

PARTITION TO CONTROL TO CONTROL TO THE TOTAL TRANSPORT

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

SIMPLE K-ENERGY RADIATIVE SCALING LAW FOR IMPLODING WIRE ARRAYS AND GAS PUFFS

Joseph B. Workman Clifford W. Prettie Berkeley Research Associates 125 University Ave P.O. Box 983 Berkeley, California 94710

1 March 1982

Technical Report

CONTRACT No. DNA 001-81-C-0053

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B323081466 T99QAXLA00013 H2590D.

FILE COP

Prepared for Director

DEFENSE NUCLEAR AGENCY
Washington, DC 20305

83 05 01 100

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER
DNA-TR-81-122	AD-A 13/178	
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
SIMPLE K-ENERGY RADIATIVE SCALING LAW FOR IMPLODING WIRE ARRAYS AND GAS PUFFS		Technical Report
		6. PERFORMING ORG. REPORT NUMBER PD-BRA-82-272R
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(#)
Joseph B. Workman Clifford W. Prettie		DNA 001-81-C-0053
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Berkeley Research Associates		
125 University Avenue NE, P.O. Box 983 Berkeley, California 94710		Task T99QAXLA-00013
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Director		1 March 1982
Defense Nuclear Agency		13. NUMBER OF PAGES
Washington, DC 20305	(Controlling Office)	15. SECURITY CLASS (of this report)
19. MONITORING AGENCY NAME & ADDRESS(II GITTE	Part tross Controlling Office)	
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B323081466 T99QAXLA00013 H2590D.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Scaling Laws Wire Plasmas X-ray Devices Radiation

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A simple static K-energy radiation power scaling expression has been derived for element with $Z \le 40$. Bound-Bound, Free-Bound, and Free-Free transitions have been included and accounted for in the expression. The results are shown to be in reasonable agreement with a wide range of experimental values.

DD FORM 1473 EDITION OF

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

PREFACE

The authors would like to thank the members of the Plasma Radiation Branch at the Naval Research Laboratory for their kind assistance and warm hospitality on a number of visits to their institution.

Acces	min or /	
NICS		
Drin v. · ha		
Under the control of		
Ву		
Distr' hitem/		
Availability Codes		
	Aveil and/or	
Dist	Special Special	
1		
IT	j	
	1	

TABLE OF CONTENTS

Section		Page
	PREFACE	1
I	INTRODUCTION	3
II	THEORY AND RESULTS	6
III	REFERENCES	15
	LIST OF ILLUSTRATIONS	
1.	NRL Data Compared to Equation (7)	9
2.	Model Calculations Compared to Equation (9)	10
3.	Total Bremsstrahlung Compared to Equation (12)	12
4.	Radiated Power	13

SECTION I

INTRODUCTION

The development of intense photon sources for nuclear weapons effects simulation has been actively supported by the Defense Nuclear Agency for at least the last twenty years. During this period it has become quite apparent that pulse power generators can be used successfully to heat material loads to the plasma state at temperatures and densities capable of exciting the K-shell of most low-Z elements. These subsequently radiate as intense X-ray sources. The material loads most often encountered with pulse power devices are: (1) an array of finely suspended wires, (2) a gas puff, and (3) a cylindrical annular foil. These material loads are rapidly vaporized by fast rising mega-ampere currents and, subsequently, converted to hot dense plasma that are copious emitters of intense X-rays. Because of the complexity of the phenomena involving radiation magnetohydrodynamics, it is not surprising that present day understanding of the plasma behavior leading to the emission of X-rays is still rudimentary. On the other hand, considerable progress has been made in understanding and modelling the radiative properties and energetics of low-Z and moderate-Z materials. Based on this understanding and on the empirical information regarding the temperature and density structure across the radiating plasma, it has appeared possible to derive a relationship which would show the manner in which the K-shell radiated power varies as a function of temperature, density, plasma size, and material (i.e., Z). This topic is the subject of this paper.

