Rudin-Keisler ordering of P-points

Boriša Kuzeljević

DMI PMF UNS

Seminar Bogoljub Stanković

Joint work with Dilip Raghavan (Singapore) and Jonathan Verner (Prague)

For a non-empty set X we say that $\mathcal{U} \subseteq \mathcal{P}(X)$ is an ultrafilter on X if:

- ∅ ∉ U;
- $a \cap b \in \mathcal{U}$ for every $a, b \in \mathcal{U}$;
- $b \in \mathcal{U}$ whenever there is an $a \in \mathcal{U}$ such that $a \subseteq b$;
- for each $a \subseteq X$, either $a \in \mathcal{U}$ or $X \setminus a \in \mathcal{U}$.

There is a natural topology on the space of all ultrafilters on \mathbb{N} , and with this topology it is usually denoted $\beta\mathbb{N}$.

As it turns out, $\beta\mathbb{N}$ coincides with the Cech-Stone compactification of a discrete countable space \mathbb{N} .

For a non-empty set X we say that $\mathcal{U} \subseteq \mathcal{P}(X)$ is an ultrafilter on X if:

- ∅ ∉ U;
- $a \cap b \in \mathcal{U}$ for every $a, b \in \mathcal{U}$;
- $b \in \mathcal{U}$ whenever there is an $a \in \mathcal{U}$ such that $a \subseteq b$;
- for each $a \subseteq X$, either $a \in \mathcal{U}$ or $X \setminus a \in \mathcal{U}$.

There is a natural topology on the space of all ultrafilters on \mathbb{N} , and with this topology it is usually denoted $\beta\mathbb{N}$.

As it turns out, $\beta\mathbb{N}$ coincides with the Cech-Stone compactification of a discrete countable space \mathbb{N} .

For a non-empty set X we say that $\mathcal{U} \subseteq \mathcal{P}(X)$ is an ultrafilter on X if:

- ∅ ∉ U;
- $a \cap b \in \mathcal{U}$ for every $a, b \in \mathcal{U}$;
- $b \in \mathcal{U}$ whenever there is an $a \in \mathcal{U}$ such that $a \subseteq b$;
- for each $a \subseteq X$, either $a \in \mathcal{U}$ or $X \setminus a \in \mathcal{U}$.

There is a natural topology on the space of all ultrafilters on \mathbb{N} , and with this topology it is usually denoted $\beta\mathbb{N}$.

As it turns out, $\beta\mathbb{N}$ coincides with the Cech-Stone compactification of a discrete countable space \mathbb{N} .

We say that an ultrafilter $\mathcal U$ on $\mathbb N$ is *principal* if there is an $n\in\mathbb N$ such that

$$a \in \mathcal{U} \Leftrightarrow n \in a$$
.

The space of all non-principal ultrafilters on $\mathbb N$ is denoted $\mathbb N^*$. Hence

$$\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}.$$

Clearly, all principal ultrafilters on \mathbb{N} look the same.

We say that an ultrafilter $\mathcal U$ on $\mathbb N$ is *principal* if there is an $n\in\mathbb N$ such that

$$a \in \mathcal{U} \Leftrightarrow n \in a$$
.

The space of all non-principal ultrafilters on $\mathbb N$ is denoted $\mathbb N^*$. Hence

$$\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}.$$

Clearly, all principal ultrafilters on \mathbb{N} look the same.

We say that an ultrafilter \mathcal{U} on \mathbb{N} is *principal* if there is an $n \in \mathbb{N}$ such that

$$a \in \mathcal{U} \Leftrightarrow n \in a$$
.

The space of all non-principal ultrafilters on $\mathbb N$ is denoted $\mathbb N^*$. Hence

$$\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}.$$

Clearly, all principal ultrafilters on $\mathbb N$ look the same.

Investigation whether all non-principal ultrafilters look alike is responsible for a significant amount of work since the mid-twentieth century.

One way to formalize this vague question is whether for any two non-principal ultrafilters on \mathbb{N} , say \mathcal{U} and \mathcal{V} , there is a homeomorphism of the space \mathbb{N}^* which maps \mathcal{U} to \mathcal{V} ?

(i.e. is \mathbb{N}^* a homogeneous topological space?)

Investigation whether all non-principal ultrafilters look alike is responsible for a significant amount of work since the mid-twentieth century.

