Seat No.:	Enrolment No
-----------	--------------

BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020

Subject Code:3140912	Date:11/02/2021
Subject Code:3140912	Date:11/02/20

Subject Name: Electromagnetic Fields

Time:02:30 PM TO 04:30 PM	Total Marks:50
1 mic. 02. 30 1 M 1 O 04. 30 1 M	I Utai Mai KS.S

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		MARKS
Q.1	(a) Explain cylindrical coordinate system in brief.(b) Explain Electrical dipole.	03 04
	(c) Explain spherical coordinate system and give the relationship between Cartesian and spherical coordinate system.	07
Q. 2	(a) State and explain Coulomb's law.	03
	(a) State and explain the Gauss's law.	04
	(b) Obtain equation for flux density due to infinite line charge using Gauss's law.	07
Q.3	(a) Define displacement current and current density.	03
_	(b) Derive the point form of the continuity equation.	04
	(c) Obtain the Expression for field intensity H at the center of a circular carrying current I , using Biot-Savart law.	07
Q.4	(a) Explain concept of dot product and cross product.	03
	(b) Explain phenomenon of polarization.	04
	(c) Discuss Poisson's and Laplace equation.	07
Q.5	(a) Classify magnetic materials.	03
	(b) Explain the physical significance of the term: Curl of a vector.	04
	(c) Derive Maxwell's equation in integral and Point form.	07
Q.6	(a) Explain difference between steady magnetic field and time varying magnetic	03
_	(b) Define divergence.	04
	(c) Explain Stoke's theorem with its mathematical expression.	07
Q.7	(a) Explain concept of electric potential difference.	03
	(b) State and explain Ohm's law in point form.	04
	(c) Explain boundary conditions between two perfect dielectric materials.	07
Q.8	(a) Explain concept of scalar magnetic potential and magnetic vector potential.	03
	(b) Explain Electrical field as the Gradient of the electrical potential.	04
	(c) State and explain ampere's circuit law, both in integral differential form as used in magnetic field.	07

Seat No.:	Enrolment No.

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2021

Subject Code:3140912	Date:01/01/2022
----------------------	-----------------

Subject Name: Electromagnetic Fields

Time:10:30 AM TO 01:00 PM	Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a) (b) (c)	State and explain Coulomb's law. State and explain Gauss's law. Explain and draw the figure for the orthogonal system which has its spherical coordinate is angle made be cone and z-axis. Transform the spherical coordinate system to Cartesian coordinate system.	03 04 07
Q.2	(a)	State and Explain various types of charge distribution with	03
	(b)	mathematical equation. Derive relation between current density and Volume charge Density.	04
	(c)	Obtain the spherical co-ordinates of $10 \overline{a}_x$ at the point P(x= -	07
		3,y=2,z=4). OR	
	(c)	An infinite uniform linear charge ρ_L =2 nC/m line along the x axis in free space, while charge of 8 nC is located at (0,0,1) find E at (2,3, -4).	07
Q.3	(a)	Explain boundary conditions between two perfect dielectric materials.	03
		Explain phenomenon of polarization	04
	(c)	Evaluate both sides of the divergence theorem for the filed $\overline{D} = 2xy\overline{a}_x + x^2\overline{a}_y$ C/m ² and the rectangular parallelopiped formed	07
		by the planes x=0 and 1, y=0and 2, z=0and3. OR	
Q.3	(a)	Define conservative field	03
	(b)	Explain Electrical field as the Gradient of the electrical potential	04
	(c)	Obtain the expression for field intensity H at the centre of a circular	07
Q.4	(a)	carrying current I, using Bio-Savart Law. Explain Characteristics impedance and propagation constant of the	03
•	()	transmission line.	
	(b)	State Maxwell's equation in point form and integral form for static electromagnetic field.	04
	(c)	A dielectric free space has equation $3x+2y+z=12$ m, The origin	07
		side of the interface has $\varepsilon r1=3$ and $\varepsilon E1=2\overline{a}_x+5\overline{a}_z$ V/m. Find εE_2 .	
0.4	()	OR	0.2
Q.4	(a) (b)	Give examples of different capacitor configuration. Explain polarization with reference to dielectrics	03 04
	(c)	Obtain the Expression for field intensity H at the center of a	07
	. ,	circular carrying current I, using Biot-Savart law.	
Q.5	(a)	Write Effect of Electromagnetic Interference.	03

	(b)	Explain magnetic dipole moment.	
	(c)	Define potential difference and potential gradient. Also Establish	07
	` '	relation between Electrical field and potential gradient.	
		OR	
Q.5	(a)	Write Poisson's and Laplace equation. also state use of this equation and uniqueness theorem	03
	(b)	State and explain source of EMI.	04
	(c)	Derive transmission line equation with help of equivalent circuit.	07

