الترتيب في IR

القدرات المنتظرة

- *- التمكن من مختلف تقنيات مقارنة عددين (أو تعبيرين) واستعمال المناسب منه الوضعية المدروسة.
 - *- تمثيل مختلف العلاقات المرتبطة بالترتيب على المستقيم العددي.
- *- إدراكُ وتحديد تقريب عدد (أو تعبير) بدُقة معلومة. إنجاز إكبارات أو إصغارات لتعا،
 - *- استعمال المحسبة لتحديد قيم مقربة لعدد حقيقي.

I- الترتيب و العمليات

1- أنشطة

تمرين1

$$2a$$
 و a^2+1 قارن a^2+1 و عددا

$$-1 \le b \le 4$$
 ; $-2 \le a \le 3$ ليكن $a \ge b \le a$ ليكن $a \ge a$ ليكن أن $a \ge a \le a$ بين أن $a \ge a \le a$

$$3\sqrt{3}$$
 قارن $3\sqrt{2}$ و $3\sqrt{3}$ ت**مرین** $x\in\mathbb{R}_{+}^{*}$ لیکن

$$\sqrt{x^2 + 1} - x = \frac{1}{\sqrt{x^2 + 1} + x}$$
 أ-

$$\sqrt{x^2+1}-x$$
 و $\frac{1}{2x}$ ب- قارن

 $a \neq b$ عددین حقیقیین سالبین قطعا حیث b و a

$$1-\frac{b}{a}$$
 و $\frac{a}{b}-1$ قارت

2- تعریف و خاصیات

اً تعریف

لیکن
$$a$$
 و b عددین حقیقیین

$$a-b \ge 0$$
 يعني $a \ge b$

$$a-b \le 0$$
 يعني $a \le b$

ب- خاصیات و نتائج

ليكن a و b و c و d أعداد حقيقية

$$a \geq c$$
 و $b \geq c$ و $a \geq b$ إذا كان $a \geq b$

$$a+c \ge b+c$$
 فأن $a \ge b$ إذا كان $a \ge b$

$$a+c \ge b+d$$
 و $a \ge b$ و الخاكان $a \ge b$ و الخاكان الخاكان عند الخاكان الخاكا

$$ac \ge bc$$
 فان $a \ge b$ و $a \ge b$

$$ac \le bc$$
 فان $a \ge b$ فان $a \ge b$

$$a^2 \ge b^2$$
 فان $a \ge b \ge 0$ إذا كان

$$a^2 \le b^2$$
 فان $0 \ge a \ge b$ إذا كان

$$\sqrt{a} \le \sqrt{b}$$
 تكافئ $0 \le a \le b$

$$\frac{1}{a} \ge \frac{1}{b}$$
 فان $a \le b$ فان $a \le b$ فان أيا إذا كان $a \le b$ فان أيا إذا كان أيا كان أيا إذا كان أيا إذا كان أيا إذا كان أيا كان

II- المحالات

1- <u>محالات المحموعةIR</u>

 $a \prec \overline{b}$ حیث $(a;b) \in \mathbb{R}^2$ لیکن

قراءة و تمثيل على المستقيم	ترمیزها	مجموعة الاعداد الحقيقية X حيث:
b و a و المجال المغلق الذي طرفاه a و b	[a;b]	$a \le x \le b$
b يقرأ المجال المفتوح الذي طرفاه a و b]a;b[$a \prec x \prec b$
b يقرأ المجال المفتوح على اليمين الذي طرفاه $\dfrac{a}{\mathbf{b}}$	[a;b[$a \le x \prec b$
b يقرأ المجال المفتوح على اليسار الذي طرفاه $rac{a}{\mathbf{b}}$]a;b]	$a \prec x \leq b$
a يقرأ المجال a زائد ما لانهاية مغلق في $\overset{\bullet}{\longrightarrow}$	[<i>a</i> ;+∞[$a \le x$
a يقرأ المجال a زائد ما لانهاية مفتوح في a عند ما لانهاية مفتوح عند a] <i>a</i> ;+∞[$a \prec x$
b يقرأ المجال ناقص لانهاية، b مغلق في $lackbreak$ b]-∞,b]	$x \le b$
b يقرأ المجال ناقص لانهاية، b مفتوح في $egin{array}{c} b \end{array}$]-∞;b[$x \prec b$

