Introduction to Machine Learning for Social Science

Class 5: Logistic Regression

Rochelle Terman

Postdoctoral Fellow Center for International Security Cooperation Stanford University

January 18th, 2018

Updates:

HW 2: Assigned 1/23, Due 1/30

Goal: predict Iraq vote (probability of yes, classify senators as for and against)

Method: Linear Probability Model & Logistic regression

Evaluation:

- 1) Accuracy
- 2) Precision
- 3) Recall

Two Estimation Goals

Estimate:

Two Estimation Goals

Estimate:

- Probability of voting yes: $\Pr(\mathsf{Vote}_i = 1 | x_i)$

Two Estimation Goals

Estimate:

- Probability of voting yes: $Pr(\widehat{\text{Vote}_i} = 1 | x_i)$
- Classification of vote: $\widehat{\mathsf{Vote}_i} = I(\mathsf{Pr}(\widehat{\mathsf{Vote}_i} = 1 | \pmb{x}_i) > t)$, where t is a threshold

$$Vote_i = \boldsymbol{\beta} \cdot \boldsymbol{x}_i + \epsilon_i$$

$$\begin{aligned}
& \text{Vote}_i &= \boldsymbol{\beta} \cdot \boldsymbol{x}_i + \epsilon_i \\
& \text{Pr}(\widehat{\text{Vote}_i = 1} | \boldsymbol{X}_i) &= \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i
\end{aligned}$$

$$\begin{array}{rcl} \mathsf{Vote}_i &=& \boldsymbol{\beta} \cdot \boldsymbol{x}_i + \epsilon_i \\ \widehat{\mathsf{Pr}}(\widehat{\mathsf{Vote}_i} = 1 | \boldsymbol{X}_i) &=& \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i \\ \widehat{\mathsf{Vote}}_i &=& 1 \text{ if } \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i > t \end{array}$$

$$\begin{array}{rcl} \mathsf{Vote}_i &=& \boldsymbol{\beta} \cdot \boldsymbol{x}_i + \epsilon_i \\ \mathsf{Pr}(\widehat{\mathsf{Vote}_i} = 1 | \boldsymbol{X}_i) &=& \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i \\ \widehat{\mathsf{Vote}}_i &=& 1 \text{ if } \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i > t \\ \widehat{\mathsf{Vote}}_i &=& 0 \text{ if } \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i \leq t \end{array}$$

$$\begin{array}{rcl} \mathsf{Vote}_i &=& \boldsymbol{\beta} \cdot \boldsymbol{x}_i + \epsilon_i \\ \mathsf{Pr}(\widehat{\mathsf{Vote}_i} = 1 | \boldsymbol{X}_i) &=& \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i \\ \widehat{\mathsf{Vote}}_i &=& 1 \text{ if } \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i > t \\ \widehat{\mathsf{Vote}}_i &=& 0 \text{ if } \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i \leq t \end{array}$$

(Potential) Problems with Linear Probability Model

- Probabilities greater than 1, less than 0
- Potentially implausible relationship between covariates and response

(Potential) Problems with Linear Probability Model

- Probabilities greater than 1, less than 0
- Potentially implausible relationship between covariates and response

Solution: Logistic Regression: $0 \le f(X) \le 1$

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.

- $\log_e z = x$ if $e^x = z$.
- We'll call log_e natural logarithm. And we'll assume $log = log_e$

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

$$-\exp(\log(a)) = e^{\log(a)} = a$$

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

- $\exp(\log(a)) = e^{\log(a)} = a$
- $\log(a \times b) = \log(a) + \log(b)$

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

- $-\exp(\log(a)) = e^{\log(a)} = a$
- $\log(a \times b) = \log(a) + \log(b)$
- $-\log(\frac{a}{b}) = \log(a) \log(b)$

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

- $exp(log(a)) = e^{log(a)} = a$
- $\log(a \times b) = \log(a) + \log(b)$
- $-\log(\frac{a}{b}) = \log(a) \log(b)$
- $-\log(a^b) = b\log(a)$

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

- $-\exp(\log(a)) = e^{\log(a)} = a$
- $\log(a \times b) = \log(a) + \log(b)$
- $-\log(\frac{a}{b}) = \log(a) \log(b)$
- $-\log(a^b) = b\log(a)$
- $-\log(1) = 0$

Logarithm log is a class of functions.

