Linear Algebra (MA2.101), Spring 2024, IIIT Hyderabad

Quiz 1

Total Marks: 15

Answer any three questions out of five. Each question carries 5 marks.

1. Let

$$A = \begin{pmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{pmatrix}$$

For which values of $Y = (y_1, y_2, y_3, y_4)^T$ do the system of equation AX = Y has a solution and under what conditions do the systems AX = Y don't have any solution? Use row-reduced echelon form of A to justify your answer. [5 marks]

2. Prove the following:

- (a) Suppose $a \in \mathbb{F}$ and $\vec{v} \in \mathbb{V}$, where \mathbb{V} is a vector space defined over \mathbb{F} . If $a\vec{v} = \vec{0}$, then prove that either a = 0 or $\vec{v} = \vec{0}$. [2 marks]
- (b) For every $\vec{v} \in V$, $-(-\vec{v}) = \vec{v}$. [1 marks]
- (c) Every element in a vector space has a unique additive inverse. [1 marks]
- (d) A vector space has a unique additive identity. [1 marks]
- 3. If $b \in \mathbb{F}$, then the set $\{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 if and only if b = 0. [5 marks]
- 4. Using elementary row operations, prove that A, where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

is invertible if and only if $ad - bc \neq 0$. [5 marks]

MA2.101: Linear Algebra (Spring 2022)

Exam

Wednesday, 28 March 2024

Course outcomes: CO1, CO3, CO6.

- 1. ([4 marks]) Solve one of the following.
 - The system of equations

$$x + y + z = 6$$

$$x + 4y + 6z = 20$$

$$x + 4y + 6z = \phi. 7$$

Find the values of λ and ϕ for which this system of equations has no solutions.

- If $A\mathbf{x} = \mathbf{b}$ always has at least one solution, show that the only solution to $A^T\mathbf{y} = 0$ is $\mathbf{y} = 0$. Here A^T denotes the transposition of matrix A.
- 2. ([3 marks]) V is a finite-dimensional vector space and let $T: V \to V$ be a linear operator on V. Suppose that $\operatorname{rank}(T^2) = \operatorname{rank}(T)$. Prove that the range and nullspace of T have only the zero vector $\mathbf{0}$ in common.
- 3. ([4 marks]) Two vector spaces are called *isomprphic* if there exists an invertible linear transformation from one vector space onto the other one. Prove that two finite-dimensional vector spaces over **F** are isomorphic if and only if they have the same dimension.
- 4. ([4 marks]) Solve one of the following.
 - (a) Prove both of the following statements.
 - The image or the range of a linear transformation $T:V\to W$ is a subspace of W.
 - A linear transformation $T: V \to W$ is one-to-one if and only if the nullspace of T only contains $0 \in V$.

- (b) Consider the ordered bases $A = \{(1,2), (-2,-3)\}$ and $B = \{(2,1), (1,3)\}$ for a vector space V. Then find the following
 - Matrix P that changes coordinates of any vector $\vec{\alpha} \in \mathbf{V}$ w.r.t. the ordered basis \mathcal{A} to coordinates w.r.t. the ordered basis \mathcal{B} .
 - Matrix Q that changes coordinates of any vector $\vec{\alpha} \in \mathbf{V}$ w.r.t. the ordered basis \mathcal{B} to coordinates w.r.t. the ordered basis \mathcal{A} .

Best wishes for all your endeavours. Stay healthy and happy!