Universitat Politècnica de Catalunya Facultat de Matemàtiques i Estadística

Master in Advanced Mathematics and Mathematical Engineering Master's thesis

On the importance of details

Severino Da Dalt

Supervised by (Lluis Vena Cros)
August 20, 2025

Thanks to...

Abstract

This should be an abstract in english, up to 1000 characters.

Keywords

Stable Graphs, Graph Theory, Stability, VC-dimension, Szemerédi Regularity Lemma

Things to talk about: - Sze-merédi's regularity lemma. - Half-graphs and stable regularity lemma. - Property testing. - Stable regularity lemma for testing whether a graph has the property of not containing a fixed graph as a subgraph. (Specify this is a $\forall P$ first order

Maybe mention here that the pairs are also homogeneous.

property)

1. Introduction

Szemerédi's regularity lemma is a powerful tool in graph theory, stating that any sufficiently large graph can be decomposed into an equitable partition of its vertices such that most, but not all, pairs of parts are *regular*. A regular pair is one whose edge distribution resembles that of a random bipartite graph, a powerful property with many applications in extremal graph theory. On top of the presence of a small number of irregular pairs, a major drawback of the lemma is the immense bound on the required number of parts, which grows as a tower of exponentials whose height depends on the regularity parameter.

In the general setting, both limitations has been proven unavoidable. In [4] the authors show that there exist a family of graphs for which lower bound on the number of parts is still a tower of exponentials. On the other hand, it is general knowledge that large-enough half-graphs present irregular pairs in any regular partition ([1] gives a written proof of this fact).

In the context of graphs with no bi-induced large half-graph, a class known as *stable graphs*, the authors of [7] show that a much stronger form of regularity is achievable. Their *stable regularity lemma* not only guarantees a decomposition entirely free of irregular pairs, but also yields vastly improved bounds on the partition size.

Regularity lemmas are particularly useful in the field of *property testing*. A property testing algorithm for a decision problem P is a randomized algorithm that, by querying only a small portion of its input, can distinguish with high probability between objects that satisfy P and those that are "far" from satisfying it. For instance, in [3] the authors use Szemerédi's regularity lemma to prove that it is possible to test the property of a graph G being H-free (for a fixed graph G) using an algorithm which query complexity is independent on the size of the input graph G.

The query complexity of such testers, however, is intrinsically linked to the number of parts in the underlying regular partition. Consequently, the power-tower bounds of the standard regularity lemma lead to prohibitively large, although constant, query counts. This raises a natural question: can the superior bounds of the stable regularity lemma be exploited to create more efficient property testers for graphs in a half-graph-restricted setting?

In this thesis, we present an algorithm for testing H-freeness in stable graphs, thereby providing a concrete application that highlights the practical strength and utility of stable regularity partitions.

The main contributions of this thesis are:

- A rigorous reformulation and correction of the central proofs in [7]. Our contribution provides a self-contained, combinatorial framework for these results, systematically resolving foundational gaps and inaccuracies in the original arguments to ensure their validity. This reworking also makes the associated combinatorial bounds fully explicit for the first time.
- The construction of an efficient property testing algorithm for H-freeness tailored to stable graphs. The algorithm's analysis leverages the stable regularity lemma to achieve a query complexity with significantly improved bounds compared to the general case.
- The development of a unified notational framework that cohesively integrates the concepts from extremal graph theory, stability, and property testing used throughout the thesis.

The remainder of this thesis is organized as follows. Section 2 reviews fundamental concepts from graph theory, culminating in a formal statement of Szemerédi's Regularity Lemma. Section 3 introduces the graph-theoretic notion of stability and proves some basic results in this context. Section 4 presents

and analyzes a weaker variant of the stable regularity lemma, and illustrate both its strengths and its inherent limitations. Section 5 dedicated to the proof of the main Stable Regularity Lemma, which forms the technical core of this work. Finally, Section 6 applies this previous results to prove our property testing algorithm for H-freeness in stable graphs works, providing explicit bounds on its query complexity.

2. Section 2

Things that should be included in this section:
- General notation.
- Definition of a graph.
- Probably, also present edges as a relation on vertices, mentioning its properties, and explain that this is the bridge with model theory.
- Define density of a (non necessarily disjoint) pair of sets of vertices.
- Definition of a bipartite graph.
- Reglarity definitions.
- Szemerédi's regularity lemma.

Notation: - By abuse of notation aRb is a value in $\{0,1\}$. - Abuse of notation: $a \in G$ to say that $a \in V(G)$. - (\cdot) to represent tuples. - (\cdot) and (\cdot) and (\cdot) and (\cdot)

Mention that during the thesis, a lot of results carry many conditions most of which seem almost trivial, but are necessary for the computations to work. In the final results are cleaned out and tried to be delivered in a more readable form.

Figure 1: A half-graph with 2×10 vertices. On the left, solid lines show adjacent vertices, and dashed lines show non-adjacent vertices. Pairs of vertices without a line may or may not be connected. On the right is the corresponding adjacency matrix.

3. Section 3

In this section we introduce the class of *stable* graphs. A graph is considered stable, if it does not contain bi-induced (as defined in [8]) <u>large half-graphs</u>, a particularly non-quasi-random structure in graphs. See ?? for an example of such a graph.

First, stability implies a bounded *Vapnik-Chervonenkis (VC) dimension*, which limits the variety of neighborhoods of vertices within the graph. While stability implies a bounded VC-dimension for the entire graph (See [6]), our work primarily focuses on bounding the VC-dimension restricted to a subset of vertices. This is formalized in Lemma 3.10.

Second, stability implies a finite *tree bound*. This property is the foundational tool we use to prove the existence of parts that are quasi-random with respect to the rest of the graph. We use this to establish the existence of indivisible parts in Section 4 (Lemma 4.12) and excellent parts in Section 5 (Lemma 5.6).

First, we formally define stability as the non-k-order property, where k determines the size of the excluded half-graphs.

Definition 3.1. Let G be a graph. We say that G has the k-order property if there exist two sequences of vertices $\langle a_i \mid i \in \{1, ..., k\} \rangle$ and $\langle b_i \mid i \in \{1, ..., k\} \rangle$ such that for all $i, j \leq k$, $a_i R b_j$ if and only if $i \geq j$. Otherwise, we say that G has the non-k-order property or that G is k-stable.

Remark 3.2. It is important to note what is left unspecified in Definition 3.1. First, the vertices within each sequence must be distinct, as their neighborhoods within the other sequence differ. However, the sequences themselves need not be disjoint. One may have $a_i = b_j$, provided i < j (so that $\neg(a_iRb_j)$). Furthermore, the definition does not specify the presence or absence of edges within the same sequence. Consequently, the non-k-order property requires the containment of a subgraph from a broad class of structures, not merely a k-half-graph.

Remark 3.3. G having the k-order property implies that G has the k'-order property for all $k' \leq k$. Conversely, G having the non-k-order property implies that G has the non-k'-order property for all $k' \geq k$.

An important concept used all over the thesis is that of exceptional edges and exceptional vertices.

Maybe move cite to section 2, and mention there other references such as "induced subbigraph"

Explain somewhere what this means. Echarle un

That is, edges and vertices that, in the context of a pair of sets of vertices, do not "behave" as the rest. In order to classify what is the expected behaviour in a graph, or more specifically, in a pair of sets of vertices, we define the *truth value*.

Definition 3.4 (Truth value). Let G be a graph. For any (not necessarily disjoint) $A, B \subseteq G$, we say that

$$t(A,B) = \begin{cases} 0 & \text{if } |\{(a,b) \in A \times B \mid aRb, a \neq b\}| < |\{(a,b) \in A \times B \mid \neg aRb, a \neq b\}| \\ 1 & \text{otherwise} \end{cases}$$

is the *truth value* of the pair (A, B). That is, t(A, B) = 0 if A and B are mostly disconnected, and t(A, B) = 1 if they are mostly connected. When $B = \{b\}$, we write t(A, b) instead of $t(A, \{b\})$, and we say that it is the truth value of A with respect to B.

In this context, we say that a vertex $a \in A$ is exceptional with respect to $B \subseteq G$ if $t(a, B) \not\equiv t(A, B)$, or that it is exceptional with respect to $b \in G$ if $aRb \not\equiv t(A, b)$. On the other hand, we say that an edge ab with $a \in A$ and $b \in B$ is exceptional in (A, B) if $aRb \not\equiv t(A, B)$. Also, it is useful to define the following set of vertices.

- $B_{A,b} = \{a \in A \mid aRb \equiv t(A,b)\}$, i.e. the set of non-exceptional vertices of A with respect to B.
- $\overline{B}_{A,b} = \{ a \in A \mid aRb \not\equiv t(A,b) \}$, the set of exceptional vertices of A with respect to B.
- $B_{Ab}^+ = \{ a \in A \mid aRb \}$, the vertices of A connected to b.
- $B_{Ab}^- = \{ a \in A \mid \neg aRb \}$, the vertices of A that are not connected to b.

With this notation, notice that either t(A, b) = 1 and thus $B_{A,b} = B_{A,b}^+$, or t(A, b) = 0 and $B_{A,b} = B_{A,b}^-$.

Sets of vertices A with a large number of large $\overline{B}_{A,b}$ are a great obstacle towards creating a quasirandom, and more specifically homogeneous partition, as the number of exceptional edges with respect to the entire graph is large and concentrated. A useful tool to deal with them is Lemma 3.10, which gives a bound on the number of such sets under the non-k-order property. In order to prove it, we first need to introduce the VC dimension of a family of sets, and relate it to the k-order property. This, together with Lemma 3.7, will give us the desired result.

Definition 3.5. Let G be a set and $S = \{S_i \subseteq G \mid i \in I\}$ be a family of sets. A set $A \subseteq G$ is said to be shattered by S (and S is said to shatter A) if for every $B \subseteq A$, there exists $S_i \in S$ such that $S_i \cap A = B$.

Definition 3.6. Let G be a set and $S = \{S_i \subseteq G \mid i \in I\}$ be a family of sets. The VC dimension of S is the size of the largest set $A \subseteq G$ that is shattered by S.

Lemma 3.7 (Sauer-Shelah (-Perles -Vapnik-Chervonenkis) Lemma, [10], [11]). Let G be a set and $S = \{S_i \subseteq G \mid i \in I\}$ be a family of sets. If the VC dimension of S is at most k, and the union of all the sets in S has n elements, then S consists of at most $\sum_{i=0}^k \binom{n}{i} \leq n^k$ sets.

We'll begin by proving a stronger version of this lemma from Pajor, for which Sauer-Shelah will be a straightforward consequence.

Lemma 3.8 (Pajor's variant, [9]). Let G be a set and S be a finite family of sets in G. Then S shatters at least |S| sets.

Proof. We will prove this by induction on the cardinality of S. If |S|=1, then S consists of a single set, which only shatters the empty set. If |S|>1, we may choose an element $x\in S$ such that some sets of S contain x and some do not. Let $S^+=\{s\in S\mid x\in S\}$ and $S^-=\{s\in S\mid x\not\in S\}$. Then $S=S^+\sqcup S^-$, and both S^+ and S^- are non-empty. By induction hypothesis, we know that $S^+\subsetneq S$ shatters at least $|S^+|$ sets, and $S^-\subsetneq S$ shatters at least $|S^-|$ sets. Let T,T^+,T^- be the families of sets shattered by S,S^+ and S^- respectively. To conclude the proof, we just need to show that for each element in S^+ and S^- , there is a corresponding one in S^+ . If a set is shattered by only one of the two families S^+ and S^- , then it only contributes by one unit to $|T^+|+|T^-|$ and one unit to $|T^-|$. Notice that no set shattered by S^+ or S^- may contain S^+ , otherwise all or none of the intersections will contain this element. Thus, if a set S^+ is shattered by both S^+ and S^- , it will contribute by two units to $|T^+|+|T^-|$ and one unit to $|T^-|$. But then, for each such set, we can consider S^- and S^- which is not in S^+ or S^- but it is in S^- . Indeed, for each subset of S^- , if it does not contain S^+ it is the intersection with some set in S^- and if it does contain S^+ it is the intersection with some set in S^- and if it does contain S^+ it is the intersection with some set in S^- and if it does contain S^+ it is the intersection with some set in S^- and if it does contain S^+ it is the intersection with some set in S^- and if it does contain S^- it is the intersection with some set in S^- and if it does contain S^- it is the intersection with some set in S^- and if it does contain S^- it is the intersection with some set in S^- and if it does contain S^- is the intersection with some set in S^- and S^- and S^- and S^- and S^- are specified S^- and S^- and S^- and S^- are specified S^- and $S^$

$$|T| \ge |T^+| + |T^-| \ge |S^+| + |S^-| \ge |S|$$

Proof of Lemma 3.7. Suppose that $\bigcup S$ has n elements. By Lemma 3.8, S shatters at least |S| subsets, and since there are at most $\sum_{i=0}^k \binom{n}{i}$ subsets of S of size at most k, if $|S| > \sum_{i=0}^k \binom{n}{i}$, at least one of the shattered sets has cardinality larger than k, and hence the VC dimension of S is larger than k.

Next, we want to prove that if G has the non-k-order property, then the size of the family of exceptional sets of A, relative to each vertex $b \in G$, is bounded by $|A|^k$. Instead, we prove a stronger result, that is we prove this same bound with only the condition that G has the "disjoint" non-k-order property, in which the two sequences of vertices in the Definition 3.1 are in fact disjoint. This stronger version (Lemma 3.10) is neither more useful nor easier to prove, but remarks that the non-disjointness of the sequences, and thus the broadening of the excluded structures, is not needed to obtain the bound, but later on.

Lemma 3.9. Let G be a graph and $A \subseteq G$. Let $S = \{B_{A,b}^+ \mid b \in G \setminus A\}$. If S has VC dimension (at least) k, then G has the (disjoint) k-order property.

Proof. If S has VC dimension k, then it shatters a set $A' \subseteq A$ of size k. Now, choose any order of the vertices of $A' = \langle a_1, \ldots, a_k \rangle$. Then, consider the increasing sequence of subsets $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_k = A'$, where $A_i = \{a_j \mid j \in \{1, \ldots, i\}\}$. Since A' is shattered by S, for each $i \in \{1, \ldots, k\}$ there exists a $b_i \in G$ such that $b_i Ra$ if and only if $a \in A_i$. In particular, the two sequences $\langle a_i \mid i \in \{1, \ldots, k\} \rangle$ and $\langle b_i \mid i \in \{1, \ldots, k\} \rangle$ satisfy

$$a_i Rb_i \Leftrightarrow i \leq j$$

and thus G has the k-order property.

Lemma 3.10 (Claim 2.6 in [7]). Let G be a graph with the (disjoint) non-k-order property. Then, for any finite non-trivial $A \subset G$,

$$|\{B_{A,b}^+ \mid b \in G\}| \le |A|^k$$

Proof. By Lemma 3.9, if G has the non-k-order property, then the family $\{B_{A,b}^+ \mid b \in G \setminus A\}$ has VC dimension at most k-1, so by the Sauer-Shelah Lemma 3.7 we have $\{B_{A,b}^+ \mid b \in G \setminus A\} \leq \sum_{i=0}^{k-1} \binom{|A|}{i}$.

Lluis: faig una definició separada o s'enten pel context que ja he posat?

Since $\{B_{A,b}^+ \mid b \in A\} \leq |A|$, we conclude that

$$|S| = |\{B_{A,b}^+ \mid b \in G\}| \le \sum_{i=0}^{k-1} {|A| \choose i} + |A|$$

Finally, when |A| = n, k > 1:

- if $n \le k$, then $|S| \le 2^n \le 2^k \le n^k$.
- if n > k, then $|S| \le \sum_{i=0}^{k-1} {n \choose i} + n \le n^{k-1} + n \le 2n^{k-1} \le n^k$.

We conclude that $|S| < n^k$.

Remark 3.11. The condition n, k > 1 is trivial. If n = 1 then A is the trivial graph with a single vertex. If k = 1 we are not allowing even a single edge, so G is the empty graph.

We now prove the following equivalent versions of the lemma, which will be useful in the different sections of the thesis. The idea is that any choice of either the exceptional or the non-exceptional vertices set of A with respect to each vertex $b \in G$, have the same bound.

Corollary 3.12 (Claim 2.6.1). Let G be a graph with the non-k-order property. Then:

1. For any finite $A \subseteq G$

$$|\{B_{A\,b}^- \mid b \in G\}| \le |A|^k$$

2. For any finite $A \subseteq G$

$$|\{\overline{B}_{A,b} \mid b \in G\}| < |A|^k$$

Proof. 1. First of all, notice that $B_{A,b}^+ = A - B_{A,b}^-$, since by definition they are complementary. Thus, for any $b,b' \in G$, $B_{A,b}^+ = B_{A,b'}^+ \Leftrightarrow B_{A,b}^- = B_{A,b'}^-$. It follows that

$$|\{B_{A,b}^- \mid b \in G\}| = |\{B_{A,b}^+ \mid b \in G\}| \le |A|^k$$

where the last inequality follows from Lemma 3.10.

2. Consider the following map:

$$\pi: \{B_{A,b}^+ \mid b \in G\} \longrightarrow \{\overline{B}_{A,b} \mid b \in G\}$$
$$B_{A,b}^+ \longmapsto \overline{B}_{A,b}$$

We first prove that the map π is well-defined. If $B_{A,b}^+$ and $B_{A,b'}^+$ are equal, then they have the same size, and thus the same truth value. Then,

- if t(A, b) = t(A, b') = 1, we have that $\overline{B}_{A,b} = B_{A,b}^+ = \overline{B}_{A,b'} = \overline{B}_{A,b'}$.
- if t(A,b)=t(A,b')=0, we have that $\overline{B}_{A,b}=B_{A,b}^-=A\setminus B_{A,b}^+=A\setminus B_{A,b'}^+=B_{A,b'}^-=\overline{B}_{A,b'}$.

This conditions should be set at some point of the tfm. Specify that if they are not met, the problem becomes trivial.

Figure 2: Example of a 3-tree. Notice that connections between disjoint sub-trees are not defined, and may be edges or non-edges in any combination.

which proves that the map is well-defined. The map π is also surjective, since for each $b \in G$, and thus for each $\overline{B}_{A,b}$, the set $B_{A,b}^+$ is mapped to $\overline{B}_{A,b}$ by construction. Hence,

$$|\{\overline{B}_{A,b} \mid b \in G\}| \le |\{B_{A,b}^+ \mid b \in G\}| \le \sum_{i \le k} {|A| \choose i} \le |A|^k$$

This concludes the proof. Notice that, actually, the map π is a not necessarily a bijection, since (at most) two b's with different truth value with respect to A may induce the same set $\overline{B}_{A,b}$.

