לינארית גא 15

שחר פרץ

9 ביוני 2025

LINEAR TRANSFORMATION ABOUT INNER PRODUCT VECTOR SPACES (1)

הגדרה 1. עם ממ"פ ו־ $V \to V$ ט,ל. אז T נקרתא סימטרית ($\mathbb{F}=\mathbb{R}$) או הרמטית ($\mathbb{F}=\mathbb{R}$) אם על. אז $T:V \to V$ באופן לאנעמה.

– איז מודה מתי מתי מתי מתי מתי עבור $T_A\colon V o V$ מתקיים אודה לעצמה עבור עבור $V=\mathbb{R}^n$ וד $\langle\cdot\mid\cdot\rangle$ מ"פ סטנדרטית, עבור $V=\mathbb{R}^n$ מתקיים אודה לעצמה עבור $V=\mathbb{R}^n$ מ"פ סטנדרטית, עבור $V=\mathbb{R}^n$ מתקיים אודה לעצמה.

$$\langle T_A v \mid u \rangle = (Av)^T u = v^T A^T u = \langle v \mid A^T u \rangle$$

ל"א אם $T\colon V o V$ סימטרית, אז ע"י בחירת בסיס מטרית. אם הכיוון השני נכון: אם אז $T\colon V o V$ סימטרית, כלומר מטריצה מטרית. אם הכיוון השני נכון: אם דייע סימטרית מטרית. מטריעה מימטרית. $[T]_B^B$

משפט 1. העתקה סימטרית אמ"מ היא זומה למטריצה סימטרית.

משפט 2. יהיו $T,S\colon V o V$ צמודות לעצמן. אז:

- עפורות לעצפן. lpha T, T+S .1
- ST=TS צמודה לעצמה אמ"מ $S\circ T$ המכפלה.
 - . אם p פולינום מעל \mathbb{F} אז p(T) צמדוה לעצמה.

2 את נוכיח מהגדרה. נוכיח את 1 לראות ש־3 לראות ש־3 לראות ש־

. נקבל: צמודות לעצמן. צמודה לעצמה. בהנחות המשפט ידוע אמודות לעצמן. נקבל: $S\circ T$ הוכחה ל-2.

$$\langle (S \circ T)v \mid u \rangle = \langle v \mid STu \rangle = \langle Sv \mid Tu \rangle = \langle TSv \mid u \rangle \implies \langle (ST - TS)v \mid u \rangle = 0 \quad \forall v, u \in \mathcal{S}$$

נסיק:

$$\implies \forall v \, \langle (ST - TS)v \, | \, (ST - TS)v \rangle = 0 \implies (ST - TS)v = 0 \implies STv = TSv \implies \top$$

מהכיוון השני:

$$\langle STv \mid u \rangle = \langle S(Tv) \mid u \rangle = \langle v \mid TSu \rangle = \langle v \mid STu \rangle$$

הגדרה $T\colon V o V$ תקרא חיובית/אי־שלילית/שלילית אם:

- $\langle Tv | v \rangle > 0$ מיובית:
 - שלילית: וכו'
 - משפט 3. אם T חיובית, אז היא הפיכה (כנ"ל לשלילית)

Tבסתירה לכך ש־ , בסתירה לכך שיTלא הפיכה, נקרא שהיא לא חיובית. קיים ל $v \in \ker T$ אז איים איז לא הפיכה, נקרא שהיא לא חיובית. סיובית.

משפט 4. נניח ש-S צמודה לעצמה, אז S^2 צמודה לעצמה ואי־שלילית.

:הוכחה. ממשפט קודם S^2 צמודה לעצמה. נוכיח אי־שלילית

$$\forall 0 \neq v \in V : \left\langle S^2 v \mid v \right\rangle = \left\langle S v \mid S v \right\rangle = \left| \left| S v \right| \right|^2 \ge 0$$

 $\forall x \in \mathbb{R} p(x) > 0$ יקרא חיובי $p \in \mathbb{R}[x]$ פולינום .

