

Hydrologie

Délimitation et caractérisation d'un bassin versant par l'outil ArcGIS

Mini Projet d'Hydrologie

Encadré par :

Mme SEGHIR

Réalisé par :

CHAQDID abdelaziz (2MET)

LASRI nabila (2MET)

RWAWI chaimaa (2MET)

Année universitaire: 2019/2020

Sommaire

Sommaire	••••••	I
Introduction		2
Données général	es sur le bassin versant d'oued Ouri	ka3
Situation géo	graphique et climatique	5
Cadre géolog	ique du bassin	5
Le cadre du trava	ail :	5
Partie I : Prépa	ration du MNT :	5
 Base de travai 	1	5
2. Définition d'un	nouveau système de projection	
3. Délimitation de	u bassin versant	
4. Mesure de la s	surface et du périmètre d'un bassin	18
5. Le cours d'eau	principal	19
6. L'ordre de che	velu	20
7. Diagramme hy	ypsométrique	22
	actéristiques géométriques et de pentes d et périmètre	u bassin versant 5
2. Longueu	ır du cours d'eau principal	
3. Indices o	de forme : Indice de compacité de Gravelius	
KH:	Indice de forme de Horton	
4. Rectangl	le équivalent	
	ristiques de relief :	
6. Courbe l	hypsométrique	
7. Diagram	nme hypsométrique	
8. Altitude	moyenne	

Le SIG est considéré comme une des technologies de l'information les plus performantes car il vise à intégrer des connaissances provenant de sources multiples et crée un environnement pluri-secteurs idéal pour la collaboration.

L'outil Arcgis permet d'effectuer toutes sortes de tâches SIG, y compris :

- √ la cartographie,
- √ l'analyse géographique,
- ✓ l'édition de données (création, mise à jour,...),
- √ la gestion et l'organisation des données,
- √ la visualisation
- ✓ le géo-traitement.

Dans le cadre d'une autoformation constructive, j'ai réalisé ce projet en utilisant les fonctionnalités d'une extension du logiciel SIG d'Esri – ArcGIS 10.– appelée « arc hydro » pour la préparation des données nécessaires au fonctionnement du modèle hydrologique.

En fait, En utilisant un modèle numérique de terrain (MNT) comme entrée, on a pu délimiter automatiquement un système de drainage et de quantifier les caractéristiques de ce système, en passant par les diverses étapes.

Données générales sur le bassin versant d'oued Ourika -Grand Bassin de Tansift-

Situation géographique et climatique :

Le bassin-versant de l'Ourika à Aghbalou, localisé à une quarantaine de km au sud de Marrakech, se situe entre 31° et 31° 20' de latitude Nord et entre 7° 30' et 8° de longitude Ouest. Plusieurs indices d'aridité placent le secteur en zone semi-aride à tendance subhumide, où interfèrent les influences océanique (perturbations venues de l'ouest), continentale et montagnarde. La température moyenne annuelle est de l'ordre de 17,6 °C à Aghbalou, mais la différence de température entre le mois le plus chaud (juillet) et le mois le plus froid (janvier) peut atteindre une amplitude de 15 °C. La région est caractérisée par une variabilité spatiotemporelle des précipitations et une irrégularité relative des écoulements superficiels.

Cadre géologique du bassin:

Sur le plan géologique, le bassin versant offre deux grands types de faciès :

- une partie amont, située à des altitudes supérieures à 2 000 m, constituée de roches

magmatiques et métamorphiques, qui constituent le socle de la chaîne atlasique.

On y rencontre des roches plutoniques (notamment des granites et granodiorites), des roches volcaniques (andésites, rhyolites, etc.) et des faciès métamorphiques (gneiss et migmatites).

Cette mosaïque cristalline est propice à un ruissellement immédiat des eaux de pluie.

– une partie septentrionale, située à des altitudes inférieures à 2 000 m, composée de dépôts permo-triasiques et quaternaires plus tendres. La lithologie du Permo-trias est composée d'un faciès nord, subatlasique, formé de conglomérats, grès et siltites, et d'un faciès sud des hauts plateaux, formé essentiellement de siltites argileuses et localement de grès massifs.

Cadre du travail

Afin de délimiter et caractériser le bassin versant nous allons utiliser le logiciel ArcGIS et surtout les Outils de modélisation hydrologique proposés par l'extension Archydro qui nous fournissent des méthodes simples en termes de manipulation, permettant ainsi de décrire les composants physiques d'un bassin.

Les données initiales :

Le bassin versant de l'Ourika a Aghbalou, localisé à une quarantine de Km au sud de Marrakech, se situe entre 31° et 31°20' de latitude Nord et entre 7°30' et 8° de longitude Ouest. Deux stations hydrologiques de mesure de débit sont disponibles:

Station Hydro	Oued	X(Km)	Y(Km)	Z(m)	
Aghbalou	Ourika	276 ,150	83,050	1070	
Tazinount	Ourika	281,950	77,800	1240	

Partie I : Préparation du MNT :

La transformation de coordonnées de Lambert/Maroc vers Merchich/Maroc s'est effectuée sur le site : https://tool-online.com/conversion-coordonnees.php

Nous avons choisi de travailler sur le MNT 30m, donc nous avons téléchargé la zone étudiée sur le site : http://gdex.cr.usgs.gov/gdex/ (après création d'un compte indiqué sur le guide).

La délimitation de la zone à étudier :

Après télécharger le MNT nous avons lancé ArcGIS pour commencer le travail :

Définition d'un nouveau système de projection : Changement su système de coordonnées du MNT

Pour la suite des calculs il fallait effectuer des transformations sur le MNT pour travailler dans un système de coordonnées projetées au lieu d'un système de coordonnées géographiques. Pour cela on a utilisé le système de coordonnées Merchich (degrees).

On utilise la méthode de la translation géocentrique avec les paramètres :

$$X = -31$$

$$Y = -146$$

$$Z = -47$$

La transformation WGS84 → Merchich n'étant pas prédéfinie, il fallait la créer grâce à l'outil Create Custom Geographic Transformation dans l'onglet Projections and Transformations parmi les Data Management Tools.

Après avoir défini la transformation, on l'a appliqué au projet grâce à **Data**Management Tools → Projections and Transformations → Raster → Project

Raster:

Après le géo référencement selon la norme marocaine, on a passée des coordonnées (latitude/longitude) aux coordonnées (X, Y), et ce, à travers un système de projection Lambert :

Après la transformation des coordonnées, on a fermé le projet actuel et on a lancé un nouveau projet dont la première couche est le résultat de ces transformations (puisque c'est la première couche d'un projet qui définit le système de coordonnées pour les autres couches).

Délimitation du bassin versant

On a commencé par installer l'extension ArcHydro parce que cette étape ainsi que celles qui la suivent nécessitent les outils d'ArcHydro.

Afin de pouvoir l'utiliser, il faut sélectionner l'extension **Spatial Analyst** et cela en cliquant sur **Customize.** Les outils utilisés sont :

Terrain Processing → DEM Manipulation → Fill Sinks

Il sert à corriger les valeurs aberrantes ou extrêmes risquant d'influencer la détermination du sens d'écoulement : cuvettes (fillsinks) ou crêtes.

Terrain Processing → Flow Direction

Il détermine pour chaque cellule élémentaire de la carte, le sens de l'écoulement par un système de numérotation, comme suit :

Terrain Processing → Flow Accumulation

Il utilise le sens de l'écoulement qu'on vient de déterminer pour définir le réseau hydraulique de la carte :

• Terrain Processing → Stream Definition

Il sert à affiner le réseau obtenu précédemment.

• Terrain Processing → Stream Segmentation

Il segmente le réseau d'écoulement en tronçons et impute à chacun un identifiant unique.

• Terrain Processing → Catchment Grid Delineation

Il délimite et associe à chaque segment de cours d'eau défini précédemment la surface qu'il draine en lui donnant le même identifiant.

Terrain Processing → Catchment Polygon Processing

Il transforme les surfaces délimitées précédemment en polygones.

Terrain Processing → Drainage Line Processing

Il convertit les cours d'eau de la représentation en grille en représentation vectorielle.

