

Analyse de la segmentation clients

Présenté par : NEQQAZ Wissal

BELHAID Nassrou-eddine

Filière: Data Science & Cloud Computing

Plan de présentation

- I-Introduction
- II-Processus de préparation des données
- III-1er traitement : segmentation

- IV-2ème traitement : recommandation prédiction
- Conclusion

CONTEXTUALISATION

- Définition du segmentation des clients
- Secteurs d'activités
- L'utilité de la data science à ce propos

<u>Problématique</u>

 Comment identifier les caractéristiques clés des clients qui peuvent être utilisées pour segmenter efficacement la clientèle ?

LA PRESENTATION DES ENJEUX

- Mieux comprendre les besoins de chaque groupe de clients
- Améliorer la satisfaction et fidéliser les clients

les etapes du segmentations

- Importer la base des données
- Nettoyage des données
- Visualisation des données
- Traitement de la data
- Suggérer une solution fiable

II-Processus de préparation des données

- DataSet importer de kaggle
- Contenue liée à des transactions bancaires avec des informations de base sur les clients

- Importation du DATA
- Nettoyage des données manquantes
- Nettoyage des données dupliquées
- Nettoyage des données aberrantes

• Explorer les données pour mieux les comprendre et identifier les tendances, les schémas et les anomalies.

	TransactionID	CustomerID	CustomerDOB	CustGender	CustLocation	CustAccountBalance	TransactionDate	TransactionTime	TransactionAmount (INR)
0	T1	C5841053	10/1/94	F	JAMSHEDPUR	17819.05	2/8/16	143207	25.00
1	T2	C2142763	4/4/57	M	JHAJJAR	2270.69	2/8/16	141858	27999.00
2	Т3	C4417068	26/11/96	F	MUMBAI	17874.44	2/8/16	142712	459.00
3	T4	C5342380	14/9/73	F	MUMBAI	866503.21	2/8/16	142714	2060.00
4	T5	C9031234	24/3/88	F	NAVI MUMBAI	6714.43	2/8/16	181156	1762.50

- TransactionID: Identifiant unique pour chaque transaction effectuée par le client.
- CustomerID: Identifiant unique pour chaque client.
- CustomerDOB: Date de naissance du client.
- CustGender: Genre du client (masculin ou féminin).
- CustLocation: Emplacement géographique du client.
- CustAccountBalance: Solde du compte du client au moment de la transaction.
- TransactionDate: Date à laquelle la transaction a été effectuée.
- TransactionTime: Heure à laquelle la transaction a été effectuée.
- TransactionAmount (INR): Montant de la transaction effectuée en roupies indiennes.

II-Processus de préparation des données

- DataSet importer de kaggle
- Contenue liée à des transactions bancaires avec des informations de base sur les clients

- Importation du DATA
- Nettoyage des données manquantes
- Nettoyage des données dupliquées
- Nettoyage des données aberrantes

• Explorer les données pour mieux les comprendre et identifier les tendances, les schémas et les anomalies.

1. Importation du DATA

chargement et affichage des données
data = pd.read_csv('C:/Users/HP/Downloads/archive/bank_transactions.csv')
data.head(10)

	TransactionID	CustomerID	CustomerDOB	CustGender	CustLocation	CustAccountBalance	TransactionDate	TransactionTime	TransactionAmount (INR)
0	T1	C5841053	10/1/94	F	JAMSHEDPUR	17819.05	2/8/16	143207	25.00
1	T2	C2142763	4/4/57	М	JHAJJAR	2270.69	2/8/16	141858	27999.00
2	Т3	C4417068	26/11/96	F	MUMBAI	17874.44	2/8/16	142712	459.00
3	T4	C5342380	14/9/73	F	MUMBAI	866503.21	2/8/16	142714	2060.00
4	T5	C9031234	24/3/88	F	NAVI MUMBAI	6714.43	2/8/16	181156	1762.50
5	Т6	C1536588	8/10/72	F	ITANAGAR	53609.20	2/8/16	173940	676.00
6	T7	C7126560	26/1/92	F	MUMBAI	973.46	2/8/16	173806	566.00
7	Т8	C1220223	27/1/82	М	MUMBAI	95075.54	2/8/16	170537	148.00
8	Т9	C8536061	19/4/88	F	GURGAON	14906.96	2/8/16	192825	833.00
0	T40	C6630U34	22/6/04	N.A	MIIMDAI	4270 22	2/0/46	100446	200 44

2 .Nettoyage des données manquantes

Avant le nettoyage:

Les Nombres de valeurs manquantes dans chaque colonne

TransactionID	0
CustomerID	0
CustomerDOB	3397
CustGender	1100
CustLocation	151
CustAccountBalance	2369
TransactionDate	0
TransactionTime	0
TransactionAmount (INR)	0
dtype: int64	

