ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 621.373.121

О СПЕЦИФИКЕ ГЕНЕРИРУЕМЫХ КОЛЕБАНИЙ В *LCRG*-АВТОГЕНЕРАТОРЕ С МАЛЫМ ЗАТУХАНИЕМ В ЦЕПИ ОБРАТНОЙ СВЯЗИ

© 1997 г. В. Ф. Камбулов, А. Ю. Колесов

Поступила в редакцию 24.04.96 г.

Рассмотрена математическая модель LCRG-автогенератора с малыми активными потерями в цепи обратной связи. Предложены нетрадиционные подходы качественного и количественного исследования квазинормальной формы — системы дифференциальных уравнений, к которой сводится исходная краевая задача. Выявлены новые, специфические особенности генерируемых колебаний, заключающиеся, в частности, в том, что происходит накапливание автоколебательных режимов с ростом числа частот самовозбуждения. Теоретические результаты подтверждены экспериментально.

ВВЕДЕНИЕ

Одним из возможных устройств для получения в радиотехнике автоколебаний является генератор с внешней обратной связью, состоящий из колебательного контура и усилителя [1]. Возрастающие потребности науки и техники в более совершенном оборудовании приводят, в частности, к ужесточению требований к параметрам генерируемых колебаний (стабильности частоты и амплитуды, коэффициенту нелинейных искажений и т.д.), что, в свою очередь, заставляет усложнять конструкцию автогенераторов. Однако рост числа элементов любого устройства, как известно, уменьшает надежность его работы, увеличивает вес, габариты и т.п. Важным шагом в преодолении этих проблем и в достижении заданных характеристик колебаний более простыми способами явилось использование в автогенераторах RC- и LCRG-распределенных структур (линий), выполненных на базе современной микроэлектроники [2]. Таким образом, задача исследования LCRG-автогенераторов с внешней обратной связью становится актуальной не только для развития теории колебаний в распределенных системах, но и представляет определенный интерес для практики.

Изучению устойчивых колебаний в LCRG-автогенераторах с отрезком длинной линии в цепи обратной связи посвящен ряд работ [3–6]. Так, например, отмечается [3] экспериментальный факт: в рассматриваемом генераторе могут устанавливаться различные автоколебательные режимы, зависящие от задания начальных условий. В работе [4] указывается, что это явление может быть использовано при моделировании процессов памяти и создании запоминающих ячеек. Проведен [5] расчет автоколебаний в LCRG-генераторе с большим затуханием в цепи обратной

связи и представлены результаты эксперимента. В статье [6] дан теоретический анализ бифуркации автоколебаний для случая, когда увеличение коэффициента усиления последовательно приводит к росту числа частот самовозбуждения в генераторе.

Цель настоящей работы состоит в продолжении математического моделирования и исследования указанного устройства при малом затухании в цепи обратной связи, когда происходит одновременное возбуждение генератора на многих частотах.

Изучаемая математическая модель автогенератора представляет собой классическое телеграфное уравнение с нелинейными граничными условиями. В предположении о малости суммарных активных потерь в линии с помощью специального асимптотического метода [7] из этого уравнения выводится базовая математическая модель идеального автогенератора (с бесконечным числом частот самовозбуждения), а затем серия моделей реальных генераторов с конечным числом частот генерации N = 1, 2, ... Анализ этих моделей, представляющих собой 4N-мерные системы обыкновенных дифференциальных уравнений, позволяет выявить в рассматриваемом физическом устройстве новое явление - рост числа устойчивых, сложных по форме, периодических режимов с увеличением N.

1. ВЫВОД И АНАЛИЗ БАЗОВОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Математической моделью автогенератора с идеальным усилителем, о котором говорилось выше, является краевая задача

$$u_{tt} + \varepsilon u_t + \varepsilon^2 \alpha u = u_{xx}, \tag{1}$$

$$u_{x}|_{x=1} = 0,$$

$$u|_{x=0} + (1 + \varepsilon^{2} \gamma) u|_{x=1} + \beta u^{2}|_{x=1} - u^{3}|_{x=1} = 0,$$
(2)

