Fitting dynamic models to data

Jonathan Dushoff, McMaster University http://lalashan.mcmaster.ca/DushoffLab

2016 Summer Course on Mathematical Modeling and Analysis of Infectious Diseases

National Taiwan University

Measles data

Measles reports from England and Wales

- Reconstruct the number of susceptibles
- Divide the data into generations
- ightharpoonup Fit \mathcal{R}_0
- Predict

Why did I get the wrong answer?

Measles reports from England and Wales

Why did I get the wrong answer?

- Model structure may be wrong
- Population structure may be wrong
- Stochasticity in disease observation and recording
- Stochasticity in transmission
- Multi-parameter estimation
 - Generation intervals

Outline

Conceptual framework

- How do we assume our data relate to our model world?
 - No error: We could attempt to model everything we see, in exact detail
 - Observation error: we could assume that the world is perfectly deterministic, but our observations are imperfect
 - Process error: we could assume that we observe perfectly, but that the world is stochastic
 - Both kinds of error: the world is stochastic, and our observations are imperfect

No error

- Impossible
- ▶ Even if possible, not clear what we would learn

Observation error only

- Point your model at the target
- Give it starting conditions and parameters
- Let it go
- Compare final results to observations

Measles reports from England and Wales

Process error only

- Look at each step separately.
- See how the model is doing for that step.
- Reset based on observed data before taking the next step

Stepping

Stepping

Measles reports from England and Wales

Stepping

Stepping

Observation and process error

- Latent variable models
 - We need to keep track of, and integrate over, things that we don't observe

Measles reports from England and Wales

Outline

How to fit?

- Solving an equation
- By eye (fiddling with parameters)
- Minimizing a distance function
- Likelihood

Distance functions

$$D=\sum_i y_i-\hat{y}_i$$

Distance functions

$$D=\sum_{i}|y_{i}-\hat{y}_{i}|$$

Distance functions

Difference

$$D = \sum_{i} (y_i - \hat{y}_i)^2$$

Outline

Likelihoods

Assume that the difference between the estimate \hat{y}_i and the data point y_i is normally distributed. What is the log likelihood?

$$L = \prod_{i} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-(\hat{y}_i - y_i)^2}{2\sigma^2}\right)$$

$$\ell = \sum_{i} -\log(\sigma\sqrt{2\pi}) - \sum_{i} \frac{(\hat{y}_{i} - y_{i})^{2}}{2\sigma^{2}}$$

- We minimize the likelihood by minimizing the sum of squares
 - and then solving for σ

Least squares → likelihood

- Attaching your least squares fit to a likelihood means:
 - You can use it for statistical inference (LRT)
 - You can challenge the assumptions

Mexican flu example

- ► How fast is it growing? *r*
- ► How hard will it be to control? R₀

A different perspective

- We could make the normal assumption on either scale
- How much does it matter?

Normal assumption

- Least squares on the linear scale
- **1**0:50 :: 980:1020
- Gives relatively too much weight to large observations

Normal assumption

Lognormal assumption

- Least squares on the log scale
- **3:5::300:500**
- Gives relatively too much weight to small observations

Lognormal assumption

A more realistic error distribution

- My case counts are individuals
- What distributions can I use to reflect that?
- * Poisson or binomial
 - ▶ * WRONG!
 - ▶ * *Sorry*:
 - * OK, technically it's right, but you shouldn't do it.

Reality is complicated

- Poisson and binomial reflect only individual-level variation
 - No temporal variation
 - No clustered sampling
 - **.** . . .

Distribution diagram

Negative binomial fits

Comparison

- Realistic error distribution provides (apparently) better fits
- Confidence intervals
 - Normal: r = 0.96-0.97/wk
 - Lognormal: r = 0.64-1.29/wk
 - Negative binomial: r = 0.90−1.14/wk
- How would you test these methods?
 - * Validation: use simulated data to see if your method is reliable

Identifiability

- What if we tried to estimate R₀ from data like these?
 - ▶ * Disease could be fast with low \mathcal{R}_0 or slow with high \mathcal{R}_0 .

Outline

Modern approaches

- Why are people using model worlds with no observation error?
 - or no process error?
- Sometimes they are good enough (model validation)
- Combining both is hard

Filtering

- Filtering is a little like shooting
 - Simulate from beginning to end, but use stochastic simulations
- You need a lot of simulations, and often ways of selecting and refining them
- A popular, state-of-the-art method is implemented in the R package pomp

Latent variable methods

- Latent variable methods are a little like stepping
 - ▶ But we step to and from unknown values (our latent variables), so we need a way of exploring many possibilities
- Popular, state-of-the-art methods are available in the R packages rjags and rstan

Multi-parameter inference

- Modern methods are already hard, and when you consider various sources of uncertainty, you're really on the bleeding edge
- Many high-profile models for Ebola, for example failed to consider process error.
- The biggest paper talking about process error neglected uncertainty in generation intervals
- Once you do multi-parameter inference, you may find that confidence intervals are very large – this may reflect the reality of knowledge, but may not make you look good

Outline

Likelihood

- Maximum likelihood and likelihood are not the same thing
- Bayesian approaches and frequentist approaches (including maximum likelihood) both depend on calculating (or approximating) likelihood

Frequentist inference

- ➤ To do frequentist inference on these complicated likelihoods, we need to:
 - estimate likelihoods
 - find the maximum likelihood
 - use the likelihood ratio test to find confidence intervals
- This is hard

Bayesian inference

- To do Bayesian inference on these complicated likelihoods, we need to:
 - construct prior distributions
 - estimate likelihoods
 - estimate the posterior
- Usually a little less hard
 - But still requires more assumptions

Conclusion

- We need dynamics to understand links between processes and outcomes
 - How do things work?
- We need statistics to understand uncertainty
 - What can we learn from data
- Combining these two is difficult, but progress is being made.