

CS5340: Tutorial 6

Asst. Prof. Harold Soh

TA: Eugene Lim

Questions?

https://pollev.com/elim360

CS5340 :: Eugene Lim

The General EM Algorithm

- 1. Choose an initial setting for the parameters θ^{old} .
- 2. Expectation step: Evaluate $p(Z|X, \theta^{old})$.
- 3. Maximization step: Evaluate θ^{new} given by:

$$oldsymbol{ heta}^{\mathrm{new}} = rg\max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{\mathrm{old}})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. Check for convergence of either the log likelihood or the parameter values, if not converged:

$$oldsymbol{ heta}^{ ext{old}} \leftarrow oldsymbol{ heta}^{ ext{new}}$$

Principal Components Analysis (PCA)

- Invented in 1901 by Karl Pearson
 - Independently by Hoteling in 1930s.
- Unsupervised Learning method
- Useful for:
 - Representation learning
 - Dimensionality reduction
 - Compression
 - Data-preprocessing
 - Visualization

Karl Pearson, 1912 (image credit: Wikipedia)

Image Credit: https://www.geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/

Image Credit: PRML Chp 12

PCA Setup and Intuition

- Dataset of D-dimensional data points \mathbf{x}_i
- Want to associate each data point \mathbf{x}_i with a corresponding M-dimensional point \mathbf{z}_i
 - where M < D
- 2 approaches to derivation. Project to:
 - Maximize variance
 - Minimize distortion
- In practice, we compute $\mathbf{X}\mathbf{X}^{\mathsf{T}}$ and find the M largest eigenvectors and eigenvalues

Maximizing Variance

$$\frac{1}{N} \sum_{n=1}^{N} (u^{T}(x_{n} - u^{T}\bar{x})^{2} = \frac{1}{N} \sum_{n=1}^{N} [u^{T}(x_{n} - \bar{x})]^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} [(x_{n} - \bar{x})^{T} u]^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} u^{T}(x_{n} - \bar{x})(x_{n} - \bar{x})^{T} u$$

$$= u^{T} \left(\frac{1}{N} \sum_{n=1}^{N} (x_{n} - \bar{x})(x_{n} - \bar{x})^{T}\right) u$$

Probabilistic PCA (PPCA)

- Derive Probabilistic variant
- Learn via EM
- Advantages:
 - Efficient EM algorithm (avoids computing XX^T) \checkmark
 - Naturally deal with missing data
 - Can be extended to include class labels, factor analysis, kernel variants ...

PPCA – Generative View

Figure 12.9 An illustration of the generative view of the probabilistic PCA model for a two-dimensional data space and a one-dimensional latent space. An observed data point \mathbf{x} is generated by first drawing a value \widehat{z} for the latent variable from its prior distribution p(z) and then drawing a value for \mathbf{x} from an isotropic Gaussian distribution (illustrated by the red circles) having mean $\mathbf{w}\widehat{z} + \boldsymbol{\mu}$ and covariance $\sigma^2\mathbf{I}$. The green ellipses show the density contours for the marginal distribution $p(\mathbf{x})$.

Probabilistic PCA

For the probabilistic PCA model, we have *D*-dimensional data points \mathbf{x}_i for $i=1,2,\ldots,N$ and we aim to find some reduced structure for the data. For each data point, we associate a *M*-dimensional latent variable (where often M < D) \mathbf{z}_i that has prior distribution,

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

We define each observed variable \mathbf{x} as,

$$\mathbf{x}_i = \mathbf{W}\mathbf{z}_i + \boldsymbol{\mu} + \boldsymbol{\epsilon}_i$$

where $\epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$. We can imagine that each data point is obtained by first sampling from the prior $p(\mathbf{z}_i)$ followed by an affine transformation and additive Gaussian noise.

Problem 1.a. Draw the DGM corresponding to the model above. *Hint:* use plate notation for the different data points.

Solution:

DGM for PPCA

Relationship to GMMs?

