Equivalence Relations and Partial Orders CS 2LC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Equivalence Relations

- **Definition**. A relation *R* is an *equivalence relation* iff it is reflexive, symmetric, and transitive.
- In other words, $R \subseteq B \times B$ is an equivalence relation iff for all $b, c, d \in B$, $bRb \wedge (bRc \Leftrightarrow cRb) \wedge (bRc \wedge cRd \Rightarrow bRd)$.
- For example, equality = is an equivalence relation, while < is not.
- Alternative Definition. A relation $R \subseteq B \times B$ is an equivalence relation iff there exists a set C and function $f_R: B \to C$ such that $bRc \iff f_R(b) = f_R(c)$.
- We will prove equivalence of these two definitions later.
- An equivalence relation R on a set B partitions B into non-empty disjoint subsets.
- Notation. The most popular symbol used to denote an equivalence relation is

 . However in this textbook, the symbol

 is used to denote

 .

Equivalence Classes

Definition. Let R be an equivalence relation on B. Then
 [b]_R, the equivalence class of b, is the subset of elements of
 B that are equivalent (under R) to b:

$$x \in [b]_R \equiv xRb.$$

• In what follows, we eliminate the subscript R and write $[b]_R$ as [b] when it is obvious from the context what relation is meant.

Let R be an equivalence relation on B and let b, c be members of B. The following three predicates are equivalent:

- (a) bRc,
- (b) $[b] \cap [c] \neq \emptyset$, and
- (c) [b] = [c].

That is, $(bRc) = ([b] \cap [c] \neq \emptyset) = ([b] = [c]).$

Proof.

We can prove, in turn, (a) \Rightarrow (b), (b) \Rightarrow (c), and (c) \Rightarrow (a). Mutual implication and transitivity of \Rightarrow then give the equivalence of all three.

- (a) \Rightarrow (b): $bRc \Rightarrow (c \in [b] \land b \in [c]) \Rightarrow [b] \cap [c] \neq \emptyset$. A very detailed proof is in the textbook.
- (b) \Rightarrow (c): Let $x \in [b] \cap [c]$. Then bRxRc, so bRc (note that we actually have proved (b) \Rightarrow (a)!). Let $y \in [b]$. then yRbRc, so yRc, i.e. $y \in [c]$. Identically when starting with $y \in [c]$.
- (c) \Rightarrow (a): $[b] = [c] \Rightarrow c \in [b] \equiv cRb \equiv bRc$.
 - Thus, an equivalence relation on B induces a partition of B, where each partition element consists of equivalent elements.

Let P be the set of sets of a partition of B . The following relation R on B is an equivalence relation:

$$bRc = \exists (Q \mid p \in P : b \in Q \land c \in Q).$$

Proof.

We must show that p is reflexive, symmetric, and transitive. Reflexivity follows from the fact that each element is in one of the sets in P . Symmetry follows from the definition of R in terms of \land , which is symmetri Transitivity follows from the definition of the composition of relations \circ . A detailed proof in the textbook.

For every relation $R \subseteq B \times B$ the following two statements are equivalent

- (a) R is an equivalence relation, i.e., it is reflexive, symmetric and transitive;
- (b) There exists a set C and function $f_R: B \to C$ such that $bRc \iff f_R(b) = f_R(c)$.

Proof.

- (b) \Rightarrow (a) Since = it is reflexive, symmetric and transitive.
- (a) \Rightarrow (b) Define $C = B/_R$ and $f_R(b) = [b]_R$, for all $b \in B$.

Then from the two last theorems we have that R is an equivalence relation.

- An alternative definition from point (b) of the last theorem is usually used in applications.
- Quite often $C = \{true, false\}$ and f_R is just some predicate.
- The function f_R is often called invariant under R.

Some Properties of Equivalence Relation

• Let $R \subseteq B \times B$ is an equivalence relation. The set of all equivalence classes of R is denoted by B/R, i.e.

$$B/_R = \{[b] \mid b \in B\}$$

- For every equivalence relation R, = is a subset of R, i.e. = $\subseteq R$. Hence = is the *smallest* equivalence relation.
- For every x, $[x]_{=} = \{x\}$, so $|[x]_{=}| = 1$.
- Let R, Q be equivalence relations and $R \subseteq Q$. Then, for all $b \in B$, $[b]_R \subseteq [b]_Q$.
- Let R, Q be finite equivalence relations and $R \subseteq Q$. Then, $|B/R| \ge |B/Q|$.
- For finite B, |B/=| = |B|.
- In a natural language, the word "equal" is very often used instead of more precise "equivalent", the most famous example is "all people are equal".

