

GSM无线通信模块

GSM模块MMS命令 应用指导

文档名	GSM 模块 MMS 命令应用指导	
版本	1.4	
日期	2015-05-04	
状态	正式发布	

版权:

版权所有 ©上海移远通信技术有限公司 2015。 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2015

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

目录内容

目	录内容	ž	2
0.	修改	记录	3
1.	概要.		4
	1.1.	参考文档	4
2.	模块	开关机流程和重启方式	5
	2.1.	模块开机流程	5
	2.2.	模块正常运行状态	7
	2.3.	模块关机流程	7
	2.4.	模块重启方式	8
3.	如何	稳定的进行文件上下传	9
	3.1.	建议打开 UART 硬件流控功能	9
	3.2.	使用 Checksum 值检查文件的上传和下载是否正确	9
	3.3.	建议使用 ACK mode 来上传文件	11
4.	彩信	开发过程注意点	12
		判断网络是否正常	
	4.2.	删除彩信	13
	4.3.	发送和下载彩信过程中需要注意的一些问题	13
		4.3.1. 发送彩信	13
		4.3.2. 在彩信的发送过程中接收到新彩信通知	13
		4.3.3. 在彩信的下载过程中接收到新彩信通知	
	4.4.	彩信发送和接收流程图	15
		4.4.1. 彩信发送流程	
		4.4.2. 彩信接收流程	17
		4.4.3. 错误号处理	19

0. 修改记录

版本	日期	作者	修改内容记录
1.00	2009-11-24	辛健	初始版本
1.01	2009-12-23	辛健	修改图 1、图 2 的图片清晰度
1.02	2009-12-29	辛健	修改彩信发送和接收流程中的等待时间
1.3	2010-6-19	辛健	修改硬件流控相关描述
1.4	2015-05-04	张涛	增加适用模块说明

1. 概要

该文档主要描述MCU进行彩信开发过程中需要注意的一些事项。本文档适用于所有 Quectel GSM模块。

1.1. 参考文档

表 1: 参考文档表

序号	文档名	备注
[1]	Mxx_ATC	AT 命令集简介
[2]	GSM_TCPIP_AN	TCPIP 应用指导
[3]	GSM_MMS_ ATC	彩信相关 AT 命令简介及应用指导
[4]	GSM 模块 AT 命令应用指导	AT 命令操作应用指导
[5]	Mxx_HD	模块硬件接口指导文档
[6]	GSM_FILE_ATC	文件操作相关命令文档

2. 模块开关机流程和重启方式

2.1. 模块开机流程

模块开机时,需要用户进行一些配置。譬如模块出厂默认串口是自适应波特率 (AT+IPR=0),同时出厂默认开启了串口的硬件流控功能(AT+IFC=2,2),MCU在启动模块的过程中,需要按照自己的应用状况来更改这些配置。

MCU启动模块,要求先把"PWRKEY"引脚电平拉高,然后拉低"EMERG_OFF"引脚大约20ms后,恢复"EMERG_OFF"为高电平,之后拉低"PWRKEY"引脚电平,这时模块将进入开机状态。开机过程中,MCU需要按照下面的流程进行配置,完成后再把"PWRKEY"引脚电平恢复到高电平。

图 1: MCU启动模块流程图

流程图中,②执行"AT<CRLF>"命令的主要目的是进行串口同步。当串口处于自适应 波特率状态时,是无法输入AT命令的,同时模块也不会输出任何"RDY"等开机信息,需要 先运行"AT<CRLF>"命令,返回"OK"后,才能运行其它AT命令,这个过程称为串口同步。

流程图中,④、⑤的目的是设置固定波特率,通过"AT+IPR=xxx&W<CRLF>"命令设置固定波特率,命令中的"xxx"表示MCU使用的波特率,"&W"表示保存设置,使模块下次启动后就直接工作在固定波特率下了,这样可以使系统更加稳定。另外需要注意的是,模块只有在固定波特率状态下,模块启动时才会在串口上输出"RDY"等开机信息。

需要提醒是,Quectel模块出厂默认配置是工作在自适应波特率。在模块运行的过程中,客户虽然通过"AT+IPR=xxx&W<CRLF>"配置了固定波特率。若客户一旦重新下载更新了模块的Firmware,这些配置会被恢复到出厂默认配置。

关于"⑦"系统异常处理方式,建议客户重启模块。

2.2. 模块正常运行状态

当模块处于正常运行状态,"EMERG_OFF"引脚必须维持在高电平状态, "EMERG_OFF"引脚上任何电平跌落动作都将导致模块直接关机。而"PWRKEY"引脚电平 原则上要求在高电平状态,注意"PWRKEY"引脚上的一个下降沿电平信号是一个关机通知 信号,而"PWRKEY"引脚上的一个上升沿电平信号不产生任何影响。

2.3. 模块关机流程

当模块处于正常运行状态,此时"**EMERG_OFF**"引脚必须维持在高电平状态,而"**PWRKEY**"引脚电平也要在高电平状态(假如"**PWRKEY**"引脚处于低电平状态,那么先把"**PWRKEY**"引脚电平拉高)。

在上述前提下,MCU进行关机动作,推荐下面两种方式进行关机。

第一种关机方式,在模块运行过程中,使用"AT+QPOWD=1<CRLF>"命令进行关机(具体可以参考"GSM模块AT命令应用指导"文档)。运行该关机命令后,模块将输出"NORMAL POWER DOWN"提示进入后续的关机流程,这个关机流程可能要花费一定的时间,当网络信号差的情况下,甚至可能花费30秒左右。MCU可以通过检测"STATUS"引脚来判断模块是否完全关闭。

第二种关机方式:在模块运行过程中,拉低"PWRKEY"引脚电平("PWRKEY"引脚上的一个下降沿电平信号是一个关机通知信号),保持"PWRKEY"引脚电平为低,一段时间后(请参考硬件相关文档),模块将输出"NORMAL POWER DOWN"提示进入后续的关机流程,这个关机流程可能要花费一定的时间,当网络信号差的情况下,甚至可能花费30秒左右,而在这个过程中,MCU可以提前先把"PWRKEY"引脚电平恢复到高电平状态。MCU可以通过检测"STATUS"引脚来判断模块是否完全关闭。

假如上述关机动作没有出现"NORMAL POWER DOWN"提示信息,那么MCU可以使用 "EMERG_OFF"引脚进行强制关机,方式如下,先把"PWRKEY"引脚电平拉高,然后拉低"EMERG_OFF"引脚大约20ms后,恢复"EMERG_OFF"为高电平就可以直接强制关机了。

2.4. 模块重启方式

当模块处于正常运行状态,此时"EMERG_OFF"引脚必须维持在高电平状态,而"PWRKEY"引脚电平也要在高电平状态(假如"PWRKEY"引脚处于低电平状态,那么先把"PWRKEY"引脚电平拉高)。

在模块运行过程中, 建议客户使用下面两种方式重启模块。

第一种重启操作方式:在模块运行过程中,使用"AT+QPOWD=1<CRLF>"命令进行关机(具体可以参考"GSM模块AT命令应用指导"文档)。运行该关机命令后,模块将输出"NORMAL POWER DOWN"提示进入关机状态,然后拉低"PWRKEY"引脚的电平,一直等到主串口上报"RDY"(或者"Call Ready"等信息,注意这些信息仅仅在固定波特率配置下才会输出)信息,这些信息提示表示模块启动成功了。然后再恢复拉高"PWRKEY"引脚电平。注意,当网络信号差的情况下,可能需要等待30秒左右的时间才会在串口上出现"RDY"等信息提示,假如在这个时间内仍旧没有出现这些信息,那么请做后面的"EMERG_OFF"重启方式。