One way to formalize this vague question is whether for any two non-principal ultrafilters on \mathbb{N} , say \mathcal{U} and \mathcal{V} , there is a homeomorphism of the space \mathbb{N}^* which maps \mathcal{U} to \mathcal{V} ?

(i.e. is \mathbb{N}^* a homogeneous topological space?)

Another way to ask this question is whether there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that $a \in \mathcal{V} \Leftrightarrow f[a] \in \mathcal{U}$?

(i.e. are \mathcal{U} and \mathcal{V} equivalent?)

Note that, since f is a bijection, this is the same as asking i

$$a\in \mathcal{U}\Leftrightarrow \mathsf{f}^{-1}[a]\in \mathcal{V}$$
 .

Another way to ask this question is whether there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that $a \in \mathcal{V} \Leftrightarrow f[a] \in \mathcal{U}$?

(i.e. are \mathcal{U} and \mathcal{V} equivalent?)

Note that, since f is a bijection, this is the same as asking if

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

Another way to ask this question is whether there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that $a \in \mathcal{V} \Leftrightarrow f[a] \in \mathcal{U}$?

(i.e. are \mathcal{U} and \mathcal{V} equivalent?)

Note that, since f is a bijection, this is the same as asking in

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

Another way to ask this question is whether there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that $a \in \mathcal{V} \Leftrightarrow f[a] \in \mathcal{U}$?

(i.e. are \mathcal{U} and \mathcal{V} equivalent?)

Note that, since f is a bijection, this is the same as asking if

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

Another way to ask this question is whether there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that $a \in \mathcal{V} \Leftrightarrow f[a] \in \mathcal{U}$?

(i.e. are \mathcal{U} and \mathcal{V} equivalent?)

Note that, since f is a bijection, this is the same as asking if

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}$$
.

For a topological space X, we say that $x \in X$ is a P-point if the only prime ideal of $C(X,\mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\mathbb{N}$, this is equivalent to saying that an ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n:n\in\mathbb{N}\}\subseteq\mathcal{U}$ there is an $a\in\mathcal{U}$ such that $a\setminus a_n$ is finite for all $n\in\mathbb{N}$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite

For a topological space X, we say that $x \in X$ is a P-point if the only prime ideal of $C(X,\mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\mathbb{N}$, this is equivalent to saying that an ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n:n\in\mathbb{N}\}\subseteq\mathcal{U}$ there is an $a\in\mathcal{U}$ such that $a\setminus a_n$ is finite for all $n\in\mathbb{N}$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

For a topological space X, we say that $x \in X$ is a P-point if the only prime ideal of $C(X,\mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\mathbb{N}$, this is equivalent to saying that an ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n:n\in\mathbb{N}\}\subseteq\mathcal{U}$ there is an $a\in\mathcal{U}$ such that $a\setminus a_n$ is finite for all $n\in\mathbb{N}$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

For a topological space X, we say that $x \in X$ is a P-point if the only prime ideal of $C(X, \mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\mathbb{N}$, this is equivalent to saying that an ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n:n\in\mathbb{N}\}\subseteq\mathcal{U}$ there is an $a\in\mathcal{U}$ such that $a\setminus a_n$ is finite for all $n\in\mathbb{N}$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

For a topological space X, we say that $x \in X$ is a P-point if the only prime ideal of $C(X, \mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\mathbb{N}$, this is equivalent to saying that an ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n:n\in\mathbb{N}\}\subseteq\mathcal{U}$ there is an $a\in\mathcal{U}$ such that $a\setminus a_n$ is finite for all $n\in\mathbb{N}$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

Theorem (W. Rudin, 1956)

Assume CH. Then there is a P-point ultrafilter in $\beta\mathbb{N}$. Thus \mathbb{N}^* is not a homogeneous space.

Theorem (Shelah, 1970s)

There is a model of ZFC with no P-point ultrafilters.

 ${
m MA}(\sigma ext{-centered})$ ensures the existence of $2^{\mathfrak c}$ many P-points. Note that

$$CH \Rightarrow MA \Rightarrow MA(\sigma - centered).$$

Theorem (W. Rudin, 1956)

Assume CH. Then there is a P-point ultrafilter in $\beta\mathbb{N}$. Thus \mathbb{N}^* is not a homogeneous space.

Theorem (Shelah, 1970s)

There is a model of ZFC with no P-point ultrafilters.