Order Relations

Definition

A binary relation R on a set B is called a *partial order* on B if it is reflexive, antisymmetric, and transitive.

In other words, R is a partial order if for all $b, c, d \in B$, we have bRb, $(bRc \land cRb) \Rightarrow b = c)$ and $(bRc \land cRd \Rightarrow bRd)$. In this case, the pair (B, R) is called a partially ordered set or poset.

• We use the symbol \leq for an arbitrary partial order.

Examples of Partial Orders

- (a) (\mathbb{N}, \leq) is a poset and \leq is a partial order on \mathbb{N} .
- (b) Let B be a set. Then $\langle \mathcal{P}B, \subseteq \rangle$ is a poset and \subseteq is a partial order on $\mathcal{P}B$, since \subseteq is reflexive, antisymmetric, and transitive (Theorems (11.57)–(11.59) on page 207).
- (c) Consider the set C of courses offered at Cornell University. Define the relation \preceq by $c1 \preceq c2$ if courses c1 = c2 or if c1 is a prerequisite for c2. Then $\langle C, \preceq \rangle$ is a poset and \preceq is a partial order on C.
- (d) Let P be the set of loops in a Pascal program. Define \preceq on P by $l1 \preceq l2$ if loops l1 and l2 are the same or if l1 is nested within l2. Then $\langle P, \preceq \rangle$ is a poset and \preceq is a partial order on P.
- (e) In constructing a house, certain jobs have to be done before other jobs. Let J be the set of jobs to be done, and let ≤ on J be defined by j1 ≤ j2 if j1 and j2 are the same or if j1 has to be completed before j2 can be started. Then ⟨J, ≤⟩ is a poset. The scheduling of jobs in such situations, including redefining and ordering jobs in order to reduce time to completion, is sometimes referred to as PERT (Program Evaluation and Review Technique).

Hasse Diagrams

 If B is finite, the relation ≤ can be depicted as a Hasse diagram, as illustrated below, where b|c ≡ "b divides c".

- In Hasse diagram, a line is drawn from b up to c iff $b \leq c$ and no element d (other than b, c) satisfies $b \leq d \leq c$.
- The Hasse diagram for a partial order R actually presents the smallest relation R' such that $R = (R')^*$.
- Relation R' is called the *transitive reduction* of partial order R.

Strict/Sharp Partial Orders

Definition

Relation \prec is a *quasi order* or *strict/sharp partial order* if \prec is irreflexive and transitive, i.e. $b \not\prec b \land (b \prec c \prec d \Rightarrow b \prec d)$.

Theorem

- (a) If \leq is a partial order on B then $\leq \setminus id_B$ is a sharp partial order on B.
- (b) If \prec is a sharp partial order on B then $\prec \cup id_B$ is a partial order on B.
 - In mathematics

 is usually used, while in theoretical computer science and economy/management science (algorithms, concurrency, ranking, etc.)

 is usually used.

Total/Linear Orders

Definition

A partial order \leq over B is called a *total* or *linear* order if

$$\forall (b,c \mid : b \leq c \vee c \leq b),$$

i.e. iff $\leq \cup \leq^{-1} = B \times B$. In this case, the pair (B, \leq) is called a *linearly/totally ordered set* or a *chain*.

Examples of total orders and chains

- (a) \leq over the natural numbers is a total order, and $\langle \mathbb{N}, \leq \rangle$ is a chain.
- (b) \leq over the reals is a total order, and $\langle \mathbb{R}, \leq \rangle$ is a chain.
- (c) Let set S contain more than one element. Then \subseteq over $\mathcal{P}S$ is not a total order. For example, if b and c are distinct elements in S, then neither $\{b\} \subseteq \{c\}$ nor $\{c\} \subseteq \{b\}$ holds.
- (d) Let C be the set of courses at Cornell. Let $b \preceq c$ mean that b = c or b is a prerequisite for c. Relation \preceq is a partial order but not a total order.

