$Numerik\ WS2018/19$

Dozent: Prof. Dr. Andreas Fischer

14. Oktober 2018

In halts verzeichnis

Ι	Inte	Interpolation									
	1	1 Grundlagen									
	2	Interpolation durch Polynome	4								
		2.1 Existenz und Eindeutigkeit	4								
		2.2 Newton-Form des Interpolationspolynoms	5								
		2.3 Interpolationsfehler	6								
	3	Interpolation durch Polynomsplines	8								
II	nun	numerische Quadratur und Integration									
	1	1 Integration von Interpolationspolynomen									
	2	Newton-Cotes-Formeln	10								
	3	spezielle Newton-Cotes-Formeln	11								
	4	Zusammengesetzte Newton-Cotes-Formeln	12								
	5	GAUSS'sche Quadraturformeln	13								
Ш	direkte Verfahren für lineare Gleichungssysteme										
	1	Gauss'scher Algorithmus für quadratische Systeme	14								
	2	Lineare Quadratmittelprobleme	15								
	3	Kondition linearer Gleichungssysteme	16								
IV	Kondition von Aufgaben und Stabilität von Algorithmen										
	1	Maschinenzahlen und Rundungsfehler	17								
	2	Fehleranalyse	18								
\mathbf{V}	Newton-Verfahren zur Lösung nichtlinearer Gleichungssysteme										
	1	Das Newton-Verfahren	19								
	2	Gedämpftes Newton-Verfahren	20								
VI	lineare Optimierung										
	1	Ecken und ihre Charakterisierung	21								
	2	Simplex-Verfahren	22								
	3	Die Tableauform des Simplex-Verfahrens	23								
	4	Revidiertes Simplex-Verfahren	24								
	5	Bestimmung einer ersten zulässigen Basislösung	25								
An	hang	S	27								
\mathbf{A}	List		27								
А		Liste der Theoreme	27								
		Liste der benannten Sätze, Lemmata und Folgerungen	28								
	11.4	District der behannten batze, Dennhata und Polgerungen	20								

Vorwort

Kapitel I

Interpolation

1. Grundlagen

Aufgabe:

Gegeben sind n+1 Datenpaare $(x_0, f_0), \ldots, (x_n, f_n)$, alles reelle Zahlen und paarweise verschieden. Gesucht ist eine Funktion $F: \mathbb{R} \to \mathbb{R}$, die die Interpolationsbedingungen

$$F(x_0) = f_0, \dots, F(x_n) = f_n$$
 (1)

genügt.

Definition (Stützstellen, Stützwerte)

Die x_0 bis x_n werden Stützstellen genannt.

Die f_0 bis f_n werden Stützwerte genannt.

Die oben gestellte Aufgabe wird zum Beispiel durch

$$F(x) = \begin{cases} 0 & x \notin \{x_0, \dots, x_n\} \\ f_i & x = x_i \end{cases}$$

gelöst. Weitere Möglichkeiten sind: Polygonzug, Treppenfunktion, Polynom, ...

- In welcher Menge von Funktionen soll F liegen?
- Gibt es im gewählten <u>Funktionenraum</u> für beliebige Datenpaare eine Funktion F, die den Interpolationsbedingungen genügt (eine solche Funktion heißt Interpolierende)?
- Ist die Interpolierende in diesem Raum eindeutig bestimmt?
- Welche weiteren Eigenschaften besitzt die Interpolierende, zum Beispiel hinsichtlich ihrer Krümmung oder der Approximation einer Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f_k = f(x_k)$ für $k = 0, \dots, n$
- Wie sollte man die Stützstellen wählen, falls nicht vorgegeben?
- Wie lässt sich die Interpolierende effizient bestimmen, gegebenenfalls auch unter der Berücksichtigung, dass neue Datenpaare hinzukommen oder dass sich nur die Stützwerte ändern?

■ Beispiel 1.1

k	0	1	2	3	4	5
x_k in s	0	1	2	3	4	5
f_k in °C	80	85,8	86,4	93,6	98,3	99,1

Interpolation im

- Raum der stetigen stückweise affinen Funktionen
- Raum der Polynome höchstens 5. Grades
- Raum der Polynome höchstens 4. Grades (Interpolation im Allgemeinen nicht lösbar, Regression nötig)

2. Interpolation durch Polynome

 Π_n bezeichne den Vektorraum der Polynome von Höchstgrad n mit der üblichen Addition und Skalarmultiplikation. Für jedes $p \in \Pi_n$ gibt es $a_0, \ldots, a_n \in \mathbb{R}$, sodass

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
(2)

und umgekehrt.

2.1. Existenz und Eindeutigkeit

Satz 2.1

Zu n+1 Datenpaaren $(x_0, f_0), \ldots, (x_n, f_n)$ mit paarweise verschiedenen Stützstellen existiert genau ein Polynom $p \in \Pi_n$, dass die Interpolationsbedingung Gleichung (1) erfüllt.

