621 Homework 1

Liting Hu

Contents

Question	1																									-
a)														 												-
b)														 												2
c).														 												2
d)														 												
e) .														 	 											6
f).														 												7
g)														 	 											1.
Question	2													 												13
a)														 												13
b)														 	 											13
c) .														 	 											17
ď)														 												18
Question																										

Question 1

a)

To calculate the European Call and Put Option, define functions "Callprice" and "Putprice" based on the solution of Black-Scholes formula.

```
Callprice <- function(SO, tau, K, r, sigma) {</pre>
    d1 \leftarrow (\log(S0/K) + (r-sigma^2/2)*tau)/tau/sqrt(tau)
    d2 <- d1 - sigma*sqrt(tau)</pre>
    c <- S0*pnorm(d1) - K*exp(-r*tau)*pnorm(d2)</pre>
    return(c)
}
Putprice <- function(SO, tau, K, r, sigma) {</pre>
    d1 <- (log(S0/K)+(r-sigma^2/2)*tau)/tau/sqrt(tau)</pre>
    d2 <- d1 - sigma*sqrt(tau)
    p \leftarrow K*exp(-r*tau)*pnorm(-d2) - S0*pnorm(-d1)
    return(p)
}
SO <- 100
               # Stock price
tau <- 30/252  # Time to maturity
K <- 100
                # Strike price
r < -0.05
               # Interest rate
sigma <- 0.2
               # Volatility
Callprice(SO, tau, K, r, sigma)
```

```
## [1] 3.049619

Putprice(SO, tau, K, r, sigma)
```

[1] 2.456149

Under the given initial conditions, call option price is 3.0496 and the put option price is 2.4561.

b)

```
Callprice(S0, tau, K, r, sigma) - Putprice(S0, tau, K, r, sigma) - S0 + K*exp(-r*tau)
## [1] 0
```

The Put-Call parity relation holds.

c)

Get option chains from Yahoo finance by "quantmod":

```
AAPL.OPTS <- getOptionChain("AAPL", NULL)

C1 <- AAPL.OPTS$Mar.17.2017$calls

C1$Ave.Price <- (C1$Bid + C1$Ask)/2

C1 <- C1[, c(1, 8)]

C2 <- AAPL.OPTS$Apr.21.2017$calls

C2$Ave.Price <- (C2$Bid + C2$Ask)/2

C2 <- C2[, c(1, 8)]

C3 <- AAPL.OPTS$Jul.21.2017$calls

C3$Ave.Price <- (C3$Bid + C3$Ask)/2

C3 <- C3[, c(1, 8)]

temp <- merge(C1, C2, by = "Strike")

calls <- merge(temp, C3, by = "Strike")

colnames(calls) <- c("Strike", "Mar.17.2017", "Apr.21.2017", "Oct.20.2017")

calls <- calls[1:20, ]
```

All call option prices are showed below:

```
knitr::kable(calls, caption = "Call option prices")
```

Table 1: Call option prices

Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
50	82.175	85.775	82.250
60	72.200	72.250	72.275
70	0.000	62.275	62.300
75	60.750	57.300	57.375
80	52.200	52.300	0.000
85	47.200	47.350	47.400
90	45.750	45.875	45.775
95	40.750	40.900	40.875
100	35.775	35.875	36.025
105	30.800	30.725	31.200
110	25.750	25.900	26.425
115	20.800	21.125	21.875
120	15.850	16.225	17.575
125	10.975	11.600	13.625
130	6.375	7.400	10.150

Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
135	2.780	4.150	7.200
140	0.855	1.980	4.950
145	0.240	0.845	3.200
150	0.075	0.340	1.990
155	0.025	0.145	1.190

Get the actual stock price:

```
todaystock <- getQuote("AAPL")
S_0 <- todaystock[, 2]
S_0</pre>
```

```
## [1] 135.72
```

The actual stock price is 135.72.

Treasury bill rate is 0.005. (https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates)

```
f(\sigma) = C_{BSM} - C_M is defined as "fsigma":
```

```
r <- 0.005
fsigma <- function(sigma, K_i, maturity_i) {
    cc <- calls[K_i, maturity_i + 1]
    K <- calls[K_i, 1]
    if (maturity_i == 1) tau = 23/252 # time to maturity
    else if(maturity_i == 2) tau = 48/252
    else tau = 111/252
    ans <- Callprice(S_0, tau, K, r, sigma) - cc
    return(ans)
}</pre>
```

We want to find a interval [a, a+d](d should be small enough) that makes the secant method converge

```
interval <- calls
interval[, 2:4] <- NaN

delta <- 0.1
for(i in 1:20) {
    for(j in 1:3) {
        a <- seq(1, 5, by = delta)
        for(k in a) {
            if (fsigma(k,i,j)*fsigma(k + delta, i, j) < 0) {interval[i,j + 1] <- k}
        }
    }
}</pre>
```

knitr::kable(interval, caption = "Left side of intervals")

