Individual Compiler Assignment - w2

Jonas Brunsgaard

December 9, 2012

1 Writing Context-Free Grammars

1.1 Define a CFG for $\{a^ib^jc^i|a,b,c\in\sum;i,j>0\}$

Below I have defined the context free grammar.

$$S \rightarrow aTc$$

$$T \rightarrow S$$

$$T \rightarrow R$$

$$R \rightarrow cR$$

$$R \rightarrow c$$

1.2 Show the left-most derivation of the word 'aabbcc'

Below you find the leftmost derivation of the string

$$\Rightarrow aTc$$

 $\Rightarrow aaTcc$

 $\Rightarrow aaRcc$

 $\Rightarrow aabRcc$

 $\Rightarrow aabbcc$

2 LL(1)-Parser Construction

2.1 Eliminating left-recursion and left-factorise the grammar

We eliminate left recursion

$$S \rightarrow id$$

$$S \longrightarrow \mathrm{id}[E]$$

$$E \rightarrow SE^*$$

$$E^* \rightarrow \varepsilon$$

$$E^* \rightarrow E$$

and follow up with left-factorisation

$$S \rightarrow idS^*$$

$$S^* \rightarrow \varepsilon$$

$$S^* \rightarrow [E]$$

$$E \rightarrow SE^*$$

$$E^* \rightarrow \varepsilon$$

$$E^* \rightarrow \varepsilon$$

2.2 Calculate First sets

First we find if terminals and nonterminals are *nullable*.

Right-hand side	Init	First Iter	Sec Iter
id	false	false	false
arepsilon	false	true	true
$\overline{[E]}$	false	false	false
SE^*	false	false	false
$\overline{,}E$	false	false	false
Nonterminal			
\overline{S}	false	false	false
S^*	false	true	true
E	false	false	false
E^*	false	true	true

Then we calculate FIRST:

Right-hand side	Init	First Iter	Sec Iter
id	Ø	{id}	{id}
arepsilon	Ø	Ø	Ø
[E]	Ø	{[}	{[}
SE^*	Ø	$\{id\}$	$\{id\}$
,E	Ø	{,}	{,}
Nonterminal			
S	Ø	{id}	$\{id\}$
S^*	Ø	{[}	{[}
E	Ø	{id}	{id}
E^*	Ø	{,}	{,}

2.3 Calculate Follow sets for all nonterminals

By following the procedure on page 59 in the book, we find the following table.

Production	Constraints
$S' \to S$ \$	$\{\$\} \subseteq FOLLOW(S)$
$S \to \mathrm{id} S^*$	$FOLLOW(S) \subseteq FOLLOW(S^*)$
$S^* \to \varepsilon$	
$S^* \to [E]$	$\{]\} \subseteq FOLLOW(E)$
$E \to SE^*$	$\{,\} \subseteq FOLLOW(S)$
	$FOLLOW(E) \subseteq FOLLOW(S)$
	$FOLLOW(E) \subseteq FOLLOW(E^*)$
$E^* \to \varepsilon$	
$E^* \to ,E$	$FOLLOW(E^*) \subseteq FOLLOW(E)$

In the table above I have used the FIRST-sets we calculated earlier, and thus they are shown as explicit terminals.

We first use the constraints $\{\$\} \subseteq FOLLOW(S)$ and constraints of the form $FIRST(...) \subseteq FOLLOW(...)$ to get the initial sets. Note, that in the following i will use the word "komma" to refer to the terminal ",". The reason be that the symbol "," are used as separator, when describing a set.

$$FOLLOW(S) \supseteq \{\text{komma}, \$\}$$

$$FOLLOW(S^*) \supseteq \{\emptyset\}$$

$$FOLLOW(E) \supseteq \{\}\}$$

$$FOLLOW(E^*) \supseteq \{\emptyset\}$$

and then use the constrains on the form $FOLLOW(...) \subseteq FOLLOW(...)$. After first iteration:

```
FOLLOW(S) \supseteq \{\text{komma}, \$\}\}

FOLLOW(S^*) \supseteq \{\text{komma}, \$\}\}

FOLLOW(E) \supseteq \{\}\}

FOLLOW(E^*) \supseteq \{\}\}
```

second iteration:

$$FOLLOW(S) \supseteq \{\text{komma}, \$]\}$$

$$FOLLOW(S^*) \supseteq \{\text{komma}, \$]\}$$

$$FOLLOW(E) \supseteq \{]\}$$

$$FOLLOW(E^*) \supseteq \{]\}$$

and the third iteration, nothing has changed, so the final result is

$$FOLLOW(S) = \{\text{komma}, \$]\}$$

 $FOLLOW(S^*) = \{\text{komma}, \$]\}$
 $FOLLOW(E) = \{]\}$
 $FOLLOW(E^*) = \{]\}$

2.4 Look-aheads sets and pseudo code

From the lecture slides the look ahead set is defined as

$$la(X \rightarrow \alpha) = \begin{cases} FIRST(\alpha) \cup FOLLOW(X) & \text{, if } NULLABLE(\alpha) \\ FIRST(\alpha) & \text{, otherwise} \end{cases}$$

Below the lookahead sets for our productions are shown.

