

2D boundary integral equations and the Nyström method

Alex Barnett¹ and Fruzsina Agocs¹

Computational Tools 2024 BIE workshop. Day 1, 6/10/24

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation

Source/codes: https://github.com/flatironinstitute/comptools24

Given: i) function $\sigma(t)$ defined on interval $[0,2\pi)$, periodic: $\sigma(2\pi)=\sigma(0)$, etc ii) "kernel" function k(t,s) defined on square $[0,2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t):=\int_0^{2\pi}k(t,s)\sigma(s)ds, \quad t\in [0,2\pi)$$
 continuous analog of matrix-vector prod. Ax

Given: i) function $\sigma(t)$ defined on interval $[0, 2\pi)$, periodic: $\sigma(2\pi) = \sigma(0)$, etc ii) "kernel" function k(t, s) defined on square $[0, 2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t) := \int_0^{2\pi} k(t,s)\sigma(s)ds, \quad t \in [0,2\pi)$$

continuous analog of matrix-vector prod. Ax

$$\sigma(t)+\int_0^{2\pi}k(t,s)\sigma(s)ds=f(t),\;\;t\in[0,2\pi)$$

Given: i) function $\sigma(t)$ defined on interval $[0, 2\pi)$, periodic: $\sigma(2\pi) = \sigma(0)$, etc ii) "kernel" function k(t, s) defined on square $[0, 2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t) := \int_0^{2\pi} k(t,s)\sigma(s)ds, \quad t \in [0,2\pi)$$

continuous analog of matrix-vector prod. Ax

Integral equation: $(I + K)\sigma = f$, ie

$$\sigma(t)+\int_0^{2\pi}k(t,s)\sigma(s)ds=f(t),\;\;t\in[0,2\pi)$$

If kernel continuous, or "weakly" singular (integrable), K is compact:

- eigenvalues $(K\phi_k = \lambda_k \phi_k)$ discrete, with $\lim_{k \to \infty} \lambda_k = 0$ unless some $\lambda_k = -1$, 2nd kind IE has at most one soln: Nul $(I + K) = \{0\}$
- Nul $(I + K) = \{0\}$ \Rightarrow existence of solution for any f Fredholm Alternative like square matrix (finite-dim), recall: uniqueness ⇒ consistent for any RHS

Given: i) function $\sigma(t)$ defined on interval $[0, 2\pi)$, periodic: $\sigma(2\pi) = \sigma(0)$, etc ii) "kernel" function k(t, s) defined on square $[0, 2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t):=\int_0^{2\pi}k(t,s)\sigma(s)ds, \quad t\in[0,2\pi)$$
 continuous analog of matrix-vector prod. Ax

Integral equation: $(I + K)\sigma = f$, ie

$$\sigma(t)+\int_0^{2\pi}k(t,s)\sigma(s)ds=f(t),\;\;t\in[0,2\pi)$$

If kernel continuous, or "weakly" singular (integrable), K is compact:

- eigenvalues $(K\phi_k = \lambda_k \phi_k)$ discrete, with $\lim_{k \to \infty} \lambda_k = 0$ unless some $\lambda_k = -1$, 2nd kind IE has at most one soln: Nul $(I + K) = \{0\}$
- Nul $(I + K) = \{0\}$ \Rightarrow existence of solution for any f Fredholm Alternative like square matrix (finite-dim), recall: uniqueness ⇒ consistent for any RHS

Contrast 1st kind IE $K\sigma = f$ is ill-posed problem (unstable)!

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t) dt pprox \sum_{j=1}^N rac{2\pi j}{N} f\left(rac{2\pi j}{N}
ight) = \sum_{j=1}^N w_j f(t_j)$$
 $w_j = weights, t_j = nodes$

For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t)dt pprox \sum_{j=1}^N rac{2\pi j}{N} f\left(rac{2\pi j}{N}
ight) = \sum_{j=1}^N w_j f(t_j)$$
 w_j =weights, t_j =nodes

For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE: call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t)dt \approx \sum_{j=1}^N \frac{2\pi}{N} f\left(\frac{2\pi j}{N}\right) = \sum_{j=1}^N w_j f(t_j) \qquad w_j = \text{weights}, \quad t_j = \text{nodes}$$

For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE: call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Holds for all t; in particular, holds at each t_i , i = 1, ..., N, giving:

$$\sigma_i + \sum_{j=1}^{N} k(t_i, t_j) w_j \sigma_j = f(t_i), \quad i = 1, \dots, N$$
 where $\sigma_i \coloneqq \tilde{\sigma}(t_i)$

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t) dt \approx \sum_{j=1}^N \frac{2\pi}{N} f\left(\frac{2\pi j}{N}\right) = \sum_{j=1}^N w_j f(t_j) \qquad w_j = \text{weights}, \quad t_j = \text{nodes}$$
For f smooth, superalgebraically convergent ("spectral"): error = $\mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE:

call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Holds for all t; in particular, holds at each t_i , i = 1, ..., N, giving:

$$\sigma_i + \sum_{j=1}^N k(t_i, t_j) w_j \sigma_j = f(t_i), \quad i = 1, \dots, N$$
 where $\sigma_i := \tilde{\sigma}(t_i)$

Write as:
$$A\sigma = \mathbf{f}$$
 $N \times N$ lin sys, entries $a_{ij} = \delta_{ij} + k(t_i, t_j)w_j$, and $f_j := f(t_j)$

solve? dense direct $\mathcal{O}(N^3)$; dense iter. $\mathcal{O}(N^2)$; fast iter. $\approx \mathcal{O}(N)$; fast direct $\approx \mathcal{O}(N^{(d+1)/2})$ Why want 2nd kind? eigs(A) accumulate only at $+1 \Rightarrow$ iterative converges fast

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t) dt \approx \sum_{j=1}^N \frac{2\pi}{N} f\left(\frac{2\pi j}{N}\right) = \sum_{j=1}^N w_j f(t_j) \qquad w_j = \text{weights}, \quad t_j = \text{nodes}$$
 For f smooth, superalgebraically convergent ("spectral"): error = $\mathcal{O}(N^{-p})$ for any p

Apply quadr. to integral in 2nd kind IE:

call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Holds for all t; in particular, holds at each t_i , i = 1, ..., N, giving:

$$\sigma_i + \sum_{j=1}^{N} k(t_i, t_j) w_j \sigma_j = f(t_i), \quad i = 1, \dots, N$$
 where $\sigma_i := \tilde{\sigma}(t_i)$

Write as:
$$A\sigma = \mathbf{f}$$
 $N \times N$ lin sys, entries $a_{ij} = \delta_{ij} + k(t_i, t_j)w_j$, and $f_j := f(t_j)$

solve? dense direct $\mathcal{O}(N^3)$; dense iter. $\mathcal{O}(N^2)$; fast iter. $\approx \mathcal{O}(N)$; fast direct $\approx \mathcal{O}(N^{(d+1)/2})$ Why want 2nd kind? eigs(A) accumulate only at $+1 \Rightarrow$ iterative converges fast

Sometimes for BIE (eg, far-field eval), node values $\{\sigma_i\}_{i=1}^N$ suffice. If not, interpolate from them to any $t \in [0, 2\pi)$. Two approaches:

- either: rearrange (*) to give $\tilde{\sigma}(t) = \ldots$, called "Nyström interpolant" (rare)
 or (common): use local high-order Lagrange (or global spectral) interpolation:

Demo Nyström on interval (1D)

"self-convergence": use N=40 as "true"

f and k smooth

 $\Rightarrow \sigma \text{ smooth}$

⇒ spectral conv?

Demo Nyström on interval (1D)

```
kfun = Q(t,s) exp(3*cos(t-s)):
                                                    % smooth convolutional kernel, periodic domain [0.2pi)
 ffun = Q(t) cos(5*t+1):
                                                    % smooth data (RHS) func
 N = 30:
                                                    % number of unknowns: should study convergence as N grows...
 t = 2*pi/N*(1:N): w = 2*pi/N*ones(1.N):
                                                    % PTR nodes and weights, row vecs
 A = eye(N) + bsxfun(kfun,t',t)*diag(w);
                                                    % identity plus fill k(t_i, t_j)w_j for i, j=1..N
 rhs = ffun(t');
                                                    % col vec
                                                    % dense direct square solve (pivoted LU), gives col vec
 sigmaj = A\rhs;
   system matrix A
                                                                             - self-con
                                                                                          "self-convergence":
                                                                              true er
                             0.5
                                                           10 -5
10
                                                                                         use N=40 as "true"
                                                        00° ui 10<sup>-10</sup>
                           funcs
20
                                                                                          f and k smooth
30
                             -0.5
                                                                                             \sigma smooth
40
        20
           30 40
                                                          10 -15
                                                                                          ⇒ spectral conv?
                                                                     20
```

Thm. (Anselone, Kress,...): error at node values (and Nyström interpolant) same order as that of quadrature rule applied to integrand $k(t,\cdot)\sigma$.

