CHAPTER

8

INSTANCE-BASED LEARNING

In contrast to learning methods that construct a general, explicit description of the target function when training examples are provided, instance-based learning methods simply store the training examples. Generalizing beyond these examples is postponed until a new instance must be classified. Each time a new query instance is encountered, its relationship to the previously stored examples is examined in order to assign a target function value for the new instance. Instance-based learning includes nearest neighbor and locally weighted regression methods that assume instances can be represented as points in a Euclidean space. It also includes case-based reasoning methods that use more complex, symbolic representations for instances. Instance-based methods are sometimes referred to as "lazy" learning methods because they delay processing until a new instance must be classified. A key advantage of this kind of delayed, or lazy, learning is that instead of estimating the target function once for the entire instance space, these methods can estimate it locally and differently for each new instance to be classified.

8.1 INTRODUCTION

Instance-based learning methods such as nearest neighbor and locally weighted regression are conceptually straightforward approaches to approximating real-valued or discrete-valued target functions. Learning in these algorithms consists of simply storing the presented training data. When a new query instance is encountered, a set of similar related instances is retrieved from memory and used to classify the

new query instance. One key difference between these approaches and the methods discussed in other chapters is that instance-based approaches can construct a different approximation to the target function for each distinct query instance that must be classified. In fact, many techniques construct only a local approximation to the target function that applies in the neighborhood of the new query instance, and never construct an approximation designed to perform well over the entire instance space. This has significant advantages when the target function is very complex, but can still be described by a collection of less complex local approximations.

Instance-based methods can also use more complex, symbolic representations for instances. In case-based learning, instances are represented in this fashion and the process for identifying "neighboring" instances is elaborated accordingly. Case-based reasoning has been applied to tasks such as storing and reusing past experience at a help desk, reasoning about legal cases by referring to previous cases, and solving complex scheduling problems by reusing relevant portions of previously solved problems.

One disadvantage of instance-based approaches is that the cost of classifying new instances can be high. This is due to the fact that nearly all computation takes place at classification time rather than when the training examples are first encountered. Therefore, techniques for efficiently indexing training examples are a significant practical issue in reducing the computation required at query time. A second disadvantage to many instance-based approaches, especially nearestneighbor approaches, is that they typically consider all attributes of the instances when attempting to retrieve similar training examples from memory. If the target concept depends on only a few of the many available attributes, then the instances that are truly most "similar" may well be a large distance apart.

In the next section we introduce the k-Nearest Neighbor learning algorithm, including several variants of this widely-used approach. The subsequent section discusses locally weighted regression, a learning method that constructs local approximations to the target function and that can be viewed as a generalization of k-Nearest Neighbor algorithms. We then describe radial basis function networks, which provide an interesting bridge between instance-based and neural network learning algorithms. The next section discusses case-based reasoning, an instance-based approach that employs symbolic representations and knowledgebased inference. This section includes an example application of case-based reasoning to a problem in engineering design. Finally, we discuss the fundamental differences in capabilities that distinguish lazy learning methods discussed in this chapter from eager learning methods discussed in the other chapters of this book.

k-Nearest Neighbor LEARNING

The most basic instance-based method is the k-Nearest Neighbor algorithm. This algorithm assumes all instances correspond to points in the n-dimensional space \mathfrak{R}^n . The nearest neighbors of an instance are defined in terms of the standard Euclidean distance. More precisely, let an arbitrary instance x be described by the feature vector

$$\langle a_1(x), a_2(x), \ldots a_n(x) \rangle$$

where $a_r(x)$ denotes the value of the rth attribute of instance x. Then the distance between two instances x_i and x_j is defined to be $d(x_i, x_j)$, where

$$d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

In nearest-neighbor learning the target function may be either discrete-valued or real-valued. Let us first consider learning discrete-valued target functions of the form $f: \Re^n \to V$, where V is the finite set $\{v_1, \dots v_s\}$. The k-NEAREST NEIGHBOR algorithm for approximating a discrete-valued target function is given in Table 8.1. As shown there, the value $\hat{f}(x_a)$ returned by this algorithm as its estimate of $f(x_a)$ is just the most common value of f among the k training examples nearest to x_q . If we choose k=1, then the 1-Nearest Neighbor algorithm assigns to $\hat{f}(x_q)$ the value $f(x_i)$ where x_i is the training instance nearest to x_q . For larger values of k, the algorithm assigns the most common value among the k nearest training examples.

