NP-Completeness

Peter Lammich

February 19, 2020

• Decision Problems: Language = accepted bit-strings

- Decision Problems: Language = accepted bit-strings
- Reduction: $A \leq_p B$. Encode problem A as problem B
 - $x \in L_A \iff f(x) \in L_B$
 - f computable in polynomial time
 - A not harder than B

- Decision Problems: Language = accepted bit-strings
- Reduction: $A \leq_p B$. Encode problem A as problem B
 - $x \in L_A \iff f(x) \in L_B$
 - f computable in polynomial time
 - A not harder than B
- Certificate: extra information to verify membership in language
 - Sound and complete: $(\exists c. check(w, c)) \iff w \in L$
 - Example: solution of Boolean formula

- Decision Problems: Language = accepted bit-strings
- Reduction: $A \leq_p B$. Encode problem A as problem B
 - $x \in L_A \iff f(x) \in L_B$
 - f computable in polynomial time
 - A not harder than B
- Certificate: extra information to verify membership in language
 - Sound and complete: $(\exists c. \ check(w,c)) \iff w \in L$
 - Example: solution of Boolean formula
- NP: problems with poly-time certificates
 - NP-hard: harder than any problem in NP
 - NP-complete = in NP + NP-hard

- Decision Problems: Language = accepted bit-strings
- Reduction: $A \leq_p B$. Encode problem A as problem B
 - $x \in L_A \iff f(x) \in L_B$
 - f computable in polynomial time
 - A not harder than B
- Certificate: extra information to verify membership in language
 - Sound and complete: $(\exists c. check(w, c)) \iff w \in L$
 - Example: solution of Boolean formula
- NP: problems with poly-time certificates
 - NP-hard: harder than any problem in NP
 - NP-complete = in NP + NP-hard
- How to show that problem is ...
 - ... in NP: show it has poly-time certificates
 - ... NP-hard: reduce another NP-hard problem to it

- Given a combinational circuit with n gates, $m \le 2n$ inputs, and one output
 - Let's restrict gate types to AND, OR, NOT

- Given a combinational circuit with n gates, $m \le 2n$ inputs, and one output
 - Let's restrict gate types to AND, OR, NOT

Can the inputs be driven such that the output goes to 1?

- Given a combinational circuit with n gates, $m \le 2n$ inputs, and one output
 - Let's restrict gate types to AND, OR, NOT

- Can the inputs be driven such that the output goes to 1?
- Circuit-SAT is in NP
 - given the inputs, simulate the circuit and check the output
 - obviously polynomial time!

- Given a combinational circuit with n gates, $m \le 2n$ inputs, and one output
 - Let's restrict gate types to AND, OR, NOT

- Can the inputs be driven such that the output goes to 1?
- Circuit-SAT is in NP
 - given the inputs, simulate the circuit and check the output
 - obviously polynomial time!
- Now: Circuit-SAT is NP-hard

- Given a combinational circuit with n gates, $m \le 2n$ inputs, and one output
 - Let's restrict gate types to AND, OR, NOT

- Can the inputs be driven such that the output goes to 1?
- Circuit-SAT is in NP
 - given the inputs, simulate the circuit and check the output
 - obviously polynomial time!
- Now: Circuit-SAT is NP-hard
 - only sketch of proof

- Given a combinational circuit with n gates, $m \le 2n$ inputs, and one output
 - Let's restrict gate types to AND, OR, NOT

- Can the inputs be driven such that the output goes to 1?
- Circuit-SAT is in NP
 - given the inputs, simulate the circuit and check the output
 - obviously polynomial time!
- Now: Circuit-SAT is NP-hard
 - only sketch of proof
 - precise proof: lot's of subtle technical details

Reduce some arbitrary problem $A \in NP$ to Circuit-SAT

• A has poly-time certificates.

