

NAVAL POSTGRADUATE SCHOOL Monterey, California

DTIC ELECTE FEB 4 1981

THESIS

STATISTICS PROGRAMS FOR THE TI-59 CALCULATOR

bу

Richard William Storer

December 1980

Thesis Advisor:

D. R. Barr

Approved for public release; distribution unlimited.

81 2

0 = 00

FIF CODY

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PE OF REPORT & PERIOD COVERED IS THE SIS; CEMBER 1980 REPORTING ORG. REPORT NUMBER
cember 1980
TRACT OR GRANT NUMBER(s)
IOGRAM ELEMENT, PROJECT, TASK IEA & WORK UNIT NUMBERS
cember 1980
CURITY CLASS, (of this report)
classified
3

Approved for public release; distribution unlimited.

- 17. DISTRIBUTION STATEMENT (of the sestract entered in Block 20, if different from Report)
- IS. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

TI-59 Hand-Held Calculator Programmable Calculator Confidence Interval Hypothesis Tests Distribution Approximations

20. ABSTRACT (Continue on reverse side if negerousy and identify by block number)

This paper presents a package of nine programs for the TI-59 calculator. This package was developed as a solution to two problems. One problem involved expanding and modifying an existing set of programs; and a second problem involved developing five distribution approximating programs. The solution to these problems represents a package with considerable capability in computing confidence intervals, performing

DD 1 JAN 73 1473 EDITION OF 1 NOV 48 IS OBSOLETE S/N 0102-014-6601 |

hypothesis tests and approximating distribution values. The distribution approximations include inverse CDF values for the Normal, Chi-square, Student's t and F distributions, which allow the computation of confidence intervals without using tables.

The TI-59 proved to be a useful tool in solving these problems and demonstrated the capability of hand-held programmable calculators. The comprehensive set of user guides included in this programming package provides even the inexperienced user with a step-by-step introduction to this capability. Additionally, the methods used in preparing this programming package are directly applicable to other calculators or computers.

Approved for public release; distribution unlimited.

Statistics Programs for the TI-59 Calculator

by

Richard William Storer Captain, United States Air Force B.S., United States Air Force Academy, 1972

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL December 1980

Approved by:

Ap

ABSTRACT

This paper presents a package of nine programs for the TI-59 calculator. This package was developed as a solution to two problems. One problem involved expanding and modifying an existing set of programs; and a second problem involved developing five distribution approximating programs. The solution to these problems represents a package with considerable capability in computing confidence intervals, performing hypothesis tests and approximating distribution values. The distribution approximations include inverse CDF values for the Normal, Chi-square, Student's t and F distributions, which allow the computation of confidence intervals without using tables.

The TI-59 proved to be a useful tool in solving these problems and demonstrated the capability of hand-held programmable calculators. The comprehensive set of user guides included in this programming package provides even the inexperienced user with a step-by-step introduction to this capability. Additionally, the methods used in preparing this programming package are directly applicable to other calculators or computers.

TABLE OF CONTENTS

I.	INT	RODU	CTI	- NC	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	8
II.	NATU	JRE	OF	ГНЕ	PF	ROB	LE	М -	_	-	-	-	-	-	-	-	-	-	-	-	-	11
	Α.	USE	R-F	RIE	NDI	Ϋ́	PR	OGF	(AM	MI	NG	-	-	-	-	-	-	-	-	-	-	11
	В.	ACC	URA'	re :	DIS	STR	IB	UT I	ON	A)	PPI	ROX	(IN	ΊΑΊ	IC	NS	S -	-	-	-	-	15
III.	THE	ORY -	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	18
	Α.		ORY ERV											II	EN -	ICE -	: -	-	-	-	-	18
	В.		ORY ERV															-	-	-	-	23
	С.		ORY TS		R (NE -	- P	0PU 	LA	TI(ON -	HY -	PC -)T} -	IES -	SIS -	5 -	-	-	-		27
	D.		ORY TS					0PU							_			-	-	-	-	33
	Ε.	THE	ORY	FO	R N	ÆΤ	'HO	DS	OF	A!	PPI	ROX	(IN	1AT	ic	N	-	-	-	-	-	35
IV.	TI-5	59°-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	42
v.	ALTI	ERNA	TE :	SOL	JŢI	ON	S		-	-	-	-	-	-	-	-	-	-	-	-	-	43
	Α.	HAR	DWA:	RE .	AL7	ΓER	NA'	TIV	ES	-	-	-	-	-	-	-	-	-	-	-	-	43
	В.	PRO	GRA	MMI	NG	AL	TE	RNA	TI	VE:	S-	-	_	-	-	-	-	-	-	-	-	44
VI.	CON	CLUS	ION		-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	45
APPENI	DIX A	٠ ۴	USE	R G	UII	DES	. –		. <u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-	47
APPEN]	DIX I	В -	COM	PAR	ISC	N	OF	ΑF	PR	0 X	I MA	AT I	ON	IS	-	-	-	-	-	-	-	92
СОМРИ	TER I	LIST	ING	s -	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	96
LIST	OF RI	EFER	ENC	ES-	•	-	-		. -	-	-	-	-	-	-	-	-	-	-	-	-1	34
INITI	Δ1. D	מדפז	TRII	TTO	N I	TS	т		_	_	_	_	_	_	_		_	_	_		-1	35

TABLE OF SYMBOLS

α	Significance level
γ	Confidence level, $(1-\alpha)$
θ	Arbitrary distribution parameter
μ	Population mean
v	Degrees of freedom
ρ	Population correlation coefficient
σ	Population standard deviation
σ^2	Population variance
χ^2	Chi-square distribution
$\chi^2_{p}(v)$	Chi-square p th percentile with v degrees of freedom
	Symbol for calculator keystroke
a	Arbitrary constant
b	Arbitrary constant
ďi	Data point from sample of differences $x_i - y_i$
F	Symbol for F distribution
$F_p(v_1, v_2)$	F p th percentile with v_1 and v_2 degrees of freedom
i	Counting index
k	Number of separate sets in multinomial distribution
1	Lower confidence bound
m	Number of data points in sample y
n	Number of data points in sample x
$N(\mu,\sigma)$	Normal distribution
p	Probability value
r	Sample correlation coefficient
R ₀₀	Storage register 00 to 99
0.0	

S	Sample standard deviation
s ²	Sample variance
^s d	Sample standard deviation for difference $d_i = x_i - y_i$
S	Population standard deviation
s ²	Population variance
t	Student's t distribution
t _p (v)	Student's t p th percentile with v degrees of freedom
u	Upper confidence bound
$\overline{\mathbf{x}}$	Sample mean for x_i 's
x _i	Data point from sample x
y	Sample mean for y _i 's
y _i	Data point from sample y
^z p	Normal p th percentile

I. INTRODUCTION

The purpose of this paper is to trace the development of a package of nine programs for use in the TI-59 calculator. Two of these programs compute confidence intervals for either the one-population or two-population situations. Another two programs perform hypothesis testing, again, for either one-or two-population situations. The remaining five programs generate approximate distribution values for the Normal, Binomial/Multinomial, Chi-square, Student's t and F distributions.

The basis for this programming effort was a set of four TI-59 programs written by Professor P. W. Zehna for his personal use and later used in the classroom. Professor Zehna's programs also computed confidence intervals and performed hypothesis testing. However, his programs were not completely user-friendly, especially in terms of user guides; and they were dependent on obtaining some percentile values from standard tables. This paper then presents a significant expansion in the scope of these early programs. The main thrust of this expansion includes a simplified and standardized set of programs and user guides, while eliminating the dependence on distribution tables.

This package of nine programs was designed for two types of users: the student, who might be asked to quickly solve several very different problems in succession; and the working analyst, whose main concern is one specific problem which

requires great accuracy. Of particular importance to both types of users is a detailed set of user guides (Appendix A) which includes sample problems. Many of these sample problems have been solved in two ways; the first way involves using program-generated percentiles; the other way requires input of tabled percentiles. While it is not absolutely necessary to look up tabled values when using the confidence interval programs, that option has been included, and should be used when increased accuracy is desired. Except for some cases involving small degrees of freedom, however, the accuracy of these first two programs is quite good as can be seen in the sample problems of Appendix A. When tables are not available, the percentile values generated by the five distributional programs is outstanding (Appendix B) and can be used in lieu of tabled values. One very convenient feature of the distribution programs is the ability to provide values normally available only by interpolation in the standard tables. It should be noted that the methods used to generate approximations in the confidence interval program is slightly less accurate than those used in the distribution programs. This difference is due to the limited number of program steps available in the first two programs. Except for the two hypothesis testing programs, there is no requirement to use the applied statistics module in the TI-59. However, this module is required when performing hypothesis testing because of the large program size and the need to provide a significance level with each test. Thus, it was possible to provide

detailed, yet simple, user guides to implement theoretically correct and accurate programs. By providing the option of using either approximations or tabled values, both the student and the analyst can accurately solve a variety of problems.

II. NATURE OF THE PROBLEM

The programming effort presented in this paper was generated by two major problems. The foremost problem involved expanding and modifying an existing set of TI-59 programs into a more user-friendly package. A second, closely related problem was adding the capability for generating accurate distribution approximations. The following discussion of the solutions to these two problems is a general overview of the particular solutions used. The specific methods and theory of solution are left for later sections in this paper.

A. USER-FRIENDLY PROGRAMMING

User-friendly programming implies programming with the user's knowledge, ability, and hardware familiarity in mind. In this light, a user-friendly program is a program which has significant capability, yet can be used by those with only a modest knowledge of either the calculator or the theory involved. Applying this definition as a framework for providing a user-friendly programming package resulted in four areas of effort. These areas are: standardized data entry, standardized solution procedures, maximized use of calculator capabilities, and improved user guides.

1. Standardized Data Entry

The nine programs in this package all require some form of data entry. The data entry schemes for the confidence interval and hypothesis testing programs need careful

standardization because of the similarity of the data and the size of the data sets involved. There are three possible types of data in these first four programs. Data may be from a one-population sample, a two-population paired sample, or a two-population independent sample. Any of these data can be easily entered in the form of summary statistics, if available; however, raw data requires some standardization between programs. The data entry schemes of the first four programs use similar data entry subroutines which take advantage of the II-59's data entry sequence. In each of these programs, the data entry subroutine is initiated by pressing D. The sequence of data entry then differs slightly depending on the type of data being entered. All of these entry subroutines use a format which requires a R/S to be pressed after each data point entry. This method saves one keystroke for each data point compared to the TI-59's two-keystroke, 2nd Σ +, entry method. Also, the [R/S]key is very close to the numerical keyboard, compared to the 2nd key, thereby eliminating a source of data entry errors that frequently occur when using the [2nd] Σ +| sequence.

The data entry schemes used for the five distribution programs presented no standardization problem. All of these programs, except the Multinomial, require only a few parameter entries. In the Multinomial program, which can accept as many as 35 pairs of parameters, the data entry problem was more difficult. Each of the multinomial data points is stored separately until computation begins. The data entry

sequence automatically repartitions the calculator to make room for this potentially large amount of data.

Data stored directly in registers has been somewhat standardized between programs by using the same registers, where possible, for similar data. More information concerning the contents of data storage registers can be found in Appendix A.

2. Standardized Solution Procedures

A considerable effort was made to standardize the steps required in each problem solution sequence. In the two confidence interval programs (see Appendix A) problems are solved in three steps. In the first step, the calculator is repartitioned and the data are entered. The second step requires entry of either a percentage, in which case the program generates an approximate percentile, or a previously obtained percentile value. The last step involves the selection and initiation of the proper solution subroutine. A similar three-step sequence is used in the two hypothesis testing programs where the first step includes repartitioning and entry of test parameters. The second step involves data entry, and the third step, subroutine initiation.

The five distribution programs contain only a limited amount of standardization due to the different nature of the programs. The Normal, Chi-square, Student's t, and F programs use the A, B, C labels for the same basic functions.

The A label is used in the Normal, Chi-square, and Student's t (not F) to generate approximate density values. The B label

is used to generate CDF approximations in all four of these programs, where similarly, the C label is used to generate inverse CDF approximations. The Binomial/Multinomial program shares none of these standardized label uses.

3. Maximized Use of Calculator Capabilities

The ability of the TI-59 to repartition was the basis for the expansion in capability over that achieved by Professor Zehna's original programs. Repartitioning allows the addition of the program steps necessary for the inverse CDF approximating subroutines in the confidence interval programs. The added programming space was also used to compute one confidence interval estimate, for σ^2 with μ known, which was not available in the original programs. Additionally, repartitioning makes possible an F distribution program and a Multinomial distribution program.

However, repartitioning is not without its price. The larger programs now require three edges of the magnetic program cards, which presents a slight inconvenience in added loading and storage requirements. Other problems associated with repartitioning, such as inadvertent loss of program steps and unwanted or improper partitioning, have hopefully been eliminated from this programming package by extensive validation with sample problems.

4. Improved User Guides

Preparation of improved user guides was a key element in making a user-friendly programming package. The complexity of the programs involved and the intended use by students necessitated a departure from the standard TI-59 program record sheet. As can be seen in Appendix A, the improved user guides are organized with the user in mind. The general outline for each user guide follows this pattern:

- a. Introduction
- b. General Procedures
- c. Specific Procedures
- d. Additional Capabilities
- e. Labels Used
- f. Storage Register Contents
- g. Sample Problems

The user guides for the five distrubiton programs have been combined to take advantage of the relative simplicity in using these programs. The answers to each sample problems are in a 10-digit format to provide a positive check on calculator output when working each problem. The confidence interval sample problems are solved in two ways to demonstrate the differences between using approximations and tabled values for the required percentiles.

B. ACCURATE DISTRIBUTION APPROXIMATIONS

The second major problem addressed in this section involves generating distribution approximations for both the confidence interval programs and the distribution programs.

The capability to compute accurate distribution approximations provides a new dimension to this programming package by eliminating the need for standard distribution tables when

solving confidence interval problems. A drawback of this new capability is the time required to obtain some values from the approximating programs. The time required by the confidence interval approximations is not nearly as long as that for the distribution programs; but then, the quality of the approximations is not as good either (see Section III).

Appendix B contains comparisons of tabled values with both the confidence interval program approximations (Type I) and the distribution program approximations (Type II). The actual probability values used in these comparisons were obtained using the distribution programs and can be regarded as being very close to the actual probability achieved. missing values in the inverse F comparison are due to the inability of the Type I approximation to generate inverse F values when either of the degrees of freedom parameters is one. Also, while only selected approximations are listed in the comparison, the inverse CDF approximations are of nearly equal quality over the entire range of the appropriate function. The Type I approximations displayed in Appendix B are generally not as accurate as Type II approximations in terms of actual probability achieved. Only the inverse CDF approximations for the Chi-square, t, and F distributions are presented in Appendix B since all the other approximations which are available in the distribution programs duplicate table entries. These other approximations include probability values, CDF values, and various other distribution values (see Appendix A). The superior quality of these approximations can be attributed to using the same approximating methods used in the TI-59 Applied Statistics Module (see Section III).

III. THEORY

This section on theory is presented as a background for the solution methods used in the accompanying programs. As such, it is not intended to be a primer in statistics.

Instead, this section should be considered as an intermediate level derivation of the specific statistical methods used in programming. For a more basic explanation of this material, the references cited within each subject area, or equivalent texts, should be consulted.

There are five subject areas discussed in this section. First, the theory used for estimating confidence intervals in the first two programs is discussed. Next, the hypothesis testing theory necessary for programs three and four is discussed. And lastly, the methods used in all nine programs to obtain approximations to distribution values are discussed.

A. THEORY FOR ONE-POPULATION CONFIDENCE INTERVAL ESTIMATION

The derivation of theoretical interval estimates will be done in the same order as these estimates appear in the User Guide for Program 1 (Appendix A). Most of these derivations use the pivotal-qualtity method to obtain confidence intervals (1,u) [Ref. 1: pp. 379-389]. Other methods used here will be discussed in slightly more detail, but will still be brief compared to the referenced texts. When forming a C.I. with a nonsymmetric distribution the interval will represent an equal tails solution, where equal tails implies

 $P[X < 1] = P[X > u] = (1-\gamma)/2$. This method does not provide the shortest C.I. for a given γ ; however, this method is commonly used for its ease of computation [Ref. 1: p. 382]. Regardless of the method used, the resulting C.I. given in this section by (1,u) represents the formula used to calculate interval estimates.

1. C.I. for Normal μ with σ^2 Known [Ref. 2: pp. 77-80] Assuming that X is distributed N(μ , σ^2) and using $(\overline{X}-\mu)/(\sigma/\sqrt{n})$ as the pivotal-quantity, a 100 γ % C.I. is constructed thus:

$$\mathbb{P}\left[\mathbb{E}_{(1-\boldsymbol{\gamma})/2} < (\mathbb{X}-\boldsymbol{\mu})/(\boldsymbol{\sigma}/\sqrt{n}) < \mathbb{E}_{(1+\boldsymbol{\gamma})/2}\right] = \boldsymbol{\gamma}.$$

Substituting $z = z_{(1+\gamma)/2} = -z_{(1-\gamma)/2}$ and simplifying we have:

$$P\left[\bar{X} - z\sigma/\sqrt{n} < \mu < \bar{X} + z\sigma/\sqrt{n}\right] = \gamma, \text{ or }$$

(1,u) =
$$(\bar{x} - z \sigma / \sqrt{n}, \bar{x} + z \sigma / \sqrt{n}).$$

2. C.I. for Normal μ with σ^2 Unknown [Ref. 2: p. 80; Ref. 3: p. 277; Ref. 1: p. 381]

Assuming X is distributed N(μ , σ^2) and using $(\overline{X}-\mu)/(s/\sqrt{n})$, which is distributed t(n-1), as the pivotal-quantity, a 100 γ % C.I. is constructed thus:

$$P\left[t_{(1-\gamma)/2}(n-1) < (\bar{x}-\mu)/(s/\sqrt{n}) < t_{(1+\gamma)/2}\right] = \gamma.$$

Substituting t = $t_{(1+\gamma)/2}^{(n-1)} = -t_{(1-\gamma)/2}^{(n-1)}$ and simplifying we have:

$$P\left[\overline{X} - ts/\sqrt{n} < \mu < \overline{X} + ts/\sqrt{n}\right] = \gamma, \text{ or}$$

$$(1,u) = (\overline{x} - ts/\sqrt{n}, \overline{x} + ts/\sqrt{n}).$$

3. C.I. for Bernoulli p [Ref. 4: pp. 376-381]

The pivotal-quantity method does not work for the Bernoulli case and another method will be briefly developed here. This method starts with two numbers a and b such that

$$P\left[a < \bar{X} < b\right] = \gamma$$
.

From these limits we have:

$$P\left[\overline{X} \leq a\right] = (1-\gamma)/2 = P\left[\overline{X} \geq b\right], \text{ or equivalently,}$$

$$P\left[\sum X_{i} \leq na\right] = (1-\gamma)/2 = P\left[\sum X_{i} \geq nb\right].$$

Now $\sum X_i$ is distributed Binomial (n,p) which, for k < n, can be explicitly related to the incomplete Beta function and hence to the F distribution to yield:

$$u = \frac{(n\bar{x} + 1)F(1+\gamma)/2(v_1, v_2)}{(n - n\bar{x}) + (n\bar{x} + 1)F(1+\gamma)/2(v_1, v_2)}$$

$$1 = \frac{n\bar{X}}{(n\bar{X} + (n - n\bar{X} + 1)F_{(1+\gamma)/2}(v_2+2, v_1-2))}$$

where $v_1 = (2n\overline{X} + 2)$, and $v_2 = (2n - 2n\overline{X})$ 1 and u form a 100γ % conservative random interval thus:

$$P[1$$

The outcome (1,u) is a conservative C.I. in the sense that for this discrete distribution the confidence that (1,u) contains p is at least 100γ .

4. C.I. for Normal σ^2 with μ Known [Ref. 3: p. 275] Assuming that X is distributed N(μ , σ^2) and using $\sum ((X_i - \mu)/\sigma)^2$, which is distributed $\chi^2(n)$, as the pivotal-quantity, a 100 γ % equal tails C.I. is constructed thus:

$$P\left[\chi^{2}_{(1-\gamma)/2}(n) < \sum_{i}(x_{i}-\mu)^{2}/\sigma^{2} < \chi^{2}_{(1+\gamma)/2}(n)\right] = \gamma$$

Substituting $q_1 = \chi^2_{(1-\gamma)/2}(n)$, and $q_2 = \chi^2_{(1+\gamma)/2}(n)$ and simplifying we have:

$$P\left[\sum (x_{i}-\mu)^{2}/q_{2} < \sigma^{2} < \sum (x_{i}-\mu)^{2}/q_{1}\right] = \gamma, \text{ or}$$

$$(1,u) = (\sum x_{i}^{2} - n\mu^{2})(1/q_{2}, 1/q_{1}).$$

5. C.I. for Normal σ^2 with μ Unknown [Ref. 1: p. 382; Ref. 3: p. 277]

Assuming that X is distributed $N(\mu, \sigma^2)$ and using $(n-1)s^2/\sigma^2$, which is distributed $\chi^2(n-1)$, as the pivotal-quantity, a 100 γ % equal tails C.I. is constructed thus:

$$P\left[\chi^{2}_{(1-\gamma)/2}(n-1) < (n-1)s^{2}/\sigma^{2} < \chi^{2}_{(1+\gamma)/2}(n-1)\right] = \gamma.$$

Substituting $q_1 = \chi^2_{(1-\gamma)/2}^{(n-1)}$, and $q_2 = \chi^2_{(1+\gamma)/2}^{(n-1)}$ and simplifying we have:

$$P\left[(n-1)s^{2}/q_{2} < \sigma^{2} < (n-1)s^{2}/q_{1}\right] = \gamma, \text{ or}$$

$$(1,u) = (n-1)s^{2}(1/q_{2}, 1/q_{1}).$$

6. C.I. for Exponential λ or μ [Ref. 3: p. 279] Assuming that $X_1, X_2, \ldots X_n$ are exponential random variables with parameter λ and using $2 \lambda n \overline{\lambda}$, which is distributed $\chi^2(2n)$, as the pivotal-quantity, a 100γ % equal tails C.I. is constructed thus:

$$P\left[\chi^{2}_{(1-\gamma)/2}(2n)/2n\bar{\chi} < 2 \ln \bar{\chi} < \chi^{2}_{(1+\gamma)/2}(2n)\right] = \gamma.$$

Simplifying we have:

$$P\left[\chi^{2}_{(1-\gamma)/2}(2n)/2n\overline{X} < \lambda < \chi^{2}_{(1+\gamma)/2}(2n)/2n\overline{X}\right] = \gamma$$
, or

$$(1,u) = (\chi^2_{(1-\gamma)/2}(2n)/2n\bar{x}, \chi^2_{(1+\gamma)/2}(2n)/2n\bar{x}).$$

The C.I. for the mean time to failure (μ = 1/ λ) is constructed by inverting the above interval to yield:

$$(1,u) = (2n\bar{x}/\chi^2_{(1+\gamma)/2}^{(2n)}, 2n\bar{x}/\chi^2_{(1-\gamma)/2}^{(2n)})$$
[Ref. 4: p. 382].

B. THEORY FOR TWO-POPULATION CONFIDENCE INTERVAL ESTIMATION

The confidence interval estimates for two-population situations are discussed here in the same order as they appear in the User Guide for Program 2 (Appendix A). All of these estimates use the pivotal-quantity method discussed earlier [Ref. 1: pp. 379-389]. As in the one-population case above, the C.I. given by (1,u) represents the formula used to calculate the interval estimate.

1. C.I. For Bernoulli p_X-p_Y for Large m and n [Ref. 2: p. 249]

Large m and n means np_X , mp_Y , $n(1-p_X)$, and $m(1-p_Y)$ all greater than five. With this condition met and assuming that X and Y are independent and normally distributed,

$$\frac{(\overline{X} - \overline{Y}) - (p_{\overline{X}} - p_{\overline{Y}})}{\sqrt{s_{\overline{X}}^2/n + s_{\overline{Y}}^2/m}}$$

which is distributed approximately N(0,1), is used as the pivotal-quantity. A 100 γ % C.I. is constructed thus:

$$\mathbb{P}\left[-z_{(1+\gamma)/2} < \frac{(\overline{X} - \overline{Y}) - (p_{X} - p_{Y})}{\sqrt{\overline{X}(1-\overline{X})/n + \overline{Y}(1-\overline{Y})/m}} < z_{(1+\gamma)/2}\right] = \gamma.$$

Substituting $c = \sqrt{\overline{X}(1-\overline{X})/n} + \overline{Y}(1-\overline{Y})/m$, and simplifying yields:

$$P\left[\overline{X} - \overline{Y} - cz_{(1+\gamma)/2} < p_{X} - p_{Y} < \overline{X} - \overline{Y} + cz_{(1+\gamma)/2}\right] = \gamma, \text{ or}$$

$$(1,u) = (\bar{x} - \bar{y} - ez_{(1+\gamma)/2}, \bar{x} - \bar{y} + ez_{(1+\gamma)/2}).$$

2. C.I. for Normal μ_X - μ_Y for X and Y Paired [Ref. 2: p. 123]

Assuming that X and Y are normally distributed and letting $\overline{D}=\overline{X}-\overline{Y}$, and using $(\overline{D}-\mu_D)/(S_D/\sqrt{n})$, which is distributed t(n-1), as the pivotal-quantity, a 100 γ % C.I. is constructed thus:

$$P\left[t_{(1-\gamma)/2}(n-1) < (\overline{D} - \mu_{D})/S_{D}/\sqrt{n}\right) < t_{(1+\gamma)/2}(n-1)\right] = \gamma.$$

Substituting $\mu_D = \mu_X - \mu_Y$, and $t = t_{(1+\gamma)/2}(n-1) = -t_{(1-\gamma)/2}(n-1)$ and simplifying yields:

$$P\left[\overline{D} - tS_{D}/\sqrt{n} < \mu_{X} - \mu_{Y} < \overline{D} + tS_{D}/\sqrt{n}\right] = \gamma \qquad , \text{ or}$$

(1,u) =
$$(\bar{d} - ts_D/\sqrt{n}, \bar{d} + ts_D/\sqrt{n})$$
, where $s_D = \frac{\sum d_i^2 - (\sum d_i)^2/n}{(n-1)}$

and
$$d_i = x_i - y_i$$
.

3. C.I. for Normal
$$\mu_{X}$$
- μ_{Y} with $\sigma_{X}^{2} = \sigma_{Y}^{2} = \sigma^{2}$
[Ref. 2: p. 123]

Assuming that X and Y are independent and using

$$\frac{(\overline{X} - \overline{Y}) - (\mu_{\overline{X}} - \mu_{\overline{Y}})}{(1/m + 1/n)S_p^2}$$
, which is distributed t(m+n-2),

as the pivotal-quantity. Here and elsewhere in this paper, n and m represent the number of data points in X and Y, respectively. A 100γ % C.I. is constructed thus:

$$P\left[t_{(1-\gamma)/2}^{(m+n-2)} < \frac{(\overline{X}-\overline{Y}) - (\mu_{X}-\mu_{Y})}{(1/m+1/n)S_{p}^{2}} < t_{(1+\gamma)/2}^{(m+n-2)}\right] = \gamma.$$

Substituting t = $t_{(1+\gamma)/2}^{(m+n-2)} = -t_{(1-\gamma)/2}^{(m+n-2)}$ and simplifying yields:

$$P\left[\overline{X} - \overline{Y} - t\sqrt{(1/m + 1/n)S_p^2} < \mu_{X} - \mu_{Y} < \overline{X} - \overline{Y} + t\sqrt{(1/m + 1/n)S_p^2}\right] = \gamma,$$

or
$$(1,u) = (\bar{x} - \bar{y} - t \sqrt{(1/m + 1/n)s_p^2}, \bar{x} - \bar{y} + t \sqrt{(1/m + 1/n)s_p^2}),$$

where
$$s_p^2 = \frac{\sum (x_i - \bar{x})^2 + \sum (y_i - \bar{y})^2}{(m + n - 2)}$$
.

