УДК 630*432.31:658.012.12

Г.Д. Главацкий, В.М. Груманс

Главацкий Григорий Демьянович родился в 1943 г., окончил в 1970 г. Красноярский сельскохозяйственный институт, кандидат технических наук, академик РА-ЕН и МАНЭБ, директор ВНИИПОМлесхоза. Имеет 105 печатных работ по проблемам механизации сельскохозяйственного и лесохозяйственного производства, охраны лесов от пожаров.

Груманс Виктор Михайлович родился в 1951 г., окончил в 1974 г. Красноярский государственный университет, кандидат сельскохозяйственных наук, старший научный сотрудник отдела организации лесопожарных работ и экономических исследований ВНИИПОМлесхоза. Имеет более 60 печатных работ по проблеме организации и тактики борьбы с лесными пожарами.

ИНФОРМАЦИОННАЯ МОДЕЛЬ И ЗАДАЧИ ОПТИМИЗАЦИИ ПРОЦЕССА БОРЬБЫ С ЛЕСНЫМИ ПОЖАРАМИ

Разработана информационная модель и осуществлена постановка задачи оптимального управления процессом тушения пожара.

внешние условия, их параметры, показатели, параметры пожара, локализация, затраты, ущерб, оптимальное управление.

Анализ статистической информации о лесных пожарах свидетельствует о том, что в последнее десятилетие обозначилась устойчивая тенденция увеличения горимости лесов, что, в первую очередь, обусловлено снижением объемов финансирования лесной охраны [1]. Недостаток финансовых и материальных ресурсов уже не позволяет обеспечивать одинаковый уровень охраны лесов от пожаров на всей охраняемой территории. Требуется дифференцированный подход к распределению выделяемых ресурсов. В этой связи в сложившейся хозяйственно-экономической ситуации особую значимость приобретают задачи оптимизации системы охраны лесов и распределения выделяемых ресурсов по уровням охраны, учитывающим горимость, экологическую и экономическую ценность лесов [2, 3].

Работы по математическому моделированию процессов борьбы с лесными пожарами ведутся уже достаточно давно как в нашей стране, так и за рубежом [4–6, 8–10]. В перечисленных работах отображаются различные стороны процесса локализации лесного пожара. Все они ориентиро-

ваны на классический подход к построению математических моделей, основанный на использовании систем алгебраических и дифференциальных

Информационная модель процесса борьбы с лесным пожаром уравнений. При таком подходе принимаются некоторые допущения и упрощения процессов борьбы с пожарами, что ограничивает практическое использование полученных результатов.

На современном уровне развития информационных технологий требуется новый подход к моделированию процесса борьбы с лесными пожарами, по возможности подробно описывающий всех участников процесса, включая сам стихийно распространяющийся пожар и организацию сил и средств на его ликвидацию. Такой подход может быть представлен в виде информационной модели, увязывающей цель организованных действий лесной охраны на действующем пожаре — ликвидацию лесного пожара с совокупностью внешних параметров и условий и параметрами конкретного пожара (см. рисунок). Совокупность этих параметров и условий на первом этапе решения задач оптимизации может быть классифицирована по группам и охарактеризована показателями, определяющими специфику каждой из них (см. таблицу).

Параметры внешних условий	Показатели внешних условий
и пожара	и пожара
Начальные данные	Место возникновения
о пожаре	Время обнаружения
	Площадь в момент обнаружения
	Интенсивность
	Метеоусловия в момент обнаружения
	Расчетные показатели пожара
Лесорастительные условия	Тип леса

Тип ЛГМ – проводников горения

Рельеф

Метеоусловия Комплексный показатель засухи

> Температура и влажность воздуха в 13 ч Ветер: скорость, направление, профиль

Осадки в течение суток

Топография и инфраструктура местности

Карта рельефа Карта дорог

Наличие особых объектов: населенные пункты, трубо-

проводы. ЛЭП

Противопожарные силы

Гип оборудования, количество, производительность

Личный состав: количество, квалификация

и средства

Место расположения штаба

Штаб по борьбе с лесным пожаром и команды

лесных пожарных

Состав и место дислокации команд Располагаемые противопожарные средства

Наличие средств связи

Математическое и информационное обеспечение процесса принятия решений

Информационные базы по лесным горючим материалам

Картографические базы данных

Модели процесса горения и распространения ЛП

Модели расчета ущерба от ЛП

Модели расчета производительности противопожар-

ных сил и средств

Модели процесса локализации

Данная модель предопределяет постановку и решение ряда задач оптимизации процесса борьбы с лесным пожаром*. Рассмотрим постановку задачи оптимального управления количеством сил и средств при ликвидации конкретного лесного пожара, которая является обобщением математической модели, описанной в работе [10]. Основным допущением при этом является предположение, что интенсивность поступления и отвода противопожарных сил и средств является непрерывной функцией времени в заданных пределах.

