CLIPPEDIMAGE= JP02002039178A

PAT-NO: JP02002039178A

وقنعت بوج __ (الا

DOCUMENT-IDENTIFIER: JP 2002039178 A

TITLE: MAGNETIC BEARING DEVICE

PUBN-DATE: February 6, 2002

INVENTOR-INFORMATION:

NAME COUNTRY

SHINOZAKI, HIROYUKI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY EBARA CORP N/A

APPL-NO: JP2000227608

APPL-DATE: July 27, 2000

INT-CL (IPC): F16C032/04

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a magnetic bearing device capable of producing effects similar to those created by a magnetic flux feedback type power amplifier within a controller without the need to provide a magnetic flux sensor near an electromagnet, and without causing an increase in number of signal lines within a cable.

SOLUTION: The controlling magnetic bearing device, in which a supported body is levitated and supported by a magnetic force, includes a current sensor 11 for detecting a control current output by a power amplifier 7, and a displacement sensor 10 for detecting the displacement of the supported body 1. A control current detection signal Si of the current sensor 11 and a displacement

detection signal Sg of the displacement sensor 10 are input to the power amplifier 7 which passes a control current i through a solenoid coil 6, and an estimator 20 is provided for estimating, in response to the input signals, magnetic flux or magnetic flux density produced between the support side surface of an electromagnet 4 and the side of an electromagnet target 3 facing the body 1. A value estimated by the estimator 20 is fed back to the power amplifier 7.

COPYRIGHT: (C) 2002, JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-39178 (P2002-39178A)

(43)公開日 平成14年2月6日(2002.2.6)

(51) Int.Cl.7

識別記号

 \mathbf{F} I

テーマコード(参考)

F 1 6 C 32/04

F 1 6 C 32/04

A 3 J 1 0 2

審査請求 未請求 請求項の数3 〇L (全 9 頁)

(21)出願番号

特願2000-227608(P2000-227608)

(22)出願日

平成12年7月27日(2000.7.27)

(71)出願人 000000239

株式会社荏原製作所

東京都大田区羽田旭町11番1号

(72)発明者 篠崎 弘行

東京都大田区羽田旭町11番1号 株式会社

在原製作所内

(74)代理人 100087066

弁理士 熊谷 隆 (外1名)

Fターム(参考) 3J102 AA01 BA03 BA17 CA10 CA19

DA03 DA09 DB05 DB10 DB32

DB37 GA06

(54) 【発明の名称】 磁気軸受装置

(57)【要約】

【課題】 電磁石近傍に磁東センサを設ける必要がな く、ケーブル内の信号線の本数を増加させることがな く、コントローラ内で磁束フィードバック形パワーアン プと同等な効果が実現できる磁気軸受装置を提供するこ

【解決手段】 磁気力で被支持体を浮上支持する制御形 の磁気軸受装置において、パワーアンプラの出力制御電 流を検出する電流センサ11及び被支持体1の変位を検 出する変位センサ10とを具備し、電磁石コイル6に制 御電流 i を通電するパワーアンプ7に、電流センサ11 の制御電流検出信号Siと変位センサ10の変位検出信 号Sgを入力信号とし、該入力信号を受け支持体側の電 磁石4面と被支持体1側の電磁石ターゲット3間に発生 する磁束又は磁束密度を推定する推定器20を設け、該 推定器20の推定値をパワーアンプ7にフィードバック する。

【特許請求の範囲】

【請求項1】 磁気力を発生する支持体側の電磁石を具 備し、該支持体側の電磁石のコイルにパワーアンプより 制御電流を通電することにより発生する磁気力で被支持 体を浮上支持する制御形の磁気軸受装置において、

前記パワーアンプの出力制御電流を検出する電流センサ 及び前記被支持体の変位を検出する変位センサとを具備

前記支持体側電磁石のコイルに制御電流を通電するパワ ーアンプに、少なくとも前記電流センサの制御電流検出 10 信号と前記変位センサの変位検出信号を入力信号とし、 該入力信号を受け、前記支持体側の電磁石面と前記被支 持体側の電磁石ターゲット間に発生する磁束又は磁束密 度を推定する磁束又は磁束密度推定手段を設け、該磁束 又は磁束密度推定手段の推定値を前記パワーアンプにフ ィードバックすることを特徴とする磁気軸受装置。

