Introduction to Descriptive Complexity Theory

Matteo Cavallaro

Università degli Studi di Udine

date

Descriptive complexity theory

- a branch of computational complexity theory and finite model theory
- characterizes *complexity classes* by the type of *logic* needed to express the languages in them.

Main results by Fagin, Immerman, Vardi, and others.

Definition 9.5

Let $\mathcal K$ be a complexity class, $\mathcal L$ a logic, and $\mathcal C$ a class of finite structures. $\mathcal L$ captures $\mathcal K$ on $\mathcal C$ if

- ullet $\left(\mathfrak{A} \stackrel{?}{\models} arphi\right) \in \mathcal{K}$, with arphi sentence in \mathcal{L} , $\mathfrak{A} \in \mathcal{C}$,
- ullet for any $\mathcal{P}\subseteq\mathcal{C}$ s.t. $\left(\mathfrak{A}\stackrel{?}{\in}\mathcal{P}\right)\in\mathcal{K}$, exists $arphi_{\mathcal{P}}$ sentence in \mathcal{L} s.t.

$$\mathfrak{A} \models \varphi_{\mathcal{P}} \iff \mathfrak{A} \in \mathcal{P}$$

Why?

- machine-independent characterization of complexity classes;
- proving separation of complexity classes (es. $P \stackrel{?}{=} NP$).

$$\mathcal{L}_1$$
 captures \mathcal{K}_1 , \mathcal{L}_2 captures \mathcal{K}_2 , $\mathcal{L}_1 = \mathcal{L}_2 \iff \mathcal{K}_1 = \mathcal{K}_2$.

Definition 7.3

Existential SO logic, or $\exists SO$, is defined as the restriction of SO that consists of the formulae of the form $\exists X_1 \dots \exists X_n \varphi$, with $\varphi \in FO$.

Analogous definition for universal SO logic, or $\forall SO$. A more intuitive notation could be $\exists^{SO}FO$ and $\forall^{SO}FO$.

Theorem 9.6 (Fagin)

 $\exists SO$ captures **NP**.

Corollary 9.7

 $\forall SO$ captures **coNP**.

Steps of the proof.

② for any \mathcal{P} s.t. $\left(\mathfrak{A} \overset{?}{\in} \mathcal{P}\right) \in \mathbf{NP}$, exists $\varphi_{\mathcal{P}} \in \exists \mathrm{SO}$ s.t.

$$\mathfrak{A} \models \varphi_{\mathcal{P}} \iff \mathfrak{A} \in \mathcal{P}$$

Proof.

• Let $\varphi_{\mathcal{P}} = \exists S_1 \dots \exists S_n \ \psi$, with $\psi \in \mathrm{FO}$. Given \mathfrak{A} , an NTM can guess non deterministically S_1, \dots, S_n , then decides if $\mathfrak{A} \models \psi (S_1, \dots, S_n)$ in polynomial time in $||\mathfrak{A}||$ plus the size of S_1, \dots, S_n .

5 / 19

② Let \mathcal{P} be a property of σ -structures that can be tested by a polynomial NTM $M=(Q,\Sigma,\Delta,\delta,q_0,Q_a,Q_r)$ that has a one-way infinite tape and runs in n^k .

Let
$$\sigma' = \sigma \cup \{\leq^2\} \cup \{(T_a)^{2k} \mid a \in \Delta\} \cup \{(H_q)^{2k} \mid q \in Q\}$$
. Intended meaning:

- < is a linear order on the universe.
- \leq_k is the lexicographic linear order on k-tuples (defined on \leq).
- Positions on the tape (\vec{p}) and time (\vec{t}) by k-tuples of the elements of the universe.
- $\{T_a\}$ are tape predicates: $T_a(\vec{p}, \vec{t})$ indicates that position \vec{p} at time \vec{t} contains a.
- $\{H_q\}$ are *head* predicates: $H_q(\vec{p}, \vec{t})$ indicates that at time \vec{t} , the machine is in state q, and its head is in position \vec{p} .

