Nello svolgere gli esercizi fornire passaggi e spiegazioni: non bastano i risultati finali.

Esercizio 1 Sia X_1, \ldots, X_n un campione casuale estratto dalla densità discreta

$$f(x,\theta) = \begin{cases} \frac{(\ln \theta)^x}{\theta x!} & x = 0, 1, 2, \dots \\ 0 & \text{altrove} \end{cases} \quad \theta > 1$$

con θ parametro incognito e maggiore di uno.

- 1. Determinate uno stimatore $\hat{\kappa}_{ML}$ della caratteristica $\kappa = \ln \theta$ e $\hat{\theta}_{ML}$ del parametro θ usando il metodo di
- 2. Verificate che la varianza di $\hat{\kappa}_{ML}$ raggiunge il confine inferiore di Frechét-Cramer-Rao per la varianza di uno stimatore (non distorto); quindi dimostrate che uno stimatore efficiente per θ non esiste. (Giustificate rigrosamente la risposta).
- 3. Determinate media, varianza e distribuzione asintotiche di $\hat{\kappa}_{ML}$.
- 4. Costruite un intervallo di confidenza asintotico bilatero di livello approssimativamente 90% per κ , se n=169 e $\sum_{j=1}^{169} x_j=35.0$. Quindi, deducetene uno bilatero per θ sempre di livello approssimato 90%.

1. $f(x,\theta)$ è una densità di Poisson di parametro $\kappa = \ln \theta$. Riparametrizzando in κ otteniamo

$$L_{\kappa}(x_{1},\ldots,x_{n}) = \prod_{j=1}^{n} f(x_{j},\kappa) = \frac{e^{-n\kappa} \kappa^{\sum_{j=1}^{n} x_{j}}}{\prod_{j=1}^{n} x_{j}!}$$

$$l_{\kappa}(x_{1},\ldots,x_{n}) = \ln L_{\kappa}(x_{1},\ldots,x_{n}) = -n\kappa + \sum_{j=1}^{n} x_{j} \ln \kappa - \ln \left(\prod_{j=1}^{n} x_{j}!\right)$$

$$\frac{\partial l_{\kappa}(x_{1},\ldots,x_{n})}{\partial \kappa} = \frac{n}{\kappa} (\bar{x}_{n} - \kappa)$$

$$(1)$$

da cui deduciamo che $\widehat{\kappa}_{ML} = \overline{X}_n$ e $\widehat{\theta}_{ML} = \mathrm{e}^{\widehat{\kappa}_{ML}} = \mathrm{e}^{\overline{X}_n}$. 2. Osserviamo che $\widehat{\kappa}_{ML} = \overline{X}_n$ è stimatore non distorto della media della densità di Poisson, nel nostro caso data da κ . Inoltre, leggiamo nell'Equazione (1) che essenzialmente $\frac{\partial l_{\theta}(x_1,\ldots,x_n)}{\partial \theta} = a(n,\theta) (\widehat{\kappa}_{ML} - \ln \theta)$, con $a(n,\theta) = n/(\theta \ln \theta)$. Ma l'ultima è condizione necessaria e sufficiente affinché la varianza di $\hat{\kappa}_{ML}$ raggiunga il confine inferiore di Frechét-Cramer-Rao per la varianza di uno stimatore (non distorto).

Per quanto concerne θ , abbiamo che $\partial l_{\theta}/\partial \theta$ è funzione lineare di $\hat{\kappa}_{ML}$, quindi non può esserlo di θ_{ML} : non essendo soddisfatta una CNS per l'efficienza, allora $\widehat{\theta}_{ML}$ non è stimatore efficiente di θ . D'altro canto se uno stimatore efficiente per θ esiste, allora è necessariamente stimatore ML: rimane così stabilito che NON esiste nessun stimatore efficiente di θ .

- 3. Vale che $E(\widehat{\kappa}_{ML}) = E(\overline{X}) = E(X_1) = \kappa$ e $Var(\widehat{\kappa}_{ML}) = Var(\overline{X}) = Var(X_1)/n = \kappa/n$. Inoltre, per il Teorema centrale del limite la f.d.r. asintotica di $\widehat{\kappa}_{ML}$ è $\mathcal{N}(\kappa, \kappa/n)$.
- 4. La f.d.r. asintotica di $(\widehat{\kappa}_{ML} \kappa)/\sqrt{\kappa/n}$ è $\mathcal{N}(0,1)$. Segue che un IC asintotico bilatero per κ di livello approssimativamente 90% ha estremi $\hat{\kappa}_{ML} \pm 1.645 \times \sqrt{\hat{\kappa}_{ML}/n}$: cioè, siamo 90%-confidenti (approssimativamente) che $0.1495 < \kappa < 0.2647$. Sfruttando il fatto che θ è funzione strettamente crescente di κ : $\theta = e^{\kappa}$ siamo 90%-confidenti (approssimativamente) che $e^{0.1495} < \theta < e^{0.2647}$, cioè che 1.1316 $< \theta < 1.3030$.

Soluzione alternativa: Dal fatto che approssimativamente $P_{\theta}\left(\left|\frac{\hat{\kappa}_{ML}-\kappa}{\sqrt{\kappa/n}}\right|<1.645\right)=0.90$ deduciamo che $P_{\theta}\left(\left|\frac{\hat{\kappa}_{ML}}{\sqrt{\kappa}}-\sqrt{\kappa}\right|<\frac{1.645}{\sqrt{169}}\right)=0.90$ 0.90. Inoltre, $\widehat{\kappa}_{ML}/\sqrt{\kappa}-\sqrt{\kappa}$ è funzione strettamente decrescente di $\widehat{\kappa}$, nulla per $\kappa=\widehat{\kappa}$. Quindi $|\frac{\widehat{\kappa}_{ML}}{\sqrt{\kappa}}-\sqrt{\kappa}|<\frac{1.645}{\sqrt{169}}$ se e solo se $T_1<\kappa< T_2$ con T_1 uguale al quadrato dell'unica soluzione positiva dell'equazione in κ : $\widehat{\kappa}_{ML}/\sqrt{\kappa}-\sqrt{\kappa}=1.645/13$ e T_2 uguale al quadrato drato dell'unica soluzione positiva di $\hat{\kappa}_{ML}/\sqrt{\kappa}-\sqrt{\kappa}=-1.645/13$. Scopriamo che $T_1=[(-1.645/13+\sqrt{1.645^2/169+4\hat{\kappa}_{ML}})/2]^2\simeq 1.645/13$ 0.15697 e $T_2 = [(1.645/13 + \sqrt{1.645^2/169 + 4\widehat{\kappa}_{ML}})/2]^2 \simeq 0.27325$. Il corrispondente IC per θ è (1.3142, 1.1700).

Esercizio 2 Siano X una variabile gaussiana di media incognita μ_X e varianza $\sigma_X^2 = 1$ e Y una variabile gaussiana di media $\mu_Y = 0.5$ e varianza $\sigma_Y^2 = 3$; inoltre, siano X e Y indipendenti.

1. Determinate media, varianza e distribuzione della variabile W = X - Y.

Si supponga ora di avere osservato il seguente campione casuale di 5 osservazioni della popolazione W:

$$w_1 = 4.8; \ w_2 = 3.5; \ w_3 = 6.4; \ w_4 = 7.2; \ w_5 = 4.3$$
 (2)

- 2. Impostate un opportuno test che usi il campione osservato $w_1,...,w_5$ per verificare se la media μ_X di X non supera il valore 3.51, tenendo conto del fatto che si è disposti a commettere un errore di primo tipo al più pari al 3% quando si accetta che μ sia strettamente maggiore di 3.51, ma in realtà è vero il contrario. Con i dati in (2), quale decisione prendete?
- 3. Determinate analiticamente e rappresentate graficamente la funzione di potenza del test costruito al punto 2.
- 4. Calcolate la probabilità di prendere una decisione SBAGLIATA quando il vero valore della media μ_X di $X \ge 4.71.$

