

HUAWEI MU509 LGA 模块

PCB互连设计指导

文档版本 0.5

发布日期 2010-09-08

华为技术有限公司为客户提供全方位的技术支持,用户可与就近的华为办事处联系,也可直接与公司总部联 系。

华为技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.huawei.com

客户服务电话: 0755-28560000 4008302118

客户服务传真: 0755-28560111

客户服务邮箱: Support@huawei.com

版权所有 © 华为技术有限公司 2010。保留一切权利。

非经华为技术有限公司书面同意,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以 任何形式传播。

本手册中描述的产品中,可能包含华为技术有限公司及其可能存在的许可人享有版权的软件,除非获得相关 权利人的许可,否则,任何人不能以任何形式对前述软件进行复制、分发、修改、摘录、反编译、反汇编、 解密、反向工程、出租、转让、分许可以及其他侵犯软件版权的行为,但是适用法禁止此类限制的除外。

商标声明

在本手册中以及本手册描述的产品中,出现的其他商标、产品名称、服务名称以及公司名称,由其各自的所 有人拥有。

注意

本手册描述的产品及其附件的某些特性和功能,取决于当地网络的设计和性能,以及您安装的软件。某些特 性和功能可能由于当地网络运营商或网络服务供应商不支持,或者由于当地网络的设置,或者您安装的软件 不支持而无法实现。因此,本手册中的描述可能与您购买的产品或其附件并非完全一一对应。

华为技术有限公司保留随时修改本手册中任何信息的权利,无需进行任何提前通知且不承担任何责任。

无担保声明

本手册中的内容均"如是"提供,除非适用法要求,华为技术有限公司对本手册中的所有内容不提供任何明 示或暗示的保证,包括但不限于适销性或者适用于某一特定目的的保证。

在法律允许的范围内,华为技术有限公司在任何情况下,都不对因使用本手册相关内容而产生的任何特殊 的、附带的、间接的、继发性的损害进行赔偿,也不对任何利润、数据、商誉或预期节约的损失进行赔偿。

进出口管制

若需将此产品手册描述的产品(包含但不限于产品中的软件及技术数据等)出口、再出口或者进口,您应遵 守适用的进出口管制法律法规。

关于本文档

作者信息

作者	时间	
评审	时间	
签发	时间	

修改记录

文档版本	修改说明	发布日期	作者	签发
V1.0				

目录

1	整体介绍	1
	PCB 设计指导	
	2.1 PCB 设计总体规则	
	2.2 电源设计	2
	2.3 PCB 层叠设计	2
	2.4 推荐 PCB 封装设计	3
	2.5 布线规则	3

插图目录

图 2-1 MU509 用户应用推荐层叠	3
图 2-2 微带线完整结构	5
图 2-3 MU509 带状线完整结构	
图 2-4 50 欧姆阻抗线宽设置	
图 2-5 射频端口走线示意图	
图 2-6 SPK 走线示意图	

】 整体介绍

本文主要介绍了 HUAWEI MU509 LGA 模块的 PCB 互连设计的规则和注意事项,通过对以下规则的遵守,能够保证用户在应用过程中,得到较好的性能保证,同时可以有效的降低用户成本。

2 PCB 设计指导

2.1 PCB 设计总体规则

- 1. 时钟、高频数字信号、开关电源的开关信号等强干扰信号,尽量远离 LGA 模块。
- 2. RF 及音频等模拟信号,需要注意保护,如果条件允许,最好能在设计过程中,区分模拟和数字地。
- 3. 确保电源的完整性和通流能力,条件允许的情况下,最好能够采用平面的形式。
- 4. 模块下方尽量保证地的完整性,减少干扰信号的外泄。

2.2 电源设计

电源完整性设计对 LGA 模块的性能是一个关键的因素,电源处理不好,将会带来多方面的影响:

- 影响 EMC 性能
- 影响发射调制谱
- 影响相位误差和接收灵敏度

电源完整性设计总则:

- 电源质量的保证: 开关电源,尽量减少纹波;线性电源,注意尽量减少噪声干扰:
- 电源的滤波电容,尽量靠近 LGA 模块的管脚放置,小电容更靠近管脚,电容的组合为 10uf、4.7UF、10nf、100pf
- 考虑模块的对电源的要求,尽量减少电源走线所分配的压降,保证通流能力,电源走线宽度推荐大于100mil,条件允许的情况下,可以走成平面的形式

2.3 PCB 层叠设计

为了节约成本, PCB 可以采用 4 层通孔板进行设计, 叠层设计如下:

其中介质材料选择为 prepreg 7628,目的是为了低损耗的 RF 应用,也可以应用其他介质。

图2-1 MU509 用户应用推荐层叠

	4layers			
		PCB Stack		
Top mask				
L1	Copper			
	prepreg 7628			
L2	Copper			
	core			
L3	Copper			
	prepreg 7628			
L4	Copper			
Bottom mask				

层	应用规划	
1 layer	器件布局层,RF 微带线、少部分走线	
2 layer	分组走的数据线, 电源	
3 layer	音频、时钟、RF 带状线	
4 layer	器件布局、地级测试点	

2.4 推荐 PCB 封装设计

参见工艺设计指导

2.5 布线规则

2.5.1 电源设计

LGA 模块工作在不同制式下的电源消耗不同,当工作在 GSM 模式下时,最大的峰值电流将会到达 2A 以上,所以为模块的供电电源,要保证足够的宽度,以满足电源的通流能力,并尽可能的减少在电源走线上的压降,推荐至少采用 100mil 的走线宽度(完成铜厚为 1OZ),有条件,可以采用电源平面的方式来分布电源走线。

2.5.2 RF 布线设计

在用户设计的板子上,所有 RF 信号线必须控制 50 欧姆阻抗。阻抗特性一般地讲决定于介质系数,线宽,和距离地平面的位置。

为了更好地体现规则设计,下面给出具体的 50 欧姆阻抗的微带线和带状线的完整结构 以及层叠的参考设计:

图2-2 微带线完整结构

图2-3 MU509 带状线完整结构

	1.2mm 4layers				1次电镀1次压合	
		PCB Stack		tack	Finished (mil)	
Top mask					0,8	
L1	Copper(HOZ+plating)				1,8	
	prepreg 7628				8,2	
L2	Copper(base)10Z				1,2	
	core				23,6	
L3	Copper(base)1OZ				1,2	
	prepreg 7628				8,2	
L4	Copper(HOZ+plating)				1,8	
Bottom mask	Bottom mask			0,8		
					47,6	
	Final Total				1,21	

表2-1 4层 1.2mm 厚度单板的层叠结构

图2-4 50 欧姆阻抗线宽设置

单线		单位(mil)
L1->L2	50	14
L2->L1/L3	50	10.9
L3->L2/L4	50	10.9
L4->L3	50	14

在 PCB 设计时,由于 ANT 天线焊盘在 LGA 封装内侧,可以采用下图所示的走线,同时需要在天线端口预留天线匹配位置。

图2-5 射频端口走线示意图

2.5.3 音频走线设计

为了获得更好的声音性能,基本建议如下:

- 扬声器的线(SPK)必须平衡走线一起,之间不能有其它任何走线;
- 麦克线 (MIC))必须平衡走线一起,之间不能有其它任何走线;
- 所有外部滤波器件必须尽可能的放置在 MIC 和 SPK 附近。

图2-6 SPK 走线示意图

不要将音频信号走线走在射频、电源或者其它高速数字信号旁边。

2.5.4 SIM 卡走线设计

SIM 卡的走线尽可能的短,建议最大值为 10CM。SIM 卡相关走线需尽量走在一起, VREG_SIM 走线宽度视长度而定,推荐值为 10mil 线宽。

SIM 卡的走线按 BUS 走线,并注意对走线的保护,防止高速数字信号以及时钟的强干扰信号对 SIM 卡信号的干扰,否则可能会引起 SIM 卡的重启等风险;

SIM 卡的 ESD 防护器件尽量靠近 SIM 卡座处, 防止静电对模块的干扰。

2.5.5 串口的走线设计

LGA 模块包含标准的 8 线串口,按组走线,由于传输数字信号,注意与敏感信号的隔离,不要影响其它模拟信号和射频信号,如 SPK 和射频天线。

2.5.6 地的处理

良好的地处理,对模块的性能保证有很重要的作用,可以保证信号完整性、提升RF性能、降低EMI干扰、散热,所以对地的处理要格外注意。

所有地管脚必须以最短地线接入地平面,为了不影响 LGA 封装 PIN 管脚其它信号,需保证 LGA 封装侧次表层的地完整性。有完整的地平面才能保证良好的性能,需保证地屏幕不要被破坏,所有地需通过大量过孔有效的连接在一起;

对于 RF 信号,注意保证阻抗线的结构(微带线、带状线),保证参考地的完整,在阻抗线的两边,最大间隔为 100mil 来排布地孔;

对于音频、时钟信号,要做好包地处理,最好干扰源和敏感源的隔离;

各信号线,注意保证参考平面的连续性,避免出现跨分割的情况,保证信号线有最短的回流路径;

散热焊盘接地必须充分,起到模块良好接地保证的同时,也是模块散热的主要通道。