4. C.I. for Normal μ_X - μ_Y with σ_X^2 and σ_Y^2 Known [Ref. 2: p. 123]

Assuming X and Y are independent and using

$$\frac{(\bar{x} - \bar{Y}) - (\mu_{X} - \mu_{Y})}{\sqrt{\sigma_{X}^{2}/n + \sigma_{Y}^{2}/m}}$$
, which is distributed N(0,1), as

the pivotal-quantity, a $100\,\gamma$ % C.I. is constructed thus:

$$P\left[-\frac{1}{2}(1+\gamma)/2 < \frac{(\bar{X} - \bar{Y}) - (\mu_{\bar{X}} - \mu_{\bar{Y}})}{\sqrt{\sigma_{\bar{X}}^2/n + \sigma_{\bar{Y}}^2/m}} < \frac{1}{2}(1+\gamma)/2\right] = \gamma.$$

Substituting $z = z(1+\gamma)/2 = -z(1-\gamma)/2$ and simplifying we have:

$$P\left[\bar{X} - \bar{Y} - z \sqrt{\sigma_{X}^{2}/n + \sigma_{Y}^{2}/m} < \mu_{X} - \mu_{Y} < \bar{X} - \bar{Y} + z \sqrt{\sigma_{X}^{2}/n + \sigma_{Y}^{2}/m}\right] = \gamma,$$
or (1,u) = $(\bar{x} - \bar{y} - z \sqrt{\sigma_{X}^{2}/n + \sigma_{Y}^{2}/m}, \bar{x} - \bar{y} + z \sqrt{\sigma_{X}^{2}/n + \sigma_{Y}^{2}/m}).$

5. C.I. for Normal
$$\sigma_{X}^{2}/\sigma_{Y}^{2}$$
 [Ref. 4: p. 464]

Assuming X and Y are independent and using $(S_Y^2/\sigma_Y^2)/(S_X^2/\sigma_X^2)$, which is distributed F(m-1,n-1), as the pivotal-quantity, a 100 γ % C.I. is constructed thus:

$$P\left[F_{(1-\gamma)/2}^{(m-1,n-1)} = \frac{S_{\gamma}^{2}/\sigma_{\gamma}^{2}}{S_{\chi}^{2}/\sigma_{\chi}^{2}} \le F_{(1+\gamma)/2}^{(m-1,n-1)}\right] = \gamma.$$

Substituting $F_{(1-\gamma)/2}(m-1,n-1)=\frac{1}{F_{(1+\gamma)/2}(n-1,m-1)}$, and simplifying we have:

$$P\left[\frac{S_{X}^{2}/S_{Y}^{2}}{F(1+\gamma)/2^{(n-1,m-1)}} < \frac{\sigma_{X}^{2}}{\sigma_{Y}^{2}} < (S_{X}^{2}/S_{Y}^{2})F_{(1+\gamma)/2^{(m-1,n-1)}}\right] = \gamma.$$

or
$$(1,u) = (\frac{s_X^2/s_Y^2}{F_{(1+\gamma)/2}(n-1,m-1)}, (s_X^2/s_Y^2)F_{(1+\gamma)/2}(m-1,n-1)).$$

6. C.I. for Exponential
$$\lambda_X/\lambda_Y = \mu_Y/\mu_X$$
 [Ref. 4: p. 466]

Assuming X and Y are independent and using $\overline{X} \lambda_X / \overline{Y} \lambda_Y$, which is distributed F(2n,2m), as the pivotal-quantity, a 100 γ % C.I. is constructed thus:

$$\mathbb{P}\left[\mathbb{F}_{(1-\gamma)/2}(2n,2m) < \overline{X} \lambda_{X}/\overline{Y} \lambda_{Y} < \mathbb{F}_{(1+\gamma)/2}(2n,2m)\right] = \gamma.$$

Simplifying we have:

$$P\left[(\overline{Y}/\overline{X})F_{(1-\gamma)/2}(2n,2m) < \lambda_{X}/\lambda_{Y} < (\overline{Y}/\overline{X})F_{(1+\gamma)/2}(2n,2m) \right] = \gamma.$$
or $(1,u) = ((\overline{Y}/\overline{X})F_{(1-\gamma)/2}(2n,2m), (\overline{Y}/\overline{X})F_{(1+\gamma)/2}(2n,2m)).$

C. THEORY FOR ONE-POPULATION HYPOTHESIS TESTS

Three types of hypothesis tests are performed in Program 3; these are upper-tailed, lower-tailed and two-tailed tests. The general procedure used for all three tests is the same. Basically, a test statistic T, which has an assumed distribution, is computed with user-supplied data and then compared to a critical region defined by T_0 . This T_0 value is determined by the type of test, the assumed distribution, and the user-supplied α value. For two-tailed tests there are actually two values of T_0 used; these values will be denoted

here by T_1 and T_2 . In performing the test then, if the test statistic T is outside the critical region, then we accept our original hypothesis H_0 ; otherwise, we reject H_0 and accept the alternative H_1 .

The following graphs illustrate the three types of tests discussed. These graphs represent a probability density function, f(T), where the shaded area under each curve represents values from a corresponding cumulative distribution function, F(T).

Upper-Tailed Test

Lower-Tailed Test

Two-Tailed Test for Symmetric Distributions (Normal, t)

Two-Tailed Test for Unsymmetric Distributions (Chi-Square, F)

An upper-tailed test is performed whenever the user enters a +1, choosing the upper-tail alternate hypothesis, during step one of the solution. A lower-tailed test requires the user to enter a -1 during the solution, and a two-tailed test requires a 0 entry. For two-tailed unsymmetric tests the relationship between the test statistic and the median determines which tail is actually used for the test. If the test statistic is greater than the median then the two-tailed test is performed using the upper tail T_0 value. For test statistic values less than the median the test uses the lower tail T_0 value. However, there is no general agreement that a two-tailed test should be performed this way.

The test statistics used in Program 3 will now be listed in the same order in which they appear in the User Guide.

This listing will also include a reference where more information concerning a particular subject can be found. Additionally, the assumed distribution for each test statistic will appear with that test statistic.

1. Test Statistic for Normal μ_o with σ^2 Known (Ref. 1: p. 431)

$$T = \frac{(\bar{x} - \mu_0)\sqrt{n}}{C}$$
, using N(0,1)

2. Test Statistic for Normal μ_0 with σ^2 Unknown [Ref. 1: p. 431]

$$T = \frac{(\bar{x} - \mu_0)\sqrt{n}}{s_X}$$
, using N(0,1) for n > 30, and t(n-1) for n < 30

3. Test Statistic for Bernoulli P_o [Ref. 2: p. 101] For n > 30

$$T = \frac{n(p_0 - \bar{x})}{\sqrt{n(1 - p_0)p_0}} , \text{ using N(0,1)}$$

For n < 30 the Binomial Distribution in the Statistics Module is used to directly calculate the appropriate probability for comparison with $\pmb{\alpha}$.

4. Test Statistic for Normal σ_0^2 with μ Known [Ref. 1: p. 432; Ref. 2: p. 104] For n < 65

$$T = T' = \frac{\sum x_i^2 + n\mu^2 - 2\mu \sum x_i}{\sigma_0^2}$$
, using $\chi^2(n)$

For n > 65

$$T = \frac{T' - n}{\sqrt{2n}} , \qquad using N(0,1)$$

5. Test Statistic for Normal σ_0^2 with μ Unknown [Ref. 1: p. 432; Ref. 2, p. 104]

For n < 64

$$T = T' = \frac{(n-1)s_{\chi}^2}{\sigma_0^2}$$
, using $\chi^2(n-1)$

For n > 64

$$T = \frac{T' - (n-1)}{\sqrt{2(n-1)}}$$
, using N(0,1)

6. Test Statistic for Exponential $\mu_0 = 1/\lambda_0$ [Ref. 3: p. 279]

For n < 32

$$T = T' = \frac{2n\bar{x}}{\mu_o}$$
, using $\chi^2(2n)$

For n > 32

$$T = \frac{T' - 2n}{2\sqrt{n}}, \quad using N(0,1)$$

7. Test Statistic for Poisson λ_0 [Ref. 2: p. 248]

For n < 30

$$T = n \lambda_o$$
, using $\chi^2(2n\overline{x})$

For n > 30

$$T = \frac{n\bar{x} - n\lambda_0}{\sqrt{n\lambda_0}}, \quad \text{using } N(0,1)$$

D. THEORY FOR TWO-POPULATION HYPOTHESIS TESTS

The two-population hypothesis tests are performed in the same manner as the one-population tests. For an explanation of these tests, refer to C above. The test statistics used in Program 4 will now be listed in the same order in which they appear in the User Guide. This listing will include the assumed distribution and applicable references.

1. Test Statistic for Bernoulli $P_X = P_Y$ [Ref. 2: p. 249]

$$T = \frac{\left(\bar{x} - \bar{y}\right)}{\sqrt{\left(1 - \frac{\left(m\bar{y} + n\bar{x}\right)}{\left(m + n\right)}\right)\left(\frac{\left(m\bar{y} + n\bar{x}\right)}{\left(m + n\right)}\right)\left(\frac{1}{n} + \frac{1}{m}\right)}}, \text{ using } N(0,1)$$

2. Test Statistic for Normal $\mu_X = \mu_Y$ for X,Y Paired [Ref. 2: p. 121]

 $T = \overline{d}(\sqrt{n}/s_d)$, using t(n-1) for n < 31, and N(0,1) for $n \ge 31$

3. Test Statistic for Normal $\mu_X = \mu_Y$ for X and Y

Independent with $\sigma_X^2 = \sigma_Y^2$ [Ref. 1: pp. 434-435;

Ref. 2: p. 116]

$$T = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}, \text{ where } s_p = \sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n + m - 2}}$$

and using
$$t(n+m-2)$$
 for $n < 32$, and $N(0,1)$ for $n > 32$

4. Test Statistic for Normal $\mu_X = \mu_Y$ for X and Y Independent with σ_X^2 , σ_Y^2 Known [Ref. 2: p. 119]

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_{X}^{2}}{n} + \frac{\sigma_{Y}^{2}}{m}}}, \text{ using } N(0,1)$$

5. Test Statistic for Normal $\mu_X = \mu_Y$ for X and Y

Independent with $\sigma_X^2 \neq \sigma_Y^2$ [Ref. 2: p. 119]

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2 + s_Y^2}{n}}}, \text{ using N(0,1) for df } \geq 30, \text{ and}$$
$$t(df) \text{ for df } < 30, \text{ where}$$

df = largest integer in
$$\frac{\left(\frac{s_X^2 + \frac{s_Y^2}{n}^2}{\left(\frac{s_X^2}{n}\right)^2 + \frac{\left(\frac{s_Y^2}{m}\right)^2}{m}\right)^2}{\left(\frac{s_X^2}{n}\right)^2 + \left(\frac{s_Y^2}{m}\right)^2} - 1.5$$

6. Test Statistic for Normal $\sigma_X^2 = \sigma_Y^2$ for X and Y

Independent [Ref. 2: p. 111]

$$T = \frac{s_x^2}{s_y^2}, \text{ using } F(n-1,m-1)$$

7. Test Statistic for Normal $\rho = 0$ [Ref. 1: pp. 492-493; Ref. 2: p. 200]

$$T = r\sqrt{\frac{(n-2)}{1-r^2}}$$
, using t(n-2) for n < 28, and N(0,1) for n \geq 28

8. Test Statistic for Exponential $\lambda_X = \lambda_Y$ for X and Y Independent [Ref. 4: p. 310]

$$T = \frac{\overline{x}}{\overline{y}}$$
, using $F(2n, 2m)$

E. THEORY FOR METHODS OF APPROXIMATION

The methods used to approximate distribution values for this package of programs come from many sources, and any complete discussion of the theory involved would be beyond the scope of this paper. Therefore, while every method which has been used will be referenced, only those methods unique to this programming effort will be discussed in theoretical detail. With this in mind, a combination listing and discussion will follow which will trace the approximation methods used in this paper. The approximations unique to this effort are the inverse cumulative distribution functions (CDF) for the Chi-Square, Student's t and F distributions as well as the Multinomial approximation. The inverse Normal CDF approximation discussed here was used in Professor Zhena's programs. All other approximations used in this paper are modifications of methods from the TI-59 Statistics Module. For a better discussion of the exact methods used in these cases, the TI-59 Applied Statistics Manual should be consulted [Ref. 7].

There are two types of inverse CDF approximations used in this paper. The first two programs use a less accurate Type I approximation, while the distribution programs use a closely related, but more accurate, Type II approximation. What follows is a discussion of the methods used for approximating the inverse Normal, Chi-Square, Student's t and F distrubitons, and the Multinomial distribution.

1. Inverse Normal CDF Approximation [Ref. 5: p. 933]

a. Type I Approximation

This approximation is used in Programs 1 and 2 for inverse Normal CDF values and as a subroutine for the Chi-Square, t and F approximations in those same programs. The Type I approximation uses the following set of equations and

constants to approximate inverse Normal CDF values, given the input probability p. Programs 1 and 2 have the limitation that p be greater than .5.

$$Z_{p} = t - \frac{c_{0} + c_{1}t + c_{2}t^{2}}{1 + d_{1}t + d_{2}t^{2} + d_{3}t^{3}} , \text{ where } t = \sqrt{\ln(1/(1-p)^{2})}, \text{ and }$$

$$c_{0} = 2.515517 \qquad d_{1} = 1.432788$$

$$c_{1} = .802853 \qquad d_{2} = .189269$$

$$c_{2} = .010328 \qquad d_{3} = .001308$$

b. Type II Approximation

The Type II approximation is almost identical to the Type I approximation. The only difference is the addition of a function which removes the limitation that p be greater than .5. This function uses the symmetric quality of the Normal distribution and returns the negative of the approximation for 1-p, whenever p is less than .5.

2. Inverse Chi-Square CDF Approximation [Ref. 5: p. 941]

a. Type I Approximation

This approximation is used in Program 1 only and uses the inverse Normal CDF approximation described above. The inverse Chi-Square CDF approximation uses the following set of equations and calculates both $\chi^2_{(1-p)}(v)$ and $\chi^2_{(p)}(v)$ given the input probability p. The reference listed above limits degrees of freedom, v, for this approximation to values above 30; however, as can be seen in Appendix B values well below v = 30 produce acceptable approximations.

$$\chi_{p}^{2}(v) = v(1 - a + z_{p} a)^{3}$$
, where $a = \frac{2}{9v}$

b. Type II Approximation

This approximation is used only in Program 7 and incorporates the Type I inverse Chi-Square CDF approximation with an Accuracy Enhancing Technique (AET) which requires the highly accurate forward Chi-Square CDF approximation contained in that same program. This AET involves taking the output of the Type I approximation and using it in the forward CDF approximation to obtain an estimate, \hat{p} , of the actual probability achieved by the Type I approximation. This estimate is then used to correct the inverse approximation input, p, for any difference between desired and actual probability. The corrected inverse input, p', is computed using the following formula:

$$p' = p + (p - \hat{p})$$
.

By using p' as the new input for the inverse CDF approximation, a more accurate approximation is achieved (see Appendix B). This AET is not used for v > 30 since the Type I approximation is then quite accurate.

- 3. Inverse Student's t CDF Approximation
 - a. Type I Approximation

This approximation is used in Programs 1, 2, 8 and 9 and requires the inverse Normal CDF approximation already described. The following equation represents one of

several approximations to the inverse t developed by Professor Donald P. Gaver, Naval Postgraduate School. This approximation is limited to values of $v \ge 2$ [Ref. 8].

$$t_p(v) = Z_p\left(1 + Z_p^2\left(\frac{-1 + \sqrt{1 + \frac{10}{3(v - 1.57)}}}{5}\right)\right), v \ge 2$$

b. Type II Approximation

This approximation is used only in Program 8 and, like the Type II Chi-Square approximation, uses an AET to increase the accuracy of the Type I approximation. The procedures for this AET are exactly the same as in the Chi-Square approximation. Additionally, the restriction on v has been removed by using the following relationship to generate inverse approximations when v=1.

$$t_p(1) = \frac{1}{\tan(1-p)}$$
, where for p < .5, 2p is used in place of p

4. Inverse F CDF Approximation [Ref. 5: p. 947]

a. Type I Approximation

This approximation is used in Programs 1 and 2 and uses the inverse Normal approximation discussed earlier. The following set of equations is used to generate the approximation:

$$F_p(v_1, v_2) = e^{2w}$$
, where $w = \frac{Z_p\sqrt{(h+k)}}{h}$, $k = \frac{Z_p^2 - 3}{6}$,

$$h = \frac{1}{2(1/(v_1 - 1) + 1/(v_2 - 1))}$$
, and $v_1 \neq 1$, $v_2 \neq 1$

b. Type II Approximation

This approximation uses the AET discussed earlier along with two more techniques to provide inverse approximations for all values of \mathbf{v}_1 and \mathbf{v}_2 . For the case where \mathbf{v}_1 or \mathbf{v}_2 = 1, the Type I inverse t approximation discussed earlier is used in the following relationships to generate the required inverse F CDF approximations:

$$F_p(1,v) = (t_{(1+p)/2}(v))^2$$
, or equivalently

$$F_p(v,1) = \left(\frac{1}{t_{(1+p)/2}(v)}\right)^2$$
.

For the case where $v_1 = v_2 = 1$, the following relationship is used:

$$F_p(1,1) = \frac{1}{\tan(1-p)}$$
.

5. Multinomial Approximation

The method used to generate multinomial density values is not truly unique; however, it uses the following equation in a way that minimizes rounding errors:

$$f_N(n_1, n_2, ..., n_k) = \frac{N!}{(n_1!)(n_2!)...(n_k!)}(p_1^{n_1})(p_2^{n_2})...(p_k^{n_k}).$$

Computations are accomplished in the following order to avoid, as much as possible, multiplying extremely small values by extremely large values:

$$\left(\frac{N(p_1^{n_1})}{n_1!}\right)\left(\frac{(N-1)(p_2^{n_2})}{n_2!}\right)\cdots\left(\frac{(N-k)(p_k^{n_k})}{n_k!}\right)(N-k-1)!.$$

IV. TI-59

The choice of the TI-59 as the calculator for this programming effort was based on two factors. Professor Zehna's original programs were written for the TI-59; and each student in the Operations Research (OR) curriculum is issued a TI-59 for use in basic probability and statistics courses. In general, the use of hand-held programmable calculators has been shown [Ref. 6: p. 1] to increase student learning and capability. Further, it is intended that the programs described in this paper will be used by OR students in their coursework.

Using the TI-59 offered some disadvantages and some advantages in developing the programming package presented here. The disadvantages of limited storage, slow computation time and awkward data entry sequence are discussed elsewhere in this paper. There are two advantages of the TI-59, however, that deserve noting here. The programming steps and procedures used in the TI-59 are easily learned and logical. This ease of programming makes complex computational methods easy to program. Another advantage of the TI-59 is its compatibility with the PC-100C printer. Using the printer/calculator combination greatly simplifies writing, editing, and error diagnosis. These advantages of the TI-59 make programming relatively easy and also allow the capabilities of the TI-59 to be used more fully.

V. ALTERNATE SOLUTIONS

The problems presented in this paper could have been solved in any number of equally valid ways. This section will briefly discuss the specific alternatives which could increase the capability of the solutions employed here. This discussion will first focus on alternative hardware which could be used, and then on program changes which might be made.

A. HARDWARE ALTERNATIVES

As discussed earlier, the use of the TI-59 calculator is appropriate for this programming package; however, the methods and techniques used in this paper are equally suited to other programmable calculators or computers. Indeed, the use of any other calculator or computer with more storage capability than the TI-59 might be a better vehicle for the package of programs presented here. These programs require a total of 14 magnetic cards (22 separate sides) using the TI-59. Current console model computers could easily store all of these programs at the same time.

The TI-59 has the ability to use program modules, and the nine programs from this package could easily be combined to form the basis of a new module. By careful elimination of redundant functions, such a module could also accommodate an ANOVA and/or regression package. A module of this type might find widespread acceptance, especially in the classroom.

B. PROGRAMMING ALTERNATIVES

The choice of distribution approximating methods used here and the general layout of the entire package might both be improved with some additional effort. The methods of approximation used here were chosen rather arbitrarily. It is possible that more appropriate methods of approximation exist. More appropriate methods might include methods with fewer program steps and equal accuracy, as well as methods which take less computation time with equal accuracy.

The current layout of the nine programs in this package might be improved by reducing the number of programs. The present program size precludes this; however, by eliminating some program functions, it might be possible to organize all of the inverse CDF approximations in one program. Shorter approximating methods might make possible a similar program, but with both inverse CDF and regular CDF approximations.

The extensive user guides with their sample problems are useful for students, but could prove awkward for a more experienced user. An obvious alternative would be a shortened user guide directed at those more familiar with the programs.

VI. CONCLUSION

Two problems were presented for solution in this paper. One problem involved expanding and modifying an existing set of TI-59 programs into a user-friendly package. A second problem involved developing a set of distribution approximating programs. The solution to the first problem incorporated increased capability, standardized data entry, and detailed user guides into a package of nine programs. The first priority in this solution was providing a format compatible with a student's needs while maintaining the capability required by a more experienced user. The TI-59 calculator proved to be a very useful tool in this solution, and demonstrated the generally unused capability of the current generation of hand-held programmable calculators.

The approximation programs presented as a solution to the second problem mentioned above provide accurate and comprehensive approximations. These programs practically eliminate the need for tables of values and solve the interpolation problem present in all such tables.

Together these two solutions represent a package with considerable capability in computing confidence intervals, performing hypothesis tests, and generating approximate distribution values. A comprehensive set of user guides makes this same capability available even to inexperienced users. The methods used in preparing this TI-59 programming

package are directly applicable to other calculators or computers.

APPENDIX A

PROGRAM 1 USER GUIDE - One-Population Confidence Intervals

INTRODUCTION: The purpose of this program is to compute $100\gamma\%$ confidence intervals (1,u) or bounds [1 and u] for the following onepopulation situations:

NORMAL μ with σ^2 known

NORMAL μ with σ^2 unknown

BERNOULLI P

NORMAL σ^2 with μ known

NORMAL σ^2 with μ unknown

EXPONENTIAL λ or μ .

The routines in this program require percentiles from either the Normal, Chi-Square, Student's t or F distributions. Each routine will automatically generate an approximate percentile; however, when additional accuracy is desired or small sample sizes are involved the use of percentile values from either standard tables or the distribution approximating programs is recommended. In step two of each routine the user can choose to accept the approximate percentile, by storing the appropriate percentage in storage register 09 (R_{09}), or he can store the percentile value in R_{11} . Some routines also require percentile values in R_{13} .

GENERAL PROCEDURES:

- 1. Use any library module, and after reading all three card sides, press D to repartition (639.39).
- 2. For data entry press $\mathbb D$ followed by data point x_i , $\mathbb R/\mathbb S$, x_i , $\mathbb R/\mathbb S$, etc. for each x_i (i=1,2,...,n) until all points have been

entered. Mistakes in data entry should be corrected immediately by reentering the unwanted point and pressing $\boxed{\text{INV}}$ $\boxed{\text{2nd}}$ $\boxed{\Sigma}+$, then enter the correct data point and press $\boxed{\text{R/S}}$ $\boxed{\text{R/S}}$. Alternate data entry using summary statistics is detailed in applicable routines.

- 3. For one-sided confidence bounds rather than intervals replace $(1+\gamma)/2$ with γ and $(1-\gamma)/2$ with $1-\gamma$ everywhere they appear $(e.g.\ z_{(1+\gamma)/2}\ becomes\ z\gamma)$ and proceed as usual, ignoring 1 or u as appropriate.
- 4. When solving consecutive problems, care should be taken to clear all previously used registers. Pressing D will clear all registers.

 PROGRAM 1 SPECIFIC PROCEDURES:

C.I. For NORMAL μ with σ^2 known

- 1. Enter data using \bar{D} and store σ in R_{07} (Alternate entry: store n in R_{03} , \bar{x} in R_{08} and σ in R_{07})
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $z_{(1+\gamma)/2}$ in R_{11}
- Press A l is displayed, then
 press x≥t u is displayed

C.I. For NORMAL μ with σ^2 unknown

- 1. Enter data using \overline{D} (Alternate entry; store n in R_{03} , s in R_{07} and \bar{x} in R_{08})
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $t_{(1+\gamma)/2}$ in R_{11}
- Press C l is displayed, then
 press x≥t u is displayed

C.I. For BERNOULLI P

- 1. Store $n\bar{x}$ in R_{01} and n in R_{03}
- 2. Store either $(1+\gamma)/2$ in R_{09} $\frac{OR}{F}(1+\gamma)/2(2n\bar{x}+2,2n-2n\bar{x})$ in R_{11} AND

 $F_{(1+\gamma)/2}^{(2n-2n\bar{x}+2,2n\bar{x})}$ in R_{13}

Press B 1 is displayed, then
 press x≷t u is displayed

C.I. For NORMAL σ^2 with μ known

- 1. Enter data using D and store μ in R₀₈ (Alternate entry: store $\sum x_1^2$ in R₀₂, n in R₀₃ and μ in R₀₈)
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $\chi^2(1-\gamma)/2^{(n)}$ in R_{11} $\frac{\text{AND}}{\chi^2(1+\gamma)/2^{(n)}}$ in R_{13}
- 3. Press C' l is displayed, then press x≥t u is displayed

C.I. For NORMAL 2 with unknown

- 1. Enter data using $\boxed{\rm D}$ (Alternate entry: store n in R $_{03}$ and ${\rm (n-1)s}^2$ in R $_{12}$)
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $\chi^2_{(1-\gamma)/2}^{(n-1)}$ in R_{11} AND $\chi^2_{(1+\gamma)/2}^{(n-1)}$ in R_{13}
- 3. Press D¹ l is displayed, then press x≹t u is displayed

C.I. FOR EXPONENTIAL λ or μ^*

- 1. Enter data using \overline{D} (Alternate entry; store n in R $_{03}$ and \bar{x} in R $_{08}$)
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $\chi^2(1-\gamma)/2^{(2n)}$ in R_{11} AND $\chi^2(1+\gamma)/2^{(2n)}$ in R_{13}
- 3. Press E l is displayed, then press x≥t u is displayed
- * 4. To compute a confidence interval or bound for $\mu = 1/\lambda$ press E' rather than E above.

PROGRAM 1 ADDITIONAL CAPABILITIES:

Inverse Normal CDF Approximation

- 1. Store p in R_{09} (p > .5)
- 2. Press B' z_p is displayed, and $z_{(1-p)}$ is available in R_{13}

Inverse Chi-Square CDF Approximation

- 1. Store p in R_{09} (p > .5), and store v in R_{14} (v \neq 1)
- 2. Press SBR X^2 χ^2 _p(v) is displayed, and χ^2 _(1-p)(v) is available in R₁₁

Inverse F CDF Approximation

- 1. Store p in R_{09} (p > .5), v_1 in R_{20} and v_2 in R_{21} ($v_1 \neq 1$, $v_2 \neq 1$)
- 2. Press SBR RCL $F_p(v_1, v_2)$ is displayed

Inverse Student's t CDF Approximation

- 1. Store p in R_{09} (p > .5) and v in R_{19} (v \neq 1)
- 2. Press \fbox{SBR} \fbox{STO} $t_p(v)$ is displayed

PROGRAM 1 LABELS USED:

A	Α'	SBR	RCL
В	в'	GTO	STO
_			510
C	G'	x≷t	
D	D'	_X 2	
E	E'	=	

PROGRAM 1 STORAGE REGISTER CONTENTS:

00	clear	15	used
01	Σx	16	clear
02	$\sum x_i^2$	17	clear
03	n	18	clear
04	used	19	v
05	clear	20	v ₁
06	clear	21	^v 2
07	s or σ	22	clear
80	x̄ or μ	23	clear
09	$(1+\gamma)/2$ or p	24	used
10	used	25	clear
11	CDF value	26	clear
12	(n-1)s ²	27	used
13	CDF value	28	used
14	v	29-	49 clear

PROGRAM 1 SAMPLE PROBLEMS:

1. Suppose $\bar{x} = 69.7$, n = 8, $\sigma^2 = 3.5$. Find a 90% C.I. for estimating the mean.

SOLUTION:

- (1) Store n=8 in R_{03} , $\bar{x} = 69.7$ in R_{08} and $\sigma = \sqrt{3.5}$ in R_{07}
- (2) Store $(1+\gamma)/2 = .95 \text{ in } R_{09} \text{ OR } z_{.95} = 1.645 \text{ in } R_{11}$

u = 70.78820508 0R u = 70.78806523

- 2. Given the following observations from a population with a known variance of 15, find a lower 99% confidence bound on the mean.
 - 165 178 160 199 167 145 157 182 192 165

SOLUTION:

- (1) Enter data using D sequence and store $\sigma = \sqrt{15}$ in R_{07}
- (2) Store γ = .99 in R_{09} OR $z_{.99}$ = 2.326 in R_{11}

ignore u ignore u

3. Find a 90% C.I. for the mean of the following test scores.

35 34 46 20 38 39 32 49 41 25 18 43 51 38 42 29 59 53 27 33

- (1) Enter data using D sequence
- (2) Store $(1+\gamma)/2 = .95 \text{ in } R_{09} \text{ OR } t_{.95}(19) = 1.729 \text{ in } R_{11}$
- (3) Press C then x≥t to display

$$u = 41.80037417$$
 $u = 41.80609048$

4. Find a 95% upper confidence bound for μ given the following information: n = 55, s = 15 and $\bar{x} = 85$.

SOLUTION:

- (1) Store n = 55 in R_{03} , s = 15 in R_{07} and \bar{x} = 85 in R_{08}
- (2) Store $\gamma = .95 \text{ in R}_{09} \text{ OR} \text{ t.}_{.95}(54) = 1.673 \text{ in R}_{11}$
- (3) Press C then x≥t to display

 ignore 1 ignore 1

 u = 88.38398464 u = 88.38380911
- 5. Of 1000 people treated with a certain drug 200 showed a reaction. Find a 90% C.I. for the proportion of the sample population that will show a reaction.

