Homework 4

ALECK ZHAO

October 6, 2016

Section 2.2: Groups

13. If G is any group, define $\alpha: G \to G$ by $\alpha(g) = g^{-1}$. Show that α is injective and surjective.

Proof. To show α is injective, consider g_1 and g_2 such that $\alpha(g_1) = \alpha(g_2)$. Then $g_1^{-1} = g_2^{-1}$, and left multiplying by g_2g_1 , we have

$$g_2g_1g_1^{-1} = g_2g_1g_2^{-1}$$

$$g_2 = g_2g_1g_2^{-1}$$

$$g_2g_2 = g_2g_1g_2^{-1}g_2$$

$$g_2g_2 = g_2g_1$$

and by the cancellation law, we have $g_2 = g_1$, so α is injective, as desired.

To show α is surjective, we must show that for all $g \in G$, there exists a $g_0 \in G$ such that $\alpha(g_0) = g$. Since $gg^{-1} = 1$ it follows that $(g^{-1})^{-1} = g$, so then $g_0 = g^{0-1}$ will satisfy this, and since G is a group, every element has an inverse, so α is surjective, as desired.

Section 2.3: Subgroups

2. If H is a subset of a group G, show that H is a subgroup if and only if H is nonempty and $ab^{-1} \in H$ whenever $a \in H$ and $b \in H$.

Proof. If H is a subgroup, then H must contain at least $1 \in G$, so H is nonempty. Then if $a, b \in H$, we have $b^{-1} \in H$ so $ab^{-1} \in H$ since H is a subgroup, as desired.

For the other direction, if H is nonempty, then suppose it contains at least 1 element. If it has 1 element, say a, then $aa^{-1}=1\in H$ which is the trivial subgroup. On the other hand, if H contains more than 1 element, for $a,b\in H$, we have $ab^{-1}\in H$. Since we know $1\in H$ it follows that if $b\in H$ then $1\cdot b^{-1}=b^{-1}\in H$ is the inverse of a which is also contained in H. Thus since $a,b^{-1}\in H$, we have $a(b^{-1})^{-1}=ab\in H$. Thus H is a subgroup, as desired.

5. (a) If G is an abelian group, show that $H = \{a \in G | a^2 = 1\}$ is a subgroup of G.

Proof. Clearly $1 \cdot 1 = 1$ so $1 \in H$. Then consider $a, b \in H$ so that $a^2 = b^2 = 1$. Then aabb = 1 and since G is abelian, we have (ab)(ab) = 1, so $(ab)^2$ so $ab \in H$ as well. Finally, if $a \in H$ then $a^2 = 1$ so $a = a^{-1}$, thus $(a^{-1})^2 = 1$ so $a^{-1} \in H$. Thus H is a subgroup as desired.

(b) Give an example where H is not a subgroup.

Solution. When G is not abelian, then H is not necessarily a subgroup. For example, consider the group $S_3 = \{\varepsilon, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2\}$ where H is then $\{\varepsilon, \tau, \tau\sigma, \tau\sigma^2\}$. However, we have $\tau(\tau\sigma) = \sigma \notin H$ so H is not a subgroup.

8. If X is a nonempty subset of a group G, let $\langle X \rangle$ be the set of all products of powers of elements of X; more formally

$$\langle X \rangle = \left\{ x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m} \mid m \ge 1, x_i \in X \right\}$$

(a) Show that $\langle X \rangle$ is a subgroup of G that contains X.

Proof. We have $1 \in \langle X \rangle$ if we take all the $k_i = 0$. Next, if two elements

$$a = x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}$$
$$b = x_1^{i_1} x_2^{i_2} \cdots x_m^{i_m}$$

are in $\langle X \rangle$, then we have

$$x_1^{i_1} x_2^{i_2} \cdots x_m^{i_m} ab = \left(x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}\right) \left(x_1^{i_1} x_2^{i_2} \cdots x_m^{i_m}\right)$$

$$= x_1^{k_1 + i_1} x_2^{k_2 + i_2} \cdots x_m^{k_m + i_m}$$

$$= x_1^{n_1} x_2^{n_2} \cdots x_m^{n_m}$$

which is in $\langle X \rangle$ as well. Then if a is as above, its inverse is given by

$$a^{-1} = x_1^{-k_1} x_2^{-k_2} \cdots x_m^{-k_m}$$

which in particular is in $\langle X \rangle$ as well. Thus $\langle X \rangle$ is a subgroup of G, and it contains X because for each x_i in X, we can represent x_i with $k_i = 1$ and all other $k_j = 0$.