Terrain Processing → Adjoint Catchment Processing

Il définit, pour chaque surface, un polygone de la surface drainée en amont.

BatchPoint

On clique d'abord sur puis on confirme le nom batch point.

Pour cliquer sur l'emplacement de l'exutoire on utilise Go to XY

On remarque que l'exutoire n'est pas localisé sur le réseau hydrique, donc on l'a déplacé manuellement sur le cours d'eau.

Wateshed Processing → Batch Watershed Delineation

Il délimite le bassin versant associé à l'exutoire qu'on vient de définir.

Mesure de la surface et du périmètre d'un bassin

On utilise l'outil:

Drainage Area Caracterisation

Il calcule automatiquement les surfaces et périmètre les surface, périmètre, les altitudes min et max.

Le tableau hypsométrique est :

	OBJECTID *	FeatureID	BottomElev	TopElev	SIcElev	CumArea	CumVolume
Þ	1	337	1659	1659	1659	2433,704061	0
Ш	2	337	1659	1728,133333	1693,566667	280687,201649	8750085,496964
Ш	3	337	1728,133333	1797,266667	1762,7	28828847,066506	958392280,465676
	4	337	1797,266667	1866,4	1831,8333333	69233201,879642	4259866514,005973
	5	337	1866,4	1935,533333	1900,966667	120456182,476579	10750692179,889481
Ш	6	337	1935,533333	2004,666667	1970,1	171411455,626855	20926198415,525188
	7	337	2004,666667	2073,8	2039,233333	214867675,331912	34286763462,199821
	8	337	2073,8	2142,933333	2108,366667	259869297,115414	50709369366,460213
	9	337	2142,933333	2212,066667	2177,5	304272227,700022	70218085299,218369
	10	337	2212,066667	2281,2	2246,633333	346869349,871707	92712354827,112976
	11	337	2281,2	2350,333333	2315,766667	388083316,902317	118118157057,47176
	12	337	2350,333333	2419,466667	2384,9	425163231,968751	146290230306,22238
Ш	13	337	2419,466667	2488,6	2454,033333	454698664,447501	176740883156,44995
	14	337	2488,6	2557,733333	2523,166667	477837511,420458	209005681857,0535
Ш	15	337	2557,733333	2626,866667	2592,3	497656786,054834	242743252578,25925
	16	337	2626,866667	2696	2661,433333	514926350,068447	277765159455,54871
	17	337	2696	2765,133333	2730,566667	531870608,972635	313965449884,67114
Ш	18	337	2765,133333	2834,266667	2799,7	545758135,57678	351224829966,12677
Ш	19	337	2834,266667	2903,4	2868,833333	558452335,956573	389394107637,8678
Ш	20	337	2903,4	2972,533333	2937,966667	571225226,10099	428452136337,14722
	21	337	2972,533333	3041,666667	3007,1	583057084,008663	468355330695,69794
Ш	22	337	3041,666667	3110,8	3076,233333	594917335,130376	509076878595,88483
	23	337	3110,8	3179,933333	3145,366667	605804915,862559	550594563780,90344
	24	337	3179,933333	3249,066667	3214,5	614507841,583061	592794251857,94482
	25	337	3249,066667	3318,2	3283,633333	620584800,622237	635490084904,07837
	26	337	3318,2	3387,333333	3352,766667	626054956,115651	678587568572,34656
	27	337	3387,333333	3456,466667	3421,9	631317435,529232	722046898334,8634
Ш	28	337	3456,466667	3525,6	3491,033333	636631022,728084	765874704412,72461
Ш	29	337	3525,6	3594,733333	3560,166667	641461925,288262	810056785872,3252
Ш	30	337	3594,733333	3663,866667	3629,3	644999719,757605	854539011618,96338
Ш	31	337	3663,866667	3733	3698,433333	645759846,659181	899170102932,72888
Ш	32	337	3733	3743	3738	645762280,363242	905627725736,36267

On utilise l'outil : Le cours d'eau principal

Longest Flow Path

Le cours d'eau a les caractéristiques suivantes :

L'ordre de chevelu

Spatial analyst tools → Hydrology → Stream Order

Un zoom sur la carte nous donne :

