SEQUENCE LISTING

- <110> ONCOTHERAPY SCIENCE, INC.
 THE UNIVERSITY OF TOKYO
- <120> METHODS OF DETECTING METHYL TRANSFERASE ACTIVITY AND METHODS OF SCREENING FOR METHYL TRANSFERASE ACTIVITY MODULATORS
- <130> ONC-A0310P
- <150> US 60/538,658
- <151> 2004-01-23
- <160> 55
- <170> PatentIn version 3.3
- <210> 1
- ⟨211⟩ 22
- <212> DNA
- <213≻ Artificial
- <220>
- <223> An artificially synthesized primer sequence for RT-PCR
- <400> 1

acaacagcet caagatcate ag

22

<210> 2

<211> 20

<212> DNA

<213≻ Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 2

ggtccaccac tgacacgttg

20

<210> 3

⟨211⟩ 23

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 3

ttcccgatat caacatctac cag

<210> 4

⟨211⟩ 23

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 4

agtgtgtgac ctcaataagg cat

23

<210> 5

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 5

aatcatcgct acaagctgaa gcgtg

25

⟨210⟩ 6

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 6

gcataaaatc taactctggg gctgg

25

⟨210⟩ 7

<211> 23

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 7

acctetteaa cageaateae aag

23

⟨210⟩ 8

<211> 23

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 8

gcatgctcag tcttttcctc tta

23

<210> 9

<211> 21

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 9

gtgctcttct cgcaggcgca g

21

<210> 10

<211> 22

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 10

ataccatgca gcgtggacac tc

22

<210> 11

<211> 21

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 11

gatacccaca accgcaattc t

21

<210> 12

<211> 23

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 12

caaacaggaa ccaagaacaa gtc

23

⟨210⟩ 13

<211> 23

<212> DNA

<213> Artificial

<220>

 $\ensuremath{\texttt{<223>}}$ An artificially synthesized primer sequence for RT-PCR

<400> 13

agttaaacag agccaaaggg aag

23

<210> 14

<211> 23

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 14

ctgtagtctt tccgaactgt gtg

23

<210> 15

<211> 24

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 15

gagaccatct tcgtcaaggt cacg

24

<210> 16

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 16

cgtgttcata gcaaatggtg cactc

10	1	0>	17
ÇΖ	-	U2	17

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 17

ccctttggag aacagggaaa gcctg

25

<210> 18

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 18

gctgatctca gggcatagcc aggag

25

<210> 19

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 19

aaaggctgag tgcatcgtcc gtctc

25

<210> 20

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 20

ggtagccagc aggaggtgat tcgtg

25

<210> 21

<211> 21

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 21

agagaatccc tgatccacgt c

21

<210> 22

<211> 23

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 22

cgggctagta gaaggagtac tgg

23

⟨210⟩ 23

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for RT-PCR

<400> 23

ggcaccactt tcgtgcagta ccagg

25

<210> 24

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for RT-PCR

<400> 24

gtcaggcatc tctgcacagt ccagg

25

<210> 25

<211> 26

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 25

tgcattattc cggactgaac aaatgc

26

<210> 26

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 26

gttgctaaat tgtagcgaag ggctc

25

<210> 27

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for ChIP assay

<400> 27

14/3.6

acceaagtac agagecette getac

25

<210> 28

<211> 24

<212> DNA

<213> Artificial

<220>

 $\ensuremath{\texttt{\langle 223\rangle}}$ An artificially synthesized primer sequence for ChIP assay

<400> 28

tcactgcctg ggctttggtc tttg

24

<210> 29

<211> 25

<212> DNA

<213≻ Artificial

<220>

(223) An artificially synthesized primer sequence for ChIP assay

<400> 29

gaccaaagcc caggcagtga gagtg

<210> 30

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 30

ctgaggaagg gctgggacaa cattc

25

<210> 31

<211> 25

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ An artificially synthesized primer sequence for ChIP assay

<400> 31

tggctacaag cctcttctgt tttgc

25

<210> 32

<211> 25

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for ChIP assay

<400> 32

aggggtgggt ttattagcac ccagg

25

<210> 33

<211> 44

<212> DNA

<213≻ Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 33

ttacgccctc ctgaaacttg tcatcctgaa tcttagaggg gccc

44

<210> 34

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 34

gggcccctct aagattcagg atgacaagtt tcaggagggc gtaa

44

⟨210⟩ 35

<211> 15

<212> DNA

<213≻ Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 35

ccctttgatc ttacc

15

<210> 36

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro
binding assay

<400> 36

ggtaagatca aaggg

15

<210> 37

<211> 15

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 37

ccctttggcc ttacc

15

<210> 38

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oligonucleotide probe for in vitro binding assay

<400> 38

ggtaaggcca aaggg

15

<210> 39

<211> 29

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing mutant-type ZNFN3A1.

<400> 39

cggaattctg gcgtcgtctg cgaccgctg

29

<210> 40

- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing mutant-type ZNFN3A1.

<400> 40

ggggtacctt aggatgctct gatgttggcg to

32

- ⟨210⟩ 41
- ⟨211⟩ 32
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing mutant-type ZNFN3A1.

<400> 41

cggaattcag actccgttcg acttcttggc ag

- <210> 42
- ⟨211⟩ 33

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing mutant-type ZNFN3A1.

<400> 42

cggaattccc ggaagcagct gagggaccag tac

33

⟨210⟩ 43

⟨211⟩ 33

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing mutant-type ZNFN3A1.

<400> 43

cggaattcga tggagccgct gaaggtggaa aag

33

<210> 44

- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructing mutant-type ZNFN3A1.

<400> 44

ggggtacett accggcgctc.ctcactggtc

30

- <210> 45
- ⟨211⟩ 33
- <212> DNA
- <213> Artificial

<220>

<223> An artificially synthesized primer sequence for constructiing
mutant-type ZNFN3A1.

<400> 45

ggggtacctt agtctggagg atatctgggt ttg

- <210> 46
- <211> 24

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized primer sequence to amplyfy the fragment of Nkx2.8 promoter by PCR

<400> 46

agcgggcctg gtaccaaatt tgtg

24

<210> 47

<211> 24

<212> DNA

<213> Artificial

⟨220⟩

<223> An artificially synthesized primer sequence to amplyfy the fragment of Nkx2.8 promoter by PCR

<400> 47

ccgggatgct agcgcattta cagc

24

<210> 48

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oliginucleotide sequence for plasmids expressing siRNA to ZNFN3A1

<400> 48

caccaacatc taccagctga aggtgttcaa gagacacctt cagctggtag atgtt

55

<210> 49

<211> 55

<212> DNA

<213> Artificial

<220>

<223> An artificially synthesized oliginucleotide sequence for plasmids expressing siRNA to ZNFN3A1

<400> 49

aaaaaacatc taccagctga aggtgtctct tgaacacctt cagctggtag atgtt

55

<210> 50

2.5/36

1	9	1	2>	DNA	
`	4	T	41	DIM	١

<213> Homo sapiens

<220>

<221> CDS

(96).. (1382) <222>

<400> 50

gtgcgcgcag ggcgcaggcg cgcgggtccc ggcagcccgt gagacgcccg ctgctggacg 60

1

113

cgggtagccg tctgaggtgc cggagctgcg ggagg atg gag ccg ctg aag gtg Met Glu Pro Leu Lys Val

5

gaa aag ttc gca acc gcc aac agg gga aac ggg ctg cgc gcc gtg acc Glu Lys Phe Ala Thr Ala Asn Arg Gly Asn Gly Leu Arg Ala Val Thr 20 15

