

复位和时钟控制 RCC

培训内容

- 复位源
 - 系统复位
 - 电源复位
 - 备份域复位
- 时钟模块
 - 时钟树
 - 各时钟信号及其特性
 - PLL的配置以及扩频技术(新增)
 - 时钟测量
 - 时钟信号的输出
 - STM32F1和STM32F2时钟特性比较

培训内容

- 复位源
 - 系统复位
 - 电源复位
 - 备份域复位
- 时钟模块
 - 时钟树
 - 各时钟信号及其特性
 - PLL的配置以及扩频技术 (新增)
 - 时钟测量
 - 时钟信号的输出
 - STM32F1和STM32F2时钟特性比较

复位源和复位电路

复位类型	复位源	不被复位的部分	备注		
系统复位	低功耗管理复位 🕢	备份域和用于查询复位源	通过选项字节使能		
	软件复位(SW reset)	的RCC_CSR中的复位标志	SYSRESEREQ		
	独立看门狗计数器溢出	←			
	窗口看门狗计数器溢出		OR PIN BORRS		
	NRST引脚上的低电平	rw rw rw r	w rw rw		
电源复位	上电掉电复位 (POR/PDR/BOR)	夕川掃			
	退出待机模式	备份域			
	软件置位BDRST复位		BKPSRAM只能通		
备份域复位	V _{DD} V _{BAT} 之前都关闭,现在 任一个又来电了	备份SRAM	过把闪存读保护级别从1降到0来复位		

复位电路简图

■ nRST引脚上的滤波和产生的输出脉冲

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse				100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300			ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20			με

■ 复位电路简图和推荐的外部引脚连接

复位电路注意事项

- 外部复位信号低脉冲至少保持300ns
- 系统复位信号不影响备份域的工作
- NRST复位引脚是CMOS工艺的开漏电路
 - 在产生内部复位信号时,NRST引脚会输出一个低电平

培训内容

- 复位源
 - 系统复位
 - 电源复位
 - 备份域复位
- 时钟模块
 - 时钟树
 - 各时钟信号及其特性
 - PLL的配置以及扩频技术(新增)
 - 时钟信号的输出
 - 时钟测量
 - STM32F1和STM32F2时钟特性比较

时钟模块框图

时钟源

外部高速时钟HSE

- 外部高速时钟源(1MHz~50MHz)
 - ▶ 方波、正弦波和三角波,占空比[45%,55%]
 - 设置 HSEBYP&HSEON @ RCC_CR
- 外部高速晶振(4MHz~26MHz)
 - 使能/关闭控制: <u>HSEON @ RCC_CR</u>
 - 就绪标志: HSERDY @ RCC_CR
 - 晶振和负载电容要尽可能靠近晶振引脚
 - 减少输出失真和启动稳定时间
 - 典型稳定时间: 2ms

参见AN2867获得更多关 于晶振设计的方法和技巧

外部低速时钟LSE

- ▶ 外部低速时钟源
 - 典型值: 32.768KHz; 最大值: 1000KHz
 - 方波、正弦波和三角波,占空比[45%,55%]
 - 设置 LSEBYP&LSEON @ RCC_BDCR
- 外部低速**晶振(32.768KHz)**
 - 使能/关闭控制: LSEON @ RCC_BRCR
 - 就绪标志: LSERDY @ RCC BDCR
 - 低功耗:最大1uA
 - 典型稳定时间: 2s
- 外部连接同HSE
 - ▶ 参见前页

内部高速时钟HSI

- 16MHz的内部高速RC
 - 使能/关闭控制: HSION @ RCC_CR
 - 就绪标志: HSIRDY @ RCC_CR
 - 可直接作为系统时钟SYSCLK
 - 从停止模式唤醒或复位后,默认作为系统时钟
 - 或通过PLL间接作为系统时钟
- 比HSE启动速度快,但精确度略差
 - 典型启动稳定时间: 2.2us
 - 精度校准
 - 出厂校准值,存放在HSICAL[7:0] @ RCC_CR
 - 应用中,用户可以用<u>HSITRIM[4:0] @ RCC CR</u>来调整
 - 参见AN2868获得HSI校准详情和技巧

内部低速时钟LSI

- 低功耗时钟源
 - 使能/关闭控制: LSION @ RCC_CSR
 - 就绪标志: LSIRDY @ RCC CSR
 - 可以停止和待机模式下继续工作
 - 为RTC和IWDG提供时钟
- 典型值32KHz,范围[17KHz,47KHz]
- 功耗典型值: 0.65uA
- 启动稳定时间典型值: 85uS