- (1) Press \square then store $n\bar{x} = 200$ in R_{01} and n = 1000 in R_{03}
- (2) Store $(1+\gamma)/2 = .95 \text{ in } R_{09} \text{ OR } F_{.95}(402,1600) = 1.13 \text{ in } R_{11}$ $\frac{\text{AND}}{\text{F}_{.95}(1602,400)} = 1.14 \text{ in } R_{13}$

5. Find a 95% upper confidence bound for the proportion of the sample population if nine of 24 treated were affected.

SOLUTION:

- (1) Press D then store $n\bar{x} = 9$ in R_{01} and n = 24 in R_{03}
- (2) Store $\gamma = .95 \text{ in R}_{09} \quad \underline{\text{OR}} \quad F_{.95}(20,30) = 1.93 \text{ in R}_{11} \\ \underline{\text{AND}}$

$$F_{.95}(32,18) = 2.13 \text{ in } R_{13}$$

(3) Press B then x≥t to display ignore 1 ignore 1

$$u = .5629409878$$
 $u = .5626822157$

7. Find a 95% C.I. for σ^2 and for σ given the following observations from a sample population with μ = 65.0 .

SOLUTION:

- (1) Enter data using \overline{D} and store μ = 65 in R_{08}
- (2) Store $(1+\gamma)/2 = .975 \text{ in } R_{09} \text{ OR} \quad \chi^2._{025}(10) = 3.25 \text{ in } R_{11}$ $\frac{\text{AND}}{\chi^2._{975}(10)} = 20.48 \text{ in } R_{13}$
- (3) Press \mathbb{C}' then \mathbb{R}^2 to display (for \mathcal{O}^2)

$$u = 2726.124604$$
 $u = 2702.461538$

Taking square roots the following limits for σ are displayed

$$u = 52.21230319$$
 $u = 51.985205$

8. Suppose n = 15, $\sum x_i^2 = 88476$ and $\mu = 30.5$. Find a 97.5% upper confidence bound on the standard deviation.

SOLUTION:

- (1) Press D then store $\sum x_1^2 = 88476$ in R_{02} , n = 15 in R_{03} and $\mu = 30.5$ in R_{08}
- (2) Store $\gamma = .975 \text{ in } R_{09} \quad \underline{\text{OR}} \quad \chi^2_{.025}(15) = 6.26 \text{ in } R_{11}$ $\underline{\text{AND}} \quad \chi^2_{.975}(15) = 27.49 \text{ in } R_{13}$
- 9. Find a 95% C.I. for σ given the following observations.

100 15 73 46 65 98 79 38 68 85

- (1) Enter data using D
- (2) Store $(1+\gamma)/2 = .975 \text{ in } R_{09} \text{ OR } \chi^2._{025}(9) = 2.70 \text{ in } R_{11}$ $\frac{\text{AND}}{\chi^2._{975}(9)} = 19.02 \text{ in } R_{13}$
- (3) Press D' then $x \ge t$ and take square roots to display $1 = 18.54742 \qquad 1 = 18.54896609$ $u = 49.47192697 \qquad u = 49.23150151$

10. Suppose n = 45 and $s^2 = 36$ find a 90% lower confidence bound for σ^2 .

SOLUTION:

- (1) Press D then store n = 45 in R_{03} and $(n-1)s^2 = 1584$ in R_{12}
- (2) Store $\gamma = .90 \text{ in } R_{09} = \frac{\Omega R}{\chi^2} \frac{\chi^2}{.10} (444) = 32.5 \text{ in } R_{11} = \frac{AND}{\chi^2} \frac{\Lambda}{.90} (444) = 56.4 \text{ in } R_{13}$
- 11. Given the time to failure of an electron tube is an exponential random variable, and the sum of 25 times to failure is 25242. Find a 95% C.I. for λ .

- (1) Press \overline{D} then store n=25 in R_{03} and $\overline{x}=25242/25$ in R_{08}
- (2) Store $(1+\gamma)/2 = .975$ in R_{09} OR $\chi^2_{.025}(50) = 31.92$ in R_{11} AND $\chi^2_{.975}(50) = 70.92$ in R_{13}

12. Six expensive pieces of equipment had the following times to failure. Find a 95% C.I. for the mean time to failure.

233.6 3119.0 258.3 1402.7 612.9 2211.2

- (1) Enter data using D
- (2) Store $(1+\gamma)/2 = .975$ in R_{09} OR $\chi^2.025(12) = 4.40$ in R_{11} AND $\chi^2.975^{(12)} = 23.34$ in R_{13}

PROGRAM 2 USER GUIDE - Two-Population Confidence intervals:

INTRODUCTION: The purpose of this program is to compute $100\,\gamma\%$ confidence intervals (1,u) or bounds [1 and u] for the following two-population situations.

BERNOULLI p_{χ} - p_{γ} for large sample sizes

NORMAL μ_{χ} - μ_{γ} for X and Y paired with σ^2 unknown

NORMAL μ_{χ} - μ_{γ} for X and Y independent with σ_{χ}^2 = σ_{γ}^2 = σ^2 NORMAL μ_{χ} - μ_{γ} for X and Y indep with σ_{χ}^2 and σ_{γ}^2 known

NORMAL $\sigma_{\chi}^2/\sigma_{\gamma}^2$ for X and Y independent

EXPONENTIAL $\lambda_{\chi}/\lambda_{\gamma} = \mu_{\gamma}/\mu_{\chi}$ for X and Y independent

The routines in this program require percentiles from either the Normal, Student's t or F distributions. Each routine will automatically generate an approximate percentile; however, when additional accuracy is desired or small sample sizes are involved the use of percentile values from either standard tables or the distribution approximating programs is recommended. In step two of each routine the user can choose to accept the approximate percentile, by storing the appropriate percentage in R_{0Q} , or he can store the the percentile value

GENERAL PROCEDURES:

1. Use any library module, and after reading all three card sides, press D to repartition (719.29).

in R_{11} . Some routines also require percentile values in R_{13} .

2. Data entry for independent data (DEI Sequence), press D followed by data point x_i , R/S, x_{i+1} , R/S, etc. for each x_i (i=1,2,...,n). When all of the x_i 's have been entered press D' followed by data point y_i , R/S, y_{i+1} , R/S, etc. for each y_i (i=1,2,...,m).

When all of the y_i 's have been entered press SBR GTO. Mistakes in data entry should be corrected immediately by reentering the unwanted data point and pressing INV 2nd Σ +, then enter the correct data point and press R/S R/S. Alternate data entry using summary statistics is detailed in applicable routines.

- 3. Data entry for paired data (DEP Sequence), press \overline{D} followed by x_i , \overline{x} , y_i , $\overline{R/S}$, x_{i+1} , \overline{x} , y_{i+1} , $\overline{R/S}$, etc. for each data pair x_i , y_i (i=1,2,...,n), then press \overline{SBR} \overline{RST} . Mistakes and alternate entry are as above.
- 4. For confidence bounds rather than intervals, replace $(1+\gamma)/2$ with γ everywhere it appears (e.g. $t_{(1+\gamma)/2}(v)$ becomes $t_{\gamma}(v)$) and proceed as usual ignoring either 1 or u as appropriate.
- 5. When solving consecutive problems, care should be taken to clear all previously used storage registers. Pressing D will clear all registers.

PROGRAM 2 SPECIFIC PROCEDURES:

C.I. For BERNOULLI pX-pY for large sample sizes*

- 1. Press D then store $n\bar{x}$ in R_{01} , $m\bar{y}$ in R_{02} n in R_{03} , m in R_{04}
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $^{2}(1+\gamma)/2$ in R_{11}
- 3. Press B 1 is displayed, then press x≥t u is displayed
- * Large here means np_{χ} , mp_{γ} , $n(1-p_{\chi})$, $m(1-p_{\gamma})$ all greater than five.

C.I. For NORMAL $\mu_{\rm X}$ - $\mu_{\rm Y}$ for paired X and Y (n pairs)

- 1. Enter data using DEP Sequence, degrees of freedom, v=n-1, will be displayed. (Alternate entry: store $\tilde{x}-\tilde{y}$ in R_{10} , s_d/\sqrt{n} in R_{12} and n-1 in R_{19})
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $t_{(1+\gamma)/2}$ in R_{11}
- 3. Press C l is displayed, then press x≷t u is displayed
- 4. When differences, x_1-y_1 , are given use Program 1.

C.I. For NORMAL μ_X - μ_Y with $\sigma_X^2 = \sigma_Y^2 = \sigma^2$ unknown

- 1. Enter data using DEI Sequence, degrees of freedom, v = n+m-2 is displayed. (Alternate entry #1: Store n in R_{15} , m in R_{03} , $\bar{x}-\bar{y}$ in R_{10} , $\sum (x_i-\bar{x})^2$ in R_{16} , $\sum (y_i-\bar{y})^2$ in R_{26} and (n+m-2) in R_{19}) (Alternate entry #2: Store n in R_{03} , $\sum x_i$ in R_{01} , $\sum x_i^2$ in R_{02} , then press D', store m in R_{03} , $\sum y_i$ in R_{01} and $\sum y_i^2$ in R_{02} , then press BR CTO, v is displayed)
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $t_{(1+\gamma)/2}$ (n+m-2) in R_{11}
- Press C 1 is displayed, then
 press x²t u is displayed

C.I. For NORMAL μ_{x} - μ_{y} with σ_{x}^{2} and σ_{y}^{2} known

- 1. Enter data using DEI Sequence, then store $\sigma_{\rm X}^{2/\rm n}$ in R₁₇ and $\sigma_{\rm Y}^{2/\rm m}$ in R₀₇ (Alternate entry: store $\bar{\rm x}$ - $\bar{\rm y}$ in R₁₀ and $\sigma_{\rm X}^{2/\rm n}$) + $(\sigma_{\rm Y}^{2/\rm m})$ in R₁₂)
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $z_{(1+\gamma)/2}$ in R_{11}
- 3. Press A 1 is displayed, then press x≥t u is displayed

C.I. For NORMAL $\sigma_{\rm X}^{2}/\sigma_{\rm Y}^{2}$

- 1. Enter data using DEI Sequence (Alternate entry: store n in R $_{15}$, s $_{\rm X}^2$ in R $_{17}$, m in R $_{03}$ and s $_{\rm Y}^2$ in R $_{07}$)
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $F_{(1+\gamma)/2}^{(n-1,m-1)}$ in R_{11} AND

 $F(1+\gamma)/2^{(m-1,n-1)}$ in R_{13}

3. Press E l is displayed, then press x≷t u is displayed

C.I. For EXPONENTIAL $\lambda_{\rm X}/\lambda_{\rm Y} = \mu_{\rm Y}/\mu_{\rm X}$

- 1. Enter data using DEI Sequence (Alternate entry: store n in R $_{15}$, \bar{x} in R $_{18}$, m in R $_{03}$ and \bar{y} in R $_{08}$)
- 2. Store either $(1+\gamma)/2$ in R_{09} OR $F_{(1+\gamma)/2}(2m,2n)$ in R_{11} AND $F_{(1+\gamma)/2}(2n,2m)$ in R_{13}
- 3. Press E' l is displayed, then press x≹t u is displayed

PROGRAM 2 ADDITIONAL CAPABILITIES:

Inverse Normal CDF Approximation

- 1. Store p in R_{09} (p > .5)
- 2. Press B' to display z_p

Inverse Student's t CDF Approximation

- 1. Store p in R_{09} (p > .5) and v in R_{19} (v \neq 1)
- 2. Press SBR RCL to display $t_p(v)$

Inverse F CDF Approximation

- 1. Store p in R₀₉ (p > .5), v₁ in R₂₀ and v₂ in R₂₁ (v₁ \neq 1,v₂ \neq 1)
- 2. Press SBR STO to display $F_p(v_1, v_2)$

PROGRAM 2 LABELS USED

A	A'	GTO	EE
В	В'	RST	
C	=	SBR	
D	D'	STO	
Ŧ.	E'	RCL	

PROGRAM 2 STORAGE REGISTER CONTENTS:

00	clear	15	n
01	$n\bar{x}$ or $\sum y_i$	16	used
02	$m\bar{y}$ or $\sum y_i^2$	17	s_{χ}^{2} or $\sigma_{\chi}^{2/n}$
03	n or m	18	x
04	m or $\sum x_i$	19	v or (n-1)
05	$\sum x_i^2$	20	v ₁
06	$\sum x_i y_i$	21	v 2
07	s_{γ}^{2} or $G_{\gamma}^{2/m}$	22	clear
08	ÿ	23	used
09	p or $(1+\boldsymbol{\gamma})/2$	24	used
10	x-ỹ	25	clear
11	CDF value	26	clear
12	s_d/\sqrt{n}	27	used
13	CDF value	28	used
14	used	29	used

PROGRAM 2 SAMPLE PROBLEMS:

1. In a survey of 400 people from one city 188 preferred Brand A soap to all others; and in a sample of 500 people from another city 210 preferred the same product. Find a 95% confidence interval for p_χ - p_χ .

SOLUTION:

- (1) Press D then store $n\bar{x} = 188$ in R_{01} , $m\bar{y} = 210$ in R_{02} , n = 400 in R_{03} and m = 500 in R_{04}
- (2) Store $(1+\gamma)/2 = .975 \text{ in } R_{09} \text{ OR} z_{.975} = 1.960 \text{ in } R_{11}$
- 2. In a survey of dieting effects, ten women were selected, weighed and placed on a diet for two weeks. At the end of that time they were reweighed. The results are listed below. Find a 99% confidence interval for the difference in means. Also find a 95% upper confidence bound for the difference in means.

Before 119 122 136 130 129 136 134 133 119 115

After 114 119 134 126 119 137 124 127 119 107

SOLUTION Part a.

- (1) Enter data using DEP Sequence, 9 is displayed
- (2) Store $(1+\gamma)/2 = .995$ in R_{09} OR $t_{.995}(9) = 3.250$ in R_{11}

SOLUTION Part b.

- (1) Enter data using DEP Sequence, 9 is displayed
- (2) Store $\gamma = .95 \text{ in R}_{09} \text{ OR t}_{.95}(9) = 1.833 \text{ in R}_{11}$
- (3) Press C then xt to display

 ignore 1 ignore 1

 u = 6.92957002 u = 6.937461644
- 3. Suppose \bar{x} = 10, \bar{y} = 5, n = 25, and s_d = 10; find a 90% C.I. for μ_{X} - μ_{Y} .

SOLUTION:

- (1) Press D then s ore $\bar{x}-\bar{y} = 5$ in R_{10} , $s_d/\sqrt{n} = 2$ in R_{12} and (n-1) = 24 in R_{19}
- (2) Store $(1+\gamma)/2$ in R_{09} OR $t_{.95}(24) = 1.711$ in R_{11}
- 4. Two small classes used different, but equivalent methods on a common exam. Their scores are listed below. Find a 90% confidence interval and a 90% lower bound for the difference in means.

X: 82 87 91 54 97 76 64 98 92 57 80 53 64

Y: 91 62 94 92 87 79 86 75 90 73 83 93 65 89 68 52

SOLUTION: Part a.

- (1) Enter data using DEI Sequence, v = 27 is displayed
- (2) Store $(1+\gamma)/2 = .95 \text{ in } R_{09} \quad \underline{OR} \quad t_{.95}(27) = 1.703 \text{ in } R_{11}$
- (3) Press C then x≥t to display

1 = -12.62699316 1 = -12.63357801 u = 5.828916241 u = 5.835501092

SOLUTION Part b.

- (1) Enter data using DEI Sequence, v = 27 is displayed
- (2) Store γ = .90 in R₀₉ <u>OR</u> t_{.90}(27) = 1.314 in R₁₁
- 5. Suppose n = 16, m = 15, \bar{x} = 14.3, \bar{y} = 12.5, $\sum (x_i \bar{x})^2 = 67.2$ and $\sum (y_i \bar{y})^2 = 103.7$. Find a 99% upper confidence bound for the difference in means.

SOLUTION:

- (1) Press D then store n = 16 in R_{15} , m = 15 in R_{03} , $\bar{x}-\bar{y}$ = 1.8 in R_{10} , $\sum (x_i-\bar{x})^2 = 67.2$ in R_{16} , $\sum (y_i-\bar{y})^2 = 103.7$ in R_{26} and (n+m-2) = 29 in R_{19}
- (2) Store γ = .99 in R₀₉ OR t_{.99}(29) = 2.462 in R₁₁
- (3) Press C then x\tau\tau to display

 ignore 1 ignore 1

 u = 3.959764742 u = 3.948005095
- 6. Suppose n = 32, m = 10, \bar{x} = 13, \bar{y} = 15, σ_{χ}^2 = 16 and σ_{Υ}^2 = 25; find a 95% confidence interval for μ_{χ} - μ_{χ} .

- (1) Press D then store $\bar{x}-\bar{y}=2$ in R_{10} and $\sqrt{(\sigma_{\chi}^2/n) + (\sigma_{\gamma}^2/m)} = \sqrt{3} \text{ in } R_{12}$
- (2) Store $(1+\gamma)/2 = .975 \text{ in R}_{09} \quad \underline{\text{OR}} \quad \mathbf{z}_{.975} = 1.960 \text{ in R}_{11}$
- (3) Press A then $x \ge 1$ to display 1 = -1.395503599 u = 5.395503599 1 = -1.394819583 u = 5.394819583

7. Given the following sets of data with known variance, estimate the difference in means with a 90% confidence interval.

$$\sigma_{\rm X}^2 = 3.7$$
 and $\sigma_{\rm Y}^2 = 2.5$

SOLUTION:

- (1) Enter data using DEI Sequence and store $\sigma_{\rm X}^{2/n}$ = 3.7/7 in R₁₇ and $\sigma_{\rm Y}^{2/m}$ = 2.5/8 in R₀₇
- (2) Store $(1+\gamma)/2 = .95 \text{ in } R_{09} \text{ } 0R \text{ } z_{.95} = 1.645 \text{ in } R_{11}$
- (3) Press A then $x \ge t$ to display $1 = -3.771322531 \qquad 1 = -3.77112862$ $u = -.7536774686 \qquad u = -.7538713802$
- 8. Find a 99% confidence interval for $\sigma_{\rm X}^{2}/\sigma_{\rm Y}^{2}$ using the following data.

X: 82 87 91 54 97 76 64 98 92 57 80 53 64

Y: 91 62 94 92 87 79 86 75 90 73 83 93 65 89 68 52

SOLUTION:

- (1) Enter data using DEI Sequence
- (2) Store $(1+\gamma)/2 = .995$ in R_{09} OR $F_{.995}(12,15)=4.25$ in R_{11} AND

$$F_{.995}(15,12) = 4.72 \text{ in } R_{13}$$

(3) Press E then x≥t to display

$$u = 7.818933411$$
 $u = 7.773767765$

9. Find a 95% confidence interval for σ_X^2/σ_Y^2 given n = 8, m = 11, $s_X^2 = 4$ and $s_Y^2 = 3.6$.

SOLUTION:

- (1) Press D then store n = 8 in R_{15} , m = 11 in R_{03} , $s_X^2 = 4$ in R_{17} and $s_Y^2 = 3.6$ in R_{07}
- (2) Store $(1+\gamma)/2 = .975 \text{ in } R_{09} \text{ OR}$ $F_{.975}(7,10) = 3.95 \text{ in } R_{11}$ $\frac{\text{AND}}{\text{F}_{.975}(10,7)} = 4.76 \text{ in } R_{13}$
- 10. Find a 90% confidence interval for $\mu_{\rm Y}/\mu_{\rm X}$ given the following data:

X: 17 6 12 14 3 12 15 Y: 7 15 4 6 21 13

- (1) Enter data using DEI Sequence
- (2) Store $(1+\gamma)/2 = .95 \text{ in R}_{09} \quad \underline{\text{OR}} \quad F_{.95}(12,14) = 2.55 \text{ in R}_{11} \\ \underline{\text{AND}} \quad F_{.95}(14,12) = 2.64 \text{ in R}_{13}$

11. Two types of electric bulbs are observed as to length of life, yeilding the following results. Are the means significantly different? $(\alpha = .1)$

Type 1
$$n = 46 \tilde{x} = 1070$$

Type 2
$$m = 64 \ \bar{y} = 1041$$

SOLUTION:

- (1) Press D then store n = 46 in R_{15} , m = 64 in R_{03} , $\bar{x} = 1070$ in R_{18} and $\bar{y} = 1041$ in R_{08}
- (2) Store $(1+\gamma)/2 = .95 \text{ in R}_{09} \text{ OR F}_{.95}(98,128) = 1.33 \text{ in R}_{11}$ AND

 F.95(128,98) = 1.40 in R₁₃

Thus with 90% confidence the means are not different.

PROGRAM 3 USER GUIDE - One-Population Hypothesis Tests

<u>INTRODUCTION</u>: The purpose of this program is to perform one-tailed or two-tailed hypothesis tests for the following one-population situations:

NORMAL $\mu_{\rm o}$ with σ^2 known

NORMAL $\mu_{\rm o}$ with σ^2 unknown

BERNOULLI $\rho_{\rm o}$ NORMAL $\sigma_{\rm o}^2$ with μ known

NORMAL $\sigma_{\rm o}^2$ with μ unknown

EXPONENTIAL $\mu_{\rm o} = 1/\lambda_{\rm o}$

GENERAL PROCEDURES:

- 1. This program requires the Applied Statistics Module. After reading all three card edges, press [E'] to repartition (719.29).
- 2. For each new problem press E' to clear all registers and to prepare for the following parameter entries. Enter Θ_0 and press R/S, enter α and press R/S, then enter either 0, -1 or +1 for the desired alternate hypothesis, as in the table below, and press R/S.
 - 0 for $H_1: \Theta \neq \Theta_0$, Two-tailed test
 - -1 for $H_1: \theta \leftarrow \theta_0$, Lower-tailed test
 - +1 for $H_1: \Theta > \Theta_0$, Upper-tailed test
- 3. For data entry press \boxed{D} followed by data point x_1 , $\boxed{R/S}$, x_{1+1} , $\boxed{R/S}$, etc for each x_1 (i=1,2,...,n) until all data points have been entered. Mistakes in data entry should be corrected immediately by reentering the unwanted data point and pressing \boxed{INV} $\boxed{2nd}$ $\boxed{\Sigma}$ +, then enter the correct data point and press $\boxed{R/S}$. Alternate data entry using summary statistics is detailed in each subroutine.

4. At the conclusion of each test a 1 for Reject or a 0 for Accept is displayed. The significance level for each test is usually in the T-register (R_T); however, for two-tailed unsymmetric tests the test statistic stored in R_{12} is used as follows: if a 0 is displayed then the test must have failed to reject in both tails. If a 1 is displayed then the test was upper-tailed if R_{12} is greater than the median and lower-tailed if R_{12} is less than the median.

PROGRAM 3 SPECIFIC PROCEDURES:

Tests for NORMAL $\mu_{ m o}$ with σ^2 known

- 1. Press E', enter μ_0 , press R/S, enter α , press R/S, enter 0, -1 or +1 and press R/S.
- 2. Enter data using \square and store σ in R_{07} (Alternate entry: store n in R_{03} , \bar{x} in R_{10} and σ in R_{07}).
- 3. Press A either 1 (reject) or 0 (accept) is displayed, press x≥t to display significance level.

Tests for NORMAL $\mu_{ m o}$ with σ^2 unknown

- 1. Press E', enter μ_0 , press k/s, enter α , press k/s, enter 0, -1 or +1 and press k/s.
- 2. Enter data using \overline{D} (Alternate entry: store n in R_{03} , \bar{x} in R_{10} and s_{χ} in R_{14}).
- 3. ☐ either 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests For Bernoulli p

- 1. Press E', enter p_0 , press R/S, enter α , press R/S, enter 0, -1 or +1 and press R/S.
- 2. Store $n\bar{x}$ in R_{01} and n in R_{03} .
- 3. Press B either 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests For NORMAL ${\sigma_{\!\scriptscriptstyle 0}}^2$ with μ known

- 1. Press E', enter σ_0^2 , press R/S, enter α , press R/S, enter 0, -1 or +1 and press R/S.
- 2. Enter data using \square and store μ in R_{10} (Alternate entry: store n in R_{03} , $\sum x_i$ in R_{01} , $\sum x_i^2$ in R_{02} and μ in R_{10}).
- 3. Press D' either 1 (reject) or 0 (accept) is displayed, then press x≳t to display significance level.

Tests For NORMAL $\sigma_{\!\scriptscriptstyle o}^{2}$ with μ unknown

- 1. Press E', enter σ_0^2 , press R/S, enter α , press R/S, enter 0, -1 or +1 and press R/S.
- 2. Enter data using D (Alternate entry: store n in R_{03} and $(n-1)s_{\chi}^{2}$ in R_{10}).
- 3. Press A' either 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests For EXPONENTIAL $\mu_0 = 1/\lambda_0$

- 1. Press E', enter μ_0 , press R/S, enter α , press R/S, enter 0, -1 or +1 and press R/S.
- 2. Enter data using \overline{D} (Alternate: store n in R_{03} and \overline{x} in R_{10}).
- 3. Press E either 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests For POISSON λ_0

- 1. Press E', enter λ_0 , press R/S, enter α , press R/S, enter 0, -1 or +1 and press R/S.
- 2. Enter data using D (Alternate entry; store n in ${\rm R}_{03}$ and ${\rm n}\bar{\rm x}$ in ${\rm R}_{01})$.
- 3. Press B' either 1 (reject) or 0 (accept) is displayed, then press x≷t to display significance level.

PROGRAM 3 LABELS USED

A	Α'	TAN	LNX
В	В'	SIN	LOG
C	C'	cos	INV
D	ם'	CLR	FIX
E	E'	GRD	INT
×	+	SUM	ENG
÷	_	CE	

PROGRAM 3 STORAGE REGISTER CONTENTS

00 0, -1 or +1

10 \bar{x} or μ or $(n-1)s_{\chi}^2$

01 $n\bar{x}$ or $\sum x_i$

11 a

02 $\sum x_i^2$

12 test statistic

03 n

13 clear

04 clear

14 s_X

05 clear

- 15-29 used
- 06 degrees of freedom
- 07 **O**
- 08 $\mu_{\rm o}$ or $\sigma_{\rm o}^2$ or $\rm p_{\rm o}$ or $\lambda_{\rm o}$
- 09 clear

PROGRAM 3 SAMPLE PROBLEMS:

1. According to an early encyclopedia the average rainfall in a city is 30.1 inches. Rainfall during the past five years has been:

Assuming a standard deviation of .2 inches, has the average changed?

SOLUTION:
$$H_0$$
: $\mu = 30.1$, H_1 : $\mu \neq 30.1$, $\alpha = .05$

- (1) Press E', 30.1, R/S, .05, R/S, 0, R/S.
- (2) Enter data using \square , store σ = .2 in \mathbb{R}_{07}
 - (3) Press A 1 is displayed (reject H_o),

 x≥t sl = .0253472347 .
- 2. A new fad diet was tried out on 15 subjects and the weight losses after one week were:

An advertisement claims that the weight loss after one week on the diet is at least two pounds. Do the data support the claim? ($\alpha = 0.05$)

SOLUTION:
$$H_0: \mu \ge 2$$
, $H_1: \mu < 2$

- (1) Press E', 2, R/S, .05, R/S, 1, R/S.
- (2) Enter data using D.
- (3) Press \bigcirc 0 is displayed (accept H_0), \bigcirc x\gammat sl = .302539836 .
- 3. It is claimed that a certain drug will lower temperature within ten minutes. Five subjects having normal temperatures of 98.6 were given the drug and ten minutes later their temperatures were recorded in summary form as follows: $\sum x = 491$, $\sum x^2 = 48219$. Test the claim at the α = .05 level.

