

<u>Title: Breast Cancer Classification using Machine</u> <u>Learning and Deep Learning Techniques</u>

Objective:

The primary objective of this project is to develop a robust and accurate system for the early detection of breast cancer. By leveraging machine learning and deep learning algorithms, we aim to classify breast tumors as malignant or benign based on various features extracted from medical images.

Machine Learning Classifiers Used:

Logistic Regression
K Neighbors Classifier (KNN)
Support Vector Classifier (SVC)
SGD Classifier
Decision Tree Classifier
Random Forest Classifier
Voting Classifier
Ada Boost Classifier
Gradient Boosting Classifier
Stochastic Gradient Boosting (SGB)
Extreme Gradient Boosting (XGBoost)
Results:

The classification models were trained and evaluated on a dataset of breast cancer samples.

The performance metrics, including accuracy, precision, recall, and F1-score, were computed for each classifier. Notably, the Gradient Boosting Classifier achieved the highest accuracy of 97.66%, making it the most effective model for our breast cancer classification task.

Deep Learning Approach:
In addition to traditional machine learning
methods, we explored the effectiveness of deep
learning using a neural network. The neural
network achieved an accuracy of 95.6% in
classifying breast cancer samples.

Conclusion:

The promising results obtained from both machine learning and deep learning approaches demonstrate the potential of these techniques in accurately identifying breast cancer. The high accuracy achieved by the Gradient Boosting Classifier suggests its effectiveness in clinical applications for early cancer diagnosis.t

Breast Cancer Classification

Attribute Information:

- 1. ID number
- 2. Diagnosis (M = malignant, B = benign)

Ten real-valued features are computed for each cell nucleus:

```
radius (mean of distances from center to points on the perimeter)
```

texture (standard deviation of gray-scale values)

perimeter

area

smoothness (local variation in radius lengths)

compactness (perimeter^2 / area - 1.0)

concavity (severity of concave portions of the contour)

concave points (number of concave portions of the contour)

symmetry

fractal dimension ("coastline approximation" - 1)

Importing libraries

```
# Importing libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import missingno as msno
import warnings
warnings.filterwarnings('ignore')

plt.style.use('ggplot')

df = pd.read_csv('data.csv')
```

	id dia	gnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	poin
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	
1 8425	17	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	
2 8430	00903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	
3 84	348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	
4 8435	8402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	
5 rows	× 33 column	S								

Data Preprocessing

```
df.drop(['id', 'Unnamed: 32'], axis = 1, inplace = True)

df.diagnosis.unique()
    array(['M', 'B'], dtype=object)

df['diagnosis'] = df['diagnosis'].apply(lambda val: 1 if val == 'M' else 0)
```

df.head()

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
0	1	17.99	10.38	122.80	1001.0	0.11840
1	1	20.57	17.77	132.90	1326.0	0.08474
2	1	19.69	21.25	130.00	1203.0	0.10960
3	1	11.42	20.38	77.58	386.1	0.14250
4	1	20.29	14.34	135.10	1297.0	0.10030
5 rc	ows × 31 colur	mns				

df.describe()

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
count 5	669.000000	569.000000	569.000000	569.000000	569.000000	569.00
mean	0.372583	14.127292	19.289649	91.969033	654.889104	0.09
std	0.483918	3.524049	4.301036	24.298981	351.914129	0.01
min	0.000000	6.981000	9.710000	43.790000	143.500000	0.05
25%	0.000000	11.700000	16.170000	75.170000	420.300000	0.08
50%	0.000000	13.370000	18.840000	86.240000	551.100000	0.09
75%	1.000000	15.780000	21.800000	104.100000	782.700000	0.10
max	1.000000	28.110000	39.280000	188.500000	2501.000000	0.16
8 rows ×	31 columns					

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):
```

Data columns (total 31 columns):	
# Column	Non-Null Count	Dtype
0 diagnosis	569 non-null	int64
1 radius_mean	569 non-null	float64
<pre>2 texture_mean</pre>	569 non-null	float64
<pre>3 perimeter_mean</pre>	5 69 n-null 569	float64
4 area_mean	non-null	float64
5 smoothness_mean	569 non-null	float64
<pre>6 compactness_mean</pre>	569 non-null	float64
<pre>7 concavity_mean</pre>	569 non-null	float64
<pre>8 concave points_mean</pre>	569 non-null	float64
9 symmetry_mean	5 69 n-null 569	float64
<pre>10 fractal_dimension_mean</pre>	non-null	float64
r ād ius_se 12	569 non-null	float64
texture_se	5 69 n-null 569	float64
<pre>13 perimeter_se</pre>	non-null	float64
14 area_se	569 non-null	float64
<pre>15 smoothness_se</pre>	569 non-null	float64
<pre>16 compactness_se</pre>	569 non-null	float64
<pre>17 concavity_se</pre>	569 non-null	float64
<pre>18 concave points_se</pre>	569 non-null	float64
ាំen-ສynៅោមetr¥្@se569 non-null	569	float64
fractal_dimension_se		float64
21 radius_worst texture_wor	s 5 695 69 nn ooli tull	float64
22		
<pre>23 perimeter_worst</pre>	569 non-null	float64
24 area_worst	569 non-null	float64
<pre>25 smoothness_worst</pre>	569 non-null	float64
<pre>26 compactness_worst</pre>	569 non-null	float64
27 concavity_worst	569 non-null	float64
<pre>28 concave points_worst</pre>	569 non-null	float64
29 symmetry_worst	569 non-null	float64
<pre>30 fractal_dimension_worst</pre>	569 non-null	float64
dtypes: float64(30), int64(1)		
memory usage: 137.9 KB		

