Lecture 12: Covariance, Correlation, Orthogonality and Independence

CPE251 Probability Methods in Engineering

Dr. Zaid Ahmad, SMIEEE Advisor IEEE CUI Lahore COMSATS University Islamabad, Lahore Campus

1

Covariance

Discrete Case	Continuous Case		
$\sigma_{XY} = COV[X, Y]$ $= E[(X - \mu_X)(Y - \mu_Y)]$ $= \sum_{X} \sum_{Y} (x - \mu_X)(Y - \mu_Y) p_{X,Y}(x, y)$	$\sigma_{XY} = COV[X, Y]$ $= E[(X - \mu_X)(Y - \mu_Y)]$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(Y - \mu_Y) f_{X,Y}(x, y) dxdy$		

Covariance

Positive Covariance: large $X \to \text{large } Y$ or small $X \to \text{small } Y$ Negative Covariance: large $X \to \text{small } Y$ or small $X \to \text{large } Y$

3

Correlation

The correlation of X and Y is $r_{X,Y} = E[XY]$

Theorems

For any two random variables X and Y, E[X + Y] = E[X] + E[Y].

$$Cov[X, Y] = r_{X,Y} - \mu_X \mu_Y.$$

$$\mathrm{Var}[X+Y] = \mathrm{Var}[X] + \mathrm{Var}[Y] + 2\,\mathrm{Cov}[X,Y]\,.$$

$$\label{eq:cov} \mathit{If} \; X = Y, \; \mathrm{Cov}[X,Y] = \mathrm{Var}[X] = \mathrm{Var}[Y] \; \mathit{and} \; r_{X,Y} = \mathrm{E}[X^2] = \mathrm{E}[Y^2].$$

Example

Find $r_{X,Y}$ and $\operatorname{Cov}[X,Y]$ when the probability model for X and Y is given by the following matrix.

$P_{X,Y}(x,y)$	y = 0	y = 1	y = 2	$P_X(x)$
x = 0	0.01	0	0	0.01
x = 1	0.09	0.09	0	0.18
x = 2	0	0	0.81	0.81
$P_Y(y)$	0.10	0.09	0.81	

5

Orthogonal vs Uncorrelated Random Variables

Orthogonal Random Variables

Random variables X and Y are **orthogonal** if $r_{X,Y} = 0$.

Uncorrelated Random Variables

Random variables X and Y are uncorrelated if Cov[X, Y] = 0.

Correlation Coefficient

The correlation coefficient of two random variables X and Y is

$$\rho_{X,Y} = \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y}.$$

$$-1 \le \rho_{X,Y} \le 1$$

If X and Y are random variables such that Y = aX + b,

$$\rho_{X,Y} = \begin{cases} -1 & a < 0, \\ 0 & a = 0, \\ 1 & a > 0. \end{cases}$$

7

Correlation Coefficient

When $\rho_{X,Y} > 0$, we say that X and Y are positively correlated, and when $\rho_{X,Y} < 0$ we say X and Y are negatively correlated. If $|\rho_{X,Y}|$ is close to 1, say $|\rho_{X,Y}| \geq 0.9$, then X and Y are highly correlated. Note that high correlation can be positive or negative.

Independent Random Variable

Random variables X and Y are independent if and only if

Discrete: $P_{X,Y}(x,y) = P_X(x) P_Y(y)$;

Continuous: $f_{X,Y}(x,y) = f_X(x) f_Y(y)$.

9

Properties of Independent Random Variables

For independent random variables X and Y,

$$\mathrm{E}[g(X)h(Y)] = \mathrm{E}[g(X)]\mathrm{E}[h(Y)],$$

$$r_{X,Y} = E[XY] = E[X] E[Y],$$

$$Cov[X, Y] = \rho_{X,Y} = 0,$$

$$\mathrm{Var}[X+Y] = \mathrm{Var}[X] + \mathrm{Var}[Y],$$

Example

The random variables X and Y have joint PMF

- (c) The correlation, $r_{X,Y} = E[XY]$,
- (d) The covariance, Cov[X, Y],
- (e) The correlation coefficient, $\rho_{X,Y}$.

Find

- (a) The expected values E[X] and E[Y],
- (b) The variances Var[X] and Var[Y],

11

References

- 1. Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K. (2007) *Probability & Statistics for Engineers & Scientists*. 9th Edition, Pearson Education, Inc.
- 2. Leon-Garcia, A. (2008). *Probability, Statistics, and Random Processes for Electrical Engineering*. 3rd Edition, Pearson/Prentice Hall.