```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_stata('wage.dta')
df.head()
un
                            ed
                   nw
                                 ex
                                     age
     0 11.55 1.0 0.0 0.0 12.0 20.0 38.0 1.0
         5.00 0.0 0.0 0.0
                           9.0
                                 9.0 24.0 0.0
     2 12.00 0.0 0.0 0.0 16.0 15.0 37.0 1.0
        7.00 0.0 1.0 1.0 14.0 38.0 58.0 0.0
     4 21.15 1.0 1.0 0.0 16.0 19.0 41.0 1.0
```

df.describe()

₹

•	W	fe	nw	un	ed	ex	age	wk
coun	t 1289.000000	1289.000000	1289.000000	1289.000000	1289.000000	1289.000000	1289.000000	1289.000000
mear	12.365849	0.497285	0.152832	0.159038	13.145074	18.789759	37.934834	0.407292
std	7.896350	0.500187	0.359965	0.365853	2.813823	11.662837	11.494278	0.491521
min	0.840000	0.000000	0.000000	0.000000	0.000000	0.000000	18.000000	0.000000
25%	6.920000	0.000000	0.000000	0.000000	12.000000	9.000000	29.000000	0.000000
50%	10.080000	0.000000	0.000000	0.000000	12.000000	18.000000	37.000000	0.000000
75%	15.630000	1.000000	0.000000	0.000000	16.000000	27.000000	47.000000	1.000000
max	64.080002	1.000000	1.000000	1.000000	20.000000	56.000000	65.000000	1.000000

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1289 entries, 0 to 1288 Data columns (total 8 columns): # Column Non-Null Count Dtype --- -----0 w 1289 non-null float32 1 fe 1289 non-null float32 1289 non-null float32 2 nw float32 3 un 1289 non-null 4 ed 1289 non-null float32 1289 non-null float32 5 ex 1289 non-null float32 6 age wk 1289 non-null float32 dtypes: float32(8) memory usage: 40.4 KB

df.to_csv('wage.csv', index= False)

df['ln(wage)'] = np.log(df['w'])

df.head()

		W	fe	nw	un	ed	ex	age	wk	ln(wage)
	0	11.55	1.0	0.0	0.0	12.0	20.0	38.0	1.0	2.446686
	1	5.00	0.0	0.0	0.0	9.0	9.0	24.0	0.0	1.609438
	2	12.00	0.0	0.0	0.0	16.0	15.0	37.0	1.0	2.484907
	3	7.00	0.0	1.0	1.0	14.0	38.0	58.0	0.0	1.945910
	4	21.15	1.0	1.0	0.0	16.0	19.0	41.0	1.0	3.051640

```
# Count the occurrences of female values
fe_counts = df['fe'].value_counts()

# Define the labels and sizes for the pie chart
labels = ['female', 'male']
sizes = [fe_counts[1.0], fe_counts[0.0]]

# Plot the pie chart
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['pink', 'blue'])

# Equal aspect ratio ensures that pie chart is drawn as a circle.
plt.axis('equal')

# Show the plot
plt.title('Distribution of female and male population')
plt.show()
```

__

Distribution of female and male population


```
# Count the occurrences of fe values
nw_counts = df['nw'].value_counts()

# Define the labels and sizes for the pie chart
labels = ['Non white', 'White']
sizes = [nw_counts[1.0], nw_counts[0.0]]

# Plot the pie chart
plt.pie(sizes, labels=labels, autopct='%1.1f%', startangle=90, colors=['brown', 'lightyellow'])

# Equal aspect ratio ensures that pie chart is drawn as a circle.
plt.axis('equal')

# Show the plot
plt.title('Distribution of race')
plt.show()
```


Distribution of race


```
#Count the occurrences of un values
un_counts = df['un'].value_counts()
# Define the labels and sizes for the pie chart
labels = ['union', 'nonunion']
sizes = [un_counts[1.0], un_counts[0.0]]
# Plot the pie chart
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['skyblue', 'lightgreen'])
# Equal aspect ratio ensures that pie chart is drawn as a circle.
plt.axis('equal')
# Show the plot
plt.title('Distribution of uninon and non union')
```

_

plt.show()

