计算机算法设计与分析

中国科学技术大学 信息科学技术学院自动化系

王子磊

zlwang@ustc.edu.cn

http://staff.ustc.edu.cn/~zlwang/

教材

《计算机算法设计与分析》(第4版)

王晓东 编著 电子工业出版社 http://www.phei.com.cn

❖ 教辅: http://www.hxedu.com.cn

❖ 教学: http://algorithm.fzu.edu.cn

参考书

《算法导论》 (第三版)

Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein (CLRS)

机械工业出版社 http://www.cmpbook.com

➢ 《计算机程序设计艺术》: The Art of Computer Programming 编著: Donald Ervin Knuth 国防工业出版社

课程要点

- 算法设计思想
- 算法分析方法
- 数据结构及其算法优化
- 算法思想在实际问题中的应用
- 经典算法的设计与分析

USTC

王子磊 (Zilei Wang)

Email: zlwang@ustc.edu.cn

http://vim.ustc.edu.cn/

学习要点

- 理解算法的概念
- 理解什么是程序,程序与算法的区别和内在联系
- 掌握算法的计算复杂性概念
- 掌握算法渐近复杂性的数学表述
- 掌握用C++语言描述算法的方法

算法 (Algorithm)

- ❖ 算法是指解决问题的一种方法或一个过程
- ❖ 算法是若干指令的有穷序列,满足性质:
 - 输入: 有外部提供的量作为算法的输入
 - 输出: 算法产生至少一个量作为输出
 - 确定性:组成算法的每条指令是清晰,无歧义的
 - 有限性: 算法中每条指令的执行次数是有限的,执行每条指令的 时间也是有限的

程序 (Program)

- *程序是算法用某种程序设计语言的具体实现
- ❖程序可以不满足算法的性质-有限性
- ❖例如:操作系统
 - 是一个在无限循环中执行的程序,因而不是一个算法
 - 操作系统的各种任务可看成是单独的问题,每一个问题 由操作系统中的一个子程序通过特定的算法来实现,该 子程序得到输出结果后便终止

问题求解 (Problem solving)

算法复杂性分析

- * 计算机程序的性能和所用资源的理论分析
 - 算法复杂性=算法所需要的计算机资源
 - 算法的时间复杂性 T(n)
 - 算法的空间复杂性 S(n)
 - 其中 n 是问题的规模 (输入大小)
- ❖ 性能之外
 - Modularity
 - User-friendliness
 - Correctness
 - Programmer time

- Maintainability
- Simplicity
- Functionality
- Extensibility

- Robustness
- Reliability

为什么要研究算法复杂性

- 帮助我们理解算法的可扩展性
- 性能通常刻画了可行与不可行之间的界限
- 算法的数学分析为讨论算法行为提供了一种工具
- •程序性能分析的经验能够推广到其他计算资源的分析上
- 速度分析很有意思!

排序问题举例

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that

$$a_1 \leq a_2 \leq \ldots \leq a_n$$

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

插入排序

"pseudocode"

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i - 1

A[i+1] = key
```


 8
 2
 4
 9
 3
 6

 2
 8
 4
 9
 3
 6

 8
 2
 4
 9
 3
 6

 2
 8
 4
 9
 3
 6

 2
 4
 8
 9
 3
 6

 2
 4
 8
 9
 3
 6

 8
 2
 4
 9
 3
 6

 2
 8
 4
 9
 3
 6

 2
 4
 8
 9
 3
 6

 2
 4
 8
 9
 3
 6

 2
 3
 4
 8
 9
 6

运行时间

- ❖ 运行时间依赖于输入(输入驱动算法执行)
 - 一个已经排好序的序列更容易排序
 - 通常情况下,较短的序列更容易排序,因此,我们用输入的大小来参数化运行时间
- ❖ 通常,我们想要获取的是运行时间的上界
 - 实际上每个人都更倾向于获得一种保证

算法的时间复杂性

❖ 最坏情况下的时间复杂性

$$T_{\text{max}}(n) = \max\{ T(I) \mid \text{size}(I) = n \}$$

❖ 最好情况下的时间复杂性

$$T_{\min}(n) = \min\{ T(I) \mid \text{size}(I) = n \}$$

❖ 平均情况下的时间复杂性

$$T_{\text{avg}}(n) = \sum_{\text{size}(I)=n} p(I)T(I)$$

■ 其中 I 是问题的规模为 n 的实例, p(I) 是实 例 I 出现的概率

机器独立的算法时间

插入排序算法的最坏情况需要多少时间呢?

- 这通常依赖于我们使用的计算机
 - 相对速度(在同一机器上)
 - 绝对速度(在不同的机器上)

BIG IDEA:

- 忽略机器相关的常数
- 只考察T(n) 随着 $n \to \infty$ 的增长

渐进复杂性 ("Asymptotic Analysis")

算法渐近复杂性

- $T(n) \rightarrow \infty$, as $n \rightarrow \infty$
- $(T(n) t(n))/T(n) \rightarrow 0$, as $n \rightarrow \infty$
 - t(n) 是 T(n) 的渐近性态, 为算法的渐近复杂性
 - 在数学上, t(n) 是 T(n) 的渐近表达式, 是 T(n) 略去低 阶项后留下的主项, 它比 T(n) 简单

渐近性能

 \triangleright 当 n 足够大时,一个 $\Theta(n^2)$ 的算法 总是能够打败一个 $\Theta(n^3)$ 的算法

- 在实际应用中,我们不能直接忽视渐近慢的算法,因为,我们通常需要对工程目标进行仔细的平衡
- 渐近分析为结构化算法的思路 提供了一种有用的工具

渐近分析的记号

❖ 在下面的讨论中, 对所有n, $f(n) \ge 0$, $g(n) \ge 0$

(1) 渐近上界记号 0

 $O(g(n))=\{f(n)\mid$ 存在正常数 c 和 n_0 使得对所有 $n\geq n_0$ 有: $0\leq f(n)\leq cg(n)\}$

(2) 渐近下界记号 Ω

 $\Omega\left(g(n)\right) = \left\{f(n) \mid 存在正常数 \ c \ n_0 \ \notin 得对所有 \ n \geq n_0\right\}$ 有: $0 \leq cg(n) \leq f(n)$

渐近分析的记号

(3) 非紧上界记号 0

- $o(g(n)) = \{ f(n) \mid \text{对于任何正常数 } c > 0, \text{ 存在正数和 } n_0 > 0 \}$ 使得对所有 $n \ge n_0$, 有: $0 \le f(n) < cg(n) \}$
- 等价于 $f(n)/g(n) \rightarrow 0$, as $n\rightarrow \infty$

(4) 非紧下界记号 @

- $\omega(g(n)) = \{f(n) \mid \text{对于任何正常数 } c>0, \text{ 存在正数和 } n_0>0$ 使得对所有 $n \ge n_0$, 有: $0 \le cg(n) < f(n) \}$
- 等价于 $f(n)/g(n) \to \infty$, as $n\to \infty$
- $f(n) \in \omega(g(n)) \Leftrightarrow g(n) \in o(f(n))$

(5) 紧渐近界记号图

■ $\Theta(g(n)) = \{ f(n) \mid$ 存在正常数 c_1, c_2 和 n_0 使得对所有 $n \ge n_0$ 有: $c_1 g(n) \le f(n) \le c_2 g(n) \}$

• \not **21**: $\Theta\left(g(n)\right) = O\left(g(n)\right) \cap \Omega\left(g(n)\right)$

渐近分析记号在等式和不等式中的意义

- \bullet 一般情况下,等式和不等式中的渐近记号 $\Theta(g(n))$ 表示 $\Theta(g(n))$ 中的某个函数
 - 例如: $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ 表示 $2n^2 + 3n + 1 = 2n^2 + f(n), \quad \text{其中} f(n) \text{是} \Theta(n) \text{ 中某个函数}$
- \clubsuit 等式和不等式中渐近记号 O, o, Ω 和 ω 的意义是类似的

插入排序的复杂性分析

> 最坏情况下: 输入是反向排序的

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^{2})$$

> 平均情况下: 所有的顺序以等概率出现

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

- > 插入排序是一个快速的排序算法吗?
 - 当 n 较小时, 性能还可以接受
 - 当 n 较大时, 比较差

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i - 1
```

A[i+1] = key

渐近分析中函数比较

$$f(n) = O(g(n)) \approx a \leq b$$

$$f(n) = \Omega(g(n)) \approx a \ge b$$

$$f(n) = \Theta(g(n)) \approx a = b$$

$$f(n) = o(g(n)) \approx a < b$$

$$f(n) = \omega(g(n)) \approx a > b$$

渐近分析记号的若干性质

(1) 传递性:

- $f(n) = \Theta(g(n))$, $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
- f(n)=O(g(n)), $g(n)=O(h(n))\Rightarrow f(n)=O(h(n))$
- $f(n) = \Omega(g(n))$, $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
- f(n)=o(g(n)), $g(n)=o(h(n)) \Rightarrow f(n)=o(h(n))$
- $f(n) = \omega(g(n))$, $g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$

(2) 反身性:

- $f(n) = \Theta(f(n))$
- f(n) = O(f(n))
- $f(n) = \Omega(f(n))$

(3) 对称性:

• $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

(4) 互对称性:

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$

(5) 算术运算:

- $O(f(n)) + O(g(n)) = O(\max\{f(n), g(n)\})$
- O(f(n)) + O(g(n)) = O(f(n) + g(n))
- O(f(n))*O(g(n)) = O(f(n)*g(n))
- O(cf(n)) = O(f(n))
- $g(n) = O(f(n)) \Rightarrow O(f(n)) + O(g(n)) = O(f(n))$

- * 规则 $O(f(n))+O(g(n))=O(\max\{f(n),g(n)\})$ 的证明:
 - 对于任意 $f_1(n) \in O(f(n))$,存在正常数 c_1 和自然数 n_1 ,使得对所有 $n \ge n_1$,有 $f_1(n) \le c_1 f(n)$
 - 类似地,对于任意 $g_1(n) \in O(g(n))$,存在正常数 c_2 和自然数 n_2 ,使得 对所有 $n \ge n_2$,有 $g_1(n) \le c_2 g(n)$
 - $c_3 = \max\{c_1, c_2\}$, $n_3 = \max\{n_1, n_2\}$, $h(n) = \max\{f(n), g(n)\}$
 - 则对所有的 $n \ge n_3$,有
 - $f_1(n) + g_1(n) \le c_1 f(n) + c_2 g(n) \le c_3 f(n) + c_3 g(n) = c_3 (f(n) + g(n))$ $\le c_3 2 \max\{f(n), g(n)\} = 2c_3 h(n) = O(\max\{f(n), g(n)\})$

算法渐近复杂性分析中常用函数

(1) 单调函数

- 单调递增: $m \le n \Rightarrow f(m) \le f(n)$
- 单调递减: $m \le n \Rightarrow f(m) \ge f(n)$
- 严格单调递增: $m < n \Rightarrow f(m) < f(n)$
- 严格单调递减: $m < n \Rightarrow f(m) > f(n)$

(2) 取整函数

- [x]: 不大于x的最大整数
- 「x」: 不小于x的最小整数

取整函数的若干性质

- \star $x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$
- ❖ 对于n≥0, a, b>0(整数), 有:
- * $f(x) = \lfloor x \rfloor$, $g(x) = \lceil x \rceil$ 为单调递增函数

(3) 多项式函数

- $p(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d; \quad a_d > 0$
- $p(n) = \Theta(n^d)$
- $f(n) = O(n^k) \Leftrightarrow f(n)$ 多项式有界
- $f(n) = O(1) \Leftrightarrow f(n) \le c$
- $k \ge d \Rightarrow p(n) = O(n^k)$
- $k \le d \Rightarrow p(n) = \Omega(n^k)$
- $k > d \Rightarrow p(n) = o(n^k)$
- $k < d \Rightarrow p(n) = \omega(n^k)$

(4) 指数函数

- ❖ 对于正整数 m, n 和实数 a>0:
 - $a^0 = 1$
 - $a^1=a$
 - $a^{-1}=1/a$
 - $(a^m)^n = a^{mn}$
 - $(a^m)^n = (a^n)^m$
 - $a^m a^n = a^{m+n}$
- * a>1 ⇒ aⁿ为单调递增函数
- $\bullet a>1 \Rightarrow \lim_{n\to\infty} n^b/a^n=0 \Rightarrow n^b=o(a^n)$

$$e^x = 1 + x + x^2/2! + x^3/3! + \dots = \sum_i x^i/i!$$

$$e^x \ge 1 + x$$

$$|x| \le 1 \implies 1 + x \le e^x \le 1 + x + x^2$$

$$e^x = 1 + x + \Theta(x^2), \text{ as } x \rightarrow 0$$

$$\lim_{n\to\infty} (1+x/n)^n = e^x$$

(5) 对数函数

- $\ln n = \log_e n$
- $\log^k n = (\log n)^k$
- $\log \log n = \log(\log n)$
- for a>0, b>0, c>0, $a=b^{\log_b a}$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b(1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

$$|x| \le |x| \le 1 \implies \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$$

$$\Rightarrow$$
 for $x > -1$, $\frac{x}{1+x} \le \ln(1+x) \le x$

$$\text{for any } a > 0, \quad \lim_{n \to \infty} \frac{\log^b n}{(2^a)^{\log n}} = \lim_{n \to \infty} \frac{\log^b n}{n^a} = 0 \implies \log^b n = o(n^a)$$

