S. Shayan Mousavi M.

Ph.D. Candidate | Al Solution Expert McMaster University

Toronto, Ontario, Canada

(+1) 365 888 4731

mousas10@mcmaster.ca

linkedin.com/in/s-shayan-mousavi-m-8b5b76152

github.com/shmouses

scholar.google.ca/citations?hl=en&user=d7HOq3YAAAAJ

HIGHLIGHTS OF QUALIFICATIONS

- 3rd-year Engineering Ph.D. candidate specialized in Al-driven designs & solutions in applied physics and engineering
- Designed, and deployed multiple open-source Python scripts for data deconvolution, classification, segmentation, pattern and feature detection using deep learning, and other machine learning algorithms (designed Al-based software: EELSpecNet CNN, LandSlideSeekers CNN & LSTM RNN core).
- Solid technical skills in dividing processes, defining requirements, proposing modular designs, constructing software, planning tests, debugging, and working with version control systems (released software: SPDFEM)
- More than five years of extensive research experience in materials sci. and eng., applied physics, and data analytics
- Exceptional verbal and written communication skills developed by delivering over 10 virtual and physical presentations, teaser videos, and scientific journal papers (Scipy 2021, Photonics North 2018-2021, M&M 2021)
- Supervised three engineering undergraduate students in their summer research which has developed my leadership, teaching, time management, creativity, interactive discussion, and problem-solving skills
- Self-motivated engineer who can work both independently and in collaboration with others, as well as working in a fast-paced environment

EDUCATION ·····

Professional Certification | IBM Artificial Intelligence Engineering

Oct 2021 – Present

- 6 project-oriented courses on AI, ML, and DL theory and programming using IBM Watson, TensorFlow, and PyTorch Ph.D. Candidate | Materials Eng. Dept. | McMaster University, Hamilton, Ontario | A+ May 2019 - Exp. Grd. 2023
 - Visiting Researcher (User) at Canadian Light Sources Synchrotron Facility
 - Conducting Ph.D. Research at Canadian Center for Electron Microscopy
 - Research Title: A data drive insight into plasmon-mediated electronic and photonic phenomena
 - Keywords: Spectroscopy, AI, computer vision, signal/image processing, deconvolution, resolution restoration

M.Sc. Candidate | Materials Eng. Dept. | McMaster University, Hamilton, Ontario | A+

Sept 2017 - May 2019

Research Title: Probing surface plasmons using electron microscopy spectral imaging and computational techniques

B.Sc. | Materials Eng. with Secondary Concentration in Theoretical Mathematics Sharif Sept 2012 - Sept 2017 University of Technology, Tehran, Iran | A+ (3.84/4)

Research Title: Design, fabrication and performance evaluation of hybrid graphene/metal biosensors

RELEVANT RESEARCH PROJECTS Super Resolving AI to Enhance Resolution in Diffraction-Limited Synchrotron Maps (Ongoing) Nov 2021 – Present

- Investigating optoelectronic properties of plasmonic metasurfaces using synchrotron's infrared beamline
- Exploring multiple AI-driven methods (most probably GAN) to improve the resolution of energy-resolved maps

EELSpecNet: Deep Convolutional Neural Network Solution for Electron Energy Loss

May 2021 – Jan 2022

Spectroscopy Deconvolution (Manuscript Written)

DOI: https://doi.org/10.1017/S1431927621005997

- Designed, deployed, trained, and evaluated U-shaped deep convolutional neural networks of different dimensionalities to reconstruct (deconvolve) EELS spectra using Python-based libraries
- Used various supervised/unsupervised machine learning algorithms for data preparation (PCA, autoencoders)
- Used google platform for GPU and TPU parallelization

LandSlideSeekers: A mobile app with an AI-core to predict and assess the risk of future landslides (link) Oct 2021 GitHub repo: https://github.com/shmouses/LandSlide Seekers NasaAppChall2021

As a member of a team of 4 (A406 Titans), developed AI cores for classification and prediction tasks within 48 hr

- Designed, deployed, trained, and evaluated a classifier convolutional neural network to identify and detect landslide related geological features captured in cellphone photos to generate a risk parameter
- Designed and deployed a predictive long short-term memory recursive neural network (LSTM RNN) fed by chosen satellite maps, and local parameters generated by the classifier AI-core to locally predict landslide events

SPDFEM: Surface Plasmon Dynamic Finite Element Method Python Script for Calculating Sept 2020 - Aug 2020 Maxwell's Equations in 3D Media (Released)

DOI: https://zenodo.org/badge/latestdoi/295775775

- Reformed Maxwell's system of differential equations in space to the discrete finite parametric formulation
- Designed, programed, evaluated, and released a finite element method calculator in Python
- Used FEniCS Python package for setting up a 3D environment, and conducting finite element calculations

Electron energy-loss spectroscopy of surface plasmon activity in wrinkled gold structures May 2019 - Oct 2020 DOI: https://doi.org/10.1063/5.0031469

- Conducted boundary element method simulations on hierarchical complex geometries, for calculation of spatial plasmon eigenmodes using MNPBEM package in MATLAB
- Extracted, analyzed, and visualized EELS hyperspectral images using various Python libraries

OTHER EXPERIENCES

Speaker/Guest Speaker (Most recent):

Nov 2021 Al-assisted electron energy loss spectroscopy signal deconvolution Materials engineering department graduate seminar series, McMaster University

 Role of data-centric AI in the future of nanofabricated devices (Guest Speaker) Aug 2021 Course: Synthesis, Applications and Environmental Impact of Nanomaterials Materials engineering department, McMaster University

July 2021

 EELSpecNet, a deep learning solution for EELS spectral data deconvolution SciPy 2021, Oral Presentation

Teaching Assistantship:

• Electron microscopy specialist for the heat treatable AL-alloys characterization Jan 2018 - Present Materials engineering department, McMaster University

Sept 2014 – Jan 2015 • Fundamentals of Programing (Python) Computer engineering department, Sharif University of Technology

SKILLS ·····

Programming: Python, MATLAB, C++, SQL, Docker

Data-analytics tools: Scikitlearn, TensorFlow, Keras, Google GPU and TPU parallelization, IBM Watson Studio, Orange Quasar **General tools:** GitHub, Jupiter Notebook, Google Colab, Latex, Microsoft Suite

AWARDS & HONORS ·····

• Local People's Choice Winner, NasaSpaceApps 2021 Hackathon Oct 2021

Most innovative team, NasaSpaceApps 2021 Hackathon Oct 2021

Sept 2017 - Aug 2023 Awarded full scholarship, M.Sc., and Ph.D. in Material Eng., McMaster University Recipient of Science and Culture Award from Sharif University of Technology Feb 2017

4th place, Materials Sci. and Eng. national Olympiad for university students, Iran Sept 2016

• 3rd place, Materials Sci. and Eng., the first pole of Iran, Olympiad for university students May 2016

RELATED GRADUATE-LEVEL COURSES

• Development of scientific computing software, McMaster University Sept 2020 Jan 2021

Neural networks and development tools, McMaster University Deep learning and applications, McMaster University Jan 2021

• Quantum materials, devices, and systems, McMaster University Sept 2017

LATEST PROFESSIONAL DEVELOPMENT AND CERTIFICATIONS

 Docker for data scientists, LinkedIn Learning Nov 2021

Nov 2021 Machine Learning with Python, by IBM on Coursera

 Complete TensorFlow 2 and Keras Deep Learning Bootcamp, Udemy Aug 2021

Programming Foundations: Object-Oriented Design, LinkedIn Learning Jan 2021