DO NOT WRITE ON THIS SHEET!!!!!

CHGN121 EXAM EQUATION SHEET

UNITS

Length

1 km = 0.62137 mi

1 mi = 5280 ft = 1.6093 km

1 in. = 2.54 cm (exactly)

 $1 Å (Angstrom) = 1x10^{-10}m$

Volume

 $1 L = 1x10^{-3} \text{ m}^3 = 1 \text{ dm}^3 = 1x10^3 \text{ cm}^3$

1 gal = 3.7854 L = 4 qt

 $1 \text{ cm}^3 = 1 \text{ mL}$ $1 \text{ in}^3 = 16.4 \text{ cm}^3$

Mass **Energy**

> $1 \text{ kg} = 1 \text{x} 10^3 \text{ g} = 2.2046 \text{ lb}$ 1 lb = 16 oz = 453.59 g

 $1 \text{ amu} = 1.66054 \times 10^{-27} \text{ kg}$

 $1 J = 1 N \cdot m = 1 kg \cdot m^2 \cdot s^{-2}$

1 cal = 4.184 J $1 L \cdot atm = 101.325 J$

Temperature Pressure

> $T_K = T_{^{\circ}C} + 273.15$ $T_{^{\circ}C} = (T_{^{\circ}F} - 32) / 1.8$ $T_{\rm ^{\circ}F} = (1.8T_{\rm ^{\circ}C}) + 32$

 $1 \text{ Pa} = 1 \text{ N} \cdot \text{m}^{-2} = 1 \text{ kg m}^{-1} \cdot \text{s}^{-2}$

1 atm = 101,325 Pa = 760 torr (mm Hg)

 $1 \text{ bar} = 1 \text{x} 10^5 \text{ Pa}$ 1 atm = 14.7 psi

CONSTANTS

Avogadro's Number, 1 mole = 6.022142×10^{23} items

Density of liquid water (unless otherwise noted) = 1.000 g/mL

Gas Constant, $R = 0.0820582 \text{ L} \cdot \text{atm mol}^{-1} \text{ K}^{-1} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

COMMON EQUATIONS

Converting empirical formula to molecular formula: multiplier = (molar mass) / (empirical formula mass)

Percent yield = (actual yield / theoretical yield) * 100%

Dilution Equation: $C_i V_i = C_f V_f$

Formal charge = $(\# \text{ of valence } e^-) - (\# \text{ of lone } e^-) - \frac{1}{2} (\# \text{ of shared } e^-)$

Coulomb's Law: $PE = k_e \frac{q_1 q_2}{r}$ where k_e =Coulomb's constant, q = charge on ion, r = bond length

GASES

Pressure, P = Force/Area

STP (Standard Temperature & Pressure): T = 0 °C and P = 1 atm

Ideal Gas Law: PV = nRTP(MW) = dRTwhere MW = molecular weight, d = densityor

rate of effusion: $\frac{rate 1}{rate 2} = \sqrt{\frac{MW2}{MW 1}}$ Partial Pressure: $P_A = X_A P_{Total}$

Combined Gas Law: $\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$ Standard Molar Volume, Ideal Gas at STP: V_m= 22.41 L/mol

UNITS OF CONCENTRATION

Mole fraction:
$$X_A$$

$$X_A = \frac{n_A}{n_{Total}} = \frac{moles\ of\ component\ A}{total\ moles\ of\ particles\ or\ molecules\ in\ solution}$$

$$X_{Tot} = X_A + X_B + X_C + \dots = 1$$

where the subscripts refer to chemical component A, B, C, etc.

Molarity (M) =
$$\frac{moles\ of\ solute}{volume\ of\ solution\ (L)}$$

$$Mass \% = \frac{mass of component}{total \ mass \ of \ solution} \times 100\%$$

THERMODYNAMICS

$$q_p = \Delta H = \Delta E + P_{ext} \Delta V$$
 \rightarrow at constant ext pressure

$$q = m C_{sp} \Delta T$$
 $C_{sp} = specific heat, m = mass$

$$H_2O$$
 Heat of Fusion: $\Delta H_{fus} = 6.01 \text{ kJ/mol}$

$$H_2O$$
 Heat of Vaporization: $\Delta H_{vap} = 40.7 \text{ kJ/mol}$

Hess's Law:
$$\Delta H_{rxn} = \sum n \Delta H(steps)$$

$$\Delta H_{rxn} \approx D_{(REACTANT\ bonds)} - D_{(PRODUCT\ bonds)}$$

$$\Delta H_{rxn}^{\circ} = \sum n \Delta H_{f}^{\circ}(products) - \sum n \Delta H_{f}^{\circ}(reactants)$$

