Graph Theory in Lambda Calculus

Adela-Nicoleta Corbeanu

Advisor: Traian Şerbănuță

 $(\lambda z.z) (\lambda x.\lambda y.y.x)$

July 2024

Table of Contents

- ▶ **3** Brief History of Lambda Calculus
- ▶ 4-5 Introduction to Lambda Calculus
- ▶ **6-8** Graph-theoretical Concepts
- ▶ **9-12** Counting Experiment
- ▶ 13-16 Connections between Lambda Terms and Graphs
- ▶ 17 Future perspectives

Alan Turing (1912-1954)

Alonzo Church (1903-1995)

Lambda Calculus in Functional Programming

$$(lambda (x) (+ x 1))$$

$$(x) \Rightarrow x + 1$$

lambda
$$x: x + 1$$

fun
$$x \rightarrow x + 1$$

Lambda Terms - definitions

- ▶ lambda term = variable | application | abstraction x M N $\lambda x.M$
- **Example:** $\lambda x.x \ y \rightarrow$ function that takes x and returns x applied to y
- $ightharpoonup M N P \equiv (M N) P$

What is a graph?

$$ightharpoonup$$
 ... $G = (V, E)$...

visual representation!

Some graph theory concepts

- graph isomorphism
- embeddings onto plane
 - planarity

Maps

Three isomorphic graphs, but **not** three isomorphic maps

β -normal ordered linear lambda terms

- **not** ordered: $\lambda x.\lambda y.y.x$
- ightharpoonup ordered: $\lambda x.\lambda y.x y$

- **not** linear: $\lambda x \cdot x \times x$
- linear: $\lambda x. \lambda y. x y$

- **not** β -normal: $(\lambda x.x y) z$
- \triangleright β -normal: z y, $\lambda x \cdot x$ y

Counting β -normal ordered linear lambda terms

Two variables:

1 $\lambda x x$

1. $\lambda x.x(\lambda y.y)$

2. $\lambda x. \lambda y. x y$

Three variables:

1. $\lambda x.x (\lambda y.y (\lambda z.z))$

3. $\lambda x.x (\lambda y.y) (\lambda z.z)$

2. $\lambda x.x (\lambda y.\lambda z.y z)$

One variable:

5. $\lambda x. \lambda y. x (\lambda z. y. z)$

6. $\lambda x. \lambda y. x (\lambda z. z) y$

4. $\lambda x. \lambda y. x (y (\lambda z. z))$

7. $\lambda x. \lambda y. x y (\lambda z. z)$

8. $\lambda x. \lambda y. \lambda z. x$ (y z)

9. $\lambda x. \lambda y. \lambda z. x y z$

11 / 18

1, 2, 9, 54...

013627 THE ON-LINE ENCYCLOPEDIA : OE 13 23 IS 12 OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

1,2,9,54 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,2,9,54

Displaying 1-10 of 12 results found.

page 1 2

From Lambda Terms to Maps

 $\lambda x.\lambda y.y (\lambda z.x z)$

From Lambda Terms to Maps

 $\lambda x.\lambda y.y (\lambda z.x z) \lambda x.\lambda y.y (\lambda z.x z)$

From Lambda Terms to Maps

$\lambda x.\lambda y.y (\lambda z.x z)$

 $\lambda x.\lambda y.y (\lambda z.x z) \lambda x.\lambda y.y (\lambda z.x z)$

University of Bucharest

Some correspondences

- ▶ linear lambda terms ≡ trivalent maps
- ightharpoonup typing of lambda terms \equiv Four Color Theorem
- ightharpoonup ... unitless lambda terms \equiv bridgeless maps, etc. ...

Future perspectives

- a complete bilingual dictionary between lambda calculus and graph theory
- ▶ an enumerative perspective of lambda calculus

"From time to time in a graph-theoretical career, one's thoughts turn to the Four Colour Problem."

— W. T. Tutte, Graph Theory as I Have Known It

Thank you! Discussion time!

