Gradescope: To submit this homework assignment, use Gradescope accessed through Canvas. Please allow some time in advance of the deadline to become familiar with Gradescope.

Problem 1 (Norms, 5 points each) For any $x \in \mathbb{R}^n$, let us introduce

$$\|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

We let $\|\boldsymbol{x}\|_0 = \lim_{p \searrow 0} \|\boldsymbol{x}\|_p = \sum_{i=1}^n \mathbbm{1}_{x_i \neq 0}$, where $\mathbbm{1}$. is an indicator function.

(a) Show that the for $p \ge 1$, the following inequality holds for any x, y such that $||x||_p = ||y||_p = 1$ and $\lambda \in [0, 1]$:

$$||\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}||_p \le 1$$

- (b) Show that the function $f(x) = ||x||_p$ is a norm for $p \ge 1$. (Hint: to show triangle inequality, use homogeneous property to reduce it to part a)
- (c) Show that $||x||_p$ is *not* a norm for $0 \le p < 1$. (Hint: it suffices to find counter examples)
- (d) Show that for $1 \le p < q$, we have $\|\boldsymbol{x}\|_p \ge \|\boldsymbol{x}\|_q$. For what \boldsymbol{x} is equality obtained $(\|\boldsymbol{x}\|_p = \|\boldsymbol{x}\|_q)$? (Hint: since both functions are homogeneous, it suffice to show the case when $\|\boldsymbol{x}\|_p = 1$)

Problem 2 (Linear Program, 5 points each)

(a) Given $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$, show that the basis pursuit problem

$$\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_1$$
, s.t. $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}$.

is a convex problem, and recast it as a linear program in the standard form.

(b) Rewrite the following optimization problem in form that is solvable as a linear programming problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \|oldsymbol{A} oldsymbol{x} - oldsymbol{y}\|_{\infty} \,, \quad ext{s.t.} \quad \|oldsymbol{x}\|_{\infty} \, \leq \, b.$$

where $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ and b > 0.

Problem 3 (Global Optimality of Convex Problems, 5 points each) Consider the following unconstrained optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function.

- (a) Show that if x_0 is a local minimizer of f then it is also a global solution (need not to be unique). Moreover, if f is *strictly* convex, then show that the solution is *unique* (if exists).
- (b) Furthermore, suppose $f \in \mathcal{C}^1$ (i.e., continuously differentiable). Then show that x_* is a *global* solution of f(x) if and only if

$$\nabla f(\boldsymbol{x}_{\star}) = \mathbf{0}.$$

Problem 4 (Operations that Preserves Convexity, 2.5 points each)

Given f(x), $f_1(x)$, \cdots , $f_n(x)$ are convex function defined on \mathbb{R}^n show that:

(a) (Nonnegative weighted sum)

If $\alpha_i \geq 0$ for all $i = 1, 2, \dots, n$, then show that $g(x) := \sum_{i=1}^n \alpha_i f_i(x)$ is a convex function.

(b) (Pointwise maximum)

$$g(\boldsymbol{x}) := \max_{i=1,\dots,n} \{f_1(\boldsymbol{x}), \cdots, f_n(\boldsymbol{x})\}$$
 is convex.

(c) (Composition with an affine mapping)

Given a matrix $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, show g(x) := f(Ax + b) is convex with respect to $x \in \mathbb{R}^m$.

(d) (Restriction to a line)

Fix some vector $x, y \in \mathbb{R}^n$, define $g : \mathbb{R} \to \mathbb{R}$ as g(t) := f(x + ty). Then g is convex with respect to t.