Figure 8.1 illustrates the operation of the k-Nearest Neighbor algorithm for the case where the instances are points in a two-dimensional space and where the target function is boolean valued. The positive and negative training examples are shown by "+" and "-" respectively. A query point x_q is shown as well. Note the 1-Nearest Neighbor algorithm classifies x_a as a positive example in this figure, whereas the 5-Nearest Neighbor algorithm classifies it as a negative example.

What is the nature of the hypothesis space H implicitly considered by the k-Nearest Neighbor algorithm? Note the k-Nearest Neighbor algorithm never forms an explicit general hypothesis \hat{f} regarding the target function f. It simply computes the classification of each new query instance as needed. Nevertheless,

• For each training example $\langle x, f(x) \rangle$, add the example to the list training examples

Classification algorithm:

- Given a query instance x_q to be classified,
 - Let $x_1 ext{...} x_k$ denote the k instances from training examples that are nearest to x_q
 - Return

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k \delta(v, f(x_i))$$

where $\delta(a, b) = 1$ if a = b and where $\delta(a, b) = 0$ otherwise.

TABLE 8.1

FIGURE 8.1

k-Nearest Neighbor. A set of positive and negative training examples is shown on the left, along with a query instance x_q to be classified. The 1-Nearest Neighbor algorithm classifies x_q positive, whereas 5-NEAREST NEIGHBOR classifies it as negative. On the right is the decision surface induced by the 1-Nearest Neighbor algorithm for a typical set of training examples. The convex polygon surrounding each training example indicates the region of instance space closest to that point (i.e., the instances for which the 1-NEAREST NEIGHBOR algorithm will assign the classification belonging to that training example).

we can still ask what the implicit general function is, or what classifications would be assigned if we were to hold the training examples constant and query the algorithm with every possible instance in X. The diagram on the right side of Figure 8.1 shows the shape of this decision surface induced by 1-NEAREST NEIGHBOR over the entire instance space. The decision surface is a combination of convex polyhedra surrounding each of the training examples. For every training example, the polyhedron indicates the set of query points whose classification will be completely determined by that training example. Query points outside the polyhedron are closer to some other training example. This kind of diagram is often called the *Voronoi diagram* of the set of training examples.

The k-Nearest Neighbor algorithm is easily adapted to approximating continuous-valued target functions. To accomplish this, we have the algorithm calculate the mean value of the k nearest training examples rather than calculate their most common value. More precisely, to approximate a real-valued target function $f: \Re^n \to \Re$ we replace the final line of the above algorithm by the line

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k} \tag{8.1}$$

8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm

One obvious refinement to the k-Nearest Neighbor algorithm is to weight the contribution of each of the k neighbors according to their distance to the query point x_a , giving greater weight to closer neighbors. For example, in the algorithm of Table 8.1, which approximates discrete-valued target functions, we might weight the vote of each neighbor according to the inverse square of its distance from x_a .

This can be accomplished by replacing the final line of the algorithm by

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k w_i \delta(v, f(x_i))$$
 (8.2)

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2} \tag{8.3}$$

To accommodate the case where the query point x_q exactly matches one of the training instances x_i and the denominator $d(x_q, x_i)^2$ is therefore zero, we assign $\hat{f}(x_q)$ to be $f(x_i)$ in this case. If there are several such training examples, we assign the majority classification among them.

