Vagueness

• The Oxford Companion to Philosophy (1995):

"Words like smart, tall, and fat are vague since in most contexts of use there is no bright line separating them from not smart, not tall, and not fat respectively ..."

Vagueness

• Imprecision vs. Uncertainty:

The bottle is about half-full.

VS.

It is likely to a degree of 0.5 that the bottle is full.

Fuzzy Sets

Zadeh, L.A. (1965). Fuzzy Sets
 Journal of Information and Control

Fuzzy Set Definition

A fuzzy set is defined by a membership function that maps elements of a given domain (a crisp set) into values in [0, 1].

young

20 30 40

0

Age

Discrete domain:

high-dice score: {1:0, 2:0, 3:0.2, 4:0.5, 5:0.9, 6:1}

Continuous domain:

$$A(u) = 1$$
 for $u \in [0, 20]$
 $A(u) = (40 - u)/20$ for $u \in [20, 40]$
 $A(u) = 0$ for $u \in [40, 120]$

α-cuts:

$$A^{\alpha} = \{u \mid A(u) \geq \alpha\}$$

$$A^{\alpha+} = \{u \mid A(u) > \alpha\}$$
 strong α -cut

• α-cuts:

$$A^{\alpha} = \{u \mid A(u) \geq \alpha\}$$

$$A^{\alpha+} = \{u \mid A(u) > \alpha\}$$
 strong α -cut

 $A(u) = \sup \{\alpha \mid u \in A^{\alpha}\}\$

 $A^{0.5} = [0, 30]$

Support:

$$supp(A) = \{u \mid A(u) > 0\} = A^{0+}$$

Core:

$$core(A) = \{u \mid A(u) = 1\} = A^1$$

Height:

$$h(A) = \sup_{U} A(u)$$

- Normal fuzzy set: h(A) = 1
- Sub-normal fuzzy set: h(A) < 1

Membership Degrees

Subjective definition

Membership Degrees

Voting model:

Each voter has a subset of U as his/her own crisp definition of the concept that A represents.

A(u) is the proportion of voters whose crisp definitions include u.

A defines a probability distribution on the power set of U across the voters.

Membership Degrees

Voting model:

	P ₁	P ₂	P_3	P_4	P_5	P_6	P ₇	P ₈	P ₉	P ₁₀
1										
2										
3	Х	Х								
4	Х	Х	Х	Х	Х					
5	Х	Х	Х	Х	Х	Х	Х	Х	Х	
6	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Fuzzy Subset Relations

 $A \subseteq B \text{ iff } A(u) \leq B(u) \text{ for every } u \in U$

Fuzzy Subset Relations

 $A \subseteq B \text{ iff } A(u) \leq B(u) \text{ for every } u \in U$

A is more specific than B

Fuzzy Subset Relations

 $A \subseteq B \text{ iff } A(u) \leq B(u) \text{ for every } u \in U$

A is more specific than B

"X is A" entails "X is B"

Fuzzy Set Operations

Standard definitions.

Complement: A(u) = 1 - A(u)

Intersection: $(A \cap B)(u) = min[A(u), B(u)]$

Union: $(A \cup B)(u) = max[A(u), B(u)]$

Fuzzy Set Operations

Example:

```
not young = young

not old = old

middle-age = not young∩not old

old = ¬young
```

Fuzzy Numbers

A fuzzy number A is a fuzzy set on R:

A must be a normal fuzzy set

 A^{α} must be a closed interval for every $\alpha \in (0, 1]$

 $supp(A) = A^{0+}$ must be bounded

Basic Types of Fuzzy Numbers

Basic Types of Fuzzy Numbers

Extension principle for fuzzy sets:

$$f: U_1 \times ... \times U_n \rightarrow V$$

induces

g:
$$\widetilde{U}_1 \times ... \times \widetilde{U}_n \rightarrow \widetilde{V}$$

Extension principle for fuzzy sets:

$$f: U_1 \times ... \times U_n \rightarrow V$$

induces

g:
$$\widetilde{U}_1 \times ... \times \widetilde{U}_n \rightarrow \widetilde{V}$$

$$[g(A_1,...,A_n)](v) = \sup_{\{(u_1,...,u_n) \mid v = f(u_1,...,u_n)\}} \min\{A_1(u_1),...,A_n(u_n)\}$$

EP-based operations:

$$(A + B)(z) = \sup_{\{(x,y) \mid z = x+y\}} \min\{A(x),B(y)\}$$

$$(A - B)(z) = \sup_{\{(x,y) \mid z = x-y\}} \min\{A(x),B(y)\}$$

$$(A * B)(z) = \sup_{\{(x,y) \mid z = x'y\}} \min\{A(x),B(y)\}$$

$$(A / B)(z) = \sup_{\{(x,y) \mid z = x/y\}} \min\{A(x),B(y)\}$$

EP-based operations:

Discrete domains:

$$A = \{x_i: A(x_i)\}$$
 $B = \{y_i: B(y_i)\}$

$$A \cdot B = ?$$

Interval-based operations:

$$(A \circ B)^{\alpha} = A^{\alpha} \circ B^{\alpha}$$

Arithmetic operations on intervals:

$$[a, b] \cdot [d, e] = \{f \cdot g \mid a \le f \le b, d \le g \le e\}$$

Arithmetic operations on intervals:

$$[a, b]_{\circ}[d, e] = \{f_{\circ}g \mid a \le f \le b, d \le g \le e\}$$

$$[a, b] + [d, e] = [a + d, b + e]$$

$$[a, b] - [d, e] = [a - e, b - d]$$

$$[a, b]^{*}[d, e] = [min(ad, ae, bd, be), max(ad, ae, bd, be)]$$

$$[a, b]/[d, e] = [a, b]*[1/e, 1/d] 0 \notin [d, e]$$

Discrete domains:

$$A = \{x_i: A(x_i)\}$$
 $B = \{y_i: B(y_i)\}$

$$A \cdot B = ?$$

- Possibility vs. Probability
- Possibility and Necessity

 Zadeh, L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility

Journal of Fuzzy Sets and Systems

• Membership degree = possibility degree

Axioms:

$$0 \le \text{Pos}(A) \le 1$$
 $\text{Pos}(\Omega) = 1$ $\text{Pos}(\emptyset) = 0$
 $\text{Pos}(A \cup B) = \text{max}[\text{Pos}(A), \text{Pos}(B)]$
 $\text{Nec}(A) = 1 - \text{Pos}(\overline{A})$

Derived properties:

Nec(
$$\Omega$$
) = 1 Nec(\emptyset) = 0
Nec(A \cap B) = min[Nec(A), Nec(B)]
max[Pos(A), Pos(\overline{A})] = 1
min[Nec(A), Nec(\overline{A})] = 0
Pos(A) + Pos(\overline{A}) \geq 1
Nec(A) + Nec(\overline{A}) \leq 1
Nec(A) \leq Pos(A)

Probability	Possibility				
p: U \rightarrow [0, 1] Pro(A) = $\sum_{u \in A} p(u)$	r: U \rightarrow [0, 1] Pos(A) = max _{u \in A} r(u)				
Normalization: $\sum_{u \in U} p(u) = 1$	$\max_{u \in U} r(u) = 1$				
Additivity: $Pro(A \cup B) = Pro(A) + Pro(B) - Pro(A \cap B)$	$Pos(A \cup B) = max[Pos(A), Pos(B)]$				
$Pro(A) + Pro(\overline{A}) = 1$	$Pos(A) + Pos(\overline{A}) \ge 1$				
Total ignorance: p(u) = 1/ U for every u∈U	r(u) = 1 for every u∈U				
Probability-possibility consistency principle: Pro(A) ≤ Pos(A)					

Fuzzy Relations

Crisp relation:

$$R(U_1, ..., U_n) \subseteq U_1 \times ... \times U_n$$

$$R(u_1, ..., u_n) = 1$$
 iff $(u_1, ..., u_n) \in R$ or $= 0$ otherwise

Fuzzy Relations

Crisp relation:

$$R(U_1, ..., U_n) \subseteq U_1 \times ... \times U_n$$

$$R(u_1, ..., u_n) = 1 \text{ iff } (u_1, ..., u_n) \in R \text{ or } = 0 \text{ otherwise}$$

Fuzzy relation is a fuzzy set on U₁× ... ×U_n

Fuzzy Relations

Fuzzy relation:

$$U_1$$
 = {New York, Paris}, U_2 = {Beijing, New York, London}
R = very far

	NY	Paris
Beijing	1	.9
NY	0	.7
London	.6	.3

Multivalued Logic

- Truth values are in [0, 1]
- Lukasiewicz:

$$\neg a = 1 - a$$

 $a \wedge b = min(a, b)$
 $a \vee b = max(a, b)$
 $a \Rightarrow b = min(1, 1 - a + b)$

```
if x is A then y is B
x is A*

y is B*
```

if height is TALL then shoe-size is LARGE

height is RATHER TALL

y is ??

View a fuzzy rule as a fuzzy relation

if x is A then y is B x is A*	$R(u, v) \equiv A(u) \Rightarrow B(v)$ $A^*(u)$
y is B*	B*(v)

Measure similarity of A and A*

```
if x is A then y is B x is A*
y is B*
```

$$B^* = B + \Delta(A/A^*)$$

Fuzzy Controller

- As special expert systems
- When difficult to construct mathematical models
- When acquired models are expensive to use

Fuzzy Controller

IF the temperature is very high

AND the pressure is slightly low

THEN the heat change should be sligthly negative

Fuzzy Controller

Cao Hoang Tru CSE Faculty - HCMUT

Fuzzification

Defuzzification

Center of Area:

$$x = (\sum A(z).z)/\sum A(z)$$

Defuzzification

Center of Maxima:

$$M = \{z \mid A(z) = h(A)\}$$

$$x = (\min M + \max M)/2$$

Defuzzification

Mean of Maxima:

$$M = \{z \mid A(z) = h(A)\}$$

$$x = \sum z/|M|$$

Exercises

• In Klir's FSFL: 1.9, 1.10, 2.11, 4.5, 5.1 (a)-(b), 8.6, 12.1.