Laws of Large Numbers

 $\{X_n\}$ obeys the LLN if $\exists\,\{b_n\}\subset\mathbb{R}$ and $0< a_n\uparrow$ such that

$$\mathbf{SLLN:} \frac{S_n - b_n}{a_n} \xrightarrow{\mathrm{a.s.}} 0 \quad \mathbf{WLLN:} \frac{S_n - b_n}{a_n} \xrightarrow{\mathrm{p}} 0.$$

Kronecker's Lemma: If $\{a_n\}$, $\{b_n\}\subset\mathbb{R}$ such that $0< b_n\uparrow\infty$ and $\sum_{n=1}^\infty a_n/b_n$ converges, then

$$\frac{1}{b_n} \sum_{j=1}^n a_n \to 0 \text{ as } n \to \infty.$$

Cesaro's Mean Summability Theorem: If $\{x_n\}\subset\mathbb{R}$ such that $\lim_{n\to\infty}x_n=x<\infty$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} x_j = x.$$

Theorem 4.14: If $\{X_n\}$ ind such that $\sum_{n=1}^\infty \mathrm{E}\,|X_n|^{\alpha_n}\,/n^{\alpha_n}<\infty$ for $\alpha_n\in[1,2]$, then

$$\frac{S_n - \operatorname{E} S_n}{n} = \frac{1}{n} \sum_{i=1}^n (X_i - \operatorname{E} X_i) \xrightarrow{\text{a.s.}} 0.$$

Marcinkiewicz-Zygmund SLLN: Let $\{X_n\}$ be iid, $S_n = \sum_{i=1}^n X_i$, and $p \in (0,2)$.

- 1. If $\frac{S_n-nc}{n^{1/p}}\stackrel{\text{a.s.}}{\longrightarrow} 0$ for some $c\in\mathbb{R}$, then $\mathrm{E}\,|X_1|^p<\infty$.
- 2. If \to $|X_1|^p < \infty$, then (2) holds with $c = \to X_1$ if $p \in [1,2)$ and (2) holds for any $c \in \mathbb{R}$ if $p \in (0,1)$.

Kolmogorov's SLLN: If $\{X_n\}$ are iid, then

$$\bar{X}_n = \frac{S_n}{n} \xrightarrow{\text{a.s.}} \operatorname{E} X_1 \iff \operatorname{E} |X_1| < \infty \iff \frac{S_n - n \operatorname{E} X_1}{n} \xrightarrow{\text{a.s.}} 0.$$

Useful Theorem: For any r.v. X and r > 0.

$$\sum_{n=1}^{\infty} P(|X| > n^{1/r}) \le \mathbb{E} |X|^r \le \sum_{n=0}^{\infty} P(|X| > n^{1/r}).$$

Etemaldi's SLLN: If $\{X_n\}$ are *pairwise* ind and identically distributed, then

$$\bar{X}_n = \frac{S_n}{n} \xrightarrow{\text{a.s.}} E X_1 \iff E |X_1| < \infty.$$

Theorem 4.18 (general WLLN): $\{X_n\}$ ind and put $S_n = \sum_{i=1}^n X_i$. If

$$\sum_{i=1}^n P(\left|X_j\right|>n)\to 0 \quad \text{ and } \quad \frac{1}{n^2}\sum_{i=1}^n EX_j^{(n)2}\to 0,$$

then

$$\frac{S_n - a_n}{\cdots} \stackrel{\mathsf{p}}{\longrightarrow} 0,$$

where $a_n = \sum_{j=1}^n \operatorname{E} X_j^{(n)}$ and $X_j^{(n)} \equiv X_j I(|X_j| \le n)$.