Problem 1.b. Show that the conditional distribution for each observed variable \mathbf{x}_i is given by:

Solution:
$$p(\mathbf{x}_{i}|\mathbf{z}_{i}) = \mathcal{N}(\mathbf{x}_{i}|\underline{\boldsymbol{\mu}} + \mathbf{W}\mathbf{z}_{i}, \sigma^{2}\mathbf{I})$$

$$p(\mathbf{x}_{i}|\mathbf{z}_{i}, \boldsymbol{\theta})$$

$$\boldsymbol{\varepsilon}_{i} \sim \mathcal{N}(\boldsymbol{\sigma}, \underline{\boldsymbol{\sigma}^{2}\mathbf{I}})$$

$$\gamma_{i} = \underbrace{\mathcal{N}(\mathbf{z}_{i} + \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\mathbf{I})}$$

$$p(\mathbf{x}_{i}|\mathbf{z}_{i}) = \mathcal{N}(\mathbf{x}_{i}|\mathbf{W}\mathbf{z}_{i} + \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\mathbf{I})$$

$$\mathbb{E}[\mathbf{x}:|\mathbf{z}:] : \mathbb{E}[\mathbf{W}\mathbf{z}:+\mathbf{\mu}+\boldsymbol{\epsilon}:|\mathbf{z}:] \qquad (\omega_{\mathbf{x}}|\mathbf{z}:) : (\omega_{\mathbf{x}}(\mathbf{x}:|\mathbf{z}:) : (\omega_{\mathbf{x}}(\mathbf{z}:|\mathbf{z}:) : (\omega_{\mathbf{x}}(\mathbf{z}:|\mathbf{z}:|\mathbf{z}:) : (\omega_{\mathbf{x}}(\mathbf{z}:|\mathbf{z}:|\mathbf{z}:) : (\omega_{\mathbf{x}}(\mathbf{z}:|\mathbf{z}:|\mathbf{z}:|\mathbf{z}:) : (\omega_{\mathbf{x}}(\mathbf{z}:|\mathbf{z}:|\mathbf{z}:|\mathbf{z}:) : (\omega_{\mathbf{x}}(\mathbf{z}:|\mathbf{z}:$$

The General EM Algorithm

- 1. Choose an initial setting for the parameters θ^{old} .
- 2. Expectation step: Evaluate $p(Z|X, \theta^{old})$.
- 3. Maximization step: Evaluate θ^{new} given by:

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. Check for convergence of either the log likelihood or the parameter values, if not converged:

$$\boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$$

Problem 1.c. To find the MLE values for the model parameters $\mathbf{W}, \boldsymbol{\mu}$, and σ^2 , we would need the marginal distribution $p(\mathbf{X}) = \prod_i^N p(\mathbf{x}_i)$ (assuming i.i.d. data). Due to the latent variables, we will use the EM algorithm². This requires us to marginalize out the latent \mathbf{z} 's. To help us along,

1. First, show that the marginal distribution of each data point is again a Gaussian given by

$$p(\mathbf{x}_i) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{C})$$

where $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^2 \mathbf{I}$.

2. Then, show that the posterior distribution is also normally distributed,

$$p(\mathbf{z}_i|\mathbf{x}_i) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}(\mathbf{x}_i - \boldsymbol{\mu}), \sigma^2\mathbf{M}^{-1})$$

where $\mathbf{M} = \mathbf{W}^{\mathsf{T}} \mathbf{W} + \sigma^2 \mathbf{I}$.