Problem 5 (Matrix Norms and Approximations, 5 points each)

- (a) Show that the Schatten p-norm is unitarily invariant for any p > 0 even though it is only truly a norm for $p \ge 1$.
- (b) (5 points) Let $A \in \mathbb{R}^{m \times n}$ (n > m) with compact SVD $A = \sum_{i=1}^m \sigma_i u_i v_i^{\top}$. For the rank-r (r < m) approximation problem:

$$\min_{\boldsymbol{X}} \|\boldsymbol{X} - \boldsymbol{A}\|_F \,, \quad \text{s.t.} \quad \text{rank}(\boldsymbol{X}) \, \leq \, r,$$

show that one optimal solution is the truncated SVD of the following form

$$m{A}_r = \sum_{i=1}^r \sigma_i m{u}_i m{v}_i^{ op}.$$

Moreover, show that the solution is unique whenever $\sigma_r > \sigma_{r+1}$.

Problem 6 (Taylor Approximation & Lipschitz Property, 5 points each) Let $\mathscr{S} \subset \mathbb{R}^n$ and $f : \mathscr{S} \mapsto \mathbb{R}$. Let $x \in \mathscr{S}$ and $s \in \mathbb{R}^n$, such that the line segment $[x, x + s] \in \mathscr{S}$.

(a) Suppose $f \in \mathcal{C}^1$, and the gradient g(x) of the function f is Lipschitz continuous with constant γ^L on \mathcal{S} . By defining $\phi(\alpha) = f(x + \alpha s)$ and using the Fundamental Theorem of Calculus:

$$\phi(1) = \phi(0) + \int_0^1 \phi'(\alpha) d\alpha,$$

show that

$$|f(\boldsymbol{x}+\boldsymbol{s})-f(\boldsymbol{x})-\langle g(\boldsymbol{x}), \boldsymbol{s}
angle| \ \le \ rac{\gamma^L}{2} \left\| \boldsymbol{s}
ight\|_2^2.$$

(b) Suppose $f \in \mathcal{C}^2$ and the Hessian H(x) of f(x) is Lipschitz continuous with constant γ^Q on \mathcal{G} . Based on (a), justify the following formula:

$$\phi(1) = \phi(0) + \phi'(0) + \int_0^1 \int_0^{\alpha} \phi''(t)dt d\alpha.$$

Using the formula above, prove the following:

$$\left| f(\boldsymbol{x} + \boldsymbol{s}) - f(\boldsymbol{x}) - \langle g(\boldsymbol{x}), \boldsymbol{s} \rangle - \frac{1}{2} \boldsymbol{s}^{\top} H(\boldsymbol{x}) \boldsymbol{s} \right| \leq \frac{\gamma^{Q}}{6} \|\boldsymbol{s}\|_{2}^{3}.$$

(c) Consider the regularized least-squares cost function

$$h(x) = \frac{1}{2} \|Ax - y\|_2^2 + \frac{\lambda}{2} \|Tx\|_2^2,$$

where $\lambda > 0$. Find the Lipschitz constants for the gradient of h(x), expressed in terms of the singular values (or spectral norm) of A and T.

Problem 7 (Optimality, 5 points each)

- (a) Define $f(x,y) = x^2y$, show that (0,0) is a stationary point of the function, but it's not the global minimizer
- (b) Define $f(x,y) = x^2 + y^2 + xy^2$, show that (0,0) satisfies the 2nd-order optimality condition, but it's not a global minimizer.

Problem 8 (Rate of Convergence, 5 points each)

Recommended reading:"rate of convergence" under appendix of the numerical optimization textbook by Nocedal and Wright

- (a) Show that the sequence $x_k = 1 + \left(\frac{1}{2}\right)^{2^k}$ is Q-quadratically convergent to 1.
- **(b)** Does the sequence $x_k = 1/k!$ converge Q-superlinearly? Q-quadratically?
- (c) Consider the sequence $\{x_k\}$ defined by

$$x_k = \begin{cases} \left(\frac{1}{4}\right)^{2^k}, & k \text{ even,} \\ x_{k-1}/k, & k \text{ odd.} \end{cases}$$

Is this sequence Q-superlinearly convergent? Q-quadratically convergent? R-quadratically convergent?