First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L3: Entry 3 of 9

File: DWPI

Jun 25, 1990

DERWENT-ACC-NO: 1990-236033

DERWENT-WEEK: 199031

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Slip-proof sheet - is prepd. by coating slip-proof layer of expanded microcapsules, rubber adhesive and colloidal silica on supporter, etc.

PRIORITY-DATA: 1988JP-0322897 (December 19, 1988)



PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

П JP 02164527 A June 25, 1990

000

INT-CL (IPC): B32B 5/18; B32B 27/18

ABSTRACTED-PUB-NO: JP 02164527A

BASIC-ABSTRACT:

On supporter, slip-proof layer contg. expanded microcapsules and adhesive as main component is coated. Layer contains colloidal silica.

Pref. colloidal silica is 5-150 micro. dia. Blending ratio of silica is 1-200 pts.wt.. for 100 pts.wt.. of adhesive. Microcapsule is e.g. MATSUMOTO MICROSPHERE F-30, F-50, F-80 (MATI), EXPANCEL WU-642, WU-551, DU-551(NIPPON FINITE), etc. Adhesive is 13 examples e.g. ethylene-vinylacetate copolymer, methylacrylatee or styrene-butadiene <u>rubber</u>. To anti-slip layer coating soln. pigment, lubricant, surfactant, dispersant, antifoaming, colouring agent etc. are opt. added. Supporter is, craft- or synthetic-paper, polypropylene, nylon, polyester film, etc. Coating on side(s) of supporter is, air knife-, bar- or brade-coater, silk screen printer, etc. Amt. of coating soln. is pref. 2-15 g/m2 as dry wt. Expansion of microcapsules is carried out at drying of coated layer, pref. at 80-170 deg.C. Heating is hot wind, IR heater, heat roll, microwave, etc.

Go to Doc# USE/ADVANTAGE - Sheet has anti-blocking property at peeling off.

Previous Doc

Next Doc

# @ 公 開 特 許 公 報 (A) 平2-164527

(9) Int. Cl. 5 B 32 B 5/18 27/18 識別記号 庁内整理番号

❸公開 平成 2年(1990)6月25日

7016-4F 6762-4F

審査請求 未請求 請求項の数 1 (全5頁)

**公発明の名称** 防滑性シート

②特 願 昭63-322897

**20出 願 昭63(1988)12月19日** 

⑫発 明 者 若 田 員 義 兵庫県尼崎市常光寺4丁目3番1号 神崎製紙株式会社神

崎工場内

⑩発 明 者 田 尻 政 直 兵庫県尼崎市常光寺4丁目3番1号 神崎製紙株式会社神

崎工場内

烟発 明 者 塩 井 俊 介 兵庫県尼崎市常光寺4丁目3番1号 神崎製紙株式会社神

崎工場内

⑪出 願 人 神崎製紙株式会社

東京都千代田区神田小川町3丁目7番地

個代 理 人 弁理士 蓮 見 勝

## 明細書

- 1. 発明の名称 防滑性シート
- 2. 特許請求の範囲

支持体に発泡させたマイクロカブセル及び接着剤を主成分とする防滑層を設けた防滑性シートにおいて、防滑層中にコロイダルシリカを含有させたことを特徴とする防滑性シート。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、発砲性マイクロカプセルを利用した防滑性シートにおける防滑性と耐プロッキング性の改良に関するものである。

(従来の技術)

従来より、防滑性シートとしては、クラフト紙、布、不織布等の支持体に軟質パインダーと 無機飼料の塗布層を設けたものが知られている が、充分な防滑性が得られず、又プロッキング を起こす問題があった。

また、特開昭62一33633号に見られる様に、紙等の支持体に発泡性マイクロカプセル

による発泡性塗布層を設けた防滑性シートも提案 されている。これは無機飼料の塗布層を設けたカ のより効果的である。しかし、発泡性マイクロカ プセルを用いる方法にあっても防滑性を充分には 足させるには、接着剤として軟質のものを使用し なければならない。そのため防滑層同士を重ねて おくとプロッキングを生じ、防滑シートをひき剝 がした時にマイクロカプセルが破壊されて、防滑 性が低下するという問題があった。