Stratified/Weak Orders

• **Definition**. Let \leq be a partial order on B. We define a relation \sim_{\leq} on B, called *incomparability*, as follows:

$$b \curvearrowright_{\prec} c \equiv b \not\prec c \land c \not\prec b$$
.

Note that $b \not\prec b$, so $b \frown_{\preceq} b$, i.e. id_B is included in \frown_{\preceq} .

Definition

A partial order \leq on B is *stratified* (or *weak*) iff \sim_{\leq} is an equivalence relation.

• If \leq is a total order, then $\frown_{\leq} = id_B$, so every total order is stratified.

Let \leq be a stratified order on B. Define a relation \triangleleft_{\leq} on $B/_{\smallfrown_{\leq}}$ as follows

$$[b]_{\frown_{\preceq}} \triangleleft_{\preceq} [c]_{\frown_{\preceq}} \equiv b \preceq c.$$

The relation \lhd_{\prec} is a total order.

Proof.

Since \leq is a partial order, \lhd_{\leq} is a partial order as well. We just need to show that it is total. Take arbitrary [b] and [c] from $B/_{\frown_{\leq}}$. Clearly $b \leq c \lor c \leq b \lor b \frown_{\leq} c \equiv true$. Moreover $b \leq c \Rightarrow [b] \lhd [c]$, $c \leq b \Rightarrow [c] \lhd [b]$ and $b \frown_{\leq} c \Rightarrow [b] = [c]$, so \lhd is total.

• Stratified (or Weak) orders play important role in management science, especially in ranking theory.

Examples of Partial Orders

Well Founded Sets and Partial Orders

Recall:

- Element y is a minimal element of S iff $y \in$ and $\forall (x \mid x \prec y : x \notin S)$.
- (U, ≺) is well founded if every nonempty subset of U has a minimal element.

Theorem

Every well founded set (U, \prec) is a (sharp) partially ordered set.

Proof.

We have to prove that \prec is (a) irreflexive and (b) transitive.

- (a) Assume $b \prec b$ for some $b \in U$. Then the set $\{b\}$ does not have a minimum. Hence $b \not\prec b$.
- (b) Assume $b \prec c \prec d$. Consider the set $B = \{b, c, d\}$. Neither c nor d can be minimal as $b \prec c$ and $c \prec d$. On the other hand (U, \prec) is well founded, so $S = \{b, c, d\}$ has a minimal element. So, b must be minimal, which means $b \prec d$.

Lower/Upper Bounds

Definition (Lower)

Let S be a nonempty subset of poset (U, \prec) .

- (a) Element b of S is a minimal element of S if no element of S is smaller than b, i.e. if $b \in S \land \forall (c \mid c \prec b : c \notin S)$.
- (b) Element b of S is the least element of S if $b \in S \land \forall (c \mid c \in S : b \leq c)$.
- (c) Element b is a lower bound of S if $\forall (c \mid c \in S : b \leq c)$. (Element b need not be in S.)
- (d) Element b is the greatest lower bound of S, written glb(S), if b is a lower bound and if every lower bound c satisfies $c \leq b$.
 - A set may have more than one minimal element.
 - However, a set has at most one least element.
 - Minimal elements and least elements of a set belong to the set.
 - Lower bounds need not belong to the set.

Definition (Upper)

Let S be a nonempty subset of poset (U, \prec) .

- (a) Element b of S is a maximal element of S if no element of S is smaller than b, i.e. if $b \in S \land \forall (c \mid b \prec c : c \notin S)$.
- (b) Element *b* of *S* is the *greatest element* of *S* if $b \in S \land \forall (c \mid c \in S : c \leq b)$.
- (c) Element b is an upper bound of S if $\forall (c \mid c \in S : c \leq b)$. (Element b need not be in S.)
- (d) Element b is the *least upper bound* of S, written lub(S), if b is an upper bound and if every upper bound c satisfies $b \leq c$.
 - A set may have more than one maximal element.
 - However, a set has at most one greatest element.
 - Maximal elements and greatest elements of a set belong to the set.
 - Upper bounds need not belong to the set.

