Assignment-5(PS_MA2102)

- 1. The JPDF of (X, Y) is given by $f_{XY}(x, y) = \begin{cases} 4xy & 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$. Find the marginal PDFs an verify whether X, Y are independent. Also find
 - i. $P\left(0 < X < \frac{1}{2}, \frac{1}{4} < Y < 1\right)$
 - ii. P(X + Y < 1)
- 2. If the JPDF of (X,Y) $f_{XY}(x,y) = \begin{cases} cx^2y & 0 < x < y < 1\\ 0 & otherwise \end{cases}$
 - i. Find c
 - ii. Find marginal PDF's of X, Y
 - iii. $P(X + Y \le 1)$
- 3. If the JPDF of (X,Y) $f_{XY}(x,y) = \begin{cases} xe^{-x(1+y)} & x>0, y>0\\ 0 & otherwise \end{cases}$, Find
 - i. conditional PDF of X given Y = y
 - ii. conditional PDF of Y given X = x
 - iii. Find PDF of S = XY
- 4. Suppose $f_{X/Y}(x/y) = \begin{cases} \frac{cx}{y^2} & 0 < x < y \\ 0 & otherwise \end{cases}$ and $f_Y(y) = \begin{cases} dy^4 & 0 < y < 1 \\ 0 & otherwise \end{cases}$
 - i. Find c and d
 - ii. Find JPDF of (X, Y)
 - iii. Compute P(0.25 < X < 0.5) and P(0.25 < X < 0.5/Y = 0.625)
- 5. Suppose $f_X(x) = \begin{cases} 4x(1-x^2) & 0 < x < y \\ 0 & otherwise \end{cases}$ and $f_{Y/X}(y/x) = \begin{cases} \frac{2y}{1-x^2} & 0 < y < 1 \\ 0 & otherwise \end{cases}$, Find
 - i. $f_{X/Y}(x/y)$
 - ii. $E(X/Y = \frac{1}{2})$
 - iii. $Var(X/Y = \frac{1}{2})$
- 6. He JPDF of (X,Y) $f_{X,Y}(x,y) = \begin{cases} 2 & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$, Find E(X+Y) and Var(X+Y)
- 7. Let X_1, X_2, X_3 be three independent random variables each with variance σ^2 . Define the new random variables $W_1=X_1$, $W_2=\frac{\sqrt{3}-1}{2}X_1+\frac{\sqrt{3}-1}{2}X_2$, $W_3=\left(\sqrt{2}-1\right)X_2+\left(2-\sqrt{2}\right)X_3$, then find $\rho_{W1,W2}$, $\rho_{W2,W3}$ and $\rho_{W1,W3}$
- 8. $(X,Y) \sim BVN(0,0,4,3,\frac{\sqrt{3}}{2})$ Find P(X-2Y>-4/X+Y=10)
- 9. If the JPDF of (X,Y), $f_{X,Y}(x,y) = \begin{cases} \frac{1}{x^2y^2} & x \ge 1, y \ge 1\\ 0 & otherwise \end{cases}$
 - i. Find JPDF of U = XY, V = X/Y
 - ii. Find marginal PDF's of U, V
- 10. Let $Y/X \sim Poisson(X), X \sim Gamma(\alpha, \lambda)$ then find the E(Y), and Var(Y)

- 11. Suppose $X_1, X_2, ..., X_6$ are i.i.d random variables with uniform distribution on (0,1), and $W = \frac{X_{(1)}}{X_{(6)}}$. Find (i) $f_W(w)$ (ii) $F_W(w)$ (iii) E(W) (iv) Var(W)
- 12. The PDF of random variable X is $f(x) = \begin{cases} 1/x^2 & x \ge 1 \\ 0 & otherwise \end{cases}$. Consider a random sample of size 72 from population having the above PDF, compute, approximately, the probability that more than 50 of these observations are less than 3.
- 13. Let X_1, X_2, \dots, X_{20} are independent Poisson random variables with mean 1.
 - (i) Use computer to find the exact value of $P(\sum_{i=1}^{20} X_i > 15)$
 - (ii) Use the Markov's inequality to obtain a bound on $P(\sum_{i=1}^{20} X_i > 15)$
 - (iii) Use Central Limit theorem to approximate $P(\sum_{i=1}^{20} X_i > 15)$
- 14. Each computer chip made in a certain plant will, independently be defective with probability 0.25. If a sample of 1000 chips is tested, what is the approximate probability that fewer than 200 chips will be defective?
- 15. If the temperature at which a thermostat goes off is normally distributed with variance σ^2 . If the thermostat is to be tested five times, find
 - i. $P(S^2/\sigma^2 \le 1.8)$
 - ii. $P(0.85 \le S^2/\sigma^2 \le 1.15)$

Where S^2 is the sample variance of the five data values.

***** GOOD LUCK*****