161

257

10 -

ccg ctg cgc ccc gga gag cta ctc ttc cgc tcg gat ccc ttg gcg tac 209

Pro Leu Arg Pro Gly Glu Leu Leu Phe Arg Ser Asp Pro Leu Ala Tyr

35 30 25

acg gtg tgc aag ggg agt cgt ggc gtc tgc gac cgc tgc ctt ctc

Thr Val Cys Lys Gly Ser Arg Gly Val Val Cys Asp Arg Cys Leu Leu

ggg	aag	gaa	aag	ctg	atg	cga	tgc	tct	cag	tgc	cgc	gtc	gcc	aaa	tac	305	5
Gly	Lys	Glu	Lys	Leu	Met	Arg	Cys	Ser	Gln	Cys	Arg	Val	Ala	Lys	Tyr		
55					60					65			,		70		
				•													
tgt	agt	gct	aag	tgt	cag	aaa	aaa	gct	tgg	cca	gac	cac	aag	cgg	gaa	353	3
Cys	Ser	Ala	Lys	Cys	G1n	Lys	Lys	Ala	Trp	Pro	Asp	His	Lys	Arg	Glu		
				75					80		•			85	.•		
											•						,
tgc	aaa	tgc	ctt	aaa	agc	tgc	aaa	ccc	aga	tat	cct	cca	gac	tcc	gtt	401	l
Cys	Lys	Cys	Leu	Lys	Ser	Cys	Lys	Pro	Arg	Tyr	Pro	Pro	Asp	Ser	Val		
			90		•			95					100				
										·							
cga	ctt	ctt	ggc	aga	gtt	gtc	ttc	aaa	ctt	atg	gat	gga	gca	cct	tca	449	9
Arg	Leu	Leu	G1y	Arg	Val	Val	Phe	Lys	Leu	Met	Asp	Gly	Ala	Pro	Ser		
		105					110			•		115	•				
																	_
					tac											49	7
Glu	Ser	Glu	Lys	Leu	Tyr	Ser	Phe	Tyr	Asp	Leu			Asn	Ile	Asn		
	120	,				125					130						
															aca	54	:5
Lys	Leu	Thr	Glu	Asp			Glu	Gly	Let			Leu	ı Val	. Met	Thr	-	
135)				140	1				145	•				150	-	
																E0	12
ttt	caa	cat	ttc	ate	g aga	gaa	gaa	ata	cag	g gat	geo	tct	cag	g CT	g cca	59	,3

Phe	Gln	His	Phe	Met	Arg	Glu	Glu	Ile	Gln	Asp	Ala	Ser	Gln	Leu	Pro	
				155					160					165		
cct	gcc	ttt	gac	ctt	ttt	gaa	gcc	ttt	gca	aaa	gtg	atc	tgc	aac	tct	641
Pro	Ala	Phe	Asp	Leu	Phe	Glu	Ala	Phe	Ala	Lys	Val	Ile	Cys	Asn	Ser	
			170					175					180			
													,			
ttc	acc	atc	tgt	aat	gcg	gag	atg	cag	gaa	gtt	ggt	gtt	ggc	cta	tat	689
Phe	Thr	Ile	Cys	Asn	Ala	Glu	Met	Gln	Glu	Val	Gly	Val	G1y	Leu	Tyr	
•		185					190					195				
ccc	agt	atc	tct	ttg	ctc	aat	cac	agc	tgt	gac	ccc	aac	tgt	tcg	att	737
						Asn										
	200					205					210					
						•										
øt.ø	ttc	aat	ggg	ccc	cac	ctc	tta	ctg	cga	gca	gtc	cga	gac	atc	gag	785
						Leu		•				-				
		11511	01)	110	220		200	. 200	0	225		0			230	
215					220					220						
								+	0+4	· ~o+	oto	. ata	· ata		art	833
						atc										000
Val	Gly	Glu	ı Glu			· Ile	Cys	Tyr			мет	Leu	мет			
				235					240	1				245	•	
		•				ctg										881
Glu	Glu	ı Arg	g Arg	, Lys	Glr	Leu	Arg	Asp	Gln	Tyr	Cys	Phe	Glu	Cys	: Asp	
			250)				255	5		÷		260)		

