

Dr. Nick Feamster Professor

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.

Caveat...

Too many open problems to discuss in a short lecture!

 Will simply recap highlights from some of the course interviews.

This list also reflects my bias.

Open Problem Areas in SDN

- Northbound API and Applications
 - Wide-area networking, interdomain routing
 - Programming and debugging SDNs
- Control
 - Fault tolerance
 - Security, data-leak prevention
 - Quality of service
 - Combining big data with network management
 - Verification
- Data Plane
 - Moving beyond match/action

New Applications and Services

- We studied the use of SDN in various contexts and for various applications
- SDN is just a tool. It does not specify the killer application.
- Still needed: What is the compelling application that ISPs and operators want that needs SDN?

Wide-Area Networking

- Interdomain routing is brittle
 - Mechanisms are indirect
 - Policies only based on destination prefix
 - Can only influence direct neighbor
- We explored a way of introducing disruptive change at an IXP (SDX).
- Future: New protocols, business models, applications

Programming and Debugging

- Programming applications for SDNs is getting easier with new high-level languages, but it is still difficult.
- Coupling and composing heterogeneous control programs is not always possible.
- Debugging is very challenging.
- Future: Heterogeneous components and control, debugging.

Fault Tolerance

- Need for a general, fast recovery mechanism
- When data-plane elements fail, controller must recompute alternate paths
- No notion of IP fast re-route for SDN
- Current fault tolerance approaches are typically application-specific

Security

- Current Internet architecture has no accountability built in
- Security properties are extremely difficult to verify and enforce
- Data leaks are incredibly common
- Future: Can SDN control traffic flows according to formal security policy?

Quality of Service

- Network-wide visibility and control may assist in providing applications quality of service
 - Applications provide hints to network about requirements
 - Network offers visibility to applications that can make better decisions

FlowQoS: QoS for the Rest of Us, M. Said Seddiki, Muhammad Shahbaz, Sean Donovan, Sarthak Grover, Miseon Park, Nick Feamster and Ye-Qiong Song, ACM SIGCOMM, Chicago, IL, USA, August 2014

SDN Meets Big Data

- We have seen how SDN makes certain network management tasks easier.
- No existing technology takes advantage of the huge amount of data about the network
 - Regular traffic patterns, prediction, etc.
- Needed: Means of mining configuration, traffic demands, etc. to enable intelligent management.

Verification

- Important work on pieces of the puzzle
 - Control-plane (Kinetic) and data-plane (HSA, ...)

- Many important problems remain
 - Coupling data and control plane verification
 - Composing verification
 - Applying verification to security properties.

Orchestration & Beyond Match/Action

- SDN is more than just match/action. It is logically centralized control of multiple network devices.
- We have seen several extensions
 - RMT, Middleboxes, Programmable substrates
- Still needed: Unifying control framework for compilation/orchestration.

Summary

- Many open problems in SDN in many areas
 - Northbound API: Programming, New applications
 - Control plane: Orchestration
 - Data plane: Moving beyond match/action

• With this course as a starting point, you are now equipped to solve the next set of SDN problems!