AA447 - Feedback Control - Spring 2021

Homework 6

 $\underline{\mathbf{Due\ Date}}:$ Wednesday, May $26^{th},\,2021$ at 11:59 pm

Draw the zero/pole locations, Bode, Nyquist, and Nichols plots for each of the following transfer functions. For each plot consider the following points.

- s-plane: Location of poles and zeros, phasors $(i\omega z_k)$ and $(i\omega p_k)$
- Bode plots: $|L(0)|, \omega_c, \omega_{180}$, log slope of $|L(i\omega)|$.
- Nyquist plot: $L(0), L(i\infty), L(i\omega_c), L(i\omega_1 80)$, direction of contour
- Nichols plot: $L(0), L(i\infty), L(i\omega_c), L(i\omega_1 80)$, direction of contour

Label these points whenever appropriate. (If you're plotting multiple variations of a family curves on one plot you don't need to label each value on all of them.) You may use whatever software you want. Understanding qualitative behavior is more important than graphical precision.

1. First order systems

•
$$L(s) = s + z$$
 for $z = 0, z < 0, z > 0$

•
$$L(s) = \frac{1}{s+p}$$
 for $p = 0, p < 0, p > 0$

2. Second order systems

- $L(s) = (s + z_1)(s + z_2)$
 - Real z_1,z_2 : z_1 and $z_2=0,\,z_1$ and $z_2<0,\,z_1$ and $z_2>0,\,z_1<0$ and $z_2>0$
 - Complex z_1, z_2 : Re (z_1) and Re $(z_2) = 0$, Re (z_1) and Re $(z_2) < 0$, Re (z_1) and Re $(z_2) > 0$, For these, write the polynomial in terms of the natural frequency ω_0 and the damping ratio ξ . Draw plots for $\xi > 1$, $\xi = 1$, $\xi < 1$, $\xi = 0$

$$(s+z_1)(s+z_2) = s^2 + (z_1+z_2)s + z_1z_2 = s^2 + 2\xi\omega_0s + \omega_0^2$$

•
$$L(s) = \frac{1}{(s+p_1)(s+p_2)}$$

- Real p_1, p_2 : p_1 and $p_2 = 0$, p_1 and $p_2 < 0$, p_1 and $p_2 > 0$, $p_1 < 0$ and $p_2 > 0$
- Complex p_1, p_2 : Re (p_1) and Re $(p_2) = 0$, Re (p_1) and Re $(p_2) < 0$, Re (p_1) and Re $(p_2) > 0$, For these, write the polynomial in terms of the natural frequency ω_0 and the damping ratio ξ . Draw plots for $\xi > 1$, $\xi = 1$, $\xi < 1$, $\xi = 0$

$$\frac{1}{(s+p_1)(s+p_2)} = \frac{1}{s^2 + (p_1+p_2)s + p_1p_2} = \frac{1}{s^2 + 2\xi\omega_0s + \omega_0^2}$$

3. General Transfer Functions

• $L(s) = \frac{s+z}{s+p}$: z > p, z < p, z = 0, p = 0.

•
$$L(s) = \frac{(s+z)}{(s+p_1)(s+p_2)}$$

- Real $p_1,p_2\colon$ one stable-minimum phase, one not stable-minimum phase.
- Complex p_1, p_2 : one stable-minimum phase, one not stable-minimum phase.

•
$$L(s) = \frac{(s+z_1)(s+z_2)}{(s+p_1)(s+p_2)}$$

- Real $z_1,z_2,p_1,p_2\colon$ one stable-minimum phase, one not stable-minimum phase.
- Complex z_1, z_2, p_1, p_2 : one stable-minimum phase, one not stable-minimum phase.

•
$$L(s) = \frac{(s+z_1)(s+z_2)}{(s+p_1)(s+p_2)(s+p_3)}$$

- Real $z_1,z_2,p_1,p_2\colon$ one stable-minimum phase, one not stable-minimum phase.
- Complex z_1, z_2, p_1, p_2 : one stable-minimum phase, one not stable-minimum phase.

