Лабораторная работа 4.4.4 (Интерферометр Фабри-Перо)

Астафуров Евгений Б05-812 Московский Физико-Технический Институт (Государственный Университет). (Дата: 17 марта 2020 г.)

Цель работы: измерение длины волны желтых линий ртути, желтого дублета натрия, определение спектральных характеристик интерферометра Фабри-Перо.

В работе используются: интерферометр Фабри-Перо, линзы, светофильтры, трутная и натриевая лампы, катетометр КН-6.

І. ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО

Рис. 1. Амплитуды волн в интерферометре Фабри-Перо. Для прошедших волн также указаны набеги фаз

Как спектральный прибор высокой разрешающей способности интерферометр Фабри–Перо широко используется в физических экспериментах. Он применяется для исследования тонкой структуры спектральных линий, является неотъемлемым элементом лазера, выполняя роль оптического резонатора, и т.д. Интерферометр Фабри–Перо состоит из двух стеклянных или кварцевых пластин с хорошо отполированными поверхностями (с шероховатостью до $10^{-2}\lambda$), которые установлены параллельно друг другу на некотором расстоянии. На одну поверхность каждой пластины нанесены хорошо отражающие свет покрытия.

Для получения коэффициента отражения $r\approx 0.9$ используют металлические покрытия (Ag, Al), для достижения $r\approx 0.99$ наносятся многослойные диэлектрические интерференционные покрытия.

Интерферометр Фабри-Перо можно рассматривать как плоскопа- раллельную пластину, в которой происходят многократные отражения и интерференция световых волн. На рис. 1 приведена схема интер- ферирующих волн. Коэффициенты пропускания и отражения по ин- тенсивности отдельного зеркала интерферометра равны t и r соответ-

ственно (из закона сохранения энергии следует, что t+r=1). Пусть A_0 — амплитуда падающей на интерферометр волны, тогда амплитуда отраженной от первого зеркала волны равна $A_0\sqrt{r}$, амплитуда прошедшей внутрь интерферометра волны — $A_0\sqrt{t}$, амплитуда волны, отраженной от второго зеркала — $A_0\sqrt{rt}$, амплитуда первой прошедшей волны равна A_0t и т. д. В результате многократных переотражений на выходе интерферометра будем иметь набор длин волн, амплитуды которых равны A_0t , A_0tr , $A_0 t r^2$, ... Фазовая задержка меджу двумя "соседними "волнами равна $k\Delta,$ где $k=\frac{2\pi}{\lambda}$ — волновое число; Δ — разность хода для угла падения θ . Интерференционная картина, наблюдаемая с помощью зрительной трубы, настроенной на бесконечность, состоит из концентрических колец равного наклона.

Найдем условие возникновения интерференционнвй картины для световой длины волны λ . Выразим разность хода двух интерфирирующих волн, падающих на интерферометр под углом θ :

$$\Delta = 2L \left(\frac{1}{\cos \theta} - tg\theta \sin \theta \right) = 2L \cos \theta,$$

где L — расстояние между зеркалами, или база интерфереметра. Интерференционные максимумы будут наблюдаться для волн, падающих под углами θ_m , удовлетворяющих условию

$$2L\cos\theta_m = m\lambda$$

II. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

А. Введение

Интерферометр Фабри-Перо состоит из двух отражающих пластин, внутренние поверхности которых хорошо отполированы и установлены параллельно друг к другу. Его можно рассматривать как плоскопараллельную воздушную пластину, на которой происходит многократное отражение и интерференция световых лучей. Интерференционная картина, наблюдаемая в фокальной плоскости линзы Л, состоит из концентрических колец. Для двух соседних лучей, распространяющихся между зеркалами

Рис. 2. Интерферометр Фабри-Перо

интерферометра под углом θ , разность хода определяется соотношением:

$$\Delta = 2L\cos\theta,\tag{1}$$

где L — расстояние между зеркалами интерферометра. Будем считать, что поглощение света в зеркалах отсутствует, что достигается лишь при целых значениях $\frac{\Delta}{\lambda}$.

Интерференционная картина состоит из узких световых колец, разделенных широкими световыми промежутками, расстояние между которыми мы будем измерять.

В. Измерение длин волн λ и расстояний $d\lambda$ между спектральными линиями

Исследуем диаметры интерференционных колец, предполагая, что угол θ достаточно мал. Рассмотрим два кольуа с разным порядком интерференции: m_i и m_j соответственно. Из условия отсутствия поглощения следует, что светлое кольцо порядка m образуется при

$$\Delta = 2L\cos\theta = m\lambda \tag{2}$$

При уменьшении угла θ порядок интерференции возрастает, то есть больший порядок соответствует кольцам меньшего диаметра.

