Exercise 1: Multiclass and Softmax Regression

(a) Read in the MNIST data set included in the data sets in the package keras, using either

```
library(keras)
mnist <- dataset_mnist()

in R or

import tensorflow as tf
mnist = tf.keras.datasets.mnist.load_data(
    path='mnist.npz'</pre>
```

in Python. The data set should contain 4 (2x2) list elements for features (pictures) and outcomes (label) for training and testing (as separate list items).

(b) Optional: Check that the data is correctly loaded by visualizing it, e.g., like this:

- (c) Convert the features to a (pandas) data frame, by flattening the 28x28 images to a 784-entry-long vector, which represents one row in your data frame. Divide the intensity values of each pixel (each column) by 255 to get a value between 0 and 1.
- (d) Fit a softmax regression to the given data and interpret the results. Use an existing package by searching for a package that fits *Multinomial Logistic Regression*, which is equal to a softmax regression.
- (e) Use the deep learning API keras to fit a softmax regression by fitting a network like the following:

```
library(dplyr)
library(keras)

# convert outcome using one-hot encoding
y_train <- to_categorical(y_train)
y_test <- to_categorical(y_test)

neural_network <- keras_model_sequential()

neural_network %>%
    layer_dense(units = ..., # fill in the correct number of units)
```

and compare the learned neural_network\$weights with the coefficients from the softmax regression.

(f) Compare the performances of the two algorithms using four different multiclass metrics (you are allowed to use existing implementations).