امثلة

$$[-1;4] = \left\{x \in \mathbb{R} / -1 \le x \le 4\right\} *$$

$$\sqrt{3} \in [-1;4] \qquad \frac{-1}{2} \in [-1;4] \qquad -2 \notin [-1;4]$$

$$]-\infty; 2[= \left\{x \in \mathbb{R} / x < 2\right\} *$$

$$-\sqrt{2} \in]-\infty; 2[\qquad \pi \notin]-\infty; 2[\qquad 2 \notin]-\infty; 2[$$

III- القيمة المطلقة

1- القيمة و المطلقة

تعريف

لیکن $\Delta(O;I)$ مستقیما مدرجا

x التي أفصولها x التي أفصولها x التي أفصولها x التي أفصولها OM = |x| نكتب x نرمز للقيمة المطلقة للعدد x بـ x نكتب x نرمز للقيمة المطلقة للعدد x بـ x

 $x \in \mathbb{R}$ لیکن

$$|x| = x$$
 فان $x \ge 0$ إذا كان $x \ge 0$

$$|x| = -x$$
 فان $x \le 0$

أمثلة

$$|2 - \pi| = \pi - 2$$
 ; $|\sqrt{3} - 1| = \sqrt{3} - 1$; $|-12| = 12$; $|\sqrt{2}| = \sqrt{2}$

نمرين

$$\sqrt{\left(2-\sqrt{5}\right)^2}$$
 و $\sqrt{\left(4-\sqrt{15}\right)^2}$ و $\left|1-\sqrt{2}\right|$ حدد

خاصیات (с

$$N$$
 O I M
 $-x$ O 1 x
 $ON = x$ $OM = x$
 $|x| = |-x|$ $|x| = ON$

$$\left|x\right|^2=x^2$$
 ، $\left|x\right|=\left|-x\right|$ ، $\left|x\right|\leq \left|x\right|$ ، $\left|x\right|\geq 0$ $x\in\mathbb{R}$ لکل *-*

$$\mathbb{R}^+$$
 ليكن x و y من x و x -*

$$x=0$$
 تكافئ $|x|=0$

$$x = -a$$
 أو $x = a$ تكافئ $|x| = a$

$$x = -y$$
 اُو $x = y$ تكافئ $|x| = |y|$

$$y \neq 0$$
 $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$; $|xy| = |x||y|$

$$-a \le x \le a$$
 تکافئ $|x| \le a$

$$|x + y| \le |x| + |y|$$

بين نتيجتين الأخيرتين

 $x \in \mathbb{R}$ لیکن

1- أكتب التعابير التالية بدون استعمال القيمة المطلقة

$$|x-2|+|x+3|$$
 , $|3-x|$, $|2x-1|$

 \mathbb{R} من x من الكل $|x-5|+|x+1| \neq 4$ الكل من -2

تمرین 2

 $x \in \mathbb{R}$ لیکن

$$|x^2-1| < 10^{-2}$$
 بين إذا كان $|x-1| < 10^{-3}$ فان

2- المسافة بين نقطتين و القيمة المطلقة

$$\Delta(O;I)$$
 لیکن $A(a)$ و $B(b)$ نقطتین علی مستقیم مدرج $A(a)$ لیکن $AB=\left|b-a\right|$

المسافة |b-a| لنقطتين A(a) و B(b) على مستقيم مدرج ، تسمى أيضا b و a المسافة بين العددين

