Evaluasi Validitas

Pertemuan 3/4
(Chapter 10 – Schaum, Set Theory)

Ekspresi Logika

- Proposisi majemuk, merupakan kombinasi beberapa proposisi.
- Ekspresi logika pada proposisi majemuk sangat penting, sebab perbedaan ekspresi akan menghasilkan nilai kebenaran yang berbeda.
- Selain bentuk Wff maka satu hal yang penting lagi adalah pemberian tanda kurung (full parenthesized expression, fpe), untuk menghindari kesalahan interpretasi.

Ekspresi Logika

- Langkah-langkah untuk mengubah suatu pernyataan menjadi ekspresi logika:
 - 1. Ambil pernyataan yang pendek, tanpa kata-kata penghubung, dan yang bisa dijawab benar atau salah.
 - ubah pernyataan-pernyataan tersebut dengan variabel-variabel proposisi.
 - 3. Rangkai variabel proposisi tersebut dengan perangkai yang tepat.
 - 4. Bentuk menjadi proposisi majemuk dan berikan tanda kurung yang tepat.

Contoh

Jika Badu belajar rajin dan sehat, maka Badu lulus ujian, atau Jika Badu tidak belajar rajin dan tidak sehat, maka Badu tidak lulus ujian.

Contoh

A=Badu belajar rajin.

B=Badu sehat.

C=Badu lulus ujian.

Perangkai yang dibutuhkan negasi, implikasi, dan, atau.

Bentuk proposisi majemuk:

$$((A \land B) \rightarrow C) \lor ((\neg A \land \neg B) \rightarrow \neg C)$$

Penyederhanaan Proposisi Majemuk

Skema

- Semua ekspresi yang berisi indetifikatoridentifikator yang menunjukkan adanya suatu ekspresi logika disebut skema.
- Mengganti satu subekspresi dengan satu indentifikator.

Parsing

 Memisah-misahkan kalimat menjadi proposisiproposisi yang paling kecil, dalam bentuk parse tree.

Penyederhanaan Proposisi Majemuk

- Aturan Pengurutan
 - Digunakan untuk memastikan proses pengerjaan subekspresi dalam menentukan prioritas penafsiran.
 - Urutannya : negasi, konjungsi, disjungsi, implikasi, ekuivalensi.

Validitas

- Pengujian validitas dapat dilakukan menggunakan tabel kebenaran dan strategi pembalikan
- Pengujian validitas menghasilkan :
 - - Jika semua kemungkinan menghasilkan nilai benar.
 - Kontradiksi
 - Jika semua kemungkinan menghasikjan nilai salah
 - Kontigensi
 - Jika menghasilkan nilai benar dan salah.
- Dikatakan valid jika tabel kebenarannya menghasilkan tautologi.

Daftar Ekivalen Logis

 $A \wedge T \equiv A$

 $A \vee F \equiv A$

 $A \vee T \equiv T$

 $A \wedge F \equiv F$

 $A \lor \neg A \equiv T$

 $A \wedge \neg A \equiv F$

 $A \wedge A \equiv A$

 $A \lor A \equiv A$

 $\neg \neg A \equiv A$

Daftar Ekivalen Logis

$$(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$$

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

$$A \wedge (A \vee B) \equiv A$$

$$A \vee (A \wedge B) \equiv A$$

$$A \wedge (\neg A \vee B) \equiv A \wedge B$$

$$A \lor (\neg A \land B) \equiv A \lor B$$

Daftar Ekivalen Logis

$$A \rightarrow B \equiv \neg A \lor B$$

$$A \rightarrow B \equiv \neg (A \land \neg B)$$

$$A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$$

$$A \Leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$$

$$(A \land B) \lor (A \land \neg B) \equiv A$$

$$(A \lor B) \land (A \lor \neg B) \equiv A$$

$$(A \wedge B) \vee (\neg A \wedge B) \equiv B$$

$$(A \land B) \lor (\neg A \land B) \equiv B$$

 $(A \lor B) \land (\neg A \lor B) \equiv B$

Contoh

Tentukan bentuk ekivalen dari ekspresi logika berikut :

```
(A \lor B) \land \neg A \land \neg B

\equiv \neg A \land (A \lor B) \land \neg B

\equiv (\neg A \land (A \lor B)) \land \neg B

\equiv (\neg A \land B) \land \neg B

\equiv \neg A \land (B \land \neg B)

\equiv \neg A \land F

\equiv F (kontradiksi)
```

Latihan

 Buktikan dua ekspresi logika berikut ekivalen dengan penyederhanaan

$$(A \land B) \lor (B \land C) \equiv B \land (A \lor C)$$

 $\neg (\neg (A \land B) \lor A) \equiv 1$
 $\neg (\neg A \lor \neg (C \lor D)) \equiv (A \land C) \lor (A \land D)$
 $A \land (\neg A \lor B) \equiv A \land B$
 $\neg (\neg A \land \neg B) \equiv A \lor B$