БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра высшей математики

ФУНКЦИОНАЛЬНЫЕ РЯДЫ И ПОСЛЕДОВАТЕЛЬНОСТИ

Учебно-методическое пособие для студентов факультета прикладной математики и информатики УДК 517.521(072) ББК 22.161р.я73 Ф94

Авторы: О. А. Кастрица, С. А. Мазаник, А. Ф. Наумович, Н. Ф. Наумович

Рекомендовано Ученым советом факультета прикладной математики и информатики 23 сентября 2008 г., протокол № 1

Рецензент кандидат физико-математических наук C. Γ . K расовский

Функциональные ряды и последовательности: учеб.-метод. Ф94 пособие для студентов фак. прикладной математики и информатики / О. А. Кастрица, С. А. Мазаник, А. Ф. Наумович, Н. Ф. Наумович. – Минск: БГУ, 2008. – 47 с.

Пособие содержит необходимые теоретические сведения и основные приемы исследования равномерной сходимости функциональных рядов и последовательностей, а также функциональных свойств суммы ряда и предельной функции последовательности. Изложение материала иллюстрируется подробно разобранными примерами. В пособие включены задания для лабораторных работ и упражнения для самостоятельного решения, снабженные указаниями и ответами.

Пособие предназначено для студентов факультета прикладной математики и информатики; оно также будет полезным для всех студентов, изучающих математический анализ в объеме университетского курса.

УДК 517.521(072) ББК 22.161р.я73

[©] Кастрица О. А., Мазаник С. А., Наумович А. Ф., Наумович Н. Ф., 2008 © БГУ, 2008

1. Поточечная сходимость функциональных последовательностей и рядов

Функциональная последовательность

$$(f_n(x)), \quad f_n: E \longrightarrow \mathbb{R}, \quad n \in \mathbb{N}, \quad E \subset \mathbb{R},$$
 (1.1)

называется сходящейся в точке $x_0 \in E$, если сходится числовая последовательность $(f_n(x_0))$. Множество $X \subset E$ всех точек, в которых последовательность (1.1) сходится, называется множеством поточечной сходимости (1.1) (коротко — множество сходимости).

В силу единственности предела для каждого значения x из X определено единственное значение $\lim_{n\to\infty} f_n(x)$, и тем самым на множестве X определена функция $f:X\longrightarrow \mathbb{R},$ $f(x)=\lim_{n\to\infty} f_n(x)$, которую будем называть npedenhoù функцией или npedenom nocnedobamenhocmu (1.1). Таким образом, D(f)=X, т. е. множество задания предельной функции есть множество (поточечной) сходимости функциональной последовательности. Другими словами, сходимость функциональной последовательности (1.1) на множестве X означает, что

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists \nu(x,\varepsilon) \ \forall n \ge \nu(x,\varepsilon) \implies |f_n(x) - f(x)| \le \varepsilon.$$

Будем также говорить, что функциональная последовательность $(f_n(x))$ сходится на X к f(x) при $n \to \infty$, и записывать это в виде $f_n(x) \xrightarrow{X} f(x)$, или в виде $f_n(x) \xrightarrow{X} f(x)$. Мы также будем использовать запись $f_n(x) \xrightarrow{X}$ для обозначения того факта, что последовательность (1.1) сходится на X, но предельная функция нам не известна (или не интересует нас).

Функциональный ряд

$$\sum_{k=1}^{\infty} u_k(x), \quad u_k : E \longrightarrow \mathbb{R}, \quad k \in \mathbb{N}, \quad E \subset \mathbb{R}, \tag{1.2}$$

называется cxodsumumcs в точке $x_0 \in E$, если сходится числовой ряд $\sum_{k=1}^{\infty} u_k(x_0)$. Множеством поточечной cxodumocmu функционального ряда (1.2) называется множество всех точек $X \subset E$, в которых сходится

ряд (1.2). Сумма S(x) сходящегося функционального ряда есть предел функциональной последовательности его частных сумм $(S_n(x))$,

$$S_n(x) = \sum_{k=1}^n u_k(x).$$

Факт сходимости ряда (1.2) на множестве X будем записывать в виде $\sum\limits_{k=1}^{\infty}u_k(x)\stackrel{X}{\longrightarrow}S(x)$, или в виде $\sum\limits_{k=1}^{\infty}u_k(x)\stackrel{X}{\longrightarrow}$, если сумма ряда нам не известна (или не интересует нас). Если S(x) является суммой ряда (1.2) на множестве X, то используют запись

$$S(x) = \sum_{k=1}^{\infty} u_k(x), \ x \in X.$$

Поскольку при каждом фиксированном значении $x_0 \in E$ функциональный ряд (1.2) является обычным числовым рядом $\sum_{k=1}^{\infty} u_k(x_0)$, то для исследования его сходимости применимы все признаки сходимости числовых рядов.

Пример 1.1. Пусть $f_n(x) = x^n, \ n \in \mathbb{N}$. Найти предел последовательности $(f_n(x))$. Решение. Здесь

$$E=\mathbb{R},\quad \lim_{n o\infty}f_n(x)=\lim_{n o\infty}x^n=\left\{egin{array}{ll} 0,\ \mathrm{ec}$$
ли $x\in(-1;1),\ 1,\ \mathrm{ec}$ ли $x=1,\ \end{array}
ight.$

при остальных же $x \in E$ функциональная последовательность расходится. Таким образом,

$$f(x) = \left\{ egin{array}{ll} 0, \; \mathrm{если} \; x \in (-1;1), \ 1, \; \mathrm{если} \; x = 1, \end{array}
ight. X = (-1;1].$$

Пример 1.2. Найти множество X сходимости ряда $\sum\limits_{n=1}^{\infty} \frac{1}{n(x+2)^n}.$

Р е ш е н и е . Все члены ряда определены на $\mathbb{R}\setminus\{-2\}$. При фиксированном x применим признак Коши абсолютной сходимости ряда. Поскольку

$$\lim_{n \to \infty} \sqrt[n]{|u_n(x)|} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n|x+2|^n}} = \frac{1}{|x+2|},$$

то при $\frac{1}{|x+2|} < 1$, т. е. при $x \in (-\infty, -3) \cup (-1, +\infty)$, ряд сходится абсолютно. При $\frac{1}{|x+2|} > 1$ ряд расходится, т. к. $u_n(x) \not\longrightarrow 0$. При $\frac{1}{|x+2|} = 1$, т. е. при x = -3 и

x=-1, получаем, соответственно, числовые ряды $\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n}$, сходящийся согласно признаку Лейбница, и $\sum\limits_{n=1}^{\infty} \frac{1}{n}$ — расходящийся ряд. Итак, $X=(-\infty,-3]\cup(-1,+\infty)$.

2. Равномерная сходимость функциональных последовательностей

Пусть f — предельная функция функциональной последовательности (1.1) на множестве G, т.е. $f(x) = \lim_{n \to \infty} f_n(x), \ x \in G \subset E \subset \mathbb{R}$.

Функциональная последовательность $(f_n(x))$ называется равно-мерно сходящейся к предельной функции f на множестве $X, X \subset G$, если

$$\forall \varepsilon > 0 \ \exists \nu(\varepsilon) \ \forall n \ge \nu(\varepsilon) \ \forall x \in X \implies |f_n(x) - f(x)| \le \varepsilon.$$

Для обозначения факта равномерной сходимости функциональной последовательности на множестве X используют запись $f_n(x) \stackrel{X}{\Longrightarrow} f(x)$ при $n \to \infty$, или даже запись $f_n(x) \stackrel{X}{\Longrightarrow}$ (если, например, предельная функция неизвестна).

Из равномерной сходимости последовательности (1.1) на множестве X вытекает ее поточечная сходимость на X. Обратное утверждение не верно. Отметим, что:

1) если
$$f_n(x) \stackrel{X}{\Longrightarrow}$$
, то $f_n(x) \stackrel{X_1}{\Longrightarrow}$, $\forall X_1 \subset X$;

$$2)$$
 если $f_n(x) \stackrel{X_1}{\Longrightarrow}$ и $f_n(x) \stackrel{X_2}{\Longrightarrow}$, то $f_n(x) \stackrel{X_1 \cup X_2}{\Longrightarrow}$.

Супремальный критерий равномерной сходимости функциональной последовательности:

$$f_n(x) \xrightarrow{X} f(x) \iff \rho_n \xrightarrow[n \to \infty]{} 0, \quad \text{где} \quad \rho_n = \sup_X |f_n(x) - f(x)|.$$

Следствие 2.1. Если существует такая бесконечно малая последовательность (α_n) , что

$$\forall n \in \mathbb{N} \quad \forall x \in X \quad |f_n(x) - f(x)| = |r_n(x)| \le \alpha_n,$$

то функциональная последовательность (1.1) сходится равномерно на X.

Следствие 2.2. Если $\rho_n \xrightarrow{} 0$, то функциональная последовательность (1.1) сходится κ f неравномерно на X.

Следствие 2.3. (**Метод** "плохой точки".) Если для каждого натурального п существует такое $\tilde{x}_n \in X$, что $r_n(\tilde{x}_n) \longrightarrow 0$, где $r_n(x) = f_n(x) - f(x)$, то функциональная последовательность (1.1) сходится неравномерно на X.

Критерий Коши равномерной сходимости функциональной последовательности на X. Для равномерной сходимости последовательности (1.1) на X необходимо и достаточно выполнение равномерного условия Коши:

$$\forall \varepsilon > 0 \ \exists \nu(\varepsilon) \ \forall n \ge \nu(\varepsilon) \ \forall p \ge 0 \ \forall x \in X \implies |f_{n+p}(x) - f_n(x)| \le \varepsilon.$$

Следствие 2.4. *Если равномерное условие Коши не имеет места, т.е.*

$$\exists \, \varepsilon_0 > 0 \,\, \forall \, \nu \,\, \exists \, n \geq \nu \,\, \exists \, p \geq 0 \,\, \exists \, x \in X \implies |f_{n+p}(x) - f_n(x)| > \varepsilon_0,$$
 то последовательность (1.1) не является равномерно сходящейся на множестве X .

Заметим, что при использовании критерия Коши ничего не известно о функции f(x) (может быть ее вообще нет!). Поэтому использовать здесь выражение "сходится неравномерно" неуместно.

Пример 2.1. Исследовать на равномерную сходимость функциональную последовательность $(f_n(x)), f_n(x) = \frac{n^2}{2n^2 + 3x^2},$ на множестве X = [-2; 1].

Решение. Находим предельную функцию: $f(x) = \lim_{n \to \infty} \frac{n^2}{2n^2 + 3x^2} = \frac{1}{2} \quad \forall \, x \in X.$ Рассмотрим $r_n(x) = f_n(x) - f(x)$:

$$|r_n(x)| = \left| \frac{n^2}{2n^2 + 3x^2} - \frac{1}{2} \right| = \frac{3x^2}{2(2n^2 + 3x^2)} \le \frac{3 \cdot |-2|^2}{4n^2} = \frac{3}{n^2} \quad \forall n \in \mathbb{N} \quad \forall x \in X.$$

Поскольку $\frac{3}{n^2}\longrightarrow 0$ при $n\to\infty$, то $\frac{n^2}{2n^2+3x^2}\stackrel{X}{\Longrightarrow}\frac{1}{2}$ на основании следствия 2.1.

Пример 2.2. Исследовать на равномерную сходимость функциональную последовательность $(f_n(x)), f_n(x) = \frac{x^2}{1+n^2x^3},$ на множестве $X = [0, +\infty).$

Решение. Предельная функция $f(x)=\lim_{n\to\infty}\frac{x^2}{1+n^2x^3}=0 \ \ \forall x\in X.$ При фиксированном n имеем $\sup_{x\in X}|f_n(x)-f(x)|=\sup_{[0,+\infty)}\frac{x^2}{1+n^2x^3}.$

Пусть $\varphi(x)=\frac{x^2}{1+n^2x^3}.$ Поскольку $\varphi'(x)=\frac{2x-n^2x^4}{(1+n^2x^3)^2},$ то $x_n=\sqrt[3]{\frac{2}{n^2}}-$ стационарная точка функции $\varphi(x).$ Так как $\varphi(x_n)=\frac{1}{3}\sqrt[3]{\frac{4}{n^4}}, \quad \varphi(0)=0, \quad \varphi(+\infty)=0,$ то $\sup_{[0,+\infty)}\frac{x^2}{1+n^2x^3}=\frac{1}{3}\sqrt[3]{\frac{4}{n^4}}\longrightarrow 0$ при $n\to\infty.$

Согласно супремальному критерию $\frac{x^2}{1+n^3x^2} \stackrel{[0,+\infty)}{\Longrightarrow} 0.$

Пример 2.3. Исследовать на равномерную сходимость функциональную последовательность $(f_n(x)), f_n(x) = \frac{1}{n} \sqrt{n^2 x^2 + 1},$ на множестве ее сходимости.

Решение. Находим предельную функцию:

$$f(x) = \lim_{n \to \infty} \frac{1}{n} \sqrt{n^2 x^2 + 1} = \lim_{n \to \infty} \sqrt{x^2 + \frac{1}{n^2}} = \sqrt{x^2} = |x|, \quad x \in \mathbb{R}.$$

Так как при любом действительном x имеем

$$|f_n(x) - f(x)| = \frac{1}{n} \sqrt{n^2 x^2 + 1} - \sqrt{x^2} = \sqrt{x^2 + \frac{1}{n^2}} - \sqrt{x^2} = \frac{x^2 + \frac{1}{n^2} - x^2}{\sqrt{x^2 + \frac{1}{n^2}} + \sqrt{x^2}} \le \frac{1}{n}$$

и $1/n\longrightarrow 0$ при $n\to\infty$, то $\frac{1}{n}\sqrt{n^2x^2+1} \stackrel{R}{\Longrightarrow} |x|$ согласно следствию 2.1.

Пример 2.4. Исследовать на равномерную сходимость функциональную последовательность $(f_n(x)), f_n(x) = 3 + \frac{2x}{n} \ln \frac{x}{n}$, на множестве $X = [2, +\infty)$.

Решение. Имеем $f(x) = \lim_{n \to \infty} \left(3 + \frac{2x}{n} \ln \frac{x}{n} \right) = 3$ при всех $x \in X$. Поэтому $r_n(x) = f_n(x) - f(x) = \frac{2x}{n} \ln \frac{x}{n}$. Поскольку для каждого натурального n существует такое $\tilde{x}_n = 2n \in X$, что $r_n(\tilde{x}_n) = 4 \ln 2 \not \longrightarrow 0$ то, согласно следствию 2.3, сходимость на множестве X неравномерная.

3. Равномерная сходимость функциональных рядов

Пусть ряд

$$\sum_{k=1}^{\infty} u_k(x) \tag{3.1}$$

сходится (поточечно) на $G \subset \mathbb{R}$ и $S(x) = \sum_{k=1}^{\infty} u_k(x)$ — сумма ряда. Ряд называется равномерно сходящимся на множестве $X \subset G$, если

последовательность его частных сумм $(S_n(x))$ сходится равномерно на $X,\,S_n(x) \stackrel{X}{\Longrightarrow} S(x)$. Это означает, что

$$\forall \varepsilon > 0 \quad \exists \nu_{\varepsilon} \quad \forall n \ge \nu_{\varepsilon} \quad \forall x \in X \implies |S_n(x) - S(x)| \le \varepsilon.$$

При этом мы будем использовать обозначения:

$$\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Longrightarrow} S(x)$$
 или $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Longrightarrow}$.

Если
$$r_n(x)=\sum_{k=n+1}^\infty u_k(x)=S(x)-S_n(x)-n$$
-ый остаток ряда, то
$$\sum_{k=n+1}^\infty u_k(x) \stackrel{X}{\Longrightarrow} \iff r_n(x) \stackrel{X}{\Longrightarrow} 0.$$

Сходящийся числовой ряд $\sum\limits_{k=1}^{\infty}c_k$ можно трактовать как равномерно сходящийся на $\mathbb R$ ряд из постоянных на $\mathbb R$ функций c_k .

