Advanced Macro Fall 2009

Miklós Koren korenm@ceu.hu koren.hu/teaching

Outline

- Today we study the Klette and Kortum (2004, JPE) model of firm-level innovation.
- The model incorporates
 - firm-level innovation
 - endogenous aggregate growth
 - realistic firm demographics (birth, growth, death)
 - endogenous firm size distribution

Outline

- ▶ We will stop short of full GE.
- ► We only study industry equilibrium:
 - ▶ There is interaction among firms, entry and exit.
 - ▶ But total demand, interest rate and wages are not endogenized.

Firm demographics vs size distribution

- ▶ In a Markovian world, these are intricatelly linked.
- ► Remember that

$$\dot{\pi}(t) = \pi(t)\Lambda$$

characterizes the dynamics of the probabilities of each state.

▶ When there are "many firms," they also correspond to the *fraction* of firms being in each state.

Stylized facts

Stylized facts

- ▶ The model is consistent with a range of facts about
 - 1. firm-level innovation
 - 2. firm dynamics
 - 3. firm size distribution

Stylized facts

- Tank S_1^2 e 1 S_1 2 $S_1/2$ 3 $S_1/3$ $S_1/3$ $S_1/3$ $S_1/3$ $S_1/3$
- 1. R&D intensity is independent of firm size.
- 2. The size distribution of firms is highly skewed. -
- 3. Smaller (younger) firms are more likely to exit. Survivors grow faster.
- 4. Among larger firms, growth is unrelated to size (Gibrat's law).
- 5. Small (young) firms are more volatile.
- 6. The market share of a cohort declines as it ages.

Setup

Environment

- ► There is a large number of firms.
- ► Each firm has a number of products, each product is only produced by one firm.
- Overall, there is a large number of products.

Environment

- ▶ There is a continuum of firms.
- ► Each firm has a countable number of products, each product is only produced by one firm.
- Overall, there is a continuum of products.

Products of different quality

Aside: Cardinality of the continuum

- ► The cardinality of a set is a measure of the "number of elements" in it.
 - |A| = |B| if there is a bijection between the elements of A and B.
 - ▶ |A| > |B| if |a| = |B| for a proper subset $a \subset A$, but not |A| = |B|.
- ▶ Continuum is the cardinality of the real line.

- $|\mathbb{R}| = |[0,1]| = |\mathbb{R}^2|$
- $ightharpoonup |\mathbb{R}| > |\mathbb{N}|$
- ► The cardinality of the continuum is *infinite*. What does this mean?

Notes

Why continuum?

- ► We need an infinite number of firms to invoke the LOLN we want to rule out aggregate uncertainty.

For practical purposes, we can simply think of the continuum case as $N \to \infty$.

Basic setup

- ► Firms invest in R&D to develop better versions of products (vertical product innovation).
- ► These products are "stolen" from other firms.
- ► Entrants also innovate.

Novelties

- Firms are modelled as a collection of product lines, $n=0,1,2,3,\ldots$
- ► Innovation technology is convex we can pin down innovation for each firm.

Decisions of the firm

Firm profits

- ightharpoonup Each product brings a total profit of π . This could be motivated by
 - fixed aggregate spending
 - fixed aggregate number of products
 - ► constant markup
- ► Products are symmetric.

Decisions of the firm

- ▶ Each firm is characterized by the number of products it has, n=0,1,2,3,...
 - ightharpoonup n=0 is a dead firm
- ▶ Total flow profits are $n\pi$.
- Once we know per-product profits, the only decision is about changing n.
- ▶ The firm invests in R&D to increase n.

Firm dynamics

- \blacktriangleright After successful R&D, n increases by 1.
- \blacktriangleright If a product is stolen by a rival, n decreases by 1.
- ightharpoonup Each product is stolen with arrival rate μ (to be endogenized later).

Inputs of innovation

- \blacktriangleright Innovation takes a flow R&D expenditure R
 - researchers
 - materials
 - Econometrica subscription
- ▶ and stock of firm-specific knowledge
 - previous patents
 - previous ideas
 - previous papers

Inputs of innovation

- ▶ Innovation takes a flow R&D expenditure R
 - researchers
 - materials
 - Econometrica subscription
- and stock of firm-specific knowledge
 - previous patents
 - previous ideas
 - previous papers
- ightharpoonup The knowledge stock is assumed proportional to n.

Output of innovation

- ▶ The output of innovation is a new product.
- ► As usual, the success of innovation is random.
- ightharpoonup A new product arrives with Poisson arrival rate I.

$$I = G(R, n)$$

- standard neoclassical production function
- lacktriangleright increasing and concave in R

$$I = G(R, n)$$

- standard neoclassical production function
- \blacktriangleright increasing and concave in R
 - Optimal R can be determined for each firm.

$$I = G(R, n)$$

- standard neoclassical production function
- \blacktriangleright increasing and concave in R
 - Optimal R can be determined for each firm.
- ightharpoonup increasing in n

$$I = G(R, n)$$

- standard neoclassical production function
- ightharpoonup increasing and concave in R
 - Optimal R can be determined for each firm.
- ightharpoonup increasing in n
 - Bigger firms are better at R&D they do more.

$$I = G(R, n)$$

- standard neoclassical production function
- ightharpoonup increasing and concave in R
 - Optimal R can be determined for each firm.
- ightharpoonup increasing in n
 - ▶ Bigger firms are better at R&D they do more.
- lacktriangle linear homogenous in R and n

$$I = G(R, n)$$

- standard neoclassical production function
- ightharpoonup increasing and concave in R
 - Optimal R can be determined for each firm.
- ightharpoonup increasing in n
 - ▶ Bigger firms are better at R&D they do more.
- ightharpoonup linear homogenous in R and n
 - Bigger firms do proportionally more R&D.

Intensive form

Because of CRS,

$$I = G(R,n) = nG(R/n,1) \equiv ng(R/n),$$

or written as a cost function

$$R/n = g^{-1}(I/n) \equiv c(I/n).$$

Intensive form

Because of CRS,

$$I=G(R,n)=nG(R/n,1)\equiv ng(R/n), \qquad \mbox{9 (o)} = \infty$$
 or written as a cost function
$$\mbox{9 (o)} = 0$$

c is
$$C(0) = 0$$

$$\text{increasing}$$

$$\text{convex}$$

$$T/b$$

 $R/n = q^{-1}(I/n) \equiv c(I/n).$

The Bellman equation

We are now ready for the Bellman equation:

$$\begin{split} rV(n) &= \max_{I} \left\{ n\pi - nc(I/n) \right. \\ &+ I[V(n+1) - V(n)] \\ &+ \mu n[V(n-1) - V(n)] \right\} \end{split}$$

The Bellman equation

We are now ready for the Bellman equation:

$$\begin{split} rV(n) &= \max_{I} \left\{ n\pi - nc(I/n) \right. \\ &+ I[V(n+1) - V(n)] \\ &+ \mu n[V(n-1) - V(n)] \right\} \end{split}$$

- ► The opportunity cost of time is traded off against
- operating profits minus R&D expenditures
- capital gains from developing a new product
- ightharpoonup capital losses from losing any of the n products

Teamwork
$$C'(\overline{1}) = N$$
 $\overline{1} = f(N)$
 $NNX = \overline{1}N - NC(\overline{1}) + N\overline{1}N - NNN$

- 1. Guess and verify that V(n) = vn.
- 2. Solve for v and optimal innovation I.
- 3. How does R&D expenditure depend on size?

Solution

▶ Guess that the value function is

$$V(n) = vn.$$

In that case,

$$rvn = \max_{I} \{\pi n - nc(I/n) + Iv - \mu nv\}.$$

► The FOC:

$$c'(I/n) = v.$$

▶ Denoting $I/N \equiv \lambda$, and dividing by n,

$$rv = \pi - c(\lambda) + \lambda v - \mu v$$

ightharpoonup v and λ jointly solve

$$c'(\lambda) = v$$

and

$$v = \frac{\pi - c(\lambda)}{r + \mu - \lambda}.$$

▶ R&D intensity, $R/n = c(\lambda)$ is independent of firm size.

