

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки	
—— КАФЕДРА	Прикладная математика	

Отчёт по лабораторной работе №1

Прямые методы решения систем линейных алгебраических уравнений

Студент:	Φ H2-52Б		А.И. Токарев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
			Ю. А. Сафронов
		(Подпись, дата)	(И. О. Фамилия)
Провория			
Проверил:		(Подпись, дата)	(И.О. Фамилия)

2

Оглавление

1. Краткое описание алгоритмов

Дана система линейных алгебраических уравнений:

$$\sum_{i=1}^{n} a_{ij} x_i = f_i, \quad i = \overline{1, n}. \tag{1}$$

2. Исходные данные

Даны две СЛАУ, которые имеют вид:

$$A = \begin{pmatrix} 28.8590 & -0.0080 & 2.4060 & 19.2400 \\ 14.4360 & -0.0010 & 1.2030 & 9.6240 \\ 120.2040 & -0.0320 & 10.0240 & 80.1440 \\ -57.7140 & 0.0160 & -4.8120 & -38.4780 \end{pmatrix}, \quad f_A = \begin{pmatrix} 30.4590 \\ 18.2480 \\ 128.1560 \\ -60.9080 \end{pmatrix},$$

$$B = \begin{pmatrix} 117.2000 & 1.0500 & -8.9700 & 0.7500 \\ 4.2600 & 185.8000 & 0.1300 & -8.8600 \\ -3.8100 & 5.2300 & -189.0000 & -4.8800 \\ 5.8200 & 3.8700 & -2.4700 & 81.4000 \end{pmatrix}, \quad f_B = \begin{pmatrix} 455.3400 \\ -924.0400 \\ -1554.4600 \\ 59.7500 \end{pmatrix}$$

3. Результаты расчетов

Результаты для А:

- 1. Точность double
 - а) Метод Гаусса

$$x^* = (1.000, 1000.000, -20.000, 3.000)^T, \quad ||Ax^* - b|| = 5.75 \cdot 10^{-14}.$$

б) Метод QR

$$x^* = (1.000, 1000.000, -20.000, 3.000)^T, \quad ||Ax^* - b|| = 9.11 \cdot 10^{-14}.$$

- 2. Точность float
 - а) Метод Гаусса

$$x^* = (1.487, 1000.238, -18.078, 2.029)^T, \quad ||Ax^* - b|| = 3.303 \cdot 10^{-5}.$$

б) Метод QR

$$x^* = (1.313, 1000.154, -18.766, 2.377)^T, \quad ||Ax^* - b|| = 7.864 \cdot 10^{-6}.$$

Изменим вектор b на величину $\delta = 0.01$. Тогда для точности double методом Гаусса

$$b^* = (30.4690, 18.2580, 128.1660, -60.9180)^T,\\$$

$$x^* = (-1278.8167, 378.425, -5019.792, 2547.633), \quad ||Ax^* - b^*|| = 5.15 \cdot 10^{-11}.$$

Для точности float методом Гаусса

$$b^* = (30.4690, 18.2580, 128.1660, -60.9180)^T,$$

$$x^* = (-1006.303, 513.317, -3939.908, 2003.767), \quad ||Ax^* - b^*|| = 0.016.$$

Малое изменение правой части ведет к большому изменению решения, следовательно, матрица плохо обусловлена. Точный расчет числа обусловленности:

$$cond_1A = 1.22 \cdot 10^8$$
, $cond_{\infty}A = 1.09 \cdot 10^8$, $cond_{max}A = 5.63 \cdot 10^8$.

Оценка числа обусловленности снизу:

$$cond_A = 42319.177.$$

Результаты для В:

1. Точность double

а) Метод Гаусса

$$x^* = (3.000, -5.000, 8.000, 1.000)^T, \quad ||Ax^* - b|| = 2.163 \cdot 10^{-12}.$$

б) Метод QR

$$x^* = (2.999, -5.000, 8.000, 0.999)^T, \quad ||Ax^* - b|| = 3.019 \cdot 10^{-11}.$$

- 2. Точность float
 - а) Метод Гаусса

$$x^* = (3.000, -4.999, 8.000, 1.000)^T, \quad ||Ax^* - b|| = 0.001.$$

б) Метод QR

$$x^* = (3.000, -5.000, 8.000, 0.999)^T, \quad ||Ax^* - b|| = 0.010.$$

Изменим вектор b на величину $\delta = 0.01$. Тогда для точности double методом Гаусса

$$b^* = (455.3500, -924.0500, -1554.4700, 59.7500)^T,$$

$$x^* = (2.999, -5.000, 8.000, 0.999), \quad ||Ax^* - b^*|| = 2.24 \cdot 10^{-12}.$$

Для точности float методом Гаусса

$$b^* = (455.3500, -924.0500, -1554.4700, 59.7500)^T,$$

$$x^* = (2.999, -5.000, 8.000, 0.999), \quad ||Ax^* - b^*|| = 0.001.$$

Малое изменение правой части ведет к малому изменению решения, следовательно, матрица хорошо обусловлена. Точный расчет числа обусловленности:

$$cond_1A = 2.64$$
, $cond_{\infty}A = 2.64$, $cond_{max}A = 37.05$.

Оценка числа обусловленности снизу:

$$cond_A = 1.40$$

4. Анализ результатов

5. Контрольные вопросы

1. s