<u>CHƯƠNG 2</u> CÁC PHÉP BIẾN ĐỔI

Giảng viên: Ths. Vũ Minh Yến

Bộ môn: Công nghệ đa phương tiện

SDT: 0983087636

Tài liệu tham khảo

- [1] Edward Angel, Dave Shreiner. *Interactive Computer Graphics*. Addison-Wesley, 6th Edition, 2012
- [2] Peter Shirley, Steve Marschner. Fundamentals Of Computer Graphics. A K Peters/CRC, 3 Edition, 2009
- [3] Brian Curless. *Tập bài giảng môn Đồ họa máy tính của trường đại học Washington*, 2017.
- [4] Dave Shreiner, Graham Sellers, John M. Kessenich, Bill M. Licea-Kane. *OpenGL Programming Guide*. Addison-Wesley, 8th Edition, 2013 (Redbook)
- [5] Vũ Minh Yến, Vũ Đức Huy, Nguyễn Phương Nga. *Giáo trình ĐHMT trường ĐHCNHN*. NBX Khoa học Kỹ thuật, 2015.
- [6] Foley, Van Dam. *Computer Graphics Principles And Practice In C.* Ed Addison Wesley, 2Nd Edition, 1995.

Nội dung

- 2.1. Biểu diễn điểm, vector
- 2.2. Các phép biến đổi Affine
- 2.3. Dựng mô hình phân cấp
- 2.4. Các phép biến đổi trong OpenGL

2.1. Biểu diễn điểm, vector (1)

- Biểu diễn điểm
 - Không gian Descartes 2D: P=(x, y)
 - Không gian Descartes 3D: P=(x, y, z)
- Biểu diễn điểm bằng ma trận:
 - Ma trận cột: $\begin{bmatrix} x \\ y \end{bmatrix}$, $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$
 - Ma trận hàng: $\begin{bmatrix} x & y \end{bmatrix}$, $\begin{bmatrix} x & y & z \end{bmatrix}$

Lưu ý: Bài giảng sẽ biểu diễn điểm theo ma trận cột.

2.1. Biểu diễn điểm, vector (2)

• Các vector đơn vị tương ứng các trục Ox, Oy, Oz: \hat{x} , \hat{y} , \hat{z} với

$$\hat{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \hat{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{z} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Vector $v = \vec{v} = v = (x, y, z)$ được biểu diễn: $\vec{v} = v = x$. $\hat{x} + y$. $\hat{y} + z$. \hat{z}

$$= x. \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y. \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + z. \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Hê toa đô tay trái

- Hệ tọa độ tay phải: Chiều dương của góc quay tuân theo quy tắc nắm bàn tay phải
- Hệ tọa độ tay trái: Chiều dương của góc quay tuân theo quy tắc nắm bàn tay trái

2.1. Biểu diễn điểm, vector (3)

Cho u=
$$\begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$
, $v = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$

• Độ dài vector v

$$\begin{split} \|v\| &= \sqrt{v_x^2 + v_y^2 + v_z^2}; \qquad \quad \hat{v} = \frac{v}{\|v\|} \text{ và } \|\hat{v}\| = 1 \\ \text{u.v} &= u_x v_x + u_y v_y + u_z v_z \qquad \quad \text{u.v} = u^\mathsf{T}. \text{v} = \begin{bmatrix} u_x & u_y & u_z \end{bmatrix}. \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \end{split}$$

• Tích vô hướng

$$\begin{aligned} & \text{u.v} = \text{v.u} \\ & \text{v.v} = \|v\|^2 \\ & \text{u.v} = \|u\| \|v\| \cos \theta \\ & \text{u.v} = 0 \ (\|u\| \neq 0, \|v\| \neq 0) \Longleftrightarrow \text{u} \perp \text{v} \\ & \hat{u}. \ \hat{v} = \cos \theta \end{aligned}$$

2.1. Biểu diễn điểm, vector (4)

- Tích hữu hướng

 $\mathbf{u} \times \mathbf{v} = \hat{n} \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$ \hat{n} - vector đơn vị \perp với u và v

- $||u \times v|| = ||u|| ||v|| \sin \theta$
- $u \times v = -v \times u$
- $(u \times v). u = 0; (u \times v). v = 0$
- - Tích hữu hướng không có phép giao hoán
 - Hướng của vector kết quả tuân theo quy tắc nắm bàn tay phải.

