算法设计与分析

> LECTURE 2

Outline

Lecture 2

数学基础

- □ 函数的渐近增长率
- □ 蛮力算法的逐步改进
- □ 分治递归求解

如何比较两个算法?

- □ 算法分析
 - > 关键操作计数作为代价
 - > 较大的输入规模
 - > 重要成分
 - ◆ 考虑 f(n) 的主导成分
 - ◆ 常数系数可忽略
- □ 函数渐近增长率
 - \triangleright 0, Ω , Θ , ω , o

Big Oh

- $\square f(n) \in O(g(n))$
 - \rightarrow 对于足够大的输入规模 n, g(n) 是 f(n) 的上界
- □ 定义:
 - ightharpoonup 存在常数 c>0 和 $n_0>0$,满足 $0\leq f(n)\leq cg(n)$ 对所有 均 $n\geq n_0$ 成立
- $\Box f(n) \in O(g(n)) \text{ if } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$

函数渐近增长率

函数渐近增长率

- \square log n
 - $\triangleright \log n \in O(n^{\alpha})$ for any $\alpha > 0$
- \square Power n^k
 - $rightarrow n^k \in O(c^n)$ for any c > 1

Big Ω

- $\square f(n) \in \Omega(g(n))$
- □ 定义:
 - ightharpoonup 存在常数 c>0 和 $n_0>0$,满足 $0\leq cg(n)\leq f(n)$ 对所有 均 $n\geq n_0$ 成立
- $\square f(n) \in \Omega(g(n)) \text{ if } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$

Big O

- - $\triangleright \ \Theta(g) = O(g) \cap \Omega(g)$
- □ 定义:
 - ightharpoonup 存在常数 $c_1 > 0$ 、 $c_2 > 0$ 和 $n_0 > 0$,满足 $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ 对所有 均 $n \ge n_0$ 成立
- $\square f(n) \in \Theta(g(n)) \text{ if } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c, \ (0 < c < \infty)$

Example

algorithm Run time in <i>ns</i>		1 1.3n³	2 10n ²	3 47 <i>n</i> log <i>n</i>	4 48n
max Size in time	sec min hr day	920 3,600 14,000 41,000	10,000 77,000 6.0×10 ⁵ 2.9×10 ⁶	1.0×10 ⁶ 4.9×10 ⁷ 2.4×10 ⁹ 5.0×10 ¹⁰	2.1×10 ⁷ 1.3×10 ⁹ 7.6×10 ¹⁰ 1.8×10 ¹²
time for 10 times size		×1000	×100	×10+	×10

on 400Mhz Pentium II, in C

from: Jon Bentley: Programming Pearls

Little Oh

- □ 定义:
 - ightharpoonup 对任意常数 c>0,均存在常数 $n_0>0$,满足 $0\leq f(n)< cg(n)$ 对所有 $n\geq n_0$ 均 成立

Little ω

- $\square f(n) \in \omega(g(n))$
- □ 定义:
 - ightharpoonup 对任意常数 c>0,均存在常数 $n_0>0$,满足 $0\leq cg(n)< f(n)$ 对所有 $n\geq n_0$ 均成立
- $\square f(n) \in \omega(g(n)) \text{ if } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Outline

Lecture 2

数学基础

- □ 蛮力算法的逐步改进
 - > 旋转数组
 - > 最大子序列和

蛮力算法设计

□ 旋转数组

- > <时间,空间>
 - From $< O(n^2), O(1) >$
 - ♦ To < O(n), O(n) >
 - \bullet To <0(n), 0(1)>

□ 最大子序列和

- > 时间
 - $igoplus From O(n^3)$
 - $igoplus To O(n^2)$
 - lacktriangle To $O(n \log n)$
 - lacktriangle To O(n)

189. 旋转数组

难度中等 🖒 1136 🛕 收藏 🖺 分享 🤻 切换为英文 🗘 接收动态 🖺 反馈

53. 最大子序和

难度 简单 🖒 3761 🛕 收藏 🖺 分享 🤼 切换为英文 🗘 接收动态 🖺 反馈

给定一个整数数组 nums , 找到一个具有最大和的连续子数组 (子数组最少包含一个元素) , 返回其最大和。

示例 1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]

