Fiche d'entraînement : fonctions de degré 3 et courbes

Dans chacun des cas suivants, déterminer la forme factorisée de la fonction de degré 3 proposée à l'aide de sa courbe représentative :

Courbe 1:

Courbe 2:

Courbe 3:

Courbe 4:

Solutions:

Courbe 1:

Les racines de f_1 sont $x_1 = -3$, $x_2 = 1$ et $x_3 = 2$ (ce sont les abscisses des points d'intersection de la courbe avec l'axe des abscisses) donc f_1 a une équation de la forme $f_1(x) = a(x - x_1)(x - x_2)(x - x_3) = a(x + 3)(x - 1)(x - 2)$.

De plus la courbe passe par le point de coordonnées (0 ; 3) donc $f_1(0) = 3$, ce qui donne :

$$f_1(0) = a \times (0+3) \times (0-1) \times (0-2) = a \times 3 \times (-1) \times (-2) = a \times 6 = 3 \text{ donc } a = \frac{3}{6} = \frac{1}{2}$$

Donc une équation, sous forme factorisée, de
$$f_1$$
 est $f_1(x) = \frac{1}{2}(x+3)(x-1)(x-2)$

Courbe 2:

Les racines de f_2 sont $x_1 = -2$, $x_2 = -1$ et $x_3 = 1$ (ce sont les abscisses des points d'intersection de la courbe avec l'axe des abscisses) donc f_1 a une équation de la forme $f_2(x) = a(x - x_1)(x - x_2)(x - x_3) = a(x + 2)(x + 1)(x - 1)$.

De plus la courbe passe par le point de coordonnées (0; 1) donc $f_2(0) = 1$, ce qui donne :

$$f_2(0) = a \times (0+2) \times (0+1) \times (0-1) = a \times 2 \times 1 \times (-1) = a \times (-2) = 1 \text{ donc } a = \frac{1}{-2} = -\frac{1}{2}$$

Donc une équation, sous forme factorisée, de
$$f_2$$
 est $f_2(x) = -\frac{1}{2}(x+2)(x+1)(x-1)$.

Courbe 3:

Les racines de f_3 sont $x_1 = -4$, $x_2 = -2$ et $x_3 = 2$ (ce sont les abscisses des points d'intersection de la courbe avec l'axe des abscisses) donc f_3 a une équation de la forme $f_3(x) = a(x-x_1)(x-x_2)(x-x_3) = a(x+4)(x+2)(x-2)$.

De plus la courbe passe par le point de coordonnées (0; 4) donc $f_3(0) = 4$, ce qui donne :

$$f_3(0) = a \times (0+4) \times (0+2) \times (0-2) = a \times 4 \times 2 \times (-2) = a \times (-16) = 4 \text{ donc } a = \frac{4}{-16} = -\frac{1}{4}$$

Donc une équation, sous forme factorisée, de
$$f_3$$
 est $f_3(x) = -\frac{1}{4}(x+4)(x+2)(x-2)$

Courbe 4:

Les racines de f_4 sont $x_1 = -3$, $x_2 = -1$ et $x_3 = 3$ (ce sont les abscisses des points d'intersection de la courbe avec l'axe des abscisses) donc f_4 a une équation de la forme $f_4(x) = a(x - x_1)(x - x_2)(x - x_3) = a(x + 3)(x + 1)(x - 3)$.

De plus la courbe passe par le point de coordonnées (1 ; -4) donc $f_4(1) = -4$, ce qui donne :

$$f_4(1) = a \times (1+3) \times (1+1) \times (1-3) = a \times 4 \times 2 \times (-2) = a \times (-16) = -4 \text{ donc } a = \frac{-4}{-16} = \frac{1}{4}$$

Donc une équation, sous forme factorisée, de f_4 est $f_4(x) = \frac{1}{4}(x+3)(x+1)(x-3)$