Arithmetic circuits: a chasm at depth three

Pritish Kamath

Research

Based on joint work with

Ankit Gupta Neeraj Kayal

Ramprasad Saptharishi

FOCS - 2013 UC Berkeley

$$\operatorname{VP} \ \stackrel{\mathrm{def}}{=} \ \left\{ \begin{array}{l} P(x_1,\ldots,x_n) \ : \operatorname{poly}(n) \ \operatorname{degree} \\ \operatorname{computable} \ \operatorname{by} \ \operatorname{poly}(n) \text{-sized circuits} \end{array} \right\}$$

$$\begin{array}{ll} \text{VP} & \stackrel{\mathsf{def}}{=} & \left\{ \begin{array}{l} P(x_1,\ldots,x_n) \ : \mathsf{poly}(n) \ \mathsf{degree} \\ \mathsf{computable} \ \mathsf{by} \ \mathsf{poly}(n)\text{-sized circuits} \end{array} \right\} \\ \\ \text{VNP} & \stackrel{\mathsf{def}}{=} & \left\{ \begin{array}{l} P(x_1,\ldots,x_n) \ = \ \sum\limits_{\mathbf{e}} c_{\mathbf{e}} \cdot x_1^{e_1} \ldots x_n^{e_n} \\ \\ \mathsf{where} \ \mathsf{Coeff}_P(e_1,\ldots,e_n) \in \mathsf{P} \end{array} \right\} \end{array}$$

$$\operatorname{VP} \ \stackrel{\mathrm{def}}{=} \ \left\{ \begin{array}{l} P(x_1,\ldots,x_n) \ : \operatorname{poly}(n) \operatorname{degree} \\ \operatorname{computable} \operatorname{by} \operatorname{poly}(n) \operatorname{-sized} \operatorname{circuits} \end{array} \right\}$$

$$\mathsf{VNP} \ \stackrel{\mathsf{def}}{=} \ \left\{ \begin{array}{l} P(x_1, \dots, x_n) \ = \ \sum_{\mathbf{e}} c_{\mathbf{e}} \cdot x_1^{e_1} \dots x_n^{e_n} \\ \mathsf{where} \ \mathsf{Coeff}_P(e_1, \dots, e_n) \in \mathsf{P} \end{array} \right\}$$

$$\mathsf{Det}_n \qquad \qquad \mathsf{Perm}_n$$

$$\mathsf{Det} \left(\begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nn} \end{bmatrix} \right) \qquad \qquad \mathsf{Perm} \left(\begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nn} \end{bmatrix} \right)$$

"The determinant of this conjecture will be permanently famous..."

- Neeraj Kayal

Model	Lower bound	
General circuits	$\Omega(n\log n)$	[Baur-Strassen-83]
General formulas	$\Omega(n^3)$	[Kalorkoti-85]

Model	Lower bound	
General circuits	$\Omega(n\log n)$	[Baur-Strassen-83]
General formulas	$\Omega(n^3)$	[Kalorkoti-85]
Depth-2 circuits	$2^{\Omega(n\log n)}$	(Trivial!)

Model	Lower bound	
General circuits	$\Omega(n\log n)$	[Baur-Strassen-83]
General formulas	$\Omega(n^3)$	[Kalorkoti-85]
Depth-2 circuits	$2^{\Omega(n\log n)}$	(Trivial!)
Depth-3 circuits	$\widetilde{\Omega}(n^4)$	[Shpilka-Wigderson-01]

Model	Lower bound	
General circuits	$\Omega(n\log n)$	[Baur-Strassen-83]
General formulas	$\Omega(n^3)$	[Kalorkoti-85]
Depth-2 circuits	$2^{\Omega(n\log n)}$	(Trivial!)
Depth-3 circuits	$\widetilde{\Omega}(n^4)$	[Shpilka-Wigderson-01]
Homogeneous Depth-3 circuits	$2^{\Omega(n)}$	[Nisan-Wigderson-97]
Depth-3 circuits over finite fields	$2^{\Omega(n)}$	[Grigoriev-Karpinski-98]

Model	Lower bound	
<i>Multilinear</i> formula	$n^{\Omega(\log n)}$	[Raz-09]
Constant depth, multilinear formula	$2^{\tilde{\Omega}(n^{1/d})}$	[Raz-Yehudayoff-09]
<i>Monotone</i> Circuits	$2^{\Omega(n)}$	[Jerrum-Snir-82]

Known lower bounds (before 2012)

Model	Lower bound	
<i>Multilinear</i> formula	$n^{\Omega(\log n)}$	[Raz-09]
Constant depth, multilinear formula	$2^{\tilde{\Omega}(n^{1/d})}$	[Raz-Yehudayoff-09]
<i>Monotone</i> Circuits	$2^{\Omega(n)}$	[Jerrum-Snir-82]

Summary: No lower bounds known beyond depth-3, unless other restrictions are imposed.

