Neural Information Retrieval

[ELE680] Deep Neural Networks

Krisztian Balog

University of Stavanger

Week 37, 2021

Information Retrieval (IR)

"Making the **right information** available to the **right person** at the **right time** in **the right form**."

Classic IR problem

Ad hoc document retrieval

- ullet Given a collection of documents D and a search query q
- Score all documents $d \in D$ in the collection by computing score(d, q)
- Return the top-scoring documents as results

Traditional text representation

Bag-of-words text representation

- Simplified representation of text as a bag (multiset) of words
- Disregards word ordering, but keeps multiplicity

Example: "the dog ate my homework and my shoes"

	ate		dog my			my	
0	1	0	 0	1	0	2	

Traditional retrieval models

Common form of a retrieval function

$$score(d, q) = \sum_{t \in q} w_{t,d} \times w_{t,q}$$

- Note: we only consider terms in the query, $t \in q$
- $w_{t,d}$ is the term's weight in the document
- ullet $w_{t,q}$ is the term's weight in the query

score(d,q) is (in principle) to be computed for every document in the collection

Fundamental challenge

Vocabulary mismatch

q:	dog	first	aid		
	1	1	1		

VS.

d:					vet	clinic	
					1	1	

Word embeddings

- Static embeddings (Word2vec, GloVe)
- Contextual embeddings (GPT, ELMO, BERT, RoBERTa)

Ranking using static embeddings

Word2vec

• Words are represented as dense, continuous vectors of lesser dimensionality:

$$\begin{aligned} & \textbf{v}_{\mathsf{hotel}} = \left(\begin{array}{cccc} 0.19 & 0.2 & -0.9 & 0.4 \end{array} \right) \\ & \textbf{v}_{\mathsf{motel}} = \left(\begin{array}{cccc} 0.27 & 0.01 & -0.7 & 0.3 \end{array} \right) \end{aligned}$$

Word2vec

• Words are represented as dense, continuous vectors of lesser dimensionality:

$$\begin{aligned} & \textbf{v}_{\text{hotel}} = \left(\begin{array}{cccc} 0.19 & 0.2 & -0.9 & 0.4 \end{array} \right) \\ & \textbf{v}_{\text{motel}} = \left(\begin{array}{cccc} 0.27 & 0.01 & -0.7 & 0.3 \end{array} \right) \end{aligned}$$

- Straightforward way of measuring document-query similarity (unsupervised):
 - \circ Create vector-based representations of queries and documents, \mathbf{v}_q and \mathbf{v}_d , by taking the centroid of their word vectors
 - Score documents based on the cosine similarity of their embeddings vectors to that of the query:

$$score(d, q) = \cos(\mathbf{v}_d, \mathbf{v}_q)$$

Word2vec

Words are represented as dense, continuous vectors of lesser dimensionality:

$$\begin{aligned} & \textbf{v}_{\text{hotel}} = \left(\begin{array}{cccc} 0.19 & 0.2 & -0.9 & 0.4 \end{array} \right) \\ & \textbf{v}_{\text{motel}} = \left(\begin{array}{cccc} 0.27 & 0.01 & -0.7 & 0.3 \end{array} \right) \end{aligned}$$

- Straightforward way of measuring document-query similarity (unsupervised):
 - \circ Create vector-based representations of queries and documents, \mathbf{v}_q and \mathbf{v}_d , by taking the centroid of their word vectors
 - Score documents based on the cosine similarity of their embeddings vectors to that of the query:

$$score(d, q) = \cos(\mathbf{v}_d, \mathbf{v}_q)$$

What about supervised ranking (i.e., learning the score function)?

Neural ranking models¹

¹Mitra and Craswell. An Introduction to Neural Information Retrieval. FnTIR 2017. https://arxiv.org/abs/1705.01509

Ranking using contextual embeddings (BERT)

Adoption by commercial search engines^{2,3}

Google

We're making a significant improvement to how we understand queries, representing the biggest leap forward in the past five years, and one of the biggest leaps forward in the history of Search.¹

Microsoft Bing

Starting from April of this year (2019), we used large transformer models to deliver the largest quality improvements to our Bing customers in the past year.²

bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/

²https://blog.google/products/search/search-language-understanding-bert/

³https://azure.microsoft.com/en-us/blog/

BERT Recap⁴

Self-supervised: ∞ training data

⁴Devlin, Chang, Lee, Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

BERT Recap⁵

Self-supervised: ∞ training data

⁵Devlin, Chang, Lee, Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

BERT for relevance classification (MonoBERT)

query q

document d

Training MonoBERT

Loss:

$$L = -\sum_{d \in D^+} \log score(d,q) - \sum_{d \in D^-} \log (1 - score(d,q))$$

- D+: human-annotated data
- ullet D^- : sampled from top-k ranked documents by traditional ranker

BERT's limitations

Cannot input entire documents!

Need separate embedding for every possible position (restricted to 512)

From documents to passages

Training time

Transfer labels

Inference time

Aggregate evidence

Aggregating passage scores (BERT-MaxP, FirstP, SumP)⁶

 $^{^6}$ Dai, Callan. Deeper Text Understanding for IR with Contextual Neural Language Modeling. SIGIR 2019

Neural ranking in practice

Further reading

- ECIR 2021 tutorial by MacAvaney, Macdonald, and Tonellotto https://github.com/terrier-org/ecir2021tutorial
- WSDM 2021 tutorial by Yates, Nogueira, and Lin https://t.co/jjhMnMmOwb
- Pretrained Transformers for Text Ranking: BERT and Beyond https://arxiv.org/abs/2010.06467