Demo Nyström on interval (1D)

```
 kfun = \textbf{0(t,s)} \exp(3*\cos(t-s)); & \text{% smooth convolutional kernel, periodic domain } [0,2pi) \\ ffun = \textbf{0(t)} \cos(5*t+1); & \text{% smooth data } (RHS) func \\ N = 30; & \text{% number of unknowns: should study convergence as N grows...} \\ t = 2*pi/N*(1:N); & \textbf{w} = 2*pi/N*ones(1,N); & \text{% PTR nodes and weights, row vecs} \\ A = eye(\textbf{N}) + bsxfun(kfun,t',t)*diag(\textbf{w}); & \text{% identity plus fill } k(t_i,t_j)w_j for i,j=1..N \\ rhs = ffun(t'); & \text{% col vec} \\ sigmaj = A'rhs; & \text{% dense direct square solve (pivoted LU), gives col vec}
```


"self-convergence": use N=40 as "true"

f and k smooth $\Rightarrow \sigma$ smooth \Rightarrow spectral conv?

Thm. (Anselone, Kress,...): error at node values (and Nyström interpolant) same order as that of quadrature rule applied to integrand $k(t,\cdot)\sigma$.

• Then, f or k nonsmooth? worse (here algebraic) convergence using plain PTR rule:

Qu: why does order appear to improve at end?

Eg PDE: Poisson eqn $\Delta u = g$ $\Delta := (\partial/\partial x_1)^2 + (\partial/\partial x_2)^2$ Laplacian notation: $\mathbf{x} := (x_1, x_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

Eg PDE: Poisson eqn
$$\Delta u = g$$
 $\Delta := (\partial/\partial x_1)^2 + (\partial/\partial x_2)^2$ Laplacian notation: $\mathbf{x} := (x_1, x_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

*exists, unique, continuous w.r.t. data $\Delta u = 0 \text{ in } \Omega$ PDE (u harmonic) $u = f \text{ on } \Gamma$ Dirichlet BC

Eg PDE: Poisson eqn
$$\Delta u = g$$
 $\Delta := (\partial/\partial x_1)^2 + (\partial/\partial x_2)^2$ Laplacian notation: $\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

*exists, unique, continuous w.r.t. data $\Delta u = 0 \text{ in } \Omega$ PDE (u harmonic) $u = f \text{ on } \Gamma$ Dirichlet BC

Laplace fundamental soln: $\Phi(\pmb{x}, \pmb{y}) = \frac{1}{2\pi} \log \frac{1}{r}$ where $r := \|\pmb{x} - \pmb{y}\|$ &

obeys $-\Delta_{\mathbf{x}}\Phi = -\Delta_{\mathbf{y}}\Phi = \delta_{\mathbf{x}}$ Φ harmonic except unit point-mass at $\mathbf{0}$

notation: \boldsymbol{n} points outwards, $\|\boldsymbol{n}\| = 1$, $u_n := \boldsymbol{n} \cdot \nabla u$

Green's 2nd identity:
$$\int_{\Gamma} v u_n - v_n u \, ds = \int_{\Omega} v \Delta u - (\Delta v) u \, d {m y}$$

calculus

 x_1

 $\Phi(\mathbf{x}, \mathbf{y})$

Eg PDE: Poisson eqn
$$\Delta u = g$$

$$\Delta:=(\partial/\partial x_1)^2+(\partial/\partial x_2)^2$$
 Laplacian

notation: $\mathbf{x} := (x_1, x_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

 $\Delta u = 0 \text{ in } \Omega$ PDE (u harmonic) $u = f \text{ on } \Gamma$ Dirichlet BC

 $\Phi(\mathbf{x}, \mathbf{y})$

Laplace fundamental soln:
$$\Phi(x, y) = \frac{1}{2\pi} \log \frac{1}{r}$$
 where $r := \|x - y\|$ obeys $-\Delta_x \Phi = -\Delta_y \Phi = \delta_x$ Φ harmonic except unit point-mass at 0

notation: **n** points outwards, $\|\mathbf{n}\| = 1$, $u_n := \mathbf{n} \cdot \nabla u$

Green's 2nd identity:
$$\int_{\Gamma} v u_n - v_n u \, ds = \int_{\Omega} v \Delta u - (\Delta v) u \, d {m y}$$

calculus

warm-up: set u = BVP soln, $v \equiv 1$, G2I becomes $\int_{\Gamma} u_n ds - 0 = 0 - 0$: so u has zero flux

Eg PDE: Poisson eqn
$$\Delta u = g$$

$$\Delta:=(\partial/\partial x_1)^2+(\partial/\partial x_2)^2$$
 Laplacian

notation: $\mathbf{x} := (x_1, x_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!) not well-posed unless add BC! BIEs are good for homogeneous PDEs (driving $g \equiv 0$)

A well-posed* BVP:

$$\Delta u = 0 \text{ in } \Omega$$
 PDE ($u \text{ harmonic}$)
 $u = f \text{ on } \Gamma$ Dirichlet BC

*exists. unique. continuous w.r.t. data $\Phi(\mathbf{x}, \mathbf{y})$

Laplace fundamental soln:
$$\Phi(\pmb{x}, \pmb{y}) = \frac{1}{2\pi} \log \frac{1}{r}$$
 where $r := \|\pmb{x} - \pmb{y}\|$ &

obeys
$$-\Delta_{m x}\Phi=-\Delta_{m y}\Phi=\delta_{m x}$$
 Φ harmonic except unit point-mass at $m 0$

notation: **n** points outwards, $\|\mathbf{n}\| = 1$, $u_n := \mathbf{n} \cdot \nabla u$

Green's 2nd identity:
$$\int_{\Gamma} v u_n - v_n u \, ds = \int_{\Omega} v \Delta u - (\Delta v) u \, dy$$
 calculus warm-up: set $u = \text{BVP soln}, v \equiv 1$, G2l becomes $\int_{\Gamma} u_n ds - 0 = 0 - 0$: so u has zero flux Now some fun: fix "target" $x \in \Omega$, let $v = \Phi(x, \cdot)$, G2l gives: $\partial \Phi(x, y) / \partial n_y$

Green's representation formula:

$$\int_{\Gamma} \Phi(x,y) u_n(y) - \frac{\partial \Phi(x,y)}{\partial n_y} u(y) \, ds_y = u(x) \quad \text{for } x \in \Omega$$

recovers soln from "Cauchy data" $(u, u_n)|_{\Gamma}$ also versions for Helmholtz, Stokes, Maxwell,...

 x_1

Layer potentials and their jump relations

Representations of harmonic functions off a curve Γ : "density" σ Single-layer potential $(\mathcal{S}\sigma)(\mathbf{x}) := \int_{\Gamma} \Phi(\mathbf{x},\mathbf{y}) \sigma(\mathbf{y}) d\mathbf{s}_{\mathbf{y}}$ charge sheet

Double-layer potential $(\mathcal{D}\sigma)(\mathbf{x}) := \int_{\Gamma} \frac{\partial \Phi(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n_y}} \sigma(\mathbf{y}) ds_{\mathbf{y}}$ dipole sheet

Layer potentials and their jump relations

Representations of harmonic functions off a curve Γ : "density" σ Single-layer potential $(S\sigma)(x) := \int_{\Gamma} \Phi(x, y) \sigma(y) ds_y$ charge sheet

Double-layer potential $(\mathcal{D}\sigma)(x) := \int_{\Gamma} \frac{\partial \Phi(x,y)}{\partial n_y} \sigma(y) ds_y$ dipole sheet

interior (-)
$$/$$
 exterior (+) limits:

$$u^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

$$u_{n}^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} \mathbf{n}_{\mathbf{x}} \cdot \nabla u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

Jump relations:

$$(\mathcal{S}\sigma)^{\pm} = \mathcal{S}\sigma$$
 \mathcal{S} (Roman font) means restriction of \mathcal{S} to Γ : a bdry int. op. $(\mathcal{D}\sigma)^{\pm} = (D\pm I/2)\sigma$ jump in potential equal to σ ; \mathcal{D} restriction to Γ in P.V. sense $(\mathcal{S}\sigma)^{\pm}_{n} = (D^{T}\mp I/2)\sigma$ jump in normal derivative; D^{T} kernel $\partial\Phi(x,y)/\partial n_{x}$ $(\mathcal{D}\sigma)^{\pm}_{n} = \mathcal{T}\sigma$ \mathcal{T} hypersingular, kernel $\partial^{2}\Phi(x,y)/\partial n_{x}\partial n_{y} \sim 1/r^{2}$

ullet D smooth kernel on smooth Γ , while S always log (weakly) singular

Layer potentials and their jump relations

Representations of harmonic functions off a curve Γ : "density" σ Single-layer potential $(S\sigma)(x) := \int_{\Gamma} \Phi(x,y) \sigma(y) ds_y$ charge sheet