```
# checking for null values
```

df.isna().sum()

diagnosis radius_mean 0 texture_mean perimeter_mean 0 area_mean 0 smoothness_mean compactness_mean 0 concavity mean concave points_mean 0 0 symmetry_mean fractal_dimension_mean 0 radius_se texture_se 0 perimeter_se area_se smoothness_se compactness_se 0 concavity_se concave points_se 0 symmetry_se 0 fractal_dimension_se radius_worst 0 texture_worst perimeter_worst 0 area_worst smoothness_worst compactness_worst concavity_worst 0 concave points_worst 0 ${\tt symmetry_worst}$ 0 ${\tt fractal_dimension_worst}$ 0 dtype: int64

visualizing null values

msno.bar(df)

There are no missing values in the data.

Exploratory Data Analysis (EDA)

```
plt.figure(figsize = (20, 15))
plotnumber = 1

for column in df:
    if plotnumber <= 30:
        ax = plt.subplot(5, 6, plotnumber)
        sns.distplot(df[column])
        plt.xlabel(column)

plotnumber += 1

plt.tight_layout()
plt.show()</pre>
```



```
# heatmap
plt.figure(figsize = (20, 12))

corr = df.corr()
mask = np.triu(np.ones_like(corr, dtype = bool))

sns.heatmap(corr, mask = mask, linewidths = 1, annot = True, fmt = ".2f")
plt.show()
```


We can see that there are many columns which are very highly correlated which causes multicollinearity so we have to remove highly correlated features.

```
# removing highly correlated features
corr_matrix = df.corr().abs()
mask = np.triu(np.ones_like(corr_matrix, dtype = bool))
tri_df = corr_matrix.mask(mask)
to\_drop = [x for x in tri\_df.columns if any(tri\_df[x] > 0.92)]
df = df.drop(to_drop, axis = 1)
print(f"The reduced dataframe has {df.shape[1]} columns.")
     The reduced dataframe has 23 columns.
# creating features and label
X = df.drop('diagnosis', axis = 1)
y = df['diagnosis']
# splitting data into training and test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state = 0)
# scaling data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X_test = scaler.transform(X_test)
Logistic Regression
# fitting data to model
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

    LogisticRegression

     LogisticRegression()
# model predictions
y_pred = log_reg.predict(X_test)
# accuracy score
from \ sklearn.metrics \ import \ accuracy\_score, \ confusion\_matrix, \ classification\_report
print(accuracy_score(y_train, log_reg.predict(X_train)))
log_reg_acc = accuracy_score(y_test, log_reg.predict(X_test))
print(log_reg_acc)
     0.9899497487437185
     0.9590643274853801
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[106 2][
     5 5811
# classification report
print(classification_report(y_test, y_pred))
                   precision
                                  recall f1-score
                                                      support
```

```
0.95
                             0.98
                                       0.97
                                                   108
                  0.97
                            0.92
                                       0.94
                                                   63
   accuracy
                                       0.96
                                                   171
                  0.96
  macro avg
                             0.95
                                       0.96
                                                   171
weighted avg
                   0.96
                             0.96
                                       0.96
                                                   171
```

K Neighbors Classifier (KNN)

```
from \ sklearn.neighbors \ import \ KNeighbors Classifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
      KNeighborsClassifier
     KNeighborsClassifier()
# model predictions
y_pred = knn.predict(X_test)
# accuracy score
print(accuracy_score(y_train, knn.predict(X_train)))
knn_acc = accuracy_score(y_test, knn.predict(X_test))
print(knn_acc)
     0.9623115577889447
     0.935672514619883
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[105 3][
     8 55]]
```

```
# classification report
print(classification_report(y_test, y_pred))
```

```
precision recall f1-score
                                           support
                 0.93 0.97
                                    0.95
                                               108
                         0.87
         1
                 0.95
                                    0.91
                                               63
   accuracy
                                    0.94
                                               171
  macro avg
                 0.94
                          0.92
                                    0.93
                                               171
weighted avg
                 0.94
                         0.94
                                    0.94
                                               171
```

Support Vector Classifier (SVC)

