Designing Incentives for Multitasking Agents: Evidence from Payments to Physicians in England

Filippo Paternollo (Columbia) Pietro Tebaldi (Columbia) Andre Veiga (Imperial)

CEPR-TSE Health Economics Conference, June 2025

Incentive Design in Principal-Agent Problems

- Many incentive design problems involve multi-tasking, i.e., tasks are complements / substitutes
 - \blacktriangleright doctor scans for illness A \rightarrow easier to also scan for B
 - lacktriangle teacher spends more time on subject A ightarrow harder to increase student scores in B
- ▶ Well developed theory since Holmstrom and Milgrom [1991]
- ► Empirics have lagged behind:
 - ightharpoonup counterfactuals require interaction between pairs of outcomes ightharpoonup of parameters grows rapidly with number of tasks
 - We prove identification but it requires
 - aggregate variation in incentives
 - cross-sectional variation across agents in exposure to tasks
 - ightharpoonup most applied work focuses on testing

This Paper

- ► Empirically tractable model of multitasking
- ▶ Proof of sufficient conditions for identification
- ► Application to Quality of Outcomes Framework (QOF) in England
 - world's largest pay-for-performance scheme in primary care
- Strong evidence of
 - physicians responding to financial incentives
 - ► interactions between indicators (multitasking)
- Counterfactuals:
 - ► removal of QOF: payer's utility ↓ by 5%
 - ▶ optimal re-design: payer's utility ↑ by 3%

Roadmap

- Setting & Data
- 2 Model
- Identification & Estimation
- 4 Estimates & GOF
- 5 Counterfactuals (preliminary)
- Conclusion

GP clinics (GPCs)

- ► Approximately 8000 GPCs in England
- Provide prescriptions, minor interventions, referral to secondary care
- Zero prices to patients
- Revenue:
 - $ightharpoonup \approx 75\%$ capitation (# of individuals registered, very mild risk adjustment)
 - ightharpoonup pprox 25% financial incentives, mainly from QOF

Quality of Outcomes Framework (QOF)

- Started 2004; several changes over time
- ▶ Gives GPCs yearly financial incentives to perform tasks ("indicators"), e.g.:
 - ightharpoonup DM11: % of diabetes patients in whom the last glycohaemoglobin IFCC-HbA1c \leq 64 mmol/mol
 - ▶ PAD4: % of patients with peripheral arterial disease taking aspirin or an alternative anti-platelet
- ▶ Voluntary participation (95.1% in 2019)
- ightharpoonup Total payments pprox £1B / year
- ightharpoonup Electronic record-keeping ightarrow minimal errors / cheating
- ▶ We focus on 40 "truly clinical" indicators

Data

- ▶ NHS public data covering 2009-2019
- ► GPC *i*, indicator *j*, year *t*
- Achievement y_{ijt}
- ▶ GPC covariates x_{it} (number of doctors in the clinic, average age, share of fully qualified physicians)
- \triangleright Nr of relevant patients n_{ijt} (diabetics, asthmatics, etc)
- Incentives for each indicator over time

Piecewise linear incentives

- ▶ Success rate $y_{ijt} \in [0,1]$
- lacktriangle Revenue per patient has slope $lpha_{jt}$ for $y_{ijt} \in \left[\underline{y_{jt}}, \overline{y_{jt}} \right]$
- ▶ DM11, Practice with 300 patients:

Piecewise linear incentives

- ▶ Success rate $y_{ijt} \in [0,1]$
- lacktriangle Revenue per patient has slope $lpha_{jt}$ for $y_{ijt} \in \left[\underline{y_{jt}}, \overline{y_{jt}} \right]$
- ► DM11, Practice with 300 patients:

Bunching suggests strong response to financial incentives

For all indicators, distribution of $y_{ijt} - \overline{y_{it}}$

- Achievement above $\overline{y_{jt}}$ suggests non-financial motivation and/or complementarities between tasks
 - ▶ there is significant heterogeneity in bunching across indicators

Summary of Reduced Form Evidence (details in the paper)