Table 2: Left side of intervals

Oct.20.2017	Apr.21.2017	Mar.17.2017	Strike
1.9	3.1	4.6	50
1.8	2.8	4.2	60
1.7	2.6	NaN	70
1.6	2.4	3.5	75

Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
80	3.4	2.3	NaN
85	3.2	2.2	1.5
90	3.0	2.1	1.4
95	2.8	2.0	1.4
100	2.6	1.8	1.4
105	2.4	1.7	1.3
110	2.2	1.6	1.3
115	2.0	1.5	1.3
120	1.8	1.4	1.3
125	1.5	1.3	1.4
130	1.3	1.3	1.4
135	1.0	1.2	1.4
140	NaN	1.2	1.4
145	NaN	1.1	1.5
150	NaN	1.1	1.5
155	NaN	1.1	1.5
Here come	NaN values wh	ich means ther	e is no root for σ in such a conditon.

```
ImpliedVolatility <- calls</pre>
ptm <- proc.time()</pre>
count <- 0
for(i in 1:20) {
    for(j in 1:3) {
         a <- interval[i, j + 1]
         if (is.na(a) == T) {
              \label{lem:lempliedVolatility[i, j + 1] <- NaN} ImpliedVolatility[i, j + 1] <- NaN
              next
              }
         b <- a + delta
         epsilon <- abs(a - b)
         while(epsilon > 1e-4) {
              count <- count +1</pre>
              mid <- (a + b)/2
              if(fsigma(a, i, j)*fsigma(mid, i, j) < 0) b <- mid
              else a <- mid
              epsilon <- abs(a - b)
         }
         ImpliedVolatility[i, j+1] <- a
    }
}
count
```

[1] 540

ImpliedVolatility

```
Strike Mar.17.2017 Apr.21.2017 Oct.20.2017
##
## 1
          50
                 4.651074
                              3.165820
                                           1.982129
## 2
          60
                 4.212207
                              2.890430
                                           1.829395
## 3
          70
                      {\tt NaN}
                              2.624805
                                           1.701953
## 4
          75
                 3.598926
                              2.498535
                                           1.646289
## 5
          80
                 3.413477
                              2.376074
                                                 {\tt NaN}
## 6
          85
                 3.221680
                              2.256348
                                           1.554395
```

```
## 7
          90
                 3.020117
                              2.117676
                                           1.470312
## 8
          95
                 2.827539
                              2.001172
                                           1.437988
## 9
         100
                 2.632910
                              1.887207
                                          1.412402
                 2.435059
## 10
         105
                              1.776855
                                           1.394727
## 11
         110
                 2.232617
                              1.666797
                                          1.385938
## 12
         115
                2.023047
                             1.560645
                                          1.384082
## 13
                1.805176
                             1.463965
                                          1.390332
         120
## 14
         125
                 1.577344
                              1.377441
                                          1.404395
## 15
         130
                1.340723
                              1.308203
                                          1.425293
## 16
         135
                 1.094629
                              1.254980
                                           1.453418
## 17
         140
                      NaN
                              1.219531
                                          1.482617
## 18
         145
                      {\tt NaN}
                              1.189844
                                           1.518848
## 19
         150
                      NaN
                              1.158203
                                           1.555859
                              1.110840
## 20
         155
                      \mathtt{NaN}
                                           1.593652
proc.time() - ptm
##
      user system elapsed
##
            0.001
     0.057
                      0.061
```

d)

```
# Secant
ImpliedVolatility2 <- calls</pre>
ptm <- proc.time()</pre>
count2 <- 0
for(i in 1:20) {
    for(j in 1:3) {
         x1 \leftarrow interval[i, j + 1]
         if (is.na(x1) == T) {
             ImpliedVolatility2[i, j + 1] <- NaN</pre>
             next
         }
         x2 <- x1 + delta
         dfxn \leftarrow (fsigma(x1, i, j) - fsigma(x2, i, j))/(x1 - x2)
         tang <- fsigma(x2, i, j)/dfxn
         epsilon <- abs(tang)</pre>
         while(epsilon > 1e-4) {
             count2 \leftarrow count2 + 1
             x1 <- x2
             x2 <- x2 - tang
             dfxn \leftarrow (fsigma(x1, i, j) - fsigma(x2, i, j))/(x1 - x2)
             tang <- fsigma(x2, i, j)/dfxn
             epsilon <- abs(tang)
         ImpliedVolatility2[i, j+1] <- x2</pre>
    }
}
count2
```

