1 Outline

1.1 Basics

 $JSON \Rightarrow Structure \Rightarrow Algorithm \Rightarrow Structure \Rightarrow JSON$

1.2 Explanation

1.2.1 **JSON**

Plane information

1.2.2 Structure

Plane information + relation between objects

1.2.3 Algorithm

Rule to determine positions of objects

2 Preliminaries

2.1 Color index

abbreviations
structure key
acronym explanation
partial result

2.2 Abbreviations

2.2.1 Boolean

TR	true
FA	false

2.2.2 Conditional

IF	if	
EI	else if	
EL	else	

2.2.3 For

FE	for each
FO	for
BR	break

2.3 Notations

$2.3.1 \equiv equal$

$A \equiv B$	A equals B

$\textbf{2.3.2} \quad \neq \quad \textbf{not equal}$

 $A \neq B$ A does not equal B

2.3.3 = assignment

A = B Assign B to A

2.3.4 | parallel or tangent

$A \parallel B$	IF	A and B are lines or segment	A and B are parallel
$A \parallel D$	EL	A and B are tangent	

1

2.3.5 And \wedge

2.3.6 Or \vee

2.3.7 Coordinates

[x, y]

2.3.8 Set

Regard a set as an array $[a, b, \ldots]$

2.3.9 Function composition

$$f_1 \circ f_2 \circ \cdots \circ f_n(\mathbf{x}) = f_1(f_2(\cdots (f_n(\mathbf{x}))\cdots))$$

2.3.10 Conditional statement

- 1. **IF** A
 - 1 If $A \equiv TR$, then
- 2. **IF** A B
 - 1 If $A \equiv TR$, then B.
- 3. **EI** A
 - $\boxed{1}$ Else if $A \equiv \boxed{\text{TR}}$, then
- 4. **EI** A B
 - 1 Else if $A \equiv$ TR, then B.
- 5. EL
 - 1 Else
- 6. **EL** *B*
 - $\boxed{1}$ Else B

2.3.11 Loops

- 1. **FO** A
 - 1 For A
- 2. **FO** A B
 - $\boxed{1}$ For A do B
- 3. **FE** A
 - $\boxed{1}$ For each A
- 4. **FE** A B
 - $\fbox{1}$ For each A do B

2.3.12 Operator

- 1. $A \circ B$
 - $\boxed{1} \ A \circ B$

2.4 Functions

2.4.1 m(r, s) **mod**

1. **Definition**

Remainder obtained by dividing r by s

2. Computation

$$m(r,s) = \lfloor \frac{r}{s} \rfloor$$

3. Example

$$m(3,2) = 1$$

2.4.2 $a(\theta)$ angle

1. **Definition**

Polar coordinates angle of θ

2. Computation

$$a(\theta) = \left\lfloor \frac{\theta}{2\pi} \right\rfloor$$

3. Example

$$a(3\pi) = \pi$$

2.4.3 a(y, x) angle

1. **Definition**

1 Angle θ ($0 \le \theta < 2\pi$) obtained by representing [x, y] as polar coordinates

2. Computation

$$\mathbf{a}(y, x) = \mathbf{m}(\operatorname{atan2}(y, x), 2\pi)$$

3. Example

$$a(\sqrt{3},1) = \frac{\pi}{3}$$

$\mathbf{2.4.4} \quad \mathrm{a}(\mathbf{p}_1,\mathbf{p}_2) \quad \mathbf{angle}$

1. **Definition**

1 Angle obtained by representing $\mathbf{p} = [x, y] = \mathbf{p}_2 - \mathbf{p}_1$ as polar coordinates

2. Computation

$$a(\mathbf{p}_1, \mathbf{p}_2) = a(y, x)$$

3. Example

$$a([1,1],[2,1+\sqrt{3}]) = a(\sqrt{3},1) = \frac{\pi}{3}$$

2.4.5 $d(\mathbf{p}_1, \mathbf{p}_2)$ distance

1. **Definition**

Distance between two points $\mathbf{p}_1 = [x_1, y_1], \, \mathbf{p}_2 = [x_2, y_2]$

2. Computation

$$d(\mathbf{p}_1, \mathbf{p}_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

3. Example

$$d([1,1],[2,3]) = \sqrt{5}$$

2.4.6 $c(r, \theta)$ Cartesian

1. **Definition**

 $\boxed{1}$ Cartesian coordinates representation of polar coordinates $[r, \theta]$

2. Computation

 $c(r,\theta) = [r\cos\theta, r\sin\theta]$

3. Example

$$c(2, \frac{\pi}{6}) = [1, \sqrt{3}]$$

2.4.7 s(r) sign

1. **Definition**

Sign of r

2. Computation

$$\mathbf{s}(r) = egin{array}{|c|c|c|c|} \hline \mathbf{IF} & r < 0 & -1 \\ \hline \mathbf{EI} & r \equiv 0 & \mathbf{0} \\ \hline \mathbf{EL} & \mathbf{1} \\ \hline \end{array}$$

3. Example

$$s(-3) = -1$$

2.4.8 k(v, A) key

1. **Definition**

Key of v in an array A

2. Computation

$$\mathcal{A}[\mathbf{k}(v,\mathcal{A})] = v$$

2.4.9 $r(\mathbf{p}, \mathbf{c}, \theta)$ rotation

1. **Definition**

1 Point obtained by rotating $\mathbf{p} = [x, y]$ around $\mathbf{c} = [x_1, y_1]$ with angle θ

2. Computation

$$r(\mathbf{p}, \mathbf{c}, \theta) = (\mathbf{p} - \mathbf{c}) \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \mathbf{c}$$

3. Example

$$r([3,3],[1,1],\frac{\pi}{2}) = [-3,3]$$

$2.4.10 \quad s(\mathbf{p}_1, \mathbf{p}_2) \quad \mathbf{segment}$

1. **Definition**

Line segment whose end points are \mathbf{p}_1 , \mathbf{p}_2

2. Computation

$$s(\mathbf{p}_1, \mathbf{p}_2) = [t\mathbf{p}_1 + (1-t)\mathbf{p}_2 \mid 0 \le t \le 1]$$

2.4.11 amm(A) angle mid max

1

1. **Definition**

1 Sort
$$\mathcal{A} = [\theta_0, \theta_1, \dots, \theta_n]$$
 $(\theta_0 \le \theta_1 \le \dots \le \theta_n)$

$$\boxed{2} \ \delta_0 = \theta_0 - \theta_n, \delta_1 = \theta_1 - \theta_0, \dots, \delta_n = \theta_n - \theta_{n-1}$$

3
$$\operatorname{amm}(A) = \operatorname{a}(\theta_i - \frac{\delta_i}{2}) \left(\delta_i = \operatorname{max}[\delta_0, \dots, \delta_n] \right)$$

2. Example

1
$$\mathcal{A} = [\frac{3\pi}{4}, \pi, \frac{3\pi}{2}, \frac{7\pi}{4}] = [\theta_0, \theta_1, \theta_2, \theta_3]$$

$$\delta_0 = \pi$$

$$\delta_1 = \frac{\pi}{4}$$

$$\begin{array}{c}
\delta_0 = \pi \\
\delta_1 = \frac{\pi}{4} \\
\delta_2 = \frac{\pi}{2} \\
\delta_3 = \frac{\pi}{4}
\end{array}$$

3 amm(
$$\mathcal{A}$$
) = a($\frac{3\pi}{4} - \frac{\pi}{2}$) = $\frac{\pi}{4}$

$\mathbf{2.4.12} \quad \mathrm{int}(O) \quad \mathbf{interior}$

1. **Definition**

$\boxed{1}$ Interior of an object O

3 Structure

3.1 Values

3.1.1 Boolean

3.1.2 Color

number	XX0	XX1	XX2	XX3	XX4	XX5
color	gray	blue	red	blue	yellow	YellowGreen

3.1.3 Coordinates

[real number, real number]