Введем следующие обозначения для моментов времени: t_i — возникновение пожара; t_d – его обнаружение; t_a – начало борьбы с пожаром; t_c – окончание локализации; t_m – окончание тушения; t_f – окончание обслуживания пожара.

Обозначим S(t) площадь пожара в момент времени t, га.

Как известно [4, 5], скорость изменения площади свободно распространяющегося пожара (по терминологии Н.П. Курбатского, скорость распространения пожара [7]) растет линейно со временем и может быть представлена в виде

$$S(t) = r(t) = A + Bt, \tag{1}$$

3

Авторы выражают благодарность проф. Г.А. Дорреру за методическую помощь в выполнении работы.

где A, B — константы для однородного участка леса, определяемые лесорастительными и погодными условиями, измеряемые соответственно в га/ч и га/ч 2 .

Скорость изменения площади пожара, находящегося под воздействием противопожарных сил и средств, определяется формулой

$$S(t) = \begin{cases} r(t) \text{ iiðè} & t < t_a; \\ r(t) - E(t - t_a, V_1, m) \text{ iiðè} & t_a \le t \le t_c. \end{cases}$$
 (2)

Здесь $E(t-t_a,V_1,m)$ — производительность сил по борьбе с пожаром, га/ч, приведенная к скорости изменения площади пожара. Эта функция зависит от следующих факторов:

 $t - t_a$ — время от начала тушения пожара;

 $V_{I} = V_{1}(N) - {
m cymmaphas}$ скорость локализации кромки пожара, км/ч;

m – номер варианта тактики борьбы с пожаром;

N = N(t) — суммарное количество противопожарных сил и средств, задействованных на пожаре в момент t, ед.

При этом

$$N(t) = \int_{t_a}^{t} u(\tau)d\tau, \qquad (3)$$

где u(t) – интенсивность поступления противопожарных сил и средств на пожар, ед./ч.

Значение u(t)>0 соответствует доставке сил и средств на пожар, u(t)<0 – их возврату на базу. Эта функция ограничена:

$$|u(t)| \le u_{\max},\tag{4}$$

где u_{\max} — максимально допустимая интенсивность маневрирования силами и средствами.

В модели [10] принята линейная зависимость скорости уменьшения площади пожара E(t) от количества привлеченных средств. Однако в реальной ситуации такая зависимость гораздо сложнее, она определяется типом привлеченных средств, выбором тактики борьбы с пожаром и другими факторами.

Уравнение (2) должно рассматриваться при начальных условиях: $t=t_aS(t_a)=S_0$, где S_0 – площадь пожара в момент начала его тушения, $N(t_a)=0$.

Цель борьбы с пожаром состоит в его остановке и локализации. Поэтому интенсивность поступления сил и средств u(t) и их количество N(t) надо выбирать таким образом, чтобы при $t=t_c$ скорость распространения пожара оказалась равной нулю, при этом

$$S(t_c) = 0, \ r(t_c) = E(t_c - t_a, V_1, m).$$
 (5)

Для оценки успешности усилий в борьбе с пожаром необходимо учесть причиненный им ущерб и понесенные при этом затраты. В модели учтены следующие компоненты:

- 1. Затраты по приведению в боевое состояние и доставке противопожарных сил и средств к месту пожара и обратно. Сюда входят разовые затраты на подготовку и транспортировку сил и средств к месту пожара. Эти затраты обозначим C_0 , р./ед. средств.
- 2. Ущерб, пропорциональный площади лесного пожара. Он определяется площадью пожара, стоимостью поврежденных лесных ресурсов и затратами на лесовосстановление, C_S , р./га.
- 3. Затраты, пропорциональные общему времени борьбы с лесным пожаром, включающие заработную плату пожарных команд, амортизацию оборудования, горючее и другие расходные материалы, C_T , р./(ч · ед. средств).

При этом общие убытки от пожара к моменту окончания борьбы с ним t_f определятся выражением

$$Z(t_f) = Z_1(t_f) + Z_2(t_c) + Z_3(t_f),$$
(6)

где $Z_1(t_f)$ — затраты на мобилизацию и транспортировку противопожарных сил и средств,

$$Z_1(t_f) = C_0 \int_{t_0}^{t_f} \left| u(\tau) \right| d\tau; \tag{7}$$

 $Z_2(t_f)$ – ущерб, нанесенный лесным пожаром к моменту его локализации, $Z_2(t_f) = C_S S(t_c);$ (8)

 $Z_3(t_f)$ – затраты на содержание сил и средств за время борьбы с пожаром,

$$Z_3(t_f) = C_T \int_{t_a}^{t_f} |N(\tau)| d\tau.$$
 (9)

В рамках данной модели может быть поставлена следующая задача оптимального управления. Задан критерий

$$Z = C_T \int\limits_{t_a}^{t_f} \mbox{\ensuremath{\mbox{\boldmath d}}} \left(u(\tau) \right) + C_T N(\tau) \mbox{\ensuremath{\mbox{\boldmath d}}} \tau + C_S S(t_c) \quad \text{при условиях} \quad \mbox{(1)-(5)}. \quad \mbox{Требуется}$$

найти такое управление u(t), $t \in [t_a, t_f]$ и такой момент времени t_f , при которых обеспечивается min Z.

