

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Magnetic Wrap-up

Instructor: Dikun Yang Feb – May, 2020

Magnetic field lines

- Mass generates gravity potential and field
- Only positive mass*
- Field lines from infinity to mass (open path)
- Unit of acceleration g: m/s²

- Magnetic charges generate magnetic potential and field
- Positive charge and negative charge (stick together)
- Field lines from negative charge to positive charge (loop)
- Unit of B: Tesla

Magnetic Dipole

A vertical dipole and field lines

Earth's Magnetic Field

Complicated inside the earth near the core.

Outside the earth it looks like a magnetic field due to a dipole (bar magnet).

Earth's Magnetic Field

- A vector field
- How is the field described anywhere?
 - Orthogonal decomposition: X, Y, Z
 - Inclination, Declination, Magnitude

A Buried Dipole

Composite field:

B is a vector:

Total field:

$$B = B_0 + B_A$$

$$B = \{B_x, B_y, B_z\}$$

$$|\mathsf{B}| = |\mathsf{B}_0 + \mathsf{B}_\mathsf{A}|$$

A Buried Dipole

Composite field:

B is a vector:

Total field:

$$B = B_0 + B_A$$

$$B = \{B_x, B_y, B_z\}$$
 $|B| = |B_0 + B_A|$

$$|\mathbf{B}| = |\mathbf{B}_0 + \mathbf{B}_A|$$

Anomalous Field

- Measured data $|\mathbf{B}| = |\mathbf{B}_0 + \mathbf{B}_A|$
- Remove the influence of B₀
- The total field anomaly:

$$|\Delta \mathbf{B}| = |\mathbf{B}| - |\mathbf{B}_0|$$

• If $|B_A| \ll |B_0|$ then

$$|\triangle \vec{B}| = |\vec{B}_0 + \vec{B}_A| - |\vec{B}_0|$$

$$\simeq \vec{B}_A \cdot \hat{B}_0$$

$$= |\vec{B}_A| \cos \theta$$

Induced Magnetization

 Earth materials are built up of minerals that behave as small bar magnets

Induced Magnetization

- Strength of each magnet: the magnetic dipole moment m_i
- Magnetization: net "density" of small bar magnets
- Note: every m_i has its own direction, so M can be zero when the magnets are randomly oriented

$$\vec{M} = \frac{\Sigma \vec{m}_i}{Volume}$$

Small magnets align with fields of a larger magnet to have a non-zero total magnetic moment.

Susceptibility

Physical understanding

- Microscopic: ability for the small bar magnets in a rock to re-orient to form a large magnet when an external magnetic field is applied.
- Macroscopic: how much additional magnetic field can be excited (a dimensionless factor)?

$$\vec{M} = \frac{\Sigma \vec{m}_i}{Volume}$$

$$\vec{M}=\kappa\vec{H}$$

Zero susceptibility

Weak susceptibility

Strong susceptibility

Magnetic Susceptibility

Induced Magnetic Dipole Applet

geosci-labs/ MagneticDipoleApplet.ipynb

Types of Magnetization

Induced:

- Same direction as B₀
- Depend on inducing field and susceptibility

Remanent:

 Memorize external field direction when cooled down

Remanent Magnetization

- Magnetic material cooling through Curie temperature (~550 °C) acquires a magnetic field in the direction of the earth's field.
- Final magnetization sum of induced and remnant magnetizati $ec{m}=ec{m}_I+ec{m}_R$

Remanent Magnetism

Small scale: UXO, rebar, drums

Large scale: geologic units.
 Sea floor spreading

Three Ingredients in Magnetic

- Inducing field (B₀)
 - Uniform and strong
- Induced field
 - From present-day magnetization
 - Small object behaves like a dipole
 - Induced magnetization in the same direction as B₀
 - Field (usually small) proportional to B₀
 - A linear relation susceptibility
- Remanent field
 - From ancient magnetization
 - Independent of B₀ (can be large)

Magnetometers

- Total field |B|
 - Proton precession (NMR)
 - Cesium vapour magnetometer
- Vector field B_x, B_y, B_z
 - Fluxgate
 - Hall effect
 - SQUID: superconducting quantum interference devices

Magnetic sensors to acquire data

Multi-scale Nature of Magnetic Field

Assumptions used in this conceptual model?

