Act-3000 Théorie du risque

Modèles de base

Étienne Marceau

École d'actuariat Université Laval, Québec, Canada

A2019: Série no1

Faculté des sciences et de génie École d'actuariat

Table des matières I

- Introduction
- 2 Motivations
- 3 Mécanisme d'assurance
- 4 Outils de base
- Mesures de risque et primes
 - Généralités
 - Mise en place
 - Espérances tronquées
 - Prime stop-loss
 - Fonction quantile
 - Théorème de la fonction quantile
 - Méthode inverse de simulation et méthode Monte-Carlo
 - Théorème Transformation intégrale de la probabilité
 - Fonction croissante
 - Mesures VaR et TVaR
 - Évaluation de la VaR et méthode Monte Carlo

Table des matières II

- Évaluation de la TVaR et méthode Monte Carlo
- Logiciel R
- Illustration numérique
- 6 Mutualisation des risques d'assurance
 - Généralités
 - Transformée de Laplace-Stieltjes
 - Fonction de génératrice de probabilité
 - Méthodes d'approximation
 - Simulation d'une fonction d'un nombre fini de v.a.
 - Propriétés désirables des mesures de risque
 - Autres propriétés désirables
 - Mesure VaR
 - Mesure TVaR
 - Preuve no1 de la sous-additivité de la TVaR
 - Preuve no2 de la sous-additivité de la TVaR

Table des matières III

- Portefeuille homogène de risques d'assurance
- Illustration numérique
- Mesure de risque invariante à la distribution

7 Conclusion

8 Références

Introduction

Introduction

Objectif principal: ...

Objectifs spécifiques :

- **...**
- **.**..
- **...**

Source principale : [Cossette and Marceau, 2019]

Motivations

Motivations

. . .

Les opérations d'une compagnie d'assurance dommages sont brièvement résumées ci-dessous:

- Souscription et tarification
- 2 Renouvellement et tarification
- Gestion et paiement des sinistres
- 4 Réserves en assurance dommages
- 5 Solvabilité et allocation de capital

Les actuaires interviennent dans chacune de ces étapes

Pour un résumé sur les opérations d'une compagnie d'assurance en lien avec les interventions des actuaires, voir, e.g, [Frees, 2015].

Les calculs pour la tarification, les réserves, la solvabilité et l'allocation de capital reposent sur des modèles de risque (en assurance dommages).

Étapes de la modélisation :

- 1 Données
- 2 Choix du modèle : estimation et calibration
- 3 Quantification : primes et mesures de risques
- 4 Décisions

Gestion des risques (du point de vue de l'assuré) :

- Identification des risques
- Risque transféré vs risque auto-géré
- Risque transféré à un assureur
- Prime demandée par un assureur

Contrat d'assurance :

- Identification des périls couverts par le contrat d'assurance
- Modélisation des coûts éventuels pour un contrat
- Calculs de la prime

L'ensemble de la procédure pour déterminer la prime d'un contrat d'assurance dommages est appellée "tarification".

Les coûts pour un contrat sont modélisés par une v.a. X.

La prime Π est calculée à partir du modèle choisi pour la v.a X selon des principes de prime.

Les mesures de risque peuvent être considérés à titre de principes de prime.

Dans le contexte de la tarification d'un contrat d'assurance, l'espérance de la v.a. X est considérée comme la prime pure pour le contrat.

Aperçu global de la procédure de tarification ([Parodi, 2014]) :

FIGURE 1.8

 $The high-level \ pricing \ process. Our \ elementary \ example \ in \ Section \ 1.1 \ contains \ these \ steps, albeit \ in \ a \ rudimentary \ form.$

Aperçu détaillé de la procédure de tarification ([Parodi, 2014]) :

FIGURE 6.1

The risk costing subprocess according up to the frequency/severity approach. The main difference between this and the simple example is that frequency and severity are analysed separately and are then combined with, for example, a Monte Carlo simulation, Note that in practice there will be many variations to this simple process, but it is fair to say that this is the 'vanilla' version of the frequency/severity approach.

Outils de base

Outils de base

La modélisation des risques en actuariat, en général, et en actuariat pour l'assurance général reposes à la fois sur des notions de probabilité et des méthodes statistiques.

Comme on le verra, le modèle fondamental pour les coûts en assurances dommages repose sur deux composantes :

- nombre de sinistres (v.a. positives discrètes, pour les modèles sur période fixe, ou processus aléatoires de comptage, pour les modèles dynamiques)
- montant d'un sinistre (v.a. positive, généralement continue)

Dans les prochaines sections, on présente les définitions de certaines outils de la théorie des probabilité, en introduisant les notions actuarielles qui s'y rattachent.

Les méthodes statistiques seront introduites plus tard.

Outils de base

On aborde les notions suivantes :

- Fonction stop-loss
- Fonction quantile
- Mesures de risque
- Méthodes de simulation

Généralités

En actuariat, les coûts d'un contrat, d'une ligne d'affaires, ou d'un portefeuille sont représentés par une $v.a.\ X$, appelée risque.

Dans le contexte de l'assurances dommages, la v.a. X, qui représente les coûts d'un contrat d'assurance, est positive.

Le contrat d'assurance formalise le transfert d'un risque (v.a. X) de l'assuré vers l'assureur.

En contrepartie, l'assureur demande à l'assuré de lui verser une prime (constante) $\Pi(X)$.

En émettant plusieurs contrats, l'assureur constitue un portefeuille de risques, représentés par des v.a. $X_1,...,X_n$.

Les v.a. $X_1,...,X_n$ peuvent être indépendantes ou dépendantes.

Les coûts d'assurance (souscription) de l'assureur résultent de la somme des v.a. $X_1,...,X_n$:

$$S = X_1 + \dots + X_n.$$

D'un point de vue de l'actuaire de l'assureur, les enjeux en lien avec les opérations d'assurance sont les suivants :

- modéliser à la fois les coûts (risques $X_1,...,X_n$) des différents contrats d'assurances émis par la compagnie d'assurance ;
- modéliser la structure de dépendance régissant les interactions entre ces v.a.;
- modéliser les coûts (risque global, v.a S) qui résultent de la mutualisation des coûts des contrats d'assurance.

Généralités

Pour mesurer quantitativement le risque d'un contrat ou d'un portefeuille de contrats d'assurance, on a recours à une mesure de risque $\varsigma(Y)$, où Y=X (pour un contrat) et Y=S pour un porefeuille,

Deux exemples importants d'application d'une mesure de risque :

Tarification : la mesure de risque est utilisée pour calculer la prime :

$$\Pi(X) = \varsigma(X);$$

Solvabilité : la mesure de risque sert à calculer le capital associé au portefeuiille :

$$capital(S) = \varsigma(S);$$

Généralités

L'actuaire de l'assureur doit aussi veiller à modéliser d'autres risques, tels que les risques de taux d'intérêt, de crédit, ou de risques opérationnels.

Pour faciliter la présentation, on s'intéresse dans cet exposé à la modélisation de la $v.a.\ X$ dans le contexte de l'assurance dommages.

Mise en place

Soit une v.a. positive X représentant le risque d'un contrat ou d'un portefeuille.

Notations de bases :

■ Fonction de répartition :

$$F_X(x) = \Pr(X \le x), x \ge 0;$$

Espérance (si elle existe) :

$$E[X] = \int_0^\infty x \mathrm{d}F_X(x);$$

■ En actuariat, la prime pure correspond à E[X].

Définition 1

Soit une v.a. X avec $E[X] < \infty$. Les espérances tronquées sont définies par

$$E[X \times 1_{\{X>d\}}] = \int_d^\infty x dF_X(x),$$

et

$$E[X \times 1_{\{X \le d\}}] = \int_{-\infty}^{d} x dF_X(x),$$

 $où d \in \mathbb{R}$.

Relation:

$$E\big[X\times 1_{\{X>d\}}\big] + E\big[X\times 1_{\{X\leq d\}}\big] = E\big[X\times \big(1_{\{X>d\}} + 1_{\{X\leq d\}}\big)\big] = E\big[X\big].$$

Espérance tronquées

Lorsque X est une v.a. continue, les expressions de $E[X \times 1_{\{X>d\}}]$ et $E[X \times 1_{\{X\leq d\}}]$ deviennent

$$E[X \times 1_{\{X > d\}}] = \int_{d}^{\infty} x f_X(x) dx,$$

et

$$E[X \times 1_{\{X \le d\}}] = \int_{-\infty}^{d} x f_X(x) dx,$$

où $d \in \mathbb{R}$.

