

INSITUTO INDUSTRIAL DE MATUNDO

Código do módulo: UCEPI05406171

Título do módulo: Testar convertedores de potência aplicados à electrónica industrial.

Nível: Médio/CV4

Qualificação: Electricidade de Manutenção Industrial

Tema:

Actividade dois (2).

Formando:

Idrissa Ibraimo John Said.

Formador:

Ferrão.

Tete, aos 15 de Maio de 2020.

INSITUTO INDUSTRIAL DE MATUNDO **Código do módulo:** UCEPI05406171

Título do módulo: Testar convertedores de potência aplicados à electrónica industrial.

Nível: Médio/CV4

Qualificação: Electricidade de Manutenção Industrial

Tema:

Actividade dois (2).

Formando:

Idrissa Ibraimo John Said.

Formador:

(Ferrão)

Tete, aos 15 de Maio de 2020.

REPÚBLICA DE MOÇAMBIQUE GOVERNO DA PROVÍNCIA DE TETE DIRECÇÃO PROVINCIAL DA CIÊNCIA E TECNOLOGIA, ENSINO SUPERIOR E TÉCNICO PROFISSIONAL

INSTITUTO INDUSTRIAL DE MATUNDO

ACTIVIDADE (2)

Código do módulo: UCEPI05406171

Título do modulo - Testar convertedores de potência aplicados à electrónica

industrial.

Sumário: Actividade (2)

Qualificação: Electricidade de Manutenção Industrial / CV4

Nome do formando: Idrissa Ibraimo John Said.

Nome do formador: Ferrão.

FICHA No. Quatro (4)

ACTIVIDADE (2)

(ANEXO 1)

- 1. Um sistema fotovoltaico (PV) é um conjunto de painéis PV e por um conversor DC-AC.
- a) Faça um esquema de um sistema fotovoltaico. R:

b) Qual é a finalidade do condensador na saída do painel?

R: A finalidade do condensador na saída do painel serve para efectuar o desacoplamento energético entre o painel e o inversor.

c) Qual é a finalidade do inversor?

R: O inversor é necessário para inverter a tensão do painel PV, convertendo a tensão e corrente contínua em grandezas alternadas, para que seja possível a sua inserção na rede eléctrica.

2. Na literatura existem várias topologias de conversores para sistemas fotovoltaicos.

a) Em que consiste a classificação das topologias?

R: A classificação das topologias consiste quanto ao número de andares, à utilização, ou não, de transformador, e ao número de níveis da tensão de saída do inversor.

b) Represente o conversor de dois andares.

R:

3. As topologias podem ser classificadas em topologias que utilizam transformadores e sem transformador.

a) Faça a comparação das vantagens e desvantagens de cada modelo.

R:

Topologias que utiliz	zam transformadores	Topologias que não utilizam transformadores			
Vantagens	Desvantagens	Vantagens	Desvantagens		
Amplificar a tensão no	Volumoso, caro e tem	É mais rentável (maior	Utiliza-se quando o		
secundário e possuir	mais perdas.	rendimento) e o seu	isolamento galvânico		
isolamento galvânico.		fabrico é mais	não é importante.		
		econômico.			

b) O que representa a figura abaixo:

R: A figura acima representa um sistema fotovoltaico com conversor de dois andares.

c) Classifique as topologias de número de níveis da tensão de saída do inversor.

R: As topologias podem ser classificadas quanto ao número de níveis da tensão de saída do inversor. Esta tensão de saída pode ter apenas dois níveis ou ser uma tensão multi-nível quando a tensão de saída tem 3, ou 5, ou 7... níveis. Ao possuir um maior número de níveis a tensão de saída do inversor vai possuir uma distorção harmónica menor.

d) Represente graficamente a tensão a dois níveis.

R: Tensão a dois níveis.

e) Represente o esquema de topologia em ponte completa a dois níveis.

R:

f) Faça a tabela de estados de funcionamento dos transístores do inversor em ponte completa.

R:

T1	T2 T2	T4 V	VA	. V-		I _{LR}		Nome do	
- ' '	T2	Т3	T4	VA	VB	V _B V _{AB}	V _{Rede} > 0	V _{Rede} < 0	estado
off	on	on	off	$\overline{v_{\mathit{CF}}}$	0	$\overline{v_{\mathit{CF}}}$	↑	↑	s ₀₀
on	off	off	on	0	$\overline{v_{CF}}$	$-\overline{v_{\mathit{CF}}}$	\downarrow	\downarrow	S ₀₁
on	on	off	off	$\overline{v_{\it CF}}$	$\overline{v_{CF}}$	0	↓	↑	S ₁₀
off	off	on	on	0	0	0	↓	1	S ₁₁

- g) Em tensão da rede negativa, faça o argumento da utilização apenas dos estados.
- R: No caso da tensão da rede ser negativa, utilizam-se apenas os estados S_{01} , S_{10} e S_{11} .

O estado S_{01} faz com que a tensão de saída do inversor seja e assim, o valor da corrente na bobine L_R desça. Por outro lado utiliza-se o estado S_{10} , ou o estado S_{11} para fazer com que a tensão de saída do inversor seja nula, e assim, o valor da corrente na bobine L_R suba.

- **4**. Conversor DC-DC, nesta topologia, temos do tipo Boost, inserido no inversor, de forma a constituir uma topologia de um só andar.
- a) Faça o esquema do conversor Boost a vermelho.

R:

- b) Fale da importância do uso de dois díodos, D1 e D2, no conversor Boost convencional.
- R: Estes servem para protecção, impedindo que a corrente do inversor afecte o funcionamento dos conversores **Boost**.