总线时钟和时钟失效管理

时钟安全管理CSS

- 目标:对HSE时钟的监测,防止因时钟失效造成系统出错甚至死机的严重后果
 - 不仅监测外部晶振HSE
 - 旁路HSE时,也监测外部时钟源
- 一旦HSE失效:
 - 自动关闭HSE
 - 如果系统时钟直接或间接来自HSE,则它被自动切换到HSI
 - 如果HSE是PLL的输入,则PLL和PLLI2S也被关闭如果使能
 - HSE恢复后,需重新配置PLL等
 - 该事件送到高级定时器TIM1和TIM8的刹车控制
 - 常用于电机控制
 - ► 产生CSSI中断,告知用户作相应处理
 - 该中断连至NMI不可屏蔽中断
 - 用户需要通过设置CSSC@RCC CIR来清除中断标志

CSS应用举例:系统时钟的监控和切换

- 启动时钟失效检测
 - RCC_ClockSecuritySystemCmd(Enable); (失效事件连到不可屏蔽的NMI)
- HSE时钟失效时,产生NMI中断

- 在RCC的中断处理程序中,再对HSE和PLL作相应处理
 - 使能PLL
 - 配置系统时钟来自HSE或PLL输出

PLL

两个PLL各司其职

- 两个PLL
 - 主PLL
 - 输出1: PLLCLK(SYSCLK的三个备选之一,

24MHz~120MHz)

- 输出2: PLL48CK(供USB FS、 SDIO和RNG使用48MHz)
- 专供音频I2S使用的PLLI2S
 - 输出: PLLI2SCLK
- 两个PLL时钟源相同:均来自HSI或者HSE
- <u>进入低功耗模式或者HSE失效,两个PLL自动关闭</u>
- PLL的倍频、分频因子要在使能PLL之前配置

PLL的配置和使用

PLL扩频时钟产生器(SSCG)

- 只针对主PLL的SSCG
 - 目的:控制和减小EMI
 - 原理:采用一个频率很低的信号(典型范围在30KHz到60KHz之间)对系统时钟进行频率调制。由此产生一个具有边带谐波的频谱。窄带周期性时钟被有意扩展到宽带,在基频和谐波频率中包含的峰值能量就相应减小
 - 中心扩频调制
 - 向下扩频调制
 - 举例: 100MHz的时钟信号, 0.5%的调制
 - 99.5MHz~100.5MHz之间进行调制,称为"中心0.5%的调制"
 - 为避免超出系统的最高频率,时钟信号通常在 99.5MHz~100MHz范围之间变化,称为"向下扩展频谱"
- 控制寄存器

RCC spread spectrum clock generation register (RCC_SSCGR)

SSCG的应用示意

时钟信号输出

时钟输出

时钟输出	引脚	分频因子	时钟信号	备注
			HSI	
MCO1	PA.8	MCO1PRE[2:0] /1/5	LSE	
			HSE	1.对应GPIO应该配置
			PLL	成AF-PP模式
			HSE	2. 受限于GPIO本身输出带宽,输出时钟信
MCO2	PC.9	MCO2PRE[2:0]	PLL	号不能超过100MHz
		/1/5	SYSCLK	
			PLLI2S	

实时时钟和独立看门狗时钟

RTC和IWDG的时钟

- RTC时钟源,三个可选
 - LSE
 - 只有LSE属于电池备份域
 - 低功耗下可配置是否仍然工作
 - 即使V_{DD}掉电只要V_{BAT}还在RTC仍然工作
 - LSI
 - 一旦V_{DD}掉电,RTC和AWU不能工作
 - HSE分频
 - 不超过1MHz
 - 一旦V_{DD}掉电,RTC和AWU不能工作
- IWDG唯一时钟源
 - LSI
 - 低功耗模式下可配置是否仍然工作
 - 一旦IWDG被打开,LSI就强制使能,不能关闭

培训内容

- 复位源
 - 系统复位
 - 电源复位
 - 备份域复位
- 时钟模块
 - 时钟树
 - 各时钟信号及其特性
 - PLL的配置以及扩频技术 (新增)
 - 时钟信号的输出
 - 时钟测量
 - STM32F1和STM32F2时钟特性比较

内外时钟的测量

LSE连到T5C4,可用来精确测量HSI

- >> HSI作为系统时钟,驱动TIM5的计数器
- >> 通过两个LSE上升沿之间的counter计数值获得HSI当前精确 频率(和一样的LSE精度)
- >> 用户校准存放在HSITRIM[4:0]
- >> LSI连到T5C4,可被HSI或HSE测量
- >> LSI典型值32KHz, 有较大离散性[17KHz, 47KHz]
- >> HSI或者HSE作为系统时钟,驱动TIM5的计数器,以HSI或HSE的精度测量LSI频率,由此计算IWDG最大喂狗周期

