EE 568: Information Theory Fall 2022 Schmid

Homework Assignment 5 Distributed: Saturday, November 19, 2022 Due: Thursday, December 8, 2022

Reference Material:

- 1. class notes
- 2. T. M. Cover and J. A. Thomas, 2006, Elements of Information Theory, Chs. 5-11.

<u>General Comments:</u> This is the last homework assignment. Solutions for this homework assignment are due on December 8.

<u>Problems:</u> Three of the following problems will be selected at random for grading and should be turned in on the due date.

Problem 5.1 (Based on Problem 8.1, pp. 256-257, CT'06) *Differential Entropy*. Evaluate the differential entropy $h(X) = -\int f \ln f$ of the following:

- (a) The exponential density, $f(x) = \lambda \exp(-\lambda x)$, $x \ge 0$.
- (b) The Laplace density, $f(x) = \frac{1}{2} \lambda \exp(-\lambda |x|)$.
- (c) The sum of X_1 and X_2 , where X_1 and X_2 are independent normal random variables with mean μ_i and variances σ_i^2 , i = 1,2.

Problem 5.2 *Mutual Information for correlated normal.* Find the mutual information I(X;Y) where

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{bmatrix} \right).$$

Evaluate I(X;Y) for $\rho = 1$, $\rho = 0$, $\rho = -1$, and comment.

Problem 5.3 (Based on Problem 10.1, CT'06) *One-bit quantization of a single Gaussian RV*. Let X be $N(0, \sigma^2)$ and let the distortion measure be squared error. Here we do not allow block descriptions. Show that the optimum reproduction points for one-bit quantization are $\pm \sqrt{\frac{2}{\pi}} \sigma$, and that the expected distortion for one-bit quantization is $\frac{\pi-2}{\pi} \sigma^2$. Compare this with the distortion rate bound $D = \sigma^2 2^{-2R}$ for R = 1.

Problem 5.4 (based on Problem 6.3, Blahut'88)
Suppose a binary equiprobable source is to be compressed. The distortion matrix is

$$d = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$$

That is, it is twice as serious to reproduce a "0" by a "1" as it is reproduce a "1" by a "0." Find R(D).

Problem 5.5 (based on Problem 11.1, C&T'06) *Chernoff-Stein lemma* Consider the two-hypothesis test

$$H_1: f = f_1 \ vs. \ H_2: f = f_2$$

Find $D(f_1||f_2)$ if

- (a) $f_i(x) = N(0, \sigma_i^2), i = 1, 2.$
- (b) $f_i(x) = \lambda_i \exp(-\lambda_i x), \ x \ge 0, \ i = 1, 2.$
- (c) f_1 is uniform on (0,1) and f_2 is uniform on (a, a + 1), where 0 < a < 1.
- (d) f_1 corresponds to a fair coin and f_2 corresponds to a two-headed coin.

Problem 5.6 (based on Problem 11.16, C&T'06) *Hypothesis testing* Let $\{X_i\}$ be i.i.d. $\sim p(x), x \in \{1,2,...\}$. Consider two hypotheses, $H_0: p(x) = p_0(x)$ vs. $H_1: p(x) = p_1(x)$, where $p_0(x) = \left(\frac{1}{2}\right)^x$ and $p_1(x) = qp^{x-1}, x = 1,2,3,...$

- (a) Find $D(p_0||p_1)$.
- (b) Let $\Pr\{H_0\} = 1/2$. Find the minimum probability of error test for H_0 vs. H_1 given data $X_1, X_2, ..., X_n \sim p(x)$.

Problem 5.7 (based on Problem 11.14, C&T'06) *Sanov's theorem* Let X_i be i.i.d. $\sim N(0, \sigma^2)$.

- (a) Find the exponent in the behavior of $Pr\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \geq \alpha^{2}\right\}$. This can be done by using Sanov's Theorem.
- (b) What do the data look like if $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \geq \alpha$? That is, what is the P^{*} that minimizes D(P||Q)?