

Contents

- Load the Necessary Libraries
- Data Exploration and Cleaning
- Handling Missing Value
- Pre-processing the missing Values
- Handling Outliers¶
- Data Visualisation
- Handling Multicollinearity
- Data Training
- Model Training and Evaluation:
- Logistic Regression
- Decision Tree
- Random Forest
- CROSS VALIDATE THE MODELS
- MODEL RESULT COMPARISON

Load the Neccessary Libraries

In [1]:

```
import pandas as pd
 2 import numpy as np
 3 import seaborn as sns
 4 import matplotlib.pyplot as plt
   from scipy.stats import ttest_ind
 7
   from sklearn.preprocessing import LabelEncoder
 8
 9
   from sklearn.model_selection import train_test_split
10
11
   from sklearn.linear_model import LogisticRegression
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.ensemble import RandomForestClassifier
13
14
   from sklearn.metrics import classification_report, accuracy_score, confusion_matrix,
15
16
   from sklearn.model_selection import cross_val_score
17
   import numpy as np
18
19
20
```

-----Data Exploration and Cleaning-----

In [2]:

```
1 # Load the dataset
2 df = pd.read_csv('Loan_Default.csv')
```

In [3]:

```
1 # Understanding the data
2 print(df.info())
```

124549 non-null float64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148670 entries, 0 to 148669

Data columns (total 34 columns): # Column Non-Null Count Dtype ---------ID 148670 non-null int64 0 1 year 148670 non-null int64 2 loan_limit 145326 non-null object 3 Gender 148670 non-null object 4 approv in adv 147762 non-null object 5 loan_type 148670 non-null object 6 loan purpose 148536 non-null object 7 Credit_Worthiness 148670 non-null object 8 open credit 148670 non-null object 9 business_or_commercial 148670 non-null object 10 loan amount 148670 non-null int64 rate of interest 112231 non-null float64 11 Interest_rate_spread 112031 non-null float64 13 109028 non-null float64 Upfront_charges 14 term 148629 non-null float64 15 Neg_ammortization 148549 non-null object 16 interest_only 148670 non-null object 17 lump sum payment 148670 non-null object property_value 133572 non-null float64 18 construction_type 148670 non-null object 20 occupancy_type 148670 non-null object 21 Secured_by 148670 non-null object 22 total units 148670 non-null object 23 income 139520 non-null float64 24 credit_type 148670 non-null object 25 Credit_Score 148670 non-null int64 26 co-applicant_credit_type 148670 non-null object 27 148470 non-null object 28 submission of application 148470 non-null object 29 LTV 133572 non-null float64 30 Region 148670 non-null obiect 31 Security_Type 148670 non-null object 32 Status 148670 non-null int64

dtypes: float64(8), int64(5), object(21)

memory usage: 38.6+ MB

dtir1

None

33

In [4]:

1 df.describe()

Out[4]:

	ID	year	loan_amount	rate_of_interest	Interest_rate_spread	Upfront_
count	148670.000000	148670.0	1.486700e+05	112231.000000	112031.000000	109028
mean	99224.500000	2019.0	3.311177e+05	4.045476	0.441656	3224
std	42917.476598	0.0	1.839093e+05	0.561391	0.513043	3251
min	24890.000000	2019.0	1.650000e+04	0.000000	-3.638000	0
25%	62057.250000	2019.0	1.965000e+05	3.625000	0.076000	581
50%	99224.500000	2019.0	2.965000e+05	3.990000	0.390400	2596
75%	136391.750000	2019.0	4.365000e+05	4.375000	0.775400	4812
max	173559.000000	2019.0	3.576500e+06	8.000000	3.357000	60000
4						>

In [5]:

1 df.head()

Out[5]:

	ID	year	loan_limit	Gender	approv_in_adv	loan_type	loan_purpose	Credit_Worthin
0	24890	2019	cf	Sex Not Available	nopre	type1	p1	
1	24891	2019	cf	Male	nopre	type2	p1	
2	24892	2019	cf	Male	pre	type1	р1	
3	24893	2019	cf	Male	nopre	type1	p4	
4	24894	2019	cf	Joint	pre	type1	p1	
5 r	ows × 3	4 colu	mns					

Handling Missing Value

In [6]:

check for missing values
df.isnull().sum()

Out[6]:

