HW1

Zeshi Feng

Setting

```
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
```

Exercise 1

(a) CEO Salary

• Type: Regression

- **Reason**: We are mainly interested in understanding which predictors (profit, employees, industry) affect salary, not just predicting new values.
- Goal: Inference (understand which factors affect salary)
- $\mathbf{n} = 500$
- p = 3

(b) Product Success/Failure

• Type: Classification

- **Reason**: The purpose is to predict whether a new product will succeed, based on previous products' data.
- Goal: Prediction (predict whether new product will succeed)
- n = 20
- p = 13

(c) Exchange Rate Prediction

- Type: Regression
- Reason: The response variable is % change in USD/Euro, which is continuous.
- Goal: Prediction (predict % change in USD/Euro)
- n = 52
- p = 3

Exercise 2

(a)

	Obs	X1	X2	Х3	Y	Distance
0	5	-1	0	1	Green	1.414214
1	6	1	1	1	Red	1.732051
2	2	2	0	0	Red	2.000000
3	4	0	1	2	Green	2.236068
4	1	0	3	0	Red	3.000000
5	3	0	1	3	Red	3.162278

(b)

K=1, KNN assigns the test point the same class as the single closest observation. Since Obs 5 (Green) is the nearest, the predicted class is **Green**.

(c)

K=3, the test point is classified according to the majority among its three closest neighbors. Since 2 out of 3 are Red, the prediction is **Red**.

(d)

If the Bayes decision boundary is highly nonlinear, the best K would be small. Because small K gives KNN higher flexibility, allowing it to trace the nonlinear decision boundary more accurately.

Exercise 3

(a)

```
college = pd.read_csv("College.csv")
print(college.head())
print(college.info())
```

	Unnamed: 0 P	rivate	Apps	Accept	Enroll	Top10perc	\
0	Abilene Christian University	Yes	1660	1232	721	23	
1	Adelphi University	Yes	2186	1924	512	16	
2	Adrian College	Yes	1428	1097	336	22	
3	Agnes Scott College	Yes	417	349	137	60	

4	Alaska Pac	ific University	Yes	193	146	55	16
---	------------	-----------------	-----	-----	-----	----	----

	Top25perc	F. Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	\
0	52	2885	537	7440	3300	450	2200	
1	29	2683	1227	12280	6450	750	1500	
2	50	1036	99	11250	3750	400	1165	
3	89	510	63	12960	5450	450	875	
4	44	249	869	7560	4120	800	1500	

	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
0	70	78	18.1	12	7041	60
1	29	30	12.2	16	10527	56
2	53	66	12.9	30	8735	54
3	92	97	7.7	37	19016	59
4	76	72	11.9	2	10922	15

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 777 entries, 0 to 776

Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	777 non null	
-		777 non-null	object
1	Private	777 non-null	object
2	Apps	777 non-null	int64
3	Accept	777 non-null	int64
4	Enroll	777 non-null	int64
5	Top10perc	777 non-null	int64
6	Top25perc	777 non-null	int64
7	F.Undergrad	777 non-null	int64
8	P.Undergrad	777 non-null	int64
9	Outstate	777 non-null	int64
10	Room.Board	777 non-null	int64
11	Books	777 non-null	int64
12	Personal	777 non-null	int64
13	PhD	777 non-null	int64
14	Terminal	777 non-null	int64
15	S.F.Ratio	777 non-null	float64
16	perc.alumni	777 non-null	int64
17	Expend	777 non-null	int64
18	Grad.Rate	777 non-null	int64
• .			

dtypes: float64(1), int64(16), object(2)

memory usage: 115.5+ KB

None

(b)

```
college2 = pd.read_csv("College.csv", index_col=0)
college = pd.read_csv("College.csv")
college3 = college.rename({"Unnamed: 0": "College"}, axis=1)
college3 = college3.set_index("College")
college = college3
college
```

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	I
College								
Abilene Christian University	Yes	1660	1232	721	23	52	2885	-
Adelphi University	Yes	2186	1924	512	16	29	2683	1
Adrian College	Yes	1428	1097	336	22	50	1036	Ć
Agnes Scott College	Yes	417	349	137	60	89	510	6
Alaska Pacific University	Yes	193	146	55	16	44	249	8
	•••	•••	•••	•••				
Worcester State College	No	2197	1515	543	4	26	3089	2
Xavier University	Yes	1959	1805	695	24	47	2849	1
Xavier University of Louisiana	Yes	2097	1915	695	34	61	2793]
Yale University	Yes	10705	2453	1317	95	99	5217	8
York College of Pennsylvania	Yes	2989	1855	691	28	63	2988	1

(c)

```
summary = college.describe()
summary
```

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad
count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000
mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	855.298584
std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	1522.431887
min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	1.000000
25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	95.000000
50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	353.000000
75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	967.000000
max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	21836.000000

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad
--	------	--------	--------	-----------	-----------	-------------	-------------

(d)

```
cols = ["Top10perc", "Apps", "Enroll"]
scatter_matrix(college[cols], figsize=(8, 8), diagonal='hist')
plt.show()
```


