The inventions related to the following claims of the present application could have been easily invented by a person with ordinary knowledge of technology in the field to which the invention belongs based on the inventions recited in the publications below, which had been distributed in Japan or abroad prior to the application, and therefore cannot receive a patent according to the stipulations of Article 29, Paragraph 2 of the Japan Patent Law.

Note (For a list of the cited literature, see the List of Cited Literature)

List of Cited Literature

- 1. Japanese Unexamined Patent Application Publication H1-291540
- · Claims: 1
- · Cited Literature: 1
- Remarks:

Cited Literature 1 describes a cross-polarized wave interference compensation circuit containing a local phase difference detector which detects the phase difference between local signals outputted from two receiving local oscillators, and a phase control means which performs control, based on the phase difference signal outputted from the local phase difference detector, such that the base band signal and each XPIC reference signal assume the same phase. Thus, no remarkable difference is found between the invention as per Claim 1 of the present application and the art described in Cited Literature 1.

- Claims: 2
- · Cited Literature: 1
- Remarks:

The constitution described in Claim 2 is found to be the same as the constitution described in Cited Literature 1, Figure 4, etc.

- · Claims: 4
- · Cited Literature: 1
- Remarks:

Cited Literature 1, Figure 6, etc. is found to describe the same transversal filter as Claim 4 of the present application.

整理番号:51105811 発送番号:454559 発送日:平成15年12月24日

拒絕理由通知書

特許出願の番号

特願2000-350876

起案日

平成15年12月19日

特許庁審査官

高野 洋

9647 5K00

特許出願人代理人

鈴木 康夫(外 1名) 様

適用条文

第29条第2項

この出願は、次の理由によって拒絶をすべきものである。これについて意見があれば、この通知書の発送の日から60日以内に意見書を提出して下さい。

理 由

この出願の下記の請求項に係る発明は、その出願前日本国内又は外国において 頒布された下記の刊行物に記載された発明に基いて、その出願前にその発明の属 する技術の分野における通常の知識を有する者が容易に発明をすることができた ものであるから、特許法第29条第2項の規定により特許を受けることができな い。

記

(引用文献等については引用文献等一覧参照)

引用文献等一覧

- 1. 特開平1-291540号公報
- ·請求項:1
- ・引用文献等:1
- · 備考:

引用例1には、2つの受信ローカル発振器から出力されるローカル信号間の位相差を検出するローカル位相差検出器と、ローカル位相差検出器から出力される位相差信号によってベースバンド信号と各XPIC参照信号の位相が同一となるように制御する位相制御手段を備えた交差偏波間干渉補償回路が記載されているから、本願の請求項1に係る発明は、引用例1に記載の技術と格別な差異がないと認められる。

- ·請求項:2
- ・引用文献等:1
- 備考:

2/F

請求項2に記載の構成は、引用例1第4図等に記載の構成と同様であると認められる。

·請求項: 4

· 引用文献等: 1

• 備考:

引用例1第6図等には、本願の請求項4と同様のトランスバーサルフィルタに ついて記載されていると認められる。

先行技術文献調査結果の記録

調査した分野 IPC第7版H04J11/00

• 先行技術文献

この先行技術文献調査結果の記録は、拒絶理由を構成するものではない。

この拒絶理由通知の内容に関するお問い合わせ、または面接のご希望がございましたら下記までご連絡下さい。

特許審査第四部デジタル通信 高野 洋 TEL. 03(3581)1101 内線 3555 FAX. 03(3501)0699

19日本国特許庁(JP)

⑩特許出願公開

② 公 開 特 許 公 報(A) 平1-291540

®Int. Cl.⁴

識別記号

庁内整理番号

❸公開 平成1年(1989)11月24日

H 04 J 11/00

B-8226-5K

審査請求 未請求 請求項の数 1 (全8頁)