(発明が解決しようとする課題)

本発明は、上記の問題を解決し、耐ブロッキング性及び防滑性に優れた防滑性シートを提供することを目的とする。

(課題を解決するための手段)

本発明は、支持体に発泡させたマイクロカプセル及び接着剤を主成分とする防滑層を設けた防滑性シートにおいて、防滑層中にコロイダルシリカを含有させたことを特徴とする防滑性シートである。

(作用)

本発明者らは、発泡性マイクロカプセルを利用した防滑性シートにおけるプロッキングの改りりかていて検討した結果、防滑性を損なうことにより防滑性を損出なっことにより防滑性を損出した。コースのは後が小さすぎると、またかではない場合があり、またかではかられない場合があり、またかではからない。コロイがをの粒子径は5~150mmがいるのではなりカの製造法等・クスマー、の製造法等・クスマー、ののではなりのがよりの製造法等・クスマー、と1~80P、SI-50(触媒化成工業製)等が使用出来る。

本発明におけるコロイダルシリカの添加量は、 使用されるマイクロカプセルの種類、接着剤の種類やガラス転移点、及びこれらの配合比率、あるいは併用される助剤等により異なり一概には言えないが、固形分換算で接着剤100重量部に対し

ル共重合体や、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プチル、(メタ)アクリル酸プチル、(メタ)アクリル酸ー2ーエチルへキシル、(メタ)アクリル酸ラウリル等の重合体又は共重合体であるアクリル系樹脂や、スチレン・ブタジエンゴム、カルボキシ変性スチレン・ブタジエンゴム、ニトリループタジエンゴム、ブタジエンゴム、ボリウレタン樹脂、ボリ塩化ビニリデン樹脂等が挙げられる。これらの樹脂の中でも、ガラス転移点が40で以下のものが貼滑性に優れるため好ましく、20で以下のものがより好ましい。

上記の樹脂は二種以上を組み合わせて使用することもできる。これらの樹脂は水に分散したエマルジョンあるいは有機溶剤に溶かした溶液等の形態で使用される。これらの形態を得るために用いられる乳化剤、有機溶剤は一般的に知られたものが用いられ、又、方法も公知の方法を用いて作成される。

本発明における発泡性マイクロカプセルと該接

1~200重量部が好ましく、より好ましくは2~80重量部である。

本発明に使用される発泡性マイクロカブセルとでは、例えば芯物質としてローブタン、iのタン、ネオペンタンの様な低沸点の化パーリデン、アクリロニトリル、メチルメタクリロニトリル、メチルスタクリロニトリルを主成分とでレンの様な芳香族ピニル化合物を主成分とすが、ながでは、で、アー80(松本油脂製)、エクスパンセルWUー51、WUー161、DUー161、DUー161、DUー161、DUー551、DUー461、関ラが学げられる。

マイクロカブセルの発泡後の粒子径は5~40 0 μmになるものが優れた防滑性を与えるため好 ましく、より好ましくは10~200μmである。

本発明において使用される接着剤は、種々のも のが使用可能であり、例えばエチレン - 酢酸ビニ

者剤との配合比率は、使用する発泡性マイクロカプセル、接着剤の種類により異なり一概に決められないが、接着剤100重量部に対して発泡性マイクロカプセルが3~90重量部、好ましくは5~50重量部、より好ましくは5~30重量部である。

本発明の防滑層塗液には、他に水酸化アルミニウム、炭酸カルシウム、クレー、カオリン、酸化チタン、プラスチックピグメント等の顔料や、ステアリン酸カルシウム、ステアリン酸アミド、各種ワックス類、ポリエチレン微粒子などの滑削、界面活性剤、分散剤、消泡剤、着色剤又は蛍光染料等を必要に応じて添加することも可能である。

