Interrogation écrite de Physique (IE3) 7 janvier 2022, 1h30 Corrigé / barème

Exercice 1 : Utilisation d'un panneau photovoltaïque /8 +0,75 bonus

		Points
1) /1	Sur la Fig. 2 on voit que $P_{max} \approx 20.0$ W pour $U \approx (18.0 \pm 0.2)$ V. On peut accepter 17.8 V < U < 18.2 V et 0.2 < Δ U < 0.4 car le sommet n'est pas très pointu.	0,5
	Sur la Fig. 1 ça correspond à I \approx (1,10 \pm 0,05) A (demi graduation sur I). (Mettre la moitié des points si pas d'incertitude)	0,5
2) /2,5	Le courant $I=1,10$ A fourni par le panneau se divise en 2 : le courant I_M qui traverse le moteur et le courant I_E consommé par l'éclairage. Pour le moteur, on a $U=E+R_M$ I_M soit $I_M=(U-E)/R_M=(18,0-15,26)/7,7=0,356$ $A=356$ mA. Le système d'éclairage peut donc consommer : $I_E=I-I_M=1,1-0,356=0,744$ A	Calcul de I _E : /0,75
	D'après la notice chaque ampoule doit avoir une tension de 6V à ses bornes et être parcourue par un courant de 100mA. Pour obtenir une tension nominale U=18V il faut donc 3 ampoules en série	Raisonn ement:
	parcourue par un courant de 100 mA. Donc en plaçant 7 branches de 3 ampoules en série on atteint un courant total de 700 mA ce qui permet de faire fonctionner le panneau non loin de son point de fonctionnement.	/1
	Chaque ampoule présente une résistance de $6/0,1=60~\Omega$. Soit $180~\Omega$ pour 3 ampoules en série.	Calcul
	Comme il y a 7 branches en // on a $1/R_E = 7*(1/180)$ Ω soit $R_E = 25,7$ Ω Accepter par calcul direct (même si la question pas entièrement traitée):	R _E : /0,75
	$R_E=U/I_E=24,2~\Omega$ Bonus :si commentaires judicieux sur les calculs avec les deux méthodes	Bonus 0,25
3) /2,5	La caractéristique du moteur est donnée par $I_M = (U - E)/R_M = (1/R_M) U - (E/R_M) \approx 0,13 U - 1,98$ (avec U en Volt et I_M en Ampère)	/1
	La caractéristique du moteur ayant une ordonnée à l'origine négative on peut prendre les deux points suivants, par exemple : (15,2 V; 0 A) et (24 V; 1,14 A)	
	La caractéristique de l'éclairage est donnée par $I_E = (1/R_E)U \approx 0,04~U$	/0,5
	La caractéristique de l'éclairage passe par l'origine et par le point (24 V; 0,93 A) par exemple.	
	On trace ces deux caractéristiques puis on fait la somme d'après la loi des nœuds ou toute autre méthodes correcte	/1
	Tracé :	

Exercice 2 : Circuit en régime transitoire /12 +0,5 bonus

		Points
1) /1	Pour une inductance pure, le courant varie de manière continue. Pour $t < 0$, i $(0^-)=0$ donc pour $t=0+$, i $(0^+)=0$	0,25
	Puisque $i(0) = 0$ on peut utiliser la formule du pont diviseur pour trouver u_1 et u_2 $u_1(0) = R_1E / (R_1 + R_2)$ $u_2(0) = R_2E / (R_1 + R_2)$ Ou bien, si l'on y pense pas, dans la maille de gauche on a : $E - R_1i_1 - R_2(i_1 - 0) = 0$ soit $i_1(0) = E / (R_1 + R_2)$ et on en déduit $u_1(0) = R_1i_1$ et $u_2 = R_2i_1$	0,25 0,25
	$i(0) = 0$ donc la tension aux bornes de r est nulle à $t = 0+$, donc $u(0) = u_2(0)$	0,25
2)	En régime permanent : $u(\infty) = Ldi/dt = 0$ (bobine équivalente à un fil)	0,25
/2,5	donc tout se passe comme si l'on avait E en série avec $R_1 + (R_2 // r)$.	
	Simplification de $R_2 // r : R_{//} = \frac{R_2 r}{R_2 + r}$	
	Soit on utilise la loi des mailles soit la formule du pont diviseur donne directement :	
	$u_1 (\infty) = R_1 E / (R_1 + R_{//}) \text{ et } u_2 = R_{//} E / (R_1 + R_{//})$	2 x 1
	Ce qui donne :	
	$u_1(\infty) = \frac{R_1}{R_1 + \frac{R_2 r}{R_2 + r}} E = \frac{R_1(R_2 + r)}{R_1 R_2 + (R_1 + R_2)r} E \text{ et } u_2(\infty) = \frac{\frac{R_2 r}{R_2 + r}}{R_1 + \frac{R_2 r}{R_2 + r}} E = \frac{R_2 r}{R_1 R_2 + (R_1 + R_2)r} E$	
	Et i tend vers u_2/r , soit : $i(\infty) = \frac{R_2}{R_1 R_2 + (R_1 + R_2)r} E$	0,25
3)	Il faut trouver le géné de Thévenin équivalent à la partie gauche du circuit (gauche de AB).	
/1,5	Les étapes de la transfiguration sont à détailler, par exemple : Etape 1 : passer le générateur de tension et R_1 en Norton : $I_1=E/R_1$ en // avec R_1	0,5
	Etape 2 : simplifier $R_1//R_2$ par $Req = \frac{R_1R_2}{R_1+R_2}$	0,5
	Etape 3 : repasser en thévenin : Eth= Req* $I_1 = \left(\frac{R_2}{R_1 + R_2}\right) E$	0,5
	On trouve que la FEM et la résistance équivalentes valent :	
	$E_{th} = \left(\frac{R_2}{R_1 + R_2}\right) E \text{ et } R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$	
4) /2.5	on se ramène alors à un circuit à une seule maille et il est simple de déterminer i. La loi des mailles donne alors : E_{th} =u+(r+R _{eq})*I	0,25
/2,5	on en tire l'équation différentielle en i :avec : $u = Ldi/dt$ $\frac{di}{dt} + \frac{1}{L} \left(\frac{R_1 R_2}{R_1 + R_2} + r \right) i = \frac{1}{L} \left(\frac{R_2}{R_1 + R_2} \right) E \text{ ou encore } \frac{di}{dt} + \frac{1}{\tau} i = \frac{1}{L} \left(\frac{R_2}{R_1 + R_2} \right) E$	0,25
	avec τ la constante de temps : $\frac{1}{\tau} = \frac{1}{L} \left(\frac{R_1 R_2 + (R_1 + R_2)r}{R_1 + R_2} \right) \text{soit } \tau = L \left(\frac{R_1 + R_2}{R_1 R_2 + (R_1 + R_2)r} \right)$	0,25
	Solution particulière i_P (constante): $i_P = \frac{R_2}{R_1 R_2 + (R_1 + R_2)r} E$	0,25
	(Rq : on retrouve la valeur asymptotique de i en régime permanent calculée à la Q.2)	

