Урок 5. Движение тела, брошенного под углом к горизонту

Движение тела, брошенного под углом к горизонту

Рассмотрим движение тела, брошенного под углом α к горизонту с начальной скоростью \vec{v}_0 . Спроецируем начальную скорость \vec{v}_0 и ускорение \vec{a} камня на оси X и Y. Проекция начальной скорости на ось X равна $v_{0x}=v_0\cos\alpha$. Проекция ускорения $a_x=0$, поскольку вектор \vec{g} перпендикулярен оси X. Поэтому движение камня вдоль оси X будет равномерным. Проекция скорости v_x и координата x летящего камня определяются соотношениями:

$$v_x = v_0 \cos \alpha$$
, $x = x_0 + v_0 t \cos \alpha$

Проекция начальной скорости на ось Y равна $v_{0y} = v_0 \sin \alpha$. Проекция ускорения $a_y = -g$, поскольку вектор \vec{g} направлен противоположно оси Y. Поэтому вдоль оси Y движение камня равнопеременное. В этом случае проекция скорости v_y и координата y летящего камня задаются формулами:

$$v_y = v_0 \sin \alpha - gt$$
, $y = y_0 + v_0 t \sin \alpha - \frac{gt^2}{2}$

Когда тело достигнет максимальной высоты подъема, проекция его скорости на ось Y будет равна нулю v_y = 0. Тогда время подъема до максимальной высоты $t_1 = v_0 \sin \alpha / g$. Подставляя это значение в уравнение для максимальной высоты подъема:

$$h_{\text{max}} = \frac{v_0^2 \sin^2 \alpha}{2g}$$

Если тело брошено от земли ($y_0 = 0$), то общее время полета t_0 равно удвоенному времени подъема:

$$t_0 = \frac{2v_0 \sin \alpha}{g}$$

Дальность полета L камня определяется подстановкой времени полета t_0 в зависимость x(t): $L = x_0 + v_0 t_0 \cos \alpha$. При $x_0 = 0$ и $y_0 = 0$ дальность полёта равна

$$L = \frac{v_0^2 \sin 2\alpha}{g}$$

Максимальная дальность полета для камня, брошенного с земли, достигается при угле бросания $\alpha = 45^{\circ}$, поскольку в этом случае $\sin 2\alpha = 1$.

Уравнение траектории

Определим, по какой траектории движется брошенное тело, то есть найдем уравнение, связывающее между собой координаты тела по осям x и y. Для этого выразим время из зависимости x(t):

$$t = \frac{x - x_0}{v_0 \cos \alpha}$$

и подставим его в формулу для y(t). Получаем квадратичную функцию y(x):

$$y = y_0 + v_0 \left(\frac{x - x_0}{v_0 \cos \alpha} \right) \sin \alpha - \frac{1}{2} g \left(\frac{x - x_0}{v_0 \cos \alpha} \right)^2 = y_0 + (x - x_0) tg \alpha - \frac{g(x - x_0)^2}{2v_0^2 \cos^2 \alpha}$$

Если выбрать систему координат таким образом, что $x_0 = 0$, $y_0 = 0$, то формула упрощается:

$$y = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$$

Графиком полученной функции y = y(x) является парабола (см. рис.), направленная ветвями вниз и пересекающая ось x в точках $x_1 = 0$ (начало

координат) и $x_2 = L = \frac{v_0^2 \sin 2\alpha}{g}$. Координаты вершины этой параболы равны

$$x_{\text{B}} = L/2 \text{ M } y_{\text{B}} = h_{\text{max}} = \frac{v_0^2 \sin^2 \alpha}{2g}.$$

Пример. Два тела брошены одновременно: одно с земли под углом к горизонту, а другое — горизонтально с высоты H=10 м над землей. Вначале тела находились на одной вертикали, а через некоторое время столкнулись в полете (см. рис.). Известно, что если бы тела не столкнулись, то брошенное с земли тело пробыло бы в полете вдвое дольше другого. Найдите высоту, на которой произошло столкновение. Сопротивлением воздуха пренебречь.

Решение. Если бы тела не сталкивались, то время полета второго тела, брошенного горизонтально, было бы равно $t_2 = \sqrt{2H/g}$. При этом время полета первого тела было бы равно, согласно условию, $t_1 = 2t_2 = 2\sqrt{2H/g}$. С другой стороны, $t_1 = 2v_{0y}/g$, где v_{0y} — вертикальная составляющая начальной скорости первого тела. Находим, что $v_{0y} = \sqrt{2gH}$. В системе отсчета, связанной со вторым телом, первое равномерно приближается ко второму со скоростью v_{0y} , поэтому время от начала полета тел до их столкновения равно $t_{\rm ct} = H/v_{0y}$. В земной системе отсчета уравнение движения первого тела имеет вид $h_1(t) = v_{0y}t - gt^2/2$, откуда находим, что столкновение тел происходит на высоте

$$h_1(t) = v_{0y}t_{\text{CT}} - gt_{\text{CT}}^2 / 2 = \frac{3H}{4} = 7.5 \text{ M}.$$

Пример. Тело брошено под углом $\alpha = 30^{\circ}$ к горизонту с начальной скоростью $v_0 = 20$ м/с. Через какое время вектор скорости тела окажется перпендикулярен начальной скорости?

Решение. Запишем в векторном виде зависимость скорости свободно падающего тела от времени:

$$\vec{v} = \vec{v}_0 + \vec{g}t$$

Строим треугольник скоростей, учитывая, что по условию задачи $\vec{v} \perp \vec{v}_0$ (см. рис.)

По теореме Пифагора получаем, что $(gt)^2 = v^2 + v_0^2$. Отсюда выражаем искомое время:

$$t = \frac{\sqrt{v_0^2 + v^2}}{g}$$

Горизонтальная составляющая \vec{v}_{0x} скорости тела не изменяется, поэтому из рисунка следует, что $v_0\cos\alpha=v\sin\alpha$, откуда $v=v_0\mathrm{ctg}\alpha$. Подставляя это выражение, получаем ответ:

$$t = \frac{\sqrt{v_0^2 + v_0^2 \operatorname{ctg}^2 \alpha}}{g} = \frac{v}{g} \sqrt{1 + \operatorname{ctg}^2 \alpha} = \frac{v}{g \sin \alpha}$$

Задачи для самостоятельного решения.

Задача 1. Тело брошено вдоль склона вниз под углом α к поверхности горы. Определить дальность полёта, если начальная скорость равна v_0 , угол наклона горы β . Сопротивлением воздуха пренебречь.

[Ответ:
$$\frac{2v_0^2\sin\alpha\cos(\alpha-\beta)}{g\cos^2\beta}]$$

Задача 2. Пушка выстреливает ядро под углом $\alpha = 60^\circ$ к горизонту со скоростью v = 100 м/с. Когда ядро достигает наивысшей точки траектории, пушка стреляет второй раз. Через какое время после первого выстрела ядра окажутся на минимальном расстоянии друг от друга (пока оба ядра в полете)? Чему равно это расстояние? Сопротивлением воздуха пренебречь.

[Other:
$$t = v \sin\alpha/(2g) \approx 4,42 \text{ c}$$
, $L = v^2 \cos\alpha\sin\alpha/g \approx 442 \text{ m}$]