会発明の名称 復調回路

②特 願 昭63-120517

22出 願 昭63(1988)5月19日

⑩発 明 者 青 野 芳 民 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

⑫発 明 者 岩 松 隆 則 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

⑫発 明 者 斉 藤 正 勝 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

⑪出 顋 人 富士通株式会社 神奈川県川崎市中原区上小田中1015番地

個代 理 人 弁理士 青木 朗 外4名

明 細 書

1. 発明の名称

復興回路

2. 特許請求の範囲

前記第1および第2再生機送波(fci.fcz) の相互間の周波数差 (Δf) を検出する周波数差 検出部 (31) を有し、

前記第1系統(10)内において、前記第1再生 機送波(「・・・)に同期したクロック(CKI)で前 記第2復調部 (21) からの前記第2復調信号 (S21) をディジタル変換する第1副識別部 (13) と、該第1副識別部 (13) からの第1副機別信号 (S13) に対し前記周波数差 (Af) に応じた補償を加える第1補償部 (14) と、前記第1復調データ (DT1) に該第1補償部 (14) の出力を加えて前記第2系統 (20) から前記第1系統 (10) への干渉成分を除去する第1加算部 (15) を設け、

前記第2系統(20)内において、前記第2再生 搬送波(fcz)に同期したクロック(CK2)で前 記第1復調部(11)からの前記第1復調信号 (S11)をディジタル変換する第2副識別部(23) と、該第2副識別部(23)からの第2副識別信号 (S23)に対し前記周波数差(△f)に応じた補 價を加える第2補償部(24)と、前記第2復調データ(DT2)に該第2補償部(24)の出力を加え て前記第1系統(10)から前記第2系統(20)へ の干渉成分を除去する第2加算部(25)を設ける ことを特徴とする復調回路。

3. 発明の詳細な説明

〔低 度〕

第1および第2中間周波によりそれぞれ変調さ れた送信側からの第1および第2変調信号を受信 し、それぞれ第1および第2再生儀送波を用いて 復調を行う第1および第2復調部ならびにその復 調された第1および第2復調信号より第1および 第2復調データをそれぞれ再生する第1および第 2 主機別部を有する第1および第2系統に区分さ れてなる復調回路に関し、

ディジタル化に適し、簡単な構成で実現できる 復調回路を提供することを目的とし、

前記第1および第2再生機送彼の相互間の周波 数差を検出する周波数差検出部を有し、前記第1 系統内において、前記第1再生搬送波に同期した クロックで前記第2復調部からの前記第2復調信 号をディジタル変換する第1副識別部と、該第1 副識別部からの第1副識別信号に対し前記周波数 差に応じた補償を加える第1補償部と、前記第1 復調データに該第1補償部の出力を加えて前記第

2系統から前記第1系統への干渉成分を除去する 第1加賀部を設け、前記第2系統内において、前 記第2再生撥送波に同期したクロックで前記第1 復調部からの前記第1復調信号をディジタル変換 する第2副識別部と、該第2副識別部からの第2 馴識別信号に対し前記周波数差に応じた補償を加 える第2補償部と、前記第2復調データに該第2 補償部の出力を加えて前記第1系統から前記第2 系統への干渉成分を除去する第2加算部を設ける ように構成する。

(産業上の利用分野)

本発明は、第1中間周波により変調された送信 側からの第1変調信号を受信し、第1再生機送波 を用いて復興を行う第1復調部ならびにその復調 された第1復調信号より第1原データを再生する 第1主識別部を有する第1系統と、第2中間周波 により変調された前記送信倒からの第2変調信号 を受信し、第2再生搬送波を用いて復調を行う第 2 復興部ならびにその復調された第2 復調信号よ