We can distance-weight the instances for real-valued target functions in a similar fashion, replacing the final line of the algorithm in this case by

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$
 (8.4)

where w_i is as defined in Equation (8.3). Note the denominator in Equation (8.4) is a constant that normalizes the contributions of the various weights (e.g., it assures that if $f(x_i) = c$ for all training examples, then $\hat{f}(x_q) \leftarrow c$ as well).

Note all of the above variants of the k-NEAREST NEIGHBOR algorithm consider only the k nearest neighbors to classify the query point. Once we add distance weighting, there is really no harm in allowing all training examples to have an influence on the classification of the x_q , because very distant examples will have very little effect on $\hat{f}(x_q)$. The only disadvantage of considering all examples is that our classifier will run more slowly. If all training examples are considered when classifying a new query instance, we call the algorithm a global method. If only the nearest training examples are considered, we call it a local method. When the rule in Equation (8.4) is applied as a global method, using all training examples, it is known as Shepard's method (Shepard 1968).

8.2.2 Remarks on k-Nearest Neighbor Algorithm

The distance-weighted k-Nearest Neighbor algorithm is a highly effective inductive inference method for many practical problems. It is robust to noisy training data and quite effective when it is provided a sufficiently large set of training data. Note that by taking the weighted average of the k neighbors nearest to the query point, it can smooth out the impact of isolated noisy training examples.

What is the inductive bias of k-Nearest Neighbor? The basis for classifying new query points is easily understood based on the diagrams in Figure 8.1. The inductive bias corresponds to an assumption that the classification of an instance x_q will be most similar to the classification of other instances that are nearby in Euclidean distance.

One practical issue in applying k-Nearest Neighbor algorithms is that the distance between instances is calculated based on all attributes of the instance

(i.e., on all axes in the Euclidean space containing the instances). This lies in contrast to methods such as rule and decision tree learning systems that select only a subset of the instance attributes when forming the hypothesis. To see the effect of this policy, consider applying k-Nearest Neighbor to a problem in which each instance is described by 20 attributes, but where only 2 of these attributes are relevant to determining the classification for the particular target function. In this case, instances that have identical values for the 2 relevant attributes may nevertheless be distant from one another in the 20-dimensional instance space. As a result, the similarity metric used by k-Nearest Neighbor—depending on all 20 attributes—will be misleading. The distance between neighbors will be dominated by the large number of irrelevant attributes. This difficulty, which arises when many irrelevant attributes are present, is sometimes referred to as the curse of dimensionality. Nearest-neighbor approaches are especially sensitive to this problem.

One interesting approach to overcoming this problem is to weight each attribute differently when calculating the distance between two instances. This corresponds to stretching the axes in the Euclidean space, shortening the axes that correspond to less relevant attributes, and lengthening the axes that correspond to more relevant attributes. The amount by which each axis should be stretched can be determined automatically using a cross-validation approach. To see how, first note that we wish to stretch (multiply) the jth axis by some factor z_i , where the values $z_1 ldots z_n$ are chosen to minimize the true classification error of the learning algorithm. Second, note that this true error can be estimated using crossvalidation. Hence, one algorithm is to select a random subset of the available data to use as training examples, then determine the values of $z_1 ldots z_n$ that lead to the minimum error in classifying the remaining examples. By repeating this process multiple times the estimate for these weighting factors can be made more accurate. This process of stretching the axes in order to optimize the performance of k-Nearest Neighbor provides a mechanism for suppressing the impact of irrelevant attributes.

An even more drastic alternative is to completely eliminate the least relevant attributes from the instance space. This is equivalent to setting some of the z_i scaling factors to zero. Moore and Lee (1994) discuss efficient cross-validation methods for selecting relevant subsets of the attributes for k-Nearest Neighbor algorithms. In particular, they explore methods based on leave-one-out crossvalidation, in which the set of m training instances is repeatedly divided into a training set of size m-1 and test set of size 1, in all possible ways. This leave-oneout approach is easily implemented in k-Nearest Neighbor algorithms because no additional training effort is required each time the training set is redefined. Note both of the above approaches can be seen as stretching each axis by some constant factor. Alternatively, we could stretch each axis by a value that varies over the instance space. However, as we increase the number of degrees of freedom available to the algorithm for redefining its distance metric in such a fashion, we also increase the risk of overfitting. Therefore, the approach of locally stretching the axes is much less common.