SOLUTION: $H_0: \mu \leq 98.6$, $H_1: \mu > 98.6$

- (1) Press E', 98.6, R/S, .05, R/S, -1, R/S.
- (2) Store n = 5 in R_{03} , $\bar{x} = 491/5$ in R_{10} and $s_{\chi} = \frac{48219 5\bar{x}^2}{4}$ in R_{14}
- (3) Press C 0 is displayed (accept H_o),

 [x\timest sl = .1352267548 .
- 4. A student claims he can always answer more than half of the items on a true-false exam correctly, regardless of the topic. You devise a 20 question exam on a subject of which he knows nothing and he answers 12 of the test items correctly. Would you conclude he has extraordinary powers? ($\alpha = .05$)

SOLUTION: $H_0: \mu = .5$, $H_1: \mu > .5$

- (1) Press E', .5, R/S, .05, R/S, 1, R/S.
- (2) Store $n\bar{x} = 12$ in R_{01} and n = 20 in R_{03} .
- (3) Press B 0 is displayed (accept H_0), $x \ge t$ sl = .2517223358.
- 5. Of 694 respondents, 369 were in favor of more dissemination of birth control information. Is it safe to conclude that more than half of the population agrees with this position? ($\alpha = .05$)

SOLUTION: $H_0: \mu \leq .5$, $H_1: \mu > .5$

- (1) Press E', .5, R/S, .05, R/S, 1, R/S.
- (2) Store $n\bar{x} = 369$ in R_{01} and n = 694 in R_{03}
- (3) Press B 1 is displayed (reject H_0), x\geq t sl = .0474381802.

6. A soup can filling machine is supposed to fill each can with ten ounces of clear broth, with a variance of .01. A change in variability in either direction is undesirable. A random sample of 20 cans yielded $\sum x^2 = 2107.7$ and $\sum x = 205.3$. Is the machine working within limits? ($\alpha = 0.05$)

SOLUTION: $H_0: \sigma^2 = .01$, $H_1: \sigma^2 \neq .01$

- (1) Press E', .01, R/S, .05, R/S, 0, R/S.
- (2) Store n = 20 in R_{03} , $\sum x = 205.3$ in R_{01} , $\sum x^2 = 2107.7$ in R_{02} and $\mu = 10$ in R_{10}
- (3) Press D' 1 is displayed (reject H_0).
- 7. A nail machine is supposed to manfacture 1-inch nails with a standard deviation of .025 inches. A random sample of 30 nails yeilded a sample value for s_{χ} of .03 inches. Does this apparent increase warrant shutting the machine down? ($\alpha = 0.05$)

SOLUTION: $H_0: \sigma^2 \leq (.025)^2$, $H_1: \sigma^2 > (.025)^2$

- (1) Press E', .000625, R/S, .05, R/S, 1, R/S.
- (2) Store n = 30 in R_{03} and $(n-1)s^2 = 29(.03)^2$ in R_{10}
- (3) Press A' 0 is displayed (accept H_o)

 x≥t sl = .059
- 8. A certain type of expensive electrical gear is supposed to have a mean life of 1000 hours. The manfacturer is concerned if the mean departs in either direction from 1000. Five components were tested and they had the following burnout times:

1075 1085 1060 998 995

Is the mean still 1000? ($\alpha = .05$)

SOLUTION: $H_0: \mu = 1000$, $H_1: \mu \neq 1000$

- (1) Press E', 1000, R/S, .05, R/S, 0, R/S.
- (2) Enter data using D
- (3) Press E 0 is displayed (accept H_O)
- 9. Over a period of years there had been an average of 14 accidents per year in a certain city. This year the monthly totals were as follows: 1 0 2 2 1 1 3 0 1 0 1 2.

 Does this data agree with the theory that the number of accidents per month follows a poisson distribution with $\lambda = 1.1667$? ($\alpha = 0.05$)

SOLUTION: $H_0: \lambda = 1.1667$, $H_1: \lambda \neq 1.1667$

- (1) Press E', 1.1667, R/S, .05, R/S, 0, R/S.
- (2) Enter data using D
- (3) Press B' 0 is displayed (accept H_O)

 x≥t sl = .5703943172

PROGRAM 4 USER GUIDE - Two-Population Hypothesis Tests

<u>INTRODUCTION:</u> The purpose of this program is to perform one-tailed and two-tailed hypothesis tests for the following two-population situations.

BERNOULLI $p_y=p_y$ for large sample sizes

NORMAL $\mu_{x} = \mu_{y}$ for X and Y paired

NORMAL $\mu_{x} = \mu_{y}$ for X and Y independent with $\sigma_{x}^{2} = \sigma_{y}^{2} = \sigma^{2}$

NORMAL $\mu_{x} = \mu_{y}$ for x and y independent with σ_{y}^{2} , σ_{y}^{2} known

NORMAL $\mu_{X} = \mu_{Y}$ for X and Y independent with $\sigma_{X}^{2} \neq \sigma_{Y}^{2}$

NORMAL $\sigma_{x}^{2} = \sigma_{y}^{2}$ for X and Y independent

NORMAL $\rho = 0$ for X and Y paired

EXPONENTIAL $\lambda_{x}=\lambda_{y}$ for X and Y independent

GENERAL PROCEDURES:

- 1. This program requires the Applied Statistics Module. After reading all three card edges, press [E'] to repartition (719.29).
- 2. For each new problem press E' to clear all registers and to prepare for the following parameter entries. Enter α and press R/S then enter either 0, -1 or +1 for the desired alternate hypothesis, as in the table below, and press R/S.

0 for $H_1: \ \boldsymbol{\theta}_{\chi} \neq \ \boldsymbol{\theta}_{\gamma}$, Two-tailed test

-1 for $H_1: \Theta_X \leftarrow \Theta_Y$, Lower-tailed test

+1 for $H_{1}: \Theta_{Y} > \Theta_{Y}$, Upper-tailed test

3. For independent data entry (DEI Sequence) press \overline{D} followed by data point x_i , $\overline{R/S}$, x_{i+1} , $\overline{R/S}$, etc. for each x_i (i=1,2,...,n). When all x_i 's have been entered press \overline{D} again, followed by data point y_i , $\overline{R/S}$, y_{i+1} , $\overline{R/S}$, etc. for each y_i (i=1,2,...,m). when all of the y_i 's have been entered press \overline{D} . Mistakes in data entry should be

corrected immediately by reentering the unwanted data point and pressing [NV] 2nd $[\Sigma +]$, then enter the correct data point and press [R/S]. Alternate data entry is detailed in each subroutine.

- 4. For paired data entry (DEP Sequence) press \boxed{D} followed by x_i , $x \ge t$, y_i , $\boxed{R/S}$, x_{i+1} , $\boxed{x \ge t}$, y_{i+1} , $\boxed{R/S}$, etc. when all of the paired data points have been entered press \boxed{SER} \boxed{RST} . Mistakes and alternate entry are as above.
- 5. Each routine displays either a 1 for Reject or a 0 for Accept. The significance level is always in the T-register (R_T). PROGRAM 4 SPECIFIC PROCEDURES:

Tests for BERNOULLI PX=PY for large sample sizes

- 1. Press E' , enter α , press R/S , enter 0, -1 or +1 , and press R/S .
- 2. Store n in $\rm R^{}_{15}, \; n\bar{x}$ in $\rm R^{}_{04}, \; m$ in $\rm R^{}_{03}$ and $m\bar{y}$ in $\rm R^{}_{01}$.
- 3. Press B either 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests for NORMAL $\mu_{\rm X}$ = $\mu_{\rm Y}$ for X and Y paired

- 1. Press E', enter α , press R/S, enter 0, -1 or +1 and then press R/S.
- 2. Enter data using DEP Sequence (Alternate entry: store (n-1) in $\rm R_{25}$ and $\bar{d}(\sqrt{n}/s_d)$ in $\rm R_{10})$
- 3. Press B' either 1 (reject) or 0 (accept) is displayed, then press x≷t to display significance level.

Tests for NORMAL $\mu_X = \mu_Y$ with $\sigma_X^2 = \sigma_Y^2 = \sigma^2$

- 1. Press E', enter α , press R/S, enter 0, -1 or +1 and then press R/S.
- 2. Enter data using DEI Sequence (Alternate entry: store n in R_{15} , m in R_{03} , \bar{x} in R_{14} , \bar{y} in R_{08} , s_{χ}^2 in R_{09} and s_{χ}^2 in R_{07})
- 3. Press C either 1 (reject) or 0 (accept) is displayed, then press xt to display significance level.

Tests for NORMAL $\mu_X = \mu_Y$ for σ_X^2 and σ_Y^2 known

- 1. Press E', enter α , press R/S, enter 0, -1 or +1 and then press R/S.
- 2. Enter data using DEI Sequence and store $\sigma_{\rm X}^{\ 2}$ in R₀₉ and $\sigma_{\rm Y}^{\ 2}$ in R₀₇ (Alternate entry: store n in R₁₅, m in R₀₃, $\bar{\rm x}$ in R₁₄, $\bar{\rm y}$ in R₀₈, $\sigma_{\rm X}^{\ 2}$ in R₀₉ and $\sigma_{\rm Y}^{\ 2}$ in R₀₇)
- 3. Press A either 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests for NORMAL $\mu_{x} = \mu_{y}$ for $\sigma_{x}^{2} \neq \sigma_{y}^{2}$

- 1. Press E', enter α , press R/S, enter 0, -1 or +1 and then press R/S.
- 2. Enter data using DEI Sequence (Alternate entry: store n in R_{15} , m in R_{03} , \bar{x} in R_{14} , \bar{y} in R_{08} , s_{χ}^2 in R_{09} and s_{χ}^2 in R_{07}).
- 3. Press C' , 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests for NCRMAL $\sigma_{\rm X}^2 = \sigma_{\rm Y}^2$

- 1. Press E', enter α , press R/S, enter 0, -1 or +1 and then press R/S.
- 2. Enter data using DEI Sequence (Alternate entry: store n in R_{15} , m in R_{03} , s_{χ}^2 in R_{09} and s_{χ}^2 in R_{07}).
- 3. Press D' either 1 (reject) or 0 (accept) is displayed, then press x≿t to display significance level.

Tests for NORMAL ρ = 0

- 1. Press E', enter α , press R/S, enter 0, -1 or +1 and then press R/S.
- 2. Enter data using DEP Sequence (no alternate entry).
- 3. Press A' either 1 (reject) or 0 (accept) is displayed, then press x≥t to display significance level.

Tests for EXPONENTIAL $\lambda_X = \lambda_Y$

- 1. Press E', enter α , press R/S, enter 0, -1 or +1 and then press R/S.
- 2. Enter data using DEI Sequence (Alternate entry: store n in R_{15} , m in R_{03} , \bar{x} in R_{14} and \bar{y} in R_{08}).
- 3. Press E either 1 (reject) or 0 (accept) is displayed, then press x≷t to display significance level.

PROGRAM 4 LABELS USED

Α	A'	SIN	RST	GTO
В	B'	COS	CLR	χ2
C	G'	DEG	RCL	+
D	ים.	INV	STO	-
E	E'	GRD	EXC	

PROGRAM 4 STORAGE REGISTER CONTENTS:

00 0,
$$-1$$
 or $+1$

07
$$s_{Y}^{2}$$
 or σ_{Y}^{2}

01
$$m\bar{y}$$
 or $\sum y$ 08 \bar{y}

02
$$\sum y^2$$

09
$$s_{\chi}^{2}$$
 or σ_{χ}^{2} 16 - 24 used

10
$$\bar{d}(\sqrt{n}/s_d)$$

04
$$n\bar{x}$$
 or $\sum x$

05
$$\sum x^2$$

PROGRAM 4 SAMPLE PROBLEMS:

1. According to last year, s statistics, 70% of the population were in favor of stricter smog control laws. This year only 65% of 1000 respondents favored stricter laws. Does this represent a significant decrease? ($\alpha = .01$)

SOLUTION:
$$H_0: p_X = p_Y, H_1: p_X \Rightarrow p_Y$$

- (2) Store n = 1000 in R_{15} , $n\bar{x} = 700$ in R_{04} , m = 1000 in R_{03} and $m\bar{y} = 650$ in R_{01} .
- (3) Press B 1 is displayed (reject H_O) x t sl = .0084920904
- 2. Ten plots are split and half planted with variety A and half with variety B. The yields are shown below. Is there a difference in mean yield between the two varieties? ($\alpha = .10$)

SOLUTION:
$$H_o: \mu_A = \mu_B$$
, $H_1 \mu_A \neq \mu_B$

(1) Press
$$E'$$
 , .10, R/S , 0, R/S .

- (2) Enter data using DEP Sequence.
- (3) Press B' 1 is displayed (reject H_0)

 [x2t] sl = .0137674905
- A cigarette manufacturer tests tobacco from two different brands for nicotine content and obtains the following (in milligrams).

A: 24 26 25 22 23

B: 27 28 25 29 26

Do these results indicate there is a difference in mean nicotine content for the two brands? ($\alpha = .05$)

SOLUTION: $\mu_o: \mu_A = \mu_B$, $\mu_1: \mu_A \neq \mu_B$

- (1) Press $\boxed{\mathbf{E}}$, .05, $\boxed{\mathbb{R}/\mathbb{S}}$, 0, $\boxed{\mathbb{R}/\mathbb{S}}$.
- (2) Enter data using DEI Sequence.
- (3) Press C 1 is displayed (reject H_o)

 x≥t sl = .0170716812
- 4. Two analysts make fifty independent determinations of the melting point of a certain chemical. The sample mean and variance of the data found by analyst I are respectively, 73.6 and 10 while the sample mean and variance found by analyst II are, respectively, 72.4 and 8. It is argued that there is a tendency for analyst I to get higher results. What is your conclusion? ($\alpha = 0.05$)

SOLUTION: $H_o: \mu_X = \mu_Y$, $H_1: \mu_X > \mu_Y$

- (1) Press E', .05, R/S, 1, R/S.
- (2) Store n = 50 in R_{15} , m = 50 in R_{03} , $\bar{x} = 73.6$ in R_{14} , $\bar{y} = 72.4$ in R_{08} , $s_{\chi}^2 = 10$ in R_{09} and $s_{\chi}^2 = 8$ in R_{07} .
- (3) Press \boxed{C} 1 is displayed (reject H_o)

 [x\ge t] s1 = .022750062

5. We are interested in replacing wire B with wire A if the resistance per unit length is not significantly decreased. The results of twenty tests on each wire are presented below. If we know that the standard deviation of the two testing procedures are both .0017 ohms. What is your recommendation? (\(\mathbb{\alpha} = .01 \)

SOLUTION:
$$\mu_o$$
: $\mu_A \leq \mu_B$, μ_1 : $\mu_A > \mu_B$

- (2) Enter data using DEI Sequence and store $\sigma_{\rm X}^2 = (.0017)^2$ in R₀₉ and $\sigma_{\rm Y}^2 = (.0017)^2$ in R₀₇
- (3) Press A 0 is displayed (accept H_o)

 [x≥t] sl = .500837784
- 6. Twenty plots of ground were planted with corn. Ten plots (Y) contained a special treatment. The variances were tested and found to be unequal. Is there a significant difference between the yields at the 5% level?

$$\bar{x} = 6.1$$
 $\bar{y} = 5.78$
 $s_{\chi}^2 = .13556$ $s_{\chi}^2 = .028444$

SOLUTION:
$$H_o: \mu_X = \mu_Y$$
, $H_1: \mu_X \neq \mu_Y$.

- (1) Press E', .05, R/S, 0, R/S
- (2) Store n = 10 in R_{15} , m = 10 in R_{03} , \bar{x} = 6.1 in R_{14} , \bar{y} = 5.78 in R_{08} , s_{χ}^2 = .13556 in R_{09} and s_{χ}^2 = .02844 in R_{07} .
- (3) Press C' 1 is displayed (reject H_0) $x \ge 1$ sl = .026650012

7. Suppose that two samples of ten and sixteen observations have, respectively, variances of .3888 and 2.25 . At the 5% significance level would you accept the hypothesis that ${\cal O}_1^{\ 2} \le {\cal O}_2^{\ 2}$?

SOLUTION: $H_o: \sigma_X^2 \leq \sigma_Y^2$, $H_1: \sigma_X^2 > \sigma_Y^2$.

- (1) Press E', .05, R/S, -1, R/S.
- (2) Store n = 10 in R_{15} , m = 16 in R_{03} , s_{χ}^2 = .3888 in R_{09} and s_{χ}^2 = 2.25 in R_{07} .
- (3) D' 0 is displayed (accept H_0) $x \ge 1$ sl = .994190704.
- 8. The following data measurements of students' ability in an IQ test are paired with scores in an acheivement test. Test for $\rho = 0$.

X: 105 95 125 92 120 107 121 90 132 116

Y: 47 46 53 31 64 43 75 40 80 55

SOLUTION: $H_0: \rho = 0$, $H_1: \rho \neq 0$

- (1) Press E', .05, R/S, 0, R/S.
- (2) Enter data using DEP Sequence
- (3) Press A' 1 is displayed (reject H_0)

 [x2t] sl = .0012735515
- 9. Two types of electric bulbs are observed as to length of life, with the following results: n=46, m=64, $\bar{x}=1070$ and $\bar{y}=1041$. Are the mean lives significantly different? ($\alpha=10$)

SOLUTION: $H_0: \lambda_X = \lambda_Y$, $H_1: \lambda_X \neq \lambda_Y$

- (1) Press E', .1, R/S, 0, R/S.
- (2) Store n = 46 in R_{15} , m = 64 in R_{03} , \bar{x} = 1070 in R_{14} and \bar{y} = 1041 in R_{08} .
- (3) E 0 is displayed (accept H₀)

 [x2t] sl = .5605970415

USER GUIDE FOR FIVE DISTRIBUTION PROGRAMS

<u>INTRODUCTION</u>: The purpose of these five programs is to provide accurate approximate values for the following distributions: Normal, Binomial/Multinomial, Chi-square, Student's t, and F.

GENERAL PROCEDURES: Read in the appropriate program and proceed as below.

NORMAL Distribution - Program 5

Proceed with the following steps in any order.

	Enter	Press	Display
1.	z	A	$\phi(z)$ = normal density at z
2.	z	B	$P(z) = P(Z \leq z)$
3.	P(z)	С	$z_{p} = normal p^{th} percentile$
4.	z	D	Q(z) = P(Z > z)
5.	z	E	$A(z) = P(Z \leq z)$

BINOMIAL Distribution - Program 6

Perform the first two steps and then do the remaining steps in any order.

	Enter	Press	Display
1.	n	A	n
2.	p	В	p
3.	k	С	<pre>f(k;n,p) = binomial density at k</pre>
4.	k	D	$F(k;n,p) = P(Z \leq k)$
5.	k	E	Q(k) = P(Z > k)
6.	-	A'	μ
7.	-	B'	σ

MULTINOMIAL Density - Program 6

Perform the following steps in order. Step 2 must be completed for each set (n_i, p_i) for i=1,2,...,k. $(k \le 35)$

Enter Press Display

- 1. N C'
- 2. n_i $\sum n_i$ (can be used to check $\sum n_i = N$) p_i $\boxed{R/S}$ $\sum p_i$ (can be used to check $\sum p_i = 1$)
- 3. D' $f(n_1, n_2, ..., n_k)$
- * As an added feature the following capability exists in Program 6.
- 4. Store N in R_{07} and press E' to display N! (N \leq 69).

CHI-SQUARE Distribution - Program 7

Store v in R_{15} and then the following steps in any order.

Enter Press Display

- 1. χ^2 A f(χ^2) = density at χ^2
- 2. χ^2 \mathbb{B} $\mathbb{P}(\chi^2) = \mathbb{P}(\mathbb{Z} \ge \chi^2)$
- 3. $P(\chi^2)$ C $\chi^2_p(v) = p^{th}$ percentile
- * As an added feature the Camma function can be evaluated as below.
- 4. v \square $\Gamma(v/2)$

STUDENT'S t Distribution - Program 8

Store v in R_{15} and then the following steps in any order.

Enter Press Display

- 1. t A f(t) = density at t
- 2. t B $P(t) = P(Z \ge t)$
- 3. P(t) C $t_p(v) = p^{th}$ percentile
- * As an added feature the Gamma function can be evaluated as below.
- 5. Store v in R_{15} and press \boxed{D} to display $\Gamma(v/2)$.

F Distribution - Program 9

Complete Steps 1 and 2 prior to Steps 3 or 4 below.

Enter Press Display

- 1. v₁ x2t
- 2. v₂ A
- 3. $F(v_1, v_2)$ B $P(F) = P(Z \ge F)$
- 4. P(F) C $F_p(v_1, v_2) = p^{th}$ percentile

PROGRAM 5 LABELS USED

A B C D E D' E'

PROGRAM 6 LABELS USED

A B C D E A' B' C' D' E'

PROGRAM 7 LABELS USED

A B C D E A' B' C' D' E'

PROGRAM 8 LABELS USED

A B C D E B' C' E'

PROGRAM 9 LABELS USED

A B C D E A' B' C' D' E'

PROGRAM 5 REGISTERS USED

9 11 25 26 29

PROGRAM 6 REGISTERS USED - ALL

PROGRAM 7 REGISTERS USED

01 09 10 11 13 14 15 17 thru 23

PROGRAM 8 REGISTERS USED

00 02 09 10 15 thru 24

PROGRAM 9 REGISTERS USED

00 02 08 09 11 15 thru 29

PROGRAM 5 - Sample Problems

1. Find $\phi(1.960)$.

SOLUTION:

Enter 1.960 and press A , .0584409443 is displayed

2. Find $P(1.960) = P(Z \le 1.960)$

SOLUTION:

Enter 1.960 and press B, .9750021748 is displayed

3. Find P(-1.960).

SOLUTION:

Enter -1.960 and press B, .0249978252 is displayed.

4. Find z.05

SOLUTION:

Enter .05 and press C , -1.64521144 is displayed.

5. Find z .95

SOLUTION:

Enter .95 and press C, 1.64521144 is displayed.

6. Find Q(1.282) = P(Z > 1.282)

SOLUTION:

Enter 1.282 and press D, .0999213886 is displayed.

7. Find $A(1.282) = P(Z \le |z|)$

SOLUTION:

Enter 1.282 and Press E , .8001572228 is displayed.

ROC	RAM 6 SAMPLE PORBLEMS
. •	Find $f(k;n,p)$ given $k = 6$, $n = 10$ and $p = .4$.
	SOLUTION:
	Enter 10 press A then enter .4 press B then
	enter 6 press C, .111476736 is displayed.
2.	Find $P(8)$ when $n = 10$ and $p = .75$.
	SOLUTION:
	Enter 10 press A then enter .75 press B then
	enter 8 press D, .7559747696 is displayed.
3.	Find $Q(2)$ when $n = 10$ and $p = .25$.
	SOLUTION:
	Enter 10 press A then enter .25 press B then
	enter 2 press E .474407196 is displayed.
4.	Find μ and σ for a Binomial distribution with n = 20 and p = .5
	SOLUTION:
	Enter 20 press A then enter .5 press B then
	press A' μ = 10 is displayed, then
	press $B' = 0.236067977$ is displayed.
5.	Find $f(n_i)$ for the following Multinomial case.
	n _i 1 2 3 4
	p _i .4 .3 .2 .1
	SOLUTION:
	Enter 10 press C' then
	enter $n_i \times t$ $p_i \in R/S$ etc. and
	press D', .00036288 is displayed.

	FROGRAM	7	Sample	Problems
--	---------	---	--------	----------

1.	Find	f	(25)	where	ν	=	15.	
----	------	---	------	-------	---	---	-----	--

SOLUTION:

Store 15 in R₁₅, then enter 25 and press A .0134298528 is displayed.

2. Find P(25) where v = 15.

SOLUTION:

Store 15 in R_{15} , then enter 25 and press $\boxed{\text{B}}$.9500565664 is displayed.

3. Find χ^2 .99⁽¹⁶⁾.

SOLUTION:

Store 16 in R_{15} , then enter .99 and press $\boxed{\text{C}}$ 31.99987803 is displayed.

4. Find $\Gamma(8)$.

SOLUTION:

Enter 16 press D, 5040 is displayed.

PROGRAM 8 Sample Problems

1. Find f(2) where v = 20.

SOLUTION:

Store 20 in R₁₅, then enter 2 and press A .0580872152 is displayed.

2. Find P(-.860) where v = 20.

SOLUTION:

Store 20 in R₁₅, then enter -.860 and press B.199990431 is displayed.

3.	Find t.90(14).
	SOLUTION:
	Store 14 in R ₁₅ , then enter .90 and press C
	1.345266653 is displayed.
4.	Find $\Gamma(4.5)$.
	SOLUTION:
	Store 9 in R ₁₅ , then press D
	11.6317284 is displayed.
PRO	GRAM 9 - Sample Problems
1.	Find $P(2.52)$ where $v_1 = 5$ and $v_2 = 10$.
	SOLUTION:
	Enter 5 and press xt, then enter 10 and press A
	enter 2.52 and press B, .8998498088 is displayed.
2.	Find P(.397) where $v_1 = 10$ and $v_2 = 5$.
	SOLUTION:
	Enter 10 and press xt, then enter 5 and press A
	enter .397 and press B, .1002517964 is displayed.
3.	Find F.975 ^(10,30) .
	SOLUTION:
	Enter 10 and press xtt, then enter 30 and press A
	enter .975 and press C, 2.511201637 is displayed.

