

Lösungsblatt 1

1 Beweistechniken

- (a) Man zeige: Die Summe zweier ungerader ganzer positiver Zahlen ist eine gerade Zahl. Dabei sei 1 die erste ungerade Zahl größer 0.
- (b) Man zeige: Die Summe der Quadrate zweier gerader Zahlen ist gerade.
- (c) Man zeige: Für alle $n \in \mathbb{N}$ ist $n^2 + n$ gerade.
- (d) Man mache sich anhand einer Wahrheitstafel die Äquivalenz:

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A) \tag{1}$$

für A und B beliebige Aussagen noch einmal klar.

- (e) Man zeige: Für $l \in \{k^2 | k \in \mathbb{N}\}$ gilt: Ist l gerade, dann ist auch \sqrt{l} gerade. (Tipp: Man benutze Kontraposition).
- (f) Man zeige: Die Menge der natürlichen Zahlen hat kein größtes Element. (Tipp: Man benutze Reductio ad absurdum).

Lösung

(a) Direkter Beweis: $A \Rightarrow B$ Behauptung:

$$\underbrace{x, y \text{ ist ungerade positiv}}_{AusageA} \Rightarrow \underbrace{x + y \text{ ist ungerade}}_{AusageB}$$

Beweis: Aus x, y ungerade folgt: x = (2a + 1) und y = (2b + 1) mit $a, b \in \mathbb{N}_0$, da $x, y \ge 1$. Summiert man folgt: x + y = (2a + 1) + (2b + 1) = 2(a + b + 1) = z mit z durch 2 teilbar, also gerade. Also $A \Rightarrow B$ durch direkten Beweis.

(b) Direkter Beweis: $A \Rightarrow B$ Behauptung:

$$\underbrace{x, y \text{ ist gerade}}_{Ausage A} \Rightarrow \underbrace{x^2 + y^2 \text{ ist gerade}}_{Ausage B}$$

Beweis: Aus x, y gerade folgt: x = 2a und y = 2b mit $a, b \in \mathbb{Z}$ Berechnen der Potenzen und Summen führt zu: $x^2 + y^2 = (2a)^2 + (2b)^2 = 4a^2 + 4b^2 = 2(2a^2 + 2b^2) = z$ mit z durch 2 teilbar, also gerade. Also $A \Rightarrow B$ durch direkten Beweis.

(c) Direkter Beweis mit Fallunterscheidung : $A \Rightarrow B$ Behauptung:

$$\underbrace{n \in \mathbb{N}}_{AusageA} \Rightarrow \underbrace{n^2 + n \text{ ist gerade}}_{AusageB}$$

Beweis:

Fall 1: n ist gerade. Dann folgt n=2k für ein $k \in \mathbb{N}$ und es gilt: $n^2+n=4k^2+2k=2(2k^2+k)=z$ mit z durch 2 teilbar, also gerade.

Fall 2: *n* ist ungerade. Dann folgt n = (2k + 1) für ein $k \in \mathbb{N}$ und es gilt: $n^2 + n = (2k + 1)^2 + 2k + 1 = (4k^2 + 4k + 1) + 2k + 1 = 2(2k^2 + 3k + 1) = z$ mit *z* durch 2 teilbar, also gerade.

(d) Gleichung (1) wird mit folgender Wahrheitsstaffel klar:

Tabelle 1: Beweis Kontraposition (Gleichung 1) mithilfe einer Wahrheitstafel

A	В	$A \Rightarrow B$	$\neg A \Rightarrow \neg B$	$(A \Rightarrow B) \Leftrightarrow (\neg A \Rightarrow \neg B)$
f	f	W	W	W
\mathbf{f}	W	w	W	W
W	\mathbf{f}	f	f	W
W	W	w	W	W

(e) Beweis durch Kontraposition: $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ Behauptung:

$$\underbrace{l \in \left\{k^2 | k \in \mathbb{N}\right\} \text{ ist gerade}}_{Ausage A} \Rightarrow \underbrace{\sqrt{l} \text{ ist gerade}}_{Ausage B}$$

Beweis: Wir wollen $\neg B \Rightarrow \neg A$ zeigen, also:

$$\underbrace{\sqrt{l} \text{ ist ungerade}}_{Ausage \neg B} \Rightarrow \underbrace{l \text{ ist ungerade}}_{Ausage \neg A}$$

Dies $(\neg B \Rightarrow \neg A)$ wird nun direkt bewiesen.