第二种重启操作方式:在模块运行过程中,把"PWRKEY"引脚从高电平拉低到低电平(目的是产生一个下降沿信号,同时保持低电平一段时间,具体可以参考Mxx_HD文档)。模块将输出"NORMAL POWER DOWN"提示进入关机状态,后续一直保持拉低"PWRKEY",直到串口上报"RDY"(或者"Call Ready"等信息,注意这些信息仅仅在固定波特率配置下才会输出)信息,这些信息表示模块启动成功了。然后再恢复拉高"PWRKEY"引脚电平。注意,当网络信号差的情况下,可能需要等待30秒左右才会在串口上出现"RDY"等字符信息,假如在这个时间内仍旧没有出现这些信息,那么请做后面的"EMERG_OFF"重启方式。

在上面的重启过程中,可能没有出现"NORMAL POWER DOWN"关机提示信息或后续的"RDY"等开机信息。在这种情况下,要求MCU通过拉低"EMERG_OFF"引脚的方式来强制关闭模块,拉低"EMERG_OFF"引脚20毫秒(具体可以参考Mxx_HD文档)后,再拉高"EMERG_OFF"引脚,此时如果"PWRKEY"引脚是低电平,则接着保持低,如果"PWRKEY"引脚是高电平,则接着拉低"PWRKEY"引脚,直到在主串口上出现"RDY"等开机提示。开机配置流程完毕后,建议恢复拉高"PWRKEY"引脚的电平。

有些客户可能不控制"EMERG_OFF"引脚,而是直接给模块断电的方式来进行强制关机,这也是可行的一个方法,这时要求把"EMERG_OFF"引脚悬空。

3. 如何稳定的进行文件上下传

在彩信的发送或接收过程中,客户需要使用"AT+QFUPL"、"AT+QFDWL"、"AT+QMMRR=6,..."等命令来上下传文件内容。这些命令需要使用一些支持才能在串口上进行稳定的传输。

3.1. 建议打开 UART 硬件流控功能

MCU在发送彩信前,需要把文本文件或图片文件通过串口和"AT+QFUPL"命令上传给模块,建议用户启用UART硬件流控功能(即启用模块引脚RTS、CTS进行流控控制,模块默认出厂设置是开启硬件流控功能的,请参考AT命令"AT+IFC=2,2")。

当用户接收到彩信,使用"AT+QFDWL"或"AT+QMMRR=6,..."命令把文件内容读取到MCU中时,推荐用户也启用串口的硬件流控功能。原因是MCU在下载文件的过程中,将接收大量的数据,假如MCU来不及处理这些数据,在没有硬件流控的功能下,MCU可能会丢失数据。

3.2. 使用 Checksum 值检查文件的上传和下载是否正确

客户使用彩信发送或接收文本文件、图片文件、音频文件时,需要使用"AT+QFUPL" 命令上传文件,使用"AT+QFDWL"命令下载文件,使用"AT+QMMRR=6,..."命令读取彩信中文件内容。这些命令都提供checksum的方法来保证数据传输的可靠性。

如客户使用"AT+QFUPL=<file name>[,<file size>]"命令来上传一个文件,当传输结束时,模块会上报"+QFUPL: < upload size>,<checksum>"信息提示。其中<upload size>表示模块接收到的数据长度。MCU可以判断一下<upload size>是否与之前上传的数据长度相等。如果不等,那么说明模块丢数据了。

MCU在上传文件数据的过程中,可以对上传的数据每2个字节异或(XOR)一下,最后和模块报告的**<checksum>**值进行比较。如果不等,那么说明模块接收到的数据有问题,需要重新上传文件。

举例:如果上传的文件数据长度为9,其16进制值如下: 0x23 0x13 0x65 0x B6 0x76 0x88 0xA3 0xEF 0x55

那么, checksum计算如下:

checksum = 0x2313 XOR 0x65B6 XOR 0x7688 XOR 0xA3EF XOR 0x5500

每两个数据组成一组和另一组进行异或XOR,最后一组若不满2个字节,那么用0x00进

行补充。

图 2: MCU上传文件参考流程图

图2中,简单描述了MCU上传一个文件的参考流程。MCU需要注意的是在发送"AT+QFUPL"命令后,MCU需等待接收到"CONNECT"后才可以进行下一步文件数据的发送。

