

Machine Learning Homework 08

Author: Jesus Arturo Sol Navarro

1 Problem 3

a) Assume that the optimal W_{NN}^* you obtain are non-negative. What will the relation $(<, \leq, =, \geq, >)$ between the neural network loss $L_{NN}(W_{NN}^*)$ and the linear regression loss $L_{LS}(w_{LS}^*)$ be? Provide a mathematical argument to justify your answer.

The neural network can be defined

$$f_W(x_n) = W_{(L+1)}^T ReLu(W_{(L)}^T \cdots ReLu(W_{(1)}^T x_n)) .$$

Since
$$x_n \ge$$
, $ReLu = x$
 $f_W(x_n) = W_{(L+1)}^T \cdot W_{(L)}^T \cdots W_{(1)}^T x_n$.

Since W_{NN}^* and W_{LS}^* are global minimum of $\arg\min_W \mathcal{L}_{\mathrm{NN}}(W)$ and $\arg\min_W \mathcal{L}_{\mathrm{LS}}(W)$, we have $\mathcal{L}_{\mathrm{NN}}(W_{\mathrm{NN}}^*) \leq \mathcal{L}_{\mathrm{LS}}(W_{\mathrm{LS}}^*)$.

$$\mathcal{L}_{\text{NN}}(W_{\text{NN}}^*) = \mathcal{L}_{\text{LS}}(W_{\text{LS}}^*) \text{ if } W_1^\top, \dots, W_L^\top = I, \ W_{L+1}^\top = W$$

- b) In contrast to a), now assume that the optimal weights w_{LS}^* you obtain are non-negative. What will the relation $(<, \leq, =, \geq, >)$ between the linear regression loss $L_{LS}(w_{LS}^*)$ and the neural network loss $L_{NN}(W_{NN}^*)$ be? Provide a mathematical argument to justify your answer.
 - a) shows that linear regression is a special case of the neural network,

for $W_{LS}^* \ge 0$, $\mathcal{L}_{NN}(W_{NN}^*) \le \mathcal{L}_{LS}(W_{LS}^*)$ since the neural network can potentially find a better solution.