- ► Practices respond to
 - incentives
 - ▶ incentives × exposure (n. of patients)
- \blacktriangleright Cross-indicator interactions: $\uparrow\uparrow$ incentives for $j \Rightarrow \Delta$ outcomes of k, ceteris paribus

◆ Details

Roadmap

- Setting & Data
- Model
- Identification & Estimation
- 4 Estimates & GOF
- Counterfactuals (preliminary)
- 6 Conclusion

Simplified model: 1 task

- ▶ 1 GPC
- ▶ 1 Task
- n identical patients
- ▶ GPC chooses achievement $y \in [0,1]$
 - ightharpoonup assume n large ightharpoonup negligible noise in y
 - abstract from sequential nature of tasks
- ► GPC utility:

$$U(y) = n\rho(y) + n\theta y - n\lambda y^2$$

► Financial Return (observed)

Simplified model: 1 task

- ▶ 1 GPC
- ▶ 1 Task
- n identical patients
- ▶ GPC chooses achievement $y \in [0,1]$
 - ightharpoonup assume n large ightharpoonup negligible noise in y
 - abstract from sequential nature of tasks
- ► GPC utility:

$$U(y) = n\rho(y) + n\theta y - n\lambda y^2$$

- ► Financial Return (observed)
- ► Non-financial return
 - ightharpoonup expect $\theta > 0$ to explain $y > \overline{y}$

Simplified model: 1 task

- ▶ 1 GPC
- ▶ 1 Task
- n identical patients
- ▶ GPC chooses achievement $y \in [0,1]$
 - ightharpoonup assume *n* large \rightarrow negligible noise in *y*
 - abstract from sequential nature of tasks
- ► GPC utility:

$$U(y) = n\rho(y) + n\theta y - n\lambda y^2$$

- ► Financial Return (observed)
- ► Non-financial return
 - ightharpoonup expect $\theta > 0$ to explain $y > \overline{y}$
- Direct Costs

Simplified model: 2 tasks

- ightharpoonup Achievement $y = (y_1, y_2)$
- ▶ Number of patients n_1, n_2
- ► GPC utility:

$$U(y) = n_1 \rho_1(y_1) + n_2 \rho_2(y_2) + n_1 \theta_1 y_1 + n_2 \theta_2 y_2 - n_1 \lambda_1 y_1^2 - n_2 \lambda_2 y_2^2 - 2(n_1 + n_2) \lambda_{12} y_1 y_2$$

- ► Financial Return, Non-financial return, Direct Costs
- Complementarities
 - $ightharpoonup \lambda_{12} > 0$: tasks are "substitutes"
 - $\lambda_{12} < 0$: tasks are "complements"

Many tasks (J > 2)

- Achievement $y = (y_1, \dots, y_j, \dots, y_J)$
- ► GPC utility

$$U(y) = \sum_{j} n_{j} \left(\rho_{j}(y_{j}) + \theta_{j} y_{j} \right) - y \Lambda y^{T}$$

where

$$\Lambda = \begin{bmatrix} n_1 \lambda_1 & n_2 \lambda_{12} & \cdots & n_J \lambda_{1J} \\ n_1 \lambda_{12} & n_2 \lambda_2 & & & \\ \vdots & & \ddots & & \\ n_1 \lambda_{1J} & n_2 \lambda_{2J} & & n_J \lambda_J \end{bmatrix}$$

- Implies constant returns to scale
- Assume GPCs
 - have the same cost matrix Λ
 - \triangleright Differ in non-financial returns θ

Roadmap

- Setting & Data
- 2 Model
- Identification & Estimation
- 4 Estimates & GOF
- 5 Counterfactuals (preliminary)
- Conclusion

Variation

- ightharpoonup Exogenous variation in aggregate incentives (changes in y, \overline{y}, α over time)
- Variation patient composition:
 - ► Clinic A: 90 diabetics, 10 asthmatics
 - ► Clinic B: 10 diabetics, 90 asthmatics
 - ► Suppose payments rewarding diabetics health ↑↑
 - this incentive is most important for A
 - Compare asthmatic patients in A vs. B
 - If asthmatics health improves more in A, diabetes and asthma care are complements