3.1.4 Direction

	name	EE	NE	NN	NW	WW	SW	SS	SE	CM
2.	direction	East	N.East	North	N.West	West	S.West	South	S.East	Center
	degree	0°	45°	90°	135°	180°	225°	270°	315°	

3.2 Objects

1. Structure

2. Elements

function	structure key	definition	function name meaning
Tunction	structure key	deminion	function frame meaning

3. Functions

function	definition	function name meaning
		_

3.2.1 Geometry2D: G geometry

1. Structure

type	Geometry2D
object	object array
window	$[[-x_{min}, x_{max}], [-y_{min}, y_{max}]]$
rotate	radian

2. Elements

o(G)	object	object on G	object	
s(G)	window	size of G	size	
a(G)	rotate	rotation angle	angle	

3. Functions

3.2.2 Angle2D: A

1. Structure

type	AngleThreePt2D				
height	real number				
dash	boolean				
color	color				
visible	boolean				
tickLabel	none, right, double, dot, circle, dash, dbldash, tpldash				
selectable	boolean				
selected	boolean				
	type Static				
label	mode math				
	value latex				
labelSign	direction				
id	natural number				
vertexPoint	natural number				
sourcePoint	natural number				
targetPoint	natural number				

2. Elements

6

c(A)	vertex	center	center
s(A)	source	start	start
e(A)	target	end	end
h(A)	height	distance form $c(A)$ to angle mark	height
r(A)	right	right mark or not	right
se(A)	selectable	selectable or not	selectable
t(A)	tickLabel	tickLabel	tick label
		arc form none, double, dash, dbldash, tpldash	
		nonarc form dot, circle	

3. Functions

a(A) angl	le angle
-----------	----------

3.2.3 Arc2D: *A*

1. Structure

type	ArcFree2D				
angle	radian				
dash	boolean				
color	color				
visible	boolean				
tickLabel	none, single, o	louble, triple			
selectable	boolean				
selected	boolean				
label	type Static mode math value				
labelSign	direction				
measure	visible height color label labelSign tickLabel type center pointStart angle	boolean real number color type Static mode math value direction none, single, double, triple MeasureArcGeo2D coordinates coordinates radian			
id	natural number				
centerPoint	natural number				
startPoint	natural numb	er			

2. Elements

7

c(A)	cen	ter	cer	nter	center	
s(A)	pointStart sta		sta	rt	start	
a(A)	(A) angle an		ang	gle	angle	
m(A)	mea	asure	me	asure	measure	
h ∘ m	(A)	height		distar	nce between $c(A)$ and $m(A)$	height
ld∘n	n(A)	labelSi	gn	label	direction	label direction

3. Functions

e(A)	end	end
r(A)	d(c(A), s(A))	radius

3.2.4 Face2D: *F*

1. Structure

Structure			
type	FaceBoundaries2D		
color	color		
visible	boolean		
selectable	boolean		
selected	boolean		
label	type Static mode math value		
labelSign	direction		
id	natural number		
boundaries	[natural number, natural number, natural number]		

2. Elements

3. Functions

3.2.5 Label2D: L

1. Structure

our acture					
type	LabelFree2D				
coord	coordinates				
color	color				
selectable	boolean				
selected	boolean				
	type Static				
label	mode math				
	value latex				
labelSign	direction				
labeledObject	natural number				
labelType					
labelUnit					
id	natural number				

2. Elements

c(L)	coord	center	center
o(L)	labeledObject	id of object to label	object
$\mathrm{ld}(L)$	labelSign	label direction	label direction

3. Functions

3.2.6 Point2D: *P*

1. Structure

type	PointFree2D		
coord	coordinates		
isFill	boolean		
color	color		
visible	boolean		
selectable	boolean		
selected	boolean		
	type Static		
label	mode math		
	value		
labelSign	direction		
id	natural number		

