Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Programa de Pós-Graduação em Economia Aplicada

Disciplina: REC5002-7 Macroeconomia Prof. Dr. Luciano Nakabashi

2ª prova – 10 de Julho 2019 Aluno:

Favor, escrever as respostas com caneta. Período da prova — 15:00 até 18:00. Não é permitido o uso de materiais de apoio (livros, notas de aula, celular, calculadora, etc.) na realização da prova e elas dever ser realizadas individualmente.

1 – Encontre as trajetórias das variáveis de controle (u), estado (y) e coestado (λ) que maximiza (1,00):

$$V = \int_0^1 -u^2 dt$$

Sujeito a

$$\dot{y} = y + u;$$
 $y(0) = 1;$ $y(1) = 0$

Em que \dot{y} é a derivada de y em relação ao tempo. Refaça o problema anterior considerando y(1) livre (1,00).

2 – Considere o modelo de Ramsey, onde a função de produção é:

$$Y = Y(K, L)$$

em que Y é o produto, K é o estoque de capital e L a quantidade do fator trabalho, sendo que este cresce a uma taxa constante e exógena n. A função de produção exibe retornos constantes de escala, produto marginal positivo e decrescente nos fatores de produção K e L.

Considere que a equação de movimento do capital é dada pela seguinte equação:

$$\dot{K} = Y - C - \delta K$$

onde \dot{K} é a derivada de K em relação ao tempo, C é o consumo agregado e δ é a taxa de depreciação do capital. Considere ainda a seguinte função utilidade social:

$$\int_0^\infty U(c) L(t) e^{-\rho t} dt$$

em que ρ é a taxa de desconto intertemporal, sendo constante e exógena e c=C/L.

a) Maximize (2,00):

$$\int_0^\infty U(c)e^{rt}dt$$

onde $r = \rho - n > 0$.

Sujeito a equação de movimento do capital e considerando que

$$k(0) = k_0$$
 e $0 \le c(t) \le \phi[k(t)]$

em que k = K/L, $\phi[k(t)] = Y/L$ e \dot{k} é a derivada de k em relação ao tempo.

- b) Construa e explique o diagrama de fase em c e k. O que garante que a economia chega em um ponto de equilíbrio estável (1,00)?
- c) Explique porque o consumo ótimo fica abaixo da regra de ouro (0,50).
- d) O que acontece caso ocorra uma queda em ρ . Explique utilizando o diagrama de fase em c e k (1,00).
- 3 Considere o modelo de ciclo político em que o partido incumbente tenta a reeleição. Duas variáveis afetam a probabilidade de reeleição: a taxa de desemprego (U); e a taxa de inflação (p), onde o incumbente pode escolher qualquer taxa de desemprego que deseje. Os eleitores votam de acordo com a seguinte função:

$$v = v(U, p)$$

onde $v_U < 0$ e $v_p < 0$ (derivadas de v em relação a U e p, respectivamente). U e p estão ligados pela seguinte equação:

$$p = \phi(U) + a\pi$$
; onde $\phi'(U) < 0$ e $0 < a \le 1$

em que π denota a expectativa de inflação, sendo alteradas de forma adaptativa de acordo com

$$\dot{\pi} = b(p - \pi); \qquad \text{com } b > 0.$$

a) Maximize (2,50):

$$\int_0^T v(U,p)e^{rt}dt$$

onde r > 0 representa a taxa de esquecimento do eleitor representativo, o período inicial é quando o incumbente começa o seu mandato e o período final é quando ele tenta a reeleição.

O problema de maximização está sujeito às seguintes restrições:

$$p = \phi(U) + a\pi$$
 e $\dot{\pi} = b(p - \pi)$

Considere ainda que: $\pi(0) = \pi_0$ e $\pi(T)$ livre, com π_0 e T dados.

b) Como uma mudança no parâmetro r mudaria a trajetória ótima da taxa de desemprego $[U^*(t)]$. Quais seriam as implicações econômicas (1,00)?

Boa Prova!