```
from sklearn.svm import SVC from
sklearn.model_selection import GridSearchCV

svc = SVC()
parameters = {
    'gamma' : [0.0001, 0.001, 0.01, 0.1],
    'C' : [0.01, 0.05, 0.5, 0.1, 1, 10, 15, 20] }

grid_search = GridSearchCV(svc, parameters)
grid_search.fit(X_train, y_train)
```

```
► GridSearchCV
► estimator: SVC

- SVC
```

```
# best parameters
grid_search.best_params_
```

```
{'C': 10, 'gamma': 0.01}
```

```
# best accuracy

grid_search.best_score_

0.9774683544303798

svc = SVC(C = 10, gamma = 0.01)
svc.fit(X_train, y_train)

very SVC SVC(C=10, gamma=0.01)
```

```
# model predictions

y_pred = svc.predict(X_test)
```

```
# accuracy score
print(accuracy_score(y_train, svc.predict(X_train)))
svc_acc = accuracy_score(y_test, svc.predict(X_test))
print(svc_acc)
0.9874371859296482
```

```
0.9766081871345029

# confusion matrix
```

```
# confusion matrix
print(confusion_matrix(y_test, y_pred))
[[107 1] [
3 60]]
```

```
# classification report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0 1	0.97 0.98	0.99 0.95	0.98 0.97	108 63
accuracy macro avg weighted avg	0.98 0.98	0.97 0.98	0.98 0.97 0.98	171 171 171

SGD Classifier

```
from sklearn.linear_model import SGDClassifier

sgd = SGDClassifier()
parameters = {
    'alpha' : [0.0001, 0.001, 0.01, 0.1, 1],
    'loss' : ['hinge', 'log'],
    'penalty' : ['ll', 'l2']
}

grid_search = GridSearchCV(sgd, parameters, cv = 10, n_jobs = -1)
grid_search.fit(X_train, y_train)
```

```
    ▶ GridSearchCV
    ▶ estimator: SGDClassifier
    ▶ SGDClassifier
```

```
# best parameter
grid_search.best_params_
{'alpha': 0.001, 'loss': 'log', 'penalty': 'l2'}
```

```
sgd = SGDClassifier(alpha = 0.001, loss = 'log', penalty = 'l2')
sgd.fit(X_train, y_train)

    SGDClassifier

     SGDClassifier(alpha=0.001, loss='log')
# model predictions
y_pred = sgd.predict(X_test)
# accuracy score
print(accuracy_score(y_train, sgd.predict(X_train)))
sgd_acc = accuracy_score(y_test, sgd.predict(X_test))
print(sgd_acc)
     0.9899497487437185
     0.9766081871345029
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[106 2][
     2 61]]
# classification report
print(classification_report(y_test, y_pred))
                   precision
                               recall f1-score
                                                    support
                         0.98
                                 0.98
                                             0.98
                                                         108
                         0.97
                                   0.97
                1
                                             0.97
                                                          63
```

Decision Tree Classifier

accuracy

macro avg

weighted avg

0.97 0.97

0.98

0.98

```
from sklearn.tree import DecisionTreeClassifier

dtc = DecisionTreeClassifier()

parameters = {
    'criterion' : ['gini', 'entropy'],
    'max_depth' : range(2, 32, 1),
    'min_samples_leaf' : range(1, 10, 1),
    'min_samples_split' : range(2, 10, 1),
    'splitter' : ['best', 'random']
}

grid_search_dt = GridSearchCV(dtc, parameters, cv = 5, n_jobs = -1, verbose = 1)
grid_search_dt.fit(X_train, y_train)

Fitting 5 folds for each of 8640 candidates, totalling 43200 fits
```

0.98

0.97

0.98

171

171

171

```
GridSearchCV
# best parameters
grid_search_dt.best_params_
     {'criterion': 'entropy',
      'max depth': 23.
      'min_samples_leaf': 5,
      'min_samples_split': 3,
      'splitter': 'random'}
# best score
grid_search_dt.best_score_
     0.9572784810126581
dtc = DecisionTreeClassifier(criterion = 'entropy', max_depth = 28, min_samples_leaf = 1, min_samples_split = 8, splitter = 'random')
dtc.fit(X_train, y_train)
                                   DecisionTreeClassifier
     DecisionTreeClassifier(criterion='entropy', max_depth=28, min_samples_split=8,
y_pred = dtc.predict(X_test)
# accuracy score
print(accuracy_score(y_train, dtc.predict(X_train)))
dtc_acc = accuracy_score(y_test, dtc.predict(X_test))
print(dtc_acc)
     0.9798994974874372
     0.9298245614035088
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[104 4][
     8 55]]
# classification report
print(classification_report(y_test, y_pred))
                  precision
                               recall f1-score support
                0 0.93
                                  0.96
                                             0.95
                                                         108
                        0.93
                                   0.87
                                             0.90
                                                          63
                                             0.93
                                                         171
         accuracy
                        0.93 0.92
                                             0.92
        macro avg
     weighted avg
                        0.93 0.93
                                             0.93
                                                         171
```