2. Elements

c(P) coordinates coordinates

3.2.7 Segment2D: S

1. Structure

Structure						
type	LineSegFree2	D				
source	arrow boolean					
target	arrow bo	olean				
dash	boolean					
color	color					
visible	boolean					
tickLabel	none, single,	double, tri	ple, quadr	uple, dot, circle		
parallel	none, single,	double, tri	ple			
selectable	boolean					
selected	boolean					
label	type Static mode math value					
labelSign	direction					
	height	real numb	oer			
	color	color				
measure	label	mode value	Static math			
	labelSign	direction				
	tickLabel	none, single, double				
	type	MeasureGeo2D				
	source	coordinates				
	target	coordinates				
id	natural number					
sourcePoint	natural number					
targetPoint	natural numb	er				

2. Elements

s(S)	sour	ce	star	t	start	
e(S)	targ	et	end		end	
c(S)	colo	r	colo	r	color	
m(S)	mea	sure	mea	sure	measure	
h∘m	L(S)	height distance b		distance b	etween center of S and center of $m(S)$	height
$c \circ m$	(S)	color		color of m	(S)	color
l o m	(S)	label		label of m	(S)	label
$\operatorname{ld} \circ \operatorname{n}$	$\mathrm{ld}\circ\mathrm{m}(S)$ labelSign		label direc	tion	label direction	
l(S)	labe	el	label		label	
$\mathrm{ld}(S)$	labelSign label direction		l direction	label direction		

3. Functions

v(S)	e(S) - s(S)	vector
a(S)	a(s(S), e(S))	angle
l(S)	l(s(S), e(S))	length
$a \circ m(S)$	$[\theta_s, \theta_e]$: start and end angles of m(S)	angle
	θ_e θ_s	
$r \circ m(S)$	radius of Arc2D containing $m(S)$	radius
$s \circ l \circ m(S)$	size of $l \circ m(S)$	size

3.3 Functions or elements

3.3.1 Function index (O: object)

a(O)	angle
c(O)	center or coordinates
co(O)	color
e(O)	end or edges
h(O)	height
l(O)	label or length
ld(O)	label direction
o(O)	object
d(O)	distance
m(O)	measure
r(O)	radius or ratio or right
s(O)	start or size
se(O)	selectable
t(O)	tick label
v(O)	vertex

3.3.2 Functions

1. c(A, L) center of Label2D L when Angle2D A satisfies $c(L) \equiv A$ Label2D center

2. lr(A, L) radius of area by Angle2D A and Label2D L (c(L) is not determined yet) Label2D radius

4 Algorithm

4.1 Classification of objects

4.1.1 Angle2D: \mathcal{AN}

\mathcal{AN}_c	set of colored Angle2D	Angle2D color
	/	
\mathcal{AN}_l	set of labeled Angle2D	Angle2D label
	/	
	Label	
	Lauci	
	set of selectable Angle2D	
\mathcal{AN}_s	Set of Scientable Aligie2D	Angle2D selectable
	and afticulated manufact Annula D	
\mathcal{AN}_t	set of tickLabel marked Angle2D	Angle2D tickLabel
	set of Angle2D whose tickLabel is arc form	
\mathcal{AN}_t	,	Angle2D tickLabel arc
	set of Angle2D whose tickLabel is not arc form	
\mathcal{AN}_{tn}	See of Angle2D whose treadaber is not are form	Angle2D tickLabel nonarc
$\mathcal{AN}_{ar{t}}$	$\mathcal{AN} - \mathcal{AN}_t$	Angle2D tickLabel complement

4.1.2 Arc2D: AR

12

- 4.1.3 Face2D: \mathcal{F}
- 4.1.4 Label2D: \mathcal{L}
- 4.1.5 Point2D: \mathcal{P}
- 4.1.6 Segment2D: S