 ${
m MA}(\sigma ext{-centered})$ ensures the existence of $2^{\mathfrak c}$ many P-points. Note that

$$CH \Rightarrow MA \Rightarrow MA(\sigma - centered).$$

Theorem (W. Rudin, 1956)

Assume CH. Then there is a P-point ultrafilter in $\beta\mathbb{N}$. Thus \mathbb{N}^* is not a homogeneous space.

Theorem (Shelah, 1970s)

There is a model of ZFC with no P-point ultrafilters.

 ${
m MA}(\sigma\text{-centered})$ ensures the existence of $2^{\mathfrak c}$ many P-points. Note that

$$CH \Rightarrow MA \Rightarrow MA(\sigma - centered).$$

Let \mathcal{U} and \mathcal{V} be ultrafilters on \mathbb{N} . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f: \mathbb{N} \to \mathbb{N}$ such that for every $a \subseteq \mathbb{N}$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters $\mathcal U$ and $\mathcal V$ there is a bijection $f:\mathbb N\to\mathbb N$ such that $a\in\mathcal U\Leftrightarrow f^{-1}[a]\in\mathcal V$ if and only if $\mathcal U\leq_{RK}\mathcal V$ and $\mathcal V\leq_{RK}\mathcal U$.

(i.e. two ultrafilters are equivalent iff they are RK reducible to each other.

Let \mathcal{U} and \mathcal{V} be ultrafilters on \mathbb{N} . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f: \mathbb{N} \to \mathbb{N}$ such that for every $a \subseteq \mathbb{N}$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters $\mathcal U$ and $\mathcal V$ there is a bijection $f:\mathbb N\to\mathbb N$ such that $a\in\mathcal U\Leftrightarrow f^{-1}[a]\in\mathcal V$ if and only if $\mathcal U\leq_{RK}\mathcal V$ and $\mathcal V\leq_{RK}\mathcal U$.

i.e. two ultrafilters are equivalent iff they are RK reducible to each other.

Let \mathcal{U} and \mathcal{V} be ultrafilters on \mathbb{N} . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f: \mathbb{N} \to \mathbb{N}$ such that for every $a \subseteq \mathbb{N}$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters $\mathcal U$ and $\mathcal V$ there is a bijection $f:\mathbb N\to\mathbb N$ such that $a\in\mathcal U\Leftrightarrow f^{-1}[a]\in\mathcal V$ if and only if $\mathcal U\leq_{RK}\mathcal V$ and $\mathcal V\leq_{RK}\mathcal U$.

(i.e. two ultrafilters are equivalent iff they are RK reducible to each other.

Let \mathcal{U} and \mathcal{V} be ultrafilters on \mathbb{N} . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f: \mathbb{N} \to \mathbb{N}$ such that for every $a \subseteq \mathbb{N}$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters $\mathcal U$ and $\mathcal V$ there is a bijection $f:\mathbb N\to\mathbb N$ such that $a\in\mathcal U\Leftrightarrow f^{-1}[a]\in\mathcal V$ if and only if $\mathcal U\leq_{RK}\mathcal V$ and $\mathcal V\leq_{RK}\mathcal U$.

(i.e. two ultrafilters are equivalent iff they are RK reducible to each other.)

The analysis of a variant of Rudin-Keisler ordering on ultrafilters led to the proof that (in ${\rm ZFC}$) ω^* is not homogeneous.

Theorem (Kunen, 1970)

There are ultrafilters $\mathcal U$ and $\mathcal V$ on $\mathbb N$ such that $\mathcal U \not\leq_{RK} \mathcal V$ and $\mathcal V \not\leq_{RK} \mathcal U.$

Note that if V is a P-point and $U \leq_{RK} V$, then U is also a P-point

Note that no ultrafilter can have more that $\mathfrak c$ many RK predecessors (since there are only $\mathfrak c$ many functions from $\mathbb N$ to $\mathbb N$).

The analysis of a variant of Rudin-Keisler ordering on ultrafilters led to the proof that (in ZFC) ω^* is not homogeneous.

Theorem (Kunen, 1970)

There are ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $\mathcal{U} \not\leq_{RK} \mathcal{V}$ and $\mathcal{V} \not\leq_{RK} \mathcal{U}$.

Note that if V is a P-point and $U \leq_{RK} V$, then U is also a P-point

Note that no ultrafilter can have more that \mathfrak{c} many RK predecessors (since there are only \mathfrak{c} many functions from \mathbb{N} to \mathbb{N}).

