⑩日本 图特許庁(JP)

① 特許出願公開

◎ 公關特許公報(A)

平2-192045

@Int. Cl. * G 11 B ČC B 29 || B 29 33/22 43/10 B 29 L 17:00

庁内整理番号 識別配号

❷公開 平成2年(1990)7月27日

8120-5D 7639-4F 8415-4F 7639-4F

審査請求 未請求 請求項の数 1 (全6頁)

4 発明の名称

光デイスク基板の製造方法

604 町 平1-9954

īE.

取 平1(1989)1月20日 多田

伊発 蚏 者 ₹ 部 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

文 Ħű 伊発 明 考 Ħ

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

仍発 明 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

富士通株式会社 の出 順 人

神奈川県川崎市中原区上小田中1015番地

外1名 弁理士 久木元 彰 70代 理 人

1. 発明の名称

光ディスク基板の製造方法

2. 特許請求の範囲

光硬化樹脂(14)によって支持板(12)上に転写型 (ii)の微細形状を写しとる光ディスク基板の製造 方法において、

前記支持板(12)を等方的に圧力がかかる加圧部 材(15)によって加圧し、光硬化樹脂(14)を支持板 (12)と転写型(11)の間に広げ、圧力を保持したま ま光を羅針して前記光硬化樹脂(14)を硬化させ樹 監漏(16)を形成することを特徴とする光ディスク 基板の製造方法。

3. 発明の詳細な説明

(長要)

光によって記録と再生をする光ディスク基板の 複製方法に関し、

麦面の凹凸が少なく、高速回転で使用できる光

ディスク基板の製造方法を提供することを目的と

光硬化樹脂によって支持板上に転写型の数細形 状を写しとる光ディスク基板の製造方法において、 前記支持板を等方的に圧力がかかる加圧部材によ って加圧し、光硬化樹脂を支持板と転写型の間に 広げ、圧力を保持したまま光を照射して前記光硬 化樹脂を硬化させ樹脂層を形成することを特徴と する光ディスク基板の製造方法を含み構成する。 〔世業上の利用分野〕

本発明は、光によって記録と再生をする光ディ スク基板の複製方法に関する。

【従来の技術】

近年、光によって情報の記録・写生をする記憶 媒体として大容量の記録密度を持つ光ディスク帯 板が使用されている。

第6因(4)~(4)は従来の光ディスク基板の復製法 を示す新園園である。 両図において、1は凹凸パ ターンが形成された転写型、2は光透過性の支持

概、3は心出し触である。まず、興団凶に示すよ うに、転写型1上に光硬化樹脂4が充壌される。 次に、両因似に示すように、支持板2が心出し軸 3で心出しされ転写型1上に対峙され、充葉した 光硬化樹脂 4 を自然に広げ、業外線を限射して硬 化させ樹脂層5を形成する。そして、転写型1と 樹脂層 5 福を制能することで、光ディスク基板が 製造される。

しかし、上記光ディスク基板の複製方法では、 光硬化樹脂が転写型1と支持板2との間に広がる のに時間がかかるだけでなく、次のような問題点 があった。

すなわち、支持板2は完全に平面ではなく、数 10μm 程度の反りを有している。このような支持 板2を粘性のある光硬化樹脂4を介して転写型1 上に配置すると、反りが幾分矯正されるが、転写 近1麦面と同等の平面にはならない。また、光硬 化樹脂4が完全に等方的には広がらないことも加 わって、形成される樹脂層5に厚さむらが生じる ことがある。そして、光硬化樹脂4を硬化後に転

- 3 -

(発明が解決しようとする課題)

すなわち、従来の複製方法では、光硬化樹脂の 厚さむらと合わさって、ディスク基礎表面は複雑 な関凸(特に微小な凹凸)を示し、このディスク 基礎を理転させて使用する際に光学ヘッドのフォ ーカッシングサーポがかけにくくなり高速昏転で 使用できない問題があった。

そこで本発明は、表面の凹凸が少なく、高速器 転で使用できる光ディスク基板の製造方法を提供 することを目的とする。

(課題を解決するための手数)

上記録題は、光硬化樹脂によって支持板上に転り 写型の微細形状を写しとる光ディスク基板の製造 方法において、前記支持板を等方的に圧力がかか る加圧部材によって加圧し、光硬化樹脂を支持板 と転写型の間に広げ、圧力を保持したまま光を照 射して前記光硬化樹脂を硬化させ樹脂層を形成す ることを特徴とする光ディスク基板の製造方法に

孝型1から制雕して光ディスク基板を得るが、こ のとき支持版2の反りが戻ろうとするために、光 硬化樹脂の樹脂層5の厚さむらと合わさって、デ ィスク基板表面は複雑な凹凸を示す。この表面の 凹凸はディスクを回転させて使用する際に光学へ 、ッドのフォーカッシングサーボをかけにくくする。 フォーカッシングサーボのかかりにくさは、凹凸 の時間変化を時間で2回後分した加速度で表され る。この加速度は凹凸の周期が近く、振幅が大き いほど大きくなり、また、回転数が高いほど大き くなる。

従来の方法で作製した光ディスク基板でも1800 rpm 程度の低速では誤難にならないが、3500rpm 程度の高速超転で使用すると光学ヘッドが遠徙で きなくなることがあった。

