Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 936 597 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 18.08.1999 Bulletin 1999/33

(21) Application number: 98928549.9

(22) Date of filing: 18.06.1998

(51) Int. Cl.⁶: **G10L 3/00**, G10L 9/00, G06F 17/30, G06F 15/76

(86) International application number: PCT/JP98/02699

(87) International publication number: WO 98/58365 (23.12.1998 Gazette 1998/51)

(84) Designated Contracting States: DE FR GB IT NL

(30) Priority: 18.06.1997 JP 16166497

(71) Applicant: Kabushiki Kalsha Optrom Miyagi-ken 989-3124 (JP)

(72) Inventors:

 SHIGETOMI, Takashi Kabushiki Kalsha Optrom Miyagi-ken 989-3124 (JP) SAITO, Tetsuo Kabushiki Kaisha Optrom Miyagl-ken 989-3124 (JP)

 KOMAKI, Tsunematsu Advanced Electronics K.K. Tokyo 111-0053 (JP)

(74) Representative:
Rinuy, Santarelli
14, avenue de la Grande Armée
75017 Paris (FR)

(54) STORAGE MEDIUM HAVING ELECTRONIC CIRCUITS, AND VOICE SYNTHESIZER HAVING THE STORAGE MEDIUM

(57) The present invention provides a speech-synthesizing apparatus that synthesizes various types of voices and words, such as a dialect, on the basis of more compact databases, and a storage medium that has an electronic circuit making the speech-synthesizing apparatus feasible. The storage medium is an intelligent disk having a disk block for storing information and an electronic circuit for processing information,

wherein the disk block stores at least parameters for controlling speech synthesis in an external apparatus or information to be speech-synthesized and a voice database and the like that are used in the speech synthesis, and wherein the electronic circuit block selects the parameters corresponding to information to be speech-synthesized.

Technical Field

[0001] The present invention relates to a storage medium having an information storage block storing information and an electronic circuit block processing information, for example, an electronic-circuit mounting optical disk (hereinafter, this is called an intelligent disk (ID)), and to a speech-synthesizing apparatus synthesizing speech on the basis of information stored in the storage medium and control by the electronic circuit block.

Background Art

[0002] Conventional speech-synthesizing apparatuses play back speech by connecting sounds from a machine-word database storing phonemes in waveforms and a sound source database storing sounds extracted from the corrected sounds. Recently, since the study of the sound source database has proceeded, it becomes possible to reproduce sounds made to imitate the voice of a specific person.

[0003] Nevertheless, it becomes necessary to prepare various types of sound sources with depending on states of connecting sounds even in order to generate the same sound so as to play back more characteristic voice. Therefore, it becomes necessary to have a huge data, and hence the present approach is only used for demonstration and not put to practical use.

Disclosure of Invention

[0004] The present invention provides a speech-synthesizing apparatus that resolves conventional defects, described above, and synthesizes various types of words and voices, such as a dialect, on the basis of more compact databases, and a storage medium that has an electronic circuit making the speech-synthesizing apparatus feasible. Furthermore, the present invention also provides a computer system including the above-described speech-synthesizing apparatus, for example, a car navigation system and the like.

[0005] In order to solve this task, the storage medium of the present invention has an information storage block storing information and an electronic circuit block processing information. Furthermore, the medium is characterized in that the information storage block stores at least parameters for controlling speech synthesis in an external apparatus, and the electronic circuit block has means for selecting the parameters corresponding to information to be speech-synthesized. Here, the information storage block further stores the information storage block further stores a voice database to be used in speech synthesis. Furthermore, the storage medium is an optical disk.

[0006] In addition, a speech-synthesizing apparatus of the present invention includes a storage medium having an information storage block for storing information and an electronic circuit block for processing information. The apparatus is characterized in that the information storage block of the storage medium stores at least parameters for controlling speech synthesis in an external apparatus, and the electronic circuit block has means for selecting the Parameters corresponding to information to be speech-synthesized. Here, the information storage block further stores the information to be speech-synthesized. In addition, the information storage block further stores a voice database to be used in speech synthesis.

15 [0007] A speech-synthesizing apparatus of the present invention is characterized in comprising discriminating means for judging whether or not a storage medium having an information storage block storing information and an electronic circuit block processing information is inserted, and speech synthesizing means for synthesizing speech by using the storage medium at the time when the storage medium is inserted and for synthesizing speech without using the storage medium at the time when the storage medium is not inserted.
25 The storage medium is an optical disk.

[0008] In addition, a computer system of the present invention includes a speech-synthesizing apparatus. Furthermore, the computer system is characterized in that the speech-synthesizing apparatus includes a storage medium having an information storage block for storing information and an electronic circuit block for processing information. Furthermore, the system is characterized in that the information storage block of the storage medium stores at least parameters for controlling speech synthesis in an external apparatus, and the electronic circuit block of the storage medium has means for selecting the parameters corresponding to information to be speech-synthesized. The storage medium is an optical disk.

[0009] In addition, a car navigation system of the present invention includes a speech-synthesizing apparatus. Furthermore, the car navigation system is characterized in that the speech-synthesizing apparatus includes a storage medium having an information storage block for storing information and an electronic circuit block for processing information. Furthermore, the car navigation system is characterized in that the information storage block of the storage medium stores at least parameters for controlling speech synthesis in an external apparatus, and the electronic circuit block of the storage medium has means for selecting the parameters corresponding to information to be speech-synthesized. The storage medium is an optical disk.

[0010] The present invention can provide a speechsynthesizing apparatus for synthesizing various types of voices such as a dialect, and words, on the basis of more compact databases, and a storage medium that has an electronic circuit making the speech-synthesiz2

ing apparatus feasible. Furthermore, the present invention also provides a computer system, including the speech-synthesizing apparatus, such as a car navigation system.

Brief Description of Drawings

[0011]

Fig. 1 is a sketch of an intelligent optical disk that is a kind of an ID of this embodiment;

Fig. 2 is a block diagram showing the construction of a speech-synthesizing apparatus of this embodiment:

Fig. 3 is a drawing showing an example exemplifying the stored contents of a disk block 3 of this embodiment:

Fig. 4 is a drawing showing a constructive example of document information of this embodiment;

Fig. 5 is a chart showing an operation-procedural 20 example of a stand-alone type of speech-synthesizing apparatus;

Fig. 6 is a drawing showing another example exemplifying the stored contents of the disk block 3 of this embodiment; and

Fig. 7 is a chart showing an example of a speechsynthesizing apparatus built in a system.

Best Mode for Carrying Out the Invention

[0012] For more detailed description of the present invention, embodiments of the present invention will be described with reference to attached drawings.

(A constructive example of a speech-synthesizing apparatus of this embodiment)

[0013] Fig. 1 is a sketch of an intelligent optical disk, that is a kind of an ID of this embodiment. The ID 1 comprises a disk block 3 that is a disk surface storing information, and an intelligent circuit block 2 that is mounted, for example, in the central portion of the disk block 3 as shown in Fig. 1. Here, although the circuit block 2 is located in the central portion of the disk, the location is not particularly limited, for example, it can also be located on a dedicated side of the disk surfaces or in a middle layer of a disk manufactured in plural layers.

[0014] Fig. 2 is a block diagram showing the construction of a speech-synthesizing apparatus of this embodiment. Numeral 10 shows a speech generation block that has a document processor 12 generating information for speech synthesis from document information (code) inputted, a speech synthesizer 14 synthesizing and outputting speech corresponding to an output of the document processor 12 on the basis of a machine word database and a sound source database (hereinafter, this is also called a voice font), and a speech connection controller 13 controlling the document processor 12 and

speech synthesizer 14. The speech connection controller 13 receives speech connection information and document connection information that are read from the disk block 3 of the ID 1, and instructs the document processor to sort, insert, and delete words. Furthermore, the controller 13 instructs the speech synthesizer 14 in sound lengths, addition/omission of phonemes, accents, high/low pitches, weak/strong voices, and the like.

[0015] The machine-word database 15 and sound source database 16 are connected to the bus in dotted lines to show that these databases can be stored in the disk block of the ID 1.

[0016] The speech generation block 10 further has an optical disk drive unit 11 including a pickup (not shown) and a pickup drive circuit for the ID 1, and an ID interface 17 receiving information from the intelligent circuit block 2 of the ID 1. It is not necessary for these components to be included in the speech-generating block 10. Hence, they can be included in another functional block, the speech-generating block 10 is built in a computer system and the like, as described later. Furthermore, although the destination of the speech information is not shown, a speaker, an earphone, or the lie is connected as a sound generator.

