Романович Володимир Володимирович КА-02

Самостійна робота №2

Варіант 9

Задача 1

$$\mathcal{S} = \{ [a; b] : a, b \in \mathbb{R} \backslash \mathbb{Q}, a < b \}$$

Бачимо, що оскільки a < b, то $\emptyset \notin \mathcal{S}$, тому \mathcal{S} – не кільце

Розглянемо тепер $A = \left[\sqrt{2}, \sqrt{5}\right] \in \mathcal{S}, \ B = \left[\sqrt{3}, \sqrt{6}\right] \in \mathcal{S}$

Тоді $A \setminus B = \left[\sqrt{2}; \sqrt{3} \right]$.

Очевидно, що неможливо підібрати таке $\bigsqcup_{k=1}^n [a_k; b_k], a_k, b_k \in \mathbb{R} \setminus \mathbb{Q}, a_k < b_k$, щоб отримати $[\sqrt{2}; \sqrt{3}),$ як мінімум тому, що об'єднання відрізків – замкнута множина на $\mathbb R$, а $[\sqrt{2};\sqrt{3})$ – відкрита.

Отже S – не півкільце.

Відповідь: S не ϵ ні кільцем, ні півкільцем.

Залача 2

Побудувати кільце та σ -кільце, породжені сім'єю S підмножин множини Ω

$$S = \{(0; \frac{1}{n}) : n \in \mathbb{N}\}, \ \Omega = (0; 1)$$

Розглянемо кільце
$$R_s = \left\{ (0; \frac{1}{n}), \bigcup_{i=1}^m \left[\frac{1}{p_i}; \frac{1}{k_i} \right), (0; \frac{1}{n}) \cup \bigcup_{i=1}^m \left[\frac{1}{p_i}; \frac{1}{k_i} \right) : n, p_i, k_i \in \mathbb{N}, \ k_i \leqslant p_i \right\}$$

 $S \subset R_s$. Доведемо, що R_s – найменше кільце, яке містить S:

Нехай R – інше кільце, що містить S. Тоді:

1) $\varnothing \in R$

$$2) \left(0; \frac{1}{n_1}\right) \setminus \left(0; \frac{1}{n_1}\right) = \begin{cases} \emptyset, & n_2 \leqslant n_1 \\ \left[\frac{1}{n_2}; \frac{1}{n_1}\right), & n_2 > n_1 \end{cases} \in R \implies \left[\frac{1}{n_2}; \frac{1}{n_1}\right) \in R, \quad n_1, n_2 \in \mathbb{N}, n_2 > n_1 \end{cases}$$

3)
$$\bigcup_{i=1}^{m} \left(0; \frac{1}{n_i}\right) = \left(0; \frac{1}{n}\right) \in R$$
, $\bigcup_{i=1}^{m} \left[\frac{1}{p_i}; \frac{1}{k_i}\right) \in R$, $\left(\bigcup_{j=1}^{v} \left(0; \frac{1}{n_j}\right)\right) \cup \left(\bigcup_{i=1}^{m} \left[\frac{1}{p_i}; \frac{1}{k_i}\right)\right) = \left(0; \frac{1}{n}\right) \cup \left(\bigcup_{i=1}^{m} \left[\frac{1}{p_i}; \frac{1}{k_i}\right)\right) \in R$

Отже, якщо R кільце та воно містить S, то
$$R \supset \left\{ \varnothing, (0; \frac{1}{n}), \bigcup_{i=1}^{m} \left[\frac{1}{p_i}; \frac{1}{k_i} \right), (0; \frac{1}{n}) \cup \bigcup_{i=1}^{m} \left[\frac{1}{p_i}; \frac{1}{k_i} \right) : n, p_i, k_i \in \mathbb{N}, \ k_i < p_i \right\}$$

Оскільки \varnothing можна записати як $\left(\frac{1}{p_i}; \frac{1}{k_i}\right)$, $p_i = k_i$, то $R_s \subset R$, а отже є кільцем, породженим сім'єю S.

