

Master's degree in Energy Engineering

Power Quality and Renewable Integration in Networks (QSIRX)

Chapter 3: Non-periodic disturbances.

Asymmetries and unbalances.

Juan José Mesas García (juan.jose.mesas@upc.edu)

Academic year 2023/24 (Q1)

Content

- 1. Definitions
- 2. Origin and causes
- 3. Analytical study
- 4. Characterization
- 5. Effects
- 6. Solutions

Definitions

- Asymmetries: The phase-to-phase voltages are not equal. They are not an equilateral triangle
- Unbalances: The neutral (origin of the phase-to-neutral voltages) is not in the mass center of the phase-to-phase voltage triangle

Definitions

- Asymmetries: The phase-to-phase voltages are not equal. They are not an equilateral triangle
- Unbalances: The neutral (origin of the phase-to-neutral voltages) is not in the mass center of the phase-to-phase voltage triangle

Definitions

- Asymmetries: The phase-to-phase voltages are not equal. They are not an equilateral triangle
- Unbalances: The neutral (origin of the phase-to-neutral voltages) is not in the mass center of the phase-to-phase voltage triangle

- Origin and causes
 - Large power single-phase loads
 - Single-phase and unbalanced short-circuits
 - Damage in transformers

Analytical study

- Fortescue transformation: An unbalanced three-phase system can be decomposed in three independent systems with three phasors of the same magnitude.
 - Direct (or positive) sequence system
 - Inverse (or negative) sequence system
 - ⋄ Homopolar (or zero) sequence system

Analytical study

Analytical study

♥ Fortescue transformation:

Characterization

Asymmetry factor (UNE 50160):

$$K_A = \frac{U_i}{U_d} < 2\%$$

Unbalance factor:

$$K_U = \frac{U_0}{U_d} < 2\%$$

Practical ratio for characterizing asymmetries and unbalances

$$K(\%) = \frac{P_m}{P_{CC}} 100$$
• P_m single-phase load active power consumption
• P_{cc} short-circuit power of the three-phase system

区 Effects

- Torque oscillations and motor heating
 - \Leftrightarrow Alternators $K_A < 0.05 (5 \%)$
 - \Leftrightarrow Motors $K_A < 0.03 0.04 (3 4 \%)$
- Malfunctioning of three-phase converters and electronic equipment
- Power limitation in transformers

■ Solutions

- Connection to strong grids with small short-circuit ratios
- Connection through special transformers
- External balancing equipment (Steinmetz system)
- ⋄ Transposition of lines

Hw: Program 4

- function Prog4
- **⋈** %
- **≤** f=50;
- w=2*pi*f;
- × %
- % Tensiones sinusoidales asimetricas y desequilibradas.
- × %
- Ua=230*exp(1j*0);
- Ub=0.8*230*exp(1j*(-110*pi/180));
- Uc=0.9*230*exp(1j*(100*pi/180));

$$\begin{bmatrix} \underline{\underline{U}}_{0} \\ \underline{\underline{U}}_{1} \\ \underline{\underline{U}}_{2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{\underline{a}} & \underline{\underline{a}}^{2} \\ 1 & \underline{a}^{2} & \underline{a} \end{bmatrix} \begin{bmatrix} \underline{\underline{U}}_{a} \\ \underline{\underline{U}}_{b} \\ \underline{\underline{U}}_{c} \end{bmatrix} \qquad (\underline{\underline{a}} = e^{j\frac{2\pi}{3}}) \quad \Rightarrow \quad K_{A} = \frac{\underline{U}_{2}}{\underline{U}_{1}} \quad , \quad K_{U} = \frac{\underline{U}_{0}}{\underline{U}_{1}}$$