Corrigé du partiel

mercredi 5 avril

1 Ensembles et applications

Solution de l'exercice 1.

Les réponses sont dans le cours.

Solution de l'exercice 2.

1. Supposons que $A \cup B = B$. Montrons que $A \subseteq B$. Soit $a \in A$. Dans ce cas, on a $a \in A \cup B = B$ donc $a \in B$.

2. Supposons que $A \cap B = B$. Montrons que $B \subseteq A$. Soit $b \in B$. Dans ce cas, on a $b \in B = A \cap B$ donc $b \in A$.

Solution de l'exercice 3.

Exercice 3 de la feuille de TD 1.

Solution de l'exercice 4.

1. Montrons que s est injective. Soit $n \in \mathbb{N}$ et $n' \in \mathbb{N}$ tels que s(n) = s(n'). Alors, n+1=n'+1, donc n=n'. On a donc bien l'injectivité de s.

2. La fonction s n'est pas surjective. Supposons que 0 ait un antécédent. Alors il existe $n \in \mathbb{N}$ tel que 0 = s(n) = n + 1. Donc n = -1, absurde.

3.(a) On peut considérer l'application suivante :

$$\begin{array}{ccc}
\mathbb{N} & \to & \mathbb{N} \\
n & \mapsto & n
\end{array}$$

3.(b) On peut considérer l'application suivante :

$$\begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array}$$

3.(c) On peut considérer l'application suivante :

$$\begin{array}{ccc}
\mathbb{N} & \to & \mathbb{N} \\
n & \mapsto & \begin{cases}
n-1 & si \ n \neq 0, \\
0 & si \ n = 0.
\end{array}$$

3.(d) On peut considérer l'application suivante :

$$\begin{array}{ccc} \mathbb{N} & \rightarrow & \mathbb{N} \\ \\ n & \mapsto & \begin{cases} 1 & si \ n = 0, \\ 0 & si \ n = 1, \\ n & si \ n > 1. \end{cases}$$

3.(e) On peut considérer l'application suivante :

Solution de l'exercice 5.

Exercice 5 de la feuille de TD 1.

Solution de l'exercice 6.

- 1. On a $g^{-1}(\{5,6\}) = \{1,2,3\}.$
- **2.(a)** Supposons $A \subseteq B$. Montrons que $f^{-1}(A) \subseteq f^{-1}(B)$. Soit $x \in f^{-1}(A)$. Par définition, $f(x) \in A$. Comme $A \subseteq B$, on a que $f(x) \in B$. Par définition, on a donc bien que $x \in f^{-1}(B)$.
- **2.(b)** Procédons par double inclusion. Soit $x \in f^{-1}(A \cup B)$. Alors $f(x) \in A \cup B$ donc $f(x) \in A$ ou $f(x) \in B$. Si $f(x) \in A$, alors $x \in f^{-1}(A)$ par définition et si $f(x) \in B$ alors $x \in f^{-1}(B)$ par définition. Dans tous les cas, on a bien $x \in f^{-1}(A) \cup f^{-1}(B)$. Soit maintenant $x \in f^{-1}(A) \cup f^{-1}(B)$. Alors $f(x) \in A$ ou $f(x) \in B$. Donc $f(x) \in A \cup B$ et $x \in f^{-1}(A \cup B)$.
- **2.(c)** Procédons par double inclusion. Soit $x \in X \setminus f^{-1}(A)$. Alors $x \notin f^{-1}(A)$, i.e. $f(x) \notin A$, i.e. $f(x) \in Y \setminus A$, i.e. $x \in f^{-1}(Y \setminus A)$. Soit $x \in f^{-1}(Y \setminus A)$. De même, on a $f(x) \notin A$ donc $x \notin f^{-1}(A)$, i.e. $x \in X \setminus f^{-1}(A)$.
- **3.** Montrons que f est injective. Soit $x \in X$ et $x' \in X$ tel que f(x) = f(x'). En posant y = f(x) on a que $f(x) \in \{y\}$ et $f(x') = f(x) \in \{y\}$. Donc $x \in f^{-1}(\{y\})$ et $x' \in f^{-1}(\{y\})$. Comme l'ensemble $f^{-1}(\{y\})$ ne contient au plus qu'un seul élément, on a x = x'.
- **4.(a).i** L'application ϕ est injective si pour tout $A \in \mathcal{P}(X)$ et $A' \in \mathcal{P}(X)$ tels que $A \neq A'$, on a $\phi(A) \neq \phi(A')$, i.e. $f^{-1}(A) \neq f^{-1}(A')$.
- **4.(a).ii** Autrement dit, l'application ϕ est injective si pour tout $A \in \mathcal{P}(X)$ et $A' \in \mathcal{P}(X)$ tels que $f^{-1}(A) = f^{-1}(A')$, on A = A'.

