# Mật mã khóa công khai

Hệ mật RSA

## Nội dung

- Mật mã khóa công khai
- Phương pháp xây dựng hệ mật mã khóa công khai
- Hệ mật mã RSA

## Mật mã khóa công khai

Bob: sinh cặp khóa (PK, SK) và đưa PK cho Alice



## Ứng dụng

### Thiết lập khóa phiên



### **Ứng dụng không cần tương tác**: (VD. Email)

- Bob gửi email được mã hóa với pk<sub>alice</sub> cho Alice
- Chú ý: Bob cần biết pk<sub>alice</sub> (quản lý khóa công khai)

## Nội dung

- Mật mã khóa công khai
- Phương pháp xây dựng hệ mật mã khóa công khai
- Hệ mật mã RSA

## Mã hóa khóa công khai

**<u>DN</u>**: một hệ mật mã khóa công khai là bộ ba thuật toán (G, E, D)

- G(): thuật toán ngẫu nhiên output cặp khóa (pk, sk)
- E(pk, m): thuật toán ngẫu nhiên nhận m∈M và output c ∈C
- D(sk,c): thuật toán đơn định nhận c∈C và outputs m∈M hoặc ⊥

Tính đúng đắn: ∀(pk, sk) được sinh bởi G:

 $\forall m \in M$ : D(sk, E(pk, m)) = m

## Hàm cửa sập (Trapdoor functions - TDF)

**<u>ĐN</u>**: hàm cửa sập X $\longrightarrow$ Y là bộ ba thuật toán hiệu quả (G, F, F<sup>-1</sup>)

- G(): thuật toán ngẫu nhiên output cặp khóa (pk, sk)
- $F(pk,\cdot)$ : thuật toán đơn định định nghĩa một hàm  $X \longrightarrow Y$
- $F^{-1}(sk,\cdot)$ : định nghĩa hàm  $Y \longrightarrow X$  tính nghịch đảo  $F(pk,\cdot)$

Một cách chính xác: ∀(pk, sk) sinh bởi hàm G

 $\forall x \in X$ :  $F^{-1}(sk, F(pk, x)) = x$ 

### Hàm cửa sập an toàn

(G, F,  $F^{-1}$ ) là àn toàn nếu  $F(pk, \cdot)$  là hàm "một chiều" : có thể tính xuôi, nhưng không thể tính nghịch đảo mà không có sk



**ĐN**: (G, F, F<sup>-1</sup>) là TDF an toàn nếu với mọi thuật toán hiệu quả A:

$$Adv_{OW}[A,F] = Pr[x = x'] < "cực nhỏ"$$

## Xây dựng hệ mật khóa công khai từ TDFs

- (G, F, F<sup>-1</sup>): TDF an toàn  $X \rightarrow Y$
- (E<sub>s</sub>, D<sub>s</sub>): hệ mật mã khóa đối xứng an toàn trên (K,M,C)
- H: X → K một hàm băm

Ta xây dựng hệ mật khóa công khai (G, E, D):

Sinh khóa G: giống như G cho TDF

### Hệ mật mã khóa công khai từ TDFs

- (G, F, F<sup>-1</sup>): TDF an toàn  $X \longrightarrow Y$
- (E<sub>s</sub>, D<sub>s</sub>): hệ mã hóa đối xứng an toàn trên (K,M,C)
- H: X → K một hàm băm

## E(pk, m): $x \stackrel{R}{\leftarrow} X$ , $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$ , $c \leftarrow E_s(k, m)$ output (y, c)

# 

# Sử dụng không đúng hàm Cửa sập (TDF)

Không mã hóa bằng cách áp dụng F để mã hóa bản rõ:

```
E(pk, m):

output c \leftarrow F(pk, m)
```

```
\frac{D(sk, c)}{\text{output } F^{-1}(sk, c)}
```

#### Vấn đề:

- Đây là hệ mã đơn định: không an toàn !!
- Tồn tại nhiều cách tấn công

## Nội dung

- Mật mã khóa công khai
- Phương pháp xây dựng hệ mật mã khóa công khai
- Hệ mật mã RSA

# Nhắc lai: Số học modun hợp số

Xét  $N = p \cdot q$  với p,q là các số nguyên tố

$$Z_N = \{0,1,2,...,N-1\}$$
;  $(Z_N)^* = \{các phần tử khả nghicj trong  $Z_N\}$$ 

Bổ đề:  $x \in Z_N$  là khả nghịch  $\iff$  gcd(x,N) = 1

• Số các phần tử của  $(Z_N)^*$  là  $\varphi(N) = (p-1)(q-1) = N-p-q+1$ 

Định lý Euler: 
$$\forall x \in (Z_N)^* : x^{\phi(N)} = 1$$

### Hoán vị cửa sập RSA Ronald Rivest, Adi Shamir, và Leonard Adleman

Công bố: Scientific American, 8/1977.

