Simulation attempt

2019-05-22

The two equations

The two main equations in the paper:

$$\rho(t) = \left[\left\{ f(t)/\phi(t) \right\} - 1 \right] \left[\left\{ S(t)/S_X(t) \right\} \right]^{-1}$$

$$\hat{S}_p(t) = \frac{1}{N} \left\{ n(t) + \sum_{k=0}^{d(t)-1} c_k \prod_{i=k+1}^{d(t)} \frac{n_i - 1}{n_i + \rho_i - 1} \right\}$$

Let's look at the $\rho(t)$ first.

 $\rho(t)$ shows the proportion of death hazard at time t, conditioning on censored before t or after t

$$\begin{split} \rho(t) = & \lim_{\delta \to 0} \frac{P(t < T < t + \delta | T > t, C \le t)}{P(t < T < t + \delta | T > t, C < t)} \\ = & \frac{\lim_{\delta \to 0} P(t < T < t + \delta | T > t, C \le t)}{\lim_{\delta \to 0} P(t < T < t + \delta | T > t, C \le t)} \\ = & \frac{\lim_{\delta \to 0} \frac{P(t < T < t + \delta | T > t, C \le t)}{P(T > t, C \le t)}}{\lim_{\delta \to 0} \frac{P(t < T < t + \delta, C \le t)}{P(T > t, C \le t)}} \\ = & \frac{\frac{P(T = t, C \le t)}{P(T > t, C \le t)}}{\frac{P(T = t, C \le t)}{P(T > t, C > t)}} = \frac{\frac{P(T = t}{P(T > t, C \le t)} - 1}{\frac{P(T = t)}{P(T > t, C > t)} - 1} \\ = & \frac{1/P(C > t | T = t)}{S(t)/S_x(t) - 1} \\ = & [\{f(t)/\phi(t)\} - 1][\{S(t)/S_x(t)\}]^{-1} \end{split}$$

where,

•
$$\phi(t) = \int_t^\infty f(t,s)ds = \int_t^\infty f(s|t)f(t)ds = f(t)\int_t^\infty f(s|t)ds = f(t)P(C > t|T = t)$$

•
$$S_X(t) = P(T > t, C > t)$$

For the $\hat{S}_p(t)$, it contains two parts: 1) the people whose deaths are observed after time t; 2) the people who died after time t but are censored before time t

The empirical odds of an uncensored suriviving individual's dying at X_j is:

$$1/(n_j - 1)$$

The probability of an uncensored surviving individual's dying at X_j is is that correct?:

$$\frac{1}{n_i}$$

Since the $\rho(t)$ means that

$$\rho(t) = \frac{P(\text{death at time t} | \text{censor before time t})}{P(\text{death at time t} | \text{censor after time t})}$$

Then the empirical odds of an individual who was censored before time X_j but acutally died at X_j is:

$$\rho(X_j) \times 1/(n_j - 1) = \rho(X_j)/(n_j - 1),$$

then the probabilty of an individual who was censored before time X_j but acutally died at X_j is:

$$\rho(X_j)/(n_j-1)/(1+\rho(X_j)/(n_j-1)) = \frac{\rho(X_j)}{\rho(X_j)+n_j-1}$$

Then the product-limit estimator of the probability of being enesored before X_j but actually survived through X_j is

$$1/N^{-1} \sum_{k=0}^{d(t)-1} c_k \prod_{i=k+1}^{d(t)} \left(1 - \frac{\rho(X_j)}{\rho(X_j) + n_j - 1}\right) = 1/N^{-1} \sum_{k=0}^{d(t)-1} c_k \prod_{i=k+1}^{d(t)-1} \frac{n_i - 1}{n_i + \rho_i - 1}$$

where,

- N is the total subjects in the trial
- X_i is the time, $X_i = min(T_i, C_i)$, and X_i is ordered from 1 to $N: X_1 \leq X_2 \leq ... \leq X_N$
- d the total number of death
- $X_{(i)}$ is the death time, and ordered as $X_{(1)} \leq X_{(2)} \leq ... \leq X_{(d)}$
- n(t) is the number of subjects who are still alive at time t
- d(t) is the number of total death people at time t
- n_i is the number of people who survived after the *i*th death time $(X_j \geq X_{(i)})$
- c_i is the number of censer between the *i*th death time $X_{(i)}$ and the (i+1)th death time $X_{(i+1)}$

The property of $\rho(t)$

$$\rho(t) = \left[\left\{ f(t)/\phi(t) \right\} - 1 \right] \left[\left\{ S(t)/S_X(t) \right\} \right]^{-1}$$

Since

•
$$f(t)/\phi(t) = \frac{f(t)}{f(t)P(C>t|T=t)} = \frac{1}{P(C>t|T=t)} \ge 1$$

•
$$S(t)/S_X(t) = \frac{P(T>t)}{P(T>t,C>t)} \ge 1$$

Therefore, $\rho(t) \in [0, \infty]$

- When $\rho(t) = 0$, $f(t)/\phi(t) = 1$, that is P(C > t|T = t) = 1, which means that there is no censoring.
- When $\rho(t) = 1$, 1/P(C > t|T = t) = P(T > t)/P(T > t, C > t), which is P(C > t|T = t) = P(C > t|T > t). That is, the C and T are independent. When $\rho(t) = 1$ the survival time and the censor time are independent.
- When $\rho(t) > 1$, we have a positive dependence between censor and death. The larger the ρ is, the larger the dependence is.

Simulation setting

Suppose we simulate the data from the following joint distribution:

$$f(s,t) = \frac{1}{1000}(s+t)$$

where $s \in (0, 10)$ and $t \in (0, 10)$.

f(s,t) is a pdf since

$$\begin{split} \int_0^{10} \int_0^{10} f(s,t) ds dt &= \int_0^{10} \int_0^{10} \frac{1}{1000} (s+t) ds dt \\ &= \frac{1}{1000} \int_0^{10} (10s+50) dt \\ &= \frac{1}{1000} 5s^2 + 50s|_0^{10} \\ &= 1 \end{split}$$

The marginal pdf is:

$$f(s) = \frac{1}{1000}(10s + 50)$$

$$f(t) = \frac{1}{1000}(10t + 50)$$

Therefore,

•
$$f(t) = \frac{1}{1000}(10t + 50)$$

•
$$S(t) = 1 - \frac{1}{1000}(5t^2 + 50t)$$

•
$$S_X(t) = \frac{1}{1000}(1000 - 100t - 10t^2 + t^3)$$

•
$$\phi(t) = \frac{1}{1000}(50 + 10t - \frac{3}{2}t^2)$$

The data is simulated from the joint distribution through grid method.