Лекция 15.

Пусть $f: \mathbf{R}^n \to \mathbf{R}$ числовая функция переменной $X = (x_1, x_2, ..., x_n)$, которую будем записывать как $f(X) = f(x_1, x_2, ..., x_n)$.

Определение предела (по Гейне). Будем говорить, что функция $f(X)=f(x_1,x_2,...,x_n)$ имеет предел равный числу $A\in \pmb{R^n}$ при значении переменной $X=(x_1,x_2,...,x_n)$ стремящемуся к $X_0=(x_{01},x_{02},...,x_{0n})$, если f(X) определена в некоторой проколотой окрестности $\dot{U}(X_0)$ точки X_0 и для любой последовательности $\{X_k\}$ точек из окрестности $\dot{U}(X_0)$, сходящейся к X_0 , последовательность $\{f(X_k)\}$ сходится к числу A. Или

$$A = \lim_{\mathbf{X} o \mathbf{X}_0} f(\mathbf{X}) \underset{\text{по Гейне}}{\Longleftrightarrow} \forall \{X_k\}, X_k \in \dot{U}(X_0), \lim_{k o \infty} X_k = X_0 \Rightarrow \lim_{k o \infty} f(X_k) = A$$
.

Определение предела (по Коши). Пусть функция f(X) определена в некоторой окрестности конечной точки X_0 за исключением, может быть, самой точки X_0 . **Число** A **называется пределом функции** f(X) в точке X_0

если для любого $\varepsilon>0$ существует такое $\delta_{\varepsilon}>0$, зависящее от ε , что для всех X, для которых выполняется неравенство $\left|X-X_{0}\right|<\delta_{\varepsilon}\Rightarrow\left|f(X)-A\right|<\varepsilon$. Или кратко:

$$A = \lim_{X \to X_0} f(X) \underset{\text{по Коши}}{\Longleftrightarrow} \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \colon \forall X, 0 < |X - X_0| < \delta_{\varepsilon} \Rightarrow |f(X) - A| < \varepsilon \ .$$

Теорема. Определения предела по Гейне и по Коши эквивалентны.

Доказательство.

Рассмотрим некоторую функцию f(X) определенную в некоторой окрестности $\dot{U}(X_0)$ конечной точки X_0 за исключением, может быть, самой точки X_0 . Пусть $\vec{\theta}=(\theta_1,\theta_2,...,\theta_n)$ единичный вектор, $\left|\vec{\theta}\right|=1$, тогда точки вида $X_0+t\vec{\theta}=(x_{01}+t\theta_1,...,x_{0n}+t\theta_n)$, где t>0, образуют луч, выходящий из точки X_0 в направлении вектора $\vec{\theta}$. Пределом функции f(X) по направлению $\vec{\theta}$ называется предел функции $F(t)=f(x_{01}+t\theta_1,...,x_{0n}+t\theta_n)$, если он существует

$$\lim_{t\to 0} \lim F(t) = \lim_{t\to 0} f(X_0 + t\vec{\theta}).$$

Пример. a) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 + y^3}{x^2 + y^2} = 0$,

- б) $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{x^2 + y^2}$ не существует, т.к. пределы по направлениям различны.
- в) $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y}{x^4 + y^2}$ не существует, хотя существуют равные пределы по

направлениям.

Определение. Будем писать $\lim_{X \to X_0} f(X) = \infty$ если f(X) определена в некоторой проколотой окрестности $\dot{U}(X_0)$ и $\forall R > 0 \exists \delta_R > 0$: $\forall X \in \dot{U}(X_0)$, $0 < |X - X_0| < \delta_R \Rightarrow |f(X)| > R$.

Определение. Будем писать $\lim_{X \to \infty} f(X) = A$, если $\forall \varepsilon > 0 \exists R_{\varepsilon} > 0 \colon \forall X, |X| > R_{\varepsilon} \Rightarrow |f(X) - A| < \varepsilon$.

Теорема. Пусть $A=\lim_{X o X_0}f(X)$, $B=\lim_{X o X_0}g(X)$ конечные пределы. Тогда

а)
$$\lim_{X \to X_0} \bigl(\alpha f(X) + \beta g(X) \bigr) = \alpha A + \beta B$$
, где $\alpha, \beta \in \pmb{R}$;

6)
$$\lim_{X \to X_0} f(X)g(X) = AB;$$

в)
$$\lim_{X\to X_0} \frac{f(X)}{g(X)} = \frac{A}{B}$$
, если $B\neq 0$.

Доказательство.

Теорема. Если $A = \lim_{X \to X_0} f(X)$, где A —конечное число, то $\exists \ \dot{U}(X_0)$, M > 0: $\forall X \in \dot{U}(X_0) \Rightarrow |f(X)| < M$.