2.1. Biểu diễn điểm, vector (5)

- Hê toa đô thuần nhất:
 - Descartes 2D: P(x, y) → trong hệ tọa độ thuần nhất tương ứng P(w.x, w.y, w) với w≠0
 - Descartes 3D: P(x, y, z) → trong hệ tọa độ thuần nhất tương ứng P(w.x, w.y, w.z, w) với w≠0

Trong phạm vi bài giảng chúng ta xét w=1, suy ra:

2D:
$$P(x, y, 1) \rightarrow P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D:
$$P(x, y, 1) \rightarrow P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 3D: $P(x, y, z, 1) \rightarrow P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

2.2. Các phép biến đổi affine

- 2.2.1. Khái niệm
- 2.2.2. Phép biến đổi 2D
- 2.2.3. Phép biến đổi 3D

2.2.1 Khái niệm phép biến đổi affine

Theo [1]:

- Phép biến đổi: là một hàm ánh xạ một điểm hay một vector thành một điểm hoặc một vector khác.
- Phép biến đổi affine là phép biến đổi tuyến tính +
 thỏa mãn:

 $f(\alpha p + \beta q) = \alpha f(p) + \beta f(q)$

Trong đó: p, q là điểm hoặc vector; α , β là các hằng số.

Theo [2]:

- Phép biến đổi affine: là phép biến đổi tuyến tính và phép tịnh tiến.

2.2.1 Khái niệm phép biến đổi affine

- Các tính chất của các phép biến đổi affine
 - Bảo toàn tính thẳng hàng
 - Bảo toàn tính song song
 - Bảo toàn tỉ lệ khoảng cách
 - Biến trung điểm thành trung điểm

2.2.1 Khái niệm phép biến đổi affine

- Phép biến đổi affine gồm:
 - Phép tịnh tiến
 - Phép biến đổi tỉ lệ
 - Phép quay tại gốc tọa độ
 - Phép đối xứng
 - Phép biến đổi shear
 - Phép biến đổi kết hợp của các phép biến đổi trên

2.2.1 Khái niệm phép biến đổi affine

• Ví dụ

2.2.2 Phép biến đổi 2D

- a) Phép biến đổi 2D khái quát
- Xét trong hệ tọa độ Descartes
 - P'(x', y') là ảnh của P(x, y) qua phép biến đổi T.
 - Ma trận M của phép biến đổi T có dạng:

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
Ta có: P' = M. P
$$\Leftrightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\Rightarrow \begin{cases} x' = ax + by \\ y' = cx + dy \end{cases}$$

2.2.2 Phép biến đổi 2D

- a) Phép biến đổi 2D khái quát
- Hạn chế của ma trận 2x2
 - Xét phép tịnh tiến:

$$\begin{cases} x' = x + t_x \\ y' = y + t_y \end{cases}$$

lacksquare Ma trận M= $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ không thể biểu diễn được phép tịnh tiến

Kết luận

- Ma trận 2 x 2 có thể biểu diễn được:
 - Phép biến đổi tỉ lệ
 - Phép quay
 - Phép đối xứng
 - · Phép biến đổi shear
- Không biểu diễn được phép tịnh tiến.
- → Biểu diễn điểm và các phép biến đổi trong hệ tọa độ thuần nhất.

