G3

Mariana Adrian Roland Natalie

Executive summary

- Accuracy with training data (sales.csv)
- Best model:Polynomial

• R² Prediction: 0.876

Quick recap of alternatives considered:

Random Forest was accurate but too slow

Linear Regression Not as accurate

Speed/ Accuracy tradeoff

Methods (preprocessing)

- Loaded the data set
- Examined the shape and the types of data
- Checked for null values
- Deleted irrelevant columns
- Converted dates from into integers
- Looked for Correlation between features to show relationship between number of people and sales and to show outliers
- Created a Correlation Heatmap

Methods (models)

- We tried 3 different models:
 - Linear Regression
 - Polynomial regression (ensemble of polynomial pre-processing combined with linear regression)
 - Random Forest

LINEAR REGRESSION MODEL

Model Used: Linear Regression

• **Library:** scikit-learn

• **Goal:** Predict daily **sales** using features like number of customers, promotions, holidays, and store information.

- Approach:
 - 1. Train-Test Split

80% training data, 20% testing data

Ensures model is evaluated on unseen data

- 2. Feature Scaling
- 3. Model Training

LINEAR REGRESSION model

Model Used: Linear Regression

Sevaluation Metrics (Regression):					
Metric	Meaning	Train	Test		
MAE (Mean Absolute Error)	Average absolute difference between predicted and actual sales	986.76	986.88		
MSE (Mean Squared Error)	Penalizes large errors	2,164,500	2,185,334		
R ² (Coefficient of	How much variance in sales is explained	0.85	0.85		
Determination)	by the model				

- $R^2 = 0.85 \rightarrow$ the model explains 85% of the sales variability, which indicates a strong predictive performance.
- Similar results between training and test sets → no overfitting (good generalization).
- MAE ≈ 987 → on average, the model's predictions are within about **€987** of the true sales.

POLYNOMIAL REGRESSION model

Model Used: Polynomial Regression (degree = 4)

- Library: scikit-learn
- **Goal:** Improve sales prediction by capturing **non-linear relationships** between features (e.g., promotions, holidays, customer counts).

Evaluation Metrics (Regression)

Metric	Meaning	Train	Test
MAE	Average absolute difference between predicted and actual sales	897.21	896.42
MSE	Penalizes large errors	1,819,521	1,832,625
R²	Variance in sales explained by model	0.88	0.88

 $R^2 = 0.88 \rightarrow$ The model explains 88% of the sales variability, showing a better fit than Linear Regression (0.85).

MAE ≈ 896 → Average error dropped by ~90€, meaning the model is more accurate.

Train/Test R² are equal → The model generalizes well (no overfitting).

Degree = 4 achieved a good balance between accuracy and computation time.

RANDOMFOREST model

Model Used: Randomforest

1. TimeSeriesSplit

- Used because sales data has a time component (avoids "seeing the future").
- Splits the dataset chronologically into folds for cross-validation.

2. RandomForestRegressor

o Trains multiple trees (ensemble) to learn complex relationships.

3. cross_val_score

• Evaluates model performance using R² across folds for reliability.

20 MINUTES

Metric	Fold 1	Fold 2	Mean
•			
R ² (Explained Variance)	0.93	0.95	0.94

Takeaways

- Recap / conclusions
- Challenges were making sure the data was clean and usable, making sure the number of columns were the same for training and test data
- Key learnings: -If you scaled the data during training you had to to the inverse at the end