り第2原データを再生する第2主識別部を有する 第2系統とに区分されてなる復興回路に関する。

例えば多値 Q A M 等のディジタル無線伝送シス テムでは周波数の利用効率を高めるため種々の手 法が試みられている。1つにはそのQAMの多値 数を4→8→16…の如く増加させる方法がある。 また第1系統と第2系統に区分して伝送するとい う方法もある。本発明はこの後者の方法を前提と するものである。例えば第1系統として V (vertical) 偏波を用い、第2系統として H (horizontal) 偏波を用いるというものであり、 いわゆるCO-CHANNEL伝送を形成する。別の態様と しては、VまたはHのいずれかの片偏波を用い、 その中で第1系統として第1の周波数帯域を用い、 第2系統として第2の周波数帯域を用い、かつこ れら第1および第2の周波数帯域は、一方の高周 波領域と他方の低周波領域とが重なりあう程近接 している。なお上記いずれの場合であっても、上 記第1系統と第2系統はそれぞれ「(In-phase)チ ャネルとQ(quadrature)チャネルから構成される。

また、以下の説明は、VおよびH偏波をそれぞれ 第1および第2系統とするCO-CHANNEL伝送を主と して例にとる.

〔従来の技術〕

上記CO-CRANNEL伝送等では、第1系統および第 2.系統間の干渉、すなわちV偏波のH偏波への干 渉ならびに H 偏波の V 偏波への干渉が問題となる。 この干渉の度合は例えばフェージングの発生によ って急に高くなり、データ伝送の誤り率を高くし てしまう。

このような一方の系統から他方の系統への干渉 成分を除去するための手段が必要となる。従来、 この干渉成分除去手段として、いわゆるローカル 問期のもとで実現される手段とローカル非同期の もとで実現される手段が知られている。前者の、 ローカル同期形の手段においては一方の系統のロ ーカル信号の変化(周波数変化)を常に他方の系 統に伝え、両系統のローカル信号を一致させてお く必要がある。このことは逆に言えば一方の系統

のローカル信号に異常が発生したとすると、この 異常は即座に他方の系統に波及し、一瞬のうちに .システムダウンとなってしまう。これはシステム の信頼度を悪化させることになる。したがって本 発明はこのような欠点のない、前述した後者の手 段、すなわちローカル非同期形の手段を前提とす る.

(発明が解決しようとする課題)

上記ローカル非同期形のもとで上記干渉成分を 除去するために、第1復調部を主と副の2系統と し、第2復調部も主と副の2系統とし、それぞれ 副をなす一方の復調部は(主をなす復調部は本来 のもともとある復調部)、他方の受信信号を復調 するものとし、これら副復調部の出力を副識別部 に入力して干渉成分を除去するための補償信号を 生成するという手法を本発明者等が考え出した。 しかしながら、この手法では復調部のハードウェ ア量が倍になり復調回路の小型化が図れない、と いう問題が生ずる。さらに、その復興部は通常ダ イオードミキサによって構成されることからアナ ログ部品が増え、復調回路のLSI化に支障とな るという問題が生ずる。

本塾明は、ディジタル化に適し、簡単な構成で 実現できる復調回路を提供することを目的とする ものである。

(課題を解決するための手段)

第1団は本発明に係る復調回路の原理構成を示 す図である。本図において、復調回路30は、第 1系統10(上半分)と第2系統20(下半分) とに区分され、例えばCO-CHANNEL伝送であれば第 1系統10はV偏波系、第2系統20はH偏波系 である。原データDATAlは、送信側SNDにおい て、第1変調器MOD1により第1中間周波(iri で 変調され第1変調信号SLとして、受信側である 復調回路30の第1系統10に印加される。同様 に、原データDATA 2 は、送信側SNDにおいて、 第2変調器HOD2により第2中間周波(irz で変調 され第2変調信号S2として受信側である復興回

路30の第2系統20に印加される。

復調回路30内にはまず周波数差検出部31が 設けられる。周波数差とは、第1および第2系統 10,20の第1再生搬送波 [こと第2再生搬送波 【 εξとの差 (Δ 1) のことである。なお、これら 機送波の再生手法は従来どおりであり、図示を省 略する。さらに、第1系統10内においては、ま ず第1復調部(DEM) 11が設けられ、復調された第 1復調信号S11は第1主識別部(A/D)12に印加さ れる。該識別部12は A/D(Analog/ Digital) コンバータであり、ここで第1復綱データDT1を 生成する.

