Introduction to the Symplectic Groups

Elliot Costi

November 2005

1

(Do people know what a bilinear form is?) A bilinear form is alternating if f(v,v) = 0 for all $v \in V$. Any alternating bilinear form is skew symmetric f(u,v) = -f(v,u). We write $V^{\perp} = \{w \in V : f(w,v) = 0 \text{ for all } v \in V\}$ - i.e. the set of v in V that are orthogonal to every other vector in V. This is called the radical of V and f is non-singular if this radical is 0.

The symplectic group $Sp_{2m}(q)$ is the isometry group of a non-singular alternating bilinear form f on $V \cong \text{to } (\mathbb{F}_q)^{2m}$. i.e. the subgroup of $GL_{2m}(q)$ consisting of those elements g s.t. $f(u^g, v^g) = f(u, v)$ for all $u, v \in V$. It is always of even dimension since the determinant of a skew symmetric form of odd dimension is zero and hence not in GL(V). $Sp_{2m}(q)$ is not dependent on f since all forms of this type are equivalent.

A linear map $\tau: V \to V$ is a transvection with fixed hyperplane W if $\tau|_W = Id|_W$ and $\tau x - x \in W$ for all $x \in V$. (Do people know what a hyperplane is?) Given a vector \mathbf{v} and a scalar λ we can construct a transvection $T_v(\lambda): x \to x + \lambda f(x, v)v$. This is a transvection since it fixes the hyperplane $v^{\perp} = \{w \in V: f(w, v) = 0\}$ and $T_v(\lambda)(x) - x = \lambda f(x, v)v$ is a scalar multiple of v and so is in $\{v\}^{\perp}$ since f is alternating.

Theorem 1.1 $Sp_{2m}(q)$ is generated by the set of symplectic transvections. Let S be the group generated by the symplectic transvections.

PROOF: $S \leq \operatorname{Sp}_{2m}(q)$ is an easy exercise.

a) S is transitive on non-zero vectors.

Let v and w be two distinct non-zero vectors with (case 1) $f(v, w) = \lambda$ non-zero. Then $T_{(v-w)}(\lambda^{-1})$ sends v to w (easy exercise - stick the values into Rob Wilson's definition of a transvection). (case 2) If f(v, w) = 0 pick $x \in V$ s.t. f(v, x) and f(w, x) are non-zero. This can be done since there exists y and z s.t. f(v, y) = f(w, z) = 0 but f(v, z) and f(w, y) are non-zero since f is non-singular. Then we can take x to be a suitable linear combination of y and z. Now we can map v to x and x to w and hence S is transitive on non-zero vectors.

b) S is transitive on hyperbolic pairs (pairs (u, v) where f(u, v) = 1) i.e. there us a product of transvections mapping the hyperbolic pair (u_1, v_1) to (u_2, v_2) . Part a) tells

us there exists $\tau: u_1 \to u_2$. So $\tau: (u_1, v_1) \to (u_2, (v_1)^{\tau} = v_3)$. We want to construct σ s.t. $(u_2)^{\sigma} = u_2$ and $(v_3)^{\sigma} = v_2$.

- i) If $f(v_3, v_2)$ is non-zero then the transvection $T_{(v_3-v_2)}(\frac{1}{f(v_3,v_2)})$ maps u_2 to u_2 and v_3 to v_2 .
- ii) If $f(v_3, v_2) = 0$, $f(v_3, u_2 + v_3) = -1$. $f(u_2 + v_3, v_2) = f(u_2, v_2)$, which is non-zero and $f(u_2, -u_2) = 0 = f(u_2, u_2 + v_3 v_2)$. Now, $s_1 = T_{(-u_2)}(\frac{1}{f(v_3, u_2)})(v_3) = u_2 + v_3$ and $s_2 = T_{(u_2+v_3-v_2)}(\frac{1}{f(u_2+v_3, v_2)})(u_2 + v_3) = v_2$ and both s_1 and s_2 fix u_2 . Hence, $s_2s_1(u_1, v_1) = (u_2, v_2)$.

All calculations in part b were tested and are correct.

c) Induction on m. m = 1 gives SL(V) = Sp(V):

$$M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, a general element of $GL(2, F)$.
Then $T \in Sp(2, F)$ iff. $T^tMT = M$. (leave this out if you can: since $f(u, w) = M$).

