PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 9/96 // C11D 3/386, A61K 47/48

(11) International Publication Number:

WO 00/22103

 $\mathbf{A1}$

(43) International Publication Date:

20 April 2000 (20.04.00)

(21) International Application Number:

PCT/DK99/00542

(22) International Filing Date:

12 October 1999 (12.10.99)

(30) Priority Data:

PA 1998 01301 PA 1999 01418 13 October 1998 (13.10.98) DK 4 October 1999 (04.10.99)

DK

(71) Applicant: NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(72) Inventors: OLSEN, Arne, Agerlin; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). VON DER OSTEN, Claus; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). ANDERSEN, Kim, Vilbour; Tåsingegade 31, 4.th, DK-2100 Copenhagen Ø (DK). ERNST, Steffen; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). ROGGEN, Erwin, Ludo; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: A MODIFIED POLYPEPTIDE WITH REDUCED IMMUNE RESPONSE

(57) Abstract

The present invention relates to polypeptides with reduced immune response including reduced allergenicity having one or more amino acid residues being substituted with other amino acid residues and/or having coupled one or more polymeric molecules in the vicinity of the polypeptides metal binding site, a method for preparing modified polypeptides of the invention, the use of said polypeptide for reducing the immunogenicity and allergenicity and compositions comprising said polypeptide.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
\mathbf{BY}	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
$\mathbf{E}\mathbf{E}$	Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		

Title: A MODIFIED POLYPEPTIDE WITH REDUCED IMMUNE RESPONSE

FIELD OF THE INVENTION

The present invention relates to polypeptides having substituted one or more amino acid residues to said polypeptide and/or having coupled polymeric molecules on the surface of the 3-dimensional structure of the polypeptide, a method for preparing modified polypeptides of the invention, the use of said modified polypeptides for reducing the immunogenicity and allergenicity, and compositions comprising said polypeptide.

BACKGROUND OF THE INVENTION

system of the body.

The use of polypeptides, including enzymes, in the circulatory system to obtain a particular physiological effect is well-known in the medical arts. Further, within the arts of industrial applications, such as laundry washing, textile bleaching, personal care, contact lens cleaning, and food and feed preparation enzymes are used as a functional ingredient.

20 One of the important differences between pharmaceutical and industrial application is that for the latter type of applications (i.e. industrial applications) the polypeptides (often enzymes) are not intended to enter into the circulatory

Stability and may under certain circumstances - dependent on the way of challenge - cause an immune response, typically an IgG and/or IgE response.

It is today generally recognized that the stability of polypeptides is improved and the immune response is reduced when polypeptides, such as enzymes, are coupled to polymeric molecules. It is believed that the reduced immune response is a result of the shielding of (the) epitope(s) on the surface of the polypeptide responsible for the immune response leading to antibody formation by the coupled polymeric molecules.

Techniques for conjugating polymeric molecules to polypeptides are well-known in the art.

One of the first suitable commercially techniques was described back in the early 1970'ies and disclosed in e.g. US patent no. 4,179,337. Said patent concerns non-immunogenic polypeptides, such as enzymes and peptide hormones coupled to polyethylene glycol (PEG) or polypropylene glycol (PPG). At least 15% of the polypeptides' physiological activity is maintained.

GB patent no. 1,183,257 (Crook et al.) describes chemistry for conjugation of enzymes to polysaccharides via a triazine 10 ring.

Further, techniques for maintaining of the enzymatic activity of enzyme-polymer conjugates are also known in the art.

WO 93/15189 (Veronese et al.) concerns a method for maintaining the activity in polyethylene glycol-modified proteolytic enzymes by linking the proteolytic enzyme to a macromolecularized inhibitor. The conjugates are intended for medical applications.

It has been found that the attachment of polymeric molecules to a polypeptide often has the effect of reducing the activity of the polypeptide by interfering with the interaction between the polypeptide and its substrate. EP 183 503 (Beecham Group PLC) discloses a development of the above concept by providing conjugates comprising pharmaceutically useful proteins linked to at least one water-soluble polymer by means of a reversible linking group.

EP 471,125 (Kanebo) discloses skin care products comprising a parent protease (*Bacillus* protease with the trade name Esperase®) coupled to polysaccharides through a triazine ring to improve the thermal and preservation stability. The coupling technique used is also described in the above mentioned GB patent no. 1,183,257 (Crook et al.).

JP 3083908 describes a skin cosmetic material which contains a transglutaminase from guinea pig liver modified with one or more water-soluble substance such as PEG, starch, cellulose etc. The modification is performed by activating the polymeric molecules and coupling them to the enzyme. The composition is stated to be mild to the skin.

WO 98/35026 (Novo Nordisk A/S) describes polypeptide-

3

polymer conjugates having added and/or removed one or more attachment groups for coupling polymeric molecules on the surface of the polypeptide structure. The conjugates have reduced immunogenicity and allergenicity.

5

SUMMARY OF THE INVENTION

It is the object of the present invention to provide improved polypeptides suitable for industrial and pharmaceutical applications.

The term "improved polypeptides" means in the context of the present invention polypeptides having a reduced immune response in humans and animals. As will be described further below the immune response is dependent on the way of challenge.

The present inventors have found that polypeptides, such as enzymes, may be made less immunogenic and/or allergenic by substituting one or more amino acid residues on the surface of the polypeptide with other amino acid residues and/or by coupling polymeric molecules on the surface of the enzyme in the vicinity of a bound ligand of the enzyme e.g. a metal ion substantially without affecting the enzymatic activity.

When introducing pharmaceutical polypeptide directly into the circulatory system (i.e. bloodstream) the potential risk is an immunogenic response in the form of mainly IgG, IgA and/or IgM antibodies. In contrast hereto, industrial polypeptides, such as enzymes used as a functional ingredient in e.g. detergents, are not intended to enter the circulatory system. The potential risk in connection with industrial polypeptides is inhalation causing an allergenic response in the form of mainly IgE antibody formation.

Therefore, in connection with industrial polypeptides the potential risk is respiratory allergenicity caused by inhalation, intratracheal and intranasal presentation of polypeptides.

The main potential risk of pharmaceutical polypeptides is immunogenicity caused by intradermal, intravenous or subcutaneous presentation of the polypeptide.

The term "immunogenicity" used in connection with the present invention may be referred to as allergic contact

dermatitis in a clinical setting and is a cell mediated delayed immune response to chemicals that contact and penetrate the skin. This cell mediated reaction is also termed delayed contact hypersensitivity (type IV reaction according to Gell and Combs classification of immune mechanisms in tissue damage).

The term "allergenicity" or "respiratory allergenicity" is initially an immediate anaphylactic reaction (type I antibody-mediated reaction according to Gell and Combs) following inhalation of e.g. polypeptides.

According to the present invention it is possible to provide polypeptides with a reduced immune response, which has a substantially retained residual activity.

The allergic and the immunogenic response are in one term, at least in the context of the present invention called the "immune response".

In the first aspect the invention relates to a polypeptide with reduced immune response, having one or more amino acid residues modified, wherein the C^{α} -atoms of said amino acid residues are located less than 15 Å from the ligand bound to said polypeptide.

The reduced immune response is preferably reduced allergenicity.

The modification of the polypeptide is conducted by substituting one or more amino acid residues in the parent polypeptide with other amino acid residues to said polypeptide, and/or by selecting variants from a diverse library of variants of the parent polypeptide and/or by coupling a polymeric molecule to the surface of the parent polypeptide.

The term "parent polypeptide" refers to the polypeptide to
30 be modified by coupling to polymeric molecules or by
substituting amino acid residues. The parent polypeptide may be
a naturally-occurring (or wild-type) polypeptide or may be a
variant thereof prepared by any suitable means. For instance,
the parent polypeptide may be a variant of a naturally-occurring
35 polypeptide which has been modified by substitution, deletion or
truncation of one or more amino acid residues or by addition or
insertion of one or more amino acid residues to the amino acid
sequence of a naturally-occurring polypeptide.

A "suitable attachment group" means in the context of the present invention any amino acid residue group on the surface of the polypeptide capable of coupling to the polymeric molecule in question.

Preferred attachment groups are amino groups of Lysine residues and the N-terminal amino group. Polymeric molecules may also be coupled to the carboxylic acid groups (-COOH) of amino acid residues in the polypeptide chain located on the surface. Carboxylic acid attachment groups may be the carboxylic acid group of Aspartate or Glutamate and the C-terminal COOH-group. Another attachment group is SH-groups in Cysteine.

An "active site" means any amino acid residues and/or molecules which are known to be essential for the performance of the polypeptide, such as catalytic activity, e.g. the catalytic triad residues, Histidine, Aspartate and Serine in Serine proteases, or e.g. the heme group and the distal and proximal Histidines in a peroxidase such as the Arthromyces ramosus peroxidase.

A "ligand", means in the context of the present invention a metal or metal ion or a cofactor.

In the context of the present invention "modification of amino acid residues" means that amino acid residues are substituted with other amino acid residues and/or a polymeric molecule is coupled to the amino acid residue. The polypeptide of the present invention may according to the invention be modified by substitution alone, by coupling of a polymeric molecule alone or by a combination of substitution and coupling.

In the context of the present invention "located" means the shortest distance from any atom in the ligand to the relevant C- atom in the amino acid residue.

Furthermore, in the context of the present invention e.g. "R250K" means that the amino acid Arginine in position 250 of the polypeptide has been substituted with the amino acid Lysine according to the one-letter-code of amino acids.

In the second aspect the invention relates to a method for preparing polypeptides with reduced immune response comprising the steps of:

a) identifying amino acid residues located on the surface of the

6

3-dimensional structure of the parent polypeptide in question,

- b) selecting target amino acid residues on the surface of said
 3-dimensional structure of said parent polypeptide to be
 modified,
- 5 c) substituting one or more amino acid residues selected in step
 - b) with other amino acid residue, and/or
 - d) coupling polymeric molecules to the amino acid residues in step b) and/or step c).

The invention also relates to the use of a modified polypeptide of the invention and the method of the invention for reducing the immunogenicity of pharmaceuticals and reducing the allergenicity of industrial products.

Finally the invention relates to compositions comprising a modified polypeptide of the invention and further ingredients used in industrial products or pharmaceuticals.

BRIEF DESCRIPTION OG THE DRAWINGS

Figure 1 shows integrated IgE antibudy levels in rats. Figure 2 shows integrated specific IgE levels in mice.

20

DETAILED DESCRIPTION OF THE INVENTION

It is the object of the present invention to provide improved polypeptides suitable for industrial and pharmaceutical applications.

Even though polypeptides used for pharmaceutical applications and industrial application can be quite different the principle of the present invention may be tailored to the specific type of parent polypeptide (i.e. enzyme, hormone peptides etc.).

The present inventors have found that polypeptides, such as enzymes, may be made less immunogenic and/or less allergenic by substituting amino acid residues in the vicinity of the ligand e.g. metal ion at the metal ion binding site and/or by coupling one or more polymeric molecules on the surface of the parent polypeptide. In addition thereto the inventors have found that a high percentage of maintained residual catalytic activity may be maintained in these modified polypeptides.

In the first aspect the invention relates to an improved polypeptide having one or more amino acid residues modified,

wherein the C^{α} -atom of said amino acid residues is located less than 15 Å from the ligand bound to said polypeptide.

The substitution of amino acid residues and coupling of polymeric molecule may be carried out in a conventional manner sas described below.

Reduced immune response vs. maintained residual enzymatic activity

For enzymes, there is a conflict between reducing the immune 10 response and maintaining a substantial residual enzymatic activity.

Without being limited to any theory it is believed that the loss of enzymatic activity of enzyme-polymer conjugates might be a consequence of impeded access of the substrate to the active site in the form of spatial hindrance of the substrate by especially bulky and/or heavy polymeric molecules to the catalytic cleft. It might also, at least partly, be caused by disadvantageous minor structural changes of the 3-dimensional structure of the enzyme due to the stress made by the coupling of the polymeric molecules.

Also, polypeptides modified by substituting one or more amino acid residues may have reduced enzymatic activity.

Maintained residual activity

A modified polypeptide of the invention has a substantially maintained catalytic activity.

A "substantially" maintained catalytic activity is in the context of the present invention defined as an activity which is above 20%, at least between 20% and 30%, preferably between 30% and 40%, more preferably between 40% and 60%, better from 60% up to 80%, even better from 80% up to about 100%, in comparison to the activity of the modified polypeptide prepared on the basis of corresponding parent polypeptides.

In the case of polypeptide-polymer conjugates of the invention where no polymeric molecules are coupled at or close to the active site(s) the residual activity may even be up to 100% or very close thereto. If attachment group(s) of the parent polypeptide is(are) removed from the active site the activity

might even be more than 100% in comparison to modified (i.e. polymer coupled) parent polypeptide conjugate.

The attachment group

Virtually all ionized groups, such as the amino groups of Lysine residues, are located on the surface of the polypeptide molecule (see for instance Thomas E. Creighton, (1993), "Proteins", W.H. Freeman and Company, New York).

Therefore, the number of readily accessible attachment groups (e.g. amino groups) on a modified or parent polypeptide equals generally the number of Lysine residues in the primary structure of the polypeptide plus the N-terminus amino group.

The chemistry of coupling polymeric molecules to amino groups is quite simple and well established in the art.

Therefore, it is preferred to add Lysine residues (i.e. attachment groups) to the parent polypeptide in question to obtain improved conjugates with reduced immunogenicity and/or allergenicity and/or improved stability and/or high percentage maintained catalytic activity.

Polymeric molecules may also be coupled to the carboxylic groups (-COOH) of amino acid residues on the surface of the polypeptide. Therefore, if using carboxylic groups (including the C-terminal group) as attachment groups addition and/or removal of Aspartate and Glutamate residues may also be a suitable according to the invention.

If using other attachment groups, such as -SH groups, they may be added and/or removed analogously.

Substitution of the amino acid residues is preferred over insertion, as the impact on the 3-dimensional structure of the polypeptide normally will be less pronounced.

The parent polypeptide

In the context of the present invention, the term polypeptides" includes proteins, peptides and/or enzymes for pharmaceutical or industrial applications. Typically the polypeptides in question have a molecular weight in the range between about 1 to 1000 kDa, preferred 4 to 100 kDa, more

9

preferred 12 to 60 kDa.

Pharmaceutical polypeptides

The term "pharmaceutical polypeptides" is defined as polypeptides, including peptides, such as peptide hormones, proteins and/or enzymes, being physiologically active when introduced into the circulatory system of the body of humans and/or animals.

Pharmaceutical polypeptides are potentially immunogenic as they are introduced into the circulatory system.

Examples of "pharmaceutical polypeptides" contemplated according to the invention include insulin, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erythropoietin, luteinizing hormone, chorionic gonadotropin, hypothalmic releasing factors, antidiuretic hormones, thyroid stimulating hormone, relaxin, interferon, thrombopoietin (TPO) and prolactin.

Industrial polypeptides

Polypeptides used for industrial applications often have an enzymatic activity. Industrial polypeptides (e.g. enzymes) are (in contrast to pharmaceutical polypeptides) not intended to be introduced into the circulatory system of the body.

It is not very like that industrial polypeptides, such as enzymes used as ingredients in industrial compositions and/or products, such as detergents and personal care products, including cosmetics, come into direct contact with the circulatory system of the body of humans or animals, as such enzymes (or products comprising such enzymes) are not injected (or the like) into the bloodstream.

Therefore, in the case of the industrial polypeptide the potential risk is respiratory allergy (i.e. IgE response) as a consequence of inhalation of polypeptides through the respiratory passage.

In the context of the present invention "industrial polypeptides" are defined as polypeptides, including peptides, proteins and/or enzymes, which are not intended to be administered to humans and/or animals.

Examples of such polypeptides are polypeptides, especially enzymes, used in products such as detergents, household article products, agrochemicals, personal care products, such as skin care products, including cosmetics and toiletries, oral and dermal pharmaceuticals, composition use for processing textiles, compositions for hard surface cleaning, and compositions used for manufacturing food and feed etc.

Enzymatic activity

Pharmaceutical or industrial polypeptides exhibiting enzymatic activity will often belong to one of the following groups of enzymes including Oxidoreductases (E.C. 1, "Enzyme Nomenclature, (1992), Academic Press, Inc.), such as laccase and Superoxide dismutase (SOD); Transferases, (E.C. 2), such as transglutaminases (TGases); Hydrolases (E.C. 3), including proteases, especially subtilisins, and lipolytic enzymes; Isomerases (E.C. 5), such as Protein disulfide Isomerases (PDI).

Hydrolases

20 Proteolytic enzymes

Contemplated proteolytic enzymes include proteases selected from the group of Aspartic proteases, such as pepsins, Cysteine proteases, such as Papain, Serine proteases, such as subtilisins, or metallo proteases, such as Neutrase[®].

Specific examples of parent proteases include PD498 (WO 93/24623 and SEQ ID NO. 2), Savinase® (von der Osten et al., (1993), Journal of Biotechnology, 28, p. 55+, SEQ ID NO 3), Proteinase K (Gunkel et al., (1989), Eur. J. Biochem, 179, p. 185-194), Proteinase R (Samal et al., (1990), Mol. Microbiol, 4, p. 1789-1792), Proteinase T (Samal et al., (1989), Gene, 85, p. 329-333), Subtilisin DY (Betzel et al. (1993), Arch. Biophys, 302, no. 2, p. 499-502), Lion Y (JP 04197182-A), Rennilase® (Available from Novo Nordisk A/S), JA16 (WO 92/17576), Alcalase® (a natural subtilisin Carlberg variant) (von der Osten et al., 1993), Journal of Biotechnology, 28, p. 55+), Subtilisin BPN´J. Mol. Biol. 178:389-413 (1984); Hirono S., Akagawa H., Mitsui Y., Iitaka Y. (Available from Novo Nordisk A/S).

11

Carbohydrases

Parent carbohydrases may be defined as all enzymes capable of hydrolyzing carbohydrate chains (e.g. starches) of especially 5 five and six member ring structures (i.e. enzymes classified under the Enzyme Classification number E.C. 3.2 (glycosidases) in accordance with the Recommendations (1992) of the International Union of Biochemistry and Molecular Biology (IUBMB)). Examples include carbohydrases selected from those classified under the Enzyme Classification (E.C.) numbers:

a-amylase (3.2.1.1) b-amylase (3.2.1.2), glucan 1,4-aglucosidase (3.2.1.3), cellulase (3.2.1.4), endo-1,3(4)-bglucanase (3.2.1.6), endo-1,4-b-xylanase (3.2.1.8), dextranase
(3.2.1.11), chitinase (3.2.1.14), polygalacturonase (3.2.1.15),
lysozyme (3.2.1.17), b-glucosidase (3.2.1.21), a-galactosidase
(3.2.1.22), b-galactosidase (3.2.1.23), amylo-1,6-glucosidase
(3.2.1.33), xylan 1,4-b-xylosidase (3.2.1.37), glucan endo-1,3b-D-glucosidase (3.2.1.39), a-dextrin endo-1,6-glucosidase
(3.2.1.41), sucrose a-glucosidase (3.2.1.48), glucan endo-1,3-aglucosidase (3.2.1.59), glucan 1,4-b-glucosidase (3.2.1.74),
glucan endo-1,6-b-glucosidase (3.2.1.75), arabinan endo-1,5-aarabinosidase (3.2.1.99), lactase (3.2.1.108), chitonanase
(3.2.1.132).

25

Examples of relevant carbohydrases include a-1,3-glucanases derived from Trichoderma harzianum; a-1,6-glucanases derived from a strain of Paecilomyces; b-glucanases derived from Bacillus subtilis; b-glucanases derived from Humicola insolens; 30 b-glucanases derived from Aspergillus niger; b-glucanases derived from a strain of Trichoderma; b-qlucanases derived from a strain of Oerskovia xanthineolytica; exo-1,4-a-D-glucosidases (glucoamylases) derived from Aspergillus niger; a-amylases derived from Bacillus subtilis; a-amylases derived from Bacillus 35 amyloliquefaciens; a-amylases derived from Bacillus stearothermophilus; a-amylases derived from Aspergillus oryzae; derived from non-pathogenic microorganisms; a-amylases galactosidases derived from Aspergillus niger; Pentosanases,

12

xylanases, cellobiases, cellulases, hemi-cellulases deriver from
Humicola insolens; cellulases derived from Trichoderma reesei;
cellulases derived from non-pathogenic mold; pectinases,
cellulases, arabinases, hemi-celluloses derived from Aspergillus
niger; dextranases derived from Penicillium lilacinum; endoglucanase derived from non-pathogenic mold; pullulanases derived
from Bacillus acidopullyticus; b-galactosidases derived from
Kluyveromyces fragilis; xylanases derived from Trichoderma
reesei;

10

Specific examples of readily available commercial carbohydrases include Alpha-Galô, Bio-Feedô Alpha, Bio-Feedô Beta, Bio-Feedô Plus, Bio-Feedô Plus, Novozyme® 188, Carezyme®, Celluclast®, Cellusoft®, Ceremyl®, Citrozymô, Denimaxô, Dezymeô, Dextrozymeô, Einizym®, Fungamylô, Gamanaseô, Glucanex®, Lactozym®, Maltogenaseô, Pentopanô, Pectinexô, Promozyme®, Pulpzymeô, Novamylô, Termamyl®, AMG (Amyloglucosidase Novo), Maltogenase®, Aquazym®, Natalase® (all enzymes available from Novo Nordisk A/S). Other carbohydrases are available from other companies.

20

It is to be understood that also carbohydrase variants are contemplated as the parent enzyme.

The activity of carbohydrases can be determined as described in "Methods of Enzymatic Analysis", third edition, 1984, Verlag Chemie, Weinheim, vol. 4.

Oxidoreductases

30 Laccases

Contemplated laccases include *Polyporus pinisitus* laccase (WO 96/00290), Myceliophthora laccase (WO 95/33836), Schytalidium laccase (WO 95/338337), and *Pyricularia oryzae laccase* (Available from Sigma).

35

Peroxidase

Contemplated peroxidases include *B. pumilus* peroxidases (WO 91/05858), *Myxococcaceae* peroxidase (WO 95/11964), *Coprinus*

13

cinereus (WO 95/10602) and Arthromyces ramosus peroxidase (Kunishima et al. (1994), J. Mol. Biol. 235, p. 331-344).

Transferases

5 Transglutaminases

Suitable transferases include any transglutaminases disclosed in WO 96/06931 (Novo Nordisk A/S) and WO 96/22366 (Novo Nordisk A/S).

10 Isomerases

Protein Disulfide Isomerase

Without being limited thereto suitable protein disulfide isomerases include PDIs described in WO 95/01425 (Novo Nordisk A/S).

5 Contemplated isomerases include xylose/glucose Isomerase (5.3.1.5) including Sweetzyme®.

Lyases

Suitable lyases include Polysaccharide lyases: Pectate lyases 20 (4.2.2.2) and pectin lyases (4.2.2.10), such as those from Bacillus licheniformis disclosed in WO 99/27083.

The polymeric molecule

The polymeric molecules coupled to the polypeptide may be any suitable polymeric molecule, including natural and synthetic homo-polymers, such as polyols (i.e. poly-OH), polyamines (i.e. poly-NH₂) and polycarboxyl acids (i.e. poly-COOH), and further hetero-polymers i.e. polymers comprising one or more different coupling groups e.g. a hydroxyl group and amine groups.

Examples of suitable polymeric molecules include polymeric molecules selected from the group comprising polyalkylene oxides (PAO), such as polyalkylene glycols (PAG), including polyethylene glycols (PEG), methoxypolyethylene glycols (mPEG) and polypropylen glycols, PEG-glycidyl ethers (Epox-PEG), PEG-oxycarbonylimidazole (CDI-PEG), Branced PEGs, poly-vinyl alcohol (PVA), poly-carboxylates, poly-(vinylpyrolidone), poly-D,L-amino acids, polyethylene-co-maleic acid anhydride, polystyrene-co-

14

malic acid anhydrid, dextrans including carboxymethyl-dextrans, albumin, homologous celluloses, including heparin, carboxymethylcellulose, ethylcellulose, methylcellulose, carboxyethylcellulose hydroxyethylcellulose 5 hydroxypropylcellulose, hydrolysates of chitosan, starches such as hydroxyethyl-straches and hydroxy propyl-starches, glycogen, agaroses and derivates thereof, guar gum, pullulan, xanthan gum, carrageenin, pectin, alginic acid hydrolysates and bio-polymers.

Preferred polymeric molecules are non-toxic polymeric molecules such as (m)polyethylene glycol ((m)PEG) which further requires a relatively simple chemistry for its covalently coupling to attachment groups on the enzyme's surface.

Generally seen polyalkylene oxides (PAO), such as polyethylene oxides, such as PEG and especially mPEG, are the preferred polymeric molecules, as these polymeric molecules, in comparison to polysaccharides such as dextran, pullulan and the like, have few reactive groups capable of cross-linking.

Even though all of the above mentioned polymeric molecules may be used according to the invention the methoxypolyethylene glycols (mPEG) may advantageously be used. This arise from the fact that methoxyethylene glycols have only one reactive end capable of conjugating with the enzyme. Consequently, the risk of cross-linking is less pronounced. Further, it makes the product more homogeneous and the reaction of the polymeric molecules with the enzyme easier to control.

An example of a branched PEG conjugate is Branched PEG2-NHS-ester of Lysine (available from Shearwater).

30

Activation and coupling of polymers to polypeptides

If the polymeric molecules to be conjugated with the polypeptide in question are not active, they must be activated by the use of a suitable technique. It is also contemplated according to the invention to couple the polymeric molecules to the polypeptide through a linker. Suitable linkers are well-known to the skilled person.

Methods and chemistry for activation of polymeric molecules as well as for conjugation of polypeptides are intensively literature. Commonly used methods described in the insoluble polymers include activation activation of bromide, groups with cyanogen 5 functional biepoxides, epichlorohydrin, divinylsulfone, glutaraldehyde, carbodiimide, sulfonyl halides, trichlorotriazine etc. (see R.F. immobilisation. Fundamental and (1991), "Protein Taylor, S.S. Dekker, N.Y.; Wonq, applications", Marcel 10 "Chemistry of Protein Conjugation and Crosslinking", CRC Press, Boca Raton; G.T. Hermanson et al., (1993), "Immobilized Affinity Ligand Techniques", Academic Press, N.Y.). Some of the methods concern activation of insoluble polymers but are also applicable of soluble polymers e.g. periodate, activation 15 trichlorotriazine, sulfonylhalides, divinylsulfone, carbodiimide The functional groups being amino, hydroxyl, carboxyl, aldehyde or sulfydryl on the polymer and the chosen attachment group on the protein must be considered in choosing the activation and conjugation chemistry which normally consist 20 of i) activation of polymer, ii) conjugation, and iii) blocking of residual active groups.

In the following a number of suitable polymer activation methods will be described shortly. However, it is to be understood that also other methods may be used.

Coupling polymeric molecules to the free acid groups of polypeptides may be performed with the aid of diimide and for example amino-PEG or hydrazino-PEG (Pollak et al., (1976), J. Amr. Chem. Soc., 98, 289-291) or diazoacetate/amide (Wong et al., (1992), "Chemistry of Protein Conjugation and Crosslinking", CRC Press).

Coupling polymeric molecules to hydroxy groups are generally very difficult as it must be performed in water. Usually hydrolysis predominates over reaction with hydroxyl groups.

Coupling polymeric molecules to free sulfhydryl groups can be reached with special groups like maleimido or the orthopyridyl disulfide. Also vinylsulfone (US patent no. 5,414,135, (1995), Snow et al.) has a preference for sulfhydryl groups but is not as selective as the other mentioned.

Accessible Arginine residues in the polypeptide chain may be targeted by groups comprising two vicinal carbonyl groups.

Techniques involving coupling electrophilically activated PEGs to the amino groups of Lysines may also be useful. Many of the usual leaving groups for alcohols give rise to an amine linkage. For instance, alkyl sulfonates, such as tresylates (Nilsson et al., (1984), Methods in Enzymology vol. 104, Jacoby, W. B., Ed., Academic Press: Orlando, p. 56-66; Nilsson et al., (1987), Methods in Enzymology vol. 135; Mosbach, K., Ed.; Academic Press: Orlando, pp. 65-79; Scouten et al., (1987), Methods in Enzymology vol. 135, Mosbach, K., Ed., Academic Press: Orlando, 1987; pp 79-84; Crossland et al., (1971), J. Amr. Chem. Soc. 1971, 93, pp. 4217-4219), mesylates (Harris, (1985), supra; Harris et al., (1984), J. Polym. Sci. Polym. Chem. Ed. 22, pp 341-352), aryl sulfonates like tosylates, and para-nitrobenzene sulfonates can be used.

Organic sulfonyl chlorides, e.g. Tresyl chloride, effectively converts hydroxy groups in a number of polymers, e.g. PEG, into good leaving groups (sulfonates) that, when reacted with nucleophiles like amino groups in polypeptides allow stable linkages to be formed between polymer and polypeptide. In addition to high conjugation yields, the reaction conditions are in general mild (neutral or slightly alkaline pH, to avoid denaturation and little or no disruption of activity), and satisfy the non-destructive requirements to the polypeptide.

Tosylate is more reactive than the mesylate but also more unstable decomposing into PEG, dioxane, and sulfonic acid (Zalipsky, (1995), Bioconjugate Chem., 6, 150-165). Epoxides may also been used for creating amine bonds but are much less reactive than the above mentioned groups.

Converting PEG into a chloroformate with phosgene gives rise to carbamate linkages to Lysines. This theme can be played in many variants substituting the chlorine with N-hydroxy succinimide (US patent no. 5,122,614, (1992); Zalipsky et al., (1992), Biotechnol. Appl. Biochem., 15, p. 100-114; Monfardini et al., (1995), Bioconjugate Chem., 6, 62-69, with imidazole (Allen et al., (1991), Carbohydr. Res., 213, pp 309-319), with

para-nitrophenol, DMAP (EP 632 082 A1, (1993), Looze, Y.) etc. The derivatives are usually made by reacting the chloroformate with the desired leaving group. All these groups give rise to carbamate linkages to the peptide.

Furthermore, isocyanates and isothiocyanates may be employed yielding ureas and thioureas, respectively.

Amides may be obtained from PEG acids using the same leaving groups as mentioned above and cyclic imid thrones (US patent no. 5,349,001, (1994), Greenwald et al.). The reactivity of these compounds are very high but may make the hydrolysis to fast.

PEG succinate made from reaction with succinic anhydride can also be used. The hereby comprised ester group make the conjugate much more susceptible to hydrolysis (US patent no. 5,122,614, (1992), Zalipsky). This group may be activated with N-hydroxy succinimide.

Furthermore, a special linker can be introduced. The most commonly used is cyanuric chloride (Abuchowski et al., (1977), J. Biol. Chem., 252, 3578-3581; US patent no. 4,179,337, (1979), Davis et al.; Shafer et al., (1986), J. Polym. Sci. Polym. Chem. 20 Ed., 24, 375-378.

Coupling of PEG to an aromatic amine followed by diazotation yields a very reactive diazonium salt which in situ can be reacted with a peptide. An amide linkage may also be obtained by reacting an azlactone derivative of PEG (US patent no. 5,321,095, (1994), Greenwald, R. B.) thus introducing an additional amide linkage.

As some peptides do not comprise many Lysines it may be advantageous to attach more than one PEG to the same Lysine. This can be done e.g. by the use of 1,3-diamino-2-propanol.

PEGs may also be attached to the amino-groups of the enzyme with carbamate linkages (WO 95/11924, Greenwald et al.). Lysine residues may also be used as the backbone.

The coupling technique used in the examples is the N-succinimidyl carbonate conjugation technique descried in WO 35 90/13590 (Enzon).

Method for preparing improved polypeptides

It is also an object of the invention to provide a method for preparing improved polypeptides comprising the steps of:

- a) identifying amino acid residues located on the surface of the
 3-dimensional structure of the parent polypeptide in question,
- 5 b) selecting target amino acid residues on the surface of said 3-dimensional structure of said parent polypeptide to be modified,
 - c) substituting one or more amino acid residues selected in step
 - b) with other amino acid residue, and/or
- 10 d) coupling polymeric molecules to the amino acid residues in step b) and/or step c).

Step a) Identifying amino acid residues located on the surface of the parent polypeptide

15

3-dimensional structure

To perform the method of the invention a 3-dimensional structure of the parent polypeptide in question is required. This structure may for example be an X-ray structure, an NMR structure or a model-built structure. The Brookhaven Databank is a source of X-ray- and NMR-structures.

A model-built structure may be produced by the person skilled in the art if one or more 3-dimensional structure(s) exist(s) of homologous polypeptide(s) sharing at least 30% sequence identity with the polypeptide in question. Several software packages exist which may be employed to construct a model structure. One example is the Homology 95.0 package from MSI Inc.

Typical actions required for the construction of a model
structure are: alignment of homologous sequences for which 3dimensional structures exist, definition of Structurally
Conserved Regions (SCRs), assignment of coordinates to SCRs,
search for structural fragments/loops in structure databases to
replace Variable Regions, assignment of coordinates to these
regions, and structural refinement by energy minimization.
Regions containing large inserts (≥3 residues) relative to the
known 3-dimensional structures are known to be quite difficult

to model, and structural predictions must be considered with care.

Having obtained the 3-dimensional structure of the polypeptide in question, or a model of the structure based on 5 homology to known structures, this structure serves as an essential prerequisite for the fulfillment of the method described below.

Step b) Selection of target amino acid residues

Target amino acid residues to be modified are according to the invention selected from those amino acid residues, wherein the C^{α} -atom is located less than 15 Å from a ligand. In a preferred embodiment a possible C^{β} -atom should be closer to the ligand than the C^{α} -atom. In a more preferred embodiment the C^{α} -atom of the amino acid residue is located less than 10 Å from the ligand and said amino acid residues have an accessibility of at least 15%, preferably at least 20% and more preferably at least 30%.

20 Step c) Substitution

WO 00/22103

Conservative substitution

It is preferred to make conservative substitutions in the polypeptide when the polypeptide has to be conjugated, as conservative substitutions secure that the impact of the substitution on the polypeptide structure is limited.

In the case of providing additional amino groups this may be done by substitution of Arginine to Lysine, both residues being positively charged, but only the Lysine having a free amino group suitable as an attachment groups.

In the case of providing additional carboxylic acid groups the conservative substitution may for instance be an Asparagine to Aspartic acid or Glutamine to Glutamic acid substitution. These residues resemble each other in size and shape, except from the carboxylic groups being present on the acidic residues.

In the case of providing SH-groups the conservative substitution may be done by substitution of Threonine or Serine to Cysteine.

Which amino acids to substitute depends in principle on the coupling chemistry to be applied.

When no coupling is performed after substitution there is in general no limit on the selection of amino acids for substitution. However, preferred amino acids for substitutions are substitutions to polar residues e.g. K, R, D, E, H, Q, N, S, T, C. Also substitutions to residues with short side chains G and A are preferred.

Further, when no coupling is to be performed, the changes may be in the form of addition or deletion of at least one amino acid for which the C^{α} atom is located within 15Å from the bound ligand, preferably deleting an amino acid. Furthermore, the parent protein may be changed by substituting some amino acids and deleting/adding other.

Only substitutions which provide polypeptides with reduced immune response when evaluated in animal models are within the concept of the present invention.

The mutation(s) performed in step c) may be performed by standard techniques well known in the art, such as site-directed mutagenesis (see, e.g., Sambrook et al. (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, NY.

A general description of nucleotide substitution can be found in e.g. Ford et al., 1991, Protein Expression and Purification 2, p. 95-107.

In a preferred embodiment of the invention, more than one amino acid residue is substituted, added or deleted, these amino acids possibly being located close to different bound ligands. In that case, it may be difficult to assess a priori how well the functionality of the protein is maintained while antigenicity, immunogenicity and/or allergenicity is reduced. This can be achieved by establishing a library of diversified mutants each having one or more changed amino acids introduced and selecting those variants which show good retention of function and at the same time a good reduction in antigenicity. In the case of protease, this can be tested by assaying the

secreted variants for enzyme activity (as described below in the experimental section) and for antigen binding (e.g. by competitive ELISA using methods known in the art. (see e.g J. Clausen, Immunochemical Techniques For The Identification and 5 Estimation of Macromolecules, Elsevier, Amsterdam, 1988 pp.187-188). Specifically, the competivity ELISA can be performed with the wild-type protease coated on ELISA plates, and incubated with specific polyclonal anti-protease antiserum from rabbits in the presence of protease variant. The scope of these 10 embodiments of the invention is by no means limited to protease, which serves only to provide an example. diversified library can be established by a range of techniques known to the person skilled in the art (Reetz MT; Jaeger KE, in Biocatalysis - from Discovery to Application edited by Fessner Vol. 200, pp. 31-57 (1999); Stemmer, Nature, vol. 370, p.389-391, 1994; Zhao and Arnold, Proc. Natl. Acad. Sci., USA, vol. 94, pp. 7997-8000, 1997; or Yano et al., Proc. Natl. Acad. Sci., USA, vol. 95, pp 5511-5515, 1998). In a more preferable embodiment, substitutions are found by a method comprising the 20 following steps: 1) a range of substitutions, additions, and/or deletions are listed, 2) a library is designed which introduces a randomized subset of these changes in the amino acid sequence into the target gene, e.g. by random mutagenesis, 3) the library is expressed, and preferred variants are selected. In a 25 most preferred embodiment, this method is supplemented with additional rounds of screening and/or family shuffling of hits from the first round of screening (J.E. Ness, et al, Nature Biotechnology, vol. 17, pp. 893-896, 1999) and/or combination with other methods of reducing allergenicity by genetic means 30 (such as that disclosed in WO92/10755).

Generation of site directed mutations

Prior to mutagenesis the gene encoding the polypeptide of interest must be cloned in a suitable vector. Methods for generating mutations in specific sites is described below.

Once the polypeptide-encoding gene has been cloned, desirable sites for mutation identified, and the residue(s) to

22

substitute for the original one(s) have been decided, these mutations can be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligo-nucleotide synthesis. In a preferred method, Site-directed mutagenesis is carried out by SOE-PCR mutagenesis technique described by Kammann et al. (1989) Nucleic Acids Research 17(13), 5404, and by Sarkar G. and Sommer, S.S. (1990); Biotechniques 8, 404-407.

10

Step d) Coupling polymeric molecules to the optionally modified parent enzyme

Polypeptide-polymer conjugates of the invention may be prepared by any coupling method known in the art including the above mentioned techniques.

Preparation of enzyme variants

Enzyme variants to be conjugated may be constructed by any suitable method. A number of methods are well established in the art. For instance enzyme variants according to the 20 invention may be generated using the same materials and methods described in e.g. WO 89/06279 (Novo Nordisk A/S), EP 130,756 (Novo Nordisk A/S), EΡ (Genentech), EΡ 479,870 (Henkel), WO 87/04461 (Amgen), WO 87/05050 (Genex), EP application no. 87303761 (Genentech), EP 260,105 (Genencor), 25 88/06624 (Gist-Brocades NV), WO 88/07578 (Genentech), 88/08028 (Genex), WO 88/08033 (Amgen), WO 88/08164 (Genex), Thomas et al. (1985) Nature, 318 375-376; Thomas et al. (1987) J. Mol. Biol., 193, 803-813; Russel and Fersht (1987) Nature 328 496-500.

30

Coupling of polymeric molecules to the polypeptide in question See previous paragraphs

35 Immunogenicity and Allergenicity

"Immunogenicity" is a wider term than "antigenicity" and "allergenicity", and expresses the immune system's response to the presence of foreign substances. Said foreign substances are

called immunogens, antigens and allergens depending of the type of immune response the elicit.

An "immunogen" may be defined as a substance which, when introduced into circulatory system of animals and humans, is capable of stimulating an immunologic response resulting in formation of immunoglobulin.

The term "antigen" refers to substances which by themselves are capable of generating antibodies when recognized as a non-self molecule.

Further, an "allergen" may be defined as an antigen which may give rise to allergic sensitization or an allergic response by IgE antibodies (in humans, and molecules with comparable effects in animals).

15 Assessment of immunogencity

Assessment of the immunogenicity may be made by injecting animal subcutaneously to enter the immunogen into the circulation system and comparing the response with the response of the corresponding parent polypeptide.

The "circulatory system" of the body of humans and animals means, in the context of the present invention, the system which mainly consists of the heart and blood vessels. The heart delivers the necessary energy for maintaining blood circulation in the vascular system. The circulation system functions as the organism's transportation system, when the blood transports O2, nutritious matter, hormones, and other substances of importance for the cell regulation into the tissue. Further the blood removes CO2 from the tissue to the lungs and residual substances to e.g. the kidneys. Furthermore, the blood is of importance for the temperature regulation and the defence mechanisms of the body, which include the immune system.

A number of *in vivo* animal models exist for assessment of the immunogenic potential of polypeptides. Some of these models give a suitable basis for hazard assessment in man. Suitable models include a mice model.

This model seek to identify the immunogenic response in the form of the IgG response in Balb/C mice being injected subcutaneously with modified and unmodified polypeptides.

Also other animal models can be used for assessment of the immunogenic potential.

A polypeptide having "reduced immunogenicity" according to the invention indicates that the amount of produced antibodies, se.g. immunoglobulin in humans, and molecules with comparable effects in specific animals, which can lead to an immune response, is significantly decreased, when introduced into the circulatory system, in comparison to the corresponding parent polypeptide.

For Balb/C mice the IgG response gives a good indication of the immunigenic potential of polypeptides.

Assessment of allergenicity

Assessment of allergenicity may be made by inhalation tests, comparing the effect of intratracheally (into the trachea) administrated parent enzymes with the corresponding modified enzymes according to the invention.

A number of in vivo animal models exist for assessment of the allegenicity of enzymes. Some of these models give a suitable basis for hazard assessment in man. Suitable models include a guinea pig model and a mouse model. These models seek to identify respiratory allergens as a function of elicitation reactions induced in previously sensitised animals. According to these models the alleged allergens are introduced intratracheally into the animals.

A suitable strain of guinea pigs, the Dunkin Hartley strain, do not as humans, produce IgE antibodies in connection with the allergic response. However, they produce another type of antibody the IgG1A and IgG1B (see e.g. Prentø, ATLA, 19, p. 8-14, 1991), which are responsible for their allergenic response to inhaled polypeptides including enzymes. Therefore, when using the Dunkin Hartley animal model, the relative amount of IgG1A and IgG1B is a measure of the allergenicity level.

