Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Transformers Intuition

Transformers Motivation

Increased complexity, sequential

RNN

GRU

Transformers Intuition

- Attention + CNN
 - Self-Attention
 - Multi-Head Attention

Self-Attention

Self-Attention Intuition

A(q,K,V) = attention-based vector representation of a word

RNN Attention

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_{\mathcal{X}}} \exp(e^{})}$$

Transformers Attention

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k^{\langle i \rangle})}{\sum_{j} \exp(q \cdot k^{\langle j \rangle})} v^{\langle i \rangle}$$

$$x^{<1>}$$
 Jane

$$\chi^{<2>}$$
 visite

$$\chi^{<1>}$$
 $\chi^{<2>}$ $\chi^{<3>}$ $\chi^{<4>}$ $\chi^{<5>}$ Jane visite l'Afrique en septembre

$$\chi$$
<4>

$$x^{<5>}$$
eptembre

Self-Attention

[Vaswani et al. 2017, Attention Is All You Need]

q<5> = W_q ^ x<5> k<5> = W_k * x<5> b<5> = W_v * x<5>

Andrew Ng

Multi-Head Attention

Multi-Head Attention

Transformers

Transformer Details

<SOS>Jane visits Africa in September <EOS>

Suppose your word encoding is 4 dimensional, so you take 'K' as helper index $PE_{(pos,2i+1)} = cos(\frac{pos}{1000\frac{2i}{d}})$ which goes from 0 to d-1, in this case, 0 to 3 and then calculate the `i` as `K//2` which will give integer value always, say for

 $K = 0, i \Rightarrow K//2 = 0..., K = 1, i \Rightarrow K//2 = 0..., K = 2, i \Rightarrow K//2 = 1, ..., K = 3, i \Rightarrow K//2 = 1$

[Vaswani et al. 2017, Attention Is All You Need]

Andrew Ng