同理,客户使用"AT+QFDWL=<file name>"命令来下载一个文件。当传输结束时,模块会上报"+QFDWL: <download size>,<checksum>"信息,<download size>表示模块实际输出数据的字节数,MCU可以根据实际接收到字节数和<download size>进行比较。如果不等,那么说明数据有丢失。同时MCU对接收到的数据可以进行checksum运算,若运算得出的值和模块最后上报的checksum值不一致,说明接收的数据存在问题,需要重新下载。

"AT+QMMRR=6,..."命令的使用方法和"AT+QFDWL"命令一致。

3.3. 建议使用 ACK mode 来上传文件

MCU在发送彩信前,需要把文本文件或图片文件通过串口和"AT+QFUPL"命令上传给模块。

有些客户可能没有启用UART硬件流控功能,在这个状况下,建议客户启用ACK mode 功能来进行文件的上传,在这个功能模式下,文件能比较稳定的上传,避免数据的丢失。

用户可以通过"AT+QFUPL = "file name", filesize, 5,1"命令的第四个参数来启用ACK mode功能, 然后模块返回"CONNECT", MCU接收到"CONNECT"后先发1K字节数据, 然后模块回应一个'A'字符, MCU接收到这个'A'字符后, 再发送后续1K字节数据, 模块再回应一个'A'字符……以此进行下去, 直到传输结束。

假如文件大小不是1K字节的整数倍,在这种情况下没有影响,当上传的总字节数达到 filesize,命令自动结束,并返回"+QFUPL: < upload size>,<checksum>"结束信息。

4. 彩信开发过程注意点

4.1. 判断网络是否正常

进行彩信发送或下载的前提是网络要正常,建议客户使用定时器定时的运行"AT+CREG? <CRLF>"和"AT+CGREG? <CRLF>"命令来判断当前网络是否正常,在不正常的条件下,在累积一定时间后,推荐客户重启系统。

图 3:网络定时检查流程

当网络处于无信号区,这时"AT+CREG? <CRLF>"命令可能返回"+CREG: 0,2",表示正在搜索网络。当命令返回"+CREG: 0,3"时,这时可能SIM卡已经欠费或其它原因。只有当"AT+CREG? <CRLF>"返回"+CREG: 0,1"(或"+CREG: 0,5"表示漫游)才表示网络正常。客户在使用"AT+CREG? <CRLF>"命令进行查询后,也同样要求对"AT+CGREG? <CRLF>"命令检查。

4.2. 删除彩信

MCU在处理完接收到的彩信后,建议及时删除该彩信,从而能够及时"空出"模块的存储空间。具体的彩信删除操作可参考"AT+QMMRM"命令描述(详见:GSM_MMS_ATC文档)。

4.3. 发送和下载彩信过程中需要注意的一些问题

4.3.1. 发送彩信

发送彩信,操作如下:

MCU: AT+QMMSEND=1 // 启动发送当前的编辑彩信

// 网络状况不佳的情况下,返回**OK**等待时间可能较长,建

议至少等待 3分钟。

模块: OK // 返回**OK**表示网络连接成功

// 提示彩信发送成功信息需等待时间可能比较长, 因为

模块在这期间需要发送大量数据

模块: +QMMNOTIFY: 1,0,0 // 彩信发送成功提示

4.3.2. 在彩信的发送过程中接收到新彩信通知

彩信的发送过程中,各个阶段需等待的时间较长。在等待过程中可能会收到新彩信通知,客户在开发时需要注意,不能丢弃这些通知信息,如下:

MCU: AT+QMMSEND=1 // 启动发送当前编辑的彩信

模块: +**O**MMNOTIFY: 3,2,0 // 在发送彩信返回**O**K前收到新彩信

模块: OK // 返回**OK**表示网络连接成功

模块: +**OMMNOTIFY: 3.3.0** // 在发送彩信过程中收到新彩信

模块: +QMMNOTIFY: 1,0,0 // 彩信发送成功提示

模块:

4.3.3. 在彩信的下载过程中接收到新彩信通知

彩信的下载过程中,各个阶段需等待的时间较长。在等待过程中可能会收到新彩信通知, 客户在开发时需要注意,不能丢弃这些通知信息,如下:

MCU: AT+QMMRECV=1,1 // 开始下载一个新彩信

模块: **+QMMNOTIFY: 3,2,0** // 在下载彩信返回OK前收到新彩信

模块: OK // 返回OK表示网络连接成功

模块: **+QMMNOTIFY: 3,3,0** // 在下载过程中收到新彩信 **+QMMNOTIFY: 2,1,0** // 彩信下载成功提示

注: M35, M72-D, M26, GC65-E, M10只支持发送彩信, 不支持接受彩信。

4.4. 彩信发送和接收流程图

4.4.1. 彩信发送流程

图 4: 彩信发送流程图

图中标注①的位置,当运行"AT+QMMSEND=1<CRLF>"命令后,客户需要等待"OK" 返回,在网络状况不佳的情况下,等待"OK" 返回的时间可能较长,建议至少等待 3分钟。并且在某些状况下模块会直接上报"+CME ERROR: xxxx"等错误信息,表示发送失败。

上述"AT+QMMSEND=1<CRLF>"命令返回"OK"后并不表示彩信完全发送成功了,客户需要等待"+QMMNOTIFY"通知来判定彩信是否发送成功。图中②的位置,客户需要在Twait分钟内等待"+QMMNOTIFY"通知信息。其中Twait时间如下预估,假如发送大小为100K字节左右的彩信,网络上行速度假如为每秒1.5K字节左右,那么Twait时间大概设置为((100K/1.5K)秒+3分钟),即大约为4分钟7秒以上。

在发送彩信的过程中,可能有时会返回"+QMMNOTIFY:1,0,3935,(135)Message Size Exceeds"这样的错误信息,表示当前发送的彩信过大,超过了彩信中心的处理能力,彩信中心返回这样的错误信息。

注意不管是在发送彩信成功后还是在发送彩信失败后,都要求运行"AT+QIDEACT"命令。

流程中的异常处理推荐使用重启模块的方式。

4.4.2. 彩信接收流程

图 5: 彩信接收流程图

图中标注①的位置,当运行"AT+QMMRECV=x,1<CRLF>"命令后,客户需要等待"OK"返回,在网络状况不佳的情况下,等待"OK"返回的时间可能较长,建议至少等待 3分钟。并且在某些状况下模块会直接上报"+CME ERROR: xxxx"等错误信息,表示接收失败。

上述"AT+QMMRECV=x,1<CRLF>"命令返回"OK"后并不表示彩信完全接收成功了,客户需要等待"+QMMNOTIFY"通知来判定彩信是否接收成功。图中②的位置,客户需要在Twait分钟内等待"+QMMNOTIFY"通知信息,其中Twait时间如下预估,假如接收大小为100K字节左右的彩信,网络下行速度假如为每秒4K字节左右,那么Twait时间大概设置为

((100K/4K)秒+3分钟),即大约为3分钟25秒以上。

注意不管是在下载彩信成功后还是在下载彩信失败后,都要求运行"AT+QIDEACT"命令。

另外需要注意的是假如一条彩信通知连续重试了几次都下载失败,即使模块重启网络正常后下载仍旧失败,那么建议用户使用"AT+QMMRM=0,xxx"命令直接把这个彩信通知删除掉。

流程中的异常处理推荐使用重启模块的方式。

4.4.3. 错误号处理

上述在彩信发送和接收的过程中,针对出现的各种error code错误号,给客户推荐如下的处理方式。注意,当返回3937错误号时,表示彩信已下载成功,在这个情况下,客户必须把彩信当作已下载成功的方式来处理。

图 6: 彩信错误号处理

上海移远通信技术有限公司

上海市田州路 99 号 9 幢 501 室 200233 电话: +86 21 5108 2965 电子邮箱: info@ouectel.com