1、逻辑门
1.电子开关——机械继电器
2.门电路
2、算数逻辑单元
1.进制的理解
3.逻辑单元
4.ALU符号
3、寄存器和内存
4、控制单元
5、指令
6、CPU的基本工作流程
7、总结

1、逻辑门

1. 电子开关——机械继电器

2. 门电路

一个CPU上其实包含了很多的基本单元,每个单元其实就是一个"门电路","门电路"其实就是针对 1 位(bit) 的数据,进行逻辑运算。三种运算:与门、或门、非门。

2、算数逻辑单元

1. 进制的理解

2. 算数单元

算数单元,负责计算机里的所有数字操作,比如四则运算。 CPU中有一个核心组件:ALU,就是通过集中"门电路"构成的。 通过"门电路"构建出半加器(针对2bit相加=》和,是否进位)和全

结合半加器和全加器,就能构建(针对8bits的数字进行相加的))的加法器(adder)。

CPU =》ALU =》加法器 + 逻辑判断

3. 逻辑单元

逻辑单元主要用来进行逻辑操作,最基本的操作就是 与、或、 非操作,但不只是一位(bit)数的比较。

4. ALU符号

3、寄存器和内存

- 1. 内存: 平时说的内存
- 2. 外存: 平时说的硬盘、软盘、光盘•••••
- 3. 比较:
 - 1. 大小: 内存比较小, 外存比较大
 - 2. 访问速度: 内存访问速度快,外存访问速度慢
 - 3. 价格: 内存贵, 外存便宜
 - 4. 持久化: 内存没有持久化, 外存数据是持久化的
- 5. 随机访问: 内存支持随机访问, 随心所欲访问内存中任意地址的数据

外存支持随机访问, 但是代价很大, 外存擅长顺

序访问

4. 计算机存储数据,不仅仅是内存和外存能存储,CPU上也能存储数据(寄存器)。CPU的寄存器,存储空间更小,价格更高,访问速度更快。

4、控制单元

5、指令

所谓指令,即指导 CPU 进行工作的命令,主要有操作码 + 被操作数组成。

其中<mark>操作码</mark>用来表示要做什么动作,<mark>被操作数</mark>是本条指令要操作的数据,可能是内存地址,也可能是寄存器编号等。

指令本身也是一个数字,用二进制形式保存在内存的某个区域中。

指令表(Instruction Table)			
指令(instruction)	功能说明	4位 opcode	操作的地址或者寄存器
LOAD_A	从 RAM 的指定地址,将 数据加载到 A 寄存器	0010	4 位 RAM 地址
LOAD_B	从 RAM 的指定地址,将 数据加载到 B 寄存器	0001	4 位 RAM 地址
STORE_A	将数据从 A 寄存器写入 RAM 的指定地址	0100	4 位 RAM 地址
ADD	计算两个指定寄存器的 数据的和,并将结果放 入第二个寄存器	1000	2 位的寄存器 ID 2 位的寄存器 ID

6、CPU的基本工作流程

CU 和 ALU 的配合

地址	数据
0	00101110
1	00011111
2	10000100
3	01001101
4	00000000
5	00000000
6	00000000
7	00000000
8	00000000
9	00000000
10	00000000
11	00000000
12	00000000
13	00000000
14	00000011
15	00001110

CU 和 ALU 的配合

CU 根据 PC 的值 将指令数据读入 IR 中

0010	0	
1110	0	
IR	PC	

地址	数据
0	00101110
1	00011111
2	10000100
3	01001101
4	00000000
5	00000000
6	00000000
7	00000000
8	00000000
9	00000000
10	00000000
11	00000000
12	00000000
13	00000000
14	00000011
15	00001110

CU 和 ALU 的配合

指令(instruction)	功能说明	4位 opcode	操作的地址或者寄存器
LOAD_A	从 RAM 的指定地址, 将数据加载到 A 寄存器	0010	4 位 RAM 地址
LOAD_B	从 RAM 的指定地址, 将数据加载到 B 寄存器	0001	4 位 RAM 地址
STORE_A	^特 0010 查表可 1110 是十进	得是 LOAD_A 接	操作地址
ADD		RAM 中地址 是	14 的数 器 ID 器 ID

CU 分析 IR 中的 指令组成 0010 1110 0 IR PC

	an Im
地址	数据
0	00101110
1	00011111
2	10000100
3	01001101
4	00000000
5	00000000
6	00000000
7	00000000
8	00000000
9	00000000
10	00000000
11	00000000
12	00000000
13	00000000
14	00000011
15	00001110

第一条指令的运行,其实没有用到我们之前制作的 ALU 部件,但这只是其中一些指令而已,大家尝试把剩余的 3 条指令自行运行一次,观察并理解这个过程。

我们来总结下执行周期经过哪些阶段:

当然,电子计算机中的 CPU 可不像我们刚才那样,靠自己来驱动这个周期的运转,而是靠背后一个时钟来进行周期驱动的。

知平问题: 时钟频率是什么概念

最后, ALU + CU + 寄存器 + 时钟就组成了我们平时经常看到的一个词汇: 中央处理器 (Center ProcessUnit) 简称 CPU。

7、总结

- 1. CPU 中的 PC 寄存器,是决定 CPU 要执行哪条指令的关键;
- 2. 指令是由 动作 + 操作对象组成
- 3. CPU 眼中只有指令,没有其他的概念