```
In [21]:
import pandas as pd
from matplotlib import pyplot as plt
In [13]:
df = pd.read csv('../../data/beauty.csv', sep=';')
In [14]:
df.head()
Out[14]:
  wage exper union goodhlth black female married service educ looks
  5.73
           30
                 0
                               0
                                                        14
   4.28
           28
                               0
1
                 0
                          1
                                      1
                                             1
                                                    0
                                                        12
                                                               3
2 7.96
                          1
                               0
                                             0
                                                    0
                                                               4
           35
                 0
                                      1
                                                        10
3 11.57
                          1
                                      0
                                             1
           38
                 0
                               0
                                                    1
                                                        16
                                                               3
  11.42
           27
                 0
                          1
                               0
                                      0
                                                    0
                                                        16
                                                               3
In [20]:
df['wage'].describe()
Out[20]:
          1260.000000
count
mean
             6.306690
std
             4.660639
             1.020000
min
25%
             3.707500
50%
             5.300000
            7.695000
75%
           77.720000
max
Name: wage, dtype: float64
In [23]:
df['wage'].hist(bins=30);
 400
 300
 200
 100
  0
          10
                    30
                               50
                                         70
                                              80
               20
In [25]:
stats df = df.describe()
```

In [27]:

stats df['union']

```
1260.000000
count
           0.272222
mean
             0.445280
std
            0.000000
min
            0.000000
25%
50%
            0.000000
75%
             1.000000
            1.000000
max
Name: union, dtype: float64
In [28]:
df.head()
Out[28]:
  wage exper union goodhlth black female married service educ looks
0
  5.73
           30
                 0
                              0
                                                   1
                                                       14
                                                              4
1 4.28
           28
                 0
                         1
                              0
                                     1
                                            1
                                                   0
                                                       12
                                                              3
2 7.96
           35
                 0
                              0
                                     1
                                                   0
                                                       10
                                                              4
3 11.57
           38
                 0
                         1
                              0
                                     0
                                            1
                                                   1
                                                       16
                                                              3
                               0
                                     0
                                                              3
4 11.42
           27
                                                       16
Indexing data
iloc
In [30]:
df.iloc[:10, 5]
Out[30]:
0
     1
1
     1
2
     1
3
     0
4
     0
5
     1
6
     0
7
     0
8
     1
Name: female, dtype: int64
loc
In [32]:
df.loc[:10, ['wage', 'exper', 'educ']]
Out[32]:
   wage exper educ
    5.73
           30
                 14
    4.28
           28
                 12
    7.96
                 10
           35
 3 11.57
            38
                 16
```

4 11.42

```
wage exper educ
8.76 12 16
    7.69
                16
    5.00
                16
    3.89
           12
                12
10
    3.45
            3
                12
In [36]:
toy df = pd.DataFrame({ 'age': [40, 45, 32],
                         'salary': [78, 45, 67]},
                        index=['Kate', 'Leo', 'Max'])
In [37]:
toy_df
Out[37]:
     age salary
            78
Kate
     40
     45
            45
 Leo
 Max 32
            67
In [38]:
toy_df.loc[['Kate', 'Leo'], 'age']
Out[38]:
       40
Kate
       45
Name: age, dtype: int64
In [45]:
df[(df['wage'] > 40)
   & (df['female'] == 0)]
Out[45]:
    wage exper union goodhlth black female married service educ looks
269 41.67
            16
                                                        13
In [ ]:
In [ ]:
In [47]:
df.loc[df['female'] == 0, 'married'].mean()
Out[47]:
0.7985436893203883
In [48]:
df.loc[df['female'] == 1, 'married'].mean()
Out[48]:
0 48853211009174313
```

