Feed-forward Neural Network

A Feed-forward Neural Network (FNN), is a fundamental type of artificial neural network or ANN. It is widely used in various machine learning tasks which include classification, regression, and pattern recognition. The name Feed-Forward comes from the fact that the flow of information is one-directional - from the input layer, through one or more hidden layers, to the output layer.

Structure:

- **Input Layer:** consists of the neurons that represent the input features of the data. Each neuron corresponds to a feature, and the number of neurons is equal to the number of input features.
- **Hidden Layers:** are one or multiple layers between the input and output layers. Each hidden layer contains neurons that transform the input data through weighted sums and activation functions. The number of hidden layers and neurons in each layer depends on the complexity of the problem and computational resources.
- Output Layer: produces the final output of the network. The number of neurons in the output layer depends on the nature of the task.

Neurons and Activation Functions:

Each neuron computes a weighted sum of inputs, adds bias, and applies an activation function like sigmoid, tanh, ReLU, or softmax to introduce non-linearity, enabling complex pattern learning.

Training:

During training, the network adjusts weights and biases using optimization algorithms like gradient descent to minimize a loss function. Backpropagation efficiently computes gradients of the loss function with respect to weights for updating them.

Regularization and Optimization:

Techniques like dropout, weight decay, and batch normalization prevent overfitting and improve generalization. Optimization algorithms like Adam, RMSprop, and SGD with momentum efficiently update weights during training.

Evaluation:

Once trained, the performance of the FNN is evaluated on unseen data using metrics appropriate for the task, such as accuracy, precision, recall, F1-score, or Mean Squared Error (MSE) for regression tasks.

Dataset:

The dataset was obtained using this python code:

```
import pandas as pd
import numpy as np
# Generate synthetic data
np.random.seed(42)
num samples = 10000
# Generate random features
data = {
    'source ip': [f'192.168.{np.random.randint(1,
255)}.{np.random.randint(1, 255)}' for _ in range(num_samples)],
    'dest ip': [f'10.0.{np.random.randint(1,
255)}.{np.random.randint(1, 255)}' for _ in range(num_samples)],
    'protocol': np.random.choice(['TCP', 'UDP', 'ICMP'],
size=num samples),
    'packet size': np.random.randint(64, 1500, size=num samples),
    'num packets': np.random.randint(1, 100, size=num samples),
    'duration': np.random.uniform(0.1, 10, size=num_samples),
    'label': np.random.choice(['normal', 'intrusion'],
size=num samples)
# Create DataFrame
df = pd.DataFrame(data)
# Save DataFrame to CSV
df.to csv('network traffic data.csv', index=False)
print("Dataset created and saved successfully.")
```

Here are some rows from the dataset:

source_ip	dest_ip	protocol	packet_size	num_packets	duration	label
192.168.103. 180	10.0.132.86	UDP	1153	58	9.703647888 24104	intrusion
192.168.93.1 5	10.0.243.183	ICMP	258	1	9.011383354 974434	intrusion
192.168.107.	10.0.231.228	TCP	1275	22	5.719440251	intrusion

72					882002	
192.168.189. 21	10.0.162.27	ICMP	110	95	7.834610169 4851455	normal
192.168.103. 122	10.0.7.131	ICMP	1449	23	9.105900735 420462	intrusion
192.168.211. 215	10.0.175.225	UDP	1072	8	2.511642610 199937	normal
192.168.75.2 03	10.0.2.234	TCP	600	29	5.836870383 595166	normal
192.168.88.1 17	10.0.80.153	ICMP	910	44	4.868991560 600228	normal
192.168.100. 104	10.0.60.207	UDP	772	62	7.738754412 94512	normal
192.168.152. 131	10.0.24.15	UDP	1333	19	3.852916961 204904	normal
192.168.150. 53	10.0.95.142	UDP	871	59	7.118898433 111098	intrusion
192.168.2.88	10.0.182.206	UDP	675	80	4.089631581 216204	intrusion
192.168.236. 158	10.0.134.206	UDP	1265	19	1.199641159 9805918	normal
192.168.38.1 30	10.0.81.18	ICMP	178	22	1.160502172 9223406	intrusion
192.168.192. 188	10.0.20.115	ICMP	743	83	1.278657613 0765552	normal
192.168.21.1 61	10.0.190.209	TCP	694	68	0.421946771 72840156	normal
192.168.204. 58	10.0.208.40	ICMP	1252	5	5.376434398 808043	intrusion
192.168.22.2 53	10.0.39.180	TCP	282	5	6.751836551 638975	normal
192.168.236. 89	10.0.32.124	TCP	260	25	1.354611178 0743268	intrusion
192.168.49.2 19	10.0.108.201	TCP	464	24	6.157394202 1939585	normal
192.168.59.1 70	10.0.27.110	ICMP	812	1	6.017626774 753328	intrusion
192.168.220. 188	10.0.180.97	UDP	744	28	1.556231108 8289378	normal