Групповой проект. Этап №2

Теплопроводность и детерминированное горения

Горяйнова А.А. Гузева И.Н. Извекова М. П. Алиева М. А. Шошина Е. А.

Российский университет дружбы народов, Москва, Россия

Теплопроводность и детерминированное горение.

Алгоритмы

Цель этапа

- Разработка численных алгоритмов для системы уравнений теплопроводности и химической реакции.
- Реализация явной и неявной разностных схем.
- · Подготовка к численному моделированию на Julia и OpenModelica.

Уравнения системы

• Уравнение теплопроводности:

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} - \frac{\partial N}{\partial t}$$

• Уравнение химической реакции:

$$\frac{\partial N}{\partial t} = -\frac{N}{\tau}e^{-E/T}$$

Разностная сетка и обозначения

- · Пространственная сетка: $x_i = i \cdot h$
- · Временная сетка: $t^n = n \cdot \Delta t$
- Обозначения:
 - $\cdot \,\, T_i^n$ температура в узле i в момент времени t^n
 - · N_i^n концентрация реагента в узле i в момент времени t^n

Явная разностная схема

На основе дискретизации системы уравнений:

$$\Delta N_i = -\frac{N_i^n}{\tau} e^{-E/T_i^n} \Delta t$$

$$T_i^{n+1} = T_i^n + \chi \frac{\Delta t}{h^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n) - \Delta N_i$$

$$N_i^{n+1} = N_i^n + \Delta N_i$$

- Проста в реализации
- Требует двух массивов (старого и нового слоя)
- \cdot Устойчива при $\chi \Delta t/h^2 < 0.5$

Граничные условия

Для краевых точек используется адиабатное приближение:

$$T_0 = T_2, \quad T_{n+1} = T_{n-1}$$

*Неявная разностная схема

 \cdot Основана на использовании T^{n+1} в правой части уравнений:

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \chi \frac{T_{i+1}^{n+1} - 2T_i^{n+1} + T_{i-1}^{n+1}}{h^2} - \frac{N_i^{n+1} - N_i^n}{\Delta t}$$

- Требует решения системы линейных уравнений на каждом шаге времени
- Более стабильна, чем явная

*Метод помечен звёздочкой, так как в рамках учебной реализации он считается более сложным и может быть опущен при первом приближении. Тем не менее, он крайне важен для стабильности при больших шагах времени.

Сравнение схем

Критерий	Явная схема	Неявная схема
Устойчивость	Условная	Безусловная
Сложность	Простая	Требует решений СЛАУ
Производительность	Высокая при малом времени	Зависит от метода

Выводы

- Разработаны две численные схемы: явная и неявная*
- Явная проще, но менее устойчива
- Неявная* стабильна, но требует решения системы уравнений