CURSO: Tecnologia em Ciência de Dados

POLO DE APOIO PRESENCIAL: Higienópolis

SEMESTRE: 4° Semestre - 2/2024

COMPONENTE CURRICULAR: PROJETO APLICADO III

NOME COMPLETO DO ALUNO:

Beatriz de Souza Ferreira – RA: 10414697 Eduardo Nogueira Mota – RA: 10414834 Gustavo Castro Sangali – RA: 23023708

Jéssica Clara Da Silva Santos – RA: 10414974

TEMA: Projeto: Sistema de Recomendação de Livros utilizando Dados do Goodreads

NOME DO PROFESSOR: Carolina Toledo Ferraz

Sumário

Re	sumo	3
Inti	rodução	4
1.	Impacto	5
2.	Desenvolvimento em Python	5
3.	Repositório	6
4.	Cronograma do projeto:	6
5.	Definição da base de dados:	6
5	5.1 Principais Campos dos Datasets	7
Ref	ferencial Teórico	9
Ме	todologia	10
Re	sultados	11
Ref	ferências	12

Resumo

Este projeto visa desenvolver um sistema de recomendação de livros utilizando dados do Goodreads. A partir de técnicas de aprendizado de máquina e ciência de dados, o sistema propõe sugestões personalizadas com base em avaliações de usuários e características dos livros. O projeto adota duas abordagens principais: filtragem colaborativa, que identifica padrões de comportamento entre diferentes usuários, e recomendações baseadas em conteúdo, que utilizam a similaridade entre livros para gerar sugestões. A implementação é realizada em Python, utilizando bibliotecas especializadas como Scikit-learn e Surprise, com o objetivo de criar uma solução que possa ser aplicada em ambientes educacionais e bibliotecas comunitárias, incentivando o hábito da leitura.

Introdução

Nos últimos anos, os sistemas de recomendação têm desempenhado um papel crucial em diversos setores, ajudando usuários a encontrar produtos, serviços e informações de interesse de maneira personalizada. Em plataformas de leitura, como o Goodreads, a vasta quantidade de livros disponíveis torna difícil para o leitor identificar quais obras são mais relevantes de acordo com seu gosto e preferências. Por isso, um sistema de recomendação de livros torna-se uma ferramenta importante para guiar os usuários em suas escolhas de leitura, potencializando a descoberta de novos títulos e autores.

Este projeto tem como objetivo desenvolver um sistema de recomendação de livros utilizando dados disponibilizados pelo Goodreads, através do link <u>Goodreads datasets</u>. O foco será na implementação de um sistema que personalize sugestões de leitura com base no histórico do usuário, similaridade entre livros e classificações realizadas na plataforma.

1. Impacto

O caráter extensionista do projeto reflete-se no impacto que ele pode ter na comunidade de leitores e na democratização do acesso à literatura. Um sistema de recomendação de livros pode facilitar o acesso a obras que não estão no mainstream, valorizando autores independentes e promovendo a diversidade literária. Além disso, o projeto poderá ser expandido para incluir recomendações baseadas em perfis de diferentes públicos, promovendo o gosto pela leitura em grupos que talvez não tenham fácil acesso a recomendações personalizadas de qualidade.

Este sistema pode ser utilizado por bibliotecas comunitárias, escolas e organizações que promovem a leitura, tornando mais acessível o processo de descoberta de novos livros e incentivando a continuidade no hábito da leitura, em sintonia com o objetivo 4 do desenvolvimento sustentável da ONU (Organização Das Nações Unidas).

O Objetivo de Desenvolvimento Sustentável (ODS) 4 da ONU, Educação de Qualidade, tem como objetivo garantir que todos tenham acesso a uma educação inclusiva, de qualidade e equitativa, e que tenham oportunidades de aprendizagem ao longo da vida.

2. Desenvolvimento em Python

2.1. Bibliotecas Utilizadas

O desenvolvimento do sistema de recomendação envolverá o uso das seguintes bibliotecas:

- Pandas: Manipulação e análise de dados.
- NumPy: Operações matemáticas e processamento de arrays.
- Scikit-Learn: Algoritmos de aprendizado de máquina.
- Surprise: Especializada para sistemas de recomendação.
- TensorFlow/PyTorch: Para modelos mais complexos, como redes neurais profundas.
- Matplotlib/Seaborn: Visualização de dados.

2.2. Modelos de Aprendizado de Máquina

Filtragem Colaborativa: Com base nas avaliações de livros por diferentes usuários, o sistema identifica padrões de comportamento e sugere livros que outros usuários com gostos semelhantes gostaram. Algoritmos como K-Nearest Neighbors (KNN) ou SVD (Singular Value Decomposition) podem ser utilizados para criar essa recomendação.

