Hongli (Bob) Zhao

⋈ honglizhaobob@uchicago.edu 🗓 LinkedIn: Hongli (Bob) Zhao

06/2021 - Ph.D. in Computational and Applied Mathematics.

06/2026 The University of Chicago

• Awards: Physical Sciences Division McCormick Fellowship, International House Fellowship (Expected)

■ Societies: Maroon Capital Executive Board, Graduate Council A&P Fund, Dean's Student Advisory Committee

08/2018 - B.A. Applied Mathematics, Data Science.

GPA: 4.00/4.00.

05/2021 University of California, Berkeley

Awards: Highest Honors in General Scholarship (Top 3%), Highest Honors in Applied Mathematics, Dean's List (Top 10%), SURF Letters & Sciences Research Fellowship, Phi Beta Kappa

• Societies: ASUC Chief Financial Office, Berkeley Investment Group, Computer Science Mentors

Technical Skills & Activities

Programming: Python (Pandas, PyTorch, TensorFlow), Julia, C++, R, Java, SQL, MATLAB, Git, Bash, Linux, Excel Coursework: Numerical methods, Linear Statistical Models, Nonlinear Optimization, Machine Learning Theory, Stochastic Calculus Competitions: 2023 Schonfield PhD Datathon (2nd place), 2023 Akuna Capital Options 201, 2021 West Coast Citadel DataOpen

Professional Experience

Quant Strategist Summer Associate, GOLDMAN SACHS ASSET MANAGEMENT

New York City, 06 - 08/2024

 Portfolio Backtesting: Productionized a backtesting and hypothesis testing framework (Python) for private equity portfolios with \$279B effective value. Reduced risk by identifying 4% of active positions with data issues; findings presented and used for internal model validation. Quant Research Mentee, J.P. MORGAN CHASE (EQUITY DERIVATIVES GROUP) New York City, 06 - 08/2024

- Deep Learning: Implemented ensemble and attention-LSTM (PyTorch) for financial time series forecasting with GARCH adjusted return feature, improving out-of-sample accuracy by 15% compared to LSTM. Authored a 17 page report used for mentorship training.
- Option Pricing: Developed C++ modules for European & American options pricing using tree-based and dynamic programming approach. Givens Associate, Argonne National Laboratory (MCS Division) Lemont, IL 05/2023 - 03/2024
- Physics-Informed Machine Learning: Developed physics informed neural networks (PyTorch) for Fokker Planck equations, achieved 70% Monte Carlo sample reduction for efficient simulations of large power system models. Authored and submitted 2 publications in 3 months. Quant Trading Intern, FINALYZE CAPITAL, LLC, Chicago, IL 06 - 09/2022
- Systematic Strategies: Developed and backtested SMA confluence and cointegrated pairs trading for low frequency currency futures.
- Hyperparameter Optimization: Proposed a mixed-variable particle swarm optimization parallelized hyperparameter search over different markets. Achieved a 75% runtime reduction on Sharpe maximization of pairs trading compared to Bayesian search.
- · Reinforcement Learning: Applied deep Q-networks to develop RLPack, a plug-in trading strategy adaptive training framework. Achieved an average of 6% annualized excess return (15% maximum) out-of-sample across 15 currency pairs in a pairs trading strategy.

Selected Manuscripts

Continuous-Time Overlapping Schwarz Scheme for PDE-constrained Optimal Control

Hongli Zhao, Mihai Anitescu

Submitted to SIAM Optimization

 Proposed a novel approach for long-horizon optimal control using path-space optimization with adjoint equations. Developed a Julia module for distributed solutions. Improved runtime from cubic to linear compared to nonlinear optimization with discrete variables.

Scalable Maximum Likelihood Estimation over Graphs

Hongli Zhao, Yian Chen, Mihai Anitescu

 Developed a method for large-scale parameter inference of Gaussian processes on manifolds. Implemented Julia library, GPHodlr.jl (2000+ lines of functional code), using hierarchical matrices for scalable linear algebra, achieving log-factor runtime and storage reduction.

Tensorizing-Flows: A Tool for Variational Inference

Submitted to JMLR

Hongli Zhao, Michael Lindsey, Yuehaw Khoo

[arxiv:2305.02460] [DSI Summer School].

o Pioneered an improvement to deep normalizing flow for high-dimensional data with tensor network ansatz. Developed fast sampling algorithm scaling linearly in dimensions. Achieved > 80% reduction in evidence lower bound compared to ResNet with physics applications.

High-dimensional density estimation with tensorizing flow

[Springer Research in Mathematical Sciences]

Yinuo Ren, Hongli Zhao, Yuehaw Khoo, Lexing Ying

Developed tensor network sketching algorithm scaling linearly in dimensions and theory for compressing Markov graphical models in physics.

Data-driven Assimiation and Closures of Multiscale Stochastic Dynamics

Tyler Maltba, Hongli Zhao, Daniel Adrian Maldonado

[arxiv:2312.10243] accepted at SIAM Scientific Computing

 Developed a data-driven finite volume numerical solver for learning Fokker-Planck equations from stochastic dynamics data. Collaborated with Los Alamos and Argonne National Lab on reduced-order simulations of multiscale stochastic power system models.

Leadership & Academic Experience

Mentorship: UChicago Math Directed Reading, UChicago CAM PhD Symposium, Berkeley Education Opportunity Program Teaching Assistant: Numerical Analysis, Numerical PDEs, Machine Learning, Data Science Research & Discovery, Data Structures Volunteering: Microsoft TEALS 2021–2022 (AP intro to CS), Google Summer of Code (SageMath), Journal Reviewer (IJUQ) Workshops: Speaker at 2023 SIAM Dynamical Systems, ICERM 2023, AI & Dynamics Common Task Framework 2023