Universidad Nacional del Altiplano

Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Luz Magaly Turpo Mamani

Programa web: https://myprogram-min.streamlit.app/

Trabajo Encargado - Nº 10

Optimización No Lineal - Minimizadores

Ejercicio 01

Verifica si los puntos son minimizadores globales o locales para $f(x) = x^2 - 4x + 5$:

Para x=2:

■ Derivada de la función:

$$f'(x) = 2x - 4$$

• Igualamos f'(x) = 0 para encontrar los puntos críticos:

$$2x - 4 = 0 \implies x = 2$$

• Segunda derivada:

$$f''(x) = 2 > 0$$

La segunda derivada es positiva, lo que indica que x = 2 es un **mínimo local**.

- ¿Es un mínimo global?
 - La función f(x) es un polinomio cuadrático con coeficiente líder positivo (x^2) , lo que significa que es una parábola abierta hacia arriba. Por lo tanto, cualquier mínimo local será también un **mínimo global**.
 - Evaluamos f(2):

$$f(2) = (2)^2 - 4(2) + 5 = 4 - 8 + 5 = 1$$

Así, el mínimo global ocurre en x = 2 y el valor mínimo es f(2) = 1.

Para x = 0:

• Evaluamos si es un punto crítico:

$$f'(0) = 2(0) - 4 = -4 \neq 0$$

Como $f'(0) \neq 0$, x = 0 no es un punto crítico, y por lo tanto no es un mínimo local ni global.

Figura 1: Gráfico

Ejercicio 02

Dibuja la función f(x) = |x| y determina si tiene un mínimo global o local en x = 0:

• La función f(x) = |x| se define como:

$$f(x) = \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x < 0 \end{cases}$$

- La gráfica de la función tiene forma de V con un vértice en el origen (x = 0).
- En x = 0, f(0) = 0.
- La función decrece a medida que $x \to 0^-$ y crece cuando $x \to 0^+$, lo que implica que x = 0 es un **mínimo global**.

Figura 2: Gráfico

Ejercicio 03

Métodos de optimización

Utilizando el Teorema de Weierstrass, explica por qué $f(x) = \sin(x)$ en $[0,\pi]$ tiene un mínimo global.

- Teorema de Weierstrass: Establece que una función continua definida en un intervalo cerrado alcanza un mínimo y un máximo global en dicho intervalo.
- La función $f(x) = \sin(x)$ es continua en $[0, \pi]$.
- Calculamos los valores en los extremos y derivamos:

$$f(0) = \sin(0) = 0, \quad f(\pi) = \sin(\pi) = 0$$

■ Derivada:

$$f'(x) = \cos(x), \quad f'(x) = 0 \implies x = \frac{\pi}{2}$$

• Evaluamos en $x = \frac{\pi}{2}$:

$$f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

- Los valores en los extremos son f(0) = 0 y $f(\pi) = 0$.
- Por lo tanto, el mínimo global es f(x) = 0 en x = 0 y $x = \pi$.

Figura 3: Gráfico

Ejercicio 04

Considera $f(x,y) = x^2 + y^2$ con $x^2 + y^2 \le 1$. ¿Dónde se encuentra el mínimo global?

• La función $f(x,y) = x^2 + y^2$ es una parábola en tres dimensiones con un vértice en el origen.

- La restricción $x^2 + y^2 \le 1$ describe un círculo en el plano x,y con centro en el origen y radio 1.
- El valor de f(x,y) es mínimo cuando $x^2 + y^2$ es mínimo.
- En el origen (x = 0, y = 0):

$$f(0,0) = 0^2 + 0^2 = 0$$

Por lo tanto, el **mínimo global** es f(0,0) = 0 en el origen.

Figura 4: Gráfico

Ejercicio 05

Diseña un ejemplo donde un mínimo global no sea único.

• Consideremos la función $f(x) = \cos(x)$ en el intervalo $[0, 2\pi]$:

$$f(x) = \cos(x)$$

• Los mínimos globales ocurren donde cos(x) = -1:

$$x = \pi$$
 y $x = 3\pi$

■ Por lo tanto, los mínimos globales no son únicos, ya que ocurren en $x=\pi$ y $x=3\pi$ con valor f(x)=-1.

Figura 5: Gráfico