SL03: Lineare Abbildungen

✓ Notizen	
Type	Vorlesung
Unterlagen	
	Woche 4

Definitionen

▼ Die lineare Abbildung

Eine Abbildung $f:\mathbb{R}^n o\mathbb{R}^m$, die jedem $x\in\mathbb{R}^n$ ein $y=f(x)\in\mathbb{R}^m$ zuordnet, heisst linear, wenn eine m imes n-Matrix A existiert mit

•
$$y = f(x) = Ax$$

▼ Das Bild einer linearen Abbildung

Das Bild vom $M\subseteq \mathbb{R}^n$ unter $f:\mathbb{R}^n o \mathbb{R}^m$ ist

•
$$f(M) = \{y \in \mathbb{R}^m | ext{ es existiert ein } x \in M ext{ mit } f(x) = y \}$$

lacktriangle Determinante einer 2 imes 2-Matrix

Die Determinate einer 2 imes 2-Matrix A ist

$$ullet \ det \ A = det(A) = |A| = egin{vmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

▼ Determinante

Die Determinante einer quadratischen Matrix $A=\left(a_{ij}
ight)$ der Ordnung n ist induktiv wie folgt definiert:

• Für
$$n = 1 : det(A) = a_{11}$$

$$ullet$$
 Für $n=2:\ det(A)=a_{11}a_{22}-a_{12}a_{21}$

• Für n>2 : Sei A_{ij} die Matrix, die durch Streichen der i-ten Zeile und j-ten Spalte von A entsteht $det(A)=\sum_{i=1}^n a_{i1}(-1)^{i+1}det(A_{i1})$

▼ Eigenwert und Eigenvektor

Sei
$$A$$
 eine $n imes n$ -Matrix, $\lambda\in\mathbb{R}$, $ec{v}\in\mathbb{R}^n$, $ec{v}
eq 0$ mit $Aec{v}=\lambdaec{v}$

lacktriangleright l-facher Eigenwert

Sei A eine n imes n-Matrix mit n linear unabhängigen Eigenvektoren. Einen Eigenwert λ von A, zu dem es $l \leq n$ linear unabhängige Eigenvektoren gibt, nennt man l-fachen Eigenwert von A

Sätze

▼ Verknüpfung linearer Abbildungen

Gegeben sind $f:\mathbb{R}^n o\mathbb{R}^m$ mit f(x)=Ax, $g:\mathbb{R}^n o\mathbb{R}^m$ mit g(x)=Bx und $h:\mathbb{R}^m o\mathbb{R}^q$ mit h(x)=Cx, dann gilt:

- $f = g \leftrightarrow A = B$
- $f+g:\mathbb{R}^n o\mathbb{R}^m$ ist linear mit (f+g)(x)=(A+B)x
- $f-g:\mathbb{R}^n o\mathbb{R}^m$ ist linear mit (f-g)(x)=(A-B)x
- $h\circ g:\mathbb{R}^n o\mathbb{R}^q$ ist linear mit $(h\circ g)(x)=h(Bx)=CBx$
- lacktriangledown Charakterisierung des Bildes von f

Für $A=[ec{a}^1,\ldots,ec{a}^n]$ mit $ec{a}^1,\ldots,ec{a}^n\in\mathbb{R}^m$ und f(x)=Ax gilt:

- $ullet f(\mathbb{R}^n) = lin\{ec{a}^1,\ldots,ec{a}^n\}$
- $dim(f(\mathbb{R}^n)) = rang(A)$
- ▼ Umkehrabbildung und Inverse

Für $f: \mathbb{R}^n o \mathbb{R}^m$ mit y = f(x) = Ax gilt:

- f surjektiv $\leftrightarrow rang(A) = m$
- f injektiv $\leftrightarrow rang(A) = n$
- f bijektiv $\leftrightarrow rang(A) = m = n$
- Dann existiert eine Matrix $A*A^{-1} = A^{-1}*A = I$
- Die Umkehrabbildung ist $f^{-1}(x) = A^{-1}x$

