In [1]: #load in library import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

In [2]: #imported data set train = pd.read_csv('paris_housing_train.csv') train.drop(columns=['id','cityCode'], inplace=True) ##id and citycode

In [3]: #overview the dataset print(train)

tRange 0 2 1	squareMeters \	number	OfRooms	hasY	ard/	hasPool	. floc	rs	cityPar
	34291		24		1	0)	47	
	95145		60		0	1	-	60	
1 2	92661		45		1	1	-	62	
4 3	97184		99		0	0)	59	
1 4 8	61752		100		0	e)	57	
							•		
22725 3	55825		84		1	0)	70	
22726	65870		88		1	0)	49	
9 22727	93192		42		1	0)	39	
10 22728	65797		86		1	Ø)	89	
2 22729 1	82244		18		1	e)	38	
attic 0 5196 1 4496 2 8953	numPrevOwners	made	isNewBu	ilt	hasStormProtector bas			sement	
	1	2000	0 1			1		8	
	4	2000		0			1		729
	8	2020		1			1		7473

3 8522		1	2000	0		1	6424
4 2786		4	2018	1		0	7151
• • •					•	• •	
22725 786 22726 2454 22727 4072 22728 2513 22729 1291		10	2000	0		0	4477
		9	2015	0		1	4811
		5	2014	1		0	5595
		10	2000	1		0	5358
		9	2018	1		0	6294
0 1 2 3 4 22725 22726 22727 22728 22729	garage 369 277 245 256 863 345 755 789 411 572	hasSto	rageRoom 0 0 1 1 0 0 0 0	hasGuestRoom 3 6 9 7 0 7 0 6	price 3436795.2 9519958.0 9276448.1 9725732.2 6181908.8 5594137.1 6594705.0 9321511.4 6584708.2 8231424.8		

[22730 rows x 16 columns]

In [4]: #Check for nulls train.isnull().sum()

Out[4]: squareMeters 0 numberOfRooms 0 hasYard 0 hasPool 0 floors 0 cityPartRange 0 numPrevOwners 0 made 0 isNewBuilt 0 hasStormProtector 0 basement 0 attic 0 0 garage hasStorageRoom 0 hasGuestRoom 0 price 0 dtype: int64

```
In [5]: #1st look at boxplot
num_cols = train.columns.to_list()

def box_plot(dataframe, features, rows, cols):
    fig=plt.figure(figsize=(15,8))
    for i, feature in enumerate(features):
        ax=fig.add_subplot(rows,cols,i+1)
        sns.boxplot(y=dataframe[feature],data=train)
        ax.set_title(feature,color='black')
    fig.tight_layout()
    plt.show()

box_plot(train,num_cols,5,6)
```


In [6]: #first look at histogram def hist_plot(dataframe, features, rows, cols): fig=plt.figure(figsize=(15,8)) for i, feature in enumerate(features): ax=fig.add_subplot(rows,cols,i+1) sns.histplot(x=dataframe[feature], fill=True, data=train, kde=ax.set_title(feature,color='black') fig.tight_layout() plt.show() hist_plot(train,num_cols,5,6)


```
In [10]: #1st look at the corr
plt.figure(figsize=(15,8))
    train_corr = train.corr()
    sns.heatmap(train_corr, annot=True, cmap="YlGnBu")
    plt.show()
```


In [11]: #import sk learn for modelling

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

- In [12]: #take independent variables (all of them)
 X = train.drop(['price'], axis =1)
 #take dependent variable
 y = train['price']
- In [13]: #Divide train dataset into train and test subsets
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.

```
In [14]:
            train_data = X_train.join(y_train)
In [15]: #Check for histogram
            train data.hist(figsize=(15,8))
Out[15]: array([[<AxesSubplot:title={'center':'squareMeters'}>,
                      <AxesSubplot:title={'center':'numberOfRooms'}>,
                      <AxesSubplot:title={'center':'hasYard'}>,
                      <AxesSubplot:title={'center':'hasPool'}>],
                      [<AxesSubplot:title={'center':'floors'}>,
                      <AxesSubplot:title={'center':'cityPartRange'}>,
                      <AxesSubplot:title={'center':'numPrevOwners'}>,
                      <AxesSubplot:title={'center':'made'}>],
                     [<AxesSubplot:title={'center':'isNewBuilt'}>.
                      <AxesSubplot:title={'center':'hasStormProtector'}>,
                      <AxesSubplot:title={'center':'basement'}>,
                      <AxesSubplot:title={'center':'attic'}>],
                      [<AxesSubplot:title={'center':'garage'}>,
                      <AxesSubplot:title={'center':'hasStorageRoom'}>,
                      <AxesSubplot:title={'center':'hasGuestRoom'}>,
                      <AxesSubplot:title={'center':'price'}>]], dtype=object)
                     squareMeters
                                          numberOfRooms
                                                                   hasYard
                                                                                          hasPool
                                                         10000
                                                                                10000
                                   2000
             15000
             10000
                                                          5000
                                                                                5000
                                    1000
             5000
                                                                                       0.25 0.50 0.75
made 0.75
                                                                            1.00
                                                                                   0.00
                      <sup>2</sup> floors <sup>4</sup>
                                           <sup>2</sup>cityPartRange
                                                                 hamprevowners
                                                          2000
                                                                                15000
             15000
                                    2000
             10000
                                                                                10000
                                                          1000
                                    1000
             5000
                                                                                5000
                                                                                       4000
                                                                                               8000 10000
                                                                                   2000
                     <sup>2000</sup>ewBuilt<sup>0</sup>
                                         <sup>2</sup> hasStormProtector
                                                                   basement 8
                                                                                          SPAS
             10000
                                   10000
                                                         15000
                                                                                15000
                                                         10000
                                                                                10000
             5000
                                    5000
                                                          5000
                                                                                5000
                    0.25 garage 0.75 1.00
                                                                                       25000 50000 75000 100000
                                          nasStorageRoom
                                                                 25000 u50000 o75000
                                   10000
                                                          3000
             15000
                                                                                2000
                                                          2000
             10000
                                    5000
                                                                                 1000
```

