

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CURSO DE GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO

Daniele Silva Reis

Experimento QSN-RI com 2^k fatores

JUAZEIRO - BA 2019

Daniele Silva Reis

Experimento QSN-RI com 2^k fatores

Relatório realizado para a disciplina de Avaliação e Desempenho de Sistemas, ministrada pelo Prof. Dr. Brauliro Gonçalves Leal, para obtenção de nota parcial.

RESUMO

LISTA DE ILUSTRAÇÕES

Figura 1 –	Sistema computaciona	l escolhido.		•				•	 				7

LISTA DE TABELAS

Tabela 1 –	Descrição dos componentes utilizados.									7
Tabela 2 –	Parâmetros da QSN-RI									8

SUMÁRIO

1	INTRODUÇÃO	6
2	METODOLOGIA	7
3	RESULTADOS	9
4	CONCLUSÃO	10
\mathbf{R}	EFERÊNCIAS	11

1 INTRODUÇÃO

As técnicas de avaliação de desempenhos de sistemas computacionais são úteis para que, através da estimativa do desempenho de um sistema similar ao que deseja-se desenvolver, possa-se determinar as configurações ideais dos componentes pertencentes ao sistema. A técnica QSN-RI fornece resultados objetivos quanto à utilização dos componentes, seu tempos de espera e de resposta e tamanho da fila. Ela recebe como parâmetros o tempo de serviço dos componentes, número de tarefas, o intervalo entre visitas, o número de repetições, a quantidade total de visita aos componentes e a ordem das visitas à eles.

Quando aliada à experimentos de 2^k fatores, é possível obter um diagnóstico completo quanto aos equipamentos que mais impactam no desempenho do sistema como um todo. Como este experimento é realizado para cada combinação de configuração dos componentes, é possível determinar os modelos mais adequados dos equipamentos.

Dessa forma, será conduzido um experimento com k=5 fatores, resultando em 32 combinações. A partir dos resultados obtidos, serão determinados os impactos de cada componente no sistema, assim como a configuração mais adequada para um melhor desempenho dele.

2 METODOLOGIA

O Sistema Computacional proposto conta com cinco componentes, dados por um switch, roteador, servidor Web, servidor de aplicação e servidor de banco de dados, como mostrado na Figura 1.

Servidor de banco de dados

Roteador

Switch

Servidor de aplicação

Servidor web

Figura 1 – Sistema computacional escolhido.

Fonte: (Autor, 2019).

Considerando 3000000 pacotes diários, o intervalo entre chegadas foi dado por:

$$iat = \frac{3000000}{24 * 60 * 60}^{-1} = 0,0288s$$

Por outro lado, os tempos de serviço para cada nível de cada componente são mostrados na Tabela 1, considerando um pacote de tamanho 5,6 kB.

Tabela 1 – Descrição dos componentes utilizados.

	Nível/Fator	Roteador (A)	Switch (B)	Servidor de banco de dados (C)	Servidor de aplicação (D)	Servidor web (E)
-1	Modelo	Model 4451	SF300- 08P	Cassandra	Node.js 10.0.0	Apache
	$st (10^{-5} \text{ s/tarefa})$	0,534	0,333	1146, 8	1,44	71
+1	Modelo	Model 4461	SF300- 24P	MongoDB	Node.js 8.0.0	Nginx
	$st (10^{-5} \text{ s/tarefa})$	0,356	0,0417	5730	2,02	8,3

Fonte: (Autor, 2019).

A sequência na qual as tarefas percorrem os componentes foi dada por:

$$S = [0, 1, 2, 1, 3, 1, 4, 1, 3, 1, 2, 1, 0]$$

Em que 0, 1, 2, 3 e 4 correspondem ao roteador, *switch*, servidor *web*, servidor de aplicação e servidor de banco de dados. Por fim, os demais parâmetros da QSN-RI são mostrados na Tabela a seguir.

Tabela 2 – Parâmetros da QSN-RI.

Parâmetro	Valor
N	1000
R	10
Ni	0,9*N
qs	5
\mathbf{S}	13

Fonte: (Autor, 2019).

As simulações QSN-RI foram conduzidas de acordo com o script anexado. Ele foi obtido a partir de Leal (2016) e modificado para a execução dos 2^5 experimentos, com os resultados sendo salvos em arquivos .csv.

3 RESULTADOS

4 CONCLUSÃO

REFERÊNCIAS

Benchmarking NoSQL Databases: Cassandra vs. MongoDB vs. HBase vs. Couchbase. Disponível em: https://www.datastax.com/nosql-databases/benchmarks-cassandra-vs-mongodb-vs-hbase.

Cisco SF300-08 8-Port 10/100 Managed Switch. Disponível em: https://www.cisco.com/c/en/us/support/switches/sf300-08-8 port-10-100-managed-switch/model.html

Cisco SF300-24P 24-Port 10/100 PoE Managed Switch with Gigabit Uplinks. Disponível em:

https://www.cisco.com/c/pt_br/support/switches/sf300-24p-24-port-10-100-poe-managed-switch-gigabit-uplinks/model.html

Compare Models 4000 Series Integrated Services Routers - Cisco. Disponível em: https://www.cisco.com/c/en/us/products/routers/4000-series-integrated-services-routers-isr/models-comparison.html

LEAL, B. G. Avaliação de Desempenho de Sistemas. 2016a. Disponível em: http://www.univasf.edu.br/brauliro.leal/#>.

LEAL, B. G. Modelagem e Simulação Discreta. 2016.

Web server performance comparison. Disponível em: https://help.dreamhost.com/hc/en-us/articles/215945987-Web-server-performance-comparison