Kalman filter

School of Economics, University College Dublin

Spring 2018

Latent variables: Variables that are not directly observed but inferred from other variables

 Unobserved, but variable can still play important role in theoretical model

Example: Potential output

- ► Keynesian model inflationary pressure determined by deviation of output from potential output
- ► Consider GDP increase in last quarter but no sign of inflationary pressure: potential output increased

Q: Can we assume that there has been a change in potential output?

Signal vs. noise: Need to have a method that extracts useful signal from data that also contains lot of noise

 w.r.t. example; potential output probably stable from quarter to quarter while there is likelt random noise fluctuations in inflation

One way to extract a signal is the **Kalman filter**

Conditional expectations: We want an estimate of the value of variable X

▶ Problem: we don't observe *X*, only *Z* which is correlated with *X*.

Assume that X, Z are jointly normally distributed

$$\begin{pmatrix} X \\ Z \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_X \\ \mu_Z \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \sigma_{XZ} \\ \sigma_{XZ} & \sigma_Z^2 \end{pmatrix} \end{pmatrix}$$
 (1)

We get

$$\mathbb{E}(X|Z) = \mu_X + \frac{\sigma_{XZ}}{\sigma_Z^2}(Z - \mu_Z) \tag{2}$$

Alternatively, define ρ as correlation between X and Z

$$\rho = \frac{\sigma_{XZ}}{\sigma_{X}\sigma_{Z}} \tag{3}$$

Inserting in (2) we get

$$\mathbb{E}(X|Z) = \mu_X + \rho \frac{\sigma_X}{\sigma_Z} (Z - \mu_Z) \tag{4}$$

Weight put on information from Z depends on

- 1. Correlation between X and $Z(\rho)$
- 2. The relative standard deviation $\left(\frac{\sigma_X}{\sigma_Z}\right)$

If Z has high standard deviation, it is a poor signal.

Multivariate conditional expectations: Can generalise from 2 to n variables: Let X be $1 \times n$ vector of variables and Z $1 \times m$

$$\begin{pmatrix} X \\ Z \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_X \\ \mu_Z \end{pmatrix}, \begin{pmatrix} \sum_{XX} & \sum_{ZZ} \\ \sum_{XZ}' & \sum_{ZZ} \end{pmatrix} \end{pmatrix}$$
 (5)

Expected value of X conditional on Z is

$$\mathbb{E}(X|Z) = \mu_X + \sum_{XZ} \sum_{ZZ}^{-1} (Z - \mu_Z)$$
 (6)

This is an important formula in the Kalman filter

State-space models: Linear time-series models that mix observable and unobservable variables.

$$S_t = FS_{t-1} + u_t \tag{7}$$

State equation - or transition equation - describes how unobservables S_t evolve over time

$$Z_t = HS_t + v_t \tag{8}$$

Measurement equation, relates set of observable variables Z_t to unobservable variables S_t

Errors: Both u_t and v_t can include either

- 1. Normally distributed errors
- 2. Zeros, if the described equation is an identity

$$u_t \sim N(0, \sum^u)$$
 (9)
$$v_t \sim N(0, \sum^v)$$
 (10)

- Or rank deficient
- ▶ i.e. not enough information in data to estimate equation

Estimation: Observed data described by

$$Z_t = HS_t + v_t \tag{11}$$

Cannot observe S_t but can replace it with unbiased guess based on information available at time t

$$S_{t|t-1} \tag{12}$$

Assume that errors are normally distributed with known covariance matrix

$$S_t - S_{t|t-1} \sim N(0, \sum_{t|t-1}^{S})$$
 (13)

Can express observed variables as

$$Z_t = HS_{t|t-1} + v_t + H(S_t - S_{t|t-1})$$
 (14)

Can estimate model using ML; variance of error term, after conditioning on t-1 state-variable estimate, is given by

$$v_t + H(S_t - S_{t|t-1}) \sim N(0, \Omega_t)$$

$$\Omega_t = \sum_{t|t-1}^{v} H \sum_{t|t-1}^{s} H'$$

$$(15)$$

Parameters of model are given by

$$\theta = (F, H, \sum^{u}, \sum^{v}) \tag{17}$$

(18)