Random Forest Classifier

```
# accuracy score
print(accuracy_score(y_train, rand_clf.predict(X_train)))
ran_clf_acc = accuracy_score(y_test, y_pred)
print(ran_clf_acc)
     0.9974874371859297
     0.9590643274853801
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[107 1][
     6 57]]
# classification report
print(classification_report(y_test, y_pred))
                  precision recall f1-score support
               0 0.95 0.99
                                            0.97
                                                       108
               1 0.98
                                 0.90
                                            0.94
                                                        63
         accuracy
                                            0.96
                                                       171
        macro avg
                        0.96 0.95
                                            0.96
                                                        171
     weighted avg
                       0.96 0.96
                                            0.96
                                                       171
```

Voting Classifier

```
from sklearn.ensemble import VotingClassifier
classifiers = [('Logistic Regression', log_reg), ('K Nearest Neighbours', knn), ('Support Vector Classifier', svc),
('Decision Tree', dtc)]
vc = VotingClassifier(estimators = classifiers)
vc.fit(X_train, y_train)
                                          VotingClassifier
                            Support VectorK Neares
      Logistic Regression
                                                                         Decision Tree
                                                        ▶ SVC
       LogisticRegression
                            KNeighborsClassifier
                                                                    DecisionTreeClassifier
y_pred = vc.predict(X_test)
# accuracy score
print(accuracy_score(y_train, vc.predict(X_train)))
vc_acc = accuracy_score(y_test, y_pred)
print(vc_acc)
     0.9874371859296482
     0.9649122807017544
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[108 0][
     6 57]]
# classification report
print(classification_report(y_test, y_pred))
                                 recall f1-score
                   precision
                                                    support
```

108

63

171

171

0.97

0.95

0.96

0.96

0.95

1.00

1

accuracy

macro avg

1.00

0.90

0.95

weighted avg 0.97 0.96 0.96

Ada Boost Classifier

```
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier(base_estimator = dtc)
ada = AdaBoostClassifier(dtc, n_estimators = 180)
ada.fit(X_train, y_train)
               AdaBoostClassifier
      ▶ estimator: DecisionTreeClassifier
            ▶ DecisionTreeClassifier
y_pred = ada.predict(X_test)
# accuracy score
print(accuracy_score(y_train, ada.predict(X_train)))
ada_acc = accuracy_score(y_test, y_pred)
print(ada_acc)
     1.0
     0.9766081871345029
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[108 0][
     4 59]]
# classification report
print(classification_report(y_test, y_pred))
                  precision
                               recall f1-score support
                                  1.00
                                            0.98
                0 0.96
                                                        108
                       1.00
                                  0.94
                                            0.97
                                                         63
                                            0.98
                                                        171
                              0.97
     macro avg
                        0.98
                                            0.97
                                                        171
     weighted avg
                        0.98 0.98
                                            0.98
                                                        171
```

Gradient Boosting Classifier

```
from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier()

parameters = {
    'loss': ['deviance', 'exponential'],
    'learning_rate': [0.001, 0.1, 1, 10],
    'n_estimators': [100, 150, 180, 200]
}

grid_search_gbc = GridSearchCV(gbc, parameters, cv = 5, n_jobs = -1, verbose = 1)
grid_search_gbc.fit(X_train, y_train)

Fitting 5 folds for each of 32 candidates, totalling 160 fits

Fitting 5 folds for each of 32 candidates, totalling 160 fits

FordSearchCV
    estimator: GradientBoostingClassifier

ForadientBoostingClassifier
```

```
# best parameters
grid_search_gbc.best_params_
      \{ \texttt{'learning\_rate': 1, 'loss': 'exponential', 'n\_estimators': 100} \} 
# best score
grid_search_gbc.best_score_
     0.9673417721518988
gbc = GradientBoostingClassifier(learning_rate = 1, loss = 'exponential', n_estimators = 200)
gbc.fit(X_train, y_train)
                           GradientBoostingClassifier
      GradientBoostingClassifier(learning_rate=1, loss='exponential',
     n_estimators=200)
y_pred = gbc.predict(X_test)
# accuracy score
print(accuracy_score(y_train, gbc.predict(X_train)))
gbc_acc = accuracy_score(y_test, y_pred)
print(gbc_acc)
     1 0.976608187134502
# confusion matrix
print(confusion_matrix(y_test, y_pred))
     [[106 2]
      [ 2 61]]
# classification report
print(classification_report(y_test, y_pred))
                     precision
                                recall f1-score
                                                      support
                         0.98
                                    0.98
                                               0.98
                                                          108
     1
                         0.97
                                               0.97
                                                           63
```

```
0.98
                                                  171
   accuracy
                  0.97 0.97
                                                  171
  macro avo
                                       0.97
                  0.98 0.98
                                                  171
weighted avg
                                       0.98
```