Hint: Given random variables \mathbf{x} and variable \mathbf{y} where:

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}_{x}\right) \tag{4}$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{\Sigma}_{y|x}\right)$$
 (5)

The marginal distribution of y and the conditional distribution of x given y are given by

$$p(\mathbf{y}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \boldsymbol{\Sigma}_{y|x} + \mathbf{A}\boldsymbol{\Sigma}_{x}\mathbf{A}^{T}\right)$$
(6)

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}\left(\mathbf{x}|\mathbf{\Sigma}_{x|y}\left(\mathbf{A}^{T}\mathbf{\Sigma}_{y|x}^{-1}\left(\mathbf{y} - \mathbf{b}\right) + \mathbf{\Sigma}_{x}^{-1}\boldsymbol{\mu}\right), \mathbf{\Sigma}_{x|y}\right)$$
(7)

where

$$oldsymbol{\Sigma}_{x|y} = \left(oldsymbol{\Sigma}_x^{-1} + \mathbf{A}^T oldsymbol{\Sigma}_{y|x}^{-1} \mathbf{A}
ight)^{-1}$$

1. First, show that the marginal distribution of each data point is again a Gaussian given by

$$\underline{p(\mathbf{x}_i)} = \mathcal{N}(\underline{\boldsymbol{\mu}},\underline{\mathbf{C}})$$
 where $\mathbf{C} = \mathbf{W}\mathbf{W}^\top + \sigma^2\mathbf{I}$.

Solution:

If:
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}_{x})$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma}_{x})$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \boldsymbol{\Sigma}_{y|x})$$
then:
$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \boldsymbol{\Sigma}_{y|x} + \mathbf{A}\boldsymbol{\Sigma}_{x}\mathbf{A}^{T})$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\Sigma}_{x|y}(\mathbf{A}^{T}\boldsymbol{\Sigma}_{y|x}^{-1}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Sigma}_{x}^{-1}\boldsymbol{\mu}), \boldsymbol{\Sigma}_{x|y})$$

$$\boldsymbol{\Sigma}_{x|y} = (\boldsymbol{\Sigma}_{x}^{-1} + \mathbf{A}^{T}\boldsymbol{\Sigma}_{y|x}^{-1}\mathbf{A})^{-1}$$

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

 $p(\mathbf{x}_i | \mathbf{z}_i) = \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu} + \mathbf{W} \mathbf{z}_i, \sigma^2 \mathbf{I})$

2. Then, show that the posterior distribution is also normally distributed,

$$p(\mathbf{z}_i|\mathbf{x}_i) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}(\mathbf{x}_i - \boldsymbol{\mu}), \sigma^2\mathbf{M}^{-1})$$

where $\mathbf{M} = \mathbf{W}^{\top} \mathbf{W} + \sigma^2 \mathbf{I}$.

Solution:

$$\sum_{x|y} = \left(\underbrace{I} + \underbrace{W^{T}W}_{G^{2}} \right)^{-1} \qquad \sum_{x \to \infty} \underbrace{I}_{A} \Rightarrow \underbrace{W}_{A}$$

$$= \left(\underbrace{I} + \underbrace{I}_{G^{2}} W^{T}W \right)^{-1}$$

$$= \left(\underbrace{I}_{G^{2}} \left(\underbrace{\sigma I}_{I} + \underbrace{W^{T}W}_{I} \right) \right)^{-1}$$

$$= \underbrace{I}_{G^{2}} \left(\underbrace{\sigma I}_{I} + \underbrace{W^{T}W}_{I} \right)^{-1} = \underbrace{I}_{G^{2}} M^{-1}$$

$$P(z_{i}|x_{i}) = \mathcal{N}(z_{i}|x_{i}^{2}M^{-1}(\frac{W^{T}I(x_{i}-\mu)}{g^{2}}), c^{2}M^{-1})$$

$$= \mathcal{N}(z_{i}|M^{-1}W^{T}(x_{i}-\mu), c^{2}M^{-1})$$

If:
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}_x)$$
$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \boldsymbol{\Sigma}_{y|x})$$

then:

$$p(\mathbf{y}) = \mathcal{N} \left(\mathbf{y} | \mathbf{A} \boldsymbol{\mu} + \mathbf{b}, \boldsymbol{\Sigma}_{y|x} + \mathbf{A} \boldsymbol{\Sigma}_{x} \mathbf{A}^{T} \right) \cdot \boldsymbol{\rho}$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N} \left(\mathbf{x} | \boldsymbol{\Sigma}_{x|y} \left(\underline{\mathbf{A}}^{T} \boldsymbol{\Sigma}_{y|x}^{-1} \left(\mathbf{y} - \mathbf{b} \right) + \boldsymbol{\Sigma}_{x}^{-1} \boldsymbol{\mu} \right), \boldsymbol{\Sigma}_{x|y} \right)$$

$$\boldsymbol{\Sigma}_{x|y} = \left(\boldsymbol{\Sigma}_{x}^{-1} + \underline{\mathbf{A}}^{T} \boldsymbol{\Sigma}_{y|x}^{-1} \underline{\mathbf{A}} \right)^{-1}$$

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

 $p(\mathbf{x}_i | \mathbf{z}_i) = \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu} + \mathbf{W} \mathbf{z}_i, \sigma^2 \mathbf{I})$

$$\sum_{y|x} = \sigma^{2} \left[(A)^{-1} \cdot \frac{A}{\sigma^{2}} \right]$$

2. Then, show that the posterior distribution is also normally distributed,

$$p(\mathbf{z}_i|\mathbf{x}_i) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}(\mathbf{x}_i - \boldsymbol{\mu}), \sigma^2\mathbf{M}^{-1})$$

where $\mathbf{M} = \mathbf{W}^{\top} \mathbf{W} + \sigma^2 \mathbf{I}$.

Solution:

$$p(\mathbf{z}_{i}|\mathbf{x}_{i}) = \mathcal{N}\left(\mathbf{z}_{i}|\mathbf{\Sigma}_{\mathbf{z}_{i}|\mathbf{x}_{i}}\left(\mathbf{W}^{T}\mathbf{\Sigma}_{\mathbf{x}_{i}|\mathbf{z}_{i}}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right) + \mathbf{\Sigma}_{\mathbf{z}_{i}}^{-1}\mathbf{0}\right), \mathbf{\Sigma}_{\mathbf{z}_{i}|\mathbf{x}_{i}}\right)$$

$$\mathbf{\Sigma}_{\mathbf{x}_{i}|\mathbf{z}_{i}} = \sigma^{2}\mathbf{I}$$

$$\mathbf{\Sigma}_{\mathbf{z}_{i}|\mathbf{x}_{i}} = \left(\mathbf{\Sigma}_{\mathbf{x}_{i}}^{-1} + \mathbf{W}^{T}\mathbf{\Sigma}_{\mathbf{z}_{i}|\mathbf{x}_{i}}^{-1}\mathbf{W}\right)^{-1}$$

$$= \left(\mathbf{I}^{-1} + \mathbf{W}^{T}(\sigma^{2}\mathbf{I})^{-1}\mathbf{W}\right)^{-1}$$

$$= \sigma^{2}(\mathbf{W}^{T}\mathbf{W} + \sigma^{2}\mathbf{I})^{-1} = \sigma^{2}\mathbf{M}^{-1}$$

$$p(\mathbf{z}_i|\mathbf{x}_i) = \mathcal{N}\left(\mathbf{z}_i|\sigma^2\mathbf{M}^{-1}\left(\mathbf{W}^T(\sigma^2\mathbf{I})^{-1}\right)\left(\mathbf{x}_i - \boldsymbol{\mu}\right), \sigma^2\mathbf{M}^{-1}\right)$$
$$= \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^\top(\mathbf{x}_i - \boldsymbol{\mu}), \sigma^2\mathbf{M}^{-1})$$