Depth reduction

Reduction to log^2 -depth

Theorem ([Valiant-Skyum-Berkowitz-Rackoff-83])

Reduction to log^2 -depth

Theorem ([Valiant-Skyum-Berkowitz-Rackoff-83])

Reduction to log^2 -depth

Theorem ([Valiant-Skyum-Berkowitz-Rackoff-83])

$$VP = VNC^2$$

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Arithmetic circuits

Depth-4 circuits

of "small" size

of "not-too-large" size

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Arithmetic circuits Depth-4 circuits of $\operatorname{poly}(n,d)$ size of $n^{O(\sqrt{d})}$ size

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Arithmetic circuits

of poly(n, d) size

Depth-4 circuits*

of $n^{O(\sqrt{d})}$ size

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

And last year ...

Lower bound on size of depth-4 circuits*

[Gupta-K.-Kayal-Saptharishi] Perm_d (or Det_d) $2^{\Omega(\sqrt{d})}$

7/19

Lower bound on size of depth-4 circuits*

[Gupta-K.-Kayal-Saptharishi] Perm_d (or Det_d) $2^{\Omega(\sqrt{d})}$ [Kayal-Saha-Saptharishi] explicit poly in VNP $n^{\Omega(\sqrt{d})}$

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Lower bound on size of depth-4 circuits*

[Gupta-KKayal-Saptharishi]	$Perm_d$ (or Det_d)	$2^{\Omega(\sqrt{d})}$
[Kayal-Saha-Saptharishi]	explicit poly in VNP	$n^{\Omega(\sqrt{d})}$
[Fournier-Limaye- -Malod-Srinivasan]	explicit poly in VP	$n^{\Omega(\sqrt{d})}$

Escalator at depth-4

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Lower bound on size of depth-4 circuits*

[Gupta-KKayal-Saptharishi]	$Perm_d$ (or Det_d)	$2^{\Omega(\sqrt{d})}$
[Kayal-Saha-Saptharishi]	explicit poly in VNP	$n^{\Omega(\sqrt{d})}$
[Fournier-Limaye- -Malod-Srinivasan]	explicit poly in VP	$n^{\Omega(\sqrt{d})}$

Squashing it further

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Squashing it further

of $n^{O(\sqrt{d})}$ size

Theorem ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Arithmetic circuits

Depth-4 circuits

poly(n, d) size

Is a similar depth-reduction possible to depth-3?

Lower bound	Restriction	

Lower bound	Restriction	
$2^{\Omega(n)}$ for Det_n (Grigoriev-Karpinski)	depth-3 circuits over finite fields	reduction must be field dependent

Lower bound	Restriction	
$2^{\Omega(n)}$ for Det_n (Grigoriev-Karpinski)	depth-3 circuits over finite fields	reduction must be field dependent
$2^{\Omega(n)}$ for Det_n (Nisan-Wigderson)	homogeneous depth-3 circuits	

Lower bound	Restriction	
$2^{\Omega(n)} \text{ for Det}_n$ (Grigoriev-Karpinski)	depth-3 circuits over finite fields	reduction must be field dependent
$2^{\Omega(n)}$ for Det_n (Nisan-Wigderson)	homogeneous depth-3 circuits	must compute high-degree intermediate polynomials, and cleverly cancel them in the end

Lower bound	Restriction	
$2^{\Omega(n)}$ for Det_n (Grigoriev-Karpinski)	depth-3 circuits over finite fields	reduction must be field dependent
$2^{\Omega(n)}$ for Det_n (Nisan-Wigderson)	homogeneous depth-3 circuits	must compute high-degree intermediate polynomials, and cleverly cancel them in the end

No depth-3 circuit for determinant of size $2^{O(n)}$ was known. The permanent however has *Ryser's formula* of size $2^{O(n)}$.

$$\mathsf{Perm}_n \quad = \quad \sum_{S \in [n]} (-1)^{n-|S|} \prod_{i=1}^n \sum_{j \in S} x_{ij}$$

... it's true!