Exemple 1

Soit $X \sim Exp(\beta)$ dont la fonction de densité est $f_X(x) = \beta e^{-\beta x}$, $x \in \mathbb{R}^+$. On obtient

$$E\left[X \times 1_{\{X \le d\}}\right] = \int_0^d x f_X(x) dx$$
$$= \int_0^d x \beta e^{-\beta x} dx = -de^{-\beta d} + \frac{1}{\beta} \left(1 - e^{-\beta d}\right).$$

On a aussi

$$E\left[X \times 1_{\{X > d\}}\right] = \int_{d}^{\infty} x f_X\left(x\right) dx = \frac{1}{\beta} + de^{-\beta d} - \frac{1}{\beta} \left(1 - e^{-\beta d}\right)$$
$$= de^{-\beta d} + \frac{1}{\beta} e^{-\beta d}. \quad \Box$$
 (1)

Exemple 2

Soit la v.a. continue positive
$$X \sim Ga(\alpha,\beta)$$
 où $f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x}$, $x \in \mathbb{R}^+$. De plus, $F_X(x) = H\left(x;\alpha,\beta\right)$ et $\overline{F}(x) = \overline{H}\left(x;\alpha,\beta\right)$. On obtient
$$E\left[X \times 1_{\{X \leq d\}}\right] = \int_0^d x \frac{\beta^a}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x}\mathrm{d}x$$

$$= \frac{\alpha}{\beta}\int_0^d \frac{\beta^{\alpha+1}}{\Gamma(\alpha+1)}x^{\alpha+1-1}\mathrm{e}^{-\beta x}\mathrm{d}x$$

$$= \frac{\alpha}{\beta}H\left(d;\alpha+1,\beta\right) = E\left[X\right]H\left(d;\alpha+1,\beta\right).$$

On déduit que

$$E[X \times 1_{\{X > d\}}] = E[X] - E[X \times 1_{\{X \le d\}}]$$

$$= E[X] (1 - H(d; \alpha + 1, \beta))$$

$$= E[X] \overline{H}(d; \alpha + 1, \beta) \square$$

WAL

Prime stop-loss

La prime stop-loss, appélée aussi fonction stop-loss, est fréquemment utilisée en actuariat

Définition 2

Soit une v.a. X avec $E[X] < \infty$. La fonction stop-loss $\pi_X(d)$ correspond à

$$\pi_X(d) = E\left[\max\left(X - d; 0\right)\right],\tag{3}$$

 $où d \in \mathbb{R}$.

Prime stop-loss

Relation : Soit une v.a. positive X avec $E[X] < \infty$.

$$\pi_X(0) = E[X].$$

Prime stop-loss et espérance tronquée : Comme

$$\max (X - d; 0) = X \times 1_{\{X > d\}} - d \times 1_{\{X > d\}},$$

on déduit

$$\pi_X(d) = E[X \times 1_{\{X > d\}}] - d \times \overline{F}_X(d),$$

où $d \in \mathbb{R}$.

Prime stop-loss

Si la v.a. X obéit à une loi continue, (3) devient

$$\pi_X(d) = \int_d^\infty (x - d) f_X(x) dx. \tag{4}$$

De plus, si la v.a. X est continue positive, l'expression (4) pour la fonction stop-loss devient

$$\pi_X(d) = \int_d^\infty \overline{F}_X(x) \, \mathrm{d}x.$$

Exemple 3

Soit la v.a. $X \sim Exp(\beta)$. La fonction stop-loss est donnée par $\pi_d(X) = E\left[\max{(X-d;0)}\right]$ $= \int_d^\infty \overline{F}_X(x) \mathrm{d}x$ $= \int_d^\infty \mathrm{e}^{-\beta x} \mathrm{d}x$ $= \frac{1}{\beta} \mathrm{e}^{-\beta d}. \ \Box$

Exemple 4

Soit la v.a. $X \sim Ga(\alpha,\beta)$.

La fonction stop-loss est donnée par

$$\begin{split} \pi_{d}\left(X\right) &= E\left[\max\left(X-d;0\right)\right] \\ &= E\left[X\times 1_{\left\{X>d\right\}}\right] - d\overline{F}_{X}\left(d\right) \\ &= E\left[X\right]\overline{H}\left(d;\alpha+1,\beta\right) - d\overline{H}\left(d;\alpha,\beta\right), \end{split}$$

for $d \ge 0$. \square

Prime stop-loss

Si la v.a. X = Kh $(h \in \mathbb{R}^+)$ où K obéit à une loi discrète dont le support est \mathbb{N} et si $d = hk_0$ avec $k_0 \in \mathbb{N}$, on a

$$\pi_{X}\left(d\right) = \sum_{k=0}^{\infty} \max\left(kh - k_{0}h; 0\right) f_{X}\left(kh\right) = h \sum_{k=k_{0}+1}^{\infty} \overline{F}_{X}\left(kh\right).$$

Fonction quantile

Les définitions de plusieurs mesures de risque reposent en grande partie sur la fonction quantile.

On débute avec la définition de base de la fonction quantile.

Définition 3

Soit la v.a. X avec fonction de répartition F_X . On définit la fonction inverse F_X^{-1} de F_X par

$$F_X^{-1}(u) = \inf \left\{ x \in \mathbb{R} : F_X(x) \ge u \right\},\,$$

pour $u \in (0,1)$.

La fonction quantile de X correspond à la fonction inverse ${\cal F}_X^{-1}.$

Fonction quantile

Si la v.a. X est continue, alors F_X^{-1} correspond à la seule valeur x_u telle que $F_X\left(x_u\right)$ = u.

Pour certaines lois continues, il est possible d'obtenir une expression fermée pour la fonction quantile.

Autrement, on a recours à des méthodes d'optimisation numérique pour évaluer la valeur $F_X^{-1}(u)$ pour une valeur fixée $u \in (0,1)$.

Exemple 5

Soit la v.a. $X \sim Exp(\beta)$ dont la fonction de répartition est $F_X(x) = 1 - \mathrm{e}^{-\beta x}, \ x \ge 0.$

L'expression fermée de la fonction quantile est déterminée en isolant x dans la relation $F_X(x) = u$, $u \in (0,1)$.

On obtient $F_X^{-1}(u) = -\frac{1}{\beta} \ln (1-u)$. \square

Théorème de la fonction quantile - Énoncé

Théorème 1

Théorème de la fonction quantile Soit une v.a. X avec fonction de répartition F_X et fonction quantile F_X^{-1} . Soit une v.a. $U \sim U(0,1)$. Alors, la fonction de répartition de $F_X^{-1}(U)$ est F_X , i.e., $F_X^{-1}(U) \sim X$.

On fait la preuve en deux étapes.

Étape no1 - v.a. continues

On suppose que la v.a. X est continue.

Comme les évènements $\left\{F_X^{-1}\left(U\right) \le x\right\}$ et $\left\{U \le F_X\left(x\right)\right\}$ coı̈ncident, alors on a

$$\Pr\left(F_X^{-1}(U) \le x\right) = \Pr\left(U \le F_X(x)\right).$$

De la fonction de répartition de $U \sim U(0,1)$, on déduit

$$\Pr\left(F_X^{-1}\left(U\right) \le x\right) = \Pr\left(U \le F_X\left(x\right)\right) = F_X\left(x\right).$$

Étape no2 - cas général

Maintenant, on considère le cas général incluant le cas précédent mais aussi le cas d'une v.a. X dont la fonction de répartition peut avoir des sauts et des portions horizontales . Le cas des v.a. discrètes est aussi inclus.

On doit vérifier que les évènements $\left\{F_X^{-1}\left(U\right) \leq x\right\}$ et $\left\{U \leq F_X\left(x\right)\right\}$ coı̈ncident.

Fonction quantile

Théorème de la fonction quantile - Preuve

Étape no2 - cas général (suite)

D'abord, on suppose que $x \ge F_X^{-1}(u)$, pour $u \in (0,1)$.

