Rational Function Root Theory

When a polynomial with integer coefficients has a rational root,

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + ... a_0$$

then a root must be

H/L where H is the factor of a₀, and L is the factor of a_n

Ex.
$$P(X) =$$

$$P(X) = X^3 - X^2 + X + 3$$

Find a rational root if exists

The factor of 3 is \pm 3, \pm 1, and the factor of 1 is \pm 1.

The possible real root is ± 1 , ± 3

Verify each possible root and obtain -1. It exists