创客空间 - 主页

我们是密尔沃基的黑客空间和制造实验室

成为黑客/构建者社区的一部分,在这里分享想法、培育创新、创造者亲身体验。

加入我们 游览太空

- 家
- 。 关于
 - 最近的新闻
 - 创客空间之旅
 - 会议记录
 - 按照法律规定
- 。 日历
- 。 维基百科
- 常问问题
- 加入
- 捐款
- 会员
- 接触
- 画廊
 - 项目画廊
 - 可用设备库

←我做了垃圾!

廉价通用 LED 驱动器 (CULD)

发表于2023年6月10日通过莎拉戴维特

发推

赞 1

搜索

铸铁: 会员及会员嘉宾研讨会→

搜索

作者:汤姆·格拉莱维奇

想加入?参加会议

我有一个问题

我最近从事的电池供电项目使用的是更高的电压。 过去我的项目是 12 或 24 伏, 现在是 36 至 48 伏。

问题是当我想放置一个指示器来显示电源、电机控制器、BMS等的状态时。 在过去,我只会使用 LED 和电阻器 **与 图 在 2.5V** 压降、汲取 20mA 电流的 LED 需要一个 2,275 欧姆的电阻。

2,275 欧姆电阻的电压下降到 45.5V 时,功耗为 0.91 瓦! 我需要一个 1 瓦的电阻器,95% 的功率会浪费在电阻器,我们的<u>公共邮件列表,与家尔</u> 并不好。

事实上,您可以购买的 24V 面板灯就采用了这种方法,从灯体上的两个 1/4 瓦电阻和通风孔可以明显看出:

在Facebook 上为我们点赞

在Instagram 上查看我们的照片

那我该怎么办?

好吧,我可以使用所有额外的能量来点亮更多的 LED:

关注 @mkemakerspace上关注我们关注 @mkemakerspace

在Flickr 上查看我们的照片

很酷,但现在它需要最低电压才能点亮,而且我真的不需要那么亮的东西来显示保险丝或电池的状态。

我真正想要什么?

从 5V 到 50V 点亮的单个或双 LED,我不想为每个电压使用不同的电阻,我不想担心 LED 电流太大而烧坏或电路消耗太多功率并耗尽我的电池。 廉价的通用 LED 驱动器 – CULD

所以我开始研究脉冲电路,随着电压升高,脉冲会越来越短。 可惜我的模拟设计能力实在是太差了,因为我失败了。

一路上,我在 TO92 外壳中发现了一个简单的芯片,它是一个线性电流调节器,预设为 25ma。 CL25N3 https://www.microchipdirect.com/product/CL25N3-G

每个不到50美分,最大输入90V,可为任何输入电压提供恒定电流。

除了它作为线性稳压器运行之外,它的作用就像一个电阻器,可以降低额外的电压,并且最大功率为 0.6W,它可以在 48V 电压下驱动单个 LED。

我真正想要的 是一个小型、廉价的开关稳压器。 他们制造了它们,但他们认为便宜的价格是芯片加上所有额外组件 3 美元。

然后有一天, 我偶然发现了 TI 的一款芯片 LV2862XLVDDCR, 数量为 1000 个, 每个价格为 0.15 美元。

https://www.ti.com/product/LV2862/part-details/LV2862XLVDDCR

添加一些额外的组件,用电流检测电阻器而不是分压器为检测线供电,然后噗! 低成本、宽输入范围、电流控制 LED 驱动器。

选择正确的 R2,该电路将驱动一个或多个 LED,电流范围为 1ma 至 600ma,输入电压范围为 4V 至 60V。 注意:最小输入电压是 LED 两端的压降加上 0.765V,最小值为 4V。

我在面包板上用一些 SMT 分线板构建了这个电路:

然后我蚀刻了一块电路板并使用了所有 SMT 零件以确保我做对了:

经过一番思考,我在输入端添加了一个桥式整流器,这样它就可以处理交流电或任意极性的直流电。

我将在注释 1 中解释桥的选择 。以及一些 SMT LED 以及通孔和.....的空间。

我一直想要的东西!

这是当前的原理图:

(是的, 7 个 LED 参见下面的"但为什么称其为通用?")

板子很小, 0.71×0.35 ":

并且该电路是单面的, 注2:

而且它们工作得很好:

但为什么说它是通用的呢?

配置列表是无穷无尽的:

- 正面单个 SMT LED
- 背面单个 SMT LED
- 并联 SMT LED 一前一后
- 两侧均设有通孔 LED
- 背面有 1 至 4 个串联 SMT LED
- 单个板外 LED 高达 600ma
- 多个板外 LED, 600ma, 总电压 > Vin 1.4 (Vin 4V 最小值) 注 3

多 LED:

顶部 CULD 串联驱动 3 个不同颜色的 LED,左侧模块在板的每一侧都有一个 SMT LED,中间模块有 3 个串联 SMT LED,右侧模块有 4 个串联 SMT LED。

这是一个 1W Cree 风格的 LED 和一个在 CULD 上运行的 COB:

还记得 24V LED 面板指示灯吗? 添加 CULD, 它将在 10 至 50V 范围内具有相同的亮度, 并且消耗的电流小于原始电流的 1/2:

这怎么通用呢?

