

Current Topics in Computer Science

Adam Jatowt **Georg Moser** Jan Beutel

https://tcs-informatik.uibk.ac.at

universität innsbruck

Organisation

Schedule

VVCCKI	Octobel 5	WCCKO	NOVEITIBET 21
week 2	October 10	week 9	November 28
week 3	October 17	week 10	December 5
week 4	October 24	week 11	December 12
week 5	October 31	week 12	January 9
week 6	November 7	week 13	January 16
week 7	November 14	final presentations	January 23
		first exam	January 30

week 8

November 21

Times and Places

Lab ("Proseminar"), Group 1 Thursday, 13:45–15:15, HSB 6
Lab ("Proseminar"), Group 2 Thursday, 13:45–15:15, SR 2 (ICT)

October 3

week 1

Organisation

Lecture (VO1)

- more precisely a lecture series, where the Department's groups will present current research topics
- these lectures will take place weekly on Thursday, 11:00–11:45, HS 10

Lab (PS3)

- in the lab you will work in small groups on one of nine topics
- for the start of term, we use the available time and places (Thursday, 11:00–12:30, HS 10 and 13:45–15:15, SR 2 (ICT) to provide overview on the topics
- later, we typically use these time slots as meeting times of the teams or make individiual arrangements

Beginning of Term Schedule (in HS 10/SR 2)

October 3	11:00–12:30	Welcome, Organisation & Streams	
October 10	11:00–12:30 13:45–15:15	Sustainability in Embedded Systems	JB (NES)
October 17	11:00–12:30 13:45–15.15	Sustainability in Programming	GM (TCS)
October 24	11:00–12:30 13:45–15:15	Sustainability with Large Language Models	AJ (DS)
October 31	Intelligent and Interactive Systems	finalisation of student groups	

Lecture Series of Department Groups

(titles will be finalised later)

October 31	Intelligent and Interactive Systems	Justus Piater
November 7		skipped
November 14	Interactive Graphics and Simulation	Matthias Harders ∨ Pascal Knierim
November 21	Distributed and Parallel Systems	Thomas Fahringer
November 28		skipped
December 5	Quality Engineering	tba
December 12	Security and Privacy Lab	Rainer Böhme
January 9	Computational Logic	Aart Middeldorp ∨ René Thiemann
January 16	Databases and Information Systems	Eva Zangerle

Evaluation

the module "Current Topics in Computer Science" consists of two parts:

(i) lecture and (ii) lab with separate evaluations

Lecture

- first exam on January 30, 2025
- multiple choice questions per group

Lab (theme "Sustainability")

- we split the participants into 9 small groups of 4–5 students, each
- your task will then be to work together on this topic throughout the term
- your team project will require
 - small prototype implementation (typically)
 - final presentation
 - 3 short report

universität innsbruck

Questions?

Streams (aka officially "Specialisations")

Electives

- the curriculum offers many electives, but the elective modules 1–6 are special
- you must complete at least three out of these six modules
 - ① Automata and Logic
 - ② Constraint-Solving
 - ③ Cryptography
 - 4 High-Performance Computing
 - ⑤ Optimisation and Numerical Computing
 - 6 Signal Processing and Algorithmic Geometry

- 7.5 ECTS

Streams

option to choose one of three specialisations

	be free, don't stream	30 ECTS
•	Logic and Learning completion of electives marked by ■ strongly recommended	30 ECTS
	Secure and Distributed Computing completion of electives marked by ■ strongly recommended	30 ECTS
	Perception, Interaction and Robotics completion of electives marked by ■ strongly recommended	30 ECTS

Specialization: Logic and Learning

Specialization

Logic and Learning

(EM 7-9)

- Understand the Limitations of Computation
- Reason Inductively and Deductively
- Verify the Correctness of Hardware, Software and Networks

Suggested Base Elective Modules:

Automata and Logic

Constraint Solving

Specialization: Secure and Distributed Computing

Specialization
Secure and Distributed
Computing
(EM 10-12)

Learn how to

- design and develop highly distributed, scalable and reliable applications
- monitor, manage, and optimize resource usage for massive scaling across heterogeneous resources
- make systems trustworthy by not having to trust any one of the parties
- protect privacy and freedom with efficient secure computation

for IoT-Edge-Cloud infrastructures.