Theorem ([Gupta-K.-Kayal-Saptharishi])

... it's true!

Theorem ([Gupta-K.-Kayal-Saptharishi])

Corollary

A depth-3 circuit for Det_d of size $d^{O(\sqrt{d})}$ over $\mathbb Q$.

... it's true!

Theorem ([Gupta-K.-Kayal-Saptharishi])

Corollary

A depth-3 circuit for Det_d of size $d^{O(\sqrt{d})}$ over \mathbb{Q} .

Note: Resulting depth-3 circuit is *heavily non-homogeneous*, with degrees going up to $n^{O(\sqrt{d})}$.

Reduction to Depth-3 Circuits

 $\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array}$

general circuit of size
$$n^{O(1)}$$
 $\xrightarrow{[AV08], [Koi12], [Tav13]}$ $\sum \prod_{\text{circuits}}^{\sqrt{d}} \sum_{\text{circuits}}^{\sqrt{d}}$

general circuit of size
$$n^{O(1)}$$
 $\xrightarrow{[AV08], [Koi12], [Tav13]}$ $\sum \prod_{\text{circuits}}^{\sqrt{d}} \sum_{\text{circuits}}^{\sqrt{d}}$

$$\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{\text{[AV08], [Koi12], [Tav13]}} \quad \sum \prod_{\text{circuits}}^{\sqrt{d}} \sum \prod_{\text{circuits}}^{\sqrt{d}}$$

$$C = \sum_{i=1}^s \, Q_{i1} \cdot Q_{i2} \cdots Q_{i\sqrt{d}}$$
 where, $\deg(Q_{ij}) \leq \sqrt{d}$

$$\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{\text{[AV08], [Koi12], [Tav13]}} \quad \sum \prod_{\text{circuits}}^{\sqrt{d}} \sum \prod_{\text{circuits}}^{\sqrt{d}}$$

$$C = \sum_{i=1}^{s} Q_{i1} \cdot Q_{i2} \cdots Q_{i\sqrt{d}}$$

where, $\deg(Q_{ij}) \leq \sqrt{d}$

A possibly simpler circuit,

$$C_{\text{simpler}} = \sum_{i=1}^{s} Q_i^{\sqrt{d}}$$

$$\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{\text{[AV08], [Koi12], [Tav13]}} \quad \sum \prod_{\text{circuits}}^{\sqrt{d}} \sum \prod_{\text{circuits}}^{\sqrt{d}}$$

$$C = \sum_{i=1}^{s} Q_{i1} \cdot Q_{i2} \cdots Q_{i\sqrt{d}}$$

where,
$$\deg(Q_{ij}) \leq \sqrt{d}$$

A possibly simpler circuit,

$$C_{\text{simpler}} = \sum_{i=1}^{s} Q_i^{\sqrt{d}}$$

Turns out:
$$\sum \bigwedge^{\sqrt{d}} \sum \prod^{\sqrt{d}}$$
 is as powerful as $\sum \prod^{\sqrt{d}} \sum \prod^{\sqrt{d}}$

$$4x_1x_2 = (x_1 + x_2)^2 - (x_1 - x_2)^2$$

$$24 x_1 x_2 x_3 = (x_1 + x_2 + x_3)^3 - (x_1 - x_2 + x_3)^3 - (x_1 + x_2 - x_3)^3 + (x_1 - x_2 - x_3)^3$$

$$24 x_1 x_2 x_3 = (x_1 + x_2 + x_3)^3 - (x_1 - x_2 + x_3)^3 - (x_1 + x_2 - x_3)^3 + (x_1 - x_2 - x_3)^3$$

$$24 x_1 x_2 x_3 = (x_1 + x_2 + x_3)^3 - (x_1 - x_2 + x_3)^3 - (x_1 + x_2 - x_3)^3 + (x_1 - x_2 - x_3)^3$$

$$24 x_1 x_2 x_3 = (x_1 + x_2 + x_3)^3 - (x_1 - x_2 + x_3)^3 - (x_1 + x_2 - x_3)^3 + (x_1 - x_2 - x_3)^3$$

