Machine Learning in Robotics Lecture 4: Unsupervised Clustering

Prof. Dongheui Lee

Institute of Automatic Control Engineering Technische Universität München

dhlee@tum.de

Today Lecture Outline

- · Unsupervised Clustering
- Similarity measures
- Criterion functions
- Iterative optimization algorithms
- K-means & Variations
- Hierarchical clustering

Supervised vs. Unsupervised learning

- Supervised learning
 - A pattern is a pair of variables $\{x,\omega\}$ where x is a collection of observations or features (feature vector) and ω is the concept behind the observation (label)
- Unsupervised learning
 - Use unlabeled data, a collection of feature vectors without the class label $\boldsymbol{\omega}$

Supervised vs. Unsupervised learning

- Supervised learning
 - A pattern is a pair of variables $\{x,\omega\}$ where x is a collection of observations or features (feature vector) and ω is the concept behind the observation (label)
- Unsupervised learning
 - Use unlabeled data, a collection of feature vectors without the class label $\boldsymbol{\omega}$
 - These methods are called unsupervised because they are not provided the correct answer

Supervised vs. Unsupervised learning

Supervised learning

- A pattern is a pair of variables $\{x,\omega\}$ where x is a collection of observations or features (feature vector) and ω is the concept behind the observation (label)

Unsupervised learning

- Use unlabeled data, a collection of feature vectors without the class label ω
- These methods are called unsupervised because they are not provided the correct answer
- Unsupervised methods may appear to have limited capabilities, but they are useful
 - Labeling large data sets can be a costly procedure
 - Class labels may not be known beforehand
 - Large datasets can be compressed by finding a small set of proto-types

TEST: Unsupervised clustering

What is the natural grouping among those objects?

Many possibilities!!!

Two approaches for unsupervised learning

- · Parametric approaches
 - Functional forms for the underlying class-conditional densities are assumed, and we must estimate the parameters

$$p(\mathbf{x}|\theta) = \sum_{i=1}^{K} p(x|\omega_i, \theta_i) p(\omega_i)$$

Two approaches for unsupervised learning

- · Parametric approaches
 - Functional forms for the underlying class-conditional densities are assumed, and we must estimate the parameters

$$p(\mathbf{x}|\theta) = \sum_{i=1}^{K} p(x|\omega_i, \theta_i) p(\omega_i)$$

- Non-parametric approaches
 - No assumptions are made about the underlying densities
 - Instead, seek a partition of the data into clusters
 - These methods are typically referred to as clustering

Vector Quantization (VQ)

- Vector Quantization is a lossy data compression method
- Mapping n feature vectors $X = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$ to K classes of feature vectors $Y = \{y^{(1)}, y^{(2)}, \dots, y^{(K)}\}$

$$\mathbf{y}^{(j)} = c(\mathbf{x}^{(i)}), \quad j = 1, \dots, K; \quad i = 1, \dots, n; \quad K < n$$

- Code vector $y^{(j)}$
 - Cluster centers
 - Points with high density in feature space
- Code book $Y = \{y^{(1)}, y^{(2)}, \dots, y^{(K)}\}$
 - The set of all code vectors

Nonparametric clustering

Nonparametric clustering involves three steps:

- Defining a measure of (dis)similarity between examples
- Defining a criterion (Distortion) function for clustering
- Defining an algorithm to minimize (or maximize) a criterion (distortion) function

Similarity Measures

- A measuring rule of d(x,y) for the distance between two vectors x and y is considered a metric if it satisfies the following properties.
 - non-negativity: $d(x,y) \ge 0$
 - reflexivity: d(x,y) = 0 if and only if x = y
 - symmetry: d(x,y) = d(y,x)
 - triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$

Similarity Measures

• The most general form of distance metric is the power norm

$$d(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^{m} |x_i - y_i|^q\right)^{1/q}$$

- where $q \ge 1$ is a selectable parameter general Minkowski metric
- When q=2, Euclidean metric $d(\pmb{x},\pmb{y})=\|\pmb{x}-\pmb{y}\|=\sqrt{(\pmb{x}-\pmb{y})^T(\pmb{x}-\pmb{y})}$
- When q=1, Manhattan or city block metric sum of the absolute distances along each of the m coordinate axes.
- Notice that the above distance metrics are measures of dissimilarity.