Diagramme hypsométrique

Le tableau hypsométrique est :

	OBJECTID *	FeatureID	BottomElev	TopElev	SIcElev	CumArea	CumVolume
١	1	337	1659	1659	1659	2433,704061	0
	2	337	1659	1728,133333	1693,566667	280687,201649	8750085,496964
	3	337	1728,133333	1797,266667	1762,7	28828847,066506	958392280,465676
	4	337	1797,266667	1866,4	1831,833333	69233201,879642	4259866514,005973
	5	337	1866,4	1935,533333	1900,966667	120456182,476579	10750692179,889481
	6	337	1935,533333	2004,666667	1970,1	171411455,626855	20926198415,525188
	7	337	2004,666667	2073,8	2039,233333	214867675,331912	34286763462,199821
	8	337	2073,8	2142,933333	2108,366667	259869297,115414	50709369366,460213
	9	337	2142,933333	2212,066667	2177,5	304272227,700022	70218085299,218369
	10	337	2212,066667	2281,2	2246,633333	346869349,871707	92712354827,112976
	11	337	2281,2	2350,333333	2315,766667	388083316,902317	118118157057,47176
	12	337	2350,333333	2419,466667	2384,9	425163231,968751	146290230306,22238
	13	337	2419,466667	2488,6	2454,033333	454698664,447501	176740883156,44995
	14	337	2488,6	2557,733333	2523,166667	477837511,420458	209005681857,0535
	15	337	2557,733333	2626,866667	2592,3	497656786,054834	242743252578,25925
	16	337	2626,866667	2696	2661,433333	514926350,068447	277765159455,54871
	17	337	2696	2765,133333	2730,566667	531870608,972635	313965449884,67114
	18	337	2765,133333	2834,266667	2799,7	545758135,57678	351224829966,12677
	19	337	2834,266667	2903,4	2868,833333	558452335,956573	389394107637,8678
	20	337	2903,4	2972,533333	2937,966667	571225226,10099	428452136337,14722
	21	337	2972,533333	3041,666667	3007,1	583057084,008663	468355330695,69794
	22	337	3041,666667	3110,8	3076,233333	594917335,130376	509076878595,88483
	23	337	3110,8	3179,933333	3145,366667	605804915,862559	550594563780,90344
	24	337	3179,933333	3249,066667	3214,5	614507841,583061	592794251857,94482
	25	337	3249,066667	3318.2	3283.633333	620584800.622237	635490084904.07837
	26	337	3318,2	3387,333333	3352,766667	626054956,115651	678587568572,34656
	27	337	3387,333333	3456,466667	3421,9	631317435,529232	722046898334,8634
	28	337	3456,466667	3525,6	3491,033333	636631022,728084	765874704412,72461
	29	337	3525,6	3594,733333	3560,166667	641461925,288262	810056785872,3252
	30	337	3594,733333	3663,866667	3629,3	644999719,757605	854539011618,96338
	31	337	3663,866667	3733	3698,433333	645759846,659181	899170102932,72888
	32	337	3733	3743	3738	645762280,363242	905627725736,36267

Pour tracer le graphe on utilise :

Table Option → Creat Graph Wizard

On exporte par la suite les valeurs du tableau hypsométrique su l'outil **Microsoft Excel** pour pouvoir effectuer les calculs de surface partielle, surface au-dessus, la hauteur moyenne, la hauteur médiane et le mode.

Calcul des caractéristiques du bassin

Caractéristiques physiographiques

Les premières caractéristiques physiques du bassin :

$$A = 645.7622804 \text{ km}^2$$

 $P = 183.4822 \text{ km}$
 $L = 54.30807644 \text{ km}$

- Caractéristique de forme
 - Indice de compacité de Gravelius

$$K_G = 0.28 \frac{P}{\sqrt{A}} = 2.02169$$

Donc la forme du bassin est : allongée

Indice de forme de Horton

$$K_H = \frac{A}{L^2} = 0.21895$$

- Les caractéristiques de relief
 - La courbe hypsométrique

L'altitude moyenne du bassin versant

Tenne du bassin versant
$$h_{moy} = \frac{1}{A} \sum_{i} S_i \frac{h_i + h_{i+1}}{2} = 2430.8338 m$$

