

Daniel Ying dty16 (Group 27)

### **Table of Content**

- Implement, Experiment, and Compare different models.
- Design, Implement a Hybrid Model (NCF)
  - Evaluate the performance
- Conclusion

### About the Data

- The data (ml-latest-small) used in the project is from GroupLens, a research group in Department of Computer Science and Engineering at the University of Minnesota.
- The 4 csv files:
  - Ratings.csv (Main Data file), movies.csv, tags.csv, links.csv
- Ratings.csv has the following data:
  - UserId
  - Movield
  - Rating
  - Timestamp

More about the data...

| ratings shape: (100836, 4) first 5 ratings: |        |         |        |           |  |
|---------------------------------------------|--------|---------|--------|-----------|--|
|                                             | userId | movield | rating | timestamp |  |
| 0                                           | 1      | 1       | 4.0    | 964982703 |  |
| 1                                           | 1      | 3       | 4.0    | 964981247 |  |
| 2                                           | 1      | 6       | 4.0    | 964982224 |  |
| 3                                           | 1      | 47      | 5.0    | 964983815 |  |
| 4                                           | 1      | 50      | 5.0    | 964982931 |  |

- The Ratings.csv has the shape of (100836, 4)
- 610 unique users, and 9724 unique movies
- For this project, 80% of the data is randomly selected to be the training set, while the other 20% of the data is defined as the testing set for the models.

### Models Used

- Models From the Surprise Library:
  - SVD, NMF, SlopeOne, CoClustering, BaselineOnly
  - KNN Series
- The Core Model: Neural Collaborative Filtering Model
  - Generalized Matrix Factorization + Multi-Layer Perceptron

### Surprise Models

- SVD: (Singular Value Decomposition)used as CF in recommendation sys. It reduces the number of features of the dataset by reducing space dimension:
  - $A = P \sum Q^T$
  - $r_{ui} = \mu + b_i + b_u + (q_i)^T p_u$ , the predicted rating r and mu is average rating while b is deviation, q is for movie concept while p is for user concept.
- NMF: Non-negative Matrix Factorization
- Baseline: predicts baseline estimation of user and movie:
  - $r_{ui} = \mu + b_i + b_u$

### Surprise Models

 SlopeOne: simple CF that is based on the linear relation between the user and the movie. Uses the linear regression model to predict the rating.

• 
$$r_{ui} = \mu_u + \frac{1}{|R_i(u)|} \sum_{\{j \in R_i(u)\}} dev(i,j)$$

- Riu is set of relevant items (movies) and j is rated by u (user) that also have at least one comment user i.
- dev is the average difference between ratings by user I and user j.

### Surprise Models

 CoClustering: users are assigned clusters Cu, Ci, and coclusters Cui.

$$r_{ui} = avg(C_{ui}) + (\mu_u - avg(C_u)) + (\mu_i - avg(C_i))$$

- Avg(Cui) is average rating of Cui, and same for the rest clusters.
- If user is unknown, rui = mu\_i.
- If item is unknown, rui = mu\_u.
- If both are unknown, rui = mu.

### Surprise KNN Models

- Basic KNN: takes account of max number of k neighbors and similarity metrics as input
- KNN with Means: takes into account the mean ratings of each users into account
- KNN with Z-scores: takes in account of z-normalization of each users
- KNN baseline: takes in account the baseline rating
- KNN metrics:
  - Cosine: measure similarity between 2 non-zero vectors
  - Mean square difference: inversely proportional to difference of users' mean square difference.
  - Pearson: mean-centered cosine similarity
  - Pearson Baseline: baseline-centered cosine similarity
- User-user and Item-item similarities in KNN.



### Measures

- RMSE: root mean square error
- MAE: mean absolute error
- Precision: (relevant recommended items)/(total rec. items)
- Recall: (relevant rec. items)/ (total relevant items)
- F-Measure: 2(precision\* recall) / (precision+ recall), best is 1
- NDCG: normalized discounted cumulative gain (wiki), sort all relevant documents by relative relevance, produce max possible DCG (aka ideal for that position p)

