GROUPES

1 Groupes

Définition 1.1

On appelle **groupe** tout ensemble G muni d'une loi interne ★ vérifiant les conditions suivantes :

- (i) ★ est associative,
- (ii) (E, ★) possède un élément neutre,
- (iii) tout élément est inversible.

Remarque. Il peut arriver qu'on parle d'un groupe sans préciser sa loi. Le produit de deux éléments x et y de G se notera alors simplement xy.

1

Définition 1.2 Groupe commutatif

Soit (G, \star) un groupe. Si la loi \star est commutative, on dit que le groupe (G, \star) est **commutatif** ou **abélien**.

Exemple 1.1

- Si E est un ensemble, $(S(E), \circ)$ est un groupe non commutatif dès que card $E \ge 3$.
- $(\mathbb{Z}, +)$ est un groupe commutatif.
- (\mathbb{C}^*, \times) est un groupe.
- Si \mathbb{K} est un corps et $n \in \mathbb{N}^*$, $(GL_n(\mathbb{K}), \times)$ est un groupe non commutatif dès que $n \ge 2$.

Théorème 1.1 Propriétés de l'inverse

Soit (G, \star) un groupe.

- (i) Soit $x \in G$. Alors $(x^{-1})^{-1} = x$.
- (ii) Soit $(x, y) \in G^2$. Alors $(x \star y)^{-1} = y^{-1} \star x^{-1}$.

Notation 1.1 Puissance

Soient (G, \star) un groupe d'élément neutre $e, x \in G$ et $n \in \mathbb{N}^*$.

- On pose $x^n = \underbrace{x \star x \star \cdots \star x}_{n \text{ fois}}$.
- Par convention, on pose $x^0 = e$.
- On pose $x^{-n} = (x^{-1})^n = (x^n)^{-1}$.

Remarque. Si la loi est noté additivement +, on parle plutôt de **multiple** que de puissance et le «multiple $k^{\text{ème}}$ » de x s'écrit kx plutôt que x^k .

Proposition 1.1 Règles de calcul

Soient (G, \star) un groupe d'élément neutre e et $x \in G$. Pour tout $(n, p) \in \mathbb{Z}^2$, $x^n \star x^p = x^{n+p}$.

ATTENTION! En général $(x \star y)^n \neq x^n \star y^n$, à moins que la loi \star soit commutative.

Proposition 1.2 Groupe produit

Soient $(G_1, \star_1), \dots, (G_n, \star_n)$ des groupes d'éléments neutres e_1, \dots, e_n . Alors on peut munir $G = \prod_{i=1}^n G_i$ d'une structure de groupe en définissant une loi \star sur G par

$$\forall (x, y) \in G^2, \ x \star y = (x_1 \star_1 y_1, \dots, x_n \star_n y_n)$$

L'élément neutre de G est alors (e_1, \dots, e_n) et pour tout $x \in G$, $x^{-1} = (x_1^{-1}, \dots, x_n^{-1})$.

2 Sous-groupes

Définition 2.1 Sous-groupe

Soient (G, \star) un groupe et H un ensemble. On dit que H est un sous-groupe de G si :

- (i) $H \subset G$
- (ii) H contient l'élément neutre,
- (iii) H est stable pour la loi \star i.e. $\forall (h, h') \in H^2$, $h \star h' \in H$,
- (iv) H est stable par passage à l'inverse i.e. $\forall h \in H, h^{-1} \in H$.

Exemple 2.1

Soit G un groupe d'élément neutre e. Alors G et {e} sont des sous-groupes de G.

Remarque. Si H est un sous-groupe d'un groupe (G, \star) . Alors pour tout $(h, n) \in H \times \mathbb{Z}, h^n \in H$.

Proposition 2.1

Soient (G, \star) un groupe et H un sous-groupe de G. Alors (H, \star) est un groupe. De plus,

- (i) l'élément neutre de (H, \star) est l'élément neutre de (G, \star) ;
- (ii) si $h \in H$, l'inverse de h en tant qu'élément du groupe (H, \star) est égal à son inverse en tant qu'élément du groupe (G, \star) .

Remarque. Si on voulait être rigoureux, il faudrait munir H de la restriction de ★ à H.

REMARQUE. Si K est un sous-groupe de H qui est un sous-groupe de G, alors K est un sous-groupe de G.

Théorème 2.1 Caractérisation des sous-groupes

Soient (G, ★) un groupe d'élément neutre e et H un ensemble. Alors H est un sous-groupe si et seulement si

- (i) $H \subset G$;
- (ii) H contient l'élément neutre;
- (iii) $\forall (h, k) \in H^2$, $h \star k^{-1} \in H$.

