CS229: Problem Set #1

 $Andrew\ Ng$

0130

Problem 1

1.

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} - \frac{1}{m} \sum_{i=1}^m y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)} \log(1 - h_{\theta}(x^{(i)})))$$
$$= -\frac{1}{m} \sum_{i=1}^m [y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})}] \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)})$$

Then we calculate:

$$\frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)}) = \frac{\partial}{\partial \theta_j} g(\theta^T x^{(i)}) = g(\theta^T x^{(i)}) (1 - g(\theta^T x^{(i)})) x_j^{(i)} = h_{\theta}(x^{(i)}) (1 - h_{\theta}(x^{(i)})) x_j^{(i)}$$

And we can further simplify the above equation:

$$\frac{\partial}{\partial \theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^m [(y^{(i)} - h_{\theta}(x^{(i)})) - (1 - y^{(i)}) h_{\theta}(x^{(i)})] x_j^{(i)}$$
$$= -\frac{1}{m} \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

Then we can get second-order derivative:

$$H_{ij} = \frac{\partial^2}{\partial \theta_i \partial \theta_j} J(\theta) = \frac{1}{m} \sum_{k=1}^m x_j \frac{\partial}{\partial \theta_i} h_{\theta}(x^{(k)})$$
$$= \frac{1}{m} \sum_{k=1}^m x_i^{(k)} x_j^{(k)} h_{\theta}(x^{(k)}) (1 - h_{\theta}(x^{(k)}))$$

for each vector z, consider the quadratic form of Hessian matrix:

$$z^{T}Hz = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}H_{ij}z_{j} = \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m} z_{i}x_{i}^{(k)}z_{j}x_{j}^{(k)}h_{\theta}(x^{(k)})(1 - h_{\theta}(x^{(k)}))$$

$$= \frac{1}{m} \sum_{k=1}^{m} (\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}x_{i}^{(k)}z_{j}x_{j}^{(k)})h_{\theta}(x^{(k)})(1 - h_{\theta}(x^{(k)}))$$

$$= \frac{1}{m} \sum_{k=1}^{m} (x^{(k)T}z)^{2}h_{\theta}(x^{(k)})(1 - h_{\theta}(x^{(k)})) \ge 0 \Leftrightarrow H \ge 0$$

2. Codes are shown in src director.

3.

1