Lineare Algebra I - Prüfung Winter 2019

- 1. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete Teilaufgabe erhalten Sie 2 Punkte, sonst 0 Punkte. Bei dieser Aufgabe müssen Sie die Antworten nicht begründen.
 - (I) Im Körper \mathbb{F}_{17} gilt die Gleichung $x \cdot \overline{7} = \overline{1}$ für
 - (a) $x = \overline{15}$
 - **(b)** $x = \overline{9}$
 - (c) $x = \bar{3}$
 - $\boxed{\mathbf{(d)}} \ x = \overline{5}$
 - (II) Sei f ein Endomorphismus eines Vektorraumes. Welche Aussage ist **richtig**?
 - (a) Die Summe zweier Eigenvektoren von f ist wieder ein Eigenvektor von f.
 - (b) Die Summe zweier Eigenwerte von f ist wieder ein Eigenwert von f.
 - (c) Jeder Eigenvektor von f gehört zu genau einem Eigenwert von f.
 - (d) Zu jedem Eigenwert von f existiert ein eindeutiger Eigenvektor von f.
 - (III) Sei V ein Vektorraum mit Dualraum V^* . Welche Aussage ist richtig?
 - (a) Der Begriff duale Basis bezeichnet eine durch V eindeutig bestimmte Basis von V^* .
 - (b) Die Elemente von V sind gleich den Elementen von V^* .
 - (c) Für $\dim(V) < \infty$ ist $V \cong V^*$.
 - $\overline{(\mathbf{d})}$ Es gilt $V^* = \operatorname{End}_K(V)$.
 - (IV) Welche der folgenden Definitionen ergibt einen Sinn für alle $n \ge 0$? Eine $n \times n$ -Matrix A über einem Körper K heisst
 - (a) positiv, wenn det(A) > 0 gilt.
 - (b) definit, wenn für alle $v \in K^n$ gilt $v^T A v = 0 \iff v = 0$.
 - $\overline{(\mathbf{c})}$ konstant, wenn für alle $v \in K^n$ ein $\lambda \in K$ existiert, so dass $Av = \lambda$ gilt.
 - (d) doppelsymmetrisch, wenn für die zusammengesetzte $n \times 2n$ -Matrix (A|A) gilt $(A|A)^T = (A|A)$.
 - (V) Seien A und B Aussagen. Welcher Ausdruck ist **nicht** äquivalent zum Ausdruck $\neg(\neg(A \lor B) \lor (B \land A)) \land B$?
 - (a) $B \wedge A$
 - **(b)** $\neg(\neg(A \lor B) \lor (B \land A) \lor \neg B)$
 - (c) $(A \lor B) \land \neg (B \land A) \land B$
 - (d) $B \wedge \neg A$

- (VI) Die Aussage "Alle Menschen machen die gleichen Fehler" ist äquivalent zu
 - (a) $\forall x, y \in \{\text{Mensch}\}\ \exists f \in \{\text{Fehler}\}\ (x \text{ macht } f) \land (y \text{ macht } f).$
 - (b) $\forall x \in \{\text{Mensch}\} \exists f, g \in \{\text{Fehler}\}: (x \text{ macht } f) \Leftrightarrow (x \text{ macht } g).$
 - (c) $\forall f \in \{\text{Fehler}\} \ \exists x, y \in \{\text{Mensch}\} \colon (x \text{ macht } f) \Rightarrow (y \text{ macht } f).$
 - (d) $\forall x, y \in \{\text{Mensch}\} \ \forall f \in \{\text{Fehler}\}: (x \text{ macht } f) \Rightarrow (y \text{ macht } f).$
- **(VII)** Für welche binäre Operation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ ist $(\mathbb{R}, *, 0)$ eine Gruppe?
 - (a) $a * b := ab^2 + a^2b$.
 - **(b)** a * b := a + ab + b.
 - (c) $a * b := a + a^2b^2 + b$.
 - (d) $a * b := (a^3 + b^3)^{\frac{1}{3}}$.

Begründung: Bei (a) ist 0 kein neutrales Element, bei (b) ist die Operation assoziativ und hat 0 als neutrales Element, aber -1 hat kein Inverses. Die Operation (c) ist nicht assoziativ und hat nicht alle Inversen, aber 0 ist ein neutrales Element. Für (d) betrachte die bijektive Abbildung $f: \mathbb{R} \to \mathbb{R}$, $a \mapsto a^3$; wegen f(a*b) = f(a) + f(b) übertragen sich die Gruppenaxiome von $(\mathbb{R}, +, 0)$ direkt auf $(\mathbb{R}, *, 0)$.

- (VIII) Sei V ein Vektorraum. Welche Aussage ist im allgemeinen falsch?
 - (a) Eine Teilmenge $U \subset V$ ist genau dann ein Unterraum, wenn $\langle U \rangle = U$ ist.
 - **(b)** Für alle Teilmengen $S_1, S_2 \subset V$ gilt $\langle S_1 \cup S_2 \rangle = \langle S_1 \rangle + \langle S_2 \rangle$.
 - (c) Für alle Teilmengen $S_1, S_2 \subset V$ gilt $\langle S_1 \cap S_2 \rangle = \langle S_1 \rangle \cap \langle S_2 \rangle$.
 - (d) Für jede Basis $B \subset V$ ist $\langle B \rangle = V$.

Begründung: Für die Teilmengen $S_1 := \{\binom{1}{1}\}$ und $S_2 := \{\binom{1}{0}, \binom{0}{1}\}$ von k^2 gilt $\langle S_1 \cap S_2 \rangle = \langle \varnothing \rangle = \{0\}$, aber $\langle S_1 \rangle \cap \langle S_2 \rangle = \langle S_1 \rangle \cap k^2 = \langle S_1 \rangle \neq \{0\}$.

- (IX) Welche Eigenschaft erfüllt die Determinante einer Matrix nicht?
 - (a) Invarianz unter Vertauschung zweier Spalten.
 - (b) Für alle $n \times n$ -Matrizen A und B gilt $\det(AB) = \det(A) \det(B)$.
 - (c) Linearität in jeder Spalte.
 - (d) Invarianz unter Addition einer Spalte zu einer anderen Spalte.
- (X) Welche Eigenschaft gilt für jede $n \times m$ -Matrix A und jede $m \times n$ -Matrix B?
 - (a) Wenn $AB = I_n$ gilt, dann ist n = m und A und B sind invertierbar.
 - (b) Falls AB invertierbar ist, so ist $m \ge n$.
 - $\overline{(\mathbf{c})}$ Ist AB die Nullmatrix, dann ist A oder B die Nullmatrix.
 - (d) Wenn $A^T A = BB^T$ gilt, dann ist A = B.

- **2.** Sei M eine endliche Menge und $V := \{f \colon M \to K\}$ die Menge aller Abbildungen von M in den Körper K.
 - (a) (6 Punkte) Zeige, dass V mit den Verknüpfungen

$$(f+g)(x) := f(x) + g(x)$$
$$(af)(x) := af(x)$$

für $f, g \in V$ und $a \in K$ einen K-Vektorraum bildet.

- (b) (3 Punkte) Bestimme die Dimension von V.
- (c) (3 Punkte) Wähle ein $m \in M$. Zeige, dass die Menge $U_m := \{ f \in V \mid f(m) = 0 \}$ ein Untervektorraum von V ist.
- (d) (3 Punkte) Bestimme ein Komplement zu U_m in V.

Lösung:

- (a) Wir zeigen, dass die Vektorraumaxiome (I) bis (V) aus der Zusammenfassung gelten. Als neutrales Element dient dabei die konstante Nullabbildung $O_V(m) = 0$ für alle $m \in M$.
 - (I) Dass die Verknüpfung + wohldefiniert und assoziativ ist, folgt direkt aus den Körperaxiomen für K. Ebenso folgt die Kommutativität und dass O_V ein neutrales Element ist. Für jede Abbildung $f: M \to K$ ist die Abbildung $g:=(m\mapsto -f(m))$ ein inverses Element. Also ist $(V,+,O_V)$ eine abelsche Gruppe.
 - (II) Sei $\lambda \in K$ und $f, g \in V$. Für alle $m \in M$ gilt dann

$$(\lambda(f+g))(m) = \lambda(f+g)(m) = \lambda(f(m) + g(m))$$
$$= \lambda f(m) + \lambda g(m) = (\lambda f + \lambda g)(m),$$

also sind die Verknüpfungen linksdistributiv.

