Алгоритмы и модели вычислений. Задание 8: линейное программирование

Сергей Володин, 272 гр.

задано 2014.03.27

(каноническое) Задача 32

```
n\in\mathbb{N},\ \{(x_i,y_i)\}_{i=1}^n\subset\mathbb{R}^2. Задача: найти (a_0,c_0)=\mathop{\arg\min\max}_{(a,c)\in\mathbb{R}^2}\max_{i\in\overline{1,n}}|ax_i+y_i+c|.
```

Сведем к задаче ЛП: переменные (a,c,M), неравенства: $\left\{ \begin{array}{ll} ax_i+y_i+c &\leqslant& M\\ ax_i+y_i+c &\geqslant& -M \end{array} \right.,\ i\in\overline{1,n},\ M\to\min$

Выпишем конкретную задачу (n = 7, точки даны):

$$M \to \min, \begin{cases} a+3+c & \leqslant & M \\ a+3+c & \geqslant & -M \\ 2a+5+c & \leqslant & M \\ 2a+5+c & \geqslant & -M \\ 3a+7+c & \leqslant & M \\ 3a+7+c & \geqslant & -M \\ 5a+11+c & \leqslant & M \\ 5a+11+c & \geqslant & -M \\ 7a+14+c & \leqslant & M \\ 7a+14+c & \leqslant & M \\ 8a+15+c & \leqslant & M \\ 8a+15+c & \geqslant & -M \\ 10a+19+c & \leqslant & M \\ 10a+19+c & \geqslant & -M \end{cases}$$

Преобразуем $a=a_+-a_-, c=c_+-c_-$, новые переменные $t_1,...,t_{14}$. Неканоническая форма $(b_1=-3<0)$:

$$\begin{cases} z = -M \\ t_1 = -3 - 1a_+ + 1a_- - c_+ + c_- + M \\ t_2 = 3 + 1a_+ - 1a_- + c_+ - c_- + M \\ t_3 = -5 - 2a_+ + 2a_- - c_+ + c_- + M \\ t_4 = 5 + 2a_+ - 2a_- + c_+ - c_- + M \\ t_5 = -7 - 3a_+ + 3a_- - c_+ + c_- + M \\ t_6 = 7 + 3a_+ - 3a_- + c_+ - c_- + M \\ t_7 = -11 - 5a_+ + 5a_- - c_+ + c_- + M \\ t_8 = 11 + 5a_+ - 5a_- + c_+ - c_- + M \\ t_9 = -14 - 7a_+ + 7a_- - c_+ + c_- + M \\ t_{10} = 14 + 7a_+ - 7a_- + c_+ - c_- + M \\ t_{11} = -15 - 8a_+ + 8a_- - c_+ + c_- + M \\ t_{12} = 15 + 8a_+ - 8a_- + c_+ - c_- + M \\ t_{13} = -19 - 10a_+ + 10a_- - c_+ + c_- + M \\ t_{14} = 19 + 10a_+ - 10a_- + c_+ - c_- + M \\ a_+, a_-, c_+, c_-, M, t_1, ..., t_{14} \geqslant 0 \\ \text{Otbet: } M = \frac{4}{7} \text{ при } (a_0, c_0) = \left(-\frac{12}{7}, -\frac{13}{7}\right) \end{cases}$$

(каноническое) Задача 33

$$P_{\varepsilon} \stackrel{\text{\tiny def}}{=} \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \middle| \left\{ \begin{array}{ccc} (*_1) & 0 & \leqslant & x_1 & \leqslant & 1 \\ (*_2) & \varepsilon x_1 & \leqslant & x_2 & \leqslant & 1 - \varepsilon x_1 \\ (*_3) & \varepsilon x_2 & \leqslant & x_3 & \leqslant & 1 - \varepsilon x_2 \end{array} \right\}.$$

Путь:

1. $\vec{x}_1 = (0,0,0) \in P_{\varepsilon}$:

$$(*_1)$$
 $0 \leqslant 0 \leqslant 1$

$$(*_2) \ 0 \le 0 \le 1 - 0$$

$$(*_3) \ 0 \le 0 \le 1 - 0$$

2.
$$\vec{x}_2 = (1, \varepsilon, \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 1 \le 1$$

$$(*_2) \ \varepsilon \leqslant \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon < \frac{1}{2})$$

$$(*_3)$$
 $\varepsilon^2 \leqslant \varepsilon^2 \leqslant 1 - \varepsilon^2 (\varepsilon^2 < \frac{1}{4} < \frac{1}{2})$

Высота больше: $\varepsilon^2 > 0$

3.
$$\vec{x}_3 = (1, 1 - \varepsilon, \varepsilon - \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 1 \le 1$$

$$(*_2) \ \varepsilon \leqslant 1 - \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon < \frac{1}{2})$$

$$(*_3)$$
 $\varepsilon - \varepsilon^2 \leqslant \varepsilon - \varepsilon^2 \leqslant 1 - \varepsilon + \varepsilon^2 (2\varepsilon^2 - 2\varepsilon + 1 > 0, D = 4 - 8 < 0)$

Высота больше: $\varepsilon - \varepsilon^2 > \varepsilon^2 \ (\varepsilon < \frac{1}{2})$

4.
$$\vec{x}_4 = (0, 1, \varepsilon) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 0 \le 1$$

$$(*_2) \ 0 \le 1 \le 1$$

$$(*_3) \ \varepsilon \leqslant \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon < \frac{1}{2})$$

Высота больше: $\varepsilon > \varepsilon - \varepsilon^2 \ (\varepsilon > 0)$

5.
$$\vec{x}_5 = (0, 1, 1 - \varepsilon) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 0 \le 1$$

$$(*_2) \ 0 \le 1 \le 1$$

$$(*_3)$$
 $\varepsilon \leqslant 1 - \varepsilon \leqslant 1 - \varepsilon (\varepsilon < \frac{1}{2})$

Высота больше: $1 - \varepsilon > \varepsilon$ ($\varepsilon < \frac{1}{2}$)

6.
$$\vec{x}_6 = (1, 1 - \varepsilon, 1 - \varepsilon + \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 1 \le 1$$

$$(*_2)$$
 $\varepsilon \leqslant 1 - \varepsilon \leqslant 1 - \varepsilon (\varepsilon < \frac{1}{2})$

$$(*_3)$$
 $\varepsilon - \varepsilon^2 \le 1 - \varepsilon + \varepsilon^2 \le 1 - \varepsilon + \varepsilon^2 (2\varepsilon^2 - 2\varepsilon + 1 > 0, D = 4 - 8 < 0)$

Высота больше: $1 - \varepsilon + \varepsilon^2 > 1 - \varepsilon \ (\varepsilon > 0)$

7.
$$\vec{x}_7 = (1, \varepsilon, 1 - \varepsilon^2) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \leqslant 1 \leqslant 1 \ ()$$

$$(*_2) \ \varepsilon \leqslant \varepsilon \leqslant 1 - \varepsilon \ (\varepsilon > \frac{1}{2})$$

$$(*_3)$$
 $\varepsilon^2 \leqslant 1 - \varepsilon^2 \leqslant 1 - \varepsilon^2$ $(\varepsilon^2 < \frac{1}{4} < \frac{1}{2})$

Высота больше: $1 - \varepsilon^2 > 1 - \varepsilon + \varepsilon^2$ $(\varepsilon < \frac{1}{2})$

8.
$$\vec{x}_8 = (0,0,1) \in P_{\varepsilon}$$
:

$$(*_1) \ 0 \le 0 \le 1$$

$$(*_2) \ 0 \le 0 \le 1$$

$$(*_3) \ 0 \le 1 \le 1$$

Высота больше: $1 > 1 - \varepsilon^2$ ($\varepsilon > 0$)

(каноническое) Задача 34

(доказано в одну сторону)

$$A=\left\|a_{ij}\right\|_{i,j=1}^{m,n}\cdot P_1\stackrel{\mathrm{def}}{=}\left[\exists p\in\mathbb{R}^m\colon A^Tp<0\right].\ P_2\stackrel{\mathrm{def}}{=}\left[\exists y\in\mathbb{R}^n\colon y\geqslant 0,\ y\neq 0,\ Ay=0\right].$$
 Доказать: $\lnot P_1\Leftrightarrow P_2$

