1 定义

1. 梯度

若 $f: \mathbb{R}^n \to \mathbb{R}$ 在点 $\overrightarrow{x_0} = (x_1, x_2, \dots, x_n)$ 处可微,即 $f(\overrightarrow{x})$ 在该点关于各变量的一阶偏导数存在,则 $f(\overrightarrow{x})$ 的 n 个偏导数构成的列向量

$$\left(\frac{\partial f}{\partial x_1}\bigg|_{\vec{x}=\vec{x_0}}, \frac{\partial f}{\partial x_2}\bigg|_{\vec{x}=\vec{x_0}}, \dots, \frac{\partial f}{\partial x_n}\bigg|_{\vec{x}=\vec{x_0}}\right)^{\mathrm{T}}$$

称为 $f(\vec{x})$ 在点 $\vec{x_0}$ 处的梯度,记为 $\nabla f(\vec{x})|_{\vec{x}=\vec{x_0}}$.

2. Hesse 矩阵

对于 $f: \mathbb{R}^n \to \mathbb{R}$, 矩阵

$$H\left(f\left(\overrightarrow{\boldsymbol{x}}\right)\right) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{pmatrix}$$

称为 $f(\vec{x})$ 的 Hesse 矩阵

3. 凸集

设 $S \in \mathbb{R}^n$ 中的一个集合。若对于任意两点 $\overrightarrow{x_1}, \overrightarrow{x_2} \in S$ 及每个实数 $\lambda \in [0,1]$, 有

$$\lambda \overrightarrow{x_1} + (1 - \lambda) \overrightarrow{x_2} \in S$$

则称 S 为凸集。 $\lambda \overrightarrow{x_1} + (1 - \lambda) \overrightarrow{x_2}$ 称为 $\overrightarrow{x_1}$ 和 $\overrightarrow{x_2}$ 的凸组合。

Remark

线段与直线均为ℝ上的凸集。

对于由 $D = \{\vec{x} \mid f_i(\vec{x}) = 0, g_j(\vec{x}) \geq 0\}$ 构成的集合,若 $f_i(\vec{x})$ 均为线性函数, $g_i(\vec{x})$ 均为凸函数,则 D 为凸集。

4. 凸包

集合 $T \subset \mathbb{R}^n$ 的凸包是指所有包含 T 的凸集的交集,记为

$$\operatorname{conv} T = \bigcap_{T \subset C} C$$

其中, C 为凸集。

5. 凸函数

设 $S \subset \mathbb{R}^n$ 为非空凸集,函数 $f: S \to \mathbb{R}$. 若 $\forall \overrightarrow{x_1}, \overrightarrow{x_2} \in S$, 和每一个 $\lambda \in (0,1)$, 都有

$$f(\lambda \overrightarrow{x_1} + (1 - \lambda) \overrightarrow{x_2}) \leq \lambda f(\overrightarrow{x_1}) + (1 - \lambda) f(\overrightarrow{x_2})$$

则称 $f \in S$ 上的凸函数。若上面的不等式对于 $\overrightarrow{x_1} \neq \overrightarrow{x_2}$ 严格成立,则称 $f \in S$ 上的严格 凸函数。

6. 上镜图

对于函数 $f: S \to \mathbb{R}$, 称集合

$$\left\{ \begin{aligned} & \operatorname{epi} f = \\ & (x,y) \mid x \in S, y \in \mathbb{R}, y \geq f(x) \end{aligned} \right\}$$

为 f 的上镜图。

7. 驻点与鞍点

若 $f(\vec{x})$ 在点 \vec{x}^* 处可微,且 $\nabla f(\vec{x}^*) = 0$,则称 \vec{x}^* 为 f 的一个驻点。既不是极大点也不是极小点的驻点称为鞍点。

8. 共轭方向

设 $A \neq n \times n$ 对称正定矩阵, 若 \mathbb{R}^n 中的两个方向 $\vec{d}^{(1)}$ 和 $\vec{d}^{(2)}$ 满足

$$\vec{\boldsymbol{d}}^{(1)}{}^{\mathrm{T}}A\vec{\boldsymbol{d}}^{(2)}=0$$

则称这两个方向关于 A 共轭。

9. 矩阵的内积

定义 S^n 为一组 $n \times n$ 对称矩阵的集合。对于任意矩阵 $A, B \in S^n$, 定义 A = B 的内积为

$$A \cdot B = \operatorname{trace}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij}$$

