Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.3.1

по курсу общей физики на тему: «Определение модуля Юнга на основе исслелования деформации растяженния и изгиба»

Работу выполнил: Никифоров Дмитрий (группа Б02-205)

Долгопрудный 20 октября 2022 г.

1 Аннотация

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используется: прибор лермантова, проволока из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

2 Ход работы

I Определение модуля Юнга по измерениям удлиненния проволоки

2.1 Методика измерений

Для определения модуля Юнга используется прибор Лермантова, схема которого предствалена на рисунке ниже. В ходе эксперимента исследуется растяжение проволочки " Π ".

Рис. 1: схема установки для определения модуля Юнга по измерениям растяжения проволоки

2.1.1 Теоретичексая справка

1. Направляем зрительную трубу на зеркальце так, чтобы мы четко видели шкалу, тогда свет от шкалы будет падать примерно перпендикулярно шкале на зеркало, поэтому

$$\Delta l = \frac{\Delta nr}{2h}$$

$$\sigma_{\Delta l} = \Delta l \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}$$

где r - длина рычага, разница показаний шкалы - Δn , расстояние от шкалы до проволоки - h.

2. Коэффициент жесткости считывается с графика зависимости нагрузки (P) от удлинения проволоки (Δl) , т.е.:

$$k = \frac{P}{\Delta l}$$

3. Найдем модуль Юнга по формуле

$$E = \frac{k * l_0}{S}$$

$$\sigma_E = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2}$$

2.1.2 Используемое оборудование

При помощи линейки измеряем длину проволочки (l) и расстояние от шкалы до проволоки (h) - погрешность измерений:

$$\sigma_l = \sigma_h = c = 0.1$$
cm

Значение отклонения по шкале (n) измеряется с погрешностью в цену деления шкалы:

$$\sigma_n = c = 0.1$$
cm

Все остальные значения измерены лаборантом.

2.1.3 Результаты измерений

- 1. Диаметр проволоки: $d = (0.73 \pm 0.01)$ мм.
- 2. Рассчитаем площадь поперечного сечения проволоки:

$$S = \frac{\pi(\overline{d})^2}{4} = 0.419 \text{ cm}^2$$

$$\sigma_S = S\sqrt{2\left(\frac{\sigma_d}{d}\right)^2} = 0,005 \text{ cm}^2$$

 $S = (0,419 \pm 0,005) \text{ cm}^2$

- 3. Исходя из того, что $\sigma_{\rm предел}=900~{\rm H/mm^2}$ получаем, что предельный вес, который можно повесить $P_{\rm предел}=0.3\sigma_{\rm предел}S\approx 113.13H$.
- 4. Длина моста r = 13мм
- 5. Измеряем длинну проволоки (l_0) и расстояние от шкалы до проволоки(h) $l_0=(176,3\pm0,1)$ см $h=(138,8\pm0,1)$ см

m	Р, Н	n1, см	n1', см	n2, см	n2', см	пср, см	Δ n, cm	$\Delta l, cm$
0	0	12,9	13,0	13,0	13,1	13,0	0	0
246,1	2,4	14,4	14,4	14,5	14,4	14,425	1,425	0,0067
245,5	4,8	15,6	15,5	15,6	15,6	15,575	2,575	0,0121
245,7	7,2	16,9	16,7	16,6	16,6	16,700	3,700	0,0173
245,6	9,6	17,9	17,9	17,8	17,9	17,875	4,875	0,0228
245,8	12,0	19,0	19,1	19,1	19,1	19,075	6,075	0,0284
245,7	14,5	20,2	20,2	20,3	20,2	20,225	7,225	0,0338
245,5	16,9	21,4	21,4	21,6	21,5	21,475	8,475	0,0397
246,1	19,3	22,4	22,6	22,7	22,4	22,525	9,525	0,0446
245,6	21,7	23,8	23,8	23,9	23,9	23,850	10,850	0,0508

Таблица 1: Зависимость удлинения проволоки от нагрузки

Рис. 2: График зависимости нагрузки от удлинения проволочки

	Значение	σ	arepsilon	
k	$4,26*10^4 \text{ H/m}$	$85,\!22~{ m H/m}$	0,016	
Е	$1,79 * 10^{10} \Pi a$	$2.3 * 10^8 \Pi\text{a}$	0,013	

Таблица 2: Значения к и Е

II Определение модуля Юнга по измерениям изгиба балки

2.2 Методика измерений

Рис. 3: схема установки для определения модуля Юнга по измерениям изгиба балки

2.2.1 Теоретическая справка

1. Модуль Юнга рассчитывается по слудующей формуле:

$$E = \frac{Pl_{AB}^3}{4ab^3y_{max}}$$

$$\sigma_E = \sqrt{3\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{P/y_{max}}}{P/y_{max}}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 3\left(\frac{\sigma_b}{b}\right)^2}$$

