Números base 2, 8, 10, 16

Sistemas da Computação

Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007

Tópicos

- Números binário, decimal, octal, hexadecimal
- Conversões entre bases
- Números inteiros e fracionários
- aritmética binária
- representação de números negativos, complemento de 1 e 2

Introdução

- Máquinas do século XIX usavam base 10
- O matemático inglês George Boole (1815-1864) publicou em 1854 os princípios da lógica booleana
 - variáveis assumem apenas valores 0 e 1 (verdadeiro e falso).

Introdução

- É difícil implementar dígito decimal (um número inteiro entre 0 e 9) em componentes elétricos
 - Esta dificuldade determinou o uso da base 2 em computadores.
- A lógica booleana foi usada na implementação dos circuitos elétricos internos a partir do século XX.

O que são números decimais

- Numeração decimal base 10
 - símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - característica de valor posicional (casa)
 - unidades (1s), dezenas (10s), centenas (100s), milhar (1000s), ...
 - Exemplo: número 238
 - $8 \times 1 = 8$
 - $3 \times 10 = 30$
 - $2 \times 100 = 200$
 - \bullet 8 + 30 + 200 = 238

O que são números decimais

- Numeração decimal base 10
 - Posições:

O que são números decimais

- Numeração decimal base 10
 - Posições:

O número "mil trezentos e setenta" decimal é obtido: $(1 \times 1000) + (3 \times 100) + (7 \times 10) = 1000 + 300 + 70 = 1370$

- Numeração binária base 2
 - símbolos 0, 1
 - Cada dígito binário é chamado bit
 - característica de valor posicional (casa)
 - cada posição vale o dobro da anterior, assim:
 - casa dos 1s, casa dos 2s, casa dos 4s, casa dos 8s, casa dos 16s, ...

Posições:

Posições:

Exemplos:

128s	64s	32s	16s	8s	4s	2s	1s
0	0	0	1	0	0	1	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2^1	2 ⁰

O número "zero, zero, zero, um, zero, zero, um, um" binário vale 16 + 2 + 1 = 19

$$10011_{2} = 19_{10}$$

Exemplos:

128s	64s	32s	16s	8s	4s	2s	1s
0	0	1	1	0	0	1	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2¹	2 ⁰

O número "zero, zero, um, um, zero, zero, um, um" binário vale 32 + 16 + 2 + 1 = 51

$$110011_{2} = 51_{10}$$

Exemplos:

O número "zero, zero, um, um, zero, zero, um, zero" binário vale 32 + 16 + 2 = 50

$$110010_{2} = 50_{10}$$

Exemplos:

128s	64s	32s	16s	8s	4s	2s	1s
0	0	1	0	1	1	1	0
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

O número "zero, zero, um, zero, um, um, um, zero" binário vale?

• Fracionários:

Fracionários:

O número "zero, um, um, um, zero vírgula, um, zero um" binário vale:

$$8 + 4 + 2 + 0.5 + 0.125 = 14,625$$

$$1110,101_{2} = 14,625_{10}$$

- Conversão de base 10 para base 2:
 - Trabalha com divisão inteira + resto

$$_{-}$$
 87 $_{_{10}}$ = 1010111 $_{_{2}}$

```
87 / 2 = 43 resto 1

43 / 2 = 21 resto 1

21 / 2 = 10 resto 1

10 / 2 = 5 resto 0

5 / 2 = 2 resto 1

2 / 2 = 1 resto 0

1 / 2 = 0 resto 1
```

- Conversão de base 10 para base 2:
 - Trabalha com divisão inteira + resto

$$_{-}$$
 87 $_{_{10}}$ = 1010111 $_{_{2}}$

VERIFICANDO

87 / 2 =	43	resto	1	
43 / 2 = 3	21	resto	1	
21 / 2 = 1	10	resto	1	
10 / 2 =	5	resto	0	
5 / 2 =	2	resto	1	
2 / 2 =	1	resto	0	
1 / 2 =	0	resto	1	

64s	32s	16s	8s	4s	2s	1s
1	0	1	0	1	1	1
2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2^1	2 ⁰