20

```
In [49]:
df.shape
Out[49]:
(1260, 10)
In [50]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1260 entries, 0 to 1259
Data columns (total 10 columns):
wage
           1260 non-null float64
exper
            1260 non-null int64
union
            1260 non-null int64
goodhlth
            1260 non-null int64
black
            1260 non-null int64
female
            1260 non-null int64
            1260 non-null int64
married
            1260 non-null int64
service
            1260 non-null int64
educ
looks
           1260 non-null int64
dtypes: float64(1), int64(9)
memory usage: 98.5 KB
In [51]:
df['wage'].mean(), df['wage'].median()
Out[51]:
(6.306690476190469, 5.3)
In [53]:
df['looks'].unique()
Out [53]:
array([4, 3, 2, 5, 1])
In [54]:
df['looks'].value counts()
Out[54]:
3
     722
     364
4
2
     142
5
      19
      13
Name: looks, dtype: int64
In [56]:
df['female'].value_counts(normalize=True)
Out[56]:
     0.653968
0
     0.346032
Name: female, dtype: float64
GroupBy
In [60]:
```

for (gender, sub dataframe) in df.groupby('female'):

```
print("Female: %d " % gender)
    print('Median wage')
    print(sub dataframe['wage'].median())
Female: 0
Median wage
6.41
Female: 1
Median wage
3.75
In [62]:
df.groupby(['married', 'female'])['wage', 'looks'].median()
Out[62]:
             wage looks
married female
           0 5.065
     0
                     3
           1 3.890
           0 6.710
                     3
           1 3.580
                     3
In [63]:
pd.crosstab(df['married'], df['female'])
Out[63]:
 female
         0
           1
married
     0 166 223
     1 658 213
apply
In [65]:
def gender_as_string(gender_id):
    if gender_id == 1:
         return 'female'
         return 'male'
    return 'female' if gender id else 'male'
In [67]:
df['female'].apply(gender_as_string).head()
Out[67]:
0
     female
     female
1
2
     female
3
       male
       male
Name: female, dtype: object
```

In [68]:

```
df['female'].apply(lambda gender_id:
                    'female' if gender id else 'male').head()
Out[68]:
0
     female
1
     female
2
     female
3
       male
4
       male
Name: female, dtype: object
In [70]:
df['female'].map({1 : 'female', 0: 'male' }).head()
Out[70]:
0
     female
1
     female
2
     female
3
       male
4
       male
Name: female, dtype: object
In [71]:
DOLLAR_TO_EURO = 0.84
In [73]:
df['wage'].apply(lambda w: w / DOLLAR TO EURO).head()
Out[73]:
     6.821429
      5.095238
1
     9.476190
    13.773810
3
    13.595238
Name: wage, dtype: float64
In [75]:
(df['wage'] / DOLLAR TO EURO).head()
Out[75]:
     6.821429
1
     5.095238
     9.476190
2
    13.773810
3
    13.595238
Name: wage, dtype: float64
In [ ]:
In [79]:
df['educ'].value_counts()
Out[79]:
     468
12
13
      246
10
     156
17
      132
16
      121
14
       51
       44
       42
Name: educ. dtype: int64
```

```
In [77]:
df['educ'].nunique()
Out[77]:
8
In [80]:
import numpy as np
In [81]:
df.groupby('educ')['wage'].agg([np.mean, np.median])
Out[81]:
        mean median
educ
   5 4.587857
                4.26
   8 4.969091
                3.97
  10 5.524295
                4.45
  12 5.698205
                4.81
  13 6.642642
                5.29
  14 5.613529
                5.39
  16 7.792645
                7.21
  17 8.661061
                6.90
In [83]:
# pip install seaborn
import seaborn as sns
sns.set()
IQR = qrt_75 - qrt_25
In [88]:
df['wage'].median(), df['wage'].mean()
Out[88]:
(5.3, 6.306690476190469)
In [86]:
sns.boxplot(x='wage', data=df[df['wage'] < 30])</pre>
Out[86]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f9ecea78470>
```

```
0 5 10 15 20 25 30
wage
```

In [90]:

```
sns.boxplot(x='educ', y='wage', data=df[df['wage'] < 30]);
```


In [93]:

```
sns.heatmap(df.corr());
```


In [98]:

```
df.corrwith(df['wage'])
```

Out[98]:

1.000000 wage 0.234632 exper 0.094529 union 0.006756 goodhlth -0.059052 black -0.313419 female married 0.184521 service -0.053653 educ 0.212333 looks 0.055019 dtype: float64

