STA732

Statistical Inference

Lecture 05: Rao-Blackwell Theorem

Yuansi Chen

Spring 2023

Duke University

https://www2.stat.duke.edu/courses/Spring23/sta732.01/

Recap from Lecture 04

- V is **ancillary** if its distribution does not depend on θ
- Completeness + sufficiency as the ideal notion of optimal data compression. To prove completeness, one usually goes by definition or by identifying exponential family.
- Basu's theorem is useful to prove independence between a complete sufficient statistics and an ancillary statistics.

Goal of Lecture 05

- 1. Convex loss
- 2. Rao-Blackwell Theorem
- 3. Uniformly minimum variance unbiased estimator (UMVU)

Chap. 3.6, 4.1-4.2 in Keener or Chap. 1.7, 2.1 in Lehmann and Casella

We are entering the first approach of arguing for "the best" estimator in point estimation: by restricting to a smaller class of estimators!

Convex loss

Definition. Convex set

A set $\mathcal{C}\subseteq\mathbb{R}^p$ is convex if given any two points $x,y\in\mathcal{C}$, for any $\lambda\in[0,1]$, we have

$$\lambda x + (1 - \lambda)y \in \mathcal{C}$$

Definition. Convex function

A real-valued function f defined on a convex set $\mathcal{C}\subseteq\mathbb{R}^p$ is a convex function if for any two points $x,y\in\mathcal{C}$ and any $\lambda\in[0,1]$, we have

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y).$$

It is called strictly convex if the above inequality holds strictly for $x \neq y$ and $\lambda \in (0,1)$.

Jensen's inequality in finite form

Jensen's inequality in finite form

For a convex function f, x_1,\ldots,x_n in its domain, and positive weights α_i with $\sum_{i=1}^n \alpha_i=1$. Then

$$f(\sum_{i=1}^n a_i x_i) \leq \sum_{i=1}^n a_i f(x_i)$$

proof by induction, omitted

Jensen's inequality in a probabilistic setting

Jensen's inequality in a probabilistic setting

 \boldsymbol{X} is an integrable real-valued random variable, \boldsymbol{f} is convex. Then

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$$

If f is strictly convex, the inequality holds strictly unless X is almost surely constant.

proof see Thm 3.25, remark 3.26 in Keener or Wikipedia

Examples of convex functions

• $x\mapsto 1/x$ is strictly convex on $(0,\infty)$. Then for X>0, we have

$$\frac{1}{\mathbb{E}[X]} \le \mathbb{E}[1/X]$$

• $x\mapsto -\log(x)$ is strictly convex on $(0,\infty)$. Then for X>0, we have

$$\log(\mathbb{E}[X]) \geq \mathbb{E}\log(X).$$

Convex loss penalizes extra noise to an estimator

Proposition

Suppose the loss $L(\theta,d)$ is convex in d. Let $\delta(X)$ be an estimate of θ . Define $\tilde{\delta}(X)=\delta(X)+\epsilon$, where ϵ is a zero-mean random variable independent of X. Then

$$R(\theta,\tilde{\delta}) \geq R(\theta,\delta)$$

where the risk $R(\theta,\delta) = \mathbb{E}_{\theta}[L(\theta,\delta(X))]$

Proof idea: tower property + Jensen's inequality

Rao-Blackwell Theorem

Rao-Blackwell Theorem

Thm 3.28 in Keener

Let T be a sufficient statistics for $\mathscr{P}=\{P_{\theta}:\theta\in\Omega\}$, let δ be an estimator of $g(\theta)$. Define $\eta(T)=\mathbb{E}_{\theta}[\delta(X)\mid T]$. If $L(\theta,\cdot)$ is convex, then

$$R(\theta, \eta) \le R(\theta, \delta).$$

where the risk $R(\theta,\delta) = \mathbb{E}_{\theta}[L(\theta,\delta(X))]$.

Furthermore, if $L(\theta,\cdot)$ is strictly convex, the inequality is strict unless $\delta(X)\stackrel{\mathrm{a.s.}}{=} \eta(T)$.

Interpretation

For convex loss functions,

- 1. If an estimator is not just based on sufficient statistics ${\cal T}$, we can improve it.
- 2. The step of constructing $\eta(T)=\mathbb{E}_{\theta}[\delta(X)\mid T]$ from δ is called Rao-Blackwellization.
- 3. When discussing optimal estimators, the only estimators of $g(\theta)$ that are worth considering are functions of sufficient statistics T.

