### MA 105 Calculus II

#### Lecture 10

B.K. Das



Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

October 30 - 03, 2023

- Parametrized surfaces
- 2 Parametrized surfaces
- 3 The tangent plane
- 4 Non-singular surfaces

Area vector of an infinitesimal surface element Magnitude of the area vector Surface integral of scalar function Surface integral of a vector field

#### Recall

Let D be a region in  $\mathbb{R}^2$  which satisfy the hypothesis of Green's theorem. With the induced positive orientation on  $\partial D$ , let  $\mathbf{c}:[a,b]\to\mathbb{R}^3$  such that  $\mathbf{c}(t)=(x(t),y(t),0)$  be a non-singular parametrization of  $\partial D$ . Then the unit tangent to the curve  $\mathbf{c}$  and the unit outward normal to the curve are defined as

$$\mathsf{T}(t) = rac{\mathbf{c}'(t)}{\|\mathbf{c}'(t)\|}, \quad \mathsf{n}(t) = \mathsf{T}(t) imes \mathsf{k}, \quad orall \ t \in [a,b].$$

Curl form or Tangential form

$$\int_{\partial D} \mathbf{F} . \mathbf{T} ds = \int_{D} \int_{D} (\operatorname{curl} \mathbf{F}) . \mathbf{k} dx dy.$$

Divergence form or Normal form:

$$\int_{\partial D} \mathbf{F.n} ds = \int \int_{D} \operatorname{div} \mathbf{F} dx dy.$$

### Surfaces: Definition

A curve is a "one-dimensional" object. Intuitively, this means that if we want to describe a curve, it should be possible to do so using just one variable or parameter.

To do line integration, we further required some extra properties of the curve - that it should be  $\mathcal{C}^1$  and non-singular.

We will now discuss the two dimensional analog, namely, surfaces. In order to describe a surface, which is a two-dimensional object, we clearly need two parameters.

#### Definition

Let D be a path connected subset in  $\mathbb{R}^2$ . A parametrised surface is a continuous function  $\Phi: D \to \mathbb{R}^3$ .

This definition is the analogue of what we called paths in one dimension and what are often called parametrized curves.

## Geometric parametrised surfaces

As with curves and paths, we will distinguish between the surface  $\Phi$  and its image. Similarly, the image  $S = \Phi(D)$  will be called the geometric surface corresponding to  $\Phi$ .

Note that for a given  $(u, v) \in D$ ,  $\Phi(u, v)$  is a vector in  $\mathbb{R}^3$ . Each of the coordinates of the vector depends on u and v. Hence we write

$$\mathbf{\Phi}(u,v) = (x(u,v),y(u,v),z(u,v)),$$

where x, y and z are scalar functions on D.

The parametrized surface  $\Phi$  is said to be a smooth parametrized surface if the functions x, y, z have continuous partial derivatives in a open subset of  $\mathbb{R}^2$  containing D.

### Examples

Example 1: Graphs of real valued functions of two independent variables are parametrised surfaces.

Let f(x,y) be a scalar function and let z = f(x,y), for all  $(x,y) \in D$ , where D is a path connected region in  $\mathbb{R}^2$ . We can define the parametrised surface  $\Phi$  by

$$\mathbf{\Phi}(u,v)=(u,v,f(u,v)),\quad\forall\,(u,v)\in D.$$

More specifically, we have x(u, v) = u, y(u, v) = v and z(u, v) = f(u, v).

Example 2: Consider the cylinder,  $x^2 + y^2 = a^2$ . Then this is parametrized surface defined by  $\Phi : [0, 2\pi] \times \mathbb{R} \to \mathbb{R}^3$  defined as  $\Phi(u, v) = (a \cos u, a \sin u, v)$ .

Example 3: Consider the sphere of radius a,

 $S = \{(x,y,z) \mid x^2 + y^2 + z^2 = a^2\}$ . Is it a parametrized surface? Recall using spherical coordinates we can represent it using the following parametrization,  $\Phi: [0,2\pi] \times [0,\pi] \to \mathbb{R}^3$  defined as  $\Phi(u,v) = (a\cos u\sin v, a\sin u\sin v, a\cos v)$ .