1.
$$e_i \stackrel{\text{\tiny def}}{=} \left\| \begin{smallmatrix} 0 & \dots & \underbrace{1}_i & \dots & 0 \end{smallmatrix} \right\| \in \mathbb{R}^n \Rightarrow e \stackrel{\text{\tiny def}}{=} (e_1, \dots, e_n)$$
 — стандартный базис в \mathbb{R}^n . Скалярное произведение (\cdot, \cdot) — тоже стандартное, т.е. матрица Грама в e единичная, т.е. $(\left\| \begin{matrix} x_1 \\ \dots \\ x_n \end{matrix} \right\|, \left\| \begin{matrix} y_1 \\ \dots \\ y_n \end{matrix} \right\|) = x_1 y_1 + \dots + x_n y_n$

- 2. Пусть P_2 .
 - (а) Тогда $\exists y \colon Ay = 0, \ y \geqslant 0, \ y \neq 0$. Обозначим столбцы матрицы $A = \|\underline{b_1} \quad \dots \quad \underline{b_n}\| \cdot y \in \mathbb{R}^n \Rightarrow y = \|y_1 \quad \dots \quad y_n\|^T$ Тогда $Ay = 0 \Leftrightarrow \|\underline{b_1} \quad \dots \quad \underline{b_n}\| \cdot \|y_1\| = 0 \Leftrightarrow \sum_{i=1}^n \underline{b_i} y_i \stackrel{(*)}{=} 0$. Условие $y \neq 0 \Rightarrow \exists i \in \overline{1,n} \colon y_i \neq 0$. Без ограничения общности это y_1 . Тогда в (*) перенесем всё, кроме $y_1\underline{b_1}$ в правую часть, и поделим на $y_1 \neq 0$: $\underline{b_1} = -\frac{y_2}{y_1}\underline{b_2} \dots \frac{y_n}{y_1}\underline{b_n}$
 - (b) Рассмотрим $A^Tp = \left\| \frac{\underline{b_1}^T}{\dots} \right\| \cdot \left\| \frac{p_1}{\dots} \right\| = \left\| \frac{(\underline{b_1}, p)}{\dots} \right\|$ $(\underline{b_n}, p)$
 - (c) Предположим, что P_1 , т.е. $\exists p \colon \forall i \in \overline{1,n} \hookrightarrow (\underline{b_i},p) < 0$. Рассмотрим $(\underline{b_1},p) = (-\frac{y_2}{y_1}\underline{b_2} - ... - \frac{y_n}{y_1}\underline{b_n},p) = -\frac{y_2}{y_1}(\underline{b_2},p) - ... - \frac{y_n}{y_1}(\underline{b_n},p)$. Поскольку $(\underline{b_i},p) < 0, \ \frac{y_i}{y_1} \geqslant 0$, то $(b_1,p) \geqslant 0$ — противоречие.
 - (d) Значит, $\neg P_1$.
- 3. Пусть $^{\neg}P_2$. Предположим, что $^{\neg}P_1$
 - (a) Выпишем $A = \left\| \begin{array}{c} a_1 \\ \dots \\ a_m \end{array} \right\|$ по строкам.
 - (b) Рассмотрим $Q = \{A^T p | p \in \mathbb{R}^m\}$. $A^T p = \|a_1^T \dots a_m^T\| \cdot \|p_1\| = a_1^T p_1 + \dots + a_m^T p_m \Rightarrow Q \equiv \langle a_1^T, \dots, a_m^T \rangle \subseteq \mathbb{R}^n$ (линейная оболочка транспонированных строк A).
 - (c) $\neg P_1 \Rightarrow \forall p \in \mathbb{R}^m \hookrightarrow \neg (A^T p < 0) \Leftrightarrow \forall x \in Q \hookrightarrow \neg (Q < 0)$. Определим $\mathbb{R}^n_- = \{x \in \mathbb{R}^n \big| x < 0\}$. Тогда $Q \cap \mathbb{R}^n_- = \emptyset$
 - (d) $\neg P_2 \Rightarrow \forall y \in \mathbb{R}^n \colon y \geqslant 0, \ y \neq 0 \hookrightarrow Ay \neq 0.$ Рассмотрим $Ay = \begin{vmatrix} a_1 \\ ... \\ a_m \end{vmatrix} \cdot \begin{vmatrix} y_1 \\ ... \\ y_n \end{vmatrix} = \begin{vmatrix} (a_1^T, y) \\ ... \\ (a_m^T, y) \end{vmatrix}$. $Ay \neq 0 \Leftrightarrow \exists i \in \overline{1,m} \colon (a_i^T, y) \neq 0 \Leftrightarrow y \notin \langle a_1^T, ..., a_m^T \rangle^{\perp}.$ Определим $\mathbb{R}^{\geqslant}_{\neq 0} = \{x \in \mathbb{R}^n | x \geqslant 0 \land x \neq 0\}.$ Тогда $Q^{\perp} \cap \mathbb{R}^{\geqslant}_{\neq 0} = \emptyset$
 - (e) Тогда $\exists Q = < a_1^T, ..., a_m^T > :$ $\begin{cases} Q \cap \mathbb{R}^n_- = \varnothing & ? \\ Q^\perp \cap \mathbb{R}^\geqslant_{\neq 0} = \varnothing \end{cases}$ \Rightarrow противоречие ???