The Balb/C mice strain is suitable for intratracheal, intredermal or subcutaneous exposure. Balb/C mice produce IgE as the allergic response.

More details on assessing respiratory allergens in guinea pigs and mice is described by Kimber et al., (1996), Fundamental and

WO 00/22103

25

Applied Toxicology, 33, p. 1-10.

Other animals such as rats, rabbits etc. may also be used for comparable studies.

5 Composition

The invention relates to a composition comprising a modified polypeptide of the invention.

The composition may be a pharmaceutical or industrial composition.

The composition may further comprise other polypeptides, proteins or enzymes and/or ingredients normally used in e.g. detergents, including soap bars, household articles, agrochemicals, personal care products, including skin care compositions, cleaning compositions for e.g. contact lenses, oral and dermal pharmaceuticals, composition use for treating textiles, compositions used for manufacturing food, e.g. baking, and food/feed etc.

Use of the polypeptide

The invention also relates to the use of the method of the invention for reducing the immune response of polypeptides.

It is also an object of the invention to use the polypeptide-polymer conjugate or the polypeptide otherwise modified according to the invention to reduce the allergenicity of industrial products, such as detergents, such as laundry, disk wash and hard surface cleaning detergents, food or feed products, personal care products and textile products.

30 MATERIAL AND METHODS

Materials

Enzymes:

PD498: Protease of subtilisin type shown in WO 93/24623. The sequence of PD498 is shown in SEQ ID NO. 1 and 2.

Savinase®: The sequence is shown in SEQ ID NO 3 (Available from Novo Nordisk A/S)

Subtilisin BPN': The sequence can be found in the SWISS-PROT database. The sequence is also disclosed in:

26

GALLAGHER T., OLIVER J., BOTT R., BETZEL C., GILLILAND G.L.;
"Subtilisin BPN' at 1.6-A resolution: analysis for discrete disorder and comparison of crystal forms."; Acta Crystallogr. D 52:1125-1135(1996). The enzyme is available from Novo Nordisk 5 A/S.

Amylase AA560: The alkaline α -amylase may be derived from a strain of Bacillus sp. DSM 12649. The strain was deposited on 25th January 1999 by the inventors under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure at Deutshe Sammmlung von Microorganismen und Zellkulturen GmbH (DSMZ), Mascheroder Weg 1b, D-38124 Braunschweig DE.The sequence is shown in SEQ ID NO. 4.

15 Strains:

B. subtilis 309 and 147 are variants of Bacillus lentus, deposited with the NCIB and accorded the accession numbers NCIB 10309 and 10147, and described in US Patent No. 3,723,250 incorporated by reference herein.

E. coli MC 1000 (M.J. Casadaban and S.N. Cohen (1980); J. Mol. Biol. 138 179-207), was made r-,m+ by conventional methods and is also described in US Patent Application Serial No. 039,298.

25 Vectors:

pPD498: E. coli - B. subtilis shuttle vector (described in US patent No. 5,621,089 under section 6.2.1.6) containing the wild-type gene encoding for PD498 protease (SEQ ID NO. 2). The same vector is use for mutagenesis in E. coli as well as for expression in B. subtilis.

35 Materials, chemicals and solutions:

Horse Radish Peroxidase labeled anti-rat-Ig (Dako, DK, P162, # 031; dilution 1:1000).

27

Mouse anti-rat IgE (Serotec MCA193; dilution 1:200).

Rat anti-mouse IgE (Serotec MCA419; dilution 1:100).

Biotin-labeled mouse anti-rat IgG1 monoclonal antibody (Zymed 03-9140; dilution 1:1000)

5 Biotin-labeled rat anti-mouse IgG1 monoclonal antibody (Serotec MCA336B; dilution 1:1000)

Streptavidin-horse radish peroxidase (Kirkegård & Perry 14-30-00; dilution 1:1000).

CovaLink NH₂ plates (Nunc, Cat# 459439)

10 Cyanuric chloride (Aldrich)

Acetone (Merck)

Rat anti-Mouse IgG1, biotin (SeroTec, Cat# MCA336B)

Streptavidin, peroxidase (KPL)

Ortho-Phenylene-diamine (OPD) (Kem-en-Tec, Cat# 4260)

15 H_2O_2 , 30% (Merck)

Tween 20 (Merck)

Skim Milk powder (Difco)

H₂SO₄ (Merck)

20 Buffers and Solutions:

Carbonate buffer (0.1 M, pH 10 (1 liter)) Na_2CO_3 10.60 g

PBS (pH 7.2 (1 liter)) NaCl 8.00 g

KCl 0.20 q

 K_2HPO_4 1.04 g

 KH_2PO_4 0.32 g

Washing buffer PBS, 0.05% (v/v) Tween 20

Blocking buffer PBS, 2% (wt/v) Skim Milk powder

Dilution buffer PBS, 0.05% (v/v) Tween 20, 0.5% (wt/v) Skim Milk powder

30 Citrate buffer (0.1M, pH 5.0-5.2 (1 liter))NaCitrate 20.60 g

Citric acid 6.30 g

Sodium Borate, borax (Sigma)

3,3-Dimethyl glutaric acid (Sigma)

CaCl, (Sigma)

35 Tresyl chloride (2,2,2-triflouroethansulfonyl chloride) (Fluka)

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Fluka)

N-Hydroxy succinimide (Fluka art. 56480))

28

Phosgene (Fluka art. 79380)

Lactose (Merck 7656)

PMSF (phenyl methyl sulfonyl flouride) from Sigma

Succinyl-Alanine-Alanine-Proline-Phenylalanine-para-nitroanilide

5 (Suc-AAPF-pNP) Sigma no. S-7388, Mw 624.6 g/mole.

Activation of CovaLink plates:

- · Make a fresh stock solution of 10 mg cyanuric chloride per ml acetone.
- 10 · Just before use, dilute the cyanuric chloride stock solution into PBS, while stirring, to a final concentration of lmg/ml.
 - \cdot Add 100 ml of the dilution to each well of the CovaLink NH2 plates, and incubate for 5 minutes at room temperature.
 - · Wash 3 times with PBS.
- 15 · Dry the freshly prepared activated plates at 50°C for 30 minutes.
 - · Immediately seal each plate with sealing tape.
 - · Preactivated plates can be stored at room temperature for 3 weeks when kept in a plastic bag.

20

Test Animals:

Female Balb/C mice (about 20 grams) purchased from Bomholdtgaard, Ry, Denmark.

Female Brown-Norway rats, weighing on the average 180 g

25

Equipment:

XCEL II (Novex)

ELISA reader (UVmax, Molecular Devices)

HPLC (Waters)

30 PFLC (Pharmacia)

Superdex-75 column, Mono-Q, Mono S from Pharmacia, SW.

SLT: Fotometer from SLT LabInstruments

Size-exclusion chromatograph (Spherogel TSK-G2000 SW).

Size-exclusion chromatograph (Superdex 200, Pharmacia, SW)

35 Amicon Cell

Enzymes for DNA manipulations

Unless otherwise mentioned all enzymes for DNA manipulations, such as e.g. restriction endonucleases, ligases etc., are obtained from New England Biolabs. Inc.

5

Media:

BPX: Composition (per liter)

Potato starch 100g

Ground barley 50g

10 Soybean flour 20g

 $Na_2HPO_4 X 12 H_2O 9g$

Pluronic 0.1g

Sodium caseinate 10g

The starch in the medium is liquefied with α -amylase and the medium is sterilized by heating at 120°C for 45 minutes. After sterilization the pH of the medium is adjusted to 9 by addition of NaHCO $_3$ to 0.1 M.

20 Methods

General molecular biology methods:

Unless otherwise mentioned the DNA manipulations and transformations were performed using standard methods of molecular biology (Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, F. M. et al. (eds.) "Current protocols in Molecular Biology". John Wiley and Sons, 1995; Harwood, C. R., and Cutting, S. M. (eds.) "Molecular Biological Methods for Bacillus". John Wiley and Sons, 1990).

© Enzymes for DNA manipulations were used according to the specifications of the suppliers.

Fermentation of PD498 variants

Fermentation of PD498 variants in B. subtilis are performed at 30°C on a rotary shaking table (300 r.p.m.) in 500 ml baffled Erlenmeyer flasks containing 100 ml BPX medium for 5 days. In order to make an e.g. 2 liter broth 20 Erlenmeyer flasks are fermented simultaneously.

30

Purification of PD498 variants

Approximately 1.6 litres of PD498 variant fermentation broth are centrifuged at 5000 rpm for 35 minutes in 1 litre 5 beakers. The supernatants are adjusted to pH 7.0 using 10% acetic acid and filtered on Seitz Supra S100 filter plates. The filtrates are concentrated to approximately 400 ml using an Amicon CH2A UF unit equipped with an Amicon S1Y10 UF cartridge. The UF concentrate is centrifuged and filtered prior to absorption at room temperature on a Bacitracin affinity column at pH 7. The PD498 variant is eluted from the Bacitracin column at room temperature using 25% 2-propanol and 1 M sodium chloride in a buffer solution with 0.01 dime-thyl-glutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 7.

The fractions with protease activity from the Bacitracin purification step are combined and applied to a 750 ml Sephadex G25 column (5 cm diameter) equilibrated with a buffer containing 0.01 dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 6.0.

Fractions with proteolytic activity from the Sephadex G25 column are combined and applied to a 150 ml CM Sepharose CL 6B cat-ion exchange column (5 cm diameter) equilibrated with a buffer containing 0.01 M dimethylglutaric acid, 0.1 M boric acid, and 0.002 M calcium chloride adjusted to pH 6.0.

The protease is eluted using a linear gradient of 0-0.5 M sodium chloride in 1 litres of the same buffer.

Protease containing fractions from the CM Sepharose column are combined and filtered through a 2μ filter.

30

Determination of the molecule weight

Electrophoretic separation of proteins was performed by standard methods using 4-20% gradient SDS poly acrylamide gels (Novex). Proteins were detected by silver staining. The molecule weight was measured relative to the mobility of Mark-12® wide range molecule weight standards from Novex.

Protease activity

31

Analysis with Suc-Ala-Ala-Pro-Phe-pNa:

Proteases cleave the bond between the peptide and pnitroaniline to give a visible yellow colour absorbing at 405 nm.

Buffer: e.g. Britton and Robinson buffer pH 8.3
Substrate: 100 mg suc-AAPF-pNa is dissolved into 1 ml dimethyl sulfoxide (DMSO). 100 ml of this is diluted into 10 ml with Britton and Robinson buffer.

The substrate and protease solution is mixed and the absorbance is monitored at 405 nm as a function of time and $ABS_{405\ nm}/min$. The temperature should be controlled (20-50°C depending on protease). This is a measure of the protease activity in the sample.

15 Proteolytic Activity

In the context of this invention proteolytic activity is expressed in Kilo NOVO Protease Units (KNPU). The activity is determined relatively to an enzyme standard (SAVINASE_), and the determination is based on the digestion of a dimethyl casein (DMC) solution by the proteolytic enzyme at standard conditions, i.e. 50°C, pH 8.3, 9 min. reaction time, 3 min. measuring time. A folder AF 220/1 is available upon request to Novo Nordisk A/S, Denmark, which folder is hereby included by reference.

A GU is a Glycine Unit, defined as the proteolytic enzyme activity which, under standard conditions, during a 15-minutes' incubation at 40°C, with N-acetyl casein as substrate, produces an amount of $\rm NH_2$ -group equivalent to 1 mmole of glycine.

Enzyme activity can also be measured using the PNA assay, according to reaction with the soluble substrate succinylalanine-alanine-proline-phenylalanine-para-nitrophenol, which is described in the Journal of American Oil Chemists Society, Rothgeb, T.M., Goodlander, B.D., Garrison, P.H., and Smith, L.A., (1988).

35

ELISA IqE test system (for Brown Norway rats):

A three layer sandwich ELISA is used to determine relative concentrations of specific antibodies.

The immunizing molecule is used as coating antigen with 10 mg per ml and 50 ml per well, in neutral phosphate buffer, incubated overnight at 4°C. All remaining binding spots on the well surface are blocked in 2 % skim milk, 200 ml per well in 5 phosphate buffer for at least 30 minutes at room temperature (RT). All seras to be tested with this antigen are added at 50 ml per well to this plate using a 8-channel pipette in dilution series from 10 x diluted followed by 3-fold dilutions. Dilutions are made in phosphate buffer with 0.5 % skim milk and 0.05% 10 Tween20, incubated 2 hours on agitation platform at RT. "tracer" molecule is biotinylated Mouse anti Rat IgE 50 ml per well and diluted 2000 x in phosphate buffer with 0.5 % skim milk and 0.05% Tween 20, incubated 2 hours on an agitation platform at RT. Control (blank) was identical sequence but without rat 15 sera. 50 ml per well streptavidin horse raddish peroxidase, diluted 2000 x was incubated 1 hour on an agitation platform. Colouring substrate at 50 ml per well is OPD (6 mg) and H,O, (4 ml of a 30% solution) per 10 ml citrate buffer pH 5.2. The reaction is stopped using 100 ml per well 2 N H₂SO₄. All 20 readings on SLT at 486 nm and 620 nm as reference. Data is calculated and presented in Lotus.

ELISA procedure to determine relative concentrations of IgE antibodies in BALB/C mice

- A three layer sandwich ELISA is used to determine relative concentrations of specific IgE serum antibodies.
 - 1) Coat the ELISA-plate with 10 mg rat anti-mouse IgE or mouse anti-rat IgE/ml buffer 1.
 - 50 ml/well. Incubate over night at 4°C.
- 30 2) Empty the plates and block with Blocking buffer at least ½ hour at room temperature.
 - 200 ml/well. Shake gently. Wash the plates 3 times with Washing Buffer.
- 3) Incubate with mouse/rat sera, starting from undiluted and
 continue with 2-fold dilutions. Keep
 some wells free for buffer 4 only (blanks). 50 ml/well.
 Incubate for 30 minutes at room temperature. Shake gently. Wash
 the plates 3 times in Washing Buffer.

4) Dilute the enzyme in Dilution buffer to the appropriate protein concentration. 50ml/well.

Incubate for 30 minutes at room temperature. Shake gently. Wash the plates 3 times in Washing Buffer.

- 5 5) Dilute specific polyclonal anti-enzyme antiserum serum (pIg) for detecting bound antibody in Dilution buffer. 50ml/well. Incubate for 30 minutes at room temperature. Shake gently. Wash the plates 3 times in Washing Buffer.
 - 6) Dilute Horseradish Peroxidase-conjugated anti-pIg-antibody in Dilution buffer. 50 ml/well.

Incubate at room temperature for 30 minutes. Shake gently. Wash the plates 3 times in Washing Buffer.

- 7) Mix 0.6 mg ODP/ml + 0.4 μ l H_2O_2/m l in substrate Buffer. Make the solution just before use. Incubate for 10 minutes. 50 μ l/well.
 - 8) To stop the reaction: add Stop Solution. 50 μ l/well.
 - 9) Read the plates at 492 nm with 620 nm as reference. Data is calculated and presented in Lotus.

20

EXAMPLES

Example 1

25

Subtilisin BPN'

In order to identify the residues to be modified, a distance and a directional criteria are applied.

As disclosed earlier residues having their C^{α} -atom closer than 15 Å to a ligand are targets for modification. Preferably, residues having their C^{β} -atom closer to the ligand bound than the C^{α} -atom, thereby allowing a potential side chain to point in the direction of the ligand, are targets for modification.

The relevant distance can easily be measured using e.g. molecular graphics programs like InsightII from Molecular Simulations INC.

Especially surface exposed residues, defined as having

ACC>0 when applying the DSSP program to the relevant protein part of the structure, are targets for modification. The DSSP program is disclosed in W. Kabsch and C. Sander, BIOPOLYMERS 22 (1983) pp. 2577-2637.

In Thomas E. Creighton, PROTEINS; Structure and Molecular Priciples, WH Freeman and Company, NY, ISBN: 0-7167-1566-X (1984) is disclosed a table listing the accessible surface areas of individual amino acid residues. In the table below 15% and 20% accessibility has been determined.

1	0

20

	Total	20% of	15% of
	ACC	Total	Total
AA	AxA	ÅxÅ	ÅxÅ
Ala	115	23,0	17,3
Arg	225	45,0	33,8
Asn	160	32,0	24,0
Asp	150	30,0	22,5
Cys	135	27,0	20,3
Gln	180	36,0	27,0
Glu	190	38,0	28,5
Gly	75	15,0	11,3
His	195	39,0	29,3
Ile	175	35,0	26,3
Leu	170	34,0	25,5
Lys	200	40,0	30,0
Met	185	37,0	27,8
Phe	210	42,0	31,5
Pro	145	29,0	21,8
Ser	115	23,0	17,3
Thr	140	28,0	21,0
Trp	255	51,0	38,3
Tyr	230	46,0	34,5
Val	155	31,0	23,3

When dividing the found accessible surface area (ACC) for each amino acid of the protein with the accessible surface area for that individual amino acid (found in the Creighton table)

15 the accessibility value in percent is obtained.

In order to find residues to modify, the method described above was applied to the X-ray structure of Subtilisin BPN' in complex with the inhibitor CI-2 (entry 2SNI in the Brookhaven Protein Data Bank).

Only the Subtilisin BPN' and the two metal ions in the

structure was used for the analysis. Both ions are calcium ions. They are found in site 1 and site 2.

The results of the analysis are seen in the tables below. The columns shows the distance in Å from the metal ion to the 5 C^α and C^β as well as the accessibility as determined by DSSP for each residue to modify.

Site 1:

DICC I.							
resid	res.no	$dist(C^{\alpha})$	$dist(C^{\beta})$	ACC	ACC		
				(ÅxÅ)	(%)		
GLY	80	4.40		14	18.67		
ASN	77	4.68	4.57	62	38.75		
ASP	41	5.14	4.36	0			
GLN	2	5.46	4.64	47	26.11		
ALA	74	5.57	5.12	0			
GLY	83	7.80		0			
PRO	86	8.44	7.42	8			
GLY	70	9.04		1			
THR	208	9.38	8.66	0			
HIS	39	10.41	9.97	3			
PRO	5	10.46	10.17	18	12.41		
LYS	43	10.62	10.53	137	68.50		
TYR	214	10.68	9.62	75	32.61		
GLN	206	11.79	11.27	88	48.89		
VAL	8	12.42	10.89	2			
THR	22	13.14	12.12	22	15.71		
GLY	215	13.52		14	18.67		
PRO	14	13.53	13.29	45	31.03		
HIS	17	13.64	12.25	28	14.36		
THR	66	13.80	13.76	0			
SER	9	14.40	14.22	58	50.43		
ALA	13	14.66	13.53	0			
GLY	7	14.74		0			
LEU	90	14.79	13.38	1			
ASP	36	14.87	14.57	20	13.33		
GLY	211	14.88		45	60.00		

Site 2:

Site 2:						
resid	resno	$dist(C^{\alpha})$	$dist(C^{\beta})$	ACC	ACC	
				(ÅxÅ)	(%)	
GLU	195	4.44	4.28	48	25.26	
ALA	176	4.67	3.85	0		
GLY	169	5.16		0		
ASP	197	5.90	5.14	21	14.00	
VAL	165	8.35	6.96	6		
ALA	151	8.54	8.04	0		
GLY	166	9.43		14	18.67	
GLY	193	9.46		0		
GLY	264	9.63		7		
VAL	149	9.85	9.50	3		
GLY	178	10.74		0		
VAL	139	10.95	9.63	0		
GLY	154	11.31		17	22.67	
SER	163	11.34	10.12	29	25.22	
ARG	247	11.35	10.32	47	20.89	
LYS	265	11.66	11.35	76	38.00	
GLN	251	11.74	10.57	26	14.44	
SER	191	11.83	11.04	0		
SER	224	12.34	12.02	0		
VAL	143	12.36	10.91	41	26.45	
MET	124	12.43	11.71	0		
GLY	127	12.44		61	81.33	
SER	260	12.47	12.12	72	62.61	
GLY	131	12.69		29	38.67	
VAL	227	13.37	11.90	0		
THR	220	13.55	12.34	3		
LEU	250	13.58	12.73	3		
LEU	135	13.60	13.21	6		
GLY	266	13.93		0		
GLY	128	14.04		16	21.33	
SER	190	14.12	14.09	0		
ALA	142	14.13	13.36	0		

ILE	122	14.17	13.65	0	
ALA	223	14.44	13.70	0	
ASN	243	14.50	13.94	21	13.13
ALA	200	14.63	14.15	0	

The table below shows functional preferred substitutions in site 1 and 2 of the BPN'. For Gly 80 the substitution G to S/T G to N/Q and G to K/D means that Glycine in position 80 may 5 preferably be substituted with Serine/Threonine or Asparagine/Glutamine or Lysine/Aspartic acid.

SITE1		Subtilisin BPN'	-
G ly-80	G to S/T	G to N/Q	G to K/D
Asn-77	N to D/E	N to K/R	N to A/C
G In-2	Q to D/E	Q to K/R	Q to A/C
Pro-5	P to G/A	P to C/S	P to K/D
Lys-43	K to S/T/C	K to D/E/R	K to Q/N
Tyr-214	Y to N/Q	Y to A/G/C	Y to K/H
GIn-206	Q to D/E	Q to K/R	Q to A/C
Thr-22	T to K/R	T to Q/N/A	T to D/E/C
G ly-215	G to S/T	G to N/Q	G to K/D
Pro-14	P to G/A	P to C/S	P to K/D
Ser-9	S to K/R	S to Q/N/A	S to D/E/C
G ly-211	G to S/T	G to N/Q	G to K/D

10

SITE2		Subtilisin BPN'	
G lu-195	G to S/T	G to N/Q	G to K/D
G ly-166	G to S/T	G to N/Q	G to K/D
G ly-154	G to S/T	G to N/Q	G to K/D
Ser-163	S to K/R	S to Q/N/A	S to D/E/C
Arg-247	R to K/H	R to Q/N	R to A/C/E
Lys-265	K to S/T/C	K to D/E/R	K to Q/N
V al-143	V to A/G/H	V to Q/E/C	V to T/S/K
G ly-127	G to S/T	G to N/Q	G to K/D
Ser-260	S to K/R	S to Q/N/A	S to D/E/C
G ly-131	G to S/T	G to N/Q	G to K/D
G ly-128	G to S/T	G to N/Q	G to K/D

Example 2

15

PD498

The 3-dimensional structure of PD 498 as determined by X-ray

crystallography in Brookhaven Protein Data Bank (PDB) format

The sequence which was used to elucidate the three-dimensional structure forming the basis for the present invention consists of the 280 amino acids derived from *Bacillus* 5 sp. PD498, NCIMB No. 40484 as disclosed in sequence ID No. 2.

The structure of PD498 was solved in accordance with the principle for X-ray crystallographic methods given in "X-Ray Structure Determination", Stout, G.K. and Jensen, L.H., John Wiley & Sons, inc. NY, 1989 and "Protein Crystallography" by Blundell, T.L. and Johnson, L.N., Academic Press, London, 1990. The structural coordinates for the solved crystal structure of PD 498 at 2.2 Å resolution using the isomorphous replacement method are given in a standard PDB format (Brookhaven Protein Data Base) in Appendix 1. It is to be understood that Appendix 1 forms part of the present application.

In Appendix 1 the amino acid residues of the enzyme are identified by three-letter amino acid code (capitalized letters).

PD498 has three bound metal ions. Site 1 is equivalent to site 1 in subtilisin BPN' and contains a calcium ion. Site 2 does not have an equivalent in subtilisin BPN' and contains a calcium ion. Site 3 is in the same region as the 2nd site in subtilisin BPN' and does here contain a sodium ion and a monopropylene glycol ligand.

25 Applying the above method disclosed in example 1 results in:

Site 1:

	residue	resno	$dist(C^{\alpha})$	$\operatorname{dist}(\mathtt{C}^{\beta})$	ACC	(ÅxÅ)	ACC	(왕)
	GLY	89	4.26			4		
	ASP	5	5.02	3.92		0		
	ASP	48	5.10	4.36		0		
35	ASN	86	5.15	4.73		33		20.63
	ALA	82	5.84	4.97		0		
	GLY	87	6.05			41		54.67

39

	GLY	92	7.33		0	
	TYR	8	7.87	7.12	12	
	TYR	7	8.01	7.63	89	38.70
	PRO	47	8.13	8.09	59	40.69
5	PRO	3	8.61	7.55	9	
	GLY	78	8.69		0	
	THR	213	9.19	8.55	0	
	ARG	51	10.39	9.61	162	72.00
	HIS	46	10.41	9.93	1	
10	LYS	52	10.56	9.41	10	
	TYR	219	10.74	9.79	56	24.35
	ALA	211	11.55	11.03	9	
	GLN	12	11.67	10.44	22	12.22
	GLY	218	12.00		18	24.00
15	ALA	10	12.35	12.15	65	56.52
	TYR	11	12.46	12.00	121	47.45
	VAL	53	13.30	13.18	18	11.61
	PRO	15	13.52	12.10	0	
	ARG	28	13.77	12.93	103	45.78
20	ILE	99	14.16	13.16	0	
	ASP	43	14.36	14.04	8	
	TRP	1	14.43	13.90	71	27.84
	GLY	14	14.60		1	
	GLY	234	14.85		0	
25	GLY	29	14.97		13	17.33

30 Site 2:

	resid	resno	$\mathtt{dist}(\mathtt{C}^{lpha})$	$dist(C^{eta})$	ACC (ÅxÅ)	ACC (%)
	ASN	65	4.25	4.04	65	40.63
	ASP	61	4.98	3.62	88	58.67
35	ASP	63	5.30	4.43	46	30.67
	ASP	58	5.39	3.87	0	
	MET	67	5.53	5.42	42	22.70

40

	ILE	60	7.09	6.76	48	27.43
	ARG	103	7.67	6.23	4	
	GLY	41	8.03		1	
	LEU	69	8.99	8.35	114	67.06
5	GLY	56	10.02		2	
	LYS	55	10.15	9.43	115	57.50
	ALA	101	11.02	10.20	0	
	TYR	44	11.83	11.14	35	15.22
	GLY	73	13.18		0	
10	ASN	45	13.57	13.14	114	71.25
	GLY	119	13.62		0	
	GLY	111	13.75		36	48.00
	GLY	71	13.78		4	
	SER	115	13.82	12.77	24	20.87
15	GLY	109	13.90		32	42.67
	THR	74	13.96	13.69	0	
	PRO	215	14.41	13.20	30	20.69
	VAL	53	14.70	13.64	18	11.61
	VAL	37	14.80	14.62	1	

20

Site 3:

	resid	resno	$dist(C^{\alpha})$	$dist(C\beta)$	ACC (ÅxÅ)	ACC (%)
25	ALA	179	4.07	4.05	0	
	ALA	181	4.65	4.11	0	
	TRP	200	6.65	6.57	46	18.04
	ASP	202	6.86	6.02	19	12.67
	ALA	160	7.85	7.10	0	
30	VAL	158	8.84	8.28	0	
	THR	170	9.23	8.58	65	46.43
	VAL	148	10.12	8.77	0	
	LYS	268	10.74	9.64	108	54.00
	ARG	250	11.05	10.04	30	13.33
35	GLY	183	11.15		2	
	GLY	198	11.37		8	
	TRP	152	11.64	10.35	35	13.73

1	7
4	Д.

	LEU	133	11.65	10.63	0	
	GLU	254	11.66	10.63	15	7.89
	GLY	136	11.84		39	52.00
	TYR	269	12.12	11.37	45	19.57
5	GLY	163	12.15		11	14.67
	SER	229	12.16	11.65	0	
	LEU	144	13.01	12.62	2	
	ASN	196	13.01	12.00	1	
	VAL	232	13.12	11.71	0	
10	LEU	131	13.25	12.69	0	
	ILE	253	13.27	12.22	1	
	ALA	151	13.59	12.87	0	
	THR	225	13.88	12.66	1	
	ASN	246	14.04	13.33	17	10.63
15	GLY	270	14.22		0	
	ILE	249	14.51	14.36	4	
	ALA	228	14.65	14.00	0	
	SER	141	14.78	14.70	21	18.26
	ALA	236	14.93	13.63	0	

The table below shows the preferred functional substitutions in site 1, 2 and 3 of PD498.

SITE1		PD498	
Asn-86	N to D/E	N to K/R	N to A/C
G ly-87	G to S/T	G to N/Q	G to K/D
Tyr-7	Y to N/Q	Y to A/G/C	Y to K/H
Pro-47	P to G/A	P to C/S	P to K/D
Arg-51	R to K/H	R to Q/N	R to A/C/E
T yr-219	Y to N/Q	Y to A/G/C	Y to K/H
Gly-218	G to S/T	G to N/Q	G to K/D
Ala-10	A to N/Q	A to K/R	A to D/E
Tyr-11	Y to N/Q	Y to A/G/C	Y to K/H
Arg-28	R to K/H	R to Q/N	R to A/C/E
Trp-1	W to N/Q	W to A/G/C	W to K/H
G ly-29	G to S/T	G to N/Q	G to K/D

SITE2	- "	PD 498	
Asn-65	N to D/E	N to K/R	N to A/C
Asp-61	D to N/Q	D to K/H	D to A/G/C
Asp-63	D to N/Q	D to K/H	D to A/G/C
M et-67	M to A/G/H	M to Q/E/C	M to T/S/K
lle-60	I to A/G/H	I to Q/E/C	I to T/S/K
Leu-69	L to A/G/H	L to Q/E/C	L to T/S/K
Lys-55	K to S/T/C	K to D/E/R	K to Q/N
T yr-44	Y to N/Q	Y to A/G/C	Y to K/H
Asn-45	N to D/E	N to K/R	N to A/C
G ly-111	G to S/T	G to N/Q	G to K/D
Ser-115	S to K/R	S to Q/N/A	S to D/E/C
G ly-109	G to S/T	G to N/Q	G to K/D
Pro-215	P to G/A	P to C/S	P to K/D

SITE3	PD498			
Trp-200	W to N/Q	W to A/G/C	W to K/H	
Thr-170	T to K/R	T to Q/N/A	T to D/E/C	
Lys-268	K to S/T/C	K to D/E/R	K to Q/N	
Gly-136	G to S/T	G to N/Q	G to K/D	
Tyr-269	Y to N/Q	Y to A/G/C	Y to K/H	
Ser-141	S to K/R	S to Q/N/A	S to D/E/C	

Example 3

Savinase

For this example the X-ray structure entry 1SVN in the Brookhaven Protein Data Bank was used. This structure contains two metal ions. Site 1 contains a calcium ion and is at a position equivalent to site 1 in subtilisin BPN'. Site 2 contains a calcium ion at a position equivalent to site 2 in subtilisin BPN'. In the following list a SEQUENTIAL numbering have been applied and NOT the numbering system used in the structure file.

Site 1:

resid	resno	$dist(C^{\alpha})$	$dist(C^{\beta})$	ACC	ACC
				(ÅxÅ)) (왕)

				43	
GLY	78	4.28		14	18.67
ASN	75	4.74	4.64	61	38.13
ASP	40	5.08	4.34	0	
GLN	2	5.39	4.59	45	25.0
ALA	72	5.49	4.99	0	
GLY	81	7.68		0	
PRO	84	8.28	7.29	5	
GLY	68	8.88		1	
THR	202	9.19	8.67	0	
HIS	38	10.40	9.89	13	
PRO	5	10.47	10.26	14	9.66
ASN	42	10.55	10.50	94	58.75
TYR	208	10.72	9.76	65	28.26
GLN	200	11.75	11.39	82	45.56
ILE	8	12.10	10.58	3	
PRO	14	12.91	12.63	49	33.79
THR	22	13.01	12.24	29	20.71
HIS	17	13.44	12.07	29	14.87
ALA	13	13.78	12.63	0	
GLY	7	14.60		2	
LEU	88	14.86	13.68	0	
GLY	223	14.89		0	
GLY	23	14.93		0	

Site 2:

resid	resno	$dist(C^{\alpha})$	$\mathtt{dist}(\mathtt{C}^{eta})$	ACC	ACC
				(ÅxÅ)	(왕)
ALA	170	4.88	4.24	0	
GLY	189	5.10		46	61.33
ASP	191	7.22	6.52	6	
ALA	149	7.79	7.05	0	
ILE	159	8.29	6.89	1 (
VAL	147	8.98	8.40	0	
VAL	137	9.81	8.44	0	
GLY	187	10.71		3	
GLY	258	10.85		3	

			4	4	
ARG	241	10.90	9.77	39	17.33
GLY	172	11.27		0	
GLY	125	11.66		46	61.33
THR	141	11.72	10.47	20	14.29
LEU	122	11.73	10.70	0	
GLY	152	11.96		8	
LEU	133	12.29	11.70	3	
GLN	185	12.41	11.63	14	7.74
THR	218	12.51	11.95	0	
LYS	245	12.79	11.71	48	24.00
SER	259	12.93	12.67	35	30.43
ASN	237	13.34	12.53	22	13.75
ALA	120	13.49	13.00	0	
THR	254	13.53	13.19	100	71.43
VAL	221	13.62	12.14	0	
ALA	140	13.65	13.13	0	
VAL	145	13.91	13.88	0	
THR	214	14.00	12.84	2	
GLY	157	14.11		42	56.00
LEU	244	14.27	13.26	0	
ALA	217	14.97	14.17	0	

The table below shows the preferred functional substitutions in site 1 and 2 of Savinase.

SITE1		Savinase	
G ly-78	G to S/T	G to N/Q	G to K/D
Asn-75	N to D/E	N to K/R	N to A/C
Gln-2	Q to D/E	Q to K/R	Q to A/C
Asn-42	N to D/E	N to K/R	N to A/C
Tyr-208	Y to N/Q	Y to A/G/C	Y to K/H
G In-200	Q to D/E	Q to K/R	Q to A/C
Pro-14	P to G/A	P to C/S	P to K/D
Thr-22	T to K/R	T to Q/N/A	T to D/E/C
H is -17	H to S/T/C	H to D/E	H to Q/N

SITE2	Savinase		
Gly-189	G to S/T	G to N/Q	G to K/D
Arg-241	R to K/H	R to Q/N	R to A/C/E
Gly-125	G to S/T	G to N/Q	G to K/D
Lys-245	K to S/T/C	K to D/E/R	K to Q/N
Ser-259	S to K/R	S to Q/N/A	S to D/E/C
Thr-254	T to K/R	T to Q/N/A	T to D/E/C
Gly-157	G to S/T	G to N/Q	G to K/D

Example 4

5

Amylase (AA560)

For this example the structure of AA560 has been found by homology modelling using the BAN/Termamyl α -amylase structure disclosed in WO 96/23874 which is hereby incorporated by reference. This structure contains two metal ions. Both site 1 and 2 contain a calcium ion.

The example shows how a 3-dimensional structure determined by model building using coordinates from a homologous structure, can be used to identify residues of the ligand binding site, which may be modified in order to reduce the immune response.

Applying the method disclosed above results in:

Site 1:

Res		ACC	ACC
		(ÅxÅ)	()
TYR	58:CA	23	10.00
GLY	59:CA	4	
ALA	60:CA	0	
VAL	103:CA	0	
VAL	104:CA	1	
MET	105:CA	6	
ASN	106:CA	1	
HIS	107:CA	6	
LYS	108:CA	14	
GLY	109:CA	2	
VAL	122:CA	3	
PRO	124:CA	27	18.62
ASN	126:CA	28	17.50

	r	
ARG 127:CA	17	
ASN 128:CA	107	66.88
THR 141:CA	0	
TRP 159:CA	75	29.41
TYR 160:CA	96	41.74
HIS 161:CA	2	
PHE 162:CA	0	
ASP 163:CA	1	
GLY 164:CA	Ō	
VAL 165:CA	6	
ASP 166:CA5	64	42.67
ILE 177:CA	12	
TYR 178:CA	0	
LYS 179:CA	27	13.50
PHE 180:CA	0	
LYS 185:CA	36	18.00
GLY 186:CA	24	32.00
TRP 187:CA	27	10.59
ASP 188:CA	0	
TRP 189:CA	136	53.33
GLU 190:CA	39	20.53
VAL 191:CA	0	
ASP 192:CA	11	
THR 193:CA	84	60.00
GLU 194:CA	88	46.32
ASN 195:CA	36	22.50
GLY 196:CA	27	36.00
ASN 197:CA	8	30.00
TYR 198:CA	41	17.83
ASP 199:CA	1	117.00
TYR 200:CA	2	
LEU 201:CA	50	29.41
MET 202:CA	72	38.92
TYR 203:CA	93	40.43
ALA 204:CA	2	10.13
ASP 205:CA	0	
ILE 206:CA	4	
ASP 207:CA	6	
MET 208:CA	5	
ASP 209:CA	1	40 22
	74	49.33
HIS 210:CA	39	20.00
VAL 213:CA	0	1 6 77
VAL 214:CA	26	16.77
LEU 217:CA	4	
ILE 235:CA	0	
ASP 236:CA	15	
ALA 237:CA	5	
VAL 238:CA	0	
LYS 239:CA	14	<u> </u>
HIS 240:CA	13	
ILE 241:CA	[1	<u> </u>

LYS	242:CA	44	22.00
TYR	243:CA	5	
SER	244:CA	40	34.78
PHE	245:CA	10	
THR	246:CA	0	
ARG	247:CA	60	26.67
,	249:CA	0	
ALA	265:CA	0	
GLU	266:CA	17	8.95
PHE	267:CA	2	
TRP	268:CA	27	10.59

site 2:

Ē

Res ACC (ÅxÅ) ASN 296: CA 25 15.63 LEU 297: CA 1 TYR 298: CA 68 29.57 ASN 299: CA 72 45.00 ALA 300: CA 0 SER 301: CA 0 LYS 302: CA 117 58.50 SER 303: CA 43 37.39
ASN 296: CA 25 15.63 LEU 297: CA 1 TYR 298: CA 68 29.57 ASN 299: CA 72 45.00 ALA 300: CA 0 SER 301: CA 0 LYS 302: CA 117 58.50
LEU 297: CA 1 TYR 298: CA 68 29.57 ASN 299: CA 72 45.00 ALA 300: CA 0 SER 301: CA 0 LYS 302: CA 117 58.50
TYR 298: CA 68 29.57 ASN 299: CA 72 45.00 ALA 300: CA 0 SER 301: CA 0 LYS 302: CA 117 58.50
ASN 299: CA 72 45.00 ALA 300: CA 0 SER 301: CA 0 LYS 302: CA 117 58.50
ALA 300: CA 0 SER 301: CA 0 LYS 302: CA 117 58.50
SER 301: CA 0 LYS 302: CA 117 58.50
LYS 302: CA 117 58.50
13ER 303: CA [43 137.39
GLY 304: CA 70 93.33
l l
ASN 306: CA 149 93.13
TYR 307: CA 49 21.30
ASP 308: CA 59 39.33
MET 309: CA 0
ARG 310: CA 143 63.56
GLN 311: CA 99 55.00
ILE 312: CA 3
PHE 313: CA 17 8.10
ASN 314: CA 76 47.50
GLU 345: CA 73 38.42
TRP 347: CA 89 38.70
PHE 348: CA 2
LEU 351: CA 2
ALA 352: CA 0
TYR 404: CA 32 13.91
LEU 405: CA 35 20.59
ASP 406: CA 78 52.00
HIS 407: CA 69 35.38
HIS 408: CA 100 51.28
ASN 409: CA 31 19.38
ILE 410: CA 19 10.86
ILE 411: CA 0
GLY 412: CA 0
ILE 429: CA 0

430:	CA	5	
431:	CA	0	
432:	CA	5	
433:	CA	19	25.33
434:	CA	73	63.48
435:	CA	35	46.67
436:	CA	21	28.00
437:	CA	86	53.75
474:	CA	0	
475:	CA	53	33.13
476:	CA	41	54.67
477:	CA	29	38.67
478:	CA	18	15.65
479:	CA	2	
	431: 432: 433: 434: 435: 436: 437: 474: 475: 476: 477: 478:	431: CA 432: CA 433: CA 434: CA 435: CA 436: CA 437: CA 474: CA 475: CA 476: CA 477: CA 478: CA	431: CA 0 432: CA 5 433: CA 19 434: CA 73 435: CA 35 436: CA 21 437: CA 86 474: CA 0 475: CA 53 476: CA 41 477: CA 29 478: CA 18

The table below shows functional preferred substitutions in site 1 and 2 of the amylase AA560. For ASN 126 the substitution N to D/E means that Asparagine in position 126 may preferably be substituted with Aspartic acid or Glutamic acid, Lysine or Arginine, or Alanine or Cysteine.

Funtional pr	eferred subst	itutions					
Site 1				Site 2			
ASN 126	N to D/E	NtoK/R	N to A/C	LYS 302	K to S/T/C	Kto D/E	K to Q/N
ASN 128	N to D/E	N to K/R	N to A/C	SER 303	Sto K/R	S to Q/N/A	S to D/E/C
TRP 159	W to N/Q	W to A/G/C	W to K/H	ASN 306	N to D/E	N to K/R	N to A/C
TYR 160	Y to N/Q	Y to A/G/C	Y to K/H	TYR 307	Y to N/Q	Y to A/G/C	Yto K/H
ASP 166	D to N/Q	D to K/H	D to A/G/C	ASP 308	D to N/Q	D to K/H	D to A/G/C
LYS 185	K to S/T/C	Kto D/E	KtoQ/N	ARG 310	R to K/H	R to Q/N	R to A/C/E
TRP 189	W to N/Q	W to A/G/C	W to K/H	GLN 311	Q to D/E	Q to K/R	Q to A/C
GLU 190	EtoNQ	EtoK/H	E to A/G/C	ASN 314	N to D/E	N to K/R	N to A/C
ASP 209	DtoNQ	Dto K/H	D to A/G/C	GLU 345	E to N/Q	E to K/H	E to A/G/C
HIS 210	H to S/T/C	H to D/E	H to Q/N	TRP 347	W to N/Q	W to A/G/C	W to K/H
VAL 214	V to Q/N	V to G/A/C	V to K/H/D	ASP 406	D to N/Q	D to K/H	D to A/G/C
LYS 242	K to S/T/C	K to D/E	K to Q/N	HIS 407	H to S/T/C	H to D/E	H to Q/N
SER 244	Sto K/R	S to Q/N/A	S to D/E/C	HIS 408	H to S/T/C	H to D/E	H to Q/N
ARG 247	RtoK/H	R to Q/N	R to A/C/E	ALA 434	A to N/Q	AtoK/R	A to D/E
				ASN 437	N to D/E	N to K/R	N to A/C
				ASN 475	N to D/E	N to K/R	N to A/C
				GLY 476	G to S/T	GtoNQ	GtoK/D
·				SER 478	S to K/R	S to Q/N/A	S to D/E/C

49

Example 5

Conjugation of Savinase variant R241K with activated bis-PEG-1000

5

228 mg of the Savinase variant was incubated in 50 mM Sodium Borate pH 9.5 with 510 mg of N-succinimidyl carbonate activated bis-PEG 1000 in a reaction volume of approximately 30 ml. The reaction was carried out at ambient temperature using magnetic stirring while keeping the pH within the interval 9.0-9.5 by addition of 0.5 M NaOH. The reaction time was 2 hours. The reaction was stopped by adding 1M HCl to a final pH of 6.0. Reagent excess was removed by ultra filtration using a Filtron-Ultrasette and the final product stored at -20°C, in 50 mM Sodium Borate, 150 mM NaCl, 1 mM CaCl2, 50% mono propylene glycol at H 6.0.

