Programación II: Taller 3

Programa de Estudios Superiores (PES)

Banco de Guatemala

Estimación de un AR(1), Parte I

Considere el proceso:

$$y_t = \mu + \rho y_{t-1} + \varepsilon_t$$

Donde $\varepsilon_t \sim \mathcal{N}\left(0, \sigma^2\right)$ y $y_1 \sim \mathcal{N}\left(\frac{\mu}{1-\rho}, \frac{\sigma^2}{1-\rho^2}\right)$. Para una muestra de tamaño T, la función de log-verosimilitud del anterior proceso esta dada por:

$$\log \mathcal{L}(\theta) = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log\left(\frac{\sigma^2}{1-\rho^2}\right) - \frac{(y_1 - [\mu/(1-\rho)])^2}{(2\sigma^2)/(1-\rho^2)} - [(T-1)/2]\log(2\pi)$$
$$-[(T-1)/2]\log(\sigma^2) - \sum_{t=2}^{T} \left[\frac{(y_t - \mu - \rho y_{t-1})^2}{2\sigma^2}\right]$$

- 1. Cree una función que evalúe la log-verosimilitud del proceso en el punto $\theta = [\mu, \rho, \sigma^2]$, dadas las observaciones y_t simuladas.
- 2. Genere el vector ε_t y el valor inicial y_1 y simule T=100 observaciones del proceso y_t con los parámetros $\mu=1,\ \rho=0.4$ y $\sigma^2=0.5$.
- 3. Use una función de optimización numérica para encontrar el estimador de máxima verosimilitud $\hat{\theta} = [\hat{\mu}, \hat{\rho}, \hat{\sigma}^2]$, definido como el vector de parámetros que maximiza la función de log-verosimilitud dados los datos simulados en el punto anterior (Use como valores iniciales el vector $\theta = [0.5, 0.5, 0.5]'$.
- 4. Cree un ciclo que repita 1000 veces los pasos en los puntos (2) a (3) y guarde los valores de $\theta = [\mu, \rho, \sigma^2]$ obtenidos en cada iteración. Grafique el histograma de frecuencias de la distribución de el estimador de cada uno de estos parámetros.

Estimación de un AR(1), Parte II

Bajo ciertas condiciones de regularidad, el estimador de máxima verosimilitud $\hat{\theta}$ converge en distribución:

$$\sqrt{T}\left(\hat{\theta}-\theta_0\right) \stackrel{d}{\to} \mathcal{N}\left(0, J_1^{-1}\right)$$

Donde θ_0 is valor poblacional de θ y J_1 es la matriz de segundas derivadas de la función de verosimilitud

$$J_{1} = E[-H(\theta)] = -E\left[\frac{\partial^{2} \log \mathcal{L}(\theta)}{\partial \theta \partial \theta^{T}}\right]$$

Bajo condiciones de regularidad adicionales, esta matriz se puede estimar de forma consistente usando su contraparte muestral:

$$\hat{J}_1 = -\frac{1}{T} \frac{\partial^2 \log \mathcal{L}(\theta)}{\partial \theta \partial \theta^T} |_{\theta = \hat{\theta}}$$

Se tiene entonces que

$$\hat{\theta} \approx \mathcal{N}\left(\theta_0, \, \hat{J}_1^{-1}\right)$$

Y los errores estándar de cada parámetro se pueden calcular como

$$\hat{\sigma}\left(\hat{\theta}_k\right) = \sqrt{\left[\hat{J}_1^{-1}\right]_{kk}}$$

- 1. Escriba una función que calcule los errores estándar del estimador de máxima verosimilitud $\hat{\theta}$
- 2. Utilice el código anterior para encontrar el estimador de máxima verosimilitud de un AR(1) y sus errores estándar asociados para la serie de inflación mensual en la hoja de Excel adjunta a este taller.