Indicare TUTTE le affermazioni corrette

- 1) Il polinomio interpolatore di $f(x) = x^2 + bx + c$ su 20 nodi distinti:
 - A) ha grado 3
 - B) ha grado 20
 - C) ha grado 2
 - D) ha grado 19
- 2) La somma algebrica di numeri approssimati:
 - A) è sempre instabile
 - B) è stabile quando i numeri hanno segno opposto
 - C) è instabile quando i numeri hanno lo stesso segno
 - D) può essere instabile quando i numeri hanno segno opposto
- 3) Il metodo di Newton (tangenti) quando converge:
 - A) ha sempre convergenza quadratica
 - B) ha sempre convergenza lineare
 - C) può avere convergenza lineare
 - D) può avere convergenza cubica

Indicare TUTTE le affermazioni corrette

- 1) La moltiplicazione tra numeri approssimati:
 - A) è sempre instabile
 - B) è instabile quando i numeri hanno lo stesso segno
 - C) è sempre stabile
 - D) è instabile quando i numeri hanno segno opposto
- 2) L'interpolazione cubica a tratti a passo costante h:
 - A) converge uniformemente con errore $O(h^4)$ per $f \in C^5[a,b]$
 - B) non converge uniformemente se $f \in C^k[a,b]$ con k < 5
 - C) converge uniformemente con errore $O(h^5)$ per $f \in C^3[a,b]$
 - D) converge uniformemente con errore $O(h^4)$ per $f \in C^2[a,b]$
- 3) La precisione di macchina in un sistema floating-point ${\cal F}(b,t,L,U)$ è:
 - A) il più piccolo reale-macchina positivo
 - **B**) $b^{L-t}/2$
 - C) il massimo errore relativo di arrotondamento a t cifre di mantissa
 - $\mathbf{D)} \ b^{L-U}$

Indicare TUTTE le affermazioni corrette

- 1) La formula di derivazione numerica col rapporto incrementale simmetrico $\delta(h)$ per $f\in C^5$ ha un errore teorico:
 - **A)** $O(h^4)$
 - **B)** $O(h^3)$
 - C) $O(h^2)$
 - **D)** $O(h^5)$
- 2) Il costo computazionale del Metodo di Eliminazione Gaussiana applicato a una matrice invertibile é:
 - **A)** $\sim 5n^3/4$
 - $\mathbf{B)} \ O(n^3)$
 - C) $O(n^2)$
 - **D)** $\sim 2n^3/3$
- 3) Il metodo di Newton (tangenti) quando converge:
 - A) può avere convergenza lineare
 - B) ha sempre convergenza lineare
 - C) può avere convergenza quadratica
 - D) ha sempre convergenza quadratica

Indicare TUTTE le affermazioni corrette

- 1) Il prodotto di numeri approssimati:
 - A) è sempre stabile
 - B) è instabile quando i numeri hanno segno opposto
 - C) è sempre instabile
 - D) è instabile quando i numeri hanno lo stesso segno
- 2) L'interpolazione lineare a tratti a passo costante
 - A) converge uniformemente con errore $O(h^4)$ per $f \in C^5[a,b]$
 - B) non converge uniformemente se $f \in C^k[a,b]$ con k < 4
 - C) converge uniformemente con errore $O(h^2)$ per $f \in C^2[a,b]$
 - D) converge uniformemente con errore $O(h^2)$ per $f \in C^3[a,b]$
- 3) Il polinomio interpolatore di $f(x) = x^3 + bx + c$ su 29 nodi distinti:
 - A) ha grado 30
 - B) ha grado 3
 - C) ha grado ≤ 28
 - D) ha grado 4

Indicare TUTTE le affermazioni corrette

- 1) In un sistema floating-point ${\cal F}(b,t,L,U)$ il più piccolo reale-macchina positivo è:
 - A) la precisione di macchina
 - **B)** b^{-U}
 - (C) b^{L-1}
 - $\mathbf{D)} \ b^{L-U}$
- 2) Il costo computazionale del Metodo di Eliminazione Gaussiana applicato a una matrice invertibile é:
 - **A)** $\sim 2n^4/3$
 - **B)** $\sim 2n^3/3$
 - **C)** $O(n^2)$
 - $\mathbf{D)} \, \sim n^3$
- 3) L'interpolazione spline cubica a passo costante h per $f \in C^4[a,b]$ ha un errore:
 - A) $O(h^5)$ su f
 - B) $O(h^3)$ su f'
 - C) $O(h^3)$ su f''
 - D) $O(h^4)$ su f

Indicare TUTTE le affermazioni corrette

- 1) La divisione tra numeri approssimati:
 - A) è sempre stabile
 - B) può essere instabile
 - C) è instabile se i numeri hanno segno opposto
 - D) è stabile se i numeri hanno lo stesso segno
- 2) L'interpolazione spline cubica a passo costante:
 - A) converge uniformemente con errore $O(h^5)$ per $f \in C^5[a,b]$
 - B) converge uniformemente con errore $O(h^4)$ per $f \in C^4[a,b]$
 - C) converge uniformemente con errore $O(h^4)$ per $f \in C^6[a,b]$
 - D) non converge mai uniformemente
- 3) In un sostema floating-point F(b,t,L,U) il più piccolo realemacchina positivo è:
 - A) b^{L-U}
 - **B)** $b^{1-t}/2$
 - C) b^{-U}
 - **D)** b^{L-1}

Indicare TUTTE le affermazioni corrette

- 1) La divisione tra numeri approssimati:
 - A) è sempre stabile
 - B) è instabile quando i numeri hanno lo stesso segno
 - C) può essere instabile quando i numeri hanno segno opposto
 - D) è sempre instabile
- 2) L'interpolazione quadratica a tratti a passo costante
 - A) converge uniformemente con errore $O(h^4)$ per $f \in C^5[a,b]$
 - B) non converge uniformemente se $f \in C^k[a,b]$ con k < 6
 - C) converge uniformemente con errore $O(h^3)$ per $f \in C^5[a,b]$
 - D) converge uniformemente con errore $O(h^3)$ per $f \in C^3[a,b]$
- 3) La precisione di macchina in un sistema floating-point ${\cal F}(b,t,L,U)$ è:
 - A) il più piccolo reale-macchina positivo
 - **B)** $b^{1-t}/2$
 - C) il minimo reale-macchina positivo che sommato ad 1 dà un risultato > 1
 - **D**) b^{L-1}

Indicare TUTTE le affermazioni corrette

- 1) L'indice di condizionamento di una matrice invertibile $A \in \mathbf{R^{n \times n}}$ è:
 - **A)** det(A)
 - B) l'autovalore di modulo massimo di A
 - C) l'autovalore di modulo minimo di A
 - **D)** $||A|| ||A^{-1}||$
- 2) Il costo computazionale del Metodo di Eliminazione Gaussiana applicato a una matrice invertibile é:
 - **A)** $O(n^3)$
 - B) $\sim n^3$
 - **C)** $O(n^2)$
 - D) $\sim n^4$
- 3) Le iterazioni di punto fisso per una contrazione:
 - A) hanno sempre convergenza quadratica
 - B) possono avere convergenza quadratica
 - C) possono non convergere
 - D) hanno sempre convergenza almeno lineare