Endogenous patient composition

- ▶ Patient composition might be endogenous
 - ▶ Patients might choose GPCs particularly motivated to treat their illness
- ▶ We will estimate unobserved GPC quality in each illness using a demand model
 - ▶ disease prevalence in the region is an IV for patient composition at each GPC
- ▶ Let $z_{i\ell}$ be distance from location ℓ to GPC i
- ▶ In a location ℓ , a patient of illness j has utility for GPC i in year t of:

$$u_{i\ell jt} = -\eta_j \log(z_{i\ell}) + \mu_j x_{it} + \xi_{ijt} + \varepsilon_{ij\ell t}$$

- ▶ Logit market shares are $P_{ij\ell t}$
- ▶ If $N_{t\ell j}$ is prevalence of illness j in location ℓ , observed number of patients is

$$n_{ijt} = \sum_{\ell} N_{t\ell j} P_{ij\ell t}$$

- \blacktriangleright We recover unobserved quality ξ_{iit}
 - \blacktriangleright which is indeed correlated with y_{ijt} (i.e., composition is endogenous) \blacksquare

Endogenous patient composition

- ► Then, we allow θ_{ijt} to depend on
 - observed GPC characteristics x_{ii}
 - ightharpoonup unobserved quality ξ_{ijt}

$$\theta_{ijt} \sim F\left(\theta \mid x_{it}, \xi_{ijt}\right)$$

- \blacktriangleright We also allow for correlation between elements of the vector θ_{it}
- ▶ We prove that Λ and $F(\theta \mid x_{it}, \xi_{ijt})$ are separately identified

Estimation

- ightharpoonup First, we obtain ξ_{ijt}
- Assume observed y_{ijt} is the optimal achievement (up to integers)
- ► Use the linear-quadratic FOCs
 - $ightharpoonup rac{\partial U_{it}}{\partial y_{ijt}}$ is linear in θ_{ijt}
- \triangleright Can derive the (discrete-continuous) distribution of θ_{ijt} analytically \bullet Details
- ► We parameterize

$$\theta_{it} \sim \mathcal{N}\left(\beta_{\mathsf{x}} \mathsf{x}_{it} + \beta_{\xi} \xi_{it}, \Sigma\right)$$

- We estimate:
 - \triangleright elements λ_{ii} (in Λ) fully flexibly
 - vectors β_x, β_ξ .
 - ightharpoonup diagonal elements of Σ flexibly and otherwise allow for simple correlations via a factor structure.
- ▶ Estimate by MLE (\approx 1060 parameters)

Roadmap

- Setting & Data
- Model
- Identification & Estimation
- Estimates & GOF
- 5 Counterfactuals (preliminary)
- Conclusion

Goodness of Fit

Cost matrix A

► Most indicators are complements (yellow / blue)

Roadmap

- Setting & Data
- Model
- 3 Identification & Estimation
- Estimates & GOF
- Counterfactuals (preliminary)
- 6 Conclusion

Shutting Down QOF: achievement

Optimal incentive design

- \triangleright b_j are health benefits net of medical costs for indicator j (observed, in £, from NICE guidelines)
 - ▶ known only for 20 indicators (out of 40)
- Fix y_j and set $\overline{y_j} = 1$
- lacktriangle Choose slopes $lpha=(lpha_1,lpha_2,\dots)$ to maximize the payer's objective

$$W = \sum_{i,j,t} n_{ijt} \int (y_{ijt}b_j - \rho_{jt}(y_{ijt} \mid \alpha_{jt})) f(\theta_{ijt} \mid \tilde{x}_i, \xi_{ijt}) d\theta_{ijt}$$

where y_{iit} is optimally chosen by GPCs in response to α

- ightharpoonup Computational feasibility: we k-means cluster GPCs into 20 groups by x_i, ξ_i, n_{ijt}
 - ► Maximize approximate W.
 - ► At the solution, compute outcomes for all GPCs

