**Theorem 33.6.** Given  $n \geq 2$  vector spaces  $E_1, \ldots, E_n$ , a tensor product  $(E_1 \otimes \cdots \otimes E_n, \varphi)$  for  $E_1, \ldots, E_n$  can be constructed. Furthermore, denoting  $\varphi(u_1, \ldots, u_n)$  as  $u_1 \otimes \cdots \otimes u_n$ , the tensor product  $E_1 \otimes \cdots \otimes E_n$  is generated by the vectors  $u_1 \otimes \cdots \otimes u_n$ , where  $u_1 \in E_1, \ldots, u_n \in E_n$ , and for every multilinear map  $f \colon E_1 \times \cdots \times E_n \to F$ , the unique linear map  $f_{\otimes} \colon E_1 \otimes \cdots \otimes E_n \to F$  such that  $f = f_{\otimes} \circ \varphi$  is defined by

$$f_{\otimes}(u_1 \otimes \cdots \otimes u_n) = f(u_1, \dots, u_n)$$

on the generators  $u_1 \otimes \cdots \otimes u_n$  of  $E_1 \otimes \cdots \otimes E_n$ .

*Proof.* First we apply the construction of a free vector space to the cartesian product  $I = E_1 \times \cdots \times E_n$ , obtaining the free vector space  $M = K^{(I)}$  on  $I = E_1 \times \cdots \times E_n$ . Since every basis generator  $e_i \in M$  is uniquely associated with some n-tuple  $i = (u_1, \ldots, u_n) \in E_1 \times \cdots \times E_n$ , we denote  $e_i$  by  $(u_1, \ldots, u_n)$ .

Next let N be the subspace of M generated by the vectors of the following type:

$$(u_1, \ldots, u_i + v_i, \ldots, u_n) - (u_1, \ldots, u_i, \ldots, u_n) - (u_1, \ldots, v_i, \ldots, u_n),$$
  
 $(u_1, \ldots, \lambda u_i, \ldots, u_n) - \lambda(u_1, \ldots, u_i, \ldots, u_n).$ 

We let  $E_1 \otimes \cdots \otimes E_n$  be the quotient M/N of the free vector space M by N,  $\pi: M \to M/N$  be the quotient map, and set

$$\varphi = \pi \circ \iota$$
.

By construction,  $\varphi$  is multilinear, and since  $\pi$  is surjective and the  $\iota(i) = e_i$  generate M, the fact that each i is of the form  $i = (u_1, \ldots, u_n) \in E_1 \times \cdots \times E_n$  implies that  $\varphi(u_1, \ldots, u_n)$  generate M/N. Thus, if we denote  $\varphi(u_1, \ldots, u_n)$  as  $u_1 \otimes \cdots \otimes u_n$ , the space  $E_1 \otimes \cdots \otimes E_n$  is generated by the vectors  $u_1 \otimes \cdots \otimes u_n$ , with  $u_i \in E_i$ .

It remains to show that  $(E_1 \otimes \cdots \otimes E_n, \varphi)$  satisfies the universal mapping property. To this end, we begin by proving there is a map h such that  $f = h \circ \varphi$ . Since  $M = K^{(E_1 \times \cdots \times E_n)}$  is free on  $I = E_1 \times \cdots \times E_n$ , there is a unique linear map  $\overline{f}: K^{(E_1 \times \cdots \times E_n)} \to F$ , such that

$$f = \overline{f} \circ \iota,$$

as in the diagram below.

$$E_1 \times \dots \times E_n \xrightarrow{\iota} K^{(E_1 \times \dots \times E_n)} = M$$

$$\downarrow_{\overline{f}}$$

$$F$$

Because f is multilinear, note that we must have  $\overline{f}(w) = 0$  for every  $w \in N$ ; for example, on the generator

$$(u_1, \ldots, u_i + v_i, \ldots, u_n) - (u_1, \ldots, u_i, \ldots, u_n) - (u_1, \ldots, v_i, \ldots, u_n)$$