

Этикетка

КСНЛ.431271.009 ЭТ

Микросхема интегральная 1564ЛЕ4ТЭП Функциональное назначение: три логических элемента «ЗИЛИ - НЕ»

Микросхема 1564ЛЕ4ТЭП

Схема расположения выводов Номера выводов показаны условно

Условное графическое обозначение

Таблица назначения выводов

No	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	A1	Вход	8	Y3	Выход
2	B1	Вход	9	A3	Вход
3	A2	Вход	10	В3	Вход
4	B2	Вход	11	C3	Вход
5	C2	Вход	12	Y1	Выход
6	Y2	Выход	13	C1	Вход
7	0V	Общий	14	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
типменовиние параметри, одиници измерении, режим измерении	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10
U_{CC} =4,5 B, U_{IL} = 0,9 B, U_{IH} =3,15 B, I_{O} = 20 MKA		-	0,10
U_{CC} =6,0 B, U_{IL} = 1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} = 20 mkA		4,4	-
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, I_{O}=20 \text{ MKA}$		5,9	-
при:			
$U_{CC}=4.5 \text{ B}, U_{IL}=0.9 \text{ B}, I_0=4.0 \text{ mA}$		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, I_0 = 5,2 mA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, \ U_{IL} = 0 \text{ B}, \ U_{IH} = U_{CC}$	${ m I}_{ m IL}$	-	/-0,1/

4. Входной ток высокого уровня, мкА, при:	_		
$U_{CC} = 6.0 \text{ B}, \ U_{IL} = 0 \text{ B}, \ U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	1,2
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 1.0 \text{ M}\Gamma_{II}, \tilde{U}_{IL} = 0 \text{ B}, U_{IH} = \tilde{U}_{CC}$	I _{OCC}	-	0,25
7. Время задержки распространения при	$t_{\mathrm{PHL},}$		
включении и выключении, нс, при:	$t_{\rm PLH}$		
$U_{CC} = 2,0 B, C_L = 50 п\Phi$		-	80
$U_{CC} = 4,5 B, C_L = 50 п\Phi$		-	17
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		i	14
8. Входная емкость, пФ при:	C_{I}	-	10
$U_{CC}=0$ B			

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

в том числе:

золото г/мм

на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-14 ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛЕ4ТЭП соответствуют техническим условиям АЕЯР.431200.424-14ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (да	та)
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведен	а» (дата)
Приняты по $\underline{\hspace{1cm}}$ (извещение, акт и др.)	(дата)
Место для штампа ОТК	Место для штампа ПЗ
Цена договорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.