. מסקנה. גם־כן, וצמודה לעצמה, אז p(T) איובי, ו־ $T\colon V o V$ חיובי, חיובית מסקנה. נניח מסקנה. נניח

 $p(x) = \sum_{i=1}^k g_i^2(x) + c$ למה 1. אם $0 < c \in \mathbb{R}$ חיובי, אז קיימים $g_1 \dots g_k \in \mathbb{R}[x]$ וכן $p \in \mathbb{R}[x]$ חיובי, אז קיימים

רעיון להוכחת הלמה: מעל $\mathbb R$ זה מתפרק, ונוכל לכתוב $p(x)=a_n\prod_{j=1}^s(x-ilpha_j)(x+ilpha_j)$ (מעל $\mathbb R$ כל פולינום מתפרק ונוכל לכתוב לכתוב $g^2har h=g_1^2+g_2^2$.

הוכחה (של המשפט, לא של הלמה). יהי $v \in V$. אז:

$$\langle p(T)v \mid v \rangle = \underbrace{\left\langle \sum_{i=1}^{k} g_i^2(T)v \mid v \right\rangle}_{\sum_{i=1}^{k} \langle g_i^2(T)v \mid v \rangle \ge 0} + \underbrace{c \langle v \mid v \rangle}_{c \langle v \mid v \rangle} \ge 0$$

. הפיכה p(T) אז חיובי, אז $p(x) \in \mathbb{R}[x]$ במודה לעצמה די צמודה לעצמה די $T \colon V \to V$ מסקנה.

הוכחה. "תסתכלו על צד ימין של הלוח" \sim המרצה

משפט 3. נניח ש־V o V סימטרית (צמוזה מעצה מעל \mathbb{R} /המייצגת סימטרית) ויהי $m_T(x)$ הפולינוס המינימלי של m_T . אז m_T מתפרק לגורמיס לינאריס. בנוסף, הס שוניס זה מזה.

מסקנה. T סימטרית לכסינה.

הוכחה. נניח בשלילה קיום m_T פול מעל/מתחת לציר, בה"כ נניח שיp חיובי (אין לו שורש ב־ m_T , לכן נמצא כולו מעל/מתחת לציר בה"כ נניח שי m_T בי m_T מינימלי מדרגה גבוהה יותר. אזי: m_T כלשהו. ידוע m_T בי m_T מינימלי מדרגה גבוהה יותר. אזי:

$$0 = m_T(T) = \underbrace{p(T)}_{\neq 0} \cdot g(T) \implies g(T) = 0$$

Tבסתירה למינימליות של m_T סה"כ m_T אכן מתפרק לגורמים לינארים. עתה יש להראות שהגורמים הלינארים שלו זרים. נניח ש־ m_T אוז: ניח בשלילה שהם לא כולם שונים, אז $m_T(x) = (x-\lambda)^2 g(x)$ ואז:

$$0 = m_T(T)v = (T - \lambda I)^2 g(T) \implies \omega = g(T)v, \ (T - \lambda I)^2 \omega = 0$$

. לכן בפרט $\forall v \in V \colon (T-\lambda I)g(T)=0$ סה"כ. סה"כ מהסעיף הקודם. למינימליות. לכן בפרט $\forall v \in V \colon (T-\lambda I)g(T)=0$

 $T-\lambda I=0$ אז $(T-\lambda I)^2=0$ אם $\lambda\in\mathbb{R}$, אם סממטרית נניח T סממטרית ו

הוכחה. ידוע:

$$\forall v \colon 0 = \left\langle (T - \lambda I)^2 v \,\middle|\, v \right\rangle = \left\langle (T - \lambda I) v \,\middle|\, (T - \lambda I) v \right\rangle = \left|\left| (T - \lambda I) v \,\middle|\,\right|^2 \implies (T - \lambda I) v = 0$$

......

שחר פרץ, 2025

אונער באפצעות הוכנה חופשית בלבד $\mathrm{IAT}_{E}X^{-}$