

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

5. The Wronskian:

Definition: The Wronskian of n functions $y_1(x)$, $y_2(x)$ $y_n(x)$ is denoted by w(x) or $w(y_1, y_2,, y_n)$

$$= \begin{vmatrix} y_1 & y_2 & y_1 & y_2 &$$

Wronskian of second order DE

Let $a_0(x) y^+ + a_1(x) y^+ + a_2(x) y = 0$

Where $a_0(x)$, $a_1(x)$, $a_2(x)$ are continuous and $a_0(x) \neq 0 \quad \forall$

If $y_1(x)$ and $y_2(x)$ are solution

Then
$$w(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2 \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

Able's Formula:

Let
$$a_0(x) y^+ a_1(x) y + a_2(x) y = 0$$

Where $a_0(x)$, $a_1(x)$, $a_2(x)$ are continuous and $a_0(x) \neq 0 \ \forall x$

$$w(y_1, y_2) = Ae^{-\int \frac{a_1(x)}{a_0(x)} dx}$$
 is called Able's formula.

RESULTS:

- (1) If w $(y_1, y_2, ..., y_n) \neq 0$ then $y_1, y_2, ..., y_n$ are L.I. solution.
- (2) If $w(y_1, y_2, ..., y_n) = 0$ then $y_1, y_2, ..., y_n$ are LD solution.
- (3) Wronskian is either identically zero or non-zero.
- (4) If Wronskian is non zero at least one point then Wronskian is identically non – zero
- (5) If Wronskian is zero at least one point then Wronskian is identically zero
- (6) Wronskian can never change its sign

Q2. Consider two solution
$$x(t) = x_1(t)$$
 and $x(t) = x_2(t)$ of

differential equation $\frac{d^2x(t)}{dt^2} + x(t) = 0$, t > 0 such that

$$x_1(0) = 1, \frac{dx_1(t)}{dt}\Big|_{t=0} = 0, x_2(0) = 0, \frac{dx_2(t)}{dt}\Big|_{t=0} = 1$$
 the

Wronskian
$$W(t) = \begin{vmatrix} x_1(t) & x_2(t) \\ \frac{dx_1(t)}{dt} & \frac{dx_1(t)}{dt} \end{vmatrix}$$
 and at $t = \pi/2$ is

(a) 1

(b) - 1

(c)0

(d) $\pi/2$

Let $y_1(x)$ and $y_2(x)$ be two linearly independent solution Q3. of the differential equation $x^2y''(x) - 2xy'(x) - 4y(x) = 0$ for $x \in [1,10]$. Considered the wronskian $W(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$. If W(1) = 1, then W(3) - W(2) equals (a) 1 (b) 2 (c) 3

Q4. Let $y_1(x)$ and $y_2(x)$ be the linearly independent solutions of $xy'' + 2y' + xe^x y = 0$ If $W(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$ with W (1) = 2 find W (5)

(a)
$$\frac{2}{25}$$

(c)
$$\frac{2}{5}$$

(b)
$$\frac{1}{25}$$

Q.5. Consider the ODE

$$u''(t)+P(t)u'(t)+Q(t)u(t)=R(t), t \in [0,1]$$

There exist continuous function P,Q and R defined on [0,1] and two solutions u_1 and u_2 of the ODE such that the Wronskian W of u_1 and u_2 is

(a)
$$W(t) = 2t - 1, 0 \le t \le 1$$

(b)
$$W(t) = \sin 2\pi t, 0 \le t \le 1$$

(c)
$$W(t) = \cos 2\pi t$$
, $0 \le t \le 1$

(d)
$$W(t) = 1, 0 \le t \le 1$$

TARGETED AUDIENCE

- O III-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

- Q.6. Consider the ordinary DE y`` + P(x) y` + Q(x) y = 0, Where P and Q are smooth functions. Let y₁ and y₂ be any two solution of the ODE. Let w(x) be the Wronskian. Then which of the following is always true.
 - (a) If y_1 & y_2 are LD then $\exists x_1, x_2$ s.t. $w(x_1) = 0$ and $w(x_2) \neq 0$
 - (b) If y_1 & y_2 are LI then $w(x) = 0 \forall x$
 - (c) If y_1 & y_2 are LD then $w(x) \neq 0 \forall x$
 - (d) If $y_1 \& y_2$ are LI then $w(x) \neq 0 \forall x$

Q.7. Let P,Q be continuous real valued functions defined on [-1,1] and $u_i:[-1,1] \rightarrow R, i=1,2$ be solutions of the

ODE:
$$\frac{d^2u}{dx^2} + P(x)\frac{du}{dx} + Q(x)d = 0, x \in [-1,1]$$
 satisfying $u_1 \ge 0, u_2 \le 0$ and $u_1(0) = u_2(0) = 0$. Let w denote the Wronskian of u_1 and u_2 , then

- (a) u_1 and u_2 are linearly independent
- (b) u_1 and u_2 are linearly dependent
- (c) w(x) = 0 for all $x \in [-1,1]$
- (d) $w(x) \neq 0$ for some $x \in [-1,1]$

2.8. Let $Y_1(x)$ and $Y_2(x)$ defined on [0,1] be twice continuously differentiable functions satisfying Y''(x) + Y'(x) + Y(x) = 0. Let W(x) be the Wronskian of Y_1 and Y_2 and satisfy $W\left(\frac{1}{2}\right) = 0$. Then

- (a) W(x) = 0 for $x \in [0,1]$
- (b) $W(x) \neq 0$ for $x \in [0,1/2) \cup (1/2,1]$
- (c) W(x) > 0 for $x \in (1/2,1]$
- (d) W(x) < 0 for $x \in [0,1/2)$

Q.9. Let $y_1(x)$ and $y_2(x)$ be two solutions of

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \sec x.y = 0$$
 with Wronskian W(x).If

$$y_1(0) = 1$$
, $\left(\frac{dy_1}{dx}\right)_{x=0} = 0$ and $W\left(\frac{1}{2}\right) = \frac{1}{3}$, then $\left(\frac{dy_2}{dx}\right)_{x=0}$

equals

(a) 1/4

(b) 1

(c) 3/4

(d) 4/3

Q.10. Let $y = \phi(x)$ and $y = \psi(x)$ be solutions of $y'' - 2xy' + (\sin x^2)y = 0$ such that $\phi(0) = 1, \phi'(0) = 1$ and $\psi(0) = 1, \psi'(0) = 2$. Then the value of the Wronskian $W(\phi, \psi)$ at x = 1 is

(a) 0

(b) 1

(c) e

 $(d) e^2$

Q.11. Consider the ordinary DE y'' + P(x) y' + Q(x) y = 0

Where P and Q are smooth function. Let y1 and y2 be any two solution of the ODE. Let w(x) be the Wronskian. Then which of the following is always true.

- (a) If y_1 & y_2 are LD then $\exists x_1, x_2$ s.t. $w(x_1)=0$ & $w(x_2) \neq 0$
- (b) If y_1 & y_2 are LI then $w(x) = 0 \forall x$
- (c) If y_1 & y_2 are LD then $w(x) \neq 0 \forall x$
- (d) If $y_1 & y_2$ are LI then $w(x) \neq 0 \forall x$

Q.12 The wronskian of two solutions of the differential equation $t^2y^- - t(t+2)y^+ + (t+2)y = 0$ satisfies W(1) = 1 is

(a) t²e^t

(b) t^2e^{t-1}

(c) t et

(d) t e^{t-1}

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR