Notes on Inference Devices

Santa Fe Institute

Edward G. Huang

Summer 2018

1 Notation and Definitions

Standard notation is taken from set theory and vector algebra. We clarify some notation specific to computation and inference devices.

Computation and Turing Machines

- \mathbb{B}^* The space of all finite bit strings.
- Λ Symbol alphabet of a Turing Machine.
- σ A symbol on a Turing Machine tape.
- Q Set of finite states of a Turing Machine.
- Δ Transition function of a Turing Machine.
- k Number of tapes of a Machine.
- η Non-halting state of a Turing Machine.

Deterministic Inference Devices

- U Set of possible histories of the universe.
- u A history of the universe in U.
- X Setup function of an ID that maps $U \to X(U)$. A binary question concerning $\Gamma(u)$.
- x A binary question and a member of image X(U).
- Y Conclusion function of an ID that maps $U \to \{-1,1\}$. A binary answer of an ID for X(u) = x.
- y A single-valued answer, and member of image $Y(U) = \{0, 1\}$.
- Γ A function of the actual values of a physical variable over U, equivalent to $\Gamma(u) = S(t_i)(u)$.
- γ Possible value of a physical variable, a member of the image $\Gamma(U)$.
- δ Probe of any variable V parameterized by $v \in V$ such that:

$$\delta_v(v') = \begin{cases} 1 & \text{if } v = v' \\ -1 & \text{otherwise} \end{cases}$$

 \wp Set of probes over $\Gamma(U)$.

 $\mathcal{D} = (X, Y)$ An inference device, consisting of functions X and Y.

 \bar{F} Inverse. Given a function F over $U, F^{-1} = \bar{F} \equiv \{\{u : F(u) = f\} : f \in F(U)\}.$

- > Weak inference: a device \mathcal{D} weakly infers Γ iff $\forall \gamma \in \Gamma(U), \exists x \in X(U) \text{ s.t. } \forall u \in U,$ $X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u)).$
- >> Strong inference: a device (X,Y) strongly infers a functions (S,T) over U iff $\forall \delta \in \wp(T)$ and all $s \in S(U)$, $\exists x \text{ such that } X(u) = x \implies S(u) = s, Y(u) = \delta(T(u))$.

2 Turing Machines

Arora and Barak denote a Turing Machine (TM) as $T = (\Lambda, Q, \Delta)$ containing:

- 1. An alphabet Λ of a finite set of symbols that T's tapes can contain. We assume that Λ contains a special blank symbol B, start symbol S, and the numbers 0 and 1.
- 2. A finite set Q of possible states that T's register can be in. We assume that Q contains a special start state q_s and a special halt state q_h .
- 3. A transition function $\Delta: Q \times \Lambda^k \to Q \times \Lambda^{k-1} \times \{L, S, R\}^k$, where $k \geq 2$, describing the rules T use in performing each step. The set $\{L, S, R\}$ denote the actions Left, Stay, and Right, respectively.

Suppose T is in state $q \in Q$ and $(\sigma_1, \sigma_2, \ldots, \sigma_k)$ are the symbols on the k tapes. Then $\Delta(q, (\sigma_1, \ldots, \sigma_k)) = (q', (\sigma'_2, \ldots, \sigma'_k), z)$ where $z \in \{L, S, R\}^k$ and at the next step the σ symbols in the last k-1 tapes will be replaced by the σ' symbols, the machine will be in state q, and the k heads will move Left, Right or Stay. This is illustrated in Figure 1.

Figure 2.1. The transition function Δ for a k-tape Turing Machine

$(q,(\sigma_1,\ldots,\sigma_k))$				$(q',(\sigma_2^{'},\ldots,\sigma_k^{'}),z)$				
Input	Work/output symbol read		Current state	New work/output tape symbol		Move work/output tape		New state
:	:	٠	÷	:	٠	:	٠	÷
σ_1	σ_i	٠	q	$\sigma_i^{'}$	٠	z_i	٠	$q^{'}$
:	:	٠.,	:	:	٠	:	٠	•

Remark: A can be reduced to $\mathbb{B} = \{0,1\}$ and k can be reduced to 1 without loss of computational power. Then, any Turing Machine can be expressed as a partial recursive function mapping $\mathbb{B}^* \to \mathbb{B}^* \cup \eta$, where η is the undefined non-halting output. Since $|\mathbb{B}^* \times \mathbb{B}^* \cup \eta| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, the set of all Turing Machines is countably infinite.

