

Clasificación de Tumores Cerebrales con Aprendizaje Profundo

Valentina Luján Robledo - Paola Andrea Montoya Lopera - Emanuel López Higuita - Santiago Rivera Montoya

Este proyecto explora la aplicación del aprendizaje profundo para la clasificación de tumores cerebrales en imágenes de resonancia magnética (IRM).

Descripción del Problema

Diagnóstico Complejo

Los tumores cerebrales son difíciles de detectar y clasificar.

Escasez de Especialistas

Falta de acceso a expertos en áreas con recursos limitados.

Objetivo

1 Modelo de Aprendizaje Profundo

Desarrollar un modelo de

CNN para la detección de

tumores cerebrales.

2

Precisión y Rapidez

Mejorar la precisión y rapidez en el diagnóstico.

Evaluar el rendimiento del modelo en términos de precisión, sensibilidad y especificidad.

Recopilación de Datos

Conjunto de Datos

Utilizar el conjunto de datos "Brain Tumor MRI Dataset" de Kaggle.

Categorías de Tumores

Glioma, Meningioma, No Tumor, Pituitary.

Subconjuntos

Training (Entrenamiento) y Testing (Prueba).

Distribución de categorías

5712 imágenes en total en el set de entrenamiento

1311 imágenes en total en el set de testeo

Preprocesamiento de Datos

Cargar y procesar imágenes utilizando ImageDataGenerator

Normalizar imágenes dividiendo los valores de los píxeles por 255. Dividir el conjunto de datos en entrenamiento, testeo y validación.

Construcción del Modelo

3 Capas Convolucionales

Extraer características espaciales de las imágenes.

3 Capas de MaxPooling

Reducir la dimensionalidad de las características extraídas.

2 Capas Densas

Actuar como la red neuronal completamente conectada para la clasificación.

Regularización

Prevenir el sobreajuste eliminando conexiones aleatorias durante el entrenamiento.

Evaluación del Modelo

1

Entrenamiento

Entrenar el modelo durante 10 épocas usando el optimizador Adam.

Evaluación

Evaluar el modelo con los datos de validación.

Guardar el Modelo

Guardar el modelo para su uso posterior.

Resultados obtenidos

Entrenamiento

Alta precisión y baja pérdida, indicando un buen ajuste a los datos.

Validación

Precisión ligeramente menor y pérdida un poco mayor que en entrenamiento, pero con buen rendimiento.

Prueba

Alta precisión y pérdida similar a validación, lo que demuestra una buena generalización.

Resultados obtenidos

	Validación	Test
Accuracy	0.9623	0.9700
F1 score	0.9586	0.9686

Integración con Telegram

Creación del Bot

Utilizar la librería telebot para manejar la comunicación con Telegram.

Procesamiento de Imágenes

Preprocesar la imagen y usar el modelo para hacer una predicción.

Respuesta

Enviar la predicción al usuario a través del bot.

Conclusiones

- La IA optimiza y agiliza el diagnóstico de tumores cerebrales.
- El uso de aprendizaje profundo y procesamiento de imágenes mejora la precisión y accesibilidad.
- El modelo reduce significativamente el tiempo de análisis en comparación con la evaluación manual.
- Brinda apoyo a radiólogos, permitiéndoles priorizar casos graves y reducir su carga laboral.
- Contribuye a diagnósticos más precisos, facilitando tratamientos oportunos y efectivos.