Basics of Computer Networks Security

Computer Networks
Lecture 7

The Process of Securing Computer Network (1)

- Security is not about installing a "big security box", but about definition of a process of secure usage of the network and its enforcement
 - Incorporates company's security policy
 - that should include penalties for violation of the security rules
- Security rules are always restricting to the users
 - It is necessary to find a compromise between users' comfort and network security

The Process of Securing Computer Network (2)

- Covers both the network infrastructure and OS of the user stations
 - Including protection against viruses
 - Infected stations may attack to the network infrastructure

Basic Terminology and Mechanisms of Network Security and Cryptography

Authentication and Encryption

- Confidentiality
 - unauthorized listener cannot understand data meaning
 - implemented by encryption
- Data Integrity
 - verification that data were not modified during transport
- Availability
 - the information must be available when it is needed.
- Non-repudiation
 - data source cannot repudiate that it sent particular piece of data
 - (i.e. it signed it)
- Authentication
 - verification of data sender identity

General Cryptographic System

Implementation options

- Conceal encryption/decryption algorithm
 - If the algorithm is revealed, implementation is useless
- Conceal keys
 - Keys used to parameterize (known) algorithm
 - Enough possible keys have to be available

Symmetric Cryptosystem

Properties of Symmetric Cryptosystem

- Shared secret key
- Effective algorithm implementations
 - speed, relative simplicity
 - possible to implement in hardware
 - DES, 3DES, AES, ...
- Problem with secure secret key distribution

Authentication in Symmetric Cryptosystem

- Sender encrypts username using shared key, receiver decrypts using the same key and tests username validity
 - Requires database of valid usernames
- Alternative validity check implementation:
 - Sender appends username hash behind username, then encrypts whole block with shared key
 - Receiver decrypts [username+hash] with shared key, computes username hash and compares with received hash
 - Does not require to maintain username database

Data Integrity Check Implementation

- [message+shared secret key]->hash
- message+hash is sent
- receiver appends shared secret key behind received message, calculates hash by itself and compares with received hash

Combines origin authentication and data integrity check

Asymmetric Cryptosystem

Public and Private Keys

- Keys generated as pair public and private key
- One key of pair used for encryption, second one for decryption
 - no matter which one for what
 - uses identical or complementary algorithms for encryption and decryption

Features of Asymmetric Cryptosystem

- More calculations comparing to symmetric algorithm => slower
 - RSA, El-Gammal
- Problem of secure public key distribution
 - no need to conceal them, but we need a mechanism to protect public keys against modification during transport
 - certification authority digitally signs public keys packed together with owner information
 - (so called "certificates")

Usages of Asymmetric Cryptosystem

- Digital signatures
 - No problem with secret key distribution
- Exchange of keys for symmetric system
 - Often generated dynamically keys with limited lifetime

Certification Authority (1)

- Trusted entity
- Digitally signs public keys packed together with owner information - certificates
- First contact with CA must be personal
 - obtaining of private+public key pair
 - private key + signed certificate (better to just give CA publ.)
- There are ways how to deliver encrypted private key
 + certificate (containing signed public key) without
 - physical contact from the CA
 - need to authenticate certificate request
 - uses password pre-negotiated between user and CA to encrypt private key and certificate before sending it to user
 - usage of LDAP password etc.
 - private+public key generation may take place in client OS
 - Only client keeps private key and sends public key for signing to CA using HTTPS

Certification Authority (2)

- Public key of CA needed by communicating parties to verify certificates of other communicating peers
- Public key of CA has to be inserted into every system by some trustworthy manner
 - built-in into OS/WWW browser installation files, ...