	_
ID	0
year	0
loan_limit	3344
Gender	0
approv_in_adv	908
loan_type	0
loan_purpose	134
Credit_Worthiness	0
open_credit	0
business_or_commercial	0
loan_amount	0
rate_of_interest	36439
Interest_rate_spread	36639
Upfront_charges	39642
term	41
Neg_ammortization	121
interest_only	0
lump_sum_payment	0
property_value	15098
construction_type	0
occupancy_type	0
Secured_by	0
total_units	0
income	9150
credit_type	0
Credit_Score	0
co-applicant_credit_type	0
age	200
submission_of_application	200
LTV	15098
Region	0
Security_Type	0
Status	0
dtir1	24121
dtype: int64	·== -
- ·	

In [7]:

```
#Check the percentage of missing values in each column:
missing_percentages = (df.isnull().sum() / len(df)) * 100
print(missing_percentages)
```

ID	0.000000
year	0.000000
loan_limit	2.249277
Gender	0.000000
approv_in_adv	0.610749
loan_type	0.000000
loan_purpose	0.090133
Credit_Worthiness	0.000000
open credit	0.000000
business_or_commercial	0.000000
loan_amount	0.000000
rate_of_interest	24.509989
Interest_rate_spread	24.644515
Upfront_charges	26.664425
term	0.027578
Neg_ammortization	0.081388
interest_only	0.000000
lump_sum_payment	0.000000
property_value	10.155378
construction_type	0.000000
occupancy_type	0.000000
Secured_by	0.000000
total_units	0.000000
income	6.154571
credit_type	0.000000
Credit_Score	0.000000
co-applicant_credit_type	0.000000
age	0.134526
submission_of_application	0.134526
LTV	10.155378
Region	0.000000
Security_Type	0.000000
Status	0.000000
dtir1	16.224524
dtype: float64	

In [8]:

```
#Analyze the patterns of missingness in the dataset:
import missingno as msno
msno.matrix(df)
```

Out[8]:

<AxesSubplot:>

The missing values are represented by white bars.

Preprocessing the missing Values

In [9]:

```
# Replace missing values with the mean and median in the numerical columns
   df['loan_limit'] = pd.to_numeric(df['loan_limit'], errors='coerce') # convert Loan_L
   mean_loan_limit = df['loan_limit'].mean()
   median_loan_limit = df['loan_limit'].median()
   df['loan limit'].fillna(mean loan limit, inplace=True) # replace missing values with
   df['loan limit'].fillna(median loan limit, inplace=True) # replace any remaining mis
   df['rate_of_interest'].fillna(df['rate_of_interest'].mean(), inplace=True) # replace
 7
   df['Interest rate spread'].fillna(df['Interest rate spread'].median(), inplace=True)
   df['Upfront_charges'].fillna(df['Upfront_charges'].median(), inplace=True) # replace
10
   df['term'].fillna(df['term'].median(), inplace=True) # replace term with the median
   df['property_value'].fillna(df['property_value'].median(), inplace=True) # replace p
   df['income'].fillna(df['income'].mean(), inplace=True) # replace income with the meal
   df['LTV'].fillna(df['LTV'].median(), inplace=True) # replace LTV with the median
13
14
   df['dtir1'].fillna(df['dtir1'].mean(), inplace=True) # replace dtir1 with the mean
15
16
   # Drop missing values in categorical columns
   df.dropna(subset=['approv in adv', 'loan purpose', 'Neg ammortization', 'age', 'subm
17
```

In [10]:

```
1 # Verify the new dataframe
2 print(df.info())
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 147315 entries, 0 to 148669
Data columns (total 34 columns):

Data #	Columns (total 34 columns)	: Non-Null Count	Dtype
		147215	
0	ID	147315 non-null	int64
1	year	147315 non-null	int64
2	loan_limit	0 non-null	float64
	Gender	147315 non-null	object
4	approv_in_adv	147315 non-null	object
5	loan_type	147315 non-null	object
6	loan_purpose	147315 non-null	object
7	Credit_Worthiness	147315 non-null	object
8	open_credit	147315 non-null	object
9	business_or_commercial	147315 non-null	object
10	loan_amount	147315 non-null	int64
11	rate_of_interest	147315 non-null	float64
12	Interest_rate_spread	147315 non-null	float64
13	Upfront_charges	147315 non-null	float64
14	term	147315 non-null	float64
15	Neg_ammortization	147315 non-null	object
16	interest_only	147315 non-null	object
17	lump_sum_payment	147315 non-null	object
18	property_value	147315 non-null	float64
19	construction_type	147315 non-null	object
20	occupancy_type	147315 non-null	object
21	Secured_by	147315 non-null	object
22	total_units	147315 non-null	object
23	income	147315 non-null	float64
24	credit_type	147315 non-null	object
25	Credit_Score	147315 non-null	int64
26	<pre>co-applicant_credit_type</pre>	147315 non-null	object
27	age	147315 non-null	object
28	<pre>submission_of_application</pre>	147315 non-null	object
29	LTV	147315 non-null	float64
30	Region	147315 non-null	object
31	Security_Type	147315 non-null	object
32	Status	147315 non-null	int64
33	dtir1	147315 non-null	float64
	as: float64(9) int64(5) of		

dtypes: float64(9), int64(5), object(20)

memory usage: 39.3+ MB

None

In [11]:

```
1 print(df.isnull().sum())
ID
                                    0
                                    0
year
loan_limit
                              147315
Gender
                                    0
approv_in_adv
                                    0
                                    0
loan_type
loan_purpose
                                    0
Credit_Worthiness
                                    0
                                    0
open_credit
business_or_commercial
                                    0
                                    0
loan amount
rate_of_interest
                                    0
Interest_rate_spread
                                    0
                                    0
Upfront_charges
term
                                    0
                                    0
Neg_ammortization
interest_only
                                    0
                                    0
lump_sum_payment
                                    0
property_value
                                    0
construction_type
                                    0
occupancy_type
Secured_by
                                    0
total_units
                                    0
                                    0
income
credit_type
                                    0
Credit_Score
                                    0
co-applicant_credit_type
                                    0
                                    0
age
submission_of_application
                                    0
                                    0
LTV
                                    0
Region
Security_Type
                                    0
Status
                                    0
dtir1
                                    0
dtype: int64
In [12]:
    # Get the unique values in the 'loan limit' column
    unique loan limits = df['loan limit'].unique()
   print(unique_loan_limits)
[nan]
In [13]:
 1 | df = df.drop('loan_limit', axis=1)
In [14]:
 1 # Check if there are any duplicate rows in the DataFrame
   print(df.duplicated().sum())
0
```

Handling Outliers

```
In [15]:
```

```
# Define numerical and categorical variables
num_vars = df.select_dtypes(include=['float64', 'int64']).columns.tolist()
cat_vars = df.select_dtypes(include=['object']).columns.tolist()
```

In [16]:

```
1 print(cat_vars)
2
```

```
['Gender', 'approv_in_adv', 'loan_type', 'loan_purpose', 'Credit_Worthines s', 'open_credit', 'business_or_commercial', 'Neg_ammortization', 'interes t_only', 'lump_sum_payment', 'construction_type', 'occupancy_type', 'Secur ed_by', 'total_units', 'credit_type', 'co-applicant_credit_type', 'age', 'submission_of_application', 'Region', 'Security_Type']
```

In [17]:

```
1 num_vars = df.select_dtypes(include=['float64', 'int64']).drop('Status', axis=1).col
```

In [18]:

```
# Handle outliers
   def find_outliers_IQR(col):
 3
       Q1 = col.quantile(0.25)
4
       Q3 = col.quantile(0.75)
 5
       IQR = Q3 - Q1
       outliers = col[((col < (Q1 - 3*IQR)) | (col > (Q3 + 3*IQR)))]
 6
7
       return outliers
8
  #replacing outliers with median value
9
10
   for col in num vars:
       outliers = find_outliers_IQR(df[col])
11
12
       df.loc[outliers.index, col] = df[col].median()
```

Data Visualisation

In [19]:

```
#convert 'Status' column to categorical type and replace 0 and 1 with 'Not Approved'
df['Status']=df['Status'].astype('category')
change={0:'Not Approved',1:'Approved'}
df['Status']=df['Status'].replace(change)
```

In [20]:

```
fig,ax=plt.subplots()
sns.scatterplot(x='Credit_Score',y='loan_amount',data=df,hue='Status')
fig.set_size_inches([12,6])
plt.show()
```

C:\Anaconda\lib\site-packages\IPython\core\pylabtools.py:151: UserWarning:
Creating legend with loc="best" can be slow with large amounts of data.
 fig.canvas.print_figure(bytes_io, **kw)

In [21]:

```
sns.set_style('whitegrid')

plt.figure(figsize=(10, 5))

sns.histplot(data=df, x='income', hue='Status', kde=True)

plt.title('Distribution of Income by Loan Status')
plt.show()
```


In [22]:

```
# Boxplots
 2
   for i in num_vars:
 3
        plt.figsize=(16,6)
        sns.set_theme(style='darkgrid')
 4
 5
        sns.boxplot(x=i, y='Status', data=df)
 6
        plt.show()
 7
   # Histograms
 8
 9
   for i in num_vars:
        plt.figsize=(16,6)
10
        sns.set_theme(style='darkgrid')
11
        sns.histplot(data=df, x=i, hue="Status", multiple="dodge", shrink=.8, bins=4)
12
13
        plt.show()
14
```


In [23]:

```
#Categorical Variable Countplots by Status
2
  for var in cat_vars:
3
       sns.countplot(data=df, x=var, hue='Status')
4
       plt.show()
                                             Status
 30000
                                             Approved
                                             Not Approved
 25000
 20000
 15000
 10000
  5000
    0
```

Female

Not Approved

Status Approved

Handling Multicolinearity

Male

Gender

Joint

Sex Not Available

80000

In [24]:

```
# Define numerical variables
   num_vars = df.select_dtypes(include=['float64', 'int64']).columns.tolist()
 2
 4
   # Create a correlation matrix
 5
   corr = df[num_vars + ['Status']].corr()
 6
 7
   # Plot a heatmap of the correlation matrix
   plt.figure(figsize=(10, 8))
 8
 9
   sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
   plt.title('Correlation Heatmap', fontsize=14)
11
   plt.show()
12
```


In [25]:

```
# Select the numerical columns from df
   num_df = df[num_vars]
 4
   # Calculate the correlation matrix
 5
   corr_matrix = num_df.corr()
 6
 7
   # Print the correlation matrix
   print(corr_matrix)
 8
 9
10 # Find pairs of variables with high correlation coefficients
   high_corr = []
11
   for i in range(len(corr_matrix.columns)):
12
       for j in range(i+1, len(corr_matrix.columns)):
13
            if abs(corr_matrix.iloc[i, j]) > 0.7:
14
15
                high_corr.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_m
16
   # Print the pairs of variables with high correlation coefficients
17
   print(high_corr)
```

```
ID
                                 year
                                        loan amount
                                                     rate of interest
ID
                       1.000000
                                  NaN
                                          -0.000196
                                                             -0.000295
                                  NaN
year
                            NaN
                                                NaN
                                                                   NaN
loan_amount
                      -0.000196
                                           1.000000
                                                             -0.128386
                                  NaN
                      -0.000295
                                                              1.000000
rate_of_interest
                                  NaN
                                          -0.128386
Interest_rate_spread 0.002021
                                  NaN
                                          -0.322804
                                                              0.606784
Upfront charges
                      -0.003413
                                  NaN
                                          -0.054611
                                                             -0.068133
                                  NaN
term
                            NaN
                                                NaN
                                                                   NaN
property_value
                      -0.000437
                                  NaN
                                           0.729564
                                                             -0.141982
                                           0.547796
                                                             -0.070687
                       0.004650
                                  NaN
income
Credit_Score
                      -0.001112
                                  NaN
                                           0.005340
                                                             -0.002146
                      -0.005020
                                                              0.027318
LTV
                                  NaN
                                           0.081831
dtir1
                      -0.007411
                                           0.018722
                                                              0.045542
                                  NaN
                       Interest_rate_spread Upfront_charges
                                                                term
ID
                                   0.002021
                                                    -0.003413
                                                                 NaN
year
                                         NaN
                                                           NaN
                                                                 NaN
                                   -0.322804
                                                    -0.054611
                                                                 NaN
loan_amount
rate_of_interest
                                   0.606784
                                                    -0.068133
                                                                 NaN
Interest rate spread
                                   1.000000
                                                     0.053245
                                                                 NaN
Upfront_charges
                                   0.053245
                                                     1.000000
                                                                 NaN
                                                                 NaN
term
                                         NaN
                                                           NaN
                                  -0.341126
                                                    -0.034610
                                                                 NaN
property_value
                                  -0.164849
                                                    -0.037989
                                                                 NaN
income
Credit Score
                                  -0.002413
                                                    -0.002385
                                                                 NaN
LTV
                                   0.066583
                                                    -0.055004
                                                                 NaN
dtir1
                                   0.057295
                                                    -0.013920
                                                                 NaN
                       property_value
                                          income Credit_Score
                                                                      LTV
                                        0.004650
ID
                            -0.000437
                                                      -0.001112 -0.005020
year
                                  NaN
                                             NaN
                                                            NaN
                                                                      NaN
loan_amount
                             0.729564
                                       0.547796
                                                      0.005340
                                                                0.081831
rate_of_interest
                            -0.141982 -0.070687
                                                      -0.002146
                                                                0.027318
Interest_rate_spread
                            -0.341126 -0.164849
                                                     -0.002413
                                                                0.066583
Upfront_charges
                            -0.034610 -0.037989
                                                      -0.002385 -0.055004
                                  NaN
                                                            NaN
                                                                      NaN
term
                                             NaN
                             1.000000
                                        0.460629
                                                      0.005377 -0.369274
property_value
income
                             0.460629 1.000000
                                                      0.000456 -0.029024
Credit Score
                             0.005377
                                        0.000456
                                                      1.000000 -0.003629
LTV
                            -0.369274 -0.029024
                                                      -0.003629
                                                                 1.000000
dtir1
                            -0.046249 -0.260424
                                                     -0.000150 0.151461
                          dtir1
ID
                      -0.007411
year
                            NaN
                       0.018722
loan_amount
rate_of_interest
                       0.045542
Interest rate spread
                       0.057295
                      -0.013920
Upfront charges
                            NaN
term
property_value
                      -0.046249
income
                      -0.260424
Credit Score
                      -0.000150
LTV
                       0.151461
dtir1
                       1.000000
[('loan amount', 'property value', 0.7295637877973961)]
```

In [26]:

```
1 # Display encoded data
2 df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 147315 entries, 0 to 148669
Data columns (total 33 columns):

# 	Column	Non-Null Count	Dtype
0	ID	147315 non-null	int64
1	year	147315 non-null	int64
2	Gender	147315 non-null	object
3	approv_in_adv	147315 non-null	object
4	loan_type	147315 non-null	object
5	loan_purpose	147315 non-null	object
6	Credit_Worthiness	147315 non-null	object
7	open_credit	147315 non-null	object
8	business_or_commercial	147315 non-null	object
9	loan_amount	147315 non-null	int64
10	rate_of_interest	147315 non-null	float64
11	Interest_rate_spread	147315 non-null	float64
12	Upfront_charges	147315 non-null	float64
13	term	147315 non-null	float64
14	Neg_ammortization	147315 non-null	object
15	interest_only	147315 non-null	object
16	lump_sum_payment	147315 non-null	object
17	property_value	147315 non-null	float64
18	construction_type	147315 non-null	object
19	occupancy_type	147315 non-null	object
20	Secured_by	147315 non-null	object
21	total_units	147315 non-null	object
22	income	147315 non-null	float64
23	credit_type	147315 non-null	object
24	Credit_Score	147315 non-null	int64
25	co-applicant_credit_type	147315 non-null	object
26	age	147315 non-null	object
27	<pre>submission_of_application</pre>	147315 non-null	object
28	LTV	147315 non-null	float64
29	Region	147315 non-null	object
30	Security_Type	147315 non-null	object
31	Status	147315 non-null	object
32	dtir1	147315 non-null	float64

dtypes: float64(8), int64(4), object(21)

memory usage: 42.2+ MB

In [27]:

```
1 df.columns
```

```
Out[27]:
```

In [28]:

```
# Encode categorical variables
encoder = LabelEncoder()
cat_vars_encoded = pd.DataFrame()
for col in cat_vars:
    cat_vars_encoded[col] = encoder.fit_transform(df[col])

# Concatenate numerical, categorical, and 'Status' columns
num_cat_vars = num_vars + cat_vars_encoded.columns.tolist() + ['Status']
df_encoded = pd.concat([df[num_vars], pd.get_dummies(df[cat_vars], drop_first=True),
```

In [29]:

1 df_encoded.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 147315 entries, 0 to 148669

Data columns (total 50 columns): # Column Non-Null Count Dtype -------------0 ID 147315 non-null int64 147315 non-null int64 1 year 2 loan_amount 147315 non-null int64 3 rate of interest 147315 non-null float64 4 Interest_rate_spread 147315 non-null float64 147315 non-null float64 5 Upfront_charges 6 147315 non-null float64 term 7 property_value 147315 non-null float64 8 147315 non-null float64 income 147315 non-null int64 9 Credit_Score 10 LTV 147315 non-null float64 11 dtir1 147315 non-null float64 12 Gender_Joint 147315 non-null uint8 13 Gender_Male 147315 non-null uint8 14 Gender_Sex Not Available 147315 non-null uint8 15 approv_in_adv_pre 147315 non-null uint8 16 loan_type_type2 147315 non-null uint8 17 loan_type_type3
18 loan_purpose_p2
147315 non-null uint8
19 loan_purpose_p3
147315 non-null uint8
20 loan_purpose_p4
21 Credit_Worthiness_l2
22 open_credit_opc
23 business_or_commercial_nob/c
24 Neg_ammortization_not_neg
25 interest_only_not_int
26 lump_sum_payment_not_lpsm
27 construction_type_sb
28 occupancy_type_pr
29 occupancy_type_pr
29 occupancy_type_sr
30 Secured_by_land
31 total_units_3U
32 total_units_AU
33 total_units_AU
47315 non-null uint8
477315 non-null uint8 147315 non-null uint8 17 loan_type_type3 33 total units 4U 147315 non-null uint8 34 credit_type_CRIF 147315 non-null uint8 35 credit_type_EQUI 147315 non-null uint8 36 credit type EXP 147315 non-null uint8 co-applicant_credit_type_EXP 37 147315 non-null uint8 38 age 35-44 147315 non-null uint8 39 age 45-54 147315 non-null uint8 40 age 55-64 147315 non-null uint8 41 age_65-74 147315 non-null uint8 147315 non-null uint8 42 age <25 43 age_>74 147315 non-null uint8 44 submission_of_application_to_inst 147315 non-null uint8 Region_North-East 45 147315 non-null uint8 46 Region_central 147315 non-null uint8 47 Region south 147315 non-null uint8 48 Security_Type_direct 147315 non-null uint8 49 Status 147315 non-null object