(e)

```
college.boxplot(column="Outstate", by="Private", figsize=(10,8))
plt.title("Out-of-State Tuition by Private/Public")
plt.suptitle("")
plt.xlabel("Private")
```

```
plt.ylabel("Outstate Tuition")
plt.show()
```


(f)

```
college['Elite'] = pd.cut(
    college['Top10perc'],
    bins=[0, 50, 100],
    labels=['No', 'Yes']
)
print(college['Elite'].value_counts())
college.boxplot(column='Outstate', by='Elite', figsize=(8,6))
```

```
plt.title("Out-of-State Tuition by Elite Status")
plt.suptitle("")
plt.xlabel("Elite")
plt.ylabel("Outstate Tuition")
plt.show()
```

Elite

No 699 Yes 78

Name: count, dtype: int64

(g)

```
cols = ["Apps", "Accept", "Enroll", "Top10perc"]
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

college["Apps"].plot.hist(bins=20, ax=axes[0,0], color="skyblue", edgecolor="black")
axes[0,0].set_title("Applications (Apps)")

college["Accept"].plot.hist(bins=30, ax=axes[0,1], color="lightgreen", edgecolor="black")
axes[0,1].set_title("Accepted (Accept)")

college["Enroll"].plot.hist(bins=15, ax=axes[1,0], color="salmon", edgecolor="black")
axes[1,0].set_title("Enrolled (Enroll)")

college["Top10perc"].plot.hist(bins=25, ax=axes[1,1], color="orange", edgecolor="black")
axes[1,1].set_title("Top10perc")

plt.tight_layout()
plt.show()
```


(h)

Summary:

Private schools generally have much higher Outstate tuition compared to public schools, with a clear separation in the boxplots. Only a small fraction of schools (78 of 777) are classified as Elite (Top10perc > 50), and these also tend to have higher tuition than non-Elite schools. The distribution of Top10perc shows that most colleges have 10-40% of freshmen from the top 10% of their high school class, but a small set of highly selective institutions reach above 80%. The number of applications, acceptances, and enrollments are highly right-skewed: while most schools have under 10,000 applications, a few receive over 40,000. Graduation rates are generally between 40-80%, though some data values exceed 100%. Overall, the dataset is heterogeneous, covering small private colleges, large state schools, and elite universities. Tuition

and selectivity (Top10perc) appear positively related, and both the Private and Elite variables highlight systematic differences in costs and student profiles.

Exercise 4

1

The unit sphere in \mathbb{R}^p fits inside the hypercube $[-1, 1]^p$, whose side length is 2. In p dimensions, the volume of a hypercube is (side length) p . Therefore,

$$V_c(p)=2^p$$

2

The volume of the p-dimensional unit ball is

$$V_s(p) = \frac{\pi^{p/2}}{\Gamma(\frac{p}{2}+1)}$$

• If p = 2m (even): $V_s(2m) = \frac{\pi^m}{m!}$

• If p = 2m + 1 (odd): $V_s(2m + 1) = \frac{2^{m+1}\pi^m}{(2m+1)!!}$

Examples: $V_s(2) = \pi, V_s(3) = \frac{4}{3}\pi$

3

The ratio is defined as

$$\alpha(p) = \frac{V_s(p)}{V_c(p)}$$

where
$$V_s(p) = \frac{\pi^{p/2}}{\Gamma(\frac{p}{2}+1)}$$
 and $V_c(p) = 2^p.$

Thus,

$$\alpha(p) = \frac{\pi^{p/2}}{2^p \, \Gamma(\frac{p}{2} + 1)}$$

```
def V_s(p):
    return math.pi**(p/2) / math.gamma(p/2 + 1)

def V_c(p):
    return 2**p

p_vals = np.arange(1, 21)
alpha_vals = [V_s(p) / V_c(p) for p in p_vals]

df = pd.DataFrame({"p": p_vals, "alpha(p)": alpha_vals})
print(df)

plt.figure(figsize=(8, 5))
plt.plot(p_vals, alpha_vals, marker="o", color="orange")
plt.title(r"Ratio $\alpha(p) = V_s(p)/V_c(p)$ for $p=1,2,\dots,20$")
plt.xlabel("Dimension p")
plt.ylabel(r"$\alpha(p)$")
plt.grid(True)
plt.show()
```

```
alpha(p)
0
    1 1.000000e+00
    2 7.853982e-01
1
2
    3 5.235988e-01
3
    4 3.084251e-01
4
    5 1.644934e-01
5
    6 8.074551e-02
       3.691223e-02
6
    7
7
    8 1.585434e-02
8
    9 6.442400e-03
9
   10 2.490395e-03
10 11 9.199726e-04
       3.259919e-04
11
   12
12 13 1.111607e-04
13 14 3.657620e-05
14 15 1.164073e-05
15 16 3.590860e-06
16 17 1.075600e-06
17 18 3.133617e-07
```

- 19 20 2.461137e-08

5

The statement "In higher dimensions most of the volume is in the corners" is accurate. As dimension increases, the inscribed sphere occupies a vanishing fraction of the cube's volume. Most of the cube's volume lies near its corners and edges, far from the center. This is a direct manifestation of the curse of dimensionality.