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)} = rel_1 + \sum_{i=2}^p rac{rel_i}{\log_2(i+1)} \hspace{10mm} ext{IDCG}_{ ext{p}} = \sum_{i=1}^{|REL_p|} rac{rel_i}{\log_2(i+1)}$$

$$ext{IDCG}_{ ext{p}} = \sum_{i=1}^{|REL_p|} rac{rel_i}{\log_2(i+1)}$$

$$\mathrm{nDCG_p} = rac{DCG_p}{IDCG_p},$$

### Results From Surprise Models

| Г | uid | iid | r_ui | est      | details                   |
|---|-----|-----|------|----------|---------------------------|
| 0 | 1   | 157 | 5.0  | 3.917850 | {'was_impossible': False} |
| 1 | 1   | 216 | 5.0  | 4.191880 | {'was_impossible': False} |
| 2 | 1   | 296 | 3.0  | 4.870920 | {'was_impossible': False} |
| 3 | 1   | 333 | 5.0  | 4.502708 | {'was_impossible': False} |
| 4 | 1   | 349 | 4.0  | 4.308776 | {'was_impossible': False} |

| KNNBaseline Item Pearline | 0.6544214791312891 |
|---------------------------|--------------------|
| KNNBaseline Item MSD      | 0.6686846948739565 |
| KNNBaseline User Pearline | 0.6726476067823245 |
| KNNBaseline User MSD      | 0.6728208025621423 |
| SVD                       | 0.6748513010089627 |
| KNNBaseline User Pear     | 0.6758026468389403 |
| KNNBaseline User Cos      | 0.6761500838166293 |
| BaselineOnly              | 0.6763669135845803 |
| KNNBaseline Item Pear     | 0.6791822334366855 |
| KNNWithMeans User         | 0.6886208888687823 |
| KNNWith Means Item        | 0.6886208888687823 |
| KNNZ User                 | 0.6886208888687823 |
| KNNZ Item                 | 0.6886208888687823 |
| SlopeOne                  | 0.6927328710255556 |
| KNNBaseline Item Cos      | 0.6960748100521774 |
| KNNBasic Item MSD         | 0.7028014662901718 |
| NMF                       | 0.7098917623418507 |
| KNNBasic User MSD         | 0.7305797074310052 |
| CoClustering              | 0.7350673342266314 |
| KNNBasic User Cos         | 0.7526526548517168 |
| KNNBasic Item Cos         | 0.7742228892538924 |

| KNNBaseline Item Pearline | 0.858280224151538 |
|---------------------------|-------------------|
| KNNBaseline Item MSD      | 0.872836190393700 |
| BaselineOnly              | 0.876689030302501 |
| SVD                       | 0.879544889916836 |
| KNNBaseline User MSD      | 0.88158399508237  |
| KNNBaseline Item Pear     | 0.883541800486748 |
| KNNBaseline User Pearline | 0.884051986277553 |
| KNNBaseline User Cos      | 0.884943109330249 |
| KNNBaseline User Pear     | 0.885017054928852 |
| KNNBaseline Item Cos      | 0.903377924247580 |
| KNNWithMeans User         | 0.903482744129088 |
| KNNWith Means Item        | 0.903482744129088 |
| KNNZ User                 | 0.903482744129088 |
| KNNZ Item                 | 0.903482744129088 |
| SlopeOne                  | 0.906643008429340 |
| KNNBasic Item MSD         | 0.914964601352633 |
| NMF                       | 0.929199477676719 |
| CoClustering              | 0.950168887214654 |
| KNNBasic User MSD         | 0.955627428794643 |
| KNNBasic User Cos         | 0.979848184079456 |
| KNNBasic Item Cos         | 0 995619956790904 |

- The Left data is MAE
- The right data is RSME
- Item-item has a lower value than user-user.

### 4 Measures of Surprise Models

|    | Algorithm        | Recall   | Precision | F-Measure | NDCG     |
|----|------------------|----------|-----------|-----------|----------|
| 0  | svd              | 0.631081 | 0.746740  | 0.684056  | 0.950120 |
| 1  | slopeone         | 0.632387 | 0.747549  | 0.685163  | 0.946630 |
| 2  | nmf              | 0.604784 | 0.718138  | 0.656605  | 0.943497 |
| 3  | knnz-user        | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 4  | knnz-item        | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 5  | knnmean-user     | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 6  | knnmean-item     | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 7  | knnbasic-user    | 0.662519 | 0.797699  | 0.723852  | 0.948319 |
| 8  | knnbasic-item    | 0.622308 | 0.730851  | 0.672226  | 0.941343 |
| 9  | knnbaseline-user | 0.645371 | 0.765710  | 0.700409  | 0.945723 |
| 10 | knnbaseline-item | 0.634790 | 0.750635  | 0.687869  | 0.951757 |
| 11 | Coclustering     | 0.604260 | 0.716617  | 0.655660  | 0.943728 |
| 12 | baseline         | 0.631700 | 0.751230  | 0.686299  | 0.951494 |

- Looking at KNN baseline-user and KNN baseline-item:
  - Item-item CF > user-user CF
- This might be because users have a tendency of changing their preference in movie selection.
- Thus movie-movie similarity is more consistent than user-user similarity.