[1] 130
ImpliedVolatility2

Strike Mar.17.2017 Apr.21.2017 Oct.20.2017

```
## 1
           50
                 4.651052
                               3.165999
                                            1.982147
## 2
                 4.212284
           60
                               2.890440
                                            1.829473
## 3
           70
                       NaN
                               2.624822
                                            1.701987
## 4
           75
                 3.599014
                               2.498626
                                            1.646355
## 5
           80
                 3.413503
                               2.376112
                                                 NaN
## 6
           85
                 3.221736
                               2.256419
                                            1.554478
## 7
           90
                 3.020166
                               2.117669
                                            1.470393
                 2.827576
## 8
           95
                               2.001201
                                            1.438016
## 9
          100
                 2.632991
                               1.887266
                                            1.412354
## 10
          105
                 2.435066
                               1.776905
                                            1.394816
## 11
          110
                 2.232604
                               1.666869
                                            1.385981
## 12
          115
                 2.023123
                               1.560673
                                            1.384158
## 13
          120
                 1.805179
                               1.464013
                                            1.390356
                                            1.404389
## 14
          125
                 1.577321
                               1.377475
                               1.308118
          130
                 1.340737
                                            1.425233
## 15
## 16
          135
                 1.094671
                               1.254990
                                            1.453431
## 17
          140
                               1.219540
                                            1.482634
                       NaN
## 18
          145
                       NaN
                               1.189810
                                            1.518856
          150
## 19
                       NaN
                               1.158217
                                            1.555929
## 20
          155
                       NaN
                               1.110881
                                            1.593724
proc.time() - ptm
```

```
## user system elapsed
## 0.038 0.000 0.039
```

Both the steps and time spent on secant methods (130, 0.041) is less than those spent on bisection method (540, 0.078). I suppose the reason may be the interval is small enough and the secant method's order of convergence is 1.618 which is superlinear.

Also I found that if we set the initial intervals too large, the secant method seldom converge, although the bisection method always converge if there exist roots. So it is hard for me to compare these two methods when the initial intervals is large. (like [1, 10])

e)

```
temp1 <- as.matrix(ImpliedVolatility)
temp2 <- rbind(temp1[, 1:2], temp1[, c(1, 3)], temp1[, c(1, 4)])
maturity <- c(rep("Mar.17.2017", 20), rep("Apr.21.2017", 20), rep("Oct.20.2017", 20))
newdf <- data.frame(temp2, maturity)
colnames(newdf)[2] <- "Implied_Volatility"

ggplot(data = newdf, aes(x = Strike, y = Implied_Volatility, colour = maturity)) + geom_point()</pre>
```


All call option prices are getting smaller as the Strikes increasing. Longer time to maturity means lower decreasing speed of implied volatility.

Around the actual stock price the implied volatility tend to be equal under different maturities.

This 3d plot cannot be presented in Rmarkdown pdf, but it works in R file.

```
plot3d(ImpliedVolatility$Strike, 1, ImpliedVolatility$Mar.17.2017, col = "blue", ylim = c(.5, 3.5))
points3d(ImpliedVolatility$Strike, 2, ImpliedVolatility$Apr.21.2017, col = "green")
points3d(ImpliedVolatility$Strike, 3, ImpliedVolatility$Oct.20.2017, col = "red")
```

f)

To use 3 methods (forward, backword and central) to evaluate delta, vega and gamma, define functions:

```
Delta1 <- function(d, S0, tau, K, r, sigma, ty) {
    if (ty == "b") D <- (Callprice(S0, tau, K, r, sigma) - Callprice(S0 - d, tau, K, r, sigma))/d
    else if (ty == "f") D <- (Callprice(S0 + d, tau, K, r, sigma) - Callprice(S0, tau, K, r, sigma))/d
    else if (ty == "c") D <- (Callprice(S0 + d, tau, K, r, sigma) - Callprice(S0 - d, tau, K, r, sigma)
    else D <- NaN
    return(D)
}

Vega1 <- function(d, S0, tau, K, r, sigma, ty) {
    if (ty == "b") V <- (Callprice(S0, tau, K, r, sigma) - Callprice(S0, tau, K, r, sigma - d))/d
    else if (ty == "f") V <- (Callprice(S0, tau, K, r, sigma + d) - Callprice(S0, tau, K, r, sigma - d)
    else if (ty == "c") V <- (Callprice(S0, tau, K, r, sigma + d) - Callprice(S0, tau, K, r, sigma - d)
    else V <- NaN</pre>
```

For delta

```
d1 <- seq(1, .01,by=-0.01)
fd_f <- sapply(d1, Delta1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "f")
fd_b <- sapply(d1, Delta1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "b")
fd_c <- sapply(d1, Delta1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "c")

type <- c(rep("forward", length(d1)), rep("backword", length(d1)), rep("central", length(d1)))
delta_dd <- data.frame("d" = rep(d1, 3), "delta" = c(fd_f, fd_b, fd_c), "type" = type)
ggplot(data = delta_dd, aes(x = d, y = delta, colour = type)) + geom_line()</pre>
```


