Université Abdelmalek Essaodi,

Faculté Polydisciplinaire de Tétouan,

Licence fondamentale en Sciences Economiques et Gestion. Année universitaire 2016-2017.

Travaux Dirigés 2 : Statistique Descriptive

Exercice 1

Soit la série statistique des salaires d'une entreprie:

Salaires	Nombre demployés
X -50	30
50-100	40
100 -200	20
200 -300	10

1-Retrouver la borne inférieure X de la première calsse sachant que le salaire moyenne est de 94. (pour la suite des calcule, retenez la valeur trouvée à la première question.)

2-Donner l'interprétation et la valeur de la médiane(Mé)

3-Calculer le troisième quantile, le septième décile et le percentile 35.

4-Déterminer la variance et l'écart-type. *

Exercice 2

Une enquete sur la mobilité a donné la réparation suivant (exprimée en %) pour une population d'individus domiciliés à la région Tanger-Tétouan, selon la distance entre le domicile et le lieu de travail (distance exprimée en kilomètres):

Distance (en km)	Tétouanais(%)	Tangérois(%)
[0,2[5.7	3.1
[2, 6]	12.0	7.7
[6, 10]	6.3	6.8
[10, 15]	8.1	4.6
[15, 25]	11.0	6.8
[25, 50]	11.2	5.4
[50, 60]	7.8	3.5

1- Calculez la distance moyenne parcourue par un travailleur tétouanais et par un tangérois.

2- Déterminez la variance et l'écart-type des distances parcourues par un travailleur tétounais et par un tangérois.

3- Calculer le cefficient de variation pour les distances parcurues par un travailleur tétouanais et pour celles parcourue par un tangérois. Conclure.

Exercice 3

Les salaires annuels (en 1000 DH) des employés d'une entreprise composée de deux filiales X et Y sont réparties selon le tableau suivant:

Salaires en 1000DH compris entre	Nombre d'employés de la filiale X	Nombre d'employés de la filiale Y
10 et 20	5	4
20 et 30	10	12
30 et 40	13	14
40 et 50	4	6

1-Déterminer le salaire moyen de la filiale X et de la filiale Y.

2- Déterminer la variance et l'écart-type des salaires de la filiale X et de la filiale Y.

3- Comparer la dispersion des salaires de la filiale X et de la filiale Y.

Exercice 4

On étudie les revenus (Annuels en miliers de dirhams) d'un ensemble de familles d'un quartier de Tétouan, les données sont regroupées dans le tableau suivant:

	[18, 30]	[30, 36]	[36, 42]	[42, 54]	[54, 60]	[60, 66]
$(en10^3DH)$			700	16	50	82
Effectifs	13	219 •	20	40	30	

- 1- Préciser les caractéristique de cette série (populaion, taille ou l'effectif total, individu, caractère étudié, type de caractère et modalités.
- 1- Calculer la moyenne à de cette série statistique.
- 2- Dresser l'histogramme de cette série statistique puis représenter son polygone.
- 3- Déterminer le mode M_o de cette série, graphiquement et par calcul.
- 4- Calculer la médiane M_e de cette série statistique en explicitons vos calculs.
- 5- La série étudiée est-elle symétrique ou asymétrique ? Justifier votre réponse.Pouvait-on prévoir ce résultat ?.

Exercice 5

La distribution des salaires horaires, en dirhams, des N employés d'une grande entreprise et donnée par:

Classes	Effectifs
[50, 100]	10
[100, 150]	14
[150, 200]	16
[200, 250]	- 13

Ces données sont incomplet car, à la suit d'un incident, l'effectif de la dernière classe est illisible; alors, on a décidé da la noter provisoirement par n. Mais, on sait que la médiane de cette série statistique est 153,125 DH.

- I- Exprimer la moyenne arithmétique de cette distribution en fonction de n.
- 2- Exprimer la médiane de cette série statistique en fonction de n, sachant que la valeur $\frac{N}{2}$ n'a pas été trouvée exactement parmi les effectifs cumulées croissants.
- 3- Retrouver la valeur numérique de la moyenne arithmétique en remplaçant la valeur de n trouvée dans l'expression de la moyenne ewprimée en 1°.

Exercice 6

La distribution, en pourcentage, des 50 employés d'une entreprise selon leurs salaires annuels (en 1000 dirhams) est donnée par le tableau suivant :

Salaires annuels (en 1000 DH) comprises entre	Pourcentages des employés
0 -30	20
30-60	28
60-90	36
90 -120	16

- 1- Calculer les fréquence relatives et déduire les différences effectifs.
- 2- Quel est le salaire médian (Mé)? Interpréter le résultat.
- 3- Calculer les trois quartiles Q_3 , Q_2 et Q_1 .
- 4- Déterminer le salaire annule moyen et Calculer la variance et l'écart-type .

