PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-056195

(43)Date of publication of application: 25.02.2000

(51)Int.CI.

G02B 6/44

(21)Application number: 10-224050

(71)Applicant: NIPPON ELECTRIC GLASS

CO LTD

(22)Date of filing:

07.08.1998

(72)Inventor: TAKEUCHI HIROKAZU

HORIBE SHOJIRO WADA MASANORI

KAWAMURA TOMOAKI

(54) MULTIPLE CAPILLARY TUBE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a multiple capillary tube which can accurately array and hold plural optical fibers by inserting them altogether and easily position and fix them for the other optical system.

SOLUTION: This multiple capillary tube 2 is sectioned nearly square and constituted by fixing an external tube 4 which has necessary thickness to the outer periphery of a glass internal tube 3 having insertion holes 3a where two optical fibers 5 and 6 are inserted at t time and arrayed by using an adhesive 8, and the external diameter of the multiple capillary tube 2 is equal to the diameter of a columnar lens.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-56195

(P2000-56195A)

(43)公開日 平成12年2月25日(2000.2.25)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

G 0 2 B 6/44

381

G 0 2 B 6/44

381

2H001

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出願番号	特願平 10-224050	(71) 出願人	000232243 日本電気硝子株式会社
(22)出顧日	平成10年8月7日(1998.8.7)	(72)発明者	滋賀県大津市時嵐2丁目7番1号 竹内 宏和 滋賀県大津市時嵐2丁目7番1号 日本電 気硝子株式会社内
		(72)発明者	堀部 昇二郎 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内
		(72)発明者	和田 正紀 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内
			最終目に続く

(54) 【発明の名称】 多重毛細管

(57)【要約】

【課題】 複数本の光ファイバを一括し挿入して正確に 整列保持し、他の光学系に対して容易に位置決め固定す ることができる多重毛細管を提供すること。

【解決手段】 本発明の多重毛細管2は、断面が略正方 形であって、2本の光ファイバ5、6を一括して挿入し 整列させる挿入孔3aを有するガラス内管3の外周に、 所要の肉厚を有する外管4を接着剤8により固着された 構造になっており、多重毛細管2の外径が接合する円柱 状レンズの直径と同じ寸法になっている。

【特許請求の範囲】

【請求項1】 複数本の光ファイバを一括して挿入し整 列させる断面が多角形の挿入孔を有し、該挿入孔の開口 端にフレア部が形成されているガラス内管と、該ガラス 内管の外周に所要の肉厚を有する外管を固着してなるこ とを特徴とする多重毛細管。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数本の光ファイ バを一括挿入して正確に保持し位置決めして固定する多 10 定の値になる。 重構造の毛細管に関する。

【従来の技術】従来より、1本の光ファイバにより伝達

される信号を複数本の光ファイバに分波する場合、ある

[0002]

いは複数本の光ファイバの信号を1本の光ファイバに合 波する場合等において、複数本の光ファイバを内部で保 持固定する毛細管が使用される。ところで、例えば2本 の光ファイバを円形断面の挿入孔を有する毛細管を使用 して並列保持して位置決め固定すると、2本の光ファイ 挿入孔の中心軸と各光ファイバの光軸とが平行となら ず、各光ファイバの出射角が広がってしまう。このよう に光軸が捻れた各光ファイバに対して挿入孔の中心軸と 平行に配置されるレンズ、発光素子、受光素子、導波路 形素子、光ファイバ等の光学素子は、各光ファイバとの 相対位置が対応しなくなって接続損失が大きくなる。 【0003】そこで、断面が略多角形を呈する挿入孔、 例えば、図3に示すように、断面が略正方形で、複数本 の光ファイバを一括して挿入し整列させる挿入孔 1 a を 有し、挿入孔1aの一方の開口端に、挿入孔1aに滑ら 30 かに連続するフレア部 1 b が形成されているガラス毛細 管1を使用することが考えられる。このようなガラス毛 細管1の挿入孔1a内で、例えば直径Dを有する2本の 光ファイバ5、6をクリアランスなしに保持するには、 略正方形の挿入孔laの対向する内壁の間隔しと直径D との関係は、L=(1+2^{(1-2)/2})D、即ち、L= (1+1/√2) Dとなることを要する。実際には、2 本の光ファイバ5、6を挿入孔1aに挿入するにはクリ アランスが必要であるから、挿入孔1aの対向する内壁 の間隔Lは、 $(1+1/\sqrt{2})$ D<Lの条件を満たす必 要がある。また、シングルモード光ファイバでは、光信 号が通るコアの径は直径Dの5~10%であるので、2 本の光ファイバの位置決め精度を少なくとも光ファイバ の直径Dの約5%以内にするには、挿入孔1aの対向す る内壁の間隔しは、L≦(1.05+1/√2)Dの条 件を満たす必要がある。実際には、 $1+1/\sqrt{2}=1$. 71であり、1.05+1/ $\sqrt{2}$ = 1.76であるから (1.71) D<L≦(1.76) Dの条件を満たすこ とが必要となる。