上記の第1系統10の構成は第2系統20につ いても同様であり、第2復調信号S21を出力する 第2復調部21と、第2復調データDT2を生成す る第2主識別部22とがある。なお、第1および 第2主識別部12,22はそれぞれ第1および第2ク ロックCK1,CK2にて識別動作を行うが、これら クロックはDATA 1 . DATA 2 にそれぞれ同期したク ロックである。このためにクロック再生部(BTR: Bit Timing Recovery) 1 6 および 2 6 があるが、 これらは公知のものである。

本発明の特徴的構成は、第1系統10内におい て、第2復調部21からの第2復調信号S21を第 1クロックCK 1でディジタル変換する第1副識別 部13と、その出力である第1副畿別信号513に 対し前記周波数差△「に応じた補償を加える第1 補償部14と、第1補償部14の出力を第1復調 データDT1に加える第1加算部15である。

上記の構成は第2系統20についても全く同様 であり、第2クロックCK2にて、他の系統からの 第1復調信号 S11を識別する第2副識別部23と、 その第2割識別信号S23に対し周波数差△(に応 じた補償を加える第2補償部24と、この補償出 力を第2副識別部23からの第2復調データDt2 に加える加箕部25とを備える。加箕部15およ び25の出力に所定の処理(図示せず)を加えて、 再生データDATA 1 およびDATA 2 を得る。

第2系統20から第1系統10への干渉を除去 するために、第2系統20での復過信号、すなわ ち第2復調信号S21を、第1系統10内に導入し、 第1主識別部12とは別の第1創識別部13でそ の第2復調信号S21の復調データをS13として得 る。この復調データS13は第1系統10内のクロ ックCKlで得られたものであり、本来の復調デー タDT1に含まれる、第2系統20からの干渉成分 に等しい。ところが現実にはこの干渉成分 (DT1) に含まれるもの) は、第1復調データS13と完全 には一致しない。なぜなら、第1副識別部13に 入力される、第2系統20からの第2復調信号 S21は第2系統20に固有の再生機送波(cxで復 調されたものだからである。なお一般的には第1 および第2再生搬送波〔こ、〔この周波数が完全 に一致することはあり得ず、例えば数 100Hz程度 のずれは免れない。これが前述の周波数差(Δſ)

そこで、この周波数差41をもって、第2系統

20の座標系で表された第1副識別信号S13を、第1系統10の座標系で表された第1副識別信号、すなわち補償信号に変換する。この座標変換は第1補償部14で行われ、第1加算部15で第1復調データDT1に加えて第2系統からの干渉成分を除去する。ここに座標系とは、直交する既述の!チャネルおよびQチャネルで規定される座標系を意味する。

上記の構成は第2系統20においても全く同様 に適用される。

かくして既述した、復調部のハードウェア量の 増大を伴うことなく、また I C 化が容易な復調回 路が実現される。なぜなら副識別部13.23,補償 部14,24,加算部15.25は簡単なロジック回路の みで構成できるからである。

(実施例)

第2図は第1図における送信側の一例を示す図 である。ただし送信側SNDそのものには本発明 の特徴はない。本図中の原データDATA1、DATA2、

変調器(MOD1・MOD2)については既に述べたとおりであり、変調器からの信号は、アップコンバータ(ローカル信号 「si・(si)をなす IF(中間周波)→μ波(マイクロ波)変換器および高出力増幅器 (HPA)を通してアンテナ ANTより受信側に送信される。なお、MOD1およびMOD2はそれぞれ Iチャネルおよび Qチャネルの直交信号を処理する。

