DISMATH101: Solved Problems in Discrete Math

Melvin Cabatuan 2017-05-13

Contents

1	Log	ic !						
	1.1	Propositional Logic						
	1.2	Logical connectives						
	1.3	Truth table						
	1.4	Logical Equivalences						
	1.5	Predicate Logic						
	1.6	Quantifiers						
	1.7	Rules of Inference						
	1.1	Truics of inference						
2	Sets	,						
_	2.1	Cardinality of Sets						
	2.2	Set Operations						
	2.3	Set Identities						
	$\frac{2.3}{2.4}$	Set Representation						
	$\frac{2.4}{2.5}$	Venn Diagram						
	2.6	Cartesian Product						
3	Pro	ofs						
J	3.1	Direct Proof						
	$3.1 \\ 3.2$	Proof by Contraposition						
		· · ·						
	3.3	Proof by Contradiction						
	3.4	Proof by Equivalence						
	3.5	Mathematical Induction						
4	Functions and Relations 11							
4								
	4.1	J P						
	4.2	Composition of Functions						
	4.3	Graphs of Functions						
	4.4	Relation Properties						
	4.5	Closures of Relations						
	4.6	Equivalence Relations						
۲		176.4						
5		ays and Matrices						
	5.1	Indexing						
	5.2	Sequences and Summation						
	5.3	Matrix Arithmetic						
	5.4	Transpose						
	5.5	Powers of Matrices						
	5.6	Determinants						
c	C	1						
6		nbinatorics 18						
	6.1	Basics of Counting						

4 CONTENTS

	6.2	Pigeonhole Principle	5
	6.3	Permutation and Combination	
	6.4	Binomial Theorem	
7	Gra	phs 1	7
•	7.1	Graph Representation	7
	7.2	Euler and Hamilton Paths	
	7.3	Shortest Path	
	• • •		
	7.4	Planar Graphs	
	7.5	Graph Coloring	L7
8	Tree	$\mathrm{e}\mathbf{s}$.9
	8.1	Tree Traversal	9
	8.2	Spanning Trees	
	8.3	Binomial Trees	
	0.0		
9	Algo		1
	9.1	Searching	21
	9.2	Sorting	21
	9.3	Algorithm Paradigms	
	9.4	Complexity of Algorithms	
	9.5	Applications	
	0.0	11ppncoulons	11
10	Con	nputation Models 2	23
	10.1	Finite State Machines	23
	10.2	Turing Machine	23

Logic

- 1.1 Propositional Logic
- 1.2 Logical connectives
- 1.3 Truth table
- 1.4 Logical Equivalences
- 1.5 Predicate Logic
- 1.6 Quantifiers
- 1.7 Rules of Inference

Exercise 1.

The following statements are propositions, EXCEPT

A. Euclid of Alexandria is human.

C. 5 > 8

B. 1 + 1 = 2

D. Who am I?

Definition 1 (Proposition). a statement that is either true or false (but not both).

Solution: "**D.** Who am I?" is not a proposition because interrogative statements have no truth value.

6 CHAPTER 1. LOGIC

Exercise 2.

What is the question?

Solution: "I thoroughly disapprove of duels. If a man should challenge me, I would take him kindly and forgivingly by the hand and lead him to a quiet place and kill him."

Sets

	2.1	Cardinality	of	Sets
--	-----	-------------	----	------

- 2.2 Set Operations
- 2.3 Set Identities
- 2.4 Set Representation
- 2.5 Venn Diagram
- 2.6 Cartesian Product

8 CHAPTER 2. SETS

Proofs

- 3.1 Direct Proof
- 3.2 Proof by Contraposition
- 3.3 Proof by Contradiction
- 3.4 Proof by Equivalence
- 3.5 Mathematical Induction

Functions and Relations

- 4.1 Basic Types of Functions
- 4.2 Composition of Functions
- 4.3 Graphs of Functions
- 4.4 Relation Properties
- 4.5 Closures of Relations
- 4.6 Equivalence Relations

Arrays and Matrices

- 5.1 Indexing
- 5.2 Sequences and Summation
- 5.3 Matrix Arithmetic
- 5.4 Transpose
- 5.5 Powers of Matrices
- 5.6 Determinants

Combinatorics

- 6.1 Basics of Counting
- 6.2 Pigeonhole Principle
- 6.3 Permutation and Combination
- 6.4 Binomial Theorem

Graphs

- 7.1 Graph Representation
- 7.2 Euler and Hamilton Paths
- 7.3 Shortest Path
- 7.4 Planar Graphs
- 7.5 Graph Coloring

Trees

- 8.1 Tree Traversal
- 8.2 Spanning Trees
- 8.3 Binomial Trees

20 CHAPTER 8. TREES

Algorithms

- 9.1 Searching
- 9.2 Sorting
- 9.3 Algorithm Paradigms
- 9.4 Complexity of Algorithms
- 9.5 Applications

Computation Models

- 10.1 Finite State Machines
- 10.2 Turing Machine

Bibliography