防滑層塗液は、例えば水や有機溶剤等の媒体に 発泡性マイクロカブセル、コロイダルシリカ及び 必要により顔料を分散し、更に接着剤を添加して 調製する。

調製された防滑層塗液を、クラフト紙、上質紙、 合成紙、布、不織布、ポリプロピレン、ナイロン、 ポリエステルの如き各種フィルム等の支持体の両 面又は片面に、例えばエアーナイフコータ、バーコーター、ブレードコーター、シルクスクリーン 印刷機等の公知の塗工、印刷方法で塗布乾燥して 防滑性シートを得る。

なお、支持体に予め下塗り層を形成し、支持体 と塗布層との接着性を改良したり支持体のパリヤ 一性を改良することも出来る。

防滑層塗液の塗布量は、防滑効果とコストの面から乾燥後の塗布量が一般には1~20g/㎡程度、好ましくは2~15g/㎡である。

マイクロカブセルの発泡は、通常マイクロカブ セルを含む防滑層塗液を支持体に塗布した後の乾 燥段階で行うことになる。即ち、塗布層の乾燥 程で先ず最初は大半のエネルギーは塗液媒体の蒸 発に費やされるため塗布層の温度は余り上昇しない。従って媒体が蒸発する段階ではマイクロカブ セルの発泡は殆ど生じないが、媒体が蒸発した後 は塗布層面の温度は上昇しマイクロカブセルの発 泡が始まる。

その際の乾燥温度は、発泡性マイクロカプセル

を示した。

# (防滑層塗液)

発泡性マイクロカブセル (商品名;エクスパンセルWU-461、日本フィライト製)

10部

エチレン-酢酸ピニル系共重合体(固形分濃度 5 0 %、ガラス転移点-15 ℃、簡品名;スミカフレックス 7 5 3、住友化学製) 9 0 部コロイダルシリカ (固形分濃度 4 0 %、粒径 7 0 ~ 1 0 0 m µ、商品名;スノーテックス 2 L、日産化学製) 5 0 部

水

25部

#### 実施例2

防滑層塗液として下記組成の塗液を使用し、乾燥後の重量が7g/mとした以外は実施例1と同様にして防滑性性シート得た。

#### (防滑層塗液)

発泡性マイクロカプセル (商品名;エクスパンセルWU-642、日本フィライト製)

1 5 AB

の発泡温度以上であれば良く、例えば前記市販のマイクロカプセルの場合、通常 80~170℃程度に設定するのが好ましい。

なお、加熱方法としては、熱風、赤外線ヒーター、熱ロール、マイクロ波など、従来から公知の方法を用いることが出来る。

以下に実施例を挙げて本発明を説明するが、本 発明はこれらの実施例のみに限定されるものでは ない。またとくに断らない限り、例中の部、%は 各々重量部、重量%をさす。水等の媒体中に分散 又は溶解している材料については、媒体も含めた 重量を示した。

#### (実施例)

#### 実施例1

防滑層塗液として下記組成の塗液を調製し、75g/mの未晒しクラフト紙に乾燥後の重量が10g/mとなるようにメイヤーバーで塗布し、140でで60秒加熱乾燥して防滑性シートを得た。得られた防滑性シートの防滑性、ブロッキング性につき後記の方法で試験を行い、第1表に結果

エチレン-酢酸ピニル系共重合体 (固形分濃度 5 3 %、ガラス転移点 3 ℃、商品名; スミカフレックス 8 4 0、住友化学製) 1 0 0 部 水酸化アルミニウム (商品名; ハイジライトH - 4 2、昭和電工製) 3 0部 コロイダルシリカ (固形分濃度 4 0 %、粒径 4 0

~ 6 0 m µ 、スノーテックス X L 、日産化学製)

20部

水 実施例 3 115部

防滑層塗液として下記組成の塗液を支持体として厚さ50μmの表面処理ポリエステルフィルムを使用した以外は実施例2と同様にして防滑性シートを得た。

# (防滑層塗液)

発泡性マイクロカプセル (商品名;マツモトマイ クロスフェアーF-50、松本油脂製)

10部

アクリル酸エステルエマルジョン (固形分濃度 5 5 %、ガラス転移点 - 1·0 ℃、商品名;A E 3 3 2、日本合成ゴム製)

10088

水 1 4 1 部

炭酸カルシウム (平均粒径 2 μm) 4 0 部 コロイダルシリカ (固形分濃度 4 8 %、粒径 2 0 ~ 3 0 m μ、商品名; カタロイド S l - 5 0、触

媒化成製)

30部

水

1 1 0 部

#### 実施例 4

防滑層塗液として下記組成の塗液を使用した以外は実施例2と同様にして防滑性シートを得た。 (防滑層塗液)

発泡性マイクロカプセル (商品名;エクスパンセルWU-642、日本フィライト製)

18部

エチレンー酢酸ビニルエマルジョン (固形分濃度 5 0 %、ガラス転移点 3 0 ℃、商品名; スミカフ レックス 8 5 0 、住友化学製)

18088

コロイダルシリカ (固形分濃度 4 0 %、粒径 7 0 ~ 1 0 0 m μ、商品名;スノーテックスでし、日産化学製)

なかった以外は同様にして防滑性シートを得た。 比較例 2

実施例 2 においてスノーテックス X L を使用しなかった以外は同様にして防滑性シートを得た。 比較例 3

実施例 3 においてカタロイド S I - 5 0 を使用しなかった以外は同様にして防滑性シートを得た。 比較例 4

実施例 4 においてスノーテックス 2 L を使用しなかった以外は同様にして防滑性シートを得た。

得られた各防滑性シートの防滑性、ブロッキング性につき試験を行い結果を第1表に示した。

## 防滑性

防滑性は、J. Tappi 紙パルプ試験法 No. 31-79 (傾斜法) に继じて摩擦角を測定した。

## <u>プロッキング性</u>

プロッキング性は以下の方法により測定した。

2.5 cm×12 cm に断裁した防滑性シートの防滑 層面同士を対向させ、100g/㎡になる様に荷 重をかけ、40℃の乾燥機中に24時間静習し、

## 実施例5

防滑層塗液として下記組成の塗液を使用し、乾燥後の塗布重量が12g/m²とした以外は実施例1と同様にして防滑性シートを得た。

#### (防滑屬塗液)

発泡性マイクロカプセル (商品名;エクスパンセルWU-461、日本フィライト製)

10部

3 0 部

エチレンー酢酸ビニル系共重合体 (固形分濃度 5 8 %、ガラス転移点-15 ℃、商品名:スミカフレックス 7 5 3 、住友化学製)

9 0 部

コロイダルシリカ (固形分濃度 3 0 %、粒径 1 0 ~ 1 4 m μ、商品名; カタロイド S I - 3 0 、触 媒化成製) 3 0 部 3 0 部

比較例 1

実施例1においてスノーテックス2Lを使用し

その後インストロン型引張り試験機により剝離力 を測定した。

# ブロッキング処理後の防滑性

防滑性シートの防滑層面同士を対向させ、100g/㎡になる様に荷重をかけ、40℃の乾燥機中に24時間静置し、剝離後のサンプルについて防滑性を試験した。

### 「効果」

第1表から明らかな様に、本発明の防滑性シートは、防滑性、耐ブロッキングに優れた、実用的な防滑シートであった。

特許出願人 神崎製紙株式会社

第1表

|       | 防滑性     | ブロッキング性<br>(g/25mm) | 介ッキング処理<br>後の防滑性 |
|-------|---------|---------------------|------------------|
| 実施例1  | 5 7     | 2                   | 5 5              |
| 実施例2  | 5 6     | 3                   | 5 4              |
| 実施例3  | 5 8     | 3                   | 5 7              |
| 実施例4  | 4 5     | 0                   | 4 5              |
| 実施例5  | 5 2     | 5                   | 50               |
| 比較例1  | 5 9     | 3 0                 | 40               |
| 比較例2  | 5 8     | 60                  | 3 5              |
| 比較例3  | 5 9     | 50                  | 3 8              |
| 比較例 4 | 47      | 15                  | 3 9              |
|       | <u></u> | L                   | <u> </u>         |