Solution of the Kohn-Sham equations

We now have an ab-initio, approximate DFT which can be used in practice to compute properties of molecules and condensed systems.

The total energy in terms of the charge density and the single particle orbitals

$$E_{ks} = -\frac{1}{2} \sum_{i=1}^{N} \int_{\mathcal{X}_{i}} \left(\bar{r} \right) \nabla^{2} \psi_{i}(\bar{r}) d\bar{r} + \frac{1}{2} \int_{\mathcal{X}_{i}} d\bar{r} d\bar{r} \frac{f(\bar{r}) f(\bar{r}')}{|\bar{r} - \bar{r}'|} + \int_{\mathcal{X}_{i}} d\bar{r} \int_{\mathcal{X}_{i}} \left(\bar{r} \right) \nabla^{2} \psi_{i}(\bar{r}) d\bar{r} + \frac{1}{2} \int_{\mathcal{X}_{i}} d\bar{r} d\bar{r} \frac{f(\bar{r}) f(\bar{r}')}{|\bar{r} - \bar{r}'|} + \int_{\mathcal{X}_{i}} d\bar{r} \int_{\mathcal{X}_{i}} \left(\bar{r} \right) \nabla^{2} \psi_{i}(\bar{r}) d\bar{r} + \frac{1}{2} \int_{\mathcal{X}_{i}} d\bar{r} d\bar{r} \frac{f(\bar{r}) f(\bar{r}')}{|\bar{r} - \bar{r}'|} + \int_{\mathcal{X}_{i}} d\bar{r} \int_{\mathcal{X}_{i}} \left(\bar{r} \right) \nabla^{2} \psi_{i}(\bar{r}) d\bar{r} + \frac{1}{2} \int_{\mathcal{X}_{i}} d\bar{r} d\bar{r} \frac{f(\bar{r}) f(\bar{r}')}{|\bar{r} - \bar{r}'|} + \int_{\mathcal{X}_{i}} d\bar{r} \int_{\mathcal{X}_{i$$

The Kohn-Sham equations: set of N non linear differential equations for the single particles orbitals; the potential V_{KS} depends 'self-consistently' upon the charge density

$$\left(-\frac{1}{2}\nabla^{2} + V_{ks}[\rho(\bar{r})]\right)\psi_{i}(\bar{r}) = \mathcal{E}_{i}\psi_{i}(\bar{r}) \quad \text{with } V_{KS} = \frac{SE_{ks}}{S\rho(\bar{r})}$$

Approximations (e.g. LDA, GGA, etc.) for the exchange correlation energy density

 ε_{xc} and $E_{xc}[\rho]$ are in general unknown and one needs to resort to approximations

Solving KS equations

- Choose approximation for exchange and correlation potential
- •Choose atomic configuration, i.e. positions of the nuclei **R**_I
- •Choose:
 - how to treat atomic cores (allelectron, frozen core, pseudopotentials)
 - basis set to expand single particle orbitals
- Start self-consistent cycle by "guessing" a set of single particle orbitals (i.e. the expansion coefficients in terms of a given basis set) and thus an input charge density ρ .
- •Solve KS eigenvalue problem in an iterative manner.

Compare with solution of Hartree-Fock equations

How do we solve the Hartree-Fock equations, i.e. an eigenvalue problem where the operator depends on the solutions? **Using an self-consistent iterative procedure**

Self-consistency attained; Compute total energies and orbital energies

Representation of atomic cores

- All-electron (AE) methods: all electrons in the system are treated explicitly; some of them may be considered "frozen" in the configuration they have in the atom

- Pseudopotential (PP) method: only valence electrons are treated explicitly
 - Core states strongly bound to nuclei atomic-like
 - Valence states (treated explicitly) they undergo changes when going from an atom to a molecule or a condensed system; the way they change determine the bonding, electronic and optical properties, magnetism,

Pseudopotentials and pseudo-wavefunctions (I)

Core electrons...

highly localized very low energy compared to valence states

... are chemically inert

Valence wave functions must be orthogonal to the core wave functions

Pseudopotentials and pseudo-wavefunctions (II)

- Idea: construct 'pseudo-atom' which has the valence states of the real atom as its lowest electronic states
- Preserves scattering properties and total energy differences for the real atom
- Removal of orbital nodes makes plane-wave expansion feasible
- Possible limitations: Can the pseudo-atom correctly describe the bonding in different environments?
 - → transferability of pseudo-potentials in different chemical environments needs to be checked.

Transferability of pseudopotentials: atoms

- Compute the energy of two different configurations with AE and PP methods for the chosen atom
- Compute the difference in energy using both AE and PP methods
- For the pseudopotential to be transferable: △E AE = △E PP

Example of configurations for the SI atom:

```
\begin{array}{l} \rightarrow 3s^2 \ 3p^2 \quad \text{(reference)} \\ \rightarrow 3s^2 \ 3p^1 \ 3d^1 \\ \rightarrow 3s^1 \ 3p^3 \\ \rightarrow 3s^1 \ 3p^2 \ 3d^1 \\ \rightarrow 3s^0 \ 3p^3 \ 3d^1 \end{array}
```

Pseudopotentials and pseudo-wavefunctions (III)

Comparison between all electron and pseudo-charge density

Four choices for single particle orbital representation in modern DFT calculations

