Question Answering System Based on HOTPOTQA

Jiaming Li, student ID 300233503

CSI 5180 - Topics in AI: Virtual Assistant

Master of Computer Science, University of Ottawa

Final Project Presentation

Content

Project Summary

Methodology

Activity Table

Challenges and Resolutions

Demo, Results and Outputs

Conclusion

1. Project Summary

- Question answering (QA) is a significant Natural language processing (NLP) problem as well as a long-standing AI milestone.
- Reading comprehension is challenging for robots because it necessitates a combination of natural language comprehension and world knowledge.
- The project modeled HotpotQA dataset as a seq2seq problem to learn a piece of text, and artificially asks some related questions based on the content of the article.
- The model provides answers to these relevant questions based on the content of the learned articles.

2. Methodology

- HotpotQA Dataset
 - Context
 - Question
 - Supporting facts
 - Answer
- Convolutional Seq2Seq Networks
 - Positional Embeddings
 - Residual connections

- Project Settings
 - Software Platform
 - PyCharm, macOS, Github
 - Programming Environment
 - Python 3.9.0
 - PyTorch 1.10.2
 - pytorch-transformers 1.2.0
 - Datasets HotpotQA

Parameters Settings

Settings	Baseline	With Attention		
Batch Size	128	32		
Hidden Dim	100	50		
Encoder Embedded Dim	100	50		
Decoder Embedded Dim	100	50		
Encoder Dropout	0.5	0.5		
Decoder Dropout	0.5	0.5		
Epochs	10	10		
Clip	1	1		

Table 1: Parameters Settings for the Models

3. Activity table

Activity	Why	Time Taken	Deliverable				
Research and study current	Gather knowledge about	5 hours	None (Online re-				
articles and achievements,	QA system models		sources and free				
build background knowledge			video tutorial)				
Explore and compare differ-	Decide which dataset is	2 hours	Chose HOT-				
ent datasets	the most suitable to the		POTQA				
	project						
Install the libraries and pack-	QA system requires a	2 hours	The projects can				
ages that used in this project	proper environment to run		worked well on my				
and configure the environ-	the program		laptop				
ment							
Build and run the model	Turn the QA process into	6 hours	Some result plots				
(baseline)	a function so that the ex-		should be gener-				
	amples can be easily tried		ated				
Build and run the model	Improve the model and	4 hours	Some result plots				
(with attention)	compare the results with		should be gener-				
	baseline		ated				
Test some examples of the	See how accurate the	3 hours	Answers of ques-				
model and compare the re-	model could be		tions that I give to				
sult both technically and ar-			the model				
tificially							
Fix and improve the model	Get better results	2 hours	Output could be				
			more accurate				
Write report and record the	Summarize what I do for	7 hours	Video and paper				
presentation for final project	this project						
Total hours: 31 hours							

4. Challenges and Resolutions

- (Resolutions: What I have learned)
- Dataset Changing
 - Many prominent datasets, such as SQuAD [1], have been created with the goal of providing a dataset to train reading comprehension models.
 - To get around these restrictions, HotpotQA creates questions that involve reasoning across numerous sources in natural language, rather than relying on a pre-existing knowledge base [2].
- Researches on HotpotQA are limited
 - The number of papers on HotpotQA is very limited, I did some research on building a model based on HotpotQA dataset.
 - Simple and effective multi-paragraph reading comprehension [3]
 - Attention is all you need [4]

5. Demo, Results and Outputs

- 5.1 Demo
 - Figure 1 shows what I tested for the model.

5. Demo, Results and Output

- 5.2 Results
 - The following tables show the results of loss and perplexity values.

Epochs	Baseline Train Loss	Valid Loss	with Attention Train Loss	Valid Loss	Epochs	Baseline Train PPL	Valid PPL	with Attention Train PPL	Valid PPL
1	5.834	5.733	5.737	5.732	1	341.765	308.765	310.068	308.443
2	5.130	5.653	5.142	5.632	2	168.942	285.170	171.088	279.133
3	4.836	5.541	4.841	5.533	3	125.912	254.845	126.599	252.864
4	4.560	5.435	4.565	5.461	4	95.623	229.224	96.104	235.350
5	4.338	5.418	4.359	5.489	5	76.550	225.499	78.191	242.006
6	4.145	5.432	4.195	5.521	6	63.122	228.493	66.321	249.995
7	3.963	5.453	4.056	5.507	7	52.631	233.348	57.764	246.381
8	3.795	5.493	3.926	5.542	8	44.495	242.908	50.704	255.139
9	3.595	5.582	3.816	5.589	9	36.429	265.648	45.424	267.489
10	3.401	5.687	3.693	5.597	10	29.986	295.011	40.158	269.701

Table 3: Comparison of Train and Valid Loss of Two Models

Table 4: Comparison of Train and Valid Perplexity Values of Two Models

5. Demo, Results and Output

• 5.3 Outputs

• The plots of train and valid loss with/without attention, train and valid perplexity values with/without attention are displayed below:

Figure 2: Train and Valid Loss

Figure 3: Train and Valid Loss with Attention

Figure 4: Train and Valid Perplexity Values

Figure 5: Train and Valid Perplexity Values with Attention

6. Conclusion

- Identified some issues with the baseline model based on the HotpotQA dataset
- Proposed and implemented some learning and architectural changes to that model
- With attention, loss value and perplexity value are higher than the values of baseline, which does not change efficiently

Reference

- [1] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, "Squad: 100,000+ questions for machine comprehension of text," in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2016, pp. 2383–2392. [Online]. Available: http://aclweb.org/anthology/D16-1264
- [2] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning, "Hotpotqa: A dataset for diverse, explainable multi-hop question answering," 2018.
- [3] Clark, C., & Gardner, M. (2017). Simple and effective multi-paragraph reading comprehension. arXiv preprint arXiv:1710.10723.
- [4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
- [5] Rajpurkar, P., Jia, R., & Liang, P. (2018). Know what you don't know: Unanswerable questions for SQuAD. arXiv preprint arXiv:1806.03822.
- [6] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Rush, A. M. (2019). Huggingface's transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.
- [7] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Rush, A. M. (2020, October). Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations (pp. 38-45).
- [8] Su, D., Xu, Y., Winata, G. I., Xu, P., Kim, H., Liu, Z., & Fung, P. (2019, November). Generalizing question answering system with pre-trained language model fine-tuning. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering (pp. 203-211).
- My GitHub Code: https://github.com/JaneLi99/CSI5180_Final_Project

THANKS

Any comments and suggestions are welcome.