Examples of minimal and least elements

- (a) Set \mathbb{N} of poset (\mathbb{N}, \leq) has minimal element 0 and least element 0.
- (b) Set \mathbb{R} of poset $\langle \mathbb{R}, \leq \rangle$ has no minimal or least element. But subset $\{x \mid 0 \leq x\}$ has 0 as its minimal and least element.
- (c) Consider $\langle \mathbb{N}, | \rangle$, where $i \mid j$ means "i divides j". Subset $\{3, 5, 7, 15, 20\}$ has three minimal elements, 3, 5, and 7, but it has no least element. Subset $\{2, 4, 6, 8\}$ has minimal and least element 2.
- (d) Consider poset $\langle \mathcal{P}\{b,c\},\subseteq\rangle$, with Hasse diagram in Fig. 14.4. The elements of $\mathcal{P}\{b,c\}$ are \emptyset , $\{b\}$, $\{c\}$, and $\{b,c\}$. Its minimal and least element is \emptyset . The minimal and least element of subset $\{\{b\}\}$ is $\{b\}$. Subset $\{\{b\},\{c\}\}$; has two minimal elements, $\{b\}$ and $\{c\}$, and no least element.

Examples of lower bounds and greatest lower bounds

- (a) Consider poset $\langle \mathbb{R}, \leq \rangle$. Subset $S = \{x \mid 0 < x < 1\}$ has 0 and all nonnegative numbers for lower bounds. Its greatest lower bound is 0. But S has no least element. On the other hand, subset $T = \{x \mid 0 \leq x < 1\}$ has the same lower bounds and greatest lower bounds, but it has a least element: 0.
- (b) Consider poset $\langle \mathcal{P}\{b,c\},\subseteq\rangle$, with Hasse diagram in Fig. 14.4. Subset $\{\{b\}\}$ has \emptyset and $\{b\}$ for lower bounds, and its greatest lower bound is $\{b\}$. Subset $\{\{b,c\}\}$ has every element of $\mathcal{P}\{b,c\}$ as lower bound, and itself as its greatest lower bound.

Every finite nonempty subset S of poset (U, \preceq) has a minimal (maximal) element.

Proof.

For minimal element: Choose any element x_0 of S and construct a decreasing chain of elements of S: $x_n \prec \ldots \prec x_2 \prec x_1 \prec x_0$ (for some n) until no longer possible. Antisymmetry of \preceq implies that all elements of the chain are distinct. Since S is finite, this chain is finite. Element x_n is a minimal element of S. Similarly for maximal element.

Let B be a nonempty subset of poset (U, \prec) .

- (a) A least (greatest) element of B is also a minimal (maximal) element of B (but not necessarily vice versa).
- (b) A least (greatest) element of B is also a greatest lower bound (least upper bound) of B (but not necessarily vice versa).
- (c) A lower (upper) bound of B that belongs to B is also a least (greatest) element of B.

Proof.

Follows immediately from the definitions.

- Upper and lower bounds create a foundations of a special class of partial partial orders called "lattices".
- Lattice theory is a foundation of the theory of "fixed points",
 i.e. finding solutions to the equations F(x) = x, where
 F: X → X, and X is some set, not necessarily set on numbers, could be set of computations, languages, relations.
- For numbers, we prefer finding solution to $f(x_1, ..., x_n) = (0, ..., 0)$ (for example $ax^2 + bx + c = 0$, etc.), but zero has no equivalence in other non-numerical domains. For example *empty set* has some properties similar to zero properties, but not all.
- Theory of fixed points create a basis for *denotational* semantics of programming languages, one of the fundamental approaches to formal semantics of programming languages.

• What is a standard procedure for modelling in classical mathematics, physics, engineering, etc.

- What is a standard procedure for modelling in classical mathematics, physics, engineering, etc.
- Equations of the form:

$$F(\mathbf{x}) = 0$$

where \mathbf{x} is a vector of real or complex numbers.

- What is a standard procedure for modelling in classical mathematics, physics, engineering, etc.
- Equations of the form:

$$F(\mathbf{x}) = 0$$

where \mathbf{x} is a vector of real or complex numbers.

• What is x is not a vector of real or complex numbers?

