factor, Prime foctorization Sieve, Smallest Poins Factor, No of Factor, Sum of Factors, Modulor

Binary Exponentiation

- Euclidean Algorithm GCD of 2 numsers

 GCD Properties

 Euler's Totient Function

 Euler's Theorem
- ✓ Fermat's Theorem
- ✓ Mod Inverse under Euler's & Fermat's Theorem

Bonus Concepts

Greatest common divisor

(A, B)O (87 H(A)+ 87 H(L)) mon Lsqrt (A,B)) A -> all factors 29 which is the B -> all factors Siggest common factor

Euclidean Algorithm: Link

log (min (0,8))

Theorem:

$$\left(\begin{array}{c} \gcd(a,b) \neq \begin{cases} a, & \text{if } b = 0 \\ \gcd(b,a \bmod b), & \text{otherwise.} \end{array} \right)$$

Implementation: $g(d(5,10) \rightarrow g(d(10,5))$

Recursive

Iterative

```
int gcd (int a, int b) {
   if (b == 0)
      return a;
   else
      return gcd (b, a % b);
}
```

```
int gcd (int a, int b) {
    while (b) {
        a %= b;
        swap(a, b);
    }
    return a;
}
```

Time Complexity: O(log(min(a, b))) Proof

g (d (a, & + ka)

Ja divides a -b -> m divides ax b it a divideo b if n divides a 5-2 X1Z O -> X.y N (442) (a+b) $X\left(y-z\right)$ (a-L) ->

$$gcd(a, k) = gcd(a-k, k)$$

GCD = Greatest Common divisor

$$(10, -5)$$

$$(-5, -5)$$

9 cd (a, L-a) 9cd (a,b) = 5-> yxy x(y-kz) a-> zx) x gcd(a, b-ka) 9cd (a, b)

9 cd (a, b) = g cd (a, b-ka)

 $b-\left(\frac{b}{a}\right)$ a $\frac{b}{a}$ mod $\frac{a}{a}$

$$gcd(12,30)$$
 $gcd(a,b) = gcd(b, a modd)$
 $gcd(12,30) = gcd(30,12)$
 $gcd(12,30) = gcd(12,6)$
 $gcd(12,6) - gcd(12,6)$

9cd(0,6) 0 g (d (5, a mod 5)

a mod 9(d(b, a mod b) -> gcd (c, b mod c) One of these is Sound smalls they 8/2

C > 3/2 then 5 mod c

0 < (< b-1 erthes c < & [2 8 mod C < 6/2 2. log (min (a, b))

0 (log (min (0, 6))

Important GCD results

gd(2,4,6,8) -> 2

GCD(a, b) = GCD(b, a)

GCD(a, b) = GCD(GCD(a, b), c) = GCD(a, GCD(b, c)) = GCD(b, GCD(a, c))

GCD contains the minimum powers of primes

CM (2,
$$\frac{1}{1}$$
, $\frac{1}{1}$)

CM contains the maximum powers of primes

CM CD(a, b) = GCD(b, GCD(a, c))

12 24 18 9 6 12 12 6 3 3 this out no. of suborrays with

GeD > 1

aud biggest et of a and b Find out signost (tof a, &, c

$$g cd (a, 8)$$
 $a = P_1 \cdot P_2 \cdot P_3 \cdot P_3 \cdot P_4 \cdot P_4 \cdot P_5 \cdot P_6 \cdot P_6$

$$A = 36 = 2^{2} \cdot 3^{2}$$

$$b = 50 = 2^{1} \cdot 5^{2}$$

$$A = 2^{2} \cdot 3^{2} \cdot 5^{2}$$

$$b = 2^{1} \cdot 3^{2} \cdot 5^{2}$$

$$g(d = 2^{1} \cdot 3^{2} \cdot 5^{2} - 2)$$

$$l(m(18,12)) = 36$$

$$18 \rightarrow 2.3^{2}$$

$$12 \rightarrow 2^{2}.3^{1}$$

$$l(m-2) = 2^{2}.3^{2}$$

$$2^{2}.3^{2} = 36$$

$$2^{2}.3^{2} = 36$$

Euler's Totient Function: Link to study further

phi(N) = number of values X such that $X \le N$ and gcd(X, N) = 1 phi(N) is a multiplicative function.