3. Repositório

Será utilizado um repositório no GitHub para organizar os materiais do projeto, como códigos, documentos e planejamentos.

O link do repositório é: https://github.com/EduNogueiraMota/MACK---projeto-aplicado-III.git

4. Cronograma do projeto:

Input	EDT	Nome da tarefa	Duração	Início	Término	Nomes dos recursos
25%	1	PROJETO - SISTEMA DE RECOMENDAÇÃO DE LIVROS UTILIZANDO DADOS DO	96 Dias	19/08/2024	23/11/2024	
100%	1.1	FASE I – CONCEPÇÃO DO PRODUTO	23 Dias	19/08/2024	11/09/2024	
100%	1.1.1	Encontro Síncrono A1	1 Dia	19/08/2024	19/08/2024	Prof. Carolina Toledo Ferraz
100%	1.1.2	Organização do grupo e repositório Github	4 Dias	20/08/2024	24/08/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.1.3	Escolha do tema e da base de dados	4 Dias	25/08/2024	29/08/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.1.4	Elaboração do documento inicial	11 Dias	30/08/2024	10/09/2024	Beatriz; Eduardo; Gustavo; Jéssica
100%	1.1.5	Envio Fase I AVA	1 Dia	11/09/2024	11/09/2024	Jéssica
0%	1.2	FASE II – DEFINIÇÃO DO PRODUTO	23 Dias	12/09/2024	05/10/2024	
0%	1.2.1	Encontro Síncrono A2	1 Dia	30/09/2024	30/09/2024	Prof. Carolina Toledo Ferraz
0%	1.2.2	Análise e limpeza da base de dados	6 Dias	12/09/2024	18/09/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.2.3	Escolha da técnica para treinamento do modelo	4 Dias	19/09/2024	23/09/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.2.4	Construção da prova de conceito	5 Dias	24/09/2024	29/09/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.2.5	Definição da nota de avaliação de desempenho	2 Dias	01/10/2024	03/10/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.2.7	Envio Fase II AVA	1 Dia	05/10/2024	05/10/2024	Jéssica
100%	1.3	FASE III – METODOLOGIA	27 Dias	06/10/2024	02/11/2024	
0%	1.3.1	Encontro Síncrono A3	1 Dia	28/10/2024	28/10/2024	Prof. Carolina Toledo Ferraz
0%	1.3.2	Implementação da técnica proposta	14 Dias	06/10/2024	20/10/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.3.3	Ajuste do pipeline de dados	4 Dias	21/10/2024	25/10/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.3.4	Documentação dos passos implementados	6 Dia	26/10/2024	01/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.3.6	Envio Fase III AVA	1 Dia	02/11/2024	02/11/2024	Jéssica
0%	1.4	FASE IV – RESULTADOS E CONCLUSÃO	20 Dias	03/11/2024	23/11/2024	
0%	1.4.1	Encontro Síncrono A4	1 Dia	18/11/2024	18/11/2024	Prof. Carolina Toledo Ferraz
0%	1.4.2	Organização e documentação dos resultados	8 Dias	03/11/2024	11/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.4.3	Finalização da documentação do projeto	4 Dias	12/11/2024	16/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.4.4	Produção do vídeo de apresentação	5 Dias	17/11/2024	22/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.4.5	Disponibilização do repositório no GitHub	1 Dia	23/11/2024	23/11/2024	Beatriz; Eduardo; Gustavo; Jéssica
0%	1.4.6	Envio Fase IV AVA	1 Dia	23/11/2024	23/11/2024	Jéssica

5. Definição da base de dados:

A base de dados escolhida para o projeto vem da coleção de datasets do **Goodreads**, conforme disponibilizada no repositório Goodreads datasets. Esses datasets contêm informações detalhadas sobre livros, avaliações e interações de usuários, tornando-se uma excelente fonte para criar um sistema de recomendação.

O conjunto de dados é dividido em várias partes, incluindo:

- Books (Livros): Contém metadados sobre os livros disponíveis na plataforma.
- Ratings (Avaliações): Contém as avaliações feitas pelos usuários em livros.
- Users (Usuários): Contém informações gerais sobre os usuários (anônimos para proteger a privacidade).
- Reviews (Resenhas): Contém textos de resenhas escritos pelos usuários.

