KEPLER QONUNLARI - DARS ISHLANMA

10-11 SINFLAR UCHUN

DARSNING MAQSADI

Bilimlar:

- O'quvchilar Kepler qonunlarining mohiyatini tushunishlari
- Sayyoralar harakati mexanizmini o'rganishlari
- Quyosh sistemasi dinamikasini tahlil qilishlari

Ko'nikmalar:

- Interaktiv model yordamida sayyoralar harakatini kuzatish
- Matematik hisoblashlar va tahlillar o'tkazish
- Orbital parametrlarni aniqlash va o'lchash

Kompetensiyalar:

- Astronomik masalalarni yechish qobiliyati
- Ma'lumotlarni grafik ko'rinishda taqdim etish
- Qonuniyatlarni amaliy tadqiqotlarda qo'llash

DARSNING REJASI

1-BOSQICH: KIRISH (10 daqiqa)

Motivatsiya: - Sayyoralar qanday harakat qiladi? - Nima uchun Yer Quyosh atrofida aylanadi? - Barcha sayyoralar bir xil tezlikdami?

Tarixiy ma'lumot: - Iogann Kepler (1571-1630) - nemis astronomi - Tixo Brake ning kuzatishlari - 1609-1619 yillarda kashf etilgan uchta qonun - Nyuton gravitatsiya nazariyasi bilan bogʻliqligi

2-BOSQICH: ASOSIY QISM (30 daqiqa)

BIRINCHI QONUN: ELLIPS QONUNI (10 daqiqa)

Nazariy qism:

Ta'rif: > "Har bir sayyora Quyosh atrofida ellips shaklidagi orbitada harakat qiladi, > Quyosh ellipsning fokuslaridan birida joylashgan."

Asosiy tushunchalar:

- 1. Ellips elementlari:
 - Yarim katta o'q: a (semimajor axis)
 - Yarim kichik o'q: b (semiminor axis)
 - Fokuslar orasidagi masofa: 2c
 - Markazdan fokus masofasi: c
- 2. Ekssentrisitet (e):
 - e = c/a
 - $e = 0 \rightarrow Aylana$
 - $0 < e < 1 \rightarrow Ellips$
 - e = 1 \rightarrow Parabola
 - $e > 1 \rightarrow Giperbola$
- 3. Ellips tenglamasi:

$$x^2/a^2 + y^2/b^2 = 1$$

4. Bog'liqlik:

$$b^2 = a^2(1 - e^2)$$

c = a × e

Amaliy qism:

Model bilan ishlash:

- 1. Merkuriy o'rganish:
 - a = 0.39 AU
 - e = 0.206 (eng katta ekssentrisitet)
 - Orbital shakli aniq ko'rinadi
- 2. Venera o'rganish:
 - a = 0.72 AU
 - e = 0.007 (aylanaga yaqin)
 - Deyarli aylana shakli
- 3. Yer o'rganish:
 - a = 1.00 AU (ta'rif bo'yicha)
 - e = 0.017
 - Perigeliy: 147 mln km (yanvar)
 - Afeliy: 152 mln km (iyul)
- 4. Mars o'rganish:
 - a = 1.52 AU
 - e = 0.093
 - Yaqqol ko'rinadigan ellips

Hisoblashlar:

Yer uchun perigeliy va afeliy masofasini hisoblang:

```
Perigeliy: r_p = a(1 - e) = 1.00(1 - 0.017) = 0.983 AU Afeliy: r_a = a(1 + e) = 1.00(1 + 0.017) = 1.017 AU
```

IKKINCHI QONUN: YUZALAR QONUNI (10 daqiqa)

Nazariy qism:

Ta'rif: > "Sayyorani Quyosh bilan bog'lovchi radius-vektor teng vaqt oralig'ida > teng yuzalarni kesib o'tadi."

Fizik ma'nosi:

- 1. Tezlik o'zgarishi:
 - Perigeliyda (Quyoshga yaqin) \rightarrow Tezroq
 - Afeliyda (Quyoshdan uzoq) \rightarrow Sekinroq
- 2. Impuls momenti saqlanish:

$$L = m \times v \times r = const$$

Bu yerda:

- m sayyora massasi
- v chiziqli tezlik
- r radius-vektor
- 3. Yuza tezligi:

$$dS/dt = (1/2) \times r \times v = const$$

4. Tezliklar nisbati:

$$v_p / v_a = r_a / r_p$$

Amaliy qism:

Model bilan ishlash:

- 1. Kuzatish:
 - Modelda sayyora harakatini boshlang
 - Qizil va ko'k yuzalarni kuzating
 - Yuzalar tengligini tekshiring
- 2. O'lchash:
 - 30 kunlik vaqt oralig'ini tanlang
 - Perigeliydagi yuzani o'lchang
 - Afeliydagi yuzani o'lchang
 - Solishtirishlar o'tkazing

Misollar:

Yer uchun: - Perigeliydagi tezlik: $\sim\!\!30.3~\mathrm{km/s}$ - Afeliydagi tezlik: $\sim\!\!29.3~\mathrm{km/s}$ -Farq: $\sim 3.3\%$

UCHINCHI QONUN: DAVR QONUNI (10 daqiqa)

Nazariy qism:

Ta'rif: > "Sayyoraning orbital davrining kvadrati, orbit yarim katta o'qining > kubiga to'g'ri proporsionaldir."

