CLAIMS:

5

10

15

20

25

- 1. A method of designing a chamber for attachment of a duct to reduce noise in said duct, said chamber having a peripheral chamber height h_c to reduce noise in a duct having a height h by, said duct being separated from said chamber by a membrane having a tension T and membrane length L, including the steps of:
 - a) setting the chamber height h_c , the membrane length L, and tension T to predetermined values;
 - b) setting incident wave frequency f such that angular frequency $\omega = 2\pi f$, $c_0 =$ speed of sound;
 - c) determining the radiation pressure acting on the upper surface of the membrane facing away from the chamber, p_{+rad} caused by a unit modal amplitude;
 - d) determining the radiation pressure acting on the lower surface of the membrane facing towards the chamber, p_{-rad} caused by a unit modal amplitude;
 - e) determining the radiation p ressure by reflection of the radiated waves into the cavity by the walls of the chamber, p_{-ref} caused by a unit modal amplitude;
 - f) calculating vibration amplitude of the jth in-vacuo mode V_j using the modal impedance yielded from p_{+rad} , p_{-rad} , and p_{-ref} ,
 - calculating transmitted wave p_t using calculated vibration amplitude V_j from step f);
 - h) calculating transmission loss TL for f;
 - i) repeating steps b) to h) by varying wave frequency f to calculate transmission loss TL for different f; and
 - j) determine a frequency range f_1 and f_2 from the transmission loss TL versus f spectrum such that transmission loss TL within f_1 to f_2 is higher than or equal to a threshold transmission loss TL_{cr}

and wherein at the one of the chamber height h_c , membrane length L or tension T are varied and steps a) to j) are repeated to obtain an optimized noise-reduction spectrum for said duct.

- The method of Claim 1 further including the step of:
 - repeating steps a) to j) by varying the tension T to determine an optimal tension T_{opt} .

- 3. The method of Claim 2, wherein the tension T is varied from 0 to $\rho_0 c_0^2 h^2$, ρ_0 = fluid density of the medium contained in the chamber.
- 4. The method of Claim 2 further including the step of:
- 1) repeating steps a) to k) by varying the chamber height h_c to determine optimal chamber height h_{copt} .
 - 5. The method of Claim 2 further including the step of:
 - m) repeating steps a) to k) by varying membrane length L to determine optimal membrane length $L_{\rm opt}$.
 - 6. The method of Claim 1, wherein wave frequency f is varied from 0 to $\frac{c_o}{2h}$ such that the angular frequency $\omega = 2\pi f = 0$ to $\frac{\pi c_o}{h}$, $c_0 =$ speed of sound.
- 15 7. The method of Claim 1, wherein said chamber is filled with air.
 - 8. The method of Claim 1, wherein said chamber is filled with helium.
- 9. The method of Claim1, wherein the threshold transmission loss TL_{cr} is $10 \log_{10} \left[1 + \frac{1}{4} \left(1 + \sqrt{6h_c L} \right) \left(1 + \sqrt{6h_c L} \right)^{-1} \right]^2$
 - 10. The method of Claim 9, wherein the threshold transmission loss TL_{cr} is 10dB.
- 11. A chamber attaching to a duct having a height h for reducing noise in said duct, including a peripheral chamber height h_c and membrane length L, and a membrane having a tension T separating said chamber from said duct, wherein any one of the chamber height h_c , the membrane length L, or the tension T is set to an optimal value determined by any one of the methods of Claims 1 to 10.

10