

Anna Liu, PhD

Senior Manager, Analytic Science

Joseph Murray, PhD

Director, Analytic Science

© 2019 Fair Isaac Corporation. Confidential.

This presentation is provided for the recipient only and cannot be reproduced or shared without Fair Isaac Corporation's express consent.

Leading innovation in fraud and financial crime prevention

194 patents granted, 91 patents pending

FICO AML Advanced Analytics

Two scores are developed: Use together or independently. Scores from 1-999

- → Unlike historical **SARs**
- → Normal peer-group behavior

High Score

- → Like historical **SARs**
- → Money-laundering suspected

AML Soft Clustering Misalignment Score (Unsupervised)

Low Score

- → Normal-behavior
- → Lower risk

High Score

- → Abnormal-behavior
- → Higher risk / Revisit KYC

Reason Codes: explain why model produced this score

- Detect suspicious behavior based on previous SARs
- Prioritize alerts to improve efficiency Identify which alerts are more critical and investigate first
- · Historical SARs data required to train model

Reason Codes: explain why model produced this score

- Find bad actors based on misalignment with clusters
- Find suspicious activity that was previously undetected.
- Historical SAR data NOT required to train model

FICO

Patent: US 15/074,856 (2016) Patent: US 15/074,977 (2016)

AML Advanced Analytics - Technology

Advanced Machine Learning Algorithms and XAI

AML Threat Score

FICO

Patent: US 15/074,856 (2016) Patent: US 15/074,977 (2016)

Example AML Analytics feature: Rapid deposit/withdrawal activity

- Feature separates good and SAR customers
 - Gives a ranking, rather than black-and-white rule decision
- Features are easily explained to regulators
- One of many features input to machine learning
 - · Weight in score determined by algorithm

Patent: US 15/074,856 (2016) Patent: US 15/074,977 (2016)

Feature groups cover important AML typologies

- Feature groups track behavior including:
- Structuring/smurfing
- Suspicious wire transfers
- Risky international activity
- Cash and check activity
- Money collective accounts
- Dormant account and young account activity

AML Soft-Clustering Misalignment Score

Vocabularies to describe transaction behavior

Think of transaction behavior and events as words from a vocabulary

Current Account

Amounts Wire Transfer Country **Access Channel**

₹

The stream of behavior is seen as the sequence of words

Learning archetypes from transactions: Collaborative Profiling

From many other

customers

Customer's data stream:

→ ~4455%56%2%2%2%2%301111111102%344644648

1102aq~6644464a4556566266263263116

- Bayesian Learning
 - Unsupervised
 - Learn archetypes from millions of customers.

Learned Archetypes (~10's)

Clustering archetypes: Misalignment with clusters is suspicious

FICO

Real-World AML Example: SAR distribution in archetype space

• Many SARs are outliers from normal customers along certain archetypes

Autoencoders for unsupervised anomaly scoring

 Autoencoders are deep neural nets trained to represent/compress input by minimizing reconstruction error.

Autoencoders: Reconstruction error measures similarity to training data

• For anomaly scoring, this reconstruction error indicates how much a sample differs from the training population.

FICO

Real-world AML application: Autoencoder finds outlier in archetype space

- Autoencoder trained on Collaborative Profiling archetypes
- High scores when autoencoder finds archetype mixtures very different from training set.

AML Advanced Analytics: Performance Metrics

Challenge: Explaining how a machine learning model gives a score

• Machine learning models (like neural networks) are typically a black box.

AML Advanced Analytics – Explaining the scores

- AML Advanced Analytics produces Reason Codes and Quantitative Explanations to answer:
 - Why did a certain customer score high (or low)?
 - What types of transactions should be further investigated? For what scenarios?
- FICO reason code and explanation technology based on rich IP:
 - Reason Reporter: Patent US 5,819,226 (1998)
 - Quantitative explanations, real-time tracking: Patents: US 8,027,439, 8,041,597 (2008)

Reason reporter technology – Design time

Explaining neural network decisions

•	Run	data	through	n trained	mode	ادِ.
---	-----	------	---------	-----------	------	------

Find feature binning and expected scores.

Fea	Feature 1				
Bin num.	Bin min.	Num. obs.	Expected Score	Reason Code	
1	4.0-5.5	4353	850	21	
2	2.5-4.0	5323	650	21	
3	0.5-2.4	8342	400	21	
:					
Fea	Feature 2				
Feature <i>n</i>					
Bin num.	Bin min.	Num. obs.	Expected Score	Reason Code	
1	6.5-8.0	1285	920	11	
2	3.8-6.5	8951	730	11	
3	2.2-3.8	10115	350	11	

Reason reporter technology – Run time

•	Score	customer	with r	neural	network
---	-------	----------	--------	--------	---------

- Rank features based on learned binning
- Select highest ranking reason codes

Fea	iture 1				
Bin num.	Bin min.	Num. obs.	Expected Score	Reason Code	
1	4.0-5.5	4353	850	21	
2	2.5-4.0	5323	65 Highe	est ranked	
3	0.5-2.4	8342	40 reaso	n across	
Feature 2 Eeature <i>n</i>			all fea	atures	
Bin num.	Bin min.	Num. obs.	Expected Score	Reason Code	
_		1005	000		
1	6.5-8.0	1285	920	11	
2	3.8-6.5	8951	730	11	

FICO

Governance

- Two components of governance
 - Internal and regulatory approval of model
 - Each customer-level transactional score produces a reason code to make each decision explainable
- FICO delivers a "Model Governance Document" with each model
 - Describes model features and FICO process
 - FICO will work to customize the content of doc to meet regional needs of regulators
- FICO AML Advanced Analytics model source code is proprietary IP
 - Not available for external review

AML Advanced Analytics - Pilot Projects

Proof-of-Value Project

Phase 1: Proof-of-Value Process - Data Preparation (1 of 2)

Data Mapping

1-2 Weeks

Jointly work to map client data with model data needs.

@client-site

Data ETL

2-3 Weeks

Transform data into the FICO Data format.

@off-site

Data Validation

1-2 Weeks

Ensure data-quality does not impact model.

@off-site

Scientists, PS, model data-needs & field-definitions

Analytics team will transform data and identify any issues

Data-quality reports with mapping & mismatch information

CIBC

Data dictionary and samples

Personnel: Key stakeholders, IT data experts, AML experts

12 months data flat-file: transactions, customer, account, SARs & alerts

Personnel: IT data experts, AML experts

Clarification, review, and potential data fixes

Personnel: IT data experts, AML experts

Phase 1: Proof-of-Value Process - Model Building (2 of 2)

Model Evaluation

3-4 Weeks

Evaluate consortium Analytic Models on client historical data.

@off-site

Model Tuning

3-4 Weeks

Tune and calibrate Models (parameters, weights, etc.).

@off-site

Model Report

1 Week

Review results, newinsights and determine next-steps

@client-site

FICO

Progress-updates, dataissues, and clarificationrequests Progress-updates, dataissues, and clarificationrequests Report comparing Advanced Analytics to incumbent system

CIBC

Domain-experience, expert-advice

Personnel: AML experts, Data science

Feedback on alerts and case-priorities generated by model

Personnel: AML experts, Data science

Feedback and next-steps

Personnel: All stakeholders

