

Monitoramento de estado de metragem cúbica de hidrômetro

Documento de Visão

1. Índice

1.	Índice	. 2
3.	Objetivo Necessidade do Negócio	. 3
4.	Descrição do Escopo	. 3
5.	Premissas	. 3
	Restrições	
7.	Equipe	. 4
8.	Equipe	. 4
9.	Riscos	. 5
10.	Cronograma de Marcos Resumido	. 6
11.	Orcamento Resumido	. 6

2. Objetivo

A criação de um sistema de software capaz de registrar via sensor de vazão de água os valores de metragem cúbica de hidrômetros e envia-los através do protocolo HTTP para um servidor local que mantenha um registro geral, e possibilite a consulta e visualização de tais valores pelo usuário, bem como a definição de Alertas para limites pré-definidos.

3. Necessidade do Negócio

Ao verificar-se o processo de aferição dos valores de consumo de água, onde são feitas visitas mensais para coleta do valor mensurado pelo hidrômetro, e posteriormente, calculando o valor da diferença entre o número coletado e aquele que foi registrado no mês anterior, assim obtemos o resultado: consumo mensal. Atualmente a coleta das informações é feita manualmente por um leiturista da companhia de fornecimento de água e esgoto da região, no qual realiza visitas mensais para essa captação, dessa forma, tornando o proprietário da residência onde o hidrômetro se mantém instalado, vulnerável a falhas, como o vazamento de agua, ou o consumo excessivo, que em razão da demora para a nova coleta, torna o diagnóstico do problema tardio, aumentando a despesa.

Dessa forma, visamos atingir o proprietário de uma localidade, onde existe a instalação de um hidrômetro, trazendo maior controle do consumo por meio de um sistema na qual possa ter melhor "visão" do seu consumo de água antes que sua conta chegue.

4. Descrição do Escopo

Elaborar um sistema capaz de realizar a leitura do dado mensurado pelo hidrômetro por meio de um sensor de fluxo de água (Water Flow Sensor Model YF-S201), acoplado a um Raspberry Pi3 B+, com o intuito de transmitir a informação e monitorar o seu estado de metragem cúbica. O sistema é baseado em arquitetura REST, juntamente com a biblioteca PiGpio para leitura dos pulsos gerados pelo sensor.

Posteriormente, com a tecnologia supramencionada seria possível realizar a visualização em tempo real do gasto de água ou visualizar seu histórico, além do recebimento de alertas de consumo e de possíveis surtos (índices discrepantes de consumo).

Em suma, a ideia inicial do projeto é elaborar um protótipo capaz de captar os dados do consumo de água e registrá-los, permitindo ao proprietário monitorar a cada momento o status do consumo dos hidrômetros cadastrados e assim possibilitando uma análise mais rica referente ao gasto em um período especifico, gerenciando e recebendo os alertas quando identificado um valor aferido fora do padrão de gasto, ou de possíveis problemas no encanamento da rede residencial.

5. Premissas

- Haverá reuniões quinzenalmente, podendo ser via conferência ou presenciais, conforme necessidade e complexidade da situação;
- Disponibilidade de rede local LAN e acesso à Internet;
- O produto só poderá ser utilizado após a realização de todos os testes necessários;

- Tarefas serão divididas conforme competência de cada membro, mas sempre tendo um integrante responsável pela coordenação do projeto;
- Todos os membros da equipe deverão permanecer até o final do projeto, salvo se houver problemas pessoais que ocasionem a saída do integrante.

6. Restrições

- Três semestres para desenvolvimento, iniciando no 2º semestre de 2019;
- O projeto deve estar pronto até 30 dias antes da entrega final do projeto;
- O projeto por conter parte de Hardware física, ficará na responsabilidade de um dos integrantes do grupo;
- Todos os membros do grupo deverão estar de acordo com as definições do projeto.

7. Equipe

- Alef dos Santos
 - Graduando em Sistemas de Informação;
 - o Responsável por modelagem e implementação do cliente com GUI.
- Osmar de Morais
 - o Graduando em Sistemas de Informação;
 - Responsável por modelagem, implementação do sistema do dispositivo de leitura, do servidor Java e a comunicação REST.