[Fischer]:

$$d! \cdot 2^{d-1} \cdot (x_1 x_2 \cdots x_d) = \sum_{S \subseteq [d] \setminus \{1\}} (-1)^{|S|} \left(\sum_{j \notin S} x_j - \sum_{j \in S} x_j \right)^d$$

[Fischer]:

$$d! \cdot 2^{d-1} \cdot (x_1 x_2 \cdots x_d) = \sum_{S \subseteq [d] \setminus \{1\}} (-1)^{|S|} \left(\sum_{j \notin S} x_j - \sum_{j \in S} x_j \right)^d$$

$$\prod^d \longrightarrow \sum^{2^d} \bigwedge^d \sum^d$$

14/19

Step 1: $\Sigma\Pi\Sigma\Pi \longrightarrow \Sigma\wedge\Sigma\wedge\Sigma$

$$\prod^{d} \longrightarrow \sum^{2^{d}} \bigwedge^{d} \sum^{\sqrt{d}} \sum \prod^{\sqrt{d}} \text{ of size } s \longrightarrow \sum^{\sqrt{d}} \sum^{\sqrt{d}} \sum^{\sqrt{d}} \sum \text{ of size } 2^{O(\sqrt{d})} \cdot s$$

$$\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{ \begin{array}{c} [\text{AV08}], [\text{Koi12}], [\text{Tav13}] \\ \\ \end{array}} \begin{array}{c} \sum \prod\limits_{\text{of size }} \sum \prod\limits_{N=0}^{\sqrt{d}} \sum \prod\limits_{\text{of size }} \prod\limits_{N=0}^{\sqrt{d}} \sum \prod\limits_{N=0}^{\sqrt{d}} \sum \prod\limits_{N=0}^{\sqrt{d}} \sum \prod\limits_{N=0}^{\sqrt{d}} \sum \prod\limits_{\text{of size }} n^{O(\sqrt{d})} \end{array}$$

$$\exists \ \text{efficient reduction} : \sum \prod \sum \quad \longrightarrow \quad \sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum$$

$$\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{ \begin{array}{c} [\text{AV08}], [\text{Koi12}], [\text{Tav13}] \\ \\ \text{of size } n^{O(\sqrt{d})} \end{array} } \begin{array}{c} \sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{j=1}^{\sqrt{d}} \sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{j=1}^{\sqrt{d}} \sum \prod_{j=1}^{$$

$$\exists \ \text{efficient reduction} : \underbrace{\sum \prod \sum}_{n^{O}(\sqrt{d})} \quad \longrightarrow \quad \underbrace{\sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum}_{n^{O}(\sqrt{d})}$$

$$\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{ \begin{array}{c} [\text{AV08}], [\text{Koi12}], [\text{Tav13}] \\ \\ \text{of size } n^{O(\sqrt{d})} \end{array} } \begin{array}{c} \sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{j=1}^{\sqrt{d}} \prod_{i=1}^{\sqrt{d}} \prod_{j=1}^{\sqrt{d}} \prod_{j=1$$

$$\begin{array}{cccc} \exists \ \text{efficient reduction} : \sum \prod \sum & \longrightarrow & \sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum \\ & n^{O(\sqrt{d})} & \longrightarrow & n^{O(\sqrt{d})} \end{array}$$

Can you:
$$\sum \bigwedge^d \sum \bigwedge^{d} \sum \stackrel{?!}{\longrightarrow} \sum \prod \sum$$

$$\sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum$$

$$\sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum$$

f

$$\sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\frac{\sqrt{d}}{\sqrt{d}}} \sum$$

 $\ell^{\sqrt{d}}$

$$\sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum$$

$$\ell_1^{\sqrt{d}} + \ldots + \ell_s^{\sqrt{d}}$$

$$\sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum$$

$$\left(\ell_1^{\sqrt{d}} + \ldots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\sum \bigwedge^{\sqrt{d}} \sum \bigwedge^{\sqrt{d}} \sum$$

$$\sum_{i} \left(\ell_{i1}^{\sqrt{d}} + \dots + \ell_{is}^{\sqrt{d}} \right)^{\sqrt{d}}$$

$$C = \sum_{i} \left(\ell_{i1}^{\sqrt{d}} + \dots + \ell_{is}^{\sqrt{d}} \right)^{\sqrt{d}}$$

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

Lemma ([Saxena])

