Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2018/19 Information und Quellencodierung Grundbegriffe

Leitfragen 3.1

- Einschub: Grundbegriffe der Wahrscheinlichkeitsrechnung
- Wie wird in der Informatik der Begriff Information statistisch gedeutet?
- Was versteht man unter der mittleren Wortlänge eines Codes und der Code-Redundanz?
- Welche Beispiele für Codierungen gibt es in der Informatik und welche charakteristischen Merkmale weisen diese auf?

Grundbegriffe der Wahrscheinlichkeitsrechnung

Relative Häufigkeit

Kapitel 3: Information und Quellencodierung – Grundbegriffe

Relative Häufigkeit h

 Quotient aus Anzahl von Dingen (Ereignissen), die ein bestimmtes Merkmal aufweisen und der Gesamtzahl der auf dieses Merkmal hin untersuchten Dinge

- Bedingung: 0 ≤ h ≤ 1 gilt immer
- Vorgehensweise zur Bestimmung der relativen Häufigkeit wird auch Abzählregel genannt

Zufallsexperiment (1)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

Zufallsexperiment

- Vorgang oder Versuch, der dem Zufall unterliegt oder bei dem man aus anderen Gründen den Ausgang nicht vorhersagen kann
- Quantitative Aussagen sind unter Anwendung von mathematischen Methoden der Statistik möglich
 - Wiederholung der Versuche unter gleichbleibenden Bedingungen
- Gesamtheit aller möglichen Versuchsergebnisse wird als Menge der Elementarereignisse bezeichnet

Zufallsexperiment (2)

- Beispiele Elementarereignisse
 - Versuch "einmaliges Werfen einer Münze"
 - Elementarereignisse: { Kopf, Zahl }
 - Versuch "einmaliges Werfen eines Würfels"
 - Elementarereignisse: { 1,2,3,4,5,6 }
 - Versuch "Messung der Lebensdauer einer Glühbirne"
 - Unendliche Menge von Elementarereignissen

Zufallsexperiment (3)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

 Ermittlung der relativen Häufigkeit durch eine große Anzahl an Wiederholungen des Zufallsexperiments

Beispiele

Wurf einer Münze

Je öfter man eine Münze wirft, desto weniger werden sich h_{Kopf} und h_{Zahl} von dem Wert ½ unterscheiden.

Würfelspiel

Je öfter man einen Würfel wirft, desto weniger werden sich h₁, h₂, h₃, h₄, h₅ und h₆ von dem Wert 1/6 unterscheiden.

Mathematische Wahrscheinlichkeit (1)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

 Beziehung zwischen mathematischer Wahrscheinlichkeit und relativer Häufigkeit: Gesetz der großen Zahl

A: betrachtetes Ereignis

n: Anzahl der Versuche

Mathematische Wahrscheinlichkeit (2)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

 Exakte mathematische Definition der Wahrscheinlichkeit durch die

Kolmogorow'schen Axiome

 Axiom 1: Die Wahrscheinlichkeit p(A) für das Eintreffen eines bestimmten Ereignisses A ist eine reelle Funktion, die alle Werte zwischen Null und Eins annehmen kann:

$$0 \le p(A) \le 1$$

 Axiom 2: Die Wahrscheinlichkeit für das Auftreten eines Ereignisses A, das mit Sicherheit eintrifft, hat den Wert 1: p(A) = 1

WS 2018/19

Mathematische Wahrscheinlichkeit (3)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

 Axiom 3: Für sich gegenseitig ausschließende Ereignisse A und B gilt:

$$p(A \text{ oder B}) = p(A) + p(B)$$

 $p(A \cup B) = p(A) + p(B)$

(Additionsgesetz)

Mathematische Wahrscheinlichkeit (4)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

- Folgerungen aus den Axiomen:
 - Wahrscheinlichkeit für ein mit Sicherheit nicht eintretendes Ereignis A:

$$p(A) = 0$$

Wahrscheinlichkeit, dass das Ereignis A nicht eintritt:

$$p(\bar{A}) = 1 - p(A)$$
 $\bar{A} = \text{"nicht A"}$

 Wahrscheinlichkeit, dass zwei Ereignisse A und B gemeinsam eintreten:

$$p(A \text{ und } B) = p(A) \cdot p(B)$$
 Bedingung:
 $p(A \cap B) = p(A) \cdot p(B)$ Ereignisse A und B schließen sich gegenseitig nicht aus und sind voneinander unabhängig

Mathematische Wahrscheinlichkeit (5)

- Beispiele
 - Würfeln mit zwei unterscheidbaren Würfeln (rot und grün) gleichzeitig
 - Wahrscheinlichkeit grüner Würfel zeigt 1 und roter Würfel zeigt 2

$$p(A \text{ und } B) = 1/6 \cdot 1/6 = 1/36$$

- Würfeln mit einem Würfel hintereinander
 - Wahrscheinlichkeit, dass erst eine 1 und dann eine 2 gewürfelt wird

$$p(A \text{ und } B) = 1/6 \cdot 1/6 = 1/36$$

- Würfeln mit zwei nicht unterscheidbaren Würfeln
 - Wahrscheinlichkeit, dass 1 und 2 gewürfelt wird

$$p(E) = (1/6 + 1/6) \cdot 1/6 = 1/18$$

Anmerkungen

- Die vorherigen Folien umfassen nur das absolut Notwendige
- Viele wichtige Begriffe wurden nicht erläutert (z.B. bedingte Wahrscheinlichkeiten)
- Dies folgt in einer separaten Lehrveranstaltung

Statistischer Informationsgehalt

Informationsgehalt einer Nachricht (1)

- Betrachtung des Begriffs Information unter einem spezifischen Blickwinkel
 - Mathematisch fassbare Entscheidungsinformation
 - Also
 - nicht semantische Bedeutung einer Information
 - nicht orientiert an dem mit der Nachricht verfolgten Zweck
 - Das heißt
 - Zwei Nachrichten (eine mit besonderem Inhalt eine mit "Unsinn") können genau die gleiche Menge an Information enthalten.

Shannonsche Informationstheorie (1)

- Shannonsche Informationstheorie
 - Wurde maßgeblich von Claude Shannon bis 1950 entwickelt
- Zielsetzung
 - Mathematische Beschreibung des statistischen Informationsgehalts I(x)
 - eines Zeichens oder Wortes x,
 - welches mit einer Auftrittswahrscheinlichkeit p(x) vorkommt

Shannonsche Informationstheorie (2)

- Anforderungen an die mathematische Beschreibung
 - Je seltener ein bestimmtes Zeichen x auftritt, d.h. je kleiner p(x), desto größer soll der Informationsgehalt dieses Zeichens sein

$$I(x) \sim \frac{1}{p(x)}$$

Shannonsche Informationstheorie (3)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

- Anforderungen an die mathematische Beschreibung
 - 2. Gesamtinformation einer Zeichenkette, z.B. $x_1x_2x_3$ soll sich aus der Summe der Einzelinformationen ergeben

$$I(x_1x_2x_3) = I(x_1) + I(x_2) + I(x_3)$$

3. Für den Informationsgehalt eines mit Sicherheit auftretenden Zeichens x, also für den Fall p(x) = 1, soll gelten

$$I(x) = 0$$

→ Logarithmusfunktion erfüllt die formulierten Anforderungen

Shannonsche Informationstheorie (4)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

 Mathematische Beschreibung des Zusammenhangs von Informationsgehalt und Auftrittswahrscheinlichkeit eines Zeichens x

$$I(x) = \log_b \frac{1}{p(x)}$$

$$b = \text{Maßstab zur Informationsmessung}$$

$$\text{Festlegung: Zwei Zustände (0 und 1)}$$

$$\rightarrow b = 2$$

Informationsgehalt im binären Umfeld (1)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

