Announcements

Announcements

- Homework 1 is out!
- Due February 23 (one week) at midnight anywhere on Earth

Recurrence Relations

Recurrence Relations

, not pseudocode.

- A recurrence relation is an equation that recursively defines a function's values in terms of earlier values
- Very useful for analyzing an algorithm's running time!

Recurrence Relations in Code

```
T(n)=running time for
bp on value n
(for arbitrary x)
def betterPower(x, n):
     if n == 0:

> return 1
else if n == 1:

return x

else if n % 2 == 0:

return betterPower(x * x, n/2) if n > 1:

(n) = (3+7)(n/2)
```

(assume for simplicity that n is a power of 2)

How can we write the running time?

Recurrence Relations in Code

$$T(0) = c_1$$
, $T(1) = c_2$, ..., $T(n) = c_3 + T(n/2)$

$$T(n) = c_3 + T(n/2)$$

$$= c_3 + c_3 + T(n/4)$$

$$= c_3 + c_3 + c_3 + T(n/8)$$
....
$$= kc_3 + T(n/(2^k))$$

$$= c_3 * log n$$

What should k be in order for us to get down to T(1)?

$$2^k = n$$
, so $k = log n$

Solving Recurrences

 Solving recurrence relations is like integrating an expression- there are tricks, but no techniques are guaranteed to work

Solving Recurrences

- Simplest method: Guess the solution, prove with induction
- Sometimes it helps to do a few expansions to get some intuition

Bounding Recurrences: the Master Method

Note that this doesn't actually SOLVE the recurrence!

Example

Bound the recurrence $T(n) = T(\frac{n}{2}) + 3n^3 + 2$.

Parameters:

$$b = 2$$

$$d = \frac{3}{3}$$

Case =
$$(\delta_{92}) = 0 < 3$$

Solution =

$$T(n) = aT(\left\lceil \frac{n}{b} \right\rceil) + O(n^d)$$

- Case 1: If $d > \log_b a$, then $T(n) = O(n^d)$
- Case 2: If $d = \log_b a$, then $T(n) = O(n^d \log n)$
- Case 3: If $d < \log_b a$, then $T(n) = O(n^{\log_b a})$

$$T(n) = O(n^3)$$

Example: Binary search

a = number of rec. calls generated by each function call

Algorithm: Goal is to find the location of a value in a sorted array. Start by looking in the middle; then depending on the value there, look in either the first half or second half, and so on. Divide the array in half each time.

b= size of input [] 3 4 6 8 9 10]
in the rec. call

What is the running time of binary search?

$$T(n) = (Unning) \text{ time of BinSearch on an array of size}$$
 $T(n) = (Unning) \text{ time of BinSearch on an array of size}$

Example: Binary search

if other work = O(n), then do

Write the running time as a recurrence relation:

What is the running time? Binsearch (A, k)
V find mid a = compare mid to k recuise on either Case = $\log_2 1 = 0 = \lambda$ Left or right half Solution = 0 (nº log n)

Example: Binary search Binsearch (A, K) if len(A)==1:if A[O]==k,return that index else!

get nidpoint & constant time because array

branch y get nidpoint & constant time

compare nid to k decide which half to branch on that halk create subarray representing that halk precurse on that subarray

In-Class Exercise () () = O ()) = O ())

Bound the following recurrences:
$$\frac{37}{5\cdot 2}$$

1.
$$T(n) = T(\left\lceil \frac{n}{3} \right\rceil) + 2n^2 + 2$$

2.
$$T(n) = 5T(\frac{n}{2}) + 5n^4 2(2)$$

$$\alpha = 5$$

$$b = 2$$

$$d = 4$$

$$O(6^4)$$

3.
$$T(n) = 2T(\frac{n}{2}) + 3n^3 + 2n$$

$$T(n) = aT(\left\lceil \frac{n}{b} \right\rceil) + O(n^d)$$

- Case 1: If $d > \log_b a$, then $T(n) = O(n^d)$
- Case 2: If $d = \log_b a$, then $T(n) = O(n^d \log n)$
- Case 3: If $d < \log_b a$, then $T(n) = O(n^{\log_b a})$

4.
$$T(n) = 3T(\frac{n}{2}) + 2^n$$

For simplicity, we assume that \underline{n} is a power of \underline{b} .

This does not affect the final result, because \underline{n} is at most a constant factor of \underline{b} away from a power of \underline{b} .

T(\underline{n}) = \underline{a} T(\underline{a}) + \underline{a}

Recursion Tree

Recursion Tree

Size
$$n$$

Problems in level *k*? (root=LO)/K

Size n/b

Size of problem in level

Size n/b^2

Work done in each problem? in level

Work done in level k?

$$O(a^{k}(\frac{n}{b^{k}})^{d})$$

From or the iviaster iviethod

$$\sum_{k=0}^{\infty} O\left(a^{k} \left(\frac{n}{b^{k}}\right)^{d}\right) = total running lime$$

$$\sum_{k=0}^{\infty} O\left(a^{k} \cdot \frac{n}{b^{k}}\right)^{d} = n \sum_{k=0}^{\log_{10}} O\left(\frac{a}{b^{k}}\right)^{k}$$

$$= n \sum_{k=0}^{\log_{10}} O\left(n^{k}\right)$$

Case 1: r < 1, ratio decreases as k goes
sum is given by
$$O(n^d \cdot r^o) = O(n^d)$$

Case 2: r=1, then $r^k = 1$, so the sum
is given by $O(n^d \cdot \# \text{ terms}) = O(n^d \log_2 n) = O(n^d \log_2 n)$

Case 3:
$$r > 1$$
, r increases as k goes up, sum dominated by last term
$$O(n^{d} \cdot r^{hjhekk}) = O(n^{d} \cdot r^{log_{b}n})$$

$$= O(n^{d} \cdot (\frac{\alpha}{b^{d}})^{log_{b}n}) = O(n^{d} \cdot \frac{\alpha^{log_{b}n}}{(b^{log_{b}n})^{d}}) = O(n^{d} \cdot (\frac{\alpha^{log_{b}n}}{a^{log_{b}n}})^{d})$$

$$= O(n^{log_{b}n}) = O(n^{log_{b}n}).$$

In-Class Exercise

```
Analyze the running time of the following function:
T(n) = 3T(\frac{n}{2}) + O(n')
                                     * For i=lilen(A)
function SplitMax(array A):
   if length(A) == 1: ( ) ( ) ( ) ( ) ( ) ( )
   else;
A1 = A[0 : length(A)/3]
A2 = A[(length(A)/3) + 1 : 2*(length(A)/3)]
A3 = A[2*(length(A)/3) + 1 : length(A)]
       return max(SplitMax(A1), SplitMax(A2), SplitMax(A3))
```