

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-2024(ODD)

Tutorial sheet - 1

Date:16/10/2023

Course Code &Title:18MAB302T-Discrete Mathematics for Engineers Year & Sem:III/V

Q. No	Questions	Answer Keys
1	Give an example of a non-abelian group.	
2	Examine whether the function $\phi: (Z, +) \to (Z, +)$ defined as $\phi(x) = x + 1$ is a homomorphism or not.	No
3	Compute $\alpha\beta$, $\beta\alpha$ and α^{-1} if $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$	
4.	Let $G = \{f_1, f_2, f_3, f_4\}$ where $f_1(x) = x, f_2(x) = -x,$ $f_3(x) = 1/x, f_4(x) = -1/x$ and \circ be the composition of function, prove that (G, \circ) is a group.	
5.	Prove that every cyclic group is abelian.	
6.	If $(G,*)$ is a group then prove that G is abelian if and only if $(a*b)^2 = a^2*b^2$.	
7.	Prove that the subgroup of a cyclic group is cyclic.	
8.	Prove that the set {1,3,7,9} is an abelian group under multiplication modulo 10.	
9.	State and prove the necessary and sufficient condition for a non- empty subset H of a group G to be a subgroup of G.	
10.	Show that the intersection of two subgroups of a group is a subgroup.	