Babylonian Method

Mr. merrick · September 27, 2025

The Babylonian Method

$$x_1 = \frac{1}{2} \left(x_0 + \frac{a}{x_0} \right), \quad a > 0, \ x_0 > 0.$$

This is the Babylonian/Heron update for approximating \sqrt{a} .

Tiny history. The method goes back to ancient Babylon and appears in Heron's Metrica (1st century AD). It is the special case of Newton's method for $f(x) = x^2 - a$.

How it Works

Core identity:

$$\sqrt{a}\left(\frac{\sqrt{a}}{x_0}\right) = \frac{a}{x_0}.$$

Hence \sqrt{a} always lies strictly between x_0 and $\frac{a}{x_0}$. The update x_1 is their midpoint, so it moves closer to \sqrt{a} regardless of whether x_0 starts above or below.

Case 1: $x_0 > \sqrt{a} \left(\frac{\sqrt{a}}{x_0} < 1 \Rightarrow \frac{a}{x_0} < \sqrt{a} < x_0 \right)$

Case 2: $0 < x_0 < \sqrt{a} \quad (\frac{\sqrt{a}}{x_0} > 1 \Rightarrow x_0 < \sqrt{a} < \frac{a}{x_0})$

Example: Approximating $\sqrt{10}$

Start above: $x_0 = 4$

Start below:
$$x_0 = 3$$

$$x_1 = \frac{1}{2} \left(4 + \frac{10}{4} \right) = 3.25,$$

$$x_1 = \frac{1}{2} \left(3 + \frac{10}{3} \right) = \frac{19}{6} \approx 3.1666667,$$

$$x_2 = \frac{1}{2} \left(3.25 + \frac{10}{3.25} \right) = 3.1634615 \dots,$$

$$x_2 = \frac{1}{2} \left(\frac{19}{6} + \frac{10}{19/6} \right) \approx 3.1622807,$$

$$x_2 = \frac{1}{2} \left(3.25 + \frac{10}{3.25} \right) = 3.1634615 \dots,$$
 $x_2 = \frac{1}{2} \left(\frac{19}{6} + \frac{10}{19/6} \right) \approx 3.1622807,$ $x_3 = \frac{1}{2} \left(3.1634615 \dots + \frac{10}{3.1634615 \dots} \right) \approx 3.1622779.$ $x_3 = \frac{1}{2} \left(3.1622807 + \frac{10}{3.1622807} \right) \approx 3.16227766.$

$$x_3 = \frac{1}{2} \left(3.1622807 + \frac{10}{3.1622807} \right) \approx 3.16227766.$$

$$\sqrt{10} \approx 3.16227766$$

Tip (digit-stability). If two consecutive iterates agree to k decimal places (i.e., round_k (x_n) = round_k (x_{n+1})), then those k decimals are correct for \sqrt{a} .

Practice: 2-Decimal Approximations

Directions. For each item, approximate \sqrt{a} to 2 decimal places starting from the given x_0 using

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

Compute x_1 and x_2 . If they already agree to 2 decimals, you're done (digit-stability tip).

1.
$$a = 2$$
, $x_0 = 1$

$$x_1 = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2} = 1.500000,$$

 $x_2 = \frac{1}{2} \left(1.5 + \frac{2}{1.5} \right) = \frac{1}{2} (1.5 + 1.\overline{3}) = 1.416666...,$
 $\sqrt{2} \approx 1.41$ (to 2 d.p.; x_1 and x_2 agree to 2 d.p.).

2.
$$a = 3$$
, $x_0 = 1.5$

$$x_1 = \frac{1}{2} \left(1.5 + \frac{3}{1.5} \right) = \frac{1}{2} (1.5 + 2) = 1.75,$$

 $x_2 = \frac{1}{2} \left(1.75 + \frac{3}{1.75} \right) = \frac{1}{2} (1.75 + 1.714285...) = 1.732142...,$
 $\sqrt{3} \approx 1.73$ (to 2 d.p.).

3.
$$a = 5$$
, $x_0 = 2$

$$x_1 = \frac{1}{2}(2 + \frac{5}{2}) = \frac{1}{2}(2 + 2.5) = 2.25,$$

 $x_2 = \frac{1}{2}(2.25 + \frac{5}{2.25}) = \frac{1}{2}(2.25 + 2.222222...) = 2.236111...,$
 $\sqrt{5} \approx 2.24$ (to 2 d.p.).

4.
$$a = 12$$
, $x_0 = 3.5$

$$x_1 = \frac{1}{2} \left(3.5 + \frac{12}{3.5} \right) = \frac{1}{2} (3.5 + 3.428571...) = 3.464285...,$$

 $x_2 = \frac{1}{2} \left(3.464285... + \frac{12}{3.464285...} \right) \approx \frac{1}{2} (3.4642857 + 3.4639189) = 3.464102...,$
 $\sqrt{12} \approx 3.46 \text{ (to 2 d.p.)}.$

5.
$$a = 50$$
, $x_0 = 7$

$$x_1 = \frac{1}{2} \left(7 + \frac{50}{7} \right) = \frac{1}{2} (7 + 7.142857...) = 7.071428...,$$

 $x_2 = \frac{1}{2} \left(7.071428... + \frac{50}{7.071428...} \right) \approx \frac{1}{2} (7.0714286 + 7.0710679) = 7.071248...,$
 $\sqrt{50} \approx 7.07 \text{ (to 2 d.p.)}.$