

Линейные модели и нейронные сети

1. Линейные модели в задачах классификации

Отступ (margin)

Отступом алгоритма $a(x) = sign\{f(x)\}$ на объекте x_i называется величина

$$M_i = y_i f(x_i)$$

 $(y_i$ - класс, к которому относится $x_i)$

$$M_i \le 0 \Leftrightarrow y_i \ne a(x_i)$$

 $M_i > 0 \Leftrightarrow y_i = a(x_i)$

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) \leq 0 \right]$$

Функция потерь

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) \leq 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

$$Q(M) = (1 - M)^2$$
 $V(M) = (1 - M)_+$
 $S(M) = 2(1 + e^M)^{-1}$
 $L(M) = \log_2(1 + e^{-M})$
 $E(M) = e^{-M}$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$M_i = y_i \langle w, x_i \rangle \implies \frac{\partial M_i}{\partial w} = y_i x_i$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \implies \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i} x_{i} L'(M_{i})$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w} \tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \implies \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

Стохастический градиент (SGD)

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)$$

 x_i — случайный элемент обучающей выборки

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{n=1}^{d} |w_n| \le \tau \\ & \sum_{n=1}^{d} |w_n|^2 \le \tau \end{cases}$$

$$\begin{cases} \tilde{Q} = \sum_{i=1}^l L(M_i) \to min \\ \sum_{n=1}^d |w_n| \leq \tau \\ & \sum_{n=1}^m w_n^2 \leq \tau \end{cases}$$
 ℓ 1-регуляризация

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min$$

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

Вопрос:

вы заметили, что в регуляризатор не включается вес w_o ?

*ℓ*2-регуляризация

Различия между ℓ 1 и ℓ 2

- Разреженность *ℓ*1-регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Различия между ℓ 1 и ℓ 2

- Разреженность $\ell 1$ -регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Различия между ℓ 1 и ℓ 2

- Разреженность *ℓ*1-регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации

Стандартные линейные классификаторы

Классификатор	Функция потерь	Регуляризатор
SVM (Support vector machine, метод опорных векторов)	$L(M) = \max\{0, 1 - M\} = $ $= (1 - M)_{+}$	$\sum_{k=1}^{m} w_k^2$
Логистическая регрессия	$L(M) = \log(1 + e^{-M})$	Обычно $\sum_{k=1}^{m} w_k^2$ или $\sum_{k=1}^{m} w_k $

Общий случай

2. Линейные модели в задачах регрессии

$$a(x) = \langle w, x \rangle + w_0$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$
 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$
 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

$$V(w) = ||w||_{l2}^2 = \sum_{n=1}^a w_n^2$$
 $V(w) = ||w||_{l1} = \sum_{n=1}^a |w_n|$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

Гребневая регрессия (Ridge regression):

$$V(w) = ||w||_{l2}^2 = \sum_{n=1}^d w_n^2$$

LASSO (least absolute shrinkage and selection operator):

$$V(w) = ||w||_{l1} = \sum_{n=1}^{d} |w_n|$$

Линейная регрессия

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

А без регуляризатора и с квадратичными потерями получаем привычную нам линейную регрессию

3. Нейронные сети

Нейронная сеть

$$a(x) = f_3(W_3 f_2(W_2 f_1(W_1 f_0(W_0 x + b_0) + b_1) + b_2) + b_3)$$

Нейронная сеть

Универсальная теорема аппроксимации

Капелька оптимизма перед обсуждением обучения: В 1989 г. Джорджем Цыбенко (George Cybenko) была доказана Universal Approximation Theorem

Нестрого:

Если нам дана функция f и сказано, с какой точностью ее нужно приблизить (какой бы эта точность ни была) – мы всегда справимся с задачей даже однослойной нейросетью, т.е. сможем подобрать подходящее количество нейронов и веса

Чуть более строго (для математиков):

f должна быть непрерывна на некотором компакте в \mathbb{R}^n и условия теоремы выполняются на нём же

4. Обучение сети

Обучение сети

Задача обучения – настроить веса связей между нейронами на основе обучающей выборки

