Chapitre 24

Prop 2.3

Soit $f \in \mathcal{L}(E, F)$. Alors:

- 1. Ker(f) est un sev de E;
- 2. Im(f) est un sev de F.

Démo:

1. On a $0_E \in \text{Ker}(f)$

Donc
$$Ker(f) \neq \emptyset$$

Si
$$x, x' \in Kef(f)$$

 $\lambda, \lambda' \in K$

Alors
$$f(\lambda x + \lambda' x') = \lambda f(x) + \lambda' f(x')$$

= $\lambda 0 + \lambda' 0$
= 0

Donc $\lambda x + \lambda' x' \in \text{Ker}(f)$

Donc Ker(f) est un sev de E.

2. On a $0_F \in \text{Im}(f)$

Donc
$$\operatorname{Im}(f) \neq \emptyset$$

Soient
$$y, y' \in \text{Im}(f)$$

 $\lambda, \lambda' \in K$
 $x, x' \in \text{Ker}(f) \text{ tq } y = f(x)$
 $y' = f(x')$

Alors
$$\lambda y + \lambda' y' = \lambda f(x) + \lambda' f(x')$$

= $f(\lambda x + \lambda' x') \in \text{Im}(f)$

Donc Im(f) est un sev de F.

Théo 2.4

Soit $f \in \mathcal{L}(E, F)$. Alors:

f injective $\iff \operatorname{Ker}(f) = \{0_E\}$

et

f surjective \iff Im(f) = F

Démo:

f injective
$$\iff \operatorname{Ker}(f) = \{0_E\}$$

Si
$$Ker(f) = \{0_E\}$$

Soient
$$x, x' \in E \text{ tq } f(x) - f(x')$$

Mque
$$x = x'$$

On a
$$f(x) - f(x') = 0$$

Donc
$$f(x - x') = 0$$

Donc
$$x - x' \in \text{Ker}(f) = \{0\}$$

Donc
$$x - x' = 0$$

Réciproque:

Si f est injective

On sait que $0 \in \text{Ker}(f)$ (car f est linéaire)

Mais si
$$x \in \text{Ker}(f)$$
, alors $f(x) = 0 = f(0)$

Par injectivité, x = 0 et $Ker(f) = \{0\}$

f surjective
$$\iff$$
 Im $(f) = F$

C'est général, rien à voir avec l'algé linéaire.

Prop 2.6

Soit
$$f \in \mathcal{L}(E)$$
. Alors $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$
Alors $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$ où $f^2 = f \circ f$
 $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$

Démo:

Donc $x \in \text{Ker}(f^2)$

$$\frac{\operatorname{Im}(f^2) \subset \operatorname{Im}(f)}{\operatorname{Soit} \ y \in \operatorname{Im}(f^2)}$$

$$\operatorname{Alors} \ y = f^2(x)$$

$$= f(f(x)) \quad \text{où } x \in E$$

$$\operatorname{Donc} \ y = \operatorname{Im}(f)$$

$$\frac{\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)}{\operatorname{Soit} \ x \in \operatorname{Ker}(f)}$$

$$\operatorname{Alors} \ f^2 = f(f(x))$$

$$= f(0) \quad \text{où f linéaire}$$

$$= 0$$