Compared to the parent enzyme, residual activity was close to 100% towards a peptide substrate (succinyl-Ala-Ala-Pro-Phe-p-nitro-anilide).

20

Example 6

25 <u>Conjugation of Savinase variant R241K with activated bis-PEG-2000</u>

353 mg of the Savinase variant was incubated in 50 mM Sodium Borate pH 9.5 with 1621 mg of N-succinimidyl carbonate activated bis-PEG 2000 in a reaction volume of approximately 35 ml. The reaction was carried out at ambient temperature using magnetic stirring while keeping the pH within the interval 9.0-9.5 by addition of 0.5 M NaOH. The reaction time was 2 hours. The reaction was stopped by adding 1M HCl to a final pH of 6.0. Reagent excess was removed by ultra filtration using a Filtron-Ultrasette and the final product stored at -20°C, in 50 mM Sodium Borate, 150 mM NaCl, 1 mM CaCl2, 50% mono propylene glycol at H 6.0.

Compared to the parent enzyme, residual activity was close to 100% towards a peptide substrate (succinyl-Ala-Ala-Pro-Phe-p-nitro-anilide).

5 Example 7

<u>Determination of IgE levels in rats of R241KbPEG1000 and R241KbPEG2000</u>

10 Methods:

Sample Management: Each sample was diluted to 0.075 mg protein/ml, and aliquoted in 1.5 ml. These fractions were sent to the stables for storage at -20°C until use. Additionally, 100 μ l of the respective fractions were stored in the lab- freezer at -20°C for immunochemical analysis at the beginning, halfway and at the end of the study. For each immunization and each analysis a new fraction was taken.

Immunization: Twenty intratracheal immunizations were performed weekly with 100 μ l 0.9% (wt/vol) NaCl (control group), or 100 μ l of the protein dilution mentioned before. (group 5 unmodified R241K variant of Savinase, group 6 R241K-bis-S-PEG1000, and group 7 R241K-bis-S-PEG2000. Each group contained 10 rats. Blood samples (2 ml) were collected from the eye one week after every second immunization. Serum was obtained by blood clothing, and centrifugation.

ELISA: Specific IgE levels were determined using the ELISA's specific for rat IgE. The sera were titrated at $\frac{1}{2}$ dilutions, starting from undiluted. Optical densities were measured at $\frac{492}{620}$ nm.

The results are shown in figure 1. As can be seen the IgE levels of the conjugated savinase variants R241K are reduced compared to the savinase variant R241K.

35 Example 8

PCT/DK99/00542

R2410, R241E, R241H and R241K.

WO 00/22103

Female Balb/c mice, 9 weeks of age were immunised subcutaneously for 20 consecutive weeks, with wild type savinase, and with variants having single mutations in position R241 (R241Q, R241E, R241H, R241K). Every other week, IgG1 and IgE serum levels were determined by ELISA.

Sample Management: Each sample was diluted to 0.010 mg protein/ml, and aliquoted in 1.5 ml. These fractions were sent to the stables for storage at -20°C until use. Additionally, 100

 μl of the respective fractions were stored in the lab-freezer at -20°C for immunochemical analysis at the beginning, halfway and at the end of the study. For each immunization and each analysis a new fraction was taken.

Immunization: Twenty subcutanuous immunizations were performed weekly with 100 μ l 0.9% (wt/vol) NaCl (control group), or 100 μ l of the protein dilution mentioned before. Thus, group 1 received wild type Savinase, group 2 (R241Q), group 3 (R241H), group 4 (R241E), and group 5 (R241K). Each group contained 10 mice. Blood samples (100 μ l) were collected from the eye one week after every second immunization. Serum was obtained by blood clotting, and centrifugation.

ELISA: Specific IgG1 levels were determined using the 25 ELISA

specific for mouse IgG1. The sera were titrated at ½ dilutions, starting from 1:160.

Specific IgE levels were determined using the ELISAs specific for mouse IgE. The sera were titrated at ½ dilutions, starting from undiluted. Optical densities were measured at 492/620 nm.

Statistical analysis: Differences between data sets were analysed by using nonparametric methods: the Kruskal-Wallis Test and the Dunn's Multiple Comparison Test.

The results are shown in figure 2. As can be seen the IgE levels of the Savinase variants are significantly reduced.

PAGE INTENTIONALLY LEFT BLANK

APPENDIX 1

The structure of PD498 as determined by X-ray crystallography in Brookhaven Protein Data Bank (PDB) format.

10	CRYST SCALE1 SCALE2 SCALE3	45.	0.00	67 2219 0000	. 09	0.00000 0.01491 0.00000	0.0000 0.0000 0.0000 0.0123	0 0 0	90.00 1 0.00000 0.00000 0.00000	P212121	
10	ATOM	1	N	TRP	Α	1		-14.241	47.742	1.00 15.33	7
	ATOM	2	CA	TRP		ī		-13.784	47.487	1.00 15.36	6
	ATOM	3	С	TRP	Α	1	19.164	-12.349	48.002	1.00 14.46	6
	ATOM	4	0	TRP	Α	1	18.277	-11.567	47.654	1.00 17.10	8
15	ATOM	5	CB	TRP		1		-13.777	46.000	1.00 21.00	6
	ATOM	6	CG	TRP		1		-13.519	45.607	1.00 15.22	6
	ATOM	7	CD1			1		-14.241	45.845	1.00 14.54	6
	ATOM	8	CD2	TRP TRP	A	1 1		-12.390 -13.643	44.857 45.245	1.00 16.51 1.00 18.87	6 7
20	ATOM ATOM	9 10	NE1 CE2	TRP		1		-13.643	45.245	1.00 18.87	6
20	ATOM	11	CE3	TRP		1		-11.271	44.272	1.00 14.70	6
	ATOM	12	CZ2		A	1		-11.559	43.931	1.00 20.48	6
	ATOM	13	CZ3		A	ī		-10.381	43.596	1.00 16.65	6
	ATOM	14	CH2	TRP	Α	1	22.661	-10.472	43.360	1.00 16.74	6
25	ATOM	15	N	SER	Α	2	20.202	-12.093	48.812	1.00 13.43	7
	MOTA	16	CA	SER	A	2		-10.697	49.312	1.00 15.64	6
	ATOM	17	С	SER		2		-10.249	49.014	1.00 15.52	6
	ATOM	18	0_	SER		2		-10.605	49.501	1.00 18.28	8
	ATOM	19	CB	SER		2		-10.591	50.815	1.00 25.19	6 8
30	ATOM	20 21	OG N	SER PRO		2 3	21.785	-11.130 -9.317	51.119 48.032	1.00 27.27 1.00 14.76	7
	ATOM ATOM	22	CA	PRO		3	23.056	-8.803	47.578	1.00 14.76	6
	ATOM	23	C	PRO		3	23.708	-7.855	48.606	1.00 14.51	6
	ATOM	24	Ö	PRO		3	23.048	-7.406	49.556	1.00 14.63	8
35	ATOM	25	CB	PRO		3	22.743	-8.050	46.281	1.00 12.74	6
	ATOM	26	CG	PRO	Α	3	21.293	-7.620	46.498	1.00 14.64	6
	ATOM	27	CD	PRO	Α	3	20.663	-8.776	47.270	1.00 14.83	6
	ATOM	28	N	ASN		4	25.005	-7.718	48.445	1.00 10.92	7
	MOTA	29	CA	ASN		4	25.792	-7.034	49.477	1.00 13.99	6
40	ATOM	30	C	ASN		4	25.899	-5.526	49.311	1.00 13.94	6
	ATOM	31	O	ASN		4 4	26.667	-4.870 -7.626	50.046 49.502	1.00 12.98 1.00 12.72	8 6
	ATOM ATOM	32 33	CB CG	ASN ASN		4	27.215 28.075	-7.626 -7.328	49.502	1.00 12.72	6
	ATOM	34		ASN		4	27.647	-6.473	47.509	1.00 14.80	8
45	ATOM	35		ASN		4	29.265	-7.911	48.155	1.00 18.33	7
	ATOM	36	N		A	5	25.165	-4.896	48.360	1.00 11.85	7
	ATOM	37	CA	ASP	A	5	25.401	-3.474	48.156	1.00 12.19	6
	ATOM	38	C	ASP	Α	5	25.065	-2.624	49.348	1.00 11.69	6
	MOTA	39	0	ASP		5	23.954	-2.816	49.936	1.00 10.53	8
50	ATOM	40	CB	ASP	A	5	24.570	-2.988	46.920	1.00 10.10	6
	ATOM	41	CG	ASP		5	24.777	-4.005	45.780	1.00 9.83	6
	ATOM ATOM	42		ASP ASP	A	5 5	24.199 25.568	-5.106 -3.642	45.756 44.871	1.00 12.14 1.00 12.15	8 8
		43 44		PRO	_	6	25.900	-1.745	49.795	1.00 12.13	7
55	ATOM ATOM	45	N CA	PRO		6	25.673	-1.089	51.084	1.00 11.29	6
33	ATOM	46	C	PRO		6	24.481	-0.190	51.146	1.00 11.12	6
	ATOM	47	Ö	PRO		6	23.759	-0.196	52.180	1.00 12.14	8
	ATOM	48	CB	PRO		6	26.984	-0.356	51.426	1.00 12.53	6
	ATOM	49	CG	PRO	Α	6	27.599	-0.217	50.014	1.00 14.20	6
60	MOTA	50	CD	PRO		6	27.226	-1.453	49.202	1.00 11.88	6
	MOTA	51	N	TYR		7	24.143	0.465	50.046	1.00 11.91	7
	ATOM	52	CA	TYR		7	23.015	1.415	50.137	1.00 12.11	6
	ATOM	53	C	TYR		7	21.733	0.635	49.875	1.00 11.41	6
<u>د د</u>	ATOM ATOM	54 55	O CB	TYR TYR		7 7	20.642 23.237	1.099 2.509	50.172 49.078	1.00 11.81	8 6
65	ATOM	55 56	CG	TYR		7	24.375	3.451	49.407	1.00 15.43	6
	ATOM	57		TYR		7	24.897	3.394	50.732	1.00 19.41	6
						•	'			· · ·	

	ATOM	58	CD2	TYR A	7	24.900	4.310	48.518	1.00 25.90	6
	ATOM	59	CE1	TYR A		25.932	4.231	51.078	1.00 23.70	6
	ATOM	60	CE2	TYR A	. 7	25.942	5.152	48.885	1.00 25.53	6
	MOTA	61	CZ	TYR A	. 7	26.454	5.099	50.157	1.00 30.83	6
5	ATOM	62	OH	TYR A	7	27.491	5.983	50.400	1.00 33.22	8
	MOTA	63	N	TYR A		21.819	-0.575	49.311	1.00 11.44	7
	MOTA	64	CA	TYR A		20.685	-1.490	49.258	1.00 10.93	6
	MOTA	65	C	TYR A		20.237	-1.852	50.698	1.00 10.97	6
	ATOM	66	0	TYR A		19.073	-1.666	51.030	1.00 10.70 1.00 11.45	8 6
10	ATOM	67	CB	TYR A		20.975 19.938	-2.737 -3.813	48.431 48.547	1.00 11.45	6
	ATOM	68	CG	TYR A		18.683	-3.613	47.894	1.00 10.94	6
	MOTA MOTA	69 70	CD1 CD2	TYR A		20.110	-4.990	49.259	1.00 10.83	6
	ATOM	71	CE1	TYR A		17.705	-4.627	47.983	1.00 10.64	6
15	ATOM	72	CE2	TYR A		19.112	-5.961	49.350	1.00 12.45	6
13	ATOM	73	CZ	TYR A		17.902	-5.782	48.678	1.00 12.68	6
	ATOM	74	OH	TYR A		16.908	-6.733	48.789	1.00 13.25	8
	ATOM	75	N	SER A		21.247	-2.270	51.460	1.00 10.94	7
	MOTA	76	CA	SER A	A 9	20.949	-2.660	52.854	1.00 11.34	6
20	MOTA	77	C	SER A		20.483	-1.450	53.656	1.00 9.76	6
	MOTA	78	0	SER A		19.549	-1.582	54.465	1.00 11.69	8
	MOTA	79	CB	SER A		22.271	-3.179	53.448	1.00 12.98	6
	ATOM	80	OG	SER A		21.986	-3.491	54.840	1.00 14.32 1.00 9.72	8 7
	ATOM	81	N	ALA A		21.018	-0.283	53.428 54.332	1.00 9.72 1.00 9.30	6
25	ATOM	82	CA	ALA A		20.805 19.596	0.860 1.655	53.965	1.00 12.42	6
	ATOM ATOM	83 84	C O	ALA A		18.883	2.230	54.794	1.00 12.42	8
	ATOM	85	СВ	ALA A		22.036	1.757	54.363	1.00 12.70	6
	ATOM	86	N	TYR A		19.352	1.779	52.621	1.00 12.14	7
30	ATOM	87	CA	TYR A		18.374	2.754	52.188	1.00 11.21	6
	ATOM	88	C	TYR A		17.339	2.269	51.177	1.00 12.10	6
	ATOM	89	0	TYR A	11	16.323	2.972	51.018	1.00 11.98	8
	ATOM	90	CB	TYR A	11	19.141	3.914	51.448	1.00 9.82	б
	MOTA	91	CG	TYR A		20.208	4.587	52.293	1.00 11.77	6
35	MOTA	92	CD1	TYR A		19.815	5.317	53.419	1.00 15.20	6
	MOTA	93	CD2	TYR A		21.541	4.493	51.970	1.00 16.78	6
	ATOM	94	CE1	TYR A		20.773	5.955	54.196	1.00 17.43	6 6
	MOTA	95	CE2	TYR A		22.494	5.125 5.837	52.756 53.864	1.00 19.92 1.00 18.68	6
4.0	ATOM	96	CZ OH	TYR A		22.084 23.095	6.450	54.626	1.00 10.00	8
40	ATOM ATOM	97 98	N	TYR A		17.490	1.075	50.573	1.00 20.01	7
	ATOM	99	CA	GLN A		16.421	0.747	49.622	1.00 10.23	6
	ATOM	100	C	GLN A		15.251	0.052	50.260	1.00 9.88	6
	ATOM	101	Ō	GLN A		15.422	-0.710	51.235	1.00 10.94	8
45	ATOM	102	CB	GLN A	12	16.984	-0.155	48.471	1.00 10.30	6
	ATOM	103	CG	GLN A		17.846	0.612	47.491	1.00 9.41	6
	MOTA	104	CD	GLN A		18.378		46.387	1.00 9.03	6
	ATOM	105		GLN A		19.616	-0.526	46.434	1.00 10.69	8
	ATOM	106		GLN A		17.572	-0.688 0.139	45.438 49.639	1.00 9.50 1.00 8.12	7 7
50	MOTA	107	N	TYR A		14.053 12.931	-0.656	50.006	1.00 8.12	6
	ATOM ATOM	108 109	CA C	TYR A		12.175	-1.201	48.793	1.00 11.46	6
	ATOM	110	0	TYR A		11.392	-2.128	48.912	1.00 10.57	8
	ATOM	111	CB	TYR A		11.899	0.042	50.915	1.00 8.33	6
55	ATOM	112	CG	TYR		11.153	1.131	50.181	1.00 8.81	6
	ATOM	113		TYR I		9.906	0.863	49.604	1.00 8.32	6
	ATOM	114	CD2	TYR Z	A 13	11.653	2.441	50.097	1.00 8.79	6
	ATOM	115	CE1	TYR A	A 13	9.192	1.837	48.913	1.00 9.23	6
	ATOM	116	CE2	TYR Z		10.942	3.429	49.381	1.00 7.86	6
60	MOTA	117	CZ	TYR A		9.687	3.114	48.835	1.00 9.91	6
	MOTA	118	OH	TYR A		8.956	4.116	48.210	1.00 10.94	8
	ATOM	119	N	GLY A		12.538	-0.722	47.591	1.00 10.19	7
	MOTA	120	CA	GLY I		11.702	-1.114	46.428	1.00 10.55	6
	ATOM	121	C	GLY		11.732	-2.616 -3.246	46.134 45.967	1.00 11.11 1.00 11.34	6 8
65	ATOM	122	O N	GLY A		10.681 12.909	-3.246 -3.176	45.967	1.00 11.34	7
	ATOM ATOM	123 124	N CA	PRO I		12.958	-4.630	45.810	1.00 9.03	6
	ATOM	124	CA	PRO I		12.372	-5.426	46.996	1.00 10.83	6
	ALON	ك يند بد	Č	* ICO 1		<i>عاب</i> و سمند	5.120			-

	ATOM	126	0	PRO	A	15	11.557	-6.333	46.772	1.00 10.41	8
	ATOM	127	CB	PRO	Α	15	14.480	-4.906	45.683	1.00 10.96	6
	ATOM	128	CG	PRO	A	15	15.102	-3.549	45.304	1.00 9.61	6
	ATOM	129	CD	PRO	A	15	14.229	-2.508	46.030	1.00 9.57	6
5	ATOM	130	N	GLN		16	12.741	-5.038	48.222	1.00 10.84	7
	ATOM	131	CA	GLN		16	12.216	-5.795	49.382	1.00 9.58	6
	ATOM	132	С	GLN		16	10.677	-5.822	49.420	1.00 9.41	6
	MOTA	133	0	GLN		16	10.047	-6.896	49.711	1.00 12.05	8
	ATOM	134	CB	GLN		16	12.784	-5.110	50.653	1.00 9.56	6
10	ATOM	135	CG	GLN		16	14.295	-5.237	50.750	1.00 10.85	6
	ATOM	136	CD	GLN		16	15.079	-4.045	50.301	1.00 9.18	6
	ATOM	137	OE1			16	14.615	-3.357	49.328	1.00 11.39	8
	ATOM	138	NE2	GLN		16	16.242	-3.776	50.867	1.00 10.81	7
	ATOM	139	N	ASN		17	10.073	-4.629	49.215	1.00 10.52	7
15	ATOM	140	CA	ASN		17	8.627	-4.532	49.347	1.00 9.85	6
	ATOM	141	C	ASN		17	7.909	-5.151	48.185	1.00 11.20	6 8
	ATOM	142	0	ASN		17	6.658	-5.131	48.244	1.00 14.71 1.00 11.59	
	MOTA	143	CB	ASN		17	8.208	-3.046	49.509	1.00 11.39	6
	MOTA	144	CG	ASN		17	8.432	-2.520	50.937 51.658	1.00 13.87	8
20	ATOM	145	OD1	ASN		17	9.226	-3.101 -1.460	51.050	1.00 13.47	7
	ATOM	146		ASN		17	7.687 8.566	-5.563	47.128	1.00 12.04	
	ATOM	147	N	THR		18	7.890	-6.216	45.992	1.00 10.23	6
	MOTA	148	CA C	THR THR		18 18	8.300	-7.680	45.974	1.00 12.31	6
2 -	ATOM	149		THR		18	8.100	-8.386	44.963	1.00 12.13	8
25	ATOM	150 151	O CB	THR		18	8.244	-5.529	44.659	1.00 11.44	
	ATOM ATOM	152	OG1	THR		18	9.696		44.525	1.00 10.42	8
	ATOM	153	CG2	THR		18	7.591	-	44.624	1.00 12.66	
	ATOM	154	N	SER		19	8.884		47.078	1.00 10.54	7
30	ATOM	155	CA	SER		19	9.287		47.140	1.00 12.19	
30	ATOM	156	C	SER		19	10.334		46.079	1.00 10.66	
	ATOM	157	Õ	SER		19	10.372		45.609	1.00 11.55	
	ATOM	158	CB	SER		19	8.113		47.058	1.00 15.77	
	ATOM	159	OG	SER		19	7.242		48.179	1.00 14.40	
35	ATOM	160	N	THR		20	11.176		45.757	1.00 11.05	
55	MOTA	161	CA	THR		20	12.179		44.731	1.00 9.03	
	ATOM	162	C	THR		20		-10.159	45.212	1.00 10.84	6
	ATOM	163	Ö	THR		20		-10.974	44.462	1.00 12.64	
	ATOM	164	СВ	THR		20	12.652		44.067	1.00 11.34	6
40	ATOM	165	OG1	THR		20	11.486		43.584	1.00 10.88	8
	ATOM	166	CG2	THR		20	13.563	-8.230	42.867	1.00 13.97	6
	ATOM	167	N	PRO		21	13.788		46.474	1.00 10.13	7
	ATOM	168	CA	PRO	A	21	14.814	-11.028	46.940	1.00 10.60	
	ATOM	169	C	PRO	Α	21	14.417	-12.506	46.749	1.00 11.26	6
45	ATOM	170	0	PRO	A	21	15.311	-13.256	46.270	1.00 13.61	
	ATOM	171	CB	PRO	Α	21	14.916	-10.701	48.467	1.00 10.30	6
	ATOM	172	CG	PRO	Α	21	14.710	-9.205	48.354	1.00 10.51	
	ATOM	173	CD	PRO	A	21	13.477	-9.064	47.464	1.00 10.93	6
	MOTA	174	N	ALA	A	22	13.151	-12.862	46.938	1.00 12.78	
50	ATOM	175	CA	ALA	Α	22	12.706	-14.246	46.639	1.00 13.32	
	ATOM	176	C	ALA	A	22	12.644	-14.482	45.123	1.00 14.57	
	MOTA	177	0	ALA	Α	22		-15.576	44.679	1.00 15.26	
	MOTA	178	CB	ALA	A	22	11.317	-14.454	47.282	1.00 13.94	
	ATOM	179	N	ALA	Α	23	12.273	-13.425	44.396	1.00 12.81	
55	ATOM	180	CA	ALA	Α	23	12.317	-13.614	42.917	1.00 14.03	
	MOTA	181	C	ALA	Α	23		-13.880	42.477	1.00 12.10	
	MOTA	182	0	ALA		23	13.915	-14.577	41.425	1.00 12.81	
	MOTA	183	CB	ALA	A	23	11.712	-12.341	42.261	1.00 12.05	
	MOTA	184	N	TRP		24	14.752	-13.217	42.989	1.00 11.24	
60	ATOM	185	CA	TRP	A	24	16.128		42.591	1.00 11.78	
	ATOM	186	С	TRP	A	24	16.654	-14.840	42.845	1.00 13.08	
	ATOM	187	0	TRP	A	24	17.723		42.305	1.00 15.03	
	ATOM	188	CB	TRP		24		-12.366	43.334	1.00 15.91	
	ATOM	189	CG	TRP	A	24		-10.942	42.898	1.00 12.46	
65	MOTA	190	CD1			24	16.549		41.656	1.00 11.81	
	ATOM	191	CD2			24	17.146		43.673	1.00 12.89	
	MOTA	192	NE1			24	16.584		41.590	1.00 11.12	
	MOTA	193	CE2	TRP	Α	24	16.965	-8.633	42.853	1.00 11.48	6

	ATOM	194	CE3 TRP A	24	17.514 -9.554	45.015	1.00 14.60	6
	ATOM	195	CZ2 TRP A	24	17.132 -7.300	43.254	1.00 12.39	6
			CZ2 TRP A	24	17.643 -8.268	45.452	1.00 12.43	6
	ATOM	196		24	17.501 -7.164	44.601	1.00 12.45	6
_	ATOM	197	CH2 TRP A				1.00 16.22	7
5	ATOM	198	N ASP A	25		43.660		6
	ATOM	199	CA ASP A	25	16.307 -17.019	43.816	1.00 19.28	
	ATOM	200	C ASP A	25	16.013 -17.758	42.511	1.00 19.51	6
	ATOM	201	O ASP A	25	16.674 -18.766	42.232	1.00 21.06	8
	MOTA	202	CB ASP A	25	15.474 -17.590	44.987	1.00 15.40	6
10	MOTA	203	CG ASP A	25	15.889 -17.050	46.378	1.00 16.84	6
	ATOM	204	OD1 ASP A	25	14.914 -16.931	47.182	1.00 20.99	8
	ATOM	205	OD2 ASP A	25	17.069 -16.798	46.451	1.00 18.83	8
	ATOM	206	N VAL A	26	15.083 -17.234	41.717	1.00 16.85	7
	ATOM	207	CA VAL A	26	14.677 -17.883	40.450	1.00 16.29	б
15	ATOM	208	C VAL A	26	15.490 -17.307	39.300	1.00 14.78	6
	ATOM	209	O VAL A	26	16.049 -18.044	38.463	1.00 16.30	8
	ATOM	210	CB VAL A	26	13.181 -17.689	40.253	1.00 15.77	6
	ATOM	211	CG1 VAL A	26	12.727 -18.260	38.878	1.00 16.26	6
	ATOM	212	CG2 VAL A	26	12.288 -18.249	41.341	1.00 14.73	6
20		213	N THR A	27	15.627 -15.970	39.244	1.00 13.62	7
20	MOTA			27	16.434 -15.392	38.191	1.00 13.55	6
	ATOM	214			16.969 -13.994	38.562	1.00 13.33	6
	ATOM	215	C THR A	27		39.294	1.00 13.11	8
	ATOM	216	O THR A	27				
	MOTA	217	CB THR A	27	15.570 -15.267	36.899	1.00 16.42	6
25	MOTA	218	OG1 THR A	27	16.481 -14.652	35.997	1.00 20.55	8
	ATOM	219	CG2 THR A	27	14.260 -14.538	37.127	1.00 15.35	6
	ATOM	220	N ARG A	28	18.167 -13.715	38.082	1.00 13.95	7
	MOTA	221	CA ARG A	28	18.707 -12.376	38.350	1.00 14.11	6
	ATOM	222	C ARG A	28	18.914 -11.569	37.058	1.00 13.63	6
30	MOTA	223	O ARG A	28	19.518 -10.522	37.077	1.00 13.70	8
	ATOM	224	CB ARG A	28	20.007 -12.487	39.167	1.00 13.10	6
	ATOM	225	CG AARG A	28	19.786 -12.592	40.676	0.50 16.44	6
	ATOM	226	CD AARG A	28	21.015 -13.229	41.319	0.50 13.92	6
	ATOM	227	NE AARG A	28	21.173 -14.653	40.989	0.50 20.11	7
35	ATOM	228	CZ AARG A	28	22.394 -15.198	41.007	0.50 22.04	6
	ATOM	229	NH1AARG A	28	23.372 -14.370	41.347	0.50 16.08	7
	ATOM	230	NH2AARG A	28	22.629 -16.456	40.719	0.50 19.93	7
	ATOM	231	CG BARG A	28	19.609 -13.094	40.526	0.50 12.85	6
	ATOM	232	CD BARG A	28	20.809 -13.394	41.414	0.50 12.14	6
4.0		233	NE BARG A	28	21.589 -14.471	40.795	0.50 12.31	7
40	ATOM			28	21.281 -15.746	40.991	0.50 10.72	6
	ATOM	234	CZ BARG A		20.289 -16.183	41.754	0.50 13.72	7
	ATOM	235	NH1BARG A	28		40.382	0.50 13.32	7
	ATOM	236	NH2BARG A	28			1.00 12.92	7
	ATOM	237	N GLY A	29	18.305 -12.018	35.941		6
45	ATOM	238	CA GLY A	29	18.362 -11.296	34.672		
	ATOM	239	C GLY A	29	19.326 -12.019	33.736	1.00 11.85	6
	ATOM	240	O GLY A	29	19.589 -13.202	33.991	1.00 16.10	8
	MOTA	241	N SER A		19.705 -11.325	32.693	1.00 11.08	7
	ATOM	242	CA SER A		20.543 -11.993	31.666	1.00 12.22	6
50	MOTA	243	C SER A		21.461 -10.943	31.078	1.00 13.35	6
	MOTA	244	O SER A		21.121 -9.889	30.574	1.00 13.86	8
	MOTA	245	CB SER A	330	19.712 -12.583	30.525	1.00 15.19	6
	MOTA	246	OG SER A	330	20.650 -12.917	29.463	1.00 17.47	8
	ATOM	247	N SER A	331	22.855 -11.292	31.059	1.00 14.23	7
55	ATOM	248	CA SER A	331	23.828 -10.406	30.487	1.00 13.69	6
	ATOM	249	C SER A	331	23.784 -10.224	28.959	1.00 12.34	6
	ATOM	250	O SER A		24.497 -9.322	28.490	1.00 19.86	8
	ATOM	251	CB SER A		25.268 -10.725	30.898	1.00 18.58	6
	ATOM	252	OG SER A		25.541 -12.037	30.388	1.00 22.11	8
60	ATOM	253	N THR A		22.962 -11.067	28.421	1.00 11.83	7
60						26.958	1.00 15.40	6
	ATOM	254	CA THR A			26.518	1.00 13.40	6
	ATOM	255	C THR A					8
	ATOM	256	O THR A		21.235 -10.376	25.323		6
- -	MOTA	257	CB THR A		22.969 -12.367	26.285	1.00 17.26	
65	ATOM	258	OG1 THR A		22.107 -13.305	26.854	1.00 22.90	8
	MOTA	259	CG2 THR A		24.448 -12.815	26.411	1.00 22.90	6
	MOTA	260	n GLNA		20.861 -9.716	27.512	1.00 13.07	7
	MOTA	261	CA GLN A	333	19.630 -8.974	27.160	1.00 12.63	6

	ATOM	262	C	GLN .	A 33	19.830	-7.523	27.631	1.00 13.44	6
	ATOM	263	0	GLN .	A 33	20.686	-7.227	28.461	1.00 12.88	8
	ATOM	264	CB	GLN .	A 33	18.420	-9.526	27.862	1.00 10.82	6
	ATOM	265	CG	GLN .	A 33	18.173	-10.962	27.360	1.00 12.25	6
5	ATOM	266	CD	GLN .	A 33	16.999	-11.643	27.966	1.00 11.24	6
	ATOM	267	OE1	GLN .	A 33	16.554	-11.300	29.074	1.00 13.22	
	ATOM	268	NE2	GLN .	A 33	16.375	-12.657	27.326	1.00 16.24	7
	ATOM	269	N	THR .	A 3.	18.960	-6.642	27.102	1.00 11.79	7
	MOTA	270	CA	THR .	A 3.	18.984	-5.248	27.523	1.00 11.06	6
10	ATOM	271	C	THR	A 3	17.582	-4.748	27.909	1.00 12.71	. 6
	ATOM	272	0	THR .		16.558	-5.185	27.394	1.00 10.99	8
	ATOM	273	CB	THR		19.560	-4.307	26.452	1.00 12.32	6
	ATOM	274	OG1	THR		18.727	-4.350	25.274	1.00 15.31	
	ATOM	275	CG2	THR		20.994	-4.701	26.098	1.00 15.29	
15	ATOM	276	N	VAL			-3.738	28.781	1.00 9.33	
	ATOM	277	CA	VAL .		16.448	-2.906	29.047	1.00 9.03	
	ATOM	278	C	VAL			-1.513	28.545	1.00 10.82	
	ATOM	279	Õ	VAL .		17.894	-1.011	28.947	1.00 11.09	
	ATOM	280	СВ	VAL			-2.760	30.525	1.00 11.19	
20	ATOM	281	CG1				-1.712	30.731	1.00 12.05	
	ATOM	282	CG2	VAL			-4.091	31.092	1.00 14.97	
	ATOM	283	N	ALA .		16.062	-0.937	27.616	1.00 9.42	
	ATOM	284	CA	ALA			0.401	27.149	1.00 12.14	
	ATOM	285	C	ALA			1.446	28.086	1.00 9.96	
25	ATOM	286	Ö	ALA .			1.449	28.408	1.00 11.17	
23	ATOM	287	СВ	ALA			0.631	25.724	1.00 11.54	
	ATOM	288	N	VAL .			2.296	28.554	1.00 8.03	
	ATOM	289	CA	VAL .			3.428	29.435	1.00 9.34	
	ATOM	290	C	VAL .			4.660	28.537	1.00 9.42	
30	ATOM	291	Ö	VAL .			5.187	28.168	1.00 10.30	
30	ATOM	292	CB	VAL .			3.591	30.610	1.00 7.40	
	ATOM	293		VAL .			4.884	31.357	1.00 12.02	
	ATOM	294	CG2	VAL .			2.359	31.521	1.00 12.02	
	ATOM	295	N CGZ	LEU .			4.992	28.181	1.00 8.33	
35	ATOM	296	CA	LEU .			6.125	27.245	1.00 9.07	
35	ATOM	297	CA	LEU .			7.355	28.100	1.00 9.81	
	ATOM	298	0	LEU .			7.499	28.695	1.00 10.06	
	ATOM	299	CB	LEU .			5.776	26.380	1.00 10.00	
	ATOM	300	CB	LEU .			4.661	25.362	1.00 10.14	
40	ATOM	301		LEU .			3.693	25.283	1.00 16.87	
40	ATOM	301	CD2	LEU .			5.400	24.043	1.00 15.43	
	ATOM	303	N	ASP .			8.192	28.216	1.00 13.43	
	ATOM	304	CA	ASP .			9.245	29.265	1.00 7.85	
	ATOM	305	CA		A 3		10.334	29.014	1.00 10.38	
45	ATOM	306	0	ASP .			10.581	27.810	1.00 10.43	
43	ATOM	307	CB	ASP .			8.495	30.588	1.00 10.08	
	ATOM	308	CG	ASP .			9.159	31.806	1.00 9.45	
	ATOM	309		ASP .			10.307	32.115	1.00 11.41	
	ATOM	310		ASP .			8.509	32.424	1.00 11.17	
50	ATOM	311	N	SER .			11.024	30.039	1.00 8.46	
50	ATOM	312	CA	SER .			12.155	29.835	1.00 9.33	
	ATOM	313	C	SER .			11.738	29.583	1.00 10.03	
	ATOM	314	0	SER			12.604	29.544	1.00 12.39	
	ATOM	315	CB	SER			13.046	31.076	1.00 10.11	
55	ATOM	316	OG	SER			12.377	32.234	1.00 11.06	
در	ATOM	317	N	GLY			10.436	29.422	1.00 10.54	
	ATOM	318	CA	GLY			9.937	29.276	1.00 10.54	
	ATOM	319	CA	GLY			9.106	30.504	1.00 11.64	
	ATOM	320		GLY			9.044	31.415	1.00 12.31	
60	ATOM	321	N	VAL			8.494	30.478	1.00 12.31	
90	ATOM	321	CA	VAL			7.692	31.677	1.00 11.73	
	ATOM	323		VAL			8.026	31.875	1.00 10.62	
	ATOM	323 324	C	VAL			7.934	30.912	1.00 11.86	
	ATOM	324	O CB	VAL			6.202	31.427	1.00 13.20	
65	ATOM	325		VAL			5.368	32.618	1.00 10.81	
65	ATOM	327	CG1				5.897	31.236	1.00 10.20	
	ATOM	327	N N	ASP			8.180	33.136	1.00 11.88	
		328	N CA	ASP			8.426	33.402	1.00 11.44	
	MOTA	323	CA	HOP	n. 4	∠0.196	0.420	∠04.در	1.00 13.13	• •

	ATOM	330	С	ASP	Δ	42	26.852	7.060	33.461	1.00 12.56	6
	ATOM	331	Õ		A	42	26.966	6.459	34.518	1.00 13.21	8
		332	CB	ASP		42	26.379	9.170	34.745	1.00 13.74	6
	ATOM									1.00 18.39	6
_	ATOM	333	CG	ASP		42	27.857	9.433	35.018		8
5	ATOM	334			A	42	28.140	10.034	36.082	1.00 21.20	
	ATOM	335	OD2	ASP		42	28.672	9.005	34.208	1.00 12.32	8
	ATOM	336	N	TYR	Α	43	27.358	6.645	32.283	1.00 11.92	7
	MOTA	337	CA	TYR	Α	43	27.980	5.350	32.095	1.00 12.00	6
	ATOM	338	C	TYR	Α	43	29.429	5.271	32.714	1.00 13.62	6
10	ATOM	339	0	TYR	Α	43	29.966	4.179	32.656	1.00 14.17	8
	ATOM	340	CB	TYR		43	28.031	4.952	30.604	1.00 14.19	6
	ATOM	341	CG	TYR		43	28.532	6.090	29.719	1.00 13.96	6
								6.376	29.758	1.00 21.10	6
	MOTA	342	CD1	TYR		43	29.876				6
	ATOM	343	CD2	TYR		43	27.649	6.817	28.949	1.00 13.89	
15	ATOM	344	CE1	TYR		43	30.377	7.422	28.982	1.00 23.78	6
	ATOM	345	CE2	TYR	A	43	28.162	7.877	28.152	1.00 17.35	6
	ATOM	346	CZ	TYR	Α	43	29.499	8.136	28.197	1.00 21.91	6
	ATOM	347	OH	TYR	A	43	30.054	9.174	27.458	1.00 25.51	8
	ATOM	348	N	ASN	Α	44	29.860	6.400	33.220	1.00 14.70	7
20	ATOM	349	CA	ASN		44	31.144	6.357	33.963	1.00 15.55	6
	ATOM	350	C	ASN		44	30.923	6.074	35.433	1.00 14.58	6
	ATOM	351	0	ASN		44	31.889	5.965	36.221	1.00 14.97	8
			СВ	ASN		44	31.874	7.711	33.833	1.00 15.61	6
	ATOM	352					32.294				6
	ATOM	353	CG	ASN		44		7.939	32.344	1.00 13.41	
25	ATOM	354		ASN		44	32.052	9.147	32.103	1.00 22.06	8
	ATOM	355	ND2	ASN	Α	44	32.766	6.911	31.724	1.00 16.45	7
	ATOM	356	N	HIS	Α	45	29.653	6.081	35.908	1.00 13.02	7
	MOTA	357	CA	HIS	Α	45	29.474	5.865	37.376	1.00 11.13	6
	ATOM	358	C	HIS	A	45	29.917	4.462	37.727	1.00 10.90	6
30	ATOM	359	0	HIS	Α	45	29.653	3.499	37.064	1.00 11.84	8
	ATOM	360	CB	HIS		45	27.929	5.959	37.618	1.00 13.07	6
	ATOM	361	CG	HIS		45	27.519	6.069	39.068	1.00 11.25	6
		362			Ā	45	27.779	5.071	40.007	1.00 11.49	7
	ATOM									1.00 10.98	6
	MOTA	363	CD2		A	45	26.921	7.129	39.661		
35	ATOM	364			A	45	27.307	5.517	41.159	1.00 12.50	6
	MOTA	365	NE2		Α	45	26.810	6.732	41.035	1.00 11.54	7
	ATOM	366	\mathbf{N}	PRO	Α	46	30.635	4.274	38.874	1.00 11.14	7
	MOTA	367	CA	PRO	Α	46	31.062	2.985	39.335	1.00 11.47	6
	ATOM	368	С	PRO	Α	46	29.978	1.921	39.380	1.00 10.59	6
40	MOTA	369	0	PRO	Α	46	30.196	0.767	39.040	1.00 11.62	8
	ATOM	370	CB		Α	46	31.677	3.220	40.742	1.00 10.94	6
	ATOM	371	CG	PRO		46	32.043	4.671	40.670	1.00 14.48	6
	ATOM	372	CD	PRO		46	31.085	5.353	39.688	1.00 11.69	6
		372	N		Ā	47	28.728	2.326	39.705	1.00 12.70	7
4 -	ATOM									1.00 12.70	6
45	ATOM	374	CA		A	47	27.682	1.314	39.825		
	MOTA	375	C	ASP		47	26.899	1.133	38.520	1.00 12.51	6
	ATOM	376	0	ASP		47	25.902	0.416	38.521	1.00 11.59	8
	ATOM	377	CB	ASP		47	26.702	1.688	40.990	1.00 12.16	6
	ATOM	378	CG	ASP	Α	47	26.587	0.469	41.896	1.00 9.76	6
50	MOTA	379	OD1	ASP	Α	47	27.288	-0.541	41.945	1.00 10.00	8
	MOTA	380	OD2	ASP	Α	47	25.518	0.471	42.653	1.00 10.91	8
	ATOM	381	N	LEU		48	27.369	1.772	37.435	1.00 10.44	7
	ATOM	382	CA	LEU		48	26.697	1.562	36.155	1.00 11.43	6
	ATOM	383	C	LEU		48	27.672	1.221	35.027	1.00 12.97	6
55	ATOM	384	0_	LEU		48	27.191	0.683	34.023	1.00 11.53	8
	MOTA	385	CB	LEU		48	25.972	2.837	35.638	1.00 11.21	6
	MOTA	386	CG	LEU	Α	48	24.787	3.235	36.572	1.00 10.61	6
	ATOM	387	CD1	\mathtt{LEU}	Α	48	24.254	4.643	36.324	1.00 11.90	6
	ATOM	388	CD2	LEU	A	48	23.677	2.180	36.462	1.00 13.84	6
60	ATOM	389	N	ALA		49	28.975	1.461	35.252	1.00 12.23	7
	ATOM	390	CA	ALA		49	29.841	1.298	34.073	1.00 9.36	6
	ATOM	391	C	ALA		49	29.855	-0.091	33.513	1.00 10.78	6
	ATOM	392	0	ALA		49	30.048	-0.245	32.236	1.00 16.78	8
										1.00 10.38	6
~-	ATOM	393	CB	ALA		49	31.268	1.712	34.531		
65	ATOM	394	N	ARG		50	29.747	-1.164	34.276	1.00 11.88	7
	ATOM	395	CA	ARG		50	29.780	-2.522	33.800	1.00 11.57	6
	ATOM	396	C	ARG		50	28.444	-2.946	33.165	1.00 12.53	6
	MOTA	397	0	ARG	А	50	28.348	-4.048	32.602	1.00 16.06	8

