The Constructive Model of Univalence in Cubical Sets

Literature review

W. Vanhulle¹ A. Nuyts² D. Devriese³

¹Student

²Supervisor

³Promoter

45 min. public seminar

Outline

Introduction

Cubical model

Applications

Introduction

A mathematician is asked by a friend who is a devout Christian: "Do you believe in one God?"

What does he reply?

Introduction

A mathematician is asked by a friend who is a devout Christian: "Do you believe in one God?"

What does he reply?

He answers: "Yes – up to isomorphism." (\bigcirc Michael Benjamin Stepp)

Figure: Hubert-Brierre, 2013

Isomorphisms in mathematics

Definition

An isomorphism is a map that identifies spaces and their structure.

Notation	Space type	Isomorphisms
\mathbb{E}^3	Euclidean	rotation, translation, mirroring
Fin_n	Finite	permutations
G	Groups	homomorphisms
X	Topological	homotopy equivalences

Figure: Examples of isomorphisms

A large class of maps that identifies many objects: a *weak* identification.

(Equality by definition is strong)

Algebraic Topology

Isomorphism in algebraic topology is "homotopy equivalence"

Figure: A mug

Figure: A donut

Definition

Two spaces are homotopy equivalent if they can be smoothly deformed into eachother.

Homotopy groups

homotopy equivalent spaces have the same "number of n-dimensional holes": computed by looking at homotopy classes of smooth embeddings

$$S^n \to X$$
, or $[0,1]^n \to X$

Figure: A donut has two 1-dimensional homotopy classes.

Figure: A ball without center has two 2-dimensional homotopy classes.

Invented to prevent paradox:

$$R = \{x \mid x \notin x\}, R \in R \Leftrightarrow \notin R$$

Solution was:

replace sets (and propositions) by types and elements by terms,

$$x \in R \Rightarrow x : R$$

types belong to universe hierarchy

$$\exists i, R : \mathcal{U}_i, \quad \mathcal{U}_0 : \mathcal{U}_1 : \dots$$

constructive logic and formation rules

 $x \notin x$ is not a valid proposition anymore

Type theory

Two meanings/subfields:

verifying computation in programming languages

Figure: A typed recursive function in Haskell

alternative constructive foundation of mathematics

```
_°_ : (∀ \{x\} (y : B x) \rightarrow C y) \rightarrow (g : (x : A) \rightarrow B x)
 ((x : A) \rightarrow C (g x))
 f \circ g = \lambda x \rightarrow f (g x)
```

Figure: Definition of the topological space S^1 in Agda

Type theory

Two meanings/subfields:

verifying computation in programming languages

Figure: A typed recursive function in Haskell

alternative constructive foundation of mathematics

```
\_\circ\_: (∀ {x} (y : B x) → C y) → (g : (x : A) → B x)

((x : A) → C (g x))

f ∘ g = \lambda x → f (g x)
```

Figure: Definition of the topological space S^1 in Agda

Type theory as foundation for mathematics

Deductive system of judgements with typing rules:

$$\frac{\Gamma \vdash f: A \to B \qquad \Gamma \vdash a: A}{\Gamma \vdash b: B}$$

- judgments express that a type is inhabited
- all judgements have contexts
- typing rules tell how to form and combine types and terms

Definition (Type-checking)

Checking if the typing rules are respected.

Definitional equality

Definitional equality in type theory ("denoted =" in code):

```
data Nat : Set where
  zero : Nat
  suc : (n : Nat) → Nat

_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
```

Figure: An example of definitional equality.

- used for stating terms, terms and typing rules
- defined such that type-checking decidable

Problems definitional equality

Definitional equality distinguishes 0 + m and m + 0: too *strong* for mathematics.

A weaker alternative?

Example (Leibniz's extensionality axiom)

Functions are identified with values:

$$f = g \Leftrightarrow f(x) = g(x), \forall x$$

Breaks decidability of type-checking \Rightarrow not possible with definitional equality.

Identity type

Martin-Löf, 1984

A type of equality between terms a, b : X, denoted a = b. Terms p : (a = b) are called "equalities".

Definition (Introduction rule)

Given a term a: X, there is an equality refl(a): a = a.

Elimination rule of equality type:

Definition (path induction)

Given the following terms:

- ▶ a predicate $C: \prod_{x,y:A} (x =_A y) \to \mathcal{U}$
- ▶ the base step $c: \prod_{x:A} C(x, x, refl_x)$

there is a function $f: \prod_{x,y:A} \prod_{p:x=_{A}y} C(x,y,p)$ such that $f(x,x,\text{refl}_x) \equiv c(x)$.

Role identity eliminator

To prove a property C that depends on terms x, y and equalities p: x = y it suffices to consider all the cases where

- x is definitionally equal to y
- the term of the intensional equality type under consideration is refl_x: x = x.

Implications:

- proves transitivity, symmetry
- ▶ less things equal ⇒ weaker than equality "by definition".

Univalence axiom

Voevodsky, 2009

Definition (Type equivalence)

Given types $X, Y \colon \mathscr{U}$ for some universe \mathscr{U} , an equivalence $f \colon X \simeq Y$ of types is a map $f \colon X \to Y$ that is a bijection up to paths.

Equivalences are isomorphisms between topological spaces.

Axiom (Univalence axiom)

Given types $X, Y : \mathcal{U}$ for some universe \mathcal{U} , the map $\Phi_{X,Y} : (X = Y) \to (X \simeq Y)$ is an equivalence of types.

Equivalences are (up to homotopy equivalence) the same as equalities.

Type theory up to isomorphism (homotopy type equivalence)

Consequences of univalence

Example (Natural numbers)

 \mathbb{N} is a type that behaves like a set.

equivalences

$$\mathbb{N}\simeq\mathbb{N}_0$$

are bijections

$$\mathbb{N} \leftrightarrow \mathbb{N}_0$$

univalence implies

$$p:(\mathbb{N}\leftrightarrow\mathbb{N}_0)\Rightarrow p:(\mathbb{N}=\mathbb{N})$$

 \blacktriangleright forces multiple equalities $\mathbb{N}=\mathbb{N}_0$

 \Rightarrow terms of equality are paths

Consequences of univalence

Example (Natural numbers)

 \mathbb{N} is a type that behaves like a set.

equivalences

$$\mathbb{N} \simeq \mathbb{N}_0$$

are bijections

$$\mathbb{N} \leftrightarrow \mathbb{N}_0$$

univalence implies

$$p:(\mathbb{N}\leftrightarrow\mathbb{N}_0)\Rightarrow p:(\mathbb{N}=\mathbb{N})$$

 \blacktriangleright forces multiple equalities $\mathbb{N}=\mathbb{N}_0$

 \Rightarrow terms of equality are paths

Consequences of path interpretation

A way to construct paths in topology:

Definition (Covering)

A surjective smooth map $\pi: E \rightarrow B$ that is locally homeomorphic.

Defining transport:

- ► take path p in base space B and point b in $\pi^{-1}(p(1))$
- path p is lifted to path p_{*} ending in b
- ightharpoonup transport gives start $p_{\star}(0)$

More paths means more equalities \Rightarrow identity type indeed weak.

Homotopy type theory (HoTT)

Awodey, 2006

Gives *homotopy* interpretation to equality type:

$$p,q: a =_X b$$
 $r,s: p =_{Id_X(a,b)} q$

⇒ alternative foundations for mathematics based on type theory and topology

Origin univalence

Grayson, 2018

Figure: Vladimir Voevodsky (1966 - 2017)

Why is it called "univalent"?

... these foundations seem to be faithful to the way in which I think about mathematical objects in my head ...

faithful = univalent in a Russion translation of Boardman (2006)

Origin univalence

Grayson, 2018

Figure: Vladimir Voevodsky (1966 - 2017)

Why is it called "univalent"?
... these foundations
seem to be faithful to
the way in which I think
about mathematical objects in my head ...

faithful = univalent in a Russion translation of Boardman (2006)

Practical limitations of univalence

The univalence axiom adds:

- intuitive explanation of equaity
- alternative foundations with types
- field of mathematics: HoTT

But does not:

- make all proofs easier or shorter
- eliminate proofs of equivalence

What about:

- ▶ implementing HoTT?
- ▶ calculations with very simple types as N?

Can we, given a term $t: \mathbb{N}$ constructed using the univalence axiom, construct two terms $u: \mathbb{N}$ and $p: t =_{\mathbb{N}} u$ such that u does not involve the univalence axiom?

 \Rightarrow canonicity of $\mathbb N$ in cubical type theory (CTT)

$$t \equiv ua(\ldots) \leadsto u \equiv S(\ldots(0)\ldots) : \mathbb{N}$$

What about:

- ▶ implementing HoTT?
- ▶ calculations with very simple types as N?

Can we, given a term $t: \mathbb{N}$ constructed using the univalence axiom, construct two terms $u: \mathbb{N}$ and $p: t =_{\mathbb{N}} u$ such that u does not involve the univalence axiom?