Stochastic Gradient Boosting (SGB)

```
sgbc = GradientBoostingClassifier(\texttt{max\_depth=4}, \ subsample=0.9, \ \texttt{max\_features=0.75}, \ \texttt{n\_estimators=200}, \ random\_state=0)
sgbc.fit(X_train, y_train)
                                    GradientBoostingClassifier
      GradientBoostingClassifier(max_depth=4, max_features=0.75, n_estimators=200,
      random_state=0, subsample=0.9)
y_pred = sgbc.predict(X_test)
# accuracy score
print(accuracy_score(y_train, sgbc.predict(X_train)))
sgbc_acc = accuracy_score(y_test, y_pred)
print(sgbc_acc)
      0.9590643274853801
```

```
# confusion matrix
print(confusion_matrix(y_test, y_pred))

[[104  4] [
    3  60]]

# classification report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0	0.97	0.96	0.97	108
1	0.94	0.95	0.94	63
accuracy			0.96	171
macro avg weighted avg	0.95 0.96	0.96 0.96	0.96 0.96	171 171

Extreme Gradient Boosting

```
from xgboost import XGBClassifier

xgb = XGBClassifier(objective = 'binary:logistic', learning_rate = 0.5, max_depth = 5, n_estimators = 180)

xgb.fit(X_train, y_train)
```

```
y_pred = xgb.predict(X_test)

# accuracy score

print(accuracy_score(y_train, xgb.predict(X_train)))

xgb_acc = accuracy_score(y_test, y_pred)
print(xgb_acc)

1.0
0.9649122807017544
```

```
# confusion matrix
print(confusion_matrix(y_test, y_pred))
[[105 3]
```

```
[ 3 60]]
```

classification report
print(classification_report(y_test, y_pred))

		precision	recall	f1-score	support
	0	0.97	0.97	0.97	108
1		0.95	0.95	0.95	63
accui	racy			0.96	171
macro	avg	0.96	0.96	0.96	171
weighted	avg	0.96	0.96	0.96	171

▼ FINAL SCORE COMPARISION OF ALL MODELS USED

```
models = pd.DataFrame({
   'Model': ['Logistic Regression', 'KNN', 'SVC', 'SGD Classifier', 'Decision Tree Classifier', 'Random Forest Classifier', 'Voting Cla
   'Gradient Boosting Classifier', 'Stochastic Gradient Boosting', 'XgBoost'],
   'Score': [log_reg_acc, knn_acc, svc_acc, sgd_acc, dtc_acc, ran_clf_acc, vc_acc, ada_acc, gbc_acc, sgbc_acc, xgb_acc]
})
models.sort_values(by = 'Score', ascending = False)
```

	Model	Score
2	SVC	0.976608
3	SGD Classifier	0.976608
7	Ada Boost Classifier	0.976608
8 Gra	dient Boosting Classifier	0.976608
6	Voting Classifier	0.964912
10	XgBoost	0.964912
0	Logistic Regression	0.959064
5	Random Forest Classifier	0.959064
9 Sto	chastic Gradient Boosting	0.959064
1	KNN	0.935673
4	Decision Tree Classifier	0.929825

Best model for diagnosing breast cancer is "Gradient Boosting Classifier" with an accuracy of 97.6608%

Breast Cancer Classification with a simple Neural Network (NN)

Importing the Dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.datasets
from sklearn.model_selection import train_test_split
```

Data Collection & Processing

```
# loading the data from sklearn
breast_cancer_dataset = sklearn.datasets.load_breast_cancer()
print(breast cancer dataset)
```

```
[ {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
            1.189e-01],
           [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
            8.902e-02],
           [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
            8.758e-02],
           [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
            7.820e-02],
           [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
            1.240e-01],
           [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
            7.039e-02]]),
                          0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
           1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
           1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                                                       1, 0, 0, 1.
           1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1,
                                                    1.
           0. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
           1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
           1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
           1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
           1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
           0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
           0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
           1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1,
           1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
           1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
           1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
           1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1]), 'frame': None, 'target_names': array(['malignant', 'benign'], dtyr'mean smoothness', 'mean compactness', 'mean concavity',
            'mean concave points', 'mean symmetry', 'mean fractal dimension',
           'radius error', 'texture error', 'perimeter error', 'area error
           'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture',
           'worst perimeter', 'worst area', 'worst smoothness',
'worst compactness', 'worst concavity', 'worst concave points',
            'worst symmetry', 'worst fractal dimension'], dtype='<U23'), 'filename': 'breast_cancer.csv', 'data_module': 'sklearn.dataset
```

```
# loading the data to a data frame
data_frame = pd.DataFrame(breast_cancer_dataset.data, columns = breast_cancer_dataset.feature_names)
```

print the first 5 rows of the dataframe
data_frame.head()

