Western System Coordinating Council (WSCC) 3-Machine, 9-Bus System

- All dynamic data and equations of the WSCC 3-machine, 9-bus system depicted in Figure 1 can be found in:
 - P. W. Sauer and M. A. Pai, *Power System Dynamics and Stability*, New Jersey: Prentice Hall, 1998

Figure 1. WSCC 3-machine, 9-bus system. Value of Y is half the line charging.

- System base MVA is 100, and the system frequency is 60 Hz.
- The converged **load-flow data** is given in Table 1.

	Table 1. Load-flow	results of the	WSCC 3-macl	nine. 9-bus system.
--	--------------------	----------------	-------------	---------------------

	Bus #	Voltage (pu)	P_G	Q_G	$-P_L$	$-Q_L$
			(pu)	(pu)	(pu)	(pu)
1	(swing)	1.04	0.716	0.27	_	-
2	(P-V)	$1.025 \angle 9.3^{\circ}$	1.63	0.067	-	-
3	(P-V)	1.025∠4.7°	0.85	-0.109		-
4	(P-Q)	$1.026 \angle -2.2^{o}$	_	-	-	-
5	(")	0.996∠-4.0°	-	-	1.25	0.5
6	(")	$1.013 \angle -3.7^{o}$	_	_	0.9	0.3
7	(")	1.026∠3.7°	_	_	_	- 1
8	(")	1.016∠0.7°	_	_	1.00	0.35
9	(")	1.032∠2.0°	-	_	_	_

• The **impedance matrix**, \bar{Y}_N , is shown in Table 2.

Table 2. \overline{Y}_N for the network in Figure 1.

	1	2	3	4	5	6	7	8	9
1	/-j17.361	0	0	j17.361	0	0	0	0	0 \
2	0	-j16	0	0	0	0	<i>j</i> 16	0	o 1
3	0	0	-j17.065	0	0	0	0	0	j17.065
4	j17.361	0	0	3.307	-1.365	-1.942	0	0	0
				-j39.309	+j11.604	+j10.511			
5	0	0	0	-1.365	2.553	0	-1.188	0	0
				+j11.604	-j17.338		+ j5.975		
6	0	0	0	-1.942	0	3.224	0	0	-1.282
				+j10.511		-j15.841			+ j5.588
7	0	j16	0	0	-1.188	0	2.805	-1.617	0
					+j5.975		-j35.4460	+j13.698	
8	0	0	0	0	0	0	-1.617	2.772	-1.155
							+j13.698	-j23.303	+j9.784
9	0	0	j17.065	0	0	-1.282	0	-1.155	2.437
	(+j5.588		+j9.784	-j32.1540

• The machine data are given in Table 3.

Table 3. Machine data.

<u>Machine Data</u>			
Parameters	M/C 1	M/C 2	M/C 3
H(secs)	23.64	6.4	3.01
$X_d(pu)$	0.146	0.8958	1.3125
$X_d'(pu)$	0.0608	0.1198	0.1813
$X_q(\mathrm{pu})$	0.0969	0.8645	1.2578
$X_q'(pu)$	0.0969	0.1969	0.25
$T_{do}^{\prime}(\sec)$	8.96	6.0	5.89
$T_{qo}'(\sec)$	0.31	0.535	0.6

• The **exciter**, depicted in Figure 2, is assumed to be identical for all the machines, and is of the IEEE-Type 1. Exciter data are given in Table 4.

Figure 2. Scheme of an IEEE-Type 1 exciter.

Table 4. Exciter data.

Parameters	Exciter 1	Exciter 2	Exciter 3	
K_A	20	20	20	
$T_A(\sec)$	0.2	0.2	0.2	
K_{E}	1.0	1.0	1.0	
$T_{E}(\sec)$	0.314	0.314	0.314	
K_F	0.063	0.063	0.063	
$T_F(\sec)$	0.35	0.35	0.35	
$S_{Ei}(E_{fdi}) = 0.0039e^{1.555E_{fdi}} i = 1, 2, 3$				

• The scheme of the **turbine governor**, responsible of the primary frequency regulation of the machines, is depicted in Figure 3. Turbine governor data is given in Table 5.

Figure 3. Scheme of a turbine governor.

Table 5. Turbine governor data.

Parameters	T. Governor 1	T. Governor 2	T. Governor 3
R (p.u.[MW])	0.05	0.05	0.05
p^{\max} (p.u.[MW])	1.6	3.2	1.7
p^{\min} (p.u.[MW])	0.0	0.0	0.0
T_s (sec)	0.1	0.1	0.1
$T_c ext{ (sec)}$	0.45	0.45	0.45
T_3 (sec)	0.0	0.0	0.0
$T_4 (\mathrm{sec})$	0.0	0.0	0.0
$T_5 ext{ (sec)}$	50.0	50.0	50.0

• The contingency is a **three-phase fault**, located at bus 7. The fault, with a reactance of 10^{-5} p.u. (Ω) , is cleared after 70 ms by means of the opening of the line that connects buses 5 and 7. The rotor speeds of the synchronous machines of the system after the fault are plotted in Figure 4.

