

Algoritmos e Programação de Computadores

Sistemas de Numeração

Prof. Lucas Boaventura lucasxboaventura 18@gmail.com

Introdução

- Os número surgiram em diversas civilizações com a necessidade de contar
- Diversos sistemas, formas de contar e representação de algarismos foram inventados independentemente em diversos momentos da humanidade

Introdução

- Hoje, a humanidade utiliza a base 10 para a representação dos seus números com os dígitos
- 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9
- Apesar de não ter certeza, acredita-se estar ligado ao número de dedos dos humanos

Introdução

- Os computadores utilizam uma outra numeração: a binária
- Nela, os números são representados apenas com os algarismos 0 e 1
- Além do sistema binário, na computação é comum utilizar o sistema Octal (0, 1, 2, 3, 4, 5, 6 e 7) e Hexadecimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Decimal, Binário, Octal e Hexadecimal

Dec	Bin	Oct	Hex	Dec	Bin	Oct	Hex
0	0	0	0	8	1000	10	8
1	1	1	1	9	1001	11	9
2	10	2	2	10	1010	12	Α
3	11	3	3	11	1011	13	В
4	100	4	4	12	1100	14	С
5	101	5	5	13	1101	15	D
6	110	6	6	14	1110	16	E
7	111	7	7	15	1111	17	F

Decimal para Binário

 Para converter um número de decimal para binário:

$$\cdot$$
 19 / 2 = 9 (resto 1)

$$9/2 = 4 \text{ (resto 1)}$$

•
$$4/2 = 2$$
 (resto 0)

$$2/2 = 1 \text{ (resto 0)}$$

$$-1/2 = 0$$
 (resto 1)

10011 é 19 em binário

Binário para Decimal

 As potências de 2 são muito importantes durante a conversão e são usadas intensamente

2°	1	25	32	2^{10}	1024
21	2	2 ⁶	64		
2 ²	4	27	128		
2 ³	8	28	256		
24	16	29	512		

Binário para Decimal

 Para converter um número de binário para decimal:

Teorema de Representação por Base

Seja *k* qualquer inteiro maior que 1. Então, para cada inteiro positivo n existe uma representação:

$$n = a_0 k^s + a_1 k^{s-1} + (...) + a_{s-1} k^1 + a_s k^0$$

Onde a₀ > 0 e cada a_i é um inteiro não negativo maior que k. Esta representação de n é única e é chamada de representação de n na base k.

Teorema de Representação por Base

Exemplos:

$$18_{10} = (1*10^1) + (8*10^0)$$

$$1101_2 = (1*2^3) + (1*2^2) + (0*2^1) + (1*2^0) = 13_{10}$$

Desta forma, sabemos que um número na base binária 1101 é representado na decimal como 13

Octal e Hexadecimal

Por serem potências de 2, é possível converter rapidamente entre essas bases e a binária

6551 (Octal) 3433 (Decimal)

Dúvidas?

lucasxboaventura18@gmail.com