For vega

```
fv_f <- sapply(d1, Vega1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "f")
fv_b <- sapply(d1, Vega1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "b")
fv_c <- sapply(d1, Vega1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "c")

vega_dd <- data.frame("d" = rep(d1, 3), "vega" = c(fv_f, fv_b, fv_c), "type" = type)
ggplot(data = vega_dd, aes(x = d, y = vega, colour = type)) + geom_line()</pre>
```


For gamma

```
fg_f <- sapply(d1, Gamma1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "f")
fg_b <- sapply(d1, Gamma1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "b")
fg_c <- sapply(d1, Gamma1, S0=S0, tau=tau, K=K, r=r, sigma=sigma, "c")

gamma_dd <- data.frame("d" = rep(d1, 3), "gamma" = c(fg_f, fg_b, fg_c), "type" = type)
ggplot(data = gamma_dd, aes(x = d, y = gamma, colour = type)) + geom_line()</pre>
```


These plots shows that all three parameters converge as d is approaching to 0.

Gamma1(d, S0, tau, K, r, sigma, "b") #backword

```
d <- 1e-5 # let d be small enough
Delta1(d, S0, tau, K, r, sigma, "f") #forward

## [1] 0.5404777

Delta1(d, S0, tau, K, r, sigma, "b") #backward

## [1] 0.5404774

Delta1(d, S0, tau, K, r, sigma, "c") #central

## [1] 0.5404775

Vega1(d, S0, tau, K, r, sigma, "f") #forward

## [1] 13.5322

Vega1(d, S0, tau, K, r, sigma, "b") #backword

## [1] 13.53224

Vega1(d, S0, tau, K, r, sigma, "c") #central

## [1] 13.53222

Gamma1(d, S0, tau, K, r, sigma, "f") #forward

## [1] 13.53222

Gamma1(d, S0, tau, K, r, sigma, "f") #forward

## [1] 0.03211653</pre>
```

```
## [1] 0.03204548
Gamma1(d, S0, tau, K, r, sigma, "c") #central
## [1] 0.03204548
So in initial condition, ( delta = 0.5405), ( vega = 13.5322), ( gamma = 0.0320).
g)
```

If we apply the implied volatilities, access to the same process as f):

```
delta_df <- ImpliedVolatility</pre>
vega_df <- ImpliedVolatility</pre>
gamma_df <- ImpliedVolatility</pre>
for (i in 1:20) {
    for (j in 1:3) {
        sigma <- ImpliedVolatility[i, j+1]</pre>
        if (is.na(sigma) == T) {
            delta_df[i, j+1] <- NaN</pre>
            vega_df[i, j+1] \leftarrow NaN
            gamma_df[i, j+1] <- NaN</pre>
            break}
        delta_df[i, j+1] <- Delta1(d, S_0, tau, K, r, sigma, "c")
        vega_df[i, j+1] <- Vega1(d, S_0, tau, K, r, sigma, "c")</pre>
        }
}
```

The results are showed below:

```
knitr::kable(delta_df, caption = "Delta")
```

Table 3: Delta

Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
50	0.0000000	0.0000000	-0.9861440
60	0.0000000	0.0001906	0.2967363
70	NaN	2.6248047	1.7019531
75	0.0000000	2.4232181	0.9284623
80	0.0000000	5.5183122	NaN
85	0.0000000	4.6416805	0.9827871
90	0.0000006	0.0261756	0.9958261
95	0.0018791	-1.0741389	0.9976333
100	0.3238269	-0.1740800	0.9985007
105	4.1816928	0.5998016	0.9989100
110	3.8854298	0.9037805	0.9990707
115	-1.1062863	0.9809504	0.9991015
120	0.4518848	0.9962629	0.9989934
125	0.9750984	0.9992039	0.9987019
130	0.9995945	0.9997784	0.9981116
135	0.9999961	0.9999184	0.9968929
140	NaN	1.2195312	1.4826172
145	NaN	1.1898438	1.5188477
150	NaN	1.1582031	1.5558594

Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
155	NaN	1.1108398	1.5936523

knitr::kable(vega_df, caption = "Vega")

