

Universidade Estadual de Londrina Departamento de Computação Programa de Mestrado em **Computação** Módulo 2 - Processamento Digital de **Imagens**

Autor: Prof. Dr. Alan Salvany Felinto email: alan@uel.br

(2017)

Sumário

• "Capítulo 4: Operações em Imagens."

- Operações Lógicas
- Zoom, níveis de cinza
- Histograma, Equalização de Histograma.

Referências Bibliográficas

Processamento Digital de Imagens

Efeitos na imagem

Imagens com diferentes tamanhos de pixels

256 cores 16 cores 2 cores

- Abertura: tamanho da abertura da lente. Determina quanta luz irá incidir no sensor da câmera, abrindo mais ou menos, quanto menor o valor, maior a abertura da lente. Quando for máxima, permitirá o máximo de entrada de luz. Em câmeras compactas é configurada automaticamente. Nas câmeras prosumer e reflex pode ser configurada manualmente;

Abertura do Diafragma

- Automatic Shutter: recurso de disparo automático que possibilita que a foto seja tirada sem o acionamento direto do botão do obturador, possibilitando diminuir a vibração produzindo fotografias mais nítidas;

Disparo Automático

- Balanço de branco: processo de remoção de cores não reais, o correto balanço de branco deve levar em consideração a temperatura de cor de uma fonte de luz. Em geral, as lâmpadas trazem informações sobre sua temperatura de cor, que deve ser configurada na câmera.

- EXIF (Exchangeable Image File Format): são metadados gravados no arquivo da imagem com os conteúdos: resolução, data e hora, abertura, velocidade, ISO, configurações da câmera;

8 🖨 📵 DSC_0002	_teste1 - Cópia.jpg Properties
Basic Permissions	Open With Image
Image Type Width Height Camera Brand Camera Model Date Taken	jpeg (JPEG) 640 pixels 424 pixels NIKON CORPORATION NIKON D5100 2013:05:27 11:44:26
Exposure Time ISO Speed Rating Flash Fired	1/60 sec. 500 Flash fired, auto mode, return light detected
Metering Mode Exposure Program Focal Length Software	Pattern Not defined 20,0 mm Ver.1.01

- Exposição (EV): relação entre abertura e velocidade para determinada condição de luz. Parâmetro responsável por fotos mais claras ou escuras limitando a quantidade de luz do ambiente que entra na câmera, com mais luz é necessário diminuí-lo, ou aumentá-lo, caso contrário. Regula automaticamente o tempo de exposição com abertura máxima;

- Filtros: acessórios acoplados à lente da câmera que ajustam fisicamente o comportamento da luz. Um exemplo é o filtro polarizador que consegue eliminar reflexos das superfícies, principalmente úmidas,

realçando cores e aumentando o contraste;

- Flash: luz auxiliar para fotografar quando há deficiência na iluminação do ambiente. Pode causar reflexão ou efeito de superexposição que altera cores reais do objeto, tornando-as esbranquiçadas, quando utilizado em ambiente com muita luz ou objetos muito próximos;
- Foco: busca do melhor contraste e nitidez da imagem. Pode ser automático ou manual. Em condições adversas ao uso de câmeras, o modo automático simplifica a captura da imagem;
- ISO: sensibilidade dos sensores em relação à luz. Utilizado para compensar a falta de luz, aumentando a captação do sensor. Quando utilizado com valores muito altos gera ruído nas imagens;

- Marcador: referência colocada na fotografia para que se possa digitalmente representar e adequar padrão de escala ou medida;
- Resolução: quantidade de pixels presentes na imagem, por exemplo, uma fotografia com 1920 x 1080 pixels tem 2.073.600 pixels e tamanho de dois megapixels;
- Tripé: a fixação da câmera em tripé permite maior mobilidade para manipulação dos objetos a serem fotografados e reduz consideravelmente a chance de imagens tremidas;

Operações píxel a píxel

Dado 2 pixeis, p e q:

Adição: p + q

Subtração: p – q

Multiplicação: p*q

Divisão: p/q

E: p E q

OU: p OU q

Complemento: Não q

		 >
(x-1,y-1)	(x,y-1)	(x+1,y-1)
(x-1,y)	(x,y)	(x+1,y)
(x-1,y+1)	(x,y+1)	(x+1,y+1)

Definição

- 4 vizinhos

- 8 vizinhos

Operações Lógicas

Fundo com valor 0 (zero). Objeto com valor 1 (um)

Distâncias

Considere os pixeis p, q, z com coordenadas (x,y), (s,t) e (u,v)

$$D(p,q) \ge 0$$
 ($D(p,q)=0$ se e somente se $p=q$);

$$D(p,q) = D(q,p)$$
, e

$$D(p,z) \le D(p,q) + D(q,z).$$

Euquidiana (raio centrado em p): $D_{e}(p,q) = [(x-s)^{2} + (y-t)^{2}]^{1/2}$

D₄ - Distância City Block ou quarteirão.

$$D_{a}(p,q) = |x-s| + |y-t|$$

Forma um losango centrado em p.

