House Price Prediction Model

06.12.2022

Tayfun Kok

My Goal?

Developing a machine learning model to predict the price of a house based on its characteristics such as location, age, number of rooms, etc.

Implementing linear regression model.

Use Case

- No bank wants to lend more than the real value of the house
- The bank does not immediately give you the home loan you want to take out even if your credit score is sufficient.
- The bank first assesses the real value of the house.
- Then gives a home loan according to the real value.

Use Case

- The bank can use the model developed in this project to calculate the real value of the house the customer wants to buy
- For example, this model works like this
- ➤ The customer enters the characteristics of the house such as location, number of rooms, age, etc. into the application.
- ➤ Then the application tells the customer how much loan they can get from the bank for this house.

Recognizing and Understanding Data

- The shape of the dataset: (5000,16)
- Longitudes: vertical lines that measure east or west of the meridian in Greenwich, England.
- Latitudes: horizontal lines that measure distance north or south of the equator
- "lot_acres" column contains 10 null values also there are some empty values needed to be filled
- There were outliers and messy values needed to be cleaned.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 16 columns):
     Column
                       Non-Null Count
                                       Dtype
                       5000 non-null
                                       int64
    MLS
 0
     sold price
                       5000 non-null
                                       float64
     zipcode
                       5000 non-null
                                       int64
     longitude
                                       float64
                       5000 non-null
     latitude
                                       float64
                       5000 non-null
                                       float64
     lot acres
                       4990 non-null
                                       float64
     taxes
                       5000 non-null
    year built
                       5000 non-null
                                       int64
     bedrooms
                                       int64
                       5000 non-null
     bathrooms
                                       object
                       5000 non-null
                                       object
     sart ft
                       5000 non-null
                                       object
     garage
                       5000 non-null
                                       object
     kitchen features
                       5000 non-null
    fireplaces
                       5000 non-null
                                       object
    floor covering
                       5000 non-null
                                       object
                                       object
    HOA
                       5000 non-null
dtypes: float64(5), int64(4), object(7)
memory usage: 625.1+ KB
```

Distribution of the houses on the map: Before cleaned the data

The Cleaned Data

- Dropped "MLS", "kitchen_features" and "floor_covering" columns.
- Filled null and empty values with suitable values.
- Cleaned Outliers and messy values.
- Created "age" column based on 2019.
- The shape of the cleaned data: (4282,13)

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4282 entries, 217 to 4998
Data columns (total 13 columns):
    Column
                Non-Null Count
                                Dtype
                                float64
     sold_price 4282 non-null
     zipcode
                4282 non-null
                                int64
     longitude
                4282 non-null
                                float64
     latitude
                4282 non-null
                                float64
     lot acres
                4282 non-null
                                float64
                                float64
     taxes
                4282 non-null
     bedrooms
                                int64
                4282 non-null
     bathrooms
                4282 non-null
                                float64
                                float64
     sqrt ft
                4282 non-null
                                float64
                4282 non-null
    garage
     fireplaces
                                int64
                4282 non-null
                                float64
    HOA
                4282 non-null
                4282 non-null
                                int64
    age
dtypes: float64(9), int64(4)
memory usage: 468.3 KB
```

Distribution of the houses on the map: After cleaned the data

Feature Engineering:

- Created "price_sqrt" column
- Price_sqrt=sold_price/sqrt_ft
- price_sqrt : distribution between 100 and 300

price_sqrt

213.013168

265.588915

271.125169

340.136054

276.580247

264.534884

240.269101

311.284047

277.200277

287.838810

Feature Engineering:

- Divided it into ten equal groups according to the values of price_sqrt
- Numbered these groups from 1 to 10.
- For example:

```
81-153 -> 1
53-168 -> 2
.
```

253-517 -> 10

1	430
10	429
7	428
9	428
5	428
6	428
3	428
8	428
4	428
2	427

price_sqrt	category
213.013168	7
265.588915	10
271.125169	10
340.136054	10
276.580247	10
264.534884	10
240.269101	9
311.284047	10
277.200277	10
287.838810	10

Classification: KNN

- 2: 0.992760392340028
- 3 : 0.8727230266230733
- 4 : 0.7372723026623074
- 5 : 0.6270434376459598
- 6: 0.5558150397010743
- 7 : 0.5114432508173751
- 8: 0.4885567491826249
- 9: 0.4677720691265764
- 10: 0.4586641756188697

• Accuracy: 0.87

• K=3

	longitude	latitude	category	Prediction
999	-110.908102	32.322269	3	3.0
2153	-110.954881	32.313543	5	5.0
2396	-110.678130	32.100513	3	3.0
492	-110.990511	32.465389	8	8.0
930	-110.860817	32.544615	7	4.0

Model Building: Linear Regression

• Split the data as train and test data.

• Train size: (3853, 10)

•

• Test Size: (429, 10)

• Normalized the data.

• Trained the model with the train data.