	MOTA	398	СВ	ARG A	A 50	30.103	-3.524	34.930	1.00 15.47	6
	ATOM	399	CG	ARG A		31.531	-3.240	35.482	1.00 11.83	6
	ATOM	400	CD	ARG A		32.055	-4.513	36.187	1.00 15.45	6
						31.187	-4.897	37.307	1.00 16.23	7
_	ATOM	401	NE	ARG A			-5.965	38.064	1.00 10.25	6
5	ATOM	402	CZ	ARG A		31.384				7
	ATOM	403		ARG A		32.429	-6.782	37.837	1.00 22.22	
	MOTA	404		ARG A		30.526	-6.230	39.057	1.00 18.50	7
	ATOM	405	N	LYS A	4 51	27.436	-2.075	33.346	1.00 11.50	7
	ATOM	406	CA	LYS A	4 51	26.104	-2.471	32.907	1.00 11.63	6
10	ATOM	407	C	LYS A	A 51	25.570	-1.744	31.675	1.00 12.77	6
	ATOM	408	0	LYS A	A 51	24.582	-2.212	31.104	1.00 13.77	8
	ATOM	409	CB	LYS A		25.152	-2.127	34.077	1.00 12.63	6
	MOTA	410	CG	LYS A		25.387	-2.922	35.380	1.00 13.22	6
	ATOM	411	CD	LYS A		25.538	-4.413	35.201	1.00 14.71	6
3 -		412	CE	LYS A		24.312	-5.051	34.628	1.00 13.09	6
15	ATOM		-			23.056	-4.815	35.491	1.00 12.18	7
	ATOM	413	NZ	LYS A					1.00 12.10	7
	ATOM	414	N	VAL A		26.124	-0.623	31.345		
	ATOM	415	CA	VAL A		25.551	0.247	30.312	1.00 10.53	6
	MOTA	416	C	VAL A	A 52	26.166	0.046	28.941	1.00 14.73	6
20	ATOM	417	0	VAL A	4 52	27.383	0.061	28.778	1.00 16.03	8
	ATOM	418	CB	VAL A	A 52	25.711	1.692	30.750	1.00 10.80	6
	ATOM	419	CG1	VAL A	A 52	25.233	2.601	29.613	1.00 15.73	6
	ATOM	420	CG2	VAL A	A 52	24.874	1.987	32.005	1.00 11.42	6
	ATOM	421	N	ILE A		25.247	-0.130	27.987	1.00 11.33	7
25	ATOM	422	CA	ILE A		25.609	-0.098	26.552	1.00 11.76	6
2. 3	ATOM	423	C	ILE A		25.210	1.272	26.028	1.00 14.46	6
				ILE A		24.071	1.711	26.289	1.00 13.75	8
	ATOM	424	O GD				-1.179	25.791	1.00 13.75	6
	ATOM	425	CB	ILE A		24.877				6
	ATOM	426		ILE A		25.331	-2.530	26.296		
30	ATOM	427	CG2	ILE A		25.229	-1.050	24.291	1.00 11.24	6
	MOTA	428	CD1	ILE A		24.535	-3.702	25.780	1.00 20.94	6
	MOTA	429	N	LYS A	4 54	26.112	1.975	25.367	1.00 14.25	7
	MOTA	430	CA	LYS A	A 54	25.812	3.317	24.896	1.00 12.81	6
	MOTA	431	C	LYS A	A 54	24.994	3.315	23.618	1.00 12.98	6
35	ATOM	432	0	LYS A		25.458	2.835	22.572	1.00 17.68	8
-	ATOM	433	CB	LYS Z		27.109	4.126	24.613	1.00 13.38	6
	ATOM	434	CG	LYS A		27.905	4.467	25.886	1.00 13.70	6
		435	CD	LYS A		29.303	4.949	25.440	1.00 23.57	6
	ATOM					30.311	4.482	26.488	1.00 25.44	6
	ATOM	436	CE	LYS A				26.128	1.00 23.44	7
40	ATOM	437	NZ	LYS A		30.879	3.152			
	ATOM	438	N	GLY A		23.737	3.675	23.690	1.00 12.13	7
	ATOM	439	CA	GLY Z		22.853	3.848	22.554	1.00 12.94	6
	MOTA	440	C	GLY Z	A 55	22.968	5.304	22.070	1.00 12.91	6
	ATOM	441	0	GLY Z	A 55	23.771	6.146	22.479	1.00 13.22	8
45	ATOM	442	N	TYR A	A 56	22.084	5.613	21.090	1.00 13.51	7
	ATOM	443	CA	TYR A	A 56	22.092	6.918	20.449	1.00 12.80	6
	ATOM	444	C	TYR Z	A 56	21.594	8.052	21.346	1.00 14.95	6
	ATOM	445	0	TYR Z		20.699	7.845	22.158	1.00 14.71	8
	ATOM	446	CB	TYR		21.369	6.789	19.085	1.00 12.24	6
50	MOTA	447	CG	TYR		21.659	7.944	18.131	1.00 12.40	6
50	ATOM	448	CD1			22.915	7.978	17.542	1.00 15.33	6
						20.766	8.959	17.915	1.00 13.06	6
	ATOM	449		TYR						
	MOTA	450		TYR		23.255	9.010	16.664	1.00 15.12	6
	ATOM	451	CE2			21.106	10.017	17.016	1.00 15.08	6
55	MOTA	452	CZ	TYR .		22.347	10.002	16.421	1.00 16.78	6
	MOTA	453	OH	TYR .	A 56	22.603	11.097	15.574	1.00 20.74	8
	ATOM	454	N	ASP .	A 57	22.042	9.257	21.061	1.00 12.59	7
	MOTA	455	CA	ASP .	A 57	21.604	10.456	21.735	1.00 11.21	6
	ATOM	456	С	ASP .		20.882	11.313	20.683	1.00 14.11	6
60	ATOM	457	Ö	ASP .		21.559	11.878	19.812	1.00 14.49	8
50	ATOM	458	CB	ASP .		22.814	11.201	22.293	1.00 15.01	6
			CG	ASP .		22.480	12.521	22.943	1.00 13.70	6
	MOTA	459						22.765	1.00 13.70	8
	ATOM	460		ASP .		21.400	13.019			8
_	MOTA	461		ASP .		23.391	13.058	23.622	1.00 17.36	
65	ATOM	462	N	PHE .		19.554	11.263	20.737	1.00 11.17	7
	MOTA	463	CA	PHE.		18.729	12.002	19.764	1.00 13.01	6
	MOTA	464	C	PHE .		18.675	13.475	20.055	1.00 16.32	6
	ATOM	465	0	PHE	A 58	18.071	14.222	19.282	1.00 17.71	8

										_
	MOTA	466		PHE A	58	17.292	11.407	19.790	1.00 14.04 1.00 11.93	6 6
	ATOM	467		PHE A	58	17.284	10.018	19.247 17.861	1.00 12.43	6
	ATOM	468		PHE A	58	17.055 17.546	9.878 8.841	19.950	1.00 11.15	6
	MOTA	469		PHE A	58 58	17.078	8.627	17.325	1.00 13.41	6
5	ATOM	470		PHE A	58	17.564	7.606	19.383	1.00 13.98	6
	ATOM	471			58	17.345	7.456	17.990	1.00 12.24	6
	ATOM	472		PHE A	59	19.092	13.940	21.251	1.00 13.50	7
	ATOM	473 474		ILE A	59	19.180	15.354	21.596	1.00 15.65	6
10	ATOM ATOM	475		ILE A	59	20.410	15.974	20.964	1.00 18.12	6
10	ATOM	476	-	ILE A	59	20.220	17.014	20.263	1.00 23.97	8
	ATOM	477	СВ	ILE A	59	19.241	15.477	23.146	1.00 15.66	6
	ATOM	478		ILE A	59	17.951	15.100	23.855	1.00 19.46	6
	ATOM	479		ILE A	59	19.590	16.921	23.536	1.00 22.80	6
15	ATOM	480	CD1	ILE A	59	16.626	15.695	23.499	1.00 21.33	6
	ATOM	481	N	ASP A	60	21.568	15.421	21.177	1.00 19.52	7
	MOTA	482	CA	ASP A	60	22.810	15.974	20.563	1.00 20.37	6 6
	MOTA	483	C	ASP A	60	23.051	15.391	19.176	1.00 23.56	8
	MOTA	484	0	ASP A	60	24.039	15.842	18.532	1.00 21.66 1.00 24.04	6
20	MOTA	485	CB	ASP A	60	24.011	15.638	21.423	1.00 24.04 1.00 29.23	6
	ATOM	486	CG	ASP A	60	24.163	16.251	22.799 23.093	1.00 27.86	8
	MOTA	487		ASP A	60	23.498 24.968	17.279 15.676	23.597	1.00 27.00	8
	ATOM	488		ASP A	60	22.353	14.341	18.772	1.00 18.93	7
	MOTA	489	N	ARG A	61	22.553	13.639	17.519	1.00 18.74	6
25	MOTA	490	CA	ARG A	61 61	24.106	13.184	17.487	1.00 22.32	6
	MOTA	491	C	ARG A	61	25.042	13.415	16.667	1.00 20.82	8
	ATOM	492 493	O CB	ARG A	61	22.241	14.566	16.363	1.00 20.03	6
	MOTA MOTA	494	CG	ARG A	61	20.743	14.751	16.239	1.00 27.06	6
20	ATOM	495	CD	ARG A	61	20.210	15.689	15.210	0.00 20.00	6
30	ATOM	496	NE	ARG A		19.042	16.306	15.859	0.00 20.00	7
	ATOM	497	CZ	ARG A	61	18.388	17.288	15.185	0.00 20.00	6
	ATOM	498		ARG A	61	18.805	17.666	13.981	0.00 20.00	7
	ATOM	499		ARG A		17.318	17.872	15.746	0.00 20.00	7
35	ATOM	500	N	ASP A	62	24.436	12.342	18.480	1.00 18.53	7
	MOTA	501	CA	ASP A	62	25.742	11.759	18.713	1.00 19.28	6
	MOTA	502	C	ASP A		25.598	10.378	19.351	1.00 17.15 1.00 17.25	6 8
	MOTA	503	0	ASP A		24.462	9.943	19.708	1.00 17.25 1.00 19.71	6
	MOTA	504	CB	ASP A		26.663	12.711	19.495 20.966	1.00 25.11	6
40		505	CG	ASP A		26.330	12.887 11.940	21.630	1.00 23.11	8
	ATOM	506		ASP A		25.880 26.480	13.999	21.532	1.00 26.53	8
	MOTA	507		ASP A		26.400	9.644	19.555	1.00 16.07	7
	ATOM	508	N	ASN A		26.714	8.291	20.046	1.00 18.08	6
	MOTA	509 510	CA C	ASN A		27.071	8.238	21.540	1.00 14.21	6
45	ATOM ATOM	510	0	ASN A		27.589	7.220	22.004	1.00 19.73	8
	ATOM	512	CB	ASN A		27.775	7.473	19.289	1.00 22.90	6
	ATOM	513	CG	ASN A		29.335	7.776	19.315	0.00 20.00	6
	ATOM	514		ASN A		30.201	6.934	19.572	0.00 20.00	8
50		515		ASN A		29.600	9.079	19.152	0.00 20.00	7
	ATOM	516	N	ASN A	64	26.975	9.391	22.182	1.00 15.25	7
	MOTA	517	CA	ASN A	64	27.400	9.532	23.602	1.00 16.89	6
	MOTA	518	C	ASN A		26.266	10.079	24.433	1.00 14.33	6 8
	ATOM	519	0	ASN A		25.999	11.262	24.588	1.00 14.56 1.00 16.40	6
55		520	CB	ASN A		28.546	10.586	23.613 25.019	1.00 10.40	6
	MOTA	521	CG	ASN A		29.073	10.797	25.964	1.00 24.63	8
	MOTA	522		. ASN A		28.566	10.200 11.702	25.183	1.00 24.89	7
	MOTA	523		ASN A		30.049	9.138	24.989	1.00 11.21	7
	MOTA	524		PRO A		25.502 24.242	9.477	25.665	1.00 13.27	6
60		525		PRO A		24.242	9.812	27.151	1.00 13.67	6
	ATOM	526		PRO A		23.672	9.379	28.013	1.00 12.46	8
	ATOM	527 528		PRO A		23.409		25.491	1.00 12.03	6
	MOTA MOTA	528 529		PRO A		24.468		25.660	1.00 13.48	6
6!		530		PRO A		25.668		24.820	1.00 11.45	6
0:	ATOM	531		MET A		25.496	10.590	27.413	1.00 12.49	7
	ATOM	532		MET		25.738	11.074	28.772	1.00 10.69	6
	ATOM	533		MET		24.601	11.947	29.263	1.00 10.89	6

	ATOM	534	0	MET .	Α (66	23.929	12.691	28.560	1.00	12.73	8
	ATOM	535	CB		Α (66	27.055	11.880	28.760	1.00	14.19	6
	ATOM	536	CG	MET	Α (66	27.469	12.471	30.079	1.00	13.14	6
	ATOM	537	SD	MET .	Α (66	27.514	11.384	31.542	1.00	14.24	16
5	ATOM	538	CE	MET .	Α (66	28.725	10.247	30.960	1.00	16.73	6
_	ATOM	539	N	ASP .		67	24.280	11.753	30.541	1.00	12.39	7
	ATOM	540	CA	ASP		67	23.223	12.441	31.250	1.00	13.65	6
	ATOM	541	C	ASP .		67	23.622	13.848	31.714	1.00	13.30	6
	ATOM	542	Ö	ASP .		67	24.628	13.878	32.457		14.71	8
10	ATOM	543	СВ	ASP .		67	22.881	11.608	32.498	1.00		6
10	ATOM	544	CG	ASP .		67	21.584	12.025	33.128	1.00	10.52	6
	ATOM	545		ASP .		67	20.838	12.937	32.766	1.00		8
	ATOM	546		ASP .		67	21.311	11.380	34.194	1.00		8
	ATOM	547	N	LEU .		68	22.901	14.887	31.398	1.00		7
15	ATOM	548	CA	LEU .		68	23.230	16.219	31.935		11.29	6
15	ATOM	549	C	LEU .		68	22.184	16.689	32.938	1.00		6
	ATOM	550	0	LEU .		68	21.977	17.877	33.191	1.00		8
		551	CB	LEU .		68	23.273	17.220	30.784	1.00	13.93	6
	ATOM	552	CG	LEU .		68	24.425	16.942	29.829	1.00	18.76	6
20	ATOM	552 553		LEU .		68	24.423	18.059	28.780	1.00		6
20	MOTA		CD1	LEU .		68	25.787	16.856	30.516	1.00		6
	ATOM	554				69	21.312	15.750	33.311		14.50	7
	ATOM	555	N	ASN .		69	20.183	16.121	34.185	1.00	13.25	6
	ATOM	556	CA	ASN			20.103	15.373	35.507		15.28	6
۰	ATOM	557	C	ASN		69				1.00	13.89	8
25	ATOM	558	0	ASN .		69	20.055	15.947	36.595			6
	ATOM	559	CB	ASN		69	18.837	15.820	33.493	1.00		6
	ATOM	560	CG	ASN .		69	17.700	16.122	34.412	1.00	13.28 15.35	8
	ATOM	561		ASN .		69	17.292	15.258	35.220	1.00	12.65	7
	ATOM	562		ASN		69 70	17.132	17.347	34.413			7
30	ATOM	563	N	GLY		70	20.371	14.062	35.389	1.00		
	ATOM	564	CA	GLY		70	20.428	13.126	36.501		12.47	6
	ATOM	565	C	GLY .		70	19.248	12.180	36.565		12.10	6
	ATOM	566	0	GLY		70	19.392	11.092	37.153		11.37	8
	ATOM	567	N	HIS		71	18.098	12.548	36.033	1.00		7
35	ATOM	568	CA	HIS		71	16.928	11.677	36.064	1.00	12.16	6
	MOTA	569	C	HIS		71	17.178	10.320	35.425		10.47	6
	MOTA	570	0	HIS		71	16.936	9.246	36.005	1.00		8
	MOTA	571	CB			71	15.866	12.443	35.303	1.00		6
	MOTA	572	CG			71	14.491	11.898	35.281	1.00	10.59	6
40	MOTA	573				71	14.070	11.083	34.222	1.00	9.81	7
	MOTA	574	CD2			71	13.448	12.059	36.137		11.36	6
	MOTA	5 75				71	12.804	10.755	34.481	1.00	9.45	6
	ATOM	576		$_{ m HIS}$		71	12.394	11.339	35.617	1.00		7
	ATOM	577	N	GLY		72	17.747	10.309	34.214	1.00	9.91	7
45	ATOM	578	CA	\mathtt{GLY}		72	17.985	9.019	33.539	1.00	8.20	6
	ATOM	579	С	\mathtt{GLY}		72	18.943	8.130	34.294		10.22	6
	ATOM	580	0	\mathtt{GLY}		72	18.851	6.914			11.25	8
	MOTA	581	N	THR		73	19.996	8.710	34.949	1.00		7
	ATOM	582	CA	THR		73	20.943	7.870	35.678		10.00	6
50	MOTA	583	C	THR		73	20.264	7.190	36.904	1.00	9.47	6
	ATOM	584	0	THR		73	20.593	6.058	37.215		10.68	8
	ATOM	585	CB	THR		73	22.092	8.789	36.140		12.41	6
	MOTA	586	OG1			73	22.771	9.288	34.942		11.16	8
	MOTA	587	CG2	THR	Α	73	23.170	8.096	36.950		11.66	6
55	ATOM	588	N	HIS	A	74	19.332	7.989	37.489	1.00	9.10	7
	ATOM	589	CA	HIS	Α	74	18.615	7.468	38.683	1.00	10.08	6
	ATOM	590	С	HIS	A	74	17.725	6.317	38.222	1.00	8.45	6
	MOTA	591	0	HIS	Α	74	17.755	5.193	38.797	1.00	9.63	8
	MOTA	592	CB	HIS	Α	74	17.893	8.629	39.336	1.00	11.77	6
60	MOTA	593	CG	HIS	Α	74	17.373	8.281	40.697	1.00	10.65	6
	ATOM	594	ND1	HIS	A	74	16.237	7.546	40.892		10.09	7
	MOTA	595	CD2	HIS	A	74	17.889	8.640	41.909	1.00	10.65	6
	ATOM	596		HIS		74	16.057	7.418	42.194		10.71	6
	ATOM	597		HIS		74	17.011	8.091	42.847	1.00	11.39	7
65	ATOM	598	N	VAL		75	16.991	6.560	37.128	1.00	8.72	7
_	ATOM	599	CA	VAL		75	16.102	5.516	36.601	1.00	9.96	6
	ATOM	600	C	VAL		75	16.861	4.281	36.196	1.00	9.80	б
	ATOM	601	Ō	VAL		75	16.493	3.159	36.569	1.00	9.73	8
				_								

PCT/DK99/00542

MOTA 602 CB VAL A 75 15.368 6.143 35.397 1.00 8.91 6 CG1 VAL A 75 14.632 5.037 34.614 1.00 11.90 6 MOTA 603 CG2 VAL A N ALA A 604 75 14.373 7.207 35.906 1.00 12.26 6 MOTA 76 18.045 4.463 35.550 1.00 9.95 7 605 ATOM N ALA A 76 18.828 3.299 35.109 1.00 10.80 5 ATOM 606 CA 19.311 1.00 8.05 2.512 36.325 6 ALA A 76 MOTA 607 C ALA A ALA A MOTA 608 0 76 19.350 1.268 36.257 1.00 9.57 8 20.067 1.00 11.31 34.296 MOTA 609 CB 76 3.817 б 610 N GLY A 77 19.719 3.244 37.394 1.00 8.67 7 MOTA 38.509 1.00 10.66 GLY A 77 20.240 2.442 6 10 ATOM 611 CA GLY A 77 GLY A 77 ATOM 612 C 19.100 1.609 39.154 1.00 8.38 6 39.628 9.24 613 0 19.432 0.501 1.00 8 MOTA THR A N 78 17.898 2.146 39.196 1.00 8.84 7 614 MOTA THR A 78 16.820 1.294 39.724 1.00 9.31 6 MOTA 615 CA 0.018 38.930 1.00 16.604 7.59 6 15 ATOM 616 C THR A 78 THR A 78 THR A 78 16.379 -1.093 39.396 1.00 10.79 8 617 0 ATOM 15.550 2.127 39.833 CB 1.00 9.05 MOTA 618 6 OG1 THR A 78 3.175 40.796 1.00 10.11 619 15.760 MOTA 1.266 CG2 THR A 78 40.327 1.00 10.42 ATOM 620 14.375 6 VAL A 79 16.642 0.189 16.411 -0.985 37.555 1.00 9.12 7 20 ATOM 621 N 36.685 622 CA VAL A 79 1.00 8.17 6 MOTA VAL A 79 17.466 -2.025 36.875 1.00 8.18 623 C 6 MOTA VAL A 79 ATOM 624 0 17.192 -3.196 36.970 1.00 10.26 CB VAL A 79 CG1 VAL A 79 CG2 VAL A 79 16.354 35.186 34.342 -0.577 1.00 13.01 625 CB 6 MOTA -1.862 16.039 1.00 16.27 6 25 ATOM 626 15.250 0.388 34.873 1.00 16.24 627 6 MOTA ATOM 628 N ALA A 80 18.753 -1.594 36.861 1.00 9.76 7 19.799 -2.612 21.149 -2.084 22.196 -2.334 19.814 -3.107 21.287 -1.333 22.606 -1.043 23.431 -2.334 22.877 -3.375 22.577 -0.382 36.679 1.00 9.95 19.799 ATOM 629 CA ALA A 80 6 ALA A ALA A 630 C 80 37.067 1.00 11.86 6 ATOM 1.00 10.30 0 36.405 30 ATOM 631 80 8 ALA A 80 632 CB 35.195 1.00 10.99 6 MOTA 38.172 ATOM 633 N ALA A 81 1.00 10.11 7 38.738 ALA A 81 ALA A 81 ALA A 81 1.00 8.94 6 MOTA 634 CA 1.00 10.93 38.881 б **ATOM** 635 C 35 ATOM 39.066 1.00 10.46 636 0 8 ALA A 81 22.577 -0.382 40.119 1.00 8.60 ATOM 637 CB 22.577 -0.382 24.767 -2.153 25.667 -3.283 25.333 -3.770 25.341 -2.891 27.068 -2.744 28.160 -3.765 29.241 -3.350 27.952 -4.901 38.897 1.00 9.68 7 **ATOM** 638 N ASP A 82 ASP A 82 ASP A 82 639 CA 39.195 1.00 13.33 6 MOTA -3.770 40.643 1.00 9.64 MOTA 640 C 6 ASP A 82 25.341 -2.891 41.492 1.00 10.48 40 ATOM 641 0 CB ASP A 82 39.036 1.00 11.80 6 ATOM 642 CG ASP A 82 OD1 ASP A 82 OD2 ASP A 82 38.888 38.394 1.00 13.40 6 ATOM 643 1.00 12.00 8 ATOM 644 39.318 1.00 12.74 8 645 ATOM 45 ATOM 646 N THR A 83 25.143 -5.049 40.755 1.00 9.60 7 25.143 -5.049 24.598 -5.567 25.509 -6.677 26.203 -7.421 23.240 -6.205 22.452 -5.144 22.502 -6.829 25.558 -6.640 1.00 10.59 42.041 6 ATOM 647 CA THR A 83 THR A 83 THR A 83 THR A 83 ATOM 648 C 42.574 1.00 11.19 6 1.00 13.87 41.875 ATOM 649 0 8 CB 41.715 1.00 12.73 6 ATOM 650 50 ATOM 651 OG1 THR A 83 41.178 1.00 11.10 8 CG2 THR A 83 N ASN A 84 CA ASN A 84 652 42.913 1.00 11.07 6 MOTA MOTA 653 43.926 1.00 11.01 7 1.00 12.42 26.421 ~7.579 44.672 6 ATOM 654 27.916 -7.260 44.404 1.00 12.70 ATOM 655 C ASN A 84 28.717 -8.171 26.083 -9.024 26.516 -9.910 26.308 -9.587 27.136 -11.035 28.181 -5.973 29.540 -5.534 1.00 14.84 55 ATOM ASN A 84 28.717 -8.171 44.505 8 656 0 ASN A 1.00 14.55 ATOM 657 CB 84 44.364 6 45.538 1.00 17.95 **ATOM** 658 CG ASN A 84 6 OD1 ASN A 46.712 1.00 16.26 8 659 ATOM 84 ATOM 660 ND2 ASN A 84 45.221 1.00 19.28 7 1.00 11.37 7 ASN A 85 44.137 60 ATOM 661 N 1.00 11.85 1.00 11.88 43.883 ATOM 662 CA ASN A 85 6 -4.745 30.208 44.988 ATOM 663 C ASN A 85 6 ASN A 1.00 14.14 85 31.195 -4.054 44.863 ATOM 664 0 42.574 1.00 12.33 ATOM 665 CB ASN A 85 29.614 -4.736 6 ASN A 85 28.901 -3.418 42.600 1.00 12.64 6 65 ATOM 666 CG ASN A 85 20.501 3.110
OD1 ASN A 85 27.959 -3.237
ND2 ASN A 85 29.298 -2.439
N GLY A 86 29.539 -4.755 CG 1.00 11.43 MOTA 667 43.365 8 41.789 1.00 11.56 7 ATOM 668 46.163 1.00 12.16 MOTA 669

	3.0034	670	G 2	OT 37	75.	0.0	29.982	-4.130	47.358	1.00 12	3.8	6
	ATOM	670	CA	GLY		86						6
	ATOM	671	C	GLY		86	30.003	-2.614	47.377		.42	
	ATOM	672	0	GLY	A	86	30.591	-1.914	48.220		.31	8
	ATOM	673	N	ILE	Α	87	29.329	-2.004	46.388	1.00 12	.81	7
5	ATOM	674	CA	ILE	Α	87	29.278	-0.603	46.104	1.00 11	.71	6
_		675	C	ILE		87	27.805	-0.195	45.920	1.00 10	.49	6
	ATOM										.65	8
	ATOM	676	0	ILE		87	27.039	-0.898	45.250			
	MOTA	677	CB	$_{ m ILE}$	Α	87	30.001	-0.268	44.734		.16	6
	ATOM	678	CG1	ILE	Α	87	31.488	-0.601	44.998	1.00 15	.49	6
10	MOTA	679	CG2	ILE		87	29.743	1.152	44.317	1.00 17	.65	6
10							32.209	-0.655	43.631		.42	6
	MOTA	680	CD1	ILE		87						
	MOTA	681	N	GLY	Α	88	27.452	0.954	46.442		.42	7
	ATOM	682	CA	GLY	Α	88	26.194	1.569	45.989	1.00 11	.25	6
	ATOM	683	C	GLY		88	24.950	0.749	46.250	1.00 9	.96	6
		684	Õ	GLY		88	24.668	0.199	47.288		.18	8
15	MOTA											
	ATOM	685	N	VAL		89	24.106	0.667	45.193		.48	7
	ATOM	686	CA	VAL	Α	89	22.741	0.149	45.260	1.00 8	.53	6
	ATOM	687	С	VAL	Α	89	22.639	-1.190	44.549	1.00 11	.23	6
	ATOM	688	Ō	VAL		89	23.666	-1.596	43.948	1.00 10	.26	8
								1.175	44.689		.06	6
20	ATOM	689	СВ	VAL		89	21.727					
	ATOM	690	CG1		A	89	21.615	2.398	45.639		.70	6
	ATOM	691	CG2	VAL	Α	89	22.081	1.654	43.263	1.00 10	.54	6
	ATOM	692	N	ALA	Α	90	21.477	-1.829	44.640	1.00 7	.95	7
	ATOM	693	CA	ALA		90	21.184	-3.046	43.869		.13	6
~-											.97	6
25	ATOM	694	C	ALA		90	20.078	-2.755	42.876			
	ATOM	695	0	ALA	Α	90	19.085	-2.156	43.204	1.00 10	.80	8
	MOTA	696	CB	ALA	A	90	20.696	-4.124	44.835	1.00 11	.49	6
	ATOM	697	N	GLY		91	20.356	-3.266	41.655	1.00 9	.50	7
							19.313	-3.059	40.624		.29	6
	ATOM	698	CA	GLY		91						
30	ATOM	699	C	\mathtt{GLY}	A	91	18.278	-4.178	40.615		.12	6
	ATOM	700	0	GLY	Α	91	18.457	-5.295	41.120	1.00 9	.70	8
	ATOM	701	N	MET	Α	92	17.069	-3.849	40.120	1.00 10	.51	7
	ATOM	702	CA		A	92	15.995	-4.836	40.046		.40	6
												6
	ATOM	703	C		A	92	16.312	-6.044	39.169		.63	
35	ATOM	704	0	\mathtt{MET}	Α	92	15.853	-7.173	39.474	1.00 10	.07	8
	MOTA	705	CB	MET	Α	92	14.700	-4.133	39.525	1.00 10	.66	6
	ATOM	706	CG		Α	92	14.024	-3.346	40.670	1.00 10	.45	6
				MET		92	13.253	-4.371	41.946		55	16
	ATOM	707	SD									6
	MOTA	708	CE	MET		92	11.912	-5.093	41.007		.16	
40	MOTA	709	N	ALA	Α	93	17.126	-5.840	38.098	1.00 8	8.87	7
	ATOM	710	CA	ALA	Α	93	17.598	-6.935	37.268	1.00 10	.60	6
	ATOM	711	С	ALA		93	19.126	-6.945	37.275	1.00 12	.63	6
							19.803	-6.326	36.467		.07	8
	ATOM	712	0_	ALA		93						
	MOTA	713	CB	ALA		93	17.041	-6.652	35.841		23	6
45	MOTA	714	N	PRO	Α	94	19.692	-7.579	38.287	1.00 10	.81	7
	MOTA	715	CA	PRO	Α	94	21.127	-7.515	38.517	1.00 12	.42	6
	ATOM	716	С	PRO		94	21.963	-7.765	37.291	1.00 12	. 53	6
							22.990	-7.094	37.087	1.00 14		8
	ATOM	717	0	PRO		94						
	MOTA	718	CB	PRO		94	21.350	-8.634	39.578	1.00 11		6
50	ATOM	719	CG	PRO	Α	94	20.077	-8.538	40.360	1.00 12	. 96	6
	MOTA	720	CD	PRO	Α	94	18.941	-8.272	39.338	1.00 12	.20	6
	ATOM	721	N	ASP		95	21.647	-8.786	36.456	1.00 11		7
										1.00 11		
	MOTA	722	CA	ASP		95	22.593	-9.148	35.399			6
	ATOM	723	С	ASP	Α	95	22.215	-8.578	34.037	1.00 12		6
55	ATOM	724	0	ASP	Α	95	23.039	-8.643	33.127	1.00 14	73	8
	ATOM	725	CB	ASP		95		-10.672	35.300	1.00 12		6
									36.572	1.00 18		6
	ATOM	726	CG	ASP		95	23.335	-11.242				
	ATOM	727	OD1	ASP	Α	95	24.147	-10.496	37.098	1.00 20		8
	ATOM	728	OD2	ASP	Α	95	22.929	-12.386	36.860	1.00 27	.51	8
60	ATOM	729	N	THR		96	21.016	-7.956	33.957	1.00 12		7
50		730	CA	THR		96	20.613	-7.407	32.635	1.00 12		6
	ATOM											
	ATOM	731	C	THR		96	21.336	-6.110	32.325	1.00 11		6
	ATOM	732	0	THR	Α	96	21.555	-5.271	33.207	1.00 12		8
	MOTA	733	CB	THR		96	19.095	-7.274	32.590	1.00 10		6
65	ATOM	734	OG1			96	18.501	-8.585	32.725	1.00 12		8
Ų J									31.241	1.00 11		6
	ATOM	735	CG2			96	18.523	-6.733				
	MOTA	736	N	LYS		97	21.685	-5.929	31.026	1.00 10		7
	MOTA	737	CA	LYS	Α	97	22.392	-4.675	30.685	1.00 1	13	6

	ATOM	738	C LYS	. Δ	97	21.400	-3.550	30.376	1.00 12.38	6
	ATOM	739	O LYS		97	20.182	-3.832	30.148	1.00 11.36	8
		740	CB ALYS		97	23.198	-4.880	29.382	0.50 12.99	6
	ATOM					24.181	-6.046	29.425	0.50 17.25	6
_	MOTA	741	CG ALYS		97				0.50 17.25	6
5	ATOM	742	CD ALYS		97	25.152	-5.891	30.584		
	ATOM	743	CE ALYS		97	26.500	-6.533	30.211	0.50 12.42	6
	ATOM	744	NZ ALYS	A	97	27.416	-6.547	31.382	0.50 18.98	7
	ATOM	745	CB BLYS	A	97	23.436	-4.843	29.571	0.50 14.58	6
	ATOM	746	CG BLYS	A	97	24.588	-5.769	29.995	0.50 15.40	6
10	ATOM	747	CD BLYS	A	97	25.597	-5.958	28.888	0.50 16.62	6
	ATOM	748	CE BLYS		97	26.770	-6.845	29.293	0.50 22.87	6
	ATOM	749	NZ BLYS		97	27.610	-6.168	30.320	0.50 27.60	7
						21.861	-2.310	30.465	1.00 10.38	7
	MOTA	750	N ILE		98			30.182		6
	ATOM	751	CA ILE		98	21.048	-1.145		1.00 10.34	
15	ATOM	752	C ILE		98	21.459	-0.617	28.815	1.00 10.92	6
	ATOM	753	O ILE	: A	98	22.618	-0.354	28.624	1.00 12.98	8
	ATOM	754	CB ILE	: A	98	21.342	-0.073	31.253	1.00 10.78	6
	ATOM	755	CG1 ILE	A	98	20.779	-0.412	32.644	1.00 11.69	6
	ATOM	756	CG2 ILE	: A	98	20.758	1.269	30.847	1.00 11.52	6
20	ATOM	757	CD1 ILE		98	21.604	0.253	33.746	1.00 14.34	6
	ATOM	758	N LEU		99	20.522	-0.415	27.892	1.00 9.93	7
	ATOM	759	CA LEU		99	20.815	0.298	26.649	1.00 10.06	6
								26.901	1.00 10.51	6
	MOTA	760	C LEU		99	20.432	1.743			
	ATOM	761	O LEU		99	19.225	2.085	27.071	1.00 9.69	8
25	MOTA	762	CB LEU	JA	99	19.984	-0.359	25.506	1.00 11.55	6
	ATOM	763	CG LEU	JΑ	99	20.103	0.469	24.236	1.00 11.50	6
	ATOM	764	CD1 LEU	J A	99	21.553	0.416	23.750	1.00 12.90	6
	ATOM	765	CD2 LEU	JA	99	19.138	-0.039	23.204	1.00 10.92	6
	ATOM	766	N ALA	A	100	21.356	2.645	27.040	1.00 10.31	7
30	ATOM	767			100	21.060	4.046	27.338	1.00 9.78	6
50	ATOM	768			100	20.713	4.770	26.039	1.00 9.48	6
						21.557	4.833	25.119	1.00 11.85	8
	ATOM	769			100					6
	MOTA	770			100	22.296	4.739	27.974	1.00 11.54	
	ATOM	771			101	19.480	5.268	26.012	1.00 9.16	7
35	ATOM	772	CA VAI	ıΑ	101	19.062	6.013	24.795	1.00 10.09	6
	ATOM	773	C VAI	ιA	101	18.654	7.409	25.253	1.00 10.39	6
	ATOM	774	O VAI	A	101	17.733	7.523	26.060	1.00 9.86	8
	ATOM	775	CB VAI	A	101	17.937	5.305	24.085	1.00 10.01	6
	ATOM	776			101	17.556	6.021	22.742	1.00 11.37	6
40	ATOM	777			101	18.227	3.846	23.765	1.00 12.69	6
40	ATOM	778			102	19.294	8.449	24.771	1.00 10.96	7
					102	19.041	9.797	25.252	1.00 10.30	6
	ATOM	779								
	ATOM	780			102	18.003	10.499	24.396	1.00 13.39	6
	ATOM	781			102	18.193	10.765	23.188	1.00 14.69	8
45	MOTA	782	CB ARG	3 A	102	20.353	10.595	25.469	1.00 11.23	6
	ATOM	783	CG ARC	A	102	19.993	12.026	25.927	1.00 11.92	6
	ATOM	784	CD ARC	ŀΑ	102	21.318	12.674	26.332	1.00 11.26	6
	ATOM	785	NE ARC	A	102	21.088	13.998	26.872	1.00 13.14	7
	ATOM	786	CZ ARC	A	102	21.537	15.160	26.462	1.00 17.86	6
50	ATOM	787	NH1 ARC			22.286	15.196	25.353	1.00 17.29	7
20	ATOM	788			102	21.231	16.264	27.119	1.00 13.78	7
	ATOM	789			103	16.871	10.780	24.968	1.00 11.62	7
	ATOM	790			103	15.757	11.445	24.301	1.00 11.54	6
	ATOM	791			103	15.264	12.696	25.053	1.00 12.58	6
55	ATOM	792			103	14.272	13.343	24.613	1.00 15.25	8
	ATOM	793	CB VAI	A	103	14.520	10.520	24.049	1.00 12.23	6
	ATOM	794	CG1 VAI	À	103	14.893	9.393	23.047	1.00 15.01	6
	ATOM	795	CG2 VAI			13.912	9.972	25.323	1.00 14.01	6
	ATOM	796			104	15.806	13.018	26.201	1.00 13.17	7
60	ATOM	797			104	15.505	14.207	26.989	1.00 13.95	6
60						16.824		27.248		
	ATOM	798			104		14.933		1.00 11.06	6
	MOTA	799			104	17.900	14.395	27.389	1.00 12.49	8
	ATOM	800			104	14.908	13.887	28.361	1.00 16.60	6
	MOTA	801			104	13.683	12.967	28.283	1.00 12.90	6
65	ATOM	802	CD1 LEU	JΑ	104	13.236	12.655	29.717	1.00 15.91	6
	ATOM	803			104	12.590	13.532	27.433	1.00 17.02	6
	ATOM	804			105	16.640	16.297	27.188	1.00 14.57	7
	ATOM	805			105	17.795	17.210	27.308	1.00 11.73	6
	111011	555	C. P.DI							_

			~			10 165	17 400	20 727	1.00 14.97	6
	ATOM	806	C		A 105	18.165	17.499	28.737		
	ATOM	807	0		A 105	17.755	16.820	29.654	1.00 13.31	
	ATOM	808	CB	ASP A	A 105	17.447	18.495	26.529	1.00 15.08	
	ATOM	809	CG	ASP A	A 105	16.415	19.378	27.163	1.00 21.30) 6
5	ATOM	810		ASP A		16.024	19.199	28.320	1.00 16.65	8
ر				ASP A		15.940	20.341	26.470	1.00 22.26	
	ATOM	811								
	ATOM	812	N	ALA A	A 106	19.112	18.442	28.926	1.00 15.23	
	ATOM	813	ÇA	ALA A	A 106	19.549	18.691	30.304	1.00 13.88	
	ATOM	814	C	ΔΤ.Δ	A 106	18.448	19.148	31.242	1.00 14.07	6
10	ATOM	815	Ö		A 106	18.632	18.970	32.464	1.00 15.73	
10										
	ATOM	816	CB		A 106	20.623	19.791	30.277	1.00 16.83	
	ATOM	817	N	ASN A	A 107	17.337	19.694	30.787	1.00 15.93	
	MOTA	818	CA	ASN A	A 107	16.227	20.076	31.629	1.00 18.54	. 6
	ATOM	819	C		A 107	15.139	19.031	31.736	1.00 17.24	. 6
4 =							19.274	32.355	1.00 19.75	
15	ATOM	820	0		A 107	14.093				
	MOTA	821	CB	ASN A	A 107	15.587	21.347	31.038	1.00 23.46	
	ATOM	822	CG	ASN A	A 107	16.601	22.481	31.051	1.00 26.78	6
	ATOM	823	OD1	ASN A	4 107	17.162	22.753	32.113	1.00 25.51	. 8
		824		ASN A		16.820	23.099	29.904	1.00 26.59	
	ATOM									
20	MOTA	825	N		A 108	15.389	17.863	31.134	1.00 16.72	
	MOTA	826	CA	GLY A	A 108	14.401	16.793	31.185	1.00 19.02	
	ATOM	827	C	GLY Z	A 108	13.346	16.911	30.090	1.00 19.28	6
	ATOM	828	Ō		A 108	12.324	16.199	30.201	1.00 23.96	8
						13.569	17.695	29.071	1.00 18.97	
	ATOM	829	N		A 109					
25	MOTA	830	CA	SER A	A 109	12.556	17.941	28.046	1.00 19.93	
	ATOM	831	С	SER A	A 109	12.936	17.281	26.738	1.00 19.26	
	ATOM	832	0	SER	A 109	14.111	17.132	26.434	1.00 16.92	8
		833	СВ		A 109	12.425	19.456	27.829	1.00 27.39	
	ATOM									
	MOTA	834	OG		A 109	12.017	20.008	29.076	1.00 36.14	
30	ATOM	835	N	GLY Z	A 110	11.937	16.950	25.927	1.00 19.72	
	ATOM	836	CA	GLY	A 110	12.225	16.262	24.673	1.00 20.18	3 6
	ATOM	837	C		A 110	11.058	16.418	23.718	1.00 21.15	6
									1.00 27.11	
	ATOM	838	0		A 110	9.991	16.848	24.138		
	ATOM	839	N	SER	A 111	11.377	16.282	22.422	1.00 16.93	
35	ATOM	840	CA	SER .	A 111	10.303	16.416	21.451	1.00 18.93	6
	ATOM	841	C		A 111	9.655	15.052	21.244	1.00 17.00) 6
			Õ			10.258	14.004	21.422	1.00 17.14	
	MOTA	842			A 111					
	ATOM	843	CB	SER .	A 111	10.853	16.982	20.148	1.00 21.62	
	ATOM	844	OG	SER .	A 111	11.640	16.039	19.448	1.00 23.26	8
40	ATOM	845	N	LEU :	A 112	8.354	15.122	20.969	1.00 16.14	7
	ATOM	846	CA		A 112	7.698	13.807	20.756	1.00 15.65	6
	ATOM	847	С		A 112	8.360	13.083	19.577		
	ATOM	848	0	LEU .	A 112	8.393	11.832	19.644	1.00 17.13	
	ATOM	849	CB	LEU .	A 112	6.187	13.940	20.629	1.00 21.83	L 6
45	ATOM	850	CG		A 112	5.437	14.470	21.857	1.00 22.13	6
43				LEU .		3.926	14.464	21.622	1.00 28.11	
	ATOM	851								
	ATOM	852	CD2	LEU .		5.685	13.699	23.153	1.00 25.27	7 6
	ATOM	853	N	ASP .	A 113	8.726	13.761	18.498	1.00 17.80	7
	ATOM	854	CA		A 113	9.300	12.973	17.388	1.00 18.50) 6
50	ATOM	855	C		A 113	10.622	12.343	17.758	1.00 19.37	
50									1.00 18.50	
	ATOM	856	0		A 113	10.820	11.187	17.316		
	MOTA	857	CB	ASP .	A 113	9.322	13.894	16.160	1.00 20.24	
	MOTA	858	CG	ASP	A 113	8.011	14.173	15.519	1.00 19.59	9 6
	ATOM	859			A 113	7.995	15.140	14.672	1.00 29.00	8 (
					A 113	6.943	13.587	15.713	1.00 24.47	
55	MOTA	860								
	MOTA	861	N	SER	A 114	11.438	12.963	18.569	1.00 17.25	
	MOTA	862	CA	SER	A 114	12.699	12.385	19.032	1.00 20.53	L 6
	ATOM	863	С		A 114	12.440	11.230	19.998	1.00 17.38	3 6
		864	Õ			13.134	10.212	19.896	1.00 16.74	
	ATOM				A 114					
60	ATOM	865	CB		A 114	13.525	13.459	19.733	1.00 25.73	
	ATOM	866	OG	SER	A 114	14.016	14.313	18.706	1.00 28.28	8
	MOTA	867	N		A 115	11.470	11.380	20.891	1.00 13.42	2 7
	ATOM	868	CA		A 115	11.184	10.283	21.816	1.00 11.54	
	ATOM	869	C		A 115	10.687	9.106	21.001	1.00 11.78	
65	ATOM	870	0	$_{ m ILE}$	A 115	11.072	7.934	21.265	1.00 12.76	
	ATOM	871	CB	ILE	A 115	10.132	10.720	22.855	1.00 12.33	1 6
	ATOM	872	CG1		A 115	10.815	11.775	23.737	1.00 15.30	
				TT 77	2 41C					
	ATOM	873	CG2	TIPE	A 115	9.621	9.579	23.726	1.00 14.78	, 0

	ATOM	874	CD1	ILE A	115	9.771	12.522	24.544	1.00 16.55	6
	ATOM	875	N	ALA A		9.807	9.353	20.024	1.00 12.41	7
	ATOM	876	CA	ALA A		9.318	8.291	19.178	1.00 11.46	6
	MOTA	877	C	ALA A	116	10.435	7.610	18.400	1.00 10.70	
5	MOTA	878	0	ALA A	. 116	10.537	6.377	18.397	1.00 11.22	8
	MOTA	879	CB	ALA A		8.292	8.902	18.184	1.00 14.75	6
	MOTA	880	N	SER A		11.370	8.395	17.848	1.00 12.15	7
	MOTA	881	CA	SER A		12.490	7.738	17.150	1.00 12.96	
	MOTA	882	C	SER A		13.387	6.913	18.093	1.00 10.71	
10	ATOM	883	0	SER A		13.805	5.814	17.704	1.00 13.52	
	ATOM	884	CB	SER A		13.345	8.825	16.510	1.00 15.02	
	ATOM	885	OG	SER A		12.600	9.369	15.405	1.00 17.64	
	ATOM	886	N	GLY A		13.537	7.392	19.343	1.00 11.17	
	ATOM	887	CA	GLY A		14.357	6.612	20.301	1.00 11.65 1.00 12.79	
15	ATOM	888	C	GLY A		13.617 14.241	5.336 4.305	20.707 20.887	1.00 12.79	
	ATOM	889 890	O N	ILE A		12.284	5.358	20.869	1.00 10.37	
	ATOM ATOM	891	N CA	ILE A		11.517	4.140	21.164	1.00 10.37	
	ATOM	892	CA	ILE A		11.754	3.131	20.016	1.00 9.88	
20	ATOM	893	0	ILE A		11.754	1.949	20.317	1.00 9.88	
20	ATOM	894	CB	ILE A		10.045	4.484	21.337	1.00 8.90	
	ATOM	895		ILE A		9.871	5.274	22.714	1.00 10.96	
	ATOM	896	CG2	ILE A		9.131	3.264	21.306	1.00 10.98	
	ATOM	897		ILE A		8.439	5.822	22.768	1.00 11.18	
25	ATOM	898	N	ARG A		11.557	3.597	18.756	1.00 9.24	7
	ATOM	899	CA	ARG A	120	11.799	2.616	17.683	1.00 10.97	6
	ATOM	900	С	ARG A	120	13.239	2.125	17.652	1.00 9.58	6
	ATOM	901	0	ARG A	120	13.447	0.905	17.482	1.00 11.11	
	ATOM	902	CB	ARG A	120	11.497	3.354	16.336	1.00 10.45	
30	MOTA	903	CG	ARG A	120	10.021	3.739	16.215	1.00 12.73	6
	ATOM	904	CD	ARG A		9.770	4.717	14.988	1.00 12.77	
	MOTA	905	NE	ARG A		9.824	3.724	13.911	1.00 13.28	
	MOTA	906	CZ	ARG A		8.753	3.068	13.512	1.00 11.79	
	ATOM	907		ARG A		7.523	3.292	13.896	1.00 12.69	
35	ATOM	908	NH2	ARG A		8.965	2.095	12.638	1.00 11.60	
	ATOM	909	N	TYR A		14.187	3.005	17.934 17.988	1.00 10.24 1.00 12.90	
	ATOM	910	CA	TYR A		15.594 15.860	2.588 1.471	18.969	1.00 12.90	
	ATOM ATOM	911 912	C	TYR F		16.522	0.447	18.788	1.00 9.83	
40	ATOM	913	O CB	TYR A		16.416	3.837	18.292	1.00 12.06	
40	ATOM	914	CG	TYR A		17.853	3.571	18.596	1.00 11.82	
	ATOM	915	CD1			18.818	3.475	17.604	1.00 13.12	
	ATOM	916	CD2			18.273	3.395	19.896	1.00 11.97	
	ATOM	917	CE1	TYR A		20.157	3.225	17.930	1.00 13.85	
45	ATOM	918	CE2			19.575	3.177	20.250	1.00 11.79	6
	ATOM	919	CZ	TYR A	121	20.518	3.073	19.252	1.00 15.08	6
	ATOM	920	OH	TYR A	121	21.856	2.849	19.585	1.00 17.95	8
	ATOM	921	N	ALA A	122	15.231	1.676	20.166	1.00 9.11	
	MOTA	922	CA	ALA A	122	15.446	0.670	21.197	1.00 9.16	
50	MOTA	923	C	ALA A		14.894	-0.675	20.774	1.00 10.24	
	ATOM	924	0	ALA A		15.500	-1.733	21.045	1.00 12.08	
	ATOM	925	CB	ALA A		14.726	1.101	22.481	1.00 10.97	
	ATOM	926	N	ALA A		13.672	-0.746	20.160	1.00 10.00	
	ATOM	927	CA	ALA A		13.177	-2.032	19.660	1.00 9.79	
55	MOTA	928	C	ALA A		14.082	-2.548	18.522	1.00 10.77	
	ATOM	929	O	ALA A		14.298	-3.791	18.464	1.00 12.07 1.00 12.17	
	ATOM	930	CB	ALA A		11.747	-1.789	19.135		
	ATOM	931	N	ASP A		14.513	-1.608	17.684 16.548	1.00 10.69 1.00 11.25	
60	ATOM	932	CA	ASP A		15.338 16.699	-2.079 -2.611	17.014	1.00 11.25	
60	ATOM ATOM	933 934	C	ASP A		17.263	-3.536	16.372	1.00 11.36	
		934	O CB	ASP A		15.528	-0.967	15.527	1.00 12.55	
	ATOM ATOM	936	CG	ASP A		14.197	-0.704	14.727	1.00 10.02	
	ATOM	937		ASP A		13.461	-1.679	14.609	1.00 11.72	
65	ATOM	938		ASP A		14.060	0.480	14.352	1.00 13.00	
55	ATOM	939	N	GLN A		17.178	-2.140	18.152	1.00 10.69	
	ATOM	940	CA	GLN A		18.385	-2.681	18.772	1.00 11.00	
	ATOM	941	C	GLN A		18.156	-3.958	19.527	1.00 10.13	

	ATOM	942	0	GLN A	125	19.112	-4.519	20.114	1.00	14.93	8
	ATOM	943	CB	GLN A		19.045	-1.632	19.690		13.56	6
			CG	GLN A		19.636	-0.472	18.900	1.00		6
	ATOM	944						18.192	1.00		6
	ATOM	945	CD	GLN A		20.953	-0.735				
5	ATOM	946	OE1			21.571	-1.784	18.291	1.00		8
	ATOM	947	NE2	GLN A		21.464	0.234	17.433		29.01	7
	ATOM	948	N	GLY A	126	16.930	-4.457	19.666	1.00	9.97	7
	MOTA	949	CA	GLY A	126	16.710	-5.768	20.279	1.00	11.91	6
	ATOM	950	C	GLY A		16.402	-5.656	21.789	1.00	9.69	6
10	ATOM	951	Ō	GLY A		16.461	-6.756	22.347	1.00	11.42	8
10			N	ALA A		16.191	-4.473	22.311	1.00		7
	ATOM	952						23.775	1.00		6
	ATOM	953	CA	ALA A		15.916	-4.514				
	ATOM	954	C	ALA A		14.656	-5.298	24.094		11.87	6
	MOTA	955	0	ALA A	127	13.625	-5.169	23.382		11.59	8
15	ATOM	956	CB	ALA A	127	15.812	-3.046	24.241	1.00	11.61	6
	MOTA	957	N	LYS A	128	14.714	-6.115	25.193	1.00	10.72	7
	ATOM	958	CA	LYS A	128	13.507	-6.851	25.520	1.00	10.65	6
	ATOM	959	C	LYS A		12.450	-6.045	26.274	1.00	8.78	6
	ATOM	960	0	LYS A		11.270	-6.377	26.201		10.35	8
							-8.046	26.442		12.01	6
20	ATOM	961	CB	LYS A		13.834					
	ATOM	962	CG	LYS A		14.845	-9.003	25.841		17.41	6
	ATOM	963	CD	LYS A		14.181	-9.713	24.663		17.61	6
	MOTA	964	CE	LYS A	128	15.182	-10.781	24.174		24.85	6
	MOTA	965	NZ	LYS A	128	14.810	-11.333	22.835	1.00	23.69	7
25	MOTA	966	N	VAL A	129	12.912	-4.970	26.905	1.00	9.09	7
	ATOM	967	CA	VAL A		12.007	-4.094	27.687	1.00	8.78	6
	ATOM	968	C	VAL A		12.468	-2.678	27.406	1.00	8.25	6
	ATOM	969	0	VAL A		13.664	-2.390	27.317		10.23	8
								29.188		10.07	6
	ATOM	970	CB	VAL A		12.239	-4.362				
30	MOTA	971		VAL A		11.286	-3.527	30.071		10.09	6
	ATOM	972	CG2	VAL A	129	11.977	-5.856	29.468		10.08	6
	ATOM	973	\mathbf{N}	LEU A	130	11.489	-1.779	27.289	1.00	8.25	7
	ATOM	974	CA	LEU A	130	11.736	-0.350	27.185	1.00	8.42	6
	ATOM	975	С	LEU A		11.104	0.353	28.411	1.00	8.00	6
35	ATOM	976	ō	LEU A		9.952	0.083	28.784	1.00	9.41	8
33				LEU A		11.008	0.264	25.940		11.97	6
	ATOM	977	CB								
	MOTA	978	CG	LEU A		11.719	0.108	24.579		10.92	6
	ATOM	979		LEU A		11.814	-1.346	24.191		13.24	6
	MOTA	980	CD2	LEU A		10.890	0.862	23.514		10.28	6
40	ATOM	981	N	ASN A	131	11.941	1.213	29.065	1.00	7.78	7
	ATOM	982	CA	ASN A	131	11.363	1.989	30.168	1.00	8.96	6
	ATOM	983	C	ASN A	131	11.240	3.469	29.713	1.00	9.31	6
	MOTA	984	Ö	ASN A		12.244	4.033	29.259		11.04	8
	ATOM	985	СВ		131	12.331	1.939	31.372	1.00	9.40	6
4.5	ATOM			ASN A		11.721	2.692	32.537	1.00	9.88	6
45		986	CG								
	MOTA	987		ASN A		10.903	2.118	33.269		10.13	8
	MOTA	988	ND2	ASN A		12.055	3.968	32.661	1.00	9.63	7
	MOTA	989	N	LEU A		9.984	3.975	29.880	1.00	8.49	7
	MOTA	990	CA	LEU A	A 132	9.726	5.379	29.557	1.00	9.46	6
50	MOTA	991	С	LEU A	A 132	9.192	6.133	30.788	1.00	9.52	6
	ATOM	992	0	LEU A		8.007	6.230	31.045	1.00	9.42	8
	ATOM	993	СВ	LEU		8.612	5.453	28.466	1.00	9.79	6
						9.154	4.944	27.085		11.13	6
	MOTA	994	CG		A 132						
	ATOM	995		LEU Z		8.014	4.418	26.261		12.43	6
55	ATOM	996	CD2	LEU Z		9.822	6.117	26.408		15.07	6
	MOTA	997	N	SER A	A 133	10.203	6.676	31.523	1.00	9.31	7
	MOTA	998	CA	SER A	A 133	9.908	7.485	32.708	1.00	8.09	6
	ATOM	999	C	SER	133	9.697	8.938	32.219	1.00	9.51	6
	ATOM	1000	Õ		A 133	10.434	9.828	32.570		12.68	8
60						11.008	7.383	33.752		10.34	6
60	MOTA	1001	CB		A 133						
	MOTA	1002	OG		A 133	10.943	6.119	34.401	1.00	9.84	8
	MOTA	1003	N		A 134	8.623	9.104	31.429	1.00	9.63	7
	MOTA	1004	CA	LEU I	A 134	8.400	10.415	30.762	1.00	9.62	6
	ATOM	1005	C	LEU Z	A 134	6.942	10.351	30.296		12.30	6
65	ATOM	1006	0		A 134	6.298	9.299	30.147		11.68	8
	ATOM	1007	СB		A 134	9.378	10.676	29.612		12.20	6
	ATOM	1007	CG		A 134	9.390	9.650	28.500		11.16	6
							9.976	27.482		13.93	6
	ATOM	1009	CDT	LEU	1 134	8.275	2.2/0	21.402	1.00	13.23	o

	ATOM	1010	CD2	LEU	Α	134	10.722	9.590	27.782	1.00	16.32	6
	ATOM	1011	N	GLY			6.429	11.549	29.949	1.00	12.94	7
	ATOM	1012	CA	GLY			5.066	11.531	29.372		16.25	6
		1012	C	GLY			4.494	12.937	29.388		20.76	6
_	ATOM						5.104	13.911	29.837		19.61	8
5	MOTA	1014	0	GLY					28.855			7
	MOTA	1015	N	CYS			3.264	12.934			16.71	6
	ATOM	1016	CA	CYS			2.541	14.220	28.850	1.00		
	ATOM	1017	С	CYS			1.077	13.966	28.524		16.55	6
	MOTA	1018	0	CYS			0.649	12.886	28.170		14.70	8
10	ATOM	1019	CB	CYS	Α	136	3.085	15.195	27.836	1.00	22.72	6
	ATOM	1020	SG	CYS	Α	136	3.714	14.546	26.303	1.00	26.03	16
	MOTA	1021	N	GLU	A	137	0.333	15.093	28.682	1.00	18.30	7
	ATOM	1022	CA	GLU			-1.056	15.040	28.175	1.00	17.88	6
	ATOM	1023	C	GLU			-1.003	15.557	26.748	1.00	22.52	6
15	ATOM	1023	Ö	GLU			-1.289	16.704	26.391		21.83	8
13	ATOM	1025	СВ	GLU			-2.021	15.837	29.031		20.26	6
							-2.281	15.296	30.439		22.38	6
	MOTA	1026	CG	GLU							26.72	6
	MOTA	1027	CD	GLU			-3.418	16.130	31.064			
	MOTA	1028		GLU			-3.051	17.088	31.746		35.28	8
20	MOTA	1029		GLU			-4.576	15.757	30.819		21.07	8
	ATOM	1030	N	CYS			-0.616	14.673	25.866		21.75	7
	MOTA	1031	CA	CYS	Α	138	-0.209	14.969	24.515		27.45	6
	ATOM	1032	C	CYS	Α	138	-0.666	13.873	23.581	1.00	31.92	6
	MOTA	1033	0	CYS	Α	138	-0.656	12.705	23.982	1.00	30.57	8
25	ATOM	1034	CB	CYS	Α	138	1.332	15.100	24.522	1.00	29.63	6
	ATOM	1035	SG	CYS	Α	138	2.180	13.664	25.316	1.00	26.98	16
	ATOM	1036	N	ASN			-1.166	14.258	22.421	1.00	30.94	7
	ATOM	1037	CA	ASN			-1.597	13.300	21.407	1.00	30.40	6
	ATOM	1038	C	ASN			-0.544	13.308	20.306		27.83	6
2.0	ATOM	1030	Ö	ASN			-0.056	14.362	19.882		27.73	8
30							-2.957	13.676	20.845		34.15	6
	ATOM	1040	CB	ASN								6
	MOTA	1041	CG	ASN			-4.122	12.993	21.530		44.83	
	ATOM	1042		ASN			-4.207	13.025	22.756		38.38	8
	ATOM	1043	ND2				-4.999	12.389	20.735		50.90	7
35	MOTA	1044	N	SER	Α	140	-0.166	12.120	19.829		18.15	7
	ATOM	1045	CA	SER	Α	140	0.870	12.081	18.795		18.59	6
	ATOM	1046	C	SER	Α	140	0.759	10.738	18.087	1.00	16.05	6
	MOTA	1047	0	SER	Α	140	0.941	9.697	18.736	1.00	16.64	8
	ATOM	1048	CB	SER			2.267	12.165	19.402	1.00	20.72	6
40	ATOM	1049	OG	SER			3.309	11.908	18.514	1.00	23.30	8
	ATOM	1050	N	THR			0.370	10.712	16.804		18.63	7
	ATOM	1051	CA	THR			0.271	9.420	16.137		18.09	6
				THR			1.670	8.843	15.884		15.35	6
	ATOM	1052	C				1.750	7.578	15.886		15.18	8
4 ==	ATOM	1053	0	THR							20.90	6
45	ATOM	1054	CB	THR			-0.540	9.429				8
	MOTA	1055		THR			0.118	10.358	13.966		23.57	
	ATOM	1056	CG2				-1.990				17.57	6
	MOTA	1057	N	THR			2.720	9.626	15.861		16.63	7
	MOTA	1058	CA	THR	A	142	4.094	9.149			14.88	6
50	MOTA	1059	C	THR	Α	142	4.529	8.429		1.00	13.11	6
	ATOM	1060	0	THR	Α	142	5.094	7.345	16.979	1.00	14.05	8
	ATOM	1061	CB	THR	Α	142	4.997	10.341	15.457	1.00	24.16	6
	MOTA	1062	OG1	THR	Α	142	4.523	10.835	14.153	1.00	28.29	8
	ATOM	1063	CG2				6.432	9.970	15.210	1.00	26.14	6
55	MOTA	1064	N	LEU			4.124	8.997			13.69	7
55	ATOM	1065	CA	LEU			4.512		19.463		13.71	6
			C	LEU			3.729		19.617		12.67	6
	ATOM	1066					4.267		20.055		11.28	8
	ATOM	1067	O	LEU								
	ATOM	1068	CB	LEU			4.184	9.316			12.30	6
60	MOTA	1069	CG	LEU			4.738				15.95	6
	MOTA	1070		LEU			6.227		22.029		15.41	6
	MOTA	1071	CD2	LEU			4.099				15.72	6
	MOTA	1072	N	LYS	Α	144	2.400		19.314		11.25	7
	ATOM	1073	CA	LYS	Α	144	1.651	5.858	19.420	1.00	11.23	6
65	MOTA	1074	С	LYS			2.211	4.764	18.517	1.00	10.18	6
	ATOM	1075	0	LYS			2.312			1.00	10.89	8
	ATOM	1076	CB	LYS			0.159				15.25	6
	ATOM	1077	CG	LYS			-0.627				18.48	6
	*** O1.1	±0//	-0		2.7		5.027	1.703	,,,,,,,			•

	ATOM	1078	CD	LYS A	144	-2.062	4.950	19.844	1.00 24.85	6
	ATOM	1079	CE	LYS A		-2.564	3.597	20.366	1.00 15.78	6
	ATOM	1080	NZ	LYS A		-2.599	2.616	19.228	1.00 14.78	7
	ATOM	1081	N	SER A		2.539	5.151	17.273	1.00 11.46	7
5	ATOM	1082	CA	SER F		3.097	4.182	16.357	1.00 10.88	6
ر	ATOM	1083	C	SER A		4.407	3.579	16.834	1.00 10.64	6
	ATOM	1084	0	SER A		4.628	2.364	16.771	1.00 11.55	8
	ATOM	1085	CB	SER A		3.372	4.933	15.034	1.00 11.53	6
	MOTA	1086	OG	SER F		4.095	4.059	14.159	1.00 12.02	8
10	MOTA	1087	N	ALA A		5.223	4.406	17.500	1.00 11.16	7
10	ATOM	1088	CA	ALA A		6.521	3.907	17.961	1.00 10.64	6
	ATOM	1089	C	ALA A		6.280	2.864	19.071	1.00 8.68	6
	ATOM	1090	0	ALA A		6.945	1.842	19.103	1.00 10.24	8
	ATOM	1091	CB	ALA A		7.363	5.053	18.531	1.00 13.58	6
15	ATOM	1092	N	VAL A		5.345	3.181	19.973	1.00 9.25	7
13	ATOM	1093	CA	VAL A		5.063	2.216	21.057	1.00 10.47	6
	ATOM	1094	C	VAL A		4.479	0.936	20.530	1.00 9.13	6
	ATOM	1095	Ö	VAL A		4.842	-0.172	20.914	1.00 11.53	8
	ATOM	1096	ČВ	VAL A		4.051	2.840	22.072	1.00 9.11	6
20	ATOM	1097		VAL A		3.468	1.828	23.057	1.00 10.14	6
20	ATOM	1098		VAL A		4.741	3.918	22.848	1.00 11.38	6
	ATOM	1099	N	ASP A		3.531	1.044	19.538	1.00 10.88	7
	ATOM	1100	CA	ASP A		2.945	-0.158	18.998	1.00 9.20	6
	ATOM	1101	C	ASP A		3.904	-0.986	18.148	1.00 10.40	6
25	ATOM	1102	ō	ASP A		3.989	-2.216	18.235	1.00 12.08	8
	ATOM	1103	СB	ASP A		1.722	0.191	18.150	1.00 9.51	6
	ATOM	1104	CG	ASP A		0.523	0.649	18.916	1.00 12.65	6
	ATOM	1105		ASP A		-0.363	1.347	18.361	1.00 13.89	8
	ATOM	1106		ASP A		0.454	0.337	20.139	1.00 12.46	8
30	ATOM	1107	N	TYR F		4.776	-0.203	17.443	1.00 10.28	7
	ATOM	1108	CA	TYR A	149	5.839	-0.920	16.701	1.00 11.03	6
	ATOM	1109	C	TYR A		6.725	-1.735	17.654	1.00 11.91	6
	ATOM	1110	0	TYR A		7.097	-2.870	17.371	1.00 11.38	8
	ATOM	1111	СВ	TYR A		6.606	0.125	15.893	1.00 9.52	6
35	ATOM	1112	CG	TYR A		7.854	-0.425	15.218	1.00 9.13	6
	MOTA	1113	CD1	TYR A	149	7.714	-1.156	14.034	1.00 13.04	6
	ATOM	1114	CD2	TYR A	149	9.133	-0.220	15.669	1.00 9.76	6
	MOTA	1115	CE1	TYR A	149	8.844	-1.655	13.380	1.00 11.71	6
	ATOM	1116	CE2	TYR F	149	10.277	-0.692	15.036	1.00 10.97	6
40	ATOM	1117	CZ	TYR A	149	10.099	-1.415	13.843	1.00 13.29	6
	ATOM	1118	OH	TYR A	149	11.230	-1.879	13.246	1.00 12.70	8
	ATOM	1119	N	ALA A	150	7.149	-1.061	18.759	1.00 10.29	7
	MOTA	1120	CA	ALA A	150	8.086	-1.801	19.644	1.00 10.75	6
	ATOM	1121	C	ALA A	150	7.409	-3.014	20.263	1.00 12.48	6
45	MOTA	1122	0	ALA A		7.986	-4.102	20.400	1.00 11.16	8
	ATOM	1123	CB	ALA A		8.414	-0.867	20.792	1.00 11.39	6
	MOTA	1124	N	TRP A			-2.882			7
	ATOM	1125	CA	TRP A		5.362	-4.015	21.124	1.00 10.13	6
	ATOM	1126	C	TRP A		5.261	-5.146	20.085	1.00 9.48	6
50	ATOM	1127	0	TRP A		5.539	-6.305	20.358	1.00 10.95	8
	MOTA	1128	CB	TRP A		3.927	-3.582	21.579	1.00 10.48	6
	MOTA	1129	CG	TRP A		3.161	-4.785	21.971	1.00 11.85	6
	ATOM	1130		TRP A		2.277	-5.511	21.197	1.00 13.81	6
	ATOM	1131	CD2			3.146	-5.490	23.235	1.00 9.96	6
55	ATOM	1132		TRP A		1.771	-6.612	21.846	1.00 15.34	7
	ATOM	1133		TRP A		2.285	-6.592	23.111	1.00 11.52	6
	MOTA	1134		TRP A		3.799	-5.270	24.452	1.00 12.17	6
	ATOM	1135		TRP A		2.055	-7.487	24.161	1.00 11.76	6
	ATOM	1136		TRP A		3.603	-6.161	25.520	1.00 14.83	6
60		1137		TRP A		2.747	-7.235	25.354	1.00 11.91	6
	ATOM	1138	N	ASN A		4.921	-4.758	18.850	1.00 10.31	7
	ATOM	1139	CA	ASN A		4.758	-5.805	17.805	1.00 10.90	6
	ATOM	1140	C	ASN A		6.078	-6.365	17.381	1.00 12.51	6
	MOTA	1141	0	ASN A		6.094	-7.498	16.850	1.00 18.29	8
65	ATOM	1142	CB	ASN A		4.057	-5.138	16.614	1.00 12.21	6
	ATOM	1143	CG	ASN A		2.596	-4.898	16.919	1.00 15.60	6
	ATOM	1144		ASN A		1.888	-5.697	17.581	1.00 16.16	8 7
	ATOM	1145	MDZ	ASN A	4 T27	2.084	-3.807	16.394	1.00 16.47	,

	ATOM	1146	N	LYS	Α	153	7.214	-5.769	17.698	1.00	12.60	7
	ATOM	1147	CA	LYS			8.552	-6.282	17.497	1.00	12.34	6
	ATOM	1148	C	LYS			8.890	-7.341	18.558	1.00	11.63	6
	MOTA	1149	0	LYS			9.908	-8.014	18.454	1.00	16.70	8
5	MOTA	1150	СВ	LYS	Α	153	9.587	-5.158	17.537	1.00	14.85	6
_	ATOM	1151	CG	LYS			9.633	-4.265	16.316	1.00	21.79	6
	ATOM	1152	CD	LYS			10.522	-4.776	15.210	1.00	20.60	6
	ATOM	1153	CE	LYS	А	153	12.016	-4.864	15.642	1.00	14.64	6
	ATOM	1154	NZ	LYS			12.600	-5.708	14.521	1.00	23.18	7
10	ATOM	1155	N	GLY			8.101	-7.351	19.658	1.00	11.47	7
	ATOM	1156	CA	GLY			8.345	-8.288	20.722	1.00	10.77	6
	ATOM	1157	C	GLY			8.817	-7.664	22.030	1.00	10.93	6
	ATOM	1158	0	GLY			9.088	-8.468	22.922	1.00	12.36	8
	ATOM	1159	N	ALA	Α	155	8.909	-6.356	22.134	1.00	10.32	7
15	ATOM	1160	CA	ALA			9.381	-5.744	23.380	1.00	9.51	6
	ATOM	1161	C	ALA			8.226	-5.469	24.340	1.00	10.33	6
	ATOM	1162	Ō	ALA			7.074	-5.268	23.959	1.00	10.45	8
	ATOM	1163	СВ	ALA			10.101	-4.418	22.994	1.00	10.15	6
	ATOM	1164	N	VAL			8.529	-5.419	25.626	1.00	10.20	7
20	ATOM	1165	CA	VAL			7.608	-4.930	26.644	1.00	9.64	6
	ATOM	1166	C	VAL			7.900	-3.424	26.826	1.00	11.32	6
	ATOM	1167	0	VAL	Α	156	9.077	-3.071	26.918	1.00	11.90	8
	ATOM	1168	CB	VAL	Α	156	7.867	-5.665	27.974	1.00	8.78	6
	ATOM	1169	CG1	VAL	Α	156	6.965	-5.108	29.060	1.00	8.99	6
25	ATOM	1170	CG2	VAL	Α	156	7.629	-7.139	27.784	1.00	10.63	6
	ATOM	1171	N	VAL			6.818	-2.653	26.805	1.00	8.38	7
	ATOM	1172	CA	VAL			6.923	-1.208	27.010	1.00	7.61	6
	ATOM	1173	С	VAL			6.322	-0.872	28.402	1.00	7.95	6
	ATOM	1174	0	VAL	Α	157	5.156	-1.202	28.638	1.00	9.65	8
30	ATOM	1175	CB	VAL	Α	157	6.194	-0.421	25.888	1.00	9.67	6
	ATOM	1176		VAL			6.257	1.064	26.099	1.00	11.64	6
	ATOM	1177	CG2	VAL			6.789	-0.831	24.528	1.00	11.35	6
	ATOM	1178	N	VAL			7.116	-0.189	29.203	1.00	8.45	7
	ATOM	1179	CA	VAL			6.700	0.190	30.574	1.00	9.13	6
35	ATOM	1180	C	VAL			6.807	1.706	30.663	1.00	9.56	6
	ATOM	1181	0	VAL			7.873	2.222	30.248	1.00	9.44	8
	ATOM	1182	CB	VAL			7.639	-0.489	31.598	1.00	8.39	6
	ATOM	1183	CG1	VAL			7.139	-0.079	33.007	1.00	9.17	6
	ATOM	1184	CG2	VAL	Α	158	7.635	-2.003	31.414	1.00	9.94	6
40	ATOM	1185	N	ALA	Α	159	5.799	2.385	31.165	1.00	8.36	7
	ATOM	1186	CA	ALA			5.874	3.865	31.227	1.00	8.80	6
	ATOM	1187	C	ALA	Α	159	5.232	4.389	32.506	1.00	9.68	6
	ATOM	1188	0			159	4.251	3.858	33.049	1.00	9.19	8
	ATOM	1189	CB	ALA	Α	159	5.122	4.442	30.023	1.00	11.81	6
45	MOTA	1190	N	ALA			5.842	5.486	32.979	1.00	10.16	7
	MOTA	1191	CA	ALA	Α	160	5.305	6.213	34.150	1.00	8.09	6
	MOTA	1192	C	ALA	Α	160	3.970	6.867	33.890		10.59	6
	MOTA	1193	0	ALA	Α	160	3.740	7.477	32.843	1.00	12.25	8
	MOTA	1194	CB	ALA	Α	160	6.379	7.244	34.509		10.91	6
50	ATOM	1195	N	ALA	Α	161	3.077	6.756	34.901	1.00	10.18	7
	MOTA	1196	CA	ALA	Α	161	1.740	7.326	34.667	1.00	9.20	6
	ATOM	1197	C	ALA	Α	161	1.681	8.838	34.846	1.00	9.69	6
	ATOM	1198	0	ALA	Α	161	0.615	9.381	34.494	1.00	11.99	8
	ATOM	1199	CB	ALA	Α	161	0.757	6.678	35.666	1.00	11.17	6
55	ATOM	1200	N	GLY	A	162	2.697	9.461	35.379		10.16	7
	ATOM	1201	CA	GLY	Α	162	2.728	10.929	35.525		11.47	6
	ATOM	1202	С	GLY	Α	162	2.542	11.334	36.997	1.00	11.99	6
	ATOM	1203	0	GLY	Α	162	2.058	10.534	37.818	1.00	11.61	8
	ATOM	1204	N	ASN	A	163	2.830	12.646	37.210	1.00	13.68	7
60	MOTA	1205	CA	ASN	Α	163	3.016	13.100	38.616		14.00	6
	MOTA	1206	C	ASN	Α	163	2.233	14.384	38.911	1.00	14.39	6
	MOTA	1207	0	ASN	Α	163	2.725	15.174	39.760		18.79	8
	ATOM	1208	CB	ASN	Α	163	4.477	13.375	38.878		17.01	6
	ATOM	1209	CG	ASN	Α	163	5.442	12.263	38.552		20.97	6
65	ATOM	1210	OD1	ASN	A	163	5.223	11.120	38.907		22.23	8
	ATOM	1211	ND2	ASN	Α	163	6.522	12.569	37.843		40.92	7
	ATOM	1212	N	ASP	A	164	1.039	14.444	38.394		14.22	7
	ATOM	1213	CA	ASP	A	164	0.248	15.664	38.640	1.00	15.43	6

WO 00/22103

	7.000	1014	G 70D 7	161	-0.891	15.376	20 (10	1.00 16.52	6
	ATOM	1214	C ASP A				39.610		
	MOTA	1215	O ASP A	164	-1.808	16.205	39.791	1.00 16.92	8
	ATOM	1216	CB ASP A	164	-0.340	16.092	37.304	1.00 18.79	6
	MOTA	1217	CG ASP A	164	0.611	16.817	36.382	1.00 31.26	6
5	ATOM	1218	OD1 ASP A	164	0.099	17.435	35.437	1.00 32.77	8
					1.843	16.799	36.578	1.00 32.99	8
	MOTA	1219	OD2 ASP A						
	ATOM	1220	N ASN A	165	-0.956	14.222	40.228	1.00 13.48	7
	ATOM	1221	CA ASN A	165	-2.032	13.774	41.047	1.00 13.19	6
	MOTA	1222	C ASN A	165	-3.417	13.950	40.424	1.00 12.14	6
10	ATOM	1223	O ASN A	165	-4.334	14.510	41.036	1.00 15.12	8
1.0									
	MOTA	1224	CB ASN A	165	-2.028	14.587	42.369	1.00 12.06	6
	ATOM	1225	CG ASN A	165	-2.933	13.893	43.348	1.00 10.24	6
					-3.244	12.729	43.479	1.00 12.45	8
	ATOM	1226	OD1 ASN A						
	ATOM	1227	ND2 ASN A	165	-3.428	14.777	44.297	1.00 11.65	7
1 =	ATOM	1228	N VAL A		-3.533	13.571	39.169	1.00 12.64	7
15									
	ATOM	1229	CA VAL A	166	-4.803	13.600	38.442	1.00 13.30	6
	ATOM	1230	C VAL A	166	-5.190	12.205	37.908	1.00 13.31	6
	MOTA	1231	O VAL A	166	-4.366	11.280	37.855	1.00 11.72	8
	ATOM	1232	CB VAL A	166	-4.852	14.651	37.330	1.00 15.75	6
~ ~									
20	ATOM	1233	CG1 VAL A		-4.413	16.035	37.817	1.00 19.38	6
	MOTA	1234	CG2 VAL A	166	-3.879	14.327	36.205	1.00 15.73	6
	MOTA	1235	N SER A	167	-6.430	12.097	37.425	1.00 15.05	7
	MOTA	1236	CA SER A	167	-6.858	10.862	36.753	1.00 14.74	6
	ATOM	1237	C SER A	167	-7.051	10.847	35.266	1.00 11.97	6
25	MOTA	1238	O SER A	167	-7.439	9.759	34.833	1.00 14.98	8
	ATOM	1239	CB SER A	167	-8.159	10.374	37.453	1.00 21.93	6
	ATOM	1240	OG SER A		-9.169	11.371	37.231	1.00 21.70	8
	ATOM	1241	N ARG A	168	-6.733	12.019	34.760	1.00 14.80	7
				160	-6.628	12.185	33.336	1.00 14.30	6
	ATOM	1242							
30	ATOM	1243	C ARG A	1.68	-5.557	11.225	32.761	1.00 14.04	6
	MOTA	1244	O ARG A	168	-4.583	11.016	33.472	1.00 16.56	8
	ATOM	1245	CB ARG A	168	-6.450	13.600	32.868	1.00 14.72	6
	ATOM	1246	CG ARG A	168	-7.590	14.492	33.412	1.00 17.52	6
	ATOM	1247	CD ARG A	168	-7.488	15.866	32.744	1.00 19.22	6
35	ATOM	1248	NE ARG A	168	-6.152	16.434	32.854	1.00 19.87	7
	MOTA	1249	CZ ARG A		-5.777	17.137	33.946	1.00 18.90	6
	ATOM	1250	NH1 ARG A	168	-6.683	17.234	34.915	1.00 22.35	7
	ATOM	1251	NH2 ARG A		-4.590	17.669	34.037	1.00 27.26	7
	ATOM	1252	N THR A	169	-5.775	10.681	31.545	1.00 13.30	7
40	MOTA	1253	CA THR A	169	-4.663	9.851	31.036	1.00 14.18	6
10									
	ATOM	1254	C THR A	169	-3.476	10.689	30.653	1.00 14.82	6
	MOTA	1255	O THR A	169	-3.422	11.859	30.220	1.00 16.21	8
	MOTA	1256	CB THR A		-5.168	9.131	29.752	1.00 14.96	6
	ATOM	1257	OG1 THR A	169	-5.576	10.096	28.754	1.00 15.86	8
45	ATOM	1258	CG2 THR A	169	-6.305	8.184	30.046	1.00 17.51	6
13									
	MOTA	1259	N PHE A	170	-2.290	10.036	30.708	1.00 12.69	7
	ATOM	1260	CA PHE A	170	-0.978	10.559	30.350	1.00 10.15	6
	ATOM	1261	C PHE A		-0.366	9.550	29.382	1.00 10.51	6
	ATOM	1262	O PHE A	170	-0.516	8.340	29.517	1.00 13.04	8
50	ATOM	1263	CB APHE A		0.010	10.860	31.486	0.50 9.69	6
50									
	MOTA	1264	CG APHE A	170	-0.086	12.208	32.151	0.50 12.91	6
	MOTA	1265	CD1APHE A	170	1.046	12.996	32.247	0.50 15.42	6
	ATOM	1266	CD2APHE A		-1.271	12.657	32.723	0.50 15.96	6
	ATOM	1267	CE1APHE A	170	0.999	14.230	32.893	0.50 17.60	6
55	ATOM	1268	CE2APHE A		-1.322	13.894	33.359	0.50 14.69	6
33									
	MOTA	1269	CZ APHE A	170	-0.193	14.664	33.434	0.50 18.78	6
	ATOM	1270	CB BPHE A	170	-0.239	10.454	31.713	0.50 11.27	6
	MOTA	1271	CG BPHE A		1.070	11.133	31.830	0.50 10.40	6
	MOTA	1272	CD1BPHE A	170	2.277	10.418	31.853	0.50 10.22	6
60	ATOM	1273	CD2BPHE A		1.133	12.520	31.939	0.50 13.93	6
	MOTA	1274	CE1BPHE A	170	3.482	11.075	31.968	0.50 12.32	6
	ATOM	1275	CE2BPHE A		2.348	13.165	32.052	0.50 13.83	6
	ATOM	1276	CZ BPHE A	170	3.544	12.456	32.077	0.50 15.52	6
	ATOM	1277	N GLN A		0.238	10.113	28.331	1.00 11.14	7
~-									
65	MOTA	1278	CA GLN A		0.856	9.335	27.255	1.00 10.59	6
	ATOM	1279	C GLN A	171	2.348	9.422	27.239	1.00 10.58	6
								1.00 13.39	
	ATOM	1280			2.822	10.459	27.645		8
	ATOM	1281	CB GLN A	171	0.297	9.849	25.865	1.00 11.19	6