Suggested Base Elective Modules:

Cryptography High Performance Computing

Specialization: Perception, Interaction and Robotics

Specialization
Perception, Interaction
and Robotics
(EM 13-15)

- Push the Limits of Interactive Systems in Real and Simulated Worlds
- Pursue Human Levels of Perception by Developing Novel Deep Learning Methods
- Advance Robot Intelligence Using Machine Learning
- Reach the Next Level in Virtual, Mixed, and Augmented Reality Systems

Suggested Base Elective Modules:

Optimization and Numerical Computation Signal Processing and Algorithmic Geometry

Your Choices

https://www.uibk.ac.at/informatik/master-computer-science/

- ③ Cryptography
- 4 High-Performance Computing
- 5 Optimisation and Numerical Computing

- 7.5 ECTS
- 7.5 ECTS
- 7.5 EC15
- 7.5 ECTS

ie. stream "Secure and Distributed Computing" or "no stream" wins

(:)

universität innsbruck

Questions?

universität innsbruck

Learning Outcome

Why are you here?

This module enables students to describe a selection of current research topics in computer science and to understand some of their fundamental research questions. In addition, the ability is acquired to classify new questions and problems as well as one's own interests in these topic complexes.

in addition

① introduction of streams done

2 community building team projects

③ present ongoing research at the Department lecture series

curated research themes

from DS, NES, TCS

Sustainabilty in Embedded Systems & NES

See Jan Beutel's presentation

Sustainabilty in Programming & TCS

Topic 4: Intermittent Computing

- devices may operate itermittently only if energy is available
- such devices enable new applications, but also introduce problems in programmability and correctness

Topic ⑤: Energy Aware Programming Models

- energy is increasingly a first-order concern in computer systems design
- howto expose energy considerations to high-level programming models?

Topic **6: Static Analysis of Energy Consumption**

- "energy" as a resource that is statically analysed
- how much energy is required to execute a sequence of instructions or evaluate a programming statement?

Sustainabilty with Large Language Models & DS

Topic 🗇

Investigating Text Preprocessing Strategies for Decreasing Token Size in LLM Inputs

Topic ®

Narrative Classification of Climate Change Related Texts using LLMs

Topic 9

Generation of Effective Hints for User Questions using LLMs

Lab Research Themes and Topics

(changes will happen)

Sus	stainabilty in Embedded Systems GNSS Post Processing for Austrian Kinematics Sites	JB
2	Image Alignment and Feature Detection for Murtèl Rock Glacier (Engadin)	
3	Real-time Detection of Local Seismic Events	
Sus	Sustainabilty in Programming	
4	Intermittent Computing	
(5)	Energy Aware Programming Models	
6	Static Analysis of Energy Consumption	
Sustainabilty with Large Language Models		
7	Investigating Text Preprocessing Strategies for Decreasing Token Size in LLM Inputs	
8	Narrative Classification of Climate Change Related Texts using LLMs	
9	Generation of Effective Hints for User Questions using LLMs	

Selection of topics

- you submit a ranking of topics (1., 2., 3.) on OLAT by October 27
- based on the ranking, the teams will be formed; breaking ties randomly if necessary
- information on OLAT by October 30

Times and Dates for Discussion

- regular meetings of teams will be arranged with us, separately
- we use the time slots of lecture and lab for these meeting

Final Presentation and Report

- each team presents on January 23 in HS 10/SR 2
- 15' presentations, 5' questions
- report due by February 0

Looking Forward to Work with You!