STAT 611 Homework 8 Solutions

1. If $\alpha < p(\mathbf{x})$,

$$\sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge c_{\alpha}) = \alpha < p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge W(\mathbf{x}))$$

Thus $W(\mathbf{x}) < c_{\alpha}$ and we could not reject H_0 at level α having observed \mathbf{x} . On the other hand, if $\alpha \geq p(\mathbf{x})$,

$$\sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge c_\alpha) = \alpha \ge p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P(W(\mathbf{X}) \ge W(\mathbf{x}))$$

Either $W(\mathbf{x}) \geq c_{\alpha}$ in which case we could reject H_0 at level α having observed \mathbf{x} or $W(\mathbf{x}) < c_{\alpha}$. But, in the latter case we could use $c'_{\alpha} < W(\mathbf{x})$ and have $\{\mathbf{x}' : W(\mathbf{x}' \geq c'_{\alpha})\}$ define a size α rejection region. Then we could reject H_0 at level α having observed \mathbf{x} .

2. (a) For $Y = -(\log X)^{-1}$, the pdf of Y is $f_Y(y) = \frac{\theta}{y^2} e^{-\theta/y}$ for $0 < y < \infty$ and

$$P(Y/2 \le \theta \le Y) = \int_{\theta}^{2\theta} \frac{\theta}{y^2} e^{-\theta/y} S = 0.239$$

(b) Since $f_X(x) = \theta x^{\theta-1}$ for 0 < x < 1, $T = X^{\theta}$ is a good guess at a pivot, and it is since $f_T(t) = 1$, 0 < t < 1. Thus a pivotal interval is formed from $P(a < X^{\theta} < b) = b - a$ and is

$$\left\{\theta: \frac{\log b}{\log x} \le \theta \le \frac{\log a}{\log x}\right\}$$

Since $X^{\theta} \sim Uniform(0,1)$, the interval will have confidence 0.239 as long as b-a=0.239.

(c) The interval in part (a) is a special case of the one in part (b). To find the best interval, we minimize $\log b - \log a$ subject to $b - a = 1 - \alpha$ or $b = 1 - \alpha + a$. Thus, we want to minimize $\log(1 - \alpha + a) - \log a = \log(1 + (1 - \alpha)/a)$, which is minimized by taking a as big as possible. Thus, take b = 1 and $a = \alpha$, and the best $1 - \alpha$ pivotal interval is

$$\left\{\theta: 0 \le \theta \le \frac{\log \alpha}{\log x}\right\}$$

Thus the interval in part (a) is nonoptimal. A shorter interval with confidence coefficient 0.239 is $\{\theta : 0 \le \theta \le |log(1 - 0.239)/\log x\}$.

3. (a) Consider the statistic $p_n(\bar{X}) = P(N(\mu, 1) \ge \sqrt{n}\bar{X}|H_0) = 1 - \Phi(\sqrt{n}\bar{X})$. We have that

$$P[p(\bar{X}) \le \alpha | H_0] = P[1 - \Phi(\sqrt{n}\bar{X}) \le \alpha]$$
$$= P[\Phi(\sqrt{n}\bar{X}) \ge 1 - \alpha]$$
$$= 1 - (1 - \alpha) = \alpha$$

since Φ is a continuous CDF and hence distributed as Uniform(0,1). This proves that p_n is a valid p-value and that the Type I error of the test that rejects H_0 if $p_n(\bar{X}) \leq \alpha$ is equal to α . The type II error of the test is

$$P[p_n(\bar{X}) > \alpha | H_1] = P[\sqrt{n}(\bar{X} - \mu_1) < \Phi^{-1}(1 - \alpha) - \sqrt{n}\mu_1] = \Phi(\Phi^{-1}(1 - \alpha) - \sqrt{n}\mu_1)$$

using the fact that under H_1 , $\sqrt{n}(\bar{X} - \mu) \sim N(0, 1)$.

(b) Define $\hat{p}_{10l} = p_{10l}(X_1, X_{10l})$. The type I error is given by

$$P(\bigcup_{l=1}^{L} \{\hat{p}_{10k} > \alpha, k = 1, \dots, l-1 \text{ and } \hat{p}_{10l} \leq \alpha\})$$

$$= \alpha + (1-\alpha) \sum_{l=2}^{L} P(\{\hat{p}_{10k} > \alpha, k = 1, \dots, l-1 \text{ and } \hat{p}_{10l} \leq \alpha\} | \hat{p}_{10} > \alpha)$$

In this case, computing the type I error is more challenging because the statistics \hat{p}_{10l} are not independent. The same is true for the type-II error. Let $p_{10}^{(l)} = p_{10}(\bar{X}^l), l = 0, \dots, L-1$. The type-I error is given by,

$$P(p_{10}^{(l)} \le \alpha \text{ for some } l|H_0) = 1 - P(p_{10}^{(l)} > \alpha \text{ for all } l|H_0) = 1 - (1 - \alpha)^L$$

where we use that $barX^{(l)}, l=0,\cdots,L-1$ are independent. Similarly, the type-II error is equal to $(\Phi(\Phi^{-1}(1-\alpha)-\sqrt{n}\mu_1))^L$. The expected number of samples collected is given by

$$10\sum_{l=0}^{L-1} (l+1)P(p_{10} \le \alpha)[P(p_{10} > \alpha)]^l + 10L[P(p_{10} > \alpha)]^L$$