PES UNIVERSITY 3rd SEMESTER

Errata for DIGITAL DESIGN AND COMPUTER ORGANISATION Slides Uploaded to PESU ACADEMY Portal

Errata Last updated 1st December 2020

This list is a work in progress. Some of the following corrections may be revised, and additional corrections will probably be added.

SI. No	Lecture Number	Content in the slide	To be Corrected as
1.	UNIT3 Lecture 31 Slide 34	CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 Carry-Lookahead Adder Time Estimate • Carry formulas for 4-bit carry-lookahead adder: • C1 = $g_0 + p_0 c_0$ • $c_1 = g_0 + p_0 c_0$ • $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$ • $c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$ • $c_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$ • Critical path delay for a carry-lookahead adder is composed of: • p and g computation • t_g time required required for two input AND/OR gate • carry computation delay • time required for c_i depends on i • sum computation • t_g time required for three input XOR	ns $(\tau-1) _{t_S}$ th delay)
2.	UNIT3 Lecture 31 Slide 5	CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 Ripple Carry Adder Area and Time Time requirements: For an n-carry adder, critical path delay composed of: Propagation delay from composed of: Area requirements: Area requirements: Area requirements: Signal passes through two of the n-1 stages 2(n-1)t _g time required Sum computation 2t _g time required for three gate An n-bit ripple carry adder thus occupies An n-bit ripple carry adder thus occupies That is a sum of the sum of	to C_{n-1} gates in each

6.	UNIT3 Lecture 31 Slide 5	 Time requirements: For an n-bit ripple carry adder, critical path delay is composed of: ▶ Propagation delay from c₀ to c_{n-1} ★ Signal passes through two gates in each of the n - 1 stages ★ 2(n - 1)t_g time required ▶ Sum computation ★ 2t_g time required for three input XOR gate An n-bit ripple carry adder thus occupies 2nt_g time 	Propagation delay from c0 to c(n-1) should be 3(n-1)tg instead of 2(n-1) tg because although the carry signal passes through two gates in each stage, one of the gates has three inputs which counts as two 2 input gates
7.	UNIT3 Lecture 31 Slide 34,35	CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 Performance Comparison • Area and time estimates for n-bit adders: Area Time Ripple carry 7nag 2ntg Carry-lookahead (n² + 5n)ag 2[log2(n - 1)]tg + 3tg • Compared to the ripple carry adder's linear delay increase with size, the carry-lookahead adder delay increase only logarithmically, resulting in dramatically faster adders • However, the area of the carry-lookahead adder increase qudratically with size • Is there an adder design that retains the carry-lookahead adder's speed but has significantly lesser area?	log2(n-1) should be replaced by log2(n).
8.	UNIT3 Lecture 24 Slide 42 till Slide 83	Switch up File Current State Inputs Next State S ₃ S ₂ S ₁ S ₀ switch up on_floor S ₃ S ₂ S ₁ S ₀ switch up on_floor S ₃ S ₂ S ₁ S ₀ Switch up on_floor S ₃ S ₂ S ₁ S ₀ Switch up on_floor S ₃ S ₂ S ₁ S ₀ Switch up on_floor On 0 O	on_first should be equal to 1 in state 3(0100) instead of the incorrectly mentioned on_first should be equal to 1 in state 4(1000) 'lift_down' be 1 in state 4 (1000) according to the state diagram
9.	UNIT 2, Lecture 14 Slide 20	1:3 Decoder	To be corrected as 2:3 decoder

13.	UNIT1,		а	Ь	С	d	W
	Lecture 8		0	0	0	0	у 1
	Slide 4 till		0	0	0	0	0
	Slide		0	0			
	16,Also same error in Slide 40				1	0	1
			0	0	1	0	0
			0	1	0	0	0
			0	1	0	0	1
			0	1	1	1	0
			0	1	1	1	1
			1	0	0	1	1
			1	0	0	1	0
			1	0	1	0	1
			1	0	1	0	0
			1	1	0	1	0
			1	1	0	1	1
			1	1	1	1	0
			1	1	1	1	1
		F	Our	Inni	ıt Trı	ıth T	able
			Jui	IIIDL	at 111	atii I	avie