Distância Xadrez.

$$D_{8}(p,q) = \max(|x-s|,|y-t|).$$

Forma um quadrado centrado em p.

Zoom (quadriculado)

Cada ponto da imagem se transforma em quatro pontos da imagem aumentada. Para diminuir o processo é ao contrário, é calculado a média aritmética para cada grupo de 4 pontos. O valor da média é considerado o valor de um único ponto da imagem de menor tamanho.

Aumentar a Imagem - Zoom in (linear)

- •Primeiro passo: Calcular a interpolação dos pontos ao longo das linhas da imagem.
- •Segundo passo: Calcular a interpolação dos ponto ao longo das colunas da imagem.
- •O ponto interpolado é calculado pela média aritmética de dois pontos vizinhos.

Exemplo utilizando imagem em níveis de cinza:

Coordenadas da linha da imagem

Imagem Original

Zoom out

Diminuir a Imagem - Zoom out

Passo 1:

Calcular a média aritmética, da cor, para cada grupo de no máximo 4 pixels vizinhos.

Passo 2:

O valor da média da cor é considerado a cor resultante do pixel da imagem de menor tamanho.

Imagem original Em níveis de cinza

10	15	20	15	10
20	<i>17</i>	14	<u>12</u>	10
30	19	8	9	10
40	27	14	10	6
50	35	20	11	2

Diminuição da imagem

$$(10+15+20+17)/4 = 15,5$$

 $(20+15+14+12)/4 = 15,25$
 $(10+10)/2 = 10$
 $(30+19+40+27)/4 = 25,5$
 $(8+9+14+10)/4 = 10$
 $(10+6)/2 = 8$
 $(50+35)/2 = 42,5$
 $(20+11)/2 = 15,5$
 $2=2$

Imagem Original

Zoom in

Zoom out

pixels vizinhos

R G B

(10, 20, 30)

(15, 20, 25) interpolado

(20, 20, 20)

Imagem Original

Zoom out

Histogramas

Definição:

- r_k Nível de cinza k (cor) do píxel r
- n_k Somatória de todos os píxels da imagem que possui o nível de cinza k
- L número máximo do nível de cinza permitido em uma imagem.
- *N* número total de píxels em uma imagem.

O histograma é uma função discreta dada por:

$$P(r_k) = n_k/N$$

 $k = 0,1,2,...,L-1$
 $P(r_k)$ varia entre [0,1]

Ou seja, $P(r_k)$ é a probabilidade de ocorrência do nível de cinza r_k na imagem

Histogramas

Exemplos de histogramas:

Considere *r* a intensidade do pixeis antes do processamento e *s* a intensidade do pixeis depois do processamento.

Exemplo de aplicação

Representação da Transformada de Fourier como imagem

Considere:

- A variação da Transformada de Fourier de uma imagem igual a $[0, R] = [0, 2.5x10^6]$
- 256 níveis de cinza de uma imagem

S =
$$T(r)$$
 Desta forma $s = [0, 255]$ e $r = [0, 2.5x10^6]$

Como as principais informações da T.F. estão contidas nas regiões próximas de zero então a transformação T deverá realçar as informações próxima de zero em detrimento das informações próxima de 2.5×10^6 .

Exemplo de aplicação

 $s = c \log(1+|r|)$, neste caso r máximo é igual a $2.5x10^6$ então $\log(1+|2.5x10^6|) = 6.4$, portanto c = 255/6.4

Fórmula final: $s = (255/6.4) \log(1+|r|)$

Exemplo de aplicação

Limiar ou "threshold"

Imagem original

Imagem resultante

Histograma

Equalização de Histograma

Características:

a) T(r) é um valor único e monotonicamente crescente no intervalo $0 \le r \le 1$ - preserva a ordem na escala de níveis de cinza b) $0 \le T(r) \le 1$ para $0 \le r \le 1$ - Garante que a transformação T(r)resulta em um s válido na escala de níveis de cinza.

$$P(r_k) = n_k/N$$
 $0 \le r_k \le 1$ e $k = 0, 1, ..., L - 1$

Fórmula final da equalização que satisfaz os itens <u>a</u> e <u>b</u>:

$$n_i$$

$$S_k = T(r_k) = \sum_{i=0}^{K} \frac{n_i}{N}$$
 Onde: S_k cor nova, r_k cor original

S_k varia de 0 a 1 (como fazer para variar de 0 a 255)

i varia de 0 a k

k varia de 0 a 255 - k representa cor

$$s_k = T(r_k) = \sum_{i=0}^k \frac{n_i}{N} *255$$

n; representa a quantidade da cor i na imagem N total de pixeis na imagem

Equalização de Histograma

Como fazer na prática a equalização da imagem ? Lembre-se que a cor está representada entre o intervalo de 0 e 1.

Questões de Implementação


```
Mat image, copy_image, Mat gray_image, Mat result;
int vector[256];
uchar s;
image = imread("/users/alan/Desktop/alan.jpg");
  if(!image.data)
     printf( "No image data \n" );
    return -1;
cvtColor(image, gray_image, CV_BGR2GRAY);
copy_image = image.clone();
for(int i = 0; i < gray_image.rows; i++){</pre>
    for (int j = 0; j < gray_image.cols; j++) {
       s = gray_image.at<uchar>(i, j);
       vector[(int)s]++; // conta cor
```


Questões de Implementações


```
s = gray_image.at<uchar>(i, j); // valor do nível de cinza do pixel (i,j)
result.at<uchar>(i,j) = s;// atribui valor ao nível de cinza do pixel (i,j)
gray_image.size().width; //largura da Imagem
gray_image.size().height; //altura da Imagem
namedWindow( "Display Image", CV_WINDOW_AUTOSIZE );
imshow( "Display Image", result );
result.create(height/2, width/2, CV_8UC3); //cria uma imagem
Vec3b color = image.at<Vec3b>(i,j);
       result.at<Vec3b>(i,j) = color;
(int)color[0] - cor Azul - image.at < Vec3b > (i,j).val[0]
(int)color[1] - cor verde - image.at<Vec3b>(i,j).val[1]
(int)color[2] - cor vermelha - image.at<Vec3b>(i,j).val[2]
```

image.at < Vec3b > (i,j).val[1] = valor

Exercícios

1. Implemente, para uma imagem colorida e em níveis de Cinza, o Zoom in e o Zoom out (aproximar/afastar).

Para o aumento e diminuição da imagem:

- Implementação 1: Para cada pixel da imagem original transforme-o em 4 pixel da imagem aumentada e vice e versa (verifique o efeito desta transformação na imagem).
- Implementação 2: Utilize a média entre os pixeis para aumentar a imagem (Zoom linear verifique o efeito desta transformação na imagem) 09/10/2017

Exercícios

- 2) Binarize uma imagem em níveis de cinza o parâmetro do limiar de binarização é um nível de cinza dado pelo usuário. 02/10/2017
- 3) Faça a equalização do Histograma de uma imagem em níveis de cinza. 02/10/2017
- 4) Utilizando o Modelo HSV ou HSI faça a equalização do Histograma de uma imagem. 09/10/2017

Exercício

5) Implemente a seguinte transformação s[k] = T(k,L,H) em uma imagem em níveis de cinza

Onde:

- k é a cor antiga da imagem
- s é a nova cor transformada da imagem
- T(k) obedece a seguinte formulação:
- Dado 2 parâmetros L e H, onde:
- L e H são cores variando de 0 a 255.
- L é sempre menor ou igual a H.
- todo valor de k que for menor que L vira 0 (preto)
- todo valor de k que for igual ou maior que H vira 255 (branco)
- todo valor entre L e H a transformação de t(k) obedecerá a
- equação da reta cujo pontos extremos são (L,0) e (H,255), ou

Bibliografias

- •[Castleman (1996)] Castleman, K. R. Digital Image Processing. Prentice Hall pp-667. 1996.
- •[Gonzalez (1993)] Gonzalez, R. F.; Woods, R. E. Digital Image Processing. Addison-Wesley, p 716. 1993.
- •[Hearn (1997)] Hearn, D; Baker, M. P. Computer Graphics, C Version. Prentice Hall, 2ª edição, p. 650, 1997.
- •[FOLEY_90] Foley, James D. et al: Computer Graphics Principles and Practice, Addison-Wesley Publishing Company, 1990.
- •[PERSIANO_89] Persiano, R.C.M.; Oliveira, A.A.F. :Introdução à Computação Gráfica, Livros Técnicos e Científicos Editora Ltda., 1989.
- •[Pratt (1991)] Pratt, Willian K. Digital Image Processing. A Wiley-Interscience Publication, 2a edição. 698 p. 1991.
- •http://www.icmsc.sc.usp.br/ensino/material/ Link para o curso de computação gráfica do Instituto de Ciências Matemáticas e de Computação (ICMC-USP- São Carlos, São Paulo).
- Inserir trabalhos de TCC