【請求項2】 請求項1に記載の磁気軸受装置におい

前記電流センサの制御電流検出信号を前記パワーアンプ にフィードバックすることを特徴とする磁気軸受装置。 【請求項3】 請求項1に記載の磁気軸受装置におい て、

前記支持体側の電磁石のコイル電圧を検出する電圧セン サを設け、該電圧センサのコイル電圧検出信号を前記パ ワーアンプにフィードバックすることを特徴とする磁気 軸受装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は被支持体を磁気力で 浮上支持する磁気軸受装置に関し、特に高速回転機械 (例えば、ターボ分子ボンプ、遠心圧縮機等)、低速回 転ではあるが被支持体を非接触で支持することをメリッ トとした半導体デバイス製造装置用の回転機器、ガス循 環ファン等に好適な磁気軸受装置に関するものである。 [0002]

【従来の技術】制御形磁気軸受は、変位センサによっ て、被支持体との相対変位を検出し、所定の制御則によ って、制御電流を演算し、その演算結果に基づき電磁石 コイルに通電し電磁石を駆動するパワーアンプを備える 構成である。このパワーアンプの負荷特性は、負荷が電 40 磁石コイルであることから、遅れ特性であることは容易 に推測できる。この遅れ特性のため、周波数が高くなる ほど、パワーアンプ入力信号に対する制御電流との関係 に大きな遅れが発生する。

【0003】このような遅れ特性を改善するには、局部 的なフィードバック補償を施すことは古くからしばしば 行なわれ、従来3つの手法が知られている。一つは、電 磁石コイル電流を検出し、パワーアンプ入力にフィード バックする方法(これを「電流フィードバック形パワー アンプ」と呼ぶ)。2つ目は電磁石コイルに印加するコ 50 束φの伝達特性をも考慮して、改善しようとするもので

イル電圧を検出し、パワーアンプ入力にフィードバック する方法(これを「電圧フィードバック形パワーアン プ」と呼ぶ)。3つ目は、電磁石と被支持体のターゲッ ト間の間隙に発生する磁束を検出し、同じくパワーアン プ入力にフィードバックする方法(これを「磁東フィー ドバック形パワーアンプ」と呼ぶ)。

【0004】図1は電流フィードバック形パワーアンプ を採用した磁気軸受の構成例を示す図である。図1では 1軸分を抜き出して示している。図1において、1は被 支持体であり、該被支持体1には、センサターゲット2 と電磁石ターゲット3が設けられている。支持体(図示 せず)側にはこのセンサターゲット2、電磁石ターゲッ ト3のそれぞれに対応して変位センサ10、電磁石4が 設けられている。変位センサ10は変位センサアンプ9 に接続され、変位センサ10とセンサターゲット2の間 のギャップ長さgを示す変位検出信号Sgを出力する。 【0005】この変位検出信号Sgと目標指令信号eo とにより、被支持体1の目標浮上位置が与えられる。こ の目標浮上位置に非接触で浮上位置決めするための制御 則が補償器8にあり、補償器8の出力が制御指令信号S 1となる。この制御指令信号S1をパワーアンプ7に入 カし、制御指令信号S1に追従した制御電流iを電磁石 4の電磁石コイル6に通電する。この時、電磁石4はコ イル負荷=遅れ負荷であるため、入力信号に追従できな い。この遅れ特性を改善するため、電磁石コイル6の制 御電流主を電流センサ11で検出し、局部的フィードバ ックを行なっている。即ち、電流センサ11で検出した 制御電流検出信号Siを調整器1・2を介してパワーアン プ7の入力にフィードバック(負帰還)させている。

【0006】図2は電圧フィードバック形パワーアンプ を採用した磁気軸受の構成例を示す図である。同図にお いて、図1と同一符号を付した部分は同一又は相当部分 を示す。なお、他の図面においても同様とする。本磁気 軸受は電磁石4の電磁石コイル6に印加されるコイル電 圧を検出する電圧センサ13を設け、該電圧センサ13 で検出した検出電圧信号Svを調整器12を介してパワ ーアンプ7の入力にフィードバック(負帰還)させてい る。これにより、図1の磁気軸受と同様、遅れ負荷特性 の改善をしている。

【0007】図3は磁束フィードバック形パワーアンプ を採用した磁気軸受の構成例を示す図である。本磁気軸 受は、電磁石4の電磁石ヨーク5の電磁石ターゲット3 の対向面に磁束

