Progressions Worksheet

1. The number of terms in the series $101 + 99 + 97 +$	+47 is
--	--------

(a) 25

(b) 28

- (c) 30
- (d) 20

2.
$$n^{th}$$
 term of the series $3.8 + 6.11 + 9.14 + 12.17 + \dots$ will be

- (a) 3n(3n+5)
- (b) 3n(n+5)
- (c) n(3n+5)
- (d) n(n+5)

3. If
$$m^{th}$$
 terms of the series $63+65+67+69+\dots$ and $3+10+17+24+\dots$ be equal, then $m=$

- (a) 11
- (b) 12
- (c) 13
- (d) 15

4. If
$$2x$$
, $x + 8$, $3x + 1$ are in A.P., then the value of x will be

(a) 3

(b) 7

(c) 5

(d) -2

- (a) 3000
- (b) 3050
- (c) 4050
- (d) None of these

6. If the
$$9^{th}$$
 term of an A.P. is 35 and 19^{th} is 75, then its 20^{th} terms will be

- (a) 78
- (b) 79
- (c) 80
- (d) 81

7. If
$$a,b,c,d,e$$
 are in A.P. then the value of $a+b+4c-4d+e$ in terms of a, if possible is **[RPET 2002]**

- (a) 4a
- (b) 2d

(c) 3

(d) None of these

8. If
$$a_1 = a_2 = 2$$
, $a_n = a_{n-1} - 1$ $(n > 2)$, then a_5 is

(a) 1

(b) -1

(c) 0

(d) -2

9. If
$$p$$
 times the p^{th} term of an A.P. is equal to q times the q^{th} term of an A.P., then $(p+q)^{th}$ term is

(a) 0

(b) 1

(c) 2

- (d) 3
- **10.** If $a_{\rm m}$ denotes the $m^{\rm th}$ term of an A.P. then $a_{\rm m}=$
 - (a) $\frac{2}{a_{m+k} + a_{m-k}}$ (b) $\frac{a_{m+k} a_{m-k}}{2}$
 - (c) $\frac{a_{m+k} + a_{m-k}}{2}$ (d) None of these
- **11.** If $1, \log_9(3^{1-x} + 2), \log_3(4.3^x 1)$ are in A.P. then x equals
 - (a) $\log_3 4$
- (b) $1 \log_3 4$
- (c) $1 \log_4 3$
- (d) log₄ 3
- **12.** If the ratio of the sum of n terms of two A.P.'s be (7n+1):(4n+27), then the ratio of their 11^{th} terms will
 - (a) 2:3
- (b) 3:4
- (c) 4:3
- (d) 5:6
- 13. The sum of the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \dots$ to 9 terms is
- (b) $-\frac{1}{2}$
- (c) 1
- (d) $-\frac{3}{2}$
- **14.** The sum of first n natural numbers is
 - (a) n(n-1)
- (b) $\frac{n(n-1)}{2}$
- (c) n(n+1)
- (d) $\frac{n(n+1)}{2}$
- 15. The first term of an A.P. is 2 and common difference is 4. The sum of its 40 terms will be
 - (a) 3200
- (b) 1600
- (c) 200
- (d) 2800
- **16.** If n be odd or even, then the sum of n terms of the series $1-2+3-4+5-6+\ldots$ will be
- (b) $\frac{n-1}{2}$
- (d) $\frac{2n+1}{2}$
- **17.** If the first, second and last terms of an A.P. be *a*, *b*, 2*a* respectively, then its sum will be

(c)
$$\frac{3ab}{2(b-a)}$$

(d)
$$\frac{3ab}{4(b-a)}$$

18. The ratio of the sums of first n even numbers and n odd numbers will be

- (a) 1:n
- (b) (n+1):1
- (c) (n+1):n
- (d) (n-1):1

19. The sum of all natural numbers between 1 and 100 which are multiples of 3 is

- (a) 1680
- (b) 1683
- (c) 1681
- (d) 1682

20. If the sum of the series $54+51+48+\dots$ is 513, then the number of terms are

(a) 18

(b) 20

(c) 17

(d) None of these

21. The n^{th} term of an A.P. is 3n-1. Choose from the following the sum of its first five terms

- (a) 14
- (b) 35

- (c) 80
- (d) 40

22. If the first term of an A.P. be 10, last term is 50 and the sum of all the terms is 300, then the number of terms are

(a) 5

- (b) 8
- (c) 10
- (d) 15

23. The sum of the numbers between 100 and 1000 which is divisible by 9 will be

- (a) 55350
- (b) 57228
- (c) 97015
- (d) 62140

24. The solution of the equation

 $(x+1)+(x+4)+(x+7)+\dots+(x+28)=155$ is

(a) 1

(b) 2

(c) 3

(d) 4

25. If S_k denotes the sum of first k terms of an arithmetic progression whose first term and common difference are a and d respectively, then S_{kn}/S_n be independent of n if

- (a) 2a-d=0
- (b) a d = 0
- (c) a-2d=0
- (d) None of these

26. 7^{th} term of the sequence $\sqrt{2}, \sqrt{10}, 5\sqrt{2}, \dots$ is

- (a) $125\sqrt{10}$
- (b) $25\sqrt{2}$
- (c) 125
- (d) $125\sqrt{2}$
- **27.** If the 4^{th} , 7^{th} and 10^{th} terms of a G.P. be a, b, c respectively, then the relation between a, b, c is
 - (a) $b = \frac{a+c}{2}$
- (b) $a^2 = bc$
- (c) $b^2 = ac$
- (d) $c^2 = ab$
- **28.** If the first term of a G.P. be 5 and common ratio be -5, then which term is 3125
 - (a) 6^{th}
- (b) 5^{th}
- (c) 7th
- (d) 8^{th}
- **29.** If $(p+q)^{th}$ term of a G.P. be m and $(p-q)^{th}$ term be n, then the p^{th} term will be
 - (a) m/n
- (b) \sqrt{mn}
- (c) mn
- (d) 0
- **30.** If x, 2x + 2, 3x + 3, are in G.P., then the fourth term is
 - (a) 27

- (b) -27
- (c) 13.5
- (d) -13.5
- **31.** If the ratio of the sum of first three terms and the sum of first six terms of a G.P. be 125:152, then the common ratio r is
 - (a) $\frac{3}{5}$

- (b) $\frac{5}{3}$
- (c)
- $\frac{2}{3}$ (d)
- $\frac{3}{2}$
- **32.** If the 5^{th} term of a G.P. is $\frac{1}{3}$ and 9^{th} term is $\frac{16}{243}$, then the 4^{th} term will be
 - (a) $\frac{3}{4}$
- (b) $\frac{1}{2}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{5}$
- **33.** The 20^{th} term of the series $2\times4+4\times6+6\times8+\dots$ will be
 - (a) 1600
- (b) 1680
- (c) 420
- (d) 840

- **34.** The first and last terms of a G.P. are a and l respectively; r being its common ratio; then the number of terms in this G.P. is
- $\log l \log a$
- (b) $1 \frac{\log l \log a}{\log r}$
- $\frac{\log a \log l}{\log r}$
- (d) $1 + \frac{\log l \log a}{\log r}$
- **35.** If the 10^{th} term of a geometric progression is 9 and 4^{th} term is 4, then its 7^{th} term is
 - (a) 6

(b) 36

- (c) $\frac{4}{9}$
- **36.** The 6^{th} term of a G.P. is 32 and its 8^{th} term is 128, then the common ratio of the G.P. is
 - (a) -1

(c) 4

- (d) -4
- **37.** If the n^{th} term of geometric progression $5, -\frac{5}{2}, \frac{5}{4}, -\frac{5}{8}, \dots$ is $\frac{5}{1024}$, then the value of n is
 - (a) 11

(b) 10

(c) 9

- (d) 4
- **38.** The third term of a G.P. is the square of first term. If the second term is 8, then the 6^{th} term is
 - (a) 120
- (c) 128
- (d) 132
- **39.** Fifth term of a G.P. is 2, then the product of its 9 terms is
 - (a) 256
- (b) 512
- (c) 1024
- (d) None of these
- 40. If the sum of an infinite G.P. be 9 and the sum of first two terms be 5, then the common ratio is
 - (a) 1/3
- (b) 3/2
- (c) 3/4
- (d) 2/3
- **41.** The sum of 100 terms of the series .9+.09+.009......will be
- (a) $1 \left(\frac{1}{10}\right)^{100}$
- (b) $1 + \left(\frac{1}{10}\right)^{100}$
- (c) $1 \left(\frac{1}{10}\right)^{106}$ (d) $1 + \left(\frac{1}{10}\right)^{100}$
- **42.** The value of 0.234 is
- (a) 990

- (c) $\frac{232}{990}$
- (d) $\frac{232}{9909}$
- 43. If the sum of three terms of G.P. is 19 and product is 216, then the common ratio of the series is
 - (a) $-\frac{3}{2}$
- (b) $\frac{3}{2}$

(c) 2

- (d) 3
- **44.** The sum of the series $6+66+666+\dots$ upto n terms is
- (a) $(10^{n-1} 9n + 10) / 81$
- (b) $2(10^{n+1} 9n 10)/27$

- (c)
- $2(10^n 9n 10) / 27$
- (d) None of these
- **45.** The sum of first two terms of a G.P. is 1 and every term of this series is twice of its previous term, then the first term will be
 - (a) 1/4
- (b) 1/3
- (c) 2/3
- (d) ³/₄
- **46.** If the sum of n terms of a G.P. is 255 and n^{th} terms is 128 and common ratio is 2, then first term will be
 - (a) 1

(b) 3

(c) 7

- (d) None of these
- **47.** If the geometric mean between a and b is $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$, then the value of n is
 - (a) 1

- (b) -1/2
- (c) 1/2
- (d) 2
- **48.** If in a geometric progression $\{a_n\}$, $a_1 = 3$, $a_n = 96$ and $S_n = 189$ then the value of n is
 - (a) 5

(b)

(c) 7

- (d) 8
- **49.** Three numbers are in G.P. such that their sum is 38 and their product is 1728. The greatest number among them is
 - (a) 18
- (b) 16
- (c) 14
- (d) None of these
- **50.** The sum of infinity of a geometric progression is $\frac{4}{3}$ and the first term is $\frac{3}{4}$. The common ratio is
 - (a) 7/16
- (b) 9/16
- (c) 1/9
- (d) 7/9

Answers:

Progressions Worksheet

Page 7

1.(b)	2. (a)	3.(c)	4. (c)	5. (b)	6. (b)	7.(d)	8.(b)	9.(a)
10. (c)	11. (b)	12. (c)	13. (d)	14. (d)	15. (a)	16. (a, c)	17. (c)	18.
(c)	19. (b)	20. (a)	21. (d)	22. (c)	23. (a)	24. (a)	25. (a)	26.
(d)	27.(c)	28. (b)	29. (b)	30. (d)	31. (a)	32. (b)	33. (b)	34.
(d)	35.(a)	36. (b	37. (a)	38. (c)	39. (b)	40. (d)	41. (a)	ł2. (a)
43. (b)) 44	.(b) 45.	(b) 46. ((a) 47. (b) 48. (b)	49. (a)	50. (a)	