

XALT: Job-Level Usage Data on Today's Supercomputers.

Robert McLay

Nov. 15, 2022

XALT: Outline

- ► What is XALT and what it is not?
- ► How it works: Three Parts
- Memory allocation issues
- ► Container issues
- **▶** Conclusions

Understanding what your users are doing

- ► Current Version: XALT 2.10.44
- ► What programs, libraries are your users using?
- ► What imports from R, MATLAB, Python?
- ► What are the top programs by core-hours? by counts? by users?
- System, User or Built by Other executables?
- ► Are Executables implemented in C/C++/Fortran/Others?
- Track MPI task and/or Threading (\$OMP_NUMTHREADS)
- ► Function Tracking
- ► Census Taker, Not a performance tool!

How do TACC and other sites use XALT data?

- ► Some sites feed XALT data into an ELK stack to visualize data
- ▶ We use a MySQL db to store the data and analyze weekly.
- ► Sites could do both ELK and MySQL DB (or some other DB)
- ► TACC generates a weekly report on usage (last 30, last 365) days
- ► We design our benchmark codes on actual usage not guesses
- ► Usage of gromacs, amber, ...?

xalt_usage_report.py

- ► Overall Job counts: system (5%) user (95%)
- ► It reports Top Execs by Core-Hours, Number of Runs, Number of users for All, MPI Only, Scalar
- ► Top Module usage
- ► Compiler usage
- ► Libraries from modules Usage

XALT Monthly Zoom Mtg

- Previous Topics:
 - Controlling which executable get tracked
 - Using Lmod to build the reverse map from directories to modules
 - ► Using \$XALT_TRACING to debug XALT
 - ► How to test XALT at your site
 - ► Examples of what data a site can report on from the XALT DB.
- ► Future Topics:
 - ► Tracking Packages: Python, R, MATLAB
- ► Zoom Mtg Usually 3rd Thurday at 10:00 US Central (16:00 UTC)
- ► See Mailing list or https://github.com/xalt/xalt/wiki for details
- ► Next Meeting Dec. 15 at 10:00 US Central (16:00 UTC)

Design Goals

- ► Be extremely light-weight
- ► How many use a library or application?
- ► What functions are users calling in system modules
- ► Collect Data into a Database for analysis.

How does XALT work?

- ► LD Wrapper
- ► ELF Trick to track execution
- ► Generate Json records
- ► Transport to DB
- ► Analyze database.

Design: LD Wrapper

- ► XALT wraps the linker to enable tracking of exec's
- ► The linker (ld) wrapper intercepts the user link line.
- ► Generate assembly code: key-value pairs
- ► Capture tracemap output from Id
- ► Transmit collected data in *.json format
- Optionally add codes that executes before main() and after main() completes for static builds.
- ► Having the LD Wrapper is helpful but not required for XALT to work.

Elf Trick (I)

- ► ELF is the binary format for Linux
- ► ELF has many hooks
- ➤ XALT uses two hooks to run before/after main()

ELF Trick (II)

```
hello.c:
#include <stdio.h>
int main() { printf("Hello World!\n"): return 0; }
xalt.c:
#include <stdio.h>
void myinit(int argc, char **argv)
{ fprintf(stderr, "This is run before main()\n"); }
void myfini()
{ fprintf(stderr, "This is run after main()\n");}
static attribute ((section(".init array")))
     typeof(myinit) * init = myinit;
static __attribute__((section(".fini_array")))
     tvpeof(myfini) * fini = myfini;
```

ELF Trick (III)

```
% ./hello
Hello World!

% gcc -c -fPIC xalt.c;
% gcc -o libxalt.so -fPIC -shared xalt.o
% LD_PRELOAD=./libxalt.so ./hello
This is run before main()
Hello World!
This is run after main()
```

Transmission to DB

- ► File: collect nightly/hourly/...
- ► Syslog: Use Syslog filtering (or ELK)
- ► Curl: send directly (typically for ELK)

Lmod to XALT connection (I)

- Optional support to connect paths to modules
- ► Lmod spider walks entire module tree.
- Can build a reverse map from paths to modules
- Can map program & libraries to modules.
- ► /opt/apps/i15/mv2_2_1/phdf5/1.8.14/lib/libhdf5.so.9 ⇒ phdf5/1.8.14(intel/15.02:mvapich2/2.1)
- ► Tmod Sites can still use Lmod to build the reverse map.

Installing XALT

- ► Easy: ./configure ...; make install
- ► Harder: Reverse Map from Lmod?
- ► Harder: Site config.py file
- ► Harder: Setup Transport Json records
- ► Harder: Setup VM to hold database
- ► Or: Setup your own way to handle the data

Site config.py (I)

- ► Each site must configure to match their setup
- ► Compute node names?
- ► What executables to track or ignore?
- ► What python packages to track or ignore?
- ► What sampling rules to use?

Site config.py (II)

- ► XALT use config.py to create *.h, *.lex *.py files during build.
- Provides xalt_configuration_report C++ program to know how configured.
- ► Config.py file only used when building XALT.
- ► Any changes to Config.py require a re-install of XALT.

Hostname, Path and Env Filtering

- ► Uses FLEX to compile in patterns
- ► Use regex expression to control what to keep and ignore.
- ▶ These Flex \Rightarrow C routine provide fast regex parsing.

