CHALMERS EXAMINATION/TENTAMEN

Course code/kurskod	skod Course name/kursnamn				
DIT 82	Software	Ergineering for	AI Systems		
Anonymous code Anonym kod	337	Examination date Tentamensdatum	Number of pages Antal blad	Grade Betyg	
		2022.1.4	10	16	

^{*} I confirm that I've no mobile or other similar electronic equipment available during the examination. Jag intygar att jag inte har mobiltelefon eller annan liknande elektronisk utrustning tillgänglig under eximinationen.

Solved task Behandlade uppgifter No/nr		Points per task Poäng på uppgiften	Observe: Areas with bold contour are to completed by the teacher. Anmärkning: Rutor inom bred kontur ifylles av lärare.
1	X	3,0	
2	χ	2,5	
3	Х	3,5	
4	¥	2,5	
5	*	2,8	
6	X	3,0	
7		-	
8	1 1		
9			
10		71.6	
11		-	
12			
13			
14			. ,
15			
16			
17			
Bonus poäng	×	1,0	

CHALMERS 337 Anonym kod		(to be filled in by teacher) Poäng på uppgiften	Löpande sid nr Question no.
	337	(ifylles av lärare)	Uppgift nr
01			
a	I is the learning rate, it speci	to how the gradi	ent descent algorit
(a)			
	will change when & is too		
	cause vanish gradient problem.		
	time to coverge. A reasona		
ر,	find the global minimum Va	lue, instead of the	re local minimum
chs		, , , , z	
· ,	. The cost function: Im?	$2(g_i - g_i)$	
,α,	it is a polynomial equation	with the max de	gree of 2
	in the graph, when wis		
	the value of Jc60, is the		
	()(0)		N=60
(p)	because the initial neight	starts from W=10	0.
	it reaches mininum in W		
	:. I can be in range		
			J. 10.
ور)	at least 2 times, after	er the first itera	ation, make sure
5	the initial weight is still on.	the right side of	w=60 Much
	means, after the second or.	third iteration, t	he intial weight g
	up to the left side of w	1=60, we will not	miss the global
	mininum value in 5160)		
			- 11 1
	It can be done with Adam		R Corlea
	adaptive dynamic algorithm me	thod.	
14		()	or the difference
	when the Cost function Jon		
V	petween J(W,) and J(Ws) and Stop the iteration.	is very close to	, ach ad

CHAL	MERS	-	337		(to be filled in by teacher)	Löpande sid	nr +
		Anonym kod	337		Poäng på uppgiften (ifylles av lärare)	Question no Uppgift nr	
Q4.1.	Con	nvolutional	layer.	Extraut 1	all features of	input down	
	Mo	ax Pooling	layer:	cut the	channel jute	smaller	channel
					en features mi		dimensia
	ReL	U activation			or olimensian H		etron
			J		upput. It a	1	
					n, other wise		
			ī	s linear	rombination	of input	
	Fully	- connected	layer:	condine .	all partial Sh	naller featur	res toge
					it can avoid		
010							,
Q4, 2	a) is a ve	ctor with	dimension -	3		
2(0)	(1)	0.1	0,2 -				
	$\theta^{(i)}$	= 0.1	-0.4	0	is a 3x2	matrix	
					2		
				th dimensia			1 5
	0	= [-0.9	3,	0 3	a 3x / ma	triX	(,3
				ith dimens			
		-0.1.0	,		-6.7		
Q(b)=	0"	= [0,3 -0	(4)	0(2) = [-0.9]		
QCC):	sign	noid funct	ion is	1+e-x	_		
	(2) Q ₂₁ =	sig(- o.	/ × / +	0+0) =	sig (-01) =	1+000	
	(2) A ₂₂ =	sig (0, 2	+0+0)	= sig(012))= 1+e-0,2	-	
	h(×)=	$\alpha^3 = sig$	(-0.7.	-0.9 x -	1 +e ^{0.1} + 1.	1 × 1+0	-0.2)
		= sig	()	<	use calculator here		

HALME	RS 337		Löpande sid nr 5
	Anonym kod	Poäng på uppgiften (ifylles av lärare)	Question no. Uppgift nr
05			
	prepare the data,	2 process the data	, it includes
	1 clean the data, which		
	replace those with en		
۵, ۶	douta labelling: assig	in the data into diff	forant categories.
	It can be performed by and transcription		
2.3	data Splitting: Split test	the data into train	, Volidation and
3.	Feature Engineering.		
	Train and evaluate me Deploy the model:		Server for end-user
6	Monitor the model:	check the model tegoraccuracy and perform	ularily of its
	litional Software: it		
oleve la	oppers code and make	rules, then get +	he expected resu
ML	-based software: It	is based on predic	ition, which means
it	handles with a lot of o	lata, developpers do	not know the rules
un-	til they get the exp	e ited results	
	0,3		

CHAI	MERS	337		Löpande sid nr 6
		337		Question no. Uppgift nr
25				
,С,	Feature engineer	ering: the process	of transferming	the raw Toput
			re features in the	
	algorithms.			0
		with numeric dat	a, it can be porfo	rned by normalization
		n, log transform		Ŭ.
			data, it can be	donne using
	· ·	ling and hash		0
			docta, it can be	done Using
			fied expression mo	
			eval In this mode	
	such as Sent	enses can be rep	presented in a bo	eg containing these wo
				r the order of co
,5			Analysis (PCA)	
1		e dimension of		
d			/	
(80)	Inter-annota	tor agreement Me	eccures how well	the or more
	annototors can of object.	n make the same	annotation decis	ion on one categor
		easured by rateur	ating Intersection (of Union CIOUS
			· ·	
			Interesection means	ANB.
	A ANB B	white union		
		by Calculations	the value of A	INB can measure
		how well the	inter-annotator a	greement.

CHA	LMER	S	337	(to be filled in by teacher)	Löpande sid nr
		Anonym kod	337	Poäng på uppgiften (ifylles av lärare)	Question no. Uppgift nr
Q					
e,				more layers than	
	Ne	ural Networ	L. CNN Mod	lel contains (1) con	volutional layer
	Which	is to extr	act all fea	tures (2, ReLU	layet aclding
	non-	linear charact	erics and avo	id all outputs are	all linear
	comb	ination of	in plus 3,	pooling layer : C	ut the image into
	,			he average value or	
				uce alimension. 4	
	flatter	the multi-	-dimensional te	ensors into one Sin	gle dimension,
	which	increase eff	iciency (I)	tully connected laye	et: combine all
	partia	l features in	nts a globa	feature. Thus, c	NN reduces
	dimens	ions and mo	e efficient.		
f,	CIN	human, soci	ial and enviro	nment. The AI syste	an should help human
		being, society	and environme	nt and make all v	en should help human well-being life botter.
	.2,	human-centere	ed value. 71	he AI system should	base on development
		d human			
	3,	data protect	ion and priv	vacy: The AZ syste	em should keep
		Users privace	y and prote	et personal data	
	4,	Fairness.	The AI sy society o	stem should be fa	ir and open to
				system should be to	
	.6,	Contestabili	ty the AZ different	System should allow	n competition among
				Tytom Should be accou	
			actions		

Δ