One additional practical issue in applying k-Nearest Neighbor is efficient memory indexing. Because this algorithm delays all processing until a new query is received, significant computation can be required to process each new query. Various methods have been developed for indexing the stored training examples so that the nearest neighbors can be identified more efficiently at some additional cost in memory. One such indexing method is the kd-tree (Bentley 1975; Friedman et al. 1977), in which instances are stored at the leaves of a tree, with nearby instances stored at the same or nearby nodes. The internal nodes of the tree sort the new query x_q to the relevant leaf by testing selected attributes of x_q .

8.2.3 A Note on Terminology

Much of the literature on nearest-neighbor methods and weighted local regression uses a terminology that has arisen from the field of statistical pattern recognition. In reading that literature, it is useful to know the following terms:

- Regression means approximating a real-valued target function.
- Residual is the error $\hat{f}(x) f(x)$ in approximating the target function.
- Kernel function is the function of distance that is used to determine the weight of each training example. In other words, the kernel function is the function K such that $w_i = K(d(x_i, x_q))$.

8.3 LOCALLY WEIGHTED REGRESSION

The nearest-neighbor approaches described in the previous section can be thought of as approximating the target function f(x) at the single query point $x = x_q$. Locally weighted regression is a generalization of this approach. It constructs an explicit approximation to f over a local region surrounding x_q . Locally weighted regression uses nearby or distance-weighted training examples to form this local approximation to f. For example, we might approximate the target function in the neighborhood surrounding x_q using a linear function, a quadratic function, a multilayer neural network, or some other functional form. The phrase "locally weighted regression" is called *local* because the function is approximated based only on data near the query point, weighted because the contribution of each training example is weighted by its distance from the query point, and regression because this is the term used widely in the statistical learning community for the problem of approximating real-valued functions.

Given a new query instance x_q , the general approach in locally weighted regression is to construct an approximation \hat{f} that fits the training examples in the neighborhood surrounding x_q . This approximation is then used to calculate the value $\hat{f}(x_q)$, which is output as the estimated target value for the query instance. The description of \hat{f} may then be deleted, because a different local approximation will be calculated for each distinct query instance.

8.3.1 Locally Weighted Linear Regression

Let us consider the case of locally weighted regression in which the target function f is approximated near x_q using a linear function of the form

$$\hat{f}(x) = w_0 + w_1 a_1(x) + \dots + w_n a_n(x)$$

As before, $a_i(x)$ denotes the value of the *i*th attribute of the instance x.

Recall that in Chapter 4 we discussed methods such as gradient descent to find the coefficients $w_0 ldots w_n$ to minimize the error in fitting such linear functions to a given set of training examples. In that chapter we were interested in a global approximation to the target function. Therefore, we derived methods to choose weights that minimize the squared error summed over the set D of training examples

$$E = \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2$$
 (8.5)

which led us to the gradient descent training rule

$$\Delta w_j = \eta \sum_{x \in D} (f(x) - \hat{f}(x)) a_j(x)$$
(8.6)

where η is a constant learning rate, and where the training rule has been reexpressed from the notation of Chapter 4 to fit our current notation (i.e., $t \to f(x)$, $o \to \hat{f}(x)$, and $x_i \to a_i(x)$).

How shall we modify this procedure to derive a local approximation rather than a global one? The simple way is to redefine the error criterion E to emphasize fitting the local training examples. Three possible criteria are given below. Note we write the error $E(x_q)$ to emphasize the fact that now the error is being defined as a function of the query point x_q .

