CIS 350 - INFRASTRUCTURE TECHNOLOGIES

SMALL GROUP ACTIVITY #3

Names of group

members: Brooklynn Taylor, Dylan Lasley, Jonathan McCarrick, Zoe Druen

Topic: Operation of the Computer, Assembler Language – The Little Man Computer (LMC)

Logistics

- 1. Get in touch with your group. (See Groups folder on Blackboard.)
- 2. Discuss and work <u>all</u> of the 2 assignments collectively with your group via E-mail, Discussion Forum, Blackboard Collaborate Ultra, and/or MS Teams. (Do not divide the work among group members.)
- 3. Choose a recorder to prepare the final copy (one per group) and submit it via the Blackboard Assignments/Small Group Activities folder.
- 4. Be sure all group members' names are on final copy. Do <u>not</u> add names of your group members who did not participate in the assignment or whose contribution was minimal.

Assignment One

Write the <u>LMC program</u> that reads in four numbers (one at a time) and places them in memory locations 25, 26, 27, 28 symbolically denoted by variables *a*, *b*, *c*, and *d*, respectively, in the C# like program segment below. The LMC program should subtract the second number from the first number and add the third number and the fourth number to the difference (*e:=a-b-c+d*). Next, the program should store the result in memory location 29, symbolically denoted by variable *e*, and print it out. Write the LMC instructions in the <u>mnemonic form</u>. Note that your LMC program will actually implement the following statements written in the C# pseudocode below. The LMC instructions start at address 00.

int a, b, c, d, e; read a, b, c, d; e:=a-b-c+d; print e;

address	instruction
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14	IN STO 25 IN STO 26 IN STO 27 IN STO 28 LDA 25 SUB 26 SUB 27 ADD 28 STO 29 OUT HLT
25 26 27 28 29	DAT DAT DAT DAT DAT

What addresses represent the program area and the data area, respectively?

Program area: __00-14______ Data area: __25-29______

Assignment Two

Write an LMC program (one program) that reads in two numbers, stores them in memory locations 40 and 41, finds the <u>larger</u> of the two numbers, stores the larger number in memory location 42, and outputs the larger number. (Note that the program will be <u>similar</u>, not the <u>same</u>, to the one that finds the positive difference of two numbers that we discussed in the lecture notes for Chapter 6 recorded on Panopto. Note that the LMC instructions start at address 00. You may trace in your memory or on paper the program execution for the two scenarios below:

scenario 1: you enter 5 and 7; and scenario 2: you enter 7 and 5.

In both cases, your program should output 7.

Address 00 01 02 03 04 05 06 07 08 09 10 11	Instruction IN STO 40 IN STO 41 SUB 40 BRP 08 LDA 40 BR 09 LDA 41 STO 42 OUT HLT	Scenario 1 Scenario 2	Memo 40 5 7	ory location 41 7 5	ons 42 7 7	Does your program returns 7? Circle Yes or No! Yes/No Yes/No
Address 40 41 42	DAT DAT DAT					
What range o	f addresses represents the	program area?	00	-11		
What range of	f the addresses represents	the data area?	40)-42		