5.1 Principais Campos dos Datasets

1. Dataset de Livros (books.csv)

Este dataset contém informações sobre os livros cadastrados no Goodreads. Os principais campos incluem:

- book_id: Identificador único do livro.
- title: Título do livro.
- authors: Nome(s) do(s) autor(es) do livro.
- average_rating: Avaliação média do livro (de 0 a 5) com base nas classificações dos usuários.
- **isbn**: Código ISBN do livro (identificação internacional de obras publicadas).
- isbn13: Versão de 13 dígitos do ISBN.
- language_code: Código do idioma em que o livro está publicado.
- num_pages: Número de páginas do livro.
- ratings_count: Quantidade total de avaliações recebidas pelo livro.
- text_reviews_count: Quantidade de resenhas textuais sobre o livro.
- publication_date: Data de publicação.
- publisher: Editora do livro.

2. Dataset de Avaliações (ratings.csv)

Esse dataset contém as classificações numéricas feitas por usuários nos livros disponíveis. Os principais campos são:

- user id: Identificador único do usuário que fez a avaliação.
- book id: Identificador do livro avaliado.
- rating: Classificação dada pelo usuário, geralmente de 1 a 5 estrelas.

3. Dataset de Resenhas (reviews.csv)

Esse dataset contém resenhas textuais escritas pelos usuários. Os principais campos incluem:

- review id: Identificador único da resenha.
- user_id: Identificador único do usuário que escreveu a resenha.

- **book_id**: Identificador do livro ao qual a resenha se refere.
- review_text: Texto da resenha escrita pelo usuário.
- rating: Classificação dada pelo usuário no contexto da resenha (em alguns casos, pode diferir do rating principal).

4. Dataset de Usuários (users.csv)

Este dataset contém informações sobre os usuários que interagem com o Goodreads. Ele geralmente inclui:

- user_id: Identificador único do usuário.
- **location**: Localização do usuário (geralmente país ou cidade, dependendo do que for permitido no cadastro).
- age: Idade do usuário.

Referencial Teórico

O desenvolvimento de sistemas de recomendação é amplamente estudado na área de ciência de dados e inteligência artificial. Existem três abordagens principais:

- Filtragem Colaborativa: Essa técnica identifica padrões de comportamento entre usuários com preferências similares. A filtragem colaborativa pode ser dividida em duas categorias: baseada em usuários e baseada em itens. No primeiro caso, o sistema recomenda livros que foram bem avaliados por outros usuários com gostos semelhantes. No segundo, livros similares àqueles que o usuário já leu e avaliou positivamente são sugeridos.
- Recomendações Baseadas em Conteúdo: Nessa abordagem, o foco está nas características dos livros, como gênero, autor e descrições. O sistema analisa as preferências do usuário com base em livros que ele já avaliou e sugere novos títulos com características semelhantes.
- Modelos Híbridos: Combina as abordagens de filtragem colaborativa e recomendação baseada em conteúdo para maximizar a precisão das sugestões.

Além dessas abordagens, a análise de dados e a implementação de técnicas de aprendizado de máquina, como a decomposição em valores singulares (SVD) e algoritmos de vizinhos mais próximos (KNN), são amplamente utilizadas para melhorar a performance dos sistemas de recomendação.

Metodologia

O desenvolvimento deste sistema de recomendação segue uma abordagem estruturada em quatro etapas:

1. Coleta de Dados

Utilizaremos os datasets do Goodreads, que contêm informações sobre livros, avaliações de usuários e resenhas. A coleta será feita por meio de downloads dos arquivos CSV contendo os principais campos, como título, autor, avaliação média e avaliações de usuários.

2. Pré-processamento

Os dados coletados passarão por um processo de limpeza, onde serão removidos valores nulos, duplicados ou inconsistentes.

3. Modelos de Aprendizado de Máquina

Filtragem Colaborativa: Com base nas avaliações de livros por diferentes usuários, o sistema identifica padrões de comportamento e sugere livros que outros usuários com gostos semelhantes gostaram. Algoritmos como K-Nearest Neighbors (KNN) ou SVD (Singular Value Decomposition) podem ser utilizados para criar essa recomendação.

4. Implementação

A implementação será realizada em Python, utilizando bibliotecas como Pandas, Scikitlearn e Surprise. O sistema será implementado como uma API utilizando Flask, possibilitando a integração com outras aplicações.

Resultados

Os resultados esperados incluem a capacidade do sistema de fornecer recomendações de livros personalizadas, com alto grau de precisão, e sua aplicabilidade em bibliotecas comunitárias e plataformas educacionais.

Referências

- MCAULEY, Julian. Dados do Steam. Disponível em: https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data. Acesso em: 06 set. 2024.
- **2.** WAN, Mengting. **Dados Goodreads**. Disponível em: https://mengtingwan.github.io/data/goodreads . Acesso em: 06 set. 2024.