

2

4

hashkey(key) = (key * key + 3) % 11

2

3

Separate Chaining (buckets)

1

0

9=7 0=3 98= 4
70=8

8

9

10

To probe on a collision, start at hashkey(key) and add the current probe(i') offset. If that bucket is full, increment i until you find an empty bucket.

5

6

Linear Probing: probe(i') = (i + 1) % TableSize

	3		Ø	12	1	98	9	42	70	
0	1	2	3	4	5	6	7	8	9	10

Onadratic Probing: probe(i') = (i * i + 5) % TableSize

0	1	2	3	4	5	6	7	8	9	10
	42		0	12	3		9	70	1	98
Quadra	TO I I O D III E	o. prob	$\sim (1)$	1 . 0) /(, i abiebi					

2. [3] For implementing a hash table. Which of these would probably be the best initial table size to pick?

Table Sizes:

Why did you choose that one?

I depick 500 because I don't know the size needed. The other options will have this load factor reach ,50 at minimum 5 times faster.

The other because I don't know the size have bess chance at collisions.