In [101]:

al.

```
plt.scatter(df['wage'], df['exper']);
```


In [103]:

df[df['looks'].isin([1, 3, 5])]

Out[103]:

	wage	exper	union	goodhlth	black	female	married	service	educ	looks
1	4.28	28	0	1	0	1	1	0	12	3
3	11.57	38	0	1	0	0	1	1	16	3
4	11.42	27	0	1	0	0	1	0	16	3
5	3.91	20	0	0	0	1	1	0	12	3
6	8.76	12	0	1	0	0	1	0	16	3
8	5.00	5	0	1	0	1	0	0	16	3
9	3.89	12	0	1	0	1	0	0	12	3
13	3.00	8	0	1	0	0	0	1	16	3
16	5.16	7	0	1	0	0	1	0	17	3
19	7.69	7	0	1	0	1	1	1	16	3
21	6.79	19	0	1	0	0	1	1	14	3
22	6.87	33	0	1	0	0	1	1	12	3
23	17.03	32	0	1	0	0	1	0	13	3
26	14.84	29	0	1	0	0	0	1	13	5
27	19.08	17	0	1	0	0	0	0	17	5
28	8.35	41	0	0	0	0	1	1	16	1
29	9.62	40	0	0	0	0	1	0	16	3
30	5.96	10	0	1	0	0	1	0	14	3
31	5.73	43	0	0	0	0	1	0	10	3
38	12.50	31	0	1	0	0	1	0	16	3
39	2.82	18	0	1	0	0	1	1	12	3
40	12.31	9	1	1	0	0	0	0	17	3
41	13.22	42	0	1	0	0	1	0	16	3
43	11.54	27	0	1	0	0	1	0	16	3
44	4.95	20	0	1	1	1	0	1	14	3
45	7.21	14	0	1	0	0	1	0	17	3
46	11.58	4	0	1	0	0	1	0	17	3
47	15.38	13	0	1	0	0	1	0	17	3
48	6.10	5	0	1	0	0	1	1	17	3
49	7.93	32	0	1	0	0	1	1	17	3
•••										
1212	1.75	18	0	1	0	1	0	1	12	3

1214	1.02	11	0	1	0	1	1	1	13	3
1216	2.83	28	0	1	1	1	0	1	13	3
1217	3.29	2	0	1	0	1	1	1	10	3
1218	1.98	45	0	1	0	1	0	1	12	3
1219	23.16	9	0	1	0	0	0	1	10	3
1221	3.00	40	0	1	0	0	0	1	13	3
1224	2.63	12	0	1	0	1	1	1	10	3
1228	6.25	3	0	1	0	1	0	1	12	3
1232	6.93	36	1	1	0	0	1	0	12	3
1233	1.56	4	0	1	0	0	0	0	12	3
1234	1.98	8	0	1	0	1	0	1	10	3
1235	8.75	24	1	1	0	0	0	1	16	3
1237	4.71	16	0	1	0	0	1	0	13	3
1238	4.87	10	0	1	0	0	1	0	13	3
1242	4.21	13	1	1	0	0	1	0	12	3
1244	12.82	15	1	1	0	0	1	0	13	3
1245	6.73	34	0	1	0	0	1	0	10	3
1246	5.39	8	1	1	0	0	1	0	14	3
1249	8.65	10	1	1	0	0	1	0	13	3
1250	4.17	13	0	1	0	0	1	0	10	3
1251	6.81	7	1	1	0	0	0	0	12	3
1252	9.62	21	1	1	0	0	1	0	16	3
1253	1.22	10	0	1	0	1	0	1	5	3
1254	1.79	20	0	1	0	1	1	1	8	3
1255	1.61	25	0	1	1	1	0	1	12	3
1257	3.29	35	0	1	1	1	0	1	12	3
1258	2.31	15	0	1	1	1	1	1	10	3
1259	1.92	24	0	0	0	1	0	1	16	3

1213 w2g6 expe6 union goodhlth black female married service edu2 looks

754 rows × 10 columns

In []:

In []:

In []:

In []: