The Indifference Principle

- The following characterization of (mixed) Nash equilibria will turn out to be very useful.
- Lemma: A strategy profile s is a Nash equilibrium iff for every player i, assuming that the other players play s_{-i} ,
 - \triangleright all actions in the support of s_i yield the same expected payoff, and
 - \triangleright no action outside the support of s_i yields more expected payoff.
- Any randomization of player *i* among actions in the support of *s_i* yields the same expected payoff.
 - "You randomize for the other players."
- Among other things, the indifference principle permits the efficient verification of potential Nash equilibria.

Equilibria of Standard Examples

"Penalty shootout"

([1/2: left, 1/2: right], [1/2: left, 1/2: right])

boxing

ballet

1 0 2 0 0 2 0 1

ballet

boxing

"Chicken"

([1: yield], [1: straight])

([1: straight], [1: yield])

([1/2: yield, 1/2: straight], [1/2: yield, 1/2: straight])

"Battle of the Sexes"

([1: boxing], [1: boxing])

([1: ballet], [1: ballet])

([2/3: boxing, 1/3: ballet], [1/3: boxing, 2/3: ballet])

More on Nash Equilibria

- Some (not all) Nash equilibria of the introductory example:
 - e₁: ([1:a], [1:x]), utility (0, 0)
 - e₂: ([1/2:b, 1/2:c], [1:x]), utility (0, 3/2)
 - e₃: ([1:a], [1/2:y, 1/2:z]), utility (3/2, 0)
 - e₄: ([1/2:b, 1/2:c], [1/2:y, 1/2:z]), utility (3/2, 3/2)

- Only rationalizable actions can be in the support of an equilibrium.
- The payoff in any equilibrium is always at least as large as the player's security level.
- In general, the set of equilibria is not convex (e.g., BoS, Chicken).

Existence of Nash Equilibria

L. E. J. Brouwe

- Does every game contain a Nash equilibrium?
- Theorem (Nash, 1950): Every normal-form game contains a Nash equilibrium.
 - non-constructive proof using Brouwer's fixed point theorem
- ► Theorem (Brouwer, 1909/1912): If $S \subset \mathbb{R}^n$ is compact and convex and $f: S \rightarrow S$ is continuous, then there exists $x \in S$ such that f(x) = x.
 - A set $S \subset \mathbb{R}^n$ is compact if every sequence in S has a convergent subsequence, whose limit lies in S.
 - A set $S \subset \mathbb{R}^n$ is convex if for all $x,y \in S$ and every $\alpha \in [0,1]$, $ax + (1-\alpha)y \in S$.

Nash's Proof Sketch

▶ A *k-simplex* is the set $\left\{ x \in \mathbb{R}^k \mid \sum_{i=1}^k x_i = 1 \land \forall i \colon x_i \geq 0 \right\}$

- Observations
 - A k-Simplex is compact and convex.
 - Every strategy set S_i for k actions is a k-simplex.
 - The set of strategy profiles S is compact and convex.

Nash's Proof Sketch (ctd.)

▶ Consider the following function $f: S \rightarrow S$, which maps the probability $s_i(a_i^h)$ of each action a_i^h to the probability $f_i^h(s)$.

$$f_i^h(s) = \frac{s_i(a_i^h) + \max(u_i(a_i^h, s_{-i}) - u_i(s), 0)}{\sum_{a_i^\ell \in A_i} (s_i(a_i^\ell) + \max(u_i(a_i^\ell, s_{-i}) - u_i(s), 0))}$$

- $\max(u_i(a_i^h, s_{-i}) u_i(s), 0) > 0$ iff a_i^h is a better response than s_i .
- ▶ The denominator normalizes output such that $f(s) \in S$.
- f is continuous because it is composed of continuous functions.

Nash's Proof Sketch (ctd.)

$$f_i^h(s) = \frac{s_i(a_i^h) + \max(u_i(a_i^h, s_{-i}) - u_i(s), 0)}{\sum_{a_i^\ell \in A_i} (s_i(a_i^\ell) + \max(u_i(a_i^\ell, s_{-i}) - u_i(s), 0))}$$

- ightharpoonup Claim: f(s)=s iff s is a Nash equilibrium.
 - Suppose s is an equilibrium, then no pure strategy can be a better response than s_i . Hence, f(s)=s.
 - Suppose s is *not* an equilibrium, then at least one pure strategy yields strictly more payoff (denominator > 1). At least one pure strategy (in $supp(s_i)$) yields less or equal payoff. The probability of the corresponding action decreases. Hence, $f(s) \neq s$.
- Since S is compact and convex and f is continuous, Brouwer's fixed point theorem implies that there exists an $s \in S$ such that f(s) = s.

Nash's Proof Sketch Illustration

$$f_i^h(s) = \frac{s_i(a_i^h) + \max(u_i(a_i^h, s_{-i}) - u_i(s), 0)}{\sum_{a_i^\ell \in A_i} \left(s_i(a_i^\ell) + \max(u_i(a_i^\ell, s_{-i}) - u_i(s), 0)\right)}$$

$$s = ([1 : c], [1 : z])$$

$$f_2^X(s) = \frac{1}{4}$$
 $f_2^Y(s) = \frac{2}{4}$ $f_2^Z(s) = \frac{1}{4}$

$$f_2^y(s)=\frac{2}{4}$$

$$f_2^z(s)=\frac{1}{4}$$

$$f(c,z) = \left([1:c], \left[\frac{1}{4}:x, \frac{1}{2}:y, \frac{1}{4}:z \right] \right)$$

Nash's Proof Sketch (ctd.)

- Alternatively, one may use Kakutani's fixed point theorem (as also observed by Nash).
- Theorem (Kakutani, 1941): If $S \subset \mathbb{R}^n$ is compact and convex, $f: S \rightarrow 2^S$ is upper semi-continuous, and f(x) is convex for all $x \in S$, then there exists $x \in S$ such that $x \in f(x)$.
 - letting $f(s)=(B_1(s_{-1}), ..., B_n(s_{-n}))$ yields Nash's theorem
 - numerous other applications in economics
- The availability of mixed strategies is essential for the existence of Nash equilibria.
 - Randomization may also be interpreted as beliefs on the actions to be played by the other players.

