

6

ลำดับที่ 115

ใบบันทึกผลการทดลองที่ 2 ลูกตุ้มอย่างง่าย กราฟเส้นตรง และการวิเคราะห์เชิงสถิติ

ชื่อผู้ทดลอง ปุ่มมูพัฒน์ ธุรเกียรติกำจร เลขประจำตัว 6432106821

การวิเคราะห์เชิงกราฟของการแกว่งของลูกตุ้มเพื่อหาความเร่งโน้มถ่วงของโลก

ครั้งที่	ความยาวเชือก $\it l$	เวลาของการแกว่ง	คาบ T	T^2
	(cm)	10 รอบ (s)	(s)	(s²)
1	50.0	14.25	1.425	2.031
2	57.2	15.40	1,540	2.47 2
3	62.8	16.07	1.607	2.582
4	68.8	16.56	1.656	2,742
5	73.6	17.19	1.719	2.955
6	79.2	17.75	1.775	3.151
7	84.1	18.32	1.837	3.75 b
8	89.2	19.06	1.906	ŋ, b 33

เขียนกราฟระหว่าง $T^{\,2}$ (แกนตั้ง) และ l (แกนนอน) และ<u>แสดงวิธีทำ</u>เพื่อหาความเร่งโน้มถ่วงจากความชั้น ของกราฟ

จากสมการดาขการแกร้ว T: เก
$$\frac{L}{9}$$
 $T^{\frac{1}{2}} \cdot 4\pi^{\frac{2}{2}} \frac{L}{5}$
 $T^{\frac{1}{2}} \cdot (4\pi^{\frac{2}{2}}) \cdot (24\pi^{\frac{2}{2}})$
 $T^{\frac{1}{2}} \cdot (4\pi^{\frac{2}{2}}) \cdot (24\pi^{\frac{2}{2}}) \cdot (4\pi^{\frac{2}{2}}) \cdot$

ดังนั้น ความชั้น = <u>3.81</u> หน่วย <u>รั้.m </u>ความเร่งโน้มถ่วง g = 10.1 หน่วย $m \cdot 5^{-2}$

คำถาม หากเปลี่ยนแกนนอนของกราฟจากค่า l เป็น l+r โดย r คือรัศมีของลูกตุ้ม กราฟที่ได้จะมีความชั้น หรือจุดตัดเปลี่ยนแปลงไปอย่างไร จงอธิบาย

นาก แวก ลกราประหว่าง ใจรายจะ T ความชั้นก็จะยังมีค่าเท่าเดิม จาก ลมการ T: (4 m) (ใจรา) เม่น ลือ 4 m เก่า จุด ตัด 11กน ๆ จะเปลี่ยน เป็น Co, o) แทน

การวิเคราะห์เชิงสถิติของข้อมูลที่มีความสัมพันธ์แบบเชิงเส้น

ให้คัดลอกข้อมูลจากตารางที่แล้วลงตารางต่อไปนี้แล้วกรอกข้อมูลในช่องว่างที่เหลือ

ข้อมูลที่	<i>x</i> (<i>l</i> ในหน่วย cm)	<i>y</i> (ค่า <i>T</i> ²)	x^2	xy
1	50.0	2.031	2500	101.55
2	57.2	2.97 2	327 <u>1</u> .84	135,678
3	62.8	2.582	ን	162.15
4	68.8	2,742	4733.44	188.65
5	73.6	2.955	5416.96	217.488
6	79.2	3.151	6272.64	2 49 . 559
7	84.1	<i>ዓ.</i> ን <i>ऽ</i>	7072.81	287.24
8	89.2	ŋ, b33	7956.64	324,064
ผลรวม	$\sum x = 564.9$	$\sum y = ii.8ii$	$\sum x^2 = 41168.20$	$\sum xy = 1661.38$

<u>แสดงวิธีทำโดยละเอียด</u>เพื่อหาความชันของข้อมูลนี้จากสมการที่ (2.5)

$$m = \frac{N\left(\sum_{i=1}^{N} x_{i} y_{i}\right) - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{N\left(\sum_{i=1}^{N} x_{i}^{2}\right) - \left(\sum_{i=1}^{N} x_{i}\right)^{2}} = \frac{8(1661.38) - (564.9)(22.822)}{8(41168.20) - (564.9)^{2}} = 0.03898 \quad \text{s.cm}^{1}$$

<u>แสดงวิธีทำ</u>เพื่อหาค่าความเร่งโน้มถ่วงของโลก (g)

$$910 \quad T = 20 \int \frac{L}{9} \qquad 9: \tilde{l} = T = \left(\frac{4\pi^{2}}{5}\right) l + \left(\frac{4\pi^{2}}{9}\right) r \qquad 910 \quad Slope = \frac{4\pi^{2}}{9}$$

$$T^{2} = 4\pi^{2} \cdot \frac{L}{9} \qquad unnunly 2000 \text{ solutions} \qquad 9 = \frac{4\pi^{2}}{5 \log e}$$

$$T^{3} = \left(\frac{4\pi^{2}}{9}\right) (24\pi^{2}) \qquad Slope = \frac{4\pi^{2}}{9} \qquad 9 = \frac{4\pi^{2}}{5 \cdot 898} \approx 10.13 \text{ m·s}^{-2}$$