【0004】上記のガラス毛細管1を作製する場合、加 50 【0009】

熱したガラス管の内部を真空にし断面が略正方形の金型 に密着させて成形するシュリンク法により、略正方形の 孔を有する予備成形体を作製し、その予備成形体を加熱 して所定の断面寸法・形状に制御しながら所望の挿入孔 を有するガラス毛細管1に延伸成形する。この延伸成形 では、予備成形体の略正方形の孔と外径との比率がほぼ 一定に保たれて延伸成形されるので、(1.71)D< L≦(1.76) Dの条件を満たす略正方形の挿入孔1 aを形成すると、ガラス毛細管1の外径の寸法もほぼ一

[0005]

【発明が解決しようとする課題】しかしながら、予備成 形体の外径と略正方形の孔の対向する内壁の間隔との寸 法比率 (外径/孔の対向する内壁の間隔) が、所望のガ ラス毛細管1の外径と挿入孔1aの対向する内壁の間隔 Lとの寸法比率 (外径/L) よりも小さい場合、このよ うな予備成形体を延伸成形して得られるガラス毛細管 1 は、所望の外径よりも細くなる。このようなガラス毛細 管1の挿入孔1a内に整列保持した光ファイバ5、6 バが挿入孔内で捻れる場合があり、このような場合には 20 を、図4に示すように、ガラス毛細管1の外径よりも大 きい外径を有する円柱レンズ12に、スリーブ11等の 位置決め手段を用いて各々の外周を支持して固定する と、円柱レンズ12の中心と2本の光ファイバ5、6の 光軸の中央との間にオフセットEが生じて光学的に正確 な位置決めができないという問題が生じる。

> 【0006】本発明は、上記のような従来の問題点を解 決し、複数本の光ファイバを一括し挿入して正確に整列 保持し、他の光学系に容易に位置決めして固定すること ができる多重毛細管を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明に係る多重毛細管 は、複数本の光ファイバを一括して挿入し整列させる断 面が多角形の挿入孔を有し、該挿入孔の開口端にフレア 部が形成されているガラス内管と、該ガラス内管の外周 に所要の肉厚を有する外管を固着してなることを特徴と する。

[0008]

【作用】本発明の多重毛細管は、複数本の光ファイバを 一括して挿入し整列させる断面が多角形の挿入孔を有 40 し、該挿入孔の開口端にフレア部が形成されているガラ ス内管と、該ガラス内管の外周に所要の肉厚を有する外 管を固着してなるので、前記ガラス内管の挿入孔に複数 本の光ファイバを挿入した際、挿入された複数本の光フ ァイバは捻れを起こさず、高い精度で複数本の光ファイ バを整列保持して固定することができ、また、前記外管 を所要の肉厚にし、多重毛細管の外径を、接合部材であ る光学系の直径に一致させることで、接合する光学系に 対して、整列保持した複数本の光ファイバを容易に位置 決め固定することが可能となる。

40

【発明の実施の形態】図1は、本発明に係る多重毛細管 の説明図、図2は本発明の多重毛細管の一使用例であっ て、各図において、2は多重毛細管を、3はガラス製の ガラス内管を、3aは光ファイバの挿入孔を、3bは光 ファイバを挿入孔3aに案内するフレア部を、4はガラ ス内管3の外径よりも僅かに大きい内径の内孔4 a と所 要の肉厚とを有する外管を、5、6は光ファイバを、 7、8、9は接着剤を、10は多重毛細管2に光ファイ バ5、6を固着したプラグを、11はスリーブを、12

は円柱レンズをそれぞれ示している。

【0010】本発明の多重毛細管2は、図1に示すよう に、2本の光ファイバ5、6を一括して挿入し整列させ る断面が略正方形の挿入孔3aを有するガラス内管3の 外周に、所要の肉厚を有する外管4を接着剤8により固 着された構造としている。多重毛細管2は、所要の肉厚 の外管4を固着することにより、多重毛細管2の外径 を、接合する円柱状レンズ12の直径と同じ1.8mm としている。また、挿入孔3aの中心と多重毛細管2の 外周面との同心度は50μm以内としている。

【0011】ガラス内管3は、膨張係数が5.2×10 -゚/℃のホウ珪酸ガラスからなり、外径が 1. 14 m m の高い真円度を有する略円筒状であって、複数本の光フ ァイバ、例えば、図1に示すように、直径が125μm の2本の光ファイバ5、6を一括して挿入する挿入孔3 aを備えており、挿入孔3aの相対向する内壁の間隔は 215 μm±1 μmで、2本の光ファイバ5、6の露出 した端面をガラス内管3内で正確に位置決めして保持す ることができるようになっている。挿入孔3 aの断面形 状は角部に丸みを設けた略正方形であって、ガラス内管 3の内面に引張応力が集中するのを避けて強度を確保し ている。ガラス内管3の後部端面には、光ファイバ5、 6を挿入孔3aに案内するための開口径が約1mmの略 円錐形状のフレア部3 b が設けられている。

