Последнее теор-задание

Куприянов Александр Дмитриевич

Определение 1 (TDI-система) Система линейных неравенств $Ax \leq b$ называется тотально двойственно целочисленной (TDI), если для любого $c \in \mathbb{Z}^n$, при условии, что задача

$$\max\{c^{\top}x \mid Ax \le b\}$$

имеет конечное оптимальное решение, соответствующая двойственная задача

$$\min\{b^\top y \mid A^\top y = c, \ y \ge 0\}$$

имеет целочисленное оптимальное решение $y \in \mathbb{Z}^m$.

Пусть $A \in \mathbb{Z}^{m \times n}$ и $b \in \mathbb{Z}^m$. Тогда существует целое число $\alpha > 0$ такое, что система

$$\left\{ \frac{1}{\alpha} Ax \le \frac{1}{\alpha} b, \quad x \ge 0 \right\}$$

является тотально двойственно целочисленной (TDI).

Рассмотрим систему $Ax \leq b$, где $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Приведём её к стандартной форме, добавив неотрицательные дополнительные переменные $k \geq 0$:

$$Ax + k = b$$
, $x > 0$, $k > 0$.

Это эквивалентно уравнению:

$$[A\ I] \begin{pmatrix} x \\ k \end{pmatrix} = b,$$

где I — единичная матрица размера m. Матрица $[A\ I]$ имеет $\mathit{ueлочисленныe}$ коэффициенты.

Рассмотрим множество всех базисных невырожденных подматриц $B \in \mathbb{Z}^{m \times m}$, составленных из m ЛНЗ столбцов матрицы $[A\ I]$. Обозначим это множество через \mathcal{B} .

Каждая такая подматрица B является квадратной матрицей размера $m \times m$ с целыми элементами. Определитель такой матрицы $d_B := |\det(B)|$ является целым числом, тк определитель матрицы с целыми элементами — всегда целый

Еще тк каждая из этих матриц B невырождена (если формально $\det(B) \neq 0$), то каждое $d_B \in \mathbb{Z}_{>0}$.

Рассмотрим такое значение:

$$\alpha := \prod_{B \in \mathcal{B}} d_B.$$

Так как каждый d_B — положительное целое число, то ux npoussedenue α тоже будет положительным целым числом:

$$\alpha \in \mathbb{Z}_{>0}$$
.

Тогда получим:

• α — положительное целое;

• Каждое d_B делит α ;

Введем этот коэфициент в исходную систему:

$$\tilde{A} := \frac{1}{\alpha}A, \quad \tilde{b} := \frac{1}{\alpha}b.$$

Рассматриваем новую систему:

$$\tilde{A}x < \tilde{b}, \quad x > 0.$$

Рассмотрим произвольный вектор $c \in \mathbb{Z}^n$, и задачу

$$\max\left\{c^{\top}x \,\middle|\, \tilde{A}x \leq \tilde{b}\right\}.$$

Её двойственная задача:

$$\min\left\{\tilde{b}^\top y \,\middle|\, \tilde{A}^\top y = c,\ y \geq 0\right\}.$$

Пусть y^* — базисное оптимальное решение двойственной задачи. Тогда y^* дает такую систему ЛУ:

$$B^{\top}y^* = c,$$

где B — базисная подматрица из \tilde{A}^{\top} . Тк $B=\frac{1}{\alpha}B'$ для некоторой $B'\in\mathbb{Z}^{m\times m}$ (подматрица из A^{\top}), то:

$$\frac{1}{\alpha}(B')^{\top}y^* = c \quad \Rightarrow \quad (B')^{\top}y^* = \alpha c.$$

Используем правило Крамера:

$$y_i^* = \frac{\det(B_i')}{\det(B')},$$

где B_i' — матрица, с заменой i-го столбца $(B')^{\top}$ на вектор αc . Но B' и c целочисленные, получаем $\det(B_i') \in \mathbb{Z}$, а $\det(B') \mid \alpha$, тогда дробь целая:

$$y_i^* \in \mathbb{Z}$$
.

Получаем y^* — целочисленное решение двойственной задачи. И выбираси c произвольно, значит система $\tilde{A}x \leq \tilde{b}$ будет TDI.

Задание 2

Вспомним как у нас определяется функция ранга:

$$rank(A) = max\{|I| : I \subseteq A, \ I \in \mathcal{I}\}.$$

Span множества $A \subseteq E$:

$$\operatorname{span}(A) = \{ x \in E \mid \operatorname{rank}(A \cup \{x\}) = \operatorname{rank}(A) \}.$$

пункт 1

Если $A \subseteq B$, то $\operatorname{span}(A) \subseteq \operatorname{span}(B)$.

Пусть $x \in \text{span}(A)$. Тогда по определению:

$$\operatorname{rank}(A \cup \{x\}) = \operatorname{rank}(A).$$

Так как $A \subseteq B$, по теореме о рангах (свойсва брал с nerc itmo):

$$rank(A) \le rank(B)$$
.

Пусть это не так и $x \notin \text{span}(B)$, тогда получается

$$rank(B \cup \{x\}) > rank(B).$$

Заметим, что

$$A \cup \{x\} \subseteq B \cup \{x\} \Rightarrow \operatorname{rank}(A \cup \{x\}) \le \operatorname{rank}(B \cup \{x\}).$$

Отсюда получаем,

$$rank(A) = rank(A \cup \{x\}) \le rank(B \cup \{x\}) < rank(B) + 1.$$

Противоречие, чтд и $x \in \text{span}(B)$.

Значит $\operatorname{span}(A) \subseteq \operatorname{span}(B)$.

пункт 2

Для любого множества $A \subseteq E$:

$$rank(span(A)) = rank(A).$$

Обозначим $r = \operatorname{rank}(A)$. Тогда по определению ранга, есть независимое множество $C \subseteq A$, такое что |C| = r. И по определению это базис множества A.

Так как $C \subseteq A \subseteq \text{span}(A)$, по монотонности:

$$rank(span(A)) \ge rank(A) = r.$$

Опять докажем от противного и: $\operatorname{rank}(\operatorname{span}(A)) > r$. Тогда будет независимое множество $D \subseteq \operatorname{span}(A)$, такое что |D| = r + 1.

Рассмотрим произвольный элемент из этого множества $d \in D$. Так как $d \in \text{span}(A)$, то по определению:

$$\operatorname{rank}(A \cup \{d\}) = \operatorname{rank}(A) = r.$$

Получается, $d \in \text{span}(C)$, так как $C \subseteq A$ и span(C) = span(A).

Но известно, что:

$$rank(span(C)) = rank(C) = r,$$

то есть в $\mathrm{span}(C)$ не существует независимых множеств размера больше r.

Тогда, множество D не может быть независимым, противоречие, значит чтд: