FYS3150 Computational Physics - Project 2

Nicholas Karlsen

This is an abstract

Number of itterations needed for N-dim

INTRODUCTION

Preservation of scalar product & orthogonality in unitary transformations

Consider an orthonormal set of basis vectors \mathbf{v}_i such $\begin{vmatrix} s = tc \\ that \mathbf{v}_j^T \mathbf{v}_i = \delta_{ij} \end{vmatrix}$. Let unitary matrix U where $U^T U = I_N$, $\begin{vmatrix} 10 \\ 11 \\ 11 \end{vmatrix}$ where I_N denotes the $N \times N$ identity matrix, operate on $\begin{vmatrix} 12 \\ 12 \\ 13 \end{vmatrix}$ $\begin{vmatrix} s = tc \\ a'_{lk} = a_{kk} \\ a'_{ll} = a_{ll} \end{vmatrix}$

$$\mathbf{w}_i = U\mathbf{v}_i \tag{1}$$

Then

$$\mathbf{w}_j^T \mathbf{w}_i = (U \mathbf{v}_j)^T U \mathbf{v}_i = \mathbf{v}_j^T U^T U \mathbf{v}_i = \mathbf{v}_j^T \mathbf{v}_i = \delta_{ij}$$
 (2)

In the unitary transformation of \mathbf{v}_i both the scalar product and orthogonality has been preserved.

THEORY, ALGORITHMS AND METHODS

RESULTS AND DISCUSSIONS

CONCLUSIONS

Jacobi Eigenvalue Algorithm

M. Hjorth-Jensen, Computational Physics - Lecture Notes 2015, (2015).