Lista 7

Zadanie 1. Niech A będzie macierzą stochastyczną. Pokaż, że dla wektora \vec{V}

$$||A\vec{V}||_1 \le ||\vec{V}||_1$$
.

Zadanie 2. Niech A będzie macierzą kolumnowo stochastyczną. Pokaż, że A nie ma wartości własnej o module większym niż 1.

Wskazówka: Rozpatrz A^k dla dowolnie dużego k i skorzystać z Zadania I.

Zadanie 3. Niech A będzie macierzą stochastyczną dodatnią (rozmiaru $n \times n$) a \mathbb{V}_1 będzie przestrzenią wektorów własnych dla wartości własnej 1. Pokaż, że $\mathbb{V}_1 \cap \mathbb{V}_{=0} = \{\vec{0}\}$ oraz $\mathbb{V}_1 + \mathbb{V}_{=0} = \mathbb{R}^n$.

(Dla przypomnienia: $\mathbb{V}_{=0}$ to podprzestrzeń wektorów o sumie współrzędnych równej 0.)

Zadanie 4. Rozważmy graf o wierzchołkach $\{1,2,3,4\}$ i krawędziach skierowanych $1 \to 2$, $1 \to 3$, $1 \to 4$, $2 \to 3$, $2 \to 4$, $3 \to 1$, $4 \to 1$, $4 \to 3$. Jak wygląda znormalizowana macierz sąsiedztwa tego grafu? Oblicz PageRank tego grafu dla m=0,25.

Zadanie 5. To zadanie pokazuje, że iteracyjna metoda obliczania PageRanku zbiega wykładniczo szybko. Niech A będzie macierz stochastyczną (niekoniecznie dodatnią!) rozmiaru $n \times n$ a P macierzą stochastyczną $n \times n$ postaci

$$P = \begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{bmatrix} .$$

Dla liczby rzeczywistej $0 \le m \le 1$ niech M_m oznacza macierz

$$M_m = (1 - m)A + mP .$$

Pokaż, że dla wektora $\vec{V} \in \mathbb{V}_{=0}$ zachodzi

$$||M_m \vec{V}||_1 \le (1-m)||\vec{V}||_1$$
.

. Vskazówka: Pokaż najpierw dla m=0 oraz m=1, dla m=0 skorzystaj z Zadania I.

Zadanie 6. Pokaż, że dla dowolnej macierzy kwadratowej M (odpowiedniego rozmiaru) zachodzi

$$\vec{U} \cdot M \vec{V} = M^T \vec{U} \cdot \vec{V}$$

gdzie \cdot oznacza standardowy iloczyn skalarny.

Zadanie 7. Niech M będzie macierzą symetryczną (tj. $M=M^T$). Pokaż, że

$$\vec{U} \cdot M\vec{V} = M\vec{U} \cdot \vec{V}$$

(zakładamy, że wymiary się zgadzają).

Wywnioskuj z tego, że jeśli $\lambda \neq \lambda'$ są różnymi wartościami własnymi macierzy symetrycznej M o wektorach własnych \vec{V} oraz \vec{U} , to $\vec{V} \cdot \vec{U} = 0$, tj. \vec{V} i \vec{U} są prostopadłe.

Zadanie 8. Udowodnij nierówność

$$\vec{U} \cdot \vec{V} \le \|\vec{U}\| \cdot \|\vec{V}\|$$

dla $\vec{U}, \vec{V} \in \mathbb{R}^n$.

Wskazówka: Rozważ najpierw $U \perp V$, potem liniowo zależne a potem dowolne.

Zadanie 9. Udowodnij, że w przestrzeni \mathbb{R}^n ze standardowym iloczynem skalarnym dla dowolnej pary wektorów \vec{U}, \vec{V} zachodzi

$$\|\vec{U}\| = \|\vec{V}\| \quad \Longleftrightarrow \quad (\vec{U} - \vec{V}) \bot (\vec{U} + \vec{V}) \ .$$

Zinterpretuj ten fakt jako stwierdzenie: "przekątne równoległoboku są prostopadłe wtedy i tylko wtedy, gdy równoległobok ten jest rombem".

Wskazówka: Wyraż
$$\vec{U}$$
, \vec{V} przez $\vec{U} - \vec{V}$, $\vec{U} + \vec{V}$.

Zadanie 10. Dla podanych poniżej układów wektorów podaj bazy dopełnień ortogonalnych przestrzeni liniowych przez nie generowanych:

- $[1,0,1]^T, [2,3,1]^T$ nad \mathbb{R} ;
- [1,0,1,0],[0,1,0,1] nad \mathbb{Z}_2 ;
- [1,0,2] nad \mathbb{Z}_3 .

Uwaga: w przestrzeniach \mathbb{Z}_p^n dopełnienie ortogonalne \mathbb{W}^\perp może nie być rozłączne z \mathbb{W} , może nawet zachodzić równość $\mathbb{W}^\perp = \mathbb{W}$.

Zadanie 11 (* nie liczy się do podstawy, choć nietrudne). Pokaż, że dla każdego kodu liniowego istnieje kod mu równoważmy, który ma kodowanie systematyczne.

Wskazówka: Eliminacja Gauba na kolumnach.