Report 03/12/2020

1 Time independent control

We have the following OCP:

$$J = \frac{1}{2} \int_0^T \int_{\Omega} (\rho - \widehat{\rho})^2 dr dt + \frac{\beta}{2} \int_{\Omega} \mathbf{w}(r)^2 dr$$
 subject to:

$$\frac{\partial \rho}{\partial t} = \nabla^2 \rho - \nabla \cdot (\rho \mathbf{w}(r))$$

Then the Lagrangian is:

$$\mathcal{L}(\rho, \mathbf{w}, q) = \frac{1}{2} \int_0^T \int_{\Omega} (\rho - \widehat{\rho})^2 dr dt + \frac{\beta}{2} \int_{\Omega} \mathbf{w}(r)^2 dr - \int_0^T \int_{\Omega} q \frac{\partial \rho}{\partial t} - q \nabla^2 \rho + q \nabla \cdot (\rho \mathbf{w}) dr dt.$$

And after integrating by parts (neglecting the BCs because we know them already):

$$\mathcal{L}(\rho, \mathbf{w}, q) = \frac{1}{2} \int_0^T \int_{\Omega} (\rho - \widehat{\rho})^2 dr dt + \frac{\beta}{2} \int_{\Omega} \mathbf{w}(r)^2 dr$$
$$- \int_0^T \int_{\Omega} q \frac{\partial \rho}{\partial t} - q \nabla^2 \rho - \rho \mathbf{w} \cdot \nabla q dr dt.$$

Taking derivatives with respect to w gives:

$$\mathcal{L}(\rho, \mathbf{w}, q) = \int_{\Omega} \beta \mathbf{w}(r) \cdot \mathbf{h}(r) dt + \int_{0}^{T} \int_{\Omega} \rho \mathbf{h}(r) \cdot \nabla q dr dt.$$

Since w does not depend on t, neither does h and so this can be taken out of the time integral:

$$\mathcal{L}(\rho, \mathbf{w}, q) = \int_{\Omega} \left(\beta \mathbf{w}(r) \cdot \mathbf{h}(r) + \mathbf{h}(r) \cdot \int_{0}^{T} \rho \nabla q dt \right) dr.$$

Then we get:

$$\beta \mathbf{w}(r) + \int_0^T \rho \nabla q dt = 0$$

And finally:

$$\mathbf{w}(r) = -\frac{1}{\beta} \int_0^T \rho \nabla q dt$$

2 V_{ext} control

We have the following OCP:

$$J = \frac{1}{2} \int_0^T \int_{\Omega} (\rho - \widehat{\rho})^2 dr dt + \frac{\beta}{2} \int_0^T \int_{\Omega} V_{ext}^2 dr$$

subject to

$$\frac{\partial \rho}{\partial t} = \nabla^2 \rho + \nabla \cdot (\rho \nabla V_{ext})$$

The Lagrangian is:

$$\mathcal{L}(\rho, V_{ext}, q) = \frac{1}{2} \int_0^T \int_{\Omega} (\rho - \widehat{\rho})^2 dr dt + \frac{\beta}{2} \int_0^T \int_{\Omega} V_{ext}^2 dr - \int_0^T \int_{\Omega} q \frac{\partial \rho}{\partial t} - q \nabla^2 \rho - q \nabla \cdot (\rho \nabla V_{ext}) dr dt.$$

We need to integrate by parts twice to get the term in V_{ext} into the necessary form:

$$\int_{0}^{T} \int_{\Omega} \nabla \cdot (\rho \nabla V_{ext}) dr dt = \int_{0}^{T} \int_{\partial \Omega} q \rho \nabla V_{ext} \cdot \mathbf{n} dr dt - \int_{0}^{T} \int_{\Omega} \rho \nabla V_{ext} \cdot \nabla q dr dt$$
$$= \int_{0}^{T} \int_{\partial \Omega} q \rho \nabla V_{ext} \cdot \mathbf{n} - \rho V_{ext} \nabla q \cdot \mathbf{n} dr dt + \int_{0}^{T} \int_{\Omega} V_{ext} \nabla (\rho \nabla q) dr dt$$

We will also have

$$\int_{0}^{T} \int_{\Omega} q \nabla^{2} \rho = \int_{0}^{T} \int_{\partial \Omega} q \nabla \rho \cdot \mathbf{n} - \rho \nabla q \cdot \mathbf{n} dr dt + \int_{0}^{T} \int_{\Omega} \rho \nabla^{2} q dr dt$$

2.1 Boundary Conditions

And the boundary conditions:

$$\int_{0}^{T} \int_{\partial \Omega} q_{\partial \Omega} \nabla \rho \cdot \mathbf{n} + q_{\partial \Omega} \rho \nabla V_{ext} \cdot \mathbf{n} dr dt$$

Combining these:

$$\int_{0}^{T} \int_{\partial\Omega} q\rho \nabla V_{ext} \cdot \mathbf{n} - \rho V_{ext} \nabla q \cdot \mathbf{n} + q \nabla \rho \cdot \mathbf{n} - \rho \nabla q \cdot \mathbf{n} + q_{\partial\Omega} \nabla \rho \cdot \mathbf{n} + q_{\partial\Omega} \rho \nabla V_{ext} \cdot \mathbf{n} dr dt$$

During the derivation of the adjoint equation we have:

$$\int_{0}^{T} \int_{\partial \Omega} \mathbf{n} \cdot h \left(q \nabla V_{ext} - V_{ext} \nabla q - \nabla q + q_{\partial \Omega} \nabla V_{ext} \right) + \nabla h \cdot \mathbf{n} \left(q + q_{\partial \Omega} \right) dr dt$$

Then from the ∇h terms we get $q_{\partial\Omega}=-q$ and so:

$$(q\nabla V_{ext} - V_{ext}\nabla q - \nabla q - q\nabla V_{ext})\cdot \mathbf{n} = 0$$

And therefore:

$$(1 + V_{ext})\frac{\partial q}{\partial n} = 0$$

Can we divide by $1 + V_{ext}$, is $V_{ext} > 0$.

2.2 Gradient Equation

We take the derivative of the Lagrangian with respect to V_{ext} :

$$\mathcal{L}_{V_{ext}}(\rho, V_{ext}, q)h = \int_{0}^{T} \int_{\Omega} \beta V_{ext}h + \nabla(\rho \nabla q)h dr dt + \int_{0}^{T} \int_{\partial \Omega} (q\rho \nabla h - \rho h \nabla q - q\rho \nabla h) \cdot \mathbf{n} dr dt$$

The boundary conditions just give (as before) $\frac{\partial q}{\partial n} = 0$ since $\rho > 0$. (+++ We don't do this, do we? But it would support my hypothesis that $1 + V_{ext}$) > 0 +++) Then from the terms within the domain we have:

$$\beta V_{ext} + \nabla(\rho \nabla q) = 0$$

And finally

$$V_{ext} = -\frac{1}{\beta} \nabla(\rho \nabla q).$$

3 Target at final time

$$J = \frac{1}{2} \int_{\Omega} (\rho(T) - \widehat{\rho}(T))^2 dr + \frac{\beta}{2} \int_{0}^{T} \int_{\Omega} \mathbf{w}^2 dr$$

subject to:

$$\frac{\partial \rho}{\partial t} = \nabla^2 \rho - \nabla \cdot (\rho \mathbf{w})$$

Then the Lagrangian is:

$$\mathcal{L}(\rho, \mathbf{w}, q) = \frac{1}{2} \int_{\Omega} (\rho(T) - \widehat{\rho}(T))^{2} dr + \frac{\beta}{2} \int_{0}^{T} \int_{\Omega} \mathbf{w}^{2} dr - \int_{0}^{T} \int_{\Omega} q \frac{\partial \rho}{\partial t} - q \nabla^{2} \rho + q \nabla \cdot (\rho \mathbf{w}) dr dt.$$

From integrating by parts we get:

$$\int_0^T \int_{\Omega} -q \frac{\partial \rho}{\partial t} dr dt = -\int_{\Omega} q(T) \rho(T) - q(0) \rho(0) dr + \int_0^T \int_{\Omega} \rho \frac{\partial q}{\partial t} dr dt$$

$$\mathcal{L}(\rho, \mathbf{w}, q) = \frac{1}{2} \int_{\Omega} (\rho(T) - \widehat{\rho}(T))^2 dr + \frac{\beta}{2} \int_{0}^{T} \int_{\Omega} \mathbf{w}^2 dr - \int_{\Omega} q(T)\rho(T) - q(0)\rho(0)dr + \int_{0}^{T} \int_{\Omega} \rho \frac{\partial q}{\partial t} + q\nabla^2 \rho - q\nabla \cdot (\rho \mathbf{w}) dr dt.$$

