Lecture 7 Representative Firm

Hui-Jun Chen

The Ohio State University

Provide micro-foundation for the macro implication (Lucas critique)

■ Representative Consumer:

- Lecture 4: preference, constraints
- Lecture 5: optimization, application
- Lecture 6: Numerical Examples

Representative Firm:

• Lecture 7: production, optimization, application

Lecture 7

Production Function

Production function describes the technology possibility for converting inputs into outputs.

Representative firm produces output Y with production function

$$Z = \frac{1}{(\kappa^{\alpha} N^{1-\alpha})}$$

$$Y = \underbrace{zF(\underline{K}, \underline{N}^d)} = 2 \underbrace{K^{\alpha} N^{1-\alpha}}$$
 (1)

- \blacksquare Y: output (consumption goods)
- "Solow residual.
- total factor productivity (TFP) (productivity for the economy)
- K: capital (fixed for now, : 1-period model)
- N^d : labor demand (chose by firm, d represents demand)

Properties of Production Function: Marginal Product

- **Marginal product**: how much $Y \uparrow$ by one unit of $(K \uparrow)$ or $(N \uparrow)$
 - Marginal product of capital (MPK): $zD_KF(K,N^d)$
 - Marginal product of labor (MPN): $zD_NF(K, N^d)$
- Marginal product is positive and diminishing:
 - **Positive MP**: $Y \uparrow$ if either $K \uparrow$ or $N^d \uparrow$
 - more inputs result in more output
 - **Diminishing MP**: MPK \downarrow as $K \uparrow$; MPN \downarrow as $N^d \uparrow$
 - the rate/speed of output increasing is decreasing

Increasing marginal cross-products: $\bullet \ \text{e.g.} \ \underline{\mathsf{MPK}} \uparrow \text{ as } \underbrace{N} \uparrow; \underline{\mathsf{MPN}} \uparrow \text{ as } K \uparrow)$

Properties of Production Function: Return to Scale

- Return to scale: how \underline{Y} will change when both \underline{K} and \underline{N} increase
- Constant return to scale (CRS): $xzF(K, N^d) = zF(xK, xN^d)$
 - small firms are as efficient as large firms
- Increasing return to scale (IRS): $xzF(K, N^d) > zF(xK, xN^d)$ small firms are less efficient than large firms
 - Decreasing return to scale (DRS): $xzF(K, N^d) < zF(xK, xN^d)$
 - small firms are more efficient than large firms

MPK high

MPK lon

- Cobb-Douglas: $zF(K,N) = zK^{\alpha}N^{1-\alpha}$, α is the share of capital DK(ZKaN-A)-AKA-1 contribution to output
- Positive MPK & MPN: ad ZN
 - $\bullet \ \ \underline{\mathsf{MPK}} = D_K z \underline{F}(\underline{K},\underline{N}) = z \alpha K^{\alpha-1} N^{1-\alpha} = z \alpha \left(\frac{K}{N}\right)^{\alpha-1} > 0$
- **Diminishing MP:**
 - For K, $D_K\left(z\alpha K^{\alpha-1}N^{1-\alpha}\right) = z\alpha(\alpha-1)K^{\alpha-2}N^{1-\alpha} < 0$
 - For N, $D_N(\underline{z(1-\alpha)}K^{\alpha}N^{-\alpha}) = \underline{z(1-\alpha)}(-\alpha)\underline{K^{\alpha}}N^{-\alpha-1} \leqslant 0$
- Increasing marginal cross-product:
 - For MPK, $D_N(z\alpha K^{\alpha-1}N^{1-\alpha})=z\alpha(1-\alpha)K^{\alpha-1}N^{-\alpha}>0$
 - For MPN, $D_K(z(1-\alpha)K^{\alpha}N^{-\alpha})=z(1-\alpha)\alpha K^{\alpha-1}N^{-\alpha}>0$

Lecture 7

Example: Cobb-Douglas and Return to Scale

Let's assume that Cobb-Douglas production is $zF(K,N) = zK^{\alpha}N^{\beta}$ So if both inputs are increasing by twice, then

- 1 If $\alpha + \beta = 1$, then zF(2K, 2N) = 2Y, constant return to scale
- 2 If $\alpha + \beta < 1$, then $zF(2K,2N) = \frac{2^{\alpha + \beta}Y}{2^{\alpha + \beta}} < \frac{2Y}{2}$, decreasing return to $2^{\alpha + \beta} < 2$
- § If $\alpha + \beta > 1$, then $zF(2K, 2N) = 2^{\alpha + \beta}Y > 2Y$, increasing return to scale

Lecture 7 May 31, 2022 7/13

Visualization

Technology Optimization Experiments

Increasing Marginal Cross-product

Labor Input, N^d

Visualization: Changes in TFP

TFP shifts up the Production Function

May 31, 2022

Labor Input, Nd

TFP in Data

Solow Residual for US

We cannot see TFP, how to measure it?

