Théorème de Liapounov

Leçons: 220, 221

Définition 1

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application de classe \mathscr{C}^1 .

- Un point d'équilibre stable attractif du système y' = f(y) est $y_0 \in \mathbb{R}^n$ tel que $f(y_0) = 0$ et pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que pour toute solution y du système, $||y(0) y_0|| \le \delta \Rightarrow \forall t \ge 0, ||y(t) y_0|| \le \varepsilon$.
- Le point d'équilibre attractif stable y_0 est dit asymptotiquement stable s'il existe $\delta_0 > 0$ tel que pour toute solution y du système vérifiant $||y(0) y_0|| \le \delta_0$, $\lim_{t \to +\infty} y(t) = y(0)$.

Théorème 2

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application de classe \mathscr{C}^1 telle que f(0) = 0. Si A = Df(0) a des valeurs propres de parties réelles dans \mathbb{R}^* , alors l'origine est un point d'équilibre attractif asymptotiquement stable du système y' = f(y). Précisément, il existe $\beta > 0$, $\eta > 0$, C > 0

0 tels que pour tout $||x|| < \eta$, la solution y_x de $\begin{cases} y' = f(y) \\ y(0) = x \end{cases}$ vérifie

$$\forall t \ge 0, ||y_x(t)|| \le Ce^{-\beta t}||x||.$$

Démonstration. Soit $\langle \cdot, \cdot \rangle$ un produit scalaire sur \mathbb{R}^n définissant la norme $\| \cdot \|$. On procède en trois temps :

Étape 1 : Étude du système linéarisé
$$\left\{ egin{array}{l} z' = Az \\ z(0) = x \end{array} \right.$$

On sait que la solution z de ce système est $z:t\mapsto e^{tA}x$. Par le lemme des noyaux, on a $\mathbb{R}^n=\bigoplus_{i=1}^l\ker(A-\lambda_iI)^{\alpha_i}$ où les λ_i sont les valeurs propres de A de multiplicité α_i . Écrivons $x=x_i+\cdots+x_l$ selon cette décomposition en somme directe. On a

$$e^{tA}x_i = e^{t\lambda_i}e^{t(A-\lambda_iI)}x_i = e^{t\lambda_i}\sum_{j=0}^{\alpha_i-1}\frac{(A-\lambda_iI)^j}{j!}x_i = e^{t\lambda_i}P_i(A)x_i$$

où $P_i \in \mathbb{C}[X]$. Ainsi, comme $||x_i|| \le ||x||$, on a $||e^{tA}x_i|| \le e^{t\operatorname{Re}\lambda_i}||P_i(A)|||x||$, d'où par inégalité triangulaire,

$$\forall t \geq 0, \|z(t)\| \leq \tilde{C}\left(\sum_{i=0}^{k} e^{t\operatorname{Re}\lambda_i}\right) \|x\|$$

où \tilde{C} est une constante.

Donc comme les Re(λ_i) sont strictement négatifs, on peut fixer a > 0 et une constante C > 0 tels que $\forall t \ge 0, \|z(t)\| \le Ce^{-at}\|x\|$: l'origine est un point d'équilibre attractif du système linéarisé.

Étape 2: Introduction d'une norme auxiliaire

Soit $b:(x,y)\mapsto \int_0^{+\infty}\langle e^{tA}x,e^{tA}y\rangle \mathrm{d}t$. La forme bilinéaire symétrique b est bien définie

car, en vertu du premier point,

$$\forall (x,y), |b(x,y)| \leq C \left(\int_0^{+\infty} e^{-2at} dt \right) ||x|| ||y||.$$

Elle est de plus définie positive car $\langle \cdot, \cdot \rangle$ l'est et e^{tA} est inversible pour $t \ge 0$.

Soit y la solution de $\begin{cases} y' = f(y) \\ y(0) = x \end{cases}$ On note r(y) = f(y) - Ay. On cherche à obtenir une inégalité du type $q(y)'(t) \le -\beta q(y)$. On a

$$\forall t \ge 0, (q \circ y)'(t) = (\nabla q)(y(t)).y'(t) = 2b(y(t), f(y(t))) = 2b(y(t), r(y(t))) + 2b(y(t), Ay(t))$$

où $r(y) = f(y) - Ay$. Or, si $x \in \mathbb{R}^n$,

$$2b(x,Ax) = 2\int_{0}^{+\infty} \langle e^{tA}x, e^{tA}Ax \rangle dt = \int_{0}^{+\infty} \frac{d}{dt} (\|e^{tA}x\|^{2}) dt = -\|x\|^{2}.$$

La norme \sqrt{q} est équivalente à $\|\cdot\|$ donc on peut fixer $\beta_1 > 0$ tel que $\sqrt{q} \ge \beta_1 \|\cdot\|$. En outre, par Cauchy-Schwarz, $|b(y,r(y))| \le \sqrt{q(y)}\sqrt{q(r(y))}$. La fonction f étant \mathscr{C}^1 , on a r(u) = o(u), ce qui implique qu'il existe $\eta > 0$ tel que

$$\sqrt{q(y)} \le \sqrt{\eta} \Rightarrow \sqrt{q(r(y))} \le \sqrt{\beta_1^2} 2\sqrt{q(y)}.$$

Donc en combinant ces deux résultats, si $q(y) \le \eta$,

$$(q \circ y)' \le -\|y\|^2 + \frac{\beta_1^2}{2}q(y) \le -\frac{\beta_1^2}{2}q(y) = -\beta q(y).$$

Étape 3: Résolution d'une inéquation différentielle.

Supposons que $q(x) \le \eta$, alors $\forall t \ge 0, q(y(t)) \le \eta$. En effet, dans le cas contraire, on peut fixer, par continuité de q(y), $t_0 > 0$ tel que $q(y(t_0)) = \eta$ et $\forall t < t_0, q(y(t)) < \eta$. Alors

$$(q \circ y)'(t_0) \leqslant -\beta q(y)(t_0) < 0,$$

donc pour $t < t_0$ proche de t_0 , on $q(y)(t) > q(y)(t_0) = \eta$ ce qui est contradictoire. Soit $\psi: t \mapsto e^{\beta t} q(y(t))$. Alors

$$\forall t \ge 0, \psi'(t) = e^{\beta t} (\beta q(y)(t) - (q \circ y)'(t)) \le 0$$

donc $\psi(t) \leq \psi(0) = q(x)$.

On en conclut que si $q(x) \le \eta$, on a $\forall t \ge 0, q(y) \le q(x)e^{-\beta t}$, ce qui prouve que l'origine est un point d'équilibre attractif asymptotiquement stable du système.

Remarque. • L'étude du système linéarisé intervient de manière cruciale pour pouvoir définir *b*.

• Si Df(0) a une valeur propre de partie réelle strictement positive, alors 0 est un point d'équilibre instable.

Référence : François ROUVIÈRE (2003). *Petit guide de calcul différentiel*. 2^e éd. Cassini, pp. 129–135