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$
- To check $w \in L_A$, we construct a circuit

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$
- To check $w \in L_A$, we construct a circuit
 - with $|w|^{k_2}$ inputs and one output

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$
- To check $w \in L_A$, we construct a circuit
 - with $|w|^{k_2}$ inputs and one output
 - that simulates $(|w| + |w|^{k_2})^{k_1}$ steps of $check(w, \cdot)$

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$
- To check $w \in L_A$, we construct a circuit
 - with $|w|^{k_2}$ inputs and one output
 - that simulates $(|w| + |w|^{k_2})^{k_1}$ steps of $check(w, \cdot)$
- Circuit-SAT checks if there are inputs that produce output 1

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$
- To check $w \in L_A$, we construct a circuit
 - with $|w|^{k_2}$ inputs and one output
 - that simulates $(|w| + |w|^{k_2})^{k_1}$ steps of check (w, \cdot)
- Circuit-SAT checks if there are inputs that produce output 1
 - YES: the inputs correspond to valid certificate $\implies w \in L_A$

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$
- To check $w \in L_A$, we construct a circuit
 - with $|w|^{k_2}$ inputs and one output
 - that simulates $(|w| + |w|^{k_2})^{k_1}$ steps of $check(w, \cdot)$
- Circuit-SAT checks if there are inputs that produce output 1
 - YES: the inputs correspond to valid certificate $\implies w \in L_A$
 - NO: there is no valid certificate (within size bound) $\implies w \notin L_A$

- A has poly-time certificates.
 - check(w,c) function that runs in time $<(|w|+|c|)^{k_1}$
 - any word $w \in L$ has certificate c, with $|c| < |w|^{k_2}$
- To check $w \in L_A$, we construct a circuit
 - with $|w|^{k_2}$ inputs and one output
 - that simulates $(|w| + |w|^{k_2})^{k_1}$ steps of $check(w, \cdot)$
- Circuit-SAT checks if there are inputs that produce output 1
 - YES: the inputs correspond to valid certificate $\implies w \in L_A$
 - NO: there is no valid certificate (within size bound) $\implies w \notin L_A$
- Now: How to construct such a circuit

- Ingredients:
 - *n* bits of memory
 - a control circuit C with n inputs, n outputs, and poly(n) gates

- Ingredients:
 - *n* bits of memory
 - a control circuit C with n inputs, n outputs, and poly(n) gates
- Working mode: in each cycle:
 - feed the memory content to the inputs
 - and then update the memory with the outputs

- Ingredients:
 - *n* bits of memory
 - a control circuit C with n inputs, n outputs, and poly(n) gates
- Working mode: in each cycle:
 - feed the memory content to the inputs
 - and then update the memory with the outputs
- For *n* bits of memory, a circuit of size poly(n) is enough!
 - and can be constructed in poly(n) time

- Ingredients:
 - *n* bits of memory
 - a control circuit C with n inputs, n outputs, and poly(n) gates
- Working mode: in each cycle:
 - feed the memory content to the inputs
 - and then update the memory with the outputs
- For *n* bits of memory, a circuit of size poly(n) is enough!
 - and can be constructed in poly(n) time
- How realistic is that?

- Ingredients:
 - *n* bits of memory
 - a control circuit C with n inputs, n outputs, and poly(n) gates
- Working mode: in each cycle:
 - feed the memory content to the inputs
 - and then update the memory with the outputs
- For *n* bits of memory, a circuit of size poly(n) is enough!
 - and can be constructed in poly(n) time
- How realistic is that?
 - not very realistic! BUT

- Ingredients:
 - *n* bits of memory
 - a control circuit C with n inputs, n outputs, and poly(n) gates
- Working mode: in each cycle:
 - feed the memory content to the inputs
 - and then update the memory with the outputs
- For *n* bits of memory, a circuit of size poly(n) is enough!
 - and can be constructed in poly(n) time
- How realistic is that?
 - not very realistic! BUT
 - powerful enough to run programs

- Ingredients:
 - *n* bits of memory
 - a control circuit C with n inputs, n outputs, and poly(n) gates
- Working mode: in each cycle:
 - feed the memory content to the inputs
 - and then update the memory with the outputs
- For *n* bits of memory, a circuit of size poly(n) is enough!
 - and can be constructed in poly(n) time
- How realistic is that?
 - not very realistic! BUT
 - powerful enough to run programs
 - easy enough to be simulated by standard computer
 - in *poly(n)* time per cycle!