- $\log_e z = x$ if $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log = \log_e$
- $\log e = 1$ (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

- $-\exp(\log(a)) = e^{\log(a)} = a$
- $\log(a \times b) = \log(a) + \log(b)$
- $-\log(\frac{a}{b}) = \log(a) \log(b)$
- $-\log(a^b) = b\log(a)$
- $-\log(1) = 0$

Call $p_i = \Pr(\mathsf{Vote}_i = 1 | x_i)$

$$\mathsf{Call} \; p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \boldsymbol{x}_i)$$

 $Vote_i \sim Bernoulli(p_i)$

Call
$$p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | oldsymbol{x}_i)$$

$$\mathsf{Vote}_i \ \sim \ \mathsf{Bernoulli}(p_i)$$
 $\hat{p}_i \ = \ oldsymbol{eta} \cdot oldsymbol{x}_i$

$$\begin{array}{ccc} \mathsf{Call} \; p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \pmb{x}_i) \\ & \mathsf{Vote}_i \; \sim \; \mathsf{Bernoulli}(p_i) \\ & \hat{p}_i \; = \; \boldsymbol{\beta} \cdot \pmb{x}_i \\ & \mathsf{log}\left(\frac{\hat{p}_i}{1 - \hat{p}_i}\right) \; = \; \boldsymbol{\beta} \cdot \pmb{x}_i \end{array}$$

$$\mathsf{Call} \; p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \boldsymbol{x}_i)$$

$$\begin{array}{rcl} \mathsf{Vote}_i & \sim & \mathsf{Bernoulli}(p_i) \\ \hat{p_i} & = & \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \mathsf{log}\left(\frac{\hat{p_i}}{1 - \hat{p_i}}\right) & = & \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \\ \hat{p_i} & = & \frac{\mathsf{exp}(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)}{1 + \mathsf{exp}(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)} \end{array}$$

$$\mathsf{Call} \; p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \boldsymbol{x}_i)$$

$$\begin{aligned} \mathsf{Vote}_i &\sim \; \mathsf{Bernoulli}(p_i) \\ \hat{p}_i &= \; \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \mathsf{log}\left(\frac{\hat{p}_i}{1 - \hat{p}_i}\right) &= \; \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \hat{p}_i &= \; \frac{\exp(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)}{1 + \exp(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)} \\ &= \; \frac{1}{1 + \exp(-\boldsymbol{\beta} \cdot \boldsymbol{x}_i)} \end{aligned}$$

$$\mathsf{Call} \ p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \boldsymbol{x}_i)$$

$$\begin{array}{rcl} \mathsf{Vote}_i & \sim & \mathsf{Bernoulli}(p_i) \\ \hat{p}_i & = & \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \mathsf{log}\left(\frac{\hat{p}_i}{1 - \hat{p}_i}\right) & = & \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \\ \hat{p}_i & = & \frac{\mathsf{exp}(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)}{1 + \mathsf{exp}(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)} \\ & = & \frac{1}{1 + \mathsf{exp}(-\boldsymbol{\beta} \cdot \boldsymbol{x}_i)} \end{array}$$

Important functions:

$$\mathsf{Call} \; p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \boldsymbol{x}_i)$$

$$\begin{aligned} \mathsf{Vote}_i &\sim \; \mathsf{Bernoulli}(p_i) \\ \hat{p}_i &= \; \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \mathsf{log}\left(\frac{\hat{p}_i}{1 - \hat{p}_i}\right) &= \; \boldsymbol{\beta} \cdot \boldsymbol{x}_i \\ \hat{p}_i &= \; \frac{\mathsf{exp}(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)}{1 + \mathsf{exp}(\boldsymbol{\beta} \cdot \boldsymbol{x}_i)} \\ &= \; \frac{1}{1 + \mathsf{exp}(-\boldsymbol{\beta} \cdot \boldsymbol{x}_i)} \end{aligned}$$