$ \mathcal{S}_d $	set of dashed Segment2D	Segment2D dash
	./	Sogmone 22 dash
	/	
c	set of Segment2D with measure	Segment2D measure
$ \mathcal{S}_m $.1	Segment 2D measure
	//	
	set of Segment2D whose measure is labeled	
$ \mathcal{S}_{ml} $	d	Segment2D measure label
	Label	
$ \mathcal{S}_p $	set of Segment2D with parallel mark	Segment2D parallel
	/	
$ \mathcal{S}_{li} $	set of Segment2D which touches boundaries	Segment2D line
		_
$ \mathcal{S}_l $	set of labeled Segment2D	Segment2D label
	Label	

4.2 Unification of parallel mark of Segment2D

4.3 Simplification of parallel mark of Segment2D

4.4 Determination of measure height of Arc2D

4.4.1 Initial measure heights

4.4.2 Determine heights of overlapping measures

4.5 Determination of measure height of Segment2D

4.5.1 Determine initial measure height

4.5.2 Collect angles of objects O passing S

	\mathcal{A}_s	angles of objects passing $\mathbf{s}(S)$	angle start
1	\mathcal{A}_e	angles of objects passing $e(S)$	angle end
1	$\theta_s =$	a(-a(S))	angle start
	$\theta_e =$	= a(S)	angle end

4.5.3 Determine sign of height

3 EL

	$\mathcal{A}_{sl} =$	$[0, \theta \in \mathcal{A}_s \mid a(\theta - \theta_s) < \pi]$	$-\frac{s(S)}{s(S)}$ angle start left
	$\mathcal{A}_{sr} =$	$[0, \theta \in \mathcal{A}_s \mid \mathbf{a}(\theta_s - \theta) < \pi$	$-\frac{1}{s(S)}$ $e(S)$ angle start right
	$\mathcal{A}_{el} =$	$[0, \theta \in \mathcal{A}_e \mid a(\theta - \theta_e) < \pi]$	$\frac{s(S)}{} $ angle end left
	$\mathcal{A}_{er} =$	$[0, \theta \in \mathcal{A}_e \mid a(\theta_e - \theta) < \pi$	s(S) = e(S) angle end right
	$\theta_{sl} = m$	$\max(\mathcal{A}_{sl})$	angle start left
		$\max(\mathcal{A}_{sr})$	angle start right
		$\max(\mathcal{A}_{el})$ $\max(\mathcal{A}_{er})$	angle end left angle end right
3 1		$\frac{1}{\exp(\theta_{sr}, \theta_{el})}$	angle left
	$\theta_r = m$	$ax(\theta_{sl}, \theta_{er})$	angle right
	IF	$ heta_l eq heta_r$ IF $ heta_l < heta_r$ EI $ heta_l > heta_r$	
		IF	$ \begin{array}{ c c c c c }\hline \theta_{l} & \hline \\\hline \theta_{l} & \hline \\\hline \hline \hline \theta_{l} & \hline \\\hline \hline \hline \hline \mathbf{EI} & \theta_{el} < \theta_{er} & \mathrm{h} \circ \mathrm{m}(S) = \mathrm{h} \circ \mathrm{m}(S) \\\hline \hline \hline \hline \\ \hline \mathbf{EI} & \theta_{el} > \theta_{er} & \mathrm{h} \circ \mathrm{m}(S) = - \mathrm{h} \circ \mathrm{m}(S) \\\hline \end{array} $
	EL	EI \wedge $\theta_{sl} \neq \theta_{sr} \neq \theta_{el} \equiv \theta_{er} \equiv \theta_{er}$	$ \begin{array}{ c c c c c }\hline \theta_l & & & & & & & & & & & & \\\hline \hline \theta_l & & & & & & & & & & & \\\hline \hline \hline \theta_l & & & & & & & & & & \\\hline \hline EI & & \theta_{sl} > \theta_{sr} & & & & & & & & \\ \hline \end{array} $
		$ \begin{array}{c c} \hline & \theta_{sl} \equiv \\ & \theta_{sr} \neq \\ \hline & \theta_{el} \equiv \\ & \theta_{er} \neq \\ \hline \end{array} $	$ \begin{array}{c c} \hline \theta_l \\ \hline \theta_l \end{array} \qquad \begin{array}{c c} \hline \mathbf{IF} & \theta_{sr} < \theta_{tr} & \mathrm{h} \circ \mathrm{m}(S) = \mathrm{h} \circ \mathrm{m}(S) \\ \hline \mathbf{EI} & \theta_{sr} > \theta_{tr} & \mathrm{h} \circ \mathrm{m}(S) = - \mathrm{h} \circ \mathrm{m}(S) \end{array} $
			$\overline{\theta_l}$ $\theta_{sl} > \theta_{tl}$ $h \circ m(S) = - h \circ m(S) $

