Homework 1 solution

Due: 2/4/2019 before 11pm. Submit in Canvas (file upload). Rmd file and the html output file (submit both files) are strongly recommended, but not required.

1. (10 pts)

Let $X=(X_1,\ldots,X_n)'$ be the $n\times p$ data matrix, where $X_i=(X_{i1},\ldots,X_{ip})'$ is the ith onservation. Let $\bar{X}=n^{-1}\sum_{i=1}^n X_i$ be the sample mean. Let $s_{j_1j_2}=n^{-1}\sum_{i=1}^n (X_{ij_1}-\bar{X}_{j_1})(X_{ij_2}-\bar{X}_{j_2})$ be the sample covariance between the j_1 th and j_2 th variables. Let $S=(s_{j_1j_2})$ be the sample covariance matrix. Show that

$$S = \frac{1}{n}X'X - \bar{X}'\bar{X}.$$

Proof: Let $A = \frac{1}{n}X'X - \bar{X}'\bar{X}$. The (j_1, j_2) th element of A is

$$a_{j_1,j_2} = \frac{1}{n} \sum_{i=1}^{n} X'_{j_1 i} X_{i j_2} - \bar{X}_{j1} \bar{X}_{j2} = \frac{1}{n} \sum_{i=1}^{n} X_{i j_1} X_{i j_2} - \bar{X}_{j1} \bar{X}_{j2}.$$

On the other hand,

$$s_{j_1j_2} = \frac{1}{n} \sum_{i=1}^{n} (X_{ij_1} - \bar{X}_{j_1})(X_{ij_2} - \bar{X}_{j_2}) = \frac{1}{n} \sum_{i=1}^{n} X_{ij_1}X_{ij_2} - \frac{1}{n} \sum_{i=1}^{n} \bar{X}_{j_1}\bar{X}_{j_2} = \frac{1}{n} \sum_{i=1}^{n} X_{ij_1}X_{ij_2} - \bar{X}_{j_1}\bar{X}_{j_2}.$$

Therefore, $a_{j_1,j_2} = s_{j_1,j_2}$, and $S = \frac{1}{n}X'X - \bar{X}'\bar{X}$.

2. (10 pts)

Find ALL the eigenvalues and their eigenvectors for the following matrices

• $\Sigma = \sigma \mathbb{1} \mathbb{1}'$ where $\mathbb{1} = (1, 1, \dots, 1)'$ is the p dimensional vector of 1.

Solution: Since $\operatorname{rank}(\Sigma) = 1$, we have $\ker(\Sigma) = p - 1$. Thus, $\lambda = 0$ is a root of the characteristic polynomial with multiplicity at least p - 1. On the other hand, $\operatorname{tr}(\Sigma) = p\sigma \neq 0$. Thus, Σ has an eigenvalue $p\sigma$. So Σ has eigenvalue 0 with multiplicity p - 1 and eigenvalue $p\sigma$ with multiplicity 1. The eigenvectors corresponding to 0 solves the equation $\{x = (x_1, x_2, \dots, x_p)' | x_1 + x_2 + \dots + x_p = 0\}$. One possible solution system would be

$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ -1 \end{bmatrix} \right\}.$$

The eigenvector corresponding to $p\sigma$ can be chosen as 1.

• $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ is a diagonal matrix.

Solution: We have $\Sigma = \operatorname{diag}\{\sigma_1, \ldots, \sigma_p\} = \sigma_1 \boldsymbol{e}_1 \boldsymbol{e}_1' + \sigma_2 \boldsymbol{e}_2 \boldsymbol{e}_2' + \cdots + \sigma_p \boldsymbol{e}_p \boldsymbol{e}_p'$ where \boldsymbol{e}_i is the p dimensional vector with the *i*th coordinate being 1 and others being 0 for $i = 1, 2, \ldots, p$. Since $\{\boldsymbol{e}_i\}$ are orthogonal, the eigenvalues of Σ are $\{\sigma_1, \sigma_2, \ldots, \sigma_p\}$ and the corresponding eigenvectors are $\{\boldsymbol{e}_1, \boldsymbol{e}_2, \ldots, \boldsymbol{e}_p\}$.

3. (10 pts)

Show that tr(AB) = tr(BA).

Proof: Let $A = (a_{ij})_{p \times q}$ and $B = (b_{ij})_{q \times p}$. (Note that A and B don't require to be square matrices.) Without loss generality, assume $p \leq q$.

$$\operatorname{tr}(AB) = \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} b_{ji} = \sum_{j=1}^{q} \sum_{i=1}^{p} b_{ji} a_{ij} = \operatorname{tr}(BA).$$

4. (10 pts)

Given two variables in the data matrix X (say the j_1 th and j_2 th variables). Show that their sample correlation will not change by standardization.

