PBG 200A Notes

Sam Fleischer

September 26, 2016

1 Model Selection

Consider a time series y_1, y_2, \dots, y_T of log densities. Recall process error vs. observational error.

1.1 Process Error

$$x_{t+1} = g(x_t, a) + \underbrace{E_{t+1}^{\mathbf{p}}}_{\text{process error}} \tag{1}$$

 $y_t = x_t$ (no observational error) (2)

We assume the random variables $E_{t+1}^{\rm p}$ are IID (independent, identically distributed) Normal with mean 0 and variance σ^2 .

We run the model and ask..

- What value of a (parameter or vector of parameters) is most likely to generate the observed data y_t ?
 - For example, for a given a, and given y_1 , what is the likelihood, what is the probability that the model produce y_2 ?
 - This is the same as asking: what is the likelihood a normal with mean 0 and variance σ^2 yields a $y_2 g(y_1, a)$?
 - The answer is

$$p(y_2 - g(y_1, a)) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{-(y_2 - g(y_1, a))^2}{2\sigma^2}\right]$$
(3)

and we'd like to maximize this value with respect to a (optimization problem..)

Now we ask:

- What is the likelihood that the random variables $E_{t+1}^p = y_{t+1} g(y_t, a)$ for $1 \le t \le T 1$?
- By independence, the likelihood a produces the data, denoted L(a), is

$$L(a) = \prod_{t=1}^{T-1} \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y_{t+1} - g(y_t, a))^2}{2\sigma^2} \right] \right]$$
 (4)

$$\implies \log L(a) = \sum_{t=1}^{T-1} \left[\log \frac{1}{\sqrt{2\pi}\sigma} - \frac{(y_{t+1} - g(y_t, a))^2}{2\sigma^2} \right]$$
 (5)

So maximizing $\log L(a)$ is the same as minimizing the sum

$$\sum_{t=1}^{T-1} (y_{t+1} - g(y_t, a))^2 \tag{6}$$

1.1.1 Chickadee Data

We define the model g(x, a) by the following:

$$N_{t+1} = N_t \exp[a_1 + a_2 N_t], \quad \text{with} \quad x = \log N$$
 (7)

$$\implies x_{t+1} = x_t + a_1 + a_2 e^{x_t} =: g(x_t, [a_1, a_2])$$
(8)

Off to RStudio... a negative value of a_2 corresponds to some negative density dependence.