Foundations of Programming Languages 2023

Encodings in the λ -calculus

Sandra Alves

October 2023

Church-Turing-Kleene thesis

The notion of computability has been independently formalized in several ways:

- Gödel and Herbrand formally define general recursive functions;
- Turing formalized computations as Turing machines;
- Church formalized computation as functions using the λ -calculus.

Church, Turing and Kleene proved that all these notions coincide and they define the class of all computable functions

"A function is λ -computable if and only if it is Turing computable, and if and only if it is general recursive."

The computational power of λ -calculus

Being a Turing-complete model, it is possible to encode any computable function as a λ -term.

We start by showing how to encode different data types:

- booleans
- numbers
- pairs
- lists
- recursive functions

Booleans and conditionals

The values true and false are defined in the λ -calculus as:

true =
$$\lambda xy.x$$

false = $\lambda xy.y$

Note that

true
$$M$$
 N = $(\lambda xy.x)MN \rightarrow M$ false M N = $(\lambda xy.y)MN \rightarrow N$

An appropriate encoding of if is such that if $L M N \rightarrow LMN$. Thus if can be encoded as:

if =
$$\lambda pxy.pxy$$

Other boolean operations

Having defined the truth values and a conditional, other operations on booleans can be easily encoded:

```
and = \lambda pq.if p q false
or = \lambda pq.if p true q
not = \lambda p.if p false true
```

There are other possible encodings. For example and can be encoded in a more direct way as $\lambda mn.mnm$. (Verify!)

```
(\lambda mn.mnm) true N \rightarrow true N true N \rightarrow N (\lambda mn.mnm) false N \rightarrow false N false N \rightarrow false
```

Pairs and projections

Boolean values are useful to define other data structures, such as pairs.

pair =
$$\lambda xyz.zxy$$

Packing:

pair
$$M N \rightarrow \lambda f.fMN$$

Unpacking:

$$(\lambda f.fMN)(\lambda xy.L) \rightarrow L[M/x][N/y]$$

What are appropriate encodings for projections?

$$\begin{array}{lll} \text{fst} &=& \lambda p.p \text{ true} \\ \text{snd} &=& \lambda p.p \text{ false} \end{array}$$

Numbers

Church's encoding of the natural numbers:

$$\underline{0} = \lambda f x. x$$

$$\underline{1} = \lambda f x. f x$$

$$\dots$$

$$\underline{n} = \lambda f x. f^{n} x$$

That is, the natural number n is represented by the Church numeral \underline{n} , which has the following property for any $F, X \in \Lambda$:

$$\underline{n}FX \rightarrow_{\beta} F^{n}X$$

One can see the natural numbers as iterators.

6

Arithmetic

Some basic functions on natural numbers:

add =
$$\lambda mnfx.mf(nfx)$$

mult = $\lambda mnfx.m(nf)x$
exp = $\lambda mnfx.nmfx$

Correctness of add:

add
$$\underline{m} \ \underline{n} \ \twoheadrightarrow \ \lambda fx.\underline{m} f(\underline{n} fx)$$

$$\rightarrow \ \lambda fx.f^m(f^n x)$$

$$\rightarrow \ \lambda fx.f^{m+n} x = \underline{m+n}$$

Other basic operations on numerals:

succ =
$$\lambda nfx.f(nfx)$$

iszero = $\lambda n.n(\lambda x.false)$ true

The predecessor function

Encoding the predecessor function is not so straightforward. Given f, we will consider a function g working on pairs of numerals, such that g(x,y)=(f(x),x), therefore

$$g^{n+1}(x,x) = (f^{n+1}(x), f^{n}(x))$$

This function can be encoded as:

$$prefn = \lambda f p.pair (f(fst p)) (fst p)$$

Then

$$pred = \lambda nfx.snd (n (prefn f) (pair x x))$$

Subtraction can then be defined as:

$$sub = \lambda mn.n \text{ pred } m.$$

Lists

Similar to what happens with Church numerals, we can encode lists:

$$[x_1, x_2, ..., x_n] = \lambda f y. f x_1 (f x_2 ... (f x_n y)...)$$

Alternatively, lists can be represented using pairs (as done in ML or Lisp).