Après le nettoyage:

Les Nombres de valeurs manquantes dans chaque colonne

TransactionID	0			
CustomerID	0			
CustomerDOB	0			
CustGender	0			
CustLocation	0			
CustAccountBalance				
TransactionDate	0			
TransactionTime	0			
TransactionAmount (INR)	0			
dtype: int64				

3. Nettoyage des données dupliquées

Dans notre dataset on a pas trouver des valeurs dupliquées

```
False
0
          False
          False
3
          False
          False
          False
1048562
1048563 False
1048564 False
1048565 False
1048566 False
Length: 1041614, dtype: bool
```

4. Nettoyage des données aberrantes

"Méthode IQR" pour détecter les valeurs aberrantes dans une distribution.

```
#made a copy of data
df1 = data
#calcule quartile and IQR
Q1 = data["CustAccountBalance"].quantile(0.25)
Q3 = data["CustAccountBalance"].quantile(0.75)
IQR = Q3 - Q1
#find upper and lower limits
upper limit = Q3 + 1.5 * IQR
lower limit = Q1 - 1.5 * IQR
upper limit , lower limit
```


5.Les Bibliothèques utilisées

II-Processus de préparation des données

- DataSet importer de kaggle
- Contenue liée à des transactions bancaires avec des informations de base sur les clients

- Importation du DATA
- Nettoyage des données manquantes
- Nettoyage des données dupliquées
- Nettoyage des données aberrantes

• Explorer les données pour mieux les comprendre et identifier les tendances, les schémas et les anomalies.

Visualiser notre dataset :

Traitement de la segmentation:

- Utilisé la bibliothèque scikit-learn, et la fonction 'train_test_split'
- 2/ Choisir deux colonnes: 'CustAccountBalance' et 'TransactionAmount (INR)' pour la segmentation
 - -Afin d'identifier des groupes de clients similaires en termes de richesse et de dépenses
- 3/**Implémenter** la méthode de **Elbow** pour déterminer le nombre de cluster nécessaire
 - -Le choix d'un nombre prédéfini de clusters permet de simplifier l'analyse de segmentation et de faciliter l'interprétation des résultats obtenus
 - -Cette méthode consiste à tracer un graphe qui se base sur un point d'inflexion où la courbe commence à s'aplatir

-le graphe de la méthode d'ELBOW:

Utilisé la méthode de KMEANS

• **Application** de K-means pour segmenter les clients en groupes homogènes en fonction de leur solde de compte et de leur montant de transaction

Evaluation de la segmentation:

• le **Davies-Bouldin Index** (DBI) mesure à quel point les clusters sont séparés les uns des autres tout en maintenant une cohésion élevée à l'intérieur des clusters. Le score est calculé en utilisant uniquement les distances euclidiennes entre les points de données.

```
# Évaluation de la qualité de la segmentation
dbi = davies_bouldin_score(X, y_kmeans)
print('Davies-Bouldin index:', dbi)
```

Davies-Bouldin index: 0.5018397682923231

2ème traitement:

I- prédiction

Visualisation

Ce diagramme illustre la prédiction des nouveaux clients présents dans la 2eme partie des données et affecte a chaque client le cluster approprié

2ème traitement:

II- Processus de recommandation

A-Etude statistique:

	CustAccountBalance			
	mean	std	mean	std
cluster				
0	5772.295981	4140.820187	2202.715447	2535.518232
1	60359.003468	11186.478970	994.503707	1119.311375
2	106474.739111	14759.715228	1106.577922	1205.862502
3	27469.574859	7639.515711	847.853940	1032.556958

• Représentent les moyennes et écarts-types des caractéristiques de chaque cluster, en fonction de (CustAccountBalance et TransactionAmount).

visualisation des statistiques

La recommandation collaborative:

• Implémentation d'une fonction qui se base sur l'étude statistique déjà fait

```
Cluster 0 : reduction des frais des transaction
proposer des credit à court terme avec des montants faibles
Cluster 1 : Des services de conseil financier personnalisés pour chaque client en fonction de son objectifs
Cluster 2 : proposer un compte d'épargne rémunéré
investissements à long terme
Cluster 3 : investir dans des produits à faible risque tels que des obligations d'État ou des fonds de trésor
cartes de crédit à faible taux d'intérêt
```

le but général:

- -Fediliser les clients
- -Assurer la liquidité financière

Conclusion

• la segmentation des clients est une tâche importante pour toute entreprise souhaitant comprendre les caractéristiques de ses clients et concevoir des recommandations pointu

• L'utilisation de Python a permis de gagner du temps et d'automatiser certaines parties de l'analyse en utilisant les multiples bibliothèques et technique optimisé

0000

MERCI POUR VOTRE ATTENTION

ENCADRER PAR: OMAR SEFRIOUI