を検出するホール素子等の磁束センサ 14を設け、該磁東センサ14の検出磁東信号Sφを調 整器12を介してパワーアンプ7の入力に負帰還させて いる。この磁束フィードバック形パワーアンプ方式は、 電磁石コイル6のコイル負荷に加え、電磁石4の電磁石 ヨーク5、電磁石ターゲット3を構成する磁性材料の特 性による電磁石コイル6に通電する制御電流 i と発生磁 ある。例えば、日本機械学会論文集(第一部)36巻2 84号(昭和45-4) P. 578に開示されているよ うな効果が知られている。

【0008】現在、工業的に多く実施されているもの は、電流フィードバック形パワーアンプを採用した磁気 軸受である。これは電磁石コイルのコイル電流は磁気軸 受内の安全性確保のために必要な検出パラメータであ り、コントローラ内でフィードバック系が閉じるなどの やり易さから、多く採用されている。しかしながら、電 磁石コイル電流とそれによって発生するはずの磁束が、 電磁石ヨークや電磁石ターゲットの磁気的、電気的特性 (ヒステリシス損、渦電流損)の影響によって遅れ特性 をもつことがあり、電流フィードバック形パワーアンプ ではこれを改善できないという問題がある。

【0009】上記のように、高速回転機械、低速回転で あるが被支持体を非接触で支持することをメリットとし た半導体デバイス製造装置用回転機器、ガス循環ファン 等の特殊環境下で用いる特殊環境用磁気軸受では、電磁 石ヨーク、電磁石ターゲットをソリッドな構造とする必 要があり、パワーアンプ入力指令信号と実際に発生する 磁束との遅れ現象が重大な問題となっている。また、よ り制御性能の高い磁気軸受の実現に対してもこの遅れ特 性の改善の必要がある。

【0010】磁気軸受の性能という点からは、図3に示 す構成の磁束フィードバック形パワーアンプを用いれば よいのであるが、磁束センサを新たに設ける必要がある こと、この磁束センサはコントローラ内ではなく、長い ケーブルで繋がれた磁気軸受の電磁石近傍に設ける必要 があるため、新たにケーブル内の信号線が増えるという 問題がある。仮に真空雰囲気中に用いる磁気軸受では、 信号線をハーメチックシールしたコネクタを介して大気 側に引き出す必要がある。このためコネクタピン数はで きるだけ少ないほうが好ましいが、ケーブル内の信号線 数が増えるということはこの要請に反することになる。 また、磁東センサに薄型のホール素子を用いると壊れ易 いという問題、二次コイル施工のスペースがない等の問 題がある。

[0011]

【発明が解決しようとする課題】本発明は上述の点に鑑 みてなされたもので、電磁石近傍に磁束センサを設ける 必要がなく、ケーブル内の信号線の本数を増加させるこ とがなく、コントローラ内で磁束フィードバック形パワ ーアンプと同等な効果が実現できる磁気軸受装置を提供 することを目的とする。

[0012]

【課題を解決するための手段】上記課題を解決するため 請求項1に記載の発明は、磁気力を発生する支持体側の 電磁石を具備し、該支持体側の電磁石のコイルにパワー アンプより制御電流を通電することにより発生する磁気

いて、パワーアンプの出力制御電流を検出する電流セン サ及び被支持体の変位を検出する変位センサとを具備 し、支持体側電磁石のコイルに制御電流を通電するパワ ーアンプに、少なくとも電流センサの制御電流検出信号 と変位センサの変位検出信号を入力信号とし、該入力信 号を受け支持体側の電磁石面と被支持体側の電磁石ター ゲット間に発生する磁束又は磁束密度を推定する磁束又 は磁束密度推定手段を設け、該磁束又は磁束密度推定手 段の推定値をパワーアンプにフィードバックすることを 特徴とする。

【0013】上記のように、磁束又は磁束密度推定手段 を設け、電流センサの制御電流検出信号と変位センサの 変位検出信号から、支持体側の電磁石面と被支持体側の 電磁石ターゲット間に発生する磁束又は磁束密度を推定 し、この推定値をパワーアンプにフィードバックするの で、磁束フィードバック形パワーアンプと同様、電磁石 コイルのコイル負荷に加え、電磁石の電磁石ヨークや電 磁石ターゲットを構成する磁性材料の特性による電磁石 コイルの制御電流と発生磁束の伝達特性をも考慮した改 善が可能であると共に、磁束又は磁束密度推定手段はコ ントローラ内に設けるので、ケーブル内の信号線の本数 を増加させる必要がない。

