01_Closed_Loop_Feedback_Control

1. Basic Feedback Model

Transfer Functions

System Response

Closed-Loop Performance

2. Alternative Structures

Two degrees-of-freedom structure

Additional Loop Dynamics

A general Structure

3. Perturbed System

Robust Objectives

Control Design

Summary

1. Basic Feedback Model

- *d*: disturbance
- *r*: reference
- *n*: noise

Objectives:

- · closed-loop stability
- · reference tracking
- ullet disturbance rejection: d influence as small as possible
- noise response: as small as possible

Difficulties:

- model errors
- fundamental **limits on controllability** of G(s): not only "yes" or "no", but also **"hard" or "easy"**

· actuation constraints

Transfer Functions

• Loop Transfer Function

$$L(s) = G(s)K(s)$$

• Sensitivity Function

$$S(s) = \frac{1}{1 + G(s)K(s)} = \frac{1}{1 + L(s)}$$

• Sensitivity is a criteria to describe how much the closed-loop system will change if the plant changes.

$$S(s) = rac{ ext{relative closed-loop response change}}{ ext{relative open-loop response change}} = rac{dT(s)/T(s)}{dG(s)/G(s)}$$

- A change of α percent in the open-loop plant DC gain gives a magnitude change of $|\alpha S(0)|$ percent in the closed-loop DC gain.
- Complementary Sensitivity Function

$$T(s) = 1 - S(s) = rac{G(s)K(s)}{1 + G(s)K(s)} = rac{L(s)}{1 + L(s)}$$

Constraints

$$S(s) + T(s) = 1$$

System Response

• Output Response

$$y = T(s)r + S(s)G_d(s)d - T(s)n$$

• Error Response

$$e = r - y = S(s)r - S(s)G_d(s)d + T(s)n$$

Objectives

· Performance Tracking

· Noise Rejection

• Disturbance Rejection

$$S(s)G_d(s) << 1$$

• Low closed-loop plant sensitivity

These objectives are somehow conflicting because the constraints between T and S

Closed-Loop Performance

Closed-Loop Bandwidth ω_B

Frequency at which $|S(jw)| = -3dB = 1/\sqrt{2}$

Crossover Frequency ω_c

Frequency at which L(jw) = 1

Maximum Control Frequency

Frequency where |K(jw)| is still significant

Maximum Peak Criteria:

$$M_S = \max_{\omega} |S(j\omega)| = \|S(s)\|_{\mathcal{H}_{\infty}}$$
 and $M_T = \max_{\omega} |T(j\omega)| = \|T(s)\|_{\mathcal{H}_{\infty}}$

Property:

- If ${
 m PM} < 90^\circ$ then, $\omega_B < \omega_C < \omega_{BT}$
- GM $\geq rac{M_S}{M_S-1}, \quad ext{PM} \geq 2 \arcsin\left(rac{1}{2M_S}
 ight) \geq rac{1}{M_S}(ext{rad})$
 - $\circ~M_s
 ightarrow 1$, GM larger
- Typical Specification:
 - $M_S \leq 2$ and $M_T < 1.25$

2. Alternative Structures

Two degrees-of-freedom structure

$$u=K(s)\left[egin{array}{c} r \ y_m \end{array}
ight]=\left[K_r(s) & K_y(s)
ight]\left[egin{array}{c} r \ y_m \end{array}
ight]$$
 $L(s)=-G(s)K_y(s)$ $y=S(s)G_{
m d}(s)d+S(s)G(s)K_r(s)r+S(s)G(s)K_y(s)n$ only the local content of the local content of

Additional Loop Dynamics

$$egin{aligned} L(s) &= G(s)K(s)G_m(s) \ y &= S(s)G_{
m d}(s)d + S(s)G(s)K(s)r - T(s)n \end{aligned}$$

A general Structure

3. Perturbed System

Nominal case:

Perturbed case:

$$G_{\Delta}(s) = \{G(s) + \Delta(s) \mid \Delta(s) \in \operatorname{Set} \} \ G_{d\Delta}(s) = \{G_d(s) + \Delta_d(s) \mid \Delta_d(s) \in \operatorname{Set} \}$$

Sources of Uncertainty

- Nonlinear dynamics
- Operating point variation
- · Neglected dynamics in the model
- Non-repeatable dynamics

Robust Objectives

Nominal Stability (NS)

Closed-loop system stable with no model uncertainty.

Nominal Performance(NP)

Closed-loop system satisfies the performance requirements with no model uncertainty

Robust Stability (RS)

Closed-loop system is **stable** for **all models** in a **prescribed set.**

Robust Performance(RP)

Closed-loop system satisfies the performance requirements for all models in a prescribed set.

Control Design

There are three main approaches:

• Loop Shaping:

Design K(s) so that the loop, L(s), has the required properties (classical approach).

• Signal-based optimal control

Design K(s) to satisfy certain closed-loop system or signal objectives.

• Numerical optimisation-based

Use multi-objective optimisation with closed-loop and robustness objectives

Summary

- Basic Feedback Model
 - Sensitivity and Complementary Sensitivity
 - Closed-Loop Performance
- Alternative Structure
 - Two DoF Structure
 - A general structure
- · Perturbed Systems
 - Robust Objectives