IN THE UNITED STATES PATENT AND TRADEMARK OFFICE WASHINGTON, D.C. 20231

DECLARATION SUPPORTING INTERFERENCE

Re: Application of Darrell G. Meyer

Serial No.: Divisional of 09/890514

Filed: October 12, 2001

Titled: Weight Bearing Systems And Methods Relating To Same

I, the undersigned, Darrell G. Meyer, hereby declare as follows:

- 1. I am the applicant in the concurrently filed divisional application.
- 2. I have been involved in the construction industry since 1961 and have experience with much weight, bearing systems. I have been a California subcontractor and general contractor. I have designed and constructed many types of buildings, both wood frame and steel frame. I have designed machines, framing tables, roof truss assembly fixtures and framing jigs for the steel frame industry.
- I invented the subject matter of the claims of said divisional application at least as early as March 27, 1996. which is prior to February 4, 1998, the filing date of the application that matured into U.S. Patent No. 6131362, issued October 17, 2000.
- 4. As set forth hereinbelow, I was not convinced that my inventive designs would be satisfactory for their intended purpose until about January 1999, shortly after which I filed my own patent application. During that entire intervening period I was building prototypes, testing the prototypes, and improving the design.
 Adequate testing was thought to be especially critical in this field for safety

reasons. Errors in estimating load strength could result in significant loss of property, and even loss of life.

Rectangular Channel Design

- 5. In early 1995 I began focusing on problems relating to metal floor joists (trusses). In particular, I wanted to invent a metal floor joist that would reduce the failure rate and squeaks associated with screw construction. My original idea was to provide a metal floor joist made from three separate sheets of steel, having two channels connected by a web, and held together by welds as opposed to screws. At that time I thought the channels would be "U" shaped or rectangular.
- On or about March 25, 1995 I prepared a drawing of my conception, a true and correct copy of which is appended hereto as Exhibit 1.
- In October 1995 I contacted D. Kingston Cable about a possible joint development project for a metal floor joist having "U" shaped or rectangular channels.
- 8. On October 27, 1995 I prepared and sent a draft non-disclosure/non-competition agreement to Allan MacQuiod, CEO of D. Kingston Cable, regarding a possible U shaped channel design. At this stage I was referring to my company as Trussteel. A true and correct copy of the draft agreement is appended hereto as Exhibit 2.
- On or about November 6, 1995 I prepared a cash flow projection for Kingston
 Cable, and sent the same to D. Kingston Cable with drawings. A true and correct
 copy of the cash flow projection and drawings is appended hereto as Exhibit 3.
- On or about December 12, 1995, I prepared additional drawings related to the rectangular channel floor joists, a true and correct copy of which is appended hereto as Exhibit 4.

- On or about December 13, 1995, I prepared additional drawings related to the rectangular channel floor joists, and faxed same to "Saeed" and "Wei", employees at the consulting firm of Gouvis Engineering, in Newport Beach, CA ("Gouvis Engineering"). (See Exhibit A). A true and correct copy of the fax is appended berreto as Exhibit 5.
- 12. On or about December 20, 1995, I negotiated a joint development agreement with persons at Gouvis Engineering, related to my floor joists. Under the agreement Gouvis Engineering was to provide engineering calculations on the properties of my joist designs. A true and correct copy of the executed agreement (with appended drawings) is appended hereto as Exhibit 6.
- 13. On or about December 27, 1995, I prepared and sent an additional drawing related to the rectangular channel floor joists, and sent same to persons at Wei at Gouvis Engineering. A true and correct copy of the additional drawing is appended hereto as Exhibit 7.
- 14. During January or February 1996, I contacted Don Moody, an employee at Western Metal Lath & Steel Framing Systems, Riverside, CA ("Western Metal") about a possible joint development agreement for the rectangular channel floor joists. Mr. Moody responded that he wanted to see cost estimates and information on competitive products.
- 15. On or about February 14, 1996 I prepared a costs estimate for the rectangular channel floor joists, and met with Mr. Moody to discuss same. A true and correct copy of the costs estimate is appended hereto as Exhibit 8.
- On or about February 16, 1996 I sent a letter to Mr. Moody confirming our meeting, and offering to provide Mr. Moody with results of the Gouvis Engineering. A true and correct copy of the letter is appended hereto as Exhibit 9.

- Shortly after February 16, 1996 I received from Mr. Moody a letter confirming the interest of Western Metal in the rectangular channel floor joists. A true and correct copy of the costs estimate is appended hereto as Exhibit 10.
- On or about February 22, 1996 I searched for competitive information on metal joists, and prepared notes documenting that search. A true and correct copy of my notes is appended hereto as Exhibit 11.
- On or about February 29, 1996 I received a fax from Gouvis Engineering that contained preliminary engineering strength projections for several of my designs.
 A true and correct copy of the fax is appended hereto as Exhibit 12.
- On or about March 8, 1996, I made preliminary calculations of strengths of additional designs. A true and correct copy of my calculations is appended hereto as Exhibit 13.
- On or about March 12, 1996 I received another fax from Gouvis Engineering, which contained additional engineering strength projections for several of my designs. A true and correct copy of the fax is appended hereto as Exhibit 14.
- On or about March 26, 1996 I developed a plan for a company that would develop
 my metal joist designs. A true and correct copy of the plan is appended hereto as
 Exhibit 15.

Five-Sided Channel Design

 On or about March 27, 1996 I conceived of a new metal joist idea that would include five-sided channels, as claimed in the concurrently filed application.
 A true and correct copy of a drawing of the new idea is appended hereto as Exhibit 16.

- On or about March 29, 1996 I sent to Gouvis Engineering a copy of drawings containing the new idea with five-sided channels. A true and correct copy of the drawing with notes is appended hereto as Exhibit 17.
- 25. As of late March 1996 I thought the new idea for five-sided channels would likely worth patenting if: (a) I could adequately build and test a prototype; (b) the prototype would show sufficient strength; and (c) I could figure out a design that could be produced commercially at a satisfactory cost. In the absence of testing, however, I was not at all sure that the contemplated device would work sufficiently for its intended purpose.
- 26. On or about March 23, 1996 I informed Mr. Don Moody about the new idea with five-sided channels. On or about April 3, 1996 I prepared a draft Letter of Intent between myself and Mr. Moody for joint testing and possible licensing. A true and correct copy of the draft with notes is appended hereto as Exhibit 18.
- 27. Shortly after April 23, 1996 I received a letter from Mr. Don Moody confirming that Western Metal was interested in mutually developing and marketing a floor joist, provided a product could be satisfactorily developed and tested. A true and correct copy of the draft with notes is appended hereto as Exhibit 19.

First Prototype and Testing

- 28. In May 1996 I contacted Lane and Roderick, Inc., to construct an early prototype of a floor joist having five-sided channels. Shortly after May 14, 1996 I received a quote for same from Lane & Roderick, a true and correct copy of which is appended hereto as Exhibit 20.
- On or about June 3, 1996 the first three prototype joists (trusses) were completed by Lane Roderick and shipped to me. A true and correct copy of the packing slip

- is appended hereto as Exhibit 21. The prototype joists were resistance spot welded at Janco Engineering, Corona, California.
- On or about June 6, 1996, Western Metal wrote a check that paid for the Lane & Roderick services. A true and correct copy of the check is appended hereto as Exhibit 22.
- Shortly after June 14, 1996, I received a letter from R. F. Tucker, confirming that Radco Certification of Long Beach, California, would test the early prototypes. A true and correct copy of the letter is appended hereto as Exhibit 23.
- On or about June 18, 1996, I sent a letter to Mr. Don Moody at Western Metal confirming arrangements for conducting the preliminary test. A true and correct copy of the letter is appended hereto as Exhibit 24.
- 33. On or about July 3, 1996, the first set of preliminary tests was performed by Radco Certification. The set up consisted of 3-20 foot parallel joists covered with plywood and loaded progressively with lead weight to determine deflection and ultimate failure. Failure occurred at single layer of center section at transition from pentagonal chord to folded flanges on diagonal web. Testing was observed by Mr. Don Moody, Mr. Nick Gouvis, Radco staff, and myself. A true and correct copy of the preliminary test results is appended hereto as Exhibit 25. A true and correct copy of a photograph taken during the testing process, and including Mr. Don Moody and Mr. Nick Gouvis, is appended hereto as Exhibit 25.
- 34. Gouvis Engineering reviewed the preliminary test results, and later in July 1996 Gouvis Engineering provided me with handwritten analysis of the preliminary test results performed earlier in the month. A true and correct copy of the handwritten analysis is appended hereto as Exhibit 26.

Product Not Deemed Satisfactory For Its Intended Purpose

- 35. In July 1996, my reading of the preliminary results and analysis was that the basic idea of floor joists with five-sided channels could be made satisfactory, but only if I could figure out a design that (a) would strengthen the web between the channels, and (b) could be produced commercially at a satisfactory cost. Among other things, I contemplated that a spot welded design would be too slow to be commercially feasible. I therefore set about reworking my design so that it could be produced on a line operating at a speed of at least 60 lineal feet per minute.
- In late July 1996, I contacted National Machine Exchange, Inc. to determine whether I could adapt some used equipment to provide a make-shift production line.
- On or about August 6, 1996, I received a quotation for used equipment that might
 possibly work for the make-shift production line. A true and correct copy of the
 quotation is appended hereto as Exhibit 27.
- 38. On or about August 19, 1996, I received a quotation from AL Engineering, Inc, in Santa Ana, CA for other equipment that might possibly work for the make-shift production line. By that stage I had revised the design to include multiple elongated punch outs in the web between adjacent large triangular punch outs. This design change was thought to strengthen the web, but without additional testing I could not be sure. A true and correct copy of the quotation is appended hereto as Exhibit 28.
- 39. During the period from August 1996 through December 1997, I developed numerous different designs for floor joists with five-sided channels. An example is depicted in the drawing dated August 1, 1997, having a three screw pattern.

 However, none of my designs during that period were deemed satisfactory to me for their intended purpose, because I hadn't yet established that they could be

produced on a line operating at a speed of at least 60 lineal feet per minute. A true and correct copy of the quotation is appended hereto as Exhibit 29.

Discussions With Roll-Form Manufacturers

- 40. During the Fall of 1997 I concluded that the desired production line speed of 60 lineal feet per minute could not realistically be achieved with resistance sport welding. I therefore began consulting with various roll-form manufacturers.
- On or about January 7, 1998 I received quotations from a used equipment dealer, National Machinery Exchange, Inc., of Pico Rivera, CA. True and correct copies of the quotations are attached hereto as Exhibit 30.
- On or about January 8, 1998 I received a proposal from a roll form manufacturer, American Machine & Rollform Tech, Inc. in Salem, OR. A true and correct copy of the letter is attached hereto as Exhibit 31.
- 43. On or about March 25, 1998, I sent a letter to American Machine & Roll Form inquiring about continuous roll form manufacturing equipment. By this point I has changed the name of my company from Trussteel to SteelWerks. A true and correct copy of the letter is appended hereto as Exhibit 32.
- 44. On or about April 6, 1998, I sent a letter to The Bradbury Company inquiring about continuous roll form manufacturing equipment. A true and correct copy of that letter is appended hereto as Exhibit 33.
- 45. Also on or about April 6, 1998, I sent a letter to Eckold A G in Schweiz, Switzerland, inquiring about clinch fastening equipment. A true and correct copy of that letter is appended hereto as Exhibit 34.
- Shortly after April 17, 1998, I received a quotation from Sim-Vision, regarding machinery that could possibly be used to continuously weld devices incorporating

- my then-current five-sided channel joist design. A true and correct copy of the letter is appended hereto as Exhibit 35.
- 47. On or about June 4, 1998, I conceived of a revised five-sided channel joist having clinches that could be introduced by a continuous roll machine. I sent drawings to Dan Lovelace at American Machine regarding the new idea. A true and correct copy of the drawings is appended hereto as Exhibit 36.
- 48. Shortly after July 13, 1998, I received quotations from National Machinery Exchange, Inc, Pico Rivera, CA, regarding machinery that could possibly be used to produce the revised five-sided channel joist design. True and correct copies of the quotations are appended hereto as Exhibit 37.
- On or about July 20 1998, I prepared a drawing depicting how a continuous roll
 machine could produce the revised five-sided channel joist design. A true and
 correct copy of the drawing is appended hereto as Exhibit 38.
- 50. Shortly after July 29, 1998, I received quotations from Sterling Machinery Exchange, South El Monte, CA, regarding additional machinery that could possibly be used to produce the revised five-sided channel joist design. True and correct copies of the quotations are appended hereto as Exhibit 39. True and correct copies of photographs of the contemplated Sterling machinery are appended hereto as Exhibit 39.
- During the Fall of 1998 I discussed with Mr. Don Moody and several other individuals my design to be manufactured using a continuous roll machine.

Product Deemed Satisfactory For Its Intended Purpose

 In late January 1999 I finally concluded that my design manufactured using a continuous roll machine would very likely work sufficiently for its intended

- purpose, and that additional development would only be needed to optimize the design. I therefore contacted my patent attorney in early February to file a patent application. (see below).
- I also set out to build and test prototypes of the design deemed to be sufficient for its intended purpose. USS/POSCO agreed to participate in the testing.
- 54. During March 1999 I designed and ordered fabrication of machine tooling from Master Mechanics in Stanton, California. The tooling was necessary to form flanges on the pentagonal and slotted openings in the web section of the joist design. That tooling was delivered on or about March 30, 1999.
- On or about April 8, 1999 eight 20 foot joists were fabricated by Lane and Roderick, 4 each 18 gauge and 4 each 20 gauge. Clinch Fastening of pentagonal channels was utilized.
- 56. On or about May 15, 1999, I prepared a drawing that depicted proposed tooling for my latest clinching machine, needed to commercialize the (by then) patent pending joist design. A true and correct copy of the drawing is appended hereto as Exhibit 40.
- 57. In early June 1999 my joist design prototypes were tested at NAHB Research Center, Inc, in Upper Marlboro, Maryland. The report concluded that although the "steel I joist" exceeded C shape by approximately 25% (weight of material per foot), a better connection detail for a rim track should be investigated. A true and correct copy of the test results are appended hereto as Exhibit 41.
- 58. Following receipt of the June 1999 test results, I designed a new rim band with diamond shaped stiffening ribs and tabs pre-punched at 8 inch spacing to accommodate attachment to joists for placement at 16 inch or 24 inch centers. On or about June 12, 1999 I prepared a drawing of a rim band design that could be

used with the patent pending joist design. A true and correct copy of the drawing is appended hereto as Exhibit 42.

Patent Applications

- 59. During the summer of 1996, I contemplated filing a patent application on the subject matter of my invention. To that end I searched for prior art at the patent repository at the Los Angeles public library. A true and correct copy of surviving notes from that search are attached hereto as Exhibit 43.
- 60. During the week of July 25, 1996, I disclosed the basic subject matter of my invention to a patent attorney, Robert D. Fish, and provided Mr. Fish with the originals of my prior art search notes.
- 61. Mr. Fish conducted an additional search, and told me that the invention appeared to be patentable. He then asked me if I had experimented sufficiently to believe that the invention would work satisfactorily for its intended purpose. I answered that I had not performed such experimentation, and that I was not yet sure that the invention would work satisfactorily for its intended purpose. Based on that information, and my then-current efforts to complete the needed experimentation, Mr. Fish and I agreed to hold off on filing an application until I had determined that invention would work satisfactorily for its intended purpose.
- As described hereinabove, I spent the next few years completing the needed experimentation.
- 63. On or about February 2, 1999 I again contacted Mr. Fish, and informed him that I had now completed enough experiments to believe that the invention would work satisfactorily for its intended purpose. I therefore asked Mr. Fish to file a patent application for me.

64. On or about February 5, 1999 Mr. Fish filed a provisional application on my invention, serial number 60/118952. 65. On or about March 31, 1999 Mr. Fish filed a utility application, serial no. 09/282306, claiming priority to the 60/11892 provisional application. 66. On or about February 3, 2000 Mr. Fish filed a PCT application, serial no. PCT/US00/02837, claiming priority to both the 09/282306 and 60/11892 applications. 67. On or about Jaunuary 9, 2001, the USPTO issued utility application 09/282306 as US patent no. 6170217. On or about July 31, 2001 the PCT application entered national phase in the US, as 68. serial number 09/890514. 69. A divisional of U.S. serial number of 09/890514 is now being filed in order to invoke an interference with the US 6131362 patent.

I hereby declare under the laws of United States of America that all statements made herein of my own knowledge are true and that statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Title 18, United States Code, Section 1001, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Executed at Fullerton, California, May 4, 2007.

Darrell G. Mever

Respectfully submitted,

Fish & Associates, LLP

Dated: 5 - 4 - 07

Robert D. Fish Reg. No. 33,880

Attorneys for Applicant(s) 1440 N. Harbor Blvd., Suite 706 Fullerton, CA 92835

Tel.: (714) 449-2337 Fax: (714) 449-2339

3016

800

POWER

DAPRELL G MEYER 3-25-95

AGREEMENT

TRUSSTEEL, Darrell G. Meyer 13269 Soft Cloud Way Victorville, CA 92392

RE: TRUSSTEEL Open Web Steel Floor Truss

The Undersigned hereby acknowledge the proprietary design rights of Darrell G. Meyer, Inventor, of a certain floor truss assembly incorporating resistance electric welding of "U Channnel" vertical and diagonal webs and rectangular tube members. A prototype of which was tested approximately September 20, 1995.

We will not offer for sale, license or man#facture this product or a like type product without the consent and approval of Darrell G. Meyer.

Sincerely,

ANGELES METAL SYSTEMS 4817 E. Sheila Street Los Angeles, CA 90040

TRUSSTEEL

Allan MacQuoid, C.E.O.