H₂O specific heat capacity

solid (ice) $C_{sp}=2.09 \text{ J/g}^{\circ}C$

liquid (water) C_{sp} = 4.184 J/g°C

gas (steam) C_{sp} = 2.01 J/g°C

Thermodynamic Standard State (°): Most stable form of substance at 1 atm pressure and 25 °C

<u>OR</u> any specified temperature

SIMPLIFIED SOLUBILITY GUIDELINES

Compounds containing these ions	Exceptions					
are SOLUBLE	(these combinations are INSOLUBLE)					
Li ⁺¹ , Na ⁺¹ , K ⁺¹ , Rb ⁺¹ , Cs ⁺¹ , NH ₄ ⁺¹	None					
NO ₃ ⁻¹ , C ₂ H ₃ O ₂ ⁻¹ , ClO ₃ ⁻¹ , ClO ₄ ⁻¹	None					
Cl ⁻¹ , Br ⁻¹ , I ⁻¹	When combined with Ag ⁺¹ , Pb ⁺² , Hg ₂ ⁺²					
SO_4^{-2}	When combined with Ag ⁺¹ , Pb ⁺² , Hg ₂ ⁺² , Sr ⁺² , Ba ⁺² , Ca ⁺²					
Compounds containing these ions	Exceptions					
are INSOLUBLE	(these combinations are SOLUBLE)					
S ⁻² , OH ⁻¹	When combined with Li ⁺¹ , Na ⁺¹ , K ⁺¹ , Rb ⁺¹ , Cs ⁺¹ , NH ₄ ⁺¹ ,					
5,011	Ba ⁺² , Sr ⁺²					
F ⁻¹ , CO ₃ ⁻² , PO ₄ ⁻³ , SO ₃ ⁻² , CrO ₄ ⁻²	When combined with Li ⁺¹ , Na ⁺¹ , K ⁺¹ , Rb ⁺¹ , Cs ⁺¹ , NH ₄ ⁺¹					
Any cation or anion NOT listed in	Any cation or anion NOT listed in table will form INSOLUBLE ionic compounds.					
* $Ca(OH)_2$ & $Sr(OH)_2$ are borderline so	luble/insoluble – we will call them INsoluble.					

COMMON STRONG ACIDS

ша	HClO	IINO
HCl	HClO ₄	HNO_3
HBr	HClO ₃	H_2SO_4
HI		

COMMON STRONG BASES

Soluble Hydroxides, Oxides & Amides
LiOH NaOH KOH RbOH
CsOH Ca(OH)₂ Sr(OH)₂ Ba(OH)₂
Li₂O Na₂O K₂O
LiNH₂ NaNH₂ KNH₂

 $CaO \rightarrow Reacts$ with water to form $Ca(OH)_2$

STANDARD HEATS OF FORMATION at 25 °C

Formula	$\Delta extit{H}^{\circ}_{ m f}(ext{kJ/mol})$	Formula	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$	Formula	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$
Bromine		C ₃ H ₈ O(I, isopropanol)	-318.1	Oxygen	
Br(g)	111.9	C ₆ H ₆ (I)	49.1	0 ₂ (g)	0
Br ₂ (I)	0	C ₆ H ₁₂ O ₆ (s, glucose)	-1273.3	0 ₃ (g)	142.7
HBr(g)	-36.3	C ₁₂ H ₂₂ O ₁₁ (s, sucrose)	-2226.1	H ₂ O(g)	-241.8
Calcium		Chlorine		H ₂ O(/)	-285.8
Ca(s)	0	CI(g)	121.3	Silver	
CaO(s)	-634.9	Cl ₂ (g)	0	Ag(s)	0
CaCO ₃ (s)	-1207.6	HCI(g)	-92.3	AgCI(s)	-127.0
Carbon		Fluorine		Sodium	
C(s, graphite)	0	F(g)	79.38	Na(s)	0
C(s, diamond)	1.88	F ₂ (g)	0	Na(g)	107.5
CO(g)	-110.5	HF(g)	-273.3	NaCl(s)	-411.2
CO ₂ (g)	-393.5	Hydrogen		Na ₂ CO ₃ (s)	-1130.7
CH ₄ (g)	-74.6	H(g)	218.0	NaHCO ₃ (s)	-950.8
CH ₃ OH(I)	-238.6	H ₂ (g)	0	Sulfur	
$C_2H_2(g)$	227.4	Nitrogen		S ₈ (s, rhombic)	0
C ₂ H ₄ (g)	52.4	N ₂ (g)	0	S ₈ (s, monoclinic)	0.3
C ₂ H ₆ (g	-84.68	NH ₃ (g)	-45.9	SO ₂ (g)	-296.8
C ₂ H ₅ OH(/)	-277.6	NH ₄ NO ₃ (s)	-365.6	SO ₃ (g)	-395.7
C ₃ H ₈ (g)	-103.85	NO(g)	91.3	H ₂ SO ₄ (I)	-814.0
C ₃ H ₆ O(I, acetone)	-248.4	N ₂ O(g)	81.6		

