Tasks (use NumPy only):

1. Create Arrays

- A 1D array of 20 random integers from 1 to 100
- A 5×5 matrix with values from 1 to 25

2. Reshape and Slicing

- o Reshape the 1D array into a 4×5 matrix
- Extract the 2nd and 4th columns

3. Mathematical Operations

- o Find the mean, median, max, and standard deviation of your matrix
- o Replace all values divisible by 5 with -1

4. Boolean Masking

- o Get all values greater than the matrix mean
- o Count how many values are less than 10

Section 2: Pandas

Use iris.csv

• Tasks:

1. Load & Explore

- Load the dataset using pd.read_csv()
- Show: .head(), .info(), .describe()

2. Selection & Filtering

- Select only columns 'sepal_length' and 'species'
- Filter rows where petal_width > 1.0 and species == 'setosa'

3. Group & Aggregate

- o Group by species and calculate the average of sepal_length
- o Count how many records per species

4. Missing Values

o Inject missing values in some rows

- o Fill missing sepal_length with column mean
- o Drop rows where species is missing

5. Sorting & Value Counts

- Sort the DataFrame by petal_length in descending order
- o Find top 2 most frequent species

Section 3: Matplotlib

Tasks (use Matplotlib & optionally Pandas plots):

1. Line Plot

o Plot the average sepal length for each species

2. Bar Plot

Count of each species as a bar plot (.value_counts().plot(kind='bar'))

3. Scatter Plot

Plot sepal_length vs petal_length, color by species

4. Histogram

Plot histogram of sepal_width with 10 bins

5. Customization

- o Add title, xlabel, ylabel, grid, and legend to each plot
- 1. Plot a **boxplot** comparing sepal_length across different species.
- 2. Use df.corr() and .heatmap() from seaborn (if allowed).
- 3. Export your cleaned DataFrame to CSV.

Submission Guidelines

- Submit as a .ipynb (Jupyter Notebook) or .py script
- Include markdown/text for short explanations
- Use comments to explain steps