[Total No. of CO's :05] [Total No. of Pages:02]

Seat No:

G. H. Raisoni College of Engineering and Management, Pune. (An Autonomous Institution affiliated to Savitribai Phule ,Pune University) F.Y. B. Tech (All Branches) (Term-II) Summer-2021 (2020 Pattern) Matrices & Differential Calculus(UBSL103)

[Time:2 Hours] [Max. Marks-50]

COURSE OUTCOME:

- 1. Understand and use the theory of Matrices to solve the system of linear equations and engineering problems in respective disciplines.
- 2. Determine the Eigen values and Eigen vectors of a matrix and apply to various engineering problems in respective disciplines.
- 3. Apply concepts of differentiation in solving engineering problems..
- 4. Use applications of partial differentiation to solve various problems in engineering
- 5. Apply the Knowledge of vector differentiation to solve various problems in engineering.

Instructions to the candidates:

- 1) (CO1/CO2/CO...)at the beginning of question/sub question indicates the course outcome related to the question.
- 2) All questions compulsory.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.
- 6) Other Instructions, if any.

co	Sub Question		Marks	BL	
CO1	a)	Determine the rank of the following matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$	[2]	L2	
	<i>b</i>)	Under what condition non homogenous system has infinite number of solutions	[1]	L1	
	c)	Examine for linear dependence or independence of vectors $(2, -1,3,2)$, $(1,3,4,2)$ and $(3, -5,2,2)$. Find a relation between them if dependent	[3]	L3	
	d)	Examine for consistency the following system of equations and if consistent, solve it. $2x - y + 3z = 1$, $3x + 2y + 3z = 3$, $x - 4y + 5z = -1$	[4]	L4	
CO2	<i>a</i>)	Find the Eigen values of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	[1]	L1	

	<i>b</i>)	A square matrix A is called idempotent if $A^2 = A$ What are the possible eigenvalues of an idempotent matrix?	[2]	L2
	c)	Find then Eigen values and Eigen vector corresponding to the $\begin{bmatrix} 1 & 1 & -2 \end{bmatrix}$	[4]	L4
		highest Eigen value of the matrix $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$		
	d)	Verify Cayley Hamilton Theorem for $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$	[3]	L3
CO3	a)	State mean value theorem	[1]	L1
	<i>b</i>)	Find the <i>nth</i> derivative of $(\cos 2x \cos 6x)$	[2]	L2
	c)	Expand $f(x) = e^{sinx}$ by Maclaurin's series	[3]	L3
	d)	If $y = a\cos(\log x) + b\sin(\log x)$, then show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$	[4]	L4
CO4	a)	If $x = r\cos\theta$, $y = r\sin\theta$ then find $\frac{\partial(x,y)}{\partial(r,\theta)}$	[1]	L1
	<i>b)</i>	State Chain Rule for function of three variables	[1]	L1
	c)	Discuss the maxima and minima of the function	[4]	L3
		$f(x,y) = 3x^2 - y^2 + x^3$ OR		
	d)	If $u = xyz$, $v = x^2 + y^2 + z^2$, $w = x + y + z$ find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	[4]	L3
	e)	If $u = sin^{-1} \left(\frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} - y^{\frac{1}{2}}} \right)^{\frac{1}{2}}$, Prove that	[4]	L4
		$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{\tan u}{144} (13 + \tan^{2} u)$		
CO5	a)	Find the maximum value directional derivative of $\phi = x^3y^2z$ at $(1,-2,3)$	[2]	L2
	<i>b</i>)	Find the directional derivative of $\emptyset = xy^2 + yz^2 + zx^2$ along the tangent to the curve $x = t$, $y = t^2$, $z = t^3$ at the point $(1,1,1)$	[4]	L3
	c)	OR Show that $\overline{F} = (ye^{xy}\cos z)\overline{i} + (xe^{xy}\cos z)\overline{j} - (e^{xy}\sin z)\overline{k}$ is irrotational. Find its scalar potential 3	[4]	L3
	d)	Find the Value of n for which the vector $r^n \bar{r}$ is solenoidal, where $\bar{r} = xi + yj + zk, r = \sqrt{(x^2 + y^2 + z^2)}$	[4]	L4