Puisque

$$F_X^{-1}(u) = \inf \{ y \in \mathbb{R}, F_X(y) \ge u \},$$

alors $F_X(x) \ge u$, pour $u \in (0,1)$.

Bref, on a $x \ge F_X^{-1}(u) \Rightarrow F_X(x) \ge u$, pour $u \in (0,1)$.

Étape no2 - cas général (suite)

Ensuite, on suppose que $F_X(x) \ge u$, ce qui implique

$$x \ge F_X^{-1}(u) = \inf \{ y \in \mathbb{R}, F_X(y) \ge u \},$$

pour $u \in (0,1)$.

Puisque les évènements $\left\{F_X^{-1}\left(U\right) \le x\right\}$ et $\left\{U \le F_X\left(x\right)\right\}$ coı̈ncident, on a

$$\Pr\left(F_X^{-1}\left(U\right) \le x\right) = \Pr\left(U \le F_X\left(x\right)\right) = F_X\left(x\right).$$

Théorème de la fonction quantile - Illustration

Illustration:

Illustration: Fonction de répartition avec un saut et une partie horizontale.

Théorème de la fonction quantile - Représentation

Soit une v.a. X avec une fonction de répartition F et une fonction quantile F^{-1} .

Soit une v.a. $U \sim Unif(0,1)$.

Selon ce théorème, on peut représenter la v.a. X comme suit :

$$X = F^{-1}(U). (5)$$

La représentation en (5) est fort utile.

Par exemple, la méthode de simulation inverse découle de la représentation en (5).

Théorème de la fonction quantile - Espérance

On suppose $E[X] < \infty$. En utilisant la représentation en (5), on a

$$E[X] = E[F^{-1}(U)] = \int_0^1 F^{-1}(u) du.$$
 (6)

De plus, soit une fonction φ tel que $E[\varphi(X)] < \infty$. Alors, on a

$$E[\varphi(X)] = E[\varphi(F^{-1}(U))] = \int_0^1 \varphi(F^{-1}(u)) du.$$
 (7)

Les résultats en (6) et (7) servent à justifier la méthode Monte Carlo.

Méthode inverse de simulation et méthode Monte Carlo

Soit une v.a. X avec une fonction de répartition F_X et une fonction quantile F_X^{-1} .

Soit une v.a. $U \sim Unif(0,1)$ dont on simule m réalisations $U^{(1)},...,U^{(m)}$ à l'aide d'un générateur de nombres pseudo-aléatoires.

Algorithme 1

Méthode inverse de simulation :

- Simuler m réalisations $U^{(1)},...,U^{(m)}$ de la v.a. $U \sim Unif(0,1)$.
- Simuler m réalisations $X^{(1)},...,X^{(m)}$ de la v.a. X avec les m réalisations $U^{(1)},...,U^{(m)}$:

$$X^{(j)} = F_X^{-1}(U^{(j)})$$
 (théorème de la fonction quantile),

pour
$$j = 1,...,m$$
.

Méthode inverse de simulation et méthode Monte Carlo

Soit une v.a. X avec une fonction de répartition F_X et une fonction quantile F_X^{-1} .

Idée de la méthode Monte-Carlo :

- Contexte : Soit une fonction φ tel que $E[\varphi(X)] < \infty$.
- But : Évaluer e ζ = $E[\varphi(X)]$.
- Appliquer le théorème de la fonction quantile

$$\zeta = E[\varphi(X)] = E[\varphi(F_X^{-1}(U))] = \int_0^1 \varphi(F_X^{-1}(u)) du.$$

- Approximer l'intégrale $\zeta = \int_0^1 \varphi(F_X^{-1}(u)) du$ par une moyenne empirique.
- Convergence de la moyenne empirique vers ζ en vertu d la loi des grands nombres.

Algorithme 2

Méthode Monte-Carlo:

- Simuler m réalisations $X^{(1)},...,X^{(m)}$ de la v.a. X.
- Calculer l'approximation $\tilde{\zeta}_m$ de $\zeta = E[\varphi(X)]$ avec

$$\tilde{\zeta}_m = \frac{1}{m} \times \sum_{j=1}^m \varphi(X^{(j)})$$

Par la loi des grands nombres, l'approximation $\tilde{\zeta}_m$ converge vers ζ avec probabilité 1 quand le nombre m de réalisations tend vers ∞ .

Méthode inverse de simulation et méthode Monte Carlo

La variance de $\tilde{\zeta}$ est

$$\operatorname{Var}\left(\tilde{\zeta}\right) = \frac{1}{m}\operatorname{Var}\left(\varphi\left(X\right)\right).$$

En vertu du théorème central limite, l'erreur $\left(\tilde{\zeta} - \zeta\right)$ est approximativement normale avec moyenne 0 et écart type $\frac{\sqrt{\mathrm{Var}(\varphi(X))}}{\sqrt{m}}$.

Cela signifie que la qualité de l'approximation obtenue par simulation s'améliore d'un facteur d'ordre \sqrt{m} .

Le terme $\frac{\sqrt{\operatorname{Var}(\varphi(X))}}{\sqrt{m}}$ est habituellement appelé l'erreur standard.

Méthode inverse de simulation et méthode Monte Carlo

Souvent, comme ${\rm Var}\,(\varphi\,(X))$ ne peut pas être évaluée avec exactitude, on l'estime à l'aide de l'estimateur échantillonnal classique

$$\widehat{\operatorname{Var}}(\varphi(X)) = \frac{1}{m-1} \sum_{j=1}^{m} \left(\varphi(X^{(j)}) - \widetilde{\zeta} \right)^{2}.$$
 (8)

On se base sur la distribution asymptotique de l'erreur $(\tilde{\zeta} - \zeta)$ afin de construire un intervalle de confiance de niveau α (e.g. 95 %) pour $\tilde{\zeta}$ dont les bornes sont fournies par

$$\tilde{\zeta}\pm\frac{\sqrt{\mathrm{Var}\left(\varphi\left(X\right)\right)}}{\sqrt{m}}\Phi^{-1}\left(1-\frac{\alpha}{2}\right).$$

Méthode inverse de simulation et méthode Monte Carlo

Généralement, comme la valeur $\sqrt{\mathrm{Var}\left(\varphi\left(X\right)\right)}$ ne peut pas être obtenue, on utilise (8) pour calculer les bornes de l'intervalle de confiance

$$\tilde{\zeta}\pm\frac{\sqrt{\widehat{\mathrm{Var}}\left(\varphi\left(X\right)\right)}}{\sqrt{m}}\Phi^{-1}\left(1-\frac{\alpha}{2}\right).$$

Théorème 2

Transformation intégrale de la probabilité Soit une v.a. continue X avec une fonction de répartition F_X et une fonction quantile F_X^{-1} . Alors, $F_X(X) \sim Unif(0,1)$.

Le Théorème 2 est fréquemment utilisé dans le contexte de la théorie des copules.

Note : L'expression "transformation intégrale de la probabilité" est utilisée par la Revue Canadienne de Statistique pour traduire l'expression anglaise "probability integral transform".

Fonction croissante

Selon la proposition suivante, la fonction quantile d'une transformation croissante d'une v.a. s'exprime comme cette transformation de la fonction quantile de cette v.a.

Proposition 1

Soit une v.a. X. Si φ est une fonction croissante, alors on a $F_{\varphi(X)}^{-1}(u) = \varphi(F_X^{-1}(u)),$ (9)

pour $u \in (0,1)$.

Mesures VaR et TVaR

La mesure Value at Risk (VaR) est une mesure de risque très populaire en actuariat et en gestion des risques.

Définition 4

Soit $0 < \kappa < 1$. La mesure VaR avec un niveau de confiance κ associée à la v.a. X est définie par $VaR_{\kappa}(X) = F_X^{-1}(\kappa)$.

Ainsi, la probabilité que la v.a. X prenne une valeur supérieure à la VaR est moindre ou égale à $1-\kappa$.

Mesures VaR et TVaR

Toutefois, la mesure VaR ne donne pas d'information sur le comportement de la distribution au delà de la VaR.