Darrell G. Meyer

D. Kingston Cable, Chairman

TO D. KINGSTON CABLE
REDURED TO PROCESS W TRUSSTEEL Mational * Brand 45-604 EyeEase⁶ 45-304 2 - Pack Made in USA COSH

			PROTOTYDE & TESTING/(00 DA)		
		1	DUG	NOV 6 95 D.G. MEYER	
		TOTAL	NOV	DEC	JAN
T		ППП			
	DARRELL G. MEYER	13000 -			
_	RETAINER -GOOD FAITH		6 5000-		
+	SALARY - DRAW		7000-	4000 -	
1	MCTAURON V- LOCUE CANSON	500 -	11 500 -	 	
_	METALURGY-LOELD CONSULT	100-	11 500 -	1-1-1-1-1-1	
	700 NR X S				
	WELDER-CONTROLLER	12500 -			
	BID# 11,800 + TAX		6000-		
_			//	12 6500-	
4	BRIDGE -GANTRY - FESTOONING	3000 -		$\parallel + \parallel + \parallel \perp \parallel \perp$	
	315 \$2800 +T		00 1500 -		
-	<u> </u>			10 1500 -	
+	TRUSS ASSY FIXTURE	6000 -	 	 	
-	VERBAL - ANAHEM WELT	+++++-	10 3000 -	10 3000-	
+	ROLLERS - STANDS	2000 -	10 2000-	10 3000-	
-	HYTROL- QUOTE	12000	10 1 2000		
	7,700				
	CHAIN SOUM, OF DOLLIES	4000 -	20		
_		4444	2000-		
				20 2000-	
+	INSTALL -LABOR, ELECT, AIR	3000-	I		
-+			20 2000-		1-1-11-1-1-1
-+		44000 -	 - - - 	20 1000-	
	TOTAL	77000 -	26000-		
_	Nov DEC		20000-	18000-	
T	<i>De</i> C	11111		1 7 6 6 6	
	SEG 3 MONTH STADE UP				
	FOR ADDITIONAL EXPENSES				
_		4444			
_					
4					
-			$\parallel - \parallel + \parallel \parallel \perp \parallel - \parallel - \parallel \perp \parallel \perp \parallel \perp \parallel \perp \parallel \perp \parallel \perp \parallel$		$\parallel -\parallel +\parallel +\parallel$
+		++++-		 	
+			 	#	
+					
+			 	#-+++++-	$\parallel - \parallel + $

DARRELL G. MEYER 11-14-95

FAX 714 752-5321 12-13-95 TO! SAEED AND WEI

AGREEMENT FOR PROFESSIONAL SERVICES

THIS AGREEMENT IS ENTERED INTO THIS — > 74 DAY OF 20 74 DAY OF 20 07 DAY OF 20 07 DAY OF 20 07 DAY OF 20 08 OF <a hre

WHEREAS DGM HAS INVENTED A LIGHT GAUGE STEEL SECTIONED FLOOR TRUSS SYSTEM HERINAFTER REFERRED TO AS "THE SYSTEM", AND WHEREAS DGM DESIRE TO RETAIN GE FOR THE NECESSARY STRUCTURAL ENGINEERING DESIGN RELATED TO THE INVENTION, AND WHEREAS GE WHICH HAS THE PROFESSIONAL CAPABILITY TO RENDER SAID REQUIRED ENGINEERING DESIGN SERVICES, DGM AND GE HEREBY AGREE TO THE FOLLOWING TERMS AND CONDITIONS FOR SAID PROFESSIONAL SERVICES.

RECITALS

DGM WILL RETAIN ALL PROPRIETARY DESIGN AND PATENT RIGHTS TO THE SYSTEM, AND WILL ASSUME ANY AND ALL LIABILITIES FOR ANY PATENT INFRINGEMENTS, OR ANY CLAIMS MADE BY OTHERS WHO MAY SEEK REMEDY FOR OWNERSHIP RIGHTS OF THE SYSTEM OR ANY PART THEREOF, AND WILL HOLD GE, AND ALL EMPLOYEES OF GE HARMLESS IF ANY CLAIMS ARE MADE AGAINST EITHER DGM AND/OR GE AND AND/OR ANY OF GE'S EMPLOYEES INCLUDING BUT NOT LIMITED TO COSTS FOR DEFENSE AS TO LAW SUITS INVOLVING DESIGN AND/OR PATENT RIGHTS OR CLAIMS OF PROPRIETARY OWNERSHIP BROUGHT ABOUT BY OTHERS.

GE WILL MAINTAIN ERRORS AND OMISSIONS INSURANCE COVERAGE FOR ERRORS OR OMISSIONS MADE IN THE DESIGNS BY GE BY EITHER SELF INSURING OR BY MAINTAINING A POLICY OF INSURANCE WITH A COMPANY THAT NORMALLY SELLS COVERAGE FOR SAID DESIGN ERRORS OR OMISSIONS. SAID COVERAGE WILL IN NO CASE BE LESS THAN \$250,000.00 AS AN AGGREGATE AMOUNT IN ANY ONE YEAR PERIOD.

GE AND A LIMITED NUMBER OF GE EMPLOYEES IN THE PURSUIT OF THIS AGREEMENT, HAVE KNOWLEDGE OF CERTAIN PATENTABLE IDEAS BROUGHT FORTH BY DGM, AND ALL WILL, ON A BEST EFFORTS BASIS PROTECT THIS SECRET INFORMATION FROM ANY UNRELATED ENTITIES FOR THE BENEFIT OF DGM.

DGM AND GE AGREE THAT THE DEVELOPMENT AND THE FUTURE PROMOTION OF THE SYSTEM WILL REQUIRE AN ON GOING RELATIONSHIP BETWEEN THE PARTIES ABOVE

FIRST MENTIONED AND THAT GE WILL BE COMPENSATED FOR THE NECESSARY PROFESSIONAL DESIGN SERVICES IN THE FOLLOWING MANNER.

GE WILL BE COMPENSATED ON A TIME AND MATERIAL BASIS AT A RATE OF TWICE THE NORMAL THREE TIMES CLOCK. (CLOCK IS HEREIN DEFINED AS THE HOURLY RATE PAID TO AN INDIVIDUAL EMPLOYEE OF GE.) SEE ATTACHED EXHIBIT A WHICH IS THE CURRENT GE HOURLY RATE SCHEDULE FOR THE VARIOUS GE EMPLOYEES. (THE RATES NOTED ARE TYPICALLY MODIFIED UPWARD EACH YEAR TO ACCOMMODATE FOR INFLATION, AND TO AGREE TO THIS DGM HAS INITIALED THIS LINE IN THE RIGHT HAND MARGIN.)

GE WILL BE PAID HALF OF THE THEN CURRENT STATEMENT WHEN DEVELOPMENT FUNDING BECOMES AVAILABLE, AND THE OTHER HALF WILL BE PAID WHEN THE BUSINESS HAS A CASH FLOW SOURCE FROM SALES OF THE DEVELOPED PRODUCTION TO INDUSTRY. ALSO AT THAT TIME, AND AFTER ALL PRIOR BILLING IS PAID IN FULL, GE WILL COMMENCE CHARGING FOR SERVICES AT THE NORMAL THREE TIMES CLOCK.

GE WILL KEEP ACCURATE RECORDS OF TIME AND OUT OF POCKET REIMBURSABLE CHARGES FOR ALL WORK DONE IN THE PURSUIT OF THIS AGREEMENT AND WILL RENDER MONTHLY STATEMENTS TO DGM, OR TO ENTITIES HE MAY CREATE, OR AFFILIATE WITH, IN PROMOTING, SELLING OUTRIGHT, OR OTHERWISE USE OF GE EFFORTS IN THIS MATTER.

GE WILL ON A BEST EFFORTS BASIS ASSIST IN SALES OF THE FINAL MARKETABLE SYSTEM BY OFFERING IT'S USE TO THE SEVERAL DEVELOPERS AND BUILDERS WHO ARE CURRENTLY USING THE PROFESSIONAL SERVICES OF GE. IT IS HEREBY AGREED THAT GE WILL BE PAID A FINDERS FEE COMMISSION FOR ANY AND ALL SUCCESSFUL SALES GE MAY CREATE. SAID FEE WOULD BE EQUAL TO THE STANDARD AMOUNT AS WILL BE DETERMINED BY DGM WHEN ACTUAL SALES BEGIN.

IT IS THE BELIEF OF BOTH DGM AND GE THAT THE SYSTEM, AND IT'S ULTIMATE MARKETABILITY IN THE BUILDING INDUSTRY WILL REQUIRE THE ON GOING SERVICES OF GE, AND AS AN INDUCEMENT FOR GE TO REMAIN WITH THE PROGRAM, DGM DOES HEREBY GRANT TO GE A FIVE PERCENT OWNERSHIP / PARTICIPATION OF STOCK OR INTEREST IN THE ENTERPRISE AS ORGANIZED BY DGM. THIS INCLUDES BUT IS NOT LIMITED TO A FIVE PERCENT OF THE GROSS INTEREST IN THE SALE OF THE SYSTEM TO ANOTHER BUSINESS ENTITY.

DGM WILL PROVIDE INFORMATION TO GE FROM TIME TO TIME WHICH WILL REQUIRE THE PROFESSIONAL DESIGN SERVICES BY GE, AND GE WILL PROVIDE SAID SERVICES IN A TIMELY FASHION AS REQUIRED.

TERMINATION

EITHER PARTY MAY TERMINATE THIS AGREEMENT WITHOUT CAUSE UPON WRITTEN NOTIFICATION THIRTY DAYS PRIOR TO THE DATE OF TERMINATION. ALL WORK PRODUCT BY GE WILL IMMEDIATELY CEASE AND ALL BILLING WILL BECOME DUE AND PAYABLE TO GE WITHIN THIRTY DAYS OF SAID TERMINATION. UPON TERMINATION GE WILL WAIVE THE FIVE PERCENT INTEREST IN THE DGM ENTERPRISE IF TERMINATION OCCURS PRIOR TO THE FINAL DEVELOPMENT OF THE SYSTEM AS DETERMINED BY GE.

ARBITRATION

THE STANDARD ARBITRATION RULE WILL PREVAIL IF THERE IS A DISAGREEMENT BETWEEN THE PARTIES WHO HAVE AFFIXED THEIR SIGNATURES BELOW.

ASSIGNMENT

TERMS OF THIS AGREEMENT WILL PREVAIL UPON ALL HEIRS, ASSIGNEES, OR USERS OF ANY NATURE OF THE SYSTEM.

AGREED THIS 20 TH DAY OF 2515MB6R . 1995

GOUVIS ENGINEERING

DARRELL G. MEYER 13269 SOFT CLOUD WAY VICTORVILLE, CA. 92392

(619) 955-9736

SAEED BEKAM, PRESIDENT

DAMPELL G. MOYER 1-10.96 HENDER MUSSTEEL JOIST,

2'0" x2'0" 18 GA, SHEET,

ROTH SIDES

-20"-(SCE DEMA) TRACK! | | TRAILE 160" X 7'0" 20,0". AND HOPE SPAD 2-SUMPSON SOREW -/6"+10"+

WES 2-14-96 4-10 THES 3-26-96 DON MODELY WESTERN METAL

6510 GENERAL DRIVE

800 365-5284

	-
INCOILER - BOUTSLE USED	15,000
PUNCT PRISS 75 TON USED	3000
TOOLING - DIG- A	25, 400
Por France 15 8th. 3"	40,000
FIFTH JON TOOL - PUNCH	1340
Totaling - POLL FORMER	30000
DAVE NOTOR CONTROL	10 000
FLYING FLANGE, FRAME a PONTOL	25000
TOOLING - FLANGE	30,000
STREKING & CONVEYER SYSTEM	10,000
CLT CON SHORE - CHOT SLW	10,000
	\$243,000
	· ·

Darrell G. Meyer

18 Vista Encanta San Clemente, CA 92672 (714) 631-9295

February 16, 1996

Mr. Donald R. Moody, P. E. President and CEO Western Metal Lath 6510 General Drive Riverside, CA 92509

Re: Trusteel Joist

Dear Mr. Moody,

Thank you for the opportunity to meet with you on Wednesday, February 14. I enjoyed being able to discuss my invention and contemplated methods of manufacturing the tubular steel joist.

As we discussed, this tubular, welded truss assembly functions as a structural member in many applications. In addition to floor or ceiling joists, You can use it as a header, in shear-seismic, panels in combination with headers, or as columns in multistory construction.

Gouvis Engineering of Newport Beach, CA, has generated the computer model used for the calculations provided to date. Gouvis will be furnishing tables on load bearing joist spans and shear-seismic analyses. I will arrange for joint meetings as we deem necessary.

I appreciate your assurance of confidential proprietary rights. I look forward to your thoughts on how we can turn this relationship into a mutually rewarding opportunity.

Dalley

DGM/lw

cc: Gouvis Engineering

February 16, 1996

Mr. Darrell G. Meyer TRUSSTEEL 13269 Soft Cloud Way Victorville, CA 92392

Re: Steel Floor Truss

Dear Darrell:

It was a pleasure meeting you earlier this week and we appreciate the opportunity to consider your steel floor truss idea.

We have run some very preliminary numbers and at this early stage they look encouraging. Some of the things that would help us refine the numbers are the following:

- Load Tables for the Trusses with 20 gage, 18 gage, and a combination of 20 gage and 18 gage chord members.
- · Market Prices of competing products (open web only)
- The current size of the open web floor joist market.

 The entiring and a life market are the current size of the open web floor joist market.
- The anticipated roll forming and assembly rate (feet per minute)
- Some details on end treatments (where the web spacing does not work out exactly).

We'll also try to research some of the above, but anything you can come up with would probably accelerate the process. In addition, you should be thinking of how you might want to structure the potential royalty and license agreements. I have some ideas which we can discuss when appropriate, but if your desires are significantly different I would need to consider them in assessing the overall product feasibility.

I'll call you sometime during the week of the 26th to arrange our next meeting.

Wery truly yoursa

President/CEO

THU 222

ALTINE TRUSS ALTING/UNIMET 800 755-6005

NO INTEREST IN FLOOR TRUSS

16" 23-15 RISER L 205 3.25

GUS TRUSS - WESTERN METAL 800 365-5281 CORT 3.00 RID 3.80 BOX TUBE

MITEK - DIETRICK - MURCO PELLACK

800 - 325 - 8075

ALPINE / UNIMAST ST

800 755-6005

TRI-CHORD

RETAIL \$2.25 (250-265)

619 588-2591

NTEGRA

RAY GRAGE - ENGINEER 800 472 - 4302 350 RALTERA UNYON SOITE A AMAT TOMEN BLZG, NOMPONENTS 919 428.11600 TRUSWALL, ARLINGTON TX 800 52 PERUS CAUF TRIS 909 657.7491 800 521-9790 POMOVA WO MERYHATOELA 623.2448 TUSTIN BLOR CRAING 714 573-4449

TRUSTOIST MACMILLAN TIL CORCIA 800 969-6772 MAR DAVIS 714 937-5055 14"MIN, OFEN UER, COSTON WEB PRICE # 3, 70 3. 10AD 40/10 \$0/00

751, 35 DF 117/8 DEPITH Pas 16"0/ \$ 17'7" 1.20 35 16"0/e 1,50 24 oc 14/9' THE 24 0/2 18'2" 650 QUOTELONS LAMINATED > 38"WEE WEIGH 2,2 LES/FT. 18'2" 1,50 QUOTELVISER 25/16x1/2" > D.F.

14

DON MOTE

TRI - CHORD EL TATON 619 588-2591 * CURT KIMMEY GAIL VAN AKEN, N 702 642.7548 10 L.V.

PRESS JOINT

\$1.65 PER FT. 12" DEPTH 24" O.C. 35' 18' 6"

19.2. 20' 20' BOT CHORD BEARING

24" DEPTH 90 18, 28'6" FOR CORD

ALL COSTOM MADE

TAMES TRUSS CRAIG ROAD 4 I 15

12" 12 STAN 1 GIRDER 5/60 LIN. FT. QUOTE GAIL 3-\$ 3-4 10/00 F.O.B. 40

11 16/1 38 =4 TRUSTORST 150 \$1.55 7-7-96

Glado -

Page 1.26 95DC /,52

55 3.09 2×10 = 12.50 140/4

2×12 121/5.58

ALTINE / UNIMIST GRAND PROIDE, TEXAS

TROK [DAVED WILLIS 4160]

NOTHING IN FLOOR TRUSS

MON 227 DAVID WILLS

ROOF TROSS JOAN CAPPENTER 22,20,4

DOUBLE SHEAR SCREW - / SIDE INLY MANUE, IN Moreo Gr

WAREADUSE IN SAUTC

2-22

MITEK - DETRICK

800 325-8075

TOM

DOES N'T FEEL COMTETETIVE WITH WOOTS

DOES MAKE POSITION (WOOD WEB)

GIANTIL TOTAL J

174 15 27

MARKET POTENTIAL

Wood Truss Council 608/274-4849 5937 Meadowood Dr., #14 Madison, WI 53711
Kirk Grundahl, Exec. Director (Suzy Sandy) 580 members (3-19-96)

1992 Production:

I Joists - 223 million feet

Parallel Chord (open) - both wood and steel - 221 million feet

Projection year 2000 joint study with NAHB, George Carter *
I Joists - 530 million feet
Parallel Chord - both wood and steel - 290 million feet

May change name to reflect wood and steel

Mitek - both

Open to steel engineered membership.

*Expect increase primarily due to lower lumber quality.

G O U V I S E N G I N E E R I N G

GOUVIS ENGINEERING

FAX TRANSMITTAL

DATE: 2/29/96
TO: DAMPEL MEPER
fax number: 619-955-9736
ATTENTION:
FROM: WE
PROJECT NAME:
NUMBER OF PAGES: 2 (INCLUDING THIS TRANSMITTAL)
REMARKS: I SQUIZED OUT A LITTLE BIT
OF TIME TO GET THIS FAR. 2 DON'T
KHOW IF 2 CAN GET ANY TIME ON
THIS TO FIFISH THE TABLE. 2 HOPE
THIS HAUF CAN HELP YOU. LET
ME KNOW WHEN YOUR MEETING 15,
IF YOU HAVE ANY QUESTIONS, OR IF YOU DID NOT RECEIVE ALL PAGES, OR PORTIONS OF THIS TRANSMITTAL ARE ILLEGIBLE, PLEASE DO NOT HESITATE TO CALL THIS OFFICE.

	i	t (************************************			in a second seco
ceprew)	TY0015 <	159, 554 204, 554 540, 184		10-19-1 - 10-10-10-10-10-10-10-10-10-10-10-10-10-1	
(certer to a	Theory W	154, 504 154, 334 EAV=154		197" 501-501.	
TABCE.	EL Xmd	204, 304 Con=209	elas a	16-5" Bright Sus 459	
SPAN	Thos I	76: 184, 334 98: 204. 334 640 = 184		16-10" L	
	TRUSS I	T/L: 2004, 314 B/E: 2064, 334	100		
	ovo	=10 =40 1=50			072

FR13-8

TRUSS WALL CALIF, TRUSS - DON

709 657-749,

12.16

1149" \$ 2.71 40 42 10-12 86

1/4 2.97 16

714

....

FLOOR FOIST PRODUCT COMBARISON
MAX. SPAN STACING / COST RANGYSIS

COMPARISON

	SPAUNG
JOIST DEPTH	SERIES LIN. FT. 12" o.c. 16" o.c. 24" OC.
91/4"	SPACING SERIES LIN. FT. 12" O.C. 16" O.C. 24" O.C. SPAN S.F. S.F. S.F. S.F. S.F. S.F. S.F. S.F. 2x10 D/E .97 7'5" .97 13'11" .72 12'3" .48 2x12 t/E 1,24 20'2" 1,24 16'7" .93 14'3" .62
111/4"	2×12 = 1,29 20'2" 1.24 16'7" ,93 14'3" ,62
	De l
	MAX STD. STOCK CUT TO CUSTOM RED. REQ. DOUTI-STAN LUB LNGTH LNGTH ORDER ORDER BLKG. CARS MAX
(e. E.E.)	
	DOR STK CUT TO CUSTOM LENGTH ORDER ORDER
	20' CUT CROST CUSOM OFFICE
	20'
T-T/	40' YES
TOUSWAL	<i>Y</i> es
アナレ	Yes

2×10 ,83

#2+	FOIST IOIST DEPTH SERIES	15"0,0 16" 0.0 . COST	- 29°00.
600/M	9/4" 2XIO SOLIDWD.		
1020	11/4" 2X12 SOLIO WO.	75/8"	12'9"
1,332W,	1178 T JI DE PRO	18'1"	14'9"
1.56 UN	1178" TII/25 DF	21'4"	18'9"
2.88 LW	1178" TII/ 55DF	29/9"	"'۵۱' دد
CANNAL		}	

12" TRUSS WALL (STUDES) 14" TRUSSWALL (STL WEB) 16" OLT - BELRING 2x4 W 2x4 14"

MIL GOED 676-268 TEMECO LA #2.70 \$2.80 OP TO 22 SPAN TO 0/A COSTOM MADE

16

24

JOIST JOIST DEPTH SERIES

14" TJL

LIN. 1,38

1.98

1.56

12/8 LP126

117/8

LP136 21/4 COM

LP/32

n H 2

GANAH -

TOIST DEPTH	7012T SERIES	PERA	16"0.C	Cost	24 ºoc	COST SIF.
10" 100	18 0EI-2"16G2 1	872 1 1127 1 1403	20'/1"		1813"	
10" 1000 E	J 3" 149.	4	22 6"		1918"	
12" 1200 8	I 2" 16 GF	1 1273	24/4"		20'8"	
12" 1200 8	I 2" 196A	1	26'2"		22'10"	
E.	Dee Moor B-7.9		List of the second seco) 3-	5/ +2- 3%	3 %

12"0.C. 16"0C. 24" O.C.