Sei \sqrt{l} ungerade und wegen $l \in \{k^2 | k \in \mathbb{N}\}$ eine natürliche Zahl. Es gilt also: $\sqrt{l} = 2n+1$ für ein $n \in \mathbb{N}$ und mit $l = \sqrt{l^2} = (2n+1)^2 = 4n^2+4n+1 = 2(2n^2+2)+1 = 2m+1$ erkennt man, dass auch l ungerade ist. Damit $\neg B \Rightarrow \neg A$ und damit sofort $A \Rightarrow B$.

(f) Reductio ad Absurdum: $\neg B \Rightarrow C$ mit C beliebiger falscher Aussage. Behauptung: Die Menge der natürlichen Zahlen hat kein größtes Element (= Aussage B). Beweis: Man gehe vom Gegenteil $\neg B$ aus, es gibt also ein größtes n:

$$\exists n \in \mathbb{N} : n > m \forall m \in \mathbb{N}$$

Wähle nun m=n+1, dies ist offensichtlich möglich da wegen $n\in\mathbb{N}$ und $1\in\mathbb{N}$ auch $n+1\in\mathbb{N}$. Daraus folgt aber: $n\geq n+1$ und daraus $0\geq 1$ Widerspruch. Damit muss die Annahme der Existenz einer größten natürlichen Zahl falsch sein.

2 Surjektivität, Injektivität und Bijektivität

Entscheide durch Beweis oder Gegenbeispiel, ob die Funktionen Injektiv, Surjektiv oder Bijektiv sind:

(a)
$$f: \mathbb{N} \to \mathbb{N}, n \to 2n+1$$

(b)
$$q:(-\pi,\pi)\to(-5,5), x\to\cos(x)$$

(c)
$$h: [-2, \infty) \to [-2, \infty), x \mapsto x^2 - 2x - 1$$

(d)
$$i: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{x^3}{|x|}$$

(e)
$$j: \mathbb{C} \to \mathbb{C}, z \to \sin(z)$$

(Tipp: Schreibe den Sinus als Linearkombinationen aus e-Funktionen.)

Lösung:

- (a) f injektiv, nicht surjektiv und damit nicht bijektiv. Zur Injektivität: Für $n_1, n_2 \in \mathbb{N}$ gilt: $f(n_1) = f(n_2) \Leftrightarrow 2n_1 + 1 = 2n_2 + 1 \Leftrightarrow n_1 = n_2$.
- (b) g nicht injektiv, nicht surjektiv, nicht bijektiv. Zur Injektivität: $\cos(x) = \cos(-x)$ Zur Surjektivität: $\cos(x)$, ist für $x \in \mathbb{R}$ durch 1 beschränkt.
- (c) h nicht injektiv, surjektiv, nicht bijektiv. Zur Injektivität: zB. f(0) = f(2)Zur Surjektivität: Mitternachtsformel ergibt $x_{1,2} = 1 \pm \sqrt{y+2}$. Da der Urbildbereich als untere Schranke -2 hat, ist das Urbild x von y gegeben durch: $x = 1 + \sqrt{y+2}$
- (d) i injektiv, nicht Surjektiv, nicht bijektiv. Zur Injektivität: Seien $x_1, x_2 \in \mathbb{R} \setminus \{0\}$ beliebig dann gilt: $i(x_1) = i(x_2) \Rightarrow \frac{x_1^3}{|x_1|} = \frac{x_1^3}{|x_1|}$ $\Rightarrow x_1|x_1| = x_2|x_2|$ und daraus $\operatorname{sign}(x_1) = \operatorname{sign}(x_2) \wedge |x_1| = |x_2| \Rightarrow x_1 = x_2$. Zur Surjektivität: Es existiert kein $x \in \mathbb{R} \setminus \{0\}$ s.d i(x) = 0, denn: $\frac{x^3}{|x|} = 0 \Rightarrow x^3 = 0 \Rightarrow x = 0$
- (e) j nicht injektiv, surjektiv, nicht bijektiv. Zur Injektivität: Da $\mathbb{R} \subseteq \mathbb{C}$ und $\sin(x)$ für $x \in \mathbb{R}$ 2π -periodisch ist folgt Aussage. Zur Surjektivität: $w = \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$. Vorgehen: Nach z auflösen, um das Urbild von w zu erhalten. Multiplizieren mit e^{iz} und umstellen liefert mit der Substitution $\xi = e^{iz}$ eine quadratische Form in ξ :

