PROBLEMS

Problem 1: Find the distance between the parallel lines 2x - 3y = 12 and 2x - 3y = 36.

Problem 2: What is the shortest distance between the circle $x^2 + y^2 = 25$ and the line 3x + 4y = 48?

Problem 3: Find the positive integer m if the line 13x + 11y = 145 intersects y = mx - 1 in a lattice point (whose coordinates are integers).

Problem 4: (NC Math Contest) Let P be the point (3,2). Let Q be the reflection of P about the x-axis, let R be the reflection of Q about the line y = -x and let S be the reflection of R through the origin. Then PQRS is a convex quadrilateral. What is the area of PQRS?

- (a) 14
- (b) 15
- (c) 16
- (d) 17
- (e) 18

Problem 5: Line 1 $(l_1) x - 2y + 3 = 0$ intersects the x-axis at A. Line 2 (l_2) is obtained by rotating l_1 45° about A. If the rotation is counterclockwise, find the equation for l_2 .

Problem 6: Find the equation of the line passing through p(1, 2) and the length of its segment cut between two lines 4x + 3y + 1 = 0 and 4x + 3y + 6 = 0 is $\sqrt{2}$.

Problem 7: Find the image of line x - y - 2 = 0 under the reflection in line 3x - y + 3 = 0.

Problem 8: Find the greatest possible value of $g(x) = \left| \sqrt{x^2 - 2x + 5} - \sqrt{x^2 - 4x + 13} \right|$.

Problem 9: A line segment is between two lines: $l_1: x-3y+10=0$ and

 $l_2: 2x + y - 8 = 0$. The midpoint of the segment is P(0, 1). Find the equation of the line containing the segment.

Problem 10: Find *a* if the distance between line l_1 : 2x + 3y - 6 = 0 and line l_2 : 4x + 6y + a = 0 is $\frac{5\sqrt{13}}{26}$.

Problem 11: Quadrilateral ABCD is in the first quadrant with the coordinates A = (4, 10), B = (2, 2), C = (6, 4), and D = (s, t). A new quadrilateral is formed by connecting the midpoints of AB, BC, CD, DA. Find the value of s + t if the new quadrilateral is a square.

Problem 12: The point P = (1, 2, 5) is reflected in the *xy*-plane, then its image Q is rotated by 180° about the *x*-axis to produce R, and finally, R is translated by 5 units in the positive-y direction to produce S. What are the coordinates of S?

(A) (1, 7, -5) (B) (-1, 7, -5) (C) (-1, -2, 8) (D) (-1, 3, 5) (E) (1, 3, 5)

Problem 13: (AIME) A triangle has vertices P = (-8, 5), Q = (-15, -19) and R = (1, -7). The equation of the bisector of $\angle P$ can be written in the form ax + 2y + c = 0. Find a + c.