Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 EC3CO08 Engineering Electromagnetic

Branch/Specialisation: EC Programme: B.Tech. **Duration: 3 Hrs. Maximum Marks: 60**

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 i. The point P (-3, 4, 1) is given in Cartesian coordinate, which of 1 one is incorrect?

(a)
$$\rho = -5$$

(b)
$$r = \sqrt{26}$$

(c)
$$\theta = \tan^{-1} \frac{5}{1}$$

(d)
$$\emptyset = \tan^{-1} \frac{4}{3}$$

The force between two point charges of 1nC each with a 1mm 1 separation in air is

(a)
$$9 \times 10^{-3} N$$
 (b) $9 \times 10^{-6} N$ (c) $9 \times 10^{-9} N$ (d) $9 \times 10^{-12} N$

If the potential, V=5y + 2 volts, the electric field is

(b) 2 V/m

(c) -5 V/m (d) $-5a_{\nu}V/m$

What is the magnetic field intensity vector \overline{H} between two parallel sheet with separation'd' along z-axis, both sheets are carrying surface current $\bar{k} = k_{\nu} a_{\nu}$?

(a)
$$-k_{\nu}a_{\nu}$$
 (b) $+k_{\nu}a_{\nu}$ (c) $-k_{\nu}a_{\nu}$

(a) 7 V/m

(b)
$$+k_{\nu}a_{\nu}$$

$$(c) - k_{\nu}a$$

(d) Zero

The energy stored per unit volume in an electric field is given by

(a)
$$\frac{1}{2}\varepsilon H^2$$
 (b) $\frac{1}{2}\varepsilon E^2$

(b)
$$\frac{1}{2}\varepsilon I$$

(c)
$$\frac{1}{2} \varepsilon E$$

(d) εE^2

A time varying magnetic flux linking a coil is given by 1 $\varphi=1/3(\alpha t^3)$ wb. At t=3s, the emf induced is 9v, then the value of α is

- (a) Zero
- (b) 1 wb/s^2

(c) -1 wb/s^2 (d) 9wb/s^2

The concept of displacement current was a major contribution 1 attributed to

- (a) Faraday
- (b) Lenz
- (c) Maxwell (d) Lorentz

P.T.O.

1

1

1

	viii.	The Poynting vector $\overline{P} = \overline{E} \times \overline{H}$ has the dimensions of (a) Power /unit area (b) Volt	1
	ix.	(c) Power (d) Volt /unit length Which of the following statement is not true for waves in general? (a) It may be a function of time only.	1
	X	 (b) It must be sinusoidal. (c) It must be a function of time and space. (d) For practical reasons, it must be finite in extent. If for the transmission of a parallel polarized wave from a dielectric medium of permittivity ε₁ into a dielectric medium of permittivity ε₂ there exists a value of the angle of incidence θ_p 	1
		for which reflection coefficient is zero, then (a) $\tanh \theta_p = \sqrt{\varepsilon 1/\varepsilon 2}$ (b) $\tan \theta_p = \sqrt{\varepsilon 1/\varepsilon 2}$ (c) $\tanh \theta_p = \sqrt{\varepsilon 2/\varepsilon 1}$ (d) $\tan \theta_p = \sqrt{\varepsilon 2/\varepsilon 1}$	
Q.2	i.	The point P (2, 3, -5) is given in Cartesian coordinate convert it into cylindrical (ρ, \emptyset, Z) and spherical coordinate (r, θ, \emptyset) .	2
	ii.	Define the Divergence and Stoke's theorem.	3
	iii.	Given the two vectors $R_A = -a_x - 3a_y - 4a_z$ and $R_B = 2 a_x + 2 a_y + 2 a_z$ and point C (1, 3, 4). Find: (a) R_{AB} ; (b) $ R_B $; (c) a_B ; (d) a_{AB} ; (e) unit vector	5
OR	iv.	directed from C towards A. Convert A = $(2a_x + 4a_y + 5a_z)$ at the point $(3, 4, 5)$ in spherical coordinates.	5
Q.3	i.	Four point charges of 3nC each are placed at four corners of square 2m in side. Find force acting on each charge?	4
	ii.	Two concentric charged spherical cell of inner radius ' a ' and outer radius ' b ' find: (a) E everywhere. (b) Potential difference between spherical cell i.e. <i>V</i> _{ab} (c) Capacitance (Assume as required)	6

