Test 4

Due Aug 13 at 11:59pm Points 20 Questions 20 Time Limit 15 Minutes
Allowed Attempts 2

Instructions

You will get 20 questions for each attempt. You will have 15 minutes to answer the T/F and MC questions on each attempt. You will be able to take the test a second time if you choose. Your score will be that of the last attempt completed.

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	8 minutes	18 out of 20
LATEST	Attempt 2	8 minutes	18 out of 20
	Attempt 1	15 minutes	13 out of 20

Score for this attempt: **18** out of 20 Submitted Aug 13 at 8:37pm This attempt took 8 minutes.

	Question 1 1 / 1 pts	;
	Order of magnitude estimates doesn't work well if we are only interested in behavior for very small data sets.	r
Correct!	True	
	False	

Question 2	1 / 1 pts
Linear search has time complexity $O(n \log n)$.	
□ True	

False

	Question 3 1/1 pts
	Binary search splits the input in half for each iteration of the algorithm, like searching for a word in a paper dictionary. Open it in the middle and then select the correct side and repeat. So its runtime complextiy is $Big-O(N^2)$.
	□ True
Correct!	False

Question 4 If algorithm A requires 2n + 1 basic operations to process an input of size n, and Algorithm B requires 3n + 2 basic operations to process the same input, algorithm A is considered to be more efficient than Algorithm B. True False

Correct!

Question 5 1 / 1 pts

The following is an algorithm to average a series of numbers read from the keyboard:

Prompt the user for the number of items;

Read the number of items (n) from the keyboard;

For each item,

Read the number from the keyboard;

Add it to the sum;

Divide sum by the current total numbers;

	Which of the follow expressions is the correct Big-O complexity of the algorithm?	
	O(N ²)	
	O(N+4)	
	O(N)	
	O(4N)	
	None of the above	
	Question 6	1 / 1 pt
T I		
	We call it Big-O runtime complexity because we do not care about memory usage, jexecution of the instructions.	just the
		just the
	execution of the instructions.	just the
	execution of the instructions. True	just the
	execution of the instructions. True	just the
	execution of the instructions. True False	
	execution of the instructions. True False Question 7	
	execution of the instructions. True False Question 7 The expression, 4N²–2N+1 is	

O(log N))

	Question 8	1 / 1 pts
	It is called asymptotic complexity analysis because	
	It is the same thing as a limit	
	We want to get the exact number of execution of algorithm steps	
ct!	We want to use the largest values possible to even out small difference in algorithm.	s
	All the above	
	Question 9	1 / 1 pts
	I have an algorithm that runs in $O(N^2)$, where N is the size of the problem. For N = time the algorithm runs is 1 minute. How long does the algorithm take for N=1000 likely?	
	time the algorithm runs is 1 minute. How long does the algorithm take for N=1000 likely? Same time	
ct!	time the algorithm runs is 1 minute. How long does the algorithm take for N=1000 likely?	
ct!	time the algorithm runs is 1 minute. How long does the algorithm take for N=1000 likely? Same time 10 minutes	
ct!	time the algorithm runs is 1 minute. How long does the algorithm take for N=1000 likely? Same time 10 minutes 100 minutes	
ct!	time the algorithm runs is 1 minute. How long does the algorithm take for N=1000 likely? Same time 10 minutes 100 minutes	
ct!	time the algorithm runs is 1 minute. How long does the algorithm take for N=1000 likely? Same time 10 minutes 1000 minutes You haven't given enough information. I can't tell.	nost

False

	Question 11	1 / 1 pts
	The advantage of a linear search is that	
	A) it can be used on unordered data.	
	B) it is efficient.	
	C) it is fast.	
	D) it is simple.	
Correct!	E) both A and D	

	Question 12 0 / 1 pts	
	To find a value that is in an unordered array of 100 items, linear search must examine an average of values.	
	<u> </u>	
Correct Answer	50	
You Answered	100	
	O 101	

Question 13		1 / 1 pts

	Question 14	1 / 1 pts
	A(n) search is more efficient than a(n) search.	
	string, double	
	linear, binary	
	integer, double	
Correct!	binary, linear	
	None of the above.	

Question 15 If a selection sort is used to arrange the numbers 7 5 3 9 2 6 in ascending order, what order will the data be in after the first pass? 2 5 3 9 7 6

Correct!

537269
235679
O 573926
None of the above.

	Question 16	pts
	When sorting an array of objects or structures, one must decide which data item to sort of	on.
Correct!	True	
	False	

Question 17	
A sorting algorithm can be used to arrange a set of in order.	
numeric values, descending	
strings, descending	
strings, ascending	
numeric values, ascending	
All of the above.	

Correct!

Question 18 1/1 pts

If the item being searched for is not in the array, binary search stops looking for it and reports that it is not there when
Boolean variable found equals false.
it finds a value larger than the search key.
array index first > array index last.
Boolean variable found equals true.
it has examined all the elements in the array.

	Question 19	1 / 1 pts
	The quicksort algorithm works on the basis of	
Correct!	three pivots.	
	two sublists and a pivot.	
	two pivots and a sublist.	
	three sublists.	
	None of the above.	

	Question 20	0 / 1 pts
	The quicksort algorithm can be used to	
	perform binary search on arrays.	
Correct Answer	sort lists stored in arrays.	

	 quickly sort and search arrays.
You Answered	All of the above
	None of the above.

Quiz Score: 18 out of 20