2 定理

1. 凸集的性质

设 S_1 和 S_2 是 \mathbb{R}^n 中两个凸集, β 是实数, 则

- $\beta S_1 = \{\beta \vec{x} \mid \vec{x} \in S_1\}$ 是凸集
- $S_1 \cap S_2$ 为凸集
- $S_1 + S_2 = \{\vec{x_1} + \vec{x_2} \mid \vec{x_1} \in S_1, \vec{x_2} \in S_2\}$ 为凸集
- $S_1 S_2 = \{ \overrightarrow{x_1} \overrightarrow{x_2} \mid \overrightarrow{x_1} \in S_1, \overrightarrow{x_2} \in S_2 \}$ 为凸集
- 2. 凸函数的性质

设S为 \mathbb{R}^n 的非空凸子集,则f是凸函数当且仅当其上镜图是凸集。

- 3. 凸函数的判定定理
 - 设 $S \in \mathbb{R}^n$ 中的非空开凸集, $f: S \to \mathbb{R}$ 是可微的函数,则 f 是凸函数当且仅当 $\forall \vec{x}^* \in S$,有

$$f(\vec{x}) - f(\vec{x}^*) > \nabla f(\vec{x}^*) (\vec{x} - \vec{x}^*), \forall \vec{x} \in S$$

f 严格凸当且仅当 $\forall \vec{x}^* \in S$, 有

$$f(\vec{x}) - f(\vec{x}^*) \nabla f(\vec{x}^*) (\vec{x} - \vec{x}^*), \forall \vec{x} \in S, \vec{x} \neq \vec{x}^*$$

• 设 $S \in \mathbb{R}^n$ 中的非空开凸集, $f: S \to \mathbb{R}$ 是二次可微的函数, 则

。 f 是凸函数当且仅当 S 上每一点的 Hesse 矩阵是半正定的

Remark

实对称矩阵 A 半正定当且仅当其特征值均非负。

 \circ f 是严格凸函数当且仅当 S 上每一点的 Hesse 矩阵是正定的

Remark

实对称矩阵 A 正定当且仅当其特征值均正。

3 方法

3.1 无约束极值问题 (UNLP)

3.1.1 定义

 $\min f(\vec{x}), \vec{x} \in \mathbb{R}^n$

其中 $f \in \mathbb{R}^n$ 上的实值函数。

3.1.2 极值条件

- 极小点的必要条件 设 **x*** 是问题 UNLP 的局部极小点。
 - \circ 若 f 在 \vec{x}^* 处可微,则 $\nabla f(\vec{x}^*) = 0$.
 - 若 f 在 \vec{x}^* 处二次可微,则 $\nabla f(\vec{x}^*) = 0$ 且 Hesse 矩阵 $H(\vec{x}^*)$ 半正定。
- 二阶充分条件 假设 f 在 \vec{x}^* 点二次可微,若 $\nabla f(\vec{x}^*) = 0$ 且 Hesse 矩阵 $H(\vec{x}^*)$ 是正定的,则 \vec{x}^* 是 UNLP 的一个严格局部极小点。
- 充要条件 假设 $f: \mathbb{R}^n \to \mathbb{R}$ 是可微的凸函数,则 \vec{x}^* 是 UNLP 的全局最小点当且仅当 $\nabla f(\vec{x}^*) = 0$

3.1.3 一维搜索

得到点 $\vec{x}^{(k)}$ 后,需要按某种规则确定一个方向 $\vec{d}^{(k)}$,再从 $\vec{x}^{(k)}$ 出发,沿方向 $\vec{d}^{(k)}$ 在直线上求目标函数的极小点,从而得到 $\vec{x}^{(k)}$ 的后继点 $\vec{x}^{(k+1)}$. 重复以上做法,直至求得问题的解。这种方法称为一维搜索。