Distribution of uninon and non union


```
# Count the occurrences of fe values
wk_counts = df['wk'].value_counts()
# Define the labels and sizes for the pie chart
labels = ['weekly', 'non weekly']
sizes = [wk_counts[1.0], wk_counts[0.0]]
# Plot the pie chart
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['darkviolet', 'orange'])
# Equal aspect ratio ensures that pie chart is drawn as a circle.
plt.axis('equal')
```

```
# Show the plot
plt.title('Distribution of weekly and non weekly wage earner')
plt.show()
```


Distribution of weekly and non weekly wage earner


```
# Plot the histogram for the 'ln(wage)' column
plt.figure(figsize=(8, 6))  # Optional: Adjust figure size
plt.hist(df['ln(wage)'], bins=10, color='skyblue', edgecolor='black')

# Add titles and labels
plt.title('Histogram of ln(wage)')
plt.xlabel('ln(wage) values')
plt.ylabel('Frequency')

# Show the plot
plt.show()
```



```
Q1 = df['ln(wage)'].quantile(0.25)
Q3 = df['ln(wage)'].quantile(0.75)
IQR = Q3 - Q1
# Define outlier thresholds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
```

```
# Identify outliers
outliers = df[(df['ln(wage)'] < lower_bound) | (df['ln(wage)'] > upper_bound)]
print(outliers)
<del>∑</del>*
                                                        wk
                      fe
                           nw
                                un
                                       ed
                                             ex
                                                  age
                                                            ln(wage)
                   W
     97
            2.000000 1.0 0.0 0.0
                                      5.0 14.0 25.0 1.0 0.693147
     372
            0.840000 1.0 0.0 0.0 10.0 35.0 51.0
                                                      1.0 -0.174353
     715
           64.080002 1.0
                          0.0
                                0.0
                                     16.0
                                           12.0
                                                 34.0
                                                      1.0
                                                           4.160132
           1.570000 0.0 1.0 0.0
     722
                                                28.0 1.0 0.451076
                                    16.0
                                           6.0
           1.500000 1.0 0.0 0.0 14.0 17.0 37.0 0.0 0.405465
     904
     933
            2.000000 0.0
                           0.0
                                0.0
                                     11.0
                                                       0.0
                                            1.0
                                                 18.0
     956
            1.150000 0.0 0.0 0.0
                                    12.0 43.0 61.0 1.0 0.139762
           1.670000 0.0 0.0 0.0 16.0 10.0 32.0 1.0 0.512824
     1256
     1284
            1.670000 1.0
                          0.0
                                0.0
                                     10.0
                                          45.0
                                                 61.0
                                                       1.0
                                                            0.512824
# Remove outliers
df_cleaned = df[(df['ln(wage)'] >= lower_bound) & (df['ln(wage)'] <= upper_bound)]</pre>
# Display the cleaned DataFrame
print(df_cleaned)
₹
                  fe
                        nw
                             un
                                   ed
                                         ex
                                              age
                                                    wk ln(wage)
           11.55
                       0.0
                           0.0
                                12.0
                                       20.0
                                             38.0
                                                   1.0
                 1.0
                                                        2.446686
     1
           5.00 0.0 0.0 0.0
                                 9.0
                                        9.0
                                            24.0 0.0
                                                       1.609438
           12.00 0.0 0.0 0.0 16.0 15.0 37.0 1.0 2.484907
           7.00 0.0 1.0
                           1.0
                                 14.0
                                       38.0
                                             58.0
                                                  0.0
                                                        1.945910
           21.15 1.0 1.0 0.0 16.0 19.0 41.0 1.0
                                                       3.051640
     1283 13.14 1.0 0.0 0.0 12.0
                                       30.0
                                            48.0
                                                  0.0 2.575661
           7.00 0.0 0.0 0.0 12.0
                                        7.0
                                            25.0 0.0 1.945910
     1285
     1286 14.90 0.0 0.0 0.0 16.0
                                        9.0
                                            31.0 1.0
                                                       2.701361
     1287
           5.90 1.0 0.0 0.0 12.0 31.0 49.0 0.0 1.774952
     1288 10.00 0.0 0.0 1.0 12.0 20.0 38.0 1.0 2.302585
     [1280 rows x 9 columns]
df1 = df_cleaned
df1.columns
Index(['w', 'fe', 'nw', 'un', 'ed', 'ex', 'age', 'wk', 'ln(wage)'], dtype='object')
X1=df1[['fe', 'nw', 'un', 'ed', 'ex', 'age', 'wk']]
X1.drop('age', axis=1, inplace=True)
    <ipython-input-126-ff48928db454>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas.docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
       X1.drop('age', axis=1, inplace=True)
Y=df1['ln(wage)']
X1.head()
<del>-</del>>₹
         fe
                       ed
             nw un
                             ex
                                wk
      0 1.0 0.0 0.0 12.0 20.0 1.0
      1 0.0 0.0 0.0
                      9.0
                            9.0 0.0
      2 0.0 0.0 0.0 16.0 15.0 1.0
      3 0.0 1.0 1.0 14.0 38.0 0.0
      4 1.0 1.0 0.0 16.0 19.0 1.0
import statsmodels.api as sm
reg_result1 = sm.OLS(Y, sm.add_constant(X1)).fit()
```

