HOTEL RESERVATION PREDICTION

PHAM THI THI PHONG CLASS: DA31

CONTENTS

Page 4 Ol OVERVIEW

Page 9 DATA HANDLING

Page 20 **13 EDA**

Page 26 PREPARE FOR MODEL

Source: Kaggle

Link:

https://www.kaggle.com/datasets/mathsian/h otel-bookings/data

Original:

https://www.researchgate.net/publication/329 286343_Hotel_booking_demand_datasets

ABOUT THE DATA

Data size : 32 columns x 119390 rows						
Customers source	6 columns					
Customer character	7 columns					
Reservation	13 columns					
Recorded time	6 columns					

ABOUT THE DATA

Customers Source	Customer Character	Reservation	Recorded time
1. hotel	1. adults	1. is_canceled	1. arrival_date_year
2. market_segment	2. children	2. lead_time	2. arrival_date_month
3. distribution_channel	3. babies	3. days_in_waiting_list	3. arrival_date_week_number
4. agent	4. country	4. stays_in_weekend_nights	4. arrival_date_day_of_month
5. company	5. is_repeated_guest	5. stays_in_week_nights	5. reservation_status
6. customer_type	6. previous_cancellations	6. reserved_room_type	6. reservation_status_date
	7. previous_bookings_not_canceled	7. assigned_room_type	
		8. booking_changes	
		9. deposit_type	
		10. adr	
		11. required_car_parking_spaces	
		12. meal	
		13. total_of_special_requests	

ABOUT THE DATA

Data samples:

hote	hotel_booking.sample(5) 0.0s Pytho										rthon			
	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_month	stays_in_weekend_nights	stays_in_week_nights	adults	children	babies	meal	CO
74822	City Hotel		335	2015	September	38	17				0.000		BB	
5418	Resort Hotel		14	2016	April	18	29				0.000		ВВ	
49515	City Hotel		126	2016	April	16	14				0.000		ВВ	
82102	City Hotel			2015	December	51	19				0.000		ВВ	
9175	Resort Hotel		70	2016	October	45	31				0.000		ВВ	

DUPLICATED

As authors claims that:

"Each observation represents a hotel booking."

"Since this is hotel **real data**, all data elements pertaining hotel or costumer **identification were deleted.**"

Action:

Data record is separate customers from separate hotels and coincidentally have the same data. The action here is choose to **keep all the duplicates**.


```
null data
    hotel booking.isnull().sum().sort values(ascending=False)
  ✓ 0.0s
 company
                                   16340
 agent
 country
                                     488
 children
 reserved_room_type
 assigned_room_type
 booking changes
```

```
# checking undefined via listing unique values
      print(i)
      print(hotel_booking[i].unique())
      print(' ')

√ 0.1s

meal
     'FB' 'HB' 'SC' 'Undefined']
```

in short:

columns	problem
agent	has nan
company	has nan
children	has nan
country	has nan
meal	has Undefined
market_segment	has Undefined
distribution_channel	has Undefined

- Nan value: 4 columns
- Undefined value: 3 columns

Overview Handling EDA Model Processing Model Results

NULL AND UNDEFINED

As authors claims that:

"In some categorical variables like Agent or Company, "NULL" is presented as one of the categories.

This should not be considered a missing value, but rather as "not applicable".

For example, if a booking "Agent" is defined as "NULL" it means that the booking did not came from a travel agent.

As said:

For the 'agent' and 'company' columns can change 'nan values' into:

- 0 as customer **not** come from agent/company
- 1 as customer come from agent/company

```
# checking null hotel_booking.isnull().sum().sort_values(ascending=False)

✓ 0.0s

company 112593
agent 16340
country 488
children 4
reserved_room_type 0
assigned_room_type 0
booking_changes 0
```

```
# create def to change data value
def convert_num(i):
    if i > 0:
        | return 1
        return 0

# apply def
hotel_booking['agent_encode'] = hotel_booking.agent.apply(convert_num)
hotel_booking['company_encode'] = hotel_booking.company.apply(convert_num)

    0.1s
```



```
# 'children' columns has 4 nan values replace by median
hotel_booking['children'] = hotel_booking['children'].fillna(hotel_booking['children'].median())
0.0s
```

Replace nan in 'children' column by median.

'country' columns has 488 nulls values, this columns is **not using to run model** but can **use to illustrate** customer character therefore **leave as it is.**


```
# as dictionary states that:
# - Undefined/SC : no meal package
# - BB : Bed & Breakfast
# - HB : Half board (breakfast and one other meal - usually dinner)
# - FB : Full board (breakfast, lunch and dinner)

# as said: encode 'meal' as Undefined/SC: 0 and others: 1
def convert_meal(j):
    if j == 'Undefined' or j == 'SC':
        return 0
    return 1

hotel_booking['meal_encode'] = hotel_booking.meal.apply(convert_meal)

✓ 0.0s
```

'meal' column has many categories however there are 2 types which are reservation with meal package and not.

