Contents

Chapter 1 Introduction	l
Chapter 2 First-Seen-SYN Filter	5
2.1 SYN Flood	5
2.2 Defending Mechanisms	7
2.3 Design and Implementation of FSS Filter	10
2.4 Analysis of FSS Filter	13
2.5 Experiments over FSS Filter	16
Chapter 3 TCP Ambiguity Scrubber Engine	21
3.1 Evasion Technique against TCP Protocol	
3.2 Related Works in Segment Reassembly	23
3.3 The Design and Implementation of the Ambiguity Scrubber Engine	25
3.4 Experiments over the TCP Scrubber Engine	30
Chapter 4 FNP: A Pattern Matching Algorithm for Network Processor Platforms	34
4.1 Introductions on NIDSes and NPUs	34
4.2 Previous Pattern Matching Algorithms in NIDS	37
4.3 Design and Implementation of FNP	40
4.4 Analysis of FNP	49
4.5 Experiments over FNP	51
4.6. Summaries of FNP	60
Chapter 5 FNP ² : A MWM-like Pattern Matching Algorithm	62
5.1 Introduction of FNP ²	62
5.2 Design/Implementation of FNP ²	62
5.3 Experiments over FNP ²	64
5.4 Summaries of FNP ²	66

Chapter 6	FTSE: The FNP-Like TCAM Searching Engine	67
6.1 In	troduction	67
6.2 FT	ΓSE Algorithm	68
6.3 Pr	oposed Multiple-Pattern Matching Architecture	70
6.4 Ex	xperiments of FTSE	73
Chapter 7	Conclusions	78

List of Figures

Figure 1. (a) TCP Three-Way Handshaking and (b) Spoofed SYN attack	6
Figure 2. (a) SYN Proxy and (b) Semi-Transparent Gateway	8
Figure 3. The processing flow of the FSS filter.	12
Figure 4. FSS filter co-works with Semi-Transparent Gateway	13
Figure 5. Semi-Transparent Gateway works alone.	16
Figure 6. Test environment of FSS Filter	17
Figure 7. (a) Pattern occurs in packet boundary and (b) packet comes out of order.	22
Figure 8. Attackers try to evade the NIDS by retransmitting different data	22
Figure 9. The processing flow of the TCP Ambiguity Scrubber Engine	26
Figure 10. Proposed TCP state transition diagram	27
Figure 11. The flow of reassembly process	28
Figure 12. Processing flow for favour-new and favour-old systems	29
Figure 13. The setup of the experiments over the TCP Scrubber Engine	30
Figure 14. <i>PSW</i> Movement	42
Figure 15. An Example of the RST and RHT.	46
Figure 16. Distribution of pattern length in the current Snort ruleset	50
Figure 17. Number of memory accesses during pattern matching processing	53
Figure 18. Completion time comparison using a cache-disabled PC	54
Figure 19. The performance of the FNP algorithm with different packet lengths	58
Figure 20. Completion time comparison by using general PC with cache turned on	59
Figure 21. An example of the construction of <i>SDT</i>	64
Figure 22. Number of memory accesses during pattern matching processing	65
Figure 23. An example of signature layout in FTSE TCAM	68
Figure 24. An example of the PSW movement	69

Figure 25. The hardware architecture of FTSE	70
Figure 26. The lookup latency could be hidden by pipelined processing	72
Figure 27. Using port group to enhance throughput.	73

List of Tables

Table I. Attacking tool's list in the FSS Filter experiment	17
Table II. Test items in NSS TCP Segment Evasion.	31
Table III. Test items in OSEC TCP Segment Evasion.	32
Table IV. Scalability test for the FNP algorithm with randomly generated rulesets	55
Table V. The matched event rarely happens in our experiments	.74
Table VI. The number of shift bytes are greater than 7 in over 80% cases	75
Table VII. The accuracy of the pre-filter is more than 90% in our experiment	76