- Conversão de base 10 para base 2:
 - Trabalha com divisão inteira + resto

$$-87_{10} = 1010111_{2}$$

VERIFICANDO

87 / 2 = 43 resto 1	64s	32s	16s	8s	4s	2s	1s
43 / 2 = 21 resto 1 21 / 2 = 10 resto 1	1	0	1	0	1	1	1
10 / 2 = 5 resto 0 5 / 2 = 2 resto 1 2 / 2 = 1 resto 0	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
1/2 = 0 resto 1		e	64 + 16	+ 4 + 2	2 + 1 = 8	87	

Condição de parada $1/2 = \mathbf{0}$ resto 1

$$-0,375_{10} = ,011_{2}$$

$$-0,375_{10} = ,011_{2}$$

$$_{-}$$
 0,84375 $_{_{10}}$ = ,11011 $_{_{2}}$

Conversão fracionária base 10 p/ base 2

$$-0.84375_{10} = .11011_{2}$$

Condição de parada $0.50 \times 2 = 1.00$

$$-5,625_{10} = 101,101_{2}$$

Condição de parada

$$1/2 = 0$$
 resto 1

Condição de parada $0.50 \times 2 = 1.00$

DICA:

DIVIDE

(LSB)

MULTIPLICA

$$0,50 \times 2 = 1,00$$

- Exercícios:
 - Conversões entre bases

Soma de números base 2

```
- Regra 1: 0 + 0 = 0
```

- Regra 2: 0 + 1 = 1
- Regra 3: 1 + 0 = 1
- Regra 4: 1 + 1 = 0 e "vai-um" (transporte)
 - resultado final = 10

Soma de números base 2

Soma de números base 2

- Números com precisão FINITA
 - Quanto é possível representar em 3 casas ?
- Conceito de overflow
 - resultado da soma é um número maior que o número de bits para representá-lo
 - Ex.: registrador de 4 bits
 - 1111 + 0001 -> overflow
 - 0001 + 0111 -> OK
 - 1010 + 0111 -> overflow

- Exercícios
 - Soma de números binários

- Representação de números negativos em binário (3 maneiras + conhecidas):
 - magnitude com sinal (signed magnitude)
 - sinônimos: magnitude / amplitude
 - complemento de 1 (one's complement)
 - complemento de 2 (two's complement)

Números binários com sinal Ex.: 8 bitsl

- magnitude com sinal (signed magnitude)
 - o bit MSB (mais significativo) é utilizado para indicar que o número é negativo
 - o restante do número é representado como o mesmo número positivo

magnitude com sinal (signed magnitude)

$$0000100_2 = 4_{10}$$

magnitude com sinal (signed magnitude)

$$10000100_{2} = -4_{10}$$

- magnitude com sinal (signed magnitude)
 - Problema: 2 representações para 0 (zero)

$$0000000_2 = 0_{10}$$

$$1000000_{2} = -0_{10}$$

- complemento de 1 (one's complement)
 - o MSB é utilizado para sinal
 - inverte todos os bits da amplitude (0 vira 1 e 1 vira 0)

complemento de 1 (one's complement)

	128s	64s	32s	16s	8s	4s	2s	1s	
	1	0	0	0	0	1	0	0	
'	MSB							LSB	
	128s	64s	32s	16s	8s	4s	2s	1s	
	1	1	1	1	1	0	1	1	
1	MSB							LSB	

$$11111011_{2} = -4_{10}$$

- complemento de 1 (one's complement)
 - Problema: 2 representações para o 0 (zero)

$$0000000_2 = 0_{10}$$

$$11111111_{2} = -0_{10}$$

- complemento de 2 (two's complement)
 - o MSB é utilizado para indicar o sinal
 - a amplitude é representada em complemento de 1 somado de 1

complemento de 2 (two's complement)

128s	64s	32s	16s	8s	4s	2s	1s	
1	0	0	0	0	1	0	0	
MSB							LSB	
128s	64s	32s	16s	8s	4s	2s	1s	
1	1	1	1	1	0	1	1	
MSB							LSB	
128s	64s	32s	16s	8s	4s	2s	1s	+1
1	1	1	1	1	1	0	0	
MSB			1111	1100	= - 4	4	LSB	