Important functions:

$$odds(p) = \frac{p}{1-p}$$

$$\mathsf{Call} \; p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \boldsymbol{x}_i)$$

$$\begin{array}{rcl} \mathsf{Vote}_i & \sim & \mathsf{Bernoulli}(p_i) \\ \hat{p}_i & = & \beta \cdot \pmb{x}_i \\ \mathsf{log}\left(\frac{\hat{p}_i}{1 - \hat{p}_i}\right) & = & \beta \cdot \pmb{x}_i \\ \\ \hat{p}_i & = & \frac{\exp(\beta \cdot \pmb{x}_i)}{1 + \exp(\beta \cdot \pmb{x}_i)} \\ & = & \frac{1}{1 + \exp(-\beta \cdot \pmb{x}_i)} \end{array}$$

Important functions:

$$\operatorname{odds}(p) = \frac{p}{1-p}$$
 $\log \operatorname{odds} \operatorname{or} \operatorname{logit}(p) = \log \left(\frac{p}{1-p}\right)$

$$\mathsf{Call} \; p_i = \mathsf{Pr}(\mathsf{Vote}_i = 1 | \boldsymbol{x}_i)$$

$$\begin{array}{rcl} \mathsf{Vote}_i & \sim & \mathsf{Bernoulli}(p_i) \\ \hat{p}_i & = & \beta \cdot \pmb{x}_i \\ \mathsf{log}\left(\frac{\hat{p}_i}{1 - \hat{p}_i}\right) & = & \beta \cdot \pmb{x}_i \\ \hat{p}_i & = & \frac{\exp(\beta \cdot \pmb{x}_i)}{1 + \exp(\beta \cdot \pmb{x}_i)} \\ & = & \frac{1}{1 + \exp(-\beta \cdot \pmb{x}_i)} \end{array}$$

Important functions:

$$\operatorname{odds}(p) = \frac{p}{1-p}$$

$$\operatorname{log odds or logit}(p) = \operatorname{log}\left(\frac{p}{1-p}\right)$$

$$\operatorname{logistic function or logit}^{-1}(a) = \frac{1}{1+\exp(-a)}$$

R Code (Section 3)

Linear Regression: $\beta_1 \rightsquigarrow$ average change in Y with one-unit increase in X_1 .

Linear Regression: $\beta_1 \rightsquigarrow$ average change in Y with one-unit increase in X_1 .

Logistic Regression: $\beta_1 \rightsquigarrow$ average change in *log odds* with one-unit increase in X_1

Linear Regression: $\beta_1 \rightsquigarrow$ average change in Y with one-unit increase in X_1 .

Logistic Regression: $\beta_1 \leadsto$ average change in log odds with one-unit increase in X_1

- Non-linear relationship between X and p(X).

Linear Regression: $\beta_1 \rightsquigarrow$ average change in Y with one-unit increase in X_1 .

Logistic Regression: $\beta_1 \leadsto$ average change in log odds with one-unit increase in X_1

- Non-linear relationship between X and p(X).
- Amount that p(X) changes due to one-unit change in X will depend on current value of X.

Linear Regression: $\beta_1 \rightsquigarrow$ average change in Y with one-unit increase in X_1 .

Logistic Regression: $\beta_1 \leadsto$ average change in log odds with one-unit increase in X_1

- Non-linear relationship between X and p(X).
- Amount that p(X) changes due to one-unit change in X will depend on current value of X.
- Regardless of value of X, if $\beta_1 > 0$, then increasing $X \leadsto$ increasing $\rho(X)$.

Linear Regression: $\beta_1 \rightsquigarrow$ average change in Y with one-unit increase in X_1 .

Logistic Regression: $\beta_1 \leadsto$ average change in $log\ odds$ with one-unit increase in X_1

- Non-linear relationship between X and p(X).
- Amount that p(X) changes due to one-unit change in X will depend on current value of X.
- Regardless of value of X, if $\beta_1 > 0$, then increasing $X \leadsto$ increasing $\rho(X)$.
- odds ratio: e^{β_1} , represents how the *odds* change with a 1 unit increase in β_1 holding all other variables constant. Remains constant for any value of X.

Maximum Likelihood Estimation:

- O: Observed outcomes

- O: Observed outcomes
- θ : Parameters describing the data generating process.

- O: Observed outcomes
- θ : Parameters describing the data generating process.
- Probability: $P(0|\theta)$.

- O: Observed outcomes
- θ : Parameters describing the data generating process.
- Probability: $P(0|\theta)$. But we don't know θ !

