Bootstrapping
•
Construct un biased standard errors and confidence intervels
X= ZX,,, X, 3 id F(0)
X-1/1,, X-3 2 + (0)
6 - 0 2 N(0,1)
$G(\delta)$
95% C O + Z /1 5/1
O > E _{d/1} TA
/
contains all the information to estimate F, so long as n->=
estimate +, so 1.0hg =13 11-1
F> F
7
Ostinator of the distribution Function

What is a good estimator for F?

to obtain replicates TF = (01, 02, ..., OB)

B=n

The Constraint of the planetral distribution of
$$\theta$$

SE($\hat{\theta}$) = $\begin{bmatrix} 1 & 2 \\ 3 & (\hat{\theta}^{\dagger}, -\hat{\tau}^{\ast})^2 \end{bmatrix}$

The second of θ

(1-d) 100%

(1-d