

Richard W. Hamming

Learning to Learn

The Art of Doing Science and Engineering

Session 20: Simulation III

How do you get good answers?

Garbage in, garbage out

- quality of input determines the quality of output
- universally accepted
- not universally true

How are you performing the simulation?

- do your equations make physical sense?
- do you understand the phenomenon?

Understanding and Direction Fields

Many simulations rely on differential equations

- Use a simple test to understand the behavior of the equation
- Does this behavior approximate reality?
- Which is wrong, reality or the equation?

Understanding and Direction Fields

Use simple, direct methodology to test assumptions EARLY

- Direction fields are merely a simple way to understand simple equations
- Start with a wide view of the problem <u>and the proposed solution</u>.

Direction Fields

When approximating a solution:

Just calculating
the slope of
the line at any
one point give
an increasinglyinaccurate

answer

Actual value

Estimated value

Vail

Predictor - Correctory

Direction Fields

When approximating a solution:

Euler's method gives a much more satisfying fit

than crude method. Predictor-corrector method:

> Use the average of the current slope and the next predicted point's slope

Garbage In, Garbage Out

- In some situations:
 - High fidelity data goes bad
- In other situations:
 - Low fidelity data makes good
- Convergent direction fields effectively reduce error
- Divergent direction fields effectively induce error

Directional Fields and Step-size

Using the predictor-corrector method:

- Optimize your solution
- Use current and predicted points' slopes
 - Too close, double step size
 - Too far, halve step size
- Different step-sizes in the same simulation

Straight-line vs. Polynomial Approximation

Euler used straight lines for approximation

Simple, straight-forward

More likely today to use 4th degree polynomials

- Several points used to develop an equation
- The derivative of the equation at the point is the input
- The polynomial fit should be good, but it will not be exact and you will have "corners"

Recursive Digital Filter

Approximation by polynomials is equivalent to digital filter theory

- Sample several points
- Produce predicted value
- Make corrections
- Sample again...

But they are not the same!

Numerical Analysis vs. Filter Theory

Digital Filters deal in frequencies rather than equations

- No "corners" at the step transitions
- Fidelity may be lower
- The "feel" will be better

Depends on what you're simulating

- Mars lander
 - For the pilot--needs "fee

For the physicist--needs fidelity

GIGO, Revisited

Nike missile testing

 Test failures in September 1946

Los Alamos atomic bomb calculations

 Estimates produce accurate results

DOE Nevada Operations Office

Direction Fields, GIGO, and the Simulator

Not all situations can be reduced to a single, simple formula

- "[T]he whole computation must be understood as a whole"
 - Is there a feedback compensation which occurs?
 - Are there values which are "vitally" out in the open?
- Understanding offers protection from overkill
 - Don't need:
 - too many accurate values
 - too many precise components

Rorschach Test

A quest for meaning in the meaningless

- Inkblot test "reveal[s] things about yourself"
- A system's design and testing can just as easily reveal things about the engineer, and not the problem or the solution
- It is too easy to manipulate things in a simulation to get the expected results instead of "reality"
- As such, results are often called into question based on the assumptions which drive them, a process which allows more of the same to occur, not always less
- Double-blind experiments

Conclusions

"Simulation is essential to answer the 'What if...?', but it is full of danger..."

- Not to be trusted on its face
- Can be a tool of decisive action
- Can be a tool of waffling, delaying, and mediocrity
- Know what questions to ask
- Know what details to understand