Example 4: The graph of  $z = \sqrt{x^2 + y^2}$  can also be parametrized. We use the idea that at each value of z we get a circle of radius z. We can describe the cone as the parametrized surface

 $\Phi: [0,\infty) \times [0,2\pi] \to \mathbb{R}^3$  as  $\Phi(u,v) = (u\cos v, u\sin v, u)$ .

Example 5: If we have parametrized curve on the z-y-plane (0, y(u), z(u)) which we rotate around z-axis, we can parametrise it as follows:

$$x = y(u)\cos v$$
,  $y = y(u)\sin v$ , and  $z = z(u)$ .

Here  $a \le u \le b$  if [a, b] is the domain of the curve, and  $0 \le v \le 2\pi$ .

#### Surfaces of revolution around the z-axis



For instance we can parametrize a torus by taking a circle in the y-z plane with center (0, a, 0) of radius b. This is given by the curve  $(0, a + b \cos u, b \sin u)$ .

Then the parametrization of the torus is then  $\Phi(u, v) = ((a + b \cos u) \cos v, (a + b \cos u) \sin v, b \sin u)$  where  $0 \le u \le 2\pi$  and  $0 \le v \le 2\pi$ .

Parametrised surfaces are more general than graphs of functions.

# Tangent vectors for a parametrised surface

Let  $\Phi(u, v)$  be a smooth parametrised surface. If we fix the variable v, say  $v = v_0$ , we obtain a curve  $\mathbf{c}(u, v_0)$  that lies on the surface. Thus

$$\mathbf{c}(u) = x(u, v_0)\mathbf{i} + y(u, v_0)\mathbf{j} + z(u, v_0)\mathbf{k}.$$

Since this curve is  $C^1$  we can talk about its tangent vector at the point  $u_0$ . This is given by

$$\mathbf{c}'(u_0) = \frac{\partial x}{\partial u}(u_0, v_0)\mathbf{i} + \frac{\partial y}{\partial u}(u_0, v_0)\mathbf{j} + \frac{\partial z}{\partial u}(u_0, v_0)\mathbf{k}.$$

We can define the partial derivative of a vector valued function as

$$\mathbf{\Phi}_{u}(u_0,v_0)=\frac{\partial\mathbf{\Phi}}{\partial u}(u_0,v_0):=\mathbf{c}'(u_0).$$

Similarly, by fixing u and varying v we obtain a curve  $\mathbf{I}(u_0, v)$  and we can set

$$\mathbf{\Phi}_{v}(u_{0},v_{0}) = \frac{\partial \mathbf{\Phi}}{\partial v}(u_{0},v_{0}) := \frac{\partial x}{\partial v}(u_{0},v_{0})\mathbf{i} + \frac{\partial y}{\partial v}(u_{0},v_{0})\mathbf{j} + \frac{\partial z}{\partial v}(u_{0},v_{0})\mathbf{k}.$$

## The tangent plane

Let for any given point on the surface,  $P_0 = (x_0, y_0, z_0) := \Phi(u_0, v_0)$  for some  $(u_0, v_0) \in D$ .

The two tangent vectors  $\Phi_u(u_0, v_0)$  and  $\Phi_v(u_0, v_0)$  at  $P_0$  define a plane. We call this plane as the tangent plane to the surface at  $P_0$ .

The normal to this plane at 
$$P_0$$
,  $\mathbf{n}(u_0, v_0) = \mathbf{\Phi}_u(u_0, v_0) \times \mathbf{\Phi}_v(u_0, v_0)$ .

Thus for a given point  $(x_0, y_0, z_0) = \Phi(u_0, v_0)$  in  $\mathbb{R}^3$  the equation of the tangent plane is given by

$$\mathbf{n}(u_0, v_0) \cdot (x - x_0, y - y_0, z - z_0) = 0,$$

provided  $\mathbf{n} \neq 0$ .

In particular, if  $\Phi_{\mu}(u_0, v_0) \times \Phi_{\nu}(u_0, v_0) = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ , then the equation of the tangent plane at  $P_0$  is given by

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0.$$

Let us find the equation of the tangent plane at points on the various parametrised surfaces we have already looked at.