[Corollary] Feller's WLLN (without a 1st moment hypothesis): if $\{X_n\}$ iid with $\lim_{n\to\infty}xP(|X_1|>x)=0$, then

$$\frac{S_n}{I} - \operatorname{E} X_1^{(n)} \stackrel{\mathsf{p}}{\longrightarrow} 0.$$

Empirical Distributions

The **empirical cdf** of X_1, \ldots, X_n is the random cdf is the proportion of observations no larger than a fixed x:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x), \quad x \in \mathbb{R}.$$

 $\bullet \ \ \text{With} \ X_i\text{'s on } (\Omega,\mathcal{F},P) \text{, for each } \omega \in \Omega \text{,}$

$$F_n(x,\omega) = \frac{1}{n} \sum_{i=1}^n I(X_i(\omega) \le x).$$

• $F_n(x)$ is a right-continuous, nondecreasing function of $x \in \mathbb{R}$,

• For any $x \in \mathbb{R}$, $F_n(x)$ is a r.v., i.e., is $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -mble:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i^{-1}(-\infty, x])(\omega).$$

Glivenko-Cantelli Theorem: $\{X_n\}$ iid with cdf $F(\cdot)$. Let $F_n(\cdot)$ be the empirical cdf based on X_1,\ldots,X_n and define

$$D_n = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Then, (i) D_n is a r.v. for any $n \ge 1$ and (ii) $D_n \xrightarrow{\text{a.s.}} 0$ as $n \to \infty$.

Quantile function: $\phi(u) = \inf \{x \in \mathbb{R} : F(x) \ge u\} \equiv F^{-1}(u), \ u \in (0,1)$ which implies

$$F(x) > u \iff x > \phi(u)$$
 and $F(\phi(u)) < u < F(\phi(u))$.

Convergence in Distribution

: Let μ_n , $n \geq 0$ be probability measures on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ for some $1 \leq k < \infty$.

1. For $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$, the **cdf** of μ_n is

$$F_n(\mathbf{x}) = \mu_n((-\infty, x_1] \times \cdots \times (-\infty, x_n]).$$

If a random vector X_n has probability distribution μ_n [i.e., $P(X_n \in A) = \mu_n(A), A \in \mathcal{B}(\mathbb{R}^k)$], then F_n is also called the cdf of X_n

2. A sequence of probability measures μ_n (or corresponding cdfs F_n) converges weakly to μ_o (to F_0), denoted as $\mu_n \Rightarrow \mu_0$ (or as $F_n \Rightarrow F_0$), if

$$\lim_{n \to \infty} F_n(\mathbf{x}) = F_0(\mathbf{x}) \quad \forall \mathbf{x} \in C(F_0),$$

where $C(F_0) = \{ \mathbf{x} \in \mathbb{R}^k : F_0 \text{ is continuous at } \mathbf{x} \}$

3. A sequence of random vectors X_n in R^k (with distributions μ_n) converges in distribution (law) to a random variable X_0 (with distribution μ_0) if $\mu_n \Rightarrow \mu_0$, denoted by $X_n \stackrel{d}{\longrightarrow} X_0$. That is, if $X_n = (X_{n,1}, \dots, X_{n,i})$ has cdf $F_n, n \geq 0$, then

$$\lim_{n \to \infty} F_n(\mathbf{x}) = \lim_{n \to \infty} P(X_{n,1} \le x_1, \dots, X_{n,k} \le x_k)$$
$$= P(X_{0,1} \le x_1, \dots, X_{0,k} \le x_k)$$
$$= F_0(\mathbf{x}) \quad \forall \mathbf{x} \in C(F_0).$$

Note that

- $\begin{array}{l} \bullet \quad \mathbf{x} = (x_1, \dots, x_k) \in C(F_0) \iff F_0(\mathbf{x}) = P(X_{0,1} < \\ x_1, \dots, X_{0,k} < x_k) = F_0(\mathbf{x}-) \text{ i.e., if also left continuous.} \end{array}$
- C(F₀)^c is at most countable.
- $\bullet \ \ X_n \stackrel{\mathsf{p}}{\longrightarrow} X_0 \implies X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \text{ but not the other direction, unless } X_0 \text{ is degenerate.}$

Skorohod's Embedding Theorem: If $\mu_n, n \geq 0$ are probability measures on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ for some $1 \leq k < \infty$ such that $\mu_n \Rightarrow \mu_0$, then \exists random vectors $\{Y_n\}_{n \geq 0}$ on a common probability space such that Y_n has probability distribution μ_n for all $n \geq 0$ and $Y_n \stackrel{\text{a.s.}}{\longrightarrow} Y_0$. That is, $P(Y_n \in A) = \mu_n(A), A \in \mathcal{B}(\mathbb{R}^k), n \geq 0$.

