Posterior Decompression with Fusion & Fixation by Pedicle Screw and Rod of Thoraco Lumber Spine: A Study of 30 Cases

Nath HD¹, Barua KK², Rahman Z³, Amin MR⁴, Das MK⁵, Chaurasia RK⁶

Abstract:

Background & Objectives: Thoraco-lumber fracture is one of the common problem in spinal injury patients. It early management can prevent complication after injury and can improve neurological function. The treatment plan of unstable fracture is controversial.

Methods: The study was carried out at the department of neurosurgery, Bangabandhu Sheikh Mujib Medical University from June 2010 to July 2013 patients admitted with thoracolumber spine fracture.

Results: 30 patients of thoraco-lumber spine fracture included in the study. Among the 30 patients, 26(86.66%) were male. 1-20 and 21-40 years were the highest age group 12(40%). The commonest 16(53.33%) were fall from height. The commonest site of injury was L_1 fracture 18(60%). It was documented that bladder dysfunction and lower limb weakness was the commonest sign. It was evident that, 20(66.70%) and 8(26.66%) of patients partially and were complete improve after surgery and 6(10%) of patients had wound infection.

Conclusion: Thoraco-lumber spine fracture with incomplete injury, early surgery can improve many patient's life.

Key word: Thoracolumber, fracture, posterior decompression, fusion, fixation, pedicle screw.

Bang. J Neurosurgery 2013; 3(1): 10-16

Introduction

64% of spine fractures occur at the thoracolumbar (TL) junction, usually T12-L1. 70% of these occur without immediate neurologic injury. Denis' 3 column model of the spine attempts to identify CT criteria of instability of thoracolumbar spine fractures. This model has generally good predictive value, however, any attempt to create "rules" of instability will have some inhereat inaccuracy. 1

The McAfee classification describes 6 main types of fractures.² A simplified system with four categories

- Dr. Haradhan Deb Nath, Associate Professor, Dept. of Neurosurgery, Bangabandhu Sheikh Mujib Medical University, Dhaka.
- 2. Prof. Kanak Kanti Barua, Professor, Dept. of Neurosurgery, Bangabandhu Sheikh Mujib Medical University, Dhaka.
- 3. Prof. Zillur Rahman, Professor Neurosurgery, Shahed Shurawardi Medical College Hospital, Dhaka.
- Dr. Md Rezaul Amin, Assistant Professor, Dept. of Neurosurgery, Bangabandhu Sheikh Mujib Medical University, Dhaka.
- Dr. Malay Kumar Das, Junior Consultant, Anaesthesia Department of Plastic and Burn Unit, Dhaka Medical College, Dhaka
- 6. Dr. Ranjit Kumar Chaurasia, Resident, Dept. of Neurosurgery, Bangabandhu Sheikh Mujib Medical University, Dhaka.

Address of Correspondence: Haradhan Deb Nath, Associate Professor, Neurosurgery Bangabandhu Sheikh Mujib Medical University, Dhaka.

follows. Lateral and anterior most common between T6-T8 and T12-L3. Lateral x-ray wedging of the VB anteriorly no loss of height of posterior VB, no subluxation. CT spinal canal intact. Disruption of the anterior end plate.²

The thoracolumbar injuries are the commonest spinal injuries.³ The treatment of unstable fractures and fracture dislocations of thoracolumbar spine remains controversial.⁴ The goal of the treatment of unstable thoracolumbar injuries is optimising neural decompression while providing stable internal fixation over the least number of spinal segments.⁵ Either anterior posterior or both approaches can be used to achieve fusion.⁶ However, posterior approach is less extensive. Pedicle screw devices allow immediate stable fixation as the screws traverse all the three columns. The pedicle screws are passed one level above and one level below the fractured vertebra via posterior approach.⁷

Injuries to the thoracic and lumbar spine account for > 50% of all spinal fractures and a large portion of acute spinal cord injuries. 8 Given this frequency and the significant impact of these injuries, significant advancements have been made in the surgical

treatment of thoracolumbar trauma. Despite the invention and continued evolution of spinal instrumentation and surgical techniques, medical decision-making in spine trauma remains controversial. Fracture treatment can vary widely, from bracing to invasive 360° fusions, based on geographical, institutional, or individual preferences with little scientific basis.⁸

