1. By definition (4.1),

$$V_{n}(i) = \max_{\{a_{T-n+1}, \dots, a_{T}\}} \mathbf{E} \left[\sum_{t=T-n+1}^{T} R(X_{t}, a_{t}) \middle| X_{T-n+1} = i \right]$$

$$= \max_{\{\dots\}} \left\{ R(X_{T-n+1}, a_{T-n+1}) + \mathbf{E} \left[\sum_{t=T-n+2}^{T} R(X_{t}, a_{t}) \middle| X_{T-n+1} = i \right] \right\},$$

where by the TPF the last expectation can be computed as

$$\sum_{j} \mathbf{E} \left[\cdots \mid X_{T-n+1} = i, X_{T-n+2} = j \right] \mathbf{P} \left(X_{T-n+2} = j \mid X_{T-n+1} = i \right)$$
$$= \sum_{j} \mathbf{E} \left[\cdots \mid X_{T-n+2} = j \right] p_{ij} (a_{T-n+1})$$

by Markov property. Complete the argument!

- **2.** (i) $X_t = Z_t$ if has not bought yet, $X_t = 0$ otherwise, t = 1, 2, 3, 4 (with $Z_4 = \infty$ to make the person purchase the land!). Actions: a = 1 is "buy"; a = 0 is "do nothing". Transition probabilities for a = 0 at different times t are specified by the table, while a = 1 always means transition to 0. Reward function: R(x,0) = 0, R(x,1) = -x.
 - (ii) As the process in non-homogeneous (in time), we have

$$V_n(i) = \max_a \left[R(i, a) + \mathbf{E}_a(V_{n-1}(X_{5-n}) | X_{4-n} = i) \right], \quad n = 1, 2, 3$$

(since T = 3, T - n + 1 = 4 - n now) with $V_0(x) = -x$ (inflicting a huge penalty in case the person has not bought land during the three days).

- (iii) Decision tree: DIY. Optimal policy: in week one, buy if the price is 2.2 else wait; in week two, buy if the price is 2.2 or 2.3, else wait; in week three buy if you haven't yet. The minimum expected price is 2.2574 (i.e., \$225,740).
 - 3. The optimality equation becomes

$$V_n(x) = \max_{a \in [0,1]} \mathbf{E} \, V_{n-1}(x + axZ) = \max_{a \in [0,1]} \Big(pV_{n-1}(x(1+a)) + qV_{n-1}(x(1-a)) \Big),$$

so that, since $V_0(x) = \log x$,

$$V_1(x) = \log x + \max_{a \in [0,1]} (p \log(1+a) + q \log(1-a)).$$

- (i) If $p \le 1/2$, the function on the right-hand side is decreasing in $a \in [0, 1]$, stimal a = 0, $V_1(x) = \log x$. Repeating the argument we start (i) If $p \le 1/2$, q = 1/2, repeating the argument, we derive that all p = 1/2, and the optimal action is also as p = 1/2, pthe optimal v_0 v_0 (i) If p > 1/2, the maximum is attained at $a^* = 2p - 1 = p - q$. As (ii) If p > -1 (ii) $\log x + c$, $c = \mathbf{E}(1 + a^*Z) = \text{const}$, repeating the argument yields that * is optimal at each step.
- 4. (i) $X_t = Z_t$ if has not sold yet; $X_t = 0$ otherwise. Actions: a = 1 is "sell"; 4. (1) At a solution of $\{X_t\}$: given $X_t = 0$, $X_{t+1} = 0$ for any a; x = 0 is "do nothing". The evolution of $\{X_t\}$: given $X_t = 0$, $X_{t+1} = 0$ for any a; g(x) = 0 is a = 0. Since $A_t = 0$, $A_{t+1} = 0$ for any a = 0, $A_{t+1} = 0$ for any a = 0. Reward function: g(x,0) = 0, R(x,1) = x. The sum of one-step reward equals the only term $(\neq 0)$
- (ii) $V_n(x) = \max_{a=0,1} [R(x,a) + \mathbf{E}_a(V_{n-1}(X_1)|X_0)]$ $\max_{\max} \{ \mathbf{E}_0(V_{n-1}(X_1) | X_0 = x), x \}$, where the subscript a indicates that the expectation is taken under action a. If x = 0, then $V_n(x) = 0$, so can only consider

$$V_n(x) = \max\{\mathbf{E} V_{n-1}(Z), x\}, \quad Z \sim U(0, 1),$$

with the initial condition $V_0(x) = 0$ (as nothing can be gained after time T = 4). Solution:

n=1: For x>0, $V_1(x)=x$ and the optimal action (for which the maximum is attained) is always a = 1.

