Parsing LR(0) Grammars

Parsing LR(0)

- Our goal is now to build a deterministic parser automaton for an LR(0) grammar that can very efficiently decide which actions (reduce or shift) it has to do to parse a given input
- For this, we will first build the goto-automaton (usually called the goto function). This automaton will later help us to build the parser automaton

Constructing the goto-automaton

- Example grammar: $S' \to S$ $S \to B \mid C$ $B \to aB \mid b$ $C \to aC \mid c$
- The states of the goto-automaton tells us how far we have progressed in parsing the right-hand sides of rules
- In the initial state, we have not read anything so far (i.e., ε). Therefore, we are just at the beginning of the right-hand side of $S' \to S$. We write that as

$$[S' \rightarrow \cdot S]$$

This special notation is called an *item*

■ Since S can be expanded to B and C (and those to aB and b and aC and c) without reading any input, we also include those in the initial state:

$$\{[S' \rightarrow S], [S \rightarrow B], [S \rightarrow C], [B \rightarrow B], [B \rightarrow B], [C \rightarrow C], [C \rightarrow C]\}$$

■ The set $\{[S' \to c], [S \to B], [S \to C], [B \to aB], [B \to b], [C \to aC], [C \to c]\}$ is called the LR(0) item set of ε , written as $LR(0)(\varepsilon)$

Constructing the goto-automaton, part 2

- Example grammar: $S' \rightarrow S$ $S \rightarrow B \mid C$ $B \rightarrow aB \mid b$ $C \rightarrow aC \mid c$
- The goto-automaton reads terminal and non-terminal symbols
- Reading the non-terminal symbol C moves the automaton to a new state

Again, the dot · indicates how far we have progressed in reading the right-hand side

$$LR(0)(\varepsilon) = \begin{cases} [S' \to \cdot S], [S \to \cdot B], \\ [S \to \cdot C], [B \to \cdot aB], \\ [B \to \cdot b], [C \to \cdot aC], \end{cases} \longrightarrow \{[S \to C \cdot]\}$$

■ The set $\{[S \to C \cdot]\}$ is the LR(0) item set of C, written as LR(0)(C)

Constructing the goto-automaton, part 3

Example grammar: $S' \to S$ $S \to B \mid C$ $B \to aB \mid b$ $C \to aC \mid c$

$$S' \to S$$

$$B \to aB \mid b$$

$$S \to B \mid C$$

$$C \to aC \mid C$$

We build the states for all possible inputs from the initial state

Again, we expand the first non-terminal following the dot ·

Constructing the goto-automaton, part 4

- We continue adding transitions and states until we are done
- Not shown in this picture: any other input γ will lead to a state $LR(0)(\gamma) = \{\}$

Item sets

- Formal definition of the *item set*: Given $G = < \Sigma, N, P, S >$ and a derivation $S \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$, $[A \rightarrow \beta_1 \cdot \beta_2]$ is in $LR(0)(\alpha \beta_1)$
- It can be proved (not in this course) that for an LR(0) grammar it always hold:
 - The set $LR(0)(\gamma)$ for any $\gamma \in X^*$ is always finite
 - The set $LR(0)(G) = \{LR(0)(\gamma) \mid \gamma \in X^*\}$ is always finite

This means that the goto-automaton has a finite number of states and each state is a finite item set

From the goto-automaton to a parser automaton

- As already said, the goto-automaton will help us to build a deterministic parser automaton for LR(0)
- Here is the idea:
 - An item like $[B \to aB \cdot]$ tells us that we are "ready for reduction" to B because all the symbols on the right-hand side of the rule have been parsed
 - An item like $[A \rightarrow \alpha_1 \cdot B\alpha_2]$ tells us that more input (shift or ε -reduction) is needed before a reduction to A can be done

Conflicts

- It can happen that we have conflicting information in the item sets:
 - If an item set contains two items $[A \to \alpha \cdot]$ and $[B \to \beta \cdot]$ then we have a **reduce/reduce** conflict
 - If an item set contains two items $[A \to \alpha_1 \cdot a\alpha_2]$ and $[B \to \beta \cdot]$ then we have a **shift/reduce** conflict
- Important lemma: A grammar G is LR(0) if and only if no item set in LR(0)(G) contains conflicting items

Example for Shift-Reduce Conflict

■ Grammar:
$$S' \rightarrow S$$

 $S \rightarrow aA$
 $A \rightarrow S \mid \varepsilon$

lacktriangle Note that this grammar is unambiguous and LL(1) !

$$LR(0)(S) = \{[S' \to S \cdot]\}$$

$$\downarrow S$$

$$LR(0)(\varepsilon) = \{[S' \to \cdot S], [S \to \cdot aA]\}$$

$$\downarrow a$$

$$LR(0)(a) = \{[S \to a \cdot A], [A \to \cdot S], [A \to \cdot], [S \to \cdot aA]\}$$

$$\downarrow aA$$

$$LR(0)(aA) = \{[S \to aA \cdot]\}$$

Example for Reduce-Reduce Conflict

■ Grammar:
$$S' \rightarrow S$$

 $S \rightarrow Aa \mid Bb$
 $A \rightarrow a$
 $B \rightarrow a$

- Note that this grammar is unambiguous (but not LL(1))
- $\blacksquare LR(0)(\varepsilon) = \{ [S' \to S], [S \to Aa], [S \to Bb], [A \to a], [B \to a] \}$
- $\blacksquare LR(0)(a) = \{ [A \rightarrow a \cdot], [B \rightarrow a \cdot] \}$

Conflict

Deterministic Parsing Automaton LR(0)

- We define the deterministic parsing automaton of LR(0) grammar $G = < \Sigma, N, P, S >$ with rule 0: $S' \rightarrow S$
 - Input alphabet Σ
 - Output alphabet U = the rule numbers 0,1,2,3,...
 - States $\Sigma^* \times \Gamma^* \times U^*$
 - Pushdown alphabet $\Gamma = LR(0)(G)$!! item sets !!
 - Initial state (w, I_0, ε) for $w \in \Sigma^*$ where $I_0 = LR(0)(\varepsilon)$
 - Final state final state $(\varepsilon, \varepsilon, u)$ where $u \in U^*$
 - Action depends on the item set I in the state $(x, \alpha I, z)$:
 - Shift $(aw, \alpha I, z) \to (w, \alpha IJ, z)$ if $[A \to \alpha_1 \cdot a\alpha_2] \in I$ and $I \xrightarrow{\alpha}_{goto} J$
 - Reduce $(w, \alpha II_1 \dots I_n, z) \to (w, \alpha IJ, zi)$ with rule $i \neq 0$ $A \to Y_1 \dots Y_n$ if $[A \to Y_1 \dots Y_n \cdot] \in I_n$ and $I \to J$
 - Accepting state $(\varepsilon, I_0 I, z) \to (\varepsilon, \varepsilon, z0)$ if $[S' \to S \cdot] \in I$
 - Error in state $(w, \alpha I, z)$ if $I = \emptyset$