Show the plot
plt.show()

print(reg_result1.summary())

```
→
                               OLS Regression Results
     ______
     Dep. Variable: ln(wage)
                                  OLS Adj. R-squared:

Squares F-c+o+
     Dep. Valle:
Model:
Method:
Least Squares
Date:
Tue, 24 Sep 2024
07:00:18
1280
                                             F-statistic:
Prob (F-statistic):
                                                                               146.0
    -, 2-1 Sep 2024 Prob (F-statistic):
07:00:18 Log-Likelihood:
No. Observations: 1280 AIC:
Df Rodel: 1273 BIC:
                                                                         5.60e-141
                                                                           -750.43
                                                                               1515.
                                                                               1551.
     Covariance Type: nonrobust
     ______
                     coef std err
                                             t P>|t| [0.025 0.975]

    const
    1.0743
    0.070
    15.281
    0.000
    0.936
    1.212

    fe
    -0.2390
    0.025
    -9.721
    0.000
    -0.287
    -0.191

    nw
    -0.1222
    0.034
    -3.568
    0.000
    -0.189
    -0.055

    un
    0.1941
    0.034
    5.694
    0.000
    0.127
    0.261

    ed
    0.0812
    0.005
    16.779
    0.000
    0.072

    ex
    0.0115
    0.001
    10.491
    0.000
    0.009

    wk
    0.2497
    0.027
    9.124
    0.000
    0.196

                                                                              0.091
                                                                               0.014
                                                                              0.303
     Prob(Omnibus): 24.780 Durbin-Watson:
     ______
                                    0.000 Jarque-Bera (JB):
                                                                              41.698
              -0.138 Prob(JB):
: 3.840 Cond. No.
                                                                          8.82e-10
     Skew:
     Kurtosis:
                                                                                146.
     ______
     [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
Start coding or generate with AI.
# Scatter plot of 'ln(wage)' vs 'ex'
plt.figure(figsize=(8, 6))
plt.scatter(df1['ex'], df1['ln(wage)'], color='skyblue', label='Data points')
# Fit a second-degree polynomial (quadratic curve)
coefficients = np.polyfit(df1['ex'], df1['ln(wage)'], 2)
polynomial = np.poly1d(coefficients)
# Generate x values (ex range) for plotting the fitted curve
x_{vals} = np.linspace(df1['ex'].min(), df1['ex'].max(), 100)
y_vals = polynomial(x_vals)
# Plot the fitted curve
plt.plot(x_vals, y_vals, color='red', label='Fitted Curve (Quadratic)')
# Add titles and labels
plt.title('Scatter Plot of ln(wage) vs ex with Fitted Curve')
plt.xlabel('Experience (ex)')
plt.ylabel('ln(wage) values')
plt.legend()
```


Scatter Plot of In(wage) vs ex with Fitted Curve

X2=X1

 $X2['ex^2'] = X2['ex']**2$

→ <inv

<ipython-input-134-415623a447f6>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc X2['ex^2'] = X2['ex']**2

-0.054

X2.head()

	fe	nw	un	ed	ex	wk	ex^2
0	1.0	0.0	0.0	12.0	20.0	1.0	400.0
1	0.0	0.0	0.0	9.0	9.0	0.0	81.0
2	0.0	0.0	0.0	16.0	15.0	1.0	225.0
3	0.0	1.0	1.0	14.0	38.0	0.0	1444.0
4	1.0	1.0	0.0	16.0	19.0	1.0	361.0

reg_result2 = sm.OLS(Y, sm.add_constant(X2)).fit()

-0.1199

print(reg_result2.summary())

