Задача 10-1. «Разминка»

Данное задание состоит из двух несвязанных между собой задач.

Задача 1.1

Однородная доска массы M и длины l шарнирно прикреплена к стене, так что может вращаться вокруг оси шарнира в вертикальной плоскости. Доска опирается на брусок массы m так, что при движении этого бруска доска все время остается в горизонтальном положении. Коэффициенты трения между бруском и доской и между бруском и полом одинаковы и равны μ .

Найдите зависимость модуля горизонтальной силы \vec{F} , которую

необходимо прикладывать к бруску, что он мог двигаться с постоянной скоростью, от положения бруска x. Постройте график данной зависимости. Оцените, какую минимальную работу необходимо совершить, чтобы медленно вытянуть брусок из-под доски, если вначале l

он находился на расстоянии $x_0 = \frac{l}{4}$ от шарнирного крепления доски.

Считайте, что размеры бруска значительно меньше длины доски.

Задача 1.2

При протекании газа по трубе на него действуют силы вязкого трения со стороны стенок трубы. Расход газа (объем газа, протекающего через поперечное сечение трубы в единицу времени) определяется формулой Пуазейля

$$q = \frac{r^4 \Delta P}{8\pi \eta l},\tag{1}$$

где l - длина трубы, r - ее внутренний радиус, ΔP - разность давлений на концах трубы, η - коэффициент вязкости протекающего газа.

1.2.1 Воздух пропускают через тонкую трубку, прикладывая к ее концам разность давлений ΔP_0 . При этом расход газа равен q_0 . Чему будет равен расход газа через трубку такой же длины, но в два раза большего радиуса, при той же разности давлений на ее концах? Две описанных трубки соединены последовательно. Чему будет равен расход газа через эту составную трубку, если к ее концам приложить такую же разность давлений ΔP_0 ?

1.2.2 В очень длинной тонкостенной медной трубе длины l и радиуса r находится воздух. В трубу вставляют поршень, который может двигаться по трубе. Какую работу необходимо совершить, чтобы с помощью поршня вытолкнуть весь воздух из трубы, двигая его с постоянной скоростью v, значительно меньшей скорости звука в воздухе?

Считайте, что на свободном конце трубы и за поршнем давление постоянно и равно P_0 . Трением поршня о стенки трубы можно пренебречь.

Во всех пунктах задачи считайте, что избыточное давление мало, так, что изменением объема газа при изменении давления можно пренебречь.