Proposition. Suppose $\{a_n\}$ is Cauchy. Then $\{a_n\}$ converges.

Proof. Since $\{a_n\}$ is bounded, there is a convergent subsequence $\{b_n\}$. Say $b_n \to L$. Claim: $a_n \to L$.

Write $b_n = a_{g(n)}$, where $g: \mathbb{N} \to \mathbb{N}$ is strictly increasing.

Since $b_n \to L$, we can pick $N_1 \in \mathbb{N}$ so that whenever $n > N_1$, we have $|b_n - L| < \epsilon$.

Since a_n is Cauchy, we can pick $N_2 \in \mathbb{N}$ so that whenever $n, m > N_2$, we have $|a_n - a_m| < \epsilon$. Let $N = \max\{N_1, N_2\}$.

If n > N, we have $g(n) \ge n > N$ [remember that g is strictly increasing], and so

$$|a_n - a_{q(n)}| < \epsilon/2.$$

Also,

$$|a_{a(n)} - L| = |b_n - L| < \epsilon/2.$$

Hence,

$$|a_n - L| = |(a_n - a_{q(n)}) + (a_{q(n)} - L)| \le |a_n - a_{q(n)}| + |a_{q(n)} - L| < \epsilon/2 + \epsilon/2 = \epsilon.$$

[What's the intuition? A subsequence converging to L means we get close to L if we allow ourselves to skip terms. But if all the terms are getting closer to each other anyway — as in a Cauchy sequence — then the non-skipped terms also have to be getting closer to L.]

SUMMARY: Converging is equivalent to Cauchyness

LECTURE #11, §1.6: WHAT IS REALITY, CTD.

Theorem. Let S be a nonempty subset of the real numbers that is bounded above. Then S has a least upper bound.

Example 37. • If S = (0,1) or S = [0,1], then lub(S) = 1. [So the least upper bound may or may not be in the set.]

- If $S = \{x : x^2 < 2\}$, then $lub(S) = \sqrt{2}$.
- If $S = \emptyset$, then every $U \in \mathbb{R}$ is an upper bound for S. So S has no lub.

[Notice that if the only numbers we knew about were rational numbers, the set $\{x : x^2 < 2\}$ would be bounded above and nonempty, but have no lub.]

Lemma. If $\{a_n\}$ is a convergent sequence and $a_n \geq L$ for all n, then $\lim_{n\to\infty} a_n \geq L$.

Lemma. If $\{a_n\}$ is a convergent decreasing sequence with limit L, then $a_n \geq L$ for all n.

Compare these with Propositions 1.4.16, 1.4.17.

Proof of the theorem. Let $U = U_0$ be any upper bound for S. Define

 $U_1 = U_0 - n \cdot 1$, where $n \in \{0, 1, 2, ...\}$ is maximal with U_1 still an upper bound. Define

 $U_2 = U_1 - n \cdot \frac{1}{2}$, where $n \in \{0, 1, 2, \dots\}$ is maximal with U_2 still an upper bound,

 $U_3 = U_2 - n \cdot \frac{1}{3}$, where $n \in \{0, 1, 2, ...\}$ is maximal with U_3 still an upper bound, etc. Then

$$U_1 \geq U_2 \geq U_3 \dots$$

and $\{U_i\}$ is bounded below (by any element of S). So we can define

$$U := \lim_{\substack{n \to \infty \\ 29}} U_n.$$

(Draw a number line with U labeled, then U-1 and U-2, but with U-3 not an upper bound, then draw $U-2-\frac{1}{2}$, etc., until folks get the idea.)

Claim: U = lub(S).

First we prove U is an upper bound on S. Let $x \in S$.

Then $U_n \geq x$ for every $n \in \mathbb{N}$.

Hence, $U = \lim_{n \to \infty} U_n \ge x$.

This holds for all x, so U is an upper bound on S.