Критерий Коши равномерной сходимости. Для равномерной сходимости на X функционального ряда (3.1) необходимо и достаточно, чтобы выполнялось равномерное условие Коши:

$$\forall \varepsilon > 0 \quad \exists \nu(\varepsilon) \quad \forall n \ge \nu(\varepsilon) \quad \forall p \ge 0 \quad \forall x \in X \implies \left| \sum_{k=n}^{n+p} u_k(x) \right| \le \varepsilon.$$

Следствие 3.1. (Необходимое условие равномерной сходимости функционального ряда.) Если ряд (3.1) сходится равномерно на множестве X, то на этом множестве равномерно сходится к нулю последовательность членов ряда:

$$\sum_{k=1}^{\infty} u_k(x) \xrightarrow{X} \implies u_k(x) \xrightarrow{X} 0.$$

Следствие 3.2. Если

$$\exists \varepsilon_0 > 0 \quad \forall \nu \quad \exists n \ge \nu \quad \exists p \ge 0 \quad \exists x \in X \quad \Longrightarrow \quad \left| \sum_{k=n}^{n+p} u_k(x) \right| > \varepsilon_0,$$

то ряд (3.1) не является равномерно сходящимся на множествеX.

Пример 3.1. Исследовать на равномерную сходимость ряд $\sum_{k=1}^{\infty} \left(\frac{x^{k-1}}{k} - \frac{x^k}{k+1} \right)$ на множестве X = [-1;1].

Решение. Найдем частные суммы ряда:

$$S_n(x) = \sum_{k=1}^n \left(\frac{x^{k-1}}{k} - \frac{x^k}{k+1} \right) = \left(1 - \frac{x}{2} \right) + \left(\frac{x}{2} - \frac{x^2}{3} \right) + \ldots + \left(\frac{x^{n-1}}{n} - \frac{x^n}{n+1} \right) = 1 - \frac{x^n}{n+1}.$$

Тогда сумма ряда $S(x) = \lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} \left(1 - \frac{x^n}{n+1}\right) = 1 \quad \forall x \in [-1;1].$ Исследуем последовательность $(S_n(x))$ на равномерную сходимость на промежутке [-1;1]. Поскольку

$$|S_n(x) - S(x)| = \left| \left(1 - \frac{x^n}{n+1} \right) - 1 \right| = \frac{|x^n|}{n+1} \le \frac{1}{n+1} \xrightarrow[n \to \infty]{} 0,$$

то согласно следствию $2.1 \, S_n(x) \stackrel{[-1;1]}{\Longrightarrow} S(x)$, что, в свою очередь, означает равномерную сходимость ряда $\sum\limits_{k=1}^{\infty} \left(\frac{x^{k-1}}{k} - \frac{x^k}{k+1} \right)$ на множестве [-1;1].

Пример 3.2. Исследовать ряд $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ на равномерную сходимость на \mathbb{R} .

Решение. Последовательность $u_n(x)=\frac{x^n}{n!}\underset{n\to\infty}{\longrightarrow} 0$ при всех $x\in\mathbb{R}$. Но для каждого $n\in\mathbb{N}$ существует $\tilde{x}_n=\sqrt[n]{n!}$ ("плохая точка") такое, что $|u_n(\tilde{x}_n)|=1$ \longrightarrow 0. Значит, $u_n(x)$ сходится к 0 неравномерно. На основании следствия 3.2 равномерной сходимости ряда на \mathbb{R} нет.

Пример 3.3. Исследовать ряд $\sum_{n=1}^{\infty} \frac{x}{1+n^2x^2}$ на равномерную сходимость на множестве X=[0;1].

Решение. Используем следствие 3.2 критерия Коши. Рассмотрим $\sum\limits_{k=n}^{n+p} \frac{x}{1+k^2x^2}$ и положим здесь p=n и $x=\frac{1}{n}$. Получим

$$\left. \sum_{k=n}^{n+p} \frac{x}{1+k^2 x^2} \right|_{p=n, x=1/n} = \sum_{k=n}^{2n} \frac{1}{n} \cdot \frac{1}{1+\frac{k^2}{n^2}} =$$

$$=\frac{1}{n}\left(\frac{1}{1+\frac{n^2}{n^2}}+\frac{1}{1+\frac{(n+1)^2}{n^2}}+\ldots+\frac{1}{1+\frac{4n^2}{n^2}}\right)\geq \frac{1}{n}(n+1)\frac{1}{1+\frac{4n^2}{n^2}}=\frac{n+1}{5n}>\frac{1}{5}.$$

Таким образом, ряд не является равномерно сходящимся на [0;1].

4. Признаки равномерной сходимости функциональных рядов

Признак Вейерштрасса (мажорантный). $Ecлu |u_k(x)| \leq c_k \partial л$ $Bcex x \in X u Bcex k \in \mathbb{N}, u числовой ряд <math>\sum_{k=1}^{\infty} c_k \ cxoдится, то ряд$ $\sum_{n=1}^{\infty} u_k(x) \ cxoдится равномерно (и абсолютно) на множестве <math>X$.

Ряд $\sum_{k=1}^{\infty} c_k$ называется в этом случае *числовой мажорантой* для ряда (3.1) на X. Отсутствие сходящейся мажоранты еще не означает, что на X нет равномерной сходимости.

Если
$$|u_k(x)| \le v_k(x)$$
 для всех $x \in X$ и $\sum_{k=1}^\infty v_k(x) \stackrel{X}{\Longrightarrow}$, то $\sum_{k=1}^\infty u_k(x) \stackrel{X}{\Longrightarrow}$.

Признак Абеля. Если:

$$1)\sum_{k=1}^{\infty}b_k(x) \stackrel{X}{\Longrightarrow},$$

- 2) функциональная последовательность $(a_n(x))$ ограничена в совокупности, т. е. существует такое постоянное число A, что $|a_k(x)| \leq A$ при всех $k \in \mathbb{N}$ и всех $x \in X$,
- 3) последовательность $(a_k(x))$ монотонна при каждом фиксированном $x \in X$,

$$mo \sum_{k=1}^{\infty} a_k(x)b_k(x) \stackrel{X}{\Longrightarrow}.$$

3амечание. В роли ряда $\sum\limits_{k=1}^{\infty}b_k$ может выступать и сходящийся числовой ряд.

Признак Дирихле. Если:

- 1) суммы $\sum_{k=1}^{n} b_k(x)$ ограничены в совокупности, т. е. существует такое постоянное число M, что $\left|\sum_{k=1}^{n} b_k(x)\right| \leq M$ при всех $n \in \mathbb{N}$ и всех $x \in X$,
- 2) последовательность $(a_k(x))$ монотонна при каждом фиксированном $x \in X$,

$$3) a_k(x) \xrightarrow{X} 0,$$

$$mo \sum_{k=1}^{\infty} a_k(x) b_k(x) \xrightarrow{X}.$$

Как следствие признака Дирихле имеем

Признак Лейбница. Если:

- 1) $a_k(x) > 0$ npu $bcex k \in \mathbb{N}$ u $bcex x \in X$,
- 2) последовательность $(a_k(x))$ монотонна при каждом фиксированном $x \in X$,

$$3) a_k(x) \xrightarrow{X} 0,$$

$$mo \sum_{k=1}^{\infty} (-1)^{k-1} a_k(x) \xrightarrow{X}.$$

Пример 4.1. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{\arctan nx}{n^2 + x^2}$ на \mathbb{R} .

Решение. Так как

$$\left| \frac{ \operatorname{arctg} nx}{n^2 + x^2} \right| \leq \frac{\pi}{2n^2}$$
 при всех $n \in \mathbb{N}$ и всех $x \in \mathbb{R}$,

2) числовой ряд $\sum\limits_{n=1}^{\infty} rac{\pi}{2n^2} -$ сходится,

то исследуемый ряд сходится равномерно на $\mathbb R$ на основании признака Вейерштрасса.

Пример 4.2. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{x}{1+n^4x^2}$ на множестве \mathbb{R} .

Решение. Опять применим признак Вейерштрасса. Для оценки n-го члена ряда воспользуемся известным неравенством $\frac{2|a||b|}{a^2+b^2} \leq 1$. Получим

$$\left| \frac{x}{1 + n^4 x^2} \right| = \frac{2|x| \cdot n^2}{2n^2 (1 + n^4 x^2)} \le \frac{1}{2n^2} \quad \forall n \in \mathbb{N} \ \forall x \in \mathbb{R}.$$

Ряд $\sum_{n=1}^{\infty}\frac{1}{2n^2}$ является сходящейся числовой мажорантой для исходного ряда, следовательно, $\sum_{n=1}^{\infty}\frac{x}{1+n^4x^2}\stackrel{\mathbb{R}}{\Longrightarrow}$.

Пример 4.3. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} e^{-n^6 x^2} \sin nx$ на множестве \mathbb{R} .

Решение. Попробуем построить числовую мажоранту для этого ряда:

$$|u_n(x)| \le |e^{-n^6x^2} \sin nx| \le [|\sin \alpha| \le |\alpha|] \le n|x|e^{-n^6x^2}.$$

При фиксированном n рассмотрим функцию $\varphi(x)=n|x|e^{-n^6x^2}$ и найдем ее супремум на $\mathbb R$. Поскольку функция φ четная, то достаточно провести исследование для $x\geq 0$. Тогда

$$\varphi(x) = nxe^{-n^6x^2}, \quad \varphi'(x) = n(e^{-n^6x^2} - 2n^6x^2e^{-n^6x^2}) = ne^{-n^6x^2}(1 - 2n^6x^2).$$

Стационарная точка $x_n = \frac{1}{\sqrt{2}n^3} \in [0; +\infty)$. Так как

$$\varphi(x_n) = \frac{1}{\sqrt{2}n^2} e^{-\frac{1}{2}}, \quad \varphi(0) = 0, \quad \varphi(+\infty) = 0,$$

то $\sup_{\mathbb{R}} \varphi(x) = \frac{1}{\sqrt{2}n^2} e^{-\frac{1}{2}}$ и, значит, $|u_n(x)| \leq \frac{e^{-1/2}}{\sqrt{2}} \cdot \frac{1}{n^2}$ при всех $x \in \mathbb{R}$ и всех $n \in \mathbb{N}$.

Числовая мажоранта $\sum_{n=1}^{\infty} \frac{e^{-1/2}}{\sqrt{2}} \cdot \frac{1}{n^2}$ сходится, что гарантирует равномерную на $\mathbb R$ сходимость рассматриваемого функционального ряда.

Пример 4.4. Исследовать на равномерную сходимость ряд $\sum_{k=1}^{\infty} \frac{\sin kx}{k+\ln k}$ на отрезке $X=[\pi/3,3\pi/2].$

Решение. Воспользуемся признаком Дирихле, приняв

$$b_k(x) = \sin kx$$
, $a_k(x) = \frac{1}{k + \ln k}$.

Имеем:

1) суммы $\sum_{k=1}^{n} \sin kx$ ограничены в совокупности на основании оценки

$$\left| \sum_{k=1}^{n} \sin kx \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|} \le \frac{1}{\sin \frac{\pi}{6}} = 2 \quad \forall x \in [\pi/3, 3\pi/2] \quad \forall n \in \mathbb{N};$$

 $(a_n) = \left(\frac{1}{n+\ln n}\right)$ монотонна, поскольку

$$a_n = \frac{1}{n + \ln n} > \frac{1}{n + 1 + \ln(n + 1)} = a_{n+1};$$

3) последовательность $\left(\frac{1}{n+\ln n}\right)$ стремится к нулю при $n\to\infty$, а так как она не зависит от x, то $\frac{1}{n+\ln n} \stackrel{X}{\Longrightarrow} 0$.

Условия признака Дирихле выполнены, и поэтому $\sum_{k=1}^{\infty} \frac{\sin kx}{k + \ln k} \stackrel{X}{\Longrightarrow}$.

Пример 4.5. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2\sqrt{n} + \sin 3x}$ на \mathbb{R} .

Решение. Применим признак Лейбница равномерной сходимости:

1)
$$\frac{1}{2\sqrt{n} + \sin 3x} > 0$$
 при всех $n \in \mathbb{N}$ и всех $x \in \mathbb{R}$,

2) последовательность $\left(\frac{1}{2\sqrt{n}+\sin 3x}\right)$ при каждом фиксированном $x\in\mathbb{R}$ монотонна,

$$|3|$$
 поскольку $\left|\frac{1}{2\sqrt{n}+\sin 3x}\right| \leq \frac{1}{2\sqrt{n}-1} \underset{n \to \infty}{\longrightarrow} 0$, то $\frac{1}{2\sqrt{n}+\sin 3x} \overset{\mathbb{R}}{\underset{n \to \infty}{\Longrightarrow}} 0$.

Условия признака Лейбница выполнены, следовательно, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2\sqrt{n} + \sin 3x} \stackrel{\mathbb{R}}{\Longrightarrow}$.

Пример 4.6. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n \perp x^2}} \operatorname{arctg} x^n$ на множестве $X = [1, +\infty)$.

Решение. Воспользуемся признаком Абеля: 1) ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+r^2}} \stackrel{X}{\Longrightarrow}$ согласно признаку Лейбница, так как последовательность $\left(\frac{1}{\sqrt{n+x^2}}\right)$ монотонна при каждом фиксированном $x\in X$, и из неравенства $\frac{1}{\sqrt{n+x^2}} \leq \frac{1}{\sqrt{n}}$ следует, что $\frac{1}{\sqrt{n+r^2}} \stackrel{X}{\Longrightarrow} 0$.

2) последовательность (arctg x^n) ограничена в совокупности: $|\arctan x^n| \le \frac{\pi}{2}$ при всех $n \in \mathbb{N}$ и всех $x \in [1, +\infty)$;

3) числовая последовательность $(\operatorname{arctg} x^n)$ монотонна при каждом фиксированном $x \in [1, +\infty).$

Заключаем, что по признаку Абеля $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+x^2}} \operatorname{arctg} x^n \stackrel{[1,+\infty)}{\Longrightarrow}$.

Пример 4.7. Рассмотрим ряды $\sum_{n=1}^{\infty} \frac{x}{n(x^2+n^2)}$ и $\sum_{n=1}^{\infty} \frac{x}{n^3}$ на множестве $X=[1,+\infty)$.

При каждом фиксированном $x \in X$ имеем $\frac{x}{n(x^2+n^2)} \sim \frac{x}{n^3}$ при $n \to \infty$. При этом

ряд $\sum_{n=1}^{\infty} \frac{x}{n(x^2+n^2)} \stackrel{X}{\Longrightarrow}$ согласно признаку Вейерштрасса, так как

$$\frac{x}{n(x^2+n^2)} = \frac{2xn}{2n^2(x^2+n^2)} \le \left[\frac{2ab}{a^2+b^2} \le 1\right] \le \frac{1}{2n^2}$$

и ряд $\sum_{n=1}^{\infty} \frac{1}{2n^2}$ сходится. В то же время, ряд $\sum_{n=1}^{\infty} \frac{x}{n^3}$ сходится на X неравномерно, так как для него не выполнено необходимое условие равномерной сходимости:

$$\frac{x}{n^3} = \left[x_n = n^3\right] = 1 \longrightarrow 0,$$

откуда $\frac{x}{n^3} \xrightarrow{X} 0$.

Пример 4.7 показывает, что нельзя использовать замену функции на эквивалентную ей функцию при исследовании равномерной сходимости.

5. Функциональные свойства рядов и последовательностей

Теорема Стокса-Зейделя. Если члены u_k функционального ряда $\sum_{k=1}^{\infty} u_k(x)$ непрерывны на множестве X и ряд сходится равномерно на X, то сумма ряда $S(x) = \sum_{k=1}^{\infty} u_k(x)$ является функцией непрерывной на X.

Теорема Стокса-Зейделя для функциональной последовательности. Если члены функциональной последовательности $(f_n(x))$ непрерывны на множестве X и функциональная последовательность сходится равномерно на X, то предельная функция $f(x) = \lim_{n \to \infty} f_n(x)$ является функцией непрерывной на X.

