EE5 I 04 Data Science

- Today
 - Sensor Data Science: Process Overview

• Turn your video on \frac{1}{V} \cap Start Video \tag{Start Video}

Check out lecture materials posted in the syllabus

Up-to-date Syllabus: http://tiny.cc/y3wouz

An Overview of Sensor Data Analysis Process (Mobile vs. Fixed Sensing Cases)

Young Tae Noh
KENTECH

Sensor Data Gathering & Processing

- Getting sensor data
 - From which sensors? (e.g., motion sensors, current sensors)
 - From where? Phone (wearable) vs. factory (stationary)
 - How? (e.g., wireless or wired, hierarchical?)
- Processing sensor data
 - Why? For what? (e.g., activity recognition or fault detection)
 - How (procedure)
 - Sensor data processing pipeline: collect □ segment □ extract □ classify
 - Sensor fusion leveraging multiple sensors for better classification

Overview

- Mobile Sensing with Smartphones
 - A Survey of Mobile Phone Sensing, IEEE Com Mag, 2010
- Sensor Data Processing Pipeline
 - A tutorial on human activity recognition using body-worn inertial sensors, 2014
- Industrial Applications: Machine Condition Monitoring and Fault Diagnosis
 - Design and deployment of industrial sensor networks: experiences from a semiconductor plant and the north sea, ACM SenSys 2005
 - Novel Industrial Wireless Sensor Networks for Machine Condition Monitoring and Fault Diagnosis, Liqun Hou and Neil W. Bergmann, IEEE Transactions on Instrumentation and Measurement, 2012

Mobile Sensing with Smartphones

Contents

- Applications
- Eco-system Players
- Scale of Mobile Sensing
- Sensing Paradigm
- Mobile Sensing Architecture
 - Sense
 - Learn
 - Inform, Share, Persuasion
- Privacy Issues

Galaxy S20 Sensors

Accelerometer Magnetometer (Compass) Gyroscope Ambient Light Proximity Camera **Voice Pressure (Barometer) NFC Heart Rate** Fingerprint scanner

Applications

- Health and Well Being
 - Promoting personal fitness (UbiFit Garden, Move, Google Fit)
- Transportation
 - Traffic conditions (MIT VTrack, Nokia/Berkeley Mobile Millennium)
 - Driving behaviors (MIT DriveWell)
- Social Networking
 - Sensing presence (Dartmouth CenceMe)
- Environmental Monitoring
 - Measuring pollution (UCLA PIER)

Move

Drive Well

Eco-system Players

- Multiple vendors
 - Apple AppStore
 - Google Play (Android Market)
 - Microsoft Mobile Marketplace
- Developers
 - Startups
 - Academia
 - Small Research laboratories
 - Individuals
- Critical mass of users

Scale of Mobile Sensing

Sensing Paradigm

- Participatory: active sensor data collection by users
 - Example: managing garbage cans by <u>taking photos</u>
 - Advantages: supports complex operations
 - Challenges:
 - Quality of data is dependent on participants
- Opportunistic: automated sensor data collection
 - Example: collecting GPS location traces from users' phone
 - Advantages: lowers burden placed on the user
 - Challenges:
 - Technically hard to build people underutilized
 - Phone context problem (dynamic environments)

Mobile Computing Cloud **Mobile Sensing** Big sensor data twitter Inform, share and persuasion Application distribution Learn Architecture Sense

INFORM, SHARE AND PERSUASION

LEARN

SENSE

Sense

- Programmability
 - Managing smartphone sensors with system APIs
 - Challenges: fine-grained control of sensors, portability (OS & sensor variation)
- Continuous sensing
 - Resource demanding (e.g., computation, battery)
 - Energy efficient algorithms; trade-off between accuracy and energy consumption
- Phone context
 - Dynamic environments affect sensor data quality
 - Some solutions:
 - Admission controls for removing noisy data
 - Collaborative multi-phone inference (i.e., using multiple sensors)
- Time consuming
 - Most labor intensive work in sensor data science
 - Sensor data + label collection

Learn

- Integrating sensor data
 - Data mining and statistical analysis
- Learning algorithms
 - Supervised: data are hand-labeled (e.g., cooking, driving)
 - Semi-supervised: some of the data are labeled
 - Unsupervised: none of the data are labeled
- Example: human behavior and context modeling
 - Activity classification
 - Mobility pattern analysis (place logging)
 - Noise mapping in urban environments

Learn: Scaling Models

- Scaling model to everyday uses
 - Dynamic environments; personal differences
 - Large scale deployment (e.g., millions of people)
- Models must be adaptive and incorporate people into the process
- If possible, exploit wisdom of crowd (or crowdsourcing) to improve data classification and solutions
- Challenges:
 - Lack of common machine learning toolkits for smartphones
 - Lack of large-scale public data sets
 - Lack of public repository for sharing datasets, code, and tools

