Project Instructions: Exploratory Data Analysis (EDA) in Python

Objective

The objective of this project is to select a dataset, perform data cleaning and pre-processing, conduct exploratory data analysis (EDA), and present your findings. This project will help you understand the dataset, uncover underlying patterns, and generate insights that could guide further analysis or decision-making.

Steps and Guidelines

1. Select a Dataset

- Choose a dataset that interests you. The dataset can be from a public source such as Kaggle, UCI Machine Learning Repository, or any other reliable source.
- Ensure the dataset is sufficiently large and has a variety of features (columns) to analyze. Aim for at least 500 rows and 5 columns.

2. Project Setup

- o Create a new directory for your project.
- Use a Jupyter Notebook for your analysis. Name your notebook
 EDA_Project_yourname.ipynb.
- Create a README file that briefly describes the dataset and the steps you plan to take in your analysis.

3. Data Import and Cleaning

- o Import the necessary libraries: pandas, numpy, matplotlib, seaborn, etc.
- Load the dataset into a pandas DataFrame.
- Perform initial data inspection: check the shape of the data, data types, and summary statistics.
- o Identify and handle missing values. Decide whether to drop, fill, or interpolate missing data based on the context.
- Detect and remove duplicate rows if any.
- Convert data types if necessary (e.g., dates should be in datetime format).

4. Exploratory Data Analysis (EDA)

Output Open Statistics:

- Provide summary statistics for numerical columns (mean, median, standard deviation, etc.).
- Provide summary statistics for categorical columns (frequency counts, unique values, etc.).

o **Data Visualization**:

- Create histograms or density plots for numerical features to understand their distributions.
- Create bar plots for categorical features to visualize the frequency of categories.
- Use box plots to identify outliers and understand the spread of the data.
- Create scatter plots to explore relationships between numerical features.
- Use heatmaps to visualize correlations between numerical features.

o Group Analysis:

• Perform group-by operations to aggregate data based on categorical features.

o Feature Analysis:

- Identify and analyze key features that might be important for understanding the dataset.
- Explore relationships between features using pair plots, correlation matrices, and pivot tables.
- Perform any additional analyses that might be relevant to your dataset (e.g., time series analysis for time-related data).

5.Advanced Python Techniques

Lambda Functions:

- Use lambda functions for simple data transformations.
- Example: Apply a lambda function to create a new column that categorizes numerical data into bins.

• User-Defined Functions:

- Write custom functions to perform repetitive tasks or complex calculations.
- Example: Create a function to calculate the range of salary as low, medium, high.

• List Comprehensions:

- Use list comprehensions for efficient data processing and transformation.
- Example: Generate a list of column names that have missing values.

6.Insights and Conclusions

- o Summarize your key findings from the EDA.
- o Discuss any patterns, anomalies, or interesting relationships you discovered.
- Highlight any potential areas for further analysis or questions that emerged from your EDA.

7.Documentation and Presentation

- Ensure your Jupyter Notebook is well-documented. Include markdown cells to explain each step, the rationale behind your choices, and your findings.
- Visualizations should have clear titles, axis labels, and legends where necessary.
- Prepare a brief presentation (5-10 slides) summarizing your project. Include key findings, interesting visualizations, and potential next steps.
- Submit your Jupyter Notebook, the dataset, the README file, and the presentation slides.

Submission Deadline

• Please submit your project by [Insert Deadline Here].

If you have any questions or need further assistance, feel free to reach out during office hours or via email.

Evaluation Rubric for Python EDA Project

Total Marks: 20

Criteria	Description	Marks	Scoring Details		
1. Dataset Selection (2 Marks)					
Relevance	The dataset should be relevant and appropriate for the analysis.	1	1: Highly relevant, 0.5: Somewhat relevant, 0: Not relevant		
Complexity and Variety	The dataset should have sufficient complexity and variety (e.g., 500 rows, 5 columns).	1	1: Meets requirements, 0.5: Partially meets, 0: Does not meet		
2. Data Cleaning (2 Marks)					
Missing Values Handling	Proper identification and handling of missing values.	1	1: Effectively handled, 0.5: Partially handled, 0: Not handled		
Duplicate and Inconsistent Data	Detection and resolution of duplicate and inconsistent data.	1	1: Effectively handled, 0.5: Partially handled, 0: Not handled		
3. Exploratory Data Analysis (6 Marks)					
Descriptive Statistics	Calculation of basic statistics for numerical and categorical columns.	2	2: Comprehensive, 1: Partial, 0: Missing or incorrect		
Data Visualization	Use of relevant and clear visualizations.	2	2: Relevant and clear, 1: Partial clarity, 0: Missing or unclear		
Feature Analysis	Thorough analysis of key features and their relationships.	2	2: Thorough, 1: Partial, 0: Missing or not insightful		
4. Group Analysis (2 Marks)					
Group-by Operations	Perform group-by operations to aggregate data based on categorical features.	2	2: Effectively performed, 1: Partially performed, 0: Not performed		
5. Advanced Python Techniques (4 Marks)					
Lambda Functions	Use lambda functions for simple data transformations.	1	1: Effectively used, 0.5: Partially used, 0: Not used		

Criteria	Description	Marks	Scoring Details		
User-Defined Functions	Write custom functions for repetitive tasks or complex calculations.	1	1: Effectively written, 0.5: Partially written, 0: Not written		
List Comprehensions	Use list comprehensions for efficient data processing and transformation.	2	2: Effectively used, 1: Partially used, 0: Not used		
6. Insights and Conclusions (2 Marks)					
Significance of Insights	Insights should be meaningful and relevant.	1	1: Highly significant, 0.5: Somewhat significant, 0: Not significant		
Clarity of Conclusions	Conclusions should be clearly stated and supported by the analysis.	1	1: Clear and well-supported, 0.5: Somewhat clear, 0: Unclear or unsupported		
7. Documentation and Presentation (2 Marks)					
Quality of Documentation &	The Jupyter Notebook should be well-documented with comments.	1	1: Clear and thorough, 0.5: Partially clear, 0: Unclear or missing		
Quality of Presentation	The presentation should summarize key findings effectively.	1	1: Clear and well-organized, 0.5: Partially clear, 0: Unclear or disorganized		

Summary of Marks:

Dataset Selection: 2 marks Data Cleaning: 2 marks

• Exploratory Data Analysis: 6 marks

• **Group Analysis**: 2 marks

Advanced Python Techniques: 4 marks
 Insights and Conclusions: 2 marks

• **Documentation and Presentation**: 2 marks