

Finite Element Simulation For Mechanical Design

Simple contact analysis

Prof. Andrea Bernasconi Dr. Luca M. Martulli

This document is distributed by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical Design for personal use only, as teaching/learning materials. Any other use is forbidden without the written consent of the author.

Cube 10x10 mm Pressure 10 MPa

Prevent rigid motions!

cube-on-cube.cae cube-on-cube.jnl

C3D8R_LM_N-to-S_SS
C3D8R_LM_S-to-S_SS
C3D8R_PM_N-to-S_SS
C3D10_PM_N-to-S_SS
C3D10_PM_S-to-S_SS

Contact discretization techniques

11

Node-to-Surface

Element type:

C3D8R

Contact Enforcement:

Lagrange Multiplier

Surface-to-Surface

Element type:

C3D8R

Contact Enforcement:

Lagrange Multiplier

This document is distributed by Andrea Bernasconi to the students of the course Finite Element Simulation or Me Manical Design Por Bersonal use only, as teaching/learning materials. Any other use is forbidden without the written consent of the author.

Lagrange Multiplier Method

Element type:

C3D8R

Contact Discretization:

Node-to-Surface

Penalty Method

Element type:

C3D8R

Contact Discretization:

Node-to-Surface

Contact enforcement methods

Lagrange Multiplier Method

Element type:

C3D8R

Contact Discretization:

Node-to-Surface

Penalty Method

Element type:

C3D8R

Contact Discretization:

Node-to-Surface

Finite Element Simulation For Mechanical Design

Contact between two objects

Prof. Andrea Bernasconi Dr. Luca M. Martulli

2D - Disc on block

Problem statement

A steel cylinder is pressed into an aluminum block.

Consider a linear elastic behaviour for both materials, and they are homogeneous.

A vertical (y-direction) point load of F=35kN/mm is applied to the cylinder.

A 2D approximation (plane strain) is assumed to be satisfactory.

9

2D – Disc on block

Problem statement

Geometry

This document is distributed by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical Design for personal use only, as teaching/learning materials. Any other use is forbidden without the written consent of the author.

Block height = 200 mm

Block width = 200 mm

Cylinder diameter = 100 mm

Material properties

 $E_{cyl} = 210 \text{ Gpa}$

E_block = 70 Gpa

 $nu_cyl = nu_block = 0.33$

2D – Disc on block

10

Analytical solution

Maximum pressure

$$p_{H} = \sqrt{\frac{W E_{12}'}{\pi \rho_{12}}} = 3585 \text{ N/mm}^{2}$$

Semi-width of contact area

$$b_{H} = 2\sqrt{\frac{W}{\pi} \frac{\rho_{12}}{E'_{12}}} = 6,215 \text{ mm};$$

where

Equivalent radius of curvature

Equivalent elastic modulus

Elastic modulus

2D – Disc on block

Shear stresses without friction

$$\begin{split} \max_{(\overline{x},\overline{y})} \left\{ \overline{\tau}_{_{\text{H}}} \right\} &= 0.300 \text{ at } \overline{x} = 0.00, \overline{y} = 0.78 \\ \max_{(\overline{x},\overline{y})} \left\{ \overline{\tau}_{_{\text{os}}} \right\} &= 0.256 \text{ at } \overline{x} = 0.85, \overline{y} = 0.50 \end{split}$$

Guidelines for choosing master/slave

When a contact pair contains two surfaces, the two surfaces are not allowed to include any of the same nodes and you must choose which surface will be the slave and which will be the master.

For simple contact pairs consisting of two deformable surfaces, the following basic guidelines can be used:

- The larger of the two surfaces should act as the master surface.
- If the surfaces are of comparable size, the surface on the stiffer body should act as the master surface.
- If the surfaces are of comparable size and stiffness, the surface with the coarser mesh should act as the master surface.