AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA

Kraków

Symulator pożaru lasu

Autorzy:
Marcin JĘDRZEJCZYK
Sebastian KATSZER
Katarzyna KOSIAK

14 grudnia 2015

Spis treści

1	\mathbf{Wstep}	2
Ce	ele modelowania pożaru	2
$\mathbf{C}_{\mathbf{z}}$	zynniki środowiskowe	2
Po	Podejścia do modelowania pożaru	
Sz	tandarowe modele 1.1 Rothermel - szybkość rozchodzenia się linii pożaru	3 3 4 4 4
2	Zastosowany model	4
Ce	ele symulacji	4
Da	Dane wejściowe	
Są	Sąsiedztwo	
\mathbf{M}	Modele paliwowe	
Ce	ele symulacji	5
Po	Podsumowanie	
3	Walidacja	6
4	Testy	6
5	Wnioski	6
6	Literatura	6

1 Wstęp

Niniejszy dokument stanowi opis zagadnienia symulowania pożarów lasów wraz z prezentacją symulatora rozprzestrzeniania się pożaru lasu opartego na automatach komórkowych.

Cele modelowania pożaru

Modelowanie pożaru polega na próbie odtworzenia zachowania się ognia i poznaniu jego parametrów w zadanej sytuacji - m.in. szybkości rozprzestrzeniania się, kierunku i ilości wydzielanego ciepła, estymację skutków pożaru. Na parametry te mają oczywiście wpływ ilość, rodzaj i dokładność dostarczonych danych wejściowch, z których najważniejszym jest rodzaj paliwa.

Istniejące modele paliwowe definiują zestawy cech roślinności mających wpływ na ich palność. Najbardziej znane modele pożaru korzystają z głównych systemów klasyfikacji modeli paliwowych takich jak dynamiczne modele Scotta i Burgana czy trzynaście "oryginalnych" modeli paliwowych Andersona i Albiniego, które opisują roślinność w czasie pory suchej, kiedy to stopień zagrożenia pożarowego jest najwyższy. Zwiększa to trafność i przydatność symulacji pożarów podczas organizacji akcji pożarowych.

Czynniki środowiskowe

Na pożar lasu wpływ mają takie czynniki jak pogoda, charakterystyka paliwa i topografia terenu.

Pogoda wpływa na ogień poprzez kierunek i siłę wiatru oraz wilgotność powietrza. Mokre paliwo potrzebuje więcej dostarczonej energii, by nastąpił jego zapłon. Ilość potrzebnej energii zależy również od temperatury otoczenia.

Topologia ma znaczący wpływ na pożar lasu. Jeśli las jest na terenie pochyłym to ogień będzie rozprzestrzeniał się szybciej z dołu do góry niż odwrotnie, a to dzięki wstępnemu ogrzaniu drzew położonych wyżej. Dochodzi do tego jeszcze nasłonecznienie stoku. Jeśli drzewa są dobrze nasłonecznione oznacza to, że dostarczono im więcej energii, co przekłada się na ich szybszy zapłon niż drzew z zacienionego obszaru. Ukształtowanie terenu ma też wpływ na wiatr. Obecność gór, wąwozów oraz przełęczy zmienia przepływ powietrza. Ponadto mogą wystąpić bariery dla ognia takie jak drogi, uskoki w ziemi, rzeki, bagna, jeziora, które zatrzymują rozprzestrzenianie się ognia.

Wiatr działa na pożar na parę sposobów. Dostarcza tlen potrzebny podczas spalania. Zmniejsza wilgotność paliwa przez zwiększenie parowania. Także fizycznie przesuwa ogień i ciepło zwiększając zasięg pożaru. Co więcej jest odpowiedzialny za śpotting"(z ang.), czyli transport płonących kawałków drzew i niedopałków dalej w teren.

Paliwo pożaru to trawy, krzewy oraz wszystko inne co może się spalić. Drobne rzeczy zapalają się szybciej, a wielkie wolniej, ale też dostarczają różną ilość ciepła zależy to od kaloryczności materiału, który płonie. Paliwo ma także wpływ na to w jaki sposób rozprzestrzenia się ogień.

Podejścia do modelowania pożaru

Od powstania pierwszych modeli pożarów w latach czterdziestych XX wieku minęło wiele czasu, w ciągu którego zaprezentowano kolejne - zróżnicowane pod względem wymaganych danych wejściowych, znaczących czynników i stopnia rozbudowania - modele.

Problemem związanym z modelowaniem tak skomplikowanego zjawiska jak ogień jest rosnąca

wraz z ilością branych pod uwagę czynników liczba koniecznych do wykoniania obliczeń, a co za tym idzie - potrzeba coraz większej mocy obliczeniowej. Właśnie z powodu względnie długiego czasu symulacji i potrzeby dużej ilości danych wejściowych skomplikowane modele stosuje się częściej w badaniu niż w terenie. W związku z tym w istniejących modelach zastosowano różne uproszczenia, często poświęcając mniej znaczące czynniki na rzecz przyspieszenia obliczeń.

Modele pożaru można podzielić na trzy grupy: empiryczne (model kanadyjski i australijski), semi-empiryczne (automaty komórkowe i Rothermel) i oparte na fizyce (modelowanie ognia koron oraz pełne fizyczne i multifazowe podejście).

Sztandarowe modele

Poniżej znajduje się krótki przegląd kilku wartych uwagi modeli. Wszystkie wymienione miały znaczącą rolę w rozwoju zagadnienia modelowania pożaru lub są uznawane za najdokładniejsze dla zadanego czasu oczekiwania na rozwiązanie i używane są w najpopularniejszych profesjonalnych programach do symulacji pożaru jak na przykład Farasite, Prometheus czy BEHAVE, które dzięki swojej zdolności do oszacowywania zachowań ognia w czasie rzeczywistym demonstrują wielką użyteczność w terenie.

1.1 Rothermel - szybkość rozchodzenia się linii pożaru

Pierwszy matematyczny model dla symulacji pożaru, został opublikowany w 1972 roku przez Richarda Rothermela.

Przybliżone równanie na szybkość rozchodzenia się linii pożaru ma formę:

$$R = \frac{(I_p)_0(1 + \phi_W + \phi_S)}{\rho_b \epsilon Q_{ig}}$$

gdzie:

R - szybkość rozchodzenia się linii pożaru [m/min]

 $(I_P)_0$ - strumień ciepła dla warunków bezwietrznych [kJ/m2/min]

 ρ_b - gęstość drewna całkowicie suchego [kg/m3]

 ϵ - efektywność ogrzewania

 Q_{ig} - ciepło przed-zapłonowe [kJ/kg]

 ϕ_w - współczynnik wiatru

 ϕ_s - współczynnik nachylenia

1.2 Rothermel - szybkość rozprzestrzeniania się pożaru w koronach

Równanie opisujące szybkość rozprzestrzeniania się pożaru w koronach:

$$R_{active} = 3.34(R_10)_{40\%}$$

gdzie:

 R_{active} - szybkość rozprzestrzeniania się pożaru w koronach [m/min]

 R_{10} - szybkość rozchodzenia się linii pożaru dla 10. modelu paliwowego i prędkość wiatru na wysokości połowy płomieni równa 40% prędkości wiatru na wysokości 6,1m. [m/min]

1.3 Van Wagner - intensywność linii ognia

Van Wagner zaproponował inne podejście do zagadnienia rozprzestrzenania się pożaru. Równanie opisujące intensywność linii ognia wymaganą do dalszego przeniesienia się ognia:

$$I'_{initiation} = (\frac{CBH(460 + 25.9FMC)}{100})^{(\frac{3}{2})}$$

gdzie:

 $I_i nitation$ - intensywność linii ognia wymaganą do dalszego przeniesienia się ognia $[{
m J/m}]$

CBH - podstawowa wysokość roślinności [m]

FMC- wilgotność roślinności (podłoża i drzew)

1.4 Cruz - szybkość rozprzestrzeniania się pożaru w koronach

Zaproponowane w 2002 roku przez Cruza równanie na szybkość rozprzestrzeniania się pożaru w koronach:

$$CROS_A = \beta_1 U_1^{\beta_2} 0 \times CBD^{\beta_3} \times e^{-\beta_4 EFFM}$$

gdzie:

EFFM - estymowana wilgotność paliwa

CBD - gęstość grupy roślinności [1/m3]

 U_1010-m - prędkość wiatru ponad najwyższą roślinnością [m/min] $\beta_1,...,\beta_4$ -współczynniki regresji

1.5 Modele oparte na automatach komórkowych

Automat komórkowy to system składający się z pojedynczych komórek, ktore znajdują sie jedna obok drugiej na n-wymiarowej siatce. Każda z komórek może mieć w danej chwili jeden stan z wielu. Stany komórki zmieniają się zgodnie z regułami przejść i zależą od stanu jej sąsiadów. Czas i przestrzeń są dyskretne.

Automaty komórkowe tworzą środowisko dla większych dyskretnych klas modeli.

2 Zastosowany model

Cele symulacji

Zapoznanie się z metodami przeprowadzania symulacji i próba przeniesienia wiedzy teoretycznej na projekt praktyczny. Ponadto przetestowanie jak radzi sobie język Java w tego typu projektach oraz ile z właściwości tego języka jesteśmy w stanie tu użyć.

Dane wejściowe

Zanim uruchomimy symulację należy, wybrać/podać:

• wielkość powierzchni,

- roughness,
- maksymalną wysokość,
- gestość zalesienia,
- typ lasu,
- prędkość wiatru,
- kierunek w którym wieje wiatr,
- wilgotność powietrza.

Po czym kliknąć przycisk GENERATE.

Przycisk GENERATE EXAMPLE jest odpowiedzialny za podstawienie danych testowych i wygenerowanie dla nich symulacji.

