Коллоквиум по мат. анализу №1

28 октября 2020 г.

1 Билет

- Рациональные числа числа вида $\frac{p}{q}$, где q натуральное число, а p целое. Считается, что две записи $\frac{p_1}{q_1}$ и $\frac{p_2}{q_2}$ задают одно и то же рациональное число, если $p_1q_2=p_2q_1$. Обратим внимание на то, что рациональных чисел не достаточно для естественных потребностей математики.
- Вещественные числа множество всех бесконечно десятичных дробей вида $\pm a_0 a_1 a_2 ...$, где $a_0 \in N \vee 0, a_j \in 0...9$ (Записи, в которых с какого-то момента стоят только 9-ки запрещены);

Число $\pm 0,000...$ называется нулём и совпадает с числом 0;

Нунелевое число: - положительное, если в его записи стоит знак '+'; - отрицательное, если в его записи стоят знак '-';

В вещественные числа вложены рациональные естественным образом. У вещественных чисел также определены операции сложения и умножения для которых справедливы все их естественные свойства.

Отношение порядка у вещественных чисел задано лексикографическим порядком. $(a_0a_1a_2... \le b_0b_1b_2...\exists k: a_0=b_0,...a_{k-1}=b_{k-1},a_k \le b_k)$, который естественным обращом переносится на отрицательные.

Для вещественных чисел определён модуль числа a, т.е. такое вещественное число, что |a|=a, если $a\geq 0$ и |a|=-a, если a<0. Также, для модуля выполняется неравенство треугольника $|a+b|\leq |a|+|b|$. Из неравенства треугольника следует, что $||a|-|b||\leq |a+b|$. Самое важное свойство - выполняется принцип полноты;

• Десятичные дроби. Рациональное число может быть представлено в виде конечной или периодической десятичной дроби ($\frac{1}{10} = 0.1; \frac{1}{6} = 0.1$)

 $0.1(6); \frac{1}{7}=0.(142857).$ Можно не рассматривать десятичные записи с периодом 9, т.к. 0.(9)=1 (Если 0.(9)=x, то 10x=9+x - истина, октуда x=1.

• Принцип полноты. Принцип полноты выполняется, если для произвольных непустых A левее B найдется разделяющий их элемент. Принцип полноты не выполняется для рациоональных чисел.

Принцип полноты выполняется на множестве вещественных чисел (теорема).

Доказательство:

Пусть A и B - непустые множества. A левее B. Если A состоит только из неположительных чисел, а B только из неоотрицательных, то нуль разделяем на A и B. Пусть в A имеется положительный элемент, тогда B состоит только из положительных чисел (обратный случай аналогичен). Построим число $c = c_0c_1c_2...$, разделяющее A и B.

Рассмотрим множество натуральных чисел, с которых начинаются элементы множества B. Пусть b_0 - наименьшее

2 Билет

• Предел последовательности

Если каждому числу $n \in N$ поставлено в соответствие некоторое число a_n , то говорим, что задана числовая последовательность $\{a_n\}_{n=1}^{\infty}$

Говорят, что последовательность $\{a_n\}_{n=1}^{\infty}$ сходится к числу a, если для каждого $\varepsilon > 0$ найдется такой номер $N_{\varepsilon} \in N$, что $|a_n - a| < \varepsilon$ при каждом $n > N_{\varepsilon}$.

$$\forall \varepsilon > 0 \exists N_{\varepsilon} \in N : \forall_n > N_{\varepsilon} |a_n - a| < \varepsilon$$
 $\lim_{n \to \infty} a_n = a$ или $a_n \to a$ при $n \to \infty$

• Единственность предела Пусть $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} b_n = b$, тогда a=b.

Доказательство: Если $a \neq b$, то $|a-b| = \varepsilon_0 > 0$. Но по определению найдется номер N_1 , для которого $|a_n-a| < \frac{\varepsilon_0}{2}$ при $n > N_1$ и найдется номер N_2 , для которого $|a_n-b| < \frac{\varepsilon_0}{2}$ при $n > N_2$. Тогда при $n > \max\{N_1,N_2\}: \varepsilon_0 = |a-b| = |a-a_n+a_n-b| \leq |a-a_n| + |a_n-b| < \varepsilon_0$. Противоречие.

• Арифметика предела. $\lim_{n\to\infty} a_n = a \lim_{n\to\infty} b_n = b$ 1) $\lim_{n\to\infty} (\lambda a_n + \beta b_n) = \lambda a + \beta b \ \forall a,b \in R$

- $2)\lim_{n\to\infty} a_n b_n = ab$
- 3)Если $b \neq 0, b_n \neq 0$, то $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.

Доказательство: Пусть $\varepsilon > 0$ - произвольное число. Тогда найдется номер N_1 , для которого $|a_n - a| < \varepsilon$, и найдется номер N_2 , для которого $|b_n - b| < \varepsilon$

- 1) При $n>N=\max\{N_1,N_2\}: |\lambda a_n+\beta b_n-(\lambda a+\beta b)|=|\lambda(a_n-a)+\beta(b_n-b)|\leq |\lambda||a_n-a|+|\beta||b_n-b|<(|\lambda|+|\beta|)\varepsilon$
- 2) Заметит, что $|a_nb_n-ab|=|a_nb_n-ab_n+ab_n-ab|\leq |b_n||a_n-a|+|a||b_n-b|$. Т.к. сходящаяся последовательность ограничена, то найдется M>0, для которого $|b_n|\leq M$, поэтому при $n>N=\max\{N_1,N_2\}$ выполнено $|a_nb_n-ab|\leq (M+|a|)\varepsilon$
- $\max\{N_1,N_2\}$ выполнено $|a_nb_n-ab|\leq (M+|a|)\varepsilon$ 3) Достаточно проверить, что $\frac{1}{b_n}\to \frac{1}{b}$ при $n\to\infty$. Заметим, что по условию $b\neq 0$, поэтому найдется номер $N_3\in N$, для которого при $n>N_3$ выполнено $|b_n|>\frac{|b|}{2}$. Тогда при $N>\max\{N_1,N_2\}$ выполнено $|\frac{1}{b_n}-\frac{1}{b}|=\frac{b_n-b}{|b_n||b|}\leq \frac{2}{|b|^2}*\varepsilon$
- Ограниченность сходящейся последовательности: Утверждение: сходящаяся последовательность ограничена Доказательство: Если $\lim_{n\to\infty}a_n=a$, то для каждого $n\in N$ выполнено $|a_n-a|<1$ при $n>N\Rightarrow |a_n|=|a_n-a+a|\leq |a_n-a|+|a|<1+|a|$ при n>N. Значит $|a_n|\leq M=\max\{1+|a|,|a_1|,|a_2|,...,|a_N|\}$, т. е. $M=c\leq a_n\leq C=M$.
- Определенность: Если $a_n \to a$ и $a \neq 0$, то найдется номер $n \in N$, для которого $|a_n| > \frac{|a|}{2} > 0$ при n > N. Доказательство: Взяв $\varepsilon = \frac{|a|}{2}$ в определении сходимости последовательности к числу a, получаем номер $n \in N$, для которого $|a_n a| < \frac{|a|}{2}$ при n > N. Тогда при n > N, выполнено $|a| |a_n| \leq |a_n a| < \frac{|a|}{2}$, что равносильно тому, что мы доказываем.

3 Билет

• Точные верхние и нижние границы