 \Rightarrow canonicity of $\mathbb N$ in cubical type theory (CTT)

$$t \equiv ua(...) \rightsquigarrow u \equiv S(...(0)...) : \mathbb{N}$$

Cubical type theory

Cohen et al., 2015

A constructive extension of HoTT with dimension variables $i, j, k : \mathbb{I}$ (cubes) as primitives:

Figure: Discrete "n-cubes". Huber (2016)

- univalence becomes constructable
- computational interpretation for univalence

Are cubes a good idea?

EnigmaChord, 2016

Figure:

(yes, they model n-dimensional homotopies)

Are cubes a good idea?

EnigmaChord, 2016

Figure:

(yes, they model n-dimensional homotopies)

Cubes model homotopy

Altenkirch, Brunerie, Licata, et. al 2013

Homotopy groups are defined as equivalence classes of smooth embeddings:

$$[0,1]^n \rightarrow X$$

In HoTT, higher-dimensional eqalities behave like these embeddings

Level	Types	Cubes	Topology
1 2	p, q : (a = b) r, s : (p = q)		line path homotopy
 n		 n-hypercube	 n-dimensional homotopy

Cubes model homotopy

Altenkirch, Brunerie, Licata, et. al 2013

Homotopy groups are defined as equivalence classes of smooth embeddings:

$$[0,1]^n \rightarrow X$$

In HoTT, higher-dimensional eqalities behave like these embeddings

Level	Types	Cubes	Topology
1 2	p, q : (a = b) r, s : (p = q)	_	line path homotopy
 n		 n-hypercube	 n-dimensional homotopy

Operations on cubes

Bezem, Coquand, Huber et al., 2013

Figure: Daniel Kan (1927 — 2013)

Necessary for modelling HoTT:

- ▶ composition ⇒ equality type
- ▶ glueing ⇒ univalence

Give interpretation for stuff in type theory:

- ightharpoonup base category $\mathscr C$ contains "extra tools" for model
- ightharpoonup every context Γ is modelled as presheaf on \mathscr{C} , denoted $\widehat{\mathscr{C}}$.
- lacktriangle types and terms also interpreted in $\widehat{\mathscr{C}}$

Goals

- verify consistency of type theory in sets
- justify primitives for implementations

Denoted as "presheaf model $\widehat{\mathscr{C}}$ ".

Give interpretation for stuff in type theory:

- ightharpoonup base category $\mathscr C$ contains "extra tools" for model
- ightharpoonup every context Γ is modelled as presheaf on \mathscr{C} , denoted $\widehat{\mathscr{C}}$.
- lacktriangle types and terms also interpreted in $\widehat{\mathscr{C}}$

Goals:

- verify consistency of type theory in sets
- justify primitives for implementations

Denoted as "presheaf model $\widehat{\mathscr{C}}$ ".

Contexts in presheaf model $\widehat{\mathscr{C}}$

Definition (Presheaves $\widehat{\mathscr{C}}$)

Contravariant functors $\mathscr{C} \to \mathbf{Set}$

- generalize sheaves (see sheafication)
- model contexts

Figure: A representation of a preseheaf

Contexts in presheaf model $\widehat{\{0,1\}}$

Example (Reflexive directed graph) Take $\mathscr{C} = \{0,1\}$ and $\mathsf{Hom}_\mathscr{C} = \{B,E,R\}$, $\Gamma \in \widehat{\{0,1\}}$, then Applying functorial identities:

Figure: Reflexive graph

Types in presheaf model $\widehat{\mathscr{C}}$

Lemma (Types in a presheaf model)

If $\Gamma \in \widehat{\mathscr{C}}$ a context, then the types are $\left\{ (\Delta, \sigma) \mid \Delta \in \widehat{\mathscr{C}}, \sigma \in \mathit{Hom}_{\mathit{Ctx}}(\Delta, \Gamma) \right\}$.

Helps to characterize types without using presheaves explicitly.

Types in a presheaf model $\widehat{\{0,1\}}$

Example (Dependent directed reflexive graph) Applying previous lemma to the type A in $\widehat{\{0,1\}}$:

Figure: Modelled by two contexts and a surjective morphism

CTT as a presheaf model

Dimension variables and cubes have an abstract representation as "hypercubes" in a base category:

Figure: Presheaf acting on cubes

- proves consistency of CTT and HoTT
- justifies primitives used in implementations

Cube category

Definition ("Cube" □)

Category with:

- ▶ objects: $\{I \mid |I| < \infty, I \subset \mathbb{A}\}$
- ► morphisms $J \rightarrow I$: maps $I \mapsto dM(J)$
 - distributive lattice
 - \triangleright $x \land 0 = 0, x \lor 1 = 1$
 - -0 = 1 and -1 = 0

