Week 8

Agenda

- 1. Project 4 check-in
- 2. NN recap
- 3. Convolutional Networks
- 4. Breakout

Example Trained Neural Network

- 1. What are the parameters in this NN?
- 2. Is this a sparse or dense NN?
- 3. Advantages/disadvantages of sparse vs dense NN?
- 4. How can we think about this network as an ensemble/stacked model?
- 5. How can we think about this network as a series of matrix operations?

Error: 0.054446 Steps: 12122

Intuition: Forward Propagation

- Given a training example (X_1, X_2) and output Y_i
- · Propagate inputs/activations forward, applying sigmoid function on dot products

Neural Network Recap

- 1. What happens in forward propagation?
- 2. What happens in backpropagation?
- 3. What are the benefits of SGD and Mini-batches?

Intuition: Backward Propagation (cont.)

Propagate costs backward to earlier nodes:

Computer Vision (CV)

Conferences

- CV is discussed at most ML and Al conferences
- CVPR is main CV conference

Datasets

- MNIST -- 60,000 images
- SVHN (http://ufldl.stanford.edu/housenumbers/) -- 600,000 images
- ImageNet (http://image-net.org/about-stats) -- 14M images,
 1TB, mapped to WordNet, includes features and hand labels

Feature Engineering

- A major focus of field
- SIFT: 1999, patented by BC.
- Also SURF, GIST, HOG

Engineering Examples

- Common in CV
- Do things that maintain label: Rotate, translate, skew, scale, etc

Ever cleverer

Error rates on ImageNet Visual Recognition Challenge, %

Sources: ImageNet; Stanford Vision Lab

Deep (Feature/Representation) Learning

- Move away from feature engineering (still some and some Architectural design)
- Today learned features generally outperform
- Learn similar gradient based features at early layers

conomict com

Toothbrush

Small brush; has long handle; used to clean teeth

1974 pictures 62.34% Popularity Percentile

Convolution Nets

About

- Yann LeCun. LeNet: http://yann.lecun.com/exdb/lenet/ (1989-1998)
- Inspired by Visual Cortex in cats (receptive fields)
- Designed with image recognition in mind--input and layers often shown as 2D or 3D which may look odd coming from 1D.
- Composition of layers. Rightmost feature layers are most similar to output in representation
- Feature learning layers are of different types: (1) convolution and (2) pooling
- AlexNet 2012 (with Hinton) (picture)
- (https://papers.nips.cc/paper/4824-imagene t-classification-with-deep-convolutional-neu ral-networks.pdf)

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	1000	
9		
3	5 8	

Image

Convolved Feature

gif source:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Visualization	of the	filter on	the	image
---------------	--------	-----------	-----	-------

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

Pixel representation of receptive field

Pixel representation of filter

Breakout

- 1. What is a kernel? How does convolution work? http://setosa.io/ev/image-kernels/
- Explain Pooling: what does it do? https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
- 3. What is flattening? What does the fully connected part do?

Transfer Learning

- Train on one task, and use trained network or part of trained network when training for a different task
- Model Zoo (e.g. http://caffe.berkeleyvision.org/model_ zoo.html)
- https://www.kaggle.com/c/state-farm-distracted-driver-detection/forums/t/20
 141/official-pre-trained-models-and-external-data-thread/116805