Розглянемо
$$\sigma$$
-кільце $K_s = \left\{ (0; \frac{1}{n}), \bigcup_{i=1}^{\infty} \left[\frac{1}{p_i}; \frac{1}{k_i} \right), (0; \frac{1}{n}) \cup \bigcup_{i=1}^{\infty} \left[\frac{1}{p_i}; \frac{1}{k_i} \right) : n, p_i, k_i \in \mathbb{N}, \ k_i \leqslant p_i \right\}$ $S \subset K_s$. Доведемо, що K_s — найменше σ -кільце, яке містить S :

Нехай K – інше σ -кільце, та воно містить S. σ -кільце, що містить S містить всі елементи кільця, породженого сім'єю S та замкнуте відносно зліченного об'єднання, тому

$$1) \bigcup_{k \in \mathbb{N}} \left(0; \frac{1}{n_k}\right) = \left(0; \frac{1}{n}\right) \in K$$

$$2) \bigcup_{k \in \mathbb{N}} \left[\frac{1}{p_i}; \frac{1}{k_i} \right) \in K, k_i \leqslant p_i$$

$$3)(0; \frac{1}{n}) \cup \bigcup_{k \in \mathbb{N}} \left[\frac{1}{p_i}; \frac{1}{k_i} \right) \in K, k_i \leqslant p_i$$

Отримуємо, що $K_s \subset K$, тому $K_s - \sigma$ -кільце, породжене сім'єю S.

Задача 3

$$A = (-1, 1) \cap \{x \in \mathbb{R} : \ln(1+x) \in \mathbb{Q}\} = \{x \in (-1, 1) : \ln(1+x) \in \mathbb{Q}\}\$$

Розглянемо $A_q = \{x \in (-1, 1) : \ln(1 + x) = q\}$

$$\ln(1+x) = q \implies x = e^q - 1, -1 < x < 1 \implies -1 < e^q - 1 < 1 \implies q < \ln 2$$

Отже $A_q = \{x \in \mathbb{R} : x = e^q - 1, q \in \mathbb{Q} \setminus [\ln 2; +\infty)\}$

Позначимо $\mathbb{Q}_A = \mathbb{Q} \setminus [\ln 2; +\infty)$

Оскільки \mathbb{Q} – зліченна множина, то $\mathbb{Q}_A \subset \mathbb{Q}$ – також зліченна

 A_q – одноточкова множина, тому $A_q \in \mathcal{B}$ і $\lambda(A_q) = 0$

 $A=\bigsqcup_{q\in\mathbb{Q}_A}A_q,\ A\in\mathcal{B},$ оскільки $\mathcal{B}-\sigma$ -кільце.

$$\lambda(A) = \lambda \left(\bigsqcup_{q \in \mathbb{Q}_A} A_q \right) = \sum_{q \in \mathbb{Q}_A} \lambda(A_q) = \sum_{q \in \mathbb{Q}_A} 0 = 0$$

Задача 4

Довести, що функція $f: \mathbb{R}^2 \to \mathbb{R}$ – вимірна.

$$f(x,y) = [x^2 - y^2] \cos \pi xy$$

Розглянемо функції $g_1: \mathbb{R}^2 \to \mathbb{R}, g_2: \mathbb{R}^2 \to \mathbb{R}, g_3: \mathbb{R} \to \mathbb{R}$:

 $g_1(x,y) = x^2 - y^2$ – неперервна на \mathbb{R}^2 , тому вимірна за теоремою.

 $g_2(x,y)=\cos\pi xy$ – неперервна на \mathbb{R}^2 , тому вимірна за теоремою.

$$g_3(x) = [x]$$

Розглянему множину $\{f\leqslant a\}$

 $\forall a \in \mathbb{R}: [x] \leqslant a \implies x \in (-\infty; [a]+1) \in \mathcal{B}$ як відкрита півпряма, отже за означенням $g_3(x)$ – вимірна.

Тоді $[x^2-y^2]=g_3\circ g_1$ – вимірна за твердженням, як композиція вимірних функцій.

Отже $f(x,y) = [x^2 - y^2] \cdot \cos \pi xy$ — вимірна за теоремою, як добуток вимірних функцій.