[0017] The ID 1 comprises the disk block 3 and intelligent circuit block 2. The intelligent circuit block 2 has a CPU 21 for calculation and control that controls readout of data from the disk block 3. A ROM 22 for storing fixed programs and parameters for the CPU 21, a RAM 23 for temporary storage, and a system interface 24 for information exchange with the system. Furthermore, in case the ID 1 has an independent power source, a photocell 25 is also included. Moreover, the interface can be a contact type or a non-contact type, and a bus-connection type or a communication-connection type. Radio communication, optical communication, and the like are conceivable as the communication means. Nevertheless, since an external apparatus 10 of this application is not intended to be made by large-scale modification of an existing apparatus, a simple method for adding the ID 1 to the existing apparatus can be chosen.

(Example of a stand-alone type of speech-synthesizing apparatus)

[0018] On the basis of Figs. 3 to 5, examples of storage construction and processing procedure of information in an independent speech-synthesizing apparatus such as a tape recorder and a voice book that is a talking book will be described.

[0019] Fig. 3 is an example of the construction of information stored in the disk block 3.

[0020] In destinations pointed by a directory 3a, the following information is stored. Numeral 3b shows the machine word database, which has a plurality of different databases in the drawing. Numeral 3c shows voice fonts, and a plurality of fonts is stored. Numeral 3d

3

shows document connection parameters to be used for control of the document processor 12 by the speech connection controller 13, and plural kinds of parameters are also stored. Numeral 3e shows speech connection parameters to be used for control of the speech synthesizer 14 by the speech connection controller 13, and plural kinds of speech connection parameters are also stored. In some cases, only one of this information 3b to 3e can be sufficient so long as the document information is outputs with the same characteristics (for example, a person's reading). The difference of those parameters is separated so as to correspond to the difference of the document information as shown below in

[0021] In Fig. 3, numeral 3f shows document information. Document information can be information having a length of the entire novel read by an actor/actress or information having a length of each dialogue in a drama. [0022] Fig. 4 is a drawing showing the internal structure of the document information 3f.

[0023] Document information 1 comprises a pair of kind of speech information and document information to be synthesized, or plural pairs of them. What is conceivable as kind of speech information is a plurality of indices showing the characteristics for synthesizing sentences of the synthesized document information, for example, a zone (relating to a language in the world or a dialect of a country), gender, career, physique, age, and the like. In addition, if combinations of these indices corresponding to keywords showing some famous persons or contents of some documents are stored, a specific voice can be simply selected. The document information is a document (code) to be actually synthesized.

[0024] Fig. 5 is a flow chart showing how this speech-synthesizing apparatus generates speech by using information in Figs. 3 and 4. The CPU 21 of the circuit block 2 in the ID 1 checks at step S51 whether or not the ID 1 is inserted into a drive. If inserted, the process goes to step S52. If there is a plurality of documents, the CPU 21 instructs the system side to display document selection, and a system display unit (not shown) displays it. A selection command, from a user, is waited at step S53, and if received, the process goes from step S53 to step S54. In addition, if there is only one document, steps S52 and S53 can be omitted.

[0025] At step S54, the CPU 21 instructs the optical disk drive unit 11, with an address, to read the document information selected. The optical disk drive unit 11 reads, at the instructed address, the document information selected, and stores the information into a buffer in the document processor 12. At step S55, the CPU 21 separates the kind of speech information from the leading portion of the document information, which is in the document processor 12 or is directly transferred from the optical disk drive unit 11, and analyses this information.

[0026] Next, at step S56, using the analysis result, the

CPU 21 instructs the optical disk drive unit 11, again, to read machine-words, voice fonts, document connection parameters, and speech connection parameters that to be used. In regard to the information read from the disk block 3 by the optical disk drive unit 11, the machine words and voice fonts are set in the speech synthesizer 14, and the parameters are set in the speech connection controller 13.

