	B. 两个可配子 D. 两个可配子 D. 三个可配子
= 1	、填空题(每空题1分,共20分) 染色体结构变异中,假显性现象是由
	分裂前期 I 交换而导致后期 I 交换出现 2 2 2 5 7 3 易位杂合体在联会时呈 1 3 形象。
2.	遗传学上把形态大小相同,遗传功能相似的一对染色体称为 13 门之 15 15
3.	减数分裂是在性母细胞成熟时,100~15分 过程中发生的特殊有丝分裂。
4.	在杂交组合 AaBbCc × AaBbCc 中,三对基因独立遗传,并控制不同的单位性状,完全显性,那么子代中表型与亲代不同的个体概率是
5.	人和水稻体细胞中的染色体数分别是 46 和 24 。
6.	. 豌豆中, 高茎(T)对矮茎(t) 为显性, 黄子叶(Y)对绿子叶(y) 为显性, 假设这两个位点的遗传符合自由组合规律, 若把真实遗传的高茎黄子叶个体与矮

//	五、阿含耀(原作最高分。 表 10 分)
1	茎绿子叶个体进行杂交,F2中矮茎黄子叶的概率为。
7,	一种性状受许多对不同基因控制的遗传现象称为 _ 3 3 - 3 3
8.	鸡的性别决定是型,
9,	胚基因型为 Aa 的种子长成的植株所结的种子胚的基因型
~	种,胚乳的基因型有种。
10,	AB 血型的女人与 A 血型的男人结婚,所生第一个男孩子是 B 血型,由此可知,丈夫的基因型是
/	的基因型是
11,	经典遗传学中,重组、突变和功能的最小单位都是基因,但按照现代遗传学的概念,
	这三个名词分别称为重组子、 工工 和 加瓦瓦子 。
12、	真核生物 mRNA 最初转录产物必须经过加工才能成为有功能的 mRNA。加工过程包
	真核生物 mRNA 最初转录产物必须经过加工才能成为有功能的 mRNA。加工过程包括在 5′端加了了10°30°30°30°30°30°30°30°30°30°30°30°30°30
13、	以秋水仙素处理植物的分生组织,可以诱导产生多倍体,其作用原理在于秋水仙麦可/
	U Then in a min

三、判断题 (每小题 1 分, 共 10 分)

- () 1、已知一个 DNA 分子中的碱基组成,T含量为 10%,则该 DNA 分子所含的 C 含量也为 10%。
- () 2、控制相对性状的等位基因位于同源染色体的相对位置上。
- () 3、发生基因互作时,不同对基因间不能独立分配。
- () 4、染色质和染色体都是由同样的物质构成的。
- (〉) 5、两基因在同一对条染色体上的连锁越紧密,重组率越大;连锁越松弛,重组率越小。
- (🔞) 6、复等位基因的遗传不符合孟德尔规律。
- (/) 7、不论是测交还是自交,只要是纯合体,子代只有—种表型。
- (✓) 8、在整个生物界中,除了极个别物种如雄果蝇和雌家蚕以外,位于同源染色体上的非等位基因在减数分裂时都要发生重组。
- () 9、桃树 2n=16, 其雌配子中的 8 条染色体全部来自母本。
- (×) 10、基因型 DE/de 的个体在减数分裂中,有 6%的性母细胞在 D—E 之间形成交叉,那么产生的重组型配子 De 和 dE 将各占 3%。

四、选择题 (每小题 1 分, 共 10 分)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1、通常认为遗传学诞生于()年。
A 1859 B 1865 107 100
2、在减数分裂过程中热免化类 D 1910
2、在减数分裂过程中染色体数目的减半发生在()。 A 前期 I B 后期 I B I B I B I B I B I B I B I B I B I
A 不完全显性 B 共显性 C 上位性 D 完全显性 A 10
4、某一种植物 2n=10, 在中期 I, 每个细胞含有多少条染色单体:
A 10 B 5 20 D 40
○ 5、基因突变的遗传基础是 () D 40
A、性状表现型的改变 B、染色体的结构变异
O THE TOTAL DESTRUCTION OF THE STATE OF THE
6、在双链 DNA 中()
A A+G/T+C=1 B
A A+G/T+C=1 B A+T/G+C=1 C A+C/T+G=1.5 D A+G/T+C=1.5 7、一个大孢子母细胞减数分裂后形成四个大孢子 目 5 D A+G/T+C=1.5
7、一个大孢子母细胞减数分裂后形成四个大孢子,最后形成 () A+G/T+C=1.5 A、四个雌配子 B、两个雌配子 B、两个雌配子 C A+C/T+G=1.5 D A+G/T+C=1.5
A、四个雌配子 B、两个雌配子 C、一个雌配子 D、三个雌配子 B、两个雌配子 B、两个雌配子 B、两个雌配子 C、一个雌配子 D、三个雌配子
8、假设某一性状的表现受 A-a 和 B-b 两对基因控制,基因型为 AaBb 植株自交,后代出现三种相对性状的表现,并且是 13: 3: 0 比例,这表明是基因互作中的 ()
相对性状的表现,并且是 13. 2 0 14 75 AaBb 植株自交,后代出现一种
相对性状的表现,并且是 13: 3: 0 比例,这表明是基因互作中的() A、重叠作用 B、互补作用 C、物物体用
A、重叠作用 B、互补作用 C、抑制作用 D、隐性上位 D、隐性上位
9、若控制某种生物某个性状的基因座上有 6 个复等位基因,那么在一个二倍体细胞中,控制
及了性状的基因最多有 (,) 个。
A. 1
0、某 DNA 片卧的 C、3
mRNA的原列点,是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
O、某 DNA 片段的一条单链的核苷酸顺序为: 5' ATGCCTGA3', 若以此为母板转录成的 A、5 ATGCCTGA3'
A、5 ATGCCTGA3 B、5 TACGGACT3 C、5 UACGGACU3
S UCAGGCAU3

问答与计算 第1-3省略(题型同教材):

第4题:

答、c、d、e之间的实际双交换值=0.4×3%×10%=0.12% (1分)

CdE 的配子比例=0.12%/2=0.06% (1分)

H的配子比例=1/2=50% (1分)

CdEH的配子比例=0.06%×50%=0.03% (1分)

F₂代中 CCddEEHH 基因型的频率=0.03%×0.03%=9.0×10-8(1分)