2.2.2 Используемое оборудование

Расстояние между точками опоры балки (l_{AB}) и измеряется линейкой:

$$\sigma_l = c = 0.1$$
cm

Высота(b) и ширина(a) балки измеряются штангенциркулем: $\sigma_a = \sigma_b = c = 0.01$ см

2.2.3 Результаты измерений

1. Расстояние между точками опоры: $l_{\mathrm{AB}} = (50.4 \pm 0.1)$ см По данным из

$N_{\overline{0}}$	1	2	3	4	5	6	7	8	9	10	Среднее
	темный металл										
а, см	2,14	2,12	2,13	2,13	2,09	2,09	2,1	2,12	2,14	2,16	2,122
b, см	0,39	0,39	0,4	0,39	0,39	0,39	0,39	0,38	0,39	0,38	0,389
	желтый металл										
а, см	2,14	2,14	2,14	2,14	2,15	2,15	2,14	2,15	2,16	2,17	2,148
b, см	0,4	0,4	0,4	0,41	0,4	0,39	0,4	0,4	0,4	0,4	0,4
					темно	е дере	ево				
а, см	1,87	1,86	1,85	1,84	1,84	1,84	1,85	1,86	1,9	1,91	1,862
b, см	1,1	1,07	1,05	1,06	1,05	1,07	1,09	1,1	1,1	1,09	1,078
светлое дерево											
а, см	1,92	1,92	1,91	1,91	1,92	1,91	1,93	1,93	1,94	1,96	1,925
b, см	1,05	1,05	1,04	1,03	1,03	1,03	1,04	1,01	1,01	1,05	1,034

Таблица 3: Значения ширины балки(a) и высоты балки(b)

Nº	1	2	3	4	5	6	7	8
темный металл								
P, H	0	5,03	10,06	15,08	20,16	24,88	29,51	34,48
утах, мм	5,1	4,27	3,61	2,92	2,13	1,51	0,92	0,2
y'max, mm	5,17	4,38	3,68	3,02	2,26	1,49	0,83	
желтый металл								
P, H	0	5,03	10,06	15,08	20,16	24,88	29,51	34,48
утах, мм	9,77	8,52	7,28	6,02	4,83	3,62	2,5	1,28
у'тах, мм	9,8	8,55	7,29	6,01	4,74	3,61	2,51	
			темн	ое дере	ВО			
P, H	0	5,03	10,06	15,08	20,16	24,88	29,51	34,48
утах, мм	9,64	9,23	8,8	8,28	7,95	7,57	7,14	6,73
y'max, mm	9,61	9,15	8,76	8,34	7,91	7,53	7,14	
светлое дерево								
P, H	0	5,03	10,06	15,08	20,16	24,88	29,51	34,48
утах, мм	9,75	9,16	8,56	7,95	7,32	6,76	6,21	5,56
y'max, mm	9,72	9,1	8,49	7,88	7,27	6,7	6,16	

Таблица 4: Зависимость Р от y_{max} для разных балок в разном положении таблицы построим графики $P(y_{(max)})$

Рис. 4: графики зависимости нагрузки, приложенной к центру балки, от глубины ее прогиба

Темный металл										
	Значение	σ	ε							
P/y_{max}	7101 Н/м	71,01 Н/м	0,01							
Е	$18,2*10^{10} \Pi a$	$0.80 * 10^{10} \Pi a$	0,044							
Светлый металл										
	Значение	σ	ε							
P/y_{max}	4063 Н/м	$40,63~{ m H/m}$	0,01							
Е	$9,46*10^{10} \Pi a$	$0.42 * 10^{10} \Pi a$	0,044							
Темное дерево										
	Значение	σ	ε							
P/y_{max}	11840 Н/м	118,4 Н/м	0,01							
Е	$1,625 * 10^{10} \Pi a$	$2,92*10^8 \Pi\text{a}$	0,018							
Светлое дерево										
	Значение	σ	ε							
P/y_{max}	8247 Н/м	82,47 Н/м	0,01							
Е	$1,24*10^{10} \Pi a$	$2,23*10^8 \Pi a$	0,018							

Таблица 5: Значение модулей Юнга для балок

3 Вывод

- 1. Модуль Юнга исследуемой проволоки $E=(17.9\pm~0.23)~\Gamma\Pi a.$ Табличное значение Модуля Юнга свинца (16.2 $17)~\Gamma\Pi a.$
- 2. Модуль Юнга исследуемых материалов:

$$E_{^{\mathrm{T.MeT}}}=18.2*10^{10}\Pi \mathrm{a}$$
 - сталь - табличное значение 186 ГПа $E_{^{\mathrm{CB.MeT}}}=9.46*10^{10}\Pi \mathrm{a}$ - латунь - табличное значение (91 - 99)ГПа $E_{^{\mathrm{T.Aep}}}=1.625*10^{10}\Pi \mathrm{a}$ - береза - табличное значение 16,1ГПа $E_{^{\mathrm{CB.Aep}}}=1.24*10^{10}\Pi \mathrm{a}$ - сосна - табличное значение 12,1ГПа