- 试探法
 - 。 0.618 法

设 f 在 [a, b] 上单峰。

step 1 置初始区间 $[a_1, b_1]$ 及精度要求 L > 0. 计算试探点 λ_1 和 μ_1 , 计算函数值 $f(\lambda_1)$ 和 $f(\mu_1)$. 计算公式是

$$\lambda_1 = a_1 + 0.382(b_1 - a_1)$$

$$\mu_1 = a_1 + 0.618(b_1 - a_1)$$

step 2 若 $b_k - a_k < L$,则停止计算。否则,当 $f(\lambda_k) > f(\mu_k)$ 时,转step 3; 当 $f(\lambda_k) \le f(\mu_k)$ 时,转step 4.

step 3 置
$$a_{k+1} = \lambda_k, b_{k+1} = b_k, \lambda_{k+1} = \mu_k$$

$$\mu_{k+1} = a_{k+1} + 0.618(b_{k+1} - a_{k+1})$$

计算函数值 $f(\mu_{k+1})$, 转step 5.

step 4 置 $a_{k+1} = a_k, b_{k+1} = \mu_k, \mu_{k+1} = \lambda_k$

$$\lambda_{k+1} = a_{k+1} + 0.382(b_{k+1} - a_{k+1})$$

计算函数值 $f(\lambda_{k+1})$, 转**step 5**.

step 5 置 k = k + 1, 返回step 2.

。 Fibonacci 法

设有数列 $\{F_k\}$, 满足

*
$$F_0 = F_1 = 1$$

$$* F_{k+1} = F_k + F_{k-1}$$

则称 $\{F\}$ 为 Fibonacci 数列。

设f在[a,b]上单峰。

step 1 置初始区间 $[a_1,b_1]$ 及精度要求 L>0. 求计算函数值的次数 n, 使

$$F_n \ge \frac{b_1 - a_1}{L}$$

置辨别常数 $\delta > 0$. 计算试探点 λ_1 和 μ_1 , 计算函数值 $f(\lambda_1)$ 和 $f(\mu_1)$. 计算公式是

$$\lambda_1 = a_1 + \frac{F_{n-2}}{F_n} (b_1 - a_1)$$

$$\mu_1 = a_1 + \frac{F_{n-1}}{F_n}(b_1 - a_1)$$

 $\Leftrightarrow k = 1$

step 2 若 $f(\lambda_k) > f(\mu_k)$ 时,转step 3; 当 $f(\lambda_k) \leq f(\mu_k)$ 时,转step 4.

step 3 置 $a_{k+1} = \lambda_k, b_{k+1} = b_k, \lambda_{k+1} = \mu_k$

$$\mu_{k+1} = a_{k+1} + \frac{F_{n-k-1}}{F_{n-k}} (b_{k+1} - a_{k+1})$$

若 k=n-2, 则转step 6; 否则,计算函数值 $f(\mu_{k+1})$, 转step 5.

step 4 置 $a_{k+1} = a_k, b_{k+1} = \mu_k, \mu_{k+1} = \lambda_k$

$$\lambda_{k+1} = a_{k+1} + \frac{F_{n-k-2}}{F_{n-k}} (b_{k+1} - a_{k+1})$$

若 k = n - 2, 则转step 6; 否则,计算函数值 $f(\lambda_{k+1})$, 转step 5.

step 5 置 k = k + 1, 转step 2.

step 6 令 $\lambda_n = \lambda_{n-1}, \mu_n = \lambda_{n-1} + \delta$, 计算 $f(\lambda_n)$ 和 $f(\mu_n)$ 若 $f(\lambda_n) > f(\mu_n)$, 则令

$$a_n = \lambda_n, b_n = b_{n-1}$$

若 $f(\lambda_n) \leq f(\mu_n)$, 则令

$$a_n = a_{n-1}, b_n = \lambda_n$$

停止计算,最小值包含于 $[a_n,b_n]$.

• 最速下降法

最速下降法的迭代公式为

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \lambda_k \vec{d}^{(k)}$$

其中 $\vec{d}^{(k)}$ 是从 $\vec{x}^{(k)}$ 出发的搜索方向,这里取在点 $\vec{x}^{(k)}$ 处的最速下降方向,即

$$\vec{\boldsymbol{d}}^{(k)} = -\nabla f(\vec{\boldsymbol{x}}^{(k)})$$

 λ_k 是从 $\vec{x}^{(k)}$ 出发沿方向 $\vec{d}^{(k)}$ 进行一维搜索的步长, 即 λ_k 满足

$$f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda_k \overrightarrow{\boldsymbol{d}}^{(k)}) = \min_{\lambda > 0} f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda \overrightarrow{\boldsymbol{d}}^{(k)})$$

step 1 给定初点 $\vec{x}^{(1)} \in \mathbb{R}^n$, 允许误差 $\varepsilon > 0$, 置 k = 1.