Matematik ifoda:

$$T^2$$
 / a^3 = K = const

Bu yerda: - T - orbital davr (yil) - a - yarim katta o'q (AU) - K - proporsionallik koeffitsienti

Quyosh sistemasi uchun:

$$T^2$$
 / a^3 = 1 (agar T yilda, a AU da)

Umumiy holat:

$$T^{2} / a^{3} = 4^{2} / (G \times M)$$

Bu yerda: - G = $6.67 \times 10^{11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ (gravitatsiya doimiysi) - M - markaziy jism massasi (Quyosh)

Amaliy qism:

Hisoblashlar:

Sayyora	a (AU)	T (yil)	a^3	T^2	T^2/a^3
Merkuriy	0.39	0.24	0.059	0.058	0.98
Venera	0.72	0.62	0.373	0.384	1.03
Yer	1.00	1.00	1.000	1.000	1.00
Mars	1.52	1.88	3.512	3.534	1.01

Ko'rinish: K 1 (barcha sayyoralar uchun!)

Model bilan ishlash:

- 1. Barcha sayyoralarni birgalikda ishga tushiring
- 2. Qaysi sayyora tezroq aylanadi?
- 3. Qaysi sayyora sekinroq?
- 4. Davr va masofa o'rtasidagi bog'liqlikni kuzating

3-BOSQICH: MUSTAHKAMLASH (10 daqiqa)

Guruh ishlari:

1-guruh: Tadqiqotchilar - Yangi sayyora kashf qilindi: $a=2.5~\mathrm{AU}$ - Orbital davrini hisoblang - Modelda tekshiring

2-guruh: Muhandislar - Sun'iy yo'ldosh orbitasini loyihalang - Yer atrofida 24 soatlik davr kerak - Qanday balandlikda bo'lishi kerak?

3-guruh: Tahlilchilar - Quyosh sistemasidagi barcha sayyoralar ma'lumotlarini tahlil qiling - Grafik tuzing: T(a) - Qonuniyatni aniqlang

INTERAKTIV MODEL BILAN ISHLASH

O'quvchilar uchun topshiriqlar:

Topshiriq 1: Ellips parametrlari (1-qonun)

- 1. Merkuriy sayyorasini tanlang
- 2. Yarim katta o'qni o'lchang (modelda)
- 3. Ekssentrisitetni yozing
- 4. Perigeliy va afeliy masofalarini hisoblang:

$$r_p = a(1 - e) = _____$$

 $r_a = a(1 + e) = _____$

5. Modelda ko'rsatilgan qiymatlar bilan taqqoslang

Topshiriq 2: Tezlik o'zgarishi (2-qonun)

- 1. 2-qonun bo'limiga o'ting
- 2. Animatsiyani ishga tushiring
- 3. Kuzating:
 - Sayyora qayerda tezroq harakat qiladi?
 - Qayerda sekinroq?
- 4. Yuzalar tengligini tekshiring
- 5. Vaqt oralig'ini o'zgartiring va natijani kuzating

Topshiriq 3: Davr hisoblash (3-qonun)

- 1. 3-qonun bo'limiga o'ting
- 2. Barcha sayyoralarni kuzating
- 3. Jadval to'ldiring:

Sayyora	a (AU)	T (yil)	T^2/a^3
Merkuriy			
Venera			
Yer			
Mars			

4. T²/a³ qiymati barcha sayyoralar uchun doimiymi?

Topshiriq 4: Kreativ topshiriq

- 1. O'zingizning "sayyorangiz" uchun parametrlar o'ylab toping
- 2. Uning orbital xususiyatlarini hisoblang:
 - $\bullet \ \ a = \underline{\hspace{1cm}} AU$
 - e = ____
 - $T = \underline{\hspace{1cm}}$ yil
 - $\bullet \ \ v_max = \underline{\hspace{1cm}} \ km/s$
 - $v_{min} = \underline{\qquad} km/s$

UYGA VAZIFA

1. Nazariy savollar:

- a) Kepler qonunlarini o'z so'zlaringiz bilan tushuntiring
- b) Nima uchun sayyoralar aylana emas, ellips bo'ylab harakatlanadi?
- c) Ekssentrisitet qanday ma'noga ega?
- d) Kepler qonunlari Nyuton qonunlari bilan qanday bogʻliq?

2. Hisoblash masalalari:

Masala 1: Yupiter uchun a = 5.2 AU. Orbital davrini toping.

Yechish:

$$T^2 = a^3$$

 $T^2 = (5.2)^3 = 140.608$
 $T = \sqrt{140.608} = 11.86 \text{ yil}$

Masala 2: Sun'iy yo'ldosh Yer atrofida 90 daqiqada aylanadi. Orbita radiusini toping.