Par exemple, pour une v.a. continue X et pour κ = 99.99%, cela signifie qu'il y a une probabilité de 0.01% que la v.a. X prenne une valeur qui est supérieure à $VaR_{99.99\%}(X)$ sans nous préciser l'ampleur de la valeur que X peut prendre si elle excède la VaR.

Mesure VaR et TVaR

La mesure *Tail Value at Risk* (TVaR) est proposée comme une alternative à la mesure VaR.

Définition 5

Soit $0 \le \kappa < 1$. La mesure TVaR avec un niveau de confiance κ est définie par

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X) du, \qquad (10)$$

avec $TVaR_0(X) = \int_0^1 VaR_u(X) du = E[X].$

Proposition 2

Soit une v.a. X avec $E[X] < \infty$. Alors, à partir de (10), on déduit les deux expressions suivantes :

Expression avec la prime stop-loss :

$$TVaR_{\kappa}(X) = VaR_{\kappa}(X) + \frac{1}{1-\kappa}\Pi_{X}(VaR_{\kappa}(X))$$
 (11)

2 Expression avec l'espérance tronquée :
$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + \frac{1}{1-\kappa} VaR_{\kappa}(X) (F_X(VaR_{\kappa}(X)) - \kappa). \quad (12)$$

Preuve

Démonstration de (11). On a

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X) du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{u}(X) - VaR_{\kappa}(X) + VaR_{\kappa}(X)) du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{u}(X) - VaR_{\kappa}(X)) du + \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{\kappa}(X)) du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (F_{X}^{-1}(u) - VaR_{\kappa}(X)) du + \frac{1}{1-\kappa} VaR_{\kappa}(X) (1-\kappa)$$

$$= \frac{1}{1-\kappa} E\left[\max\left(F_{X}^{-1}(U) - VaR_{\kappa}(X);0\right)\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[\max\left(X - VaR_{\kappa}(X);0\right)\right] + VaR_{\kappa}(X) \quad (Th. Fn. Quantile)$$

pour $\kappa \in (0,1)$.

Preuve

Démonstration de (2). De (11), on déduit

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E\left[\max(X - VaR_{\kappa}(X); 0)\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[(X - VaR_{\kappa}(X)) \times 1_{\{X > VaR_{\kappa}(X)\}}\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]$$

$$-\frac{1}{1-\kappa} VaR_{\kappa}(X) \times E\left[1_{\{X > VaR_{\kappa}(X)\}}\right] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]$$

$$-\frac{1}{1-\kappa} (VaR_{\kappa}(X) \times (1 - F_X(VaR_{\kappa}(X))) - (1 - \kappa) VaR_{\kappa}(X))$$

$$= \frac{1}{1-\kappa} \left\{ E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right] + VaR_{\kappa}(X) (F_X(VaR_{\kappa}(X)) - \kappa) \right\}$$

pour $\kappa \in (0,1)$.

Mesures VaR et TVaR

Soit une v.a. continue X.

Alors, on a

$$(F_X(VaR_{\kappa}(X)) - \kappa) = 0.$$

De (2), on déduit

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}], \tag{13}$$

pour $\kappa \in (0,1)$.

Exemple 6

Soit la v.a. $X \sim Exp(\beta)$, avec

$$VaR_{\kappa}(X) = F_X^{-1}(1-\kappa) = -\frac{1}{\beta}\ln(1-\kappa).$$

Or,

$$\Pi_X(VaR_{\kappa}(X)) = \frac{1}{\beta} e^{-\beta VaR_{\kappa}(X)} = \frac{1-\kappa}{\beta}.$$

De (11), on déduit

$$TVaR_{\kappa}(X) = VaR_{\kappa}(X) + \frac{1}{\beta}.$$

4 日 ト 4 周 ト 4 ヨ ト 4 ヨ ト

Exemple 7

Soit la v.a. $X \sim Ga\left(\alpha,\beta\right)$ où F_X^{-1} n'a pas de forme fermée.

La fonction quantile de la loi gamma est fournie dans le logiciel R.

Avec (2) et (13), on obtient

$$TVaR_{\kappa}(X) = \frac{E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]}{1 - \kappa} = \frac{E\left[X\right]\overline{H}\left(VaR_{\kappa}(X); \alpha + 1, \beta\right)}{1 - \kappa}. \square$$

Évaluation de la VaR et méthode Monte Carlo

Soit une v.a. X dont on a produit m réalisations $X^{(1)}$, ..., $X^{(m)}$. Une approximation de F_X est fournie à l'aide de la fonction de répartition empirique définie par

$$F^{(m)}(x) \simeq \frac{1}{m} \sum_{j=1}^{m} 1_{\{X^{(j)} \le x\}}.$$
 (14)

Puisque $F^{(m)}$ est une fonction de répartition associée à une distribution discrète, il en découle que l'approximation de $VaR_{\kappa}\left(X\right)$ est

$$VaR_{\kappa}(X) \simeq F^{(m)-1}(\kappa) = \inf \left\{ X^{(j)}, i = 1, 2, ..., m ; F^{(m)}(X^{(j)}) \ge \kappa \right\}.$$

Évaluation de la TVaR et méthode Monte Carlo

Soit le vecteur de réalisations classées en ordre croissant de X, que l'on note par $\left(X^{[1]},...,X^{[m]}\right)$.

On fixe j_0 tel que $F^{(m)-1}(\kappa) = X^{[j_0]}$.

En utilisant les expressions (10) et (2) pour la TVaR conjointement avec (14), l'approximation de $TVaR_{\kappa}(X)$ correspond à

$$TVaR_{\kappa}(X) \simeq \frac{1}{1-\kappa} \left(\frac{1}{m} \sum_{j=1}^{m} X^{(j)} \times 1_{\{X^{(j)} > F^{(m)-1}(\kappa)\}} \right) + \frac{1}{1-\kappa} \left(F^{(m)-1}(\kappa) \left(F^{(m)} \left(F^{(m)-1}(\kappa) \right) - \kappa \right) \right) \\ \simeq \frac{1}{1-\kappa} \left(\frac{1}{m} \sum_{j=j_0+1}^{m} X^{[j]} + X^{[j_0]} \left(F^{(m)} \left(X^{[j_0]} \right) - \kappa \right) \right).$$

Évaluation de la TVaR et méthode Monte Carlo

Supposons que $m \times \kappa$ est un entier.

Alors cet entier est j_0 . Il en résulte que $\left(F^{(m)}\left(X^{[j_0]}\right) - \kappa\right) = 0$ et (15) devient

$$TVaR_{\kappa}(X) \simeq \frac{1}{m(1-\kappa)} \sum_{j=1}^{m} X^{(j)} \times 1_{\{X^{(j)} > X^{[j_0]}\}}$$
$$= \frac{1}{m-j_0} \sum_{j=j_0+1}^{m} X^{[j]},$$

ce qui correspond à la moyenne des $m-j_0$ plus grandes réalisations de X .

Proposition 3

Soit une v.a. X avec fonction de répartition F_X . Soit une suite de v.a. i.i.d. X_1 , ..., X_n où $X_i \sim X$, i=1,2,...,n. Alors, on a

$$TVaR_{\kappa}(X) = \lim_{n \to \infty} \frac{\sum_{j=[n\kappa]+1}^{n} X^{[j]}}{\lfloor n(1-\kappa) \rfloor} \text{ (p.s.),}$$
 (16)

où $\lfloor u \rfloor$ correspond à la partie entière de u.

Preuve

Voir la preuve de la proposition 4.1 dans [Acerbi and Tasche, 2002] ainsi que le développement aux pages 1494 et 1495 de cet article.

Logiciel R

Lois continues paramétriques et logiciel R :

- Loi uniforme : dunif(), punif(), qunif(), runif();
- Loi exponentielle : dexp(), pexp(), qexp(), rexp();
- Loi gamma : dgamma(), pgamma(), qgamma(), rgamma() ;
- Loi lognormale : dlnorm(), plnorm(), qlnorm(), rlorm().

Lois discrètes paramétriques et logiciel R :

- Loi Poisson : dpois(), ppois(), qpois(), rpois();
- Loi binomiale négative : dnbinom(), pnbinom(), qnbinom(), rnbinom().

Illustration numérique

Illustration numérique à faire en classe.

