

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2014/15 10. April 2015

Prof. Dr. Werner Bley Martin Hofer, Thomas Jahn

Lineare Algebra I

Nachholklausur

Nachname:		Vorname:		Matrikelnummer:
Abschluss:	O Bachelor	O Master		
	O Lehramt Gy	mn. (modularisiert)	O Lehramt	Gymn. (nicht modul.)
	O Anderes:			
Studiengang:	O Mathematik	O Wirtschaftsm.	OO	
Prüfungsordnung:				
Anrechnung	der Credit Poir	nts für das		
	O Hauptfach			
	O Nebenfach,	und zwar		
	*	~	•	gabe meiner Matrikel- ets abrufbar sein wird.

Bitte beachten Sie:

- Schalten Sie Ihr Mobiltelefon aus und verstauen Sie es zusammen mit allen weiteren nicht zugelassenen Hilfsmitteln in Ihrer Tasche.
- Legen Sie Ihren Lichtbild- und Studienausweis sichtbar auf den Tisch.
- Überprüfen Sie, ob Sie sechs Aufgaben erhalten haben.
- Schreiben Sie mit einem **dokumentenechten** Stift, jedoch nicht in den Farben rot und grün.
- Schreiben Sie auf jedes Blatt Ihren Nach- und Vornamen. Lösen Sie bitte jede Aufgabe auf den dafür vorgesehenen Blättern. Versehen Sie auch zusätzliche Seiten mit Nachund Vornamen sowie der Aufgabennummer.
- Geben Sie zu jeder Aufgabe nur eine Lösung ab; streichen Sie deutlich durch, was nicht gewertet werden soll.
- Sie haben 180 Minuten Zeit, die Klausur zu bearbeiten.

Viel Erfolg!

1	2	3	4	5	6	Summe
/10	/10	/10	/10	/10	/10	/60

Name:	
Titaliic:	_

Aufgabe 1. [10 Punkte]

Betrachten Sie für alle $x \in \mathbb{Q}$ die Matrizen

$$A_x = \begin{pmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & x \end{pmatrix} \in \mathbb{Q}^{4 \times 4} \quad \text{und} \quad B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \mathbb{Q}^{4 \times 4}.$$

- a) Bestimmen Sie die Menge $I = \{x \in \mathbb{Q} \mid A_x \text{ ist invertierbar}\}.$
- b) Bestimmen Sie den Rang von A_0 sowie den Rang von A_0^t .
- c) Berechnen Sie die Matrix B^{-1} .
- d) Berechnen Sie $\det(B^{-1}A_2^{-1}B)$.

Name:	
1.0011101	

Aufgabe 2. [10 Punkte]

Sei
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathbb{Q}^{3 \times 3}.$$

- a) Berechnen Sie die Eigenwerte von A.
- b) Bestimmen Sie für jeden Eigenwert eine Basis des Eigenraums.
- c) Beweisen oder widerlegen Sie: Es gibt eine Matrix $S \in GL_3(\mathbb{Q})$, sodass $S^{-1}AS$ in Diagonalform ist.

Name:

Aufgabe 3. [10 Punkte]

Sei $K = \mathbb{F}_3$ der Körper mit drei Elementen,

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 2 & 2 & 1 & 2 \end{pmatrix} \in K^{4 \times 4}$$

und sei $f: K^4 \to K^4$ der Homomorphismus mit $v \mapsto Av$. Seien weiterhin

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{und} \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

- a) Zeigen Sie: Sind $x, y \in K^4$ mit $x \neq y$, so gilt $f^{-1}(\{x\}) \cap f^{-1}(\{y\}) = \emptyset$.
- b) Berechnen Sie $f^{-1}(\{v_i\})$ für i=1,2,3.
- c) Berechnen Sie die Anzahl der Elemente in $f^{-1}(\{v_1, v_2, v_3\})$.

Name:		

Aufgabe 4. [10 Punkte]

Sei $X = \{v_1, v_2, v_3, v_4\}$ eine \mathbb{R} -Basis von \mathbb{R}^4 und sei $Y = \{w_1, w_2, w_3\}$ eine \mathbb{R} -Basis von \mathbb{R}^3 . Betrachten Sie die Unterräume $V = \langle v_1, v_2, v_3 \rangle$ und $W = \langle w_1, w_2 \rangle$.

