

Final datasheet

CoolSiC™ 1200 V SiC Trench MOSFET: Silicon Carbide MOSFET with .XT interconnection technology

Features

- V_{DSS} = 1200 V at T_{vi} = 25°C
- I_{DDC} = 70 A at T_C = 25°C
- $R_{DS(on)} = 30 \text{ m}\Omega$ at $V_{GS} = 18 \text{ V}$, $T_{vi} = 25 ^{\circ}\text{C}$
- Very low switching losses
- Short circuit withstand time 3 μs
- Benchmark gate threshold voltage, V_{GS(th)} = 4.2 V
- Robust against parasitic turn on, 0 V turn-off gate voltage can be applied
- · Robust body diode for hard commutation
- .XT interconnection technology for best-in-class thermal performance

Potential applications

- General purpose drives (GPD)
- EV Charging
- Online UPS/Industrial UPS
- · String inverter
- Solar power optimizer

Product validation

• Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Description

- 1 drain
- 2 source
- 3 Kelvin sense contact
- 4 gate

Note: the source and sense pins are not exchangeable, their exchange might lead to malfunction (only for 4pin, TO263-7L)

Туре	Package	Marking
IMZA120R030M1H	PG-TO247-4-U02	12M1H030

CoolSiC™ 1200 V SiC Trench MOSFET

Table of contents

Table of contents

	Description	
	Features	1
	Potential applications	1
	Product validation	
	Table of contents	2
1	Package	3
2	MOSFET	3
3	Body diode (MOSFET)	6
4	Characteristics diagrams	7
5	Package outlines	13
6	Testing conditions	14
	Revision history	15
	Disclaimer	16

IMZA120R030M1H CoolSiC™ 1200 V SiC Trench MOSFET

1 Package

1 Package

Table 1 Characteristic values

Parameter	Symbol	Note or test condition	Values			Unit
			Min.	Тур.	Max.	1
Storage temperature	$T_{\rm stg}$		-55		150	°C
Soldering temperature	T_{sold}	wave soldering 1.6 mm (0.063 in.) from case for 10 s			260	°C
Mounting torque	М	M3 screw, Maximum of mounting processes:			0.6	Nm
Thermal resistance, junction-ambient	R _{th(j-a)}				62	K/W
MOSFET/body diode thermal resistance, junction-case	R _{th(j-c)}			0.42	0.55	K/W

2 MOSFET

Table 2 Maximum rated values

Parameter	Symbol	Note or test condit	ion	Values	Unit
Drain-source voltage	V _{DSS}	<i>T</i> _{vj} ≥ 25 °C		1200	V
Continuous DC drain	I _{DDC}	V _{GS} = 18 V	T _c = 25 °C	70	А
current for $R_{th(j-c,max)}$, limited by $T_{vj(max)}$			T _c = 100 °C	49	
Peak drain current, t _p limited by T _{vj(max)}	I _{DM}	V _{GS} = 18 V		147	А
Gate-source voltage, max. transient voltage ¹⁾	V _{GS}	$t_{\rm p} \le 0.5 \ \mu {\rm s}, D < 0.01$	$t_{\rm p} \le 0.5 \; \mu {\rm s}, D < 0.01$		V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V
Avalanche energy, single pulse	E _{AS}	$I_{\rm D} = 25 \text{ A}, V_{\rm DD} = 50 \text{ V},$	<i>L</i> = 1.4 mH	450	mJ
Avalanche energy, repetitive	E _{AR}	$I_{\rm D} = 25 \text{ A}, V_{\rm DD} = 50 \text{ V},$	$V_{\rm D} = 25 \text{ A}, V_{\rm DD} = 50 \text{ V}, L = 7.1 \mu\text{H}$		mJ
Short-circuit withstand time	t _{SC}	$V_{\rm DD} \le 800 \text{ V}, V_{\rm DS,peak}$ $T_{\rm vj(start)} = 25 \text{ °C}$	< 1200 V, V _{GS(on)} = 15 V,	3	μs
Power dissipation, limited	P _{tot}		T _c = 25 °C	273	W
by T _{vj(max)}			T _c = 100 °C	136	

¹⁾ Important note: The selection of positive and negative gate-source voltages impacts the long-term behavior of the device. The design guidelines described in Application Note AN2018-09 must be considered to ensure sound operation of the device over the planned lifetime.

