Folha 5 - parte 2: Soluções

1. (a)
$$f(x) \sim \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \left[(-1)^n \frac{4}{n^2} \cos(nx) + (-1)^{n+1} \frac{2}{n} \sin(nx) \right];$$

(b) $g(x) \sim \frac{\sinh(\pi)}{\pi} + \sum_{n=1}^{\infty} 2 \frac{\sinh(\pi)}{\pi} \left[\frac{(-1)^n}{n^2 + 1} \cos(nx) + \frac{(-1)^{n+1}n}{n^2 + 1} \sin(nx) \right];$
(c) $h(x) \sim \sum_{n=1}^{\infty} 2 \frac{1 - (-1)^n}{n} \sin(nx) = \sum_{n=1}^{\infty} \frac{4}{2n - 1} \sin((2n - 1)x).$

2. Soma da série de cossenos: s(x) = 2;

Soma da série de senos: $S(x) = \left\{ \begin{array}{ll} -2 &, & x \in]-\pi+2k\pi, 2k\pi[\\ 0 &, & x=k\pi \\ 2 &, & x \in]2k\pi, \pi+2k\pi[\end{array} \right. \quad (k \in \mathbb{Z}).$

- 3. (a) $f(x) \sim \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos(nx), \quad x \in \mathbb{R}.$
 - (b) Sugestão: aplique o Critério de Weierstrass.
 - (c) —
 - (d) —
- 4. (a) A função f é contínua e seccionalmente diferenciável em \mathbb{R} . Portanto, a soma da série coincide com a própria função f (em \mathbb{R}).
 - (b) Resulta da alínea anterior que

$$x^{2} = \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} (-1)^{n} \frac{4}{n^{2}} \cos(nx), \quad \forall x \in [-\pi, \pi].$$

Tomando, em particular, x = 0 obtemos a igualdade pretendida.