Advantage: only one public key (CA certificate) has to be pre-configured manually

Authentication and Data Integrity Check in Asymmetric System

Options of Securing the Data Transferred over the Network

Security on Individual Layers of OSI-RM

- L2
 - hop-by-hop, inefficient
- L3
 - Independent both on the network topology and the application
 - IPSec
- L4
 - Transport Layer Security (TLS) only for TCP
 - Equivalents for UDP exists
- L7
 - Security solved by particular applications
 - e.g. S/MIME

Traffic Filtering

- Stateless (packet filters)
 - Decides whether individual packet will be passed through or discarded
 - Decision made only based on data contained in the packet
 - Problem with inspection of L4+ in case of fragmented packets
- Stateful (transparent or proxy server)
 - Reconstructs and inspects data flows
 - Needs to maintain state for each flows
 - Limited scalability

Packet Filtering

Access Control Lists – ACL

- Applied most often on router interfaces
 - sometimes also on switch interfaces
- Filters traffic coming to or going out of the interface
- Packets/frames are filtered according to L3 and L4 header information
 - Sometimes also according to L2 headers fields

ACL Definition

- ACL is a sequence of entries that permit or deny traffic that matches criteria defined for a given entry
- ACL is looked up sequentially (top-down) until an entry that matches the inspected packet is found
 - The packet is passed through or discarded according to the action specified by the entry
 - After a match is found, the following ACL entries are ignored
- If no matching entry is found, the packet is implicitly denied
 - any traffic not listed in ACL is implicitly denied

How to Implement Packet Filtering using ACL

Network administrator needs to define

- The interface on which the ACL will be applied
 - A separate ACL for every interface may be defined
- The direction of traffic to be filtered by ACL
 - One inbound and at one outbound ACL may be assigned to the interface
- Criteria to pass/deny traffic through the ACL (ACL entries)

ACL – The Common Mistake

It is necessary not to forget to permit the returning traffic

- Normally, we need to create "hole" in ACLs that filter the ingoing and outgoing traffic
- Numbers of the source and destination port have to be swapped for the returning traffic

Implementation Example: Usage of ACLs on Cisco IOS

Syntax of ACL Entry Definition

- Wildcard mask defines which bits will be compared
 - 0=must match, 1=don't care
 - May be treated as an inverted subnet mask

Example of ACL Definition (1)

```
Entries of ACL #101:
access-list 101 permit udp 200.1.1.100
0.0.0.0 eq 53 158.196.135.0 0.0.0.255
```

Permit UDP from port 200.1.1.100/32:53 to network 158.196.135.0/24

```
access-list 101 permit icmp 0.0.0.0 255.255.255.255 158.196.135.0 0.0.0.255 echo-reply
```

Permit ICMP Echo Reply from anywhere to network 158.196.135.0/24

```
access-list 101 deny ip 100.1.1.0 0.0.0.255 158.196.135.0 0.0.0.255
```

 Deny IP (and thus all protocols carried in IP packets) from network 100.1.1.0/24 to network 158.196.135.0/24

Example of ACL Definition (2)

```
access-list 101 permit tcp 0.0.0.0 255.255.255.255 eq 80 158.196.135.101 0.0.0.0 established
```

 Permit TCP from anywhere from source port 80 to machine 158.196.135.101, but only already existing connections (discards TCP segments with SYN=1, ACK=0)

Syntactic Shortcuts

- any
 - = any IP address
 - + wildcard mask 255.255.255.255
- host X.X.X.X
 - = IP address X.X.X.X + wildcard mask 0.0.0.0

Example

permit tcp host 158.196.100.100 any eq 80

Assigning of ACL to an Interface

```
interface s0
ip access-group 101 in
```

- Assigns an a particular ACL to an interface
 - in = filters inbound traffic (coming to the router)
 - out = filters outgoing traffic (going out of the router)

Time-based ACLs

- Individual ACL entries(permit/deny) may be valid only during specified time intervals
- Usage example:
 - Disallow Internet browsing during working hours

Reflective ACLs

- Automatically permits inbound traffic that matches the allowed outbound traffic
 - Allowed outgoing traffic is defined manually (by ACL for outgoing direction)
 - The ACL for incoming traffic implicitly denies everything
 - When a traffic is permitted by ACL in the outgoing direction, the corresponding "permit" entry is automatically created for the returning traffic in the inbound ACL
 - source and destination addresses/ports will be swapped
- The ACL entry for returning traffic is valid only during the existence of outgoing traffic flow
 - until the TCP connection is closed (FIN/RST) or inactivity timeout expires for UDP sessions

Steps to Implement Packet Filtering in the Network

- Analyze the applications
 - What applications do we support in our network?
 - What protocol and which ports are used by protocol of each application ?
 - Does the application use dynamic ports?
- Decide the interface to apply the ACL
 - Typically we use one ACL for incoming and (different) one for outgoing traffic
 - It is desirable to avoid routing of packets that will be discarded due on the outgoing interface
- Define entries of individual ACLs
 - Don't forget to permit the returning traffic!