	ATOM	1282	CG	GLN A	171	-1.200	9.613	25.647	1.00 11.83	6
	ATOM	1283	CD	GLN A		-2.121	10.468	26.524	1.00 13.12	6
	ATOM	1284	OE1			-2.934	9.928	27.305	1.00 15.76	8
	ATOM	1285	NE2	GLN A	171	-2.011	11.790	26.391	1.00 14.42	7
5	ATOM	1286	N	PRO A		3.043	8.320	26.919	1.00 11.03	7
	ATOM	1287	CA	PRO A		2.572	7.108	26.347	1.00 11.46	6
	ATOM	1288	C	PRO A		2.006	6.025	27.235	1.00 11.03	6
	ATOM	1289	ō	PRO A		1.509	5.023	26.809	1.00 11.22	8
	ATOM	1290	CB	PRO A		3.819	6.511	25.610	1.00 11.89	6
10	ATOM	1291	CG	PRO A		4.908	6.978	26.569	1.00 11.81	6
	ATOM	1292	CD	PRO F		4.490	8.404	26.935	1.00 12.12	6
	ATOM	1293	N	ALA A		2.069	6.254	28.594	1.00 9.12	7
	ATOM	1294	CA	ALA A		1.563	5.194	29.473	1.00 9.14	6
	ATOM	1295	C	ALA A		0.120	4.778	29.127	1.00 10.86	6
15	ATOM	1296	ō	ALA A		-0.157	3.582	29.296	1.00 11.28	8
	MOTA	1297	СB	ALA A		1.640	5.713	30.931	1.00 11.79	6
	ATOM	1298	N	SER A		-0.804	5.696	28.751	1.00 9.25	7
	ATOM	1299	CA	SER A		-2.184	5.257	28.562	1.00 10.77	6
	ATOM	1300	C	SER A		-2.434	4.456	27.262	1.00 11.85	6
20	ATOM	1301	Ö	SER F		-3.559	3.938	27.120	1.00 12.90	8
	ATOM	1302	CB	SER A		-3.071	6.504	28.585	1.00 12.82	6
	ATOM	1303	OG	SER A		-2.887	7.251	27.376	1.00 13.72	8
	ATOM	1304	N	TYR A		-1.417	4.375	26.405	1.00 11.48	7
	ATOM	1305	CA	TYR A		-1.695	3.533	25.228	1.00 12.72	6
25	ATOM	1306	C	TYR A		-1.927	2.094	25.655	1.00 10.63	6
	ATOM	1307	Ö	TYR A		-1.259	1.611	26.603	1.00 11.10	8
	ATOM	1308	CB	TYR A		-0.435	3.567	24.316	1.00 11.23	6
	ATOM	1309	CG	TYR A		-0.129	4.914	23.750	1.00 10.17	6
	ATOM	1310	CD1	TYR A		-1.068	5.887	23.517	1.00 13.17	6
30	ATOM	1311	CD2	TYR A		1.198	5.229	23.425	1.00 9.64	6
	ATOM	1312	CE1			-0.763	7.116	22.977	1.00 11.74	6
	ATOM	1313	CE2	TYR F		1.529	6.450	22.873	1.00 11.86	6
	ATOM	1314	CZ	TYR A		0.574	7.397	22.648	1.00 15.00	6
	ATOM	1315	OH	TYR A		0.880	8.636	22.122	1.00 16.46	8
35	ATOM	1316	N	PRO A		-2.776	1.327	25.028	1.00 11.70	7
	ATOM	1317	CA	PRO A		-2.959	-0.092	25.360	1.00 11.01	6
	ATOM	1318	Ċ	PRO A		-1.660	-0.878	25.468	1.00 10.13	6
	MOTA	1319	0	PRO A		-1.615	-1.766	26.289	1.00 11.27	8
	ATOM	1320	СВ	PRO A		-3.990	-0.665	24.357	1.00 12.68	6
40	ATOM	1321	CG	PRO A		-4.746	0.637	24.093	1.00 11.38	6
	ATOM	1322	CD	PRO A		-3.780	1.833	24.052	1.00 13.11	6
	ATOM	1323	N	ASN A		-0.723	-0.656	24.506	1.00 11.05	7
	MOTA	1324	CA	ASN A	177	0.441	-1.544	24.522	1.00 12.20	6
	MOTA	1325	C	ASN A	177	1.551	-1.045	25.410	1.00 11.24	6
45	ATOM	1326	0	ASN A	177	2.629	-1.720	25.402	1.00 11.19	8
	MOTA	1327	CB	ASN A	177	0.857	-1.640	23.046	1.00 10.48	6
	ATOM	1328	CG	ASN A	177	0.051	-2.684	22.321	1.00 12.91	6
	ATOM	1329	OD1	ASN A	177	-0.414	-3.689	22.832	1.00 14.78	8
	ATOM	1330	ND2	ASN A	177	-0.019	-2.441	20.970	1.00 15.54	7
50	MOTA	1331	N	ALA A		1.283	-0.058	26.278	1.00 10.52	7
	MOTA	1332	CA	ALA A	178	2.264	0.293	27.312	1.00 9.20	6
	ATOM	1333	C	ALA A	178	1.728	-0.191	28.662	1.00 11.35	6
	ATOM	1334	0	ALA A	178	0.548	0.004	28.907	1.00 10.58	8
	MOTA	1335	CB	ALA A	178	2.471	1.825	27.370	1.00 11.60	6
55	ATOM	1336	N	ILE A	179	2.559	-0.779	29.554	1.00 9.76	7
	ATOM	1337	CA	ILE A	179	2.080	-0.944	30.966	1.00 8.57	6
	ATOM	1338	C	ILE P	179	2.217	0.427	31.641	1.00 9.10	6
	ATOM	1339	0	ILE A	179	3.315	0.926	31.750	1.00 10.06	8
	ATOM	1340	CB	ILE A	179	3.011	-1.961	31.637	1.00 8.69	6
60	MOTA	1341	CG1	ILE A	179	2.926	-3.292	30.879	1.00 11.26	6
	MOTA	1342	CG2	ILE A	179	2.632	-2.226	33.097	1.00 10.57	6
	ATOM	1343	CD1	ILE A	179	3.905	-4.323	31.403	1.00 13.43	6
	ATOM	1344	N	ALA A	180	1.097	0.950	32.181	1.00 8.93	7
	ATOM	1345	CA	ALA A	180	1.104	2.243	32.870	1.00 8.88	6
65	ATOM	1346	С	ALA A	180	1.312	1.988	34.378	1.00 9.81	6
	MOTA	1347	0	ALA A	180	0.623	1.134	34.956	1.00 10.08	8
	MOTA	1348	CB	ALA A	180	-0.257	2.936	32.657	1.00 10.99	6
	ATOM	1349	N	VAL A	181	2.333	2.692	34.886	1.00 8.81	7

	ATOM	1350	CA	VAL A	181	2.750	2.473	36.298	1.00 7.21	6
	ATOM	1351	C	VAL A		2.625	3.698	37.175	1.00 10.43	6
			0	VAL A		3.187	4.746	36.896	1.00 9.18	8
	ATOM	1352							1.00 7.41	6
_	MOTA	1353	CB	VAL A		4.252	2.124	36.222		6
5	MOTA	1354		VAL A		4.729	1.806	37.634	1.00 9.89	
	ATOM	1355	CG2	VAL A		4.527	0.886	35.362	1.00 8.70	6
	ATOM	1356	N	GLY A	182	1.839	3.465	38.248	1.00 10.46	7
	MOTA	1357	CA	GLY A	182	1.639	4.475	39.285	1.00 9.36	6
	ATOM	1358	C	GLY A	182	2.682	4.200	40.403	1.00 10.52	6
10	ATOM	1359	Ó	GLY A		3.453	3.263	40.320	1.00 10.35	8
	ATOM	1360	N	ALA A		2.714	5.147	41.349	1.00 9.62	7
		1361	CA	ALA A		3.677	4.975	42.430	1.00 8.49	6
	ATOM			ALA A		2.990	4.939	43.792	1.00 10.18	6
	ATOM	1362	C							
	ATOM	1363	0	ALA A		2.028	5.635	44.041	1.00 10.96	8
15	MOTA	1364	CB	ALA A		4.536	6.262	42.471	1.00 11.75	6
	MOTA	1365	N	ILE A	184	3.671	4.126	44.619	1.00 8.08	7
	MOTA	1366	CA	ILE A	184	3.277	4.029	46.044	1.00 9.34	6
	MOTA	1367	C	ILE A	184	4.522	4.315	46.889	1.00 10.84	6
	ATOM	1368	0	ILE A	184	5.660	4.279	46.425	1.00 10.59	8
20	MOTA	1369	CB		184	2.765	2.623	46.440	1.00 9.26	6
20	ATOM	1370	CG1			3.623	1.537	45.777	1.00 9.29	6
						1.298	2.458	46.049	1.00 10.38	6
	ATOM	1371	CG2	ILE A						6
	ATOM	1372	CD1			3.337	0.145	46.343	1.00 9.89	
	MOTA	1373	И	ASP A		4.246	4.604	48.177	1.00 9.31	7
25	MOTA	1374	CA	ASP A		5.388	4.755	49.122	1.00 11.76	6
	MOTA	1375	C	ASP A	185	5.646	3.419	49.776	1.00 9.50	6
	MOTA	1376	0	ASP A	185	5.128	2.363	49.400	1.00 11.06	8
	MOTA	1377	CB	ASP A	A 185	4.996	5.878	50.077	1.00 12.42	6
	ATOM	1378	CG	ASP A		3.878	5.520	51.008	1.00 16.62	6
30	ATOM	1379		ASP A		3.498	4.359	51.188	1.00 19.16	8
30	ATOM	1380	OD2	ASP A		3.331	6.525	51.584	1.00 21.71	8
								50.791	1.00 10.02	7
	MOTA	1381	N		A 186	6.557	3.525			
	ATOM	1382	CA		186	6.943	2.275	51.483	1.00 11.07	6
	ATOM	1383	C		186	5.904	1.628	52.388	1.00 11.68	6
35	ATOM	1384	0	SER A	186	6.089	0.458	52.791	1.00 12.40	8
	MOTA	1385	CB	SER A	186	8.278	2.475	52.195	1.00 12.70	6
	ATOM	1386	OG	SER A	186	8.020	3.342	53.353	1.00 13.04	8
	ATOM	1387	N		A 187	4.805	2.372	52.571	1.00 12.58	7
	ATOM	1388	CA		A 187	3.674	1.829	53.284	1.00 11.75	6
40	ATOM	1389	C		A 187	2.521	1.414	52.403	1.00 14.42	6
40						1.387	1.286	52.844	1.00 14.41	8
	ATOM	1390	0		A 187					
	MOTA	1391	CB		A 187	3.208	2.885	54.299	1.00 13.43	6
	MOTA	1392	CG		A 187	2.435	2.266	55.455	1.00 24.32	6
	ATOM	1393		ASN A		2.664	1.109	55.787	1.00 28.21	8
45	ATOM	1394	ND2	ASN A	A 187	1.561	3.083	56.015	1.00 24.99	7
	ATOM	1395	N	ASP 2	A 188	2.816	1.287	51.095	1.00 12.93	7
	ATOM	1396	CA	ASP A	A 188	1.790	0.919	50.135	1.00 12.49	6
	MOTA	1397	С	ASP 2	A 188	0.681	1.950	49.920	1.00 12.89	6
	ATOM	1398	Ō		A 188	-0.362	1.549	49.382	1.00 16.50	8
50	ATOM	1399	CB		A 188	1.210	-0.478	50.410	1.00 14.69	6
50					A 188	2.107	-1.661	50.168	1.00 14.67	6
	MOTA	1400	CG							
	ATOM	1401		ASP A		3.257	-1.503	49.644	1.00 15.16	8
	MOTA	1402		ASP 2		1.754	-2.821	50.535	1.00 17.10	8
	ATOM	1403	N	ARG .	A 189	0.944	3.168	50.317	1.00 11.91	7
55	MOTA	1404	CA	ARG .	A 189	-0.057	4.193	50.068	1.00 11.81	6
	MOTA	1405	C	ARG .	A 189	0.318	4.940	48.809	1.00 10.44	6
	ATOM	1406	0		A 189	1.490	5.032	48.450	1.00 11.22	8
	ATOM	1407	CB		A 189	-0.070	5.188	51.257	1.00 12.95	6
	ATOM	1407	CG		A 189	-0.635	4.385	52.458	1.00 19.11	6
c ^								53.602	0.00 20.00	6
60	MOTA	1409	CD		A 189	-0.942	5.273			0
	ATOM	1410	NE		A 189	-1.563	4.465	54.658	0.00 20.00	7
	MOTA	1411	CZ		A 189	-2.073	5.120	55.718	0.00 20.00	6
	ATOM	1412		ARG .		-2.009	6.439	55.778	0.00 20.00	7
	ATOM	1413	NH2	ARG .	A 189	-2.641	4.429	56.712	0.00 20.00	7
65	MOTA	1414	N	LYS .	A 190	-0.725	5.371	48.044	1.00 12.65	7
	ATOM	1415	CA		A 190	-0.437	6.168	46.830	1.00 13.29	6
	ATOM	1416	C		A 190	0.475	7.292	47.111	1.00 12.33	6
	ATOM	1417	0		A 190	0.366	8.054	48.112	1.00 12.55	8
	AION	エユエ /	$\overline{}$	1110	. I J U	0.500	0.054	10.112	1.00 12.00	Ų

	ATOM	1418	CB	LYS	Α	190	-1.739	6.688	46.193	1.00	14.04	6
	ATOM	1419	CG	LYS	Α	190	-1.575	7.374	44.863		13.43	6
	MOTA	1420	CD	LYS	Α	190	-2.892	8.042	44.365	1.00	14.23	6
	ATOM	1421	CE	LYS	Α	190	-2.848	9.547	44.467	1.00	11.74	6
5	ATOM	1422	NZ	LYS	Α	190	-1.794	10.509	44.344	1.00	14.74	7
	MOTA	1423	N	ALA	Α	191	1.539	7.488	46.284	1.00	9.54	7
	MOTA	1424	CA	ALA			2.402	8.643	46.397	1.00	10.14	6
	MOTA	1425	C	ALA	Α	191	1.569	9.962	46.232	1.00	12.32	6
	ATOM	1426	0	ALA			0.650	9.922	45.406	1.00	12.53	8
10	MOTA	1427	CB	ALA			3.479	8.638	45.324	1.00	12.15	6
	MOTA	1428	N	SER			1.965	10.976	46.997	1.00	13.24	7
	ATOM	1429	CA	SER			1.044	12.139	46.993	1.00	15.23	6
	ATOM	1430	C	SER			0.868	12.637	45.580	1.00	11.65	6
	ATOM	1431	Õ	SER			-0.259	13.044	45.208	1.00	11.90	8
15	ATOM	1432	СВ	SER			1.586	13.158	48.008	1.00	19.44	6
1.0	ATOM	1433	OG	SER			2.765	13.652	47.508	1.00	23.70	8
	MOTA	1434	N	PHE			1.863	12.658	44.721	1.00	12.20	7
	MOTA	1435	CA	PHE			1.810	13.199	43.381	1.00	14.48	6
	ATOM	1436	C	PHE			1.385	12.209	42.289		13.11	6
20	ATOM	1437	Õ	PHE			1.238	12.595	41.135		11.70	8
20	ATOM	1438	СВ	PHE			3.310	13.582	43.106		17.86	6
	MOTA	1439	CG	PHE			4.249	12.384	43.353		20.29	6
	ATOM	1440		PHE			4.287	11.322	42.438		22.95	6
	ATOM	1441		PHE			5.040	12.214	44.448	1.00	8.24	6
25	MOTA	1442		PHE			5.098	10.236	42.710		19.68	6
25	ATOM	1443	CE2	PHE			5.864	11.222	44.781		21.76	6
	ATOM	1444	CZ	PHE			5.910	10.164	43.860		19.49	6
	ATOM	1445	N	SER			1.240	10.942	42.667		10.08	7
	ATOM	1446	CA			194	1.056	10.001	41.524	1.00	9.55	6
30	ATOM	1447	C			194	-0.269	10.206	40.817		10.73	6
30	ATOM	1448	0			194	-1.304	10.320	41.445		11.77	8
	ATOM	1449	СВ			194	1.096	8.580	42.077		10.02	6
	ATOM	1450	OG			194	0.951	7.609	41.021		11.46	8
	ATOM	1451	N	ASN			-0.250	10.146	39.487	1.00	9.56	7
35	ATOM	1451	CA	ASN			-1.500	10.042	38.765	1.00	9.33	6
35	ATOM	1453	CA	ASN			-2.095	8.658	39.068		12.48	6
	ATOM	1454	0	ASN			-1.471	7.723	39.599		11.95	8
	ATOM	1454	CB			195	-1.288	10.176	37.252	1.00	9.08	6
	ATOM	1456	CG			195	-0.941	11.572	36.865		11.88	6
4.0	ATOM	1457		ASN			-1.104	12.515	37.608		12.04	8
40	ATOM	1457		ASN			-0.437	11.729	35.635		12.30	7
	ATOM	1459	N			196	-3.396	8.535	38.769		11.14	7
	ATOM	1460	CA			196	-4.117	7.344	39.186	1.00	9.82	6
	ATOM	1461	C			196	-5.386	7.196	38.350		13.03	6
4 =	MOTA	1462	0			196	-5.716	8.132	37.629		14.68	8
4.5	MOTA	1463	CB			196	-4.544	7.490	40.681		11.85	6
	ATOM	1464	CG			196	-5.414	8.701	40.933		12.37	6
	ATOM	1465		TYR			-4.871	9.945	41.165		12.29	6
	ATOM	1466	CD2			196	-6.802	8.592	40.906		11.59	6
50	ATOM	1467	CE1			196	-5.612	11.084	41.371		13.98	6
50	ATOM	1468	CE2			196	-7.586	9.704	41.112		15.81	6
	MOTA	1469	CZ			196	-7.009	10.918	41.336		15.20	6
	ATOM	1470	OH			196	-7.817	12.040	41.542		19.65	8
	MOTA	1471	N			197	-5.882	5.993	38.403		11.13	7
55	ATOM	1472	CA			197	-7.170	5.755	37.680		11.68	6
55	MOTA	1473	C			197	-7.164	4.338	37.161		12.24	6
	ATOM	1474	0			197	-6.200	3.578	37.267		13.15	8
	ATOM	1475	N			198	-8.311	3.905	36.542		12.40	7
	ATOM	1476	CA			198	-8.425	2.531	36.111		11.46	6
CO		1477	CA			198	-7.578	2.248	34.855		12.92	6
60							-7.329	1.063	34.613		14.81	8
	MOTA	1478	O CB			198	-9.918	2.151	35.818		13.71	6
	ATOM	1479	CB	THR		198	-10.361	2.131	34.785		20.98	8
	ATOM	1480					-10.785	2.300	37.056		17.57	6
~-	MOTA	1481		THR		198	-7.107	3.325	34.195		12.12	7
65	ATOM	1482	N CA			199	-6.192	3.325	33.081		12.12	6
	ATOM	1483				199	-6.192 -4.774	2.869	33.525		11.15	6
	MOTA	1484	C				-3.896	2.557	32.737		13.41	8
	MOTA	1485	0	TKP	A	199	-3.076	4.35/	22.121	1.00	10.41	O

	ATOM	1486	CB	TRP A	199	-6.194	4.421	32.173	1.00 11.96	6
	ATOM	1487	CG	TRP A	199	-5.744	5.662	32.884	1.00 11.22	6
	ATOM	1488	CD1	TRP A	199	-6.470	6.564	33.633	1.00 16.14	6
	MOTA	1489	CD2	TRP A		-4.419	6.188	32.931	1.00 10.56	6
5	MOTA	1490	NE1	TRP A		-5.702	7.565	34.144	1.00 16.05	7
	MOTA	1491	CE2	TRP A		-4.397	7.379	33.705	1.00 14.41	6
	MOTA	1492	CE3	TRP A		-3.218	5.745	32.325	1.00 12.64	6
	MOTA	1493	CZ2	TRP A		-3.239	8.128	33.914	1.00 17.36	6
	MOTA	1494	CZ3	TRP A		-2.092	6.505	32.566	1.00 15.03	6
10	ATOM	1495	CH2	TRP A		-2.081	7.654	33.347	1.00 14.87	6 7
	MOTA	1496	N	VAL A		-4.468	3.143	34.811	1.00 10.34 1.00 12.70	6
	MOTA	1497	CA	VAL A		-3.115	2.805	35.303		6
	MOTA	1498	C	VAL A		-3.087	1.330	35.623	1.00 11.86	8
	MOTA	1499	0_	VAL A		-4.069	0.763	36.157	1.00 14.02	6
15	MOTA	1500	CB	VAL A		-2.815	3.607	36.568	1.00 10.90 1.00 11.75	6
	MOTA	1501		VAL A		-1.476	3.218	37.118	1.00 10.81	6
	MOTA	1502		VAL A		-2.907	5.097	36.300	1.00 10.81	7
	ATOM	1503	N	ASP A		-2.127	0.525	35.152 35.269	1.00 9.45	6
	MOTA	1504	CA	ASP A		-2.205	-0.917	36.611	1.00 10.73	6
20	MOTA	1505	C	ASP A		-1.714	-1.428	37.259	1.00 11.73	8
	MOTA	1506	0	ASP A		-2.428	-2.193	34.104	1.00 10.74	6
	ATOM	1507	CB	ASP A		-1.361 -2.014	-1.532 -1.237	32.785	1.00 10.60	6
	MOTA	1508	CG	ASP A		-2.014	-1.237	32.783	1.00 12.39	8
	ATOM	1509		ASP A		-1.329	-0.642	31.929	1.00 12.33	8
25	MOTA	1510	OD2	ASP A		-0.478	-1.016	36.955	1.00 11.24	7
	ATOM	1511	N	VAL A			-1.498	38.207	1.00 10.17	6
	MOTA	1512	CA	VAL A		0.069 0.716	-0.337	38.925	1.00 10.70	6
	ATOM	1513	C	VAL A		0.716	0.733	38.352	1.00 9.72	8
2.2	ATOM	1514	0	VAL A		1.128	-2.591	38.016	1.00 9.97	6
30	MOTA	1515	CB	VAL A		0.504	-3.847	37.440	1.00 12.13	6
	MOTA	1516	CG1	VAL A		2.283	-2.104	37.130	1.00 14.06	6
	ATOM	1517		THR A		1.041	-0.552	40.192	1.00 9.69	7
	MOTA	1518 1519	N CA	THR A		1.817	0.426	40.132	1.00 8.33	6
2-	ATOM	1520	CA	THR A		3.076	-0.208	41.542	1.00 8.20	6
35	MOTA		0	THR A		3.152	-1.455	41.659	1.00 8.89	8
	ATOM	1521	CB	THR A		0.899	1.018	42.077	1.00 10.11	6
	ATOM	1522 1523	OG1	THR A		1.528	2.183	42.573	1.00 9.97	8
	ATOM ATOM	1524	CG2	THR A		0.604	0.003	43.200	1.00 10.55	6
40	ATOM	1525	N N	ALA A		4.060	0.625	41.900	1.00 8.43	7
40	ATOM	1526	CA	ALA A		5.322	0.114	42.440	1.00 7.80	6
	ATOM	1527	C	ALA A		5.934	1.201	43.307	1.00 7.92	6
	ATOM	1528	Ö	ALA A		5.639	2.403	43.176	1.00 8.87	8
	ATOM	1529	ČВ	ALA A		6.215	-0.218	41.206	1.00 9.02	6
45	ATOM	1530	N	PRO A		6.889	0.857	44.167	1.00 9.20	7
-13	ATOM	1531	CA	PRO A		7.626	1.788	44.988	1.00 10.66	6
	ATOM	1532	C	PRO A		8.167	2.923	44.122	1.00 10.80	6
	ATOM	1533	Ō	PRO A		8.865	2.755	43.103	1.00 10.53	8
	ATOM	1534	CB	PRO A		8.810	0.934	45.486	1.00 11.87	6
50	ATOM	1535	CG	PRO A		8.066	-0.386	45.743	1.00 9.61	6
	ATOM	1536	CD	PRO P	205	7.222	-0.568	44.424	1.00 10.97	6
	ATOM	1537	N	GLY A	206	7.855	4.139	44.552	1.00 9.51	7
	ATOM	1538	CA	GLY A	206	8.265	5.328	43.848	1.00 8.77	6
	ATOM	1539	C	GLY F	206	8.571	6.543	44.702	1.00 9.82	6
55	MOTA	1540	0	GLY A	206	8.762	7.640	44.198	1.00 12.47	8
	MOTA	1541	N	VAL A	207	8.608	6.363	46.053	1.00 9.75	7
	ATOM	1542	CA	VAL A	207	8.789	7.498	46.954	1.00 11.01	6
	MOTA	1543	C	VAL A	207	10.120	7.353	47.646	1.00 10.23	6
	ATOM	1544	0	VAL A	207	10.366	6.348	48.257	1.00 11.51	8
60	ATOM	1545	CB	VAL A	207	7.679	7.624	48.011	1.00 9.92	6
	ATOM	1546		VAL A		7.938	8.802	48.933	1.00 10.74	6
	MOTA	1547		VAL A		6.369	7.832	47.256	1.00 12.64	6
	MOTA	1548	N	ASN A		10.960	8.360	47.573	1.00 9.70	7
	MOTA	1549	CA	ASN A		12.257	8.317	48.278	1.00 9.99	6
65	MOTA	1550	С	ASN A	208	13.030	7.058	47.981	1.00 9.86	6
	ATOM	1551	0	ASN A		13.447	6.265	48.772	1.00 10.57	8
	MOTA	1552	CB	ASN A		12.033	8.481	49.791	1.00 12.47	6
	MOTA	1553	CG	ASN A	208	11.614	9.893	50.142	1.00 16.00	6

	ATOM	1554	OD1	ASN A	A 20	11.947	10.841	49.487	1.00 17.81	8
	MOTA	1555	ND2	ASN A			9.952	51.225	1.00 23.41	7
	ATOM	1556	N	ILE A			6.904	46.648	1.00 11.72	7
	MOTA	1557	CA	ILE			5.767	46.091	1.00 11.01	6
5	MOTA	1558	C	ILE A			6.097	45.962	1.00 10.83	6
	MOTA	1559	0	ILE A			7.084	45.253	1.00 10.52	8
	MOTA	1560	CB	ILE A			5.365	44.711	1.00 9.48	6 6
	ATOM	1561	CG1				4.982	44.806	1.00 9.44	
	ATOM	1562	CG2	ILE .			4.273	44.034	1.00 10.15	6
10	ATOM	1563	CD1	ILE A			3.820	45.762	1.00 9.01	6 7
	ATOM	1564	N	ALA			5.399	46.705	1.00 8.36	6
	ATOM	1565	CA	ALA .			5.665	46.491	1.00 9.20	6
	ATOM	1566	C	ALA .			5.060	45.191	1.00 11.06 1.00 11.02	8
	MOTA	1567	0	ALA .			3.879	45.016	1.00 11.02 1.00 10.57	6
15	ATOM	1568	CB	ALA .			5.038 5.807	47.678 44.408	1.00 10.37	7
	ATOM	1569	N	SER .			5.229	43.209	1.00 10.47	6
	ATOM	1570	CA	SER .			6.075	42.839	1.00 10.82	6
	ATOM	1571	C	SER .			7.011	43.573	1.00 10.02	8
~ ~	ATOM	1572	O	SER .			5.218	42.076	1.00 12.70	6
20	ATOM	1573 1574	CB OG	SER .			4.429	41.031	1.00 11.03	8
	ATOM ATOM	1575	N	THR .			5.684	41.776	1.00 9.45	7
	ATOM	1576	CA	THR .			6.435	41.237	1.00 9.57	6
	ATOM	1577	CA	THR			7.786	40.601	1.00 10.33	6
25	ATOM	1578	0	THR			7.897	39.943	1.00 11.17	8
25	ATOM	1579	СВ	THR			5.539	40.123	1.00 10.82	6
	ATOM	1580	OG1	THR .			5.032	39.255	1.00 11.01	8
	ATOM	1581	CG2	THR			4.247	40.683	1.00 11.54	6
	ATOM	1582	N	VAL .			8.751	40.854	1.00 11.50	7
30	ATOM	1583	CA	VAL .			10.032	40.112	1.00 10.64	6
50	ATOM	1584	C	VAL .			10.365	39.618	1.00 12.70	6
	MOTA	1585	Ö	VAL .			9.733	40.023	1.00 14.01	8
	ATOM	1586	CB	VAL			11.117	40.929	1.00 10.58	6
	ATOM	1587	CG1	VAL .			10.866	41.236	1.00 15.95	6
35	ATOM	1588	CG2	VAL			11.444	42.212	1.00 16.49	6
-	ATOM	1589	N	PRO			11.271	38.634	1.00 12.29	7
	ATOM	1590	CA	PRO			11.455	38.032	1.00 14.14	6
	MOTA	1591	C	PRO			11.909	38.959	1.00 15.71	6
	ATOM	1592	0	PRO			12.410	40.052	1.00 16.38	8
40	ATOM	1593	CB	PRO	A 21	25.641	12.502	36.919	1.00 15.16	6
	ATOM	1594	CG	PRO .	A 21	4 24.175	12.119	36.585	1.00 11.84	6
	ATOM	1595	CD	PRO	A 21	23.489	11.956	37.969	1.00 14.36	6
	ATOM	1596	N	ASN	A 21	5 28.217	11.674	38.451	1.00 17.19	7
	ATOM	1597	CA	ASN	A 21	5 29.421	12.081	39.228	1.00 19.26	6
45	ATOM	1598	C	ASN	A 21	5 29.493	11.275	40.514	1.00 18.85	6
	ATOM	1599	0	ASN			11.814	41.595	1.00 21.66	
	MOTA	1600	CB	ASN			13.592	39.493	1.00 19.94	6
	MOTA	1601	CG	ASN		5 29.256	14.419	38.223	1.00 31.85	6
	MOTA	1602		ASN			14.179	37.251	1.00 28.69	
50	MOTA	1603		ASN			15.396	38.116	1.00 31.00	7
	MOTA	1604	N	ASN			9.955	40.364	1.00 15.65	
	MOTA	1605	CA	ASN			9.014	41.466	1.00 14.86	
	MOTA	1606	C	ASN			9.469	42.678	1.00 14.58	6
	MOTA	1607	0	ASN			9.375	43.865	1.00 19.68	8
55	MOTA	1608	CB	ASN			8.938	41.893	1.00 15.86	
	MOTA	1609	CG	ASN			7.736	42.799	1.00 19.49	
	MOTA	1610		ASN			6.722	42.724	1.00 15.44	
	ATOM	1611	ND2	ASN			7.841	43.735	1.00 22.33	
	ATOM	1612	N	GLY			9.740	42.450	1.00 15.37	
60	MOTA	1613	CA	\mathtt{GLY}			10.146	43.484	1.00 15.63	
	MOTA	1614	C	GLY			9.108	43.658	1.00 12.67	
	MOTA	1615	0	\mathtt{GLY}			8.223	42.830	1.00 13.61	
	ATOM	1616	N	TYR			9.167	44.820	1.00 14.53	
	ATOM	1617	CA	TYR			8.474	45.147	1.00 13.47	
65	ATOM	1618	C	TYR			9.467	45.748	1.00 17.36	
	MOTA	1619	0	TYR			10.313	46.555	1.00 19.27	
	ATOM	1620	CB	TYR			7.308	46.161	1.00 11.47	
	ATOM	1621	CG	TYR	A 21	8 24.809	6.356	45.591	1.00 12.20	6

	ATOM	1622	CD1	TYR Z	Ą	218	26.208	6.488	45.773	1.00	13.37	6
	ATOM	1623	CD2	TYR Z	Δ	218	24.426	5.277	44.820	1.00	12.84	6
	ATOM	1624	CE1	TYR Z	A	218	27.084	5.638	45.230	1.00	13.51	6
	ATOM	1625	CE2	TYR Z	A	218	25.300	4.451	44.233	1.00	11.27	6
5	MOTA	1626	CZ	TYR Z	A	218	26.691	4.566	44.425	1.00	11.33	6
	MOTA	1627	OH	TYR I	A	218	27.563	3.704	43.856	1.00	14.19	8
	MOTA	1628	N	SER A			21.302	9.383	45.406	1.00	13.70	7
	ATOM	1629	CA	SER I	A	219	20.345	10.292	45.991	1.00	12.43	6
	MOTA	1630	C	SER	A	219	18.946	9.690	45.979	1.00	12.57	6
10	MOTA	1631	0	SER A	A	219	18.687	8.690	45.259	1.00	11.67	8
	ATOM	1632	СВ	SER I			20.380	11.571	45.175	1.00	16.94	6
	ATOM	1633	OG	SER A			19.543	11.401	44.030	1.00	27.04	8
	ATOM	1634	N	TYR Z	A	220	18.080	10.236	46.794	1.00	11.86	7
	MOTA	1635	CA	TYR Z	A	220	16.690	9.896	46.724	1.00	11.51	6
15	MOTA	1636	С	TYR			16.047	10.722	45.635	1.00	12.74	6
	ATOM	1637	0	TYR Z	A	220	16.188	11.953	45.508	1.00	13.70	8
	MOTA	1638	CB	TYR Z	A	220	16.005	10.337	48.053	1.00	11.07	6
	ATOM	1639	CG	TYR Z			16.356	9.479	49.223	1.00	15.23	6
	ATOM	1640	CD1	TYR I			16.096	8.130	49.290	1.00	12.19	6
20	ATOM	1641	CD2	TYR Z			16.970	10.065	50.348	1.00	20.94	6
	ATOM	1642	CE1				16.418	7.319	50.363	1.00	17.15	6
	ATOM	1643	CE2	TYR .	A	220	17.282	9.257	51.432	1.00	20.63	6
	ATOM	1644	CZ	TYR I	A	220	17.013	7.927	51.455	1.00	20.24	6
	ATOM	1645	OH	TYR .	A	220	17.330	7.134	52.548	1.00	22.60	8
25	MOTA	1646	N	MET A	A	221	15.085	10.098	44.923	1.00	12.98	7
	ATOM	1647	CA	MET .	Α	221	14.179	10.786	43.985	1.00	10.83	6
	ATOM	1648	С	MET 1	A	221	12.794	10.191	44.197	1.00	10.00	6
	ATOM	1649	0	MET .	A	221	12.691	9.016	44.620	1.00	11.94	8
	MOTA	1650	CB	MET .	A	221	14.581	10.675	42.492	1.00	12.31	6
30	ATOM	1651	CG	MET .	A	221	15.728	11.611	42.190	1.00	13.70	6
	ATOM	1652	SD	MET .	A	221	15.997	11.530	40.390	1.00	15.78	16
	ATOM	1653	CE	MET .	A	221	17.585	12.292	40.256	1.00	23.46	6
	ATOM	1654	N	SER 2	A	222	11.723	10.901	43.905	1.00	10.92	7
	ATOM	1655	CA	SER .	Α	222	10.357	10.422	44.042	1.00	9.76	6
35	ATOM	1656	С	SER .	Ą	222	9.586	10.751	42.758	1.00	12.04	6
	ATOM	1657	0	SER .			9.755	11.827	42.185	1.00	15.35	8
	ATOM	1658	CB	SER	Α	222	9.609	11.100	45.197	1.00	14.86	6
	ATOM	1659	OG	SER .	A	222	10.216	10.861	46.463	1.00	13.78	8
	ATOM	1660	N	GLY .	A	223	8.779	9.812	42.394	1.00	12.72	7
40	MOTA	1661	CA	GLY .	A.	223	7.819	10.014	41.264	1.00	15.17	6
	MOTA	1662	C	GLY .	A	223	7.505	8.657	40.630	1.00	10.31	6
	MOTA	1663	0	GLY .	A	223	8.041	7.604	40.919	1.00	11.61	8
	MOTA	1664	N	THR .	A	224	6.499	8.863	39.717	1.00	10.35	7
	ATOM	1665	CA	THR .	A	224	6.175	7.685	38.909	1.00	8.89	6
45	MOTA	1666	С	THR .	A	224	7.383	7.335	38.027	1.00	9.98	6
	ATOM	1667	0	THR .	A	224	7.487	6.168	37.607	1.00	9.81	8
	ATOM	1668	CB	THR .			4.920	7.788	38.038	1.00	8.97	6
	ATOM	1669	OG1	THR .			5.026	8.958	37.216		11.03	8
	ATOM	1670	CG2	THR .			3.671	7.909	38.950	1.00	9.27	6
50	ATOM	1671	N	SER .			8.317	8.243	37.735		10.17	7
	ATOM	1672	CA	SER .			9.552	7.955	37.067	1.00		6
	MOTA	1673	C	SER .			10.427	6.946	37.830	1.00	8.09	6
	ATOM	1674	0	SER .			11.258	6.285	37.163	1.00	8.80	8
	MOTA	1675	CB	SER			10.482	9.186	36.881	1.00	12.32	6
55	ATOM	1676	OG	SER .			9.832	10.043	35.881	1.00	13.46	8
	MOTA	1677	N	MET .			10.191	6.844	39.146	1.00	8.91	7
	MOTA	1678	CA	MET .			10.978	5.898	39.914	1.00	9.87	6
	MOTA	1679	C	MET .	A	226	10.277	4.558	40.071	1.00	8.01	6
	MOTA	1680	0	MET .	A	226	10.852	3.512	40.318	1.00	10.42	8
60	MOTA	1681	CB	MET			11.246	6.476	41.336	1.00	10.18	6
	MOTA	1682	CG	MET			12.310	7.569	41.381	1.00	9.98	6
	MOTA	1683	SD	MET			11.911	9.112	40.574	1.00	11.41	16
	MOTA	1684	CE	MET			13.090	8.930	39.205	1.00	13.09	6
	MOTA	1685	N	ALA			8.939	4.581	39.923	1.00	9.49	7
65	MOTA	1686	CA	ALA			8.136	3.349	40.019	1.00	9.59	6
	MOTA	1687	C	ALA			8.327	2.524	38.724	1.00	8.92	6
	MOTA	1688	0	ALA			8.449	1.279	38.759	1.00	9.60	8
	ATOM	1689	CB	ALA	A	227	6.684	3.754	40.239	1.00	12.00	6

	MOTA	1690	N	SER I	A 228	8.258	3.251	37.598	1.00	8.46	7
	MOTA	1691	CA	SER A	A 228	8.366	2.564	36.293	1.00	9.33	6
	MOTA	1692	C	SER A	A 228	9.597	1.685	36.177	1.00	9.11	6
	MOTA	1693	0		A 228	9.393	0.525	35.768	1.00	8.88	8
5	MOTA	1694	CB		A 228	8.311	3.644	35.222	1.00	8.72	6
	MOTA	1695	OG		A 228	8.326	3.035	33.893	1.00	8.59	8
	MOTA	1696	N		A 229	10.790	2.071	36.569	1.00	9.43	7
	MOTA	1697	CA		A 229	11.941	1.221	36.420	1.00	9.18	6
	MOTA	1698	C		A 229	11.901	-0.018	37.312	1.00	9.20	6
10	ATOM	1699	0_		A 229	12.519	-1.041	37.077		10.50	8
	MOTA	1700	CB		A 229	13.198	2.065	36.744	1.00	10.68	6
	MOTA	1701	CG		A 229	12.614	3.303	37.459	1.00		6
	ATOM	1702	CD		A 229	11.196	3.448	36.832	1.00	10.93	6
	ATOM	1703	N		A 230	11.144	0.079	38.459	1.00	8.14	7
15	MOTA	1704	CA		A 230	10.984	-1.193	39.194	1.00	8.04	6
	MOTA	1705	C		A 230	10.199	-2.229	38.398	1.00	8.61 11.42	6 8
	ATOM	1706	O		A 230	10.502	-3.422	38.383	1.00	8.82	6
	MOTA	1707	CB		A 230	10.245 11.092	-0.952 -0.269	40.567 41.632	1.00	7.05	6
20	ATOM	1708	CG		A 230	11.161	1.109	41.032	1.00	7.05	7
20	ATOM	1709 1710		HIS A		11.101	-0.847	42.579	1.00		6
	ATOM ATOM	1711		HIS A		12.001	1.359	42.791	1.00	11.65	6
	ATOM	1711		HIS I		12.464	0.188	43.283	1.00	10.70	7
	ATOM	1713	N		A 231	9.136	-1.757	37.702	1.00	9.27	7
25	ATOM	1714	CA		A 231	8.379	-2.623	36.808	1.00	9.26	6
25	ATOM	1715	C		A 231	9.199	-3.052	35.601	1.00	8.69	6
	ATOM	1716	0		A 231	9.159	-4.237	35.255	1.00	9.29	8
	ATOM	1717	CB		A 231	7.078	-1.927	36.389	1.00	8.06	6
	ATOM	1718		VAL .		6.310	-2.873	35.444	1.00	12.86	6
30	ATOM	1719		VAL .		6.254	-1.603	37.646	1.00	9.44	6
30	ATOM	1720	N		A 232	9.967	-2.118	35.010	1.00	8.72	7
	ATOM	1721	CA		A 232	10.810	-2.548	33.900	1.00	9.54	6
	ATOM	1722	C		A 232	11.885	-3.530	34.291	1.00	9.30	6
	ATOM	1723	Ō		A 232	12.173	-4.505	33.567	1.00	9.44	8
35	ATOM	1724	СВ		A 232	11.466	-1.262	33.299	1.00	10.48	6
•	ATOM	1725	N		A 233	12.382	-3.408	35.553	1.00	9.18	7
	ATOM	1726	CA		A 233	13.367	-4.396	36.019	1.00	9.95	6
	ATOM	1727	C		A 233	12.770	-5.794	36.214	1.00	8.05	6
	ATOM	1728	0		A 233	13.315	-6.802	35.870	1.00	9.80	8
40	ATOM	1729	N		A 234	11.543	-5.846	36.799	1.00	8.56	7
	ATOM	1730	CA	LEU .	A 234	10.797	-7.116	36.861	1.00	9.22	6
	MOTA	1731	С	LEU .	A 234	10.564	-7.685	35.452	1.00	8.93	6
	MOTA	1732	0	LEU .	A 234	10.703	-8.869	35.257	1.00	11.08	8
	ATOM	1733	CB	LEU .	A 234	9.502	-6.924	37.673	1.00	10.61	6
45	MOTA	1734	CG	LEU .	A 234	8.527	-8.118	37.675	1.00	10.54	6
	ATOM	1735	CD1	LEU .	A 234	9.338	-9.334	38.172	1.00	10.76	6
	ATOM	1736	CD2	LEU .	A 234	7.332	-7.778	38.516	1.00	11.53	6
	ATOM	1737	N		A 235	10.192	-6.794	34.514	1.00	8.31	7
	ATOM	1738	CA	ALA .	A 235	9.995	-7.321	33.159	1.00	9.02	6
50	ATOM	1739	C		A 235	11.282	-7.907	32.638	1.00	9.50	6
	ATOM	1740	0		A 235	11.236	-8.925	31.905	1.00	9.26	8
	MOTA	1741	CB		A 235	9.452	-6.193	32.283	1.00	8.43	6
	ATOM	1742	N		A 236	12.423	-7.302	32.983	1.00	9.58	7
	ATOM	1743	CA		A 236	13.686	-7.893	32.481		10.25	6
55	MOTA	1744	С		A 236	13.951	-9.229	33.200	1.00	9.83	6
	MOTA	1745	0		A 236	14.536	-10.134	32.561		11.26	8
	MOTA	1746	CB		A 236	14.866	-6.960	32.777		11.37	6
	MOTA	1747	N		A 237	13.560	-9.388	34.455		10.12	7
	ATOM	1748	CA		A 237	13.759		35.102		11.28	6
60	ATOM	1749	C		A 237	12.950		34.387		11.62	6
	ATOM	1750	0		A 237	13.438	-12.838	34.062		11.77	8
	MOTA	1751	CB		A 237	13.237		36.577	1.00	9.89	6
	MOTA	1752	CG		A 237	14.114	-9.812	37.528		10.68	6
	MOTA	1753			A 237	13.489	-9.905	38.936		10.83	6
65	MOTA	1754			A 237		-10.206	37.543		12.79	6
	MOTA	1755	N		A 238	11.724	-11.386	34.007		10.46	7
	ATOM	1756	CA		A 238		-12.313	33.258		10.34	6
	MOTA	1757	С	LEU	A 238	11.442	-12.561	31.856	т.00	11.39	6