Обучение сети

Задача обучения – настроить веса связей между нейронами на основе обучающей выборки

1. Выбираем функцию потерь

Обучение сети

Задача обучения – настроить веса связей между нейронами на основе обучающей выборки

- 1. Выбираем функцию потерь
- 2. Обучаем веса с помощью SGD

Обучение сети

Задача обучения – настроить веса связей между нейронами на основе обучающей выборки

- I. Выбираем функцию потерь
- 2. Обучаем веса с помощью SGD

Проблема: не выписывать же нам все производные аналитически?!

$$w_{11}^{(t+1)} = w_{11}^{(t)} - \gamma_t \frac{\partial L}{\partial w_{11}}$$

$$w_{11}^{(t+1)} = w_{11}^{(t)} - \gamma_t \frac{\partial L}{\partial w_{11}}$$

$$\frac{\partial L}{\partial w_{11}} = \frac{\partial L}{\partial u_1} \frac{\partial u_1}{\partial w_{11}} = \frac{\partial L}{\partial u_1} x_1$$

$$w_{11}^{(t+1)} = w_{11}^{(t)} - \gamma_t \frac{\partial L}{\partial w_{11}} \qquad \frac{\partial L}{\partial w_{11}} = \frac{\partial L}{\partial u_1} \frac{\partial u_1}{\partial w_{11}} = \frac{\partial L}{\partial u_1} x_1$$

Вывод: для обучения нужны производные L по выходам всех нейронов

Backpropagation

Backprop – эффективный способ посчитать производные L по нейронам:

Backpropagation

Backprop – эффективный способ посчитать производные L по нейронам:

Backpropagation

Backprop – эффективный способ посчитать производные L по нейронам:

Как вычисляем производную

$$\frac{\partial L}{\partial u_1} = \frac{\partial L}{\partial \sigma} \frac{\partial \sigma}{\partial y} \frac{\partial y}{\partial \sigma_1} \frac{\partial \sigma_1}{\partial u_1}$$

Как вычисляем производную

$$\frac{\partial L}{\partial u_1} = \frac{\partial L}{\partial \sigma} \frac{\partial \sigma}{\partial y} \frac{\partial y}{\partial \sigma_1} \frac{\partial \sigma_1}{\partial u_1}$$

Смысл backprop – проходиться по графу с конца и записывать в вершинах графа эти произведения, а не пересчитывать произведение каждый раз заново

Другое название: Error Backpropagation

Раньше этот метод часто называли обратным распространением ошибки

Если
$$L=\frac{1}{2}(\sigma-y_{true})^2,$$
 $\frac{\partial L}{\partial \sigma}=\sigma-y_{true}$ - ошибка прогноза

Другое название: Error Backpropagation

Раньше этот метод часто называли обратным распространением ошибки

При градиентном спуске мы бы «подправляли» u_2 на величину $\frac{\partial L}{\partial u_2}$ - значит эта производная – аналог «ошибки» в этом нейроне

Другое название: Error Backpropagation

Раньше этот метод часто называли обратным распространением ошибки

Получается, мы вычисляем ошибку на выходе и «распространяем» ее в обратном направлении (ко входу), вычисляя «ошибки» во всех нейронах по пути

Backprop: как делать

Чередуем forward pass (вычисление значений в нейронах)

Этот шаг нам нужен, чтобы знать, в каких точках считать производные

Backprop: как делать

И backward pass (вычисление производных):

Как это реализовано в библиотеках

- 1. **Для каждого типа слоя написан** forward pass **и** backward pass
- 2. Операции оптимизированы за счет матричной записи и алгоритмов быстрых матричных вычислений (см. BLAS)

5. Проблемы backprop

Проблемы backprop

1. Все проблемы SGD, в частности – застревание в острых локальных минимумах и легкое переобучение

Пример регуляризации: dropout

(a) Standard Neural Net

(b) After applying dropout.