SPAN SF SPAN | SOFT | SPAN COST. STI. WEB

TRUS WAL

1X2 STL WEB 14.25

DOUG FIR 2X10 #2+

STEEL C 10* 1000 ET 12" 1200 EI

SOURCE D GANAHL LUMBER

GOUVIS ENGINEERING

GOUVIS ENGINEERING FAX TRANSMITTAL

DATE: 3/(5/96)
TO: DAMPELL METER
FAX NUMBER: 285- 1369
ATTENTION: NAME (
FROM: WE
PROJECT NAME:
GE JOB NUMBER: (2250
number of pages:(including this transmittal)
REMARKS: FURTHEL FIRE-TUPIHG
POSSIBLE.
POSSIBLE. CALL ME IF TOU HAVE Q'S
M

IF YOU HAVE ANY QUESTIONS, OR IF YOU DID NOT RECEIVE ALL PAGES, OR PORTIONS OF THIS TRANSHITTAL ARE ILLEGIBLE, PLEASE DO NOT HESITATE TO CALL THIS OFFICE.

TROSS TC= 209A 150 108512=01 40887=11 TRUSS TC= 139/50 BC= 20G1/50 DL=10 PS1 U=qops

TRUSSTEEL JOIST COMPETITIVE PRODUCT COMPARISON Maximum Span / Spacing / Cost

				12.	12" O/C	ŀ	16" O/C	ပ ၀		24	24" O/C						
Joist	Joist	J	Cost		ľ	Cost		٦	Cost		0	Cost	Std	늄		Order	Cstm
Type	Depth	Pe	Depth Per lin. ft.	Span	Per	Per sq. ft. Span	Span	Pe	Per sq. ft.	Span	Pe	Per sq. ft.	Eg H	Stk	CTS	Lgth.	Mfg.
1000 EJ 18ga.	10	49	0.88		ø	0.88		69	99.0		69	0.44	20,			yes	
.1000 EJ 16ga.	10"	49	1.13	23'0"	69	1.13	20'11"	69	0.84	18'3"	S	0.57	20,			yes	
1000 EJ 14ga.	10"	€9	1.4	24'10"	69	1.4	22'6"	ø	1.06	19'8"	S	0.71	20.			yes	
1200 EJ 16ga.	12"	↔	1.28	26'9'	S	1.28	24'4"	w	96.0	20'8"	69	0.74	50,			yes	
1200 EJ 14ga.	12"	↔	1.59	28'10"	S	1.59	26'2"	69	1.19	22'10"	ø	08.0	20,			yes	
TRI-CHORD	12"	S	2.20		69	2.20		€9	1.65		69	1.10					yes
TRI-CHORD	<u>.</u> 4	S	2.60		69	2.60		69	1.95		69	1.25					yes
Trussteel 20 Mga.	12"	49	37.2	23.4"	•	2.20	19.40°	₩.	1.50	167'3"	49	1.10		.04	yes	yes	yes
Trussteel 18	12".	49	€ ,4	25'8" 25'0"	49	2.50	22.8" 22.8"	49	1.88	10.3 10.3	•	1.25		.0	yes	yes	yes

BUSINESS FORMATION PLAN AGENDA

- Form new stock corporation (Corp)
 Issue stock 50% Angeles Metal Systems (AMS)
 Issue stock 50% Darrell G. Meyer (DGM)
- · Elect officers & board
- Determine legal & accounting firm/method
- AMS Loan (capitalize) Corp. commitment \$100,000
- · Purchase order & check procedure
- Inventor (DGM) proceed with patent application (use patent)
- DGM assign patent rights to Corp, same distribution license fees

BUDGET (DETAIL SHEET 1) MACHINES, TOOLS & FIXTURES

1.	Automatic Resistance Welder See Janda Proposal									
2.	Truss Assembly Jig Anaheim Welding - verbal	\$6,000								
3.	Rollers, Stands	\$2,000								
4.	Chain Transfer, Accumulator 3 - 12' chain assemblies, frames electric drive, pneumatic lift custom - Bid - Anaheim Welding	\$4,000								
5.	Miller Spot Welder & O.H. Track Air \$2,000, elect, track - etc.	\$3,000								
6.	Racks, Dollies, Chord Handling Lifts custom	\$5,000								
7.	Banding, Shipping	\$2,000								

SCHEDULE TO 3 MONTH START-UP

Engineering

\$5,000

Provide load / span tables, start ICBO

Advertising & marketing

Draft copy and layout to start campaign with engineers, place ads in trade magazines, Metal Home Digest, Automated Builder

Salaries

Darrel G. Meyer to supervise all custom manufacturing, purchase equipment, layout plant, participate in marketing and sales. Joe Mackewich in strong sales program, brochures, ads, personal calls

Rent

Locate approx. 12,000 s.f. within Angeles facility. Rent @ 20 cents per s.f. - \$2,400

Utilities

TRUSSTEEL JOIST PRODUCT COMPARISON WOOD FLOOR JOISTS MAXIMUM SPAN-SPACING-COST

L/360 Live Load Deflection-40#LL+10#DL

	Cstm Mfa.	1						Ves	yes	Say	, se	605	, ge					yes.	yes	
	CTS				yes	yes	yes								yes	yes	yes			
	Stek Stek				40,	5	,04								-04	-04	9			
	Std Lnath.	, 20,	20,																	
),	Cost Sq. Ft.	\$0.48	\$ 0.62		\$0.67	\$0.78	\$1.44	\$1.18	\$1.25	\$ 1.36	\$1.49	\$ 1.70	\$ 2.00		\$ 0.69	\$ 0.99	\$0.78	\$1.35	\$1.40	
24" O/C	Span		14'3"		14'9"	18'4"	22'10"			12'10"							18'10"			
)(C	Sq. Ft.	\$0.72	\$ 0.93		\$1.00	\$1.17	\$2.16	\$1.77	\$ 1.88	\$ 2.03	\$2.22	\$ 2.55	\$3.00		\$1.04	\$1.49	\$1.17	\$ 2.02	\$2.10	
16" O/C	Span	13'11"	16"7"		18.1"	21,4"	1.92			193"	20'7"				20,8,,	23.0.	22.0.			
12" O/C	Cost Sq. Ft.		\$1.24		\$1.33	\$1.56	\$2.88	\$ 2.36	\$ 2.50	\$2.71	\$ 2.97	\$3.40	\$ 4.00		\$1.38	\$1.94	\$1.56	\$2.70	\$ 2.80	
12"	Span	17.5"	202			23.4	28.8.			23'4"	27'5"				22'8"	23.9	24'6"			
	Cost Lin Ft	0.97	1.24		1.33	1.56	2.88	2.36	2.50	2.71	2.97	3.40	8		1.38	95	1.56	2.70	2.80	
		00.	•		₩	49	€9	€9	↔	69	*	69	0		49	€	€9	₩	₩	
	Joist	9 1/4"	11 1/4"		11 7/8"	11 7/8"	11 7/8"	14	16"	11 1/4"	14 1/4"	14	14"		11 7/8"	11 7/8	11 7/8"	14"	16"	
	Joist type/series	Doug Fir 2x10#2	Doug Fir 2X12#2	Trus Joist:	TJI 25 Pro	TJI 25 DF	TJI 55 DF	Wood Web 4x2 4x2	Wood Web 4x2 4x2	Truswal 4x2 stl wb	Truswal 4x2 stl wb	TrustJoist TJL 4x2	TrustJoist TJL Lam	Louisiana Pacific:	LPI 26	LPI 36 2 1/4"	LPI 32	GangNail 4x2 4x2	GangNail 4x2 4x2	

GANAHL ESCONDIDO TRUSS CALIFORNIA TRUSS TJI MCMILLAN GANGNAIL

Source:

TRUSSTEEL JOIST PRODUCT COMPARISON WOOD FLOOR JOISTS MAXIMUM SPAN-SPACING-COST

L/360 Live Load Deflection-40#LL+10#DL

			PULTAUS	87	6411	6112	Una Vira
			W. 200	3.42	3.04	1.04	T-10
GangNail 4x2 4x2 GangNail 4x2 4x2	Lel 36 2 1/4" LPI 32	TrustJoist TJL 4x2 TrustJoist TJL Lam	Truswal 4x2 stl wb Truswal 4x2 stl wb	Wood Web 4x2 4x2 Wood Web 4x2 4x2	Trus Joist: TJI 25 Pro TJI 25 DF TJI 55 DF	Doug Fir 2x10#2 Doug Fir 2x12#2	Joist type/series
id₁ id₁	11 7/8" 11 7/8" 11 7/8"	4 4	11 1/4" 14 1/4"	6 4	11 7/8" 11 7/8" 11 7/8"	9 1/4" 11 1/4"	Joist Depth
€9 €9	« « «	+ ++ ω 4	60 60	69 69 (A) (A)	6 6 6 N - 1 - 1	\$ 0.97 \$ 1.24	Cost Lin Ft
2.70	1.38	3.40	271 297	2.36 2.50	1.33 1.56 2.88	0.97	ļ.,
	22'8" 23'9" 24'6"		23'4" 27'5"		23'4"	17'5" 20'2"	12" Span
\$2.70 \$2.80	\$1.38 \$1.94 \$1.56	\$ 3.40 \$ 4.00	\$2.71 \$2.97	\$2.36 \$2.50	\$1.33 \$1.56 \$2.88	\$0.97 \$1.24	12" O/C Cost an Sq. Ft.
	20'9" 23'0" 22'0"		19'3" 20"7"		18'1" 21'4" 26'1"	13'11" 16'7"	16" Span
\$2.02 \$2.10	\$1.04 \$1.49 \$1.17	\$2.55 \$3.00	\$2.03 \$2.22	\$1.77 \$1.88	\$1.00 \$1.17 \$2.16	\$ 0.72 \$ 0.93	16" O/C Cost an Sq. Ft.
	17'2" 20'0" 18'10"		12'10" 13'8"		14'9" 18'4" 22'10"	12'3" 14'3"	24" O/C Co Span Sq
\$1.35 \$1.40	\$0.69 \$0.99 \$0.78	\$1.70 \$2.00	\$1.36 \$1.49	\$1.18 \$1.25	\$0.67 \$0.78 \$1.44	\$0.48 \$0.62	Cost Sq. Ft.
						8 8	Std Lngth.
	\$ \$ \$				\$ \$ \$		Dir.
	yes yes				yes yes		CTS
yes yes		yes yes	yes	yes yes			Cstm Mfg.

Source: さたけん GANAHL さべいかし ESCONDIDO TRUSS CALIFORNIA TRUSS TJI McMILLAN GANGNAL

12 MOS. PRELIMINARY CASH FLOW PROJECTION (INCLUDING 3 MOS. START-UP) POSTIVE <NEGATIVE>

Sales Revenue (1) Cost to Produce (2) Gross Profit / Margin	Schedule	Total 3 mos.	4	v	۰	۲	00	•	=	=	5	Total
Cost to Produce (2) Gross Profit / Margin		¢	(E) 50,000	(E) 50,000 (E)100,000 (E)100,000	(E)100,000	150,000	=	150,000	150,000 150,000 150,000	150.000	1	1-
Gross Profit / Margin						86,000					_	
						64,000				L		
Selling - Commission	(3%)		1,500	3,000	3,000	4,500						
Market - Advertising	(%£)		1,500	3,000	3,000	4,500						
Total Selling Cost			3,000	9,000	000'9	000'6						
Profit Before Expenses, G & A	(36%)		18,000	36,000	36,000	55,000	55,000	55,000	55,000	55.000	55.000	420.000
Expenses												00000=
Engineering - Consultant			1,000	1,000	1,000	1.000						
Salaries - Officers						4,000						-
Rent						2,400						-
Utilities						1,500						
Telephone						200						
Vehicle, Travel, Entertainment						008						
Legal & Accounting						1,000						
General Office Expense, postage etc					Ī	200						
Insurance - Liability	(5%)				Ī	3,000						
Depreciation 120 mo - 60 mo.						2,000					T	
Total Expenses	(11%)		16,700	16,700	16,700	16,700	16,700	16.700	16 700	16 700	16.700	150 300
Total Startup, Machines, Fixtures, Jigs-3 mo		116,500										
Monthly over <short></short>	-		1,300	19,300	19,300	38,300	38,300	38,300	38 300	38 300	38 300	002 692
Cash Flow over <short></short>	Ť	<116,500>	<115,200>	<006'56>	<009'91>	<38,300>	¢	38 300			- 1	3
Net Cash after 12 mos.									1		+116.500	
Net Profit										T		002.030

FR1 3-29-96

DEAR NICK THIS COMPOSITE DROWING REFLECTS CHOICE 1/2" (1
OF TOP/BOTTOM CORD SECTION-ETTIER A OR B
AND POSSIBLE SECTIONS TO BE STOMPED IN
WETS:
WETS:

WET INDICATED PROPERTIES SEEM SIMILARY O.K.

a,

DON MOODY - WESTERN, SAID HE FERLY LIKED IT! "YOU NAVE A HONE RUN"

PROPERTIEN

6,

ALL PROPRIETARY RIGHTS RESERVED DARRELL G. MEYER 3:27-96 ø. [

LETTER OF INTENT

This Agreement is entered into this day by and between the following Parties:

Darrell G. Meyer, (Hereinafter referred to as DGM)

Western Metal Lath (Hereinafter referred to as WM).

Recitals:

DGM has invented and is in the process of obtaining a patent (patents) on a fabricated steel "Trussteel Joist" and has developed know-how in connection with said invention.

WM desires to acquire an option to investigate said DGM invention and if favorable to proceed with license to manufacture said "Trussteel Joist", per License Agreement format as mutually agreed.

DGM will grant WM option for \$75,000 payable: \$25,000 upon execution of Option Agreement, \$25,000 when satisfied and enters into License Agreement and \$25,000 upon start-up of production.

DGM will share know-how with WM and coordinate engineering, testing of trusses, design of special machines, fixtures and components for manufacturing and such activities as per WM. DGM will be compensated at the rate of \$5,000 per month, not to exceed 6 months, time of start-up or termination of option.

Outside services required or requested will be submitted to WM for prior approval and payment by WM.

Royalty rate of 4¢ per foot of sales with minimum annual royalty of \$40,000

WM to have exclusive license for 12 western states.

GRANTOR Darrell G. Meyer GRANTEE Western Metal Lath

 By
 By

 Darrell G. Meyer
 Donald R. Moody, President/C.E.O.

 18 Vista Encanta
 6510 General Drive

 San Clemente, CA 92672
 Riverside, CA 92509

 (714) 361-9295
 (909) 360-3500

April 23, 1996

Mr. Darrell G. Meyer TRUSSTEEL 13269 Soft Cloud Way Victorville, CA 92392

Re: Steel Floor Truss

Dear Darrell:

This is verify that Western Metal Lath is interested in obtaining exclusive manufacturing, marketing, and distribution rights for the western United States for the light gage steel floor truss you are developing. During our discussions we have reached tentative agreement on the following terms and conditions:

- Western's exclusive manufacturing, marketing, and distribution area would include the states of California, Washington, Oregon, Montana, Idaho, Colorado, Utah, Nevada. Arizona, New Mexico, Wyoming, Texas, Alaska, and Hawaii.
- In exchange for the exclusive rights described above, Western would pay you a one
 time license fee of \$75,000 plus the amount you invest in the development of this
 product (engineering, testing, documentation, patents, etc.) between now and the time
 the license agreement is formalized and agreed upon. Any expenditures made by
 Western toward the development of the product would apply against the final
 negotiated licensing fee.
- In addition to the license fee, Western would pay you a royalty of \$.04 per lineal foot
 of truss produced and sold by Western with a guaranteed minimum of \$40,000 per
 year in toyalties, regardless of sales.

This letter, while expressing our interest and general agreement to the preliminary terms of the anticipated licensing arrangement, is not an agreement of any type between Western Metal Lath and Darrell Meyer. Prior to entering into any agreement beyond mutual cooperation toward the development of the product, the floor truss will have to be fully developed to the extent that a patent has been obtained, certified engineering data substantiated by testing exists, and an IBC-ER approval has been obtained. Additionally, the final agreement will require the approval of Western Metal Lath's Board of Directors.

That being said, we would like to emphasize our belief the floor truss you are developing, based on our preliminary analysis, is a viable product that will be well positioned to participate in the very significant open web floor joist market. We appreciate the opportunity you have presented to us and look forward to a long and mutually beneficial relationship with you.

Very truly yours.

Donald R. Moody, P.E. President/CEO

QUOTATION LETTER

No. 02719

LANE AND RODERICK, INC. 12640 Allard Street Santa Fe Springs, CA 90670 TELEPHONE: 1-310-868-3465

TO:

FAX:

TRUSSTEEL INC.

BELGRLY

DATE: 05/14/96

13269 SOFT CLOUD WAY

VICTOR VILLE, CA 92392

1-310-929-8791

ATTN:

DARRELL MEYER

PHONE: (714) 361-9295 FAX: (714) 285-1369

RFO.#:

DELIVERY 2 WEEKS

FOR

SANTA FE SPRINGS

SHIP VIA YOUR TRUCK

QUANTITY ITEM# 1

ITEM#

DESCRIPTION OUOTE# 08631

TRUSS 240.00 LONG REV N/C

UNIT PRICE EXTENSION

TRUSS 240.00 LONG

3

384.17 335.10

1,152,51 1,340.40

4

OUOTE# 08631

8.25 +TAX \$1,450.98

SHEAR, LASERCUT FORM AND SPOT WELD

CUSTOMER SUPPLIED 20 GA ZINCALUM PER BP

Quoted By: Warren, Brian C. UNLESS OTHERWISE STATED HEREIN; PRICES REMAIN IN EFFECT 30 DAYS; PRICES DO NOT INCLUDE LOCAL OR STATE TAXES IF APPLICABLE; TERMS NET 30 DAYS WITH APPROVED CREDIT; FOB FACTORY; UNPAID BALANCES 30 DAYS PAST DUE WILL BE SUBJECT TO AN INTEREST CHARGE OF 1.5% PER MONTH (ANNUAL RATE 18%) FUTURE ORDERS WILL BE AUTOMATICALLY SOLD ON A C.O.D. BASIS

Lane & Roclerick, Inc

TO DEPLOY A STATE OF THE PARTY.