(III) Sei $\lambda, \lambda' \in K$ und $f \in V$. Für alle $m \in M$ gilt dann

$$((\lambda + \lambda')f)(m) = (\lambda + \lambda')f(m) = \lambda f(m) + \lambda' f(m) = (\lambda f + \lambda' f)(m),$$

also sind die Verknüpfungen rechtsdistributiv.

- (IV) Die Assoziativität der Skalarmultiplikation folgt aus der Assoziativität der Multiplikation in K.
- (V) Für alle $f \in V$ und $m \in M$ gilt $(1_K \cdot f)(m) = 1_K \cdot f(m) = f(m)$, also ist $1_K \cdot f = f$.
- (b) Für jedes $m \in M$ sei $1_m \in V$ die Abbildung $1_m(n) = 1$, falls m = n ist und $1_m(n) = 0$, falls $m \neq n$ ist. Für jedes $f \in V$ gilt dann $f = \sum_{m \in M} f(m) \cdot 1_m$, also ist $\{1_m \mid m \in M\}$ ein Erzeugendensystem von V. Dieses ist aber auch linear unabhängig: Sei $(a_m)_{m \in M} \in K$ so dass $\sum_{m \in M} a_m 1_m = 0$ gilt. Dann ist $a_n = (\sum_{m \in M} a_m 1_m) (n) = 0$ für jedes $n \in M$, woraus die lineare Unabhängigkeit folgt. Insgesamt ist $\{1_m \mid m \in M\}$ also eine Basis von V und deshalb ist die Dimension $\dim(V) = |\{1_m \mid m \in M\}| = |M|$.

- (c) Wir überprüfen die drei Axiome von Unterräumen. Wegen $0_V \in U_m$ ist U_m nicht leer. Für alle $f, g \in U_m$ ist (f+g)(m) = f(m) + g(m) = 0, also ist $f+g \in U_m$. Des Weiteren ist $(\lambda f)(m) = \lambda f(m) = 0$, und damit $\lambda f \in U_m$, für jedes $f \in U_m$ und $\lambda \in K$. Daraus folgt, dass U_m ein Unterraum von V ist.
- (d) Jeder eindimensionale Unterraum $U \subset V$, der durch ein Element $f \in U$ erzeugt ist, so dass $f(m) \neq 0$ gilt, ist ein Komplement zu U_m in V. Zum Beispiel ist also $U := \langle 1 \rangle$ ein Komplement, wobei 1 die konstante 1-Abbildung $m \mapsto 1$ ist.
- 3. Betrachte die reelle 3×3 -Matrix

$$A := \begin{pmatrix} 1 & t & t^2 \\ t & t & 1 \\ t^2 & 1 & t \end{pmatrix}$$

mit Parameter $t \in \mathbb{R}$.

- (a) (1 Punkte) Gib eine Definition für den Rang einer allgemeinen Matrix an.
- (b) (6 Punkte) Bestimme den Rang von A in Abhängigkeit von t.
- (c) (4 Punkte) Löse das lineare Gleichungssystem Ax = b im Fall t = 2 für $x \in \mathbb{R}^3$ und

$$b = \begin{pmatrix} 8 \\ 3 \\ -3 \end{pmatrix}.$$

(d) (4 Punkte) Sei C eine $n \times n$ -Matrix vom Rang m. Beweise, dass eine $n \times m$ -Matrix A und eine $m \times n$ -Matrix B existieren, so dass C = AB gilt.

Lösung:

- (a) Sei B eine $n \times m$ -Matrix. Aus einem Satz aus der Vorlesung folgt, dass invertierbare Matrizen U und V existieren, so dass UAV eine Blockmatrix mit linkem oberen Block I_r und sonst nur Nullen ist für ein geeignetes $0 \le r \le \min(m, n)$. Dieses r ist definiert als der Rang der Matrix.
- (b) Wir subtrahieren zuerst t mal die zweite Zeile von der dritten, und dann t mal die erste Zeile von der zweiten, und erhalten

$$\begin{pmatrix} 1 & t & t^2 \\ t & t & 1 \\ t^2 & 1 & t \end{pmatrix} \leadsto \begin{pmatrix} 1 & t & t^2 \\ t & t & 1 \\ 0 & 1 - t^2 & 0 \end{pmatrix} \leadsto \begin{pmatrix} 1 & t & t^2 \\ 0 & t - t^2 & 1 - t^3 \\ 0 & 1 - t^2 & 0 \end{pmatrix}.$$

Diese elementaren Zeilenoperationen ändern den Rang nicht.

