Task 1: Review MFM causal reasoning based on direct influences and indirect influences and filling in the following tables.

Question 1.1: giving the following MFM patterns, please complete the cause reasoning rules.

Example: Table 1

IF	Cause can be
transport is low-low	source / storage is low-low
transport is low	source / storage is low
transport is high	source / storage is high
transport is high-high	source / storage is high-high

Table 2

IF	Cause can be
source / storage is low-low	transport is high-high
source / storage is low	transport is high
source / storage is high	transport is low
source / storage is high-high	transport is low-low

Question 1.2: giving the following MFM patterns, please complete the reasoning rules.

Table 3

IF	Cause can be
transport is low-low	sink / storage is high-high
transport is low	sink / storage is high
transport is high	sink / storage is low
transport is high-high	sink / storage is low-low

Table 4

IF	Cause can be
sink / storage is low-low	transport is low-low
sink / storage is low	transport is low
sink / storage is high	transport is high
sink / storage is high-high	transport is high-high

Question 2.1 Understand MFM concepts and how they are classified. Observe what type of properties are required for each type of MFM concepts. Compare the graphical representation (symbols) of the model with the JAVA class tree provided above. How would the MFM model of "efs1" energy flow be represented in the reasoning system's working memory? Please complete the object list below (Hint: there are four flow functions and two flow relations missing).

For the flow structure "efs1", objects in the working memory should include:

1. Flow structure

```
MFMStructure
name == "efs1";
type == MFMStructure.ENERGY; functions == [sou1, tra1, sto1, tra2, sin1];
```

2. Flow functions

```
MFMFcnAvailable name == "sou1";
type == MFMFcnAvailable.SOURCE;

MFMFcnSpace name == "tra1";
type == MFMFcnSpace.TRANSPORT;

MFMFcnTime name == "sto1";
type == MFMFcnTime.STORAGE;

MFMFcnSpace name == "tra2";
type == MFMFcnSpace.TRANSPORT;

MFMFcnAvailable name == "sin1";
type == MFMFcnAvailable.SINK;
```

3. Flow relations

```
MFMRelFlow
name == "pa1";
start == sou1;
end == tra1;
direction == MFMRelFlow.UPSTREAM;
type == MFMRelFlow.PARTICIPATE;
Start() == sou1;
End() == tra1;
MFMRelFlow
name == "in1";
start == sto1;
end == tra1;
direction == MFMRelFlow.DOWNSTREAM;
type == MFMRelFlow.INFLUENCE;
Start() == tra1;
End() == sto1;
MFMRelFlow
name == "in2";
start == sto1;
end == tra2;
direction == MFMRelFlow.UPSTREAM;
type == MFMRelFlow.INFLUENCE;
Start() == sto1;
End() == tra2;
MFMRelFlow
name == pa2";
start == sin1;
end == tra2;
direction == MFMRelFlow.DOWNSTREAM;
type == MFMRelFlow.PARTICIPATE;
Start() == tra2;
End() == sin1;
```