ACL Case Study

The Example Scenario

Network Services Requirements

- The company operates its own SMTP server (158.196.135.103) accessible from the Internet.
- The company operates its own WWW server (158.196.135.102) accessible from the Internet using both HTTP and HTTPS.
- Local clients access WWW servers on the Internet (HTTP/HTTPS) through proxy server on 158.196.135.101.
- The clients on the corporate LAN may only open SSH connections to the Internet.
- DNS servers that performs recursive lookup for all clients of the corporate LAN is operated by ISP on 200.1.1.100.
- Clients on corporate LAN may ping machines on the Internet, but the opposite direction is prohibited
- The remote administration may access the corporate WWW server from anywhere in the Internet using SSH

Analysis of Applications

Service (L7 protocol)	L3/L4 protocol	Port
HTTP	TCP	80
HTTPS	TCP	443
SMTP	TCP	25
DNS	UDP	53
-	ICMP	Echo Request & Echo Reply messages

None of the required applications use the dynamically assigned ports

Specification of Interfaces to apply ACLs on

ACL ID	Interface	Direction
101	s0	in
102	e0	in

- The traffic coming from the Internet to the s0 interface will be filtered by ACL 101 before it will be routed
- The traffic coming from the corporate network to e0 interface will be filtered by ACL 102 before it will be routed

Entries of ACL 101 (s0, in)

				, , , , , , , , , , , , , , , , , , ,		
Order	Permit/ deny	L3/4 Prot.	Source IP	Source port	Destination IP	Dest. port
1	D	IP	158.196.135.0/24		*	
2	Р	TCP	*	*	158.196.135.103	25
3	Р	TCP	*	*	158.196.135.102	80
4	Р	TCP	*	*	158.196.135.102	443
5	Р	TCP	*	*	158.196.135.102	22
6	Р	UDP	200.1.1.100	53	158.196.135.0/24	*
7	Р	ICMP	*		158.196.135.0/24	E. reply+
8	Р	TCP	*	80	158.196.135.101	*
9	Р	TCP	*	443	158.196.135.101	*
10	Р	TCP	*	22	158.196.135.0/24	*
11	D	IP	*		*	

Note:

Echo Reply is a specification of ICMP message type, not the port number (placed to destination port column just to save space)

Entries of ACL 102 (e0, in)

Order	Permit/ deny	L3/L4 prot.	Source IP	SRC port	Destination IP	DST port
1	Р	TCP	158.196.135.101	*	*	80
2	Р	TCP	158.196.135.101	*	*	443
3	Р	TCP	158.196.135.0/24	*	*	22
4	Р	UDP	158.196.135.0/24	*	200.1.1.100	53
5	Р	ICMP	158.196.135.0/24		*	E. request+
6	Р	TCP	158.196.135.103	25	*	*
7	Р	TCP	158.196.135.102	80	*	*
8	Р	TCP	158.196.135.102	443	*	*
9	Р	TCP	158.196.135.102	22	*	*
10	D	IP	*		*	

Note:

Echo Request is a specification of ICMP message type, not the port number (placed to destination port column just to save space)

41

Configuration and Application of ACL 101 in Cisco IOS

```
access-list 101 deny ip 158.196.135.0 0.0.0.255 any access-list 101 permit tcp any host 158.196.135.103 eq 25 access-list 101 permit tcp any host 158.196.135.102 eq 80 access-list 101 permit tcp any host 158.196.135.102 eq 443 access-list 101 permit tcp any host 158.196.135.102 eq 22 access-list 101 permit udp host 200.1.1.100 eq 53 158.196.135.0 0.0.0.255 access-list 101 permit icmp any 158.196.135.0 0.0.0.255 echo-reply access-list 101 permit tcp any eq 80 host 158.196.135.101 established access-list 101 permit tcp any eq 443 host 158.196.135.101 established access-list 101 permit tcp any eq 22 158.196.135.101 0.0.0.255 established
```

