Clase 13 Regresión lineal simple Diplomado en Análisis de datos con R para la Acuicultura.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

17 May 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es y para qué sirve una Regresión lineal?
- Correlación v/s causalidad.
- Repaso ecuación de regresión lineal.
- Repaso betas y causalidad.
- Interpretación Regresión lineal con R.
- Evaluación de supuestos.

2.- Práctica con R y Rstudio cloud

- Realizar análisis de regresión lineal.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

INTRODUCCIÓN REGRESIÓN LINEAL

Herramienta estadística que permite determinar si existe una relación (asociación) entre una variable predictora (independiente) y la variable respuesta (dependiente).

Nivel del mar en función del tiempo. Fuente: epa.gov

Dr. José Gallardo Matus

Clase 13 Regresión lineal simple

REGRESIÓN LINEAL: PREDICCIÓN

La ecuación de la regresión permite, bajo ciertos supuestos, permite predecir el valor de una variable respuesta "y" a partir de una o más variables predictoras "x".

CORRELACIÓN NO IMPLICA CAUSALIDAD

¿Si dejamos de tomar helados disminuirá el nivel del mar? ¿Qué factor "z" puede explicar la correlación entre consumo de helados y nivel del mar?

REGRESIÓN LINEAL: BETAS

Betas miden la influencia del intercepto y la pendiente sobre la variable Y.

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

 $\beta_0 = \text{Intercepto} = \text{valor que toma "y" cuando x} = 0.$

 β_1 = Pendiente = Cambio promedio de "y" cuando "x" cambia en una unidad.

LINEA DE REGRESIÓN

Línea de regresión: Corresponde a los valores "ajustados" o estimados de "y" en función de "x". Se calcula con los estimadores de *mínimos cuadrados* de β_0 y β_1 .

RESIDUOS Y MÉTODOS DE MÍNIMOS CUADRADOS

COEFICIENTE DE DETERMINACIÓN

 R^2 mide la proporción de la variación muestral de "y" que es explicada por x (varía entre 0-1). Se calcula como el cuadrado del coeficiente de correlación de pearson.

 R_{ajust}^2 nos dice qué porcentaje de la variación de la variable dependiente es explicado por la o las variables independientes de manera conjunta.

$$R_{ajust}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

donde:

n = tamaño de la muestra

p = cantidad de variables predictoras en el modelo

PRUEBAS DE HIPÓTESIS

Prueba de hipótesis del coeficiente de regresión y el intercepto Tipo de prueba: Prueba de t – student

La hipótesis nula en ambos casos es que los coeficiente (β_0) y (β_1) son iguales a 0, es decir sin asociación entre las variables.

$$H_0: \beta_0 = 0 \text{ y } H_0: \beta_1 = 0$$

Prueba de hipótesis del modelo completo Tipo de prueba: Prueba de F.

La hipótesis nula es que los coeficientes son iguales a 0.

$$H_0: \beta_j = 0; j = 1, 2, ..., k$$

REGRESIÓN LINEAL CON R: COEFICIENTES

reg <- Im(Global Temperature Anomalies \sim CO2_ppm, < data = Global_warming) summary(reg)

REGRESIÓN LINEAL CON R: PRUEBA DE F

Anova de la regresión.

EXTRAER INFORMACIÓN DE LA REGRESIÓN LINEAL

```
summary(reg$residuals)
##
        Min. 1st Qu.
                            Median
                                        Mean
                                                3rd Qu.
## -0.1931891 -0.0752495 0.0001668 0.0000000 0.0792104
summary(reg)$sigma
## [1] 0.09404319
summary(reg)$r.squared
## [1] 0.8917439
summary(reg)$adj.r.squared
```

[1] 0.8898447

PREDICCIÓN LINEAL DEL NIVEL DEL MAR

Predicción de la anomalía próximos años

```
## fit lwr upr
## 1 0.8997967 0.8422796 0.9573139
## 2 0.9994129 0.9334513 1.0653745
## 3 1.0990291 1.0244426 1.1736155
```

SUPUESTOS DE LA REGRESIÓN LINEAL SIMPLE

¿Cuales son los supuestos?
 Independencia.
 Linealidad entre variable independiente y dependiente.
 Homocedasticidad.
 Normalidad.

¿Por qué son importantes?
 Para validar el resultado obtenido.
 En caso de incumplimiento se pueden transformar datos o elaborar otros modelos (Regresión logística).

INDEPENDENCIA: MÉTODO GRÁFICO

 H_0 : Los residuos son independientes entre sí.

 H_A : Los residuos no son independientes entre sí (existe autocorrelación).

```
plot(reg$residuals)
abline(h=0, col="red")
```


LINEALIDAD: MÉTODO GRÁFICO

 $\mathbf{H_0}$: Hay relación lineal entre la variable regresora y la variable predictora.

 $\mathbf{H}_{\mathbf{A}}$: No hay relación lineal entre la variable regresora y la variable predictora.

HOMOGENEIDAD DE VARIANZAS: MÉTODO GRÁFICO

 H_0 : La varianza de los residuos es constante.

HA: La varianza de los residuos no es constante.

plot(reg, which=3)

NORMALIDAD: GRÁFICO DE CUANTILES

H₀: Los residuos tienen distribución normal.

H_A: Los residuos no tienen distribución normal.

qqPlot(reg) # library(car)

[1] 18 40

VALORES ATÍPICOS

Una observación se puede considerar influyente (valor atípico) si tiene un valor de distancia de Cook mayor a 1.

plot(reg, which=4)

PRÁCTICA ANÁLISIS DE DATOS

► Guía de trabajo práctico disponible en Rstudio.cloud.

RESUMEN DE LA CLASE

- Elaborar hipótesis para una regresión lineal.
- Realizar análisis de regresión lineal simple.
- Interpretar coeficientes y realizar predicciones.
- Evaluar supuestos de los análisis de regresión.