

# Stochastic methods in Mathematical Modelling

Lecture 3. Distribution sampling 1

Cumulative distribution function for probability distribution function P(x)



N.B. CDF can also be defined for discrete and mixed distributions



Cumulative distribution function  $F_x(x)$ 



$$P(x) = \frac{dF_X(x)}{dx}$$

if the derivative exists



How does one sample random variables from a distribution by using CDF  $F_{x}(X)$ ?

Let's define 
$$Y = F_X(X)$$

Notice that  $F_x(x)$  transforms a function defined on R to the function defined on [0,1].  $F_x^{-1}(x)$  is unique and exists since CDF is monotonous. Then

$$F_Y(y) = \Pr(Y \le y) = \Pr(X \le F_X^{-1}(y)) = F_X(F_X^{-1}(y)) = y, y \in [0, 1]$$

$$f_Y(y) = \begin{cases} 1 & y \in [0,1] \\ 0 & \text{otherwise.} \end{cases}$$

Y is uniform distribution on [0,1]

$$Y \sim U([0,1])$$



How does one sample random variables from a distribution by using CDF?

*Inverse transform sampling*. The algorithm

- 1. Find the inverse function of the CDF,  $F_x^{-1}(x)$
- 2. Generate a random number u from U[0,1]
- 3. Compute  $X = F_{x}^{-1}(u)$ . The computed random variable X has the sought distribution



How does one sample random variables from a distribution by using CDF?

The example. The exponential PDF  $P(x)=\lambda e^{-\lambda x}$ 

The CDF for exponential PDF reads  $F_x(x)=1-e^{-\lambda x}$ 

$$x = F_X^{-1}(y) = \frac{-1}{\lambda} \ln(1 - y)$$

Since y belongs to [0,1] one can simply generate the exponential with

$$x = F_X^{-1}(y) = \frac{-1}{\lambda} \ln(y)$$
 y is drawn from U[0,1]

Q: Do this for  $P(x)\sim 1/(1+x^2)$ ,  $-\infty \le x < \infty$ 



Q. Find a way to sample the values from a distribution with the PDF  $P(x)\sim 1/(1+x^2)$ ,  $-\infty \le x < \infty$ 

CDF: 
$$X dX$$

$$F_{X}(X) = \frac{1}{\pi(1+X^{2})} = \frac{1}{\pi} \arctan X + \frac{1}{2} = y$$

$$X = \tan \left( \pi(y - 1/2) \right)$$



Box-Muller transform for generation of Gaussian distributions

For the Gaussian case it would be difficult to use the method above due to the lack of analytic form for  $F_x^{-1}(x)$ 

Let's take U<sub>1</sub> and U<sub>2</sub> are uniformly distributed RVs on [0,1]

Then  $Z_0$  and  $Z_1$  are two independently distributed Gaussian RVs from N[0,1]

$$Z_0 = \sqrt{-2 \ln U_1} \sin \left(2 \pi U_2\right)$$

$$Z_1 = \sqrt{-2 \ln U_1} \cos(2 \pi U_2)$$



#### Joint probability distribution of functions of random variables

- 1.  $X_1$  and  $X_2$  are continuous RVs with joint PDF  $f_{x_1,x_2}(x_1,x_2)$
- 2.  $Y_1 = g_1(X_1, X_2)$ ,  $Y_2 = g_2(X_1, X_2)$  and there is a *unique* solution  $x_1 = h_1(y_1, y_2)$ ,  $x_2 = h_2(y_1, y_2)$
- 3. Also  $g_1$  and  $g_2$  have continuous PDFs at all points  $x_1, x_2$  i.e.

$$J(X_{1}, X_{2}) = \begin{vmatrix} \frac{\partial g_{1}}{\partial x_{1}} \frac{\partial g_{1}}{\partial x_{2}} \\ \frac{\partial g_{2}}{\partial x_{1}} \frac{\partial g_{2}}{\partial x_{2}} \end{vmatrix} \neq 0$$

then

$$f_{Y_1,Y_2}(y_1,y_2)=f_{X_1,X_2}(x_1,x_2)|J(x_1,x_2)|^{-1}$$



Joint probability distribution of functions of random variables

RVs: 
$$X_1, X_2 \rightarrow Y_1, Y_2 \qquad Y_1 = g_1(X_1, X_2)$$

assumptions:

1)  $y_1 = g_1(x_1, x_2)$  unique solution

 $y_2 = g_2(x_1, x_2) \qquad x_1 = h_1(y_1, y_1)$ 
 $x_2 = h_2(y_1, y_2)$ 

2)  $g_1, g_2$  have continuous partial derivatives for all  $x_1, x_2$ 

and

$$\int_{X_1 X_2} \begin{cases} g_1 \\ g_2 \end{cases} \qquad g_2 \end{cases}$$
then
$$\int_{X_1 X_2} (y_1, y_2) = \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2} (x_1, x_2) \right| \int_{X_1 X_2} (x_1, x_2) \left| \int_{X_1 X_2$$



#### Box-Muller transform derivation

Box-Muller transforming 
$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\sqrt{2\pi}}} e$$