	Solution is de l'áquetion homogène sons second membre :	
	Solution i_G de l'équation homogène sans second membre : $i_G = Ce^{\frac{-t}{\tau}} \text{avec } C \in \mathbb{R}$	0,25
	$t_G = ce^{\tau}$ avec $c \in \mathbb{R}$ (Mettre 0 aux questions suivantes si la constante C est déterminée maintenant avant d'avoir écrit la solution complète de l'équa diff.)	,
	Solution complète : $i = i_P + i_G$	0,25
	Maintenant on peut déterminer C d'après la condition initiale : à $t = 0^+$, il a été montré à la question 1) que $i(0^+) = 0$	0,25
	D'où $C = \frac{-R_2}{R_1 R_2 + (R_1 + R_2)r} E$ Finalement : $i(t) = \frac{R_2}{R_1 R_2 + (R_1 + R_2)r} E \left(1 - e^{\frac{-t}{\tau}}\right)$	0,25
	$u(t) = L\frac{di}{dt} = \frac{R_2}{R_1 + R_2} E e^{\frac{-t}{\tau}}$	0,5
	Remarque : à $t = 0^+$ on retrouve le résultat de la question 1) Et quand t tend vers l'infini, on retrouve le résultat de la question 2)	
5)	Allure correcte avec les valeurs des asymptotes et valeurs initiales précisées (mettre 0,25 si aucune valeur)	
/2	Bonus : tracé de la tangente à l'origine qui coupe l'asymptote à t infini en $t=\tau$ ou s'il est indiqué sur la courbe de i que i vaut 63% de i_{asym} pour $t=\tau$ ou $u=37\%$ u_{max} pour $t=\tau$	2 x 1 (pour u et i)
	$\begin{array}{c} \mathbf{R}_{2} \\ \mathbf{R}_{1}\mathbf{R}_{2} + (\mathbf{R}_{1} + \mathbf{R}_{2})\mathbf{r} \\ \mathbf{63\%} \ \mathbf{i}_{asym} \\ \end{array} \qquad \begin{array}{c} \mathbf{R}_{2} \\ \mathbf{R}_{1} + \mathbf{R}_{2} \\ \end{array} \mathbf{E} \\ \mathbf{37\%} \ \mathbf{u}_{max} \\ \end{array}$	Bonus : 0,5
6)	Soit on sait que ça correspond à peu près à $t_0 = \tau$ et on calcule directement :	
/1	$L = t_0 \left(\frac{R_1 R_2 + (R_1 + R_2)r}{R_1 + R_2} \right) = 59,96mH \approx 60mH$ Soit on pose le calcul:	Expres sion :
	$u_{max} = \frac{R_2}{R_1 + R_2} E \text{ pour } t = 0^+$	0,5
	donc $0.37 \frac{R_2}{R_1 + R_2} E = \frac{R_2}{R_1 + R_2} E e^{\frac{-t_0}{\tau}} \Leftrightarrow ln(0.37) = \frac{-t_0}{\tau} \Leftrightarrow \tau = \frac{-t_0}{ln(0.37)}$ $L = \frac{-t_0}{ln(0.37)} \left(\frac{R_1 R_2 + (R_1 + R_2)r}{R_1 + R_2} \right)$	AN: 0,5
	$ln(0,37) \setminus R_1 + R_2$ Et on trouve L = 60,4 mH	
	La différence vient du fait que 37% est une valeur arrondie	
7)	Énergie stockée dans la bobine : à démontrer, par exemple :	
/1,5	$P_L = u * i = L * i * \frac{di}{dt}$	
	$E_L = \int_0^\infty P_L dt = \int_0^\infty L * i * \frac{di}{dt} dt = \left[\frac{1}{2} L i^2(t)\right]_0^\infty$	/1,5
	Avec les CI et le régime permanent sur i on en déduit :	Mettre 0,75 si
	$E_L = \frac{1}{2}Li^2(\infty) - 0 = \frac{1}{2}L * (\frac{R_2}{R_1R_2 + (R_1 + R_2)r}E)^2$	non démont rée
	Ou en faisant un calcul direct de l'énergie à partir des expr. de u(t) et de i(t) trouvées : $E_L = \int_0^\infty P_L dt = \int_0^\infty u(t) * i(t) dt$	