Then $T \in \text{Sp}(2, F)$ iff. $T^tMT = M$. (leave this out if you can: since $f(u, w) = f(\sum a_i v_i, \sum c_i, v_i) = \sum a_i f(v_i, v_j) c_j = u^t M w$, where the vs are the basis vectors for V and u is the vector with the as in it and w the vector with the cs in it.)

which implies that

$$\begin{pmatrix} 0 & ad - bc \\ -ad + bc & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and so det(T) = 1.

Now, $\widetilde{\mathrm{SL}}(V)$ is generated by transvections (see Grove) so the result for m=1 follows.

Now choose vectors u, v in V s.t. f(u,v)=1 and let W be the plane that they span. $V=W\oplus W^{\perp}$. Take any σ in $\mathrm{Sp}(V)$. Then $f(u^{\sigma},v^{\sigma})=1$ since σ is an isometry of f. Part b states that there is a τ in S s.t. $\tau\sigma u=u$ and $\tau\sigma v=v$ which implies that $\tau\sigma|_{W}=id_{W}$. $\tau\sigma|_{W^{\perp}}$ is in $\mathrm{Sp}(W^{\perp})$ and so by induction $\tau\sigma|_{W^{\perp}}$ is a product of symplectic transvections on W^{\perp} (since dim $W^{\perp}<\dim V$). Any transvection on W^{\perp} can be extended to a transvection of V, which included W in its fixed hyperplane via the same formula for $\tau\sigma|_{W^{\perp}}$. $(T_{v}(\lambda):x\to x+\lambda f(x,v)v$ where x is in W and v is in W^{\perp} so f(x,v)=0 and so W is indeed fixed.) Since $\tau\sigma|_{W}=id|_{W}$, $\tau\sigma\in S$ implies that σ is in S.

For many cases $\mathrm{Sp}'(V)=\mathrm{Sp}(V)$ e.g. characteristic of F=2 and dim $V\geq 6$ and char F=3, dim $V\geq 4$. We prove one of these: char $F\geq 4$.

Theorem 1.2 If $F \ge 4$, $\operatorname{Sp}'(V) = \operatorname{Sp}(V)$.

PROOF: Fix non-zero u in V and a in F^* . Choose b in $F - \{0, 1, -1\}$ and set $c = a/(1-b^2)$, $d = -(b^2)c$. Then c + d = a and so $T_u(c)T_u(d) = T_u(a)$ - easy exercise. Choose σ in Sp(V) s.t. $\sigma u = bu$ (can be done sine action of Sp(V) on V is transitive). Then $\sigma(T_u(c))^{-1}\sigma^{-1} = \sigma T_u(-c)\sigma^{-1} = T_{\sigma u}(-c) = T_{bu}(-c) = T_u(-(b^2)c) = T_u(d)$.

 $(\sigma T_u(-c)\sigma^{-1} = T_{\sigma u}(-c) \text{ since: } \sigma T_u(-c)\sigma^{-1}(x) = \sigma T_u(-c)[\sigma^{-1}(x)] = \sigma[\sigma^{-1}(x) - cf(\sigma^{-1}(x), u)u] = x - cf(x, \sigma u)\sigma u = T_{\sigma u}(-c).$

This implies that $T_u(c)\sigma(T_u(c))^{-1}\sigma^{-1} = T_u(c)T_u(d) = T_u(a)$ which is in $\operatorname{Sp}(V)$. As Sp(V) is generated by transvections and this can be done for all non-zero u and a, $\operatorname{Sp}(V) = Sp(V)$.

Let $\mathbb{P} = \mathbb{P}_{n-1}(V)$ denote the set of all projective lines in V. That is, for each non-zero $v \in V$, the set or all [v] where [v] denotes the line through the origin $\mathbb{F}_q v$.

Theorem 1.3 Sp(V) is primitive on $\mathbb{P} = \mathbb{P}_{n-1}(V)$.

Proof:

We may assume that $n \geq 4$ as $\operatorname{Sp}(2, F_q) = \operatorname{SL}(2, F_q)$, which is doubly transitive. Suppose that S is a subset of \mathbb{P} , |S| > 1 and either $\sigma S = S$ or $\sigma S \cap S$ for each $\sigma \in \operatorname{Sp}(V)$. We show first that there exist $[u], [v] \in S$ with B(u,v) non-zero. Suppose, for contradiction, that for all $[u], [v] \in S$, B(u,v) = 0. Choose $[u] \neq [v]$ in S and choose $f \in V^*$ (the dual of V) with f(u) = 1, f(u) = 0. There exists $x \in V$ with B(u,x) = 1, B(v,x) = 0 (by corollary 2.2 of Grove). Set $W = \operatorname{Span}(u,x)$ - a hyperbolic plane. Set $H = \{\sigma \in \operatorname{Sp}(V) : \sigma|_W = 1_W\} \leq \operatorname{Sp}(V)$. Since $W \oplus W^{\perp}$, it is clear that every $\sigma \in \operatorname{Sp}(W^{\perp})$ extends trivially to $\sigma' \in \operatorname{Sp}(V)$ with $\sigma' = 1_W$ so in fact $\operatorname{Sp}(W^{\perp}) = \{\tau|_W^{\perp} : \tau \in H\}$. Choose a non-zero $w \in W^{\perp}$. Since $v \in W^{\perp}$, there is some $v \in H$ with v = w, since the group generated by symplectic transvections is transitive on non-zero vectors. Since v = u (because $v \in W$ and $v \in W$ is the identity on $v \in W$, we have that $v \in W$ since $v \in W$ and $v \in W$. Since $v \in W$ and $v \in W$ and v

Thus we can choose $[u], [v] \in S$ with B(u, v) non-zero so we can assume that B(u, v) = 1 and so (u, v) is a hyperbolic pair. Take any $[w] \in \mathbb{P}$. If $B(u, w) \neq 0$, we mat assume that (u, w) is a hyperbolic pair and so we can find $\sigma \in \operatorname{Sp}(V)$ with $\sigma u = u$ and $\sigma v = w$ by the fact that $\operatorname{Sp}(V)$ is transitive on hyperbolic pairs. Thus $[u] \in S \cap \sigma S$ and so $\sigma S = S$ and $[w] \in S$. On the other hand, if B(u, w) = 0, choose $f \in V^*$ with f(u) = f(w) = 1 and thereby obtain $x \in V$ with B(u, x) = B(w, x) = 1. As above, $[x] \in S$ and also there exists $\tau \in \operatorname{Sp}(V)$ with $\tau u = w$ and $\tau x = x$. Again $\tau S = S$, since $[x] \in S \cap \tau S$ and $[w] = \tau[u] \in S$. Thus $S = \mathbb{P}$.

Theorem 1.4 Except for PSp(2, 2), PSp(2, 3) and PSp(4, 2) every projective symplectic group PSp(V) is simple.

PROOF: We know that $\operatorname{PSp}(V)$ acts faithfully on \mathbb{P} and the action is primitive by the above. With the exceptions of above, $\operatorname{PSp}(V)$ is equal to its derived group - one example has been done above. Fix $[u] \in \mathbb{P}$ and set $H = \operatorname{Stab}_{Sp(V)}([u])$, $\bar{H} = H/\{\pm 1\} = \operatorname{Stab}_{PSp(V)}([u])$. Set $K = \{\tau_{u,a} : a \in F\}$. K is normal in H and is isomorphic to F (exercise - since ${}^{\sigma}\tau_{u,a} = \tau_{\sigma u,a}$ (K normal) and $\tau_{u,a}\tau_{u,b} = \tau_{u,a+b}$, $\tau_{bu,a} = \tau_{u,ab^2}$ and $\tau_{u,a}^{-1}$ (H isom to F)) so K is abelian. If $\sigma \in \operatorname{Sp}(V)$ then ${}^{\sigma}K \supseteq \{\tau_{\sigma u,a} : a \in F\}$. This means that $\bigcup \{{}^{\sigma}K : \sigma \in \operatorname{Sp}(V)\}$ contains all symplectic transvections and hence generates $\operatorname{Sp}(V)$. Thus $\langle \bar{\sigma}K : \bar{\sigma} \in \operatorname{PSp}(V) \rangle = \operatorname{PSp}(V)$ and hence (bar the noted exceptions) is simple by Iwasawa's Lemma. (G faithful and primitive on S and equal to its derived group. $s \in S$ fixed $H = \operatorname{Stab}_G(S)$. $K \triangleleft H$ and $G = \langle K^x : x \in G \rangle$. Then G is simple.) \square