Técnicas de Concepção de Algoritmos: **B&B: The Knapsack Problem**

R. Rossetti, A.P. Rocha, A. Pereira, P.B. Silva, T. Fernandes FEUP, MIEIC, CAL, 2013/2014

FEUP Universidade do Porto

Branch and Bound - CAL, 2013/14

.#.

Exemplo de Aplicação: B&B

• A typical example of a knapsack problem is the following:

Consider a hiker who is going bushwalking carrying a backpack (knapsack). He can carry a maximum weight of 40 kg, and he has available a total of six different items (e.g. sleeping bag, tins of food, etc.) which he would like to take if possible. Assume that he can assign a value to each of the items as shown in the following table.

Item	Value	Weight
1	\$76	16 Kg
2	\$40	10 Kg
3	\$20	6 Kg
4	\$30	6 Kg
5	\$24	8 Kg
6	\$96	16 Kg

FEUP Universidade do Porto Faculdade de Engenharia

ranch and Bound - CAL, 2013/14

<#>

Exemplo de Aplicação: B&B

Problem:

His problem is then to select items to pack so that the value carried in his knapsack is the maximum possible!

Let:

- *n* be the total number of items
- W be the maximum weight that can be carried
- v_i be the value of item i
- w_i be the weight of item i
- x_i be the numbr of units i which are packed in a load ($x = \{0, 1\}$)
- $V = \sum_{i=1}^{n} v_i x_i$
- $\sum_{i=1}^{n} w_i x_i \le W$ and $x_i = 0$ or 1 for i = 1, 2, 3, ..., n
- In this case: n = 6, W = 40, v_4 = 30, w_4 = 6 (Value: \$210)

Branch and Bound - CAL, 2013/14

.,

Exemplo de Aplicação: B&B

■ What if fractions of items can be packed?

$$\sum_{i=1}^{n} w_i x_i \le W \text{ and } 0 \le x_i \le 1 \text{ for } i = 1, 2, 3, \dots, n$$

Item	Value	Weight	Value Density
6	\$96	16 Kg	6 \$/Kg
4	\$30	6 Kg	5 \$/Kg
1	\$76	16 Kg	4.75 \$/Kg
2	\$40	10 Kg	4 \$/Kg
3	\$20	6 Kg	3.33 \$/Kg
5	\$24	8 Kg	3 \$/Kg

• Solution: $x_6 = x_4 = x_1 = 1$, $x_2 = 0.2$, $x_3 = x_5 = 0$

FEUP Universidade do Porto

Branch and Bound - CAL, 2013/14

<#>

Referências e mais informação

■ Elvin J. Moore (1982) "The Knapsack Problem", Parabola Online, Vol. 18, Issue 1.

Branch and Bound - CAL, 2013/14