Taking the derivative with respect to ρ gives:

$$\mathcal{L}_{\rho}(\rho, \mathbf{w}, q)h = \int_{\Omega} (\rho(T) - \widehat{\rho}(T))h(T)dr - \int_{\Omega} q(T)h(T)dr + \int_{0}^{T} \int_{\Omega} h \frac{\partial q}{\partial t} + q\nabla^{2}h - q\nabla \cdot (h\mathbf{w})drdt.$$

Considering the terms for h(T) gives:

$$(\rho(T) - \widehat{\rho}(T)) - q(T) = 0,$$

and so

$$q(T) = (\rho(T) - \widehat{\rho}(T))$$

The adjoint PDE remains unchanged.

4 Sedimentation

I ran the two different configurations with N=100. I computed the mass in both cases and plotted the outcome. We can see that mass is still not constant but it is better than with N=70.

COTUMNIO 1	ciirougii o								
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
Columns 9 through 16									
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
Columns 17	through 2	24							
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
Columns 25	through 3	32							
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
Columns 33	through (40							
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
Columns 41	through 4	48							
1.0000	1.0000	1.0000	1.0001	1.0001	1.0001	1.0001	1.0002		
Columns 49	through 5	56							
1.0002	1.0003	1.0003	1.0004	1.0005	1.0005	1.0006	1.0006		
Columns 57	through (64							
1.0006	1.0005	1.0004	1.0006	1.0005	1.0004	1.0005	1.0007		
Columns 65	through '	72							
1.0008	1.0006	1.0003	1.0000	0.9996	0.9993	0.9989	0.9986		
Columns 73	through 8	80							
0.9982	0.9979	0.9976	0.9973	0.9970	0.9967	0.9964	0.9961		
Columns 81	through 8	88							
0.9959	0.9956	0.9954	0.9952	0.9950	0.9948	0.9946	0.9945		
Columns 89	through 9	96							
0.9943	0.9942	0.9941	0.9939	0.9938	0.9938	0.9937	0.9936		
Columns 97 through 100									
0.9936	0.9936	0.9935	0.9935						

Figure 1: Figure 8 in paper, mass for each time

Figure 2: Figure 8 in paper, result at each time

5 MultipleSpecies forward problem

The forward problem is showing weird oscillations. Maybe I implemented this incorrectly. Figure 7 shows what happens with diffusion only. Figure 8 and 9 shows what happens with advection in opposite direction, attraction to the own species and repulsion with the other

6 Other

- sedimentation optimality conditions - next week - holiday

Figure 3: Figure 8 in paper, result at times 57 - 62 out of 100

Columns 1 through 8										
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			
Columns 9 through 16										
1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9998			
Columns 17	through 2	4								
0.9998	0.9997	0.9997	0.9999	0.9999	0.9996	0.9999	1.0005			
Columns 25	through 3	2								
1.0021	1.0020	1.0004	1.0005	1.0022	1.0018	1.0000	1.0009			
Columns 33	through 4	0								
1.0020	1.0003	1.0003	1.0014	1.0005	1.0006	1.0005	1.0014			
Columns 41	through 4	8								
0.9999	1.0017	1.0017	1.0000	1.0022	1.0008	1.0005	1.0032			
Columns 49	through 5	6								
1.0031	1.0021	1.0024	1.0010	1.0001	1.0004	0.9988	0.9983			
Columns 57	through 6	4								
0.9985	0.9969	0.9972	0.9972	0.9966	0.9979	0.9983	0.9986			
Columns 65	through 7	2								
0.9986	0.9987	0.9985	0.9980	0.9986	1.0007	1.0034	1.0062			
Columns 73	through 8	0								
1.0091	1.0118	1.0144	1.0169	1.0193	1.0215	1.0235	1.0254			
Columns 81	through 8	8								
1.0272	1.0288	1.0303	1.0317	1.0330	1.0341	1.0351	1.0360			
Columns 89	through 9	6								
1.0368	1.0375	1.0382	1.0387	1.0392	1.0396	1.0399	1.0402			
Columns 97	through 1	00								

Figure 4: Figure 10 in paper, mass for each time

Figure 5: Figure 10 in paper, result at each time

Figure 6: Figure 8 in paper, result at times 60 - 66 out of 100

Figure 7: Weird Oscillations for diffusion only

Figure 8: Maybe plausible behaviour ρ_a

Figure 9: Maybe plausible behaviour ρ_b