

1 P, X, +P, X, = M · Consumer is trying to get to the highest 2 MRS = P1 (MU) = P1 (MU) = P2 indifference curve subject to their budget constraint Example $u(X_1,X_2) = X_1^2 X_2^3$ · Consumers problem: $P_1 = 7$, $P_2 = 3$, m = 100 $7x_1^2 + 3x_2^2 = 100$ $2x_1^2 + x_2^3 = \frac{7}{3x_1^{2}}$ max u(x, x2) subject to Pix, +PzXz & m In math, this is called a Constrained optimization Step 1: Simplify MRS = P/2 Proble m $\frac{2 \times 1}{3 \times 1} = \frac{7}{3} \longrightarrow \frac{2 \times 2}{\times 1} = 7$ 2 things must be true at the optimum:

Step 2: Solve for
$$X_1$$
 (or X_2) $X_1 = \frac{2}{7}$ $X_2 = \frac{7}{7}$ $X_1 = \frac{7}{7}$ $X_1 = \frac{7}{7}$ $X_2 = \frac{7}{7}$ $X_1 = \frac{7}{7}$ $X_2 = \frac{7}{7}$ $X_1 = \frac{7}{7}$ $X_2 = \frac{7}{7}$ $X_3 = \frac{7}{7}$ $X_4 = \frac{7}{7}$ $X_5 = \frac{7$

(1)
$$P_1 X_1 + 3X_2 = 100$$

(2) $\frac{7}{2} \times \frac{7}{2} = \frac{7}{1}$
 $\frac{7}{3} \times \frac{7}{3} = \frac{7}{1}$
 $\frac{7}{3} \times \frac{7}{3} = \frac{7}{1} \times \frac{7}{1} \times$

X,(m) 15 called an Engel Income changes curve Xz input: income output: consumption of x, Slope of the Engel curve d X1 >0: Normal good dx, <0: Inferior good x_1 m ×,

$$X_1(P_2)$$
 is a function $X_2 = \frac{bP_1 X_1}{aP_2}$
 $\frac{dX_1}{dP_2} < 0$: complements $P_1 X_1 + P_2 \left(\frac{bP_1 X_1}{aP_2}\right) = m$
 $\frac{dX_1}{dP_2} > 0$: Substitutes $\frac{aP_1 X_1}{aP_1 X_1} = m$

Generalized damand $\frac{a+bP_1 X_1}{aP_1 X_1} = m$

Solve: $\frac{a}{A} = \frac{a}{A} = m$
 $\frac{a}{A} = m$