TACC_config.py

```
hostname_patterns = [
 ['KEEP', '^{c}[0-9][0-9][0-9]-[0-9][0-9][0-9]\..*']
  ['KEEP', '^nid[0-9][0-9][0-9][0-9][0-9].*']
path_patterns = [
  ['PKGS', r'.*\/python[0-9.]*'],
  ['PKGS', r'.*\/R'],
  ['KEEP', r'^/\usr\bin\dt'],
  ['SKIP', r'^{bin}.'],
env_patterns = [
  [ 'SKIP', r'^MKLROOT=.*' ],
  [ 'SKIP', r'^MKL DIR=.*' ],
  [ 'KEEP', r'^I_MPI_INFO_NUMA_NODE_NUM=.*'],
```

How sampling works

- ► Changed design to deal with the overload of XALT data
- ► Only generate records if plan to save.
- ► All Non-mpi executions only produce end records.
- ► Small MPI execution sample, Large MPI executions record.

Sampling Non-MPI programs

- ► XALT has sampling rules (site configurable!)
- ► TACC rules are:
- ▶ 0 mins < 30 mins \Rightarrow 0.01% recorded
- ▶ 30 mins < 120 mins \Rightarrow 1% recorded
- ▶ 120 mins $< \infty \Rightarrow 100\%$ recorded
- ► Can now track/sample perl, awk, sed, gzip etc

Sampling MPI programs

- ► Some users are using many short MPI programs to train Deep Learning engine
- ► TACC rules are:
- ► Task counts < 128 tasks are sampled
 - ▶ 0 mins < 15 mins \Rightarrow 0.01% recorded
 - ▶ 15 mins < 30 mins \Rightarrow 1% recorded
 - ▶ 30 mins $< \infty \Rightarrow 100\%$ recorded
- ► Task counts >= 128 task are always recorded independent of runtime.
- ▶ Need to Capture long running MPI progs that never end.

XALT is now linking with everything!

- ► I feel like a developer on every team.
- ► XALT shares name space -> obfuscation
- ► XALT shares memory allocation
- ► Containers: XALT cannot depend on all system libs.

Memory Collusion w/ user code

- ► Not all user programs allocate and free memory correctly (Surprise!)
- ► XALT would sometimes fail when freeing memory after main()
- ► Result: XALT allocates but doesn't free memory after main()

Containers

- ► XALT requires libuuid.so on host
- ▶ Not on Containers
- ► XALT has to use dlopen()/dlsym() to use libuuid.so

Containers (II)

- ► XALT copies system libuuid.so to XALT install dir.
- ➤ XALT does: dlopen("XALT_INSTALL_DIR/lib64/libuuid.so")
- ► XALT then uses dlsym() to connect to libuuid routines

Tracking Python packages

- ► Help from Riccardo Murri
- ► sitecustomize.py
- ► It is run by any Python if found.
- ► All Pythons uses sys.meta_path to locate files to import
- ► Can register object to capture imports.
- ► Just add location to PYTHONPATH

Filtering python packages

```
{ 'k_s':'SKIP','kind':'path','patt': r"^[^/]" },
{ 'k_s':'SKIP','kind':'name','patt': r"^_" },
{ 'k_s':'SKIP','kind':'name','patt': r".*\." },
{ 'k_s':'KEEP','kind':'path','patt': r".*/.local/" },
```

New program: xalt_extract_record

- ► This program reads the watermark.
- ► Find out who built this program on what machine
- Find out what modules where used.
- ▶ Where was it build.

Example of xalt extract record output

XALT Watermark: hello

Build CWD /home/user/t/hello Build Epoch 1510257139.4624

Build LMFILES /apps/mfiles/intel/17.0.4.lua:... Build LOADEDMODULES intel/18.0.4:impi/18.0.3:TACC:... Build OS Linux 3.10.0-514.26.2.el7.x86 64

Build Syshost stampede2

586d5943-67eb-480b-a2fe-35e87a1f22c7 Build UUID

Build User mclay Build compiler icc

Build date Fri Jun 09 13:52:19 2019

Build host c455-011.stampede2.tacc.utexas.edu

XALT Version 2.7

New Feature: Track Singularity Container Usage

- ► Sites can configure their Singularity script to include XALT
- ► It works well with syslog, file or curl transfer of data
- ► Thanks to Scott McMillan from NVIDIA for the contribution.

Debugging XALT

```
$ XALT TRACING=ves XALT SAMPLING=no ./hello
myinit(0/1,LD_PRELOAD,/path/to/hello){
    -> Setting up signals
    -> Leaving mvinit
Hello World!
myfini(0/1,LD PRELOAD,/path/to/hello){
    -> XALT_SAMPLING = "no" All programs tracked!
  Recording State at end of scalar user program:
    XALT EXECUTABLE TRACKING=no /path/to/xalt run submission ...
  xalt_run_submission(.zzz) {
    building UUID: ...
    Extracted recordT from executable
    Built userT, userDT, scheduler: SLURM
    Using XALT TRANSMISSION STYLE: file
    cmdlineA: ["./hello"]
    Built json string
    -> leaving myfini
```

Internal Changes

- ► Use of CRC to fix dup UUIDs problem
- ► Pre-Ingestion Filter
- ▶ Better Support for compilers: rustc, chpl, ocaml, ...
- ▶ Better support for mpi wrapper compilers: mpicc(icc), ...

XALT Doc usage by City

Conclusion

- ► Lmod:
 - ► Source: github.com/TACC/lmod.git, lmod.sf.net
 - Documentation: Imod.readthedocs.org
- ► XALT:
 - ► Source: github.com/xalt/xalt.git, xalt.sf.net
 - ▶ Documentation: XALT 2 ⇒ xalt.readthedocs.org
 - ► Join mailing list: https://sourceforge.net/projects/xalt/lists/xalt-users