2.2.2 Phép biến đổi 2D

- a) Phép biến đổi 2D khái quát
- Xét trong hệ tọa độ thuần nhất:

$$P=[x \quad y \quad 1]^T$$

Biểu diễn phép biến đổi 2D bằng ma trận:

$$\mathsf{M} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

 $\mathsf{M} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix}$ — Ta có P' là ảnh của P qua phép biến đổi ma trận M:

$$P' = M \times P$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + t_x \\ cx + dy + t_y \\ 1 \end{bmatrix}$$

$$\Rightarrow$$
 Công thức biến đổi:
$$\begin{cases} x' = ax + by + t_x \\ y' = cx + dy + t_y \end{cases}$$

2.2.2 Các phép biến đổi 2D

- b) Phép bất biến
- Biến điểm P thành P' và P'≡ P
- Ma trận biến đổi:

$$\mathsf{M} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2.2.2 Các phép biến đổi 2D (3)

- c) Phép biến đổi tỉ lệ
- Ta có ma trận biến đổi tỉ lệ:

$$M = \begin{bmatrix} a & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Công thức biến đổi:

$$\begin{cases} x' = ax \\ y' = dy \end{cases}$$

2.2.2 Các phép biến đổi 2D (4)

- d) Phép đối xứng
- Đối xứng qua trục Ox:

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Đối xứng qua trục Oy:
$$M = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Đối xứng qua tâm O:

$$M = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2.2.2 Các phép biến đổi 2D (5)

- e) Phép biến đổi Shear
 - Biến dạng theo trục x: M = $\begin{bmatrix} 1 & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - Biến dạng theo trục y: $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ c & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

2.2.2 Các phép biến đổi 2D (6)

- f) Phép quay tâm O
- P(x, y) qua phép quay T tại tâm O góc quay ϕ
- Ma trân biến đổi:

$$\begin{bmatrix} cos\phi & -sin\phi & 0 \\ sin\phi & cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

· Công thức biến đổi

$$\begin{cases} x' = x\cos\phi - y\sin\phi \\ y' = x\sin\phi + y\cos\phi \end{cases}$$

2.2.2 Các phép biến đổi 2D (6)

- f) Phép quay tâm O
- · Cách tính công thức biến đổi:

P:
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$\begin{cases} y = r \sin \theta \end{cases}$$

P':
$$\begin{cases} x' = r\cos(\theta + \varphi) \\ y' = r\sin(\theta + \varphi) \end{cases}$$

$$\Leftrightarrow \begin{cases} x' = r\cos\theta\cos\varphi - r\sin\theta\sin\varphi \\ y' = r\cos\theta\sin\varphi + r\sin\theta\cos\varphi \end{cases}$$

$$\Leftrightarrow \begin{cases} x' = x\cos\varphi - y\sin\varphi \\ y' = x\sin\varphi + y\cos\varphi \end{cases}$$

2.2.2 Các phép biến đổi 2D (6)

- g) Phép tịnh tiến
- Phép tịnh tiến vector $v(t_x, t_y)$
- Ma trận biến đổi

$$\mathsf{M} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

• Công thức biến đổi

$$\begin{cases} x' = x + t_x \\ y' = y + t_y \end{cases}$$

2.2.2 Các phép biến đổi 2D (6)

h) Phép biến đổi kết hợp

$$P(x, y) \xrightarrow{T_1} P_1(x_1, y_1) \xrightarrow{T_2} P_2(x_2, y_2)$$

$$\Leftrightarrow P(x, y) \xrightarrow{T} P_2(x_2, y_2)$$

 \Rightarrow T là phép biến đổi kết hợp của T_1 và T_2

Ta có: $\mathbf{M} = \mathbf{M_2} \times \mathbf{M_1}$ - M, M₁, M₂ là ma trận biến đổi của T, T₁, T₂

Chứng minh:

$$P_2 = M_2$$
. P_1 mà $P_2 = M$. $P \Rightarrow M_2$. M_1 . $P = M$. $P \Rightarrow M = M_2$. M_1

