

UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA ENGENHARIA ELÉTRICA

TRABALHO DE MÉTODOS NUMÉRICOS E COMPUTACIONAIS

ISRAEL PANAZOLLO

Santa Maria RS Novembro 2017

QUESTÕES

1) Dada a tabela a seguir, de valores de uma função f.

	x	0,15	0,17	0,19	0,21	0,23	0,25	0,27	0,29	0,31
f	(x)	0,1761	0,2304	0,2788	0,3222	0,3617	0,3979	0,4314	0,4624	0,4914

(a) Utilize um programa em Python para interpolar todos os pontos tabelados usando a Forma de Lagrange e obtenha uma estimativa para f (0,20) e para f (0,22) utilizando esse polinômio.

Após fazer a interpolação de Lagrange e obtendo o polinômio P(x), faremos o valor de $P(x) \cong f(x)$, logo:

$$f(0,20) \cong P(0,20) = 0.3010437878406232$$

 $f(0,22) \cong P(0,22) = 0.3423918227346441$

(b) Plote o gráfico do polinômio obtido juntamente com os pontos tabelados para verificar o resultado da interpolação.

(c) Estime f(0,20) e f(0,22) utilizando uma polinomial de terceiro grau. Plote o gráfico e compare com o resultado do item anterior.

Para fazer esse a interpolação polinomial com um polinômio do terceiro grau foram pegos 4 pontos de x (0.19, 0.21, 0.23, 0.25) e seus respectivos valores de y e após fazer a interpolação de Lagrange o resultado foi:

Nota-se que a diferença entre os resultados é pequena, mudando na sexta casa decimal no f(0,20) e na quarta casa decimal de f(0,22).

2) Determina-se empiricamente o alongamento de uma mola em milímetros, em função da carga P kgf que sobre ela atua, obtendo-se:

х	5	10	15	20	25	30	35	40
P	49	105	172	253	352	473	619	793

Use um programa em Python que implemente a Forma de Newton para o polinômio interpolador e, usando polinômios de terceiro grau, encontre as cargas que produzem os seguintes alongamentos na mola:

- (a) 12 mm = 130.33686272
- (b) 32 mm = 528.26259712
- (c) 31 mm = 500.12114944

Encontre novamente as cargas dos itens a, b e c com o programa utilizado no Exercício 1, que usa a Forma de Lagrange, e compare os resultados obtidos. Explique o que você observou.

- (a) 12 mm = 130.33686272
- (b) 32 mm = 528.2625971199999
- (c) 31 mm = 500.1211494400001

Os valores encontrados são quase iguais, sendo que essa ínfima diferença se dá pelos erros de arredondamento e truncamento. Este resultado deve-se ao fato de que, independente do método usado para interpolar os pontos, o polinômio encontrado é único, sendo este P(x) a melhor forma de relacionar esses pontos no intervalo dado.

3) A tabela a seguir mostra a fração percentual F de luz polarizada refletida por uma superfície em função do ângulo de incidência θ (em graus):

θ (°)	50	52	54	56	58	60
F(%)	2,75	1,45	0,50	0,15	0,20	0,85

Use um polinômio de grau 2 para estimar o ângulo θ_B (ângulo de Brewster) para o qual a fração F_B de luz polarizada é mínima. Plote os dados tabelados, o polinômio obtido e o ponto (θ_B, F_B) .

O ângulo $\theta_B = 56.5825454545$ onde a F_B é mínima e vale 0.113454512961.

Os dados tabelados e o polinômio e o ponto (θ_B, F_B) :

Aqui uma ampliação para ver o ponto mais claramente:

4) A tabela abaixo mostra as alturas e pesos de nove homens entre as idades de 25 a 29 anos, extraída ao acaso entre funcionários de uma grande indústria:

Altura(cm)	183	173	168	188	158	163	193	163	178
Peso(Kg)	73	69	70	81	61	63	79	71	73

(a) Utilize um programa em Python para ajustar uma reta que descreva o peso em função da altura. Mostre a reta e o diagrama de dispersão em um mesmo gráfico.

Ao fazer o ajuste uma reta aos pontos dados, encontramos a reta: g(x) = 0.48271028x - 12.93411215 e o gráfico da reta junto com a dispersão dos pontos tabelados é:

(b) Estime o peso de um funcionário com 175 cm de altura; e estime a altura de um funcionário com 80 kg.

O peso de um funcionário com 175 cm de altura é estimada em 71.54018685. A altura de um funcionário com 80 kg é estimada em 192.525653587.

(c) Ajuste agora a reta que descreva a altura em função do peso. Mostre a reta e os pontos tabelados em um mesmo gráfico.

Ao fazer o ajuste uma reta aos pontos dados, encontramos a reta: h(x) = 1.68350717x + 54.39504563 e o gráfico da reta junto com a dispersão dos pontos tabelados é:

(d) Resolva o item b com essa nova função, compare os resultados obtidos. Tente encontrar uma explicação.

O peso de um funcionário com 175 cm de altura é estimado em 71.6391094254. A altura de um funcionário com 80 kg é estimada em 189.07561923.

Os valores são semelhantes, independente se do peso em função da altura ou o contrário, pois ao ajustar uma reta encontraremos a proporção esperada de um parâmetro com relação ao outro, ou seja, essas retas representam o comportamento desses variáveis, uma com relação à outra e assim apresentaram estimativas semelhantes para os valores propostos.

5) O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela:

Horas	0	1	2	3	4	5	6
Bactérias	32	47	65	92	132	190	275

(a) Ajuste os dados às curvas $y = ab^x$ e $y = ax^b$; compare os valores obtidos por meio dessas equações com os dados experimentais. Comente.

Os valores obtidos ajustando às curvas as equações são mais semelhantes ao dados na equação $y=ab^x$, com isso ela fica sendo uma melhor forma de expressar o comportamento dos dados tabelados

(b) Avalie da melhor forma o valor de y(x) para x = 7.

Ajustando os dados à curva $y = ab^x$, que é a melhor forma de descrever o fenômeno observado, obtêm-se y(7) = 387.274135665.