

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE

HOMEWORK

Discrete Mathematics

TUT-12: Problem Set 12

Problem 1: Exercises 1-8 in text book [1] – page 839.

Problem 2

Given a data source of 8 characters A, B, C, D, E, F with probability of appearance as follows:

A	В	С	D	Ε	F
0.15	0.24	0.31	0.09	0.10	0.11

- 1. Encode the source and find the codewords for those characters. Draw the Huffman tree.
- 2. Calculate the average length of codewords (\overline{L}) and the entropy (H) of the source by the following equations

$$\overline{L} = \sum_{i=1}^{m} L_i \times p_i; \tag{1}$$

$$H = \sum_{i=1}^{m} p_i \times \log_2\left(\frac{1}{p_i}\right) \tag{2}$$

where m is number of different characters, L_i and p_i are length and probability of the ith codeword.

Problem 3

Given a data source of 8 characters A, B, C, D, E, F, G, H, I with probability of appearance as follows:

A	В	С	D	E	F	G	Н	I
0.14	0.03	0.21	0.19	0.10	0.11	0.08	0.13	0.01

- 1. Encode the source and find the codewords for those characters. Show the Huffman tree.
- 2. If the length of the source is 10000, calculate C and S by the following equations

Compression Ratio :
$$C = \frac{\text{Uncomressed Size}}{\text{Comressed Size}}$$
 (3)
Space Saving : $S = 1 - \frac{\text{Comressed Size}}{\text{Uncomressed Size}}$ (4)

Space Saving:
$$S = 1 - \frac{\text{Comressed Size}}{\text{Uncomressed Size}}$$
 (4)

References

- [1] K. H. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill, 8th edition,
- [2] S. S. Epp, Discrete Mathematics with Applications, Cengage, 5th edition, 2020.