第3节空间向量的应用: 求距离 (★★★)

内容提要

本节归纳用空间向量求距离的有关问题,常见的有下面两类:

1. 求点到直线的距离:如图 1,设 P 为直线 l 外一点,点 A 在直线 l 上,u 是直线 l 的单位方向向量,则点 P 到直线 l 的距离 $PQ = \sqrt{\overrightarrow{AP}^2 - (\overrightarrow{AP} \cdot u)^2}$.

注: 当线线平行时, 两直线间的距离等于其中一条直线上任意一点到另一直线的距离.

2. 求点到平面的距离: 如图 2, P 为平面 α 外一点, A 为平面 α 上任意一点, n 为平面 α 的一个法向量, 则点 P 到平面 α 的距离 $d = \frac{|\overrightarrow{PA} \cdot n|}{|n|}$.

注: 当线面平行或面面平行时,直线到平面的距离,平行平面间的距离都可按点到平面的距离来算.

典型例题

- (A) 点 A_1 到直线 B_1E 的距离是 $\frac{\sqrt{5}}{3}$
- (B) 直线 FC_1 到直线 AE 的距离是 $\frac{\sqrt{30}}{5}$
- (C) 点 A_1 到平面 AB_1E 的距离是 $\frac{\sqrt{3}}{3}$
- (D) 直线 FC_1 到平面 AB_1E 的距离是 $\frac{1}{3}$

解析: 涉及的距离都可直接代内容提要公式算, 故建系处理,

如图建系,则 A(0,0,0), $A_1(0,0,1)$, $B_1(1,0,1)$, $E(0,1,\frac{1}{2})$, $F(1,0,\frac{1}{2})$,

A 项, $\overrightarrow{A_1B_1} = (1,0,0)$, $\overrightarrow{B_1E} = (-1,1,-\frac{1}{2})$, 直线 B_1E 的一个单位方向向量为 $\mathbf{u} = \frac{\overrightarrow{B_1E}}{\left|\overrightarrow{B_1E}\right|} = (-\frac{2}{3},\frac{2}{3},-\frac{1}{3})$,

由内容提要 1 的公式,点 A_1 到直线 B_1E 的距离为 $\sqrt{\overline{A_1B_1}^2 - (\overline{A_1B_1} \cdot u)^2} = \sqrt{1 - (-\frac{2}{3})^2} = \frac{\sqrt{5}}{3}$,故 A 项正确;

 \mathbf{B} 项,观察发现 $FC_1//AE$,故两直线的距离可转化为点到直线的距离来算,点不妨取F,

$$\overrightarrow{AF} = (1, 0, \frac{1}{2}), \quad \overrightarrow{AE} = (0, 1, \frac{1}{2}), \quad \text{MUISSE AE in Principle} \quad AE = (0, 1, \frac{1}{2}), \quad AE = (0, \frac{1}{2}), \quad AE = (0, 1, \frac{1}{2}),$$

从而点 F 到直线 AE 的距离为 $\sqrt{\overrightarrow{AF}^2 - (\overrightarrow{AF} \cdot \mathbf{v})^2} = \sqrt{\frac{5}{4} - (\frac{\sqrt{5}}{10})^2} = \frac{\sqrt{30}}{5}$, 故 B 项正确;

C项,算点到平面的距离,可代内容提要第 2点的公式,先求平面 AB_1E 的法向量,

$$\overrightarrow{AB_1} = (1,0,1), \quad \overrightarrow{AE} = (0,1,\frac{1}{2}), \quad \text{\& Ψ in AB_1E in \mathbb{R} in $\mathbb{R}$$$

令 x=2 ,则 $\begin{cases} y=1 \\ z=-2 \end{cases}$,所以 $\mathbf{n}=(2,1,-2)$ 是平面 AB_1E 的一个法向量,

又 $\overrightarrow{AA_1} = (0,0,1)$,所以点 A_1 到平面 AB_1E 的距离为 $\frac{|\overrightarrow{AA_1} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|} = \frac{2}{3}$,故 C 项错误;

D项,由 $FC_1//AE$ 可知 $FC_1//$ 平面 AB_1E ,故线面距离可按点到平面的距离来算,

前面已求得 $\overrightarrow{AF} = (1,0,\frac{1}{2})$,平面 AB_1E 的一个法向量为n = (2,1,-2),

所以点 F 到平面 AB_1E 的距离为 $\frac{|\overrightarrow{AF} \cdot n|}{|n|} = \frac{1}{3}$,从而直线 FC_1 到平面 AB_1E 的距离为 $\frac{1}{3}$,故 D 项正确.

答案: ABD

【总结】向量法计算空间距离,熟悉有关公式即可,都是流程化的操作,所以本节只举一道例题.

强化训练

- 1. $(2023 \cdot 山西模拟 \cdot \star \star \star \star)$ 如图,在四棱锥 P-ABCD 中,平面 $PAB \perp$ 平面 ABCD,底面 ABCD 为矩形, $PA=PB=\sqrt{5}$, AB=2 , AD=3 , M 是棱 AD 上一点,且 AM=2MD .
- (1) 求点 B 到直线 PM 的距离;
- (2) 求平面 PMB 与平面 PMC 的夹角余弦值.

- 2.(2022 •滕州模拟 •★★★)如图,在三棱柱 $ABC A_1B_1C_1$ 中, $AA_1 \perp$ 平面 ABC, $AB \perp AC$, $AB = AC = AA_1 = 1$,M 为线段 A_1C_1 上一点.
 - (1) 求证: $BM \perp AB_1$;
 - (2) 若直线 AB_1 与平面 BCM 所成的角为 45° ,求点 A_1 到平面 BCM 的距离.

《一数•高考数学核心方法》

- 3. (2023・乾县模拟・★★★)如图,直三棱柱 $ABC-A_1B_1C_1$ 中, $AC=BC=AA_1$,D 为 CC_1 的中点.
- (1) 证明: 平面 A_1BD 上平面 ABB_1A_1 ;
- (2) 若 $\angle ACB = 90^{\circ}$, AB = 2, 求点 B_1 到平面 A_1BD 的距离.

- 4. $(2023 \cdot i)$ 县模拟 ★★★)如图,在多面体 ABCDE 中, ΔABC , ΔBCD , ΔCDE 都是边长为 2 的正三角形,平面 ABC 上平面 BCD,平面 CDE 上平面 BCD.
 - (1) 求证: AE // BD;
 - (2) 求点 B 到平面 ACE 的距离.

- 5. $(2023 \cdot 全国甲卷 \cdot \star \star \star \star \star)$ 在三棱柱 $ABC A_1B_1C_1$ 中, $AA_1 = 2$, $A_1C \perp$ 底面 ABC, $\angle ACB = 90^\circ$, A_1 到平面 BCC_1B_1 的距离为 1.
- (1) 证明: $AC = A_1C$;
- (2) 若直线 AA_1 与 BB_1 的距离为 2,求 AB_1 与平面 BCC_1B_1 所成角的正弦值.

《一数•高考数学核心方法》