【0014】請求項2に記載の発明は、請求項1に記載 の磁気軸受装置において、電流センサの制御電流検出信 号をパワーアンプにフィードバックすることを特徴とす

【0015】上記のように、電流センサの制御電流検出 信号をパワーアンプにフィードバックする、従来の電流 フィードバック形パワーアンプ方式を請求項1に記載の 30 磁気軸受装置に負荷することにより、工業的信頼性を向 上させることができる。

【0016】請求項3に記載の発明は、請求項1に記載 の磁気軸受装置において、支持体側電磁石のコイル電圧 を検出する電圧センサを設け、該電圧センサのコイル電 圧検出信号をパワーアンプにフィードバックすることを 特徴とする。

【0017】上記のように、電圧センサのコイル電圧検 出信号をパワーアンプにフィードバックする、従来の電 圧フィードバック形パワーアンプ方式を請求項1に記載 40 の磁気軸受装置に負荷することにより、工業的信頼性を 向上させることができる。

[0018]

【発明の実施の形態】以下、本発明の実施の形態例を図 面に基づいて説明する。図4は本発明に係る磁気軸受装 置の構成例を示す図である。本磁気軸受装置は、被支持 体1のセンサターゲット2と電磁石ターゲット3のそれ ぞれに対応して変位センサ10、電磁石4が設けられて いる。変位センサ10は変位センサアンプ9に接続さ れ、変位センサ10とセンサターゲット2の間のギャッ 力で被支持体を浮上支持する制御形の磁気軸受装置にお 50 プ長さgを示す変位検出信号Sgを出力する。変位検出

内

信号Sgと目標指令信号eωとにより、被支持体1の目標浮上位置が与えられ、補償器8から制御指令信号S1がパワーアンプ7に出力される。

【0019】20は支持体側の電磁石ヨーク5の面と被支持体1の電磁石ターゲット3の間に発生する磁束又は磁束密度を推定する推定器である。該推定器20に電流センサ11で検出される制御電流検出信号Siと変位センサ10で検出された変位検出信号Sgが入力される。推定器20はこの制御電流検出信号Siと変位検出信号*

* Sgを入力信号として、電磁石ヨーク5の面と電磁石ターゲット3の間に発生する磁束φ又は磁束密度Bを推定し、この推定値をパワーアンプ7の入力に負帰還させている。なお、ゲイン等の調整も推定器20に含まれる。【0020】図5は電磁石の磁気回路について説明するための図である。図では、漏れ磁束が無視できるような磁気回路を例としている。図中、点線しは平均磁路を示す。漏れ磁束が無い場合の磁束密度Bは

B=iN/{
$$(2g/\mu_0) + (1_m/\mu_0\mu_{S1}) + (1_n/\mu_0\mu_{S2})$$
} [T]

となり、

$$(1_{\mathfrak{n}}/\mu_{0}\mu_{\$1}) + (1_{\mathfrak{n}}/\mu_{0}\mu_{\$2}) \ll (2\mathfrak{g}/\mu_{0}) \tag{2}$$

とおける場合には、

$$B = (\mu_0 i N) / (2g) [T]$$

と、概算で扱える。

【0021】ここで、N:電磁石コイルの巻数、A:電磁石ヨークの断面積、i:電磁石コイル6の電流、g:電磁石ヨーク端面と電磁石ターゲットの間のギャップ、la:電磁石ヨーク側の平均磁路長、In:電磁石ターゲット側の平均磁路長、B:磁束密度、φ:磁束(φ=B・A)、μ0:真空透磁率(大気でも同じ)、μs1:電磁石ヨーク側比透磁率、μs2:電磁ターゲット側比透磁率、である。

【0022】断面積Aの電磁石ヨーク5で、漏れ磁束が無い場合であるので、電磁石ヨーク5の端面と電磁石ターゲット3面の間のギャップgでの磁束がは、磁束密度Bと断面積Aの積に等しい。式(1)に磁束密度と他のパラメータとの関係を示す。電磁石ヨーク側比透磁率μ 電磁ターゲット側比透磁率μ 31、電磁ターゲット側比透磁率μ 32は磁束密度又は磁界の強さ日の大きさ、その変動周波数の変数である。従来はこれらを定数として扱うことで十分である用途が多かった。これが無視できないケースでは図3に示す構成の磁気フィードバック形パワーアンプを採用していた。