Let $\varphi_{\mathcal{P}} = \exists L \exists T_{a_1} \dots \exists T_{a_n} \exists H_{q_0} \dots H_{q_{m-1}} \psi$ sentence over σ' , with $\psi \in \mathrm{FO}$. ψ the conjunction of the sentences expressing the following properties:

- L is a linear order (\leq);
- in every configuration of M, each cell of the tape contains exactly one element of Δ ;
- at any time the machine is in exactly one state;
- eventually, M enters a state $q \in Q_a$;
- $\{T_a\}$ and $\{H_a\}$ relations respect the transition of M:

$$\forall a \in \Delta \colon \forall q \in Q \colon \bigvee_{(q',b,m) \in \delta(q,a)} \alpha(q,a,q',b,m),$$

where $m \in \{l, -, r\}$, and $\alpha(q, a, q', b, m)$ is the sentence describing the transition in which upon reading a in state q, the machine writes b, makes the move m, and enters state q'.

- At the beginning of the computation, the input tape contains $enc(\mathfrak{A})$. Suppose $\iota(\vec{p})$ and $\xi(\vec{p})$ are formulas such that:
 - $\mathfrak{A} \models \iota(\vec{p})$ iff the \vec{p} th position of $enc(\mathfrak{A})$ is 1;

4 D > 4 B > 4 E > 4 E > 9 Q @

• $\mathfrak{A} \models \xi(\vec{p})$ iff \vec{p} exceeds the length of $enc(\mathfrak{A})$.

$$\forall \vec{p} \forall \vec{t} \left(\neg \exists \vec{u} \left(\vec{u} \leq_k \vec{t} \right) \rightarrow \begin{array}{c} \left(\iota(\vec{p}) \leftrightarrow T_1(\vec{t}, \vec{p}) \right) \\ \wedge \left(\xi(\vec{p}) \leftrightarrow T_\#(\vec{t}, \vec{p}) \right) \end{array} \right)$$

Solving $\exists SO \stackrel{?}{=} \forall SO \implies$ interesting results:

- $\exists SO \neq \forall SO \implies NP \neq coNP \implies P \neq NP$
- $\exists SO = \forall SO \implies NP = coNP \implies \Sigma_nP = \Pi_nP = \Delta_nP = NP$ The polynomial hierarchy collapses to the first level! (see Papadimitriou 1994, Theorem 17.9)

How to prove $\exists SO \neq \forall SO$? Find a property $\mathcal P$ expressible in $\exists SO$ but not in $\forall SO$ (or vice versa).

Some related results:

- on some infinite structures (e.g., $\langle \mathbb{N}, +, \cdot \rangle$) is known that $\exists SO \neq \forall SO$;
- $\exists MSO \neq \forall MSO$.

Definition 7.3

Existential monadic SO logic, or $\exists MSO$, and universal monadic SO logic, or $\forall MSO$, are defined as the restrictions of $\exists SO$ and $\forall SO$ respectively where all second-order quantifiers have arity 1.

Proposition 7.14 (Fagin, Stockmeyer, and M. Vardi 1995)

Graph connectivity is expressible in $\forall \mathrm{MSO},$ but is not expressible in $\exists \mathrm{MSO}.$

Hence, $\exists MSO \neq \forall MSO$.

Fagin's theorem can be extended to

- other fragments of second order logic
- and other computational classes in the polynomial hierarchy.

Which classes? $\Sigma_k^1, \Pi_k^1 \subseteq \mathrm{SO}$ and $\Sigma_k^\mathbf{P}, \Pi_k^\mathbf{P} \subseteq \mathbf{PH}$.

Σ_k^1 and Π_k^1 , fragments of SO

Remark

$$\exists SO = \{ (\exists \dots \exists) (\varphi) \mid \varphi \in FO \}, \quad \forall SO = \{ (\forall \dots \forall) (\varphi) \mid \varphi \in FO \}.$$

Definition (Väänänen 2020, Section 4)

 Σ_k^1 and Π_k^1 are defined as the restrictions of SO that consist of the formulae of the forms

$$\underbrace{(\exists \ldots \exists)(\forall \ldots \forall)(\exists \ldots \exists)\ldots}_{k} (\varphi) \text{ and } \underbrace{(\forall \ldots \forall)(\exists \ldots \exists)(\forall \ldots \forall)\ldots}_{k} (\varphi)$$

respectively, with $\varphi \in FO$. Also, $\Delta_k^1 = \Sigma_k^1 \cup \Pi_k^1$.

Examples

$$FO = \Sigma_0^1 = \Pi_0^1 = \Delta_0^1, \quad \exists SO = \Sigma_1^1, \quad \forall SO = \Pi_1^1.$$

4□ > 4圖 > 4 = > 4 = > = 9 < 0</p>

$\Sigma_k^{\mathbf{P}}$ and $\Pi_k^{\mathbf{P}}$, computational classes in **PH**

Definition 14.3 (Papadimitriou 1994)

A **Turing machine** M? **with oracle** is a machine that includes a *query string*, and three special states: q?, the *query state*, and qYES, qNO, the *answer states*.

The computation of oracle machine $M^?$ with oracle $A \subseteq \Sigma^*$ proceeds ordinarily, except that the machine moves from the query state to one of the answer states depending on whether the current query string is in A or not.

 $\mathcal{C}^{\mathcal{C}'}$ the class of all languages decided by machines having the same resources bounds as in \mathcal{C} , using as oracle a language of \mathcal{C}' .

Definition 17.2 (Papadimitriou 1994)

$$\begin{split} & \Delta_0^{\textbf{P}} = \Sigma_0^{\textbf{P}} = \Pi_0^{\textbf{P}} = \textbf{P}. \\ & \Delta_{k+1}^{\textbf{P}} = \textbf{P}^{\Sigma_k^{\textbf{P}}}, \ \Sigma_{k+1}^{\textbf{P}} = \textbf{N} \textbf{P}^{\Sigma_k^{\textbf{P}}}, \ \Pi_{k+1}^{\textbf{P}} = \textbf{coN} \textbf{P}^{\Sigma_k^{\textbf{P}}}. \quad \textbf{PH} = \bigcup_{k \geq 0} \Sigma_k^{\textbf{P}} \end{split}$$

Corollary 9.9

For each $k \geq 1$,

- Σ_k^1 captures $\Sigma_k^{\mathbf{P}}$, and
- Π_k^1 captures Π_k^P .

In particular, SO captures PH.

Proof.

The base case is Fagin's theorem. If we consider a problem in $\Sigma_{k+1}^{\mathbf{P}} = \mathbf{NP}^{\Sigma_k^{\mathbf{P}}}$, there is an $\exists \mathrm{SO}$ sentence φ with additional predicates expressing $\Sigma_k^{\mathbf{P}}$ properties. We know, by inductive hypothesis, that these properties are definable by Σ_k^1 . Then pushing the second-order quantifier outwards, we convert φ into a Σ_{k+1}^1 sentence.

Example

$$\exists x (P(x) \land \neg \exists y (xRy)) \longrightarrow \exists x \forall y (P(x) \land \neg xRy)$$

4 D > 4 D P > 4 E > 4 E > E *)

Note that the corollary does **not** imply FO captures **P**!

Theorem

There are logics that capture **P** over the class of **ordered** structures (M. Y. Vardi 1982, Immerman 1986), such as Horn−∃SO (Grädel 1991, Papadimitriou 1994).

Conjecture (Gurevich 1988)

There is no logic that captures **P** over the class of **all** finite structures.

Finding a logic that captures **P** may solve $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$.

$$\exists SO = \forall SO \iff NP = coNP$$
 $\Downarrow \qquad \qquad \Downarrow$
 $SO = \exists SO \iff PH = NP$

References I

- Commons, Wikimedia (2020). File:Polynomial time hierarchy.svg Wikimedia Commons, the free media repository. URL: https://commons.wikimedia.org/w/index.php?title=File: Polynomial time hierarchy.svg&oldid=495206547.
- Fagin, R., L.J. Stockmeyer, and M.Y. Vardi (1995). "On Monadic NP vs Monadic co-NP". In: *Information and Computation* 120.1, pp. 78–92. ISSN: 0890-5401. DOI: https://doi.org/10.1006/inco.1995.1100.

URL: https://www.sciencedirect.com/science/article/pii/

- S0890540185711005.
- Grädel, Erich (1991). "The expressive power of second order Horn logic". In: *Annual Symposium on Theoretical Aspects of Computer Science*. Springer, pp. 466–477.
- Gurevich, Y (1988). Logic and the challenge of Computer Science. Trends in Theoretical Computer Science ed. EB orger.

References II

- Immerman, Neil (1986). "Relational queries computable in polynomial time". In: *Information and control* 68.1-3, pp. 86–104.
- Papadimitriou, C (1994). "Computational Complexity, Addison Welsey". In: *Reading, Massachusetts*.
- Väänänen, Jouko (2020). "Second-order and Higher-order Logic". In: *The Stanford Encyclopedia of Philosophy*. Ed. by Edward N. Zalta. Fall 2020. Metaphysics Research Lab, Stanford University.
- Vardi, Moshe Y (1982). "The complexity of relational query languages". In: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 137–146.