Automatizační cvičení

A4	ACV_303_PLC s OP – Regulace osvětlení				
Hudák Josef			1/6	Známka:	
8.2.2023		15.2.2023		Odevzdáno:	

Zadání:

Navrhněte program pro regulaci osvětlení s lampičkou. Snímač světla kalibrujte pomocí luxmetru. Regulační obvod ovládejte z operátorského panelu (dále jen OP). Při řešení použijte jazyk GRAFCET (viz Návod k jazyku Grafcet PL7 Junior). Kalibrace na 800 lx.

Postup:

- 1) Nastavíme OP Magelis
- 2) Zapneme PL-07 a zaškrtneme funkci GRAFCET
- 3) Vytvoříme si celkové schéma bloků a podmínek pro přechod bloků
- 4) Nastavíme si bloky do vyhovující funkce (dle vykonání funkce před, při, nebo po stisku tlačítka)
- 5) Naprogramujeme v LD jednotlivé bloky dle toho, jak je máme navrhlé
- (0. = vypnuto, 1. = rozsviť a zhasni, 2.= postupné rozsvěcení a zhasínání, 3. = regulace)
- 6) Ozkoušíme program v praxi
- 7) Ukončíme cvičení
- 8) Vypracujeme technickou zprávu

Blokové schéma zapojení pracoviště:

Konfigurace a propojení:

Address	Function	Access
n+0	Numeric keys	XTB->PLC
n+1	Number of pages to be processed	XTB->PLC
n+2	LEDs command	XTB->PLC

Nastavení modulu:

1. stránka: "Vypnuto: 0 = Ruční ovládání, 1 = Kalibrace osvětlení, 2= Regulace"

2. stránka: "Manuální ovládání: 1 = Zap., 2 = Vyp., 4 = Stop"

3. stránka: "Kalibrace: 1 = zvyš osvětlení, 2 = sniž osvětlení, U = (%MW0) V, 4 = Stop"

4. stránka: "REGULACE, W=(%MW1) E= (%MW2), 4 = Stop"

%MWi = nahrazeno jako pole, kde se zobrazují informace, které čteme z obvodu

Konfigurace PLC:

TSX 3722 - V3.3

<u>TSX DMZ28DT</u> – 16x digitální vstup a 12x digitální výstup (24 V DC / 0,5 mA)

<u>TSXAEZ414</u> – 4-kanálový modul analogových vstupů (16 bitů; vstupy: napětí (0-10 V), proud (4-20 mA), termočlánek

TSXAEZ200 – 2-kanálový výstup

Významy (popis):

V	stupy	Paměti		
%IW3.3	Hodnota z čidla	%M0	Paměťová cívka	
%MW100:X1	1	%M1	Paměťová cívka	
%MW100:X2	2	%TM0	Timer pro vzorky	
%MW100:X3	3	%TM1	Timer pro vzorky	
%MW100:X4	4	%MW0	Zobraz y(k)	
V	ýstupy	%MW1	Zobraz e(k)	
%QW4.0	Lampa	%MW2	Zobraz w(k)	
		%MW3	W	

Výpis programu (GRAFCET):

Výpis programu (LD):

Střední průmyslová škola a Vyšší odborná škola, Chomutov, Školní 50, příspěvková organizace

Podmínky pro přechody mezi bloky v LD:

```
PODMÍNKY
%MW101:X1

%X0 -> %X1

Klávesa 1

(#)

%MW101:X2

Klávesa 2

(#)

%MW101:X3

%X0 -> %X3

Klávesa 3

(#)

%X1, %X2, %X3 -> %X0

Klávesa 4

(#)
```

Závěr:

Výsledek tohoto cvičení byl funkční I regulátor, regulace byla pomalejší a trvalo, než začala působit, celková doba, než začala působit bylo maximálně 5 sekund, ale je to dostačující parametr. Působení regulace po začátku působení už již byla rychlejší a změna osvětlení se projevila rychle. Dále zde byla funkce na rozsvícení/zhasnutí a kalibrace osvětlení na přidání/ubrání jasu. Vše bylo funkční.