step 2 计算搜索方向 $\vec{d}^{(k)} = -\nabla f(\vec{x}^{(k)})$

step 3 若 $\|\vec{d}^{(k)}\| \le \varepsilon$, 则停止计算;否则,从 $\vec{x}^{(k)}$ 出发,沿 $\vec{d}^{(k)}$ 进行一维搜索,求 λ_k ,使

$$f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda_k \overrightarrow{\boldsymbol{d}}^{(k)}) = \min_{\lambda > 0} f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda \overrightarrow{\boldsymbol{d}}^{(k)})$$

step 4 令 $\vec{x}^{(k+1)} = \vec{x}^{(k)} + \lambda_k \vec{d}^{(k)}$, 置 k = k+1, 转step 2.

• Newton 法

对于函数 $f(\vec{x})$, 记 $\nabla f(\vec{x})$ 为 f 在 \vec{x} 处的梯度, $\nabla^2 f(\vec{x})$ 为在 \vec{x} 处的 Hesse 矩阵, $\nabla^2 f(\vec{x})^{-1}$ 为在 \vec{x} 处的 Hesse 矩阵的逆矩阵。则 Newton 法的迭代公式为

$$\overrightarrow{\boldsymbol{x}}^{(k+1)} = \overrightarrow{\boldsymbol{x}}^{(k)} - \nabla^2 f(\overrightarrow{\boldsymbol{x}}^{(k)})^{-1} \nabla f(\overrightarrow{\boldsymbol{x}}^{(k)})$$

• 阻尼 Newton 法

阻尼 Newton 法的迭代公式为

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \lambda_k \vec{d}^{(k)}$$

其中 $\vec{\boldsymbol{d}}^{(k)} = -\nabla^2 f\left(\vec{\boldsymbol{x}}^{(k)}\right)^{-1} \nabla\left(\vec{\boldsymbol{x}}^{(k)}\right)$ 为 Newton 方向, λ_k 是由一维搜索得到的步长,即满足

$$f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda_k \overrightarrow{\boldsymbol{d}}^{(k)}) = \min_{\lambda > 0} f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda \overrightarrow{\boldsymbol{d}}^{(k)})$$

step 1 给定初始点 $\vec{x}^{(1)}$, 允许误差 $\varepsilon > 0$, 置 k = 1.

step 2 计算 $\nabla f(\vec{x}^{(k)}), \nabla^2 f(\vec{x}^{(k)})^{-1}$

step 3 若 $\|\nabla f(\vec{x}^{(k)})\| < \varepsilon$, 则停止迭代;否则,令

$$\overrightarrow{\boldsymbol{d}}^{(k)} = -\nabla^2 f\left(\overrightarrow{\boldsymbol{x}}^{(k)}\right)^{-1} \nabla \left(\overrightarrow{\boldsymbol{x}}^{(k)}\right)$$

step 4 从 $\vec{x}^{(k)}$ 出发,沿方向 $\vec{d}^{(k)}$ 作一维搜索,

$$f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda_k \overrightarrow{\boldsymbol{d}}^{(k)}) = \min_{\lambda > 0} f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda \overrightarrow{\boldsymbol{d}}^{(k)})$$

$$\diamondsuit \ \overrightarrow{\boldsymbol{x}}^{(k+1)} = \overrightarrow{\boldsymbol{x}}^{(k)} + \lambda_k \overrightarrow{\boldsymbol{d}}^{(k)}$$

step 5 置 k = k + 1, 转step 2

• 修正 Newton 法

step 1 给定初始点 $\vec{x}^{(1)}$, 允许误差 $\varepsilon > 0$, 置 k = 1.