где $0 < \varepsilon \le 1$, параметры α , β , γ имеют порядок единицы, причем $\gamma \ge 0$, $0 < \alpha < 1/4$, а знак β произволен. Здесь $\varepsilon = G\sqrt{L/C} + R\sqrt{C/L}$, $\varepsilon^2\alpha = RG$, а R, C, L, G — распределенные сопротивление, емкость, индуктивность и проводимость линии. Характерные особенности задачи (1) и (2) заключаются в том, что, во-первых, отвечающая ей линейная краевая задача при $\varepsilon = 0$ имеет счетное число линейно независимых периодических решений

$$\exp(\pm i\omega_n t)\cos\omega_n x, \quad \omega_n = \pi(2n-1),$$

$$n = 1, 2, ...;$$
(3)

во-вторых, собственным числам $-\omega_n^2$, $n=1,\,2,\,\dots$ оператора

$$\Pi v = \frac{d^2 v}{dx^2}, \quad v'(1) = 0, \quad v(0) + v(1) = 0 \quad (4)$$

кроме собственных функций $\cos \omega_n x$ отвечают также присоединенные функции $\frac{1}{2\omega_n}(x-1)\sin \omega_n x$.

Последним обстоятельством, в частности, определяется выбор коэффициента усиления $K=1+\epsilon^2\gamma$. Равенство же $\epsilon^2\alpha=RG$ — следствие предполагаемой однопорядковости малых параметров R и G.

Автоколебания краевой задачи (1), (2) будем строить с помощью метода квазинормальных форм [7], являющегося специальным вариантом асимптотического метода Крылова—Боголюбова—Митропольского [8]. С этой целью положим в ней

$$u = \varepsilon u_0(t, \tau, x) + \varepsilon^2 u_1(t, \tau, x) + + \varepsilon^3 u_2(t, \tau, x) + \dots, \quad \tau = \varepsilon t,$$
 (5)

$$u_0 = \sum_{n=1}^{\infty} (z_n(\tau) \exp(i\omega_n t) + + \bar{z}_n(\tau) \exp(-i\omega_n t)) \cos \omega_n x,$$
 (6)

где комплексные "амплитуды" z_n таковы, что сходится ряд с общим членом $\omega_n|z_n|^2$ (в этом случае $u_0 \in W_2^1$ по переменной x). Приравнивая затем коэффициенты при ε^2 и ε^3 , для нахождения 2-перио-

дических по t функций u_1 , u_2 приходим к краевым задачам

$$u_{1tt} - u_{1xx} + 2u_{0t\tau} + u_{0t} = 0, \quad u_{1x}\big|_{x=1} = 0,$$

$$u_{1}\big|_{x=0} + u_{1}\big|_{x=1} + \beta u_{0}^{2}\big|_{x=1} = 0,$$

$$u_{2tt} - u_{2xx} + 2u_{1t\tau} + u_{1t} + u_{0\tau\tau} + u_{0\tau} = 0, \quad u_{2x}\big|_{x=1} = 0,$$

$$u_{2}\big|_{x=0} + u_{2}\big|_{x=1} + 2\beta(u_{0}u_{1})\big|_{x=1} +$$

$$+ \gamma u_{0}\big|_{x=1} - u_{0}^{3}\big|_{x=1} = 0.$$
(7)

Решения краевых задач (7), (8) будем искать в виде рядов той же структуры, что и неоднородности. На этом пути получаем равенство

$$u_{1} = \sum_{n=1}^{\infty} (2\dot{z}_{n} + z_{n})B_{n}(x)\exp(i\omega_{n}t) +$$

$$+ (2\dot{\bar{z}}_{n} + \bar{z}_{n})\overline{B}_{n}(x)\exp(-i\omega_{n}t) -$$

$$-\frac{\beta}{2}\sum_{n, m=1}^{\infty} [z_{n}z_{m}\exp(i(\omega_{m} + \omega_{n})t) +$$

$$+ \bar{z}_{n}\bar{z}_{m}\exp(-i(\omega_{n} + \omega_{m})t)]\cos(\omega_{m} + \omega_{n})x +$$

$$+ [z_{n}\bar{z}_{m}\exp(i(\omega_{n} - \omega_{m})t + \bar{z}_{n}z_{m}\exp(i(\omega_{m} - \omega_{n})t)] \times$$

$$\times \cos(\omega_{n} - \omega_{m})x,$$
(9)

где

$$B_n(x) = \frac{i}{2}(x-1)\sin\omega_n x,$$

а точкой в (9) обозначается дифференцирование по т. Подставляя, далее, формулу (9) в (8) и учитывая равенство

$$2\beta(u_0u_1)\big|_{x=1} - u_0^3\big|_{x=1} =$$

$$= (1 + \beta^2) \left(\sum_{n=1}^{\infty} z_n \exp(i\omega_n t) + \bar{z}_n \exp(-i\omega_n t) \right)^3,$$

после некоторых преобразований убеждаемся, что условия разрешимости краевой задачи (8) в классе 2-периодических по t функций имеют вид

$$\frac{1}{2}(\ddot{z}_n + \dot{z}_n) = (\gamma - 1/8)z_n - f_n, \quad n = 1, 2, \dots$$
 (10)

Здесь f_n – коэффициент при $\exp(i\omega_n y)$ в разложении Фурье-функции $(1 + \beta^2)v^3(\tau, y)$, где

$$v(\tau, y) = \sum_{n=1}^{\infty} z_n(\tau) \exp(i\omega_n y) + \bar{z}_n(\tau) \exp(-i\omega_n y).$$
(11)

Из формул (10), (11) очевидным образом вытекает, что счетная система (10) "сворачивается" в краевую задачу

$$\frac{1}{2}(\ddot{v} + \dot{v}) = (\gamma - 1/8)v - (1 + \beta^2)v^3,$$

$$v(\tau, y + 1) \equiv -v(\tau, y),$$
(12)

которую будем рассматривать при начальных условиях

$$|v|_{\tau=0} = |v_0(y)|, \quad \dot{v}|_{\tau=0} = |v_1(y)|, \quad (13)$$

где $v_0(y)$, $v_1(y)$ — произвольные непрерывные антипериодические с периодом 1 функции. Заметим, далее, что если $v(\tau, y)$ — решение (12), (13), то переменная составляющая напряжения в линии с точностью до членов порядка малости ε^2 задается формулой

$$u = \frac{\varepsilon}{2} [v(\tau, y_1) + v(\tau, y_2)],$$

$$y_1 = t + x, \quad y_2 = t - x, \quad \tau = \varepsilon t.$$
(14)

Совокупность (12)—(14) будем называть базовой математической моделью, так как есть все основания ожидать (с физической точки зрения это вполне очевидно), что квазинормальная форма (12) правильно отражает качественный характер поведения при $t \longrightarrow \infty$ решений исходной краевой задачи (1), (2). Отметим еще, что при $\gamma < 1/8$ решения задачи (12) с любыми начальными условиями (13) стремятся к нулю при $\tau \longrightarrow \infty$, а при

$$\gamma > 1/8 \tag{15}$$

нулевое решение становится неустойчивым сразу на всех частотах ω_n , $n=1,2,\ldots$ Таким образом, при условии (15), означающем наличие достаточного для возбуждения автоколебаний коэффициента усиления, модель (12)—(14) описывает идеальный автогенератор с бесконечным набором частот самовозбуждения ω_n .

Выполняя при условии (15) в уравнении (12) замены

$$\sqrt{2(\gamma-1/8)}\tau \longrightarrow \tau$$
, $\sqrt{(1+\beta^2)/(\gamma-1/8)}v \longrightarrow v$, получаем краевую задачу

где $\kappa = 1/\sqrt{2(\gamma - 1/8)}$. Для описания характера поведения при $\tau \longrightarrow \infty$ всех ее решений заметим, что фазовым портретом уравнения (16) на плоскости (v,\dot{v}) является рис. 1 (заштрихована область притяжения состояния равновесия v=-1): каждое его решение при $\tau \longrightarrow \infty$ стремится κ 1, -1 или 0. Поэтому, дополняя задачу (16) произвольными начальными условиями (13) из описанного выше

 $\sum z_n(\tau) \exp(i\omega_{n,t}) + \hat{z}_n(\tau) \exp(-i\omega_n y).(20)$

класса, убеждаемся, что соответствующее решение при $\tau \longrightarrow \infty$ поточечно сходится к некоторой функции $v_*(y)$, принимающей лишь значения $\pm 1, 0$. Для ее конструктивного описания рассмотрим на плоскости (v, \dot{v}) кривую

$$\Gamma = \{(v_0(y), v_1(y)): 0 \le y \le 2\}$$

(ее возможное расположение отмечено на рис. 1 штриховой линией) и для удобства будем считать, что антипериодические функции $v_0(y)$, $v_1(y)$ определены на окружности S длины 2. Обозначим, далее, через Ω множество точек $y \in S$, при которых кривая (Γ) имеет пересечение с входящими сепаратрисами седлового нулевого состояния равновесия уравнения (16) (см. рис. 1). Очевидно, Ω – замкнутое множество. Поэтому $S|\Omega = \bigcup_{k=1}^{\infty} I_k$, где I_k – непересекающиеся интервалы. Остается побавить, что

$$v_*|_{y\in\Omega}\equiv 0, \quad v_*|_{y\in I_k}\equiv \pm 1,$$
 (17)