Before proceeding to the development of the actual scaling law, it is reasonable to review the application and importance of such work. Present results have generally established key features in the plasma structure of the majority of high K-shell yield experiments. structure consists of a set of compressed hot spots or beaded spots, which appear to emit K-shell radiation. spots are surrounded by an outer corona which predominantly radiates at a cooler temperature in the L-shell. would be typical of aluminum, for example. The temperature structure suggests a distribution of ionization states across the plasma that reflects the core/corona pictorial representation and clearly indicates that not all of the plasma mass is heated to the K-shell. At higher power levels, it is also observed that more mass is heated to the K-shell level, but that substantially the same plasma structure is maintained. For higher Z loads, wherein K = > L-shell and L = >M-shell, we still note that the characteristic structure is preserved, i.e., core/corona. This result raises an important question about the behavior at higher power levels; namely, will higher power achieve higher temperatures or will it simply heat more of the plasma to existing or slightly higher temperatures. the former case, the spectrum will be hardened, although the yields may not increase significantly above existing levels, while for the latter case the spectrum will be preserved but the yield will increase substantially. Since the goal of the program is to both harden the spectrum and increase the yields, it seems inevitable that a larger machine will have to be built in order to experimentally ascertain this information. However, from a theoretical point of view it should be possible to make some intelligent

comments regarding, at least, the scaling of the yield in terms of radiative properties of the load. To this purpose we derive a simple scaling law based on the radiative capacity of the plasma at temperatures capable of supporting K-shell radiation and where the size of the emitting region does not affect, significantly, the emitting qualities of the source. Reabsorption through the cooler regions has been neglected for simplicity.

SECTION II

THEORY AND RESULTS

Numerical simulations and spectroscopic analysis of wire or puff gas implosions suggest that the inner portion of the compressed plasma is hot enough to ignite the K-shell of all low-Z and some medium-Z elements. Estimates of the plasma density in the high temperature core region is on the order of 10^{19} to 10^{20} ions per cm³ depending on whether the wires or puffs are used as the load material. Although these conditions are not those of a plasma in corona equilibrium, it is well known from the work of the Plasma Radiation Branch at the Naval Research Laboratory that for the K-shell emitting region of the plasma, a corona equilibrium analysis provides reasonably acceptable results for the radiated K-shell energy. Stretching this point a bit further, we will adopt the assumption of corona equilibrium for the core plasma and develop a simple scaling law for the radiated power in terms of temperature, density, and atomic number. Opacity effects will be completely ignored, but can be accounted for in a post hoc manner.

A survey of the literature (see, for example, the corona equilibrium calculations by Davis and Jacobs or D. Post) reveals that line radiation is dominant in hot plasmas up to about Z=40. Beyond Z=40, bremsstrahlung radiation begins to dominate the power spectrum. Detailed calculations in conjunction with the observations indicate that about 70% of the K-line yield emanates from the resonance levels of hydrogen-and helium-like ionization stages, on shots that are considered good in that they are of high yields. Using these empirical facts and the

assumption of corona ionization equilibrium, the peak K-line radiative power, \mbox{K}_{L}^{M} , associated with the resonance lines can be represented as

$$K_L^M \simeq N_e \sum_{q=1}^2 N_q X(s \rightarrow q) \Delta E(s \rightarrow q)$$
 (1)

where N_1 , N_2 are N_{He} , N_H , respectively and $X(s+1)=X(ls^2+ls2p)$, X(s+2)=X(ls+2p) are the collisional excitation rate coefficients and $\Delta E(s+q)$ is the excitation energy for the corresponding transitions, respectively. Finally, N_e is the electron density. At peak K-line emission the detailed calculations of Davis and Jacobs and Duston and Davis estimate that the fractional population densities are

$$N_1 \simeq 0.37N_1$$
 and $N_2 \simeq 0.5N_1$. (2)

In addition $\Delta E(s \rightarrow 1) \approx 0.95 \Delta E(s \rightarrow 2)$ where $\Delta E(s \rightarrow 2) = \frac{3}{4} I_H Z^2$. Hence

$$\Delta E(s \rightarrow 2) = 10z^2 \quad in ev. \tag{3}$$

Substituting these estimates into equation (1) yields

$$K_{L}^{M} \simeq 10z^{3} N_{I}^{2} \left[0.35X(s + 1) + 0.5X(s + 2) \right] \frac{watts}{cm^{2}}$$
 (4)

where $N_e \simeq ZN_T$ has been used.