Теорема о почленном переходе к пределу под знаком суммы. Пусть x_0 — предельная точка множества X. Если:

- 1) для любого натурального n существует конечный предел $\lim_{x\to x_0}u_n(x)=b_n\in\mathbb{R};$
- 2) ряд $\sum\limits_{k=1}^{\infty}u_k(x)$ сходится равномерно на $X,\;\sum\limits_{k=1}^{\infty}u_k(x)\overset{X}{\Longrightarrow}S(x),$ то:
 - 1^0) ряд $\sum_{k=1}^{\infty} b_k$ сходится;
 - (2^0) существует конечный предел $\lim_{x \to x_0} S(x) \in \mathbb{R};$
 - 3^0) $\lim_{x \to x_0} S(x) = \sum_{k=1}^\infty b_k$, т. е. допустим почленный переход к пре-

делу под знаком суммы:
$$\lim_{x\to x_0}\sum_{k=1}^\infty u_k(x)=\sum_{k=1}^\infty\lim_{x\to x_0}u_k(x).$$

Теорема о почленном переходе к пределу для функциональной последовательности. Пусть x_0 — предельная точка множества X сходимости функциональной последовательности $(f_n(x))$. Если:

1) для любого натурального n существует конечный предел $\lim_{x\to x_0} f_n(x) \in \mathbb{R};$

2) функциональная последовательность сходится равномерно на $X, f_n(x) \stackrel{X}{\Longrightarrow} f(x),$

то существует конечный предел

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x),$$

т. е. допустима перестановка предельных переходов.

Теорема о почленном интегрировании ряда. Если:

1) при всех натуральных k функции u_k интегрируемы по Риману на отрезке [a,b];

$$2) \sum_{k=1}^{\infty} u_k(x) \stackrel{[a,b]}{\Longrightarrow},$$

mo

$$\int_{a}^{b} \left(\sum_{k=1}^{\infty} u_k(x) \right) dx = \sum_{k=1}^{\infty} \int_{a}^{b} u_k(x) dx,$$

m. e. на отрезке [a,b] допустимо почленное интегрирование ряда.

Теорема о почленном интегрировании функциональной последовательности. Ecnu:

1) при всех натуральных n функции f_n интегрируемы по Риману на отрезке [a,b];

$$2) f_n(x) \stackrel{[a,b]}{\Longrightarrow},$$

то

$$\int_{a}^{b} \left(\lim_{n \to \infty} f_n(x) \right) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx,$$

т. е. допустим предельный переход под знаком интеграла.

Заметим, что почленное интегрирование ряда или переход к пределу под знаком интеграла в ряде случаев возможны и при отсутствии равномерной сходимости на [a,b].

Теорема о почленном дифференцировании ряда. Если:

1) при всех натуральных k функции u_k непрерывно дифференцируемы на $X, u_k \in C^1(X)$;

$$2) \sum_{k=1}^{\infty} u'_k(x) \stackrel{X}{\Longrightarrow};$$

3)
$$\sum_{k=1}^{\infty} u_k(x) \xrightarrow{X}$$
,

то функция $S(x) = \sum_{k=1}^{\infty} u_k(x)$ дифференцируема на X и ее производную S'(x) можно вычислить путем почленного дифференцирования функционального ряда, т. е.

$$\left(\sum_{k=1}^{\infty} u_k(x)\right)' = \sum_{k=1}^{\infty} u_k'(x).$$

Теорема о почленном дифференцировании функциональной последовательности. *Если*:

- 1) для любого натурального n функции $f_n \in C^1(X)$,
- $(2) f'_n(x) \stackrel{X}{\Longrightarrow},$
- 3) $f_n(x) \xrightarrow{X}$,

то предельная функция $f(x) = \lim_{n \to \infty} f_n(x)$ дифференцируема на X

$$f'(x) = \lim_{n \to \infty} f'_n(x).$$

Локальная равномерная сходимость функциональных последовательностей и рядов.

Функциональная последовательность $(f_n(x))$ называется локально равномерно сходящейся на множестве X, если для любого $x_0 \in X$ существует окрестность $U(x_0)$ точки x_0 такая, что $f_n(x) \stackrel{U(x_0) \cap X}{\Longrightarrow}$, или, что равносильно, $f_n(x) \stackrel{[a,b]}{\Longrightarrow}$ для любого отрезка $[a,b] \subset X$.

Функциональный ряд $\sum_{k=1}^{\infty} u_k(x)$ называется локально равномерно сходящимся на множестве X, если для любого $x_0 \in X$ существует окрестность $U(x_0)$ точки x_0 такая, что $\sum_{k=1}^{\infty} u_k(x) \stackrel{U(x_0) \cap X}{\Longrightarrow}$, или, что равносильно, $\sum_{k=1}^{\infty} u_k(x) \stackrel{[a,b]}{\Longrightarrow}$ для любого отрезка $[a,b] \subset X$.

Замечание. Теоремы Стокса-Зейделя, теоремы о почленном дифференцировании остаются справедливыми, если в них условия равномерной сходимости заменить более слабым условием локальной равномерной сходимости.

Пример 5.1. Исследовать на равномерную сходимость последовательность (f_n) , $f_n(x) = \frac{x^n}{1 + x^n}$, на множестве X = [0; 2].

Решение. Найдем предельную функцию:

$$f(x) = \lim_{n \to \infty} \frac{x^n}{1 + x^n} = \begin{cases} 0, \text{ если } x \in [0; 1), \\ 0, 5, \text{ если } x = 1, \\ 1, \text{ если } x \in (1, 2]. \end{cases}$$

Поскольку члены последовательности непрерывны на множестве X, а предельная функция разрывна, то сходимость на X неравномерная (следует из теоремы Стокса-Зейделя).

Пример 5.2. Исследовать на равномерную сходимость ряд $\sum_{i=1}^{\infty} \frac{x}{(1+x^2)^n}$ на множестве его сходимости.

Решение. При x=0 ряд сходится, как ряд из нулей. При $x\neq 0$ имеем сумму геометрической прогрессии со знаменателем $q=\frac{1}{1+x^2}$ < 1. Поэтому S(x)=

$$=rac{rac{x}{1+x^2}}{1-rac{1}{1+x^2}}=rac{1}{x}$$
. Итак, $S(x)=\left\{egin{array}{l} rac{1}{x},\
m если\ x
eq 0,\ 0,\
m если\ x=0. \end{array}
ight.$ Поскольку члены ряда непрерывны на $\mathbb R$ а его сумма разрывна, то ряд суодится на $\mathbb R$ неравномерно.

на \mathbb{R} , а его сумма разрывна, то ряд сходится на \mathbb{R} неравномерно.

Пример 5.3. Исследовать ряд $\sum_{n=1}^{\infty} \left(x + \frac{1}{n}\right)^n$ на равномерную сходимость на множестве X = (0, 1).

Решение. Поточечная сходимость ряда на указанном множестве следует из признака Коши $\sqrt[n]{(x+\frac{1}{n})^n} \longrightarrow x$. Точка x=1 является предельной точкой множества X=(0,1). Имеем $b_n=\lim_{x o 1-0}igg(x+rac{1}{n}igg)^n=igg(1+rac{1}{n}igg)^n$; так как $igg(1+rac{1}{n}igg)^n o 0$, то ряд $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$ расходится. Поэтому ряд $\sum_{n=1}^{\infty} \left(x + \frac{1}{n}\right)^n$ на множестве (0;1) сходится

Пример 5.4. Исследовать на непрерывность функцию

$$f(x) = \sum_{n=1}^{\infty} \frac{(x+2)^n (2 + \cos^2 nx)}{\sqrt{n^3 + x^4}}$$

на множестве ее задания.

Решение. Поскольку

$$|u_n(x)| = \left| \frac{(x+2)^n (2 + \cos^2 nx)}{\sqrt{n^3 + x^4}} \right| \le \frac{3|x+2|^n}{n^{3/2}},$$

то ряд заведомо сходится при $|x+2| \leq 1,$ т. е. на отрезке [-3;-1]. При остальных x ряд расходится, так как $u_n(x) \nrightarrow 0$. Следовательно, D(f) = [-3; -1]. Ряд $\sum_{n=0}^{\infty} \frac{3}{n^{3/2}}$

является сходящейся числовой мажорантой для заданного ряда и обеспечивает его равномерную сходимость на [-3;-1]. Так как члены функционального ряда непрерывны на [-3;-1], то его сумма f(x) непрерывна на D(f) (см. теорему Стокса-Зейделя).

Пример 5.5. Исследовать на непрерывность функцию $f(x) = \sum_{n=1}^{\infty} \frac{x^2 + (-1)^n n}{x^2 + n^2}$ на множестве ее задания.

 P е ш е н и е . Представим f(x) в виде суммы рядов

$$f(x) = x^2 \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2} + \sum_{n=1}^{\infty} \frac{(-1)^n n}{x^2 + n^2},$$

каждый из которых очевидно сходится на \mathbb{R} . Для первого ряда $\frac{1}{x^2+n^2} \leq \frac{1}{n^2}$, что гарантирует равномерную сходимость этого ряда на \mathbb{R} , а также непрерывность функции $f_1(x) = \sum_{n=1}^\infty \frac{1}{x^2+n^2}$ на \mathbb{R} в силу теоремы Стокса-Зейделя. Второй ряд также сходится равномерно на \mathbb{R} согласно признаку Лейбница, и его сумма $f_2(x)$ непрерывна на \mathbb{R} . Поэтому функция $f(x) = x^2 f_1(x) + f_2(x)$ непрерывна на \mathbb{R} .

Пример 5.6. На отрезке [0; 1] исследовать на непрерывность функцию

$$f(x) = \sum_{n=1}^{\infty} (nxe^{-nx} - (n-1)xe^{-(n-1)x}).$$

Решение. Так как

$$S_n(x) = (xe^{-x} - 0) + (2x^2e^{-2x} - xe^{-x}) + \dots + (nxe^{-nx} - (n-1)xe^{-(n-1)x}) = nxe^{-nx},$$

то $f(x) = \lim_{n \to \infty} S_n(x) = 0$ при $x \in [0; 1]$. Следовательно, рассматриваемая сумма ряда является непрерывной функцией на отрезке [0; 1].

Вместе с тем ряд на [0; 1] сходится неравномерно. Действительно,

$$|S_n(x) - f(x)| = nxe^{-nx}|_{x = \tilde{x}_n} = \left[\tilde{x}_n = \frac{1}{n} \in [0; 1]\right] = e^{-1} \to 0$$

при $n \to \infty$. Согласно следствию 2.3 последовательность $(S_n(x))$, а, значит, и ряд, сходятся неравномерно на [0;1].

Это пример показывает, что теорема Стокса-Зейделя дает лишь достаточные условия непрерывности суммы ряда.

Пример 5.7. Найти предел $\lim_{x\to 0} \sum_{n=1}^{\infty} \frac{3x^n+1}{2^n\sqrt{1+nx^2}}$.

Решение. Рассмотрим ряд на множестве X=[-1;1]. Поскольку $\left|\frac{3x^n+1}{2^n\sqrt{1+nx^2}}\right| \leq \frac{4}{2^n}$ при всех $n\in\mathbb{N}$ и всех $x\in X$, то ряд сходится равномерно

на [-1;1] по признаку Вейерштрасса. На основании теоремы о почленном переходе к пределу имеем:

$$\lim_{x \to 0} \sum_{n=1}^{\infty} \frac{3x^n + 1}{2^n \sqrt{1 + nx^2}} = \sum_{n=1}^{\infty} \lim_{x \to 0} \frac{3x^n + 1}{2^n \sqrt{1 + nx^2}} = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

Пример 5.8. Исследовать дифференцируемость функции $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x}{n+x}$ при x > 0.

Решение. Представим сумму ряда в виде $f(x) = x \sum_{n=1}^{\infty} \frac{(-1)^n}{n+x}$ и исследуем функцию $g(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n+x}$.

Ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+x}$ сходится при каждом фиксированном $x \in (0,+\infty)$ согласно признаку Лейбница. Функции $u_n(x) = \frac{(-1)^n}{n+x}$ и $u_n'(x) = \frac{(-1)^{n-1}}{(n+x)^2}$ непрерывны на $(0,\infty)$ при каждом $n \in \mathbb{N}$.

Ряд $\sum\limits_{n=1}^{\infty}u_n'(x)=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}}{(n+x)^2}$ сходится равномерно на $(0;+\infty)$ согласно признаку Вейерштрасса, так как $\left|\frac{(-1)^{n-1}}{(n+x)^2}\right|\leq \frac{1}{n^2}$ и ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится.

По теореме о почленном дифференцировании функция g(x) дифференцируема на $(0; +\infty)$, а, значит, дифференцируема на $(0; +\infty)$ и функция f(x) = xg(x).

Пример 5.9. Вычислить
$$\int_{0}^{2\pi} f(x) dx$$
, где $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx^2}{n(n+1)}$.

Решение. Члены ряда — непрерывные на $[0;2\pi]$ функции, ряд сходится на $[0;2\pi]$ равномерно (признак Вейерштрасса), поэтому допустимо почленное интегрирование ряда. Учитывая, что $\int\limits_0^{2\pi} \sin^2 nx dx = \frac{1}{2} \int\limits_0^{2\pi} (1-\cos 2nx) dx = \pi$, получаем

$$\int_{0}^{2\pi} f(x)dx = \int_{0}^{2\pi} \left(\sum_{n=1}^{\infty} \frac{\sin^{2} nx}{n(n+1)}\right) dx = \sum_{n=1}^{\infty} \int_{0}^{2\pi} \frac{\sin^{2} nx}{n(n+1)} dx = \pi \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{$$

$$=\pi\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\pi.$$

Пример 5.10. Исследовать возможность перехода к пределу под знаком интеграла для $\int\limits_0^1 \frac{nx}{n^2x^2+1} dx.$

Решение. Предельная функция $f(x)=\lim_{n\to\infty}\frac{nx}{n^2x^2+1}=0, x\in[0;1].$ Непосредственной проверкой убеждаемся

$$\int_{0}^{1} f_n(x)dx = \int_{0}^{1} \frac{nxdx}{n^2x^2 + 1} = \frac{1}{2n} \int_{0}^{1} \frac{d(n^2x^2 + 1)}{n^2x^2 + 1} = \frac{1}{2n} \ln(n^2x^2 + 1) \Big|_{0}^{1} = \frac{\ln(n^2 + 1)}{2n},$$

поэтому $\lim_{n \to \infty} \int_{0}^{1} f_n(x) = \lim_{n \to \infty} \frac{\ln(n^2 + 1)}{2n} = 0.$

С другой стороны, $\int_{0}^{1} \lim_{n \to \infty} f_n(x) dx = \int_{0}^{1} 0 dx = 0.$

Таким образом, $\lim_{n\to\infty} \int\limits_0^1 f_n(x) dx = \int\limits_0^1 \left(\lim_{n\to\infty} f_n(x)\right) dx$, т. е. переход к пределу под знаком интеграла возможен.

Заметим, однако, что последовательность $(f_n(x))$ сходится на [0;1] к f(x) неравномерно, так как

$$\left| f_n(x) - f(x) \right| = \frac{nx}{n^2 x^2 + 1} \bigg|_{x = \tilde{x}_n} = \left[\tilde{x}_n = \frac{1}{n} \in [0; 1] \right] = \frac{1}{2} \nrightarrow 0.$$

Пример 5.11. Исследовать на равномерную и локальную равномерную сходимость последовательность $(f_n), f_n(x) = \frac{x^n}{1+x^n}$, на множестве X = (0;1).

Решение. Находим предельную функцию $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x^n}{1 + x^n} = 0.$ Поскольку

$$\sup_{x\in(0;1)}\frac{x^n}{1+x^n}=\sup_{x\in(0;1)}\biggl(1-\frac{1}{1+x^n}\biggr)=\frac{1}{2}\underset{n\to\infty}{\longrightarrow}0,$$

то последовательность не является равномерно сходящейся на X.

Исследуем ее теперь на локальную равномерную сходимость. Пусть $[\alpha;\beta]$ — произвольный отрезок, $[\alpha;\beta]\subset (0;1)$. Тогда

$$\sup_{x \in [\alpha;\beta]} \frac{x^n}{1+x^n} = \sup_{x \in [\alpha;\beta]} \left(1 - \frac{1}{1+x^n}\right) = 1 - \frac{1}{1+\beta^n} \underset{n \to \infty}{\longrightarrow} 0.$$

Следовательно, $f_n(x) \stackrel{[\alpha;\beta]}{\Longrightarrow}$, что и означает локальную равномерную сходимость последовательности $(f_n(x))$ на (0;1).

Пример 5.12. Исследовать на непрерывность функцию $f(x) = \sum_{k=1}^{\infty} 2^k \sin \frac{1}{3^k x}$ на множестве ее задания.

Решение. При x=0 члены ряда не определены. Если же $x\neq 0,$ то $2^k\sin\frac{1}{3^kx}\sim$

$$\sim \left(\frac{2}{3}\right)^k \cdot \frac{1}{x}$$
 при $k \to \infty$. Ряд $\sum_{k=1}^{\infty} \left(\frac{2}{3}\right)^k \frac{1}{x}$ — сходится, поэтому f определена на $\mathbb{R} \setminus \{0\}$.