	MOTA	1758	0	LEU A	238	11.368	-13.727	31.401	1.00	11.82	8
	ATOM	1759	CB	LEU A			-11.747	33.253	1.00	11.04	6
	ATOM	1760	CG	LEU A			-11.652	34.596	1.00	9.18	6
				LEU A			-10.610	34.653		13.12	6
_	MOTA	1761					-13.037	34.992		14.13	6
5	ATOM	1762		LEU A						11.41	7
	ATOM	1763	N	ALA A			-11.570	31.187			
	MOTA	1764	CA	ALA A			-11.834	29.836		11.12	6
	ATOM	1765	C	ALA A	239		-12.810	29.917		13.22	6
	MOTA	1766	0	ALA A	239	13.904	-13.584	28.964	1.00	14.69	8
10	ATOM	1767	CB	ALA A	239	13.017	-10.507	29.271	1.00	11.43	6
10	ATOM	1768	N	SER A			-12.833	31.034	1.00	10.04	7
			CA	SER A			-13.706	31.190		11.57	6
	ATOM	1769						31.346		11.74	6
	ATOM	1770	C	SER A			-15.158				
	MOTA	1771	0	SER A			-16.007	31.212		17.10	8
1.5	MOTA	1772	CB	SER A	240		-13.253	32.339		15.20	6
	ATOM	1773	OG	SER A	240	15.907	-13.487	33.636	1.00	15.38	8
	MOTA	1774	N	GLN A	241	13.796	-15.390	31.539	1.00	12.24	7
	MOTA	1775	CA	GLN A		13.311	-16.765	31.686	1.00	13.26	6
	ATOM	1776	C	GLN A			-17.298	30.311	1.00	16.69	6
				GLN A			-18.381	30.257		17.39	8
20	MOTA	1777	0				-16.794				6
	ATOM	1778	CB	GLN A				32.671			
	ATOM	1779	CG	GLN A		12.632		34.116		14.22	6
	ATOM	1780	$^{\rm CD}$	GLN A			-16.351	34.927		14.64	6
	ATOM	1781	OE1	GLN A	4 241	10.413	-15.569	34.925	1.00	15.36	8
25	MOTA	1782	NE2	GLN A	241	11.248	-17.409	35.756	1.00	14.32	7
	ATOM	1783	N	GLY A		13.086	-16.404	29.347	1.00	16.05	7
	ATOM	1784	CA	GLY A			-16.812	27.982	1.00	17.81	6
				GLY A			-16.549	27.658		18.23	6
	MOTA	1785	C							19.39	8
	ATOM	1786	0	GLY A			-17.054	26.710			
30	MOTA	1787	N	LYS A	1 243	10.538		28.476		15.28	7
	ATOM	1788	CA	LYS A	4 243	9.137	-15.458	28.344		12.91	6
	ATOM	1789	С	LYS A	1 243	9.010	-14.336	27.290	1.00	13.52	6
	ATOM	1790	0	LYS A	243	9.837	-13.408	27.296	1.00	16.08	8
	ATOM	1791	СВ	LYS A			-14.995	29.664	1.00	15.99	6
2 -				LYS A			-16.185	30.633		16.79	6
35	MOTA	1792	CG							21.08	6
	MOTA	1793	CD	LYS A			-15.687	32.070			6
	MOTA	1794	CE	LYS A			-17.016	32.871		25.90	
	MOTA	1795	NZ	LYS A	A 243	8.276	-16.829	34.309		25.09	7
	MOTA	1796	N	ASN A	4 244	7.971	-14.396	26.458		12.59	7
40	ATOM	1797	CA	ASN A	A 244	7.851	-13.360	25.428	1.00	12.14	6
	ATOM	1798	C	ASN A		7.060	-12.172	26.019	1.00	12.86	6
	ATOM	1799	Ö	ASN A			-12.195	27.204		12.30	8
				ASN A			-13.969	24.225		11.92	6
	ATOM	1800	CB			5.733		24.487	1.00	14.11	6
	ATOM	1801	CG		A 244						8
45	ATOM	1802		ASN A		4.907		25.246		14.17	
	MOTA	1803	ND2	ASN A		5.380		23.740		25.93	7
	ATOM	1804	N	ASN A	A 245	6.779	-11.158	25.223		11.75	7
	ATOM	1805	CA	ASN A	A 245	6.231	-9.925	25.803	1.00	12.32	6
	ATOM	1806	С	ASN A	A 245	4.838	-10.185	26.373	1.00	11.73	6
50	ATOM	1807	ō		A 245	4.488		27.389	1.00	11.85	8
50	ATOM	1808	CB		A 245	6.266		24.917	1.00	9.82	6
										11.05	6
	MOTA	1809	CG		A 245	5.639		23.503			
	ATOM	1810		ASN .		5.182		23.141		12.49	8
	MOTA	1811	ND2	ASN .	A 245	5.668		22.832		11.22	7
55	ATOM	1812	N	VAL	A 246	4.041	-10.938	25.608	1.00	12.28	7
	MOTA	1813	CA	VAL	A 246	2.701	-11.231	26.102	1.00	11.50	6
	ATOM	1814	C		A 246	2.798	-11.932	27.464	1.00	12.02	6
	ATOM	1815	ō		A 246		-11.541	28.399	1.00	13.42	8
							-12.088	25.084		13.60	6
	ATOM	1816	CB		A 246						6
60	MOTA	1817		VAL .			-12.527	25.579		17.63	
	ATOM	1818	CG2	VAL .			-11.266	23.802		15.00	6
	MOTA	1819	N	GLN .	A 247		-12.913	27.577		13.17	7
	ATOM	1820	CA	GLN .	A 247	3.880	-13.682	28.797	1.00	12.37	6
	ATOM	1821	C		A 247	4.332	-12.767	29.958	1.00	13.38	6
65	ATOM	1822	Õ		A 247		-12.922	31.081		13.69	8
0.5	MOTA	1823	CB		A 247		-14.778	28.529		14.20	6
							-15.911	27.719		16.06	6
	ATOM	1824	CG		A 247						
	ATOM	1825	CD	GLN.	A 247	5.269	-16.941	27.390	1.00	19.34	6

	ATOM	1826	OE1	GLN A	247	6.402	-16.706	27.042	1.00 16	.30 8
	ATOM	1827	NE2	GLN A			-18.224	27.535	1.00 34	
	ATOM	1828	N	ILE A			-11.937	29.616	1.00 11	
	ATOM	1829	CA	ILE A			-10.997	30.646	1.00 9	.94 6
5	ATOM	1830	C	ILE A			-10.099	31.209	1.00 13	.72 6
	ATOM	1831	Ō	ILE A		4.620	-9.931	32.436	1.00 10	.62 8
	ATOM	1832	CB	ILE A	248	6.992	-10.169	30.002	1.00 9	.93 6
	ATOM	1833	CG1	ILE A	248	8.162	-11.067	29.687	1.00 12	.15 6
	MOTA	1834	CG2	ILE A	248	7.433	-9.060	30.990	1.00 12	.79 6
10	ATOM	1835	CD1	ILE A	248	9.257	-10.336	28.894	1.00 12	
	ATOM	1836	N	ARG A	249	4.049	-9.408	30.310	1.00 11	
	ATOM	1837	CA	ARG A	249	3.025	-8.484	30.767	1.00 10	
	MOTA	1838	C	ARG A	249	1.907	-9.207	31.499	1.00 10	
	MOTA	1839	0	ARG A	249	1.515	-8.692	32.585	1.00 12	
15	MOTA	1840	CB	ARG A	249	2.523	-7.745	29.486	1.00 12	
	MOTA	1841	CG	ARG A	249	1.422	-6.790	30.009	1.00 14	
	MOTA	1842	CD	ARG A	249	0.941	-5.857	28.893	1.00 11	.70 6
	ATOM	1843	NE	ARG A	249	0.026	-4.852	29.485	1.00 12	.16 7
	ATOM	1844	CZ	ARG A	249	-0.233	-3.681	28.909	1.00 17	.32 6
20	ATOM	1845	NH1	ARG A	249	0.242	-3.351	27.697	1.00 12	
	MOTA	1846	NH2	ARG A	249	-1.008	-2.825	29.582	1.00 17	
	ATOM	1847	N	GLN A	250	1.444	-10.388	31.087	1.00 12	.08 7
	ATOM	1848	CA	GLN A	250		-11.146	31.801	1.00 12	
	ATOM	1849	C	GLN A	250	0.953	-11.527	33.183	1.00 12	
25	MOTA	1850	0	GLN A	250		-11.410	34.154	1.00 13	
	ATOM	1851	CB	GLN A	250	0.049	-12.401	30.982	1.00 13	.50 6
	MOTA	1852	CG	GLN A	250	-1.139	-13.177	31.520	1.00 25	.34 6
	ATOM	1853	CD	GLN A	250	-1.654	-14.042	30.351	1.00 34	
	ATOM	1854	OE1	GLN A	250	-0.926	-14.231	29.379	1.00 40	
30	ATOM	1855	NE2	GLN A	250		-14.525	30.453	1.00 47	
	MOTA	1856	N	ALA A	251		-11.906	33.278	1.00 10	
	ATOM	1857	CA	ALA A	. 251		-12.323	34.620	1.00 12	
	ATOM	1858	C	ALA A	251	2.739	-11.135	35.535	1.00 12	
	ATOM	1859	0	ALA A		2.312	-11.212	36.717	1.00 12	
35	ATOM	1860	CB	ALA A			-12.957	34.470	1.00 14	
	ATOM	1861	N	ILE A	. 252	3.171	-9.986	35.045	1.00 11	
	ATOM	1862	CA	ILE A		3.233	-8.795	35.947	1.00 10	
	MOTA	1863	C	ILE A		1.845	-8.365	36.406	1.00 10	
	ATOM	1864	0	ILE A	252	1.633	-8.028	37.616	1.00 13	
40	ATOM	1865	CB	ILE A	252	3.878	-7.669	35.112	1.00 12	
	MOTA	1866		ILE A		5.396	-7.885	34.981	1.00 11	
	MOTA	1867	CG2	ILE A		3.648	-6.337	35.843	1.00 13	
	MOTA	1868	CD1	ILE A		6.044	-6.969	33.949	1.00 13	
	ATOM	1869	N	GLU A		0.879	-8.376	35.492	1.00 12	
45	ATOM	1870	CA	GLU A		-0.446	-7.831	35.833	1.00 13	
	ATOM	1871	C	GLU A		-1.237	-8.841	36.640	1.00 12	
	MOTA	1872	0	GLU A			-8.507		1.00 15	
	ATOM	1873	CB	GLU A		-1.189	-7.514	34.507	1.00 11	
	ATOM	1874	CG	GLU A		-0.638	-6.220	33.908	1.00 11	
50	MOTA	1875	CD	GLU A		-1.256	-5.936	32.527	1.00 15	
	MOTA	1876		GLU F		-1.899	-6.803	31.926	1.00 18	
	ATOM	1877		GLU A		-1.005	-4.753	32.206	1.00 17	
	ATOM	1878	N	GLN A			-10.134	36.212	1.00 12	
	ATOM	1879	CA	GLN A			-11.122	36.842	1.00 13	
55	ATOM	1880	C	GLN A			-11.501	38.222	1.00 13	
	ATOM	1881	0	GLN A			-11.966	39.024	1.00 19	
	ATOM	1882	CB	GLN A			-12.364	35.966	1.00 14	
	ATOM	1883	CG	GLN A			-12.159	34.651	1.00 15	
	MOTA	1884	CD	GLN A			-11.906	34.885	1.00 16	
60	MOTA	1885		GLN A			-12.665	35.520	1.00 18	
	MOTA	1886		GLN A			-10.738	34.346	1.00 19	
	ATOM	1887	N	THR A			-11.323	38.570	1.00 12	
	ATOM	1888	CA	THR A			-11.666	39.938	1.00 12	
	MOTA	1889	C	THR A			-10.480	40.876	1.00 11	
65		1890	0_	THR A			-10.698	41.999	1.00 13	
	ATOM	1891	CB	THR A			-12.367	39.919	1.00 11	
	ATOM	1892		THR A			-11.507	39.357	1.00 12	
	MOTA	1893	CG2	THR A	255	1.423	-13.635	39.054	1.00 12	.96 6

	ATOM	1894	N ALA	A 2	56	-0.211	-9.309	40.417	1.00 12.42	7
	ATOM	1895		A 2		0.004	-8.131	41.307	1.00 11.98	
		1896		A 2		-0.832	-8.313	42.563	1.00 13.19	
	MOTA					-1.957	-8.835	42.505	1.00 15.40	
_	MOTA	1897		A 2						
5	ATOM	1898		A 2		-0.438	-6.931	40.502	1.00 13.07	
	MOTA	1899		A 2		-0.266	-7.824	43.683	1.00 10.82	
	MOTA	1900	CA ASI	A 2	57	-1.023	-7.893	44.954	1.00 11.39	
	MOTA	1901	C ASF	A 2	57	-2.151	-6.879	44.921	1.00 12.69	
	MOTA	1902	O ASF	A 2	57	-1.949	-5.658	44.672	1.00 12.22	
10	ATOM	1903	CB ASF	A 2	57	-0.048	-7.519	46.064	1.00 12.06	6
	ATOM	1904		A 2		0.966	-8.615	46.339	1.00 14.17	
	ATOM	1905	OD1 ASF			0.623	-9.774	46.083	1.00 17.70	
							-8.290	46.893	1.00 17.70	
	ATOM	1906	OD2 ASF			2.038				
	ATOM	1907		A 2		-3.323	-7.323	45.341	1.00 12.79	
15	ATOM	1908		A 2		-4.489	-6.445	45.358	1.00 13.57	
	MOTA	1909	C LYS	A 2	58	-4.583	-5.594	46.592	1.00 14.49	
	ATOM	1910	O LYS	A 2	58	-5.543	-5.711	47.389	1.00 16.26	
	ATOM	1911	CB LYS	A 2	58	-5.790	-7.213	45.052	1.00 17.86	6
	ATOM	1912	CG LYS	A 2	58	-5.563	-7.937	43.706	1.00 22.99	6
20	ATOM	1913		A 2		-6.836	-8.271	42.954	1.00 27.90	
20	ATOM	1914	•	A 2		-6.527	-9.082	41.707	1.00 24.57	
				A 2		-5.879	-8.283	40.605	1.00 25.24	
	ATOM	1915						46.756	1.00 15.10	
	ATOM	1916		A 2		-3.678	-4.648			
	ATOM	1917		A 2		-3.576	-3.775	47.898	1.00 13.74	
25	MOTA	1918		: A 2		-4.677	-2.717	47.867	1.00 13.04	
	ATOM	1919	O ILE	: A 2	59	-5.360	-2.579	46.845	1.00 12.63	
	MOTA	1920	CB ILE	A 2	59	-2.175	-3.096	47.981	1.00 14.87	6
	ATOM	1921	CG1 ILE	A 2	59	-1.974	-2.187	46.764	1.00 14.73	6
	ATOM	1922		A 2	59	-1.086	-4.132	48.153	1.00 13.52	
30	ATOM	1923		A 2		-0.796	-1.246	46.901	1.00 14.29	
30	ATOM	1924		A 2		-4.840	-1.987	48.985	1.00 13.66	
								48.928	1.00 13.91	
	ATOM	1925		A 2		-5.820	-0.905			
	MOTA	1926		2 A 2		-5.545	0.022	47.760	1.00 14.86	
	MOTA	1927		2 A 2		-4.392	0.338	47.415	1.00 15.35	
35	MOTA	1928	CB SEF	2 A 2	60	-5.652	-0.158	50.271	1.00 23.45	
	MOTA	1929	OG SEF	A 2	60	-6.523	0.961	50.264	1.00 32.81	
	ATOM	1930	N GLY	7 A 2	61	-6.615	0.415	47.065	1.00 14.79	7
	ATOM	1931		A 2		-6.451	1.204	45.853	1.00 15.91	. 6
	ATOM	1932		7 A 2		-6.756	0.360	44.617	1.00 12.68	
40	ATOM	1933		7 A 2		-6.863	0.965	43.534	1.00 12.20	
4.0									1.00 12.44	
	ATOM	1934		2 A 2		-6.655	-0.924	44.705		
	ATOM	1935		2 A 2		-6.915	-1.796	43.537	1.00 10.57	
	MOTA	1936		≀ A 2		-8.331	-1.542	43.030	1.00 13.90	
	MOTA	1937		? A 2		-9.301	-1.632	43.819	1.00 15.95	
45	ATOM	1938	CB THE	2 A 2	62	-6.699	-3.286	43.840	1.00 13.48	6
	ATOM	1939	OG1 THE	2 A 2	62	-5.331	-3.420	44.229	1.00 14.15	
	MOTA	1940	CG2 THE	A 2	62	-6.959	-4.137	42.617	1.00 16.51	. 6
	ATOM	1941		A 2		-8.396	-1.179	41.747	1.00 11.09	7
	ATOM	1942		7 A 2		-9.735	-0.902	41.152	1.00 12.45	
				. A 2		-10.071	0.568	41.158	1.00 11.46	
50	ATOM	1943				-10.990		40.464	1.00 14.08	
	MOTA	1944		7 A 2			1.093			
	ATOM	1945		? A 2		-9.309	1.422	41.872	1.00 10.76	
	MOTA	1946	CA THE	≀ A 2	64	-9.488	2.859	41.933	1.00 10.53	
	ATOM	1947	C THE	R A 2	64	-8.266	3.602	41.401	1.00 11.33	
55	ATOM	1948	O THE	R A 2	64	-8.356	4.471	40.518	1.00 13.25	8
	MOTA	1949	CB ATH			-9.810	3.214	43.400	0.50 13.28	
	ATOM	1950	OG1ATH			-10.941	2.511	43.897	0.50 13.13	
		1951	CG2ATH			-9.919	4.711	43.436	0.50 8.33	
	ATOM									, ,
	ATOM	1952	CB BTH			-9.844	3.467	43.308	0.50 11.69	
60	MOTA	1953	OG1BTH			-8.956	2.998	44.344	0.50 11.80	
	MOTA	1954	CG2BTHI	R A 2	64	-11.253	3.162	43.724	0.50 10.13	
	MOTA	1955		J A 2		-7.080	3.363	42.000	1.00 10.66	
	ATOM	1956		J A 2		-5.841	4.057	41.612	1.00 10.59	
	ATOM	1957		J A 2		-5.059	3.298	40.573	1.00 11.52	
65	ATOM	1958		J A 2		-4.186	3.892	39.906	1.00 11.50	
0.5	ATOM	1959		1 A 2		-4.983	4.241	42.859	1.00 11.37	
							5.258	43.826	1.00 12.28	
	MOTA	1960		JA2		-5.590				
	ATOM	1961	OD1 ASI	v A 2	00	-6.418	6.059	43.416	1.00 15.68	3 8

	ATOM	1962	MD3	ASN .	265	-5.153	5.175	45.083	1.00 16.82	7
	ATOM	1963	N		A 266	-5.368	2.029	40.370	1.00 12.07	7
	ATOM	1964	CA		A 266	-4.728	1.230	39.337	1.00 13.47	6
	ATOM	1965	C		A 266	-5.576	-0.003	39.144	1.00 11.98	6
_							-0.342	40.025	1.00 11.50	8
5	MOTA	1966	0		A 266	-6.414				
	ATOM	1967	CB		A 266	-3.273	0.833	39.743	1.00 11.51	6
	ATOM	1968	CG		A 266	-3.191	0.624	41.228	1.00 10.99	6
	ATOM	1969		PHE A		-2.709	1.603	42.034	1.00 12.36	6
	ATOM	1970	CD2	PHE	A 266	-3.617	-0.589	41.768	1.00 12.87	6
10	ATOM	1971	CE1	PHE .	A 266	-2.646	1.489	43.437	1.00 15.18	6
	ATOM	1972	CE2	PHE	A 266	-3.548	-0.720	43.157	1.00 13.50	6
	ATOM	1973	CZ	PHE	A 266	-3.086	0.299	43.954	1.00 13.91	6
	ATOM	1974	N		A 267	-5.481	-0.713	38.018	1.00 10.86	7
	ATOM	1975	CA		A 267	-6.372	-1.827	37.757	1.00 12.35	6
1 5	ATOM	1976	C		A 267	-5.996	-3.143	38.415	1.00 11.29	6
15										8
	ATOM	1977	0		A 267	-6.827	-3.835	39.018		
	MOTA	1978	CB		A 267	-6.427	-2.056	36.234	1.00 10.21	6
	ATOM	1979	CG		A 267	-7.269	-3.230	35.800	1.00 10.69	6
	ATOM	1980	$^{\rm CD}$		A 267	-7.434	-3.314	34.277	1.00 17.41	6
20	MOTA	1981	$^{\mathrm{CE}}$	LYS 2	A 267	-8.125	-4.645	33.961	1.00 20.47	6
	ATOM	1982	NZ	LYS 2	A 267	-9.590	-4.515	34.312	1.00 28.85	7
	ATOM	1983	N	TYR .	A 268	-4.703	-3.507	38.377	1.00 10.94	7
	ATOM	1984	CA	TYR Z	A 268	-4.306	-4.845	38.774	1.00 10.54	6
	MOTA	1985	C	TYR	A 268	-3.780	-4.934	40.185	1.00 12.48	6
25	ATOM	1986	ō		A 268	-4.004	-5.966	40.828	1.00 14.47	8
25	ATOM	1987	ČВ		A 268	-3.247	-5.379	37.737	1.00 11.99	6
	ATOM	1988	CG		A 268	-3.869	-5.582	36.354	1.00 12.59	6
									1.00 12.39	
	ATOM	1989	CD1		A 268	-4.729	-6.636	36.098		6
	MOTA	1990	CD2		A 268	-3.567	-4.713	35.315	1.00 11.77	6
30	ATOM	1991	CE1		A 268	-5.286	-6.819	34.836	1.00 16.83	6
	ATOM	1992	CE2	TYR .	A 268	-4.127	-4.878	34.044	1.00 14.50	6
	MOTA	1993	CZ	TYR Z	A 268	-4.975	-5.940	33.842	1.00 16.27	6
	MOTA	1994	OH	TYR .	A 268	-5.578	-6.179	32.594	1.00 16.50	8
	ATOM	1995	N	GLY Z	A 269	-2.951	-3.959	40.589	1.00 11.21	7
35	ATOM	1996	CA		A 269	-2.363	-4.068	41.950	1.00 11.42	6
-	ATOM	1997	C		A 269	-0.884	-3.640	41.935	1.00 12.63	6
	ATOM	1998	Õ		A 269	-0.410	-2.979	40.981	1.00 12.33	8
		1999	N		A 270	-0.250	-3.975	43.039	1.00 10.84	7
	ATOM									6
	ATOM	2000	CA		A 270	1.158	-3.689	43.298	1.00 10.02	
40	ATOM	2001	C		A 270	1.989	-4.849	42.786	1.00 10.57	6
	ATOM	2002	0		A 270	1.759	-6.030	43.116	1.00 10.24	8
	ATOM	2003	CB		A 270	1.355	-3.550	44.835	1.00 9.80	6
	ATOM	2004	CG		A 270	2.838	-3.440	45.234	1.00 10.47	6
	ATOM	2005	$^{\rm CD}$	LYS 2	A 270	2.766	-3.574	46.792	1.00 13.93	6
45	ATOM	2006	CE	LYS	A 270	4.141	-3.882	47.323	1.00 13.15	6
	MOTA	2007	NZ	LYS	A 270	4.141	-4.146	48.814	1.00 12.38	7
	MOTA	2008	N	ILE :	A 271	3.068	-4.553	41.981	1.00 9.21	7
	ATOM	2009	CA		A 271	3.827	-5.684	41.486	1.00 10.54	6
	ATOM	2010	С		A 271	4.345	-6.567	42.615	1.00 10.27	6
50	ATOM	2011	ō		A 271	4.722	-6.097	43.676	1.00 10.76	8
50	ATOM	2012	CB		A 271	5.015	-5.309	40.579	1.00 9.40	6
			CG1		A 271		-4.342		1.00 10.70	6
	ATOM	2013				5.942		41.302		
	ATOM	2014	CG2		A 271	4.462	-4.651	39.299	1.00 12.37	6
	ATOM	2015	CD1		A 271	7.353	-4.230	40.661	1.00 11.12	6
55	ATOM	2016	N		A 272	4.358	-7.864	42.304	1.00 11.32	7
	MOTA	2017	CA	ASN .	A 272	4.927	-8.895	43.187	1.00 11.90	6
	MOTA	2018	C	ASN .	A 272	5.887	-9.781	42.379	1.00 10.24	6
	MOTA	2019	0	ASN .	A 272	5.512	-10.582	41.534	1.00 11.33	8
	ATOM	2020	CB		A 272	3.791	-9.719	43.774	1.00 10.81	6
60	ATOM	2021	CG		A 272	4.423	-10.703	44.785	1.00 13.73	6
	ATOM	2022	OD1			5.449	-11.324	44.563	1.00 11.13	8
	ATOM	2023	ND2		A 272		-10.772	45.915	1.00 15.82	7
	ATOM	2023			A 273	7.192	-9.406	42.462	1.00 13.82	7
			N							
<i>-</i> -	ATOM	2025	CA		A 273	8.176	-10.054	41.573	1.00 9.11	6
65	ATOM	2026	C		A 273	8.243	-11.575	41.796	1.00 10.89	6
	ATOM	2027	0		A 273	8.463	-12.256	40.830	1.00 11.77	8
	ATOM	2028	CB		A 273	9.575	-9.501	41.899	1.00 12.03	6
	MOTA	2029	OG	SER .	A 273	9.574	-8.068	41.685	1.00 11.29	8

	MOTA	2030	N	ASN	Α	274	8.098	-11.968	43.092	1.00	11.68	7
	MOTA	2031	CA	ASN	Α	274	8.221	-13.417	43.328	1.00	13.05	6
	MOTA	2032	С	ASN	Α	274	7.075	-14.195	42.716		11.54	6
	MOTA	2033	0	ASN				-15.228	42.085		14.09	8
5	MOTA	2034	CB	ASN				-13.678	44.846		13.98	6
	MOTA	2035	CG	ASN				-15.149	45.061		13.57	6
	MOTA	2036	OD1	ASN				-15.640	44.474		16.37	8
	MOTA	2037		ASN				-15.690	45.988		19.49	7
	MOTA	2038	N	LYS			5.882		42.841		12.00	7
10	ATOM	2039	CA	LYS				-14.366	42.195		11.46	6
	MOTA	2040	C	LYS				-14.299	40.667		12.56	6
	MOTA	2041	0_	LYS				-15.288	40.002		12.54	8
	ATOM	2042	CB	LYS				-13.896	42.682		14.49	6
	ATOM	2043	CG	LYS				-13.902	44.182		17.77	6
15	ATOM	2044	CD	LYS				-13.451	44.400		21.72	6 6
	ATOM	2045	CE	LYS			1.152		44.481		28.84	7
	ATOM	2046	NZ	LYS			5.310	-11.496	44.363 40.185		26.58 12.51	7
	ATOM	2047	N	ALA			5.385		38.706		10.12	6
20	ATOM	2048	CA	ALA ALA				-13.039	38.107		10.12	6
20	ATOM	2049	C	ALA				-14.635	37.070		10.23	8
	ATOM	2050	O CB	ALA				-11.617	38.304		11.31	6
	MOTA	2051.	N	VAL			7.553		38.736		11.74	7
	ATOM	2052 2053	CA	VAL				-15.041	38.026		10.78	6
2.5	ATOM	2053	CA	VAL				-16.518	38.194		14.27	6
25	ATOM							-17.298	37.504		13.97	8
	ATOM	2055	O	VAL VAL				-14.842	38.526		12.43	6
	ATOM	2056	CB								12.43	6
	ATOM	2057	CG1	VAL VAL				-13.425 -15.151	38.246 40.012		16.20	6
2.0	ATOM	2058	CG2	ARG				-16.809	39.071		12.39	7
30	ATOM	2059	N									6
	ATOM	2060	CA	ARG				-18.223	39.175		15.11 16.59	6
	ATOM	2061	C	ARG				-18.504	38.446			8
	ATOM	2062	O	ARG				-19.689	38.350		20.78	6
2 -	ATOM	2063	CB	ARG				-18.587	40.655		15.94	6
35	ATOM	2064	CG	ARG				-18.422	41.383		17.42 15.96	6
	ATOM	2065	CD	ARG				-18.572	42.905 43.559		19.66	7
	ATOM	2066	NE	ARG				-18.230			24.54	6
	ATOM	2067	CZ	ARG				-18.901	43.897		23.93	7
4.0	ATOM	2068	NH1	ARG				-20.223	43.611		26.20	7
40	MOTA	2069	NH2	ARG TYR				-18.305	44.529 37.831		12.78	7
	ATOM	2070	N				4.913	-17.490 -17.626	37.129	1.00	14.37	6
	ATOM	2071	CA	TYR TYR			3.850		35.829		24.50	6
	ATOM	2072 2073	C					-18.165	35.189		24.50	8
4.5	ATOM		O	TYR TYR				-16.277	36.932		13.65	6
45	ATOM	2074 2075	CB CG			279		-16.105	36.231		13.86	6
	ATOM	2075	CD1							1.00		6
	ATOM	2070		TYR				-15.872	34.847		15.48	6
	ATOM ATOM	2078	CE1					-16.037	36.103		15.73	6
50	ATOM	2078	CE2	TYR				-15.702	34.121		14.88	6
50	ATOM	2079	CEZ	TYR				-15.770	34.740		15.75	6
	ATOM	2080	OH	TYR				-15.612	34.089		17.03	8
	ATOM	2081	OT	TYR				-19.258	35.525		24.50	8
			C1	GLL			-3.949		29.717		17.61	6
	MOTA	2083		GLL			-4.024		29.717		16.18	6
55	MOTA	2084	C2				-5.461		29.221		18.89	6
	ATOM	2085	C3	GLL				2.100				
	MOTA	2086	01	GLL			-2.578		29.529		15.42 15.61	8
	ATOM	2087	02	GLL			-3.163	2.400	30.001			8
	ATOM	2088	03	GLL			-5.525	3.473	28.806		23.45	8
60	MOTA	2089		WAT		1	25.973	-1.842	43.443		11.05	20
	ATOM	2090	CA	WAT		2	25.647		23.751		17.24	20
	MOTA	2091		TAW		3	-1.258	1.535	28.929		12.14	11
	MOTA	2092		TAW		4	16.838	2.112	43.195	1.00	9.07	8
	ATOM	2093		WAT		5	13.085	6.361	31.187		10.24	8
65	ATOM	2094		WAT		6	18.887		42.447		10.28	8
	ATOM	2095		TAW		7	14.445		39.775		10.40	8
	ATOM	2096		WAT		8	14.210		47.107		10.59	8
	ATOM	2097	OWO	TAW	W	9	14.918	3.839	48.721	T.00	10.61	8

10.698 -1.779 53.649 1.00 10.77 MOTA 2098 OWO WAT W 10 5.117 1.00 10.86 40.655 8 MOTA 2099 W TAW OWO 11 -1.751 MOTA 0.687 44.697 1.00 10.99 8 2100 W TAW 0WO 12 14.945 1.00 11.25 42.978 -0.327 4.307 8 MOTA 2101 W TAW OWO 13 1.00 11.76 OWO WAT W 4.023 -3.345 27.168 5 ATOM 2102 14 1.00 11.88 39.822 ATOM 8 2103 W TAW OWO 15 3.256 -8.810 18.664 7.646 28.905 1.00 12.48 OWO WAT W 16 MOTA 2104 1.00 12.57 2105 OWO WAT W 17 29.275 -1.039 37.125 8 ATOM 15.290 29.790 1.00 12.74 W TAW OWO 20.255 2106 18 20.255 10.140 -1.402 5.723 11.383 32.574 6.840 4.270 16.914 25.377 16.613 3.879 11.580 8.559 31.655 MOTA 2107 OWO WAT W 19 -8.862 25.520 1.00 12.92 8 10 ATOM 22.084 0.794 1.00 13.07 8 2108 W TAW OWO 20 MOTA -0.410 49.244 1.00 13.11 8 MOTA 2109 OWO WAT W 21 1.00 13.37 11.383 -11.545 49.015 8 MOTA 2110 OWO WAT W 22 1.00 13.78 MOTA W TAW OWO 23 -0.530 38.835 2111 15 ATOM 2112 W TAW OWO 24 6.391 14.824 1.00 13.94 8 -7.073 2113 W TAW OWO 25 46.186 1.00 14.15 MOTA 1.00 14.17 -1.439 W TAW OWO 26 53.452 8 MOTA 2114 1.00 14.66 W TAW OWO 27 -6.748 38.454 8 MOTA 2115 W TAW OWO -9.407 30.953 1.00 14.93 8 MOTA 2116 28 7.957 -4.612 30.204 1.00 14.99 8 W TAW OWO 20 ATOM 2117 29 OWO WAT W 12.085 1.00 15.06 8 MOTA 2118 30 1.00 15.31 8.559 -11.110 22.717 MOTA 2119 W TAW OWO 31 8 -2.825 39.954 1.00 15.39 MOTA 2120 W TAW OWO 32 1.00 15.85 12.382 5.355 5.671 Я MOTA 2121 W TAW OWO 33 5.167 25 ATOM 2122 W TAW OWO 34 14.542 15.017 1.00 15.88 1.00 16.11 MOTA 2123 W TAW OWO 35 15.681 2.641 14.612 Я 22.959 -5.924 55.817 1.00 16.14 W TAW OWO 36 ATOM 2124 2125 W TAW OWO 37 17.792 -7.760 24.674 1.00 16.20 Я MOTA -5.745 -0.511 32.819 1.00 16.38 8 MOTA W TAW OWO 38 2126 8.911 0.345 W TAW OWO 39 8.038 13.921 1.00 16.56 8 30 ATOM 2127 -4.964 25.288 1.00 16.65 8 2128 W TAW 0WO 40 MOTA 11.031 -11.431 25.798 1.00 16.84 MOTA 2129 OWO WAT W 41 5.575 1.00 17.00 8 13.079 51.582 MOTA 2130 W TAW OWO 42 9.891 5.686 1.00 17.04 2131 W TAW OWO 43
44
5.686
45
25.251
46
-0.436
47
-9.577
48
30.018
49
15.370
50
20.118
51
23.269
52
18.707
-53
29.237
54
-2.442
55
19.933
56
34.473
57
12.821
58
11.503
59
23.684
60
-0.612
61
17.007
62
-0.273
63
-11.316
64
25.755
65
-3.039
66
14.409
-3.784 43 -5.124 53.560 MOTA 1.00 17.09 35 ATOM 2132 W TAW OWO 44 -8.148 48.229 8 1.00 17.19 OWO WAT W 13.768 26.180 MOTA 2133 1.00 17.45 2134 W TAW OWO 1.365 15.687 8 MOTA W TAW OWO -3.555 38.689 1.00 17.51 8 2135 MOTA 2136 W TAW OWO 9.014 37.735 1.00 18.20 8 MOTA 1.00 18.50 -7.155 29.434 8 40 ATOM 2137 W TAW OWO 20.536 1.00 18.97 MOTA 2138 W TAW OWO 34.111 1.00 19.01 51.272 MOTA 2139 W TAW OWO -5.467 8 MOTA 2140 W TAW OWO 18.707 -18.348 45.501 1.00 19.39 1.00 19.62 MOTA 2141 W TAW OWO 2.519 48.044 8 2142 W TAW OWO 2.172 47.419 1.00 19.63 45 ATOM 1.00 19.76 MOTA 2143 W TAW OWO -4.327 22.737 8 W TAW 0WO -1.581 37.164 1.00 19.96 8 MOTA 2144 MOTA 2145 W TAW OWO 11.824 47.078 1.00 20.13 8 1.00 20.21 W TAW OWO 7.499 13.241 8 MOTA 2146 W TAW OWO -1.037 20.633 1.00 20.22 50 ATOM 2147 1.00 20.28 W TAW OWO -3.323 51.692 8 ATOM 2148 ATOM 2149 W TAW OWO 14.116 44.269 1.00 20.65 1.00 20.67 MOTA 2150 OWO WAT W -9.571 27.817 8 W TAW OWO -4.375 40.684 1.00 20.73 MOTA 2151 -3.755 -3.039 66 14.409 67 -3.784 68 28.701 69 -2.298 70 30.077 71 -4.53° 72 1.00 20.89 55 ATOM 2152 W TAW OWO -8.111 33.313 51.281 1.00 20.99 8 MOTA 2153 W TAW OWO -2.283 W TAW OWO -8.631 51.937 1.00 20.99 8 MOTA 2154 1.00 20.99 30.454 MOTA 2155 OWO WAT W -5.571 8 MOTA 2156 OWO WAT W 0.916 24.873 1.00 21.03 60 ATOM 2157 W TAW OWO 4.090 45.230 1.00 21.11 4.491 6.907 OWO WAT W 44.090 1.00 21.11 MOTA 2158 MOTA 2159 W TAW OWO 25.235 1.00 21.20 8 OWO WAT W 72 7.930 16.602
OWO WAT W 73 25.030 5.431
OWO WAT W 74 21.967 -14.316
OWO WAT W 75 2.376 -6.419
OWO WAT W 76 4.085 10.456
OWO WAT W 77 5.239 -12.232 1.00 21.38 OWO WAT W 16.602 17.863 ATOM 2160 8 1.00 21.46 MOTA 2161 18.766 1.00 21.78 49.321 65 ATOM 2162 8 MOTA 2163 49.074 1.00 21.92 1.00 22.11 48.716 MOTA 2164 8 MOTA 2165 48.334 1.00 22.25

	ATOM	2166	OWO	TAW	W	78	-4.190	-2.933	30.508	1.00	22.26	8
	ATOM	2167	OWO		W	79	8.378	5.587	51.200		22.44	8
	ATOM	2168	OWO		W	80	12.983	-5,518	20.760	1.00	22.55	8
	ATOM	2169			W	81	9.499	10.528	14.890		22.84	8
_					W	82	2.960	-17.253	40.993		23.00	8
5	ATOM	2170	OWO					-15.849	34.785		23.11	8
	ATOM	2171	OWO		W	83	6.098					
	ATOM	2172	OMO		W	84	-9.765	-5.816	36.844		23.23	8
	MOTA	2173	OMO		W	85	17.165	-8.431	51.079		23.38	8
	MOTA	2174	OMO		W	86	26.762	4.780	20.872		23.45	8
10	MOTA	2175	OMO	\mathtt{TAW}	W	87	-3.582	-0.255	20.689		23.52	8
	MOTA	2176	OWO	WAT	W	88	24.998	-0.493	54.746	1.00	23.60	8
	ATOM	2177	OWO	TAW	W	89	15.378	4.977	52.842	1.00	23.62	8
	ATOM	2178			W	90	-3.290	-9.213	32.314	1.00	23.62	8
	ATOM	2179	OWO		W	91	-1.217	9.980	21.173		23.69	8
15	ATOM	2180	OWO		W	92	-4.575	5.139	23.029		23.74	8
15		2181	OWO		W	93	5.660	-20.272	33.874	1.00		8
	ATOM						2.570	-19.717	32.700		23.93	8
	MOTA	2182	OW0		W	94						8
	MOTA	2183	OWO		W	95	-2.768	8.489	18.967		24.13	
	ATOM	2184	OWO		W	96	-9.884	0.662	45.427		24.32	8
20	MOTA	2185			W	97	5.619	-4.476	51.362		24.37	8
	ATOM	2186	OWO		W	98	8.421	11.297	38.167		24.65	8
	ATOM	2187	OWO	TAW	W	99	25.813	-8.535	52.635	1.00	24.70	8
	MOTA	2188	OWO	\mathtt{WAT}	W	100	20.832	19.605	26.661	1.00	24.82	8
	ATOM	2189	OWO	TAW	W	101	16.258	-9.256	21.262	1.00	24.86	8
25	ATOM	2190	OWO	TAW	W	102	12.349	13.826	43.372	1.00	24.89	8
	ATOM	2191	OWO		W	103	13.170		35.451	1.00	24.90	8
	ATOM	2192	OWO		W	104	7.075	17.770	20.578	1.00		8
	MOTA	2193		WAT		105	22.242	-3.099	22.446		24.94	8
						106	2.596	-15.349	31.525		25.01	8
	ATOM	2194								1.00		8
30	ATOM	2195	OWO	TAW		107	13.138		26.305			
	MOTA	2196	OWO	WAT		108	27.906	13.991	24.255		25.14	8
	ATOM	2197	OMO		W	109	6.218	-4.057	14.703	1.00		8
	ATOM	2198	OWO	WAT	W	110	10.505	12.665	32.677		25.29	8
	MOTA	2199	OWO	TAW	W	111	-3.781	-2.725	27.641	1.00	25.30	8
35	ATOM	2200	OWO	WAT	W	112	30.677	10.964	34.167	1.00	25.31	8
	ATOM	2201	OWO	TAW	W	113	17.661	-13.781	50.306	1.00	25.32	8
	ATOM	2202			W	114	34.541	6.057	36.868		25.36	8
	ATOM	2203		WAT		115	23.605	3.174	17.711		25.38	8
	ATOM	2204	OWO		W	116	17.497	-13.278	24.578	1.00	25.43	8
4.0	MOTA	2205	OWO	WAT		117	26.337	-11.225	48.970		25.54	8
40							-5.239	13.734	29.361	1.00		8
	ATOM	2206	OW0	TAW		118						
	MOTA	2207			W	119	-2.765	6.609	16.532		25.61	8
	ATOM	2208		TAW		120	-0.782	-2.817	17.108	1.00		8
	ATOM	2209	OWO		W	121	16.158	7.089	14.095	1.00		8
45	MOTA	2210	OWO	TAW		122	18.930	12.534	48.368	1.00	26.12	8
	ATOM	2211	OWO	TAW	W	123	24.403	-6.067	53.444	1.00		8
	ATOM	2212	OWO	TAW	W	124	-3.404	4.730	49.022	1.00		8
	ATOM	2213	OWO	TAW	W	125	32.619	10.296	29.183	1.00	26.88	8
	ATOM	2214	OWO	TAW	W	126	-6.804	14.466	42.289		27.19	8
50	ATOM	2215	OWO	WAT			24.517	14.294	40.806	1.00	27.26	8
	MOTA	2216		TAW			-4.697	17.443	41.250		27.26	8
	MOTA	2217		TAW			15.601	-5.581	15.252		27.49	8
	ATOM	2218		TAW		130	19.225	-7.757	52.854	1.00		8
	ATOM	2219		WAT			20.571	-7.244	23.187			8
											27.84	8
55	ATOM	2220		TAW			-5.634	12.995	45.863			
	MOTA	2221		TAW			29.455	2.015	28.288		27.85	8
	MOTA	2222		TAW			35.253	6.005	33.542		27.91	8
	ATOM	2223	OWO	TAW	W	135	26.528	7.004	17.380		28.00	8
	MOTA	2224	OWO	TAW	W	136	4.802	-2.134	53.088	1.00	28.06	8
60	ATOM	2225	OWO	WAT	W	137	7.702	-19.316	35.292	1.00	28.29	8
	ATOM	2226		WAT			33.637		43.427	1.00	28.32	8
	ATOM	2227		WAT		139	-3.078		41.616	1.00	28.34	8
	ATOM	2228		WAT			7.296		20.394		28.39	8
	ATOM	2229		TAW			-8.355		38.156		28.47	8
<i>-</i> =				WAT			-3.786		45.809		28.51	8
65	ATOM	2230					17.884		55.001		28.52	8
	ATOM	2231		WAT								
	MOTA	2232		TAW			-7.450		27.023		28.66	8
	MOTA	2233	OWO	TAW	W	145	25.034	10.848	14.171	1.00	28.68	8

