13. Степенни редове. Област и радиус на сходимост

## Степенни редове

Функционален ред от вида

$$a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n + \dots$$
 (1)

или, накратко, 
$$\sum_{n=0}^{\infty} a_n (x-a)^n, \tag{2}$$

където  $a, a_n \in \mathbb{R}, n \in \mathbb{N}_0$ , се нарича степенен.

#### Примери:

$$1 + x + x^2 + \dots + x^n + \dots$$
 или, накратко,  $\sum_{n=0}^{\infty} x^n$ , (3)

$$1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 или, накратко,  $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ . (4)



#### Теорема 1

Ако степенният ред  $\sum_{n=0}^{\infty} a_n x^n$  е сходящ за някое  $x_0 \neq 0$ , то той е сходящ и то абсолютно за всяко x такова, че  $|x| < |x_0|$ .

#### Следствие 1

Ако степенният ред  $\sum_{n=0}^{\infty} a_n (x-a)^n$  е сходящ за някое  $x_0 \neq a$ , то той е сходящ и то абсолютно за всяко x такова, че  $|x-a| < |x_0-a|$ .

# Доказателство на Теорема 1

И така известно е, че числовият ред  $\sum_{n=0}^{\infty} a_n x_0^n$  е сходящ. Нека  $x_1$  е произволно фиксирано такова, че  $|x_1|<|x_0|$ . За да установим твърдението на теоремата, трябва да докажем, че числовият ред  $\sum_{n=0}^{\infty} |a_n x_1^n|$  е сходящ.

Ще си послужим с Принципа за сравняване на числови редове с неотрицателни членове (Теорема 1, Тема 6, ДИС 1).

Използваме, че

$$\left|a_{n}x_{1}^{n}\right|=\left|a_{n}x_{0}^{n}\right|\left|\frac{x_{1}}{x_{0}}\right|^{n}.$$
 (5)

Да положим за краткост  $q:=\left|rac{x_1}{x_0}
ight|$ . Тогава  $0\leq q<1$ .

Понеже  $\sum_{n=0} a_n x_0^n$  е сходящ, то  $\lim_{n \to \infty} a_n x_0^n = 0$  (НУ за сход. на редове,

Теорема 3, Тема 5, ДИС 1). Следователно съществува C>0 такова, че

$$\left|a_{n}x_{0}^{n}\right| \leq C \quad \forall n. \tag{6}$$

От (5) и (6) следва

$$\left|a_{n}x_{1}^{n}\right| \leq Cq^{n} \quad \forall n. \tag{7}$$

Числовият ред $\sum_{n=0}^{\infty}q^n$  е сходящ, защото  $q\in[0,1)$ . Следователно

сходящ е и  $\sum_{n=0}^{\infty} Cq^n$ . Сега от (7) и Принципа за сравняване на числови редове с неотрицателни членове следва, че числовият ред

$$\sum_{n=0}^{\infty} |a_n x_1^n| \text{ е сходящ.}$$

# Радиус на сходимост

### Теорема 2

За всеки степенен ред от вида  $\sum_{n=0} a_n x^n$  е в сила точно едно от следните твърдения:

- (a) той е абсолютно сходящ за всяко  $\mathbf{x} \in \mathbb{R},$
- (б) той е сходящ само за x = 0,
- (в)  $\exists \, R > 0$  такова, че редът е абсолютно сходящ при |x| < R и е разходящ при |x| > R.

#### Следствие 2

За всеки степенен ред от вида  $\sum_{n=0}^{\infty} a_n (x-a)^n$  е в сила точно едно от следните твърдения:

- (a) той е абсолютно сходящ за всяко  $\mathbf{x} \in \mathbb{R},$
- (б) той е сходящ само за  $\mathbf{x} = \mathbf{a}$ ,
- (в)  $\exists \, R > 0$  такова, че редът е абсолютно сходящ при |x a| < R и е разходящ при |x a| > R.

Числото R се нарича радиус на сходимост на реда. Приема се, че ако е налице случай (б), R = 0, а ако е налице случай (а),  $R = \infty$ .

# Доказателство на Теорема 2

За да докажем теоремата, ще покажем, че ако нито (а), нито (б) не е изпълнено, то е изпълнено (в).

Нека E е областта на сходимост на реда  $\sum_{n=0}^{\infty} a_n x^n$ .

- 1) E не е празно, защото всеки такъв ред е сходящ поне при x=0.
- 2) E е ограничено отгоре. Ако допуснем противното, ще излезе, че каквото и  $x_1 \in \mathbb{R}$  да вземем,  $|x_1|$  не е горна граница на E и тогава, ще съществува  $x_0 \in E$  такова, че  $|x_1| < x_0$ . Сега от Теорема 1 следва, че редът е сходящ в  $x_1$ . Това означава, че редът е сходящ за всяко x случай, който изключихме. Така установихме, че E е ограничено отгоре.
- 3) Тогава от Принципа за непрекъснатост следва, че E има точна горна граница. Да я означим с R, т.е. полагаме  $R := \sup E$ . Ще докажем, че това R притежава свойствата, посочени във (в).

- 4) Ще докажем, че R>0. Щом не е изпълнено (б), то в E има поне едно число, различно от 0; да го означим с  $x_0$ . Като приложим отново Т-ма 1, заключаваме, че редът е сходящ за всяко  $x_1$  такова, че  $|x_1|<|x_0|$ . Следователно в E има положителни числа, откъдето на свой ред следва, че R>0.
- 5) Ще докажем, че редът е абсолютно сходящ за всяко X такова, че |x| < R. Нека  $x_1$  е произволно фиксирано такова, че  $|x_1| < R$ . Тогава от дефиницията на R следва, че  $\exists x_0 \in E$  такова, че  $|x_1| < x_0$  (иначе R нямаше да е най-малката горна граница на E). От T-ма 1 следва, че редът е абсолютно сходящ в т.  $x_1$ .
- 6) Остана да покажем, че редът е разходящ при |x| > R. Ако допуснем, че редът е сходящ за някое  $x_0$  такова, че  $|x_0| > R$ , то от Т-ма 1 ще следва, че той е сходящ за всяко x такова, че  $|x| < |x_0|$ . Но тогава ще излезе, че в E има числа > R, от което би излязло, че R не е горна граница на E противоречие с избора на R.

С това доказателството на Т-ма 2 е завършено.

### Област на сходимост

Нека R е радиусът на сходимост на степенния ред  $\sum_{n=0}^{\infty} a_n (x-a)^n$ , а

**Е** е неговата област на сходимост. От Следствие 2 получаваме:

- (a) ако  $R = \infty$ , то  $E = \mathbb{R}$ ,
- (б) ако R = 0, то  $E = \{a\}$ ,
- (в) ако  $0 < R < \infty$ , то  $(a-R,a+R) \subseteq E \subseteq [a-R,a+R]$ .