A Brief Intro to Visual Prompting

Haoquan Zhang 张皓泉

CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models

CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models

Query Text: right elephant in water

(a) Correctly predicted

Query Text: apple on the bottom to the right of the orange in middle

(b) Disturbed by objects of the same type, but still reasonable

Query Text: food in red bowl

(c) Disturbed by colors in raw image regions and text

Figure 4: Case study. The bounding boxes given by image region proposals (olive), ground-truth annotation (pink), CPT (green), and fine-tuning baseline (yellow) are highlighted accordingly.

CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models

	Shot	Model	RefCOCO			RefCOCO+			RefCOCOg	
			val	testA	testB	val	testA	testB	val	test
SZ	0	Random CPT-Blk CPT-Seg	$ \begin{array}{c c} 15.9 \pm 0.2 \\ 25.7 \\ 29.5 \end{array} $	19.4 ± 0.6 25.4 30.6	13.4 ± 0.4 27.0 28.7	16.1 ± 0.1 25.9 28.8	13.3 ± 0.6 25.8 30.3	20.0 ± 0.2 25.7 27.4	18.8 ± 0.4 32.9 34.6	19.2 ± 0.3 32.6 34.8
Few-Shot	1	Fine-tuning CPT-Blk CPT-Seg	$egin{array}{c} 18.5 \pm 3.4 \\ 36.4 \pm 3.5 \\ 39.3 \pm 4.2 \end{array}$	13.7 ± 4.8 39.1 ± 4.3 43.2 ± 5.6	25.0 ± 3.7 34.3 ± 2.7 35.5 ± 2.4	23.0 ± 6.5 34.4 ± 3.8 35.9 ± 3.8	22.8 ± 8.2 38.7 ± 5.4 41.0 ± 5.0	23.6 ± 4.5 31.2 ± 2.5 31.2 ± 2.8	30.6 ± 7.3 38.7 ± 4.8 40.9 ± 6.0	31.5 ± 7.4 38.7 ± 4.6 41.0 \pm 6.1
	2	Fine-tuning CPT-Blk CPT-Seg	23.4 ± 3.5 38.3 ± 2.9 41.4 ± 1.5	21.1 ± 5.2 40.5 ± 4.2 45.8 ± 3.6	26.7 ± 4.5 35.3 ± 1.2 36.6 ± 2.0	28.3 ± 2.3 36.2 ± 5.5 38.7 ± 3.8	30.1 ± 5.3 41.1 ± 7.6 44.7 \pm 5.2	26.4 ± 2.8 31.9 ± 3.3 33.5 ± 2.6	33.1 ± 8.3 40.6 ± 5.9 43.2 ± 5.9	33.4 ± 8.2 41.3 ± 6.1 43.4 ± 5.8
	4	Fine-tuning CPT-Blk CPT-Seg	27.8 ± 4.8 40.9 ± 1.8 41.3 ± 5.2	26.0 ± 7.8 45.0 ± 2.0 45.9 \pm 7.1	30.1 ± 3.4 36.6 ± 1.6 36.5 ± 3.7	33.4 ± 3.5 37.2 ± 3.6 39.8 ± 3.8	36.8 ± 5.1 42.4 ± 5.4 45.7 ± 5.7	28.3 ± 2.1 33.6 ± 2.3 34.1 ± 1.8	36.9 ± 8.9 42.2 ± 6.5 45.7 ± 7.3	37.2 ± 8.7 42.7 ± 6.9 45.8 \pm 7.6
	8	Fine-tuning CPT-Blk CPT-Seg	33.3 ± 4.2 42.7 ± 4.1 45.2 ± 3.6	35.6 ± 7.4 48.4 ± 5.7 51.4 ± 4.9	31.2 ± 2.7 37.3 ± 2.4 38.7 ± 2.4	38.1 ± 3.7 39.9 ± 2.2 42.4 \pm 3.8	43.5 ± 3.9 45.8 ± 3.0 49.0 ± 4.9	31.2 ± 3.8 34.6 ± 2.1 35.7 ± 1.8	41.9 ± 8.0 44.8 ± 4.1 48.1 ± 5.4	42.5 ± 7.9 45.5 ± 4.6 48.6 ± 5.8
	16	Fine-tuning CPT-Blk CPT-Seg	38.4 ± 2.4 45.7 ± 2.5 48.6 ± 3.1	42.8 ± 4.2 53.0 ± 3.2 55.9 ± 3.5	33.4 ± 2.5 37.9 ± 1.5 40.3 ± 2.0	40.7 ± 3.2 41.8 ± 2.0 43.8 ± 2.0	45.6 ± 3.5 48.8 ± 2.6 50.9 ± 2.5	34.7 ± 2.8 35.7 ± 1.4 36.5 ± 1.3	48.7 ± 3.5 47.7 ± 2.4 50.8 ± 3.6	49.4 ± 3.5 48.6 ± 2.8 51.6 \pm 3.7
Fully Supervised	$ \mathcal{D}_{ ext{train}} $	MAttNet ViLBERT VLBERT ERNIE-ViL UNITER Fine-tuning CPT-Blk	76.7 - - 81.4 81.8 81.5	81.1 - - 87.0 87.5 87.0	70.0 - - 74.2 73.7 74.3	65.3 72.3 72.6 76.0 75.9 74.8 73.6	71.6 78.5 78.6 82.1 81.5 81.0 80.1	52.0 62.6 62.3 66.9 66.7 64.1 64.1	66.6 - - 74.9 74.7 74.1	67.3 - - 7 5.8 7 5.8 75.2
		CPT-Seg	81.8	87.3	74.1	74.1	79.5	63.8	73.6	74.7

Fine-Grained Visual Prompting

Figure 2: Structure of fine-grained visual prompting with box proposals from a detector.

Fine-Grained Visual Prompting

Figure 3: Structure of fine-grained visual prompting with no box proposal. Masks are directly derived via SAM prompted by grid-wise keypoints.

Fine-Grained Visual Prompting

Figure 5: Ablation on the standard deviation in Gaussian blur kernel from the Blur Reverse Mask [D4] prompting. A larger deviation presents a more blurred background.

Exploring Visual Prompts for Adapting Large-Scale Models

Which direction is the red bird facing?

Summary Visual Prompting

Blur

Pixel Prompt

Attention

A. Gaze Target Prediction

Q: Where is the worker looking?

Q: Where is the man looking?

B. Basketball Event Prediction

Q: Where will the ball be passed?

Q: Who will handle the ball?

C. Decision-Making Prediction

Q: Which path will this person take?

Q: Which dish will the man take?

D. Football Event Prediction

Q: Where will the ball be passed?

Q: Who will hit the ball?

E. Similar Object Spatial Relations

Q: Which apple is nearest to the given one?

Q: Who is followed by the given person?

F. Failure Cases

Q: Which fruit the girl want to pick?

