extended disc. 1 cs161 su23

welcome! to cs161 extended time discussion:)

slides bit.ly/cs161-disc

feedback bit.ly/extended-feedback

- abhi (he/him/his)

- abhi (he/him/his)
- from st. louis, missouri

- abhi (he/him/his)
- from st. louis, missouri
- love writing and film photography (recently)

- abhi (he/him/his)
- from st. louis, missouri
- love writing and film photography (recently)
- i'm here to be your point of contact!
 - 1-hr disc: M/W 5-6pm Wheeler 200 2
 - abhiganesh@berkeley.edu

about you

- name, pronouns, major, year, anything
- where are you from?
- thoughts on cs61c/coding/CS
- misc (choose as many as you want)
 - favorite place to travel
 - songs you know every word to
 - favorite food
 - best places to visit in berkeley
 - hobbies

hack of the day

- mailchimp compromised via social engineering attacks on employees
 - mimicked the Okta authentication pages of the respective organizations
 - compromised "133 users' names, store URLs, addresses, and email addresses <u>but</u> not their payment data, passwords, or other sensitive information"

general questions, concerns, etc.

1. know your threat model

the threat model

- who your attacker is
- what resources they have

the threat model

- who your attacker is
- what resources they have

- can interact with systems without notice
- knows operating systems, vulnerabilities in software, usually patterns of activity, etc.

- can interact with systems without notice

- can interact with systems without notice
- knows operating systems, vulnerabilities in software, usually patterns of activity, etc.

- can interact with systems without notice
- knows operating systems, vulnerabilities in software, usually patterns of activity, etc.
- has the resources required to mount the attack

- can interact with systems without notice
- knows operating systems, vulnerabilities in software, usually patterns of activity, etc.
- has the resources required to mount the attack
- can and will obtain privileges if possible

- the components that security relies upon

- the components that security relies upon
- properties:

- the components that security relies upon
- properties:
 - correctness

- the components that security relies upon
- properties:
 - correctness
 - completeness (can't be bypassed)

- the components that security relies upon
- properties:
 - correctness
 - completeness (can't be bypassed)
 - security (can't be tampered with)

- the components that security relies upon
- properties:
 - correctness
 - completeness (can't be bypassed)
 - security (can't be tampered with)
- generally as small as possible (KISS)

security principles 2. consider human factors

consider human factors

 you've designed the world's best security system. here's the dialog

consider human factors

- your security system should be intuitive
- ensure security is being used (as intended)
- user friendliness
 - prevent social engineering attacks

security principles 3. security is economics

- security is like a chain: as strong as the weakest link

- security is like a chain: as strong as the weakest link
 - focus on the weakest link

- security is like a chain: as strong as the weakest link
 - focus on the weakest link
- balance security vs resources

4-11: the rest cause too many slides

4. detect if you can't prevent

- 4. detect if you can't prevent
- 5. defense in depth (castle walls, a moat, etc.)

- 4. detect if you can't prevent
- 5. defense in depth (castle walls, a moat, etc.)
- 6. least privilege (do i need to edit files?)

- 4. detect if you can't prevent
- 5. defense in depth (castle walls, a moat, etc.)
- 6. least privilege (do i need to edit files?)
- 7. separation of responsibility (two people to nuke)

- 4. detect if you can't prevent
- 5. defense in depth (castle walls, a moat, etc.)
- 6. least privilege (do i need to edit files?)
- 7. separation of responsibility (two people to nuke)
- 8. complete mediation (check ALL accesses)

- 4. detect if you can't prevent
- 5. defense in depth (castle walls, a moat, etc.)
- 6. least privilege (do i need to edit files?)
- 7. separation of responsibility (two people to nuke)
- 8. complete mediation (check ALL accesses)
- 9. shannon's maxim (security through obscurity 👎)

- 4. detect if you can't prevent
- 5. defense in depth (castle walls, a moat, etc.)
- 6. least privilege (do i need to edit files?)
- 7. separation of responsibility (two people to nuke)
- 8. complete mediation (check ALL accesses)
- 9. shannon's maxim (security through obscurity \bigcolor{\cdots})
- 10. use fail-safe defaults (doors lock when they fail)

- 4. detect if you can't prevent
- 5. defense in depth (castle walls, a moat, etc.)
- 6. least privilege (do i need to edit files?)
- 7. separation of responsibility (two people to nuke)
- 8. complete mediation (check ALL accesses)
- 9. shannon's maxim (security through obscurity 👎)
- 10. use fail-safe defaults (doors lock when they fail)
- 11. design in security from the start

x86

no, it's not RISC-V

the registers

- 1. push arguments (reverse order)³
 - adjust esp

- 1. push arguments (reverse order)
- 2. remember eip
 - like ra in RISC-V

- 1. push arguments (reverse order)
- 2. remember eip
- 3. remember ebp
 - to restore to top of previous stack frame

- 1. push arguments (reverse order)
- 2. remember eip
- 3. remember ebp
- 4. adjust the stack frame
 - update ebp, esp, eip

- 1. push arguments (reverse order)
- 2. remember eip
- 3. remember ebp
- 4. adjust the stack frame
 - update ebp, esp, eip

- 1. push arguments (reverse order)
- 2. remember eip
- 3. remember ebp
- 4. adjust the stack frame
- 5. execute the function
 - and move local variables onto stack

- 1. push arguments (reverse order)
- 2. remember eip
- 3. remember ebp
- 4. adjust the stack frame
- 5. execute the function
- 6. restore everything
 - use rip, sfp to restore eip, ebp
 - esp naturally moves up via popping

registers

worksheet (on 161 website)

MN N-20M M

4-6 TITH

teedback
bit.ly/extended-feedback

slides: bit.ly/cs161-disc