Miejsce na naklejkę z kodem szkoły

dys	leks	ja

MMA-R1A1P-062

EGZAMIN MATURALNY Z MATEMATYKI

Arkusz II

POZIOM ROZSZERZONY

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 12 21). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorujacego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 10. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem ■ i zaznacz właściwe.

Życzymy powodzenia!

ARKUSZ II

MAJ ROK 2006

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

Wypełnia zdający przed rozpoczęciem pracy							
PESEL ZDAJĄCEGO							

Zadanie 12. (5 pkt) Korzystając z zasady indukcji matematycznej wykaż, że dla każdej liczby naturalnej $n \ge 1$ prawdziwy jest wzór: $1 \cdot 3 \cdot (1!)^2 + 2 \cdot 4 \cdot (2!)^2 + \dots + n(n+2)(n!)^2 = [(n+1)!]^2 - 1$.

	Nr czynności	12.1.	12.2.	12.3.	12.4.	12.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 13. (5 pkt)

Dany jest ciąg (a_n) , gdzie $a_n = \frac{5n+6}{10(n+1)}$ dla każdej liczby naturalnej $n \ge 1$.

- a) Zbadaj monotoniczność ciągu (a_n) .
- b) Oblicz $\lim_{n\to\infty} a_n$.
- c) Podaj największą liczbę a i najmniejszą liczbę b takie, że dla każdego n spełniony jest warunek $a \le a_n \le b$.

		Nr czynności	13.1.	13.2.	13.3.	13.4.	13.5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	
	egzaminator!	Uzyskana liczba pkt					

Zadanie 14. (4 pkt)

a) Naszkicuj wykres funkcji $y = \sin 2x$ w przedziale $< -2\pi, 2\pi >$.

b) Naszkicuj wykres funkcji $y = \frac{|\sin 2x|}{\sin 2x}$ w przedziale $< -2\pi, 2\pi >$

i zapisz, dla których liczb z tego przedziału spełniona jest nierówność $\frac{|\sin 2x|}{\sin 2x} < 0$.

	Nr czynności	14.1.	14.2.	14.3.	14.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 15. (*4 pkt*)

Uczniowie dojeżdzający do szkoły zaobserwowali, że spóźnienie autobusu zależy od tego, który z trzech kierowców prowadzi autobus. Przeprowadzili badania statystyczne i obliczyli, że w przypadku, gdy autobus prowadzi kierowca A, spóźnienie zdarza się w 5% jego kursów, gdy prowadzi kierowca B w 20% jego kursów, a gdy prowadzi kierowca C w 50% jego kursów. W ciągu 5-dniowego tygodnia nauki dwa razy prowadzi autobus kierowca A, dwa razy kierowca B i jeden raz kierowca C. Oblicz prawdopodobieństwo spóźnienia się szkolnego autobusu w losowo wybrany dzień nauki.

	Nr czynności	15.1.	15.2.	15.3.	15.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 16. (3 pkt)

Obiekty A i B leżą po dwóch stronach jeziora. W terenie dokonano pomiarów odpowiednich kątów i ich wyniki przedstawiono na rysunku. Odległość między obiektami B i C jest równa 400 m. Oblicz odległość w linii prostej między obiektami A i B i podaj wynik, zaokrąglając go do jednego metra.

	Nr czynności	16.1.	16.2.	16.3.
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 17. (6 pkt)
Na okręgu o promieniu r opisano trapez równoramienny ABCD o dłuższej podstawie ABi krótszej *CD*. Punkt styczności *S* dzieli ramię *BC* tak, że $\frac{|CS|}{|SB|} = \frac{2}{5}$.

- a) Wyznacz długość ramienia tego trapezu.
- b) Oblicz cosinus $| \langle CBD |$.

	Nr czynności	17.1.	17.2.	17.3.	17.4.	17.5.	17.6.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt						

Zadanie 18. (7 *pkt*)

Wśród wszystkich graniastosłupów prawidłowych trójkątnych o objętości równej 2 m³ istnieje taki, którego pole powierzchni całkowitej jest najmniejsze. Wyznacz długości krawędzi tego graniastosłupa.

	Nr czynności	18.1.	18.2.	18.3.	18.4.	18.5.	18.6.	18.7.
Wypełnia	Maks. liczba pkt	1	1	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt						·	

Zadanie 19. (*7 pkt*)

Nieskończony ciąg geometryczny (a_n) jest zdefiniowany wzorem rekurencyjnym: $a_1=2,\ a_{n+1}=a_n\cdot\log_2(k-2)$, dla każdej liczby naturalnej $n\ge 1$. Wszystkie wyrazy tego ciągu są różne od zera. Wyznacz wszystkie wartości parametru k, dla których istnieje suma wszystkich wyrazów nieskończonego ciągu (a_n) .

	Nr czynności	19.1.	19.2.	19.3.	19.4.	19.5.	19.6.
Wypełnia	Maks. liczba pkt	1	1	1	1	2	1
egzaminator!	Uzyskana liczba pkt	·	·				

Zadanie 20. (*4 pkt*)

Dane są funkcje
$$f(x) = 3^{x^2 - 5x}$$
 i $g(x) = \left(\frac{1}{9}\right)^{-2x^2 - 3x + 2}$.

Oblicz, dla których argumentów x wartości funkcji f są większe od wartości funkcji g.

	Nr czynności	20.1.	20.2.	20.3.	20.4.
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 21. (5 pkt)

W trakcie badania przebiegu zmienności funkcji ustalono, że funkcja f ma następujące własności:

- jej dziedziną jest zbiór wszystkich liczb rzeczywistych,
- f jest funkcją nieparzystą,
- f jest funkcją ciągłą

oraz:

$$f'(x) < 0$$
 dla $x \in (-8, -3)$,

$$f'(x) > 0$$
 dla $x \in (-3, -1)$,

$$f'(x) < 0$$
 dla $x \in (-1,0)$,

$$f'(-3) = f'(-1) = 0$$
,

$$f(-8) = 0$$
,

$$f(-3) = -2$$
,

$$f(-2) = 0$$
,

$$f(-1) = 1$$
.

W prostokątnym układzie współrzędnych na płaszczyźnie naszkicuj wykres funkcji f w przedziale $\langle -8,8 \rangle$, wykorzystując podane powyżej informacje o jej własnościach.

Wypełnia	Nr czynności	21.1.	21.2.	21.3.
	Maks. liczba pkt	1	2	2
egzaminator!	Uzyskana liczba pkt			

BRUDNOPIS