SHIP TO: TRUSSTEEL INC: 13269 SOFT CLOUD WAY VICTOR VILLE: CA 92392 Phone: (714)/361-9295

P.O. No. 1. Ship Via Terms Date Shipped Custri VERBAL YOUR TRUCK COD 06/03/96 TIDES

Cuantity Description

4 TRUSS 240,00 LONG Rev : N/C (Our Number 05796)
TRUSS 240,00 LONG

1 EA. CUSTOMER BLUEPRINT

UNEATO BAUANCES AO DAYS PART DUE WILL BE SUBJECT TO ANS NITERIST MARKE OF TILZE FOR MONTH LANNOAL BATE 1883 FUTUER CROERS WILL AUTOMATICANT " BE SOLIO ON CODEDASIS

WESTERN METAL LATH

6510 GENERAL DRIVE RIVERSIDE, CA 92509 (909) 360-3500

DRAWN ON PNG BANK, OHIO, NATIONAL ASSOCIATION MILPORD, OHIO IN COOPERATION WITH WELLS FARGO BANK, N.A.

#4789-608880 56-204/422

Nº 001133

PAY ONE THOUSAND FOUR HUNDRED FIFTY AND 98/100**********

DOLLARS \$1,450.98*****

TO THE ORDER OF

LANE AND RODERICK, INC.

WESTERN METAL LATH

6/5/96

"OO1133" 1:0422020441:

770982529#

DATE	NUMBER	DESCRIPTION	ACCT. NO.	GROSS AMOUNT	DEDUCTIONS	NET AMOUNT
		SEE ATTACHED	41080500	1450.98		1450.98
			41			

6510 GENERAL DRIVE, RIVERSIDE, CA 92509 (909) 360-3500

GBF 9G-73G

RESOURCES
APPLICATIONS
DESIGNS &
CONTROLS, INC.

3220 E. 59TH STREET -LONG BEACH, CA 90805 TELEPHONE: (310) 272-7231 TELECOPIER: (310) 529-7513

June 14, 1996

Mr. Darrell Meyer Trussteel 18 Vista Encanta San Clemente, CA 92672

Re: RADCO Proposal PR-T6074

Dear Mr. Mever:

Based on our discussions on June 12, 1996, we will schedule an R&D test of your steel trusses as follows.

- Trussteel will furnish all materials, including trusses, decking, cross bracing and fasteners.
- RADCO will provide the supports for each end of the truss assembly.
- Trussteel will arrange, at Trussteel cost, for the delivery and pickup of lead ingots for use as dead weights.

The test will be performed on only one assembly, consisting of three trusses at 24" oc by approximately 20 feet long. The test procedure will be essentially in accordance with ASTM E 73, Static Load Testing of Truss Assemblies.

The test sequence will be:

- 1. Load the assembly to dead load in two increments. Take deflection measurements.
- Load the live load in four increments, with five minutes between each increment.
 Take deflection readings after each increment.
- Unload the assembly, allow it to recover, and take deflection readings.
- Reload the dead and live load in four equal increments, and then continue loading until 2 ½ times live load is reached.

The cost for this test is \$1200.00.

Two copies of this letter are enclosed. Please indicate your acceptance of this proposal by signing one copy below and returning it with your check for \$600.00. The balance will be due upon completion of the test.

Sincerely.

RADCO

a # Hover DE

RFT/mdc

ACCEPTED: Trussteel

Date: 6.20-0

FRONT/PROP/PR-T6074

TRUSSTEEL

June 18, 1996

Mr. Donald R. Moody, P. E., President, C.E.O. Western Metal Lath 6510 General Drive, CA 92509

Re: Trussteel floor joist static load test

Dear Don:

All necessary arrangements have been made for the testing of the 3-20' floor joistsat the facilities of RADCO, Long Beach, CA, per their proposal enclosed.

The budget items are itemized below:

RADCO test		\$1,200
Rental of 12,000 lbs. lead		600
Freight to deliver & pick-up	lead	504
Welding of 3 joists (Janda)		195
Labor		150
Plywood & fasteners		140
Hat channel & flat strap		20
Labor to load & unload lead,	set up	200
		\$3,059

Per agreement, please remit a check in the amount of \$3,000 to Darrell G. Meyer and I will proceed with the test schedule per your request for the week of June 24,1996.

Ilook forward to our test results and a great future.

Very truly yours

Audi Ho

Darrell G. Meyer

DGM: BM

18 VISTA ENCANTA, SAN CLEMENTE, CA 92672

TENNAME OF THE SECOND S

CLIENT:TRUSSTEEL

PRELIMINARY

STATIC LOAD TESTING OF TRUSS ASSEMBLIES, ASTM E-73-83 (reapproved 1991)

Date:	.lul 3 1996											
Time:	1:30 PM			0	3		ං පැ		_	ු පු		
Specimen Size:	4ft.x19ft.8" (236")											
Wt of Lead Ingots	70 lbs. each)	J				
Specimen Type:	Steel Truss			0	٥ ٢		C P5			3		
Actual Loading Area:	118 sq. ft.											
					07) Pg) B		
Failure Load: (lbs.)	8400			0	Ò		C					
Failure Load: (psf)	71.186										2	
Applied Load	oad				1	Deflections (in	۲	7	2	3	Actual Load	Poet
Live load increments	psf (nominal)	P1	P2	Ρ3	P4	3	3	7			150	1
Initial (zero load)	0	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.000	0.1360	1360	10.678
0.25 Live Load	10 psf	0.1179	0.1700	0.1251	0.1245	0.1/4/	0.1301	0.1340	0.1020	1360	200	0.010
After 5 min. hold		0.1181	0.1/00	0.1251	0.1252	0.1747	0.1301	0.10	0.1020	0.000	3530	21 356
0.5 Live Load	20 psf	0.2414	0.3424	0.2514	0.2594	0.3001	17/70	0.2400	0.000	0.2000	1010	1
After 5 min. hold		0.2442	0.3441	0.2531	0.2619	0.3515	0.2/04	0.245.0	0.000	07020	2700	22 024
0.75 Live Load	30 psf	0.3613	0.5024	0.3694	0.3858	0.5235	0.4061	0.3/50	0.0020	0.0970	0,00	02.007
After 5 min. hold		0.3648	0.5053	0.3712	0.3878	0.5239	0.4086	0.3770	0.0000	0.0800		0000
Live Load	40 psf	0.4917	0.6762	0.4986	0.5187	0.6987	0.5399	0.4920	0.000	0.0100	4000	40.502
After 5 min. hold		0.4973	0.6840	0.5047	0.5234	0.7022	0.5448	0.4950	0.0990	0.0120	9	-
Load Removed	Zero Load	0.0530	0.0490	0.0434	0.0131	0.034	0.000	0.0150	0.0290	0.0170	,	,
After 5 min. hold		0.0342	0.0490	0.0414	0.0123	0.0328	6200	0.000	0.0230	0.5050	4830	40 932
Live Load	40 psf	0.5174	0.6761	0.5086	0.5294	0.7138	0.5500	0.000	0.7700	0.5050	1000	10.000
After 5 min. hold		0.5183	0.6770	0.5095	0.5303	0.7149	0.0010	0.5020	10340	0.7370	7350	880
1.50 Live Load	60 pst	0.7678	0.9001	0.7034	0.700	1.00	0.0102	0.7300	1 0430	0.7420		
After 5 min. noid		0.7707	0.000	0.1101	0.1000							

One web 20" from one end (the full web end) on one outer truss started to deform and buckle when an evenly distributed load of 120 pcs. was applied. Mode of Failure:

of 126 pcs. was applied i.e. 8820 lbs. or 74.746 psf. The test was concluded at this point A second web 39" from the same end (the full web end) on the same outer truss started to deform and buckle when an evenly distributed load i.e 8400 lbs or 71.186 psf.

. .

Sht 1 J.N. G. 12250 Date 7/96 Client MEYER

20 GA TRUSS SPAH = 17-3"

DL= 10 PSF LL = 40 PSF SPACING = 24" 0/C

TOP CHORD: M= . 0551 'K

P= 4.335K Pau = 4.37 × + 4.335 K

BOT CHOPD:

M= 0.0468 K

T = 4.365K

TALL = 6.9 K > 4.365 K

WEB (AT WEAKEST SECTION)

PMAX = 1.2K

Pall= 1.5 × > PMAX. OK!

 $\Delta_{rL} = .579'' = \frac{L}{358} > \frac{L}{2400}$ OKI

 $\Delta_{LL} = .463" = \frac{L}{447} > \frac{L}{360}$ oki

GOUVIS ENGINEERING

Sht 2 J.N. G- 12250 Date 7/96 Client METER

OL=10 PSF LL=40 PSF SPACIHG =24" 0/C

TOP CHORD:

BOT. CHOPO:

OF PER 145P.

WEB:

$$\Delta_{\Gamma L} = .826" = \frac{L}{294} < \frac{L}{240} \text{ ok!}$$

$$\Delta_{LL} = .661" = \frac{L}{367} < \frac{L}{360} \text{ ok!}$$

GOUVIS ENGINEERING

Sht 3 J.N. G- 12250 Date Client

$$\frac{(40) L^4}{(80) (17.25)^4} = \frac{(L/360)(12)}{.463}$$

$$\frac{50 (L)^{2}}{100 (17.25)^{2}} = \frac{4.37}{4.34}$$

$$L = 24.42^{3}$$

3)
$$\frac{\frac{1}{2}(50)(L)}{\frac{1}{2}(100)(17.45)} = 1$$

$$L = 34.5$$

GOUVIS EN

Sht 4 J.N. G. 12250 Date Client

1)
$$L = \sqrt[3]{\frac{80}{53.3}} (6374.6) = 21.23' \leftarrow GONEKNS$$

$$L = \sqrt{\frac{100}{667}} \left(299.6 \right) = 21.0'$$

Œ

GOUVIS ENGINEERING

Sht 5 J.N. G. 12250 Date Client

1)
$$l = \sqrt[3]{\frac{1}{18}(6374.6)} = 20.0$$

Œ °

GOUVIS ENGINEERING

Sht 6 J.N. G- {2250 Date Client

$$\frac{(L)^{2}}{2(20.25)^{2}} = \frac{6.05}{5.97}$$

$$L = \sqrt{(2)(4156)} = 25.83$$

GOUVIS ENGINEERING

Sht 7
J.N. G- 12250
Date
Client

13 GA TRUSS

SPACING = 16"0/c

GOUVIS ENGINEERING

Sht B J.N. G- 12250 Date Client

OUOTATION

Tel: (310) 949-2446 Toll Free: 800-282-6285 FAX: (310) 942-0624

National Machinery Exchange, Inc.

Wire and Metal Working Machinery WEST COAST DIVISION 7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Darryl Meyer TRUSTEEL MFG. 18 Vista Encante san Clemente CA 92672 Date: 08/06/96 Ref#: 28446

Mach: 100194

Tel: 714-285-1004 FAX : 714-285-1369

We are pleased to offer the following for your consideration:

ONE (1) USED

WARCO MOMDEL #SC2-200-54-54E STRAIGHT SIDE DOUBLE CRANK PRESS

200 tons

Rated capacity stroke of Slide 6" (Power) Slide Adjustment Shut Height 20" SDAU Strokes Per Minute 33 to 70 54-1/2" x 54" Area of Bed 54" x 54" T-slot

Windows 38-3/4" x 10-3/4" Boslter 54" x 54" x 6" (T-slot)

EQUIPPED WITH:

Air Clutch Air Counter Balance 40 HP Main Motor

Overall Dimensions: 9' x 10' x 15'6" 52,000 # Weight:

PRICE: \$69,500.00

"If It's Machinery, We Have It!"

THIS QUUTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION.
DELIVERIES ARE CONTRIGENT UPON PRIOS ALEXAND DELAYS COCASIONED BY STRIKES, RIPE. ACCIDENTS OR OTHER CAUSES SEYOND QUICKONTROL.
WE WILL NOT BE REPONSIBLE; IF GOODS ORDERED FROUY TO BE AN IMPRIOSENT A FALENT RIGHT. SUPPLIENT SUBJECT TO BUYEST SIGK.

National Machinery Exchange, Inc.

Tel: (310) 949-2446 Toll Free: 800-282-6285 FAX: (310) 942-0624

National Machinery Exchange, Inc.

Wire and Metal Working Machinery
WEST COAST DVISION
7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Darryl Meyer TRUSTEEL MFG. 18 Vista Encante San Clemente CA 92672 Date: 08/06/96 Ref#: 28445

Mach: 101655

Tel: 714-285-1004 FAX : 714-285-1369

We are pleased to offer the following for your consideration:

ONE (1) USED BLISS MODEL #S2-150-60-36 2-POINT STRAIGHT SIDE DOUBLE CRANK PRESS

TIE ROD FRAME ----- SINGLE BACK GEARED

Rated Capacity	150 Tons
Stroke of slide	10"
Shutheight	23-1/2"
Ram Adjustment	
Ram Area	60" x 36"
Ram Plate(1-r x f-b x h)	60" x 36" x 4"H T-slotted
Bolster(1-r x f-b x h)	60" x 36" x 2-1/2"
Side Frame Opening(1-r x high)	19" x 15"
Strokes per Minute	
Width between Uprights	

Air Clutch on Flywheel 15 HP 3/220-440/60 Motor

Flywheel V-Belt One-shot Lubrication System (2) Air Cushions 2,5 tons w/5" travel Air Counterbalance Palm Button Controls

Motor mounted on top

PRICE: \$49,500.00

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION.
DELIVERIES ARE CONTINGENT UPON PRIOR SALE AND DELAYS OCCASIONED BY STRIKES, FIRE, ACCORDING ON OTHER CAUSES SEYOND CHARGE.
WE WILL NOT BE RESPONSIBLE; BOODGO SORPERED PROVEY TO BE AN INFRINCEMENT AGAINST FATENT MOITH. SHIPPARTS USUACET TO BUYERS RISK.

Tel: (310) 949-2446 Toll Free: 800-282-6285 FAX: (310) 942-0624

National Machinery Exchange, Inc.

FROTO 945 0054

Wire and Metal Working Machinery
WEST COAST DIVISION
7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

parryl Meyer TRUSTEEL MFG. 18 Vista Encante san Clemente CA 92672 Date: 08/06/96 Ref#: 28444

Mach: 57716

Tel: 714-285-1004 FAX: 714-285-1369

We are pleased to offer the following for your consideration:

ONE (1) USED BLISS MODEL #6-60W STRAIGHT SIDE DOUBLE CRANK TIE ROD DESIGN PRESS

 SED AREA
 .60" L-R X 42" F-B

 RAM AREA
 .54-1/2" L-R X 34" F-B

 BOLSTER AREA
 .60" L-R X 42" F-B X 4-1/2" H

EQUIPPED WITH:

AIR CLUTCH
THIN END DRIVE
FLYWHEEL "V" BELT
AIR COUNTERBALANCE TO RAM
AIR CUSHION IN BED MARQUETTE TYPE 18" DIAMETER X 6" STROKE
POWER RAM ADJUSTMENT
15 HP 3/60/220-440 (1755 RPM) MOTOR

PRICE: \$24,500.00

"If It's Machinery, We Have It!"

THIS QUOYATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLEMICAL ERRORS ARE SUBJECT TO CORRECTION DELIVERES ARE CONTINGENT UPON PRIOR BALE AND DELAYS OCCASIONED BY STRIKES. ARE, ACCOUNTS OR OTHER CLUBES AND OLD CONTINGENT WE WILL NOT BE REPONDIBLE OF GOODS OFFICERED POWEY TO BE AN ARMS GENERAL BARNST PATEUT RIGHTS. SHEMENT SUBJECT TO BUYERS RISK.

National Machinery Exchange, Inc.

Bol Dovloperd

QUOTATION

Tel: (310) 949-2446 Toll Free: 800-282-6285 FAX: (310) 942-0624

National Machinery Exchange, Inc.

Wire and Metal Working Machinery WEST COAST DIVISION
7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Darryl Meyer TRUSTEEL MFG. 18 Vista Encante san Clemente CA 92672 Date: 08/06/96 Ref#: 28442

Mach: 58335

Tel: 714-285-1004 FAX: 714-285-1369

We are pleased to offer the following for your consideration:

ONE (1) USED

BLISS-TOLEDO MODEL #93-1/2 STRAIGHT SIDE DOUBLE CRANK PRESS

GEARED..... SINGLE BACK STROKE OF SLIDE..... 10" SHUTHEIGHT..... 30" BOLSTER..... 4" RAM ADJUSTMENT..... 3-1/2" WINDOWS (L-R X HIGH)..... 12" X 15" SPEEDS: STROKES PER MINUTE..... 32

EQUIPPED WITH:

AIR CLUTCH AIR COUNTERBALANCE TO RAM ONE SHOT LUBE SYSTEM TWIN END DRIVE AC MOTOR AND CONTROLS

PRICE: \$17,000.00

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION. DELIVERISE ARE CONTINGENT UPON PRIOR SALE AND DELAYS OCCASIONED BY STRIKES, FIRE, ACCORDENTS ORD THAT CAUSES SERVICION QUITE OF THE WILL NOT SERSONISHIBLE IS BOODS ORDERED FORCY TO BE AN INFRAMEDIATED. SHIPMENT SIBLEST TO BUTTERS RISK.

· TONY LUAS - 979-7080

		<u></u>			
	FORM UNE FOR.	Due: 26 Mrs	Date: 8-19-96	Customer	
1-LINE 12 x 1/2 S.		Tax: YES	Perggir. DARRELL ME	EYER IK	USSTEEL
	Process		Phone (7/4) 36/92	95	
	SPEC. MACHINE		FAX: (11) 285100	4	
STEEL: 18 + 206A.	x21.5" x COIL		P.O.#:		1:
				2	
1.		\		= .	
		******		t	
					·()
¢ ¢ 6	•				
()	UNCOILER: 20,0	00 lbs. F	HYDR. + MOTORI	ZEP.	
· ②]	HUMPTABLE + P	INCH S.	TATION		
3	PREPUNCH PR	ESS	-		
*	-11- CU	TOFF	SHEAR		
9	FORM ROLLS: H	HT.TR.		`	
ِ چ	ROLL FORMER:	2×24.	- 15		
3			-		
(6)	WELDSTATION:	(ROTAL	CY) .		
7	FEED STATION	1 (SPEC	-IAC)		
r 🔞 🐃	PUNCHPRESS.	;			
	PROGRESSIU	IE DIE: 1	PIERCE + FOR	4)	
9	RUNOUT TABLE	-/40 F)	- (a)		
*	PACKAGING			7	
@]	ENGINEERIN			L I	
	•				,
				- 1	

NOTES: I CUSTOMER TO SUPPLY ALL TRYOUT MATIS.

2, TERMS: 13 DOWN WITH P.O.

1/3 AFTER 6 WKS
BAL, UPON COMPL, AND
ACCEPTANCE IN OUR PLANT.

FOR OUR PLANT SANTA ANA, CA.

AL ENGINEERING, INC. 2697 So. Halladay St. Santa Ana, CA 92705 (714) 979-5940

AL ENGINEERING, INC. 2697 So. Halladay St. Santa Ana, CA 92705 (714) 979-5940

	2697 S. Halladay	ERING, INC. St., Santa Ana, CA 92705 FAX (714) 979-1617)))			
1	Name of Part TOO	NOS"	8 W/V 2		8-19-96 DARREUL MEYER	Customer: TRUS	
art #		Process TOOLING		Phone: 7	14)3619295	1 2/8	- (

2851004

1. TO DIE DESIGN:

a BLANK DIE. (PIERCE + CUTOFF)

C. DBL. FORM DIE.

4,500 -3,500 -

NOTES:

TOTAL . 8. 000.

F.O.B.