dtypes: float64(8), int64(4), object(1), uint8(37)

memory usage: 25.0+ MB

```
In [30]:
```

```
# drop the ID and property_value columns
df_encoded = df_encoded.drop(['ID', 'property_value'], axis=1)
```

Data Training

In [31]:

```
# split the data into training and testing sets

X = df_encoded.drop("Status", axis=1)
y = df_encoded["Status"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state
The split the data into training and testing sets

X = df_encoded.drop("Status", axis=1)
y = df_encoded["Status"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state
```

------Model Training and Evaluation-----

Logistic Regression

In [32]:

```
# Logistic Regression
   logreg = LogisticRegression()
   logreg.fit(X_train, y_train)
   y pred = logreg.predict(X test)
   print('Logistic Regression:')
   print('Accuracy:', accuracy_score(y_test, y_pred))
   print('Classification Report:')
   print(classification_report(y_test, y_pred))
   print('Confusion Matrix:')
   print(confusion matrix(y test, y pred))
11 print('ROC AUC Score:')
   y_prob = logreg.predict_proba(X_test)[:, 1]
13
   print(roc_auc_score(y_test, y_prob))
14
15
```

Logistic Regression:

Accuracy: 0.7542341241557208

Classification Report:

C:\Anaconda\lib\site-packages\sklearn\metrics_classification.py:1334: Und efinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Anaconda\lib\site-packages\sklearn\metrics_classification.py:1334: Und efinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Anaconda\lib\site-packages\sklearn\metrics_classification.py:1334: Und efinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
Approved	0.00	0.00	0.00	7241
Not Approved	0.75	1.00	0.86	22222
accuracy			0.75	29463
macro avg	0.38	0.50	0.43	29463
weighted avg	0.57	0.75	0.65	29463

Confusion Matrix:

[[0 7241]

[0 22222]]

ROC AUC Score:

0.6087757266193019

In [41]:

```
# Get feature importances
   coef_abs = np.abs(logreg.coef_)
   indices = np.argsort(coef_abs)[0][::-1][:10]
   features = X_train.columns
 5
   importances = [logreg.coef_[0][i] for i in indices]
 6
 7
   # Create column chart
8
   plt.figure(figsize=(10, 5))
9
   plt.title('Top 7 Feature Importances for Logistic Regression')
   plt.bar(features[indices], importances)
11 plt.xticks(rotation=90)
   plt.xlabel('Features')
   plt.ylabel('Coefficient Values')
13
14
   plt.show()
15
```


Decision Tree

In [50]:

```
from sklearn.tree import DecisionTreeClassifier
 2
 3 # Create decision tree classifier
 4 | dt = DecisionTreeClassifier()
 6 # Fit the model on training data
 7
   dt.fit(X_train, y_train)
 8
   # Make predictions on test data
 9
10
   y pred dt = dt.predict(X test)
11
12 print('Decision Tree:')
13 print('Accuracy:', accuracy_score(y_test, y_pred))
14 print('Classification Report:')
print(classification_report(y_test, y_pred))
   print('Confusion Matrix:')
17 print(confusion_matrix(y_test, y_pred))
18 print('ROC AUC Score:')
   y_prob = dt.predict_proba(X_test)[:, 1]
   print(roc_auc_score(y_test, y_prob))
20
21
```

Decision Tree:

Accuracy: 0.9999321182500085

Classification Report:

	precision	recall	f1-score	support
Approved	1.00	1.00	1.00	7241
Not Approved	1.00	1.00	1.00	22222
accuracy			1.00	29463
macro avg	1.00	1.00	1.00	29463
weighted avg	1.00	1.00	1.00	29463

Confusion Matrix:

[[7241 0] [2 22220]] ROC AUC Score: 0.9999324993249932

In [43]:

```
# Plot feature importances
importances = dt.feature_importances_
indices = np.argsort(importances)[::-1]
features = X_train.columns

plt.figure(figsize=(10, 5))
plt.title("Top 10 Feature Importances - Decision Tree")
plt.bar(range(10), importances[indices][:10])
plt.xticks(range(10), features[indices][:10], rotation=90)
plt.show()
```



```
In [ ]:
    1 |
```

Random Forest

In [52]:

```
1 # Random Forest
 2 rf = RandomForestClassifier(random_state=42)
 3 rf.fit(X_train, y_train)
 4 y_pred = rf.predict(X_test)
   print('Random Forest:')
   print('Accuracy:', accuracy_score(y_test, y_pred))
   print('Classification Report:')
   print(classification_report(y_test, y_pred))
   print('Confusion Matrix:')
10 print(confusion_matrix(y_test, y_pred))
11 print('ROC AUC Score:')
   y_prob = rf.predict_proba(X_test)[:, 1]
13
   print(roc_auc_score(y_test, y_prob))
14
15
```

Random Forest:

Accuracy: 0.9999321182500085

Classification Report:

	precision	recall	f1-score	support
Approved	1.00	1.00	1.00	7241
Not Approved	1.00	1.00	1.00	22222
accuracy			1.00	29463
macro avg	1.00	1.00	1.00	29463
weighted avg	1.00	1.00	1.00	29463

Confusion Matrix:

[[7241 0]

[2 22220]]

ROC AUC Score:

0.9999700794549722

In [45]:

```
# Plot top 10 feature importances
importances = rf.feature_importances_
indices = np.argsort(importances)[::-1]
features = X_train.columns

top_n = 10 # Change this value to show more or fewer features
plt.figure(figsize=(10, 5))
plt.title(f"Top {top_n} Feature Importances")
plt.bar(range(top_n), importances[indices][:top_n])
plt.xticks(range(top_n), features[indices][:top_n], rotation=90)
plt.show()
```


----- CROSS VALIDATE THE MODELS ------

In [46]:

```
1
2 # create instances of the models
3 lr = LogisticRegression()
4 dt = DecisionTreeClassifier()
5 rf = RandomForestClassifier()
6
7 # define the evaluation metric and number of folds
8 metric = 'accuracy'
9 n_folds = 5
```

In [47]:

```
1
 2
    # perform cross validation and get the scores
    lr_scores = cross_val_score(lr, X, y, cv=n_folds, scoring=metric)
    dt_scores = cross_val_score(dt, X, y, cv=n_folds, scoring=metric)
 5
    rf_scores = cross_val_score(rf, X, y, cv=n_folds, scoring=metric)
    # print the mean and standard deviation of the scores
 7
    print("Logistic Regression Accuracy: {:.2f} (+/- {:.2f})".format(np.mean(lr_scores),
    print("Decision Tree Accuracy: {:.2f} (+/- {:.2f})".format(np.mean(dt_scores), np.st
    print("Random Forest Accuracy: {:.2f} (+/- {:.2f})".format(np.mean(rf scores), np.st
11
C:\Anaconda\lib\site-packages\sklearn\linear model\ logistic.py:444: Conve
rgenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown i
   https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression)
 n_iter_i = _check_optimize_result(
C:\Anaconda\lib\site-packages\sklearn\linear_model\_logistic.py:444: Conve
rgenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown i
   https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression)
 n iter i = check optimize result(
C:\Anaconda\lib\site-packages\sklearn\linear model\ logistic.py:444: Conve
rgenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown i
n:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear model.html#logisti
c-regression)
  n_iter_i = _check_optimize_result(
Logistic Regression Accuracy: 0.75 (+/- 0.00)
Decision Tree Accuracy: 1.00 (+/- 0.00)
Random Forest Accuracy: 1.00 (+/- 0.00)
```

```
In [ ]:
```

1

-----MODEL RESULT COMPARISON ------

In [53]:

```
1
 2
   # Create a dictionary to store the model names and their corresponding evaluation me
 3
   models = {
        'Logistic Regression': [accuracy_score(y_test, logreg.predict(X_test)),
 4
 5
                                roc_auc_score(y_test, logreg.predict_proba(X_test)[:, 1]
        'Decision Tree': [accuracy_score(y_test, dt.predict(X_test)),
 6
 7
                          roc_auc_score(y_test, dt.predict_proba(X_test)[:, 1])],
        'Random Forest': [accuracy_score(y_test, rf.predict(X_test)),
 8
9
                          roc_auc_score(y_test, rf.predict_proba(X_test)[:, 1])]
10
11
   }
12
13
   # Create a pandas DataFrame from the models dictionary
14
   df = pd.DataFrame(models, index=['Accuracy', 'ROC AUC Score'])
15
16
   # Print the DataFrame
   print(df)
17
18
   # Create a horizontal bar chart
19
   df.T.plot(kind='barh')
20
   plt.title('Model Comparison')
   plt.xlabel('Score')
22
   plt.legend(loc='best')
23
   plt.show()
24
25
```

Logistic Regression Decision Tree Random Forest Accuracy 0.754234 0.999898 0.999932 ROC AUC Score 0.608776 0.999932 0.999970

In [54]:

```
import pandas as pd
    from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
 2
 4
    models = ['Logistic Regression', 'Decision Tree', 'Random Forest']
 5
 6
    approve_precision_scores = [precision_score(y_test, model.predict(X_test), pos_labels
    approve_recall_scores = [recall_score(y_test, model.predict(X_test), pos_label='Approx
 7
    not_approve_precision_scores = [precision_score(y_test, model.predict(X_test), pos_1
 9
    not_approve_recall_scores = [recall_score(y_test, model.predict(X_test), pos_label='
    accuracy scores = [accuracy score(y test, model.predict(X test)) for model in [logre
11
    f1_scores = [f1_score(y_test, model.predict(X_test), pos_label='Approved') for model
12
13
    # Create a dataframe
    data = {'Model': models,
14
            'Precision - Approved': approve_precision_scores,
15
16
            'Recall - Approved': approve recall scores,
            'Precision - Not Approved': not_approve_precision_scores,
17
            'Recall - Not Approved': not_approve_recall_scores,
18
            'Accuracy': accuracy_scores,
19
20
            'F1 Score - Approved': f1_scores}
21
    df = pd.DataFrame(data)
22
    # Set the index to the model names
23
    df.set_index('Model', inplace=True)
24
25
    # Print the dataframe
26
27
    print(df)
28
C:\Anaconda\lib\site-packages\sklearn\metrics\_classification.py:1334: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 due to
no predicted samples. Use `zero_division` parameter to control this behavi
  _warn_prf(average, modifier, msg_start, len(result))
```

```
Precision - Approved Recall - Approved \
Model
Logistic Regression
                                  0.000000
                                                           0.0
Decision Tree
                                  0.999586
                                                           1.0
Random Forest
                                  0.999724
                                                           1.0
                      Precision - Not Approved Recall - Not Approved
Model
Logistic Regression
                                      0.754234
                                                              1.000000
Decision Tree
                                      1.000000
                                                              0.999865
Random Forest
                                      1.000000
                                                              0.999910
                     Accuracy F1 Score - Approved
Model
Logistic Regression 0.754234
                                           0.000000
Decision Tree
                     0.999898
                                           0.999793
Random Forest
                     0.999932
                                           0.999862
```

The table shows the evaluation metrics for three different models: Logistic Regression, Decision Tree, and Random Forest.

For Logistic Regression, it has a Precision - Approved score of 0.0 which means that it did not predict any approved loans correctly. The Recall - Approved score is also 0.0 which means that it missed all of the approved loans. On the other hand, it has a high Precision - Not Approved score of 0.754 which means that when it predicts a loan as not approved, it is usually correct. The Recall - Not Approved score is 1.0 which means that it correctly identified all of the not approved loans. The Accuracy score is 0.754 which means that overall it correctly classified only 75.4% of the loans. The F1 Score - Approved is 0.0 because there were no true positive predictions for approved loans.

For Decision Tree, it has a high Precision - Approved score of 0.999 which means that when it predicts a loan as approved, it is usually correct. The Recall - Approved score is 1.0 which means that it correctly identified all of the approved loans. It also has a high Precision - Not Approved score of 1.0 which means that when it predicts a loan as not approved, it is usually correct. The Recall - Not Approved score is 0.999 which means that it missed only 0.1% of the not approved loans. The Accuracy score is 0.999 which means that overall it correctly classified 99.9% of the loans. The F1 Score - Approved is 0.999 because it has high precision and recall for approved loans.

For Random Forest, it has a high Precision - Approved score of 0.999 which means that when it predicts a loan as approved, it is usually correct. The Recall - Approved score is 1.0 which means that it correctly identified all of the approved loans. It also has a high Precision - Not Approved score of 1.0 which means that when it predicts a loan as not approved, it is usually correct. The Recall - Not Approved score is 0.999 which means that it missed only 0.09% of the not approved loans. The Accuracy score is 0.999 which means that overall it correctly classified 99.9% of the loans. The F1 Score - Approved is 0.999 because it has high precision and recall for approved loans.

In summary, based on these evaluation metrics, the Decision Tree and Random Forest models performed

In	. 1:	
1		
In]:	
1		