第三章 水化学

- 一. 判断题
- 1. 单组分系统必定是单相系统。

答: 错。比如水可以同时存在气固液三个相。

2. 多组分系统必定是多相系统。

答:错,比如氯化钠溶液属于二组分单相系统。

3. 在一封闭系统中,一定温度下当 $H_2O(l) \to H_2O(g)$ 达成平衡,如果系统的体积减小为原来的 1/2,则蒸汽压增大 2 倍。

答: 错, 蒸气压和系统体积无关。

4. 在蔗糖水溶液,冰,水蒸气,氧气,氮气组成的系统中,有3个相,4种组分。

答:对,有固体、液体、气体三个相,蔗糖、水、氧气、氮气四个组分。

5. 已知两种弱酸稀溶液的浓度相同,而解离度也相同。

答: 错,

6. 在 H_2 8饱和的水溶液中, $c(S^{2-})=1/2c(H^{2+})$

答: 错, 硫根离子浓度等于二级电离平衡常数。

7. 某共轭酸给出质子的能力强,是强酸,则其共轭碱必定是弱碱。

答: 对。

8. 弱酸的 K_a 值越小,酸性越弱,其盐的水解度越大。

答: 对

9. BaSO₄在水中的溶解度大于在硫酸溶液中的溶解度。

答:对。同离子效应

10. $Mg(OH_2)$ 在 $0.1mol \cdot L^{-1}NaOH$ 溶液中,其溶解度 $S = K_{SP} \cdot 10^{-2}$

答: 错。S=K_{sp}×10²

11. 已知 AgCl 的 $K_{SP} = 1.56 \times 10^{-10} > Ag_2CrO_4$ 的 $K_{SP} = 9 \times 10^{-12}$,所以 AgCl 在水中溶解度大于 Ag_2CrO_4 。

答: 错。两种难熔电解质的类型不同,不能直接比,要具体计算。

12. 加入过量的酸或碱到缓冲溶液中,溶液的 PH 值也会保持不变

答: 错。缓冲溶液的定义判断。

13. 某缓冲溶液共轭酸浓度等于其共轭碱的浓度时,该溶液的 $c(H^+)=K_a$ 。

答:对

14. 二元弱酸的水溶液, H+主要来源于一级解离。

答: 对。

15. 弱酸的共轭阴离子是弱碱。

答: 错。是强碱。

16. 在含有 Cl^- 和 I^- 的溶液中,加入沉淀剂 $AgNO_3$,首先沉淀的是 K_{SP} 大的AgCl。

答: $_{\rm c}$ 。 是 $_{K_{SP}}$ 小的碘化银。

17. 已知 $BaCr_4$, CaF_2 和 AgI 溶度积分别为 1.6×10^{-10} 、 3.4×10^{-11} 和 1.6×10^{-16} ,则它们在水中的溶解度从大到小的顺序为: $S(BaCrO_4) > S(CaF_2) > S(AgI)$

答: 错。需要具体计算。

18. 0.1 摩尔的硫酸钠和 $0.1 mol \cdot L^{-1} NaNO_3$,溶液蒸汽压降低值不相等。

答:对。微粒数不相等,故溶液蒸汽压降低值不相等。

19. 对于难溶电解质的多相离子平衡系统来说,其溶液是稀的未饱和溶液。

答: 错, 是稀的饱和溶液。

20. 弱酸,弱碱的电离常数 K_a 或 K_b 也可以由公式 $InK^\theta = -\Delta G^\theta / RT$

答: 对

21. 共轭酸碱的电离常数 K_a , K_b 之间的关系为 $K_a \cdot K_b = K_a$

答: 对

22. 根据公式,弱酸的浓度越小,解离度越大则酸性越强。

答: 错, 弱酸的浓度越小, 解离度越大, 而酸性越弱。

23. 对于冰 ——水的相变过程中, △14与△S 具有相同的符号。

答:对。冰变水,吸热,焓变为正。而冰变水,熵变为正。

24. 在相同的温度下, $0.1 mol \cdot L^{-1}C_{6}H_{12}O_{6}$ 和 $0.1 mol \cdot L^{-1}CO(NH_{2})_{2}$ 水溶液的渗透压相同。(两种均为非电解质溶液)