Our Computer

Simulating *n* cycles

- link together n-1 copies of the control circuit
 - yields circuit with (n-1)poly(n) = poly(n) gates
 - inputs of first copy: initial memory
 - outputs of last copy: memory after *n* cycles

Simulating *n* cycles

- link together n-1 copies of the control circuit
 - yields circuit with (n-1)poly(n) = poly(n) gates
 - inputs of first copy: initial memory
 - outputs of last copy: memory after *n* cycles
- initializing some of the inputs
 - partially evaluate the circuit
 - only reduces number of gates
 - here: initialize program, PC, aux-memory.

Simulating *n* cycles

- link together n-1 copies of the control circuit
 - yields circuit with (n-1)poly(n) = poly(n) gates
 - inputs of first copy: initial memory
 - outputs of last copy: memory after *n* cycles
- initializing some of the inputs
 - partially evaluate the circuit
 - only reduces number of gates
 - here: initialize program, PC, aux-memory.
- ignoring some outputs
 - only reduces number of gates
 - here: keep only the single bit that contains result

Circuit for n cycles

initial memory

Control Circuit (copy 1)

Control Circuit (copy 2)

Control Circuit (copy n-1)

memory after n cycles

Outlook

- We have an initial NP-complete problem
- We now reduce it to other problems, to show that they are NP-complete, too!
- Circuit-SAT \leq_p SAT \leq_p 3SAT \leq_p CLIQUE ...

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

$$\exists x_1 \dots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \dots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!

$$\exists x_1 \dots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \dots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT

$$\exists x_1 \dots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \dots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)
 - SAT-formula: $x_0 \wedge G_1 \wedge \ldots \wedge G_n$

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)
 - SAT-formula: $x_o \wedge G_1 \wedge \ldots \wedge G_n$
 - where x_o is variable for output, and for each gate, G_i is

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)
 - SAT-formula: $x_o \wedge G_1 \wedge \ldots \wedge G_n$
 - where x_o is variable for output, and for each gate, G_i is
 - AND-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \land x_2)$

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)
 - SAT-formula: $x_o \wedge G_1 \wedge \ldots \wedge G_n$
 - where x_0 is variable for output, and for each gate, G_i is
 - AND-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \land x_2)$
 - OR-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \lor x_2)$

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)
 - SAT-formula: $x_o \wedge G_1 \wedge \ldots \wedge G_n$
 - where x_0 is variable for output, and for each gate, G_i is
 - AND-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \land x_2)$
 - OR-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \lor x_2)$
 - Inverted input/output: Add a ¬!

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)
 - SAT-formula: $x_o \wedge G_1 \wedge \ldots \wedge G_n$
 - where x_o is variable for output, and for each gate, G_i is
 - AND-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \land x_2)$
 - OR-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \lor x_2)$
 - Inverted input/output: Add a ¬!
 - where $x_1 \leftrightarrow x_2$ is short for $(x_1 \land x_2) \lor (\cancel{x}_1 \land \cancel{x}_2)$

$$\exists x_1 \ldots x_n. \ x_1 \land (x_2 \lor \neg x_3) \lor x_4 \ldots$$

- SAT is in NP: solution can be checked by evaluating formula.
 - obviously in polynomial time!
- SAT is NP-hard: show Circuit-SAT \leq_p SAT
 - Introduce one variable per wire (input, output, internal)
 - SAT-formula: $x_o \wedge G_1 \wedge \ldots \wedge G_n$
 - where x_o is variable for output, and for each gate, G_i is
 - AND-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \land x_2)$
 - OR-gate (in x_1, x_2 , out x_3): $x_3 \leftrightarrow (x_1 \lor x_2)$
 - Inverted input/output: Add a ¬!
 - where $x_1 \leftrightarrow x_2$ is short for $(x_1 \land x_2) \lor (\cancel{x}_1 \land \cancel{x}_2)$
 - can obviously be done in polynomial time
 - constant work per gate and variable!

Circuit-SAT \leq_p SAT

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
- Obviously 3SAT is in NP.