(6) 阶乘函数

$$n! = \begin{cases} 1 & n = 0 \\ n(n-1)! & n > 0 \end{cases}$$

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$$

Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta\left(\frac{1}{n}\right) \right)$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\alpha_n}, \ \frac{1}{12n+1} < \alpha_n < \frac{1}{12n}$$

$$n!=o(n^n)$$

$$n!=\omega(2^n)$$

$$\log(n!) = \Theta(n \log n)$$

算法分析中常见的复杂性函数

Function	Name
С	Constant
$\log N$	Logarithmic
$\log^2 N$	Log-squared
N	Linear
$N \log N$	N log N
N ²	Quadratic
N^3	Cubic
2 ^N	Exponential

小规模数据

中等规模数据

用C++描述算法

CATEGORY	EXAMPLES	Associativity
Operations on References	. []	Left to right
Unary	++ ! - (type)	Right to left
Multiplicative	* / %	Left to right
Additive	+ -	Left to right
Shift (bitwise)	<< >>	Left to right
Relational	< <= > >= instanceof	Left to right
Equality	== !=	Left to right
Boolean (or bitwise) AND	&	Left to right
Boolean (or bitwise) XOR	٨	Left to right
Boolean (or bitwise) OR		Left to right
Logical AND	&&	Left to right
Logical OR		Left to right
Conditional	?:	Right to left
Assignment	= *= /= %= += -=	Right to left

(1)选择语句

(1.1) if 语句:

```
if (expression) statement; else statement;
```

(1.2) ? 语句:

```
exp1?exp2:exp3
y= x>9?100:200;
等价于:
if (x>9) y=100;
else y=200;
```

(1.3) switch 语句:

```
switch (expression) {
   case 1:
     statement sequence;
    break;
   case 2:
     statement sequence;
     break;
   default:
     statement sequence;
```

(2) 迭代语句

(2.1) for 循环:

• for (init; condition; inc) statement;

(2.2) while 循环:

while (condition) statement;

(2.3) do-while 循环:

- do{
- statement;
- while (condition);

(3) 跳转语句

(3.1) return语句:

return expression;

(3.2) goto语句:

- goto label;
- label:

(4) 丞数

❖ 函数定义

```
return-type function_name(para-list)
{
    body of the function
}
```

❖ 例:

```
int max(int x,int y)
{
  return x>y?x:y;
}
```

(5) 模板 template

❖ 定义与使用

```
template <class Type>
Type max(Type x,Type y)
{
  return x>y?x:y;
}
int i=max(1,2);
double x=max(1.0,2.0);
```

(6) 动态存储分配

(6.1) 运算符 new:

- 运算符 new 用于动态存储分配
- new 返回一个指向所分配空间的指针

- 例: int * y; y=new int; *y=10;
- 也可将上述各语句作适当合并如下:
 - int * y=new int; *y=10;
 - 或 int *y=new int(10);
 - 或 int *y; y=new int(10);

(6.2) 一维数组

❖ 为了在运行时创建一个大小可动态变化的一维浮点数组 X, 可先将 X 声明为一个float类型的指针, 然后用new为数组动态地分配存储空间

※ 例:

- float *x=new float[n];
- 创建一个大小为 n 的一维浮点数组,运算符 new 分配 n 个浮点数 所需的空间,并返回指向第一个浮点数的指针
- 然后可用 x[0], x[1], ..., x[n-1] 来访问每个数组元素

(6.3) 运算符delete

- ❖ 当动态分配的存储空间已不再需要时,应及时释放所占用的空间
- ❖ 用运算符 delete 来释放由 new 分配的空间

◈ 例:

- delete y;
- delete []x;
- 分别释放分配给 *y 的空间和分配给一维数组 X 的空间

(6.4) 动态二维数组

❖ 创建类型为 Type 的动态工作数组, 这个数组有 rows 行和 cols 列

```
template <class Type>
void Make2DArray(Type** &x, int rows, int cols)
{
    x=new Type*[rows];
    for (int i=0; i<rows; i++)
        x[i]=new Type[cols];
}</pre>
```

- ❖ 当不再需要一个动态分配的二维数组肘,可按以下步骤释放它的空间
 - 首先释放在 for 循环中为每一行所分配的空间
 - 然后释放为行指针分配的空间

```
template <class Type>
void Delete2DArray(Type** & x, int rows)
{
    for (int i=0 ;i<rows; i++)
        delete []x[i];
    delete []x;
        x=0;
}</pre>
```

❖ 释放空间后将 X 置为 0,以防继续访问已被释放的空间

Next

- * 算法复杂度分析方法
 - Algorithm analysis method