Student Name: SalahDin Rezk

Student ID: 202201079 Date: November 9, 2023

Digital Design and Computer Architecture (CIE 239)

Assignment 2

1. a. Write a Boolean equation in sum-of-products canonical form and product-of-sum canonical form for following truth table.

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Table 1

$$Y = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + AB'C'D' + AB'CD' + ABCD'$$
(1)
= $\Sigma(0, 1, 2, 3, 8, 10, 14)$. (2)

$$(A + B' + C + D)(A + B' + C + D')(A + B' + C + D')(A + B' + C' + D)$$

$$Y = (A + B' + C' + D')(A' + B + C + D')(A' + B + C' + D')(A' + B' + C + D)$$

$$(A' + B' + C + D')(A' + B' + C' + D')$$
(3)

$$= \Pi(4, 5, 6, 7, 9, 11, 12, 13, 15). \tag{4}$$

b. Minimize each of the Boolean equations of the sum-of products (use Boolean algebra) and implement the simplified equation using basic logic gates (AND, OR and NOT gate).

Solution.

$$Y = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + AB'C'D' + AB'CD' + ABCD'$$
 (5)

$$= A'B'C'(D'+D) + A'B'CD' + A'B'CD + AB'D'(C'+C) + ABCD'$$
(6)

$$= A'B'C' + A'B'CD' + A'B'CD + AB'D' + ABCD'$$
(7)

$$= A'B'(C' + CD') + A'B'CD + AB'D' + ABCD'$$
(8)

$$= A'B'(C' + D') + A'B'CD + AB'D' + ABCD'$$
(9)

$$= A'B'(C' + D' + CD) + AB'D' + ABCD'$$
(10)

$$= A'B'(C' + CD + D') + AB'D' + ABCD'$$
(11)

$$= A'B'(C' + D + D') + AB'D' + ABCD'$$
(12)

$$= A'B'(C'+1) + AB'D' + ABCD'$$
(13)

$$=A'B' + AB'D' + ABCD' \tag{14}$$

$$=B'(A'+AD')+ABCD'$$
(15)

$$=B'(A'+D')+ABCD'$$
(16)

$$=A'B' + B'D' + ABCD' \tag{17}$$

$$=A'B'+D'(B'+ABC) \tag{18}$$

$$= A'B' + D'(B' + BAC) (19)$$

$$= A'B' + D'(B' + AC) (20)$$

$$= A'B' + B'D' + ACD'. (21)$$

Figure 1

c. Implement the minimized function again using only using only NOT gates and NAND and NOR gates.

Solution.

$$Y = \overline{\overline{A'B' + B'D' + ACD'}} \tag{22}$$

$$= \overline{\overline{A'B'} \cdot \overline{B'D'} \cdot \overline{ACD'}}.$$
 (23)

Figure 2

2. Simplify the following Boolean equations using Boolean theorems. Check for correctness using K-map.

a.
$$F(x, y, z) = x'y' + xyz + x'y$$

Solution.

$$F(x,y,z) = x'y' + xyz + x'y \tag{24}$$

$$=x'(y'+y)+xyz\tag{25}$$

$$=x'+xyz\tag{26}$$

$$=x'+yz. (27)$$

0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0

K-Map 1

b.
$$F(w, x, y, z) = w'x(z' + yz) + x(w + w'yz)$$

$$F(w, x, y, z) = w'x(z' + yz) + x(w + w'yz)$$

$$= w'x(z' + zy) + x(w + w'yz)$$

$$= w'x(z' + y) + x(w + yz)$$

$$= w'xz' + w'xy + xw + xyz$$

$$= x(w + w'z') + w'xy + xyz$$

$$= x(w + z') + w'xy + xyz$$

$$= x(w + z') + w'xy + xyz$$

$$= xx' + x(w + w'y) + xyz$$

$$= xz' + x(w + w'y) + xyz$$

$$= xz' + x(w + y) + xyz$$

$$= xz' + xw + xy + xyz$$

K-Map 2

3. Simplify the following using Kmap and implement using logic gates

(a)
$$F(x, y, z) = \Sigma m(0, 2, 6, 7)$$

& Z.	00	01	11	10
0	1	0	0	1
1	0	0	1	1

K-Map 3

Solution.

$$F(x, y, z) = x'z' + xy. \tag{40}$$

(b) $F(A, B, C, D) = \Sigma m(1, 3, 6, 7, 9, 11, 12, 13)$

K-Map 4

$$F(A, B, C, D) = ABC' + A'BC + B'D.$$
 (41)

4. Using De Morgan equivalent gates and bubble pushing methods, redraw the circuit so that you can find the Boolean equation by inspection. Write the Boolean equation.

Figure 3

Figure 4

$$Y = ABC + D' + E'(F' + G')$$
(42)

$$= ABC + D' + E'F' + E'G'. (43)$$

5. Find a minimal Boolean equation for the function. Remember to take advantage of the don't care entries. (use k-map)

A	В	\mathbf{C}	D	Y
0	0	0	0	X
0	0	0	1	X
0	0	1	0	X
0	0	1	1	0
0	1	0	0	0
0	1	0	1	X 0
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	X
1	1	1	1	1

Table 2

K-Map 5

Solution.

$$F(A, B, C, D) = AD + AB + B'D'.$$
 (44)

_

6. A circuit has four inputs and two outputs. The inputs, $A_{3:0}$, represent a number from 0 to 15. Output P should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if the number an even number Give simplified Boolean equations for each output and sketch a circuit (use k-map)

Dec	A_3	A_2	A_1	A_0	$\mid P \mid$	D
0	0	0	0	0	0	1
1	0	0	0	1	0	0
2	0	0	1	0	1	1
3	0	0	1	1	1	0
4	0	1	0	0	0	1
5	0	1	0	1	1	0
6	0	1	1	0	0	1
7	0	1	1	1	1	0
8	1	0	0	0	0	1
9	1	0	0	1	0	0
10	1	0	1	0	0	1
11	1	0	1	1	1	0
12	1	1	0	0	0	1
13	1	1	0	1	1	0
14	1	1	1	0	0	1
15	1	1	1	1	0	0

Table 3

(a) *P* (b) *D*

K-Map 6

Solution.

$$D(A_3, A_2, A_1, A_0) = A_0'. (45)$$

$$P(A_3, A_2, A_1, A_0) = A_3' A_2' A_1 + A_3' A_2 A_0 + A_2 A_1' A_0 + A_2' A_1 A_0.$$

$$(46)$$

8. 8 00 8. 8. 90

Figure 5

7. Write the HDL code for question number 6 (Your answer should include the HDL code and the input and output signal screenshot from modelsim)

SystemVerilog

```
module prime_even(
   input logic [3:0] A,
   output logic P, D

);

assign P = ~A[3] & ~A[2] & A[1] | ~A[3] & A[2] & A[0] | A[2] & ~A[1] & A[0]
   | ~A[2] & A[1] & A[0];
assign D = ~A[0];

endmodule
```


Figure 6: Waveform of prime_even using GTKWave