Lesson Plan SI Session #5 August 16, 2017

SI Leader: Eason Chang

Course: Math 18 Academic Quarter: Summer Session 2 2017 Instructor: Professor Drimbe

Topics Covered: Transformations; Linear Transformation; Proof

Opener Activity:

5:05pm - 5:10pm

- Spend 1 min to review notes, and see who can recall the definitions for transformation and linear transformation, etc.
- Transformation: A **transformation** (or **function** or **mapping**) T from Rⁿ to R^m is a rule that assigns to each vector **x** in Rⁿ a vector T (**x**) in R^m. The set Rⁿ is called the **domain** of T, and R^m is called the **codomain** of T.
- Domain, codomain

A transformation (or mapping) T is linear if:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.
- (Optional for this session) shear transformation, contraction and dilation

Activity 1

5:10pm - 5:30pm

Practice Problem 1a:

(Source: University of Texas, https://www.ma.utexas.edu/users/olenab/Fall-2011-341/341lintranssols.pdf)

Determine whether the following functions are linear transformations. If they are, prove it; if not, provide a counterexample to one of the properties:

(a) $T : \mathbb{R}^2 \to \mathbb{R}^2$, with

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ y \end{bmatrix}$$

Practice Problem 1a Solutions:

Solution:

This IS a linear transformation. Let's check the properties:

(1) $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$: Let \vec{x} and \vec{y} be vectors in \mathbb{R}^2 . Then, we can write them as

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

By definition, we have that

$$T(\vec{x} + \vec{y}) = T \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 + x_2 + y_2 \\ x_2 + y_2 \end{bmatrix}$$

and

$$T(\vec{x}) + T(\vec{y}) = T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + T \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 + y_2 \\ y_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 + x_2 + y_1 + y_2 \\ x_2 + y_2 \end{bmatrix}$$

Thus, we see that $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y})$, so this property holds.

(2) T(cx) = cT(x): Let x be as above, and let c be a scalar. Then,

$$T(c\vec{x}) = T \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix} = \begin{bmatrix} cx_1 + cx_2 \\ cx_2 \end{bmatrix}$$

while

$$cT(\vec{x}) = c \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 + cx_2 \\ cx_2 \end{bmatrix}$$

Therefore, $T(c\vec{x}) = cT(\vec{x})$, so this property holds as well.

Practice problem 1b:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, with

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix}$$

Practice Problem solution 1b:

Solution:

This is NOT a linear transformation. It can be checked that neither property (1) nor property (2) from above hold. Let's show that property (2) doesn't hold. Let

$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and let c=2. Then,

$$T(\vec{x}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and therefore, we have that

$$2T(\vec{x}) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

However, we have

$$T(2\vec{x}) = T \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

Thus, we see that $2T(\vec{x}) \neq T(2\vec{x})$, and hence T is not a linear transformation.

5:30pm - 5:45pm

Practice Problem 2a:

For the following linear transformations $T: \mathbb{R}^n \to \mathbb{R}^n$, find a matrix A such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

(a) T : ℝ² → ℝ³,

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x - y \\ 3y \\ 4x + 5y \end{bmatrix}$$

Solution to Practice Problem 2a:

Solution:

To figure out the matrix for a linear transformation from \mathbb{R}^n , we find the matrix A whose first column is $T(\vec{e_1})$, whose second column is $T(\vec{e_2})$ – in general, whose ith column is $T(\vec{e_i})$. Here, by definition we have that

$$T(\vec{e}_1) = T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}, T(\vec{e}_2) = T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix}$$

Thus,

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 4 & 5 \end{bmatrix}$$

Practice Problem 2b:

- How to know when a matrix is onto? If a matrix in its reduced echelon form has a pivot in every row.
- How to know when a matrix is one to one? If T is a linear transformation, T(X) has a unique solution.

(Source: University of Alberta,

 $http://www.stat.ualberta.ca/\sim skalayci/Math\%20102/Lecture notes 25-28 March 2011.pdf)$

Example: Is the matrix transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$, where T(x,y) = (x,y,x+y) is onto?

Solution to Practice Problem 2b:

Solution: T is onto if for any vector $(a, b, c) \in \mathbb{R}^3$ we can find a corresponding $(x, y) \in$ \mathbb{R}^2 such that T(x,y)=(a,b,c). From here we get linear system

$$\begin{array}{rcl} x & = & a \\ y & = & b \\ x+y & = & c \end{array}$$

T is onto if this sytem is consistent for all
$$(a,b,c)$$
.
$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 1 & 1 & c \end{bmatrix} \xrightarrow{\text{Row operations}} \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & c-b-a \end{bmatrix}$$
 So this system is consistent if $c=a+b$. Hence for $(1,2,5)$ there is no (x,y) that is

mapped to (1,2,5) under T. So T is not onto.

Goal: Review the topics covered in the lecture, to better prepare the students. (Students were given less help so they can apply the knowledge)

Closure- Survey/ Feedback

5:45pm- 5:50pm

- Wrap-up:
- Please share with the group one thing you gained understanding of through the session
- Make a note to yourself/ write down anything you need to review/ do more practice problems on.
- Survey/ Feedback:
 - 1. How fun was the session? (1-10)
 - 2. How useful was the session? (1-10)
 - 3. Would you come back? (yes or no)
 - 4. Optional: Comments (pace of the activity), questions, concerns, suggestions, feedback on the back or wherever

Please recommend SI to your friends/ peers if you found the session useful! Thanks for coming and have a great day:)

PLANNING THE SI SESSION

Session Date of Course:	& Day of Week:		
Course:			
Course Instructor:			
Warm-up/	Content to cover:	Collaborative Learning Technique	Strategy to be used:
Opening: (2-4 min.)			
Please provide document(s)	e a DETAILED BREAKI	DOWN of warm-up activity (OR attach corresponding
Cool-	Content to cover:	Collaborative Learning	Strategy to be used:
down/		Technique	
Closing: (2-4 min.)			
Please provide document(s)	e a DETAILED BREAKI	DOWN of cool-down activity	OR attach corresponding
Workout:	Content to cover:	Collaborative Learning	Strategy(ies) to be
(44-46		Technique(s)	used:
min.)			
down/ Closing: (2-4 min.) Please provide document(s) Workout:	e a DETAILED BREAKI	Technique DOWN of cool-down activity Collaborative Learning	OR attach correspon

Please provide a **DETAILED BREAKDOWN** of workout activity **OR** attach corresponding

Page 47

document(s)