4.5.4 Adjust heights of overlapping measures

 $\boxed{2}$ Figure out inclusion relations in \mathcal{S}_m for $|\mathcal{S}_m| \geq 2$

6. $d_{ssm}(\theta, s)$ label direction of m(S) of $S \in \mathcal{S}$ by angle θ and label size s label direction size Segment2D measure

	$d_w = 0.5$	distance width
	$d_h = 0.5$	distance height
	$\theta_l = a(\theta + \frac{\pi}{2})$	angle left
	$\theta_r = a(\theta - \frac{\pi}{2})$	angle right
	$w_h = \frac{s[0]}{2}$	width half
	$h_h = \frac{s[1]}{2}$	height half
	$\theta_{d1} = \mathbf{a}(h_h, w_h)$	angle diagonal 1
	$\theta_{d2} = \mathbf{a}(h_h, -w_h)$	angle diagonal 2
1	$\theta_{d3} = \mathbf{a}(-h_h, -w_h)$	angle diagonal 3
1	$\theta_{d4} = \mathbf{a}(-h_h, w_h)$	angle diagonal 4
	$\theta_{w1} = \mathbf{a}(d_h, w_h)$	angle width 1
	$\theta_{w2} = \mathbf{a}(d_h, -w_h)$	angle width 2
	$\theta_{w3} = \mathbf{a}(-d_h, -w_h)$	angle width 3
	$\theta_{w4} = \mathbf{a}(-d_u, w_h)$	angle width 4
	$\theta_{h1} = \mathbf{a}(h_h, d_w)$	angle height 1
	$\theta_{h2} = \mathbf{a}(h_h, -d_w)$	angle height 2
	$\theta_{h3} = \mathbf{a}(-h_h, -d_w)$	angle height 3
	$\theta_{h4} = \mathbf{a}(-h_h, d_w)$	angle height 4

