Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

	(МГТУ и	м. Н.Э. Баумана)		
			УТВЕРЖДАЮ	
		Заведую	щий кафедрой <u>ИУ6</u>	
			А.В. Пролетарский	
		«	.»2020 г.	
	С ИСПОЛЬЗОВАН	ОДЕЛИРОВАНИЯ I ПИЕМ ЦИФРОВЫХ ческое задание	ИСКУССТВЕННОЙ АВТОМАТОВ	
	Ī	Іистов 10		
	,	includ to		
Студент			В.Д. Шульман	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Руководитель			_ О.Ю. Ерёмин	
		(Подпись, дата)	(И.О. Фамилия)	

1 ВВЕДЕНИЕ

Настоящее техническое задание распространяется на разработку программной системы «Программная система моделирования искусственной жизни с использованием цифровых автоматов», создаваемой для моделирования самоорганизующихся систем с использованием генетического алгоритма.

Актуальность программной системы обусловлена тем, что на данный момент весьма сильно стали популярны решения задач с использованием генетических алгоритмов и машинного обучения, которые позволяют решать задачи класса NP (недетерминированные полиномиальные). Оптимизация решения задач, не решаемые в виде какого-либо детерминированного алгоритма является одним из наиболее популярных направлений математики, информатики, криптографии и теории алгоритмов. Использование генетических алгоритмов позволяет избегать ситуации, когда решение задач требует экспоненциальное время работы в случае использования классических детерминированных алгоритмов.

Программная система позволяет моделировать эволюционирующие самоорганизующиеся системы на подобие биологических систем, запуская сеансы моделирования с различными параметрами, задавать критерии эффективности, отбора, формировать выходной поток данных для анализа результатов моделирования. Данная программная система ориентирована на пользователей, которые обладают общими знаниями в информатике, математике и программировании и имеющие представления о генетических алгоритмах и принципах имитационного моделирования.

2 ОСНОВАНИЯ ДЛЯ РАЗРАБОТКИ

Основанием для разработки программы является учебный план кафедры ИУ6 «Компьютерные системы и сети» факультета ИУ «Информатика и системы управления» МГТУ им. Баумана, утверждённого в установленном порядке.

3 НАЗНАЧЕНИЕ РАЗРАБОТКИ

Основным эксплуатационным назначением программной системы является представление пользователям сервиса для осуществления имитационного моделирования систем искусственной жизни с помощью задания множества параметров и получения результатов моделирование с помощью выходного потока данных, представленного в графическом формате (таблицы, гистограммы, графики и т.д.)

4 ИСХОДНЫЕ ДАННЫЕ, ЦЕЛИ И ЗАДАЧИ

- 4.1 Исходные данные
- 4.1.1 Исходными данными для разработки являются следующие материалы:
- 4.1.1.1 Перечень работ, содержащих исходные данные для разработки
- Эволюция и искусственная жизнь. https://www.computer-museum.ru/histsoft/alife.htm;
- Космики: моделирование эволюции многоклеточных организмов. Отчет за 7 лет. https://habr.com/ru/post/458612;
- Практика реализации генетических алгоритмов.
 https://www.youtube.com/watch?v=OMkCWX5NihA и
 https://www.youtube.com/watch?v=S1ADSNWyKwQ;
- Создание «искусственной жизни» на компьютере. https://www.pvsm.ru/programmirovanie/287532;
 - Эволюционирующие клеточные автоматы. https://habr.com/ru/post/455958/;
- Симуляции колонии растений в замкнутой среде https://vk.com/@evgbarish-istoriya-o-simulyacii-kolonii-rastenii-s-pechalnoi-razvyazko;
- Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмы / Под ред. В. М. Курейчика. 2-е изд., исправл. и доп. М.: ФИЗМАТЛИТ, 2010. 368 с.
 - Атлас клеточных автоматов Стивена Вольфрама. http://atlas.wolfram.com;

• Primer. Научный популяризатор эволюционных процессов и теории игр. https://www.patreon.com/primerlearning.

4.1.1.2 Перечень прототипов

- CyberBiology. Симулятор жизни на компьютере, представляющие из себя десктоп приложение, написанное на языке программирования Java. https://github.com/CyberBiology/CyberBiology;
- Программа Генезис проекта Кибербиология задумана для исследования образования и эволюции видов в условиях разделенных ареалов обитания. https://github.com/CyberBiology/Genesis;
- Construct. Нативный симулятор эволюции цифровых организмов на основе JavaScript/ES6. Он используется для изучения эволюционной биологии самовоспроизводящихся и эволюционирующих компьютерных программ (цифровых организмов). https://github.com/tmptrash/construct;
- Areal. Программа для симуляции роста и размножения одноклеточных растения в замкнутой среде. Статья https://vk.com/@evgbarish-istoriya-o-simulyacii-kolonii-rastenii-s-pechalnoi-razvyazko, сам проект https://yadi.sk/d/d0ZHqghsFVaM4w;
- CellLife. Небольшая программа, симулирующая эволюцию клеток, написанная на языке программирования C#. https://github.com/Elco-/CellLife.
 - 4.1.1.3 Техническое задание на выпускную квалификационную работу бакалавра
 - 4.1.1.4 Курсовая научно-исследовательская работа студента (КНИРС)
 - 4.2 Цель работы

Целью работы является прототип программной системы моделирования искусственной жизни с использованием цифровых автоматов для моделирования эволюционных процессов.

- 4.3 Решаемые задачи
- 4.3.1 Выбор модели жизненного цикла, архитектуры, подхода к разработке, технологии, методов, стандартов и средств разработки программной системы
- 4.3.2 Анализ требований технического задания с точки зрения выбранной технологии и уточнение требований к программной системе: техническим средствам, внешним интерфейсам.
- 4.3.3 Исследование предметной области выбор моделей, описывающих предметную область, выбор генетического алгоритма и метода селекции.
- 4.3.4 Определение архитектуры программной системы: разработка ее структуры, определение набора необходимого оборудования, программного обеспечения и процессов обслуживания.
- 4.3.5 Анализ требований технического задания и разработка архитектуры программного обеспечения.
- 4.3.6 Разработка структуры программного обеспечения и определение программных компонентов системы.
- 4.3.7 Проектирование компонентов программного продукта: frontend-приложение, backend-сервер, база данных.
 - 4.3.8 Обеспечение модульности и масштабируемости программной системы.
- 4.3.9 Реализация компонентов программной системы с использованием выбранных средств разработки.
- 4.3.10 Сборка программного обеспечения и проверка корректности взаимодействия между его компонентами.
- 4.3.11 Разработка методологии функционального тестирования, модульного тестирования и UX тестирования программной системы.

5 ТРЕБОВАНИЯ К ПРОГРАММНОЙ СИСТЕМЕ

- 5.1 Требования к функциональным характеристикам
- 5.1.1 Выполняемые функции
- 5.1.1.1 Для пользователя:
- Регистрация;
- Авторизация;
- Редактирование профиля;
- Создание и настройка нового сеанса моделирования;
- Запуск сеанса моделирования;
- Остановка сеанса моделирования;
- Возобновление сеанса моделирования;
- Завершение сеанса моделирования;
- Просмотр текущего состояния сеанса моделирования;
- Просмотр результатов завершенного сеанса моделирования;
- Просмотр списка сеансов моделирования.
- 5.2 Требования к надежности
- 5.2.1 Предусмотреть контроль вводимой информации.
- 5.2.2 Предусмотреть защиту от некорректных действий пользователя.
- 5.2.3 Предусмотреть защиту от взлома учетной записи или несанкционированного доступа к данным пользователей системы.
 - 5.2.4 Обеспечить целостность информации в базе данных.
 - 5.2.5 Предусмотреть восстановления системы в случае сбоя
 - 5.3 Условия эксплуатации
 - 5.3.1 Условия эксплуатации в соответствие с СанПиН 2.2.2/2.4.1340-03.

- 5.4 Требования к составу и параметрам технических средств
- 5.4.1 Программное обеспечение должно функционировать на кластере из IBMсовместимых компьютеров.
- 5.4.2 Минимальная конфигурация для каждого технического средства, входящего в состав кластера:
 - 5.4.2.1 Тип процессора Intel Core.

