南京市 2024 届高三年级学情调研

2023.09

注意事项:

1. 本试卷共6页,包括单项选择题(第1题~第8	3 题)、多项选择题(第9 题~第12 题)、填空题(第13
题~第16题)、解答题(第17题~第22题)四部分。	本试卷满分为150分。考试时间为120分钟。

- 2. 答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置。
- 3. 回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改 动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上指定位置,在其 他位置作答一律无效。
- 一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中 符合题目

ENGLIS PERSONAL PROPERTY OF THE SECOND		中心、网络山山时四十五块	中,只有一坝是符合题目
要求的,请把答案填涂在	E答题卡相应位置上。		
1. 已知集合 $A = \{x x^2 -$	$4x+3 \le 0$, $B = \{x 2 < 0\}$	$(x < 4), \cup A \cap B =$	
A. $\{x 3 \le x < 4\}$	B. $\{x 1 \le x \le 3\}$	C. $\{x 2 < x \leq 3\}$	D. $\{x 1 \le x < 4\}$
2. 若 $z=\frac{3-i}{1+i}$,则 z 的虚	部为		
A. 2	B2	C. 2i	D. —2i
$3. (x-\frac{2}{x})^4$ 的展开式中	常数项为		
A24	B4	C. 4	D. 24
4. 在△ABC 中,点 D 为	边 AB 的中点.记 \overrightarrow{CA} =	$m,\overrightarrow{CD}=n, \bigcup \overrightarrow{CB}=$	
A. 2m+n	B. $m+2n$	C. $2m-n$	Dm + 2n
5. 设 O 为坐标原点, A 为	夕圆 $C: x^2 + y^2 - 4x + 2 =$	=0 上一个动点,则 <i>_A</i> (OC 的最大值为
A. $\frac{\pi}{12}$	B. $\frac{\pi}{6}$	$C.\frac{\pi}{4}$	D. $\frac{\pi}{2}$
6. 在正方体ABCD-A ₁	$B_1C_1D_1$ 中,过点 B 的平	面α与直线A ₁ C垂直,则	。 则α 截该正方体所得截面的
形状为			

A. 三角形 B. 四边形 C. 五边形 D. 六边形 高三数学试卷第1页(共6页)

7. 新风机的工作原理是,从室外吸入空气,净化后输入室内,同时将等体积的室内空气排向室 外. 假设某房间的体积为 v_0 ,初始时刻室内空气中含有颗粒物的质量为m. 已知某款新风机工 作时,单位时间内从室外吸入的空气体积为v(v>1),室内空气中颗粒物的浓度与时刻t的函 数关系为 $\rho(t)=(1-\lambda)\frac{m}{v_0}+\lambda\frac{m}{v_0}e^{-w}$,其中常数 λ 为过滤效率. 若该款新风机的过滤效率为 $\frac{4}{5}$,

且t=1 时室内空气中颗粒物的浓度是t=2 时的 $\frac{3}{2}$ 倍,则v 的值约为

(参考数据:ln2~0.6931,ln3~1.0986)

- A. 1. 3862
- B. 1. 7917
- C. 2. 1972
- D. 3. 5834

8. 若函数 $f(x) = \sin(\omega \cos x) - 1(\omega > 0)$ 在区间 $(0,2\pi)$ 恰有 2 个零点,则 ω 的取值范围是

- A. $(0, \frac{\pi}{2})$ B. $(\frac{\pi}{2}, \frac{3\pi}{2})$ C. $(\frac{\pi}{2}, \frac{5\pi}{2})$ D. $(\frac{\pi}{2}, +\infty)$

二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全 部选对的得5分,部分选对的得2分,有选错的得0分。

9. 若a < 0 < b,且a + b > 0,则

- A. $\frac{a}{b} > -1$

- B. |a| < |b| C. $\frac{1}{a} + \frac{1}{b} > 0$ D. (a-1)(b-1) < 1

10. 有一组样本数据 x_1, x_2, x_3, x_4, x_5 , 已知 $\sum_{i=1}^5 x_i = 10$, $\sum_{i=1}^5 x_i^2 = 30$, 则该组数据的

- A. 平均数为2
- B. 中位数为2
- C. 方差为2
- D. 标准差为2

11. 在 $\triangle ABC$ 中, $\angle ACB$ =90°,AC=BC=2 $\sqrt{2}$,D 是 AB 的中点. 将 $\triangle ACD$ 沿 CD 翻折,得到 三棱锥 A'-BCD,则

