SK네트웍스 Family AI과정 6기

모델링 및 평가 LLM 활용 소프트웨어

□개요

• 산출물 단계 : 모델링 및 평가

● 평가 산출물 : LLM 활용 소프트웨어

• 제출 일자 : 2025.03.07

• 깃허브 경로 : https://github.com/SKNETWORKS-FAMILY-AICAMP/SKN06-FINAL-2Team

• 작성 팀원 : 박미현, 안형진

1. 개요

1.1 목적

● 본 프로젝트는 웹툰과 웹소설을 사용자 맞춤형으로 추천해주는 대화형 챗봇을 개발하는 것을 목표로 한다.

- LLM을 활용하여 사용자의 취향을 분석하고, 방대한 콘텐츠 데이터 속에서 적합한 작품을 제안함으로써 사용자 경험을 향상
- 사용자의 선호도(장르, 키워드, 평점, 선호 플랫폼, 댓글 트렌드)를 분석해 맞춤형 웹툰·웹소설을 추천함으로써 콘텐츠 탐색 시간 단축
- LLM 과 RAG 기술 결합을 통해 기반 추천 정확도 향상
- 성격이 다른 5개의 모델을 통해 사용자가 추천을 받거나 챗봇을 이용할 때 만족도 향상.

개요

2. 데이터 전처리

2.1 입력데이터

- 사용자 데이터 : 플랫폼에서 제공하는 사용자가 입력한 선호도(최초 취향, 피드백) 데이터, 사용자의 정보 입력.
- 콘텐츠 데이터 : 웹툰 및 웹소설의 제목, 줄거리 요약, 장르, 작가 정보, 평점(좋아요, 조회 수, 별점, 댓글 수를 바탕으로 책정한 점수 데이터) 등 메타데이터.

2.2 전처리 단계

- 노이즈 제거: 특수 문자/중복 데이터 필터링 (정규식 활용), 무의미한 데이터 삭제
- 표준화 · 정규화 : 텍스트 소문자 변환, 숫자, 날짜 표기 통일
 (예: "2025.02.10.점" → "2025.02.10")
- 결측값 처리: 플랫폼마다 제공하는 데이터 차이로 인한 데이터 불균형 존재.
 - 카카오페이지: 관심 수 없음
 - 카카오웹툰: 별점 없음
 - 네이버 시리즈: 조회수 없음, 랭킹의 기준: 별점, 판매 기준으로 작성되었으며 자세한 기준 알 수 없음
 - 네이버 웹툰: 조회수 없음
 →데이터를 정규화하여 score데이터 생성. LLM은 생성된 score를
 기준으로 사용자에게 추천.
- 이상치 처리: 조회수나 좋아요 수의 경우는 극단적으로 높은 경우가 있어
 4분위수를 최고치로 하여 대체하거나 로그 변환을 이용하여 데이터의 치우침을 방지(데이터가 양극화되면 LLM이 높은 점수의 데이터만 추천할 확률이 있기 때문)하여 다양한 추천 지향.
- 임베딩 생성: LangChain을 이용해 텍스트를 벡터로 변환 후, ChromaDB에 저장
- 임베딩 모델 : "BAAI/bge-m3"
 - 해당 모델의 사용 이유:

"text-embedding-3-small","text-embedding-ada-002","Bespin SRoBERTa", "BAAI/bge-m3", "nomic-embed-text"," bge-m3-korean" 모델을 사용하여 임베딩 하여 연관 있는 데이터를 가져오는 경우의 수를 측정하여 점수화 한 결과 "BAAI/bge-m3"이 300으로 제일 높았고, 그 다음은 "bge-m3-korean"이 270, "Bespin SRoBERTa"가 165 등으로 측정되어 점수가 제일 높은 "BAAI/bge-m3" 최종 채용.

출처: 공개 웹툰 플랫폼(네이버웹툰, 카카오웹툰, 카카오페이지 웹툰, 네이버시리즈 웹소설, 카카오페이지 웹소설)의 크롤링 데이터

데이터 전처리

기대효과	 3. 기대효과 사용자 취향에 맞추어 추천된 웹툰과 웹소설을 쉽게 발견할 수 있어 콘텐츠 소비가 증가할 것으로 예상. LLM의 시맨틱 분석을 통해 사용자 쿼리를 더 잘 이해하고, 정확한 검색을 수행하여 "판타지 장르 중 능력 먼치킨 캐릭터의 성장형 스토리"와 같은 세부 선호도에 반영. LLM의 자연어 처리 능력을 통해 보다 정확하고 개인화된 추천 제공. 신규 사용자에게 인기 작품과 유사도 기반 추천 플랫폼 내 사용자 체류 시간 증가 및 만족도 향상. 추천을 세분화하여(로맨스 모델은 로맨스 추천, 판타지 모델은 판타지 작품 안에서 추천) 사용자가 기대하는 취향과 동떨어진 추천 방지 다양한 성격을 가진 모델을 사용하여 사용자가 여러 캐릭터와 대화하는 것과 같은 효과
도구 및 환경	4. 도구 및 환경 LLM 모델: GPT-40 E로그래밍 언어: Python. E레임워크 및 라이브러리: LangChain (RAG 통합), Hugging Face Transformers, ChromaDB, ChatOpenAI, DJango, MySQL, AWS G데이터베이스: SQL을 Amazon RDS에 연동하여 웹툰 작품 정보 및 사용자데이터를 효율적으로 저장 및 관리. 개발 환경: AWS 클라우드 기반 컴퓨팅 자원 활용.

5. 결론

5.1 주요 성과

- SQL과 RDS에 데이터 저장
- 콘텐츠 데이터에 따른 추천 시스템(score) 구현
- agent를 이용하여 사용자의 의도 파악 후 그에 알맞은 답변 생성
- LLM이 추천 시스템을 인식하여 추천에 반영

결론

5.2 향후 계획

- 챗봇의 개별적 성격을 더욱 뚜렷하게 개발할 예정
- 데이터 확장: 더 많은 웹소설·웹툰 신규 데이터셋 추가
- 강화학습 도입: 사용자의 피드백을 반영한 추천 알고리즘 개선
- 한번 추천한 작품은 DB에 저장하여 재추천하지 않게 할 예정