Proof of Rao-Blackwell Theorem

See Keener Thm 3.28, apply Jensen

- The bias of an estimate $\delta(X)$ is $\mathbb{E}_{\theta}[\delta(X) g(\theta)]$
- We say an estimator δ is unbiased for $g(\theta)$ if

$$\mathbb{E}_{\theta}[\delta(X)] = g(\theta), \forall \theta \in \Omega.$$

Ex: what is an unbiased estimator of θ for X drawn from a uniform distribution on $(0,\theta)$?

Bias-variance decomposition under squared error loss

Squared error loss:

$$L(\theta, d) = (d - g(\theta))^2$$

Risk decomposition under squared error loss

Risk becomes the mean squared error $R(\theta, \delta) = \mathbb{E}_{\theta} \left(\delta(X) - g(\theta) \right)^2$

$$\begin{split} & \mathbb{E}_{\theta} \left(\delta(X) - g(\theta) \right)^2 \\ &= \mathbb{E}_{\theta} \left(\delta(X) - \mathbb{E}_{\theta}[\delta] + \mathbb{E}_{\theta}[\delta] - g(\theta) \right)^2 \\ &= \underbrace{\mathbb{E}_{\theta} \left(\delta(X) - \mathbb{E}_{\theta}[\delta] \right)^2}_{\text{Var}_{\theta}(\delta)} + \underbrace{\mathbb{E}_{\theta} \left(\mathbb{E}_{\theta}[\delta] - g(\theta) \right)^2}_{\text{Bias}(\delta)^2} + \underbrace{2\mathbb{E} \left[(\delta - \mathbb{E}_{\theta}[\delta]) (\mathbb{E}_{\theta} \delta - g(\theta)) \right]}_{=0} \end{split}$$

Logic: according to the bias-variance decomposition under squared error loss, if we restrict to unbiased estimators, comparing variance is equivalent to comparing risk

Def. UMVU

An unbiased estimator δ is uniformly minimum variance unbiased (UMVU) if

$$\mathrm{Var}_{\theta}(\delta) \leq \mathrm{Var}_{\theta}(\tilde{\delta}), \forall \theta \in \Omega$$

for any competing unbiased estimator $\tilde{\delta}.$

Does UMVU always exist?

No! Even unbiased estimators might not exist

Ex: estimate $\frac{1}{\theta^2}$ for X drawn from $\mathsf{Uniform}(0,\theta)$

Does UMVU always exist?

No! Even unbiased estimators might not exist

Ex: estimate $\frac{1}{\theta^2}$ for X drawn from $\mathsf{Uniform}(0,\theta)$

Def. U-estimable

We say $g(\theta)$ is U-estimable if there exists δ such that $\mathbb{E}_{\theta}\delta=g(\theta), \forall \theta\in\Omega$

Does UMVU exist under U-estimable assumption?

UMVU under U-estimable and given complete sufficient statistics

Theorem 4.4 in Keener, Lehmann-Scheffé

Suppose T(X) is complete sufficient for $\mathscr{P}=\{P_{\theta}:\theta\in\Omega\}$. For any U-estimable $g(\theta)$, there is a unique (up to $\stackrel{\text{a.s.}}{=}$) UMVU estimator which is based on T.

Proof of Thm 4.4

- Existence
- Uniqueness
- UMVU

Extension to convex loss

Extension of Thm 4.4 to convex loss

Supppose T(X) is complete sufficient for $\mathscr{P}=\{P_{\theta}:\theta\in\Omega\}.$ Under a strictly convex loss, among all unbiased estimators, there is a unique (up to $\stackrel{\text{a.s.}}{=}$) uniformly minimum risk unbiased estimator which is based on T

Strategies for finding UMVU estimators

Two strategies for finding UMVU estimators:

- Directly find an unbiased estimator based on a complete sufficient ${\cal T}$
- Find any unbiased estimator, then Rao-Blackwellize it.

Example 1

$$X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} \mathsf{Poisson}(\theta), \theta > 0.$$

- Find a UMVU estimator for θ
- Find a UMVU estimator for θ^2

Example 2

$$X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} \mathsf{Unif}(0,\theta), \theta > 0.$$

- Find a UMVU estimator for θ in two ways

In Example 2, is the UMVU estimator also a "good" (admissible) estimator in terms of total risk?

Summary

- Jensen's inequality for convex function. Convex loss allows us to rule out estimators with extra noise
- Rao-Blackwell theorem allows us to improve an estimator based on sufficient statistics ${\cal T}$
- If unbiased estimator exists, complete sufficient statistics T exists, then ${\bf UMVU}$ estimator exists and is unique

What is next?

- Reflexion on the unbiasedness
- Information inequality

Thank you