	164	(11) W)	
	IF	$ heta < rac{\pi}{4}$	$ \begin{array}{ c c c } \hline \textbf{IF} & \frac{3\pi}{2} \leq \theta_r < \theta_{h4} & \text{ld}_{ssm}(\theta,s) = \text{EE} \\ \hline \textbf{EL} & \text{ld}_{ssm}(\theta,s) = \text{NE} \\ \hline \end{array} $
	EI	$\frac{\pi}{4} \le \theta < \frac{\pi}{2}$	$ \begin{array}{ c c c } \hline \textbf{IF} & \theta_{w2} < \theta_l \leq \pi & \boxed{ \mathrm{ld}_{ssm}(\theta,s) = \mathrm{NN} } \\ \hline \textbf{EL} & \boxed{ \mathrm{ld}_{ssm}(\theta,s) = \mathrm{NE} } \\ \hline \end{array} $
	EI	$\frac{\pi}{2} \le \theta < \frac{3\pi}{4}$	$ \begin{array}{ c c c } \hline \textbf{IF} & \theta_r < \theta_{w1} & \boxed{\mathrm{ld}_{ssm}(\theta,s) = \mathrm{NN}} \\ \hline \textbf{EL} & \boxed{\mathrm{ld}_{ssm}(\theta,s) = \mathrm{NW}} \\ \hline \end{array} $
	EI	$\frac{3\pi}{4} \le \theta < \pi$	$ \begin{array}{ c c c } \hline \textbf{IF} & \theta_{h3} < \theta_l \leq \frac{3\pi}{2} & \text{Id}_{ssm}(\theta,s) = \textbf{WW} \\ \hline \textbf{EL} & \text{Id}_{ssm}(\theta,s) = \textbf{NW} \\ \hline \end{array} $
2	EI	$\pi \le \theta < \frac{5\pi}{4}$	$ \begin{array}{ c c c } \hline \textbf{IF} & \frac{\pi}{2} \leq \theta_r < \theta_{h2} & \operatorname{Id}_{ssm}(\theta,s) = \operatorname{WW} \\ \hline \textbf{EL} & \operatorname{Id}_{ssm}(\theta,s) = \operatorname{SW} \\ \hline \end{array} $
	EI	$\frac{5\pi}{4} \le \theta < \frac{3\pi}{2}$	$ \begin{array}{ c c } \hline \textbf{IF} & \theta_{w4} < \theta_l & \boxed{ \mathrm{ld}_{ssm}(\theta,s) = \mathrm{SS} } \\ \hline \textbf{EL} & \boxed{ \mathrm{ld}_{ssm}(\theta,s) = \mathrm{SW} } \\ \hline \end{array} $
	EI	$\frac{3\pi}{2} \le \theta\theta < \frac{7\pi}{4}$	IF $\pi \le \theta_r < \theta_{w3}$ $\operatorname{Id}_{ssm}(\theta, s) = \operatorname{SS}$ $\operatorname{Id}_{ssm}(\theta, s) = \operatorname{SE}$
	EI	$\frac{7\pi}{4} \le \theta < 2\pi$	IF $\theta_{h1} < \theta \le \frac{3\pi}{2}$ $\operatorname{Id}_{ssm}(\theta, s) = \operatorname{EE}$ EL $\operatorname{Id}_{ssm}(\theta, s) = \operatorname{SE}$

7. $d_u(\theta)$ upper direction determined by angle θ direction upper

8. $\operatorname{ld}_s(S)$ label direction of Segment2D S label direction Segment2D

9. $\operatorname{ld}_{sm}(S)$ label direction of $\operatorname{m}(S)$ label direction Segment2D measure

4.6.2 Segment2D measure

1 Initial label direction

2 When Segment2Ds have inclusion relation and their measure labels overlap other objects

4.6.3 Segment 2D

$$\boxed{1} \quad \mathbf{FE} \quad S \in \mathcal{S}_l \quad \mathrm{ld}(S) = \mathrm{ld}_s(S)$$

4.6.4 Arc2D measure

$$\boxed{1} \quad FE \quad A \in \mathcal{AN}_m \quad \operatorname{ld} \circ \operatorname{m}(A) = \operatorname{ld}_{am}(A)$$

4.7 Determination of heights of Angle2Ds and c(L) where $o(L) \in AN$

4.7.1 Initial heights

4.7.2 Initial label positions

	$\theta_s = \mathrm{a}(\mathrm{c}(A), \mathrm{s}(A))$	angle start
$\theta_e = \mathrm{a}(\mathrm{c}(A),\mathrm{e}(A))$		angle end
	IF $t(A) \equiv \text{none} h_a = h(A)$ EL $h_a = h(A) + 0.2$	height angle
1 1	$s_{max} = \max[\mathbf{s}(L)[0], \mathbf{s}(L)[1]]$	size max
	IF $ \begin{array}{ c c } \hline \theta_s \equiv 0 \\ \hline \theta_s \equiv \pi \\ \hline \theta_e \equiv \pi \\ \hline \theta_e \equiv 2\pi \\ \hline \end{array} i_{aoa} = \mathbf{TR} $	is angle on axis
	$oxed{EL} egin{array}{c} i_{aoa} = oxed{FA} \end{array}$	