Statistischer Informationsgehalt

$$I(x) = \operatorname{ld} \frac{1}{p(x)} = -\operatorname{ld} p(x) \quad [Bit]$$

Zweierlogarithmus

- Anzahl der Elementarentscheidungen, die nötig sind, um eine Nachricht Zeichen für Zeichen eindeutig identifizieren zu können
- Maßeinheit: Bit

Informationsgehalt im binären Umfeld (2)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

Der Informationsgehalt eines Zeichens

=

Anzahl der Stellen des Binärworts, das man für eine eindeutige binäre Darstellung des Zeichens verwenden muss.

Beispiel Informationsgehalt

- Berechnung Informationsgehalt bei nicht-binären Nachrichten
 - Gegeben: Buchstabe b tritt in einem deutschsprachigen Text mit einer Wahrscheinlichkeit von 0,016 auf
 - Gesucht: Informationsgehalt dieses Zeichens
 - Lösung:

$$I(b) = \operatorname{ld} \frac{1}{0.016} = \frac{\log(\frac{1}{0.016})}{\log(2)} \approx \frac{1.79588}{0.30103} \approx 5.97 [Bit]$$

Erinnerung – praktisches Rechnen mit Logarithmen

Kapitel 3: Information und Quellencodierung – Grundbegriffe

Umwandlungsgleichung

$$\log_b(x) = \frac{\log_{10}(x)}{\log_{10}(b)}$$
 also $\log_2(x) = \operatorname{ld}(x) = \frac{\log_{10}(x)}{\log_{10}(2)}$

• mit $\log_{10}(2) = \log(2) = 0.30103$

Schreibweisen:

- $\log_{10}(x)$ wird zu $\log(x)$
- $\log_2(x)$ wird zu Id(x)
- $log_e(x)$ wird zu ln(x) mit $e \approx 2.71828...$

Entropie einer Nachricht (1)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

- Nachricht setzt sich i.A.
 - aus Zeichen bzw. aus zu Worten verbundenen Zeichen zusammen,
 - die jeweils unterschiedlichen Informationsgehalt tragen, da sie mit unterschiedlicher Häufigkeit auftreten
- Einführung des Begriffs
 - des mittleren Informationsgehalts
 - bzw. Entropie H einer Nachricht,

die aus den Zeichen $x_1, x_2, ..., x_n$ eines Alphabets A besteht

Entropie einer Nachricht (2)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

 Summe der mit den Auftrittswahrscheinlichkeiten gewichteten Informationsgehalte der Zeichen

$$H = \sum_{i=1}^{n} p(x_i) \cdot \operatorname{ld} \frac{1}{p(x_i)} = -\sum_{i=1}^{n} p(x_i) \cdot \operatorname{ld} p(x) = \sum_{i=1}^{n} p(x_i) \cdot I(x_i)$$

- Der höchste mittlere Informationsgehalt ergibt sich, wenn alle Zeichen mit der gleichen Wahrscheinlichkeit auftreten
- Einheit: Bit / Zeichen

Ungewissheit einer Nachrichtenquelle (1)

- Andere Interpretation des Entropie-Begriffs...
 - ... zum Vergleich von Nachrichtenquellen
 - Je kleiner die Entropie umso größer die Sicherheit mit der man das Auftreten eines bestimmten Zeichens vorhersagen kann.
 - Je höher die Entropie einer Nachrichtenquelle, desto größer ihre Unsicherheit (Surprisal).