причем знаки "+" или "-" выбираются в зависимости от принадлежности участка кривой Γ при $y \in I_k$ области притяжения состояния равновесия v = 1 или -1.

Итак, совокупность всевозможных пределов $v_*(y)$ решений краевой задачи (16) задается равенством

$$v_*(y) = \operatorname{sign} v(y), \tag{18}$$

где v(y) — произвольная непрерывная антипериодическая с периодом 1 функция. Однако наиболь-

ший физический интерес представляют симметричные распределения (18), задающиеся формулами

$$v_m(y) = sign sin(2m-1)\pi y, \quad m = 1, 2, ...$$
 (19)

Функции (18), отличающиеся друг от друга сдвигом по у, будем отождествлять, так как они порождают один и тот же разрывный цикл (14).

2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РЕАЛЬНЫХ ГЕНЕРАТОРОВ

Напомним, что базовая модель (12)—(14) описывает идеальную ситуацию, характеризующуюся счетным набором частот ω_n , n=1,2,... Однако в реальных автогенераторах их количество всегда конечно. Поэтому для получения математической модели такого генератора фиксируем произвольно натуральное число N и положим в уравнении (16)

$$v_N(y) = \sum_{n=1}^N z_n(\tau) \exp(i\omega_n y) + \bar{z}_n(\tau) \exp(-i\omega_n y). (20)$$

В итоге для z_n , n = 1, 2, ..., N получаем укороченную систему обыкновенных дифференциальных уравнений

$$\ddot{z}_{n} + \kappa \dot{z}_{n} - z_{n} + \sum_{P_{n}} z_{m} z_{k} z_{s} + \sum_{Q_{n}} z_{m} z_{k} \bar{z}_{s} + \sum_{R_{n}} z_{m} \bar{z}_{k} \bar{z}_{s} = 0,$$

$$n = 1, 2, ..., N,$$
(21)

гле

$$P_{n} = \{ (m, k, s) : \omega_{n} = \omega_{m} + \omega_{k} + \omega_{s}, \quad m, k, s \leq N \},$$

$$Q_{n} = \{ (m, k, -s), (m, -s, k), (-s, m, k) :$$

$$\omega_{n} = \omega_{m} + \omega_{k} - \omega_{s}, \quad m, k, s \leq N \},$$

$$R_{n} = \{ (m, -k, -s), (-k, m, -s), (-k, -s, m) :$$

$$\omega_{n} = \omega_{m} - \omega_{k} - \omega_{s}, \quad m, k, s \leq N \}.$$

Систему (21) вместе с равенствами (20) и

$$u = \frac{\varepsilon}{2} [v_N(\tau, y_1) + v_N(\tau, y_2)], \tag{22}$$

$$y_1 = t + x$$
, $y_2 = t - x$, $\tau = \varepsilon t$

назовем моделью реального генератора с N частотами самовозбуждения.

Обратим внимание, что система (21) инвариантна относительно замен

$$z_n \exp(-i\omega_n \varphi) \longrightarrow z_n, \quad n = 1, 2, ..., N$$
 (23)

при любом вещественном ф. Поэтому если она имеет некоторое состояние равновесия, то вместе с ним имеется целое однопараметрическое их семейство. Однако каждому такому семейству соответствует единственный цикл (22).

