Question Number	Scheme		Marks
8.	(a) $15 + 2x - x^2 = 0$		M1
	$(5-x)(3+x) = 0 \Rightarrow x = 5, x = -3$		M1 A1
	(b) $\int_{-3}^{5} (15 + 2x - x^2) dx$		M1
	$= \left[15x + x^2 - \frac{1}{3}x^3\right]_{-3}^5$		A1
	$= (75 + 25 - \frac{125}{3}) - (-45 + 9 + 9)$		M1
	$=85\frac{1}{3}$		A1
	(c) $x+9=15+2x-x^2$		M1
	$x^{2} - x - 6 = 0 \Rightarrow (x - 3)(x + 2) = 0 \Rightarrow x = 3, \ x = -2$		M1 A1
	(d) $M = 85 \frac{1}{3} - \int_{-2}^{3} \left\{ (15 + 2x - x^2) - (x+9) \right\} dx$		M1
	$=85\frac{1}{3}-\int_{-2}^{3}\left\{ 6+x-x^{2}\right\} dx$		
	$=85\frac{1}{3}-\left[6x+\frac{1}{2}x^2-\frac{1}{3}x^3\right]_{-2}^3$		A1
	$=85\frac{1}{3}-\left\{(18+4\frac{1}{2}-9)-(-12+2+\frac{8}{3})\right\}$		M1
	$=85\frac{1}{3}-20\frac{5}{6}=64\frac{1}{2}$		A1 (14)
	Alternative		
	(d) $M = \int_{-3}^{-2} (15 + 2x - x^2) dx + \frac{1}{2} (7 + 12) + \int_{3}^{5} (15 + 2x - x^2) dx$	M1	
	$= [15x + x^{2} - \frac{1}{3}x^{3}]_{3}^{-2} + \frac{95}{2} + [15x + x^{2} - \frac{1}{3}x^{3}]_{3}^{5}$	A1	
	$= (-30+4+\frac{8}{3})-(-45+9+9)+47\frac{1}{2}+(75+25-\frac{125}{3})-(45+9-9)$	M1	
	$=3\frac{2}{3}+47\frac{1}{2}+13\frac{1}{3}=64\frac{1}{2}$	A1	

Notes

Question 8

(a)

M1 for setting $15 + 2x - x^2 = 0$

M1 for solving the quadratic as far as $x = \dots$

A1 for x = 5, x = -3

(b)

Ignore limits for first M1 and A1

M1 for an attempt at $\int_{-3}^{5} 15x + 2x - x^2 dx$ (Usual rules) ft their values of x in (a)

A1 for a fully correct integrated expression

M1 for an evaluation of their integrated expression with their limits

A1 for an area = $85\frac{1}{3}$ or $\frac{256}{3}$ or awrt 85.33 (with a **minimum** of 2dp) cso.

(c)

M1 for equating line *l* with curve $C(x+9=15+2x-x^2)$

M1 for forming a 3TQ and attempting to solve as far as x =

A1 for x = 3, x = -2

(d)

M1 for forming a COMPLETE expression of the area, either from,

M =
$$85\frac{1}{3}$$
 (or their area in part (b)) - $\int_{-2}^{3} \{ (15 + 2x - x^2) - (x + 9) \} dx$

or,
$$M = \int_{-3}^{-2} (15 + 2x - x^2) dx + \frac{1}{2} (7 + 12) + \int_{3}^{5} (15 + 2x - x^2) dx$$

using their limits found in (c)

A1 for correct integration of their expression for the area

dM1 for evaluating their integrated expression for the area

A1 either, $= 85\frac{1}{3} - 20\frac{5}{6} = 64\frac{1}{2}$, or $= 3\frac{2}{3} + 47\frac{1}{2} + 13\frac{1}{3} = 64\frac{1}{2}$ oe – exact answer only

NOTE: If they do not form a **complete** expression for the area, then M0 A0 dM0 A0