

Probability review 1

Lecture 3

STA 371G

Homework 1 due Sunday night at 11:59 PM

- Homework 1 due Sunday night at 11:59 PM
- First (optional) R help session will be this Friday from 11 AM to 12 PM in GSB 3.138 (note temporary room change)

- Homework 1 due Sunday night at 11:59 PM
- First (optional) R help session will be this Friday from 11 AM to
 12 PM in GSB 3.138 (note temporary room change)
- About grading

- Homework 1 due Sunday night at 11:59 PM
- First (optional) R help session will be this Friday from 11 AM to 12 PM in GSB 3.138 (note temporary room change)
- About grading
 - QUEST: two tries on each question for full credit, then decreasing credit for each subsequent try

- Homework 1 due Sunday night at 11:59 PM
- First (optional) R help session will be this Friday from 11 AM to 12 PM in GSB 3.138 (note temporary room change)
- About grading
 - QUEST: two tries on each question for full credit, then decreasing credit for each subsequent try
 - Learning Catalytics: answer 75% of in-class questions for full participation credit

What are the chances that two people in this room have the same birthday (month/day, not year)?

The Concept of Probability

The Concept of Probability

What do each of these have in common?

• Outcome of rolling a die

The Concept of Probability

- Outcome of rolling a die
- S&P500 index at the and of January

The Concept of Probability

- Outcome of rolling a die
- S&P500 index at the and of January
- Number of iPhone 7s to be sold over the next year

The Concept of Probability

- Outcome of rolling a die
- S&P500 index at the and of January
- Number of iPhone 7s to be sold over the next year
- Number of unique visitors to Amazon.com over the next week

The Concept of Probability

- Outcome of rolling a die
- S&P500 index at the and of January
- Number of iPhone 7s to be sold over the next year
- Number of unique visitors to Amazon.com over the next week
- Lifetime of your MacBook Air

The Concept of Probability

- Outcome of rolling a die
- S&P500 index at the and of January
- Number of iPhone 7s to be sold over the next year
- Number of unique visitors to Amazon.com over the next week
- Lifetime of your MacBook Air

The Concept of Probability

What do each of these have in common?

- Outcome of rolling a die
- S&P500 index at the and of January
- Number of iPhone 7s to be sold over the next year
- Number of unique visitors to Amazon.com over the next week
- Lifetime of your MacBook Air

We cannot predict any of these with certainty.

The Concept of Probability

What do each of these have in common?

- Outcome of rolling a die
- S&P500 index at the and of January
- Number of iPhone 7s to be sold over the next year
- Number of unique visitors to Amazon.com over the next week
- Lifetime of your MacBook Air

We cannot predict any of these with certainty. But we can model them using probability theory and learn a lot about how these variables will behave.

Definitions

Definition

A random variable expresses the outcome of a random process as a number. It is denoted by an uppercase letter.

Definitions

Definition

A random variable expresses the outcome of a random process as a number. It is denoted by an uppercase letter.

 Random experiment → Selecting a student at random from the class

Definitions

Definition

A random variable expresses the outcome of a random process as a number. It is denoted by an uppercase letter.

- Random experiment → Selecting a student at random from the class
- Random variable $\rightarrow X$: The day of their birthday (1, 2, ..., 31)

Definitions

Definition

A random variable expresses the outcome of a random process as a number. It is denoted by an uppercase letter.

- Random experiment → Selecting a student at random from the class
- Random variable $\rightarrow X$: The day of their birthday (1, 2, ..., 31)
- Random variable → Y: Their height, in inches

Definitions

Definition

A discrete random variable is a random variable with a finite (or countably infinite) range.

Definitions

Definition

A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

Definitions

Definition

A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

 X: Number of stocks on NYSE whose price change today (discrete)

Definitions

Definition

A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

- X: Number of stocks on NYSE whose price change today (discrete)
- Y: Average price change of the stocks on NYSE (continuous)

Definitions

Definition

A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

- X: Number of stocks on NYSE whose price change today (discrete)
- Y: Average price change of the stocks on NYSE (continuous)
- Z: Number of people that lose money in the stock market today (discrete!)