		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	wor perimet
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38	17.33	184
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99	23.41	158
# adding the 'target' column to the data frame data_frame['label'] = breast_cancer_dataset.target										150				
		20.29 last 5 r me.tail(135.10 ne datafram	1297.0 e	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54	16.67	152

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••	worst texture	worst perimeter	W
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623		26.40	166.10	20
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533		38.25	155.00	17
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648		34.12	126.70	1′
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016		39.42	184.60	18
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884		30.37	59.16	2
5 rows × 31 columns														

 $\mbox{\tt\#}$ number of rows and columns in the dataset $\mbox{\tt data_frame.shape}$

(569, 31)

getting some information about the data
data_frame.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension	569 non-null	float64
30	label	569 non-null	int64
	es: float64(30), int64(1)		
memoi	ry usage: 137.9 KB		

checking for missing values
data_frame.isnull().sum()

mean radius 0
mean texture 0
mean perimeter 0
mean area 0

mean smoothness 0 mean compactness 0 mean concavity mean concave points mean symmetry 0 mean fractal dimension radius error 0 texture error perimeter error area error 0 smoothness error compactness error 0 0 concavity error concave points error 0 ${\it symmetry error}\\$ fractal dimension error 0 worst radius worst texture worst perimeter worst area worst smoothness 0 worst compactness 0 worst concavity worst concave points 0 worst symmetry 0 worst fractal dimension 0 label 0 dtype: int64

statistical measures about the data
data_frame.describe()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••	
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000		56
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062798		2
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.007060		
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.049960		1
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057700		2
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061540		2
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066120		2
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.097440		4
8 rows ×	31 columns											

checking the distribution of Target Varibale
data_frame['label'].value_counts()

1 357 0 212

Name: label, dtype: int64

1 --> Benign

0 --> Malignant

data_frame.groupby('label').mean()

label	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius
0	17.462830	21.604906	115.365377	978.376415	0.102898	0.145188	0.160775	0.087990	0.192909	0.062680	 21.134811
1	12.146524	17.914762	78.075406	462.790196	0.092478	0.080085	0.046058	0.025717	0.174186	0.062867	 13.379801
2 rows	× 30 columns										

Separating the features and target

```
X = data_frame.drop(columns='label', axis=1)
Y = data_frame['label']
print(X)
          mean radius mean texture mean perimeter mean area mean smoothness
     0
                17.99
                               10.38
                                              122.80
                                                         1001.0
                                                                          0.11840
     1
                20.57
                               17.77
                                              132.90
                                                          1326.0
                                                                          0.08474
     2
                19.69
                               21.25
                                              130.00
                                                          1203.0
                                                                          0.10960
     3
                11.42
                               20.38
                                               77.58
                                                          386.1
                                                                          0.14250
                               14.34
     4
                20.29
                                              135.10
                                                          1297.0
                                                                          0.10030
                  . . .
                21.56
                               22.39
                                              142.00
                                                          1479.0
                                                                          0.11100
     564
                               28.25
                                              131.20
                                                                          0.09780
     565
                20.13
                                                          1261.0
                                                                          0.08455
     566
                16.60
                               28.08
                                              108.30
                                                          858.1
     567
                               29.33
                                                                          0.11780
                20.60
                                              140.10
                                                          1265.0
     568
                 7.76
                               24.54
                                               47.92
                                                          181.0
                                                                          0.05263
          mean compactness mean concavity mean concave points mean symmetry
     0
                   0.27760
                                    0.30010
                                                          0.14710
                                                                          0.2419
     1
                   0.07864
                                    0.08690
                                                          0.07017
                                                                          0.1812
                                                          0.12790
     2
                   0.15990
                                    0.19740
                                                                          0.2069
     3
                   0.28390
                                    0.24140
                                                          0.10520
                                                                          0.2597
     4
                   0.13280
                                    0.19800
                                                          0.10430
                                                                          0.1809
                   0.11590
                                    0.24390
                                                          0.13890
                                                                          0.1726
     564
                                    0.14400
                                                          0.09791
     565
                   0.10340
                                                                          0.1752
     566
                   0.10230
                                    0.09251
                                                          0.05302
                                                                          0.1590
     567
                   0.27700
                                    0.35140
                                                          0.15200
                                                                          0.2397
     568
                   0.04362
                                    0.00000
                                                          0.00000
                                                                          0.1587
          mean fractal dimension ...
                                        worst radius worst texture \
     0
                         0.07871
                                              25.380
                                  . . .
     1
                         0.05667
                                   . . .
     2
                         0.05999
                                              23.570
                                                               25.53
                                   . . .
                         0.09744 ...
                                              14.910
     3
                                                               26.50
                         0.05883 ...
     4
                                              22.540
                                                               16.67
                         0.05623 ...
                                              25.450
                                                               26.40
     564
     565
                         0.05533
                                   . . .
                                              23,690
                                                               38.25
     566
                         0.05648 ...
                                              18.980
                                                               34.12
     567
                         0.07016
                                              25.740
                                                               39.42
                                  ...
     568
                         0.05884 ...
                                               9.456
                                                               30.37
          worst perimeter worst area worst smoothness worst compactness
     0
                   184.60
                                2019.0
                                                 0.16220
                                                                     0.66560
     1
                   158.80
                                1956.0
                                                 0.12380
                                                                     0.18660
                                                 0.14440
                                                                     0.42450
     2
                   152.50
                                1709.0
                                                 0.20980
     3
                    98.87
                                 567.7
                                                                     0.86630
     4
                   152.20
                                1575.0
                                                 0.13740
                                                                     0.20500
     564
                   166.10
                                2027.0
                                                 0.14100
                                                                     0.21130
                   155.00
                                1731.0
                                                 0.11660
                                                                     0.19220
                   126.70
                                1124.0
                                                 0.11390
                                                                     0.30940
                                1821.0
     567
                   184.60
                                                 0.16500
                                                                     0.86810
     568
                                268.6
                                                 0.08996
                                                                     0.06444
                    59.16
          worst concavity
                          worst concave points worst symmetry
     0
                   0.7119
                                          0.2654
                                                           0.4601
                                                           0.2750
     1
                   0.2416
                                          0.1860
     2
                   0.4504
                                          0.2430
                                                           0.3613
     3
                   0.6869
                                          0.2575
                                                           0.6638
     4
                   0.4000
                                          0.1625
                                                           0.2364
print(Y)
     1
            0
     2
            0
     3
            0
     4
            0
     564
            0
     565
            0
     566
            0
     567
            a
     568
            1
     Name: label, Length: 569, dtype: int64
Splitting the data into training data & Testing data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
```

