Projeto de Controlo em Espaço de Estados

Grupo 15:

89691, Leonardo Pedroso 90142, Miguel Graça 90200, Tomás Rodrigues 90395, Inês Ferreira

Professores:

Prof. Pedro Batista e Prof. João Miranda Lemos

Instituto Superior Técnico

5 de novembro de 2021

Caracterização do Sistema

Retroação do Estado

Observador

Não-idealidades

Caracterização do Sistema

Retroação do Estado

Observador

Não-idealidades

Análise de Estabilidade

Tabela 1: Pólos do Sistema em Malha Aberta.

Pólo	Amortecimento	ω (rad/s)	C. Tempo (s)
0.00e+00	-1.00e+00	0.00e+00	$+\infty$
-7.37e+02	1.00e + 00	7.37e + 02	1.36e-03
-1.94e+01	1.00e + 00	1.94e + 01	5.16e-02
-5.76e+00	1.00e + 00	5.76e + 00	1.74e-01
7.00e+00	-1.00e+00	7.00e+00	_

A existência de um pólo com parte real positiva é indicativo da instabilidade do sistema

Controlabilidade e Observabilidade

$$\mathcal{C} := \begin{bmatrix} \mathsf{B} & \mathsf{A}\mathsf{B} & \dots & \mathsf{A}^{n-1}\mathsf{B} \end{bmatrix}$$

Para as matrizes A e B fornecidas, $car(C) = 5 \rightarrow o$ sistema é controlável

$$\mathcal{O} := \begin{bmatrix} \mathsf{C} \\ \vdots \\ \mathsf{C}\mathsf{A}^{n-1} \end{bmatrix}$$

- P Quando apenas β é medido, $car(\mathcal{O}) = 4 \rightarrow o$ sistema não é observável
- P Quando α e β são medidos, $car(\mathcal{O}) = 5 \rightarrow$ o sistema é observável

Diagramas de Bode e Mapa de Pólos e Zeros

Figura 1: Diagramas de Bode.

Figura 2: Mapa de Pólos e Zeros.

Caracterização do Sistema

Retroação do Estado

Observador

Não-idealidades

Diagrama do Controlador por Retroação de Estado

$$u = -\mathsf{Kx}$$

$$J := \int_0^\infty (\mathsf{x}^T \mathsf{Q} \mathsf{x} + u^T R u) dt$$

$$\mathsf{Q} = \gamma \operatorname{diag} \left(1 / \left(k \frac{10 \operatorname{deg}}{180 \operatorname{deg}} \pi \right)^2, 0, 1 / \left(\frac{10 \operatorname{deg}}{180 \operatorname{deg}} \pi \right)^2, 0, 0 \right)$$

Respostas no domínio do tempo

Figura 3: Resposta no tempo de α e Figura 4: Resposta no tempo de α e β para valores distintos de k, sendo β para diferentes valores de γ , que $\gamma=10$. assumindo que k=10.

Caracterização do Sistema

Retroação do Estado

Observador

Não-idealidades

Equações do observador

$$\begin{cases} \dot{x} = Ax + Bu + w \\ y = Cx + v \end{cases} \rightarrow \begin{aligned} & w \sim \mathcal{N}(0, Q_e) \\ & v \sim \mathcal{N}(0, R_e) \end{cases}$$
$$R_e = \left(\frac{1 \text{ deg}}{180 \text{ deg}} \pi\right)^2 I$$

$$Q_{e} = \phi \operatorname{diag}\left(\left(\frac{1 \deg}{180 \deg} \pi\right)^{2}, \left(\omega_{d}^{*} \frac{1 \deg}{180 \deg} \pi\right)^{2}, \left(\frac{1 \deg}{180 \deg} \pi\right)^{2}, \left(\omega_{d}^{*} \frac{1 \deg}{180 \deg} \pi\right)^{2}, (0.025A)^{2}\right)$$

$\overline{\phi}$	T_c/T_o
10	2.28
100	6.05
1000	9.87

Poles	
-7.37e+02	
-1.06e+01+5.76e+00i	
-1.06e+01 - 5.76e+00i	
-1.02e+01	
-1.99e+01	

Resposta no Tempo

Figura 5: Resposta no tempo do erro de estimação das variáveis de estado, com $\phi=100$.

Caracterização do Sistema

Retroação do Estado

Observador

Não-idealidades

Não-idealidades

- Dinâmica e cinemática não linear
- Saturação na atuação
- Dead zone na atuação
- Ruído de processo e nos sensores

Figura 6: Regulation cost function for various controllers and observers.

Figura 7: Time response of and β of the optimal solution.

Não-idealidades

- Perturbações impulsivas
- ► Incerteza no modelo
- Perturbações na saída
- Perturbações na entrada (bias no aplificador do motor)
 - **E**stado integral $\dot{x}_I = \alpha$
 - Anti-windup

Figura 8: Block diagram of the controller with integral action.

Caracterização do Sistema

Retroação do Estado

Observador

Não-idealidades

- Acção de controlo: $u = -Kx K_Ix_I + N\alpha_{ref}$
- ► Feed-forward: $G_0 = -C_\alpha (A BK)^{-1}BN = 1$
- **E**stado integral: $\dot{x}_I = \alpha \alpha_{ref}$
 - Anti-windup

Figura 9: Time response of α and β with process and sensor noise.