Corrigé détaillé de l'exercice 15

Exercice 15

1.

$$\begin{array}{lllll}
\min & 8x_1 + 5x_2 + 9x_3 \\
\text{s.c.} & 3x_1 + 3x_2 + 4x_3 \ge 7 \\
& 3x_1 + 6x_2 + 2x_3 \ge 17 \\
& x_1, x_2, x_3 \ge 0
\end{array}
\Leftrightarrow
\begin{array}{lll}
\max & 7y_1 + 17y_2 \\
\text{s.c.} & 3y_1 + 3y_2 \le 8 \\
& 3y_1 + 6y_2 \le 5 \\
& 4y_1 + 2y_2 \le 9 \\
& y_1, y_2 \ge 0
\end{array}$$

2. Le problème dual s'écrit sous forme standard :

$$\max_{s.c.} 7y_1 + 17y_2$$

$$s.c. 3y_1 + 3y_2 + y_3 = 8$$

$$3y_1 + 6y_2 + y_4 = 5$$

$$4y_1 + 2y_2 + y_5 = 9$$

$$y_j \ge 0, j = 1, 2, 3, 4, 5$$

• $\mathcal{B}_0 = \{3, 4, 5\}$

	y_1	y_2	y_3	y_4	y_5	
y_3	3	3	1	0	0	8
y_3 y_4	3	6	0	1	0	5
y_5	4	3 6 2	0	0	1	9
	7	17	0	0	0	0

• $\mathcal{B}_1 = \{3, 2, 5\}$

		y_2				
y_3	3/2	0	1		0	11/2
y_2	1/2	1	0	1/6 - 1/3	0	5/6 $22/3$
y_5	3	0	0	-1/3	1	22/3
	-3/2	0	0	-17/6	0	85/6

Solution optimale : $\bar{y}^T = (0, 5/6, 11/2, 0, 22/3)$

Valeur optimale: 85/6

3. D'après question 2. et le théorème de dualité, la valeur optimale du primal vaut 85/6. Puis, d'après le théorème des écarts complémentaires,

1

•
$$\bar{y}_2 > 0 \Rightarrow 3\bar{x}_1 + 6\bar{x}_2 + 2\bar{x}_3 = 17$$

• $\bar{y}_3 > 0$ (la première contrainte de (\mathcal{D}) est non active) $\Rightarrow \bar{x}_1 = 0$

• $\bar{y}_5 > 0$ (la troisième contrainte de (\mathcal{D}) est non active) $\Rightarrow \bar{x}_3 = 0$,

donc $\bar{x}^T = (0, 17/6, 0).$

Vérification: $8\bar{x}_1 + 5\bar{x}_2 + 9\bar{x}_3 = 0 + 5 \times 17/6 + 0 = 85/6$.