实验十 数据库索引与存储效率

一、实验目的

- 1、创建索引
- 2、体会通过建立索引,提高数据存取效率

二、实验内容

对约有 16 万条记录的表,进行单记录插入与所有记录排序查询所需时间的比较,测试 使用索引与不使用索引、使用聚集索引与非聚集索引、对唯一值字段与非唯一值字段建索引 并排序等情况的执行状况,体会使用索引的作用和意义。

三、实验要求

按照实验步骤完成实验内容,并且请以表格的形式给出在你的计算机环境下,每个操作 在不同索引下的执行时间,比较时间差异。

四、实验步骤

(1) 创建表 itb1, 并插入 16 万条记录。

对约有16万条记录的表,进行单记录插入与所有记录排序查询(分别对两个不同字段进 行排序)执行耗时的(以毫秒为单位)比较,测试使用索引与不使用索引、使用聚集索引与非聚 集索引、对唯一值字段与非唯一值字段建索引并排序等情况的执行状况。从中能领略到使用 索引的作用与意义。并能在其他需建索引场合,利用这种测试办法来作分析与比较。 (1) 创建表 itbl, 并插人 16 万条记录。

请在 SQL Server 集成管理器查询子窗口中,选择某用户数据库,执行如下命令,生成 16 万条记录,如图 8-1 所示。

CREATE TABLE itbl(id bigint IDENTITY (1, 1) NOT NULL, rq datetime NULL, srq varchar(20) NULL, hh smallint NULL, mm smallint NULL, ss smallint NULL, num numeric(12, 3))

declare @i int while @i< = 160000

insert into itbl(rq,srq,hh,mm,ss,num) values(getdate(),cast(getdate() as varchar(20)),DATE-PART(hh, getdate()), DATEPART(mi, getdate()), DATEPART(ss, getdate()), cast(rand(@i) * 100 as numeric Select @ i = @ i + 1

(2)下面是测试命令执行的代码,<mark>运行时请将"待测试命令"替换成你的命令,</mark>执行后, 能返回执行的大致时间(单位为 ms)。

```
(2) 下面是测试命令执行的代码。运行时把"待测试命令"替换成你的测试命令,在查询
分析器中执行后,能返回命令执行的大致时间(单位为 ms)。
   declare @dt1 datetime
   declare @i int
   declare @s char(40)
   declare @hml int
   declare @hm2 int
   select @dt1 = getdate()
   select @hm1 = DATEPART(hh, @dt1) * 3600000 + DATEPART(mi, @dt1) * 60000 + DATEPART(ss, @dt1)
* 1000 + DATEPART(ms, @dt1)
  "待测试命令" - 此行将用测试命令替代
   select @dt1 = getdate()
   select @hm2 = DATEPART(hh, @dt1) * 3600000 + DATEPART(mi, @dt1) * 60000 + DATEPART(ss, @dt1)
* 1000 + DATEPART(ms, @dt1) - @hm1
   select @ s = 'time--' + convert(char(10),@hm2)
   RAISERROR (@s, 16, 1)
```

(3) 未建立索引时,请按照以下步骤操作。

待测试命令共 **3** 条,分别为:单记录插入,查询所有记录按 **id** 排序,查询所有记录按 **mm** 排序)

- (4) 对 itb1 表 id 字段建非聚集索引 此部分共 5 条语句,参考下面截图
- (5) 对 itb1 表 mm 字段建立非聚集索引 此部分共 5 条语句,参考下面截图
- (6) 对 itb1 表 id 字段建聚集索引 此部分共 5 条语句,参考下面截图
- (7) 对 itb1 表 mm 字段建聚集索引 此部分共 5 条语句,参考下面截图
- (8)参照实验示例,增大表 itb1 的记录到 32 万或更大,重做实验,多次记录实验耗时,作分析比较(选做)。

截图见下页

(4) 对 itbl 表 id 字段建非聚集索引 ① 建索引耗时(约 322 ms)。 CREATE NONCLUSTERED INDEX indexname1 ON itbl(id) ② 单记录插入(约 3 ms),插入命令同上"单记录插入"。 ③ 查询所有记录,按 id 排序(约 3 541 ms)。 Select * from itbl order by id ④ 查询所有记录,按 mm 排序(约 3 494 ms)。 Select * from itbl order by mm ⑤ 删除索引(约 5 ms)。 drop index itbl. indexnamel (5) 对 itbl 表 mm 字段建非聚集索引。 ① 建索引耗时(约 211 ms)。 CREATE NONCLUSTERED INDEX indexname1 ON itbl(mm) ② 单记录插入(约 3 ms),插入命令同上"单记录插入"。 ③ 查询所有记录,按 id 排序(约 3 512 ms)。 Select * from itbl order by id ④ 查询所有记录,按 mm 排序(约 3 487 ms)。 Select * from itbl order by mm ⑤ 删除索引(约 7 ms)。 drop index itbl. indexname1

CREATE CLUSTERED INDEX indexnamel ON itbl(id)

① 建索引耗时(约 605 ms)。

② 单记录插入(约 3 ms),插入命令同上"单记录插人"。

(6) 对 itbl 表 id 字段建聚集索引。

③ 查询所有记录,按 id 排序(约 3 017 ms)。

Select * from itbl order by id

④ 查询所有记录,按 mm 排序(约 3 460 ms)。

Select * from itbl order by mm

⑤ 删除索引(约 5 ms)。

drop index itbl. indexname1

- drop index itbl. indexnamel

 (7) 对 itbl 表 mm 字段建聚集索引。
- ① 建索引耗时(约 552 ms)。

CREATE CLUSTERED INDEX indexname1 ON itbl(mm)

- ② 单记录插入(约 8 ms),插入命令同上"单记录插入"。

Select * from itbl order by id

④ 查询所有记录,按 mm 排序(约 3 017 ms)。

Select * from itbl order by mm

⑤ 删除索引(约 22 ms)。

drop index itbl. indexnamel

需要说明的是命令执行的耗时是在特定环境下的大概数(本书运行环境: Windows 7 32 位操作系统;处理器为 Intel(R)Core(TM)2 Duo CPU P8600 @2.40 GHz 2.40 Ghz;内存为 2,00 GB(1,90 GB可用)),因为有很多因素会影响到执行的时间,通过比较能说明一个粗略而 大体的状况。可以进一步加大表的记录数、多次实验取平均值方法等来更正确地体现使用索 引的效果。