Double-layer potential $(\mathcal{D}\sigma)(x) := \int_{\Gamma} \frac{\partial \Phi(x,y)}{\partial n_y} \sigma(y) ds_y$ dipole sheet

$$x_1$$
 x_1

interior (-) / exterior (+) limits:

$$u^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

$$u_{n}^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} \mathbf{n}_{\mathbf{x}} \cdot \nabla u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

Jump relations:

$$(\mathcal{S}\sigma)^{\pm} = \mathcal{S}\sigma$$
 \mathcal{S} (Roman font) means restriction of \mathcal{S} to Γ : a bdry int. op. $(\mathcal{D}\sigma)^{\pm} = (D\pm I/2)\sigma$ jump in potential equal to σ ; \mathcal{D} restriction to Γ in P.V. sense $(\mathcal{S}\sigma)^{\pm}_{n} = (D^{T}\mp I/2)\sigma$ jump in normal derivative; D^{T} kernel $\partial\Phi(x,y)/\partial n_{x}$ $(\mathcal{D}\sigma)^{\pm}_{n} = \mathcal{T}\sigma$ \mathcal{T} hypersingular, kernel $\partial^{2}\Phi(x,y)/\partial n_{x}\partial n_{y}\sim 1/r^{2}$

• D smooth kernel on smooth Γ , while S always log (weakly) singular

Recap GRF in LP notation: u harmonic in $\Omega \Rightarrow \mathcal{S}u_n^- - \mathcal{D}u^- = u$ in Ω

Say wish to solve interior Dirichlet Laplace BVP:

or
$$\Delta u = 0$$
 in Ω PDE $u^- = f$ on Γ BC

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0$$
 in Ω

$$u^-=f$$
 on Γ

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form?

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE: $(I-2D)\sigma = -2f$ scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent ©

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds_v . Usually not how Γ described...

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds_v . Usually not how Γ described...

Parameterize the bdry
$$y(t)$$
 $y: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{y(t): t \in [0, 2\pi)\}$

change variable $ds_{\mathbf{y}} = \|\mathbf{y}'(t)\|dt$ abuse notation $\sigma(t) = \sigma(\mathbf{y}(t))$

or
$$\Delta u = 0$$
 in Ω PDE $u^- = f$ on Γ BC

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent ©

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds_v . Usually not how Γ described...

Parameterize the bdry
$$y(t)$$

Parameterize the bdry
$$y(t)$$
 $y: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{y(t): t \in [0, 2\pi)\}$

change variable $ds_{\mathbf{v}} = ||\mathbf{y}'(t)||dt$ abuse notation $\sigma(t) = \sigma(\mathbf{y}(t))$

Get 1D IE:
$$\sigma(t) - 2\int_0^{2\pi} \frac{\partial \Phi(\mathbf{y}(t),\mathbf{y}(s))}{\partial \mathbf{n}_{\mathbf{y}(s)}} \sigma(s) \|\mathbf{y}'(s)\| ds = -2f(t), \ t \in [0,2\pi)$$

familiar form
$$(I+K)\sigma=-2f$$
, with kernel $k(s,t)=\frac{-2}{2\pi}\frac{n_{y(s)}\cdot(y(t)-y(s))}{\|y(t)-y(s)\|^2}\|y'(s)\|$

formula on diagonal: $k(t,t) = \lim_{s \to t} k(t,s) = \kappa(t)/2\pi$, κ curvature of Γ (check!)

Say wish to solve interior Dirichlet Laplace BVP:

$$\Delta u = 0 \text{ in } \Omega$$
 PDE $u^- = f \text{ on } \Gamma$ BC

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma=-2f$$
 scaled to 2nd kind form

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns
$$u$$
 of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on
$$\Gamma$$
 using arc-length measure ds_y . Usually not how Γ described...
Parameterize the bdry $y(t)$ $y: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{y(t): t \in [0, 2\pi)\}$

change variable $ds_{\mathbf{v}} = ||\mathbf{y}'(t)||dt$ abuse notation $\sigma(t) = \sigma(\mathbf{y}(t))$

Get 1D IE:
$$\sigma(t) - 2\int_0^{2\pi} \frac{\partial \Phi(\mathbf{y}(t), \mathbf{y}(s))}{\partial \mathbf{n}_{\mathbf{y}(s)}} \sigma(s) \|\mathbf{y}'(s)\| ds = -2f(t), \ t \in [0, 2\pi)$$

familiar form
$$(I+K)\sigma=-2f$$
, with kernel $k(s,t)=\frac{-2}{2\pi}\frac{n_{\mathbf{y}(s)}\cdot(\mathbf{y}(t)-\mathbf{y}(s))}{\|\mathbf{y}(t)-\mathbf{y}(s)\|^2}\|\mathbf{y}'(s)\|$ formula on diagonal: $k(t,t)=\lim_{s\to t}k(t,s)=\kappa(t)/2\pi$, κ curvature of Γ (check!)

Now Nyström discretize with PTR, solve lin. sys. for $\sigma := \{\sigma_j\}_{j=1}^N$

Finally evaluate soln:
$$u(\mathbf{x}) = (\mathcal{D}\sigma)(\mathbf{x}) \stackrel{\text{PTR}}{\approx} \sum_{j=1}^{N} \frac{\mathbf{n}_{\mathbf{y}(t_j)} \cdot (\mathbf{x} - \mathbf{y}(t_j))}{2\pi \|\mathbf{x} - \mathbf{y}(t_j)\|^2} \|\mathbf{y}'(t_j)\| w_j \sigma_j$$

Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                  % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                  % y', analytic
Y_{DD} = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                  % u'', analutic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                  % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2):
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eye(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
                                                                   % solve. Leave u = D. sigma eval to reader
sigma = A\rhs;
```


demo_lapintdir.m

Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                   % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                  % y', analytic
Ypp = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                   % u'', analutic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                  % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2);
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eye(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
sigma = A\rhs;
                                                                   % solve. Leave u = D. sigma eval to reader
```


Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                   % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                   % y', analytic
Y_{DD} = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                   % u'', analytic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                   % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2);
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eve(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
sigma = A\rhs;
                                                                   % solve. Leave u = D. sigma eval to reader
```


Interior Laplace Dirichlet BVP solve demo