	MOTA	2234	AW 0WO	r W	146	27.154	14.822	33.256	1.00 28.71	8
	ATOM	2235	OWO WA	r w	147	3.930	14.554	35.353	1.00 28.86	8
	MOTA	2236	OWO WA	г₩	148	3.832	14.101	17.367	1.00 28.94	8
	ATOM	2237	OWO WA	гW	149	-7.141	6.522	26.433	1.00 28.95	8
5	ATOM	2238	OWO WA		150	16.291	15.441	37.748	1.00 28.96	8
,	ATOM	2239	OWO WA		151	23.732	-13.472	32.813	1.00 29.06	8
		2240		r W	152	31.579	0.528	49.009	1.00 29.17	8
	ATOM					0.948	11.515	50.856	1.00 29.19	8
	MOTA	2241	OWO WA						1.00 29.61	8
	MOTA	2242	OWO WA			20.562	20.238	24.104		8
10	ATOM	2243	AW OWO			14.815	22.549	27.658	1.00 29.72	
	MOTA	2244	OWO WA		156	-0.505	13.461	15.844	1.00 29.79	8
	ATOM	2245	OWO WA	ΓW	157	27.503	-7.381	36.814	1.00 29.90	8
	MOTA	2246	OWO WA	ΓW	158	31.766	-7.236	46.577	1.00 29.96	8
	ATOM	2247	OWO WA	ΓW	159	2.280	5.918	54.243	1.00 30.06	8
15	ATOM	2248	AW OWO	ΓW	160	15.109	18.191	36.248	1.00 30.13	8
	ATOM	2249	AW OWO		161	4.637	-16.479	32.113	1.00 30.14	8
	ATOM	2250	OWO WA			17.268	13.651	16.688	1.00 30.17	8
	ATOM	2251	AW OWO		163	19.452	14.125	43.037	1.00 30.18	8
			OWO WA		164	-4.171	13.696	26.886	1.00 30.24	8
	MOTA	2252						49.534	1.00 30.24	8
20	MOTA	2253	OWO WA		165	14.909	-15.477			8
	ATOM	2254		ГW		-8.602	11.318	30.557	1.00 30.42	
	ATOM	2255	OWO WA				-15.058	28.159	1.00 30.52	8
	MOTA	2256	AW OWO	r w		26.601	10.511	46.969	1.00 30.58	8
	MOTA	2257	AW 0WO	r w	169	31.110	-8.170	41.359	1.00 30.61	8
25	ATOM	2258	AW OWO	r w	170	29.593	8.135	46.349	1.00 30.72	8
	ATOM	2259	OWO WA	гW	171	-10.368	-1.876	34.504	1.00 30.74	8
	ATOM	2260	AW OWO			28.564	-4.100	29.544	1.00 30.83	8
	ATOM	2261	AW 0WO			-12.777	4.044	45.410	1.00 30.92	8
	ATOM	2262	AW 0WO				-21.931	42.319	1.00 30.96	8
				r W			-10.251	23.688	1.00 31.07	8
30	ATOM	2263				0.113	-6.364	50.914	1.00 31.07	8
	ATOM	2264	AW OWO						1.00 31.03	8
	ATOM	2265	OWO WA			-3.585	3.671	16.785		
	MOTA	2266	AW OWO			4.754	-21.901	38.826	1.00 31.24	8
	MOTA	2267	AW OWO	T W	179	3.124	-4.459	52.013	1.00 31.30	8
35	ATOM	2268	AW OWO	T W	180	27.364	15.293	27.098	1.00 31.43	8
	ATOM	2269	AW 0WO	T W	181	19.204	-18.620	42.633	1.00 31.46	8
	ATOM	2270	OWO WA	T W	182	23.808	-11.495	40.059	1.00 31.53	8
	ATOM	2271	OWO WA			29.332	-1.923	29.953	1.00 31.57	8
	MOTA	2272	OWO WA			12.448	14.328	33.070	1.00 31.59	8
40	ATOM	2273	AW 0WO			1.205	17.345	29.981	1.00 31.67	8
40	ATOM	2274	AW OWO			-9.791	7.997	34.844	1.00 31.75	8
						-7.837	18.408	38.069	1.00 31.73	8
	ATOM	2275	AW OWO					50.792	1.00 31.05	8
	MOTA	2276	AW OWO			11.140	-9.008			8
	ATOM	2277	AW OWO			26.511	-2.526	54.760	1.00 32.13	
45	MOTA	2278	AW OWO			23.093	-7.348	24.192	1.00 32.27	8
	ATOM	2279	AW OWO		191	-10.284	6.288	39.379	1.00 32.43	8
	MOTA	2280	AW 0WO		192	-7.821	-0.312	31.358	1.00 32.44	8
	ATOM	2281	AW OWO	T W	193	20.703	-19.058	40.128	1.00 32.50	8
	MOTA	2282	OWO WA	T W	194	23.085	18.180	25.298	1.00 32.52	8
50	MOTA	2283	AW OWO	T W	195	18.564	11.924	14.883	1.00 32.61	8
	ATOM	2284	OWO WA			19.725	-15.776	37.227	1.00 32.93	8
	ATOM	2285	AW OWO			9.423		50.029	1.00 33.07	8
	MOTA	2286	OWO WA			-5.226	-11.891	39.040	1.00 33.31	8
			OWO WA			-10.872	11.311	41.622	1.00 33.34	8
	ATOM	2287					-10.123	51.108	1.00 33.47	8
55	MOTA	2288	OWO WA			24.953				
	MOTA	2289	OWO WA			10.234	12.343	37.442	1.00 33.61	8
	MOTA	2290	OWO WA			-1.385	9.325	49.590	1.00 33.68	8
	ATOM	2291	OWO WA	T	203	13.133	-13.562	50.516	1.00 33.68	8
	ATOM	2292	OWO WA	T W	204	32.332	3.720	31.230	1.00 33.72	8
60	MOTA	2293	OWO WA	T W	205	-4.769	19.603	30.890	1.00 34.01	8
	ATOM	2294	OWO WA	TW	206	-10.676	2.037	32.373	1.00 34.14	8
	ATOM	2295	OWO WA			5.473	-14.541	47.418	1.00 34.18	8
	MOTA	2296	OWO WA			-0.600	-4.653	18.959	1.00 34.35	8
	ATOM	2297	OWO WA			5.122	13.867	48.979	1.00 34.37	8
~ -		2297	OWO WA			-4.776	-9.796	38.696	1.00 34.40	8
65	ATOM					22.711	8.507	56.151	1.00 34.40	8
	ATOM	2299	OWO WA			-5.723	12.192	25.199	1.00 34.54	8
	MOTA	2300	OWO WA							8.
	ATOM	2301	OWO WA	T. N	1 213	-5.854	7.368	47.036	1.00 34.60	0

	T COM	2202	0140	tata m	T.7	214	2.162	12.775	15.472	1 00	34.69	8
	ATOM	2302	OWO						51.244		34.91	8
	ATOM	2303	OWO		W	215	29.086	-4.835				
	MOTA	2304	OWO		W		29.521	1.500	30.290		35.03	8
	MOTA	2305				217	9.270	16.229	27.647		35.08	8
5	MOTA	2306	OWO	TAW	W	218	-0.559	-13.990	44.942	1.00	35.09	8
	MOTA	2307	OWO	TAW	W	219	31.092	12.772	28.102	1.00	35.13	8
	ATOM	2308	OWO	TAW	W	220	4.053	17.330	40.649	1.00	35.18	8
	ATOM	2309	OWO			221	9.804	12.126	12.806	1.00	35.19	8
	ATOM	2310	OWO		W	222	16.382	10.037	14.084		35.33	8
10						223	34.860	8.861	43.050		35.36	8
10	ATOM	2311										8
	ATOM	2312	OWO			224	2.481	-1.469	55.185		35.39	
	ATOM	2313				225	27.639	15.901	20.220		35.45	8
	MOTA	2314	OWO	TAW	W	226	13.522	14.546	22.193	1.00	35.58	8
	MOTA	2315	OWO	TAW	W	227	18.759	-16.368	34.341	1.00	35.64	8
15	ATOM	2316	OWO	TAW	W	228	29.746	6.054	47.983	1.00	35.88	8
	ATOM	2317	OWO	TAW	W	229	1.824	8.703	50.441	1.00	35.91	8
	ATOM	2318	OWO			230		-10.212	20.566		36.11	8
	ATOM	2319	OWO			231	25.903	-4.307	53.039		36.25	8
	ATOM	2320	OW0			232	30.041	-9.858	50.314		36.32	8
20	ATOM	2321				233	2.098	9.375	12.724	1.00	36.32	8
	ATOM	2322	OW0	TAW	W	234	-6.517	-10.587	46.846	1.00	36.56	8
	ATOM	2323	OWO	\mathtt{TAW}	W	235	-6.610	-3.836	30.415	1.00	36.57	8
	ATOM	2324	OWO	TAW	W	236	-10.495	12.363	34.899	1.00	36.64	8
	ATOM	2325	OWO	TAW	W	237	-9.368	9.062	33.012	1.00	36.76	8
25	ATOM	2326	OWO		W	238	19.878	23.075	33.288		36.92	8
	ATOM	2327	OWO			239	-4.530	7.046	20.896		36.93	8
		2328	OWO			240	33.313	6.152	46.202		36.93	8
	ATOM											
	ATOM	2329	OWO			241	-8.607	4.039	46.924		37.16	8
	ATOM	2330	OWO			242	-0.158	-8.511	20.728		37.69	8
30	ATOM	2331	OWO	TAW	W	243	5.833	13.274	13.596		37.75	8
	ATOM	2332	OWO	TAW	W	244	5.857	-19.503	31.198	1.00	37.77	8
	ATOM	2333	OWO	TAW	W	245	-2.468	-11.125	30.496	1.00	37.88	8
	ATOM	2334	OWO			246		-18.250	25.554	1.00	37.97	8
	ATOM	2335				247	-2.981	10.860	22.607		38.01	8
2 =						248	29.733	2.478	51.185		38.06	8
35	ATOM	2336										
	ATOM	2337	OWO			249	-1.876	18.713	35.692		38.18	8
	ATOM	2338	OWO			250	-0.040	-2.395	54.365		38.20	8
	MOTA	2339	OM0		W	251	-2.499	-1.254	18.143	1.00	38.26	8
	ATOM	2340	OWO	\mathtt{TAW}	W	252	1.301	15.936	18.064	1.00	38.65	8
40	MOTA	2341	OWO	WAT	W	253	-7.703	5.024	28.841	1.00	38.66	8
	ATOM	2342	OWO	TAW	W	254	8.197	-10.548	51.105	1.00	38.97	8
	ATOM	2343	OWO			255	19.072	-5.777	16.600		39.02	8
	ATOM	2344				256	-1.755	-6.479	25.704		39.11	8
		2345	OWO			257	15.948	-20.846	38.342	1.00	39.37	8
4 =	ATOM											
45	ATOM	2346		TAW			-7.884	13.866	29.148	1.00	39.59	8
	MOTA	2347		TAW			34.511	11.821	32.723		39.65	8
	ATOM	2348		$\mathbf{T}\mathbf{A}\mathbf{W}$					27.952		39.69	8
	ATOM	2349	OWO	TAW	W	261	-8.601	2.060	30.456	1.00	39.87	8
	MOTA	2350	OWO	\mathtt{WAT}	W	262	-0.861	17.301	21.849	1.00	39.89	8
50	MOTA	2351	OWO	TAW	W	263	8.555	-18.275	47.241	1.00	39.93	8
	ATOM	2352		WAT			24.230	-5.252	22.664	1.00	40.00	8
	ATOM	2353		TAW			-1.056	0.937	53.921		40.53	8
				WAT			16.017	-13.902	22.326		40.63	
	ATOM	2354										8
	MOTA	2355		TAW			23.066	10.127	50.334		40.86	8
55	MOTA	2356		TAW			12.877	15.614	35.023		40.87	8
	ATOM	2357	OWO	\mathtt{WAT}	W	269	21.711	-4.797	18.761	1.00	40.90	8
	ATOM	2358	OWO	TAW	W	270	28.676	-7.905	40.739	1.00	41.51	8
	MOTA	2359		WAT			21.557	-6.991	52.277	1.00	42.05	8
	ATOM	2360		WAT			18.619	5.353	14.661		42.32	8
~ ^											42.53	
60	MOTA	2361		TAW			6.542	-6.740	51.852			8
	ATOM	2362		TAW			13.730	15.335	37.537		42.69	8
	MOTA	2363		$\mathbf{T}\mathbf{A}\mathbf{W}$			25.430	5.894	14.816		42.71	8
	MOTA	2364	OWO	TAW	W	276	-6.269	3.726	22.288	1.00	43.87	8
	MOTA	2365	OWO	WAT	W	277	19.099	-16.349	31.912	1.00	43.95	8
65	ATOM	2366		TAW			19.470	8.026	13.818		43.97	8
	ATOM	2367		TAW			22.549	19.383	22.028		44.26	8
	ATOM	2368		WAT			-7.882	-11.624	39.578		44.88	8
			OTATO	WAT	TA7	201						8
	MOTA	2369	OWO	MAT	٧V	Z 0 T	12.425	-9.624	21.392	1.00	45.09	0

	ATOM	2370	OWO	TAW	W	282	9.040	-7.996	13.289	1.00	45.24	8
	ATOM	2371	OWO	TAW	W	283	18.170	-7.822	17.373	1.00	45.27	8
	ATOM	2372	OWO	\mathtt{WAT}	W	284	20.862	6.192	13.601	1.00	45.89	8
	ATOM	2373	OWO	WAT	W	285	7.780	-19.941	30.094	1.00	46.04	8
5	MOTA	2374	OWO	WAT	W	286	25.580	16.286	35.358	1.00	46.89	8
	MOTA	2375	OWO	TAW	W	287	16.268	22.912	35.142	1.00	47.83	8
	MOTA	2376	OWO	WAT	W	288	7.741	15.092	27.401	1.00	48.86	8
	MOTA	2377	OWO	WAT	W	289	30.772	12.835	22.683	1.00	49.34	8
	ATOM	2378	OWO	WAT	W	290	22.334	12.132	49.136	1.00	49.76	8
10	MOTA	2379	OWO	WAT	W	291	-9.173	-1.103	47.956	1.00	50.16	8

Patent Claims

WO 00/22103

- 1. A polypeptide with reduced immune response, having one or more amino acid residues modified, wherein the C^{α} -atoms of said 5 amino acid residues are located less than 15 Å from a ligand bound to said polypeptide.
 - 2. A polypeptide according to claim 1, wherein the polypeptide has reduced allergenicity.
- 3. The polypeptide according to any of the claims 1 to 2, wherein the C^β -atom of the amino acid residues is located closer to the ligand than the C^α -atom.
- 4. The polypeptide according to any of the claims 1 to 3, wherein the C^{α} -atoms of the amino acid residues are located less than 10 Å from the ligand and said amino acid residues have an accessibility of at least 15%.
 - 5. The polypeptide according to any of the claims 1 to 4, wherein the ligand is a metal or metal ion.
- 6. The polypeptide according to any of the preceding claims, wherein the polypeptide is modified by substitution of amino acid residues.
 - 7. The polypeptide according to any of the claims 1 to 6, wherein the modified polypeptide has been selected from a diverse library of variants.
- 8. The polypeptide according to claim 6, wherein the substituting amino acids contain amino groups in the form of Lysine residues(s), or carboxylic groups in the form of Aspartic acid or Glutamic acid residues, or SH-groups in the form of Cysteine residues.
- 9. The polypeptide according to claim 6, wherein the modification(s) is(are) prepared by a conservative substitution of an amino acid residue, such as an Arginine to Lysine substitution or Aspargine to Aspartate/Glutamate or a Glutamine to Aspartate/Glutamate substitution or Threonine/Serine to Cysteine.
 - 10. The polypeptide according to claims 1-9, wherein the polypeptide is modified by coupling one or more polymeric molecules to said polypeptide, thereby providing a polypeptide-

polymer conjugate.

- 11. The polypeptide according to claim 10, wherein the parent polypeptide moiety of the conjugate has a molecular weight from 1 to 1000 kDa, preferred 4 to 100 kDa, more 5 preferred 12 to 60 kDa.
 - 12. The polypeptide according to claim 10, wherein the polymeric molecules coupled to the polypeptide have a molecular weight from 0.1 to 100, preferably 0.1 to 60 kDa, more preferably 0.3-5 kDa, most preferably 1 to 2 kDa.
- 13. The polypeptide according to any of the preceding claims, wherein said polypeptide or parent polypeptide is an enzyme selected from the group of Oxidoreductases, including laccases and Superoxide dismutase (SOD); Hydrolases, including carbohydrases, amylases, proteases, especially subtilisins;

 15 Transferases, including Transglutaminases (TGases); Isomerases, including Protein disulfide Isomerases (PDI); Lyases, including Pectate lyases.
- 14. The polypeptide according to claim 13, wherein said polypeptide or parent polypeptide is PD498, Savinase®, BPN', 20 Amylase, Proteinase K, Proteinase R, Subtilisin DY, Lion Y, Rennilase®, JA16, Alcalase®.
- 15. The polypeptide according to claim 14, wherein the polypeptide or parent polypeptide of the conjugate is a PD498 variant with one or more of the following substitutions: The amino acid residues in position 86, 87, 7, 47, 51, 219, 12, 218, 10, 11, 53, 28, 1, 65, 61, 63, 67, 60, 69, 55, 44, 45, 111, 115, 109, 215, 200, 202, 170, 268, 250, 152, 254, 136, 269, 246, 141 is substituted with K, D, E, or C, preferably R250K, R250D, R250E, R250C.
- 16. The polypeptide according to claim 14, wherein the polypeptide or parent polypeptide is a BPN' variant with one or more of the following substitutions: The amino acid residues in position 77, 2, 5, 43, 214, 206, 22, 215, 14, 17, 9, 36, 211, 195, 197, 154, 163, 247, 265, 251, 143, 127, 260, 131, 128, 243 is substituted with K, D, E, or C, preferably R247K, R247D, R247E, R247C.
 - 17. The polypeptide according to claim 14, wherein the polypeptide or parent polypeptide is a Savinase $^{\text{@}}$ variant with

WO 00/22103

one or more of the following substitutions: The amino acid residues in position 75, 2, 42, 208, 200, 14, 22, 17, 189, 241, 125, 125, 141, 245, 259, 237, 254, 157 is substituted with K, D, E, or C, preferably R241K, R241D, R241E, R241C.

- 18. The polypeptide according to claim 14, wherein the polypeptide or parent polypeptide is an amylase variant with one or more of the following substitutions: The amino acid residue in position 124, 126, 128, 159, 160, 166, 185, 186, 189, 190, 193, 194, 195, 196, 198, 201, 202, 203, 209, 210, 214, 242, 244, 247, 296, 298, 299, 302, 303, 304, 306, 307, 308, 310, 311, 314, 345, 347, 405, 406, 407, 408, 409, 433, 434, 435, 436, 437, 475, 476, 477, 478 is substituted with K, D, E, or C.
- 19. The polypeptide according to claims 10 or 12, wherein the polymeric molecule is selected from the group comprising a 15 natural or synthetic homo- and heteropolymers, selected from the group of the synthetic polymeric molecules including Branched poly-vinyl alcohol (PVA), poly-carboxyl acids, poly-(vinylpyrolidone) and poly-D,L-amino acids, or natural occurring polymeric molecules including dextrans, including carboxymethylcelluloses such as methylcellulose, and 20 dextrans, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, and hydrolysates of chitosan, starches, such as hydroxyethyl-starches, hydroxypropyl-starches, glycogen, agarose, guar gum, inulin, pullulans, xanthan gums, carrageenin, 25 pectin and alginic acid.
 - 20. The polypeptide according to claim 19, wherein the modified polypeptide is savinase variant R241KbPEG1000 or R241KbPEG2000.
- 21. The polypeptide according to any of claims 1 to 7, wherein the modified polypeptide is savinase variants R241Q, R241E, R241H or R241K.
 - 22. A method for preparing polypeptides with reduced immune response comprising the steps of:
- a) identifying amino acid residues located on the surface of the
 35 3-dimensional structure of the parent polypeptide in question,
 - b) selecting target amino acid residues on the surface of said 3-dimensional structure of said parent polypeptide to be modified,

- c) substituting one or more amino acid residues selected in step
- b) with other amino acid residues, and/or

WO 00/22103

- d) coupling polymeric molecules to the amino acid residues in step b) and/or step c).
- 23. The method according to claim 22, wherein the C^{α} -atoms of the amino acid residues are located less than 15 Å from the ligand bound to said polypeptide.
- 24. The method according to any of claims 22 to 23, wherein the $C^\beta\text{-atoms}$ of the amino acid residues are located closer to the ligand than the $C^\alpha\text{-atom}.$
- 25. The method according to any of the claims 22-24, wherein the C^{α} -atoms of the amino acid residues are located less than 10 Å from the ligand and said amino acid residues have an accessibility of at least 15%, preferable at least 20%, more preferably at least 30%.
- 26. The method according to any of the claims 22-25, wherein the identification of amino acid residues located on the surface on the polypeptide referred to in step a) are performed by a computer program analyzing the 3-dimensional structure of the parent polypeptide in question.
 - 27. The method according to any of the claims 22 to 26, wherein step b) comprises selecting Arginine or Lysine residues on the surface of the parent polypeptide.
- 28. The method according to claim 27, wherein one or more 25 Arginine residues identified in step b) is(are) substituted with a Lysine residue(s) in step c).
 - 29. Use of the modified polypeptide in claims 1 to 21 for reducing the allergenicity of industrial products.
- 30. Use of the modified polypeptide in claims 1 to 21 for reducing the immunogenicity of pharmaceuticals.
 - 31. A composition comprising a modified polypeptide of any of claims 1 to 21 and further comprising ingredients used in industrial products.
- 32. The composition according to claim 31, wherein the industrial product is a detergent, such as a laundry, dish wash or hard surface cleaning product, including bio-film products or a food or feed product or a textile product.

- 33. The composition according to claim 32, comprising a modified polypeptide of any of claims 1 to 21 and further ingredients used in personal care products, especially skin care products.
- 34. A composition comprising a modified polypeptide of any of claims 1 to 21 and further comprising ingredients used in pharmaceuticals.

Fig. 1

Fig. 2

1

SEQUENCE LISTING

(1)	(ii) (ii:	APF (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	PLICE A) NE B) ST C) CI C) CC C) PC C) TE C) TE C UMBE UMBE A) ME B) CC ((C) C	ANT: AME: TREET TY: OUNTF OSTAI ELEPF ELEF TREET TER F EDIUM OMPUT OPER	NOVO Bags RY: I COI HONE: XX: H VENT SEQ READA TYI TER:	D Non Svean Denma DE (2 +45 +45 FION: UENC ABLE PE: I IBM	Alle cd ark ZIP): 5 444 1449 : A r ES: FORM Flopm PC contents	: DK- 14 88 3256 modif 9 4: py d: compa : PC-	-2880 388 Sied isk atib	poly le /MS-I	oos		ion ‡	‡1.3() (EPC	o)
(2)	(i) (ii) (vi)	SEQ (F (G (I MOI OR) (F FEA	CION QUENC A) LE B) TY C) ST C) TC LECUI CGINA ATURE A) NA B) LC	CE CHEMOTH (PE: FRANI) DPOLO LE TY AL SO FRAIN E: AME/I	HARACHE REPORTED HARACH	CTERI 40 ba Leic ESS: line DNA E: acill	ISTIC ase p acid sind ear (gen	CS: pairs d gle nomic		3, NO	CIMB	No.	4048	34		
	(xi)							SEQ I	ID NO): 1	:					
	TCA Ser															4 8
	ACC Thr															96
	ACG Thr														GAT Asp	144
	GCA Ala 50															192
	CCA Pro															240
	GCT Ala															288
	AAG Lys			Ala					Asp							336

						GGT Gly										384
						CTT Leu 135										432
						GCA Ala										480
GCT Ala	GCA Ala	GGG Gly	AAT Asn	GAC Asp 165	AAT Asn	GTA Val	TCC Ser	CGT Arg	ACA Thr 170	TTC Phe	CAA Gln	CCA Pro	GCT Ala	TCT Ser 175	TAC Tyr	528
						GGT Gly										576
						ACG Thr										624
						CCG Pro 215										672
						CAC His										720
						GTA Val										768
						ACT Thr										816
						AGA Arg										840

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 280 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Trp Ser Pro Asn Asp Pro Tyr Tyr Ser Ala Tyr Gln Tyr Gly Pro Gln
1 5 10 15

Asn Thr Ser Thr Pro Ala Ala Trp Asp Val Thr Arg Gly Ser Ser Thr 20 25 30

- Gln Thr Val Ala Val Leu Asp Ser Gly Val Asp Tyr Asn His Pro Asp 35 40 45
- Leu Ala Arg Lys Val Ile Lys Gly Tyr Asp Phe Ile Asp Arg Asp Asn 50 55 60
- Asn Pro Met Asp Leu Asn Gly His Gly Thr His Val Ala Gly Thr Val
 65 70 75 80
- Ala Ala Asp Thr Asn Asn Gly Ile Gly Val Ala Gly Met Ala Pro Asp 85 90 95
- Thr Lys Ile Leu Ala Val Arg Val Leu Asp Ala Asn Gly Ser Gly Ser 100 105 110
- Leu Asp Ser Ile Ala Ser Gly Ile Arg Tyr Ala Ala Asp Gln Gly Ala 115 120 125
- Lys Val Leu Asn Leu Ser Leu Gly Cys Glu Cys Asn Ser Thr Thr Leu 130 135 140
- Ala Ala Gly Asn Asp Asn Val Ser Arg Thr Phe Gln Pro Ala Ser Tyr 165 170 175
- Pro Asn Ala Ile Ala Val Gly Ala Ile Asp Ser Asn Asp Arg Lys Ala 180 185 190
- Ser Phe Ser Asn Tyr Gly Thr Trp Val Asp Val Thr Ala Pro Gly Val 195 200 205
- Asn Ile Ala Ser Thr Val Pro Asn Asn Gly Tyr Ser Tyr Met Ser Gly 210 215 220
- Thr Ser Met Ala Ser Pro His Val Ala Gly Leu Ala Ala Leu Leu Ala 225 230 235 240
- Ser Gln Gly Lys Asn Asn Val Gln Ile Arg Gln Ala Ile Glu Gln Thr 245 250 255
- Ala Asp Lys Ile Ser Gly Thr Gly Thr Asn Phe Lys Tyr Gly Lys Ile 260 265 270

Asn Ser Asn Lys Ala Val Arg Tyr 275 280

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

4

1				5					10					15	
His	Asn	Arg	Gly 20	Leu	Thr	Gly	Ser	Gly 25	Val	Lys	Val	Ala	Val 30	Leu	Asp
Thr	Gly	Ile 35	Ser	Thr	His	Pro	Asp 40	Leu	Asn	Ile	Arg	Gly 45	Gly	Ala	Ser
Phe	Val 50	Pro	Gly	Glu	Pro	Ser 55	Thr	Gln	Asp	Gly	Asn 60	Gly	His	Gly	Thr
His 65	Val	Ala	Gly	Thr	Ile 70	Ala	Ala	Leu	Asn	Asn 75	Ser	Ile	Gly	Val	Leu 80
Gly	Val	Ala	Pro	Ser 85	Ala	Glu	Leu	Tyr	Ala 90	Val	Lys	Val	Leu	Gly 95	Ala
Ser	Gly	Ser	Gly 100	Ser	Val	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	Ala
Gly	Asn	Asn 115	Gly	Met	His	Val	Ala 120	Asn	Leu	Ser	Leu	Gly 125	Ser	Pro	Ser
Pro	Ser 130	Ala	Thr	Leu	Glu	Gln 135	Ala	Val	Asn	Ser	Ala 140	Thr	Ser	Arg	Gly
Val 145	Leu	Val	Val	Ala	Ala 150	Ser	Gly	Asn	Ser	Gly 155	Ala	Gly	Ser	Ile	Ser 160
Tyr	Pro	Ala	Arg	Tyr 165	Ala	Asn	Ala	Met	Ala 170	Val	Gly	Ala	Thr	Asp 175	Gln
Asn	Asn	Asn	Arg 180	Ala	Ser	Phe	Ser	Gln 185	Tyr	Gly	Ala	Gly	Leu 190	Asp	Ile
Val	Ala	Pro 195	Gly	Val	Asn	Val	Gln 200	Ser	Thr	Tyr	Pro	Gly 205	Ser	Thr	Tyr
Ala	Ser 210	Leu	Asn	Gly	Thr	Ser 215	Met	Ala	Thr	Pro	His 220	Val	Ala	Gly	Ala
Ala 225	Ala	Leu	Val	Lys	Gln 230	Lys	Asn	Pro	Ser	Trp 235	Ser	Asn	Val	Gln	Ile 240
Arg	Asn	His	Leu	Lys 245	Asn	Thr	Ala	Thr	Ser 250	Leu	Gly	Ser	Thr	Asn 255	Leu
Tyr	Gly	Ser	Gly		Val	Asn		Glu 265		Ala	Thr	Arg			

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1458 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:

		FEAT	URE: NAM LOC	E/KE	Y: C N:1. CRIP	DS .145	8				349					
cac (cat a	aat g	ggt a	acg a	aac ç	ggc a	ica a	atg a	atg d	cag t	ac t	tt g	gaa 1	.gg t	tat	48
		Asn														
1				5					10					15		
cta	cca	aat	gac	gga	aac	cat	tgg	aat	aga	tta	agg	tct	gat	gca	agt	96
Leu	Pro	Asn	Asp	Gly	Asn	His	Trp	Asn	Arg	Leu	Arg	Ser	Asp	Ala	Ser	
			20					25					30			
aac	cta	aaa	gat	aaa	999	atc	tca	gcg	gtt	tgg	att	cct	cct	gca	tgg	144
Asn	Leu	Lys	Asp	Lys	Gly	Ile	Ser	Ala	Val	Trp	Ile	Pro	Pro	Ala	Trp	
		35					40					45				
aag	ggt	gcc	tct	caa	aat	gat	gtg	999	tat	ggt	gct	tat	gat	ctg	tat	192
Lys	Gly	Ala	Ser	Gln	Asn	Asp	Val	Gly	Tyr	Gly	Ala	Tyr	Asp	Leu	Tyr	
	50					55					60					
gat	tta	gga	gaa	ttc	aat	caa	aaa	gga	acc	att	cgt	aca	aaa	tat	gga	240
Asp	Leu	Gly	Glu	Phe	Asn	Gln	Lys	Gly	Thr	Ile	Arg	Thr	Lys	Tyr		
65					70					75					80	
acg	cgc	aat	cag	tta	caa	gct	gca	gtt	aac	gcc	ttg	aaa	agt	aat	gga	288
Thr	Arg	Asn	Gln	Leu	Gln	Ala	Ala	Val	Asn	Ala	Leu	Lys	Ser	Asn	Gly	
				85					90					95		
att	caa	gtg	tat	ggc	gat	gtt	gta	atg	aat	cat	aaa	a aa	gga	gca	gac	336
Ile	Gln	Val	Tyr	Gly	Asp	Val	Val	Met	Asn	His	Lys	Gly	Gly	Ala	Asp	
			100					105					110			
gct	acc	gaa	atg	gtt	agg	gca	gtt	gaa	gta	aac	ccg	aat	aat	aga	aat	384
Ala	Thr	Glu	Met	Val	Arg	Ala	Val	Glu	Val	Asn	Pro	Asn	Asn	Arg	Asn	
		115					120					125				
caa	gaa	gtg	tcc	ggt	gaa	tat	aca	att	gag	gct	tgg	aca	aag	ttt	gac	432
Gln	Glu	Val	Ser	Gly	Glu	Tyr	Thr	Ile	Glu	Ala	Trp	Thr	Lys	Phe	Asp	
	130					135					140					

							cat His									4	80
145					150					155					160		
cac	ttt	gat	gga	gta	gat	tgg	gat	cag	tca	cgt	aag	ctg	aac	aat	cga	5	28
His	Phe	Asp	Gly	Val	Asp	Trp	Asp	Gln	Ser	Arg	Lys	Leu	Asn	Asn	Arg		
				165					170					175			
att	tat	aaa	ttt	aga	ggt	gat	gga	aaa	g gg	tgg	gat	tgg	gaa	gtc	gat	5	76
Ile	Tyr	Lys	Phe	Arg	Gly	Asp	Gly	Lys	Gly	Trp	Asp	Trp	Glu	Val	Asp		
			180					185					190				
aca	gaa	aac	ggt	aac	tat	gat	tac	cta	atg	tat	gca	gat	att	gac	atg	6	24
Thr	Glu	Asn	Gly	Asn	Tyr	Asp	Tyr	Leu	Met	Tyr	Ala	Asp	Ile	Asp	Met		
		195					200					205					
gat	cac	cca	gag	gta	gtg	aat	gag	cta	aga	aat	tgg	ggt	gtt	tgg	tat	6	72
Asp	His	Pro	Glu	Val	Val	Asn	Glu	Leu	Arg	Asn	Trp	Gly	Val	Trp	Tyr		
	210					215					220						
acg	aat	aca	tta	ggc	ctt	gat	ggt	ttt	aga	ata	gat	gca	gta	aaa	cat	7	20
Thr	Asn	Thr	Leu	Gly	Leu	Asp	Gly	Phe	Arg	Ile	Asp	Ala	Val	Lys	His		
225					230					235					240		
ata	aaa	tac	agc	ttt	act	cgt	gat	tgg	att	aat	cat	gtt	aga	agt	gca	7	68
Ile	Lys	Tyr	Ser	Phe	Thr	Arg	Asp	Trp	Ile	Asn	His	Val	Arg	Ser	Ala		
				245					250					255			
act	ggc	aaa	aat	atg	ttt	gcg	gtt	gcg	gaa	ttt	tgg	aaa	aat	gat	tta	8	16
Thr	Gly	Lys	Asn	Met	Phe	Ala	Val	Ala	Glu	Phe	Trp	Lys	Asn	Asp	Leu		
•			260					265					270				
ggt	gct	att	gaa	aac	tat	tta	aac	aaa	aca	aac	tgg	aac	cat	tca	gtc	8	64
Gly	Ala	Ile	Glu	Asn	Tyr	Leu	Asn	Lys	Thr	Asn	Trp	Asn	His	Ser	Val		
		275					280					285					
ttt	gat	gtt	ccg	ctg	cac	tat	aac	ctc	tat	aat	gct	tca	aaa	agc	gga	9	12
Phe	Asp	Val	Pro	Leu	His	Tyr	Asn	Leu	Tyr	Asn	Ala	Ser	Lys	Ser	Gly		
	290					295					300						

									7								
999	aat	tat	gat	atg	agg	caa	ata	ttt	aat	ggt	aca	gtc	gtg	caa	aga	960)
			Asp														
305		_	_		310					315					320		
cat	cca	atg	cat	gct	gtt	aca	ttt	gtt	gat	aat	cat	gat	tcg	caa	cct	1008	3
His	Pro	Met	His	Ala	Val	Thr	Phe	Val	Asp	Asn	His	Asp	Ser	Gln	Pro		
				325					330					335			
gaa	gaa	gct	tta	gag	tct	ttt	gtt	gaa	gaa	tgg	ttc	aaa	cca	tta	gcg	1056	5
Glu	Glu	Ala	Leu	Glu	Ser	Phe	Val	Glu	Glu	Trp	Phe	Lys	Pro	Leu	Ala		
			340					345					350				
tat	gct	ttg	aca	tta	aca	cgt	gaa	caa	ggc	tac	cct	tct	gta	ttt	tat	1104	Ł
Tyr	Ala	Leu	Thr	Leu	Thr	Arg	Glu	Gln	Gly	Tyr	Pro	Ser	Val	Phe	Tyr		
		355					360					365					
gga	gat	tat	tat	ggc	att	cca	acg	cat	ggt	gta	cca	gcg	atg	aaa	tcg	1152	2
Gly	Asp	Tyr	Tyr	Gly	Ile	Pro	Thr	His	Gly	Val	Pro	Ala	Met	Lys	Ser		
	370					375					380						
aaa	att	gac	ccg	att	cta	gaa	gcg	cgt	caa	aag	tat	gca	tat	gga	aga	1200)
Lys	Ile	Asp	Pro	Ile	Leu	Glu	Ala	Arg	Gln	Lys	Tyr	Ala	Tyr	Gly	Arg		
385					390					395					400		
caa	aat	gac	tac	tta	gac	cat	cat	aat	atc	atc	ggt	tgg	aca	cgt	gaa	1248	3
Gln	Asn	Asp	Tyr	Leu	Asp	His	His	Asn	Ile	Ile	Gly	Trp	Thr	Arg	Glu		
				405					410					415			
999	aat	aca	gca	cac	ccc	aac	tcc	ggt	tta	gct	act	atc	atg	tcc	gat	1296	5
Gly	Asn	Thr	Ala	His	Pro	Asn	Ser	Gly	Leu	Ala	Thr	Ile	Met	Ser	Asp		
			420					425					430				
999	gca	gga	gga	aat	aag	tgg	atg	ttt	gtt	999	cgt	aat	aaa	gct	ggt	1344	1
Gly	Ala	Gly	Gly	Asn	Lys	Trp	Met	Phe	Val	Gly	Arg	Asn	Lys	Ala	Gly		
		435					440					445					
caa	gtt	tgg	acc	gat	atc	act	gga	aat	cgt	gca	ggt	act	gtt	acg	att	1392	2
Gln	Val	Trp	Thr	Asp	Ile	Thr	Gly	Asn	Arg	Ala	Gly	Thr	Val	Thr	Ile		
	450					455					460						

aat	gct	gat	gga	tgg	ggt	aat	ttt	tct	gta	aat	gga	gga	tca	gtt	tct	1440
Asn	Ala	Asp	Gly	Trp	Gly	Asn	Phe	Ser	Val	Asn	Gly	Gly	Ser	Val	Ser	
465					470					475					480	
att	tgg	gta	aac	aaa	taa											1458
Ile	Trp	Val	Asn	Lys	*											
				485												

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 99/00542

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: C12N 9/96 // C11D 3/386, A61K 47/48
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	WO 9835026 A1 (NOVO NORDISK A/S), 13 August 1998 (13.08.98), page 5; page 22, line 15 - line 17; page 24	1-34
		
X	WO 9830682 A1 (NOVO NORDISK A/S), 16 July 1998 (16.07.98), claims 1-2	1-34
A	WO 9730148 A1 (NOVO NORDISK A/S), 21 August 1997 (21.08.97)	1-34
A	WO 9617929 A1 (NOVO NORDISK A/S), 13 June 1996 (13.06.96)	1-34

X	Further documents are listed in the continuation of Box C.	X	See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" erlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- document referring to an oral disclosure, use, exhibition or other
- document published prior to the international filing date but later than the priority date claimed
- later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

07 -02- 2000

31 January 2000

Name and mailing address of the ISA/

Swedish Patent Office

Box 5055, S-102 42 STOCKHOLM Facsimile No. +46 8 666 02 86

Authorized officer

Yvonne Siösteen/EÖ

Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.
PCT/DK 99/00542

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	WO 9640792 A1 (NOVO NORDISK A/S), 19 December 1996 (19.12.96)	1-34
A	Proc. Natl. Acad. Sci., Volume 88, August 1991, Michael S. Hershfield et al, "Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol" page 7185 - page 7189	1-34

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/DK 99/00542

Patent document cited in search report		Publication date	Patent family member(s)		Publication date		
WO	9835026	A1	13/08/98	AU	5749598	A	26/08/98
WO	9830682	A1	16/07/98	AU Ep	5478598 0954572		03/08/98 10/11/99
WO	9730148	A1	21/08/97	AU CA CN EP	1540697 2242488 1211278 0894128	A A	02/09/97 21/08/97 17/03/99 03/02/99
WO	9617929	A1	13/06/96	AU AU BR CA CN EP FI JP US	9509976 2206852 1168694 0796324 972443 10510516	A A A A A T A	08/10/98 26/06/96 09/06/98 13/06/96 24/12/97 24/09/97 09/06/97 13/10/98 05/01/99 09/11/99
WO	9640792	A1	19/12/96	AU	5893796	Α	30/12/96