Dinâmica

A dinâmica e a cinemática são dois campos de estudos que compõem a mecânica. Na cinemática estudamos o movimento dos corpos sem levar em conta as causas desse movimento. Já a dinâmica estuda as causas do movimento, no caso a aplicação de forças sobre corpos. Para começar o estudo das forças enunciaremos as três leis de Newton:

Leis de Newton

1° Lei de Newton

Um corpo tende a permanecer em repouso ou em movimento retilíneo uniforme se a resultante das forças que agem sobre esse corpo for nula.

2° Lei de Newton

A quantidade de movimento de um corpo é definida como o produto da massa m desse corpo pela sua velocidade v.

$$\vec{p} = m\vec{v}$$

Se a massa for sempre constante, então a variação da quantidade de movimento tem apenas a velocidade variando.

$$\Delta \vec{p} = m \Delta \vec{v}$$

Pela primeira lei temos que se a força resultante sobre um corpo for nula sua aceleração também é nula, já que sua velocidade é constante. Ou seja, a aceleração é proporcional à força aplicada. Logo, se um corpo fica submetido a uma força resultante \vec{F} não nula por um determinado período de tempo Δt sua quantidade de movimento irá variar, portanto:

$$\Delta \vec{p} = \vec{F} \Delta t$$

Igualando os termos e rearranjando-os:

$$\vec{F}\Delta t = m\Delta \vec{v}$$

$$\vec{F} = m\frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{F} = m\vec{a}$$

Portanto, a 2° Lei de Newton enuncia que, a força resultante sobre um corpo de massa m é igual ao produto da massa desse corpo pela aceleração \vec{a} que ele adquire ao ser submetido a essa força.

3° Lei de Newton

Todas as forças acontecem em pares, formando um par ação-reação. Por exemplo, se um homem chuta uma bola com uma força \vec{F} , seu pé ficara sujeito a uma força $-\vec{F}$. Outro exemplo, se um corpo é atraído pela Terra por uma força gravitacional $\overrightarrow{F_g}$, a Terra será atraída por esse corpo por uma força $-\overrightarrow{F_g}$, e assim por diante.

Enunciada as três Leis de Newton, vamos começar a definir cada uma das principais forças da dinâmica.

Força Gravitacional

A força gravitacional é uma força de campo, ou seja, não precisa de contato para surtir efeitos. Ela surge sobre corpos que estão presentes em um campo gravitacional, atraindo-os para o centro do campo. Os astros são os principais e mais notórios corpos que interagem com outros por meio de atrações gravitacionais. Pela 3° Lei de Newton, se um corpo é atraído por outro com uma força, então o segundo também é atraído pelo primeiro, com uma força de mesmo módulo e direção, mas de sentido contrário.

A força gravitacional que age sobre dois corpos é proporcional à massa de cada um deles e inversamente proporcional ao quadrado da distância entre seus centros, sendo a massa dos dois corpos igual a m e M e a distância igual a d temos:

$$F_g \propto \frac{mM}{d^2}$$

Para transformarmos a relação de proporcionalidade acima em uma igualdade precisamos inserir nela uma constante. Por meio do experimento onde se mediu a atração entre dois corpos de um 1 kg a uma distância de um metro, encontrou-se o valor dessa constante, que é igual a:

$$G = 6.67 \cdot 10^{-11} m^3 kg^{-1}s^{-2}$$

Portanto, o módulo da força gravitacional existente entre dois corpos de massa m e M com uma distância entre seus centros igual a d é:

$$F_g = G \frac{mM}{d^2}$$

Agora, se analisarmos a força resultante sobre o corpo de massa m em queda livre, teremos que a aceleração que irá agir sobre esse corpo é igual ao valor da aceleração da gravidade local de onde o corpo está, portanto, aplicando a 2° Lei de Newton:

$$F_g = mg$$

Igualando os termos e isolando g:

$$mg = G \frac{mM}{d^2}$$

$$g = \frac{GM}{d^2}$$

Logo, percebe-se que a aceleração da gravidade que age sobre um corpo independe de sua massa.

Substituindo M pelo valor da massa da Terra e d pelo raio da Terra ao nível do mar e a 45° de latitude temos que a aceleração da gravidade na superfície da terra pode ser aproximada para:

$$g = 9.81 \, m/s^2$$

Portanto, um corpo em queda livre na Terra fica submetido a uma aceleração igual a g.

