\mathbf{C}

). D .	Spring,	2022
NT NAME:		

S5003	Foundations of C.S.	Spring, 202
uiz 0010	PRINT NAME:	
	\mathcal{SIGN} :	

1. (10 pts) For all natural numbers $n, n \in \mathbb{N}$ let p_n be a statement.

Suppose p_{55} is true and p_{86} is false. Suppose also that $p_n \Rightarrow p_{n+5}$ for all $n \in \mathbb{N}$.

Mark 10 of the statements below as follows: T if it must be true, F if must be false, and X if it cannot be determined from the given information.

 \clubsuit By induction, p_n must be true for all numbers n whose decimals end in digit 0 or 5 and are at least 55. Also by induction, p_n must be false for all numbers n whose decimals end in digit 1 or 6 and are at most 86. All other individual values values are unknown.

and in digit I of a find are at most oo. An other individu
*
$p_{86} \Rightarrow p_{91}$. ♣ T: Given with $n = 86$.
p_n for all $n \in \mathbb{N}$ by induction. $F. p_{86}$ is false.
$p_{86} \Rightarrow p_{96}$. T: Since $p_{86} \Rightarrow p_{91}$ and $p_{91} \Rightarrow p_{96}$ are both true.
$p_{21} ext{ OR } p_{22}.$

 \clubsuit X. p_{21} is false, otherwise p_{86} would be true by induction. And we have no information about p_{22}

 $p_{55} \Rightarrow p_{65}$. \clubsuit T: Since $p_{55} \Rightarrow p_{60}$ and $p_{60} \Rightarrow p_{65}$ are both true. ____ p_{21} AND p_{22} .

 \clubsuit X. p_{21} is false, otherwise p_{86} would be true by induction. So the AND statement is false regardless of p_{22}

 \clubsuit T. p is true for all multiples of 10 beyond 50. $p_{1000n+100}$ for all $n \in \mathbb{N}$. \clubsuit T. p is true for all multiples of 10 beyond 50. $p_{55} \Rightarrow p_{60}$. \clubsuit T: Given with n = 55.

____ p_{5n} for all $n \in \mathbb{N}$ by induction. \clubsuit X. p_{55} might be the very first true statement.

 p_{81} . \clubsuit Must be false otherwise p_{86} would be true.

 p_{5151} . \clubsuit X. We have no information about numbers ending in 1 beyond 81.