答: 对

25. 在密闭容器中,液面上蒸汽的平衡压力与其液面上的体积成反比。

答: 错。蒸气压与液面上体积无关。

26. 在1.01325×10 $^{-5}$ Pa 条件下,被空气饱和了的水与冰处于平衡时的温度等于0 $^{\circ}C$ 。

答:对。零度的定义。另该水属于稀溶液

27. 冰,水及其水蒸气三相平衡时的单组分封闭系统中,其温度高于

 $0^{\circ}C$ $_{\circ}$

答:对。参看26题,该水是纯水

28. 几种液体混合后其混合液体的蒸气压可能低于或 高于其纯组分液体的蒸气压。

答:对。主要看几种液体的蒸气压大小。

29. 难挥发非电解质稀溶液的通性与溶质的本性无关,而与溶质的浓度有关。

答: 对

30. *HCN*(*aq*) 给出质子的能力较 *HF*(*aq*) 弱,则其共轭碱 *CN*⁻(*aq*) 的碱性 强于 *F*⁻(*aq*)

答: 对

31. 0.2*mol*·*L*⁻¹*HAc* 和 0.1*mol*·*L*⁻¹*NaOH* 溶液等体积混合,其溶液是缓冲溶液。

答:对。弱酸和弱碱盐构成缓冲溶液。

32. 在 50 毫升 PH=5 的缓冲溶液中,加入 1ml 水,其 PH 值不发生明显的变化。

答: 对

33. 已知AgCl, Ag_2CrO_4 . 溶度积分别为 1.77×10^{-10} 、 1.12×10^{-12} , 某溶液中含有 Cl^- 和 CrO^{2-}_4 的浓度均为0.00 Mol L, 该溶液中逐滴加入0.00 Mol L的 $AgNO_3$ 溶液时,则AgCl 沉淀首先析出来。

答:对。需要具体计算验证。

34. $PbI_2(s)$ 在 $0.10mol \cdot L^{-1}KI$ 溶液中,其溶解度 $S = 1.0 \times 10^2 K_{SP}$

答: 对。

- 二、选择题(填写正确答案 A、B 或……)
- 1. 在同温同压下,下列物质中蒸汽压最小的是:
- A. 水 (经验)
- B. 乙醇
- C. 丙酮
- D. 乙醚
- 2. 某些有机物未达到沸点时就分解了,若要提纯这些物质,最好采用:
- A. 萃取
- B. 常压蒸馏
- C. 减压蒸馏
- D. 升华
- 3. 对于溶解有挥发性溶质的溶液来说,凝固析出纯溶剂时,该溶液的凝固点应:
- A. 上升
- B. 下降
- C. 不变
- D. 无法判断
- 4. 已知具有相同物质的量浓度的 $NaCl \setminus H_2SO_4 \setminus C_6H_{12}O_6$ 和 CH_3COOH 的稀溶液,一定温度下,其蒸汽压由小到大的顺序是:
- A. $H_2SO_4 \le NaCl \le CH_3COOH \le C_6H_{12}O_6$
- B. $C_6H_{12}O_6 \leq CH_3COOH \leq NaCl \leq H_2SO_4$
- C. $CH_3COOH \leq NaCl \leq H_2SO_4 \leq C_6H_{12}O_6$

D. $NaCl \leq H_2SO_4 \leq CH_3COOH \leq C_6H_{12}O_6$

理由: 见书 118 页

- 5. 在 4 题中, 其溶液凝固点由低到高的是: A
- 6. 在 4 题中, 其溶液的沸点由低到高的是: B
- 7. 在含有 1000g 水的乙二醇的水溶液中,含有多少克的乙二醇,才能把溶液凝固点降到 $-6.00^{\circ}C$
- A. 333g
- B. 222g
- C. 201g
- D. 300g

因为 $\Delta T_{\rm fp} = k_{\rm fp}$ m, $\Delta T_{\rm fp} = 6$,带入乙二醇的质量摩尔浓度,即可算出

- 8. 在含 Hg^{2+} 、 Cd^{2+} 、 Pb^{2+} 等有毒物质的污水中,假如其离子浓度相同,逐滴加入沉淀剂 Na_2S ,根据附录 8 的数据,判断沉淀的先后顺序是:
- A. Hg^{2+} , Cd^{2+} , Pb^{2+} B. Pb^{2+} Cd^{2+} Hg^{2+}
- C. $Cd^{2+}Hg^{2+}Pb^{2+}$
- D. $Hg^{2+} Pb^{2+} Cd^{2+}$
- 9. 现有两个溶液,一个为 1. 50g 尿素溶于 200g 水中,另一个为 22.50g 未知物(非电解质)溶于 1000g 水中,这两个溶液在同一温度结冰,未知物的摩尔质量 $M_G/g.mol^{-1}$ 约为:
- A. 342

B. 180

C22.

