005	.2895316		1.570859
lh							
D1.	.3861625	.0842238	4.58	0.000	.2204736		.5518515
LD.	0936584	.0670806	-1.40	0.164	2256223		.0383056
L2D.	4027094	.0674687	-5.97	0.000	535437		2699819
L12D.	.2053196	.0836569	2.45	0.015	.040746		.3698932
. 1							
month	101006	1167645	1 0 4	0 007	1070100		2515002
2	.121886	.1167645	1.04	0.297	1078183		.3515903
3	.1393876	.1131004	1.23	0.219	0831086		.3618837
4	.199093	.1162354	1.71	0.088	0295705		.4277566
5	1220647	.1128671	-1.08	0.280	3441019		.0999725
6	.1261276	.1138682	1.11	0.269	0978792		.3501343
7	.0729668	.1134542	0.64	0.521	1502254		.296159
8	.064486	.1168059	0.55	0.581	1652999		.294272
9	.1015845	.1148821	0.88	0.377	1244167		.3275858
10	.116996	.1134443	1.03	0.303	1061768		.3401688
11	.0814679	.114867	0.71	0.479	1445036		.3074395
12	.1502732	.1264503	1.19	0.236	0984854		.3990319
0000	l 0999964	.0868256	-1.15	0.250	2708035		0700107
_cons	_	.0000230	-1.13	0.250	2/00035		.0708107

Model 2

. newey d.retail 1(0/2,12) d.whsto 1(0/2,12) d.lh i.month , lag(24)

Regression with Newey-West standard errors Number of obs = 347 maximum lag: 24 F(19, 327) = 21.78 Prob > F = 0.0000

I		Newey-West				
D.retail	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
D1.	1.582245	.3260628	4.85	0.000	.9408001	2.223691
LD.	.2982512	.306239	0.97	0.331	3041961	.9006984
L2D.	2752693	.2586356	-1.06	0.288	784069	.2335303
L12D.	.9301951	.3749445	2.48	0.014	.1925873	1.667803
lh						
D1.	.3861625	.0864389	4.47	0.000	.2161161	.556209
LD.	0936584	.0587851	-1.59	0.112	209303	.0219862
L2D.	4027094	.0538931	-7.47	0.000	5087303	2966885
L12D.	.2053196	.0644299	3.19	0.002	.0785702	.332069
month						
2	.121886	.0556603	2.19	0.029	.0123885	.2313835
3	.1393876	.0455228	3.06	0.002	.0498331	.228942
4	.199093	.0519031	3.84	0.000	.0969869	.3011992
5	1220647	.0872453	-1.40	0.163	2936975	.0495682
6	.1261276	.0667523	1.89	0.060	0051905	.2574457
7	.0729668	.050299	1.45	0.148	0259837	.1719173
8	.064486	.0615042	1.05	0.295	0565077	.1854798
9	.1015845	.0512611	1.98	0.048	.0007414	.2024277
10	.116996	.0481678	2.43	0.016	.0222381	.211754
11	.0814679	.0640806	1.27	0.205	0445944	.2075302
12	.1502732	.0556949	2.70	0.007	.0407077	.2598387
_cons	0999964	.0450287	-2.22	0.027	188579	0114138

Output for Question 8

Model 3

reg d.lnretail l(1/12)d.lnretail l(1/12)d.lnlf l(1/12)d.lnuer l(1/12)d.lnusuer /// l(1/12)d.lnwhsto l(1/12)d.lnlh l(1/12)d.lnbp i.month

(regression output excluded for space)

10-Fold Cross Validation

	-	RMSE
	-+-	
est1		.0110013
est2		.0127157
est3		.0132477
est4		.0124585
est5		.0108486
est6		.0129102
est7		.0122873
est8		.0142541
est9		.0134581
est10	1	.0143277

Leave-One-Out Cross-Validation Results

Akaike's information criterion and Bayesian information criterion

Model | Obs 11(null) 11(model) df AIC BIC

. | 347 876.3915 1147.103 96 -2102.207 -1732.671

Note: N=Obs used in calculating BIC; see [R] BIC note.

