Curvature of a curve at a point

1.Formula for Curvature and radius of Curvature of Cartesian Curves

Formula-1. For the Cartesian equation y = f(x):

Radius of curvature at any point (x, y), $\rho = \frac{(1 + y_1^2)^{3/2}}{v_2}$, where $y_1 = \frac{dy}{dx}$ and $y_2 = \frac{d^2y}{dx^2} \neq 0$.

But if the equation of the curve be x = f(y), then

Radius of curvature at any point (x, y), $\rho = \frac{(1 + x_1^2)^{3/2}}{x_2}$, where $x_1 = \frac{dx}{dv}$ and $x_2 = \frac{d^2x}{dv^2} \neq 0$.

Formula-2. The curvature(κ) = $\frac{1}{\text{radius of curvature}} = \frac{1}{\rho}$.

Examples

1. Show that the circle $x^2 + y^2 = a^2$ is a curve of uniform curvature κ and its radius of curvature p at every point is constant.

Solution:

Consider a circle $x^2 + y^2 = a^2$

Differentiating w.r.t. x, we get

$$2x + 2y \frac{dy}{dx} = 0 \qquad \qquad \therefore \frac{dy}{dx} = -\frac{x}{y}.$$

Again, differentiating w.r.t.x, we get

$$\frac{d^2y}{dx^2} = \frac{x\frac{dy}{dx} - y}{y^2} = \frac{x \cdot \left(-\frac{x}{y}\right) - y}{y^2} = \frac{-(x^2 + y^2)}{y^3} = \frac{-a^2}{y^3}.$$

If
$$(x, y)$$
 be any point on the circle, then,
$$\rho = \frac{(1 + y_1^2)^{3/2}}{y_2} = \frac{\left(1 + \frac{x^2}{y^2}\right)^{3/2}}{\frac{-a^2}{y^3}} = -\frac{(x^2 + y^2)^{3/2}}{y^3} \times \frac{y^3}{a^2} = -\frac{(a^2)^{3/2}}{a^2} = -a. \quad \therefore \rho = a, \text{ numerically.}$$

Hence, curvature $(\kappa) = \frac{1}{a} = \frac{1}{a}$, which is constant.

2. Find the radius of curvature ρ at any point (x, y) on the parabola $y^2 = 4ax$ Solution:

Here,
$$y^2 = 4ax$$
(i)

Differentiating both sides w.r.t. x, we get

$$2yy_1 = 4a \qquad \qquad \therefore y_1 = \frac{2a}{y} \qquad \dots (ii)$$

Again differentiating w.r.t.x.

$$y_2 = \frac{-2a}{y^2}$$
. $y_1 = \frac{-2a}{y^2}$. $\frac{2a}{y} = -\frac{4a^2}{y^3}$ [: From (ii)]

Applying the formula

$$\rho = \frac{(1+y_1^2)^{3/2}}{y_2} = \frac{\left[1+\left(\frac{2a}{y}\right)^2\right]^{3/2}}{\frac{-4a^2}{y^3}} = -\frac{(y^2+4a^2)^{3/2}}{4a^2}$$

But
$$y^2 = 4ax$$
, then
$$\therefore \rho = -\frac{(4ax + 4a^2)^{3/2}}{4a^2} = -(4a)^{3/2} \frac{(x+a)^{3/2}}{4a^2} = \frac{-8a^{3/2}(x+a)^{3/2}}{4a^2} = -\frac{2(x+a)^{3/2}}{\sqrt{a}} = \frac{2(x+a)^{3/2}}{\sqrt{a}} \text{ (numerically)}.$$

3. Find the radius of curvature ρ and curvature (κ) at any point (x, y) on the catenary $y = c \cosh(x/c)$

1

Solution:

Here, $y = c \cosh(x/c)$ (i

Differentiating (i) w.r.t. x, we get

$$\frac{dy}{dx} = c. \sinh \frac{x}{c} \cdot \frac{1}{c} : y_1 = \sinh \frac{x}{c}$$