A number of classification systems have been developed in an attempt to better define thoracolumbar trauma and aid treatment decision-making. These systems are typically based on either anatomical structures (Denis Three-Column System) or on proposed mechanisms of injury (Ferguson and Allen, and the AO system). ^{9,10,11}

Overall, however, there is a paucity of strong data supporting the use of any of these systems. Additionally, there is currently no clear consensus regarding the optimal system for characterizing thoracolumbar fractures. An ideal system must be simple and reproducible based on commonly identified clinical and radiographic parameters. Current systems are either excessively convoluted, with an impractical number of variables, or are too simple, lacking sufficient detail to provide clinically relevant information. These limitations have yielded classification systems that are difficult to implement, have shown in-sufficient validity and reproducibility, and have not been widely popular. ^{12,13,14,15}

The TLICS has been described and validated to address the shortcomings of the prior classification systems. The purpose of this paper is to review the TLICS system and to demonstrate its clinical application using 3 cases of thoracolumbar spine trauma.

Materials & Methods:

The study was carried out in the department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University, Dhaka. The study was undertaken during January 2010 to July 2015.

Cases were selected following the inclusion & exclusion criteria

1. Inclusion Criteria:

- Patients of either sex admitted with incomplete lumber spine injury.
- 2. Exclusion criteria:
- Those patients who were operated second time due to complication excluded in this study.
- · Complete injury.

Data was collected in a form regarding clinical presentation. Clinical examination, investigating procedure, postoperative evaluation & only those patients who gave consent were in concluded in the study.

Results:

Table-IDistribution of patients by sex

Sex	Number	Percentage
Male	26	86.66
Female	4	13.33

Table-IIDistribution of patients by age (N=30)

Age in years	Number	Percentage
1-20	12	40.0
21-40	12	40.0
41-60	4	13.33
>61	2	6.67
Total	30	100.00

It was evident that age group 1-20 years and 21-40 years belonged to the highest group.

Table-IIIDistribution of patients by causes of compressive fracture (N=30)

Causes	Number	Percentage
Fall from height	16	53.33
Road traffic accident	8	26.67
Fall of heavy object on back	4	13.33
Pathological fracture	2	6.67
Total	30	100.00

It was found that the commonest causes of occurrence was fall from height was 8(53.33%)

Table-IV

Distribution of patients by site of compression (N=30)

Site	Number	Percentage
L ₁	18	60.0
D ₁₂	10	33.33
L ₂	2	6.67
Total	30	100.00

It was evident that the commonest Site of compression was at L_1 vertebrae (60%), followed by D_{12} fracture (33.33%).

Table-VDistribution of patients by the types of injury (n=30).

Туре	Number	Percentage
Wedge fracture	18	60.00
Burst fracture	6	20.00
Seat belt injury	4	13.33
Fracture dislocation	2	6.67

It was documented that the commonest fracture type was wedge fracture 18(60%).

Table-VIDistribution of patients by type of weakness and outcome (N=15)

Clinical features	Number	Percentage
Paraparesis	26	86.66
Monoparesis	4	13.33
Bladder dysfunction	26	86.66
Bladder & Bowel dysfunction	6	20.0
Sexual dysfunction	4	13.33
Bowel dysfunction	4	13.33
Bladder, Bowel & Sexual dysfunction	n 4	13.33
Autonomic Function intact	2	6.67

Table showed that the most of the sufferers had paraparesis (86.66%), the remaining 13.33% had monoparesis. The result revealed that the most of the patient (86.67%) had suffered from bladder dysfunction.

Table-VIIDistribution of the patients by complication of surgery (n=30)

Complication	Number	Percentage
Wound infection	6	20.0
Per operative bleeding	2	6.67
Respiratory distress	2	6.67

It was found that 20% of patients had wound infection whose were treated by proper antibiotics and wound dressing.

Table-VIIIDistribution of the patients by outcome after surgery (n=30)

Improvement	Number	Percentage	
Partially improved	20	66.67	
Completely improved	8	26.66	
No improvement	2	6.67	

It was documented that 26(93.34%) of the patients improved after surgery.