- B₀ is constant in space
- B₀ is constant in time
- A single magnetized body sufficiently small for dipole approximation
- Non-magnetic outside of the body

Time Variations of the Earth's Field

- External sources
 - Solar wind (micro-seconds, minutes, hours)
 - Solar storms (hours, days, months)
- Man made sources
 - Power lines (50/60 Hz plus harmonics) DC
 - Motors, generators, electronic equipment
- Internal sources
 - Fluctuations in core (days millions of years)

Base station correction

- Set out another magnetometer (base station)
- Assume time-dependent variations at the base stations are the same as at the observation location
- Synchronize the times
- Perform a correction by subtraction

Regional Removal

- Any magnetic measurement is superposition of fields from many objects at different scales
- Example: magnetic data for UXO could include

• Regional removal (assuming no magnetic objects larger than a certain length scale)

Regional Removal

Before: details about the deposit masked by the regional field

After: target of interest better revealed

$$\Delta B = B^{obs} - B^{regional}$$

Upward Continuation

- Low-pass filter: remove shortwavelength signals from small near-surface objects
- As if data are measured at higher elevations
- Highlight regional trends

Reduction to Pole (RTP)

- Same object buried at the center of the map
- Inclination determines the direction of magnetization we may observe different patterns
- RTP: process the data as if the inducing field (B₀) is purely vertical (at poles)

Inclination=0

Inclination=45

Inclination=90

Heat and Disorientation

Magnetic Anomaly – Magnetized Objects

Total-field anomaly

$$|\triangle \vec{B}| = |\vec{B}_0 + \vec{B}_A| - |\vec{B}_0|$$

$$\simeq \vec{B}_A \cdot \hat{B}_0$$

$$= |\vec{B}_A| \cos \theta$$

Sources of Magnetization

UXO (Unexploded Ordnance)

Magnetic Survey

Induced or Remanent?

A UXO anomaly map:

- Dipole field on the surface
- Induced or remanent?
- How can we tell it's a UXO?

Parameterization

Following parameters uniquely define a dipole:

- Position (X, Y, Z)
- Total dipole moment vector (M_T) from induced and remanent (Mx, My, Mz)

Dipole Model Inversion

- Six parameters m = [X, Y, Z, Mx, My, Mz]
- Data inversion: search the parameter space to find a particular combination of [X, Y, Z, Mx, My, Mz] that reproduces the dipole pattern on the map
- Automatic search or manual data fitting

Easting = -0.13 m; Northing = 0.16 m

Depth = 0.26 m; Moment = 0.0226 Am^2

Azimuth = 37° ; Dip = 28.8°

Fit quality = 0.95

Use the recovered dipole parameters to identify UXO

Practical Issues

Build a Long Rod using Dipoles

- N and S inside the rod cancel out
- Net negative and positive charge at two ends
- Only "see" one charge if the rod is vertical and long
- A **monopole** anomaly (field lines determined by a single magnetic charge)

Build a Complex Body

Superposition: Sum up contribution from each dipol

$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \left(rac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^5} - rac{\mathbf{m}}{r^3}
ight)$$

Arbitrarily Shaped Objects

Can you think of any potential problem with this integration approach?

Arbitrary Magnetic Dipole Applet

Divide the earth into many cells that contribute to the data on surface

- Each cell has a constant but unknown susceptibility (induced magnetization only)
- Each cell has an unknown magnetization vector (induced and/or remanent magnetization)

Magnetic Survey for Archaeology

The site Nebbe Castle consists of three low hills. Magnetic surveying has been carried out on all of them (view from the north).

Magnetic perspective map of the Nebbe Castle.

http://www.gemsys.ca/wp-content/uploads/2013/04/10_Years_of_Overhauser_for_Archaeology.pdf

Ekati Diamond Property, Northwest Territories

Data Processing: Regional Removal

Misery Pipe

Data Around Misery Pipe

After regional removal

- Local anomaly showing reversely magnetized body (remanent)
- Removal of the regional field to enhance the target (ready for inversion)

Inversion Result

Geology from drilling

Inverted model

Nowicki et al. (2004)

Summary of Magnetic

- Magnetization: Induced (susceptibility) and remanent (heat)
- Magnetic dipole field
- TMI anomaly data on surface (projection to B_0)
- Superposition
- Applications: military, archaeology, resource, engineering, etc.