Die Matrix auf der rechten Seite hat die Determinante $-1 \cdot (1-t^2) \cdot (1-t^3) = -(t-1)^2 \cdot (t-1) \cdot (t^2+t+1)$. Die komplexen Nullstellen des Polynoms t^2+t+1

sind nach der Mitternachtsformel gleich $\frac{-1\pm i\sqrt{3}}{2}$, also nicht reell. Für $t \neq \pm 1$ ist somit die Determinante ungleich Null und der Rang gleich 3.

Für t=1 ist die erste Zeile der rechten Matrix ungleich Null, die übrigen Zeilen aber Null; somit ist der Rang gleich 1.

Für t = -1 ist die erste Zeile der rechten Matrix ungleich Null, die zweite Zeile von der ersten linear unabhängig, aber die dritte Zeile gleich Null; somit ist der Rang gleich 2.

(c) (Gaussverfahren) Wir wenden dieselben elementaren Zeilenumformungen wie in (a) auf die erweiterte Matrix (A|b) an und erhalten:

$$\begin{pmatrix} 1 & 2 & 4 & 8 \\ 2 & 2 & 1 & 3 \\ 4 & 1 & 2 & -3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 4 & 8 \\ 2 & 2 & 1 & 3 \\ 0 & -3 & 0 & -9 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 4 & 8 \\ 0 & -2 & -7 & -13 \\ 0 & -3 & 0 & -9 \end{pmatrix}.$$

Dann multiplizieren wir die mittlere bzw. letzte Zeile mit -1 bzw. $-\frac{1}{3}$, vertauschen diese Zeilen, und subtrahieren 2 mal die zweite Zeile von der dritten:

Nun multiplizieren wir die letzte Zeile mit $-\frac{1}{7}$, danach subtrahieren wir 2 mal die mittlere Zeile sowie 4 mal die letzte Zeile von der ersten, und erhalten:

$$\leadsto \left(\begin{array}{ccc|c} 1 & 2 & 4 & 8 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{array}\right) \leadsto \left(\begin{array}{ccc|c} 1 & 0 & 4 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{array}\right) \leadsto \left(\begin{array}{ccc|c} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{array}\right).$$

Daher erhalten wir als einzige Lösung

$$x = \begin{pmatrix} -2\\3\\1 \end{pmatrix}.$$

(d) Nach einem Satz der Vorlesung existieren invertierbare $n \times n$ -Matrizen U und V, so dass UCV eine Blockmatrix der Form $\binom{I_m}{O}\binom{O}{O}$ ist mit der $m \times m$ -Einheitsmatrix I_m und allen übrigen Einträgen gleich Null. Diese können wir als Produkt von Blockmatrizen

$$U \cdot C \cdot V = \begin{pmatrix} I_m & O_{m,n-m} \\ O_{n-m,m} & O_{m,m} \end{pmatrix} = \begin{pmatrix} I_m \\ O_{n-m,m} \end{pmatrix} \cdot \begin{pmatrix} I_m & O_{m,n-m} \end{pmatrix}$$

schreiben, wobei jeweils $O_{k,\ell}$ die Nullmatrix der Grösse $k \times \ell$ bezeichnet. Mit $A := U^{-1}\binom{I_m}{O_{m,n-m}}$ und $B := \begin{pmatrix} I_m & O_{n-m,m} \end{pmatrix} V^{-1}$ gilt dann

$$A \cdot B = U^{-1} \cdot \begin{pmatrix} I_m \\ O_{m,n-m} \end{pmatrix} \cdot \begin{pmatrix} I_m & O_{n-m,m} \end{pmatrix} \cdot V^{-1}$$
$$= U^{-1} \cdot U \cdot C \cdot V \cdot V^{-1} = I_n \cdot C \cdot I_n = C.$$