Fig.-1: L1 compression fracture

Fig.-2: Posterior fixation of L1 fracture with pedicle screw and rod

Fig.3: Lateral view of posterior fixation of L1 fracture with pedicle screw

Fig.-4: Preoperative MRI of dorsal spine shows pott's disease involving D6,7 vertibrae

Fig.-5: Postoperative x-ray

Fig.-6: Post operative x-ray of dorsal spine lateral view

Fig.-7: Clinical improvement of patients after posterior fixation

Discussion:

Exact evaluation of the pedicles is an essential prerequisite for posterior platting and the application of fixator systems. The pedicles are short conical tubes with an oval cross-section. The objective is to insert the screws through the center of the pedicles, approximately parallel to the upper end plates or angled downward. The screws should coverage toward the midline to an end plate or be angled downward. The screws should coverage towards the midline to a certain extent — up to 20% depending on the spinal level — in order to ensure that they do not penetrate the lateral wall of the vertebral body. The long axis of the pedicle can be identified either by direct expo-sure or by image intensification. Although each method is reliable by itself, it is best to use a combi-nation of the two. In addition, there are other aids for deciding screw position which are useful partic-ularly when the anatomic landmarks are difficult to define due to distorted anatomic relationships. 16

Thoracic Spine. The point of entry is just below the rim of the upper facet joint, 3 mm lateral to the center of the joint near the base of the trans-verse process. This screw should be angled $7-10^0$ towards the midline and 10-20% caudally. 16

Lumbar Spine. At practically all levels, the long axis of the pedicle pierces the lamina at the intersection of two lines: a vertical line tangential to the border of the superior articular process, and hori-zontal line bisecting the transverse process. Their point of intersection lies in the an-gle between the superior articular process and the base of the transverse process (Fig. 1). The screws should converage by 5° at the thoracolumbar junction and by 10-15° as one progress form L2 L5. 16

Sacrum. Proper placement of screws in the sacrum is difficult because of its variable anatomy. The screws may be introduced a different points and in different directions, depending upon the instrumentation and the quality of the bone. In general, the entry point is located at the intersection of two lines: a vertical line tangential to the lateral border of the S1 facet and a horizontal line tangential to the inferior border of this facet. In most cases, the screws converge towards the midline and aim towards the anterior corner of the promon-torium. An alternative possibility is to insert the screws more sagittally or parallel to the sacroiliac joint. The entry point shifts slightly medially as the screw direction diverges. Screws inserted parallel to the sacroiliac joint aim towards the anterior superior angle of the lateral mass of the sacrum. When positioning screws in the sacrum so as to achieve optimal purchase, it is nec-essary to note the density of the bone — the sub-chondral bone is the strongest, whereas the lateral mass of the sacrum is often very osteoporotic, some-times even hollow.¹⁶

In any case, anteroposterior (AP) and lateral preop-erative X-rays are indispensable. If there is any sug-gestion of anatomic variations, then CT scans are es-sential. They give information about pedicle diame-ter and direction; intraoperatively, the use of image intensification is indispensable, too. It confirms the location and direction of the screw. In every difficult case, intraoperative myelography with image intensification helps to identify the medial border in relationship to the nerve root. ¹⁶

At the lumbar spine, the inferior and inferior lateral aspect of the pedicle can be exposed by dissecting subperiosteally from the base of the transverse pro-cess anteriorly. The soft tissue her with the spinal

nerve and blood vessels are carefully retract-ed with a curved dissector. A small curved dissector is used to probe the lateral wall of the pedicle. If nec-essary, the inferior part of the medial wall may also be probed. In addition, osteotorny of the base of the transverse process can help to identify the pedicle. Alternatively, the spinal canal can opened and the medial wall of the pedicle identified. The latter two techniques are usually not necessary in routine pro-cedures. At the sacral level, it is very helpful to ex-pose the Si nerve root, which allows visualization of the lateral wall of the Si canal. ¹⁶