Continuous Mapping Theorem:

Version (a): Let μ_n , $n \geq 0$ be probability measures on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ for $1 \leq k < \infty$ and $\text{let } h : \mathbb{R}^k \to \mathbb{R}^m$ for $1 \leq m < \infty$ be a $\langle \mathcal{B}(\mathbb{R}^k), \mathcal{B}(\mathbb{R}^m) \rangle$ -mble function such that $\mu_0(D_h) = 0$, where $D_n \in \mathcal{B}(\mathbb{R}^k)$ denotes the set of all points of discontinuities of the function h. If $\mu_n \Rightarrow \mu_0$, then the induced measures converge weakly:

$$\mu_n h^{-1} \Rightarrow \mu_0 h^{-1}$$

 $\frac{\text{Version (b)}: \ \text{Let}\ X_n, n \geq 0 \ \text{be}\ R^k\text{-valued random vectors and let measurable}}{h: \mathbb{R}^k \to \mathbb{R}^m \ \text{be such that}\ P(X_0 \in D_h) = 0, \ \text{where}\ D_h \ \text{is as above. If}\ X_n \overset{\mathsf{d}}{\longrightarrow} X_0, \ \text{then}}$

$$h(X_n) \stackrel{\mathsf{d}}{\longrightarrow} h(X_0).$$

 $\underline{ \text{Corollary: If } X_n, Y_n, n \geq 0 \text{ be r.v.'s such that } (X_n, Y_n) \stackrel{\text{d}}{\longrightarrow} (X_0, Y_0) \text{, then }$

$$X_n + Y_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 + Y_0, \quad X_n Y_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 Y_0, \quad X_n / Y_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 / Y_0 \text{ if } P(Y_0 = 0) = 0 \\ \{\beta_r : r \geq 1\} \text{ are the moments of a } \text{unique r.v. } X_0, \text{ then } X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 = 0 \\ \{\beta_r : r \geq 1\} \text{ are the moments of a } \{\beta_r : r \geq 1\} \text{ are the mom$$

Corollary (Slutsky's Theorem): If $X_n, Y_n, n \geq 1$ be r.v.'s such that $X_n \stackrel{\mathsf{d}}{\longrightarrow} X$ and $Y_n \stackrel{\mathsf{p}}{\longrightarrow} a$ for some $a \in \mathbb{R}$, then

$$X_n + Y_n \stackrel{\mathsf{d}}{\longrightarrow} X + a, \quad X_n Y_n \stackrel{\mathsf{d}}{\longrightarrow} aX, \quad X_n / Y_n \stackrel{\mathsf{d}}{\longrightarrow} X/a \text{ if } a \neq 0.$$

Characterizations of Convergence in Distribution

For a probability measure μ on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, a set $A \in \mathcal{B}(\mathbb{R}^k)$ is called a μ -continuity set if $\mu(\partial A) = 0$, where $\partial A = \overline{A} \setminus \text{int} A$. E.g.,

$$\partial(-\infty,x]=(-\infty,x]\setminus(-\infty,x)=\{x\}\,.$$

Helly-Bray "Portmanteau" Theorem: If $\mu_n, n \geq 0$ are probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then

- 1. $\mu_n \Rightarrow \mu_0 \iff \mu_n(A) \to \mu_0(A) \ \forall A \in \mathcal{B}(\mathbb{R}) \ni \mu_0(\partial A) = 0.$
- 2. $\mu_n \Rightarrow \mu_0 \iff \int f d\mu_n \to \int f d\mu_0$ for all bounded continuous functions $f: \mathbb{R} \to \mathbb{R}$.