Dropout: обучение

С вероятностью р зануляем выход каждого нейрона на слое

Dropout: применение

Домножаем выход каждого нейрона на (1-р)

Еще один пример борьбы с переобучением

На прошлой итерации здесь могло быть другое распределение, т.к. веса на предыдущих слоях тоже поменялись.

Это различие распределений называется internal covariate shift (ICS)

Еще один пример борьбы с переобучением

Batch Normalization:

Будем добавлять слои, в которых каждый признак будет нормироваться на среднее и дисперсию по батчу

 $v_1^{(1)}$, ..., $v_1^{(m)}$ — значения признака v_1 по батчу размера m Среднее по батчу: $\mu = \frac{1}{m} \sum_{i=1}^m v_1^{(i)}$

Дисперсия по батчу: $\sigma^2 = \frac{1}{m} \sum_{i=1}^m \left(v_1^{(i)} - \mu \right)^2$

Еще один пример борьбы с переобучением

Batch Normalization:

Будем добавлять слои, в которых каждый признак будет нормироваться на среднее и дисперсию по батчу

Нормировка:
$$\tilde{v}_1 = \frac{v_1 - \mu}{\sqrt{\sigma^2 + \varepsilon}}$$

Масштабирование и сдвиг: $v_1' = \gamma \widetilde{v}_1 + \beta$

Проблемы backprop

- Все проблемы SGD, в частности застревание в локальных минимумах и легкое переобучение
- 2. Взрыв и затухание градиента (но на самом деле это не совсем проблема backprop)

Затухание градиента (Gradient vanishing)

Производная по нейрону по chain rule получается из произведения производных по пути к нему от выхода

Затухание градиента (Gradient vanishing)

Производная по нейрону по chain rule получается из произведения производных по пути к нему от выхода

Если каждая из производных небольшая по модулю – произведение тоже будет маленьким. Чем больше слоев, тем меньше.

Затухание градиента (Gradient vanishing)

Производная по нейрону по chain rule получается из произведения производных по пути к нему от выхода

Если каждая из производных небольшая по модулю – произведение тоже будет маленьким. Чем больше слоев, тем меньше.

Значит в «глубине» веса не будут меняться!

Взрыв градиентов (Gradient explosion)

Аналогично для больших по модулю производных:

Модуль произведения производных растет экспоненциально с числом слоев. Чем больше слоев, тем больше будут градиенты.

В «глубине» веса будет кидать из стороны в сторону с огромным шагом.

Deep learning: что изменилось?

Нейросети и backpropagation известны давно, почему же последние достижения происходят только сейчас?

Два фактора:

- 1. Выросли вычислительные мощности и развились вычисления на GPU
- 2. Тем временем люди придумали много полезных трюков и архитектур

6. Слои

Convolutional

- 1. Т.к. фильтр это настраиваемые backprop веса, то **сеть сама «подберет» фильтры**
- 2. Но т.к. фильтр «замечает» только один паттерн, то фильтров нужно **больше**

Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Cxema RNN

Вчера телефон перестал работать

Схема LSTM

$$\begin{pmatrix} g_t \\ i_t \\ o_t \\ f_t \end{pmatrix} = \begin{pmatrix} \varphi \\ \sigma \\ \sigma \end{pmatrix} (W_x x_t + W_h h_{t-1} + b) \qquad c_t = f_t \cdot c_{t-1} + i_t \cdot g_t \\ h_t = o_t \cdot \phi(c_t)$$

7. Примеры задач

Conv - Pool - Repeat x n - Dense

Рекуррентный слой после сверточного

Распознавание речи

Сверточные или рекуррентные сети?

Распознавание речи

Сверточные или рекуррентные сети?

И то и другое!

Распознавание речи: сверточные сети

Распознавание речи: рекуррентные сети

Классификация текста

Сверточные или рекуррентные сети?

Классификация текста

Сверточные или рекуррентные сети?

И то и другое!

Классификация текстов: сверточные сети

Классификация текстов: рекуррентные сети

Классификация изображений

Сверточные или рекуррентные?

Классификация изображений

Сверточные или рекуррентные?

В основном, сверточные

Классификация изображений: сверточные сети