Exercise

Exercise

Discrete or continuous?

• Number of iPhone 7s to be sold over the next year

Exercise

Discrete or continuous?

• Number of iPhone 7s to be sold over the next year

Exercise

- Number of iPhone 7s to be sold over the next year (discrete)
- Lifetime of your MacBook Air, in years

Exercise

- Number of iPhone 7s to be sold over the next year (discrete)
- Lifetime of your MacBook Air, in years

Exercise

- Number of iPhone 7s to be sold over the next year (discrete)
- Lifetime of your MacBook Air, in years (continuous)
- Number of unique visitors to Amazon.com over the next week

Exercise

- Number of iPhone 7s to be sold over the next year (discrete)
- Lifetime of your MacBook Air, in years (continuous)
- Number of unique visitors to Amazon.com over the next week

Exercise

- Number of iPhone 7s to be sold over the next year (discrete)
- Lifetime of your MacBook Air, in years (continuous)
- Number of unique visitors to Amazon.com over the next week (discrete)
- S&P 500 index at the and of January

Exercise

- Number of iPhone 7s to be sold over the next year (discrete)
- Lifetime of your MacBook Air, in years (continuous)
- Number of unique visitors to Amazon.com over the next week (discrete)
- S&P 500 index at the and of January

Exercise

- Number of iPhone 7s to be sold over the next year (discrete)
- Lifetime of your MacBook Air, in years (continuous)
- Number of unique visitors to Amazon.com over the next week (discrete)
- S&P 500 index at the and of January (continuous)

Definitions

Definition

Probability is the measure of the likelihood that a particular outcome (or set of outcomes) will be observed. Probability is a number always between 0 and 1.

Probability Theory

Definitions

Definition

Probability is the measure of the likelihood that a particular outcome (or set of outcomes) will be observed. Probability is a number always between 0 and 1.

• X: The month number of the student's birthday, P(X = 3) = 1/12

Probability Theory

Definitions

Definition

Probability is the measure of the likelihood that a particular outcome (or set of outcomes) will be observed. Probability is a number always between 0 and 1.

- X: The month number of the student's birthday, P(X = 3) = 1/12
- Y: Lifetime of your MacBook, P(Y > 5 years) = 0.05

Now that we have defined a random variable, how do we know what the probabilities are?

Now that we have defined a random variable, how do we know what the probabilities are?

For example, what is the probability that your MacBook will break down after 5 years but before 7 years? That is, P(5 < X < 7) = ?

Now that we have defined a random variable, how do we know what the probabilities are?

For example, what is the probability that your MacBook will break down after 5 years but before 7 years? That is, P(5 < X < 7) = ?

Definition

The probability distribution of a random variable *X* is a description of the probabilities associated with the possible values of *X*.

Now that we have defined a random variable, how do we know what the probabilities are?

For example, what is the probability that your MacBook will break down after 5 years but before 7 years? That is, P(5 < X < 7) = ?

Definition

The probability distribution of a random variable X is a description of the probabilities associated with the possible values of X.

Discrete random variable \rightarrow Probability Mass Function (p.m.f.)

Now that we have defined a random variable, how do we know what the probabilities are?

For example, what is the probability that your MacBook will break down after 5 years but before 7 years? That is, P(5 < X < 7) = ?

Definition

The probability distribution of a random variable X is a description of the probabilities associated with the possible values of X.

Discrete random variable \rightarrow Probability Mass Function (p.m.f.)

Continuous random variable \rightarrow Probability Density Function (p.d.f.)

Michael Beuoy's model for NFL games gives the following probabilities for the Super Bowl (positive margin = Patriots win):

Let *M* be a random variable representing the Patriots' margin of victory.

Patriots' margin of victory	Probability
m	P(M=m)
— 28	0.024
—27	0.006
— 26	0.002
—25	0.004
27	0.008
28	0.033

Definition

The expected value and variance of a random variable *X* are the long run mean and variance if we draw values repeatedly from *X*.

