Travelling Salesman Problem

1805069 - Sumonta Nandy Amit 1805094 - Sheikh Hasanul Banna 1805100 - Utchchhwas Singha 1805107 - Partho Kunda 1805109 - Udayon Paul Dhrubo

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

March 9, 2024

Table of Contents

- Introduction
- 2 Different types of TSP
- Motivation
- Exact Algorithms For TSP
- 5 Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
 - Metaheuristics Algorithms For TSP
- 8 Dataset TSPLib95
- O Christofides Algorithm
- Simulated Annealing
- 11 Introducing Randomization to TSP

- Introduction
- 2 Different types of TSF
- Motivation
- Exact Algorithms For TSF
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- 8 Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- Introducing Randomization to TSP

Introduction

- Beginning with a city, a salesman wants to visit all the cities and end up in the starting city
- But travelling costs money
- So how to find a cheap tour?

• Represent each city as a vertex

0 (

2)

- Represent each city as a vertex
- Each city is connected to all the other cities by edges (complete graph)

- Represent each city as a vertex
- Each city is connected to all the other cities by edges (complete graph)
- Cost of traveling between cities is represented by weights of the edges.

- Represent each city as a vertex
- Each city is connected to all the other cities by edges (complete graph)
- Cost of traveling between cities is represented by weights of the edges.
- A tour is a hamiltonian cycle of the graph. Cost of the tour is sum of the edges in the hamiltonian cycle

TSP Optimization Version

- Find the tour with the minimum cost
- NP-hard but not NP-complete. Because there's no efficient way to verify if the solution is optimal.

TSP Decision Version

- for a certain value k, is there a tour with cost $\leq k$?
- NP-Complete.[NP-hard and a given instance can be verified in polynomial time]

TSP Formal Definition

- Cost: $c_{ij} = \text{cost of travelling between cities i and j}$
- Number of cities: n
- Cyclic permutation of cities: $k(1), k(2), \dots k(n), K(1)$ where each city j is listed as a unique node k(j).
- Then, cost of the tour is

$$C(\pi) = C_{k(n)k(1)} + \sum_{i=1}^{n-1} C_{k(i)k(i+1)}$$

ullet Goal of the problem: Find permutation π such that $\mathcal{C}(\pi)$ is minimum

- Introduction
- 2 Different types of TSP
- Motivation
- Exact Algorithms For TSF
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- 11 Introducing Randomization to TSP

Different types of TSP

- **Symmetric TSP(sTSP)**: For this type of TSP problem, weights of edges between two vertices are symmetric $[c_{ij} = c_{ji}]$ where c_{ij} denotes cost of travelling from i to j
- **Asymmetric TSP(aTSP)**: For this type of TSP problem, weights of edges between two vertices are not always symmetric $[c_{ij} \neq c_{ji}]$ where c_{ij} denotes cost of travelling from i to j

Figure: Symmetric TSP

Figure: Asymmetric TSP

Different Types of TSP

Multiple TSP(mTSP): In a given set of nodes, let there are m salesmen located at a single depot node. The remaining nodes (cities) that are to be visited are intermediate nodes. Then, the mTSP consists of finding tours for all m salesmen, who all start and end at the depot, such that each intermediate node is visited exactly once and the total cost of visiting all nodes is minimized.

Figure: Multiple TSP

No constant Factor Approximation for TSP

There is no constant factor approximation for TSP, unless P=NP

- We will proof this Theorem using contradiction.
- Suppose, There is a ρ approximation algorithm for TSP. Let G=(V,E) be an unweighted graph. |V| = n
- Construct G' from G by adding edges and assigning weights to them as follows:

$$c_{ij} = \begin{cases} 1 & \text{if (i,j)} \in \mathsf{E} \\ n\rho & \text{if (i,j)} \notin \mathsf{E} \end{cases}$$

No constant Factor Approximation for TSP

There is no constant factor approximation for TSP, unless P=NP

- We will proof this Theorem using contradiction.
- Now Suppose we run an approximate TSP solver on G'. If G has a hamiltonian cycle, then G' has a TSP of total cost n, otherwise, TSP will give a total cost greater than nρ.
 So using approximation algorithm, we solved the hamiltonian cycle problem in polynomial time. But this is not possible unless P=NP.
- Hence, The theorem is proved.

cost of TSP $> 3\rho$. No hamiltonian cycle

Different Types of TSP

• Metric TSP: The input to TSP is called metric if for each triplets of vertices, the triangle inequality holds. That means, if $i, j, k \in V$, $c_{ik} \le c_{ij} + c_{jk}$.

Approximate Algorithms exist for metric TSP.