HSE_RTC连到T11C1

>> HSI作为系统时钟,可以粗略测量外部晶振的值

培训内容

- 复位源
 - 系统复位
 - 电源复位
 - 备份域复位
- 时钟模块
 - 时钟树
 - 各时钟信号及其特性
 - PLL的配置以及扩频技术 (新增)
 - 时钟信号的输出
 - 时钟测量
 - STM32F1和STM32F2时钟特性比较

时钟模块特性比较

	STM32 F-2	STM32 F-1
HSE晶振	4~26MHz 晶振和负载电容要尽可能靠近引脚以减小输出失真和启动稳定时间;负载值的选择取决于所选的晶振	4~16MHz & 3~25MHz
HSE外部时钟源	1~50MHz Typ. = 8MHz 外部时钟信号(占空比50%的方波/正弦波/三角波)从OSC_IN引脚输入;OSC_OUT悬空高阻	
LSE晶振	32.768KHz 低功耗但精确度高的时钟源	32.768KHz
LSE外部时钟源	Max = 1000KHz typ. = 32.768KHz外部时钟信号从OSC_IN引脚输入;OSC_OUT悬空高阻	
HSI谐振器	16MHz 比HSE启动时间快,但即使校准后精确度仍不及HSE; <u>HSICalib[7:0] & HSITrim[4:0]</u> HSE失效后该HIS可以作为备份时钟 → CSS	8MHz
LSI谐振器	32KHz 低功耗时钟,在Stop或Standby模式下仍可工作,用来驱动IWDG**和自动唤醒	40KHz

^{**}一旦通过硬件选项字节或者软件开启了IWDG,LSI就被强制使能且不能关闭;稳定时间后,LSI向IWDG提供时钟

时钟模块特性比较(2)

	STM32 F-2	STM32 F-1	
AHB/APB1/APB2 总线最高频率	120MHz/30MHz/60MHz	72/36/72MHz	
PLL	PLL1输出系统时钟和48MHz时钟; PLL2输出专供音频I2S使用的时钟	一个PLL或者三个PLL	
时钟输出引脚	MCO1(PA.8) MCO2(PC.9) 最高输出频率100MHz	MCO (PA.8) 最高输出频率50MHz	
扩频时钟发生	支持,以减小设备产生的EMI		
内外时钟校准	通过T5C4和T1C11可以校准板上多个时钟源输出	通过T5C4校准LSI	
时钟安全系统CSS	检测到HSE失效: →产生NMI中断并通知TIM1/8的刹车输入 →切换到HSI(如果HSE产生系统时钟) →关闭PLL(如果HSE驱动PLL并产生系统时钟)		

寄存器组比较

	STM32F2	STM32F1			
CR	主PLL和音频PLL的使能和就绪标志	唯一一个PLL的使能和就绪标志			
OR L	CSS使能 / HSI出厂校准值和用户调整值 / HSI使能和就绪标志 / HSE使能-旁路-扇				
PLLCFGR	两个PLL共用的分频因子M和时钟源选择/ =	源选择 / 主PLL的N-Q-P因子			
CFGR	两个MCO各自的选择和分频因子 / I2S时钟源选择 / HSE给RTC提供时钟的分频因子	唯一一个MCO的选择 / USB-ADC的预分频因PLL的时钟源选择-预分频-倍频因子			
	系统时钟选择和标志 / APB1-APB2-HCLK时钟各自的分频因子				
CIR	两个PLL(主PLL和音频PLL)	只有唯一一个PLL			
CIK	PLL-HSE-HIS-LSE-LSI 准备就绪的标志位(r)-中断使能控制(rw)-清除标志位(w) / CSS标志-清除				
<u>X</u> RSTR	AHB1-AHB2-AHB3-APB1-APB2 RSTR	APB1-APB2 RSTR			
<u>X</u> ENR	AHB1-AHB2-AHB3-APB1-APB2 ENR *	AHB-APB1-APB2 ENR			
<u>X</u> LPENR	AHB1-AHB2-AHB3-APB1-APB2 LPENR *				
BDCR	备份域软件复位 / <u>RTC使能-时钟选择 / LSE旁路-使能</u> -就绪标志 **				
CCD	BOR复位标志				
CSR 低功耗管理-窗口/独立看门狗-软件-POR/PDR-外部引脚复位标志 / 清除复位标			LSI使能-就绪信号		
SSCGR	作用于主PLL的时钟频谱延展				
PLLI2SCFGR	对音频PLL的N-R因子控制				

^{*}参见低功耗章节的"时钟门控技术"

^{**} 下划线标志出的寄存器处于备份域,复位后被写保护; 不会被内部或外部复位影响; 只受备份域复位影响