Được sử dụng rộng rãi trong:

- SSL/TLS: chứng thư số và trao đổi khóa
- e-mail và hệ thống file an toàn
  ... và nhiều hệ thống khác



## Hoán vị cửa sập RSA

**G**(): chọn hai số nguyên tố p,q  $\approx$ 1024 bits. Đặt **N=pq**. chọn các số nguyên **e**, **d** t/m **e**·**d** = **1** (mod  $\phi$ (**N**)) output pk = (N, e) , sk = (N, d)

F(pk, x): 
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 RSA(x) = x<sup>e</sup> (in  $\mathbb{Z}_N$ )

$$F^{-1}(sk, y) = y^d$$
;  $y^d = RSA(x)^d = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^k \cdot x = x$ 

### Giả sử RSA

Giả sử RSA: RSA là hoán vị "một chiều"

Với mọi kẻ tấn công (thuật toán hiệu quả) A:

$$Pr[A(N,e,y) = y^{1/e}] < "cực nhỏ"$$

ở đó p,q  $\leftarrow^{R}$  số nguyên tố n-bit, N $\leftarrow$ pq, y $\leftarrow^{R}$ Z<sub>N</sub>\*

 $(E_s, D_s)$ : hệ mật mã đối xứng an toàn.

H:  $Z_N \rightarrow K$  với K là không gian khóa của  $(E_s, D_s)$ 

- G(): sinh tham số RSA: pk = (N,e), sk = (N,d)
- E(pk, m): (1) chọn số ngẫu nhiên x thuộc  $Z_N$ 
  - (2)  $y \leftarrow RSA(x) = x^e$ ,  $k \leftarrow H(x)$
  - (3) output  $(y, E_s(k,m))$
- $\mathbf{D}(sk, (y, c))$ : output  $D_s(H(RSA^{-1}(y)), c)$

### Textbook RSA là không an toàn

#### Textbook RSA:

- khóa công khai: (N,e) Mã hóa:  $\mathbf{c} \leftarrow \mathbf{m}^{\mathbf{e}}$  (in  $Z_N$ )
- khóa bí mật: (N,d) Giải mã:  $c^d \rightarrow m$

Hệ mật không an toàn !!

⇒ Mã hõa trực tiếp với hoán vị cửa sập RSA không phải là sơ đồ an toàn !

## Một tấn công đơn giản textbook RSA

khóa phiên ngẫu nhiên k

Web Browser



Web Server

Giả sử k là 64 bit:  $k \in \{0,...,2^{64}\}$ . Eve nhìn thấy:  $c = k^e$  thuộc  $Z_N$ 

If  $k = k_1 \cdot k_2$  với  $k_1$ ,  $k_2 < 2^{34}$  (prob.  $\approx 20\%$ ) thì

 $c/k_1^e = k_2^e$  in  $Z_N$ 

Bước 1: xây dựng bảng:  $c/1^e$ ,  $c/2^e$ ,  $c/3^e$ , ...,  $c/2^{34e}$ . time:  $2^{34}$ 

Bước 2: với  $k_2 = 0,..., 2^{34}$  kiểm tra nếu  $k_2^e$  nằm trong bảng. thời gian:  $2^{34}$ 

Output cặp  $(k_1, k_2)$ . Tổng thời gian tấn công:  $\approx 2^{40} << 2^{64}$ 

## RSA với số mũ công khai nhỏ

Để tăng tốc việc mã hóa RSA, sử dụng số mũ e nhỏ:  $c = m^e \pmod{N}$ 

- Giá trị nhỏ nhất: e=3 (gcd(e,  $\phi(N)$ ) = 1)
- Giá trị nên dùng: e=65537=216+1

Mã hóa: 17 phép nhân

Tính bất đối xứng của RSA: mã hóa nhanh / giải mã chậm

• Hệ ElGamal (bài tiếp theo): thời gian gần như nhau trong cả hai trường hợp

### Độ dài khóa

Tính an toàn của hệ mật mã khóa công khai nên được so sánh với tính an toàn của hệ mật mã khóa đối xứng:

**RSA** 

Khóa đối xứng Kích thước Modulus N

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) <u>15360</u> bits

## Bài tập (Mã hoá với Textbook RSA)

Alice đưa cho Bob khoá công khai RSA của cô ấy:

mođun N = 2038667 và số mũ e = 103.

- a) Bob muốn gửi cho Alice thông điệp m=892383. Bản mã mà Bob gửi cho Alice là gì?
- b) Alice biết rằng mođun N của cô ấy là tích của hai số nguyên tố, một trong hai số là p=1301. Hãy tìm số mũ giải mã d cho Alice.
- c) Alice nhận được bản mã  $c=317730\,\mathrm{từ}$  Bob. Hãy giải mã.

## Bài tập (Tấn công RSA với modun nhỏ)

- Khoá công khai RSA của Bob có mođun N=12191 và số mũ e=37.
- Alice gửi cho Bob bản mã c=587.
- Không may, Bob đã chọn mođun kích thước quá nhỏ.
- Bạn hãy giúp Oscar giải mã bằng cách phân tích thừa số nguyên tố của N và giải mã thông điệp của Alice.
- (*Gợi ý*. *N* có một thừa số nguyên tố nhỏ hơn 100.)