Домашняя работа №7 по курсу ТЕХ'а

ФИО

22 февраля 2024 г.

Содержание

1	Неравенство Йенсена]
2	Круги Эйлера	7

1 Неравенство Йенсена

Theorem 1.1 (Неравенство Йенсена). Пусть f(x) выпукла вверх на [a,b]. Тогда $\forall x_1, \dots, x_n \in [a,b]$ и их выпуклой комбинации выполнено неравенство $\sum_{k=1}^n \alpha_k f(x_k) \leqslant f(\sum_{k=1}^n \alpha_k x_k)$

Доказательство. (Докажем по индукции)

База: n = 2.

Неравенство превращается в определение выпуклой вверх функции, для которой это, очевидно, выполняется.

Переход: Пусть это верно для n. Докажем, что это верно для n+1:

$$\sum_{k=1}^{n+1}\alpha_k=1,$$
обозначим за $s_n=\sum_{k=1}^n\alpha_k$

Пусть $\beta_k = \frac{\alpha_k}{s_n}$. Тогда получаем: $\sum_{k=1}^n \beta_k = 1$.

$$\sum_{k=1}^{n+1} \alpha_k f(x_k) = s_n \sum_{k=1}^n \beta_k f(x_k) + \alpha_{n+1} f(x_{n+1}) \leqslant$$

$$\leqslant (\text{по предположению индукции}) s_n f\left(\sum_{k=1}^n \beta_k x_k\right) + \alpha_{n+1} f(x_{n+1}) \leqslant$$

$$\leqslant (\text{так как} s_n + \alpha_{n+1} = 1) f\left(\sum_{k=1}^{n+1} \alpha_k x_k\right)$$

Значит, шаг индукции проделан, неравенство доказано для произвольного п.

2 Круги Эйлера

 $(A \cup B) \setminus (A \cap B)$

Рис. 1: Симметрическая разность