IMZA120R030M1H CoolSiC™ 1200 V SiC Trench MOSFET

2 MOSFET

Table 3 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
Recommended turn-on gate voltage	V _{GS(on)}		1518	V
Recommended turn-off gate voltage	$V_{GS(off)}$		-50	V

Table 4 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	I _D = 25.6 A	$T_{\rm vj} = 25 ^{\circ}\text{C},$ $V_{\rm GS(on)} = 18 ^{\circ}\text{V}$		30	40.9	mΩ
			$T_{\rm vj} = 100 ^{\circ}\text{C},$ $V_{\rm GS(on)} = 18 ^{\circ}\text{V}$		41		
			$T_{\rm vj} = 175 ^{\circ}\text{C},$ $V_{\rm GS(on)} = 18 ^{\circ}\text{V}$		50		
			$T_{vj} = 25 ^{\circ}\text{C},$ $V_{GS(on)} = 15 ^{\circ}\text{V}$		38	56	
Gate-source threshold	$V_{GS(th)}$	$I_D = 11 \text{ mA}, V_{DS} = V_{GS}$	T _{vj} = 25 °C	3.5	4.2	5.2	V
voltage		(tested after 1 ms pulse at V _{GS} = 20 V)	T _{vj} = 175 °C		3.6		
Zero gate-voltage drain	I_{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = 0 V	T _{vj} = 25 °C			200	μΑ
current			T _{vj} = 175 °C		3.4		
Gate leakage current	I_{GSS}	V _{DS} = 0 V	V _{GS} = 23 V			100	nA
			V _{GS} = -10 V			-100	
Forward transconductance	g _{fs}	$I_{\rm D}$ = 25.6 A, $V_{\rm DS}$ = 20 V			13		S
Internal gate resistance	$R_{G,int}$	$f = 1 \text{ MHz}, V_{AC} = 25 \text{ mV}$			2.1		Ω
Input capacitance	C _{iss}	$V_{\rm DS} = 800 \text{ V}, V_{\rm GS} = 0 \text{ V}, f = 1$	100 kHz, V _{AC} = 25 mV		2160		pF
Output capacitance	Coss	$V_{\rm DS} = 800 \text{ V}, V_{\rm GS} = 0 \text{ V}, f = 1$	100 kHz, V _{AC} = 25 mV		99		pF
Reverse transfer capacitance	C _{rss}	$V_{\rm DS} = 800 \text{ V}, V_{\rm GS} = 0 \text{ V}, f = 1$	100 kHz, $V_{AC} = 25 \text{ mV}$		14		pF
C _{oss} stored energy	E _{oss}	$V_{\rm DS} = 800 \text{ V}, V_{\rm GS} = 0 \text{ V}, f = 1$	100 kHz, V _{AC} = 25 mV		40		μJ
Total gate charge	Q_{G}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A, $V_{\rm C}$ pulse	_{GS} = -2/18 V, turn-on		68		nC
Plateau gate charge	Q _{GS(pl)}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A, $V_{\rm C}$ pulse	_{GS} = -2/18 V, turn-on		16.9		nC
Gate-to-drain charge	Q_{GD}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A, $V_{\rm C}$ pulse	_{GS} = -2/18 V, turn-on		13.6		nC

(table continues...)