NOTE! REVERSING FLANGE DIRECTION -TOO COMPLEX IN DIE DBS/G2

FAX: (310) 942-0624 National Machinery Exchange, Inc. Wire and Metal Working Machinery WEST COAST DIVISION 7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Darryl Meyer TRUSTEEL MFG. 18 Vista Encante San Clemente CA 92672 Date: 01/07/98 Ref#: 41392

Mach: 101816

Tel: 714-285-1004 FAX: 714-285-1369

Tel: (310) 949-2446 Toll Free: 800-282-6285

We are pleased to offer the following for your consideration:

ONE (1) USED

YODER 15 STAND ROLL FORMER

ARBOR DIAMETER 2-1/2" MAXIMUM WIDTH BETWEEN HOUSINGS 27-1/2" HORIZONTAL DISTANCE BETWEEN CENTERS 20-1/2" MAXIMUM VERTICAL DISTANCE BETWEEN CENTERS 10.8"

EQUIPPED WITH:

ADJUSTABLE ENTRY EDGE GUIDE SIDE PLATES MOUNTED ON IDLER ROLL STAND EDGE GUIDE ROLL STAND ADJUSTED VIA HAND CRANK SCREW

OUTBOARD HOUSING BASES BOLTED TO T-SLOTS IN MACHINE BED TO HOLD THEM INTO POSITION DIRECTION OF FLOW: LEFT TO RIGHT 40 KW 3/230-380/50 (1450 RPM) 133/77 AMP MOTOR ELECTRIC BRAKE

PRICE: \$62,500.00

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION.
DEUVERIES ARE CONTINGENT UPON PRIOR SALE AND DELAYS DECASIONED BY STRIKES, RISE, ACCEPTED NOT THE CAUSES SEVEND QUICKORNOL.
WE WILL NOTE MESPONSIBLE IR GOODS ORDERED PROVED TO BE AN INFORMENCENT AGAINST PATENT ROUTS. SHIPMENT SUBJECT TO BUYENS RISK.

National Machinery Exchange, Inc.

Wire and Metal Working Machinery WEST COAST DIVISION

7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Darryl Meyer TRUSTEEL MFG. 18 Vista Encante san Clemente CA 92672

Date: 01/07/98 Ref#: 41391

Tel: (310) 949-2446 Toll Free: 800-282-6285 FAX: (310) 942-0624

Mach: 102512

Tel: 714-285-1004 FAX: 714-285-1369

We are pleased to offer the following for your consideration:

ONE (1) USED

LOCKFORMER 12 STAND ROLL FORMER

ARBOR DIAMETER 3" HORIZONTAL CENTERLINE DISTANCE 20" VERTICAL CENTERLINE DISTANCE 7" MINIMUM DISTANCE BETWEEN HOUSINGS 30"

O.A. DIMENSIONS 24"3" LR X 5'7" FB X 4'11" HIGH

EOUIPPED WITH:

RIGHT TO LEFT ENTRY FLOW ENTRY EDGE GUIDE MOTOR

PRICE: \$42,500.00

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO COPRECTION. DELIVERIES ARE CONTINGENT UPON PRIOR SALE AND DELVYS OCCASIONED BY STRIKES, FIRE, ACCIDENTS OR OTHER CAUSES BEYOND OUR CONTROL. WE WILL NOT BE RESPONSIBLE IF GOODS ORDERED PROVE TO BE AN IMPRINCEMENT A GAINST PATENT RIGHTS. SHIPMENT SUBJECT TO BUVERS RISK.

National Machinery Exchange, Inc.

Wire and Metal Working Machinery WEST COAST DIVISION

7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Darryl Meyer TRUSTEEL MFG. 18 Vista Encante San Clemente CA 92672 Date: 01/07/98 Ref#: 41390

Mach: 103332

Tel: 714-285-1004 FAX: 714-285-1369

Tel: (310) 949-2446 Toll Free: 800-282-6285 FAX: (310) 942-0624

We are pleased to offer the following for your consideration:

ONE (1) USED

MCKAY 10 STAND ROLL FORMER

shaft diameter 3" Roll space 16" Horizontal centers 17" Vertical adjustment 6" Horsepower gear drive 40

PRICE: \$72,500.00

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL EPROPAS UBJECT TO CONTROCTION.
DELIVERIES ARE CONTINUENT UPON PRIOR SALEAND DIELAYS OCCASIONED BY STRIKES, HIRE, ACCEPTED UN OTHER ARE SERVINDED ONE OPHTHAD.
WE WILL NOT BE RESPONSIBLE OF GOODS ORDERED PROVET TO BE AUTHORIZED TO ALIVERS FAILED. HAVEN'T SUBJECT TO BUYERS RISK.

January 8, 1998

Mr. Darrell Meyer Steelworks 1801 Parkcourt Building E 200 Santa Ana. CA 92701

Dear Mr. Mever.

The first to build a fast and reliable flying hydraulic punch and cutoff; American Machine & Rollform Tech, Inc. has continued to be an innovator in hydraulic technology in the rollforming industry for over 15 years. In line with that progress we are ready to introduce into the market place our complete rollforming system to include the high performance American Machine rollformer.

While the "flying" press allows you to maintain a constant line speed without stopping to punch or cut your product, the rollformer with its double enveloping worm and worm gear provides high shock resistance for heavy load starting and stopping. By providing extra torque capacity, low backlash, and increased durability, this design will provide more years of higher productivity than straight worm gear designs.

One of the key reasons American Machine has been a leader in the rollform industry is your production output will remain consistent, precise, and predictable, delivering line speeds in excess of 300 FPM. As part of The Bradbury Group of companies we offer you our specific and unique set of technical skills and experience along with the united capabilities of all our companies within the group.

We obviously want an opportunity to earn your business and trust that you will consider us as a serious and viable option for future equipment needs. I look forward to talking with you regarding our equipment specifications.

Sincerely.

Robert P. Booth

Enclosures

J. B. Leahy

DATLAWTA

THE BRADBURY GROUP

2771 Pence Loop SE Salem OR 97302 503-588-2638 Fax 503-588-4029 E-mail: jblesh@americasmochine.com

DVIIIDIM 22

1801 E. Parkcourt Place Building E, Suite 200 Santa Ana, CA 92701 (714) 285-1004 Fax (714) 285-1369

March 25, 1998

Mr. Robert Booth American Machine & Roll Form 2771 Pence Loop SE Salem. OR 97302

Re: Steel I Joist

Dear Robert,

The Steel I Joist manufacturing line should incorporate these general specifications for the product with your expertise leading the way to determine the most efficient way to achieve our goals.

SPECIFICATIONS:

- Finished Dimensions 12" High and 1 1/2" Wide
- · Steel Grade 50 KSI (+) Zincalume
- · Both 18 Gauge and 20 Gauge capacity
- Material width 20.5" (Plus or Minus)
- Pentagon Shaped Chord Sections
- · Mechanical Clinch-Fasten to close Chords
- 12" center to center dimension of openings in triangle
- · Bend flanges to achieve stiffness in center section Continuous
- Bend flanges in reverse in slots (If possible)

The roll form line and ancillary stations may be positioned to achieve the following objectives:

- Continuous lengths to 40 feet
- · Cut to order increments of 1 foot
- · "Factory" end / start of stamped openings
- Mechanical Clinch-Fastener to close Chords may be Wheel Type (Hill Mfg. or Eckold) or Flying Tog-L-Loc (BTM)

- a. 2 1/2" diameter shafts
- b. 24" stand clearance
- c. 14 16 stands
- Uncoiler

14

- Single w rail
- b. Double
- Welder Coil Ends
- · Stacker Accumulator
- · On-Line stamp openings / Form flange hydraulic
- "Alternative" Off-Line stamp / Flange separate feed Progressive punch and die

Decisions on machinery locations to best complete the following steps:

- Cut to Length 1 foot increments
 - a. Prior to entry
 - Shear outer 1/3 each side prior to entry, center section after pentagon -Flying cut-off
 - After forming and clinching
- · Punch triangular opening
- · Punch or shear diagonal slots
- Form flanges Triangle
- Form flanges Slot

I look forward to your recommendations, proposal and a long relationship.

Sincerely, Steelworks

Darrell G. Meyer

DGM/lw

1801 E. Parkcourt Place Building E, Suite 200 Santa Ana, CA 92701 (714) 285-1004 Fax (714) 285-1369

Statistical Co. 278 February Co. 278 Class Sci 1904

AN-714 SS.1-88

April 6, 1998

Mr. Al Strecker, Sales Manager The Bradbury Company Air Industrial Park Moundridge, KS 67107

RE: Steel I Joist Rollform Line

Dear Mr. Strecker,

Per our conversation of Friday, April 3, 1998, I enclose preliminary drawing for the manufacture or a residential floor joist. These are the same drawings furnished to Mr. Dan Lovelace and Mr. Robert Booth at our meeting in their offices March, 25, wherein we discussed various methods of production leading to a proposal to build a Rollform Line.

We recognize you as the experts in roll form design, but several options arise as where to best perform functions such as:

- Cut to length
- Cut openings and slot
- · Bend flanges, preferably up and down
 - a) On line, after closure, on fly
 - b) Off line, progressive punch and die
- · Handling of product flow after roll form (under either condition)

I also enclose a Non-Disclosure Agreement, the execution of which I would appreciate. I hereby acknowledge assurance to you of mutual confidentiality on potential concepts developed for fabrication of this product.

My original design was discussed with Richard Pearson in 1996 and Bradbury generated a proposal. Further engineering and subsequent prototype tests, meetings with I. C. B. O. (International Congress of Building Officials) and concerns about resistance spot welding have led to the current design and specifications.

ROB - FOX 4029 503 588 - 4029 503 THU 4-9 2100 Mechanically fastening/closing of the pentagon shaped chords on the roll form line with a system that maintains consistent quality that can be monitored and inspected is a prime concern. Two companies have the experience and capability to provide a rotary unit, Hill Engineering and Eckold. Dan and Rob suggested I correspond further with Thomas Grossman and I enclose a copy of my letter to him.

We would welcome your critique of the joist and the best way to manufacture same. I want to be able to obtain an I.C.B.O. number which establishes engineering performance standards that are uniformally recognized. Hopefully, we will do it so well, we will stifle potential knock-offs.

Multiple plants or licensing arrangements are the long range goal with the original plant to be operated here is southern California.

I thank you, Dan and Bob for an opportunity to meet in person at your factory, introducing the H L stud line. I have scheduled a flight and plan to be in your facility Wednesday, April 22, 1998, at 8:30 AM.

I look forward to your initial comments following receipt of this package, developing the system and, of course, meeting all of you on the 22nd.

Respectfully,

Steelworks

Darrell G. Mever

DGM/lsw

Enclosures

c: Dan Lovelace, Robert Booth

American Machine

1801 E. Parkcourt Place Building E, Suite 200 Santa Ana, CA 92701 (714) 285-1004 Fax (714) 285-1369

April 6, 1998

Mr. Thomas Grossman Eckold A G CH - 7203 Trimmis Schweiz, Switzerland

RE: Steel I Joist / Mechanical Joining

Dear Mr. Grossman,

In Atlanta, this past October, we discussed the feasibility of your firm providing a Rotary / Wheel Clinching Machine to be installed on a Roll Form line.

Enclosed is a preliminary drawing showing the cross section of our floor joist, 12" \times 1 1/2" with basic specifications.

I am working with American Machine and Bradbury Company on the complete Roll Form Line. Their addresses and phone numbers are listed below.

The fastening system must be able to meet certain engineered load standards to ultimately satisfy I. C. B. O. (International Congress of Building Officials) and allow some method of periodic sampling and inspection.

Multiple plants or licensing arrangements are the long range goal with the original line to be operated here in southern California.

As soon as possible, review our request and advise feasibility, general configuration and dimensions.

I welcome your comments and also feel free to contact the aforementioned companies on the team. Your confidentiality is appreciated.

Darrell G. Meyer

DGM/lw Enclosures

cc: Craig Leber, USA Agent

Tel: (416) 264-5790 Fox:(416) 264-5632

3233 Eglinton Avenue East. Suite 1109 Toronto, Ontario MIJ 3N6

Mr. Mever

Following is a quotation for an uncoiler for your new roll forming project.

I have built many uncoilers for Kent Corporation in the past and now have an agreement to build both Kent's uncoiler as well as my own design which Kent will often purchase when their own design is oversized for a certain application. In this case I have spoken with Mark Costello at Kent Corporation and he had mentioned that he quoted an uncoiler and coil end welder for your new roll form project with American Machine.

Mark has said that you may buy the entry and coil handing equipment separate to save a little money. Mark also agrees that his uncoiler that he quoted may be way oversized for this application. Kent's uncoilers are for filling into high speed accumulators for the tube mill industry and can handle speed up to 1,800 feet per minute. The uncoiler I have quoted can also be used for accumulators and with the proper brake can handle 1,000 feet per minute. However, by buying direct from Sim-Vision you can save money. We have an excellent exchange rate for US currency and, therefore, we can offer an excellent product at a very competitive price. Please see the quotation.

Kent Corporation has supplied coil end welders to me in the past for entry lines I have built at previous companies. Kent offers the best coil end welding products available. We have had little to no service required in the years I have purchased their products.

I hope we can all work together on this project and many others in the future. I am sure you will be more than happy with our equipment.

Note: We can also quote the straightener and incorporate the Kent coil end welder into our entry at no additional cost. Please call if interested.

Kevin Simpson

President

3233 Eglinton Avenue Fast. Suite 1109 Toronto, Ontario MIJ 3N6

QUOTATION NO. 126-98

April 17, 1998

Mr. Darrell Meyer TRUSSTEEL 3822 East La Palma Ave. Anaheim, CA. 92807 Fax: (714) 630-0880 Phone: (714) 630-9620

SUBJECT: 10,000 lb. HYDRAULIC DOUBLE UNCOILER

Dear Darrell, We are pleased to offer the following

ITEM #1 10,000 LBS HYDRAULIC DOUBLE UNCOILER

MODEL # 10K-D-HYD
AS PER SPECIFICATION SHEET #11050

PRICE \$ 38,950.00

OPTIONAL

SHOCK ABSORBERS

PRICE \$ 2,600.00

NOT INCLUDING:

SHIPPING, INSTALLATION
MACHINE AND ELECTRICAL GUARDING
SET-UP AND ELECTRICAL INTERGRATION

Prices are quoted in US \$ dollars

The attached Condition of Sale Bulletin #5000 form is a part of our proposal

E.O.B.:

SIM-VISION, Toronto, Ontario

Terms and Condition

25% Downpayment with P.O. 25% After engineering approval 25% Upon 50% completion 15% Before shipping 10% Net 30 days

Delivery

Based on today's workload is approx. 14-16 weeks.

This quotation is valid for 60 days Looking forward to hearing from you.

Yours very truly,

Kevin Simpson

3233 Eglinton Avenue East, Suite 1109 Toronto, Ontario MIJ 3N6

UNCOILER

SPECIFICATION SHEET # 11050 6000 LB. DOUBLE

Model	- 10K-D-HYD
Number of Mandrels	- 2 1 1 1 1 1 1 1
Capacity	- 10,000LBS/SIDE
Maximum Outside Diameter	- 60°
Maximum Width	- 24"
Inside Diameter Expansion	- 17 ½" - 20 ½"
Expansion Type	- WEDGE
Expansion Power	- MANUAL
Number of Drum Segments	- 4
Rotation	- MANUAL
Rotation Locking	- HYD WEDGE TYPE
Hand of Operation	- T.B.A.
Power Supply (Control)	- T.B.A.
Loading Method	- C HOOK / LIFT TRUCK
Colour	- T.B.A.
Brake	- AIR DRAG 250 FPM MAX
Feed-Up Drive	- NOT REQUIRED
Hold-Down Roll	- NOT REQUIRED

SIM-VISION UNCOILERS

Standard Features

- 3000 lb. uncoilers have a link type mandrel
- · 6000 lb. and 10000 lb. uncoilers have a wedge type mandrel
- Maximum air pressure required is 80 p.s.i.
- Pneumatic disc brake with air regulator
- (2) two coil keepers per mandrel
- · Manual expansion, with (1) one adjusting wrench
- 60" full diameter backing plate
- (4) four leaf mandrels
- 3" sub-base on all double mandrel uncollers
- · Heavy duty, all steel welded construction
- · Timken bearings
- · Solid wedge locking on double uncoilers
- Standard colour are sky blue and safety orange
- 3 h.p. hydraulic unit with all hydraulic expansion uncollers (max. 800 psi)
- · Individual electrics (stand alone operating uncoilers)

Options

- 12" powered sideways travel
- 72" full backing plates
- · Non-powered pneumatic hold-down (free wheel only)
- . Hydraulic hold-down free wheel only (top of uncoiler / floor mounted)
- Hydraulic hold-down with feed-up roll (top of uncoller / floor mounted)
 Bolt on pads (four required) (16"-20"-24" inside diameters)
- Outboard coil retainer (60"-72" diameter coils) (hydraulic / electric)
- Electric loop control (driven uncoilers only)
- Over-running clutch (driven uncoilers only)
- 180 degree powered rotation (double uncoiler only)
 Shock absorber (two required) (double uncoiler only)
- Shock amoroer (two required) (double uncoiler only)
 High speed package (300-1000 ft/min), oversized air brake, shock absorbers
- and dual air pressure brake control
- Special colour paint

Driven Uncoiler Options

- · Hydraulic feed-up (3-5 fpm)
- Electric feed-up (3-5 fpm)
- Hydraulic full time drive (0-100 fpm)
- A.C.-V.F. full time drive (0-100 fpm)
 D.C. full time drive (0-100 fpm)
- . Jog forward and jog reverse controls
- Electrical control pendent

QUOTATION

National Machinery Exchange, Inc.

Wire and Metal Working Machinery
WEST COAST DIVISION
7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Tel: (562) 949-2446 Toll Free: 800-282-6285 FAX: (562) 942-0624 E-mail: nmachine@aimcomm.com

Darrell Meyer STEEL WORKS 3822 East La Palma Anaheim CA 92807 Date: 07/13/98 Ref#: 47236

Mach: 103754

Tel: 714-441-0447 FAX: 714-441-0947

We are pleased to offer the following for your consideration:

ONE (1) USED

18 STAND, YODER #M2-1/2 ROLL FORMER

SPECIFICATIONS:-

Previously used for construction panels

Hand of Operation: Left to Right Shaft Diameter: 3.250" Keyway: 3/4" W x 9/16" Thick Roll Space: 38"

Vertical Centers, (Manual Individual Micrometer Adjustment): 5-3/4" to 9"

Horizontal Centers: 18" Base to Center Line of Bottom Shaft: 8-1/2" Pass-Line: 38" - Approximate Equal Geared

EQUIPPED WITH: -

Push-Button Console and Controls (1) Box of Miscellaneous Tooling (List Available Upon Request) Currently Tooled for Construction Paneling

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION. DELIVERIES ARE CONTROKENT UPON PRIOR SALE AND DELAYS OCCASIONED BY STRIKES, FIRE, ACCIDENTS OR OTHER CRUSES REYOND DURCONTROL. WE WILL NOT BE RESPONSIBLE IF GOODS ORDERED PROVE TO BE ANNIFRINGEMENT AGAINST PATENT RIGHTS. SHIPMENT UBJECT TO BUYERS RISK.

OUOTATION

National Machinery Exchange, Inc.

