

k-means (Clustering)

Knowledge Discovery (CENG-542)
Paper Presentation

TOC (k-means)

Introduction

Motivation: to cluster given dataset

Question: How?

Answer: k-means algorithm (iterative way to **partition** dataset)

Approach: unsupervised machine learning (no training phase)

k-means (Theory)

Data: has *d* dimensions

Distance Measurement: euclidian

Nature of algorithm: greedy

Pseudocode (k-means)

- (1) specify #clusters *k*
- (2) randomly pick k data points as centroids
- (3) repeat
- (4) [assignment] for each data point dp: assign dp to closest centroid
- (5) **[relocation] for each** cluster c : update c's mean
- (6) **until** centroids do not change

k-means – Example 1

Pseudocode (k-means)

- (1) specify #clusters *k*
- (2) randomly pick k data points as centroids \rightarrow **(b)**
- (3) repeat
- (4) [assignment] for each data point dp: assign dp to closest centroid \rightarrow (c), (e)
- (5) [relocation] for each cluster c: update c's mean \rightarrow (d) (f)
- (6) **until** centroids do not change

k-means – Example 2 (interactive)

Experiment:

- 1. https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
- 2. Press "I'll Choose"
- 3. Press "Gaussian Mixture"
- 4. Try different starting points & different *k*
 - k=6, 2 centroids for each cluster
 - k=6, 4 in A, 1 in B, 1 in C
 - k=3
 - k=2
 - k=1 (worst cluster)

Quality

Quality measurement: within-cluster variation / within-cluster sum of squared error (WSS)

$$E = \sum_{\mathrm{i}=1}^{\mathrm{k}} \; \sum_{x \, \in \, \mathrm{cluster} \; C_i} \mathrm{dist}(x, \mathrm{centroid} \; \mathrm{of} \; C_i)$$

Elbow plot: plot WSS for different *k*

https://www.analyticsvidhya.com/blog/2021/05/k-mean-getting-the-optimal-number-of-clusters/

Pro & Contra

Pro	Contra
easy implementation	sensitive against outliers → preprocess data → use k-medoids algorithm
adapts to new data points	initial pick for centroids has impact on result → repeat algorithm
scalable (many data points)	affected from curse of dimensionality → reduce dimensions (e. g. PCA)
guaranteed convergence	not guaranteed to converge to the global optimum (often terminates at a local optimum) → repeat algorithm
runtime O(k * n * iterations)	manually choose <i>k</i> → repeat algorithm & use elbow plot

Thank you!

Questions?

About Me:

Joel Amarou Heuer Freie Universität Berlin Erasmus+ Student at IZTECH

joelheuer@iyte.edu.tr

