Finansteori (SFB30820)

Forelesningsnotater

Jørn I.Halvorsen

2021/08/12 (updated: 2021-08-13)

Timeplan

	Uke	Forelesning	Literatur	Temaer	Timer
1	33	1	Kap. 1: Introduksjon	Introduksjon og overblikk	3
2	34	2	Kap. 2: Relevant risiko	Porteføljeteori to fond	3
3	35	3	Kap. 2: Relevant risiko	Porteføljeteori 3 til n- fond	3
4	36	4	Kap. 3: Relevant risiko og kapitalkostnad	Effisiens	3
5	37	5	Kap. 3: Relevant risiko og kapitalkostnad	Kapitalverdimodellen	3
6	38	6	Kap. 5: Langsiktige finansieringsformer	Finansielle instrumenter for finansiering	3
7	39	7	Kap. 6: Gjeldsgrad og risiko	Gjeld, total risiko og systematisk risiko	3

2 / 13

Forelesning 1: Introduksjon og overblikk

Læringsmål:

- Forklare strukturen i risikojustert rente metoden for beregning av nåverdi.
- Redegjøre for forskjellen mellom et investeringsprosjekt og et finansieringsprosjekt.
- Konstruere en kontantstrøm fra prosjektdata.
- Forklare hva som menes med begrepene sannsynlighet, tilstand og utfall.
- Beregne forventet kontantstrøm og forventet avkastning for et prosjekt og en portefølje.
- Gi et oversiktsbilde av innholdet i boken og bokens nettside.

Nåverdiberegninger med og uten usikkerhet

Tidligere: Uten usikkerhet

$$NV = \sum_{t=0}^{T} rac{X_t}{(1+k)^t} = X_0 + rac{X_1}{(1+k)^1} + rac{X_2}{(1+k)^2} + \ldots + rac{X_T}{(1+k)^T} \quad (1)$$

Beslutningsregel:

- Gitt uavhengig
- Gitt avhengigprosjekter

Merk: Benevning

Nå: Med usikkerhet (risiko)

$$NV = \sum_{t=0}^{T} rac{X_t}{(1+k)^t} = X_0 + rac{X_1}{(1+k)^1} + rac{X_2}{(1+k)^t} + \ldots + rac{X_T}{(1+k)^T} \quad (2)$$

Beslutningsregel:

Kapitalkostnad = Tidskostnad + Usikkerhetskostnad

Investerings- vs. finansieringsprosjekt

Et investeringsprosjekt gir verdien

Et finansieringsprosjekt gir verdien

Prosjektets kontantstrøm

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.0	6	160	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875
Datsun 710	22.8	4	108	93	3.85	2.320
Hornet 4 Drive	21.4	6	258	110	3.08	3.215
Hornet Sportabout	18.7	8	360	175	3.15	3.440

Forventet kontantstrøm

Porteføljeavkastning

Metode 1:

$$E(X) = \sum_{s=1}^{T} Pr(s)X \tag{3}$$

Metode 2:

$$E(X) = \sum_{s=1}^{T} w_i \tag{4}$$

Veien framover

Øvelse til neste gang:

• Gi et oversiktsbilde av innholdet i boken og bokens nettside.

Forelesning 2: Porteføljeteori to fond

Læringsmål:

- Tallfeste risiko i en portefølje ved å beregne standardavvik.
- Forklare gjennom et eksempel hvorfor et prosjekt som er risikabelt vurdert alene kan ha lav risiko når prosjektet inngår i en portefølje.
- Forklare hvorfor porteføljens risiko avhenger av samvariasjonen mellom prosjektene som inngår i porteføljen og de andelene som er investert i hvert prosjekt.

Totalrisiko

Relevant risiko

class: inverse, center, middle

knitr::knit_exit()