Wire and Metal Working Machinery
WEST COAST DIVISION 7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Tel: (562) 949-2446 Toll Free: 800-282-6285 FAX: (562) 942-0624 E-mail: nmachine@aimcomm.com

Darrell Mever STEEL WORKS 3822 East La Palma Anaheim CA 92807

Date: 07/13/98 Ref#: 47236

Mach: 103754

Tel: 714-441-0447 FAX: 714-441-0947

PAGE 2

MOTOR DATA: -

40 HP, G.E., 550, 1775 RPM 1 HP Boston, 575/1725 RPM

OVERALL DIMENSIONS: - 8'W x 33'6"L x 6'6"H WEIGHT: - 38,550# Approximate

CONDITION: - Excellent

*** PHOTOS AVAILABLE ***

PRICE: \$89,500.00

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION. DELIVERIES ARE CONTINGENT UPON PRIOR SALE AND DELAYS OCCASIONED BY STRIKES, FIRE, ACCIDENTS OR OTHER CAUSES BEYOND OUR CONTROL WE WILL NOT BE RESPONSIBLE IF GOODS ORDERED PROVE TO BE AN INFIRINGEMENT AGAINST FATENT RIGHTS. SHIPHERT SUBJECT TO BUTCHER RISK.

OUOTATION

National Machinery Exchange, Inc.

Wire and Metal Working Machinery
WEST COAST DIVISION
7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Tel: (562) 949-2446 Toll Free 800-282-6285 FAX: (562) 942-0624 E-mail: nmachine@aimcomm.com

Darrell Meyer STEEL WORKS 3822 East La Palma Anaheim CA 92807 Date: 07/13/98 Ref#: 47234

Mach: 102129

Tel : 714-441-0447 FAX : 714-441-0947

We are pleased to offer the following for your consideration:

ONE (1) USED

YODER 11 STAND ROLL FORMER

11 Stands on a 12 Stand Base Unequal Gearing: Gear Driven Outboard Type - Right to Left Feed

 haft ' meter
 3"

 Spindle (sy Size
 3/4"

 Roll Space
 30"

 Roll Diameter
 10" Maximum

 Vertical Centers
 5" to 10"

 Horizontal Centers
 18"

 Center of Lower Roll to Base
 8.5"

 Height of Base
 24"

 Speed (Approx.)
 75 FFM

Equipped with:

Powered Entry Rolls
Powered Exit Rolls
Entry Guide & Exit Guide
Micrometer Screw - Vertical Adjustment
In-Base Coolant Reservoir
Individual Coolant Nozzles
Gusher 1/2 HP 3450 RPM

Weight (approx.) 20,000 Lbs. Overall Dim. <est> 285" l-r x 77" f-b x 57

PRICE: \$54.500.00

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION.
DELIVERIES ARE CONTINGENT UPON PRIOR SALE AND DELAYS OCCASIONED BY STRIKES, FRE, ACCIDENTS OR OTHER CAUSES BEYOND OUR CONTROL.
WE WILL NOT BE RESPONSIBLE IF GOODS ORDERED PROVET OBE AN INFRINGEMENT AGAINST PARTH RIGHTS. SHIPMENT SUBJECT TO BUYERS RISK.

OUOTATION

National Machinery Exchange, Inc.

Wire and Metal Working Machinery WEST COAST DIVISION 7805 Paramount Blvd., Pico Rivera, CA 90660 (USA)

Tel: (562) 949-2446 Toll Free: 800-282-6285 FAX: (562) 942-0624 E-mail: nmachine@aimcomm.com

800 631-4470 BOR DWYER

Darrell Meyer STEEL WORKS 3822 East La Palma Anaheim CA 92807

Date: 07/13/98 Ref#: 47235

Mach: 101816

Tel: 714-441-0447 FAX: 714-441-0947

We are pleased to offer the following for your consideration:

ONE (1) USED

YODER 15 STAND ROLL FORMER

ARBOR DIAMETER 2-1/2" MAXIMUM WIDTH BETWEEN HOUSINGS 27-1/2" HORIZONTAL DISTANCE BETWEEN CENTERS 20-1/2" MAXIMUM VERTICAL DISTANCE BETWEEN CENTERS 10.8" MINIMUM VERTICAL DISTANCE BETWEEN CENTERS 6"

EOUIPPED WITH:

ADJUSTABLE ENTRY EDGE GUIDE SIDE PLATES MOUNTED ON IDLER ROLL STAND EDGE GUIDE ROLL STAND ADJUSTED VIA HAND

CRANK SCREW

OUTBOARD HOUSING BASES BOLTED TO T-SLOTS IN MACHINE BED TO HOLD THEM INTO POSITION DIRECTION OF FLOW: LEFT TO RIGHT 40 KW 3/230-380/50 (1450 RPM) 133/77 AMP MOTOR

ELECTRIC BRAKE

PRICE: \$59,500.00

CHART DO

"If It's Machinery, We Have It!"

THIS QUOTATION IS FOR IMMEDIATE ACCEPTANCE AND SUBJECT TO CHANGE WITHOUT NOTICE. CLERICAL ERRORS ARE SUBJECT TO CORRECTION. DELIVERIES ARE CONTINENT UPON PRIOR SALEANDE LAYS OCCASIONED BY STRIKES, REFA. ACCIDENTS OR OTHER CAUSES BEYOND OUT CONTROL. WE WILL NOT BE RESPONSIBLE IF GOODS ORDERED PHOVE TO BE AN IMPRINDEMENT AGAINST FATENTRIONTS. SHIPMENT SUBJECT TO BUYERS RISK.

LIVE ROLLER CONVINA CONVENDE PETT S-PARUMATIC STOPS INCLIANT STACKER - GRAVITY

The second secon

EVUTETM 2

THE LATEST IN QUALITY USED FABRICATING & CHIP MAKING MACHINERY . ALL MAJOR BRANDS BUY . SELL . TRADE

CRAFTSHAN DOOR

7/29/98

ATTN: DARREZL MEYER

We are pleased to offer the following for your consideration:

ONE (1) USED

17 Stand ARDCOR Model S10-2-1/2-33 Roll Former

SERIAL NUMBER: 90-052

AGE: 1990

SPECIFICATIONS:

17 Stand on 18 Stand Base Hand of Line: Right to Left

Capacity: .048" or 18 Ga. Line Speed: 60 FPM (Via Pulley Drives)

Spindle Diameter: 2-1/2"

Roll Space: 33" Horizontal Distance: 10"

Vertical Adjustment: 4" - 5-1/4"

Base to Centerline of Lower Spindle: 5-3/4" Passline: 40"

Spindle Gear Ratio: 1:1 (Equal Geared) Drive Reduction Ratio: 12:1

Key Way Size: 3/8" x 3/16"

EQUIPPED WITH: Individual Gear Box Drives

Air Clutch Micrometer Adjustment on Rolls

(3) Side Pass Guides Push Button Controls Electrical Control Panel Coolant Pump

Motor Data: 40 HP, 220/440/3/60 - 1200 RPM Overall Size: 17'6" L x 6' W x 52" High

Weight: 18,000 Lbs. Total Condition: VERY GOOD

**PHOTO & CATALOGUE CUTS AVAILABLE

PRICE: \$84,500.00

SMET

THANK YOU RICK KRUGER

THE LATEST IN QUALITY USED FABRICATING & CHIP MAKING MACHINERY . ALL MAJOR BRANDS BUY . SELL . TRADE

CRAFTSHAN DOOR

7/29/48

OFFER TO SELI

17 Stand Yoder Roll Former

Serial No.: 7103-677 Year: 1977

Unequal Geared
36" Roll Space - T - SLOTTED
4" - 8" Vertical Adjustment
15" Horizontal Center Dist.
2 1/2" Spindle Diameter
Speed: 300 FPM
40 HP Drive, 220/440V, 1740 RPM
Air clutch/Brake
Coolant System
10 Spare Shafts

Base dimension: 31" High x 64" Wide x 23' Long

PRICE: U.S. \$ 99,500.00

RICK KRUGOR

THE LATEST IN QUALITY USED FABRICATING & CHIP MAKING MACHINERY . ALL MAJOR BRANDS BUY . SELL . TRADE

CRAFTSMAN DOOR ATTO: DARRELL MEYER

7/29/98

Gentlemen: We are pleased to offer, subject to prior sale and conditions on back:

** ONE(1) PRE OWNED PEARSON MODEL 16-2.5-40 ROLL FORMING LINE **

Serial Number:

R223

Date of Manufacture:

250.

NUMBER OF STANDS: ARBOR (SHAFT) DIAMETER: 18 2 1/2"

ROLL SPACE: HORIZONTAL SPACE - C TO C BETWEEN STANDS: 30" 14"

VERTICAL CENTERS:

14"

SPEED:

Weight:

5" - 7" 25/36/47/57/67/82/86/123 FPM

Equipped with:

EOUAL GEARING

REMOTE OPERATOR CONTROLS PENDANT

BASE DRILL AND TAPPED FOR ROLL SPACE ADJUSTMENT ON 8" INCREMENTS EGAN 20,000# MOTORIZED UNCOILER - HYDRAULIC EXPANSION - 72" OD X 40"

YODER P60 CUT OFF PRESS - 3" STROKE - 32" X 16" BED AREA - AIR CLUTCH

NOTE: MACHINE IN PLANT UNDER POWER UNTIL 31 MAY 1998

MOTOR: Dimensions of Machine: 40 HP., 3/60/220-440

48'(LR) X 60"(FB) X 72"(H) 16000#

Price - FOB Open Top Truck - , PLANT LOCATION

\$112,500.00

THANK-you

RICK Klaugor

CK ON DIE DUNG

MACHINERY DEALERS MATIONAL ASSOCIATION

Sterling Machinery Exchange WEB:WWW.sterlingmachineryexch.com 9310 GARVEY AVE SOUTH EL MONTE, CA 91733

BILL

Phone: (626) 444-0311, Fax: (626) 443-9588

Machine No: 5915

STERLING MACHINERY EXCHANGE IS PLEASED TO OFFER FOR YOUR CONSIDERATION:

ONE Preowned HEIM STRAIGHT SIDE PRESS MODEL S150, SERIAL NO 1740 /976

CAPACITY: 150 TON X 4 IN
STROKE 4"
BED AREA (L-R, F-B) 78" X 42"
SHUT HEIGHT 12."
RAM ADJUSTMENT 6"
STROKES PER MINUTE 45
WINDOW SIZE (L-R, T-B)
DIMENSIONS (L X W X H) 95" X 63" X 138"
WEIGHT 17,500 LBS

EQUIPPED WITH:

42" X 60" T-SLOTTED BOLSTER PLATE
AIR CLUTCH & BRAKE
MOTORIZED RAM ADJUSTMENT
DUAL COUNTER BALANCE
SURGE TANK
AUTO LUBE
INCH-SINGLE-CONTINUOUS SETTING
TOP STOP
DUAL PALM STATION
HORSEPOWER: 15

42,500 kills

TEMPORARY SPECIFICATIONS SUBJECT TO VERIFICATION ALL QUOTATIONS SUBJECT TO PRIOR SALE

STERLING MACHINERY EXCHANGE

BY:		
Page	of	

#3 , 57, 500

Sterling Machinery Exchange WEB:WWW.sterlingmachineryexch.com 9310 GARVEY AVE SOUTH EL MONTE, CA 91733

Phone: (626) 444-0311, Fax: (626) 443-9588

Machine No: 5837

STERLING MACHINERY EXCHANGE IS PLEASED I	O OFFER FOR YOUR CONSIDERATION:
ONE Preowned DURANT DOUBLE SIDED COIL RE MODEL HLDD-20, SERIAL NO 59511182	EL
CAPACITY: 4000 LB X 20 IN	
MAX WEIGHT EACH SIDE MAX WIDTH INTERNAL DIAMSTER RANGE MAX OUTSIDE DIAMSTER SINDLE SPEEDS (VARIABLE) DIMENSIONS (L X W X H) WEIGHT (APPROX.) EQUIPPED WITH: (12) KEEPERS D.C. VARIABLE DRIVE MANUAL ADJUSTMENT VOC SPEED REFERNCE SIGNAL JOG, FORMARD, REVERES SWITCH **MOZE: THIS MACHINE WAS NEVER USED JUST HORSEPOWER: 2	
	\$14,500.00
TEMPORARY SPECIFICATIONS SUBJECT TO ALL QUOTATIONS SUBJECT TO PRIOR SAI) VERIFICATION E.E. STERLING MACHINERY EXCHANGE
	BY:

Web Site: 1.tpl/www.sterlingmachineryexch.com

RICK L. KRUGER General Manager

MACHINERY EXCHANGE

TEL 323-283-4111
TEL 626-444-0311
FABRICATING & CHIP MAKING MACHINERY
FAX 626-443-9588
ALL MAJOR BRANDS BUY • SELL • TRADE
9310 GARVEY AVENUE, SOUTH EL MONTE, CALIFORNIA 91733

KECK SOUMET ★

POE

FOTO KECK

626 579-3890

DESIGNER

STERLING 7-98

STRUCTURAL EVALUATION OF STEELWORKS' Steell Joist TM

Prepared for

USS/POSCO 900 Loveridge Road Pittsburg, CA 94565

and

SteelWorks 3822 E. La Palma Avenue Anaheim, CA 92807

by

NAHB Research Center, Inc. 400 Prince George's Boulevard Upper Marlboro, MD 20774-8731

June 1999

America's Housing Technology and Information Resource

STRUCTURAL EVALUATION OF STEELWORKS' SteelIJoistTM

Prepared for

USS/POSCO 900 Loveridge Road Pittsburg, CA 94565

and

SteelWorks 3822 E. La Palma Avenue Anaheim, CA 92807

by

NAHB Research Center, Inc. 400 Prince George's Boulevard Upper Marlboro, MD 20774-8731

June 1999

Acknowledgements

This report was prepared by the NAHB Research Center for USS/POSCO. The Research Center expresses great appreciation to the sponsor of this work, USS/POSCO, in view of its relevance to more affordable design and construction of residential and light commercial floor systems using cold-formed steel framing. Special appreciation is extended to Ken Vought of USS/POSCO and Darrell Meyer of SteelWorks for their assistance throughout the project.

The principal author and investigator of this report is Nader R. Elhajj, P.E. Technical review was provided by Jay Crandell, P.E. Lab support was provided by Christian Jacobs and administrative support was provided Lynda Marchman.

Table of Contents

Acknowledgements				
1.0 Introduction				
2.0 Experimental Approach				
3.0 Test Results				
4.0 Analysis of Test Data	1			
5.0 Summary, Conclusion, and Recommendations	1			
6.0 References	1			
Appendix A - Test Results				
Appendix B - Safety Factor Calculation				
Appendix C - Test Photographs				
Appendix D - Test Plots				
Amendix E. Metric Conversion				

1.0 Introduction

Over the past several years, the materials used to construct the frame of a home have been subject to various forces that have contributed to upward pressures on home prices. Unpredictable fluctuations in the price of framing lumber, as well as concerns with its quality, have caused builders and contractors to seek alternative building products.

Cold-formed steel (CFS) joists have been used where large spans are called for and where engineered wood joists are too costly to use. However, one of the major barriers to the use of CFS floor joists is the impact it has on placement of large waste drains and ductwork installed in the floor system. Current requirements limit maximum hole (opening) sizes in CFS joists to about 2.5-inches (6.35 cm) in diameter. This limitation can accommodate short plumbing runs and electrical wiring, but restricts the use of larger and longer septic drains and ductwork.

The SteelIJoist™ provides the builder with a truss shaped joist with lengths up to 40 feet that can easily accommodate plumbing and waste lines as well as HVAC installation. The SteelIJoist™ is fabricated by a continuous roll forming process with punched openings, formed flanges, and mechanically fastened chord sections. The top and bottom chord sections of a SteelIJoist™ have pentagonal shapes that provide flat sides for attachment to end caps, hangers and brackets. Each SteelIJoist™ has trapezoidal shaped folded web openings at 24 inches on center, along the entire length of the joist that can accommodate up to 6-inch diameter passage for utilities. A web foldout further stiffens the web between the trapezoidal openings. The joist system comes with a predesigned and precut end cap that fits on either end of the joist. The end cap is used to attach the SteelIJoist™ to the rim track. The SteelIJoist™ comes in one size that is 12'-inches deep with two thicknesses, 18 and 20 gauge, as shown in Figure 1.

Some of the practical benefits of this innovation in the design of CFS floor joists are as follows:

- job site flexibility (i.e. constructability);
- allowance for larger HVAC ducts, plumbing, and electrical systems in the floor cavity;
- · elimination of shrinkage problems occasionally experienced with wood frame floors;
- capability of long spans;
- light weight (approximately 2.8 lb/ft);
- may be cut at any dimension using end caps;
- factory end caps (two types) that are easy to attach; and
- · factory rim tracks (bands) with end caps attached available.

The objective of this test program is to determine the structural performance of 18 gauge and 20 gauge, 12-inches deep SteelDoist^{7M}. Joist serviceability issues (such as vibration and noise) are not addressed in this report.

Figure 1 - SteelLJoist™ Detail

2.0 Experimental Approach

Test Plan and Specimens

A total of 39 SteellJoistTM joist assemblies and components were tested in a variety of configurations as shown in Table 1. All steel materials had a minimum specified tensile strength of 50 ksi that was verified by tensile tests in accordance with ASTM A370 [1]. Tensile tests were performed on a sample of three joists for each joist thickness. Base steel thicknesses were measured in accordance with ASTM A90 [2]. Mechanical properties were based on coupons cut longitudinally from the center of the specimen's web.

Table 1

SteelIJoist™ Test Plan							
SteelIJoist™ Web Depth (in)	Thickness (Gauge)	Yield Strength (ksi)	Span Length (ft-in)	Test No.	Planned Loading and/or Failure Mode		
12	- 20	50	2'-0"	1,2	Shear		
12	, 20	50	10'-0"	3,4	Combined Shear & Bending		
12	, 20	50	18'-0"	5,6	Bending		
12	18	50	2'-0"	7,8	Shear		
12	18	50	10'-0"	9,10	Combined Shear & Bending		
12	' 18	50	18'-0"	11,12	Bending		
12	20	50	2'-0"	13,14	Shear with end caps		
12	18	50	2'-0"	15,16	Shear with end caps		
12	20	50	6'-0"	17	Mid-span loading		
12	20	50	6'-0''	18	Mid-span loading w/Drilled clinches		
12	20	50	6'-0"	19,20	Mid-span loading w/Cut webs		
12	18	50	6'-0''	21	Mid-span loading		
12	18	50	6'-0"	22	Mid-span loading w/Drilled clinches		
12	18	50	6'-0"	23,24	Mid-span loading w/Cut webs		
12	18	50	8'-0"	25	8'-0" Rim Joist - Two point loading		
12	18	50	6'-0"	26,27	6'-0" Rim Joist - Two point loading		
End Cap	18 .	50	1'-0"	28,29,30	Compression load - Unstiffened end ca		
End Cap	18	50	1'-0"	31,32,33	Compression load - Stiffened end cap		
Coupon	20	50	0'-8''	34,35,36	Mechanical properties		
Coupon	18	50	0'-8''	37,38,39	Mechanical properties		
	Total No. of	tests		39			

Test Procedure

The specimens were tested in the NAHB Research Center's Universal Testing Machine (UTM) using the test method in ASTM D198-97 [3]. The ASTM standard requires specimens to be mounted in a testing apparatus capable of applying measurable loads at a constant load rate.