CoolSiC™ 1200 V SiC Trench MOSFET

2 MOSFET

(continued) Characteristic values Table 4

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-on delay time	t _{d(on)}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A,	T _{vj} = 25 °C		23		ns
		$V_{\rm GS} = 0/18 \rm V,$ $R_{\rm GS(on)} = 1 \Omega,$ $R_{\rm GS(off)} = 1 \Omega, L_{\sigma} = 15 \rm nH,$ diode: body diode at $V_{\rm GS} = 0 \rm V$	T _{vj} = 175 °C		22		
Rise time	t _r	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A,	T _{vj} = 25 °C		8.5		ns
		$V_{\rm GS} = 0/18 \rm V,$ $R_{\rm GS(on)} = 1 \Omega,$ $R_{\rm GS(off)} = 1 \Omega, L_{\sigma} = 15 \rm nH,$ diode: body diode at $V_{\rm GS} = 0 \rm V$	T _{vj} = 175 °C		9.7		
Turn-off delay time	$t_{\sf d(off)}$	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A,	T _{vj} = 25 °C		27.3		ns
		$V_{\rm GS} = 0/18 \rm V,$ $R_{\rm GS(on)} = 1 \Omega,$ $R_{\rm GS(off)} = 1 \Omega, L_{\sigma} = 15 \rm nH,$ diode: body diode at $V_{\rm GS} = 0 \rm V$	T _{vj} = 175 °C		28		
Fall time	t _f	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A,	T _{vj} = 25 °C		9.2		ns
		$V_{\rm GS}$ = 0/18 V, $R_{\rm GS(on)}$ = 1 Ω , $R_{\rm GS(off)}$ = 1 Ω , L_{σ} = 15 nH, diode: body diode at $V_{\rm GS}$ = 0 V	T _{vj} = 175 °C		9.2		
Turn-on energy	E _{on}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A,	T _{vj} = 25 °C		230		μJ
		$V_{\rm GS} = 0/18 \rm V,$ $R_{\rm GS(on)} = 1 \Omega,$ $R_{\rm GS(off)} = 1 \Omega, L_{\sigma} = 15 \rm nH,$ diode: body diode at $V_{\rm GS} = 0 \rm V$	T _{vj} = 175 °C		392		
Turn-off energy	E _{off}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A,	T _{vj} = 25 °C		60		μJ
		$V_{\rm GS} = 0/18 \rm V,$ $R_{\rm GS(on)} = 1 \Omega,$ $R_{\rm GS(off)} = 1 \Omega, L_{\sigma} = 15 \rm nH,$ diode: body diode at $V_{\rm GS} = 0 \rm V$	T _{vj} = 175 °C		65		
Total switching energy	E _{tot}	$V_{\rm DD}$ = 800 V, $I_{\rm D}$ = 25.6 A,	T _{vj} = 25 °C		330		μJ
		$V_{\rm GS} = 0/18 \rm V,$ $R_{\rm GS(on)} = 1 \Omega,$ $R_{\rm GS(off)} = 1 \Omega, L_{\sigma} = 15 \rm nH,$ diode: body diode at $V_{\rm GS} = 0 \rm V$	T _{vj} = 175 °C		618		

(table continues...)

CoolSiC™ 1200 V SiC Trench MOSFET

3 Body diode (MOSFET)

Table 4 (continued) Characteristic values

Parameter	Symbol	Note or test condition	Values			Unit	
			Min.	Тур.	Max.		
Virtual junction temperature	T _{vj}		-55		175	°C	

Note:

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

The chip technology was characterized up to 200 kV/ μ s. The measured dV/dt was limited by measurement test setup and package.

Dynamic test circuit see Fig. F.

3 Body diode (MOSFET)

Table 5 Maximum rated values

Parameter	Symbol	Note or test con	dition	Values	Unit
Drain-source voltage	V_{DSS}	<i>T</i> _{vj} ≥ 25 °C		1200	V
Continuous reverse drain current for $R_{th(j-c,max)}$, limited by $T_{vj(max)}$	I _{SDC}	<i>V</i> _{GS} = 0 V	$T_c = 25 ^{\circ}\text{C}$ $T_c = 100 ^{\circ}\text{C}$	66 41	A
Peak reverse drain current, t_p limited by $T_{vj(max)}$	I _{SM}	V _{GS} = 0 V		147	А

Table 6 Characteristic values

Parameter	Symbol	Note or test condition		Values		Unit	
				Min.	Тур.	Max.	
Drain-source reverse	V_{SD}	$I_{SD} = 25.6 \text{ A}, V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		3.8	5	V
voltage			T _{vj} = 100 °C		3.7		
			T _{vj} = 175 °C		3.6		
MOSFET forward recovery	Q _{fr}	V _{DD} = 800 V,	T _{vj} = 25 °C		210		nC
charge		I_{SD} = 25.6 A, V_{GS} = 0 V, - di_{SD}/dt = 3000 A/ μ s, Q _{fr} includes also Q _C	T _{vj} = 175 °C		388		
MOSFET peak forward	I _{frm}	V _{DD} = 800 V,	T _{vj} = 25 °C		23		А
recovery current		I_{SD} = 25.6 A, V_{GS} = 0 V, - di_{SD}/dt = 3000 A/ μ s, Q _{fr} includes also Q _C	T _{vj} = 175 °C		37		
MOSFET forward recovery	E _{fr}	V _{DD} = 800 V,	T _{vj} = 25 °C		40		μJ
energy		I_{SD} = 25.6 A, V_{GS} = 0 V, - di_{SD}/dt = 3000 A/ μ s, Q _{fr} includes also Q _C	T _{vj} = 175 °C		161		
Virtual junction temperature	$T_{\rm vj}$			-55		175	°C

