Granice za Remzijeve brojeve i primene

Mihailo Milenković, Dejan Gjer, Bojana Čakarević15.1.2020

Contents

1	Uvod	3
2	Gornja ograničenja za Remzijeve brojeve	5
3	Donja ograničenja za Remzijeve brojeve	6
4	Primene Remziieve teoreme	7

1 Uvod

 $2^{\frac{k}{2}} \leq R(k,k)$ na osnovu Erdosevog dokaza [1]

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Za svaka dva broja l_1 i l_2 možemo pronaći prirodan broj n, takav da svai graf sa n brojem čvorova u sebi sadrži potpun podgraf sa l_1 čvorova ili njegov komplement sadrži podgraf sa l_2 nezavisnih čvorova.

Najmanji broj za koji ovo važi naziva se **Remzijev broj** i on se zapisuje kao R(l,k)

Tačne vrednosti Remzijevih brojeva se teško računaju i uglavnom su samo ograničeni intervalima. Trenutno je poznato 9 Remzijevih brojeva za $l_1, l_2 > 2$.

$R(l_1, l_2)$	1	2	3	
1	1	1	1	1
2	1	2	3	
3	1	3		
	1			

Table 1: $R(l_{1,2} = 1, 2$

$R(l_1, l_2)$	3	4	5	6
3	6	9	14	18
4	9	18		
5	14			
6	18			

Table 2: $R(l_{1,2} > 2)$

Teorema 1.1.

$$R(l_1, 1) = (1, l_2) = 1$$

Teorema 1.2.

$$R(l,2) = R(2,l) = l$$

2 Gornja ograničenja za Remzijeve brojeve

Teorema 2.1.

$$R(l_1, l_2) \le R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$$

Dokaz. Iz prethodne teoreme znamo da $R(2, l_1) = l_1$ i $R(2, l_2) = l_2$. Koristeći induciju potvrđujemo da ovo važi i za svako t i s takvo da $t \leq l_2$ i $s < l_2$ ili $s \leq l_1$ i $t < l_2$.

Pretpostavimo sada suprotno, tj. da važi tvrđenje $R(l_1, l_2) \geq R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$, odnosno da postoji graf sa $R(l_1, l_2)$ čvorova koji ne sadrži podgraf sa $l_1 - 1$ čvorova niti njegov komplement sadrži podgraf sa $l_2 - 1$ čvorova.

Neka je u proizvoljan broj čvorova grafa G, broj njemu susednih čvorova označićemo sa N, a broj nesusednih čvorova biće M. To se drugačije može zapisati kao $M = V(G) - N_G(u) - u$. Kako ne bi važilo da graf G sadrži podgraf sa $l_2 - 1$ čvorovamora da važi $N \leq R(l_2 - 1, l_1) - 1$, a samim tim i $M \leq R(l_2, l_1 - 1) - 1$. Ukupan broj čvorova n jednak je zbiru navedenog (čvora u, kao i njegovih susednih i nesusednih čvorova).

$$n = N + M + 1$$

$$n = R(l_2 - 1, l_1) - 1 + R(l_2, l_1 - 1) - 1 + 1$$

$$n = R(l_2 - 1, l_1) + R(l_2, l_1 - 1) - 1$$

Dobijeni izraz je kontradikcija, te sledi tačno tvrđenje ove teoreme.

Teorema 2.2.

$$R(l_1, l_2) \le {l_1 + l_2 - 2 \choose l_1 - 1}$$

Dokaz. Kod ovog dokaza koristićemo indukciju. Naša baza biće da dokažemo da nejednakost važi za $l_1=l_2=2,$ odnosno

$$R(2,2) \le \binom{2+2-2}{2-1}$$
$$\binom{2 \le 2}{1}$$
$$2 \le 2$$

Pretpostavimo sada da važi $\forall (l_1, l_2)$ pri čemu je $l_1 + l_2 \geq 4$.

$$\begin{aligned} l_1, l_2 &\geq 2 \\ l_1 + l_2 &= n + 1 \\ R(l_1, l_2) &\leq R(l - 1, l_2) + R(l_1, l_2 - 1) \\ R(l_1, l_2) &\leq \binom{l_1 - 1 + l_2 - 2}{l_1 - 1 - 1} + \binom{l_1 + l_2 - 1 - 2}{l_1 - 1} \end{aligned}$$

$$R(l_1, l_2) \le {l_1 + l_2 - 3 \choose l_1 - 2} + {l_1 + l_2 - 3 \choose l_1 - 1}$$
$$R(l_1, l_2) \le {l_1 + l_2 - 2 \choose l_1 - 1}$$