If:
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}_x)$$
$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \boldsymbol{\Sigma}_{y|x})$$

then:

$$\begin{split} p(\mathbf{y}) &= \mathcal{N} \left(\mathbf{y} | \mathbf{A} \boldsymbol{\mu} + \mathbf{b}, \boldsymbol{\Sigma}_{y|x} + \mathbf{A} \boldsymbol{\Sigma}_{x} \mathbf{A}^{T} \right) \\ p(\mathbf{x} | \mathbf{y}) &= \mathcal{N} \left(\mathbf{x} | \boldsymbol{\Sigma}_{x|y} \left(\mathbf{A}^{T} \boldsymbol{\Sigma}_{y|x}^{-1} \left(\mathbf{y} - \mathbf{b} \right) + \boldsymbol{\Sigma}_{x}^{-1} \boldsymbol{\mu} \right), \boldsymbol{\Sigma}_{x|y} \right) \\ \boldsymbol{\Sigma}_{x|y} &= \left(\boldsymbol{\Sigma}_{x}^{-1} + \mathbf{A}^{T} \boldsymbol{\Sigma}_{y|x}^{-1} \mathbf{A} \right)^{-1} \end{split}$$

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

 $p(\mathbf{x}_i | \mathbf{z}_i) = \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu} + \mathbf{W} \mathbf{z}_i, \sigma^2 \mathbf{I})$

Problem 1.d. Finally, derive the E-step and the M-step for the EM algorithm applied to probabilistic PCA. *Hint:* If you are really stuck, refer to Chapter 12.2.2. of Bishop's Pattern Recognition and Machine Learning. This portion is not especially difficult but is notationally heavy and requires algebraic manipulation.

Objective: Find
$$\mu_{ML}$$
.

Movembre log $p(D|\mu) = \max_{x \in M} \sum_{i=1}^{N} p(x_i|\mu)$

$$= \sum_{i=1}^{N} \log p(x_i|\mu) = \sum_{i=1}^{N} \log \mathcal{N}(\pi_i | \mu_i, ww^T + \sigma^2 \mathcal{I}) \qquad M^{-1}$$

$$= \sum_{i=1}^{N} \log p(x_i|\mu) = \sum_{i=1}^{N} \log \mathcal{N}(\pi_i | \mu_i, ww^T + \sigma^2 \mathcal{I}) \qquad M^{-1}$$

$$= \sum_{i=1}^{N} (\cos t + \log \exp(-\frac{1}{2}(x_i - \mu_i)^T(ww^T + \sigma^2 \mathcal{I})^{-1}(x_i - \mu_i))$$

$$= \sum_{i=1}^{N} \sum_{i=1}^{N} (2M^{-1}(x_i - \mu_i)) \qquad M^{-1} \sum_{i=1}^{N} (x_i - \mu_i) = 0$$

$$= \sum_{i=1}^{N} (x_i - \mu_i) = 0 \qquad = \sum_{i=1}^{N} x_i = N_{jL} \implies \mu_{jL} = x$$

The General EM Algorithm [[[[]] - [[]]]

- Choose an initial setting for the parameters θ^{old} . $= [(x')] \hat{H}(x)]^*$
- Expectation step: Evaluate $p(Z|X, \theta^{old})$.
- 3. Maximization step: Evaluate θ^{new} given by:

where
$$\begin{aligned} \boldsymbol{\theta}^{\text{new}} &= \arg\max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \underset{\boldsymbol{z}}{\text{ in } p(\boldsymbol{z}_i)} + \text{ in } p(\boldsymbol{x}_i|\boldsymbol{z}_i) \end{aligned}$$

$$= \underbrace{\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}_{\boldsymbol{z}_i = \underbrace{\sum_{\mathbf{Z}} p(\boldsymbol{z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})}_{\boldsymbol{z}_i = \underbrace{$$

4. Check for convergence of either the log likelihood or the parameter values, if not converged:

$$\boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$$

Problem 1.d. Finally, derive the E-step and the M-step for the EM algorithm applied to probabilistic PCA. Hint: If you are really stuck, refer to Chapter 12.2.2. of Bishop's Pattern Recognition and Machine Learning. This portion is not especially difficult but is notationally heavy and requires algebraic manipulation.

The General EM Algorithm 1. Choose an initial setting for the parameters θ^{old} .

