Rapid adaptation to parametric and natural stimuli along the visual pathway

Lan Luo

2022.04

Trade-off between information transmission and metabolic cost

>> Efficient coding hypothesis

maximizing mutual information between input and neuronal response using minimal number of spikes (Barlow, 1961)

Adaptation alters visual processing according to recent history

Characteristics of adaptation:

- Firing rate reduction
- Neuronal preference tuning bias

ISI: 0.25 s

Stim: 0.1 s ITI: 4 s

Kohn, 2007 page 4 of 25

Adaptation in V1 reduces redundancy of frequent stimulus & benefits coding efficiency

Increasingly sparse representations along the visual hierarchy

- V1 project to higher visual areas
- Sparse firing and sparse population coding in higher visual areas (Young & Yamane, 1992, Zhuang et al, 2017, Vinken et al, 2017)
- Hypothesis: increasing sparseness in higher visual area could be accompanied by increasing adaptation

Ventral visual pathway

Glickfeld & Olsen, 2017 page 6 of 25

Expectation

Adaptation increases from V1 to LM to LI

Adaptation to gratings increases along ventral visual pathway

V1 response to gratings: trace of grand trial average

Adaptation magnitude increases along ventral stream

$$Adaptation\ index = \frac{R_2 - R_1}{R_1 + epsilon}$$

But... shouldn't only use gratings

Higher visual areas better encode natural images

Spatial redundancy might open door for more adaptation

 Neural systems performing efficient coding should try to squeeze out all predictable information in the input (Atick & Redlich 1990, 1992)

>> reduce not only temporal, but also spatial correlational structure in the stimulus? (Weber et al. 2019)

overall redundancy level decreases

Expectation

Adaptation increases from low redundancy to high redundancy stimulus, e.g. from natural images to gratings

Adaptation to natural image in V1

Adaptation to grating is larger than natural images in V1

Why is adaptation heterogenous in neuronal population?

Allen Institute open source data

 S_1 S_2

Excitatory
Slc17a7-IRES2-Cre;CaMk2-tTA;
Ai93(GCaMP6f)

Similarly wide distribution of adaptation index in Allen Institute data

Representation in subpopulations with different adaptation

Expectation:

- tradeoff: neuronal population wants to retain information (e.g. about image identity) and simultaneously minimize spike number
- division of labor?
 - one subpopulation reduces activity after adaptation
 - the other encodes image identity

Analysis:

- data: response of each neuron in each trial
- split neurons into 2 groups by median of absolute adaptation index
- dimensionality reduction

Lower dimensional representation in less-adapting cells

Lower dimensional representation in less-adapting cells

Lower dimensional representation in less-adapting cells

Conclusion

- 1. Adaptation increases along the ventral visual pathway: from V1 to LM to LI
- as expected by increasingly sparse coding along visual hierarchy
- 2. Adaptation to natural images is smaller than adaptation to gratings in V1
- in accordance to more redundancy (to be squeezed out) in grating stimuli than natural images
- 3. Less adapting neurons might be encoding natural image identity in a lower dimensional space
- perhaps stable neuron subpopulation is responsible for encoding image identity, while adapting subpopulation is responsible for further sparsifying representation

Future direction

- Direct measure of efficiency of neural coding
- Investigate adaptation to natural images in higher visual area
- Explore what image features modulate adaptation magnitude

Acknowledgement

Lab members: Committee members:

Lindsey Glickfeld John Pearson

Celine Cammarata Greg Field

Jennifer Li Anita Disney

Camaron Mangham

Tammy Hawley Neuromatch Academy teammates:

Wenjuan Kong Caitlin Lienkaemper

Thomas (TJ) Wagner Max Gagnon

Devesh Shah Kelsey Allen

Megan Stone Jonathan Enders

Steven Ryu