$$w = \frac{e^{iz} - e^{-iz}}{2i}$$

$$2iwe^{iz} = (e^{iz})^2 - 1$$

$$0 = \xi^2 - 2iw\xi - 1$$

$$\xi_{1,2} = iw \pm \sqrt{1 - w^2} = e^{iz}$$

beim anwenden des komplexen Logarithmus beachte man, dass dieser wegen $e^{2\pi ik} = 1, k \in \mathbb{Z}$ mehrdeutig ist:

$$z = i \left[2\pi i k_{\pm} + \ln \left(-iw \pm \sqrt{1 - w^2} \right) \right]$$

für ein festes $k_{\pm} \in \mathbb{Z}$. Man erkennt das jedes beliebige Bild w durch mindestens ein (komplexwertiges) Urbild z bestimmt ist, damit ist i(z) Surjektiv.

3 Verknüpfte Funktionen

Seien M,N und P nichtleere Mengen und $f:M\to N$ und $g:N\to P$ Abbildungen, sodass $g\circ f=g(f(x))$ bijektiv ist. Zeige:

- (a) f ist injektiv
- (b) g ist surjektiv

Lösung

(a) f ist injektiv, denn es gilt:

$$f(x) = f(y) \Rightarrow g(f(x)) = g(f(y)) \stackrel{g \circ f \text{ inj.}}{\Rightarrow} x = y$$

(b) g ist surjektiv: Da $g \circ f$ surjektiv ist, gibt es zu jedem $p \in P$ ein Element $m \in M$ mit $p = (g \circ f)(m) = g(f(m))$, d.h $f(m) \in N$ ist ein Urbild von p.

Bemerkung: In Abbildung (1) ist ein Beispiel einer Verknpüfung $g \circ f = g(f(x))$ mit $f: M \to N$ und $g: N \to P$, die bijektiv ist.

Abbildung 1: Verknüpfung von Funktionen, hier $g(f(x)): M \to P$.

Es gilt: f ist injektiv und g surjektiv, wie eben bewiesen. Offensichtlich lassen sich aber Beispiele finden, in denen f nicht surjektiv ist und in denen g nicht injektiv ist.

4 Umkehrfunktion

Gegeben sei $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 2x - 2$.

- (a) Skizziere f(x) in einem geeigneten Bereich um den Scheitelpunkt.
- (b) Schränke den Definitions und den Wertebereich so ein, dass f(x) bijektiv ist. (Angeben reicht!)
- (c) Bestimme die Umkehrabbildung und gebe explizit den Definitions- und Wertebereich von f^{-1} an.
- (d) Gebe $f \circ f^{-1}$ und $f^{-1} \circ f$ explizit an.
- (e) Skizziere f^{-1} in einem geeigneten Bereich.

Lösung

Die Scheitelform der quadratsichen Funktion lautet: $(x+1)^2 - 3$. Damit erhält man:

- (a) Siehe Figure 2
- (b) Die Funktion ist nur auf einem Ast bijektiv. Für den in positive x-Richtung zeigenden Ast erhält man:

$$f: \begin{cases} [-1, \infty) \to [-3, \infty) \\ x \mapsto f(x) = (x+1)^2 - 3 \end{cases}$$

Abbildung 2: $f(x) = x^2 + 2x - 2$ in blau, $f^{-1}(y) = -1 + \sqrt{3+x}$ in orange

(c) Für den positiven Ast lautet die Umkehrabbildung:

$$f^{-1}: \begin{cases} [-3,\infty) \to [-1,\infty) \\ x \mapsto f^{-1}(y) = -1 + \sqrt{3+y} \end{cases}$$

 $f^{-1}(y)$ erhält man mithilfe der Mitternachtsformel aus f(x) = y, da f(x) der positive Ast ist muss hier das + gewählt werden. Der Definitionsbereich von $f^{-1}(y)$ ist der Werteberich von f(x) und der Wertebereich von $f^{-1}(y)$ ist der Definitionsbereich von f(x).

(d)

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = [-3, \infty)$$

 $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = [-1, \infty)$

(e) Siehe Figure 2

5 Induktion

Man beweise per Induktion

(a) $5+3^n$ ist für alle $n \in \mathbb{N}$ durch 2 teilbar.