D132.

10. 已知氨水的解离常数为 K_b ,反应 $NH_4^+(aq)+OH^- \rightarrow NH_3(aq)+H_2O$ 的 K 值为:

A.
$$K = K_b / K_w$$
 B. $K=1/K_b$

C.
$$K = K_b$$
 D. $K = -K_b$

11. 在可逆反应 $HCO_3^-(aq) + OH^-(aq) \rightarrow CO_3^{2-}(aq) + H_2O$ 中,根据酸碱质子 理论,是共轭酸的是:

- A. HCO_{3}^{-} , CO_{3}^{2-} B. HCO_{3}^{-} , $H_{2}O$
- C. $OH^ H_2O$ D. OH^- , QO
- 12. 对平衡 $HPO_4^{2-}(aq)+H_2O\to H_2PO_4^{-}(aq)+OH^{-}(aq)$ 来说,下列说法中 正确的是:
- A. HPO₄²⁻是酸, OH-是它的共轭碱
- B. HPO_4^{2-} 是酸, $H_2PO_4^{-}$ 是它的共轭碱
- C. H,O 是酸,OH-是它的共轭碱
- D. H₂O 是酸,HPO₄²⁻是它的共轭碱

13. 已知 NH_3 水的解离常数是 K_b ,求 NH_4 的解离常数 K_a

A.
$$K_a = K_b$$
 B. $K_a = 1/K_b$

B.
$$K_a = 1/K_a$$

C.
$$K_a = K_w / K_b$$
 D. $K_a = K_b / K_w$

$$D. K_a = K_b / K_v$$

14. HCN 的解离常数 $K_a = 4.9 \times 10^{-10}$, 0. 010mol· L^{-1} 的 HCN 溶液, 其解离度为:

- A. 2.2×10^{-4} B. 0. 022%
- C. 2.2×10^{-5} D. 0. 0022%

15、HC10 的 $K_a = 3.8 \times 10^{-8}$, 0. 010 $mol \cdot L^{-1}$ 的 HC10 溶液的 $c(H^*)$ 为

- **A.** 2. $2 \times 10^{-5} mol \cdot L^{-1}$ **B.** 1. $9 \times 10^{-5} mol \cdot L^{-1}$
- C. 4. $2 \times 10^{-5} mol \cdot L^{-1}$ D. 2. $0 \times 10^{-5} mol \cdot L^{-1}$

16. 设 AgC1 在水中, 在 $0.01 mol \cdot L^{-1}$ $CaCl_2$ 中, 在 $0.01 mol \cdot L^{-1}$ NaC1 中以及在 $0.01 mol \cdot L^{-1}$ $AgNO_3$ 中的溶解度分别为 S_0, S_1, S_2, S_3 这些量之间的定量关系正确的是:

- **A.** $S_0 > S_1 > S_2 > S_3$ **B.** $S_0 > S_2 > S_1 > S_3$
- C. $S_0 > S_2 = S_3 > S_1$ D. $S_3 > S_0 > S_2 > S_3$

17. 0. $20 \, mol \cdot L^1 \, NaOH \,$ 和 NH_4NO_3 等体积混合, 溶液的 pH 值为 (NH_3 水的解离常数 $K_b = 1.8 \times 10^{-5}$)

- A. 11. 3 B. 11. 1
- C. 12. 3 D. 13. 0

18. 在 1 升 0. $1 \mod \cdot L^{-1}$ HAc 溶液中, 需要保持 $c(H^+)$ 为 $6.5 \times 10^{-5} \mod \cdot L^{-1}$, 应

加入无水 NaAc 的克数是:

A. 2. 3

B. 2. 8

C. 4. 6

D. 4. 4

19. 某一元弱酸, 浓度为 $0.1 \, mol \cdot L^{-1}$, 该溶液的 pH=5. 15, 该一元弱酸的 K_a 值是:

A. 5×10^{-10}

B. 4×10^{-10}

C. 5×10^{-9} D. 4×10^{-9}

20. 将浓度为 0. 4 mol·L⁻¹HAc 溶液与 0. 20 mol·L⁻¹NaOH 溶液等体积混合, 其溶液的 pH 为: (HAc 的 $K_a = 1.8 \times 10^4$)

A. 4. 3

B. 4. 5

C. 4. 7

D. 5. 1

21. 将浓度为 $0.20 \, mol \cdot L^{-1}$ 氨水与 $0.10 \, mol \cdot L^{-1}$ 盐酸溶液等体积混合,该 溶液的 pH 为: $(NH_3$ 水的 $K_a = 1.8 \times 10^{-5}$)

A. 11. 3

B. 9. 3

C. 4. 7

D. 8. 3

22. 0. 20 mol·L⁻¹ NH₄Cl 溶液, 其 pH 值为:

A. 4. 5

B. 5. 0

C. 5. 5

D. 6. 0

23. 将 1mmo1 BaSO₄ (化学式量为 233) 溶于 10 升水中, 在该温度下 $K_{sp}(BaSO_4)=1.0\times10^{-10}$,问此时有多少克样品未溶解?

A. 0. 0021

B. 0. 021

C. 0. 21

D. 0. 233

24. 已知 K_{sp} ($PbBr_2$)= 4.6×10^{-6} ,将 $0.2 mol \cdot L^{-1} Pb(NO_3)_2$ 溶液与 $0.2 mol \cdot L^{-1}$ 的 NaBr 溶液等体积混合,由此推断下列结论正确的是:

- A. 混合溶液中有 PbBr₂ 沉淀出现
- B. 混合溶液中无 PbBr, 沉淀出现
- C. 反应完成时, 反应商 $Q < K_{ss}$
- D. 反应完成时, 反应商 $Q=K_{sp}$

25. 已知 $K_a(HAc)$ 为 1.8×10^{-5} ,若用 HAc 和 NaAc 配制成 pH=5 的缓冲溶液, 则 HAc 的浓度与 NaAc 的浓度之比为:

A. 8:9

B. 9:8

C. 5:9

D. 9:5

26. 在浓度各为 0. 001 mol·L⁻¹的 Cl⁻、 I⁻、 Br⁻混合溶液中,滴加 AgNO₃ 沉淀剂,沉淀的先后次序为:

A. AgCl AgBr AgI B. AgI AgBr AgCl

- C. AgI、AgCl、AgBr 的。不能判断
- 27. 欲配置 pH=5 的溶液,选择下列哪组弱酸及其共轭碱或弱碱及其共轭酸

A.
$$NH_3 - NH_4Cl(K_b = 1.8 \times 10^{-5})$$

B.
$$HAc - NaAc(K_a = 1.8 \times 10^{-5})$$

C.
$$HCOOH - HCOONa(K_a = 1.77 \times 10^{-3})$$

D.
$$HCO_{3}^{-} - CO_{3}^{2-}(K_{a2} = 5.6 \times 10^{-11})$$

28. 已知 $25^{\circ}C$ 的 $Mn(OH)_2$ 的 $K_{sp} = 4.0 \times 10^{-14}$,该温度下 $Mn(OH)_2$ 在水中的溶解度是:

A.
$$2.0 \times 10^{-7} \, mol \cdot L^{-1}$$
 B. $2.0 \times 10^{-6} \, mol \cdot L^{-1}$

C.
$$2.2 \times 10^{-5} \, mol \cdot L^{-1}$$
 D. $2.2 \times 10^{-4} \, mol \cdot L^{-1}$

29. $25\,^{\circ}C$ 时 $Mn(OH)_2$ 在 $0.010\,mol\cdot L^{-1}$ NaOH 的溶液中的溶解度为 $(K_{sp} = 4.0 \times 10^{-14})$

A.
$$1.0 \times 10^{-10} \, mol \cdot L^{-1}$$
 B. $2.0 \times 10^{-10} \, mol \cdot L^{-1}$

C.
$$4.0 \times 10^{-12} mol \cdot L^{-1}$$
 D. $4.0 \times 10^{-10} mol \cdot L^{-1}$

- 30. 下列四种液体中,难溶电解质 BaCO3 在其中溶解度最大的液体是:
- A. 纯水 B. 0. 1 mol·L⁻¹的 BaCl₂溶液
- C. 1.0 mol·L⁻¹的 Na₂CO₃溶液

