ONELE: Práctica 3

Pol Calvo y Víctor Méndez

7-3-2024

1. Cálculo del indice de refracción con incidencia OBLICUA

Sabemos que para un ángulo θ_t de transmisión se verifica

$$\tau = \frac{(1 - \rho_{21}^2) e^{-j\cos\theta_t k_2 d}}{1 - \rho_{21}^2 e^{-j\cos\theta_t k_2 d}} \tag{1}$$

Por tanto, si variamos este angulo observaremos máximos y mínimos cuando se cumpla

$$T_{max} = |\tau|^2 = \frac{(1 - \rho_{21}^2)^2}{|1 - \rho_{21}^2|^2}$$
 (2)

$$T_{min} = |\tau|^2 = \frac{(1 - \rho_{21}^2)^2}{|1 + \rho_{21}^2|^2} \tag{3}$$

A partir de cualquiera de las dos lecturas podemos encontrar el indice de refracción n_2 aislando ρ_{21} y aplicando

$$\rho_{21} = \frac{n_1 - n_2}{n_1 + n_2} \tag{4}$$

$$\rho_{21} = \frac{n_1 - n_2}{n_1 + n_2}$$

$$n_2 = \frac{1 - \rho_{21}}{1 + \rho_{21}} n_1$$
(4)

En el laboratorio hemos hecho las medidas para $P_o\,=\,8,55$ y hemos obtenido $P_{max} = 7.8 \ \mathrm{y} \ P_{min} = 7.46.$ De esta manera $T_{min} =$ $\frac{P_{min}}{P_o}=0.872~\mathrm{y}~T_{max}=\frac{P_{max}}{P_o}=0.912.$ Aislamos $\rho_{21}\simeq-0.185~\mathrm{y}$ calculamos $n_2 \simeq 1,454.^1$

2. Cálculo del grosor con incidencia normal

Con una incidencia aproximadamente normal se tiene que $\cos \theta_t \simeq$ 1 y por tanto

$$T = \frac{1 - \rho_{21}^2}{|1 - \rho_{21}^2 e^{-jk_2 d}|^2} \tag{6}$$

$$|1 - \rho_{21}^2 e^{-jk_2 d}|^2 = \frac{1 - \rho_{21}^2}{T} \tag{7}$$

Donde $k_2 = n_2 \frac{2\pi}{\lambda}$ y el valor numérico de la parte derecha de la equación (7) vale $\frac{1-\rho_{21}^2}{T} \simeq 1,13[.].$

Esta equación tiene varias soluciones. De todas maneras el manual nos da un rango de valores para el grosor, $d \in [50 \, \mathrm{nm}, 150 \, \mathrm{nm}]$. En la figura 1 se ha representado la parte izquierda de la equación (7) y las soluciones de la equación entera.

¹ De hecho las soluciones a la equación $T_{min} = f(\rho_{21})$ tiene como solución $\rho_{21} \simeq \{\pm 0,185;\pm 5,4\}$ pero solo tiene sentido utilizar la solución escogida

Figura 1: Resolución gráfica de la equación planteada para encontrar el

3. Transmitividad del pyrex

«Compruebe que el valor medido, dentro de las limitaciones de resolución de los aparatos utilizados, resulta con buena aproximación igual al valor teórico para ambas muestras (T=0,917).»

Sea $\vec{E_i}$ una onda plana y uniforme incidente y $\vec{E_t}$ la parte transmitida, tenemos

2
Bajo esta premisa es demostrable que $\vec{P}=\frac{1}{2\eta}|\vec{E}|^2\,\hat{k}$

$$\vec{E}_{i} = E_{ci}e^{-j\vec{k}_{i}\cdot\vec{r}}\hat{e}_{t}
\vec{E}_{t} = (E_{ci}\tau_{t})e^{-j\vec{k}_{t}\cdot\vec{r}}\hat{e}_{t}
\Rightarrow |\vec{P}_{i}| = \frac{1}{2\eta}|E_{ci}|^{2}
|\vec{P}_{t}| = \frac{1}{2\eta}|E_{ci}|^{2}|\tau_{t}|^{2}$$
(8)

Donde τ_T es el resultado de la suma geometrica proveniente de sumar todas las ondas reflejadas.

$$\tau_T = \frac{(1 - \rho_{21}^2) e^{-jk_2 d}}{1 - \rho_{21}^2 e^{-jk_2 d}} \tag{9}$$

El valor de T se define como la relación entre la potencia transmitida y la incidente.

$$T = \frac{|\vec{P_i}|}{|\vec{P_t}|} = |\tau_t|^2 \tag{10}$$

Las $T_{\rm led}$ y $T_{\rm laser}$ a partir de las medidas del laboratorio valen $T_{\rm led}=\frac{0.21}{0.24}=0.875$ y $T_{\rm laser}=\frac{7.8}{8.55}=0.912$ respectivamente. Se verifica $T_{\text{laser}} \simeq T_{\text{led}} \simeq 0.917$. Además sabemos que $\tau = \pm \sqrt{T}$, por lo que $\tau_{\text{laser}} = \pm 0.935$ y $\tau_{\text{led}} = \pm 0.955$.