```
a=0.7: b=1.0:
                                                                   % shape params (note a=1.b=0 unit circle)
Y = Q(t) \left[a*\cos(t)+b*\cos(2*t): \sin(t)\right]:
                                                                   % kite parameterization u(t)
Yp = Q(t) [-a*sin(t)-2*b*sin(2*t); cos(t)];
                                                                   % y', analytic
Y_{DD} = Q(t) [-a*cos(t)-4*b*cos(2*t); -sin(t)];
                                                                   % v''. analytic
N = 100:
t = 2*pi/N*(1:N); w = 2*pi/N*ones(1,N);
                                                                   % PTR nodes & weights
                                                                   % bdry nodes, 2-by-N
v = Y(t);
n = [0 \ 1; -1 \ 0] *Yp(t); speed = sqrt(sum(n.^2,1)); n = n./speed;
                                                                   % bdru normals
kappa = -sum(Ypp(t) .* n,1)./speed.^2;
                                                                   % bdry curvatures
r1 = y(1,:)'-y(1,:); r2 = y(2,:)'-y(2,:);
                                                                   % matrix of r=x-y (two vec cmpnts)
A = (-1/pi)*(n(1,:).*r1 + n(2,:).*r2) ./ (r1.^2+r2.^2);
                                                                   % off-diag (-1/pi) n.r/r^2
A(diagind(A)) = kappa/(2*pi);
                                                                   % overwrite diag elements
A = eve(N) + A*diag(speed.*w);
                                                                   % note Id gets no "speed weights"
uex = Q(x) ([1 0]*x) .* ([0 1]*x-0.3);
                                                                   % test u(x) = x 1(x 2-0.3), not summetric!
f = Q(t) uex(Y(t)):
                                                                   % read off its Dirichlet data
rhs = -2*f(t)';
                                                                   % solve. Leave u = D. sigma eval to reader
sigma = A\rhs;
```


Note: special quadratures can fix near Γ -12 (Helsing, QBX...)

Debug: $\sigma \equiv -1 \implies u \equiv 1$, then test data from (generic!) soln u, and...

- **1** check/plot \mathbf{n} , κ . First test unit circle!
- 2 check Nyström matrix smooth at diag (before add I)

Indirect vs direct formulations

using Laplace interior Dirichlet BVP

So far "indirect" BIE: pick representation (eg $u=\mathcal{D}\sigma$), get BIE from JRs

So far "indirect" BIE: pick representation (eg $u = \mathcal{D}\sigma$), get BIE from JRs Alternative is "direct": take limit of GRF on Γ , rearrange to get BIE:

GRF
$$u = \mathcal{S}u^- - \mathcal{D}u_n^- \xrightarrow{\mathsf{JRs}} u_n^- = (D^T + I/2)u_n^- - Tu^- \xrightarrow{\mathsf{BC}} (D^T - I/2)u_n^- = Tf$$

Needs hypersingular apply ③. Then solve BIE for u_n^- , eval u via GRF (needs two LP evals)

So far "indirect" BIE: pick representation (eg $u=\mathcal{D}\sigma$), get BIE from JRs

Alternative is "direct": take limit of GRF on Γ , rearrange to get BIE:

GRF
$$u = Su^- - Du_n^- \xrightarrow{JRs} u_n^- = (D^T + I/2)u_n^- - Tu^- \xrightarrow{BC} (D^T - I/2)u_n^- = Tf$$

Needs hypersingular apply \odot . Then solve BIE for u_n^- , eval u via GRF (needs two LP evals)

Notice BIO $(D^T - I/2)$ adjoint of that for indirect (D - I/2) generally true. So, spectra the same, thus iterative convergence rates too

So far "indirect" BIE: pick representation (eg $u=\mathcal{D}\sigma$), get BIE from JRs

Alternative is "direct": take limit of GRF on Γ , rearrange to get BIE:

GRF
$$u = \mathcal{S}u^- - \mathcal{D}u_n^- \xrightarrow{\text{JRs}} u_n^- = (D^T + I/2)u_n^- - Tu^- \xrightarrow{\text{BC}} (D^T - I/2)u_n^- = Tf$$

Needs hypersingular apply \odot . Then solve BIE for u_n^- , eval u via GRF (needs two LP evals)

Notice BIO $(D^T - I/2)$ adjoint of that for indirect (D - I/2)

generally true. So, spectra the same, thus iterative convergence rates too

Indirect BIE	Direct BIE
unknown density (unphysical)	unknown is physical
RHS is plain data	RHS needs BIO apply to data
eval the representation (may be simpler)	eval the GRF

- indirect: more flexibility, but need math to prove equivalence to BVP
- accuracy differences for domains with corners (Hoskins–Rachh...)

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω $u^- = f$ on Γ uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma$$
 rep. $(D - I/2)\sigma = f$ BIE: well-cond.

Laplace int. Neu.

$$\Delta u = 0$$
 in Ω
 $u_n^- = g$ on Γ
require $\int_{\Gamma} g ds = 0$
unique only up to a const.

•
$$u = \mathcal{S}\sigma$$
 kernel $\equiv 1$, kills nullspace $(D^T + I/2 + 11^T)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω
 $u^- = f$ on Γ
uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma$$
 rep. $(D - I/2)\sigma = f$ BIE: well-cond.

Laplace ext. Dir.

$$\begin{array}{l} \Delta u = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega} \\ u^+ = f \text{ on } \Gamma \\ u_\infty := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x}) \text{ exists} \\ \text{uniqueness, existence } \forall f \end{array}$$

•
$$u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$$
 modified rep. $(D + I/2 + 11^T)\sigma = f$ well-cond.

Laplace int. Neu.

$$\Delta u=0$$
 in Ω $u_n^-=g$ on Γ require $\int_\Gamma g ds=0$ unique only up to a const.

•
$$u = \mathcal{S}\sigma$$
 kernel $\equiv 1$, kills nullspace $(D^T + I/2 + 11^T)\sigma = g$ well-cond.

Laplace ext. Neu.

$$\Delta u=0$$
 in $\mathbb{R}^2\backslash\overline{\Omega}$ $u_n^+=g$ on Γ require $\int_\Gamma g ds=0$ and $u_\infty=0$ unique

•
$$u = S\sigma$$

 $(D^T - I/2)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω $u^- = f$ on Γ uniqueness, existence $\forall f$

•
$$u=\mathcal{D}\sigma$$
 rep. $(D-I/2)\sigma=f$ BIE: well-cond.

Laplace ext. Dir.

$$\Delta u = 0$$
 in $\mathbb{R}^2 \backslash \overline{\Omega}$ $u^+ = f$ on Γ $u_\infty := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x})$ uniqueness, existence $\forall f$

• $u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$ modified rep. $(D+I/2+11^T)\sigma = f$ well-cond.

Laplace int. Neu.

$$\Delta u = 0 \text{ in } \Omega$$

$$u_n^- = g \text{ or } \Gamma$$

$$\text{require} \quad ds = 0$$

$$\text{univerall } \text{in } \text{location} \text{in } \text{location} \text{in } \text{location} \text{in } \text{location} \text{in } \mathbb{R}^2 \backslash \overline{\Omega}$$

$$\Delta u = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega}$$

$$\Delta u=0$$
 in $\mathbb{R}^2\backslash\overline{\Omega}$ $u_n^+=g$ on Γ require $\int_\Gamma g ds=0$ and $u_\infty=0$ unique

•
$$u = S\sigma$$

 $(D^T - I/2)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω
 $u^- = f$ on Γ
uniqueness, existence \forall

•
$$u = \mathcal{D}\sigma$$
 rep.

$$(D-I/2)\sigma=f$$
 BIE: well-cond.

Laplace ext. Dir.

$$\Delta u = 0 \text{ in } \mathbb{R}^2 \backslash \overline{\Omega}$$
 $u^+ = f \text{ on } \Gamma$
 $u_\infty := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x})$
uniqueness, existence $\forall f$

•
$$u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$$
 modified rep. $(D + I/2 + 11^T)\sigma = f$ well-cond.

Laplace int. Neu.

$$\Delta u=0$$
 in Ω
$$u_n^-=g$$
 or Γ require $ds=0$ unit S only up to a const.

unit of a nly up to a const.
$$\mathcal{S} = \mathcal{S} \sigma \qquad \text{kernel} \equiv 1, \text{ kills nullspace} \\ + I/2 + 11^T)\sigma = g \text{ well-cond.}$$