Доказательство.

Теорема. Если
$$A = \lim_{X \to X_0} f(X)$$
, где $A \neq 0$, то $\exists \ \dot{U}(X_0) \colon \forall X \in \dot{U}(X_0) \Rightarrow |f(X)| > \frac{|A|}{2}$. Если при этом $A > 0$, то $f(X) > \frac{A}{2}$, если $A < 0$, то $f(X) < \frac{A}{2}$.

Доказательство.

Непрерывные функции.

Функция f(X) называется непрерывной в точке $X_0 \in G \subset \mathbf{R}^n$, если она определена в некоторой окрестности $U(X_0)$ и $\lim_{\substack{X \to X_0 \\ X \in G}} f(X) = f(X_0)$.

Если определить приращение функции, соответствующее приращению аргумента $\Delta X = (\Delta x_1, \Delta x_2, ..., \Delta x_n)$, как $\Delta f(X) = f(X + \Delta X) - f(X)$, то данное определение эквивалентно равенству $\lim_{\substack{\Delta X \to 0 \\ X + \Delta X \in G}} \Delta f(X_0) = 0$.

На языке "
$$\varepsilon - \delta$$
": $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0$: $\forall X \in G, 0 < |X - X_0| < \delta_{\varepsilon} \Rightarrow |f(X) - f(X_0)| < \varepsilon$.

Для непрерывных функций свойство $\lim_{X \to X_0} f(X) = f(\lim_{X \to X_0} X)$ показывает, что знаки предела и функции перестановочны или - «можно переходить к пределу под знаком непрерывной функции».

Теорема. Пусть f(X) и g(X) непрерывные в точке функции X_0 функции. Тогда $\alpha f(X) + \beta g(X)$, f(X) g(X), (f(X))/(g(X)) при $g(X_0) \neq 0$ - непрерывны.

Доказательство.

Теорема. Пусть g(X) непрерывна в точке X_0 , $g(X_0)=a$, функция f(t) непрерывна в точке a, тогда сложная функция $\Phi(X)=f(g(X))$ непрерывна в точке x_0 .

Доказательство.

Примеры непрерывных функций.

Теорема. а) Если f(X) непрерывна в точке A, то она ограничена в некоторой окрестности U(A);

б) Если f(X) непрерывна в точке A и $f(A) \neq 0$, то существует окрестность U(A) точки A, в которой $f(X) > \frac{f(A)}{2} > 0$, если f(A) > 0 и $f(X) < \frac{f(A)}{2} < 0$, если f(A) < 0, для любого $X \in U(A)$.

Доказательство.

Определение. Функция называется непрерывной на множестве G, если она непрерывна в каждой точке множества G.

Теорема. Если функция непрерывна на ограниченном, замкнутом множестве $G \subset \mathbb{R}^n$, то она ограничена.

Доказательство.

Теорема (Вейерштрасс). Если функция f(X) непрерывна на ограниченном, замкнутом множестве $G \subset \mathbf{R}^n$, то существует точка $C \in G$, такая, что $f(C) = \min_{X \in G} f(X)$ и, существует точка $D \in G$, такая, что $f(D) = \max_{X \in G} f(X)$.

Доказательство.

Определение. Непрерывной кривой в ${\it R}^n$ называется образ отображения

$$\Gamma: [a,b] \to \mathbb{R}^n$$
, $\Gamma(t) = (\varphi_1(t), \varphi_2(t), \dots, \varphi_n(t))$,

задаваемого непрерывными на отрезке [a,b] функциями $\{\varphi_i(t)\}$.

Определение. Множество $G \subset \mathbb{R}^n$ называется связным, если любые две его точки можно соединить непрерывной кривой, целиком лежащей в множестве G.

Теорема. Если функция f(X) непрерывна на ограниченном, замкнутом, связном множестве $G \subset \mathbf{R}^n$, $a = \min_{X \in G} f(X)$, $b = \max_{X \in G} f(X)$, то для любого значения $c \in [a,b]$ существует $C \in G$, такая, что f(C) = c.

Доказательство.

Примеры.

Определение. Функция f(X) называется равномерно непрерывной на множестве $M \subset \mathbf{R}^n$, если $\forall \varepsilon > 0 \ \exists \delta_\varepsilon > 0 \colon \forall X', X^{''} \in M, \left| X' - X^{''} \right| < \delta_\varepsilon \Rightarrow \left| f(X') - f(X^{''}) \right| < \varepsilon$.

Теорема (Кантор). Пусть $M \subset \mathbb{R}^n$ компактное множество, f(X) непрерывная на M функция, тогда f(X) равномерно нерерывна на M.

Доказательство.

Следствие. Функция, непрерывная на ограниченном замкнутом множестве, равномерно непрерывна на нём.

Примеры.