

Comment appréhender la problématique des biais avec les LLMs

Session pratique : zoom sur les biais géographiques

Aurélie Névéol, Mathieu Roche, Rémy Decoupes

LISN - Paris

UMR TETIS - Montpellier

Introduction

Sémantisation spatiale : mise en correspondance de données hétérogènes

lac Alaotra

Sémantisation spatiale : veille épidémiologique

atide	publication_date	location	latitude	longitude	admins	country	continent	confidence	user_label
mleggeere	13/06/2006	Mamusa	-27.23398	15.17705	North-West	South Africa	Africa	0.31	corect
uzbeggeese	13/06/2006	Free State	-29	16	Orange Free State	South Africa	Africa	0.6	correct
usbeggeese	13/14/2016	Letsemeng	-29.35811	25.004331	Orange Free State	South Africa	Africa	0.58	corect
saltocryfyz	sWegless#	Kiravahrad	47.5137	32.155291	Kirevehrad	Ukraine	Europe	0.855	covect
202477064	10/06/2005	Province of North West	-25.5	16	North-West	South Africa	Africa	0.645005	covect
202477044	anjot/asof	Free State	-29	26	Orange Free State	South Africa	AS/ICA	o.glassiy	corect
режеров	otheylassis	Ngori Province	-9.825	19-9319999	Need	Europhi	Africa	0.675117	corect
4198wjeudo	26/05/2025	Surry	50.9235	34,000009	Surry	Ultraine	Europe	0.99	COTTECT
415ftageçdo	26/05/2005	Surrekoja Oblast	52	34	Surry	Diraine	Europe	0.98	corect
4316465344	05/05/2415	Chemiytsi	47.19149	15-94934	Chemistsi	Ulkraine	Europe	0.54	corect
Sosbourds)	13/06/2006	Free State	-29	15	Orange Free State	South Africa	Africa	0.500090	corect

article	publication_date	location	latitude	langitude	admins	country	continent	canfidence	user_label
продоеть	13/05/2015	Marrosa	-27.22300	25.27706	North-West	South-Africa	Africa	0.32	CONTECT
usbespeeue.	sylváčensá	Free State	-99	26	Orange Free State	South-Africa	Africa	0.6	correct
швеуугеце	13/05/2015	Letsereeng	-29.35811	25-014553	Orange Free State	South-Africa	Africa	0.55	COPPERT
4807/50	utdoglassá	Kirevehrad	48.5332	22.253700	Kirovshrad	Ulkraine	Europe	0.875	correct
3034773764	30/05/2005	Province of North West.	105.5	16	North West	South-Africa	Africa	0.645053	correct
2024777264	10/06/2016	Free State	-29	16	Orange Free State	South-Africa	Africa	a.strute	CONTRACT
усексеуусь	etilegizent	Ngoci Province	12.875	19-514999	Nyosi	Burundi	Africa	0.585217	correct
4198#3#460	35(09)3005	Surry	50.5315	34.800189	Surry	Ukraine	Europe	0.99	COPPECT
4158430460	26/95/2006	Sumskieja Oblast	51	34	Survy	Ulkraine	Europe	0.95	Device
4306458164	09/05/2025	Chemistal	48.15149	25-54454	Chemistali	Ukraine	Europe	0.04	CONTRICT
Backgardeck	13/05/2015	Free State	120	26	Orange Free State	South-Africa	Africa	0.620091	CONTRACT

Ge@Names

Process

Output

[Valentin et al. PVM'2023]

Sémantisation spatiale : sécurité alimentaire

Data

Variable	Resolution	Frequency	Source	Scaling up
Time series (several values per year; on	e value per commune] [70 v	ars]		
Smoothed brightness temperature (SMT) [14 vars]	4 km	7 days	National Oceanic and Atmospheric Administration (NOAA)	Maximum
Rainfall [14 vars]	6 km	10 days	Tropical Rainfall Measuring Mission (TRMM)	Sum
Average minimum and maximum temperatures [2 × 14 vars]	21 km	1 month	WorldClim	Mean
Maize price [14 vars]	64 markets	1 month	Société Nationale de Gestion du Stock de Sécurité alimentaire (SONAGESS)	K-nearest neighbour interpolation
Conjunctural data [one value per year;	one value per commune) [20	vars]		
Meteorological data [7 vars]	10 stations	1 year	Knoema platform	K-nearest neighbour interpolation
Population density [4 vars]	100 m	1 year	Afripop	Spatial autocorrelation 2 km and 5 km, Gini entropy
Economic data [7 vars]	Country	1 year	World Bank	Country value
Normalized difference vegetation index [2 vars]	250 m	1 year	Modis	Mean
Spatial data [one value per commune]	[13 vars]			
Hospitals, schools [2 vars]	Point vectors	2018	Open Street Map	Count
Violent events [4 vars]	Point vectors	2018	Armed Conflict Location & Event Data Project (ACLED)	Count
Soil quality [3 vars]	1 km	2008	Food and Agriculture Organization (FAO)	Mean
Waterways [2 vars]	Line vectors	2008	Digital Chart of the World (DCW)	Count, length
Elevation data [2 vars]	1 km	2018	Consultative Group on International Agricultural Research (CGIAR)	Maximum, variance
High spatial resolution data (several val	ues per commune] [4 vars]			
Population density	100 m	1 year	Afripop	CNN
Land cover (crops, forests, building areas)	20 m	2016	European Space Agency	CNN

Process

Output

[Deleglise et al. ESWA'2022]

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

(a) BERT

(b) ChatGPT (GPT-3.5-turbo-0301)