Остановимся на вопросе о "материализации" в моделях (20)—(22) симметричных состояний равновесия (19) и заметим, что впервые аналог такого состояния (с фиксированным номером m) появляется в системе (21), при N=m — это устойчивое (при всех $\kappa > 0$) семейство

$$z_1 = \dots = z_{m-1} = 0, \quad z_m = \frac{1}{\sqrt{3}} \exp(i\varphi).$$
 (24)

Далее, при $M \le N < 3m-1$ данное семейство сохраняется, при N = 3m-1 у него появляется еще одна ненулевая координата z_{3m-1} и т.д. Тем самым при каждом N и подходящем выборе к можно гарантировать существование в системе (21) не менее N семейств состояний равновесия и, что очень важно, для их приближенного нахождения пользоваться соответствующими конечными отрезками рядов Фурье

$$v_{m}(y) = \sum_{k=1}^{\infty} \frac{2i}{\omega_{k}} [\exp(-i(2m-1)\omega_{k}y) - \exp(i(2m-1)\omega_{k}y)].$$
 (25)

Для иллюстрации сформулированных в предыдущем абзаце положений проследим за материализацией в системах (21) при $N \ge 2$ состояния равновесия $v_1(y)$ (см. (19)). Обратимся сначала к системе

$$\ddot{z}_1 + \kappa \dot{z}_1 - z_1 + 3|z_1|^2 z_1 + 6|z_2|^2 z_1 + 3z_2 \bar{z}_1^2 = 0, \quad (26)$$

$$\ddot{z}_2 + \kappa \dot{z}_2 - z_2 + z_1^3 + 3|z_2|^2 z_2 + 6|z_1|^2 z_2 = 0$$
 (27)

и положим в ней

$$z_j = \rho_j \exp(i\varphi_j), \quad j = 1, 2.$$

В итоге после некоторых преобразований и численного подсчета приходим к выводу, что у нее имеются три семейства состояний равновесия с ненулевыми координатами ($\psi = \phi_2 - 3\phi_1$):

$$\rho_1 = 0.33066 \dots$$
, $\rho_2 = 0.26205 \dots$, $\psi = 0$, (28)

$$\rho_1 = 0.286007 \dots, \quad \rho_2 = 0.43327 \dots, \quad \psi = \pi, \quad (29)$$

$$\rho_1 = 0.616675 \dots, \quad \rho_2 = 0.171218 \dots, \quad \psi = \pi. \quad (30)$$

· Сравнивая (28)–(30) с модулями первых двух коэффициентов ряда Фурье (25)

$$2/\omega_1 = 0.636619..., 2/\omega_2 = 0.212206..., (31)$$

убеждаемся, что аналогом состояния равновесия (19) при m = 1 здесь является устойчивое семейство (30).

Аналогичный анализ системы

$$\ddot{z}_1 + \kappa \dot{z}_1 - z_1 + 3|z_1|^2 z_1 + 6|z_2|^2 z_1 + 3z_2 \bar{z}_1^2 + 6|z_3|^2 z_1 + 3z_2^2 \bar{z}_3 + 6\bar{z}_1 \bar{z}_2 z_3 = 0,$$
(32)

Рис. 2.

$$\ddot{z}_2 + \kappa \dot{z}_2 - z_2 + z_1^3 + 3|z_2|^2 z_2 + 6|z_1|^2 z_2 + 6|z_3|^2 z_2 + (33) + 3\bar{z}_1^2 z_3 + 6z_1\bar{z}_2 z_3 = 0,$$

$$\ddot{z}_3 + \kappa \dot{z}_3 - z_3 + 3|z_3|^2 z_3 + 6|z_1|^2 z_3 + 6|z_2|^2 z_3 + 3\bar{z}_1^2 z_2 + 3\bar{z}_1 z_2^2 = 0$$
(34)

показывает, что тогда интересующему нас состоянию равновесия соответствует устойчивое семейство

$$\rho_1 = 0.627..., \quad \rho_2 = 0.191..., \quad \rho_3 = 0.097..., \\
\varphi_2 - 3\varphi_1 = \pi, \quad \varphi_3 - 5\varphi_1 = 0$$
(35)

(координата ρ_3 близка к $2/\omega_3 = 0.12732...$). Однако в этом случае появляется еще одно устойчивое семейство вида

$$\rho_1 = 0.302..., \quad \rho_2 = 0.441..., \quad \rho_3 = 0.302...,$$

$$\phi_2 - 3\phi_1 = 0, \quad \phi_3 - 5\phi_1 = \pi.$$
(36)

Непосредственно проверяется, что при N=4 к ранее известным семействам (30), (35), (36) добавляется новое устойчивое семейство

$$\rho_1 = 0.205..., \quad \rho_2 = 0.249..., \quad \rho_3 = 0.350..., \\ \rho_4 = 0.367..., \quad (37)$$

$$\phi_2 - 3\phi_1 = 0, \quad \phi_3 - 5\phi_1 = 0, \quad \phi_4 - 7\phi_1 = \pi$$

и т.д.

Таким образом, из проведенного анализа можно сделать следующий вывод: с возрастанием *N* происходит увеличение у системы укороченных уравнений (21) экспоненциально устойчивых состояний равновесия, что для реальных генерато-

ров означает накапливание автоколебательных режимов с ростом числа частот самовозбуждения ω_n . Далее, учитывая соотношение (3) между частотами ω_n и вид семейств (30), (35)–(37), приходим к заключению, что в генераторе реализуются только сложные по форме, периодические режимы автоколебаний, определяемые заданием начальных условий.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для качественной оценки теоретических результатов был создан автогенератор, принципиальная схема которого представлена на рис. 2. В качестве цепи обратной связи использовался отрезок длинной линии, выполненный в виде прямого соленоида. Суммарные распределенные индуктивность, емкость, сопротивление и проводимость соответственно равнялись L = 55.16 мГн, C = 87.67 пф, R = 540 Ом, G = 0. Широкополосный усилитель с $R_{\rm BX} \approx 50$ МОм, $R_{\rm BbIX} = 75$ Ом имел равномерный коэффициент усиления в диапазоне частот от 100 кГц до 120 МГц, т.е. по своим характеристикам был близок к идеальному. Начальные условия для напряжений и токов задавались различным образом, в том числе с использованием генератора синусоидальных колебаний при f== 50 к Γ ц-100 М Γ ц, u = (10-100) мB. При одном и том же значении коэффициента усиления удалось выявить три различных режима автоколебаний с количеством фиксируемых частот самовозбуждения, равными 2, 3 и 4 соответственно. Бифурцирующие режимы представляли сложные по форме, периодические колебания периодов $T_1 = 7.04$, $T_2 = 8.13$, $T_3 = 8.55$ мкс, что согласуется с теоретическими результатами.

ЗАКЛЮЧЕНИЕ

Проведенные в работе теоретическое и экспериментальное исследования позволяют сделать следующие выводы.

- 1. Препложена математическая модель LCRGавтогенератора с малым затуханием в цепи обратной связи для случая, когда генератор самовозбуждается сразу на многих частотах ω_n .
- 2. Развиты новые качественные и количественные способы анализа системы дифференциальных уравнений, к которым сводится исходная краевая задача. В частности, введена базовая математическая модель идеального генератора с бесконечным числом частот самовозбуждения, с использованием которой исследован ряд моделей реальных автогенераторов с конечным числом частот.
- 3. Показано, что с ростом числа частот самовозбуждения происходит накапливание автоколебательных режимов, причем реализация каждого из них определяется заданием начальных условий.
- 4. Выявлено, что бифурцирующие автоколебания периодические и имеют сложную форму, существенно отличающуюся от гармонической.

5. Теоретические результаты нашли подтверждение в эксперименте и могут быть использованы при проектировании подобных генераторов на практике.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ван-дер-Поль Б. Нелинейная теория электрических колебаний. М.: Связьиздат, 1935.
- 2. Непринцев В.И., Камбулов В.Ф. // РЭ. 1975. Т. 20. № 5. C. 982.
- 3. Азьян Ю.М., Мигулин В.В. // РЭ. 1956. Т. 1. № 4. C. 126.
- 4. Уткин Г.М. Автоколебательные системы и волновые усилители. М.: Сов. радио, 1978.
- 5. Камбулов В.Ф. // РЭ. 1978. Т. 23. № 11. С. 2321.
- 6. Камбулов В.Ф., Колесов А.Ю. // Математический . сб. 1995. Т. 186. № 7. С. 77.
- Колесов Ю.С. // Математический сб. 1993. Т. 184. № 3. C. 121.
- 8. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.

буждения, равными 2, 3 и 4 соответственно. Би-функтруусине, режимы, препставляли сложные

Сдано в набор 16.04.97 г.

Подписано к печати 20.06.97 г. Формат бумаги $60 \times 88^{1}/_{8}$

Офсетная печать Усл. печ. л. 18.0 Усл. кр.-отт. 10.9 Уч.-изд. л. 16.7 Бум. л. 9.0

Тираж 588

Зак. 1982