A: countable set of "dimension variables"

Figure: A simple lattice

Contexts in presheaf model $\widehat{\Box}$

Example (Cubical contexts ("cubical sets"))

A presheaf $\Gamma \in \widehat{\square}$ is a functor $\square \to \mathbf{Set}$

- ▶ $\Gamma \in \widehat{\square}$ applied to $\{i,j\}$ gives square $\rho \in \Gamma(i,j)$
- ▶ morphisms in lattice dM(i,j) give corners of ρ

Types in presheaf model $\widehat{\Box}$

Type A can be represented by a context and a morphism on top of Γ :

- ▶ the ρ ∈ Γ(i) is an edge of a square
- endpoints $\rho(0), \rho(1)$ can be lifted to points in the type $u(0), u(1) \in A(i, \rho)$

Partial types in $\widehat{\Box}$

Bezem, Coquand, Huber 2013

Partial type A [$(i = 0) \mapsto A(i/0)$] is a subtype of A on top of sub-subpolyhedron of cubes:

- \triangleright *u* 1-dimensional cube, line and type *A*:
- ▶ partial type A(i/0) in type A:

Figure: Huber, 2015

Other types in presheaf model $\widehat{\Box}$

In the presheaf model on \square :

- types more complicated
- types no longer simply nested graphs

Interpreting types in presheaf model \square hard but possible.

... transition from interpretation in model to syntax of types

Path type

Bezem, Coquand, 2013

Syntactical definition of Path type with typing rules:

$$i: \mathbb{I} \vdash t: A \qquad i: \mathbb{I} \vdash t(i/0) = a: A \qquad i: \mathbb{I} \vdash t(i/1) = b: A$$

$$() \vdash \langle i \rangle \ t: \texttt{Path} \ a \ b$$

- almost models equality type
- ▶ not necessarily transitive ⇒ composition operation

$$\begin{array}{ccc}
a & ---- & c \\
refl & q & j \\
a & \xrightarrow{p & i} & b
\end{array}$$

Figure: Transitivity can be proven with composition operation.

CTT as extension for HoTT

Other HoTT types interpreted in CTT:

- product, sum types
- natural numbers

Univalence proven with concepts from (Streicher, Voevodsky, Kapulkin et al. 2006 – 2012):

- simplicial sets replaced by cubical sets
- partial types and glueing construction conserved

Figure: Every simplicial complex is a simplicial set

Proving univalence

Cohen, Coquand, Huber, Moertberg (2015)

Axiom (Univalence axiom)

Given types $X,Y: \mathscr{U}$ for some universe \mathscr{U} , there is a map $\Phi_{X,Y}: (X=Y) \to (X \simeq Y)$ that is an equivalence of types.

Proof.

- 1. existence ua: $(X \simeq Y) \rightarrow (X = Y)$ with Glue construction.
- 2. for any partial $f: X \to Y$, Glue $[\phi \mapsto (X, f)] Y \simeq Y$
- 3. for any type Y, $\sum_X X \simeq Y$ contractible
- 4. existence of an equivalence "eliminator".
- 5. the trivial map $p: X = Y \rightarrow X \simeq Y$ is an inverse "up-to-path" of ua
- \Rightarrow the map ua $\equiv \Phi_{X,Y}$ is equivalence

Constructing ua

Definition

ua:
$$\forall X Y: \mathcal{U}, X \simeq Y \rightarrow X = Y$$

$$\begin{array}{ccc}
X & -\frac{\text{ua} f}{f} & Y \\
\downarrow f & & \downarrow \text{idEquiv } Y \\
Y & & & Y
\end{array}$$

Input:

- partial equivalence f, type X
- a dimension variable or parameter i

Output:

- ▶ ua $f \equiv \text{Glue } [(i=0) \mapsto (X, f), (i=1) \mapsto (X, \text{idEquiv } Y)] Y$
- ▶ ua f is path with endpoints X and Y.