print(X.shape, X_train.shape, X_test.shape)

```
(569, 30) (455, 30) (114, 30)
```

Standardize the data

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train_std = scaler.fit_transform(X_train)

X_test_std = scaler.transform(X_test)
```

Building the Neural Network


```
# importing tensorflow and Keras
import tensorflow as tf
tf.random.set_seed(3)
from tensorflow import keras
```

```
# training the Meural Network
history = model.fit(X_train_std, Y_train, validation_split=0.1, epochs=10)
```

```
Epoch 1/10
              =========] - 1s 33ms/step - loss: 0.8601 - accuracy: 0.3594 - val_loss: 0.7031 - val_accuracy: 0.4783
13/13 [=====
Epoch 2/10
13/13 [============== ] - 0s 9ms/step - loss: 0.5978 - accuracy: 0.6650 - val_loss: 0.5059 - val_accuracy: 0.8696
Epoch 3/10
                  ========] - 0s 10ms/step - loss: 0.4534 - accuracy: 0.8386 - val_loss: 0.3922 - val_accuracy: 0.9348
13/13 [====
Epoch 4/10
13/13 [====
                   ========] - 0s 10ms/step - loss: 0.3660 - accuracy: 0.8900 - val_loss: 0.3151 - val_accuracy: 0.9348
Epoch 5/10
13/13 [===:
                   ========] - 0s 10ms/step - loss: 0.3023 - accuracy: 0.9144 - val_loss: 0.2605 - val_accuracy: 0.9565
Epoch 6/10
13/13 [===:
                  ========] - 0s 9ms/step - loss: 0.2579 - accuracy: 0.9242 - val_loss: 0.2210 - val_accuracy: 0.9565
Epoch 7/10
Epoch 8/10
                 =========] - 0s 8ms/step - loss: 0.1983 - accuracy: 0.9315 - val_loss: 0.1730 - val_accuracy: 0.9783
13/13 [===:
Epoch 9/10
Epoch 10/10
               =========] - 0s 8ms/step - loss: 0.1638 - accuracy: 0.9438 - val_loss: 0.1460 - val_accuracy: 0.9783
```

Visualizing accuracy and loss

```
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])

plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')

plt.legend(['training data', 'validation data'], loc = 'lower right')
```

<matplotlib.legend.Legend at 0x7ba376b0be50>


```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])

plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')

plt.legend(['training data', 'validation data'], loc = 'upper right')
```

<matplotlib.legend.Legend at 0x7ba3863745b0>

Accuracy of the model on test data