÷	→	₩
	÷	

OLS Regression Results

========						
Dep. Varia	able:	ln(wa	ge) R-sq	uared:		0.427
Model:			OLS Adj.	R-squared:		0.424
Method:		Least Squa	res F-st	atistic:		135.6
Date:		Tue, 24 Sep 2	024 Prob	(F-statist	ic):	3.77e-149
Time:		07:00	:19 Log-	Likelihood:		-728.83
No. Observ	/ations:	1	280 AIC:			1474.
Df Residua	als:	1	272 BIC:			1515.
Df Model:			7			
Covariance	e Type:	nonrob	ust			
========						
	coef	std err	t	P> t	[0.025	0.975]
const	0.9621	0.071	13.510	0.000	0.822	1.102
fe	-0.2331	0.024	-9.633	0.000	-0.281	-0.186

-3.560

0.000

-0.186

0.034

un	0.1880	0.034	5.606	0.000	0.122	0.254
ed	0.0775	0.005	16.184	0.000	0.068	0.087
ex	0.0342	0.004	9.506	0.000	0.027	0.041
wk	0.2435	0.027	9.040	0.000	0.191	0.296
ex^2	-0.0005	8.23e-05	-6.608	0.000	-0.001	-0.000
Omnibus:		34.	727 Durbin	-Watson:		1.978
Prob(Omnib	us):	0.0	000 Jarque	-Bera (JB):		68.010
Skew:	,	-0.:	156 Prob(J	B):		1.71e-15
Kurtosis:		4.0	085 Cond.	No.		4.24e+03
========						

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.24e+03. This might indicate that there are strong multicollinearity or other numerical problems.

X3 = X2

- X3['fe:nw'] = X3['fe']*X3['nw']X3['fe:un'] = X2['fe']*X1['un']X3['fe:ed'] = X2['fe']*X1['ed']
- X3['fe:ex'] = X3['fe']*X1['ex']
- X3['fe:wk'] = X3['fe']*X1['wk']
- <ipython-input-139-fb238cc67dde>:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc X3['fe:nw'] = X3['fe']*X3['nw']

> 9.439 0.425 79.65 2.89e-145 -725.89 1478. 1545.

> > 0.975]

X1.head()

₹		fe	nw	un	ed	ex	wk	ex^2	fe:nw	fe:un	fe:ed	fe:ex	fe:wk
	0	1.0	0.0	0.0	12.0	20.0	1.0	400.0	0.0	0.0	12.0	20.0	1.0
	1	0.0	0.0	0.0	9.0	9.0	0.0	81.0	0.0	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	16.0	15.0	1.0	225.0	0.0	0.0	0.0	0.0	0.0
	3	0.0	1.0	1.0	14.0	38.0	0.0	1444.0	0.0	0.0	0.0	0.0	0.0
	4	1.0	1.0	0.0	16.0	19.0	1.0	361.0	1.0	0.0	16.0	19.0	1.0

reg_result3 = sm.OLS(Y, sm.add_constant(X3)).fit()

print(reg result3.summary())

P. 111	c(1 c8_1 c3u1c3.	Janmar y (, ,				
₹			(OLS Regre	ssion R	esults	
							=======
	Dep. Variable	:		<pre>ln(wage)</pre>		uared:	
	Model:			OLS	Adj.	R-squared:	
	Method:		Least	: Squares	F-sta	atistic:	
	Date:		Tue, 24	Sep 2024	Prob	(F-statistic)	:
	Time:			07:00:19	Log-	Likelihood:	
	No. Observati	ons:		1280	AIC:		
	Df Residuals:			1267	BIC:		
	Df Model:			12			
	Covariance Ty	pe:	r	nonrobust			
		coef	std	err	t	P> t	[0.025
	const	1.0023	0.	. 095	10.508	0.000	0.815
	fe	-0.3178	0.	.137	-2.322	0.020	-0.586
	nw	-0.1418	0.	.050	-2.835	0.005	-0.240
	un	0.1775	0.	.045	3.986	0.000	0.090

const	1.0023	0.095	10.508	0.000	0.815	1.189
fe	-0.3178	0.137	-2.322	0.020	-0.586	-0.049
nw	-0.1418	0.050	-2.835	0.005	-0.240	-0.044
un	0.1775	0.045	3.986	0.000	0.090	0.265
ed	0.0717	0.007	10.769	0.000	0.059	0.085
ex	0.0360	0.004	9.406	0.000	0.028	0.044
wk	0.2602	0.039	6.626	0.000	0.183	0.337
ex^2	-0.0005	8.27e-05	-6.568	0.000	-0.001	-0.000
fe:nw	0.0460	0.068	0.677	0.498	-0.087	0.179
fe:un	0.0171	0.068	0.251	0.802	-0.117	0.151
fe:ed	0.0116	0.010	1.206	0.228	-0.007	0.030
fe:ex	-0.0035	0.002	-1.609	0.108	-0.008	0.001
fe:wk	-0.0285	0.054	-0.527	0.598	-0.135	0.078
========						=======