Similarity Measures

- Inner product

$$s(x,y) = \frac{x^T y}{\parallel x \parallel \parallel y \parallel}$$

- When the features are binary-valued (0 or 1), the normalized inner product is a measure of the relative possession of common attributes.
- One variation is Tanimoto distance, a ratio of the number of shared attributes to the number possessed by *x* or *y*.

$$s(x,y) = \frac{x^T y}{x^T x + y^T y - x^T y}$$

Similarity measure

Criterion (Distortion) function

- Once a (dis)similarity measure has been determined, we need to define a criterion function to be optimized.
- This function measures the clustering quality of any partition of the data.
 - The most widely used criterion function for clustering is the sum-of-square-error

$$J = \sum_{i=1}^K \sum_{x \in \omega_i} (x - y^{(i)})^2$$
 where $y^{(i)} = \frac{1}{N_i} \sum_{x \in \omega_i} x$

Here, N_i is the number of samples in the ω_i

- This criterion measures how well the data set is represented by the cluster centers
- Other criterion functions exist, based on the scatter matrices used in Linear Discriminant Analysis (LDA).
 - Trace criterion $tr[S_w]$
 - Determinant criterion $|S_w|$
 - Invariant criterion $tr[S_T^{-1}S_w]$

Iterative optimization

- Once a criterion function has been defined, we must find a partition of the data set that minimizes the criterion.
- Exhaustive enumeration of all partitions, which guarantees the optimal solution, is unfeasible.
- Common approach is to proceed in an iterative fashion
 - Find reasonable initial partition
 - Move samples from one cluster to another in order to reduce the criterion function
- These iterative methods produce sub-optimal solution but are computationally tractable

(ロ) (固) (注) (注) 注 り(())

Iterative optimization

- Once a criterion function has been defined, we must find a partition of the data set that minimizes the criterion.
- Exhaustive enumeration of all partitions, which guarantees the optimal solution, is unfeasible.
- Common approach is to proceed in an iterative fashion
 - Find reasonable initial partition
 - Move samples from one cluster to another in order to reduce the criterion function
- These iterative methods produce sub-optimal solution but are computationally tractable
- Approaches
 - K-means algorithm
 - LBG algorithm
 - Fuzzy K-means algorithm
 - Basic iterative minimum-squared-error clustering

k-means, EM algorithm

EM algorithm

- Useful when estimating an optimal solution of a problem including hidden information
- An iterative method which alternates between performing an expectation (E) step and a maximization (M) step
- E step: computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables
- M step: computes parameters maximizing the expected log-likelihood found on the E step
- Local convergence, No guarantee for global convergence

K-means

- A simple example of the EM optimization algorithm

Cluster dataset $extbf{ extit{X}} = \left\{ extbf{ extit{x}}^{(1)}, extbf{ extit{x}}^{(2)}, \dots, extbf{ extit{x}}^{(n)}
ight\}$, given $extbf{ extit{K}}$

1. Initialization: Choose K random vectors $\mathbf{Y} = \left\{\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(K)}\right\}$ as an initial mean set

Cluster dataset $\textit{X} = \left\{ \textit{x}^{(1)}, \textit{x}^{(2)}, \ldots, \textit{x}^{(n)} \right\}$, given K

- 1. Initialization: Choose K random vectors $\mathbf{Y} = \left\{\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(K)}\right\}$ as an initial mean set
- E-step: For each data point, find the closest class and label them. Dataset is divided into K classes

$$X_i = \left\{ x^{(j)} \mid d(x^{(j)}, y^{(i)}) \le d(x^{(j)}, y^{(k)}), j = 1, \dots, n; k = 1, \dots, K \right\}$$

Cluster dataset $\textit{X} = \left\{ \textit{x}^{(1)}, \textit{x}^{(2)}, \ldots, \textit{x}^{(n)} \right\}$, given K

- 1. Initialization: Choose K random vectors $\mathbf{Y} = \left\{\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(K)}\right\}$ as an initial mean set
- 2. E-step: For each data point, find the closest class and label them. Dataset is divided into K classes

$$X_i = \left\{ x^{(j)} \mid d(x^{(j)}, y^{(i)}) \le d(x^{(j)}, y^{(k)}), j = 1, \dots, n; k = 1, \dots, K \right\}$$

3. M-step: From the current clusters, their mean vectors are updated

$$\mathbf{y}^{(i)} = \frac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{x} = \mathcal{C}(\mathbf{X}_i)$$

Cluster dataset $\textit{X} = \left\{ \textit{x}^{(1)}, \textit{x}^{(2)}, \ldots, \textit{x}^{(n)} \right\}$, given K

