Q1 Data pretreatment

The dataset we use is from GEO data base. Expression level for each sample can be seen from website. From this figure, we can know that normalization has been done, since the mean level of expression of all sample is at the same level. You can also perform log2 transformation to each sample. Calculate mean of each sample, divide all values by its sample mean and take log2 transformation. This is used to remove the bias of extremely large value. In this project, I select DEG use origin expression value from dataset and use both origin value and log2 transfored data when clustering.

Differential expressed genes selection

In this question, I use both biological and statistical methods to select differential expressed genes (DEGs). I use log2 fold change to select genes between -1 and 1. I use t-test and perform BH adjustment to P value, select significantly differential genes with adjust p value smaller than 0.05. Program is enclosed in another python file.

You can see this figure intuitionally: 36 differential expression genes are selected out on both up corner of the figure. Genes in the red circle are up regulated genes and genes in the blue circle are down regulated genes.

In order to compare different statistical methods, I also select differential expression genes according to non-adjust P values. Since the criteria becomes looser, 138 DEGs

are selected out. Blue points on left up corner of the figure represent down regulated DEGs and red points on right up corner of the figure represent up regulated DEGs.

Functional enrichment analysis results based on DEGs

After loading DEG gene list to DAVID and download functional enrichment results data, I selected several functions or pathway with FDR adjusted P value lower than 0.05 or functions with more DEGs involved.

Based on DEGs selected from BH adjust P value and FC

Compared to databases such as UP_KEYWORDS, GOTERM_BP_DIRECT,

KEGG_PATHWAY, and GOTERM_MF_DIRECT, These DEGs are related to oxidoreductase, oxidoreductase activity, NADP, oxidation-reduction process, metabolism of xenobiotics by cytochrome P450, and cytoplasm.

UP KEYWORDS	oxidoreductase	Enzyme that catalyzes the
_		oxidation of one compound
		with the reduction of
		another.
GOTERM_BP_DIRECT	Oxidation-reduction	A metabolic process that
	process	results in the removal or
		addition of one or more
		electrons to or from a
		substance, with or without
		the concomitant removal or
		addition of a proton or
		protons
KEGG_PATHWAY	metabolism of	Relate to several oxidation-
	xenobiotics by	reduction enzymes such as
	cytochrome P450	alcohol dehydrogenase,
		carbonyl reductase, aldo-
		keto reductase, UDP
		gluronosyltrasferase
UP_KEYWORDS	NADP	NADP serves as an electron
		carrier by being alternately
		oxidized (NADP+) and
		reduced (NADPH)
UP_KEYWORDS	cytoplasm	three-dimensional, jelly-like
		lattice, and it interconnects
		and supports the other solid
		structures.

These results suggest that smoke affect oxidation-reduction process by affecting enzyme activity and substrates. It may also affect function or component of cytoplasm.

Based on DEGs selected from non-adjust P value and FC

All results from previous section are found significantly important this time. What's more, lung cancer is found to have a correlation with these genes. Smoke may affect people's health through affecting their oxidation-reduction metabolism. Detailed information is attached in files.

O2

Clustering results

In this section, I separate samples and genes into different number of clusters based on hierarchical and non-hierarchical (K-means) methods. The tool I used to do this is Morpheus, and its website is: https://software.broadinstitute.org/morpheus/. When doing the hierarchical clustering, Pearson correlation with average linkage method is used to calculate distance between vectors. When doing k-means clustering, Person correlation is also used to calculate distance between vectors.

To test whether log2 pre-treatment of data will enhance the clustering results. I select data both from log2 treatment datasheet and original datasheet. Log2 pretreatment details(I have mentioned at the beginning of this report) are: calculate mean expression value of each sample, divide each value in the sample by the average level, take log2 transformation of the ratio and output new datasheet. This method is supported to decrease bad effects from extremely large value to the results, which may lead to bias when calculating distances.

Comparation of clustering results of data with log2 pretreatment and without log2 pretreatment

According to the previous figure, data with log 2 transformation have been clustered perfectly to smoke samples and non-smoke samples. However, there are problems with clustering results from data without log2 pretreatment.

Pearson correlation method to calculate distance may not be suitable for this condition, thus I try Euclidean to calculated distance and do clustering to DEG data without pretreatment again as following. You can see that, although it seems better than using Pearson correlation methods, one sample 'GSM101111', which is supposed to be classified into smoke samples, is clustered into non-smoke samples.