输出: 6

解释: 连续子数组 [4,-1,2,1] 的和最大, 为 6。

回石艇转 1 亚: [/,1,2,3,4,5,6] 向右旋转 2 步: [6,7,1,2,3,4,5] 向右旋转 3 步: [5,6,7,1,2,3,4]

旋转数组

- □ 示例: 1, 2, 3, 4 | 5, 6, 7 => 5, 6, 7, 1, 2, 3, 4
- □ 蛮力 Brute force

	时间	空间
BF 1	$O(n^2)$	0(1)
BF 2	O(n)	O(n)
?	O(n)	0(1)

□ 输入: nums = [-2,1,-3,4,-1,2,1,-5,4]

□ 输出: 6; 连续子数组 [4,-1,2,1] 的和最大, 为 6。

```
A brute-force algorithm:

MaxSum = 0;

for (i = 0; i < N; i++)

for (j = i; j < N; j++)

{

ThisSum = 0;

for (k = i; k <= j; k++)

ThisSum += A[k];

if (ThisSum > MaxSum)

MaxSum = ThisSum;

}

return MaxSum;
```


□ 输入: nums = [-2,1,-3,4,-1,2,1,-5,4]

□ 输出: 6; 连续子数组 [4,-1,2,1] 的和最大, 为 6。

```
An improved algorithm

MaxSum = 0;

for (i = 0; i < N; i++)
{

   ThisSum = 0;
   for (j = i; j < N; j++)
   {

    ThisSum += A[j];
    if (ThisSum > MaxSum)
        MaxSum = ThisSum;
   }
}

return MaxSum;
```


□ 输入: nums = [-2,1,-3,4,-1,2,1,-5,4]

□ 输出: 6; 连续子数组 [4,-1,2,1] 的和最大, 为 6。

```
ThisSum = MaxSum = 0;
for (j = 0; j < N; j++)
{
    ThisSum += A[j];
    if (ThisSum > MaxSum)
        MaxSum = ThisSum;
    else if (ThisSum < 0)
        ThisSum = 0;
        O(n)
    return MaxSum;
```

sequence

Outline

Lecture 2

数学基础

- □ 递归算法
 - > 分治策略
 - > 递归方程
- □ 分治递归求解
 - > Master 定理

递归算法设计

- □ 阶乘函数 Fac(n) 计算 n!
 - → if n=1 then return 1 else return Fac(n-1)*n

M(1)=0 and M(n)=M(n-1)+1 for n>0 (关键操作: *)

- □ 汉诺塔问题
 - \rightarrow if n=1 then move d(1) to peg 3 else
 - Hanoi(n-1, peg1, peg2); move d(n) to peg3; Hanoi(n-1, peg2, peg3)
- □ 如何用递归方程描述递归算法?

M(1)=1 and M(n)=2M(n-1)+1 for n>1 (关键操作: move)

递归算法设计

□ 计算一个数的比特数

▶ 输入: 一个正的十进制数 n

▶ 输出: n 的二进制数表示的位数

```
def BitCounting(n):
    if n==1:
        return 1
    else:
        return BitCounting(n/2) + 1
```

T(1)=0 and T(n)=T(n/2)+1 for n>1

分治策略

- Divide
 - > 大问题分成若干个小问题
- Conquer
 - ▶ 通过递归,解决小问题
- Combine
 - > 组合小问题的结果,解决原始问题

分治策略

□ 蛮力递归

- > 问题规模:通常线性减少
 - n, n-1, n-2,...

□ 分治递归

- > 问题规模:通常指数减少
 - n, n/2, n/4, n/8,...

最大子序列和-分治策略

递归算法分析

- □ 用递归方程刻画递归算法
- □ 解递归方程
- □ 例子: Bit counting

$$T(n) = \begin{cases} 0 & n = 1 \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1 & n > 1 \end{cases}$$