3 Inference of Turing Machines

In the next two examples we examine strong inference of simple single-valued functions.

Example 3.1 Let $T(U) = \{0,1\}$ and $S(U) = \{0,1,2\}$. We construct (X,Y) in the table at the left such that it strongly infers (S,T). The right table indicates x for each s, δ such that the definition of strong inference is satisfied:

\underline{u}	X(u)	Y(u)	S(u)	T(u)
1	1	1	0	0
2	2	-1	0	0
3	3	1	1	0
4	4	-1	1	0
5	5	1	2	1
6	6	-1	2	1

Example 3.2 Let $T(U) = \{1, 2, 3\}$ and $S(U) = \{1, 2, 3, 4, 5\}$. Again, we construct (X, Y) in the table at the left such that it strongly infers (S, T). The right table indicates x for each s, δ such that the definition of strong inference is satisfied:

\underline{u}	X(u)	Y(u)	S(u)	T(u)
1	1	1	1	1
2	2	-1	2	1
3	3	-1	3	2
4	4	-1	4	2
5	5	-1	5	3
6	6	1	2	1
7	7	-1	1	1
8	8	1	3	2
9	9	1	4	2
10	10	1	5	3

(s, δ)	δ_1	δ_1	δ_1	δ_1	δ_1
1	1	7	7	7	7
2	6	2	2	2	2
3	3	8	3	3	3
4	4	9	4	4	4
5	5	5	10	5	5

Theorem Any deterministic Turing Machine can be strongly inferred by a device iff

$$\forall s \in S(U), \ |S^{-1}(s)| \ge 2.$$

Proof Let $U := \mathbb{N}$. Define $S : U \to \mathbb{B}^*$ to be a function that maps integers to binary bit strings and $T : U \to \mathbb{B}^* \cup \eta$ as a function that maps u to the space of bits strings union with the non-halting output η . Define $V = \{u : S^{-1}(s)\}$ for some value of s.

Assume the function $f: S \to T$ given by $f(s) = T(S^{-1}(s))$ is single-valued. Set $Y(v_1) = 1$ and $Y(v_2) = -1$. Then for each pair $(s, \delta_{t \in T(U)})$ choose $X(v_1) = x_1$ if $t = T(v_1)$ or otherwise choose $X(v_2) = x_2$. Since the choice of s was arbitrary, this holds for all (s, δ_t) pairs.

Now suppose that |V| < 2 for some s. If $V = \emptyset$ then there exists no x that can force S = s. If |V| = 1, then we can assign $Y(v) = y \in \{-1, 1\}$. However, whatever value we assign, we cannot guarantee that $\delta_t(T(v)) = Y(v)$ for all t since $|T(U)| \ge 1$.

4 Inference Complexity

Definition Let \mathcal{D} be an inference device and Γ be a function over U where X(U) and $\Gamma(U)$ are countable and $\mathcal{D} > \Gamma$. Let the **size** of $\gamma \in \Gamma(U)$ be written as $\mathcal{M}_{\mu:\Gamma(\gamma)} = -\ln[\int_{\Gamma^{-1}(\gamma)} d\mu(u)1]$. Then the **inference complexity** of Γ with respect to \mathcal{D} and measure μ is defined as:

$$\mathcal{C}_{\mu}(\Gamma; \mathcal{D}) \triangleq \sum_{\delta \in \wp(\Gamma)} \min_{x: X = x \implies Y = \delta(\Gamma)} [\mathcal{M}_{\mu, X}(x)]$$

Remark: This is only a working definition and may be revised depending on its behavior.