Thus, we can conclude that log2 transformation pretreatment of data can remove bias of extreme value and enhance the clustering performance. We can also conclude from results that there is something different with sample 'GSM101111'. Its gene expression pattern is not as significant as other samples in smoke cluster. I guess that this people may just start smoke not for a long time or under other conditions that different from other smoke samples. The age of sample 'GSM10111' is 37 years old, which is the youngest among smokers, and this may provide explanation of the differences.

											Columns 🕶
non-smoke	GSM101098	small airways, non-smoker 003, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					37	F	black	non-smoker
non-smoke	GSM101099	small airways, non-smoker 013, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing	45	M	hispanic	non-smoker				
non-smoke	GSM101100	small airways, non-smoker 006, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					47	M	black	non-smoker
non-smoke	GSM101101	small airways, non-smoker 021, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					38	M	hispanic	non-smoker
non-smoke	GSM101102	small airways, non-smoker 019, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					49	F	white	non-smoker
non-smoke	GSM101103	small airways, non-smoker 014, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					45	M	white	non-smoker
non-smoke	GSM101104	small airways, non-smoker 008, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					36	M	white	non-smoker
non-smoke	GSM101105	small airways, non-smoker 015, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					38	M	black	non-smoker
non-smoke	GSM101106	small airways, non-smoker 005, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					35	М	black	non-smoker
smoke	GSM101107	small airways, smoker 002, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					46	M	white	smoker, 21 pack-years
smoke	GSM101108	small airways, smoker 003, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing	40	F	black	smoker, 25 pack-years				
smoke	GSM101109	small airways, smoker 027, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing	44	M	white	smoker, 45 pack-years				
smoke	GSM101110	small airways, smoker 033, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing	43	M	white	smoker, 15 pack-years				
smoke	GSM101111	small airways, smoker 001, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					37	F	black	smoker, 23 pack-years
smoke	GSM101112	small airways, smoker 023, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing	41	M	black	smoker, 20 pack-years				
smoke	GSM101113	small airways, smoker 048, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					45	М	black	smoker, 28 pack-years
smoke	GSM101114	small airways, smoker 041, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					48	М	white	smoker, 20 pack-years
smoke	GSM101115	small airways, smoker 044, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					50	М	white	smoker, 38 pack-years
smoke	GSM101116	small airways, smoker 049, RMA and MAS	airway epithelial cells obtained by bronchoscopy and brushing					46	F	black	smoker, 23 pack-years

Expression pattern of DEGs selected from non-adjusted P value seems not as pure as that selected from adjust P value. But generally speaking, the clustering results based on both genes and samples are good. According to the figure, you can see that sample 'GSM101111', 'GSM101108', 'GSM101106' have different expression pattern compared to other samples in smoke group. Expression level of several genes, which is supposed to be up regulated in smoke group, is down regulated or not such obviously up regulated. This suggest that sample 'GSM101111', 'GSM101108' and 'GSM101106' should be further learned and discussed, especially 'GSM101111'. One guess is that they just start smoke not for a long time. After looking at these three sample, I found that all of them are black women smoker. This may affect their gene expression level.

Functional enrichment analysis results in David based on clusters Adj-log

Up regulated genes function:

UP_KEYWORDS	Oxidoreductase
GOTERM_BP_DIRECT	GO:0055114~oxidation-reduction process
KEGG_PATHWAY	hsa00980: Metabolism of xenobiotics by cytochrome P450
UP_KEYWORDS	NADP
	GO:0016655~oxidoreductase activity, acting on NAD(P)H, quinone or
GOTERM_MF_DIRECT	similar compound as acceptor
UP_SEQ_FEATURE	nucleotide phosphate-binding region: NADP
UP_KEYWORDS	Cytoplasm
KEGG_PATHWAY	hsa05204: Chemical carcinogenesis
GOTERM_MF_DIRECT	GO:0016491~oxidoreductase activity
GOTERM_BP_DIRECT	GO:0030855~epithelial cell differentiation
GOTERM_BP_DIRECT	GO:0006805~xenobiotic metabolic process
KEGG_PATHWAY	hsa00140: Steroid hormone biosynthesis
KEGG_PATHWAY	hsa00982: Drug metabolism - cytochrome P450
INTERPRO	IPR016040: NAD(P)-binding domain

7 of 14 important functions are related to oxidation-reduction process, such as activity of oxidase, NADP, binding domain and so on. Which suggests that smoke may up regulated certain genes that increase oxidation-reduction reaction activity.