APPENDIX B
SELECTED CHI-SQUARE INVERSE CDF APPROXIMATIONS

DEGREES		TYPI	E I —	TYPE II
OF FREEDOM	TABLED VALUE*	APPROXIMATE PERCENTILE	ACTUAL PROBABILITY	APPROXIMATE ACTUAL PERCENTILE PROBABILITY
$\chi^2.05$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{4}{5}$.0039 .1026 .352 .711 1.15	.0000 .0789 .3280 .6900 1.1277	.0001 .0387 .0453 .0474 .0484	.0039 .0499 .1026 .0500 .3531 .0503 .7115 .0501 1.1460 .0500
10 15 20 30 40 60 120	3.94 7.26 10.85 18.49 26.51 43.19 95.70	3.9307 7.2 <i>5</i> 43 10.8455 18.4885 26. <i>5</i> 0 <i>5</i> 6 43.1843 95.6999	.0496 .0498 .0499 .0499 .0499 .0500	3.9404 .0500 7.2610 .0500 10.8508 .0500 18.4927 .0500 same as TYPE I
X ² .90 1 2 3 4 5	2.71 4.61 6.25 7.78 9.24	2.6395 4.5596 6.2146 7.7480 9.2086	.89 <i>5</i> 8 .8977 .8984 .8987 .8990	2.7067 .9001 4.6052 .9000 6.2517 .9000 7.7797 .9000 9.2366 .9000
10 15 20 30 40 60 120	15.99 22.31 28.41 40.26 51.81 74.40 140.23	15.9688 22.2930 28.4003 40.2473 51.7981 74.3923 140.2309	.8995 .8997 .8997 .8998 .8999 .8999	15.9873 .9000 22.3072 .9000 28.4120 .9000 40.2560 .9000 same as TYPE I
X ² .995 1 2 3 4 5	7.88 10.60 12.84 14.86 16.75	7.9071 10.6753 12.9227 14.9437 16.8303	.9951 .9952 .9952 .9952 .9952	7.8815 .9950 10.5966 .9950 12.8377 .9950 14.8602 .9950 16.7497 .9950
10 15 20 30 40 60 120	25.19 32.80 40.00 53.67 66.77 91.95 163.64	25.2557 32.8604 40.0502 53.7181 66.8076 91.9879 163.6777	.9951 .9951 .9951 .9951 .9950 .9950	25.1884 .9950 32.8015 .9950 39.9970 .9950 53.6721 .9950 same as TYPE I " " "

^{* [}Ref. 2: p. 465]

SELECTED STUDENT'S t INVERSE CDF APPROXIMATIONS

DEGREES		TYP	E I ——	TYP:	E II —
OF FREEDOM	TABLED VALUE*	APPROXIMATE PERCENTILE	ACTUAL PROBABILITY	APPROXIMATE PERCENTILE	ACTUAL PROBABILITY
t.60 1 2 3 4 5	.325 .289 .277 .271 .267	.2568 .2593 .2556 .2547 .2542	. 5800 . 5902 . 5926 . 5942 . 5953	.3249 .2869 .2754 .2699 .2667	.6000 .5994 .5996 .5997 .5999
10 15 20 30 40 60 120	.260 .258 .257 .256 .255 .254	.2535 .2533 .2532 .2531 .2531 .2530 .2530	• 5975 • 5983 • 5987 • 5990 • 5992 • 5994 • 5996	.2660 .2578 .2567 .2556 .2550 .2545 .2539	.5999 .6000 .6000 .6000 .6000
t.90 1 2 3 4 5	3.078 1.886 1.638 1.533 1.476	1.7878 2.1065 1.6292 1.5092 1.4420	.8377 .91 51 .8991 .8971 .8969	3.0777 1.8764 1.6383 1.5347 1.4772	.9000 .8993 .9001 .9002 .9002
10 15 20 30 40 60 120	1.372 1.341 1.325 1.310 1.303 1.296 1.289	1.3581 1.3311 1.3182 1.30 <i>5</i> 7 1.2996 1.2936 1.2876	.8979 .8985 .8988 .8992 .8994 .8996 .8998	1.3726 1.3408 1.3255 1.3105 1.3031 1.2958 1.2886	.9001 .9000 .9000 .9000 .9000 .9000
t.995 1 2 3 4 5	63.6 <i>5</i> 7 9.925 5.841 4.604 4.032	6.6860 9.2732 5.3978 4.4230 3.9585	.9527 .9943 .9938 .9943 .9946	63.6 <i>5</i> 67 9.7472 5.8223 4.5990 4.0299	.9950 .9948 .9950 .9950
10 15 20 30 40 60 120	3.169 2.947 2.845 2.750 2.704 2.660 2.617	3.1961 2.9771 2.8726 2.7712 2.7215 2.6724 2.6240	.9952 .9953 .9953 .9953 .9952 .9952	3.1702 2.9476 2.8460 2.7504 2.7047 2.6604 2.6175	.9950 .9950 .9950 .9950 .9950 .9950

^{* [}Ref. 2: p. 464]

SELECTED F INVERSE CDF APPROXIMATIONS

DEGREES OF	TABLED	TYPI APPROXIMATE	ACTUAL	TYP: APPROXIMATE	E II — ACTUAL PROBABILITY
FREEDOM v1 v2 F.05 1 1 2 5 15 30 120	.0062 .0050 .0043 .0041 .0040	PERCENTILE	PROBABILITY	.00619 .00392 .00391 .00391 .00391	.0500 .0443 .0475 .0490 .0495 .0498
F.05 5 1 2 5 15 30 120	.151 .173 .198 .216 .222 .227	- .1340 .1949 .2110 .2157 .2195	.031 5 .049 5 .0474 .0469	.1515 .1611 .1980 .2165 .2223 .2272	.0501 .0442 .0500 .0500 .0500
F.05 15 1 2 5 15 30 120	.220 .272 .345 .416 .445	.20 <i>5</i> 4 .3432 .41 <i>5</i> 7 .4442 .4713	- .0235 .0489 .0498 .0496 .0492	.2190 .2435 .3446 .4161 .4451 .4730	.0495 .0378 .0500 .0500 .0500
F.05 30 1 2 5 15 30 120	.240 .302 .395 .496 .543	.2260 .3909 .4962 .5431 .5935	.0207 .0483 .0499 .0499	.2388 .2671 .3945 .4963 .5432	.0496 .03 <i>5</i> 4 .0499 .0 <i>5</i> 00 .0 <i>5</i> 00
F.05 120 1 2 5 15 30 120	.255 .326 .437 .571 .644 .740	.2421 .4310 .5705 .6431 .7397	.0184 .0474 .0496 .0499 .0500	.2547 .2855 .4364 .5713 .6434 .7397	.0498 .0332 .0498 .0500 .0500

^{* [}Ref. 2: pp. 472-485]

SELECTED F INVERSE CDF APPROXIMATIONS

DEGREES OF FREEDOM	TABLED VALUE*	TYPE APPROXIMATE PERCENTILE	ACTUAL	TYP. APPROXIMATE PERCENTILE	E II — ACTUAL PROBABILITY
V ₁ V ₂ F.995 1 1 2 5 15 30 120	16200 198 22.8 10.8 9.18 8.18	- - - - -	- - - -	16210.7 135.65 21.125 11.063 9.361 8.233	.99 <i>5</i> 0 .992 <i>5</i> .9941 .99 <i>5</i> 4 .99 <i>5</i> 4
F.995 5 1 2 5 15 30 120	23100 199 14.9 5.37 4.23 3.55	554.13 15.872 5.409 4.245 3.558	- .9982 .9956 .9951 .9951	2561 5.1 276.56 15.008 5.373 4.228 3.549	.99 53 .9964 .99 51 .99 50 .99 50 .99 50
F.995 15 1 2 5 15 30 120	24600 199 13.1 4.07 3.01 2.37	- 572.87 14.009 4.082 3.007 2.372	- .9983 .9957 .9951 .9950	25615.2 285.06 13.228 4.070 3.006 2.373	.99 51 .996 5 .99 51 .99 50 .99 50
F.995 30 1 2 5 15 30 120	25000 199 12.7 3.69 2.63 1.98	- 578.74 13.530 3.700 2.629 1.984	.9983 .9957 .9951 .9950 .9950	25615.2 287.53 12.747 3.687 2.628 1.984	.9951 .9965 .9951 .9950 .9950
F.995 ¹²⁰ 1 2 5 15 30 120	25400 199 12.3 3.37 2.30 1.61	583.29 13.159 3.387 2.302 1.606	.9983 .99 <i>5</i> 8 .99 <i>5</i> 1 .99 <i>5</i> 0 .99 <i>5</i> 0	25615.2 289.43 12.373 3.373 2.300 1.606	.9950 .9966 .9951 .9950 .9950

^{* [}Ref. 2: pp. 472-485]

COMPUTER LISTINGS

PROGRAM 1 ONE-POPULATION CONFIDENCE INTERVALS

LABEL ADDRESSES 001 71 SBR 046 14 D 059 12 B 114 16 A' 132 13 C 164 95 = 180 33 X² 233 19 D 266 32 X‡T 282 10 E' 322 11 A 342 15 E 349 17 B' 450 18 C' 464 61 GTD 480 43 RCL 562 42 STD	020 42 STO 021 21 21 022 71 SBR 023 43 RCL 024 42 STO 025 04 04 026 43 RCL 027 21 21 028 85 + 029 02 2 030 54) 031 48 EXC 032 20 20 033 75 - 034 02 2 035 54) 036 42 STO 037 21 21 038 71 SBR 039 43 RCL	063 22 INV 064 67 EQ 065 00 00 066 69 69 067 71 SBR 068 71 SBR 069 53 (070 53 RCL 071 43 RCL 072 01 01 073 85 + 074 01 1 075 54 X 074 01 1 075 54 X 076 65 X 077 43 RCL 078 11 11 079 55 ÷ 080 53 (081 24 CE 082 85 + 083 53 (
PROGRAM LISTING	041 04 04 042 42 STD	084 43 RCL 085 03 03
000 76 LBL 001 71 SBR 002 43 RCL 003 01 01 004 65 × 005 02 2 006 85 + 007 02 2 008 54) 009 42 STD 010 20 20 011 43 RCL 012 03 03 013 75 - 014 43 RCL 015 01 01 016 54) 017 65 × 018 02 2 019 54)	043 11 11 044 92 RTN 045 76 LBL 046 14 D 047 25 CLR 048 04 4 049 69 DP 050 17 17 051 29 CP 052 47 CMS 053 91 R/S 054 78 Σ+ 055 61 GTD 056 00 00 057 53 53 058 76 LBL 059 12 B 060 29 CP 061 43 RCL 062 11 11	086 75 - 087 43 RCL 088 01 01 089 54) 090 54) 091 54) 092 32 X≵T 093 53 (094 43 RCL 095 03 03 096 75 - 097 43 RCL 098 01 01 099 85 + 100 01 1 101 54) 102 65 × 103 43 RCL 104 13 13 105 55 ÷

PROGRAM 1 Continued 106 43 RCL	154 79 X	202 01 1
107 01 01 108 85 + 109 01 1 110 54)	155 42 STO 156 08 08 157 22 INV 158 79 X 159 42 STO	203 75 - 204 43 RCL 205 15 15 206 54) 207 45 YX
111 35 1/X 112 92 RTN 113 76 LBL 114 16 A'	160 07 07	208 03 3 209 65 × 210 43 RCL
115 71 SBR 116 95 = 117 32 X¦T	163 76 LBL 164 95 = 165 43 RCL	211 14 14 212 54)
118 53 (119 71 SBR 120 95 =	166 07 07 167 65 × 168 43 RCL 169 11 11 170 55 ÷	213 42 STO 214 11 11 215 43 RCL 216 13 13 217 85 +
121 75 - 122 53 (123 43 RCL 124 08 08	170 55 ÷ 171 43 RCL 172 03 03	218 01 1 219 75 - 220 43 RCL
122 53 (123 43 RCL 124 08 08 125 65 × 126 02 2 127 54) 128 54 > 129 94 +/-	173 34 FX 174 85 + 175 43 RCL	221 15 15 222 54) 223 45 YX
128 54 > 129 94 +/- 130 92 RTN	176 08 08 177 54) 178 93 RTM 179 76 LBL	224 03 3 225 65 × 226 43 RCL 227 14 14
131 76 LBL 132 13 C 133 29 CP 134 43 RCL	180 33 X2 181 17 B* 182 43 RCL	228 54) 229 42 STD 230 13 13
135 11 11 136 22 INY 137 67 EQ	183 14 14 184 65 % 185 09 9	231 92 RTN 232 76 LBL 233 19 D'
138	186 54 / 187 35 1/% 188 65 189 02 2	234 29 CP 235 43 RCL 236 12 12 237 22 INV
141 03 03 142 75 - 143 01 1 144 54)	189 02 2 190 54) 191 42 STO 192 15 15	238 67 EQ 239 02 02 240 51 51
144 54) 145 42 STO 146 19 19 147 71 SBR	193 34 / X 194 65 × 195 43 RCL	241 53 (242 69 OP 243 11 11
148 42 STO 149 43 RCL 150 07 07	196 11 11 197 54) 198 42 STO	246 O3 O3
151 22 INV 152 67 EQ 153 16 8°	199 13 13 200 .94 +/- 201 85 +	247 54) 248 42 STO 249 12 12

250 29 CF 298 43 RCL 346 35 1/X 251 43 RCL 299 03 03 347 92 RTN 252 13 13 300 54) 348 76 LBL 253 22 INV 301 42 STD 349 17 B' 254 67 EQ 302 12 12 350 43 RCL 255 32 KIT 303 29 CP 351 09 09 09 256 43 RCL 304 43 RCL 352 94 +/-257 03 03 305 13 13 353 85 + 258 75 - 306 22 INV 354 01 1 259 01 1 307 67 EQ 355 33 X2 261 42 STD 309 43 RCL 357 23 LNX 262 14 14 310 03 03 358 94 +/-263 71 SBR 311 65 X 359 34 FX 264 33 X2 312 02 2 360 42 STD 265 76 LBL 313 54) 361 10 10 266 32 KIT 314 42 STD 362 10 10 266 32 KIT 314 14 363 53 (267 43 RCL 315 14 14 363 53 (268 12 12 316 71 SBR 364 53 (269 55 + 317 33 X2 365 02 2 2 360 42 STD 266 55 + 317 33 X2 365 02 2 2 360 55 5 12 12 316 71 SBR 366 93 . (269 55 + 317 32 X2 X2 365 02 2 2 360 42 STD 271 11 11 319 32 XIT 367 05 5 5 12 12 323 29 CP 371 01 1 277 43 RCL 322 11 R 369 05 5 5 12 12 323 29 CP 371 01 1 277 43 RCL 322 11 R 373 85 + 324 43 RCL 325 11 11 373 85 + 327 43 RCL 325 11 11 373 85 + 328 32 32
291 42 STO 339 16 A' 387 01 1 292 08 08 340 92 RTN 388 00 0 293 43 RCL 341 76 LBL 389 03 3 294 08 08 342 15 E 390 02 2 295 65 x 343 10 E' 391 08 8
296 02 2 344 35 1/X 392 65 X 297 65 X 345 32 X∤T 393 43 RCL

PROGRAM 1 Continued	
394 10 10	202-1)/T2+(02-1)/NU2)/X2)T2-02)XX01+02)-(02X(02 8L0 X07 L1 XVM7 X 04 L8 L1 L4 L7 L8

```
538
      05
            5
                           585
                                  07
539
      55
                           586
                                  54
540
           6
      06
                           587
                                  54
541
      75
                           588
                                  54
           2
542
      02
                           583
                                  34
                                     TX
      55
           ÷
543
                           590
                                  54
                                       )
      53
544
                           591
                                  55
545
      03
            3
                           592
                                  05
546
      65
           ×
                           593
                                  54
                                       )
547
      43
          RCL
                           594
                                  42 STD
548
           24
      24
                           595
                                  28
                                      28
549
      54
           )
                                 17 B
                           596
550
      54
                           597
                                  33 %2
551
      54
                           598
                                  65
                                      ::
552
      54
           )
                           599
                                  43 RCL
      65
553
           \times
                           600
                                  28
                                      28
554
            2
                                 85
      02
                           601
                                       ÷
555
           )
      54
                           602
                                  01
                                       1
556
      22 INV
                           603
                                  54
                                       )
557
      23 LNX
                           604
                                  49 PRD
558
559
      42 STO
                           605
                                  11
                                      11
      13
          13
                                  43 RCL
                           606
560
      92 RTN
                           607
                                  11
                                      11
561
      76 LBL
                           608
                                  92 RTH
562
      42 STO
                           END PROGRAM 1
563
564
      43 RCL
      19
           19
565
      53
           (
      01
566
            1
567
      94
          +/-
568
      85
            ÷
569
      53
570
      01
            1
571
572
573
574
      85
           1
      01
      00
           0
      55
           ÷
575
576
      53
      03
            3
577
      65
           ×
578
      53
           Ĭ,
579
          RCL
      43
           19
580
      19
581
      75
582
            1
      01
583
      93
584
      05
```

PROGRAM 1 Continued

LABEL ADDRESSES 027 79 7 028 42 STO	074 075 076 077 078	
028 42 STO	076 077 078	54
	077 078	
	078	-2.4
2, , , , , , , , , oc oc		34
COO EE INY	~ ~ ~	42
	079	23
	080	43
58 16 A' 033 42 STO	081	19
75 81 RST 034 07 07	082	92
32 17 B° 035 43 RCL	083	76
31 12 B	084	95
98 10 E' 037 42 STD	085	
24 15 E naa na na	086	
07 14 U noa ao bri	087	65
72 71 SBK	Ō88	43
	089	11
age is a contract to the contr	090	85
TO TO THE OUT OF	091	43
a, la ma, como nom		
	092	10
045 75 -	093	54
	094	92
	095	76
	096	13
	097	
	098	
	099	
	100	
	101	01
	102	27
07 02 02	103	43
08 42 STD	104	15
09 14 14 057 01 1	105	67
	106	01
	107	50
	108	43
13 15 15 061 07 07	109	16
14 79 Ø 062 54)	110	67
15 42 STD 063 54)		
	112	35
	113	85
18 79 X 066 43 RCL	114	43
19 33 XZ 067 15 15	115	26
20 42 STO	116	54
21 17 17	117	55
22 61 GTO	118	43
23 04 04	119	19
24 62 62 072 02 2	120	54
25 76 LBL 073 54)	121	34

```
PROGRAM 2 Continued
                       170
                             54 )
122
     42
         STO
                                               218
                                                     03
                                                         03
                        171
123
     23
                             54
                                 )
                                               219
          23
                        172
                             94 +/-
                                               220
                                                     01
124
     61 GTD
                       173
                             92 RTN
                                               221
                                                     54
                                                         )
125
     01
         01
                       174
                             76 LBL
                                               222
                                                     42 STD
126
     35
          35
                       175
                             81 RST
                                                     19
                                               223
                                                        19
127
     43 RCL
                       176
177
178
                             43 RCL
                                                     34 FX
128
                                               224
     18 18
                             04 04
                                               225
                                                     54
                                                        )
129
     75
                             75 -
                                                     42 STD
                                               226
     43 RCL
130
                       179
                             43 RCL
131
                                               227
                                                     12
                                                        12
     08
         - 08
                       180
                             01 01
                                               228
                                                     43 RCL
132
     54
          )
                       181
182
                             54 )
                                               229
                                                     19
133
     42 STD
                                                        19
     10
                             55
                                               230
                                                     92 RTN
134
         10
                                               231
                       183
                             43 RCL
                                                     76 LBL
135
     43 RCL
136
137
                       184
                             03 03
                                               232
                                                     17 B*
     15
        15
                       185
                             54
                                )
                                               233
                                                     43 RCL
     35 1/X
                                               234
                       186
                             42 STO
                                                     09
                                                        - 09
138
     85 +
                       187
                             10 10
                                               235
139
                                                     94 +/-
     43 ROL
                       188
                             43 RCL
                                               236
                                                     85
140
     03
         03
                       189
                             05 05
                                               237
                                                     01
                                                         1
141
     35 1/X
                       190
                             85 +
                                               238
                                                     54
                                                         )
142
     54 )
                       191
                             43 RCL
                                               239
                                                     33 X2
143
     34 FX
                       192
                             02 02
                                               240
                                                     23 LNX
144
     65
        ×
                    . 193
                             75 -
                                               241
                                                     94
                                                        +/-
     43 ROL
145
                             02 2
65 ×
                                  2
                       194
                                                     34 FX
146
                                               242
     23 23
                       195
                                               243
                                                     42 STD
147
     54 )
                      196
                             43 RCL
                                               244
                                                     29 29
148
     42 STO
                       197
198
                             06 06
                                               245
                                                     53
                                                         (
149
     12
         12
                             54 )
                                               246
                                                     53
150
     43 RCL
                                                         (
                             54 )
                       199
                                                     53
                                               247
                                                         (
151
     11
         11
                       200
                             75 -
                                                         2
152
153
                                               248
                                                     02
     22 INV
                        201
                             43 RCL
                                               249
                                                     93
     67
        ΕĐ
                                                          515517
                        202
                             03 03
     16 A'
                                               250
                                                    05
154
                       203
155
                             65 ×
                                               251
                                                     01
     71 SBR
                       204
                             43 RCL
                                               252
                                                    05
156
     43 RCL
                        205
                             10 10
                                               253
                                                    05
157
     76 LBL
                       206
                             33 X2
                                               254
158
     16 A'
                                                    01
                       207
                             54 )
                                               255
                                                     07
159
     71 SBR
                       208
                             55 ÷
160
                                               256
                                                     85
                                                          +
     95
         =
                       209
                                               257
258
                             43 RCL
                                                     93
161
     32 X1T
                                                          .
8
                       210
                             03 03
162
                                                     08
     71 SBR
                        211
                             54 )
                                                259
                                                     00
                                                          O
163
     95
                       212
                             34 FX
                                                260
                                                     02
164
     75
                       213
                             42 STO
                                                     08
     53
         (
                                                261
165
                        214
                              23 23
                                                     05
                                                262
166
     43 ROL
                        215
                             55 ÷
53 (
                                                263
                                                     03
167
     10 10
                       216
                                               264
                                                     65
168
      65
        X
                       217
                              43 RCL
                                               265
169
     02
```

PROGRAM 2 Contin	ued		
29 + .0 1 0 3 2 8 × L9	314 08 X LL9	23445678901234456789012344567890123456789333333333333333333333333333333333333	22 L44 D8- 02 C44 D8- R 0) T 0/+ 1) × C8 C4 C4 C5 C4 C6 C6 C7 C6 C7
310 00 0	358 54)	406	07 07

PROGRAM 2	Continued				
	RÇĻ	458 459	03 3 69 DP	506 507	29 CP 43 RCL
411 11 412 22	11 INV	460	17 17	508	11 11
413 67	EQ	461	47 CMS	509	22 INV
414 04 415 36	04 36	462 463	36 PGM 01 01	510 511	67 E0 05 05
416 71		464	71 SBR	512	14 14
417 52 418 71	EE	465 466	25 CLR 91 R/S	513 514	17 B' 43 RCL
419 42	STO	467	78 Z+	515	12 12
	GTO 04	468 469	61 GTO 04 04	516 517	22 INV 67 EQ
422 36	36	470	66 66	518	16 A'
423 76	LBL	471 472	76 LBL 71 SBR	519 520	43 RCL 17 17
424 15 425 29	E CP	473	43 RCL	521	85 +
426 43	RCL	474 475	03 03 75 -	522 523	43 RCL 07 07
427 11 428 22	11 INV	476	01 1	524	
429 67	EQ	477 479	54) 42 STO	525 527	34 FX
430 04 431 36	04 36	479	21 21	526 527	42 STD 12 12
432 71	SBR	480 481	75 - 01 1	528 529	43 RCL 18 18
	SBR SBR	482	54)	530	75 -
435 42	STO	483 484	42 STO 20 20	531 532	43 RCL 08 08
436 43 437 13	RCL 13	485	92 RTN	Joa 533	54)
438 65	×		76 LBL 52 EE	534	42 STO
439 43 440 17	RUL 17		94 EE 43 RCL	535 536	10 10 16 A'
441 55	÷	489	03 03	537	92 RTN
442 43 443 07	RCL O7	490 491	65 × 02 2	538 539	76 LBL 42 STO
444 54)	492	54)	540	17 B'
445 32 446 43	X:T RCL	493 494	42 STO 21 21	541 542	33 K2 75 -
447 17	17	495	32 X:T	543	03 3
448 55 449 43	÷ RCL	496 497	43 RCL 15 15	544 545	54) 55 ÷
450 07	07	498	65 ×	546	06 6
451 55 452 43	÷ RCL	499 500	02 2 54)	547 548	54) 42 STO
453 11	11	501	42 870	549	28 28
454 54 455 92) RTN	502 503	20 20 92 RTN	550 551	43 RCL 20 20
456 76	LBL	504	76 LBL	552	75 -
457 14	D	505	11 A	553	01 1

```
PROGRAM 2
         Continued
554
      54
           )
                            602
555
       35
          1/X
                            603
                                   02
                                   55
                            604
556
       42
          STO
                                        €
                            605
                                   53
557
       27
            27
                            606
                                   03
                                        3
       85
558
559
            ſ.
                            607
                                   65
                                        ×
       53
                            608
                                   43
                                       RCL
560
       43
          RCL
                                        24
                            609
                                   24
561
       21
            21
                            610
                                   54
                                        >
562
       75
                            611
                                   54
563
            1
                                        )
       01
564
       54
           )
                            612
                                   54
                                       )
       35 1/X
565
                            613
                                   44 SUM
       22
                            614
566
          INV
                                   11
                                        11
                            615
                                   54
                                        )
567
       44 SUM
                            616
                                   65
568
       27
            27
                                        \times
                                        2
                            617
                                   02
569
       54
            )
570
       35 1/X
                            618
                                   54
                                       )
                                   22 INV
23 LHX
       65
                            619
571
           \times
            2
                            620
572
       02
                            521
573
       54
            )
                                   48 EXC
                            622
       42 STO
                                   11
                                        11
574
                            623
575
            24
                                   65
                                        \times
       24
                            624
                                        2
       85
                                   02
            ÷
576
                            625
                                   54
577
       43 RCL
                            626
                                   22 INV
       28
            28
578
                            627
628
                                   23 LNX
579
       54
            )
                                   42 STO
580
       34 FX
581
                            629
       65
           \times
                                   13
                                       13
                            630
                                   43 RCL
582
       43 ROL
583
       11
           11
                            631
                                   11
                                       1 1
                            632
633
       55
            ÷
                                   92 RTN
584
       43 RCL
                                   76 LBL
585
                            634
586
       24
            24
                                   43 RCL
                            635
                                   43 RCL
587
       54
                                        19
588
       42
           STO
                            636
                                   19
                            637
589
                                   53
                                         (
       11
            11
                            638
639
590
       75
                                   01
591
       53
            (
                                   94
                                   85
592
                            640
       43
           ROL
                                        ÷
593
       27
            27
                            641
                                   53
                                         ť
594
       65
            \times
                            642
                                   01
                                        1
595
                            643
            Ç
                                   85
       53
596
       43
           RCL
                             644
                                   01
                                        1
 597
                             645
                                   00
       28
            28
                                        0
                                   55
 598
       35
             +
                             646
 599
             5
                                   53
                                         į,
       05
                             647
 600
       55
06
                                   03
                             648
 601
                             649
                                   65
```

ROL

PROGRAM 3 ONE-POPULATION	HYPOTHES	IS TESTS		
T. 1. Dec Dec	016	០៩ ០៩	064 065	94 +/- 85 +
LABEL ADDRESSES	017	91 R/S	066	85 + 01 1
001 14 D	018 019	42 STO 11 11	067	54)
007 10 E'	020	91 R/S	068	61 GTD
025 18 C'	021	42 STO	069	80 GRD
053 65 × 071 55 ÷	022	00 00	070	76 LBL
0%6 30 TAN	021 022 023	92 RTN	071	55 ÷
106 25 CLR	024	76 LBL	072 072	43 RCL
124 38 SIN	025	18 C'	073 074	06 06 36 PGM
137 39 C⊡S	026 027	06 6 05 5	075	21 21
146 22 INV	02: 028	32 X:T	076	11 A
150 80 GRD	029	43 RCL	077	43 RCL
159 15 E 194 12 B	030	06 06	078	12 12
229 23 LNX	031	77 GE	079	36 PGM
263 44 SUM	032	30 TAN	080 081	21 21 13 C
286 24 CE	033 034	43 RCL 00 00	082	61 GTO
30 <u>6</u> 13 C	035	32 X:T	083	80 GRD
375 85 + 400 75 -	036	01 1	084	92 RTN
417 16 A'	037	67 EQ	085	
452 11 A	038	65 ×	086 007	30 TAN 43 RCL
484 57 ENG	039	94 +/-	087 088	43 RUL 06 06
501 17 B'	040 041	67 EQ 55 ÷	089	65 X
530 58 FIX	042	93 .	090	02 2
546	043	05 5	091	54)
596 19 D°	044	49 PRD	092	34 FX
	045	11 11	093 094	35 1/X 65 ×
PROGRAM LISTING	046 047	71 SBR 65 ×	095	53 (
000 76 LBL	048	29 CP	096	43 RCL
001 14 D	049	29 CP 67 EQ	097	12 12
002 91 R/S	050	55 ÷	098	75 -
003 78 Σ+	051	92 RTN	099	43 RCL
004 61 GTO 005 14 D	052	76 LBL	100 101	06 06 54)
005 14 D 006 76 LBL	053 05 4	65 × 43 RCL	102	54)
007 10 E'	055 055	06 06	103	42 STO
008 25 CLR	056	36 PGM	104	12 12
008 03 3	057	21 21	105	76 LBL
010 69 O P	058	11 A	106 107	25 CLR
011 17 17 012 47 CMS	059	43 RCL	107 108	43 RCL 00 00
012 47 CMS 013 29 CP	060 061	12 12 36 PGM	109	32 X:T
014 91 R/S	062	21 21	110	00 0
015 42 STO	063	21 21 13 C	111	67 EQ

PROGRAM 3	Continued				
112 38	SIN	160	43 RCL	208	01 1
113 01		161	10 10	209	94 +/-
114 67	' EQ	162	32 X:T	210	67 EQ
115 39		163	00 0	211	24 CE
116 43		164	22 INV	212	93 .
117 12		165	67 EQ	213	05 5
118 36		166	01 01	214	49 PRD
119 19		167	7i 7i	215	11 11
120 12		168	79 X	216	71 SBR
121 61		169	42 STO	217	44 SUM
122 80		170	10 10	218	29 CP
123 76		171	43 RCL	219	67 EQ
124 38		172	10 10	220	24 CE
125 43		173	65 ×	220 221 222 223	48 EXC
125 43 126 12		174	02 2	222	01 01
127 36	PGM	175	65 ×	222	42 STO
128 19		176	43 RCL	224	12 12
129 14		177	03 03	225	43 RCL
130 94		178	55 ÷	225 226	01 01
131 85		179	43 RCL	227	92 RTN
		180	08 08	228 228	76 LBL
132 01 133 54	1)	181	54)	440 999	
		182	42 STO	229 220	23 LNX
134 61	GTO COR	183	12 12	230	43 RCL
135 80		184	43 RCL	231	08 08
135 76		104	03 03	232	94 +/-
137 39		185 186	- 03 - 03 - 65 - X	233 234	85 +
138 43		187		234 235	01 1
139 12		188	02 2 54)	235 206 237	54)
140 36		189		- ೭೯೬ ೧೧೯	65 X
141 19				<i>ತರ</i>	43 RCL
142 13		190	06 06	238	08 08
143 61	GTO	191	61 GTO 18 C'	239	65 X
144 80		192		240	43 RCL
145 76		193	76 LBL	241	03 03
146 22		194	12 B	242	54)
147 01	1	195	03 3	243	34 FX
148 92		196	00 0	244	3 5 1/X
149 76		197	32 X:T	245	65 ×
150 80		198	43 RCL	246	53 (
151 32		199	03 03	247	43 RCL
152 43	RÇL	200	77 GE	248	08 08
153 11	11	201	23 LMX	249	65 X
154 77	GE	202	43 RCL	250	43 RCL
155 22	IHV	203	00 00	251	03 03
156 00	_0	204	32 X:T	252	94 +/-
157 92 158 76	RIM	205	01 1	253	85 +
	LEL	206	67 EQ	254	43 RCL
159 15	Ε	207	44 SUM	255	01 01

