Elliptic Curve Cryptography

Joel Allardyce Nitesh Goyal April 15, 2004

Outline

- What is Elliptic Curve Cryptography?
- Necessity and Advantages
- Arithmetic of ECC
 - Number Theory
 - Modular Arithmetic
 - Arithmetic mod Irreducible Polynomials
 - Galois Fields
 - The Arithmetic of Elliptic Curves
 - Addition
 - Scalar Multiplication
- Elliptic Curve Cryptography
 - ECC Analogues
 - Menezes-Vanstone ECC
- Conclusion

What is Elliptic Curve Cryptography?

- Originally proposed by Victor Miller [5] and Neal Koblitz [6] independently from one another in 1985.
- ECC proposed an alternative to other publickey encryption algorithms, such as RSA.
- All ECC schemes are public key, and are based on the difficulty in solving the discreet log problem for elliptic curves.

Necessity and Advantages

- Compared to RSA, ECC systems have a smaller key size for an equivalent amount of security.
 - Leads to fewer necessary operations, faster encryption time, and fewer transistors for hardware implementation
 - For example: 155-bit ECC uses 11,000 transistors while a 512-bit RSA implementation uses 50,000. These are considered to be of equivalent security. [2]
- Thus, ECC devices require less storage, less power, less memory, and often less bandwidth than other public key systems.
- This might or might not continue to be the case.

Necessity and Advantages (Cont.)

- Current key-size recommended by NIST for legacy public schemes is 2048 bits.
- A vastly smaller 224-bit ECC key offers the same level of security.
- This advantage only increases with security level—for example, a 3072 bit legacy key and a 256 bit ECC key are equivalent [8].

Necessity and Advantages (Cont.)

(Bits)	RSA KEY SIZE (Bits)	RATIO	AES KEY SIZE (Bits)
163	1024	1:6	
256	3072	1:12	128
384	7680	1:20	192
512	15 360	1:30	256

Figure 1: NIST guidelines for public key sizes for AES (from [8]).

RSA vs ECC

Figure 2: From [8].

Modular Arithmetic

- Familiar to every computer scientist.
- Modulus operation returns the remainder after integer division.
- Creates equivalency classes:
 - $-5 \mod 3 = 2 \mod 3$
 - Because 5 / 3 = 1 with a remainder of 2
 - Equivalence class of 2 mod 3:
 - {..., -1, 2, 5, 8, 11, ...}

Modular Arithmetic (Cont.)

- Operations in Modular Arithmetic reduced with modulus.
 - $-6 + 8 \mod 5 = 14 \mod 5 = 4 \mod 5$
- Operations in Modular Arithmetic can be simplified
 - Simpler to first reduce the operands.
 - $-6 + 8 \mod 5 = 1 + 3 \mod 5 = 4 \mod 5$
- Similar method used for multiplication
 - 4 * 5 mod 11 = 20 mod 11 = 9 mod 11

Modular Arithmetic (Cont.)

- Subtraction is addition of negation
 - $-4-5 \mod 7 = 4 + (-5) \mod 7 = 4 + 2 \mod 7 = 6$ mod 7
- Division is multiplication of inverse
 - Note: 4 * 3 mod 11 = 1 mod 11
 - 5 / 4 mod 11 = 5 * 3 mod 11 = 15 mod 11 = 4 mod11
 - Find the inverse by the Euclidian Algorithm (also finds greatest common denominator)

Arithmetic mod Irreducible Polynomials

- Particularly, we are interested in irreducible polynomials with coefficients mod 2.
- Example:
 - $-5x^2+2x+3=1x^2+0x+1=x^2+1$
 - Represent by a binary coefficient array: $x^2 + 1 = 101$
 - x^2 + 1 is irreducible.
- Other 2nd order irreducible polynomials with coefficients mod 2:
 - 111 is the only other one
 - For lower order, also includes 1, 10, 11
 - Notice that the binary representations are all prime numbers.

Arithmetic mod Irreducible Polynomials (Cont.)

- Addition of these polynomials is XOR
 - $(x^2 + 1) + (x^3 + x^2 + x) = (x^3 + x + 1)$
 - e.g. 0101 + 1110 = 1011
 - Note: This means that addition is subtraction
- Multiplication
 - 0101 * 1110 = 0000

1110 0000 1110

0110110

Arithmetic mod Irreducible Polynomials (Cont.)

Division

Arithmetic mod Irreducible Polynomials (Cont.)

- So now, the arithmetic:
 - 101 * 111 mod 1011 = 11011 mod 1011
 - 11011 / 1011 = 11 with a remainder of 110
 - So, 101 * 111 mod 1011 = 110 mod 1011
- There is also a version of the Euclidian Algorithm for Irreducible Polynomials, so inverses and greatest common denominator's can be found.

Galois Fields

- What is a field?
- A field is a group of numbers on which addition and multiplication are defined, and which follow the "ordinary" rules:
 - These rules are [3]:
 - Additive Commutativity: a + b = b + a
 - Multiplicative Commutativity: a * b = b * a
 - Additive Associativity: a + (b + c) = (a + b) + c
 - Multiplicative Associativity: a * (b * c) = (a * b) * c
 - Distributive: a * (b + c) = (a * b) + (a * c)
 - Additive Identity: a + 0 = a
 - Multiplicative Identity: a * 1 = a
 - Additive Negation: a a = 0
 - Multiplicative Inversion: a / a = 1 (for a nonzero)

Galois Fields (Cont.)

- Galois fields only exist of size pⁿ, where p is prime, and n is a natural number.
- When n = 1 (i.e. prime sized field), all arithmetic is modular, with p the modulus.
- When n > 1 (i.e. prime power sized field), arithmetic is never modular.
 - It is arithmetic of polynomials with coefficients mod p, mod an irreducible polynomial of order n.

Galois Fields (Cont.)

GF(5) 0 |0||0|

Galois Fields (Cont.)

$GF(2^2)$ or GF(4)

		0	1	2	3			0	1	2	3			0	1	2	3
	+						*						/				
0		0	1	2	3	0		0	0	0	0	0			0	0	0
1		1	0	3	2	1		0	1	2	3	1		•	1	3	2
2		2	3	0	1	2		0	2	3	1	2		•	2	1	3
3		3	2	1	0	3		0	3	1	2	3			3	2	1

Elliptic Curves

- What is an Elliptic Curve? [1]
 - It is called "elliptic" because of its relationship with elliptic integrals, which are natural expressions for the arc length of an ellipse.
 - A better name might be an Abelian variety of dimension one.
- How old are they?
 - They have been around since the 19th century, and were first looked at by Abel, Gauss, Jacobi and Legendre.
 - More recently they were used by Andrew Wiles as part of his solution to Fermat's Last Theorem.
- Uses include factoring integers, primality proving, and of course cryptography.

Elliptic Curves (Cont.)

- One important side note [1]:
 - The following equations all assume that the field being worked in has a characteristic greater than 3.
 - The characteristic of a field is the least positive integer n such that:

$$\sum_{i=1}^{n} 1 = 0$$

- For $GF(p^k)$, n = p
- If there is no n for which this is the case, a field is said to have a characteristic of 0.
- If this is not the case, then a different set of equations must be used. We will not enumerate those equation here.

Elliptic Curves (Cont.)

- What do they look like?
 - They are typically represented by the Diophantine equation:

$$y^2 = x^3 + ax + b$$
.

 The image to the right represents the curve:

$$y^2 = x^3 - 7x.$$

It is defined over the Real coordinate plane. Even though it separates into two parts, it is defined by one equation.

 It also demonstrates addition over this curve (more on that soon)

Figure 3: Geometric composition laws of an elliptic curve (from [4]).

Elliptic Curves (Cont.)

- With the addition of an identity element O_E which is called the "point at infinity", elliptic curves form an Abelian group over addition [1].
 - A group over an operation:
 - Has associativity
 - Is closed
 - Has an identity element
 - Has inverses
 - An Abelian group
 - Adds commutativity (i.e. a + b = b + a)
 - Sometimes called a commutative group
- There are two operations over Elliptic curves:
 - Addition (well defined)
 - Scalar multiplication (actually just multiple additions).