Another very important enzyme that these genes associated are Cytochromes. P450 (CYPs) are a family of enzymes containing heme as a cofactor that function as monooxygenases. It relates to oxidation and it also affect drug metabolism. 'Cytochrome P450 (CYP) is a hemeprotein that plays a key role in the metabolism of drugs and other xenobiotics. Drug metabolism is achieved through phase I reactions, phase II reactions, or both. The most common phase I reaction is oxidation, which is catalyzed by the CYP system.' According to chemical carcinogenesis and drug metabolism in KEGG_PATHWAY, Cytochrome P450 is also highly related to several cancers such as Bladder cancer, skin cancer, lung cancer gastric cancer, liver cancer and so on. In conclusion, up regulated genes relate to cytochromes P450. These enzymes affect drug metabolism and participate in oxidoreductase.

These genes also relate to epithelial cell differentiation and steroid hormone biosynthesis.

Down regulated genes

GOTERM_BP_DIRECT	GO:0030111~regulation of Wnt signaling pathway
GOTERM_MF_DIRECT	GO:0005178~integrin binding
KEGG_PATHWAY	hsa01100: Metabolic pathways

This is result from DAVID of down regulated genes. However, P value is not small enough to give significant conclusion.

In conclusion, up regulated genes in smoke sample have major affections on patients. These genes effects oxidation-reduction process, effects drug metabolism and may lead to cancers. Among those cancers, lung cancer and breast cancer are the most possible ones that may occur according to database GAD_DISEASE. Down regulated genes may affect some signaling pathway, but the statistical meaning is not so significant.

Nonadj_origin

Up regulated genes functions

The functions are statistical significant based on FDR adjust P value.