Action is **encode 'meal'** as:

- **0** is reservation **no** meal package
- 1 is reservation with meal package

```
# 'market segment' and 'distribution channel' have less than 6 'undefined' values
   print(hotel booking.market segment.value counts())
   print('----')
   print(hotel booking.distribution channel.value counts())

√ 0.0s

market segment
Online TA
                 56477
Offline TA/TO
                 24219
                 19811
Groups
                 12606
Direct
Corporate
                 5295
Complementary
Aviation
                  237
Undefined
Name: count, dtype: int64
distribution channel
TA/TO
             97870
Direct
             14645
Corporate
              6677
GDS
Undefined
Name: count, dtype: int64
```


'market_segment' and 'distribution_channel' have less than 6 'Undefined' values.

Not many to effect model, leave as it.

OUTLIERS

```
plt.figure(figsize=(7,5))
 plt.show()
 # showed that columns 18 which is 'adr' has 1 outliers -> choose to delete that row
✓ 0.6s
23
22
       0
21
 20
 19
 18
                                                                     0
 17
 16
 15
 14
 13
 12
 11
 10
                1000
                            2000
                                        3000
                                                    4000
                                                               5000
```



```
# drop outliers
hotel_booking = hotel_booking[hotel_booking['adr'] < 1000].reset_index()

</pre>
```

Column 'adr' has outliers. Action is to delete.

RESIZE DATASET

Merge columns: Merge columns have similar meaning.


```
merge columns

# create columns 'family_size' for illustation
hotel_booking['family_size'] = hotel_booking['adults'] + hotel_booking['children'] + hotel_booking['babies']

v 0.0s

# booking_requests = booking_changes + required_car_parking_spaces + total_of_special_requests : cause of this is all request in booking process.
hotel_booking['booking_requests'] = hotel_booking_changes + hotel_booking.required_car_parking_spaces + hotel_booking.total_of_special_requests

v 0.0s

hotel_booking['stay_in_days'] = hotel_booking.stays_in_weekend_nights + hotel_booking.stays_in_week_nights

v 0.0s
```

RESIZE DATASET

Create data for better illustration and calculate:

```
create data for illustrate and calculate
     hotel_booking['source'] = np.where((hotel_booking['agent'] > 0) & (hotel_booking['company'] > 0), 'both',
                               np.where(hotel_booking['agent'] > 0, 'agent',
np.where(hotel_booking['company'] > 0, 'comapny',
     hotel_booking['meal_request'] = hotel_booking['meal'].map(meal_dictionary)
     hotel_booking['repeated_guest'] = hotel_booking['is_repeated_guest'].map(repeated_guest_dictionary)
     hotel_booking['cancelation_status'] = hotel_booking['is_canceled'].map(cancel_dictionary)
     hotel booking['total booking'] = hotel booking.previous cancellations + hotel booking.previous bookings not canceled + 1
   ✓ 0.0s
    hotel_booking['total_cancelation'] = hotel_booking['previous_cancellations'] + hotel_booking['is_canceled']
```


Overview **Handling** EDA Model Processing Model Results

RESIZE DATASET

Drop columns:

drop unnescessary columns

drop columns below cause of:

- reservation_status: exactly as 'is_canceled' columns
- reservation_status_date: not see the use
- $\bullet \ \ \, arrival_date_year; this analysis focus on customer behaviours in months and days$
- $\bullet \ \ \, arrival_date_week_number: this analysis focus on customer behaviours in months and days$
- company: replace by 'company_encode'
- · agent: replace by 'agent_encode'
- market_segment: similar with distribution_channel
- adults, children, babies: replace by 'family size'
- stays_in_weekend_nights, stays_in_week_nights: replace by 'stay_in_days'

82%

75%

75%

Customers from Agents

Chose City Hotel

Transient

CUSTOMER CHARACTER

Portuguese is main guests but their Cancelation is higher than their Check-in.

Smaller the Family size higher change to Check-in.

Most guest

demain for meal

during stays.

Guest are new.

BOOKING EXPERIENCE

Guests in wait list for

30 days or about 100

days have high

cancelation rate.

less than 50 days
ahead have high
rate of cancelation.

Guest booked for **more than 35 days** of stay have lower cancelation rate.

BOOKING EXPERIENCE

No Deposit is general in

used but have low cancelation rate in contrast with Non refund in both indicators.

Room A has highest booking at the average price.

SEASONAL

in summer months and Cancelation in this months also higher.

There are **not much difference** booking
values in each day in a
months.

ENCODING

```
hb_numeric = hotel_booking.select_dtypes(include='number')
hotel_dictionary = {'Resort Hotel': 1, 'City Hotel': 0}
hotel booking['hotel encode'] = hotel booking.hotel.map(hotel dictionary)
                       = pd.get_dummies(hotel_booking['arrival_date_month'], prefix = 'month').astype(int)
                       = pd.get dummies(hotel booking['distribution channel'], prefix = 'market').astype(int)
                       = pd.get_dummies(hotel_booking['reserved_room_type'], prefix = 'reserved_room').astype(int)
                       = pd.get_dummies(hotel_booking['assigned_room_type'], prefix = 'assigned_room').astype(int)
                       = pd.get dummies(hotel booking['deposit type'], prefix = 'deposit type').astype(int)
                       = pd.get_dummies(hotel_booking['customer_type'], prefix = 'customer_type').astype(int)
# create new dataset to concate 2 datasets
1. axis = 1
```


Encode categories columns using **onehot** and **dictionary** method

X, Y DEFINING

Checking correlation:

As showed in the graph:

'Cancelation_rate' and 'total_cancelation' have high correlate with 'is_canceled' this will effect model accuaracy therefore **not use** this columns in model.