Исследуем f на непрерывность. Для любого отрезка $[\alpha,\beta]\subset (0,+\infty)$ справедлива оценка

$$\left| 2^k \sin \frac{1}{3^k x} \right| \le 2^k \frac{1}{3^k x} \le \left(\frac{2}{3}\right)^k \frac{1}{\alpha} \quad \forall k \in \mathbb{N}.$$

Ряд $\sum_{k=1}^{\infty} \left(\frac{2}{3}\right)^k \frac{1}{\alpha}$ сходится, поэтому ряд $\sum_{k=1}^{\infty} 2^k \sin \frac{1}{3^k x}$ сходится на $[\alpha, \beta]$ равномерно, что означает его локальную равномерную сходимость на $(0, +\infty)$. Так как члены ряда непрерывны на $(0, +\infty)$, то f непрерывна на $(0, +\infty)$ (см. замечание на с. 16).

Функция f является нечетной, а поэтому она непрерывна и на интервале $(-\infty,0)$. Таким образом, функция f непрерывна на множестве задания, т. е. на $\mathbb{R}\setminus\{0\}$.

Заметим, однако, что ряд $\sum\limits_{k=1}^{\infty}2^k\sin\frac{1}{3^kx}$ сходится неравномерно на $(0,+\infty)$, так как

$$|u_n(x)|\Big|_{x=\tilde{x}_n} = \left[\tilde{x}_n = \frac{1}{3^n}\right] = 2^n \sin 1 \underset{n\to\infty}{\longrightarrow} +\infty,$$

т. е. $u_n(x) \xrightarrow{(0,+\infty)} 0$. Поэтому применить теорему Стокса-Зейделя в основной формулировке (см. с. 14) на $(0,+\infty)$ невозможно.

Пример 5.13. Доказать, что функция $f(x) = \sum_{n=2}^{\infty} \frac{(-1)^n n}{n \ln n + x^2}$ дифференцируема на множестве ее задания.

P е ш е н и е . При каждом фиксированном $x \in \mathbb{R}$ ряд сходится согласно признаку Лейбница, следовательно, функция определена на \mathbb{R} .

При каждом фиксированном n > 1 функции

$$u_n(x) = \frac{(-1)^n n}{n \ln n + x^2}$$
 и $u'_n(x) = \frac{(-1)^{n-1} 2nx}{(n \ln n + x^2)^2}$

непрерывны на \mathbb{R} .

Ряд $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}2nx}{(n\ln n + x^2)^2}$ сходится равномерно на любом отрезке $[\alpha,\beta]\subset\mathbb{R}$ согласно признаку Вейерштрасса, так как

$$\left| \frac{(-1)^{n-1} 2nx}{n \ln n + x^2)^2} \right| \le \frac{2n \max\{|\alpha|, |\beta|\}}{n^2 \ln^2 n} = \frac{2 \max\{|\alpha|, |\beta|\}}{n \ln^2 n},$$

а ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$ сходится согласно интегральному признаку. Следовательно, ряд $\sum_{n=2}^{\infty} u_n'(x)$ сходится локально равномерно на $\mathbb R$. Таким образом, функция f дифференцируема на $\mathbb R$ и ее производная может быть вычислена путем почленного дифференцирования исходного ряда, т. е. $f'(x) = \sum_{n=2}^{\infty} (-1)^{n-1} \frac{2nx}{(n \ln n + x^2)^2}$.

6. Некоторые рекомендации при исследовании функционального ряда на равномерную сходимость

- $1^{0}.$ Удостовериться, что ряд $\sum\limits_{k=1}^{\infty}u_{k}(x)$ действительно сходится на X.
- 2^{0} . Попытаться использовать признак Вейерштрасса:
- а) если нетрудно установить оценку $|u_k(x)| \le b_k \ \forall \ x \in \mathbb{N} \ \forall \ x \in X,$ и ряд $\sum\limits_{k=1}^\infty b_k$ сходится, то $\sum\limits_{k=1}^\infty u_k(x) \stackrel{X}{\Longrightarrow};$
- б) вычислить $\sup_{x \in X} |u_k(x)| = a_k$ (можно использовать методы поиска глобального максимума (супремума) методами дифференциального исчисления). Если $\sum_{k=1}^{\infty} a_k$ сходится, то $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Longrightarrow}$. Если же окажется, что ряд $\sum_{k=1}^{\infty} a_k$ расходится, то придется продолжить исследование другими методами.
- 3^0 . Возможно, для любого $n \in \mathbb{N}$ существует такое $\tilde{x}_n \in X$, что $u_n(\tilde{x}_n) \not\longrightarrow 0$ при $n \to \infty$. Тогда $u_n(x) \not\stackrel{X}{\Longrightarrow} 0$, что, в свою очередь, влечет неравномерную на X сходимость ряда. Если же $u_n(x) \stackrel{X}{\Longrightarrow} 0$, то исследование ряда на равномерную сходимость следует продолжить.
- 4^0 . Если частные суммы $S_n(x)$ ряда $\sum\limits_{k=1}^{\infty}u_k(x)$ легко преобразуются, и возможно найти сумму ряда $S(x)=\lim_{n\to\infty}S_n(x)$, то можно исследовать на равномерную сходимость функциональную последовательность $(S_n(x))$ методами раздела 2.

Если $S_n(x) \stackrel{X}{\Longrightarrow} S(x)$, то ряд сходится на X равномерно, если же $S_n(x) \stackrel{X}{\Longrightarrow}$, то и ряд сходится на X неравномерно.

- 5^{0} . Если удается оценить остатки ряда $r_{n}(x):|r_{n}(x)|\leq\alpha_{n}\ \forall\ n\in\mathbb{N}$ $\forall\ x\in X,\ \alpha_{n}$ не зависит от x и $\lim_{n\to\infty}\alpha_{n}=0$, то ряд сходится равномерно на X.
- 6^0 . Если исследуемый ряд имеет вид $\sum\limits_{k=1}^{\infty} (-1)^{k-1} v_k(x)$, где $v_k(x)>0$ при всех $k\in\mathbb{N}$ и всех $x\in X$, то можно попытаться воспользоваться

признаком Лейбница.

- 7^{0} . Представить ряд в виде $\sum_{k=1}^{\infty} a_{k}(x)b_{k}(x)$ и попытаться проверить выполнение условий признака Абеля либо признака Дирихле.
- 8^0 . Если функции $u_n(x)$ непрерывны на X, а сумма ряда функция разрывная на X, то ряд сходится неравномерно на X.
- 9^0 . Если x_0 предельная точка множества X и существует конечный предел $\lim_{x\to x_0}u_n(x)=b_n$, а ряд $\sum_{n=1}^\infty b_n$ расходится, то ряд $\sum_{n=1}^\infty u_n(x)$ сходится неравномерно на $\mathbb R$.
- 10^{0} . Использовать критерий Коши равномерной сходимости. Если на X выполнено равномерное условие Коши, то ряд сходится равномерно на X, если же имеет место его отрицание, то сходимость неравномерная на X.

7. Вариант контрольной работы

Основные задачи

- **1.** Исследовать на равномерную сходимость функциональную последовательность $(f_n), f_n(x) = \sqrt{n} \left(\sqrt{x + \frac{1}{n}} \sqrt{x} \right)$, на множестве $E = (0; +\infty)$.
- Решение. Предельная функция $f(x) = \lim_{n \to \infty} \sqrt{n} \left(\sqrt{x + \frac{1}{n}} \sqrt{x} \right) = \lim_{n \to \infty} \frac{\sqrt{n} \cdot \frac{1}{n}}{\sqrt{x + \frac{1}{n}} + \sqrt{x}} = 0$. Рассмотрим $|f_n(x) f(x)| = \sqrt{n} \left(\sqrt{x + \frac{1}{n}} \sqrt{x} \right)$.

. Поскольку $\lim_{x\to +0} \sqrt{n} \bigg(\sqrt{x+\frac{1}{n}} - \sqrt{x} \bigg) = 1$, то $\sup_{x\in (0;+\infty)} |f_n(x)-f(x)| \geq 1$ и, следовательно, $\sup_{x\in (0;+\infty)} |f_n(x)-f(x)| \xrightarrow[n\to\infty]{} 0$. Поэтому сходимость на множестве $(0;+\infty)$ неравномерная.

2. Исследовать на равномерную сходимость последовательность $(f_n), f_n(x) = \frac{4+3nx}{1+3x+4n},$ на множестве E=[0;1].

P е ш е н и е . Предельная функция $f(x)=\lim_{n\to\infty}\frac{4+3nx}{1+3x+4n}=\frac{3}{4}x$. Имеем

$$|f_n(x) - f(x)| = \left| \frac{4 + 3nx}{1 + 3x + 4n} - \frac{3}{4}x \right| = \frac{16 - 3x - 9x^2}{4(1 + 3x + 4n)} \le \frac{16}{4(1 + 4n)} \underset{n \to \infty}{\longrightarrow} 0.$$

На основании следствия 2.1 последовательность (f_n) сходится равномерно к f на отрезке [0;1].

3. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{(x+1)^2}{1+n^3(x+1)^2}$ на множестве $E=[-2;+\infty).$

Решение. $|u_n(x)|=\frac{(x+1)^2}{1+n^3(x+1)^2}\leq \frac{(x+1)^2}{n^3(x+1)^2}=\frac{1}{n^3}$ для всех $x\neq -1$ и всех $n\in\mathbb{N}$. При x=-1 справедливость такой оценки проверяется непосредственно: $0\leq \frac{1}{n^3}$. Следовательно, $|u_n(x)|\leq \frac{1}{n^3}$ для всех $n\in\mathbb{N}$ и всех $x\in E$. Поскольку ряд $\sum_{n=1}^\infty \frac{1}{n^3}$ сходится, то по признаку Вейерштрасса $\sum_{n=1}^\infty \frac{(x+1)^2}{1+(x+1)^2n^3}\stackrel{[-2;+\infty)}{\Longrightarrow}$.

4. Исследовать ряд $\sum_{n=1}^{\infty} \frac{2x+1}{3x+2n^2} \sin \frac{n^2}{4x+1}$ на равномерную сходимость на множестве $E = [1; +\infty)$.

Решение. Ряд сходится на множестве $[1;+\infty)$ по теореме сравнения: $|u_n(x)| = \left|\frac{2x+1}{3x+2n^2}\sin\frac{n^2}{4x+1}\right| \leq \frac{2x+1}{2n^2},$ а ряд $\sum_{n=1}^{\infty}\frac{2x+1}{2n^2}$ сходится при любом фиксированном x. Поскольку

$$|u_n(x)|\Big|_{x=\tilde{x}_n} = \left[\tilde{x_n} = n^2\right] = \frac{2n^2 + 1}{3n^2 + 2n^2} \sin\frac{n^2}{4n^2 + 1} \underset{n \to \infty}{\longrightarrow} \frac{2}{5} \sin\frac{1}{4} \neq 0,$$

то на основании следствия $2.3\ u_n(x) \overset{[1;+\infty)}{\underset{n\to\infty}{\Longrightarrow}} 0$. Не выполнено необходимое условие равномерной сходимости ряда, следовательно, ряд сходится неравномерно на $[1;+\infty)$.

номерной сходимости ряда, следовательно, ряд сходится неравномерно на $[1; +\infty)$. **5.** Исследовать на непрерывность функцию $f(x) = \sum_{n=1}^{\infty} \frac{x^2 \cos 2x}{1 + n^4 x^6}$ на множестве ее задания.

Решение. Легко видеть, что ряд сходится при любом фиксированном значении $x \in \mathbb{R}$. Поэтому $D(f) = \mathbb{R}$. Рассмотрим функцию $\varphi(x) = \frac{x^2}{1 + n^4 x^6}, \ x \in \mathbb{R}$:

$$\varphi'(x) = \frac{2x - 4n^4x^7}{(1 + n^4x^6)^2}, \quad \varphi'(x) = 0 \implies x_n = \frac{\pm 1}{\sqrt[6]{2n^4}}.$$

Поскольку $\varphi(0)=0,\, \varphi(\pm\infty)=0,\, {\rm тo}$

$$|u_n(x)| = \left| \frac{x^2 \cos 2x}{1 + n^4 x^6} \right| \le \varphi\left(\frac{1}{\sqrt[6]{2n^4}}\right) = \frac{\sqrt[3]{4}}{3} \cdot \frac{1}{n^{4/3}} \quad \forall x \in \mathbb{R}.$$

Так как $\sum_{n=1}^{\infty} \frac{1}{n^{4/3}}$ сходится, то заданный ряд по признаку Вейерштрасса сходится абсолютно и равномерно на \mathbb{R} . Поскольку члены ряда непрерывны на \mathbb{R} , то f(x) непрерывна на \mathbb{R} в силу теоремы Стокса-Зейделя.

6. Исследовать на дифференцируемость функцию $f(x) = \sum_{n=1}^{\infty} e^{-2n^2x}$ на множестве ее задания.

Решение. Для исследования сходимости ряда применим признак Коши:

$$\lim_{n \to \infty} \sqrt[n]{u_n(x)} = \lim_{n \to \infty} e^{-2nx} = \begin{cases} 0, \text{ если } x > 0, \\ 1, \text{ если } x = 0, \\ \infty \text{ если } x < 0. \end{cases}$$

Следовательно, при x>0 ряд сходится, при $x\leq 0$ — расходится. Таким образом, множество задания функции f — это интервал $(0;+\infty)$. На любом отрезке $[\alpha;\beta]\subset (0;+\infty)$ имеем $|u_n'(x)|=2n^2e^{-2n^2x}\leq 2n^2e^{-2\alpha n^2}$ при всех $x\in [\alpha,\beta]$

и всех $n\in\mathbb{N}$. Числовой ряд $\sum 2n^2e^{-2\alpha n^2}$ сходится по признаку Коши, поэтому, ряд $\sum_{k=1}^\infty u_k'(x) \stackrel{[\alpha,\beta]}{\Longrightarrow}$, т. е. сходится локально равномерно на $(0;+\infty)$. Следовательно, функция f дифференцируема на $(0;+\infty)$.

Дополнительные задачи

1. Исследовать на равномерную сходимость последовательность $(f_n), f_n(x) = x \arctan n^3 x$, на множестве $E = [0; +\infty)$.

Решение. Предельная функция $f(x)=\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}x \arctan n^3x=\frac{\pi x}{2}.$ Имеем

$$r_n(x)=|f_n(x)-f(x)|=\left|rac{\pi}{2}x-xrctg\,n^3x
ight|=x\left(rac{\pi}{2}-rctg\,n^3x
ight)=$$
 $=\left[$ воспользуемся равенством $rac{\pi}{2}-rctg\,x=rctg\,rac{1}{x},\;x>0
ight]=$ $=xrctg\,rac{1}{n^3x}\leq \left[rctg\,x\leq x
ight]\leq rac{1}{n^3}.$

Для x=0 справедливость этой оценки проверяется непосредственно. Таким образом, $r_n(x) \leq \frac{1}{n^3}$ для всех $n \in \mathbb{N}$ и всех $x \in [0;+\infty)$. Поскольку $\frac{1}{n^3} \longrightarrow 0$ при $n \to \infty$, то по следствию 2.1 сходимость рассматриваемой последовательности равномерная, т. е. $x \arctan n^3 x \stackrel{[0,+\infty)}{\Longrightarrow} \frac{\pi x}{2}$.

2. Исследовать ряд $\sum_{n=1}^{\infty} \frac{(-1)^{\frac{n(n+1)}{2}}}{n+x-\ln(n^2+x^2)}$ на равномерную сходимость на множестве $E=[0;+\infty)$.