(b) Show that $\langle X \rangle \subseteq H$ for every subgroup H such that $X \subseteq H$. Thus, $\langle X \rangle$ is the *smallest* subgroup of G that contains X, and is called the **subgroup generated** by X.

Proof. Let $X = \{x_1, x_2, \cdots, x_m\} \subset H$. Then since each of $x_i \in H$, it must be that $x_i^2 \in H$ and by induction $x_i^{k_i} \in H$ for any k_i . Thus since each of $x_1^{k_1}, x_2^{k_2}, \cdots, x_m^{k_m} \in H$, it must be that their product $x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m} \in H$ as well for all k_i . This is exactly $\langle X \rangle$, so it follows that $\langle X \rangle \subseteq H$, with equality when X = H.

13. (a) If G is a group, show that $H = \{(g,g)|g \in G\}$ is a subgroup of $G \times G$.

Proof. Since $1 \in G$ is the identity, we have $g \cdot 1 = g$, so $(g, f) \cdot (1, 1) = (g, f)$ for all $(g, f) \in G \times G$ thus (1, 1) is the identity in $G \times G$ as well and is in H.

Since G is a group, if $g, h \in G$, we have $g + h \in G$. Next, if $(g, g), (h, h) \in H$, then $(g, g) \cdot (h, h) = (g + h, g + h) \in H$ as well.

Finally, since G is a group, if $g \in G$, its inverse $g^{-1} \in G$ as well. Thus if $(g, g) \in H$, its inverse is given by $(g^{-1}, g^{-1}) \in H$, so H is a subgroup, as desired.

(b) Determine the groups G such that $H = \{(g, g^{-1}) | g \in G\}$ is a subgroup of $G \times G$.

Solution. If $(g, g^{-1}), (f, f^{-1}) \in H$, then the binary operation on them

$$(g,g^{-1})\cdot(f,f^{-1})=(gf,g^{-1}f^{-1})=(gf,(fg)^{-1})$$

must also be in H in order for H to be a subgroup. Therefore, we must have gf = fg, so H is a subgroup if and only if G is abelian.

22. Find $Z[GL_2(\mathbb{R})]$.

Solution. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{R})$ be an arbitrary matrix, and let $Z = \begin{bmatrix} h & i \\ j & k \end{bmatrix} \in GL_2(\mathbb{R})$ be a center. Then we have

$$AZ = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} h & i \\ j & k \end{bmatrix} = \begin{bmatrix} ah + bj & ai + bk \\ ch + dj & ci + dk \end{bmatrix}$$
$$ZA = \begin{bmatrix} h & i \\ j & k \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ah + ic & bh + id \\ aj + ck & bj + dk \end{bmatrix}$$

If AZ = ZA, then we must have $ah + bj = ah + ic \implies bj = ci$ for all $b, c \in \mathbb{R}$. Since we have no control over what b and c are, it must be that i = j = 0. Then we must have ai + bk = bk = bh + id = bh and ch + dj = ch = aj + ck = ck. Thus, we h = k, and the group of centers is given by the general form

$$Z(GL_2(\mathbb{R})) = \left[\left\{ \begin{bmatrix} h & 0 \\ 0 & h \end{bmatrix} \middle| h \in \mathbb{R} \right\} \right]$$

Section 2.4: Cyclic Groups and the Order of an Element

6. If G is a group and $g \in G$, show that $\langle g \rangle = \langle g^{-1} \rangle$.

Proof. For some $f \in \langle g \rangle$, we have $f = g^k$ for some $k \in \mathbb{Z}$. Then $f = (g^{-k})^{-1} = (g^{-1})^{-k} \in \langle g^{-1} \rangle$ so it follows that $g \in \langle g^{-1} \rangle$, thus $\langle g \rangle \subset \langle g^{-1} \rangle$.

Similarly, if $h \in \langle g^{-1} \rangle$, then $h = (g^{-1})^n$ for some $n \in \mathbb{Z}$. Then $h = g^{-n}$ so $h \in \langle g \rangle$, thus $\langle g^{-1} \rangle \subset \langle g \rangle$, so in fact $\langle g \rangle = \langle g^{-1} \rangle$, as desired.

- 7. Let o(g) = 20 in a group G. Compute
 - (a) $o(g^2)$

Answer. Since o(g) = 20, that means $g^{20} = 1$. Then $(g^2)^{10} = g^{20} = 1$, so $o(g^2) = \boxed{10}$.

(b) $o(g^8)$

Answer. Since o(g) = 20, that means $g^{20} = 1$. Then $(g^8)^5 = g^{40} = (g^{20})^2 = 1$, so $o(g^8) = 5$.

(c) $o(g^5)$

Answer. Since o(g) = 20, that means $g^{20} = 1$. Then $(g^5)^4 = g^{20} = 1$, so $o(g^5) = 4$.

(d) $o(g^3)$

Answer. Since o(g) = 20, that means $g^{20} = 1$. Then $(g^3)^{20} = (g^{20})^3 = 1$, so $o(g^3) = 20$.

10. (a) If gh = hg in a group and o(g) and o(h) are finite, show that o(gh) is finite.

Proof. Let o(g) = n and o(h) = m, so that $g^n = h^m = 1$. Then $(g^n)^m = 1 = (h^m)^n$ so the product $g^{mn}h^{mn} = 1$. Since gh = hg, we have $(gh)^{mn} = 1$, thus o(gh) must divide mn. Since mn is finite, it follows that o(gh) must be finite too.

(b) Show that (a) fails if $gh \neq hg$ by considering $g = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $h = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$.

Proof. We have $g^4 = I$ so o(g) = 4, and $h^3 = I$ so o(h) = 3 so o(g) and o(h) are both finite. Now,

$$gh = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

and we claim that

$$(gh)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$

for all $n \ge 1$, which we show by induction. The base case n = 1 is already given. Next, suppose this holds for arbitrary k. Then

$$(gh)^k(gh) = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k+1 \\ 0 & 1 \end{bmatrix} = (gh)^{k+1}$$

so the claim is proved. In particular, $n \neq 0$ for any $n \geq 1$, so $(gh)^n \neq I$ for any n, thus $o(gh) = \infty$.

18. If $G = \langle g \rangle$ and $H = \langle h \rangle$, show that $G \times H = \langle (g,1), (1,h) \rangle$

Proof. Consider some $(a,b) \in G \times H$, so that $a \in \langle g \rangle$ and $b \in \langle h \rangle$. That means $a = g^i$ and $b = h^j$ where $i,j \in \mathbb{Z}$. Then the element (g^i,h^j) can be represented as the product $(g^i,1) \cdot (1,h^j) = [(g,1)]^i [(1,h)]^j$ so

$$(a,b) = (g^i, h^j) \in \langle (g,1), (1,h) \rangle$$

and thus $G \times H \subset \langle (g,1), (1,h) \rangle$.

Next, for some element in $\langle (g,1), (1,h) \rangle$, we can express it in the form $(g,1)^n \cdot (1,h)^m$ for some $n,m \in \mathbb{Z}$. This is exactly

$$(q,1)^n \cdot (1,h)^m = (q^n,1) \cdot (1,h^m) = (q^n,h^m)$$

which is an element of the Cartesian product $\langle g \rangle \times \langle h \rangle$. Thus $\langle (g,1), (1,h) \rangle \subset G \times H$, so in fact $G \times H = \langle (g,1), (1,h) \rangle$, as desired.