LOGICAL INFERENCE IN ARTIFICIAL INFERENCE ARTIFICATION OF THE STATE O

INFERENCE:

 In artificial intelligence, we need intelligent computers which can create new logic from old logic or by evidence, so generating the conclusions from evidence and facts is termed as Inference.

INFERENCE RULE:

- In inference rules, the implication among all the connectives plays an important role. Following are some terminologies related to inference rules:
- Implication: It is one of the logical connectives which can be represented as $P \rightarrow Q$. It is a Boolean expression.
- Converse: The converse of implication, which means the right-hand side proposition goes to the left-hand side and viceversa. It can be written as Q → P.
- Contrapositive: The negation of converse is termed as contrapositive, and it can be represented as $\neg Q \rightarrow \neg P$.
- Inverse: The negation of implication is called inverse. It can be represented as $\neg P \rightarrow \neg Q$.

EXAMPLE INFERENCE RULE:

• From the above term some of the compound statements are equivalent to each other, which we can prove using truth table:

P	Q	P → Q	Q→ P	$\neg Q \rightarrow \neg P$	$\neg P \rightarrow \neg Q$.
T	T	T	T	T	T
T	F	F	T	F	T
F	T	T	F	T	F
F	F	T	T	T	T

■ Hence from the above truth table, we can prove that $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$, and $Q \rightarrow P$ is equivalent to $\neg P \rightarrow \neg Q$.

TYPES OF INFERENCE RULE:

1. Modus Ponens:

The Modus Ponens rule is one of the most important rules of inference, and it states that if P and P \rightarrow Q is true, then we can infer that Q will be true. It can be represented as:

Notation for Modus ponens: $P \rightarrow Q$, Q

Statement-1: "If I am sleepy then I go to bed" $==> P \rightarrow Q$

Statement-2: "I am sleepy" ==> P

Conclusion: "I go to bed." ==> Q.

Hence, we can say that, if $P \rightarrow Q$ is true and P is true then Q will be true.

Proof by Truth table:

P	Q	P→Q
0	0	1
0	1	1
1	0	0
1	1	1


```
[51] class MotionSensor:
         def __init__(self):
             self.motion_detected = False
         def detect motion(self):
             # Simulate motion detection
             self.motion_detected = True
     class LightController:
         def __init__(self):
             self.lights_on = False
         def turn on lights(self):
             # Simulate turning on the lights
             self.lights_on = True
     # Define modus ponens inference function
     def modus_ponens_inference(motion_detected, light_controller):
         # If motion is detected, then turn on the lights
         if motion detected:
             light_controller.turn_on_lights()
     # Instantiate objects
     motion_sensor = MotionSensor()
     light_controller = LightController()
     # Simulate motion detection
     motion_sensor.detect_motion()
     # Apply modus ponens inference
     modus_ponens_inference(motion_sensor.motion_detected, light_controller)
     # Check if lights are turned on
     if light_controller.lights_on:
         print("Lights are turned on.")
     else:
         print("No motion detected or lights are not turned on.")
```

Lights are turned on.

```
[52] class MotionSensor:
        def init_(self):
             self.motion detected = False
         def detect motion(self):
             # Simulate motion detection
             self.motion_detected = False
     class LightController:
         def _ init (self):
             self.lights on = False
         def turn on lights(self):
             # Simulate turning on the lights
             self.lights_on = True
     # Define modus ponens inference function
     def modus ponens inference(motion_detected, light_controller):
         # If motion is detected, then turn on the lights
         if motion_detected:
             light controller.turn on lights()
     # Instantiate objects
     motion sensor = MotionSensor()
     light controller = LightController()
     # Simulate motion detection
     motion_sensor.detect_motion()
     # Apply modus ponens inference
     modus ponens inference(motion sensor.motion detected, light_controller)
     # Check if lights are turned on
     if light_controller.lights_on:
         print("Lights are turned on.")
     else:
        print("No motion detected or lights are not turned on.")
```

No motion detected or lights are not turned on.

2. Modus Tollens:

The Modus Tollens rule state that if $P \rightarrow Q$ is true and $\neg Q$ is true, then $\neg P$ will also true. It can be represented as:

Notation for Modus Tollens: $\frac{P \rightarrow Q, \sim Q}{\sim P}$

Statement-1: "If I am sleepy then I go to bed" $==> P \rightarrow Q$

Statement-2: "I do not go to the bed."==> \sim Q

Statement-3: Which infers that "I am not sleepy" $=> \sim P$

Proof by Truth table:

Р	Q	~P	~ <i>Q</i>	$P \rightarrow Q$
0	0	1	1	1 ←
0	1	1	0	1
1	0	0	1	0
1	1	0	0	1


```
[59]
     class UserLogin:
         def init (self, username, password):
             self.username = username
             self.password = password
         def authenticate(self, entered username, entered password):
             # Simulate authentication process
             if entered username == self.username and entered password == self.password:
                 return True # Authentication successful
             else:
                 return False # Authentication failed
     # Function to apply modus tollens inference
     def modus tollens inference(authentication result):
         # If authentication fails, the entered credentials must be incorrect
         if not authentication result:
             print("Incorrect username or password.")
         else:
             print("Authentication successful.")
     # Assuming correct username and password
     correct username = "user123"
     correct_password = "pass456"
     # Simulating user input (incorrect username or password)
     entered username = "abc"
     entered password = "bcd"
     # Create UserLogin object
     user_login = UserLogin(correct_username, correct_password)
     # Authenticate user
     authentication_result = user_login.authenticate(entered_username, entered_password)
     # Apply modus tollens inference
     modus_tollens_inference(authentication_result)
```

```
[60]
     class UserLogin:
         def init (self, username, password):
             self.username = username
             self.password = password
         def authenticate(self, entered_username, entered_password):
             # Simulate authentication process
             if entered username == self.username and entered password == self.password:
                 return True # Authentication successful
             else:
                 return False # Authentication failed
     # Function to apply modus tollens inference
     def modus tollens inference(authentication result):
         # If authentication fails, the entered credentials must be incorrect
         if not authentication result:
             print("Incorrect username or password.")
         else:
             print("Authentication successful.")
     # Assuming correct username and password
     correct username = "user123"
     correct password = "pass456"
     # Simulating user input (incorrect username or password)
     entered username = "user123"
     entered password = "pass456"
     # Create UserLogin object
     user_login = UserLogin(correct_username, correct_password)
     # Authenticate user
     authentication_result = user_login.authenticate(entered_username, entered_password)
     # Apply modus tollens inference
     modus_tollens_inference(authentication_result)
```

Incorrect username or password.

Authentication successful.

3. Hypothetical Syllogism:

The Hypothetical Syllogism rule state that if $P \rightarrow R$ is true whenever $P \rightarrow Q$ is true, and $Q \rightarrow R$ is true. It can be represented as the following notation:

Example:

Statement-1: If you have my home key then you can unlock my home. $P \rightarrow Q$

Statement-2: If you can unlock my home then you can take my money. $\mathbf{Q} \rightarrow \mathbf{R}$

Conclusion: If you have my home key then you can take my money. $P \rightarrow R$

Proof by truth table:

Р	Q	R	P o Q	Q o R	P -	→ R
0	0	0	1	1	1	•
0	0	1	1	1	1	•
0	1	0	1	0	1	
0	1	1	1	1	1	•
1	0	0	0	1	1	
1	0	1	0	1	1	
1	1	0	1	0	0	
1	1	1	1	1	1	•