•

	sold_price	lot_acres	taxes	bedrooms	bathrooms	sqrt_ft	garage	fireplaces	HOA	age	category
0	1100000.0	1.39	19156.00	4	4.0	5164.0	3.0	4	153.0	18	7
1	1150000.0	11.49	10716.00	4	5.0	4330.0	3.0	3	0.0	12	10
2	1200000.0	1.21	10610.26	4	4.0	4426.0	3.0	0	117.0	17	10
3	1200000.0	7.11	7324.90	3	3.0	3528.0	2.0	1	50.0	47	10
4	1120150.0	2.98	13573.00	4	6.0	4050.0	4.0	2	149.0	12	10

Cross Validation

The Model Performance

- > R2 score of the train data: 0.875
- > R2 score of the cross validation: 0.874
- > R2 score of the test data: 0.88
- Train and validation score are almost the same so there is not overfitting.

test_score

- 0.871261
- 0.886177
- 0.894673
- 0.858241
- 0.859653

Distribution of the Residuals

Coefficients

Prediction

	longitude	latitude	lot_acres	taxes	bedrooms	bathrooms	sqrt_ft	garage	fireplaces	HOA	age	Price
1182	-110.947012	32.398618	0.65	5096.00	3	4.0	3927.0	2.0	2	60.0	13	775000.0
4038	-110.981701	32.387787	0.65	4945.49	5	5.0	3300.0	2.0	1	7.0	50	530000.0
2610	-111.092245	32.461711	0.59	7237.00	3	3.0	3052.0	2.0	2	76.0	14	575000.0
2017	-110.851361	32.311857	1.00	4658.71	3	4.0	3933.0	2.0	3	37.0	34	675000.0
644	-110.849321	32.320880	0.51	7280.24	4	3.0	3498.0	3.0	2	117.0	24	870000.0
2294	-110.853531	32.289969	0.80	6333.47	3	2.0	2964.0	2.0	1	130.0	33	659200.0
3524	-110.715703	32.247349	3.33	4732.00	3	4.0	3058.0	3.0	1	25.0	26	544366.0
3464	-110.925499	32.334862	0.83	4032.99	2	2.0	1925.0	2.0	2	6.0	27	575000.0
3088	-110.914905	32.304747	1.41	5097.29	3	3.0	2740.0	2.0	2	0.0	39	590000.0
2087	-110.925584	32.462017	1.00	6411.72	4	3.0	3533.0	3.0	2	0.0	13	655000.0

Prediction: Category

- ➤ Predicted categories with KNN.
- ➤ Drop longitude and Latitude columns and add category column to the sample data.

	longitude	latitude	Category
1182	-110.947012	32.398618	5.0
4038	-110.981701	32.387787	2.0
2610	-111.092245	32.461711	4.0
2017	-110.851361	32.311857	3.0
644	-110.849321	32.320880	9.0
2294	-110.853531	32.289969	8.0
3524	-110.715703	32.247349	3.0
3464	-110.925499	32.334862	10.0
3088	-110.914905	32.304747	7.0
2087	-110.925584	32.462017	4.0

Prediction

	lot_acres	taxes	bedrooms	bathrooms	sqrt_ft	garage	fireplaces	HOA	age	Category
1182	0.65	5096.00	3	4.0	3927.0	2.0	2	60.0	13	5.0
4038	0.65	4945.49	5	5.0	3300.0	2.0	1	7.0	50	2.0
2610	0.59	7237.00	3	3.0	3052.0	2.0	2	76.0	14	4.0
2017	1.00	4658.71	3	4.0	3933.0	2.0	3	37.0	34	3.0
644	0.51	7280.24	4	3.0	3498.0	3.0	2	117.0	24	9.0
2294	0.80	6333.47	3	2.0	2964.0	2.0	1	130.0	33	8.0
3524	3.33	4732.00	3	4.0	3058.0	3.0	1	25.0	26	3.0
3464	0.83	4032.99	2	2.0	1925.0	2.0	2	6.0	27	10.0
3088	1.41	5097.29	3	3.0	2740.0	2.0	2	0.0	39	7.0
2087	1.00	6411.72	4	3.0	3533.0	3.0	2	0.0	13	4.0

Prediction: Price

	lot_acres	taxes	bedrooms	bathrooms	sqrt_ft	garage	fireplaces	HOA	age	Category	Price	Prediction
1182	0.65	5096.00	3	4.0	3927.0	2.0	2	60.0	13	5.0	775000.0	737634.004123
4038	0.65	4945.49	5	5.0	3300.0	2.0	1	7.0	50	2.0	530000.0	486913.651799
2610	0.59	7237.00	3	3.0	3052.0	2.0	2	76.0	14	4.0	575000.0	552296.839704
2017	1.00	4658.71	3	4.0	3933.0	2.0	3	37.0	34	3.0	675000.0	642769.777007
644	0.51	7280.24	4	3.0	3498.0	3.0	2	117.0	24	9.0	870000.0	854752.218043
2294	0.80	6333.47	3	2.0	2964.0	2.0	1	130.0	33	8.0	659200.0	703247.084080
3524	3.33	4732.00	3	4.0	3058.0	3.0	1	25.0	26	3.0	544366.0	493676.393543
3464	0.83	4032.99	2	2.0	1925.0	2.0	2	6.0	27	10.0	575000.0	607956.431375
3088	1.41	5097.29	3	3.0	2740.0	2.0	2	0.0	39	7.0	590000.0	614551.020126
2087	1.00	6411.72	4	3.0	3533.0	3.0	2	0.0	13	4.0	655000.0	631502.865722

Conclusion

- Achieved a performance of 88 percent with linear regression.
- Means that our model knows house prices with a margin of error of 12 percent.
- For example, if the real price of the house is 1.000.000, the model estimates it between 880.000 and 1.120.000.
- This result is not bad but better performance can be achieved with bagging and boosting models like random forest and XGBoost.

