קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(84 / או - מועד א 2018 (סמסטר 2018 - מועד א 3 / 12.2.2018 תאריך הבחינה:

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

נתונים שני מטבעות תקינים.

מטילים פעמיים כל אחד משני המטבעות הללו.

; מספר ה-H-ים שהתקבלו במטבע במטבע ו-Y מספר ה-H-ים שהתקבלו במטבע השני א מספר ה-H-ים מספר מספר מ

 $T = \max\{X, Y\}$ -ו $S = \min\{X, Y\}$ ונגדיר

- T 1 ו- S א. מצא את פונקציית ההסתברות המשותפת של פונקציית (9 נקי)
 - . T -ו S ו- ר -ו ווער המשותפת של (8 נקי) ב. חשב את השונות המשותפת של
 - T=2 בהינתן S בהינתן S בהינתן את המותנית של

שאלה 2 (25 נקודות)

. $Y=Z^2$ יהי משתנה מקרי נורמלי סטנדרטי, ויהי מקרי מיהי

- y>0 לכל $F_{\gamma}(y)=2\Phi(\sqrt{y})-1$ לכל יא. הוכח כי: 9)
- (8 נקי) ב. מצא את פונקציית הצפיפות של Y. כתוב אותה באופן מפורש.
- . W=2Yעל-ידי על-ידי על-ידי את מגדיר את פונקי) את נגדיר את מצא את פונקציית הצפיפות של W. כתוב אותה באופן מפורש.

שאלה 3 (25 נקודות)

(0 א. יהי <math>X משתנה מקרי גיאומטרי עם הפרמטר X יהי א. יהי (12 נקי)

: הוכח כי הפונקציה יוצרת המומנטים של א היא .1

$$M_X(t) = \frac{pe^t}{1 - (1 - p)e^t}$$
, $t < -\ln(1 - p)$

- $E[X] = \frac{1}{p}$: הוכח באמצעות הפונקציה יוצרת המומנטים כי
 - ב. יהיו X ו- Y משתנים מקריים בלתי-תלויים ושווי-התפלגות, כך שלכל אחד מהם התפלגות גיאומטרית עם הפרמטר p < 1).
 - $\rho(X+Y,Y)$ חשב את .1 (7 נקי)
 - $P\{X = Y\}$ חשב את .2 (6 נקי)

שאלה 4 (25 נקודות)

מטילים קובייה תקינה 4 פעמים.

A : נגדיר 3 מאורעות A : מאורעות אוגיות התקבלו בדיוק שלוש תוצאות זוגיות

; התוצאה 4 התקבלה בדיוק שלוש פעמים = B

c אחת אחת בדיוק פעם ו- 3 התקבלה הדיוק פעם אחת = C

. אחת פעם בדיוק בדיוק 3 התוצאה D

- $P(A \cap B^C)$ א. חשב את (7 נקי)
- $P(A^C \cap B^C)$ ב. חשב את ב. (6 נקי).
- יה בזה: C -ו A בלתי-תלויים C -ו A בזה: האם המאורעות (6 נקי)
- P ו- P בלתי-תלויים זה בזה בתנאי המאורעות P ו- P בלתי-תלויים זה בזה בתנאי המאורע

שאלה 5 (25 נקודות)

;2 משתנה מקרי שהתפלגותו פואסונית עם הפרמטר אויי משתנה מקרי אהתפלגותו יהי

;3 משתנה מקרי שהתפלגותו פואסונית עם הפרמטר Y

ונניח ש-X ו-Y משתנים מקריים בלתי-תלויים.

- $P\{X+Y=6\}$ א. חשב את (6 נקי)
- $P\{3X+2Y=6\}$ ב. חשב את ב. (6 נקי)
- ותה התפלגות: אותה בדיוק אותה המפלגות: על נקי) ג. האם נכון לקבוע כי לשני המשתנים המקריים 3X ו- 2Y יש בדיוק אותה התפלגות: נמק את תשובתך.
 - . $E[X+Y | X \ge 1] = \frac{5e^2-3}{e^2-1}$ ד. הראה כי (7 נקי)

בהצלחה!

