COMP2521 25T2

Graphs (IV)
Directed and Weighted Graphs

Sim Mautner

cs2521@cse.unsw.edu.au

directed graphs weighted graphs

Generalising Graphs

In graphs representing real-world scenarios, edges are often directional and may have a sense of cost.

Thus, we need to consider directed and weighted graphs.

Some applications require us to consider directional edges: $v \to w \neq w \to v$ e.g., 'follow' on Twitter, one-way streets, etc.

In a directed graph or digraph: edges have direction.

Each edge (v, w) has a source v and a destination w.

Example

Applications

application	vertex is	edge is	
WWW	web page	hyperlink	
chess	board state	legal move	
scheduling	task	precedence	
program	function	function call	
journals	article	citation	
make	target	dependency	

in-degree

 $\deg^-(v)$ or $\operatorname{in}(v)$ the number of incoming edges to a vertex

out-degree

 $\deg^+(v) \text{ or } \operatorname{out}(v)$ the number of outgoing edges from a vertex

$$in(0) = 1$$
 $out(0) = 1$
 $in(1) = 2$ $out(1) = 0$
 $in(2) = 1$ $out(2) = 3$
 $in(3) = 2$ $out(3) = 2$

A directed path is

a sequence of vertices where each vertex has an outgoing edge to the next vertex in the sequence

If there is a directed path from v to w, then we say that w is reachable from v

A directed cycle is a directed path where the first and last vertices are the same e.g., 0-2-3-1-0, 1-2-3-1

A digraph is strongly connected if there is a directed path from every vertex to every other vertex

strongly connected

not strongly connected

A strongly-connected component is a maximally strongly-connected subgraph.

A digraph that is not strongly connected has two or more strongly-connected components.

Representations

Same representations as for undirected graphs:

- Adjacency matrix
- Adjacency list
- Array of edges

Representations

	Adjacency Matrix	Adjacency List	Array of Edges
Space usage	$O(V^2)$	O(V+E)	O(E)
Insert edge	O(1)	$O(\deg(v))$	O(E)
Remove edge	O(1)	$O(\deg(v))$	O(E)
Contains edge	O(1)	$O(\deg(v))$	$O(\log(E))$

Real digraphs tend to be sparse (large V, small average $\deg(v)$), so we use $\deg(v)$ to denote the degree of the source vertex v.

Weighted Graphs

Some applications require us to consider a cost or weight assigned to a relation between two nodes.

In a weighted graph, each edge (s, t, w) has a weight w.

Example: Major airline routes in Australia

Weighted Graphs

Representations

Adjacency matrix:

- store weight in each cell, not just true/false
- need a value to signify "no edge"

Adjacency list:

• add weight to each list node

Array of edges:

• add weight to each edge

Weighted Graphs

Representations: Adjacency Matrix

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

undirected, unweighted

$$\begin{bmatrix} - & 0.2 & 0.4 & 0.5 & - \\ 0.2 & - & 0.5 & - & - \\ 0.4 & 0.5 & - & 0.1 & 0.1 \\ 0.5 & - & 0.1 & - & 0.9 \\ - & - & 0.1 & 0.9 & - \end{bmatrix}$$

undirected, weighted

Weighted Graph

Representations: Adjacency Matrix

Weighted Graph

Representations: Adjacency List

Weighted Graph

Representations: Array of Edges