Mutualisation des risques d'assurance

Mutualisation des risques d'assurance

Généralités

Les opérations d'assurance sont fondées sur la possibilité de mutualiser les risques d'assurance.

On considère un portefeuille de n risques $X_1,...,X_n$.

Le risque global correspond à aux coûts totaux du portefeuille définis par la v.a.

$$S = \sum_{i=1}^{n} X_i.$$

Les coûts totaux espérés du portefeuille sont donnés par

$$E[S] = \sum_{i=1}^{n} E[X_i].$$

Mutualisation des risques d'assurance

Généralités

Le calcul de $\varsigma(S)$ requiert d'évaluer F_S .

L'évaluation de F_S représente un défi important.

Les risques $X_1,...,X_n$ peuvent être indépendants ou dépendants entre eux, ce qui a un impacte sur l'évaluation de F_S .

On peut recourir à la transformée de Laplace-Stietjes et la fonction génératrice de probabilité pour identifier la loi de S ou évaluer F_S .

Transformée de Laplace-Stieltjes

Définition 6

Soit une v.a. positive X. La transformée de Laplace-Stieltjes (TLS) de la v.a. X est définie par l'espérance suivante :

$$\mathcal{L}_X(t) = E[e^{-tX}] = \int_0^\infty e^{-tx} dF_X(x), \tag{17}$$

pour $t \in [0, \infty)$.

Remarques:

- Puisque la v.a. X est positive, l'espérance en (17) est finie pour tout t > 0.
- Alors, \mathcal{L}_X existe peu importe la loi de v.a. X.

Transformée de Laplace-Stieltjes

Le résultat suivant permet d'identifier la TLS d'une somme de v.a. indépendantes.

Il est aussi utile pour l'évaluation numérique de F_S .

Proposition 4

Soit les v.a. indépendantes $X_1,...,X_n$ dont les TLS sont $\mathcal{L}_{X_i}(r)$, pour i=1,...,n. On définit la v.a. $S=X_1+...+X_n$. Alors, la TLS de la v.a. S est donnée par

$$\mathcal{L}_S(t) = \mathcal{L}_{X_1}(t) \times ... \times \mathcal{L}_{X_n}(t),$$

pour $t \in [0, \infty)$.

Preuve

La TLS de la v.a. S est donnée par

$$\mathcal{L}_{S}(t) = E[e^{-tS}] = E[e^{-t(X_{1}+...+X_{n})}]$$

$$= E[e^{-tX_{1}} \times ... \times e^{-tX_{n}}]$$

$$= E[e^{-tX_{1}}] \times ... \times E[e^{-tX_{n}}] [v.a. indépendantes]$$

$$= \mathcal{L}_{X_{1}}(t) \times ... \times \mathcal{L}_{X_{n}}(t),$$

pour $t \in [0, \infty)$.

Exemple 8

Soit les v.a. indépendantes $X_1,...,X_n$ avec $X \sim Gamma(\alpha_i,\beta)$, pour i=1,2,...,n.

Alors, la TLS de la v.a. S est donnée par

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times ... \times \mathcal{L}_{X_{n}}(t)$$

$$= \left(\frac{\beta}{\beta + t}\right)^{\alpha_{1}} \times ... \times \left(\frac{\beta}{\beta + t}\right)^{\alpha_{n}} = \left(\frac{\beta}{\beta + t}\right)^{\alpha_{1} + ... + \alpha_{n}}$$

pour $t \in [0, \infty)$.

On déduit que $S \sim Gamma(\alpha_1 + ... + \alpha_n, \beta)$.

Fonction de génératrice de probabilité

Soit une v.a. discrète positive X dont le support est $\mathbb{N} = \{0,1,2,...\}$.

La fonction de masse de probabilité (f.m.p.) est notée par

$$f_X(k) = \Pr(X = k), k \in \mathbb{N}.$$

On introduit la notion de fonction génératrice de probabilité (fgp) pour une v.a. discrète positive.

La fgp est à la fois une espérance d'une fonction de la v.a. X et une série de puissances.

La fgp est utile dans les aspects de la modélisation et des différents calculs à effectuer en actuariat.

Fonction de génératrice de probabilité

Définition 7

La fonction génératrice de probabilités (fgp) de la $v.a.\ X$ est définie par

$$\mathcal{P}_X(r) = E[r^X] = \sum_{k=0}^{\infty} f_X(k) r^k,$$

pour tout nombre complexe r tel que $|r| \le 1$ (en particulier pour des nombres réels $r \in [0,1]$).

La fonction de génératice de probabilité (f.g.p.) de la v.a. X permet de représenter la f.m.p. de la v.a. M sous la forme d'une série de puissances.

Les coéfficients de cette série de puissances correspondent aux valeurs de la fonction de masse de probabilité.

Fonction de génératrice de probabilité

Propriétés :

- $\blacksquare \mathcal{P}_X(0) = f_X(0)$
- $P_X(1) = 1.$

On retrouve les coefficients (i.e., les valeurs de la fonction de masse de probabilité de la v.a. X) de la fgp en utilisant le théorème suivant.

Théorème 3

Fonction de masse de probabilité. La valeur de $f_X(k)$ est calculée à partir de $\mathcal{P}_X(t)$ avec

$$f_X(k) = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}r^k} \mathcal{P}_X(r) \bigg|_{r=0}.$$
 (18)

La fgp d'une v.a. discrète positive X définit la distribution de cette v.a. :

- Soit deux v.a. discrètes positives X et Y dont \mathcal{P}_X et \mathcal{P}_Y sont identiques.
- Alors, selon le Théorème 3, les v.a. X et Y ont la même distribution.

Fonction de génératrice de probabilité

Le résultat suivant permet d'identifier la fgp d'une somme de v.a. discrètes indépendantes.

Il est aussi utile pour l'évaluation numérique de F_S .

Proposition 5

Soit les v.a. discrètes positives (avec support $\mathbb N$) indépendantes $X_1,...,X_n$ dont les fgp sont $\mathcal P_{X_i}(r)$, pour i=1,...,n. On définit la v.a. $S=X_1+...+X_n$. Alors, la fgp de la v.a. S est donnée par $\mathcal P_S(r)=\mathcal P_{X_1}(r)\times...\times\mathcal P_{X_n}(r)$,

pour $r \in [0,1]$.

Preuve

La fgp de la v.a. S est donnée par

$$\mathcal{P}_{S}(r) = E[r^{S}] = E[r^{X_{1} + \dots + X_{n}}]$$

$$= E[r^{X_{1}} \times \dots \times r^{X_{n}}]$$

$$= E[r^{X_{1}}] \times \dots \times E[r^{X_{n}}] \text{ [v.a. indépendantes]}$$

$$= \mathcal{P}_{X_{1}}(r) \times \dots \times \mathcal{P}_{X_{n}}(r),$$

 $\textit{pour } r \in [0,1].$

Exemple 9

Soit les v.a. indépendantes $X_1,...,X_n$, avec $X_i \sim Pois(\lambda_i)$, pour i=1,...,n. On définit la v.a. $S=X_1+...+X_n$.

Alors, la fgp de la v.a. S est donnée par

$$\mathcal{P}_{S}(r) = \mathcal{P}_{X_{1}}(r) \times \dots \times \mathcal{P}_{X_{n}}(r)$$

$$= e^{\lambda_{1}(r-1)} \times \dots \times e^{\lambda_{n}(r-1)}$$

$$= e^{\lambda_{1}(r-1)+\dots+\lambda_{n}(r-1)} = e^{(\lambda_{1}+\dots+\lambda_{n})(r-1)},$$

pour $r \in [0,1]$.

On déduit que $S \sim Pois(\lambda_1 + ... + \lambda_n)$.

Méthodes d'approximation

Généralement, on ne parvient pas à identifier la loi de S.

On doit recourir à des méthodes d'approximation :

- Méthodes d'approximation basées sur les moments ;
- Méthodes numériques basées sur des relations récursives ;
- Méthodes basées sur la simulation Monte-Carlo.

Les méthodes numériques basées sur des relations récursives sont présentées plus loin.

Simulation d'une fonction d'un nombre fini de v.a.

Soit une v.a. Z qui est définie en fonction des v.a. $X_1,...,X_n$ i.e. $Z = \phi(X_1,...,X_n)$.

