Worked Examples: Mutation-Selection Balance

Step-by-Step Problem Solutions

Key Formulas:

Recessive: $q^{-} = \sqrt{(\mu/s)}$ | Dominant: $q^{-} = \mu/s$ | Additive: $q^{-} = \mu/(hs)$

Example 1: Cystic Fibrosis Calculation

Problem: Cystic fibrosis is caused by recessive mutations in the CFTR gene. The estimated mutation rate is $\mu = 6.7 \times 10^{-7}$ per generation. Assuming it's a lethal disorder (s = 1), calculate:

- a) The expected equilibrium frequency of the CF allele
- b) The expected carrier frequency in the population
- c) The number of carriers in a population of 1 million people

Solution:

Step 1: Identify known values

 $\mu = 6.7 \times 10^{-7}$

s = 1 (lethal recessive)

Use recessive formula: $\hat{q} = \sqrt{(\mu/s)}$

Step 2: Calculate equilibrium allele frequency

 $\hat{q} = \sqrt{(6.7 \times 10^{-7} / 1)} = \sqrt{(6.7 \times 10^{-7})}$

 $\hat{q} = \sqrt{6.7} \times \sqrt{10^{-7}} = 2.588 \times 10^{-3.5}$

Better approach: $\hat{q} = \sqrt{(0.00000067)} = 0.000818$

Step 3: Calculate carrier frequency

Carrier frequency = $2pq \approx 2\hat{q}$ (since $p \approx 1$)

Carriers = $2 \times 0.000818 = 0.001636 (0.1636\%)$

Step 4: Calculate number of carriers

In 1 million people: $1,000,000 \times 0.001636 = 1,636$ carriers

Final Answers:

```
a) q^{=0.000818} (0.0818%)
```

b) Carrier frequency = 0.001636 (0.1636%)

c) 1,636 carriers in 1 million people

Reality Check: Actual CF carrier frequency in European populations is about 1 in 25 (4%), suggesting either higher mutation rates or historical heterozygote advantage.

Example 2: Dominant Disorder

Problem: Achondroplasia (a form of dwarfism) is caused by dominant mutations with s=0.8 (reduced fitness). The mutation rate is estimated at $\mu=1.4\times10^{-5}$. Calculate the expected equilibrium frequency.

Solution:

Step 1: Identify inheritance pattern

Achondroplasia is dominant, so we use: $\hat{q} = \mu/s$

Step 2: Apply the formula

 $\hat{q} = (1.4 \times 10^{-5}) / 0.8 = 1.75 \times 10^{-5}$

Step 3: Interpret the result

 $\hat{q} = 0.0000175 (0.00175\%)$

Since it's dominant, this is both the allele frequency and the disease frequency

Final Answer:
$$q^= 1.75 \times 10^{-5}$$

Comparison: Notice how much lower the equilibrium frequency is for dominant disorders compared to recessive ones, even with similar mutation rates.

Example 3: Partial Dominance

Problem: A genetic disorder has additive inheritance with dominance coefficient h=0.25. The mutation rate is $\mu=2\times 10^{-6}$ and the selection coefficient is s=0.5. Calculate the equilibrium frequency.

Solution:

Step 1: Use the additive formula

For additive inheritance: $\hat{q} = \mu/(hs)$

Step 2: Substitute values

$$\hat{q} = (2 \times 10^{-6}) / (0.25 \times 0.5) = 0.000002 / 0.125 = 1.6 \times 10^{-5}$$

Step 3: Interpret the result

 $\hat{q} = 0.000016 (0.0016\%)$

Final Answer: $q^{=} 1.6 \times 10^{-5}$

 ∇ **Understanding h:** The dominance coefficient h ranges from 0 (recessive) to 1 (dominant). Here h = 0.25 means the heterozygote has 25% of the fitness reduction of the homozygote.

Example 4: Finding Mutation Rate from Observed Frequency

Problem: Tay-Sachs disease is a recessive lethal disorder (s = 1) that occurs at a frequency of 1 in 3,600 births in Ashkenazi Jewish populations. Estimate the mutation rate assuming mutation-selection balance.

Solution:

Step 1: Convert disease frequency to allele frequency

Disease frequency = $q^2 = 1/3600 = 0.000278$

Therefore $q = \sqrt{0.000278} = 0.01667$

Step 2: Use the equilibrium formula

$$\hat{q} = \sqrt{(\mu/s)} \rightarrow \mu = \hat{q}^2 \times s$$

Step 3: Calculate mutation rate

$$\mu = (0.01667)^2 \times 1 = 0.000278 \times 1 = 2.78 \times 10^{-4}$$

Final Answer: $\mu = 2.78 \times 10^{-4}$ per generation

Interpretation: This mutation rate seems quite high. The actual explanation for Tay-Sachs frequency in Ashkenazi Jews likely involves founder effects and possible historical heterozygote advantage rather than just mutation-selection balance.

Example 5: Multiple Calculations

Problem: Compare three different genetic disorders:

- Disorder A: Recessive, $\mu = 10^{-6}$, s = 1
- Disorder B: Dominant, $\mu = 10^{-6}$, s = 0.5
- Disorder C: Recessive, $\mu = 10^{-5}$, s = 0.1

Calculate and compare their equilibrium frequencies.

Solution:

Disorder A (Recessive,
$$\mu = 10^{-6}$$
, s = 1)

$$\hat{q} = \sqrt{(10^{-6}/1)} = \sqrt{10^{-6}} = 10^{-3} = 0.001$$

Disorder B (Dominant, $\mu = 10^{-6}$, s = 0.5)

$$\hat{q} = 10^{-6}/0.5 = 2 \times 10^{-6} = 0.000002$$

Disorder C (Recessive, $\mu = 10^{-5}$, s = 0.1)

$$\hat{q} = \sqrt{(10^{-5}/0.1)} = \sqrt{(10^{-4})} = 10^{-2} = 0.01$$

Comparison:

Disorder A: q^= 0.001
Disorder B: q^= 0.000002
Disorder C: q^= 0.01

Patterns: Disorder C has the highest frequency due to high mutation rate and weak selection. Disorder B has the lowest frequency because dominant selection is more efficient.

Practice Problems

Problem 1: Phenylketonuria (PKU) is a recessive disorder with s = 0.7 (reduced fitness due to dietary restrictions). If the mutation rate is 4×10^{-6} , what is the expected equilibrium frequency?

Problem 2: Huntington's disease is a dominant lethal disorder (s = 1) that appears in mid-life. If the mutation rate is 1×10^{-6} , what is the expected disease frequency?

Problem 3: Sickle cell anemia is a recessive disorder, but heterozygotes have advantage against malaria. This creates a balanced polymorphism rather than mutation-selection balance. Explain why the standard $\hat{q} = \sqrt{(\mu/s)}$ formula doesn't apply.

Problem 4: If a recessive disorder has an equilibrium frequency of 0.0025 and s = 0.8, what is the mutation rate?

©* Problem-Solving Strategy

- 1. Identify the inheritance pattern (recessive, dominant, additive)
- 2. Choose the correct formula
- 3. Substitute the given values
- 4. Calculate carefully, watching units and exponents
- 5. Interpret the result in biological context
- 6. Compare with real-world data when possible

BGEN 55 - Advanced Genetics II | Worked Examples: Mutation-Selection Balance

Developed by CAE Cadorna © 2025