Tutorial 5

YANG YANG

The Australian National University

Week 6, 2017

Q2 (b) Residual plot; Q-Q plot

Q2 (b) Leverage barplot

barplot(hat(lpsa),main="leverage plot of the hat values")
abline(h=4/length(lpsa))

Q2 (d)

call:

> summary(prostate.lm)

tests in parts (a) and (c).

lm(formula = lcavol ~ lpsa)

```
Residuals:
               10 Median
      Min
                                                   Max
-2.15948 -0.59383 0.05034 0.50826 1.67751
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.50858  0.19419 -2.619  0.0103 *
        0.74992 0.07109 10.548 <2e-16 ***
lpsa
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8041 on 95 degrees of freedom
Multiple R-squared: 0.5394, Adjusted R-squared: 0.5346
F-statistic: 111.3 on 1 and 95 DF, p-value: < 2.2e-16
Model: lcavol = \beta_0 + \beta_1lpsa + \varepsilon \sim i.i.d. N(0, \sigma^2)
H_0: \beta_1 = 0 \quad H_A: \beta_1 \neq 0
t_{95} = 10.5, p << 0.05, so reject H<sub>0</sub> in favour of H<sub>A</sub> and conclude that the slope coefficient
of 1psa is significantly different from 0, implying there is a significant linear
relationship between lcavol and lpsa. Note this test is again directly equivalent to the
```

Q2 (e)

```
> range(1psa)
[1] -0.43078 5.58293
> 1psa.values <- 2-02120/20
> 1psa.values (1] -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 (20] -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 [39] 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 (58] 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 [77] 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 [96] 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 [115] 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60 [134] 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 6.00
```

- range(lpsa) gives the range of x-axis in the scatter plot.
- lpsa.values <- -20:120/20 creates a sequence of values that cover the full range of lpsa
- The more points we have, the smoother our curve would look like. Normally 50 points are enough for a good plot.

Q2 (e) extra plot

- Put lpsa.values into the SLR modelt to calculate a sequence of response \hat{Y}_i .
- We can use either predict() function or do the multiplication manually.
- Match the scale of axes. Don't forget to do back transformation.

Q2 (e) extra plot

Both methods create exactly the same curves. The predict() function is recommended as it can be used to get CI and PI.

Q3 (b)

Q3 (b)

Q3 (b)

Q3 (c)

Q3 (c)

Q3 (c)