1. Minimize the squared error over just the k nearest neighbors:

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2$$

2. Minimize the squared error over the entire set D of training examples, while weighting the error of each training example by some decreasing function K of its distance from x_q :

$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

3. Combine 1 and 2:

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

Criterion two is perhaps the most esthetically pleasing because it allows every training example to have an impact on the classification of x_q . However,

this approach requires computation that grows linearly with the number of training examples. Criterion three is a good approximation to criterion two and has the advantage that computational cost is independent of the total number of training examples; its cost depends only on the number k of neighbors considered.

If we choose criterion three above and rederive the gradient descent rule using the same style of argument as in Chapter 4, we obtain the following training rule (see Exercise 8.1):

$$\Delta w_j = \eta \sum_{x \in k \text{ nearest nbrs of } x_q} K(d(x_q, x)) (f(x) - \hat{f}(x)) a_j(x)$$
 (8.7)

Notice the only differences between this new rule and the rule given by Equation (8.6) are that the contribution of instance x to the weight update is now multiplied by the distance penalty $K(d(x_q, x))$, and that the error is summed over only the k nearest training examples. In fact, if we are fitting a linear function to a fixed set of training examples, then methods much more efficient than gradient descent are available to directly solve for the desired coefficients $w_0 \dots w_n$. Atkeson et al. (1997a) and Bishop (1995) survey several such methods.

8.3.2 Remarks on Locally Weighted Regression

Above we considered using a linear function to approximate f in the neighborhood of the query instance x_q . The literature on locally weighted regression contains a broad range of alternative methods for distance weighting the training examples, and a range of methods for locally approximating the target function. In most cases, the target function is approximated by a constant, linear, or quadratic function. More complex functional forms are not often found because (1) the cost of fitting more complex functions for each query instance is prohibitively high, and (2) these simple approximations model the target function quite well over a sufficiently small subregion of the instance space.

8.4 RADIAL BASIS FUNCTIONS

One approach to function approximation that is closely related to distance-weighted regression and also to artificial neural networks is learning with radial basis functions (Powell 1987; Broomhead and Lowe 1988; Moody and Darken 1989). In this approach, the learned hypothesis is a function of the form

$$\hat{f}(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$
 (8.8)

where each x_u is an instance from X and where the kernel function $K_u(d(x_u, x))$ is defined so that it decreases as the distance $d(x_u, x)$ increases. Here k is a user-provided constant that specifies the number of kernel functions to be included. Even though $\hat{f}(x)$ is a global approximation to f(x), the contribution from each of the $K_u(d(x_u, x))$ terms is localized to a region nearby the point x_u . It is common

to choose each function $K_u(d(x_u, x))$ to be a Gaussian function (see Table 5.4) centered at the point x_{μ} with some variance σ_{μ}^2 .

$$K_u(d(x_u, x)) = e^{\frac{1}{2\sigma_u^2}d^2(x_u, x)}$$

We will restrict our discussion here to this common Gaussian kernel function. As shown by Hartman et al. (1990), the functional form of Equation (8.8) can approximate any function with arbitrarily small error, provided a sufficiently large number k of such Gaussian kernels and provided the width σ^2 of each kernel can be separately specified.

The function given by Equation (8.8) can be viewed as describing a twolayer network where the first layer of units computes the values of the various $K_u(d(x_u, x))$ and where the second layer computes a linear combination of these first-layer unit values. An example radial basis function (RBF) network is illustrated in Figure 8.2.

Given a set of training examples of the target function, RBF networks are typically trained in a two-stage process. First, the number k of hidden units is determined and each hidden unit u is defined by choosing the values of x_u and σ_u^2 that define its kernel function $K_u(d(x_u, x))$. Second, the weights w_u are trained to maximize the fit of the network to the training data, using the global error criterion given by Equation (8.5). Because the kernel functions are held fixed during this second stage, the linear weight values w_u can be trained very efficiently.