interface s0 ip access-group 101 in

Configuration and Application of ACL 101 in Cisco IOS

```
access-list 102 permit tcp host 158.196.135.101 any eq 80 access-list 102 permit tcp host 158.196.135.101 any eq 443 access-list 102 permit tcp 158.196.135.0 0.0.0.255 any eq 22 access-list 102 permit udp 158.196.135.0 0.0.0.255 host 200.1.1.100 eq 53 access-list 102 permit icmp 158.196.135.0 0.0.0.255 any echo access-list 102 permit tcp host 158.196.135.103 eq 25 any established access-list 102 permit tcp host 158.196.135.102 eq 80 any established access-list 102 permit tcp host 158.196.135.102 eq 443 any established access-list 102 permit tcp host 158.196.135.102 eq 22 any established
```

interface e0 ip access-group 102 in

Stateful Traffic Inspection

Firewalls

Separate the trusted (internal) an untrusted (external) network

- Sometimes also attaches the the Demilitarized Zone (DMZ)
 - DMZ contains server exposed to the external network
 - "bastion hosts" servers with well-secured OS
 - Mutual communication between DMZ servers and from DMZ servers to internal network is limited
 - Hosts on the internal network are not accessible from the external network

Operation of the Firewall

Firewall Types

- Transparent to the permitted traffic
 - behaves as router or bridge
- Proxy server(s) for various L7 protocols

Implementations of Stateful Firewalls

- Hardware-based
 - e.g. Cisco PIX/ASA, Juniper firewall, ...
 - Details of internal OS implementation are not published
 - considered more secure by some people
- Software-based
 - Linux iptables
 - limited support for stateleful filtering
 - NetBSD
 - very flexible, easily-readable config files
 - Checkpoint, ...

Context-Based Access Control: Cisco IOS with Firewall Feature Set

- Inspect the control channel of selected application protocols and opens dynamic ports for data channels accordingly (FTP, IP telephony, ...)
 - Opens temporary holes in the inbound ACL for returning traffic that corresponds to a session initiated from the internal network
 - For unknown application protocols works with TCP/ UDP session as the reflective ACL
- May also detect some known attacks (SYN flood, suspicious TCP sequence numbers, ...)
- May also handle/reset half-open connections

Network Security and NAT

Advantages of NAT for Securing the Network

- Hides the internal structure of the network
 - Only single address or a limited number of addresses are exposed
- Dynamic NAT
 - Inbound traffic is allowed only during the existence of the session initiated from the inside network
 - The same station is visible from the outside networks under different addresses during the time

Virtual Private Networks (VPN)

What is VPN?

- VPN allow to build private WANs using public shared infrastructure with the same level of security and configuration options as with private infrastructure
- Uses tunneling and encryption methods
 - including authentication

Tunnel

- Virtual point-to-point connection over shared infrastructure
 - often authenticated and encrypted
- Carries packets of some protocol encapsulated in another protocol
 - sometimes in the same protocol (IP over IP)
 - tunnel can carry layer 2 frames also
 - allows other protocols to be carried over IP network
 - (even non-routable protocols such as NetBEUI etc.)

Comparison of VPN with Private Infrastructure

Advantages of VPNs over Physical Private WAN Infrastructure

- Lower cost
- Flexibility of (virtual) topology
 - topology defined purely by configuration
- No WAN link maintenance and management needed
 - provider (ISP) takes responsibility of infrastructure

No special contract with infrastructure provider is needed (we only need that ISP does not filter tunneling protocols)

Most Common VPN Implementation Options

Internetwork-wide VPNs → tunnels at or above layer 3

- Layer 3 VPN IPSec
 - media independent (above hop-by-hop L2 security)
 - application independent
 - connectionless security
- Layer 4 VPN commonly use SSL
 - but what to do with connectionless service (UDP) ?
- Layer 7 VPN application level (WWW)

Most Common VPN Implementation Options

- Router-to-router (firewall)
 - Site-to-site VPNs
 - Single router may terminate multiple tunnels
- Remote User to VPN concentrator
 - Remote access VPNs
 - user has to have special encryption software installed (VPN client)

