Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Кафедра «Проектирования и конструирования интегральных микросхем»

Курсовая работа на тему: «Система управления роботом на гусеничном ходу»

Студент: Горбунова А.

Цель и задачи

Цель: Реализовать схему гусеничного робота, который управляется с дистанционного пульта. Предусмотреть различные режимы хода, поворота, запуска и остановки: режим прогрева двигателя перед стартом, элементы искусственного интеллекта (автоостановка перед препятствием и т.д.).

Структурная схема устройства робота

Название	Разрядность	Назначение
сигнала	сигнала	
clk_i	1	Тактовый синхросигнал
rstn_i	1	Асинхронный сигнал сброса системы. Сброс
		осуществляется по срезу rstn_i
motor_on_i	1	Сигнал включения двигателей робота.
move_i	3	Шина управления движением робота.
		Управляется пультом ДУ.
tracker_fwrd_i	1	Сигнал переднего датчика препятствий.
motor_status_o	1	Сигнал индикации статуса моторов робота.
left_motor_o	2	Сигнал управления левым мотором робота
right_motor_o	2	Сигнал управления правым мотором робота
tracker_status_	1	Статус датчика препятствий, передаваемый на
0		пульт ДУ.

Схема устройства робота

Результат синтеза схемы в САПР Quartus II.

Конечный автомат устройства

Название состояния	Значение	Описание состояния
	состояния	
PWR_OFF	0	Состояние схемы по умолчанию и в случае сброса системы.
ENGINE_START	1	Запуск двигателей робота.
ENGINE_END	2	Отключение двигателей робота.
PWR_ON_IDLE	3	Двигатели робота включены; Ожидание команды на
		передвижение.
MOVE_FWRD	4	Движение робота вперед.
TURN_LEFT	5	Поворот робота на 90° против часовой стрелки.
TURN_RIGHT	6	Поворот робота на 90° по часовой стрелке.
MOVE_BACK	7	Движение робота назад.
TRACKER_ERROR	8	Ошибка при движении робота: обнаружено препятствие
		датчиком.

Функциональная верификация: визуализация движения робота во время теста

Карта поля 7x7, на котором проводится тестирование движения робота

Временные диаграммы прохождения теста

Заключение

В ходе выполнения курсовой работы была спроектирована схема управления роботом на гусеничном ходу на языке Verilog. Представлен результат синтеза схемы в САПР Altera Quartus II. Проведена функциональная верификация устройства и показана визуализация движения робота по квадратному полю размером 7х7 клеток.