أمثلة

5 هي 3 لنحدد الأعداد x التي مسافتها عن *

$$|x-2|=|x+5|$$
 حدد هندسيا على المستقيم المدرج $\Delta(O;I)$ النقطة *

مرکز و سعة وشعاع مجال $(a;b) \in \mathbb{R}^2$ لیکن

 $B\left(b
ight)$; $A\left(a
ight)$ نعتبر المدرج $\Delta\left(O;I
ight)$

|b-a| هو [A;B]

 $\frac{a+b}{2}$ هو [A;B] هو أفصول

$$IA = IB = \frac{|b - a|}{2}$$

$$(a;b) \in \mathbb{R}^2$$
 ليكن

$$\frac{a+b}{2}$$
 مرکز مجال طرفاه a و a هو $b-a$ سعة مجال طرفاه a و a هو $\frac{|b-a|}{2}$ شعاع مجال طرفاه a و a هو

- 1- حدد مركز وشعاع [3;5]
- 2- حدد مجالا مفتوحا مركزه 2- وشعاعه 3
- $\frac{-3}{2}$ حدد مجالا مغلقا مركزه 1 و أحد طرفيه -3

4- القيمة المطلقة والمجالات

$$r \in \mathbb{R}_+^*$$
 و \mathbb{R} من a و a مجال مفتوح مرکزه a و شعاعه a

$$r \in \mathbb{R}_{+}^{*}$$
 و \mathbb{R} من a و x ليكن $x \leq a - r$ أو $x \geq a + r$ تكافئ $|x - a| \geq r$ $|x - a|$ $|x - a|$

حدد المجموعات التالية $C = \{x \in \mathbb{R} / |x - 1| \ge 2\}$ o $B = \{x \in \mathbb{R} / |x + 4| < 7\}$ o $A = \{x \in \mathbb{R} / |x - 3| \le 2\}$

IV- التأطير و التقريب

A) التأطير

1- أنشطة

$$\frac{2}{3}$$
 ا- حدد مجالا مفتوحا سعته 10^{-2} يحتوي على أ- علما أن $\sqrt{2} < 1.42$

$$7\cdot 10^{-2}$$
 سعته $-3\sqrt{2}$ حدد مجالا مغلقا یحتوي علی

$$a \prec b$$
 حيث $(a;b) \in \mathbb{R}^2$ ليكن

كل متفاوتة من المتفاوتات المزدوجة $a \le x \le b$ و و $a \prec x \prec b$ و $a \leq x \prec b$ تسمى $a \prec x \leq b$ b-a تأطيرا للعدد x سعته b

1 عته
$$\frac{2}{3}$$
 سعته $0 < \frac{2}{3} < 1$ 10^{-3} سعته $\frac{2}{3}$ سعته $0,666 < \frac{2}{3} < 0,667$

$$x^2 + 3x - \frac{1}{y} - 5$$
 أطر $2 < y < 4$; $-3 < x < 5$ ليكن -1

$$(x+1)(y+1)$$
ب- أطر $(x+1)(y+1)$. أنشـر $\frac{1}{x+y+xy+4}$

تمرين2

$$1,41 < \sqrt{2} < 1,42$$
 ناحدد تأطيرا للعدد $\frac{2\sqrt{2}}{3}$ سعته $\frac{2\sqrt{2}}{3}$ سعته -1

