A Compilation of Circuit Identities and Decomposition

Lucas Camponogara Viera2024

1 Gate Identities

1.1 Conjugation by Hadamard

$$-X = -H Z H$$

$$-Y = -H -Y H$$

$$-Z = -H X H$$

1.2 Two-qubit gates

1.3 Phase kickback

2 Decompositions

• See Barenco et al. Lemma 5.1 for a proof.

Where $U=e^{ia}AXBXC$, with ABC=I. See Corollary 4.2 of Nielsen and Chuang on page 176, or Barenco et al. Lemma 4.3 for a proof.

 \bullet See Barenco et al. Lemma 5.5 for a proof.

Where $V = R_z(\alpha) \cdot R_y(\theta) \cdot R_z(\alpha) \cdot \sigma_x$.

• Sleator-Weinfurter construction. See Barenco et al. Lemma 6.1 for a proof.

Where $V^2=U.$ The Toffoli gate is a special case in which V=(1-i)(I+iX)/2.

3 References

- 1 Nielsen MA, Chuang IL. 2010. Quantum Computation and Quantum Information. New York: Cambridge Univ. Press. 10th Anniv. Ed. Chapter 4.
- 2 Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A. and Weinfurter, H. (1995) Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467.