ACTIVITY SERIES						
METAL	OXIDATION RXN					
Lithium	$\text{Li}_{(s)} \rightarrow \text{Li}^{+1}_{(aq)} + e^-$					
Potassium	$K_{(s)} \rightarrow K^{+1}{}_{(aq)} + e^{-}$					
Barium	$Ba_{(s)} \rightarrow Ba^{+2}{}_{(aq)} + 2 e^{-}$					
Calcium	$Ca_{(s)} \rightarrow Ca^{+2}_{(aq)} + 2e^{-}$					
Sodium	$Na_{(s)} \rightarrow Na^{+1}_{(aq)} + e^{-}$					
Magnesium	$Mg_{(s)} \rightarrow Mg^{+2}_{(aq)} + 2e^{-}$					
Aluminum	$Al_{(s)} \rightarrow Al^{+3}{}_{(aq)} + 3e^{-}$					
Manganese	$Mn_{(s)} \rightarrow Mn^{+2}_{(aq)} + 2 e^{-}$					
Zinc	$Zn_{(s)} \rightarrow Zn^{+2}{}_{(aq)} + 2e^{-}$					
Chromium	$Cr_{(s)} \rightarrow Cr^{+3}_{(aq)} + 3 e^{-}$					
Iron	$Fe_{(s)} \rightarrow Fe^{+2}_{(aq)} + 2e^{-}$					
Cobalt	$\mathrm{Co}_{(s)} \rightarrow \mathrm{Co}^{+2}_{(aq)} + 2 \mathrm{e}^{-}$					
Nickel	$Ni_{(s)} \rightarrow Ni^{+2}_{(aq)} + 2 e^{-}$					
Tin	$Sn_{(s)} \rightarrow Sn^{+2}{}_{(aq)} + 2e^{-}$					
Lead	$Pb_{(s)} \rightarrow Pb^{+2}_{(aq)} + 2e^{-}$					
Hydrogen	$H_{2(g)} \rightarrow 2H^{+1}_{(aq)} + 2e^{-}$					
Copper	$Cu_{(s)} \rightarrow Cu^{+2}{}_{(aq)} + 2e^{-}$					
Silver	$Ag_{(s)} \rightarrow Ag^{+l}_{(aq)} + e^-$					
Mercury	$Hg_{(l)} \rightarrow Hg^{+2}_{(aq)} + 2 e^{-}$					
Platinum	$Pt_{(s)} \rightarrow Pt^{+2}_{(aq)} + 2e^{-}$					
Gold	$Au_{(s)} \rightarrow Au^{+3}{}_{(aq)} + 3e^{-}$					

Highest Reducing Strength

Lowest Reducing Strength

BOND DISSOCIATION ENERGY, D

Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)
H-H	436	N-N	163	Br—F	237
H-C	414	N=N	418	Br—Cl	218
H-N	389	N = N	946	Br—Br	193
H-0	464	N-0	222	I—CI	208
H-S	368	N=0	590	I—Br	175
H-F	565	N-F	272	1-1	151
H-CI	431	N-CI	200	Si—H	323
H — Br	364	N — Br	243	Si—Si	226
H-I	297	N-I	159	Si-C	301
c=c	347	0-0	142	s-0	265
c=c	611	0=0	498	Si=0	368
c = c	837	0-F	190	s= 0	523
C-N	305	0-CI	203	Si-Cl	464
c=N	615	0-1	234	s=s	418
c = N	891	F-F	159	S-F	327
c-0	360	CI-F	253	s-cı	253
c=0	736 (799 in CO ₂)	CI — CI	243	S—Br	218
C=0	1072			s-s	266
C — CI	339				

	e ⁻ domain	geometry	lone pairs	molecular geometry
2	linear	180°	0	linear
3	trigonal	120°	0	trigonal planar
	planar		1	bent
			0	tetrahedral
4	4 tetrahedral	109.5°	1	trigonal pyramidal
			2	bent
		•	0	trigonal bipyramidal
_	trigonal	90°	1	see-saw
5	bipyramidal	120°	2	T-shaped
		8	3	linear
		902	0	octahedral
6	octahedral	900	1	square pyramidal
		8	2	square planar