- step 2 计算 $\nabla f(\vec{x}^{(k)}), \nabla^2 f(\vec{x}^{(k)})^{-1}$
- step 3 若 $\|\nabla f(\vec{x}^{(k)})\| < \varepsilon$, 则停止迭代;否则,置矩阵 $B_k = \nabla^2 f(\vec{x}^{(k)}) + E_k$, 其中 E_k 为修正矩阵(当 $\nabla^2 f(\vec{x}^{(k)})$ 正定时,它取 0),令

$$\vec{\boldsymbol{d}}^{(k)} = -B_k^{-1} \nabla \left(\vec{\boldsymbol{x}}^{(k)} \right)$$

step 4 从 $\vec{x}^{(k)}$ 出发,沿方向 $\vec{d}^{(k)}$ 作一维搜索,

$$f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda_k \overrightarrow{\boldsymbol{d}}^{(k)}) = \min_{\lambda > 0} f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda \overrightarrow{\boldsymbol{d}}^{(k)})$$

$$\diamondsuit \vec{x}^{(k+1)} = \vec{x}^{(k)} + \lambda_k \vec{d}^{(k)}$$

step 5 置 k = k + 1, 转step 2

• 共轭梯度法

对于二次凸函数

$$f\left(\overrightarrow{\boldsymbol{x}}\right) = \frac{1}{2}\overrightarrow{\boldsymbol{x}}^{\mathrm{T}}A\overrightarrow{\boldsymbol{x}} + b^{\mathrm{T}}\overrightarrow{\boldsymbol{x}} + c$$

- **step 1** 给定初始点 $\vec{x}^{(1)}$, 置 k=1
- **step 2** 计算 $g_k = \nabla f(\vec{x}^{(k)})$. 若 $||g_k|| = 0$, 停止迭代; 否则, 进行下一步
- step 3 令

$$\overrightarrow{\boldsymbol{d}}^{(k)} = -q_k + \beta_{k-1} \overrightarrow{\boldsymbol{d}}^{(k-1)}$$

其中,

$$\beta_{k-1} = \begin{cases} 0 & k = 1 \\ \frac{\|g_k\|^2}{\|g_{k-1}\|^2} & k \ge 2 \end{cases}$$

step 4

$$\lambda_k = -\frac{g_k^{\mathsf{T}} \vec{\boldsymbol{d}}^{(k)}}{\vec{\boldsymbol{d}}^{(k)}^{\mathsf{T}} A \vec{\boldsymbol{d}}^{(k)}}$$

$$\diamondsuit \vec{x}^{(k+1)} = \vec{x}^{(k)} + \lambda_k \vec{d}^{(k)}$$

- step 5 若 k = n, 则停止迭代;否则,置 k = k + 1,转step 2
- DFP 算法
 - step 1 给定初始点 $\vec{x}^{(1)} \in \mathbb{R}^n$, 允许误差 $\varepsilon > 0$
 - step 2 置 $H_1 = I_n$, 计算出在 $\vec{x}^{(1)}$ 处的梯度

$$g_1 = \nabla f\left(\overrightarrow{\boldsymbol{x}}^{(1)}\right)$$

置 k=1

step 3 $\diamondsuit \vec{d}^{(k)} = -H_k g_k$

step 4 从 $\vec{x}^{(k)}$ 出发,沿方向 $\vec{d}^{(k)}$ 作一维搜索,

$$f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda_k \overrightarrow{\boldsymbol{d}}^{(k)}) = \min_{\lambda > 0} f(\overrightarrow{\boldsymbol{x}}^{(k)} + \lambda \overrightarrow{\boldsymbol{d}}^{(k)})$$

$$\diamondsuit \vec{x}^{(k+1)} = \vec{x}^{(k)} + \lambda_k \vec{d}^{(k)}$$

step 5 检验是否满足收敛准则,若

$$\|\nabla f\left(\overrightarrow{\boldsymbol{x}}^{(k+1)}\right)\| \leq \varepsilon$$

则停止迭代,得到点 $\vec{x}^{(k+1)}$; 否则,进行step 6

step 6 若
$$k=n$$
, 则令 $\vec{x}^{(1)}=\vec{x}^{(k+1)}$, 返回step 2; 否则,进行step 7 step 7 令 $g_{k+1}=\nabla f\left(\vec{x}^{(k+1)}\right)$, $\vec{p}^{(k)}=\vec{x}^{(k+1)}-\vec{x}^{(k)}$, $\vec{q}^{(k)}=\vec{g}_{k+1}-\vec{g}_{k}$

$$H_{k+1} = H_k + \frac{\overrightarrow{\boldsymbol{p}}^{(k)} \overrightarrow{\boldsymbol{p}}^{(k)^{\mathsf{T}}}}{\overrightarrow{\boldsymbol{p}}^{(k)^{\mathsf{T}}} \overrightarrow{\boldsymbol{q}}^{(k)}} - \frac{H_k \overrightarrow{\boldsymbol{q}}^{(k)} \overrightarrow{\boldsymbol{q}}^{(k)^{\mathsf{T}}} H_k}{\overrightarrow{\boldsymbol{q}}^{(k)^{\mathsf{T}}} H_k \overrightarrow{\boldsymbol{q}}^{(k)}}$$