X, Y DEFINING

Checking correlation:

There are couples of columns that have high correlation with each other. The choice is to delete 1 of each columns to prevent Multicollinearity

(Đa cộng tuyến).

Select X, y for model:


```
# chose X, y
y = hb['is_canceled'].values
X = hb[['agent_encode', 'assigned_room_A', 'assigned_room_D', 'booking_requests', 'customer_type_Transient', 'deposit_type_No Deposit', 'lead_time', 'market_TA/TO']].values
```

IMBALANCE DATA


```
# dataset not cancel == 0
   hbc 0 = hb encode corr[hb encode corr.is canceled == 0]
   # dataset is canceled == 1
   hbc 1 = hb encode corr[hb encode corr.is_canceled == 1]
   # dataset size
   # random choose data from hbc 0
   hbc_0_resapled = hbc_0.sample(44223, random_state=1)
   # new dataset
   hb balance = pd.concat([hbc 0 resapled,hbc 1])
   hb balance['is canceled'].value counts()
is_canceled
    44223
    44223
Name: count, dtype: int64
```

NORMALIZATION

normalization: min-max scaler

```
# Scale X2
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(hb_balance.iloc[:, 1:11].values)
# create new dataframe
hb = pd.Dataframe(data = X_scaled, columns = hb_balance.iloc[:, 1:11].columns)
# add y2 column
hb['is_canceled'] = hb_balance['is_canceled']
hb.head()
```

	agent_encode	assigned_room_A	assigned_room_D	booking_requests	customer_type_Transient	deposit_type_Non Refund	lead_time	market_TA/TO	total_cancelation	is_canceled
0	1.000	0.000	1.000	0.143	0.000	0.000	0.267	1.000	0.000	0
1	1.000	0.000	1.000	0.000	1.000	0.000	0.000	1.000	0.000	0
2	1.000	1.000	0.000	0.048	1.000	0.000	0.350	1.000	0.000	0
	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0
4	1.000	0.000	1.000	0.048	1.000	0.000	0.040	1.000	0.000	0

SPLIT TRAIN-TEST

```
# run split
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
```


Models	Parameter
Logistic Regresion	Default
Gaussian Naive Bayes	Default
Decision Tree	max_depth = 15
Radom Forest	n_estimators =78
K Nearst Neighbor	n_neighbors = 34

	precision	recall	f1-score	support
0	0.71	0.80	0.75	13280
1	0.77	0.67	0.71	13254
accuracy			0.73	26534
macro avg	0.74	0.73	0.73	26534
weighted avg	0.74	0.73	0.73	26534

GAUSSIAN NAIVE BAYES

	precision	recall	f1-score	support
0	0.62	0.96	0.76	13280
1	0.91	0.43	0.58	13254
accuracy			0.69	26534
macro avg	0.77	0.69	0.67	26534
weighted avg	0.77	0.69	0.67	26534

DECISION TREE

	precision	recall	f1-score	support
0	0.73	0.81	0.77	13280
1	0.79	0.70	0.74	13254
accuracy			0.76	26534
macro avg	0.76	0.76	0.76	26534
weighted avg	0.76	0.76	0.76	26534

RANDOM FOREST

	precision	recall	f1-score	support
0	0.7475	0.7622	0.7548	13280
1	0.7569	0.7420	0.7494	13254
accuracy			0.7521	26534
macro avg	0.7522	0.7521	0.7521	26534
weighted avg	0.7522	0.7521	0.7521	26534

K NEAREST NEIGHBORS

	precision	recall	f1-score	support
0	0.7344	0.8061	0.7686	13280
1	0.7846	0.7079	0.7443	13254
accuracy			0.7570	26534
macro avg	0.7595	0.7570	0.7564	26534
weighted avg	0.7595	0.7570	0.7564	26534

RESULT

MODELS COMPARITION

Models	Accuracy Score	F1_Score	Precision	Recall
Decesion Tree	0.76	0.74	0.79	0.70
GNB	0.69	0.58	0.91	0.43
KNN	0.76	0.74	0.78	0.71
Logistic Regresson	0.73	0.71	0.77	0.67

All models have accuracy measure scores are higher than 0.7, except for GNB models.

GNB has highest Precision score but others scores are low.

Decision Tree has the best performance.

THANK YOU FOR LISTENING!

Page 4 Ol OVERVIEW

Page 9 DATA HANDLING

Page 20 03 EDA

Page 26 PREPARE FOR MODEL