Table 4: Vega

50 0.0000000 0.0000000 70.079884 60 0.0000000 -0.0088265 22.6284768 70 NaN 2.6248047 1.701953 75 0.0000000 -94.9244655 2.0721056 80 0.0000000 -198.8011377 NaN 85 0.0000000 -139.2146860 0.472021 90 -0.0850068 74.1611422 0.060353 100 -13.5451414 39.0607239 0.0376064 105 -157.6137374 12.4967890 0.0270266 110 -107.0169966 2.8205666 0.0229097 115 76.5628729 0.5243691 0.022122 120 17.3941584 0.0968948 0.024885 125 0.6923946 0.0195155 0.032390 130 0.0096990 0.0051838 0.0477655 135 0.0000780 0.0018384 0.0800218 145 NaN 1.1898438 1.5188477 145 NaN 1.1582031 1.55558594				
60 0.0000000 -0.0088265 22.6284768 70 NaN 2.6248047 1.701953 75 0.0000000 -94.9244655 2.0721050 80 0.0000000 -198.8011377 NaN 85 0.0000000 -139.2146860 0.4720218 90 -0.0850068 74.1611422 0.060353 100 -13.5451414 39.0607239 0.0376064 105 -157.6137374 12.4967890 0.0270266 110 -107.0169966 2.8205666 0.0229097 115 76.5628729 0.5243691 0.022122 120 17.3941584 0.0968948 0.024885 125 0.6923946 0.0195155 0.032390 130 0.0096990 0.0051838 0.047765 135 0.0000780 0.0018384 0.0800218 145 NaN 1.1898438 1.518847 145 NaN 1.1582031 1.5558594	Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
70 NaN 2.6248047 1.701953 75 0.0000000 -94.9244655 2.0721050 80 0.0000000 -198.8011377 NaN 85 0.0000000 -139.2146860 0.4720218 90 -0.0850068 74.1611422 0.0603538 100 -13.5451414 39.0607239 0.0376064 105 -157.6137374 12.4967890 0.0270266 110 -107.0169966 2.8205666 0.0229093 115 76.5628729 0.5243691 0.0221223 120 17.3941584 0.0968948 0.0248853 125 0.6923946 0.0195155 0.0323903 130 0.0096990 0.0051838 0.0477653 135 0.0000780 0.0018384 0.0800218 140 NaN 1.1898438 1.5188473 145 NaN 1.1898438 1.5188473 150 NaN 1.1582031 1.55558594	50	0.0000000	0.0000000	70.0798841
75	60	0.0000000	-0.0088265	22.6284768
80 0.0000000 -198.8011377 NaN 85 0.0000000 -139.2146860 0.4720213 90 -0.0000283 40.9052278 0.1086543 95 -0.0850068 74.1611422 0.0603533 100 -13.5451414 39.0607239 0.0376064 105 -157.6137374 12.4967890 0.0270266 110 -107.0169966 2.8205666 0.0229093 115 76.5628729 0.5243691 0.0221223 120 17.3941584 0.0968948 0.0248853 125 0.6923946 0.0195155 0.0323903 130 0.0096990 0.0051838 0.0477653 135 0.0000780 0.0018384 0.0800213 140 NaN 1.2195312 1.4826173 145 NaN 1.1898438 1.5188473 150 NaN 1.1582031 1.5558594	70	NaN	2.6248047	1.7019531
85 0.0000000 -139.2146860 0.4720213 90 -0.0000283 40.9052278 0.1086543 95 -0.0850068 74.1611422 0.0603533 100 -13.5451414 39.0607239 0.0376064 105 -157.6137374 12.4967890 0.0270266 110 -107.0169966 2.8205666 0.0229093 115 76.5628729 0.5243691 0.0221223 120 17.3941584 0.0968948 0.0248853 125 0.6923946 0.0195155 0.0323903 130 0.0096990 0.0051838 0.0477653 135 0.0000780 0.0018384 0.0800213 140 NaN 1.2195312 1.4826173 145 NaN 1.1898438 1.5188473 150 NaN 1.1582031 1.55558594	75	0.0000000	-94.9244655	2.0721050
90	80	0.0000000	-198.8011377	NaN
95	85	0.0000000	-139.2146860	0.4720215
100 -13.5451414 39.0607239 0.0376064 105 -157.6137374 12.4967890 0.0270266 110 -107.0169966 2.8205666 0.0229099 115 76.5628729 0.5243691 0.0221223 120 17.3941584 0.0968948 0.0248853 125 0.6923946 0.0195155 0.0323903 130 0.0096990 0.0051838 0.0477653 135 0.0000780 0.0018384 0.0800213 140 NaN 1.2195312 1.4826173 145 NaN 1.1898438 1.5188473 150 NaN 1.1582031 1.55558594	90	-0.0000283	40.9052278	0.1086545
105 -157.6137374 12.4967890 0.0270266 110 -107.0169966 2.8205666 0.0229097 115 76.5628729 0.5243691 0.0221227 120 17.3941584 0.0968948 0.0248857 125 0.6923946 0.0195155 0.0323907 130 0.0096990 0.0051838 0.0477657 135 0.0000780 0.0018384 0.0800218 140 NaN 1.2195312 1.4826177 145 NaN 1.1898438 1.5188477 150 NaN 1.1582031 1.55558594	95	-0.0850068	74.1611422	0.0603535
110 -107.0169966 2.8205666 0.022909 115 76.5628729 0.5243691 0.0221223 120 17.3941584 0.0968948 0.024885 125 0.6923946 0.0195155 0.032390 130 0.0096990 0.0051838 0.047765 135 0.0000780 0.0018384 0.080021 140 NaN 1.2195312 1.482617 145 NaN 1.1898438 1.518847 150 NaN 1.1582031 1.55558594	100	-13.5451414	39.0607239	0.0376064
115 76.5628729 0.5243691 0.0221223 120 17.3941584 0.0968948 0.024885 125 0.6923946 0.0195155 0.032390 130 0.0096990 0.0051838 0.0477655 135 0.0000780 0.0018384 0.0800218 140 NaN 1.2195312 1.4826175 145 NaN 1.1898438 1.5188475 150 NaN 1.1582031 1.55558594	105	-157.6137374	12.4967890	0.0270266
120 17.3941584 0.0968948 0.024885 125 0.6923946 0.0195155 0.032390 130 0.0096990 0.0051838 0.047765 135 0.0000780 0.0018384 0.080021 140 NaN 1.2195312 1.482617 145 NaN 1.1898438 1.518847 150 NaN 1.1582031 1.55558594	110	-107.0169966	2.8205666	0.0229097
125	115	76.5628729	0.5243691	0.0221223
130 0.0096990 0.0051838 0.0477652 135 0.0000780 0.0018384 0.0800213 140 NaN 1.2195312 1.4826172 145 NaN 1.1898438 1.5188472 150 NaN 1.1582031 1.5558594	120	17.3941584	0.0968948	0.0248851
135 0.0000780 0.0018384 0.0800218 140 NaN 1.2195312 1.4826172 145 NaN 1.1898438 1.5188477 150 NaN 1.1582031 1.5558594	125	0.6923946	0.0195155	0.0323901
140 NaN 1.2195312 1.4826173 145 NaN 1.1898438 1.5188473 150 NaN 1.1582031 1.5558594	130	0.0096990	0.0051838	0.0477652
145 NaN 1.1898438 1.5188477 150 NaN 1.1582031 1.5558594	135	0.0000780	0.0018384	0.0800215
150 NaN 1.1582031 1.555859	140	NaN	1.2195312	1.4826172
	145	NaN	1.1898438	1.5188477
155 NaN 1.1108398 1.5936523	150	NaN	1.1582031	1.5558594
	155	NaN	1.1108398	1.5936523