Figure: Metric TSP

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSF
- 5 Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- Introducing Randomization to TSP

- Introduction
- ② Different types of TSF
- Motivation
- Exact Algorithms For TSP
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- Dataset TSPLib95
- O Christofides Algorithm
- Simulated Annealing
- 11 Introducing Randomization to TSP

Exact Algorithms For TSP

Brute-force search

Approach: Try all permutations

Complexity: O(n!)

Suitable only for a small network with few cities

Held-Karp algorithm

Approach: Dynamic programming

Complexity: $O(n^22^n)$

Suitable for an intermediate number of cities

Concorde TSP solver

Approach: Branch-and-cut-and-price

Can solve for a network of 85,900 cities but taking over 136 CPU-years

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSP
- 5 Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- 8 Dataset TSPLib95
- O Christofides Algorithm
- Simulated Annealing
- Introducing Randomization to TSP

Approximation Algorithms For TSP

Nearest Neighbour

Approach: Greedy search

Complexity: $O(n^2)$

Approximation ratio: 2

Double Tree

Approach: Constructs Eulerian circuit by doubling edges of min spanning

tree

Complexity: $O(n^2)$

Approximation ratio: 2

Christofides Algorithm

Approach: Combines the min spanning tree with minimum-weight

matching

Complexity: $O(n^3)$

Approximation ratio: $\frac{3}{2}$

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSP
- Approximation Algorithms For TSF
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- B Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- 11 Introducing Randomization to TSP

Heuristics Algorithms For TSP

Greedy heuristic

Approach: Selecting shortest edge

Complexity: $O(n^2 \log_2(n))$

Match Twice and Stitch

Approach: Combines two sequential matching(min-cost edge cycle)

Complexity: $O(n^2)$

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSF
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- 8 Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- Introducing Randomization to TSP

Metaheuristics Algorithms For TSP

Lin-Kernighan Algorithm

Approach: Local Search Complexity: $O(n^2.2)$

Tabu Search

Approach: Local Search with tabu-list

Complexity: $O(n^3)$

Simulated annealing

Approach: Explores the solution space by combining local search with

random jumps, governed by a cooling schedule

Complexity: $O(n^2)$

Metaheuristics Algorithms For TSP

Genetic algorithm

Approach: population of solutions evolves over generations through

operations like selection, crossover, and mutation

Complexity: $O(n^3)$

Memetic algorithm

Approach: Combines the global search capability of genetic algorithms

with local search heuristics

Complexity: $O(n^3)$

Ant colony optimization

Approach: probabilistically guides future ants towards promising solutions

Complexity: $O(n^3)$

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSP
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- 8 Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- Introducing Randomization to TSP

TSPLib95

- For our experiments, we used TSPLib95 dataset [link].
- Includes real life data. So, Metric TSP
- We took Symmetric TSP only.
- The distance from node i to node j is the same as from node j to node i.

Specification

NAME: burma14

TYPE: TSP

• **COMMENT:** 14-State in Burma (Zaw Win)

DIMENSION: 14

• EDGE_WEIGHT_TYPE: GEO

EDGE_WEIGHT_FORMAT: FUNCTION

DISPLAY_DATA_TYPE: COORD_DISPLAY

NODE_COORD_SECTION

1: 16.47 96.10

2: 16.47 94.44

. . .

14: 20.09 94.55

EOF

Next Topic

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSP
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- B Dataset TSPLib95
- Ohristofides Algorithm
- o maid to a 7 milea mg
- Introducing Randomization to TSP

Christofides Algorithm - Pseudocode

Algorithm Christofides algorithm

Require: A complete weighted G = (V, E, w) graph with Metric Property

Ensure: Hamiltonian cycle H with approximate minimization of cost

- 1: Create a minimum spanning tree(MST) T of the given graph G.
- 2: Let O be the set of vertices with odd degree in T.
- 3: Find a minimum weight perfect matching M in the induced subgraph given by the vertices from O.
- 4: Combine the edges of M with the edges of T to form a multigraph H in which each vertex has even degree.
- 5: Form an Eulerian circuit in *H*.
- 6: Make the circuit found in previous step into a Hamiltonian circuit by skipping visited vertices (shortcutting).

Christofides Algorithm

Figure: Original Graph

Initially G(V, E) is complete.

Christofides Algorithm - MST

Figure: Minimum Spanning Tree

Use Kruskal's Algorithm $O(E \log V)$ Time Complexity

Christofides Algorithm - Odd Vertices

Figure: Odd Vertices in MST

Eulerian path needed. Each vertex needs to have 2 degree exact.

We find odd degree vertices. Which are 0, 1, 2, 5.