Breusch-Godfrey LM test for autocorrelation

lags(p)	 	chi2	df	Prob > chi2
1	+ 	0.345	1	0.5571
2		3.997	2	0.1355
3		6.610	3	0.0854
4		6.875	4	0.1427
5		8.304	5	0.1402
6		8.320	6	0.2156
7	İ	8.965	7	0.2552
8	İ	9.397	8	0.3099
9	İ	20.072	9	0.0175
10	İ	20.125	10	0.0281
11		21.396	11	0.0295
12	İ	31.550	12	0.0016

```
testparm 1(1/12)d.lnretail

(1) LD.lnretail = 0

(2) L2D.lnretail = 0

(3) L3D.lnretail = 0

(4) L4D.lnretail = 0

(5) L5D.lnretail = 0

(6) L6D.lnretail = 0

(7) L7D.lnretail = 0

(8) L8D.lnretail = 0

(9) L9D.lnretail = 0

(10) L10D.lnretail = 0

(11) L11D.lnretail = 0

(12) L12D.lnretail = 0

(13) L3D.lnwhsto = 0

(4) L4D.lnwhsto = 0

(5) L5D.lnwhsto = 0

(6) L6D.lnwhsto = 0

(7) L7D.lnretail = 0

(8) L8D.lnretail = 0

(9) L9D.lnretail = 0

(10) L10D.lnretail = 0

(11) L11D.lnretail = 0

(12) L12D.lnretail = 0

(13) L12D.lnwhsto = 0

(14) L12D.lnwhsto = 0

(15) L12D.lnwhsto = 0

(16) L12D.lnwhsto = 0

(17) L12D.lnwhsto = 0

(18) L12D.lnwhsto = 0

(19) L12D.lnwhsto = 0

(19) L12D.lnwhsto = 0
                                                                                                                                                                        . testparm 1(1/12)d.lnwhsto
                                                                                                                                                                                               F(12, 251) = 0.79
                                                                                                                                                                                                                     Prob > F = 0.6619
  . testparm 1(1/12) d.lnlf
                                                                                                                                                                . testparm 1(1/12)d.lnlh
     (1) LD.lnlf = 0
                                                                                                                                                                          (1) LD.lnlh = 0
 (3) L3D.lnlf = 0

(4) L4D.lnlf = 0

(5) L5D.lnlf = 0

(6) L6D.lnlf = 0

(7) L7D.lnlf = 0

(8) L8D.lnlf = 0

(9) L9D.lnlf = 0

(10) L10D.lnlf = 0

(11) L11D
..... = 0

(5) L5D.lnlf = 0

(6) L6D.lnlf = 0

(7) L7D.lnlf = 0

(8) L8D.lnlf = 0

(9) L9D.lnlf = 0

(10) L10D.lnlf = 0

(11) L11D.lnlf = 0

(12) L12D.lnlf = 0

F(12, 251) = 2
     (2) L2D.lnlf = 0
                                                                                                                                                                              (2) L2D.lnlh = 0
                                                                                                                                                                              (3) L3D.lnlh = 0
(4) L4D.lnlh = 0
                                                                                                                                                                              (5) L5D.lnlh = 0
                                                                                                                                                                               (6) L6D.lnlh = 0
                                                                                                                                                                               (7) L7D.lnlh = 0
                                                                                                                                                                              (8) L8D.lnlh = 0
                                                                                                                                                                              (9) L9D.lnlh = 0
                                                                                                                                                                            (10) L10D.lnlh = 0
                                                                                                                                                                             (11) L11D.lnlh = 0
                                                                                                                                                                          (12) L12D.lnlh = 0
                                                                                                                                                                                                F(12, 251) = 2.23
                                                                                                                                                                                                                   Prob > F = 0.0109
  . testparm 1(1/12)d.lnuer
                                                                                                                                             . testparm 1(1/12)d.lnbp