Laplace ext. Neu.

Tequilibrium
$$us = 0$$
 unique only up to a const. We served $= 1$, kills not $= S\sigma$ kernel $= 1$, kills not $= 1$ kernel $=$

•
$$u = S\sigma$$

 $(D^T - I/2)\sigma = g$ well-cond.

recap: Laplace int. Dir.

$$\Delta u = 0$$
 in Ω
 $u^- = f$ on Γ
uniqueness, existence \forall

•
$$u = \mathcal{D}\sigma$$
 rep.

 $(D-I/2)\sigma = f$ BIE: well-cond.

Laplace ext. Dir.

$$\Delta u = 0$$
 in $\mathbb{R}^2 \setminus \overline{\Omega}$
 $u^+ = f$ on Γ
 $u_{\infty} := \lim_{\|\mathbf{x}\| \to \infty} u(\mathbf{x})$ uniqueness, existence $\forall f$

• $u = \mathcal{D}\sigma + \int_{\Gamma} \sigma ds$ modified rep. $(D+I/2+11^T)\sigma = f$ well-cond. Laplace int. Neu.

$$\Delta u=0$$
 in Ω
$$u_n^-=g$$
 Γ require $ds=0$ unit Ω up to a const.

unit of only up to a const.
$$S = S \sigma \qquad \text{kernel} \equiv 1, \text{ kills nullspace} \\ + I/2 + 11^T) \sigma = g \quad \text{well-cond.}$$

Laplace ext. Neu.

- $u = S\sigma$ $(D^T - I/2)\sigma = g$ well-cond.
- Exterior: don't test with $u = \log r!$ why not? BVPs enforce zero net charge

$$(\Delta + \omega^2)u = 0$$
 time-harmonic scalar waves comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x},t) = u(\mathbf{x})e^{-i\omega t}$

$$(\Delta+\omega^2)u=0$$
 time-harmonic scalar waves comes from scalar wave equation $\Delta u-u_{tt}=0$ when $u({\pmb x},t)=u({\pmb x})e^{-i\omega t}$

 ω is the wavenumber spatial frequency, related to wavelength via $\lambda=2\pi/\omega$

$$(\Delta + \omega^2)u = 0$$
 time-harmonic scalar waves comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x},t) = u(\mathbf{x})e^{-i\omega t}$

comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x}, t) = u(\mathbf{x})e^{-\omega t}$ is the wavenumber spatial frequency, related to wavelength via $\lambda = 2\pi/\omega$

$$(\Delta + \omega^2)u = 0$$
 time-harmonic scalar waves

comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x},t) = u(\mathbf{x})e^{-i\omega t}$ ω is the wavenumber spatial frequency, related to wavelength via $\lambda = 2\pi/\omega$

Also used for Maxwell's equations in cylindrical symm (z-invariance):

1. Assume $\mathbf{E}, \mathbf{H}(x, y, z) = \mathbf{E}, \mathbf{H}(x, y)$

$$(\Delta + \omega^2)u = 0$$
 time-harmonic scalar waves

comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x},t) = u(\mathbf{x})e^{-i\omega t}$ ω is the wavenumber spatial frequency, related to wavelength via $\lambda = 2\pi/\omega$

- 1. Assume $\mathbf{E}, \mathbf{H}(x, y, z) = \mathbf{E}, \mathbf{H}(x, y)$
- 2. Write Maxwell's eqs: $\nabla \times \mathbf{E} = i\omega \mu \mathbf{H}$, $\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E}$,

$$(\Delta + \omega^2)u = 0$$

time-harmonic scalar waves

comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x},t) = u(\mathbf{x})e^{-i\omega t}$ ω is the wavenumber spatial frequency, related to wavelength via $\lambda = 2\pi/\omega$

- 1. Assume $\mathbf{E}, \mathbf{H}(x, y, z) = \mathbf{E}, \mathbf{H}(x, y)$
- 2. Write Maxwell's eqs: $\nabla \times \mathbf{E} = i\omega \mu \mathbf{H}$, $\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E}$,
- 3. Notice only E_z , H_z are indep o 2 polarizations, TE

or TM:
$$E_z = 0$$
, $H_z = 0$ resp.

$$(\Delta + \omega^2)u = 0$$

time-harmonic scalar waves

comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x},t) = u(\mathbf{x})e^{-i\omega t}$ ω is the wavenumber spatial frequency, related to wavelength via $\lambda = 2\pi/\omega$

- 1. Assume $\mathbf{E}, \mathbf{H}(x, y, z) = \mathbf{E}, \mathbf{H}(x, y)$
- 2. Write Maxwell's eqs: $\nabla \times \mathbf{E} = i\omega \mu \mathbf{H}$, $\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E}$,
- 3. Notice only E_z , H_z are indep \rightarrow 2 polarizations, TE or TM: $E_z=0$, $H_z=0$ resp.
 - 4. Choose TE and let $u := H_z$, then: $\mathbf{H} = (0, 0, u)$,

$${f E}=rac{1}{i\omegaarepsilon}(\partial_{{f x}}u,-\partial_{{f y}}u,0)$$
, and $(\Delta+n^2\omega^2)u=0$ with $n^2=arepsilon\mu$

$$(\Delta + \omega^2)u = 0$$

time-harmonic scalar waves

comes from scalar wave equation $\Delta u - u_{tt} = 0$ when $u(\mathbf{x},t) = u(\mathbf{x})e^{-i\omega t}$ ω is the wavenumber spatial frequency, related to wavelength via $\lambda = 2\pi/\omega$

Also used for Maxwell's equations in cylindrical symm (z-invariance):

- 1. Assume $\mathbf{E}, \mathbf{H}(x, y, z) = \mathbf{E}, \mathbf{H}(x, y)$
- 2. Write Maxwell's eqs: $\nabla \times \mathbf{E} = i\omega \mu \mathbf{H}$, $\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E}$,
- 3. Notice only E_z , H_z are indep \rightarrow 2 polarizations, TE or TM: $E_z=0$, $H_z=0$ resp.
 - 4. Choose TE and let $u := H_z$, then: $\mathbf{H} = (0, 0, u)$,

$$\mathbf{E}=rac{1}{i\omegaarepsilon}(\partial_{\mathbf{x}}u,-\partial_{\mathbf{y}}u,0)$$
, and $(\Delta+n^{2}\omega^{2})u=0$ with $n^{2}=arepsilon\mu$

Dirichlet BC in TE formalism = PEC

perfect electric conductor: $\mathbf{E} \perp$ to surface

Split physical potential into incident (known) and scattered (unknown) parts: $u_{tot} = u_i + u$

Split physical potential into incident (known) and scattered (unknown) parts: $u_{\rm tot}=u_i+u$

$$(\Delta+\omega^2)u=0$$
 in $\mathbb{R}^d ackslash \overline{\Omega}$ PDE $u=-u_i$ on Γ Dirichlet BC, or $u_n=-(u_i)_n$ for Neumann

Split physical potential into incident (known) and scattered (unknown) parts: $u_{tot} = u_i + u$

$$\begin{split} &(\Delta+\omega^2)u=0 \quad \text{in } \mathbb{R}^d \backslash \overline{\Omega} \quad \text{PDE} \\ &u=-u_i \quad \text{on } \Gamma \quad \text{Dirichlet BC, } \quad \text{or } u_n=-(u_i)_n \text{ for Neumann} \\ &\frac{\partial u}{\partial r}-i\omega u=o(r^{-1/2}) \quad r:=\|\mathbf{x}\|\to\infty, \text{Sommerfeld radiation condition for uniqueness} \end{split}$$

Split physical potential into incident (known) and scattered (unknown) parts: $u_{tot} = u_i + u$

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \setminus \overline{\Omega}$ PDE $u = -u_i$ on Γ Dirichlet BC, or $u_n = -(u_i)_n$ for Neumann $\frac{\partial u}{\partial r} - i\omega u = o(r^{-1/2})$ $r := \|x\| \to \infty$, Sommerfeld radiation condition for uniqueness

Fundamental solution
$$\Phi(\mathbf{x}, \mathbf{y}) = \frac{i}{4}H_0^{(1)}(\omega|\mathbf{x} - \mathbf{y}|)$$

Split physical potential into incident (known) and scattered (unknown) parts: $u_{tot} = u_i + u$

$$(\Delta+\omega^2)u=0$$
 in $\mathbb{R}^d\backslash\overline{\Omega}$ PDE $u=-u_i$ on Γ Dirichlet BC, or $u_n=-(u_i)_n$ for Neumann $\frac{\partial u}{\partial r}-i\omega u=o(r^{-1/2})$ $r:=\|\mathbf{x}\|\to\infty$, Sommerfeld radiation condition for uniqueness

Fundamental solution
$$\Phi(\mathbf{x}, \mathbf{y}) = \frac{i}{4} H_0^{(1)}(\omega | \mathbf{x} - \mathbf{y}|)$$

Asymptotics: $\lim_{r \to 0} \Phi(r) = \frac{1}{2\pi} \log \frac{1}{r} + \mathcal{O}(1)$
 $\lim_{r \to \infty} \Phi(r) = \sqrt{\frac{2}{\pi r}} e^{i(r - \nu \pi/2 - \pi/4)} + \mathcal{O}(r^{-1})$

Split physical potential into incident (known) and scattered (unknown) parts: $u_{tot} = u_i + u$

BVP for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \setminus \overline{\Omega}$ PDE $u = -u_i$ on Γ Dirichlet BC, or $u_n = -(u_i)_n$ for Neumann $\frac{\partial u}{\partial r} - i\omega u = o(r^{-1/2})$ $r := \|x\| \to \infty$, Sommerfeld radiation condition for uniqueness

Fundamental solution
