(Item-based collaborative filtering) Suppose that we have the user-item rating data as follows:

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
Alice	5	2	3	3		?
User 1	2		4		4	1
User 2	3	1	3		1	2
User 3	4	2	3	1		1
User 4	3	3	2	1	3	1
User 5		3		1	2	
User 6	4	3		3	3	2
User 7		5		1	5	1

- (1) Calculate the item similarities using adjusted cosine similarity between
 - Item 6 and (Item 1 ~ Item 4)
 - Item 5 and (Item 1 ~ Item 4)

 $R_{Alice} = 3.25$

 $R_{User1} = 2.75$

 $R_{User2} = 2$

 $R_{User3} = 2.2$

 $R_{User4} = 2.17$

 $R_{User5} = 2$

 $R_{User6} = 3$

 $R_{User7} = 3$

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
Alice	1.75	-1.25	-0.25	-0.25		
User 1	-0.75		1.25		1.25	-1.75
User 2	1.00	-1.00	1.00		-1.00	0.00
User 3	1.80	-0.20	0.80	-1.20		-1.20
User 4	0.83	0.83	-0.17	-1.17	0.83	-1.17
User 5		1.00		-1.00	0.00	
User 6	1.00	0.00		0.00	0.00	-1.00
User 7		2.00		-2.00	2.00	-2.00

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R_u})(R_{u,j} - \bar{R_u})}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R_u})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R_u})^2}}.$$

$$sim(6,1) = -0.42$$

$$sim(6,2) = -0.70$$

$$sim(6,3) = -0.68$$

$$sim(6,4) = 0.93$$

$$sim(5,1) = -0.38$$

$$sim(5,2) = 0.92$$

$$sim(5,3) = 0.15$$

$$sim(5,4) = -0.91$$

(2) Suppose that we want to recommend an item for Alice among Item 5 and Item 6. Which item will you recommend for Alice using item-based recommendation? Provide the reason for your choice (Use Cosine similarity; show the formula and complete the calculation. You can use your smart phone calculator).

Use the top-2 similar items for N in the following formula:

$$P_{u,i} = \frac{\sum_{\text{all similar items, N}} (s_{i,N} * R_{u,N})}{\sum_{\text{all similar items, N}} (|s_{i,N}|)}$$

$$P_{Alice,5} = \frac{sim(5,2) \times 2 + sim(5,3) \times 3}{|sim(5,2)| + |sim(5,3)|} = 2.14$$

$$P_{Alice,6} = \frac{sim(6,4) \times 3 + sim(6,1) \times 5}{|sim(6,4)| + |sim(6,1)|} = 1.13$$

Suppose that we have a table of user-item ratings

	Book1	Book2	Book3	Book4
Alice	1	2	5	?
George	5	?	1	?
Mary	?	?	4	3
Tom	1	1	5	4

For those unrated items, the following table shows the scores estimated by our recommender system and the actual scores obtained by asking the users to rate them:

	Estimated	Actual
r _{Alice,Book4}	3.5	4
r _{George,Book2}	4	4
r _{George,Book4}	4	1
r _{Mary,Book1}	1	2
r _{Mary,Book2}	2	1

Calculate the RMSE and MAE respectively.

$$RMSE = \sqrt{\frac{1}{|\mathcal{T}|} \sum_{(u,i) \in \mathcal{T}} (\hat{r}_{ui} - r_{ui})^2}$$

Rmse = 1.5

$$MAE = \sqrt{\frac{1}{|\mathcal{T}|} \sum_{(u,i) \in \mathcal{T}} |\hat{r}_{ui} - r_{ui}|}$$

mae = 0.45

The following table lists a set of evaluation metrics and metric descriptions. Draw lines that connect the metric names with the correct metric descriptions.

• Sparsity (5)

◆ The system cannot draw any inferences for users or items about which it has not yet gathered sufficient information

• Precision (3)

◆ The average deviation between computed recommendation scores and actual rating values for all evaluated users and all items in their testing sets

• Recall (6)

◆ The proportion of relevant instances that are retrieved

• Accuracy (4)

◆ The proportion of true results (both true positives and true negatives) among the total number of cases examined

• Coldstart (1)

◆ The ratio of empty and total entries in the user-item matrix

• MAE (2)

◆ The proportion of retrieved instances that are relevant

(Precision) For an active user, two recommender systems return the following estimated scores for 8 unrated (=not purchased yet) items.

	I1	I2	I3	I4	I5	I6	I7	I8
System 1	5	4	1	4	2	2	3	2
System 2	5	2	4	4	3	1	1	1

The actual purchases and the rate for those items by the active user are

	I1	I2	I3	I4	I5	I6	I7	I8
Purchase	0	0		0		0		
Rate	5	4		3		2		
(=gain)								

Let say we recommend the active user the top-4 items in the order of decreasing (estimated) scores. Among those two recommender systems, which one makes better recommendation in terms of precision?

System1: 3/4

System2: 2/4

(Recall) Which one makes better recommendation in terms of recall?

System1: 3/4

System2: 2/4

(DCG) Which one makes better recommendation in terms of cumulative discounted gain (DCG)?

$$DCG = \frac{1}{N} \sum_{u=1}^{N} \sum_{j=1}^{J} \frac{g_{ui_j}}{\max(1, \log_b j)}$$

System1: $5 + 4 / \log_2 2 + 3 / \log_2 3 + 2 / \log_2 5 =$

System2: $5 + 3 / \log_2 2 + 4 / \log_2 5 + 2 / \log_2 6 =$

(Coverage – Gini index) Among 100 users recommended by two recommender systems, the following number of users have actually bought the items:

	I1	I2	I3	I4	I5
System 1	80	10	5	5	0
System 2	50	25	15	5	5

Compute Gini index of the sales by each system. Which system show higher diversity in sales?

$$G = \frac{1}{n-1} \sum_{j=1}^{n} (2j - n - 1) p(i_j)$$

System1: 1/(5-1) * ((2*1-5-1)*0 + (2*2-5-1)*0.05 + (2*3-5-1)*0.05 + (2*4-5-1)*0.1 + (2*5-5-1)*0.8) = 0.825

System2: 1/(5-1)*((2*1-5-1)*0.05 + (2*2-5-1)*0.05 + (2*3-5-1)*0.15 + (2*4-5-1)*0.25 + (2*5-5-1)*0.5) = 0.55