During the next sections, it will be a key point proving that some sort of "regular" subgraphs (independent in Section 4 and excellent in Section 5) exist in a given stable graph. In order to do so, a useful structure strongly related to the k-order property is the k-tree.

Definition 3.13. A *k-tree* in *G* is an ordered pair $H = (\overline{c}, \overline{b})$ comprising:

- ullet $\overline{c}=\{c_\eta\in G\mid \eta\in\{0,1\}^{< k_{**}}\}$, the set of *nodes*.
- $\overline{b} = \{b_{\rho} \in G \mid \rho \in \{0,1\}^{k_{**}}\}$, the set of branches.

satisfying that, for all $\eta \in \{0,1\}^{< k_{**}}$ and $\rho \in \{0,1\}^{k_{**}}$, if given $\ell \in \{0,1\}$ we have $\eta \frown \langle \ell \rangle \triangleleft \rho$, then $(b_{\rho}Rc_{\eta}) \equiv (\ell=1)$. The two sequences are not necessarily disjoint.

Lluis: millor una remark?

See Figure 2 for an example of such a structure.

Similarly to stability, we can define the *tree bound* of a graph to measure the level of freeness from k-trees of graph.

Definition 3.14 (Definition 2.11). Suppose G is a finite graph. We denote the *tree bound* $k_{**} = k_{**}(G)$ as the minimal positive integer such that there is no k_{**} -tree $H = (\overline{c}, \overline{b})$ in G.

As mentioned earlier, the tree bound is closely related to the k-order property. The following theorem states that if a graph has a sufficiently large tree bound, then it has the k-order property and vice versa.

Theorem 3.15 (Lemma 6.7.9 in [5]). If a graph G has the $2^{k_{**}}$ -order property, then the tree bound of G is at least $k_{**} + 1$. On the other hand, if a graph G has tree bound at least $k_{**} = 2^{k_{*}+1} - 3$, then it has the k_{*} -order property.

Proof. For the first implication, just consider $\langle a_i \mid i \in \{1, \dots, 2^{k_{**}} - 1\} \rangle$ and $\langle b_i \mid i \in \{0, \dots, 2^{k_{**}} - 1\} \rangle$ to be the two sequences of vertices witnessing the $2^{k_{**}}$ -order property in G, and thus for all $i, j \leq k$, $a_i R b_j$ if and only if $i \geq j$. It is straightforward to build a k_{**} -tree using these vertices. Take $\langle b_i \mid i \in \{0, \dots, 2^{k_{**}} - 1\} \rangle$ to be the branches of the tree, indexing them by the binary decomposition of their index, and run the following construction for the nodes:

- Initiate $C_{=}\langle a_i \mid i \in \{0, ..., 2^{k_{**}} 2\} \rangle$.
- At each step $k \in \{0, k_{**} 1\}$, for each $\eta \in \{0, 1\}^k$, take the middle element of the sequence C_{η} and set it to be the node c_{η} . Then, the remaining first half of C_{η} becomes the sequence $C_{\eta \frown \langle 0 \rangle}$ and the second half is $C_{\eta \frown \langle 1 \rangle}$.

Notice that at each step, the sequence C_{η} has an odd number of elements. The resulting two sequences of nodes and branches form a k_{**} -tree. See **??** for a visual example of this construction.

During the proof of the second implication, we say that a set of nodes N of a k-tree $H=(\overline{c},\overline{b})$ contains a k'-tree, if there exists a map $f\colon\{0,1\}^{< k'}\longrightarrow\{0,1\}^{< k}$ such that for all $\eta,\eta'\in\{0,1\}^{< k'}$, $c_{f(\eta)}$ and $c_{f(\eta')}$ are in N, and if $\eta\frown\langle i\rangle=\eta'$ then $f(\eta)\frown\langle i\rangle\lhd f(\eta')$, for all $i\in\{0,1\}$. This clearly implies that there is a k'-tree H' with nodes in N and branches in \overline{b} . Simply, for each $\eta\in\{0,1\}^{k'-1}$, pick exactly two branches b_{ρ_0} and b_{ρ_1} such that $f(\eta)\frown\langle i\rangle\lhd\rho_i$ for $i\in\{0,1\}$.

Also, we will use H_i' to denote the subtree of H' consisting of the nodes $c_{f(\eta)}$ and branches $b_{f(\rho)}$ such that $\langle i \rangle \triangleleft \eta$ and $\langle i \rangle \triangleleft \rho$, with $\eta \in \{0,1\}^{< k'}$ and $\rho \in \{0,1\}^{k'}$. Notice that, if H is an h-tree, H_0 and H_1 are (h-1)-trees, and together with the root node $c_{f(\emptyset)}$, they partition H.

Next, we prove the following claim, which shows that we can always find a tree in one of the parts of a bipartition of the nodes of a larger tree.

Claim 3.16. For all $n, k \ge 0$, if H is a (n + k)-tree and the nodes of H are partitioned into two sets N and P, then either N contains an n-tree or P contains a k-tree.

Proof of Claim 3.16. We prove this by induction on n+k. Clearly, the statement is true for the trivial case n=k=0. Suppose n+k>0. Without loss of generality, we may assume that the root node c_{\emptyset} is in N. Let Z_i be the set of nodes of H_i , which is an (n+k-1)-tree. By I.H., for each $i\in\{0,1\}$, either $N\cap Z_i$ contains an (n-1)-tree or $P\cap Z_i$ contains a k-tree, If either $P\cap Z_0$ or $P\cap Z_1$ contains a k-tree, then P contains a k-tree, and we are done. Otherwise, both $N\cap Z_0$ and $N\cap Z_1$ contain an (n-1)-tree. Since c_{\emptyset} is in N, the root with the two (k-1)-tree are in N and make an n-tree. Thus, N contains an n-tree. \square

Suppose that G has a tree bound of at least $2^{k_*+1}-3$, and thus contains a $(2^{k_*+1}-2)$ -tree. We show by induction on k_*-r , with $1 \le r \le k_*$, that the following scenario S_r holds. There are

$$b_0, c_0, \dots, b_{q-1}, c_{q-1}, H, b_q, c_q, \dots, b_{k_*-r-1}, c_{k_*-r-1}$$
 (1)

such that:

- 1. for all $i \in \{0, ..., k_* r 1\}$, b_i and c_i are vertices in G, and H is a $(2^{r+1} 2)$ -tree in G.
- 2. for all $i, j \in \{0, ..., k_* r 1\}$, $b_i Rc_j \Leftrightarrow i \geq j$.
- 3. if c is a node of H, $b_iRc \Leftrightarrow i \geq q$.
- 4. if b is a branch of H, $bRc_i \Leftrightarrow i < q$.

The initial case S_{k_*} only requires the existence of a $(2^{k_*+1}-2)$ -tree in G, which is the premise. If the final case S_1 is true, then we are done: this case assumes that H is a 2-tree, in which case there is a node c_* and branch b_* in H which are connected. These vertices satisfy conditions 3. and 4., so the sequence resulting from replacing H in (1) by b_* , c_* implies that G has the k_* -order property.

specify k-

To conclude the proof it remains to show that if S_r holds, then so does S_{r-1} for r > 1. Assume S_r . Fixing $h = 2^r - 2$, by 1. we have that H is a (2h + 2)-tree. For each branch b of H we denote Z(b) the set of nodes c of H such that bRc.

We have two cases:

- Case 1. There is a branch b_* such that $Z(b_*)$ contains an (h+1)-tree H'. In that case, we can take c_* to be the top node of the (h+1)-tree, and H_* to be the h-subtree H'_0 . Replacing H in (1) with H_* , b_* , c_* in this order, the conditions for S_{r-1} are satisfied.
- Case 2. There is no branch b such that Z(b) contains an (h+1)-tree. Now, let c_* be the top node of H, Z_1 the set of nodes of H_1 , and b_* any branch of H_1 . By the case assumption, $Z(b) \cap Z_1$ contains no (h+1)-tree, so by the claim and the fact that Z_1 is the set of nodes of a (2h+1)-tree, $Z_1 \setminus Z(b)$ contains an h-tree H_* . Finally, replacing H in (1) by b_* , c_* , H_* in this order, the conditions for S_{r-1} are satisfied.

In any case, S_{r-1} is satisfied, and the proof is complete.

Remark 3.17. The key point of the proof of the second implication of Theorem 3.15 is that the found k-order does not only utilize edges and non-edges of the k-tree structure itself. Instead, it relies on the fact that, for a tall enough tree, a k-order must appear in some way, leveraging some "unknown" edges, independently on the choice of those.

The second implication of this theorem is of special interest in the next sections, as it proves that in the context of a k-stable graph no $2^{k+1} - 2$ -trees can be found.

Given that the stability of the studied graphs is fixed for all proofs in the next sections, from now on we will use k_* as the value of the non-k-property of the studied graphs, and k_{**} for the associated tree bound.

4. Section 4

This section works around the concept of ϵ -indivisible sets, a strong condition on the quasi-randomness of a subset respect to all the vertices of the graph. This condition results in pairs of sufficiently large subsets of vertices satisfying the average condition, which (asymmetrically) strictly bounds the number of exceptional edges in the pair. Using these tools we obtain the first result in Lemma 4.14, which proves the existence of a partition of highly quasi-random pairs with no exceptions, at the cost of a non-homogeneous partition. Next, we improve the results obtaining an equitable partition in Theorem 4.21, but this time with a small number of exceptional pairs, and a tradeoff between a non-negligible remainder set and even smaller parts. The final result, Theorem 4.27, achieves removing non-quasi-random pairs and reduce the size of the remainder set. All in all, even though the partitions of this section present a very strong form of quasi-randomness, they all share the same drawback: a large number of parts that grows with the size of the graph, something that we will be dealing with in the next section.

First step is defining *indivisibility*. The general definition is for any function f, but for the rest of the section we are mostly interested in the case of $f(n) = n^{\epsilon}$, which we call ϵ -indivisible, and at the end in the constant case f(n) = c.

Definition 4.1 (Definition 4.2(b)). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. We say that $A \subseteq G$ is f-indivisible if for every $b \in G$,

$$|\overline{B}_{A,b}| < f(|A|)$$

Definition 4.2 (Definition 4.2(a)). Let $\epsilon \in (0,1)$. We say that $A \subseteq G$ is ϵ -indivisible if for every $b \in G$,

$$|\overline{B}_{A,b}| < |A|^{\epsilon}$$

Remark 4.3. An ϵ -indivisible set is f-indivisible for $f(n) = n^{\epsilon}$.

A natural follow-up question, is how strongly bounded are exceptions in the context of two indivisible sets. The following lemma measures precisely that, although doing so in asymmetrically.

Lemma 4.4 (Claim 4.6)). Let G be a finite graph. Suppose $A, B \subseteq G$ such that A is f-indivisible, B is g-indivisible, and $f(|A|)g(|B|) < \frac{1}{2}|B|$. Then, the truth value t = t(A, B) satisfies that for all but < f(|A|) of the $a \in A$ for all but < g(|B|) of the $b \in B$ we have that $aRb \equiv t$.

Proof. Since B is g-indivisible, for each $a \in A$ we have that $|\overline{B}_{B,a}| < g(|B|)$. Let $U_i = \{a \in A \mid t(a,B) \equiv i\}$ for $i \in \{0,1\}$. If either U_i satisfies $|U_i| < f(|A|)$ then the statement is true. Suppose not. Then, there are $W_i \subseteq U_i$ with $|W_i| = f(|A|)$ for $i \in \{0,1\}$. Now, let $V = \{b \in B \mid (\exists a \in W_0 \mid aRb) \lor (\exists a \in W_1 \mid \neg aRb)\}$, i.e. the b's which are an exception for some $a \in W_0 \cup W_1$. Then, $|V| < |W_0|g(|B|) + |W_1|g(|B|) = 2f(|A|)g(|B|) < |B|$, where the first inequality follows the g-indivisibility of B. Finally, there is a $b_* \in B \setminus V$ such that $\forall a \in W_0 \ \neg aRb_*$ and $\forall a \in W_1 \ aRb_*$ with $|W_0| = |W_1| = f(|A|)$, which contradicts the f-indivisibility of A.

Definition 4.5. We say that the pair (A, B) with A f-indivisible and B g-indivisible satisfies the average condition if $f(|A|)g(|B|) < \frac{1}{2}|B|$ and thus the statement of Lemma 4.4 is true for the pair (A, B).

Remark 4.6. The condition $f(|A|)g(|B|) < \frac{1}{2}|B|$ makes ordering of the pair (A, B) matter, that is,

(A, B) has the average condition $\neq (B, A)$ has the average condition

Redundant.

Remark 4.7 (Remark 4.7). When $f(n) = n^{\epsilon}$ and $g(n) = n^{\zeta}$, the average condition is $|A|^{\epsilon}|B|^{\zeta} < \frac{1}{2}|B|$.

Next, we are interested in studying how the average condition of an indivisible pair controls the homogeneity of large enough subpairs, in the sense of bounding exceptional edges. We study the f and ϵ case separately, as the specific case of ϵ gives a slightly better condition on the range of the size of the subpair.

Lemma 4.8 (Claim 4.8). Let A be ϵ -indivisible, B ζ -indivisible and let the pair (A, B) satisfy the average condition. Then, for all $\epsilon_1 \in (0, 1 - \epsilon)$, $\zeta_1 \in (0, 1 - \zeta)$, $A' \subseteq A$ and $B' \subseteq B$ such that $|A'| \ge |A|^{\epsilon + \epsilon_1}$ and $|B'| \ge |B|^{\zeta + \zeta_1}$, we have that:

$$\frac{|\{(a,b)\in (A',B')\mid aRb\equiv \neg t(A,B)\}|}{|A'\times B'|}\leq \frac{1}{|A|^{\epsilon_1}}+\frac{1}{|B|^{\zeta_1}}$$

Proof. Notice:

- There are at most $|A|^{\epsilon}$ vertices of A (hence in $A' \subseteq A$) which are exceptional (in the sense of the average condition).
- For each $a \in A$ (hence in $A' \subseteq A$) not exceptional, there are at most $|B|^{\zeta}$ elements $b \in B$ such that (a, b) does not satisfy the truth value t(A, B), i.e. that are exceptional.

This is not the same use of the word exceptional as defined in Section 3.

Putting it all together:

This make my eyes bleed.

$$\frac{|\{(a,b)\in(A',B')\mid aRb\equiv\neg t(A,B)\}|}{|A'\times B'|} \leq \frac{|A|^{\epsilon}|B'| + (|A'| - |A|^{\epsilon})|B|^{\zeta}}{|A'||B'|}$$

$$= \frac{|A|^{\epsilon}}{|A'|} + \frac{|A'| - |A|^{\epsilon}}{|A'|} \frac{|B|^{\zeta}}{|B'|}$$

$$\leq \frac{|A|^{\epsilon}}{|A'|} + \frac{|B|^{\zeta}}{|B'|}$$

$$\leq \frac{|A|^{\epsilon}}{|A|^{\epsilon+\epsilon_{1}}} + \frac{|B|^{\zeta}}{|B|^{\zeta+\zeta_{1}}}$$

$$= \frac{1}{|A|^{\epsilon_{1}}} + \frac{1}{|B|^{\zeta_{1}}}$$

Lemma 4.9 (f-indivisible version). Let A be f-indivisible, B g-indivisible and let the pair (A,B) satisfy the average condition. Then, for all $\epsilon_1 \in (0,1-\frac{f(|A|)}{|A|})$, $\zeta_1 \in (0,1-\frac{g(|B|)}{|B|})$, $A' \subseteq A$ and $B' \subseteq B$ such that $|A'| \ge f(|A|)|A|^{\epsilon_1}$ and $|B'| \ge g(|B|)|B|^{\zeta_1}$, we have that:

seem to
make previous lemm
redundant.
But they ac
tually prove
different results. But it

$$\frac{|\{(a,b) \in (A',B') \mid aRb \equiv \neg t(A,B)\}|}{|A' \times B'|} \leq \frac{1}{|A|^{\epsilon_1}} + \frac{1}{|B|^{\zeta_1}}$$

Proof. Notice:

• There are at most f(|A|) elements of A (hence in $A' \subseteq A$) which are exceptional (in the sense of the average condition).

• For each $a \in A$ (hence in $A' \subseteq A$) not exceptional, there are at most g(|B|) elements $b \in B$ such that (a, b) does not satisfy the truth value t(A, B), i.e. that are exceptional.

Putting it all together:

$$\begin{aligned} \frac{|\{(a,b) \in (A',B') \mid aRb \equiv \neg t(A,B)\}|}{|A' \times B'|} &\leq \frac{f(|A|)|B'| + (|A'| - f(|A|))g(|B|)}{|A'||B'|} \\ &= \frac{f(|A|)}{|A'|} + \frac{|A'| - f(|A|)}{|A'|} \frac{g(|B|)}{|B'|} \\ &\leq \frac{f(|A|)}{|A'|} + \frac{g(|B|)}{|B'|} \\ &\leq \frac{f(|A|)}{f(|A|)|A|^{\epsilon_1}} + \frac{g(|B|)}{g(|B|)|B|^{\zeta_1}} \\ &= \frac{1}{|A|^{\epsilon_1}} + \frac{1}{|B|^{\zeta_1}} \end{aligned}$$

This may be skipped, and be directly commented in the appropriate remark following the theorem.

For later use, we are particularly interested in the case when f(n) = c.

Corollary 4.10 (Corollary 4.9). Let A and B be f-indivisible with f(n) = c and (A, B) satisfy the average condition. Then, for all $\epsilon_1 \in (0, 1 - \frac{c}{|A|})$, $\zeta_1 \in (0, 1 - \frac{c}{|B|})$, $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge c|A|^{\epsilon_1}$ and $|B'| \ge c|B|^{\zeta_1}$, we have:

$$\frac{|\{(a,b) \in (A',B') \mid aRb \equiv \neg t(A,B)\}|}{|A' \times B'|} \leq \frac{1}{|A|^{\epsilon_1}} + \frac{1}{|B|^{\zeta_1}}$$

Proof. Use Lemma 4.9 with f(n) = c.

