Homework 10

Hsin-Wei, Chen B12902132 CSIE Introduction to Analysis II

June 27, 2024

Problem 1.

- (a) Suppose that $f: \mathbb{R}^n \to \mathbb{R}^m$ is of class C^1 and $Df(x_0)$ has rank m. Show that there exist a whole neighborhood of $f(x_0)$ lying in the image of f.
- (b) Suppose that $f: \mathbb{R}^n \to \mathbb{R}^m$ is of class C^1 is one-to-one and $Df(x_0)$ is one-to-one. Show that f is one-to-one a neighborhood of x_0 .

Proof. (a) Let
$$f(x_1, x_2, ..., x_n) = \begin{pmatrix} f_1(x_1, x_2, ..., x_n) \\ \vdots \\ f_m(x_1, x_2, ..., x_n) \end{pmatrix}$$
. Since $rank(Df(x_0)) = m$, we can select m of

the column vector of $Df(x_0)$ such that the vector space it forms has dimension m, without loss of generality, suppose the first m column of $Df(x_0)$ are linearly independent. Let $g(x_1, x_2, ..., x_n) =$

$$\begin{pmatrix} f_1(x_1, x_2, ..., x_n) \\ \vdots \\ f_m(x_1, x_2, ..., x_n) \\ x_{m+1} \\ \vdots \\ x_n \end{pmatrix}, \text{ then } Dg(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & ... & \frac{\partial f_1}{\partial x_m} & \frac{\partial f_1}{\partial x_{m+1}} & ... & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & ... & \frac{\partial f_m}{\partial x_m} & \frac{\partial f_m}{\partial x_{m+1}} & ... & \frac{\partial f_m}{\partial x_n} \\ 0 & & 1 & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & \\ & & & 0 & & 1 \end{pmatrix} \text{ then } det(Dg(x_0)) \neq 0$$

0. since the product of the first m column is independent, and since $f(x_1, x_2, ..., x_n)$ is C^1 , $g(x_1, x_2, ..., x_n)$ is C^1 . By Inverse function theorem, there exist $U = B_{\delta}(x_0) \subset \mathbb{R}^n$ and $V = B_{\epsilon}(g(x_0)) \subset \mathbb{R}^n$ such that

$$f(U) = V$$
. Choose $y \in B_{\epsilon}(f(x_0)) \in \mathbb{R}^m$. Define $y' = \begin{pmatrix} y \\ x_{m+1} \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$, since $||f(x_0) - y|| = ||g(x_0) - y'|| < \infty$

 ϵ , then there exist $x^* \in U$ such that $g(x^*) = y'$. By comparing the component of the vector, we see that $y = f(x^*)$. Hence $y \in im(f)$. Therefore, f is an open mapping.

(b) Since $Df(x_0)$ is injective, $nullity(Df(x_0)) = 0$, by rank and nullity theorem $rank(Df(x_0)) = n \le m$,

1

without loss of generality suppose the first n column $Df(x_0)$ is linearly independent. let $f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}$

, define
$$g(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$
, then $det(Dg(x_0)) \neq 0$. By inverse function theorem, there exists $U = B_{\delta}(x_0) \subset \mathbb{R}^n$ and $V = B_{\delta}(g(x_0))$ such that g is one to one on U . Suppose $f(x) = f(x)$ where $x, y \in U$, then since

 \mathbb{R}^n and $V = B_{\delta}(g(x_0))$ such that g is one-to-one on U. Suppose f(x) = f(y) where $x, y \in U$, then since

$$f(x) = \begin{pmatrix} g(x) \\ f_{n+1}(x) \\ f_{n+2}(x) \\ \vdots \\ f_m(x) \end{pmatrix}, \text{ comparing the component, since } g(x) = g(y), \text{ it follows that } x = y. \text{ Hence } f \text{ is } f_m(x)$$

one-to-one on U, we are done.

Problem 2.

Use Inverse Function Theorem to determine whether the system

$$u(x, y, z) = x + xyz$$

$$v(x, y, z) = y + xy$$

$$w(x, y, z) = z + 2x + 3z^{2}$$

can be solved for x, y, z in terms of u, v, w near p = (0, 0, 0)

Proof. Since u(x, y, z), v(x, y, z), w(x, y, z) is polynomial of x, y, z then u, v, w is C^1 . The derivative of the system $f(x, y, z) = \begin{pmatrix} u(x, y, z) \\ v(x, y, z) \\ w(x, y, z) \end{pmatrix}$ is $\begin{pmatrix} 1 + yz & xz & xy \\ y & 1 + x & 0 \\ 2 & 0 & 1 \end{pmatrix}$, and thus $J_f(0, 0, 0) = 1 \neq 0$. By inverse function

theorem, there exists a open set U contains (0,0,0) and open set V that contains f(0,0,0)=(0,0,0) such that $f:U\to V$ is an isomorphism. Given y=f(x) and since $Df^{-1}(y)=\left[Df(x)\right]^{-1}$,

$$Df^{-1}(x,y,z) = \frac{1}{1+yz-2xy-x} \begin{pmatrix} 1+x & -y & -2(1+x) \\ -xz & 1+yz-2xy & 2xz \\ -xy(1+x) & xy^2 & 1+x+yz \end{pmatrix}$$

Notice that the expression is in terms of x, y, z not u, v, w, and is not possible to do substitution to eliminate other variables thus the system can not be solved for x, y, z in terms of u, v, w.