Correction du DM 17

Merci de pré-corriger votre devoir, en tenant compte des commentaires qui suivent et en vous référant au corrigé type présent sur le site. Je vous demande ensuite de le scanner page à page, dans le bon sens et de le déposer sur mon site au format .pdf.

Problème 1

- Question 2.b : Pour montrer que $u(t) = A \frac{\cos(\omega t)}{t} + B \frac{\sin(\omega t)}{t}$ tend vers $+\infty$ lorsque t tend vers 0, il ne suffit pas d'indiquer que c'est le cas pour $A \frac{\cos(\omega t)}{t}$, il faut également montrer que le second terme $B \frac{\sin(\omega t)}{t}$ possède une limite finie.
- Question 3.a : Avant d'utiliser $\tan \omega$, il faut d'abord montrer que cette quantité est définie.
- Question 3.c: Pour la méthode utilisant une intégration par parties, en posant $v_n(t) = tu_n(t)$, on a $u'_n(1) = 0$, mais a priori, $v'_n(1) \neq 0$.

Problème 2

- Question 4.a : Si vous faites une intégration par parties, il faut le signaler explicitement.
- Question 7: L'équation différentielle (E_S) est linéaire d'ordre 1, donc on la résout en invoquant le cours à l'aide d'une primitive de $x \mapsto -m(x) + q$. Il est maladroit de la résoudre en divisant par S et en utilisant $\ln |S(x)|$, car cela oblige à étudier le cas où S(x) = 0.