The cross-head of the UTM was fitted with an apparatus capable of applying the total load at one point or two points equidistant from the reactions. The locations of the two point loads and end reactions divide the specimen (bending test) into three equal sections. The load was applied by the UTM and transmitted to the load plates by a cross beam. The following information was recorded and reported for each test:

- Span length (see Table 1),
- · Load, support mechanics, and any lateral supports used,
- · Rate of load application,
- Actual physical and mechanical properties, including thickness, yield strength, ultimate strength (coupon tests), and a statistical measure of variability of these values (see Tables A1, A2, and A3 of Appendix A),
- · Description of observed failure mode, and,
- Ultimate loads and deflections and a statistical measure of variability of these values (see Tables A4 and A5 of Appendix A).

When thin steel bending members with web openings are subjected to loads, three failure modes may occur: (a) bending, (b) shear, (c) web crippling. Since end caps are used for each joist, web crippling failure modes has not been investigated in this report. Therefore, joists were tested to induce shear failure, bending failure, and combined shear and bending interaction failure.

Shear Test

The purpose of this test was to investigate the behavior of a SteelIJoistTM when subjected to a constant shear force. Two different configurations were used for shear tests. The first set of tests was conducted without end caps installed at the ends of the each specimen. End caps were installed at the end of each specimen for the second set of tests to preclude web-crippling failure. Short span members were used to minimize the influence of bending. Each test specimen utilized a single joist, simply supported, with a 24-inch long span. Rollers and bearing plates were used at each end. The beam was restrained to prevent rotation. In addition, lateral supports braced the central portion of the joist to prevent lateral movements at mid span. A concentrated load was applied near the joist support, as shown in Figure 2. A deflection gage was placed under the joist to measure the vertical deflection of the test specimen at mid-span.

Figure 2 - Shear Test Setup (with end caps)

Bending Test

The purpose of this test was to investigate pure bending capacity of a Steel∐oist™ stabilized against lateral-torsional buckling. To stabilize the specimen against lateral-torsional buckling, each test specimen consisted of two Steel∐oist™ sections inter-connected by 23/32-inch thick oriented-strand-board (OSB) and 5/8- inch thick gypsum board strips. The 6-inch x 16-inch x 1/2-inch OSB strips were spaced at 24-inches on center and fastened to top flanges with #10 self-drilling, tapping screws (two screws per flange). The 5/8-inch gypsum board strips were also spaced at 24-inches on center and fastened to the bottom flanges with #10 self-drilling, tapping screws (two screws per flange). The test set up is shown in Figure 3. End caps were used at the end of the assembly to prevent the joists from moving laterally and rotating. Rollers and bearing plates were used at each end of the assembly. Two concentrated loads were applied at third point locations of each specimen. This loading arrangement provided a pure moment region in the central portion of the beam while the two end sections experienced a linearly increasing bending moment with increasing distance from the ends. A deflection gage was placed under the assembly at mid-span to measure the vertical deflection of the test specimen.

Figure 3 - Bending Tests Setup

Combined Shear and Bending (Interaction) Test

The purpose of this test is to investigate the behavior of a single SteellJoist™ subjected to a combined shear force and bending moment. Each test specimen was tested as a continuous two-span beam subjected to two point loads. The continuous joist length was 10-feet, with each span 60-inches long. Point loads were applied at a distance of 30-inches from each end. Rollers and bearing plates were used at each end and a bearing plate was used at mid-span. End caps were used at the both ends to prevent the beam from moving laterally or rotating. In addition, lateral supports were attached to the central portion of the beam to prevent lateral-torsional buckling of the test specimens. Deflection gages were placed under each point load to measure the vertical deflection of the test specimen. The combined shear and bending test configuration is shown in Figure 4.

Figure 4 - Combined Bending and Shear Test Setup

Mid-Span Loading with Cut Webs or Drilled Clinches

The top and bottom chords of each SteelIJois (Took are typically clinched at 3-inch on center. A six-foot joist specimen was tested with every other clinch drilled out to investigate the impact of increasing the spacing between clinches. Tests were also conducted to investigate the impact of removing one of the vertical folded webs along the beam except at the ends.

Tests were conducted utilizing single simply supported joists. Rollers and bearing plates were used at each end. End caps were used at the ends to prevent the joist from moving laterally or rotating. In addition, braces were attached to the central portion of the joist. The test configuration is shown in Figure 5.

Figure 5 - Mid-span Loading for Drilled Clinches and Cut Webs Test Setup

Rim Joist Test

Two rim joist configurations were tested to determine their capacity in resisting gravity loads. The purpose of these tests is to investigate the potential use of the rim joists as headers.

One 8-foot and two 6-foot simply supported rim joist assemblies were tested. Rollers and bearing plates were used at each end. Partial SteellJoist™ were fastened to the rim joist at 24-inches on center as shown in Figure 6. The rim joist assembly was stabilized against rotation and lateral buckling by using lateral supports. Point loads were applied at a distance of 1/3 span from each end.

Figure 6 - Rim Joist Test Setup

End Cap Test

All end caps used in the tests were 43 mil (18 gauge) thick. Two end cap configurations were tested to establish their compressive strength. The two configurations are described below:

Standard end cap consisting of a U-shaped section with return lips bent towards the
outside of the U-shape as shown in Figure 7.

 Stiffened end cap with intermediate stiffeners along the flanges of the U-shaped section as shown in Figure 8.

Figure 7 - Standard End Cap

Figure 8 - Stiffened End Cap

3.0 Test Results

Tensile Coupon Tests

The mechanical properties of the steel used for the SteelIJoist TM specimens were established by standard tensile coupon tests as described previously. Table A1 (Appendix A) lists the tensile test data for yield strength (F_y), ultimate tensile strength (F_u), uncoated steel thickness (t) and percent elongation in 2-inch (5.1 cm) gage length. Mean property values shown in Table A2 of Appendix A were used for analytical purposes.

Shear Tests

Four SteelIJoist™ were tested for shear strength. The results are tabulated in Table A4 of Appendix A. Table 2 shows the average shear capacity at peak loads per web, V_t.

Table 2 Shear Test Results

SteelIJoist™ Size ¹	Span Length (in.)	V _t (lb.)
12 x 33	24	1,402
12 x 43	24	2,371
12 x 33 w/end caps	24	3,246
12 x 43 w/end caps	24	4.556

Refer to Table 1 for actual joist dimensions.

Bending Tests

A total of four SteelIJoistTM specimens were tested for bending strength. The results are tabulated in Table A4 of Appendix A. Joist mid-span deflections were also recorded and tabulated in Table A5 of Appendix A. The average ultimate capacity, per joist, at peak load, $P_{u(test)}$, for each joist type is recorded in Table 3. Table 3 also lists the average ultimate moment capacity, M_t , for each test specimen computed on the basis of the average ultimate peak load, $P_{u(test)}$.

Table 3

Bending Test Results						
SteeIIJoist™ Size ¹	Span Length (in.)	P _{u(test)} (lb.)	Deflection @ P _{u(test)} ² (in.)	M _t (in-lb)		
12 x 33	216	2,100	1.44	75,600		
12 x 43	216	2,894	1.76	104,184		

Refer to Table 1 for actual joist dimensions.

Deflection measurements were taken at mid-span.

Combined Shear and Bending Tests

A total of four SteelHoistTM specimens were tested and failed in combined shear and bending. The results are tabulated in Table A4 of Appendix A. Table 4 shows the average ultimate capacity at peak load, $P_{u(test)}$, the ultimate shear load, V_t , computed as $(0.69P_{u(test)}/2)$, and the ultimate bending moment, M_t , computed on the basis of V_t .

Table 4

	Combined Shear and Bending 1 est Results							
	SteelLJoist™ Size ¹	Span Length (in.)	P _{u(test)} (lb.)	V _t (lb.)	M _t (in-lb)			
1	12 x 33	120	4,124	1,423	23,136			
١	12 x 43	120	5,604	1.933	31.438			

Refer to Table 1 for actual joist dimensions.

Mid-Span Loading with Cut Webs or Drilled Clinches Tests

A total of one 6-foot, 18 gauge and one 6-foot, 20 gauge SteelIJoistTM were tested as simply supported spans subjected to a point load at mid-span to establish a base line capacity. Another 6-foot, 18 gauge and 6-foot, 20 gauge SteelIJoistTM specimens were tested with every other clinches drilled out. Two 6-foot, 20 gauge and two 6-foot, 18 gauge SteelIJoistTM specimens were also tested with the webs between the trapezoidal openings cut out. The webs at the ends of the joists remained uncut. The results are tabulated in Table A4 of Appendix A. Table 5 shows the average ultimate capacity at peak load, $P_{u(est)}$, and the ultimate bending moment, M_{t} , computed on the basis of $P_{u(est)}$.

Table 5
SteelLJoist™ with Drilled Clinches and Web Cut Outs Test Results

SteelIJoist™ Size ¹	Span Length (in.)	Joist Condition	P _{u(test)} (lb.)	Deflection @ Pu(test) 2 (in.)	M, (in-lb)
12 x 33	72	Master Joist	2,162	0.350	38,916
12 x 43	72	Master Joist	3,468	0.340	62,424
12 x 33	72	Drilled Clinches	2,052	0.310	36,936
12 x 43	72	Drilled Clinches	3,277	0.380	58,986
12 x 33	72	Webs Cut Out	2,065	0.345	37,170
12 x 33	72	Webs Cut Out	3,178	0.378	57,204

¹Refer to Table 1 for actual joist dimensions.

²Deflection measurements were taken at mid-span.

Rim Joist Tests

A total of three SteelIJoistTM rim joist specimens were tested for bending strength. The results are tabulated in Table A4 of Appendix A. Joist mid-span deflections were recorded and tabulated in Table A5 of Appendix A. The average ultimate capacity at peak load, P_{utest} , for each rim track is recorded in Table 6. Table 6 also lists the average ultimate moment capacity, M_t , for each test specimen computed on the basis of the average ultimate peak load, P_{utest}).

Table 6
Rim Track Test Results

Rim Joist Size	Span Length (in.)	P _{u(test)} (lb.)	Deflection @ Pu(test) (in.)	M _t (in-lb)
12 x 43	96	2,333	0.440	37,328
12 x 43	72	4,426	0.355	53,112

¹Deflection measurements were taken at mid-span.

End Cap Tests

A total of six SteellJoistTM end caps were tested for compressive strength. The results are tabulated in Table A4 of Appendix A. The average ultimate capacity at peak load, $P_{w(test)}$, for each end cap is recorded in Table 7.

Table 7
End Cap Compression Test Results

End Cap Thickness (mil)	End Cap Configuration	End Cap Height (in.)	P _{u(test)} (lb.)
43	Unstiffened	12	11,323
43	Stiffened	12	17,789

Failure Modes

Shear

The maximum shear stress occurs at mid-depth of the web. Where web material is removed as for a web opening, a stress concentration is created at the corners of the opening that typically creates premature shear failure of the SteelIJoist™. This failure mode, however, was not observed in the shear tests. In all specimens tested for shear, the failure mode was not pure shear failure. Failure occurred mainly due to web buckling, flange curling, web rotation, and/or stiffener buckling. This is a clear indication that SteelIJoist™ joists will not typically fail in shear.

Bending

For bending test specimens, the failure pattern is defined by either local buckling or mixed local and lateral-torsional buckling. The lateral-torsional buckling mode would typically result in premature web failure of test specimens. The test specimens did not show signs of lateral-torsional buckling. All test specimens failed in local buckling and yielding. The OSB and gypsum board strips provided adequate lateral strength to prevent the lateral-torsional mode of buckling. No deformation of the web openings was observed at failure of any of the specimens. Failed specimens were not severely deformed.

Combined Bending and Shear

For test specimens that failed by the combined shear and bending behavior, the failure pattern occurred as a bending type failure at mid-span and a diagonal shear failure between the load points. These two failure modes occurred simultaneously as the ultimate load was achieved. Folded edges at web openings or web stiffeners did not show any deformation at failure loads.

Mid-Span Loading with Cut Webs or Drilled Clinches

The failure pattern for these specimens was similar to the joists tested and failed in bending. Beam specimen with drilled clinches showed slight separation between the clinched sheets of the steel that are located within a close proximity to the loading plates. Deformation or failure of the clinches was not observed.

Beams with cut webs also exhibited a similar failure pattern to those beams tested for bending loads. Failure occurred by buckling in the webs within a close proximity to the loading plates.

Rim Joists

The 8-foot rim-joist specimen failed prematurely due to warping and lateral torsional buckling. The ends were

End Caps

All end-caps failed in column buckling at approximately mid-height.

4.0 Analysis of Test Data

The SteelIJoist™ performed extremely well in all tests. The bending, shear, and combined shear and bending strengths are well above those of a typical C-shaped 12-inch joist. Mid-span deflections were also within the recommended deflection limit (L/360 or L/480) that is usually used in designing residential and light commercial buildings.

Shear tests showed that a SteelUoist™ would perform better with end caps fastened to the ends of the joists. End caps are also necessary to eliminate potential failures due to web crippling.

Reducing the Number of Clinches

Tests with every other clinch drilled out resulted in a SteelDioist™ ultimate capacity that is within 5 percent of that of a standard SteelDioist™. Therefore, increasing the spacing between clinches will have negligible impact on the overall performance of the SteelDioist™.

Cutting the Webs between Openings

Tests with webs between openings cut out (except for the end webs) resulted in a SteelIJoist™ ultimate capacity that is within 5 percent of that of a SteelIJoist™ without web cut outs. Therefore, cutting the webs along the length of a SteelIJoist™ will have negligible impact on the overall performance of the SteelIJoist™.

Changing Number of Screws

Tests performed on SteelIJoistTM specimens with end caps fastened with 3 ± 10 screws instead of 5 ± 10 screws resulted in a capacity that is similar to those with 5 ± 10 screws. Therefore, end caps fastened to a SteelIJoistTM with 3 ± 10 screws should perform its intended function adequately.

SteelIJoistTM Allowable Loads

Table 8 summarizes the allowable tested values (using a factor of safety of 2.0 as calculated in Appendix B).

Table 8

SteelIJoist™ Size¹ (Web depth x thickness)	Failure Mode ²	Tested Ultimate Load ³ lb.	Allowable Tested Load lb.	
12 x 33	Shear	1,402	701	
12 x 33	Shear w/end caps	3,246	1,623	
12 x 33	Bending	2,100	1,050	
12 x 33	Shear & Bending	4,124	2,062	
12 x 43	Shear	2,371	1,186	
12 x 43	Shear w/end caps	4,556	2,278	
12 x 43	Bending	2,894	1,447	
12 x 43	Shear & Bending	5,604	2,802	

Refer to Table 1 for actual joist dimensions.

³Values are based on an average of two tests (minimum) per configuration.

*The allowable tested load is calculated as the tested "ultimate" load divided by a factor of safety of 2.0 (refer to Appendix B).

Table 9 provides the Steel∐oist™ maximum allowable spans for residential floors. The spans are based on a maximum uniform live load of 30 and 40 psf and maximum floor dead load of 10 psf.

Table 9
Allowable Spans for SteelLloist™ Floor Joists¹

SteelIJoist™ Depth	Steel ThicknessGa		30 psf Li	ive Load			40 psḟ I	ive Load	
Беріп	uge	Stee	lIJoist™	O.C. Spac	oacing SteellJoist™ O.C. S		O.C. Spa	pacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
12	20	25'-1"	21'-9"	19'-11"	17'-9"	22'-5"	19'-5"	17'-9"	15'-11"
12	18 .	29'-6"	25'-6"	23'-4"	20'-10"	26'-4"	22'-9"	20'-10"	18'-8"

All steels shall have minimum yield strength of 50 ksi.

5.0 Summary, Conclusion and Recommendation

The objective of this investigation was to study the behavior of SteelIJoist™ floor joist members with trapezoidal web openings with folded edges subjected to shear, bending, and combined shear and bending. The trapezoidal web opening had folded edges that stiffened the web around the opening. A total of 39 tests were performed. Based on the findings of this study, the following conclusions and recommendations regarding the behavior and installation of SteelIJoist™ floor joists with relatively large, stiffened openings (i.e. folded edges) under gravity loads can be made:

 The presence of trapezoidal web openings with folded edges did not reduce the ultimate shear, bending, and combined shear and bending strengths. Actually, the folded edge web openings resulted in an increase in the strength of joist specimens investigated in this study.

- The presence of trapezoidal web openings did not promulgate any failure. All observed failures took place at a distance from the openings. None of the web openings experienced any significant deformation under any of the loading conditions examined.
- Shear strength was not a controlling factor in the design of SteeIIIoist™ joists with web
 openings as identified in this report. Pure shear failure did not occur in any of the tested
 specimens.
- SteelIDisit™ joists with trapezoidal web openings (with folded edges) can be safely used in residential and light commercial construction to accommodate long septic drains, plumbing runs, routing of ductwork, and other trade installations.
- SteelIJoist™ joists provide clear unsupported spans that exceed those for typical C-shaped joists by approximately 25%. This would allow the end user to drop at least one gauge for a particular span. The SteelIJoist™ joist allows the end user to utilize lighter gauge steels that are not available in regular C-shaped joists. Using lighter gauge steels would result in lower material and labor costs (especially fastening time).
- The on center spacing between the clinches can be safely increased to 4 or 5-inches without any degradation in the strength of the joist.
- One web of each trapezoidal opening can be safely removed without any degradation in the strength of the joist (webs should not be removed at either end of the joist).
- The number of screws connecting the end caps to the SteelJJoist™ ends can be reduced to 3.#10 screws without degrading the strength of the joist. Further reduction in the number of screws per side should be investigated.
- The top and bottom chord flange widths of 1-1/2" could cause a problem for fastening
 sheathing and drywall to the joist. A minimum of 1-5/8" flanges should be specified. This
 would give the framers more flat surface to accommodate two sheets of sheathing and
 would eliminate potential concerns by end users. This change would also make the
 SteelIJoist™ flange width similar to that specified for typical C-shaped joists.
- A 10-inch deep SteelIJoist^m is expected to behave as well as or better than the 12-inch deep joist tested in this report. This will result in tremendous savings in steel and provides an additional 2-inches of headroom.
- Web openings foldouts have sharp edges. This would cause significant concerns to subtrade installations. Sharp edges should be smoothed out.
- The end-cap connection to the joist requires an added effort that could impact the
 efficiency or cost-effectiveness of the SteelIDoistTM. A better connection detail utilizing
 the rim track should be investigated.

ΙÒ

6.0 References

- ASTM A 370- 1997a, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, American Society for Testing and Materials (ASTM), West Conshohocken, PA.
- [2] ASTM A 90/A90M-1995, Standard Test Method for Weight [Mass] of Coating on Iron and Steel Articles with Zinc or Zinc-Alloy Coatings, American Society for Testing and Materials (ASTM), West Conshohocken, PA.
- ASTM D 198-1997, Standard Test Methods of Static Tests of Lumber in Structural Sizes.
 American Society for Testing and Materials (ASTM), West Conshohocken, PA.