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
- Obviously 3SAT is in NP.
- To prove it is NP-Hard: Show SAT \leq_p 3SAT

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
- Obviously 3SAT is in NP.
- To prove it is NP-Hard: Show SAT \leq_p 3SAT
- Converting SAT formula to 3SAT

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
- · Obviously 3SAT is in NP.
- To prove it is NP-Hard: Show SAT \leq_p 3SAT
- Converting SAT formula to 3SAT
 - 1 encode parse tree (same idea as for Circuit-SAT \leq_p SAT)
 - one new variable y_i per node t_i .
 - for root node t_r, add clause y_r
 - for literals: use $y_i = x_i$
 - for node $t_i = AND(t_j, t_k)$, add clause $y_i \leftrightarrow y_j \land y_k$
 - similar for OR, NOT

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
- Obviously 3SAT is in NP.
- To prove it is NP-Hard: Show SAT \leq_p 3SAT
- Converting SAT formula to 3SAT
 - 1 encode parse tree (same idea as for Circuit-SAT \leq_p SAT)
 - one new variable y_i per node t_i.
 - for root node t_r , add clause y_r
 - for literals: use $y_i = x_i$
 - for node $t_i = AND(t_i, t_k)$, add clause $y_i \leftrightarrow y_j \land y_k$
 - similar for OR, NOT
 - 2 convert to CNF
 - Convert clauses $x_i \leftrightarrow \dots$ to CNF
 - e.g. $x_i \leftrightarrow x_j \land x_k$ to $(\neg x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
- Obviously 3SAT is in NP.
- To prove it is NP-Hard: Show SAT \leq_p 3SAT
- Converting SAT formula to 3SAT
 - 1 encode parse tree (same idea as for Circuit-SAT \leq_p SAT)
 - one new variable y_i per node t_i.
 - for root node t_r , add clause y_r
 - for literals: use $y_i = x_i$
 - for node $t_i = AND(t_i, t_k)$, add clause $y_i \leftrightarrow y_j \land y_k$
 - similar for OR, NOT
 - 2 convert to CNF
 - Convert clauses $x_i \leftrightarrow \dots$ to CNF
 - e.g. $x_i \leftrightarrow x_i \land x_k$ to $(\neg x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$
 - 3 eliminate duplicates:
 - remove clauses that contain both, x and ¬x
 - remove duplicate literals from clause

- Boolean formula in CNF, exactly 3 literals over different variables per clause
 - E.g. $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
- Obviously 3SAT is in NP.
- To prove it is NP-Hard: Show SAT \leq_p 3SAT
- Converting SAT formula to 3SAT
 - 1 encode parse tree (same idea as for Circuit-SAT \leq_p SAT)
 - one new variable y_i per node t_i .
 - for root node t_r , add clause y_r
 - for literals: use $y_i = x_i$
 - for node $t_i = AND(t_i, t_k)$, add clause $y_i \leftrightarrow y_i \land y_k$
 - similar for OR, NOT
 - 2 convert to CNF
 - Convert clauses $x_i \leftrightarrow \dots$ to CNF
 - e.g. $x_i \leftrightarrow x_j \wedge x_k$ to $(\neg x_1 \vee x_2) \wedge (\neg x_1 \vee x_3) \wedge (x_1 \vee \neg x_2 \vee \neg x_3)$
 - 3 eliminate duplicates:
 - remove clauses that contain both, x and $\neg x$
 - remove duplicate literals from clause
 - 4 fill clauses to 3 variables
 - a $l_1 \lor l_2$ to $(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)$ for fresh variable pb l_1 to $(l_1 \lor p) \land (l_1 \lor \neg p)$ for fresh variable p, then a)

SAT Formula: $\neg(x_1 \land \neg x_2) \lor x_3$

SAT Formula: $\neg(x_1 \land \neg x_2) \lor x_3$

Parse tree:

$$y_1 \wedge (y_1 \leftrightarrow y_2 \vee x_3) \wedge (y_2 \leftrightarrow \neg y_3) \\ \wedge (y_3 \leftrightarrow x_1 \wedge y_4) \wedge y_4 \leftrightarrow \neg x_2$$