Berilgan: - T = 90 min = 5400 s - M_Yer = 5.97×10² kg - G = 6.67×10
11
 N · m²/kg²

Topish kerak: r = ?

Formula:

```
T^{2} = (4^{2}/GM) \times r^{3}

r^{3} = T^{2} \times GM / 4^{2}

r = (T^{2} \times GM / 4^{2})
```

Masala 3: Kometa Quyoshga 0.5 AU yaqinlashadi va 35.5 AU uzoqlashadi. a) Yarim katta o'qni toping b) Orbital davrini hisoblang c) Ekssentrisitetni aniqlang

3. Tadqiqot vazifasi:

Internet yoki kitoblardan quyidagi ma'lumotlarni toping:

- a) Qaysi sayyorada eng katta ekssentrisitet?
- b) Qaysi sayyora eng yaqin aylana orbitada?
- c) Xalqaro kosmik stantsiya (ISS) orbital parametrlari
- d) "Voyager" zondlari hozirgi pozitsiyasi

BAHOLASH MEZONI

Darsda faollik (30 ball):

- Savollarga javob berish 10 ball
- Guruh ishida ishtirok 10 ball
- Model bilan to'g'ri ishlash 10 ball

Amaliy topshiriqlar (40 ball):

- Topshiriq 1 (Ellips) 10 ball
- Topshiriq 2 (Yuzalar) 10 ball
- Topshiriq 3 (Davr) 10 ball
- Topshiriq 4 (Kreativ) 10 ball

Uyga vazifa (30 ball):

- Nazariy savollar 10 ball
- Hisoblash masalalari 15 ball
- Tadqiqot vazifasi 5 ball

Jami: 100 ball

Baholash shkalasi: - 90-100 ball \rightarrow "5" (A'lo) - 75-89 ball \rightarrow "4" (Yaxshi) - 60-74 ball \rightarrow "3" (Qoniqarli) - 0-59 ball \rightarrow "2" (Qoniqarsiz)

QIZIQARLI FAKTLAR

Yer haqida:

• Perigeliy: 3-yanvar (qish!)

• Afeliy: 4-iyul (yoz!)

• Masofa farqi: 5 million km

• Tezlik farqi: 1 km/s

Sayyoralar rekordi:

• Eng tez: Merkuriy (47.87 km/s)

• Eng sekin: Neptun (5.43 km/s)

• Eng elliptik: Merkuriy (e=0.206)

• Eng aylana: Venera (e=0.007)

Kometalar:

• Galley kometasi: e 0.967

• Davr: 75-76 yil

• Eng yaqin: 0.6 AU

• Eng uzoq: 35 AU

Sun'iy yo'ldoshlar:

• GPS yo'ldoshlari: ~20,200 km

• ISS: ~400 km

• Geostatsionar orbit: 35,786 km

QO'SHIMCHA MATERIALLAR

Video tavsiyalar:

1. "Kepler Laws Explained" - Crash Course Astronomy

- 2. "Solar System Formation" PBS Space Time
- 3. "Orbital Mechanics" NASA Education

Foydali saytlar:

- NASA Solar System Exploration
- PhET Interactive Simulations
- Stellarium (virtual planetarium)
- Khan Academy Astronomy

Kitoblar:

1. "Cosmos" - Carl Sagan

- 2. "A Brief History of Time" Stephen Hawking
- 3. "The Elegant Universe" Brian Greene

O'QITUVCHI UCHUN MASLAHATLAR

Tayyorgarlik:

- Modelni oldindan sinab ko'ring
- Zarur hisoblashlarni tayyorlang
- Vizual materiallar to'plang
- Vaqt rejasini aniqlang

Dars jarayonida:

- Sodda va tushunarli tushuntiring
- Ko'proq vizual misollar keltiring
- O'quvchilarni faol qilishtirishga harakat qiling
- Qiyin qismlarni takrorlang

Darsdan keyin:

- O'quvchilar ishlarini tekshiring
- Qiyin bo'lgan mavzularni aniqlang
- Keyingi darsda takrorlang
- Ota-onalarga ma'lumot bering

Tez-tez uchraydigan xatolar:

- Ellipsni aylanadan farqlash
- Ekssentrisitet tushunchasini tushunish
- T^2/a^3 formulasini qo'llash
- Birliklarni to'g'ri ishlatish

NATIJA

O'quvchilar bilishi kerak:

Kepler uchta qonuni Ellips, perigeliy, afeliy tushunchalari Sayyoralar harakatining fizik mohiyati Orbital parametrlarni hisoblash usullari

O'quvchilar qila olishi kerak:

Modeldan foydalanish Orbital parametrlarni o'lchash Hisoblashlar o'tkazish Natijalarni tahlil qilish

Darsni tayyorlagan: [O'qituvchi ismi] Maktab: [Maktab nomi] Sana: [Dars sanasi]

MUVAFFAQIYATLAR TILAYMIZ!