

$$\begin{aligned} \mathbf{U_A} &= \\ \mathbf{U_B} &= \\ \mathbf{U_C} &= \\ \mathbf{U_D} &= \\ \mathbf{U_E} &= \\ \mathbf{U_{AC}} &= \\ \mathbf{U_{CD}} &= \end{aligned}$$

Solução

- **U**_A= 9 **V**
- U_B= 1 V
- U_C= 4 V
- $U_D = -15 V$
- **U**_E= 6 **V**
- E= 8 V
- **U**_{AC}= **5 V**
- U_{CD}= 19 V

Solução

U_{WT}= 0 V

U_{XY}= - 15 V

U_{YZ}= 5 V

U_Y= Não havendo referência, Uy não tem definição

2.25 Find V_x in the circuit in Fig. P2.25.

Figure P2.25

Solução

Dois métodos: pelo divisor de tensão ou calculando a corrente e multiplicando por R (lei de Ohm)

Vx=10 V

4.

2.28 In the network in Fig. P2.28, if $V_x = 12 \text{ V}$, find V_S .

Figure P2.28

Solução

Vs=18 V

2.30 If $V_o = 4$ V in the network in Fig. P2.30, find V_S .

Figure P2.30

Solução

Vs= - 2V

Determine:

- a) Rt
- b) Calcule I1, I2 e I3
- c) Determine V1 e V2

Solução

Rt=20 kΩ

I₁= 2,4 mA

I₂= 1,92 mA

I₃= 0,48 mA

V₁=28,8 V

V₂=19,2 V

Determine

- a) A Resistência total vista pela fonte, R_t
- b) A corrente total debitada pela fonte (aplique a lei de Ohm)
- c) A corrente em cada ramo do circuito (aplique a lei de Ohm)
- d) A tensão nas resistências R₃ e R₄(aplique a lei de Ohm)

Dica: Tente redesenhar o circuito

Solução

a) R_t =153, 84 Ω

 $b)I_t=0,26 A$

c) I_a =0,1 A, I_b = 0,16 A

d)V_{R4}= 30 V, V_{R3}= 32 V

Determine

- a) A Resistência total vista pela fonte, R_t
- b) A corrente total debitada pela fonte (aplique a lei de Ohm)
- c) A corrente em cada ramo do circuito (aplique o divisor de corrente)
- d) A tensão nas resistências R₁ e R₄ (aplique o divisor de tensão)

Dica: Tente redesenhar o circuito

Solução

a) $R_t = R_3 + R_4 / / (R_1 + R_2) = 9k\Omega$

 $b)I_t=5mA$

c) $I_1=3$ mA, $I_2=2$ mA

d) V_{R4} =30 V, V_{R1} =18V

Determine

a)O número de correntes existentes no circuito

b)O número de tensões

c)Todas as tensões, correntes e potências

d)Quais são os componentes que absorvem e quais fornecem energia

Solução

a)Uma corrente

b)4 tensões

c) I= 3/5 A=0,6A, sentido verdadeiro nos sentido dos ponteiros do relógio, $V_{3\Omega}$ =9/5 $V_{3\Omega}$ =1,8V, $V_{2\Omega}$ =1,2 V, P_{10V} =6 W fornecido, P_{7V} =4,2 W absorvida, $P_{2\Omega}$ =0,72 Wabsorvida, $P_{3\Omega}$ =1,08 Wabsorvida

Determine o valor de potência em jogo numa resistência de $47k\Omega$ percorrida por uma corrente constante de 5A.

Solução: P=1,175 MW

10.

Determine o valor de potência em jogo numa fonte ideal de tensão de 120V que alimenta uma resistência de 100Ω

Solução: P=144 W

11.

Determine a energia absorvida durante duas horas por uma resistência de $22k\Omega$ sujeita a uma tensão de 54V.

Solução: E=954,327 J

12.

Admitindo que o preço de energia é de 0,15€/kWh, determine o custo mensal do funcionamento de uma lâmpada de 60 W que está ligada 8 horas por dia, 5 dias por semana (5 semanas).

Solução: Preço=0,15€*0,060*8*5*5=1,8€

13.