The analysis of a variant of Rudin-Keisler ordering on ultrafilters led to the proof that (in ZFC) ω^* is not homogeneous.

Theorem (Kunen, 1970)

There are ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $\mathcal{U} \not\leq_{RK} \mathcal{V}$ and $\mathcal{V} \not\leq_{RK} \mathcal{U}$.

Note that if V is a P-point and $U \leq_{RK} V$, then U is also a P-point.

Note that no ultrafilter can have more that \mathfrak{c} many RK predecessors (since there are only \mathfrak{c} many functions from \mathbb{N} to \mathbb{N}).

The analysis of a variant of Rudin-Keisler ordering on ultrafilters led to the proof that (in ZFC) ω^* is not homogeneous.

Theorem (Kunen, 1970)

There are ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $\mathcal{U} \not\leq_{RK} \mathcal{V}$ and $\mathcal{V} \not\leq_{RK} \mathcal{U}$.

Note that if \mathcal{V} is a P-point and $\mathcal{U} \leq_{RK} \mathcal{V}$, then \mathcal{U} is also a P-point.

Note that no ultrafilter can have more that $\mathfrak c$ many RK predecessors (since there are only $\mathfrak c$ many functions from $\mathbb N$ to $\mathbb N$).

10 / 22

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f: \mathbb{N} \to \mathbb{N}$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter $\mathcal U$ on $\mathbb N$ is selective iff it is minimal in the RK ordering. (i.e. $\mathcal U$ is selective iff for any non-principal $\mathcal V\colon \mathcal V\leq_{RK}\mathcal U\Rightarrow \mathcal U\leq_{RK}\mathcal V$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model.

Theorem (Keisler, early 1970s)

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f: \mathbb{N} \to \mathbb{N}$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter \mathcal{U} on \mathbb{N} is selective iff it is minimal in the RK ordering. (i.e. \mathcal{U} is selective iff for any non-principal \mathcal{V} : $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{U} \Rightarrow \mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model.

Theorem (Keisler, early 1970s)

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f: \mathbb{N} \to \mathbb{N}$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter \mathcal{U} on \mathbb{N} is selective iff it is minimal in the RK ordering. (i.e. \mathcal{U} is selective iff for any non-principal \mathcal{V} : $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{U} \Rightarrow \mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model

Theorem (Keisler, early 1970s)

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f: \mathbb{N} \to \mathbb{N}$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter $\mathcal U$ on $\mathbb N$ is selective iff it is minimal in the RK ordering. (i.e. $\mathcal U$ is selective iff for any non-principal $\mathcal V\colon \mathcal V\leq_{\mathsf{RK}}\mathcal U\Rightarrow \mathcal U\leq_{\mathsf{RK}}\mathcal V$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model.

Theorem (Keisler, early 1970s)

Conjecture

Assume $MA(\sigma - \text{centered})$. Let \mathbb{P} be a partial order of size at most $2^{\mathfrak{c}}$ where every element has at most \mathfrak{c} many predecessors. Then \mathbb{P} embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Theorem (Blass, 1973)

Both ω_1 and $(\mathbb{R},<)$ embed into the set of P-points under the RK ordering

Theorem (Blass, 1973)

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} <_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

Conjecture

Assume $MA(\sigma - \text{centered})$. Let \mathbb{P} be a partial order of size at most $2^{\mathfrak{c}}$ where every element has at most \mathfrak{c} many predecessors. Then \mathbb{P} embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Theorem (Blass, 1973)

Both ω_1 and $(\mathbb{R},<)$ embed into the set of P-points under the RK ordering.

Theorem (Blass, 1973)

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} <_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

Conjecture

Assume $MA(\sigma - \text{centered})$. Let \mathbb{P} be a partial order of size at most $\mathfrak{C}^{\mathfrak{c}}$ where every element has at most \mathfrak{c} many predecessors. Then \mathbb{P} embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Theorem (Blass, 1973)

Both ω_1 and $(\mathbb{R},<)$ embed into the set of P-points under the RK ordering.