Для малых углов θ :

$$2L(1 - \frac{\theta_i^2}{2}) = m_i \lambda$$

$$2L(1 - \frac{\theta j^2}{2}) = m_j \lambda \tag{3}$$

Вычтем второе уравнение из первого и рассмотрим два соседних кольца:

$$L(\theta_i^2 - \theta_i^2) = (j - i)\lambda$$

Диаметр D кольца в фокальной плоскости линзы связан с ее фокусным расстоянием:

$$D = 2f\theta$$

Тогда выразим λ из уравнения:

$$\lambda = \frac{L}{4f^2} \cdot \frac{D_j^2 - D_i^2}{j - i} \tag{4}$$

Пусть в интерферометре Фабри-Перо наблюдается система колец для двух близких спектральных линий λ и $\lambda+d\lambda$, дифференцируя при малых θ найдем

$$-2L\theta d\theta = md\lambda,$$

откуда следует:

$$d\lambda = -\frac{2L\theta}{m} \approx -\lambda\theta d\theta = -\frac{\lambda \overline{D}}{4f^2} dD, \qquad (5)$$

где \overline{D} — средний диаметр колец, а dD — разность диаметров колец, образующихся для спектральных линий с длинами волн λ и $\lambda+d\lambda$ при одинаковом порядке интерференции. С помощью формулы можно определять $d\lambda$, не зная постоянной интерферометра L.

С. Дисперсия интерферометра

Отношение $D^* = \frac{dl}{d\lambda}$, где dl — расстояние между спектральными линиями в проскости спектра, а $d\lambda$ — разность дин волн этих линий, называют линейной $\partial ucnepcue$ й спектрального прибора. Линейная дисперсия интерферометра Фабри-Перо выражается через угловую $\left(\frac{d\Theta}{d\lambda}\right)$:

$$D^* = f \frac{d\Theta}{d\lambda} = \frac{dD}{2d\lambda} = 2 \cdot \frac{f^2}{\lambda D}$$

Высокая дисперсия является основным преимуществом интерферометра Фабри-Перо.

D. Дисперсионная область

Областью дисперсии называют максимальный интервал длин волн $\Delta \lambda$, при котором еще не происходит перекрытия интерференционных полос соседних порядков. Пусть накладывается кольцо (m+1)-ого порядка для длины волны λ и кольца m-ого порядка для длины волны $\lambda + \Delta \lambda$:

$m(\lambda + \Delta \lambda) = (m+1)\lambda,\tag{6}$

откуда

$$\Delta \lambda = \frac{\lambda}{m} \approx \frac{\lambda^2}{2L} \tag{7}$$

Е. Разрешающая способность интерферометра Фабри-Перо

Разрешающая способность спектрального прибора определяется соотношением:

$$R = \frac{\lambda}{\delta \lambda},\tag{8}$$

где $\delta\lambda$ — минимальная разность длин волн, разрешимая прибором вблизи волны λ . Если определять ширину линии на уровне, на котором интенсивность падает в два раза по сравнению с максимальным значением в середине линии, можно из критерия Релея определить разрешающую способность:

$$R \approx \frac{2\pi L\sqrt{r}}{\lambda(1-r)}\tag{9}$$

III. ЭКСПЕРЕМЕНТАЛЬНАЯ УСТАНОВКА

Рис. 3. Схема эксперементальной установки

Схема эксперементальной установки приведена на рис. 3. Свет от лампы S, пройдя через линзу Π_0 и светофильтр C, попадает на интерферометр Фабри-Перо (ИФП). Линза Π_0 служит для формирования пучка лучей (слегка сходящегося или слегка расходящегося). Интерференционные кольца наблюдаются в фокальной плоскости лизны Π . Картина рассматривается через зрительную трубу Π , сфокусированную на эту плоскость. Диаметры колец измеряются с помощью микроскопа катетометра. Зрительная труба Π , отсчетный микроскоп — элеметры катетометра — прибора, предназначенного для измерения расстояний в вертикальной плоскости вдоль вертикальной оси.

IV. ВЫПОЛНЕНИЕ РАБОТЫ

Данные установки:

$$f_1 = 110 \text{ HM}$$
 $f_2 = 94 \text{ HM}$ $L = 0.1 \text{ MM}$

Сначала определим координаты i-ых колец, по ним можно определить диаметр каждого кольца.

Рис. 4. График зависимости для зеленых колец ртути

$$a = 252.7$$
 $b = -114.9$

Определим постоянную интерферометра L (расстояние между зеркалами), учитывая, что $\lambda=5461\dot{A}$.

$$L = \frac{4f^2\lambda}{k} = (1.0 \pm 0.1) \cdot 10^{-4} \text{ M}$$

Рис. 5. Для желтых колец ртути

$$a = 43.3$$

$$b = 0.5$$

По углу наклона прямой рассчитаем $d\lambda$ для желтой пары линий ртути:

$$d\lambda = \frac{\lambda \overline{D} dD}{4f^2} = \frac{\lambda k}{4f^2} = (4.9 \pm 0.3) \dot{A}$$

Измерим ширину кольца:

$$\delta r = (0.81 \pm 0.01) \; \text{mm}$$

Оценим аппаратную разрешающую способность:

[1] Максимычев А.В. Лабораторный практикум по об-

щей физике. Т.2. - М.:М Φ ТИ, 2014

$$R = \frac{\lambda}{\delta \lambda} = \frac{4f^2}{D\delta r} = (50.4 \pm 0.2) \cdot 10^2$$

Найдем значение добротности для r=0.85:

$$Q = \frac{2\pi L}{\lambda (1 - r)} = 7.6 \cdot 10^3$$

НАйдем число интерферирующих лучей:

$$N = \frac{Q}{m} = 21$$

[2] *Сивухин Д.В.* Общий курс физики. Т.4. - М.:Наука, 1996