Christofides Algorithm - Minimum Cost Matching

Figure: Minimum Cost Matching

Create their subgraph and find minimum cost matching. $O(n^3)$ time complexity.

Christofides Algorithm - Euler Tour

Figure: Multigraph

Combined Graph Eulerian Tour: 0, 1, 2, 5, 2, 3, 4, 0 Remove Duplicates (shortcutting)

Christofides Algorithm - Answer

Figure: TSP Solution

TSP answer path = 0, 1, 2, 5, 3, 4, 0 Cost = 108 Overall time complexity $O(n^3)$

Christofides APX Ratio Scatterplot

Figure: Scatterplot of APX ratio for Christofides algorithm

Christofides Algorithm Runtime Plot

Figure: Christofides algorithm runtime plot

Next Topic

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSP
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- 11 Introducing Randomization to TSP

Simulated Annealing Flow Chart

Figure: Simulated Annealing

Initial Solution

- Permutations of $\{1, \ldots, n\}$
- Representation: [1, 2, 3, 4, 5, 6, 7, 8, 1]

Algorithm 1 Simulated Annealing Pseudo-code

```
1: nodes \leftarrow list of all nodes in the graph
```

- 2: $curr_node \leftarrow randomly choose a node from nodes$
- 3: initialize *current_solution* as a list containing *curr_node*
- 4: $available_nodes \leftarrow$ set of all nodes in the graph
- 5: $available_nodes \leftarrow available_nodes \setminus \{curr_node\}$
- 6: while available_nodes $\neq \emptyset$ do
- r: next_node ← node in available_nodes with minimum edge weight from curr node
- 8: $available_nodes \leftarrow available_nodes \setminus \{next_node\}$
- 9: $current_solution \leftarrow current_solution + \{next_node\}$
- 10: $curr_node \leftarrow next_node$
- 11: end while

Figure: Initial Solution

Definition of Neighbor

Figure: Current Tour

Figure: Candidate Neighbor

Fitness Function

- \bullet f(x), measures the performance of the solution candidate
- in our case, the total length of the tour
- e.g.: Candidate Solution, $S = (S_1, \dots, S_i, \dots, S_n)$ $C(S) = \sum d(S_i, S_{i+1})[1 \le i \le n-1] + d(s_n, s_1)$

Controlling Temperature

- denoted by T
- $T = T \alpha * T$; α is the cooling parameter

Termination Condition

- Maximum number of iterations
- T ≤ 0

Results: Tour Cost vs Iteration

Figure: Tour Cost vs Iteration

Results: Tour Cost vs Temperature

Figure: Best Tour Cost vs Temperature

Simulated Annealing Results

Name	Dimension	C_{-} Ratio	SA_Ratio	Improvement
fri26	26	1.054429	1.03095	0.023479
bays29	29	1.083168	1.006436	0.076733
swiss42	42	1.098979	1.087981	0.010998
hk48	48	1.139429	1.013088	0.126342
brazil58	58	1.082693	1.025517	0.057177
st70	70	1.137778	1.084444	0.053333
kroB150	150	1.135438	1.104669	0.030769
pr152	152	1.076477	1.046389	0.030089
rat195	195	1.164012	1.158846	0.005166
d657	657	1.122240	1.122240	0.000000

Empirical Ratios for Simulated Annealing

Name	Min_Ratio	Max_Ratio	Avg_Ratio
Christofides	1.0544290	1.1640120	1.1094644
C+SA	1.0064356	1.1588463	1.0680559

Next Topic

- Introduction
- ② Different types of TSP
- Motivation
- Exact Algorithms For TSP
- Approximation Algorithms For TSP
- 6 Heuristics Algorithms For TSP
- Metaheuristics Algorithms For TSP
- 8 Dataset TSPLib95
- Ohristofides Algorithm
- Simulated Annealing
- 11 Introducing Randomization to TSP

Revisiting Christofides

- Christofides algorithms is deterministic.
- May use Kruskal's algorithm or Prim's algorithm as a subroutine to obtain MST.