H 2.1											He						
Li 1.0	Be 1.5									B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne		
Na 0.9	Mg 1.2								Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	Ar			
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.9	1.9	1.9	1.6	1.6	1.8	2.0	2.4	2.8	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.9	1.9	2.0	2.1	

RULES for Assigning Oxidation Number:

- 1. For atom in elemental form, oxidation number always zero.
- 2. For monatomic ion, oxidation number is charge on the ion.
- 3. For nonmetals in covalent compound or polyatomic ion, oxidation number usually negative and
 - a) Hydrogen +1 when bonded to nonmetals and -1 when bonded to metals.
 - b) Oxygen usually -2 except when in peroxide compound where is -1.
 - c) Fluorine always -1.

Other halogens usually -1 except when in a polyatomic ion with oxygen then are positive and valued to balance the ion.

- 4. For metals/nonmetals in ionic compounds, oxidation number is charge on the ion.
- 5. Sum of oxidation numbers of all atoms in neutral compound must equal zero. Sum of oxidation numbers of all atoms in polyatomic ion must equal charge on the ion.

Ac	Actinium	89
Ag	Silver	47
Al	Aluminum	13
Am	Americium	95
Ar	Argon	18
As	Arsenic	33
At	Astatine	85
Au	Gold	79
В	Boron	5
Ва	Barium	56
Be	Beryllium	4
Bh	Bohrium	107
Bi	Bismuth	83
Bk	Berkelium	97
Br	Bromine	35
С	Carbon	6
Ca	Calcium	20
Cd	Cadmium	48
Ce	Cerium	58
Cf	Californium	98
Cl	Chlorine	17
Cm	Curium	96
Со	Cobalt	27
Cr	Chromium	24
Cs	Cesium	55
		29
Cu	Copper	
Db	Dubnium	105
Ds	Darmstadtium	110
Dy	Dysprosium	66
Er	Erbium	68
Es	Einsteinium	99
Eu	Europium	63
F	Fluorine	9
Fe	Iron	26
Fm	Fermium	100
Fr	Francium	87
Ga	Gallium	31
Gd	Gadolinium	64
Ge	Germanium	32
Н	Hydrogen	1
Не	Helium	72
Hf	Hafnium	72
Hg	Mercury	80
Но	Holmium	67
Hs	Hassium	108
I	Iódine	53
In	Indium	49
Ir	Iridium	77
K	Potassium	19
Kr	Krypton	36
		57
La	Lanthanum	3
Li	Lithium	
Lr	Lawrencium	103
Lu	Lutetium	71
Md	Mendelevium	101
Mg	Magnesium	12
Mn	Manganese	25
Мо	Molybdenum	42
Mt	Meitnerium	109
	Nitrogen	7

Na Nb	Sodium	41
	Niobium	60
Nd	Neodymium	10
Ne	Neon	
Ni	Nickel	28 102
No	Nobelium	93
Np	Neptunium	
0	Oxygen	8
Os	Osmium	76
P	Phosphorus	15
Pa	Protactinium	91
Pb	Lead	82
Pd	Palladium	46
Pm	Promethium	61
Ро	Polonium	84
Pr	Praseodymium	59
Pt	Platinum	78
Pu	Plutonium	94
Ra	Radium	88
Rb	Rubidium	37
Re	Rhenium	75
Rf	Rutherfordium	104
Rh	Rhodium	45
Rn	Radon	86
Ru	Ruthenium	44
S	Sulfur	16
Sb	Antimony	51
Sc	Scandium	21
Se	Selenium	34
Sg	Seaborgium	106
Si	Silicon	14
Sm	Samarium	62
Sn	Tin	50
Sr	Strontium	38
Ta	Tantalum	73
Tb	Terbium	65
Tc	Technetium	43
Te	Tellurium	52
Th	Thorium	90
Ti	Titanium	22
TI	Thallium	81
Tm	Thulium	69
U	Uranium	92
	Ununbium	112
Uub	Ununbium	
Uuh		116
Uuo	Ununoctium	118
Uup	Ununpentium	115
Uuq	Ununquadium	114
Uus	Ununseptium	117
Uut	Ununtrium	113
Uuu	Ununium	111
V	Vanadium	23
W	Tungsten	74
Xe	Xenon	54
Y	Yttrium	39
Yb	Ytterbium	70
Zn	Zinc	30
Zr	Zirconium	40