Firm dynamics

Firm dynamics

- Firm dynamics is characterized by a Markov chain over $n=0,1,2,3.,\ldots$
- ightharpoonup Exit (n=0) is an absorbing state.
- ▶ Forecast the size of a firm born with n = 1.

Firm dynamics

- Firm dynamics is characterized by a Markov chain over $n=0,1,2,3.,\ldots$
- ightharpoonup Exit (n=0) is an absorbing state.
- ▶ Forecast the size of a firm born with n = 1.
 - ► This is a birth-and-death process, but with different rates than in the problem set.

The Kolmogorov equation

$$\dot{\pi}_0(t)=\mu\pi_1(t)$$

$$\dot{\pi}_n(t)=\lambda(n-1)\pi_{n-1}(t)-(\lambda+\mu)n\pi_n(t)+\mu(n+1)\pi_{n+1}(t)$$
 Boundary condition:

 $\pi_1(0) = 1$

▶ This system of differential equations has the solution

$$\pi_0(t) = \frac{\mu}{\lambda} \gamma(t)$$

$$\pi_1(t) = [1 - \pi_0(t)][1 - \gamma(t)]$$

$$\vdots$$

$$\pi_n(t) = \pi_{n-1}(t)\gamma(t),$$

where

$$\gamma(t) = \frac{\lambda - \lambda e^{-(\mu - \lambda)t}}{\mu - \lambda e^{-(\mu - \lambda)t}}.$$

▶ Conditional on survival (n > 0), this is a geometric distribution with parameter $\gamma(t)$.

Firm demographics

Hazard of exit

$$\frac{\dot{\pi}_0(t)}{1 - \pi_0(t)} = \mu - \lambda \pi_0(t)$$

decreasing in t — consistent with younger firms exiting more often.

Firm demographics

Unconditional expected growth

$$\frac{Edn(t)}{n(t)} \equiv \lim_{\Delta \to 0} \frac{En(t+\Delta) - n(t)}{n(t) \cdot \Delta} = \lambda - \mu$$

is independent of firm size and age.

Firm demographics
$$n(t) + 1$$
 $m/3r = 31r$
 $n(t+1) = \begin{cases} n(t) + 1 \\ n(t) \end{cases}$ Otherwise

$$\frac{Edn(t)}{n(t)} \stackrel{\text{dt}}{\equiv} \lim_{\Delta \to 0} \frac{En(t+\Delta) - n(t)}{n(t) \cdot \Delta} = \lambda - \mu$$

is independent of firm size and age.

- ▶ This includes the possibility of exit, $n(t + \Delta) = 0$.
- ► For large, mature firms, whose exit is unlikely, this is consistent with data.

Firm demographics

$$Nan(x) = E(x^2) - E(x)^2$$

 $E(\Delta n) = O(A-n)0$

Volatility

$$\underbrace{\frac{\operatorname{Var}dn(t)}{n(t)}}_{} \equiv \lim_{\Delta \to 0} \frac{E[n(t+\Delta) - n(t)]^{2}}{n(t) \cdot \Delta} = \frac{\lambda + \mu}{n}$$

is decreasing in firm size

$$E\left(\frac{dn^2}{dt}\right) = (3 + \mu)n$$

$$Nan\left(\frac{dn}{n}\right)/dt = \frac{1}{h^2} Non(dn)/dt$$

Industry equilibrium

- \blacktriangleright We want to endogenize μ , the rate at which products are stolen.
- ightharpoonup Part of μ is driven by innovation by all the incumbents.
 - When Google comes up with Android phones, they will steal the market from Apple's iPhone.
- ► Each time an incumbent is successful in innovation, the new product is selected randomly from the product space [0, 1].
 - undirected innovation

