Laboratorio di Fisica 1 R7: Misura di $|\vec{g}|$ mediante pendolo fisico

Gruppo 15: Bergamaschi Riccardo, Graiani Elia, Moglia Simone05/03/2024-12/03/2024

Sommario

Il gruppo di lavoro ha misurato il modulo del campo gravitazionale locale (g) studiando il moto oscillatorio di un pendolo fisico.

0 Materiali e strumenti di misura utilizzati

Strumento di misura	Soglia	Portata	Sensibilità
Sensore di rotazione	$0.002\mathrm{rad}$	N./A.	$0.002\mathrm{rad}$
Cronometro	$0.001\mathrm{s}$	N./A.	$0.001{ m s}$
Micrometro ad asta filetta- ta	$0.01\mathrm{mm}$	$25.00\mathrm{mm}$	$0.01\mathrm{mm}$
Calibro ventesimale	$0.05\mathrm{mm}$	$150.00\mathrm{mm}$	$0.05\mathrm{mm}$
Metro a nastro	$0.1\mathrm{cm}$	$300.0\mathrm{cm}$	$0.1\mathrm{cm}$
Bilancia di precisione	$0.01\mathrm{g}$	$6200.00{ m g}$	0.01 g

Altro	Descrizione/Note
Asta e rotore	L'asta, fissata ortogonalmente al rotore, è libera di ruo- tare attorno ad un suo estremo. Il rotore è invece inne- stato del sensore di rotazione.
Tre cilindri (con masse e raggi distinti)	Di masse e raggi distinti, presentano un foro centrale lungo l'asse di simmetria. Li indicheremo con $A, B \in C$.

1 Esperienza e procedimento di misura

Definizione. Con il termine "configurazione" indicheremo d'ora in poi l'insieme delle posizioni di una qualunque combinazione di cilindri lungo l'asta, misurate rispetto all'estremo fissato al rotore.¹

- 1. Misuriamo le masse dei cilindri con la bilancia di precisione, i rispettivi diametri (interni ed esterni) con il calibro ventesimale e le altezze con il micrometro ad asta filettata.
- 2. Mediante il metro a nastro misuriamo la lunghezza dell'asta e, servendoci del micrometro, i diametri di asta e rotore.
- 3. Ripetiamo 9 volte i seguenti passi:
 - (a) Scelta arbitrariamente una configurazione Γ , fissiamo all'asta i cilindri coinvolti, servendoci del foro centrale. Misuriamo poi, mediante il metro a nastro, le posizioni dei cilindri lungo l'asta rispetto al suo estremo fisso.
 - (b) Servendoci dell'apposito programma, avviamo l'acquisizione dell'angolo in funzione del tempo $(\theta(t), lo definiremo formalmente più avanti).$
 - (c) Inclinando l'asta rispetto alla sua posizione di equilibrio di un angolo prefissato θ_0 , sufficientemente piccolo², diamo inizio al moto del pendolo. Acquisiamo dati fino all'arresto del moto.

2 Analisi dei dati raccolti e conclusioni

Nota. Avendo valutato gli errori sulle grandezze misurate direttamente come piccoli, casuali e indipendenti, per svolgere ogni calcolo abbiamo utilizzato la tradizionale propagazione degli errori.

2.1 Misura di $|\vec{q}|$

Scegliamo un sistema di riferimento cilindrico, con origine all'intersezione fra l'asse di rotazione e il piano, ad esso perpendicolare, contenente il centro di massa, versore \hat{r} parallelo a \vec{g} e versore \hat{k} diretto lungo l'asse di rotazione del sistema.

La posizione del centro di massa del pendolo fisico sarà allora descritta da $\vec{r}_{\rm CM}=(r_{\rm CM},\theta,z)$ con z=0, dove θ è lo spostamento angolare rispetto alla posizione di equilibrio.

¹Più formalmente, diremo "configurazione" un insieme Γ di coppie ordinate γ della forma (i,d), dove $i \in \{A,B,C\}$ è un cilindro e d è la sua distanza dall'estremo fissato al rotore. Ovviamente non è possibile ripetere i in elementi distinti della configurazione, perché ciò non avrebbe significato fisico.