2.2.2 Các phép biến đổi 2D (6)

h) Phép biến đổi kết hợp

Ví dụ: Phép quay T quanh một điểm bất kỳ Q(x0, y0) góc quay β

• Phân tích (phân rã) T thành các phép biến đổi cơ bản:

$$P(x, y) \xrightarrow{T(-\overline{oQ})} P_1(x_1, y_1) \xrightarrow{R(\beta)} P_2(x_2, y_2) \xrightarrow{T(\overline{oQ})} P_3(x_3, y_3)$$

- 1. $T(-\overline{oq})$: Tịnh tiến Q về gốc tọa độ O
- 2. $R(\beta)$: Quay tại O góc quay β
- 3. $T(\overrightarrow{oq})$: Tịnh tiến ngược trở lại
- \rightarrow M=T(\overrightarrow{oQ}). R(β). T($-\overrightarrow{oQ}$)

2.2.2 Các phép biến đổi 2D (7)

i) Phép biến đổi hệ trục tọa độ

 Phép biến đổi hệ trục thì bằng nghịch đảo phép biến đổi đối tượng

$$M_{\text{hệ trục}} = M^{-1}_{\text{đối tượng}}$$
 trong đó: M. $M^{-1} = I$

- Ma trận nghịch đảo có thể tính theo đại số tuyến tính hoặc tính theo các phép biến đổi hình học.
 - $T^{-1}(x, y) = T(-x, -y)$
 - $R^{-1}(\alpha) = R(-\alpha)$
 - $S^{-1}(s_x, s_y) = S(1/s_x, 1/s_y)$
- Ví dụ:
 - Tịnh tiến điểm P(2,1) với vector (-1, 0) → P'(1, 1)
 - Tịnh tiến hệ trục tọa độ với vector (1, 0) → P=P'(1, 1)

2.2.3 Các phép biến đổi 3D –

- a) Phép biến đổi tỉ lệ
- Tương tự như phép biến đổi 2D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

2.2.3. Các phép biến đổi 3D –

b) Phép tịnh tiến

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

2.2.3 Các phép biến đổi 3D -

c) Phép quay – Phép quay quanh trục Oz

Điểm M quay quanh trục Oz góc quay α thành M':

$$M(x, y, z) \xrightarrow{R_z(\alpha)} M'(x', y', z')$$

Công thức biến đổi:

$$\begin{cases} x' = x \cos \alpha - y \sin \alpha \\ y' = x \sin \alpha + y \cos \alpha \\ z' = z \end{cases}$$

$$\bullet \quad R_z(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Chiều dương góc quay theo quy tắc vặn đinh ốc, hoặc nắm bàn tay phải.
Chiều dương từ Ox sang Oy

2.2.3 Các phép biến đổi 3D -

c) Phép quay

•
$$R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$R_y(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$R_z(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hướng dương của góc quay sử dụng quy tắc bàn tay phải.

- Một phép quay khái quát quanh một trục có hướng \hat{v} và góc quay α là tích của các ma trận quay theo trục trên.
- ${\bf ?}$ Tính ma trận của phép quay quanh trục có hướng $\hat{v}({\bf v_x},{\bf v_y},{\bf v_z})$ và góc quay α

2.2.3 Các phép biến đổi 3D -

- d) Phép biến đổi shear
- Biến dạng trên các trục Ox, Oy, Oz

$$Sh_{Ox} = \begin{bmatrix} 1 & b_1 & c_1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, Sh_{Oy} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ a_2 & 1 & c_2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, Sh_{Oz} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a_3 & b_3 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\text{V\'i dụ: } Sh_1 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Phép biến dạng – shear theo ma trận Sh_I

Tổng kết

- Biểu diễn điểm và các phép biến đổi
- Cách tính toán độ dài, phép nhân vô hướng, hữu hướng của các vector và ý nghĩa hình học của chúng.
- Biểu diễn ma trận biến đổi 2x2 và 3x3 trong 2D
- Hệ tọa độ thuần nhất và các phép biến đổi affine
- Sự liên kết giữa các phép biến đổi phép biến đổi kết hợp.
- Các tính chất toán học của các phép biến đổi affine.