     (1) LD.lnuer = 0
(2) L2D.lnuer = 0
   (1) LD.lnuer = 0

(2) L2D.lnuer = 0

(3) L3D.lnuer = 0

(4) L4D.lnuer = 0

(5) L5D.lnuer = 0

(6) L6D.lnuer = 0

(7) L7D.lnuer = 0

(8) L8D.lnuer = 0

(9) L9D.lnuer = 0

(10) L1DD.lnuer = 0

(11) L1D.lnuer = 0
                                                                                                                                                                           (1) LD.lnbp = 0
                                                                                                                                                                              (2) L2D.lnbp = 0
                                                                                                                                                                              (3) L3D.lnbp = 0
                                                                                                                                                                              (4) L4D.lnbp = 0
                                                                                                                                                                              (5) L5D.lnbp = 0
                                                                                                                                                                           (6) L6D.lnbp = 0
(7) L7D.lnbp = 0
                                                                                                                                                                          (8) L8D.lnbp = 0
                                                                                                                                                                          (9) L9D.lnbp = 0
                                                                                                                                                                          (10) L10D.lnbp = 0
                                                                                                                                                                         (11) \quad L11D.lnbp = 0
                                                                                                                                                           (12) L12D.lnbp = 0 (12) L12D.lnbp = 0
                          F(12, 251) = 2.06

Prob > F = 0.0203
                                                                                                                                                                                                   F(12, 251) = 1.06
                                                                                                                                                                                                                     Prob > F = 0.3908
. testparm l(1/12)d.lnusuer
(1) LD.lnusuer = 0
(2) L2D.lnusuer = 0
(3) L3D.lnusuer = 0
(4) L4D.lnusuer = 0
(5) L5D.lnusuer = 0
(6) L6D.lnusuer = 0
(7) L7D.lnusuer = 0
(8) L8D.lnusuer = 0
(9) L9D.lnusuer = 0
(10) L10D.lnusuer = 0
(11) L11D.lnusuer = 0
(12) L12D.lnusuer = 0
(13) 4.month = 0
(4) 5.month = 0
(5) 6.month = 0
(6) 7.month = 0
(7) 8.month = 0
(8) 9.month = 0
(9) 10.month = 0
(10) L10D.lnusuer = 0
(11) L11D.lnusuer = 0
(12) L12D.lnusuer = 0
(13) L12D.lnusuer = 0
(14) L12D.lnusuer = 0
(15) 6.month = 0
(16) 7.month = 0
(17) 8.month = 0
(18) 9.month = 0
(19) 10.month = 0
(10) 11.month = 0
(11) L12D.lnusuer = 0
(12) L12D.lnusuer = 0
(13) 4.month = 0
(14) 5.month = 0
(15) 6.month = 0
(16) 7.month = 0
(17) 8.month = 0
(18) 9.month = 0
(19) 10.month = 0
(10) 11.month = 0
(11) L12D.lnusuer = 0
(12) L12D.lnusuer = 0
(13) 4.month = 0
(4) 5.month = 0
(5) 6.month = 0
(6) 7.month = 0
(7) 8.month = 0
(10) L10D.lnusuer = 0
(11) L11D.lnusuer = 0
(12) L12D.lnusuer = 0
(13) 4.month = 0
(14) 5.month = 0
(15) 6.month = 0
(16) 7.month = 0
(17) 8.month = 0
(18) 9.month = 0
(19) 10.month = 0
(10) 11.month = 0
(11) L12D.lnusuer = 0
(12) L12D.lnusuer = 0
(13) 4.month = 0
(14) 5.month = 0
(15) 6.month = 0
(16) 7.month = 0
(17) 8.month = 0
(18) 9.month = 0
(19) 10.month = 0
(19) 10.month = 0
(10) L12D.lnusuer = 0
(11) L12D.lnusuer = 0
(11) L12D.lnusuer = 0
(12) L12D.lnusuer = 0
(13) 4.month = 0
(14) 5.month = 0
(15) 6.month = 0
(16) 7.month = 0
(17) 8.month = 0
(18) 9.month = 0
(19) 10.month = 0
                                                                                                                                                                                                   F(11, 251) = 1.54
                                             Prob > F = 0.0007
                                                                                                                                                                                                                      Prob > F = 0.1168
```