²Questa condizione sull'angolo θ_0 ci permette di approssimare $\sin(\theta) \sim \theta \quad \forall \theta \in [-\theta_0, \theta_0].$

Vale la seconda equazione cardinale della dinamica:

$$\sum \tau_z^{\text{ext}} = \dot{L}_z = I_z^{\text{tot}} \ddot{\theta}$$

Nota. In questa sezione abbiamo trascurato la presenza di attriti, ma chiaramente gli attriti ci sono e il moto è smorzato. Nella sezione successiva tratteremo proprio questo fenomeno, determinando, alla luce dei dati raccolti, quanto influisca sul valore di g.

Poiché l'unica forza esterna al sistema che compie un momento lungo \hat{k} è la forza peso, si ha:

$$\sum \vec{\tau}_z^{\,\rm ext} = \vec{r}_{\rm CM} \times M \vec{g} = -Mg \, r_{\rm CM} \sin(\theta) \hat{k}. \label{eq:tau_cm}$$

L'equazione differenziale che descrive il moto del centro di massa del pendolo fisico sarà allora:

$$\ddot{\theta} = -\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}} \sin(\theta)$$

È possibile semplificare il modello fisico approssimando $\sin(\theta) \simeq \theta$. Il gruppo di lavoro ha ritenuto valida questa operazione solo quando

$$|\theta_0 - \sin(\theta_0)| < \delta\theta$$

Essendo, nel nostro caso, $\delta\theta=0.02\,\mathrm{rad},$ abbiamo scelto $\theta_0^\mathrm{max}=0.49\,\mathrm{rad}.$ Infatti:

$$0.49 \, \text{rad} - \sin(0.49 \, \text{rad}) \simeq 0.019 \, \text{rad}$$
 $0.50 \, \text{rad} - \sin(0.50 \, \text{rad}) \simeq 0.021 \, \text{rad}$

Prima di prendere ogni misura, il gruppo di lavoro si è assicurato che θ_0 soddisfacesse abbondantemente la condizione $\theta_0 < \theta_0^{\max}$.

L'equazione differenziale semplificata è allora:

$$\ddot{\theta} = -\frac{Mg \, r_{\mathrm{CM}}}{I_{z}^{\mathrm{tot}}} \theta$$

Questa equazione descrive un moto armonico. Le soluzioni sono infatti del tipo:

$$\theta(t) = \theta_0 \cos(\omega t)$$
 dove $\omega = \sqrt{\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}}}$ è detta "pulsazione".

Possiamo tuttavia facilmente esprimere ω in funzione del periodo T del moto oscillatorio, più semplice da calcolare dai dati acquisiti. Vale infatti:

$$\omega = \frac{2\pi}{T} \qquad \text{e quindi} \qquad \frac{I_z^{\text{tot}}}{Mr_{\text{CM}}} = g \frac{T^2}{4\pi^2}$$

La formula utilizzata per il calcolo di $I_z^{\rm tot}$ riflette la composizione del sistema, sfruttando la proprietà additiva del momento d'inerzia:

$$I_z^{\rm tot} = I_{z, {\rm rotore}} + I_{z, {\rm asta}} + \sum_{\gamma \in \Gamma} I_{z, \gamma}$$

Chiaramente, per calcolare i momenti d'inerzia rispetto all'asse di rotazione è necessario applicare il teorema di Huygens-Steiner a quelli calcolati sui rispettivi centri di massa³:

$$\begin{split} I_{z,\text{asta}} &= I_{\text{CM},\text{asta}} + m_{\text{asta}} \left(\frac{L_{\text{asta}} + \varnothing_{\text{rotore}}}{2} \right)^2 \\ \\ I_{z,(i,d)} &= I_{\text{CM},i} + m_i \left(d + \frac{h_i - \varnothing_{\text{rotore}}}{2} \right)^2 \quad \forall (i,d) \in \Gamma \end{split}$$

Per calcolare il termine $Mr_{\rm CM}$, si osservi che, per la definizione di posizione del centro di massa, la massa totale si semplifica:

$$\begin{aligned} Mr_{\text{CM}} &= M \cdot \frac{1}{M} \left(m_{\text{rotore}} \cdot 0 + m_{\text{asta}} r_{\text{CM,asta}} + \sum_{(i,d) \in \Gamma} m_i r_{\text{CM},i} \right) \\ &= m_{\text{asta}} \left(\frac{L_{\text{asta}} + \varnothing_{\text{rotore}}}{2} \right) + \sum_{(i,d) \in \Gamma} m_i \left(d + \frac{h_i - \varnothing_{\text{rotore}}}{2} \right) \end{aligned}$$

