例题 1 (太原理工大学,2023) 求极限 $\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right) \left(1+\frac{2}{n^2}\right)\cdots \left(1+\frac{n}{n^2}\right)$.

例题 2 (北京科技大学,2023) 计算极限 $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2^2}} + \dots + \frac{1}{\sqrt{n^2+n^2}}\right)$.

思考题 1 (西北大学,2023) 求极限 $\lim_{n\to\infty} \frac{\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}{n}$.

思考题 2 (南京大学,2023) 求极限 $\lim_{n\to\infty} \left(\frac{5\frac{1}{n}}{n+1} + \frac{5\frac{2}{n}}{n+\frac{1}{2}} + \dots + \frac{5\frac{n}{n}}{n+\frac{1}{n}}\right)$.

例题 3 (华东师范大学,2023) 设数列 $\{a_n\}$ 满足 $(2-a_n)a_{n+1}=1$. 证明:

- (1) 存在正整数 k, 使得 $a_k \leq 1$;
- (2) 数列 $\{a_n\}$ 极限存在, 并求出该极限的值;
- (3) 若 $\{a_1 \neq 1\}$, 则 $a_n(n = 1, 2, \cdots)$ 两两不相等;
- (4) 满足题设条件并且 $a_1 \neq 1$ 数列 $\{a_n\}$ 存在.

思考题 3 (福州大学,2023) 设 $a_1>0$, 且 $a_{n+1}=\frac{3(1+a_n)}{3+a_n}(n=1,2,\cdots)$, 证数列 $\{a_n\}$ 收敛, 并求出极限.

思考题 4 (南京航空航天大学,2023) 设 $a_1=1, a_2=2, a_{n+1}=3a_n-a_{n-1}(n=2,3,\cdots)$, 记 $x_n=\frac{1}{a_n}$, 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n\to\infty}x_n$, 判断级数 $\sum_{n=1}^{\infty}x_n$ 的收敛性.

例题 4 (西安交通大学,2023) 已知数列 $\{x_n\}$ 满足 $x_1=0, x_{n+1}=\cos x_n (n=1,2,\cdots)$, 证明:

- (1) $\{x_{2n}\}, \{x_{2n-1}\}$ 均单调;
- (2) $\{x_n\}$ 收敛.

例题 5 (暨南大学,2023) 设 $f_n(x) = \cos x + \cos^2 x + \dots + \cos^n x$, 证明: 对任意的正整数 $n, f_n(x) = 1$ 在 $\left[0, \frac{\pi}{3}\right]$ 内有且仅有一个根 x_n , 进一步证明 $\lim_{n \to \infty} x_n$ 存在, 且为 $\frac{\pi}{3}$.

思考题 5 (中国科学院大学,2023) 证明: 数列 $a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} - \ln n$ 收敛.

思考题 6 (北京邮电大学,2023) 已知 $f_n(x) = x^n + x(n = 1, 2, \cdots)$.

- (1) 证明: 方程 $f_n(x) = 1$ 在 $\left[\frac{1}{2}, 1\right]$ 上有且仅有一个解 x_n .
- (2) 证明: $\{x_n\}$ 极限存在, 并求 $\lim_{n\to\infty} x_n$.

例题 6 (西南交通大学,2023) 若 $\lim_{n\to\infty}a_n=a$. 证明: $\lim\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a$.

例题 7 (长安大学,2023) 设 $a_n>0, n\in\mathbb{N}_+,$ 且 $\lim_{n\to\infty}a_n=+\infty,$ 证明: $\lim_{n\to\infty}\sqrt[n]{a_1a_2\cdots a_n}=+\infty.$

思考题 7 (华南理工大学,2023) 已知 $\lim_{n\to\infty} \frac{a_1+a_2+\dots+a_n}{n} = a($ 有限数), 证明: $\lim_{n\to\infty} \frac{a_n}{n} = 0$.

思考题 8 (暨南大学,2023) 已知 $\{a_n\}$ 满足 $\lim_{n\to\infty}a_n=a$, 证明: $\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{1+2+\cdots+n}=a$.

