

INTRUSION DETECTION

Authors:

Dennys Antunish: dantunish2@gmail.com

Angie Rivera: angiervr@gmail.com

Aliya Jones: alya.jones@macrlay.cuny.edu

Navruz Asatullaev: navruz.college@gmail.com

Evgeniia Yeroshkina: mironova.eug2016@gmail.com

INTRUSION DETECTION EVALUATION DATASET (CIC-IDS2017)

- Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick (UNB)
- To provide a realistic and modern dataset for evaluating Intrusion Detection Systems (IDS)
- Traffic Types:
 - Benign (normal) traffic
 - Attack traffic, including DoS / DDoS

HYPOTHESIS - WHAT WE EXPECTED TO FIND

To find multiple victims on Friday, July 7th, 2017

 To find a plethora of logs of an attempted attack at a company

 To find continuous use of the same IP address for multiple attacks

INCIDENT RESPONSE PLAYBOOK – GSPBC-1080

WHY DID WE CHOOSE THIS PLAYBOOK?

- → Specifically addresses Dos/DDos attacks
- → Aligns with our datasets focus on network traffic patterns
- → Structured for Blue Team operations and SOC workflows
- → Flexible no assumption about tools or datasets

Source: GuardSight CIRT Playbook Battle Cards, <u>GSPBC-1080 –</u> Network Denial of Service

Methodology: PICERL – *Preparation, Identification, Containment, Eradication, Recovery, Lessons*

MONITORING SOURCES

- What did we use to monitor and analyze?
 - Splunk to monitor network traffic patterns and identify potential threats.
- How did we use Splunk?
 - By filtering for events:
 - Label and Destination IP*(we wanted to narrow down the logs to just DDoS and find the main IP that was been used for this attack)
- Why it matters?
 - By starting with these two filers we were able to later detect high-volume traffic in these other fields (Source; Destination IP, Destination Port, Protocol, Flow Duration, and Timestamps)

MONITORING SOURCES

Search by Label & Destination/ Source IP & Destination Port

index=main source="Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv" Label=* I stats count by Label


```
o index=main source="Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv" Label="DDoS" | where isnotnull('Source IP') AND isnotnull('Destination IP') AND isnotnull('Destination Port') | stats count by "Source IP", "Destination IP", "Destination Port"
                                                                                                                                                                         Source IP $
                                                                                                                                                                                                                                       Destination Port # /
where count > 1
                                                                                                                                                                                         Destination IP :
                                                                                                                                                                                                                                                                        80
                                                                                                                                                                         172.16.0.1 192.168.10.50
```

Including Protocol, Flow Duration & time

```
index=main source="Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv" Label="DDoS" | where isnotnull ('Source IP') AND isnotnull ('Destination IP') AND isnotnull ('Destination Port')
           stats count.
               values(Protocol) as Protocols,
               avg('Flow Duration') as Avg_Flow_Duration
             by "Source IP", "Destination IP", "Destination Port"
           I sort - count
• index=main source="Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv" Label="DDos" | where isnotnull('Source IP') AND isnotnull('Destination IP') AND isnotnull('Destination Port')
| bucket time span=1d
stats count, values (Protocol) as Protocols, avg ('Flow Duration') as Avg_Flow_Duration
  by time, "Source IP", "Destination IP", "Destination Port"
```

sort_time	· ·	-			
1301t _time	Source IP ‡	Destination IP ‡	Destination Port 🖘 🖊	count ‡ 🗸	Protocols ‡ 🗸
	172.16.0.1	192.168.10.50	80	128024	6
	192.168.10.50	172.16.0.1	27636	1	6
	192.168.10.50	172.16.0.1	64869	(1)	6
	192.168.10.50	172.16.0.1	64873	1	6

IDENTIFIED ASSETS - VICTIM & ATTACKER

- What was identified while analyzing in Splunk?

 The Attacker Asset (Source IP) and the Target Asset (Destination IP)
- What does this mean?
 - Understanding this gave insight into affected assets and where systems are the weakest/ vulnerable.

Target Asset (Destination IP):

- IP: 192.168.10.50
- Role: Internal server targeted on port 80 (HTTP)
- Impact: Likely runs a web app and was overwhelmed by traffic

Attacker Asset (Source IP):

- IP: 172.16.0.1
- Role: Primary source of malicious traffic
- Insight: Source of the traffic flood

IDENTIFIED ASSETS-TRAFFIC DETAILS & IMPACT

- Network Protocols & Ports:
 - Protocol: TCP (Protocol 6)
 - Destination Port: 80
 - Impact: Attacker used normal web traffic (making it harder to detect but possibly revealing security gaps)
- Systems & Application Potentially Affected:
 - Web Apps IP: 192.168.10.50
 - Network Hardware : routers & switches

IMPACT ANALYSIS AND TRIAGE

- Looking deep into the findings:
 - Impact Analysis
 - ~128,000 DDoS events → **High intensity**
 - Single attacker: 172.16.0.1
 - Critical ports targeted (e.g., 80/443) → high business impact
 - Conclusion: Severity = High | Priority: Immediate mitigation
 - Triage
 - Goal: Confirm attack, asses spread, and identify attacker
 - Filtered on Label=DDoS AND Dst IP=192.168.10.50
 - Attacker Identified: top Source IP → 172.16.0.1
 - Timechart showed sustained spikes
 - Scope Check: Only 192.168.10.50 affected
 - (Hypothetical) System log review for crash signs
 - Threat intel: Check if 172.16.0.1 is trusted or compromised

THREAT INTELLIGENCE

Туре	Example	Why it matters
Source IP	172.16.0.1	Repeated source of attack traffic
Destination IP	192.168.10.50	Targeted internal server (likely hosting a web service)
Destination Port	80	HTTP — often abused in DDoS due to open access
Protocol	6 (TCP)	Used to mimic legitimate HTTP traffic
Flow patterns	High counts, short duration	Indicates flood behavior (common in DDoS attacks)

THREAT INTELLIGENCE

Tactic	Technique	Details from Dataset
Initial Access	External Remote Services (T1133)	Traffic flooded from external IP toward open HTTP port
Impact	Network Denial of Service (T1498.001)	Repeated, large-volume TCP traffic over port 80
Evasion	Abuse of Legitimate Protocol (T1071.001)	Using HTTP/TCP to disguise the attack as regular web traffic

RECOMMENDED REMEDIATION

- Block attacker IP (172.16.0.1)
- Limit HTTP requests per IP
- Deploy Cloudflare WAF
- Set Splunk alerts for traffic spikes
- Enforce HTTPS and disable HTTP
- Update and secure all systems

CASE MANAGEMENT SYSTEM

 Catalyst was used for case management system to log and track each phase of the DDoS incident response.

LESSONS LEARNED

- Even one compromised internal IP can disrupt services if traffic is not monitored and restricted.
- Protocol abuse (e.g., HTTP flood) is a simple but effective evasion tactic if perimeter defenses aren't deep-inspecting.
- Network flow logs are a powerful data source for identifying traffic-based attacks.
- Structured frameworks like MITRE ATT&CK help classify attacker behaviors and prepare mitigation playbooks.
- SOC tools like Splunk and Catalyst are vital not only for detection and response but also for documentation and improvement tracking.

.

CONCLUSION

Lessons Learned:

- Importance of continuous monitoring & early detection
- Playbook-based response improves speed & effectiveness