置 k = k + 1, 返回step 3

3.2 有约束极值问题

3.2.1 定义

$$\begin{aligned} & \text{min} \quad f(\overrightarrow{\boldsymbol{x}}) \\ & \text{s.t.} \quad a_i(\overrightarrow{\boldsymbol{x}}) = 0, i = 1, 2, \dots, p \\ & \quad c_j(\overrightarrow{\boldsymbol{x}}) \geq 0, j = 1, 2, \dots, q \end{aligned}$$

其中 $a_i(\vec{x}) = 0$ 称为等式约束, $c_j(\vec{x}) \ge 0$ 称为不等式约束。 其对应的 Lagrange 函数为

$$L\left(\vec{x}, \vec{\lambda}, \vec{\mu}\right) = f(\vec{x}) - \sum_{i=1}^{p} \lambda_i a_i(\vec{x}) - \sum_{j=1}^{q} \mu_j c_j(\vec{x})$$

3.2.2 极值条件

• KKT 条件 \overrightarrow{x} 是极小点,则

$$o \ a_{i}(\overrightarrow{x^{*}}) = 0, i = 1, 2, \dots, p$$

$$o \ c_{j}(\overrightarrow{x^{*}}) \ge 0, j = 1, 2, \dots, q$$

$$o \ \nabla f(\overrightarrow{x^{*}}) = \sum_{i=1}^{p} \lambda_{i}^{*} \nabla a_{i}(\overrightarrow{x^{*}}) + \sum_{j=1}^{q} \mu_{j}^{*} \nabla c_{j}(\overrightarrow{x^{*}})$$

$$o \ \mu_{j}^{*} c_{j}(\overrightarrow{x^{*}})^{T} = 0, j = 1, 2, \dots, q$$

$$o \ \mu_{i}^{*} \ge 0, j = 1, 2, \dots, q$$

3.3 凸问题

3.3.1 定义

$$\begin{aligned} & \text{min} \quad f(\overrightarrow{x}) \\ & \text{s.t.} \quad a_i(\overrightarrow{x}) = 0, i = 1, 2, \dots, p \\ & \quad c_j(\overrightarrow{x}) \geq 0, j = 1, 2, \dots, q \end{aligned}$$

其中, f 为凸函数, $D = \{\vec{x} \mid a_i(\vec{x}) = 0, c_j(\vec{x}) \ge 0\}$ 是凸集。

3.3.2 极值条件

- 满足 KKT 条件的点一定为其极值点。
- Wolfe 对偶定理 对于一个凸问题,定义其 Wolfe 对偶问题为

$$\begin{array}{ll} \max & L(\overrightarrow{\boldsymbol{x}}) \\ \text{s.t.} & \nabla_{\overrightarrow{\boldsymbol{x}}}L = 0 \\ & \mu_i \geq 0 \end{array}$$

其中, L 为 f 的 Lagrange 函数。 则此两个问题的极值点相同。

3.4 线性规划问题

3.4.1 定义

$$\begin{array}{ll} \min & \overrightarrow{c}^{\mathrm{T}}\overrightarrow{x} \\ \text{s.t.} & A\overrightarrow{x} = \overrightarrow{b} \\ & \overrightarrow{x} \geq \overrightarrow{0} \end{array}$$

3.4.2 极值条件

• 原始对偶内点法 设原问题的 Wolfe 对偶问题为

$$\begin{aligned} &\max \quad L(\overrightarrow{x})\\ &\text{s.t.} \quad \nabla_{\overrightarrow{x}}L = 0\\ &\mu_i > 0\\ &\overrightarrow{x} > 0 \end{aligned}$$