Remark 4.11. Notice that the average condition is easily satisfied if the pair satisfies a condition on the size of its sets. If $f(n) = n^{\epsilon}$, A and B are f-indivisible, and $|B| \ge |A| \ge m$, then $m^{1-2\epsilon} > 2$ is sufficient for the average condition to hold for the pair (A, B):

$$\frac{|A|^{\epsilon}|B|^{\epsilon}}{|B|} \leq \frac{|B|^{2\epsilon}}{|B|} = \frac{1}{|B|^{1-2\epsilon}} = \frac{1}{m^{1-2\epsilon}} < \frac{1}{2}$$

We will be using this fact in the context of a sequence of non-zero natural numbers $\{m_\ell \mid \ell \in \{0, ..., k_{**}\}\}$ where $\lfloor m_\ell^\epsilon \rfloor = m_{\ell+1}$ for some $\epsilon \in (0, \frac{1}{2})$ and for all $\ell \in \{0, ..., k_{**}-1\}$. Here, $2 < (m_{k_{**}-1})^{1-2\epsilon}$ is sufficient for any f-indivisible A and B, with $|A|, |B| \in \{m_0, ..., m_{k_{**}-1}\}$, to satisfy the average condition.

Now that we have proven some properties of indivisible sets, we are actually interested in whether they can be found in a graph. It turns out that the non-k-order property, or more specifically the associated tree bound, is sufficient for proving it. The proof resumes in assuming that there is no indivisible set to recursively refine a "semi-partition" which by construction contains a k_{**} -tree.

Llus: hi
ha alguna
manera de
dir una partició que no
cubreix tots
els vertex
amb una paraula?

Lemma 4.12 (Claim 4.3). Let G be a finite graph with the non- k_* -property and $f: \mathbb{R} \longrightarrow \mathbb{R}$ a function such that $x \ge f(x)$. Let $\{m_\ell \mid \ell \in \{0, \dots, k_{**}\}\}$ be a sequence of non-zero natural numbers such that for all $\ell \in \{0, \dots, k_{**} - 1\}$, $f(m_\ell) \ge m_{\ell+1}$. If $A \subseteq G$, $|A| \ge m_0$, then for some $\ell \in \{0, \dots, k_{**} - 1\}$ there is a subset $B \subseteq A$ of size m_ℓ which is f-indivisible.

Proof. Suppose not. Then we can construct the sequences $\langle b_{\eta} \mid \eta \in \{0,1\}^{\leq k} \rangle$ and $\langle A_{\eta} \mid \eta \in \{0,1\}^{\leq k} \rangle$ on induction over $k = |\eta|$, satisfying:

- 1. $A_{\eta ^{\frown}(i)} \subseteq A_{\eta}, \forall i \in \{0, 1\}, \forall k \in \{0, ..., k_{**} 1\}$
- 2. $A_{\eta \frown \langle 0 \rangle} \cap A_{\eta \frown \langle 1 \rangle} = \emptyset$, $\forall k \in \{0, ..., k_{**} 1\}$
- 3. $|A_n| = m_k, \forall k \in \{0, ..., k_{**}\}$
- 4. $b_{\eta} \in G$ witnessing that A_{η} is not f-indivisible, $\forall k \in \{0, ..., k_{**} 1\}$
- 5. $A_{\eta \frown \langle i \rangle} \subseteq A_{\eta}^{(i)} = \{ a \in A_{\eta} \mid aRb_{\eta} \equiv (i = 1) \}, \ \forall \in \{0, 1\}, \ \forall k \in \{0, \dots, k_{**} 1 \}$

Let's prove the induction. For k=0, consider any $A_{\langle\cdot\rangle}\subseteq A$, satisfying $|A_{\langle\cdot\rangle}|=m_0$, and any $b_{\langle\cdot\rangle}$ witnessing the non-f-indivisibility of $A_{\langle\cdot\rangle}$. For k>0 we can assume by hypothesis that A_{η} , with $|A_{\eta}|=m_k$, is not f-indivisible. Thus, there exists b_{η} such that $A_{\eta}^{(i)}\geq f(m_k)\geq m_{k+1}$ (4.), and we can choose $A_{\eta^\frown\langle i\rangle}\subseteq A_{\eta}^{(i)}$ (5.), such that $|A_{\eta^\frown\langle i\rangle}|=m_{k+1}$ $\forall i\in\{0,1\}$ (3.). 1. and 2. are satisfied by the definition of $A_{\eta}^{(i)}$. Now, for all η such that $|\eta|=k_{**}$, consider some element $a_{\eta}\in A_{\eta}$, which exists since $m_{\ell}>0$ for all ℓ . Then, we have two sequences $\langle b_{\eta}\mid \eta\in\{0,1\}^{< k_{**}}\rangle$ and $\langle a_{\eta}\mid \eta\in\{0,1\}^{k_{**}}\rangle$ satisfying the k_{**} -tree property: for all $\rho\in\{0,1\}^{< k_{**}}$ and $\eta\in\{0,1\}^{k_{**}}$ if given $\ell\in\{0,1\}$ we have $\rho^\frown\langle\ell\rangle$ $\leq \eta$ then $(a_{\eta}Rb_{\rho})\equiv(\ell=1)$ since $a_{\eta}\in A_{\eta}\subseteq A_{\rho^\frown\langle i\rangle}$. This contradicts the k_{**} tree bound.

The previous proof can be iteratively used to partition the graph into indivisible parts, with a small reminder. As the average condition cares about the ordering, we define the partition as a tuple instead of a family of sets, and fix an ascending order on the size of the parts.

Lemma 4.13 (Claim 4.4 + 4.5). Let G be a finite graph with the non- k_* -order property and $f: \mathbb{R} \longrightarrow \mathbb{R}$ a function such that $x \geq f(x)$. Let $\{m_\ell \mid \ell \in \{0, ..., k_{**}\}\}$ be a sequence of non-zero natural numbers such that for all $\ell \in \{0, ..., k_{**} - 1\}$, $f(m_\ell) \geq m_{\ell+1}$. If $A \subseteq G$ with |A| = n, then we can find a sequence $\overline{A} = \langle A_j \mid j \in \{1, ..., j(*)\} \rangle$ and reminder $B = A \setminus \bigcup \overline{A}$ such that:

- 1. For each $j \in \{1, ..., j(*)\}$, A_i is f-indivisible.
- 2. For each $j \in \{1, ..., j(*)\}, |A_j| \in \{m_0, ..., m_{k_{**}-1}\}.$
- 3. $A_i \subseteq A \setminus \bigcup \{A_i \mid i < j\}$, in particular $A_i \cap A_i = \emptyset \ \forall i \neq j$.
- 4. $|B| < m_0$.
- 5. \overline{A} is \leq -increasing.

Proof. Iteratively, apply Lemma 4.12 to the remainder $A \setminus \bigcup \{A_i \mid i < j\}$ (3.) to get an f-indivisible A_j (1.) of size m_ℓ , $\ell \in \{0, ..., k_{**} - 1\}$ (2.) until less then m_0 vertices are available (4.). To conclude, reorder the indices of the A_i 's in ascending size order (5.).

Finally, we ensure the pairs satisfy the average condition by simply requiring a minimal size of the parts, a condition that can be easily integrated in the definition of the sequence of integers.

Lemma 4.14 (Claim 4.10). Let G be a finite graph with the non- k_* -order property. Let $\{m_\ell \mid \ell \in \{0, \dots, k_{**}\}\}$ be a sequence of non-zero natural numbers such that $n \ge m_0$ and for all $\ell \in \{0, \dots, k_{**} - 1\}$, $\lfloor m_\ell^\epsilon \rfloor = m_{\ell+1}$, for some $\epsilon \in (0, \frac{1}{2})$ such that $2 < (m_{k_{**}-1})^{1-2\epsilon}$. If $A \subseteq G$ with |A| = n, then we can find a sequence $\overline{A} = \langle A_i \mid i \in \{1, \dots, i(*)\} \rangle$ and reminder $B = A \setminus \bigcup \overline{A}$ satisfying:

Last condition can be changed (and probably should) for a condition on $m_{k_{**}}$

- 1. For each $i \in \{1, ..., i(*)\}$, A_i is ϵ -indivisible.
- 2. For each $i \in \{1, ..., i(*)\}, |A_i| \in \{m_0, ..., m_{k_{**}-1}\}.$
- 3. $A_i \cap A_i = \emptyset$ for all $i \neq j$.
- 4. $|B| < m_0$.
- 5. \overline{A} is <-increasing.
- 6. If $\zeta \in (0, \epsilon^{k_{**}})$ then for every $i, j \in \{1, ..., i(*)\}$ with i < j, $A \subseteq A_i$ ad $B \subseteq A_j$ such that $|A| \ge |A_i|^{\epsilon + \zeta}$ and $|B| \ge |A_i|^{\epsilon + \zeta}$ we have that:

$$\frac{|\{(a,b)\in(A,B)\mid aRb\equiv\neg t(A_i,A_j)\}|}{|A\times B|}\leq \frac{1}{|A_i|^\zeta}+\frac{1}{|A_j|^\zeta}$$
$$\leq \frac{1}{|A|^\zeta}+\frac{1}{|B|^\zeta}$$

Proof. The five points are direct consequence of Lemma 4.13, setting $f(x) = x^{\epsilon}$. Now, by 2., for any $A_i, A_j \in \overline{A}$ with i < j there is some $\ell \in \{0, \dots, k_{**} - 1\}$ such that $|A_i| \le |A_j| = m_{\ell}$. Also, it follows the condition $2 < (m_{k_{**}-1})^{1-2\epsilon}$ and Remark 4.11 that the pair (A_i, A_j) satisfies the average condition. Finally, notice that $\epsilon^{k_{**}} < \epsilon < 1 - \epsilon$ since $\epsilon \in (0, \frac{1}{2})$, so that $\zeta \in (0, \epsilon^{k_{**}}) \subseteq (0, 1 - \epsilon)$ and the condition for Lemma 4.8 is satisfied. This gives us 6. and concludes the proof of the statement.

Maybe merge the last two lemmas?

Remark 4.15. For sufficiently small ϵ , the condition $2<(m_{k_{**}-1})^{1-2\epsilon}$ is almost, trivial. For example, if $\epsilon<\frac{1}{4}$, then we are just requiring that $m_{k_{**}-1}\geq 4$.

Hehe, "partition indivisible sets", sona contradictiu. As stated earlier, the principal drawback of the previous result is that the obtained partition is not equitable. To deal with this, we study the event of randomly partitioning a pair of indivisible sets into subparts of equal size. We prove that the event of a pair of subparts of the refinement being either fully connected or completely empty, is satisfied with very high probability.

Definition 4.16. Let A, B be f-indivisible sets with $f(A)f(B) < \frac{1}{2}|B|$. Let $\langle A_i \mid i \in \{1, \dots, i_A\} \rangle$ be a partition of A with $|A_i| = m$ for all $i \in \{1, \dots, i_A\}$ and $\langle B_i \mid i \in \{1, \dots, i_B\} \rangle$ be a partition of B with $|B_i| = m$ for all $i \in \{1, \dots, i_B\}$. We define $\varepsilon_{A_i, A_i, m}^+$ as the event:

$$\forall a \in A_i \ \forall b \in B_i, aRb = t(A, B)$$

Lemma 4.17 (Claim 4.13). Let G be a finite graph with the non- k_* -order property. Let $\langle m_\ell \mid \ell \in \{0, \dots, k_{**}\} \rangle$ be a sequence of non-zero natural numbers such that $n \geq m_0 \geq n^\epsilon$ and for all $\ell \in \{0, \dots, k_{**} - 1\}$, $m_\ell^\epsilon = m_{\ell+1}$, for some $\epsilon \in (0, \frac{1}{2})$ such that $2 < (m_{k_{**}-1})^{1-2\epsilon}$. Let $A_1, A_2 \subseteq G$ be two ϵ -indivisible subsets such that $|A_1| = m_{\ell_1}$ and $|A_2| = m_{\ell_2}$ for some $\ell_1, \ell_2 \in \{0, \dots, k_{**} - 1\}$ and $|A_1| \leq |A_2|$. Let $c \in (0, 1 - \epsilon)$ and $\zeta \leq \frac{1-\epsilon-c}{3}\epsilon^{k_{**}}$ such that $m := n^\zeta$ divides $|A_1|$ and $|A_2|$. Then, let $\langle A_{1,s} \mid s \in \{1, \dots, \frac{|A_1|}{m}\} \rangle$ and $\langle A_{2,t} \mid t \in \{1, \dots, \frac{|A_2|}{m}\} \rangle$ be random partitions of A_1 and A_2 respectively, with pieces of size m. We have that

$$P(\varepsilon_{A_{1,s},A_{2,t},m}^+) \ge 1 - \frac{2}{n^{c\epsilon^{k**}}}$$

Should be mentioned that this is a strong limitation which is not mentioned in the original paper, but required for the calculations (sin hacer trampa).

Here we have enforced the equality. Should be commented that this is easily achievable as we do in the next re-

Proof. Fix $s \in \frac{|A_1|}{m}$, $t \in \frac{|A_2|}{m}$. It follows from the condition $2 < (m_{k_{**}-1})^{1-2\epsilon}$ and Remark 4.11 that the pair (A_1,A_2) satisfies the average condition. Let $U_1 = \{a \in A_1 \mid |\{b \in A_2 \mid aRb \equiv \neg t(A_1,A_2)\}| \geq |A_2|^\epsilon\}$ and for each $a \in A_1 \setminus U_1$ let $U_{2,a} = \{b \in A_j \mid aRb \equiv \neg t(A_1,A_2)\}$. By Lemma 4.4, $|U_1| \leq |A_1|^\epsilon$ and $\forall a \in A_1 \setminus U_1$, $|U_{2,a}| \leq |A_2|^\epsilon$. Now, given $\{1,\dots,\frac{|A_1|}{m}\}$, we can bound the probability P_1 that $A_{1,s} \cap U_1 \neq \emptyset$ as follows:

$$\begin{split} P_1 &\leq \frac{|U_1|}{|A_1|} + \dots + \frac{|U_1|}{|A_1| - m + 1} < \frac{m|U_1|}{|A_1| - m} \leq \frac{m|A_1|^{\epsilon}}{|A_1| - m} \\ &\leq \frac{m^2|A_1|^{\epsilon}}{|A_1|} = \frac{m^2}{|A_1|^{1 - \epsilon}} = \frac{m^2}{m_0^{(1 - \epsilon)\epsilon^{\ell_1}}} \leq \frac{n^{2\zeta}}{n^{(1 - \epsilon)\epsilon^{\ell_1 + 1}}} \\ &\leq \frac{n^2 \frac{1 - \epsilon - c}{3}\epsilon^{k + \epsilon}}{n^{(1 - \epsilon)\epsilon^{k + \epsilon}}} \leq \frac{n^{(1 - \epsilon - c)\epsilon^{k + \epsilon}}}{n^{(1 - \epsilon)\epsilon^{k + \epsilon}}} = \frac{1}{n^{c\epsilon^{k + \epsilon}}} \end{split}$$

The forth inequality comes from the fact that $\frac{(|A_i|-m)m}{|A_i|} \geq 1$. Then, if $A_{1,s} \cap U_1 = \emptyset$, we have that $|\bigcup_{a \in A_{1,s}} U_{2,a}| \leq |A_{1,s}| |A_2|^\epsilon$. So, given $\left\{1,\dots,\frac{|A_2|}{m}\right\}$, we can bound P_2 , the probability that $A_{2,t} \cap \bigcup_{a \in A_{1,s}} U_{2,a} \neq \emptyset$, by:

$$\begin{split} P_2 & \leq \frac{|\bigcup_{a \in A_{1,s}} U_{2,a}|}{|A_2|} + \dots + \frac{|\bigcup_{a \in A_{1,s}} U_{2,a}|}{|A_2| - m + 1} < \frac{m|\bigcup_{a \in A_{1,s}} U_{2,a}|}{|A_2| - m} \leq \frac{mm|A_2|^{\epsilon}}{|A_2| - m} \\ & \leq \frac{m^3|A_2|^{\epsilon}}{|A_2|} = \frac{m^3}{|A_2|^{1-\epsilon}} = \frac{m^3}{m_0^{(1-\epsilon)\epsilon^{\ell_2}}} \leq \frac{n^{3\zeta}}{n^{(1-\epsilon)\epsilon^{\ell_2+1}}} \\ & \leq \frac{n^{3\frac{1-\epsilon-c}{3}}\epsilon^{k**}}{n^{(1-\epsilon)\epsilon^{k**}}} \leq \frac{n^{(1-\epsilon-c)\epsilon^{k**}}}{n^{(1-\epsilon)\epsilon^{k**}}} = \frac{1}{n^{c\epsilon^{k**}}} \end{split}$$

Putting it all together:

$$P(\varepsilon_{A_{1,s},A_{2,t},m}^+) \geq (1-P_1)(1-P_2) \geq (1-\frac{1}{n^{c\epsilon^{k_{**}}}})^2 \geq 1-\frac{2}{n^{c\epsilon^{k_{**}}}}$$

Remark 4.18. The condition on the size of m_0 , which is both an upper and lower bound, is very strong and will be carried over up to Theorem 4.21. The greater limitations of this resides in the fact that the size of the parts of the resulting partition m_{**} is set by the size of m_0 , and thus inherits the same limitations.

Now, since the event of a given subpair not satisfying the desired property is very unlikely, it can be easily proven that a random refinement of the partition given by Lemma 4.13 only has a small number of exceptional pairs.

Lemma 4.19 (Claim 4.14). Let G be a finite graph with the non- k_* -order property. Let $\langle m_\ell \mid \ell \in \{0, \dots, k_{**}\} \rangle$ be a sequence of non-zero natural numbers such that for all $\ell \in \{0, \dots, k_{**} - 1\}$, $m_\ell^\epsilon = m_{\ell+1}$, for some $\epsilon \in (0, \frac{1}{2})$ such that $2 < (m_{k_{**}-1})^{1-2\epsilon}$. Also, suppose m_0 satisfies $n^\epsilon \le m_0 < \min(\frac{\sqrt{2}-1}{\sqrt{2}}n, \frac{n}{n^{c\epsilon^{k_{**}}}})$, with $c \in (0, 1-\epsilon)$. Finally, let m_{**} be a divisor of m_ℓ for all $\ell \in \{0, \dots, k_{**} - 1\}$ and $m_{**} \le n^{\frac{1-\epsilon-c}{3}\epsilon^{k_{**}}}$. If $A \subseteq G$ with |A| = n, then we can find a partition $\overline{A} = \langle A_i \mid i \in \{1, \dots, r\} \rangle$ with reminder $B = A \setminus \bigcup_{i \in \{1, \dots, r\}} A_i$ such that:

1.
$$|A_i| = m_{**}$$
 for all $i \in \{1, ..., r\}$.