【0023】図6は電磁石のコイル電流と発生する磁束 又は磁束密度との一般的な伝達特性を示す図である。こ こでは、ゲインを省略し、位相特性を示す。図6におい て、曲線のは電磁石ヨークと電磁石ターゲットに珪素鋼※

$$B = K \cdot (i / g) \cdot f$$

$$\phi = B \cdot A$$

ここで、Kはゲイン定数で、電磁石コイル6の巻き数や調整ゲインである。fは図6に示した方法により、遅れ特性を模擬した模擬器の特性である。従って、少なくとも電磁石コイル6のコイル電流i(電流センサ11の制御電流検出信号Si)と、電磁石ヨーク5端面と電磁石ターゲット3の間のギャップg(変位センサ10の変位検出信号Sg)を入力すると磁束密度B相当の信号を得ることができる。また、磁束φと磁束密度Bの関係は式(5)の関係であるので、ゲイン定数Kに断面積Aを含めれば、磁束φ相当の信号を得る。

(3)

※板の積層構造を使用した場合、曲線のは同じく珪素鋼板の積層構造を用いているが駆動電圧が高い場合(駆動電圧が高い場合、鉄損が増えるので珪素鋼板の積層構造でものに比べて位相特性は劣化する)、曲線のは電磁石ヨの一クと電磁石ターゲットにソリッドな磁性材料を使用した場合を示す。

【0024】図6に示すように、コイル電流と発生する磁束又は磁束密度との伝達特性は遅れ特性であり、電磁石ヨークや電磁石ターゲットを構成する磁性材料や構造によって遅れ特性は異なる。特殊用途の磁気軸受の伝達特性は、図6の矢印Cに示す方向になり易い。

【0025】電磁石のコイル電流と、磁束を、磁束密度 Bとの位相遅れ伝達関数は、よく知られた、図7

(a)、(b)に示すようなローパスフィルタ等の伝達 関数式で表現することができる。また、実際のデータを カーブフィットし、式で得ることもできる。また、簡単 なアナログ回路で模擬できる場合もある。なお、図7 (a)は受動素子を用いたローパスフィルタの構成を示 し、図7(b)はオペアンプを用いたローパスフィルタ の構成を示す。

【0026】図8は上記推定器20の構成例を示す図である。上記式(1)や(3)の関係から、

(4)

(5)

★【0027】図4に示すように、磁束又は磁束密度を推定する推定器20を用いることで、磁束φの検出やケーブルの信号線数を増加させることなく、コントローラ内で磁束相当信号を得て、パワーアンプ7にフィードバックできる。また、推定器20に必要な入力信号は、従来の磁気軸受装置で既に持っている変位センサ10の変位検出信号Sgと電流センサ11の制御電流検出信号Siである。

【0028】図9は本発明に係る磁気軸受装置の構成例 ★50 を示す図である。本磁気軸受装置が図4に示す磁気軸受 装置と異なる点は調整器12を設け電流センサ11で検 出した制御電流検出信号Siを該調整器12を介してパ ワーアンプ7にフィードバックしている点である。即 ち、本磁気軸受装置は、図1に示す構成の従来の電流フ ィードバック形パワーアンプに、磁束又は磁束密度を推 定する推定器20を併用したものである。

【0029】図10は本発明に係る磁気軸受装置の構成 例を示す図である。本磁気軸受装置が図4に示す磁気軸 受装置と異なる点は、電磁石コイル6に印加されるコイ ル電圧を検出する電圧センサ13及び調整器12を設 け、該電圧センサ13で検出した検出電圧信号Svを調 整器12を介してパワーアンプ7にフィードバックして いる点である。即ち、本磁気軸受装置は、図2に示す構 成の従来の電圧フィードバック形パワーアンプに、磁束 又は磁東密度を推定する推定器20を併用したものであ

