| Rall | No.  |  |
|------|------|--|
| NUH  | 110. |  |

## E - 995

# M. A./M. Sc. (Fourth Semester) (Main/ATKT) EXAMINATION, May-June, 2021

#### MATHEMATICS

(Optional)

Paper Third (B)

(Fuzzy Sets Theory and Its Application-II)

Time: Three Hours [ Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A 1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. Which one of the following propositions is unconditional and qualified proposition?
  - (a) p: υ is F.
  - (b) p: υ is F is S.
  - (c) p: If x is A, then y is B is S.
  - (d) None of the above

P. T. O.

[2] E-995

2. The truth value of the fuzzy proposition:

p: There are Q i's in I such that  $v_1(i)$  is  $F_1$  and  $v_2(i)$  is  $F_2$  is defined by:

- (a) T(p) = Q(|E|); where w = |E|
- (b) T(p) = Q(w); where  $w = \frac{\left|E_1 \cap E_2\right|}{\left|E_1\right|}$
- (c) T(p) = Q(w), where  $w = |E_1 \cap E_2|$
- (d) None of the above
- 3. For a modifier h; which one is correct?
  - (a) h(0) = 0 and h(1) = 1
  - (b) h is continuous function
  - (c) If h is a strong, then h<sup>-1</sup> is weak and vice-versa
  - (d) All of the above
- Quantifier of first kind is also known as :
  - (a) Relative quantifier
  - (b) Absolute quantifier
  - (c) Linguistic hedge
  - (d) None of the above
- 5. R-implication is defined by:
  - (a)  $T(a, b) = \sup\{x \in [0, 1] : i(a, x) \le b\}$
  - (b)  $T(a, b) = \inf\{x \in [0, 1] : i(a, x) \le b\}$
  - (c) T(a, b) = u(c(a), b)
  - (d) None of the above

- 6. The kernel of any expert system consists of:
  - (a) a knowledge base
  - (b) a database
  - (c) an inference engine
  - (d) All of the above
- 7. If  $B'_1 = A' \circ \left( \bigcup_{\rho \in N_n} R_j \right); \qquad B'_2 = A' \circ \left( \bigcap_{\rho \in N_n} R_j \right);$

 $B_3' = \bigcup_{\rho \in N_n} A' \circ R_j; \quad B_4' = \bigcap_{\rho \in N_n} A' \circ R_j, \text{ then which one is}$ 

correct?

- (a)  $B'_1 \subseteq B'_2 \subseteq B'_3 \subseteq B'_4$
- (b)  $B_2 \subseteq B_4 \subseteq B_1 = B_3$
- (c)  $B'_2 \subseteq B'_4 \subseteq B'_3 \subseteq B'_1$
- (d) None of the above
- 8. Which one of the following fuzzy implication satisfy the generalized modus ponens, modus tollens and hypothetical syllogism?
  - (a) Gaines Rescher implication T<sub>s</sub>
  - (b)  $W_u$  implication  $T_{wu}$
  - (c) Both (a) and (b)
  - (d) None of the above
- The membership function forced of uncertainty is expressed by:
  - (a) Triangular form
  - (b) Trapezoidal form
  - (c) Gaussian form
  - (d) None of the above

- 10. The fuzzification function has the form:
  - (a)  $f_e:[a,-a] \to R$
  - (b)  $f_e:[0,1] \to R$
  - (c)  $f_e: [-a, a] \to R$
  - (d) None of the above
- 11. In any fuzzy neural networks:
  - (a) Inputs are fuzzy numbers.
  - (b) Outputs are fuzzy numbers.
  - (c) Weights are fuzzy numbers.
  - (d) All of the above
- 12. A finite fuzzy automaton A = (X, Y, Z, R, S) defined by X is non-empty finite set of input states, Y is output state, Z is internal states and R is relation on  $Z \times Y$  and S is fuzzy relation on  $X \times Z \times Z$ , then R is called:
  - (a) Response relation
  - (b) State transition relation
  - (c) Both (a) and (b)
  - (d) None of the above
- 13. Which one is an example of fuzzy controllers?
  - (a) Inverted pendulum
  - (b) Air conditioner
  - (c) Blood pressure during anesthesia
  - (d) All of the above

- 14. The method of defuzzification given by  $d_{cm}(\mu) = \frac{inf\ M + sup\ M}{2}\ \ is\ given\ by:$ 
  - (a) Center of area method
  - (b) Center of maxima method
  - (c) Weighted average method
  - (d) None of the above
- 15. Center of area method is also known as:
  - (a) Centre of gravity method
  - (b) Centre of sum method
  - (c) Centre of maxima method
  - (d) None of the above
- 16. If e, c and υ are the variables of fuzzy controller, the inference rules have the canonical form. If e = A and c = B, then υ = C, where A, B and C are fuzzy numbers chosen from the set of fuzzy numbers that represent the linguistic states NL, NM, NS, AZ, PS, PM and PL, then the total number of possible non-conflicting fuzzy inference rules is:
  - (a)  $7^2 = 49$
  - (b)  $2^7 = 128$
  - (c)  $7^3 = 343$
  - (d) None of the above

- 17. Which of the following is true?
  - (a) u<sub>i</sub> (x) should be zero if the constraints are strongly violated.
  - (b)  $u_i(x)$  should be 1 of all the constraints are fixed.
  - (c) Both (a) and (b) are true.
  - (d) None of the above
- 18. The component(s) of individual decision-making is/are:
  - (a) a set of possible events/action
  - (b) a set of goal
  - (c) a set of constraints
  - (d) All of the above
- 19. In a fuzzy linear programming problem, the set of vectors which satisfy all the constraints is called:
  - (a) a fuzzy set
  - (b) a convex set
  - (c) a feasible set
  - (d) a finite set
- 20. For each  $x_i \in X$ , the overall relation preference grades  $p(x_i)$  of  $x_i$  with respect to all other alternatives in X is given by the formula :
  - (a)  $p(x_i) = \min_{x_j \in X} (x_i, x_j)$
  - (b)  $p(x_i) = \max_{x_j \in X} (x_i, x_j)$
  - (c)  $p(x_i) = \sup_{x_i \in X} (x_i, x_j)$
  - (d) None of the above

[7] E-995

Section—B 2 each

### (Very Short Answer Type Questions)

Note: Attempt all questions.

- Write any two differences between classical logic and fuzzy logic.
- 2. Define generalized modus ponens.
- 3. What do you mean by metaknowledge base in fuzzy expert system?
- 4. Which is a suitable fuzzy implication for approximate reasoning based upon the generalized modus tollens?
- 5. Write four modules of a general fuzzy controller.
- 6. Write center of maxima method.
- 7. If goal G =  $\frac{.11}{a_1} + \frac{.3}{a_2} + \frac{.48}{a_3} + \frac{.8}{a_4}$  and subject to constraints:

$$C_1 = \frac{.4}{a_1} + \frac{.6}{a_2} + \frac{.2}{a_3} + \frac{.2}{a_4}$$

$$C_2 = \frac{.1}{a_1} + \frac{.9}{a_2} + \frac{.7}{a_3} + \frac{1}{a_4}$$

then obtain fuzzy decision.

Write any two methods for total ordering of fuzzy numbers
 A and B to be compare.

P. T. O.

[8] E-995

Section—C 3 each

#### (Short Answer Type Questions)

Note: Attempt all questions.

1. Let sets of values of variable x, y and z be  $X = \{x_1, x_2, x_3\}$ ,  $Y = \{y_1, y_2\}$  and  $Z = \{z_1, z_2\}$  respectively. Assume that a proposition "If x is A, then y is B" and "y is B, then z is C" is given, where :

$$A = \frac{.5}{x_1} + \frac{1}{x_2} + \frac{.6}{x_3}$$

$$B = \frac{1}{y_1} + \frac{.4}{y_2}$$

$$C = \frac{.2}{z_1} + \frac{1}{z_2}$$

Derive a conclusion in the form

"If x is A, then z is C" by using the method of generalized hypothetical syllogism. https://www.prsunotes.com

- Define unconditional and qualified proposition.
- 3. Let i (a, b) = max (0, a + b 1) for all  $a,b \in [0,1]$  and let  $\mathbf{T}_a$  be Lukaisewicz implication that i.e.  $\omega_i(a,b) = \mathbf{T}_a(a,b) = \min{(1,1-a+b)}$  for all  $a,b \in [0,1]$ , then  $A \circ B = [C(B) \circ C(A)]^{-1}$  holds for any fuzzy sets A, B and consequently  $R = A \circ B$  is the greatest approximate solution to  $B = A \circ R$  and  $C(A) = C(B) \circ R^{-1}$  for the standard fuzzy complement C.
- 4. Explain forced uncertainty and opted uncertainty.
- 5. What do you mean by Defuzzification?

Let A<sub>1</sub>, A<sub>2</sub> and A<sub>3</sub> are three fuzzy sets as shown in the following figures (1), (2) and (3). Figure (4) illustrates the aggregate of fuzzy sets using the centre of sums method to defuzzified A<sub>1</sub>, A<sub>2</sub> and A<sub>3</sub>.



1.0 .75 .50 .25 0 1 2 3 4 5 6 7 8

Fig. (1): Fuzzy Set A<sub>1</sub>

Fig. (2): Fuzzy Set A2





- 7. Explain fuzzy systems and neural networks.
- 8. Let us consider an automaton with X = {x<sub>1</sub>, x<sub>2</sub>}, Z = {z<sub>1</sub>, z<sub>2</sub>, z<sub>3</sub>} and the state transition function expressed by the matrix:

$$x_1 - x_2$$

$$\begin{array}{cccc} z_{1} & z_{1} & z_{2} \\ z_{2} & z_{3} & z_{1} \\ z_{3} & z_{1} & z_{3} \end{array}$$

P. T. O.

whose entries are next internal states for any given present internal and output states. The fuzzy goal at t = 2 is

$$C^2 = \frac{.3}{z_1} + \frac{1}{z_2} + \frac{.8}{z_3}$$
 and the fuzzy constraints :

$$A^0 = \frac{.7}{x_1} + \frac{1}{x_2}$$

$$A^1 = \frac{1}{x_1} + \frac{.6}{x_2}$$

Find the best decision.

#### (Long Answer Type Questions)

Note: Attempt all questions.

 Define truth value restriction method for conditional and qualified proposition. Suppose we have fuzzy proposition of the form p: "If x is A, then y is B is very true", where:

$$A = \frac{1}{x_1} + \frac{.5}{x_2} + \frac{.7}{x_3}$$

$$B = \frac{.6}{y_1} + \frac{1}{y_2}$$

and S stands for every true. Let  $\,S(a)=a^2\,$  for all  $\,a\in[0,\,1].$ 

Given a fact "x is A<sup>1</sup>" where:

$$A^1 = \frac{.9}{x_1} + \frac{.6}{x_2} + \frac{.7}{x_3}$$

Derive a conclusion in the form "y is B".

Or

Assume that there are ten students in a class about half of them are young girls. Most of those young girls are good [11] E-995

students. Using the quantifiers specific shown in figure below, answer the question. Approximately how many young girls in the class are good students?



#### 2. Explain multiconditional approximate reasoning.

Ot

Let the range of the membership function A in B  $(y) = \sup_{x \in X} i[A(x), T(A(x), B(y))]$  cover the whole interval

[0, 1]. Then show that:

- (a) Gaines Rescher implication T<sub>s</sub>
- (b) Godel Implication  $T_g$
- (c) W<sub>u</sub> Implication T<sub>wu</sub>

satisfy given equation for any t-norm i.

3. Explain fuzzy controllers.

Or

Consider a fuzzy automaton with  $X = \{x_1, x_2\}$ ;  $Y = \{y_1, y_2, y_3\}$ ;  $Z = \{z_1, z_2, z_3, z_4\}$  whose output relation

P. T. O.

[12] E-995

R and state transition relations S are defined respectively by the matrix :

$$R = \begin{bmatrix} y_1 & y_2 & y_3 \\ z_1 & 1 & 0 & 0 \\ z_2 & 0 & 1 & 0 \\ z_3 & 0 & 0 & 1 \\ z_4 & .5 & 1 & .3 \end{bmatrix}$$

and the three-dimensional array.

$$S = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_1 & z_2 & z_3 & z_4 \\ z_2 & 0 & 0.4 & 0.2 & 1 \\ z_2 & 0.5 & 0 & 0 & 1 \\ z_3 & 0.0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 & 0 & 0 & 1 & 0 \\ 0.2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Generate sequence of three fuzzy internal and output states under the following condition: The initial fuzzy state is  $C^1 = \begin{bmatrix} 1 & .8 & .6 & .4 \end{bmatrix}$  the input fuzzy states are  $A^1 = \begin{bmatrix} 1 & .4 \end{bmatrix}$ ,  $A^2 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ .

 Solve the following fuzzy linear programming problem : Max. :

$$Z = 6x_1 + 5x_2$$

s. t. :

$$(5,3,2) x_1 + (6,4,2) x_2 \le (25,6,9)$$

$$(5,3,2) x_1 + (2,1.5,1) x_2 \le (13,7,4)$$

$$x_1, x_2 > 0.$$
Or

Explain multi-criteria decision-making.

E-995