Evaluating downscaled precipitation data in Collier County

Robert Trainor, Andy Travieso, Paul Munoz, Connor Hilbert

Precipitation data is critical for:

- Water resource management
- Flood control
- Agriculture
- Climate resilience

Collier County:

- Subtropical climate
- Seasonal rainfall variability
- Vulnerable to hurricanes and heavy storms

https://indianapublicmedia.org/amomentofscience/what-causes-heavy-rain.php

Importance of downscaling

- Transforms coarse-resolution climate model outputs
- Provides higher-resolution data for local applications
- Two types:
 - Statistical downscaling
 - Dynamical downscaling
- Captures local topography, land use, and microclimates

Validation

- Downscaled data must be evaluated against observed rainfall
- Observed data sources:
 - Ground-based weather stations

 $https://www.researchgate.net/figure/llustration-of-spatial-downscaling-and-upscaling_fig2_335651129$

Objectives

- Evaluate accuracy and reliability of downscaled precipitation datasets
- Compare with measured rainfall from Collier County stations
- Identify errors
- Assess performance under local climate conditions

Methodology Overview

- Precipitation values extracted and spatially subsetted to Collier County (South Florida)
- Selected multiple downscaled datasets from Climate Models
 - ACCESS-CM20, BCC-CSM2-MR, CNRM-ESM2-1, MPI-ESM1-2-HR, MRI-ESM2-0, NorESM2-MM
- Missing values interpolated, units standardized
- Statistical evaluation against observed data using:
 - o Correlation coefficient, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Coefficient of Determination (R^2)
- Q-Q Plots, with a 1:1 reference line, are used to compare distributions
- Computations performed using:
 - o numpy, scipy, sklearn.metrics
- Visualization with:
 - o matplotlib, seaborn

Station	Best Model(s)	Reasoning
BCA15	NorESM2-MM, MPI-ESM1-2-HR	Highest R ² (0.97), lowest RMSE (1.82, 2.14)
951EXT_R	NorESM2-MM, MRI-ESM2-0	High R ² (0.95), low RMSE (~2.43)
BCNPA4_R	NorESM2-MM, MPI-ESM1-2-HR	Consistently better R ² and RMSE
BCA17	NorESM2-MM, MPI-ESM1-2-HR	Best R ² (0.94), RMSE (2.31)
BCA18	NorESM2-MM, MPI-ESM1-2-HR	Top R ² (0.96), lowest RMSE (2.07)
COCO1_R	CNRM-ESM2-1, MPI-ESM1-2-HR	Very high R ² (0.97), lowest RMSF (1.75–1.81)

Future Climate Impact Studies in Southwest Florida

- The NorESM2-MM and MPI-ESM1-2-HR models consistently outperform others, suggesting they should be prioritized for regional climate projections.
- Some models show consistent **positive ME**, indicating a tendency to **overpredict** conditions
 - o COCO1_R
- **High R² and low RMSE** values mean these models are more reliable in simulating observed climate data
 - Important for long-term planning
 - Infrastructure
 - Coastal Development
 - Water Resource Management
 - Flooding