

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 2: ELEKTRIZITÄT, MAGNETISMUS, OPTIK

Übungstitel:	Gitter,	Prisma		
Betreuer:	Thomas Jauk			
Gruppennum	nmer:	41	Vorbereitung Durchführung Protokoll	Σ
Name:	Tanja Ma	aier, Johannes Winkler		
Kennzahl:	033 678	Matrikelnummer	:11778750, 00760897	
Datum:	09. Oktober 2	2020	WS20	

1 Aufgabenstellung

Gitter:

- 1. Justieren des Spektrometers
- 2. Bestimming der Gitterkonstanten mittels Na-Dampflampe. Die Wellenlängen der gelben NA-Doppellinien sind 588.995 nm und 589.592 nm. Messung erfolgt in 2. Ordnungund wird 5 mal nach links und rechts ausgeführt. Auswertung durch Mittelwert und Standardabweichung. Bestimmung der Gitterkonstante durch Formel (1)
- 3. Besitmmung der Wellenlängen der gut sichtbaren Linien der Hg-Lampe. 5 Farben sollen dabei ausgewählt werden. Messungen erfolgen in 2. Ordnung einmal links und einmal rechts. Formel (1) wird zur Bestimmung der Wellenlängen genutzt.
- 4. Berechnung des Auflösevermögens des Gitters mit Formel (2)

Prisma:

- 1. Justieren des Spektrometers
- 2. Besitmmung des brechenden Winkels des Prismas durch Messung des Reflexionswinkels. Messung 5 mal links und 5 mal rechts. Statistische Auswertung mit Mittelwert und Standardabweichung. Formel 22
- 3. Bestimmung des Brechungsindex/Dispersionskurve $n(\lambda)$ des Prismas für 5 sichtbare Linien einer Hg-Lampe nach der Methode der minimalen Ablenkung. Messung links und rechts ausführen ($\delta = \omega/2$). Mit Hilfe der formel 17 kann der Brechungsindex für die jeweilige Spektrallinie berechnet werden. Dispersionskurve plotten! Fehlerbalken!

2 Grundlagen und Versuchsaufbau

$$\sin(\phi) = \frac{z \cdot \lambda}{g} \tag{1}$$

Auflösung des Gitters mit

$$\frac{\lambda}{\Delta\lambda} = \frac{b}{q} \tag{2}$$

Abbildung 1: Aufbau zur Messung mit dem Gitter.

Abbildung 2: Vermessung des Prismas.

3 Geräteliste

Tabelle 1: Liste der verwendeten Geräte

Bezeichnung	Inventarnummer	Unsicherheit
Na-Lampe		
Hg-Lampe		
Spektrometer		
Gitter		
Prisma		
Winkelmesser		\pm 0.1 $^{\circ}$
Maßband		$\pm~1~\mathrm{mm}$

4 Durchführung und Messwerte

4.1 Gitter

Tabelle 2: Messwerte des Gitters mit Na-Dampflampe

Nr.	L / °	$R / ^{\circ}$
1	172.6	87.7
2	172.8	87.7
3	172.7	87.7
4	172.8	87.7
5	172.7	87.7

Tabelle 3: Messwerte des Gitters mit Hg-Lampe

Farbe	L / °	R / \circ
Violett	159.2	104.1
Blau	161.7	101.8
Türkis	166.0	97.6
$\operatorname{Gr\"{u}n}$	170.8	93.4
Gelb	173.5	90.9

4.2 Prisma

5 Auswertung

5.1 Gitter

Für die Gitterkonstante gilt nach Größtfehlermethode

$$g = \frac{2 \cdot \lambda}{\sin(\phi)}$$

wobei $\phi = (42.51 \pm 0.2)$ ° ist. Für die Unsicherheit gilt

$$\Delta g = \frac{2 \cdot \Delta \lambda}{\sin(\phi)} + \frac{2 \cdot \lambda}{\sin^2(\phi)} \cdot \cos(\phi) \cdot \Delta \phi$$

sofern ϕ , $\Delta\phi$ ins Bogenmaß umgerechnet wird. Als Fehler der Wellenlänge der Na-Lampe nehmen wir $\Delta\lambda=1$ nm an. Insgesamt ergibt sich daraus

$$g = (1.74 \pm 0.01) \ \mu m$$

Für die Wellenlänge der Farben gilt

$$\lambda = \frac{g \cdot \sin(\phi)}{2}$$

und dessen Unsicherheit ist

$$\Delta \lambda = \frac{\Delta g \cdot \sin(\phi)}{2} + \frac{g \cdot \cos(\phi) \cdot \Delta \phi}{2}$$

Tabelle 4: Auswertung der Wellenlängen mit der Hg-Lampe

Farbe	λ / nm	$\Delta \lambda$ / nm
Violett	403.4	4.9
Blau	435.4	5.0
Türkis	490.2	5.2
Grün	545.3	5.4
Gelb	575.6	5.5

Die Auflösung des Gitters ist

$$\mathtt{res} = rac{b}{q}$$

mit der Unsicherheit

$$\Delta \mathtt{res} = rac{\Delta b}{g} + rac{b}{g^2} \cdot \Delta g$$

Die Vermessung der Blende hat b=2.1 cm ergeben, wobei beachtet werden musste, dass das Gitter nicht beschädigt wird. Desewgen ist die Messung ungenau mit $\Delta b=0.3$ cm. Insgesamt ergibt sich für die Auflösung

$$\mathtt{res} = (12040 \pm 1786)$$

5.2 Prisma

6 Zusammenfassung und Diskussion