4 Characteristics diagrams

4 Characteristics diagrams

Reverse bias safe operating area (RBSOA)

 $I_{DS} = f(V_{DS})$

 $T_{vj} \le 175 \,^{\circ}\text{C}, \, V_{GS} = 0/18 \,^{\circ}\text{V}, \, T_{c} = 25 \,^{\circ}\text{C}$

Power dissipation as a function of case temperature limited by bond wire

 $P_{tot} = f(T_c)$

Maximum DC drain to source current as a function of case temperature limited by bond wire

 $I_{DS} = f(T_c)$

Maximum source to drain current as a function of case temperature limited by bond wire

 $I_{SD} = f(T_c)$

 $V_{GS} = 0 V$

CoolSiC™ 1200 V SiC Trench MOSFET

4 Characteristics diagrams

Typical transfer characteristic

$$I_{DS} = f(V_{GS})$$

 $V_{DS} = 20 \text{ V}, t_p = 20 \text{ } \mu\text{s}$

Typical gate-source threshold voltage as a function of junction temperature

$$V_{GS(th)} = f(T_{vj})$$
$$I_D = 11 \text{ mA}$$

Typical output characteristic, V_{GS} as parameter

$$I_{DS} = f(V_{DS})$$

 $T_{vj} = 25 \,^{\circ}\text{C}, t_p = 20 \,\mu\text{s}$

Typical output characteristic, V_{GS} as parameter

$$I_{DS} = f(V_{DS})$$

 $T_{vi} = 175 \,^{\circ}\text{C}, t_p = 20 \, \mu\text{s}$

8

4 Characteristics diagrams

Typical on-state resistance as a function of junction temperature

$$R_{DS(on)} = f(T_{vj})$$

$$I_D = 25.6 \text{ A}$$

Typical gate charge

$$V_{GS} = f(Q_G)$$

 $I_D = 25.6 \text{ A}, V_{DS} = 800 \text{ V}$

Typical capacitance as a function of drain-source voltage

 T_{vj} (°C)

$$C = f(V_{DS})$$

f = 100 kHz, $V_{GS} = 0 V$

Typical reverse drain voltage as function of junction temperature

$$V_{SD} = f(T_{vj})$$

 $I_{SD} = 25 \text{ A}, V_{GS} = 0 \text{ V}$

CoolSiC™ 1200 V SiC Trench MOSFET

4 Characteristics diagrams

Typical reverse drain current as function of reverse drain voltage, V_{GS} as parameter

$$I_{SD} = f(V_{SD})$$

 $T_{vj} = 25 \,^{\circ}\text{C}, t_p = 20 \,\mu\text{s}$

Typical reverse drain current as function of reverse drain voltage, V_{GS} as parameter

$$I_{SD} = f(V_{SD})$$

$$T_{vj} = 175 \,^{\circ}\text{C}, t_p = 20 \,\mu\text{s}$$

Typical switching energy as a function of junction temperature, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

$$E = f(T_{vi})$$

$$V_{GS}$$
 = 0/18 V, I_D = 25.6 A, $R_{G,ext}$ = 1 Ω , V_{DD} = 800 V

Typical switching energy as a function of drain current, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

$$E = f(I_D)$$

10

$$V_{GS} = 0/18 \text{ V}, T_{vj} = 175 \text{ °C}, R_{G,ext} = 1 \Omega, V_{DD} = 800 \text{ V}$$

CoolSiC™ 1200 V SiC Trench MOSFET

4 Characteristics diagrams

Typical switching energy losses as a function of gate resistance, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