$$1,53 \prec x \prec 1,54$$
 , $-0,01 \prec y \prec 0,02$ نعتبر -2

$$6 \cdot 10^{-2}$$
 حدد تأطيرا للعدد xy حدد تأطيرا

ت**مرین3**

$$1,2 \prec x \prec 1,4$$
 , $0,2 \prec y \prec 0,4$ لیکن $y \prec 0,4$

$$0.20$$
 صعته $\frac{y}{x}$ سعته $\frac{y}{x}$

B)التقريب

$$x$$
 ليكن $a \le x \le b$ أو $a < x \le b$

العدد a يسمى تقريب للعدد x إلى b-a بتفريط

العدد b يسمى تقريب للعدد x إلى b-a بإفراط

أمثلة

$$3,14 \prec \pi \prec 3,15$$
 لدينا

العدد 3,14 تقريب للعدد
$$\pi$$
 إلى $^{-2}$ بتفريط

العدد 3,15 تقريب للعدد
$$\pi$$
 إلى $^{-2}$ بإفراط

لیکن a و x عددین حقیقین و a عددا حقیقیا موجب قطعا

 $a-r \le x \le a$ العدد a تقریب للعدد x إلى a بإفراط إذا وفقط إذا كان

 $a \le x \le a + r$ العدد $a \le x \le a + r$ العدد $a \le x$ العدد $a \le x$

تمرین لنحدد تقریبات للعدد $\frac{22}{3}$ إلى 10^{-3} بإفراط

$$x = \frac{1+\sqrt{5}}{2}$$
 تمرین لیکن

إذا علمت أن 2,236 تقريب للعدد $\sqrt{5}$ إلى 10^{-3} بتفريط فأعط تقريب للعدد x إلى 10^{-3} بتفريط

2- قيمة مقربة

لیکن x عددا حقیقیا و r عددا حقیقیا موجبا

r كل عدد حقيقي a يحقق $|x-a| \le r$ يسمى قيمة مقربة (أو تقريبا) للعدد

(أو بالدقة r)

$$3 \cdot 10^{-3}$$
 إذن 3.14 تقريب للعدد $\frac{22}{7}$ إلى $\left| \frac{22}{7} - 3.14 \right| \le 0,003$

$$x \in [a,b]$$
 ليكن

$$b-a$$
 کل عدد α من a تقریب للعدد a إلى

ملاحظة

$$\frac{b-a}{2}$$
 الى $x\in [a,b]$ تقريب للعدد $x\in [a,b]$ إذا كان

$$\frac{b-a}{2} \qquad \frac{b-a}{2}$$

$$\frac{a \times a+b}{2} \qquad b$$

مثال

$$1,41 \prec \sqrt{2} \prec 1,42$$

0,005 الى 1,415 تقريب للعدد $\sqrt{2}$ الى

تمرين

لنبين أن -0.14 تقريب للعدد $\frac{-1}{7}$ بالدقة -0.14

3- التقربيات العشرية

أ- استعمال المحسبة لتحديد تقريبات عشرية

ب-التقريب العشري

لیکن x عددا حقیقیا و n عددا صحیحا طبیعیا

 $10^{-n} \ p \le x < 10^{-n} \ (p+1)$ نقبل انه یوجد عدد صحیح نسبي و حید p حیث

(n العدد p العدد (n أو من الرتبة (n العدد (n العدد العشري العدد العشري الع

 $(n = 10^{-n})$ العدد (p+1) تقريب العشري للعدد x بإفراط إلى (p+1) العدد

اصطلاح:

x للعدد n الأكثر قربا من العدد x يسمى الجبر (arrondi) من الرتبة n للعدد

$$666 \cdot 10^{-3} \prec \frac{2}{3} \prec 667 \cdot 10^{-3}$$
 مثال لدينا

العدد 0,666 تقريب العشري للعدد $\frac{2}{3}$ من الرتبة 3 بتفريط

العدد $\frac{2}{3}$ من الرتبة 3 بإفراط $\frac{2}{3}$ العدد 0,667

$$\frac{2}{3}$$
 - 0,666 = $\frac{0,002}{3}$; $0,667 - \frac{2}{3} = \frac{0,001}{3}$ نلاحظ أن

الجبر للعدد $\frac{2}{2}$ من الرتبة 3 0,667

تمرین $-0.31 \prec y \prec -0.25$ و 1,24 من الرتبة 2 بتفریط و 1,24

$$0.05$$
 أطر $\frac{y}{x}$ تأطيرا سعته