L'altitude médiane

$$h_{50\%} = 2276.8348 m$$

L'altitude minimale

$$h_{min} = 1659 \ m$$

L'altitude maximale

$$h_{max} = 3733 \ m$$

Le mode

La classe modale est : [1866.4; 1935.53333] donc
$$mode = 1900.96667 m$$

Le rectangle équivalent

$$L_{eq} = \frac{K_G \sqrt{A}}{1.12} \left[1 + \sqrt{1 - \left(\frac{1.12^2}{K_G}\right)} \right] = 84.05859 \ km$$

$$l_{eq} = \frac{K_G \sqrt{A}}{1.12} \left[1 - \sqrt{1 - \left(\frac{1.12^2}{K_G}\right)} \right] = 7.682288 \ km$$

Les indices de pentes

La pente moyenne du bassin

$$Pente_{moy} = 2\frac{h_{moy}}{L} = 89.52 \ m/km$$

Indice de pente de roche

$$I_r = \frac{1}{\sqrt{L_{eq}}} \sum_i \sqrt{S_i(h_{i+1} - h_i)} = 14.3166 \%$$

> Indice de pente globale

e de pente globale
$$I_g = \frac{D_u}{L_{eq}} = \frac{h_{5\%} - h_{95\%}}{L_{eq}} = \frac{3200 - 1720}{L_{eq}} = 17.60676 \, m/km$$
 c'est une zone à ondulation du terrain

Donc c'est une zone à ondulation du terrain

Indice de pente classique

$$I_{classique} = \frac{h_{max} - h_{min}}{L_{eq}} = 24.67326 \, m/km$$

La dénivelée spécifique

$$D_s = I_g \sqrt{A} = 447.42 m$$

Donc le type de relief est R7

Caractéristiques du réseau de drainage

Ordre du cours d'eau L'ordre du bassin est

$$n = 11$$

Le rapport de confluence ou de bifurcation

\Box	OBJECTID *	Value	Count
•	1	1	854745
	2	2	274798
\Box	3	3	103926
\Box	4	4	512927
\Box	5	5	264628
	6	6	119135
	7	7	56479
	8	8	26571
\Box	9	9	13864
\Box	10	10	7839
\Box	11	11	1687

$$R_c = \frac{1}{n-1} \sum_{i=1}^{n-1} \frac{N_i}{N} = 2.26836$$

La pente moyenne du cours d'eau principal

$$I_{moy} = \frac{\Delta H_{max}}{I_c} = 38.18953 \ m/km$$

Calcul de temps de concentration

• Formule de Turrazza

$$t_c = \frac{0.108}{\sqrt{I}} \sqrt[3]{AL} = 18.173 \ h$$

• Formule de Kiripich

$$t_c = 0.945 \frac{L^{1.155}}{D^{0.385}} = 5.03766 h$$

Formule de Ventura

$$t_c = 0.1272\sqrt{\frac{A}{I}} = 16.5406 \ h$$

Méthode espagnole

$$t_c = 0.3 \; \frac{L^{0,77}}{D^{0.1925}} = 8.0809 \; h$$

Formule de Van Te Cho

$$t_c = 0.123 \left(\frac{L}{I^{0.5}}\right)^4 = 0.5 \ h$$

Conclusion

Ce mini-projet était pour nous l'occasion de comprendre et d'appliquer la délimitation et l'étude d'un bassin versant qu'on a vue au cours à l'aide d'un outil SIG qui est ArcGIS. Et pour cela on a commencé par la définition puis l'application d'un nouveau système de projection sur le MNT téléchargé, une délimitation du bassin versant et détermination de l'exutoire, la détermination du cours d'eau principal, l'ordre de chevelu et enfin le calcul des différentes caractéristiques du bassin (de forme, de relief, du cours d'eau).

Ce mini-projet nous a permis aussi de se familiariser plus avec l'outil ArcGIS et de découvrir de nouveaux outils. Et malgré quelques difficultés rencontrées, on a pu les dépasser grâce à un bon travail d'équipe.