In [Bratteli-Robinson (1979)] it is shown that $\mathcal T$ is a semigroup of Schwarz type if and only if $\mu R(\mu,A)$ is a Schwarz map for every $\mu \in \mathbb R_+$. Here we relate the domination of two semigroups to an inequality for the corresponding resolvent operator . This inequality will be needed later.

Theorem 2.1. Let $T = (T(t))_{t \ge 0}$ be a semigroup of Schwarz type and $T = (S(t))_{t \ge 0}$ a semigroup on a C*-algebra M with generators A and B, respectively. If

(*)
$$(S(t)x)(S(t)x)* \leq T(t)xx*$$

for all $x \in M$ and $t \in \mathbb{R}_{+}$, then

$$(\mu R(\mu,B)x)(\mu R(\mu,B)x)* \leq \mu R(\mu,A)xx*$$

for all $x \in M$ and $\mu \in \mathbb{R}_+$. The same result holds if T is a weak*-semigroup of Schwarz type and S is a weak*-semigroup on a W*-algebra M such that (*) is fulfilled.

Proof. From the assumption (*) it follows that

$$0 \le (S(r)x - S(t)x) (S(r)x - S(t)x) * =$$

$$= (S(r)x) (S(r)x) * - (S(r)x) (S(t)x) * -$$

$$- (S(t)x) (S(r)x) * + (S(t)x) (S(t)x) * \le$$

$$\le T(r)xx^* + T(t)xx^* - (S(r)x) (S(t)x) * -$$

$$- (S(t)x) (S(r)x) *$$

for every $r,t\in\mathbb{R}_{+}$. Hence

$$(S(r)x)(S(t)x)* + (S(t)x)(S(r)x)* \le T(r)xx* + T(t)xx*.$$

Obviously, $\|S(t)\| \leq 1$ for all $t \in \mathbb{R}_+$. Then for all $\mu \in \mathbb{R}_+$ and $x \in M$:

$$(R(\mu,B)x)(R(\mu,B)x) * = (\int_{0}^{\infty} e^{-\mu r} S(r) x dr) (\int_{0}^{\infty} e^{-\mu t} S(t) x dt) * =$$