19. 10. 2017

Naším cílem bude konstrukce private-key encryption scheme, které je computationally secure. Víme, že OTP je nepraktický, místo toho chceme jednoduché a bezpečné schéma + krátký klíč. Chceme tedy z krátkého klíče sestrojit pseudonáhodný "pad" (tím xorujeme zprávu).

Pseudonáhodné generátory PRG

Vlastnosti, které očekáváme od pseudonáhodného řetězce délky n:

- jakýkoliv bit je rozdělený rovnoměrně, tj. je unbiased = nestranný, tedy $\Pr[x_i = 1] \approx \Pr[x_i = 0]$,
- nejdelší posloupnost samých jedniček je délky $\mathcal{O}(\log n)$,
- nelze efektivně komprimovat. Kolmogorova složitost se v krypto moc nepoužívá, spíš chceme aby byl nerozlišitelný od náhodného stringu.

Návrhy PRG v praxi:

- stream ciphers:
 - ortogonální k tomu, o čem se budeme bavit,
 - prakticky se věří, že jsou PRG, ale neumí se to dokázat \rightarrow heuristické
- lineární kongruenční generátory
 - náhodně zvolená čísla $a, b, s_0 \leftarrow \mathbb{Z}_m$, pak volíme $s_i = s_{i-1}a + b \pmod{m}$,
 - dávají posloupnosti, které mají hodně korelací,
 - musíme být opatrní i při použití pro simulace,
 - dnes prolomeny

Definice: Řekneme, že $G: \{0,1\}^* \to \{0,1\}^*$ je pseudonáhodný generátor (PRG), pokud platí:

(efektivita) G je deterministický algoritmus pracující v polynomiálním čase

(expanze)
$$|G(x)| = \ell(|x|)$$
 pro $\ell \colon \mathbb{N} \to \mathbb{N}$ t.ž. $\forall n \in \mathbb{N} \colon \ell(n) > n$

(pseudonáhodnost) pro všechny PPT distinguishery D existuje negligible ε takové, že

$$\forall n \in \mathbb{N} \colon |\Pr[D(G(U_n)) = 1] - \Pr[D(U_{\ell(n)}) = 1]| \le \varepsilon(n)$$

Kde U_m značí uniformně náhodné bitové řetězce délky m a pravděpodobnosti jsou přes tyto řetězce a náhodné bity D.

Kdyby $\ell(n) = n + 1$, pak PRG generuje jen polovinu ze všech možných výstupů, obecně generuje jen $2^{n-\ell(n)}$ zlomek prostoru, ale přesto chceme neodlišitelnost. Pro naše aplikace chceme polynomiální stretch (o kolik se string protáhne).

Historicky vstupům pseudonáhodných generátorů říkáme seed.

Pokud je A PPT algoritmus a místo náhodných bitů dostává výstup PRG, pak se chová skoro stejně jako na skutečně náhodném vstupu.

Definice: Computational OTP Necht G je PRG, definujme encryption scheme (G_{Enc}, E, D) :

$$(G_{Enc}) \mathcal{K} \leftarrow \{0,1\}^n \text{ (seed pro } G)$$

(E)
$$E_{\mathcal{K}}(m) = G(\mathcal{K}) \oplus m \text{ pro } m \in \{0,1\}^{\ell(n)}$$

(D)
$$D_{\mathcal{K}}(m) = G(\mathcal{K}) \oplus c$$

 $^{^{1}}$ ne adversary A

Tvrzení: Pokud G je PRG, pak (G_{Enc}, E, D) splňuje computational indistinguishability ciphertextů. **Důkaz:** Nechť A je PPT adversary, $m_0, m_1 \in \mathcal{M}$ zprávy. Naším cílem je ukázat, že distribuce ciphertextů pro m_0, m_1 nelze efektivně rozlišit. Budeme porovnávat ideální a reálný svět, definujme proto následující pravděpodobnostní distribuce:

$$\mathbf{Real}_0 = E_{\mathcal{K}}(m_0) = G(\mathcal{K}) \oplus m_0$$

$$\mathbf{Real}_1 = E_{\mathcal{K}}(m_1) = G(\mathcal{K}) \oplus m_1$$

$$\mathbf{Ideal}_0 = \mathcal{K}' \oplus m_0 \text{ kde } \mathcal{K}' \leftarrow \{0,1\}^{\ell(n)}$$

$$\mathbf{Ideal}_1 = \mathcal{K}' \oplus m_1 \text{ kde } \mathcal{K}' \leftarrow \{0, 1\}^{\ell(n)}$$

Chceme dokázat, že \mathbf{Real}_0 nelze rozlišit od \mathbf{Real}_1 . Víme, že \mathbf{Ideal}_0 a \mathbf{Ideal}_1 jsou totožné distribuce (dle důkazu bezpečnosti OTP). Dokažme, že neumíme rozlišit \mathbf{Real}_0 od \mathbf{Ideal}_0 (a tím tedy ani nemůžeme rozlišit \mathbf{Real}_0 od \mathbf{Real}_1). Nechť máme pro spor $D_{R,I}$ pro distribuce \mathbf{Real}_0 a \mathbf{Ideal}_0 , který je efektivní a platí

$$|\Pr[D_{R,I}(\mathbf{Real}_0) = 1] - \Pr[D_{R,I}(\mathbf{Ideal}_0) = 1]| \ge \frac{1}{p(n)}$$

kde p je nějaký polynom.