2. For all but $\frac{2}{n^{c_{\epsilon}k_{**}}}r^2$ of the pairs (A_i, A_j) with i < j there are no exceptional edges, i.e.

$$\{(a,b)\in A_i\times A_i\mid aRb\not\equiv t(A_i,A_i)\}=\emptyset$$

3.
$$|B| < m_0$$

Proof. We can use Lemma 4.13 to get a partition $\overline{A'} = \langle A'_i \mid i \in \{1, \dots, i(*)\} \rangle$ and remainder $B' = A \setminus \bigcup A'$. We can refine the partition by randomly splitting each A'_i into pieces of size m_{**} (1.). Consider the resulting partition $\overline{A} = \langle A_i \mid i \in \{1, \dots, r\} \rangle$ with remainder B = B' (3.). First of all, notice that for each pair (A_i, A_j) such that $A_i \subseteq A'_{i_1}$ and $A_j \subseteq A'_{j_1}$ with $i_1 \neq j_1$, the probability of the pair having exceptional edges is upper bounded by $\frac{2}{n^{ce^{K**}}}$. This follows Lemma 4.17. Thus, given X the random variable counting the number of exceptional pairs of this kind, we have

$$\mathbb{E}(X) = \sum_{\substack{A_i, A_j \text{ s.t.} \\ A_i \subseteq A'_{i_1}, A_j \subseteq A'_{j_1} \\ i_1 \neq j_1}} \mathbb{E}(X_{A_i, A_j}) = \sum_{\substack{A_i, A_j \text{ s.t.} \\ A_i \subseteq A'_{i_1}, A_j \subseteq A'_{j_1} \\ i_1 \neq j_1}} P(\varepsilon_{A_i, A_j, m_{**}}) \le \frac{r^2}{2} \frac{2}{n^{c\epsilon^{k_{**}}}}$$

where X_{A_i,A_j} is the random variable giving 1 if (A_i,A_j) is exceptional, and 0 otherwise. Since the expectation is an average, for some refinement \overline{A} of $\overline{A'}$ we have that the number of exceptional pairs when $i_1 \neq j_1$ is at most $\frac{r^2}{n^{c\epsilon^{k}**}}$. Now, we have no control if $i_1 = j_1$, so let's bound how many of these we have:

$$\begin{split} \left| \left\{ \text{Exceptional } (A_i, A_j) \mid A_i, A_j \subseteq A'_{i_1}, i_1 \in \{1, \dots, i(*)\} \right\} \right| &\leq \left(\frac{\frac{m_0}{m_{**}}}{2}\right) \frac{n}{m_0} \\ &\leq \frac{\left(\frac{m_0}{m_{**}}\right)^2}{2} \frac{n}{m_0} = \frac{m_0 n}{2m_{**}^2} = \frac{m_0}{n} \left(\frac{n}{\sqrt{2}m_{**}}\right)^2 \\ &\leq \frac{m_0}{n} \left(\frac{n-m_0}{m_{**}}\right)^2 \leq \frac{m_0}{n} r^2 < \frac{r^2}{n^{cc^k**}} \end{split}$$

Notice that the third inequality comes after the condition $m_0 \leq \frac{\sqrt{2}-1}{\sqrt{2}}n$. Putting it all together, we see that the number of exceptional pairs is upper bounded by $\frac{2r^2}{n^{ce^{k_{**}}}}$ satisfying 2..

Remark 4.20 (Remark 4.15). In the previous proof, the condition $m_0 < \frac{n}{n^{c\epsilon^{k**}}}$ can be weakened at the cost of increasing the number of exceptional pairs. More specifically, since this condition is only used to bound the exceptional sub-pairs in the same pair (the second part of the proof), the number of exceptional pairs can be generally bounded by

$$|\{\text{Exceptional pairs}\}| \le \left(\frac{m_0}{n} + \frac{2}{n^{c\epsilon^{k_{**}}}}\right) r^2$$

We now resume the previous results in a theorem with minimal conditions.

Theorem 4.21 (Theorem 4.16). Let $\epsilon = \frac{1}{r} \in (0, \frac{1}{2})$ with $r \in \mathbb{N}$ (this avoids rounding errors), $c \in (0, 1-\epsilon)$ and k_* be given. Let G be a finite graph with the non- k_* -order property. Let $A \subseteq G$ with |A| = n, and $n > 2^{\frac{r^{k_**}}{1-2\epsilon}}$. Then, for any $m_{**} \in \left[n^{\frac{(1-\epsilon-c)}{3}\epsilon^{k_{**}+1}}, (\frac{\sqrt{2}-1}{\sqrt{2}})^{\frac{1-\epsilon-c}{3}\epsilon^{k_{**}}}n^{\frac{(1-\epsilon-c)}{3}\epsilon^{k_{**}}-\frac{(1-\epsilon-c)c}{3}\epsilon^{2k_{**}}}\right]$, there is a partition $\overline{A} = \langle A_i \mid i \in \{1, ..., m\} \rangle$ of A with remainder $B = A \setminus \bigcup \overline{A}$ such that:

 $\frac{3}{(1-c)}r^{k*}$

1. $|A_i| = m_{**}$ for all $i \in \{1, ..., m\}$.

- 2. $|B| < m_{**}^{\frac{3}{(1-\epsilon-c)}r^{k_{**}}}$.
- 3. $\left| \left\{ (i,j) \mid i,j \in \{1,...,m\}, i < j \text{ and } \{(a,b) \in A_i \times A_j \mid aRb\} \notin \{A_i \times A_j,\emptyset\} \right\} \right| \leq \frac{2}{n^{c_c k_{**}}} m^2$

Proof. Let $m_{k_{**}}=m_{**}^{\frac{3}{1-\epsilon-c}}$, and consider the sequence

$$m_{**} \leq m_{k_{**}} < \cdots < m_0$$

such that for all $\ell \in \{1, ..., k_{**}\}$ we have that $m_{\ell-1} = m_{\ell}^r$. Notice that:

- 1. m_{**} divides m_{ℓ} for all $\ell \in \{0, ..., k_{**}\}$ since the m_{ℓ} 's are powers of $m_{k_{**}}$ and m_{**} divides $m_{k_{**}}$ by construction.
- 2. $(m_{\ell-1})^{\epsilon}=m_{\ell}$ for all $\ell\in\{1,\ldots,k_{**}\}$, by construction.
- 3. $m_{**} \leq n^{\frac{1-\epsilon-c}{3}\epsilon^{k_{**}}}$, by choice of m_{**} .
- 4. $m_0 = m_{**}^{\frac{3}{1-\epsilon-c}r^{k_{**}}}$, so on one hand

$$m_0 = m_{**}^{\frac{3}{1-\epsilon-c}r^{k**}} \ge n^{\frac{1-\epsilon-c}{3}\epsilon^{k**}+1} \frac{3}{1-\epsilon-c}r^{k**} \ge n^{\epsilon}$$

and on the other hand,

$$m_0 = m_{**}^{\frac{3}{1-\epsilon-c}r^{k_{**}}} \le (\frac{\sqrt{2}-1}{\sqrt{2}})n^{1-c\epsilon^{k_{**}}}$$

and thus n is both smaller than $(\frac{\sqrt{2}-1}{\sqrt{2}})n$ and smaller than $n^{1-c\epsilon^{k_{**}}}$.

5.
$$m_{k_{**}-1} = m_{**}^{\frac{3}{1-\epsilon-c}r} \ge n^{\epsilon^{k_{**}}} > 2^{\frac{1}{1-2\epsilon}}$$
.

So, all the conditions of Lemma 4.19 are satisfied, and we can use it to get a partition \overline{A} with remainder B satisfying the statement. Notice that 2. is satisfied by the fact that $|B| < m_0 \le m_{**}^{\frac{3}{(1-\epsilon-c)}r^{k_{**}}}$.

Remark 4.22. Some notes on the partition obtained in the previous theorem:

- With any choice of c and m_{**} , the fraction of exceptional pairs is asymptotically small, but we obtain very small parts, that is, $m_{**} \approx n^{\epsilon^{k_{**}}}$.
- A smaller value of c results in larger parts and smaller reminder, at the cost of a larger fraction of exceptional pairs.
- The window of choice of m_{**} is very small, and taking a larger value (in the given interval), results in a strongly larger reminder. The edge case of choosing m_{**} as the larger value, results in the bound on the size of the reminder becoming $|B| < \frac{\sqrt{2}-1}{\sqrt{2}} n^{1-\epsilon^{k_{**}}}$.

Next, we will follow another approach to obtain an equitable partition. That is, we prove a result similar to that of Lemma 4.12, but this time the size of the resulting quasi-random set can be chosen in advance. The resulting Lemma 4.26 has also the advantage that the associated quasi-random property is f_c -indivisibility, where f_c is the constant function $f_c(x) = c$, which is much stronger then ϵ -indivisibility as the bound on the number of exceptions is constant.

To prove this result, we use a probabilistic argument, and show that the event of there existing a subset which has intersection smaller than c with every $\overline{B}_{A,b}$ (Definition 4.23) is highly probable under some very specific conditions (Lemma 4.24).

Definition 4.23 (Definition 4.18). For $n, c \in \mathbb{N}$ and $\epsilon, \zeta, \xi \in \mathbb{R}$, let $\oplus [n, \epsilon, \zeta, \xi, c]$ be the statement: For any set A and family of subsets $P \subseteq \mathcal{P}(A)$ such that |A| = n and $|P| \le n^{\frac{1}{\zeta}}$, and for all $B \in P$ with $|B| \le n^{\epsilon}$, there exists $U \subseteq A$ with $|U| = \lfloor n^{\xi} \rfloor$ such that for all $B \in P$, $|U \cap B| \le c$.

Lemma 4.24 (Lemma 4.19). If the reals ϵ , ζ , ξ satisfy $\epsilon \in (0,1)$, $\zeta > 0$ and $0 < \xi < \frac{1}{2}$, the natural number n is sufficiently large $(n > N(\epsilon, \zeta, \xi, c))$ to satisfy the equation

$$\frac{1}{2n^{1-2\xi}} + \frac{1}{n^{(1-\xi-\epsilon)c-\frac{1}{\zeta}}} < 1 \tag{2}$$

and $c > \frac{1}{\zeta(1-\xi-\epsilon)}$, then $\oplus [n, \epsilon, \zeta, \xi, c]$ holds.

Proof. First of all, notice that the condition on c implies that $(1 - \xi - \epsilon) > 0$, and thus $\xi < 1 - \epsilon$. Let $m = \lfloor n^{\xi} \rfloor$ be the size of the set U we want to build, and let $\mathcal{F}_* = [A]^m$ the set of sequences of elements of A with length m. Let μ be a probability distribution on \mathcal{F}_* such that for all $F \in \mathcal{F}_*$, $\mu(F) = \frac{|F|}{|\mathcal{F}_*|}$. We want to prove that the probability that a random U satisfies:

- 1. All elements of U are distinct.
- 2. For all $B \in P$, $|U \cap B| < c$.

is non-zero. First of all let's bound the converse of 1., i.e. the probability that there are two equal elements in U:

$$P_1 = P(\exists s < t \in [m] \mid U_s = U_t) \le \binom{m}{2} \frac{n}{n^2} \le \frac{m^2}{2n} \le \frac{n^{2\xi}}{2n} < \frac{1}{2n^{1-2\xi}}$$

Now, in order to bound 2., let's first bound the probability that at least c elements of U are in a given $B \in P$:

$$P_B = P(\exists^{\geq c} t \in [m] \mid U_t \in B) \le \binom{m}{c} \left(\frac{|B|}{n}\right)^c \le \frac{m^c |B|^c}{n^c} \le \frac{n^{\xi c} n^{\epsilon c}}{n^c} = \frac{1}{n^{c(1-\xi-\epsilon)}}$$

Then, we can bound the converse of 2., i.e. the probability that this happens for some $B \in P$, by:

$$P_2 = P(\exists B \in P \mid \exists^{\geq c} t \in [m], U_t \in B) \leq \sum_{B \in P} P_B = \frac{|P|}{n^{c(1-\xi-\epsilon)}} \leq \frac{1}{n^{c(1-\xi-\epsilon)-\frac{1}{\zeta}}}$$

Putting it all together, we have that

$$P((1.) \cup (2.)) \le P_1 + P_2 < \frac{1}{2n^{1-2\xi}} + \frac{1}{n^{c(1-\xi-\epsilon)-\frac{1}{\zeta}}}$$

Notice that

- Since $\xi < \frac{1}{2}$ we have that $1 2\xi > 0$.
- $c(1-\xi-\epsilon)-\frac{1}{\zeta}>0$.

so, the n-large enough condition (2) is well defined and

$$P((1.) \cup (2.)) < \frac{1}{2n^{1-2\xi}} + \frac{1}{n^{c(1-\xi-\epsilon)-\frac{1}{\zeta}}} < 1$$

holds. We conclude that the probability that there exists a $U \subseteq A$ satisfying the condition is non-trivial, and $\oplus [n, \epsilon, \zeta, \xi, c]$ holds.

Remark 4.25. In the context of the condition $c>\frac{1}{\zeta(1-\xi-\epsilon)}$ from the previous lemma, we note that the lower bound on c increases as ξ and ϵ grow, and as ζ decreases.

A similar pattern is also followed by the large enough condition of n given by Equation (2). For the condition to be met, n needs to grow as the exponents $1-2\xi$ and $(1-\xi-\epsilon)c-\frac{1}{\zeta}$ become smaller. That is, the lower bound on n becomes larger as ξ and ϵ grow, and as ζ and ϵ decrease.

Lemma 4.26 (Claim 4.21). Let $k_*, c \in \mathbb{N}$ and $\epsilon, \xi \in \mathbb{R}$ such that:

- 1. G is a graph with the non- k_* -order property.
- 2. $\epsilon \in (0, \frac{1}{2}]$.
- 3. $\xi \in (0, \frac{\epsilon^{k_{**}}}{2}).$
- 4. c satisfies

$$c > \frac{1}{\frac{1}{k_*} \left(1 - \frac{\xi}{\epsilon^{k_{**}}} - \epsilon\right)}$$

Then, for every sufficiently large $n \in \mathbb{N}$ (it suffices that $n > g_{\epsilon}^{k_{**}}(N_{4.24}(\epsilon, \frac{1}{k_*}, \frac{\xi}{\epsilon^{k_{**}}}, c))$, where $g_{\epsilon}(x) = (x+1)^{\frac{1}{\epsilon}}$), if $A \subseteq G$ with |A| = n, there is $Z \subseteq A$ such that

- (a) $|Z| = |n^{\xi}|$.
- (b) Z is f_c -indivisible in G.

Proof. Let $n=m_0>m_1>\dots>m_{k_{**}}$ with $m_\ell=\left\lfloor m_{\ell-1}^\epsilon\right\rfloor\geq g_\epsilon^{-1}(m_{\ell-1})\geq g_\epsilon^{-\ell}(n)$. Then, $m_\ell\geq m_{\ell+1}$ and we can use Lemma 4.12 to get an ϵ -indivisible subset $A_1\subseteq A$, with $|A_1|=m_\ell$ for some $\ell\in\{0,\dots,k_{**}-1\}$. Notice that:

- $\epsilon \in (0, 1)$ by 2..
- We can set $\zeta := \frac{1}{k_*} > 0$.
- By 3., $0 < \frac{\xi}{\epsilon^{\ell}} \le \frac{\xi}{\epsilon^{k_{**}}} < \frac{1}{2}$.
- For all $\ell \in \{0, ..., k_{**}\}$, m_{ℓ} is sufficiently large:

$$m_{\ell} \geq g_{\epsilon}^{-\ell}(n) \geq g_{\epsilon}^{-k_{**}}(n) > N_{4.24}(\epsilon, \frac{1}{k_{*}}, \frac{\xi}{\epsilon^{k_{**}}}, c) > N_{4.24}(\epsilon, \zeta, \frac{\xi}{\epsilon^{\ell}}, c)$$

•
$$c > \frac{1}{\frac{1}{k_*}(1 - \frac{\xi}{ck_{**}} - \epsilon)} = \frac{1}{\zeta(1 - \frac{\xi}{ck_{**}} - \epsilon)}$$
, by 4...

Conditions of Lemma 4.24 are met, so $\oplus [m_\ell, \epsilon, \zeta, \frac{\xi}{\epsilon^\ell}]$ (as defined in Definition 4.23) holds. We can take $A_{(4.23)}$ and $P_{(4.23)}$ to be A_1 and $P := \{\overline{B}_{A_1,b} \mid b \in G\}$ respectively, which satisfy:

- $|A_1| = m_\ell$.
- $|P| \le m_{\ell}^{k_*} = m_{\ell}^{\frac{1}{\zeta}}$, where first inequality follows 2. of Corollary 3.12.
- $\forall B \in P$, $|B| \leq |A_1|^{\epsilon}$ by ϵ -indivisibility of A_1 .

Thus, by Definition 4.23 we have that there exists $Z \subseteq A_1$ such that:

- $|Z| = \lfloor m_{\ell}^{\frac{\xi}{\ell}} \rfloor = \lfloor n^{\epsilon^{\ell} \frac{\xi}{\epsilon^{\ell}}} \rfloor = \lfloor n^{\xi} \rfloor$ satisfying a...
- Z is f_c -indivisible since $|B \cap Z| \le c$ for all $B \in P$, satisfying b..

This proves the statement.

We now use the previous result to build an equitable partition. Similarly to Lemma 4.13, we will iteratively extract an f_c -indivisible set from the reminder using Lemma 4.26, until the sufficiently large condition holds.

Theorem 4.27 (Theorem 4.23). Let G be a graph with the non- k_* -property. For any $\epsilon \in (0, \frac{1}{2}]$, $\xi \in (0, \frac{\epsilon^{k_{**}}}{2})$ and $c > \frac{k_*}{1 - \frac{\xi}{\epsilon^{k_{**}}} - \epsilon}$, any $A \subseteq G$ with |A| = n has a partition $\overline{A} = \langle A_i \mid i \in \{1, ..., i(*)\} \rangle$ of A with remainder $B = A \setminus \bigcup_{i \in \{1, ..., i(*)\}} A_i$ satisfying:

- $|A_i| = |n^{\xi}|$ for all $i \in \{1, ..., i(*)\}$.
- A_i is f_c -indivisible for all $i \in \{1, ..., i(*)\}$, where $f_c(x) = c$ is a constant function.
- $|B| \leq N := g_{\epsilon}^{k_{**}} (N_{4.24}(\epsilon, \frac{1}{k_*}, \frac{\xi}{\epsilon^{k_{**}}}, c))$ where $g_{\epsilon}(x) = (x+1)^{\frac{1}{\epsilon}}$.