Formula for parse-tree:
$$y_1 \wedge (y_1 \leftrightarrow y_2 \vee x_3) \wedge (y_2 \leftrightarrow \neg y_3) \wedge (y_3 \leftrightarrow x_1 \wedge y_4) \wedge y_4 \leftrightarrow \neg x_2$$
 convert to CNF: $y_1 \wedge (\neg y_1 \vee y_2 \vee x_3) \wedge (y_1 \vee \neg y_2) \wedge (y_1 \vee \neg x_3) \wedge \dots$

Formula for parse-tree:
$$y_1 \wedge (y_1 \leftrightarrow y_2 \vee x_3) \wedge (y_2 \leftrightarrow \neg y_3) \wedge (y_3 \leftrightarrow x_1 \wedge y_4) \wedge y_4 \leftrightarrow \neg x_2$$
 convert to CNF: $y_1 \wedge (\neg y_1 \vee y_2 \vee x_3) \wedge (y_1 \vee \neg y_2) \wedge (y_1 \vee \neg x_3) \wedge \dots$ (no duplicates)

SAT Formula:
$$\neg(x_1 \land \neg x_2) \lor x_3$$

Parse tree: $\lor(y_1)$
 $\neg(y_2)$ x_3
 \mid
 $\land(y_3)$
 x_1 $\neg(y_4)$

Formula for parse-tree:
$$y_1 \wedge (y_1 \leftrightarrow y_2 \vee x_3) \wedge (y_2 \leftrightarrow \neg y_3) \wedge (y_3 \leftrightarrow x_1 \wedge y_4) \wedge y_4 \leftrightarrow \neg x_2$$
 convert to CNF: $y_1 \wedge (\neg y_1 \vee y_2 \vee x_3) \wedge (y_1 \vee \neg y_2) \wedge (y_1 \vee \neg x_3) \wedge \dots$ (no duplicates) fill clauses to 3 variables $(y_1 \vee p_1 \vee p_2) \wedge (y_1 \vee p_1 \vee \neg p_2) \wedge (y_1 \vee \neg p_1 \vee p_2) \wedge (y_1 \vee \neg p_1 \vee p_2) \wedge (\neg y_1 \vee y_2 \vee x_3) \wedge (\neg y_1 \vee y_2 \vee x_3) \wedge (y_1 \vee \neg y_2 \vee p_3) \wedge (y_1 \vee \neg y_2 \vee p_3) \wedge \dots$

Why 3SAT?

• 3-SAT is very restrictive compared to SAT

Why 3SAT?

- 3-SAT is very restrictive compared to SAT
- Bad, if we want to reduce a problem to 3SAT
 - Need to encode problem to very restrictive form

Why 3SAT?

- 3-SAT is very restrictive compared to SAT
- Bad, if we want to reduce a problem to 3SAT
 - Need to encode problem to very restrictive form
- Good, if we want to reduce 3SAT to a problem
 - Only need to encode very special clauses to problem

- Given an **undirected** graph (V, E).
 - We assume that E is symmetric, i.e., $(u, v) \in E \implies (v, u) \in E$

- Given an undirected graph (V, E).
 - We assume that E is symmetric, i.e., $(u, v) \in E \implies (v, u) \in E$
- A clique C is a set of pairwise connected nodes:
 - $C \subseteq V$ and $\forall u, v \in V.u \neq v \implies (u, v) \in E$
 - *n*-clique: clique of size *n*

- Given an undirected graph (V, E).
 - We assume that E is symmetric, i.e., $(u, v) \in E \implies (v, u) \in E$
- A clique C is a set of pairwise connected nodes:
 - $C \subseteq V$ and $\forall u, v \in V.u \neq v \implies (u, v) \in E$
 - n-clique: clique of size n
- Optimization problem: find a largest clique

- Given an undirected graph (V, E).
 - We assume that E is symmetric, i.e., $(u, v) \in E \implies (v, u) \in E$
- A clique C is a set of pairwise connected nodes:
 - $C \subseteq V$ and $\forall u, v \in V.u \neq v \implies (u, v) \in E$
 - *n*-clique: clique of size *n*
- Optimization problem: find a largest clique
- Decision problem: is there a clique of size $\geq k$?