Theorem (Blass, 1973)

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

Theorem (Rosen, 1985)

Ordinal ω_1 embeds into the set of P-points under the RK ordering as an initial segment, i.e. there is a set of P-points $\{U_\alpha: \alpha < \omega_1\}$ such that

- $\mathcal{U}_{\alpha} <_{\mathsf{RK}} \mathcal{U}_{\beta}$ for all $\alpha < \beta < \omega_1$ and
- for any ultrafilter \mathcal{U} , if there is $\alpha < \omega_1$ such that $\mathcal{U} \leq_{RK} \mathcal{U}_{\alpha}$, then there is some $\gamma < \omega_1$ such that $\mathcal{U}_{\gamma} \equiv_{RK} \mathcal{U}$.

Theorem (Laflamme, 1989)

For each $1 \leq \alpha < \omega_1$, there is an ultrafilter \mathcal{U}_{α} , generic for a partial order \mathbb{P}_{α} with the following properties:

- \mathcal{U}_{α} is a rapid P-point ultrafilter.
- There is a sequence $\langle \mathcal{V}_{\gamma} : \gamma < \alpha + 1 \rangle$ of P-points such that $\mathcal{V}_0 = \mathcal{U}_{\alpha}$, that $\mathcal{V}_{\gamma} <_{RK} \mathcal{V}_{\beta}$ for all $\beta < \gamma < \alpha + 1$, and that for any \mathcal{U} with $\mathcal{U} \leq_{RK} \mathcal{U}_{\alpha}$ there is $\gamma < \alpha + 1$ such that $\mathcal{U} \equiv_{RK} \mathcal{V}_{\gamma}$.

Theorem (Raghavan-Shelah, 2014)

Assume $\mathrm{MA}(\sigma-\text{centered})$. Then $(P(\mathbb{N})/\text{Fin},\subseteq^*)$ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

In particular, this implies that every poset of size at most $\mathfrak c$ embeds.

Theorem (K-Raghavan, 2018)

Assume CH. Then \mathfrak{c}^+ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Theorem (Raghavan-Shelah, 2014)

Assume $MA(\sigma - centered)$. Then $(P(\mathbb{N})/Fin, \subseteq^*)$ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

In particular, this implies that every poset of size at most $\mathfrak c$ embeds.

Theorem (K-Raghavan, 2018)

Assume CH. Then \mathfrak{c}^+ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Theorem (Raghavan-Shelah, 2014)

Assume $MA(\sigma - centered)$. Then $(P(\mathbb{N})/Fin, \subseteq^*)$ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

In particular, this implies that every poset of size at most $\mathfrak c$ embeds.

Theorem (K-Raghavan, 2018)

Assume CH. Then \mathfrak{c}^+ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

 ${\cal N}$ is the standard model for this language

 $\mathcal M$ is an elementary extension of $\mathcal N$.

Note that if $a \in \mathcal{M}$, then the set $\{^*f(a) : f \in \mathbb{N}^{\mathbb{N}}\}$ is the domain of ar elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by a is isomorphic to the ultrapower of the standard model by the ultrafilter $\mathcal{U}_a = \{b \subseteq \mathbb{N} : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\mathbb{N}}/\mathcal{U}_{\mathsf{a}}\cong\left\{ ^{st}f(\mathsf{a}):f\in\mathbb{N}^{\mathbb{N}}
ight\} .$$

$$(\forall a \in A)(\exists b \in B)$$
 a *< b and $(\forall b \in B)(\exists a \in A)$ b *< a

 $\ensuremath{\mathcal{N}}$ is the standard model for this language.

 ${\mathcal M}$ is an elementary extension of ${\mathcal N}.$

Note that if $a \in \mathcal{M}$, then the set $\{^*f(a) : f \in \mathbb{N}^{\mathbb{N}}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by a is isomorphic to the ultrapower of the standard model by the ultrafilter $\mathcal{U}_a = \{b \subseteq \mathbb{N} : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\mathbb{N}}/\mathcal{U}_{\mathsf{a}}\cong\left\{ ^{st}f(\mathsf{a}):f\in\mathbb{N}^{\mathbb{N}}
ight\} .$$

$$(\forall a \in A)(\exists b \in B)$$
 a *< b and $(\forall b \in B)(\exists a \in A)$ b *< a.

 ${\cal N}$ is the standard model for this language.

 \mathcal{M} is an elementary extension of \mathcal{N} .