There exists univariate polynomials f_{ij} 's of degree at most d such that

$$(x_1 + \dots + x_s)^d = \sum_{i=1}^{sd+1} f_{i1}(x_1) \cdot f_{i2}(x_2) \cdots f_{is}(x_s)$$

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$(x_1 + \dots + x_s)^{\sqrt{d}} = \sum_{i}^{\mathsf{poly}(s,a)} f_{i1}(x_1) \cdot f_{i2}(x_2) \cdots f_{is}(x_s)$$

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}} \right)^{\sqrt{d}} = \sum_{i}^{\mathsf{poly}(s,d)} f_{i1} \left(\ell_1^{\sqrt{d}} \right) \cdot f_{i2} \left(\ell_2^{\sqrt{d}} \right) \dots f_{is} \left(\ell_s^{\sqrt{d}} \right)$$

where $\tilde{f}_{ij}(t) := f_{ij}(t^{\sqrt{d}})$

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}} = \sum_{i}^{\mathsf{poly}(s,d)} f_{i1}\left(\ell_1^{\sqrt{d}}\right) \cdot f_{i2}\left(\ell_2^{\sqrt{d}}\right) \dots f_{is}\left(\ell_s^{\sqrt{d}}\right)$$

$$= \sum_{i}^{\mathsf{poly}(s,d)} \tilde{f}_{i1}(\ell_1) \cdot \tilde{f}_{i2}(\ell_2) \dots \tilde{f}_{is}(\ell_s)$$

17/19

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}} = \sum_{i}^{\mathsf{poly}(s,d)} f_{i1}\left(\ell_1^{\sqrt{d}}\right) \cdot f_{i2}\left(\ell_2^{\sqrt{d}}\right) \cdots f_{is}\left(\ell_s^{\sqrt{d}}\right)$$

$$= \sum_{i}^{\mathsf{poly}(s,d)} \tilde{f}_{i1}(\ell_1) \cdot \tilde{f}_{i2}(\ell_2) \cdots \tilde{f}_{is}(\ell_s)$$

Note that $\tilde{f}_{ij}(t)$ is a univariate polynomial

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\begin{split} \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}} &= \sum_{i}^{\mathsf{poly}(s,d)} f_{i1} \left(\ell_1^{\sqrt{d}}\right) \cdot f_{i2} \left(\ell_2^{\sqrt{d}}\right) \dots f_{is} \left(\ell_s^{\sqrt{d}}\right) \\ &= \sum_{i}^{\mathsf{poly}(s,d)} \tilde{f}_{i1}(\ell_1) \cdot \tilde{f}_{i2}(\ell_2) \dots \tilde{f}_{is}(\ell_s) \end{split}$$

Note that $\tilde{f}_{ij}(t)$ is a univariate polynomial that can be factorized over \mathbb{C} :

$$\tilde{f}_{ij}(t) = \prod_{k=1}^{d} (t - \zeta_{ijk})$$

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\begin{split} \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}} &= \sum_{i}^{\mathsf{poly}(s,d)} f_{i1} \left(\ell_1^{\sqrt{d}}\right) \cdot f_{i2} \left(\ell_2^{\sqrt{d}}\right) \dots f_{is} \left(\ell_s^{\sqrt{d}}\right) \\ &= \sum_{i}^{\mathsf{poly}(s,d)} \tilde{f}_{i1}(\ell_1) \cdot \tilde{f}_{i2}(\ell_2) \dots \tilde{f}_{is}(\ell_s) \end{split}$$

Note that $\tilde{f}_{ij}(t)$ is a univariate polynomial that can be factorized over \mathbb{C} :

$$\tilde{f}_{ij}(\ell_j) = \prod_{k=1}^d (\ell_j - \zeta_{ijk})$$

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}} = \sum_{i}^{\mathsf{poly}(s,d)} f_{i1}\left(\ell_1^{\sqrt{d}}\right) \cdot f_{i2}\left(\ell_2^{\sqrt{d}}\right) \dots f_{is}\left(\ell_s^{\sqrt{d}}\right)$$

$$= \sum_{i}^{\mathsf{poly}(s,d)} \tilde{f}_{i1}(\ell_1) \cdot \tilde{f}_{i2}(\ell_2) \dots \tilde{f}_{is}(\ell_s)$$

$$= \sum_{i}^{\mathsf{poly}(s,d)} \prod_{j=1}^{s} \prod_{k=1}^{d} \left(\ell_j - \zeta_{ijk}\right)$$