Di seguito riportiamo le misure, dirette e indirette, utilizzate per il calcolo dei momenti d'inerzia $^4\colon$

Oggetto	L (cm)	Ø (mm)	m (g)	$I_{\rm CM} \ (10^{-5}{\rm kgm}^2)$
Asta	60.0 ± 0.1	5.94 ± 0.01	45.82 ± 0.01	568.5 ± 1.5
Rotore	N./A.	13.41 ± 0.01	$22.4 \pm 0.1^*$	$0.058 \pm 0.001^*$

i	m_i (g)	$d_i^{\mathrm{ext}} \ (\mathrm{mm})$	d_i^{int} (mm)	h_i (mm)	$I_{\mathrm{CM},i}~(\mathrm{mgm^2})$
A	115.95 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	19.93 ± 0.01	10.62 ± 0.03
В	115.86 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	19.89 ± 0.01	10.59 ± 0.03
С	71.46 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	12.08 ± 0.01	5.047 ± 0.018

[*] Valori dati

$$I_{\text{CM,asta}} = \frac{1}{12} m_{\text{asta}} L_{\text{asta}}^2 \qquad I_{\text{CM},i} = \frac{1}{16} m_i \left((d_i^{\text{ext}})^2 + (d_i^{\text{int}})^2 \right) + \frac{1}{12} m_i h_i^2 \quad \forall i \in \{A,B,C\}$$

³Questi ultimi sono stati calcolati mediante le seguenti formule:

 $^{^4}L_{\rm asta}$ è la lunghezza della parte dell'asta che sporge all'esterno del rotore.

Il periodo dell'oscillazione è stato misurato individuando N+1 zeri consecutivi di $\theta(t)$, diciamo $\{t_0,t_1,\ldots,t_N\}$. Allora, poiché tra uno zero e l'altro corre metà periodo, è possibile calcolare T in questo modo: $T=\frac{2}{N}(t_N-t_0)$

Il gruppo di lavoro ha scelto N di volta in volta, in modo tale che fosse proporzionale al numero di oscillazioni compiute dal pendolo prima di fermarsi. Complessivamente, N ha assunto valori da 30 a 180.

Come descritto sopra, il gruppo di lavoro ha calcolato, per ogni configurazione Γ , i valori di $\frac{I_{\rm con}^{\rm tot}}{M^2_{\rm CM}}$ e $\frac{T^2}{4\pi^2}$, riportati nel grafico seguente. Come è possibile osservare dalla relazione che le lega, la dipendenza tra

Come è possibile osservare dalla relazione che le lega, la dipendenza tra queste due grandezze è lineare: questo ci permette di determinare il valore di g come coefficiente angolare di una retta di regressione.

Figura 1: In rosso, la retta di regressione lineare e in rosa, appena visibile, la sua regione di incertezza. (le barre di errore sull'ascissa sono così ridotte da risultare invisibili)

- Intercetta = (0.003 ± 0.005) m
- Coefficiente angolare $g = (9.68 \pm 0.13) \text{ m/s}^2$

I risultati della regressione lineare sono chiaramente compatibili con i valori attesi. Infatti:

- Secondo il modello fisico utilizzato, l'intercetta dovrebbe essere nulla; in effetti, (0.003 ± 0.005) m è compatibile con 0 m.
- Il valore di g atteso è 9.806 m/s²; si può osservare facilmente che il valore misurato, (9.68 ± 0.13) m/s², è compatibile con esso.

Possiamo pertanto concludere che l'esperienza ha avuto successo: mediante l'apparato sperimentale abbiamo ottenuto una misura di g compatibile con quella attesa.

2.2 Misura dello smorzamento

In questa sezione, illustreremo come il gruppo di lavoro abbia valutato lo smorzamento del moto e quanto questo sia significativo, prendendo come esempio la configurazione $\Gamma = \{\}$, dove il pendolo fisico è composto solamente da asta e rotore, senza l'aggiunta di cilindri.

Il gruppo di lavoro ha effettuato gli stessi passaggi per tutte le altre configurazioni: i risultati saranno messi in evidenza alla fine della sezione.

