

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- Grow the subsequences (patterns) one item at a time by Apriori candidate generation

SID	Sequence	
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	L
2	<(ad)c(bc)(ae)>	•
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>	
4	<eg(af)cbc></eg(af)cbc>	
	min_sup = 2	

Ref: SPADE (Sequential <u>PA</u>ttern <u>D</u>iscovery using Equivalent Class) [M. Zaki 2001]

	SID	EID	Items	1
r	1	1	a	11
	1	2	abc	Ľ
	1	3	ac	
	1	4	d	1
	1	5	cf	1
	2	1	ad	
	2	2	С	1.
	2	3	bc	į.
	2	4	ae	1
	3	1	ef	1
	3	2	ab	
	3	3	df	1
	3	4	c	1
	3	5	b	1
	4	1	e]
	4	2	g	
	4	3	af	
	4	4	c	
	4	5	b	
	4	6	c	1

EID	Items								
	-	1115	SID	EID	SID	$_{ m EID}$			
1	a	V 3	1	1	1	2			
2	abc		1	2	2	3			
3	ac	_	1	3	3	2			
4	d	67	2	1	3	5	35		
5	cf	1 -	2	4	4	5			
1	ad	1 -	3	2		1-37-11			
2	c	1 -	4	3					
3	bc	if SIPa	SIDb.	E ZI	Don (EIDb.				
4	ae		USA	ab	La P		ba		
1	ef	SID	EID	(a)]	EID(b)	SID	EID (b)	EID(a)	
2	ab	1	1	()	2	1	2	3	
3		2	1		3	2	3	4	
	df	3	2		5	<u> </u>			1.0
4	c	4	3		5 (
5	b					- 100	ulna al		
1	e				aha	, drau	and he	P Z ID(1)	JUI-ING
2	g			TTO (ana	0(1)	DID ()		111-
3	af	SII) E	EID (a	a) EH	D(b)	EID(a)	• • •	I then
4	c	1		1		2	3		1.7
5	b	2		1		3	4		13.4
6	80.0	— <u> </u>							