$\Phi(z)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z) pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0	0.000	0.0091	0.0020	0.000.	0.0700	0.0750	0.0772	0.0000	0.00	0.0075
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	3.7771	3.7771	3.7771	3.7771	3.7771	3.7771	3.7771	3.7771	3.7771	3.7770

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

דף נוסחאות לבחינה - 20425

ההתפלגות	פונקציית ההסתברות / פונקציית הצפיפות	התוחלת	השונות	הפונקציה יוצרת המומנטים
בינומית	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1, \dots, n$	пр	np(1-p)	$(pe^t + 1 - p)^n$
גיאומטרית	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	1/p	$(1-p)/p^2$	$\frac{pe^t/(1-(1-p)e^t)}{t<-\ln(1-p)}$
פואסונית	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	λ	λ	$\exp\{\lambda(e^t-1)\}$
בינומית שלילית	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	r/p	$(1-p)r/p^2$	$ \left(pe^t / (1 - (1-p)e^t) \right)^r $ $ t < -\ln(1-p) $
היפרגיאומטרית	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0,1,,m $	nm/N	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	
אחידה בדידה	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	m + (1+n)/2	$(n^2-1)/12$	
אחידה	$1/(b-a)$, $a \le x \le b$	(a+b)/2	$(b-a)^2/12$	$(e^{bt}-e^{at})/(tb-ta), t\neq 0$
נורמלית	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	μ	σ^2	$\exp\{\mu t + \sigma^2 t^2/2\}$
מעריכית	$\lambda e^{-\lambda x}$, $x > 0$	1/λ	$1/\lambda^2$	$\lambda/(\lambda-t)$, $t<\lambda$
מולטינומית	$ \binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1 $			

נוטחת הבינום
$$P(A) = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 נוטחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 מוטחת הכפל
$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוטחת ההסתברות השלמה
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S$$
 נוטחת ההסתברות השלמה
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוטחת בייט
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת של פונקציה של מ"מ
$$E[Z] = \sum_x x p_X(x) = \int g(x) f(x) dx$$
 שונות
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$E[aX + b] = aE[X] + b$$

$$Var(aX + b) = a^2 Var(X)$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+tig|X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_{x}xp_{X\mid Y}(x\mid y)=\int xf_{X\mid Y}(x\mid y)dx$$
 תוחלת מותנית

 $Var(X | Y = y) = E[X^2 | Y = y] - (E[X | Y = y])^2$ שונות מותנית $E[X] = E[E[X \mid Y]] = \sum_{v} E[X \mid Y = y] p_{\gamma}(y)$ נוסחת התוחלת המותנית $E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$ (טענה מתרגיל ת26, עמוד 430) Var(X) = E[Var(X | Y)] + Var(E[X | Y])נוסחת השונות המותנית $E\left|\sum_{i=1}^{n} X_i\right| = \sum_{i=1}^{n} E[X_i]$ תוחלת של סכום משתנים מקריים Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]שונות משותפת $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{i=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$ $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$ שונות של סכום משתנים מקריים $\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$ מקדם המתאם הלינארי $M_X(t) = E[e^{tX}]$; $M_{aX+b}(t) = e^{bt}M_X(at)$ פונקציה יוצרת מומנטים $M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$: באשר מיימ ביית מתקיים X_i $E \left| \sum_{i=1}^{N} X_i \right| = E[N]E[X_1]$ תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי $\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X_{1}) + (E[X_{1}])^{2}\operatorname{Var}(N)$ (מיימ ביית שייה) $M_{X_{1}+...+X_{N}}(t) = E \left[\left(M_{X_{1}}(t) \right)^{N} \right]$ $P\{X \geq a\} \leq E[X]/a$, a>0 , שלילי Xאי-שוויון מרקוב $P\{|X-\mu| \ge a\} \le \sigma^2/a^2$, a > 0, $\mu, \sigma^2 < \infty$ אי-שוויון צ'בישב $P\Big\{\left(\sum\limits_{i=1}^{n}X_{i}-n\mu\right)\Big/\sqrt{n\sigma^{2}}\leq a\Big\} \underset{n o\infty}{ o}\Phi(a) \quad , \quad \mu,\sigma^{2}<\infty \ , \ \ n$ משפט הגבול המרכזי וש"ה X_{i}

- אם א ו- B מאורעות ארים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי P(A)/[P(A)+P(B)] המאורע א יתרחש לפני המאורע היא
- סכום של מיים בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיים בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.

$$\begin{split} \sum_{i=0}^n i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^n i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^n i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^\infty \frac{x^i}{i!} &= e^x \qquad ; \qquad \sum_{i=0}^n x^i = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^\infty x^i = \frac{1}{1-x} \qquad , \qquad -1 < x < 1 \qquad ; \qquad \sum_{i=1}^\infty \frac{x^i}{i} = -\ln(1-x) \qquad , \qquad 0 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)}(ax+b)^{n+1} \qquad , \qquad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b) \qquad \vdots \\ \int e^{ax} dx &= \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \\ \log_n a &= \log_m a/\log_m n \qquad ; \qquad \log_n(a^b) = b \cdot \log_n a \qquad ; \qquad \log_n(ab) = \log_n a + \log_n b \end{split}$$

6