```
print(X_test_std.shape)
print(X_test_std[0])
     (114, 30)
     [-0.04462793 -1.41612656 -0.05903514 -0.16234067 2.0202457 -0.11323672
       0.18500609 \quad 0.47102419 \quad 0.63336386 \quad 0.26335737 \quad 0.53209124 \quad 2.62763999
       0.62351167  0.11405261  1.01246781  0.41126289  0.63848593  2.88971815
      -0.41675911   0.74270853   -0.32983699   -1.67435595   -0.36854552   -0.38767294
       0.32655007 -0.74858917 -0.54689089 -0.18278004 -1.23064515 -0.6268286 ]
Y_pred = model.predict(X_test_std)
     4/4 [======] - 0s 3ms/step
print(Y_pred.shape)
print(Y_pred[0])
     (114, 2)
     [0.20836309 0.87977034]
print(X_test_std)
     [[-0.04462793 -1.41612656 -0.05903514 ... -0.18278004 -1.23064515
       -0.6268286 ]
      [ \ 0.24583601 \ -0.06219797 \ \ 0.21802678 \ \dots \ \ 0.54129749 \ \ 0.11047691
        0.0483572 ]
      [-1.26115925 \ -0.29051645 \ -1.26499659 \ \dots \ -1.35138617 \ \ 0.269338
       -0.28231213]
      [ 0.72709489  0.45836817  0.75277276  ...  1.46701686  1.19909344
        0.65319961]
      -1.595573441
      [ 0.84100232 -0.06676434  0.8929529  ...  2.15137705  0.35629355
        0.37459546]]
print(Y_pred)
     [[2.08363086e-01 8.79770339e-01]
      [4.48962301e-01 5.80053151e-01]
      [2.51291811e-01 9.35574532e-01]
      [9.64931250e-01 9.83884238e-05]
      [4.83905345e-01 4.67568696e-01]
      [9.00945783e-01 9.86850914e-03]
      [3.06370795e-01 7.65810311e-01]
      [2.07173601e-01 9.23297286e-01]
      [3.14787716e-01 7.89721906e-01]
      [3.15892905e-01 8.44666779e-01]
      [4.58597481e-01 5.89740634e-01]
      [3.50984782e-01 8.21357965e-01]
      [2.54664838e-01 8.18512440e-01]
      [3.98019075e-01 6.97004676e-01]
      [2.90783674e-01 8.56350780e-01]
      [8.55257452e-01 1.42879933e-01]
      [3.55348229e-01 8.94209564e-01]
      [1.62940875e-01 8.90240848e-01]
      [3.05653363e-01 9.12827075e-01]
      [8.56424212e-01 1.82643551e-02]
      [5.44420108e-02 9.90473866e-01]
      [2.69445330e-01 9.25823808e-01]
      [3.48066777e-01 8.90235782e-01]
      [2.27415189e-01 9.36207950e-01]
      [2.88123101e-01 8.35466743e-01]
      [6.54182136e-01 1.12178698e-01]
      [2.82397091e-01 8.41755211e-01]
      [2.71216154e-01 7.38942504e-01]
      [6.72613859e-01 2.09155083e-01]
      [6.55997455e-01 1.19338512e-01]
      [2.89074421e-01 7.91157484e-01]
      [2.85255790e-01 7.59480357e-01]
      [2.47811884e-01 8.82905304e-01]
      [8.98758411e-01 2.81256624e-03]
      [6.37099326e-01 3.61731797e-02]
      [3.55107009e-01 8.28391552e-01]
      [2.98854947e-01 9.24291432e-01]
      [4.09898818e-01 6.28928483e-01]
      [2.00336561e-01 9.67213213e-01]
      [2.67110705e-01 7.87054002e-01]
      [9.41523135e-01 6.88287546e-04]
      [6.10862136e-01 2.90557504e-01]
      [3.59834015e-01 9.90413308e-01]
      [2.00826213e-01 9.05811191e-01]
      [5.76710045e-01 1.46446303e-01]
      [3.63538206e-01 8.65408361e-01]
      [1.93431273e-01 9.48442161e-01]
      [2.52460450e-01 9.21242237e-01]
```

```
[8.74425709e-01 7.94682000e-03]
[5.96129656e-01 1.24191150e-01]
[2.83543706e-01 8.01949799e-01]
[5.28911829e-01 3.35543334e-01]
[3.88718069e-01 7.03507006e-01]
[3.35014343e-01 8.58531475e-01]
[2.08889127e-01 9.32137430e-01]
[4.70324367e-01 4.82196003e-01]
[2.47997671e-01 9.58001554e-01]
[8.31082761e-02 9.20015037e-01]
```

model.predict() gives the prediction probability of each class for that data point

Building the predictive system

```
input\_data = (11.76, 21.6, 74.72, 427.9, 0.08637, 0.04966, 0.01657, 0.01115, 0.1495, 0.05888, 0.4062, 1.21, 2.635, 28.47, 0.005857, 0.009758, 0.01168, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.016884, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.01688, 0.
# change the input_data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)
 # reshape the numpy array as we are predicting for one data point
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
# standardizing the input data
input_data_std = scaler.transform(input_data_reshaped)
prediction = model.predict(input_data_std)
print(prediction)
prediction_label = [np.argmax(prediction)]
print(prediction_label)
if(prediction_label[0] == 0):
      print('The tumor is Malignant')
else:
       print('The tumor is Benign')
                1/1 [======= ] - 0s 28ms/step
                [[0.3477521 0.90853053]]
                [1]
                The tumor is Benign
                /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but StandardScaler wa
                     warnings.warn(
```

Accuracy of predicting using neural network comes out to be 95.6%