0. Data generation

전주와 동일하므로 생략하겠습니다. 생성 개수만 1000개에서 10000개로 늘렸습니다.

```
#1. fitting using MLPClassifier
mlpclassifier = {}
auroc = []
for i in range(len(d)):
  mlpclassifier[f'MLPClassifier{c[i]}'] = MLPClassifier(hidden_layer_sizes=d[i])
mlpclassifier[f'MLPClassifier{c[i]}'].fit(Xtrain,ytrain)
  auroc.append(roc_auc_score(ytest,mlpclassifier[f'MLPClassifier{c[i]}'].predict(Xtest) ))
#2. drawing graphs
plt.plot(auroc ,marker="o")
plt.xticks(range(len(c)))
plt.xlabel('C')
plt.ylabel('AUROC')
plt.show()
#3. the highest AUROC one
highest = np.argmax(auroc)
print('the best :', highest)
```

1,2. Fitting, calculating auroc

위와 같은 코드로 fitting을 진행하였고, auroc를 구한 결과는 다음과 같습니다.

3. Visulaisation

도형화는

https://github.com/jzliu-100/visualize-neural-network/blob/master/VisualizeNN.py 위 코드를 참고하였습니다.

위에서 얻은 최적의 DNN을 기준으로 도형화를 진행 시, 다음과 같습니다.

Neural Network architecture

4. Result

result.txt로 기존과 동일하게 결과가 도출되도록 만들었습니다. (위 도형은 따로 png파일로 생성됩니다.)

Neural Network Confusion Matrix(NN)
Actual 1 [4604 256] class 2 [331 4809] model summary(NN)
Overall accuracy = 0.9413