As a result of a number of calculations using the Coulomb-Born approximation, the Soviets have attempted to parametrize the electron impact excitation coefficient in the form (see Sobelman)

$$X \approx 10^{-8} \left(\frac{I_H}{\Delta E} \frac{\chi_u}{\chi_\ell} \right)^{3/2} \frac{2}{g_\ell} A \frac{\beta^{1/2} (\beta + 1)}{\beta + \xi} e^{-\beta}$$
 (5)

where $\chi_{\bf u}$ (χ_{ℓ}) represents the upper (lower) state ionization energy, ${\bf g}_{\ell}$ is the lower state statistical weight, ${\bf g}=\Delta {\bf E}/{\bf k}{\bf T}_{\bf e}$, and ${\bf A}\approx 20$ for ${\bf ls}\to 2{\bf p}$ transitions. This expression, equation (5), neglects exchange effects which can influence helium-like transitions by factors of two in some cases. Bearing this in mind and setting $\chi_{\bf ls}={\bf z}^2~{\bf I}_{\bf H}$, $\chi_{\bf 2p}=\frac{1}{4}~{\bf z}^2~{\bf I}_{\bf H}$, and assuming ${\bf g}>>\xi$ at ${\bf T}_{\bf e}={\bf T}_{\bf M}$ yields

$$X^{M}(1s + 2p) \approx 4 \times 10^{-8} \frac{1 + \beta}{z^{3} \beta^{1/2}} e^{-\beta} cm^{3}/sec.$$
 (6)

A compilation of the NRL calculations is plotted in Figure 1 and suggests the following dependence:

$$T_{\rm M} \approx 0.12 \ {\rm z}^{3.38}$$
 (7)

In addition, the β -dependence has been curve fitted for Z \leq 42 with the result

$$\beta^{-1/2}(1 + \beta) e^{-\beta} \simeq 0.012 z^{5/4}$$
 (8)

Hence, the total power can now be written as

$$K_{T_{\star}}^{M} \simeq 10^{-27} z^{5/4} N_{T}^{2}$$
 (9)

where the knowledge that the resonance lines of the oneand two-electron systems account for roughly 70% of the radiated K-shell yield has been folded into equation (9). The result obtained from equation (9) is compared with the more detailed NRL models and as seen in Figure 2 is in reasonably good agreement, i.e., to within about a factor slightly less than two for 4 < Z < 60.

The continuum contribution to the K-shell yield comes from the free-bound and free-free processes. In the case of the free-bound radiative recombination contribution,

Figure 1. NRL Data Compared to Equation (7)
+ = NRL Data
----= Equation (7)

only two edges contribute to the K-line energies and can be represented by

$$K_{FB}^{M} \simeq 1.6 \times 10^{-19} N_{e} \sum_{i} \chi_{i} \alpha_{i} N_{i}$$
 (10)

where χ is the ionization energy, α is the rate coefficient, and N_i is the recombining ion density. From a number of detailed calculations it can be shown that the following approximations are reasonable, namely

$$N_{\text{bare}} \simeq 0.2 N_{\text{H}} \text{ and } 1.1 \chi_{\text{He}} \simeq \chi_{\text{H}} = z^2 I_{\text{H}}$$

If we take $\alpha = 5.2 \times 10^{-14} (\text{Z/T}_{\text{M}})^{1/2}$ and substitute the above approximations into $K_{\text{b-f}}^{\text{M}}$ we obtain

$$K_{b-f}^{M} \simeq 5 \times 10^{-32} z^{4/3} N_{I}^{2}$$
 (11)