n=2: $V_2(x)=\max\{\mathbf{E}\,V_1(Z),\,x\}=\max\{\mathbf{E}\,Z,\,x\}=\max\{1/2,\,x\}$. Optimal action: a = 1 iff x > 1/2.

n=3: Here

$$V_3(x) = \max\{\mathbf{E} V_2(Z), x\} = \max\{\mathbf{E} \max\{1/2, Z\}, x\} = \max\{5/8, x\}$$

since (using the hint)

$$\mathbf{E} \max\{c, Z\} = c \mathbf{P}(Z \le c) + \int_{c}^{1} x \, dx = \frac{1}{2}(1 + c^{2}).$$

The optimal action: a = 1 iff x > 5/8.

n = 4: Now

$$V_4(x) = \max\{\mathbf{E} V_3(Z), x\} = \max\{\mathbf{E} \max\{5/8, Z\}, x\} = \max\{89/128, x\}.$$

The optimal action: a = 1 iff x > 89/128.

- (iii) Day 1: sell if $Z_1 > 89/128 \approx 0.695$. Day 2: sell if $Z_2 > 5/8 = 0.625$. Day 3: sell if $Z_1 > 1/2 = 0.5$. Day 4: sell. Maximum expected price: $\mathbf{E} V_4(X_1) = 0.5$ $\mathbf{E} \max\{89/128, Z\} \approx 0.742.$
- **5.** As we proved that $\{s_n\}$ is non-decreasing, it suffices to show that $s_2 = \infty$. Since $V_1 \ge s - c$, we get $\mathbf{E} V_1(s + Y_1) \ge \mathbf{E} (s + Y_1 - c) = s - c + \mu > s - c$, so from (4.4) with n=2 we see that (4.5) holds for all s, i.e., $s_2=\infty$.

6. (i) **E** $Y = \sum_{j \le n} \lambda_j \mathbf{E} X_j = \mu$; Var $(Y) = \sigma^2 \sum_{j \le n} \lambda_j^2 = \sigma^2 (\lambda_1^2 + \dots + \lambda_{n-1}^2 + (1 - \lambda_1 - \dots - \lambda_{n-1})^2)$. Solve $\partial(\dots)/\partial \lambda_j = 0$, $j = 1, \dots, n-1$, to get $\lambda_j = 1/n$ for all j (and note that this is a minimum indeed!).

(ii) First show that $f(\lambda) := \mathbf{E} u\left(\sum_{j=1}^{n} \lambda_j X_j\right)$ is a strictly concave function of $\lambda = (\lambda_1, \dots, \lambda_n)$: for any λ' , λ'' and $\alpha \in (0, 1)$,

$$f(\lambda) > \alpha f(\lambda') + (1 - \alpha) f(\lambda'').$$
 (13.46)

Next assume that the maximum of $f(\lambda)$ is attained at a point λ' such that $\lambda'_i \neq \lambda'_j$ for some $i \neq j$. Define λ'' by setting $\lambda''_j := \lambda'_i$, $\lambda''_i := \lambda'_j$, and $\lambda''_k := \lambda'_k$ for all $k \neq i, j$. As $\sum \lambda''_k X_k$ has the same distribution as $\sum \lambda'_k X_k$ (since X_1, \ldots, X_n are exchangeable), $f(\lambda'') = f(\lambda')$ is also a minimum, and by taking $\alpha = 1/2$ we see from (13.46) that for the midpoint $\lambda = (\lambda' + \lambda'')/2$, $f(\lambda) > (f(\lambda') + f(\lambda''))/2 = f(\lambda')$, a contradiction! So must have $\lambda'_i = \lambda'_j$ for all i, j at the maximum point.

7. Since $u_n(x) = \max\{x, \mu_{n-1}\}$, assuming $\mu_{n-1} \leq \mu_n$, we get

$$\mu_{n+1} - \mu_n = \alpha \mathbf{E} (u_{n+1}(Z) - u_n(Z))$$

= $\alpha(\mu_n - \mu_{n-1}) \mathbf{P} (Z < \mu_{n-1}) + \alpha \mathbf{E} ((Z - \mu_{n-1}); \mu_{n-1} < Z \le \mu_n).$

Clearly, $0 \le \text{(right-hand side)} \le \alpha |\mu_n - \mu_{n-1}|$. Similar argument if $\mu_{n-1} > \mu_n$.