Решение. Воспользуемся признаком Дирихле, положив

$$a_n(x) = \frac{1}{n+x-\ln(n^2+x^2)}, \quad b_n(x) = (-1)^{\frac{n(n+1)}{2}}.$$

Имеем

$$\left| \sum_{k=1}^{n} b_k(x) \right| = \left| \sum_{k=1}^{n} (-1)^{\frac{k(k+1)}{2}} \right| \le 2 \quad \forall n \in \mathbb{N}, \ \forall x \in [0; +\infty).$$

Последовательность $(a_n(x))$ монотонна при каждом фиксированном $x \ge 0$. Кроме того для всех $x \ge 0$ и всех натуральных n

$$a'_n(x) = \frac{2x - n^2 - x^2}{(n^2 + x^2)(n + x - \ln(n^2 + x^3))^2} = -\frac{(x - 1)^2 + n^2 - 1}{(n^2 + x^2)(n + x - \ln(n^2 + x^2))^2} \le 0.$$

Значит, при каждом фиксированном $n \geq 1$ функция $a_n(x)$ убывает на промежутке $[0, +\infty)$, и поэтому

$$\sup_{x \in [0; +\infty)} a_n(x) = a_n(0) = \frac{1}{n - \ln n^2} \underset{n \to \infty}{\longrightarrow} 0,$$

что в силу следствия 2.1 означает равномерную сходимость последовательности $(a_n(x))$ к нулю, $a_n(x) \stackrel{E}{\Longrightarrow} 0$. На основании признака Дирихле ряд сходится равномерно на множестве E.

3. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \left(\frac{x^2 e^{-x}}{1 + n x^3} \right)^3$ на множестве $E = [0; +\infty)$.

Решение. Попробуем применить признак Вейерштрасса. Имеем

$$\left| \frac{x^2 e^{-x}}{1 + n x^3} \right| \leq \left[\frac{2ab}{a^2 + b^2} \leq 1, \ \frac{x^2}{1 + n x^3} = \frac{\sqrt{x}}{2\sqrt{n}} \cdot \frac{2\sqrt{n} x^3}{1 + n x^3} \leq \frac{\sqrt{x}}{2\sqrt{n}} \right] \leq \frac{\sqrt{x} e^{-x}}{2\sqrt{n}}.$$

Рассмотрим функцию $\varphi(x) = \sqrt{x}e^{-x}$:

$$\varphi'(x) = \frac{1}{2\sqrt{x}}e^{-x} - \sqrt{x}e^{-x} = 0 \implies x = \frac{1}{2}.$$

Так как $\varphi(0)=0,$ $\varphi\left(\frac{1}{2}\right)=\frac{1}{\sqrt{2e}},$ $\varphi(+\infty)=0,$ то $\varphi(x)\leq\frac{1}{\sqrt{2e}}$ для всех $x\in E.$ Поэтому $\frac{x^2e^{-x}}{1+nx^3}\leq\frac{1}{2\sqrt{2ne}}$ для всех $n\in\mathbb{N}$ и всех $x\in E,$ и, следовательно,

$$|u_n(x)| \le \left(\frac{1}{2\sqrt{2ne}}\right)^3 = \left(\frac{1}{2\sqrt{2e}}\right)^3 \cdot \frac{1}{n^{3/2}}.$$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ сходится, то по признаку Вейерштрасса исходный ряд сходится равномерно на E.

4. Найти все значения α , при которых последовательность (f_n) , $f_n(x) = n^{\alpha} x e^{-nx^2}$, сходится равномерно на множестве $E = [0; +\infty)$. Решение. Предельная функция

$$f(x) = \lim_{n \to \infty} n^{\alpha} x e^{-nx^2} = 0 \quad \forall \alpha \in \mathbb{R}, \ \forall x \in E.$$

Рассмотрим функцию $\varphi_n(x)=|f_n(x)-f(x)|=n^{\alpha}xe^{-nx^2}$. Найдем супремум этой функции на $E:\varphi_n'(x)=n^{\alpha}e^{-nx^2}(1-2nx^2)$, поэтому $x=\frac{1}{\sqrt{2n}}$ — стационарная точка.

Так как $\varphi_n(0)=0, \quad \varphi_n(+\infty)=0, \quad \varphi_n\left(\frac{1}{\sqrt{2n}}\right)=n^{\alpha}\frac{1}{\sqrt{2n}}e^{-\frac{1}{2}}=\frac{1}{\sqrt{2e}n^{1/2-\alpha}} \quad \forall \, \alpha, \text{ то } \sup_{x\in E}\varphi_n(x)=\frac{1}{\sqrt{x}n^{1/2-\alpha}}.$ Поэтому, если $\frac{1}{2}-\alpha>0,$ т. е. $\alpha<\frac{1}{2},$ то $\sup_{x\in E}\varphi_n(x)\underset{n\to\infty}{\longrightarrow}0$ и $f_n(x)\overset{E}{\Longrightarrow}f(x)$ в силу супремального критерия.

Если же $\frac{1}{2} - \alpha \le 0$, т. е. $\alpha \ge \frac{1}{2}$, то $\sup_{x \in E} \varphi_n(x) \xrightarrow[n \to \infty]{} 0$ и, следовательно, $f_n(x) \xrightarrow{E} f(x)$.

5. Исследовать на непрерывность функцию

$$f(x) = \sum_{n=1}^{\infty} \frac{n}{(1+2x^2)(1+4x^2)\dots(1+2nx^2)}$$

на множестве ее задания.

Решение. Если $x \neq 0$, то

$$u_n(x) = \frac{n}{(1+2x^2)(1+4x^2)(\dots(1+2nx^2))} \le \frac{n}{(1+2x^2)^n},$$

и так как $\lim_{n \to \infty} \sqrt[n]{\frac{n}{(1+2x^2)^n}} = \frac{1}{1+2x^2} < 1$, то на основании признака Коши и расходится. Таким образом, функция f(x) определена на $\mathbb{R} \setminus \{0\}$.

Исследуем непрерывность функции на интервале $(0; +\infty)$. На этом множестве члены ряда $u_n(x)$ непрерывны.

Для любого отрезка $[\alpha; \beta] \subset (0; +\infty)$ справедлива оценка

$$|u_n(x)| \le \frac{n}{(1+2x^2)^n} \le \frac{n}{(1+2\alpha^2)^n} \quad \forall x \in [\alpha, \beta], \ \forall n \in \mathbb{N},$$

и ряд $\sum_{n=1}^{\infty} \frac{1}{(1+2\alpha^2)^n}$ сходится (по признаку Коши). Значит ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится на $(0; +\infty)$ локально равномерно и, следовательно, f(x) непрерывна на $(0; +\infty)$ в силу замечания на с. 16. Поскольку функция f четная, то f непрерывна и на $\mathbb{R}\setminus\{0\}$, т. е. на всем множестве своего задания.

6. На интервале (0; 1) исследовать на дифференцируемость функцию

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n - \ln(n+x)}$$

Решение. Имеем $u_n(x) = \frac{(-1)^n}{2n - \ln(n+x)}$.

1) ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится при каждом x из интервала (0;1) по признаку Лейбница;

2) функции
$$u_n(x)$$
 и $u_n'(x)=\frac{(-1)^n}{(2n-\ln(n+x))^2(n+x)}$ непрерывны на $(0;1);$

$$3) |u'_n(x)| = \frac{1}{(2n - \ln(n+x))^2 (n+x)} \le \frac{1}{(2n - \ln(n+1))^2 n}.$$

$$3) \ |u_n'(x)| = \frac{1}{(2n-\ln(n+x))^2(n+x)} \leq \frac{1}{(2n-\ln(n+1))^2n}.$$
 Ряд $\sum_{n=1}^{\infty} \frac{1}{n(2n-\ln(n+1))^2}$ сходится, так как $\frac{1}{n(2n-\ln(n+1))^2} \sim \frac{1}{4n^3}$, и ряд $\sum_{n=1}^{\infty} \frac{1}{4n^3}$ сходится. Поэтому $\sum_{n=1}^{\infty} u_n'(x) \stackrel{(0;1)}{\Longrightarrow}$.

Таким образом, выполнены все условия теоремы о почленном дифференцировании ряда, и, следовательно, функция f дифференцируема на интервале (0;1).

8. Упражнения

І. Найти предельные функции последовательностей $(f_n(x))$.

1.
$$f_n(x) = x^{2n} - 2x^n$$

3.
$$f_n(x) = \frac{\ln(2^n + x^n)}{n}, x \ge 0.$$

5.
$$f_n(x) = (1+x)^n - 1$$
.

7.
$$f_n(x) = \frac{x^{n+2}}{\sqrt{4^n + x^{2n}}}, x \ge 0.$$

9.
$$f_n(x) = \sqrt[n]{1 + x^n + \left(\frac{x^2}{2}\right)^n}$$
.

2.
$$f_n(x) = (x-1) \operatorname{arctg} x^n$$
.

4.
$$f_n(x) = \sqrt[n]{1 + e^{n(x+1)}}$$

6.
$$f_n(x) = x \arctan nx$$
.

8.
$$f_n(x) = \frac{x + e^{nx}}{1 + xe^{nx}}$$
.

II. Найти множества, на которых определены функции, являющиеся суммами рядов.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n-1} \left(\frac{1-2x}{x+2} \right)^n.$$

$$3. \sum_{n=1}^{\infty} \frac{x}{n+x^2}.$$

$$5. \sum_{n=1}^{\infty} \frac{x}{n(n+e^x)}.$$

7.
$$\sum_{n=1}^{\infty} \frac{1}{(\sqrt[3]{n^2} + \sqrt{n} + 1)^{2x+1}}.$$

9.
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \cdot \frac{1}{(3x^2 + 4x + 2)^n}.$$

11.
$$\sum_{n=1}^{\infty} \left(1 + \frac{5}{n}\right)^n \cdot e^{-\frac{n}{x^2}}$$
.

13.
$$\sum_{n=1}^{\infty} \frac{1}{\ln^n(x+2)}$$
.

15.
$$\sum_{n=1}^{\infty} (2x)^n \arctan \frac{2x}{n+1}$$
.

17.
$$\sum_{n=1}^{\infty} \frac{3^n}{n} \operatorname{tg}^{2n} x$$
.

2.
$$\sum_{n=1}^{\infty} \frac{n+1}{3^n} (x^2 - 4x + 6)^n$$
.

$$4. \sum_{n=1}^{\infty} \frac{\sqrt{x}}{3^{nx} + 2}.$$

6.
$$\sum_{n=1}^{\infty} \frac{1}{n+3} \left(\frac{1+x}{1-x} \right)^n$$
.

8.
$$\sum_{n=1}^{\infty} \frac{n+1}{xn^x}.$$

$$10. \sum_{n=1}^{\infty} \left(\frac{n+x}{n}\right)^n.$$

12.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{e^{n \sin x}}$$
.

14.
$$\sum_{n=1}^{\infty} (2x^3)^n \sin \frac{x}{n}$$
.

$$16. \sum_{n=1}^{\infty} \frac{\ln^n (x + \frac{1}{n})}{\sqrt{x - e}}.$$

18.
$$\sum_{n=1}^{\infty} (3x)^n \operatorname{tg} \frac{x}{3n}$$
.

III. Исследовать последовательности $(f_n(x))$ на равномерную сходимость на указанных множествах E.

1.
$$f_n(x) = \frac{n}{nx+4}$$
, $E = [1; 5]$.

$$2. f_n(x) = \frac{x}{x^2 + n}, E = \mathbb{R}.$$

3.
$$f_n(x) = \frac{e^{-nx} + nx}{2 + n^2x^2}, E = (0; +\infty)$$

3.
$$f_n(x) = \frac{e^{-nx} + nx}{2 + n^2x^2}$$
, $E = (0; +\infty)$. 4. $f_n(x) = \frac{2x^2 - n^2}{x^2 + nx + n^2}$, $E = [0; +\infty)$.

5.
$$f_n(x) = n^2 x e^{-nx}, E = [0; 1].$$

5.
$$f_n(x) = n^2 x e^{-nx}$$
, $E = [0; 1]$. 6. $f_n(x) = \sqrt{16x^2 + \frac{1}{\ln n}}$, $E = \mathbb{R}$.

7.
$$f_n(x) = \frac{x}{n} \left(1 + \ln \frac{x}{n} \right), E = [1; +\infty).$$
 8. $f_n(x) = \frac{4nx}{1 + 4n^2x^2}, E = [2; +\infty).$

8.
$$f_n(x) = \frac{4nx}{1 + 4n^2x^2}, E = [2; +\infty).$$

9.
$$f_n(x) = \sqrt{e^{-x} + \frac{1}{n\sqrt{n}}}, E = [0; +\infty).$$
 10. $f_n(x) = x^{n+2} - x^n, E = [0; 1].$

10.
$$f_n(x) = x^{n+2} - x^n$$
, $E = [0; 1]$.

11.
$$f_n(x) = x^n - x^{3n}, E = [0; 1].$$

12.
$$f_n(x) = \frac{4nx}{1+4x+n}$$
, $E = [0; 0, 25]$.

13.
$$f_n(x) = \frac{\arctan nx}{n + n^2x + 2}$$
, $E = (0; 1)$. 14. $f_n(x) = \frac{7nx}{1 + n^3x^3}$, $E = [0; 31]$.

14.
$$f_n(x) = \frac{7nx}{1 + n^3x^3}, E = [0; 31]$$

15.
$$f_n(x) = \frac{nx^2 + 1}{n + 2x}, E = [0; 100]$$

15.
$$f_n(x) = \frac{nx^2 + 1}{n + 2x}$$
, $E = [0; 100]$. 16. $f_n(x) = \frac{e^{-nx^2} + 4}{n^2 + 2nx + 1}$, $E = [0; +\infty)$.

17.
$$f_n(x) = \frac{4nx}{1 + n^2x^2}$$
, $E = (0; 4]$.

18.
$$f_n(x) = 1 - x^{2n}, E = (-1; 1).$$

19.
$$f_n(x) = \frac{2nx}{4n^3 + x^2}$$
, $E = (1; +\infty)$. 20. $f_n(x) = \frac{2nx}{4n^2 + x^2}$, $E = [0; 1]$.

20.
$$f_n(x) = \frac{2nx}{4n^2 + x^2}$$
, $E = [0; 1]$.

21.
$$f_n(x) = \sqrt{\sin^2 x + n^{-4}}, E = \mathbb{R}.$$

21.
$$f_n(x) = \sqrt{\sin^2 x + n^{-4}}, E = \mathbb{R}.$$
 22. $f_n(x) = \frac{\sin^2 nx}{2n + x + 1}, E = [0; +\infty).$

23.
$$f_n(x) = \frac{nx + n^2 + x^2}{x^2 + n^2}$$
, $E = [0; 1]$. 24. $f_n(x) = \frac{2nx + 1}{2n + x + 1}$, $E = [0; 4]$.

24.
$$f_n(x) = \frac{2nx+1}{2n+x+1}$$
, $E = [0;4]$.

25.
$$f_n(x) = \frac{4nx}{4 + n^2x^2}, E = [0; 2].$$

26.
$$f_n(x) = \frac{4nx}{2n+x}$$
, $E = [0; 0, 25)$.

27.
$$f_n(x) = (1+x)^n - 1$$
, $E = (-1;0)$

27.
$$f_n(x) = (1+x)^n - 1$$
, $E = (-1;0)$. 28. $f_n(x) = \frac{(x+3)^n}{2n^2-1}$, $E = (-4;-2)$.

29.
$$f_n(x) = \frac{1}{n}\sin\frac{x+n}{n}$$
, $E = \mathbb{R}$.

30.
$$f_n(x) = \frac{\cos(n+2)x}{\sqrt{n+1}}, E = \mathbb{R}.$$

31.
$$f_n(x) = \cos \frac{2x}{n}$$
, $E = \mathbb{R}$.

32.
$$f_n(x) = \sqrt{\arctan x + e^{-n}}, E = [0; +\infty).$$

33.
$$f_n(x) = \frac{\sin nx^2}{\ln n}, E = \mathbb{R}.$$

34.
$$f_n(x) = \frac{3 \arctan \frac{x}{n} + 4}{2 + \frac{x}{n}}, E = [0; +\infty).$$

35.
$$f_n(x) = \frac{\arctan(n^2 + x^2)}{n + \sin^2 x}$$
, $E = \mathbb{R}$. 36. $f_n(x) = 1 - e^{-(2x+n)^2}$, $E = \mathbb{R}$.

36.
$$f_n(x) = 1 - e^{-(2x+n)^2}, E = \mathbb{R}.$$

37.
$$f_n(x) = \frac{2^n \cos^n x}{n^2}$$
, $E = (\pi/3; 2\pi/3)$. 38. $f_n(x) = \sqrt{4x^2 + \frac{3}{n^2}}$, $E = \mathbb{R}$.

38.
$$f_n(x) = \sqrt{4x^2 + \frac{3}{n^2}}, E = \mathbb{R}.$$

39.
$$f_n(x) = \frac{\sin(n^2 + x) + \cos(n + x^2)}{n^2 + x + n + x^2}, E = \mathbb{R}.$$

IV. Пользуясь признаком Вейерштрасса, доказать равномерную сходимость рядов на множествах E.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sin nx + 1 + n^2}$$
, $E = \mathbb{R}$.