4.7.3 Label position and height of Angle2D whose tickLabel is arc form

1 Sort \mathcal{AN}_{ta} as $i < j \Rightarrow a(\mathcal{AN}_{ta}[i]) \leq a(\mathcal{AN}_{ta}[i])$

4.8 Determination of c(L) of Label2D L not satisfying $o(L) \in AN$

4.8.2 IF $o(L) \equiv S \in S$

4.8.3 IF $o(L) \equiv P \in \mathcal{P}$

 $\boxed{3}$ Determine n_{md} which is the number of Segment2Ds in \mathcal{S}_m that contain P

	$n_{an} = \mathcal{A}_{an} $	number Angle2D
	$n_{ans} = \mathcal{A}_{anso} + \mathcal{A}_{ansi} $	number Angle2D start
	$n_{ane} = \mathcal{A}_{aneo} + \mathcal{A}_{anei} $	number Angle2D end
	$n_{arl} = \mathcal{A}_{arl} $	number Arc2D left
	$n_{arr} = \mathcal{A}_{arr} $	number Arc2D right
11	$n_{ar} = n_{arl} + n_{arr}$	number arc
	$n_{arml} = \mathcal{A}_{arml} $	number Arc2D measure left
	$n_{armr} = \mathcal{A}_{armr} $	number Arc2D measure right
	$n_s = \mathcal{A}_s $	number Segment2D
	$n_p = \mathcal{A}_p $	number Point2D
	$i_{gc} = \boxed{ extsf{FA}}$	is general case

12 IF $n_a \neq 0$

 $\begin{array}{|c|c|c|c|c|}\hline
12 & 1 & 1 \\\hline
12 & 1 & 2 \\\hline
\hline
12 & 1 & 2 \\\hline
\hline
EI & n_s \equiv 2 \\\hline
\end{array}$

	$x_{cl} = d_{minc}\cos(\theta_l - \frac{\pi}{2})$	x contact left
	$y_{cl} = \sqrt{d_{minc}^2 - x_{cl}^2}$	y contact left
	$x_{cr} = d_{minc}\cos(\theta_{lr} + \frac{\pi}{2})$	x contact right
	$y_{cr} = \sqrt{d_{minc}^2 - x_{cl}^2}$	y contact right
12 6	IF $x_{lmin} \le x_{cr}$ $y_{lminc} = y_{cr} - x_{cr} - x_{lmin} \tan \theta_{lr}$	
	EI $x_{cr} < x_{lmin} < x_{cl}$ $y_{lminc} = \sqrt{d_{minc}^2 - x_{lmin}^2}$	y Label2D min contact
	EL $y_{lminc} = y_{cl} - x_{cl} - x_{lmin} \tan(\pi - \theta_{ll})$	
	$y_{lmin} = \max(y_{lminf}, y_{lminc})$	y Label2D min
	$l_{dh} = rac{\sqrt{l_{ll}^2 + l_{lr}^2}}{2}$ length diagonal half	

	$l_{dh} = \frac{\sqrt{l_{ll}^2 + l_{lr}^2}}{2}$	length diagonal half
	$\theta_d = \mathbf{a}(l_{ll}, l_{lr})$	angle diagonal
	$x_t = x_{lmin} + l_{dh}\cos(\theta_{lr} + \theta_d)$	x translated
12 7	$y_t = x_{lmin} + l_{dh}\sin(\theta_{lr} + \theta_d)$	y translated
	$x_r = x_t \cos(-\theta_{ro}) + y_t \sin\theta_{ro}$	x rotated
	$y_r = x_t \sin(-\theta_{ro}) + y_t \cos(-\theta_{ro})$	y rotated
	$c(L) = c(P) + [x_r, y_r]$	

4.8.4 IF $o(L) \equiv F \in \mathcal{F}$

4.9 Update of heights by r(G)

