SISTEMI DIGITALI COMPLESSI

Sistema digitale complesso suddiviso in SCO-SCA

Il procedimento di sintesi di un sistema digitale, può essere suddiviso nei seguenti passi:

- 1. Specifica del problema.
- 2. Individuazione di un algoritmo di soluzione.
- 3. Progetto di un SCA atto a supportare l'algoritmo.
- 4. Definizione di un SCO che implementa l'algoritmo.
- 5. Valutazione del sistema: se le prestazioni rispondono alle specifiche del problema si passa al punto 6. Altrimenti si verifica se è possibile definire un altro SCA: in caso positivo si modifica il SCA e si torna al punto 4; se no, si passa al punto 2.
- 6. Sintesi del sistema e verifica del corretto funzionamento.

Sottosistema di Calcolo (SCA)

Registri, segnali e operazioni

Cella di un registro

Un registro viene indicato con R, il suo contenuto con (R).

Trasferimento dati tra due registri

Operazioni tra dati contenuti in registri

OR A, B:
$$(A) \cup (B) = Y$$
 somma logica bit a bit esempio: $(0110) \cup (1100) = 1110$

AND A, B:
$$(A) \cap (B) = Y$$
 prodotto logico bit a bit esempio: $(0110) \cap (1100) = 0100$

NOT A:
$$(A) = Y$$
 complementazione dei bit esempio: $(0110) = 1001$

EXOR A, B: (A)
$$\oplus$$
 (B) = Y or esclusivo bit a bit esempio: (0110) \oplus (1100) = 1010

ADD A, B:
$$(A) + (B) = Y$$
 somma aritmetica esempio: $(0110) + (1100) = 0010$

SUB A, B:
$$(A) - (B) = Y$$
 sottrazione esempio: $(0110) - (1100) = 1010$

$$\begin{array}{ll} a_i \rightarrow \ a_{i\text{-}k} & i = n\text{-}1, \, ..., \, k \\ 0 \rightarrow \ a_h & h = n\text{-}1, \, ..., \, k \end{array}$$

$$a_i \rightarrow a_{i+k}$$
 $i = 0, 1, ..., n-k$
 $0 \rightarrow a_h$ $h = 0, 1, ..., n-k$

$$\begin{aligned} a_i &\rightarrow a_{i\text{-}k} & i = \text{n-1, ..., k} \\ a_h &\rightarrow a_{\text{n-}k+h} & h = 0, 1, \text{..., k-1} \end{aligned}$$

$$a_i \rightarrow a_{(i+k)mod\ n} \qquad \qquad i=0,\,1,\,...,\,n$$

INC A, k:
$$(A) + k \rightarrow A$$

DEC A, k:
$$(A) - k \rightarrow A$$

EXCH A, B:
$$(B) \rightarrow A$$
 $(A) \rightarrow B$

Interconnessione registri-circuiti di calcolo

Esempio di interconnessione tra registri e circuiti di calcolo

Interconnessione tra registri e circuiti di calcolo

Interconnessione tra registri e circuiti di calcolo tramite bus

Organizzazione vettoriale dei registri

Interconnessione a bus tra registri e circuiti di calcolo

Esempio di interconnessione con tre bus

Sottosistema di Controllo (SCO)

La microprogrammazione

Rappresentazione Algorithm State Machine

= microprogrammazione

Implementazione di δ e ω tramite ROM

Modello di Mealy

Modulo elementare della rappresentazione ASM per macchine di tipo Mealy

La corrispondente microistruzione ha un formato del tipo:

$$\mu_i : C_1(T_1, \mu_{i1}), C_2(T_2, \mu_{i2}), \ldots, C_m(T_m, \mu_{im})$$

dove

 $C_1,\,C_2,\,\ldots\,,\,C_m \ (m\leq 2^k\,,\,k=n)$ sono le condizioni derivanti dalle variabili di decisione $x_1,\,x_2,\,\ldots\,,\,x_n;$

T₁, T₂,..., T_m sono le corrispondenti azioni da effettuare;

 $\mu_{i1},\,\mu_{i2},\!...,\!\mu_{im}$ le microistruzioni successive a $\mu_{i}.$

Modello strutturale standard

SS	TASK

Struttura della parola di ROM

Se

- ${\bf n}$ è il numero delle variabili di ingresso
- m è il numero delle variabili di stato

allora

$$numero \ di \ parole = 2^{n+m}$$

p.e., se
$$- \mathbf{n} = 20$$

$$- \mathbf{m} = 4$$
 allora
$$\mathbf{numero\ di\ parole} = \mathbf{2^{24}\ (16\ Mega)}$$

$$\mathbf{ECCESSIVO!!!!!}$$

Struttura del SCO nel caso di modello di Mealy

SEL	SS	TASK
-----	----	------

Struttura della parola di ROM nel caso di modello di Mealy con selezione

Esempio di circuito di mascheramento non codificato

Modello di Moore

Modulo elementare della rappresentazione ASM per macchine di tipo Moore

La corrispondente microistruzione ha un formato del tipo:

$$\mu_i: T_i; \, C_1(\mu_{i1}), \, C_2(\mu_{i2}), ..., \, C_m(\mu_{im})$$

dove

 $C_1,\,C_2,...,\,C_m\ (m\leq 2^k\ ,\,k=n)$ sono le condizioni derivanti dalle variabili di decisione $\ x_1,...,\,x_n;$

