# Introduction to Statistical Modeling MSDS 598

Probability and Statistics (Quick Overview)

Michael Ruddy

## From Last Time

- Probability: "The likelihood that an event will occur"
- An **experiment** is an activity or procedure that produces distinct, well-defined possibilities called **outcomes**.
- The set of all possible outcomes is called the sample space.
- Empirical Probability: Probability estimate obtained by running the experiment many times.

  # of times outcome occurred

# of times experiment performed

- Flip a coin many times
- Historical weather patterns
- A **random variable** is a *function* that assigns a numerical value to each outcome in the sample space

## Uniform Random Variable

#### Pick a random number (discrete)

- Experiment: Pick a random number between one and ten
- Random Variable X: Value of that number
  - (This is a *discrete* random variable)
- Each value of the random variable is equally likely, meaning that X is ormly distributed random variable.

- What does the probability density function look like for X here?

## Continuous Random Variable

#### Pick a random number (continuous)

- Experiment: Pick a random real number between 0 and 1
- Random Variable X: Value of that number
  - (This is a *continuous* random variable)
- What is the probability that X = 0.5? P(X = 0.5)
- What is the probability that X is between 0 and 1? P(0 < X < 1)

## Continuous Random Variable

#### Pick a random number (continuous)

- Experiment: Pick a random real number between 0 and 1
- Random Variable X: Value of that number
  - (This is a *continuous* random variable)

Probability density function

$$f_X(x) = 1$$

## Continuous Random Variable

#### Pick a random number (continuous)

- Experiment: Pick a random real number between 0 and 1
- Random Variable X: Value of that number
  - (This is a *continuous* random variable)



Probability density function

$$f_X(x) = 1$$
 $\int_a^b f_X(x) dx = P(a < X < b)$ 

"Area under the curve from a to b"

## The Mean or Expected Value

Discrete Continuous
$$\mu = \sum_x x P(X=x) \qquad \qquad \mu = \int_x x f_X(x) dx$$

- "Weighted sum of the values of the random variable"
- Recall the experiment Pick a random number (discrete)
  - What is the mean of the random variable X here?
  - How this relate to the "colloquial" understanding of the average?
  - What happens to the mean if we change the distribution so that numbers higher than 5 are more likely to be chosen?

## The Variance

#### Discrete

#### Continuous

$$\sigma^2 = ext{var} X = \sum_x (x-\mu)^2 P(X=x) \qquad \sigma^2 = ext{var} X = \int_x (x-\mu)^2 f(x) dx$$

- "How far values tend to stray from the mean"
- The **Standard Deviation** is the square root of the variance
  - Same units as the mean
- Is the variance of temperature in San Francisco or in Sacramento higher?

# Estimating Mean for Continuous Random Variables

- We usually don't have an explicit Probability Density Function for a continuous random variable.
  - We estimated it earlier!

N random sample of random variable X

Sample Mean 
$$ar{X} = rac{\displaystyle\sum_{i=1}^N x_i}{N}$$
  $ar{x}_1, x_2, \ldots, x_N \}$ 

# Estimating Mean for Continuous Random Variables

- We usually don't have an explicit Probability Density Function for a continuous random variable.
  - We estimated it earlier!

N random sample of random variable X

Sample Mean 
$$ar{X} = rac{\sum\limits_{i=1}^{N} x_i}{N}$$
  $ar{x}_1, x_2, \ldots, x_N \}$ 

Law of Large Numbers 
$$ar{X} 
ightarrow \mu ext{ as } N 
ightarrow \infty$$

## Estimating Variance for Continuous Random Variables

Sample Variance:  $s^2 = rac{\displaystyle\sum_{i=1}^{N} (x_i - ar{X})^2}{N ext{ random sample of random variable X}} \{x_1, x_2, \ldots, x_N\}$ 

# Estimating Variance for Continuous Random Variables

Sample Variance:

$$s^2 = rac{\displaystyle\sum_{i=1}^{N} (x_i - ar{X})^2}{N ext{ random sample of random variable X}} \ \{x_1, x_2, \ldots, x_N\}$$

- The (N-1) comes from the fact that we using the sample mean rather than the population mean to estimate the variance.
- The *variance of the sample* uses *N* instead.

$$s^2 o \sigma^2 ext{ as } N o \infty$$

## Normal Distribution

- Many random variables are distributed *normally* meaning they follow the **Normal Distribution** according to a mean and standard deviation



## Central Limit Theorem

### Sample Mean

Random Variable  $\bar{X}_N$ : Take the mean of a sample of size N

#### Central Limit Theorem

- The distribution of this random variable tends towards a normal distribution as N increases.
- Many say that it often looks very normal by N=30.

- Doesn't matter what the distribution of the original population is!

# Hypothesis Testing

- Null Hypothesis  $H_0$ 
  - Assumed Fact/Default Position
- Alternative Hypothesis  $H_1/H_a$ 
  - The opposite, or negation of the null hypothesis
- When we do Hypothesis testing we either
  - Reject the null hypothesis
  - Fail to reject the null hypothesis
- We can never conclude the Null Hypothesis.
- We can only say, "there is not enough evidence to reject"!

# Hypothesis Testing

- Null Hypothesis H
  - Assumed Fact/Default Position
- Alternative Hypothesis  $H_1/H_a$
- The opposite, or negation of the null hypothesis
  - When we do Hypothesis testing we either
    - Reject the null hypothesis
    - Fail to reject the null hypothesis
- In theoretical American criminal justice a defendant is "innocent until proven guilty"
  - Reject the null hypothesis (defendant is guilty)
  - Fault to reject the null hypothesis (defendant is not guilty)

# Hypothesis Testing

- Null Hypothesis  $\,H_0$ 
  - Assumed Fact/Default Position
- Alternative Hypothesis  $H_1/H_a$ 
  - The opposite, or negation of the null hypothesis

### Steps

- 1. Set a significance level,  $\alpha$
- 2. Run the experiment
- 3. Determine probability that experiment outcome occurred given  $\,H_0\,$
- 4. If this is less than the significance level reject, otherwise fail to reject

## Confidence Intervals

- Consider the random variable where  $\mu$  and n are fixed.

$$T=rac{A-\mu}{s/\sqrt{n}}$$

- This calculates the Z-score for a hypothesis test (when the population variance is not known) and follows a distribution known as the "Student's t-distribution."
- What is the "Fail to Reject" interval around the sample mean?
  - Suppose we choose a level of significance  $\, lpha \,$

$$\left|ar{X}-crac{s}{\sqrt{n}},ar{X}+crac{s}{\sqrt{n}}
ight| \qquad P(-c\leq T\leq c)=1-lpha$$

## Confidence Intervals

- In this case  $\mu$  is in the confidence interval if and only if the p-value is less than the level of significance (this is not always the case with Confidence Intervals!)
- If we were to take samples and calculate a confidence interval for each one, then 95% of the time we would contain the population mean.
- Everytime we construct a confidence interval there is a 95% chance it will contain the population mean.
  - **NOT** for a *given* interval there is 95% chance it contains the mean.

$$\left|ar{X}-crac{s}{\sqrt{n}},ar{X}+crac{s}{\sqrt{n}}
ight| \qquad P(-c\leq T\leq c)=1-lpha$$