Trabajo final de Computación paralela

Francisco Fernández

22 de enero de 2021

Resumen

AGREGAR RESUMEN CUANDO TERMINE

1. Introducción teórica al problema

La dinámica molecular (MD, de sus siglas en inglés, Molecular Dynamics) es una técnica de simulación computacional que considera la interacción entre partículas atómicas para obtener una evolución temporal de las mismas. Esto se logra resolviendo numéricamente las ecuaciones de movimiento de Newton. A partir de cantidades microscópicas (posiciones, velocidades, fuerzas) se pueden obtener propiedades termodinámicas macroscópicas del sistema en equilibrio (temperaturas, presión). Esta técnica tiene aplicaciones en muchas áreas del conocimiento, tales como física, química, biofísica, ciencias de los materiales, etc.

1.1. Programa de MD

Una descripción simple de un programa de dinámica molecular se introduce a continuación:

- Inicialización del sistema: se especifican la cantidad de partículas N, la temperatura de referencia T y la densidad ρ , de donde puede obtenerse el volumen V, largo de la caja L. Además, se elije r_{cut} , el paso temporal dt, las posiciones y velocidades iniciales.
- Calculo de fuerzas: se computan las fuerzas de todas las partículas.
- Integración de las ecuaciones de movimiento: se integran las ecuaciones de Newton, con algún integrador que a partir de la condición anterior obtiene las posiciones y velocidades del paso temporal siguiente.
- *Mediciones*: se realizan cálculos de distintas cantidades de interés (energía potencial, cinética, presión, temperatura).
- Evolución temporal: t = t + dt.

A continuación se amplia cada una de estas secciones específicamente para el programa presentado. Ya que hay distintas formas de inicializar el sistema, de calcular las fuerzas con distintos potenciales, algoritmos de evolución, etc.

1.1.1. Inicialización del sistema

En este caso las posiciones se inicializan dentro de una red cristalina FCC y las velocidades se dan aleatoriamente entre -0.5 y 0.5, se las multiplica por un factor que involucra la temperatura y se les resta la velocidad del centro de masa para que el sistema no se esté desplazando.

1.1.2. Condiciones periódicas de contorno e imagen mínima

En el caso simulado acá se utilizan condiciones periódicas de contorno (pbc, periodic boundary conditions), las mismas buscan reproducir un sistema infinito para que no haya efectos de borde y consisten en considerar las N partículas como una celda primitiva de una red infinita de celdas idénticas, en donde, si una partícula sale por un extremo de la caja, ingresa por el opuesto.

Figura 1: Condiciones periódicas de contorno e imagen mínima.

En la figura 1 puede verse como se replica una misma celda en todas las direcciones y como al estar centrado en una partícula es necesario salirse de la celda hacia celdas vecinas para encontrar la imagen mínima, que es la distancia más cercana a una partícula.

1.1.3. Cálculo de fuerzas

Para el cálculo de las fuerzas se utiliza un potencial aditivo de a pares de Lennard–Jones (12–6), dado por la siguiente expresión,

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right],$$

por lo cual, antes de calcular las fuerzas, se necesita la distancia entre dos partículas i y j, utilizando la regla de la imagen mínima para considerar la distancia a la imagen más cercana, y calculando la fuerza solo si dicha distancia es menor a un radio de corte, r_{cut} , de la siguiente forma

$$f_x(r) = -\frac{\partial u(r)}{\partial x} = -\left(\frac{x}{r}\right)\left(\frac{\partial u(r)}{\partial r}\right),$$

que para el caso del potencial de Lennard-Jones queda

$$f_x(r) = \frac{24x}{r^2} \left(\frac{2}{r^{12}} - \frac{1}{r^6} \right)$$

tanto para x como para y y z.

Dentro de esta misma sección de código es conveniente calcular la energía potencial y la presión instantáneas.

1.1.4. Integración de las ecuaciones de movimiento

Se utiliza el algoritmo *Velocity Verlet*, el mismo conserva la energía total del sistema si se encuentra en el ensamble NVE, que para las posiciones se ve como un desarrollo de Taylor,

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{f(t)}{2m}\Delta t^{2},$$

y a las velocidades se las actualiza como

$$v(t + \Delta t) = v(t) + \frac{f(t + \Delta t) + f(t)}{2m} \Delta t,$$

esto exige calcular las velocidades una vez que se obtuvieron las nuevas posiciones y, a partir de ellas, las nuevas fuerzas.

Aquí es conveniente calcular la energía cinética y la temperatura instantáneas.

1.1.5. Mediciones

Tanto a la energía potencial como a la presión es necesario sumarles una contribución de cola debido al truncado y desplazado que se realiza en r_{cut} , para que el potencial se anule en este punto, esto asumiendo que la energía potencial aportada por una partícula es dominada por las interacciones de las partículas más cercanas. Para la presión se tiene

$$P_{tail} = \frac{16}{3}\pi\rho^2\varepsilon\sigma^3 \left[\frac{2}{3} \left(\frac{\sigma}{r} \right)^9 - \left(\frac{\sigma}{r} \right)^3 \right],$$

y para la energía

$$U_{tail} = \frac{16}{3} N \pi \rho \varepsilon \sigma^3 \left[\frac{2}{3} \left(\frac{\sigma}{r} \right)^9 - \left(\frac{\sigma}{r} \right)^3 \right].$$

La presión total será una suma de esta contribución de cola y la presión del virial

$$P = \rho k_B T + \frac{1}{dV} \left\langle \sum_{i < j} \mathbf{f}(\mathbf{r}_{ij}) \cdot \mathbf{r}_{ij} \right\rangle,$$

donde k_B es la constante de Boltzmann y d la dimensión del sistema.

La energía total es la suma de la contribución de cola más la suma que se obtiene a través de la interacción entre las partículas a través del potencial de Lennard–Jones.

Por otro lado, tanto la energía cinética como la temperatura se obtienen utilizando las velocidades de la siguiente manera

$$E_{kin} = \frac{1}{2} \sum_{i=1}^{N} m_i v_i^2,$$

$$k_B T = \frac{1}{3N} \sum_{i=1}^{N} v_i^2$$

donde m_i es la masa de la partícula i

1.2. Ecuación de estado

La ecuación de estado relaciona las variables de un sistema bajo ciertas condiciones físicas. En este caso se presenta la presión en función de la densidad del sistema, es decir, se realizan simulaciones en el ensamble canónico (NVT) en las que inicialmente se fija un volumen y la temperatura se mantiene reescaleando las velocidades, para cada una de ellas se calcula la presión para obtener la ecuación de estado P vs ρ que se muestra en la figura 2. Para densidades altas el sistema se comporta como un sólido, las posiciones iniciales del cristal FCC se mantienen, y para densidades bajas se comporta como un líquido en el cual las partículas están desorganizadas.

Figura 2: Ecuación de estado para la isoterma T=2,0.

2. Resultados y discusiones

2.1. Optimizaciones secuenciales

2.2. Vectorización

2.3. OpenMP