例题 8 (吉林大学,2023) 求极限 $\lim_{n\to\infty} \frac{(1+\cos 1)^3+(2+\cos 2)^3+\cdots+(n+\cos n)^3}{n^4}$.

例题 9 (电子科技大学,2023) 设函数 $f \in C^2\left[0,1\right], f'(0) = 1, f''\left(0\right) \neq 0$ 且 $0 < f(x) < x, x \in (0,1),$ 令

$$a_1 \in (0,1), a_{n+1} = f(a_n)(n=1,2,\ldots).$$

- (1) 证明: 数列 $\{a_n\}$ 收敛, 并求 $\lim_{n\to\infty} a_n$;
- (2) 试问数列 $\{na_n\}$ 是否一定收敛? 若不一定收敛, 请举出反例; 若收敛, 求其极限 $\lim_{n\to\infty} na_n$.

思考题 9 (上海财经大学,2023) 已知 $x_0 > 1, x_n = x_{n-1} + \frac{1}{x_{n-1}},$ 数列 $\{\frac{x_n}{\sqrt{n}}\}$ 是否收敛? 思考题 10 (厦门大学,2023, 南京师范大学,2023) 设 0 < k < 1, 且 $\lim_{n \to \infty} a_n = a,$ 证明:

$$\lim_{n \to \infty} (a_n + ka_{n-1} + \dots + k^{n-1}a_1 + k^n a_0) = \frac{a}{1 - k}.$$

例题 10 (华南师范大学,2023) 求极限 $\lim_{x\to 0} \frac{(\tan x)^2(1-\cos x)^2}{x(\arcsin x)^3[\ln(1+x)]^2}$.

例题 11 (新疆大学,2023) 求极限 $\lim_{x\to 0^+} (\sin x)^{\frac{1}{1+\ln x}}$.

例题 12 (吉林大学,2023) 求极限 $\lim_{x\to 0} \frac{\int_{x^2}^x (\tan t)^3 dt}{\ln(1+x^2)(e^{2x^2}-1)}$.

例题 13 (太原理工大学,2023) 求极限 $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{\sqrt{1+x}-1}$.

思考题 11 (北京科技大学,2023) 求极限 $\lim_{x \to \infty} \left(\cos \frac{1}{x}\right)^{x^2}$.

思考题 12 (中科学技术大学,2023) 求极限 $\lim_{x\to 1} \frac{x^x-x}{\ln x-x+1}$.

思考题 13 (华东师范大学,2023) 求极限 $\lim_{x\to 0^+} \frac{\sqrt{1-e^{-x}}-\sqrt{1-\cos x}}{\sqrt{\sin x}}$.

思考题 14 (上海财经大学,2023) 求极限 $\lim_{x\to 0} \frac{(1-\sqrt{\cos x})(1-\sqrt[3]{\cos x})\cdots(1-\sqrt[n]{\cos x})}{(1-\cos x)^{n-1}}.$

例题 14 (陕西师范大学,2023; 新疆大学,2023) 求极限 $\lim_{x\to 0} \frac{e^x-(1+2x)^{\frac{1}{2}}}{\ln(1+x^2)}$.

例题 15 (西北大学,2023) 求极限 $\lim_{x\to 0} \frac{(1+\sin^2 x)^{1902}-(\cos x)^{2022}}{\tan^2 x}$.

例题 16 (华南师范大学,2023) 求极限

$$\lim_{n\to\infty} \left(A_1 \sqrt{n+1} + A_2 \sqrt{n+2} + \dots + A_k \sqrt{n+k} \right).$$

其中 $A_1 + A_2 + \cdots + A_k = 0$.

思考题 15 (四川大学,2023) 求极限 $\lim_{n\to\infty} \left(\frac{1}{\ln(n+1)-\ln n}-n\right)$.

思考题 16 (西南交通大学,2023) 求极限 $\lim_{x\to 0} \frac{1-\cos x\cos 2x\cos 3x}{1-\cos x}$.

思考题 17 (华中师范大学,2023) 求极限 $\lim_{x\to +\infty} \sqrt{x^3} \left(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x} \right)$.