256 54) 304 92 RTN 352 94 */- 257 54) 305 76 LBL 353 67 EQ 258 42 STD 306 13 C 354 75 - 259 12 12 307 43 RCL 355 43 RCL 260 61 GTD 308 10 10 356 03 03 261 25 CLR 309 32 X;T 357 75 - 262 76 LBL 310 00 0 358 01 1 263 44 3UM 311 22 INV 359 54) 264 43 RCL 310 22 INV 359 54) 265 03 03 313 03 03 361 21 21 266 36 PGM 314 22 22 362 11 R 267 20 20 315 79 R 363 43 RCL 268 11 R 316 42 STD 364 12 12 269 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 21 271 36 PGM 319 79 R 367 15 E 272 20 20 32 14 14 369 85 + 274 43 RCL 322 43 RCL 370 01 1 275 01 01 323 10 10 371 54) 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 377 03 03 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 328 65 × 376 43 RCL 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 378 75 - 283 90 GRD 331 34 FX 379 01 1 285 76 LBL 333 43 RCL 377 03 03 282 61 GTD 330 03 378 75 - 283 90 GRD 331 34 FX 379 91 1 284 92 RTN 326 86 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 30 338 642 STD 384 43 RCL 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 03 378 75 - 283 90 GRD 331 34 FX 379 01 1 284 92 RTN 326 08 08 374 76 LBL 287 43 RCL 333 43 RCL 377 03 03 282 61 GTD 330 03 33 386 50 IXI 283 93 GPM 327 54) 383 11 R 288 03 03 03 338 642 STD 384 43 RCL 289 36 PGM 327 54) 383 11 R 288 03 03 03 338 642 STD 384 43 RCL 289 36 PGM 327 54) 383 11 R 288 03 03 03 338 642 STD 384 43 RCL 289 36 PGM 327 54) 383 11 R 288 03 03 03 338 642 STD 384 43 RCL 289 36 PGM 327 54) 383 11 R 288 03 03 03 338 642 STD 384 43 RCL 289 36 PGM 327 62 STD 389 76 PGM 292 43 RCL 334 14 14 389 15 E 293 03 08 341 43 RCL 389 15 E 294 38 PGM 347 32 X;TT 389 50 2 2 397 43 RCL 349 20 03 399 34 +/- 295 20 20 348 00 0 399 54 +/- 296 12 B 344 25 CLR 399 30 94 +/- 297 36 PGM 347 32 X;TT 395 02 2 399 36 PGM 347 32 X;TT 395 02 2 390 36 PGM 347 32 X;TT 395 02 2 390 36 PGM 347 32 X;TT 395 02 2 390 36 PGM 347 32 X;TT 395 02 2 390 36 PGM 347 32 X;TT 399 76 1 GTD 390 390 390 390 391 391 399 76 61 GTD 390 390 390 390 391 391 399 76 61 GTD 390 390 390 390 390 390 390 390 390 390	PROGRAM 3 Continued		
258			
259 12 12 307 43 RCL 355 43 RCL 260 61 GTU 308 10 10 356 03 03 03 261 25 CLR 309 32 X:T 357 75 - 262 76 LRL 310 00 0 0 358 01 1 263 44 SUM 311 22 INV 359 54) 369 264 43 RCL 312 67 E9 360 36 PGM 265 03 03 361 21 21 266 36 PGM 314 22 22 362 11 R 267 20 20 315 79 R 363 43 RCL 268 11 R 316 42 STU 366 21 11 R 269 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 12 21 269 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 12 21 21 369 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 12 21 21 36 PGM 314 24 STU 367 15 E 272 20 20 32 14 14 369 95 + 274 3 RCL 377 15 E 377			
260 61 GTD 308 10 10 356 03 03 261 25 CLR 309 32 X:T 357 75 - 262 76 LBL 310 00 0 358 01 1 263 444 SUM 311 22 INV 359 54) 366 21 21 266 36 PGM 314 22 22 362 11 A 267 20 20 315 79 R 363 43 RCL 268 11 A 316 42 STD 364 21 21 21 36 PGM 314 22 22 362 11 A 269 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 21 21 21 36 PGM 319 79 R 367 15 E 272 20 20 327 42 STD 368 94 +/-273 12 B 32 14 14 369 85 + 274 43 RCL 324 37 CL 325 43 RCL 370 01 1 323 10 10 371 54 GTD 377 01 1 325 43 RCL 370 01 1 325 43 RCL 377 05 - 372 61 GTD 378 54) 375 85 + 380 GRD 327 54) 375 85 + 380 GRD 327 54) 375 85 + 380 GRD 328 65 X 376 67 GTD 378 54) 383 03 33 378 75 - 283 390 GRD 331 34 FX 379 36 PGM 327 54) 375 85 + 380 GRD 327 42 STD 388 GRD 331 RCL 377 03 03 282 61 GTD 330 33 378 RCL 377 03 03 282 61 GTD 330 33 378 RCL 377 03 03 282 61 GTD 330 33 378 RCL 337 369 FGM 327 54) 375 85 + 380 GRD 331 A FX 379 01 1 387 36 PGM 327 54) 375 85 + 380 GRD 331 A FX 379 38 GRD 331 A FX 379 31 B RCL 3379 36 PGM 327 54) 383 51 R RCL 3379 36 PGM 327 54) 383 51 R RCL 3379 36 PGM 327 54) 383 51 R RCL 3379 36 PGM 327 54) 383 51 E 237 38 GRD 338 03 3 386 50 IXI 388 03 03 338 03 3 386 50 IXI 388 03 03 338 03 3 388 55 IZ 12 239 243 RCL 339 36 PGM 337 77 GE 339 389 36 PGM 337 77 GE 339 389 399 394 +/-295 20 20 348 00 0 339 55 E 239 36 PGM 347 32 XIT 339 50 2 2 2 3 369 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT 339 50 2 2 3 36 PGM 347 32 XIT			
261 25 CLR 309 32 X;T 35, 75 - 262 76 LBL 310 000 358 01 1		308 10 10	3 5 6 03 03
262 76 LBL 310 00 0 339 54) 263 44 3 RCL 312 67 EQ 360 36 PGM 264 43 RCL 312 67 EQ 360 361 21 21 265 03 03 313 03 03 361 21 21 266 36 PGM 314 22 22 362 11 A 267 20 20 315 79 R 363 43 RCL 268 11 A 316 42 STD 364 12 12 269 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 21 271 36 PGM 319 79 R 367 15 E 272 20 32 42 STD 368 94 +- 273 12 B 32 14 14 369 95 + 274 43 RCL 323 10 10 371 54) 275 01 01 323 10 10 371 54) 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 370 01 1 277 01 1 325 43 RCL 370 80 GRD 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 328 65 × 376 43 RCL 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 378 77 03 283 30 GRD 331 34 FX 379 01 1 284 92 RTN 325 54) 386 54) 285 76 LBL 333 43 RCL 377 03 03 282 61 CTD 330 03 03 378 75 0 283 30 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 43 RCL 377 03 03 282 61 CTD 336 PGM 327 12 12 385 12 12 283 03 03 03 336 42 STD 384 78 RCL 289 36 PGM 337 12 12 385 12 12 289 20 20 30 338 03 3 386 50 IXI 289 36 PGM 347 03 2 XIT 388 21 21 289 36 PGM 347 03 03 390 94 +/- 292 43 RCL 340 32 XIT 389 15 E 293 03 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 339 94 +/- 295 20 20 348 00 0 396 54) 297 43 RCL 340 32 XIT 389 15 E 299 36 PGM 347 32 XIT 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 379 61 GTD 302 61 GTD 350 85 + 398 80 GRD 303 61 II D 349 67 EQ 379 61 GTD			357 75 -
263 44 SUM 311 22 INV 367 A	262 76 LBL		358 U1 1
265 03 03 03 313 03 03 361 21 21 266 36 PGM 314 22 22 362 11 A 267 20 20 315 79 \$\overline{x}\$ 363 43 RCL 268 11 A 316 42 STD 365 36 PGM 270 08 311 7 10 10 365 36 PGM 270 08 311 7 10 10 365 36 PGM 270 08 311 7 79 \$\overline{x}\$ 367 15 E 272 20 20 327 42 STD 368 94 +/-273 12 B 32 14 14 369 85 + 274 43 RCL 322 43 RCL 370 01 1 275 01 01 323 10 10 371 54) 276 75 - 324 75 - 372 61 GTD 368 GRD 327 54) 375 85 + 280 20 20 328 65 \$\overline{x}\$ 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 328 65 \$\overline{x}\$ 377 03 03 27 283 80 GRD 331 34 FX 377 03 03 27 283 80 GRD 331 34 FX 379 01 1 283 80 GRD 331 34 FX 379 01 1 283 80 GRD 331 34 FX 379 01 1 284 92 RTH 332 55 \$\overline{x}\$ 43 RCL 381 36 PGM 327 54) 383 80 GRD 331 34 FX 379 01 1 284 92 RTH 332 43 RCL 381 36 PGM 285 76 LBL 333 43 RCL 381 36 PGM 283 80 GRD 331 34 FX 379 01 1 284 92 RTH 332 43 RCL 381 36 PGM 283 80 GRD 331 34 FX 389 54) 383 11 A 285 76 LBL 333 43 RCL 381 36 PGM 283 80 GRD 337 12 12 385 12 12 22 385 12 12 22 385 12 12 22 385 12 12 22 385 12 12 385 36 PGM 337 12 12 385 12 12 385 12 12 385 36 PGM 337 12 12 385 12 12 385 12 12 385 36 PGM 337	263 44 SUM		307 04 / 040 04 PCM
266 36 PGM 314 22 22 362 11 A 267 20 20 315 79 X 363 364 12 12 268 11 A 316 42 STD 364 12 12 269 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 21 271 36 PGM 319 79 X 367 15 E 272 20 20 327 42 STD 368 94 +/-273 12 B 32 14 14 369 85 + 274 43 RCL 322 43 RCL 370 01 1 275 01 01 323 10 10 371 54) 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 373 80 GRD 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 380 GRD 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 378 75 - 380 GRD 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 378 75 - 380 GRD 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 378 75 - 380 GRD 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 378 75 - 380 GRD 282 61 GTD 330 03 378 75 - 380 GRD 282 61 GTD 330 03 378 75 - 380 GRD 282 61 GTD 330 03 378 75 - 380 GRD 282 61 GTD 330 03 378 75 - 380 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 GRD 331 34 FX 379 01 1 283 30 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 381 1 A 288 03 03 336 42 STD 384 43 RCL 287 43 RCL 331 36 PGM 337 12 12 385 11 A 288 03 03 336 42 STD 384 43 RCL 287 43 RCL 339 36 PGM 337 12 12 385 12 12 29 20 20 338 03 33 386 50 IXI 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 X;T 388 21 21 22 29 20 20 343 RCL 389 36 PGM 342 03 03 399 94 +/-295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 389 36 PGM 342 03 03 399 94 +/-295 20 20 343 RCL 399 36 PGM 342 03 03 399 94 +/-295 20 20 343 RCL 399 36 PGM 342 03 03 399 394 65 × 299 36 PGM 342 03 03 399 394 65 × 299 36 PGM 347 32 X;T 395 02 2 300 20 30 348 00 0 394 65 × 239 36 PGM 347 32 X;T 395 02 2 300 20 30 30 30 348 00 0 394 65 × 239 36 PGM 347 32 X;T 395 02 2 300 20 30 348 00 0 394 65 × 239 36 PGM 349 67 E9 398 80 GRD 302 61 GTD 302 61 GTD 348 65 × 338 80 GRD 303 302 61 GTD 348 60 00 00 394 65 × 339 80 GRD 302 61 GTD 302 61 GTD 348 60 00 00 394 65 × 339 80 GRD 302 61 GTD 302 61 GTD 348 60 00 00 394 65 × 339 80 GRD 302 61 GTD 302 61 GTD 348 60 00 00 394 65 × 339 80 GRD 302 61 GTD 348 60 00 00 394 65 × 339 80 GRD 302 61 GTD 348 60 00 00 394 65 × 3			361 21 21
267 20 20 315 79 \$\times\$ 363 43 \$\text{RCL}\$ 268 11 \$\text{A}\$ 316 42 \$\text{STD}\$ 364 12 12 269 43 \$\text{RCL}\$ 317 10 10 365 36 \$\text{PGM}\$ 270 08 08 318 22 \$\text{INV}\$ 366 21 21 271 36 \$\text{PGM}\$ 319 79 \$\text{RCL}\$ 369 94 +/-273 12 \$\text{B}\$ 32 14 14 369 364 270 01 1 275 01 01 323 10 10 371 54) 276 75 - 324 75 - 372 61 \$\text{GTD}\$ 277 01 1 325 43 \$\text{RCL}\$ 373 303 \$\text{GRD}\$ 327 54) 375 85 + 280 20 20 328 65 \$\times\$ 328 61 \$\text{GTD}\$ 330 03 03 378 75 - 283 80 \$\text{GRD}\$ 331 34 \$\text{FX}\$ 379 01 1 284 93 \$\text{RTD}\$ 330 03 03 378 75 - 283 80 \$\text{GRD}\$ 331 34 \$\text{FX}\$ 379 01 1 284 93 \$\text{RTD}\$ 332 43 \$\text{RCL}\$ 377 03 03 328 65 \$\text{X}\$ 376 43 \$\text{RCL}\$ 377 03 03 378 75 - 283 80 \$\text{GRD}\$ 331 34 \$\text{FX}\$ 379 01 1 284 93 \$\text{RTN}\$ 332 55 + 380 \$\text{SRD}\$ 331 34 \$\text{FX}\$ 379 01 1 284 93 \$\text{RTN}\$ 332 55 + 380 \$\text{SRD}\$ 331 34 \$\text{FX}\$ 383 11 \$\text{A}\$ 228 24 \$\text{CE}\$ 334 14 14 382 21 21 23 384 43 \$\text{RCL}\$ 236 24 \$\text{CE}\$ 334 14 14 382 21 21 22 385 76 \$\text{LBL}\$ 333 33 63 22 12 21 23 385 54) 383 31 \$\text{RCL}\$ 337 \$\text{RCL}\$ 338 33 11 \$\text{RCL}\$ 339 \$\text{SRD}\$ 338 33 36 \$\text{FX}\$ 339 \$\text{SRD}\$ 348 \$\text{RCL}\$ 339 35 \$\text{LBL}\$ 339 35 54) 383 31 \$\text{RCL}\$ 339 36 \$\text{RCL}\$ 330 36 \$\text{RCL}\$ 3		314 22 22	362 11 A
268 11 A 316 42 STD 364 12 12 269 43 RCL 317 10 10 365 36 PGM 270 08 08 318 22 INV 366 21 21 271 36 PGM 319 79 7 367 15 E 272 20 20 327 42 STD 368 94 +/-273 12 B 32 14 14 369 35 + 372 61 GTD 323 10 10 371 54) 276 75 - 324 75 - 372 61 GTD 377 01 1 325 43 RCL 373 373 80 GRD 278 54) 326 68 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 328 65 × 376 43 RCL 377 03 03 28 65 × 376 43 RCL 377 04 1 284 92 RTN 325 43 RCL 377 05 1 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 337 43 RCL 381 36 PGM 327 54) 383 11 A 283 93 67 M 376 12 12 385 11 A 284 92 RTN 332 55 + 380 54) 383 11 A 285 76 LBL 333 03 336 42 STD 384 43 RCL 386 PGM 327 43 RCL 387 388 11 A 288 03 03 03 376 75 12 385 12 21 239 36 PGM 337 12 12 385 12 21 239 36 PGM 337 12 12 385 12 29 39 96 PGM 342 03 03 39 39 94 +/-295 20 20 343 77 GE 391 85 + 295 20 20 344 80 0 0 394 65 × 299 36 PGM 347 32 X/T 395 02 2 300 20 20 348 00 0 394 65 × 299 36 PGM 347 32 X/T 395 02 2 300 20 20 36 PGM 347 32 X/T 395 02 2 300 20 20 36 PGM 347 32 X/T 395 02 2 300 20 20 348 00 0 394 65 × 299 36 PGM 347 32 X/T 395 02 2 300 20 20 348 00 0 394 65 × 299 36 PGM 347 32 X/T 395 02 2 300 20 20 348 00 0 0 394 65 × 299 36 PGM 347 32 X/T 395 02 2 300 20 20 348 00 0 0 395	267 20 20	315 79 🗵	363 43 RCL
270 08 08 318 22 INV 366 21 21 21 271 36 PGM 319 79 \(\) 367 15 E 272 20 20 20 32	268 11 A	316 42 STO	364 12 12
271 36 PGM 319 79 X 367 15 E 272 20 20 320 42 STD 368 94 +/- 273 12 B 32 14 14 369 85 + 274 43 RCL 322 43 RCL 370 01 1 275 01 01 323 10 10 371 54) 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 375 85 H 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 328 65 X 376 43 RCL 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 43 RCL 383 36 PGM 236 24 CE 334 14 14 382 21 21 237 43 RCL 335 54) 384 43 RCL 289 36 PGM 337 12 12 385 12 12 230 20 20 338 03 3 386 42 STD 384 43 RCL 289 36 PGM 337 12 12 385 12 12 290 20 20 338 03 3 386 42 STD 384 43 RCL 289 36 PGM 337 12 12 385 12 12 290 20 20 338 03 3 386 50 IXI 291 11 A 339 01 1 387 36 PGM 292 43 RCL 335 54) 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 20 20 343 RCL 349 350 54) 298 01 01 346 00 00 394 65 X 299 36 PGM 347 32 X;T 389 54) 298 01 01 346 00 00 394 65 X 299 36 PGM 347 32 X;T 395 02 2 300 20 20 348 00 0 396 55 398 80 GRD 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 +	269 43 RCL	317 10 10	350 35 MUN 922 91 91
272 20 20 32 32 42 STD 368 94 +/- 273 12 B 32 14 14 369 85 + 274 43 RCL 370 01 1 275 01 01 323 10 10 371 54) 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 373 80 GRD 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 30 328 65 × 376 43 RCL 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 43 RCL 387 90 1 1 286 24 CE 334 14 14 382 21 21 287 43 RCL 335 54) 383 11 R 288 03 03 03 336 42 STD 384 43 RCL 289 36 PGM 337 12 12 385 12 12 289 36 PGM 337 12 12 385 12 12 290 20 20 338 03 3 386 50 IXI 289 36 PGM 337 12 12 385 12 12 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 XIT 388 21 21 293 03 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 XIT 399 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 303 61 GTD	270 08 08	518 ZZ 1MY 518 79 5	360 ZI ZI 367 15 E
274 43 RCL 322 45 RCL 371 54) 275 01 01 323 10 371 54) 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 373 80 GRB 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 328 65 × 376 03 03 282 61 GTD 330 03 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 43 RCL 381 36 PGM 236 24 CE 334 14 14 382 21 21 287 43 RCL 335 54) 383 11 R 288 03 03 03 336 42 STD 384 43 RCL 289 36 PGM 337 12 12 385 12 12 289 36 PGM 337 12 12 385 12 12 289 36 PGM 337 77 GE 389 15 E 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 X:T 388 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 76 LB 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 389 55 + 298 01 01 346 00 00 394 55 × 298 01 01 346 00 00 395 54) 298 01 01 346 00 00 395 54) 302 61 GTD 350 85 + 398 80 GRD	271 36 MGM - 272 - 20 - 20	317	368 94 +/-
274 43 RCL 322 45 RCL 371 54) 275 01 01 323 10 371 54) 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 373 80 GRB 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 328 65 × 376 03 03 282 61 GTD 330 03 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 43 RCL 381 36 PGM 236 24 CE 334 14 14 382 21 21 287 43 RCL 335 54) 383 11 R 288 03 03 03 336 42 STD 384 43 RCL 289 36 PGM 337 12 12 385 12 12 289 36 PGM 337 12 12 385 12 12 289 36 PGM 337 77 GE 389 15 E 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 X:T 388 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 76 LB 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 389 55 + 298 01 01 346 00 00 394 55 × 298 01 01 346 00 00 395 54) 298 01 01 346 00 00 395 54) 302 61 GTD 350 85 + 398 80 GRD	272 20 20 273 12 B	32 14 14	369 85 +
275 01 01 323 10 10 371 54 7 276 75 - 324 75 - 372 61 GTD 277 01 1 325 43 RCL 373 80 GRD 278 54) 326 08 08 374 76 LBL 279 36 PGM 327 54) 375 85 + 280 20 20 30 328 65 × 376 43 RCL 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 + 380 54) 285 76 LBL 333 43 RCL 381 36 PGM 236 24 CE 334 14 14 382 21 21 237 43 RCL 335 54) 383 11 R 288 03 03 336 42 STD 384 43 RCL 289 36 PGM 337 12 12 385 12 12 239 36 PGM 337 12 12 385 12 12 239 36 PGM 337 12 12 385 12 12 239 36 PGM 337 77 GE 389 21 21 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 XFT 388 21 21 293 03 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 389 54) 298 01 01 346 00 00 394 65 × 239 36 PGM 347 32 XFT 399 54) 298 01 01 346 00 00 394 65 × 239 36 PGM 347 32 XFT 399 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD	274 43 RCL	322 43 RCL	370 01 1
280 20 20 328 65 X 376 43 RCL 281 15 E 329 43 RCL 377 03 03 282 61 GTD 330 03 03 378 75 - 283 80 GRD 331 34 FX 379 01 1 284 92 RTN 332 55 ÷ 380 54) 285 76 LBL 333 43 RCL 381 36 PGM 236 24 CE 334 14 14 382 21 21 237 43 RCL 335 54) 383 11 R 289 36 PGM 337 12 12 385 12 12 239 36 PGM 337 12 12 385 12 12 239 36 PGM 337 12 12 385 12 12 239 36 PGM 337 12 12 385 50 IXI 291 11 R 339 01 1 387 36 PGM 292 43 RCL 340 32 X;T 388 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 346 00 00 394 65 X 298 36 PGM 347 32 X;T 395 02 2 399 36 PGM 347 32 X;T 395 02 2 390 20 20 348 00 0 394 65 X 299 36 PGM 347 32 X;T 395 02 2 300 20 20 348 00 0 397 61 GTD 302 61 GTD	275 01 01	323 10 10	371 54)
280	276 75 -		372 BA GRA
280		325 43 KCE 326 N8 N8	374 76 LBL
280	- 410 UH / - 279 36 PGM	327 54)	375 85 +
284 92 RTN 285 76 LBL 286 24 CE 287 43 RCL 288 03 03 336 42 STD 289 36 PGM 289 36 PGM 290 20 20 338 03 3 386 50 I×I 291 11 A 292 43 RCL 293 08 08 294 36 PGM 295 43 RCL 297 43 RCL 298 341 43 RCL 299 6 12 B 297 43 RCL 298 01 01 346 00 00 394 65 × 399 36 PGM 347 32 X:T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 302 61 GTD	280 20 20	328 65 ×	376 43 RCL
284 92 RTN 285 76 LBL 286 24 CE 287 43 RCL 288 03 03 336 42 STD 289 36 PGM 289 36 PGM 290 20 20 338 03 3 386 50 I×I 291 11 A 292 43 RCL 293 08 08 294 36 PGM 295 43 RCL 297 43 RCL 298 341 43 RCL 299 6 12 B 297 43 RCL 298 01 01 346 00 00 394 65 × 399 36 PGM 347 32 X:T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 302 61 GTD	281 15 E	329 43 RCL	3// U3 U3
284 92 RTN 285 76 LBL 286 24 CE 287 43 RCL 288 03 03 336 42 STD 289 36 PGM 289 36 PGM 290 20 20 338 03 3 386 50 I×I 291 11 A 292 43 RCL 293 08 08 294 36 PGM 295 43 RCL 297 43 RCL 298 341 43 RCL 299 6 12 B 297 43 RCL 298 01 01 346 00 00 394 65 × 399 36 PGM 347 32 X:T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 302 61 GTD	282 61 GTO	330 03 03	379 73 T
285 76 LBL 333 43 RCL 381 36 PGM 286 24 CE 334 14 14 382 21 21 21 287 43 RCL 335 54) 383 11 R 288 03 03 336 42 STD 384 43 RCL 289 36 PGM 337 12 12 385 12 12 290 20 20 338 03 3 386 50 I×I 290 21 11 R 339 01 1 387 36 PGM 291 11 R 339 01 1 387 36 PGM 292 43 RCL 340 32 X÷T 388 21 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/-295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X÷T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD 303 61 GTD 350 85 + 398 80 GRD 303 61 GTD 350 85 + 398 80 GRD 303 61 GTD 350 85 + 398 80 GRD 303 61 GTD 350 85 + 398 80 GRD 303 61 GTD 350 85 + 398 80 GRD 303 85 98 80 GRD 303 80 GRD 303 85 98 80 GRD 303 8	283 80 GRD	332 SS ÷	380 54)
286 24 CE	204 74 BIN 225 74 FR	333 43 RCL	381 36 PGM
288 03 03 336 42 510 385 12 12 289 36 PGM 337 12 12 12 385 12 12 290 20 20 20 338 03 3 386 50 I×I 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 X;T 388 21 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/-295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X;T 395 02 2 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD	286 24 CE	334 14 14	382 21 21
288 03 03 336 42 510 385 12 12 289 36 PGM 337 12 12 12 385 12 12 290 20 20 20 338 03 3 386 50 I×I 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 X;T 388 21 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/-295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X;T 395 02 2 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD	237 43 RCL	335 54)_	383 11 H
290 20 20 338 03 3 366 30 1/1 291 11 A 339 01 1 387 36 PGM 292 43 RCL 340 32 X;T 388 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X;T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 +	288 03 0 3		
291 11 A 339 01 1 387 36 FGM 292 43 RCL 340 32 X;T 388 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X;T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 +	289 36 PGM	338 N3 3	386 50 IXI
292 43 RCL 340 32 X;T 388 21 21 293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/-295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X;T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD 301 14 D 350 85 + 398 80 GRD	290 20 20 291 11 A	339 01 1	387 36 PGM
293 08 08 341 43 RCL 389 15 E 294 36 PGM 342 03 03 390 94 +/- 295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X:T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD	292 43 RCL	340 32 X ∶ T	388 21 21
295 20 20 343 77 GE 391 85 + 296 12 B 344 25 CLR 392 O1 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X;T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD			
296 12 B 344 25 CLR 392 01 1 297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X;T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD			
297 43 RCL 345 43 RCL 393 54) 298 01 01 346 00 00 394 65 × 299 36 PGM 347 32 X:T 395 02 2 300 20 20 348 00 0 396 54) 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD			392 01 1
300 20 20 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD			393 54)
300 20 20 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD		346 00 00	394 65 %
300 20 20 301 14 D 349 67 EQ 397 61 GTD 302 61 GTD 350 85 + 398 80 GRD	299 36 PGM		395 02 2
302 61 GTO 350 85 + 398 80 GRD	300 20 20		
- AUGE - OI - OIG			
	302 61 GTU 303 80 GRD	351 01 1	399 76 LBL