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2021

Subject Code:3140912 Date:04/09/2021

Subject Name: Electromagnetic Fields

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	") ² " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	03
	(b)	of two vector. State and explain Coulomb's law Vector form.	0.4
	(b)	•	04
	(c)	Explain Cylindrical coordinate system in brief. Also write the equations of unit vectors, differential length, differential surfaces and differential volume elements.	07
Q.2	(a)	If Cartesian coordinates are X=1, Y=1, Z= $\sqrt{2}$ Convert in to Cylindrical and Spherical Co-ordinates.	03
	(b)	Explain Electrical field as the Gradient of the electrical potential.	04
	(c)	Derive the expression for electric field due to infinite surface charge distribution in free space.	07
		OR	
	(c)	Obtain equation for flux density due to infinite line charge using Gauss's law	07
Q.3	(a)	Verify that the potential field given below satisfies the Laplace's equation. $V=2x^2-3y^2+z^2$	03
	(b)	Explain concept of absolute potential. Derive equation of it.	04
	(c)	Derive Poisson's and Laplace's equations. State and Explain Uniqueness Theorem.	07
		OR	
Q.3	(a)	Explain Procedure for solving Laplace's equations.	03
	(b)	Derive Relationship between Electric field intensity and Electric Flux density.	04
	(c)	With suitable example, Explain Capacitance calculation using Laplace's Equation.	07
Q.4	(a)	Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6 cm diameter. The legth of the tube is 60 cm and the solenoid is in air.	03
	(b)	With the help of an example prove that the value of scalar magnetic potential can be non-unique	04
	(c)	State and Explain Stoke's theorem.	07
		State and Explain Ampere's circuital Law. OR	
Q.4	(a)	Explain scalar and vector magnetic potentials.	03
7. 7	(b)	Explain Application of Ampere's circuital law as \overline{H} due to a Co-axial	03
		cable.	
	(c)	Explain force between two differential current elements.	07

1

Q.5	(a) (b) (c)	Define divergence and its physical significance. State and explain Biot-Savart's law State Maxwell's equation in point form and integral form for static electromagnetic field. OR	03 04 07
Q.5	(a) (b) (c)	Explain physical Significance of Curl related to types of field Using Biot-savart's law, find due to infinitely long straight conductor carrying current of I amp. Explain the terms conduction current density and displacement current density. Find the displacement current density within a parallel plate capacitor where $\epsilon=10~\epsilon_o,$ $A=0.01m^2,d=0.05$ mm and the capacitor voltage is $200~sin~(200t)$ volts.	03 04 07

Seat No.:	Engalment No
Seat No	Enrolment No

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2022

Subject Code:3140912 Date:27-06-2022

Subject Name: Electromagnetic Fields

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Define unit vectors of Cartesian, cylindrical and spherical coordinate	03
		systems.	
	(b)	State and Explain various types of charge distribution with	04
	(c)	mathematical equation. Explain Cylindrical co-ordinate system along with the equations of	07
		differential length, differential surfaces and differential volume	
		elements.	
Q.2	(a)		03
		from dipole.	
	(b)		04
		Gauss's law.	
	(c)	Point charges 1 mC and - 2 mC are located at (3, 2,-1) and (-1, -1,4),	07
		respectively. Calculate the electric force on a 10 nC charge located at	
		(0, 3, 1) and The electric field intensity at (0, 3, 1).	
		OR	
	(c)	Analyze the expression for potential difference due to infinite line	07
		charge.	
Q.3	(a)	Develop examples of different capacitor configuration.	03
	(b)	Explain physical meaning of Divergence.	04
	(c)	Determine boundary condition between two perfect Dielectrics.	07
		OR	
Q.3	(a)	State uniqueness theorem.	03
	(b)	Write Poisson's and Laplace equation. Also state use of this equation.	04
	(c)	At a potential $V = 2xy^2z^3$ and $E = E0$. Given point	07
		P(1,3,-1). Find V at point P. Also Solve if V satisfies Laplace equation.	

Q.4	(a)	State and explain Ampere circuital law.	03
	(b)	Distinguish between steady magnetic field and time varying magnetic	04
		field.	
	(c)	Find the vector magnetic field intensity in cartesian coordinates at P2	07
		(1.5, 2, 3) caused by a current filament of 24 A in az direction on the z	
		axis and extending from z=0 to z=6.	
		OR	
Q.4	(a)	State and explain Biot Savart's law	03
	(b)	Define the physical significance of the term: Curl of a vector.	04
	(c)	A circular loop located on $x^2 + y^2 = 9$, Z=0 carries a direct current of	07
		10 A along $\bar{a} \overline{\phi}$. Determine \bar{H} at (0,0,4) and (0,0,-4).	
Q.5	(a)	Classify magnetic materials.	03
	(b)	Explain force between two differential current elements.	04
	(c)	State and Explain Lorentz force equation on charged particles.	07
		OR	
Q.5	(a)	What is the Significance of displacement current?	03
	(b)	How electromagnetic fields are represented in phasor form?	04
	(c)	State and Explain Maxwell's equation in point form and integral form	07
		for static electromagnetic field.	
