General Physics II 用惠斯通电桥测电阻

刘思昀 SLST 2022522011

Wednesday 8th May, 2024

1 惠斯通桥测量电阻

用万用表粗测待测电阻,测得 $R_x = 0.50248k\Omega = 502.48\Omega$

连接惠斯通桥电路后, $U_{AC}=3.0V$,选取 5 个不同的 R_1/R_2 比值,分别调节电阻箱阻值使电桥平衡,电阻箱阻值读数记为 R,电压表示数此时最接近于 0,记为 U;改变电阻箱阻值,使得电压表示数发生微小变化,此时电阻箱阻值记为 R',电压表示数记为 U'。最后计算 R_x 和电桥灵敏度 S。

其中,

$$R_x = R \cdot \frac{R_1}{R_2}$$

$$\Delta R = R' - R$$

$$\Delta U_0 = U' - U$$

$$S = \left| \frac{\Delta U_0}{\frac{\Delta R}{R}} \right|$$

R1 (Ω)	2000	2000	1000	1000	3000
R2 (Ω)	2000	1000	2000	4000	2000
R1/R2	1	2	0.5	0.25	1.5
R (Ω)	504.6	254.0	1001.6	1998.6	335.4
Rx (Ω)	504.6	508.0	500.8	499.7	503.1
R' (Ω)	504.7	254.1	1001.7	1998.7	335.3
ΔR (Ω)	0.1	0.1	0.1	0.1	-0.1
U (mV)	-0.004	0.015	-0.011	-0.008	-0.050
U' (mV)	-0.095	-0.055	-0.078	-0.046	0.056
ΔU0 (mV)	-0.091	-0.070	-0.067	-0.038	0.106
灵敏度S (V)	0.459	0.178	0.671	0.759	0.356

图 1: 惠斯通桥测量电阻

对于 5 次结果平均值,得到 $R_x = 503.2\Omega, S = 0.485$ 对比粗测结果,相差

$$\delta = \frac{503.2 - 502.48}{502.48} \times 100\% = 0.143\%$$

	1	2	3	4	5	平均值
Rx (Ω)	504.6	508.0	500.8	499.7	503.1	503.2
灵敏度S (V)	0.459	0.178	0.671	0.759	0.356	0.485

图 2: 平均测量结果

2 惠斯通电桥灵敏度与电桥端电压的关系

分别选取 $U_{AC}=1.0V,3.0V,5.0V,7.0V,9.0V,R_1=2000\Omega,R_2=2000\Omega$,调节电桥至平衡状态时,电阻箱阻值 $R=504.5\Omega$,故实验中保持电桥桥臂电阻比值 $R/R_2=0.2522$ 和电桥桥臂电阻总值 $R_1+R_2+R+R_x=5007.7\Omega$ 不变。

改变电阻箱阻值,使得电压表示数发生微小变化,此时电阻箱阻值记为 R',电压表示数记为 U'。最后计算 R_x 和电桥灵敏度 S。

其中,

$$R_x = R \cdot \frac{R_1}{R_2}$$

$$\Delta R = R' - R$$

$$\Delta U_0 = U' - U$$

$$S = \left| \frac{\Delta U_0}{\frac{\Delta R}{R}} \right|$$

R1 (Ω)	2000						
R2 (Ω)	2000						
R (Ω)	504.5	504.5	504.5	504.5	504.5		
R' (Ω)	504.6	504.6	504.6	504.6	504.6		
ΔR (Ω)	0.1	0.1	0.1	0.1	0.1		
U (mV)	0.015	0.046	0.072	0.082	0.053		
U' (mV)	-0.015	-0.050	-0.092	-0.150	-0.238		
ΔU0 (mV)	-0.030	-0.096	-0.164	-0.232	-0.291		
Uac (V)	1.0	3.0	5.0	7.0	9.0		
灵敏度S (V)	0.151	0.484	0.827	1.170	1.468		

图 3: 不同端电压下的电桥灵敏度

观察到电桥灵敏度随着端电压升高而升高,接下来以 U_{AC} 为横坐标,S为纵坐标,作图如下:

线性拟合结果为 y = 0.17x - 0.01, $R^2 = 0.9994 > 0.99$

图 4: 电桥灵敏度与端电压曲线

3 分析与讨论

- 1. 从电阻测量结果和万用表测量结果的对比,以及线性拟合的结果判断,本次实验还 是较为精确的
 - 2. 本次实验可能的误差来源有:
 - 电阻臂上的定值电阻并未进行校准,可能存在误差
 - 由于毫伏表在平衡时并不为 0, 即使为 0, 由于实际电阻值和设定有差异, 电桥也可能并不平衡
 - 3. 若要提高实验的精确度,需要采用更为精确的电阻和测量仪器