OR	iii.	Derive the boundary condition for electrostatic field for both tangential as well as normal component between to dielectric medium.	6
Q.4	i.	Find the magnetic field intensity due to infinite long straight conductor wire using Biot Savert's law.	4
	ii.	Evaluate both sides of the Stoke's theorem for the field $\overline{H} = 6xya_x$ - $3y^2a_y$ A/m and the rectangular path around the region, $2 \le x \le 5, -1 \le y \le 1, z = 0$. let the positive direction of $d\overline{S}$ be a_z	6
OR	iii.	Define: (a) Magnetic vector potential. (b) Poisson's and Laplace equation for magnetic field.	6
Q.5	i.	Define: (a) Faraday's law. (b) Displacement current	4
	ii.	State Maxwell's Equation in integral and differential form for: (a) Free space (b) Lossy Medium (c) Time harmonically varying fields.	6
OR	iii.	A 300 MHz uniform plane wave propagates through a conducting medium for which σ =10 ⁻² S/m, μ_r =1 and ε_r =64. Calculate attenuation constant, phase constant, skin depth and intrinsic impedance.	6
Q.6	i.	What is wave polarization? Define linear, circular and elliptical polarization.	4
	ii	Determine the amplitudes of reflected and transmitted field (electric and magnetic both) at the interface of two region, if $E_i=1.5 \text{mV/m}$ in region 1 for which $\varepsilon_{r1}=8.5$, $\mu_{r1}=1$ and $\sigma=0$ and region 2 is free space.	6
OR	iii	Derive equation for reflection and transmission coefficient for perpendicular polarization.	6

EC3CO08 Engineering Electromagnetic

Marking Scheme

		8		
	i.	At Cartesian point (-3, 4,1), which of these is inc	correct?	1
		(a) $\rho = -5$		
	ii.	The force between two point charges of 1nC e separation in air is (a) $9 \times 10^{-3} N$	ach with a 1mm	1
		• •	l:	1
iii. iv.	111.	If the potential, V=5y + 2 volts, the electric field (d) $-5a_v$ V/m	1 18	1
	iv.	What is the magnetic field intensity vector parallel sheet with separation 'd' along z-axis bo surface current $\bar{k} = k_y a_y$?		1
		(d) Zero	C. 11	_
v. vi.	v.	The energy stored per unit volume in an electric (b) $\frac{1}{2} \varepsilon E^2$	field is given by	1
	vi.	A time varying magnetic flux linking a co $\varphi=1/3(\alpha t^3)$ wb. At t=3s, the emf induced is 9v, α is	•	1
		(c) -1 wb/s^2		4
	vii.	The concept of displacement current was a rattributed to	najor contribution	1
		(c) Maxwell		_
viii. ix.	V111.	The Poynting vector $\overline{P} = \overline{E} \times \overline{H}$ has the dimensi (a) Power /unit area	ons of	1
	ix.	Which of the following statement is not trugeneral?	e for waves in	1
		(a) It may be a function of time only.	d war from	1
	х.	If for the transmission of a parallel polarized wave from a dielectric medium of permittivity ε_1 into a dielectric medium of permittivity ε_2 there exists a value of the angle of incidence θ_p for which reflection coefficient is zero, then (d) $\tan \theta_p = \sqrt{\varepsilon 2/\varepsilon 1}$		
Q.2	i.	For each conversion 1 marks	(1 mark *2)	2
	ii.	Divergence	1.5 marks	3
		Stoke's theorem.	1.5 marks	
	iii.	(a) R_{AB}	1 mark	5
		(b) $\mid R_B \mid$	1 mark	

		(c) a_B	1 mark	
		(d) a_{AB}	1 mark	
		(e) Unit vector directed from C towards A.	1 mark	
OR	iv.	Correct formula including unit vector table	3 marks	5
		Complete marks for correct result only		
Q.3	i.	1 mark for each correct result	(1 mark * 4)	4
	ii.	(a) E everywhere.	3 marks	6
		(b)potential difference between spherical cell	i.e. V_{ab}	
			3 marks	
OR	iii.	3 marks for each component	(3 marks * 2)	6
Q.4	i.	Magnetic field intensity due to infinite long	straight conductor	4
۷٠١	1.	wire using Ampere's circuital law	straight conductor	-
		Step wise marking		
	ii.	Each side having 3 marks	(3 marks * 2)	6
OR	iii	Define: (a) magnetic vector potential.	3 marks	6
		(b) Poisson's and Laplace equation for magne		ŭ
		1 1	3 marks	
Q.5	i.	Define: (a) Faraday's law.	2 marks	4
		(b) Displacement current	2 marks	
	ii.	Each correct equation having equal marks		6
OR	iii.	Calculate attenuation constant	1.5 marks	6
		Phase constant	1.5 marks	
		Skin depth	1.5 marks	
		Intrinsic impedance	1.5 marks	
Q.6	i	Definition of wave polarization	1 mark	4
		Definition linear	1 mark	
		Circular	1 mark	
		Elliptical polarization	1 mark	
	ii	Determine the amplitudes of reflected	3 marks	6
		Determine the amplitudes of transmitted field	l 3 marks	
OR	iii	Derive equation for reflection and transmitte		6
		perpendicular polarization.		
		3 marks for each derivation	(3 marks * 2)	
