

Type 2 Diabetes in Austin, Texas

Ng Chi Hui (U1922243C) Lim Wei Jie Spencer (U1810413H) Natasha Khoo Mei Hui (U1910526E)

Jarrel Kong (U1910901J)

Wong Kang Xun (U1810804L)

Introduction

- Problem Statement
- Situation Background
- Situational Analysis

Data Pipeline

- Data Cleaning
- Data Exploration
- Models Used
- Model Evaluation

Recommendations

- Detection
- Prevention

Conclusion

- Limitations
- Summary
- Q&A

Problem Statement

How can we improve the diabetes (type 2) situation in the US?

Background: Why Type 2 Diabetes?

of all diabetes are caused by Type 2 diabetes

Background: Type 2 Diabetes Mellitus

Global Pandemic

- Half a billion people worldwide are living with diabetes
- Projected to increase to an astonishing 25% in 2030 and 51% in 2045

Diabetes in U.S.

National Diabetes Statistics
 Report that 9 in 10 diabetes are
 caused by type 2 diabetes

Background: Effect of Diabetes

Individual

 Lower Quality of Life

Societal

 Overall decreased productivity for the society

Situational Analysis - Climate in the US

Political

- 0.3 on political stability index
- Dominated by 2 political party

PEST

Analysis

Social

- Individualistic nature
- Fiercely protective of their freedom

Economic

- Largest Economy in the world
- Healthcare adopts concept of free market

Technological

- 72.7% of Americans use a smartphone
- 89% of household have access to computer

Why does US have a **HIGH**Diabetes Rate despite having an Advance Healthcare System?

Data Pipeline

Step 1: Data Cleaning

Remove Redundant Columns Standardize Response Subsetting of Data to Replace N.As

Step 2: Data Visualization

Age Distribution against Diabetes

Exercise against Diabetes

Step 3: Model Building

Model Parameters Diabetes Risk Continuous Ordinal Variables Nominal Variables Variable Previous Tobacco Carbo Medical Race Diabetes Insurance Days Age Diabetes Use Home Exercised Counting Category Education Food Sugar Education Fruits High Income Measure-Heart Beverage Level Gender Blood Consumed Consumed, Disease ment Pressure Spencer

Logistic Regression: Modelling Diabetes Risk Continuous Ordinal Variables Nominal Variables Variable Previous .co Carbo Medical Days Age Diabetes Cat Counting Home Exercised Education Food Sugar Fig. Cor. di ed Education High Me Beverage Level Gender Blood Consumed Pressure Spencer

Logistic Regression: Model Accuracy

Accuracy

69.8%

False Negative Rate

23.2%

Logistic Regression: Limitation

Variable Selection

- No multicollinearity between variables
- Only important and relevant variables should be used

Simplistic model

• Difficult to capture complex relationships

Overfitting

 Prone to overfitting on high dimensional dataset

Neural Network: Tuning Process

For loop to **determine the optimal combination** of hidden layers and nodes to produce the model with best accuracy

Neural Network: Model Accuracy

Accuracy

70.2%

False Negative Rate

35.5%

Neural Network: Model Limitations

Time consuming training process

- Each network takes a long time to develop
- Develop multiple networks to optimize

Blackbox

- Unknown how different configuration of hidden layers affect accuracy
- Does not explain how variables affect diabetes

CART: Modelling Process

Chi Hui

CART: Model Accuracy

Accuracy

67.3%

False Negative Rate

43.5%

CART: Model Limitations

Highly dependent on dataset

- Small change in dataset will cause tree to be unstable
- Creates a completely new and different tree

Overfitting

- Tendency to overfit quickly at the bottom
- Poor decisions if there are too few observation in the tree's lower nodes

XGBoost: Modelling Process

XGBoost: Model Accuracy

Accuracy

70.7%

False Negative Rate

35.0%

XGBoost: Model Limitations

Sensitivity

- Sensitive to outliers
- Newer iterations are built by fixing previous errors, overcompensate the outliers

Random Forest: Modelling Process

Explanation

- The random forest model trains out a large number of CART trees
- Input variables will be evaluated by multiple CART models within the random forest model
- Each CART tree will provide an independent decision regarding diabetic risk
- The random forest model will collate responses from individual trees
- Assign diabetic risk based on majority rule

Random Forest: Model Accuracy

Accuracy

73.0%

False Negative Rate

19.0%

Random Forest: Model Limitations

Time consuming training process

- Train 500 CART models
- Takes significantly longer when rolled out nationally

Blackbox

- Lack in explainability
- Decides by majority vote from individual trees

Model Evaluation

Model	Accuracy (%)	FNR (%)	Speed	Explainability
Logistic Regression	69.5	22.7	Fast	High
Neural Network	70.2	35.5	Slow	Low
CART	67.3	43.5	Fast	High
Random Forest	73.0	19.0	Medium	Low
XGBoost	70.7	35.0	Medium	Low

Model Selection

- Highest accuracy and lowest false negative rate
- Little explainability on variable importance and how these affect diabetic risk

- False negative rate is an important metric
- Gives our users who actually have diabetes false assurance that they do not

Recommendations

Summary of Recommendation

Key Issues

Diabetes Detection

Diabetes Risk Assessment Diabetes
Programs /
Policies

Promoting active lifestyles

Detection

Through taking the Diabetes Risk Assessment... Early Education and Diabetes Risk Management

#1: Early Diabetes Detection via Risk Assessment

Reason

Millions of Americans are undiagnosed

Diabetes tests take time and money. Uninsured population may be hesitant.

Prevention through early detection that is quick and convenient

How?

Predict diabetes risk based on easily obtainable information

Random forest model to predict diabetes risk based on survey input

#1: Self-Help Early Diabetes Detection

User takes risk assessment Based on inputs provided, random forest predicts user's diabetes risk (high / low)

At the end of the survey, provide links to diabetes education resources (for all users)

#2: Diabetes Policies and Programs – Promoting Active Lifestyles

Motivating (Americans to exercise) through incentives

Targeting vulnerable age groups (the elderly population)

Motivating through incentives

35% of Americans do not exercise due to lack of motivation

Provide incentives to motivate adoption of active lifestyle

Collaborate with fitness centers and gyms to motivate people to exercise

Discount rates and points system

Targeting Vulnerable Age Groups (elderly)

Elderly feel "too old" to exercise

However, instead of one coherent website, Go4Life resources on exercising for the elderly is scattered and hard to search up

One-stop platform

Centralise resources

Easy and cheap to implement

SEO Performance and amount of web traffic

Encourage elderly exercise communities

Popularise exercise among the elderly through community building

Tap on website

To bring the elderly together and form exercise communities

The more elderly sign up (which is tracked via the website), the more effective the communities are

Conclusion

LIMITATIONS

Uncertainty over Economic Factors

Exercise Intensity& Duration

Carbohydrate & Sugar Consumption

Limited Dataset

Summary of Recommendations

Diabetes Detection

Early Diabetes Detection via Risk Assessment

Diabetes Programs and Policies

Promoting Active Lifestyles