- What is a standard procedure for modelling in classical mathematics, physics, engineering, etc.
- Equations of the form:

$$F(\mathbf{x}) = 0$$

where \mathbf{x} is a vector of real or complex numbers.

- What is x is not a vector of real or complex numbers?
- Fixed-point:

$$\mathbf{x} = F(\mathbf{x})$$

as *zero* does not have the same interpretation for sets or strings.

- What is a standard procedure for modelling in classical mathematics, physics, engineering, etc.
- Equations of the form:

$$F(\mathbf{x}) = 0$$

where \mathbf{x} is a vector of real or complex numbers.

- What is **x** is **not** a vector of real or complex numbers?
- Fixed-point:

$$\mathbf{x} = F(\mathbf{x})$$

as *zero* does not have the same interpretation for sets or strings.

• When we can solve $\mathbf{x} = F(\mathbf{x})$?

- What is a standard procedure for modelling in classical mathematics, physics, engineering, etc.
- Equations of the form:

$$F(\mathbf{x}) = 0$$

where \mathbf{x} is a vector of real or complex numbers.

- What is **x** is **not** a vector of real or complex numbers?
- Fixed-point:

$$x = F(x)$$

as zero does not have the same interpretation for sets or strings.

- When we can solve $\mathbf{x} = F(\mathbf{x})$?
- When the domain of x is a *complete lattice* and the function F(x) is *monotone*.

Lattices

Definition

- A poset (X, \leq) is called a **lattice** iff for all $a, b \in X$ both $lub(\{a, b\})$ and $glb(\{a, b\})$ exist.
- A poset (X, ≤) is called a complete lattice iff for each
 A ⊆ X both lub(A) and glb(A) exist.
- (\mathbb{Z}, \leq) is a lattice $lub(\{i, j\}) = \max\{i, j\}$ and $glb(\{i, j\}) = \min\{i, j\}$, for all integers i, j.
- (\mathbb{Z}, \leq) is not a complete lattice, since, for example, for the set $odd = \{i \mid : i \text{ is odd }\} \subseteq \mathbb{Z}$, neither lub(odd) nor glb(odd) exists.
- For every set X, a poset $(\mathcal{P}(X),\subseteq)$ is a complete lattice
- For every set X, a poset $(\mathcal{P}(X \times X), \subseteq) = (Rel(X), \subseteq)$ is a complete lattice

Monotone Functions

Definition

Let (X, \preceq) be a poset.

A function $f: X \to X$ is **monotone** iff $x \leq y \iff f(x) \leq f(y)$.

Theorem

Let (X, \preceq) be a complete lattice.

If $f: X \to X$ is monotone, then both the least fixed point and the greatest fixed point of x = f(x) do exist.

Lattice of Relations

Let X be a set and $Rel(X) = \mathcal{P}(X \times X)$ be the set of all relations on X.

Consider the *complete lattice* $(\mathcal{P}(X \times X), \subseteq)$, and the function $f : \mathcal{P}(X \times X) \to \mathcal{P}(X \times X)$ such that for every $x \subseteq X \times X$ (i.e. $x \in \mathcal{P}(X \times X)$),

$$f(x) = R \circ x \cup Q,$$

where $R, Q \subseteq \mathcal{P}(X \times X)$ and \circ is composition of relations.

- Note that $f(x) = R \circ x \cup Q$ is monotone, since if $x \subseteq y$ then $R \circ x \subseteq R \circ y$, so $f(x) \subseteq f(y)$.
- What is the fixed point of the equation x = f(x), i.e. the fixed point of

$$x = R \circ x \cup Q$$
.

Fixed Point of $x = R \circ x \cup Q$

Theorem

If $R, Q \subseteq X \times X$ then

- **1** $R^* \circ Q$ is the least solution of $x = R \circ x \cup Q$
- ② if $id_x \nsubseteq R$, i.e. the identity on X is not included in R, then $R^* \circ Q$ is the only solution of $x = R \circ x \cup Q$.

Proof.

First note that $R^0 = id_X$.

(1) $R \circ (R^* \circ Q) \cup Q = (R \circ R^* \cup id_X) \circ Q = R^* \circ Q$, so R^*Q is a solution. Let S be another solution, i.e. $S = R \circ S \cup Q$.

