## Module 6: Noncompliance and Instrumental Variables

Fall 2021

Matthew Blackwell

Gov 2003 (Harvard)

### Where are we? Where are we going?

- · We've covered randomized experiments (no confounding).
- We've covered selection on observables (no unmeasured confounding).
- · What if there is unmeasured confounding? What can we do?
- First approach we'll explore: instrumental variables.
  - First: motivate IV through experiments and noncompliance.
  - Then: how does this relate to classical econometric methods like TSLS?

1/ Randomized experiments with noncompliance

### **Noncompliance**

- · GOTV experiment with door-to-door canvassing.
- Households are randomized so treatment assignment is unconfounded.
  - $Z_i = 1$  for assigned to treatment (canvassing attempted),
  - $Z_i = 0$  for assigned to control (no canvassing attempted).
- · Noncompliance: units don't follow treatment assignment.
  - · Units assigned to treatment take control or vice versa.
  - $D_i = 1$  for actually took treatment (heard canvasser message).
  - $D_i = 0$  for actually took control (didn't answer the door).
  - Full compliance means  $Z_i = D_i$  for all i

### How to handle noncompliance

- · Two approaches common seen in applied studies.
- Intent-to-treat analysis (ITT): just use randomization.
  - Use  $Z_i$  as the treatment and analyze as a typical experiment.
  - Downside: can't learn about the effect of actually being canvassed.
- · As-treated analysis: just use treatment uptake.
  - Act as if D<sub>i</sub> was randomly assigned.
  - · Not valid if uptake is **correlated** with the outcome.
  - $\rightsquigarrow$  unmeasured confounding between  $D_i$  and  $Y_i$  and bias.
- Alternative: leverage latent strata of compliance types

### Setup

- Treatment assignment,  $Z_i \in \{0,1\}$ , treatment uptake  $D_i \in \{0,1\}$
- Treatment uptake now affected by assignment:  $D_i(z)$ 
  - $D_i(1) = 1$  if assigned to canvassing, I **would** open my door.
  - $D_i(1) = 0$  if assigned to canvassing, I **would not** open my door.
  - Noncompliance means  $D_i(z) \neq z$  for some i.
- Consistency for the observed treatment as usual:

$$D_i = Z_i D_i(1) + (1 - Z_i) D_i(0)$$

- Canvassing is an example of one-sided noncompliance.
  - People might refuse treatment when offered  $(D_i(1) = 0)$
  - But no one receives treatment if in control  $(D_i(0) = 0, \forall i)$
  - Two-sided noncompliance is when you can refuse to comply with treatment or control.

### **Potential outcomes**

- Outcomes might depend on assignment and uptake:  $Y_i(z, d)$ .
  - $Y_i(1,1)$ : would I vote if I were assigned to canvassing and received it?
- Can only observe two potential outcomes:  $Y_i(1, D_i(1))$  and  $Y_i(0, D_i(0))$ .
  - $Y_i(1,D_i(1))$ : potential outcome when assigned canvassing and whatever uptake occurs for unit i when assigned to canvassing.
  - $Y_i(1, 1 D_i(1))$  not possible to ever observe (cross-world or a prior counterfactual)
- Consistency assumption:  $Y_i = Y_i(Z_i, D_i(Z_i))$

### **Some notation**

• Let's use 0/1 subscripts for assignment and t/c subscripts for uptake:

$$n_1 = \sum_{i=1}^n Z_i$$
  $n_0 = \sum_{i=1}^n 1 - Z_i$   $n_t = \sum_{i=1}^n D_i$   $n_c = \sum_{i=1}^n 1 - D_i$ 

Average outcomes and uptake in each assignment group:

$$\overline{Y}_{1} = \frac{1}{n_{1}} \sum_{i=1}^{n} Z_{i} Y_{i} \qquad \overline{Y}_{0} = \frac{1}{n_{0}} \sum_{i=1}^{n} (1 - Z_{i}) Y_{i}$$

$$\overline{D}_{1} = \frac{1}{n_{1}} \sum_{i=1}^{n} Z_{i} D_{i} \qquad \overline{D}_{0} = \frac{1}{n_{0}} \sum_{i=1}^{n} (1 - Z_{i}) D_{i}$$

- Assumption 1: randomization  $[\{Y_i(d,z), \forall d,z\}, D_i(1), D_i(0)] \perp Z_i$ 
  - For observational uses of IV, might condition on some X,

### **ITT effects**

• Intent-to-treat (ITT) effects are just the ATEs of  $Z_i$ 

$$\mathsf{ITT}_D = \frac{1}{n} \sum_{i=1}^n D_i(1) - D_i(0) \qquad \qquad \mathsf{ITT}_Y = \frac{1}{n} \sum_{i=1}^n Y_i(1, D_i(1)) - Y_i(0, D_i(0))$$

- · SATE of assignment on treatment uptake and the outcome.
- If noncompliance is one-sided, then  $ITT_D \ge 0$
- · Standard estimators for these quantities:

$$\widehat{\mathsf{ITT}}_D = \overline{D}_1 - \overline{D}_0 \qquad \qquad \widehat{\mathsf{ITT}}_Y = \overline{Y}_1 - \overline{Y}_0$$

- Under randomization of  $Z_i$ , everything just like Neyman approach.
  - · Variances, tests, CIs all standard.
- Problem:  $ITT_Y$  is a combination of true effect of  $D_i$  and noncompliance.
  - Effect of  $D_i$  is maybe more externally valid than  $Z_i$ .