Remark

- $\mu_n \Rightarrow \mu_0 \not \Longrightarrow \mu_n(A) \to \mu_0(A) \forall A \in \mathcal{B}(\mathbb{R}^k).$
- Holds for $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$.
- Can generalize to a metric space (S, d).

Lemma 5.8: If $\mu_n\Rightarrow\mu_0$ on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ and $f:\mathbb{R}\to\mathbb{R}$ is a bounded, Borel-mble function with $\mu_0(D_f)$ (where $D_f\in\mathcal{B}(\mathbb{R})$ is the set of discontinuity points of f), then

$$\int f d\mu_n \to \int f d\mu_0 \text{ as } n \to \infty.$$

A sequence of probability measures $\{\mu_n\}$ on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ is **tight** if $\forall \varepsilon>0, \exists M_\varepsilon>0$ such that

$$\sup_{n \ge 1} \mu_n \left(\left\{ x \in \mathbb{R}^k : ||x|| > M_{\varepsilon} \right\} \right) < \varepsilon.$$

For a single probability measure on \mathbb{R} , given ε , we can find M_{ε} such that $\mu([-M_{\varepsilon},M_{\varepsilon}])<\varepsilon$ and note $\mu([-M_{\varepsilon},M_{\varepsilon}])\uparrow\mu(\mathbb{R})=1$.

A sequence of R^k -valued random vectors $\{X_n\}$ is **tight** or **stochastically bounded** if their corresponding $\{\mu_n\}$ is tight. That is, $\forall \varepsilon > 0$, $\exists M_\varepsilon > 0$ such that

$$\sup_{n \geq 1} P(\|X_n\| > M_{\varepsilon}) = \sup_{n \geq 1} \mu_n \left(\left\{ x \in \mathbb{R}^k : \|x\| > M_{\varepsilon} \right\} \right) < \varepsilon,$$

where $\mu_n(A) = P(X_n \in A), A \in \mathcal{B}(\mathbb{R}^k)$

A sequence of random vectors $\{X_n\}$ is uniformly integrable if $\forall \varepsilon > 0, \exists t_{\varepsilon} > 0$ such that

$$\sup_{n>1} \mathbb{E} \|X_n\| I(\|X_n\| > t_{\varepsilon}) = \sup_{n>1} \int_{\|x\| > t_{\varepsilon}} \|x\| d\mu_n < \varepsilon,$$

where $\mu_n(A) = P(X_n \in A), A \in \mathcal{B}(\mathbb{R}^k)$.

Proposition 5.9: Let $\{X_n\}$ be r.v.'s.

- 1. If $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$, then $\{X_n\}$ is tight.
- 2. If $\{X_n\}$ is tight and $Y_n \stackrel{\mathsf{p}}{\longrightarrow} 0$ for X_n, Y_n defined on $(\Omega_n, \mathcal{F}_n, P_n)$, then $X_n, Y_n \stackrel{\mathsf{p}}{\longrightarrow} 0$
- 3. But, weak convergence "almost" implies tightness see Prokhorov's theorem.

Theorem 5.10: A sequence of r.v.'s $\{X_n\}$ (or probability measures $\{\mu_n\}$) is tight iff for any subsequence X_{n_k} of X_n there exists a further subsequence $X_{n_{k_j}}$ of X_{n_k} and a r.v.

(or probability measure μ_0) such that $X_{n_{k_j}} \stackrel{d}{\longrightarrow} X_0$ (or $\mu_{n_{k_j}} \Rightarrow \mu_0$). Note: X_0 (or μ_0) depends on the particular subsequence X_{n_k} .

Corollary: If $\{X_n\}$ is tight and all its convergent subsequences converge in distribution to the same r.v. X_0 , then $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$.