Example 1: Let D be a path-connected subset of  $\mathbb{R}^2$  and  $f: D \to \mathbb{R}$  be a  $C^1$  function. The surface given by the graph of the function z = f(x, y) is parametrized by  $\Phi(x, y) = (x, y, f(x, y))$ . In this case, at  $P_0 = \Phi(x_0, y_0)$  for  $(x_0, y_0) \in D$ ,

$$\mathbf{\Phi}_{x}(x_{0},y_{0}) = \mathbf{i} + \frac{\partial f}{\partial x}(x_{0},y_{0})\mathbf{k}$$
 and  $\mathbf{\Phi}_{y}(x_{0},y_{0}) = \mathbf{j} + \frac{\partial f}{\partial y}(x_{0},y_{0})\mathbf{k}$ .

Hence,

$$\mathbf{n}(x_0,y_0) = \mathbf{\Phi}_x(x_0,y_0) \times \mathbf{\Phi}_y(x_0,y_0) = \left(-\frac{\partial f}{\partial x}(x_0,y_0), -\frac{\partial f}{\partial y}(x_0,y_0), 1\right).$$

Thus the equation of the tangent plane is

$$(x-x_0,y-y_0,z-z_0)\cdot\left(-\frac{\partial f}{\partial x}(x_0,y_0),-\frac{\partial f}{\partial y}(x_0,y_0),1\right)=0;$$

which yields,

$$z-z_0=\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

### Tangent Plane: Examples

Example 2: Let us consider a cylinder parametrized as

$$\mathbf{\Phi}(u,v) = (a\cos u, a\sin u, v), \quad \forall (u,v) \in [0,2\pi] \times [0,h],$$

where a > 0. Then

$$\mathbf{\Phi}_{u}(u,v)\times\mathbf{\Phi}_{v}(u,v)=\begin{vmatrix}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a\sin u & a\cos u & 0 \\ 0 & 0 & 1\end{vmatrix}=(a\cos u, a\sin u, 0).$$

Since this is non-zero on  $[0,2\pi] \times [0,h]$  for any h>0, we can define the tangent plane to  $\Phi$  at any point  $P_0=(x_0,y_0,z_0)=\Phi(u_0,v_0)$  as

$$(a\cos u_0, a\sin u_0, 0).(x - x_0, y - y_0, z - z_0) = 0.$$

Now using  $(x_0, y_0, z_0) = \Phi(u_0, v_0) = (a \cos u_0, a \sin u_0, v_0)$ , we get the equation for the tangent plane to  $\Phi$  at  $P_0$  is

$$(\cos u_0)x + (\sin u_0)y = a.$$

Example 3: The sphere:  $x^2 + y^2 + z^2 = a^2$ , for some a > 0. Let us consider the parametrization

$$\mathbf{\Phi}(u,v) = (a\cos u\sin v, a\sin u\sin v, a\cos v), \quad \forall (u,v) \in [0,2\pi] \times [0,\pi].$$

Check  $\Phi_u(u, v) \times \Phi_u(u, v) = (a \sin v)\Phi(u, v)$ , for all  $(u, v) \in [0, 2\pi] \times [0, \pi]$ .

Note for  $(u_0, v_0) \in [0, 2\pi] \times (0, \pi)$ ,  $\Phi_u(u_0, v_0) \times \Phi_u(u_0, v_0) \neq (0, 0, 0)$  and the tangent plane at  $P_0 = \Phi(u_0, v_0)$  is

$$(\sin v_0 \cos u_0)x + (\sin v_0 \sin u_0)y + (\cos v_0)z = a.$$

Example 4: This was the example of the right circular cone. The parametric surface was given by

$$\mathbf{\Phi}(u,v) = (u\cos v, u\sin v, u), \quad (u,v) \in [0,\infty) \times [0,2\pi].$$

In this case we get

$$\mathbf{\Phi}_u(u,v) = \cos v \mathbf{i} + \sin v \mathbf{j} + \mathbf{k}$$
 and  $\mathbf{\Phi}_v(u,v) = -u \sin v \mathbf{i} + u \cos v \mathbf{j}$ ,

where 
$$\mathbf{n}(u, v) = \mathbf{\Phi}_u(u, v) \times \mathbf{\Phi}_v(u, v) = (-u \cos v, -u \sin v, u)$$
.

For any  $(u_0, v_0) \in (0, \infty) \times [0, 2\pi]$ ,  $\mathbf{n}(u_0, v_0) \neq (0, 0, 0)$  and the tangent plane check

$$(\cos v_0)x + (\sin v_0)y = z.$$

Note that if (u, v) = (0, 0), then  $\mathbf{n}(0, 0) = 0$ , so the tangent plane is not defined at the origin. However, it is defined at any other point.

## Non-singular surfaces

In analogy with the situation for curves, we will call  $\Phi$  a regular or non-singular parametrised surface if  $\Phi$  is  $C^1$  and  $\Phi_u \times \Phi_v \neq 0$  at all points.

As we just saw, the right circular cone is not a regular parametrised surface.

For a regular surface parametrized by  $\Phi: D \to \mathbb{R}^3$ , the unit normal  $\hat{\mathbf{n}}$  to the surface at any point  $P_0 = \Phi(u_0, v_0)$  is defined by

$$\hat{\mathbf{n}}(u_0, v_0) := \frac{\mathbf{\Phi}_u(u_0, v_0) \times \mathbf{\Phi}_v(u_0, v_0)}{\|\mathbf{\Phi}_u(u_0, v_0) \times \mathbf{\Phi}_v(u_0, v_0)\|}.$$

#### Surface Area

Let  $\Phi: E \to \mathbb{R}^3$  be a smooth parametrized surface, where E is a path-connected, bounded subset of  $\mathbb{R}^2$  having a non-zero area. Also assume  $\partial E$ , the boundary of E, is of content zero.

Let  $(u, v) \in E$ . For  $h, k \in \mathbb{R}$  with |h|, |k| small, assuming  $\Phi$  is  $C^1$  we can get the following approximations;

$$P := \mathbf{\Phi}(u, v), \quad P_1 := \mathbf{\Phi}(u + h, v) \approx \mathbf{\Phi}(u, v) + h \mathbf{\Phi}_u(u, v),$$
$$P_2 := \mathbf{\Phi}(u, v + k) \approx \mathbf{\Phi}(u, v) + k \mathbf{\Phi}_v(u, v), \quad Q := \mathbf{\Phi}(u + h, v + k).$$



Area of the parallelogram with sides  $PP_1$  and  $PP_2$ 

$$= \|(P_1 - P) \times (P_2 - P)\| \approx \|\mathbf{\Phi}_u(u, v) \times \mathbf{\Phi}_v(u, v)\| \, |h| |k|.$$

In view of this approximation, we define

$$Area(\mathbf{\Phi}) := \iint_{E} \|(\mathbf{\Phi}_{u} \times \mathbf{\Phi}_{v})(u, v)\| \, du \, dv.$$

Since the subset E of  $\mathbb{R}^2$  is bounded with boundary  $\partial E$  which is of content zero and the function  $\|\mathbf{\Phi}_u \times \mathbf{\Phi}_v\|$  is continuous on E, the integral in the definition of Area $(\mathbf{\Phi})$  is well-defined.

In analogy with the differential notation  $ds = \|\gamma'(t)\|dt$ , we introduce the following differential notation:

$$dS = \|\mathbf{\Phi}_u \times \mathbf{\Phi}_v\| \ dudv.$$

Thus Area( $\Phi$ ) :=  $\iint_E dS$ .

#### Examples

• Graph of a function: Given a subset E of  $\mathbb{R}^2$  have an area,  $f: E \to \mathbb{R}$  be a smooth function, and  $\Phi(u, v) = (u, v, f(u, v))$  for  $(u, v) \in E$ . Then

Area
$$(\Phi)$$
 =  $\iint_E \|(-f_u, -f_v, 1)\| du dv$   
 =  $\iint_E \sqrt{1 + f_u^2 + f_v^2} du dv$ 

Example: Let  $E := [0, 2\pi] \times [0, h]$ ,  $\Phi(\theta, z) := (a \cos \theta, a \sin \theta, z)$ , and  $\Psi(\theta, z) := (a \cos 2\theta, a \sin 2\theta, z)$  for  $(\theta, z) \in E$ . Then

Area
$$(\Phi)$$
 =  $\iint_E \|\Phi_{\theta} \times \Phi_z\| d\theta dz = \iint_E a d\theta dz = 2\pi a h$ ,  
Area $(\Psi)$  =  $\iint_E \|\Psi_{\theta} \times \Psi_z\| d\theta dz = \iint_E 2a d\theta dz = 4\pi a h$ .

We note that  $\Psi(E) = \Phi(E)$ , but Area $(\Psi) = 2 \operatorname{Area}(\Phi)$ .

Example: Let  $E := [0, \pi] \times [0, 2\pi]$ , and

 $Φ(\varphi, \theta) = (a \sin \varphi \cos \theta, a \sin \varphi \sin \theta, a \cos \varphi)$  for  $(\varphi, \theta) \in E$ . Then

Area(
$$\Phi$$
) =  $\iint_E \|\Phi_{\varphi} \times \Phi_{\theta}\| d\varphi d\theta = \iint_E a^2 \sin \varphi \, d\varphi d\theta$   
 =  $\int_0^{2\pi} \left( \int_0^{\pi} a^2 \sin \varphi \, d\varphi \right) d\theta = 4\pi a^2$ .

Let C be a smooth curve in  $\mathbb{R}^2 \times \{0\}$  given by

 $\gamma(t) := (x(t), y(t)), \ t \in [\alpha, \beta].$  If C lies on or above the x-axis, and C is revolved about the x-axis, then it generates a surface parametrized by

$$\Phi(t,\theta) := (x(t), y(t)\cos\theta, y(t)\sin\theta) \text{ for } (t,\theta) \in E,$$

where  $E:=[\alpha,\beta]\times[0,2\pi]$ . For all  $(t,\theta)\in E$ ,

$$(\mathbf{\Phi}_{t} \times \mathbf{\Phi}_{\theta})(t,\theta) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x'(t) & y'(t)\cos\theta & y'(t)\sin\theta \\ 0 & -y(t)\sin\theta & y(t)\cos\theta \end{vmatrix}$$
$$= (y(t)y'(t), -x'(t)y(t)\cos\theta, -x'(t)y(t)\sin\theta).$$

By the Fubini theorem, we obtain

Area(
$$\Phi$$
) =  $\iint_{E} \sqrt{y(t)^{2}y'(t)^{2} + x'(t)^{2}y(t)^{2}} d(t, \theta)$   
=  $2\pi \int_{e}^{\beta} y(t) \sqrt{x'(t)^{2} + y'(t)^{2}} dt$ ,

Note:  $\Phi$  is non-singular  $\iff \gamma$  is non-singular and  $y(t) \neq 0$  for  $t \in [\alpha, \beta]$ .

### The area vector of an infinitesimal surface element

We see that  $\Phi$  takes the small rectangle R to the parallelogram given by the vectors  $\Phi_u \Delta u$  and  $\Phi_v \Delta v$ .

It follows that the 'area vector'  $\Delta S$  of this parallelogram is

$$\Delta \mathbf{S} = (\mathbf{\Phi}_u \times \mathbf{\Phi}_v) \Delta u \Delta v.$$

Thus the surface 'area vector' is to be thought of as a vector pointing in the direction of the normal to the surface and in differential notation:

$$d\mathbf{S} = (\mathbf{\Phi}_u \times \mathbf{\Phi}_v) \, du \, dv.$$

The magnitude of the surface 'area vector' is given by

$$dS = \|d\mathbf{S}\| = \|\mathbf{\Phi}_u \times \mathbf{\Phi}_v\| \, du \, dv.$$

If the parametric surface  $\Phi$  is non-singular, we can write

$$d\mathbf{S} = \hat{\mathbf{n}}dS$$
,

where  $\hat{\mathbf{n}}$  is the unit vector normal to the surface.

## The magnitude of the area vector

It remains to compute the magnitude dS. To do this we must find  $\|\Phi_u \times \Phi_v\|$ . Writing this out in terms of x, y and z, we see that

$$d\mathbf{S} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} dudv.$$

$$dS = \sqrt{\left[\frac{\partial(y,z)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(x,z)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(x,y)}{\partial(u,v)}\right]^2} dudv,$$

where  $\frac{\partial(y,z)}{\partial(u,v)}$ ,  $\frac{\partial(x,z)}{\partial(u,v)}$ ,  $\frac{\partial(x,y)}{\partial(u,v)}$  are the determinant of corresponding Jacobian matrix. For example

$$\frac{\partial(y,z)}{\partial(u,v)} = \frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u} \frac{\partial y}{\partial v},$$

$$\frac{\partial(x,z)}{\partial(u,v)} = \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial z}{\partial u}, \quad \frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}.$$

