Introduction to Neural Networks

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

In case of a large or small gradient, what will happen?

- In case of a large or small gradient, what will happen?
- Gradient descent either won't change our position or will send us far away.

Figure: The problem of large gradient value [1].

- Solve this problem simply by clipping gradient
- Two approaches to do so:
 - ▶ Clipping by value
 - ▶ Clipping by norm

Gradient Clipping by value

- Set a max (α) and min (β) threshold value
- For each index of gradient g_i if it is lower or greater than your threshold clip it:

$$\begin{aligned} &\text{if } \boldsymbol{g}_i > \alpha: \\ &\boldsymbol{g}_i \leftarrow \alpha \\ &\text{else if } \boldsymbol{g}_i < \beta: \\ &\boldsymbol{g}_i \leftarrow \beta \end{aligned}$$

- Clipping by value will not save gradient direction but still works well in practice.
- To preserve direction use clipping by norm.

Gradient Clipping by norm

Clip the norm $\|g\|$ of the gradient g before updating parameters:

$$\begin{aligned} \text{if } \| \boldsymbol{g} \| > v : \\ \boldsymbol{g} \leftarrow \frac{\boldsymbol{g}}{\| \boldsymbol{g} \|} v \end{aligned}$$

- v is the threshold for clipping which is a hyperparameter.
- Gradient clipping saves the direction of gradient and controls its norm.

The effect of gradient clipping:

Figure: The "cliffs" landscape (left) without gradient clipping and (right) with gradient clipping [1].

- Is initialization really necessary?
- What are the impacts of initialization?

- Is initialization really necessary?
- What are the impacts of initialization?
- A bad initialization may increase convergence time or even make optimization diverge.
- How to initialize?
 - Zero initialization
 - Random initialization

Figure: The output of a three layer network after about 600 epoch. (left) using a bad initialization method and (right) using an appropriate initialization [2].

Let's review some notations before we continue:

$$\begin{cases} n^{[l]} \coloneqq \text{layer } l \text{ neurons number,} \\ W^{[l]} \coloneqq \text{layer } l \text{ weights,} \\ b^{[l]} \coloneqq \text{layer } l \text{ biases,} \\ a^{[l]} \coloneqq \text{layer } l \text{ outputs} \end{cases}$$

Zero Initialization method:

$$\begin{cases} W^{[l]} = 0 \\ b^{[l]} = 0 \end{cases}$$

Zero Initialization method:

$$\begin{cases} W^{[l]}=0,\\ b^{[l]}=0 \end{cases}$$

Simple but perform very poorly. (why?)

Zero Initialization method:

$$\begin{cases} W^{[l]} = 0, \\ b^{[l]} = 0 \end{cases}$$

- Simple but perform very poorly. (why?)
- Zero initialization will lead each neuron to learn the same feature
- This problem is known as network failing to break symmetry
- In fact any constant initialization suffers from this problem.

Figure: As we can see network has failed to break symmetry. There has been no improvement in weights after about 600 epochs of training [2].

We need to break symmetry. How? using randomness.

Simple Random Initialization:

$$\begin{cases} W^{[l]} \sim \mathcal{N} \left(\mu = 0, \sigma^2 \right), \\ b^{[l]} = 0 \end{cases}$$

Simple Random Initialization:

$$\begin{cases} W^{[l]} \sim \mathcal{N} \left(\mu = 0, \sigma^2 \right), \\ b^{[l]} = 0 \end{cases}$$

- It depends on standard deviation (σ) value
- If it choose carefully, will perform well for small networks
- One can use $\sigma = 0.01$ as a best practice.
- But still has problems with deeper networks.
- Too small/large value for σ will lead to vanishing/exploding gradient problem.

Figure: The problem of normal initialization. On the top, you can see the model architecture, and on the bottom, you can see the density of each layer's output. Model has trained on MNIST dataset for 4 epoch. Weights are initialized randomly from $\mathcal{N}(0,1)$ [2].

- How to have a better random initialization?
- We need to follow these rules:
 - **\rightarrow** keep the mean of the activations zero.
 - **\rightarrow** keep the variance of the activations same across every layer.
- How to do so?

- How to have a better random initialization?
- We need to follow these rules:
 - keep the mean of the activations zero.
 - keep the variance of the activations same across every layer.
- How to do so?

Xavier Random Initialization:

$$\begin{cases} W^{[l]} \sim \mathcal{N}\left(\mu = 0, \sigma^2 = \frac{1}{n^{[l]}}\right), \\ b^{[l]} = 0 \end{cases}$$

(this method works fine for tanh, and you can read about why it works at [2].)

Figure: Vanishing gradient is no longer problem using Xavier initialization. Model has trained on MNIST dataset for 4 epoch. [2].

- We discussed weight initialization on previous slides.
- A god initialization will help model on vanishing/exploding gradient problem.
- Xavier method works well with tanh activation function.
 - If you use ReLU activation use He initialization:

He Initialization:

$$\begin{cases} W^{[l]} \sim \mathcal{N}\left(\mu = 0, \sigma^2 = \frac{2}{n^{[l]}}\right), \\ b^{[l]} = 0 \end{cases}$$

Various GD types

Final Notes

Thank You!

Any Question?

References

I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.

K. Katanforoosh and D. Kunin, "Initializing neural networks," 2019. https://www.deeplearning.ai/ai-notes/initialization/.