Math 3500 Exercise Sheet

26 November, 2014

1. Consider the function $h:[0,1]\to\mathbb{R}$ given by

$$h(x) = \begin{cases} 1 & \text{for } 0 \le x < 1 \\ 2 & \text{for } x = 1 \end{cases}$$
.

- (a) Show that L(f, P) = 1 for every partition P of [0, 1].
- (b) Construct a partition P for which U(f, P) < 1 + 1/10.
- (c) Given $\epsilon > 0$, construct a partition P_{ϵ} for which $U(f, P_{\epsilon}) < 1 + \epsilon$.
- 2. Decide which of the following conjectures is true and supply a short proof. For those that are not true, give a counterexample.
 - (a) If |f| is integrable on [a, b], then f is integrable on [a, b].
 - (b) Assume g is integrable and $g \ge 0$ on [a, b]. If g(x) > 0 for an infinite number of points $x \in [a, b]$, then $\int g > 0$.
 - (c) If g is continuous on [a,b] and $g \ge 0$ with $g(x_0) > 0$ for at least one point $x_0 \in [a,b]$, then $\int_a^b g > 0$.
 - (d) If $\int_a^b f > 0$, there is an interval $[c, d] \subseteq [a, b]$ and a $\delta > 0$ such that $f(x) \ge \delta$ for all $x \in [c, d]$.
- 3. Consider the function $f(x) = x^n$ on [0,1].
 - (a) For any points x_{i-1} and x_i with $0 \le x_{i-1} < x_i < 1$, argue that

$$x_{i-1}^n \le \frac{x_{i-1}^n + x_{i-1}^{n-1} x_i + \dots + x_{i-1} x_i^{n-1} + x_i^n}{n+1} \le x_i^n.$$

(b) Argue that for any partition P of [0,1], we have $L(f,P) \leq \frac{1}{n+1} \leq U(f,P)$.

1

(c) Conclude that $\int_0^1 x^n dx = \frac{1}{n+1}$. (Note: why is it not necessary to prove $f(x) = x^n$ is integrable?)

4. Prove the Cauchy-Schwarz inequality for integrals: $\left(\int_a^b fg\right)^2 \leq \left(\int_a^b f^2\right) \left(\int_a^b g^2\right)$. Hint: let $\alpha = \int_a^b g^2$ and $\beta = -\int_a^b fg$, and consider $\int_a^b (\alpha f + \beta g)^2$.

Hint for 2(b): recall Thomae's function

$$t(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{1}{n} & \text{if } x = \frac{m}{n} \text{ in lowest terms, and } n > 0 \ . \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

It turns out that t is integrable on [0,1] with $\int_0^1 t = 0$. To see this, note that L(f,P) = 0 for any partition P. Now consider the set $D_{\epsilon/2} = \{x \in [0,1] \mid t(x) \geq \epsilon/2\}$. Argue that this set is finite for all $\epsilon > 0$. From this observation it's possible to construct a partition P_{ϵ} such that $U(f,P_{\epsilon}) < \epsilon$. For details, see example 7.2.3 in the text.