Inform, Share, Persuasion

NFORM, SHARE, PERSUASION

> LEARN SENSE

- Sharing
 - Data visualization, community awareness, and social networks
- Personalized services
 - Profile user preferences, recommendations, persuasion
- Persuasive technology systems that provide tailored feedback with the goal of changing user's behavior
 - Motivation to change human behavior (e.g., healthcare, environmental awareness)
 - Methods: self-reflection, goal setting, social competitions
 - Interdisciplinary research combining behavioral and social psychology with computer science

Privacy Issues

- Respecting the privacy of the user is the most fundamental responsibility of a mobile sensing system
- Reconstruction type attacks
 - Reverse engineering collected data to obtain invasive information
- Second-hand smoke problem
 - How can the privacy of third parties be effectively protected when other people wearing sensors are nearby?
 - How can mismatched privacy policies be managed when two different people are close enough to each other for their sensors to collect information?

Privacy Issues

- Understanding of privacy issues of novel mobile and wearable technologies is required
- Furthermore, stronger techniques for protecting people's privacy are needed
- Current solutions
 - Cryptography
 - Privacy-preserving data mining
 - Processing data locally versus cloud services
 - Group sensing applications is based on user membership and/or trust relationships

Summary

- Applications
 - Health & Well-being, transportation, SNS, environmental monitoring,
- Eco-system Players
 - Vendors, developers, users
- Scale of Mobile Sensing
 - Individual, Group, Community
- Sensing Paradigm
 - Participatory vs. Opportunistic
- Mobile Sensing Architecture
 - Sense
 - Learn
 - Inform, Share, Persuasion
- Privacy Issues

Case Study of Mobile Sensing: Human Activity Recognition using Smartphones

A tutorial on human activity recognition using body-worn inertial sensors, Andreas Bulling, Ulf Blanke, Bernt Schiele, ACM Computing Surveys (CSUR) Volume 46 Issue 3, January 2014

About Activities

- High-level activities
 - Giving a lecture, having a breakfast, playing soccer...
- Low-level activities
 - Lying on a bed, standing still, running, walking...

Case Study

- Consider three target activities to recognize
 - Running
 - Standing still
 - Lying on a bed

 How can we recognize these activities using your smartphone's motion sensors?

Activity Recognition Process

Peature extraction

Features

Model building & Classification (Inference)

Activity

Activity Recognition Process

Phone shaken?	Phone orientation?	Current Activity
No	Upright	Standing still
Yes	Upright	Running
No	Lying down	Lying on a bed
Yes	Lying down	Nothing (=Null)

Average value of accelerometer y-axis sensor signals for the last 2 seconds (if avg. Y-axis >= alpha, it is upright; otherwise, lying)

Variance of accelerometer sensor signal for the last 2 seconds (if variance >= beta, it is shaken)

Activity Recognition Process

Data Acquisition & Pre-processing

- Collecting a stream of sensor data (e.g., using Android's sensor manager interface)
- Since most sensors provide data on some regular basis, we also need to know **sampling rate** (will learn more about this during DSP sessions)
- An accelerometer, for example, may provide a stream of tuples of real numbers representing the acceleration in x, y and z-direction with 5 Hz
- Cf) Android's sensing rate configuration
 - Predefined rates: SENSOR_DELAY_NORMAL, UI, GAME, FASTEST
 - Or, the desired delay between events in microseconds
 - Actual rate is device-dependent; e.g., Nexus 5 (Normal/UI: 15 Hz; Game: 50 Hz; Fastest: 200 Hz)
 - Note that your smart devices will not guarantee such rates, and actual rate is dependent on its operating conditions (e.g., workload)

Data Segmentation

- For feature extraction, we need to "identify" those data segments that are likely to contain information about activities (known as "activity detection" or "spotting)
 - Sliding window: using a window (=frame) of samples, and simply slide that window with fixed overlapping (e.g., 50%)
 - Energy based: different activities have different activity "intensities" (or energy) (e.g., rest vs. others) – moving avg. can be used for automatic segmentation
- In our example, to recognize basic physical activities we collect the data of 2 seconds from the accelerometer.
- This corresponds to 10 readings of the acceleration data (if sampling rate is fixed to 5Hz)

Example

Segmenting the sensor data using a window of 2 seconds with an overlap of 1 second

Practical Issues

 Continuous sensing – not every data has labels Sliding window may result in wrongfully classifying "NULL" class to some other classes Acc Y Acceleration (m/s²) 100 No Label Label = NULL class

https://doi.org/10.4108/ICST.BODYNETS2009.6036

Feature Extraction

- How to extract features?
 - Signal-based features mean, variance, kurtosis
 - Body model features exploiting prior knowledge about human kinematics
 - Event-based features if there are any events (e.g., a sequence of eye movements – saccades, fixations, or blinks)
 - Multilevel features duration, frequency, co-occurrence, clustered data/labels
- In our examples, we extract the following features:
 - Average value of accelerometer's y-axis signals
 - Variance of accelerometer sensor signals