Optimal incentives

	No QOF Δ from QOF	QOF	Optimized QOF Δ from QOF
Practice payoffs	-348	3,240	164
	-11%		5%
QOF payments	-353	353	199
	-100%		56%
Medical costs	-1,431	43,189	683
	-3%		2%
Health benefits	-5,553	131,565	3,857
	-4%		3%
Welfare	-4,117	91,264	3,139
	-5%		3%

- ► Shutting down QOF: payer's objective ↓↓ by 5%
- ▶ Optimizing the QOF: payer's objective ↑↑ by 3%

Roadmap

- Setting & Data
- Model
- Identification & Estimation
- 4 Estimates & GOF
- 5 Counterfactuals (preliminary)
- Conclusion

Next Steps

▶ Integrate into the estimation indicators removing during sample period

Conclusion

- ► Empirically tractable principal-agent model with multitasking
- ▶ Sufficient conditions for identification relying on variation in exposure to different tasks
- ► Apply model to QOF program in England
- Ample evidence of response to incentives and multitasking
- Model allows counterfactuals:
 - Program generates large welfare gains
 - Scope for optimization of incentives accounting for multitasking

Thank you!

a.veiga@imperial.ac.uk

Additional slides:

Literature

- ▶ Empirical models of multitasking: Slade [1996], Buser and Peter [2012], Hong, Hossain, List, and Tanaka [2018], Goes, Ilk, Lin, and Zhao [2018], Manthei and Sliwka [2019], Rodríguez-Lesmes and Vera-Hernández [2021], Kim, Sudhir, and Uetake [2022], Dinerstein and Opper [2022]
 - We go beyond testing.
 - lacktriangle We quantify complementarities ightarrow can consider counterfactual designs
- Pay-for-performance in healthcare: Gaynor et al. [2004], Dumont et al. [2008], Mullen et al. [2010], Choné and Ma [2011], Clemens and Gottlieb [2014], Li et al. [2014], Einav et al. [2018], Gupta [2021], Rodríguez-Lesmes and Vera-Hernández [2021], Einav et al. [2022], Gaynor et al. [2023], Dunn et al. [2024], Shi [2024, and many more]
 - ► We incorporate multitasking
 - ► We focus on primary care in non-US context

References

- Thomas Buser and Noemi Peter, Multitasking, Experimental economics, 15(4):641-655, 2012.
- Philippe Choné and Ching-to Albert Ma. Optimal health care contract under physician agency. Annals of Economics and Statistics/Annales d'Économie et de Statistique, pages 229–256, 2011.
- Jeffrey Clemens and Joshua D Gottlieb. Do physicians' financial incentives affect medical treatment and patient health? American Economic Review, 104(4):1320–1349, 2014.
- Michael Dinerstein and Isaac M Opper. Screening with multitasking: Theory and empirical evidence from teacher tenure reform. Technical report, National Bureau of Economic Research. 2022.
- Etienne Dumont, Bernard Fortin, Nicolas Jacquemet, and Bruce Shearer. Physiciansâ multitasking and incentives: Empirical evidence from a natural experiment. *Journal of health economics*, 27(6):1436–1450, 2008.
- Abe Dunn, Joshua D Gottlieb, Adam Hale Shapiro, Daniel J Sonnenstuhl, and Pietro Tebaldi. A denial a day keeps the doctor away. The Quarterly Journal of Economics. 139(1):187–233. 2024.
- Liran Einav, Amy Finkelstein, and Neale Mahoney. Provider incentives and healthcare costs: Evidence from long-term care hospitals. Econometrica. 86(6):2161–2219, 2018.
- Liran Einav, Amy Finkelstein, Yunan Ji, and Neale Mahoney. Voluntary regulation: Evidence from medicare payment reform. The quarterly journal
- of economics, 137(1):565–618, 2022.

 Martin Gaynor, James B Rebitzer, and Lowell J Taylor. Physician incentives in health maintenance organizations. Journal of Political Economy.
- 112(4):915–931, 2004.