Hence $Q \subseteq S$ and $R \circ S \subseteq S$.

Note that $R \circ S \subseteq S \Longrightarrow R \circ R \circ S \subseteq R \circ S \subseteq S \Longrightarrow R^k \circ S \subseteq S$ for any $k \ge 1$, i.e. $R^* \circ S = (\bigcup_{i=0}^{\infty} R^k) \circ S = \bigcup_{i=0}^{\infty} (R^k \circ S) \subseteq S$. But $Q \subseteq S$ and $R^* \circ S \subseteq S$ imply $R^* \circ Q \subseteq S$, so $R^* \circ Q$ is the least solution.

(2) Opposite assumption leads to a contradiction.

The case of $id_X \subseteq R$

Consider the case $id_X \subseteq R$. Then

$$x = R \circ x \cup Q = (R \setminus id_X) \circ x \cup id_X \circ x \cup Q = (R \setminus id_X) \circ x \cup x \cup Q.$$

Let $R' = A \setminus id_X$. Hence we have:

Recall that $X \subseteq Y \iff Y = X \cup Y$, so if $R' \circ x \cup Q \subseteq x$ then the equation \spadesuit holds!

In particular, $x = X \times X$ works, since we always have:

$$X \times X \cup R' \circ (X \times X) \cup Q = X \times X$$

no matter what R' and Q are.

Thus $X \times X$ is the **greatest fixed point** of the equation $x = R \circ x \cup Q$, if $id_X \subseteq R$.

while T do S od - again

Consider the loop while T do S od

- Let D be the domain of all variables involved in this loop, $R \subseteq D \times D$ be a relation that model S, and I_T , \bar{I}_T be tests corresponding to T.
- Recall that I_T , \bar{I}_T are partial functions from D to D, and for each $x \in D$, we have

$$I_T(x) = \begin{cases} x & T \text{ is true} \\ \bot & \text{otherwise} \end{cases}$$
 $\bar{I}_T(x) = \begin{cases} (x & T \text{ is false} \\ \bot & \text{otherwise} \end{cases}$

• The meaning of the loop **while** *T* **do** *S* **od** can be expressed by the following *state machine diagram* :

Fixed Point model of while T do S od

 The meaning of the loop while T do S od can be expressed by the following state machine diagram(or finite automaton):

• This state machine can be modelled by the following *equation*:

$$\mathbf{x} = (I_T \circ R) \circ \mathbf{x} \cup \bar{I}_T.$$

- The above equation actually says that $I_T \circ R$ is a *loop invariant*.
- If $T \not\equiv true$, then $id_X \not\subseteq I_T$, so by Theorem from page 28, $(I_T \circ R)^* \circ \bar{I}_T$ is the only solution!
- Hence the loop **while** T **do** S **od** is represented by the relation $(I_T \circ R)^* \circ \bar{I}_T$.

Interval Orders

Definition

A partial order \leq on B is *interval* iff $a \prec c$ and $b \prec d$ implies $a \prec d$ or $b \prec c$, for all $a, b, c, d \in B$.

- In other words, a partial order

 is interval iff it does not contain

 4 as a suborder.
- Note that every stratified order is interval.

A partial order (X, \prec) is interval if and only if there is a total order (Y, \lhd) and two mappings, b, e: $X \to Y$, such that, for all $a, b \in X$:

- \bullet b(a) \triangleleft e(a),
- - Usually, b(a) is interpreted as the 'beginning', and e(a) as the 'end', of interval a.
 - If X has at least two elements and

 is not total, the mappings b, e: X → Y are not unique.

A partial order (X, \prec) is interval if and only if there is a total order (Y, \lhd) and two mappings, b, e: $X \to Y$, such that, for all a, b $\in X$: (a) $b(a) \triangleleft e(a)$, (b) $a \prec b \iff e(a) \triangleleft b(b)$

• For example \triangleleft'_3 that is derived from \triangleleft_3 by switching b(b) and b(c)also represents \prec_3 .

An Example of All Kinds of Partial Orders

- Interval orders play important role in concurrency theory and management science.
- It has been known for long time that any execution that can be observed by a single observer must be an interval order.