

Process Concepts

- Process Definition
- Process Creation
- Process States and State Transitions
- Important Information Associated with Processes

Two-State Process Model

- Process may be in one of two states
 - Running
 - **™**Not-running

Two-state Model Problems

- Not-runningaready to execute
- Blockedawaiting for I/O, semaphore
- Dispatcher cannot just select the process that has been in the queue the longest because it may be blocked

A Five-State Model

Five-state Model Transitions

- New → Ready: O.S. is ready to handle another process

- Running → Ready: End of time slice or higher-priority process is ready

Multiple Blocked Queues

Suspended Processes

- Processor is faster than I/O so all processes could be waiting for I/O
- Swap these processes to disk to free up more memory
- Blocked state becomes suspended state when swapped to disk
- Two new states

 - Ready, suspend

Suspended State Scheduling

One Suspend State

Two Suspend State

Reasons for Process Suspension

Swapping

The OS needs to release sufficient main memory to bring in a process that is ready to execute

Other OS reason

The OS may suspend a background or utility process or a process that is suspected of causing a problem

Interactive user request

A user may wish to suspend execution of a program for purposes of debugging or in connection with the use of a resource

Timing

A process may be executed periodically and may be suspended while waiting for the next time interval

Parent process request

A parent process may wish to suspend execution of a descendent to examine or modify the suspended process

The 'states' of a Linux process

A process can be in one of several states:

1: TASK_INTERRUPTIBLE (S)

2: TASK_UNINTERRUPTIBLE (D)

4: TASK_ZOMBIE (Z)

8: TASK_STOPPED (T)

State Transitions of a Linux Process

Process Concepts

- Process Definition
- Process Creation
- Process States and State Transitions
- Important Information Associated with Processes

Operating System Control Structures

- Information the OS needs to keep around:
 - Memory tables
- Tables are constructed for each entity the operating system manages
- The OS has to manage and protect these tables

Process Control Structures

Control Tables

- Memory Tables
 - Allocation of main memory to processes
 - Allocation of secondary memory to processes
 - Protection attributes for access to shared memory regions
 - Information needed to manage virtual memory
- I/O device is available or assigned

 - Calcolor in main memory being used as the source or destination of the I/O transfer

Control Tables (continued...)

- File Tables
 - **Existence** of files
 - Location on secondary memory
 - **Current Status**
 - Attributes
- Process Table

 - Location in memory

Process Location

- A Process includes:
 - □ Data locations for local and global variables
 - Any defined constants
 - Stack
 ■

 - Set of programs to be executed
- Process Control Block (PCB)
 - Collection of attributes

Process Control Block (PCB)

process pointer state process number program counter registers memory limits list of open files

Process Control Block

- Process identification
- Processor State Information

 - Control and Status Registers
 - Stack Pointers
- Process Control Information
 - Scheduling and State Information
 - Process state
 - Priority
 - Scheduling-related information
 - Event
 - Data Structuring
 - Interprocess Communication
 - Process Privileges
 - Memory Management
 - Resource Ownership and Utilization

Process Control Block (continued...)

- Process identification
 - Numeric identifiers that may be stored with the process control block and include
 - Identifier of this process
 - Identifier of creator process (parent process)
 - User identifier
- Processor State Information
 - **CRUSer-Visible Registers**

 - Stack Pointers

Process Control Block (continued...)

Processor State Information

- - A register is one that may be referenced by means of the machine language that the processor executes. (Typically, 8 to 32)

- Program counter: Address of the next instruction to be fetched
- Condition codes: Results of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal, overflow)
 - Status information: Interrupt enabled/disabled flags, execution mode

Stack Pointers

Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the stack.

Several dozen fields

 Dozens of separate items of information are kept in a Linux 'task_struct'; e.g.:

This info is used by the Linux 'scheduler'

Execution Stack in C

- The C runtime system keeps track of the chain of active functions with a stack
- When a function is called, the runtime system pushes on the stack a frame containing

 - Program counter, keeping track of the statement being executed
- When a function ends, its frame is popped from the stack and control is passed to the function on top of the stack

```
main() {
  int i = 5;
                bar
  foo(i);
                  PC = 1
                  m = 6
foo(int j) {
                foo
  int k;
                  PC = 3
  k = j+1;
                  i = 5
  bar(k);
                  k = 6
                main
bar(int m) {
                  PC = 2
                  i = 5
```