Презентация по курсовому проекту

Модель которая используется

В данном курсовом использовалась модель машинного обучения классификатор LGBMClassifier. Соответственно перед тем как обучать модель классификации была проведена стандартизация признаков, так как все признаки были разного рода показателей.

Сравнение моделей

Для сравнения были использованы модели:

- 1) RandomForestClassifier
- 2) CatBoostClassifier
- 3) LGBMClassifier

На мой взгляд эти модели чаще всего используются в классификации, поэтому и я решил использовать эти модели

Каждая модель была протестирована через кросс-валидацию и были получены следующие результаты

```
rf = RandomForestClassifier(random_state=42, n_jobs=-1, max_depth=4)
cv_score = cross_val_score(
    rf,
   X train,
   y train,
    scoring='f1',
    cv=StratifiedKFold(n_splits=5, shuffle=True, random_state=21)
cv score
# rf.fit(X train, y train)
# y train pred = rf.predict(X train)
# y test pred = rf.predict(X test)
# get_classification_report(y_train, y_train_pred, y_test, y_test_pred)
array([0.74115086, 0.74306662, 0.74158122, 0.7427757, 0.74422364])
```

```
catb = CatBoostClassifier(silent=True,learning_rate=0.01, max_depth=4,iterations=50, random_state=21)
cv_score = cross_val_score(
   catb,
   X_train,
   y_train,
   scoring='f1',
   cv=StratifiedKFold(n_splits=5, shuffle=True, random_state=21)
cv_score
# catb.fit(X_train, y_train)
# y_train_pred = catb.predict(X_train)
# y_test_pred = catb.predict(X_test)
# get_classification_report(y_train, y_train_pred, y_test, y_test_pred)
array([0.87815264, 0.87823924, 0.87755741, 0.87779069, 0.87830867])
              model_lgbm = LGBMClassifier(random_state=21, n_estimators=100)
              cv_score = cross_val_score(
                  model_lgbm,
                  X_train,
                  y_train,
                  scoring='f1',
                  cv=StratifiedKFold(n_splits=5, shuffle=True, random_state=21)
              cv score
              # model_lgbm.fit(X_train, y_train)
              # y_train_pred = model_lgbm.predict(X_train)
              # y_test_pred = model_lgbm.predict(X_test)
              # get_classification_report(y_train, y_train_pred, y_test, y_test_pred)
              array([0.88689903, 0.88704687, 0.88681679, 0.88615292, 0.88711264])
```

Принцип составления предложений

Многие признаки были не важными, более 90% значений этих признаков принимали только одно значение, естественно такие признаки не показатели и от них я избавился.

Так же в модели явное преимущество target это 0, из-за чего модель будет плохо обучаться, для этого использовал баланс target добавляя новые строки что бы соотношение target 0 и target 1 было практически одинаковым.