Seminario 2. Arduino

Objetivos:

- Conocer la plataforma Arduino: arquitectura, modo de funcionamiento, programación y conexión de periféricos.
- Describir un kit de programación para Arduino: componentes y funcionalidad.
- Instalar y realizar sencillos programas mediante el IDE de programación basado en el lenguaje Processing de Arduino.
- Conocer herramientas adicionales para el diseño de prototipos en Arduino (Fritzing).

1. Introducción

Arduino se basa en:

- 1. El lenguaje de programación Processing y su entorno de desarrollo.
- 2. Plataforma Wiring. Plataforma hardware para realizar prototipos.
- 3. Lenguaje de programación **C**. Concretamente, su lenguaje de programación y sus herramientas derivan de C.

Los ficheros que contienen el texto del programa se denominan "Sketchs" (bocetos).

La plataforma está formada por tres componentes principales:

- 1. Hardware.
- 2. Entorno de programación.
- 3. Comunidad de usuarios.

El firmware es el código de los elementos programables.

Descripción del hardware

2.1. Tipos de placas Arduino

Existe una gran variedad de placas Arduino, variando los parámetros del tamaño de memoria, modelo de microcontrolador, periféricos disponibles, geometría, medidas de la placa, etc...

Nombre	Procesador	Reloj (MHz)	Memoria (kB) Flash/RAM/ ROM	Pines IO/A	Periféricos	Tamaño (mm)
UNO	ATmega328	16	32/2/1	14/6		68,6x53,3
Mega	ATmega2560	16	256/8/4	54/16		101,6x53,3
Leonardo	ATmega32	16	32/2,5/1	20/12		68,6x53,3
Esplora	ATmega32	16	32/2,5/1		Sensores, TFT color, USART	165,1x61
Duemilanove	ATmega328	16	32/2/1	14/6	-	68,6x53,3
Mini Pro	ATmega328	8/16	32/2/1	14/8		17,8x33
Micro	ATmega32	16	32/2,5/1	20/1		17,8x48x3
Nano	ATmega328	16	32/2/1	14/8		18,5×43,2
Fio	ATmega328	8	32/2/1	14/8		66x27,9
LilyPad	varios	8	-	14/6		50
Ethernet	ATmega328	16	32/2/1	14/6	Ethernet	68,6x53,3
Bluetooth	ATmega168		32/2/1	14/6	Bluetooth	81,3x53,3
Robot	ATmega32 +ATmega32	16	32/2,5/1	6/4	SPI, I2C, TFT, sensores	Ø 190
Yún	ATmega32 +MIPS(linux)	16	32/2,5/1	14	Wi-fi, SD, USB	68,6x53,3
Due	ARM Cortex	84	512/96/0	54/12	DMA, CAN	101,6x53,3

2.2. Placa Arduino UNO

Placa de referencia para el resto y la más usada. Se encuentra formada por los siguientes componentes:

- Microcontrolador: es un computador en un solo chip. Características:
 - o Voltaje: 5V
 - o Memoria Flash: 32 KB
 - o SRAM 2 KB (memoria volátil)
 - EEPROM 1 KB (memoria permanente de escritura elástica)
 - Velocidad de reloj 16 MHz
- Alimentación: puede venir de una fuente externa o a través del USB. Si hay alimentación externa se usa, en caso contrario, se usa el USB.

- ICSP: el ICSP es el sistem utilizado en los dispositivos PIC para programarlos sin necesidad de tener que retirar el chip del circuito del que forma parte.
- Conectores: el conector de la parte inferior corresponde a la parte de alimentación/reset (parte izquierda) y entradas analógicas (parte derecha). La parte superior corresponde a entradas/salidas digitales (0-13), de las cuales 6 pueden actuar como salidas PWM, Pulse Width Modulation (3, 5, 6, 9, 10, 11).

3. Kit de desarrollo

Para identificar el valor de las resistencias se puede usar la siguiente imagen:

4. Programación

El entorno de desarrollo de Arduino permite escribir programas, compilarlos y transferirlos al *firmware*.

El IDE se compone del propio editor de texto, un conjunto de librerías y las herramientas de compilación y programación necesarias para trabajar. El lenguaje de programación empleado es Processing, el cual está basado en C.

Las funciones relacionadas con las E/S digitales son:

- pinMode(pin, mode), el cual fija el modo del pin en INPUT u OUTPUT
- digitalRead(pin), consulta el valor del pin (HIGH o LOW)
- digitalWrite(pin, value), escribe el valor en el pin (HIGH o LOW)

5. Complementos

5.1. Fritzing

Programa de software libre de diseño electrónico.

Mediante este software podemos realizar el diseño de un proyecto de forma estructurada y mostrar de forma gráfica la distribución de los componentes.

5.2. 123D Circuits

Permite diseñar circuitos electrónicos a través de un navegador en línea. Se pueden crear circuitos desde cero o utilizar proyectos compartidos y plantillas.