tgt	ttc	cgt	tgc	caa	acc	cag	gac	aag	gat	gct	gat	atg	cta	act	ggt	929
Cys	Phe	Arg	Cys	Gln	Thr	G1n	Asp	Lys	Asp	Ala	Asp	Met	Leu	Thr	Gly	
		265		-			270					275				
gat	gag	caa	gta	tgg	aag	gaa	gtt	caa	gaa	tcc	ctg	aaa	aaa	att	gaa	977
Asp	Glu	Gln	Val	Trp	Lys	G1u	Val	G1n	Glu	Ser	Leu	Lys	Lys	Ile	Glu	
	280					285					290					
				•		-										
gaa	ctg	aag	gca	cac	tgg	aag	tgg	gag	cag	gtt	ctg	gcc	atg	tgc	cag	1025
Glu	Leu	Lys	Ala	His	Trp	Lys	Trp	Glu	Gln	Val	Leu	Ala	Met	Cys	Gln	
295					300					305					310	
												•				
gcg	atc	ata	agc	agc	aat	tct	gaa	cgg	ctt	ccc	gat	atc	aac	atc	tac	1073
Ala	Ile	Ile	Ser	Ser	Asn	Ser	Glu	Arg	Leu	Pro	Asp	Ile	Asn	Ile	Tyr	
				315					320		•			325	i	
					•										•	
cag	ctg	aag	gtg	ctc	gac	tgc	gcc	atg	gat	gcc	tgo	ato	aac	cto	ggc;	1121
Gln	Leu	Lys	: Val	Leu	. Asp	Cys	Ala	Met	Asp	Ala	Cys	: Ile	Asr	ı Lei	ı Gly	
			330)				335	5				340)		
			•									٠				
ctg	ttg	g gag	g gaa	gco	ttg	ttc	tat	gg1	t act	cgg	aco	ate	g gag	g cca	a tac	1169
Leu	Lei	ı Glı	ı Glu	ı Ala	ı Lev	Phe	туг	Gly	Thr	Are	g Thi	r Met	: Glu	ı Pro	o Tyr	
		348	5				350)				359	5			
agg	g ati	t tt	t tto	c cca	a gga	a ago	c cat	t cc	c gto	c aga	a gg	g gt	t caa	a gt	g atg	1217

1592

1622

29/36

Arg Ile Phe Phe Pro Gly Ser His Pro Val Arg Gly Val Gln Val Met	
360 365 370	•
aaa gtt ggc aaa ctg cag cta cat caa ggc atg ttt ccc caa gca atg	1265
Lys Val Gly Lys Leu Gln Leu His Gln Gly Met Phe Pro Gln Ala Met	
375 380 385 390	
aag aat ctg aga ctg gct ttt gat att atg aga gtg aca cat ggc aga	1313
Lys Asn Leu Arg Leu Ala Phe Asp Ile Met Arg Val Thr His Gly Arg	
395 400 405	
gaa cac agc ctg att gaa gat ttg att cta ctt tta gaa gaa tgc gac	1361
Glu His Ser Leu Ile Glu Asp Leu Ile Leu Leu Clu Glu Cys Asp	
410 415 420	
gcc aac atc aga gca tcc taa gggaacgcag tcagagggaa atacggcgtg	1412
Ala Asn Ile Arg Ala Ser	
425	
tgtctttgtt gaatgcctta ttgaggtcac acactctatg ctttgttagc tgtgtgaacc	1472
tctcttattg gaaattctgt tccgtgtttg tgtaggtaaa taaaggcaga catggtttgc	1532

