INVERTIBLE MATRIX THEOREM

MINSEON SHIN

(Last edited January 31, 2014 at 7:45am.)

The invertible matrix theorem (Lay, Section 2.3, Theorem 8) is a really important theorem, and it's really hard to learn and remember 12 conditions. It may be helpful to organize the conditions in the following way.

Let's fix the following notation: Let A be a $m \times n$ matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ the columns of A, and $f: \mathbb{R}^n \to \mathbb{R}^m$ the linear function given by $f(\mathbf{x}) = A\mathbf{x}$.

1. Lemmas about injectivity and surjectivity

Injectivity of f means "f doesn't lose any information about the domain \mathbb{R}^n ".

Lemma 1 (Injectivity). The following are equivalent conditions:

- (4-a) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (4-b) $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.
- (4-c) f is one-to-one (injective).
- (4-d) There is a pivot in every column.
- (4-e) There is an $n \times m$ matrix C such that $CA = I_n$.

If the above conditions hold, then $m \geq n$.

Surjectivity of f means "f doesn't lose any information about the range \mathbb{R}^{m} ".

Lemma 2 (Surjectivity). The following are equivalent conditions:

- (5-a) $A\mathbf{x} = \mathbf{b}$ has a solution for all $\mathbf{b} \in \mathbb{R}^m$.
- (5-b) $\mathbb{R}^m = Span\{\mathbf{v}_1, \dots, \mathbf{v}_n\}.$
- (5-c) f is onto (surjective).
- (5-d) There is a pivot in every row.
- (5-e) There is an $n \times m$ matrix D such that $AD = I_m$.

If the above conditions hold, then $m \leq n$.

Comments 3. The *i*th condition of Lemma 1 is analogous to the *i*th condition of Lemma 2. Conditions (4-a) and (5-a) are phrased in the language of matrix equations. Conditions (4-b) and (5-b) are in the language of vector equations. Conditions (4-c) and (5-c) are in the language of functions. Conditions (4-d) and (5-d) are about the number of pivots; both say that there are as many pivots that the matrix can possibly allow (since pivot positions are in different rows and columns, a $m \times n$ matrix can contain at most min $\{m, n\}$ pivot positions). Condition (4-e) and (5-e) relate to the invertibility of matrix A.

Warning about (4-e) and (5-e): if $m \neq n$, then (4-e) does not necessarily imply (5-e) and vice versa. Consider the case m=2 and n=1 and $A=\begin{bmatrix}1\\0\end{bmatrix}$. Then (4-e) holds; we can let $C=\begin{bmatrix}1&0\end{bmatrix}$ (or $C=\begin{bmatrix}1&a\end{bmatrix}$ for any number a). But (5-e) does not hold, since if $D=\begin{bmatrix}d_1&d_2\end{bmatrix}$ then $\begin{bmatrix}1\\0\end{bmatrix}\begin{bmatrix}d_1&d_2\end{bmatrix}=\begin{bmatrix}d_1&d_2\\0&0\end{bmatrix}$, which can never equal I_2 .

2. Statement of the Theorem and Applications

In what follows, we assume that m=n (the dimension of the domain and range of f are the same; the number of rows of A and the number of columns of A are the same).

Theorem 4 (Invertible Matrix Theorem). Suppose m = n. The following are equivalent conditions:

- (1) A is invertible.
- (2) A is row equivalent to I_n .
- (3) A has n pivot positions.
- (4) {All the conditions of Lemma 1}
- (5) {All the conditions of Lemma 2}
- (6) A^T is invertible.

Proposition 5. A linear map $f: \mathbb{R}^n \to \mathbb{R}^n$ is injective if and only if it is surjective.