$$[x_1, x_2, \dots, x_n] = (x_1, (x_2, (\dots (x_n, nil) \dots)))$$

List can simply be encode as:

nil =
$$\lambda xy.y$$

cons = $\lambda ht.(\lambda z.zht)$ = pair

How can we encode hd and tl? (Exercise)

Lists

List can be also be encoded as the following λ -terms:

```
nil = pair true true

cons = \lambda xy.pair false (pair x y)
```

The encoding of lists contains a boolean flag, which indicates whether or not the list is empty. The usual functions on lists, are thus defined as:

null = fst
hd =
$$\lambda z$$
.fst (snd z)
tl = λz .snd (snd z)

A simpler encoding of the empty list is $\lambda z.z.$ (Verify!)

Encoding numbers as pairs

Let us encode natural numbers as:

$$\begin{bmatrix}
0 \\
 \end{bmatrix} = \lambda x.x$$

$$\begin{bmatrix} n+1 \\
 \end{bmatrix} = \text{pair false } \begin{bmatrix} n \\
 \end{bmatrix}$$

For example

$$\lceil 3 \rceil = [false, [false, [false, \lambda x.x]]]$$

where [M, N] represents pair M N.

How can one define succ, pred and iszero using the representation for numbers above?

$$\begin{array}{rcl} \mathsf{succ} &=& \lambda x.[\mathsf{false},x] \\ \mathsf{pred} &=& \lambda x.x\mathsf{false} \\ \mathsf{iszero} &=& \lambda x.x\mathsf{true} \end{array}$$

Recursive functions

Any recursive function F can be defined as:

$$F = \dots F \dots$$

For example length is implemented in Haskell as:

Recursive functions

We are then looking for a λ -term such that:

$$F = (\lambda f \dots f \dots) F$$

Definition

A fixed point of the function F is any X such that F(X) = X.

Therefore, we are looking for a fixed point of $(\lambda f \dots f \dots)$.

In the λ -calculus a term M is a fixed point of F if $F(M) =_{\beta} M$, and fixed point combinators can be used construct the fixed point of F.

A fixed-point combinator is a term \mathbf{Y} such that $\mathbf{Y}F =_{\beta} F(\mathbf{Y}F)$, for all terms F.

Recursion in the λ -calculus

Haskell Curry's **Y** fix-point combinator is defined by:

$$\mathbf{Y} = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

We can verify easily the fixed point property:

$$\mathbf{Y}F \rightarrow (\lambda x.F(xx))(\lambda x.F(xx))
\rightarrow F(\lambda x.F(xx))(\lambda x.F(xx))
=_{\beta} F(\mathbf{Y}F)$$

This combinator is also called Curry's Paradoxical combinator:

- Consider an encoding of sets as predicates: $M \in N$ is encoded as N(M), and $\{x \mid P\}$ is encoded as $\lambda x.P$.
- Taking $R = \lambda x.\mathbf{not}(xx)$, we get $RR = \mathbf{not}(RR)$, which is logically a contradiction.

Curry's fixed-point is defined by replacing **not** by any term F.

Famous fixed point combinators

Alan Turing's Θ is defined as

$$\Theta = AA$$
 where $A = \lambda xy.y(xxy)$

Now it is easy to verify that:

$$\Theta F = (\lambda xy.y(xxy))AF
\rightarrow (\lambda y.y(AAy))F
\rightarrow F(AAF)
= F(\Theta F)$$

Another fixed-point combinator is Klop's \$ combinator:

Examples of recursive functions

Coming back to our recursive definition:

$$M = (\lambda f \dots f \dots) M$$

Using a fixed point combinator **Y** we can just define:

$$M = \mathbf{Y}(\lambda f \dots f \dots)$$

Example:

fact
$$n = \text{if (iszero } n) \underline{1} \text{ (mult } n \text{ (fact(pre } n)))$$

Then its recursive definition in the λ -calculus is:

fact =
$$\mathbf{Y}(\lambda f n. \text{if (iszero } n) \underline{1} \text{ (mult } n \text{ (} f(\text{pre } n)\text{))})$$

Encoding partial recursive functions

A recursive function $f: \mathbb{N}^k \to \mathbb{N}$ is λ -definable if and only if there exists a λ -term F such that:

- If $f(n_1, \ldots, n_k) = m$, then $F_{\underline{n_1}} \ldots \underline{n_k} =_{\beta} \underline{m}$.
- If $f(n_1, ..., n_k) = m$ is not defined, then $F_{\underline{n_1}} ... \underline{n_k}$ does not have normal form.

