2 Теория колец

2.6 Делимость в кольцах целостности

Неприводимость и простота

Определение 1. Пусть D - кольцо целостности, $a,b \in D$ - называются ассоциированными, если $a = u \cdot b$, где $u \in D^*$ - обратимые элементы. $a \in D$ называется неприводимым, если $a \notin D^*$ и если $a = b \cdot c$, где $b,c \in D \Rightarrow \begin{bmatrix} b \in D^* \\ c \in D^* \end{bmatrix}$

 $a \in D$ назывется простым, если $a|b \cdot c \Rightarrow \left[\begin{array}{c} a|b \\ a|c \end{array} \right]$

Теорема 1. B кольце целостности всякий простой элемент является неприводимым.

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

Из определения следует $\left[egin{array}{c} a|b\\ a|c \end{array}
ight.$ Пусть $a|b\Rightarrow b=a\cdot t=b\cdot (c\cdot t)\Rightarrow c\cdot t=e\Rightarrow c\in D^*$

Кольцо главных идеалов есть кольцо целостности, в котором каждый идеал имеет вид (a).

Теорема 2. В кольце главных идеалов элемент тогда и только тогда неприводим, когда прост.

Доказательство. Достаточность доказана в предыдущей теореме Докажем необходимость:

Пусть D - кольцо главных идеалов, $a\in D$ - неприводим и $a|b\cdot c$ Рассмотрим $I=\{ax+by\big|x,y\in D\}$ - идеал Пусть I=(d)

 $a \in I \Rightarrow a = d \cdot r, r \in D \Rightarrow \begin{bmatrix} d \in D^* \Rightarrow 1 = ax + by \Rightarrow c = cax + cby \Rightarrow a | c \\ r \in D^* \Rightarrow b \in I \Rightarrow \exists t \in D | b = at \Rightarrow a | b \end{bmatrix}$

Кольцо с единственным разложением на множители

Определение 2. Кольцо целостности D называется кольцом c единственным разложением на множители, если:

- 1. Все ненулевые элементы необратимы
- 2. Разложение единственно с точностью до ассоциирования и порядка

Пемма 1. В кольце главных идеалов строго возрастающая цепочка идеалов $I_1 \subset I_2 \subset \dots$ должна быть стабилизированной, то есть иметь конечную длину.

Теорема 3. Всякое кольцо главных идеалов является кольцом с единственным разложением на множители.

Следствие 1. Пусть F - поле, тогда F[X] - кольцо c единственным разложением на множители.

Евклидовы кольца

Определение 3. Кольцо целостности D называется Евклидовым кольцом, если \exists функция d (мера) $|d:D\setminus\{0\}\to\mathbb{Z}^{\geq 0}$ и обладает следующими свойствами:

1.
$$d(a) \leq d(ab)$$
 для $\forall a, b \in D \setminus \{0\}$

2. Ecnu
$$a, b \neq 0 \in \exists q, r \in D | a = bq + r, \ r \partial e \begin{bmatrix} r = 0 \\ d(r) < d(b) \end{bmatrix}$$

Сравнение:

$$X$$
арактеристика \mathbb{Z} $F[X]$ Bud элементов $a_n 10^n + ... + a_1 10 + a_0$ $a_n X^n + ... + a_1 X + a_0$ M ера d $d(a) = |a|$ $d(f(X)) = \deg f$ \mathbb{Z}^* a 0 обратим $\Leftrightarrow |a| = 1$ f 0 обратим $\Leftrightarrow \deg f = 0$ A лгоритм деления $a = bq + r, o \le r < |b|$ $f(X) = q(X)g(X) + r(X), \begin{bmatrix} 0 \le \deg r < \deg g \\ r(X) = 0 \end{bmatrix}$

Кольцо главных идеалов $\forall \neq 0 \ I = (a), |a| \neq 0 - min \ \forall \neq 0 \ I = (f(X)), \deg f - min$ Нет нетривиальных множителей, каждый элемент единственным образом раскладывается на множители.

Теорема 4. Любое евклижово кольцо является кольцом главных идеалов.

Доказательство. D - евклидово кольцо, $I(\neq 0) \subset D$ - идеал Среди всех неравных элементов в I рассмотрим a|d(a) - минимальна

Если
$$b \in I$$
, то $\exists q, r \in D \big| b = aq + r$, где $\begin{bmatrix} r = 0 \\ d(r) < d(a) \end{bmatrix} \Rightarrow r = b - aq \Rightarrow r \in I$ Так как $d(r) \geq d(a) \Rightarrow r = 0 \Rightarrow b = aq \Rightarrow b \in (a) \Rightarrow I \subset (a) \Rightarrow I = (a)$

Замечание 1. \exists кольца главных идеалов, которые не являются евклидовыми.

Следствие 2. Любое евклидово кольцо является кольцом с единственным разложением на множители.

Теорема 5. Если D - кольцо c единственным разложением на множители, то D[X] - тоже.