Now we prove U is the least upper bound. If not, then $U' = U - \frac{1}{m}$ is also an upper bound for some $m \in \mathbb{N}$. Since $\{U_n\}$ is decreasing, each $U_n \geq U$. In particular, $U_m \geq U$, and

$$U_m - \frac{1}{m} \ge U - \frac{1}{m}.$$

Hence,

$$U_m - \frac{1}{m}$$

is an upper bound on S. But this contradicts the choice of U_m .

§1.7: More results from calculus

Definition. We say $f: \mathbb{R} \to \mathbb{R}$ is **right-continuous** at x = a if for every $\epsilon > 0$, there is a $\delta > 0$ so that if $|f(x) - f(a)| < \epsilon$ whenever $|x - a| < \delta$ and $x \ge a$. Similarly for **left-continuous**. [Note that continuous is equivalent to being both left and right continuous at the given point.]

(Draw graph of a function which is right-continuous at x=0 but not continuous there.)

Definition. We say f is **continuous on the closed interval** [a,b] if f is right-continuous at a, left-continuous at b, and continuous at each point of (a,b).

(Draw graph of $\sin(x)$ on $[0, \pi]$.)

Theorem (Intermediate value theorem). Suppose that f is continuous on the closed interval [a,b]. Suppose f(a) < 0 and f(b) > 0, or vice versa. Then there is some $c \in (a,b)$ with f(c) = 0.

Example 38. Show that there is some c for which $c^3 = c + 1$.

Solution. Consider the function $f(x) = x^3 - (x+1)$. Then $c^3 = c+1$ iff f(c) = 0. Choose the closed interval [0,2]. We have f(0) = -1 < 0 and f(2) = 5 > 0. So there is some $c \in (0,2)$ with f(c) = 0. [There was some freedom in choosing the interval; in general, you have to experiment to find an interval that works for you.]

The other big theorem we want to prove in this section is the following.

Theorem (Maximum value theorem). Suppose f is continuous on [a,b]. Then f assumes a maximum value on [a,b]. In other words, there is an $c \in [a,b]$ with $f(c) \geq f(x)$ for all $x \in [a,b]$.

[Similarly, f assumes a minimum value. The proof is similar.]

(Draw complicated, random continuous function on [0,1], and label a value of c.) [Note that the proof only shows that such a maximum exists — it doesn't tell you how to find it. For that, you use calculus!]

Lemma. Suppose f is continuous on [a,b]. Suppose that $a_n \in [a,b]$ converges to a limit L. (Then $a \leq L \leq b$.) Then

$$f(a_n) \to f(L)$$
.

(Compare with Proposition 1.5.10.)

Lecture #12, $\S1.7$, ctd.

Theorem (Intermediate value theorem). Suppose that f is continuous on the closed interval [a, b]. Suppose f(a) < 0 and f(b) > 0, or vice versa. Then there is some $c \in (a,b)$ with f(c) = 0.

Proof of the intermediate value theorem. Let $S = \{x \in [a, b] : f(x) \leq 0\}$.

(Draw a picture.)

Then S is nonempty, since $a \in S$.

Also S is bounded above, for example, by b.

So S has a least upper bound, say c, and a < c < b.

Claim: f(c) = 0.

Step 1: Show f(c) < 0.

This is clear if c = a.

Choose $x_1 \in [a, b]$ with $c - 1 < x_1 \le c$ and $f(x_1) \le 0$.

This has to be possible, otherwise $\max\{a,c-1\}$ would be an upper bound on S, contradicting that c is the lub.

Choose $x_2 \in [a, b]$ with $c - \frac{1}{2} < x_1 \le c$ and $f(x_1) \le 0$. Choose $x_3 \in [a, b]$ with $c - \frac{1}{3} < x_1 \le c$ and $f(x_1) \le 0$,

etc. Then $x_i \to c$, so $f(x_i) \to f(c)$.

Each $f(x_i) \leq 0$, so $f(c) = \lim_{n \to \infty} f(x_i) \leq 0$.

Step 2: Show $f(c) \geq 0$.

This is clear if c = b.

Now let x_i be a sequence of terms in [a, b] with each $x_i > c$ and $x_i \to c$. For example,

$$x_1 = \min\{c+1, b\}, \quad x_2 = \min\{c+\frac{1}{2}, b\}, \quad x_3 = \min\{c+\frac{1}{3}, b\}, \dots$$

Each $x_i > c$, so $x_i \notin S$. Hence, $f(x_i) > 0$.

So each $f(x_i) \geq 0$.

Hence, $f(c) = \lim f(x_i) \ge 0$.

Finally, notice that since f(a) < 0 and f(b) > 0, we must have $c \in (a, b)$.

Corollary (Intermediate value theorem, v2.0). Suppose f is continuous on [a, b]. For every α between f(a) and f(b), there is some $c \in (a,b)$ with f(c) = y.

Proof: HW.

Theorem (Maximum value theorem). Suppose f is continuous on [a, b]. Then f assumes a maximum value on [a, b]. In other words, there is an $c \in [a, b]$ with f(c) > f(x) for all $x \in [a, b]$.

[As a prelude, we prove that its values there are bounded.]

Lemma. Suppose that f is continuous on [a, b]. There is a real number M with $f(x) \leq M$ for all $x \in [a,b]$.

Proof. Suppose not.

There is an $a_1 \in [a, b]$ with $f(a_1) > 1$, as otherwise M = 1 works.

There is an $a_2 \in [a, b]$ with $f(a_2) > 2$.

There is an $a_3 \in [a, b]$ with $f(a_3) > 3$, etc.

Now $\{a_n\}$ is bounded, so $\{a_n\}$ has a convergent subsequence $\{b_n\}$.

Write $b_n = a_{g(n)}$, where $g: \mathbb{N} \to \mathbb{N}$ is strictly increasing.

$$f(b_1) > g(1) \ge 1$$
, $f(b_2) > g(2) \ge 2$, $f(b_3) > g(3) \ge 3$, etc..

In general, $f(b_n) > n$.

So $\lim_{n\to\infty} f(b_n) = \infty$.

But if $L = \lim_{n \to \infty} b_n$, then

$$\lim_{n \to \infty} f(b_n) = f(L),$$

and f(L) is a finite real number.

Proof of the maximum value theorem. Let $S = \{f(x) : x \in [a,b]\}$. Then S is bounded above (by the lemma). Let U = lub(S).

Claim: There is some $c \in [a, b]$ with f(c) = U.

Then for any $x \in [a, b]$, we have $f(x) \leq U = f(c)$.

Since U = lub(S), we know U - 1 is not an upper bound on S.

So we can pick $a_1 \in [a, b]$ with $f(a_1) > U - 1$.

Similarly, we can pick $a_2 \in [a, b]$ with $f(a_2) > U - \frac{1}{2}$.

So we can pick $a_3 \in [a, b]$ with $f(a_3) > U - \frac{1}{3}$, etc.

Let $\{c_n\}$ be a convergent subsequence of $\{c_n\}$, and let $c = \lim_{n \to \infty} c_n$.

Say $c_n = a_{g(n)}$, where $g: \mathbb{N} \to \mathbb{N}$ is strictly increasing. Then $f(c_1) = f(a_{g(1)}) > U - \frac{1}{g(1)} \ge U - 1$. Then $f(c_2) = f(a_{g(2)}) > U - \frac{1}{g(2)} \ge U - \frac{1}{2}$, etc.

In general, $f(c_n) > U - \frac{1}{n}$.

So for all natural numbers n,

$$f(c_n) + \frac{1}{n} \ge U.$$

Hence,

$$\lim_{n \to \infty} \left(f(c_n) + \frac{1}{n} \right) \ge U.$$

But LHS is $f(\lim_{n\to\infty} c_n) = f(c)$

So $f(c) \geq U$.

But by definition of U, we also have $f(c) \leq U$.

So
$$f(c) = U$$
.

Is there a minimum value theorem?

Theorem. Let f(x) be continuous on [a, b]. There is a $c \in [a, b]$ with $f(c) \leq f(x)$ for all $x \in [a,b].$

Proof. Apply the maximum value theorem to -f(x), which is also continuous on [a, b].