Sempre applicando la seconda equazione cardinale della dinamica, è facile ricavare l'equazione differenziale che caratterizza il moto del sistema sotto l'effetto delle forze di attrito. Approssimando, come prima, $\sin(\theta) \simeq \theta$, si ottiene:

$$\ddot{\theta} = -\lambda \dot{\theta} - \frac{Mg \, r_{\mathrm{CM}}}{I_{z}^{\mathrm{tot}}} \theta$$

dove λ è una costante legata allo smorzamento del moto. Le soluzioni di questa equazione differenziale sono infatti della forma:

$$\theta(t) = \theta_0 \cos(\omega t) e^{-\lambda t}$$

dove la pulsazione del moto, ω , è data da:

$$\omega^2 = \omega_0^2 - \lambda^2$$
 con $\omega_0 = \sqrt{\frac{Mg \, r_{\rm CM}}{I_z^{\rm tot}}}.$

Figura 2: Parte dei dati di un'acquisizione di $\theta(t)$ con $\Gamma = \{\}$, come raccolti dal sensore di rotazione, riportati su una larga scala temporale. Si può chiaramente notare lo smorzamento del moto.

Per stimare λ , il gruppo di lavoro ha proceduto come segue:

- 1. Per prima cosa, abbiamo individuato i massimi dei nostri dati, ovvero gli insiemi di punti della forma $\{t_i, t_{i+1}, \dots, t_j\} \times \{\theta_k\}$ tali che $\theta(t_{i-1}) < \theta_k > \theta(t_{j+1})$.
- 2. Per ogni massimo, ne abbiamo calcolato il punto medio, prendendo come $\delta t_{\rm picco}$ la semidispersione $\frac{1}{2}(t_j t_i) + \delta t$.
- 3. Infine, abbiamo graficato i punti così trovati su scala logaritmica e abbiamo effettuato una regressione lineare (pesata⁵) sulle nuove ordinate. Il coefficiente angolare di tale regressione dovrebbe essere proprio $-\lambda$.
- 4. Abbiamo ripetuto i tre punti precedenti sugli stessi dati, con θ cambiato di segno: così facendo, ai massimi si sostituiscono i minimi e tutto il resto dell'analisi è analoga. Per ogni configurazione abbiamo pertanto ottenuto due diversi valori di λ : λ_{\min} e λ_{\max} . Abbiamo scelto di porre $\lambda = \frac{1}{2}(\lambda_{\min} + \lambda_{\max})$.

Figura 3: $\ln \theta(t)$ di massimi e minimi, su scala logaritmica (per $\Gamma = \{\}$). Sono riportate anche le barre di errore. In rosso, la retta di regressione lineare e in rosa la sua regione di incertezza.

Poiché l'obiettivo è calcolare g, la correzione da effettuare sul periodo, per tenere conto dell'attrito, è la seguente:

$$T_0^2 = \frac{4\pi^2}{\omega_0^2} = \frac{4\pi^2}{\omega^2 + \lambda^2} = \frac{4\pi^2}{\frac{4\pi^2}{T^2} + \lambda^2} = \frac{1}{\frac{1}{T^2} + \frac{\lambda^2}{4\pi^2}}$$

Effettuata questa correzione per ogni configurazione Γ , si può allora costruire nuovamente una retta di regressione, analogamente a quanto fatto nella sezione

 $^{^5\}delta \ln |\theta|$, infatti, varia molto, nonostante $\delta |\theta|$ sia costante: ciò è conseguenza della propagazione degli errori. È inoltre possibile osservarlo nella Figura 2.

precedente. La relazione fra le grandezze misurate, ricordiamo, è lineare:

$$\frac{I_z^{\rm tot}}{Mr_{\rm CM}} = g \frac{T_0^2}{4\pi^2}$$

Riportiamo di seguito il grafico della nuova regressione, unitamente ai risultati ottenuti.

Figura 4: In rosso, la retta di regressione lineare e in rosa, appena visibile, la sua regione di incertezza. (le barre di errore sull'ascissa sono così ridotte da risultare invisibili)

I risultati della regressione lineare sono i seguenti:

- Intercetta = (0.003 ± 0.005) m
- Coefficiente angolare $g = (9.68 \pm 0.13) \text{ m/s}^2$

Come è possibile osservare comparando questi risultati a quelli precedentemente ottenuti, il valore di g risultante è rimasto essenzialmente invariato (al netto della sua incertezza).

In conclusione, possiamo affermare ragionevolmente che, rispetto alla sensibilità degli strumenti di misura, il contributo dell'attrito è trascurabile.