Proof: Let $x_{(j_1)}, x_{(j_2)}$ be the j_1 th and j_2 th variables and $\tilde{x}_{(j_1)}, \tilde{x}_{(j_2)}$ be the standardization of $x_{(j_1)}$ and $x_{(j_2)}$. Then, $\tilde{x}_{(j_1)} = \frac{1}{\sqrt{s_{j_1j_1}}}(x_{(j_1)} - \bar{x}_{j_1}\mathbb{1})$ and $\tilde{x}_{(j_2)} = \frac{1}{\sqrt{s_{j_2j_2}}}(x_{(j_2)} - \bar{x}_{j_2}\mathbb{1})$. The sample correlation between $\tilde{x}_{(j_1)}$ and $\tilde{x}_{(j_2)}$ is

$$\begin{split} \tilde{r}_{j_1 j_2} &= \frac{1}{n} \sum_{i=1}^n \tilde{x}_{i j_1} \tilde{x}_{i j_2} = \frac{1}{n} \sum_{i=1}^n \frac{x_{i j_1} - \bar{x}_{j_1}}{\sqrt{s_{j_1 j_1}}} \frac{x_{i j_2} - \bar{x}_{j_2}}{\sqrt{s_{j_2 j_2}}} \\ &= \frac{1}{\sqrt{s_{j_1 j_1}} \sqrt{s_{j_2 j_2}}} \frac{1}{n} \sum_{i=1}^n (x_{i j_1} - \bar{x}_{j_1}) (x_{i j_2} - \bar{x}_{j_2}) \\ &= \frac{s_{j_1 j_2}}{\sqrt{s_{j_1 j_1}} \sqrt{s_{j_2 j_2}}} = r_{j_1 j_2}. \end{split}$$

5. (10 pts)

Given a data matrix X as in Question 1. Assume the means of the p variables are zero. Let $S = \frac{1}{n}X'X$ be the sample covariance matrix. Let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$ be the ordered eigenvalues of S. Let e_1, \ldots, e_p be their corresponding orthogonal eigenvectors with unit length. In multivariate analysis, we usually want to use the first few eigenvalues and eigenvectors to represent the original data, as a tool of dimension reduction.

• On one aspect, let

$$S_m = \lambda_1 e_1 e_1' + \ldots + \lambda_m e_m e_m'$$

be an approximate of S for m < p. Calculate $\operatorname{tr}\{(S - S_m)^2\}$ and $\operatorname{tr}\{(S - S_m)^2\}/\operatorname{tr}(S^2)$, where $\operatorname{tr}(S^2)$ can be regarded as the total variation of the data.

Solution: Note that $\operatorname{tr}\{(S-S_m)^2\} = \operatorname{tr}(S^2) + \operatorname{tr}(S^2_m) - 2\operatorname{tr}(SS_m)$, and $\operatorname{tr}(S^2) = \sum_{i=1}^p \lambda_i^2$, $\operatorname{tr}(S^2) = \sum_{i=1}^m \lambda_i^2$. We also have $\operatorname{tr}(SS_m) = \operatorname{tr}(S^2_m)$ Therefore,

$$\frac{\operatorname{tr}\{(S - S_m)^2\}}{\operatorname{tr}(S^2)} = \frac{\sum_{i=m+1}^p \lambda_i^2}{\sum_{i=1}^p \lambda_i^2}.$$

• On another aspect, $\{Xe_1, \ldots, Xe_m\}$ are the transformed data by the eigenvectors. Calculate the sample covariance S_t of $\{Xe_1, \ldots, Xe_m\}$ (regard the sample mean as 0). What is $\operatorname{tr}(S_t^2)$ comparing to $\operatorname{tr}(S^2)$?

Solution: Note that $\{Xe_1,\ldots,Xe_m\}=X(e_1,\ldots,e_m)$. This leads to

$$S_{t} = \frac{1}{n} \left(X(e_{1}, \dots, e_{m}) \right)' X(e_{1}, \dots, e_{m})$$

$$= \frac{1}{n} \begin{pmatrix} e'_{1} \\ e'_{2} \\ \vdots \\ e'_{m} \end{pmatrix} X' X(e_{1}, e_{2}, \dots, e_{m}) = \begin{pmatrix} e'_{1} \\ e'_{2} \\ \vdots \\ e'_{m} \end{pmatrix} S(e_{1}, e_{2}, \dots, e_{m})$$

$$= \begin{pmatrix} e'_{1} \\ e'_{2} \\ \vdots \\ e'_{m} \end{pmatrix} (\lambda_{1} e_{1} e'_{1} + \dots + \lambda_{p} e_{p} e'_{p}) (e_{1}, \dots, e_{m}) = \begin{pmatrix} \lambda_{1} e'_{1} \\ \lambda_{2} e'_{2} \\ \vdots \\ \lambda_{m} e'_{m} \end{pmatrix} (e_{1}, e_{2}, \dots, e_{m})$$

$$= \operatorname{diag}(\lambda_{1}, \dots, \lambda_{m}).$$

Therefore, $\operatorname{tr}(S_t^2) = \sum_{i=1}^m \lambda_i^2 = \operatorname{tr}(S_m^2)$.

• What can you conclude on the dimension reduction by eigenvectors from the above two points?

Solution: If there is a few leading eigenvalues dominating the summation $\sum_{i=1}^{p} \lambda_i^2$, dimension reduction by eigenvectors can preserve most of the total variation of the original data while decrease the dimensions of the variables.

6. (10 pts)

Use the **ggplot2** package to visualize the data iris in R.

- Make a scatter plot for the variables Sepal.Length and Sepal.Width colored by Species. What can you see?
- Make a scatter matrix for every pairs of the variables, colored by Species. What can you see?
- Calculate the sample mean for each species.
- Make a star plot for the sample means of each species to illustrate their potential differences. Comment.

```
library(tidyverse)
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) +
    geom_point()
```


GGally::ggpairs(iris, columns = 1:4, aes(colour = Species))


```
# Another star plot function.
# devtools::install_github("ricardo-bion/ggradar", dependencies = TRUE)
# iris_mean %>%
# mutate_at(vars(-Species), scales::rescale) %>%
# ggradar::ggradar(axis.label.size = 3, group.line.width = .5,
# group.point.size = 2, legend.text.size = 12)
```