▼ Rechenregeln invertierbarer Matrizen

Sind A und Breguläre Matrizen der Ordnung n, dann gilt:

•
$$A^{-1} * A = A * A^{-1} = I$$

•
$$(A^{-1})^{-1} = A$$

•
$$(A*B)^{-1} = B^{-1}*A^{-1}$$

•
$$(\alpha A)^{-1}=rac{1}{lpha}A^{-1}$$
, falls $lpha
eq 0$

•
$$(A^T)^{-1} = (A^{-1})^T$$

lacktriangle Eigenschaften der Determinante einer 2 imes 2-Matrix

Für eine 2×2 -Matrix A und $\alpha \neq 0$ gilt:

•
$$det(A) = 0 \leftrightarrow rang(A) < 2$$

- Vertauscht man zwei Spalten, so ändert sich das Vorzeichen, aber nicht der Betrag der Determinate
- Ver-lpha-facht man eine Spalte, so ver-lpha-facht sich die Determinante
- Sind alle Elemente unter der Hauptdiagonalen von A gleich 0, dann gilt $det(A) = a_{11}a_{22}$

▼ Flächenveränderung

- Ist $f:\mathbb{R}^2 o\mathbb{R}^2$ mit f(x)=Ax und $M\subseteq\mathbb{R}^2$ mit der Fläche Vol(M), dann gilt Vol(f(M))=|det(A)|*Vol(M)
- Ist $f:\mathbb{R}^3 o\mathbb{R}^3$ mit f(x)=Ax und $M\subseteq\mathbb{R}^3$ mit der Fläche Vol(M), dann gilt Vol(f(M))=|det(A)|*Vol(M)

▼ Weiter Eigenschaften von Determinanten

Sind A und B zwei 2×2 -Matrizen, dann gilt:

•
$$det(A)
eq 0 \leftrightarrow A$$
 invertierbar und $det(A^{-1}) = rac{1}{det(A)}$

•
$$det(AB) = det(A)det(B)$$

▼ Entwicklungssatz für Determinanten

$$det(A) = \sum_{i=1}^n a_{ij} (-1)^{i+j} det(A_{ij})$$
, $j \in \{1,\ldots,n\}$

$$det(A) = \sum_{j=1}^n a_{ij} (-1)^{i+j} det(A_{ij})$$
, $i \in \{1,\ldots,n\}$

▼ Eigenschaften der Determinante

Seine A und B quadratische Matrizen der Ordnung n, $lpha \in \mathbb{R} ackslash \{0\}$

- $det(A) = 0 \leftrightarrow rang(A) < n$
- Vertauscht man zwei Spalten, so ändert sich das Vorzeichen, aber nicht der Betrag der Determinante
- Ver- α -facht man eine Spalte, Ver- α -facht sich die Determinante
- Sind alle Elemente unter der Hauptdiagonalen von A gleich 0, dann gilt $det(A) = a_{11} \dots a_{nn}$
- $det(A)
 eq 0 \leftrightarrow A$ invertierbar und $det(A^{-1}) = rac{1}{det(A)}$
- det(AB) = det(A)det(B)
- ▼ Eigenschaften von Eigenvektoren

Für jeden Eigenvektor $ec{v}
eq 0$ zum Eigenwert λ von A ist auch $\alpha ec{v}$ mit $\alpha \in \mathbb{R}$, $\alpha
eq 0$ ein Eigenvektor zum Eigenwert λ von A

▼ Bestimmung von Eigenwerten

Für Eigenwert $\lambda \in \mathbb{R}$ und Eigenvektor v
eq 0 gilt:

- $A ec{v} = \lambda ec{v}$ bzw. $(A \lambda I) ec{v} = 0$
- ▼ Eigenwerte und Eigenvektoren symmetrischer Matrizen

Eine (reelle) symmetrische n imes n-Matrix A hat n reelle, linear unabhängige Eigenvektoren $ec{v}^1,\dots,ec{v}^n\in\mathbb{R}^n$ zu Eigenwerten $\lambda_1,\dots,\lambda_n\in\mathbb{R}$