La forme explicite de la fonction de répartition F_Z ne peut être obtenue et on peut produire des réalisations de $X_1,...,X_n$.

La procédure pour simuler la réalisation j, $Z^{(j)}$ (j = 1,...,m), de la v.a. Z est décrite comme suit.

Simulation d'une fonction d'un nombre fini de v.a.

Algorithme 3

Simulation d'une fonction de v.a.

- **1 Étape 1**. On simule les réalisations de $\left(X_1^{(j)},...,X_n^{(j)}\right)$ de $(X_1,...,X_n)$.
- **2 Étape 2**. On évalue $Z^{(j)} = \phi(X_1^{(j)},...,X_n^{(j)})$.

On répète pour j = 1, 2, ..., m.

Un exemple de fonction intéressante pour analyser le comportement aléatoire du risque global d'un portefeuille d'assurance est

$$\phi(x_1,...,x_n) = \sum_{i=1}^n x_i.$$

86

Simulation d'une fonction d'un nombre fini de v.a.

Illustration numérique à faire en classe.

Propriétés désirables des mesures de risque

Les mesures de risque peuvent être utilisées dans différents contextes, notamment :

- item calcul du capital pour un portefeuille ;
- calcul de la prime pour un contrat d'assurance ;
- outils de comparaison.

On présente les propriétés désirables d'une mesure de risque ς_{κ} .

Propriétés désirables des mesures de risque

Propriété 1

Homogénéité. Soient un risque X et un scalaire $a \in \mathbb{R}^+$. Une mesure ς_{κ} est homogène si

$$\varsigma_{\kappa}(aX) = a\varsigma_{\kappa}(X),$$

pour $0 < \kappa < 1$.

Une modification d'unité monétaire apportée au risque X conduit à une modification du même ordre pour la valeur obtenue avec la mesure de risque.

Propriété 2

Invariance à la translation. Soient un risque X et un scalaire $a \in \mathbb{R}$. Une mesure ς_{κ} est invariante à la translation si

$$\varsigma_{\kappa}(X+a) = \varsigma_{\kappa}(X) + a,$$

pour $0 < \kappa < 1$.

Par exemple, pour la v.a. perte définie par $L=X-\pi$ où π correspond à la prime associée à X, il est justifié d'avoir $\varsigma_{\kappa}\left(L\right)=\varsigma_{\kappa}\left(X\right)-\pi$.

Propriété 3

Monotonocité. Soient deux risques X_1 et X_2 tels que $\Pr\left(X_1 \leq X_2\right)$ = 1. Une mesure ς_{κ} est monotone si $\varsigma_{\kappa}\left(X_1\right) \leq \varsigma_{\kappa}\left(X_2\right)$,

pour $0 < \kappa < 1$.

- Prime : Si le risque X_2 est plus dangereux que le risque X_1 , il est raisonnable que la mesure de risque mène à une prime plus pour le risque X_2 qui plus élevée que celle qui est calculée pour le risque X_1 .
- Capital : Si le risque X_2 est plus dangereux que le risque X_1 , il est raisonnable que la mesure de risque conduise à un capital pour le risque X_2 supérieur à celui calculé pour le risque X_1 .

Propriété 4

Sous-additivité. Soient n risques $X_1,...,X_n$. La mesure ς_{κ} est sous-additive si

$$\varsigma_{\kappa}\left(X_{1}+\ldots+X_{n}\right)\leq\varsigma_{\kappa}\left(X_{1}\right)+\ldots+\varsigma_{\kappa}\left(X_{n}\right),$$

pour $0 < \kappa < 1$.

La propriété de sous-additivité est très importante relativement à la mutualisation des risques.

Propriétés désirables des mesures de risque

Il est intéressant d'examiner le bénéfice de mutualisation qui résulte de la mise en commun des risques $X_1, ..., X_n$.

Le bénéfice de mutualisation est défini par

$$B_{\kappa}^{\varsigma}(S) = \sum_{i=1}^{n} \varsigma_{\kappa}(X_{i}) - \varsigma_{\kappa}(S)$$

Comme la mutualisation des risques est le fondement de l'assurance, il est souhaitable que $B_{\kappa}^{\varsigma}(S)$ soit positif.

Soit ς une mesure sous-additive. Alors, on observe

$$B_{\kappa}^{\varsigma}(S) = \sum_{i=1}^{n} \varsigma_{\kappa}(X_{i}) - \varsigma_{\kappa}(S) \ge 0,$$

LAVAL

pour tout $\kappa \in (0,1)$.

Propriétés désirables des mesures de risque

La notion de mesure cohérente a été introduite par [Artzner et al., 1999].

Definition 1

Mesure de risque cohérente. On dit qu'une mesure de risque ς_{κ} est cohérente si les propriétés 1, 2, 3 et 4 sont satisfaites.

Autres propriétés désirables des mesures de risque

Dans la littérature actuarielle (voir e.g. [Denuit et al., 2006]), les trois propriétés suivantes sont aussi jugées désirables.

Autres propriétés désirables des mesures de risque

Propriété 5

Marge de risque non excessive. La mesure ς_{κ} ne doit pas induire une marge de risque excessive. Si $X \le x_{\max}$, alors on a $\varsigma_{\kappa}\left(X\right) \le x_{\max}$, pour $0 < \kappa < 1$.

- Prime : Il est injustifié d'exiger une prime supérieure au montant maximal que les coûts d'un risque ou d'un portefeuille peut prendre.
- Capital : Il est injustifié de détenir un capital en excédent du montant maximal que les coûts d'un risque ou d'un portefeuille peut prendre.

Autres propriétés désirables des mesures de risque

Propriété 6

Marge de risque positive. On doit avoir $\varsigma_{\kappa}(X) \ge E[X]$, pour $0 < \kappa < 1$.

- Prime : Le capital minimum doit être supérieure à la prime pure sinon il y aura ruine certaine.
- Capital : Le capital minimum doit excéder les coûts espérés sinon il y aura ruine certaine.

Autres propriétés désirables des mesures de risque

Propriété 7

Marge de risque justifiée. Soit a une constante quelconque. On doit toujours avoir $\varsigma_{\kappa}(a) = a$, pour $0 < \kappa < 1$.

- Prime : Il n'est pas approprié de demander une prime différente de a si les coûts pour un contrat correspondent à la constante a.
- Capital : Il n'est pas justifié de détenir un capital différent de *a* si les coûts pour un portefeuille correspondent à la constante *a*.

Mesure VaR

La mesure VaR satisfait aux propriétés suivantes :

- Invarance à la translation ;
- Homogénéité ;
- Monotonicité ;
- Elle n'introduit pas une marge de risque excessive ;
- Elle n'introduit pas une marge de risque injustifiée.

La mesure VaR ne satisfait pas aux propriétés suivantes :

- Sous-additivité ;
- Elle n'introduit pas une marge de risque positive pour tout $\kappa \in (0,1)$.

Mesure VaR

Exemple 10

Soient les v.a. indépendantes X_1 et X_2 où $X_i \sim Exp(0.1)$. On sait que $X_1 + X_2 \sim Erlang(2,0.1)$. Il est clair avec les valeurs de $VaR_{\kappa}\left(X_1 + X_2\right)$ et $VaR_{k}\left(X_1\right) + VaR_{k}\left(X_2\right)$ qui sont fournies dans le tableau suivant que la mesure VaR n'est pas sous-additive :

κ	0.1	0.2	0.5	0.8	0.9
$VaR_k(X_1) + VaR_k(X_2)$	0.2107	0.4463	1.3863	3.2189	4.6052
$VaR_k\left(X_1+X_2\right)$	0.5318	0.8244	1.6783	2.9943	3.8897

Mesure TVaR

La mesure TVaR satisfait aux propriétés suivantes :

- Invarance à la translation ;
- Homogénéité ;
- Monotonicité ;
- Sous-additivité :
- Elle n'introduit pas une marge de risque excessive ;
- Elle introduit une marge de risque positive pour tout $\kappa \in (0,1)$;
- Elle n'introduit pas une marge de risque injustifiée.

[Embrechts and Wang, 2015] proposent 7 preuves de la sous-additivité de la TVaR.

On présente 2 d'entre elles.