... a $\Sigma\Pi\Sigma$ circuit of $\operatorname{poly}(s,d)$ size.

$$T = \left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}}$$

$$\left(\ell_1^{\sqrt{d}} + \dots + \ell_s^{\sqrt{d}}\right)^{\sqrt{d}} = \sum_{i}^{\text{poly}(s,d)} f_{i1}\left(\ell_1^{\sqrt{d}}\right) \cdot f_{i2}\left(\ell_2^{\sqrt{d}}\right) \dots f_{is}\left(\ell_s^{\sqrt{d}}\right)$$

$$= \sum_{i}^{\text{poly}(s,d)} \tilde{f}_{i1}(\ell_1) \cdot \tilde{f}_{i2}(\ell_2) \dots \tilde{f}_{is}(\ell_s)$$

$$= \sum_{i}^{\text{poly}(s,d)} \prod_{j=1}^{s} \prod_{k=1}^{d} \left(\ell_j - \zeta_{ijk}\right)$$

... a $\Sigma\Pi\Sigma$ circuit of poly(s,d) size and degree sd.

 $\begin{array}{c} \text{general circuit} \\ \text{of size } n^{O(1)} \end{array}$

$$\begin{array}{c} \text{general hom. circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{ \begin{bmatrix} \text{AV08} \end{bmatrix}, \begin{bmatrix} \text{Koi12} \end{bmatrix}, \begin{bmatrix} \text{Tav13} \end{bmatrix} } \\ \sum \prod_{i=1}^{N} \sum_{j=1}^{N} \prod_{i=1}^{N} \text{circuit} \\ \text{of size } n^{O(\sqrt{d})} \end{array} \xrightarrow{ \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_$$

$$\begin{array}{c} \text{general } \underset{\text{of size } n^{O(1)}}{\text{hom. circuit}} & \xrightarrow{[\mathsf{AV08}], \, [\mathsf{Koi12}], \, [\mathsf{Tav13}]} & \sum \prod_{j=1}^{\sqrt{d}} \sum \prod_{j=1}^{\sqrt{d}} \underset{\text{of size } n^{O(\sqrt{d})}}{\text{hom. circuit}} \\ & & \sum \prod_{j=1}^{\sqrt{d}} \sum \prod_{j=1}^{\sqrt{d}} \sum \underset{\text{of size } n^{O(\sqrt{d})}}{\text{of size } n^{O(\sqrt{d})}} \end{aligned}$$

$$\begin{array}{c} \text{general hom. circuit} \\ \text{of size } n^{O(1)} \end{array} \xrightarrow{ \begin{bmatrix} \text{AV08} \end{bmatrix}, \begin{bmatrix} \text{Koi12} \end{bmatrix}, \begin{bmatrix} \text{Tav13} \end{bmatrix} } \\ \sum \prod_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^$$

Suffices to show this:

Find an explicit $f(x_1, \ldots, x_n)$ such that if

$$\begin{array}{lcl} f(x_1,\ldots,x_n) & = & Q_1^{\sqrt{d}} \,+\,\ldots\,+\,Q_s^{\sqrt{d}} \\ \text{where} & \deg Q_i & \leq & \sqrt{d} & \text{for all } i \end{array}$$

then $s=n^{\omega(\sqrt{d})}.$

Suffices to show this:

Find an explicit $f(x_1, \ldots, x_n)$ such that if

$$\begin{array}{lcl} f(x_1,\ldots,x_n) & = & Q_1^{\sqrt{d}} \,+\,\ldots\,+\,Q_s^{\sqrt{d}} \\ \text{where} & \deg Q_i & \leq & \sqrt{d} & \text{for all } i \end{array}$$

then
$$s = n^{\omega(\sqrt{d})}$$
.

How hard can this be !?

Suffices to show this:

Find an explicit $f(x_1, \ldots, x_n)$ such that if

$$\begin{array}{lcl} f(x_1,\ldots,x_n) & = & Q_1^{\sqrt{d}} \,+\,\ldots\,+\,Q_s^{\sqrt{d}} \\ \text{where} & \deg Q_i & \leq & \sqrt{d} & \text{for all } i \end{array}$$

then $s = n^{\omega(\sqrt{d})}$.

How hard can this be !?

Thank you!