Proof. We will build a sequence of disjoint f_c -indivisible subsets A_i by induction on i as follows. Let $R_i = A \setminus \bigcup_{j < i} A_j$ (so $R_1 = A$). At each step, if $|R_i| > N$, we can apply Lemma 4.26 to R_i with the values f_c , ϵ and ξ of the statement of this theorem, to obtain a f_c -indivisible subset A_i of R_i of size $\lfloor n^{\xi} \rfloor$ which will be disjoint with all A_j with j < i. Otherwise, we stop and let $\overline{A} = \langle A_j \mid j < i = i(*) \rangle$ and $B = R_i$. By the case hypothesis, $|B| = |R_i| \leq N$, and we are done.

Remark 4.28. Some notes on the partition obtained in the previous theorem:

- The partition is exceptionally quasi-random, and the number of exceptional edges in each pair of parts and subparts is strongly bounded as shown by Corollary 4.10.
- As the upper bound on the size of the remainder is constant with respect to the size of the graph n, the remainder as a fraction of the total graph can be made as small as possible (but not completely avoided). If we want the remainder to be at most $\frac{1}{x}$ of the total graph, we can simply impose $n \ge x \cdot N$, and we are done.
- The parts are exponentially smaller then the size of the graph. Hence, the number of parts grows with the size of the graph, which is actually the principal drawback of this theorem. This will be solved in the partition studied in Section 5.

5. Section 5

This section focuses in leveraging the stability of a graph to create a stable partition which maximum number of parts does not grow with the size of the graph. In order to do so, we first prove the existence of a partition which parts satisfy a property which we prove stronger then regularity: *excellence*. We proceed to formalize this concept.

Definition 5.1 (Definition 5.2(a)). Let G be a finite graph with the non- k_* -property. We say that $A \subseteq G$ is ϵ -good when for every $b \in G$ the truth value $t = t(b, A) \in \{0, 1\}$ satisfies $|\overline{B}_{A,b}| = |\{a \in A \mid aRb \not\equiv t\}| < \epsilon |A|$.

Definition 5.2 (Definition 5.2(b)). Let G be a finite graph with the non- k_* -property. We say that $A \subseteq G$ is (ϵ, ζ) -excellent when A is ϵ -good and, if B is ζ -good, then the truth value t = t(B, A) satisfies $|\{a \in A \mid t(a, B) \neq t(A, B)\}| < \epsilon |A|$. In particular, we say A is ϵ -excellent if A is (ϵ, ϵ) -excellent.

We now make some observations about these two properties.

Remark 5.3. For comparison with the properties studied in the previous section, a set being ϵ -good is equivalent to the set being f-indivisible with $f(n) = \epsilon n$, while ϵ -indivisibility is a much stronger condition then ϵ -goodness, as for large enough n, we have that $n^{\epsilon} < \epsilon n$.

On the other hand, ϵ -excellence carries some kind of reciprocity with other good (and in particular, excellent) sets, which makes it particularly suitable for studying quasi-randomness between pairs of sets. While independence and goodness only bound the number of exceptions with each vertex of the graph independently, excellence of a set A also ensures that the truth values of each of its vertex with respect to each good set in the graph remains mostly the same. ?? shows an example of an ϵ -good set that, as it does not satisfy this reciprocity condition with another good set, it is not ϵ -excellent.

Remark 5.4. If $A, B \subseteq G$ are two (not necessarily disjoint) subsets of vertices with A (ϵ, ϵ')-excellent and B ϵ' -good set, then the number of exceptional edges between A and B, i.e. these vertex pairs that do not follow t(A, B), is relatively small:

|{Exceptional edges between A and B}|
$$< \epsilon |A||B| + (1-\epsilon)|A|\epsilon'|B| = (\epsilon + (1-\epsilon)\epsilon')|A||B|$$

A relevant example is that of two disjoint ϵ -excellent sets, in which case we have that the fraction of exceptional edges between them is less than 2ϵ . If they are not disjoint, we can still use the same reasoning to conclude that the fraction of exceptional edges is less than $2\epsilon \frac{|A||B|}{e(A,B)} < 8\epsilon$, since $e(A,B) > \frac{|A||B|}{4}$.

Remark 5.5. A final important remark, is the fact that differently then most quasi-random properties, ϵ -excellence is not monotonic. That is, in general, for $\epsilon < \epsilon'$, a set being ϵ -excellent does not imply it being also ϵ' -excellent (and trivially neither the converse). See **??** for a counter example to the monotonicity of this property.

On the other hand, the non-symmetric (ϵ, ϵ') -excellence satisfies some sort of monotonicity. That is, if a given set is $(\epsilon_1, \epsilon'_1)$ -excellent, then it is also $(\epsilon_2, \epsilon'_2)$ -excellent for all $\epsilon_1 \leq \epsilon_2$ and $\epsilon'_1 \geq \epsilon'_2$, since restricting the condition on the goodness of the relevant good sets $(\epsilon'_1 \text{ to } \epsilon'_2)$ takes less of such sets into account, and relaxing the condition on the "exceptional truth values" $(\epsilon_1 \text{ to } \epsilon_2)$ only enlarges the error accepted.

The first step towards constructing a partition of sets with such property, is to prove their existence under the stability condition. Similar to Lemma 4.12 in Section 4, we will prove this by assuming the converse and getting to contradiction with the tree bound.

Discuss with Luis, this may be reduced but I am not sure.

Lluis: això està ben dit? We actually show two versions of the same lemma on existence of excellent sets. Lemma 5.6 is slightly more readable, while Lemma 5.8 is the one we will be using for further proofs, as it fixes the possibles sizes of the resulting set. For that reason, in this section we only prove the first one, and leave the proof of the other in Appendix A.

Lemma 5.6 (Claim 5.4). Let G be a finite graph with the non- k_* -order property. Let $\zeta \leq \frac{1}{2^{k_{**}}}$, $\epsilon \in (0, \frac{1}{2})$. Then, for every $A \subseteq G$ with $|A| \geq \frac{1}{\epsilon^{k_{**}}}$ there exists an (ϵ, ζ) -excellent subset $A' \subseteq A$ such that $|A'| \geq \epsilon^{k_{**}-1}|A|$.

Proof. Suppose the converse. We use this fact to build sets $\{b_{\eta} \mid \eta \in \{0,1\}^{< k_{**}}\}$ and $\{A_{\eta} \mid \eta \in \{0,1\}^{\leq k_{**}}\}$ on induction over $k < k_{**}$, where $k = |\eta|$, satisfying:

- 1. $A_{\langle \cdot \rangle} = A$.
- 2. B_{η} is a ζ -good set witnessing that A_{η} is not (ϵ, ζ) -excellent, for $k < k_{**}$.
- 3. $A_{\eta \frown \langle i \rangle} = \{ a \in A_{\eta} \mid t(a, B_{\eta}) \equiv i \}$ for all $i \in \{0, 1\}$ and $k < k_{**}$.
- 4. $|A_{\eta \frown \langle i \rangle}| \ge \epsilon |A_{\eta}|$ for all $i \in \{0, 1\}$ and $k < k_{**}$.
- 5. $|A_n| \ge \epsilon^k |A|$, for $k \le k_{**}$.
- 6. $A_{\eta} = A_{\eta \frown \langle 0 \rangle} \sqcup A_{\eta \frown \langle 1 \rangle}$, for $k < k_{**}$.
- 7. $\overline{A_k} = \{A_n \mid \eta \in \{0, 1\}^k\}$ is a partition of A, for $k \leq k_{**}$.

First of all, notice that at each step, the non- (ϵ, ζ) -excellence of A_{η} comes by IH from 1. or 5., and thus allows the existence of B_{η} in 2.. 4. follows the definition of $A_{\eta \frown \langle i \rangle}$ in 3. and the fact B_{η} is witnessing that A_{η} is not (ϵ, ζ) -excellent. Applying recursively this last point we obtain 5.. Finally, by definition 3., we have the disjoint union 6. which ensures the partition 7..

Now, our goal is to build two sequences $\{b_{\eta} \mid \eta \in \{0,1\}^{< k_{**}}\}$ and $\{a_{\eta} \mid \eta \in \{0,1\}^{k_{**}}\}$ to contradict the tree bound k_{**} . First of all, notice that, for $\eta \in \{0,1\}^{k_{**}}$

$$|A_{\eta}| \ge \epsilon^{k_{**}}|A| \ge \epsilon^{k_{**}}\frac{1}{\epsilon^{k_{**}}} = 1$$

So, for each $\eta \in \{0,1\}^{k_{**}}$, $A_{\eta} \neq \emptyset$ and we may choose an $a_{\eta} \in A_{\eta}$. Now, for $\nu \in \{0,1\}^{< k_{**}}$ and $\eta \in \{0,1\}^{k_{**}}$ such that $\nu \triangleleft \eta$, let

$$U_{\nu,\eta} = \{b \in B_{\nu} \mid a_{\eta}Rb \not\equiv t(a_{\eta}, B_{\nu})\}$$

be the subset of elements of B_{ν} that do not relate with a_{η} in the expected way. By ζ -goodness of B_{ν} , $|U_{\nu,\eta}| < \zeta |B_{\nu}|$, and thus for every $\nu \in \{0,1\}^{< k_{**}}$,

$$|\bigcup\{U_{\nu,\eta}\mid \nu \triangleleft \eta \in \{0,1\}^{k_{**}}\}| < 2^{k_{**}}\zeta|B_{\nu}| \leq |B_{\nu}|$$

We may choose $b_{\nu} \in B_{\nu} \setminus \bigcup \{U_{\nu,\eta} \mid \nu \triangleleft \eta \in \{0,1\}^{k_{**}}\}$, for all $\nu \in \{0,1\}^{< k_{**}}$. Finally, the sequences $\langle a_{\eta} \mid \eta \in \{0,1\}^{k_{**}} \rangle$ and $\langle b_{\nu} \mid \nu \in \{0,1\}^{< k_{**}} \rangle$ satisfy that $\forall \eta, \nu$ such that $\nu \frown \langle i \rangle \triangleleft \eta$, $(a_{\eta}Rb_{\nu})^i$ by 3. and 6.. This contradicts Definition 3.14 of tree bound k_{**} .

Remark 5.7. The two sequences $\langle a_{\eta} \mid \eta \in \{0,1\}^{k_{**}} \rangle$ and $\langle b_{\nu} \mid \nu \in \{0,1\}^{< k_{**}} \rangle$ are not necessarily disjoint. This is the reason why, for this to work, the Definition 3.13, and consequently Definition 3.1, do not take this condition. Although it makes the non-k-order assumption on the graph stricter, this also allows the definition of excellence to work with respect to the set itself (as it is good by definition). Thus, the resulting partition will not only satisfy quasi-randomness between different parts, but actually ensures that the parts are quasi-random within themsleves.

Lemma 5.8 (Claim 5.4.1). Let G be a finite graph with the non- k_* -order property. Let $\zeta < \frac{1}{2^{k_{**}}}$, $\epsilon \in (0, \frac{1}{2})$. Let $\langle m\ell \mid \ell \in \{0, \dots, k_{**}\} \rangle$ be a decreasing sequence of natural numbers such that $\epsilon m_\ell \geq m_{\ell+1}$ for all $\ell \in \{0, \dots, k_{**} - 1\}$ and $m_{k_{**}} \geq 1$. Then, for every $A \subseteq G$ with $|A| \geq m_0$ there exists $(\frac{m_{\ell+1}}{m_\ell}, \zeta)$ -excellent subset $A' \subseteq A$ such that $|A'| = m_\ell$ for some $\ell \in \{0, \dots, k_{**} - 1\}$.

Now, we can get the first version of a partition by applying the previous lemma recursively, until the remainder is too small for the condition on the size of the graph to be satisfied.

Lemma 5.9 (Claim 5.14.1). Let G be a finite graph with the non- k_* -order property. Let $\epsilon \in (0, \frac{1}{2})$ and $\epsilon' \leq \frac{1}{2^{k_{**}}}$. Let $A \subseteq G$ such that |A| = n. Let $\langle m\ell \mid \ell \in \{0, \dots, k_{**}\} \rangle$ be a decreasing sequence of natural numbers such that $\epsilon m_{\ell} \geq m_{\ell+1}$ for all $\ell \in \{0, \dots, k_{**} - 1\}$ and $m_{k_{**}} \geq 1$. Denote $m_* := m_0$ and $m_{**} := m_{k_{**}}$. Then, there is a partition $\overline{A} = \langle A_j \mid j \in \{1, \dots, j(*)\} \rangle$ with remainder $B = A \setminus \bigcup_{j < j(*)} A_j$ such that:

- (a) For all $j \in \{1, ..., j(*)\}$, $|A_j| \in \langle m\ell \mid \ell \in \{0, ..., k_{**} 1\} \rangle$.
- (b) For all $i \neq j \in \{1, ..., j(*)\}$, $A_i \cap A_j = \emptyset$.
- (c) For all $j \in \{1, ..., j(*)\}$, A_i is (ϵ, ϵ') -excellent.
- (d) $|B| < m_*$.

Proof. Apply Lemma 5.8 recursively to the remainder $A \setminus \bigcup_{i < j} A_i$, to obtain A_j at each step. The process stops at j(*) when the remainder is smaller than m_0 , and thus the lemma cannot be applied. Notice that, since $\frac{m_\ell}{m_{\ell-1}} \le \epsilon$, $(\frac{m_\ell}{m_{\ell-1}}, \epsilon')$ -excellence implies (ϵ, ϵ') -excellence.

The next step is refining this partition to obtain an equitable partition. In order to do so, we first show that any random sample of a given size from an excellent set is still excellent with high probability, at the cost of a slightly reduced excellence (c. of Lemma 5.11). Then, we use this result in a union-bound argument to show that we can actually fully partition the excellent set into pieces of equal size (d. of Lemma 5.11), which are still excellent. Finally, Lemma 5.15 applies this result to the partition from Lemma 5.9 to get an equitable excellent partition.

Before getting to it, we prove the following calculus result, which will be required in the subsequent proof. The statement comes from [no me acuerdo] and, for completeness, we provide here a short proof.

Lemma 5.10. For k > 1, $\zeta, \eta \in (0,1)$ the function $f(m) = m^k \cdot e^{-2\zeta^2 m}$ satisfies $f(m) \leq \eta$ for all $m \geq \frac{1}{\zeta^2} (k \log \frac{1}{\zeta^2} k - \log \eta)$.

Proof. First of all, notice that for $m = \frac{1}{\zeta^2} (k \log \frac{1}{\zeta^2} k - \log \eta)$,

$$f(m) = \frac{m^k}{e^{2\zeta^2 m}} = \frac{\left(\frac{1}{\zeta^2} (k \log \frac{1}{\zeta^2} k - \log \eta)\right)^k}{\left(\frac{k}{\zeta^2}\right)^{2k} \eta^{-2}} \leq \frac{k^k (\log \frac{k}{\zeta^2} (\frac{1}{\eta})^{\frac{1}{k}})^k}{k^k (\frac{k}{\zeta^2} (\frac{1}{\eta})^{\frac{1}{k}})^k} \eta < \eta$$

Say that if A is smaller than m_0 , then the partition is empty and B=A.

To conclude, we prove that f is decreasing for larger values of m:

$$f'(m) = \frac{km^{k-1}e^{2\zeta^2m} - 2\zeta^2m^ke^{2\zeta^2m}}{(e^{2\zeta^2m})^2} = (k - 2m\zeta^2)\frac{m^{k-1}}{e^{2\zeta^2m}}$$

The second factor is always positive, and $m > \frac{k}{\zeta^2} > \frac{k}{2\zeta^2}$, proving that f'(m) < 0 and thus f is decreasing.

Lemma 5.11 (Claim 5.13). Let G be a finite graph with the non- k_* -order property. Then:

- (a) For every $\epsilon \in (0, \frac{1}{2})$, $\zeta \in (0, \frac{1}{2} \epsilon)$, $\xi \in (0, 1)$ and $m \ge \frac{1}{\zeta^2} (k_* \log \frac{1}{\zeta^2} k_* \log \xi)$, if $A \subseteq G$ is an ϵ -good subset of size $n \ge m$, then a random subset $A' \subseteq A$ of size m is $(\epsilon + \zeta)$ -good with probability 1ξ .
- (b) Moreover, such A' satisfies t(b, A') = t(b, A) for all $b \in G$.
- (c) For every $\zeta \in \{0, \frac{1}{2}\}$ and $\zeta' < \zeta$, there is $\epsilon_1 = \epsilon_1(\zeta, \zeta')$ such that for every $\epsilon < \epsilon' \le \epsilon_1$, if
 - $A \subseteq G$ is $\{\epsilon, \epsilon'\}$ -excellent.
 - $A' \subseteq A$ is $\{\epsilon + \zeta'\}$ -good.

then, A' is $(\epsilon + \zeta, \epsilon')$ -excellent.

- (d) For all $\zeta \in (0, \frac{1}{2})$, $\zeta' < \zeta$, $r \ge 1$ and for all $\epsilon < \epsilon'$ small enough (in the sense of the previous point) there exists $N = N(k_*, \zeta', r)$ such that, if |A| = n > N, r divides n and A is (ϵ, ϵ') -excellent, there exists a partition into r disjoint pieces of equal size, each of which is $(\epsilon + \zeta, \epsilon')$ -excellent.
- *Proof.* (a) For each $b \in G$, we say that $B_{A,b}$ is bad if $|B_{A,b}| \ge \epsilon |A'|$. For each bad $B_{A,b}$, let $X_{A,b}$ be the event that $|B_{A,b}| \ge (\epsilon + \zeta)|A'|$ for a random subset $A' \subseteq A$ of size m. Notice that $X_{A,b}$ is modelled by a hypergeometric distribution, and so the probability of upperly deviating from the mean by ζ , can be modeled by

$$P(X_{A,b} = 1) \le e^{-2\zeta^2 m}$$

Now we want to study the random variable X counting the number of events $X_{A,b}$ that are satisfied. That is, $X = \sum_{\text{bad } B_{A,b}} X_{A,b}$. We compute the expectation

$$\mathbb{E}[X] = \sum_{\mathsf{bad}\; B_{A,b}} \mathbb{E}[X_{A,b}] = \sum_{\mathsf{bad}\; B_{A,b}} P(X_{A,b} = 1) \leq \sum_{\mathsf{bad}\; B_{A,b}} \mathrm{e}^{-2\zeta^2 m}$$

Following 2., the number of intersections of bad $B_{A,b}$'s with A', can be bounded by m^{k_*} . Thus, using the First Moment Method, we have that:

$$P(X \ge 1) \le \mathbb{E}[X] \le m^{k_*} \cdot e^{-2\zeta^2 m} \le \xi$$

Last inequality follows Lemma 5.10 using the lower bound on m. Thus, with probability at least $1 - \xi$, we have that A' is $(\epsilon + \zeta)$ -good.