Classification

- After extracting important features from the raw data, we use a classifier to determine the current activity
- Many different classification algorithms exist, and depending on the application domain, there may be one algorithm that shows the best performance
- Depending on the algorithm, the result is either a crisp decision (e.g., decision tree), or a probability distribution over activities (e.g., Naïve Bayes)
- Learning algorithms: supervised vs. unsupervised (based on whether training dataset is used or not)

Classification Example: Decision Tree

Summary

Accelerometer

Application Research Papers

- RecoFit: Using a Wearable Sensor to Find, Recognize, and Count Repetitive Exercises, ACM CHI 2014
- iSleep: Unobtrusive Sleep Quality Monitoring using Smartphones, Sensys 2013
- Dog's life: Wearable Activity Recognition for Dogs, Ubicomp 2013
- Automatic Assessment of Problem Behavior in Individuals with Developmental Disabilities, Ubicomp 2012
- Using Mobile Phones to Determine Transportation Modes, ACM TOSN 2010

Industrial Applications: Machine Condition Monitoring and Fault Diagnosis

Predictive Analysis for Machine Condition Monitoring using Sensors

- Vibration analysis: checking amplitude/frequency patterns of machine vibration
- Oil analysis: checking particles, viscosity, acidity
- Temperature analysis w/ thermal camera or temperature sensors (e.g., thermocouples): finding abnormal heat sources by comparing to baseline data for temperature changes
- Ultrasonic detection: checking ultrasonic frequencies to detect faults (e.g., corrosion, wear patterns)

Sensors

How to Configure Sensor Nodes? Wireless vs. Wired?

How to Configure Sensor Nodes? Wireless vs. Wired? 1) RF Coverage/Bandwidth/Interference

RF Coverage: How are sensors wirelessly **covered**? How much **bandwidth** can they deliver?

- Conduct a site-survey to identify shadows caused by obstructions in the environment
- Help to decide whether to add resources, such as relay nodes or additional gateways, to ensure coverage

RF Interference: How is the **quality** of wireless connections?

- Are there any interference sources?
- What's the network Quality of Service (QoS) (e.g., bandwidth, delay) under RF interference?

How to Configure Sensor Nodes? Wireless vs. Wired? 2) Cost

	Manual Collection	Online System	Wireless Data / Wired Power
# Wired APs	0	450	35
# Wireless APs	0	0	875
# Analyzers	8	1	1
Hardware Costs			
Sensors (installed)	\$1,260,000	\$1,260,000	\$1,260,000
Wired APs	\$0	\$2,250,000	\$17,500
Wireless APs	\$0	\$0	\$262,500
Analyzers	\$144,000	\$18,000	\$18,000
Installation Costs			÷
Wired APs	\$0	\$3,375,000	\$262,500
Wireless APs	\$0	\$0	\$1,726,974
Labor (Collection Costs)	\$168,000	\$3,360	\$3,360
Total Costs	\$1,572,000	\$6,906,360	\$3,550,834
Total Costs w/o Sensors	\$312,000	\$5,646,360	\$2,290,834

Industry Requirements

- Fault tolerance and reliability
- Long-lived battery powered operations
- Maintainable
- Seamless integration into existing applications
- Security

Deployment Experience

Network
Architecture

Platform	Description				
BI-LE	Mica2 Sensor Node: Atmel AtMega128L, Chipcon 900 Mhz radio, Battery powered.				
	Intel Mote Sensor Node: ARM Core, Zeevo Bluetooth radio, Battery Powered				
	Stargate Gateway Node: Intel XScale® processor (PXA255), 802.11b radio, serially-connected Mica2/Intel Mote, wall powered.				

- 1 Server
- 4 Stargates
- 26 sensor nodes
- 150 accelerometers

Deployment Experience

- Majority of the nodes successfully delivered results at least 80% of the time
- Failures were highly correlated within a particular sensor network cluster

Histogram of total number of vibration samples received/node from the starboard deployment of a 19 week period

Industrial Applications: Machine Condition Monitoring and Fault Diagnosis

AC Motor Failure Monitoring

urrent transformer (CT) sensc

Industrial vibration sensor

MEMS sensor

- (H_OC) Healthy motor without resistor load on the DC generator side (the dc generator is open circuit)
- (H_R15) Healthy motor with 15-Ω resistor load on the DC generator
- (LF_R15) Fault 1: motor subjected to loose feet with 15- Ω load
- (18g I_R15) Fault 2: 18-g imbalance with 15- Ω load

