Uncertainty Management in Reasoning

Partha P Chakrabarti Indian Institute of Technology Kharagpur

Introduction to Uncertainty in Economic Problems

Deduction Using Propositional Logic: Example 1

Boolean variables a, b, c, d, ... which can take values <u>true</u> or <u>false</u>.

Boolean formulae developed using well defined connectors \sim , \wedge , \vee , \rightarrow , etc, whose meaning (semantics) is given by their truth tables.

Codification of sentences of the argument into Boolean Formulae.

Developing the Deduction Process as obtaining truth of a combined formula expressing the complete argument.

Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various interpretations.

If <u>tax rate is increased</u> then <u>there will be more Govt. income</u>. <u>Tax rate is increased</u>. So <u>there will be more Govt. income</u>

Coding: Variables

a: Tax rate is increased

b: There will be more Govt. Income

Coding the sentences:

F1: $a \rightarrow b$

F2: a

G: b

The final formula for deduction: (F1 \wedge F2) \rightarrow G, that is: ((a \rightarrow b) \wedge a) \rightarrow b

а	b	$a \rightarrow b$	(a → b) ∧ a	$((a \to b) \land a) \to b$
Т	Т	Т	Т	Т
T	F	F	F	T
F	Т	Т	F	T
F	F	Т	F	Т

Deduction Using Propositional Logic: Example 2

Boolean variables a, b, c, d, ... which can take values true or false.

Boolean formulae developed using well defined connectors \sim , \wedge , \vee , \rightarrow , etc, whose meaning (semantics) is given by their truth tables.

Codification of sentences of the argument into Boolean Formulae.

Developing the Deduction Process as obtaining truth of a combined formula expressing the complete argument.

Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various interpretations. If <u>tax rate is increased</u> then <u>there will be more Govt. income</u>. <u>Tax rate is not increased</u>. So <u>there will not be more Govt. income</u>

Coding: Variables

a: Tax rate is increased

b: There will be more Govt. Income

Coding the sentences:

F1: $a \rightarrow b$

F2: ~a

G: ~b

The final formula for deduction: (F1 \wedge F2) \rightarrow G, that is: ((a \rightarrow b) \wedge ~a) \rightarrow ~b

а	b	$a \rightarrow b$	(a → b) ∧ ~a	((a → b) ∧ ~a) → ~b
Т	Т	Т	F	Т
Т	F	F	F	Т
F	Т	T	Т	F
F	F	Т	Т	Т

Belief Networks: Causality & Probability

Belief Networks: Links and Meaning

- Whether there is petrol and whether the radio plays are independent given evidence about whether the ignition takes place
- Petrol and Radio are independent if it is known whether the battery works
- Petrol and Radio are independent given no evidence at all.
- But they are dependent given evidence about whether the car starts.
- If the car does not start, then the radio playing is increased evidence that we are out of petrol.

Belief Networks: Economics Example

Belief Networks: Probability Assignments

Bayesian Networks: Example

$$P(J \land M \land A \land \neg B \land \neg E)$$

$$= P(J|A) \times P(M|A) \times P(A|\neg B \land \neg E) \times P(\neg B) \times P(\neg E)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$= 0.00062$$

Bayesian Networks: Example

```
P(J)
   = P(JA) + P(J\bar{A})
   = P(J|A) \times P(A) + P(J|\bar{A}) \times P(\bar{A})
   = 0.9 \times 0.0025 + 0.05 \times (1 - 0.0025)
   = 0.052125
P(AB)
   = P(ABE) + P(AB\bar{E})
   = 0.95 \times 0.001 \times 0.002 + 0.95 \times 0.001 \times 0.998
   = 0.00095
```


Bayesian Networks: Example

Belief Networks: Multiple Outcomes

Thank you

Any Questions?