knitr::kable(gamma_df, caption = "Gamma")

Table 5: Gamma

Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
50	0.0000000	0.0000000	0.1645617
60	0.0000000	0.0001592	0.2195577
70	NaN	2.6248047	1.7019531
75	0.0000000	0.6467538	0.0365219
80	0.0000000	0.4479617	NaN
85	0.0000000	-0.7195666	0.0105160
90	0.0000006	-0.6806289	0.0029843
95	0.0013920	0.0888178	0.0017053
100	0.1486344	0.2782485	0.0011369
105	0.7247358	0.1496403	0.0007105
110	-0.8711964	0.0474643	0.0011369
115	-0.0221689	0.0110845	0.0012790
120	0.1870148	0.0022737	0.0001421
125	0.0142109	0.0004263	0.0012790
130	0.0002842	-0.0004263	0.0015632
135	0.0007105	0.0002842	0.0019895
140	NaN	1.2195312	1.4826172

Strike	Mar.17.2017	Apr.21.2017	Oct.20.2017
145	NaN	1.1898438	1.5188477
150	NaN	1.1582031	1.5558594
155	NaN	1.1108398	1.5936523

Question 2

a)

Define the real-valued function:

```
fx <- function(x) {
   if (x == 0) fx <- 1
   else fx <- sin(x)/x
   return(fx)
}</pre>
```

For the trapezoidal rule:

```
trapezoidal <- function(n, a) {
    h <- 2*a/(n-1)
    x <- seq(-a, a, by = h)
    wn <- rep(h, n)
    wn[1] <- h/2
    wn[n] <- h/2
    fn <- sapply(x, fx)
    ans <- sum(fn*wn)
    return(ans)
}
trapezoidal(1e6, 1e6)</pre>
```

[1] 3.141591

For the Simpson's quadrature rule

```
simpson <- function(n, a) {
    h <- 2*a/(n-1)
    x <- seq(-a, a, by = h)
    wn <- rep(c(0, 4*h/3), floor(n/2)) + rep(c(2*h/3, 0), floor(n/2))
    wn[1] <- h/3
    wn[n] <- h/3
    fn <- sapply(x, fx)
    ans <- sum(fn*wn)
    return(ans)
}
simpson(1e6, 1e6)</pre>
```

[1] 3.141592

Both the results are close to π .

