Bessel applications (Fraunhofer diffraction)

BesselJ [n, z] gives the Bessel function of the first kind $J_n(z)$.

BesselY[n,z] gives the Bessel function of the second kind $Y_n(z)$... The Neumann function

It satisfies the differential equation $z^2y'' + zy' + (z^2 - n^2)y = 0$ that we obtained for example in the solution of the Laplace equation in cilindrical coordenates.

Remember that:

```
n = y is a number (It could be complex number)
y = y (x) where x is the independent variable
```

Traditional form

```
BesselJ[n, r] // TraditionalForm BesselY[n, r] // TraditionalForm J_n(r) Y_n(r)
```

The single slip (Optics, Eugene Hecht book)

Import["Bessel-fig1.png"] Import["Bessel-fig2.png"]

Intensity of the Fraunhofer diffraction pattern of a circular aperture versus diffraction angle :

Import["Bessel-fig3.png"]

Multiple slips

Two slips

Import["Bessel-fig4.png"]

Figure 10.13 (a) Double-slit geometry. Point P on σ is essentially infinitely far away. (b) A double-slit pattern (a=3b).

Import["Bessel-fig5.png"]

Figure 10.14 Single- and double-slit Fraunhofer patterns. (a) Photographs taken with monochromatic light. The faint cross-hatching

Many slips

Import["Bessel-fig6.png"]

Figure 10.16 Diffraction patterns for slit systems shown at left. (Francis Weston Sears, Optics. Reprinted with permission of Addison Wesley Longman, Inc.)

Rectangular aperture

Import["Bessel-fig7.png"]

Import["Bessel-fig8.png"]

The circular aperture

Import["Bessel-fig10.png"] Import["Bessel-fig11.png"] Import["Bessel-fig12.png"] Import["Bessel-fig13.png"]

$$I(\theta) = I(0) \left[\frac{2J_1(ka \sin \theta)}{ka \sin \theta} \right]^2$$

Plot the function

 $\mathsf{Plot}\big[\big(2 \star \mathsf{BesselJ}\big[1,\, 20\, \mathsf{Sin}[\theta]\big] \,\big/ \, \big(20\, \mathsf{Sin}[\theta]\big)\big) \, {}^{}}^{}}^{}^\phantom{$

 $\mathsf{Plot}\big[\big(2 * \mathsf{BesselJ}\big[1,\, 20\, \mathsf{Sin}[\theta]\big] \,\big/ \, \big(20\, \mathsf{Sin}[\theta]\big)\big) \, {}^{\smallfrown} 2\,, \, \big\{\theta\,,\, -\pi \big/ \, 3\,,\, \pi \big/ \, 3\big\}, \, \mathsf{Filling} \to \mathsf{Axis}\big]$