Alter identification of the entry point and the direction of the pedicle, the posterior cortex is perforated for approximately 5 mm using a 3.5-mm drill, prefcrably with the oscillating attachment. Continued drilling of the pedicle can be dangerous. A safer technique is to prepare the entry points with the pedicle awl and to open the pedide with a pedicle feeler. This preparation is per-formed to the junction between the pedicle and ver-tebral body. The circumference of the canal is checked with the tip of the AO depth gauge, which has an angled tip to ensure that perforation of the bone has not occurred; particularly medially. Image intensification with the gauge or a Kirschner wire in place confirms the proper position. The depth gauge may be inserted into the cancellous bone of the vertebral body and the anterior cortex is not perforated. If there is doubt regarding the depth, take a lateral radiography and ensure that the depth gauge does not penetrate more than 80% of the AP body diameter, then the anterior cortex will not be perforated. 16

In previous study the average age group were 37 years (\pm 11.7 years), there were 18(69%) male patients and 8(31%) female patients. The average follow-up period was 30 months (\pm 13.5 months). In our study the highest age group were 1-20 years and 21-40 years that was 12(40%). It was evident that 26(86.66%) were male and 4(13.33%) were female. In previous study 10 patients sustained unstable burst fractures and 3 patients sustained translational injuries (fracture-dislocation). In our study 18(60%) were compressed fracture, 6(20%) (Fig. 2 and 3) were unstable burst fracture and 2(6.67%) were fracture dislocation. Surgery was performed as early as possible, provided the patients were fit for surgery. In previous study four patients experienced massive bleeding of more than

3,000 ml, and three of them sustained combined injuries, such as extremity fractures or internal organ injuries requiring surgery.¹⁷ In our study 10(33.33%) patients had dural tear.

Among the 13 study patients, neurological improvement was observed in 12 (92%).⁷ In our study (Fig. 4) clinical improvement occurs in 28(93.33%) of patients.

Conclusion:

Patient with incomplete spine injury showed good to excellent recovery and could be mobilized early with external support by pedicle screw fixation. So early surgery with posterior decompression and fusion and fixation can improved the patients neurological function.

References:

- Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983;8:817-8131.
- Chedid MK, Green C. A Review of the management of lumbar fractures with focus on surgical decision making and techniques. Contemp Neurosurg 1999;21(11):1-12.
- Yue JJ, Sossan A, Selgrath C, Deutsch LS, Wilkens K, Testaiuti M. The treatment of unstable thoracic spine fractures with transpedicular screw instrumentation: a 3-year consecutive series. Spine. 2002;27(24):2782-7
- Shafiq K, Iqbal M, Hameed A, Mian JM. Role of transpedicular fixation in thoracolumbar spinal injuries. Neurol Surg 1998;1:21-7.
- Sar C, Bilen FE. Flexion was more painful than extension.
 Thoracolumbar flexion-distraction injuries combined with vertebral body fractures. Am J Orthop 2002;31:147-51.
- Biomechanical evaluation of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Spine J. 2006;6(4):444-9.
- Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM. The effects of rod contouring on spinal construct fatigue strength. Spine 2006;31(15): 1680-87.
- National SCI Statistical Center (US): Spinal Cord Injury Facts
 Figures at a Glance 2008. Birmingham, AL, The National SCI Statistical Center, 2008.
- Denis F: The three-column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983;8:817–831.
- Ferguson RL, Allen BL Jr: A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res 1984;189:77–88.

- Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S: A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994;3:184–201.
- Blauth M, Bastian L, Knop C, Lange U, Tusch G: Interobserver reliability in the classification of thoraco-lumbar spinal injuries. Orthopade 1999;28:662–681, 1999
- Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S: A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994;3:184–201.
- Oner FC, Ramos LM, Simmermacher RK, Diekerhof CH, Dhert WJ, Verbout AJ: Classification of thoracic and lumbar

- spine fractures: problems of reproducibility. A study of 53 patients using CT and MRI. Eur Spine J 2002;11:235–245.
- Wood KB, Khanna G, Vaccaro AR, Arnold PM, Harris MB, Mehbod AA: Assessment of two thoracolumbar fracture classification systems as used by multiple surgeons. J Bone Joint Surg Am 2005; 87:1423–1429.
- Abeil M, Thalgott JS, Weblo JK. Stabilization technique: spine AO Priciples in the spine surgery. Springer Mantra/ Candevergy- Germany 2002;83-122.
- Jun DS, Yu CH, Ahh BG. Posterior Direct Decompression and Fusion of the Lower Thoracic and Lumbar Fractures with Neurological Deficit. Asian Spine J. 2011;5(3): 146–154.