35.547	Durbin-Watson:	1.972
0.000	Jarque-Bera (JB):	70.193
-0.159	Prob(JB):	5.73e-16
4.102	Cond. No.	9.24e+03
	0.000 -0.159	35.547 Durbin-Watson: 0.000 Jarque-Bera (JB): -0.159 Prob(JB): 4.102 Cond. No.

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.24e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Х2

_		fe	nw	un	ed	ex	wk	ex^2	fe:nw	fe:un	fe:ed	fe:ex	fe:wk
	0	1.0	0.0	0.0	12.0	20.0	1.0	400.0	0.0	0.0	12.0	20.0	1.0
	1	0.0	0.0	0.0	9.0	9.0	0.0	81.0	0.0	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	16.0	15.0	1.0	225.0	0.0	0.0	0.0	0.0	0.0
	3	0.0	1.0	1.0	14.0	38.0	0.0	1444.0	0.0	0.0	0.0	0.0	0.0
	4	1.0	1.0	0.0	16.0	19.0	1.0	361.0	1.0	0.0	16.0	19.0	1.0
	1283	1.0	0.0	0.0	12.0	30.0	0.0	900.0	0.0	0.0	12.0	30.0	0.0
	1285	0.0	0.0	0.0	12.0	7.0	0.0	49.0	0.0	0.0	0.0	0.0	0.0
	1286	0.0	0.0	0.0	16.0	9.0	1.0	81.0	0.0	0.0	0.0	0.0	0.0
	1287	1.0	0.0	0.0	12.0	31.0	0.0	961.0	0.0	0.0	12.0	31.0	0.0
	1288	0.0	0.0	1.0	12.0	20.0	1.0	400.0	0.0	0.0	0.0	0.0	0.0

1280 rows × 12 columns

X2.columns

```
Index(['fe', 'nw', 'un', 'ed', 'ex', 'wk', 'ex^2', 'fe:nw', 'fe:un', 'fe:ed', 'fe:ex', 'fe:wk'],
            dtype='object')
```

```
X4 = X2[['fe', 'nw', 'un', 'ed', 'ex', 'wk', 'ex^2']]
```

reg_result4 = sm.OLS(Y, sm.add_constant(X3)).fit() print(reg_result4.summary())

-	→	÷	
	÷		

OLS Regression Results

Dep. Variable:	ln(wage)	R-squared:	0.430			
Model:	OLS	Adj. R-squared:	0.425			
Method:	Least Squares	F-statistic:	79.65			
Date:	Tue, 24 Sep 2024	Prob (F-statistic):	2.89e-145			
Time:	07:00:19	Log-Likelihood:	-725.89			
No. Observations:	1280	AIC:	1478.			
Df Residuals:	1267	BIC:	1545.			
Df Model:	12					

Covariance	Type:	nonrobust

Covariance	Type:	nonrob	ıst			
	coef	std err	t	P> t	[0.025	0.975]
const	1.0023	0.095	10.508	0.000	0.815	1.189
fe	-0.3178	0.137	-2.322	0.020	-0.586	-0.049
nw	-0.1418	0.050	-2.835	0.005	-0.240	-0.044
un	0.1775	0.045	3.986	0.000	0.090	0.265
ed	0.0717	0.007	10.769	0.000	0.059	0.085
ex	0.0360	0.004	9.406	0.000	0.028	0.044
wk	0.2602	0.039	6.626	0.000	0.183	0.337
ex^2	-0.0005	8.27e-05	-6.568	0.000	-0.001	-0.000
fe:nw	0.0460	0.068	0.677	0.498	-0.087	0.179
fe:un	0.0171	0.068	0.251	0.802	-0.117	0.151
fe:ed	0.0116	0.010	1.206	0.228	-0.007	0.030
fe:ex	-0.0035	0.002	-1.609	0.108	-0.008	0.001
fe:wk	-0.0285	0.054	-0.527	0.598	-0.135	0.078
	=======				=======	
Omnibus:		35.		-Watson:		1.972
Prob(Omnib	us):			-Bera (JB):		70.193
Skew:		-0.	159 Prob(J	B):		5.73e-16