3.
$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{n^6 + nx + x^2}, E = [0; +\infty).$$

5.
$$\sum_{n=1}^{\infty} \frac{n^2x + nx + 4}{n^6x^3 + n^3x + 4}, E = [1; 8].$$

7.
$$\sum_{n=1}^{\infty} \frac{\cos(n^2x + x^3)}{\sqrt{n^3 + x^4}}, E = \mathbb{R}.$$

9.
$$\sum_{n=1}^{\infty} \frac{\sin^3(n+x) + \cos(n-x)}{\sqrt[5]{n^6 + x^6}}$$
, $E = \mathbb{R}$.

11.
$$\sum_{n=1}^{\infty} \frac{x^2}{1 + n^2 x^3}, E = [0; +\infty).$$

13.
$$\sum_{n=1}^{\infty} \frac{nx}{1 + n^8 x^3}$$
, $E = [0; +\infty)$.

15.
$$\sum_{n=1}^{\infty} \frac{x^2}{1 + n^3 x^4}, E = \mathbb{R}.$$

17.
$$\sum_{n=1}^{\infty} \frac{x}{1+n^4x^3}$$
, $E = [0; +\infty)$.

19.
$$\sum_{n=1}^{\infty} \frac{x^7}{2 + n^2 x^{10}}, E = \mathbb{R}.$$

21.
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{x^3 + nx}{1 + n^3}\right)$$
, $E = [0; e]$.

23.
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{x+3}{x^2n^2+4}\right)$$
, $E = [2; 10]$.

25.
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{2x}{x^2 + n^3}\right), E = \mathbb{R}.$$

27.
$$\sum_{n=1}^{\infty} \operatorname{arctg}(x^6 n e^{-nx^2}), E = \mathbb{R}.$$

29.
$$\sum_{n=1}^{\infty} \ln(1 + x^8 n^2 e^{-nx^2}), E = \mathbb{R}.$$

31.
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi}{n} e^{-nx}, E = [0; +\infty).$$

2.
$$\sum_{n=1}^{\infty} \frac{\cos nx}{e^{-nx^2} + e^n}, E = \mathbb{R}$$

4.
$$\sum_{n=1}^{\infty} \frac{3 + (-1)^n}{\arctan(nx + x^2) + 4^n}, E = \mathbb{R}.$$

6.
$$\sum_{n=1}^{\infty} \frac{\frac{n}{x} + \frac{1}{x^3}}{n^3 x + n x^3}, E = [1; +\infty).$$

8.
$$\sum_{n=1}^{\infty} \frac{\sin nx + \cos nx}{n\sqrt[3]{n} + x^2}, E = \mathbb{R}.$$

10.
$$\sum_{n=1}^{\infty} \frac{\sin x n^2 \cos n x^2}{\sqrt{n^4 + n^2 x^2 + x^4}}, E = \mathbb{R}.$$

12.
$$\sum_{n=1}^{\infty} \frac{x^2}{1 + n^4 x^4}$$
, $E = \mathbb{R}$.

14.
$$\sum_{n=1}^{\infty} \frac{n^3 x^3}{4 + n^6 x^4}, E = \mathbb{R}.$$

16.
$$\sum_{n=1}^{\infty} \frac{n^2 x^2}{1 + n^7 x^3}, E = [0; +\infty).$$

18.
$$\sum_{n=1}^{\infty} \frac{x^2}{1+n^3x^5}$$
, $E = [0; +\infty)$.

20.
$$\sum_{n=1}^{\infty} \frac{x^2}{1 + n^4 x^6}, E = \mathbb{R}.$$

22.
$$\sum_{n=1}^{\infty} \sin \frac{nx}{1 + n^4 x^2 + n^3}, E = [0; 14].$$

24.
$$\sum_{n=1}^{\infty} \operatorname{arctg} \frac{2}{n^2 + x^2}, E = \mathbb{R}.$$

26.
$$\sum_{n=1}^{\infty} \sin \frac{2x}{x^4 + n^3}, E = \mathbb{R}.$$

28.
$$\sum_{n=1}^{\infty} \sin(x^{10}n^3e^{-nx^2}), E = \mathbb{R}.$$

30.
$$\sum_{n=1}^{\infty} \operatorname{arctg}(x^7 n^2 e^{-nx^2}), E = \mathbb{R}.$$

V. Пользуясь признаками Абеля и Дирихле, доказать равномерную сходимость рядов на множествах E.

1.
$$\sum_{n=2}^{\infty} \frac{(-1)^n e^{-nx}}{n \ln n}$$
, $E = [0; +\infty)$.

1.
$$\sum_{n=2}^{\infty} \frac{(-1)^n e^{-nx}}{n \ln n}, E = [0; +\infty).$$
 2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n+3)}{n \sqrt{n} + 8} e^{-nx}, E = [0; +\infty).$$

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n^2+4} e^{-nx}, E = [0; +\infty).$$

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n^2+4} e^{-nx}$$
, $E = [0; +\infty)$. 4. $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+30} e^{-nx}$, $E = [0; +\infty)$.

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^{-nx}}{\sqrt{n}+1}, E = [0; +\infty).$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^{-nx}}{\sqrt{n}+1}, E = [0; +\infty).$$
 6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)}{n^2 + 3n + 2} e^{-nx}, E = [0; +\infty).$$

7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt[3]{n}}{n+4} e^{-nx}, E = [0; +\infty)$$

7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt[3]{n}}{n+4} e^{-nx}$$
, $E = [0; +\infty)$. 8. $\sum_{n=1}^{\infty} (-1)^n \frac{n^2+3}{n^3+2} e^{-nx}$, $E = [0; +\infty)$.

9.
$$\sum_{n=1}^{\infty} \frac{2 \cdot (-1)^n}{\sqrt{n+2}} e^{-nx^2}, E = [0; +\infty).$$
 10.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{2n+4}, E = [\pi/12; 5\pi/3]$$

10.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{2n+4}, E = [\pi/12; 5\pi/3].$$

11.
$$\sum_{n=1}^{\infty} \frac{\cos nx}{3n + \sqrt{n}}, E = [\pi/94; 37\pi/19]. \quad 12. \sum_{n=2}^{\infty} \frac{\sin nx}{n \ln n}, E = [\pi/8; 7\pi/4].$$

12.
$$\sum_{n=2}^{\infty} \frac{\sin nx}{n \ln n}, E = [\pi/8; 7\pi/4].$$

13.
$$\sum_{n=2}^{\infty} \frac{\cos nx}{n\sqrt{\ln n}}, E = [\pi/81; 5\pi/6].$$

13.
$$\sum_{n=2}^{\infty} \frac{\cos nx}{n\sqrt{\ln n}}$$
, $E = [\pi/81; 5\pi/6]$. 14. $\sum_{n=10}^{\infty} \frac{\sin nx}{\ln \ln n}$, $E = [\pi/36; 11\pi/6]$.

15.
$$\sum_{n=1}^{\infty} \frac{n \cos nx}{n^2 + n + 1}, E = [\pi/10; 9\pi/5].$$

15.
$$\sum_{n=1}^{\infty} \frac{n \cos nx}{n^2 + n + 1}, \ E = [\pi/10; 9\pi/5]. \quad 16. \ \sum_{n=1}^{\infty} \frac{(n+1) \sin nx}{n\sqrt{n} + 4}, \ E = [\pi/42; 39\pi/40].$$

17.
$$\sum_{n=1}^{\infty} \frac{n \cos nx}{n \sqrt[100]{n} + 2}, E = [\pi/13; 13\pi/7].$$

17.
$$\sum_{n=1}^{\infty} \frac{n \cos nx}{n \sqrt[100]{n} + 2}, E = [\pi/13; 13\pi/7]. \quad 18. \quad \sum_{n=1}^{\infty} \frac{(n+1) \sin nx}{n^2 + 1}, E = [\pi/16; 9\pi/16].$$

19.
$$\sum_{n=1}^{\infty} \frac{n \cos nx}{n^2 + 3n + 5}, E = [\pi/7; 7\pi/4].$$

VI. Пользуясь определением, доказать равномерную сходимость рядов на множествах E

1.
$$\sum_{n=1}^{\infty} \left(\frac{x}{n^2 x^2 + 4} - \frac{x}{(n+1)^2 x^2 + 4} \right), E = (0; +\infty).$$

2.
$$\sum_{n=1}^{\infty} \left(\frac{x^2}{\sqrt{n}x^3 + 2} - \frac{x^2}{\sqrt{n+1}x^3 + 2} \right), E = (0; +\infty).$$

3.
$$\sum_{n=1}^{\infty} \left(\frac{x^3}{nx^4 + 3} - \frac{x^3}{(n+1)x^4 + 3} \right), E = (0; +\infty).$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{x}{n^3 x^3 + 3} - \frac{x}{(n+1)^3 x^3 + 3} \right)$$
, $E = (0; +\infty)$.

5.
$$\sum_{n=1}^{\infty} \left(\frac{x^2}{n^2 x^3 + 1} - \frac{x^2}{(n+1)^2 x^3 + 1} \right), E = (0; +\infty).$$

6.
$$\sum_{n=1}^{\infty} \left(\frac{x}{n^2 x^3 + 5} - \frac{x}{(n+1)^2 x^3 + 5} \right), E = (0; +\infty).$$

7.
$$\sum_{n=1}^{\infty} \left(\frac{x^2}{nx^3 + 1} - \frac{x^2}{(n+1)x^3 + 1} \right), E = (0; +\infty).$$

8.
$$\sum_{n=1}^{\infty} \left(\frac{x^3}{n^2 x^4 + 2} - \frac{x^3}{(n+1)^2 x^4 + 2} \right), E = (0; +\infty).$$

9.
$$\sum_{n=1}^{\infty} \left(\frac{x^2}{n^3 x^3 + 2} - \frac{x^2}{(n+1)^3 x^3 + 2} \right), E = (0; +\infty).$$

10.
$$\sum_{n=1}^{\infty} \left(\frac{x}{n^3 x^2 + 1} - \frac{x}{(n+1)^3 x^2 + 1} \right), E = (0; +\infty).$$

VII. Исследовать ряды на равномерную сходимость на указанных множествах E.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n\sqrt{n} + x^2}, E = \mathbb{R}.$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-nx^2}, E = [0; +\infty).$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x}{n + \ln x} e^{-nx^2}, E = [1; 10].$$

4.
$$\sum_{n=1}^{\infty} \frac{1}{1+n^2x^2}$$
, $E=(0;1]$.

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{n \ln n + x}, E = (0; +\infty).$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+4)}{n^2 + 13x}, E = (0; +\infty).$$

7.
$$\sum_{n=1}^{\infty} x^{2n}$$
, $E = (0; 1)$.

8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{x^3 + 2n}, E = (0; +\infty).$$

9.
$$\sum_{n=1}^{\infty} \frac{e^{-nx}}{1+n}$$
, $E = (0;1)$.

10.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{n\sqrt{n} + x^4}, E = \mathbb{R}.$$

11.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n} + x}$$
, $E = (0; +\infty)$.

12.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x + \ln(n+1)}$$
, $E = (0; +\infty)$.

13.
$$\sum_{n=1}^{\infty} \frac{x(n+1)}{n^3 + 2}, E = (0; +\infty).$$

14.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n\sqrt[4]{n} + \sin x}, E = [0; 2\pi].$$

15.
$$\sum_{n=1}^{\infty} \frac{n}{1 + n^2 x^2} \sin \sqrt{\frac{x}{n}}, E = [0; 1].$$

16.
$$\sum_{n=1}^{\infty} \frac{n \sin x}{(x+2)^n}, E = (-1/4; 1/4).$$

17.
$$\sum_{n=1}^{\infty} \frac{\cos \frac{2\pi nx}{3}}{\sqrt{x^2 + n^3}}, E = \mathbb{R}.$$

18.
$$\sum_{n=1}^{\infty} \frac{\arctan x}{n^2 + x^2}, E = \mathbb{R}.$$

19.
$$\sum_{n=1}^{\infty} \frac{\sin x + \cos n^2 x^2}{(n+x^2) \ln^2(n+1)}, E = \mathbb{R}.$$

20.
$$\sum_{n=1}^{\infty} e^{-nx}, E = (0; +\infty).$$

21.
$$\sum_{n=1}^{\infty} \frac{\sin \frac{2nx}{5}}{\sqrt[100]{n(x+n^{100})}}, E = [0; +\infty).$$

22.
$$\sum_{n=1}^{\infty} \frac{e^{-nx} \cos nx}{n}, E = (0; \pi/2).$$

23.
$$\sum_{n=1}^{\infty} \frac{x}{3+2nx+x^3n^2}$$
, $E=[2;3]$.

24.
$$\sum_{n=3}^{\infty} \frac{(-1)^n (1+x)}{n\sqrt{n}+x}, E = (-5; 5).$$

25.
$$\sum_{n=1}^{\infty} \frac{n}{x} e^{-\frac{n}{x}}, E = (0; +\infty).$$

27.
$$\sum_{n=1}^{\infty} \frac{n \sin nx}{1 + n + n^2 x^2 + n^3}, E = \mathbb{R}.$$

29.
$$\sum_{n=1}^{\infty} \frac{nx + n^2 + x^2}{x^2 + nx + n^5}, E = [0; 1].$$

31.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{x^2 + n^2} + x^2}, E = \mathbb{R}.$$

33.
$$\sum_{n=1}^{\infty} \frac{\sin nx + 2\cos nx}{n + \sqrt{n+x}}$$
, $E = [2; 4]$.

35.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n + \cos x}, E = (0; +\infty).$$

37.
$$\sum_{n=1}^{\infty} \frac{\cos \frac{n\pi}{12}}{\sqrt{1+x}+n}, E = (-1/2; +\infty). \qquad 38. \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{2}}{n+x}, E = [1; +\infty).$$

39.
$$\sum_{n=1}^{\infty} \frac{\cos \frac{2\pi n}{3}}{\sqrt{x+n^2}}, E = [0; 6].$$

41.
$$\sum_{n=1}^{\infty} \frac{\arctan x}{\sqrt{n^3 + x} + 2}$$
, $E = [0; \pi/4]$.

26.
$$\sum_{n=1}^{\infty} \frac{\ln x}{n^2 + x}$$
, $E = (0; +\infty)$.

28.
$$\sum_{n=1}^{\infty} \frac{n \cos 2nx}{(x+5)^n}, E = (-2; 2).$$

30.
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n + n^2 x^2}, E = (0; 1).$$

32.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-nx^2}, E = [0; +\infty).$$

34.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n+x}+2}$$
, $E=(\pi/2;3\pi/2)$.

36.
$$\sum_{n=1}^{\infty} \frac{\operatorname{arctg} \frac{n}{x}}{n + e^{nx}}, E = (0; 1).$$

38.
$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{2}}{n+x}, E = [1; +\infty).$$

40.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n + 2}{n^2 x + 4n^3}, E = [0; 2].$$

VIII. Исследовать на непрерывность функции f(x) на их множествах задания.

1.
$$f(x) = \sum_{n=0}^{\infty} \frac{x^3}{(1+x^2)^n}$$
.

3.
$$f(x) = \sum_{n=1}^{\infty} \frac{\ln x}{n^{3/2} + \ln^2 x}$$
.

5.
$$f(x) = \sum_{n=2}^{\infty} \frac{\sin nx}{n \ln^2 n + \sin^2 nx}$$
.

7.
$$f(x) = \sum_{n=1}^{\infty} \frac{x}{(1+x^2)^n}$$
.

9.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin x \cos x}{n^2 + n \sin^2 x + n^2 \sinh^2 x}$$

11.
$$f(x) = \sum_{n=1}^{\infty} e^{-n^2 x}$$
.

13.
$$f(x) = \sum_{n=1}^{\infty} \frac{n^2 \operatorname{arctg} nx}{\sqrt{n!}}$$
.

2.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(2nx+3)}{2^n + x^2}$$
.

4.
$$f(x) = \sum_{n=0}^{\infty} xe^{-nx}$$
.

$$6. f(x) = \sum_{n=1}^{\infty} \frac{\arctan + \arctan x}{n^5 + \cosh nx}.$$

8.
$$f(x) = \sum_{n=0}^{\infty} \frac{\sin x}{(2+x^2)^n}$$
.