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

```
Does the tokenizer has to subtokens those cities:

Taipei,
Tokyo,
Seoul,
Ouagadougou,
Montpellier,
```

https://tiktokenizer.vercel.app/

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

3 Types de modèles de langues:

1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

3 Types de modèles de langues:

1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

9. Important points

Attention is all you need - 2017

- 3 Types de modèles de langues:
 - 1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

muoninion is an you nooun ounning

O. Improvement mainte

Attention is all you need - 2017

- 3 Types de modèles de langues:
 - 1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

Open AI

Pré-requis

Pré-requis : clés API

Créer vos comptes pour obtenir vos clé API

Coller vos clés dans un fichier temporaire

Pré-requis : Licences d'utilisation pour certains LLMs

Accès aux notebooks

https://github.com/

tetis-nlp/geographical-biases-in-llms

https://github.com/

tetis-nlp/geographical-biases-in-llms

- 1. Spatial disparities in geographical knowledge. Open in Colab
- 2. Spatial information coverage in training datasets. Open in Colab
- 3. Correlation between geographic distance and semantic distance. Open in Colab
- 4. Anomaly between geographical distance and semantic distance. Open in Colab

Indicateur 1

x}

₩


```
[ ] # Installation
  !pip install -U bitsandbytes
  !pip install transformers==4.37.2
  !pip install -U git+https://github.com/huggingface/peft.git
  !pip install -U git+https://github.com/huggingface/accelerate.git
  !pip install openai==0.28
```


Attendre l'installation de l'environnement d'exécution

Oceania

37.037037

GPT-3.5 RoBERTa Mistral

Indicateur 2

```
Taipei,
Tokyo,
Seoul,
Ouagadougou,
Montpellier,
```


x}

On peut rester sur un CPU!

Pas besoin de changer d'environnement

rieg z o ii	
	50.000000
Africa	6.779661
Americas	18.750000
Asia	37.500000
Europe	52.083333
Oceania	11.111111

Region	
	50.000000
Africa	0.000000
Americas	0.000000
Asia	2.083333
Europe	4.166667
Oceania	0.000000

Region	
	0.000000
Africa	1.694915
Americas	2.083333
Asia	2.083333
Europe	8.333333
Oceania	0.000000

Figure 2: The prevalence of geospatial data in select CC releases, estimated within $\pm 0.5\%$ at 95% confidence

Référence: Pre-print: Quantifying Geospatial in the **Common Crawl** Corpus - Ilyankou et al 2024. http://arxiv.org/abs/2406.04952

Indicateur 3

Waldo Tobler

Waldo Tobler en 2007.

Waldo Tobler, né en 1930 à Portland ¹ et mort le 20 février 2018, est un cartographe et géographe <u>américano-suisse</u> [réf. nécessaire]. Il est considéré comme un pionnier de la cartographie assistée par ordinateur et a développé plusieurs modèles de cartogramme ².

Il est aussi l'auteur de la « première loi de la géographie » selon laquelle « Tout interagit avec tout, mais deux objets proches ont plus de chances de le faire que deux objets éloignés ³. »

Il est l'inventeur de la projection hyperelliptique de Tobler⁴.

Référence: Tobler - 1970 - A Computer Movie Simulating Urban Growth in the Detroit Region

x}

Pour la section 3.2 : Ce notebook a besoin d'une GPU d'au moins 28 GB de RAM (GPU payante) :

• A100 (40BG)

Les sections 3.1 et 3.3 n'ont pas besoin d'environnement payant


```
Distance between Taipei and Seoul: 1480.973652900838 km
Distance between Taipei and Hanoi: 1669.0557310016254 km
Distance between Taipei and Tokyo: 2104.49710309371 km
Distance between Taipei and Singapore: 3240.6438418256876 km
Distance between Taipei and London: 9803.291481023301 km
```

```
Similarity between Taipei and Seoul: [[0.94581884]] [[0.6629474]] [[0.83839009]] [[0.84440932]] [[0.8553747]] [[0.86354661]] [[0.83839009]] [[0.84440932]] [[0.86354661]] [[0.86354661]] [[0.83802626]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.86354661]] [[0.8635466]] [[0.8635466]] [[0.8635466]] [[0.8635466]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.863546]] [[0.86354]] [[0.86354]] [[0.86354]] [[0.86354]] [[0.86354]] [[0.86354]
```

RoBERTa

MISTRAL

GPT-3.5

=> Tokyo trop proche sémantiquement de Taipei

BERT:

R2: 0.01

GPT-3.5: R2:0.04

Indicateur 4

0.450

0 0.475 mean semantique 0.500

0.525

0.550

0.375

0.425

0.400

x}

On peut rester sur un CPU!

Pas besoin de changer d'environnement

Aller plus loin

- 1. Prédire le pays en fonction de sa capitale
 - a. Ajouter d'indicateurs (Population, Revenue / habitant / nombre d'hopitaux / ...)
 - b. Améliorer les prompts pour améliorer la reproductibilité
- Vocabulaire :
 - a. Comment évaluer indirectement la proportion d'info geo dans les corpus d'entraînement
- 3. Correlation distance Sémantique et Géographique
 - a. Clusterisation des pays en fonction de leurs proximité
- 4. Distorsion
 - Data vizualisation : Quelles villes sont au centre de l'espace sémantique

MERCI!

Session pratique : zoom sur les biais géographiques

Aurélie Névéol, Mathieu Roche, Rémy Decoupes

LISN - Paris
UMR TETIS - Montpellier