Prvu nejednakost dokazali smo , a samu jednakost upotreom Paskalovog identiteta $\binom{n}{l_2}=\binom{n-1}{l_2-1}+\binom{n-1}{l_2}.$

Teorema 2.3. Za $k \geq 2$ važi $R(l_1, l_2, ..., l_k) \leq 2 + \sum_{i=1}^k (R(l_1, l_2 ..., l_{i-1}, l_i - 1, l_{i+1}, ..., l_k) - 1)$

Neka su $l_1, l_2, l_3, ..., l_k \in \mathbb{N}$. Tada postoji neki Remzijev broj, neko n za koje važi $n \to (l_1, l_2, l_3, ..., l_k)$. Najmanje n za koje ovo važi označićemo kao $R(l)_k$.

Dokaz. Ovu teoremu dokazaćemo takođe indukcijom. Naša baza biće Remzijeva teorema za dve boje, odnosno k=2.

$$R(l_1, l_2) \le 2 + R(l_2 - 1, l_1) - 1 + R(l_2, l_1 - 1) - 1$$

 $R(l_1, l_2) \le R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$

3 Donja ograničenja za Remzijeve brojeve

Teorema 3.1. Neka su dati prirodni brojevi n i k, takvi da $n \ge k > 0$. Ako je

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < 1,$$

onda važi R(k,k) > n.

Dokaz. Posmatrajmo proizvoljno bojenje grana grafa K_n u dve boje - crvenu i plavu takvo da je verovatnoća da je grana uv u grafu obojena crvenom bojom jednaka verovatnoći da je obojena plavom bojom i iznosi

$$P(uv \text{ je crvena}) = P(uv \text{ je plava}) = \frac{1}{2}.$$

Prvo ćemo odrediti verovatnoću da je neki k-podskup K_k početnog grafa monohromatski. Sa M_s označimo događaj da je K_k monohromatski. Kako nam od svih mogućih bojenja ovog k-podskupa odgovaraju samo dva gde su sve grane isključivo crvene ili plave dobijamo da je

$$P(M_s) = 2\left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{1-\binom{k}{2}}.$$

Odredimo sada verovatnoću da se u celom K_n grafu nalazi monohromatski K_k podskup i označimo taj događaj sa A. U celom grafu ima $\binom{n}{k}$ ovakvih podskupova koje ćemo označiti sa S. Ipak pošto događaj da je neki K_k monohromatski nije nezavisan u odnosu na to da su ostali podskupovi S monhromatski dobijamo

$$P(A) = P(\bigcup_{|S|=k} M_S) \le \sum_{|S|=k} P(M_S) = \binom{n}{k} 2^{1-\binom{k}{2}}.$$

Iz ovoga sledi da ako je $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ onda važi i P(A) < 1, čime dobijamo da pri ovakvim bojenjima grafa K_n postojanje monohromatskog K_k nije garantovano, tj. postoji bojenje koje ga ne sadrži i odatle da je R(k,k) > n.

Teorema 3.2. Neka su dati prirodni brojevi n, k i l, takvi da $n \ge k > 0$ i $n \ge l > 0$. Ako za neki broj $p, 0 \le p \le 1$ važi

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}} < 1$$

onda je R(k, l) > n

Dokaz. Dokaz ove teoreme je sličan dokazu prethodne Teoreme 3.1. Neka je verovatnoća da je proizvoljna grana uv u grafu K_n crvena jednaka p. Tada je verovatnoća da je ona plava jednaka 1-p, pa možemo pisati

$$P(uv \text{ je crvena}) = p, P(uv \text{ je plava}) = 1 - p, \forall uv \in E(K_n)$$

Neka je S potpun k-elementan poskup, a T potpun l-elementan poskup grafa K_n . Označimo sa A_S događaj da je neki podskup S monohromatski crven, a B_T događaj da je poskup T monohromatski plav. Onda je ukupna verovatnoća da u grafu K_n postoji monohromatski obojen K_k u crveno ili K_l u plavo jednaka

$$P\left(\bigcup_{|S|=k} A_S \cup \bigcup_{|T|=l} B_T\right) \le \sum_{|S|=k} P(A_S) + \sum_{|T|=l} P(B_T) \le \binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}}$$

Ako postoji p za koji je krajnji izraz manji od 1, onda zaključujemo da postoji K_n koji sadrži potpuno crveni K_k ili potpuno plavi K_l , pa mora biti R(k,l) > n.