# The surface area integral

Because of the calculations we have just made, the surface area is given by the double integral

$$\iint_{S} dS = \iint_{E} \sqrt{\left[\frac{\partial(y,z)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(x,z)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(x,y)}{\partial(u,v)}\right]^{2}} du dv.$$

The area is nothing but the integral of the constant function 1 on the surface S. We integrate any bounded scalar function  $f: S \to \mathbb{R}$ :

$$\iint_{S} f dS = \iint_{E} f(x, y, z) \sqrt{\left[\frac{\partial(y, z)}{\partial(u, v)}\right]^{2} + \left[\frac{\partial(x, z)}{\partial(u, v)}\right]^{2} + \left[\frac{\partial(x, y)}{\partial(u, v)}\right]^{2} du dv},$$

provided the R.H.S double integral exists. If  $\Sigma$  is a union of parametrised surfaces  $S_i$  that intersect only along their boundary curves, then we can define

$$\iint_{\Sigma} f dS = \sum_{i} \iint_{S_{i}} f dS.$$

# The surface integral of a vector field

Let **F** be a bounded vector field (on  $\mathbb{R}^3$ ) such that the domain of **F** contains the non-singular parametrised surface  $\Phi: E \to \mathbb{R}^3$ . Then the surface integral of **F** over *S* is

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} := \iint_{E} \mathbf{F}(\mathbf{\Phi}(u, v)) \cdot (\mathbf{\Phi}_{u} \times \mathbf{\Phi}_{v}) du dv,$$

provided the R.H.S double integral exists. This can also be written more compactly as

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} := \iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} dS,$$

which is the surface integral of the scalar function given by the normal component of  ${\bf F}$  over S.

#### Examples

(i) Let a subset E of  $\mathbb{R}^2$  have an area, and let  $f: E \to \mathbb{R}$  be a smooth function. Let the smooth parametrized surface  $\Phi: E o \mathbb{R}^3$  represent the graph of f, and let  $\mathbf{F}: \mathbf{\Phi}(E) \to \mathbb{R}^3$  be a continuous vector field. If F := (P, Q, R), then

$$\iint_{\mathbf{\Phi}} \mathbf{F} \cdot d\mathbf{S} = \iint_{E} (-P f_{x} - Q f_{y} + R) d(x, y)$$

since  $d\mathbf{S} = (\mathbf{\Phi}_x \times \mathbf{\Phi}_y) dx dy = (-f_x, -f_y, 1) dx dy$ .

Using above result, let  $E := [0,1] \times [0,1], f(x,y) := x + y + 1$  for  $(x,y) \in E$ . If  $\mathbf{F}(x,y,z) := (x^2, y^2, z)$  for  $(x,y,z) \in \mathbb{R}^3$ , then

$$\iint_{\Phi} \mathbf{F} \cdot d\mathbf{S} = \iint_{E} \left( -x^{2} - y^{2} + (x + y + 1) \right) d(x, y)$$

$$= \int_{0}^{1} \left( \int_{0}^{1} (x + y + 1 - x^{2} - y^{2}) dy \right) dx$$

$$= \frac{1}{2} + \frac{1}{2} + 1 - \frac{1}{3} - \frac{1}{3} = \frac{4}{3}.$$

#### Examples Contd.

(ii) Let 
$$E:=[0,2\pi]\times[0,h]$$
, and  $\Phi(u,v):=(a\cos u,a\sin u,v)$  for  $(u,v)\in E$ . If  $F(x,y,z):=(y,z,x)$  for  $(x,y,z)\in\mathbb{R}^3$ , then

$$\iint_{\Phi} \mathbf{F} \cdot d\mathbf{S} = \iint_{F} (a^{2} \cos u \sin u + v \, a \sin u + 0) du dv = 0,$$

since  $d\mathbf{S} = (\mathbf{\Phi}_u \times \mathbf{\Phi}_v) du dv = (a \cos u, a \sin u, 0) du dv$ .

Lecture 10 IITB