Image Processing Lab 3

許木羽 / 111000177

1. Project 04-01

From the general formula for 2D DFT as:

$$F(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) * e^{-2\pi i (\frac{ux}{N} + \frac{vy}{M})}$$

We can easily make this using for loops:

```
for u = 0:N-1
    for v = 0:M-1
    msum = 0;
    for x = 0:N-1
        for y = 0:M-1
        msum = msum + input(x+1, y+1) * exp(-2 * pi * 1i * (x*u/N + y*v/M));
    end
    end
    output(u+1, v+1) = msum;
end
end
```

However, it takes a long time, so we need to improvise.

First, we can calculate the exponential separately, as $e^{-2\pi i(\frac{ux}{N})}$ will be stored in 2D matrix U * X called power1, the same thing as $e^{-2\pi i(\frac{vy}{M})}$ as 2D as V * Y matrix, called power2, power(v, y) indicates exponent function power of (u, x) or (v, y). We will operate power1 * input to apply DFT for the horizontal direction, and the result is multiplied by power2 to apply DFT for vertical direction.

a) Original Image

b) Shrink to 1/4

c) Multiply by noise $F(x, y) = f(x, y) * (-1) ^ (x + y) =>$ "Right picture is zoomed"

d) Spectrum

e) Gaussian Low Pass Filter Spectrum

f) Spectrum product with GLPF

g) Image filtered by IFFT and using noise $F(x, y) = f(x, y) * (-1) ^ (x + y)$

Compared without original padding (3/4 black color), we will get image below. Notice the border doesn't have any shadow.

2. Project 04-02

For the mean, I compute the original image and got 0.8130, while the center of the spectrum, with radius of around 30 pixels is 0.82, and the spectrum average is 0.82 also.

3. Project 04-03

I implemented as the formula is:

$$F(x,y) = e^{-\frac{D(x,y)}{2*D_0^2}}$$

$$D(x,y) = (x - c_x)^2 + (y - c_y)^2$$

as c_x indicates center x and c_y indicates center y

Below is implementation of original image, to D0 = 10, 25, 75, 125, 200,and 400. (Left to right, up to down)

Original Image

D0 = 25

D0 = 75

D0 = 200

D0 = 400

4. Project 04-04

I implemented the same way as Gaussian Low Pass Filtering, but instead the output need an extra step, as F(x,y) = 1 - f(x,y) as f(x,y) is GLPF.

D0 = 25 and 120