ITSC 2024 | Edmonton, Canada

Presenter: Simon Schäfer

September 23, 2024

SigmaRL: A Sample-Efficient and Generalizable Multi-Agent Reinforcement Learning Framework for Motion Planning

Jianye Xu,

Bassam Alrifaee

Introduction

Multi-Agent Reinforcement Learning (MARL) for motion planning of Connected and Automated Vehicles (CAVs)

1. Sample efficiency

A sample := (s, a, r', s')

2. Generalization

Related Work | Enhance Sample Efficiency

- Experience replay buffer [1]
 - Independent and identically distributed (i.i.d.) assumption

Prioritized experience replay buffer [2]

[1] L.-J. Lin, "Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching," *Mach Learn*, 1992.
[2] T. Schaul et al., "Prioritized Experience Replay," *in International Conference on Learning Representations (ICLR)*, 2016.

Related Work | Enhance Generalization

- Regularization techniques such as dropout and early stopping [1]
- Domain randomization [2]
- Data augmentation [3]
- Better optimization without overfitting [4]

^[1] J. Farebrother et al., "Generalization and Regularization in DQN," arXiv, 2020.

^[2] Tobin, Josh, et al., "Domain randomization for transferring deep neural networks from simulation to the real world," IEEE/RSJ IROS, 2017.

^[3] Connor Shorten, and Taghi M. Khoshgoftaar, "A survey on image data augmentation for deep learning," Journal of big data, 2019.

^[4] Cobbe, Karl W., et al. "Phasic policy gradient." International Conference on Machine Learning, 2021.

Related Work | Gap

Observation design: under-explored

Observer (also called observation function)

Five observation-design strategies

Methodology | Observation-Design Strategy 1/5

Use ego view instead of bird-eye view

Ego View (our):

Methodology | Observation-Design Strategy 2/5

► Observe vertices of surrounding agents instead of poses and dimensions

Methodology | Observation-Design Strategy 3/5

Observe distances to surrounding agents

Methodology | Observation-Design Strategy 4/5

Observe distances to lane boundaries instead of sampled points

Methodology | Observation-Design Strategy 5/5

► Observe **distances** to lane center lines

Methodology | Other Observations

- \triangleright Own speed v
- Reference path

Velocity of surrounding agents

Methodology | Framework Overview

Integrated our observation-design strategies into multi-agent PPO [1-2]

^[1] J. Schulman et al., "Proximal Policy Optimization Algorithms," arXiv, 2017.

^[2] R. Lowe *et al.*, "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments," in *Advances in Neural Information Processing Systems*, Curran Associates, Inc., 2017

Evaluations | Training

- An intersection with four agents
- ▶ ~1 million samples
- < 1 h of training time with a single CPU</p>

- Ablation studies with six models
 - M_0 : All five observation-design strategies
 - $M_{i \in \{1,...,5\}}$: Omits the i_{th} strategy
 - $---- M_0$ (our)
 - M_1 (bird-eye view instead of ego view)
 - M_2 (poses and dimensions instead of vertices)
 - $---- M_3$ (does not observe distances)

 - $-M_5$ (does not observe lane center lines)

Evaluations | Testing Scenarios

Four unseen scenarios

32 one-minute simulations per scenario per model

Collision rate of each simulation: proportion of time steps in which collisions occur

Evaluations | Testing Demo | Scenario (d)

3 5 5

 M_1 (do not use an ego view)

 M_2 (do not observe vertices of surrounding agents)

 M_3 (do not observe distances to surrounding agents)

 M_4 (do not observe distances to lane boundaries)

 M_5 (do not observe distances to lane center lines)

Evaluations | Collision Rate

Summary

▶ **SigmaRL**, a <u>sample-efficient</u> and <u>generalizable</u> MARL Framework for motion

planning of CAVs

< 1 h training time on a single CPU

Completely unseen scenarios

Five observation-design strategies

Backup

Evaluations | Average Speed