4. Gegeben seien die komplexen Matrizen

$$\sigma_0 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ B := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- (a) (4 Punkte) Zeige, dass das Tupel $(\sigma_0, \sigma_1, \sigma_2, \sigma_3)$ eine Basis des komplexen Vektorraumes $\mathrm{Mat}_{2\times 2}(\mathbb{C})$ der 2×2 -Matrizen bildet.
- (b) (2 Punkte) Zeige, dass die Abbildung

$$T: \operatorname{Mat}_{2\times 2}(\mathbb{C}) \to \operatorname{Mat}_{2\times 2}(\mathbb{C})$$

 $X \mapsto XB - BX$

linear ist.

- (c) (4 Punkte) Bestimme die Darstellungsmatrix der Abbildung T bezüglich der Basis $(\sigma_0, \sigma_1, \sigma_2, \sigma_3)$.
- (d) (5 Punkte) Bestimme eine Basis von $Mat_{2\times 2}(\mathbb{C})$, welche T trigonalisiert.

Lösung:

(a) Der Vektorraum hat Dimension 4, also genügt zu zeigen, dass die Matrizen $\sigma_0, \sigma_1, \sigma_2, \sigma_3$ linear unabhängig sind. Seien $a, b, c, d \in \mathbb{C}$ Koeffizienten so dass $a\sigma_0 + b\sigma_1 + c\sigma_2 + d\sigma_3 = 0$. Aus dem oberen linken Eintrag der Matrizen folgt dann, dass a + d = 0 ist und aus dem rechten unteren Eintrag folgt, dass a - d = 0 ist. Also ist a = d = 0 und wir haben noch die Gleichung $b\sigma_1 + c\sigma_2 = 0$. Aus dem linken unteren Eintrag folgt dann, dass b + ic = 0 ist und aus dem rechten oberen Eintrag folgt, dass b - ic = 0 ist. Insgesamt folgt damit b = c = 0 und daher die Behauptung.

Alternativ kann die Standardbasis wie folgt dargestellt werden:

$$E_{11} = \frac{1}{2}(\sigma_0 + \sigma_3), \ E_{12} = \frac{1}{2}(\sigma_1 + i\sigma_2), \ E_{21} = \frac{1}{2}(\sigma_1 - i\sigma_2), \ E_{22} = \frac{1}{2}(\sigma_0 - \sigma_3),$$

woraus ebenfalls folgt, dass $(\sigma_0, \sigma_1, \sigma_2, \sigma_3)$ eine Basis bildet.

(b) Seien X, Y zwei 2×2 -Matrizen und sei $a \in \mathbb{C}$. Dann ist

$$T(X+Y) = (X+Y)B - B(X+Y) = XB + YB - BX - BY = T(X) + T(Y)$$

und

$$T(aX) = (aX)B - B(aX) = a(XB - BX) = aT(X).$$

Dies zeigt, dass T eine lineare Abbildung ist.

(c) Wir berechnen:

$$T(\sigma_0) = 0, \ T(\sigma_1) = -\sigma_3, \ T(\sigma_2) = -i\sigma_3, \ T(\sigma_3) = \sigma_1 + i\sigma_2.$$

Daher ist die Lösung

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & i \\ 0 & -1 & -i & 0 \end{pmatrix}.$$

(d) Wegen $T(\sigma_1 + i\sigma_2) = 0$ und den in (c) berechneten Relationen folgern wir, dass $T^3 = 0$ ist. Wir suchen uns einen Vektor v so dass $T^2(v) \neq 0$ ist. Wenn (σ_0, T^2v, Tv, v) eine Basis ist, trigonalisiert sie die Abbildung T. Wir wählen $v = \sigma_2$ und erhalten die Basis $(\sigma_0, \sigma_2 - i\sigma_1, -i\sigma_3, \sigma_2)$. In dieser Basis hat T die Darstellungsmatrix

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Die alternative Basis $(\sigma_2 - i\sigma_1, -i\sigma_3, \sigma_2, \sigma_0)$ ergibt die Darstellungsmatrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Die (allfällig erratene) alternative Basis $(\sigma_0, \sigma_1 + i\sigma_2, \sigma_3, \sigma_2)$ ergibt die Darstellungsmatrix