Note that if $a \in \mathcal{M}$, then the set $\{ {}^*f(a) : f \in \mathbb{N}^{\mathbb{N}} \}$ is the domain of ar elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by a is isomorphic to the ultrapower of the standard model by the ultrafilter $\mathcal{U}_a = \{b \subseteq \mathbb{N} : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\mathbb{N}}/\mathcal{U}_{\mathsf{a}}\cong\left\{ ^{st}f(\mathsf{a}):f\in\mathbb{N}^{\mathbb{N}}
ight\} .$$

$$(\forall a \in A)(\exists b \in B)$$
 a *< b and $(\forall b \in B)(\exists a \in A)$ b *< a.

 ${\cal N}$ is the standard model for this language.

 \mathcal{M} is an elementary extension of \mathcal{N} .

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \mathbb{N}^{\mathbb{N}}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by a is isomorphic to the ultrapower of the standard model by the ultrafilter $\mathcal{U}_a = \{b \subseteq \mathbb{N} : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\mathbb{N}}/\mathcal{U}_{\mathsf{a}}\cong\left\{ ^{st}f(\mathsf{a}):f\in\mathbb{N}^{\mathbb{N}}
ight\} .$$

$$(\forall a \in A)(\exists b \in B) \ a \stackrel{*}{\leq} b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \stackrel{*}{\leq} a.$$

 ${\cal N}$ is the standard model for this language.

 \mathcal{M} is an elementary extension of \mathcal{N} .

Note that if $a \in \mathcal{M}$, then the set $\{{}^*f(a) : f \in \mathbb{N}^{\mathbb{N}}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by a is isomorphic to the ultrapower of the standard model by the ultrafilter $\mathcal{U}_a = \{b \subseteq \mathbb{N} : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\mathbb{N}}/\mathcal{U}_{a}\cong\left\{ ^{st}f(a):f\in\mathbb{N}^{\mathbb{N}}
ight\} .$$

$$(\forall a \in A)(\exists b \in B) \ a \le b \ and \ (\forall b \in B)(\exists a \in A) \ b \le a.$$

 $\ensuremath{\mathcal{N}}$ is the standard model for this language.

 \mathcal{M} is an elementary extension of \mathcal{N} .

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \mathbb{N}^{\mathbb{N}}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by a is isomorphic to the ultrapower of the standard model by the ultrafilter $\mathcal{U}_a = \{b \subseteq \mathbb{N} : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\mathbb{N}}/\mathcal{U}_{a}\cong\left\{ ^{st}f(a):f\in\mathbb{N}^{\mathbb{N}}
ight\} .$$

$$(\forall a \in A)(\exists b \in B) \ a \stackrel{*}{\leq} b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \stackrel{*}{\leq} a.$$

There is a reformulation of being a P-point in model theoretic terms.

Lemma

An ultrafilter $\mathcal U$ on $\mathbb N$ is a P-point if and only if every nonstandard elementary submodel of $\mathcal N^{\mathbb N}/\mathcal U$ is cofinal with $\mathcal N^{\mathbb N}/\mathcal U$.

There is a reformulation of the RK reducibility in model theoretic terms.

Lemma

For ultrafilters $\mathcal U$ and $\mathcal V$ on $\mathbb N$: $\mathcal U \leq_{RK} \mathcal V$ if and only if $\mathcal N^\mathbb N/\mathcal U$ can be elementary embedded in $\mathcal N^\mathbb N/\mathcal V$.

There is a reformulation of being a P-point in model theoretic terms.

Lemma

An ultrafilter $\mathcal U$ on $\mathbb N$ is a P-point if and only if every nonstandard elementary submodel of $\mathcal N^{\mathbb N}/\mathcal U$ is cofinal with $\mathcal N^{\mathbb N}/\mathcal U$.

There is a reformulation of the RK reducibility in model theoretic terms.

Lemma

For ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} :

 $\mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$ if and only if $\mathcal{N}^{\mathbb{N}}/\mathcal{U}$ can be elementary embedded in $\mathcal{N}^{\mathbb{N}}/\mathcal{V}$.

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

This theorem has two immediate consequences.

Corollary

Any RK-decreasing 'sequence' of P-points has an RK-lower bound.

Corollary

If two P-points have an upper bound, then they also have a lower bound.

The latter may be viewed as a witness to the fact that, under MA for example, the RK ordering of P-points is not upwards directed.

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

This theorem has two immediate consequences.

Corollary

Any RK-decreasing 'sequence' of P-points has an RK-lower bound.

Corollary

If two P-points have an upper bound, then they also have a lower bound.

The latter may be viewed as a witness to the fact that, under MA for example, the RK ordering of P-points is not upwards directed.