Preuve no1 de la sous-additivité de la TVaR

On suit la démonstration fournie dans [McNeil et al., 2015].

Soit une suite de v.a. i.i.d. X_1 , ..., X_n où $X_i \sim X$, i=1,2,...,n.

Pour un entier m tel que $1 \le m+1 \le n$, l'égalité suivante est vérifiée

$$\sum_{j=m+1}^{n} X^{[j]} = \sup \left\{ X_{i_{m+1}} + \dots + X_{i_n}; 1 \le i_{m+1} \le \dots \le i_n \le m+1 \right\}.$$

Preuve no1 de la sous-additivité de la TVaR

Soit un couple de v.a. (X,Y) dont la fonction de répartition est désignée par $F_{X,Y}$.

Soient la suite de couple de v.a. i.i.d. (X_1,Y_1) , (X_2,Y_2) , ..., (X_n,Y_n) où $(X_i,Y_i) \sim (X,Y)$ pour i=1,2,...n.

Preuve no1 de la sous-additivité de la TVaR

On définit S = X + Y et $S_i = X_i + Y_i$, pour i = 1, 2, ..., n.

Par la Proposition 3, on a

$$TVaR_{\kappa}(S) = \lim_{n \to \infty} \frac{\sum_{j=\lfloor n\kappa \rfloor+1}^{n} S^{\lfloor j \rfloor}}{\lfloor n(1-\kappa) \rfloor}$$
 (p.s.),

où $S^{[1]} \leq S^{[2]} \leq \ldots \leq S^{[n-1]} \leq S^{[n]}$ sont les statistiques d'ordre de S_1 , ..., S_n et $\lfloor a \rfloor$ correspond à la partie entière de a.

Preuve no1 de la sous-additivité de la TVaR

On a

$$\begin{split} \sum_{j=[n\kappa]+1}^{n} S_{j:n} &= \sup \left\{ S_{i_{[n\kappa]+1}} + \ldots + S_{i_n}; 1 \leq i_{[n\kappa]+1} \leq \ldots \leq i_n \leq [n\kappa] + 1 \right\} \\ &\leq \sup \left\{ X_{i_{[n\kappa]+1}} + \ldots + X_{i_n}; 1 \leq i_{[n\kappa]+1} \leq \ldots \leq i_n \leq [n\kappa] + 1 \right\} \\ &+ \sup \left\{ Y_{i_{[n\kappa]+1}} + \ldots + Y_{i_n}; 1 \leq i_{[n\kappa]+1} \leq \ldots \leq i_n \leq [n\kappa] + 1 \right\} \\ &= \sum_{j=[n\kappa]+1}^{n} X_{j:n} + \sum_{j=[n\kappa]+1}^{n} Y_{j:n}. \end{split}$$

Il suffit de diviser par $[n(1-\kappa)]$ et de faire tendre $n \to \infty$ et on déduit le résultat voulu en appliquant la Proposition 3.

Preuve no2 de la sous-additivité de la TVaR

On a

$$TVaR_{\kappa}(X) = \inf_{x \in \mathbb{R}} \{\varphi(x)\}$$

ce qui signifie

$$TVaR_{\kappa}(X) \leq \varphi(x)$$
, pour tout $x \in \mathbb{R}$.

Ainsi, pour $\alpha \in (0,1)$, on a

$$TVaR_{\kappa}\left(\alpha\times X+\left(1-\alpha\right)\times Y\right)\leq x+\frac{1}{1-\kappa}\pi_{\alpha\times X+\left(1-\alpha\right)\times Y}\left(x\right)\text{, pour tout }x\in\mathbb{R}.$$

On choisit

$$x_{\alpha} = \alpha \times VaR_{\kappa}(X) + (1 - \alpha) \times VaR_{\kappa}(Y)$$

Preuve no2 de la sous-additivité de la TVaR

On a

$$\begin{split} &TVaR_{\kappa}\left(\alpha\times X+\left(1-\alpha\right)\times Y\right)\\ \leq &x_{0}+\frac{1}{1-\kappa}\pi_{\alpha\times X+\left(1-\alpha\right)\times Y}\left(x_{0}\right)\\ =&x_{0}+\frac{1}{1-\kappa}\times E\left[\max\left(\alpha\times X+\left(1-\alpha\right)\times Y-x_{0};0\right)\right]\\ =&\alpha\times VaR_{\kappa}\left(X\right)+\left(1-\alpha\right)\times VaR_{\kappa}\left(Y\right)\\ &+\frac{1}{1-\kappa}\times E\left[\max\left(\alpha\times X+\left(1-\alpha\right)\times Y-\alpha\times VaR_{\kappa}\left(X\right)+\left(1-\alpha\right)\times VaR_{\kappa}\left(Y\right);0\right)\right]. \end{split}$$

La fonction

$$E\left[\max\left(W;0\right)\right]$$

est convexe.

Preuve no2 de la sous-additivité de la TVaR

Alors, on a

$$TVaR_{\kappa}\left(\alpha \times X + (1-\alpha) \times Y\right)$$

$$\leq \alpha \times VaR_{\kappa}\left(X\right) + (1-\alpha) \times VaR_{\kappa}\left(Y\right)$$

$$+ \frac{1}{1-\kappa} \times E\left[\max\left(\alpha \times X + (1-\alpha) \times Y - \alpha \times VaR_{\kappa}\left(X\right) + (1-\alpha) \times VaR_{\kappa}\left(Y\right);0\right)\right]$$

$$= \alpha \times VaR_{\kappa}\left(X\right) + (1-\alpha) \times VaR_{\kappa}\left(Y\right)$$

$$+ \frac{1}{1-\kappa} \times E\left[\max\left(\alpha \times (X - VaR_{\kappa}\left(X\right)) + (1-\alpha) \times (Y - VaR_{\kappa}\left(Y\right));0\right)\right]$$

$$\leq \alpha \times VaR_{\kappa}\left(X\right) + (1-\alpha) \times VaR_{\kappa}\left(Y\right)$$

$$+ \frac{1}{1-\kappa} \times \alpha E\left[\max\left(X - VaR_{\kappa}\left(X\right);0\right)\right]$$

$$+ \frac{1}{1-\kappa} \times (1-\alpha) E\left[\max\left(Y - VaR_{\kappa}\left(Y\right);0\right)\right]$$

$$= \alpha \times VaR_{\kappa}\left(X\right) + \frac{1}{1-\kappa} \times \alpha E\left[\max\left(X - VaR_{\kappa}\left(Y\right);0\right)\right]$$

$$+ (1-\alpha) \times VaR_{\kappa}\left(Y\right) + \frac{1}{1-\kappa} \times (1-\alpha) E\left[\max\left(Y - VaR_{\kappa}\left(Y\right);0\right)\right]$$
pour tout $\alpha \in (0,1)$.

Preuve no2 de la sous-additivité de la TVaR

La relation est vraie pour $\alpha = \frac{1}{2}$:

$$\begin{aligned} TVaR_{\kappa}\left(\frac{1}{2}\times X + \left(1 - \frac{1}{2}\right)\times Y\right) \\ &\leq & \frac{1}{2}\times VaR_{\kappa}\left(X\right) + \frac{1}{1-\kappa}\times \frac{1}{2}E\left[\max\left(X - VaR_{\kappa}\left(X\right);0\right)\right] \\ & + \left(1 - \frac{1}{2}\right)\times VaR_{\kappa}\left(Y\right) + \frac{1}{1-\kappa}\times \left(1 - \frac{1}{2}\right)E\left[\max\left(Y - VaR_{\kappa}\left(Y\right);0\right)\right] \end{aligned}$$

Preuve no2 de la sous-additivité de la TVaR

Avec la propriété d'homogénéité de la TVaR, on a

$$\frac{1}{2}TVaR_{\kappa}\left(X+Y\right) \leq \frac{1}{2} \times VaR_{\kappa}\left(X\right) + \frac{1}{1-\kappa} \times \frac{1}{2}E\left[\max\left(X-VaR_{\kappa}\left(X\right);0\right)\right] \\
+ \frac{1}{2} \times VaR_{\kappa}\left(Y\right) + \frac{1}{1-\kappa} \times \frac{1}{2}E\left[\max\left(Y-VaR_{\kappa}\left(Y\right);0\right)\right]$$

On multiplie par "2" et on obtient le résultat désiré.