【0030】図11は一般的な磁気軸受を採用する装置 の構成を示す図である。磁気軸受用コントローラ100 と被支持体を浮上支持するのに磁気軸受を用いる磁気軸 受内蔵回転機械101とは、比較的長い(例えば、約2 Om)ケーブル102で接続されている。磁気軸受内蔵 回転機械101の磁気軸受から、変位センサ10の変位 検出信号Sg、電流センサ11で検出した制御電流検出 信号Si及び電圧センサ13で検出した検出電圧信号S vがケーブル102を介して磁気軸受用コントローラ1 00に伝送され、磁気軸受用コントローラ100のパワ ーアンプ7からの制御電流 i 等がケーブル102を介し て磁気軸受内蔵回転機械101に伝送される。

[0031]

【発明の効果】以上、説明したように各請求項に記載の 30 す図である。 発明によれば下記のような優れた効果が得られる。

【0032】請求項1に記載の発明によれば、磁東密度 推定手段を設け、電流センサの制御電流検出信号と変位 センサの変位検出信号から、支持体側電磁石面と被支持 体側電磁石ターゲット間に発生する磁束又は磁束密度を 推定し、この推定値をパワーアンプにフィードバックす るので、磁束フィードバック形パワーアンプと同様、電 磁石コイルのコイル負荷に加え、電磁石の電磁石ヨー ク、電磁石ターゲットを構成する磁性材料の特性による 電磁石コイルの電流と発生磁束の伝達特性をも考慮した 改善が可能であると共に、磁束密度推定手段はコントロ ーラ内に設けるので、ケーブル内の信号線の本数を増加 させる必要がない。

【0033】請求項2に記載の発明によれば、電流セン サの制御電流検出信号をパワーアンプにフィードバック する、従来の電流フィードバック形パワーアンプ方式を 請求項1に記載の磁気軸受装置に付加することにより、 工業的信頼性を向上させることができる。

【0034】請求項3に記載の発明によれば、電圧セン サのコイル電圧検出信号をパワーアンプにフィードバッ クする、従来の電圧フィードバック形パワーアンプ方式 を請求項1に記載の磁気軸受装置に付加することによ り、工業的信頼性を向上させることができる。

【図面の簡単な説明】

【図1】従来の電流フィードバック形パワーアンプを採 10 用した磁気軸受装置の構成例を示す図である。

【図2】従来の電圧フィードバック形パワーアンプを採 用した磁気軸受装置の構成例を示す図である。

【図3】従来の磁東フィードバック形パワーアンプを採 用した磁気軸受装置の構成例を示す図である。

【図4】本発明に係る磁気軸受装置の構成例を示す図で

【図5】磁気回路の各パラメータと磁束密度との関係を 示す図である。

【図6】コイル電流と発生磁束又は磁束密度との一般的 な伝達特性を示す図である。

【図7】図6の遅れ特性を模擬する方法についての説明 図である。

【図8】本発明に係る磁気軸受装置に用いる磁束又は磁 東密度を推定する推定器の構成例を示す図である。

【図9】本発明に係る磁気軸受装置の構成例を示す図で

【図10】本発明に係る磁気軸受装置の構成例を示す図 である。

【図11】一般的な磁気軸受を採用する装置の構成を示

被支持体

【符号の説明】

	_	100,000,111111
	2	センサターゲット
	3	電磁石ターゲット
	4	電磁石
	5	電磁石ヨーク
	6	電磁石コイル
	7	パワーアンプ
	8	補償器
40	9	変位センサアンプ
	1 0	変位センサ
	1 1	電流センサ
	12	調整器
	1 3	電圧センサ
	1 4	磁束センサ
	20	推定器

[図1]

従来の電流フィードバック形パワーアンプを採用した磁気軸受装置の構成例

【図2】

従来の電圧フィードバック形パワーアンプを採用した磁気輸受装置の構成例

【図3】

従来の磁東フィードパック形パワーアンプを採用した磁気軸受装置の構成例

本発明に係る磁気軸受装置の構成例

【図5】

N:コイル巻敷 A:ヨーク新面積 i:電流 g:ギャップ長さ lm:ヨーク側平均磁路長 ln:ターゲット側平均磁路長 B:磁東密度 中:磁東窓度 中: 英東のの透磁率 ルa:ヨーク側比透磁率 ルa:ヨーク側比透磁率 L:平均磁路

磁気回路の各パラメータと磁束密度との関係

【図6】

コイル電流と発生磁束又は磁束密度との一般的な伝達特性

【図9】

本発明に係る磁気軸受装置の構成例

【図10】

本発明に係る磁気軸受装置の構成例

【図11】

一般的な磁気軸受を採用する装置の構成