1-D, steady state so to heat eg. 970				
	Plane Wall	Cytridrical Wall	Spherell	
Heat eg.	$\frac{d^2T}{dx^2} = 0$	+2+(rat)=0	radr (vadr) =0	
Temp Dist.	TS,1-DTZ	Ts; 2 + DT in (1/13)	TS11- AT [1-(1-1/12)	
ક્ષ	KAT	rin (ra/s)	KAT (2/1/2)]	
B	KA AT	en(ra/ri)	41KDT (416)-(412)	
Report	L KA	In(12/17.)	(1/15) - (1/12)	

Boundary Conditions

· Constant Ts -> T(0,t) = Ts

"Constant q" -> Finite flux > q"(x=0) = -k 2 / 2 / x=0 = -8 3 / 2 / x=0 = -8 3 / x=0 = -8 / /

· Convective surface.

-kat | = h[To-7(0,t)]

Thermal Resignance

Rescond = Ts, -Ts = L

Rescond = Ts - Ts = L

Re

· Can write g as sum i.e. $\begin{cases} \frac{1}{2} = \frac{Too_1 - Too_2}{h_1 A} + \frac{1}{LA} + \frac{1}{h_1 A} \end{cases}$ plane wall will convection.

. Draw resistance diagrams.

9 ~ bo, in the La too bo

· Conduction = q" = - k dt (basic)

· Convection > q"=h(Tg-To) · Vectorial g"=-KT=> qx"=-KJx, qy"=-kJy, etc...

9x=-KAdT => 9x"= 3x

Heat Diffusion

·General - gxtdx = 9x + 2gxdx, etc.

·Based on En+Egon-Eout=Es+

2(K2T)+2y(K2T)+2(K2T)+9=09 2t Est

· Est normally =0.

For one-D (wheat gen) > d (kdt) +(g) = 0

· Thermal Diffusivity

ba= K/AGD

For + Extended Surfaces
General Form of Energy eg. $\frac{d^2T}{dx^2} + \left(\frac{1}{Ac}\frac{JAc}{dx}\right)\frac{dT}{dx} - \left(\frac{1}{Ac}\frac{h}{dx}\frac{dAc}{dx}\right)(T-T_{\infty}) = 0$

· with 0=T-Too

dro + (dAc dA) dD - (h dAs) D =0

· For uniform cross-section

 $\frac{d^{2T} - hP}{dx^{2}} \frac{(1-T_{0})}{kAc} = 0$ P = perimeter

More commonly

hP

 $\frac{d^2\theta}{dx^2} - m^2\theta = 0$ where $m^2 = \frac{hP}{kA_{\perp}}$

. Sol = 0(x) = 4emx + C1e-mx

	Temp. dist. and	heat loss for finstifict cross sec		
case	Tip Condition	Temp. Dist 0/06	Heat rate of	
A	Convective heat transfer	cosh m(L-x) + (h/mk) sinh m(L-x)	M Sinh mL + (h/mk) cosh mL	
		Cosh mL + lh/mk) sinhmus		
B	Adiabatic	$\cosh m(L-x)$	Mtanh(mL)	
L C	d0/dx x=1=0	coshmL	M (coshML - Ob)	
	Prescribed T. O(L) = 0L	(OL/OB) sinh mx + sinh m(L-x)	Smh mL	
D	of fin	p-mx	₩	
	O(L)=0			
0=T-Too m2= hP/KA 06=060=Tb-To M=ThPKAC 06				

Fin Etfectiveness

· Ef = 8f/(hAe, b 8b) where Au, h = fin cross sec. at base.

· Resistance -> Rt.f = Ob/gf } Eq = Rt.f

· Max for efficient = nf = gt/gmax = gt/chAf Db)

Straight Fins

- Rectangular Af= ZwLe

L(= L+ (+/2)

Ap= tL Mr = tanh mle mLe

- Triagular
Af: 2w(L2+(4/2)2)12

Ap = (t/a) L Mf = i I (QmL) Mf = mc Foldme)

Market Chill

Shape factor · g = SKAT,-2 Rt, cord = SK

Dinersonless Heat Cord. Rate · Le for so medium cases

Le 2 V As