TYPES OF INFERENCE RULE:


```
class AutonomousVehicle:
    def init (self):
         self.obstacle detected = False
        self.brakes applied = False
         self.vehicle stopped = False
    def detect obstacle(self):
         # Simulate obstacle detection
         self.obstacle detected = True
    def apply_brakes(self):
        # Simulate applying brakes
        self.brakes applied = True
    def stop vehicle(self):
        # Simulate stopping the vehicle
        self.vehicle_stopped = True
# Function to apply hypothetical syllogism inference
def hypothetical syllogism inference(vehicle):
    # If an obstacle is detected, then apply brakes
    if vehicle.obstacle_detected:
         vehicle.applv brakes()
    # If brakes are applied, then stop the vehicle
    if vehicle.brakes applied:
        vehicle.stop vehicle()
# Create AutonomousVehicle object
autonomous_vehicle = AutonomousVehicle()
# Simulate obstacle detection
autonomous vehicle.detect obstacle()
# Apply hypothetical syllogism inference
hypothetical_syllogism_inference(autonomous_vehicle)
# Check if the vehicle has stopped
if autonomous vehicle.vehicle stopped:
    print("Vehicle stopped successfully.")
else:
    print("Vehicle did not stop.")
Vehicle stopped successfully.
```

```
[62] class AutonomousVehicle:
        def __init__(self):
             self.obstacle detected = False
             self.brakes applied = False
             self.vehicle stopped = False
        def detect obstacle(self):
             # Simulate obstacle detection
             self.obstacle detected = False
        def apply_brakes(self):
             # Simulate applying brakes
             self.brakes_applied = True
        def stop_vehicle(self):
             # Simulate stopping the vehicle
             self.vehicle_stopped = True
     # Function to apply hypothetical syllogism inference
     def hypothetical syllogism inference(vehicle):
         # If an obstacle is detected, then apply brakes
        if vehicle.obstacle_detected:
             vehicle.apply_brakes()
         # If brakes are applied, then stop the vehicle
        if vehicle.brakes applied:
             vehicle.stop_vehicle()
     # Create AutonomousVehicle object
     autonomous_vehicle = AutonomousVehicle()
     # Simulate obstacle detection
     autonomous_vehicle.detect_obstacle()
     # Apply hypothetical syllogism inference
     hypothetical_syllogism_inference(autonomous_vehicle)
     # Check if the vehicle has stopped
     if autonomous_vehicle.vehicle_stopped:
         print("Vehicle stopped successfully.")
     else:
         print("Vehicle did not stop.")
```

Vehicle did not stop.

4. Disjunctive Syllogism:

The Disjunctive syllogism rule state that if PVQ is true, and $\neg P$ is true, then Q will be true. It can be represented as:

Notation of Disjunctive syllogism: $\frac{P \lor Q, \neg P}{Q}$

Example:

Statement-1: Today is Sunday or Monday. ==>PVQ

Statement-2: Today is not Sunday. $==> \neg P$

Conclusion: Today is Monday. ==> Q

Proof by truth-table:

Р	Q	$\neg P$	$P \lor Q$
0	0	1	0
0	1	1	1 -
1	0	0	1
1	1	0	1

TYPES OF INFERENCE RULE:


```
[73] def plan_activity(weather_forecast):
         if weather_forecast == "sunny":
             print("Let's go for a picnic!")
         elif weather forecast == "rainy":
             print("It's raining, let's stay indoors.")
         else:
             print("Weather forecast is uncertain. Use your discretion.")
     # Simulated weather forecast
     weather_forecast = input()
     # Apply disjunctive syllogism
     if weather forecast != "rainy":
         plan_activity("sunny")
     else:
         plan_activity("rainy")
     sunny
     Let's go for a picnic!
```

```
Start coding or generate with AI.
```

```
[74] def plan_activity(weather_forecast):
         if weather forecast == "sunny":
             print("Let's go for a picnic!")
         elif weather forecast == "rainy":
             print("It's raining, let's stay indoors.")
         else:
             print("Weather forecast is uncertain. Use your discretion.")
     # Simulated weather forecast
     weather_forecast = input()
     # Apply disjunctive syllogism
     if weather_forecast != "rainy":
         plan_activity("sunny")
     else:
         plan_activity("rainy")
```

rainy It's raining, let's stay indoors.

5. Addition:

The Addition rule is one the common inference rule, and it states that If P is true, then PVQ will be true.

Notation of Addition: $\frac{P}{P \lor Q}$

Statement: I have a vanilla ice-cream. ==> P

Statement-2: I have Chocolate ice-cream.

Conclusion: I have vanilla or chocolate ice-cream. ==> (PVQ)

Proof by Truth-Table:

Р	Q	$P \lor Q$
0	0	0
1	0	1 4
0	1	1
1	1	1

TYPES OF INFERENCE RULE:


```
def check_transaction(transaction, suspicious_transactions):
    if transaction in suspicious_transactions:
        print("Transaction flagged as suspicious. Further investigation warranted.")
    else:
        print("Transaction is not flagged as suspicious.")

# List of suspicious transactions (initial rule)
suspicious_transactions = ["transaction1", "transaction2", "transaction3"]

# Additional information indicating a flagged transaction
transaction_to_check = "transaction6"

# Applying addition inference logic
check_transaction(transaction_to_check, suspicious_transactions)
```

Transaction is not flagged as suspicious.

```
[82] def check_transaction(transaction, suspicious_transactions):
    if transaction in suspicious_transactions:
        print("Transaction flagged as suspicious. Further investigation warranted.")
    else:
        print("Transaction is not flagged as suspicious.")

# List of suspicious transactions (initial rule)
suspicious_transactions = ["transaction1", "transaction2", "transaction3"]

# Additional information indicating a flagged transaction
transaction_to_check = "transaction2"

# Applying addition inference logic
check_transaction(transaction_to_check, suspicious_transactions)
```

Transaction flagged as suspicious. Further investigation warranted.