其 KKT 条件为

$$A^{\mathsf{T}}\lambda + \mu = c$$
$$A\vec{x} = \vec{b}$$
$$X\mu = \tau e$$

其中 $\tau > 0, e = [1, 1, \dots, 1]^\mathsf{T}$

step 1 在可行域里面找到一个初始点 $\overrightarrow{w_0} = \{\overrightarrow{x_0}, \overrightarrow{\lambda_0}, \overrightarrow{\mu_0}\}$

step 2 在第 k 次迭代中,对 KKT 条件增加一阶扰动 $\tau = \tau_k$,获得增量 δ_w 来更新下一个点 $\overline{\boldsymbol{w}_k}$. 解方程:

$$\begin{cases} A\delta_x = 0 \\ A\delta_\lambda + \delta_\mu = 0 \\ M\delta_x + X\delta_\mu = \tau_{k+1} - X\delta_\mu\delta_k \end{cases}$$

其中 $M = diag\{(\mu_k)_1, (\mu_k)_2, \dots, (\mu_k)_n\}$

step 3 在下一轮迭代中的初始点更新为 $\overrightarrow{w_{k+1}} = \{\overrightarrow{x_k} + \overrightarrow{\delta_x}, \overrightarrow{\lambda_k} + \overrightarrow{\delta_\lambda}, \overrightarrow{\mu_k} + \overrightarrow{\delta_\mu}\}$

step 4 在 KKT 条件中 τ 更新为更加靠近中心路径的 τ_{k+1} , 方法为

$$\tau_{k+1} = \frac{\mu_k^{\mathrm{T}} \overrightarrow{x_k}}{n+\rho}$$

其中 $\rho > \sqrt{n}$

step 5 为了获得更好的 w_{k+1} , 可以采用一维搜索的方法

$$\overrightarrow{\boldsymbol{w}_{k+1}} = \overrightarrow{\boldsymbol{w}_k} + \alpha_k \overrightarrow{\boldsymbol{\delta}_w}$$

• 对偶形式

$$\max \quad h(\overrightarrow{\boldsymbol{y}}) = b^{\mathsf{T}} \overrightarrow{\boldsymbol{y}}$$
 s.t. $c - A^{\mathsf{T}} \overrightarrow{\boldsymbol{y}} \ge 0$

3.5 二次规划问题

3.5.1 定义

$$\begin{aligned} & \min \quad \overrightarrow{x}^{\mathrm{T}} H \overrightarrow{x} + \overrightarrow{p}^{\mathrm{T} \overrightarrow{x}} \\ & \text{s.t.} \quad \overrightarrow{a_i}^{\mathrm{T}} \overrightarrow{x} = \overrightarrow{b_i}, i = 1, 2, \dots, p \\ & \overrightarrow{c_i}^{\mathrm{T}} \overrightarrow{x} = \overrightarrow{d_i}, i = 1, 2, \dots, q \end{aligned}$$

考虑等式约束的二次规划问题

min
$$f(\vec{x}) = \vec{x}^{\mathrm{T}} H \vec{x} + \vec{p}^{\mathrm{T} \vec{x}}$$

s.t. $A \vec{x} = \vec{b}$

称为等式约束二次规划问题

3.5.2 极值条件

• Lagrange 法 Lagrange 函数

$$L = f(\vec{x}) - \vec{\lambda}^{\mathrm{T}} \left(A \vec{x} - \vec{b} \right)$$

求其 Langrage 矩阵

$$\begin{pmatrix} H & -A \\ -A & 0 \end{pmatrix} \begin{pmatrix} \vec{x} \\ \vec{\lambda} \end{pmatrix} = \begin{pmatrix} -\vec{p} \\ -\vec{q} \end{pmatrix}$$

3.6 半定问题

3.6.1 定义

原始 SDP 问题为

$$\begin{aligned} & \text{min} & & C \cdot X \\ & \text{s.t.} & & A_i \cdot X = b_i, i = 1, 2, \dots, p \\ & & & X \geq 0 \end{aligned}$$

3.6.2 对偶形式

$$\begin{array}{ll} \max & b^{\mathrm{T}} \overrightarrow{\boldsymbol{y}} \\ \\ \mathrm{s.t.} & C - \sum_{i=1}^p y_i A_i \geq 0 \end{array}$$