Determine o valor de energia absorvida durante 90 s por um condutor ideal percorrido por uma corrente constante de 200 A

Solução: E=0J

14.

Preencha o quadro

Dica: Utilize a lei dos nós para resolver a corrente que circula do ramo D para a malha da direita.

Solução

 $U_A=2V$, $U_B=-5V$, $U_C=5V$, $U_D=10V$, $U_F=12V$, $U_G=18V$, $U_H=12V$, U=-5V

Preencha o quadro. Utilize a lei dos nós para resolver o problema.

I1=-30 A, I2=60A, I3=-I4, U=-60*2/3=-40 V, I4=-40/1= -40A

16.

A fonte ideal de tensão de 8V recebe energia do circuito ou fornece-lhe energia?

 $U_{\text{A}}\text{=}10\text{V}$, $U_{\text{B}}\text{=}0\text{V}$, $U_{\text{D}}\text{=}-35\text{V}$, $U_{\text{E}}\text{=}5\text{V}$, $U_{\text{G}}\text{=}60\text{V}$, $U_{\text{R}}\text{=}-40\text{V}$, E=75V , I=50 A, $P_{8\text{V}}\text{=}16$ W recebe energia

A tensão U2 é medida recorrendo a um voltímetro de resistência interna Rv.

U = 50V (constante) $R_1 = 100kΩ$ $R_2 = 100kΩ$

Calcule o valor de U2 quando

$$R_V = 1 \Omega$$

$$R_V = 100k\Omega$$

$$R_V = 1M\Omega$$

Para $R_v{=}1\Omega,\,U_2{=}0{,}49~mV$, paraRv=100k $\Omega,\,U_2{=}16{,}67~V$, paraRv=1M $\Omega,\,U_2{=}23{,}81~V$

A corrente I2 é medida recorrendo a um amperímetro de resistência interna RA.

Calcule o valor de I2 quando

$$R_A = 0, 1\Omega$$

$$R_A = 10\Omega$$

$$R_A = 1k\Omega$$

Para R_A =0,1 Ω , I_2 =4,97 A, para R_A =10 Ω , I_2 =3,33 A , para R_A =1k Ω , I_2 =0,098 A

Relativamente ao circuito da figura:

Com o interruptor K aberto, determine:

o sentido e o valor da corrente I;

a tensão e a potência em jogo em cada componente do circuito.

Com o interruptor K fechado, determine:

o sentido e o valor da corrente I;

a tensão e a potência em jogo em cada componente do circuito.

K aberto: Sentidohorário, valor I=2 A, P3=12W, consumido, P2=8W consumido, fonte 20W fornecido

K fechado, sentido horário, I=1,25 A, P3=18,75 consumido, P2=3,125 consumido, fonte 25W fornecido

20.

Relativamente ao circuito da figura, determinar a corrente nas resistências utilizando:

- -As leis de Kirchhoff das tensões e dos nós
- -O método das correntes nas malhas

-O método das tensões nos nós

Confirme a corrente na resistência de 5 Ω utilizando

- O teorema da sobreposição
- O teorema de Thévenin
- O teorema de Norton

I1=6/29 A, I2=-7/29 A, I3=13/29 A, R_{th} =4/5 Ω , V_{th} =-7/5V, R_{N} =4/5 Ω , I_{N} =-7/4A

21.

In the circuit above, V1=5 volts. R1= 50Ω , R2= 1000Ω , R3= 2000Ω , R4= 3000Ω

- a) Determine a tensão em R1
- b) Determine a corrente em R4

VR1=0,42 V, VR4=4,58 V, IR4=1,53 mA

22.

The circuit below is used to divide up a DC voltage for a digital to analog converter. Assume that R1=1K ohms, R2=2K ohms, R3=1K ohms, R4=2K ohms, R5=1k ohms, R6=1k ohms, and V1 = 8 volts.

- a)Determine a resistência equivalente vista pela fonte V1.
- b)Determine as tensões nos nós A, B e C
- c)Determine as correntes nas resistências R1, R3 e R5

Req=R1+ R2//(R3+(R4//(R5+R6)))= $2k\Omega$ VA=8/2, VB=8/4, VC=8/8 IR1=4mA, IR3=2 mA, IR5=1mA