- (1) $\alpha < \beta$ のとき $\int_{\alpha}^{\beta} (x-\alpha)(x-\beta)dx = -\frac{1}{6}(\beta-\alpha)^3$ が成り立つことを証明せよ.
- (2) 2 つの放物線 $C_1:y=x^2$ と $C_2:y=\frac{1}{2}(x+1)^2$ の交点を $P(\alpha,\alpha^2)$, (β,β^2) $(\alpha<\beta)$ とし, C_2 上の点 $R\left(t,\frac{1}{2}(t+1)^2\right)$ を $\alpha< t<\beta$ となるようにとる. C_2 の R における接線と C_1 で囲まれる部分の面積が, C_1 と C_2 で囲まれる部分の面積の $\frac{1}{\sqrt{2}}$ 倍になるように t の値を定めよ.