除了多种 LED 配置之外,您还可以使用简单的电阻器 R2 设置 LED 的电流。 LV2862使用0.7656V基准来调节,因此限流电阻在你想要的电流时下降0.765V。 下面是使用标准电阻值的表格,显示了电流以及电流检测电阻的功耗:

Resistor	Current	Watts
Values ma		
1.5	510.0	0.390
1.8	425.0	0.325
2.2	347.7	0.266
2.7	283.3	0.217
3.3	231.8	0.177
3.9	196.2	0.150
4.7	162.8	0.125
5.6	136.6	0.105
6.8	112.5	0.086
8.2	93.3	0.071
10	76.5	0.059
12	63.8	0.049
15	51.0	0.039
18	42.5	0.033
22	34.8	0.027
27	28.3	0.022
33	23.2	0.018
39	19.6	0.015
47	16.3	0.012
56	13.7	0.010
68	11.3	0.009
82	9.3	0.007

这怎么便宜啊?

当我发现 LV2862 并看到数量 1000 的价格时,我最初尝试设计电路板,我计算出了数量 1000 时的全部零件成本,请注意,LV2862 是直接从德州仪器 (TI) 购买的

截至 2023 年 6 月 9 日的 Digikey 价格

	Component	Price	Digikey part number		
U1	LV2862XLVDD 0.15800		From TI directly		
D3	BAV199S_R1_00001	0.03337	3757-BAV199S_R1_00001CT-ND		
D1	DSS18U	0.02417	1655-DSS18UCT-ND		
C1	CL32B225KCJSNNE 0.12500 1276-3362-2-ND		1276-3362-2-ND		
C2	TMK212BBJ106KG-T	0.03810	587-2985-1-ND		
C3	CL21B104KCFNNNE	0.01258	1276-6840-1-ND		
L1	MLZ2012N220LT000	0.07580	445-9495-1-ND		
R1	WR08X104 JTL	0.02680	1292-WR08X104JTLCT-ND		
	Total 0.49382		Plus the circuit board		

从这往哪儿走

找到一个可以处理整个 600ma 电流的输入桥式整流器是有意义的,成本可能会增加一点,如果你想保持占地面积小,你可以将桥放在背面,而不是额外的 LED。 我发现了一些可行的双二极管,但每对的成本明显高于现有解决方案,而且您还需要其中两个。 四个分立二极管也可以工作,但成本更高,元件也更多。

更小的组件

元件和电路板尺寸的选择主要是为了满足手动组装的需要,一些元件可能更小,例如 R1,并且所有元件都可以靠近在一起或位于电路板的两侧。

电流检测电阻

可以包括某种形式的电流调节、电位计(尽管功耗可能是一个问题)或带有桥接/切割垫的多个电阻器来选择值。 但我认为最简单的解决方案是设计通孔电阻器。 您甚至可以包含一个带孔的基本 39 欧姆 (20ma)表面贴装电阻器,以添加并联电阻器以获得更高的电流。

别对我大喊大叫

我缺乏模拟设计技能,因此我选择的元件值可能不是最佳的,如果有人想更好地建模,我将不胜感激。

在一个完美的世界里

我将这个设计开源,我希望看到有人拥有自动化和基础设施来制造和销售这些设计。 我宁愿买它们也不愿自己做更多。

笔记:

1. 桥式整流器选型:

优先事项: 规模、成本。 我发现的所有标准桥式整流器的尺寸至少为 0.25×0.18",这是最终电路板的很大一部分。 因此我选择了每个封装有 4 个二极管的信号二极管。 我选择的那个非常小,便宜,但只能处理100ma。 非常适合我使用 36-48V 驱动不超过 4 个 LED 的应用。 在较低 电压下实现全电流的更好选择可能是一对 RF051UA1D - 数量为 0.124 美元。 您可以使用桥接器,使电路板更大或将其放在电路板的背面: MD2JS 数量少于 0.10 美元。 或者完全关闭它并 在低电压输入时恢复 1.4V。

1. **单面和多 LED**

设计是单面的,这非常适合制作我自己的板,但是当我制造它们时,我使用了双面板。 这使我能够在背面添加 LED 焊盘。 首先在前表面安装 LED 后面并联一个 LED,这样很容易让其在两侧发光 - 安装并不重要。 然后,我添加了 4 个串联 LED 的焊盘,并留有间距,这样您就可以在背面安装 1、2、3 或 4 个表面贴装 LED – 请参阅上面的多 LED 图像。

1. 电压

LV2862 的最小输入电压为 4V,检测电阻器需要压降 0.765V,输入二极管的正向压降可高达 2.5V,以实现更高的电流。 使用电桥的最小输入电压为: $V_{LFD}^{}+0.0765+2.5$ (最小 6.5V)

此条目发表在未分类中。为永久链接添加书签。

←我做了垃圾! 铸铁:会员及会员嘉宾研讨会→

轮廓

使用 Twitter 登录 使用 Facebook 登录

或者

评论

姓名		
电子邮件		
未发表		
网站		

发表它

- 3条回复
- 0条评论
- 0条推文
- 0 脸书
- 0回拨

最后回复是 4 个月前

1. *乔恩·D.* 看法 <u>4个月前</u>

哇! 感人的!

哇。我不太明白其中大部分内容,但我确实知道这非常令人印象深刻!

回复

所以一些评论,你的设计很好,我真的很喜欢这个概念。

电感器问题,

1. 所选电感器的最大电流为 300ma,该最大电流的大小必须根据输出电流加上纹波电流来确定。这意味着我不会在你的输出上运行超过 200ma 的电流。

电流检测电阻器功率

您的电阻器的尺寸似乎为 0603, 标准 0603 电阻器的功率为 0.1W, 这意味着允许的最大电流为 131mA, 最小电阻为 5.9 欧姆。

这就是我要在手机上查看的全部内容。

但是,我是一名电子工程师和产品设计师。我还有一台贴片机和回流焊炉。我想与您一起重新设计它,并进行一次小型的首次运行。

蒂姆

回复

创客空间登录 | WordPress 登录 | Byte Studios密尔沃基网页设计