Model 4

reg d.lnretail l(1/12)d.lnretail l(1/12)d.lnlf l(1/12)d.lnuer l(1/12)d.lnusuer /// l(1/12)d.lnlh i.month

(regression output excluded for space)

10-Fold Cross Validation

	RMSE
	+
est1	.0121968
est2	.01538
est3	.0111407
est4	.0111009
est5	.0161237
est6	.0088344
est7	.0116765
est8	.0122955
est9	.0108636
est10	.0120957

Leave-One-Out Cross-Validation Results

Method		Value
Root Mean Squared Errors	1	.0117591
Root Mean Squared Ellors	ı	
Mean Absolute Errors		.00888454
Pseudo-R2		.62384824

Akaike's information criterion and Bayesian information criterion

Model	,	ll(model)	AIC	BIC
ı		1131.786	2119.572	-1842.421

Note: N=Obs used in calculating BIC; see [R] BIC note.

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.826	1	0.3635
2	4.449	2	0.1081
3	6.714	3	0.0816
4	6.976	4	0.1372
5	8.601	5	0.1261
6	8.611	6	0.1967
7	8.861	7	0.2628
8	9.156	8	0.3293
9	19.362	9	0.0223
10	20.354	10	0.0261
11	21.420	11	0.0293
12	33.047	12	0.0010

Model 5

reg d.lnretail 1(1,2,12,24)d.lnretail 1(1,2,12)d.lnlf 1(1,2,12)d.lnusuer /// 1(1,2,12)d.lnlh i.month

(regression output excluded for space)

10-Fold Cross Validation

	RMSE
	.+
est1	.0109601
est2	.011824
est3	.0098204
est4	.0107243
est5	.0080266
est6	.0114437
est7	.0099501
est8	.0101516
est9	.0105282
est10	.0132597

Leave-One-Out Cross-Validation Results

Method		Value
	. — — .	
Root Mean Squared Errors		.01072511
Mean Absolute Errors		.00794259
Pseudo-R2		.67542327

Akaike's information criterion and Bayesian information criterion

Model	Obs	,	,	AIC	BIC
'	335			-2096.464	-2001.111

Note: N=Obs used in calculating BIC; see [R] BIC note.

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.241	1	0.6236
2	1.913	2	0.3843
3	5.381	3	0.1459
4	7.792	4	0.0995
5	8.714	5	0.1210
6	8.786	6	0.1860
7	9.698	7	0.2064
8	11.333	8	0.1835
9	11.583	9	0.2379
10	11.583	10	0.3139
11	12.216	11	0.3476
12	30.167	12	0.0026

Model 6

reg d.lnretail 1(1/4,12) d.lnretail i.month

(regression output excluded for space)

	1	RMSE
	-+-	
est1		.0174193
est2		.0107302
est3		.0119368
est4		.0112553
est5		.0087022
est6		.0122575
est7		.0090112
est8		.0109853
est9		.0170309
est10		.0153709

Leave-One-Out Cross-Validation Results

Akaike's information criterion and Bayesian information criterion

Model | Obs 11(null) 11(model) df AIC BIC

. | 347 876.3915 1041.371 17 -2048.743 -1983.304

Note: N=Obs used in calculating BIC; see [R] BIC note.

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.053	1	0.8173
2	3.794	2	0.1500
3	6.354	3	0.0956
4	12.159	4	0.0162
5	13.370	5	0.0201
6	13.530	6	0.0353
7	16.770	7	0.0189
8	25.818	8	0.0011
9	25.853	9	0.0022
10	25.919	10	0.0039
11	26.303	11	0.0058
12	84.295	12	0.0000
