

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Teoría de la Información

Teoria de la información								
Clave:	Semestre:	nestre: Eje temático:						
	6-8	Bio-Info	Bio-Informática					
Carácte	r: Optativa	•	Но	oras	Horas por Total descriptions semana Horas			
Tipo: Teórico-Práctica			Teoría:	Práctica:				
Tipo: Te	orico-Practica	1	3	4	7	112		
Modalidad: Curso			Duración del programa: Semestral					

Asignatura con seriación indicativa antecedente: Matemáticas para las Ciencias de la Tierra IV; Modelado y Programación; Probabilidad I

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivo general:

Conocer y aplicar los formalismos matemáticos detrás de las teorías de Shannon y Kolmogorov.

Conocer y aplicar los conocimientos de los derivados y equivalentes a la teoría de Shannon en el campo de las matemáticas.

Conocer y aplicar los conocimientos de la Función de Información Mutua y sus aplicaciones en telecomunicaciones y biología.

Conocer el concepto de complejidad de Kolmogorov, sus aproximaciones computacionales y sus aplicaciones.

Desarrollar en los estudiantes una intuición respecto a los aspectos informacionales de los fenómenos naturales, y como éstos pueden servir de lineamiento para su estudio y entendimiento.

Índice te	mático			
Heided	Tamas	Horas		
Unidad	Temas	Teóricas	Prácticas	
I	Introducción	3	4	
II	Teoría de la Información de Shannon	9	12	
Ш	Otros conceptos de entropía	12	16	
IV	Aplicaciones de la entropía de Shannon	15	20	
V	Complejidad Computacional de Kolmogorov	9	12	
	Total de horas:	48	64	
	Suma total de horas:	1	12	

Contenido temático						
Unidad	Tema					
I Introducci	ón					
I.1	Los conceptos de información y entropía.					
1.2	Aspectos históricos.					
II Teoría de	e la Información de Shannon					
II.1	La función H como medida de incertidumbre.					
II.2	Propiedades de la función H.					
II.3	El Teorema de Shannon-Hartley.					
11.4	Redundancia, Eficiencia, y otras aplicaciones a la comunicación.					
III Otros co	nceptos de entropía					
III.1	Mapeos discretos y entropía topológica.					
III.2	Entropía en el sentido de la teoría de la medida.					
III.3	Entropía termodinámica.					
	ones de la entropía de Shannon					
IV.1	La Función de Información Mutua.					
IV.2	Información mutua en secuencias biológicas.					
IV.3	Información mutua en textos.					
IV.4	Información mutua en redes neuronales.					
IV.5	Información mutua en tráfico en redes.					
IV.6	Autómata Celulares y sus propiedades informacionales.					
IV.7	Flujos de Información en procesos químicos.					
IV.8	Caos.					
IV.9	Exponentes de Liapunov.					
IV.10	Autoorganización.					
	dad Computacional de Kolmogorov					
V.1	El azar.					
V.2	Definiciones.					
V.3	Universalidad.					
V.4	El número Omega.					
V.5	Relaciones entre la función K y la entropía.					
V.6	Fractalidad y complejidad de Kolmogorov.					

Bibliografía básica:

- 1. Ayres, R., Information. Entropy and progress, American Institute of Physics, 1997.
- 2. Aczél, J., Daróczy, Z., *On measures of information and their characterizations*, Academic Press, 1975.
- 3. Mackay, D., *Information theory, inference and learning algorithms*, Cambridge University press, 2003.

4. Li, Ming, *An Introduction to Kolmogorov Complexity and Its Applications*, 2^a edición, Springer, 1997.

Bibliografía complementaria:

- 1. Chaitin, G., *Algorithmic information theory some recolections*, arXiv:math/0701164v2 [math.HO], 2007.
- 2. Adami, C., Introduction to Artificial Life, Springer, 1997.
- 3. Adami, C., Information theory in molecular biology, arXiv:q-bio/0405004v1 [q-bio.BM], 2004.
- 4. Adami, C., The Physics of information, arXiv:quant-ph/0405005v1, 2004.

Sugerencias didácticas:		Métodos de evaluación:		
Exposición oral	(X)	Exámenes parciales	(X)	
Exposición audiovisual	(X)	Examen final escrito	()	
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)	
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	(X)	
Seminarios	(X)	Exposición de seminarios por los alumnos	(X)	
Lecturas obligatorias	(X)	Participación en clase	(X)	
Trabajo de investigación	(X)	Asistencia	()	
Prácticas de taller o laboratorio	(X)	Proyectos de programación	(X)	
Prácticas de campo	()	Proyecto final	()	
·		Seminario	()	
Otras:				
		Otras:		

Perfil profesiográfico:

Matemático, físico, actuario o Licenciado en Ciencias de la Computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos. Con experiencia docente.