$$\begin{array}{lll} LA(S' \rightarrow S\$) & = & \{\mathrm{id}\} \\ LA(S \rightarrow \mathrm{id}S^*) & = & \{\mathrm{id}\} \\ LA(S^* \rightarrow \varepsilon) & = & \{\emptyset\} \\ LA(S^* \rightarrow [E]) & = & \{[]\} \\ LA(E \rightarrow SE^*) & = & \{\mathrm{id}\} \\ LA(E^* \rightarrow \varepsilon) & = & \{\emptyset\} \\ LA(E^* \rightarrow \mathrm{komma}E) & = & \{\mathrm{komma}\} \end{array}$$

We now build our pseudo code for the parser:

```
function parseS' () =
    if next = 'id'
    then parseT(); match('\$')
    else reportError()
function parseS () =
    if next = 'id'
    then match('id'); parseS*()
    else reportError()
function parseS* () =
    if next = ' \'
    then (* do nothing *)
    else if next = '['
         then match(', [','); parseE(); match(', [',')
         else reportError()
function parseE () =
    if next = 'id'
    then parseS(); parseE*()
    else reportError()
function parseE* () =
    if next = ' \'
    then (* do nothing *)
    else if next = ','
         then match(',','); parseE();
         else reportError()
```

3 SLR Parser Construction

First we produce NFA's for the right hand side of every production.

Production	NFA
$S \to E$	
$E \to \mathbf{a}$	$C \xrightarrow{a} D$
$E \to \mathbf{a}(E)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$E \to E\& {\bf a}$	

If an NFA state s has an outgoing transition on nonterminal N we add a lambda transition from s to the starting states of the NFAs for the rhs of the productions for N.

Then we convert the combined NFA to a DFA.

$$\begin{array}{lll} \hat{\lambda}(A) & = & \{A,C,E,J\} = s_0 \\ move(s_0,a) & = & \hat{\lambda}(\{D,F\}) = \{D,F\} = s_1 \\ move(s_0,E) & = & \hat{\lambda}(\{B,K\}) = \{B,K\} = s_2 \\ move(s_1,()) & = & \hat{\lambda}(\{G\}) = \{G,C,E,J\} = s_3 \\ move(s_2,\&) & = & \hat{\lambda}(\{L\}) = \{L\} = s_4 \\ move(s_3,a) & = & \hat{\lambda}(\{D,F\}) = \{D,F\} = s_1 \\ move(s_3,E) & = & \hat{\lambda}(\{K,H\}) = \{K,H\} = s_5 \\ move(s_4,a) & = & \hat{\lambda}(\{M\}) = \{M\} = s_6 \\ move(s_5,)) & = & \hat{\lambda}(\{I\}) = \{I\} = s_7 \\ move(s_5,\&) & = & \hat{\lambda}(\{L\}) = \{L\} = s_4 \end{array}$$

Now we are able to build the initial cross index table

DFA state	NFA states	a	()	&	E
0	A,C,E,J	s1				g2
1	D,F		s3			
2	К,В				s4	
3	G,C,E,J	s1				g5
4	L	s6				
5	H,K			s7	s4	
6	M					
7	I					

The follow set for the production E and S, has been computed

$$\begin{array}{lcl} FOLLOW(S) & = & \{\$\} \\ FOLLOW(E) & = & \{\$,),\&\} \end{array}$$

and used to determine wheather we shift or reduce. Below the finale table can be seen.

DFA state	a	()	&	\$	E
0	s1					g2
1		s3	r1	r1	r1	
2				s4	a	
3	s1					g5
4	s6					
5			s7	s4		
6			r3	r3	r3	
7			r2	r2	r2	

3.1 Parsing the input "a(a&a)"

Input	stack	action
a(a&a)	0	s1
(a&a)	01	s3
a&a)	0131	s1
&a)	0135	$r1(E \to a); g5$
&a)	01354	s4
)	013546	$r3(E \rightarrow E\&a); g5$
)	0135	s7
\$	10357	$r2(E \to a(E)); g2$
\$	02	a

3.2 Build a parser in mosmlyac

After compiling the .grm file, it is clear from the output file, that mosmlyac are using SLR parsing.

DFA state	a	()	&	$'\setminus 001'$	EOF	% end	% entry	S	E
0					s1			g2		
1	s3								g4	g5
2							\mathbf{a}			
3		s6	r2	r2		r2				
4	r5	r5	r5	r5	r5	r5	r5			
5				s7		s8				
6	s3									g9
7	s10									
8	r1	r1	r1	r1	r1	r1	r1			
9			s11	s7						
10	r4	r4	r4	r4	r4	r4	r4			
11	r3	r3	r3	r3	r3	r3	r3			

We can see that the two tables are not that different and i try to parse the string $`\001a(a\&a)EOF"$

Input	stack	action
'\001'a(a&a)	0	s1
a(a&a)	0 1	s3
(a&a)	0 1 3	s6
a&a)	0 1 3 6	s3
&a)	0 1 3 6 3	r2; g9
&a)	0 1 3 6 9	s7
a)	0 1 3 6 9 7	s10
)	0 1 3 6 9 7 10	r4; g9
)	0 1 3 6 9	s11
EOF	0 1 3 6 9 11	r3; g5
EOF	0 1 5	s8
\$	0 1 5 8	r1; g4
\$	0 1 4	r5; g2
\$	0 2	1

The parser generator introduces some new terminals and some nonterminale e.g. %entry and %end, but overall the handmade SLR table and the parsergenerated SLR table are not that different.