### What is NCF?

- NCF (Neural Collaborative Filtering):
  - Based on neural networks
  - Composed of GMF (Generalized Matrix Factorization) + MLP (Multi-Layer Perceptron)
  - The GMF and MLP learned user and movie embedding separately (allows tuning separately)



### **GMF**

- GMF is defined as:
  - $dot(p_u, q_i)$ , which is the element-wise product of vectors.
  - This is then projected as:
    - $\bullet \quad a_{out}(h^T(\overline{dot(p_u,q_i)}))$
  - The term Generalized comes from:
    - The a\_out which is the sigmoid function and learns h from the data with log loss.
  - Thus, GMF is defined as the dot product between the Userld and Movield in the code.

### **MLP**

$$egin{aligned} \mathbf{z}_1 &= \phi_1(\mathbf{p}_u, \mathbf{q}_i) = \begin{bmatrix} \mathbf{p}_u \\ \mathbf{q}_i \end{bmatrix}, \ \phi_2(\mathbf{z}_1) &= a_2(\mathbf{W}_2^T \mathbf{z}_1 + \mathbf{b}_2), \ &\dots & \ \phi_L(\mathbf{z}_{L-1}) &= a_L(\mathbf{W}_L^T \mathbf{z}_{L-1} + \mathbf{b}_L), \ \hat{y}_{ui} &= \sigma(\mathbf{h}^T \phi_L(\mathbf{z}_{L-1})), \end{aligned}$$

- Learn the relation between user and movie latent features
- hidden layers are added to the MLP to allow high level of flexibility and non-linearity.
  - The alpha: x-th layer activation function
  - W is the weight matrix,
  - b is the bias vector.
- The activation function can be sigmoid, tanh, and ReLU.
  - ReLU was implemented, for it encourages sparse activations (well-suited for sparse data)
  - thus prevent overfitting (sigmoid and tanh's flaw).
- Learning rate = 0.01

# Combine GMF and MLP = NCF

 Concatenate GMF and MLP to obtain prediction of NCF



$$\phi^{GMF} = \mathbf{p}_{u}^{G} \odot \mathbf{q}_{i}^{G},$$

$$\phi^{MLP} = a_{L}(\mathbf{W}_{L}^{T}(a_{L-1}(...a_{2}(\mathbf{W}_{2}^{T} \begin{bmatrix} \mathbf{p}_{u}^{M} \\ \mathbf{q}_{i}^{M} \end{bmatrix} + \mathbf{b}_{2})...)) + \mathbf{b}_{L}),$$

$$\hat{y}_{ui} = \sigma(\mathbf{h}^{T} \begin{bmatrix} \phi^{GMF} \\ \phi^{MLP} \end{bmatrix}),$$
(12)

# NCF Results

|   | NCF 4 measures                            |                    |                    |                    |                    |  |  |  |
|---|-------------------------------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|
|   | Algorithm Recall Precision F-Measure NDCG |                    |                    |                    |                    |  |  |  |
| 0 | Neural Collaborative Filtering            | 0.7325553467000840 | 0.8661432226399330 | 0.7937679571638840 | 0.9389520705161180 |  |  |  |
| 1 | Generalized Matrix Factorization          | 0.5960095551378440 | 0.6961244256474520 | 0.6421885275373240 | 0.9475637658465470 |  |  |  |

| NCF_MAE_RSME_table |     |                    |                    |  |  |  |  |
|--------------------|-----|--------------------|--------------------|--|--|--|--|
| Algorithm MAE RSME |     |                    |                    |  |  |  |  |
| 0                  | NCF | 0.679384940734982  | 0.9022068009032480 |  |  |  |  |
| 1                  | GMF | 0.7751338284519320 | 1.0949647014682100 |  |  |  |  |

# Comparison and Conclusion

# NCF vs Models

|   | NCF_MAE_RSME_table |                    |                    |  |  |  |  |  |
|---|--------------------|--------------------|--------------------|--|--|--|--|--|
|   | Algorithm MAE RSME |                    |                    |  |  |  |  |  |
| 0 | NCF                | 0.679384940734982  | 0.9022068009032480 |  |  |  |  |  |
| 1 | GMF                | 0.7751338284519320 | 1.0949647014682100 |  |  |  |  |  |