8. Especificações Técnicas

- Linguagem de programação: Java, Python e C#.
- Banco de Dados: PostgreSQL e LiteDB.
- Plataforma de desenvolvimento: NetBeans, PyCharm, Visual Studio e Visual Studio Code.
- Sistemas Operacionais: Linux e Windows.
- Arquitetura: REST.
- Ferramentas de Desenvolvimento: Git e GitHub

9. Riscos

Risco #01 Indisponibilidade de Infraestrutura	Probabilidade 0% a 25%	Impacto Severo	Prioridade Crítica
Descrição: O equipamento pode ser danificado, ocorrer falha no fornecimento de energia.			
Plano de Ação: Manter redundância de equipamentos. Manter uma fonte de energia paralela.			

Diminuição na 51% a 75%	Moderado	Média	
disponibilidade de horas			
da equipe			

Descrição: Os membros da equipe podem conseguir estágios/contratos de tempo integral, diminuindo assim as horas disponíveis ao projeto.

Plano de Ação: Controlas as atividades do projeto conforme a disponibilidade de tempo da equipe e se, possível, se adiantar ao cronograma.

Risco #03	Probabilidade	Impacto	Prioridade
Necessidade de	51% a 75%	Moderado	Alta
alterações na			
documentação			

Descrição: No decorrer do desenvolvimento, podem ocorrer alterações no projeto, como: novas funcionalidades, mudanças nos requisitos etc. Necessitando que sejam feitas as devidas correções na documentação.

Plano de Ação: Fazer uma abstração detalhada e em acordo com as necessidades do cliente.

Risco #04	Probabilidade	Impacto	Prioridade
Saída de membros da	0% a 25%	Severo	Alta
equipe			

Descrição: Caso um ou mais membros saiam da equipe, seja por motivo profissional ou pessoal, acarretaria o acumulo de tarefas para os membros restantes e possivelmente atrasos no cronograma.

Plano de Ação: Analisar previamente o cronograma de entregas, realizar nova distribuição de tarefas e objetivos de acordo com cada integrante, e adiantar o máximo possível das metas definidas até 30 dias antes da entrega do projeto.

Risco #05	Probabilidade	Impacto	Prioridade
Mudança de	0% a 25%	Leve	Baixa
plataforma/software de			
apoio			

Descrição: Por motivo de desempenho/funcionalidade, pode ser necessária a mudança de plataforma ou software usado no projeto, causando algum atraso para a adaptação do mesmo.

Plano de Ação: Analisar previamente plataforma e softwares que podem ser utilizados, tendo assim um melhor conhecimento para tomar uma decisão sobre quais utilizar.

Risco #06	Probabilidade	Impacto	Prioridade
Falha no algoritmo de	0% a 25%	Moderado	Alta
leitura no hidrômetro.			
Descrição: Dificuldade na captação do valor registrado pelo sensor ou dificuldade na recepção dos pulsos			

Plano de Ação: Analisar previamente os possíveis pontos onde podem trazer eventuais problemas no sensor, a fim de prevenir estes cenários, caso necessário retroceder ao estado do projeto até o momento em que estava funcional.

10. Cronograma de Marcos Resumido

Considerando o planejamento do projeto de acordo com as informações publicadas neste documento, os marcos iniciais do projeto são:

Marco	Data
Início do Projeto	05/08/2019
Entrega do Documento de Visão	26/08/2019
Diagrama de Atividades de Negócio	29/08/2019
Requisitos e Regras de Negócio	23/09/2019
Diagrama de Casos de Uso geral do sistema	26/09/2019
Diagrama de classes geral do sistema	21/10/2019
MER geral do sistema	24/10/2019
Especificação dos 3 casos de uso implementados	14/11/2019
Diagrama de sequência dos casos de uso implementados	18/11/2019
Código funcional de 3 casos de uso (Login + 2 CRUDs)	25/11/2019
Documentação revisada conforme notas das entregas anteriores	28/11/2019
Diagrama de Arquitetura do Sistema	24/04/2020
Diagrama de Componentes do Sistema	20/05/2020
Entrega do Projeto	15/11/2020

11. Orçamento Resumido

Apresentar um orçamento reduzido considerando:

Custos fixos

	1 Hidrômetro	R\$72,00
	2 Raspberry Pi 3 B+	R\$580,00
	1 Water Flow Sensor (YF-S201)	R\$60,00
	1 Roteador com Wi-fi	R\$190,00
	Remuneração Programadores	R\$118.800,00
Orçamento para riscos		
	1 Hidrômetro	R\$72,00
	1 Raspberry Pi 3 B+	R\$290,00
	1 Water Flow Sensor (YF-S201)	R\$60,00
	1 Roteador com Wi-fi	R\$190,00
Gasto Total		R\$120.314,00