Задача 5

 $f(x) = [x] sgn(\sin \frac{\pi}{2}x), A = [-3, 2]$

Позначимо:
$$A_1=[-3;-2], A_2=(-2;-1), A_3=[-1;0), A_4=[0;1), A_5=[1;2), A_6=\{2\}$$
 $B_1=[-3;-2), B_2=[-2;2]$

Толі

$$f^{+}(x) = \begin{cases} 0, & x \in A_1 \cup A_4 \cup A_6 \\ 1, & x \in A_3 \cup A_5 \\ 2, & x \in A_2 \end{cases}, \quad f^{-}(x) = \begin{cases} 0, & x \in B_2 \\ 3, & x \in B_1 \end{cases}$$

За означенням:

$$\int_{A} f^{+} d\lambda = \int_{[-3;2]} f^{+}(x) d\lambda(x) = \sum_{k=1}^{m} c_{k} \lambda(A_{k}) =$$

$$= 0 \cdot \lambda([-3;-2]) + 2 \cdot \lambda((-2;-1)) + 1 \cdot \lambda([-1;0]) + 0 \cdot \lambda([0;1]) + 1 \cdot \lambda([1;2]) + 0 \cdot \lambda(\{2\}) = 4$$

$$\int_{A} f^{-} d\lambda = \int_{[-3;2]} f^{-}(x) d\lambda(x) = \sum_{k=1}^{m} c_{k} \lambda(B_{k}) = 3 \cdot \lambda([-3;-2]) + 0 \cdot \lambda([-2;2]) = 3$$

$$\int_{A} |f| d\lambda = \int_{A} f^{+} d\lambda + \int_{A} f^{-} d\lambda = 4 + 3 = 7$$

$$\int_{A} f d\lambda = \int_{A} f^{+} d\lambda - \int_{A} f^{-} d\lambda = 4 - 3 = 1$$

Задача 6

Знайти $\lim_{n\to\infty} \int_A f_n(x) d\lambda(x)$ $f_n(x) = e^{-x} (1 + \cos^n x), A = \mathbb{R}_+$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} e^{-x} (1 + \cos^n x) = \begin{cases} e^{-x} (1+0), & |\cos x| < 1 \\ e^{-x} (1+1), & \cos x = 1 \\ e^{-x} (1+(-1)^n), & \cos x = -1 \end{cases}$$

 $\tilde{A} = \{x \in A : \cos x = \pm 1\}$ – зліченна множина, тому $\lambda(\tilde{A}) = 0$

Отже $f_n(x) \to e^{-x}$ λ -майже всюди, $n \to \infty$

Розглянемо $\int_{\mathbb{R}_+} e^{-x} d\lambda(x)$:

Нехай $g_n(x) = e^{-x} \cdot \mathbb{1}_{[0:n]}(x)$, тоді $g_n(x) \uparrow e^{-x} \ \forall x \in \mathbb{R}$

Тоді за наслідком з теореми Беппо-Леві:

$$\int_{\mathbb{R}_{+}} e^{-x} d\lambda(x) = \lim_{n \to \infty} \int_{\mathbb{R}_{+}} g_{n}(x) d\lambda(x) = \lim_{n \to \infty} \int_{\mathbb{R}_{+}} e^{-x} \cdot \mathbb{1}_{[0;n]}(x) d\lambda(x) =$$

$$= \lim_{n \to \infty} \int_{[0,n]} e^{-x} d\lambda(x) \stackrel{(1)}{=} \lim_{n \to \infty} \int_{0}^{n} e^{-x} dx = \lim_{n \to \infty} (1 - e^{-n}) = 1 < \infty$$

Перехід (1) здійснюється за теоремою, завдяки тому, що e^{-x} – інтегровна за Ріманом.

Отримали що $e^{-x}\in\mathcal{L}^1(\mathbb{R}_+,\lambda)$ та $\int_{\mathbb{R}_+}e^{-x}\,d\lambda(x)=1$

Використаємо теорему Лебега про обмежену збіжність:

1)
$$f_n(x) \to e^{-x} \lambda$$
-майже всюди, $n \to \infty$

2)
$$\forall x \in \mathbb{R}_+ : |f_n(x)| = |e^{-x}(1 + \cos^n x)| \le |e^{-x} \cdot 2| = 2e^{-x} = g(x), \quad g(x) \in \mathcal{L}^1(\mathbb{R}_+, \lambda)$$

Tomy
$$\lim_{n\to\infty} \int_{\mathbb{R}_+} f_n(x) d\lambda(x) = \int_{\mathbb{R}_+} e^{-x} d\lambda(x) = 1$$