 - 5.5 Требования к информационной и программной совместимости
- 5.5.1 Программное обеспечение должно работать под управлением операционных систем семейства WIN64 (Windows 7, Windows 8, Windows 8.1, Windows 10) и операционных системах семейства Linux.
- 5.5.2 Входные данные должны быть представлены в следующем формате: текст, выбираемый из выпадающего списка, вводимый пользователем текст, контекстный выбор.
 Программа работает с кодировкой ANSI.
- 5.5.3 Результаты должны быть представлены в следующем формате: таблицы, списки, текст, графики.
- 5.5.4 Программное обеспечение должно поддерживать сетевые протоколы HTTP и GRPC для осуществления обмена данными между компонентами программной системы.
 - 5.6 Требования к маркировке и упаковке

Требования к маркировке и упаковке не предъявляются.

5.7 Требования к транспортированию и хранению

Требования к транспортировке и хранению не предъявляются.

5.8 Специальные требования

Специальные требования не предъявляются.

6 ТРЕБОВАНИЯ К ПРОГРАММНОЙ ДОКУМЕНТАЦИИ

- 6.1 Разрабатываемые программные модули должны быть самодокументированы, т.е. тексты программ должны содержать все необходимые комментарии.
- 6.2 Разрабатываемое программное обеспечение должно включать справочную систему.
 - 6.3 В состав сопровождающей документации должны входить:
- 6.3.1 Расчетно-пояснительная записка на 65-75 листах формата A4 (без приложений).
 - 6.3.2 Техническое задание (Приложение А).
 - 6.3.3 Руководство пользователя (Приложение Б).
- 6.3.4 Исходный текст кода и конфигурационных файлов компонентов программной системы (Приложение В).
- 6.4 Графическая часть должна быть выполнена на 6 листах формата A1 (Приложение Γ):
 - 6.4.1 Концептуальная модель предметной области.
 - 6.4.2 Схема структурная программной системы.
 - 6.4.3 Диаграмма вариантов использования программной системы.
 - 6.4.4 Граф состояний интерфейса.
 - 6.4.5 Даталогическая схема базы данных программной системы.
 - 6.4.6 Диаграмма размещения программных компонентов системы.

7 ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

Выполнить технико-экономическое обоснование разработки.

8. СТАДИИ И ЭТАПЫ РАЗРАБОТКИ

№	Название этапа	Срок,	Отчетность
		даты, %	
1.	Разработка технического зада-	2.02.2020 -	Утвержденное техниче-
	ния	29.02.2020	ское задание и задание на
		5 %	выпускную квалификацион-
			ную работу
2.	Анализ требований и уточнение	01.03.2020-	Спецификации про-
	спецификаций (эскизный проект)	12.03.2020	граммного обеспечения.
		8 %	
3.	Проектирование структуры про-	13.03.2020-	Схема структурная си-
	граммного обеспечения, проектиро-	02.04.2020	стемы и спецификации ком-
	вание компонентов (технический	35 %	понентов. Проектная доку-
	проект)		ментация: схемы, диаграммы
			и т.п.
4.	Реализация компонентов и авто-	13.03.2020-	Тексты программных
	номное тестирование компонентов.	18.04.2020	компонентов.
	Сборка и комплексное тестиро-	50 %	Тесты, результаты тести-
	вание.		рования.
	Оценочное тестирование и рабо-		
	чий проект.		
	D	10.04.2020	D
5.	Разработка документации.	18.04.2020-	Расчетно-пояс-нитель-
		25.05.2020	ная записка.
		80 %	

№	Название этапа	Срок,	Отчетность
		даты, %	
6.	Прохождение нормоконтроля,	25.05.2020-	Иллюстративный мате-
	проверка на антиплагиат, получение	7.06.2020	риал, доклад, рецензия,
	рецензии, подготовка доклада и	90 %	справки о нормоконтроле и
	предзащита.		проценте плагиата.
7.	Защита выпускной квалификаци-	8.06.2020-	
	онной работы.	04.07.2020	
		100 %	

9 ПОРЯДОК КОНТРОЛЯ И ПРИЕМКИ

9.1 Порядок контроля

Контроль выполнения осуществляется руководителем еженедельно.

9.2 Порядок защиты

Защита осуществляется перед государственной экзаменационной комиссией (ГЭК).

9.3 Срок защиты

Срок защиты определяется в соответствии с планом заседаний ГЭК.

10 ПРИМЕЧАНИЕ

В процессе выполнения работы возможно уточнение отдельных требований технического задания по взаимному согласованию руководителя и исполнителя.