10.
$$f(x) = x + \sum_{n=1}^{\infty} (x^{n+1} - x^n).$$

12.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin 3^n \pi x}{3^n}$$
.

14.
$$f(x) = \sum_{n=1}^{\infty} \frac{(\ln x)^n}{n}$$
.

15.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx + \cos nx}{\sin^2 x + n\sqrt[3]{n+1}}$$
.

17.
$$f(x) = \sum_{n=1}^{\infty} \frac{x + \operatorname{sh} x}{\operatorname{ch} nx + n \operatorname{ch} n}.$$

19.
$$f(x) = \sum_{n=1}^{\infty} \frac{\arctan x}{\sqrt[5]{n^6 + x^6}}$$
.

21.
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{3n-1} \cdot \frac{x}{n+x^2}$$
.

23.
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \operatorname{arctg} \frac{2}{n+x^2}$$
.

25.
$$f(x) = \sum_{n=1}^{\infty} \frac{\ln n}{n^2} \cdot \sin \frac{1}{\sqrt[3]{x^2} + 2n^2}$$
.

16.
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 \ln^2 x + e^x}$$
.

18.
$$f(x) = \sum_{n=2}^{\infty} \frac{n+3}{\sin x + n^4}$$
.

20.
$$f(x) = \sum_{n=1}^{\infty} \left(x + \frac{1}{n}\right)^n$$
.

22.
$$f(x) = \sum_{n=1}^{\infty} \frac{1+n^3}{3^n+1} \cdot \frac{1}{x^2+\sqrt{n}}$$

24.
$$f(x) = \sum_{n=1}^{\infty} \frac{x}{n(n+e^x)}$$
.

IX. Вычислить пределы.

1.
$$\lim_{x \to 1-0} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n} \cdot \frac{x^n + 2}{x^n + 4}$$
.

3.
$$\lim_{x \to +\infty} \sum_{n=1}^{\infty} \frac{x^2}{1 + 3^n x^2}$$
.

5.
$$\lim_{x\to 0} \sum_{n=1}^{\infty} \frac{x^2 + nx + 3}{5^n + 2x + 4x^3n}$$
.

7.
$$\lim_{x \to 2-0} \sum_{n=1}^{\infty} \frac{(-1)^n}{3^n} \cdot \frac{(x-1)^n}{(x-1)^n + 1}.$$

9.
$$\lim_{x \to 0} \sum_{n=1}^{\infty} \frac{\cos nx}{(x+3)^n}$$
.

11.
$$\lim_{x \to \pi} \sum_{n=0}^{\infty} \frac{x \sin \frac{2n+1}{2} x}{2^n}.$$

13.
$$\lim_{x \to 0} \sum_{n=1}^{\infty} \frac{3+x}{(x+n)(x+n+1)}.$$

2.
$$\lim_{x \to 2\pi} \sum_{n=1}^{\infty} \frac{n \sin nx}{1 + n + n^3}$$

4.
$$\lim_{x \to +\infty} \sum_{n=1}^{\infty} \frac{n^2 x^2 + 2}{(nx + n^2 x^2 + 4)2^n}$$
.

6.
$$\lim_{x\to 0} \sum_{n=1}^{\infty} \frac{1}{x+3^n}$$

8.
$$\lim_{x \to 1-0} \sum_{n=0}^{\infty} \frac{x^n + x^{-n}}{10^n}.$$

10.
$$\lim_{x \to +0} \sum_{n=1}^{\infty} \frac{\sin nx}{nx + n^2x^2 + n^3x^4} \cdot \frac{1}{3^n}$$
.

12.
$$\lim_{x \to +\infty} \sum_{n=1}^{\infty} \frac{x^3}{1 + 3^n x^3}.$$

Х. Доказать законность почленного дифференцирования рядов на указанных множествах E.

1.
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n n}{n\sqrt{n} + x}$$
, $E = (0; +\infty)$.

1.
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n n}{n\sqrt{n} + x}$$
, $E = (0; +\infty)$. 2. $f(x) = \sum_{n=1}^{\infty} \frac{n \cos nx}{n^2 \sqrt[9]{n} + 2}$, $E = [\pi/2; 3\pi/2]$.

3.
$$f(x) = \sum_{n=1}^{\infty} \frac{e^{-nx}}{n^2} \sin \frac{\pi}{n}, E = [0; +\infty).$$

3.
$$f(x) = \sum_{n=1}^{\infty} \frac{e^{-nx}}{n^2} \sin \frac{\pi}{n}$$
, $E = [0; +\infty)$. 4. $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n n e^{-nx}}{n^3 + 2n + 1}$, $E = [0; +\infty)$.

5.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{2^n + x}$$
, $E = [0; 20]$. 6. $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx + \cos nx}{n^2 \sqrt{n} + 2}$, $E = \mathbb{R}$.

7.
$$f(x) = \sum_{n=2}^{\infty} \frac{\sin nx}{n^2 \ln n}$$
, $E = [\pi/6; 11\pi/6]$. 8. $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n (n+4)}{n^2 + 13x}$, $E = [0; +\infty)$.

9.
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \ln x}$$
, $E = (1; +\infty)$. 10. $f(x) = \sum_{n=1}^{\infty} \frac{n^2 \arctan x}{\sqrt{n!}}$, $E = \mathbb{R}$.

11.
$$f(x) = \sum_{n=1}^{\infty} \frac{\cos \sqrt{n}x}{n^2 + \cos \sqrt{n}x}$$
, $E = (0; \pi)$. 12. $f(x) = \sum_{n=1}^{\infty} \frac{\cos n^2x}{2^n + n^2 + x^2}$, $E = (0; +\infty)$.

XI. Доказать законность почленного интегрирования рядов на указанных множествах E.

1.
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n \sin(n+x)}{1+n^2+nx}$$
, $E = [0; 13]$.

2.
$$f(x) = \sum_{n=1}^{\infty} \frac{x^2}{1 + n^2 x^3}$$
, $E = [0; 14]$.

3.
$$f(x) = \sum_{n=1}^{\infty} \frac{2 + (-1)^n}{\operatorname{arctg}(n+2x) + 5^n}, E = [-4; 8].$$

4.
$$f(x) = \sum_{n=1}^{\infty} \frac{x^2 + nx + 3n}{2^{nx} + 1}, E = [1; 5].$$

5.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx + \cos(n+x)}{xn\sqrt{n} + x^2}$$
, $E = [14; 28]$.

6.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(x-n^2)\cos(x+n^2)}{nx+n^2x+xn^2}$$
, $E = [3; 21]$.

7.
$$f(x) = \sum_{n=1}^{\infty} \frac{\ln(n+x)}{(\ln^2 n + \ln^2 x)n^2}, E = [5; 18].$$

8.
$$f(x) = \sum_{n=1}^{\infty} \frac{e^{-nx} + 1}{n^2 + x^2}$$
, $E = [0; 145]$.

9.
$$f(x) = \sum_{n=1}^{\infty} \frac{\sinh nx + \cosh nx}{e^{2n}}, E = [0; 1].$$

10.
$$f(x) = \sum_{n=1}^{\infty} \frac{\operatorname{arctg}(2^n + x)}{x^{2n} + 1}, E = [1; 10].$$

11.
$$f(x) = \sum_{n=1}^{\infty} \frac{x^2 + nx + n^2}{x^4 + n^2x^2 + n^4}$$
, $E = [-8; 10]$.

12.
$$f(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n \ln^n x}{n!}, E = (0; 1].$$

XII. Выяснить, можно ли вычислять предел $\lim_{n\to\infty}\int\limits_a^b f_n(x)dx, [a,b]=E,$ переходя к пределу под знаком интеграла.

1.
$$f_n(x) = \frac{\arctan x}{1 + n^2 x^2}, E = [0; 1].$$

2.
$$f_n(x) = \frac{2nx+1}{n+x+1}$$
, $E = [0;4]$.

3.
$$f_n(x) = \frac{x}{n} \left(1 + 3 \ln \frac{x}{n} \right), E = [1; e].$$
 4. $f_n(x) = nxe^{-nx^2}, E = [0; 1].$

4.
$$f_n(x) = nxe^{-nx^2}, E = [0; 1]$$

5.
$$f_n(x) = \frac{nx}{1 + n^2 x^4}, E = [0; 1].$$

6.
$$f_n(x) = \frac{3nx}{1 + 8n^2x^2}, E = [0; 1].$$

7.
$$f_n(x) = x \sin \frac{x^2}{n}$$
, $E = [0; \pi]$.

8.
$$f_n(x) = \frac{1}{1+nx}$$
, $E = [0;1]$.

9.
$$f_n(x) = \frac{x \cos nx^2}{\sqrt{n}}, E = [0; \pi].$$

10.
$$f_n(x) = n^2 \sin x \cos^{2n} x$$
, $E = [0; \pi/2]$.

11.
$$f_n(x) = \frac{xn\sqrt{n}}{n^3x^2 + 1}$$
, $E = [0; 1]$. 12. $f_n(x) = \frac{x^2}{1 + n^3x^6}$, $E = [0; 1]$.

12.
$$f_n(x) = \frac{x^2}{1 + n^3 x^6}, E = [0; 1].$$

13.
$$f_n(x) = \frac{2x}{\sqrt{n+1}}(e^{-nx}+1), E = [0;1].$$
 14. $f_n(x) = nx(1-x^2)^n, E = [0;1].$

14.
$$f_n(x) = nx(1-x^2)^n$$
, $E = [0;1]$.

15.
$$f_n(x) = x^2 - 2x^n$$
, $E = [0; 1]$.

9. Задания для лабораторных работ

Лабораторная 1.

Пусть $f_n(x) = n^{\alpha} x e^{-nx}, \ n \in \mathbb{N}.$

- 1. Найти множество D сходимости последовательности (f_n) и ее предельную функцию f.
- 2. Пусть $\alpha = 0$. Будет ли сходимость последовательности (f_n) к функции f равномерной на D?
- 3. Найти все значения $\alpha \in \mathbb{R}$, при которых последовательность (f_n) сходится к предельной функции f равномерно на множестве D.
- 4. Для значений α , при которых сходимость последовательности (f_n) к функции f не является равномерной на D, указать какое-либо подмножество $D_1 \subset D$, для которого $f_n(x) \stackrel{D_1}{\Longrightarrow} f(x)$.
- 5. Пусть $\alpha=0$. Найти множество сходимости и сумму ряда $\sum\limits_{n=0}^{\infty}f_n(x)$.
- 6. Используя теорему Стокса-Зейделя, исследовать при $\alpha=0$ равномерную сходимость ряда $\sum\limits_{n=0}^{\infty}f_{n}(x)$ на его множестве сходимости.

Лабораторная 2.

Пусть $u_n(x) = \sqrt{n}xe^{-nx}, \ n \in \mathbb{N}.$

- 1. Найти множество D сходимости последовательности (u_n) и ее предельную функцию.
- 2. Будет ли сходимость последовательности (u_n) равномерной на D?
- 3. Найти множество D_1 сходимости ряда $\sum_{n=1}^{\infty} u_n(x)$.
- 4. Показать, что сумма s этого ряда разрывна в точке x=0.
- 5. Является ли ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходящимся на $[0, +\infty)$?
- 6. Исследовать на непрерывность функцию s на $(0, +\infty)$.

Лабораторная 3.

Пусть
$$f_n(x) = \frac{ne^x + xe^{-x}}{n+x}, x \in [0, +\infty), n \in \mathbb{N}.$$

- 1. Указать множество $D \subset [0, +\infty)$, на котором последовательность (f_n) сходится, и найти ее предел f.
- 2. Будет ли сходимость последоваетльности (f_n) к функции f равномерной на D?
- 3. Найти множество D_1 сходимости последовательности производных (f'_n) и ее предел.
- 4. Показать, что сходимость последовательности (f'_n) не будет равномерной на D_1 .
- 5. Указать какое-либо подмножество $D_2 \subset D_1$, на котором последовательность (f'_n) сходится равномерно.
- 6. Вычислить $\lim_{n\to\infty} \int_{0}^{1} (1+x^2) f'_n(x) dx$.

Лабораторная 4.

Пусть
$$f_n(x) = e^{-(x-n)^2}, n \in \mathbb{N}.$$

- 1. Найти множество D сходимости последовательности (f_n) и ее предельную функцию f.
- 2. Показать, что последовательность (f_n) сходится к функции f равномерно на [-l,l], при любом $l \in (0,+\infty)$.
- 3. Будет ли сходимость последовательности (f_n) к функции f равномерной на \mathbb{R} ?
- 4. Доказать теорему: если функциональный ряд $\sum\limits_{n=1}^{\infty}u_{n}(x)$ сходится рав-
- номерно на X, то $u_n(x) \stackrel{X}{\Longrightarrow} 0$. 5. Сходится ли равномерно на $\mathbb R$ ряд $\sum_{n=1}^\infty f_n(x)$?
- 6. Указать какое-либо множество, на котором ряд $\sum_{n=1}^{\infty} f_n(x)$ будет равномерно сходящимся.
- 7. Доказать непрерывность суммы ряда $\sum\limits_{n=1}^{\infty}f_n(x)$ на $\mathbb{R}.$

Лабораторная 5.

Пусть
$$u_n(x) = \frac{x^{\alpha}e^{-nx}}{n}, \ \alpha > 0, \ n \in \mathbb{N}.$$

- 1. Найти множество D сходимости ряда $\sum_{n=1}^{\infty} u_n(x)$.
- 2. Найти $\sup_{[0,+\infty)} u_n(x)$ и доказать равномерную сходимость ряда $\sum_{n=1}^\infty u_n(x)$ на промежутке $[0,+\infty)$.
- 3. Показать, что сумма ряда $s(x) = \sum_{n=1}^{\infty} u_n(x)$ непрерывна на $[0, +\infty)$.
- 4. Показать, что ряд $\sum_{n=1}^{\infty} x^{-\alpha} u_n(x)$ не является равномерно сходящимся на интервале $(0,+\infty)$.
- 5. Доказать, что функция $m(x)=x^{-\alpha}s(x)$ непрерывна на $(0,+\infty).$ Найти $\lim_{x\to +\infty} m(x).$
- 6. Показать, что функция m(x) непрерывно дифференцируема на интервале $(0, +\infty)$.
- 7. Вычислить производную m'(x), а затем найти функции m(x) и s(x).

Лабораторная 6.

Пусть $u_n(x) = n^p e^{-n^2 x}, p \in \mathbb{R}, n \in \mathbb{N}.$

- 1. Показать, что при p=-2 последовательность (u_n) сходится равномерно на $[0,+\infty)$.
- 2. Найти все значения p, при которых последовательность (u_n) сходится равномерно на $[0, +\infty)$.
- 3. Показать, что функция $u(x)=\lim_{n\to\infty}u_n(x)$ непрерывна на $(0,+\infty)$ при любом $p\in\mathbb{R}.$
- 4. Найти все p, при которых ряд $\sum\limits_{n=1}^{\infty}n^{p}e^{-n^{2}x}$ имеет сходящуюся числовую мажоранту на $[0,+\infty).$
- 5. Показать, что функция $s(x) = \sum_{n=1}^{\infty} n^p e^{-n^2 x}$ непрерывна на $(0, +\infty)$ при любом $p \in \mathbb{R}$.
- 6. Для каких p функция s непрерывна на $[0, +\infty)$?
- 7. Показать, что функция s имеет на $(0,+\infty)$ производные любого порядка.

Лабораторная 7.

Пусть $f_n(x) = \frac{1}{2n} \ln(1 + n^2 x^2), \ n \in \mathbb{N}.$

- 1. Найти множество D сходимости последовательности (f_n) и ее предельную функцию f.
- 2. Будет ли сходимость последовательности (f_n) к функции f равномерной на D?
- 3. Показать, что $\lim_{n \to \infty} \int\limits_a^b f_n(x) dx = 0$ для любого отрезка $[a,b] \subset \mathbb{R}.$
- 4. Найти множество D_1 сходимости последовательности (f_n') и ее предельную функцию.
- 5. Будет ли сходимость последовательности (f'_n) равномерной на D_1 ?
- 6. Можно ли к последовательности (f_n) на D_1 применить теорему о почленном дифференцировании?
- 7. Справедливо ли равенство $\lim_{n \to \infty} f_n'(x) = (\lim_{n \to \infty} f_n(x))'?$ (Сравнить с заданиями 5 и 6.)

Лабораторная 8.