そこで、本塾明者らは支持板2を平面度の優れ たガラス板で加圧しながら光を繋射する方法も試 みたが、かえって微小な歓厚むらを増大させる箱 果となった。これは、支持概2と加圧用ガラス級 が完全な平面でないからと考えられる。

よって解決される。

(作用)

第1回は本発明の原理を載明する瞬面回であり、 貧國において、11は凹凸パターンが形成された転 学型、12はディスク状に形成した光透過性の支持 板、13は心出し輪であり、転写型11上に光硬化樹 贈14が充塡され、支持板12が心出し軸13で心出し されて転写型11上に対峙され、支持板12を等方的 に圧力がかかる加圧部材15によって加圧して充壌 した光硬化樹脂14を自然に広げて樹脂着16を形成 し光ディスク基板を製造する。この加圧部材15は、 均一な加圧ができるように変形が容易な袋状物質 内に被体を充載したもの、あるいは弾性体などが 用いられる。

本発明によれば、加圧部材15によって支持板12 及び光硬化樹脂14に均一な圧力がかかるため、支 持板12は転写型11表面に沿って変形し、たとえ支 特級12の平面度が悪くても、支持板12の反りや樹 動の触れにくさに起因する蝴蝶の厚さむらを小さ

くでき、ディスク基板の平行度を優れたものにすることができる。また、ディスク基板を転写型11から劉耀するとディスク基板は再度反るが、微小な凹凸はなく滑らかな表面となるため、光学ヘッドの加速度を小さくすることが可能になる。

(実施例)

以下、本発明を図示の一実施側により具体的に 説明する。

第2回(3)~(6)は本発明実施例の光ディスク基板 の複製法を示す新面図である。なお、第1回に対 応する部分は同一の符号を記す。

支持板12として、外径200mm 、内径50mm、板厚1.2mm のガラス円板を用いた。また、心出し軸13 は、円柱軸13a に指動する質状部材13b が設けられており、この質状部材13b の機部にはテーパ部13c が形成されている。また、質状部材13b の内間にはコイルばね13d を装着する滞部13c が形成されている。すなわち、心出し軸13は、支持板12を円柱軸13m のテーパ部13c により心出しができ

るようになっている。

まず、阿図(0)に示す如く、上記支持板12と転写型11とを平行に配置し、その間に兼外線硬化樹脂(2 官能アクリレート、粘度100cps) 14を0.8 g 程度供給する。

次に、同國のに示す如く、ガラス円板の支持板 12上に、加圧都材15として空気が約 5 年程度入った完全に針じたポリプロピレン製袋を配置し、その上から石英ガラス17で 11g/cm[®]の圧力で加圧し、光硬化樹脂14を全面に広げる。そして、上記の状態を保持したまま、30mW/cm[®]程度の業外線を約 2 分間預射して光硬化樹脂14を硬化させ、樹脂層16 を形成した。

次に、支持板12と樹脂層16とが一体になったものを転写型11から制催して、光ディスク基板を得た。

上記の製造方法で得られた光ディスク基板の加速度を、ディスク間転散が3500rpm 、単径r=90mm の間定条件で試験した結果を第3回に示し、また同じ側定条件で加圧なしの場合の比較例1(第4

- 7 -

図)と、石英ガラス上で加圧した場合の比較例2 (第5 数)を示す。

第3図に示すように加速度の変化が16より十分 小さいのに対して、比較例1では16に近い変動が あり、比較例2では16を輸している。従って、こ の実施例で複製される光ディスク基板では、特に 要国の微小な凹凸が少なくなり、高速四転で使用 することができた。

なお、上記実施制では、加圧部材を空気を完全に対じたポリプロピレン製袋としているが、本考案の適用範囲はこれに限らず、その中身は独動性のあるものならば空気である必要はなく、水などの液体やゲル状物質であってもかまわない。またゴム状物質などの形状の安定したものならば、膜状物質で戻うことなく使用することができる。

(発明の効果)

以上説明した様に本発明によれば、等方的に圧力がかかる加圧部材によって支持板を加圧することで、平滑な表面を有する光ディスク基板を製造

-8-

できるため、高速関転で生じる加速度を小さくでき、従って高速関転でも光学ヘッド遠提性のよい 光ディスクが得られる効果がある。

4. 図面の簡単な説明

第1回は本発明の原理を説明する断面図、

第2図(A)~(A)は本発明実施例の光ディスク基板 の複製法を示す新聞図、

第3関は本発明実施例の制定結果を示す医、

第4回は従来例の拠定結果(比較例1)を示す 図、

第5 図は従来例の測定結果(比較例2)を示す 図、

第6図(A)~(A)は従来の光ディスク基板の複製法を示す新面図である。

四中、

11は転写型、

12は支持板、

13は心出し軸、

13mは円柱軸、

13bは肯状部材、 13cはテーパー部、 13dはコイルばね、 13eは視部、 14は先硬化樹脂、 15は加圧部材、 。 16は樹脂層 17は石英ガラス を示す。

> 特許出版人 富士道株式会社 代理人弁理士 久 木 元 彰 耳 大 管 義 之

> > -11-

本発明の原理を説明する断面図 第 1 図

1…転写型

2…支持版

3…心出し軸

4…光硬化樹脂

5…樹脂屬

従来の光デスク基板の禮製法録す断面図 第 6 図