Log-likelihood function for Z_t given observables at t-1 is

$$egin{align} \log f(Z_t|Z_{t-1}, heta) &= -\log 2\pi - \log |\Omega_t| - \ &rac{1}{2}(Z_t - extit{HS}_{t|t-1})'\Omega_t^{-1}(Z_t - extit{HS}_{t|t-1}) \end{aligned}$$

Combined likelihood is given by

lacksquare Based on initial estimate of first period unobservable state $S_{1|0}$

$$f(Z_1,...,Z_T|S_{1|0},\theta) = f(Z_1|S_{1|0},\theta) \prod_{i=2}^{I-1} f(Z_i|Z_{i-1},\theta)$$
 (19)

All we need is a method to get an unbiased guess based on information available at t-1: This is where the Kalman filter comes in

- Iterative method
- ▶ Given estimates of state variables for t, it uses observable data for t + 1 to update estimates

Estimating state variables: Formulate estimate of state variable at time t given information at t-1

$$S_t = FS_{t-1} + u_t \Rightarrow S_{t|t-1} = FS_{t-1|t-1}$$
 (20)

At t-1, expected value for the observables at t are

$$Z_{t|t-1} = HS_{t|t-1} = HFS_{t-1|t-1}$$
 (21)

At t we observe Z_t ; need to update estimate of state variable given information

$$Z_t - HFS_{t-1|t-1} \tag{22}$$

Model assumptions imply

$$\begin{pmatrix} S_t \\ Z_t \end{pmatrix} \sim N \left(\begin{pmatrix} FS_{t-1|t-1} \\ HFS_{t-1|t-1} \end{pmatrix}, \begin{pmatrix} \sum_{t|t-1}^{S} & \left(H \sum_{t|t-1}^{S} \right)' \\ H \sum_{t|t-1}^{S} & \sum^{V} + H \sum_{t|t-1}^{S} H' \end{pmatrix} \right) \tag{23}$$

Use conditional expectations to state that minimum variance unbiased estimate of $S_t | Z_t$ is

$$\mathbb{E}(S_t|Z_t) = S_{t|t} = FS_{t-1|t-1} + K_t(Z_t - HFS_{t-1|t-1}) \tag{24}$$

 K_t is the **Kalman gain** matrix

Covariance matrices required to compute K_t are updated by

 $K_t = (H \sum_{t|t-1}^{s})' (\sum_{t'} H \sum_{t|t-1}^{s} H')^{-1}$

 $\sum_{t|t}^{S} = (I - K_t H) \sum_{t|t-1}^{S}$

$$\sum^{S} - E \sum^{S} E' + \sum^{U}$$

(25)

(26)

(27)

$$\sum_{t|t-1}^{S} = F \sum_{t-1|t-1}^{S} F' + \sum_{t}^{U}$$

Initialising the Kalman filter we still need

- 1. Initial estimate $S_{1|0}$
- 2. Covariance matrix

In many macroeconomic models S can be assumed to have zero mean. For the covariance matrix we use

$$\sum_{t|t-1}^{S} = F \sum_{t-1|t-1}^{S} F' + \sum^{u}$$
 (28)

Values of this covariance matrix will converge; for unconditional covariance matrix can use value for \sum that solves

$$\sum = F \sum F' + \sum^{u} \tag{29}$$

Hodrick-Prescott filter

 $y_t = y_t^* + C_t$

 $C_t = \epsilon_t^c$

 $\Delta v_t^* = \Delta Y_{t-1}^* + \epsilon_t^g$

 $\sum_{t=0}^{N} [(y_{t} - y_{t}^{*})^{2} + \lambda(\Delta y_{t}^{*} - \Delta y_{t-1}^{*})]$

(30)

(31)

(32)

(33)

(34)

(35)

 $Var(\epsilon_t^g) = \sigma_g^2$; $Var(\epsilon_t^c) = \sigma_c^2$

HP filer = Kalman filter when

alman filter when
$$\lambda = rac{\sigma_c^2}{\sigma_z^2}$$

It is assumed that σ_c^2 is 5 percentage points and σ_g^2 one-eight percentage point: $\lambda = 1600$