[0027] At step S57, the CPU 21 instructs the speech connection controller 13 to perform the speech synthesis. The speech connection controller 13 performs exchange, insertion, deletion, and the like of words by controlling the document processor 12 according to the document connection parameters, and connects the machine-words and voice fonts according to the speech connection parameters by using the speech synthesizer 14

[0028] At step S58, whether or not all of the document outputs desired are complete is checked, and if not completed, the process returns to step S54 and repeats steps S54 to S58.

(Example of a speech-synthesizing apparatus built in a computer system)

[0029] According to Fig. 4 that are described above, Figs. 6 and 7, an example of a speech-synthesizing apparatus built in a system will be described. In this case, the machine word database 15 and voice font database 16 are prepared in the system side in Fig. 2, and document information (code) is inputted by another component included in the system to the speech generation block 10.

[0030] Fig. 6 is a drawing showing the contents stored in the disk block 3 of the ID 1. In the case of this example, only document connection parameters and speech connection parameters are stored. In this example, it is possible to control the speech synthesis more delicately since these parameters can be prepared by classifying them in detail with particular correspondence to the contents to be played back. According to Fig. 7, an example of a procedure for speech synthesis of this application will be described. In the case of this example, the circuit block 2 of the ID 1 collaborates with a system controller (not shown) controlling the speech generation block 10.

[0031] First, a CPU (not shown) in the system side reads document information from another component at step S81. At step S82, whether an ID is inserted is checked, and if not inserted, the process goes to step S83 for the system to synthesize speech only by the speech generation block 10 of a system block without using parameters held by the ID 1. In this stage, it is natural for the delicate control for synthesizing speech not to be performed.

[0032] Now, if the ID 1 is inserted into the optical disk drive unit 11, the process goes from step S82 to step S84 in the system side for the system to separate the

kind of speech information shown in Fig. 4 from the document information and send it to the ID 1 at step S85.

[0033] In the ID side, if it is confirmed that the ID 1 is inserted into the drive at step S71, the kind of speech information from the system side is waited at step S72. If the kind of speech information is received, the process goes to step S73 for the ID 1 to generate identifiers of machine-words, voice fonts, document connection parameters, and speech connection parameters and return them to the system side at step S74.

[0034] In the system side, if the system receives the identifiers at step S86, the system reads parameters from the disk block 3 at step S87 to set the parameters in speech connection controller 13 at step S88. Subsequently, at step S89, the system transfers the machinewords and voice fonts, which are selected by using the identifiers, from the databases 15 and 16 to the speech synthesizer 14. At step S90, speech information is outputted according to the control of the speech connection controller 13 similarly to the case of the stand-alone 20 type of speech-synthesizing apparatus.

[0035] At step S91, the completion of the document is checked, and if not completed, the process returns to step S81 to continue processing of document information. In addition, in the above two examples, two extreme examples are described, which are the example where speech is synthesized mainly by the ID since the ID has all the information for document synthesis. and the example that the system side can also perform the speech synthesis independently without using the ID since the ID has only the parameters. Nevertheless, obviously, various types of "medium" systems between these two systems are feasible, the "medium" system can be produced by changing combination and function assignment. For example, a system where the ID has the synthesized document information and parameters and the system side can modify the kind of speech information and a system where the ID side extracts the kind of speech information from the document information in Fig. 7 (S84) can be produced.

[0036] In addition, as a computer system that this speech-synthesizing apparatus is built in, in particular, a personal computer and a car navigation system are conceivable.

[0037] Hereinbefore, the present invention is described by preferred embodiments. Nevertheless, the present invention is not limited to the above-described embodiments and various changes, additions, and modifications can be made within the spirits and scope as set out in the accompanying claims.

Claims

 A storage medium that has an information storage block for storing information and an electronic circuit block for processing information wherein said information storage block stores at least parameters for controlling speech synthesis in an external apparatus; and

wherein said electronic circuit block has means for selecting said parameters corresponding to information to be speech-synthesized.

- The storage medium according to claim 1, wherein said information storage block further stores said information to be speech-synthesized.
- 10 3. The storage medium according to any one of claims 1 and 2, wherein said information storage block further stores a voice database to be used in speech synthesis.
- 15 4. The storage medium according to claim 1, wherein said storage medium is an optical disk.
 - 5. A speech-synthesizing apparatus that includes a storage medium having an information storage block for storing information and an electronic circuit block for processing information, wherein said information storage block of said storage medium stores at least parameters for controlling speech synthesis in an external apparatus; and

wherein said electronic circuit block of said storage medium has means for selecting said parameters corresponding to information to be speech-synthesized.

