

CS378 Introduction to Data Mining

Data Exploration and Data Preprocessing

Li Xiong

Data Exploration and Data Preprocessing

- Data and Attributes
- Data exploration
- Data pre-processing

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
 Objects
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Types of Attributes

- Categorical (qualitative)
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
- Numeric (quantitative)
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

The type of an attribute depends on which of the following properties it possesses:

```
■ Distinctness: = ≠
```

- Multiplication: * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ^2 test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Discrete and Continuous Attributes

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - Examples: zip codes, counts, or the set of words in a collection of documents
 - Often represented as integer variables.
 - Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight.
 - Continuous attributes are typically represented as floating-point variables.
- Typically, nominal and ordinal attributes are discrete attributes, while interval and ratio attributes are continuous

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

Record Data

- Data that consists of a collection of records, each of which consists of a fixed set of attributes
- Points in a multi-dimensional space, where each dimension represents a distinct attribute
- Represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married 120K N		No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single 85K		Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Document Data

- Document-term matrix
 - Each document is a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	n <u>wi</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
 - each record (transaction) has a set of items
 - transaction-item matrix vs transaction list

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Data Exploration and Data Preprocessing

- Data and Attributes
- Data exploration/summarization
 - Summary statistics
 - Graphical description (visualization)
- Data pre-processing

Summary Statistics

- Summary statistics are quantities, such as mean, that capture various characteristics of a potentially large set of values.
 - Measuring central tendency how data seem similar, location of data
 - Measuring statistical variability or dispersion of data how data differ, spread

Mean (sample vs. population): $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \mu = \frac{\sum_{i=1}^{x} w_i x_i}{\sum_{i=1}^{n} w_i}$ Measuring the Central Tendency

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \sum_{i=1}^{n} x_i$$

- Trimmed mean: chopping extreme values

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Median

- Middle value if odd number of values, or average of the middle two values otherwise
- Mode
 - Value that occurs most frequently in the data
 - Mode may not be unique
 - Unimodal, bimodal, trimodal
- Which ones make sense for nominal, ordinal, interval, ratio attributes respectively?

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

The Long Tail

- Long tail: low-frequency population (e.g. wealth distribution)
- The Long Tail [Anderson]: the current and future business and economic models
 - Empirical studies: Amazon, Netflix
 - Products that are in low demand or have low sales volume can collectively make up a market share that rivals or exceeds the relatively few bestsellers and blockbusters

- The Long Tail. Chris Anderson, Wired, Oct. 2004
- The Long Tail: Why the Future of Business is Selling Less of More. Chris Anderson. 2006

Computational Issues

- Different types of measures
 - Distributed measure can be computed by partitioning the data into smaller subsets. E.g. sum, count
 - Algebraic measure can be computed by applying an algebraic function to one or more distributed measures. E.g. ?
 - Holistic measure must be computed on the entire dataset as a whole. E.g. ?
- Ordered statistics (selection algorithm): finding kth smallest number in a list. E.g. min, max, median
 - Selection by sorting: O(n*logn)
 - Linear algorithms based on quicksort: O(n)

Measuring the Dispersion of Data

- Dispersion or variance: the degree to which numerical data tend to spread
- Range and Quartiles
 - Range: difference between the largest and smallest values
 - Percentile: the value of a variable below which a certain percent of data fall
 - Quartiles: Q₁ (25th percentile), Median (50th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q₁, M, Q₃, max (Boxplot)
 - Outlier: usually, a value at least 1.5 x IQR higher/lower than Q3/Q1
- Variance and standard deviation (sample: s, population: σ)
 - Variance: sample vs. population (algebraic or holistic?)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

■ Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Data Exploration and Data Preprocessing

- Data and Attributes
- Data exploration
 - Summary statistics
 - Visualization
 - Online Analytical Processing (OLAP)
- Data pre-processing

Graphic Displays of Basic Statistical Descriptions

- Boxplot
- Histogram
- Scatter plot

Boxplot Analysis

- The ends of the box are first and third quartiles (Q1 and Q3), i.e., the height of the box is IRQ
- The median (M) is marked by a line within the box
- Whiskers: two lines outside the box extend to Minimum and Maximum

Demo:

http://www.shodor.org/interactivate/activities/BoxPlot/

Histogram Analysis

- Univariate (one attribute) vs multivariate
- Data partitioned into disjoint buckets
 - Unsupervised (typically equal-width)
 - Supervised
- A set of rectangles that reflect the counts or frequencies of values at the bucket (bar chart)

Demo:

http://www.shodor.org/interactivate/activities/Histogram/

Scatter plot

- Displays values for two numerical attributes (bivariate data)
- Each pair of values plotted as a point in the plane
- can suggest correlations between variables with a certain confidence level: positive (rising), negative (falling), or null (uncorrelated).

Data Exploration and Data Preprocessing

- Data and Attributes
- Data exploration
- Data pre-processing
 - Data cleaning
 - Data integration
 - Data transformation
 - Data reduction

Data Quality Issues

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=" "
 - noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthday="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records
 - duplicate: containing duplicate records

How to Handle Missing Values?

- Missing data mechanism
 - Missing completely at random
 - Missing at random
 - Missing not at random
- Techniques to handle missing data
 - Ignore the tuple (deletion)
 - Fill in the missing value (imputation)
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based prediction methods (discussed later)

How to Handle Noisy Data?

- Noise: random error or variance in a measured variable
- Binning and smoothing
 - sort data and partition into bins (equi-width, equi-depth)
 - then smooth by bin mean, bin median, bin boundaries, etc.
- Regression (discussed later)
 - smooth by fitting the data into a function with regression
- Clustering (discussed later)
 - detect and remove outliers that fall outside clusters
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Simple Discretization Methods: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Data Exploration and Data Preprocessing

- Data and Attributes
- Data exploration
- Data pre-processing
 - Data cleaning
 - Data integration
 - Data transformation
 - Data reduction

Data Integration

- Data integration: combines data from multiple sources into a unified view
- Architectures
 - Data warehouse (tightly coupled)
 - Federated database systems (loosely coupled)
- Database heterogeneity
 - Semantic integration

Data Warehouse Approach

Advantages and Disadvantages of Data Warehouse

- Advantages
 - High performance
 - Can operate when sources unavailable
 - Extra information at warehouse
 - Modification, summarization (aggregates), historical information
 - Local processing at sources unaffected
- Disadvantages
 - Data freshness
 - Difficult to construct when only having access to query interface of local sources
 - Privacy/security constraints

Federated Systems / Federated learning

Advantages and Disadvantages of Federated Systems

- Advantage
 - No need to copy and store data at mediator
 - More up-to-date data
 - Privacy/security advantage
- Disadvantage
 - Performance
 - Source availability
 - Convergence

Semantic Integration

- Problem: reconciling semantic heterogeneity
- Levels
 - Schema matching (schema mapping)
 - e.g., A.cust-id ≡ B.cust-#
 - Data matching
 - e.g., Bill Clinton = William Clinton
- In practice, 60-80% of resources spent on reconciling semantic heterogeneity in data sharing project

Schema Matching

- Techniques
 - Rule based
 - Learning based
- Type of matches
 - 1-1 matches vs. complex matches (e.g. list-price = price *(1+tax_rate))
- Information used
 - Schema information: element names, data types, structures, number of sub-elements, integrity constraints
 - Data information: value distributions, frequency of words
 - External evidence: past matches, corpora of schemas
 - Ontologies. E.g. Gene Ontology
- Multi-matcher architecture

Data Matching (entity resolution, record linkage)

- Techniques
 - Rule based
 - Probabilistic Record Linkage (Fellegi and Sunter, 1969)
 - Similarity between pairs of attributes
 - Combined scores representing probability of matching
 - Threshold based decision
 - Machine learning approaches
- New challenges
 - Complex information spaces
 - Multiple classes

Data Exploration and Data Preprocessing

- Data and Attributes
- Data exploration
- Data pre-processing
 - Data cleaning
 - Data integration
 - Data transformation
 - Data reduction

Data Transformation

- Aggregation: sum/count/average
 - E.g. Daily sales -> monthly sales
- Discretization (continuous -> discrete)
 - E.g. age -> youth, middle-aged, senior
- (Statistical) Normalization: scaled to fall within a small, specified range
 - E.g. income vs. age
 - Not to be confused with database normalization and text normalization
- Attribute construction: construct new attributes from given ones
 - E.g. birthday -> age

Normalization

- scaled to fall within a small, specified range
- Min-max normalization: [min_A, max_A] to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

- Ex. Let income [\$12,000, \$98,000] normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- Z-score normalization (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

■ Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$

Data Exploration and Data Preprocessing

- Data and Attributes
- Data exploration
- Data pre-processing
 - Data cleaning
 - Data integration
 - Data transformation
 - Data reduction

Data Reduction

- Why data reduction?
 - A database/data warehouse may store terabytes of data
 - Number of data points
 - Number of dimensions
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
 - Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results

Data Reduction

- Instance reduction
 - Sampling (instance selection)
 - Numerocity reduction
- Dimension reduction
 - Feature selection
 - Feature extraction
- Data compression

Instance Reduction: Sampling

- Sampling: obtaining a small representative sample s to represent the whole data set N
 - A sample is representative if it has approximately the same property (of interest) as the original set of data
- Statisticians sample because obtaining the entire set of data is too expensive or time consuming.
- Data miners sample because processing the entire set of data is too expensive or time consuming

- Sampling method
- Sampling size

Why sampling

A statistics professor was describing sampling theory

Student: I don't believe it, why not study the whole population in the first place?

The professor continued explaining sampling methods, the central limit theorem, etc.

Student: Too much theory, too risky, I couldn't trust just a few numbers in place of ALL of them.

The professor explained the Nielsen television ratings

Student: You mean that just a sample of a few thousand can tell us exactly what over 250 MILLION people are doing?

Professor: Well, the next time you go to the campus clinic and they want to do a blood test...tell them that's not good enough ...tell them to TAKE IT ALL!!"

Sampling Methods

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample - the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions (stratum); then draw random samples from each partition
- Cluster sampling
 - When "natural" groupings are evident in a statistical population; sample a small number of clusters

Simple random sampling without or with replacement

Stratified Sampling Illustration

Raw Data

Stratified Sample

Sampling Size

Sample Size

 What sample size is necessary to get at least one object from each of 10 groups.

Data Reduction

- Instance reduction
 - Sampling (instance selection)
 - Numerosity reduction
- Dimension reduction
 - Feature selection
 - Feature extraction

Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Regression
- Non-parametric methods
 - Do not assume models
 - Histograms, clustering

January 25, 2018 54

Regress Analysis

- Assume the data fits some model and estimate model parameters
- Linear regression: $Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p$
 - Line fitting: $Y = b_1 X + b_0$
 - Polynomial fitting: $Y = b_2 x^2 + b_1 x + b_0$
- Regression techniques
 - Least square fitting
- Regression analysis will be studied in depth later for prediction

Instance Reduction: Histograms

Divide data into buckets and store average (sum) for each bucket

Partitioning rules:

Equi-width: equal bucket range

Equi-depth: equal frequency

V-optimal: with the least frequency variance

January 25, 2018 56

Instance Reduction: Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multi-dimensional index tree structures
- Cluster analysis will be studied in depth later

January 25, 2018 57

Data Reduction

- Instance reduction
 - Sampling (instance selection)
 - Numerosity reduction
- Dimension reduction
 - Feature subset selection
 - Feature extraction/transformation

Feature Subset Selection

- Select a subset of features by removing irrelevant, redundant, or correlated features such that mining result is not affected
- Irrelevant features
 - contain no information that is useful for the data mining task at hand
 - Example: students' ID is often irrelevant to the task of predicting students' GPA
- Redundant or correlated features
 - duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
 - Correlation analysis

Correlation between attributes

- Correlation measures the linear relationship between variables
 - Does not necessarily imply causality

Correlation Analysis (Numerical Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_{A}\sigma_{B}} = \frac{\sum (AB) - n\overline{A}\overline{B}}{(n-1)\sigma_{A}\sigma_{B}}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(AB)$ is the sum of the AB dot-product.

- $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's)
- $r_{A,B} = 0$: independent
- r_{A,B} < 0: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the Pearson correlation from -1 to 1.

Correlation Analysis (Categorical Data)

- Contingency table of two attributes A and B
- X² (chi-square) statistic tests the hypothesis that A and B are *independent*

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

 X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like_science_fiction and play_chess are correlated in the group (10.828 needed to reject the independence hypothesis at₆0.0001 significance level)

Feature Selection

- Filter approaches:
 - Features are selected independent of data mining algorithm
 - E.g. Minimal pair-wise correlation/dependence, top k information entropy
- Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset
 - E.g. best classification accuracy
- Embedded approaches:
 - Feature selection occurs naturally as part of the data mining algorithm
 - E.g. Decision tree classification

Data Reduction

- Instance reduction
 - Sampling
 - Aggregation
- Dimension reduction
 - Feature selection
 - Feature extraction/creation

Feature Extraction

- Create new features (attributes) by combining/mapping existing ones
- Common methods
 - Principle Component Analysis
 - Singular Value Decomposition
- Other compression methods (time-frequency analysis)
 - Fourier transform (e.g. time series)
 - Discrete Wavelet Transform (e.g. 2D images)

Principal Component Analysis (PCA)

- Principle component analysis: find the dimensions that capture the most variance
 - A linear mapping of the data to a new coordinate system such that the greatest variance lies on the first coordinate (the first principal component), the second greatest variance on the second coordinate, and so on.

Steps

- Normalize input data: each attribute falls within the same range
- Compute k orthonormal (unit) vectors, i.e., principal components each input data (vector) is a linear combination of the k principal component vectors
- The principal components are sorted in order of decreasing "significance"
- Weak components can be eliminated, i.e., those with low variance

Dimensionality Reduction: PCA

- Mathematically
 - Compute the covariance matrix Cov(X, Y) = E[(X E[X])(Y E[Y])],
 - Find the eigenvectors of the covariance matrix correspond to large eigenvalues $A\mathbf{v} = \lambda \mathbf{v}$.

$$\begin{array}{cccc}
(3,4) & & & & \\
(1,2) & & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

$$M = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{array} \right]$$

$$\begin{array}{c}
(3,4) \\
\bigcirc \\
(1,2) \\
\bigcirc \\
\bigcirc \\
(2,1)
\end{array}$$

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \qquad M^{\mathrm{T}}M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \qquad M^{\mathrm{T}}M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix}$$

$$\lambda = 58$$
 and $\lambda = 2$

$$E = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \qquad M^{\mathrm{T}}M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix}$$

$$\lambda = 58 \text{ and } \lambda = 2$$

$$E = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$(3/\sqrt{2}, 1/\sqrt{2}) \qquad (7/\sqrt{2}, 1/\sqrt{2})$$

$$\bigcirc \qquad \bigcirc$$

$$(3/\sqrt{2}, -1/\sqrt{2}) \qquad (7/\sqrt{2}, -1/\sqrt{2})$$

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix}$$

$$ME = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 3/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{2} & -1/\sqrt{2} \\ 7/\sqrt{2} & 1/\sqrt{2} \\ 7/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Feature Extraction

- Create new features (attributes) by combining/mapping existing ones
- Common method
 - Principle Component Analysis
- Other compression methods (time-frequency analysis)
 - Fourier transform (e.g. time series)
 - Discrete Wavelet Transform (e.g. 2D images)