 Martin Gavnor, Niray Mehta, and Seth Richards-Shubik. Optimal contracting with altruistic agents: Medicare payments for dialysis drugs.
- American Economic Review, 113(6):1530–1571, 2023.
 Paulo B Goes, Noyan Ilk, Mingfeng Lin, and J Leon Zhao. When more is less: Field evidence on unintended consequences of multitasking.
- Management Science, 64(7):3033–3054, 2018.

 Atul Gupta, Impacts of performance pay for hospitals: The readmissions reduction program. American Economic Review, 111(4):1241–1283, 2021.
- Bengt Hollmstrom and Paul Milgrom. Multitask principal—agent analyses: Incentive contracts, asset ownership, and job design. The Journal of Law, Economics. and Organization. 7(special issue):24–52. 1991.
- Fuhai Hong, Tanjim Hossain, John A List, and Migiwa Tanaka. Testing the theory of multitasking: Evidence from a natural field experiment in
- chinese factories. International Economic Review, 59(2):511–536, 2018.

 Minkyung Kim, K Sudhir, and Kosuke Uetake. A structural model of a multitasking salesforce: Incentives, private information, and job design.
- Management Science, 68(6):4602–4630, 2022.

 Jinhu Li, Jeremiah Hurley, Philip DeCicca, and Gioia Buckley. Physician response to pay-for-performance: Evidence from a natural experiment.
 Health economics, 23(8):962–978, 2014.
- Kathrin Manthei and Dirk Śliwka. Multitasking and subjective performance evaluations: Theory and evidence from a field experiment in a bank.
- Management Science, 65(12):5861–5883, 2019.
 Kathleen J Mullen, Richard G Frank, and Meredith B Rosenthal. Can you get what you pay for? pay-for-performance and the quality of health8ahe8

Analytic MLE

► For instance, in the 2D case:

$$\frac{\partial U}{\partial y_1} = n_1 \rho_1'(y_1) + n_1 \theta_1 - 2n_1 \lambda_1 y_1 - (n_1 + n_2) \lambda_{12} y_2$$

▶ If data is $y_1 = 1$, and knowing $\rho'_1(1) = 0$, then

$$\frac{\partial U}{\partial y_1}|_{y_1=1} \ge 0 \Leftrightarrow \theta_1 \ge 2\lambda_1 + \frac{n_1 + n_2}{n_1}\lambda_{12}y_2$$

▶ If $y_1 \in (\overline{y_1}, 1)$, the FOC holds, so

$$\frac{\partial U}{\partial y_1} = 0 \Leftrightarrow \theta_1 = 2\lambda_1 y_1 + \frac{n_1 + n_2}{n_1} \lambda_{12} y_2 - \rho_1'(y_1)$$

▶ Bunching: $y_1 = \overline{Y_1}$. This implies

$$n_1\rho_1'\left(\overline{Y_1}\right)+n_1\theta_1-2n_1\lambda_1\overline{Y_1}-\left(n_1+n_2\right)\lambda_{12}y_2\geq 0$$

$$n_1\theta_1 - 2n_1\lambda_1\overline{Y_1} - (n_1 + n_2)\lambda_{12}y_2 \le 0$$

Summary Reduced Form

	Extra achievement indicator j (mean = 0.43, std = 0.11)					
	OLS	OLS	OLS	OLS	IV	
Payment per patient	0.117	0.278	0.302	0.289	0.24	
(std = 0.09)	(0.001)	(0.003)	(0.003)	(0.004)	(0.004)	
Share of patients		-0.541	-0.443	-0.425	0.084	
(std = 0.04)		(0.009)	(0.008)	(0.009)	(0.011)	
Share of patients × payment per patient		3.008	1.62	1.684	3.152	
(std = 0.004)		(0.091)	(0.089)	(0.091)	(0.109)	
Controls			Yes	Yes	Yes	
FE		Ind.	Ind., Practice	Ind., Practice	Ind., Practice	
R-squared	0.012	0.285	0.362	0.363		
Observations	2145595	2145595	2145595	2014257	2005257	

Demand residual is correlated with achievement

Distance shifts demand

Practices respond to incentives: heterogeneity