【0012】上記ガラス内管3を構成する材料として は、ホウ珪酸ガラス、石英ガラス、リチウムーアルミナ -シリケイト系のガラスセラミックス等が使用可能であ る。ガラス内管3の膨張係数は、保持する光ファイバが 膨張係数の低い石英系の場合、1×10-3/℃以下の低 いものであることが、温度変化による光ファイバ5、6 の突き出し引き込み現象が起こらないので好ましい。

【0013】外管4は、ガラス内管3と同じガラス材料 からなり、ガラス内管3の外径よりも1μm以上大きい 例えば1. 15mmの寸法の内孔4aを有し、外径が 1. 800mm±0. 002mm、肉厚が0. 325m m、内径と外径の真円度が2μm以内、内孔4aと外周 との同心度は10 µm以内である。

【0014】次に、多重毛細管2を作製する方法の一例 を説明する。まず、ガラス管の内部に断面が略正方形の 金型を挿入し、加熱しながらガラス管の内部を真空にし

略正方形の孔を有する予備成形体を作製し、その予備成 形体を加熱して所定の断面寸法・形状に制御しながら所 定の寸法精度の挿入孔3aを有するガラス毛細管に延伸 形成する。得られたガラス毛細管を所定の長さに切断 し、その一端にケミカルエッチング法等によりフレア部 3 bを設けてガラス内管3を作製する。

【0015】次に、ガラス内管3の外径よりも1μm以 上大きい内径の内孔4 a を有し、外径が、接合固定する 円柱状レンズ12と同じ1.800mmのガラス管を上 10 記と同様に延伸形成し、所定の長さに切断して外管4を 作製する。

【0016】最後に、この外管4の内孔4aにガラス内 管3を挿入し、エポキシ系の樹脂、あるいは低融点ガラ スを含んだ接着剤8をガラス内管3と外管4の内孔4a との隙間に浸透させ、所定の加熱条件で接着剤8を固化 させることにより、ガラス内管3の外壁と外管4の内壁 とを固着して多重毛細管2を形成する。

【0017】以上のようにして得られた多重毛細管2を 用いて2本の光ファイバを位置決めする例を示す。ま 20 ず、図1に示すように、ガラス内管3の挿入孔3aに、 フレア部3bから2本のシングルモードファイバ5、6 を挿入して、エポキシ樹脂の接着削7で固着し、端面1 0 a より突き出した光ファイバを除去した後、周知の方 法により端面10aを研磨してプラグ10を作製した。 【0018】次に、図2に示すように、プラグ10の外 径より1μm以上大きい内径の内孔11aを有するスリ ーブ11(または割りスリーブ)の一方の開口端から円 柱レンズ12を内孔11aに挿入して接着剤9で固着 し、他方の開口端からプラグ10を内孔11aに挿入 し、端面10aを円柱レンズ12に突き合わせて保持 し、接着剤9で固着する。

【0019】以上のように、本発明の多重毛細管2によ れば、一括して挿入された2本の光ファイバ5、6が挿 入孔3a内で捻れを起こさないので、光ファイバ5、6 のコア部5 a、6 a は相対位置を維持することができ、 円柱レンズ12と多重毛細管2を用いたプラグ10とを スリーブ11の内孔11aで突き合わせて保持すること によりに光ファイバ5、6を正確かつ容易に所定の位置 に保持固定することができる。

【0020】上記実施例では、一括して挿入する2本の 光ファイバを略正方形の断面の挿入孔内で整列保持する 多重毛細管の場合を示したが、これに限定されず、挿入 孔の大きさを変えれば光ファイバが略正方形の断面の挿 入孔内で安定する4本、5本、9本、13本等の挿入も 可能で、また、挿入する光ファイバの本数や配置に応じ て挿入孔の断面形状は略三角形、略長方形、略六角形、 略八角形等、他の多角形でもよい。

【0021】また、上記実施例では外管がガラス製であ るがこれに限られず、金属、セラミックス、ガラスセラ て内壁を金型に密着させて成形するシュリンク法により 50 ミックス、樹脂及びこれらの複合材等の材料でもよく、

5

外管の本数は、接合する他の光学系の外径が大きい場合、径が異なる複数本の外管を重ねて多重構造にしても よい。

[0022]

【発明の効果】本発明の多重毛細管によれば、隣接する 複数本の光ファイバを所定位置に正確に保持するととが でき、保持した光ファイバを他の光学系に対して容易に 位置決めすることができる優れた効果を奏するものであ る。

【図面の簡単な説明】

【図1】本発明の多重毛細管の説明図であって、(A)は斜視図、(B)は端面の拡大図、(C)は(A)のY-Y断面図。

【図2】本発明の多重毛細管の一使用例。

【図3】従来のガラス毛細管の説明図であって、(A)*

*は斜視図、(B)は端面の拡大図。

【図4】従来のガラス毛細管の使用例。

【符号の説明】

1 ガラス毛細管

2 多重毛細管

3 ガラス内管

3 a 挿入孔

3 b フレア部

4 外管

10 4 a 内孔

5、6 光ファイバ

7、8、9 接着剤

10 プラグ

11 スリーブ

12 円柱レンズ

[図1] [図2]

フロントページの続き

(72)発明者 川村 智昭 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 Fターム(参考) 2H001 BB03 FF06 FF07 FF08