Divide and Conquer

Outline

- · Overview
- · Recap master theorem
- · Counting inversions
- · Closest pair of points
- Integer multiplication
- Matrix multiplication
- FFT (evaluate a polynomial of n-1-th degree)

Divide-and-Conquer: Overview

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Remark.

- Partition the problem into disjoint subproblems.
- Each subproblem is the same type as the original problem.
- A simple partition of the problem and combination of solutions to subproblems may not beat brute force.

The phrase is attributed to Julius Caesar, Philip II, king of Macedon (382-336 BC), describing his political policy.

Divide-and-Conquer: Overview

Examples we have seen so far.

- Binary search
- Mergesort
- Quicksort

The running times of Divide-and-conquer algorithms are often characterized by recurrences.

- Binary search: $T(n) = 2T(n/2) + \Theta(1)$
- Mergesort: $T(n) = 2T(n/2) + \Theta(n)$
- Quicksort: not always partition the subproblems evenly!

$$T(n) = 2T(n/2) + \Theta(n),$$

 $T(n) = T(0) + T(n-1) + \Theta(n),$
 $T(n) = T(n/4) + T(n/2) + \Theta(n)$

Solving recurrences.

Iteration, master theorem, recursion tree, etc.

Outline

- Overview
- · Recap master theorem
- · Counting inversions
- · Closest pair of points
- · Integer multiplication
- Matrix multiplication
- FFT (evaluate a polynomial of n-1-th degree)

Master method

Goal. Recipe for solving common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Terms.

- $a \ge 1$ is the (integer) number of subproblems.
- $b \ge 2$ is the (integer) factor by which the subproblem size decreases.
- $f(n) \ge 0$ is the work to divide and combine subproblems.

Running time by analyzing the recursion tree.

- Dominated by cost at leaves
 (for solving the minimum subproblems)
- Evenly distributed throughout the tree
- Dominated by cost at the root
 (for dividing the problem and combining the results)

Master method

Master theorem. Suppose that T(n) is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log b^a$, then $T(n) = \Theta(n^{\log b^a})$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $p \ge 0$, $k = \log b^a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log b^a$, and if $a f(n / b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Outline

- Overview
- · Recap master theorem
- · Counting inversions
- · Closest pair of points
- Integer multiplication
- Matrix multiplication
- FFT (evaluate a polynomial of n-1-th degree)

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if i < j, but $a_i > a_j$.

	Songs								
	Α	В	C	D	Ε				
Me	1	2	3	4	5				
You	1	3	4	2	5				

Inversions 3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs i and j.

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3	7

Divide-and-conquer.

Divide: separate list into two pieces.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

5-4, 5-2, 4-2, 8-2, 10-2

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

Combine: ???

9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + O(n) \Rightarrow T(n) = O(n \log n)$$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

   Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- ${\bf .}$ Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- Combine two sorted halves into sorted whole.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- ${\bf .}$ Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- Combine two sorted halves into sorted whole.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

Merge and count step.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

Outline

- Overview
- · Recap master theorem
- · Counting inversions
- · Closest pair of points
- Integer multiplication
- Matrix multiplication
- FFT (evaluate a polynomial of n-1-th degree)

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Algorithm.

■ Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

Find closest pair with one point in each side, assuming that distance $< \delta$.

Find closest pair with one point in each side, assuming that distance $< \delta$.

 \blacksquare Observation: only need to consider points within δ of line L.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- \blacksquare Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- \blacksquare Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \ge 12$, then the distance between s_i and s_j is at least δ .

Pf.

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. ■

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                        O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                        2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                        O(n)
                                                                        O(n \log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                        O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

Closest Pair of Points: Analysis

Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- \mathbb{Q} . Can we achieve $O(n \log n)$?
- A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

Outline

- Overview
- · Recap master theorem
- · Counting inversions
- · Closest pair of points
- Integer multiplication
- Matrix multiplication
- FFT (evaluate a polynomial of n-1-th degree)

Integer Addition

Addition. Given two *n*-bit integers a and b, compute a+b. Grade-school. $\Theta(n)$ bit operations.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
	_	4	4	4	_	4	^	4
+	U	Т	Т	Т	1	Т	U	

Remark. Grade-school addition algorithm is optimal.

Integer Multiplication

Multiplication. Given two *n*-bit integers a and b, compute $a \times b$. Grade-school. $\Theta(n^2)$ bit operations.

Q. Is grade-school multiplication algorithm optimal?

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers a and b:

- Multiply four $\frac{1}{2}n$ -bit integers, recursively.
- Add and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = \left(2^{n/2} \cdot a_1 + a_0\right) \left(2^{n/2} \cdot b_1 + b_0\right) = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot \left(a_1 b_0 + a_0 b_1\right) + a_0 b_0$$

Ex.
$$a = 10001101$$
 $b = 11100001$ b_1 b_0

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

assumes n is a power of 2

Conjecture. [Kolmogorov 1952] Grade-school algorithm is optimal. Theorem. [Karatsuba 1960] Conjecture is wrong.

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$
1
2
1
3
3

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$
1
2
1
3
3

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers in $O(n^{1.585})$ bit operations.

$$T(n) \le \underbrace{3T(n/2)}_{\text{recursivecalls}} + \underbrace{\Theta(n)}_{\text{add, subtractshift}} \Rightarrow T(n) = O(n^{1g3}) = O(n^{1.585})$$

Outline

- Overview
- · Recap master theorem
- · Counting inversions
- · Closest pair of points
- Integer multiplication
- Matrix multiplication
- FFT (evaluate a polynomial of n-1-th degree)

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Grade-school. $\Theta(n^3)$ arithmetic operations.

Q. Is grade-school matrix multiplication algorithm optimal?

Block Matrix Multiplication

$$\begin{bmatrix} 152 & 158 & 164 & 170 \\ 504 & 526 & 548 & 570 \\ 856 & 894 & 932 & 970 \\ 1208 & 1262 & 1316 & 1370 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15 \end{bmatrix} \times \begin{bmatrix} 16 & 17 & 18 & 19 \\ 20 & 21 & 22 & 23 \\ 24 & 25 & 26 & 27 \\ 28 & 29 & 30 & 31 \end{bmatrix}$$

$$C_{11} = A_{11} \times B_{11} + A_{12} \times B_{21} = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \times \begin{bmatrix} 16 & 17 \\ 20 & 21 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix} \times \begin{bmatrix} 24 & 25 \\ 28 & 29 \end{bmatrix} = \begin{bmatrix} 152 & 158 \\ 504 & 526 \end{bmatrix}$$

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:

- Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
- Conquer: multiply 8 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

Assume n is a power of 2

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications. [Strassen 1969]

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$
 $C_{12} = P_1 + P_2$
 $C_{21} = P_3 + P_4$
 $C_{22} = P_5 + P_1 - P_3 - P_7$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

Assume n is a power of 2

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Strassen's algorithm beats the ordinary algorithm on today's machines for $n \ge 32$ or so.

Fast Matrix Multiplication: Theory

Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.376})$ [Coppersmith-Winograd, 1987]

Conjecture. $O(n^{2+\varepsilon})$ for any $\varepsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

Homework

Exercises 2, 3, 7 in Chapter 5 "Divide and Conquer" by Jon Kleinberg and Éva Tardos. Addison-Wesley, 2005.