for double stage

payload of stase 1 4 equal to mass of stase 2

9) AV= Igo lu
$$\left(\frac{M\phi}{mf}\right)$$

$$\frac{8}{4.5 \times 38} = lu \frac{mo}{mf} \qquad \frac{mo}{mf} = \frac{mpl+mremp}{ml+mremp}$$

= 5.87

• Ftmux = - cdm Thef = - cdm = mg = only - cdm - mgdt = mdv -cdm -gdt = dy -clu ms - gt = u(+)-40 V(+1= Vo+ Clu mo | - g+ V(+) = Yo - clupel - g+

Now let the burning rate of fuel is constant th R= -dm mls) $\int kdt = -\int dm$ $\int kt = -m + m_0$ $\int k = m_0 - m_1$ $\int k = m_0 - m_1$ when to is the feel barring time or the time of which if y placed in the orbit fer the \(\frac{t}{k} \text{ Kdt } = -\int_{m_0}^{m(+1)} \dm\)
\(\frac{t}{k} \text{ M(+1)}{k} \te

kt = -m(+)+ mo

 (m_0-m') $\frac{t}{th}$ $-m_0=-m(t)$

ablifude that we had calculated in the

• total time of flight

= time to seach shit and time to a

return bout

to easth

$$\Rightarrow V(t) = V_0 - c \ln |u| - gt$$

$$\Rightarrow V_0 = 0$$

· M = Pfmist of de acchelation of the de auxility

so therefor if n is high then acceleration of the arrivals will be high and waveled

for 1/21 the furth will be more eartiel because life generated is very high

Av= Igo
$$ln\left(\frac{m_0(1-d)}{m_{pl}}\right)$$

Av= Igo $ln\left(m_0(1-d)\right)$ - Igo lnm_{pl}
Av= 8000 = 850 ×10 ($ln\left(m_0(1-d)\right)$ - ln_{1000})
 $\frac{80}{35}$ + ln_{1000} = $ln\left(m_0(1-d)\right)$
 $\frac{80}{35}$ + ln_{1000} = $ln\left(m_0(1-d)\right)$