Loose feet

AC Motor Failure Monitoring

Stator current (SC) Vibration/Head (VH) Vibration/End (VE)

Feature Extraction

	Time domain
Vibrations	P-P, Variance
Current	P-P, Variance

Frequency Domain					
$(2,3) f_b$	$(5,6) f_b$	$(7-9) f_b$	$(10,11) f_b$	$(13,14) f_b$	$(16,17)f_b^*$
$(19,20) f_b$	$(21,22) f_b$	$(23-25) f_b$	$(26-67) f_b$	$(68-93) f_b$	>93 f _b

Cf. CT sensors: Current transformers (CTs) are sensors that measure alternating current (AC)

^{*} This frequency component is about 100 Hz, twice of the line frequency. f_b is the resolution of FFT, $f_b = 6$ Hz.

^{*} Acceleration signature peak-to-peak (P-P) amplitude and variance values from a window of 512 samples

Model Training

Data Collection Environment

- Motor rotational speed is about 960 r/min (= 16 r/s)
- JN5139 sensor board:
 - IEEE 802.15.4 and ZigBee protocols
- Dataset:
 - Training data: 15 measurements for each condition (a total of 60 measurements)
 - Testing data: 6 measurements for each condition (a total of 24 measurements)

Performance Comparison

Test Pattern	Classifier	Classification Results			
		H_OC	H_R15	LF_R15	18g I_R15
H_OC*	VH	0.7705	0.2175	0.0112	0.0005
	VE	0.8826	0.0677	0.0285	0.0210
	SC	0.9936	0.0004	0.0004	0.0053
H_R15	VH	0.4897	0.5094	0.0003	0.0003
	VE	0.1721	0.7713	0.0011	0.0553
	SC	0.0005	0.9256	0.0005	0.0732
LF_R15	VH	0.0004	0.0250	0.9724	0.0019
	VE	0.0950	0.1033	0.7856	0.0159
	SC	0.0004	0.0032	0.9957	0.0004
18g I_R15	VH	0.0004	0.0582	0.0004	0.9407
	VE	0.0390	0.1455	0.0030	0.8123
	SC	0.0005	0.9190	0.0056	0.0748

The worst diagnosis results for each motor operating condition are shaded

H_OC Healthy motor without resistor load (open circuit) H_R15 Healthy motor with 15- Ω resistor load on the DC generato LF_R15 Fault 1: motor subjected to loose feet with 15- Ω load 18g I_R15 Fault 2: 18-g imbalance with 15- Ω load

Performance Comparison

Test Pattern	Classifier	Classification Results			
		H_OC	H_R15	LF_R15	18g I_R15
H_OC*	VH&VE	0.9776	0.0211	0.0004	0.0000
	VH&VE&SC	0.9989	0.0000	0.0000	0.0000
H_R15	VH&VE	0.1671	0.8318	0.0000	0.0000
	VH&VE&SC	0.0001	0.9982	0.0000	0.0000
LF_R15	VH&VE	0.0001	0.0033	0.9960	0.0000
	VH&VE&SC	0.0000	0.0000	0.9990	0.0000
18g I_R15	VH&VE	0.0000	0.0109	0.0000	0.9883
	VH&VE&SC	0.0000	0.1456	0.0000	0.8401

The best diagnosis results with conditional fusion are shaded

H_OC Healthy motor without resistor load (open circuit) H_R15 Healthy motor with 15- Ω resistor load on the DC generato LF_R15 Fault 1: motor subjected to loose feet with 15- Ω load 18g I_R15 Fault 2: 18-g imbalance with 15- Ω load

Summary

- Getting sensor data
 - From which sensors? (e.g., motion sensors, current sensors)
 - From where? Phone (wearable) vs. factory (stationary)
 - How? (e.g., wireless or wired, hierarchical?)
- Processing sensor data
 - Why? For what? (e.g., activity recognition or fault detection)
 - How (procedure)
 - Sensor data processing pipeline: collect □ segment □ extract □ classify
 - Sensor fusion leveraging multiple sensors for better classification

Summary

- Mobile Sensing with Smartphones
 - Scale of mobile sensing (individual, group, community)
 - Sensing paradigm: participatory vs. opportunistic
 - Sense => Learn => Inform, Share, and Persuade
- Sensor Data Processing Pipeline
 - Key steps: Data Collection => Segmentation => Feature Extraction => Model Building => Evaluation
- Industrial Applications: Machine Condition Monitoring and Fault Diagnosis
 - Manual vs. Online (wired vs. wireless): cost & efficiency matters
 - Wireless sensor networks: lower costs (no wires), but be careful about RF inferences, data loss, and battery issues
 - Multiple sensors can be used for diagnosing machine faults