Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Квантовая физика

Эффект Комптона.

Таранов Александр Группа Б01-206

Содержание

1	Полученные данные	2
2	Обработка экспериментальных данных	2
3	Результаты	3

Аннотация: С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Описание экспериментальной установки

Схема экспериментальной установки приведена на рисунке 1:

Рис. 1: Слева схема экспериментальной установки. Справа принципиальная схема измерительного комплекса.

Источником излучения 1 является ^{137}Cs , испускающий гамма-кванты с энергией 662 кэВ. Источник излучения помещён в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок гамма-лучей попадает на графитовую мишень 2, которой является цилиндр высотой 100 мм и диаметром 40 мм. Кванты, испытывающее комптоновское рассеяние в мишени, регистрируются сцинтилляционным счётчиком (4-5). Счётчик состоит из фотоэлектронного умножителя Φ ЭУ 3 и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы высотой 40 мм, диаметром 40 мм, его выходное окно находится в оптическом контакте с фотокатодом Φ ЭУ. Сигналы, возникающие на аноде Φ ЭУ подаются на ЭВМ. Φ ЭУ расположен в светонепроницаемом блоке, закреплённом на штанге, которая может вращаться в горизонтальном направлении. Угол поворота измеряется по лимбу 6.

Оборудование и приборы

Стенд с экспериментальной установкой номер 1.2.3.

- 1. Лабораторная установка для исследования абсолютной активности кобальта-60 -4.3-2. Заводской номер №1513. Инвентарный номер №410134174169.
- 2. Высоковольтный блок питания. Инвентарный номер №410134125762.
- 3. Блок оцифровки и обработки данных. Инвентарный номер №410136146940.
- 4. Сцинтилляционный детектор Радек. Инвентарный номер №4013.
- 5. Радиоактивный источник в свинцовой оболочке ^{137}Cs . Энергия гамма-квантов 662 кэВ. Инвентарный номер №11010712637.

1. Полученные данные

Первичные экспериментальные данные приведены в таблице:

$ heta,^{\circ}$	N, кан.	ΔN , кан
0	923	89
10	812	79
20	778	95
30	790	91
40	743	89
50	614	83
60	558	82
70	482	78
80	431	65
90	400	56
100	371	53
110	327	49
120	313	48

 θ — угол между исходным направлением гамма-квантов и направлением наблюдения, N — номер канала, зарегистрировавшего наибольшее число частиц (фотопик), ΔN — ширина пика по половине высоты. Оценим погрешности измерения первичных экспериментальных данных. Погрешность измерения угла отклонения определяется геометрией установки $\sigma_{\theta}=1^{\circ}$. При помощи специальной программы содержание всех 1024 ячеек памяти периодически выводится на экран дисплея в виде гистограммы, по оси абсцисс откладывется амплитуда анализируемого импульса(номер канала), а по оси ординат - число импульсов заданной амплитуды (в данном канале). Точность определения положения фотопика составляет примерно 1%.

2. Обработка экспериментальных данных

Согласно теории, распределение рассеянных на углы θ гамма-квантов вследствие комптоновского рассеяние определяется соотношением:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta$$

Номер канала, зарегистрировавший гамма-квант пропорционален его энергии, тогда

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta)$$

Построим график зависимости $1/N(\theta)$ от $(1 - \cos \theta)$.

По пересечению графика с осью ординат определим N(0):

$$N(0) = 875 \pm 19, \ \varepsilon = 2\%$$

Погрешность оценили по формуле косвенных измерений:

$$y = ax + b$$

Рис. 2: График зависимости $1/N(\theta)$ от $(1-\cos\theta)$.

$$N(0) = \frac{1}{b}$$

$$\varepsilon_{N(0)} = \frac{\sigma_b}{b}$$

По пересечению графика с прямой $\cos \theta = 0$ определим N(90):

$$N(90) = 397 \pm 6, \ \varepsilon = 1.5\%$$

Погрешность оценим по формулам:

$$y = ax + b$$

$$N(90) = \frac{1}{b+a}$$

$$\sigma_{N(90)} = \frac{1}{(a+b)^2} \sqrt{\sigma_b^2 + \sigma_a^2}$$

Определим энергию покоя электрона, на котором происходило рассеяние гаммаквантов:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)} = (549 \pm 26) \text{ кэВ, } \varepsilon = 4.5\%$$

где $E_{\gamma}=(662\pm1)$ кэВ — энергия гамма-лучей, испускаемых источником. Оценим погрешность определения mc^2 :

$$\sigma_{mc^2} = \sqrt{(\frac{N(90)}{N(0) - N(90)}\sigma_{E_{\gamma}})^2 + (\frac{N(90)E_{\gamma}}{(N(0) - N(90))^2}\sigma_{N(0)})^2 + (E_{\gamma}\frac{N(0)}{(N(0) - N(90))^2}\sigma_{N(90)})^2}$$

3. Результаты

В работе был проверен закон комптоновского рассеяния:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta$$

Экспериментальные точки ложатся на прямую в пределах 2σ . Определено значение энергии покоя электрона

$$mc^2 = 549 \pm 26$$
 кэВ, $\varepsilon = 4.5\%$

Табличное значение энергии покоя электрона

$$mc^2 = 510.998$$
 кэВ

Таким образом, с достаточной точностью, входящей в 2σ получили массу покоя электрона.