Specyfikacja funkcjonalna - Gra w życie

Krzysztof Dąbrowski i Jakub Bogusz

21 lutego 2019

Spis treści

1	\mathbf{Cel}	projektu	2	
2	Opis ogólny problemu			
3	Dzia	iałanie programu 4		
	3.1	Komunikacja z użytkownikiem	4	
		3.1.1 Tryb z argumentami z wiersza poleceń	4	
		3.1.2 Tryb interaktywny	5	
	3.2	Format pliku wejściowego	5	
	3.3	Wyniki działania programu	5	

Rozdział 1

Cel projektu

Celem projektu jest implementacja gry w życie w języku C.

Rozdział 2

Opis ogólny problemu

Gra w życie jest automatem komórkowym wymyślonym przez brytyjskiego matematyka John Horton Conway w 1970 roku. Polega na symulacji kolejnych pokoleń życia komórek według następujących zasad.

Stany Komórka może znajdować się w jednym z dwóch stanów

- żywa
- martwa

Reguły Następne pokolenie generowane jest zgodnie z regułami:

- Jeżeli komóra była martwa i miała dokładnie 3 żywych sąsiadów, w następnym pokoleniu staje się żywa.
- Jeżeli komóra była żywa to pozostaje żywa jeśli miała dwóch lub trzech żywych sąsiadów. W przeciwnym razie staje się martwa.

Rozdział 3

Działanie programu

3.1 Komunikacja z użytkownikiem

3.1.1 Tryb z argumentami z wiersza poleceń

Argumenty

- -h / -help Wyświetlenie pomocy
- -f [nazwa pliku] / --file plik=[nazwa pliku] Plik z wejściowym stanem planszy zgodny z formatem.
- -o [ścieżka] / --output_dest=[ścieżka]
 Ścieżka do folderu, w którym zostaną zapisane wyniki symulacji. Domyślnie brak generacji plików i aktywna flaga -d 1000
- -t (gif png) / --type (gif png)) Typ generowanych rezultatów. Domyślnie gif.
- -n [liczba] / --amount_of_generations=[liczba]
 Ilość pokoleń do wygenerowania. Domyślnie 15
- -p [liczba] / --step=[liczba]
 Wybór co który stan symulacji będzie zapisywany. Domyślnie 1
- -s [liczba] / --size=[liczba]
 Losowe generowanie planszy początkowej o podanym rozmiarze. Wyklucza się z -f
- -d [liczba] / --delay=[liczba]
 Podanie tego argumentu spowoduje wyświetlanie w konsoli kolejnych generacji symulacji. Wartość argumentu [liczba] oznacza czas w milisekundach między wyświetleniem poszczególnych pokoleń. Domyślnie 1000.

3.1.2 Tryb interaktywny

Program prowadzi dialog z użytkownikiem pozwalając na wybór wszystkich niezbędnych ustawień.

3.2 Format pliku wejściowego

Przykład:	
5 3	– rozmiar (x y)
$1\ 0\ 0\ 1\ 1$	 Wartości poszczególnych komórek
0 1 1 0 1	– 1 - żywa
0 0 0 1 1	– 0 - martwa

3.3 Wyniki działania programu

Wyniki działania programu będą zależeć od preferencji użytkownika. W trybie interaktywnym program zapyta o docelowy format wyniku, a w trybie z argumentami wiersza poleceń, wynik zależeć będzie od wartości argumentu -t oraz argumentu -o. W obu przypadkach użytkownik będzie mógł:

- wyświetlić wybraną ilość generacji w konsoli,
- $\bullet\,$ wygenerować wybraną ilość plików .png z reprezentacjami graficznymi kolejnych pokoleń
- wygenerować plik .gif przedstawiający życie cywilizacji