Industry equilibrium

▶ The hazard of your product being stolen by an incumbent is

$$\Lambda = \int_0^1 \lambda(j)dj = \int_0^1 \lambda dj = \lambda.$$

- ► There are also new entrants, who develop better versions of the existing products.
- ▶ Suppose this happens at rate η . Then

$$\mu = \lambda + \eta.$$

Entry

- There are infinite number of firms wishing to enter.
- ▶ If they spend $F\eta$ on R&D, they can improve on a randomly chose product with arrival rate η .
- Their Bellman equation:

$$\rho \cdot 0 = \max_{\eta} \left\{ -F\eta + \eta [V(1) - 0] \right\}$$

Entry

- There are infinite number of firms wishing to enter.
- ▶ If they spend $F\eta$ on R&D, they can improve on a randomly chose product with arrival rate η .
- Their Bellman equation:

$$\rho \cdot 0 = \max_{\eta} \{ -F\eta + \eta [V(1) - 0] \}$$

- Anybody can be an entrant, so they should derive no value from it.
- Success brings about an increase in value (incumbents enjoy rents).

► The FOC:

$$F = v$$
,

which implies $F = c'(\lambda)$.

ightharpoonup Because new entrants technology is linear, η is not determined by this FOC.

► The FOC:

$$F = v$$

which implies $F = c'(\lambda)$.

- ightharpoonup Because new entrants technology is linear, η is not determined by this FOC.
- ► Recall the incumbents' optimum:

$$v = F = \frac{\pi - c(\lambda)}{r + \mu - \lambda} = \frac{\pi - c[c'^{-1}(F)]}{r + \eta}$$

- ▶ This pins down η .
 - If entry is slower, incumbents enjoy larger profits, v is higher than F.

- ▶ This completes the characterization of industry equilibrium.
- ▶ We can do simple comparative statics.
 - ▶ What happens if *F* increases?

The firm-size distribution

- ▶ Denote the mass of firms with n products at time t by $M_n(t)$.
- ▶ How can we characterize $M_1(t), M_2(t), ...$?
- ▶ Is there a steady-state distribution, $M_1, M_2, ...$?

The firm-size distribution

- ▶ Denote the mass of firms with n products at time t by $M_n(t)$.
- ▶ How can we characterize $M_1(t), M_2(t), ...$?
- ▶ Is there a steady-state distribution, $M_1, M_2, ...$?
- ▶ These questions sound similar to Markov chain forecasting.
- Indeed we will be using the same tools.

Incumbents

- ► The evolution of incumbents is characterized by the Markov chain.
- ▶ Because there are a continuum of firms, and shocks are independent across firms, the *fraction* of firms moving from state n to k is identical to the *probability* of moving from n to k.
- ▶ We can use the Kolmogorov equation to characterize the *flows* between firms of different sizes.

$$\dot{M}_n(t) = -(\lambda + \mu) n M_n(t) + \lambda (n-1) M_{n-1}(t) + \mu (n+1) M_{n+1}(t)$$

Entrants

▶ The flow of entrants adds to the stock of size-1 firms:

$$\dot{M}_1(t) = -(\lambda + \mu)M_1(t) + 2\mu M_2(t) + \eta$$

Solving for the steady-state distribution

lacksquare In steady state, $\dot{M}_n=0$.

$$0 = -(\lambda + \mu)M_1 + 2\mu M_2 + \eta 0 = -(\lambda + \mu)nM_n + \lambda(n-1)M_{n-1}$$

This can be solved to yield

$$M_n = \frac{\lambda^{n-1}\eta}{n\mu^n}.$$

The firm-size distribution

▶ The firm-size distribution is

$$\frac{M_n}{\sum_{i=1}^{\infty} M_i} = \frac{(1+\theta)^{-n}}{n \ln(1+1/\theta)},$$

where $\theta = \eta/\lambda$.

- ▶ This is the logarithmic distribution, which is very skewed.
 - In line with the stylized facts.

The logarithmic distribution

Appendix