Remote Access VPN

Site-to-Site VPN

IPSec: A Layer 3 VPN Implementation

- General architecture for implementation of dynamically negotiated VPN tunnels
- Provides authentication, data integrity and encryption
- General framework independent on utilized cryptographic algorithms
 - Algorithms are negotiated during tunnel establishment
 - Security Association with limited lifetime
- Only for IP (unicast) traffic
 - But other protocols and multicast traffic may be encapsulated into IP prior sending to the tunnel

Security of Selected LAN and WAN Technologies

ARP Security

- Fake ARP replies by attacking stations
 - forging of the default GW
- ARP requests with fake IP-to-MAC binding may be generated
 - and placed to ARP caches of all receiving stations
- May be solved by static records in the ARP cache

Security of Routing Protocol

Protection mechanism against fake routing information:

- Authentication of routing information sources (neighbors)
 - RIPv2, OSPF, EIGRP, BGP
 - Plain text password or MD5 hashes
- Filtering sources of the routing information by ACL
- Filtering of received and propagated routes

Security in Switched Networks

- Explicit list of MAC addresses allowed on the port
- Limitation of number of dynamic MAC addresses on the port
 - Protects against source-spoof DoS
 - The principle is to overfill the whole MAC address table that causes removal of regular entries (LRU) and frame flooding
- Filtering using ACLs on L2 ports
 - source/destination MAC address, sometimes L3/L4 info
- VLAN ACLs
- Restriction of mutual communication between clients ports
 - Traffic may pass to server and backbone ports
 - Avoids peer-to-peer communication (games etc.)

DNS Security

DNS replies may be forged

- Fake mapping of domain names to IP addresses
- Fake MX and SRV records
- Modification of the reply on the way
 - Man-in-the-middle attack
- Generating of (a fake) non-authoritative additional information
 - Most of DNS resolvers updates cache accordingly without further checking

Protection of Spanning Tree

- BPDU Guard
 - filter eventual BPDUs from ports where clients stations are expected
- Root Guard
 - Does not allow the unauthorized device to become Spanning Tree root

Securing of Network Devices' Management

- Secure administrator's password
 - Telnet, SSH, WWW, SNMP RO/RW communities
- Idle timeout for inactive administrator sessions
- Explicit listing of permitted management stations (ACL)
- Separate management VLAN

Securing of the physical access to the network devices must not be underestimated

Network Attacks

Man-in-the-Middle

- Listens to A & B communication in both directions A → B a B → A (the traffic may be redirected instead of the attacker being between A & B)
- The direct channel between A & B is broken for each side it emulates the second partner

Alice

Bob

70

- may just listen but also change the data
- Results:
 - Hard to detect for unencrypted communication
 - May force weaker authentication
 - If the attacker provides a "reputable" identity when impersonating second side (e.g. CA whose root CA is trusted), encrypted channel may be attacked as well.

Denial of Service (DoS) Attacks

- The aim of the attacker is to deplete victim servers' or network infrastructure's resources and bring the system down or modify its behavior
 - memory, CPU, bandwidth
- Traffic commonly sourced from fake source address(es) to get through the the filters
 - Source IP spoofing
- Very dangerous in distributed version (DDoS)
 - The administrator cannot react to the changes of the attacking traffic quickly enough

Examples of DoS Attacks

- TCP SYN flood
- ping flood or packets destined to non-existent network
 - Some routers allows to limit the rate of generated ICMP messages
 - ICMP Unreachables in this case
 - It may be efficient to forge the source address so that it also belongs to the destination network
- Non-authorized routing change
 - ICMP redirects, fake routing information

Intrusion Detection System (IDS) Intrusion Prevention System (IPS)

- Identifies suspicious communication patterns
 - operates on various OSI RM layers
- Classifies attack risks, informs network administrator (IDS) or automatically adapts filters (IPS)
 - Implementation of IPS brings a risk of false positives

Authentication and Authorization of Network Access

Accounting (Logging) of User Activities

Authorization of Network Users' Activities

- Users should be authenticated before allowing to access the network resources
- Users have to be authorized to use particular service
 - Users actions should be logged (Syslog)
- The same is valid for network administrators
- Centralized management of user account and user rights is desirable
 - RADIUS, TACACS, ...