Ungewissheit einer Nachrichtenquelle (2)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

- Beispiel: Zwei Nachrichtenquellen
 - A₁ = {a, b, c, d} mit den Auftrittswahrscheinlichkeiten $p(a) = \frac{11}{16}$, $p(b) = p(c) = \frac{1}{8}$, $p(d) = \frac{1}{16}$
 - A₂ = {+, -, *} mit den Auftrittswahrscheinlichkeiten

$$p(+) = \frac{1}{6}$$
, $p(-) = \frac{1}{2}$, $p(*) = \frac{1}{3}$

$$H_{1} = \frac{11}{16} \cdot \operatorname{ld} \frac{16}{11} + \frac{1}{8} \cdot \operatorname{ld} 8 + \frac{1}{8} \cdot \operatorname{ld} 8 + \frac{1}{16} \cdot \operatorname{ld} 16 \approx 1.372 \left[\frac{Bit}{Zeichen} \right]$$

$$H_{2} = \frac{1}{6} \cdot \operatorname{ld} 6 + \frac{1}{2} \cdot \operatorname{ld} 2 + \frac{1}{3} \cdot \operatorname{ld} 3 \approx 1.460 \left[\frac{Bit}{Zeichen} \right]$$

Ungewissheit für A₂ ist größer als für A₁, da H₂ größer als H₁

Codierung – Begriffsdefinitionen (1)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

Zielsetzung: problemspezifische Darstellung einer Nachricht bei Speicherung und Übertragung

- Codierung C
 - eine umkehrbar eindeutige Abbildung von A* in B*
 - Beachte: C ⊆ B* gilt, d.h. C ist eine Teilmenge von B*
- Binärcodierung C
 - Zielmenge ist ein Nachrichtenraum B* über dem Alphabet {0, 1}

Kodierung – Begriffsdefinitionen (3)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

 Schematische Darstellung der Codierung und Übertragung von Nachrichten

- Erwartungen an "gute" Codierung
 - Darstellung der zu sendenden Daten mit möglichst wenig Zeichen
 - Möglichst unempfindlich gegen Störungen
 - Code sollte in DV-Anlage leicht zu verarbeiten sein

Kodierung – Begriffsdefinitionen (4)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

- Mittlere Wortlänge L
 - wesentliches Charakteristikum eines Codes
 - definiert als

$$L = \sum_{i=1}^{n} p_i \cdot l_i$$

mit

- $ullet l_i$ Wortlänge des i-ten Zeichens bzw. Wortes im Zielcode
- Summenbildung über alle n codierten Zeichen

Kodierung – Begriffsdefinitionen (5)

- Shannonsches Codierungstheorem
 - Für jede Codierung einer Nachrichtenquelle ist

$$H \leq L$$

- H (Entropie) ist Untergrenze f
 ür eine optimale Codierung
 - Fokus: Wortlängenreduktion
- Wenn alle Wahrscheinlichkeiten gleich sind, gilt

$$H = L$$

Kodierung – Begriffsdefinitionen (6)

- Code-Redundanz R
 - Differenz aus L und H

$$R_c = L - H$$
 (Einheit: Bit/Zeichen)

- Gibt an wie groß der Anteil einer Nachricht ist, der im statistischen Sinne keine Information trägt
- Wünschenswert: Codes mit geringer Redundanz
 - geringerer Speicherbedarf und schnellere Nachrichtenübertragung
- Redundanz kann jedoch zur Störsicherheit beitragen
 - Rekonstruktion/Sicherheit bei Datenübertragung/Speicherung

Kodierung – Begriffsdefinitionen (7)

Kapitel 3: Information und Quellencodierung – Grundbegriffe

- Quellen-Redundanz R_Q
 - Differenz aus maximal möglicher Entropie der Quelle H₀ und tatsächlicher Entropie H

$$R_Q = H_0 - H$$
 (Einheit: Bit/Zeichen)

- maximale Entropie H₀
 - erhält man, wenn alle Zeichen des Alphabets A gleich wahrscheinlich sind. Mit |A| = n:

$$H_0 = \sum_{i=1}^n p(x_i) \cdot \operatorname{ld} \frac{1}{p(x_i)} = \sum_{i=1}^n \frac{1}{n} \cdot \operatorname{ld} n = \frac{1}{n} \sum_{i=1}^n \operatorname{ld} n = \frac{1}{n} n \operatorname{ld} n = \operatorname{ld} n$$

unabhängig vom tatsächlich verwendeten Code

Kodierung – Begriffsdefinitionen (8)