PROGRAM 3	Continued				
400 75	-	448	06 06	496	36 PGM
401 43		449	61 GTO	497	21 21
402 03	03	450	18 C'	498	13 0
493 75	-	451	76 LBL	499 500	92 RTN 76 LBL
404 01	1	452 453	11 A 43 RCL	500 501	76 LBL
405 54) DOM	454	10 10	502	03 3
406 36 407 21	PGM 21	455	32 X:T	503	00 0
408 11	A	456	00 0	504	32 X:T
409 43	RÖL	457	22 INV	505	43 RCL
410 13		458	67 EQ	506	01 01
411 36	PGM	459	04 04	507	77 GE
412 21	21	460	64 64	508	28 LOG
413 15	E	461	79 🐰	509 510	43 RCL 00 00
414 61		462	42 STO	511	32 X:T
415 80 416 76	GRD LBL	463 464	10 10 43 RCL	511 512	01 1
416 76 417 16	A'	465	10 10	513	67 EQ
418 43	RCL	466	75 -	514	58 FIX
419 10	10	467	43 RCL	515	01 1
420 32	XIT	468	08 Q8	516	94 +/-
421 00	0	469	54)	517	67 EQ
422 22	IHV	470	65 X	518	59 INT
423 67	Εū	471	43 RCL	519	93 . 05 5
424 04	04	472 473		520 521	49 PRD
425 34 426 69	34	474	94 4 A 55 +	522 522	11 11
427 11	OF 11	475	43 RCL	500	71 SBR
428 65	X	476	07 07	524 525 526 527	58 FIX
429 43		477	54	525	29 CP
430 03	03	478	54)	526	67 EQ
431 54)	479	42 STD	527	59 INT
432 42	STO	480	12 12	528	92 RTN
433 10	10	481	61 GTO	529 500	76 LBL
434 43	RCL	482 400	25 CLR	530 531	58 FIX 43 RCL
435 10 436 55	10 ÷	483 484	76 LBL 57 ENG	532	03 03
	RCL	485	65 X	533	65 ×
438 0 8	08	486	őž ž	534	43 RCL
439 54)		54)	535	08 08
440 42		488	36 PGM	536	54)
441 12	12	489	21 21	537	42 STO
442 43		490	11 A	538	02 02
443 03	03	491	43 RCL	539 540	43 RCL
444 75	-	492	02 02	540 541	01 01 71 SBR
445 01	1	493 494	65 × 02 2	542	71 30K 57 ENG
446 54 447 42) STO	495	02 2 54)	543	61 GTO
्राचाः चं⊊	∵ (⊔	4	· ₩ · F · · · · · · · · · · · · · · · ·	- · -	

```
80 GRD
544
                            592
                                  12
                                      12
545
      76 LBL
                            593
                                  61 GTO
546
      59 INT
                            594
                                  25 CLR
547
      43 RCL
                            595
                                  76 LBL
548
      03
           03
                                  19 D*
                            596
549
      65
           ...
                            597
                                  43 RCL
550
      43 RCL
                            598
                                  02
                                       02
551
      08
           08
                            599
                                  85
                                       ÷
                                  53
552
      54
           )
                                       Ć
                            600
553
      42 STD
                            601
                                  43 RCL
554
      02
           02
                            602
                                  10
                                      10
555
      43 RCL
                            603
                                  33 X2
556
      01
           01
                            604
                                  65
                                       ×
557
      85
           +
                                  43 RCL
                            605
558
      01
           1
                            606
                                  03
                                       03
559
      54
           )
                                  54
                            607
                                       )
560
      71 SBR
                                  75
53
                            608
561
      57
          ENG
                            609
                                        Ç
562
      94
          +/-
                                       2
                                  02
                            610
563
      85
           +
                            611
                                  65
                                       Χ
564
      01
           1
                            612
                                  43 RCL
565
      54
           )
                            613
                                  10
                                       10
566
      61 GTO
                            614
                                  65
                                       \times
567
      80 GRD
                            615
616
                                  43 RCL
568
      76 LBL
                                  01
                                       01
569
      28 LOG
                            617
                                  54
                                       )
                            618
570
      43 RCL
                                  54
571
      08
           08
                            619
                                  55
572
573
      65
           \times
                            620
                                  43 ROL
      43 RCL
                                  08
                            621
                                       -08
574
      03
          -03
                            622
                                  54
                                       )
575
      54
           I
                            623
                                  42 STD
576
      34 FX
                            624
                                  12
                                       12
577
      35 1/X
                            625
                                  43 RCL
578
      65
          \times
                            626
                                  03
                                       03
579
           ť,
      53
                            627
                                  42 STO
580
      43 ROL
                            628
                                  06
                                       06
581
      08
          08
                            629
                                  71 SBR
582
      65
           \times
                                  18 C'
                            630
583
      43 RCL
                                  92 RTN
                            631
584
      03
          03
                            632
                                  00
                                      0
585
      94 +/-
                            633
                                  10 E'
586
      85
          +
                            END PROGRAM 3
587
      43 RCL
588
      01
           01
589
      54
           )
```

PROGRAM 3 Continued

STO

PROGRA	M 4	TWO-POPULATION	HYPOTHES	IS T	ESTS		
			019		14	067	43 RCL
LABEL	ADDRI	esses	020	22	IHV	068	00 00
002	61	GTO	021	79	菜	069	32 X:T
		Χž	022	33	ΧZ	070	01 1
050		E'	023	42	STO	071	67 EQ
			024	09	09	072	42 STO
066		EXC	025		STF	073	94 +/-
087		STO	025 026		02	074	67 EQ
	43		020 027		GTO	075	43 RCL
100		GRD	027 028			076	93 .
113	22	INV			06	077	05 5
117		CLR	029		45	078	49 PRD
135	38	SIM	030			079	11 11
148		009	031		ΧS	080	71 SBR
157		DEG	032			081	42 STO
190	85	+	033		STO	082	
207			034	08	08		
216	17	B '	035	22	INV ≅	083	
232	13	C	036	79	X	084	
318	19	D'	037		ΧZ	085	
	15	E	038	42		086	
396	12	8	039		07	087	
458	81	RST	040		RCL	088	43 RCL
483	18	0.1	041	27	27	089	26 26
567		Ā'	042	42	STO	090	61 GTO
596		 А	043	04	04	091	80 GRD
627		Ď	044	43	RCL	092	76 LBL
	• '	•	045			093	43 RCL
T DOC	3.43# T	TOMING	046			094	01 1
PROG	KAM L	ISTING	047	05	05	095	75 -
000	92	RTN	048			096	43 RCL
001	76	LBL	049		LBL	097	26 26
002	61		050	10	E'	098	54)
003	43		051		3	099	76 LBL
004	01		052		ΒĒ	100	80 GRD
005		STO	053	17	17	101	32 X:T
006	27		054	47	CMS	102	43 RCL
007		RCL	055	29		103	28 28
008			056		CLR	104	42 STO
009		STO	057	91		105	15 15
010		26	058	42		106	43 RCL
011		RCL	059	11		107	11 11
012	03			91	11	108	77 ĞE
013	42		060 041		R/S	109	22 INV
013	42 15		061	42	STO	110	00 0
			062 040	00	00	111	92 RTN
015		STO 20	063	81	RST	112	76 LBL
016	28 70		064			113	22 INV
017	79		065		LBL	113	01 1
018	42	STO	066	48	EXC	114	UI I

PROGRAM 4 Continued		
115 92 RTN	163 77 GE 164 25 CLR	211 21 21 212 15 E
116 76 LBL 117 25 CLR	154 23 CER 165 36 PGM	212 10 E 213 61 GTO
118 43 RCL	166 21 21	214 80 GPN
119 00 00	167 11 A	215 76 LBL
120 32 X;T 121 00 0	168 43 RCL 169 00 00	216 17 B° 217 43 RCL
121 00 0 122 67 EQ	170 32 X:T	218 10 10
123 38 SIN	171 00 0	219 32 X:T
124 01 1 125 67 EQ	172 67 EQ 173 85 +	220 00 0 221 22 INV
125 67 EQ 126 39 COS 127 43 RCL	174 01 1	222 67 EQ
127 43 RCL	175 94 +/-	223 60 DEG
128 10 10 129 36 PGM	176 67 E0 177 75 -	224 36 PGM 225 13 13
129 36 PGM 130 19 19	178 43 RCL	226 11 A
131 12 B	179 10 10	227 42 810
132 61 GTO	180 36 PGM 181 21 21	228 10 10 229 61 GTD
133 80 GRD 134 76 LBL	182 15 E	230 60 DEG
135 38 SIN	183 94 +/-	231 76 LBL
136 43 RCL	184 85 + 185 01 1	227 42 STO 228 10 10 229 61 GTO 230 60 DEG 231 76 LBL 232 13 C 233 43 RCL
137 10 10 138 36 PGM	186 54)	234 02 02
139 19 19	187 61 GTO	235 32 X :T
140 14 D	188 80 GRD 189 76 LBL	236 00 0 237 22 INV
141 94 +/- 142 85 +	190 85 +	238 67 EQ
143 01 1	191 43 RCL	23 9 03 03
144 54)	192 10 10 193 50 I×I	240 06 06 241 43 RCL
145 6! GTO 146 80 GRD	193 30 1A1 194 36 PGM	241 43 KUL 242 15 15
147 76 LBL	195 21 21	243 42 STO
148 39 COS	196 15 E 197 94 +/-	242 15 15 243 42 STD 244 28 28 245 85 + 246 43 RCL 247 03 03
149 43 RCL 150 10 10	197 94 +/- 198 85 +	248 43 RCL
151 36 PGM	199 01 1	247 03 03
152 19 19	200 54)	248 75 - 249 02 2
153 13 C 154 61 GTO	201 65 × 202 02 2	247 02 2 250 54)
155 80 GRD	203 54)	251 42 STO
156 76 LBL	204 61 GTD 205 80 GRD	252 25 25 253 35 1/X
157 60 DEG 158 03 3	205 80 GRD 206 76 LBL	254 65 X
159 00 0	207 75 -	255 53 (
160 32 X:T	208 43 RCL	256 43 RCL 257 09 09
161 43 RCL 162 25 25	209 10 10 210 36 PGM	∠37 47 47 258 65 ×

307 13 13 308 16 A* 309 42 STD 310 10 10 311 43 RCL 312 23 429 GTD 313 429 GTD 314 29 GTD 315 60 LB* 315 61 GTD 317 76 LB* 317 19 BCL 318 43 RCL 319 43 RCL 321 42 STD 321 42 STD 322 75 15 PGM 322 75 15 PGM 323 324 54 STD 323 324 54 STD 324 STD 325 42 STD 327 328 329 11 RCL 328 329 11 RCL 328 329 11 RCL 329 21 STD 321 43 RCL 322 323 324 STD 323 324 STD 324 STD 325 42 STD 326 PGM 337 338 339 329 340 43 RCL 337 338 339 329 340 43 RCL 348 43 RCL 349 36 PGM	ELE L508 48 LE L508 76 15 RC 1508 77 438 15 RC 1508 78 15 RC 1
346 54) 347 42 STD 348 10 10 349 36 PGM 350 22 22 351 13 C 352 42 STD 353 26 26	394 48 EXC 395 76 LBL 396 12 B 397 43 RCL
	308 16 A* 309 42 STU 309 10 10 10 10 10 10 10 10 10 10 10 10 10

```
PROGRAM 4 Continued
                             54
                       451
                                              499
                                                   07
                                                        07
403
      55
                       452
                             54 )
                                              500
                                                    55 ÷
404
      53 (
                       453
                             42 STO
                                              501
405
                                                    43 ROL
      43 RCL
                       454
                             10 10
                                              502
                                                   03 03
406
      15 15
                       455
                             61 GTD
                                              503
                                                   54
407
      85 +
                       456
                             25 CLR
                                              504
                                                   42 STO
408
      43 RCL
                       457
                             76 LBL
                                              505
                                                   13
409
                                                      13
      03
         03
                       458
459
                             81 RST
                                              506
                                                   54 )
         )
410
      54
                             43 RCL
                                              507
                                                    34 FX
411
      54
                       460
                             04 04
                                              508
                                                   42 STO
412
      42 STO
                       461
                             75 -
                                              509
413
                                                   29 29
      18
         18
                       462
                             43 RCL
                                              510
                                                   35 1/X
414
      94 +/-
                       463
                                                   65
                                              511
                             01 01
415
      85 +
                                                       \times
                       464
416
417
418
                                              512
                                )
                             54
                                                   53
                                                       í,
      01 1
                       465
                             42 STO
                                              513
                                                   43 RCL
      54
                       466
                             12 12
                                              514
                                                   14 14
      65 ×
                       467
                             43 RCL
                                              515
                                                   75 -
419
     43 RCL
                             05 05
85 +
                                              516
                       468
                                                   43 RCL
420
     18 18
                       469
                                              517
421
                                                   08 08
     65 ×
                       470
                             43 RCL
                                              518
                                                   54
                                                      )
422
     53 (
                       471
472
423
424
                             02 02
                                              519
                                                   54 )
     43 RCL
                             75 -
                                              520
                                                   42 STD
      15 15
                       473
                            02 2
65 ×
                                              521
                                                   10 10
425
      35 1/X
                       474
                                              522
426
427
                                                   43 RCL
      85
         ÷
                                              523
                       475
                            43 RCL
                                                   12 12
      43 RCL
                       476
477
                                              524
                            06 06
                                                   33 X2
428
      03 03
                            54 )
                                              525
429
                                                   55 ÷
      35 1/X
                       478
                             42 STD
                                              526
                                                      (
                                                   53
430
      54 )
                                              527
                       479
                             13 13
                                                   43 RCL
431
      54 )
432
                       480
                             92 RTN
                                              528
                                                   15 15
      34 FX
                       481
482
                             00 0
                                              529
                                                   85
433
     42 STO
                             76 LBL
                                              530
                                                   01
434
                                                        1
      29 29
                       483
                             18 C'
                                              531
435
                                                   54 )
      35 1/X
                       484
                             43 RCL
                                              532
                                                   85
436
      65 ×
437
                       485
                             15 15
                                              533
                                                   53
      53 (
                       486
                             42 STD
                                              534
                                                   53
438
      43 RCL
                       487
                             28 28
                                              535
                                                   43 RCL
439
      04 04
                       488
         ÷
                             43 RCL
                                              536
440
                                                   13 13
      55
                       489
                            09 09
55 ÷
                                              537
                                                   33 %2
441
      43 RCL
                       490
                                              538
                                                   55
442
      15 15
                       491
                             43 RCL
                                              539
                                                   53
443
     75
         ·<del>-</del>
                       492
                             15 15
                                              540
      53
                                                   43 RCL
444
                       493
                            54 )
                                             541
445
      43 RCL
                                                   03
                                                      03
448
                       494
                            42 STO
                                              542
                                                   85
      01
         01
                            12 12
                                              543
                       495
                                                   0.1
447
      55
                       496
                            85 +
                                              544
                                                   54
448
      43 ROL
                            53 (
                       497
                                              545
                                                   54
449
      03 03
                            43 RCL
                       498
                                              546
                                                   54
450
      54
```

PROGRAM 4	Continued				
547 54)	595	76 LBL	643	06 06
548 35	1/X	596	11 A	644	40 40
549 65		597	43 RCL	645	36 PGM
550 43		598	09 09	646	01 01
551 29	29	599	55 ÷	647	71 SBR
552 33		600	43 RCL	648	25 CLR
55 3 33		601	15 15	649	22 INV
554 54		602	85 +	650	86 STF
555 75	-	603	53 (651	01 01 91 R/S
556 01		604	43 RCL 07 07	652	91 R/S
557 93 558 05		605 606	07 07 55 ÷	6 5 3	78 Z+
559 54)	607	43 RCL	654	61 GTD
560 59		608	03 03	655 4 5 4	06 06
561 42		609	54)	656	52 52
562 25	25	610	54	END P	ROGRAM 4
562 25 563 71	SBR	611	34 fX		
564 60	DEG	612	35 1/X		
565 92	RTN	613	65 X		
566 76	LBL	614	53 (
567 16		615	43 RCL		
568 43		616	14 14		
569 03	03	617	75 -		
570 75 571 02	2 :	618 710	43 RCL 08 08		
572 54		619 620	08 Q8 54)		
573 42		621	42 STO		
574 25	25	622	10 10		
ร์วร์ รีธิ	÷	623	71 SBR		
576 53		624	25 CLR		
577 69	0P	625	92 RTN		
578 13	13	626 627	76 LBL		
579 33	ΧZ	627	14 D		
580 94		628	87 IFF		
581 85		629	01 01		
582 01		630	61 GTO		
583 54		631	86 STF		
584 54		632	01 01		
585 34		633	87 IFF		
586 65 587 69	X Of	63 4 635	02 02 33 X²		
- 588 - 13	_	ნან 636	აა გნ 36 PGM		
- 200 10 - 589 54		იან 637	01 01		
590 42		638 638	71 SBR		
591 10		639	25 CLR		
592 71		640	91 R/S		
593 60		641	78 Σ +		
	ŘŤŇ	642	61 GTO		

52

	PROGRAM	5	NORMAL	DISTRIBUTIO	ON APPR	OXIM	ATION		
`	LABEL AI 001 1 113 1 132 1 147 1 160 1 179 1	DDRI 11 12 14 15			036 037 038 039 040 041 042 043 044	65 93 01 09 03 01 05 03	× .31938153	084 085 086 087 088 090 091 093	05 5 05 5 09 9 07 7 08 × 43 PCL 25 49 PRD 26 26
	PROGRAM	LIS	TING		046	75	-	094 095	33 X2 85 +
	001234567890123456789000000000000000000000000000000000000	7153226068533955690000000080535425	LA(2VX)XXH IX .2316419+1)X(T2D5D6		00000000000000000000000000000000000000	\$356563782535865137814779375365138212	.956563782×6583++.58+477937×621+.82+2	0000001003456789012345678901 196789012345678901 11111111111111111111111111111111111	*1.330274429×CL6 NL E1705 RD900000000006425971270342134535104429 RL C 0372A (Exc2801) TB RL C 0374A (E

PROGRAM 5	Continued				
132 14	D	180	43 RCL	228	01 1
133 29	CP	181	09 09	229	93 .
134 77	GE	182	94 +/-	230	04 4
135 01	01	183	85 +	231	03 3
136 18		184	01 1	232	02 2
137 71	SBR	185	54)	233	03 3 02 2 07 7
138 01	01	186	33 %	234	08 8
139 18		187	23 LNX	235	08 8
140 53		188	94 +/-	236	65 ×
141 94		189	34 FX	237	43 RCL
142 85		190	42 STD	238	29 29
143 01	1	191	29 29	239	85 +
144 54		192	02 2	240	93 .
145 92		193	93 .	241	01 1
145 92 146 76	LBL	194	05 5	242	
147 15	E	195	01 1	243	09 9
148 71	SBR	196	05 5	244	02 2
149 01	01	197	05 5 05 5	245	08 8 09 9 02 2 06 6
150 18		198	01 1	246	09 9
151 53		199	07 7	247	65 ×
152 94		200	85 +	248	43 RCL
153 65		201	93 .	249	29 29
154 02	2	202	08 8	250	33 X2
155 85		203	00 0	251	85 +
156 01	1	204	02 2 08 8 05 5	252	93 .
157 54		205	03 8	253	00 0
158 92		206	05 5	254	00 0
159 76		207	03 3	255	01 1
160 13		208	65 ×	256	03 3
161 42	STO	209	43 RCL	257	00 0
162 09		210	29 29	258	08 8
163 32		211	85 ÷	259	65 X
164 93		212	93 .	260	43 RCL
165 05	5	213	00 0	261	29 29
166 22	: INV	212 213 214 215	01 1	262	45 Y×
166 22 167 77	' GE	215	00 0	263	03 3
168 10	E'	216	03 3	264	54) 54)
169 32	X:T	217	02 2	265	54)
170 94		218	08 8	266	94 +/-
171 85		219	65 X	267	85 +
172 01		220	43 RCL	268	43 RCL
173 54		221	29 29	269	29 29
	: STO	222	33 X²	270	54)
175 09		223	54)	271	42 STO
	STF	224	55 ÷	272	11 11
177 01		225 226	53 (273	87 IFF
	LBL	226	01 1	274	01 01
179 10	E'	227	85 +	275	19 D'

PROGRAM 5 Continued

END PROGRAM 5

033 42 STD 081 05 05 LABEL ADDRESSES 034 03 03 082 54) 001 16 A' 035 43 RCL 083 55 ÷ 010 17 B' 036 02 02 084 53 (019 11 A 037 92 RTN 085 43 RCL 019 12 B 038 76 LBL 086 05 05 026 12 B 039 13 C 087 85 +
001 16 A • 035 43 RCL 083 55 ÷ 010 17 B • 036 02 02 084 53 ⟨ 019 11 A 037 92 RTN 085 43 RCL 026 12 B 038 76 LBL 086 05 05
010 17 B • 036 02 02 084 53 (010 17 B • 037 92 RTN 085 43 RCL 019 11 A 038 76 LBL 086 05 05
010 17 5 019 11 A 037 92 RTN 085 43 RCL 026 12 B 038 76 LBL 086 05 05
026 12 B
104 14 h 040 29 CF 000 01 1
- 107 10 E
- 140 10 0 0 0 040 04 04 04 00 001 40 001
167 17 17 10 044 45 45 000 00 00
045 32 X:T 093 54)
PROGRAM LISTING 046 42 STD 094 61 GTD
001 16 H' 049 94 +/- 097 43 RCL 002 43 RCL 050 42 STO 098 06 06
003 01 01 051 05 05 099 92 RTN
- 004 65 ×
005 43 RCL 053 03 03 101 14 D
006 02 02 054 45 YX 102 13 C 007 54) 055 43 RCI 103 43 RCI
TO TO NOT
- 008 92 RTN - 056 01 01 - 104 04 04 09
010 17 B' 058 42 STD 106 76 LBL
011 16 A'
-012 65 $ imes$ -060 44 SUM -108 13 C $-$
013 43 RCL 061 04 04 109 01 1 014 03 03 062 01 1 110 75 -
015 54) 063 44 SUM 111 43 RCL 016 34 [X 064 05 05 112 04 04
017 92 RTN 065 43 RCL 113 54)
018 76 LBL 066 05 05 114 92 RTM
019 <u>11 A</u> 067 77 GE 115 43 ROL
020 59 INT 068 00 00 116 01 01 021 50 IXI
022 42 STD 070 43 RCL 118 01 1 023 01 01 071 06 06 119 5 4)
024 92 RTN 072 65 X 120 61 GTO
- 025 76 LBL
026 12 B 074 02 02 122 76 LBL
027 42 STD 075 65 X 123 18 C*
028 02 02 076 53 (124 47 0.18 029 94 +/- 077 43 RCI 125 42 STO
030 85 + 078 01 01 126 00 00 031 01 1 079 75 - 127 42 STO
032 54) 080 43 RCL 128 01 01

PROGRAM 6	Continued		4 = =	60 00
129 09 130 69	9 OP		177 178	03 03 73 RC*
131 17	17 1		179	02 02 45 Y×
132 01 133 00	0		181	40 1^ 73 RC*
134 42	STO		182	03 03
134 42 135 02 136 05	02 5		184	54) 49 PRD
137 00	0		185	06 06 73 RC*
138 42 139 03 140 01	STO 03		187	03 03
131 17 132 01 133 00 134 42 135 02 136 05 137 00 138 42 139 03 140 01 141 44 142 06	1 SUM		1834 1886 1886 1886 1886 1890 1996 1990 1200 2003 45 2020 2020 2020 2020 2020 2020 2020 2	42 STO 07 07
142 06	06		190	10 E'
143 91 144 72	R/S ST*		191 192	35 1/X 49 PRD
145 02	02		193	06 06
143 91 144 72 145 02 146 44 147 04 148 32 149 72 150 03 151 44 152 05 153 01 154 44 155 02 156 44	SUM 04		194 195	43 RCL 01 01
148 32 149 72 150 03	X:T		196	49 PRD
149 72 150 03	ST* 03	•	197 198	06 06 01 1
151 44	SUM		199	01 1 44 SUM 02 02
152 05 153 01	05 1		200	44 SUM
154 44 155 02	SUM O2		202	03 03 94 +/-
156 44	SUM		204	44 SUM
157 03 158 44 159 08 160 43 161 05 162 32 163 43 164 04 165 61	03 SUM		205 206	01 01 44 SUM
159 08	08		206 207 208 209 210 211 212 213	08 08
160 43 161 05	RCL 05		208 209	43 RCL 08 08
162 32 163 43	XIT		210	67 EQ
163 43 164 04	RCL na		211 212	02 02 16 16
165 61	04 GTO		213	16 16 61 GTD
166 01 167 43	01 43		214 215	01 01 78 78
168 76	LBL		215 216 217	43 RCL
169 19 170 29	D' CP		218	01 01 42 STO
171 43	ROL		219	07 07 10 E
172 08 173 94 174 44 175 02	08 +/-		219 220 221 222 223 224	65 X
174 44 175 02	SUM O2		222 222	43 RCL 06 06
176 44	SUM		224	54

END PROGRAM 6

PROGRAM 7 CHI-SQUARE DISTRIBUTION APPROXIMATIONS

LABEL ADDRESSES 001 14 D 072 11 A 100 12 B 148 13 C 179 18 C 234 15 E 253 10 E 355 19 D 374 16 A 388 17 B	033 034 035 036 037 038 040 041 042	00 00 42 42 89 1 34 FX 42 STO 19 19 01 1 42 STO 18 18 43 RCL 20 20 32	080 081 082 083 084 085 086 087 088 090	54) 45 YX 43 RCL 15 15 55 ÷ 43 RCL 01 01 22 INV 23 LNX 54 X 55 ÷
PROGRAM LISTING 000 76 LBL 001 14 D 002 43 RCL 003 15 15 004 55 + 005 02 2 006 85 + 007 42 STD 008 20 20 009 42 STD 010 17 17 011 93 . 012 05 5 013 54) 014 42 STD 015 21 21 016 29 CP 017 22 INV 018 59 INT 019 67 EQ 020 00 00 021 35 35 022 89 f 023 34 FX 024 55 + 025 02 2 026 54) 027 42 STD 028 18 I8 029 01 1 030 42 STD 031 19 19 032 61 GTD	045 04489 04553456789 045555556789 0555555556789 06666669 06777777777777777777777777777	1 GO 61 - MO M1 LO 94 S 20 B 1 CO 61 - MO M1 LO 94 S 20 B 20	093 093 099 099 099 099 100 100 100 100 100 111 111	RC1 + L9 NL R × 2 + L500 L1 D3 D102TL1 M0 + C19 NL R × 2 + C1500 L1 S 21 D102TL1 M0 + C1500535452 S 21 D102TL1 M0 + C150055452 S 21 D

```
PROGRAM 7 Continued
                      175
                                                  54
                           54
                                            223
127
     43 RCL
                                            224
                     176
                           42 STD
                                                  45 YX
128
     20 20
                                            225
                     177
                           09 09
129
     54
.130
                     178
                           76 LBL
                                            226
                                                  65
                                                     \mathcal{K}
     49 PRD
                     179
                           18 C*
                                            227
                                                  43 ROL
131
     21
        21
                     180
                           43 ROL
                                            228
                                                  15 15
132
     43 RCL
                     181
                           09 09
                                            229
                                                  54
133
     21
         21
                           15 E
                                            230
                                                  42 STD
                     182
134
     44 SUM
                           43 RCL
                                            231
135
                     183
                                                  13 13
     22
         22
                           15 15
65 ×
09 9
                                            232
233
                     184
                                                  92 RTN
136
     43 RCL
                     185
                                                  76 LBL
137
     22 22
                                            234
                     186
                                                  15 E
138
     22 INV
                     187
                           54 )
                                            235
                                                  42 STD
139
     67 EQ
                           35 1/X
     01 01
20 20
                     188
                                            236
                                                  09 09
140
     01
                                            237
238
                     189
                           65 ×
                                                  32 X1T
141
                          02 2
54 )
                      190
                                                 93 .
05 5
142
     65 X
                      191
                                            239
143
     43 RCL
                           42 STO
                                            240
                                                  22 INV
                     192
144
     23 23
                                                  77 GE
                           14 14
                                            241
                     193
145
        )
     54
                                           2 2
243
244
                     194
                           34 FX
                                                  10 E'
146
     92 RTN
                           65 ×
                     195
                                                  32 MIT
147
     76 LBL
                           43 RCL
                     196
                                                  94 +/-
148
     13 C
                     197
                           11 11
                                            245
                                                  85 +
149
     42 STO
                                            246
                                                  01 1
150
                     198
                           54
    09 09
                                                  54
                     199
                           42 STO
                                            247
151
     43 RCL
                      200
                           13 13
                                            248
                                                 42 STO
152
     15 15
                                            249 09 09
                      201
                           94 +/-
153
     32 XIT
                      202
                           85 +
                                            250 86 STF
154
     01
        1
155
156
                           01 1
                                            251
        ΕQ
                      203
                                                  01
                                                     01
     67
                      204
                           75 -
                                            252
                                                  76 LBL
     16 A*
                                            253
254
255
                     205
206
                                                  10 E'
                           43 RCL
     02 2
67 EQ
157
158
                           14 14
                                                  43 RCL
     17 B
                            54 )
                     207
                                                  09 09
159
     03 3
00 0
                                            256
                           45 YX
                                                  94 4/-
160
                      208
                           03 3
65 ×
                      209
                                            257
                                                  85 +
161
                                            258
                      210
                                                  01
162
     22 INV
                           43 RCL
163
                      211
                                            259
                                                  54
                                                     )
     77 GE
                      212
                           15 15
                                            260
                                                  33 X2
164
     01 01
                      213
                            54
                               )
                                            261
                                                  23 LNX
165
     78 78
166
                      214
                           42 STO
                                            262
                                                  94 +/-
     18 C'
                                            263
264
                                                  34 FX
                      215
                           11 11
167
     12
        В
                      216
                           43 ROL
                                                  42 STO
168
     94 +/-
                      217
                           13 13
                                            265
                                                  10 10
169
     85 +
                                            266
                      218
                           85 +
                                                  53
170
     43 RCL
171
172
                               1
                      219
                            01
                                            267
                                                  53
     09
        - 09
                      220
                            75
                               -
                                            268
                                                  53
     85
                            43 RCL
                                            269
                       221
173
                                                  02
     43 ROL
174
                      222
                           14
                               14
                                            270
     09 09
```

```
PROGRAM 7
          Continued
 271
       05
            5
                           319
                                  08
                                       8
                                                      367
                                                            43 RCL
 272
       01
            1
                           320
                                  09
                                       9
                                                      368
                                                             11
                                                                11
 273
                           321
                                  02
                                       2
       05
            5
                                                      369
                                                            94 +/-
                           322
                                       6
 274
       05
            5
                                  06
                                                      370
                                                            42 STO
275
                           323
                                  09
       01
            1
                                                      371
                                                            11
                                                                11
 276
277
                           324
                                  65
                                       ×
       07
            7
                                                      372
                                                            92 RTN
                                  43 RCL
       85
                           325
                                                      373
                                                            76
                                                               LBL
                           326
 278
                                  10
                                      10
                                                            16 A'
       93
                                                      374
                                     ХЗ
 279
                           327
                                  33
       80,
            8
                                                      375
                                                            43 ROL
                           328
 280
       ÒΟ
            Ū
                                  85
                                                      376
                                                            09
                                                                  09
 281
       02
            2
                           329
                                  93
                                                      377
                                                             94
                                                                +/-
 282
       08
            8
                           330
                                  00
                                       0
                                                      378
                                                            85
                                                                  +
 283
       05
            5
                           331
                                       Ū
                                  00
                                                      379
                                                            01
                                                                  1
 284
       03
            3
                           332
                                  01
                                       1
                                                      380
                                                             54
                                                                  1
 285
                           333
                                       3
       65
                                  03
            \times
                                                      381
                                                             55
       43 RCL
                           334
                                       0
 286
                                  00
                                                      382
                                                                  2
                                                            02
 287
                           335
                                  08
                                       3
                                                      383
                                                                  )
       10
           10
                                                            54
 288
       85
                           336
                                  65
                                      \times
                                                                  Ε
                                                      384
                                                             15
 289
       93
                           337
                                  43 RCL
                                                      385
                                                            33 X2
                                  10
 290
       00
                           338
                                      10
            0
                                                      386
                                                             92 RTN
 291
                           339
                                  45 YX
       01
            1
                                                      387
                                                             76 LBL
 292
                           340
                                  03
                                       3
       00
                                                      388
                                                             17 B*
            0
 293
            3
                                  54
       03
                           341
                                                      389
                                                             43 RCL
 294
       02
            2
                           342
                                  54
                                                      390
                                                            09
                                                                 09
                                      +/-
 295
            8
                           343
                                  94
       08
                                                      391
                                                             94 +/-
                           344
                                  85
 296
       65
           ×
                                      ÷
                                                      392
                                                             85
                                                                 +
 297
                           345
                                  43 ROL
       43 RCL
                                                      393
                                                             01
 298
                           346
                                  10
       10
           10
                                      10
                                                      394
                                                             54
                           347
 299
       33 X2
                                  54
                                       4
                                                      395
                                                             23 LHX
 300
       54
                            348
                                  42 STD
            )
                                                      396
                                                             94 +/-
 301
       55
                                  11
                                      11
                            349
                                                      397
                                                             65
                                                                  ×
                                  ST IFF
 302
       53
                            350
            1
                                                      398
                                                             02
                            351
352
 303
       01
            1
                                  01
                                     0.1
                                                      399
                                                             54
                                                                  )
                                  19 D.
 304
       85
                                                      400
                                                             92 RTN
                            353
                                  12 RTN
76 LBL
 305
       01
            1
 306
       93
                            354
                                                      END PROGRAM 7
                                  19 D'
 307
       04
                            355
            4
                                  43 RCL
       03
            327
                            356
 308
                            357
 309
       02
                                  09
                                       09
 310
                            358
                                  94
       07
                                      +//-
 311
                            359
                                  85
       08
            8
 312
       08
            8
                            360
                                  01
 313
       65
                                  54
            Х
                            361
                                       Ť
                                  42
                                      STO
 314
       43
          RCL
                            362
 315
       10
           10
                            363
                                  09
                                      -09
 316
       85
                            364
                                  22 INV
                                  86 STF
 317
       93
                            365
 318
       01
                            366
                                  01
                                       01
```

PROGRAM 8 STUDENT'S t DISTRIBUTION APPROXIMATIONS

LABEL ADDRESSES 001 14 D 072 11 A 109 12 B 275 15 E 369 13 C 395 17 B' 407 18 C' 454 10 E'	035 89 m 036 34 FX 037 42 STU 038 19 19 039 01 1 040 42 STU 041 18 18 042 43 RCL 043 20 20 044 32 X:T	082 85 + 083 01 1 084 54) 085 45 Y* 086 53 (087 43 RCL 088 15 15 089 85 + 090 01 1
PROGRAM LISTING 000 76 LBL 001 14 D	045 01 1 046 77 GE 047 00 00 048 36 66	092 65 × 093 43 RCL 094 15 15 095 65 ×
002 43 RCL 003 15 15	049 01 1 050 94 +/-	096 89 π 097 54) 098 34 ΓΧ
004 55 ÷ 005 02 2 006 85 + 007 42 STO	051 44 SUM 052 20 20 053 44 SUM 054 21 21	099 65 × 100 43 RCL 101 19 19
007 72 378 008 20 20 009 42 STB 010 17 17	055 43 RCL 056 20 20 057 49 PRD	102 55 + 103 43 RCL 104 18 18
011 93 .	058 19 19	105 54)
012 05 5	059 43 RCL	106 35 1/X
013 54)	060 21 21	107 92 RTN
014 42 STO	061 49 PRD	108 76 LBL
015 21 21	062 18 18	109 12 B
016 29 CP	063 61 GTD	110 42 STO
017 22 INV	064 00 00	111 01 01
018 59 INT	065 42 42	112 14 D
019 67 EQ	066 43 RCL	113 43 RCL
020 00 00	067 19 19	114 01 01
021 35 35	068 49 PRD	115 55 ÷
022 89 1	069 17 17	116 43 RCL
023 34 ΓX	070 92 RTN	117 15 15
024 55 ÷	071 76 LBL	118 34 FX
025 02 2	072 11 A	119 54)
026 54)	073 42 STD	120 70 RAD
027 42 STD	074 01 01	121 22 INV
028 18 18	075 14 D	122 30 TAN
029 01 1	076 43 RCL	123 42 STD
030 42 STD	077 01 01	124 16 16
031 19 19	078 33 X2	125 39 CDS
032 61 GTD	079 55 ÷	126 42 STO
033 00 00	090 43 RCL	127 20 20
034 42 42	081 15 15	128 42 STO

PROGRAM 8 129 23 130 33 131 42 132 21 133 43 134 15 135 55 136 02 137 22 139 59 140 29 141 67 142 02 143 16 144 01 145 32 146 43 147 148 67 148 67 149 02 150 11 151 43 152	Continued 23 X2 STD 21 RCL 15 ÷ 2) INV INT CP EQ 02 16 1 X:T RCL 15 EQ 02 11 RCL 15	1789 1789 1883 1883 1889 1992 1996 1999 1990 1990	22 22 54) 49 PRD 24 24 43 RCL 24 22 65 R 20 54 SUM 20) 44 SUM 23 RC2 54 SUM 23 RC2 1 NO 64 ACL 65 PCL 66 PCL 67 PCL 68 PCL	22222222222222222222222222222222222222	42 00 STD 3 L 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C
156 32 157 42 158 42 159 24 160 67 161 67 162 01 163 43 165 65 167 01 168 44 169 22 170 43 171 22 173 44 174 44 175 43	X:T S:TD 22 S:TD 24 EQ 01 95 R:C1 X:DM 22 X:DM 22 X:DM 22 X:DM 22 X:DM 22 X:DM 22 X:DM 22 X:DM 22 X:DM 22 X:DM 23 X:DM 24 X:DM 25 X:DM 26 X:DM 27 X:DM 27 X:DM 28 X:D	204 205 207 208 210 211 213 214 215 217 218 222 222 222 223 223 223	02 2 55 ÷ 89 n 54) 61 GTU 02 02 67 67 43 RCL 16 16 61 GTU 02 03 03 03 43 RCL 15 15 75 - 02 2 54) 32 X:T 01 STU 20 20	252 253 2554 2557 2559 2652 2667 2667 2667 2667 2677 272 272 272 2	22 42 8 20 8 20 8 20 8 20 8 20 8 20 8 20

PROGRAM 8 Continued 273 92 RTN 274 76 LBL 275 15 E 276 94 +/- 277 85 + 278 01 1 279 54) 280 33 X2 281 23 LNX 282 94 +/- 283 34 \(\frac{1}{1} \) 284 42 STD 285 10 10 286 02 2 287 93 . 288 05 5 289 01 1 290 05 5 291 05 5 291 05 5 291 05 5 291 05 5 291 05 5 292 01 1 293 07 7 294 85 + 295 93 . 296 08 8 297 00 0 298 02 2 299 08 8 297 00 0 301 03 3 302 65 X 303 43 RCL 304 10 10 305 85 + 306 93 . 307 00 0 308 01 1 309 00 0 310 03 3 311 02 2 312 08 8 313 65 X	+1.432788×L0 +1.432788×L0 93.432788×C0 1.233400000000000000000000000000000000000	C D D C D C D C D C D C D C D C D C D C
310 03 3	358 54)	406 76 LBL
311 02 2	359 54)	407 18 C'
312 08 8	360 94 +/-	408 01 1

PROGRAM 8 Continued

7890123456789012345678901234544444444444444444444444444444444444	533533R 1 - 1 .57)))X)+5)T2L0 333533F 157)))X)+5)T2L0 X CL5 335533F 157))X)+5)T2L0 X CC2 R C2 X C2 R C4 X	34556789012345678901234567 4556789012345678901234567 PP	76 LBL 10 E . 93 STL 00 E . 05 XCL 00 2 R OV 67
448	65 ×		

PROGRAM 9 F DISTRIBUTION APPROXIMATIONS

LABEL ADDRESSES 001 12 8 375 11 A 386 15 E 404 19 D 498 13 C 526 10 E 607 16 A 617 17 B	033 86 STF 034 02 02 035 43 RCL 036 17 17 037 87 IFF 038 01 01 039 01 01 040 43 43 041 87 IFF 042 02 02	080 42 STD 081 22 22 082 42 STD 083 23 23 084 42 STD 085 24 24 086 43 RCL 087 22 22 088 77 GE 089 01 01
632 14 D	043 00 00	090 15 15
650 18 C' ·	044 53 53	091 35 1/X
PROGRAM LISTING 000 76 LBL 001 12 B 002 42 STD 003 17 17 004 22 INV 005 86 STF 006 01 01 007 43 RCL 008 15 15 009 55 ÷ 010 02 2 011 54) 012 22 INV 013 59 INT 014 29 CP 015 67 EQ 016 00 00 017 20 20 018 86 STF 019 01 01 020 22 INV 021 86 STF 020 02 INV 021 86 STF 022 02 02 023 43 RCL 024 16 16 025 55 ÷ 026 02 2 027 54) 028 22 INV 029 59 INT 030 67 EQ	045 43 RCL 046 16 16 047 32 X:T 048 43 RCL 049 15 15 050 77 GE 051 01 01 052 47 47 053 43 RCL 053 43 RCL 055 42 STD 056 18 18 057 43 RCL 058 16 16 057 43 RCL 058 16 16 059 42 STD 060 19 19 061 42 STD 061 42 STD 062 71 SBR 064 01 01 065 30 30 066 42 STD 067 20 21 078 18 18 070 21 RCL 070 43 RCL 070 43 RCL 070 43 RCL 071 18 18 072 073 55 ÷ 074 02 X:T 075 077 01	093 43 RCL 094 21 XL 095 65 RCL 096 43 RCL 097 19 ÷ 098 02 SUM 097 098 02 SUM 109 23 SUM 101 19 PRD 102 49 PRD 103 49 RCL 104 22 RCL 105 44 GTO 106 43 RCL 107 24 SUM 107 23 SUM 108 23 SUM 109 23 SUM 109 24 GTO 109 24 RCL 110 24 A3 RCL 111 20 A3 RCL 112 A4 A3 RCL 113 A4 A3 RCL 114 A4 A3 RCL 115 A4
031 00 00	078 44 SUM	125 94 +/-
032 35 35	079 21 21	126 85 +

PROGRAM 9	Continued				
127 01	1	175	85 +	223	50 50
128 54	2	176	01 1	224	43 RCL
129 92	RTN BC:	177 178	54) 92 RTN	22 5	21 21 33 %²
130 43 131 15	RCL 15	179	72 KIN 65 X	226 227	33 %² 65 ×
132 55	± ·	180	43 RCL	228	43 RCL
133 43	RCL	181	15 15	229	24 24
134 16	16	182	55 ÷	230	65 ×
135 65 136 43	X RCL	183 184	43 RCL 16 16	230 231 232	02 2 44 SUM
137 17	17	185	54)	233	25 25
138 85	+	186	34 / X	233 234	55 ÷
139 01	1	187	70 RAD	235	43 RCL
140 54	1 214	188 189	22 IMV 30 TAN	236 237	25 25
141 35 142 92	1/X RTN	190	42 STO	238 238	54) 49 PRD
143 87	IFF	191	17 17	239	23 23
144 02	02	192 193	38 SIN	240	43 RCL
145 01	01	193	42 STO 20 20	241	23 23
146 79 147 43	79 RCL	194 195	20 20 43 RCL	242 243	44 SUM 22 22
148 16	16	196	17 17	244	01 1
149 42	STO	197	39 C∐S	245	44 SUM
150 18	18	198	42 STO	246	24 24
151 43 152 15	PCL 15	199 200	21 21 42 STO	247 248	61 GTD 02 02
153 42	STO	201	22 22	249	19 19
154 19	19	202	42 STO	250	43 RCL
155 42	STO	203	23 23	251 250	20 20
156 25 157 71	25 SBR	204 205	01 1 42 STO	252 253	49 PRD 22 22
158 01	01	206	24 24	254	43 RCL
159 30	30	207	42 STO	255	22 22
160 42	ST O	208	25 25	256	44 SUM
161 21 162 94	21 +/-	209 210	32 X∤T 43 RCL	257 259	17 17 01 1
163 42	STO	210 211	16 16	258 259	42 3TO
164 20	29	212	67 EQ	260	22 22
165 01	1	213 214	02 02	261	01 1
166 44 167 20	SUM 20	214 215	58 58 75 -	262 263	42 STD 24 24
168 22	INV	216	02 2	264	32 X:T
169 44	SUM	217	54)	265	43 RCL
170 21	21	218	32 XIT	266	15 15
171 71 172 00	SBR 00	219 220	43 RCL 25 25	267 268	67 EQ 03 03
172 00	71	221	67 EQ	269	60 60
174 94		222	_02 02	270	43 RCL

PROGRAM 9 Continued 271 16 16 272 67 EQ 273 02 02	319 27 27 320 54) 321 42 STD	367 89 1 368 54) 369 94 +/-
274 98 98 275 42 STO 276 23 23 277 01 1 278 22 INV 279 44 SUM	322 25 25 323 02 2 324 44 SUM 325 25 25 326 44 SUM	370 85 + 371 01 1 372 54) 373 92 RTN 374 76 LBL
279 44 SUM 280 23 23 281 43 RCL 282 23 23	327 26 26 328 43 RCL 329 26 26 330 77 GE	375 11 A 376 42 STO 377 16 16 378 32 X∤T
283 49 PRD 284 24 24 285 01 1 286 22 INV	331 03 03 332 51 51 333 35 1/X 334 65 %	379 42 STO 380 15 15 381 03 3 382 69 DP 383 17 17
287 44 SUM 288 23 23 289 43 RCL 290 23 23 291 22 INV	335 43 RCL 336 25 25 337 65 × 338 43 RCL 339 20 20	383 17 17 384 92 RTN 385 76 LBL 386 15 E 387 42 STO
291 22 177 292 49 PRD 293 24 24 294 22 INV 295 67 EQ	340 33 X² 341 54) 342 49 PRD 343 27 27	388 08 08 389 93 . 390 05 5 391 32 X¦T
296 02 02 297 77 77 298 43 RCL 299 21 21	344 43 RCL 345 27 27 346 44 SUM 347 22 22	392 43 RCL 393 08 08 394 77 GE 395 19 D' 396 71 SBR
300 45 YX 301 43 RCL 302 16 16 303 65 X 304 43 RCL	348 61 GTU 349 03 03 350 23 23 351 43 RCL 352 22 22	397 04 04 398 09 09 399 94 +/- 400 42 STD
305 20 20 306 54) 307 49 PRD 308 24 24	353 65 × 354 43 RCL 355 24 24 356 54)	401 11 11 402 92 RTN 403 76 LBL 404 19 D'
309 43 RCL 310 15 15 311 32 X∤T 312 43 RCL	357 22 INV 358 44 SUM 359 17 17 360 01 1	405 94 +/- 406 85 + 407 01 1 408 54) 409 33 X2
313 16 16 314 75 - 315 01 1 316 42 STD	361 75 - 362 43 RCL 363 17 17 364 65 × 365 02 2	410 23 LNX 411 94 +/- 412 34 \(\times\) 413 42 STD
317 26 26 318 42 STD	366 55 ÷	414 29 29

```
PROGRAM 9 Continued
 415
        02
             2
                             463
                                   93
                                                         511
                                                                43
                                                                    ROL
 416
                             464
        93
                                   01
                                                         512
                                                                09
                                                                    09
 417
                             465
        05
                                   08
                                         8
                                                         513
                                                                    E "
                                                                10
 418
                             466
                                   09
                                        926
        01
             1
                                                         514
                                                                12
 419
420
             5
                            467
                                   02
       05
                                                         515
                                                                94
                                                                    +/-
                            468
       05
                                   06
                                                         516
                                                                85
                                                                     +
 421
       01
             1
                            469
                                   09
                                        9
                                                         517
                                                                43 RCL
 422
             7
                            470
                                   65
       07
                                        X
                                                         518
                                                                     09
                                                                09
 423
                            471
       85
                                   43
                                       RCL
             +
                                                         519
                                                                85
 424
                            472
       93
                                   29
                                       29
             :
S
                                                         520
                                                                43 RCL
 425
426
                            473
       08
                                   33
                                                         521
                                       XΖ
                                                               09
                                                                     09
             0
                            474
       00
                                   85
                                        +
                                                         522
                                                               54
                                                                     )
 427
                            475
       02
             285
                                   93
                                                        5234
5245
5226
5228
5229
                                                                10 E'
                            476
477
 428
       08
                                   00
                                        0
                                                               92 RTN
429
       05
                                   00
                                        Ū
                                                               76 LBL
430
                            478
       03
             3
                                   01
                                        1
                                                               10 E'
                            479
 431
       65
            ×
                                   03
                                        3
                                                               15
                                                                     Ε
432
       43
           ROL
                            480
                                   00
                                        0
                                                               33
                                                                   XΞ
433
       29
            29
                            481
                                   08
                                        8
                                                               75
434
       85
                            482
                                   65
                                        ×
            +
                                                         530
                                                               03
435
       93
                            483
                                   43 RCL
                                                        531
532
533
                                                               54
                                                                     )
436
                            484
                                   29
       00
                                        29
            0
                                                               55
437
                            485
                                   45
       01
            1
                                       YΧ
                                                               06
438
                            486
       00
            0
                                   03
                                        3
                                                        534
                                                               54
                                                                     j.
            3
                            487
439
       03
                                   54
                                        )
                                                        535
                                                               4.
                                                                   STO
440
            2
                            488
       02
                                   54
                                        )
                                                        536
                                                               17
                                                                   17
441
            8
                            489
       08
                                   94
                                       +/-
                                                        537
538
                                                               43 RCL
442
       65
                            490
            X
                                   85
                                       +
                                                               15
                                                                    15
443
       43
          RCL
                            491
                                   43 RCL
                                                        539
                                                               75
444
       29
            29
                            492
                                  29
                                        29
                                                        540
                                                               01
                                                                    1
       33
445
                            493
          ΧZ
                                  54
                                       )
                                                        541
                                                               54
                                                                    )
446
       54
            )
                            494
                                  42 STD
                                                        542
                                                               35 1/X
447
                            495
       55
                                   11
                                        11
                                                        543
                                                               42 STO
448
            Ç
                            496
       53
                                  92 RTN
                                                        544
                                                               18
                                                                    18
449
       01
            1
                            497
                                  76 LBL
                                                        545
                                                               85
                                                                    ÷
450
                            498
       85
                                  13
                                        C .
                                                        546
                                                               53
                                                                    (
451
                            499
      01
            1
                                  42 STO
                                                        547
                                                               43 RCL
452
       93
                            500
                                  09
                                      - 09
                                                        548
                                                               16
                                                                    16
453
                            501
                                  01
      04
            4
                                        1
                                                        549
                                                               75
454
      03
                            502
                                  32 X:T
            3
                                                        550
                                                               01
                                                                    1
455
      02
            2
7
                            503
                                  43 RCL
                                                        551
552
                                                               54
                                                                    >
456
                            504
                                  15
      07
                                       15
                                                               35 1/X
457
            8
                                  67
      08
                            505
                                       EQ
                                                        553
                                                               22 INV
458
                            506
                                  16 A'
            8
      08
                                                        554
                                                               44
                                                                  SUM
459
                            507
      65
                                  43
                                      RCL
            \times
                                                        555
                                                               18
                                                                   18
460
      43
          RCL
                            508
                                  16
                                       16
                                                        556
                                                               54
                                                                    )
461
      29
            29
                           509
                                  67
                                       ΕQ
                                                       557
558
                                                               35
                                                                  1/8
462
      85
                           510
                                  17 B*
                                                               65
                                                                   \times
```

```
PROGRAM 9
         Continued
                          607
                                16 A'
                                                    655
559
      02
           2
560
                          608
                                43 RCL
                                                    656
                                                          55
      54
           )
561
                          609
                                16
                                                    657
                                                          02
                                    16
      42 STO
                          610
                                42 STO
562
                                                    658
                                                          54
                                                               )
      19
           19
                                15
                          611
                                    15
                                                    659
                                                          42
                                                              STO
563
      85
           +
                          612
564
                                67
                                     ΕQ
                                                    660
                                                          00
                                                               69
      43 RCL
                          613
565
                                14
                                    D
                                                    661
                                                          53
      17
           17
                                18 0"
                          614
                                                    662
                                                          01
566
      54
          )
                                92 RTN
                          615
567
                                                    663
                                                          94
                                                              +/-
      34 FX
                          616
                                76 LBL
                                                    664
                                                          85
568
      65
          ×
                          617
                                17 B*
569
      43 ROL
                                                    665
                                                          53
                                                                (
570
                                43 RCL
                          618
                                                    666
                                                          01
                                                               1
      11
           11
571
                          619
                                09
                                    09
                                                          85
                                                    667
      55
                          620
                                94 +/-
                                                    668
                                                          01
                                                               1
572
      43 ROL
                          621
                                85
                                     +
                                                    669
                                                          00
                                                               Ū
573
      19
           19
                          622
                                01
                                     1
                                                          55
574
      54
                                                    670
           )
                          623
575
      95
                                54
                                    )
                                                    671
                                                          53
                                                               (
           ÷
                          624
                                42 STD
                                                          03
                                                    672
                                                               3
576
      53
           (
                          625
                                09
                                    09
                                                    673
577
      43 RCL
                                                          65
                                                               X
                          626
                                43 RCL
                                                               (
                                                    674
                                                          53
578
           18
      18
                          627
                                15
                                    15
                                                    675
                                                          43
                                                              RCL
579
      65
           \times
                                18 C'
                          628
                                                    676
                                                          15
580
      53
           (
                                                               15
                          629
                                35 1/%
                                                    677
                                                          75
581
      43 RCL
                          630
                                92 RTN
                                                          01
582
      17
                                                    678
                                                               1
           17
                          631
                                76 LBL
                                                    679
                                                          93
583
      35
           5
÷
6
                          632
                                    D
                                14
                                                          05
584
      05
                                                    680
                          633
                                43 RCL
                                                          07
585
      55
                                                    681
                          634
                                09
586
                                    - 09
                                                    682
                                                          54
                                                               )
      06
                          635
                                                    683
                                                          54
587
      75
           _
                                94
                                    +/-
           2
                          636
                                85
                                     +
                                                    684
                                                          54
                                                               )
588
      02
           ÷
                          637
                                01
                                     1
                                                    685
                                                          34 IX
589
      55
                          638
590
                                54
                                    ) 1
                                                    686
                                                          54
                                                               )
      53
                          639
                                65
                                                    687
                                                          55
591
           3
                                    \times
      03
                                89
                                                          05
                          640
                                                               5
                                     Π
                                                    688
592
      65
           ×
                                55
593
                          641
                                     ÷
                                                    689
                                                          54
                                                               )
      43 ROL
                                     2
                          642
                                02
                                                    690
                                                          42
                                                             STO
594
      19
           19
                                54
                                     )
                          643
595
      54
           )
                                                    691
                                                          02
                                                               02
596
                          644
                                 70 RAD
                                                    692
      54
                                                          43
                                                              ROL
           )
                          645
                                 30 TAN
597
      54
                                                    693
                                                          00
                                                               00
           )
                                 35 1/%
598
                          646
                                                    694
                                                          15
                                                              Ε
      94
          +/-
599
                          647
                                 33 XZ
                                                    695
                                                          33 Xz
           )
      54
                          648
                                 92 RTN
                                                    696
600
                                                          65
                                                               X
      65
           X
                          649
                                 76 LBL
                                                    697
                                                          43
                                                              ROL
           2
      02
601
                          650
                                 18 C°
                                                    698
                                                          02
                                                               02
602
      54
           )
                          651
                                 43 RCL
                                                    699
                                                          85
603
      22
         INV
                          652
                                 09
                                                          01
                                     09
                                                    700
604
                                                               1
      23 LMX
                          653
                                 85
                                                          54
                                                    701
605
      92 RTN
                          654
       76 LBL
                                 01
                                      1
                                                    702
                                                          65
606
```

PROGRAM 9 Continued

703 43 RCL 704 11 11 705 54) 706 33 X² 707 92 RTN

END PROGRAM 9

LIST OF REFERENCES

- 1. Mood, A. M., F. A. Graybill, and D. C. Boes, <u>Introduction</u> to the Theory of Statistics, Third Edition, McGraw-Hill, 1974.
- 2. Dixon, W. J. and F. J. Massey, <u>Introduction to Statistical Analysis</u>, Third Edition, McGraw-Hill, 1969.
- 3. Larson, H. J., <u>Introduction to Probability Theory and Statistical</u> Inference, Second Edition, Wiley, 1974.
- 4. Zehna, P. W., <u>Probability Distributions and Statistics</u>, Allyn and Bacon, 1970.
- 5. Abramowitz, M. and I. Stegun, <u>Handbook of Mathematical</u> Functions, Dover Publications, <u>1968</u>.
- 6. Naval Postgraduate School Report NPS55-80-004PR, Report on an Experiment on Formal Use of Hand Held Programmable Calculators in Statistics Courses, by D. R. Barr, January 1980.
- 7. Texas Instruments Incorporated, Applied Statistics, 1977.
- 8. Gaver, D. P., <u>Recipes for Inverse "t," Naval Postgraduate</u> School, Monterey, California, November 1980.

INITIAL DISTRIBUTION LIST

	N	o. Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3.	Department Chairman, Code 55 Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
4.	Professor D. R. Barr, Code 55Bn Department of Operations Research Naval Postgraduate School Monterey, California 93940	2
5.	Professor P. W. Zehna, Code 55Ze Department of Operations Research Naval Postgraduate School Monterey, California 93940	2
6.	Professor D. P. Gaver, Code 55Gv Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
7.	LCDR C. F. Taylor, Code 55Ta Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
8.	Capt Richard W. Storer, USAF Department of Mathematical Sciences (DFMS) United States Air Force Academy, Colorado 808	2
9.	Lt Col John Kitch, Jr., USAF Chief, AFIT/CIR Wright-Patterson Air Force Base, Ohio 45433	1
10.	Capt John Thompson, USAF 3780 TTGP/TTGBF Sheppard Air Force Base, Texas 76311	1

DATE FILMED