(b) Suppose that A' is the subset described in a.. We proved that, such set satisfies

$$|A' \cap B_{A,b}| < (\epsilon + \zeta)|A'|$$

for all $b \in G$ such that $|B_{A,b}| \ge \epsilon m$. Thus, we have that:

- If $|B_{A,b}| < \epsilon m$, then $|\{a \in A' \mid aRb \not\equiv t(b,A)\}| \le |B_{A,b}| < \epsilon m < (\epsilon + \zeta)m$.
- If $|B_{A,b}| \ge \epsilon m$, then $|\{a \in A' \mid aRb \not\equiv t(b,A)\}| = |A' \cap B_{A,b}| < (\epsilon + \zeta)m$.

We conclude that t(b, A) = t(b, A') for all $b \in G$.

(c) Let $B \subseteq G$ be an ϵ' -good set. We first upperbound the number of exceptional vertices of B with respect to A':

$$\begin{aligned} |\{b \in B \mid t(b, A') \not\equiv t(B, A)\}| &= |\{b \in B \mid t(b, A) \not\equiv t(B, A)\}| \\ &\leq \frac{(\epsilon + (1 - \epsilon)\epsilon')|A||B|}{(1 - \epsilon)|A|} \\ &= (\epsilon' + \frac{\epsilon}{1 - \epsilon})|B| \end{aligned}$$

The first equality follows b., and the first inequality follows from Remark 5.4 for the numerator, and taking the worst case of only $(1 - \epsilon)|A|$ exceptional edges per exceptional $b \in B$ (considering that A is ϵ -good).

Now, let Q be the set of exceptional vertices of A' with respect to B, i.e.:

$$Q = \{a \in A' \mid t(a, B) \not\equiv t(A, B)\}$$

We want to double-count the number of exceptional edges between Q and B. On one hand, we have that:

$$|\{(a,b)\in Q\times B\mid t(a,b)\not\equiv t(A,B)\}|<(\epsilon'+\frac{\epsilon}{1-\epsilon})|B||Q|+(1-\epsilon'-\frac{\epsilon}{1-\epsilon})|B|(\epsilon+\zeta')|A'|$$

The first term is the maximum number of exceptional edges associated to exceptional $b \in B$ (considering all edges exceptional), while the second term bounds the number of exceptional edges of non-exceptional $b \in B$, using the fact that A' is $(\epsilon + \zeta')$ -good.

On the other hand, we have that:

$$|\{(a,b) \in Q \times B \mid t(a,b) \not\equiv t(A,B)\}| \ge |Q|(1-\epsilon')|B|$$

which follows *B* being ϵ' -good.

Putting it all together:

$$(1 - \epsilon' - \epsilon' - \frac{\epsilon}{1 - \epsilon})|B||Q| < (1 - \epsilon' + \frac{\epsilon}{1 - \epsilon})(\epsilon + \zeta')|B||A'|$$

So, we have that:

$$|Q| < rac{(1-\epsilon'-rac{\epsilon}{1-\epsilon})}{(1-\epsilon'-rac{\epsilon}{1-\epsilon})-\epsilon'}(\epsilon+\zeta')|A'| \ = (1+rac{\epsilon'}{1-2\epsilon'-rac{\epsilon}{1-\epsilon}})(\epsilon+\zeta')|A'|$$

Notice that $f(\epsilon, \epsilon') := \frac{\epsilon'}{1 - 2\epsilon' - \frac{\epsilon}{1 - \epsilon}}$ decreases with ϵ and ϵ' . In particular,

$$f(\epsilon, \epsilon') \stackrel{\epsilon' \to 0}{\longrightarrow} 0$$

and $\epsilon' > \epsilon$. Then,

$$|Q| < (\epsilon + (\underbrace{\epsilon f(\epsilon, \epsilon')}_{\to 0} + \underbrace{(1 + f(\epsilon, \epsilon'))}_{\to 1})\zeta')|A'| \stackrel{\epsilon' \to 0}{\longrightarrow} (\epsilon + \zeta')|A'|$$

So, there exists an $\epsilon_1 = \epsilon_1(\zeta, \zeta')$ small enough such that for all $(\epsilon <)$ $\epsilon' \le \epsilon_1$, we have that $|Q| < (\epsilon + \zeta)|A'|$, and since A' is $(\epsilon + \zeta')$ -good, and thus $(\epsilon + \zeta)$ -good, we conclude that A' is $(\epsilon + \zeta, \epsilon')$ -excellent.

- Mention that in the next claim we show valid values for this.
- (d) Let $\zeta,\zeta',\epsilon,\epsilon'$ and r be given satisfying the conditions of the statement. Set $\xi=\frac{1}{r+1}$. We will see that the condition $n>N=N(k_*,\zeta',r):=r\frac{1}{\zeta'^2}(k_*\log\frac{1}{\zeta'^2}k_*-\log\frac{1}{r+1})$ is sufficient. First of all, randomly choose a function $h:A\longrightarrow\{1,\ldots,r-1\}$ such that for all s< n we have that $|\{a\in A\mid h(a)=s\}|=\frac{n}{r}$. Since h is random, each $A'\in [A]^{\frac{n}{r}}$ has the same probability of being part of the partition induced by h, i.e. to satisfy $A'=h^{-1}(s)$ for some $s\in\{1,\ldots,r-1\}$. Since each element of the partition A' has size $\frac{n}{r}>\frac{N}{r}=\frac{1}{\zeta'^2}(k_*\log\frac{1}{\zeta'^2}k_*-\log\xi)$, we can apply a. to get that

$$P(A' \text{ is not } (\epsilon + \zeta') \text{-good}) < \xi$$

In particular, since A is (ϵ, ϵ') -excellent, it follows c. that if A' is $(\epsilon + \zeta')$ -good then it is also $(\epsilon + \zeta, \epsilon')$ -excellent, so:

$$P(A' \text{ is not } (\epsilon + \zeta, \epsilon') \text{-excellent}) < \xi$$

To conclude, by the union bound, we have that:

$$\begin{split} P(\bigcup_{s < r} h^{-1}(s) \text{ is not } (\epsilon + \zeta, \epsilon') - \text{excellent}) &\leq \sum_{s < r} P(h^{-1}(s) \text{ is not } (\epsilon + \zeta, \epsilon') - \text{excellent}) \\ &< r\xi = \frac{r}{r+1} < 1 \end{split}$$

All in all, there is a non-zero chance that the partition satisfies the statement, i.e. there exists at least one.

Remark 5.12 (Remark 5.13.1). For following applications, we would like to use d. from Lemma 5.11 with $\epsilon' > k(\epsilon + \zeta)$, for an arbitrarily large $k \in \mathbb{N}$. Notice that if $\epsilon, \zeta' \leq \frac{1}{t}$, $\epsilon' \leq \frac{1}{t'}$ and $t > t' \geq 5$, then:

(a)
$$\frac{\epsilon}{1-\epsilon} \le \frac{\frac{1}{t}}{1-\frac{1}{t}} = \frac{\frac{1}{t}}{\frac{t-1}{t}} = \frac{1}{t-1}$$

(b)
$$1 - 2\epsilon' - \frac{\epsilon}{1 - \epsilon} \ge 1 - \frac{2}{t'} - \frac{1}{t - 1} > 1 - \frac{3}{t' - 1} = \frac{t' - 4}{t' - 1}$$

(c)
$$(1 + \frac{\epsilon'}{1 - 2\epsilon' - \frac{\epsilon}{1 - \epsilon}}) < 1 + \frac{\epsilon'}{1 - \frac{3}{t' - 1}} = (1 + \frac{t' - 1}{t' - 4}\epsilon')(\epsilon + \zeta')$$

Then, by requiring $\frac{1}{t} \leq \frac{1}{4k} \epsilon'$ we have that

$$\begin{split} \epsilon + \zeta' &\leq \frac{2}{t} \leq 2(\frac{1}{4k}\epsilon') = \frac{1}{2}(\frac{1}{k}\epsilon') \\ &< \frac{t' - 4}{t' - 3}\frac{1}{k}\epsilon' = \frac{1}{k}\frac{\epsilon'}{1 + \frac{1}{t' - 4}} \\ &< \frac{1}{k}\frac{\epsilon'}{1 + \frac{t' - 1}{t'}\frac{1}{t' - 4}} = \frac{1}{k}\frac{\epsilon'}{1 + \frac{t' - 1}{t' - 4}\frac{1}{t'}} \\ &\leq \frac{1}{k}\frac{\epsilon'}{1 + \frac{t' - 1}{t' - 4}\epsilon'} \end{split}$$

i.e., we have:

$$(1 + \frac{t'-1}{t'-4}\epsilon')(\epsilon + \zeta') < \frac{1}{k}\epsilon'$$

which by c. gives us:

$$(1 + \frac{\epsilon'}{1 - 2\epsilon' - \frac{\epsilon}{1 - \epsilon}}) < \frac{1}{k}\epsilon'$$

All in all, a sufficient condition, for the lemma to hold under the constraint $\epsilon' \geq k(\epsilon + \zeta)$, is:

$$\epsilon, \zeta' \leq \frac{1}{4k}\epsilon'$$
 and $\epsilon' \leq \frac{1}{5}$

We use this fact to reformulate point d. of Lemma 5.11 as:

Lemma 5.13 (Claim 5.13.2(3)). Let G be a finite graph with the non- k_* -property. For all $k, r \ge 1$, $\epsilon' \le \frac{1}{5}$ and $\epsilon \le \frac{1}{4k}\epsilon'$, there exists $N = N(k, k_*, \epsilon', r)$ large enough such that, for all n > N and r dividing n, if $A \subseteq G$ is (ϵ, ϵ') -excellent, with |A| = n, then there exists a partition into r disjoint pieces of equal size, each of which is $(\frac{\epsilon'}{k}, \epsilon')$ -excellent.

Proof. Choose any $\zeta' \leq \frac{1}{4k}\epsilon'$ and set $N := N_{5.11}(k_*, \zeta', r)$. Remark 5.12 sufficiency condition is satisfied, d. from Lemma 5.11 holds and we are done.

Remark 5.14. A sufficient condition for $N_{5.13}$ to be large enough is to choose $\zeta' = \frac{1}{4k}\epsilon'$ in which case $N_{5.13}(k, k_*, \epsilon', r) := N_{5.11}(k_*, \frac{1}{4k}\epsilon', r)$

Now we proceed to refine the partition from Lemma 5.9 into an equitable one. Notice that, in the conditions of the following couple of lemmas, we require a decreasing sequence of integers which has no direct appearance in the consequences of the statements. This is because it is part of the construction, and proving its existence in later results (in the context of the rest of the other variables) avoids unnecessary relaxations of the bounds or approximation errors.

Lemma 5.15 (Claim 5.14.1a). Let G be a finite graph with the non- k_* -order property. Let $\epsilon' \leq \min(\frac{1}{5}, \frac{1}{2^{k_{**}}})$ and $\epsilon \leq \frac{1}{4k}\epsilon'$ for some k > 1. Let $A \subseteq G$ such that |A| = n. Let $\langle m\ell \mid \ell \in \{0, \dots, k_{**}\} \rangle$ be a decreasing sequence of natural numbers such that $\epsilon m_\ell \geq m_{\ell+1}$ for all $\ell \in \{0, \dots, k_{**} - 1\}$, $m_{k_{**}} \geq 1$, $m_{**} \coloneqq m_{k_{**}} \mid m_\ell$ for all $\ell \in \{0, \dots, k_{**}\}$, $m_{k_{**}-1} > N(k, k_*, \epsilon', \frac{m_*}{m_{**}})$ (in the sense of Lemma 5.13), and $n \geq m_0$. Let $m_* \coloneqq m_0$. Then, for some $i(*) \leq \frac{n}{m_{**}}$, there is a partition $\overline{A} = \langle A_i \mid i \in \{1, \dots, i(*)\} \rangle$ with remainder $B = A \setminus \bigcup \overline{A}$ such that:

- (a) For all $i \in \{1, ..., i(*)\}$, $|A_i| = m_{**}$.
- (b) For all $i \in \{1, ..., i(*)\}$, A_i is $(\frac{\epsilon'}{k}, \epsilon')$ -excellent.
- (c) $|B| < m_*$.

Proof. Use Lemma 5.9 to obtain a partition $\overline{A}' = \left\langle A_j' \mid j \in \{1, \dots, j(*)\} \right\rangle$ and remainder B with $|B| < m_*$. Then, we can apply Lemma 5.13 with $r = \frac{m_*}{m_{**}}$ to each of the parts A_j' . Putting together all the new subparts, we obtain a new partition $\overline{A} = \left\langle A_i \mid i \in \{1, \dots, i(*)\} \right\rangle$ with remainder B, satisfying all the conditions of the statement.

Notice that our partition still has reminder, which is unwanted and, as the next lemma proves, it is avoidable at the cost of another slight increase of the excellence parameter.

Lemma 5.16 (Claim 5.14.2). Under the same condition of Lemma 5.15, we can get a partition $\overline{A} = \langle A_i \mid i \in \{1, ..., i(*)\} \rangle$ with no remainder, such that:

- (a) For all $i, j \in \{1, ..., i(*)\}, ||A_i| |A_j|| \le 1$.
- (b) For all $i, j \in \{1, ..., i(*)\}, A_i \cap A_i = \emptyset$.
- (c) For all $i \in \{1, ..., i(*)\}$, A_i is (ϵ'', ϵ') -excellent, where

$$\epsilon'' \leq \frac{\frac{\epsilon'}{k}m_{**} + \left\lceil \frac{m_*}{i(*)} \right\rceil}{m_{**} + \left\lceil \frac{m_*}{i(*)} \right\rceil}$$

(d) $A = \bigcup \overline{A}$.

Proof. Let $\overline{A}' = \langle A'_i \mid i \in \{1, ..., i(*)\} \rangle$ and B from Lemma 5.15. We can partition B into $\overline{B} = \langle B_i \mid i \in \{1, ..., i(*)\} \rangle$ in such a way that for all $i \in \{1, ..., i(*)\}$,

$$|B_i| \in \left\{ \left\lfloor \frac{|B|}{i(*)} \right\rfloor, \left\lceil \frac{|B|}{i(*)} \right\rceil \right\}$$

Notice that we are allowing $B_i = \emptyset$. Then, the new partition $\overline{A} = \langle A_i' \cup B_i \mid i \in \{1, ..., i(*)\} \rangle$ satisfies a., b. and d. by construction. To conclude, notice that for each ϵ' -good set B, the number of exceptions is bounded by

$$\begin{aligned} |\{a \in A_i \mid t(a, B) \not\equiv t(A_i, B)\}| &\leq \frac{\epsilon'}{k} |A_i'| + |B_i| \\ &= \frac{\frac{\epsilon'}{k} |A_i'| + |B_i|}{|A_i'| + |B_i|} (|A_i'| + |B_i|) \\ &\leq \frac{\frac{\epsilon'}{k} m_{**} + \left\lceil \frac{m_*}{i(*)} \right\rceil}{m_{**} + \left\lceil \frac{m_*}{i(*)} \right\rceil} |A_i| \end{aligned}$$

which proves that c. can be satisfied.

We now have an (ϵ'', ϵ') -excellent equitable partition with no remainder. Also ϵ'' is bounded by something very close to $\frac{\epsilon'}{k}$, where k is a settable parameter which only affects the large-enough condition on the size of the graph. It is reasonable to assume that, under some conditions of m_* and m_{**} , and under an appropriate choice of k, we can upper bound ϵ'' by ϵ' , thus ensuring that the partition is ϵ' -excellent.

Remark 5.17 (Remark 5.14.3). In the context of Lemma 5.16, if:

(a)
$$m_{**} \geq \frac{1}{\frac{\epsilon'}{k}}$$

(b)
$$m_* \leq \frac{\frac{\epsilon'}{k}n+1}{\frac{\epsilon'}{k}+1}$$

then $\epsilon'' \leq \frac{3\epsilon'}{k}$.

Proof. Notice that, if $|B_i| \leq 2\frac{\epsilon'}{k}|A_i|$ for all $i \in \{1, ..., i(*)\}$, then ϵ'' can be bounded by:

$$\epsilon'' \leq \frac{\frac{\epsilon'}{k}|A_i| + |B_i|}{|A_i| + |B_i|} \leq \frac{\frac{\epsilon'}{k}|A_i| + 2\frac{\epsilon'}{k}|A_i|}{|A_i|} = \frac{3\epsilon'}{k}$$

Let's now prove that $|B_i| \leq \frac{2\epsilon'}{k} |A_i|$ is satisfied. Notice that, by construction:

$$|B_i| \leq \left\lceil rac{|B|}{i(*)}
ight
ceil \leq \left\lceil rac{m_* - 1}{i(*)}
ight
ceil \leq rac{m_* - 1}{i(*)} + 1$$

Also we can bound i(*) by:

$$\frac{n}{m_{**}} \ge i(*) \ge \frac{n - |B|}{m_{**}} \ge \frac{n - m_* + 1}{m_{**}} > \frac{n - m_*}{m_{**}}$$

Thus, $|B_i| - 1 \le \frac{m_* - 1}{i(*)} \le \frac{(m_* - 1)m_{**}}{n - m_*}$, then $\frac{|B_i| - 1}{m_{**}} \le \frac{m_* - 1}{n - m_*}$, and since $|A_i| = m_{**}$ we get:

bound needed?

$$\frac{|B_i|}{|A_i|} \le \frac{m_* - 1}{n - m_*} + \frac{1}{m_{**}}$$

Finally, notice that condition a. implies:

$$\frac{\epsilon'}{k} \geq \frac{1}{m_{**}}$$

and condition b. implies:

$$\frac{\epsilon'}{k} \ge \frac{m_* - 1}{n - m_*}$$

We conclude:

$$\frac{|B_i|}{|A_i|} \leq \frac{m_* - 1}{n - m_*} + \frac{1}{m_{**}} \leq 2\frac{\epsilon'}{k}$$

completing the proof.