Sei $f_M : \mathbb{R}^4 \to \mathbb{R}^3$ ein \mathbb{R} -Homomorphismus mit $f_M(V) \subseteq W$, der bezüglich der Basen X und Y gegeben ist durch die Matrix

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{pmatrix}.$$

- a) Zeigen Sie, dass es genau einen \mathbb{R} -Homomorphismus $\widetilde{f}_M:V\to W$ mit $f_M(v)=\widetilde{f}_M(v)$ für alle $v\in V$ gibt.
- b) Zeigen Sie: Die Darstellungsmatrix von \widetilde{f}_M bezüglich der Basen $\{v_1, v_2, v_3\}$ und $\{w_1, w_2\}$ ist

$$\left(\begin{array}{ccc} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{array}\right) .$$

c) Sei nun konkret

$$M = \left(\begin{array}{rrrr} 1 & 3 & 1 & 3 \\ 3 & 1 & 3 & 2 \\ 0 & 0 & 0 & 3 \end{array}\right).$$

Zeigen Sie, dass $f_M(V) \subseteq W$ gilt und bestimmen Sie den Kern und das Bild von \widetilde{f}_M bzgl. der Basen $\{v_1, v_2, v_3\}$ und $\{w_1, w_2\}$.

Name:		

Aufgabe 5. [10 Punkte]

Sei K ein Körper und seien V, W endlich erzeugte K-Vektorräume mit Basen $\{v_1, \ldots, v_{\nu}\}$ und $\{w_1, \ldots, w_{\mu}\}$. Sei weiter $1 \leq \lambda \leq \nu$ und $V_1 = \langle v_1, \ldots, v_{\lambda} \rangle$, sowie $V_2 = \langle v_{\lambda+1}, \ldots, v_{\nu} \rangle$.

- a) Geben Sie eine Basis X von $\operatorname{Hom}_K(V_1, W)$ an.
- b) Für jeden Homomorphismus $f \in \operatorname{Hom}_K(V_1, W)$ bezeichnen wir mit $\widehat{f} \in \operatorname{Hom}_K(V, W)$ den durch

$$v_i \mapsto \begin{cases} f(v_i), & \text{falls } 1 \le i \le \lambda \\ 0_K, & \text{falls } \lambda < i \le \nu \end{cases}$$

gegebenen Homomorphismus. Zeigen Sie, dass $\iota : \operatorname{Hom}_K(V_1, W) \to \operatorname{Hom}_K(V, W), f \mapsto \widehat{f}$ injektiv ist. (Sie müssen nicht zeigen, dass \widehat{f} ein Homomorphismus ist.)

- c) Geben Sie eine Basis Y von $\operatorname{Hom}_K(V,W)$ an, die $\iota(X)\subseteq Y$ erfüllt.
- d) Zeigen Sie, dass die beiden K-Vektorräume $\operatorname{Hom}_K(V,W)/\iota(\operatorname{Hom}_K(V_1,W))$ und $\operatorname{Hom}_K(V_2,W)$ isomorph sind.

Name:		

Aufgabe 6. [10 Punkte]

Beweisen bzw. widerlegen Sie jeweils die folgenden Aussagen.

- a) Seien G und H Gruppen, sowie $\varphi:G\to H$ ein surjektiver Gruppenhomomorphismus. Ist G abelsch, so ist auch H abelsch.
- b) Sei K ein Körper und $F = \{(a_i)_{i \in \mathbb{N}} \mid a_i \in K\}$ der Vektorraum der Folgen mit Koeffizienten in K. Für $n \in \mathbb{N}$ sei $e^{(n)} = (e_i^{(n)})_{i \in \mathbb{N}}$ die Folge mit

$$e_i^{(n)} = \begin{cases} 1, & \text{falls } i = n \\ 0 & \text{falls } i \neq n \end{cases}$$

Dann ist die Menge $\{e^{(n)} \mid n \in \mathbb{N}\}$ eine Basis von F.

- c) Seien V und W endlich erzeugte \mathbb{R} -Vektorräume und $f:V\to W$ ein Homomorphismus. Gilt $\dim_{\mathbb{R}}V>\dim_{\mathbb{R}}W$, so gibt es für jedes $w\in\operatorname{im}(f)$ unendliche viele $v\in V$ mit f(v)=w.
- d) Ist $A \in \mathbb{R}^{n \times n}$ eine Matrix mit $0 = (2E_n A)(3E_n A)$, so ist 2 oder 3 ein Eigenwert von A.
- e) Es gibt einen zweielementigen Normalteiler $N \subseteq S_3$.