

Formulation of Linear Programming Problems, Solving LPs with Spreadsheets

You will have mastered the material discussed at the lecture WHEN, given a practical problem, you can

- identify decision variables
- formulate an objective function
- formulate constraints on the decision variables
- set up the problem in an attractive (spreadsheet) format
- Solve the problem using a spreadsheet Solver
- Check whether the solution found is what you expected

Formulation of LP Models

Warwick Business School

wbs.ac.uk

3

Warwick Business School

wbs.ac.uk

5

Warwick Business School

wbs.ac.uk

Example 1 (Paint Problem) A company makes two kinds of paint in bulk by mixing two raw materials in different proportions; the availability of materials, demand for the final product, and the selling prices, are:

	Paint 1 needs	Paint 2 needs	Resources Available (unspecified units)
Raw material 1 (unspecified units)	1	2	6
Raw material 2 (unspecified units)	2	1	8
Price/tonne (£1000)	3	2	

Additional Information: The customer has forgotten to mention the demand! Research shows that demand for product 2 is no more than 1.9 tonne/day, and in any case will not exceed the demand for product 1 by more than 1 tonne/day.

Which product mix maximises the company's gross income?

Warwick Business School

Known limits on demand:

Research shows that demand for product 2 is no more than 1.9 tonne/day, and in any case will not exceed the demand for product 1 by more than 1 tonne/day.

$$x_2 \le 1 + x_1$$

wbs.ac.uk

Warwick Business School

9

Updated Model:

$$\max z = 3x_1 + 2x_2$$

subject to

$$\begin{array}{cccc} x_1 + & 2x_2 & \leq 6 \\ 2x_1 + & x_2 & \leq 8 \\ & x_2 & \leq 1.9 \\ -x_1 + & x_2 & \leq 1 \end{array}$$

Known limits on demand:

Warwick Business School

Solving LPs with Solver:

We started with setting a Spreadsheet model (see part I) and investigating possible feasible solutions of an LP problem

It was a part of modelling, but NOT YET the process of SOLVING the problem

I have prepared detailed instructions on how to solve LPs by using a Solver (you will find it my.wbs)

Warwick Business School

11

Solving LPs with Solver:

Updated Model:

$$\begin{array}{ccc} \max z = 3x_1 + 2x_2 \\ \text{subject to} \\ x_1 + & 2x_2 & \leq 6 \\ 2x_1 + & x_2 & \leq 8 \\ & x_2 & \leq 1.9 \\ -x_1 + & x_2 & \leq 1 \end{array}$$

Set spreadsheet model with all relationships incorporated in the

Formulas

| State | St

Solve the problem by using LP Solver

Warwick Business School

Solving LPs with Solver:

13

Solving LPs with Solver:

wbs.ac.uk

14

Warwick Business School

Solving LPs with Solver:

That is what we did not expected: the value of the objective function is unbounded!

If the value of the objective function is unbounded, then ...

It means that we have forgotten a constraint (or two?)

Warwick Business School

15

Corrected Model:

$$\begin{array}{cccc} \max \ z = 3x_1 + 2x_2 \\ \text{subject to} \\ x_1 + & 2x_2 & \leq 6 \\ 2x_1 + & x_2 & \leq 8 \\ & x_2 & \leq 1.9 \\ -x_1 + & x_2 & \leq 1 \end{array}$$

$$\begin{array}{cc} x_2 & \le 8 \\ x_2 & \le 1.9 \end{array}$$

$$-x_1 + x_2 \le 1$$

$$x_1, x_2 \ge 0$$

We have forgotten "obvious" nonnegativity constraint: the amount of paint produced cannot be negative!

Warwick Business School

Comments on Modelling

A **linear programming problem** (LP) is an optimisation problem for which we do the following:

1. We attempt to maximise (or minimise) a *linear* function of the *decision variables*. The function that is to be maximised or minimised is called the *objective function*.

$$F(x_1,x_2, x_3,x_4...) = c_1x_1 + c_2x_2 + c_3x_3 + ...$$

19

A linear programming problem (LP) ...