$$\Phi(\mathbf{x}, \mathbf{y}) = \frac{i}{4} H_0^{(1)}(\omega | \mathbf{x} - \mathbf{y}|)$$

Asymptotics: $\lim_{r \to 0} \Phi(r) = \frac{1}{2\pi} \log \frac{1}{r} + \mathcal{O}(1)$
 $\lim_{r \to \infty} \Phi(r) = \sqrt{\frac{2}{\pi r}} e^{i(r - \nu \pi/2 - \pi/4)} + \mathcal{O}(r^{-1})$

Same singularity as Laplace \rightarrow same JRs!

Split physical potential into incident (known) and scattered (unknown) parts: $u_{tot} = u_i + u$

BVP for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \setminus \overline{\Omega}$ PDE $u = -u_i$ on Γ Dirichlet BC, or $u_n = -(u_i)_n$ for Neumann $\frac{\partial u}{\partial r} - i\omega u = o(r^{-1/2})$ $r := \|\mathbf{x}\| \to \infty$, Sommerfeld radiation condition for uniqueness

Fundamental solution
$$\Phi(\mathbf{x}, \mathbf{y}) = \frac{i}{4} H_0^{(1)}(\omega | \mathbf{x} - \mathbf{y}|)$$

Asymptotics: $\lim_{r \to 0} \Phi(r) = \frac{1}{2\pi} \log \frac{1}{r} + \mathcal{O}(1)$

$$\lim_{r \to \infty} \Phi(r) = \sqrt{\frac{2}{\pi r}} e^{i(r - \nu \pi/2 - \pi/4)} + \mathcal{O}(r^{-1})$$

Same singularity as Laplace \rightarrow same JRs!

Layer potentials

SLP

DLP

Try the ext Dir BVP with $u=\mathcal{D}\sigma$ $(\Delta+\omega)^2u=0$ in $\mathbb{R}^2\backslash\overline{\Omega}$, $u=-u_i$ on Γ , SRC for u

Try the ext Dir BVP with $u=\mathcal{D}\sigma$ $(\Delta+\omega)^2u=0$ in $\mathbb{R}^2\backslash\overline{\Omega}$, $u=-u_i$ on Γ , SRC for u Yields BIE (I+2D)=2f on Γ

Try the ext Dir BVP with $u=\mathcal{D}\sigma$ $(\Delta+\omega)^2u=0$ in $\mathbb{R}^2\backslash\overline{\Omega}$, $u=-u_i$ on Γ , SRC for u

Yields BIE (I + 2D) = 2f on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Try the ext Dir BVP with $u = \mathcal{D}\sigma \ (\Delta + \omega)^2 u = 0$ in $\mathbb{R}^2 \setminus \overline{\Omega}$, $u = -u_i$ on Γ , SRC for u

Yields BIE
$$(I + 2D) = 2f$$
 on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Why? Suppose
$$\phi \not\equiv 0$$
 s.t.
$$\begin{cases} (\Delta + \omega^2)\phi = 0 & \text{in } \Omega \\ \phi_n = 0 & \text{on } \Gamma \end{cases}$$
 ϕ is interior Neumann eigenfunction with eigenvalue ω^2

Try the ext Dir BVP with $u = \mathcal{D}\sigma$ $(\Delta + \omega)^2 u = 0$ in $\mathbb{R}^2 \setminus \overline{\Omega}$, $u = -u_i$ on Γ , SRC for u

Yields BIE
$$(I + 2D) = 2f$$
 on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Why? Suppose
$$\phi \not\equiv 0$$
 s.t.
$$\begin{cases} (\Delta + \omega^2)\phi = 0 & \text{in } \Omega \\ \phi_n = 0 & \text{on } \Gamma \end{cases}$$
 ϕ is interior Neumann eigenfunction with eigenvalue ω^2 Then by (interior) GRF (same as for Laplace), $\mathcal{S} \phi_{\sigma} \not\models_{\Gamma} - \mathcal{D} \phi \mid_{\Gamma} = u$ in Ω .

Try the ext Dir BVP with $u=\mathcal{D}\sigma$ $(\Delta+\omega)^2u=0$ in $\mathbb{R}^2\backslash\overline{\Omega}$, $u=-u_i$ on Γ , SRC for u

Yields BIE
$$(I + 2D) = 2f$$
 on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Why? Suppose
$$\phi \not\equiv 0$$
 s.t.
$$\begin{cases} (\Delta + \omega^2)\phi = 0 & \text{in } \Omega \\ \phi_n = 0 & \text{on } \Gamma \end{cases}$$
 ϕ is interior Neumann eigenfunction with eigenvalue ω^2

Then by (interior) GRF (same as for Laplace), $\mathcal{S}\phi_n|_{\Gamma} - \mathcal{D}\phi|_{\Gamma} = u$ in Ω .

Take
$$\mathbf{x} \to \Gamma^-$$
 and use JR: $(-D - I/2)\phi|_{\Gamma} = \phi_{\Gamma}$, i.e. $(I + 2D)\phi|_{\Gamma} = 0$.

Try the ext Dir BVP with $u=\mathcal{D}\sigma$ $(\Delta+\omega)^2u=0$ in $\mathbb{R}^2\setminus\overline{\Omega}$, $u=-u_i$ on Γ , SRC for u

Yields BIE (I + 2D) = 2f on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Why? Suppose
$$\phi \not\equiv 0$$
 s.t.
$$\begin{cases} (\Delta + \omega^2)\phi = 0 & \text{in } \Omega \\ \phi_n = 0 & \text{on } \Gamma \end{cases}$$
 ϕ is interior Neumann eigenfunction with eigenvalue ω^2

Then by (interior) GRF (same as for Laplace), $\mathcal{S}\phi_n|_{\Gamma} - \mathcal{D}\phi|_{\Gamma} = u$ in Ω .

Take $\mathbf{x} \to \Gamma^-$ and use JR: $(-D - I/2)\phi|_{\Gamma} = \phi_{\Gamma}$, i.e. $(I + 2D)\phi|_{\Gamma} = 0$.

Since $\phi|_{\Gamma}$ was nontrivial (otherwise $\phi=0$ by GRF), nullity of I+2D>0, i.e. singular, by FA not solvable $\forall f\ (u_i)$.

Try the ext Dir BVP with $u=\mathcal{D}\sigma$ $(\Delta+\omega)^2u=0$ in $\mathbb{R}^2\backslash\overline{\Omega}$, $u=-u_i$ on Γ , SRC for u

Yields BIE (I + 2D) = 2f on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Why? Suppose
$$\phi \not\equiv 0$$
 s.t.
$$\begin{cases} (\Delta + \omega^2)\phi = 0 & \text{in } \Omega \\ \phi_n = 0 & \text{on } \Gamma \end{cases}$$
 ϕ is interior Neumann eigenfunction with eigenvalue ω^2

Then by (interior) GRF (same as for Laplace), $\mathcal{S}\phi_n|_{\Gamma} - \mathcal{D}\phi|_{\Gamma} = u$ in Ω .

Take $\mathbf{x} \to \Gamma^-$ and use JR: $(-D - I/2)\phi|_{\Gamma} = \phi_{\Gamma}$, i.e. $(I + 2D)\phi|_{\Gamma} = 0$.

Since $\phi|_{\Gamma}$ was nontrivial (otherwise $\phi=0$ by GRF), nullity of I+2D>0, i.e. singular, by FA not solvable $\forall f\ (u_i)$.

We made use of the complementary BVP (int Neu), this is an "internal resonance".

Try the ext Dir BVP with $u = \mathcal{D}\sigma$ $(\Delta + \omega)^2 u = 0$ in $\mathbb{R}^2 \setminus \overline{\Omega}$, $u = -u_i$ on Γ , SRC for u

Yields BIE (I + 2D) = 2f on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Why? Suppose
$$\phi \not\equiv 0$$
 s.t.
$$\begin{cases} (\Delta + \omega^2)\phi = 0 & \text{in } \Omega \\ \phi_n = 0 & \text{on } \Gamma \end{cases}$$
 ϕ is interior Neumann eigenfunction with eigenvalue ω^2

Then by (interior) GRF (same as for Laplace), $\mathcal{S}\phi_n|_{\Gamma} - \mathcal{D}\phi|_{\Gamma} = u$ in Ω .

Take $\mathbf{x} \to \Gamma^-$ and use JR: $(-D - I/2)\phi|_{\Gamma} = \phi_{\Gamma}$, i.e. $(I + 2D)\phi|_{\Gamma} = 0$.

Since $\phi|_{\Gamma}$ was nontrivial (otherwise $\phi=0$ by GRF), nullity of I+2D>0, i.e. singular, by FA not solvable $\forall f\ (u_i)$.

We made use of the complementary BVP (int Neu), this is an "internal resonance".

Fix: $u=(\mathcal{D}-i\eta\mathcal{S})\sigma^{}$ combined field integral eq (CFIE), same # unknowns, new kernel

Try the ext Dir BVP with $u = \mathcal{D}\sigma$ $(\Delta + \omega)^2 u = 0$ in $\mathbb{R}^2 \setminus \overline{\Omega}$, $u = -u_i$ on Γ , SRC for u

Yields BIE (I + 2D) = 2f on Γ

Observe that for some ω , condition # of BIE blows up, not always solvable

Why? Suppose
$$\phi \not\equiv 0$$
 s.t.
$$\begin{cases} (\Delta + \omega^2)\phi = 0 & \text{in } \Omega \\ \phi_n = 0 & \text{on } \Gamma \end{cases}$$
 ϕ is interior Neumann eigenfunction with eigenvalue ω^2

Then by (interior) GRF (same as for Laplace), $\mathcal{S}\phi_n|_{\Gamma} - \mathcal{D}\phi|_{\Gamma} = u$ in Ω .

Take $\mathbf{x} \to \Gamma^-$ and use JR: $(-D - I/2)\phi|_{\Gamma} = \phi_{\Gamma}$, i.e. $(I + 2D)\phi|_{\Gamma} = 0$.

Since $\phi|_{\Gamma}$ was nontrivial (otherwise $\phi=0$ by GRF), nullity of I+2D>0, i.e. singular, by FA not solvable $\forall f$ (u_i) .

We made use of the complementary BVP (int Neu), this is an "internal resonance".

Fix:
$$u=(\mathcal{D}-i\eta\mathcal{S})\sigma$$
 combined field integral eq (CFIE), same $\#$ unknowns, new kernel ext Dir BIE becomes $(I+2D-2i\eta\mathcal{S})\sigma=-2u_i$ on Γ

Proof: Let τ solve $(I/2 + D - i\eta S)\tau = 0$, wish to show $\tau = 0$.

From τ construct potential $v := (\mathcal{D} - i\eta \mathcal{S})\tau$, then $v^+ = 0$ by construction.