### 2/ Compliance types

### **Compliance status**

- We can stratify units by their **compliance type**.
  - · Compliance type is how they would respond to treatment assignment.
  - Basically it's the value of  $(D_i(0), D_i(1))$  for any unit.
- Under one-sided noncompliance, there are two types:
  - Compliers with  $D_i(1) = 1$  and noncompliers with  $D_i(1) = 0$ .
  - · Compliers answer the door when assigned to canvassing
  - Noncompliers don't answer the door when assigned to canvassing
  - Everyone has  $D_i(0) = 0$ , so no noncompliance there.
- Compliance is a function of potential outcomes so it is pretreatment!
  - $\rightsquigarrow$  treatment assignment independent of  $C_i$

### ITTs among the compliance groups

- Compliance type indicator  $C_i \in \{co, nc\}$ .
  - Number of compliers:  $n_{co} = \sum_{i=1}^{n} \mathbf{1}(C_i = co)$ .
  - Proportion of compliers:  $\pi_{co} = n_{co}/n$
  - Same for noncompliers:  $n_{\rm nc}$  and  $\pi_{\rm nc}$
- ITT on uptake directly related to compliance type:

$$ITT_{D,co} = \frac{1}{n_{co}} \sum_{i:C_i = co} D_i(1) - D_i(0) = 1$$

$$\mathsf{ITT}_{D,\mathsf{nc}} = \frac{1}{n_{\mathsf{nc}}} \sum_{i:C_i = \mathsf{nc}} D_i(1) - D_i(0) = 0$$

- Intuition: no effect of assignment on uptake for noncompliers!
- Implies overall ITT on uptake is equal to the proportion of compliers

$$\mathsf{ITT}_{D} = \pi_{\mathsf{co}} \mathsf{ITT}_{D,\mathsf{co}} + \pi_{\mathsf{nc}} \mathsf{ITT}_{D,\mathsf{nc}} = \pi_{\mathsf{co}}$$

## 3/ Instrumental variables

### **Exclusion restriction**



- Assumption 2: **first-stage** ITT $_D=\pi_{
  m co} 
  eq 0$ 
  - · At least one person complies with treatment.
- Assumption 3: **exclusion restriction**  $Z_i$  only affects  $Y_i$  through  $D_i$ 
  - $Y_i(z,d) = Y_i(z',d)$  for all z,z' and d.
  - Assignment to canvassing only affects turnout through actual canvassing.
  - Not a testable assumption and can't be guaranteed by design.
- Implies that potential outcomes only a function of D<sub>i</sub>:

$$Y_i(1) = Y_i(D_i = 1) = Y_i(Z_i = 1, D_i = 1) = Y_i(Z_i = 1, D_i = 1)$$
  
 $Y_i(0) = Y_i(D_i = 0) = Y_i(Z_i = 1, D_i = 0) = Y_i(Z_i = 1, D_i = 0)$ 

### **Outcome ITTs and compliance types**

- We can define the ITTs on the outcome by compliance type as well.
  - $ITT_{Y,co}$  effect of assignment on outcome among compliers.
  - $ITT_{Y,nc}$  effect of assignment on outcome among noncompliers.
  - Only  $ITT_{Y,co}$  actually picks up an effect of  $D_i$
- Exclusion restriction has implications for these:
  - Implies that ITT $_{Y,nc} = 0$ : if  $D_i$  doesn't change,  $Y_i$  can't change.
  - Implies that  $ITT_{Y,co}$  is due entirely to treatment uptake.
- · Allows us to connect the ITT on the outcome to compliance groups:

$$\mathsf{ITT}_Y = \pi_\mathsf{co} \mathsf{ITT}_{Y,\mathsf{co}} + \pi_\mathsf{nc} \mathsf{ITT}_{Y,\mathsf{nc}} = \mathsf{ITT}_{D} \mathsf{ITT}_{Y,\mathsf{co}}$$

#### LATE

• Under the exclusion restriction,  $ITT_{Y,co}$  is the effect of treatment receipt:

$$\begin{split} \text{ITT}_{Y, \text{co}} &= \frac{1}{n_{\text{co}}} \sum_{i: C_i = \text{co}} Y_i(1, D_i(1)) - Y_i(0, D_i(0)) \\ &= \frac{1}{n_{\text{co}}} \sum_{i: C_i = \text{co}} Y_i(D_i = 1) - Y_i(D_i = 0) = \tau_{\text{LATE}} \end{split}$$

