MAT1720 – INTRODUCTION AUX PROBABILITÉS – HIVER 2020 EXAMEN INTRA

Enseignant : Thomas Davignon Date : lundi 17 février 2020

Heure: 13h 30

Salles: B-3240, B-3250, Pavillon Jean-Brillant.

Durée : 1h 50

Consignes: Documentation/calculatrice non-permise.

Répondre dans les cahiers prévus à cet effet. Écrire proprement. Justifier ses démarches. Identifiez clairement tous les cahiers utilisés.

Le questionnaire est imprimé recto-verso. Le questionnaire ne sera pas corrigé.

Rappel de formules

Avec la convention que $0^0 = 1$:

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}, \qquad r \neq 1.$$

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}, \qquad |r| < 1.$$

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda} = \lim_{n \to \infty} \left(1 + \frac{\lambda}{n} \right)^n.$$

$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a+b)^n.$$

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}.$$

Question 1 (6 points). Vrai ou faux. Répondez dans le cahier d'examen. Il n'est pas nécessaire de justifier vos réponses.

1.	$(1 \text{ point}) \lim_{n \to \infty} \sum_{k=0}^{n} n^{-k} \binom{n}{k} = e.$
	(1 point) Soient E et F sont deux événements tels que $\mathbb{P}\{E\cap F\}=0$. Alors, $\mathbb{P}\{E\cup F\}=\mathbb{P}\{E\}+\mathbb{P}\{F\}$.
3.	(1 point) Soient A,B deux événements avec $0 < \mathbb{P}\{A\}, \mathbb{P}\{B\} < 1$, et $\mathbb{P}\{A \mid B\} < \mathbb{P}\{A \mid B^c\}$. Alors, $\mathbb{P}\{A \mid B\} < \mathbb{P}\{A\}$.
4.	(1 point) On suppose que X est une variable aléatoire quelconque avec fonction de répartition F . Alors on a toujours $\mathbb{P}\left\{X^2 \leq x\right\} = F\left(\sqrt{x}\right)$.
	(1 point) Si X est une variable aléatoire de loi binomiale $(n,p),n-X$ est une variable aléatoire de loi binomiale $(n,1-p).$
	(1 point) Si X est une variable aléatoire géométrique, et que $m,n\in\mathbb{N},$ les événements $\{X>m+n\}$ et $\{X>m\}$ sont indépendants.

con	testion 2 (6 points). Axel, Bénédicte et Claude vont voire Cats au cinéma Beaubien. La salle apte deux sections de 4 rangées de 5 sièges de part et d'autre de l'allée centrale. moment d'acheter leurs billets, il ne reste que 3 places disponibles
(a)	(1 point) Combien y a-t-il de façons pour 37 personnes de s'asseoir dans une salle de 40 places?
(b)	(2 points) Soit $C = \{Il \text{ reste trois places ensemble dans la même rangée.} \}$. Trouver $\mathbb{P}\{C\}$.
(c)	$\textit{(1 point)} \ \text{Soit} \ B = \{ \text{Axel, B\'en\'edicte ou Claude est assis au bout d'une rang\'ee.} \}. \ \text{Trouver} \ \mathbb{P} \left\{ B \mid C \right\}$
(d)	

(b) (4 points) Pendant la visite, Joey boude et il ne parle pas à Monica ni à Chandler – donc J est indépendant de C et de M. Calculer $\mathbb{P}\{M\cap C\}$ et déduire si M et C sont indépendants. Si non, est-ce que Monica et Chandler ont plus tendance à s'entendre que Monica et Joey?

Question 4 (10 points). Thomas est passionné par l'astronomie, et il aime beaucoup observer les astres à l'aide de son télescope. Cependant, il y parvient rarement, parce que d'une part, la météo est rarement coopérante, mais aussi parce qu'il est très occupé.

En moyenne, les conditions d'observation seront favorables avec une probabilité de 1/5. Mais, indépendamment des conditions, Thomas doit se lever tôt le lendemain 5 soirs sur 7. Pour une soirée choisie aléatoirement :

choisie aléatoirement : — si les conditions sont favorables et que Thomas n'a pas à se lever tôt le lendemain, il sortira faire de l'observation; — si les conditions sont favorables et qu'il doit se lever tôt le lendemain, il sortira quand même faire de l'observation avec probabilité 1/2. — si les conditions ne sont pas favorables, il ne sortira pas faire de l'observation.	
On définit les événements suivants : $-F = \{\text{Les conditions sont favorables}\};$ $-L = \{\text{Thomas doit se lever tôt le lendemain}\};$ $-S = \{\text{Thomas est sorti faire de l'observation.}\};$	
(a) (1 point) Calculer $\mathbb{P}\{F \cap L\}$ et $\mathbb{P}\{F \setminus L\}$.	_
(b) (4 points) Quelle est la probabilité que Thomas sortira faire de l'observation?	
(c) (2 points) Expliquer pour quoi $L\cap S=L\cap F\cap S.$ Déduire que $\mathbb{P}\left\{L\mid S\right\}=\mathbb{P}\left\{L\cap F\mid S\right\}.$	
(d) (2 points) Sachant que Thomas est sorti faire de l'observation, quelle est la probabilité qu'il devait se lever tôt le lendemain (et qu'il est maintenant très fatigué)?	

(e) (1 points) En moyenne combien de fois par année Thomas sort-il son télescope si on assume que tous les soirs d'une année (non-bissextile) sont indépendants?

Question 5 (7 points). Soit X une variable aléatoire de distribution de Poisson avec paramètre $\lambda > 0$. Soit Y une variable aléatoire de distribution de Poisson avec paramètre $\mu > 0$. On a aussi que, pour toute paire $k, l \geq 0$, les événements $\{X = k\}$ et $\{Y = l\}$ sont indépendants.

(a) (4 points) Soit Z = X + Y. Montrer que

$$\mathbb{P}\left\{Z=n\right\} = \sum_{k=0}^{n} \mathbb{P}\left\{X=k\right\} \mathbb{P}\left\{Y=n-k\right\}.$$

(b) (3 points) Déduire que Z suit une distribution de Poisson de paramètre $\lambda + \mu$.