

開発者向けオンラインセミナー

IRIS データベースの内部動作

インターシステムズジャパン株式会社シニアデベロッパーサポートエンジニア

中橋 聖介

2023年9月26日

InterSystems IRIS®の中核となるのは、超高性能のマルチモデル・トランザクション・分析データベースエンジンです。独自のアーキテクチャにより、極めて高いリソース効率と非常に高いパフォーマンスを実現。垂直・水平方向のスケーラビリティを可能にし、より高い次元のデータベース管理と開発・運用環境を提供します。

本日お伝えする内容

IRIS の核はデータベースエンジンです

本セミナーでは
IRIS でどのようなディスクアクセスが発生するか
内部動作をご紹介します

Agenda

1	Read の内部動作
2	Write の内部動作
3	パフォーマンスに効く設定
4	本日のまとめ

1	Read の内部動作
2	Write の内部動作
3	パフォーマンスに効く設定
4	本日のまとめ

Buffer = データベースキャッシュ

システム > 構成 > メモリと開始設定 - (構成設定)

メモリと開始設定

システムメモリと開始設定

データベースキャッシュ(グローバルバッファ)を構成

- 初期 (物理メモリの25%)
- サイズを指定

8KBデータベースキャッシュ用メモリ (MB)

2048

Required. (32-16777215)

Read の内部動作 まとめ

IRIS はメモリ上の Buffer を介して データを取得します

Buffer に存在するデータを Read するときは DB アクセスは発生しません

1	Read の内部動作
2	Write の内部動作
3	パフォーマンスに効く設定
4	本日のまとめ

IRIS データベース関連ファイル

IRIS.DAT

データベースファイル

IRIS.WIJ

整合性保護のための 2フェーズ書き込み用 システムファイル

Journal

データ更新履歴ファイル

IRIS.DAT データベースへの書き込み

IRIS.WIJ 2フェーズ書き込みで整合性保護

Journal データ更新履歴で障害から復旧

Write の発生 I/O

Write の内部動作 まとめ

DB 更新は ユーザプロセスではなく システムプロセスが非同期 で行います

Write 時も メモリ上の Buffer を使用します

ディスクアクセスが発生するのは IRIS.DAT / IRIS.WIJ / Journal の3ファイルです

4	本日のまとめ	
3	パフォーマンスに効く設定	
2	Write の内部動作	
1	Read の内部動作	

Read: Bufferが小さいと

Read: Bufferを効率よく使う

Write: Bufferサイズより効く設定がある

Write: I/O を分散させる

IRIS.WIJ

Journal

Read

O

User

Write

Write **Daemon**

Write Daemon

Journal Daemon

パフォーマンス測定ツール mgstat

iris mgstat

- D
- InterSystems Documentation

https://docs.intersystems.com > csp

Monitoring Performance Using ^mgstat

This chapter describes the 'mgstat utility, a tool for collecting basic performance data.

InterSystems

https://jp.community.intersystems.com > post > パフォ...

パフォーマンス低下時の情報収集ツールについて

1) の **mgstat** により、データベースに対するアクセス量が取得でき、2) によりパフォーマンス 低下 時、コンピュータのどの資源が不足しているかの判別の材料になります。

パフォーマンスに効く設定 まとめ

Read パフォーマンス向上には Global Buffer サイズを強化しましょう

Write パフォーマンス向上には ディスク性能強化&別ドライブに分散しましょう

> パフォーマンス測定には mgstat ツールを利用しましょう

4	本日のまとめ
3	パフォーマンスに効く設定
2	Write の内部動作
1	Read の内部動作

本日のまとめ

各種ツールで現在のパフォーマンスを確認し システムのボトルネックを把握しましょう

IRIS は多くのディスクアクセスを伴うため Global Buffer を最大限に利用し ディスク I/Oを抑えましょう

ありがとうございました