 $A.CD \perp A'B$

- B. 当 $A'D \perp BD$ 时,三棱锥 A'-BCD 的体积为 $\frac{8}{3}$
- C. 当 $A'B=2\sqrt{3}$ 时,二面角 A'-CD-B 的大小为 $\frac{2\pi}{3}$
- D. 当 $\angle A'DB = \frac{2\pi}{3}$ 时,三棱锥 A'-BCD 的外接球的表面积为 20π
- 12. 函数 f(x) 及其导函数 f'(x) 的定义域均为 R,若 f(x)-f(-x)=2x,

$$f'(1+x)+f'(1-x)=0,$$
 则

A. y = f(x) + x 为偶函数

B. f(x)的图象关于直线x=1 对称

C. f'(0)=1

D. f'(x+2)=f'(x)+2

高三数学试卷第2页(共6页)

三、填空题	:本题共4	小题	.每小题	5分。	. 共 20 分。
-------	-------	----	------	-----	-----------

- 13. 已知角 α 的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点 P(3,4),则 $\sin(\pi+\alpha)$ = \triangle .
- 14. 某批麦种中,一等麦种占90%,二等麦种占10%,一、二等麦种种植后所结麦穗含有50粒以上麦粒的概率分别为0.6,0.2,则这批麦种种植后所结麦穗含有50粒以上麦粒的概率为
- 15. 记 S_n 为数列 $\{a_n\}$ 的前n 项和,已知 $a_n = \begin{cases} \frac{2}{n(n+2)}, n$ 为奇数,则 $S_8 = \underline{\qquad}$ 见 $S_8 = \underline{\qquad}$ 见 $S_8 = \underline{\qquad}$ 几为偶数,16. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左、右焦点分别为 F_1, F_2, P 是C 右支上一点,线段
- 16. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0,b>0) 的左、右焦点分别为 F_1,F_2,P 是C 右支上一点,线段 PF_1 与C 的左支交于点M. 若 $\angle F_1PF_2 = \frac{\pi}{3}$,且 $|PM| = |PF_2|$,则C 的离心率为______. 四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。

17. (10分)

已知公比大于1的等比数列 $\{a_n\}$ 满足: $a_1+a_4=18,a_2a_3=32$.

- (1)求{a_n}的通项公式;
- (2)记数列 $\{b_n\}$ 的前n项和为 S_n ,若 $S_n=2b_n-a_n$, $n\in\mathbb{N}^*$,证明: $\{\frac{b_n}{a_n}\}$ 是等差数列.

18. (12分)

记 $\triangle ABC$ 的内角A,B,C 的对边分别为a,b,c. 已知 $a\sin B + \sqrt{3}b\cos A = 0$. (1)求A:

(2) 若a=3, $\sin B \sin C = \frac{1}{4}$, 求 $\triangle ABC$ 的面积.

19. (12分)

某地区对某次考试成绩进行分析,随机抽取100名学生的A,B两门学科成绩作为样本.将他们的A学科成绩整理得到如下频率分布直方图,且规定成绩达到70分为良好.已知他们中B学科良好的有50人,两门学科均良好的有40人.

(1)根据所给数据,完成下面的 2×2 列联表,并根据列联表,判断是否有 95%的把握认为这次考试学生的 A 学科良好与 B 学科良好有关;

	B学科良好	B学科不够良好	合计
A 学科良好			
A学科不够良好			
合计			

(2)用样本频率估计总体概率,从该地区参加考试的全体学生中随机抽取 3 人,记这 3 人中 A ,B 学科均良好的人数为随机变量 X ,求 X 的分布列与数学期望.

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,其中 $n=a+b+c+d$.

$P(K^2 \geqslant k_0)$	0. 15	0.10	0.05	0.025	0.010	0.005	0, 001
k ₀	2. 072	2. 706	3. 841	5. 024	6, 635	7 879	10 828

20. (12分)

如图,四边形ABCD 是圆柱OE 的轴截面,点F 在底面圆O 上, $OA=BF=\sqrt{3}$,AD=3,点G 是线段 BF 的中点.

- (1)证明:EG//平面 DAF;
- (2)求直线 EF 与平面 DAF 所成角的正弦值.

21. (12分)

已知O 为坐标原点,F(1,0) 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的右焦点,过F 且不与坐标轴垂直的直线l 交椭圆C 于A,B 两点。当A 为短轴顶点时, $\triangle OAF$ 的周长为 $3+\sqrt{3}$.

- (1)求C的方程;
- (2) 若线段 AB 的垂直平分线分别交x 轴、y 轴于点 P , Q , M 为线段 AB 的中点,求 $|PM| \cdot |PQ|$ 的取值范围.

22. (12分)

已知函数 $f(x)=ae^x-x-a$,其中a>0.

- (1)若a=1,证明: $f(x) \ge 0$;
- (2)设函数 g(x)=xf(x), 若 x=0 为 g(x)的极大值点, 求 a 的取值范围.