Sąsiedztwo

W naszym projekcie sąsiedztwo wyliczane jest na podstawie szybkości rozchodzenia się pożaru ze wzoru Rothermela, który to uwzględnia również współczynniki wiatru i nachylenia. Zastosowana została zasada Huygensa, która to zakłada, że każdy wierzchołek może być źródłem nowej eliptycznej ekspansji ognia. W związku z tym, sąsiedztwo komórki jest wygenerowane z elipsy. Jej kształt jest zgodny z zależnością odkrytą przez Andersona, przy założeniu, że pożar rośnie w kształcie pojedynczej elipsy, zgodnie z założeniami modelu Alexandra. Fizycznie tworzona jest ona w układzie współrzędnych biegunowych, gdzie zostaje obrócona wraz z kierunkiem wiania wiatru. Następnie jest ona rzutowana na rzeczywiste położenie komórki i poddana dyskretyzacji.

Może jakiś wzór tu walnąć??

Modele paliwowe

Tu wymieniamy jakie są i że my mamy te 3 czy jak.

W naszym programie jest możliwość wyboru modelu paliwowego. Do wyboru mamy las iglasty, liściasty, mieszany.

Cele symulacji

to nam raczej nie potrzebne jest, bo parę stron wcześniej jest to lepiej napisane (skapłem się po chwili)

Celem symulacji jest próba przewidzenia jak zachowuje się pożar lasu. Dzięki temu można podjąć decyzję, jak rozdysponować środki w czasie walki z żywiłem w sposób optymalny oraz ostrzec o obszarach zagrożonych. Można też spróbować przewidzieć jak zachowałby się przyszły teoretyczny pożar, co pozwoliłoby zawczasu podjąć akcje zapobiegawcze.

f fancy function podtytuł

Podsumowanie

3 Walidacja

Walidacja – w naukach technicznych i informatyce działanie mające na celu potwierdzenie w sposób udokumentowany i zgodny z założeniami, że procedury, procesy, urządzenia, materiały, czynności i systemy rzeczywiście prowadzą do zaplanowanych wyników.

Do walidacji wykorzystaliśmy, jako punkt odniesienia pożar Kuźni Raciborskiej w 1992 roku. Informacje z materiałów źródłowych o tym pożarze to m.in.:

- Klimat umiarkowany, kontynentalny z wpływem atlantyckiego,
- Średnia roczna opadów 650mm w części północnej, 660mm w części południowej, 500mm ostatniego lata,
- Udział drzew iglastych (sosna, świerk) w powierzchni- 85%,
- Udział drzew liściastych (głównie dąb, buk, brzoza) w powierzchni- 15%,
- Wiatr południowo-zachodni,
- Wiek drzew: do 20 lat 15%, do 40 lat 18%, starsze 67%,
- Teren nizinny, płaski, bez wyraźnych wzgórz czy znacznych różnic wysokości terenu,
- Temperatura w dniu pożaru wynosiła $34^{\circ}C$, a wcześniej nawet do $40^{\circ}C$,
- Większość warstwy podłoża to niezmineralizowana ściółka lub zbutwiałe drzewa oraz rośliny o grubości kilkunastu cm,
- Obecność torfu o grubości 1-1.5m, który zajmował około 150ha obszaru.

4 Testy

 sd

5 Wnioski

sdsd

6 Literatura

Asensio MI, Ferragut L., Simon J.: Modelling of convective phenomena in forest fire. Rev Real Academia de Ciencias, 2002, 96:299–313

Bodrožić Ljiljana, Stipaniev Darko, Šerić Marijo: Forest fires spread modeling using cellular automata approach, University of Split, 21000 Split, Croatia, 2009

Chad Hoffman: Fire Behavior Predictions Case Study, University of Idaho, 2007

Czerpak Tomasz, Maciak Tadeusz: Modelowanie pożaru lasu. Część 1. Metody i algorytmy modelowania pożaru lasu, Wydział Informatyki, Politechnika Białostocka, 2011

Rysunek 1: pożar Kuźni Raciborskiej

Rysunek 2: Wynik naszego programu dla danych z Kuźni

Kułakowski Krzysztof: Automaty Komórkowe, OEN AGH (2000)

Law A.M., Kelton W.D.: Simulation Modeling and Analysis, Second Edition, McGraw-Hill 2000

Ottmar Roger D. et al.: An Overview of the Fuel Characteristic Classification System - Quantifying, Classifying, and Creating Fuel beds for Resource Planning. Canadian Journal of Forestry Research. 37:2383-2393. 2007

Rothermel Richard C.: A Mathematical Model for Predicting Fire Spread in Wildland Fuels. USDA Forest Service. Research Paper INT-115. 1972.

Sayama Hiroki: Introduction to the Modeling and Analysis of Complex Systems, Open SUNY Textbooks, State University of New York at Geneseo, 2015

Scott Joe H., Burgan Robert E.: Standard Fire Behavior Fuel Models, USDA Forest Service Gen. Tech. Rep. RMRS-GTR-153., June 2005

Weise David R., Biging Gregory S.: A Qualitative Comparison of Fire Spread Models Incorporating Wind and Slope Effects, Research Gate, October 2015

Wells Gail: The Rothermel Fire-Spread Study: Still Running Like a Champ, Fire Science Direct, Issue 2, March 2008