Kurtosis: 4.102 Cond. No. 9.24e+03

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 9.24e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Start coding or generate with AI. plt.figure(figsize=(8, 6)) plt.scatter(df1['ed'], df1['ln(wage)'], color='skyblue', label='Data points') # Fit a second-degree polynomial (quadratic curve) coefficients = np.polyfit(df1['ed'], df1['ln(wage)'], 2) polynomial = np.poly1d(coefficients) # Generate x values (ex range) for plotting the fitted curve x_vals = np.linspace(df1['ed'].min(), df1['ed'].max(), 100) y_vals = polynomial(x_vals) # Plot the fitted curve plt.plot(x_vals, y_vals, color='red', label='Fitted Curve (quadratic)') # Add titles and labels plt.title('Scatter Plot of ln(wage) vs ed with Fitted Curve') plt.xlabel('Experience (ed)') plt.ylabel('ln(wage) values') plt.legend() # Show the plot plt.show()

Scatter Plot of In(wage) vs ed with Fitted Curve

X4.head()

		fe	nw	un	ed	ex	wk	ex^2
	0	1.0	0.0	0.0	12.0	20.0	1.0	400.0
	1	0.0	0.0	0.0	9.0	9.0	0.0	81.0
	2	0.0	0.0	0.0	16.0	15.0	1.0	225.0
	3	0.0	1.0	1.0	14.0	38.0	0.0	1444.0
	4	1.0	1.0	0.0	16.0	19.0	1.0	361.0

```
X4['ed^2'] = X4['ed']**2
```

→ <ipython-input-149-ee1ac2b9299c>:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc $X4['ed^2'] = X4['ed']**2$

reg_result5 = sm.OLS(Y, sm.add_constant(X3)).fit() print(reg_result5.summary())

_		_
-	_	_
-	→	▾
-	-	_

OLS Regression Results

Dep. Variable:	ln(wage)	R-squared:	0.430				
Model:	OLS	Adj. R-squared:	0.425				
Method:	Least Squares	F-statistic:	79.65				
Date:	Tue, 24 Sep 2024	Prob (F-statistic):	2.89e-145				
Time:	07:00:20	Log-Likelihood:	-725.89				
No. Observations:	1280	AIC:	1478.				
Df Residuals:	1267	BIC:	1545.				
Df Model:	12						
Covariance Type:	nonrobust						

========							
	coef	std err	t	P> t	[0.025	0.975]	
const	1.0023	0.095	10.508	0.000	0.815	1.189	
fe	-0.3178	0.137	-2.322	0.020	-0.586	-0.049	
nw	-0.1418	0.050	-2.835	0.005	-0.240	-0.044	
un	0.1775	0.045	3.986	0.000	0.090	0.265	
ed	0.0717	0.007	10.769	0.000	0.059	0.085	
ex	0.0360	0.004	9.406	0.000	0.028	0.044	
wk	0.2602	0.039	6.626	0.000	0.183	0.337	
ex^2	-0.0005	8.27e-05	-6.568	0.000	-0.001	-0.000	
fe:nw	0.0460	0.068	0.677	0.498	-0.087	0.179	
fe:un	0.0171	0.068	0.251	0.802	-0.117	0.151	
fe:ed	0.0116	0.010	1.206	0.228	-0.007	0.030	
fe:ex	-0.0035	0.002	-1.609	0.108	-0.008	0.001	
fe:wk	-0.0285	0.054	-0.527	0.598	-0.135	0.078	
=========							
Omnibus:		35	.547 Durbi	.n-Watson:		1.972	
Prob(Omnibus	s):	0	.000 Jarqu	ie-Bera (JB):		70.193	
Skew:		-0	.159 Prob(JB):		5.73e-16	
Kurtosis:		4	.102 Cond.	No.		9.24e+03	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.24e+03. This might indicate that there are strong multicollinearity or other numerical problems.

from statsmodels.stats.diagnostic import het_breuschpagan

```
# Predict the values and compute residuals
predicted_vals = reg_result5.fittedvalues
residuals = reg result5.resid
```