b)

To compute the truncation errors, define functions "TE_trape" and "TE_simp" respectively:

```
TE_trape <- function(n, a) {
    temp <- trapezoidal(n, a)
    te <- temp - pi
    return(te)
}

TE_simp <- function(n, a) {
    temp <- simpson(n, a)
    te <- temp - pi
    return(te)
}</pre>
```

(1) Fix $a = 10^4$

```
# Truncation error of trapezoidal rule
a <- 1e4
N <- seq(100, 1e4, by = 45)
Truncation_error <- sapply(N, TE_trape, a=a)
plot(N, Truncation_error, type = "l", col = "blue", main = "Truncation_error by trapezoidal rule")</pre>
```

Truncation_error by trapezoidal rule


```
# Truncation error of Simpson's rule
a <- 1e4
N <- seq(100, 1e4, by = 45)
Truncation_error <- sapply(N, TE_simp, a=a)
plot(N, Truncation_error, type = "l", col = "red", main = "Truncation_error by simpson's rule")</pre>
```

Truncation_error by simpson's rule

For both rules, the truncation error decrease progressively as n gets larger and larger. Besides, the simpson's rule converge later and fluctuate more.

```
(2) fix N = 10^6:
```

```
# Truncation error of trapezoidal rule
N <- 1e4
a <- seq(1e2, 1e4, by = 45)
Truncation_error <- sapply(a, TE_trape, n = N)
plot(a, Truncation_error, type = "l", col = "blue", main = "Truncation_error by trapezoidal rule")</pre>
```

Truncation_error by trapezoidal rule


```
# Truncation error of Simpson's rule
N <- 1e4
a <- seq(1e2, 1e4, by = 45)
Truncation_error <- sapply(a, TE_simp, n = N)
plot(a, Truncation_error, type = "l", col = "red", main = "Truncation_error by simpson's rule")</pre>
```

Truncation_error by simpson's rule

both rules, the truncation error decrease as a gets larger and larger and fluctuate around 0.

c)

```
steps_trape <- function(a) {</pre>
    diff <- abs(trapezoidal(a, 102)-trapezoidal(a, 101))</pre>
    n0 = 103
    n = n0
    epsilonI <- 1e-4
    while(diff > epsilonI) {
        diff <- abs(trapezoidal(a, n)-trapezoidal(a, n-1))</pre>
        n < -n + 1
    }
    count <- n - n0 +1
    return(count)
}
steps_simp <- function(a) {</pre>
    diff <- abs(simpson(a, 102)-simpson(a, 101))</pre>
    n0 = 103
    n = n0
    epsilonI <- 1e-4
    while(diff > epsilonI) {
        diff <- abs(simpson(a, n)-simpson(a, n-1))</pre>
        n < - n + 1
    }
    count <- n - n0 +1
    return(count)
}
a \leftarrow seq(50, 1000, by=10)
steps_by_tr <- sapply(a, steps_trape)</pre>
steps_by_si <- sapply(a, steps_simp)</pre>
plot(a, steps_by_si, type = "l", col = "blue", ylab = "steps")
lines(a, steps_by_tr, col = "red")
legend("topright", c("trapezoidal", "simpson"),
col=c("red", "blue"))
```


a increases, steps processes by simpson's rule also increase but can still converge when steps are large enough. While steps by trapezoidal rule will converge to a number around 80 in this case.

d)

For another integrand:

```
fx2 <- function(x) {</pre>
     f \leftarrow 1 + \exp(-x)*\sin(8*x^{2/3})
trapezoidal2 <- function(n) {</pre>
     a1 <- 0
     a2 <- 2
     x \leftarrow seq(a1, a2, length.out = n)
     h \leftarrow x[2] - x[1]
     wn \leftarrow rep(h, n)
     wn[1] <- h/2
     wn[n] \leftarrow h/2
     fn <- sapply(x, fx2)</pre>
     ans <- sum(fn*wn)
     return(ans)
}
simpson2 <- function(n) {</pre>
     a1 <- 0
     a2 <- 2
     x \leftarrow seq(a1, a2, length.out = n)
     h \leftarrow x[2] - x[1]
     wn \leftarrow rep(c(0, 4*h/3), floor(n/2)) + rep(c(2*h/3, 0), floor(n/2))
     wn[1] <- h/3
     wn[n] \leftarrow h/3
     fn \leftarrow sapply(x, fx2)
```

```
ans <- sum(fn*wn)
    return(ans)
}
epsilon <- 1
N <- 11
I1 <- trapezoidal2(10)</pre>
while (epsilon > 1e-4) {
    I2 <- trapezoidal2(N)</pre>
    epsilon <- abs(I1 - I2)
    I1 <- I2
    N \leftarrow N + 1
print(I1)
## [1] 2.012584
epsilon <- 1
N <- 11
I1 <- simpson2(10)</pre>
while (epsilon > 1e-4) {
    I2 <- simpson2(N)</pre>
    epsilon <- abs(I1 - I2)
    I1 <- I2
    N \leftarrow N + 1
}
print(I1)
```

[1] 2.016179

The integral by trapezoidal rule converges to 2.0126 while the integral by simpson's rule converges to 2.0162. These two integral are very close.