Addition on Elliptic Curves

- First, the ground rules. Let E be the points on an elliptic curve defined over the field F^2 , with the addition of the point $O_E[1]$.
 - All lines in F² intersect E in three places.
 - Lines at infinity intersect E at O_F three times.
 - Vertical lines intersect E at two places, and at O_E .
- Addition occurs as follows [1]. Let A, B be in E.
 - First, draw a line between A and B.
 - Where A and B intersect E for the third time, draw a vertical line.
 - A + B is where this vertical line intersects E a second time.

Addition on Elliptic Curves (Cont.)

- The general algorithm for addition is[1]:
 - Given E: $y^2 = x^3 + ax + b$, $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$, both on E

$$P_{1} + P_{2} = \begin{cases} O_{E} & \text{if } x_{1} = x_{2} \& y_{1} = -y_{2} \\ (x_{3}, y_{3}) & \text{otherwise} \end{cases}$$

where

$$(x_3, y_3) = (\mathbf{I}^2 - x_1 - x_2, \mathbf{I}(x_1 - x_3) - y_1)$$

and

$$I = \begin{cases} \frac{3x_1^2 + a}{2y_1} & \text{if } P_1 = P_2\\ \frac{y_2 - y_1}{x_2 - x_1} & \text{otherwise} \end{cases}$$

Scalar Multiplication on Elliptic Curves

- Scalar Multiplication defined as repeated additions.
 - Given Elliptic Curve E, point P in E, and scalar k.
 - kP = P + P + P + ... k times.
- This can be simplified by dividing it into two operations:
 - Double
 - Add P

Scalar Multiplication on Elliptic Curves (Cont.)

- The simplified scalar multiplication algorithm[1]:
 - Given E, P, and k as before, and variable e
 - Step 1: Write k in binary form, let e = 0
 - Step 2: Starting at highest order bit of k:
 - Step 2.1: if bit = 0, double *e*.
 - Step 2.2: else if bit = 1, double e then add P.
 - Step 2.3: repeat 2.1 to 2.3 for each bit in k
 - Step 3: Return e

Elliptic Curve Cryptography

- One-way trapdoor functions are the basis of public key cryptosystems.
 - In ECC, scalar multiplication is the one way trapdoor function.
- All ECC schemes are public key, and are based on the difficulty in solving the discreet log problem for elliptic curves
 - Given A = kP, what is k?
- All operations are performed over a Galois Field.
 - So, results of kP seem rather "random"
- There are analogues of most public key systems that use Elliptic Curves
 - e.g. Diffie-Hellman, RSA, etc.
 - Difficulty is that no deterministic method is known for encoding a message into a point on an elliptic curve.

ECC Analogues

- In general, exponentiation over GF(pⁿ) is replaced by scalar multiplication of an elliptic curve over GF(pⁿ).
 - As mentioned before, the drawback is that there is no known deterministic way of finding a point on an elliptic curve to match a message one wants to hide.
 - Even so, once such a point is found the necessary operations are no more difficult than exponentiation.
 - Of course, this drawback also does not apply to key exchange systems, where symmetric key systems are applied afterwards.

ECC Analogues (Cont.)

- For example, in Diffie-Hellman:
 - Before:
 - Alice and Bob each chose random integers a and b, and selected a field GF(p') with generator g.
 - They each calculated g^a and g^b and exchanged these values publicly.
 - They each then found their shared private key by calculating $(g^a)^b$ and $(g^b)^a$.
 - Using ECs:
 - Alice and Bob choose an elliptic curve E over $GF(p^r)$ with a base point P. Once again, they choose random a and b.
 - They calculate *aP* and *bP*, and exchange these values publicly.
 - The shared public key is calculated by b(aP) and a(bP).
- Advantage here is that once a key is established a symmetric key method is used.

ECC Analogues (Cont.)

- A similar method is used for the RSA analogue.
 - Unfortunately, this does suffer from the difficulty in encoding a message in a point.
- Let us now look at a cryptosystem that attempts to solve the point encoding problem, the Menezes-Vanstone Elliptic Curve Cryptosystem.

- The solution to the problem of encoding a message in a point is the Menezes-Vanstone Elliptic Curve Cryptosystem. It was initially proposed in [7].
 - It uses a point on an elliptic curve to "mask" a point in the plane.
 - Works over GF(p), with p prime and p > 3, so our previous algorithms work nicely.
 - It is fast and simple.
- One major drawback.
 - Due to point overhead, encrypted messages are doubled in length.