Again differentiating, we get $y_2 = \frac{1}{c} \cosh \frac{x}{c}$

Now,
$$\rho = \frac{(1+y_1^2)^{3/2}}{y_2} = \frac{\left(1+\sinh^2\frac{x}{c}\right)^{3/2}}{\frac{1}{c}\cosh\frac{x}{c}} = \frac{c\left(\cosh^2\frac{x}{c}\right)^{3/2}}{\cosh\frac{x}{c}} = c\frac{\cosh^3\frac{x}{c}}{\cosh\frac{x}{c}} = c\cosh^2\frac{x}{c} = c \cdot \frac{y^2}{c^2} = \frac{y^2}{c^2}$$
 [By (i)]

Hence, curvature $(\kappa) = \frac{1}{\rho} = \frac{c^2}{y^2}$, which is constant

4. Find the radius of curvature ρ and curvature (κ) at any point (x, y) on the rectangular hyperbola $xy=c^2$

Solution:

Here,
$$y = \frac{c^2}{x}$$
.(i

Differentiating (i) w.r.t. x, we get

$$y_1 = \frac{-c^2}{x^2}$$
 and $y_2 = -c^2 \cdot (-2x^{-3}) = \frac{2c^2}{x^3}$.

Applying the formula for radius of curvature in Cartesian form i.e.

$$\rho = \frac{(1+y_1^2)^{3/2}}{y_2} = \frac{\left(1+\frac{c^4}{x^4}\right)^{3/2}}{\frac{2c^2}{x^3}} = \frac{(x^4+c^4)^{3/2}}{2c^2x^3}$$

But
$$c^2 = xy$$
 and therefore, $c^4 = x^2y^2$

$$\therefore \rho = \frac{(x^4 + x^2y^2)^{3/2}}{2c^2x^3} = \frac{x^3(x^2 + y^2)^{3/2}}{2c^2x^3} = \frac{(x^2 + y^2)^{3/2}}{2c^2}.$$

Hence, curvature (κ) = $\frac{1}{\rho} = \frac{2c^2}{(x^2 + y^2)^{3/2}}$

3. Show that the radius of curvature ρ at any point (x, y) on the curve $y = a \log \sec \frac{x}{a}$ is of constant length.

2

Solution:

Here,
$$y = a \log \sec \frac{x}{a}$$
(i)

Differentiating successively (i) w.r.t x, we get

$$y_1 = a \cdot \frac{1}{\sec \frac{x}{a}} \cdot \sec \frac{x}{a} \cdot \tan \frac{x}{a} \cdot \frac{1}{a} = \tan \frac{x}{a}$$
 and $y_2 = \frac{1}{a} \sec^2 \frac{x}{a}$.

Applying the formula for radius of curvature in Cartesian form i.e.

$$\rho = \frac{(1+y_1^2)^{3/2}}{y_2} = \frac{\left(1+\tan^2\frac{x}{a}\right)^{3/2}}{\frac{1}{a}\sec^2\frac{x}{a}} = \frac{\left(\sec^2\frac{x}{a}\right)^{3/2}}{\frac{1}{a}\sec^2\frac{x}{a}} = a\sec\frac{x}{a}.$$

- **4.** Find the curvature of the curve $y = 2x^4$ at point x = 2.
- 5. Find the curvature of the curve $y = 3x^4$ at point x = 1.

Curvature in Parametric Curve for Vector Function:

1. Find the curvature of the vector function $\vec{r}(t) = p \cos t \vec{i} + p \sin t \vec{j}$, where p is constant. Hint:

Curvature

$$\kappa = \frac{\left\|\vec{T}'(t)\right\|}{\left\|\vec{r}'(t)\right\|} \qquad \qquad \kappa = \frac{\left\|\vec{r}'(t)\right\|}{\left\|\vec{r}'(t)\right\|}$$

- 2. Determine the curvature for $\vec{r}(t) = (t, 3 \sin(t), 3 \cos(t))$.
- 3. Find the normal vector and binormal vector of the space curve $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ where $x = t^2$, $y = t^2$, $z = t^3$ at point (1, 1, 1).
- 4. Find the normal vector of the space curve

$$\overrightarrow{r} = \overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z} + \overrightarrow{k}$$
 where $x = t^2, y = t^2, z = t^3$ at point $(1, 0, 1)$.

