

Zad domowe

Tuesday, October 29, 2024

$$f(t) = \begin{cases} 0 & \text{, dla } t \in (2k-1) \cdot I_2 \text{, } k \cdot I_0 \text{) , } k \in \mathbb{Z} \\ \frac{1}{2}A & \text{, dla } t = k \cdot I_2 \text{ ; } k \cdot I_0 \text{) , } k \in \mathbb{Z} \\ A & \text{, dla } t \in (k \cdot I_0, (2l+1) \cdot I_0) \text{, } k \in \mathbb{Z} \end{cases}$$

1)
$$\alpha_0 = \frac{1}{5} \int_0^5 f(t) dt = \frac{1}{5} \cdot At \Big|_0^{\frac{1}{2}} = \frac{A}{2}$$

2)
$$\alpha_{n} = \frac{1}{70} \int_{0}^{70} f(t) \cos(\omega nt) dt = \frac{1}{70} \cdot \left(\int_{0}^{\frac{\pi}{2}} A \cos(\omega nt) dt + 0 \right) = \begin{cases} \omega_{0} nt = x \\ dt = \frac{1}{400} nt \end{cases} = \frac{1}{700} \int_{0}^{70} A \cdot \cos(x) dx = \frac{A}{700} \sin(x) dt = 0$$

$$= \frac{1}{\pi n} \int_{0}^{\pi n} A \cdot (\cos(x) dx) = \frac{A}{\pi n} \sin(x) \Big|_{0}^{\pi n} = 0$$

3)
$$G_{n} = \frac{1}{70} \int_{0}^{70} f(t) g_{n}(\omega nt) dt = \frac{1}{70} \cdot \left(\int_{0}^{70} A g_{n}(\omega nt) dt + 0\right) = \begin{cases} \omega_{0} nt = x \\ dt = \frac{1}{4\omega_{0}n} dx \end{cases} = \frac{1}{70} \int_{0}^{70} A \cdot g_{n}(x) dx = \frac{A}{70} \left[-\cos(x)\right]_{0}^{70} = \frac{A(1 - \cos(\pi n))}{70}$$

Na polstawie punklow 1:3 straymano:

$$f(1) = \frac{1}{2}A + \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (1 - \cos \tau_n) \cdot \sin n\omega t \qquad , \quad governormal or \quad gove$$

to pierwszych wspatrognników oblicenych na podstawie wzonów analitycenych

$ \begin{array}{c cccc} n & a_n & b_n \\ 1 & 0 & \frac{2}{\pi} \end{array} $	A
2 0 0	
3 0 2	A
3 0 <u>2</u> 37 4 0 0	
5 0 2	Д

5 6 7 8 9 9	0 2 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 A						
f _{se} =	1	$dt = \sqrt{\frac{1}{8}}$	A^2 $\frac{7}{2}$ =	\\ \frac{A \overline{\beta}}{2} \right				
$S_1 = \sqrt{\frac{1}{2}}$ $D(a \times 2k+1, ke)$	Wspotragn $ \frac{1}{6} \int_{0}^{6} \frac{4}{\pi} A^{2} \sin^{2} \omega dd $	$f = \left \frac{A\sqrt{2}}{\pi} \right $						
Zatem:		nwtdt gdai	5.0	in ² nw t dt	$= \begin{cases} \frac{2\pi}{70} & 1 = \frac{70}{70} \\ 0 & 1 = \frac{70}{2m} \\ 0 & > 0 \\ 0 & > 2 \end{cases}$	$\begin{array}{c} \lambda \\ \lambda \\ - \lambda$	$\sin^2 x dx = \frac{1}{2}$	10 · Try
$S_{n}^{z} = \begin{cases} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$ $TH D = \frac{\sqrt{2}}{2}$		n = 2k - 1 $n = 2k$ 1 1 1 1 1 1 1 1 1 1	ceZ ceZ					
	5,1	JA JE		$V \underset{k=1}{\overset{\sim}{\smile}} (2k_f 1)^2$	-18	-1	VIII	