Several alternative methods have been proposed for choosing an appropriate number of hidden units or, equivalently, kernel functions. One approach is to allocate a Gaussian kernel function for each training example $\langle x_i, f(x_i) \rangle$, centering this Gaussian at the point x_i . Each of these kernels may be assigned the same width σ^2 . Given this approach, the RBF network learns a global approximation to the target function in which each training example $\langle x_i, f(x_i) \rangle$ can influence the value of \hat{f} only in the neighborhood of x_i . One advantage of this choice of kernel functions is that it allows the RBF network to fit the training data exactly. That is, for any set of m training examples the weights $w_0 \dots w_m$ for combining the m Gaussian kernel functions can be set so that $\hat{f}(x_i) = f(x_i)$ for each training example $\langle x_i, f(x_i) \rangle$.

FIGURE 8.2

A radial basis function network. Each hidden unit produces an activation determined by a Gaussian function centered at some instance x_u . Therefore, its activation will be close to zero unless the input x is near x_u . The output unit produces a linear combination of the hidden unit activations. Although the network shown here has just one output, multiple output units can also be included.

A second approach is to choose a set of kernel functions that is smaller than the number of training examples. This approach can be much more efficient than the first approach, especially when the number of training examples is large. The set of kernel functions may be distributed with centers spaced uniformly throughout the instance space X. Alternatively, we may wish to distribute the centers nonuniformly, especially if the instances themselves are found to be distributed nonuniformly over X. In this later case, we can pick kernel function centers by randomly selecting a subset of the training instances, thereby sampling the underlying distribution of instances. Alternatively, we may identify prototypical clusters of instances, then add a kernel function centered at each cluster. The placement of the kernel functions in this fashion can be accomplished using unsupervised clustering algorithms that fit the training instances (but not their target values) to a mixture of Gaussians. The EM algorithm discussed in Section 6.12.1 provides one algorithm for choosing the means of a mixture of k Gaussians to best fit the observed instances. In the case of the EM algorithm, the means are chosen to maximize the probability of observing the instances x_i , given the k estimated means. Note the target function value $f(x_i)$ of the instance does not enter into the calculation of kernel centers by unsupervised clustering methods. The only role of the target values $f(x_i)$ in this case is to determine the output layer weights w_u .

To summarize, radial basis function networks provide a global approximation to the target function, represented by a linear combination of many local kernel functions. The value for any given kernel function is non-negligible only when the input x falls into the region defined by its particular center and width. Thus, the network can be viewed as a smooth linear combination of many local approximations to the target function. One key advantage to RBF networks is that they can be trained much more efficiently than feedforward networks trained with BACKPROPAGATION. This follows from the fact that the input layer and the output layer of an RBF are trained separately.

8.5 CASE-BASED REASONING

Instance-based methods such as k-Nearest Neighbor and locally weighted regression share three key properties. First, they are lazy learning methods in that they defer the decision of how to generalize beyond the training data until a new query instance is observed. Second, they classify new query instances by analyzing similar instances while ignoring instances that are very different from the query. Third, they represent instances as real-valued points in an n-dimensional Euclidean space. Case-based reasoning (CBR) is a learning paradigm based on the first two of these principles, but not the third. In CBR, instances are typically represented using more rich symbolic descriptions, and the methods used to retrieve similar instances are correspondingly more elaborate. CBR has been applied to problems such as conceptual design of mechanical devices based on a stored library of previous designs (Sycara et al. 1992), reasoning about new legal cases based on previous rulings (Ashley 1990), and solving planning and

scheduling problems by reusing and combining portions of previous solutions to similar problems (Veloso 1992).

