

Basics of Neural Network Programming

Binary Classification

Binary Classification

Andrew Ng

Notation

$$(x,y)$$
 $\times \in \mathbb{R}^{n_x}$, $y \in \{0,1\}$
 $m + rainiy examples: \{(x^{(i)}, y^{(i)}), (x^{(i)}, y^{(2i)}), ..., (x^{(m)}, y^{(m)})\}$

$$M = M + rain \qquad M + est = \# + test examples.$$

$$X = \begin{bmatrix} x^{(i)} & x^{(2i)} & ... & x^{(m)} \end{bmatrix}$$

$$X = \begin{bmatrix} x^{(i)} & x^{(2i)} & ... & x^{(m)} \end{bmatrix}$$

$$X = \begin{bmatrix} x^{(i)} & x^{(2i)} & ... & x^{(m)} \end{bmatrix}$$

$$X \in \mathbb{R}^{n_x \times m}$$

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given X, wort
$$\hat{y} = P(y=1|X)$$
 $x \in \mathbb{R}^{n_X}$

Output
$$\hat{y} = 5(\omega^T \times + b)$$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$Y = 6 (0^{T}x)$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 =$$

Basics of Neural Network Programming

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

The entropy of the contraction of the c

Andrew Ng

Basics of Neural Network Programming

Gradient Descent

deeplearning.ai

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$$

Want to find w, b that minimize J(w, b)

Gradient Descent

$$J(\omega,b)$$

$$b:=b-\lambda \frac{\partial J(\omega,b)}{\partial \omega}$$

$$\frac{\partial J(\omega,b)}{\partial \omega}$$

$$\frac{\partial J(\omega,b)}{\partial \omega}$$

$$\frac{\partial J(\omega,b)}{\partial \omega}$$

Andrew Ng

Basics of Neural Network Programming

Derivatives

deeplearning.ai

Intuition about derivatives

Andrew Ng

Basics of Neural Network Programming

More derivatives examples

Intuition about derivatives

Basics of Neural Network Programming

Computation Graph

Computation Graph

$$J(a,b,c) = 3(a+bc) = 3(5+3*2) = 33$$
 $U = bc$
 $V = atu$
 $J = 3v$
 $V = a+u$
 $J = 3v$
 $V = a+u$
 $J = 3v$

Basics of Neural Network Programming

Derivatives with a Computation Graph

Computing derivatives

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \end{cases}$$

Logistic regression derivatives

Basics of Neural Network Programming

Gradient descent on m examples

Basics of Neural Network Programming

Vectorization

deeplearning.ai

for i in rage
$$(n-x)$$
:
 $2+=\omega T:]+x \times T:$

Basics of Neural Network Programming

More vectorization examples

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

Basics of Neural Network Programming

Vectorizing Logistic Regression

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = \frac{dz^{(2)} - y^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} = \frac{dz^{(2)} - y^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} = \frac{dz^{(2)} - y^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} - \frac$$

$$db = \frac{1}{m} \sum_{i=1}^{m} dz^{(i)}$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(i)} dz^{(m)} \right]$$

Basics of Neural Network Programming

Broadcasting in Python

Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

Apples Beef Eggs Potatoes

Carb
$$56.0$$
 0.0 4.4 68.0 104.0 52.0 8.0 104.0 52.0 99.0 0.9 13.4 135.0 99.0 0.9 13.4 135.0 $135.$

Broadcasting example

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 & 200 & 300 \\ 100 & 200 & 300 \end{bmatrix}$$

$$(m,n) (2)3)$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 \\ 200 \end{bmatrix}$$

$$(m,n)$$

General Principle

$$(M, 1) \qquad + \qquad (I, n) \qquad \sim (M, n)$$

$$(M, 1) \qquad + \qquad R$$

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad + \qquad 100 \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 103 \end{bmatrix}$$

$$[1 \ 23] \qquad + \qquad 100 \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 103 \end{bmatrix}$$

Matlab/Octave: bsxfun

Implementing Logistic Regression.

