

Department of Computer Science

CS-217 – Object Oriented Programming Spring 2021

Instructor Name: Samin Iftikhar TA Name:
Email address: Samin.iftikhar@nu.edu.pk Email address:

Office Location: Exam Hall, old admin block
Office Hours: Tue,Thu -10:30-11:30 a.m.

Course Information

Program: BS (CS)

Credit Hours: 3 + 1 for Lab

Type: Core

Class Venue: E&M-9

Pre-requisites: Programming Fundamentals (CS-118)

Class Meeting Time: Section (BSE-2A) Tue, Thurs 12.30 – 2:00 PM

Section (BSE-2B) Tue, Thurs 2:00 - 3:30 PM

Course Description/Objectives/Goals:

The core objectives of this course are to introduce,

- Object oriented programming with data abstraction and encapsulation.
- The classes, objects and relationship among different objects and classes in C++?
- Generic programming using templates, and template specializations.

Course Learning Outcomes (CLOs):

At the end of the course students will be able to:		BT*
		Level
Understand dynamic memory management with pointers.	C	2
Understand principles of object oriented program	С	2
Identify the objects & their relationships to build object oriented solution	С	3
Model a solution for a given problem using object oriented principles		3
Examine an object oriented solution	С	4

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

Course Textbooks:

- 1. C++ Programming: Program Design Including Data Structures, by D. S. Malik (8th Edition)
- 2. C++: How to Program? by Deitle & Deitle (9th Edition)

Additional references and books related to the course:

- 3. Problem Solving with C++, by Walter Savitch
- 4. https://www.learncpp.com

Course Contents Weekly and Lecture-wise Breakdown

Week	Topic	Lecture-1	Lecture-2		
1	•	Pointers Introduction, Pointer variables and	Use of Constant with Pointers.		
		Initialization, Address of Operator,	Difference between a Pointer and a		
		Dereferencing Operator. Pointer	Reference.		
		Operations (Relational, Arithmetic)	Passing pointers to functions by value and		
			by reference.		
2		Dynamic memory allocation using pointers	Dynamic 1- dimensional arrays, Create,		
	Pointers	and accessing dynamic memory. Dynamic	Delete, Grow and Shrink.		
	Pointers	Variables new and delete operators.	Example of programs using 1D dynamic		
			allocation: e.g., mathematical sets union and		
			intersection.		
3		Memory Leak and Dangling Pointers,	Pointers Indirection. Dynamic 2D,		
		Dynamic 1- dimensional char arrays for	allocation, matrices, CStrings etc.		
		strings, string operations like search,			
		concatenation etc.			
4		Structured Programming vs Object-	Objects vs Class, state vs behavior, access		
		oriented Programming, Principles of	specifiers (Public, Private), Member		
	Object-oriented	modularization, abstraction and	functions (accessors, utilities, mutators etc)		
	basics	encapsulation.			
5	54 51 6 5	Constructors (default, overloaded),	Dynamic memory allocation and Object		
		Function overloading.	assignment, Parameter passing, Shallow vs		
			Deep copy,		
6	Mid Term 1				
7	Object-oriented		Cascaded function calls, static members,		
	basics	Copy constructor, Destructors, this pointer,	inline functions and other miscellaneous		
	Dusies		issues		
8	Operator	Unary operators using member functions	Binary operators using member functions		
9	overloading	Binary operators using non-member	Unary operators, Pre and post increment,		
10		functions, concept of friendship,	subscript operator.		
10		Part-whole relationships,	Composition		
	Object and Class	Association/Aggregation	Implementation issues (constructor call		
11	relationships	Inharitanas hasias Trus of Inharitanas	sequence, initializer list, etc)		
11		Inheritance basics, Type of Inheritance, public, protected, private.	Function Overriding and sub-typing details		
12		1			
		Mid Term 2			
13		Polymorphism introduction Static vs	Polymorphism vs down casting, run-time		
		dynamic binding details, virtual tables and	type identification, dynamic cast		
		virtual pointers,			
14	Object and Class	Pure-virtual functions, Abstract classes,	Multiple Inheritance and Diamond Problem		
	relationships	Interfaces (optional)	Multiplicity, Memory Management		
			Bi-directional relationships, Forward-class		
			declarations issues		
15	Generic	Template functions	Template classes		
	Programming		Template Specializations,		
16	&	Exception Handling.	Introduction to STL, Iterators and		
	Exception		Collections		
	Handling.				

(Tentative) Grading Criteria:

1. Assignments + Home works + Project (20 %)

Quizzes (10 %)
 Midterms (30 %)
 Final Exam (40 %)

- Grading scheme for this course is **Absolute** under application of CS department's grading policies.
- Minimum requirement to pass this course is to obtain at least 50% absolute marks

Course Policies:

- o All assignments and homework must be done individually.
- o Late Submissions of assignments will not be accepted.
- o **Plagiarism** in any work (Quiz, Assignment, Midterms, Project and Final Exam) from any source, Internet or a Student will result in **deduction of absolute marks or F** grade.
- o Minimum **80%** attendance is required for appearing in the Final exams.