例题 17 (吉林大学,2023) 求极限 $\lim_{n\to\infty} n^2 \left[\sin\left(\cos\frac{1}{n}\right) - \sin 1\right]$.

例题 18 (南开大学,2023) 求极限 $\lim_{x\to 0} \frac{\cos(\sin x) - e^{\cos x - 1}}{\tan^2 x - \sin^2 x}$.

思考题 18 (长安大学,2023) 计算极限 $\lim_{x\to 0} \frac{1-(\cos x)^{\sin x}}{x^3}$.

思考题 19 (南京师范大学,2023) 求极限 $\lim_{x\to 0} (e^x - \sin x)^{\frac{1}{x^2}}$.

思考题 20 (西南大学,2023) 求极限 $\lim_{x\to 0} \frac{\sin(\sin x) + \sin 2x}{\tan x - 3 \arctan 2x}$.

例题 19 (重庆大学,2023) 设函数 f(x) 在 x = 0 的某邻域内可导, 且

$$\lim_{x \to 0} \left(1 + x + \frac{f(x)}{x} \right)^{\frac{1}{x}} = e^3.$$

求 f(0), f'(0) 以及 $\lim_{x\to 0} \left(1 + \frac{f(x)}{x}\right)^{\frac{1}{x}}$.

例题 20 (上海财经大学,2023) 求极限 $\lim_{n\to\infty} n\sin{(2\pi e n!)}$.

思考题 21 (西安交通大学,2023) 设函数 f(x) 在 a 的邻域内有定义, 在 a 处可导且 f(a)>0, 计算

$$\lim_{x \to a} \frac{f(x)^{f(x)} - f(a)^{f(x)}}{x - a}.$$

思考题 22 (吉林大学,2023) 数列 $\{x_n\}$ 是方程 $x \cot x = \frac{\pi}{2} \cot x - 10$ 在 $(\frac{\pi}{2}, +\infty)$ 上的解序列, 试证明

$$\lim_{n \to \infty} \left[x_n - \left(n - \frac{1}{2} \right) \pi \right] = 0.$$

例题 21 (安徽大学,2023) 设 f 为 [a,b] 上的单调函数, 且 f(x) 可取到 f(a) 与 f(b) 之间的一切值, 证明 f(x) 为 [a,b] 上的连续函数.

例题 22 (电子科技大学,2023) 设函数 $g \in C[a,b], f$ 在 g 的值域上有定义. 证明: 若 $f \circ g \in C[a,b], 则 f$ 在 g 的值域上连续.

例题 23 (华南理工大学,2023) 设 F(x) 在 [0,1] 上有定义且有界,a,b 是大于 1 的常数, 对 $0 \le x \le \frac{1}{a}$, 有 F(ax) = bF(x). 证明:F(x) 在 x=0 处右连续.

思考题 23 (北京师范大学,2023) 已知 f(x) 在 [a,b] 上连续, 证明: $M(x) = \max_{a \le t \le x} f(t)$ 在 [a,b] 上也连续.

思考题 24 (北京师范大学,2023) 已知 $|f(x)-f(y)| \leq L|x-y|, L \in (0,1)$. 证明: 存在唯一的 x, 使得 f(x)=x.

思考题 25 (中国科学院大学,2023) 设函数 f(x) 在 [a,b] 上连续,且对任意的 $x \in [a,b]$,存在 $y \in [a,b]$,使得 $|f(y)| \leq \frac{1}{2}|f(x)|$,证明: 存在 $\xi \in [a,b]$,使得 $f(\xi) = 0$.

例题 24 (华中师范大学,2023) 设函数 f 在有界区间 (a,b) 上一致连续.

- (1) 证明: 函数 f 在 (a,b) 上有界;
- (2) 试问上述结论对无界区间是否成立? 并说明理由.

例题 25 (陕西师范大学,2023) 已知 f(x) 在 $(-\infty, +\infty)$ 上连续,且 $\lim_{x \to -\infty} f(x)$ 和 $\lim_{x \to +\infty} f(x)$ 都存在,证明:f(x) 在 $(-\infty, +\infty)$ 上一致连续.