2

- **4.(a).iii** Soient $A \in \mathcal{P}(X)$ et $A' \in \mathcal{P}(X)$ tels que $f^{-1}(A) = f^{-1}(A')$. Montrons que A = A'. Procédons par double-inclusion. Soit $y \in A$. Comme f est surjective, il existe $x \in X$ tel que y = f(x). Dans ce cas, $f(x) = y \in A$ donc $x \in f^{-1}(A)$. Comme $f^{-1}(A) = f^{-1}(A')$, on a aussi que $x \in f^{-1}(A')$, i.e. $f(x) \in A'$. Donc $y = f(x) \in A'$. L'autre inclusion est symétrique.
- **4.(b).i** L'application ϕ est surjective si pour tout $B \in \mathcal{P}(X)$, il existe $A \in \mathcal{P}(Y)$ tel que $\phi(A) = B$, i.e. $f^{-1}(A) = B$.
- **4.(b).ii** Montrons que $\phi(A) = B$, i.e. $f^{-1}(A) = B$. Procédons par double-inclusion. Soit $x \in B$. Montrons que $x \in f^{-1}(A)$, i.e. $f(x) \in A$. En posant y = f(x), on a bien l'existence de $x \in B$ tel que f(x) = y, i.e. $y \in A$ par définition de A. Donc $f(x) \in A$ et $x \in f^{-1}(A)$. Soit maintenant $x \in f^{-1}(A)$. Montrons que $x \in B$. Alors $f(x) \in A$. En posant y = f(x), on a $y \in A$ donc il existe $x' \in B$ tel que y = f(x'). On a alors f(x) = y = f(x'). Comme f est injective, ceci implique x = x'. Comme $x' \in B$, on a aussi $x \in B$.
- **4.(b).iii** Soit $B \in \mathcal{P}(X)$. On pose A comme dans la question précédente. On a alors que $\phi(A) = B$ par la question précédente. On a donc bien montré que pour tout $B \in \mathcal{P}(X)$, il existe $A \in \mathcal{P}(Y)$ tel que $\phi(A) = B$, i.e. ϕ est surjective.

Solution de l'exercice 7.

- **1.(a).i** Pour tous $X \in \mathcal{P}(E)$ et $X' \in \mathcal{P}(E)$ tels que $X \neq X'$, on a $f(X) \neq f(X')$, i.e., $A \cap X \neq A \cap X'$.
- **1.(a).ii** Pour tous $X \in \mathcal{P}(E)$ et $X' \in \mathcal{P}(E)$ tels que f(X) = f(X'), on a X = X'.
- **1.(a).iii** Soient $X \in \mathcal{P}(E)$ et $X' \in \mathcal{P}(E)$ tels que f(X) = f(X'), i.e., $A \cap X = A \cap X'$. Montrons que X = X'. On a supposé que A = E, donc $X = E \cap X = A \cap X = A \cap X' = E \cap X' = X'$.
- **1.(a).iv** La fonction f est surjective si pour tout $Y \in \mathcal{P}(E)$, il existe $X \in \mathcal{P}(E)$ telle que $Y = f(X, i.e., telle que <math>Y = A \cap X$. Soit $Y \in \mathcal{P}(E)$. On pose X = Y. On a alors $f(X) = A \cap X = E \cap X = X = Y$. D'où la surjectivité de f.
- **1.(b)** Montrons que f n'est pas injective. On pose $X = \emptyset$ et $X' = \{e\}$. Alors $f(X') = A \cap \{e\} = \emptyset$ car $e \ni A$. De plus, $f(X) = A \cap \emptyset = \emptyset$. D'où f(X) = f(X'). Mais $X \ne X'$, donc f n'est pas injective.
- Montrons que f n'est pas surjective. On pose $Y = \{e\}$. Supposons qu'il existe $X \in \mathcal{P}(E)$ tel que $Y = f(X) = A \cap X$. On aurait $e \in Y = A \cap X$ donc $e \in A$, absurde.
- **2.(a)** Similaire à la question 1.(a).