Let us consider a prototypical example of a case-based reasoning system to ground our discussion. The CADET system (Sycara et al. 1992) employs casebased reasoning to assist in the conceptual design of simple mechanical devices such as water faucets. It uses a library containing approximately 75 previous designs and design fragments to suggest conceptual designs to meet the specifications of new design problems. Each instance stored in memory (e.g., a water pipe) is represented by describing both its structure and its qualitative function. New design problems are then presented by specifying the desired function and requesting the corresponding structure. This problem setting is illustrated in Figure 8.3. The top half of the figure shows the description of a typical stored case called a T-junction pipe. Its function is represented in terms of the qualitative relationships among the waterflow levels and temperatures at its inputs and outputs. In the functional description at its right, an arrow with a "+" label indicates that the variable at the arrowhead increases with the variable at its tail. For example, the output waterflow Q_3 increases with increasing input waterflow Q_1 . Similarly,

A stored case: T-junction pipe

Structure:

Function:

A problem specification: Water faucet

Structure:

Function:

FIGURE 8.3

A stored case and a new problem. The top half of the figure describes a typical design fragment in the case library of CADET. The function is represented by the graph of qualitative dependencies among the T-junction variables (described in the text). The bottom half of the figure shows a typical design problem.

a "-" label indicates that the variable at the head decreases with the variable at the tail. The bottom half of this figure depicts a new design problem described by its desired function. This particular function describes the required behavior of one type of water faucet. Here Q_c refers to the flow of cold water into the faucet, Q_h to the input flow of hot water, and Q_m to the single mixed flow out of the faucet. Similarly, T_c , T_h , and T_m refer to the temperatures of the cold water, hot water, and mixed water respectively. The variable C_t denotes the control signal for temperature that is input to the faucet, and C_f denotes the control signal for waterflow. Note the description of the desired function specifies that these controls C_t and C_f are to influence the water flows Q_c and Q_h , thereby indirectly influencing the faucet output flow Q_m and temperature T_m .

Given this functional specification for the new design problem, CADET searches its library for stored cases whose functional descriptions match the design problem. If an exact match is found, indicating that some stored case implements exactly the desired function, then this case can be returned as a suggested solution to the design problem. If no exact match occurs, CADET may find cases that match various subgraphs of the desired functional specification. In Figure 8.3, for example, the T-junction function matches a subgraph of the water faucet function graph. More generally, CADET searches for subgraph isomorphisms between the two function graphs, so that parts of a case can be found to match parts of the design specification. Furthermore, the system may elaborate the original function specification graph in order to create functionally equivalent graphs that may match still more cases. It uses general knowledge about physical influences to create these elaborated function graphs. For example, it uses a rewrite rule that allows it to rewrite the influence

$$A \stackrel{+}{\rightarrow} B$$

as

$$A \stackrel{+}{\rightarrow} x \stackrel{+}{\rightarrow} B$$

This rewrite rule can be interpreted as stating that if B must increase with A, then it is sufficient to find some other quantity x such that B increases with x, and x increases with A. Here x is a universally quantified variable whose value is bound when matching the function graph against the case library. In fact, the function graph for the faucet shown in Figure 8.3 is an elaboration of the original functional specification produced by applying such rewrite rules.

By retrieving multiple cases that match different subgraphs, the entire design can sometimes be pieced together. In general, the process of producing a final solution from multiple retrieved cases can be very complex. It may require designing portions of the system from first principles, in addition to merging retrieved portions from stored cases. It may also require backtracking on earlier choices of design subgoals and, therefore, rejecting cases that were previously retrieved. CADET has very limited capabilities for combining and adapting multiple retrieved cases to form the final design and relies heavily on the user for this adaptation stage of the process. As described by Sycara et al. (1992), CADET is

a research prototype system intended to explore the potential role of case-based reasoning in conceptual design. It does not have the range of analysis algorithms needed to refine these abstract conceptual designs into final designs.

It is instructive to examine the correspondence between the problem setting of CADET and the general setting for instance-based methods such as k-Nearest NEIGHBOR. In CADET each stored training example describes a function graph along with the structure that implements it. New queries correspond to new function graphs. Thus, we can map the CADET problem into our standard notation by defining the space of instances X to be the space of all function graphs. The target function f maps function graphs to the structures that implement them. Each stored training example $\langle x, f(x) \rangle$ is a pair that describes some function graph x and the structure f(x) that implements x. The system must learn from the training example cases to output the structure $f(x_q)$ that successfully implements the input function graph query x_a .