2. Formula for Curvature and radius of Curvature of Parametric Curves

For the parametric equations $x = \phi(t)$, $y = \Psi(t)$

The radius of curvature ρ is given by $\rho = \frac{(x'^2 + y'^2)^{3/2}}{x'y'' - y'x''}$, where $x'y'' - y'x'' \neq 0$ and

Where,
$$x' = \frac{dx}{dt}$$
 and $y' = \frac{dy}{dt}$ etc.

Examples

1. Find the radius of curvature at any point θ for the parametric curve (Circle): $x = a \cos\theta$, $y = a \sin\theta$

Solution:

Here, $x = a \cos\theta$ and $y = a \sin\theta$

Differentiating both sides w.r.t. θ , we get

 $x' = -a \sin\theta$ and $y' = a \cos\theta$

Again differentiating, we get

 $x'' = -a \cos\theta$ and $y'' = -a \sin\theta$.

Applying the formula of radius of curvature in parametric form i.e.

$$\rho = \frac{(x^{12} + y^{12})^{3/2}}{x'y'' - y'x''} = \frac{(a^2\sin^2\theta + a^2\cos^2\theta)^{3/2}}{(-a\sin\theta) \cdot (-a\sin\theta) - (a\cos\theta) \cdot (-a\cos\theta)} = \frac{(a^2)^{3/2} \cdot (1)^{3/2}}{a^2(\sin^2\theta + \cos^2\theta)} = \frac{a^3}{a^2} = a.$$

 $\rho = a \text{ Ans.}$

2. Find the radius of curvature at any point ϕ for the parametric curve (Ellipse): $x = a \cos \phi$, $y = b \sin \phi$.

Solution:

Here, $x = a \cos \phi$ and $y = b \sin \phi$

Differentiating both sides w.r.t. ϕ , we get

$$x' = -a \sin \phi$$
 and $y' = b \cos \phi$

Again differentiating, we get

$$x'' = -a \cos \phi$$
 and $y'' = -b \sin \phi$

Applying the formula for radius of curvature in parametric form

$$\rho = \frac{(x'^2 + y'^2)^{3/2}}{x'y'' - x''y'} = \frac{(a^2 \sin^2 \phi + b^2 \cos^2 \phi)^{3/2}}{(-a \sin \phi)(-b \sin \phi) - (-a \cos \phi) \cdot b \cos \phi}$$

$$= \frac{(a^2 \sin^2 \phi + b^2 \cos^2 \phi)^{3/2}}{ab(\sin^2 \phi + \cos^2 \phi)} = \frac{(a^2 \sin^2 \phi + b^2 \cos^2 \phi)^{3/2}}{ab}.$$

3. Prove that the radius of curvature at any point $\theta = 0$ for the parametric curve (Cycloid): $x = a (\theta + \sin \theta)$, $y = a (1 - \cos \theta)$ is $\rho = 4a$.

Solution:

Here,
$$x = a (\theta + \sin \theta)$$
 and $y = a (1 - \cos \theta)$

Differentiating w.r.t. θ , we get

$$x' = a (1 + \cos\theta)$$
 and $y' = a \sin\theta$

Again, differentiating w.r.t. θ ,

$$x'' = -a \sin\theta$$
 and $y'' = a \cos\theta$

At
$$\theta = 0$$
: $x' = a(1 + 1) = 2a$ and $y' = a \sin 0 = 0$

$$x'' = -a \sin 0 = 0$$
 and $y'' = a \cos 0 = a$.

Applying the formula

$$\rho = \frac{(x'^2 + y'^2)^{3/2}}{x'y'' - x''y'} = \frac{[(2a)^2 + 0^2]^{3/2}}{2a \cdot a - 0 \cdot 0} = \frac{(4a^2)^{3/2}}{2a^2} = \frac{(2a)^3}{2a^2} = 4a. \text{ Hence proved.}$$