Soluzione

- 1. In quanto differenza di due variabili aleatorie gaussiane indipendenti, anche W è gaussiana con media la differenza delle medie e varianza la somma delle varianze: $W \sim \mathcal{N}(\mu_X - 0.5, 4)$. Pertanto, W_1, \ldots, W_5 è un campione casuale estratto da popolazione gaussiana di media incognita e varianza nota: W_1, \ldots, W_5 i.i.d. \sim $\mathcal{N}(\mu, 4) \ (\mu = \mu_X - 0.5).$
- 2. Ci viene richiesto di costruire un test per verificare $H_0: \mu_X \leq 3.51$ versus $H_1: \mu_X > 3.51$ che formulato in termini del campione w_1, \ldots, w_5 e della sua media risulta essere:

$$H_0: \mu \leq 3.01 \ versus \ H_1: \mu > 3.01 \ .$$

Avendo a disposizione un campione gaussiano di varianza nota e pari a 4, allora rifiutiamo H_0 con significatività $3\% \text{ se } (\overline{W} - 3.01) / \sqrt{4/5} \ge z_{1-0.03}, \text{ ossia se}$

$$\overline{W} \ge \sqrt{\frac{4}{5}} \cdot z_{1-0.03} + 3.01 = \sqrt{\frac{4}{5}} \cdot 1.881 + 3.01 \simeq 4.692418 \simeq 4.69$$

Con il nostro campione:
$$\overline{W} = 5.24$$
 e quindi rifiutiamo H_0 a livello 3%.
3. $\pi(\mu_X) = P_{\mu_X} \left(\overline{W} \ge 4.69 \right) = 1 - \Phi \left(\frac{4.69 - \mu_X + 0.5}{2/\sqrt{5}} \right) = 1 - \Phi \left(\frac{5.19 - \mu_X}{2/\sqrt{5}} \right), \quad \mu_X > 3.51$; La potenza è funzione crescente di μ_X , sempre maggiore di 0.03 con asintoto orizzontale in 1, per $\mu_X \to +\infty$.

La potenza è funzione crescente di μ_X , sempre maggiore di 0.03 con asintoto orizzontale in 1, per $\mu_X \to +\infty$.

4. Dobbiamo calcolare la probabilità di accettare H_0 ma H_0 è falsa perché il vero valore di $\mu_X=4.71$ è maggiore di 3.51; in altre parole, dobbiamo calcolare la probabilità di errore di seconda specie in $\mu_X = 4.71$:

$$\beta(4.71) = 1 - \pi(4.71) = \Phi\left(\frac{5.19 - 4.71}{2/\sqrt{5}}\right) \simeq \Phi(0.54) \simeq 0.7054.$$

Esercizio 3 Un campione casuale di 500 nuclei famigliari degli Stati Uniti è stato classificato per regione e reddito (in migliaia di dollari) ottenenndo i risultati che seguono:

1. ¹ Verificate l'ipotesi che il reddito di una famiglia scelta a caso sia indipendente dalla regione di residenza.

Siamo ora interessati a verificare se la seguente densità di Pareto:

$$f(x,\theta) = \begin{cases} 8^{\theta} \theta x^{-\theta - 1} & \text{se } x > 8\\ 0 & \text{altrove}, \qquad \theta > 1 \end{cases}$$
 (3)

che ha valore atteso

$$E_{\theta}(X) = \frac{8\theta}{(\theta - 1)}, \quad \forall \theta > 1$$

si adatti ai dati forniti sui redditi delle famiglie americane. A tal fine:

- 2. fornite uno stimatore di θ usando i 500 dati raggruppati sui redditi delle famiglie americane;
- 3. determinate P(a < X < b) quando X ha densità di Pareto $f(x, \theta)$ in (3);
- 4. valutate con un opportuno test la bontà di adattamento del modello di Pareto (3) ai dati sul reddito. (Se non siete riusciti a risolvere il punto 2, scegliete $\theta = 2.00$ ed eseguite un opportuno test.)

Soluzione

1. Impostiamo un test χ^2 di indipendenza per verificare H_0 : "reddito e regione di residenza sono indipendenti" contro H_1 : "reddito e regione di residenza non sono indipendenti". La statistica test è

$$Q_{\text{ind}} = \sum_{i=1}^{4} \sum_{j=1}^{2} \frac{\left(N_{ij} - \frac{N_{i} \cdot N_{\cdot j}}{500}\right)^{2}}{\frac{N_{i} \cdot N_{\cdot j}}{500}} = 500 \sum_{i=1}^{4} \sum_{j=1}^{2} \frac{N_{ij}^{2}}{N_{i} \cdot N_{\cdot j}} - 500$$

e nel nostro caso troviamo il valore $q_{\rm ind} \simeq 5.91$. Dato che la statistica test sotto l'ipotesi nulla ha distribuzione limite chiquadrato con (4-1)(2-1)=3 gradi di libertà, la cui f.d.r. indichiamo con F_3 , allora per il p-value, usando le tabelle, abbiamo $F_3(5.739)=87.5\%$ e $F_3(6.251)=90.0\%$. Il p-value è $1-F_3(q_{\rm ind})\in(10\%,12.5\%)$ (valore esatto del p-value con R=0.1161182). Un p-value così alto indica mancanza di evidenza empirica contro H_0 , cioè ai consueti livelli di significatività ($\leq 10\%$) concludiamo che il reddito di una famiglia scelta a caso è indipendente dalla regione di residenza.

2. Poiché $E(X) = 8\theta/(\theta-1)$ e

$$\overline{X}_{mid} = \frac{9775}{500} = 19.55,$$

allora, applicando il metodo dei momenti otteniamo

$$\widehat{\theta} = \frac{\overline{X}_{mid}}{\overline{X}_{mid} - 8} \simeq 1.69$$

3. Si trova facilmente che la fdr di X è F(x) = 0 quando $x \le 8$ e

$$F(x) = \int_{8}^{x} \frac{\theta 8^{\theta}}{s^{\theta+1}} ds = 1 - \frac{8^{\theta}}{x^{\theta}}, \quad \forall x > 8,$$

¹Estratto da Sheldon Ross, Probabilità e statistica, Ed Apogeo, 2004

da cui otteniamo

$$P(a < X < b) = a \begin{cases} 0 & \text{se } a < b \le 8 \\ 8^{\theta} \left(\frac{1}{a^{\theta}} - \frac{1}{b^{\theta}} \right) & \text{se } 8 < a < b \\ 1 - \frac{8^{\theta}}{b^{\theta}} & \text{se } a \le 8 < b \end{cases}$$

4. Dobbiamo impostare un test chiquadrato di buon adattamento per dati raggruppati per l'ipotesi nulla composta H_0 : "X è paretiana" contro l'alternativa che X non sia paretiana.

Sostituendo $\widehat{\theta}=1.69$ nelle probabilità calcolate al punto 3., otteniamo i valori "stimati" delle probabilità "teoriche": $p_1^{(0)}(\widehat{\theta})=F_{H_0}(10)=1-(8/10)^1.69\simeq 0.314, p_2^{(0)}(\widehat{\theta})=0.473,\ldots$; in sintesi

A_k	0 - 10	10 - 20	20 - 30	$(30, \infty)$
$p_i^{(0)}(\widehat{\theta})$	0.314	0.473	0.105	0.108
$np_i^{(0)}(\widehat{\theta})$	157.0	236.5	52.5	54
$\overline{N_i}$	95	145	135	125

Dunque, la statistica test di Pearson $Q = \sum_{i=1}^4 \frac{(N_i - np_i^{(0)}(\widehat{\theta}))^2}{np_i^{(0)}(\widehat{\theta})}$ vale $\simeq 282.9$ e sotto H_0 ha distribuzione $\mathcal{E}(2)$:

rifiutiamo l'ipotesi di dati paretiani a qualunque livello del test, poiché $p-value=\mathrm{e}^{-282.9/2}\simeq 0$: fortissima evidenza empirica contro H_0 .