(каноническое) Задача 35

(каноническое) Задача 36

(Тарасов, лекция 2014.04.01)

Фиксируем $k \in \mathbb{N}$, $\{t_i\}_{i=1}^k \subset \mathbb{R}$. Определим $\vec{r} \colon \mathbb{R} \to \mathbb{R}^4 : \vec{r}(t) \stackrel{\text{def}}{=} \|t^4 - t^3 - t^2 - t\|^T$. Рассмотрим точки $\vec{x}_i = \vec{r}(t_i)$. Рассмотрим $G \stackrel{\text{def}}{=} \text{conv}(\{\vec{x}_i\}_{i=1}^k)$ — выпуклую оболочку этих точек. Фиксируем $i_1 \neq i_2 \in \overline{1,k}$. Докажем, что $\vec{x}_{i_1},\vec{x}_{i_2}$ — вершины G, соединенные ребром $\stackrel{\text{def}}{\Leftrightarrow} \exists$ гиперплоскость $\pi \colon (\vec{x}_{i_1},\vec{x}_{i_2} \in \pi)$ и (многогранник G лежит по одну сторону от π).

- 1. Определим многочлен $P(t) \stackrel{\text{def}}{=} (t t_{i_1})^2 \cdot (t t_{i_2})^2 \equiv t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$
- 2. Определим гиперплоскость π . $\mathbb{R}^4 \ni \vec{x} \equiv \|x_1 x_2 x_3 x_4\|^T \in \pi \Leftrightarrow F(\vec{x}) \equiv x_1 + a_3x_2 + a_2x_3 + a_1x_4 + a_0 = 0$.
- 3. Тогда $F(\vec{r}(t)) = P(t)$: $F(\vec{r}(t)) = F(t^4, t^3, t^2, t) = t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$
- 4. t_{i_1} и t_{i_2} корни P(t), откуда $P(t_{i_1})=P(t_{i_2})=0$, значит, $F(\vec{x}_{i_1})=F(\vec{x}_{i_2})=0$, значит, $\vec{x}_{i_1},\vec{x}_{i_2}\in\pi$
- 5. Фиксируем $t \in \mathbb{R}$. Тогда $F(\vec{r}(t)) = P(t) \geqslant 0$. Значит, все точки $\{\vec{x}_i\}_{i=1}^k$ лежат по одну сторону от π . Значит, G лежит по одну сторону
- 6. Пусть $t\colon \vec{r}(t)\in\pi\Leftrightarrow F(\vec{r}(t))=0\Leftrightarrow P(t)=0\Leftrightarrow t\in\{t_{i_1},t_{i_2}\}$