- O: Observed outcomes
- θ : Parameters describing the data generating process.
- Probability: $P(0|\theta)$. But we don't know θ !
- Likelihood: $L(\theta|O) = P(0|\theta)$

- O: Observed outcomes
- θ : Parameters describing the data generating process.
- Probability: $P(0|\theta)$. But we don't know θ !
- Likelihood: $L(\theta|O) = P(0|\theta)$
- Find value of coefficients, $oldsymbol{eta}^{\sf max}$ that maximize likelihood \leadsto numerical optimization

Maximum Likelihood Estimation:

- O: Observed outcomes
- θ : Parameters describing the data generating process.
- Probability: $P(0|\theta)$. But we don't know θ !
- Likelihood: $L(\theta|O) = P(0|\theta)$
- Find value of coefficients, $oldsymbol{eta}^{\sf max}$ that maximize likelihood \leadsto numerical optimization

We will use the package glm to fit the model

Predicting with a Logistic Regression

$$\widehat{p}_{i} = \frac{1}{1 + \exp(-\widehat{\beta}x_{i})}$$

$$\widehat{\text{Vote}}_{i} = 1 \text{ if } \widehat{p}_{i} > t$$

$$\widehat{\text{Vote}}_{i} = 0 \text{ if } \widehat{p}_{i} \leq t$$

R Code

Evaluating In Sample Model Fit

- Evaluate fit with gold standard data
- In sample: dependent variable of model
- Out of sample: held out data, "test" data

	Actual Label	
Guess	Yea	Nay
Yea	True Yea	False Yea
Nay	False Nay	True Nay

	Actual Label	
Guess	Yea	Nay
Yea	True Yea	False Yea
Nay	False Nay	True Nay

$$\begin{array}{rcl} \mathsf{Accuracy} &= & \frac{\mathsf{TrueYea} + \mathsf{TrueNay}}{\mathsf{TrueYea} + \mathsf{TrueNay} + \mathsf{FalseYea} + \mathsf{FalseNay}} \end{array}$$

Actual Label	
Yea	Nay
True Yea	False Yea
False Nay	True Nay
	Yea True Yea

$$\begin{array}{rcl} \mathsf{Accuracy} &=& \frac{\mathsf{TrueYea} + \mathsf{TrueNay}}{\mathsf{TrueYea} + \mathsf{TrueNay} + \mathsf{FalseYea} + \mathsf{FalseNay}} \\ \mathsf{Precision} &=& \frac{\mathsf{True} \; \mathsf{Yea}}{\mathsf{True} \; \mathsf{Yea} \; + \mathsf{False} \; \mathsf{Yea}} \end{array}$$

	Actual Label	
Guess	Yea	Nay
Yea	True Yea	False Yea
Nay	False Nay	True Nay

$$\begin{array}{rcl} \mathsf{Accuracy} &=& \frac{\mathsf{TrueYea} + \mathsf{TrueNay}}{\mathsf{TrueYea} + \mathsf{TrueNay} + \mathsf{FalseYea} + \mathsf{FalseNay}} \\ \mathsf{Precision} &=& \frac{\mathsf{True} \; \mathsf{Yea}}{\mathsf{True} \; \mathsf{Yea} + \mathsf{False} \; \mathsf{Yea}} \\ \mathsf{Recall} &=& \frac{\mathsf{True} \; \mathsf{Yea}}{\mathsf{True} \; \mathsf{Yea} + \mathsf{False} \; \mathsf{Nay}} \end{array}$$

Actual Label	
Yea	Nay
True Yea	False Yea
False Nay	True Nay
	Yea True Yea

Accuracy =
$$\frac{\text{TrueYea} + \text{TrueNay}}{\text{TrueYea} + \text{TrueNay} + \text{FalseYea} + \text{FalseNay}}$$

$$\text{Precision} = \frac{\text{True Yea}}{\text{True Yea} + \text{False Yea}}$$

$$\text{Recall} = \frac{\text{True Yea}}{\text{True Yea} + \text{False Nay}}$$

$$F = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

R Code

Key Terms:

- Classification
- Linear Probability Model
- Logit function and logit inverse function, Logistic regression
- Accuracy and the Precision/Recall Tradeoff

Key Techniques and R Functions

- glm
- Natural logarithm log
- subset , cbind
- table