Question 3

```
SO <- 1
TT <- 5
t <- 0
tau <- TT-t
r <- 0
VO <- 0.1
theta <- 0.1
sigma <- 0.2
rho <- -0.3
lambda <- 0
q <- 0 # Divident yield
a <- 1000
N <- 1001 # must be an integer
# The Simpson's rule
simpsonReal <- function(n, a, i, K, kappa) {</pre>
    x \leftarrow seq(1/a, a, length.out = n)
   h \leftarrow x[2] - x[1]
```

```
wn \leftarrow rep(c(2*h/3, 4*h/3), floor(n/2))
    wn[1] <- h/3
    wn[n] \leftarrow h/3
    fn <- sapply(x, RE, i = i, K = K, kappa = kappa)
    ans <- sum(fn*wn)
    return(ans)
}
ub <- function(i, kappa) {</pre>
    if (i == 1) {
        u < -0.5
        b <- kappa + lambda - rho*sigma
    else if (i == 2) {
        u < -0.5
        b <- kappa + lambda
    ub \leftarrow c(u, b)
    return(ub)
}
C <- function(x, i, kappa) {</pre>
    u <- ub(i, kappa)[1]
    b <- ub(i, kappa)[2]
    d <- sqrt((rho*sigma*x*1i - b)^2 - sigma^2*(2*u*x*1i - x^2))</pre>
    g \leftarrow (b - rho*sigma*x*1i + d)/(b - rho*sigma*x*1i - d)
    cc <- (r - q)*x*tau*1i +
         kappa*theta/sigma^2*((b - rho*sigma*x*1i + d)*tau - 2*log((1 - g*exp(d*tau))/(1 - g)))
    return(cc)
}
D <- function(x, i, kappa) {</pre>
    u <- ub(i, kappa)[1]
    b <- ub(i, kappa)[2]
    d <- sqrt((rho*sigma*x*1i - b)^2 - sigma^2*(2*u*x*1i - x^2))</pre>
    g \leftarrow (b - rho*sigma*x*1i + d)/(b - rho*sigma*x*1i - d)
    dd \leftarrow (b - rho*sigma*x*1i + d)/sigma^2*(1 - exp(d*tau))/(1 - g*exp(d*tau))
    return(dd)
}
phi <- function(x, i, kappa) {</pre>
    phi \leftarrow \exp(C(x, i, kappa) + D(x, i, kappa)*V0 + 1i*x*log(S0))
    return(phi)
}
RE <- function(x, i, K, kappa) {
    temp \leftarrow \exp(-1i*x*log(K))*phi(x, i, kappa)/(1i*x)
    RE <- Re(temp)
    RE[is.nan(RE)] = 0
    return(RE)
}
Calloption <- function(N, a, K, kappa) {
```

```
P1 <- 1/2 + 1/pi*simpsonReal(N, a, 1, K, kappa)
    P2 \leftarrow 1/2 + 1/pi*simpsonReal(N, a, 2, K, kappa)
    C \leftarrow S0*P1 - K*exp(-(r-q)*tau)*P2
    return(C)
}
K \leftarrow c(0.5, 0.75, 1, 1.25, 1.5)
kappa <- c(1, 2, 4)
temp <- as.data.frame(matrix(rep(0, 15), nrow = 5))</pre>
comparetable <- data.frame(temp)</pre>
rownames(comparetable) <- as.character(K)</pre>
for (i in 1:5) {
    for (j in 1:3) {
        k <- K[i]
        kap <- kappa[j]</pre>
         Call <- Calloption(N, a, k, kap)</pre>
         comparetable[i, j] <- Call</pre>
    }
Real_value <- c(0.543017, 0.385109, 0.273303, 0.195434, 0.14121)
comparetable <- data.frame(comparetable, Real_value)</pre>
colnames(comparetable)[1:3] <- c("kappa=1","kappa=2","kappa=4")</pre>
```

The result is showed below:

```
knitr::kable(comparetable, caption = "Table")
```

Table 6: Table

	kappa=1	kappa=2	kappa=4	Real_value
0.5	0.5432728	0.5424644	0.5418507	0.543017
0.75	0.3842401	0.3851181	0.3853539	0.385109
1	0.2708477	0.2737037	0.2750267	0.273303
1.25	0.1916967	0.1959883	0.1981810	0.195434
1.5	0.1365473	0.1416323	0.1443799	0.141210