(b)
$$\sum_{k=1}^{n} (k^2 - 1) = \frac{1}{6} (2n^3 + 3n^2 - 5n)$$

(c) $\prod_{k=1}^{n} 3^{2k} = 3^{n(n+1)}$

(d) $\prod_{k=1}^{n} (1 + x_k) \ge 1 + \sum_{k=1}^{n} x_k$, wobei $x_1, ..., x_n \ge 0, n \in \mathbb{N}$ fest.

Lösung

(a) Beweis per Induktion:

I.B: $5 + 3^n$ ist durch 2 teilbar

I.A: n = 1 ergibt: $5 + 3^1 = 8 = 2 \cdot 4$

I.S: $n \to n+1$ ergibt: $5+3^{n+1}=5+3^n\cdot 3=5+3^n+2\cdot 3^n$, erster Term nach I.B durch 2 teilbar, zweiter offensichtlich auch.

(b) Beweis per Induktion

I.B:
$$\sum_{k=1}^{n} (k^2 - 1) = \frac{1}{6} (2n^3 + 3n^2 - 5n)$$

I.A: $n = 1$ ergibt: $\sum_{k=1}^{1} (k^2 - 1) = 0 = \frac{1}{6} (2 + 3 - 5)$
I.S: $n \to n + 1$: ergibt:

$$\sum_{k=1}^{n+1} (k^2 - 1) = (n+1)^2 - 1 \sum_{k=1}^{n} (k^2 - 1) \stackrel{I.B}{=} \frac{1}{6} (2n^3 + 3n^2 - 5n) + n^2 + 2n$$
$$= \frac{1}{6} (2n^3 + 9n^2 + 7n) = \frac{1}{6} (2(n+1)^3 + 3(n+1)^2 - 5(n-1))$$

(c) Beweis per Induktion:

I.B:
$$\prod_{k=1}^{n} 3^{2k} = 3^{n(n+1)}$$

I.A:
$$n = 1$$
 ergibt: $\prod_{k=1}^{1} 3^{2k} = 3^{2 \cdot 1} = 3^{1(1+1)}$

I.S: $n \to n+1$ ergibt:

$$\prod_{k=1}^{n+1} 3^{2k} = 3^{2(n+1)} \cdot \prod_{k=1}^{n} 3^{2k} \stackrel{I.B}{=} 3^{2(n+1)} \cdot 3^{n(n+1)} = 3^{2n+2+n^2+n} = 3^{(n+1)(n+2)}$$

(d) Beweis per Induktion:

I.B:
$$\prod_{k=1}^{n} (1+x_k) \ge 1 + \sum_{k=1}^{n} x_k$$

I.B: $\prod_{k=1}^{n} (1+x_k) \ge 1 + \sum_{k=1}^{n} x_k$ I.A: n=1 ergibt: $\prod_{k=1}^{1} (1+x_k) = 1 + x_1 \ge 1 + \sum_{k=1}^{n} x_k$, wobei hier das Gleichheitszeichen gilt.

I.S: $n \to n+1$ ergibt:

$$\prod_{k=1}^{n+1} (1+x_k) = (1+x_{n+1}) \cdot \prod_{k=1}^{n} (1+x_k) \stackrel{I.B}{\ge} (1+x_{n+1}) \left(1+\sum_{k=1}^{n} x_k\right)$$

$$= 1+x_{n+1} + \sum_{k=1}^{n} x_k + x_{n+1} \sum_{k=1}^{n} x_k$$

$$= 1+\sum_{k=1}^{n+1} x_k + x_{n+1} \sum_{k=1}^{n} x_k \ge 1 + \sum_{k=1}^{n+1} x_k$$

6 Infimum und Supremum von Mengen

Geben Sie falls möglich für die folgenden Mengen je zwei obere und untere Schranken, Infimum, Minimmum, Supremum und Maximum an.

- (a) $\{0, -3, 5, 7\}$
- (b) $\left\{\frac{1}{2n+1} | n \in \mathbb{Z} \setminus \{0\}\right\}$
- (c) $\{\exp(n)|n\in\mathbb{N}\}$

Lösung

- (a) Untere Schranken sind beliebige Zahlen kleiner oder gleich -3, obere Schranken alle Zahlen größer oder gleich 7. inf = $\min = -3$, $\sup = \max = 7$
- (b) Die betragsmäßig größten Zahlen der Menge sind -1 und 1/3. Also gilt inf = min =-1, sup = max = 1/3. Obere/untere Scrhanken sind wieder beliebige Werte größer/kleiner gleich dem Supremum/Infimum.

