Algorithme naif

Énumération de tous les points dans une certaine borne

- Soit $\mathscr{L}(B)$ un réseau, on calcule la base du réseau dual $D=B^{-T}=d_1,d_2,...,d_n\in\mathbb{R}^n$
- . Notons $w = \min_{b_i \in B} \|b_i\|$ la norme du plus petit vecteur de la base
- On peut donc borner les coefficients $|x_i| \le ||d_i||w$

Puis énumérer
$$\left\{\sum_{i=1}^n x_i b_i : x_i \in \mathbb{Z}, |x_i| \leq \|d_i\|w\right\}$$
, un nombre exponentiel en n de points

Optimisation (Symétrie)

Coupure de l'espace de recherche en deux

- Puisque ||v|| = ||-v||
- Coupe le plan par n'importe qu'elle ligne passant par l'origine
 - (Même idée en plus haute dimension)
- Il suffit de ne considérer que les x_1 positifs