4 Primene Remzijeve teoreme

Teorema 4.1. Za svako $k \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za svako bojenje $\chi : \underline{n} \to \underline{k}$ postoje brojevi $x, y, z \in \underline{n}$ sa osobinom

$$x + y = z i \chi(x) = \chi(y) = \chi(z)$$

Dokaz. Neka je $n\in\mathbb{N},\,n+1\geq R(3)_k=\underbrace{(3,3,\ldots,3)}_{\text{k puta}}.$ Tada ono indukuje sledeće

bojenje:

$$\chi^* : [n+1]^2 \to \underline{k} : \{i,j\} \mapsto \chi(|i-j|)$$

Zbog $n+1 \to \underbrace{(3,3,\ldots,3)}_{\text{k puta}}$, postoje i_1,i_2 i i_3 obojeni istom bojom, odnosno

 $\chi^*(\{i_1, i_2\}) = \chi^*(\{i_1, i_3\}) = \chi^*(\{i_2, i_3\})$. Neka je:

$$x := i_1 - i_2, \ y := i_2 - i_3 \ i \ z := i_1 - i_3$$

Imamo
$$x, y, z \in \{1, \dots, n\}$$
 i $x - y = i_1 - i_2 + i_2 - i_3 = i_1 - i_3 = z$.

Teorema 4.2. Za sve $m \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za sve proste brojeve $p > n_0$ jednačina

$$x^m + y^m \equiv z^m \pmod{p}$$

ima netrivijalna rešenja. (Rešenje je trvijalno ako $x \cdot y \cdot z \equiv 0 \pmod{p}$)

Dokaz. Neka je $n_0 = R(3)_m + 1$. Neka je g generator grupe \mathbb{Z}_p^* (g postoji zbog cikličnosti grupe \mathbb{Z}_p^*). Svaki elemenat $x \in \mathbb{Z}_p^*$ možemo zapisati x kao g^a . Imamo a = mj + i, za $0 \le i < m$, tako da je $x = g^{mj+i}$. Posmatrajmo bojenje koje boji elemenat x skupa \mathbb{Z}_p^* u boju i ako je $x = g^{mj+i}$. Na osnovu Šurove teoreme (4.1), postoje a, b i c obojeni istom bojom, takvi da važi a + b = c, odnoso eksponenti a, b i c su kongrueni po modulu m. Dakle,

$$g^{mj_a+i} + g^{mj_b+i} = g^{mj_c+i}$$

Neka su $x=g^{j_a},\,y=g^{j_b}$ i $z=g^{j_c}.$ Množenjem gornje jednačine sa g^{-i} dobijamo $x^m+y^m=z^m$

Teorema 4.3. Za svaki prirodan broj $n \geq 3$ postoji broj N(n) takav da bilo koji skup od bar N tačaka u ravni u opštem položaju sadrži konveksan n-tougao

Dokaz. Za n=4 dokazaćemo da N=5 zadovoljava uslove. Posmatrajmo 5 tačaka A,B,C,DiE. Ako je najmanji konveksni mnogougao petougao ili četvorougao, dokaz je trivijalan. U suprotnom, neka je najmanji takav mnogougao trougao ABC. D i E se onda nalaze unutar ABC. 2 tačke od A,B i C se moraju nalaziti sa jedne strane prave DE. Neka su to A i C. Tada je ACDE traženi četvorougao.

Neka je X skup od bar $R_4(n,5)$ tačaka u opštem položaju. Na osnovu Remzijeve teoreme za hipergrafove $(\ref{eq:constraint})$ znamo da je ovaj broj konačan. Obojimo sve četvoročlane podskupove tačaka u plavo ako je četvorougao koje obrazuju konveksan ili u crveno ako je konkavan. Pošto ima ukupno $R_4(n,5)$ tačaka, mora postojati ili n-točlani skup tačaka čiji su svi četvoročlani podskupovi plave boje (konveksni) ili petočlani skup tačaka čiji su svi četvoročlani podskupovi crvene boje. Dokazali smo da među 5 tačaka u opštem položaju mora postojati konveksan četvorougao, dakle mora postojati n-točlani skup tačaka tako da su svi

četvorouglovi koje oni obrazuju knoveksni, odnosno konveksan n-toguao od n
 tačaka. Dakle traženi Npostoji i važ
i $N \leq R_4(n,5)$

References

- [1] Martin Aigner, Günter M. Ziegler. Proofs from The BOOK. Springer, 1998
- [2] Ronald L. Graham, Jaroslav Nešetřil, Steve Butler. The Mathematics of Paul Erdős II. Springer, 1990.