Linear Algebra Done Right HW 3

shaozewxy

June 2022

3.10

Question 2. Let V and W be finite dimensional, and consider $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, U)$.

- a) Prove that $\dim(\operatorname{range} ST) \leq \dim(\operatorname{range} T)$.
- b) Prove that $\dim({\rm range}\,ST)=\dim({\rm range}\,T)$ if and only if ${\rm range}\,T+{\rm null}\,S={\rm range}\,T\oplus{\rm null}\,S.$
- c) Prove that $\dim(\operatorname{null} ST) \leq \dim(\operatorname{null} S) + \dim(\operatorname{null} T)$.
- d) Challenge problem: Can you give some description (in terms of conditions on T, S, V, etc.) of when we get equality in the previous part, i.e. $\dim(\text{null }ST) = \dim(\text{null }S) + \dim(\text{null }T)$?

a.

$$dim(range\ ST) = dim\ V - dim\ null\ ST$$

$$dim(range\ T) = dim\ V - dim\ null\ T$$

We just NTS that $\dim \ null \ ST > \dim \ null \ T$.

To do so, WTS that $null\ T\subseteq null\ ST$:

This is obvious since $\forall v \in null\ T, ST(v) = S(Tv) = S(0) = 0 \rightarrow v \in null\ ST$.

Therefore we have shown that $dim(range\ ST) \leq dim(range\ T)$.

b.

From a. we know that the equality is achieved \iff dim null $T = \dim null \ ST$, i.e. null $T = null \ ST$.

Now suppose $dim(range\ ST)=dim(range\ T),\ WTS\ range\ T+null\ S=range\ T\oplus null\ S.$

Since we know $null\ T=null\ ST$, and obviously $range\ T$ independent with $null\ T$, we conclude that $range\ T$ independent with $null\ ST$ and therefore $range\ T+null\ S=range\ T\oplus null\ S$.

Then suppose range $T + null\ S = range\ T \oplus null\ S$, WTS $dim(range\ ST) = dim(range\ T)$:

Suppose $\exists v \in null \ ST - null \ T$, then this means $Tv = w \neq 0 \in null \ S$, i.e. $w \neq 0 \in null \ S \cap range \ T$, contradiction with the fact that $range \ T$ independent with $null \ S$. Therefore no such v exists and thus $null \ ST = null \ T \Rightarrow dim(range \ ST) = dim(range \ T)$.

c.

Given $v \in V$, if $v \in null\ T$, then $Tv = 0 \Rightarrow ST(v) = 0 \Rightarrow v \in null\ ST$. Therefore we know that $null\ S \subseteq null\ ST$.

Then we create $F \in \mathcal{L}(T^{-1}(null\ S), null\ S)$ defined as Fv = Tv.

By definition $T^{-1}(null\ S) = null\ ST$.

Obviously null F = null T.

Therefore we can conclude that

$$\begin{aligned} \dim \ range \ F + \dim \ null \ F &= \dim(T^{-1}(null \ S)) \\ \\ \dim \ range \ F + \dim \ null \ T &= \dim \ null \ ST \\ \\ \dim \ null \ ST &\leq \dim \ null \ S + \dim \ null \ T \end{aligned}$$

 $\mathbf{d}.$

From c. we see that the equality is achived when $\dim \ range \ F = \dim \ null \ S,$ i.e.

 $null\ S\subseteq range\ T$