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Alternativ kann auch die Standardbasis in geänderter Reihenfolge benutzt werden. Es gilt

$$T(E_{11}) = E_{12}, \ T(E_{12}) = 0, \ T(E_{21}) = E_{22} - E_{11}, \ T(E_{22}) = -E_{12}.$$

In der Basis $(E_{12}, E_{11}, E_{22}, E_{21})$ ist die Darstellungsmatrix

$$\begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- **5.** Gegeben sei eine Folge a_1, a_2, a_3, \ldots in K. Für jede ganze Zahl $n \ge 1$ betrachte die Matrix $A_n := (a_{\min\{i,j\}})_{i,j=1,\ldots,n}$.
 - (a) (6 Punkte) Beweise die Formel für die Entwicklung einer Determinante nach der letzten Zeile.
 - (b) (1 Punkte) Schreibe A_n aus (mit Pünktchen).
 - (c) (4 Punkte) Zeige $\det(A_{n+1}) = \det(A_n) \cdot (a_{n+1} a_n)$ für alle $n \ge 1$.
 - (d) (4 Punkte) Gib eine explizite Formel für $\det(A_n)$ an für alle $n \ge 1$ und beweise sie durch Induktion.

Lösung:

(a) Sei B eine $n \times n$ -Matrix mit n > 0. Bezeichne mit B_{ij} die $(n-1) \times (n-1)$ Matrix, die aus B durch Streichen der i-ten Zeile und j-ten Spalte hervorgeht.
Wir bezeichnen mit b_{ij} den Eintrag der Matrix B an der Stelle (i, j) und mit c_{ab}^{ij} den Eintrag der Matrix B_{ij} an der Stelle (a, b). Dann ist die Entwicklung der letzten Zeile gegeben durch:

$$\sum_{i=1}^{n} (-1)^{n+j} b_{nj} \det(B_{nj}).$$

Die Determinante von B ist definiert als

$$\det(B) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{k=1}^n b_{k\sigma k} = \sum_{j=1}^n \sum_{\substack{\sigma \in S_n \\ \sigma(n)=j}} \operatorname{sgn}(\sigma) \prod_{k=1}^n b_{k\sigma k}$$
$$= \sum_{j=1}^n b_{nj} \sum_{\substack{\sigma \in S_n \\ \sigma(n)=j}} \operatorname{sgn}(\sigma) \prod_{k=1}^{n-1} b_{k\sigma k}.$$

Für jedes $1 \leq j \leq n$ gibt es eine Bijektion zwischen der Menge aller Permutationen $\sigma \in S_n$ mit $\sigma(n) = j$ und und der Menge $\tau \in S_{n-1}$. Dabei ist die Anzahl Fehlstände von σ um n-j höher als die Anzahl Fehlstände von τ weil genau jedes $1 \leq k < n$ mit $\sigma k > j = \sigma(n)$ ein Fehlstand von σ , aber nicht von τ ist. Es gibt genau n-j solche k. Daher ist $\mathrm{sgn}(\sigma) = (-1)^{n-j} \, \mathrm{sgn}(\tau)$ und es folgt die Gleichheit

$$\sum_{\substack{\sigma \in S_n \\ \sigma(n)=j}} \operatorname{sgn}(\sigma) \prod_{k=1}^{n-1} b_{k\sigma k} = \sum_{\tau \in S_{n-1}} (-1)^{n-j} \operatorname{sgn}(\tau) \prod_{k=1}^{n-1} b_{k\sigma k} = (-1)^{n-j} \det(B_{nj}).$$

Mit der obigen Rechnung folgt zusammenfügend also

$$\det(B) = \sum_{j=1}^{n} b_{nj} \sum_{\substack{\sigma \in S_n \\ \sigma(n)=j}} \operatorname{sgn}(\sigma) \prod_{k=1}^{n-1} b_{k\sigma k} = \sum_{j=1}^{n} b_{nj} (-1)^{n-j} \det(B_{nj})$$
$$= \sum_{j=1}^{n} (-1)^{n+j} b_{nj} \det(B_{nj}),$$

wobei wir ausgenutzt haben, dass $(-1)^{n-j} = (-1)^{n+j}$ gilt.

(b)
$$A_n = \begin{pmatrix} a_1 & a_1 & a_1 & \dots & a_1 \\ a_1 & a_2 & a_2 & \dots & a_2 \\ a_1 & a_2 & a_3 & \dots & a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_n \end{pmatrix}.$$

- (c) In A_{n+1} subtrahiere die vorletzte Zeile von der letzten. Diese Operation verändert die Determinante nicht. Wir erhalten dabei eine Blockmatrix mit quadratischem linken oberen Block A_n und dem Eintrag $a_{n+1} a_n$ unten rechts. Mit der Determinantenformel für Blockmatrizen folgt $\det(A_{n+1}) = A_n \cdot (a_{n+1} a_n)$.
- (d) Wir behaupten, dass die Formel

$$\det(A_n) = a_1 \cdot (a_2 - a_1) \cdot \cdot \cdot (a_n - a_{n-1})$$

lautet.

Induktionsanfang: $det(A_1) = a_1$ erfüllt die Formel.

Induktionsschritt: Wir benutzen Teilaufgabe (c) für den Schritt. Wir nehmen an, die obige Formel gelte für n. Dann ist

$$\det(A_{n+1}) = \det(A_n) \cdot (a_{n+1} - a_n) = a_1 \cdot (a_2 - a_1) \cdot \cdots \cdot (a_n - a_{n-1}) \cdot (a_{n+1} - a_n),$$

wobei wir im ersten Gleichheitszeichen (c) und im zweiten Gleichheitszeichen die Induktionshypothese verwendet haben. Die Formel gilt also auch für n+1. Durch Induktion ist die Formel bewiesen.

6. Gegeben sei die Rekursionsformel einer Folge $(F_i)_{i\geqslant 0}\in\mathbb{C}$:

$$F_0 := 3$$
, $F_1 := 6$, $F_2 := 14$, $F_{n+1} := 6F_n - 11F_{n-1} + 6F_{n-2}$ für $n \ge 2$.

- (a) (2 Punkte) Sei $v_n := (F_n, F_{n-1}, F_{n-2})^T$ für alle $n \ge 2$. Schreibe die obige Rekursion in Matrixform $v_{n+1} = Av_n$ mit einer 3×3 -Matrix A.
- (b) (7 Punkte) Bestimme das charakteristische Polynom, die Eigenwerte und Eigenvektoren von A über \mathbb{C} .
- (c) (6 Punkte) Gib eine explizite Formel für F_n an.

Lösung:

(a) Wir wollen das System als $v_{n+1} = Av_n$ schreiben für $v_n = (F_n, F_{n-1}, F_{n-2})^T$ und $n \ge 2$. Wir finden:

$$A := \begin{pmatrix} 6 & -11 & 6 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad v_2 := \begin{pmatrix} 14 \\ 6 \\ 3 \end{pmatrix}.$$

(b) Das charakteristische Polynom von A ist

$$X^{3} - 6X^{2} + 11X - 6 = (X - 1)(X - 2)(X - 3).$$

Daher sind die Eigenwerte 1, 2, 3. Die zugehörigen Eigenvektoren sind

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ w_2 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}, \ w_3 = \begin{pmatrix} 9 \\ 3 \\ 1 \end{pmatrix}.$$

(c) Wir nutzen die Eigenbasis von A. Sei dafür

$$T = \begin{pmatrix} 1 & 4 & 9 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

die Basiswechselmatrix. Wir berechnen die Inverse

$$T^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} & 3\\ -1 & 4 & -3\\ \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix}$$

und bestimmen damit

$$\tilde{v}_2 := T^{-1}v_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

Wir können alternativ auch den Vektor \tilde{v}_2 als Lösung des linearen Gleichungssystems $Tx=v_2$ bestimmen, dann brauchen wir die Inverse nicht explizit. Sei

$$D := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Wir rechnen

$$v_{n+2} = A^n v_2 = TD^n T^{-1} v_2 = TD^n \tilde{v}_2 =$$

$$= T = \begin{pmatrix} 1 & 4 & 9 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 + 2^{n+2} + 3^{n+2} \\ 1 + 2^{n+1} + 3^{n+1} \\ 1 + 2^n + 3^n \end{pmatrix}.$$

Eine explizite Formel ist daher $F_n = 1 + 2^n + 3^n$.