We now resume all the conditions necessaries for the previous result to hold in the context of the values m_* and m_{**} given by the previous remark.

Lemma 5.18 (Corollary 5.15). Let G be a graph with the non- k_* -order property. Suppose that we are given:

- 1. $\epsilon \leq \min(\frac{1}{5}, \frac{1}{2^{k_{**}}})$.
- 2. A sequence of positive integers $\langle m\ell \mid \ell \in \{0, ..., k_{**}\} \rangle$, and values m_* and m_{**} , such that:
 - (a) $\frac{\epsilon}{12}m_{\ell} \geq m_{\ell+1}$.
 - (b) $m_{**} := m_{k_{**}} > \frac{3}{6}$.
 - (c) $m_{**} \mid m_{\ell}$ for all $\ell \in \{0, ..., k_{**}\}$.
 - (d) $m_{k_{**}-1} > N(3, k_{*}, \epsilon, \frac{m_{*}}{m_{**}})$ (in the sense of Lemma 5.13).
- 3. $A \subseteq G$ such that |A| = n, where n is large enough to satisfy:

This is implied by next condition.

- (a') $n \geq m_0$.
- (b') $m_* \leq \frac{1+\frac{\epsilon}{3}n}{1+\frac{\epsilon}{3}}$.

Then, there exists $i(*) \leq \frac{n}{m_{**}}$ and a partition of A into disjoint pieces $\overline{A} = \langle A_i \mid i \in \{1, ..., i(*)\} \rangle$ such that:

- (i) For all $i, j \in \{1, ..., i(*)\}, ||A_i| |A_j|| \le 1$.
- (ii) For all $i \in \{1, ..., i(*)\}$, A_i is ϵ -excellent,
- (iii) For all $i, j \in \{1, ..., i(*)\}$, (A_i, A_j) is ϵ -uniform.

Proof. Simply apply Lemma 5.16 in the context of Remark 5.17 with k=3, $\epsilon'_{5.16}=\epsilon$ and $\epsilon_{5.16}\leq\frac{1}{12}\epsilon$. This results in a partition of A into disjoint pieces that satisfy i. and that are $(\epsilon''_{5.16},\epsilon'_{5.16})$ -excellent, with $\epsilon''_{5.16}\leq\frac{3\epsilon'_{5.16}}{k}$. But since $k\geq3$, $\epsilon''_{5.16}\leq\epsilon'_{5.16}$, they are also $\epsilon'_{5.16}$ -excellent, satisfying ii. and iii..

To conclude, we prove the existence of the decreasing sequence of integers, under some minimal conditions of the two parameters ϵ (the excellence parameter) and m (the minimum number of parts in the resulting partition), and rewrite the statement accordingly.

Theorem 5.19 (Theorem 5.18). Let k_* and therefore k_{**} be given. Then, for all $\epsilon \leq \min(\frac{1}{5}, \frac{1}{2^{k_{**}}})$ and m > 1, there is $M = M(\epsilon, m, k_*)$ and $N = N(\epsilon, m, k_*)$ such that, for every finite graph G with the non- k_* -order property, and every $A \subseteq G$ with $|A| \geq N$, there exists a partition $\overline{A} = \langle A_i \mid i \in \{1, ..., i(*)\} \rangle$ of A, such that:

Move the bound on *M* to another point?

- 1. The number of parts is bounded by $m \le i(*) \le M := \max(\lceil \frac{12}{\epsilon} \rceil^{k_{**}+1}, 4m)$.
- 2. For all $i, j \in \{1, ..., i(*)\}, ||A_i| |A_j|| \le 1$.
- 3. For all $i \in \{1, ..., i(*)\}$, A_i is ϵ -excellent.

Redundant?

4. For all $i, j \in \{1, ..., i(*)\}$, (A_i, A_i) is ϵ -uniform.

Proof. Our goal is to apply Lemma 5.18. Let $q = \lceil \frac{12}{\epsilon} \rceil$. For $N(\epsilon, m, k_*)$, and thus n, large enough, we can then choose the smallest m_{**} satisfying:

(a)
$$m_{**} \in [\delta n - 1, \delta n]$$
, where $\delta = \min(rac{\epsilon}{(3+\epsilon)q^{k_{**}}}, rac{1}{m+q^{k_{**}}})$

(b)
$$m_{**} > \frac{3}{\epsilon}$$
.

(c)
$$m_{**} > \frac{N_{5.13}(3, k_{*}, \epsilon, q^{k_{**}})}{q}$$
.

We set $m_{k_{**}}=m_{**}$ and we build recursively a sequence of integers $\langle m_{\ell}\mid \ell\in\{0,\ldots,k_{**}\}\rangle$ such that $m_{\ell}=qm_{\ell+1}$ for all $\ell\in\{0,\ldots,k_{**}-1\}$. Also, let $m_{*}:=m_{0}=q^{k_{**}}m_{**}$. By a. we have that $m_{*}\leq\frac{\epsilon n}{3+\epsilon}$. This sequence satisfies all the conditions of Lemma 5.18:

2.a.
$$m_{\ell+1} = \frac{1}{a} m_{\ell} \le \frac{\epsilon}{12} m_{\ell}$$
.

2.b.
$$m_{**} \geq \frac{3}{\epsilon}$$
.

2.c. $m_{**} \mid m_{\ell}$ for all $\ell \in \{0, ..., k_{**}\}$, since q is an integer.

2.d.
$$m_{k_{**}-1} = q m_{**} > q \frac{N_{5,13}(3,k_*,\epsilon,q^{k_{**}})}{q} = N_{5,13}(3,k_*,\epsilon,\frac{m_*}{m_{**}}).$$

3.b.
$$m_* < \frac{\epsilon n}{3+\epsilon} < \frac{1+\frac{\epsilon}{3}n}{1+\frac{\epsilon}{2}}$$
.

3.a.
$$m_0 = m* < \frac{\epsilon n}{3+\epsilon} < n$$

We can apply Lemma 5.18 to obtain a partition satisfying 2., 3. and 4..

We proceed to bound the number of parst i(*). First, the upper bound follows from the fact that $m_{**} \geq \frac{1}{2} \min(\frac{\epsilon}{3+\epsilon}, \frac{1}{m+q^{k**}})n$:

$$i(*) \leq \frac{n}{m_{**}} \leq \frac{2\max(\frac{3+\epsilon}{\epsilon}q^{k_{**}}, m+q^{k_{**}})n}{n} < 2\max(\frac{3+\epsilon}{\epsilon}q^{k_{**}}, 2m) \leq \max(\left\lceil \frac{12}{\epsilon} \right\rceil^{k_{**}+1}, 4m)$$

In the last inequality, we used that if $m < q^{k_{**}}$, then $m + q^{k_{**}} \le 2q^{k_{**}} < \frac{3+\epsilon}{\epsilon}q^{k_{**}}$, which is dealt in the first argument of the maximum, so we may assume that $m \ge q^{k_{**}}$. We also show that the lower bound is satisfied:

$$i(*) \geq \frac{n - m_*}{m_{**}} \geq \frac{n - m_{**}q^{k_{**}}}{m_{**}} = \frac{n}{m_{**}} - q^{k_{**}} \geq \frac{m + q^{k_{**}}}{n}n - q^{k_{**}} = m$$

Remark 5.20. We now see how large N, and thus n, actually needs to be. First of all, we see that:

$$\frac{1}{q}N_{5.13}(4, k_*, \epsilon, q^{k_{**}}) = \frac{1}{q}N_{5.11}(k_*, \frac{1}{4 \cdot 3}\epsilon, q^{k_{**}})$$

$$= \frac{1}{q}q^{k_{**}}(\frac{12}{\epsilon})^2(k_*\log(\frac{12}{\epsilon})^2k_* - \log\frac{1}{q^{k_{**}} + 1})$$

$$< k_*^2q^{2k_{**} + 3}$$

Also, $\frac{3}{\epsilon}$ is clearly smaller than this value. Then, since m_{**} is the smallest integer larger than both values, we conclude:

$$\begin{split} \frac{m_{**}}{\delta} &\leq \frac{k_*^2 q^{2k_{**}+3}}{\min(\frac{\epsilon}{(3+\epsilon)q^{k_{**}}}, \frac{1}{m+q^{k_{**}}})} \\ &= k_*^2 q^{2k_{**}+3} \max(\frac{3+\epsilon}{\epsilon} q^{k_{**}}, m+q^{k_{**}}) \\ &\leq \max(q^{k_{**}+1}, 4m) k_*^2 q^{2k_{**}+3} \end{split}$$

Define or remove uniformity.

Mention homogeneity?

As mentioned in the beginning of the section, it can be proven that excellence is a stronger condition then regularity. In fact, as shown in the following lemma, excellence of a pair not only implies some level of regularity, but also it ensures that the pair is mostly full or empty of edges.

Lemma 5.21 (Lemma 5.17). Suppose that $\epsilon_1, \epsilon_2, \epsilon_3 \in (0, \frac{1}{2})$ with $\frac{\epsilon_1 + \epsilon_2}{\epsilon_3} < \frac{1}{2}$ and the pair (A, B) is (ϵ_1, ϵ_2) -uniform. Let $A' \subseteq A$ with $|A'| \ge \epsilon_3 |A|$, $B' \subseteq B$ with $|B'| \ge \epsilon_3 |B|$ and denote $Z = \{(a, b) \in (A \times B) \mid aRb \not\equiv t(A, B)\}$ and $Z' = \{(a, b) \in (A' \times B') \mid aRb \not\equiv t(A, B)\}$. Then, we have:

- 1. $\frac{|Z|}{|A||B|} < \epsilon_1 + \epsilon_2$.
- 2. $\frac{|Z'|}{|A||B|} < \frac{\epsilon_1 + \epsilon_2}{\epsilon_3}$.

In particular, if for some ϵ_0 , $\epsilon \in (0, \frac{1}{2})$, the pair (A, B) is ϵ_0 -uniform, for $\epsilon_0 \leq \frac{\epsilon^2}{2}$, then:

- a. (A, B) is ϵ -regular.
- b. If $A' \in [A]^{\geq \epsilon |A|}$ and $B' \in [B]^{\geq \epsilon |B|}$, then $d(A', B') < \epsilon$ or $d(A', B') \geq 1 \epsilon$.

Proof. Let $U = \{a \in A \mid |\overline{B}_{B,a}| > \epsilon_1 |A|\}$, i.e. the set of exceptional vertices $a \in A$. Then,

$$Z \subseteq U \times B \cup \bigcup_{a \in A \setminus U} \{a\} \times \overline{B}_{B,a}$$

and

$$Z'\subseteq U\times B'\cup\bigcup_{a\in A'\setminus U}\{a\}\times\overline{B}_{B,a}$$

Notice that, if $a \in A \setminus U$, then $|\overline{B}_{B,a}| < \epsilon_2 |B|$, so

$$|Z| < \epsilon_1 |A||B| + |A|\epsilon_2 |B|$$

which can be written as

$$\frac{|Z|}{|A||B|} < \epsilon_1 + \epsilon_2$$

which proves 1.. Similarly,

$$|Z'| \le |U||B'| + |A'| \max\{|\overline{B}_{B,a}| \mid a \notin U\}$$
$$< \epsilon_1|A||B'| + |A'|\epsilon_2|B|$$

By dividing both sides by |A'||B'| we conclude

$$\frac{|Z'|}{|A'||B'|} < \epsilon_1 \frac{|A|}{|A'|} + \epsilon_2 \frac{|B|}{|B'|} \le \frac{\epsilon_1 |A|}{\epsilon_3 |A|} + \frac{\epsilon_2 |B|}{\epsilon_3 |B|} = \frac{\epsilon_1 + \epsilon_2}{\epsilon_3}$$

proving 2.. Let's now prove a. and b.. First of all, notice that:

• if t(A,B)=1, then $d(A,B)>1-(\epsilon_1+\epsilon_2)$ and $d(A',B')>1-\frac{\epsilon_1+\epsilon_2}{\epsilon_3}$, which follows 1. and 2. respectively. Thus,

$$\begin{split} |\mathit{d}(A,B) - \mathit{d}(A',B')| &\leq \max\{\mathit{d}(A,B) - \mathit{d}(A',B'), \mathit{d}(A',B') - \mathit{d}(A,B)\} \\ &< \max\{1 - (1 - \frac{\epsilon_1 + \epsilon_2}{\epsilon_3}), 1 - (1 - \epsilon_1 - \epsilon_2)\} \\ &= \frac{\epsilon_1 + \epsilon_2}{\epsilon_3} \end{split}$$

• if t(A,B)=0, similarly $d(A,B)<(\epsilon_1+\epsilon_2)$ and $d(A',B')<\frac{\epsilon_1+\epsilon_2}{\epsilon_3}$. Thus,

$$\begin{split} |d(A,B)-d(A',B')| &\leq \max\{d(A,B)-d(A',B'),d(A',B)-d(A,B)\} \\ &< \max\{(\epsilon_1+\epsilon_2),\frac{\epsilon_1+\epsilon_2}{\epsilon_3}\} \\ &= \frac{\epsilon_1+\epsilon_2}{\epsilon_3} \end{split}$$

In both cases, we have that |d(A,B)-d(A',B')| is bounded by $\frac{\epsilon_1+\epsilon_2}{\epsilon_3}<\frac{1}{2}$. Also, d(A',B') may only differ by $\frac{\epsilon_1+\epsilon_2}{\epsilon_3}$ with either 0 or 1. In particular, we may choose $\epsilon_3=\epsilon$ and $\epsilon_1=\epsilon_2=\epsilon_0\leq\frac{\epsilon^2}{2}$. This way, the condition $\frac{\epsilon_1+\epsilon_2}{\epsilon_3}\leq\epsilon<\frac{1}{2}$ is satisfied. We conclude that (A,B) is ϵ -regular (a.) and that d(A',B') is either $<\epsilon$ or $\ge 1-\epsilon$ (b.).

We finally prove the Stable Regularity Lemma using the previous lemma to reformulate Theorem 5.19 in the context of regularity.

Theorem 5.22 (Theorem 5.19). For every $k_* \in \mathbb{N}$ and $\epsilon \in (0, \frac{1}{2})$ and m > 1, there exist $N = N(\epsilon, m, k_*)$ and $M = M(\epsilon, m, k_*)$ such that, for every finite graph G with the non- k_* -order property, and every $A \subseteq G$ with $|A| \geq N$, there is $m < \ell < M$ and a partition $\overline{A} = \langle A_i \mid i \in \{1, ..., \ell\} \rangle$ of A such that each A_i is $\frac{\epsilon^2}{2}$ -excellent, and for every $i, j \in \{1, ..., \ell\}$,

- 1. $||A_i| |A_i|| \le 1$.
- 2. (A_i, A_j) is ϵ -regular, and moreover if $B_i \in [A_i]^{\geq \epsilon |A_i|}$ and $B_j \in [A_j]^{\geq \epsilon |A_j|}$, then either $d(B_i, B_j) < \epsilon$ or $d(B_i, B_j) \geq 1 \epsilon$.
- 3. If $\epsilon \leq \min(\frac{1}{5}, \frac{1}{2^{k_{**}}})$, then $M \leq \max(\lceil \frac{12}{\epsilon} \rceil^{k_{**}+1}, 4m)$

Proof. If $\epsilon \leq \min(\frac{1}{5}, \frac{1}{2^{k_{**}}})$, then we can apply Theorem 5.19 to A with $\frac{\epsilon^2}{2}$, and then use Lemma 5.21 to replace the $\frac{\epsilon^2}{2}$ -uniformity of pairs by ϵ -regularity. Otherwise, to get 1. and 2., just do the same process for some $\epsilon' = \min(\frac{1}{5}, \frac{1}{2^{k_{**}}}) \leq \epsilon$. Then, since regularity is monotone, we get the wanted ϵ -regularity from the resulting ϵ' -regularity. In this last case, the bound on M is $M \leq \max(\left\lceil \frac{12}{\epsilon'} \right\rceil^{k_{**}+1}, 4m)$.

Remark 5.23. By Theorem 3.15, we have that $k_{**} \leq 2^{k_*+1}-2$ in the context of the non- k_* -order property. Thus, the bound on the number of parts M can clearly be reformulated as a function of only k_* , ϵ and m:

$$M \leq \max(\left\lceil rac{12}{\epsilon}
ight
ceil^{2^{k_*+1}-1}$$
 , $4m)$

6. Section 6

In this section, we showcase a specific example of application of the Stable Regularity Lemma (Theorem 5.22).

Property testing is a field of theoretical computer science, concerned about finding low-complexity algorithms for testing approximate properties in large objects, such as graphs. The algorithm needs to be successful with high probability, and only distinguish between objects that do not satisfy the property, and those which are "far" from satisfying it.

We now formalize these concepts in the context of graphs.

Definition 6.1. We say that a graph G is ϵ -far from satisfying a property \mathcal{P} if no adding or removing of up to $\epsilon\binom{|G|}{2}$ edges in G results in the graph satisfying the property.

An ϵ -test \mathcal{A} deciding a graphs property \mathcal{P} with query complexity q(n) is a randomized algorith that, on input graph G of size n, satisfies:

- 1. If $G \in \mathcal{P}$, then $P(A \text{ accepts } G) \geq \frac{2}{3}$.
- 2. If G is ϵ -far from satisfying \mathcal{P} , then $P(\mathcal{A} \text{ rejects } G) \geq \frac{2}{3}$.

The query complexity q(n) is the maximum number of queries the algorithm can make to discern whether a desired pair of vertices in the graph G is adjacent or not.

We say that a property \mathcal{P} is *testable* if there exists an ϵ -test deciding \mathcal{P} with a constant query-complexity with respect to the size of the input graph, that is, it only depends on the parameter ϵ .

A case of particular interest is that of *hereditary* properties, these properties that are preserved under taking induced subgraphs. In this context, Szemerédi's Regularity Lemma found an application in proving the following result:

Theorem 6.2 (Alon & Shapira Theorem, [2]). Every hereditary graph property is testable (with one-sided error).

Although constant with respect to the size of the input graph, the query complexity of the resulting ϵ -test from the previous problem is very large. Again, this is due to the tower function bound of Szemerédi's Regularity Lemma.