第3図は本発明に係る復調回路の詳細例を示す図である。アンテナANTで受信された変調信号(第2図のS1,S2)はローノイズアンプ(LNA)41.51にそれぞれ印加さた後、ダウンコンパータ(ローカル信号 f a)をなすμ→ I F 変換器41.52で中間周波信号となる。これより後段の構成は第1図の構成と実質的に同じである。なお、本実施例では既述の第1および第2系統(10,20)として V 偏波系と H 偏波系を用いた場合を示す。

第1図の復調回路30で示した第1補償部 (COM) 14は第3図中、座標回転器(ROT) 44および 45で示される。第2補償部24についてもROT 54 および55で実現される。なお、ROTの具体例は 後述する。

ROT 44および5 4 の各後段には干渉雑音キャンセラ(INC:Interference Noise Canceller) 4 5 および5 5 が設けられ、これらを通して加算部1 5 および2 5 にそれぞれ入力される。なお、このINCの構成は通常のトランスパーサル等化器とほぼ同じものである。またトランスパーサル等化器は第 3 図中EQL 43および5 3 として、主識別器(A/D)12および2 2 と加算部15 および25 との間にそれぞれ挿入される。

第4図は復調回路内の周波数差検出部の具体例を示す図である。周波数差検出部31は、再生機送波「ciおよび fczの周波数差 Δ fを検出し、かつこれを次段の回路に適した形で、例えば sin'の信号および cosθ信号として第3図の座標回転器(ROT) 44,54に入力する。 sinθおよび cosθは、リードオンリーメモリ(ROM) 71および72と、これらメモリをアクセスするためのアドレスを出力するアップ/ダウン (U/D) カウンタ70とに

より生成される。すなわち、メモリ71.72および カウンタ70は、いわゆる無限移相器を形成する。

上記「c:および「c:の周波数差 Δ(はミキサ 6 4 のピート信号として出力され、コンパレータ (CMP) 65においてディジタル信号とした後、週間 3 (66 , 67 , 68) を経て、カウンタ 7 0 のクロック協子 C L K へ印加される。参照番号 6 6 は同間 数 (f) → 電圧 (V) 変換器、6 7 は P 倍の掛算器、6 8 は V → 「変換器である。この通俗器は、Δ「が数 100Hzと小さいことに鑑み、分解能を上げるために用いられる。 P は、カウンタ 7 0 の 桁数がm であるとすると (m ピットカウンタ)、P = 2 * である。

かくして、周波数差 A f の変動に追従して座標系の回転量を sin θ 信号および cos θ 信号として出力する。この場合、その座標系の回転が右まわりか又は左まわりかを決める必要があるが、そのために、カウンタ 7 0 のアップ/ グウン (U/D)制御入力にコンパレータ (CMP) 63の出力を印加する。コンパレータ 6 3 は、再生搬送彼 f ci および

「caの大小を比較するものであり、そのために V 偏被系の分周器(1/a)611 および「 / V 変調器 621 が設けられる。 H 偏被系にもそれぞれ対応す る回路部分612 および622 が設けられる。例えば 「ca > 「caならU/Dカウンタ70はアップカウントし、「caく「caならグウンカウントする。

第5図は座標回転器の具体例を示す図である。 座標回転器(ROT) 44 (54) は V 偏波系のもの (44) も、 H 偏波系のもの (54) も同一構成であるので、 V 偏波系について述べると、主識別部 (A \neq 0) 12は、 第1 復調信号 S 11 およびクロック C \neq 1 を受信し、 信号 S 11 は \neq 1 を生成する。なける。なける。ならいには座標系 \neq 2 で規定されたのである。そこで、この信号 S 11 を、り回転されためにのである。そこで、この信号 S 11 を、け回転させた新たな座標系(X、Y)で規定される信号に 変換公式は、

> $X = x \cos \theta + y \sin \theta$ $Y = -x \sin \theta + y \cos \theta$

である。ここに cos θ 、 sin θ は第 4 図の周波数 差検出部 3 I より供給される。第 5 図中、Mは掛 算器、A は和算器、S は引算器である。

