

Model Development Phase

Date	03 Oct 2025
Team ID	LTVIP2025TMIDS63456
Project Title	Analysis of Medium App Reviews from Google Play Store
Maximum Marks	5 Marks

Model Selection Report

In the model selection report for future deep learning and computer vision projects, various architectures, such as CNNs or RNNs, will be evaluated. Factors such as performance, complexity, and computational requirements will be considered to determine the most suitable model for the task at hand.

Model Selection Report:

Model	Description	Performance Metric
KNN	Distance-based algorithm that classifies data points based on the majority class among the k-nearest neighbors. Simple but sensitive to noise.	Accuracy Score = 60.24%
Naïve Bayes	Probabilistic model using Bayes' theorem. Assumes feature independence; efficient and works well with high-dimensional data like text.	Accuracy Score = 84.08%
Random Forest	Ensemble of decision trees; robust, handles complex relationships, reduces overfitting, and provides feature importance.	Accuracy Score = 87.87%

Logistic Regressio n	Linear model that predicts class probabilities. Works well for linearly separable data and provides interpretable coefficients.	Accuracy Score = 89.90%
----------------------------	---	-------------------------