Méthode Sous-groupes en pratique

Il est souvent plus facile de montrer qu'un ensemble muni d'une loi interne est un groupe en montrant qu'il est un sous-groupe d'un groupe connu.

Exemple 2.2

- $(\mathbb{Z}, +)$ est un sous-groupe de $(\mathbb{C}, +)$.
- (\mathbb{Q}^*, \times) est un sous-groupe de (\mathbb{C}^*, \times) .
- Soit $n \in \mathbb{N}^*$. (\mathbb{U}_n, \times) est un sous-groupe de (\mathbb{U}, \times) qui est un sous-groupe de (\mathbb{C}^*, \times) .
- Soit E un K-espace vectoriel. GL(E) est un sous-groupe de S(E).

Proposition 2.2 Intersection de sous-groupes

Soit $(H_i)_{i \in I}$ une famille de sous-groupes d'un groupe G. Alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

Définition 2.2 Sous-groupe engendré par une partie

Soient G un groupe et $A \subset G$. On appelle **sous-groupe engendré** par A l'intersection de tous les sous-groupes de G contenant A i.e. le plus petit sous-groupe de G contenant A.

REMARQUE. Si le sous-groupe engendré par A est G, on dit également que A est un partie génératrice de A.

Exemple 2.3

- Le sous-groupe engendré par la partie vide est le sous-groupe trivial contenant le seul élément neutre.
- L'ensemble des transpositions de S_n engendrent S_n .

Exercice 2.1

Montrer que le groupe orthogonal O(E) d'un espace euclidien E est engendré par les réflexions.

Proposition 2.3 Sous-groupe engendré par un élément

Soient G un groupe et $x \in G$. Le sous-groupe engendré par $\{x\}$ est appelé plus simplement sous-groupe engendré par x. De plus, ce sous-groupe est $\{x^k, k \in \mathbb{Z}\}$.

REMARQUE. Si le sous-groupe engendré par x est G, on dit également que x est un générateur de G.

Exemple 2.4

- Les générateurs de $(\mathbb{Z}, +)$ sont ± 1 .
- Les générateurs de \mathbb{U}_n sont les $e^{\frac{2\pi i n}{n}}$ avec $k \wedge n = 1$.

Proposition 2.4 Sous-groupes de $(\mathbb{Z}, +)$

Les sous-groupes de $(\mathbb{Z}, +)$ sont les $a\mathbb{Z}$ avec $a \in \mathbb{Z}$.

3 Morphismes de groupes

Définition 3.1 Morphisme de groupes

Soient (G, \star) et (G', \bullet) deux groupes. On appelle **morphisme** (**de groupes**) de (G, \star) dans (G', \bullet) toute application f de G dans G' telle que :

$$\forall (x, y) \in G^2, f(x \star y) = f(x) \cdot f(y)$$

On appelle **endomorphisme** (**de groupe**) de (G, \star) tout morphisme de (G, \star) dans lui-même.

Exemple 3.1

- L'exponentielle est un morphisme de $(\mathbb{R}, +)$ dans (\mathbb{R}^*, \times) .
- Le module est un morphisme de (\mathbb{C}^*, \times) dans (\mathbb{R}^*, \times) .
- La signature est un morphisme de (S_n, \circ) dans $(\{-1, 1\}, \times)$.
- Si \mathbb{K} est un corps, le déterminant est un morphisme de $(GL_n(\mathbb{K}), \times)$ dans (\mathbb{K}^*, \times) .
- Si E est un espace vectoriel de dimension finie, le déterminant est un morphisme de (GL(E), ×) dans (K*, ×).

Proposition 3.1 Morphisme, élément neutre et inverse

Soit f un morphisme de (G, \star) dans (G', \bullet) . On note e et e' les éléments neutres respectifs de G et G'. Alors

- (i) f(e) = e',
- (ii) $\forall x \in G, f(x^{-1}) = f(x)^{-1}$.
- (iii) $\forall x \in G, \forall n \in \mathbb{Z}, f(x^n) = f(x)^n$.

Proposition 3.2 Morphisme et composition

Soient $f: G \to G'$ et $g: G' \to G''$ deux morphismes de groupes. Alors $g \circ f: G \to G''$ est un morphisme de groupes.

Proposition 3.3 Images directe et réciproque d'un sous-groupe par un morphisme de groupes

Soit $f: G \to G'$ un morphisme de groupes.