TO BE CONTINUED... (JoJo's Bizarre Adventure theme plays in the background)

Definition 6.3. A graph H is γ -unavoidable in a graph G if no adding or removing of up to $\epsilon\binom{|G|}{2}$ edges in G results in H not appearing as an induced subgraph of G.

Definition 6.4. A graph H is η -abundant in a graph G if G contains at least $\eta |G|^{|H|}$ induced copies of H.

Lemma 6.5 (Lemma 3.1 of "Efficient Testing of Large graphs", Alon et al.). Let $\epsilon \leq \epsilon' < \frac{1}{2}$ and $\delta \in (0,1)$. If (A,B) is an ϵ -regular pair with density δ , and $A' \in [A]^{\geq \epsilon'|A|}$, $B' \in [B]^{\geq \epsilon'|B|}$, then (A',B') is an $(\frac{\epsilon}{\epsilon'})$ -regular pair with density at least $\delta - \epsilon$ and at most $\delta + \epsilon$.

Proof. Let $A'' \subseteq A' \subseteq A$, $B'' \subseteq B' \subseteq B$ be such that

$$|A''| \ge \frac{\epsilon}{\epsilon'} |A'| \ge \frac{\epsilon}{\epsilon'} \epsilon' |A| = \epsilon |A|$$
 and $|B''| \ge \frac{\epsilon}{\epsilon'} |B'| \ge \frac{\epsilon}{\epsilon'} \epsilon' |B| = \epsilon |B|$

By ϵ -regularity of (A, B), $|d(A, B) - d(A'', B'')| < \epsilon$. Thus,

$$|d(A', B') - d(A'', B'')| = |d(A', B') - d(A, B) + d(A, B) - d(A'', B'')|$$

$$\leq |d(A', B') - d(A, B)| + |d(A, B) - d(A'', B'')|$$

$$< 2\epsilon \leq \frac{\epsilon}{\epsilon'}$$

This proves the $(\frac{\epsilon}{\epsilon'})$ -regularity of (A', B').

Also, since (A, B) is ϵ -regular, $|d(A, B) - d(A', B')| < \epsilon$, and thus,

$$\delta - \epsilon < d(A', B') < \delta + \epsilon$$

Lemma 6.6 (Lemma 3.2 of "Efficient Testing of Large graphs", Alon et al.). For every $\delta \in (0,1)$ and $\ell > 0$ there exist $\epsilon = \epsilon(\delta,\ell)$ and $\eta = \eta(\eta,\ell)$ satisfying the following property:

Let H be a graph with vertices v_1, \ldots, v_ℓ and let V_1, \ldots, V_ℓ be an ℓ -tuple of disjoint sets of vertices of a graph G such that for every $1 \le i < i' \le \ell$, the pair $(V_i, V_{i'})$ is ϵ -regular, with density at least δ if $v_i v_{i'}$ is an edge of H, and at most $1 - \delta$ if $v_i v_{i'}$ is not an edge of H. Then, at least $\eta \prod_{i=1}^{\ell} |V_i|$ of ℓ -tuples $w_1 \in V_1, \ldots, w_\ell \in V_\ell$ span induced copies of H where w_i plays the role of v_i .

Proof. Without loss of generality, we assume that H is the complete graph, since we can simply replace each non-edge $v_i v_{i'}$ of H with an edge by exchanging all edges and non-edges between V_i and $V_{i'}$.

We prove the lemma by induction on ℓ . The case k=1 is trivial, and the number of induced copies of H is $|V_1|$, so $\eta(\delta,1)=1$ and $\epsilon(\delta,1)=1$ (No regularity needed if no pairs). The I.H. is that the values $\eta(\delta,\ell-1)$ and $\epsilon(\delta,\ell-1)$ exist and are known for all ℓ . We proceed to prove that the following values η and ϵ hold:

$$egin{aligned} \epsilon &= \epsilon(\delta,\ell) = \min(rac{1}{2\ell-2},rac{1}{2}\delta\epsilon(rac{1}{2}\delta,\ell-1)) \ \eta &= \eta(\delta,\ell) = rac{1}{2}(\delta-\epsilon)^{\ell-1}\eta(rac{1}{2}\delta,\ell-1) \end{aligned}$$

For each $1 < i \le \ell$, the number of vertices of V_1 which have less then $(\delta - \epsilon)|V_i|$ neighbors in V_i is less then $\epsilon |V_i|$. Otherwise, the set of such vertices, say $U \in [V_1]^{\ge \epsilon |V_1|}$ together with V_i would form a subpair (U, V_i) with density $< \delta - \epsilon$ which, by Lemma 6.5 contradicts the ϵ -regularity of the pair (V_1, V_i) .

Therefore, at least $(1-(\ell-1)\epsilon)|V_1|$ of the vertices of V_1 have at least $(\delta-\epsilon)|V_i|$ neighbors in V_i for all $1< i \leq \ell$. In particular, since $\epsilon \leq \frac{1}{2\ell-2}$ we have that $(\ell-1)\epsilon \leq \frac{1}{2}$ and then $1-(\ell-1)\epsilon \geq \frac{1}{2}$, so at least half of the vertices of V_1 satisfy the above condition.

For each such vertex $w_1 \in V_1$, let V_i' denote the subset of vertices of V_i which are neighbors of w_1 . Since $epsilon \leq \frac{1}{2}\delta$, Lemma 6.5 implies that for all $1 < i < i' \leq \ell$, the pair $(V_i', V_{i'}')$ is $(\frac{\epsilon}{\delta - \epsilon})$ -regular, and given that $(\frac{\epsilon}{\delta - \epsilon}) \leq (\frac{2\epsilon}{\delta}) \leq \epsilon(\frac{1}{2}\delta, \ell - 1)$, it is $\epsilon(\frac{1}{2}\delta, \ell - 1)$ -regular. Also, it has density at least $\delta - \epsilon \geq \frac{1}{2}\delta$. By the induction hypothesis, we have at least

$$\eta(rac{1}{2}\delta,\ell-1)\prod_{i=2}^\ell |V_i'| \geq \eta(rac{1}{2}\delta,\ell-1)\prod_{i=2}^\ell (\delta-\epsilon)|V_i|$$

possible choices of $w_2 \in V_2, ..., w_\ell \in V_\ell$ such that the induced subgraph spanned by $w_1, ..., w_\ell$ is complete. Since there are at least $\frac{1}{2}|V_1|$ vertices w_1 which satisfy the above condition, the chosen values of η satisfies the lemma, and we are done.

Remark 6.7. The non-recursive form of ϵ and η for $\ell > 1$ is:

$$egin{aligned} \epsilon(\delta,\ell) &= 2(rac{\delta}{4})^{\ell-1} \ \eta(\delta,\ell) &\geq rac{1}{2^{rac{(\ell+2)(\ell+1)}{2}-4}} \delta^{rac{\ell(\ell-1)}{2}} \end{aligned}$$

Theorem 6.8. For every k_* , γ , ℓ there is a $\delta(k_*, \gamma, \ell)$ such that if H is a graph with ℓ vertices, G has the non- k_* -order property and H is γ -unavoidable in G, then H is δ -abundant in G.

Proof. Apply Theorem 5.22 to G with $\epsilon = \min(\frac{\sqrt{\gamma}}{2}, \frac{\epsilon_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)}{\ell})$, k_* and m=0. We have a partition $\overline{A}=\{A_i\mid i\in\{1,\ldots,m_+\}\}$ into $m_*\leq M$ disjoint parts with,

$$M \leq \left\lceil 12 \max(rac{2}{\sqrt{\gamma}}, rac{\ell}{\epsilon_{\mathbf{6.6}}(1-rac{\sqrt{\gamma}}{2}, \ell)})
ight
ceil^{2^{k_*+1}-1}$$

such that all pairs of parts are ϵ -regular, and self-pairs are 4ϵ -regular. Also, by Remark 5.4 and $\frac{\epsilon^2}{2}$ -excellence of the parts, pairs have density at most ϵ^2 or at least $1-\epsilon^2$.

Now, we randomly partition each part A_i into ℓ equitable subparts $A_{i,j}$. By Lemma 6.5, each pair of such subparts is $\ell\epsilon$ -regular. On the other hand, Theorem 5.22 guarantees that such pairs have density at most ϵ or at least $1-\epsilon$.

Next, we modify the graph G into G' by only adding and removing no more than $\gamma\binom{|G|}{2}$ edges:

- For each pair of parts (A_{i_1}, A_{i_2}) with $i_1 \neq i_2$, if the pair's density is at most ϵ^2 , we remove all edges between A_{i_1} and A_{i_2} . Otherwise, the pair's density is at least $1 \epsilon^2$, and we add all remaining edges. This changes at most a fraction ϵ^2 of the edges between (disjoint) parts.
- For each self-pair (A_i, A_i) , if the pair's density is at most $4\epsilon^2$ again we remove all edges in A_i . Otherwise, the pair's density is at least $1-4\epsilon^2$, and we add all remaining edges. This changes at most a fraction $4\epsilon^2$ of the edges in self-pairs.

The resulting graph G' differs from G in at most $4\epsilon^2\binom{|G|}{2}\leq\gamma\binom{|G|}{2}$ edges. Thus, the γ -unavoidability of H in G ensures that there is still a copy of H in G'. Denote its vertices $v_{i_1},\ldots,v_{i_\ell}$, choosing i_1,\ldots,i_ℓ such that $v_{i_1}\in A_{i_1,1},\ldots,v_{i_\ell}\in A_{i_\ell,\ell}$. Notice that $A_{i_1,1},\ldots,A_{i_\ell,\ell}$ satisfy the conditions of Lemma 6.6 with $\delta_{6.6}=1-\frac{\sqrt{\gamma}}{2}$:

- Each subpair $(A_{i_j,j},A_{i_{j'},j'})$ with $j\neq j'$ is $\ell\epsilon$ -regular, and since $\epsilon\leq\frac{\epsilon_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)}{\ell}$, in particular is $\epsilon_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)$ -regular.
- For each $i_j \neq i_{j'}$, if $v_{i_j}v_{i_{j'}}$ is an edge of G then, by construction of G', the subpair $(A_{i_j,j},A_{i_{j'},j'})$ has density at least $1-\epsilon \leq 1-\frac{\sqrt{\gamma}}{2}$, and if $v_{i_j}v_{i_{j'}}$ is not an edge of G, the subpair $(A_{i_j,j},A_{i_{j'},j'})$ has density at most $\epsilon \geq 1-(1-\frac{\sqrt{\gamma}}{2})$

The lemma guarantees that there are at least $\eta_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)\prod_{j=1}^{\ell}\{A_{i_j},j\}$ copies of H in G. The fraction of induced copies of H in G is at least

$$\frac{\eta_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)\prod_{j=1}^{\ell}\{A_{i_j},j\}}{n^{\ell}} \geq \eta_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)(\frac{\frac{n}{M\cdot\ell}}{n})^{\ell} = \eta_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)(M\cdot\ell)^{-\ell} \eqqcolon \eta_{6.6}(1-\frac{\sqrt{\gamma}}{2},\ell)(M\cdot\ell)^{-\ell}$$

Maybe make a remark in Theorem 5.19 and H is at least η -abundant in G.

Remark 6.9. A more explicit lower bound for η only depending on γ , k_* and ℓ is:

$$\eta \geq \frac{1}{2^{\frac{(\ell+2)(\ell+1)}{2}-4}}(1-\frac{\sqrt{\gamma}}{2})^{\frac{\ell(\ell-1)}{2}}(\frac{1}{24}\min(\frac{\sqrt{\gamma}}{2},\frac{\epsilon(1-\frac{\sqrt{\gamma}}{2},\ell)}{\ell}))^{\ell(2^{k_*+1}-1)}(\frac{1}{\ell})^{\ell}$$

References

- [1] Ayush Basu (https://mathoverflow.net/users/389789/ayush-basu). irregular pairs in half graphs Szemeredi regularity. MathOverflow. URL:https://mathoverflow.net/q/404954 (version: 2021-09-27). eprint: https://mathoverflow.net/q/404954. URL: https://mathoverflow.net/q/404954.
- [2] Noga Alon and Asaf Shapira. "A characterization of the (natural) graph properties testable with one-sided error". In: *SIAM Journal on Computing* 37.6 (2008), pp. 1703–1727.
- [3] Noga Alon et al. "Efficient testing of large graphs". In: Combinatorica 20.4 (2000), pp. 451-476.
- [4] W. T. Gowers. "Lower bounds of tower type for Szemerédi's uniformity lemma". In: *Geom. Funct. Anal.* 7.2 (1997), pp. 322–337. ISSN: 1016-443X,1420-8970. DOI: 10.1007/PL00001621. URL: https://doi.org/10.1007/PL00001621.
- [5] Wilfrid Hodges. *Model theory*. Cambridge university press, 1993.
- [6] László Lovász and Balázs Szegedy. "Regularity partitions and the topology of graphons". In: An irregular mind. Vol. 21. Bolyai Soc. Math. Stud. János Bolyai Math. Soc., Budapest, 2010, pp. 415–446. ISBN: 978-963-9453-14-2; 978-3-642-14443-1. DOI: 10.1007/978-3-642-14444-8_12. https://doi.org/10.1007/978-3-642-14444-8_12.
- [7] Maryanthe Malliaris and Saharon Shelah. "Regularity lemmas for stable graphs". In: *Transactions of the American Mathematical Society* 366.3 (2014), pp. 1551–1585.
- [8] Tung Nguyen, Alex Scott, and Paul Seymour. "Induced subgraph density. VI. Bounded VC-dimension". In: arXiv preprint arXiv:2312.15572 (2023).
- [9] A Pajor. "Sous-Spaces 1: Des Espaces de Banach Travaux en Cours". In: Hermann, Paris (1985).
- [10] N Sauer. "On the density of families of sets". In: Journal of Combinatorial Theory, Series A 13.1 (1972), pp. 145-147. ISSN: 0097-3165. DOI: https://doi.org/10.1016/0097-3165(72)90019-2. URL: https://www.sciencedirect.com/science/article/pii/0097316572900192.
- [11] Saharon Shelah. "A combinatorial problem; stability and order for models and theories in infinitary languages". In: *Pacific Journal of Mathematics* 41.1 (1972), pp. 247–261.

A. Other proofs

For completeness, here we leave the proof of Lemma 5.8.

Proof. Suppose the converse. We use this fact to build sets $\{b_{\eta} \mid \eta \in \{0,1\}^{\leq k_{**}}\}$ and $\{A_{\eta} \mid \eta \in \{0,1\}^{\leq k_{**}}\}$ on induction over $k < k_{**}$, where $k = |\eta|$, satisfying:

- 1. $A_{\langle . \rangle} \subseteq A$, with $|A|_{\langle . \rangle} = m_0$.
- 2. B_{η} is an ζ -good set witnessing that A_{η} is not $(\frac{m_{k+1}}{m_k}, \zeta)$ -excellent, for all $k < k_{**}$.
- 3. $A_{\eta \frown \langle i \rangle} = \{ a \in A_{\eta} \mid t(a, B_{\eta}) \equiv i \}$ for all $i \in \{0, 1\}$ and $k < k_{**}$.
- 4. $|A_{\eta}| = m_k$, for all $k \le k_{**}$.
- 5. $A_{\eta \frown \langle 0 \rangle} \sqcup A_{\eta \frown \langle 1 \rangle} \subseteq A_{\eta}$, for all $k < k_{**}$.
- 6. $\overline{A_k} = \{A_\eta \mid \eta \in \{0,1\}^k\}$ is a partition of a subset of A, for all $k \leq k_{**}$.

Notice that, by 1. and 4., the size of A_η is m_k , so by IH none of the sets A_η is $\left(\frac{m_{k+1}}{m_k},\zeta\right)$ -excellent. Then, B_η in 2. is well-defined. Also, by ζ -goodness of B_η , $t(a,B_\eta)$ in 3. is well-defined. Then, since B_η is witnessing the non- $\left(\frac{m_{k+1}}{m_k},\zeta\right)$ -excellence of A_η , we have that $|A_{\eta \frown \langle i \rangle}| \geq \frac{m_{k+1}}{m_k} m_k = m_{k+1}$ for all $i \in \{0,1\}$, satisfying 4.. Finally, by definition 3., we have the disjoint union 5. which by itself ensures 6.

Now, our goal is to build two sequences $\{b_{\eta} \mid \eta \in \{0,1\}^{< k_{**}}\}$ and $\{a_{\eta} \mid \eta \in \{0,1\}^{k_{**}}\}$ to contradict the tree bound k_{**} . First of all, notice that, for $\eta \in \{0,1\}^{k_{**}}$

$$|A_{\eta}|=m_k\geq m_{k_{**}}\geq 1$$

So, for each $\eta \in \{0,1\}^{k_{**}}$, $A_{\eta} \neq \emptyset$ and we may choose an $a_{\eta} \in A_{\eta}$. Now, for $\nu \in \{0,1\}^{< k_{**}}$ and $\eta \in \{0,1\}^{k_{**}}$ such that $\nu \triangleleft \eta$, let

$$U_{\nu,n} = \{ b \in B_{\nu} \mid (a_n R b) \not\equiv t(a_n, B_{\nu}) \}$$

be the subset of elements of B_{ν} that do not relate with a_{η} in the expected way. By ζ -goodness of B_{ν} , $|U_{\nu,\eta}| < \zeta |B_{\nu}|$, and thus for every $\nu \in \{0,1\}^{< k_{**}}$,

$$|\bigcup \{U_{\nu,\eta} \mid \nu \triangleleft \eta \in \{0,1\}^{k_{**}}\}| < 2^{k_{**}}\zeta |B_{\nu}| \le |B_{\nu}|$$

We may choose $b_{\nu} \in B_{\nu} \setminus \bigcup \{U_{\nu,\eta} \mid \nu \triangleleft \eta \in \{0,1\}^{k_{**}}\}$, for all $\nu \in \{0,1\}^{< k_{**}}$. Finally, the sequences $\langle a_{\eta} \mid \eta \in \{0,1\}^{k_{**}} \rangle$ and $\langle b_{\nu} \mid \nu \in \{0,1\}^{< k_{**}} \rangle$ satisfy that $\forall \eta, \nu$ such that $\nu \frown \langle i \rangle \triangleleft \eta$, $(a_{\eta}Rb_{\nu})^i$, which follows 3.. This contradicts Definition 3.14 of tree bound k_{**} .

B. 1000 razones para querer morirme...