aaaccacaag aatcattagt tgtagagaag cacgattata ataaattcaa aacatttggt

tgaggatgcc aaaaaaaaaa aaaaaaaaaa

<210> 51

<211> 428

<212> PRT

<213> Homo sapiens

<400> 51

Met Glu Pro Leu Lys Val Glu Lys Phe Ala Thr Ala Asn Arg Gly Asn 1 5 10 15

Gly Leu Arg Ala Val Thr Pro Leu Arg Pro Gly Glu Leu Leu Phe Arg
20 25 30

Ser Asp Pro Leu Ala Tyr Thr Val Cys Lys Gly Ser Arg Gly Val Val
35 40 45

Cys Asp Arg Cys Leu Leu Gly Lys Glu Lys Leu Met Arg Cys Ser Gln 50 55 60

Cys Arg Val Ala Lys Tyr Cys Ser Ala Lys Cys Gln Lys Lys Ala Trp

65

70

75

80

Pro Asp His Lys Arg Glu Cys Lys Cys Leu Lys Ser Cys Lys Pro Arg

85 90 95

Tyr Pro Pro Asp Ser Val Arg Leu Leu Gly Arg Val Val Phe Lys Leu
100 105 110

Met Asp Gly Ala Pro Ser Glu Ser Glu Lys Leu Tyr Ser Phe Tyr Asp 115 120 125

Leu Glu Ser Asn Ile Asn Lys Leu Thr Glu Asp Lys Lys Glu Gly Leu
130 135 140

Arg Gln Leu Val Met Thr Phe Gln His Phe Met Arg Glu Glu Ile Gln 145 150 155 160

Asp Ala Ser Gln Leu Pro Pro Ala Phe Asp Leu Phe Glu Ala Phe Ala 165 170 175

Lys Val Ile Cys Asn Ser Phe Thr Ile Cys Asn Ala Glu Met Gln Glu 180 185 190

Val Gly Val Gly Leu Tyr Pro Ser Ile Ser Leu Leu Asn His Ser Cys
195 200 205

Asp Pro Asn Cys Ser Ile Val Phe Asn Gly Pro His Leu Leu Leu Arg 210 215 220

Ala Val Arg Asp Ile Glu Val Gly Glu Glu Leu Thr Ile Cys Tyr Leu 225 230 235 240

Asp Met Leu Met Thr Ser Glu Glu Arg Arg Lys Gln Leu Arg Asp Gln
245 250 255

Tyr Cys Phe Glu Cys Asp Cys Phe Arg Cys Gln Thr Gln Asp Lys Asp
260 265 270

Ala Asp Met Leu Thr Gly Asp Glu Gln Val Trp Lys Glu Val Gln Glu

275

280

285

Ser Leu Lys Lys Ile Glu Glu Leu Lys Ala His Trp Lys Trp Glu Gln
290 295 300

Val Leu Ala Met Cys Gln Ala Ile Ile Ser Ser Asn Ser Glu Arg Leu
305 310 315 320

Pro Asp Ile Asn Ile Tyr Gln Leu Lys Val Leu Asp Cys Ala Met Asp
325
330
335

Ala Cys Ile Asn Leu Gly Leu Leu Glu Glu Ala Leu Phe Tyr Gly Thr
340 345 350

Arg Thr Met Glu Pro Tyr Arg Ile Phe Phe Pro Gly Ser His Pro Val 355 360 365

Arg Gly Val Gln Val Met Lys Val Gly Lys Leu Gln Leu His Gln Gly 370 375 38O

Met Phe Pro Gln Ala Met Lys Asn Leu Arg Leu Ala Phe Asp Ile Met 385 390 395 400

Arg Val Thr His Gly Arg Glu His Ser Leu Ile Glu Asp Leu Ile Leu 405 410 415

Leu Leu Glu Glu Cys Asp Ala Asn Ile Arg Ala Ser
420 425

<210> 52

<211> 7

<212> PRT

<213> Homo sapiens

<400> 52

Asn His Ser Cys Asp Pro Asn

1

5

<210> 53

<212> PRT

<213> Homo sapiens

<400> 53

Gly Glu Glu Leu Thr Ile Cys Tyr

1 5

<210> 54

<211> 7

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

⟨222⟩ (5)..(6)

<223> "Xaa" indicates any amino acid

<400> 54

Asn His Ser Cys Xaa Xaa Asn

<210> 55

<211> 8

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (5)..(7)

<223> "Xaa" indicates any amino acid

<400> 55

Gly Glu Glu Leu Xaa Xaa Xaa Tyr

1