Portefeuille homogène de risques d'assurance

Soit un portefeuille homogène de n risques d'assurance (indépendants ou pas) $X_1,...,X_n$, avec $X_i \sim X$, pour i=1,2,...,n, avec fonction de répartition F_X , TLS \mathcal{L}_X , et espérance $E[X] < \infty$.

Les coûts d'assurance du portefeuille sont définis par la v.a. $S_n = \sum_{i=1}^n X_i.$

On définit la part allouée à chaque risque par la v.a. W_n où

$$W_n = \frac{1}{n}S_n = \frac{1}{n}\sum_{i=1}^n X_i.$$

La v.a. W_n correspond à la part attribuée à la suite d'un partage / allocation équitable des coûts du portefeuille parmi les membres du portefeuille.

Comme ce partage résulte de la mutualisation, il est intéressant de comparer le comportement de la part W_n à celui d'un risque $\frac{1}{2}$

Portefeuille homogène de risques d'assurance

Espérance de W_n : on a

$$E[W_n] = E[X],$$

pour tout $n \in \mathbb{N}^+$.

 $\mathsf{VaR}\ \mathsf{de}\ W_n$: puisque la $\mathsf{VaR}\ \mathsf{est}$ une mesure homogène, on a

$$VaR_{\kappa}(W_n) = VaR_{\kappa}\left(\frac{1}{n}S_n\right) = \frac{1}{n}VaR_{\kappa}(S_n),$$

Portefeuille homogène de risques d'assurance

TVaR de W_n :

■ Puisque la TVaR est une mesure homogène et sous-additive, on a

$$TVaR_{\kappa}(W_n) = TVaR_{\kappa}\left(\frac{1}{n}S_n\right) = \frac{1}{n}TVaR_{\kappa}(S_n)$$

$$\leq \frac{1}{n}\sum_{i=1}^n TVaR_{\kappa}(X_i) = \frac{1}{n}n \times TVaR_{\kappa}(X)$$

$$= TVaR_{\kappa}(X),$$

pour tout $n \in \mathbb{N}^+$.

Alors, le bénéfice de mutualisation par risque positif, e.g.,

$$B_{\kappa}^{\varsigma}(W_n) = \varsigma_{\kappa}(X) - \varsigma_{\kappa}(W_n) \ge 0,$$

Portefeuille homogène de risques d'assurance

Variance de W_n :

- Hypothèses additionnelles :
 - $Var(X) < \infty$;
 - $Cov(X_i, X_j) = Cov(X_1, X_2) \in \left[-\frac{1}{n}Var(X), \infty\right) \text{ pour } i \neq j \in \{1, 2, ..., n\}.$
- On a

$$Var(W_n) = \frac{1}{n} Var(X) + \frac{n-1}{n} Cov(X_1, X_2),$$

Portefeuille homogène de risques d'assurance

Limites de la variance de W_n :

- Hypothèses additionnelles :
 - $Var(X) < \infty$;
 - ► $Cov(X_i, X_j) = Cov(X_1, X_2) \in [0, \infty)$ pour $i \neq j \in \{1, 2, ..., n\}$.
- Si les v.a. $X_1,...,X_n$ mutuellement indépendantes, on a

$$\lim_{n\to\infty} Var(W_n) = 0$$

- ⇒ "diversification complète du risque d'assurance".
- Sinon, on a

$$\lim_{n\to\infty} Var(W_n) = Cov(X_1, X_2) \ge 0$$

⇒ "diversification incomplète du risque d'assurance".

Portefeuille homogène de risques d'assurance

TLS de W_n :

On a

$$\mathcal{L}_{W_n}(t) = E[e^{-tW_n}] = E[e^{-\frac{t}{n}S_n}] = \mathcal{L}_{S_n}(\frac{t}{n}),$$

pour tout $n \in \mathbb{N}^+$.

- Hypothèse additionnelle :
 - Les v.a. $X_1,...,X_n$ sont indépendantes.
 - On a

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}(\frac{t}{n}) = (\mathcal{L}_X(\frac{t}{n}))^n,$$

Portefeuille homogène de risques d'assurance

TLS de W_n et loi des grands nombres pour risques indépendants :

- Hypothèse additionnelle : v.a. $X_1,...,X_n$ indépendantes.
- Loi des grands nombres (sans supposer $Var(X) < \infty$) :
 - ▶ Pour tout $n \in \mathbb{N}^+$, on a

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}(\frac{t}{n}) = (\mathcal{L}_X(\frac{t}{n}))^n.$$

On utilise l'approximation

$$\mathcal{L}_{W_n}(t) = (\mathcal{L}_X(\frac{t}{n}))^n \approx (1 - \frac{t}{n}E[X])^n$$

▶ On prend la limite pour $n \to \infty$

$$\lim_{n\to\infty} \mathcal{L}_{W_n}(t) = \lim_{n\to\infty} \left(1 - \frac{t}{n} E[X]\right)^n = e^{-tE[X]}$$

Conclusion : W_n converge en distribution vers la v.a. Z où $\Pr(Z = E[X]) = 1$.

Portefeuille homogène de risques d'assurance

Soit les v.a. i.i.d. X_1 , ..., X_n , avec $X_i \sim X \sim Gamma\left(\alpha,\beta\right)$ (i=1,2,...,n). Alors, on a

$$\mathcal{L}_{W_n}(t) = \mathcal{L}_{S_n}\left(\frac{t}{n}\right)$$

$$= \left(\mathcal{L}_X\left(\frac{t}{n}\right)\right)^n$$

$$= \left(\frac{\beta}{\beta + \frac{t}{n}}\right)^{n \times \alpha}$$

$$= \left(\frac{n\beta}{n\beta + t}\right)^{n \times \alpha}$$

pour $t \in [0,1]$.

Portefeuille homogène de risques d'assurance

On déduit que

$$W_n \sim Gamma(n\alpha, n\beta)$$

Portefeuille homogène de risques d'assurance

Comme prévu, on observe

$$E[W_n] = \frac{\alpha n}{\beta n} = \frac{\alpha}{\beta} = E[X]$$

et

$$Var(W_n) = \frac{\alpha n}{(\beta n)^2} = \frac{1}{n} \times \frac{\alpha}{\beta^2} \le \frac{1}{n} \times Var(X),$$

Illustration numérique

Illustration numérique à faire en classe.

Mesure de risque invariante à la distribution

Une mesure de risque ς est dite distribution-invariante (*law invariant*) si la mesure dépend uniquement de la distribution de la v.a. X.

Soit deux v.a. X_1 et X_2 avec F_{X_1} = F_{X_2} = F_X . Alors, pour une mesure distribution-invariante on a

$$\varsigma(X_1) = \varsigma(X_2)$$
.

Entre d'autres termes, une mesure de risque est "distribution-invariante" si elle attribue la même valeur à deux contrats (ou pertes) ayant la même loi de probabilité (voir, e.g., [?]).

Les mesures VaR et TVaR sont distribution-invarantes.

Conclusion

Conclusion

(En classe)

Références

Références |

- Acerbi, C. and Tasche, D. (2002).
 On the coherence of expected shortfall.

 Journal of Banking & Finance, 26(7):1487–1503.
- Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.

 Mathematical finance, 9(3):203–228.
- Cossette, H. and Marceau, E. (2019).

 Mathématiques actuarielles du risque: modèles, mesures de risque et méthodes quantitatives.

 Document de référence
- Denuit, M., Dhaene, J., Goovaerts, M., and Kaas, R. (2006). Actuarial theory for Dependent Risks: Measures, Orders and Models.

John Wiley & Sons.

Références II

- Embrechts, P. and Wang, R. (2015).
 Seven proofs for the subadditivity of expected shortfall.

 Dependence Modeling, 3(1).
- Frees, E. W. (2015).

 Analytics of insurance markets.

 Annual Review of Financial Economics, 7:253–277.
- McNeil, A. J., Frey, R., and Embrechts, P. (2015).

 Quantitative Risk Management: Concepts, Techniques and Tools.

Princeton university press.

Parodi, P. (2014).

Pricing in General Insurance.

Chapman and Hall/CRC.

