1-1W1. Q, Since there are 101+101+2101=0 and 101-10) =0, 0 is in W. 2) Next take two vectors. in w, which means that Uin N {ai+bi+2Ci=0 and bi-di=0 2f t is any scalar, then (a+b2+26=0 and b-d=0 V in W 1 ta1+ U2 + b1+ b2 + C1+ C2 $t\underline{u} + \underline{u} = t \begin{bmatrix} u_1 \\ c_1 \end{bmatrix} +$ check: (tai+az) + (tbi+bz) + 2(tli+Cz) $= t(a_1 + b_1 + 2c_1) + (a_2 + b_2 + 2c_2) = 0 + 0 = 0$ and (tb,+bz) - (td,+dz) t(b1-d1) + (b2-d2) = 0+0=0 SO, tute is always in N, so Wis a subspace of V.

Qz It's not true

when $U = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, U is in W. -1 is a scalar.

(-1) $U = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ -1 < 0 so, (-1) U is not in W.

It's not true.

 $Q_3 = 0 : 0^7 = 0 = (A)0$ D Let A , B be in N and let t be a scalar $So \text{ ne know that } A^7 = -A$ $X^7 = (tA + B)^7 = (tA)^7 + B^7 = tA^7 + B^7$ = t(-A) + (-B) = -tA - B = -(tA + B) = -X So, N is a subspace

			1
		*	
124.101 Suppose there are	4 Scalars Gus+ Gus + Gu	13 + C4 U4 = D	
= \[\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ -1 & 2 & 1 & -3 & 0 \end{pmatrix} \]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} R_4 - R_2 & & 0 \\ R_3 - 2R_2 & & 0 \end{array}$	1 -1 0
L1 1 2 0 0 1			000
UI, Uz core brearly	independent, Uz, U4 an	e combinations of	u, u.
Uz = U1 + U2; U4 =	undependent, Uz, U4 an	un be dropped from the	e span
MI = Span L W. W	1)		7
(b) W= Span (M, U)	+ R4. Because there	2's not a leading	entry:
in every rong.			
U			

125. Yes. Since $K(x) = -x + x^2 = -f(x) + 0 \cdot g(x) + h(x)$ $= -(1 + x + x^3) + 0 + (1 + x^2 + x^3)$ $= -x + x^2$ K is an element of W.