Analysis and Differential Equations Team

Please solve 5 out of the following 6 problems.

1. Let $\phi \in C([a,b],R)$. Suppose for every function $h \in C^1([a,b],R), h(a) = h(b) = 0$, we have

$$\int_{a}^{b} \phi(x)h(x)dx = 0.$$

Prove that $\phi(x) = 0$.

2. Let f be a Lebesgue integrable function over $[a, b + \delta], \delta > 0$, prove that

$$\lim_{h \to 0+} \int_{a}^{b} |f(x+h) - f(x)| dx \to 0.$$

3. Let L(q,q',t) be a function of $(q,q',t) \in TU \times R, U$ is an open domain in R^n . Let $\gamma: [a,b] \to U$ be a curve in U. Define a functional $S(\gamma) = \int_a^b L(\gamma(t),\gamma'(t),t)dt$. We say that γ is an extremal if for every smooth variation of $\gamma,\phi(t,s),s\in (-\delta,\delta),\phi(t,0)=\gamma(t),\phi_s=\phi(t,s),$ we have $\frac{dS(\phi_s)}{ds}|_{s=0}=0$. Prove that every extremal γ satisfies the Euler-Lagrange equation: $\frac{d}{dt}(\frac{\partial L}{\partial q'})=\frac{\partial L}{\partial q}$.

4. Let $f: U \to U$ be a holomorphic function with U a bounded domain in the complex plane. Assuming $0 \in U$, f(0) = 0, f'(0) = 1, prove that f(z) = z.

5. Let $T: H_1 \to H_2$ be a bounded operator of Hilbert spaces H_1, H_2 . Let $S: H_1 \to H_2$ be a compact operator, that is, for every bounded sequence $\{v_n\} \in H_1, Sv_n$ has a converging subsequence. Show that $Coker(T+S) = H_2/\overline{Im(T+S)}$ is finite dimensional and Im(T+S) is closed in H_2 . (Hint: Consider equivalent statements in terms of adjoint operators.)

6. Let $u \in C^2(\bar{\Omega}), \Omega \subset \mathbb{R}^d$ is a bounded domain with a smooth boundary.

1) Let u be a solution of the equation $\Delta u = f, u|_{\partial\Omega} = 0, f \in L^2(\Omega)$. Prove that there is a constant C depends only Ω such that

$$\int_{\Omega} (\Sigma_{j=1}^{n} (\frac{\partial u}{\partial x_{j}})^{2} + u^{2}) dx \le C \int_{\Omega} f^{2}(x) dx.$$

2) Let $\{u_n\}$ be a sequence of harmonic functions on Ω , such that $||u_n||_{L^2(\Omega)} \leq M < \infty$, for a constant M independent of n. Prove that there is a converging subsequence $\{u_{n_k}\}$ in $L^2(\Omega)$.