Machine Learning 2 Lime Oscar Teeninga

1. Porównanie regresorów SVG i RandomForestRegressor

W przypadku obu modeli największe znaczenie ma liczba subskrybentów.

SVG

Random Forest Regression

2. Użyj dwóch różnych sieci neuronowych do wygenerowania wyjaśnień.

Użyłem sieci MobileNetV3 oraz GoogLeNet. Widzimy różne klasyfikacje oraz różne części najbardziej istotne.

amphibian racer tow_truck convertible car_wheel

MobileNetV3

pickup tow_truck jeep amphibian convertible

MobileNetV3

GoogLeNet

GoogLeNet

3. Zmodyfikuj oryginalny obrazek w taki sposób, żeby najbardziej prawdopodobną klasą dla każdej z tych sieci nie była amfibia a jakiś inny pojazd.

Najistotniejszą cechą była przednia część pojazdu, co wcale nie dziwi.

amphibian snowplow convertible forklift lawn_mower

InceptionV3

amphibian racer tow_truck convertible plow

MobileNetV3

pickup convertible jeep car_wheel amphibian

Najistotniejsze cechy klasyfikacji

GoogLeNet

4. Ponownie zmodyfikuj oryginalny obraz, ale tym razem zaszumiając go w losowy sposób.

W każdym przypadku zmieniły się predykcje, natomiast Inception dalej działa poprawnie.

amphibian jeep pickup half_track snowplow

InceptionV3

jeep
wreck
half_track
tractor
forklift

GoogLeNet

tusker Indian_elephant binoculars jellyfish chimpanzee

Zaszumienie S&P