Potom definujeme distinguishera D pro vstup x:

- $c = x \oplus m_0 \text{ kde } x \leftarrow G(U_n)$
- $b' = D_{R,I}(c)$
- return b'

Vidíme, že D(x) simuluje **Real**₀. Pokud $x \leftarrow U_{\ell(n)}$, pak D(x) simuluje **Ideal**₀. Tedy D(x) rozliší s pravděpodobností aspoň $\frac{1}{2} + \frac{1}{p(n)}$.

Optimálně bychom chtěli vědět, že pokud $P \neq NP$, pak existují PRG. Umíme dokázat, že pokud existují jednosměrné funkce (OWF), pak existují PRG (Johan Håstad, Russell Impagliazzo, Leonid A. Levin, Michael Luby).

Neznáme moc pseudonáhodných generátorů, ale obecně věříme v existenci OWF, takže teoreticky máme i PRG.

P, NP jsou worstcase třídy, tedy existuje problém a existují instance, které jsou těžké vyřešit. V krypto chceme problémy obtížné on-average a navíc chceme generovat i obtížné problémy rovnou s jejich řešením.

http://blog.computationalcomplexity.org/2004/06/impagliazzos-five-worlds.html

Jednosměrné funkce OWF

Definice: Řekneme, že $f: \{0,1\}^* \to \{0,1\}^*$ je jednosměrná funkce *OWF*, pokud:

- 1. f lze snadno vyhodnotit (evaluate) v polynomiálním čase
- 2. pro všechny PPT A existuje negligible ε , taková že

$$\forall n \in \mathbb{N} \colon \Pr[A(f(x), 1^n) \in f^{-1}(f(x))] \le \varepsilon(n)$$

kde pravděpodobnost je přes uniformně náhodné $x \in \{0,1\}^n$ a mince A. Navíc adversary A nepotřebuje najít x, ale stačí mu libovolný předobraz f(x) (jinak bychom museli konstantní nulu považovat za jednosměrnou funkci, což jistě nechceme).

Řekneme, že $f\colon\{0,1\}^n\to\{0,1\}^\ell$, kterou lze vyhodnotit v čase $\ll t$, je (t,ε) -jednosměrná funkce, pokud je bezpečná oproti všem adversary A běžícím v čase t.

factoring Násobení dvou stejně dlouhých čísel: f(x,y) kde ||x|| = ||y|| = n a f(x,y) = xy. Přesněji řečeno f bere náhodný řetězec z a rozdělí ho na dvě stejně dlouhé části (pokud je liché délky, zapomene poslední bit), které vynásobí.

Definice: Factoring předpoklad: pro všechny PPT A existuje negligible ε takové, že

$$\Pr[A(N) \in \{P, Q\}] \le \varepsilon(n)$$

kde P, Q jsou náhodná prvočísla délky n a N = PQ.

Silvio Micali řekl: "Cryptographers seldom sleep well" protože neví, kdo najde polynomiální algoritmus, který rozboří jejich předpoklad.

Nejdelší zatím prolomená RSA challenge měla 768 bitů a trvalo to zhruba 2000 CPU let na 2.2 GHz single core.

Nejlepší (asymptoticky) algoritmus na factoring má čas $\exp(\mathcal{O}(n^{1/2}\log^{1/2}n))$, nejlepší heuristický $\exp(\mathcal{O}(n^{1/3}\log^{1/3}n))$.

Fakt: pokud factoring předpoklad platí, pak je násobení OWF.

Pokud existuje kvantový počítač, pak existuje efektivní algoritmus na faktorizaci (Shor's algorithm).

subset sum $f(x_1, \ldots, x_n, S) = (x_1, \ldots, x_n, \sum_{i \in S} x_i \mod 2^n)$ kde $x_i \in \{0, 1\}^n$ a $S \subseteq 2^{\{1, \ldots, n\}}$, tedy jde o vyřešení soustavy rovnic. Víme, že tento problém je NP-úplný.

DES, **AES** Blokové šifry DES a AES (ta druhá se používá například ve WiFi routerech) jsou heuristické konstrukce blokových šifer, tedy to jsou kandidáti na jednosměrné funkce, ale neumíme dokázat jejich bezpečnost. Prolamovat umíme v podstatě jen pomocí bruteforce.

Je jednoduché rozmyslet, že funkce, kterou lze vyhodnotit v čase t_0 nemůže být:

- 1. $(\mathcal{O}(2^n t_0), 1)$ -jednosměrná,
- 2. $(\mathcal{O}(n), \max\{2^{-n}, 2^{-\ell}\})$ -jednosměrná.

Obecně se jedná o trade-off mezi 1. a 2.

Co vlastně OWF schovávají? Třeba subset-sum vrací n^2 bitů \overline{x} . Pro f jednosměrnou a g(x,y)=(x,f(y)) kde |x|=|y| je funkce g také jednosměrná, ale vrací polovinu vstupu.

Příště ukážeme, že existence OWF implikuje existenci PRG, kde myšlenkou bude hardcore bit.