Properties

The following properties of Euler totient function are sufficient to calculate it for any number:

• If p is a prime number, then $\gcd(p,q)=1$ for all $1\leq q < p$. Therefore we have:

$$\phi(p) = p - 1.$$

• If p is a prime number and $k \geq 1$, then there are exactly p^k/p numbers between 1 and p^k that are divisible by p. Which gives us:

$$\phi(p^k) = p^k - p^{k-1}.$$

• If a and b are relatively prime, then:

$$\phi(ab) = \phi(a) \cdot \phi(b).$$

function Catient Eules mony mudon from 1 to

N gr such that ACD(X,N) = 1

$$\frac{1}{2} (1) \quad \text{such that} \\
= \frac{1}{2} (1) \quad \text{such that} \\$$

any no center than $\phi(\rho) = \rho - 1$ Q(2) = 1 $Q(3) = 2 \quad Q(5) = 4 \quad Q(7) = 6$ Q(11) = 10

(pk) e is forme is normal Positive integer 1 2 3 4 5 6 7 8 Q(24) 10 11 12 13 14 15 16 VXVXVX

$$\left(\begin{array}{c} \mathcal{F}^{k} \\ \mathcal{F}^{k} \end{array} \right) \geq \mathcal{F}^{k}$$

$$\left(\begin{array}{c} \mathcal{F}^{k} \\ \mathcal{F}^{k} \end{array} \right) \rightarrow 0$$

$$Q = \beta_1^{k_1}, \beta_2^{k_2} - \cdots - \beta_m$$

$$S = \beta_1^{k_1}, \beta_2^{k_2} - \cdots - \beta_m$$

$$g(d) \rightarrow p_1^{m_1}(A, k_1)$$

$$p_2^{m_2} - \cdots - p_m^{m_n}(A, k_m)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_1^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_2^{m_1}(A, k_1) - \cdots - p_m^{m_n}(A, k_1)$$

$$p_3^{m_1}(A, k_$$

$$3^{3} \rightarrow 1$$
 2 $3 \rightarrow 5 \rightarrow 7$
 $8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 13 \rightarrow 14$
 $15 \rightarrow 16 \rightarrow 17 \rightarrow 19 \rightarrow 20 \rightarrow 21$
 $22 \rightarrow 22 \rightarrow 23 \rightarrow 25 \rightarrow 26 \rightarrow 27$

$$\frac{Q(p)}{Q(p^{k})} = \frac{1}{p^{k}} - \frac{p^{k}}{p^{k}}$$

$$= \frac{p^{k}(1-\frac{1}{p})}{p^{k}}$$

$$= \frac{p^{k}}{p^{k}} - \frac{p^{k-1}}{p^{k}}$$

Q(n) —> multiplicative function $f(a \times b) = f(a) \cdot f(b)$ provided g(d(c, b) = 1)

No. et divisors et N $N = \beta_1^{k_1} \beta_2^{k_2} - \cdots \beta_M^{k_M}$ (K1+1) (K2+1) --- (Km+1)

$$N = 2^{2} \cdot 3^{4}$$

$$(2+1) \cdot (4+1)$$

$$f(N) = f(2^{2} \cdot 3^{4})$$

$$f(2^{2}) \cdot f(3^{4})$$

(241), (441)

No-of diven of Axil

A B

gcd (A, R) ~)

No-of diven of Axil

y

No-of diven of Axil

y

No-of diven of Axil

Multiplicative function: +(A.B)=+(A).+(B) Such that ged (A,B) =) Completely multiplication functions

f(A.B)~ f(1)

$$= n \left(1-\frac{1}{p_1}\right) \left(1-\frac{1}{p_2}\right) - - \left(1-\frac{1}{p_m}\right)$$

Euler's Totient Function:

Idea:

$$\phi(n) = \phi({p_1}^{a_1}) \cdot \phi({p_2}^{a_2}) \cdots \phi({p_k}^{a_k})$$

$$= \left({p_1}^{a_1} - {p_1}^{a_1-1}\right) \cdot \left({p_2}^{a_2} - {p_2}^{a_2-1}\right) \cdots \left({p_k}^{a_k} - {p_k}^{a_k-1}\right)$$

$$= \overbrace{p_1^{a_1}} \cdot \left(1 - \frac{1}{p_1}\right) \underbrace{\left(p_2^{a_2}} \cdot \left(1 - \frac{1}{p_2}\right) \cdot \cdot \underbrace{\left(p_k^{a_k}} \cdot \left(1 - \frac{1}{p_k}\right)\right)}_{} \right)$$

Euler's Totient Function:

Implementation:

```
int phi(int n) {
   int result = n;
   for (int i = 2; i * i <= n; i++) {
       if (n % i == 0) {
           while (n \% i == 0)
               n /= i;
            result -= result / i;
       result -= result / n;
   return result; -
```

$$\frac{n}{R_1} \left(1 - \frac{1}{R_2} \right) - \dots - \left(1 - \frac{1}{R_m} \right)$$

Joult = n

RI Prez 8 m

1 106

Bonus problem:

- Find phi(x) for all numbers from 1 to N. Link

Nice property:

- Divisor sum property. Link

$$\sum_{A} \delta(A) =$$

is divisible R, Rz Rz N = N - N - N $N = N - \underline{N}$

$$N = 2.7.6 = 36$$
 $N = 36 - 36 = 18$
 $N = 18 - 18 = 12$
 $N = 12 - 12 = 10$

$$N = 12 - 12 = 10$$

$$\rho hi(i) = i$$

for (int i= 2; i < n; i++) if (prind(i)) (i) = i-1for (int j = 2i; j < n; j+=i) $\{hi(j) = \{hi(j) - \{hi(j)\}\}$

Euler's Theorem and Fermat's Theorem: Link

 $\left(Q \right)$ Chy acd (0, m) =) then $Q(m) = 1 \mod m$ $\left(\begin{array}{c} A \\ A \end{array} \right) \begin{array}{c} A \\ A \end{array} = \begin{array}{c} A \\ A \end{array}$

$$a = 2$$
, $m = 5$
 $Q(m) = 4$

$$2^{3} = 16^{\circ}/35 = 1$$

$$Q = 11$$

$$Q(6) = Q(2). Q(2)$$

$$a^{Q(6)} = a^2 = 11^2 = 121$$

$$(12)^{\circ} {\circ} {\circ} {\circ} {\circ} = 1$$

a and oar Motively Primo gcd (a, m) =) $\left(\frac{Q(m)}{Q(m)} \right) = 1$ $\frac{1}{(a^{m-1})^{0}/(m-1)} = 1 \quad \text{if m is prime}$

$$a^{b^{c}}$$
 -> $(a^{(b^{c})})^{\circ}/_{o}m$
 $a \rightarrow 10^{9}$
 $b \rightarrow 70^{9}$ $m \rightarrow 10^{9} + 7$
 $c \rightarrow 10^{9}$
 $g(d(S_{1}m) = 1)$
 $g(d(S_{1}m) = 1)$

 $\alpha = 1 \quad mod \quad m$ $(x \cdot (m-1) \times (m-1) \times$ = (1 ° / ° / ~ · · ·)) = mud m

$$(b^{c}) \qquad k(m-1)$$

$$A = 1$$

$$B^{c} = \pi_{\sigma}(m-1) + y$$

(6c) -> 100 looge $\frac{1}{2} \left(\frac{1}{2} \cdot \left(\frac{1}{2} \right) \right)$

 a^{c} = a^{c} mod a^{-1} a^{-1} a^{-1} a^{-1}

$$gcd(a,m) = 1 \quad m \text{ is prime}$$

$$\alpha^{m-1} = 1 \quad mod \quad m$$

$$\alpha^{m-1} = 1 \quad mod \quad m$$

$$\alpha^{m-1} = 1 \quad mod \quad m$$

$$\alpha^{k} \cdot (m-1) = 1 \quad mod \quad m$$

X,

(8°) 0/0 m 20gn legn (Logn + logn)

Q(14) = 1 mod 14

Mod Inverse using Euler's Theorem and Fermat's Theorem:

$$(A \mid B)^{\circ}(m)$$

$$= (A^{\circ}(m) \cdot (a^{-1} \cdot (m))^{\circ}(n)$$

$$\frac{A}{B} = A \times C$$

$$C = 1$$

$$C = S = 1$$

B -> multiplication juves v

(- R -)

C = 1 / B

Kultiplicative modulo înveni

(COB) 0/0 M =)

m-1 = 1 mod m B^{m-2} . $B = B^{m-1}$ = 1 mod m1 mod m

maltiplication modulo invene et X wist to med M X = 1 mod M

multiplication invodulo invest g(d(a, m) = 1) and m is not m g(m) = 1 a(m)-1 a

Not so important stuff (Learn on your own) © Extended Euclidean Algo Link © Linear Diophantine Equations Link © Mod Inverse in O(logM) for general M Link © Chinese Remainder Theorem Link © Checking for Prime in O(logP) - Miller Rabin Test Link