思考题 26 (南开大学,2023) 设 α 为实数, 记

$$f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x}, & x > 0; \\ 0, & x = 0. \end{cases}$$

已知 f(x) 在 $[0,+\infty)$ 上一致连续, 求 α 的取值范围.

思考题 27 (中国矿业大学 (徐州),2023) 设单调有界函数 f(x) 在 (a,b) 上连续, 证明 f(x) 在 (a,b) 上一致连续.

例题 26 (北京工业大学,2023; 广西大学,2023) 证明: 实直线 \mathbb{R} 上的两个一致连续函数 f(x) 和 g(x) 的和函数 f(x)+g(x) 一致连续; 它们的乘积函数 f(x)g(x) 是否仍一致连续? 若是, 请写出证明过程; 若不是, 请举出反例.

例题 27 (哈尔滨工业大学,2023) 设 f(x) 在 $(-\infty, +\infty)$ 上连续,g(x) 在 $(-\infty, +\infty)$ 上一致连续且有界,证明:f(g(x)) 在 $(-\infty, +\infty)$ 在一致连续. 若去掉 "g(x) 有界",则 f(g(x)) 是否一致连续? 正确请给出证明, 错误请给出反例.

思考题 28 (重庆大学,2023) 证明: 函数 f(x) 在有界区间 I 上一致连续的充分必要条件是当 $\{a_n\}$ 是 I 上的任意柯西函数, $\{f(a_n)\}$ 也是柯西数列.

例题 28 (华南理工大学,2023; 西南大学,2023; 北京邮电大学,2023) 已知 f(x) 在 (0,1] 上可导,且极限 $\lim_{x\to 0^+} \sqrt{x} f'(x)$ 存在. 证明: f(x) 在 (0,1] 上一致连续.

例题 29 (大连理工大学,2023) 设 f(x) 在 $[1,+\infty)$ 上连续可微, $|f'(x)| \le 1(x \ge 1)$, 求证: $\frac{f(x)}{x}$ 在 $[1,+\infty)$ 上一致 连续.

思考题 29 (太原理工大学,2023) 设 f(x) 在有限开区间 (a,b) 上可导, 且 $\lim_{x\to a^+} f'(x)$ 和 $\lim_{x\to b^-} f'(x)$ 存在. 证明:

- (1) $\lim_{x \to a^+} f(x)$ 与 $\lim_{x \to b^-} f(x)$ 都存在;
- (2) f(x) 在 (a,b) 上一致连续且有界.

思考题 30 (吉林大学,2023) 设 f(x) 在 $[1,+\infty)$ 上有定义,且存在正的常数 l,L,对任意的 $x_1,x_2\in[1,+\infty)]$,都有

$$||x_2 - x_1| \le |f(x_2) - f(x_1)| \le L|x_2 - x_1|.$$

证明: 存在 $X \in [1, +\infty)$, 使得 $\frac{x + e^{-x}}{f(x)}$ 在 $[X, +\infty)$ 上一致连续.

例题 30 (中国科学技术大学,2023)

$$f(x) = \begin{cases} x^2 \left(\sin \frac{1}{x}\right)^2, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

计算 f 的导数 f', 并讨论 f' 的连续性.

例题 31 (北京科技大学,2023) 设函数 f(x) 连续, 且 $\lim_{x\to 0} \frac{f(x)}{x} = 1$, $g(x) = \int_0^1 f(xt) \, \mathrm{d}t$, 求 g'(x), 并讨论 g'(x) 在 x=0 处是否连续.

思考题 31 (华东师范大学,2023)
$$y=y(x)$$
 由参数方程
$$\begin{cases} x=\frac{t}{1+t^2};\\ y=\frac{t^2}{1+t^2} \end{cases}$$
 确定,求 $\frac{\mathrm{d}y}{\mathrm{d}x},\frac{\mathrm{d}^2y}{\mathrm{d}x^2}.$

思考题 32 (重庆大学,2023) 设 f(x) 在 $(0,+\infty)$ 内有定义,且对任何 $x,y \in (0,+\infty)$,都有 f(xy) = f(x) + f(y),若 f'(1) 存在,求 f'(x).