Numerical Linear Algebra

Singular Value Decomposition

1. Geometric Observation

The SVD is motivated by the following geometric fact:

The image of the unit sphere under any $m \times n$ matrix is a hyperellipse.

Figure 4.1. SVD of a 2×2 matrix.

We define the *nsingular values* of A: $\sigma_1, \sigma_2, \ldots, \sigma_n$ are the lengths of the n principal semiaxes of AS, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$. Define the *nleft singular vectors* of A are the unit vectors $\{u_1, u_2, \ldots, u_n\}$ oriented in the directions of the principal semiaxes of AS. Define the *nright singular vectors* of A are the unit vectors $\{v_1, v_2, \ldots, v_n\} \in S$ that are the preimages of the principal semiaxes of AS, so $Av_j = \sigma_j u_j$.

2. Reduced SVD

 $A \in \mathbb{R}^{m \times n} (m > n)$ and we assume A has full rank n:

$$A = \hat{U}\hat{\Sigma}V^T.$$

Reduced SVD $(m \ge n)$

3. Full SVD

$$A = U\Sigma V^T.$$

Full SVD
$$(m \ge n)$$

4. Formal Definition

Given $A \in \mathbb{R}^{m \times n}$, a singular value decomposition (SVD) of A is a factorization

$$A = U\Sigma V^T$$

where

$$U \in \mathbb{R}^{m \times m}$$
 is unitary,
 $V \in \mathbb{R}^{n \times n}$ is unitary,
 $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

Theorem 1. Every matrix $A \in \mathbb{R}^{m \times n}$ has a singular value decomposition.

Furthermore, the singular values $\{\sigma_j\}$ are uniquely determined, and, if A is square and the σ_j are distinct, the left and right singular vectors $\{u_j\}$ and $\{v_j\}$ are uniquely determined up to complex signs.

Matrix properties via the SVD

Theorem 2. The rank of A is r, the number of nonzero singular values.

Theorem 3. range(A) = $\langle u_1, \dots, u_r \rangle$ and null(A) = $\langle v_{r+1}, \dots, v_n \rangle$.

Theorem 4.
$$||A||_2=\sigma_1$$
 and $||A||_F=\sqrt{\sigma_1^2+\sigma_2^2+\cdots+\sigma_r^2}$.

Theorem 5. The nonzero singular values of A are the square roots of the nonzero eigenvalues of A^TA or AA^T .

Theorem 6. For
$$A \in \mathbb{R}^{m \times m}$$
, $|\det(A)| = \prod_{i=1}^{m} \sigma_i$.

Low-Rank Approximations

Theorem 7. A is the sum of r rank-one matrices:

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^T.$$

Theorem 8. For any ν with $0 \le \nu \le r$, define

$$A_{\nu} = \sum_{j=1}^{\nu} \sigma_j u_j v_j^T;$$

if $\nu=p=\min\{m,n\}$, define $\sigma_{\nu+1}=1$. Then

$$||A - A_{\nu}||_2 = \inf_{B \in \mathbb{R}^{m \times n} \operatorname{rank}(B) \le \nu} ||A - B||_2 = \sigma_{\nu+1}.$$

Theorem 9. For any ν with $0 \le \nu \le r$, the matrix A_{ν} also satisfies

$$||A - A_{\nu}||_F = \inf_{B \in \mathbb{R}^{m \times n} \operatorname{rank}(B) \le \nu} ||A - B||_F = \sqrt{\sigma_{\nu+1}^2 + \dots + \sigma_r^2}.$$