苏州大学 操作系统原理 课程试卷 (二) 答案共 5 页

学院	专业		成绩	
年级	_学号	姓名	日期	
考试形式: _	闭卷	时间:	120 分钟	
一、 填空题	(20分,每空1分	})		
	基本功能包括 <u>处理机</u> 此之外还为用户使用:			管理、
2、P.V 操作当为 则不在同一进程	为 <u>互斥</u> 操作时,它 是中出现。	它们同处于同一	进程;当为 <u>同步</u>	操作时,
	指 <u>系统中一次只允</u> 原的代码段		用的资源,而	临界区是指
	是指 <u>花费 I/O 时间</u> /O 时间的进程		程,而 CPU	型进程是指
5、当时间片轮转	专算法的时间片足够力	、时,这个算法就	优等同于 <u>FIFO</u>	算法。
6、重定位的方:	式有 静态重定位	和 <u>动态重定位</u>	两种。	
7、在分页存储管 成。	管理系统中,逻辑地址	的主要内容由_	_页号和	页内偏移_构
	大小为 9130 个字节, 逐 <u>3</u> 个物理块存放。		块的大小为 4096	个字节,那
9、一般情况下 等。	,FCB 中的内容有名	<u> </u>	、地址	和当前长度
二、 选择题	(20分,每题2分	})		
看电影,那么,	98 操作系统中,用户 word 和 real player (2) 串行 (3)	r这两个进程是	:4	
(1)更大的内容	为了实现多道程序设存 (2)更快的 (4)更先进	的外部设备	÷需要有 <u>1</u> 。	

3、采用 Microkernel 结构的操作系统有 <u>2</u> 。 (1) DOS (2) WINDOWS XP (3) WINDOWS 98 (4) Linux
4、一般情况下, 互斥信号量的初值一般为 <u>2</u> 。 (1) 0 (2) 1 (3) 2 (4) 4
5、银行家算法是一种 <u>2</u> 算法。 (1)死锁解除 (2)死锁避免 (3)死锁检测 (4)死锁预防
6、作业调度又称为
7、在段页式存储管理系统中,内存分配的单位是1_。 (1)页框 (2)段 (3)段页 (4)区
8、在可变分区式存储管理中,有利于大作业运行的算法是3(1) 首次适应算法 (2) 下次适应算法 (3) 最佳适应算法 (4) 最坏适应算法
9、可以分配给多个进程的设备是1。 (1) 共享设备 (2) 块设备 (3) 独占设备 (4) 互斥设备
10、假使一个文件系统所确定的物理块大小为 4K,则一个 4097 字节的文件实际占用的外存空间为。 (1) 4K (2) 8K (3) 4097 (4) 12K
三、 简答题 (20 分, 每题 5 分)
1、操作系统的主要部件有哪些? 操作系统的部件主要有: 进程管理 主存管理 二级储存器管理 I/O 系统管理 文件管理

保护系统 网络处理 命令解释器系统

- 2、请简述为什么要在核心 I/O 子系统中要引入缓冲机制(Buffering)。 引入缓冲的主要原因:
 - (1) 缓和 CPU 与 I/O 设备间速度不匹配的矛盾。
 - (2) 减少对 CPU 的中断频率,放宽对中断响应时间的限制。
 - (3) 提高 CPU 与 I/O 设备之间的并行性。
- 3、在信号量 S 上执行 P、V 操作时,S 的值发生变化,当 S>0,S=0,S<0 时,它们的物理意义是什么? P(S)、V(S)的物理意义又是什么?
- S>0: 有资源可用;
- S=0:没有资源可用:
- S<0:有进程在等待资源;
- P(S): 当有 S 资源可用时, S 减一; 如果没有 S 资源可用时, 阻塞当前进程;
- V(S): 当资源不再使用时, S 加一; 如果有进程因为等待当前资源而阻塞, 需要唤醒他们。
- 4、从内核角度看,内核级线程和用户级线程有什么不同?