 $\begin{array}{ll} \text{Theorem 5.12 (conv in dist} + \text{UI} \implies \text{conv in mean): If } \left\{X_n\right\}, \, n \geq 1 \text{ is UI and } \\ X_n \stackrel{d}{\longrightarrow} X_0, \text{ then } \mathrm{E}\left|X_0\right| < \infty \text{ and } \mathrm{E}\left[X_n \rightarrow \mathrm{E}\left[X_0\right]. \end{array}$

Corollary 5.13 if $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$ and $\sup_{n \geq 1} \operatorname{E} |X_n|^{r+\delta} < \infty$ for some integer $r \geq 1$ and real $\delta > 0$, then $\operatorname{E} |X_0|^r < \infty$ and $\operatorname{E} X_n^r \to \operatorname{E} X_0^r$ (recall that $\sup_{n \geq 1} \operatorname{E} |Z_n|^{1+\delta} \Longrightarrow \{Z_n\}$ is UI).

Fréchet-Shohat Theorem: If $\lim_{n\to\infty} \mathbb{E} X_n^r = \beta_r \in \mathbb{R}$ for all integers $r \geq 1$ and if $0(\beta_r \cdot r \geq 1)$ are the moments of a unique $r \in X_0$ then $X_0 \stackrel{\mathsf{d}}{\longrightarrow} X_0$.

Moments uniquely determine distribution when Cardeman's condition is met, $\sum_{r=1}^{\infty}\beta_{2r}^{-1/(2r)}=\infty, \text{ or if the MGF } M_X(t)=\operatorname{E} e^{tX}<\infty \ \forall \ |t|<\varepsilon \text{ for some } \varepsilon>0.$ Recall:

$$EX^{r} = \frac{d^{r}}{dt^{r}} M_{X}(t) \Big|_{t=0}.$$

Characteristic Functions

A complex number is a+ib, where $a,b\in\mathbb{R}$ and $i=\sqrt{-1}$. If a+bi and c+di are complex, then their sum is (a+b)+(c+d)i, their product is (ac-bd)+(ad+bc)i, and the modulus is $|a+bi|=\sqrt{a^2+b^2}=\sqrt{(a+bi)(a-bi)}$. IMPORTANT! For any $b\in\mathbb{R}$,

$$e^{bi} = \cos(b) + i\sin(b)$$

and $\left|e^{bi}\right|=\sqrt{\cos^2(b)+\sin^2(b)}=1$ and $e^{ai}e^{bi}=e^{(a+b)i}$ for $a,b\in\mathbb{R}$. ALSO, for fixed $b\in\mathbb{R}$, the function $g(t)=e^{tbi}:\mathbb{R}\to\mathbb{C}$ is infinitely differentiable in t with nth derivative $(bi)^ne^{tbi}$

For a random vector X in \mathbb{R}^k , the characteristic function (CF) is defined as

$$\phi_X(t) = \operatorname{E} e^{it'X} = \operatorname{E} \cos(t'X) + i \operatorname{E} \sin(t'X), \quad t \in \mathbb{R}^k, i = \sqrt{-1}.$$

It allows for easy convolutions (same as MGF), always exists, uniquely identifies distribution, and p.w. convergence implies weak convergence.

Note that $\phi_X(0) = 1$ and $\phi_X(t)$ is uniformly continuous on \mathbb{R}^k : by the BCT,

$$\begin{split} \sup_{t \in \mathbb{R}^k} |\phi_X(t+h) - \phi_X(t)| &= \sup_{t \in \mathbb{R}^k} \left| \operatorname{E} e^{i(t+h)'X} - \operatorname{E} e^{it'X} \right| \\ &\leq \operatorname{E} \left| e^{ih'X - 1} \right| \\ &= \int_{R^k} \left| e^{ih'x} - 1 \right| d\mu_X(x) \to 0 \text{ as } |h| \to 0. \end{split}$$

Theorem 5.15: If X is a r.v. with $\mathrm{E}\left|X\right|^{r}<\infty$ for some $r\geq 1$, then $\phi_{X}(t)$ is r-times differentiable on $\mathbb R$ and

$$\phi_X^{(r)}(t) = \mathrm{E}(iX)^r e^{itX}, \quad t \in \mathbb{R}.$$

Riemann-Lebesgue Lemma: If the distribution of a r.v. X has a density f w.r.t. the Lebesgue measure on \mathbb{R} , then $\phi_X(t) \to 0$ as $|t| \to \infty$.