- Purpose: Alice wants to send a message to Bob using his public key.
- Given: Alice and Bob have decided upon the following conventions, all of which are public.
 - -p-A large prime number (it must at least be larger than 3)
 - F_p A Galois field of size p (p is prime, so it works like modular arithmetic)
 - E An elliptic curve over F_p of the form $y_2 = x_3 + ax + b$ (a,b in F_p)
 - P A randomly selected point on E (called the base point) that will generate subgroup H
 - H A subgroup of E that is preferably of the same size as E

- Private Key: Bob's private key. Only he knows it.
 - a: Bob's private key is a randomly selected natural number.
- Public Key: Bob's pubic key. Ideally it is distributed to the world.
 - \mathcal{B} : Bob's public key is calculated as $\mathcal{B} = aP$. It is a point in H.
- Secret: In this scheme, Alice also has a secret.
 - k: Randomly selected by Alice. It is usually different each time a message is sent.

- **Encryption:** Alice has secret m, which she splits up into m_1 and m_2
 - 1) Alice calculates (y1, y2) = kß.
 - 2) Alice calculates $c_0 = kP$. ← Note that c_0 is a point.
 - 3) Alice calculates $c_1 = y_1 m_1 \mod p$.
 - 4) Alice calculates $c_2 = y_2 m_2 \mod p$.
 - 5) Alice sends encrypted message $c = (c_0, c_1, c_2)$ to Bob.
 - Note that c is twice as large as the original message m.
- **Decryption:** Bob wants to get back the message *m* from *c*.
 - 1) Bob calculates $ac_0 = (y_1, y_2)$
 - 2) Bob retrieves message m by calculating $m = (c_1y_1^{-1} \mod p, c_2y_2^{-1} \mod p)$

- Why does it work?
 - When Alice sends $c = (c_0, c_1, c_2)$ to Bob, he is able to get (y_1, y_2) because:
 - $(y_1, y_2) = kB = kaP = akP = ac_0$
 - Notice that this does not really matter what *k* is.
 - Bob is then able to retrieve $m = (m_1, m_2)$ because:
 - \bullet $(c_1, c_2) = (y_1 m_1, y_2 m_2) \mod p$
 - $(c_1y_1^{-1}, c_2y_2^{-1}) \mod p = (y_1^{-1}y_1m_1, y_2^{-1}y_2m_2) \mod p$ = (m_1, m_2)
- An eavesdropper in the middle only sees c, which without a is not enough.

Conclusion

- Encryption based on Elliptic Curves provides a framework for the continued use of public key systems.
- ECC systems currently have better security density than other public key schemes.
- There is a trade-off when selecting an ECC system for use
 - Available bandwidth vs. ease of message encoding.

Conclusion (Cont.)

Most importantly...

Elliptic Curve Math is FUN!!!

Questions?

Sources

- [1] Song Y. Yan, Number Theory for Computing, 2nd ed, Springer-Verlag, Berlin, Germany, 2002.
- [2] Amit N. Gathani, *Implementation of Elliptic Curve Cryptography in Embedded System,* 2001.
- [3] G. R. Blakley, Notes on Arithmetic of Some Commutative Rings and Fields, October 1993.
- [4] Pardosh Kumar Mohapatra, "Public Key Cryptography," ACM Crossroads, 7-1 (Fall 2000).
- [5] V. Miller, "Uses of Elliptic Curves in Cryptography", Advances in Cryptology, CRYPTO '85, Proceedings, Lecture Notes in Computer Science 218, Springer-Verlag, 1986, 417-426
- [6] N. Koblitz, "Elliptic Curve Cryptography", *Mathematics of Computation*, 48 (1987), 203-209.
- [7] A. Menezes and S. A. Vanstone, "Elliptic curve cryptosystems and their implementation", *Journal of Cryptology*, 6 (1993), 209-224.
- [8] "The Basics of ECC", http://www.certicom.com

Some Fun Stuff

- An interesting web site we found. Has applets that allow one to try out various systems.
 - The applets:
 - Elliptic Curves
 - ElGamal over EC
 - Menezes-Vanstone ECC