Image Enhancement

Additional Computer Exercise for Team 5

PASHEVICH Alexander
And
SID-LAKHDAR Riyane

Contrasting

Principle of the method

$$y[n] = newMin + (x[n] - actualMin) * \frac{newMax - newMin}{currentMax - currentMin}$$

$$y[n] = newMin + (x[n] - actualMin) * \alpha$$

Linear and strictly increasing function ($\alpha > 0$)

Principle of the method:

$$y[n] = newMin + (x[n] - actualMin) * \alpha$$

Lower bound

$$y_{min}[n] = newMin + \alpha(x_{min}[n] - currentMin)$$

 $y_{min}[n] = newMin + \alpha(currentMin - currentMin)$
 $y_{min}[n] = newMin$

Principle of the method:

$$y[n] = newMin + (x[n] - actualMin) * \frac{newMax - newMin}{currentMax - currentMin}$$

Upper bound

$$\begin{aligned} y_{min}[n] &= newMin + \frac{newMax - newMin}{currentMax - currentMin} * (x_{max}[n] - currentMin) \\ y_{min}[n] &= newMin + \frac{newMax - newMin}{currentMax - currentMin} * (currentMax - currentMin) \\ y_{min}[n] &= newMin + newMax - newMin \\ y_{min}[n] &= newMax \end{aligned}$$

Principle of the method:

[currentMin, currentMax]

[newMin, newMax]

Results (pollen)

Results (amelie)

Results (mystery)

Advantages of this method

Extremely simple to implement

Advantages of this method

- Very efficient: complexity C(n) = O(n)
- May be applied no matter the picture encoding used

Thanks