 $E = f(R_{G,ext})$

 $V_{GS} = 0/18 \text{ V}, I_D = 25.6 \text{ A}, T_{vi} = 175 \,^{\circ}\text{C}, V_{DD} = 800 \text{ V}$

Typical switching times as a function of gate resistance, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

 $t = f(R_{G,ext})$

 $V_{GS} = 0/18 \text{ V}, I_D = 25.6 \text{ A}, T_{vi} = 175 \text{ °C}, V_{DD} = 800 \text{ V}$

Typical reverse recovery charge as a function of revere drain current slope, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

 $Q_{fr} = f(-di_{SD}/dt)$

 $V_{GS} = 0/18 \text{ V}, I_{SD} = 25.6 \text{ A}, V_{DD} = 800 \text{ V}$

Typical reverse recovery current as a function of reverse drain current slope, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = 0 \text{ V}$

 $I_{frm} = f(-di_{SD}/dt)$

 $V_{GS} = 0/18 \text{ V}, I_{SD} = 25.6 \text{ A}, V_{DD} = 800 \text{ V}$

CoolSiC™ 1200 V SiC Trench MOSFET

4 Characteristics diagrams

Typical switching energy losses as a function of dead time / blanking time, test circuit in Fig. F, 2nd device own body diode: $V_{GS} = -5 \text{ V}$

 $E = f(t_{dead})$

$$V_{GS} = -5/18 \text{ V}, I_D = 25.6 \text{ A}, T_{vj} = 175 \,^{\circ}\text{C}, V_{DD} = 800 \text{ V}$$

Max. transient thermal impedance (MOSFET/diode)

$$Z_{th(j-c),max} = f(t_p)$$

 $D = t_p/T$

CoolSiC™ 1200 V SiC Trench MOSFET

5 Package outlines

Package outlines 5

NOTES:

ALL DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

PACKAGE - GROUP NUMBER:	PG-TO2	47-4-U02			
DIMENSIONS	MILLIM	ETERS	DIMENSIONS	MILLIM	ETERS
DIMENSIONS	MIN.	MAX.	DIMENSIONS	MIN.	MAX.
Α	4.90	5.10	E	15.70	15.90
A1	2.31	2.51	E1	13.10	13.50
A2	1.90	2.10	E2	2.40	2.60
A3	0.05	0.25	е	5.0	08
b	1.10	1.30	e1	2.7	79
b1	0.65	0.79	e2	2.5	54
b2		0.20	N	4	
b3	1.34	1.44	L	19.80	20.10
С	0.58	0.66	øΡ	3.50	3.70
D	20.90	21.10	øP1	7.00	7.40
D1	16.25	16.85	øP2	2.40	2.60
D2	1.05	1.35	Q	5.60	6.00
D3	24.97	25.27	S	6.1	15
D4	4.90	5.10	Т	9.80	10.20
			U	6.00	6.40

Figure 1

6 Testing conditions

Testing conditions 6

Figure 2

IMZA120R030M1H CoolSiC™ 1200 V SiC Trench MOSFET

Revision history

Revision history

Document revision	Date of release	Description of changes
1.00	2022-02-03	Final datasheet
1.10	2022-08-10	Change of test condition of dynamic capacitances in Table 4, "Characteristic values" (C _{iss} , C _{oss} , C _{rss}): V _{DD} = 25 V to V _{DD} = 800 V
		Correction of unit of "Input capacitance" C _{iss} from nF to pF
		Change of V _{GS} "Gate-source voltage, max. static voltage" in Table 2, "Maximum rated values" from -5/20 V to -7/20 V
		Editorial changes in "Features" on page 1
		Editorial changes in "Package" on page 1
		Correction of unit of x-axis at diagram "Max. transient thermal impedance (MOSFET/diode)" from µs to s, on page 13
		Correction of diagram "Max. transient thermal impedance (MOSFET/diode)", on page 13
1.20	2023-05-08	Correction of gate charge values in Table 4
		Editorial changes
1.30	2024-11-15	Updated package name
		Corrected forward transconductance g _{fs} in Table 4
		Corrected diagram "Typical output characteristic, V _{GS} as parameter"
		Corrected diagram "Typical transfer characteristic"
		Editorial changes

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-11-15 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-ABC459-004

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.