2. The value of the decision variables must satisfy a set of *constraints*. Each constraint must be a linear equation or linear inequality:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots \le (\ge =) b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots \le (\ge =) b_2$

A linear programming problem (LP) ...

3. A *sign restriction* is associated with each variable. For any variable x_i , the sign restriction specifies either that x_i must be nonnegative or that x_i may be unrestricted in sign:

 $x_i \ge 0$

21

A **linear programming problem** (LP) is an optimisation problem for which we do the following:

- 1. We attempt to maximise (or minimise) a *linear* function of the *decision variables*.
- 2. The value of the decision variables must satisfy a set of *constraints*.
- 3. A *sign restriction* is associated with each variable.

*Example*_1.2 (Furniture problem) A company makes desks, tables, and chairs from lumber, using both skilled and unskilled labour. The requirements for each product are:

	Desk	Table	Chair	Available
Lumber	8	6	1	48
Skilled	4	2	1.5	20
Unskilled	2	1.5	0.5	8
Price	60	30	20	

*Example*_1.2 A company makes desks, tables, and chairs from lumber, using both skilled and unskilled labour. The requirements for each product are:

	Desk	Table	Chair	Available
Lumber	8	6	1	48
Skilled	4	2	1.5	20
Unskilled	2	1.5	0.5	8
Price	60	30	20	

Demand for desks and chairs is known to be more than could possibly be made, but no more than 5 tables are likely to be sold. What production schedule maximises total revenue?

25

What production schedule maximises total revenue?

• <u>Decision Variables</u>

- x_1 number of desks produced
- x_2 number of tables produced
- x_3 number of chairs produced

Example_1.3

A firm has 3 workshops each working 40 hours per week.

It can produce two products, the first selling at £108 and the second at £84. The only direct cost is labour at £5 per hour.

Product 1 requires 5 hours in workshop 1, 9 hours in workshop 2, 7 hours in workshop 3 and 10 person-hours per unit.

Product 2 requires 10 hours in workshop 1, 2 hours in workshop 2, 5 hours in workshop 3 and 8 person-hours per unit.

Google for a definition of a "person-hour" (the same as "man-hour")

27

Formulate this problem as an LP model, assuming the firm wishes to maximise profits.

	Product 1	Product 2	Available
Workshop 1	5 hours	10 hours	40 hours
Workshop 2	9 hours	2 hours	40 hours
Workshop 3	7 hours	5 hours	40 hours
Labour	10 person·h	8 person·h	Cost £5/h
Price	£108	£84	

Example_1.4

(refresh % -> https://my.wbs.ac.uk/-/academic/212627/home/ Lesson_4)

The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

	% Phosphorus	%Ash	Profit(£/ton)
A	0.02	3	60
В	0.04	2	75
C	0.03	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

29

Example_1.5

A ship has three cargo holds: forward, aft and centre. The capacity limits are:

Forward	2000 tons	100,000 cu ft
Centre	3000 tons	135,000 cu ft
Aft	1500 tons	30.000 cu ft

The following cargoes are offered and the shipowners may accept all or any part of each commodity

Commodity	<u>Amount</u>	Vol per ton	Profit(£/ton)
A	6,000	60	6
В	4,000	50	8
C	2,000	25	5

Formulate an LP model to determine how the cargo should be distributed so as to maximise profits.

Example_1.6

Transportation Problem

DryPants wants to deliver 10 truckloads of diapers from its three factories (A, B, C) to three distribution centres (X, Y, Z). Factory A can supply 2 truckloads, factory B and C 4 truckloads each. The demand at distribution centre Y is 4 truckloads, and 3 truckloads at X and Z. Transportation cost per truckload are given in the following table:

	X	Y	Z	Supply
A	1	5	1	2
В	2	7	1	4
C	5	8	2	4
	3	4	3	

What factory should deliver how many truckloads to which distribution centre to minimise transportation cost?