The bremsstrahlung emission is given by

$$K_{ff}^{M} \approx 1.5 \times 10^{-32} z^{3} N_{I} T_{M}^{-1/2} \int_{hv'}^{\infty} e^{-hv/T_{M}} d(hv)$$

where hv' is the energy cutoff below which photons do not contribute to the K-shell and is set by the energy of the $1s^2 \rightarrow 1s$ 2p edge. Hence

$$K_{ff}^{M} \simeq 5.3 \times 10^{-33} z^{4.7} N_{I}^{2} e^{-hv/0.12} z^{3.38}$$
 (12)

Figure 3 shows a comparison between the total bremsstrahlung emission, i.e., $hv^* = 0$ and that predicted from equation (12). The difference is about 40%.

The total power radiated at or above K-line energies is shown on Figure 4. The discrepancy between the two curves labeled "total emission" is due to inclusion of all

Figure 3. Total Bremsstrahlung Compared to Equation (12)

--- :Total
--- : Equation (12)

Figure 4. Radiated Power

--- : Total (all energies)

--- : Total (above K-line)

- • - = K-line

---- Bremsstrahlung (above K-line)

energies in the free-bound and free-free estimates. Even so, the difference only amounts to about a factor of 2 at higher Z values.

The values obtained here are reasonable in comparison with some of the experimental values for a given Z. Howeven, this simple scaling law should not be construed as anything other than what it is; a simple scaling law for estimating radiative yields. In the future, this model will be incorporated into a simple circuit-implosion model.

SECTION III

REFERENCES

- 1. Davis, J., and V. Jacobs, JQSRT, 24, 283 (1980).
- 2. Duston, D., and J. Davis, Phys. Rev. A: 23, 2602 (1981; 21, 1664 (1980).
- 3. Sobelman, I.I., An Introduction to the Theory of Atomic Spectra, Pergamon Press, NY (1972).
- 4. Post, D., R. Jensen, C. Tarter, W. Grasberger, and W. Lokke, Atomic Data and Nuclear Tables, 20, 397 (1978).

DISTRIBUTION LIST

DEDARTMENT OF DESERVE	DEPARTMENT OF THE NAVY (Continued)
DEPARTMENT OF DEFENSE	DEPARTMENT OF THE MANY (CONCINED)
Assistant to the Secretary of Defense	Naval Surface Weapons Center
Atomic Energy_	ATTN: Code R40
ATTN: Executive Assistant	ATTN: Code F31
ATTN: Military Applications	ATTN: Code F34
Defense Intell Agency	DEPARTMENT OF THE AIR FORCE
ATTN: DT-1B, R. Rubenstein	
	Air Force Weapons Lab
Defense Nuclear Agency	ATTN: ŠUL ATTN: CA
ATTN: RAAE	ATTN: CA
ATTN: RAEV ATTN: STNA	ATTN: NTYC ATTN: NT
ATTN: STA	ATTN: NTYP
4 cy ATTN: TITL	711114 WIIII
	Ballistic Missile Office
Defense Tech Info Ctr	ATTN: ENSN
12 cy ATTN: DD	ATTN: SYDT
Field Command Defense Nuclear Agency	Deputy Chief of Staff
Det 1	Rsch, Dev, & Acq
Lawrence Livermore Lab	ATTN: AFRDOI
ATTN: FC-1	•
	Space Div
Field Command	ATTN: XR
Defense Nuclear Agency ATTN: FCPR	ATTN: YEZ
ATTN: FCFR W. Summa	ATTN: YGJ ATTN: YKF
ATTN: FCTT	ATTN: YKS, P. Stadler
ATTN: FCTXE	ATTN: YKM
ATTN: FCTT, G. Ganong	ATTN: YNV
Under Secretary of Defense for Rsch & Engrg	Strategic Air Command
ATTN: Strategic & Space Sys (OS)	ATTN: INT, E. Jacobsen
DEPARTMENT OF THE ARMY	DEPARTMENT OF ENERGY
Harry Diamond Labs	Department of Energy
ATTN: DELHD-NM-P, 20240	Office of Military Application
ATTN: DELHO-NW-RA, 22100	Office of Military Application ATTN: Ofc of Inert Fusion, S. Kahalas
ATTN: DELHD-NW-RI, Kervis, 22900	ATTN: Ofc of Inert Fusion, C. Hilland
ATTN: DELHD-TA-L, 81100	ATTN: Ofc of Inert Fusion, T. Godlove
US Army Nuclear & Chemical Agency	OTHER GOVERNMENT AGENCY
ATTN: Library	
	Central Intell Agency
US Army Test and Evaluation Comd	ATTN: OSWR/NED
ATTN: DRSTE-EL	DEPARTMENT OF ENERGY CONTRACTORS
USA Missile Command	PET PRINTED OF CHERGY OUT TO TORS
ATTN: Doc Sec	University of California
	Lawrence Livermore National Lab
DEPARTMENT OF THE NAVY	ATTN: Tech Info Dept, Library
Naval Rsch Lab	ATTN: L-545, J. Nuckolls, Class L-477 ATTN: L-47, L. Wouters
ATTM: Code 2000. J. Rrown	ATTN: L-153
ATTN: Code 2000, J. Brown ATTN: Code 4770, I. Vitokovitsky	ATTN: L-153, D. Meeker, Class L-477
ATTN: Code 4720, J. Devis	ATTN: W. Pickles, L-401
ATTN: Code 4720, J. Davis ATTN: Code 4780, S. Ossakow	A AS M A A S A
ATTN: Code 4773, G. Cooperstein	Los Alamos National Lab
Mayol Managag Chr	ATTN: MS222, J. Brownell