| KNNBaseline Item Pearline | 0.6544214791312891 |
|---------------------------|--------------------|
| KNNBaseline Item MSD      | 0.6686846948739565 |
| KNNBaseline User Pearline | 0.6726476067823245 |
| KNNBaseline User MSD      | 0.6728208025621423 |
| SVD                       | 0.6748513010089627 |
| KNNBaseline User Pear     | 0.6758026468389403 |
| KNNBaseline User Cos      | 0.6761500838166293 |
| BaselineOnly              | 0.6763669135845803 |
| KNNBaseline Item Pear     | 0.6791822334366855 |
| KNNWithMeans User         | 0.6886208888687823 |
| KNNWith Means Item        | 0.6886208888687823 |
| KNNZ User                 | 0.6886208888687823 |
| KNNZ Item                 | 0.6886208888687823 |
| SlopeOne                  | 0.6927328710255556 |
| KNNBaseline Item Cos      | 0.6960748100521774 |
| KNNBasic Item MSD         | 0.7028014662901718 |
| NMF                       | 0.7098917623418507 |
| KNNBasic User MSD         | 0.7305797074310052 |
| CoClustering              | 0.7350673342266314 |
| KNNBasic User Cos         | 0.7526526548517168 |
| KNNBasic Item Cos         | 0.7742228892538924 |

| KNNBaseline Item Pearline | 0.858280224151538  |
|---------------------------|--------------------|
| KNNBaseline Item MSD      | 0.872836190393700  |
| BaselineOnly              | 0.8766890303025010 |
| SVD                       | 0.879544889916836  |
| KNNBaseline User MSD      | 0.88158399508237   |
| KNNBaseline Item Pear     | 0.883541800486748  |
| KNNBaseline User Pearline | 0.884051986277553  |
| KNNBaseline User Cos      | 0.884943109330249  |
| KNNBaseline User Pear     | 0.885017054928852  |
| KNNBaseline Item Cos      | 0.903377924247580  |
| KNNWithMeans User         | 0.903482744129088  |
| KNNWith Means Item        | 0.903482744129088  |
| KNNZ User                 | 0.903482744129088  |
| KNNZ Item                 | 0.903482744129088  |
| SlopeOne                  | 0.906643008429340  |
| KNNBasic Item MSD         | 0.914964601352633  |
| NMF                       | 0.929199477676719  |
| CoClustering              | 0.950168887214654  |
| KNNBasic User MSD         | 0.955627428794643  |
| KNNBasic User Cos         | 0.979848184079456  |
| KNNBasic Item Cos         | 0.995619956790904  |

## NCF vs Models

- NCF has better measures than the models.
- Outperforms the individual algorithms

| Г  | Algorithm        | Recall   | Precision | F-Measure | NDCG     |
|----|------------------|----------|-----------|-----------|----------|
| 0  | svd              | 0.631081 | 0.746740  | 0.684056  | 0.950120 |
| 1  | slopeone         | 0.632387 | 0.747549  | 0.685163  | 0.946630 |
| 2  | nmf              | 0.604784 | 0.718138  | 0.656605  | 0.943497 |
| 3  | knnz-user        | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 4  | knnz-item        | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 5  | knnmean-user     | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 6  | knnmean-item     | 0.637244 | 0.749144  | 0.688678  | 0.941094 |
| 7  | knnbasic-user    | 0.662519 | 0.797699  | 0.723852  | 0.948319 |
| 8  | knnbasic-item    | 0.622308 | 0.730851  | 0.672226  | 0.941343 |
| 9  | knnbaseline-user | 0.645371 | 0.765710  | 0.700409  | 0.945723 |
| 10 | knnbaseline-item | 0.634790 | 0.750635  | 0.687869  | 0.951757 |
| 11 | Coclustering     | 0.604260 | 0.716617  | 0.655660  | 0.943728 |
| 12 | baseline         | 0.631700 | 0.751230  | 0.686299  | 0.951494 |

### NCF 4 measures

|   | Algorithm                        | Recall             | Precision          | F-Measure          | NDCG               |
|---|----------------------------------|--------------------|--------------------|--------------------|--------------------|
| 0 | Neural Collaborative Filtering   | 0.7325553467000840 | 0.8661432226399330 | 0.7937679571638840 | 0.9389520705161180 |
| 1 | Generalized Matrix Factorization | 0.5960095551378440 | 0.6961244256474520 | 0.6421885275373240 | 0.9475637658465470 |

### What's Next?

- Include other parameters? Genres?
- Other Hybrid Algorithms?
- A larger dataset? 1M data set? Complete Latest Dataset?

### Reference

- F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1–19:19.
- Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, Tat-Seng Chua. 2017. Neural Collaborative Filtering. arXiv: 1708.0503lv2 [cs.IR]
- https://en.wikipedia.org/wiki/Discounted cumulative gain
- https://surprise.readthedocs.io/en/stable/index.html