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for $i = 1$ to m :

 $z^{(i)} = w^T x^{(i)} + b$
 $a^{(i)} = \sigma(z^{(i)}) \leftarrow$
 $J += -[y^{(i)} \log a^{(i)} + (1-y^{(i)}) \log(1-a^{(i)})]$
 $dz^{(i)} = a^{(i)} - y^{(i)} \leftarrow$

$$dw_1 += x_1^{(i)} dz^{(i)} d$$

$$Z = \omega^{T} X + b$$

$$= n p \cdot dot (\omega \cdot T \cdot X) + b$$

$$A = \sigma(Z)$$

$$dZ = A - Y$$

$$dw = m \times dZ^{T}$$

$$db = m n p \cdot sun(dZ)$$

$$\omega := \omega - d d\omega$$

$$b := b - d d\omega$$

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

$$U = AV$$

$$U_{i} = \sum_{j} \sum_{i} A_{i,j} V_{j}$$

$$U = np.zeros((n, i))$$

$$for i \dots \leftarrow C$$

$$for j \dots \leftarrow C$$

$$u \in AUIT_{i}I * vC_{j}I$$

Vectors and matrix valued functions

Say you need to apply the exponential operation on every element of a matrix/vector.

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_2} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$u = \text{np. exp}(v) \leftarrow \text{np. log}(v)$$

$$\text{np. log}(v)$$

$$\text{np. abs}(v)$$

$$\text{np. haximun}(v, o)$$

$$\text{np. haximun}(v, o)$$

$$\text{np. haximun}(v, o)$$

Logistic regression derivatives

$$J = 0, \quad dw1 = 0, \quad dw2 = 0, \quad db = 0$$

$$\int for \ i = 1 \ to \ n:$$

$$Z^{(i)} = w^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J + = -[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

$$dz^{(i)} = a^{(i)}(1 - a^{(i)})$$

$$dw_1 + x_1^{(i)} dz^{(i)}$$

$$dw_2 + x_2^{(i)} dz^{(i)}$$

$$db + dz^{(i)}$$

$$J = J/m, \quad dw_1 = dw_1/m, \quad dw_2 = dw_2/m, \quad db = db/m$$

$$\int dw / = m.$$

Logistic regression on m examples

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} \frac{J(\alpha^{(i)}, y^{(i)})}{J(\alpha^{(i)}, y^{(i)})}$$

Logistic regression on m examples

$$J=0; dw_{1}=0; dw_{2}=0; db=0$$

$$For i=1 to m$$

$$Z^{(i)}=\omega^{T}x^{(i)}+b$$

$$Q^{(i)}=6(Z^{(i)})$$

$$J+=-[y^{(i)}(\log Q^{(i)}+(1-y^{(i)})\log(1-Q^{(i)})]$$

$$dz^{(i)}=Q^{(i)}-y^{(i)}$$

$$dw_{1}+=x^{(i)}dz^{(i)}$$

$$dw_{2}+=x^{(i)}dz^{(i)}$$

$$J=0; dw_{2}(1-Q^{(i)})$$

$$dz^{(i)}=Q^{(i)}+(1-y^{(i)})\log(1-Q^{(i)})$$

$$dz^{(i)}=Q^{(i)}-y^{(i)}$$

$$dw_{1}+=x^{(i)}dz^{(i)}$$

$$dw_{2}+=x^{(i)}dz^{(i)}$$

$$dw_{2}+=dz^{(i)}$$

$$dw_{3}+=dz^{(i)}$$

$$dw_{4}+=dz^{(i)}$$

$$dw_{5}+=dz^{(i)}$$

$$dw_{7}+=m; dw_{7}+=m; db/=m.$$

$$d\omega_1 = \frac{\partial J}{\partial \omega_1}$$
 $\omega_1 := \omega_1 - d d\omega_1$
 $\omega_2 := \omega_2 - d d\omega_2$
 $b := b - d db$

Vectorization

Computing derivatives

More derivative examples

$$f(a) = a^2$$

$$f(\omega) = \alpha^3$$

$$\frac{\lambda}{\lambda a} (\omega) = 3a^{2}$$

$$3x2^{3} = 12$$

$$a = 2$$
 $f(a) = 4$
 $a = 2-001$ $f(a) = 4-004$

$$a = 5.001$$
 $f(a) = 8$
 $a = 5.001$ $f(a) = 8$

$$0.0002 \qquad 0.0002 \qquad 0$$

Basics of Neural Network Programming

A note on python/ numpy vectors

Python Demo

Python / numpy vectors

```
import numpy as np
a = np.random.randn(5)
a = np.random.randn((5,1))
a = np.random.randn((1,5))
assert (a.shape = (5,1))
```