Definition

The expected value and variance of a random variable *X* are the long run mean and variance if we draw values repeatedly from *X*.

$$E(M) = \sum_{\text{all margins } m} m \cdot P(M = m)$$

$$= (-28)(0.024) + (-27)(0.006) + \cdots$$

$$Var(M) = \sum_{\text{all margins } m} (m - E(M))^2 \cdot P(M = m)$$

$$= (-28 - E(M))^2(0.024) + (-27 - E(M))^2(0.006) + \cdots$$

Normal Distributions (the "bell curve")

The normal distribution is a common continuous probability distribution; we will denote a normal distribution with mean μ and variance σ^2 by $N(\mu, \sigma^2)$.

Continous Random Variables

Let V be a random variable indicating the SAT Verbal score of a randomly selected student in the US.

$$P(SAT > 600) =$$

Continuous Random Variables

Let *V* be a random variable indicating the SAT Verbal score of a randomly selected student in the US.

$$P(SAT > 600) = \int_{600}^{800} P(V = v) dv$$

Continous Random Variables

Let *V* be a random variable indicating the SAT Verbal score of a randomly selected student in the US.

$$P(SAT > 600) = \int_{600}^{800} P(V = v) dv$$

14/18

Continuous Random Variables

Let V be a random variable indicating the SAT Verbal score of a randomly selected student in the US.

$$P(SAT = 600) =$$

Continuous Random Variables

Let V be a random variable indicating the SAT Verbal score of a randomly selected student in the US.

$$P(SAT = 600) = 0$$

Continous Random Variables

The formulas for expected value and variance are the same for continuous random variables, but they involve integrals instead of sums:

Discrete random variable X

Continuous random variable Y with density function f(y)

$$E(X) = \sum_{x} xP(X = x)$$

$$E(Y) = \int_{y} yf(y) dy$$

$$Var(X) = \sum_{x} (x - E(X))^{2} P(X = x) \quad Var(Y) = \int_{y} (y - E(Y))^{2} f(y)$$

R Simulation of expected value

R Simulation

Let's simulate rolling dice and see that the expected value really does represent the long-run average!

```
# Simulate rolling a die 1 time
sample(c(1, 2, 3, 4, 5, 6), 1, replace=T)
# Simulate rolling a die 4 times
sample(c(1, 2, 3, 4, 5, 6), 4, replace=T)
# Take the average
mean(sample(c(1, 2, 3, 4, 5, 6), 4, replace=T))
# Let's increase the number of dice
mean(sample(c(1, 2, 3, 4, 5, 6), 100, replace=T))
```

If two events are *independent* (i.e., knowing the outcome of one tells you nothing about the outcome of the other), then the probability of two events happening at the same time is

$$P(A \text{ and } B) = P(A)P(B).$$

If two events are *independent* (i.e., knowing the outcome of one tells you nothing about the outcome of the other), then the probability of two events happening at the same time is

$$P(A \text{ and } B) = P(A)P(B).$$

Let's figure out the probability of no one sharing a birthday. Let's call B_1 the first person's birthday, B_2 the second person's birthday, etc.

If two events are *independent* (i.e., knowing the outcome of one tells you nothing about the outcome of the other), then the probability of two events happening at the same time is

$$P(A \text{ and } B) = P(A)P(B).$$

Let's figure out the probability of no one sharing a birthday. Let's call B_1 the first person's birthday, B_2 the second person's birthday, etc.

$$P(\text{none shared}) = P(B_2 \neq B_1) \cdot P(B_3 \neq B_1, B_2) \cdot P(B_4 \neq B_1, B_2, B_3) \cdots$$

$$= \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365} \cdots$$

If two events are *independent* (i.e., knowing the outcome of one tells you nothing about the outcome of the other), then the probability of two events happening at the same time is

$$P(A \text{ and } B) = P(A)P(B).$$

Let's figure out the probability of no one sharing a birthday. Let's call B_1 the first person's birthday, B_2 the second person's birthday, etc.

$$P(\text{none shared}) = P(B_2 \neq B_1) \cdot P(B_3 \neq B_1, B_2) \cdot P(B_4 \neq B_1, B_2, B_3) \cdots$$

$$= \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365} \cdots$$

When n = 70 the probability of no shared birthdays is just 0.01%!