Assume Cobb-Douglas production function:

$$Y = zK^{\alpha}N^{1-\alpha}$$

- By data, $K/Y = 0.3 \Rightarrow$ $\alpha = 0.3$
- Can observe *K*, *Y*, *N* in data:

$$z = \frac{Y}{K^{0.3}N^{0.7}}$$

Hui-Jun Chen (OSU)

Lecture 7

Firm's Problem: Profit Maximization

Firm maximizes profit (π) , which is the revenue minus the wage bill:

■ Constraints: $N^d > 0$, relatively simple!

Cobb-Douglas:
$$zF(K, N^d) = zK^{\alpha}(N^d)^{1-\alpha}$$
FOC: $w = z(1-\alpha)K^{\alpha}(N^d)^{-\alpha}$

$$(N^d)^{\alpha} = \frac{z(1-\alpha)K^{\alpha}}{w}$$

$$(5)$$

Labor demand: $N^d = \left(\frac{z(1-\alpha)K^{\alpha}}{w}\right)^{\frac{1}{\alpha}} = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}}K$ (6)

As $w \uparrow$, $N^d \downarrow \Rightarrow$ downward-sloping demand.

Hui-Jun Chen (OSU) Lecture 7 May 31, 2022 11/13

max
$$2 \times x^{1-\alpha} - wN$$
 N

[NJ: $MPN = (1-\alpha)2 \times x^{1-\alpha} - w = 0$
 $W = MPN$
 SS
 $W = MR$
 SS

Payroll tax: suppose firms have to pay additional per-unit tax t>0 on the wage bill, then

Firm Problem:
$$\max_{N^d} zK^{\alpha}(N^d)^{1-\alpha} - \underbrace{w(1+t)}N^d$$
 (7)

FOC:
$$w(1+t) = z(1-\alpha)K^{\alpha}(N^d)^{-\alpha}$$
 (8)

$$N^{d} = K \left(\frac{z(1-\alpha)}{w(1+t)}\right)^{\frac{1}{\alpha}} \tag{9}$$

- wage \uparrow : $w \uparrow \Rightarrow N^d \downarrow$ (same as benchmark)
- $\blacksquare \ \ \mathsf{tax} \ \uparrow : \ \underline{t} \ \uparrow \Rightarrow N^d \downarrow$
- capital $\uparrow: K \uparrow \Rightarrow N^d \uparrow \Rightarrow$ what if firm can also choose K?

Hui-Jun Chen (OSU)

Capital rent: suppose that firm can choose capital level but have to pay rof per-unit rent.

Firm Problem:
$$\max_{\underline{K},N^d} zK^{\alpha}(N^d)^{1-\alpha} \underline{-rK} - wN^d \qquad (10)$$

FOC on N:
$$w = z(1-\alpha)K^{\alpha}(N^{d})^{-\alpha} = MPN$$
 (11)

FOC on K:
$$r = z\alpha K^{\alpha-1}(N^a)^{1-\alpha} = \mu \nu (12)$$

Divide (11) with (12):
$$\frac{w}{r} = \frac{(1-\alpha)}{\alpha} \frac{K}{N^d}$$
 (13)

Firm Problem:
$$\max_{\underline{K},N^d} z K^\alpha (N^d)^{1-\alpha} - rK - w N^d \quad (10)$$
 FOC on N:
$$w = z(1-\alpha)K^\alpha (N^d)^{-\alpha} = \underbrace{MPN} \quad (11)$$
 FOC on K:
$$r = z\alpha K^{\alpha-1}(N^d)^{1-\alpha} = \underbrace{MPN} \quad (12)$$
 Divide (11) with (12):
$$\frac{w}{r} = \frac{(1-\alpha)}{\alpha} \frac{K}{N^d} \quad (13)$$
 Capital-Labor ratio:
$$K = \underbrace{\frac{W}{M}}_{N^d} \frac{\alpha}{N^d} \quad (14)$$

When firm can choose K, they choose both capital and labor such that (14) satisfied!

Lecture 7 May 31, 2022 13 / 13