- Unterscheidung Kodierung fest/variabel
 - Kodierung mit fester Wortlänge (Block-Codes)
 - alle kodierten Zeichen weisen eine konstante Wortlänge auf
 - Kodierung mit variabler Wortlänge
 - Häufig auftretende Zeichen erhalten kurzen Code
 - Selten auftretende Zeichen erhalten langen Code
 - Erster technischer Code mit variabler Länge
 - Morse-Code (keine Binärkodierung, da drei Zeichen: Punkt, Strich und Pause)

Beispiele für Codes – ASCII

- ASCII-Code
 - ASCII = American Standard Code for Information Interchange
 - ist eine festgelegte Abbildungsvorschrift (Norm) zur binären Kodierung von Zeichen
 - umfasst Klein-/Großbuchstaben des lateinischen Alphabets
 - (arabische) Ziffern
 - und viele Sonderzeichen
 - Kodierung erfolgt in einem Byte
 - => 256 verschiedene Zeichen darstellbar

Beispiele für Codes – ASCII

- ASCII-Code
 - Erstes Bit wird vom Standard-ASCII-Code nicht genutzt
 - => 128 Zeichen darstellbar
 - Unterschiedliche, speziell normierte, ASCII-Code-Erweiterungen
 - nutzen das erste Bit, um weitere 128 Zeichen darstellen zu können

Beispiele für Codes – Ausschnitt ASCII-Code

Dezimal	Oktal	Hexa	Binär	Zeichen
032	040	020	00100000	(leer)
033	041	021	00100001	!
034	042	022	00100010	"
035	043	023	00100011	#
036	044	024	00100100	\$
037	045	025	00100101	%
038	046	026	00100110	&
039	047	027	00100111	'
040	050	028	00101000	(
041	051	029	00101001)
042	052	02A	00101010	*
043	053	02B	00101011	+
044	054	02C	00101100	,
045	055	02D	00101101	-
046	056	02E	00101110	
047	057	02F	00101111	1
048	060	030	00110000	0
049	061	031	00110001	1
050	062	032	00110010	2
051	063	033	00110011	3
052	064	034	00110100	4
053	065	035	00110101	5
054	066	036	00110110	6
055	067	037	00110111	7
056	070	038	00111000	8
057	071	039	00111001	9
058	072	03A	00111010	:
059	073	03B	00111011	;
060	074	03C	00111100	<
061	075	03D	00111101	=
062	076	03E	00111110	>
063	077	03F	00111111	?

Dezimal	Oktal	Hexa	Binär	Zeichen
064	100	040	01000000	@
065	101	041	01000001	Α
066	102	042	01000010	В
067	103	043	01000011	С
068	104	044	01000100	D
069	105	045	01000101	Е
070	106	046	01000110	F
071	107	047	01000111	G
072	110	048	01001000	Н
073	111	049	01001001	I
074	112	04A	01001010	J
075	113	04B	01001011	K
076	114	04C	01001100	L
077	115	04D	01001101	M
078	116	04E	01001110	N
079	117	04F	01001111	0
080	120	050	01010000	Р
081	121	051	01010001	Q
082	122	052	01010010	R
083	123	053	01010011	S
084	124	054	01010100	Т
085	125	055	01010101	U
086	126	056	01010110	V
087	127	057	01010111	W
088	130	058	01011000	Χ
089	131	059	01011001	Υ
090	132	05A	01011010	Z
091	133	05B	01011011	[
092	134	05C	01011100	\
093	135	05D	01011101]
094	136	05E	01011110	٨
095	137	05F	01011111	_

Dezimal	Oktal	Hexa	Binär	Zeichen
096	140	060	01100000	`
097	141	061	01100001	а
098	142	062	01100010	b
099	143	063	01100011	С
100	144	064	01100100	d
101	145	065	01100101	е
102	146	066	01100110	f
103	147	067	01100111	g
104	150	068	01101000	h
105	151	069	01101001	i
106	152	06A	01101010	j
107	153	06B	01101011	k
108	154	06C	01101100	ı
109	155	06D	01101101	m
110	156	06E	01101110	n
111	157	06F	01101111	0
112	160	070	01110000	р
113	161	071	01110001	q
114	162	072	01110010	r
115	163	073	01110011	S
116	164	074	01110100	t
117	165	075	01110101	u
118	166	076	01110110	V
119	167	077	01110111	W
120	170	078	01111000	Х
121	171	079	01111001	у
122	172	07A	01111010	Z
123	173	07B	01111011	{
124	174	07C	01111100	
125	175	07D	01111101	}
126	176	07E	01111110	~
127	177	07F	01111111	(entf.)

Beispiele für Codes – ASCII

- Unterscheidung zwischen Ziffern und Zeichen im ASCII-Code
 - Ziffern als ASCII-Codes
 - Angabe des Zeichens (Ziffer) in Hochkomma

- Ziffern als numerischer Wert
 - Angabe einer Ziffer (ohne Hochkomma)

```
0 → 00000000 (dezimal 0)
4 → 00000100 (dezimal 4)
5 → 00000101 (dezimal 5)
8 → 00001000 (dezimal 8)
```

Beispiele für Codes – ASCII

Kapitel 3: Information und Quellencodierung – Grundbegriffe

ASCII-Code

- Speicherung von Texten
 - Einzelne Bytes kodieren jeweils immer ein Zeichen
 - Werden hintereinander abgespeichert (Zeichenkette String)
- Ende der Zeichenkette
 - Unterschiedliche Verfahren zur Identifizierung (in den Programmiersprachen)
 - (Pascal)
 Länge der Zeichenkette wird im ersten bzw. in den ersten Bytes vor der eigentlichen Zeichenkette gespeichert
 - (C/C++)
 Ende der Zeichenkette wird durch ein besonderes, nicht darzustellendes Zeichen gekennzeichnet
 - 0-Byte (Byte, in dem alle Bits 0 sind)

Beispiele für Codes – Uni-Code

- Uni-Code
 - ASCII-Code mit seinen 256 Zeichen ist sehr begrenzt
 - Unicode
 - Code, in dem die Zeichen oder Elemente praktisch aller bekannten Schriftkulturen und Zeichensysteme festgehalten werden können
 - Zeichen werden nach Klassen katalogisiert und erhalten einen Zeichenwert
 - Einen eigenen Unicode erhalten auch
 - Steuerzeichen (Silbentrennung, Leerzeichen oder Tabulatorzeichen)
 - oder Zeichen mathematischer Formeln
 - Zusätzlich ist zu jedem Zeichen bzw. Element eine Menge von Eigenschaften definiert
 - z.B. Schreibrichtung

Beispiele für Codes – Uni-Code

- Uni-Code
 - 1991: Gründung des Unicode-Konsortium
 - Ermittelt die aufzunehmenden Zeichen
 - Vergebenen Zeichenwerte haben verbindlichen Charakter
 - Zeichenwerte der von Unicode erfassten Zeichen wurden bis vor kurzem noch ausschließlich durch
 - eine zwei Byte lange Zahl ausgedrückt
 - bis zu 65536 verschiedene Zeichen darstellbar
 - BMP (Basic Multilingual Plane) = 2-Byte-System
 - Unicode-Version 3.0 (1999)
 - bereits 49194 Zeichen enthalten

Beispiele für Codes – Uni-Code

- Uni-Code
 - Unicode-Version 3.1 (2001)
 - 94140 Zeichen enthalten
 - 4-Byte-System wird verwendet
 - Codes von Unicode-Zeichen werden hexadezimal mit vorangestelltem U+ dargestellt
 - Neue Unicode-Version
 - Neuauflage des Buchs "The Unicode Standard"
 - Darstellung aller Zeichenklassen, Zeichen, Zeichenwerte, usw.
 - www.unicode.org

