Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

19 de março de 2014

Plano de Aula

- Pensamento
- 2 Revisão
- 3 LFA
 - Autômato Finito Não-Determinístico

Sumário

- Pensamento
- 2 Revisão
- 3 LFA
 - Autômato Finito Não-Determinístico

Pensamento

Pensamento

Frase

O computador veio para resolver os problemas que nós ainda não tínhamos.

Quem?

Desconhecido ***

Sumário

- Pensamento
- 2 Revisão
- 3 LFA
 - Autômato Finito Não-Determinístico

Computação e Linguagem Regular

Computação

Seja M um autômato finito e $w=w_1w_2...w_n$ seja uma cadeia em que w_i é um membro do alfabeto Σ . Então M aceita w se existe uma sequência de estados $r_0, r_1, ..., r_n$ em Q com três condições:

- $0 r_0 = q_0$
- ② $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, 1, ..., n-1, e
- \circ $r_n \in F$.

Linguagem Regular (Definição 1.16)

Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Operações Regulares

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

- União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$
- Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\}.$
- Estrela: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ e } x_i \in A\}.$

Teorema 1.25

A classe de linguagens regulares é **fechada** sob a operação de união.

Sumário

- Pensamento
- 2 Revisão
- 3 LFA
 - Autômato Finito Não-Determinístico

Um autômato finito não-determinístico (AFN) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $oldsymbol{\delta}: Q imes \Sigma_\epsilon o \mathcal{P}(Q)$ é a função de transição,
- $q_0 \in Q$ é o estado inicial, e

Qual linguagem este AFN reconhece?

Lista de Exercícios 02

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 1.4 (a, d, g);
- 1.7 (a, d, g);
- 1.15;
- 1.31.

Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

19 de março de 2014