Exercice 7

Le chifre d'affaire d'une entreprise a augmenté de 5% les deux premières années, de 7% les trois années suivantes et de 4% l'année d'apres. Quelle est, en percentage, son augmentation annuelle moyenne?

Exercice 8

Le chiffre d'affire d'une entreprise a subit les augmentations annuelles suivantes :

Année	Augmentation en %
2003	4%
2003	5%
2004	6%
2005	5%
2006	4%

Calculer son taux de croissance moyen.

Solution HEXA: 1 Lein reit h: (c: -x)2 h, ct (CC: -X)2 n. Ci C_i 4096 122880 30 30 30C1 CI LX,50[14440 361 75 O.F 3000 T50,100T 62720 3136 00 3000 150 20 HOOKOOL 243360 24336 250 2500 100 10 [200,300[N=100 | 9400 | 1493400 $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} h_i C_i = \frac{30C_1}{100} + \frac{8500}{100} = 94$ $=) 30C_1 = 100(94 - 85) = 300 =)C_1 = \frac{900}{30} = 30$ X+50=30=) X=60-50=10 2) lo-médione et le solaire pour lequel on 050
employés ont un voloire injérieure on voloire
médione et entre 500 employés ent un voloire
voupérieure ou voloire médione.

N = 100 -50 => Mé = e; + 2 - 4:15 x a; => 70 est la 1 volum supérent à 50 => [50, 100] la dosse médione => M= 50+ 50-30x 60= 75 Aly [Mé - 45]

mentet um org 3/* Nx3 = 100 x3 = 75 93 = ei-1 + 43 - hicx C: =) 908t la 1èn volum rougérieura 75=) =) Q3=100+75-70.100=100+5x100=125 Q3=125] * N.7 = 100 x7 = 70 cette volem apparail-slows Letableau olon on prond D= 100 * N x 35 = 35 =) 6- 1 volem supérion à 35 et 7 0 $=) \frac{1}{35} = 50 + \frac{35 - 30}{40}, 50$ $=) l_{35} = 50 + 6,25 = 56,25$ 4) N(x)=1 = (c;-x)n;=4434 6(x)=VV(x) = 14434 ~ 66,55.

Dintoncelon	t; Télonon	P. Tornger	Q.
10, ET	0,057	0,031	4
[C2, 6[10,12	10,077	14
[6, 10[0,063	0,668	8
1 10,15 C	10,081	0,046	12,5
[15,25C	10,11	0,068	20
([25, 50 [10,112	10,054	37,5
(50,60 C	850,0	01035	55

1; c: Tet	Fic. Vongo
0,054	01031
0148	0,308
0,504	10,544
1,0125	0,575
22	136
1412	2,026
4,29	1,925
150	

计型	Sti Tongs
0,057	1,232
41038	41352
200 000	2,1875
157,5	7-519375
2 35, 35	105,875
456,115	221,815
	0,057 9,057 9,038 12,656 4,038 12,656 4,038 2,35,35

1)
$$X = 1$$
 $\leq x_i h_i = \leq f_i C_i$
 $T \in town: [X = 12,7435].$
 $Tornger: [X = 6,768]$

2)
$$V(X) = (\xi \xi^2 + 1) - \bar{x}^2$$
 $V(X) = 456,115 - 162,337 = 233,718$
 $V(X) = \sqrt{56,115 - 162,337 = 233,718}$
 $V(X) = \sqrt{56,115 - 162,337 = 17,138}$
 $V(X) = \sqrt{56,115 - 162,337 = 17,138}$
 $V(X) = \sqrt{56,806}$
 $V(X) = 176,003 = \sqrt{5}(X) = 13,267$
 $V(X) = \sqrt{56,115} = 13,267$

$$\overline{X} = \frac{1}{N} \leq n_1 c_1 = \frac{960}{32} = \overline{307} = \overline{\chi}^2 = 500$$

$$V(x) = (\frac{1}{N} \in C_1^2 n_1) - x^2 = 581,25 - 300$$

= $[81,25]$

$$C = \frac{9,014}{X} = \frac{9,014}{30} = 0,300$$

Reivelle:	n; '	n. c;	C.27	ni Ciz	7=31,11=) Y=967,8
[10,20[15	4	300	226	900	V(x)={79,39]
[30,40[35 [30,40[45	14	1490	11925	12-150	10011
Total ser	36	Mei	TO D	37700	

$$CV = \frac{G(y)}{\sqrt{y}} = \frac{8,94}{31,11} = \frac{10,231}{6}$$

A: = n: Nº CCA [einei[]n; 13 1,083 12 312 [18,30] 13 24 232 36,5 7927 6 33 [30, 36[219 252 3,333 780 39 T36142[20 208 3,733 19 2208 48 46 C42,54[348 8,333 2850 6 57 50 430 154,60 E 13,667 5166 63 82 (60;66C N=430 18543 X=1= = = 43,123 3) Détermination du Moble M. son le Méthod, graflique: Cala xafail- sur l'histogramme. Donc 161601 on trace l'histogramme. Mais comme c'est une Série statistique quantitative continue on trace l'histogramme four les hi= ni