Beweis. • Existenz: Sei $j \in \{0, ..., n\}$ und $L_j : \mathbb{R} \to \mathbb{R}$ mit

$$L_j(x) := \prod_{\substack{i=0\\i\neq j}}^n \frac{x - x_i}{x_j - x_i} = \frac{(x - x_0) \cdot \dots \cdot (x - x_{j-1})(x - x_{j+1}) \cdot \dots \cdot (x - x_n)}{(x_j - x_0) \cdot \dots \cdot (x_j - x_{j-1})(x_j - x_{j+1}) \cdot \dots \cdot (x_j - x_n)}$$

das LAGRANGE-Basispolynom vom Grad n. Offenbar gilt $L_i \in \Pi_n$ und

$$L_j(x_k) = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases} = \delta_{jk} \tag{3}$$

Definiert man $p: \mathbb{R} \to \mathbb{R}$ durch

$$p(x) := \sum_{j=0}^{n} f_j \cdot L_j(x) \tag{4}$$

so ist $p \in \Pi_n$ und außerdem erfüllt p wegen Gleichung (3) die Interpolationsbedingung Gleichung (1)

• Eindeutigkeit: Angenommen es gibt Interpolierende $p, \tilde{p} \in \Pi_n$ mit $p \neq \tilde{p}$. Dann folgt $p - \tilde{p} \in \Pi_n$ und $(p - \tilde{p})(x_k) = p(x_k) - \tilde{p}(x_k) = 0$ für $k = 0, \ldots, n$. Also hat $(p - \tilde{p})$ mindestens n + 1 Nullstellen, hat aber Grad n. Das heißt, dass $(p - \tilde{p})$ das Nullpolynom sein muss.

Definition (Interpolationspolynom)

Das Polynom, dass die Interpolationsbedingung erfüllt, heißt Interpolationspolynom zu $(x_0, f_0), \ldots, (x_n, f_n)$.

▶ Bemerkung 2.2

- Die Darstellung Gleichung (4) heißt Lagrange-Form des Interpolationspolynoms.
- Um mittels Gleichung (4) einen Funktionswert p(x) zu berechnen, werden $\mathcal{O}(n^2)$ Operationen genötigt; bei gleichabständigen Stützstellen kann man diesen Aufwand auf $\mathcal{O}(n)$ verringern. Ändern sich die Stützwerte, kann man durch Wiederverwendung von den $L_j(x)$ das p(x) in $\mathcal{O}(n)$ Operationen berechnen.
- Man kann zeigen, dass L_0 bis L_n eine Basis von Π_n bilden.

2.2. Newton-Form des Interpolationspolynoms

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) \dots (x - x_{n-1})$$

$$(5)$$

mit Koeffizienten $c_0, \ldots, c_n \in \mathbb{R}$. Die Berechnung des Koeffizienten c_j kann rekursiv durch Ausnutzen der Interpolationsbedingung Gleichung (1) erfolgen. Für c_0 erhält man

$$f_0 \stackrel{!}{=} p(x_0) = c_0$$

Seien c_0 bis c_{i-1} bereits ermittelt. Dann folgt:

$$f_j \stackrel{!}{=} p(x_j) = \underbrace{c_0 + \sum_{k=1}^{j-1} c_k(x_j - x_0) \dots (x_j - x_{k-1})}_{\text{bekannt}} + c_j \underbrace{(x_j - x_0) \dots (x_j - x_{j-1})}_{\text{unbekannt}}$$

▶ Bemerkung 2.3

- Der Aufwand um die Koeffizienten c_0, \ldots, c_n zu ermitteln ist $\mathcal{O}(n^2)$. Kommt ein Datenpaar hinzu, kann man Gleichung (5) um einen Summanden erweitern und mit $\mathcal{O}(n)$ Operationen c_{n+1} bestimmen.
- Sind die Koeffizienten c_0, \ldots, c_n in Gleichung (5) bekannt, dann benötigt man zur Berechnung von p(x) $\mathcal{O}(n)$ Operationen.
- Die Polynome $N_0, \ldots, N_n : \mathbb{R} \to \mathbb{R}$ mit

$$N_0 = 1$$
 und $N_i = (x - x_0) \dots (x - x_{i-1})$

heißen Newton-Basispolynome und bilden eine Basis von Π_n .

