Exercice 1.

Soit $f: \mathbb{R}^n \to \mathbb{R}_+$ continue telle que $f(x) \to +\infty$ quand $||x|| \to \infty$, montrer que f admet un minimum global sur \mathbb{R}^n .

Exercice 2.

Pour chacune des fonctions f suivantes, rechercher les extrema locaux et globaux sur \mathbb{R}^2

- 1. $f(x,y) = x^2 + y^4$
- 2. $f(x,y) = x^2 + y^3$
- 3. $f(x,y) = x^2 y^2 + \frac{y^4}{4}$
- 4. $f(x,y) = x^3 + x^2 + y^2$

Exercice 3.

Soit $(t, x) \mapsto F(t, x) = f_t(x)$ une fonction de classe C^2 de \mathbb{R}^2 vers \mathbb{R} . On suppose que f_0 admet un minimum local strict en $a \in \mathbb{R}$ vérifiant $f_0''(a) > 0$. Montrer que, pour tout t suffisament voisin de 0, la fonction f_t admet un minimum local strict en un point $\xi(t)$ voisin de a, et donner un développement limité au premier ordre de la valeur de f_t en ce point.

Exercice 4.

Soit $U \subset \mathbb{R}^n$ un ouvert convexe. Une fonction $f: U \to \mathbb{R}$ est dite convexe si l'on a $f((1-t)x+ty) \leq (1-t)f(x)+tf(y)$ pour tous $x,y \in U$ et $t \in [0,1]$. Elle est dite strictement convexe si de plus, pour $x \neq y$ et $t \in [0,1[$, on a f((1-t)x+ty) < (1-t)f(x)+tf(y).

- 1. Si f est convexe et s'il existe $a \in U$ tel que f est différentiable en a, montrer que $f(x) f(a) \ge Df_a(x-a)$. Montrer que si $Df_a = 0$, alors f admet en a un minimum global sur U.
- 2. Si de plus f est strictement convexe, montrer qu'il s'agit d'un minimum strict.

Exercice 5.

- 1. Montrer que la sphère $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1}/\|x\|_2 = 1\}$ est une sous-variété lisse de dimension n. Donner son espace tangent en tout point.
- 2. Soit $U \subset \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}^p$ de classe C^k . On note $\Gamma = \{(x, f(x))/x \in U\}$ son graphe. Donner l'espace tangent à Γ en tout point.
- 3. Montrer que les groupes $SL_n(\mathbb{R})$ et $O_n(\mathbb{R})$ sont des sous-variétés lisses de \mathbb{R}^{n^2} . Donner leurs dimensions et calculer les espaces tangents, d'abord en I_n , puis en tout point.

Exercice 6.

On note $MM' = \|\overrightarrow{MM'}\|$ la distance entre deux points M et M' de l'espace euclidien \mathbb{R}^2 .

- 1. On donne deux points distincts F et F' de \mathbb{R}^2 , et une constante 2a > FF'. Montrer que l'ellipse définie par FM + F'M = 2a est une sous-variété lisse de dimension 1 de \mathbb{R}^2 , et donner une construction géométrique de sa tangente en M. On notera \vec{u} et \vec{u}' les vecteurs unitaires $\vec{u} = \overrightarrow{FM}/FM$ et $\vec{u}' = \overrightarrow{F'M}/F'M$.
- 2. Montrer de même que toute hyperbole de mêmes foyers F et F' coupe l'ellipse précédente à angle droit.

Exercice 7.

1. Montrer que les équations

$$x^2 + y^2 + z^2 = R^2$$
, $x^2 + y^2 - 2x = 0$

où R > 0 est une constante, définissent une courbe lisse C lorsque $R \neq 2$. Déterminer la droite tangente à C au point (a,b,c). Que se passe-t-il pour R=2 au point (2,0,0)?

2. Déterminer les projections de C sur les trois plans de coordonnées.

Exercice 8.

Montrer qu'il existe sur un billard elliptique une trajectoire fermée à trois rebonds (indication : on cherchera un triangle inscrit de périmètre maximal).

Exercice 9.

Montrer que les projecteurs de $M_2(\mathbb{R})$ de rang exactement 1 forment une sous-variété C^{∞} de $M_2(\mathbb{R})$ dont on donnera la dimension.