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

This theorem has two immediate consequences.

Corollary

Any RK-decreasing 'sequence' of P-points has an RK-lower bound.

Corollary

If two P-points have an upper bound, then they also have a lower bound.

The latter may be viewed as a witness to the fact that, under MA for example, the RK ordering of P-points is not upwards directed.

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

This theorem was proved using the following.

Theorem (Blass, 1972)

If $\{\mathcal{M}_i: i \in \mathbb{N}\}$ is a collection of pairwise cofinals submodels of \mathcal{M} such that at least one of \mathcal{M}_i 's is principal, then $\bigcap_{i \in \mathbb{N}} \mathcal{M}_i$ contains a principal submodel cofinal with each \mathcal{M}_i ($i \in \mathbb{N}$).

Blass asked if this result can be extended to larger families of models.

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

This theorem was proved using the following.

Theorem (Blass, 1972)

If $\{\mathcal{M}_i: i \in \mathbb{N}\}$ is a collection of pairwise cofinals submodels of \mathcal{M} such that at least one of \mathcal{M}_i 's is principal, then $\bigcap_{i \in \mathbb{N}} \mathcal{M}_i$ contains a principal submodel cofinal with each \mathcal{M}_i ($i \in \mathbb{N}$).

Blass asked if this result can be extended to larger families of models.

If a countable set $\{U_n : n \in \mathbb{N}\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \mathbb{N}$.

This theorem was proved using the following.

Theorem (Blass, 1972)

If $\{\mathcal{M}_i : i \in \mathbb{N}\}$ is a collection of pairwise cofinals submodels of \mathcal{M} such that at least one of \mathcal{M}_i 's is principal, then $\bigcap_{i \in \mathbb{N}} \mathcal{M}_i$ contains a principal submodel cofinal with each \mathcal{M}_i ($i \in \mathbb{N}$).

Blass asked if this result can be extended to larger families of models.

An ultrafilter $\mathcal U$ on $\mathbb N$ is a $\mathsf P_{\mathfrak c}$ -point if for any $\alpha < \mathfrak c$ and any collection $\{a_i: i<\alpha\}\subseteq \mathcal U$ there is some $a\in \mathcal U$ such that $a\subseteq^* a_i$ for each $i<\alpha$.

Lemma

Let $\alpha < \mathfrak{c}$ and $\{\mathcal{M}_i : i < \alpha\}$ be a collection of submodels of \mathcal{M} such that:

- each \mathcal{M}_i is generated by a_i ,
- $\mathcal{M}_j \subseteq \mathcal{M}_i$ whenever $i < j < \alpha$,
- each \mathcal{M}_i is cofinal with \mathcal{M}_0 .

Suppose moreover that $\mathcal{U}_0 = \{b \subseteq \mathbb{N} : a_0 \in {}^*b\}$ is a $P_{\mathfrak{c}}$ -point.

Then there is a family $\{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ of finite-to-one maps such that

- $f_i(a_0) = a_i$ for $i < \alpha$,
- for $i < j < \alpha$, there is $k \in \mathbb{N}$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $m, n \ge k$.

An ultrafilter $\mathcal U$ on $\mathbb N$ is a $\mathsf P_{\mathfrak c}$ -point if for any $\alpha < \mathfrak c$ and any collection $\{a_i: i<\alpha\}\subseteq \mathcal U$ there is some $a\in \mathcal U$ such that $a\subseteq^* a_i$ for each $i<\alpha$.

Lemma

Let $\alpha < \mathfrak{c}$ and $\{\mathcal{M}_i : i < \alpha\}$ be a collection of submodels of \mathcal{M} such that:

- each \mathcal{M}_i is generated by a_i ,
- $\mathcal{M}_i \subseteq \mathcal{M}_i$ whenever $i < j < \alpha$,
- each \mathcal{M}_i is cofinal with \mathcal{M}_0 .

Suppose moreover that $\mathcal{U}_0 = \{b \subseteq \mathbb{N} : a_0 \in {}^*b\}$ is a P_c -point.

Then there is a family $\{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ of finite-to-one maps such that:

- $f_i(a_0) = a_i$ for $i < \alpha$,
- for $i < j < \alpha$, there is $k \in \mathbb{N}$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $m, n \ge k$.

Let α be an ordinal, let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ be a family of functions, and let A be a subset of α . We say that a set $d \subseteq \mathbb{N}$ is (A, \mathcal{F}) -closed if $f_i^{-1}[f_i[d]] \subseteq d$ for each $i \in A$.