Copyleft Rossano Pablo Pinto

- complemento de 2 (two's complement)
 - Benefícios:
 - Mesmo circuito para soma e subtração
 - apenas uma representação de zero:

$$0000000_2 = 0_{10}$$

 complemento de 2 (two's complement)

Representação em complemento de 2 com 8 bits

	sinal amplitude			
+127	0	111	1111	
+126	0	111	1110	
+125	0	111	1101	
+124	0	111	1100	
•••	•	•	•	
+3	0	000	0011	
+2	0	000	0010	
+1	0	000	0001	
+0	0	000	0000	
- 1	1	111	1111	
- 2	1	111	1110	
- 3	1	111	1101	
	•	•	•	
- 125	1	000	0011	
- 126	1	000	0010	
- 127	1	000	0001	
- 128	1	000	0000	

- complemento de 2 (two's complement)
 - Faixas de números:
 - 8 bits: -128 à +127
 - 16 bits: -32.768 à +32.767
 - 32 bits: -2.147.483.648 à +2.147.483.647
 - 64 bits: -9.223.372.036.854.775.808 à +9.223.372.036.854.775.807

Adição de números complemento de 2

$$(+27) + (+10) + 37$$

$$(+27) = 00011011 + 00001010 + 0010101$$

1 11 11 111

Adição de 2 números positivos

1a Parcela em complemento de 2 2a Parcela em complemento de 2 Soma em complemento de 2

Adição de 2 números negativos

1111 1111 1a Parcela em complemento de 2 + 1111 1101 2a Parcela em complemento de 2 11111 1100 Soma em complemento de 2

Descarte

Adição de números complemento de 2
 Adição de 1 número positivo menor a 1 negativo maior

Adição de 1 número positivo maior a 1 negativo menor

• Subtração de números complemento de 2

Subtracão de números complemento de 2

Prefixos binários

- $kilo k/K 2^{10} = 1.024$
- $-\text{mega} M 2^{20} = 1.048.576$
- $giga G 2^{30} = 1.073.741.824$
- $tera T 2^{40} = 1.099.511.627.776$
- $peta P 2^{50} = 1.125.899.906.842.624$
- $exa E 2^{60} = 1.152.921.504.606.846.976$
- zetta Z 2⁷⁰ = 1.180.591.620.717.411.303.420
- yotta Y 2⁸⁰ = 1.208.925.819.614.629.174.706.176

- Exercícios
 - Soma e subtração usando complemento de 2

- Numeração hexadecimal base 16
 - símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,E, F
 - característica de valor posicional (casa)
 - 1s, 16s, 256s, 4096s, 65536s, 1048576s...
 - Exemplo: número 2B6
 - $6 \times 1 = 6$
 - $11 \times 16 = 176$
 - $2 \times 256 = 512$
 - \bullet 6 + 176 + 512 = 694₁₀

- Numeração hexadecimal base 16
 - Posições

O número "A3F" hexadecimal é obtido: $(10 \times 256) + (3 \times 16) + (15 \times 1) = 2560 + 48 + 15 = 2623_{10}$

- Numeração hexadecimal base 16
 - Posições

O número "A3F" hexadecimal é obtido: $(10 \times 256) + (3 \times 16) + (15 \times 1) + (12 \times 0,0625) = 2560 + 48 + 15 + 0,75 = 2623,75_{10}$

- Numeração hexadecimal base 16
 - Conversões:

- Numeração hexadecimal base 16
 - Conversão hexa <-> binário
 - Conceitos:
 - nibble = conjunto de 4 bits
 - Quanto vale 1111 0010 1110_2 em hexadecimal?
 - F2E₁₆

O que são números octais

- Numeração octal base 8
 - Elabore toda a teoria dos números octais, tendo vista em as teorias de base 2, 10 e 16 vistas até agora.
- Elabore a teoria aplicada aos números de base 4, 5, 6 e 9