用户级线程仅存在于用户级中,它的创建、撤消和切换都不利用系统调用 实现,与内核无关,相应的,内核也不知道有用户级线程存在。

内核级线程依赖于内核,无论用户进程中的线程还是系统进程中的线程, 其创建、撤消、切换都由内核实现。在内核中保留了一张<mark>线程控制块</mark>,内核根据 控制块感知线程的存在并对其进行控制。

- (1) 线程的调度与切换速度 内核支持线程的调度和切换与进程的调度和切换十分相似。对于用户级线程的切换,通常是发生在一个应用程序的多线程之间,这时,不仅无须通过中断进入 0S 的内核,而且切换的规则也远比进程调度和切换的规则简单。因此,用户级线程的切换速度特别快。
- (2) 系统调用 当传统的用户进程调用一个系统调用时,要由用户态转入核心态,用户进程将被阻塞。当内核完成系统调用而返回时,才将该进程唤醒,继续执行。而在用户级线程调用一个系统调用时,由于内核并不知道有该用户级线程的存在,因而把系统调用看作是整个进程的行为,于是使该进程等待,而调度另一个进程执行,同样是在内核完成系统调用而返回时,进程才能继续执行。如果系统中设置的是内核支持线程,则调度是以线程为单位。当一个线程调用一个系统调用时,内核把系统调用只看作是该线程的行为,因而阻塞该线程,于是可以再调度该进程中的其他线程执行。

四、 请画出五状态进程图, 并说明进程的状态及其相互间的转换关系。

解:

◆ 就绪—运行:被调度程序选中

◆ 运行—就绪: 时间片到时,或有更高优先级的进程出现

◆ 运行—等待: 等待某事件发生

◆ 等待—就绪: 等待的事件发生了

五、一个系统中存在某类资源 m 个,被 n 个进程共享。资源的分配和释放必须一个一个进行,请证明在以下两个条件下不会发生死锁:

- 每个进程需要资源的最大数在 1~m 之间;
- 所有进程需要的资源总数小于 m+n;

证明:

假设进程已经分配到的资源为 Ai(0<i<n+1),则 Ai<=Ri

假设当前发生了死锁,则 A1+A2+....+An=m

Ai<Ri (0<i<n+1)

也就是

 $Ai+1 \le Ri$

则

 $A1+A2+...+An+n \le R1+R2+...+Rn$

即

m+n<=R1+R2+....+Rn 和(1)矛盾,死锁不成立。

六、一个请求式分页存储系统,页表存放在内存:

- 访问一次内存需要 100ns
- 如果仅调入一个页面,需要花费 8ms(内存有空页面,或需要进行页面置换, 单被置换的页面没有修改过);
- 如果调入一个页面同时需要进行被置换页面的写出,则需要 20ms;
- 假设页面被修改的比例是 60%:

请问,缺页率必须控制在多少以下,才能使得 EAT<200ns?

解:

七、4一个文件有 100 个磁盘块,假设文件控制块在内存(如果文件采用索引分配(indexed allocation),索引表也在内存)。在下列情况下,请计算在 contiguous, linked, indexed(single-level)三种分配方式下,分别需要多少次磁盘 I/O 操作?(每读入或写入一个磁盘块都需要一次磁盘 I/O 操作)(10%)

假设在 contiguous 分配方式下,文件头部无空闲的磁盘块,但文件尾部有空 闲的磁盘块。假设要增加的块信息存放在内存中。

- 在文件开始处添加一个磁盘块;
- 在文件结尾处添加一个磁盘块;
- 在文件中间删除第50块磁盘块:(假设磁盘块编号从0—99)
- 在文件第50块前添加一个磁盘块; (假设磁盘块编号从0—99)

解:

- 在文件开始处添加一个磁盘块:连续:201/链接:1/索引:1
- 在文件结尾处添加一个磁盘块:连续:1/链接:101/索引:1
- 在文件中间删除一个磁盘块:连续:48*2+1+1=98/链接:52/索引:0
- 在文件中间添加一个磁盘块:连续:101/链接:52/索引:1