lytische Funktion f definiert man das Residuum im Punkt a als $\operatorname{Res}_{z=a} f(z) = \operatorname{Res}_{a} f = \frac{1}{2\pi i} \int_{\Omega} f(z) dz,$

Theorem 1 (Residuum). Für eine in einer punktierten Kreisscheibe $D \setminus \{a\}$ ana-

wobei
$$C \subset D \setminus \{a\}$$
 ein geschlossener Weg mit $n(C,a)=1$ ist (z. B. ein entgegen dem Uhrzeigersinn durchlaufener Kreis).

ΑΛΔ
$$\nabla$$
BCDΣΕΓΓGHIJ $KLMNO\Theta$ Ω PΦΠΞQRST $UVWXY$ ΥΨΖ ABCDabcd1234 $a\alpha b\beta c\partial d\delta e\epsilon \epsilon f \Upsilon Eaγhħιii ikκl ℓ λ $mnn\theta$ 9οσς $d\phi \phi$ ρρο $arst$ $\tau πυμγνυω ω \overline{\omega}$$

$$a α b β c ∂ d δ e ε ε f ζ ξ g y h h ι i i j k κ l ℓ λ m n η θ θ ο σ ς φ φ φ ρ ρ ρ q q r s t τ π u μ ν ν υ w ω ω$$

$$x y z ∞ ∞ Ø y = f(x)$$

$$\sum \prod \prod \sum \sum_{a} \sum_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \prod_{a}^{b}$$