Homework #2 – 28 pts Submit your homework to <u>TEACH</u> by Wed. 10/17/2018, at 11:59pm

Your submission should be comprised of one item: a .pdf file containing answers to the questions. Legible, handwritten solutions are acceptable for undergraduate students (472). The handwritten solutions must be electronically scanned and submitted as a PDF file. Graduate students (572) must compose their solutions in MS Word, LaTeX, or some other word processor and submit the results as a PDF file.

1. (6 pts) Suppose the existence of a direct-mapped cache design with a 32-bit address. Assume that each address maps to a single byte. Assume the cache scheme uses the following breakdown of the address bits:

Tag	Index	Offset
31-9	8-5	4-0

- a. (2 pts) What is the cache block size (in words)?
 5 bits allocated to the byte offset. 2⁵ = 32 bytes → 32/4 = 8 words
- b. (2 pts) How many entries does the cache have?
 4 bits allocated to the index. 2⁴ = 16 entries (i.e. indices)
- c. (2 pts) Including space for the valid bits, tags, and actual block data, how many bits would be required to actually implement this hypothetical cache? For each entry:

32 bytes of data = 256 bits

1 valid bit for each entry

23 bits for each tag

- → Adds up to 280 bits per entry (index)
- → 280 bits * 16 entries = 4480 total bits required

2. (10 pts) Using the cache design from problem 1, assume the following byte-addressed cache references are recorded. Assume that the cache is initially empty. Also assume that accesses occurred from left to right (e.g. address 0 was requested, then address 4, followed by address 16, etc).

Byte Address											
0	4	16	132	232	160	1024	30	140	3100	180	2180

D 1	Block address	Block Index		
Byte Address	$floor\Big(\frac{\mathit{byte address}}{\mathit{block size in bytes}}\Big)$	Block address % num_of_indices	Tag	Hit?
0	0	0	00000000 00000000 0000000	M
4	0	0	00000000 00000000 0000000	Н
16	0	0	00000000 00000000 0000000	Н
132	4	4	00000000 00000000 0000000	M
232	7	7	00000000 00000000 0000000	M
160	5	5	00000000 00000000 0000000	M
1024	32	0	00000000 00000000 0000010	M
30	0	0	00000000 00000000 0000000	M
140	4	4	00000000 00000000 0000000	Н
3100	96	0	00000000 00000000 0000110	M
180	5	5	00000000 00000000 0000000	Н
2180	68	4	00000000 00000000 0000100	M

a. (4 pts) What was the number of cache hits?

4

b. (6 pts) Create a table to show the final state of the cache including the value of each Index, Valid bit, and Tag.

Index	Valid	Tag
	valiu	
0	1	0000000 00000000 0000110
1	0	?
2	0	?
3	0	?
4	1	00000000 00000000 0000100
5	1	00000000 00000000 0000000
6	0	?
7	1	00000000 00000000 0000000
8	0	?
9	0	?
10	0	?
11	0	?
12	0	?
13	0	?
14	0	?
15	0	?

3. (6 pts) Suppose the existence of a different direct-mapped cache design with a 32-bit address. Assume that each address maps to a single byte. Assume this cache scheme uses the following breakdown of the address bits:

Tag	Index	Offset
31-6	5-3	2-0

- a. (2 pts) What is the cache block size (in words)?
 - 3 bits allocated to the byte offset. $2^3 = 8$ bytes $\rightarrow 8/4 = 2$ words
- b. (2 pts) How many entries does this cache have?
 - 3 bits allocated to the index. $2^3 = 8$ entries (i.e. indices)
- c. (2 pts) Including space for the valid bits, tags, and actual block data, how many bits would be required to actually implement this hypothetical cache? For each entry:

8 bytes of data = 64 bits

1 valid bit for each entry

26 bits for each tag

→ Adds up to 91 bits per entry (index)

91 bits * 8 entries = 728 total bits required

4. (6 pts) Again assuming an initially empty cache, repeat the steps described in problem 2.

Puto	Block address	Block Index		Hit
Byte Address	$floor\bigg(\frac{\mathit{byte address}}{\mathit{block size in bytes}}\bigg)$	Block address % num_of_indices	Tag	?
0	0	0	00000000 00000000 00000000 00	М
4	0	0	00000000 00000000 00000000 00	Н
16	2	2	00000000 00000000 00000000 00	M
132	16	0	00000000 00000000 00000000 10	М
232	29	5	00000000 00000000 00000000 11	М
160	20	4	00000000 00000000 00000000 10	M
1024	128	0	00000000 00000000 00000100 00	M
30	3	3	00000000 00000000 00000000 00	M
140	17	1	00000000 00000000 00000000 10	M
3100	387	3	00000000 00000000 00001100 00	M
180	22	6	00000000 00000000 00000000 10	M
2180	272	0	00000000 00000000 00001000 10	М

- a. (2 pts) What was the number of cache hits?
- b. (4 pts) Create a table to show the final state of the cache including the value of each Index, Valid bit, and Tag.

<u> </u>			
Index	Valid	Tag	
0	1	00000000 00000000 00001000 10	
1	1	00000000 00000000 00000000 10	
2	1	00000000 00000000 00000000 00	
3	1	00000000 00000000 00001100 00	
4	1	00000000 00000000 00000000 10	
5	1	00000000 00000000 00000000 11	
6	1	00000000 00000000 00000000 10	
7	0	?	

5. This question is not graded