第6図はトランスパーサル形フィルタの一般形を示す図であり、第5図における干渉雑音キャンセラ45 (55) の基本構成を、X側(Y側も全く同一)について示す。第6図において、w1, w2. w3…wnはタップ係数であり、各掛算器Mで入力Xと掛算され、さらにこれらの総和が加算器(Σ)より出力される。なお、タップ係数w1. w2…は、第1図の右側(受信側)のDATA~1 およびDATA 2 の形成途中で得られる、いわゆる誤差信号ならびに極性信号をもとに決定される。

第7図は第3図の回路の入力段が異なる形式の場合を示す図であり、第3図におけるダウンコンパータ部分(42.52)におけるローカル信号が「aiおよび(azの如く個別に存在する(第3図では一つの「a で両系統共用)。この形式では、「aiと「azが別々であるから、両系統が同時にダウンする事態は可能性としては極めて少なく信頼

度が高い。第3図の形式では (a 1つで両系統共用であるから、 (a の異常によって両系統が同時 ダウンになってしまう。

しかし、第7図の形式によると、既述の周波数 差 Δ 「のみならず、「aiと「azの周波数差 Δ 「 ′ も 考慮しなければならなくなる。このような場合 における周波数差検出部は第4図の構成に変形を 加える必要がある。

第8図は他の形式の周波数差検出部の具体例を示す図であり、この検出部81は第4図の検出部31に対し、第7図における「miと「miの周波数差Δ f 'を考慮にいれたものである。すなわち、第4図の回路部分611.621.612.622.63と対応する回路部分を、「miと「miについて、

611 ′ , 621 ′ , 612 ′ , 622 ′ , 63 ′ として設け、かつ、コンパレータ 6 3 および 6 3 ′ からの比較結果(極性と大きさをもつ)の和をとる加算器 8 2 と、第 4 図の回路部分 6 4 と対応する回路部分を、「***」と「****について 6 4 ′ として設け、かつ、ミキサ 6 4 および 6 4 ′ からの差出力(極

性と大きさをもつ)の和をとる加算器 8 3 とが設けられる。動作は基本的に第 4 図の場合と同じである。

(発明の効果)

以上説明したように本発明によれば、ダイオードミキサの如き大形のアナログ部品からなる復興器 (DEM)を増やすことなく、LSI化に通した復調回路が実現される。

4. 図面の簡単な説明

第1図は本発明に係る復調回路の原理構成を示す図、

第2図は第1図における送信側の一例を示す図、 第3図は本発明に係る復調回路の詳細例を示す 図、

第4図は復調回路内の周波数差検出部の具体例 を示す図、

第5図は座標回転器の具体例を示す図、

第6図はトランスパーサル形フィルタの一般形 を示す図、 第7図は第3図の回路の入力段が異なる形式の 場合を示す図、

第8図は他の形式の周波数差検出部の具体例を 示す図である。

図において、

. 10 …第1系統、 11,21…復調部、

12.22…主識別部、13.23…副識別部、

14.24…補償部、 15,25…加算部、

16.26…クロック再生部、

20…第2系統、 30…復週回路、

31…周波数差検出部。

本発明に係る復調回路の原理構成を示す図

第1区

10 · · · 第1系統 20 · · · 第2系統

11,21… 復調部 12,22… 主造別部 13,23… 匈録別部 14.24 · · · 補債部

15.25… 加算部 16,26… クロック再生部

30… 復調回路 31… 周波数差検出部

第 3 図

復調回路内の周波数差検出部の具体例を示す図

第 4 図

座標回転器の具体例を示す図

5 図

_ 7 _349-

トランスパーサル形フィルタの一般形を示す図

第 6 図

第3図の回路の入力段が異なる形式の場合を示す図

第 7 图

他の形式の周波数差検出部の具体例を示す図

第 8 図