МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Программирование» Тема: Управляющие конструкции языка Си

Студент гр. 1304	Климов Г.А.	
Преподаватель	Чайка К.В.	

Санкт-Петербург 2021

Цель работы.

Исследование управляющих конструкция си, изучение основных способом написания программы и начало изучения функционального программирования

Задание.

Вариант №4.Реализуйте программу, на вход которой подается одно из значений 0, 1, 2, 3 и массив целых чисел размера не больше 100. Числа разделены пробелами. Строка заканчивается символом перевода строки. В массиве есть хотя бы один четный и нечетный элемент.

В зависимости от значения, функция должна выводить следующее:

чётного элемента. (index first even)1: 0:индекс первого последнего нечётного элемента. (index last odd)2: Найти сумму модулей элементов массива, расположенных от первого чётного элемента и до нечётного, включая первый и не включая последний. последнего (sum between even odd)3: Найти сумму модулей элементов массива, расположенных до первого чётного элемента (не включая элемент) и после последнего нечётного (включая элемент). (sum before even and after odd)иначе необходимо вывести строку "Данные некорректны".

Выполнение работы.

В переменную n вводится первое значение с клавиатуры. Переменная arr-массив, который также вводится с клавиатуры, так как в задаче указан максимальный размер массива (100), то для размера массива я использовал пременную N, которая равна 100. Переменная ch - переменная типа char, нужна чтобы распознать символ перевода строки и остановить ввод.i - переменная для циклов, нужна чтобы работать с разными ячейками массива. Переменная index в функциях равна индексу искомого элемента. Переменная sum в функциях модулей элементов массива равна сумме заданных переделах.Функция int index_first_even(int arr[]) принимает массив и возвращает индекс первого чётного элемента. Функция int index_last_odd(int arr[]) также получает аргументом массив и возвращает индекс последнего нечётного элемента. Функция int sum_between_eve_odd(int arr[]) тоже получает массив на вход и находит сумму модулей от первого чётного элемента и до последнего нечётного, включая первый и не включая последний. Функция int sum_before_even_and_after_odd(int arr[]) сумму модулей элементов массива, расположенных до первого чётного элемента (не включая элемент) и после последнего нечётного (включая элемент).

Разработанный программный код см. в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1	0 -8 -23 -30 -11 -28 15 -20 -	0	Так как сначала вводится 0,
	24 -27 5 -13 5 21 -5 16 30 -		то нужно вывести индекс
	12 15 -14 -28 -27 -11 -5 4 29		первого чётного элемента,
	-5		тоесть индекс -8,
			следовательно ответ 0.
2	6 23 43 12 5 6 7 8	"Данные некорректны"	Так как сначала была
			введена 6, это нарушает
			условия, а потому ответ
			"Данные некорректны".
3	2 1 1 3 4 5 –6 7 8	15	Так как сначала ввели 2, то
			нужна сумма модулей от
			первого чётного(включая) до
			последнего
			нечётного(исключая), значит
			ответ 15.

Выводы.

Были изучены основные управляющие конструкции языка: условия, циклы, оператор switch.

Разработана программа, выполняющая считывание с клавиатуры исходных данных и команды пользователя. Для обработки команд пользователя использовался условный оператор if, цикл for и собственные функции, описаные в задании и реализованные через цикл for и вызовом внутри себя других функции, для избегания повторения кода. Во избежание возникновения исключительных ситуаций для нахождения модуля была использована стандартная функция abs()

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lb1.c

#include <stdio.h>

#include <stdlib.h>

int index_first_even(int arr[]){

```
int index =0;
         int N=100;
         for(int i=0;i< N;i++){}
                  if (arr[i] \% 2 == 0){
                            index=i;
                            break;
                   }
         }
         return(index);
}
int index_last_odd(int arr[]){
         int N=100;
         int index =0;
         for(int i=0;i< N;i++){}
                  if (arr[i] % 2 != 0){
                            index=i;
                   }
         }
         return(index);
}
int sum_between_even_odd(int arr[]){
         int N=100;
         int sum =0;
         for(int i=index_first_even(arr);i<index_last_odd(arr);i++){</pre>
                   sum +=abs(arr[i]);
         }
         return(sum);
}
int sum_before_even_and_after_odd( int arr[]){
         int N=100;
         int sum =0;
         for(int i=0;i<index_first_even(arr);i++){</pre>
                   sum +=abs(arr[i]);
```

```
}
          for(int\ i{=}index\_last\_odd(arr); i{<}N; i{+}{+})\{
                    sum +=abs(arr[i]);
          }
          return(sum);
}
int main(){
int n;
int N=100;
scanf("%d",&n);
int arr[N];
char ch;
int i=0;
for(i{=}0;i{<}N;i{+}{+})\{
          arr[i]=0;
}
i=0;
for(i=0;i< N;i++){}
          scanf("%d%c",&arr[i],&ch);
          if(ch == '\!\!\setminus\!\! n')\{
                    break;
          }
}
switch(n){
          case 0:
                    printf("%d\n",index_first_even(arr));
                    break;
          case 1:
                    printf("%d\n",index_last_odd(arr));
                    break;
```

ПРИЛОЖЕНИЕ Б ТЕСТИРОВАНИЕ

Таблица 2 - Примеры тестовых случаев

Νº π/π	Входные данные	Выходные данные	Комментарии
4	1 3 9 5 2 -5 -6 -7 8	6	Так как введена 1, то
			нужно вывести
			индекс последнего
			нечётного(-7), то есть
			6.
5	3 1 1 2 99 –33 6 6	47	Так как введена 3, то
			нужно вывести
			сумму модулей до
			первого
			чётного(исключая) и
			после последнего
			нечётного(включая),
			значит ответ 47.