We say that F defines function f. If F defines f then $F \underline{n_1} \dots \underline{n_k} \twoheadrightarrow \underline{f(n_1, \dots, n_k)}$.

The primitive recursive functions are λ -definable

The set of primitive recursive functions (PR) is defined as follows:

Function *zero*: z(x) = 0

Function *successor*: s(x) = x + 1

The projections: $\pi_k^n(x_1,\ldots,x_n)=x_k$, $1\leq k\leq n$

Composition of primitive recursive functions f and g_1, \ldots, g_k :

$$(f \circ (g_1, \ldots, g_k))(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

Primitive Recursion: over primitive recursive functions *f* and *g*:

$$h(x_1,...,x_n,0) = f(x_1,...,x_n)$$

 $h(x_1,...,x_n,y+1) = g(x_1,...,x_n,y,h(x_1,...,x_n,y))$

Encoding partial recursive functions

Function z:

$$z = \lambda n.\underline{0}$$

Function s:

$$s = \lambda nfx.f(nfx)$$

Projections π_i^n :

$$\pi_i^n = \lambda x_1 \dots x_n . x_i$$

Composition:

$$W = \lambda x_1 \dots x_n. F(G_1 x_1 \dots x_n) \dots (G_k x_1 \dots x_n)$$

Encoding the primitive recursive scheme

Suppose f and g are λ -defined as F and G respectively. Now consider the following terms:

Init =
$$(0, Fx_1 ... x_k)$$

Step = $\lambda p.(\operatorname{succ}(\operatorname{fst} p), G x_1 ... x_k (\operatorname{fst} p)(\operatorname{snd} p))$

Then the primitive recursive scheme is function h is λ -definable as:

$$F = \lambda x x_1 \dots x_k.\operatorname{snd}(x \operatorname{\mathsf{Step Init}})$$

This function generates the sequence of pairs:

$$(0, a_0), (1, a_1), \ldots, (n, a_n)$$

where $a_0 = f(n_1, ..., n_k)$ and $a_{i+1} = g(n_1, ..., n_k, i, a_i)$

Encoding (partial) recursive functions

Consider $f: \mathbb{N}^n \to N$, defined by minimisation:

$$f(x_1,...,x_n) = \mu y.[g(x_1,...,x_n,y) = 0]$$

Theorem (Kleene's normal form)

Every recursive function f can be defined as:

$$f(n_1,...,n_k) = g(\mu y[h(n_1,...,n_k,y) = 0])$$

where g and h are primitive recursive functions.

Encoding (partial) recursive functions

Let G and H be the terms that define the primitive recursive functions g and h, respectively. Let

$$W = \lambda y.$$
if (iszero($Hx_1...x_ky$)) ($\lambda w.Gy$) ($\lambda w.w$ (succ y) w)

Note that $x_1, \ldots x_k$ are free in W. Then the following λ -term defines f:

$$F = \lambda x_1 \dots x_k . W \underline{0} W$$

Take any n_1, \ldots, n_k , then

$$F_{\underline{n_1}} \dots \underline{n_k} \twoheadrightarrow W[\underline{n_1}/x_1, \dots, \underline{n_k}/x_k]\underline{0}W[\underline{n_1}/x_1, \dots, \underline{n_k}/x_k]$$

Exercise: Verify that *F* behaves as expected.

Exercises

- 1. Write other (more direct) encodings of or, not and xor.
- 2. Show that the following functions on numbers are λ -definable.
 - (i) the *constant* functions: $c_n(x) = n$;
 - (ii) the signum function: sg(0) = 0 and sg(m+1) = 1.
- 3. Show the correctness of the various encodings presented in this lecture.
- 4. Considering the following encoding of binary trees:

$$leaf(n) \equiv \lambda xy.xn$$
$$node(l,r) \equiv \lambda xy.ylr$$

can you define encodings for functions isLeaf, treeLeft and treeRight?