Naval Weapons Ctr ATTN: Code 343, FKA6A2, Tech Svcs

DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Sandia National Lab ATTN: M. Clauser, Org 5241 ATTN: G. Kuswa, Org 5240

ATTN: G. Yonas ATTN: Tech Library, 3141

ATTN: J. Powell ATTN: Org 9336, D. Allen

DEPARTMENT OF DEFENSE CONTRACTORS

Advanced Rsch & Applications Corp ATTN: R. Armistead

Aerospace Corp

ATTN: V. Josephson ATTN: S. Bower ATTN: Tech Info Svcs

BOM Corp

ATTN: Corporate Library

80M Corp

ATTN: L. Hoeft

Boeing Co ATTN: Aerospace Library

Dikewood

ATTN: Tech Library for L. Davis

EG&G Wash Analytical Svcs Ctr, Inc ATTN: Library

General Electric Co

ATTN: J. Peden ATTN: H. O'Donnell

IRT Corp ATTN: R. Mertz

JAYCOR

ATTN: E. Wenaas

JAYCOR

ATTN: E. Alcaraz ATTN: R. Sullivan

Kaman Sciences Corp

ATTN: S. Face

Berkeley Research Assiciates 4 cy ATTN: J. Workman 4 cy ATTN: C. Prettie

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Lockheed Missiles & Space Co, Inc ATTN: S. Taimuty, Dept 81-74/154

Lockheed Missiles & Space Co, Inc

ATTN: L. Chase

Maxwell Labs, Inc

ATTN: A. Kolb ATTN: D. Tanimoto

ATTN: A. Miller ATTN: O. Cole

McDonnell Douglas Corp

ATTN: S. Schneider

Mission Research Corp

ATTN: W. Hart ATTN: C. Longmire

Mission Research Corp

ATTN: B. Godfrey

Mission Research Corp, San Diego

ATTN: B. Passenheim

Pacific-Sierra Research Corp

ATTN: H. Brode, Chairman SAGE ATTN: L. Schlessinger

Physics International Co

ATTN: C. Gilman ATTN: C. Stallings ATTN: G. Frazier

R & D Associates

ATTN: P. Haas ATTN: A. Latter

R & D Associates

ATTN: P. Turchi

S-CUBED

ATTN: A. Wilson

Science Applications, Inc

ATTN: K. Sites

TRW Electronics & Defense Sector
ATTN: Tech Info Ctr
ATTN: D. Clement

Kaman Tempo ATTN: DASIAC

FILI 9-

FILMED

9-83