Пусть $f_n(x) = n^{\alpha} x^n (1 - x^n), n \in \mathbb{N}, \alpha \in \mathbb{R}.$

- 1. Для каждого значения α найти множество сходимости D_{α} последовательности (f_n) и предельную функцию f.
- 2. Показать, что при $\alpha = 0$ сходимость последовательности (f_n) к функции f не будет равномерной на D_0 .
- 3. Изучить равномерную сходимость последовательности (f_n) к функции f на D_{α} при каждом $\alpha \in \mathbb{R}$.
- 4. Для значений α , для которых сходимость последовательности (f_n) к предельной функции f не является равномерной на D_{α} , найти какоелибо подмножество $D'_{\alpha} \subset D_{\alpha}$ такое, что $f_n(x) \stackrel{D'_{\alpha}}{\Longrightarrow} f(x)$.
- 5. Пусть $\alpha=0$ и $u_n(x)=x^n(1-x^n)$. Найти множество сходимости D ряда $\sum\limits_{n=1}^\infty u_n(x)$ и его сумму.
- 6. Используя теорему Стокса-Зейделя, изучить равномерную сходимость ряда $\sum_{n=1}^{\infty}u_{n}(x)$ на D.

Лабораторная 9.

Пусть $u_n(x) = nxe^{-nx}, n \in \mathbb{N}.$

- 1. Найти множество сходимости D и предел u последовательности (u_n) .
- 2. Будет ли сходимость последовательности (u_n) к функции u равномерной на D?
- 3. Найти множество сходимости D_1 ряда $\sum\limits_{n=1}^{\infty}u_n(x).$
- 4. Доказать теорему: если функциональный ряд $\sum_{n=1}^{\infty}u_n(x)$ сходится равномерно на X, то $u_n(x) \stackrel{X}{\Longrightarrow} 0$.
- 5. Показать, что сходимость ряда $\sum\limits_{n=1}^{\infty}u_{n}(x)$ не является равномерной на множестве D_{1} .
- 6. Найти множество сходимости ряда $\sum_{n=1}^{\infty} u_n'(x)$.
- 7. Показать, что функция $s(x) = \sum_{n=1}^{\infty} u_n(x)$ имеет производную на $(0, +\infty)$.

Лабораторная 10.

Пусть
$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, \ n \in \mathbb{N}.$$

- 1. Найти множество D сходимости последовательности (f_n) и ее предельную функцию f.
- 2. Будет ли сходимость последовательности (f_n) к функции f равномерной на D?
- 3. Показать, что все функции $f_n, n \in \mathbb{N}$, дифференцируемы на D. Найти предел последовательности (f'_n) .
- 4. Изучить дифференцируемость f на D. Используя теорему о почленном дифференцировании последовательности, изучить равномерную сходимость на D последовательности (f'_n) .
- 5. Пусть $u_n(x) = f_n(x) |x|, \ n \in \mathbb{N}$. Изучить сходимость ряда $\sum_{n=1}^{\infty} u_n(x)$.
- 6. Используя теорему о почленном переходе к пределу в рядах, изучить равномерную сходимость ряда $\sum_{n=1}^{\infty} u_n(x)$ на D.
- 7. Найти какое-либо подмножество $D_1 \subset D$, на котором ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно.

Лабораторная 11.

Пусть $f_n(x) = n^p \sin x \cos^n x$, $x \in [0, \pi/2]$, $n \in \mathbb{N}$.

- 1. При каждом $p \in \mathbb{R}$ найти $f(x) = \lim_{n \to \infty} f_n(x), \ x \in [0, \pi/2].$
- 2. Вычислить интегралы $I_n=\int\limits_0^{\pi/2}f_n(x)dx$ и найти $\lim\limits_{n o\infty}I_n.$
- 3. Сравнить $\lim_{n\to\infty}I_n$ и $\int\limits_0^{\pi/2}f(x)dx$. Отсюда найти те значения параметра p, при которых сходимость (f_n) на $[0,\pi/2]$ заведомо неравномерная.
- 4. Показать, что для p < 0 сходимость последовательности (f_n) к функции f равномерная на $[0,\pi/2]$.
- 5. Выяснить, для каких p сходимость последовательности (f_n) к функции f равномерная на $[0,\pi/2]$.
- 6. Указать какое-либо множество $D \subset [0, \pi/2]$, на котором сходимость последовательности (f_n) к функции f будет равномерной при любом действительном p.
- 7. Показать, что при p<-0,5 сумма ряда $\sum\limits_{n=1}^{\infty}f_n(x)$ является непрерывной на промежутке $[0,\pi/2]$ функцией.

10. Ответы и указания

I. 1.
$$f(x) = \begin{cases} 0, |x| < 1, \\ -1, x = 1. \end{cases}$$

3.
$$f(x) = \begin{cases} \ln 2, & 0 < x \le 2, \\ \ln x, & x > 2. \end{cases}$$

5.
$$f(x) = \begin{cases} -1, -2 < x < 0 \\ 0, x = 0. \end{cases}$$

$$7. f(x) = \begin{cases} 0, & 0 \le x < 2, \\ x^2, & x > 2, \\ 2\sqrt{2}, & x = 2. \end{cases}$$

$$8. f(x) = \begin{cases} x, & x < 0, \\ \frac{1}{x}, & x > 0, \\ 1, & x = 0. \end{cases}$$

9.
$$f(x) = \begin{cases} 1, -1 < x > 1, \\ x, 1 \le x \le 2, \\ \frac{x^2}{2}, x > 2, x < -2. \end{cases}$$

$$1. f(x) = \begin{cases} 0, |x| < 1, \\ -1, x = 1. \end{cases}$$

$$2. f(x) = \begin{cases} 0, -1 < x \le 1, \\ \pi(x - 1)/2, x > 1. \end{cases}$$

$$3. f(x) = \begin{cases} \ln 2, 0 < x \le 2, \\ \ln x, x > 2. \end{cases}$$

$$4. f(x) = \begin{cases} 1, x \le -1, \\ e^{x+1}, x > -1. \end{cases}$$

$$5. f(x) = \begin{cases} -1, -2 < x < 0, \\ 0, x = 0. \end{cases}$$

$$6. f(x) = \pi |x|/2.$$

$$\begin{cases} x, x < 0, \\ 1 \end{cases}$$

4.
$$f(x) = \begin{cases} 1, & x \le -1, \\ e^{x+1}, & x > -1 \end{cases}$$

6.
$$f(x) = \pi |x|/2$$

8.
$$f(x) = \begin{cases} x, & x < 0, \\ \frac{1}{x}, & x > 0, \\ 1, & x = 0. \end{cases}$$

II. 1. [-1/3; 3]. 2. (1; 3]. 3. $\{0\}$. 4. $[0; +\infty[$. 5. \mathbb{R} . 6. $(-\infty; 0)$. 7. $(1/4; +\infty)$. 8. $(2; +\infty)$. 9. $(-\infty; -1) \cup (-1/3; +\infty)$. 10. \varnothing . 11. $\mathbb{R} \setminus \{0\}$. 12. $(2k\pi; (2k+1)\pi), k \in \mathbb{Z}$. 13. $(-2; -2 + e^{-1}) \cup (-2 + e; +\infty)$. 14. $[-1/\sqrt[3]{2}; 1/\sqrt[3]{2})$. 15. [-1/2; 1/2). 16. \varnothing . 17. $(-\pi/6 + \pi k; \pi/6 + \pi k), k \in \mathbb{Z}$. 18. [-1/3; 1/3).

III. Здесь $r_n(x) = |f_n(x) - f(x)|, A$ — некоторое число, $A \neq 0$.

- 3. Неравномерно, $r_n\left(\frac{1}{n}\right) \to 0$. 4. Неравномерно, $r_n(n) \to 0$.
- 5. Неравномерно, $r_n\left(\frac{1}{n}\right) \to 0$. 6. Равномерно, $r_n(x) \le \frac{1}{\sqrt{\ln n}}$.
- 7. Неравномерно, $r_n(n) \rightarrow 0$.
- 9. Равномерно, $r_n(x) \leq \frac{1}{n^{3/4}}$.
- 11. Неравномерно, $r_n\left(\sqrt[2n]{\frac{1}{3}}\right) \nrightarrow 0$. 12. Равномерно, $r_n(x) \leq \frac{A}{n}$.
- 13. Равномерно, $r_n(x) \le \pi/2n$.
- 15. Равномерно, $r_n(x) \leq \frac{A}{n}$.

- 1. Равномерно, $r_n(x) \le \frac{4}{n+4}$. 2. Равномерно, $r_n(x) \le \frac{1}{2\sqrt{n}}$.

 - 8. Равномерно, $r_n(x) \leq r_n(2) \rightarrow 0$.
 - 10. Равномерно, $\sup_{r} r_n(x) \to 0$.

 - 14. Неравномерно, $r_n\left(\frac{1}{n}\right) \rightarrow 0$.
 - 16. Равномерно, $r_n(x) \leq \frac{5}{n^2}$.

17. Неравномерно, $r_n\left(\frac{1}{n}\right) \nrightarrow 0$.

19. Равномерно, $r_n(x) \le \frac{1}{2\sqrt{n}}$.

21. Равномерно, $r_n(x) \le \frac{1}{n^2}$.

23. Равномерно, $r_n \leq \frac{1}{n}$.

25. Неравномерно, $r_n\left(\frac{1}{n}\right) \nrightarrow 0$.

27. Неравномерно, $\sup_{E} r_n(x) \nrightarrow 0$.

29. Равномерно, $r_n(x) \leq \frac{1}{n}$.

31. Неравномерно, $r_n(n) \nrightarrow 0$.

33. Равномерно, $r_n(x) \le \frac{1}{\ln n}$.

35. Равномерно, $r_n(x) \leq \frac{A}{n}$.

37. Равномерно, $r_n(x) \leq \frac{1}{n^2}$.

39. Равномерно, $r_n(x) \le \frac{2}{n^2 + n - \frac{1}{4}}$.

18. Неравномерно, $\sup r_n(x) \nrightarrow 0$.

20. Равномерно, $r_n(x) \le \frac{1}{2n}$.

22. Равномерно, $r_n(x) \le \frac{1}{2n}$.

24. Равномерно, $r_n(x) \leq \frac{A}{n}$.

26. Равномерно, $r_n(x) \leq \frac{A}{n}$.

28. Равномерно, $r_n(x) \le \frac{1}{2n^2 - 1}$.

30. Равномерно, $r_n(x) \le \frac{1}{\sqrt{n+1}}$.

32. Равномерно, $r_n(x) \le e^{-n/2}$.

34. Неравномерно, $r_n(n) \rightarrow 0$.

36. Неравномерно, $r_n\left(-\frac{n}{2}\right) \nrightarrow 0$.

38. Равномерно, $r_n(x) \le \frac{A}{n}$.

IV. В заданиях 11, 13 — 20, 26, 31 найти $\sup_E |u_n(x)| = c_n$ и рассмотреть ряд $\sum_{n=1}^{\infty} c_n$.

27. $\operatorname{arctg}(x^6ne^{-nx^2}) \le x^6ne^{-nx^2} = v_n(x)$. Найти $\sup_E v_n(x) = c_n$.

28. $\sin(x^{10}n^3e^{-nx^2}) \le x^{10}n^3e^{-nx^2} = v_n(x)$. Найти $\sup_E v_n(x) = c_n$.

29. $\ln(1+x^8n^2e^{-nx}) \le x^8n^2e^{-nx^2} = v_n(x)$. Найти $\sup_E v_n(x) = c_n$.

30. $\operatorname{arctg}(x^7 n e^{-nx^2}) \le x^7 n e^{-nx^2} = v_n(x)$. Найти $\sup_E v_n(x) = c_n$.

VII. 1-3, 5, 6, 8, 10-12, 14, 31, 32, 35 — сходятся равномерно по признаку Лейбница. 4. Неравномерно; $u_n(x)$ не сходится равномерно к 0 на E, $u_n\left(\frac{1}{n}\right)=\frac{1}{2}$.

7. Неравномерно; $\sup_{E} u_n(x) = 1 \implies 0$. 9. Неравномерно; $\lim_{x \to 0} u_n(x) = \frac{1}{1+n}$ и

ряд $\sum_{n=1}^{\infty} \frac{1}{1+n}$ расходится (см. теорему о почленном предельном переходе с. 14).

13. Неравномерно; $\sup_E u_n(x) = +\infty$. 15. Неравномерно; $\sup_E u_n(x) \ge u_n\left(\frac{1}{n}\right) \to \frac{1}{2}$. 16-19,21,23,24,27-29,40,41- сходятся равномерно по признаку Вейерштрасса.

- 20. Неравномерно; $\sup_E u_n(x) = 1 \nrightarrow 0$. 22. Неравномерно; $\lim_{x \to 0} u_n(x) = \frac{1}{n}$ и ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится. 25. Неравномерно; $\sup_E u_n(x) \ge u_n(n) = e^{-1} \nrightarrow 0$. 26. Неравномерно; $\sup_E |u_n(x)| = +\infty$. 30. Неравномерно; $\lim_{x \to +0} u_n(x) = \frac{1}{n}$ и ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится. 33, 34, 37 39 сходятся равномерно по признаку Дирихле. 36. Неравномерно; $\lim_{x \to +0} u_n(x) = \frac{\pi}{2n}$ и ряд $\sum_{n=1}^{\infty} \frac{\pi}{2n}$ расходится.
- **VIII.** 1. Непрерывна на \mathbb{R} , $f(x) = x(1+x^2)$. 2, 5, 6, 8, 9, 12, 13, 15, 17 19, 21-25 непрерывны на \mathbb{R} ; использовать теорему Стокса-Зейделя. 3. Непрерывна на $(0,+\infty)$. 4. $D(f)=[0,+\infty)$, точка разрыва $x_0=0$. 7. $D(f)=\mathbb{R}$, точка разрыва $x_0=0$. 10. D(f)=(-1,1], точка разрыва $x_0=1$. 11. Непрерывна на $D(f)=(0,+\infty)$; использовать локальную равномерную сходимость. 14. Непрерывна на $D(f)=[e^{-1},e)$; использовать локальную равномерную сходимость. 16. Непрерывна на $D(f)=(0,+\infty)\setminus\{1\}$; использовать локальную равномерную сходимость. 20. Непрерывна на D(f)=(-1,1), использовать локальную равномерную сходимость.
- **IX.** Использовать теорему о почленном предельном переходе в рядах. 1. 1/5. 2. 0. 3. 1/2. 4. 1. 5. 3/4. 6. 1/2. 7. -1/8. 8. 20/9. 9. 1/2. 10. 1/2. 11. $2\pi/3$. 12. 1/2. 13. 3.
- **XII.** 1, 6, 11, 12, 15 можно; проверяется непосредственно. 2, 3, 7, 9, 13 можно; использовать теорему о почленном интегрировании последовательности. 4, 8 можно, хотя равномерной сходимости на множестве E нет. 10, 14 нельзя; проверяется непосредственно.

Содержание

	1. Поточечная сходимость функциональных последовательностей и рядов
	2. Равномерная сходимость функциональных последовательностей 5
	3. Равномерная сходимость функциональных рядов
	4. Признаки равномерной сходимости функциональных рядов 10
	5. Функциональные свойства рядов и последовательностей14
	6. Некоторые рекомендации при исследовании функционального ряда на равномерную сходимость
	7. Вариант контрольной работы
	8. Упражнения
	9. Задания для лабораторных работ
1	0. Ответы и указания44

Учебное издание

Кастрица Олег Адамович Мазаник Сергей Алексеевич Наумович Адольф Федорович Наумович Нил Федорович

ФУНКЦИОНАЛЬНЫЕ РЯДЫ И ПОСЛЕДОВАТЕЛЬНОСТИ

Учебно-методическое пособие для студентов факультета прикладной математики и информатики

В авторской редакции

Ответственный за выпуск О. А. Кастрица

Подписано в печать 06.10.2008. Формат 60×84/16. Бумага офсетная. Гарнитура Таймс. Усл. печ. л. 2,79. Уч.-изд. л. 1,91. Тираж 50 экз. Зак.

Белорусский государственный университет. ЛИ №02330/0056804 от 02.03.2004. 220030, Минск, проспект Независимости, 4.

Отпечатано с оригинала-макета заказчика на копировально-множительной технике факультета прикладной математики и информатики Белорусского государственного университета. 220030, Минск, проспект Независимости, 4.