Standardizing Data Formats for Open-Source Model Sharing and Benchmarking

Dr. Ioannis Savidis

Department of Electrical and Computer Engineering

Drexel University

- Advancing ML in physical design needs standardized, open datasets and consistent practices.
- Key Requirements

Reproducible Dataset

Ensure datasets are publicly available, well-documented, and easy to reuse across studies.

Consistent Data Handling

Adopt uniform preprocessing and labeling conventions to allow fair benchmarking and result comparison.

Seamless Data Sharing

Use common formats and metadata to simplify sharing, integration, and scaling across tools and teams.

Property graph data-model schema incorporating

Structural data of the circuit

Entity Relationship Diagram

EDA-schema Open Dataset

Open Dataset v1.1:

Toolset: OpenROAD

o PDKs: sky130hd

Circuits: IWLS05 benchmark circuits

Parameter setup/Constraints

· Clock latency: 0.01

· Clock IO delay: 0.01

Utilization: 30%

• Aspect ratio: 1.0

Dataset size: 23 GB

o Time to load all netlist entities: 28 mins 23 secs

o <u>link</u>

	Barely Fail (id=000001)		Barely Pass (id=000002)	
Circuit	Target Clock Period (ns)	Worst Slack (ns)	Target Clock Period (ns)	Worst Slack (ns)
ac97_ctrl	3	-0.1823	3.25	0.1333
aes_core	3.5	-0.1999	3.75	0.0458
des3_area	3.75	-0.0119	4	0.1823
i2c	2.25	-0.1594	2.5	0.0658
mem_ctrl	5	-0.0863	5.25	0.1420
pci	3.75	-0.1326	4	0.1548
sasc	1.75	-0.0992	2	0.1752
simple_spi	2	-0.1452	2.25	0.1232
spi	4.25	-0.1739	4.5	0.2488
ss_pcm	1.625	-0.0144	1.75	0.1107
systemcaes	4.75	-0.1644	5	0.0050
systemcdes	4	-0.0069	4.25	0.3052
tv80	7	-0.0294	7.25	0.1227
usb_funct	2.5	-0.0917	2.75	0.1018
usb_phy	1.75	-0.0449	2	0.1821
wb_dma	3	-0.0746	3.25	0.0708

EDA-schema Expansion Update (Dataset v2.0)

• Extending dataset to multiple PDKs: Skywater 130nm, ASAP 7nm, NanGate45nm

Parameter Selection

Set 1:

Uses fixed, default values from OpenROAD (e.g., clock latency = 0.01 ns, transition = 0.25 ns)

Set 2:

Scales certain parameters like clock latency and uncertainty relative to the target clock period (TCP)

TABLE IV: Constraints and parameters utilized to generate the dataset. (OpenROAD default)

Parameters	Values or Ranges			
Target clock periods (ns)	{BF - 1ns, BF, BP, BP + 1ns}			
Aspect ratio	{0.5, 1, 1.5}			
Max utilization	{0.3, 0.4, 0.5}			
Input/Output Delay	20% of Target clock period			
Core Margin (µm)	1			
Place Density	skywater 130nm	asap 7nm	nangate 45nm	
	0.6	0.6	0.3	
Clock Latency (ns)	0.01			
Clock Transition (ns)	0.25			
Clock Uncertainty (ns)	skywater 130nm	asap 7nm	nangate 45nm	
	0.2	0.2	0.1	

TABLE V: Constraints and parameters utilized to generate the dataset.

Parameters	Values or Ranges			
Target clock periods (ns)	$\{0.8 \times BF, BF, BP, 1.2 \times BP\}$			
Aspect ratio	{0.5, 1, 1.5}			
Max utilization	{0.3, 0.4, 0.5}			
Input/Output Delay	20% of Target clock period (TCP)			
Core Margin (µm)	1	2012 and 100 a	250	
Place Density	skywater 130nm	asap 7nm	nangate 45nm	
	0.6	0.6	0.3	
Clock Latency (ns)	1% of TCP (capped at 25 ps)			
Clock Transition (ns)	12.5% of TCP, bounded [30 ps, 200 ps]			
Clock Uncertainty (ns)	5% of TCP			

- Current research based on this flow are
 - a) arrival time prediction

b) interconnect capacitance prediction

P. Shrestha, S. Phatharodom, and I. Savidis, "Graph representation learning for gate arrival time prediction," *Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD)*, pp. 127–133, Sept. 2022. P. Shrestha and I. Savidis, "Graph representation learning for parasitic impedance prediction of the interconnect," *Proceedings of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the interconnect,*" *Proceedings of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the interconnect,*" *Proceedings of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the interconnect,*" *Proceedings of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the interconnect,* "Proceedings of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the interconnect," Proceedings of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the International Symposium on Graph representation learning for parasitic impedance prediction of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the IEEE International Symposium on Graph representation learning for parasitic impedance prediction of the IEEE International Symposium on Graph Representation for the IEEE Internation for the IEEE International Symposium on Graph Representation for the IEEE Internation for the IEEE Internation for the IE

Framework developed within Drexel-ICE to pursue ML problems in EDA

Main Components

- EDA-datagen
 - Physical design flow automation for parameterized large scale dataset generation
- EDA-schema
 - Property graph data-model schema for circuit data representation
- EDA-ML
 - Rapid prototyping and evaluation for EDA based machine learning models

Si2 Schema Working Group

Develop a standard EDA ontology for seamless data sharing

Resource Description Framework (RDF)
 of physical design data

or prijorear design date

Participants

SYNOPSYS®

Si2 Schema Working Group

- Develop a standard EDA ontology for seamless data sharing
- Resource Description Framework (RDF)
 of physical design data

Participants

SYNOPSYS®

Thank You!

Check out our open dataset at

github.com/drexel-ice/EDA-schema