Força Elástica

A força elástica é de origem eletromagnética e surge sempre que uma mola ou elástico é deformado. A força elástica é uma força restauradora, ou seja, ela sempre age no sentido contrário ao da força que deformou a mola, fazendo com que essa retorne a sua posição de equilíbrio. Essa força restauradora é proporcional à deformação \boldsymbol{x} da mola.

$$F_e \propto \chi$$

A constante de igualdade nesse caso é a constante elástica da mola, que varia dependendo das propriedades da mola, normalmente essa constante é denotada por K.

$$F_e = Kx$$

Força Normal e Tensão

Ambas as forças são de origem eletromagnética. A força normal surge como consequência da compressão entre dois corpos, já a força de tensão é o efeito proveniente da deformação de cabos, fios etc. Não existe uma expressão definida para se calcular a tensão ou a força normal que age em um sistema, sendo assim necessária a análise particular de cada sistema, levando em consideração todas as forças,

movimentos e corpos em equilíbrio para se descobrir os valores dessas duas forças.

Força de Atrito

Também de origem eletromagnética, essa força é sempre contrária ao movimento de um corpo e atua de forma diferente quando ele está parado ou já em movimento. Ela é proporcional à força normal N (de compressão) que atua no corpo.

$$F_a \propto N$$

A constante de igualdade é igual ao coeficiente de atrito μ da superfície onde se encontra o corpo. Se o corpo estiver parado e então começar a ser submetido a uma força externa até o limite em que ele começar a se movimentar, então o coeficiente de atrito que deve ser levado em consideração é o estático μ_e , já quando em movimento o atrito é o dinâmico μ_d . A força de atrito estático que agir sobre esse corpo será sempre igual à força externa resultante no eixo paralelo a superfície. Já a força de atrito dinâmico é sempre constante para um mesmo corpo em uma mesma superfície. Concluindo, a força de atrito é igual a:

$$F_a = \mu N$$

Uma observação a ser feita a respeito dos coeficientes de atrito é que, para uma mesma superfície, o atrito dinâmico é sempre menor que o estático.

Associação de Molas

Assim como em uma associação de resistores, a associação de molas, tanto em série quanto em paralelo, pode ser substituída por uma mola equivalente, preservando as características do arranjo inicial.

Série

Na associação em série todas as molas estão submetidas à mesma força, e a deformação de cada uma varia de acordo com o seu coeficiente.

$$F = K_1 x_1 = K_2 x_2 = \dots = K_n x_n$$

$$F = K_{eq} x_t = K_{eq} (x_1 + x_2 + \dots + x_n)$$

$$\frac{F}{K_{eq}} = \frac{F}{K_1} + \frac{F}{K_2} + \dots + \frac{F}{K_n}$$

$$\frac{1}{K_{eq}} = \frac{1}{K_1} + \frac{1}{K_2} + \dots + \frac{1}{K_n}$$

Paralelo

Na associação em paralelo todas as molas apresentam a mesma deformação para uma força F que se distribui para todas as molas.

$$F = F_1 + F_2 + \dots + F_n = K_1 x + K_2 x + \dots + K_n x = K_{eq} x$$

$$K_{eq} = K_1 + K_2 + \dots + K_n$$

Plano Inclinado

Para o estudo do plano inclinado devemos decompor as forças que atuam nos corpos. As componentes das forças estarão em um sistema de coordenadas inclinado, o que facilita a análise das propriedades físicas do sistema.

A força normal será sempre paralela ao eixo y desse novo sistema de coordenadas, ao passo que o eixo x será paralelo à superfície do plano.

Decompondo a força gravitacional que age sobre o corpo com base no ângulo de inclinação θ do plano temos:

$$F_{gx} = F_g \sin(\theta)$$
$$F_{gy} = F_g \cos(\theta)$$

$$F_{gy} = F_g \cos(\theta)$$

Talha Exponencial

O arranjo sequencial de roldanas ou polias nos permite ter um ganho mecânico com a divisão exponencial de força necessária para se realizar alguma tarefa. Por exemplo, se precisamos levantar um bloco de 10 KN de peso, podemos dividir a força necessária (10 KN) para levantá-lo, exigindo assim menos esforço de um motor instalado para realizar essa tarefa.

Se colocarmos esse bloco preso a uma polia móvel, que por sua vez está com suas extremidades conectadas ao teto e a uma polia fixa, dividimos a força necessária para levantá-lo em dois (O teto irá realizar o restante da força). Agora se o bloco está preso em uma polia móvel,

que está conectada a outra polia móvel (e ao teto), e esta a uma polia fixa (e ao teto novamente), dividimos a força em duas partes duas vezes, ou seja, precisamos realizar um quarto da força, e quanto mais polias móveis, menor será a força necessária, que irá diminuir exponencialmente.

Matematicamente:

$$F = \frac{mg}{2^n}$$

Onde mg é o peso de um objeto de massa m, n é o número de polias móveis do sistema, e F a força a ser realizada.

Resistência dos Fluidos

Todo fluido apresenta certo grau de resistência ao movimento, essa resistência pode ser representada por um vetor de força, assim como acontece com a força de atrito.

O formato geral da fórmula para o cálculo da força resistiva em um fluido é:

$$F = Kv^n$$

Onde K é uma constante, n depende do fluido e do corpo em movimento e v é a velocidade do corpo no interior desse fluido.

Para o caso particular onde o fluido é o ar, a fórmula fica:

$$F = Kv^2$$

$$K = \frac{1}{2}\rho_{ar}AC$$

Onde ρ_{ar} é a densidade do ar, A a área de referência do corpo e C é o coeficiente de arrasto.

Força Centrípeta

A força centrípeta é uma força resultante e é a responsável por fazer os corpos adquirirem aceleração centrípeta para realizarem curvas. Um exemplo de força centrípeta é a força da gravidade da Terra que atua sobre a lua, essa força induz uma aceleração centrípeta na lua, permitindo que ela se mantenha orbitando em volta da Terra.

Velocidade Mínima Para Circunferências

Um corpo ao percorrer uma circunferência fica submetido a uma força centrípeta que normalmente é uma soma vetorial da força normal (de compreensão) e a da força gravitacional. Para sabermos qual será a velocidade mínima necessária para se completar uma circunferência precisamos saber qual será a velocidade mínima que esse corpo precisará ter no ponto mais alto da circunferência, uma vez que a partir desse ponto, ele poderá retornar normalmente para baixo apenas usando o auxílio da gravidade e uma força normal que aumentará conforme ele retorna ao chão. Com isso em mente podemos

reduzir a força normal à zero no ponto mais alto, já que nesse ponto, queremos apenas efeitos gravitacionais agindo sobre o corpo.

Partindo da 2° Lei de Newton e da definição de aceleração centrípeta:

$$F = ma = mg$$

$$\frac{v^2}{R} = g$$

$$v = \sqrt{Rg}$$

Onde *R* é o raio da circunferência. Como se pode perceber, a velocidade mínima para se completar uma circunferência independe da massa, sendo assim essa velocidade é válida para qualquer corpo.

Trabalho de uma Força e Energia

Não existe uma definição sobre o que é energia, no entanto, entende-se ela como uma quantidade associada a um corpo, sendo essa quantidade sempre conservada.

Já o trabalho é a medida da transferência ou transformação de energia por uma força aplicada a um corpo durante um determinado deslocamento.

$$\tau = Fd\cos(\theta)$$

Onde F é uma força constante, d o deslocamento e θ o ângulo entre o vetor força e o vetor deslocamento.

Percebe-se que se não houver deslocamento ou força, não há transferência de energia acontecendo nesse corpo. Ainda, se o vetor força e o vetor deslocamento fizerem um ângulo de 90° entre si, essa força não realiza trabalho sobre o corpo.

Existem várias tipos de força, consequentemente temos diferentes formas de se calcular o trabalho realizado por uma força, e partindo da definição de trabalho analisaremos como as forças se comportam modelando assim como o trabalho é realizado para cada uma delas.

Força Gravitacional (Constante)

A força gravitacional age sempre para baixo, e o deslocamento de um corpo onde a única força que atua sobre ele é a gravitacional, também é para baixo, logo o ângulo entre os vetores é zero.

$$\boxed{\tau = Fd\cos(\theta) \quad \rightarrow \quad \tau_g = mgh}$$

Onde h é a altura que o cai. Se tomarmos h como uma variação de altura $h=h_1-h_2$, então:

$$\tau_g = mgh = mg(h_1 - h_2) = \underbrace{mgh_1}_{E_1} - \underbrace{mgh_2}_{E_2} = -(E_2 - E_1) = -\Delta E_g$$

$$\boxed{\tau_g = -\Delta E_g}$$

Analisando a variação de altura definimos a energia potencial gravitacional, sendo:

$$E_g = mgh$$

Onde m é a massa do corpo, h a altura que ele se encontra de um referencial (a energia sempre depende de um referencial) e g a aceleração da gravidade.

Força Elástica (Variável)

A força elástica é uma força restauradora, portanto age sempre a tentar retornar a mola a sua posição de equilíbrio. Se uma mola está sendo deformada em $x=x_2-x_1$ por uma força externa, a força elástica irá agir no sentido a retornar a mola a sua posição de equilíbrio, portanto no sentido contrário ao do deslocamento. Como a força elástica é variável, devemos fazer uma análise do gráfico Fxd, onde a área desse gráfico é numericamente igual ao trabalho realizado por essa força. A força pela Lei de Hooke é F=Kx, o deslocamento é d=x, graficamente temos a formato de um triângulo retângulo, aplicando a fórmula para a área de um triângulo retângulo temos:

$$\tau_e = \frac{bh}{2} = \frac{x.Kx}{2} = \frac{Kx^2}{2} \rightarrow \boxed{\tau_e = \frac{Kx^2}{2}}$$

Assim como no trabalho para a força gravitacional, o trabalho para a força elástica também pode ser escrito como:

$$\tau_{e} = \frac{Kx_{1}^{2}}{\underbrace{\frac{2}{E_{1}}}} - \underbrace{\frac{Kx_{2}^{2}}{E_{2}}} = -\left(\frac{Kx_{2}^{2}}{2} - \frac{Kx_{1}^{2}}{2}\right) = -\Delta E_{e} \quad \to \quad \boxed{\tau_{e} = -\Delta E_{e}}$$

Sendo a energia potencial elástica em um ponto a uma distância x da posição de equilíbrio de uma mola de constante elástica K igual a:

$$E_e = \frac{Kx^2}{2}$$

Trabalho da Força Resultante

Partindo da equação de Torricelli vamos demonstrar a relação existente entre o trabalho da força resultante e a variação de energia cinética.

$$v^{2} = v_{0}^{2} + 2ad$$

$$ad = \frac{v^{2} - v_{0}^{2}}{2}$$

$$\underbrace{ma}_{F_{R}} d = \underbrace{\frac{mv^{2}}{2}}_{E_{2}} - \underbrace{\frac{mv_{0}^{2}}{2}}_{E_{1}}$$

$$\boxed{\tau_{R} = \Delta E_{C}}$$

Por definição temos, portanto, que a energia cinética de um corpo é igual a:

$$E_c = \frac{mv^2}{2}$$

Sendo m a massa do corpo e \boldsymbol{v} a velocidade.

Potência Mecânica

Partindo da definição de potência média podemos substituir a fórmula do trabalho para uma força constante e então com alguma álgebra chegamos à outra fórmula para a potência.

$$P = \frac{\tau}{\Delta t} = \frac{Fd\cos(\theta)}{\Delta t} = Fv\cos(\theta) \rightarrow \boxed{P = Fv\cos(\theta)}$$

Sendo v a velocidade adquirida pelo corpo quando já submetido a F. Essa potência poderia ser, por exemplo, a de um motor que é encarregado de levantar blocos vencendo seus respectivos pesos, a uma determinada velocidade.

Rendimento

O rendimento de qualquer máquina nunca é 100%, uma vez que qualquer sistema está sempre sujeito a dissipação de energia, seja qual for a sua forma. Para calcularmos o rendimento podemos usar qualquer uma das suas variantes a seguir.

$$\eta = \frac{E_U}{E_T} = \frac{\tau_U}{\tau_T} = \frac{P_U}{P_T}$$

Sendo o numerador a quantidade realmente usada para determinado fim, e o denominador a quantidade total fornecida.

Conservação da Energia Mecânica

Em um sistema onde não há forças dissipativas, a energia total do sistema sempre se conserva, em qualquer ponto a qualquer tempo. A energia mecânica é a soma de todas as energias que um corpo tem em um determinado ponto, sendo sempre uma soma da energia cinética (se o corpo estiver em movimento) e das energias potenciais (elástica, gravitacional, elétrica etc.). Se em um ponto A a energia do corpo é E_A e em outro ponto B a energia é E_B , e o sistema é conservativo, então podemos afirmar que:

$$E_A = E_B$$