GAD_DISEASE UP_SEQ_FEATURE INTERPRO IPR023210: NADP-depende GO:0016655~oxidoreductas GOTERM_MF_DIRECT GO:0016491~oxidoreductas	The functions are statistical significant based on FDR adjust P value.			
GOTERM_BP_DIRECT GO:0055114~oxidation-red UP_KEYWORDS NADP KEGG_PATHWAY hsa00980: Metabolism of xe GAD_DISEASE Lung Cancer UP_SEQ_FEATURE nucleotide phosphate-bindir INTERPRO IPR023210: NADP-depende GO:0016655~oxidoreductas GOTERM_MF_DIRECT similar compound as accept GOTERM_MF_DIRECT GO:0016491~oxidoreductas				
UP_KEYWORDS NADP KEGG_PATHWAY hsa00980: Metabolism of xe GAD_DISEASE Lung Cancer UP_SEQ_FEATURE nucleotide phosphate-bindir INTERPRO IPR023210: NADP-depende GO:0016655~oxidoreductas GOTERM_MF_DIRECT similar compound as accept GOTERM_MF_DIRECT GO:0016491~oxidoreductas				
KEGG_PATHWAY hsa00980: Metabolism of xell GAD_DISEASE Lung Cancer UP_SEQ_FEATURE nucleotide phosphate-bindir INTERPRO IPR023210: NADP-depende GO:0016655~oxidoreductas similar compound as accept GOTERM_MF_DIRECT GO:0016491~oxidoreductas	action process			
GAD_DISEASE UP_SEQ_FEATURE INTERPRO IPR023210: NADP-depende GO:0016655~oxidoreductas GOTERM_MF_DIRECT GO:0016491~oxidoreductas				
UP_SEQ_FEATURE nucleotide phosphate-bindir INTERPRO IPR023210: NADP-depende GO:0016655~oxidoreductas GOTERM_MF_DIRECT similar compound as accept GOTERM_MF_DIRECT GO:0016491~oxidoreductas	enobiotics by cytochrome P450			
INTERPRO IPR023210: NADP-depender GO:0016655~oxidoreductas similar compound as accept GOTERM_MF_DIRECT GO:0016491~oxidoreductas				
GO:0016655~oxidoreductas GOTERM_MF_DIRECT similar compound as accept GOTERM_MF_DIRECT GO:0016491~oxidoreductas	g region: NADP			
GOTERM_MF_DIRECT similar compound as accept GOTERM_MF_DIRECT GO:0016491~oxidoreductas	ent oxidoreductase domain			
GOTERM_MF_DIRECT GO:0016491~oxidoreductas	e activity, acting on NAD(P)H, quinone or			
	or			
COTEDM DD DIDECT CO 0044500 1 1::	e activity			
GOTERM_BP_DIRECT GO:0044598~doxorubicin r	netabolic process			
GOTERM_BP_DIRECT GO:0044597~daunorubicin	metabolic process			
GAD_DISEASE breast cancer				
INTERPRO IPR020471: Aldo/keto redu	ctase subgroup			
INTERPRO IPR018170: Aldo/keto redu	ctase, conserved site			
KEGG_PATHWAY hsa00140: Steroid hormone	biosynthesis			
UP_SEQ_FEATURE site: Lowers pKa of active s	ite Tyr			
GOTERM_BP_DIRECT GO:0008202~steroid metab	olic process			
INTERPRO IPR001395: Aldo/keto redu	ctase			
KEGG_PATHWAY hsa05204: Chemical carcino	genesis			
GOTERM_MF_DIRECT GO:0047086~ketosteroid m	onooxygenase activity			
GOTERM_MF_DIRECT GO:0047718~indanol dehyd	lrogenase activity			
GAD_DISEASE Adenoma Colorectal Neopl	asms			
PIR_SUPERFAMILY PIRSF000097: aldo-keto red	luctase			
GAD_DISEASE bladder cancer leukemia, m	veloid lung cancer			
GO:0047115~trans-1,2-dihy	drobenzene-1,2-diol dehydrogenase			
GOTERM_MF_DIRECT activity				
GOTERM_MF_DIRECT GO:0018636~phenanthrene	9,10-monooxygenase activity			
GOTERM_BP_DIRECT GO:0071395~cellular respo				
GOTERM_BP_DIRECT GO:0007584~response to no	nse to jasmonic acid stimulus			
UP_KEYWORDS Monooxygenase				
UP_SEQ_FEATURE binding site: Substrate				

GAD_DISEASE	chronic obstructive pulmonary disease
KEGG_PATHWAY	hsa01100: Metabolic pathways

Compared to results selected from adjusted P value, without adjusting, more detailed information present. Instead of generally affecting oxidation-reduction process, specific oxidation type can be figured out. Besides, some domain and residues related to oxidation-reduction reaction are specifically found out. Most functions are consistent with previous results. Something new is that it relates to some other metabolic process, such as doxorubicin metabolic process and daunorubicin metabolic process, it also related to cell signaling such as cellular response to jasmonic acid stimulus and response to nutrient.

Down regulated gene functions

GOTERM_CC_DIRECT	GO:0009986~cell surface
UP_SEQ_FEATURE	signal peptide

Cell surface means the external part of the cell wall and/or plasma membrane. Note that this term is intended to annotate gene products that are attached (integrated or loosely bound) to the plasma membrane or cell wall. Considering about another feature related to signal peptide, down regulated genes may relate to cell signaling, including target recognition and response.

Combine results from both down regulated genes and up regulated genes, down regulated genes have less effects on samples. Cell signaling function of down regulated genes are also include in up regulated genes.

principle component analysis using only DEGs

These four figures are PCA results of different combination methods of selecting DEGs that I mentioned before. The first figure use origin value and non-adjusted P to select DEGs. You can see that sample GSM10111 (in red circle) is very close to non-

smoke group. Use of adjust P value to selct DEG does not enhance clustering performance significantly as you can see in figure 2. Normalize data through doing log2 transformation helps separate GSM10111 from non-smoke group a lot. And use of both log2 normalization and adjust P value give the best clustering results. Thus, if you want to detect whether a sample belong to smokers or non-smokers, select gene features through BH adjusted P value and pre-treat data with log2 transformation may give the best prediction.

Principle component analysis using all genes

Conclusion from this figure is that PCA cannot separate smokers from non-smokers into two clusters based on all genes.

Finally, thanks a lot to the help of teaching assistances and my classmates!!!