Levy Inversion Formula (use CF to recover dist): If X is a r.v. with CF ϕ_X , then for any $a,b\in\mathbb{R}$ with P(X=a)=0=P(X=b),

$$P(a < X \leq b) = \lim_{T \rightarrow \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_{X}(t) dt.$$

Corollary: If we also assume $\int |\phi_X(t)| \, dt < \infty$ (which implies $C(F) = \mathbb{R}$), then X has a pdf f w.r.t. the Lebesgue measure on \mathbb{R} given by

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_X(t) dt.$$

Levy Continuity Theorem: suppose $\{X_n\}$ is a sequence of r.v.'s each with CF ϕ_{X_n}

1. If $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$, then for any T > 0,

$$\sup_{\left|t\right| < T} \left| \phi_{X_n}(t) - \phi_{X_0}(t) \right| \to 0 \text{ as } n \to \infty.$$

2. If $\phi_{X_n}(t) \to g(t)$ as $n \to \infty$ for all $t \in \mathbb{R}$ and $g(\cdot)$ is continuous at zero, then $g(\cdot)$ is a CF and $X_n \stackrel{d}{\longrightarrow} X_0$, where X_0 is the r.v. with CF $g(\cdot)$.

Corollary 5.20: $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \iff \phi_{X_n}(t) \to \phi_{X_0}(t) \text{ as } n \to \infty \text{ for all } t \in \mathbb{R}.$

Inversion Formula in \mathbb{R}^k : Let X be a \mathbb{R}^k -valued random vector with CF $\phi_X(t)$ for $t=(t_1,\dots,t_k)\in\mathbb{R}^k$. Then, for any rectangle $A=(a_1,b_1]\times\dots\times(a_k,b_k]$ with $P(X\in\partial A)=0$,

$$P(X \in A) = \lim_{T \to \infty} \frac{1}{(2\pi)^k} \int_{-T}^{T} \cdots \int_{-T}^{T} \prod_{i=1}^{k} \frac{e^{-it_j a_j} - e^{-it_j b_j}}{it_i} \phi_X(t_1, \dots, t_k) dt_1 \dots dt_k.$$

Also, if $\int_{\mathbb{R}^k} |\phi_X(t_1,\ldots,t_k)| \, dt_1 \ldots dt_k < \infty$, then X has a bounded, continuous

density $f_{X}\left(x\right)$ w.r.t. the Lebesgue measure in \mathbb{R}^{k} given by

$$f_X(x) = \frac{1}{(2\pi)^k} \int_{\mathbb{R}^k} e^{-i\sum_{j=1}^k x_j t_j} \phi_X(t_1, \dots, t_k) dt_1 \dots dt_k, \quad x = (x_1, \dots, x_k) \in \mathbb{R}^k.$$

Theorem 5.22: On a psp (Ω, \mathcal{F}, P) , r.v.'s X_1, \ldots, X_k are ind iff for all $t_1, \ldots, t_k \in \mathbb{R}$,

$$\phi_{X_1,...,X_k}(t_1,...,t_k) \equiv \mathbf{E} \, e^{i \sum_{j=1}^k X_j t_j} = \prod_{j=1}^k \mathbf{E} \, e^{i X_j t_j} = \prod_{j=1}^k \phi_{X_j}(t_j).$$

Theorem 5.23: For a sequence $\{X_n\}$, $n \ge 0$ of \mathbb{R}^k -valued random vectors,

$$1. \ X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \iff \phi_{X_n}(t) \to \phi_{X_0}(t) \ \forall t \in \mathbb{R}^k,$$

2. (Cramer-Wold device) $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \iff t'X_n \stackrel{\mathsf{d}}{\longrightarrow} t'X_0 \ \forall t \in \mathbb{R}^k$,