Then v = 0 in $\mathbb{R}^2 \setminus \overline{\Omega}$ by uniqueness of the complementary BVP (ext Dir)

Then v_n^+ on Γ , and by JRs and Green's 1st thm (exercise for the reader \odot), $\tau = 0$.

Solve the Helmholtz ext Dir BVP with the $u = \mathcal{D}\sigma$ repr, u_i plane wave

Solve the Helmholtz ext Dir BVP with the $u=\mathcal{D}\sigma$ repr, u_i plane wave Diagonal limit for Nyström matrix k(t,t) same as Laplace

Solve the Helmholtz ext Dir BVP with the $u=\mathcal{D}\sigma$ repr, u_i plane wave Diagonal limit for Nyström matrix k(t,t) same as Laplace PTR with N nodes, test via self-convergence

Solve the Helmholtz ext Dir BVP with the $u=\mathcal{D}\sigma$ repr, u_i plane wave Diagonal limit for Nyström matrix k(t,t) same as Laplace PTR with N nodes, test via self-convergence

Solve the Helmholtz ext Dir BVP with the $u=\mathcal{D}\sigma$ repr, u_i plane wave Diagonal limit for Nyström matrix k(t,t) same as Laplace PTR with N nodes, test via self-convergence What's the conv. rate?

Helmholtz — Dirichlet demo

Solve the Helmholtz ext Dir BVP with the $u=\mathcal{D}\sigma$ repr, u_i plane wave Diagonal limit for Nyström matrix k(t,t) same as Laplace

PTR with N nodes, test via self-convergence What's the conv. rate? Why N^{-3} ?

Helmholtz — Dirichlet demo

Solve the Helmholtz ext Dir BVP with the $u=\mathcal{D}\sigma$ repr, u_i plane wave Diagonal limit for Nyström matrix k(t,t) same as Laplace

PTR with N nodes, test via self-convergence What's the conv. rate? Why N^{-3} ?

4 Debug BVP with known data from a radiative soln sources inside Ω

Helmholtz — Dirichlet demo

Solve the Helmholtz ext Dir BVP with the $u=\mathcal{D}\sigma$ repr, u_i plane wave Diagonal limit for Nyström matrix k(t,t) same as Laplace

PTR with N nodes, test via self-convergence What's the conv. rate? Why N^{-3} ?

- 4 Debug BVP with known data from a radiative soln sources inside Ω
- (5) Without analytic soln: test both via self-convergence and conserved physical qty e.g. optical theorem, or no net QM flux over closed curve C containing no sources or sinks, $0 = \text{Im} \left(\int_C \bar{u} u_n ds \right)$ (eg, Agocs–Barnett '23)

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n=1

If different refractive index n in Ω than outside, use usual splitting $u^{\mathrm{tot}}=u^{\mathrm{inc}}+u$

can always scale such that one is n = 1

inc wave only on outside, e.g.
$$u_i = \begin{cases} 0 & \text{in } \Omega \\ e^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2 \backslash \overline{\Omega} \end{cases}$$
, $\mathbf{k} = \begin{bmatrix} \omega \cos \theta \\ \omega \sin \theta \end{bmatrix}$

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n=1

inc wave only on outside, e.g.
$$u_i = \begin{cases} 0 & \text{in } \Omega \\ e^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2 \backslash \overline{\Omega} \end{cases}$$
, $\mathbf{k} = \begin{bmatrix} \omega \cos \theta \\ \omega \sin \theta \end{bmatrix}$

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n=1

inc wave only on outside, e.g.
$$u_i = \begin{cases} 0 & \text{in } \Omega \\ e^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2\backslash\overline{\Omega} \end{cases}$$
, $\mathbf{k} = \begin{bmatrix} \omega\cos\theta \\ \omega\sin\theta \end{bmatrix}$

BVP for u:

$$\begin{split} &(\Delta+\omega^2)u=0\quad\text{in }\mathbb{R}^d\backslash\overline{\Omega}\quad\text{PDE outside}\\ &(\Delta+n^2\omega^2)u=0\quad\text{in }\overline{\Omega}\quad\text{PDE inside} \end{split}$$

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n=1 inc wave only on outside, e.g. $u_i = \begin{cases} 0 & \text{in } \Omega \\ \mathrm{e}^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2\backslash\overline{\Omega} \end{cases}$, $\mathbf{k} = \begin{bmatrix} \omega\cos\theta \\ \omega\sin\theta \end{bmatrix}$

BVP for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \backslash \overline{\Omega}$ PDE outside $(\Delta + n^2\omega^2)u = 0$ in $\overline{\Omega}$ PDE inside $[u] = -u_i$ on Γ $[u] := u^+ - u^-$, continuity of u^{tot} $[u_n] = -(u_i)_n$ on Γ continuity of u^{tot}

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n=1 inc wave only on outside, e.g. $u_i = \begin{cases} 0 & \text{in } \Omega \\ e^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2\backslash\overline{\Omega} \end{cases}$, $\mathbf{k} = \begin{bmatrix} \omega\cos\theta \\ \omega\sin\theta \end{bmatrix}$

BVP for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \backslash \overline{\Omega}$ PDE outside $(\Delta + n^2\omega^2)u = 0$ in $\overline{\Omega}$ PDE inside $[u] = -u_i$ on Γ $[u] := u^+ - u^-$, continuity of u^{tot} $[u_n] = -(u_i)_n$ on Γ continuity of u^{tot}_n $\frac{\partial u}{\partial r} - i\omega u = o(r^{-1/2})$ SRC outside

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n=1 inc wave only on outside, e.g. $u_i = \begin{cases} 0 & \text{in } \Omega \\ e^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2 \backslash \overline{\Omega} \end{cases}$, $\mathbf{k} = \begin{bmatrix} \omega \cos \theta \\ \omega \sin \theta \end{bmatrix}$

BVP for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \backslash \overline{\Omega}$ PDE outside $(\Delta + n^2\omega^2)u = 0$ in $\overline{\Omega}$ PDE inside $[u] = -u_i$ on Γ $[u] := u^+ - u^-$, continuity of u^{tot} $[u_n] = -(u_i)_n$ on Γ continuity of u^{tot} $\frac{\partial u}{\partial r} - i\omega u = o(r^{-1/2})$ SRC outside

Formulate as sys of integral eqs Rokhlin-Müller scheme, (Müller '69, Rokhlin '83) $u = \begin{cases} \mathcal{S}^{(n\omega)}\sigma + \mathcal{D}^{(n\omega)}\tau & \text{in } \Omega \\ \mathcal{S}^{(\omega)}\sigma + \mathcal{D}^{(\omega)}\tau & \text{in } \mathbb{R}^2 \backslash \Omega \end{cases}$

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n = 1

inc wave only on outside, e.g.
$$u_i = \begin{cases} 0 & \text{in } \Omega \\ e^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2 \backslash \overline{\Omega} \end{cases}$$
, $\mathbf{k} = \begin{bmatrix} \omega \cos \theta \\ \omega \sin \theta \end{bmatrix}$

BVP for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \backslash \overline{\Omega}$ PDE outside $(\Delta + n^2\omega^2)u = 0$ in $\overline{\Omega}$ PDE inside $[u] = -u_i$ on Γ $[u] := u^+ - u^-$, continuity of u^{tot} $[u_n] = -(u_i)_n$ on Γ continuity of u^{tot} $\frac{\partial u}{\partial r} - i\omega u = o(r^{-1/2})$ SRC outside

Formulate as sys of integral eqs Rokhlin-Müller scheme, (Müller '69, Rokhlin '83) $u = \begin{cases} \mathcal{S}^{(n\omega)}\sigma + \mathcal{D}^{(n\omega)}\tau & \text{in } \Omega \\ \mathcal{S}^{(\omega)}\sigma + \mathcal{D}^{(\omega)}\tau & \text{in } \mathbb{R}^2 \backslash \Omega \end{cases}$

$$\begin{bmatrix} [u] \\ [u_n] \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} D(\omega) - D(n\omega) & S(n\omega) - S(\omega) \\ T(\omega) - T(n\omega) & D(n\omega)* - D(\omega)* \end{bmatrix} \end{pmatrix} \begin{bmatrix} \tau \\ -\sigma \end{bmatrix}$$

 ${\cal T}$ is hypersingular operator

If different refractive index n in Ω than outside, use usual splitting $u^{\rm tot}=u^{\rm inc}+u$

can always scale such that one is n = 1

inc wave only on outside, e.g.
$$u_i = \begin{cases} 0 & \text{in } \Omega \\ e^{i\mathbf{k}\cdot\mathbf{x}} & \text{in } \mathbb{R}^2\backslash\overline{\Omega} \end{cases}$$
