Intégration et probabilités

Indépendance

Question 1/19

Variables aléatoires indépendantes Caractérisation par les espérances avec des images au plus dénombrables

Réponse 1/19

Les $(X_i)_{i \in [1,n]}$ sont indépendantes si et seulement si pour tout $x_i \in E_i$,

$$\P X_1 = x_1, \cdots, X_n = x_n = \prod_{i=1}^n \mathbb{P}(X_i = x_i)$$

Question 2/19

Variables aléatoires indépendantes Caractérisation par les lois

Réponse 2/19

Les $(X_i)_{i \in [\![1,n]\!]}$ sont indépendantes si et seulement si la loi du produit sur $(E_1 \times \cdots \times E_n, \mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_n)$ est la loi produit ie $\mathbb{P}_{(X_1,\dots,X_n)} = \mathbb{P}_{X_1} \otimes \cdots \otimes \mathbb{P}_{X_n}$

Question 3/19

Variables aléatoires indépendantes Caractérisation par les tribus engendrées

Réponse 3/19

Les $(X_i)_{i \in I}$ sont indépendantes si et seulement si les $(\sigma(X_i))_{i \in I}$ le sont

Question 4/19

Variables aléatoires indépendantes Caractérisation par les espérances

Réponse 4/19

Les $(X_i)_{i \in [\![1,n]\!]}$ sont indépendantes si et seulement si pour toutes fonctions mesurables $f_i \colon E_i \to \mathbb{R}_+,$

$$\mathbb{E}(f_1(X_1)\cdots f_n(X_n)) = \prod_{i=1}^n \mathbb{E}(f_i(X_i))$$

Question 5/19

Loi de
$$X_1 + \cdots + x_n$$

Réponse 5/19

Si les X_i sont indépendantes, $\mathbb{P}_{X_1+\dots+X_n} = \mathbb{P}_{X_1} * \dots * \mathbb{P}_{X_n}$

Question 6/19

Variables aléatoires indépendantes Caractérisation par les fonctions de répartition

Réponse 6/19

Les $(X_i)_{i\in [\![1,n]\!]}$ à valeurs dans $\mathbb R$ sont indépendantes si et seulement si pour tous

$$x_i \in \mathbb{R}, \, \mathbb{P}(X_i \leqslant x_i, i \in [1, n]) = \prod_{i=1}^n F_{X_i}(x_i)$$

Question 7/19

$$(\mathcal{F}_1, \cdots, \mathcal{F}_n)$$
 sont indépendants

Réponse 7/19

Pour tout
$$(A_1, \dots, A_n) \in \mathcal{F}_1 \times \dots \times \mathcal{F}_n$$
,
$$\mathbb{P}\left(\bigcap_{i=1}^n A_i\right) = \prod_{i=1}^n \mathbb{P}(A_i)$$

Question 8/19

Densité d'une loi marginale

Réponse 8/19

Si X est une variable aléatoire dans \mathbb{R}^d admettant une densité $\prod_{i=1}^d f_i$ alors il existe $c_i \in]0, +\infty[$ pour lequel X_i admet $c_i f_i$

Question 9/19

$$(\mathcal{F}_i)_{i\in I}$$
 sont indépendantes

Réponse 9/19

Pour tout $J \subset I$ fini, les $(\mathcal{F}_j)_{j \in J}$ sont indépendantes

Question 10/19

$$(A_1, \cdots, A_n)$$
 sont indépendants

Réponse 10/19

Pour tout
$$I \subset [1, n], \mathbb{P}\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} \mathbb{P}(A_i)$$

Question 11/19

Tribu engendrée par une variable aléatoire

Réponse 11/19

$$\sigma(X) = \{X^{-1}(A), A \in \mathcal{E}\}$$
 avec $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$

Question 12/19

A et B sont indépendants

Réponse 12/19

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$
$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Question 13/19

Variables aléatoires indépendantes Caractérisation par les tranformées de Fourier

Réponse 13/19

Les $(X_i)_{i \in [\![1,n]\!]}$ à valeurs dans \mathbb{R}^{d_i} sont indépendantes si et seulement si pour tout $\xi \in \mathbb{R}^d$,

$$\xi \in \mathbb{R}^d,$$

$$\varphi_{(X_1,\dots,X_n)}(\xi) = \mathbb{E}\left(e^{i\xi\cdot(X_1,\dots,X_n)}\right) = \prod_{i=1}^n \varphi_{X_i}\xi_i$$

Question 14/19

$$\mathbb{P}(A \mid B)$$

Réponse 14/19

$$\mathbb{P}(A \cap B)\mathbb{P}(B)$$

Question 15/19

Loi faible des grands nombres dans L^2

Réponse 15/19

Si les $(X_n)_{n\in\mathbb{N}^*}$ sont des variables aléatoires iid d'espérance m alors $\frac{S_n}{n} \xrightarrow[n \to +\infty]{L^2} m$

Question 16/19

Lemmes de Borel-Cantelli

Réponse 16/19

Si
$$\sum \mathbb{P}(A_n)$$
 converge alors $\mathbb{P}\left(\bigcap_{n=0}^{+\infty} \bigcup_{n=k}^{+\infty} A_k\right) = 0$
Si $\sum \mathbb{P}(A_n)$ diverge avec les (A_n) mutuellement

indépendants alors
$$\mathbb{P}\left(\bigcap_{n=0}^{+\infty+\infty}A_{k}\right)=1$$

Question 17/19

Lemme des classes monotones pour l'Indépendance de tribus

Réponse 17/19

Si $(\mathcal{F}_1, \dots, \mathcal{F}_n)$ sont des sous-tribus de \mathcal{F} et \mathcal{C}_i des parties de \mathcal{F}_i stables par intersection et telles que $\sigma(\mathcal{C}_i) = \mathcal{F}_i$

Si pour tout $C_i \in \mathcal{C}_i$, $\mathbb{P}\left(\bigcap_{i=1}^n C_i\right)^i = \prod_{i=1}^n \mathbb{P}(C_i)$ alors les \mathcal{F}_i sont indépendantes

Question 18/19

Loi du 0-1 de Kolmogorov

Réponse 18/19

Si $(\mathcal{F}_n)_{n\in\mathbb{N}^*}$ est une suite de sous- σ -algèbres de \mathcal{F} indépendantes, si $\mathcal{G}_n = \bigvee_{k>n} \mathcal{F}_k$ et

$$\mathcal{G}_{\infty} = \bigcap_{n=0}^{+\infty} \mathcal{G}_n \text{ est triviale, dans le sens où pour}$$

$$\text{tout } A \in \mathcal{G}_{\infty}, \, \mathbb{P}(A) \in \{0, 1\}$$

Question 19/19

Trasnformée de Fourier de $X_1 + \cdots + x_n$

Réponse 19/19

Si les X_i sont indépendantes, $\varphi(X_1 + \dots + X_n) = \prod_{i=1}^{n} \varphi(X_i)$

i=1