- 1. Prove that every root of a *monic* polynomial with integer coefficients (i.e, a polynomial of the form $p(x) = 1 \cdot x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ where $a_0, \ldots, a_{n-1} \in \mathbb{Z}$) is either irrational or an integer.
- 2. A subset $X \subseteq \mathbb{R}$ is *dense* if for all $a, b \in \mathbb{R}$ such that a < b, there is some $x \in X$ such that a < x < b.
 - (a) Prove the irrational numbers are dense.
 - (b) Prove the rational numbers are dense.
- 3. For the following sets, determine whether they are finite, countable, or uncountable.

Prove your answer.

- (a) The set of all finite subsets of \mathbb{R} .
- (b) The set of all co-finite subsets of \mathbb{R} , that is, $\{A \subseteq \mathbb{R} \mid \mathbb{R} \setminus A \text{ is finite } \}$.
- (c) The set of all finite subsets of \mathbb{Q} .
- (d) The set of all co-finite subsets of \mathbb{Q} , that is, $\{A \subseteq \mathbb{Q} \mid \mathbb{Q} \setminus A \text{ is finite } \}$.
- (e) The set of all open intervals with endpoints in \mathbb{R} : $\{(a,b) \mid a,b \in \mathbb{R}\}$.
- (f) The set of all open intervals with endpoints in \mathbb{Q} : $\{(a,b) \mid a,b \in \mathbb{Q}\}$.
- (g) The set of all finite unions of open intervals with endpoints in \mathbb{Q} : The set of all sets of the form $\bigcup_{i=1}^{n} (a_i, b_i)$.
- (h) The set of all countable intersections of open intervals with endpoints in \mathbb{Q} : The set of all sets of the form $\bigcup_{i=1}^{\infty} (a_i, b_i)$.
- (i) The set of all finite intersections of open intervals with endpoints in \mathbb{Q} : The set of all sets of the form $\bigcap_{i=1}^{n} (a_i, b_i)$.
- (j) The set of all countable intersections of open intervals with endpoints in \mathbb{Q} : The set of all sets of the form $\bigcap_{i=1}^{\infty} (a_i, b_i)$.