Question 1

	x	P(x)	Q(x)	$P(x) \iff Q(x)$
(a)	0	F	F	T
	2	F	\mathbf{F}	${ m T}$
	3	Т	F	\mathbf{F}
	4	Т	${ m T}$	${ m T}$
	6	Т	Т	${ m T}$

- (b) The truth value for $\forall x \in \{0, 2, 3, 4, 6\} P(x) \iff Q(x)$ is false.
- (c) The truth value for $\exists x \in \{0, 2, 3, 4, 6\} P(x) \iff Q(x)$ is true.

Question 2

- (a) 20 is a member of the set of the integer multiples of 4.
- (b) 3.14 is a member of the set of the rational numbers or π is a member of the set of the real numbers.
- (c) There exists an integer n in the set of natural numbers such that the square root of n is not a member of the set of real numbers.

Question 3

- (a) For all integers n, $n^2 4n + 3 \ge 0$.
- (b) There exists a rational number x such that $x \ge 100$.

Question 4

- (a) There exists an Aggie who does not follow the Aggie Honor Code.
- (b) All students either do not live on campus or is a math major.
- (c) There exists an integer m such that m^2 is even and $m^3 1$ is not divisible by 4.

Question 5

Converse: If f is continuous at 0, then f is a linear function.

Contrapositive: If f is not continuous at 0, then f is not a linear function.

Inverse: If f is not a linear function, then f is not continuous at 0.

Question 6

- (a) For all real numbers x, there exists an integer n such that n is less than or equal to x and x is less than n+1.
- (b) $(\exists x \in \mathbb{R})(\forall n \in \mathbb{Z})(n > x \ge n+1)$

Question 7

- (a) If x is a multiple of 6, then x is even and is not a multiple of 4. **Negation:** There exists a multiple of 6 such that it is not even or it is a multiple of 4.
- (b) If x is an even integer, then x^2 is divisible by 4. **Negation:** There exists an integer x such that x is even and x^2 is not divisible by 4.

Question 8

Proof. Let n be an odd integer. By definition of the odd integers, there exists an integer k such that n=2k+1. Then

$$n^{2} + 1 = (2k + 1)^{2} + 1$$
$$= 4k^{2} + 4k + 2$$
$$= 2(2k^{2} + 2k + 1).$$

Since the integers are closed under addition and multiplication, $2k^2 + 2k + 1$ is an integer. Therefore, $n^2 + 1 = 2(2k^2 + 2k + 1) = 2l$ for some integer l. The even integers are defined as integers that can be written as twice an arbitrary integer. Since $n^2 + 1$ is twice an arbitrary integer l, $n^2 + 1$ is an even integer. \square