By construction $\mathbf{Y}^T\mathbf{Y}$ equals the covariance matrix of X. From section 5 we know that the principal components of X are the eigenvectors of C_X . If we calculate the SVD of Y. the columns of matrix V contain the eigenvectors of $\mathbf{Y}^T\mathbf{Y} = \mathbf{C}_{\mathbf{X}}$. Therefore, the columns of \mathbf{V} are the principal components of X. This second algorithm is encapsulated in Matlab code included in Appendix B.