Index

active learning, 181	bound by cross-entropy error, 97
definition, 12	bound by squared error, 97
Adaline, 35, 110	clustering, 13
approximation, 27	coin classification, 9, 13
versus generalization, 62–68, 106	combinatorial optimization, 80
artificial intelligence, 5	complexity
augmented error, 132, 157	of \mathcal{H}_1 26
axiom of non-falsifiability, 178	of f , 27
• ,	computational complexity, 181
B(N,k)	computational finance, 181
definition, 46	computer vision, 1
lower bound, 69	convex function, 93
upper bound, 48	convex set, 44
backgammon, 12	cost, 28
Bayes optimal decision theory, 10	cost matrix, 29, 115
Bayes theorem, 33	credit approval, 3, 82, 96
Bayesian learning, 181	cross validation, 145–150
bias-variance, 62–66	$V ext{-fold}, \ 150$
average function, 63	choosing λ , 149
dependence on $N, d, 158$	$\operatorname{digits}\operatorname{data},\ 151$
example, 65	effective number of examples, 163
impact of noise, 125	exact computation, 149
linear models, 158–159	${\it leave-one-out},\ 146$
linear regression, 114	linear model, 149
noisy target, 74	linear model, analytic, 164
bin model, 18	model selection, 148
multiple bins, 22	regularized, 165
relationship to learning, 20	summary, 147
binomial distribution, 36	unbiased, 147
boosting, 181	variance, 162
break point	cross-entropy, 92
definition, 45	
	data contamination, 145, 151, 176
Chebyshev inequality, 36	data mining, 15
Chernoff bound, 37	data point, 3
classification	data set, 3
for regression, 113	$\mathrm{ghost},\ 188$
linear programming algorithm, 110	space of, 54
classification error	data snooping, 173–177, 181

financial trading, 174 nonlinear transform, 103	football scam, 170
normalization bias, 174	Gaussian processes, 181
versus sampling bias, 177	generalization, 39–59
decision stump, 106	VC bound, 50–59
design	VC dimension, 50
versus learning, 9	generalization bound
deterministic noise, 124, 128	definition, 40
effect on learning, 151	Devroye, 73
regularization, 136	Parrondo and Van den Broek, 73
similarity to stochastic noise, 136	Rademacher penalty, 73
Dewey, 171	relative error, 74
dichotomy, 42	VC, see VC generalization bound
maximum number, 46	generalization error
perceptron, 43	definition, 40
table, 47	global minimum, 93
differentiable, 85	gradient descent, 92–99
twice-, 93, 95	algorithm, 95
on ree , 55, 55	batch, 97
effective number of hypotheses, 41, 53	initialization and termination, 95
effective number of parameters, 52, 137,	stochastic, 97
159	growth function, 41–50
Einstein, 167	2-dimensional perceptron, 43
ensemble learning, 181	bound, 46–49
entropy, 168	convex set, 44
error measure, 28–30	definition, 42
L_1 versus L_2 , 38	in VC proof, 190
classification, 28	polynomial bound, 50
cross-entropy, 92	positive interval, 44
fingerprint example, 28	positive ray, 43
logistic regression, 91	two-dimensional perceptron, 43
example, 3	two-dimensional perception, 40
	handwritten digit recognition, 4, 11, 81-
false accept, 29, 115	82, 106–107, 151
false reject, 29, 115	hat matrix, 87 , 112
falsifiability, 178	Hessian matrix, 116
feasibility of learning	Hoeffding bound, see Hoeffding Inequal-
Boolean example, 16	ity
probabilistic, 18	Hoeffding Inequality, 19, 19–27
two main questions, 26	and binomial distribution, 36
visual example, 15	uniform version, 24
feature selection, 151	without replacement, 192
feature space, 100	hypothesis set, 3
features, 81	composition, 72
nonlinear transform, 99	concentric spheres, 69
feature transform, 100 , 111, 116–117	convex set, 44
final exam, 39	monotonic, 71
financial forecasting, 1	polynomial, 120
fingerprint verification, 28, 115	positive interval, 44

positive ray, 43	using classification algorithm, 113
positive rectangles, 69	linearly separable, 6, 78
positive-negative interval, 69	example, 6
positive-negative ray, 69	local minimum, 93
restricted to inputs, 42	logistic function, 89
	logistic regression, 88–99
in-sample error, 21	algorithm, 95
input space, 3	cross-entropy error, 92
iterative learning, 7	error measure, 91–92
0)	for classification, 96–97, 115
kernel methods, 181	hard threshold, 115
,	initialization, 95
Lagrange multiplier, 131, 157	optimal decision theory, 115
lasso, 161	termination, 96
law of large numbers, 36, 37	loss matrix, 38
learning	, 00
criteria, 26, 78	machine learning, vii, 14
feasibility, 15–18, 24–26	maximum likelihood, 91
learning algorithm, 3	medical diagnosis, 1
learning curve, 66–68, 140, 147	minimum description length, 168
linear regression, 88	model selection, 141–145
learning model	choosing λ , 134, 149
definition, 5	cross validation, 148
learning problem	experiment, 144
summary figure, 30	summary, 143
learning rate, 94, 95	monotonic functions, 71
leave-one-out, 146	VC dimension, 71
Legendre polynomials, 123, 128–129, 154,	movie rating, 1–3
155	multiclass, 81
likelihood, 91	•
linear classification, 77	Netflix, 1
linear model, 77	neural network, 181
bias-variance, 158–159	Newton's method, 116
building block, 181	noise
cross validation, analytic, 164	deterministic, 124
optimal weight decay, 161	stochastic, 124
overlooked resource, 107	non-falsifiability, 178
summary, 96	$\mathbf{axiom},170$
linear programming, 110, 111	picking financial traders, 170
linear regression, 82–88, 111	non-separable data, 79–81
algorithm, 86	nonlinear regression, 104
bias and variance, 114	nonlinear transformation, 99
for classification, 96–97, 109–110	normalization, 175
learning curve, 88	NP-hard, 80
optimal hypothesis, 111	
out of sample, 87–88	objective, 28
out-of-sample error, 112	Occam's razor, 167–171, 181
projection matrix, 86, 113	off training set error, 37
rank deficient, 114	Ω , 58

online learning, 98, 181	recommender systems, 1, 15, 181
definition, 12	regression, 77, 82
ordinary least squares, 86	logistic, 89
out-of-sample error, 21	regularization, 126–137 , 181
outliers, 79	$E_{ m in}$ versus $\lambda,~156$
output space, 3	${ m augmented\ error,\ 132}$
overfitting, 119–165 , 171	choosing λ , 134, 149
definition, 119	input noise, 160
experiment, 123, 155	lasso, 161
learning curves, 122	linear model, 133
	ridge regression, 132
pattern recognition, 9	soft order constraint, 128
penalty	Tikhonov, 131, 160
hypothesis complexity, 126, 133	VC dimension, 137
model complexity, 58	weight decay, 132
perceptron, 5–8, 78–82	regularization parameter, λ , 133
definition, 5	reinforcement learning, 12, 181
experiment, 34	ridge regression, 132
learning algorithm (PLA), 7	risk, 28
$m_{\mathcal{H}}(N)$, 70	risk matrix, 38, see also cost matrix
PLA convergence, 33	TISK Matrix, 50, see also cost matrix
pocket algorithm, 80	sample complexity, 56–57
perceptron learning algorithm, 7, 77, 78,	sample complexity, 50–57 sampling bias, 171–173, 181
98, 109–110	versus data snooping, 177 Sauer's Lemma, 48
and SGD, 98 convergence, 33	*
= '	search engines, 1
figure, 7, 83	selection bias, 173
PLA, see perceptron learning algorithm	SGD, see stochastic gradient descent
pocket algorithm, 80 , 97, 109	shatter, 42
figure, 83	sigmoid, 90
poll, 19	singular value decomposition, 114
Truman versus Dewey, 171	soft order constraint, 157
polynomial transform, 104	soft threshold, 90
polynomials, 120	spam, 4, 6
positive interval, 44	squared error, 61, 66, 84, 140
positive ray, 43	SRM, see structural risk minimization
postal scam, 170	statistics, 14
prediction of heart attacks, 89	stochastic gradient descent, 97–99, 110
probability	stochastic noise, 124
logistic regression, 89	streaming data, 12
${\bf union\ bound,\ 24,\ 41}$	structural risk minimization, 178
projection matrix, 113	superstition, 119
pseudo-inverse, 85	supervised learning
numerical stability, 86	definition, 11
publication bias, 173	support vector machines, 181
	supremum, 187
quadratic programming, 181	SVD, see singular value decomposition
random sample, 19	tanh, 90

```
target distribution, 31
                                                 linear model, 133
target function, 3
                                                 negative \lambda, 156
     noisy, 30-32, 83, 87
                                                 optimal \lambda, 161
test set, 59
                                                 virtual examples, 157
Tikhonov regularizer, 131
Tikhonov smoothness penalty, 162
                                            \mathcal{Z} space, 99–102
training examples, 4
Truman, 171
underfitting, 135
union bound, 24, 41
unlabeled data, 13, 181
unsupervised learning, 13, 181
     learning a language, 13
validation, 137-141
     cross validation, 145
     model selection, 141
     summary, 141
     validation set, 138
validation error, 138
     expectation, 138
     optimistic bias, 142
     variance, 139
validation set
     VC bound, 139, 163
Vapnik-Chervonenkis, see VC
VC dimension, 50
     d-dimensional perceptron, 52
     and number of parameters, 72
     definition, 50
     effective, 137
     intersection of hypothesis sets, 71
     monotonic functions, 71
     of composition, 72
     union of hypothesis sets, 71
VC generalization bound, 53, 78, 87, 102
     definition, 53
     proof, 187
     sketch of proof, 53
VC Inequality, 187
vending machines, 9
virtual examples, 157
weight decay, 132
     cross validation error, 149
     example, 126
     gradient descent, 156
     invariance under linear transform, 162
```