

TD 3 : algorithmes de tri

Soit un tableau T de taille N où chaque cellule ci avec $1 \le i \le N$ contient un nombre. Trier T par ordre croissant consiste à réordonner les valeurs des cellules de manière à ce que :

$$\sqrt{1 \le i \le N \text{ et } 1 \le j \le N : c_i \le c_j}$$

Pour passer d'un tableau non trié à un tableau trié par ordre croissant, il existe plusieurs méthodes de tri. L'objectif de ce projet est de programmer deux de ces méthodes (des tris naïfs assez peu efficaces au final ©) pour pouvoir ensuite comparer leur efficacité.

Exemple

Pour illustrer les deux méthodes de tri décrites ci-dessous, nous prendrons le tableau T comprenant 5 éléments et dont les éléments sont :

Exercice 1 : Fonction d'insertion d'un élément dans un tableau

Pour réaliser les deux algorithmes de tri décrits ci-après, vous aurez besoin d'une fonction d'insertion d'un élément. Considérons que cet élément se trouve à la position i et doit être inséré à la position j (avec j < i).

Pour insérer T[i] à la position j, il faut :

- 1. Sauvegarder la valeur de T[i] dans une variable x;
- 2. Décaler d'une position tous les éléments compris entre la position j et la position i-1;
- 3. Mettre la valeur de x à la position j.

Programmez une fonction Octave qui réalise l'insertion d'un élément à partir d'un tableau de nombre entiers, d'une position d'un nombre à insérer et d'un indice de position d'arrivée.

Exercice 2 : Fonction de Tri par sélection

Le tri par sélection consiste à chercher le plus petit élément du tableau et à le placer en première position. Une fois le plus petit élément positionné en première position, on recommence la même opération en commençant à l'indice 2 : on cherche le plus petit élément compris dans le tableau entre la position 2 et la fin du tableau, puis on place cet élément à la position 2. Puis on recommence ainsi en partant de l'élément 3, 4 et ainsi de suite jusqu'au bout du tableau.

Soit le tableau de départ suivant	8	5	7	1	2
	1	2	3	4	5
Le plus petit élément du tableau est 1. On l'insère à la première position du	1	8	5	7	2
tableau	1	2	3	4	5
On recommence en partant de l'indice 2. Entre l'élément 2 et la fin du	1	2	8	5	7
tableau, le plus petit élément est 2. On l'insère donc en seconde position.	1	2	3	4	5

On recommence en partant de l'indice 3. Entre l'élément 3 et la fin du	1	2	5	8	7
tableau, le plus petit élément est 5. On l'insère donc en troisième position.	1	2	3	4	5
On recommence en partant de l'indice 4. Entre l'élément 4 et la fin du tableau, le plus petit élément est 7. On l'insère donc en quatrième position.	1	2	3	4	8 5

Programmez une fonction GNU Octave qui réalise le tri par sélection d'un tableau.

Exercice 3: Fonction de Tri par insertion

Le tri par insertion consiste à classer les deux premiers éléments du tableau. Une fois que les deux premiers sont ordonnés, on prend l'élément qui suit et on le classe à son tour dans ce qui a déjà été classé. Pour chaque élément i du tableau, on sait que les éléments de 1 à i-1 sont déjà classés. On va chercher la position j parmi les i-1 premiers éléments de manière à ce que T[i] < T[j]. On insère alors T[i] à la position j.

Soit le tableau de départ suivant	8	5	7	1	2
	1	2	3	4	5
On commence par classer les 2 premiers éléments	5	8	7	1	2
	1	2	3	4	5
Puis on prend l'élément à la position $i=3$ (T[3] = 7), on cherche la position j	5	7	8	1	2
dans le sous tableau déjà trié ([5 ; 8]) : j=2, x=T[3]=7, on décale tous les			0		
éléments d'une case entre j et i-1 soit ici entre 2 et 2. Donc seul 8 est décalé	1	2	3	4	5
d'une case. Enfin on insère x à la position j.					
On prend ensuite l'élément à la position $i=4$ ($T[4]=1$), on cherche la position	1	5	7	8	2
j dans le sous tableau déjà trié ([5 ; 7 ; 8]) : j=1, x=T[4]=1, on décale tous	Ľ			0	
les éléments d'une case entre j et i-1 soit ici entre 1 et 3. Donc 5, 7 et 8 sont décalés d'une case. Enfin on insère x à la position j.	1	2	3	4	5
·					
Enfin, on prend l'élément à la position $i=5$ ($T[5]=2$), on cherche la position j	1	2	5	7	8
dans le sous tableau déjà trié ([1; 5; 7; 8]): $j=2$, $x=T[5]=2$, on décale	Ľ		3		0
tous les éléments d'une case entre j et i-1 soit ici entre 2 et 4. Donc 5, 7 et 8 sont décalés d'une case. Enfin on insère x à la position j.	1	2	3	4	5

Programmez une fonction GNU Octave qui réalise le tri par insertion d'un tableau.