CLIQUE examples

CLIQUE examples

CLIQUE examples

CLIQUE examples

 Obviously in NP: Given set of nodes can easily be verified to be a clique

- Obviously in NP: Given set of nodes can easily be verified to be a clique
- NP-hard: Reduction from 3SAT

- Obviously in NP: Given set of nodes can easily be verified to be a clique
- NP-hard: Reduction from 3SAT
 - given 3SAT problem $(l_1^1 \lor l_1^2 \lor l_1^3) \land \ldots \land (l_n^1 \lor l_n^2 \lor l_n^3)$

- Obviously in NP: Given set of nodes can easily be verified to be a clique
- NP-hard: Reduction from 3SAT
 - given 3SAT problem $(I_1^1 \vee I_1^2 \vee I_1^3) \wedge \ldots \wedge (I_n^1 \vee I_n^2 \vee I_n^3)$
 - construct graph:
 - one node per l_i^j : $V = \{u_i^j \mid i < n \land j < 3\}$
 - edges between non-contradicting literals of different clauses:
 - $E = \{(u_i^j, u_{i'}^{j'}) \mid i \neq i' \land j \leq 3 \land (u_i^j, u_{i'}^{j'}) \text{ not contradicting}\}$
 - contradicting: literals of the form $x, \neg x$.

- Obviously in NP: Given set of nodes can easily be verified to be a clique
- NP-hard: Reduction from 3SAT
 - given 3SAT problem $(l_1^1 \vee l_1^2 \vee l_1^3) \wedge \ldots \wedge (l_n^1 \vee l_n^2 \vee l_n^3)$
 - construct graph:
 - one node per l_i^j : $V = \{u_i^j \mid i \le n \land j \le 3\}$
 - edges between non-contradicting literals of different clauses:

$$E = \{(u_i^j, u_{i'}^{j'}) \mid i \neq i' \land j \leq 3 \land (u_i^j, u_{i'}^{j'}) \text{ not contradicting}\}$$

- contradicting: literals of the form $x, \neg x$.
- claim: graph has n-clique, iff formula satisfiable!

Formula: $(l_1^1 \lor l_1^2 \lor l_1^3) \land \ldots \land (l_n^1 \lor l_n^2 \lor l_n^3)$ Edge $(u_i^j, u_{i'}^{j'})$ iff $i \neq i'$ and $l_i^j, l_{i'}^{j'}$ non-contr.

Formula: $(l_1^1 \vee l_1^2 \vee l_1^3) \wedge \ldots \wedge (l_n^1 \vee l_n^2 \vee l_n^3)$ Edge $(u_i^j, u_{i'}^{j'})$ iff $i \neq i'$ and $l_i^j, l_{i'}^{j'}$ non-contr. Assume solution to formula.

- each clause has at least one satisfied literal. n satisfied literals.
- each satisfied literal connected with all other satisfied literals of different clauses
- clique of size n

Formula: $(l_1^1 \vee l_1^2 \vee l_1^3) \wedge \ldots \wedge (l_n^1 \vee l_n^2 \vee l_n^3)$ Edge $(u_i^j, u_{i'}^{j'})$ iff $i \neq i'$ and $l_i^j, l_{i'}^{j'}$ non-contr. Assume solution to formula.

- each clause has at least one satisfied literal. *n* satisfied literals.
- each satisfied literal connected with all other satisfied literals of different clauses
- clique of size n

Assume clique of size n.

- must involve literals of different clauses
 - which are non-contradictory
 - setting them to true yields solution

$3SAT \leq_p CLIQUE Example$

$3SAT \leq_p CLIQUE Example$

Solution: $x_1 = \top, x_2 = \top, x_3 = ?$

$3SAT \leq_p CLIQUE Example$

Solution: $x_1 = :, x_2 = ::, x_3 = :$

Conclusions

- NP and NP-complete problems
 - no poly-time algorithms known for NP-hard problems
 - if you encounter one: special case?, approximation?
- Prove that problem is NP-complete:
 - in NP: show poly-time certification
 - NP-hard: reduce other NP-hard problem to it
- Many realistic problems NP-hard
 - You'll come across a few more in this lecture
 - Knapsack, Integer Linear Programming, ...