填空题

- 1. D,JK,RS
- 2. $\overline{R}_D + \overline{S}_D = 1$
- з. $J\overline{Q}^n+\overline{K}Q^n$
- 4. 同步时序逻辑, 异步时序逻辑
- 5. *n*
- 6. 反馈复位法, 预置法
- 7. 100
- 8. 256

选择题

- 1. *C*
- 2. ${\cal D}$
- з. $oldsymbol{B}$
- 4. D
- 5. ②
- 6. 4
- 7. ②
- 8. 2
- 9. 4
- 10. ②
- 11. 4
- 12. ①

分析与设计题

	A		i				1	
		1		!	1	!	!	
	В		1	-	!	,	1	
			1 !	1	1	i	1	
,	Q,	1		1////	1	1	Ī	
,				1	× [1	1	
1.	Q,	1	1	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>			1	
,	-	1	1 1	1		1	1	
	$\mathbb{Q}_{\mathbf{z}}$!				7////	7	
,			 	1		1	1	
,	$\overline{\mathbb{Q}}_{2}$					1/////	7	
	42		<u> </u>	-	 		1	
					£		, , , , , , , , , , , , , , , , , , ,	
								128

2. (1) 驱动方程:
$$D_1=\overline{Q}_3^n, D_2=Q_1^n, D_3=Q_1^nQ_2^n$$
 状态方程: $Q_1^{n+1}=\overline{Q}_3^n, Q_2^{n+1}=Q_1^n, Q_3^{n+1}=Q_1^nQ_2^n, C=\overline{\overline{Q}_1^nQ_3^n}$

(2) 状态转换图

状态转换表

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	C
0	0	0	0	0	1	1
0	0	1	0	1	1	1
0	1	0	0	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	1
1	1	0	0	0	0	0
1	1	1	1	1	0	1

时序图

(3) 具有自启动特性的同步五进制加法计数器


```
module cnt6 (clk, q, cout);
     input clk;
     output reg [2:0] q = 0; // 初始化q
    output reg cout = 0; // 初始化cout
     parameter [2:0] st0 = 3'b010,
                    st1 = 3'b011,
                    st2 = 3'b111,
                    st3 = 3'b110,
                    st4 = 3'b100,
                    st5 = 3'b000; // parameter 声明位宽
     always @ (posedge clk) begin
        case (q)// 状态的转移
        st0 : q = st1;
        st1 : q = st2;
        st2 : q = st3;
        st3 : q = st4;
        st4 : q = st5;
        st5 : q = st0;
        default : q = st0;
        endcase
        cout = q == st5; // cout的输出
     end
endmodule
```


状态机定义:

o s = 0(未投入硬币)

o s=1(已投入5分)

o s=2(己投入1角)

o s=3(己投入1角5分)

o s=4(已投入2角)

o s=5(已投入2角5分)

输入定义:

 \circ in=0(投入5分)

o *in* = 1(投入1角)

输出定义:

o *out* = 0(不吐出货物)

o *out* = 1(吐出货物)

• $change = 0(\pi$ 找钱)

• change = 1(找5分)

(2)

状态转换表

S_{20}	S_{10}	S_{00}	in	S_{21}	S_{11}	S_{01}
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	1	0	0
0	1	1	1	1	0	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	0	0

输出逻辑真值表

S_{20}	S_{10}	S_{00}	out	change
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	0
1	0	1	1	1

次态逻辑表达式

$$\begin{split} S_{01} &= m_0 + m_3 + m_4 \\ &= \overline{S_{20} \, S_{10} \, S_{00} \, in} + \overline{S_{20} \, S_{10}} \, S_{00} \, in} + \overline{S_{20} \, S_{10}} \, \overline{S_{00}} \, in} \\ &= \overline{S_{20} \, S_{00} \, in} + \overline{S_{20} \, S_{10}} \, S_{00} \, in} \\ S_{11} &= m_1 + m_2 + m_3 + m_4 \\ &= \overline{S_{20} \, S_{10} \, S_{00}} \, in + \overline{S_{20} \, S_{10}} \, S_{00} \, in} + \overline{S_{20} \, S_{10}} \, S_{00} \, in} + \overline{S_{20} \, S_{10}} \, \overline{S_{00}} \, in} \\ &= \overline{S_{20} \, S_{10}} \, in + \overline{S_{20} \, S_{10}} \, S_{00} \, in} + \overline{S_{20} \, S_{10}} \, \overline{S_{00}} \, in} \\ &= \overline{S_{20} \, S_{10}} \, in + \overline{S_{20} \, S_{10}} \, S_{00} \, in} + \overline{S_{20} \, S_{10}} \, \overline{S_{00}} \, in} \\ S_{21} &= m_5 + m_6 + m_7 \\ &= \overline{S_{20} \, S_{10}} \, \overline{S_{00}} \, in + \overline{S_{20}} \, S_{10} \, S_{00} \, in} + \overline{S_{20}} \, S_{10} \, S_{00} \, in} \\ &= \overline{S_{20} \, S_{10}} \, in + \overline{S_{20}} \, S_{10} \, S_{00} \, in} \\ &= \overline{S_{20} \, S_{10}} \, in + \overline{S_{20}} \, S_{10} \, S_{00} \, in} \end{split}$$

输出逻辑表达式

$$out = S_{20} \ change = S_{20} \overline{S_{10}} S_{00}$$