$f(x) = x = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases}$ $D = \mathbb{R}$ $f(D) = \mathbb{R}_+$	$f'(x) = \begin{cases} 1 \text{ si } x > 0\\ -1 \text{ si } x < 0 \end{cases}$ $f \text{ n'est pas dérivable en 0}$ $\int f(x)dx = C + \begin{cases} x^2 \text{ si } x \ge 0\\ -x^2 \text{ si } x < 0 \end{cases}$	$\begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline & +\infty & & +\infty \\ \hline x & & & & \\ & & & & & \\ & & & & & \\ \end{array}$	
$f(x) = x^n (n \in \mathbb{N}^*)$ $D = \mathbb{R}$ $f(D) = \begin{cases} \mathbb{R} \text{ si } n \text{ impair } \\ \mathbb{R}_+ \text{ si } n \text{ pair} \end{cases}$	$f'(x) = nx^{n-1}$ $\int f(x)dx = \frac{x^{n+1}}{n+1} + C$	Cas n impair. $ \begin{array}{c c} x & -\infty & +\infty \\ \hline & +\infty \\ \hline & x^n & \nearrow \\ & -\infty \end{array} $	$ \begin{array}{c} $
		Cas n pair. $ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline x^n & +\infty & +\infty \\ \hline 0 \end{array} $	$ \begin{array}{c} $
$f(x) = x^{-n} = \frac{1}{x^n} (n \in \mathbb{N}^*)$ $D = \mathbb{R}^*$ $f(D) = \begin{cases} \mathbb{R}^* & \text{si } n \text{ impair} \\ \mathbb{R}^*_+ & \text{si } n \text{ pair} \end{cases}$	$f'(x) = -nx^{-n-1} = -\frac{n}{x^{n+1}}$ $\int f(x)dx = \begin{cases} \frac{x^{-n+1}}{-n+1} + C & \text{si } n \neq 1\\ \ln(x) + C & \text{si } n = 1 \end{cases}$	Cas n impair. $ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline x^{-n} & 0 & \parallel & +\infty \\ \hline x^{-n} & \parallel & \searrow & \\ & & -\infty & \parallel & 0 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 - \frac{1}{1 - \frac{1}{1$
$f(x) = x^{1/n} = \sqrt[n]{x} (n \in \mathbb{N}^*)$ $D = \mathbb{R}_+$ $f(D) = \mathbb{R}_+$	$f'(x) = \frac{x^{1/n-1}}{n}$ $\int f(x)dx = \frac{nx^{1/n+1}}{n+1} + C$	$ \begin{array}{c cc} x & 0 & +\infty \\ \hline x^{1/n} & & +\infty \\ 0 & & & \\ \end{array} $	n=2

$f(x) = \ln(x)$ $D = \mathbb{R}^*_+$ $f(D) = \mathbb{R}$	$f'(x) = 1/x$ $\int f(x)dx = x \ln(x) - x + C$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$f(x) = \exp(x) = e^x$ $D = \mathbb{R}$ $f(D) = \mathbb{R}_+^*$	$f'(x) = \exp(x)$ $\int f(x)dx = \exp(x) + C$	$ \begin{array}{c cc} x & -\infty & +\infty \\ \hline e^x & \nearrow \\ 0 \end{array} $	$\exp(0) = 1$ $\exp(1) = e$ $\operatorname{Si} a, b \in \mathbb{R} \text{ et } n \in \mathbb{Z},$ $\exp(a+b) = \exp(a) \exp(b)$ $\exp(-a) = \frac{1}{\exp(a)}$ $(\exp(a))^n = \exp(na)$
$f(x) = \cos(x)$ $D = \mathbb{R}$ $f(D) = [-1, 1]$	$f'(x) = -\sin(x)$ $\int f(x)dx = \sin(x) + C$	$\begin{array}{c cccc} x & 0 & \pi & 2\pi \\ \hline & 1 & & 1 \\ \hline & \cos(x) & \searrow & \nearrow \\ & & -1 \\ \hline & \cos \text{ est paire et } 2\pi\text{-p\'eriodique.} \end{array}$	$\pi/2$ π $3\pi/2$ 2π
$f(x) = \sin(x)$ $D = \mathbb{R}$ $f(D) = [-1, 1]$	$f'(x) = \cos(x)$ $\int f(x)dx = -\cos(x) + C$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$f(x) = \tan(x) = \frac{\sin x}{\cos x}$ $D = \mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi k \in \mathbb{Z} \}$ $f(D) = \mathbb{R}$	$f'(x) = 1 + \tan(x)^2 = \frac{1}{\cos(x)^2}$ $\int f(x)dx = -\ln(\cos(x)) + C$	$\begin{array}{c cc} x & -\pi/2 & \pi/2 \\ \hline \tan(x) & \nearrow \\ -\infty & \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\cos(a+b) = \cos a \cos b - \sin a$	$a \sin h \qquad \cos(2x) = \cos^2 x - \sin^2 x$	tan est impaire et π -périodique. $\sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1 \qquad \qquad \cos^2 x$	$+\sin^2 x = 1$

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$ $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$ $\sin(2x) = 2\sin x \cos x$

$f(x) = \arccos(x)$ $D = [-1, 1]$ $f(D) = [0, \pi]$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$	$\begin{array}{c cccc} x & -1 & 1 \\ \hline \arccos(x) & \pi & \\ & & 0 \end{array}$	$y = \arccos(x)$ $\pi/2$ $-\pi/2$ 1 1 $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$
$f(x) = \arcsin(x)$ $D = [-1, 1]$ $f(D) = [-\pi/2, \pi/2]$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$	$\begin{array}{c cccc} x & -1 & 1 \\ \hline \arcsin(x) & & \\ -\pi/2 & \\ \hline \end{array}$ arcsin est impaire.	$\pi/2 - \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}$
$f(x) = \arctan(x)$ $D = \mathbb{R}$ $f(D) =]-\pi/2, \pi/2[$	$f'(x) = \frac{1}{1+x^2}$	$\begin{array}{c cccc} x & -\infty & +\infty \\ \hline & & \pi/2 \\ \hline & \arctan(x) & \nearrow \\ & -\pi/2 \\ \hline & \arctan \ \text{est impaire.} \end{array}$	$\pi/2$ $\frac{g}{g}$ $y = \arctan(x)$ $\pi/2$ $\pi/2$ $\pi/2$ $\pi/2$