	Sep 7 - Dix 115
*	If $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ lin. indep. set from $[\vec{K}^4]$ then $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ also indep.
	if P then Q P Q not Q Contrapositive: if not Q
Cow	then not P tropos. of $\%$: if $\{V_1, V_2, V_3\}$ are dep., then $\{V_1^2, \dots, V_4^2\}$ are dep.
	$C_1\overline{V_1} + C_2\overline{V_2} + C_3\overline{V_3} = \overline{O}$ with $C_{1,1}C_{2,1}C_{3,1}$ not all zero.
	then $C_1 \overrightarrow{V_1} + C_2 \overrightarrow{V_2} + C_3 \overrightarrow{V_3} + O \overrightarrow{V_4} = \overrightarrow{O}$ $2 \times 3 \text{ metrix}$
	$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x}' = \vec{b}'$ $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x}' = \vec{b}'$ $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x}' = \vec{b}'$ $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x}' = \vec{b}'$ $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x}' = \vec{b}'$ $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x}' = \vec{b}'$ $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \vec{x}' = \vec{b}'$

	11 the following ove equivalent
	Theorem If A is Man matrix, TFAE
	a) For each 5° = [RM, [A to] is consistent.
	(Ax=10 has a solution)
	b) Each to = IRM is a live comb. of
	c) Span { ai,, ai, } = IRM the columns of A span than 1
	the columns of A span Tim
	d) pivot in every row.
_	not a) There is some to ell m with [A tr) inconsistent.
	not b) There is a to Eller which is not
	a lin. comb. of cols of A.
	not c) Span { a, , , an } = 12m
	Coubset but not equal to
	not equal to
	not d) there is not a parot in every row
	A
	A is mxn with a pinot in every row.
	n>mis necessory
	0. 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ex two vectors in 123. Do they
	Span (R)
	at most two
_	
_	No energy row.

a, ---, an line indep. if is trivial.

dep. if not indep.

lin. dep. rel. is the nontrivial soln.

 \mathbb{Z} $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right\}$

dep. since:
$$2\left[\frac{1}{2}\right] - 1\left[\frac{2}{4}\right] = \left[\frac{0}{0}\right]$$