, $\mathbf{k} = \begin{bmatrix} \omega\cos\theta \\ \omega\sin\theta \end{bmatrix}$

BVP for u:

$$(\Delta + \omega^2)u = 0$$
 in $\mathbb{R}^d \setminus \overline{\Omega}$ PDE outside $(\Delta + n^2\omega^2)u = 0$ in $\overline{\Omega}$ PDE inside $[u] = -u_i$ on Γ $[u] := u^+ - u^-$, continuity of u^{tot} $[u_n] = -(u_i)_n$ on Γ continuity of u^{tot}_n $\frac{\partial u}{\partial x} - i\omega u = o(r^{-1/2})$ SRC outside

Formulate as sys of integral eqs Rokhlin–Müller scheme, (Müller '69, Rokhlin '83) $u = \begin{cases} S^{(n\omega)}\sigma + \mathcal{D}^{(n\omega)}\tau & \text{in } \Omega \\ S^{(\omega)}\sigma + \mathcal{D}^{(\omega)}\tau & \text{in } \mathbb{R}^2 \backslash \Omega \end{cases}$ $\begin{bmatrix} [u] \\ [u_n] \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} D^{(\omega)} - D^{(n\omega)} & S^{(n\omega)} - S^{(\omega)} \\ T^{(\omega)} - T^{(n\omega)} & D^{(n\omega)*} - D^{(\omega)*} \end{bmatrix} \end{pmatrix} \begin{bmatrix} \tau \\ -\sigma \end{bmatrix}$ T is hypersingular operator ...but $T^{(\omega)} - T^{(n\omega)}$ is at most log-singular! \odot (Show via asymptotics of $H_n^{(1)}$)

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Divide bdry into panels instead of global set of nodes, adaptive panel sizes & quadrature rules

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Divide bdry into panels instead of global set of nodes, adaptive panel sizes & quadrature rules Kernel-split: decompose kernel $G(x,y) = \underbrace{G^S(x,y)}_{\text{smooth}} + \underbrace{G^L(x,y) \log |y-x|}_{\text{log singularity}} + \underbrace{G^C(x,y) \frac{(y-x) \cdot \mathbf{n}}{|y-x|^2}}_{\text{Cauchy singularity}}$

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Divide bdry into panels instead of global set of nodes, adaptive panel sizes & quadrature rules Kernel-split: decompose kernel $G(x,y) = \underbrace{G^S(x,y)}_{\text{smooth}} + \underbrace{G^L(x,y) \log |y-x|}_{\text{log singularity}} + \underbrace{G^C(x,y) \frac{(y-x) \cdot \mathbf{n}}{|y-x|^2}}_{\text{Cauchy singularity}}$

Product integration: target-specific quadrature rules, e.g.

$$\int_{\Gamma} f(x,y) \log |x-y| ds_y \approx \sum_{j=1}^N f(x,y_j) w_j^L(x)$$
 (Helsing, Holst, '15), (Kress), . . .

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Divide bdry into panels instead of global set of nodes, adaptive panel sizes & quadrature rules Kernel-split: decompose kernel $G(x,y) = \underbrace{G^S(x,y)}_{\text{smooth}} + \underbrace{G^L(x,y) \log |y-x|}_{\text{log singularity}} + \underbrace{G^C(x,y) \frac{(y-x) \cdot \mathbf{n}}{|y-x|^2}}_{\text{Cauchy singularity}}$

Product integration: target-specific quadrature rules, e.g.

$$\int_{\Gamma} f(x,y) \log |x-y| ds_y \approx \sum_{j=1}^N f(x,y_j) w_j^L(x)$$
 (Helsing, Holst, '15), (Kress), . . .

Generalized Gaussian quadrature (Bremer)

Close evaluation: target close to bdry

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Divide bdry into panels instead of global set of nodes, adaptive panel sizes & quadrature rules Kernel-split: decompose kernel $G(x,y) = \underbrace{G^S(x,y)}_{\text{smooth}} + \underbrace{G^L(x,y) \log |y-x|}_{\text{log singularity}} + \underbrace{G^C(x,y) \frac{(y-x) \cdot \mathbf{n}}{|y-x|^2}}_{\text{Cauchy singularity}}$

Product integration: target-specific quadrature rules, e.g.

$$\int_{\Gamma} f(x,y) \log |x-y| ds_y \approx \sum_{j=1}^N f(x,y_j) w_j^L(x)$$
 (Helsing, Holst, '15), (Kress), . . .

Generalized Gaussian quadrature (Bremer)

Close evaluation: target close to bdry

Kernel-split approach

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Divide bdry into panels instead of global set of nodes, adaptive panel sizes & quadrature rules Kernel-split: decompose kernel $G(x,y) = \underbrace{G^S(x,y)}_{\text{smooth}} + \underbrace{G^L(x,y) \log |y-x|}_{\text{log singularity}} + \underbrace{G^C(x,y) \frac{(y-x) \cdot \mathbf{n}}{|y-x|^2}}_{\text{Cauchy singularity}}$

Product integration: target-specific quadrature rules, e.g.

$$\int_{\Gamma} f(x,y) \log |x-y| ds_y \approx \sum_{j=1}^N f(x,y_j) w_j^L(x)$$
 (Helsing, Holst, '15), (Kress), . . .

Generalized Gaussian quadrature (Bremer)

Close evaluation: target close to bdry

Kernel-split approach

QBX: quadrature by expansion (Kloeckner, Barnett, Greengard, O'Neil '13), (Epstein,

Greengard, Kloeckner '13)

Spectral accuracy Nyström for log-singular kernels: possible, but beyond today

Divide bdry into panels instead of global set of nodes, adaptive panel sizes & quadrature rules Kernel-split: decompose kernel $G(x,y) = \underbrace{G^S(x,y)}_{\text{smooth}} + \underbrace{G^L(x,y) \log |y-x|}_{\text{log singularity}} + \underbrace{G^C(x,y) \frac{(y-x) \cdot \mathbf{n}}{|y-x|^2}}_{\text{Cauchy singularity}}$

Product integration: target-specific quadrature rules, e.g.

$$\int_{\Gamma} f(x,y) \log |x-y| ds_y \approx \sum_{j=1}^N f(x,y_j) w_j^L(x)$$
 (Helsing, Holst, '15), (Kress), . . .

Generalized Gaussian quadrature (Bremer)

Close evaluation: target close to bdry

Kernel-split approach

QBX: quadrature by expansion (Kloeckner, Barnett, Greengard, O'Neil '13), (Epstein,

Greengard, Kloeckner '13)

See also libraries: chunkie, BIE2D, etc.

Summary

Covered BIE basics for smooth curves with global quadrature:

- Well-posed Laplace & Helmholtz BVPs exterior need condition as $||x|| \to \infty$
- Choosing representation to get 2nd kind BIE if poss., equivalent to BVP if poss.
 Can switch interior/exterior, Laplace/Helmholtz/etc, via simple code changes
- Nyström discretization high-order/spectral convergence, if poss.
- Build/debug codes via well-chosen sequence of test cases also for libraries

practise! write out theory yourself + try HW exer. in repo + run demos ${\tt https://github.com/flatironinstitute/comptools24}$

Summary

Covered BIE basics for smooth curves with global quadrature:

- Well-posed Laplace & Helmholtz BVPs exterior need condition as $||x|| \to \infty$
- Choosing representation to get 2nd kind BIE if poss., equivalent to BVP if poss.
 Can switch interior/exterior, Laplace/Helmholtz/etc, via simple code changes
- Nyström discretization high-order/spectral convergence, if poss.
- Build/debug codes via well-chosen sequence of test cases also for libraries

```
practise! write out theory yourself + try HW exer. in repo + run demos {\tt https://github.com/flatironinstitute/comptools24}
```

Useful 2D tools we did not yet cover:

Hai's talk; in libraries, eg chunkIE, BIE2D

panel (composite) quadratures

essential for adaptivity

high-order quadratures for log-singular kernel

SLP, Helmholtz, etc

- special quadratures for evaluation close to the curve some need interpolation of $\sigma(t)$ off the nodes t_j , some not
- corners, open arcs, slits, multi-material junctions

Resources

Many numerical analysis (mathematics heavy). Somewhat accessible:

- Linear Integral Equations, R. Kress, (1999, Springer). Ch. 6 & 12.
- The Numerical Solution of Integral Equations of the Second Kind, K. E. Atkinson, (1997, CUP).

Fewer on the practical/tutorial side, few with last 15 years of progress:

• "High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane", S Hao, AH Barnett, PG Martinsson, P Young. *Adv. Comput. Math.* **40**, 245–272 (2014).

various quadratures for logarithmic singularities, for, eg, SLP, Helmholtz

- https://users.flatironinstitute.org/~ahb/BIE/
- https://github.com/ahbarnett/BIEbook

in progress...