(c) Es gilt inf = min = e, da die Exponentialfunktion monoton wächst und min \mathbb{N} = 1. Nach oben ist die Menge unbeschränkt, also ist sup = ∞ und es existiert kein Maximum.

7 Infimum und Supremum bei Funktionen

Geben Sie falls möglich an:

- (a) $\inf_{x \in \mathbb{R}} \exp(x)$ und $\min_{x \in \mathbb{R}} \exp(x)$
- (b) $\inf_{x \in \mathbb{R}} \arctan(x)$ und $\min_{x \in \mathbb{R}} \arctan(x)$
- (c) $\sup_{x \in \mathbb{R}} \sin(x)$ und $\min_{x \in \mathbb{R}} \sin(x)$
- (d) $\sup_{x \in \mathbb{R}} x^2$ und $\sup_{x \in [0,1]} x^2$

Lösung

- (a) $\inf_{x \in \mathbb{R}} \exp(x) = 0$ und $\min_{x \in \mathbb{R}} \exp(x)$ existiert nicht.
- (b) $\inf_{x \in \mathbb{R}} \arctan(x) = -\pi/2$ und $\min_{x \in \mathbb{R}} \arctan(x)$ existiert nicht.
- (c) $\sup_{x \in \mathbb{R}} \sin(x) = 1$ und $\min_{x \in \mathbb{R}} \sin(x) = 1$
- (d) $\sup_{x \in \mathbb{R}} x^2 = \infty$ und $\sup_{x \in [0,1]} x^2 = 1$

8 Monotonie

Sind die folgenden Funktionen $f_{\iota}: \mathbb{R} \to \mathbb{R}$ (strikt) monoton? Begründen Sie. Geben Sie sonst eine Einschränkung des Definitionsbereichs an, sodass die Funktionen monoton sind.

- (a) $f_1: x \mapsto x^3$
- (b) $f_2: x \mapsto \sin(x)$
- (c) $f_3: x \mapsto -\exp(x)$
- (d) $f_4: x \mapsto x^3 x$

Finden Sie ein Beispiel für eine monotone aber nicht streng monotone Funktion.

Lösung

- (a) x^3 ist streng monoton, da aus $x_1 < x_2$ auch $x_1^3 < x_2^3$ folgt.
- (b) Der sinus ist nicht monoton, da die Ableitungsfunktion positive und negative Werte annimmt. Die Einschränkung auf $[-\pi/2, \pi/2]$ ist streng monoton wachsend.
- (c) Wegen $-\exp(x) > 0$ ist die Ableitung strikt positiv, also die Funktion streng monoton fallend.

(d) Die Ableitung der Funktion ist $f_4'=3x^2-1$ und wechselt das Vorzeichen. Auf den Einschränkungen $(-\infty,-\sqrt{1/3}]$ und $[\sqrt{1/3},\infty)$ ist die Funktion streng monoton wachsend, auf $[-\sqrt{1/3},\sqrt{1/3}]$ streng monoton fallend.

Auf der Menge $(-\infty, -\sqrt{1/3}] \cup [\sqrt{1/3}, \infty)$ ist die Funktion nicht monoton!

Die Funktion

$$f = \begin{cases} x & x \le 0 \\ 0 & 0 < x \le 1 \\ x - 1 & 1 < x \end{cases}$$

ist monoton aber nicht streng monoton wachsend.

9 Komplexe Zahlen

Berechnen und stellen Sie in der Form a + ib dar:

(a)
$$\frac{2}{4+i}$$

(d)
$$i + e^{i\pi}$$

(g)
$$Re(i \cdot (2+2i))$$

(b)
$$e^{i\pi/4} + e^{i3\pi/4}$$

(e)
$$\frac{3+4i}{e^{i5\pi/4}}$$

(h)
$$\text{Im}(|13/2 \cdot e^{i\pi/5}|)$$

(c)
$$e^{i\pi/4} + e^{-i\pi/4}$$

(f)
$$|(4+i)\cdot e^{i\pi/13}|$$

(i)
$$e^{i\pi/4+1}$$

Lösung

(a)
$$8/17 - 2/17i$$

(d)
$$-1 + i$$

(g)
$$-2$$

(b)
$$\sqrt{2}i$$

(e)
$$-7/\sqrt{2} - i/\sqrt{2}$$

(c)
$$\sqrt{2}$$

(f)
$$\sqrt{17}$$

(i)
$$e/\sqrt{2} + i \cdot e/\sqrt{2}$$