

Project Definition: Bike-Powered Generator

Victor Cortes & Christopher D'Aloia ECET 230 - 001 9/14/2025

Table Of Contents

Table Of Contents	2
High-Level Description	3
Purpose	
Client	4
Communication	4
Objectives	5
Scenario	5
User Interaction Stories	5
User Interface	5
User Acceptance	6
Parameters	6
Technical	6
Functions	6
Integration	6
Operational	7
Regulatory	7
Life Cycle	7
Environment	7
Starting Point	8
Key Concerns	8
Future	8
Glossary	9
Open Questions.	g

High-Level Description

Name of the Project: Pedal-to-Power: Modular Bicycle Energy Harvesting System

Summary: A prototype system that converts cycling energy into usable electricity, stores it in batteries, and powers USB devices. The design can scale modularly—multiple bikes linked together to form microgeneration hubs that supply excess power to the grid.

Purpose

For the user: Provides renewable, on-demand energy while exercising, commuting, or during outages. If scaled large enough, users can sell excess power that was generated back to the grid.

Why we're making this: To demonstrate sustainable energy harvesting, promote fitness, and explore a scalable alternative to grid power generation.

Top Usage Scenarios / User Stories:

- 1. Cyclists can charge their devices via USB.
- 2. Gym chains connect multiple bikes to offset facility energy usage.
- 3. Community micro-hubs sell surplus energy back to the grid, incentivizing participation.
- 4. Backup power source during emergencies.

Client

Contact:

- Victor Cortes vmc26@njit.edu
- o Christopher D'Aloia cd468@njit.edu

Roles:

- Project manager: Victor Cortes
- o Parts manager: Victor Cortes
- Design Team: Victor Cortes & Christopher D'Aloia
- o Testing: Victor Cortes & Christopher D'Aloia
- o Electrical Engineering Lead: Christopher D'Aloia

Budget: \$100

Communication

Repository: GitHub / Google Drive for schematics, code, BOM.

Logbook: Maintained digitally + hardcopy for changes, issues, milestones.

Objectives

High-level: Build a modular, pedal-powered energy harvesting prototype that stores energy in a battery and charges USB devices, with future expandability to grid-level integration.

Deliverables:

- Proof-of-concept prototype (single bike).
- Brochure explaining the grid-integration vision.
- User demo model.

Scenario

User Interaction Stories

(INSERT)

User Interface

Displays: Small LCD or LED wattmeter showing generated power.

Buttons/Switches: On/off switch, reset button.

Indicators: Charging LED, error LED, grid-export status light.

User Acceptance

Criteria (Given-When-Then):

- Given a user pedals steadily, when they generate ≥6W, then the USB port must charge a phone.
- Given multiple bikes are linked, when combined power > threshold, then surplus should be export-ready.

Quantifiable Goals:

- ≥5V stable USB output.
- ≥80% energy conversion efficiency.

Parameters

Technical

Dimensions: Compact generator mount (≤ 24 " x 30").

Weight: Add-on module ≤15 lbs.

EMC/EMI: Must not interfere with nearby wireless devices. **Protection:** Overcurrent and reverse polarity protection.

Functions

- Convert mechanical pedaling to DC electricity.
- Regulate and store energy in a rechargeable battery.
- Supply power to USB or grid (future).

Integration

Interfaces: USB, DC bus for bike-to-bike linking.

Protocols: Basic DC distribution, future smart-meter protocol.

Operational

Restrictions: Prototype for light loads (USB).

Duty Cycle: Short-to-medium term (30–90 min pedaling sessions).

Regulatory

• Laws/Policies:

Consumer safety standards.

• Future compliance with grid interconnection standards (IEEE 1547).

Life Cycle

Manufacturing: Simple 3D-printed mounts, off-the-shelf generator + controller.

Programming: Microcontroller for monitoring + grid sync (future).

Tracking: Energy logs stored locally or via app (future).

Service: Replaceable and interchangeable battery pack(s).

Associated Services: Community energy-sharing platform (future).

Environment

Temperature Range: 40–95°F (indoor use)

Hazards: Sweat/moisture \rightarrow waterproof casing needed.

Ingress: IP-44 (dust/splash resistant).

Power: Human-powered; optional wall-charging for hybrid use.

Starting Point

Existing IP: Bicycle generator concepts, USB charging kits.

Existing Prototypes: Dynamo hubs, off-grid pedal power projects.

Key Concerns

Efficiency of conversion and storage.

Stability of modular connections.

Future

Expand prototype to multi-bike gym installations.

Develop **grid-tied inverter module** for power export.

Incentivize users with credit for supplying power back to grid.

Integrate with **IoT dashboards** for tracking and gamification.

Glossary

Microgeneration: Small-scale production of electricity.

Modular Design: System can expand by adding units.

Grid-tied: Connected and synchronized with local utility grid.

USB Output: Standard 5V DC charging.

Open Questions

How to safely synchronize multiple bikes for grid export?

What business model could sustain grid buy-back incentives?

What is the optimal battery type for modular scaling (Li-ion vs supercapacitors)?

How to ensure regulatory compliance for future commercialization?