Breusch-Pagan Test

lm_test = het_breuschpagan(residuals, sm.add_constant(predicted_vals)) print('Breusch-Pagan p-value:', lm_test[1])

→ Breusch-Pagan p-value: 0.0001357136150874963

Breusch-Pagan Test:

- . How it works: This statistical test assesses heteroscedasticity by testing if the residuals' variance is related to the independent variables. If the test is significant, it indicates heteroscedasticity.
- Interpretation: A low p-value (typically < 0.05) indicates the presence of heteroscedasticity.

```
from statsmodels.stats.outliers_influence import reset_ramsey
# Run the OLS regression
model = sm.OLS(df1['ln(wage)'], sm.add_constant(X4[['fe', 'nw', 'un', 'ed', 'ex', 'wk', 'ex^2', 'ed^2']])).fit(
# Perform the Ramsey RESET test
reset_test = reset_ramsey(model)
```

8.49e-18

print('Ramsey RESET p-value:', reset_test)

Ramsey RESET p-value: <F test: F=2.2719128983106884, p=0.05955964618806872, df_denom=1.27e+03, df_num=4>

OVB If the p-value is small (e.g., less than 0.05), there's evidence of omitted variables or a misspecified model.

model = sm.OLS(df1['ln(wage)'], sm.add_constant(X4[['fe', 'nw', 'un', 'ed', 'ex', 'wk', 'ex^2', 'ed^2']])).fit() print(model.summary())

```
OLS Regression Results
Dep. Variable: ln(wage) R-squared:
                              In(wage) K-Squared:
OLS Adj. R-squared:
Model:
Model: OLS Adj. R-squared:
Method: Least Squares F-statistic:
Date: Tue, 24 Sep 2024 Prob (F-statistic):
Time: 07:45:17 Log-Likelihood:
                                                                     4.88e-150
07:45:17
No. Observations: 1280
Df Residuals: 1271
Df Model:
                                         Log-Likelihood:
                                                                        -724.23
                                         AIC:
                                                                            1466.
                                 1271 BIC:
                                                                            1513.
Df Model:
                                  8
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
          1.2848 0.128 10.032 0.000 1.034 1.536
-0.2305 0.024 -9.549 0.000 -0.278 -0.183
-0.1190 0.034 -3.544 0.000 -0.185 -0.053
0.1894 0.033 5.664 0.000 0.124 0.255
0.0242 0.018 1.329 0.184 -0.012 0.060
0.0347 0.004 9.658 0.000 0.028 0.042
0.2320 0.027 8.557 0.000 0.179 0.285
const
fe
nw
ed
ex
wk

    -0.0006
    8.22e-05
    -6.826
    0.000
    -0.001

    0.0021
    0.001
    3.027
    0.003
    0.001

ex^2
                                                                          -0.000
ed^2
                                                                         0.003
______
Omnibus: 38.729 Durbin-Watson: Prob(Omnibus): 0.000 Jarque-Bera (JB):
                                                                           78,616
                               -0.172 Prob(JB):
```

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

[2] The condition number is large, 7.73e+03. This might indicate that there are strong multicollinearity or other numerical problems.

4.164

```
# Predict the values and compute residuals
predicted_vals = model.fittedvalues
residuals = model.resid
```

Breusch-Pagan Test

lm test = het breuschpagan(residuals, sm.add constant(predicted vals)) print('Breusch-Pagan p-value:', lm_test[1])

→ Breusch-Pagan p-value: 4.1651668328051035e-05

model2 = sm.OLS(df1['ln(wage)'], sm.add_constant(X4[['fe', 'nw', 'un', 'ex', 'wk', 'ex^2', 'ed^2']])).fit() print(model2.summary())

```
OLS Regression Results
 ------
Dep. Variable: ln(wage) R-squared:
Model: OLS Adj. R-squared:
Method: Least Squares F-statistic:
Dep. Variable
Model:
Method: Least Squares
Date: Tue, 24 Sep 2024
07:45:34
1280
                                                                       0.428
                                                                        137.5
                                       Prob (F-statistic): 9.64e-151
Log-Likelihood: -725.12
Inme: 07:45:34 Log-Likelihood:
No. Observations: 1280 AIC:
Df Residuals: 1272 BIC:
Df Model:
                                                                     -725.12
                                                                         1466.
                                                                         1507.
                         nonrobust
Covariance Type:
                coef std err
                                       t P>|t| [0.025 0.975]
```