T_i è l'azione da effettuare;

 $\mu_{i1},..,\,\mu_{im}$ le microistruzioni successive a $\mu_{i}.$

Modello strutturale di Moore standard

SS			

Struttura della parola di ROM (che implementa la δ)

TASK

Struttura della parola di ROM (che implementa la ω)

Se

- \mathbf{n} è il numero delle variabili di ingresso
- m è il numero delle variabili di stato

allora

numero delle righe della prima ROM (che impl. la $\delta) \, = \, 2^{n+m}$

p.e., se

$$- m = 4$$

allora

numero delle righe = 2^{24} (16 Mega)

ECCESSIVO!!!!!

Soluzione che permette l'uso di una unica ROM

Stato attuale input Y ₁ Y ₀ X ₂ X ₁ X ₀	Stato successivo Y'1 Y'0
0 0 0 0 0	
0 0 0 0 1	
• • • • • • • • • • • • • • • • • • • •	
1 1 1 1 1	

Stato attuale	Uscita
$\mathbf{Y_1} \mathbf{Y_0}$	$\mathbf{Z}_1 \ \mathbf{Z}_0$
0 0	
0 1	
1 0	
1 1	

Rappresentazione tabellare, una per ROM

Stato attuale Y ₁ Y ₀	X ₂ X ₁ X ₀ 000	X ₂ X ₁ X ₀ 001	X ₂ X ₁ X ₀ 010	X ₂ X ₁ X ₀ 011	X ₂ X ₁ X ₀ 100	X ₂ X ₁ X ₀ 101	X ₂ X ₁ X ₀ 110	X ₂ X ₁ X ₀ 111	Uscita Z ₁ Z ₀
0 0									
0 1									
1 0									
1 1									

Rappresentazione matriciale, un'unica ROM

Dimensione della parola della ROM ancora eccessivo

Infatti

 $numero\ delle\ righe\ =\ 2^m$

dove ogni riga ha una dimensione pari a $\, m = 2^n + k \,$

p.e., se

- n = 20
- m = 4
- k = 10

allora

 ${\rm dimensione\ della\ parola\ di\ ROM=2^{20}\ +10\ (1Mega)}$

Soluzione che riduce le dimensioni della ROM

Struttura del SCO nel caso di modello di Moore con circuito di selezione

SS ₁ SS ₂	SS _m	SEL	TASK
---------------------------------	-----------------	-----	------

Parola di ROM nel caso di modello di Moore con circuito di selezione

Dove **m** questa volta è pari alla cardinalità delle variabili selezionate X', normalmente 1 o 2.

Controllo per strutture Pipeline.

Sistemi di calcolo a task fisso nel tempo

Sistemi di calcolo a task variabile nel tempo

Temporizzazione di una catena pipeline

Architettura SCO per generare TASK sfasati nel tempo

Sistemi con molti microprogrammi

Diagramma di flusso con più microprogrammi

Schema di SCO con molti microprogrammi (modello di Mealy)

Schema di SCO con molti microprogrammi (modello di Moore)

Comunicazione tra due sistemi digitali

Sincronizzazione di due unità in comunicazione

UTx	URx
1: dato \rightarrow RTx, 1 \rightarrow FF1;	1: 0→FF4;
2: if ack1=0, then vai a 2;	2: if RDY2=0, then vai a 2;
3: 0→FF1;	$3: RTx \rightarrow RRx, 1 \rightarrow FF4;$
4: if ack1=1, then vai a 4;	4: if RDY2=1, vai a 4;
5: i+1→i;	5: i+1→i;
6: if i≠N, vai a 1	6: if i≠N, vai a 1

Sequenze di microistruzioni eseguite da UTx e URx durante il protocollo di comunicazione

Sincronizzazione tra due unità in comunicazione mediante flip-flop di semaforo

Sequenze di microistruzioni eseguite da UTx e URx durante il protocollo di comunicazione

UTx URx

1: dato→RTx, set **sem**; 1: if RDY2=0, vai a 1; 2: if ack1=0 vai a 2; 2: RTx→RRx, reset **sem**;

 $3: i+1 \rightarrow i;$ $3: i+1 \rightarrow i;$

4: if $i\neq N$, vai a 1; 4: if $i\neq N$, vai a 1;