Applying ua from univalence

Example (Monoids)

$$M_1 \equiv (\mathbb{N}, (m, n) \mapsto m + n, 0)$$

and

$$M_2 \equiv (\mathbb{N}_0, (m,n) \mapsto m+n-1, 1)$$

▶ are isomorphic by

$$\lambda n \rightarrow n+1$$

▶ (path-) equal in CTT

Definition of a monoid magma

setoid encoding uses operator "•" and equivalence "≈":

```
notZero n = \Sigma N (\lambda m \rightarrow (n \equiv (m + 1)))
\mathbb{N}_0 = \Sigma \mathbb{N} \ (\lambda \ n \rightarrow \text{notZero } n)
op, : Op, \mathbb{N}_0
op_{2}(x, p)(y, q) =
      ((x + y) - 1, (x + y) - 2, sumLem x y p q)
M<sub>2</sub> : Algebra.Magma _ _
M_2 = record {
   Carrier = \mathbb{N}_0;
   \approx = ( \equiv );
   _{-} \cdot _{-} = op_{2};
   isMagma = ...,
```

Equality of carrier sets

 $\mathbb{N} \to \mathbb{N}_0 : n \mapsto n+1$ is bijection

- is equivalence of (set-like) types
- univalence/ua returns equality N ≡ N₀

```
\begin{array}{l} f: \ \mathbb{N} \to \mathbb{N}_0 \\ f \ n = (\text{suc } n \ , \ (\ n \ , \ \text{refl }) \ ) \\ \dots \\ f \ Equiv : \ \mathbb{N} \simeq \mathbb{N}_0 \\ f \ Equiv = (f \ , \ \ \text{isoToIsEquiv (iso } f \ g \ l' \ r')) \\ \\ f \ Eq : \ \mathbb{N} \equiv \mathbb{N}_0 \\ f \ Eq = ua \ f \ Equiv \end{array}
```

Equality of monoids magmas

Defined for every component of record type:

transOp' defined by transporting along $\mathbb{N} \equiv \mathbb{N}_0$, proofs can be transported over $s_1 \equiv s_2$.

Higher homotopies of spheres

Types in HoTT and CTT are topological spaces. Higher homotopy groups compute number of higher-dimensional holes in S^n :

	\mathbb{S}^0	\mathbb{S}^1	S ²	S ³	\mathbb{S}^4	S ⁵	S ⁶	S ⁷	S ⁸
π_1	0	Z	0	0	0	0	0	0	0
π_2	0	0	\mathbb{Z}	0	0	0	0	0	0
π_3	0	0	\mathbb{Z}	\mathbb{Z}	0	0	0	0	0
π_4	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	0
π_5	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
π_6	0	0	\mathbb{Z}_{12}	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
π_7	0	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}{\times}\mathbb{Z}_{12}$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
π_8	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
π_9	0	0	\mathbb{Z}_3	\mathbb{Z}_3	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2
π_{10}	0	0	\mathbb{Z}_{15}	\mathbb{Z}_{15}	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_2	0	\mathbb{Z}_{24}	\mathbb{Z}_2

Figure: HoTT Book, 2013

Homotopy groups can be defined in CTT as datatypes

Implementation in CTT

Brunerie, 2016

proven in HoTT with the univalence axiom:

Theorem

$$\pi_4(S^3) \cong \mathbb{Z}_n$$
 for $n=2$

- the value n in theorem is implemented in a CTT numeral
- canonicity of numerals predicts normalization
- normalization fails however

Ongoing optimizations ...

Figure: The case S^1 is simply \mathbb{Z} (drawing from science4all)

Conclusion

Licata, Harper, Cavallo, Orton et al.

- HoTT redefines equality
- CTT implements HoTT
- HoTT can be verified in computers

Other introductions to cubical type theory: [Hub16] and [Ort19] Recent interesting publications:

- computational type theory is an alternative implementation [AHH18]
- composition operation CTT may not be too strong [CM19]
- ▶ modelling $\widehat{\Box}$ and Glue with language of topoi or other axioms to simplify CTT and composition operations [OP17], [Ort19]

For Further Reading I

Thanks for watching!

Carlo Angiuli, Robert Harper, and Kuen-Bang Hou, Cartesian cubical computational type theory: Constructive reasoning with paths and equalities, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, Available on https:

//www.cs.cmu.edu/~rwh/papers/cartesian/paper.pdf.

- Evan Cavallo and Anders Mörtberg, A unifying cartesian cubical type theory, Available on http://www.cs.cmu.edu/~ecavallo/works/unifying-cartesian.pdf.
- Simon Huber, *Cubical interpretations of type theory*, Ph.D. thesis, University of Gothenburg, Gothenburg, Sweden, November 2016, Available on http:

//www.cse.chalmers.se/~simonhu/misc/thesis.pdf.kuleuwev

For Further Reading II

- lan Orton and Andrew M. Pitts, *Decomposing the univalence axiom*, arXiv (2017).
- Richard Ian Orton, Cubical models of homotopy type theory-an internal approach, Ph.D. thesis, University of Cambridge, 2019, Text available at https:

//www.repository.cam.ac.uk/handle/1810/289441 and
code on https://doi.org/10.17863/CAM.35681.

