注意:

	1. 请独立完	成,杜绝抄刻	龙 衣;		
	2. 提交时间	: 11-29.			
		第	6章 图		
1. Ì	选择题				
			印等于图的边数的(
	A. 1/2	B. 1	C. 2	D. 4	
	(2) 在一个有向图	中,所有顶点的入度	度之和等于所有顶点	的出度之和的()倍。	
	A. 1/2	B. 1	C. 2	D. 4	
	(-) P A E-		. #N		
	(3) 具有 n 个顶点l A. n)条辺。 C. n(n+1)	D_{n}^{2}	
	A. II	B. II(II-1)	C. II(II+1)	D. 11	
	(4) n 个顶点的连	通图用邻接距阵表	· 示时,该距阵至少	有()个非零元素。	
	A. n	B. 2(n-1)	C. n/2	D. n^2	
	(5) C 是一个非连	通无向图 共有 28	条边,则该图至少	右 () 个而占	
			C. 9		
\-\		任意一个顶点出发	进行一次深度优先抵	搜索可以访问图中所有的顶点,	则
该图	一定是()图。 A. 非连通	B. 连通	C. 强连通	D 有向	
	A. 非定地	D. 足地	C. 展走過	D. HP	
	(7) 下面() 算	法适合构造一个稠密	密图 G 的最小生成树	0	
	A. Prim 算法	B. Kruskal 算法	去 C. Floyd 算法	D. Dijkstra 算法	
	(8) 田邻接表表示	图讲行广度优先遍历	万时,通常借助() 来空现質注.	
	A. 栈	3. 队列	C. 树	D. 图	
			历时,通常借助(
	A. 栈	B. 队列	C. 树	D. 图	

(10) 深度优先遍历类似于二叉树的()。

A. 先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历

- (11) 广度优先遍历类似于二叉树的()。
- A. 先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历

- (12) 图的 BFS 生成树的树高比 DFS 生成树的树高()。
- A. 小
- B. 相等
- C. 小或相等 D. 大或相等
- (13) 已知图的邻接矩阵如图 6.1 所示,则从顶点 v₀ 出发按深度优先遍历的结果是 ()。

v_0	0	1	1	1	1	0	1
v_1	1	0	0	1	0	0	1
v_2	1	0	0	0	1	0	0
v_3	1	1	0	0	1	1	0
v_4	1	0	1	1	0	1	0
v_5	0	0	0	1	1	0	1
v_6	1	1	0	0	1 0 1 1 0 1 0	1	0

A. 0243156

B. 0136542

C. 0134256

D. 0361542

图 6.1 邻接矩阵

(14) 已知图的邻接表如图 6.2 所示,则从顶点 v₀ 出发按广度优先遍历的结果是 (), 按深度优先遍历的结果是(

图 6.2 邻接表

- A. 0132 B. 0231 C. 0321 D. 0123
- (15)下面()方法可以判断出一个有向图是否有环。
- A. 深度优先遍历 B. 拓扑排序 C. 求最短路径 D. 求关键路径

2. 应用题

- (1) 已知图 6.3 所示的有向图,请给出:
- ① 每个顶点的入度和出度;
- ② 邻接矩阵;
- ③ 邻接表;
- ④ 逆邻接表。

图 6.3 有向图

图 6.4 无向网

- (2) 已知如图 6.4 所示的无向网,请给出:
- ① 邻接矩阵;
- ② 邻接表;
- ③ 最小生成树
- (3)已知图的邻接矩阵如图 6.5 所示。试分别画出自顶点 1 出发进行遍历所得的深度优先生成树和广度优先生成树。
- (4)有向网如图 6.6 所示,试用迪杰斯特拉算法求出从顶点 a 到其他各顶点间的最短路径,完成表 6.1。

	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	1	0	1	0
2	0	0	1	0	0	0	1	0	0	0
3	0	0	0	1	0	0	0	1	0	0
4	0	0	0	0	1	0	0	0	1	0
5	0	0	0	0	0	1	0	0	0	1
6	1	1	0	0	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0	0	1
8	1	0	0	1	0	0	0	0	1	0
9	0	0	0	0	1	0	1	0	0	1
10	1	0	0	0	0	1	0	0	0	0

图 6.5 邻接矩阵

图 6.6 有向网

表 6.1

D 终点	i=1	i=2	i=3	i=4	i=5	i=6
b	15					
	(a,b)					
c	<u>2</u>					
	(a,c)					
d	12					
	(a,d)					
e	∞					
f	∞					
g	∞					
S						
终 点	{a,c}					
集						

- (5) 试对图 6.7 所示的 AOE-网:
- ① 求这个工程最早可能在什么时间结 束;

- ② 求每个活动的最早开始时间和最迟 开始时间;
 - ③ 确定哪些活动是关键活动

图 6.7 AOE-网

3. 算法设计题 (请进行算法分析,并写出相应的函数代码)

- (1) 分别以邻接矩阵和邻接表作为存储结构,实现以下图的基本操作:
- ① 增加一个新顶点 v, InsertVex(G, v);
- ② 删除顶点 v 及其相关的边, DeleteVex(G, v);
- ③ 增加一条边<v, w>, InsertArc(G, v, w);
- ④ 删除一条边<v, w>, DeleteArc(G, v, w)。

(2) 设计一个算法, 求图 G 中距离顶点 v 的最短路径长度最大的一个顶点, 设 v 可达其余 各个顶点。