Plane waves

- The simplicity of Fourier Expansions
- The speed of Fast Fourier Transforms
- Requires smooth pseudopotentials

Localized orbitals

- The intuitive appeal of atomic-like states
- Simplest interpretation in tight-binding form
- Gaussian basis widely used for finite systems (within all quantum in chemistry

Augmented methods

- "Best of both (plane waves and localized orbital) worlds" also most demanding
- Requires matching technique to match functions inside and outside spheres.
- Real Space representation of wavefunctions, charge densities and potentials (not as popular as the other three methods)

Plane wave basis sets

The most general and unbiased approach: no dependence on nuclei positions

$$\sum_{m'} H_{m,m'}(\mathbf{k}) c_{i,m'}(\mathbf{k}) = \varepsilon_i(\mathbf{k}) c_{i,m}(\mathbf{k})$$

$$H_{m,m'}(\mathbf{k}) = \frac{\hbar^2}{2m_e} |\mathbf{k} + \mathbf{G}_m|^2 \delta_{m,m'} + V_{eff}(\mathbf{G}_m - \mathbf{G}_{m'}).$$

 The problem is the atoms! High Fourier components. Solution: use pseudopotentials.

Convergence as a function of # of PWs (or PW energy cutoff)

Example 1: absolute convergence for GaAs, LDA, Hamann pseudopotential, data points at E_{cut} = 7, 8, 10, 20 Ry

Convergence as a function of # of PWs (or PW energy cutoff)

Augmented plane waves (I)

(L)APW method

- Augmentation: represent the wave function inside given spheres centered on atoms in spherical harmonics, and as plane wave outside.
 - "Best of both worlds"
 - Requires matching inside and outside functions
 - Most general form can approach arbitrarily precision as it does not require the use of pseudopotentials.

Augmented plane waves (II)

Basis set:

PW:
$$e^{i(\vec{k}+\vec{K}).\vec{r}}$$

Atomic partial waves

$$\sum_{\ell m} A_{\ell m}^K u_\ell(r',\varepsilon) Y_{\ell m}(\hat{r}')$$

join

 $u_l(r,\varepsilon)$ are the numerical solutions of the radial Schrödinger equation in a given spherical potential for a particular energy ε $A_{lm}{}^{K}$ coefficients for matching the PW

Finite-difference representation of KS eigenvalue problem:

Example: 2-d 4th order Laplacian

Solving KS equations

- Choose approximation for exchange and correlation potential
- •Choose atomic configuration, i.e. positions of the nuclei $\mathbf{R}_{\mathbf{I}}$
- •Choose:
 - how to treat atomic cores (allelectron, frozen core, pseudopotentials)
 - basis set to expand single particle orbitals
- Start self-consistent cycle by "guessing" a set of single particle orbitals (i.e. the expansion coefficients in terms of a given basis set) and thus an input charge density ρ .
- Solve KS eigenvalue problem in an iterative manner.

Iterative solutions of KS eigenvalue problem

Linear mixing (or following the direction of "steepest descent")

$$g_{in}^{in} = \lambda g_{i}^{out} + (1-\lambda)g_{i}^{in} = g_{i}^{in} + \lambda(g_{i}^{out} - g_{i}^{in})$$

• How do we choose α ?

 α is related to the response function of a system and to a measure of the polarizability. Linear mixing with large a works better for rigid, strongly bound systems; however convergence can be difficult to obtain for "soft" systems such as a metal surface.

Eigenvalue problem

- Direct methods:
 - Full diagonalization of the Hamiltonian matrix in a chosen basis set: all eigenvalues $\varepsilon_{i,k}$ and eigenvectors $\Psi_{i,k}$ are computed
 - In general, suitable for methods with atom-centered, localized orbitals only
 - Practical up to a Hamiltonian matrix size of ~10,000 basis functions
- Variational approaches:
 - Diagonalization problem can be presented as a minimization problem for a quadratic form (the total energy)
 - Steepest descent and conjugate gradients methods

Electron density in solids, e.g. Silicon

From: "Electronic Structure: Basic Theory and Practical Methods", R. M. Martin, Cambridge University Press, 2004 –

Electron density in Silicon: comparison with experiment

- Electron density <u>difference</u> from sum of atoms
 - Experimental density from electron scattering
 - Calculations with two different functionals and LAPW basis
 - J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997).
 - Very similar results with pseudopotentials
 - O. H. Nielsen and R. M. Martin (1995)

Comparison of structural parameters obtained using different basis sets.

	Method	С		Si		CaF ₂		bcc Fe		
		$\mid a \mid$	B	$\mid a \mid$	B	a	B	$\mid a \mid$	B	m
	$NCPP^a$	3.54	460	5.39	98	5.21	90	2.75^{c}	226 ^c	
٧	PAW^a	3.54	460	5.38	98	5.34	100			
1	PAW^b	3.54	460	5.40	95	5.34	101	2.75	247	2.00
	$USPP^b$	3.54	461	5.40	95	5.34	101	2.72	237	2.08
	$LAPW^a$	3.54	470	5.41	98	5.33	110	2.72^{d}	245^d	2.04^d
	EXP^a	3.56	443	5.43	99	5.45	85-90	2.87^{d}	172^d	2.12^d

- a lattice constant; B bulk modulus; m magnetization
- aHolzwarth, et al.; bKresse & Joubert; cCho & Scheffler; dStizrude, et al.