

Programación Avanzada IIC - 2233

2016 - 01

Presentación

Cuerpo Académico

- Profesores:
 - Sección 1: Karim Pichara
 - Sección 2: Christian Pieringer
- Coordinación:
 - Jaime Castro
 - Belén Saldías
- Ayudantes Mentores
- Ayudantes TPD

Descripción

- Este curso enseña técnicas para diseñar, implementar, ejecutar y evaluar herramientas de software que resuelven problemas algorítmicos a partir de especificaciones detalladas.
- En particular, el curso enseña construcciones avanzadas de programación orientada a objetos, estructuras de datos fundamentales, diseño básico de algoritmos y técnicas de análisis.

Objetivos

- 1. Descomponer problemas grandes para diseñar y estructurar sus soluciones.
- 2. Crear diseños orientados a objetos para problemas simples y comunicar estos diseños a través de documentación externa y comentarios en el código.
- 3. Aplicar conceptos de orientación a objetos y estructuras de datos fundamentales, para diseñar y escribir programas complejos en el lenguaje de programación Python, pudiendo extender este conocimiento a distintos lenguajes.

Objetivos

- 4. Usar herramientas de programación comunes; técnicas de programación; y un entorno de desarrollo de software para editar, compilar, y depurar programas.
- 5. Generar software desde cero, con código de alto nivel, de fácil reutilización, actualización y mantenimiento. Incluyendo interfaces gráficas significativas, totalmente funcionales.

Contenidos

Programación Orientada a Objetos

Estructuras de Datos

Funciones en Python y programación Funcional

Meta Clases

Excepciones

Testing

Simulación

Threading

Interfaces Gráficas

I/O (Strings, bytes, serialización)

Networking

Aspectos Administrativos

Metodología

- Catedra: 2
 - Clases teórico/prácticas
 - Material disponible previamente para estudio
 - Actividades evaluadas en todas las clases
- Ayudantía/Laboratorio: 1
- Lecturas complementarias

"BY FAILING TO PREPARE, YOU ARE PREPARING TO FAIL"

(Benjamin Franklin)

Evaluaciones

- Midterm (MT)
- Examen (FE)
- Controles sorpresa (C)
- Tareas (T)
- Actividades (AC)

$$NC = 0.15 \times MT + 0.2 \times FE + 0.3 \times \overline{T} + 0.25 \times \overline{AC} + 0.1 \times \overline{C}$$

Evaluaciones

Adicionalmente, para aprobar el curso el alumno debe cumplir con:

- 1. El promedio ponderado entre MT y FE debe ser mayor o igual a 3.500
- 2. AC debe ser mayor o igual a 3.700
- 3. T debe ser mayor o igual a 3.950

Si el alumno cumple con **todas** las condiciones mencionadas, la nota final del curso (NF) corresponde a NC. En caso contrario, **NF es la nota mínimo entre los items no cumplidos.**

Evaluaciones

- Durante el semestre **NO** se borrará ninguna evaluación. Tampoco existe la posibilidad de ser eximido del Examen final.
- Solo se aproximará la nota final NF. Todo el resto de las notas serán usadas con dos decimales.
- No se podrá faltar al midterm o el examen final. La inasistencia a cualquiera de ellos es reprobatoria

Recursos

- SYLLABUS: https://github.com/IIC2233-2016-1/syllabus
- SIDING

Integridad Académica

Cumplimiento de las normas en evaluaciones

Desacatar las indicaciones de cada evaluación tiene como sanción inmediata un 1.0 en dicha evaluación. Por ejemplo: Cambios arbitrarios en las parejas de trabajo, no respetar los medios de entrega de evaluaciones, formatos, etc.

Política de Integridad Académica

Cualquier situación de copia en alguna evaluación tendrá como sanción un **1.1 final en el curso**. Esto sin perjuicio de sanciones posteriores que estén de acuerdo a la Política de Integridad Académica de la Escuela de Ingeniería y de la Universidad, que sean aplicables para el caso.