1000

7.5

5000

1.00

```
In [16]: #check for correlation
    plt.figure(figsize=(15,8))
    sns.heatmap(train_data.corr(), annot=True, cmap="YlGnBu")
```

Out[16]: <AxesSubplot:>

In [17]: #normalization data with log function in numpy

```
train_data['squareMeters']=np.log(train_data['squareMeters']+1)
train_data['numberOfRooms']=np.log(train_data['numberOfRooms']+1)
train_data['floors']=np.log(train_data['floors']+1)
train_data['cityPartRange']=np.log(train_data['cityPartRange']+1)
train_data['numPrevOwners']=np.log(train_data['numPrevOwners']+1)
train_data['made']=np.log(train_data['made']+1)
train_data['basement']=np.log(train_data['basement']+1)
train_data['attic']=np.log(train_data['attic']+1)
train_data['garage']=np.log(train_data['garage']+1)
train_data['hasGuestRoom']=np.log(train_data['hasGuestRoom']+1)
```

```
In [18]: #check data again
train_data.hist(figsize=(15,8))
```

```
Out[18]: array([[<AxesSubplot:title={'center':'squareMeters'}>,
                 <AxesSubplot:title={'center':'numberOfRooms'}>,
                 <AxesSubplot:title={'center':'hasYard'}>,
                 <AxesSubplot:title={'center':'hasPool'}>j,
                 [<AxesSubplot:title={'center':'floors'}>,
                 <AxesSubplot:title={'center':'cityPartRange'}>,
                 <AxesSubplot:title={'center':'numPrevOwners'}>,
                 <AxesSubplot:title={'center':'made'}>],
                 [<AxesSubplot:title={'center':'isNewBuilt'}>,
                 <AxesSubplot:title={'center':'hasStormProtector'}>,
                 <AxesSubplot:title={'center':'basement'}>,
                 <AxesSubplot:title={'center':'attic'}>],
                 [<AxesSubplot:title={'center':'garage'}>,
                 <AxesSubplot:title={'center':'hasStorageRoom'}>,
                 <AxesSubplot:title={'center':'hasGuestRoom'}>,
                 <AxesSubplot:title={'center':'price'}>]], dtype=object)
```


In [19]: #recheck correlation plt.figure(figsize=(15,8)) sns.heatmap(train_data.corr(), annot=True, cmap="YlGnBu")

Out[19]: <AxesSubplot:>


```
In [20]: #regression model

x_train, y_train = train_data.drop(['price'], axis = 1), train_data['price'] = LinearRegression()
reg.fit(x_train,y_train)
```

Out[20]: LinearRegression()

```
In [21]: # test subset
         test_data = X_test.join(y_test)
         test data['squareMeters']=np.log(test data['squareMeters']+1)
         test data['numberOfRooms']=np.log(test data['numberOfRooms']+1)
         test data['floors']=np.log(test data['floors']+1)
         test data['cityPartRange']=np.log(test data['cityPartRange']+1)
         test data['numPrevOwners']=np.log(test data['numPrevOwners']+1)
         test_data['made']=np.log(test_data['made']+1)
         test data['basement']=np.log(test data['basement']+1)
         test data['attic']=np.log(test data['attic']+1)
         test data['garage']=np.log(test data['garage']+1)
         test_data['hasStorageRoom']=np.log(test_data['hasStorageRoom']+1)
         test data['hasGuestRoom']=np.log(test data['hasGuestRoom']+1)
         x_test, y_test = test_data.drop(['price'], axis = 1), test_data['price']
In [22]: #valuation check
         reg.score(x_test,y_test)
Out[22]: 0.7341097685347969
In [23]: \### 0.7341 we move on to trying random forest
In [24]: # random forest 2nd model
         from sklearn.ensemble import RandomForestRegressor
         forest = RandomForestRegressor()
         forest.fit(x_train,y_train)
Out[24]: RandomForestRegressor()
In [26]: |#evalution
         forest.score(x_test,y_test)
Out[26]: 0.994028135080717
 In []: # concluding that randomforest regression provides a better model for
 In [ ]:
```