APPENDIX A

TEST RESULTS

Table A1

		riiysica	ii and wee	nanicai r rop	ci ucs oi	est opecime	10	
SteelLJoist TM Size (web depth x thickness)	Web Size (in)	Top Chord Width (in)	Bottom Chord Width (in)	Thickness (mil)	Yield Point ¹ (ksi)	Tensile Strength ¹ (ksi)	Uncoated Thickness ² (in.)	Elongation ³ (percent)
12x33	12	1.5	1.5	33	51,025	61,560	0.0345	15.1
12x33	12	1.5	1.5	33	52,340	61,395	0.0347	16.2
12x33	12	1.5	1.5	33	51,780	61,508	0.0348	15.9
12x43	12	1.5	1.5	43	52,220	61,468	0.0465	14.8
12x43	12	1.5	1.5	43	51,980	62,120	0.0468	16.1
12x43	12	1.5	1.5	43	51,800	61,030	0.0465	15.8

Table A2 Mean Physical and Mechanical Properties of Test Specimens^{1,2}

SteelIJoist TM Size (web depth x thickness)	Yield Point (ksi)	Tensile Strength (ksi)	Uncoated Thickness (in.)	Elongation (percent)
12 x 33	0.0347	51,715	61,488	15.7
12 x 43	0.0467	52,000	61.539	15.6

¹Values shown represent the mean of three tests per specimen.

Table A3 Standard Deviation and Coefficient of Variation of Physical and Mechanical Properties

G: 177 1 -794 G1	Standard Deviation (σ)				
SteellJoist TM Size (web depth x thickness)	Yield Strength (ksi)	Tensile Strength (ksi)	Uncoated Thickness (in.)		
12 x 33	660	84	0.568		
12 x 43	211	549	0.681		
Stool LoietIM Size	Coefficient Of Variation (COV) 1				
Steell loist ^{1M} Size	0	circum or running	(601)		
SteelIJoist TM Size (web depth x thickness)	Yield Strength	Tensile Strength	Uncoated Thickness		
(web depth x					

COV equals the standard deviation divided by the mean.

Tested per ASTM A 370 [14].

Tested per ASTM A 90 [15].

Tested per ASTM A 370 [14] for a 2-inch gauge length.

²Refer to Table A3 for standard deviation and coefficient of variation (COV).

Table A4 Tested Ultimate Capacity of SteelLJoist™

Test No.	SteelIJoist™ Size ¹	Joist Thickness (gauge)	Joist Span (ft-in.)	Test Mode	Ultimate Load ² (lb)	Mid-span Deflection ³ (in)
1	12 x 33	20	2'-0"	Shear	1,371	0.165
2	12 x 33	20	2'-0"	Shear	1,432	0.137
3	12 x 33	20	10'-0"	Shear & Bending	3,936	0.435
4	12 x 33	20	10'-0"	Shear & Bending	4,312	0.400
5	12 x 33	20	18'-0"	Bending	4,114 (4)	1.400
6	12 x 33	20	18'-0"	Bending	4,284 (4)	1.480
. 7	12 x 43	18	2'-0"	Shear	2,305	0.180
8	12 x 43	18	2'-0"	Shear	2,436	0.230
9	12 x 43	18	10'-0"	Shear & Bending	5,812	0.430
- 10	12 x 43	18	10'-0"	Shear & Bending	5,396	0.375
,11	12 x 43	18	18'-0"	Bending	5,786 (4)	1.760
12	12 x 43	18	18'-0"	Bending	5,787 (4)	1.760
13	12 x 33	20	2'-0"	Shear with end caps	3,202	0.135
14	12 x 33	20	2'-0"	Shear with end caps	3,289	0.130
15	12 x 43	18	2'-0"	Shear with end caps	4,632	0.138
16	12 x 43	18	2'-0"	Shear with end caps	- 4,479	0.115
17	12 x 33	20	6'-0''	Mid-span loading	2,162	0.350
18	12 x 33	20	6'-0"	Drilled clinches	2,052	0.310
19	12 x 33	20	6'-0"	Cut webs	2,025	0.290
20	12 x 33	20	6'-0"	Cut webs	2,105	0.400
21	12 x 43	18	6'-0"	Mid-span loading	3,468	0.340
22	12 x 43	18	6'-0"	Drilled clinches	3,277	0.380
23	12 x 43	18	6'-0"	Cut webs	- 3,139	0.335
24	12 x 43	18	6'-0''	Cut webs	, 3,216	0.420
. 25	12 x 43	18	8'-0"	Rim Joist	2,333	0.440
26	12 x 43	18	6'-0"	Rim Joist	4,513	0.390
27	12 x 43	18	6'-0''	Rim Joist	, 4,338	0.320
28	End cap	18	12"	Unstiffened end cap	11,034	-
29	End cap	18	12"	Unstiffened end cap	11,800	-
30	End cap	18	12"	Unstiffened end cap	11,135	
31	End cap	18	12"	Stiffened end cap	16,150	-
32	End cap	18	12"	Stiffened end cap	18,034	
33	End cap	18	12"	Stiffened end cap	19,183	

Refer to Table 1 for actual joist dimensions.

The ultimate load is the total vertical load applied to the joist at peak load.

Mid-span deflections recorded at ultimate loads.

Ultimate load for two joists.

APPENDIX B

SAFETY FACTOR CALCULATION

SAFETY FACTOR CALCULATION

The factor of safety used in estimating the tested allowable loads from the tested ultimate loads, in Table 11 is calculated in accordance with Section F of the AISI Design Specification [3] as follows:

The allowable axial capacity $R_a = R_n/\Omega$.

Where: $R_n = Average$ value of the test results.

$$\Omega$$
 = Factor of safety = 1.6/ ϕ

$$\phi = \text{Resistance factor} = 15(M_m F_m P_m) e^{-\beta_0 \sqrt{V^2_M + V^2_F + C_P V_P^2 + V^2_Q}}$$

$$M_m$$
 = Mean value of the material factor = 1.10

$$F_m$$
 = Mean value of the fibrication factor = 1.00

$$P_m$$
 = Mean value of the professional factor for the tested component = 1.0

$$\beta_0$$
 = Target reliability index = 2.5

$$V_F$$
 = Coefficient of variation of the fabrication factor = 0.05

$$C_P$$
 = Correction factor = 5.7

$$V_P$$
 = Coefficient of variation of the test results = 4.65% (see note below)

$$V_P = 4.65\%$$
 (for $V_p < 6.5\%$, use 6.5%)

$$\phi = 1.5(1.10x1.00x1.00)e^{-2.5\sqrt{0.10^2+0.05^2+5.7x0.065^2+0.21^2}} = 0.81$$

$$\phi = 0.81$$

$$\Omega$$
 = Factor of safety = 1.60/ ϕ = 1.60/0.81 = 1.975 (conservatively, use 2.0)

Note: The coefficient of variation (COV) of the test results is obtained by calculating the average COV of the individual COVs for each set of tests (minimum of two-test samples) and adding one standard deviation. The average COV is calculated to be 2.73 percent for all test groups. The standard deviation of all test group COVs is 1.92 percent. Therefore, the representative COV is 2.73 + 1.92 = 4.65. This represents an upper 64 percentile (plus one standard deviation) of the COV experience in the tests. It does not represent the "global" COV that may be experienced by multiple producers in various production runs. Considering this source variance in real production may tend to increase the safety factor estimate. The conservative bias relation to specific minimum strength versus actual strength is not considered in the safety factor determination. Considering this effect would tend to lower the safety factor estimate.

APPENDIX C

TEST PHOTOGRAPHS

APPENDIX D

TEST PLOTS

33 mil - Bending #1

2 - /8 20 GA

3 - /8 20 GA

4 - /8 20 GA

4 - /8 20 GA

2 - /8 20 GA

2 - /8 20 GA

2 - /8 20 GA

3 - /8 20 GA

3 - /8 20 GA

4 - /8 20 GA

4 - /8 20 GA

2 - /8 20 GA

2 - /8 20 GA

3 - /8 20 GA

4 - /8 20 GA

4 - /8 20 GA

5 - /8 20 GA

6 - /8 20 GA

7 - /8 20

)

) .

Э.

)

2-18' 18 GA // 43 mil - Bending #1 Ulfimate Load (It 1 15 Deflection (in.) 0.5

)

)

Э

3 468

6' 1891

3.139

6' 18 GA

3216

)

)

APPENDIX E
METRIC CONVERSION

METRIC CONVERSION FACTORS

The following list provides the conversion relationship between U.S. customary units and the International System (SI) units. A complete guide to the SI system and its use can be found in ASTM E 380, Metric Practice.

To convert from	to	multiply by	To convert from	to	multiply By
Length			Mass (weight)		
inch (in.)	micrometer (µm)	25,400	pound (lb.) avoirdupois	kilogram (kg)	0.4535924
inch (in.)	millimeter (mm)	25.4	ton, 2000 lb.	kilogram (kg)	907.1848
inch (in.)	centimeter (cm)	2.54	grain	kilogram (kg)	0.0000648
inch (in.)	meter (m)	0.0254			
foot (ft)	meter (m)	0.3048	Mass (weight) per length)		
vard (vd)	meter (m)	0.9144			
mile (mi)	kilometer (km)	1.6	kip per linear foot (klf)	kilogram per	0.001488
inie (iii)	Knometer (Am)			meter (kg/m)	
Area			pound per linear foot (plf)	kilogram per meter (kg/m)	1.488
square foot (sq. ft)		0.0929			
square inch (sq. in)	square centimeter (sq. cm)	6.452	Moment		
square inch (sq. in.)		0.00064516			1.356
square yard (sq. yd)		0.8391	1 foot-pound (ft-lb.)	Newton-meter	1.356
square mile (sq. mi)	square kilometer (sq. km)	2.6		(N-m)	
Volume			Mass per volume (density)	
cubic inch (cu in.)	cubic centimeter (cu cm)	16.387064	pound per cubic foot (pcf)	kilogram per	16.01846
cubic inch (cu in.)	cubic meter (cu m)	0.00001639		cubic meter (kg	
cubic foot (cu ft)	cubic meter (cu m)	0.02831685	pound per cubic yard	kilogram per	0.5933
cubic yard (cu yd)	cubic meter (cu m)	0.7645549	_(lb/cu_yd)	cubic meter (kg	(CH M)
gallon (gal) Can. liqu	aid liter	4.546			
gallon (gal) Can. liqu		0.004546	Velocity		
gallon (gal) U.S. liqu		3.7854118		kilometer per h	our 1.60934
gallon (gal) U.S. liqu		0.00378541	mile per hour (mph)	(km/hr)	our 1.00934
fluid ounce (fl oz)	milliliters (ml)	29.57353	9		econd 0.44704
fluid ounce (fl oz)	cubic meter (cu m)	0.00002957	mile per hour (mph)	(km/sec)	econd 0.44704
Force			Temperature		
11 (1000 III.) I	kilogram (kg)	453.6	remperature		
	Newton (N)	4,448.222	degree Fahrenheit (°F) de	egree Celsius (°C)	$t_C = (t_F - 32)/1.8$
	kilogram (kg)	0.4535924		egree Kelvin (°K)	
	Newton (N)	4.448222		egree Celsius (°C)	
pound (lb.)	Newton (IN)	4.440222	degree Reivin (1)	egree certifies (c)	C (1K 1=7,110
Stress or pressure			* One U.S. gallon equals 0.8 ** A pascal equals 1000 New		
kip/sq. inch (ksi)	megapascal (Mpa)	6.894757			
kip/sq. inch (ksi)	kilogram/square	70.31	The prefixes and symbols	below are commo	nly used to form
	centimeter (kg/sq. cm)		names and symbols of the	decimal multiples	and submultiples
pound/sq. inch (psi)	kilogram/square	0.07031	of the S1 units.		
	centimeter (kg/sq. cm)				Symbol
pound/sq. inch (psi)	pascal (Pa) **	6,894.757	Multiplication Factor	Prefix	
pound/sq. inch (psi)		0.00689476			
pound/sq. foot (psf)		4.8824	$1,000,000,000 = 10^9$	giga	G
	meter (kg/sq. m)		$1,000,000 = 10^6$	mega	M
nound/sq. foot (psf)		47.88	$1,000 = 10^3$	kilo	k
	,		$0.01 = 10^{-2}$	centi	c
			$0.001 = 10^{-3}$	milli	m
			$0.000001 = 10^{-6}$	micro	μ
			$0.0000000001 = 10^{-9}$	nano	n
•					_

America's Housing Technology and Information Resource

June 16, 1999

Mr. Ken Vought USS/POSCO 900 Loveridge Road Pittsburg, CA 94565

Dear Ken:

Attached please find two copies of the final report titled "Structural Evaluation of Steelworks' SteelJoist". We have now completed the deliverables for this project.

This has been a very active and successful project and I would like to especially thank you for your continued interest and guidance. This letter serves as our notice of final completion of the job.

The NAHB Research Center is available to assist or work with USS/POSCO to develop efficient and cost effective solutions for cold-formed steel framing and to increase steel framing market share, especially in the residential and light commercial construction markets. I am looking forward to more successful projects in the near future. Meanwhile, if you have any questions, or if I can be of further assistance, please do not hesitate to contact me directly at (800) 638-8556 ext. 581.

Sincerely,

Nader Elhajj

Project Manager

cc: Darrell Meyer (SteelWorks)

G:\jobs\3088\ken2.doc

400 Prince George's Boulevard Upper Marlboro, Maryland 20774-8731 301-249-4000 fax 301-249-0305 http://www.nahbrc.org

	BOB FISH TUES	7-30-96
	T. OPTION TO PURCHASE	RIGHTS - SEPARATE
	a, TRUSS TOIST	
	b. ROOS TRUSS CHURD I	05/206 108C 61
, V	2)DO /REMAIN /NDET	TUCINICAI / TUROW
	RESTOCKUCE - * * STX	OTE - (NEV OR PAL)

3) R & D CO.

a. THEY PROVIDE CADITOL

b. IRETAIN P. RIGHTS? OWN BY CO?

C. OPTION TO BUY BALE COMTANY?

O.

ABSTRACT

BAKGROUND OF THE /NUENTION

SUMMARY OF INVENTION

DESORIPTON DE TORNINGS

DETALED DESCRIPTION

DESORIFIM DE DANNINGS

2, N. END VIEW AGURE 1

1. 2. DESTE VIEW

DOSCRIBE ANGLES FLANGES

3, PERSPECTIVE

4, END CAP A PUN

B WITH FLANGES - BOT

5. AM JOIST - 12" TRACK

6, PLOT SHEAR -14" SNEET

Merco

CLASS KICATION DEFINITIONS

BEAM, GIRDER, ORTRUSS CONSTRUCTION!

PREZONED STRUCTURE UNDER SUB CLASS 223.1 WHIRE IS A DISTINCT GONDRALLY NORIZOWAL STRUCTURAL MEMBER STRENGTHENED ALONG A MAJOR OR MINOR PLINS TO COUNTRACT

FORCES FROM SODITIONAL LONDS (E.G. FLOOR, POO.

228,9 composes OF BUTTING SECTIONS: BEAM, GIRDER OR TRUSS UNDER SUBCLASS 22:

WHICH IS MODE UP DE A PLUBALITY OC PREFORMED SECTIONS.

5265 (223.12

HOMOGRENOUS DESIGN (E.G. RIL METAL) BEAM, GIRDER AR TRUSS UNDER SUBCLASS 233 IN WHICH THE STONETURAL FLENOUT /NOLUDING THE POBSTRESSING MEANS IS FABRICATED FROM A SINGLE MATERIAL (E.G., STEEL)

STRUCTURE UNDER SUTSULASS 633 IN WHICH THE ELONGGATED RIGID STRUCTURE INDS PARTS PORTING AS ELONGATED RUNNERS (CHORTOS) AND CLOSS MEMBERS (STEUTS) WITH THE STRUTS BONG INTEGRAL WITH A CHORD.

V PRINT-DUT OF PATENT NOS.

MILES 52-145

729.1 I BEAM

STANFURE UNDER SUR CLARS 720.1 INCLUSING AT LEAST 2 FLANGE MEMBERS JOINED BY A WEB MEMBER, WHILL FRENIZE I CARSS — SECUTION OF THE SHAFT IN THE SHAFE OF AN I OR H

CLASS 52 STATIC STRUCTURES (E.G. BUILDING CLASSIFICATION DEFINITIL BEM, GIRDER OR TRUES CONSTRUCTION J238 I BEAM 7290/ 729,3 PARAVERTED WES 740.8 - 4100050 CAMPONEUX FOLDED SWEET MATERIAL 741,1 * TRUSS WITH UNITARY CHORD OWEB C 634 E.G. SNEET METAL * CONTINUOUS SERPEUTING! E.G. WHOTHEN TRUSS 694

TRUSS WITH IN TORY CHOOD & WEB 634
WERB POSTIONS POLNECTED BETWEEN CHOODS 636
BEAM EG. GIRDER JOIST, ETC 050, 1

HOMOGENOUS DESIGN (EG ALL METAL) 223, 12 YES
BEAM, GIRDER OR TRUSS CONSTRUCTION 223, 8 YES

H1570RX

IDIST

JOISTER!

A JOIST IS A WORLDONTAL STONEWAL MEMBER
TO SUPPORT A FLOOR OR A ROOF.

CON VENTIONEL WOOS FRAME CONTROLLED DITTES
SOLID THUN LUMBER, 1.E. 2"X 8" TO 2"X 19"
IN SIZE. THESE MENTIONS ARE TYPHOLITY AVAILABLE
UP TO 20 FT, LENGTHS, ARE HEAVY, ALLOW ONLY
MIMOR DRILLING FOR ELECTRICAL RAD QUALITY IS
DIMONINISHING DUE LACK OF OLD GROWN TIMBER

FRERILATED WOOD JOISTS (RLEDT. J. 1. S (TRUSS JOIST I REAM) ARE MANUFACTURED UTILIZING SOLID OR LAMINATURE TOP 4 BOTTOM CHORDS AND AN INTERMEDIATE SHEET OF PLYWOOD, LLUED BETWEN THEM, AS A WE'S. THESE ARE AVAILABLE IN LONG LENGTHS, VARIOUS HEIGHTS AND ARE A POPULAR CHOICE. THEY ARE LIMITED IN CERTAIN APPLICATIONS AS THEY MAY NOT BE DRILLED OR NOTCHED WEAR THEIR ENDS

FABRICATED OPEN WEB JUSTS ARE MANUFACTURED VILLIAMY SOLID OR LAMINATED DOP AND BOTTOM CHORDS LAND EITHER WOOD OR METAL WEBS.

CLASS / SUBCLASS CL155 52 Class : 52/634 (E.G. BUILDINGS) 511000 5463837 Metal roof truss / 52/639 52/92.2 <u>52/634</u> 52/690 52/731.9 4869040-FRAMING SYSTEM 52/633 52/634 4793113 Wall system and metal stud therefor 52/481.1 52/634 52/636 52/733.2 D25/119 D25/132 4490958 SHEET METAL BEAM 52/634 52/729.3 52/729.5 52/731.7 4385476 WEB STIFFENER FOR LIGHT-GAUGE METAL FRAMING MEMBERS 52/739.1 52/634 4329824 SHEET METAL BEAM 52/634 52/729.3 52/731.7 52/737.6 HOLLOW RECTANGULAR JOIST 4228631-52/690 52/634 52/693 52/730.7 -4030256-BUILDING CONSTRUCTION 52/93.1 <u>52/634</u> 52/643 52/694 D25/61 D25/132 3845594 STEEL JOIST OR COMPOSITE STEEL AND CONCRETE CONSTRUCTION 52/98 52/334 52/634 52/690 52/729.5 -3785108· ROOF TRUSSES 52/645/52/634 52/640 52/641 52/650.2

SUB-CUSS 634

PRINTED COPIES OF REALTED PATENTS - COMPLETE

- NOT RELEVANTE

4,435,948 (ANGELES) 3/1984 DAVENPORT ET AL