- This quantity is the local ATE (LATE), local to compliers.
  - It's a conditional ATE, where we condition on being a complier.
  - Also called the complier average causal effect (CACE).
- LATE Theorem under one-sided noncompliance, exclusion restriction, first-stage, and randomization:

$$au_{\mathsf{LATE}} = \mathsf{ITT}_{Y,\mathsf{co}} = \frac{\mathsf{ITT}_{Y}}{\mathsf{ITT}_{D}}$$

### **Wald estimator**

• Wald or instrumental variables estimator for the LATE:

$$\widehat{\tau}_{iv} = \frac{\widehat{\Pi \Pi}_Y}{\widehat{\Pi \Pi}_D}$$

- · Ratio of the two unbiased ITT estimators.
- Not unbiased, but it is **consistent** for  $\tau_{\text{LATE}}$ .
- Equivalent to the two-stage least squares estimator:
  - Regress  $D_i$  on  $Z_i$  and get fitted values  $\widehat{D}_i$
  - Regress  $Y_i$  on  $\widehat{D}_i$
- We can use the delta method to find the (superpopulation) variance:

$$\mathbb{V}[\widehat{\tau}_{iv}] = \frac{1}{\mathsf{ITT}_D^2} \mathbb{V}\left[\widehat{\mathsf{ITT}}_Y\right] + \frac{\mathsf{ITT}_Y^2}{\mathsf{ITT}_D^4} \mathbb{V}\left[\widehat{\mathsf{ITT}}_D\right] - 2 \frac{\mathsf{ITT}_Y}{\mathsf{ITT}_D^3} \mathsf{cov}\left[\widehat{\mathsf{ITT}}_Y, \widehat{\mathsf{ITT}}_D\right]$$

# 4/ Two-sided noncompliance

### **Two-sided noncompliance**

- Two-sided noncompliance: those in control can select into treatment.
- **Encouragement design**: randomly assign an encouragement of some treatment.
  - Some may refuse encouragement and opt to not take treatment.
  - · Some may take treatment even without encouragement.
- $Z_i$  is the encouragement and  $D_i$  is the treatment.
- No change in estimation, just different identification assumptions.

### **Compliance types**

- Four compliance types (or **principal strata**) in this setting:
  - Complier  $D_i(1) = 1$  and  $D_i(0) = 0$
  - Always-taker  $D_i(1) = D_i(0) = 1$
  - Never-taker  $D_i(1) = D_i(0) = 0$
  - Defier  $D_i(1) = 0$  and  $D_i(1) = 1$
- Connections between observed data and compliance types:

|           | $Z_i = 0$               | $Z_i = 1$                |
|-----------|-------------------------|--------------------------|
| $D_i = 0$ | Never-taker or Complier | Never-taker or Defier    |
| $D_i = 1$ | Always-taker or Defier  | Always-taker or Complier |

- Let  $\pi_{co}$ ,  $\pi_{at}$ ,  $\pi_{nt}$ , and  $\pi_{de}$  be the proportions of each type.
- ITT effects on  $D_i$  are more murky: ITT $_D=\pi_{\mathsf{co}}-\pi_{\mathsf{de}}$ 
  - · Defiers really make things messy!

### **Instrumental variables assumptions**

- Canonical IV assumptions for  $Z_i$  to be a valid instrument:
  - 1. Randomization of  $Z_i$
  - 2. Presence of some compliers  $\pi_{co} \neq 0$  (first-stage)
  - 3. Exclusion restriction  $Y_i(z, d) = Y_i(z', d)$
  - 4. **Monotonicity**:  $D_i(1) \ge D_i(0)$  for all i (no defiers)
- Implies ITT effect on treatment equals proportion compliers: ITT $_D=\pi_{ extsf{co}}$
- Implies ITT for the outcome has the same interpretation:

$$\begin{split} & \text{ITT}_{Y} = \text{ITT}_{Y,\text{co}} \pi_{\text{co}} + \underbrace{\text{ITT}_{Y,\text{at}}}_{=0 \text{ (ER)}} \pi_{\text{at}} + \underbrace{\text{ITT}_{Y,\text{nt}}}_{=0 \text{ (ER)}} \pi_{\text{nt}} + \text{ITT}_{Y,\text{de}} \underbrace{\pi_{\text{de}}}_{=0 \text{ (mono)}} \\ & = \text{ITT}_{\text{co}} \pi_{\text{co}} \end{split}$$

•  $\leadsto$  same identification result:  $\tau_{\text{LATE}} = \text{ITT}_Y/\text{ITT}_D$ 

### Is the LATE useful?

- · The LATE is a unknown subset of the data.
  - · Treated units are a mix of always takers and compliers.
  - · Control units are a mix of never takers and compliers.
- Without further assumptions,  $au_{\mathsf{LATE}} \neq au$  .
- Complier group depends on the instrument → different IVs will lead to different identified estimands.
- But we cannot do any better in terms of point estimation without more assumptions.
  - · Alternative: bound the ATE?