Lecture #13, §2.1: Introduction to series

Recall **Sigma-notation**: If a_1, \ldots, a_n are real numbers

$$a_1 + \dots + a_n = \sum_{j=1}^n a_j.$$

The subscript j=1 indicates that we start at 1, and the superscript j=n indicates that we stop at n

Example 39.

(1)
$$1 + 1/2 + \cdots + 1/71 = \sum_{i=1}^{71} \frac{1}{i}$$

(2)
$$1^2 + 2^2 + \dots + 100^2 = \sum_{j=1}^{100} j^2$$

(1)
$$1 + 1/2 + \dots + 1/71 = \sum_{j=1}^{71} \frac{1}{j}$$
.
(2) $1^2 + 2^2 + \dots + 100^2 = \sum_{j=1}^{100} j^2$.
(3) $1^2 + \dots + 100^2$ also $= \sum_{j=0}^{100} (j+1)^2$, and $= \sum_{j=10}^{109} (j-9)^2$.

Definition. Let $\{a_n\}$ be a sequence. Any formal expression of the form $\sum_{j=1}^{\infty} a_j$ is called an infinite series.

Example 40. Examples:
$$\sum_{j=1}^{\infty} 1 = 1 + 1 + 1 + \dots$$
, $\sum_{j=1}^{\infty} (-1)^{j+1} = 1 - 1 + 1 - 1 + \dots$, $\sum_{j=1}^{\infty} \frac{1}{j(j+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots$, $\sum_{j=1}^{\infty} \frac{1}{2^{j-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots$

Motivating question: Right now, this is all notation.

Can we assign a number to a real number to an expression of the form $\sum_{i=1}^{\infty} a_i$?

Definition. Let $\{a_n\}$ be a sequence. The sequence of **partial sums** associated to $\{a_n\}$ is the sequence $\{s_n\}$ defined by $s_n = \sum_{j=1}^n a_j$. Alternatively, s_n is defined recursively by $s_1 = a_1$ and $s_{n+1} = s_n + a_{n+1}$ for all $n \in \mathbb{N}$.

Definition. If $\{a_n\}$ is a sequence and $\{s_n\}$ is the associated sequence of partial sums, we say $\{a_n\}$ is **summable** if $\{s_n\}$ is convergent. In this case, we define

$$\sum_{j=1}^{\infty} a_j = \lim_{n \to \infty} s_n.$$

In other words, $\sum_{i=1}^{\infty} a_j$ by definition $\lim_{n\to\infty} \sum_{j=1}^n a_j$. We say the infinite series $\sum_{j=1}^{\infty} a_j$ converges if $\{a_n\}$ is summable. Otherwise, we say $\{a_n\}$ diverges.

Example 41.

- (1) Suppose a_n = 1 for all n. Then s_n = ∑_{j=1}ⁿ 1 = n. So the sequence {s_n} diverges. Hence, {a_n} is **not sumamable**, and ∑_{j=1}[∞] a_j **diverges**.
 (2) Suppose a_n = (-1)ⁿ for all n. Then s₁ = 1, s₂ = 0, s₃ = 1, s₄ = 0; in general, s_{2k} = 1 and s_{2k-1} = 0. So {s_n} diverges. So again, ∑_{j=1}[∞] a_j **diverges**.
 (3) Suppose a_n = 1/n(n+1) for all n. Then

$$s_1 = \frac{1}{2},$$

$$s_2 = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$

$$s_3 = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{3}{4}$$

In general, $s_n = 1 - \frac{1}{n+1}$. (Easy induction!) Thus,

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1.$$

So $\{a_n\}$ is summable and $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

(4) Suppose $a_n = \frac{1}{2^{n-1}}$. Then

$$s_1 = 1,$$

 $s_2 = 1 + \frac{1}{2} = \frac{3}{2}$
 $s_3 = 1 + \frac{1}{2} + \frac{1}{4} = \frac{7}{4}.$