 D. 1.0 mol·L⁻¹的 KNO₃溶液

原因: 盐效应

- 31. 上题中 BaCO3 在其中溶解度最小的液体是: C
- 32. 已知多相离子平衡及其热力学数据:

$$AgCl(s) \rightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

 $\Delta_f G^{\theta}_m$ (298. 15K) $/kJ \cdot mol^{-1}$

-109.7 77. 11

求 AgCl 的 K_{sp} 值为:

- **A.** 1.7×10^{-10}
- B. 1.00×10^{-10}
- C. 6.31×10^{-10}
- $D3.16 \times 10^{-11}$
- 33. 在 298K 已知 $H_2O(l)$ 、 H^+ 、 OH^- 水合离子的 $\Delta_f G^{\theta}_m$ (298. 15K) 值 分别为-237.18、0、-157.29 κ_{I} ·mol⁻¹,求水的离子积 κ_{π} 为:
- A. -14
- B. 14
- C. 1.0×10^{-14}
- 1.0×10^{14}
- 34. 已知多相离子平衡及其热力学数据:

$$CuS(s) \xrightarrow{\leftarrow} Cu^{2+}(aq) + S^{2-}(aq)$$

 $\Delta_f G^{\theta}_m$ (298.15K) $/kJ \cdot mol^{-1}$

-53.6

65. 52

85.8

求CuS的K_{sp}值为:

- **A.** 1.29×10^{-36}
- B. 7.73×10^{35}
- **C.** 1.29×10^{36} **D.** 1.29×10^{-36}

- 35. 下列几种溶液中,不属于缓冲溶液的是:
- A. 浓度均为1mol·L⁻¹的NaH₂PO₄与Na₂HPO₄等体积混合;
- B. $1mol \cdot L^{-1}$ 的 NaAc 与 $0.5mol \cdot L^{-1}$ 的 HCl 等体积混合;
- C. 1mol·L⁻¹的 NH₄Cl与 0.5mol·L⁻¹的 NaOH 等体积混合;
- D. 1mol·L⁻¹的 NH₄Cl与 2mol·L⁻¹的 NaOH 等体积混合。
- 36. 在下列溶液中凝固点最低的是:
- A. $0.10mol \cdot kg^{-1}C_{12}H_{22}O_{11}$
- **B.** $0.10mol \cdot kg^{-1}NiCl_2$
- C. $0.10mol \cdot kg^{-1}CuSO_4$
- D. $0.20 mol \cdot kg^{-1}C_6H_{12}O_6$
- 37. 已知某一非电解质水溶液,测其凝固点是 –0.14°C。该溶液的质量 摩尔浓度是:
- **A.** $1.86 mol \cdot kg^{-1}$

B. $0.15mol \cdot kg^{-1}$

C. $0.14mol \cdot kg^{-1}$

- **D.** $0.076 mol \cdot kg^{-1}$
- 38. 一种溶液 pH=10. 8, 溶液的 $c(OH^{-})$ 是:
- A. $1.58 \times 10^{-11} mol \cdot L^{-1}$

B. $6.33 \times 10^{-10} \, mol \cdot L^{-1}$

C. $1.58 \times 10^{-5} \, mol \cdot L^{-1}$

- **D.** $6.33 \times 10^{-4} mol \cdot L^{-1}$
- 39. 当 $c(HAc) = 8.00 \times 10^{-2} mol \cdot L^{-1}$ 时,溶液的 pH 是:($K_a = 1.76 \times 10^{-5}$)
- A. 0.8

B. 1. 10

C. 4.76 D. 2.93

40. 已知 AgCl 的 $K_{sp} = 1.8 \times 10^{-10}$,向 $AgNO_3$ 溶液中加 HCl ,生成 AgCl 沉淀。沉淀后测得溶液中 $c(Cl^-) = 0.2 mol \cdot L^{-1}$,则下述结论正确的是:

- A. 残留的 $c(Ag^+) = 1.3 \times 10^{-5} mol \cdot L^{-1}$
- B. 残留的 $c(Ag^+) = 9.0 \times 10^{-10} mol \cdot L^{-1}$
- C. 溶液中不再有 Ag^+ 了
- D. 溶液中仍有 Ag^+ 。
- 41. 下列离子的水溶液能失去又能获得质子的是:
- \mathbf{A} . HCO_3^-
- B. CO_3^{2-}
- C. *Cl*⁻
- D. *NH*⁺₄
- 42. 已知 $25^{\circ}C$ 时 $BaCrO_4$ 与 $BaSO_4$ 的 K_{sp} 分别为 1.17×10^{-10} 和 1.07×10^{-10} ,此时关于下述反应方向的说法正确的是:

$$CO_3^{2-}BaCrO_4(s) + SO_4^{2-}(aq) \rightarrow BaSO_4(s) + CrO_4^{2-}(aq)$$

- A. 一定正向自发进行;
- B. 一定逆向自发进行;
- C. 若 SO₄²-浓度足够,反应正向自发;
- D. 若 CrO₄²⁻浓度足够,反应逆向自发。
- 43. 已知室温时 FeS 与 PbS 的 K_{sp} 分别为 1.59×10^{-19} 和 9.04×10^{-29} ,有

关下述反应的说法正确的是:

$$Pb^{2+}(aq) + FeS(s) \rightarrow Fe^{2+}(aq) + PbS(s)$$

- A. 25°C 时其 K=1.76×10°
- B. $25^{\circ}C$ 时其 K= 5.68×10^{-10}
- C. FeS 在水中的溶解度太小,因此不能用它来处理工业废水中的 Pb^{2+} 离子;
- D. 完全可以用 FeS 来处理工业废水中的 Pb2+ 离子;
- 44. . 已知 $25^{\circ}C$ 时 AgCl与 Ag_2CO_3 的 K_{sp} 分别为 1.77×10^{-10} 和 8.45×10^{-12} ,此时下述反应的 K 值为:

$$2AgCl(s) + CO_3^{2-}(aq) \rightarrow Ag_2CO_3(s) + 2Cl^-(aq)$$

A. 20.9

- **B.** 3.7×10
- C. 4.77×10^{-2}
- D. 2.70×10^{8}
- 45. 根据 44 题的结果,我们可以得出在室温下:
- A. 只要 CO_3^{2-} 的浓度足够,AgCl(s)可直接转化为 $Ag_2CO_3(s)$
- B. AgCl(s)不可能直接转化为 $Ag_2CO_3(s)$
- C. 只要 Cl^- 的浓度足够, $Ag_2CO_3(s)$ 可直接转化为AgCl(s)
- D. 因无物质的 $\Delta_f G^{\theta}_m$ 值,故这里不能判断上述反应的方向。
- 46. 已知室温 AgI 的 $K_{sp} = 8.51 \times 10^{-17}$, $[Ag (NH_3)_2]^{\dagger}$ 的 $K_r = 1.12 \times 10^7$,则此时有关下述反应的结论正确的是:

 $AgI(s) + 2NH_3 \rightarrow [Ag(NH_3)_2]^+ + I^-$

A.
$$K = 9.53 \times 10^{-10}$$

B.
$$K = 7.60 \times 10^{-24}$$

C.
$$K = 1.32 \times 10^{23}$$

D. 只要氨水的浓度足够, AgI 可以溶解于氨水之中。

三、填空题:

1. 0. 20mo1/L HC1 溶液的 $c(H^+)$ __0. 2____, 0.2mol·L HAc 溶液的 $c(H^+)$ __1. 9×10^{-3} ____.

若加入等体积 NaOH溶液, 前者显 中 性, 后者显 碱 性。

- 3. 往 pH=5 的溶液中加入若干酸,使氢离子增加到原来的 10 倍时,溶液的 pH=__4____, pOH=__10__
- 4. 在下列系统中,各加入约1.00*gNH*₄*Cl* 固体并使其溶解,对所指定的性质影响如何(增加,减小,不变或者基本不变)

- (1) 10.0ml 0.10mol·L⁻¹HCl 溶液(pH 值)__基本不变____
- (2) 10.0ml 0.10mol·L⁻¹NH₃水溶液(解离度)__减小____
- (3) 10.0ml 纯水((pH值)_减小___
- (4) 10.0ml 带有 PbCl₂ 沉淀的饱和溶液 (PbCl₂) 溶解度 __减小__