6. Simplification:

The simplification rule state that if $P \land Q$ is true, then Q or P will also be true. It can be represented as:

Notation of Simplification rule:
$$\frac{P \wedge Q}{Q}$$
 Or $\frac{P \wedge Q}{P}$

Proof by Truth-Table:

Р	Q	$P \wedge Q$
0	0	0
1	0	0
0	1	0
1	1	1 -

TYPES OF INFERENCE RULE:


```
[83] def process_package(heavy, destination):
    if heavy and destination:
        print("Package requires special handling.")
    else:
        print("Package does not require special handling.")

# Simulated package attributes
is_heavy = True
is_destination_specific = True

# Applying the simplification rule
process_package(is_heavy, is_destination_specific)
```

Package requires special handling.

```
def check_course_pass(midterm_grade, final_grade, passing_threshold):
    if midterm_grade >= passing_threshold and final_grade >= passing_threshold:
        print("Congratulations! You passed the course.")
    else:
        print("Sorry, you did not pass the course.")

# Simulated student grades and passing threshold
midterm_grade = 75
final_grade = 80
passing_threshold = 60

# Applying the simplification rule
check_course_pass(midterm_grade, final_grade, passing_threshold)
```

```
[84] def process_package(heavy, destination):
    if heavy and destination:
        print("Package requires special handling.")
    else:
        print("Package does not require special handling.")

# Simulated package attributes
    is_heavy = True
    is_destination_specific = False

# Applying the simplification rule
    process_package(is_heavy, is_destination_specific)
```

Package does not require special handling.

```
[86] def check_course_pass(midterm_grade, final_grade, passing_threshold):
    if midterm_grade >= passing_threshold and final_grade >= passing_threshold:
        print("Congratulations! You passed the course.")
    else:
        print("Sorry, you did not pass the course.")

# Simulated student grades and passing threshold
midterm_grade = 55
final_grade = 80
passing_threshold = 60

# Applying the simplification rule
check_course_pass(midterm_grade, final_grade, passing_threshold)
```

Sorry, you did not pass the course.

1. Modus Ponens Task:

Scenario: You're developing a security system for a bank vault. Implement a function that checks if the security camera detects unauthorized access. If the camera detects unauthorized access, trigger the alarm system.

Objective: Use modus ponens to activate the alarm system when unauthorized access is detected, demonstrating how logical inference triggers actions in a security system.

1. Modus Tollens Task:

Scenario: You're creating a temperature monitoring system for a server room. Develop a function that checks if the temperature sensor indicates a temperature above the threshold. If the temperature is not above the threshold, ensure the cooling system remains off.

Objective: Apply modus tollens to keep the cooling system off when the temperature is not above the threshold, showcasing how logical inference prevents unnecessary actions based on negated conditions.

Hypothetical Syllogism Task:

Scenario: You're building a navigation app for drivers. Write a function that determines if the GPS signal is available. If the GPS signal is available, calculate the route to the destination.

Objective: Utilize hypothetical syllogism to calculate the route to the destination when the GPS signal is available, illustrating how logical inference guides actions in a navigation system.

Disjunctive Syllogism Task:

Scenario: You're developing a scheduling app for students. Implement a function that checks if the user has selected either a morning or evening class. If the user hasn't selected a morning class, assume they've chosen an evening class.

Objective: Apply disjunctive syllogism to infer the user's class preference when a choice is not explicitly provided, demonstrating how logical inference handles alternative options.

Simplification Task:

Scenario: You're developing a game with power-up mechanics. Write a function that simplifies the logic for activating a power-up, considering factors such as player level and available resources.

Objective: Use simplification to streamline the activation logic for power-ups, demonstrating how logical inference simplifies complex decision-making in game development.

Addition Task:

Scenario: You're creating a reservation system for a restaurant. Develop a function that adds a new reservation to the system based on the available time slots and seating capacity.

Objective: Apply the addition rule to incorporate new reservations into the system, showcasing how logical inference updates data based on incoming information in a reservation system.

