Bit Manipulation: Lonely Integer

Consider an array of n integers, $A = [a_0, a_1, \dots, a_{n-1}]$, where all but one of the integers occur in pairs. In other words, every element in A occurs exactly twice except for one unique element.

Given A, find and print the unique element.

Input Format

The first line contains a single integer, n, denoting the number of integers in the array. The second line contains n space-separated integers describing the respective values in A.

Constraints

- $1 \le n < 100$
- It is guaranteed that *n* is an odd number.
- $0 \le a_i \le 100$, where $0 \le i < n$.

Output Format

Print the unique number that occurs only once in A on a new line.

Sample Input 0

1

Sample Output 0

1

Explanation 0

The array only contains a single 1, so we print 1 as our answer.

Sample Input 1

3 112

Sample Output 1

2

Explanation 1

We have two 1's and one 2. We print 2, because that's the only unique element in the array.

Sample Input 2

5 0 0 1 2 1

Sample Output 2

Explanation 2

We have two $\mathbf{0}$'s, two $\mathbf{1}$'s, and one $\mathbf{2}$. We print $\mathbf{2}$, because that's the only unique element in the array.