Lemma

Let $\alpha < \mathfrak{c}$ and let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ be a family of finite-to-one maps. Suppose that for each $i < j < \alpha$ there is $k \in \mathbb{N}$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $n, m \ge k$. Then for each finite $A \subseteq \alpha$ and each $w \in \mathbb{N}$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \mathbb{N}$ such that $w \in d$.

Let α be an ordinal, let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ be a family of functions, and let A be a subset of α . We say that a set $d \subseteq \mathbb{N}$ is (A, \mathcal{F}) -closed if $f_i^{-1}[f_i[d]] \subseteq d$ for each $i \in A$.

Lemma

Let $\alpha < \mathfrak{c}$ and let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ be a family of finite-to-one maps. Suppose that for each $i < j < \alpha$ there is $k \in \mathbb{N}$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $n, m \ge k$. Then for each finite $A \subseteq \alpha$ and each $w \in \mathbb{N}$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \mathbb{N}$ such that $w \in d$.

Lemma

Assume MA_{α} . Let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ be a family of finite-to-one functions. Suppose that for each non-empty finite set $A \subseteq \alpha$, and each $w \in \mathbb{N}$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \mathbb{N}$ containing w as an element. Then there is a finite-to-one function $h \in \mathbb{N}^{\mathbb{N}}$, and a collection $\{e_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ such that for each $i < \alpha$, there is $k \in \mathbb{N}$ such that $h(n) = e_i(f_i(n))$ whenever $n \ge k$.

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α} . Let \mathcal{M}_i ($i < \alpha$) be a collection of pairwise cofinal submodels of \mathcal{M} . Suppose that \mathcal{M}_0 is principal, and that $\mathcal{U}_0 = \{b \subseteq \mathbb{N} : a_0 \in {}^*b\}$ is a P_c -point, where a_0 generates \mathcal{M}_0 . Then there is an element $c \in \bigcap_{i < \alpha} \mathcal{M}_i$ which generates a principal model cofinal with all \mathcal{M}_i .

Lemma

Assume MA_{α} . Let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ be a family of finite-to-one functions. Suppose that for each non-empty finite set $A \subseteq \alpha$, and each $w \in \mathbb{N}$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \mathbb{N}$ containing w as an element. Then there is a finite-to-one function $h \in \mathbb{N}^{\mathbb{N}}$, and a collection $\{e_i : i < \alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ such that for each $i < \alpha$, there is $k \in \mathbb{N}$ such that $h(n) = e_i(f_i(n))$ whenever $n \ge k$.

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α} . Let \mathcal{M}_i ($i < \alpha$) be a collection of pairwise cofinal submodels of \mathcal{M} . Suppose that \mathcal{M}_0 is principal, and that $\mathcal{U}_0 = \{b \subseteq \mathbb{N} : a_0 \in {}^*b\}$ is a P_c -point, where a_0 generates \mathcal{M}_0 . Then there is an element $c \in \bigcap_{i < \alpha} \mathcal{M}_i$ which generates a principal model cofinal with all \mathcal{M}_i .

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α} . Suppose that $\{U_i : i < \alpha\}$ is a collection of P-points and that U_0 is a P_c -point such that $U_i \leq_{RK} U_0$ for each $i < \alpha$. Then there is a P-point $\mathcal U$ such that $\mathcal U \leq_{RK} \mathcal U_i$ for each $i < \alpha$.

Corollary

Assume MA. If a collection of fewer than $\mathfrak c$ many $P_\mathfrak c$ -points has an upper bound which is a $P_\mathfrak c$ -point, then it has a lower bound.

Corollary

Assume MA. The class of P_c -points is downwards < c-closed under \leq_{RK} .

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α} . Suppose that $\{U_i : i < \alpha\}$ is a collection of P-points and that U_0 is a P_c -point such that $U_i \leq_{RK} U_0$ for each $i < \alpha$. Then there is a P-point \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_i$ for each $i < \alpha$.

Corollary

Assume MA . If a collection of fewer than $\mathfrak c$ many $P_\mathfrak c$ -points has an upper bound which is a $P_\mathfrak c$ -point, then it has a lower bound.

Corollary

Assume MA . The class of $P_{\mathfrak{c}}$ -points is downwards $<\mathfrak{c}$ -closed under \leq_{RK} .