- (i) Si H est un sous-groupe de G, alors f(H) est un sous-groupe de G'.
- (ii) Si K est un sous-groupe de G', alors $f^{-1}(K)$ est un sous-groupe de G.

Définition 3.2 Noyau et image d'un morphisme

Soit $f: G \to G'$ un morphisme de groupes. On note e' l'élément neutre de G'.

- (i) On appelle **noyau** de f l'ensemble $\operatorname{Ker} f = f^{-1}(\{e'\}) = \{x \in G, f(x) = e'\}.$
- (ii) On appelle **image** de f l'ensemble $\operatorname{Im} f = f(G) = \{f(x), x \in G\}$.

Remarque. L'image du morphisme f n'est autre que l'image de l'application f.

Théorème 3.1

Soit $f: G \to G'$ un morphisme de groupes.

- (i) Ker f est un sous-groupe de G.
- (ii) Im f est un sous-groupe de G'.

Exemple 3.2

- Le module est un morphisme de (\mathbb{C}^*, \times) dans (\mathbb{R}^*, \times) . Par définition, son noyau est \mathbb{U} qui est donc un sous-groupe de (\mathbb{C}^*, \times) .
- De même, $\{-1,1\}$ est un sous-groupe de (\mathbb{R}^*,\times) puisque c'est le noyau de l'endomorphisme «valeur absolue» de (\mathbb{R}^*,\times) .
- Si E est un espace euclidien, SO(E) est un sous-groupe de (O(E), o) car c'est le noyau du déterminant sur O(E).

Proposition 3.4

Soit $f: G \to G'$ un morphisme de groupes. On note e l'élément neutre de G.

- (i) f est injectif si et seulement si Ker $f = \{e\}$.
- (ii) f est surjectif si et seulement si Im f = G'.

Remarque. En ce qui concerne la première proposition, pour prouver l'injectivité de f, il suffit de montrer que $\text{Ker } f \subset \{e\}$ puisque Ker f, étant un sous-groupe, contient nécessairement e.

Méthode Injectivité en pratique

Pour prouver l'injectivité d'un morphisme de groupes $f: G \to G'$, on commence la démonstration par : «Soit $x \in G$ tel que f(x) = e'» et on montre que x = e.

Définition 3.3 Isomorphisme, automorphisme

Soient G et G' deux groupes.

On appelle **isomorphisme** de G sur G' tout morphisme bijectif de G dans G'.

On appelle automomorphisme de G tout endomorphisme bijectif de G.

On dit que G est **isomorphe** à G' s'il existe un isomorphisme de G sur G'.

Remarque. Dire que deux groupes sont isomorphes veut dire qu'ils ont la même structure. Si on connaît l'un, on connaît l'autre. Toute propriété liée à la structure de groupe qui est vraie dans un groupe est aussi vraie dans un groupe qui lui est isomorphe.

Exemple 3.3

 $(\mathbb{C},+)$ et $(\mathbb{R}^2,+)$ sont isomorphes.

Théorème 3.2 Réciproque d'un isomorphisme

Soit f un isomorphisme de groupes de G sur G'. Alors f^{-1} est un isomorphisme de groupes de G' sur G.

Théorème 3.3 Groupe des automorphismes

Soit G un groupe. L'ensemble des automorphismes de G, noté Aut(G), est un sous-groupe de (S(G), o).

4 Le groupe $\mathbb{Z}/n\mathbb{Z}$

Proposition 4.1

Soit $n \in \mathbb{N}^*$. La relation de congruence modulo n définit une relation d'équivalence sur \mathbb{Z} .

Définition 4.1 $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. On appelle $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalences de la relation de congruence modulo n.

Notation 4.1

Pour $k \in \mathbb{Z}$, on notera \overline{k}^n sa classe d'équivalence modulo n ou plus simplement \overline{k} s'il n'y a pas d'ambiguïté sur l'entier n.

Remarque. Par conséquent, $\overline{k}^n = \{k + pn, p \in \mathbb{Z}\}.$

Exemple 4.1

Dans $\mathbb{Z}/5\mathbb{Z}$, $\overline{47} = \overline{2} = \overline{-8}$.

Remarque. En considérant le reste de la division euclidienne d'un entier par $n \in \mathbb{N}^*$, on montre qu'un entier est toujous congru modulo n à un entier compris entre 0 et n-1. Il s'ensuit que

$$\mathbb{Z}/n\mathbb{Z} = \left\{ \overline{k}^n, \ k \in [0, n-1] \right\}$$

En particulier, card $(\mathbb{Z}/n\mathbb{Z}) = n$.