递归算法分析—展开

- □ 递归方程: $T(n) = T\left(\left[\frac{n}{2}\right]\right) + 1$
- \square 为了简化,假设 $n=2^k$

$$T(n) = T\left(\frac{n}{2}\right) + 1 = T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{8}\right) + 1 + 1 + 1 = \cdots$$

$$T(n) = T\left(\frac{n}{2^k}\right) + \log n = \log n \ (T(1)=0)$$

递归算法分析—Guess and Prove

- □ 递归方程: $T(n) = 2T\left(\left\lfloor \frac{n}{2}\right\rfloor\right) + n$
- Guess
 - $ightharpoonup T(n) \in O(n)$?
 - $ightharpoonup T(n) \leq cn$
 - $ightharpoonup T(n) \in O(n^2)$?
 - \bullet $T(n) \leq cn^2$
 - $ightharpoonup T(n) \in O(n \log n)$?
 - $T(n) \le cn \log n$
- Prove

```
T(n) = 2T\binom{n}{2} + n \le 2c\binom{n}{2} + n = (c+1)n
T(n) = 2T\binom{n}{2} + n \le 2c\binom{n}{2}\log\frac{n}{2} + n
= cn\log n - cn\log 2 + n = cn\log n - cn + n
\le cn\log n \quad for \ c \ge 1
```

分治递归

- □ 分治策略
 - Divide
 - > Solve
 - Combine
- □ 分治递归方程

$$T(n)=$$
 $\underbrace{a}_{ ext{划分成}a \wedge ext{子问题}}$ \cdot $\underbrace{T(rac{n}{b})}_{ ext{划分后的子问题规模为原来的}1/b}+\underbrace{f(n)}_{ ext{子问题划分与合并的代价}}$

递归树

- □ 非叶子节点
 - > 非递归代价
 - > 递归代价
- □ 叶子节点
 - base case

递归树

分治递归求解

$$\square T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- □ 递归树
 - \rightarrow 递归树的高度 $\log_b n$
 - $a^{\log_b n} = n^{\log_b a}$

31

- □ 基于递归树对所有代价求和,可得到递归方程的解。
 - ➤ 逐层求和 (sum of row-sums)
 - $ightharpoonup f(n), af\left(\frac{n}{b}\right), a^2 f\left(\frac{n}{b^2}\right), \dots, n^{\log_b a}$
- ☐ The 0-th row-sum
 - ▶ f(n), 根节点的非递归代价
- \square The $\log_h n$ -th row-sum
 - $> n^{\log_b a}$,假设基础情况的代价为1

- □ 如果 Row-sums 的序列为等比序列
- \square f(n), $af\left(\frac{n}{b}\right)$, $a^2f\left(\frac{n}{b^2}\right)$, ..., $n^{\log_b a}$
- □ 公比大于1的等比级数: $T(n) \in \Theta(n^{\log_b a})$
- □ 公比等于1的等比级数: $T(n) \in \Theta(f(n) \log n)$
- □ 公比小于1的等比级数: $T(n) \in \Theta(f(n))$

- \square Case 1: $f(n) \in O(n^{E-\varepsilon})$, $(\varepsilon > 0)$
 - $ightharpoonup T(n) \in \Theta(n^E)$
- \square Case 2: $f(n) \in \Theta(n^E)$
 - $ightharpoonup T(n) \in \Theta(f(n) \log n)$

 $E = \log_b a$

- □ Case 3: $f(n) \in \Omega(n^{E+\varepsilon})$, $(\varepsilon > 0)$, 且存在常数 c < 1,使得对所有充分大的 n, $af\left(\frac{n}{b}\right) \le cf(n)$
 - $ightharpoonup T(n) \in \Theta(f(n))$

- \square Example 1: $T(n) = 9T\left(\frac{n}{3}\right) + n$
 - \triangleright a = 9, b = 3, E = 2, $f(n) = n \in O(n^{E-1})$
 - ightharpoonup Case 1: $T(n) \in \Theta(n^2)$
- - ightharpoonup a = 1, b = $\frac{3}{2}$, E = 0, f(n) = 1 $\in \Theta(n^E)$
 - \triangleright Case 2: $T(n) \in \Theta(\log n)$
- - ightharpoonup a = 3, b = 4, E = $\log_4 3$, $f(n) = n \log n \in \Omega(n^{E+\varepsilon})$
 - ho $af\left(\frac{n}{b}\right) = \frac{3}{4}n\log\frac{n}{4} = \frac{3}{4}n\log n \frac{3}{2}n \le \frac{3}{4}n\log n = cf(n), \ c < 1$
 - ightharpoonup Case 3: $T(n) \in \Theta(n \log n)$

Thamks