- 6. The speech-synthesizing apparatus according to claim 5, wherein said information storage block further stores said information to be speech-synthesized.
- The speech-synthesizing apparatus according to any one of claims 5 and 6, wherein said information storage block further stores a voice database to be used in speech synthesis.
- 40 8. A speech-synthesizing apparatus comprising:

discriminating means for judging whether or not a storage medium having information storage block for storing information and an electronic circuit block for processing information is inserted; and

speech synthesizing means for synthesizing speech by using said storage medium at the time of said storage medium being inserted and for synthesizing speech without using said storage medium at the time of said storage medium not being inserted.

 A computer system including a speech-synthesizing apparatus, wherein said speech-synthesizing apparatus includes a storage medium having an information storage block for storing information and an electronic circuit block for processing infor-

50

55

mation;

wherein said information storage block of said storage medium stores at least parameters for controlling speech synthesis in an external apparatus; and

wherein said electronic circuit block of said storage medium has means for selecting said parameters with corresponding to information to be speech-synthesized.

10. A car navigation system including a speech-synthesizing apparatus, wherein said the speech-synthesizing apparatus includes a storage medium having an information storage block for storing information and an electronic circuit block for processing information;

wherein said information storage block of said storage medium stores at least parameters for controlling speech synthesis in an external apparatus; and

wherein said electronic circuit block of said storage medium has means for selecting said parameters with corresponding to information to be speech-synthesized.

10

25

30

35

40

45

50

55

FIG. 1

FIG. 3

	3 f
_	<u> </u>
DOCUMENT INFORMATION 1	
	INFORMATION 1 ON KIND OF SPEECH
	ZONE
	GENDER
	CAREER
	PHYSIQUE
	AGE
	:
	SYNTHESIZED DOCUMENT INFORMATION 1
	INFORMATION 2 ON KIND OF SPEECH :
	SYNTHESIZED DOCUMENT INFORMATION 2
	:

EP 0 936 597 A1

INTERNATIONAL SEARCH REPORT International application No. PCT/JP98/02699 CLASSIFICATION OF SUBJECT MATTER Int.Cl' G10L3/00, G10L9/00, G06F17/30, G06F15/76 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl' G10L3/00, G10L9/00, G06F17/30, G06F15/76 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926–1992 Toroku Jitsuyo Shinan Koho 1993–1997 Kokai Jitsuyo Shinan Koho 1971-1992 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP, 06-295200, A (Kazuo Nikami, et al.), 21 October, 1994 (21. 10. 94) (Family: none) 1-13 JP, 01-127392, A (Dainippon Printing Co., Ltd., A 1-13 et al.), 19 May, 1989 (19. 05. 89) (Family: none) JP, 63-217569, A (Advanced Electronics K.K.), 9 September, 1988 (09. 09. 88) (Family: none) A 4, 9, 11 JP, 09-034491, A (Sony Corp.), A 12-13 7 February, 1997 (07. 02. 97) (Family: none) Purther documents are listed in the continuation of Box C. See patent family annex. Special extension of cited documents: document defining the present sixts of the act which is not considered to be of particular relevance entirer document but published one or after the international filing date document which may threw doubts on priority chaint(s) or which is cited to embrish the published one of mother citation or other special craces for more/field. leter document published after the intraminent fitting date or priority date and not in conflict with the application but cited to understand the principle or thosey underlying the invention document of particular relevance; the claimed invention causes be 'E' enrier document whi considered novel or cannot be considered to involve an inventive step when the document in taken alone warm not consider in taken alone document in comment of performing pleasance, the claimed investion cannot be considered to involve an inventive step when the document is combined with one or more other such documents, each combination being obvious to a person shilled in the art document member of the sense paints frienily special reason (as specified) document refuring to an oral disclosure, two, exhibition or other ۰0° next published prior to the international filing date but later than the priority data chimed Date of mailing of the international search report 29 September, 1998 (29. 09. 98) Date of the actual completion of the international search 17 September, 1998 (17. 09, 98) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)