The above sketch of the CADET system illustrates several generic properties of case-based reasoning systems that distinguish them from approaches such as k-Nearest Neighbor.

- Instances or cases may be represented by rich symbolic descriptions, such as the function graphs used in CADET. This may require a similarity metric different from Euclidean distance, such as the size of the largest shared subgraph between two function graphs.
- Multiple retrieved cases may be combined to form the solution to the new problem. This is similar to the k-Nearest Neighbor approach, in that multiple similar cases are used to construct a response for the new query. However, the process for combining these multiple retrieved cases can be very different, relying on knowledge-based reasoning rather than statistical methods.
- There may be a tight coupling between case retrieval, knowledge-based reasoning, and problem solving. One simple example of this is found in CADET, which uses generic knowledge about influences to rewrite function graphs during its attempt to find matching cases. Other systems have been developed that more fully integrate case-based reasoning into general searchbased problem-solving systems. Two examples are ANAPRON (Golding and Rosenbloom 1991) and Prodigy/Analogy (Veloso 1992).

To summarize, case-based reasoning is an instance-based learning method in which instances (cases) may be rich relational descriptions and in which the retrieval and combination of cases to solve the current query may rely on knowledgebased reasoning and search-intensive problem-solving methods. One current research issue in case-based reasoning is to develop improved methods for indexing cases. The central issue here is that syntactic similarity measures (e.g., subgraph isomorphism between function graphs) provide only an approximate indication of the relevance of a particular case to a particular problem. When the CBR system attempts to reuse the retrieved cases it may uncover difficulties that were not

captured by this syntactic similarity measure. For example, in CADET the multiple retrieved design fragments may turn out to be incompatible with one another, making it impossible to combine them into a consistent final design. When this occurs in general, the CBR system may backtrack and search for additional cases, adapt the existing cases, or resort to other problem-solving methods. Importantly, when such difficulties are detected they also provide training data for improving the similarity metric or, equivalently, the indexing structure for the case library. In particular, if a case is retrieved based on the similarity metric, but found to be irrelevant based on further analysis, then the similarity metric should be refined to reject this case for similar subsequent queries.

8.6 REMARKS ON LAZY AND EAGER LEARNING

In this chapter we considered three lazy learning methods: the k-Nearest Neigh-BOR algorithm, locally weighted regression, and case-based reasoning. We call these methods lazy because they defer the decision of how to generalize beyond the training data until each new query instance is encountered. We also discussed one eager learning method: the method for learning radial basis function networks. We call this method eager because it generalizes beyond the training data before observing the new query, committing at training time to the network structure and weights that define its approximation to the target function. In this same sense, every other algorithm discussed elsewhere in this book (e.g., BACKPROPAGATION, C4.5) is an eager learning algorithm.

Are there important differences in what can be achieved by lazy versus eager learning? Let us distinguish between two kinds of differences: differences in computation time and differences in the classifications produced for new queries. There are obviously differences in computation time between eager and lazy methods. For example, lazy methods will generally require less computation during training, but more computation when they must predict the target value for a new query.

The more fundamental question is whether there are essential differences in the inductive bias that can be achieved by lazy versus eager methods. The key difference between lazy and eager methods in this regard is

- \bullet Lazy methods may consider the query instance x_q when deciding how to generalize beyond the training data D.
- \bullet Eager methods cannot. By the time they observe the query instance x_q they have already chosen their (global) approximation to the target function.

Does this distinction affect the generalization accuracy of the learner? It does if we require that the lazy and eager learner employ the same hypothesis space H. To illustrate, consider the hypothesis space consisting of linear functions. The locally weighted linear regression algorithm discussed earlier is a lazy learning method based on this hypothesis space. For each new query x_q it generalizes from the training data by choosing a new hypothesis based on the training examples near x_q . In contrast, an eager learner that uses the same hypothesis space of linear functions