Polysone Polysone J. 1, - 6. Birg od haume 24 18 6 -18 30 M, 36 42 54 60 66, 7x DEN joins mont les sommets du rettongle le 9 lu élevé, et le sommet du rectongle juste avont et le suivont, le projection von l'axe des or du poils de remcontre des diagonales abtennus (voir grophe en hout) donne le-position de M. formiles x: on à Mc 3038[4) Détermination de Mojor le calcul: comme le amplitude de closses sont différents on définit la dosse modale comme étant alle du glun grande hauteur slom l'histogramme (qui consopondà hi lo-plus grand). La dosse modele est [30,365, et morrique le fomule.

int 4°) le mode Mo (: por le colcul) to closse modali et celle qui consespendat n. do. glus élévrée (h. = 36,5): C'8/ [30, 36 [Bt on offlight land formula: Mo = (:, + \frac{h:+1}{h:+1} a; $M_0 = 30 + \frac{3,333}{1,083+3,333} \times 6$ = 30+ 3:333 x 6 = 30+4,528=34,528 5) lo- médiane Mé: N = 430 = 215 cette volem he se tromp pers encectement formiles nice, moisted Volen, qui la déforse et 232, elle consessant à [30, 36] (la closse médione) et susphique lo-formule: Mé-eint ai

ment et um of acous $M_{\tilde{e}} = 30 + \frac{215 - 13}{219}$ x 6=30+5224 =35,534] 6) Pour que cette série soit synétrique, il font que M= X= Mé, mais on a: SC=13,123 (=) elly n'st per sy métrique

M=34,528 (=) elly n'st per sy métrique

M=35,534 (=) elly n'st per sy métrique Bing Sun, Dr voil- son l'histogramme que lo-sægrégentation graphique n'il for symétrique.

1)
$$t_1 = \frac{n_1}{N} \Rightarrow n_1 = \frac{1}{2} \times N$$

[6...18:1 | n: | l: | m: ct. | C: | m: c: |

[0.30[10 | 0.2 | 10 | 15 | 150 |

[30,60[14 | 0.28 | 24 | 45 | 630 |

[30,60[18 | 0.36 | 42 | 45 | 1350 |

[60,30[8 | 0.16 | 50 | 105 | 640 |

[90,120] | N=50 | 2970 |

2) Médion ?

[2970]

[2970]

2) Médion ?

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2970]

[2

le soloine smul médion st $M\hat{e} = 61667.7H$ $N = \frac{50}{2} = 25$ where to him! Intérfrétalion! Il y à 25 employés qui ont un soloire qui ont un solaire supérieure à 616401 3) Quontile: P1: N = 50 = 12,5=) Ette Volenne vient- por exactement don la Colonne de nich, Mais la 1º valeur quir le déposser et 24. Q1= li-1+ - n: - 21 $Q_1 = 30 + \frac{12.5 - 10.30}{14}$ =) [P_1 = 35,357] (= [30,60]

P2! N2= = 25 =)92= Me =) R2=M==[61,67] P3? W x3 = 37,5 =) (ette volem n'existe por Dony lo. colomne ols n; C?, mais lo. 1 en volem qui lo. déposse st: 42 on, applique lo. formule: Q3 = Pi-1+ - 1 n. 1 - 1 0. P3 = 60 + 37,5 - 24,30 (93 = 82,5) C (80,90 [4) Moyenne prithmétique (Méthode directe).

=> le volaire samuel moyen est 59400DH 5) Volionce: $V(X) = 1 \times n:(c_i - \bar{x})^2$.

[ein ei [(Ci-x)2	n; (c; -x)2
[30,60[207136	197-13,6
(90,1206	243,36	14380148
1		143632
$(X) = \frac{45}{2}$	532 - [8	372,64)
	9540	

iEX:61 l'augmentation may enne annuelle At une mayenne géométrique: $G = \sqrt[6]{(1,05)^2(1,07)^3(1,04)}$ Soit: Un toux de Craisson a 5,827. opproximotivement 1= X:71 D'angmente tier sonnelle moy Enne It donnée par G= \$\langle(1,04)^2 (1,06)(1,05)^2\ (zeometrique G = 1,048 Soil- un toux de croissonce de 4,8%.
o-pproximativement.