- 2. Expectation step: Evaluate $p(Z|X, \underline{\theta}^{old})$.
- 3. Maximization step: Evaluate θ^{new} given by:

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

where

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. Check for convergence of either the log likelihood or the parameter values, if not converged:

$$\boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$$

- 1. Parameters: $\theta = \{\mathbf{W}, \boldsymbol{\mu}, \sigma^2\}$
- 2. Expectation: Evaluate $p(\mathbf{z}_i|\mathbf{x}_i,\theta^{old})$
- 3. Maximization:
 - Obtain the Q function
 - We need:

$$\ln p\left(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^2\right) = \sum_{n=1}^{N} \left\{ \ln p(\mathbf{x}_n | \mathbf{z}_n) + \ln p(\mathbf{z}_n) \right\}$$

- Which will lead to the expectation over the posterior
- That we then maximize in the usual way.

M-Step

• First compute:

$$\ln p\left(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^2\right) = \sum_{n=1}^{N} \left\{ \ln p(\mathbf{x}_n | \mathbf{z}_n) + \ln p(\mathbf{z}_n) \right\}$$

M-Step
$$T_r([0,\frac{3}{2},\frac{3}{6}])$$

 $T_r(AB) = T_r(BA)$

First compute:

 $\begin{pmatrix}
\mathbb{E}[\mathbf{z}_n] = \mathbf{M}^{-1}\mathbf{W}^{\mathrm{T}}(\mathbf{x}_n - \overline{\mathbf{x}}) \\
\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\mathrm{T}}] = \sigma^2 \mathbf{M}^{-1} + \mathbb{E}[\mathbf{z}_n] \mathbb{E}[\mathbf{z}_n]^{\mathrm{T}}
\end{pmatrix}$

M-Step

$$\mathbb{E}[\ln p\left(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^2\right)] = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \ln(2\pi\sigma^2) + \frac{1}{2} \operatorname{Tr}\left(\mathbb{E}[\mathbf{z} | \mathbf{z})\right) \right\}$$

• Take derivative
$$\begin{bmatrix}
\mathbb{E}[\ln p\left(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^{2}\right)] = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \ln(2\pi\sigma^{2}) + \frac{1}{2} \operatorname{Tr}\left(\mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\mathrm{T}}]\right) + \frac{1}{2\sigma^{2}} \|\mathbf{x}_{n} - \boldsymbol{\mu}\|^{2} - \frac{1}{\sigma^{2}} \mathbb{E}[\mathbf{z}_{n}]^{\mathrm{T}} \mathbf{W}^{\mathrm{T}}(\mathbf{x}_{n} - \boldsymbol{\mu}) + \frac{1}{2\sigma^{2}} \operatorname{Tr}\left(\mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\mathrm{T}}] \mathbf{W}^{\mathrm{T}} \mathbf{W}\right) \right\}.$$
(12.53)

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T
\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B} \mathbf{X}^T \mathbf{X}) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$

$$\frac{dQ}{dW} = 0 \qquad \mathbf{W}_{\text{new}} = \left[\sum_{n=1}^{N} (\mathbf{x}_{n} - \overline{\mathbf{x}}) \mathbb{E}[\mathbf{z}_{n}]^{T} \right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{T}] \right]^{-1} \qquad \mathbf{W}_{\text{new}}$$

$$\sigma_{\text{new}}^{2} = \frac{1}{ND} \sum_{n=1}^{N} \left\{ ||\mathbf{x}_{n} - \overline{\mathbf{x}}||^{2} - 2\mathbb{E}[\mathbf{z}_{n}]^{T} \mathbf{W}_{\text{new}}^{T}(\mathbf{x}_{n} - \overline{\mathbf{x}}) + \text{Tr} \left(\mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{T}] \mathbf{W}_{\text{new}}^{T} \mathbf{W}_{\text{new}} \right) \right\}.$$

Questions?

https://pollev.com/elim360

CS5340 :: Eugene Lim