Proposition 4.2 Addition sur $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. On définit une addition sur $\mathbb{Z}/n\mathbb{Z}$ en posant

$$\forall (k,l) \in \mathbb{Z}^2, \ \overline{k}^n + \overline{l}^n = \overline{k+l}^n$$

Remarque. Il faut vérifier que la classe de congruence de k+l modulo n ne dépend que des classes de congruence de k et l modulo n.

Exemple 4.2

Dans $\mathbb{Z}/4\mathbb{Z}$, $\overline{7} + \overline{2} = \overline{9} = \overline{1}$.

Proposition 4.3 Structure de groupe de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe commutatif d'élément neutre $\overline{0}$.

Théorème 4.1 Générateurs de $\mathbb{Z}/n\mathbb{Z}$

Si $k \in \mathbb{Z}$, alors \overline{k} engendre le groupe $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.

5 Groupes monogènes

Définition 5.1 Groupe monogène

On dit qu'un groupe est monogène s'il est engendré par un de ses éléments.

REMARQUE. Un groupe monogène et fini ou dénombrable.

Exemple 5.1

Le groupe $(\mathbb{Z}, +)$ est monogène puisqu'il est engendré par 1.

Proposition 5.1

Tout groupe monogène est commutatif.

Théorème 5.1

Un groupe infini est monogène si et seulement si il est isomorphe à $(\mathbb{Z}, +)$.

Définition 5.2 Groupe cyclique

On dit qu'un groupe est cyclique s'il est monogène et fini.

Exemple 5.2

- Soit $n \in \mathbb{N}^*$. Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique puisqu'il est fini et engendré par $\overline{1}$.
- Soit $n \in \mathbb{N}^*$. Le groupe (\mathbb{U}_n, \times) est cyclique puisqu'il est fini et engendré par $e^{\frac{2i\pi}{n}}$.

Théorème 5.2

Un groupe de cardinal $n \in \mathbb{N}^*$ est cyclique si et seulement si il est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$.

Exemple 5.3

A nouveau, (\mathbb{U}_n, \times) est cyclique puisque l'application $\begin{cases} \mathbb{Z}/n\mathbb{Z} & \longrightarrow & \mathbb{U}_n \\ \overline{k} & \longmapsto & e^{\frac{2ik\pi}{n}} \end{cases}$ est bien définie et est un isomorphisme.

6 Ordre d'un élément d'un groupe

Définition 6.1 Ordre d'un élément

Un élément x d'un groupe G d'élément neutre e est dit d'**ordre fini** s'il existe $n \in \mathbb{N}^*$ tel que $x^n = e$. Dans ce cas, on appelle **ordre** de x l'entier $\min\{n \in \mathbb{N}^* \mid x^n = e\}$.

Exemple 6.1

L'élément neutre d'un groupe est le seul élément d'ordre 1.

Remarque. Le cardinal d'un groupe est aussi appelé l'ordre de ce groupe.

Exemple 6.2

Il est clair que l'ordre d'un élément est conservé par isomorphisme. On en déduit par exemple que $\mathbb{Z}/4\mathbb{Z}$ n'est pas isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$. Ces deux groupes sont commutatifs et de cardinal 4 mais le premier contient un élément d'ordre 4 tandis que le second ne possède que des éléments d'ordre 1 ou 2.

Proposition 6.1

Soit x un élément d'un groupe G. Alors x est d'ordre fini si et seulement si le sous-groupe H engendré par x est fini et, dans ce cas, l'ordre de x est égal au cardinal de H.

REMARQUE. Tout élément d'un groupe fini est donc d'ordre fini.

Proposition 6.2

Soit x un élément d'ordre k d'un groupe G d'élément neutre e. Alors pour tout $n \in \mathbb{Z}$, $x^n = e \iff k|n$.

Exercice 6.1

Soient x un élément d'un groupe G et $k \in \mathbb{Z}$. On suppose que x est d'ordre $n \in \mathbb{N}^*$. Montrer que x^k est d'ordre $\frac{n}{n \wedge k}$.

Proposition 6.3

Soit x un élément d'un groupe fini G. Alors l'ordre de x divise le cardinal de G.

Exemple 6.3

On en déduit par exemple aisément que tout groupe de cardinal premier est cyclique.

Théorème 6.1 Lagrange (hors-programme)

Soit H un sous-groupe d'un groupe fini G. Alors le cardinal de H divise le cardinal de G.