KRUSKAL-MST

Algorithm 1 KRUSKAL-MST

```
Require: A connected, undirected, weighted graph G = (V, E)
Ensure: A minimum spanning tree T of G

 T ← ∅

 2: for v \in G.V do
       MAKE-SET(v)
 4: end for
 5: E \leftarrow LIST(G.E)
 6: Sort E in non-decreasing order by weight
 7: i \leftarrow 0
 8: while |T| < |G.V| - 1 do
       e \leftarrow E[i]
 9:
       if FIND-SET(e.u) \neq FIND-SET(e.v) then
10:
           T \leftarrow T \cup \{e\}
11:
           UNION(e.u, e.v)
12:
13: end if
     i \leftarrow i + 1
14:
15: end while
16: \mathbf{return} \ T
```

Time Complexity Analysis of KRUSKAL-MST

- |V| MAKE-SET operations take $O(V \log V)$
- Sorting E takes $O(E \log E) = O(E \log V)$
- ullet | E| FIND-SET and UNION operations take $O(E\log E) = O(E\log V)$
- For complete graphs, $|E| = O(V^2)$
- Thus, total time complexity is $O(E \log V) = O(V^2 \log V)$

Trying Other STs

- MST may not give optimal tour.
- May try with other STs.
- Idea: Randomly sample an ST.
- But, does a completely random ST perform well?

Problem with Random STs

Name	Dimension	C_Ratio	R_{-} Ratio
fri26	26	1.054429029	3.186766275
bays29	29	1.083168317	3.20049505
swiss42	42	1.09897879	3.825608798
hk48	48	1.139429369	4.826978449
brazil58	58	1.082693444	4.869895649

k-RANDOMIZED-ST

Algorithm 2 RANDOMIZED-ST

```
Require: A connected, undirected, weighted graph G = (V, E)
Ensure: A spanning tree T of G and a randomization parameter k
 1: T \leftarrow \emptyset
 2: for v \in G.V do
       MAKE-SET(v)
 4: end for
 5: Sort E in non-decreasing order by weight
 6: while |T| < |G.V| - 1 do
    j \leftarrow \text{MIN}(|E|, k)
 7:
    W \leftarrow [e.w \text{ for } e \in E[0, j+1]]
 9: i \leftarrow \text{SAMPLE-INDEX}(W)
10: e \leftarrow E[i]
       if FIND-SET(e.u) \neq FIND-SET(e.v) then
11:
           T \leftarrow T \cup \{e\}
12:
           UNION(e.u, e.v)
13:
14:
       end if
       ERASE(E, i)
15:
16: end while
17: return T
```

SAMPLE-INDEX

Algorithm 3 SAMPLE-INDEX

Require: A list of weights W

Ensure: Sample a random index $i \in [0, |W|]$

- 1: Z-Normalize the values in W
- 2: $P \leftarrow [e^{-w} \text{ for } w \in W]$
- $s \leftarrow SUM(P)$
- 4: Sample $j \in [0, |W| 1]$ using the probability distribution P
- 5: return j

Time Complexity Analysis of RANDOMIZED-ST

- Additional |E| calls to SAMPLE-INDEX take $O(kE) = O(kV^2)$
- |E| ERASE operations take $O(kE) = O(kV^2)$
- Thus, total time complexity is $O(V^2 \log V + kV^2)$

Randomized Christofides

• Use k-RANDOMIZED-ST instead of KRUSKAL-MST

Randomization Improves Performance

Figure: Scatterplot of Ratio vs No. of Node for randomization

Randomization Results for Christofides

Name	Dimension	$C_{-}Ratio$	RC_Ratio	$Best_-k$	Improvement
fri26	26	1.054429	1.037353	10	0.017076
bays29	29	1.083168	1.048515	11	0.034653
swiss42	42	1.098979	1.069128	16	0.029851
hk48	48	1.139429	1.091179	13	0.048251
brazil58	58	1.082693	1.067533	2	0.015160
st70	70	1.137778	1.106667	9	0.031111
kroB150	150	1.135438	1.130884	6	0.004554
pr152	152	1.076477	1.067941	14	0.008537
rat195	195	1.164012	1.131726	13	0.032286
d657	657	1.12224	1.117170	9	0.005070

Randomization Results for Simulated Annealing

Name	Dimension	$C_{-}Ratio$	SA_Ratio	Best_k	Improvement
fri26	26	1.054429	1.000000	7	0.054429
bays29	29	1.083168	1.003960	15	0.079208
swiss42	42	1.098979	1.009427	19	0.089552
hk48	48	1.139429	1.010383	4	0.129046
brazil58	58	1.082693	1.003150	2	0.079543
st70	70	1.137778	1.019259	14	0.118519
kroB150	150	1.135438	1.067700	19	0.067738
pr152	152	1.076477	1.019761	14	0.056717
rat195	195	1.164012	1.096427	1	0.067585
d657	657	1.122240	1.117170	9	0.005070

Empirical Ratios for Randomization

Name	Min_Ratio	Max_Ratio	Avg_Ratio
Christofides	1.0179326	1.1718571	1.1115747
RC	1.0179326	1.1487638	1.0929558
RC+SA	1.0000000	1.1456040	1.0602919