2.(b) On suppose $A \neq \emptyset$. Dans ce cas, il existe un élément $e \in A$. Montrons que g n'est pas injective. On pose $X = \emptyset$ et $X' = \{e\}$. On a encore f(X) = f(X'), mais $X \neq X'$. Donc g n'est pas injective.

Montrons que g n'est pas surjective. On pose $Y = \emptyset$. Alors, pour tout $X \in \mathcal{P}(E)$, l'ensemble $g(X) = X \cup A$ contient e, donc est non vide. En particulier, on a pas Y = g(X). Donc Y n'a pas d'antécédent par g et la fonction g n'est donc pas surjective.

Solution de l'exercice 8.

1. Supposons que f est surjective. Montrons que f est injective. Soient $x \in E$ et $x' \in E$ tels que f(x) = f(x'). Comme f est surjective, il existe $t \in E$ tel que x = f(t). De même, il existe $t' \in E$ tel que x' = f(t'). En répétant l'opération, on montre qu'il existe $u \in E$ et $u' \in E$ tels que t = f(u) et t' = f(u'). En répétant encore l'opération, on montre qu'il existe $v \in E$ et $v' \in E$ tels que u = f(v) et u' = f(v'). On a alors:

$$t = f(u) = f(f(f(u))) = f(f(t)) = f(x) = f(x') = f(f(t')) = f(f(f(u'))) = f(u') = t'.$$

Comme t = t', on a f(t) = f(t'), c'est-à-dire x = x'. D'où l'injectivité de f.

2. Supposons que f soit injective. Montrons que f est surjective. Soit $y \in E$. On peut alors calculer f(y) = f(f(f(y))). On pose x = f(y), de sorte que f(y) = f(f(x)). Comme f est injective, on a y = f(x). On a donc bien montré que pour tout $y \in E$, il existe $x \in E$ tel que y = f(x).

Solution de l'exercice 9.

- **1.** Supposons que f est injective. Procédons par double inclusion. Montrons que $f(A \cap B) \subseteq f(A) \cap f(B)$. Soit $y \in f(A \cap B)$. Il existe $x \in A \cap B$ tel que y = f(x). On a que $x \in A$ et $x \in B$. Comme alors $x \in A$ et y = f(x), c'est que $y \in f(A)$. Comme aussi $x \in B$ et y = f(x), c'est que $y \in f(B)$. On a donc que $y \in f(A)$ et $y \in f(B)$, i.e. $x \in f(A) \cap f(B)$. Montrons que $f(A) \cap f(B) \subseteq f(A \cap B)$. Soit $y \in f(A) \cap f(B)$. Comme $x \in f(A)$, il existe $a \in A$ tel que y = f(a). De plus, comme $x \in f(B)$, il existe $b \in B$ tel que y = f(b). Ainsi, y = f(a) = f(b). Comme f est injective, on a donc que $f(A) \cap f(B) \cap f(B)$. Ainsi, on a bien montré qu'il existe $f(A) \cap f(B) \cap f(B) \cap f(B)$.
- **2.** Montrons que f est injective. Soit $x \in X$ et $x' \in X$ tels que $x \neq x'$. On pose $A = \{x\}$ et $B = \{x'\}$, de sorte que $A \cap B = \emptyset$. On a alors que $f(A) = \{f(x)\}$ et $f(B) = \{f(x')\}$. De plus, on a par hypothèse que $f(A) \cap f(B) = f(A \cap B)$ donc $\{f(x)\} \cap \{f(x')\} = f(\emptyset) = \emptyset$. Donc $f(x) \neq f(x')$. On a bien montré l'injectivité de f.