Die Koeffizienten c_0, \ldots, c_n ergeben sich wegen Gleichung (2) auch als Lösung des folgenden linearen Gleichungssystems:

$$\begin{pmatrix}
1 & & & & & \\
1 & (x_1 - x_0) & & & & \\
1 & (x_2 - x_0) & (x_2 - x_0)(x_2 - x_1) & & & \\
\vdots & \vdots & & \vdots & \ddots & \\
1 & (x_n - x_0) & (x_n - x_0)(x_n - x_1) & \dots & \prod_{i=0}^{n-1} (x_n - x_i)
\end{pmatrix} \cdot \begin{pmatrix}
c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n
\end{pmatrix} = \begin{pmatrix}
f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_n
\end{pmatrix}$$

Die Systemmatrix dieses linearen Gleichungssystems ist eine reguläre untere Dreiecksmatrix.

Zu effizienten Berechnung eines Funktionswertes p(x) nach Gleichung (5) mit gegebenen Koeffizienten

 c_0, \ldots, c_n kann man das Horner-Schema anwenden. Überlegung für n=3.

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + c_3(x - x_0)(x - x_1)(x - x_2)$$
$$= c_0 + (x - x_0) \left[c_1 + (x - x_1) \left[c_2 + (x - x_2)c_3 \right] \right]$$

Für beliebiges n liefert das den folgenden Algorithmus:

■ Algorithmus 2.4 (Horner-Schema für Newton-Form)

Input: $n, x, c_0, ..., c_n, x_0, ..., x_n$

1
$$p = c_n$$

2 do $j = n-1$, 0, -1
3 $p = c_j + (x - x_j)p$
4 end do

2.3. Interpolationsfehler

Definition (Maximum-Norm)

Die Norm

$$\|g\|_{\infty} := \max_{x \in [a,b]} |g(x)| \quad \text{für } g \in C[a,b]$$

definiert die Maximum-Norm in C[a, b].

Satz 2.5

Sei $f \in C[a, b]$. Dann existiert zu jedem $\varepsilon > 0$ ein Polynom p_{ε} mit $||f - p_{\varepsilon}|| \le \varepsilon$.

Also liegt die Menge aller Polynome (beliebig hohen Grades) direkt in C[a, b].

Definition 2.6 (Stützstellensystem)

<u>Stützstellensystem</u>: $a \le x_0^{(n)} < ... < x_n^{(n)} \le b$. Weiterhin bezeichne $p_n \in \Pi_n$ das zu den Datenpaaren $(x_k^{(n)}, f(x_k^{(n)}))$ gehörende eindeutig bestimmte Interpolationspolynom.

Satz 2.7 (Satz von Faber 1914)

Zu jedem Stützstellensystem gibt es $f \in C[a,b]$, sodass (p_n) nicht gleichmäßig gegen f konvergiert. $||p_n - f||_{\infty} \to 0$ bedeutet, dass (p_n) gleichmäßig gegen f konvergiert.

Nach einem Resultat von Erdös/Vertesi (1980) gilt sogar, dass $(p_n(x))$ fast überall divergiert.

■ Beispiel 2.8 (Runge)

$$f: \mathbb{R} \to \mathbb{R}, \, f(x) = \frac{1}{1+25x^2}$$

äquidistante Stützstellen $x_0,...,x_n,\,p\in\Pi_n$ als Interpolationspolynom

3. Interpolation durch Polynomsplines

Kapitel II

numerische Quadratur und Integration

1. Integration von Interpolationspolynomen

2. Newton-Cotes-Formeln

${\bf 3. \ spezielle \ Newton-Cotes-Formeln}$

4. Zusammengesetzte Newton-Cotes-Formeln

${\bf 5.\ Gauss's che\ Quadratur formeln}$

Kapitel III

direkte Verfahren für lineare Gleichungssysteme

1. Gauss'scher Algorithmus für quadratische Systeme

${\bf 2.}\ \ {\bf Lineare}\ {\bf Quadratmittel probleme}$

		me Kapitel III: direkte Verfahren für lineare Gleichungssysteme
Kondition	linearer G	Gleichungssysteme
		Kondition linearer C

Kapitel IV

Kondition von Aufgaben und Stabilität von Algorithmen

1. Maschinenzahlen und Rundungsfehler

2. Fehleranalyse

Kapitel V

${\bf Newton\text{-}Verfahren\ zur\ L\"{o}sung\ nichtlinearer} \\ Gleichungssysteme$

1. Das Newton-Verfahren

	G 1 2.	
•	Gedämpftes	Newton-Verfahren

Kapitel VI

lineare Optimierung

1. Ecken und ihre Charakterisierung

2. Simplex-Verfahren

3. Die Tableauform des Simplex-Verfahrens

4. Revidiertes Simplex-Verfahren

5. Bestimmung einer ersten zulässigen Basislösung

Anhang A: Listen

A.1. Liste der Theoreme

A.2.	Liste	der	benannten	Sätze.	Lemmata	und Fo	olgerungen

Anhang	A:	Listen
--------	----	--------

A.2. Liste	e der benannten Sätze, Lemmata und Folgerungen	
Satz I.2.7:	Satz von Faber 1914	6