Computability (11/10/2021)

<u>exercise</u>: urms

 $T(m_1m) \qquad T_s(m_1m) \qquad R_m \leftrightarrow R_m$   $C^s = C \qquad ?$ 

dim

( $\mathbb{C}^s \in \mathbb{C}$ ) Given  $f: \mathbb{N}^K \to \mathbb{N}$   $f \in \mathbb{C}^s$  ?  $f \in \mathbb{C}$  Thure is P URMs program such that  $f = f_P^{(K)}$  We want to prove that P can be transformed in  $P^I$  URM program such that  $f_{P^I}^{(K)} = f_P^{(K)}$ 

 $T_s(m_1m)$   $m_0$  T(m,i) T(m,m) T(i,m)

We prove that P URN program can be transformed into P' URN programs such that  $f_p^{(K)} = f_{P'}^{(K)}$  by induction on  $h = \# \text{ of } T^s(m,m)$  in P (h = 0) P is already a URN program  $\Rightarrow$  are can take P' = P  $(h \to h + 1)$  Let P has h + 1  $T_s(m,m)$  instructions

P is of the shape urs

 $P \left\{ \begin{array}{c} J_{1} \\ \vdots \\ J_{t} \\ T_{s}(m_{1}m) \end{array} \right. \left\{ \begin{array}{c} J_{t} \\ J_{t} \\ J_{s} \end{array} \right. \left\{ \begin{array}{c} J_{t} \\ J_{t} \\$ 

we assume that P box mimotes a - S+1 take  $i = mox (dm | Rm is used in P) udk}) + 1$ 

END:

It uses both Tand Ts

Note that  $f_{P''}^{(k)} = f_{P}^{(k)}$  and # instructions Ts in P'' is h

By inductive hyp. on P'' there is P' up program such that  $f_{pl}^{(K)} = f_{pl}^{(K)} = f_p^{(K)} = f_p^{(K)}$  NOT WORKING! P'' NOT a URM'S program.

SOLUTION: The proof goes through by showing that more genurally; If given any program P using both T and Ts there is P'' URM program such that  $f_p^{(K)} = f_{p'}^{(K)}$  II

\* EXAMPLE: All matural mombers on equal [BE CAREFOL WITH INDUCTION]  $\forall \times \in \mathbb{N}$   $|\times| \ge 1$   $\forall m, m \in \times$  m = m  $\forall most$   $(mduction on |\times)$ 

(|x|=1)  $\forall m_1 m \in X$  m=m

functions in 
$$C = \infty + C$$
  $Ax \in \mathbb{N}$ 

or

 $f(x) = C$   $Ax \in \mathbb{N}$ 

We prove by induction on the number K of steps that after x steps in register R1 the value  $T_{1}(x, K) = content of R_{1} offer K steps of P$ storting from  $\boxed{z | o | o |}$ 

$$(K=0)$$
  $(x,0) = x + 0$ 

$$T_{\alpha}(x, K) =$$

$$\begin{array}{c} c \\ x+c \end{array}$$

for some C constant



In com be

• Z(m) two sub coses

$$(m = 1)$$
  $\chi_1(\chi_1 + 1) = 0$ 

$$(m \pm 1) \qquad \text{tr} \left( z_{1} + 1 \right) = \text{tr} \left( z_{1} + 1$$

S(m) two subcoses

$$(m = 1)$$
  $\text{Re}_1(x, k+1) = \text{Re}_1(x, k) + 1$  ok by and hup.

$$(M \pm 1) \quad \forall 1 \ (x, K+1) = \forall 1 \ (x, K) \qquad (1) \qquad (1)$$

•  $T(m_1 m)$  $(m \neq 1 \text{ or } (m=1 \text{ and } m=1))$  $\epsilon_1(x, K+1) = \epsilon_1(x, K)$  or by inductive hyp.  $(m=1 \text{ and } m \neq 1)$ VERY BAD x try to show that if  $\mathcal{E}_{\mathcal{J}}(x, K) = \text{comtent of expirator } \mathcal{J} \text{ of the } K \text{ steps of}$ amputation storting form [20] --- $\log (x_1 K) = \sum_{x+C} c \in \mathbb{N}$ by induction on k  $(K=0) \qquad \forall_{\tau} (x,0) = ?$ if J=1  $\forall I(x_10)=x_1+0$  $\{f \ J > 1 \qquad \kappa_{\perp}(x,0) = 0$  $(K \Rightarrow K+1)$  depending on what is  $I_{K+1}$ : - Z(m) m = 1  $\mathcal{E}_1(x, k+1) = 0$  $m \neq J$   $e_J(x, k+1) = e_J(x, k)$  or by 1 mol hyp  $- \leq (m)$ m = J  $\nabla_{J}(x, k+1) = \nabla_{J}(x, k) + 1$  $M \neq J$   $\forall y (x, K+1) = \forall y (x, K)$  $m \neq J$  or (m=J) and (m=J)- T(m1m)  $\nabla_{J}(x, \kappa+1) = \xi_{J}(x, \kappa)$ m=j, m=j  $\nabla_T(z, K+1) = \xi_m(z, K)$ NOT NEEDED