RÁDIOVÉ PRÍSTUPOVÉ SIETE

Prof. Ing. Vladimír Wieser, PhD.

Šírenie rádiových vĺn a antény

Digitálny komunikačný systém

Shannonova schéma všeobecného komunikačného systému (digitálneho)

Prenosová kapacita kanála

Shannonov-Hartleyov vzťah:

- Udáva maximálnu rýchlosť bezchybného prenosu
- optimálne kódovanie + modulácia

Reálny systém: možnosť sa len priblížiť k maximálnej C_k

Antény

Úvod do antén

- Anténa = zariadenie na sprostredkovanie vyžarovania/príjmu elektromagnetických vĺn do/z voľného priestoru
- Anténa = vodič s premenlivým elektrickým prúdom
- Paralelný RO = indukčnosť vodiča + kapacita vodiča voči okoliu

- siločiary elektrického poľa dosky kondenzátora a prostredie
- siločiary magnetického poľa vodič a okolie

Úvod do antén

- Vodič je pripojený na zdroj striedavého prúdu
- prúd sa vo vodiči šíri konečnou rýchlosťou
- vodič naprázdno ⇒ stojaté vlnenie

Zobrazenie:

- Vertikálna smerová funkcia (rovina E)
- Horizontálna smerová funkcia (rovina H)

Smerová funkcia (Vyžarovací diagram antény):

- koncentrovanie výkonu do požadovaného smeru
- oslabenie výkonu v nežiaducich smeroch

- Hlavný lalok (zväzok)
- Postranné laloky
- Zadný lalok

Praktické príklady:

Všesmerová anténa

Praktické príklady:

Panelová anténa (GSM)

Parametre:

- Šírka hlavného laloka = uhol polovičného výkonu:
 - uhol α_H v rovine H
 - uhol α_F v rovine E
 - Nulový uhol α_0
- Koeficient spätného žiarenia (predo-zadný pomer "Front-to-Back ratio")

Koeficient bočného žiarenia (predno-bočný pomer "Front-to-Side ratio")

Účinnosť antény

vyžarovaný výkon ≠ vstupný výkon ⇒ straty v anténe

```
DV
- dlhé vlny
-
10 až 40 %

SV
- stredné vlny
-
70 až 80 %

KV
- krátke vlny
-
90 až 95 %

VKV
- veľmi krátke vlny -
≈ 100 %
```

Smerovosť a zisk antény

Smerovosť antény (D)

Schopnosť antény sústrediť vyžarovanie do určitého smeru

Zisk antény (G)

Prax: G [dBi] = zisk antény v porovnaní so všesmerovou (izotropickou) anténou, ktorá má G = 1 (resp. 0 dB)

Šírenie rádiových vĺn

Elektromagnetické spektrum (1)

Rádiové frekvenčné spektrum:

Pojmy šírenia rádiových vĺn

- 1. Ohyb (Difrakcia) ohyb prekážkou
 - Prekážka >> λ
- **2.** Lom (Refrakcia) ohyb atmosférou
- 3. Rozptyl (Scattering)
 - Prekážka ~ λ
- 4. Odraz (Reflection)
 - Prekážka >> λ
- 5. Prienik (Transmission)
 - □ Transparentná prekážka

Hustota výkonu S:

Rovnica rádiového prenosu

[V/m]

Prepočet výkonu na dBm a dBW

dBm = počet dB nad 1 mW dBW = počet dB nad 1 W

Friisov vzťah:

[W, W, m]

Tlmenie signálu

Timenie vo vol'nom priestore L_b

Fresnelove zóny

1. FZ prenáša asi 50% celkovej energie!

Fresnelove zóny

Určenie polomeru Fresnelovych zón

Pravidlo:

Max. 40% priemeru 1.FZ môže byť blokovaných prekážkou

Polomer *n*-tej FZ:

Polomer 1.FZ:

Príklad:

D = 10 km (stred)

f(GHz)	0,003	0,03	0,3	3	30	300
λ (m)	100	10	1	0,1	0,01	0,001
$r_I(\mathbf{m})$	500	160	50	16	5	1,6