Beispiele für Codes – BCD

Kapitel 3: Information und Quellencodierung – Grundbegriffe

BCD-Code

- Weitere Art der binären Kodierung von Zahlen bzw. Ziffern sind BCD-Werte (Binary Coded Decimals)
- Für jede Dezimalziffer werden vier oder manchmal auch acht Bits verwendet
- Jeweiligen Ziffern werden nacheinander durch ihren Dualwert angegeben

Dezimalzahl Dualzahl		Duale BCD Darstellung
294	100100110	0010.1001.0100 2 9 4
16289	11111110100001	0001.0110.0010.1000.1001 1 6 2 8 9

Beispiele für Codes – BCD

Kapitel 3: Information und Quellencodierung – Grundbegriffe

BCD-Code

- Bitmuster 1010, 1011, ..., 1111 werden im BCD-Code nicht verwendet, da nur 10 Ziffern existieren
- Oft anderweitige Nutzung
 - z.B. 1010 für das Vorzeichen +
 - und 1011 für das Vorzeichen –
- Ineffektive (Speicherplatz verschwendende) Art der Speicherung von Dezimalzahlen
- Spezielle Anwendungsbereiche
 - Ansteuerung von LCD-Anzeigen
 - Speicherung von Dezimalzahlen (Telefonnummern, o.ä.)
 - exakte Darstellung von Brüchen möglich (z.B. 0.1₁₀)

- Gray-Codes
 - sind Ziffern-Codes,
 - die nach folgendem Prinzip erzeugt werden:
 - Benachbarte Zahlen werden so kodiert,
 - dass sie sich in möglichst wenigen Bits unterscheiden (Idealfall: nur 1 Bit)
- Folge
 - 1-Bit-Fehler führen zwar zu fehlerhaften Code-Wörtern
 - Aber:
 - Bei technischer Interpretation werden keine schwerwiegenden Fehler verursacht
 - (da man eine benachbarte Zahl erhält)

- Gray-Code
 - Code, der zur Kodierung von Binärzahlen verwendet wird
 - Zwei aufeinanderfolgende Codewörter unterscheiden sich immer nur um ein Bit

Dezimal	Gray (Binär)	Dezimal	Gray (Binär)	Dezimal	Gray (Binär)
1	0001	6	0101	11	1110
2	0011	7	0100	12	1010
3	0010	8	1100	13	1011
4	0110	9	1101	14	1001
5	0111	10	1111	15	1000

Kapitel 3: Information und Quellencodierung – Grundbegriffe

Gray-Code

- Anwendungsbereich
 - Binäre Ausgabe von Werten von A/D-Wandlern (A/D = Analog/Digital) zur Vermeidung unsinniger Zwischenwerte beim Auslesen
 - → Verwendung zur Übertragung digitaler
 Signale über analoge Kanäle

- Sollen Werte in Gray-Zahlen arithmetisch weiterverarbeitet werden,
 - müssen diese zuerst in Dualzahlen umgewandelt werden

- andere Zielsetzung:
 - nutze nicht alle möglichen Codewörter
 - nicht genutzte Codes: Fehlerwörter

.(er	00	01	11	10
	00	0000	1 0001	2 0011	3 0010
	01				4 0110
	11	8 1100	7 1101	6 1111	5 1110
	10	9 1000			

- Beispiel:
 - 10 Codewörter, 6 Fehlerwörter
 - 1-Bit-Fehler
 - erzeugt mit hoher Wahrscheinlichkeit Codewort eines benachbarten Werts oder ein Fehlerwort
 - ergibt nur mit geringer Wahrscheinlichkeit Codewort eines wesentlich verschiedenen Werts
 - Fehlerbehandlung (bei Entstehung eines Fehlerworts)
 - Günstigste Strategie:
 Korrektur auf das nächstliegende Nutzwort