Cap 4– Cálculo integral em \mathbb{R}^n

M.Isabel Caiado (icaiado@math.uminho.pt)

Abril 2019

MIEInf-2018'19 1 / 22

4.1 Integrais duplos e volumes

Definição de integral duplo

Funções integráveis

Integração em regiões gerais

Volume e área

Nesta secção a função $f:D\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$ é limitada:

 $|f(x,y)| < M, \qquad \text{para algum} \, M \in \mathbb{R}.$

MIEInf-2018'19 2 / 22

Motivação

Seja R o retângulo $[a,b] \times [c,d]$ e $f:R \longrightarrow \mathbb{R}$ tal que

$$f(x,y) \ge 0$$
 em R .

A superfície definida por z=f(x,y) e os planos

$$x = a$$
, $x = b$, $y = c$, $y = d$

formam a fronteira de uma região de \mathbb{R}^3 ,

▶ [Problema] Determinar o volume da região do espaço compreendida entre o retângulo R e o gráfico da função f.

MIEInf-2018'19 3 / 22

Definição de integral duplo

Seja $R = [a, b] \times [c, d]$ e $f: R \longrightarrow \mathbb{R}$.

Considere-se uma subdivisão de [a,b] em n subintervalos

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b;$$

lacktriangle Considere-se uma subdivisão [c,d] em k subintervalos

$$c = y_0 < y_1 < \dots < y_{k-1} < y_k = d;$$

Às divisões anteriores corresponde uma subdivisão do retângulo R em $n \times k$ retângulos $R_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}];$

- ightharpoonup Denote-se $\Delta x_i = x_{i+1} x_i$ e $\Delta y_j = y_{j+1} y_j$;
- lacktriangle A área do retângulo R_{ij} é então $\Delta A_{ij} = \Delta x_i \, \Delta y_j$.
- Para cada retângulo R_{ij} escolha-se um ponto $(\widetilde{x}_i, \widetilde{y}_j)$;

MIEInf-2018'19 4 / 22

▶ O volume do paralelipípedo de base R_{ij} e altura $f(\widetilde{x}_i, \widetilde{y}_j)$ é

$$f(\widetilde{x}_i,\widetilde{y}_j)\Delta A_{ij}$$

▶ O volume do sólido limitado por R e pelo gráfico de f pode ser aproximado por

$$\sum_{i=0}^{n-1} \sum_{j=0}^{k-1} f(\widetilde{x}_i, \widetilde{y}_j) \, \Delta A_{ij}.$$

MIEInf-2018'19 5 / 22

A soma de Riemann de f relativa à subdivisão anterior de R é o número

$$\sum_{i=0}^{n} \sum_{j=0}^{k} f(\widetilde{x}_i, \widetilde{y}_j) \, \Delta A_{ij}$$

[Definição] Quando $n,k\longrightarrow\infty$ o valor da soma de Riemann de f designa-se por integral duplo de f em R e denota-se

$$\iint_R f(x,y)\,dA \quad \text{ou} \quad \iint_R f(x,y)\,dx\,dy \quad \text{ou} \quad \iint_R f(x,y)\,d(x,y).$$

• Se existir o integral duplo de f em R, diz-se que f é integrável em R.

MIEInf-2018'19 6 / 22

Funções integráveis

- 1. Toda a função contínua definida num retângulo fechado é integrável.
- 2. Seja $f:R\longrightarrow \mathbb{R}$ uma função limitada no retângulo R e suponha-se que os pontos de descontinuidade de f pertencem à união finita de gráficos de funções contínuas. Então f é integrável.

MIEInf-2018'19 7 / 22

Propriedades dos integrais duplos

Sejam $f, g: R \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ duas funções integráveis no retângulo R. Então:

1.
$$\iint_R [f(x,y) + g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA;$$

2.
$$\iint_{R} \lambda \ f(x,y) \, dA = \lambda \ \iint_{R} f(x,y) \, dA, \qquad \lambda \in \mathbb{R};$$

3.
$$\iint_R f(x,y)dA = \iint_{R_1} f(x,y)dA + \iint_{R_2} f(x,y)dA, R = R_1 \cup R_2;$$

4.
$$f \ge g \Longrightarrow \iint_R f(x,y) dA \ge \iint_R g(x,y) dA$$
;

•
$$f \ge 0 \Longrightarrow \iint_R f(x,y) \, dA \ge 0;$$

5.
$$\left| \iint_R f(x,y) \, dA \right| \le \iint_R |f(x,y)| \, dA.$$

MIEInf-2018'19 8 / 22

Como calcular um integral duplo?

► [Teorema de Fubini 1]

Seja f uma função contínua no retângulo $R = [a,b] \times [c,d]$. Então

$$\iint_R f(x,y) \, dA = \int_a^b \left[\int_c^d f(x,y) \, \frac{\mathrm{d} y}{\mathrm{d} y} \right] \, \mathrm{d} x = \int_c^d \left[\int_a^b f(x,y) \, \mathrm{d} x \right] \, \frac{\mathrm{d} y}{\mathrm{d} y}.$$

MIEInf-2018'19 9 / 22

Exemplo

▶ Calcular o integral, onde R é o retângulo $[0,1] \times [1,2]$,

$$\iint_R (x^3 + y^2) d(x, y).$$

MIEInf-2018'19 10 / 22

► [Teorema de Fubini 2]

Seja f uma função limitada no retângulo $R=[a,b]\times [c,d]$ e suponha-se que os pontos de descontinuidade de f pertencem à união finita de gráficos de funções contínuas.

Se $\int_{c}^{d} f(x,y) \, dy$ existe para cada $x \in [a,b]$ então o integral duplo

$$\int_a^b \left[\int_c^d f(x,y) \, \frac{\mathrm{d} y}{\mathrm{d} y} \right] \, \mathrm{d} x \quad \text{existe e} \quad \int_a^b \left[\int_c^d f(x,y) \, \frac{\mathrm{d} y}{\mathrm{d} y} \right] \, \mathrm{d} x = \iint_R f(x,y) \, \mathrm{d} A.$$

De modo análogo, se $\int_a^b f(x,y)\,dx$ existe para cada $y\in [c,d]$ então o integral duplo

$$\int_c^d \left[\int_a^b f(x,y) \, dx \right] \, dy \quad \text{existe e} \quad \int_c^d \left[\int_a^b f(x,y) \, dx \right] \, dy = \iint_R f(x,y) \, dA.$$

Se todas as condições se verificam em simultâneo

$$\int_a^b \left[\int_c^d f(x,y) \, \frac{dy}{dy} \right] \, dx = \int_c^d \left[\int_a^b f(x,y) \, dx \right] \, \frac{dy}{dy} = \iint_R f(x,y) \, dA.$$

MIEInf-2018'19 11 / 22

Exercícios:: 1 [Folha 5]

1. Seja R o retângulo $[0,1] \times [1,3]$. Calcule

(a)
$$\iint_R y e^{xy} dA$$

MIEInf-2018'19 12 / 22

Integração em regiões gerais de \mathbb{R}^2

Região do tipo I

$$a \le x \le b$$
$$\varphi_1(x) \le y \le \varphi_2(x)$$

Região do tipo II

$$c \le y \le d$$

 $\mu_1(y) \le x \le \mu_2(y)$

MIEInf-2018'19 13 / 22

Regiões elementares de \mathbb{R}^2

► [Região do tipo I]

$$a \le x \le b$$

 $\varphi_1(x) \le y \le \varphi_2(x)$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo I de \mathbb{R}^2 , ou verticalmente simples, se existe um intervalo [a,b] e duas funções

$$\varphi_1: [a,b] \longrightarrow \mathbb{R}$$
 e $\varphi_2: [a,b] \longrightarrow \mathbb{R}$,

 $\varphi_1, \varphi_2 \in \mathscr{C}^1(]a,b[)$ tais que

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x)\}$$

Neste caso,

$$\iint_{\mathcal{D}} f(x, y) \, dx \, dy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \, dy \right] \, dx.$$

MIEInf-2018'19 14 / 22

► [Região do tipo II]

$$c \le y \le d$$

 $\mu_1(y) \le x \le \mu_2(y)$

• $\mathcal{D} \subset \mathbb{R}^2$ diz-se uma região do tipo II de \mathbb{R}^2 , ou horizontalmente simples, se existe um intervalo [c,d] e duas funções

$$\mu_1:[c,d]\longrightarrow \mathbb{R}$$

$$\mu_1:[c,d]\longrightarrow \mathbb{R} \qquad \mathsf{e} \qquad \mu_2:[c,d]\longrightarrow \mathbb{R}$$

 $\mu_1,\mu_2\in\mathscr{C}^1([c,d[)$ tais que

$$\mathcal{D} = \{ (x, y) \in \mathbb{R}^2 : c \le y \le d, \ \mu_1(y) \le x \le \mu_2(y) \}$$

Neste caso.

$$\iint_{\mathcal{D}} f(x,y) dx dy = \int_{c}^{d} \left[\int_{\mu_{1}(y)}^{\mu_{2}(y)} f(x,y) dx \right] dy.$$

lackbox [Região do tipo III] $\mathcal{D}\subset\mathbb{R}^2$ diz-se uma região do tipo III de \mathbb{R}^2 se for, simultaneamente, uma região do tipo I e do tipo III.

> MIEInf-2018'19 15 / 22

Exemplo

1. Para cada uma das seguintes regiões D escreva $\iint_D f \, dA$ na forma de dois integrais iterados

MIEInf-2018'19

Exemplo

Calcular

$$\iint_{\mathcal{D}} xy \, dx \, dy$$

quando

$$\mathcal{D} = \{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le x^2 \}.$$

- a) Usando uma região verticalmente simples.
- b) Usando uma região horizontalmente simples.

MIEInf-2018'19 17 / 22

Observação

- Antes de calcular um integral duplo é aconselhável fazer um esboço da região de integração.
- A ordem de integração $dx\,dy$ corresponde a uma subdivisão "vertical"da região de integração, enquanto que a ordem $dy\,dx$ corresponde a uma subdivisão é "horizontal".
- ► A alteração da ordem de integração pode permitir calcular um integral que de outra forma não era possível:

•
$$\int_0^1 \int_u^1 e^{x^2} dx dy$$
.

MIEInf-2018'19 18 / 22

Exercícios:: 2 [Folha 5]

1. Calcule os seguintes integrais esboçando as regiões de integração

(a)
$$\int_{1}^{2} \int_{2x}^{3x+1} dy dx$$
; (b) $\int_{0}^{1} \int_{1}^{e^{y}} (x+y) dx dy$;

2. Esboce a região de integração e inverta a ordem de integração em cada um dos seguintes integrais

(a)
$$\int_{-2}^{2} \int_{0}^{4-x^{2}} f(x,y) \, dy \, dx$$
(b)
$$\int_{-1}^{1} \int_{0}^{4-x^{2}} f(x,y) \, dy \, dx$$
(c)
$$\int_{0}^{1} \int_{0}^{\sqrt{x}} f(x,y) \, dy \, dx + \int_{1}^{2} \int_{0}^{2-x} f(x,y) \, dy \, dx$$
(d)
$$\int_{-2}^{0} \int_{0}^{y+2} f(x,y) \, dx \, dy + \int_{0}^{2} \int_{0}^{\sqrt{2-y}} f(x,y) \, dx \, dy$$

MIEInf-2018'19 19 / 22

Volume e área

la Se $f:B\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ é não negativa e integrável em B e S é a região do espaço definida por

$$S = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in B, \ 0 \le z \le f(x, y)\}$$

define-se o volume de S por

$$vol(S) = \iint_B f(x, y) \, dA.$$

la Se $f:B\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ é a função constante f(x,y)=1 a área de B é dada por

$$\operatorname{área}(S) = \iint_B 1 \, dA$$

MIEInf-2018'19 20 / 22

1. Represente graficamente o conjunto e calcule a sua área

$$D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2 \land x \le y \le x^2\}$$

MIEInf-2018'19 21 / 22

Exercícios:: 3 [Folha 5]

- 1. Determine a área limitada pelas curvas definidas por $x^2+y^2=2x$, $x^2+y^2=4x$, y=x e y=0.
- 2. Calcule o volume do sólidos limitado pelo parabolóide definido por $z=4-x^2-y^2$ e pelo plano definido por z=0.

MIEInf-2018'19 22 / 22