Сформулированная задача представляет собой задачу оптимального управления, в которой управление u(t) определено на неизвестном отрезке времени $[t_a,t_f]$. В случае линейной зависимости скорости уменьшения площади пожара $E(t_c-t_a,V_e,m)$ от количества противопожарных сил N оптимальная тактика управления силами заключается в следующем.

Существуют два момента времени t_1, t_2 ($t_a \le t_1 < t_2 \le t_c$), определяющие оптимальное управление $\hat{u}(t)$, которое имеет вид

3*

$$\widehat{u}(t) = \begin{cases} +m \, \text{iide} \quad t_a \leq t \leq t_1; \\ 0 \, \text{iide} \quad t_1 \leq t \leq t_2; \\ -m \, \text{iide} \quad t_2 \leq t \leq t_c. \end{cases}$$

$$(10)$$

Таким образом, рассматриваются три этапа борьбы с пожаром. На первом этапе силы нужно наращивать с максимально возможной скоростью, на втором их количество не изменяется, на третьем силы нужно выводить с места пожара также с максимально возможной скоростью.

В данной задаче не предусмотрена обратная связь по фактическому состоянию процесса локализации пожара. Между тем поведение лесных пожаров часто непредсказуемо, и рассчитанная заранее тактика требует корректировки. Таким образом, процесс принятия решений при борьбе с пожарами должен быть пошаговым, основанным как на анализе текущего состояния, так и на прогнозе развития пожара.

Рассмотренные в статье задачи являются составной частью информационно-аналитической системы, обеспечивающей оперативное и долгосрочное планирование мероприятий по охране лесов от пожаров.

Разработаны алгоритмы численного решения сформулированных задач и компьютерные программы для их реализации.

Использование методов теории оптимального управления позволяет рассматривать тушение пожара как динамическую систему и оценить при этом самые разнообразные ситуации во взаимосвязи процессов распространения пожара и наращивания сил и средств тушения. Это особенно актуально в отношении крупных лесных пожаров, продолжительность которых, как правило, достигает нескольких недель, а количество участвующих в тушении сил и средств достаточно велико.

СПИСОК ЛИТЕРАТУРЫ

- 1. Главацкий Г.Д. Горимость лесов Красноярского края // Профилактика и тушение лесных пожаров. Красноярск, 1998. C. 38–45.
- 2. Главацкий Г.Д. Актуальные направления совершенствования лесной охраны Сибири // Пожары в лесу и на объектах лесохимического комплекса: возникновение, тушение и экологические последствия: Матер. Междунар. конф. Томск; Красноярск, 1999. С. 138.
- 3. Главацкий Г.Д., Груманс В.М. Обоснование видов и интенсивности лесопожарных мероприятий при различных уровнях организации охраны лесов от пожаров / Матер. Междунар. конф. Томск, 2000. С. 52–53.
- 4. *Груманс В.М.* Особенности организации и тактики тушения крупных лесных пожаров: Автореф. дис. ... канд. с-х. наук. Красноярск: СибГТУ, 1999. 24 с.
- 5. Доррер Γ .А. Математические модели динамики лесных пожаров. М.: Лесн. пром-сть, 1979. 161 с.
- 6. *Коровин Г.Н., Добротворский Н.М.* АСУ охраны леса (от пожара): задачи, принципы, перспективы // Лесн. хоз-во. 1974. № 8.

- 7. *Курбатский Н.П.* Терминология лесной пирологии // Вопросы лесной пирологии. Красноярск: ИЛиД СО АН СССР, 1972. С. 171 –231.
- 8. *Луданов В.В.* Применение математических методов и ЭВМ при проектировании и организации оперативных отделений авиационной охраны лесов от пожаров: Автореф. дис. ... канд. техн. наук. Красноярск: СибТИ, 1975.
- 9. *Dorrer G.A.*, *Ushanov S.V.* Mathematical Modeling and Optimization of Forest Fire Localization Process // Fire in Ecosystems of Boreal Euroasia: Cluver Academic Publishers, 1996. P. 303–313.
- 10. Parlar M., Vicson R.G. Optimal forest fire control: an extension of Park's model // Forest Sci. 1982. Vol. 28, N 2. P. 345–355.

ВНИИПОМлесхоз

Поступила 29.08.2000 г.

G.D. Glavatsky, V.M. Grumans

Informational Model and Problems of Optimization of Forest Fires Control Process

The informational model is developed and problem definition of optimal management of fire extinction process is accomplished.