- 1. Initialization: Choose K random vectors $\mathbf{Y} = \left\{ \mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(K)} \right\}$ as an initial mean set
- E-step: For each data point, find the closest class and label them. Dataset is divided into K classes

$$X_i = \left\{ x^{(j)} \mid d(x^{(j)}, y^{(i)}) \le d(x^{(j)}, y^{(k)}), j = 1, \dots, n; k = 1, \dots, K \right\}$$

3. M-step: From the current clusters, their mean vectors are updated

$$\mathbf{y}^{(i)} = \frac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{x} = \mathcal{C}(\mathbf{X}_i)$$

Calculate the total distortion, the sum of the distance between each datapoint and its closest cluster mean.

$$J = \sum_{i=1}^{K} \sum_{x \in \omega_i} (x - y^{(i)})^2$$

5. Evaluate the convergence. If converged, stop. Else, go to step 2.

Illustration of k-means algorithm

Source: C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

k-means clustering applications

Source: C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

k-means clustering: Remarks

- The way to initialize the means is not specified. One popular way to start is to randomly choose k of the samples.
- A local optimization algorithm
 - Converge to a local rather than global minimum of J
 - Convergence properties of the k-means algorithm [MacQueen 1967]
 - The results depend on the initial values for the means. The standard solution is to try a number of different starting points.
- Uniform search
- Slow convergence
- It can happen that the set of samples closest to $y^{(i)}$ is empty, so that $y^{(i)}$ cannot be updated.
- The results depend on the value of *K*.

Basic Iterative Minimum-Squared-Error Clustering

- A sequential version of the k-means clustering algorithm.
 - k-means procedure waits until all n samples have been reclassified before updating.
 - the Basic Iterative Minimum-Squared-Error Clustering updates after each sample is reclassified.
- Disadvantages
 - more susceptible to being trapped in local minima
 - results depend on the order in which the candidates are selected
- Merits
 - at least a stepwise optimal procedure
 - suitable to problems in which samples are acquired sequentially and clustering must be done online

Fuzzy k-means algorithm

- Allows one piece of data to belong to two or more clusters
- Minimizing the below objective function

$$J = \sum_{k=1}^{K} \sum_{i=1}^{n} P(\omega_k | \boldsymbol{x}^{(i)})^m (\boldsymbol{x}^{(i)} - \boldsymbol{y}^{(k)})^2$$

- m is a parameter to adjust the blending of different clusters. If m=0, k-means. For $m\geq 1$, the criterion allows belonging to multiple clusters
- $P(\omega_k|\mathbf{x}^{(i)})$ is the degree of membership of $\mathbf{x}^{(i)}$ in the cluster k
- an iterative optimization of the objective function shown above, with the update of membership $P(\omega_k|x^{(i)})$ and the cluster centers $y^{(k)}$ by:

$$P(\omega_k|\mathbf{x}^{(i)}) = \frac{1}{\sum_{j=1}^{K} \left(\frac{\|\mathbf{x}^{(i)} - \mathbf{y}^{(k)}\|}{\|\mathbf{x}^{(i)} - \mathbf{y}^{(j)}\|}\right)^{\frac{2}{m-1}}}$$

$$\mathbf{y}^{(k)} = \frac{\sum_{i=1}^{n} P(\omega_k | \mathbf{x}^{(i)})^m \mathbf{x}^{(i)}}{\sum_{i=1}^{n} P(\omega_k | \mathbf{x}^{(i)})^m}$$

Fuzzy k-means algorithm: Pseudocode

Cluster dataset, given K

- 1. Initialization: Initialize K random mean vectors $Y = \{y^{(1)}, y^{(2)}, \dots, y^{(K)}\}$. Initialize $P(\omega_k | \mathbf{x}^i)$ for i = 1..n, k = 1..K
- 2. Normalize $P(\omega_k|\mathbf{x}^{(i)})$ so that $\sum_{k=1}^{K} P(\omega_k|\mathbf{x}^{(i)}) = 1$ for i = 1..n

0000

Fuzzy k-means algorithm: Pseudocode

Cluster dataset, given K

- 1. Initialization: Initialize K random mean vectors $\mathbf{Y} = \left\{\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(K)}\right\}$. Initialize $P(\omega_k | \mathbf{x}^i)$ for i = 1..n, k = 1..K
- 2. Normalize $P(\omega_k|\mathbf{x}^{(i)})$ so that $\sum_{k=1}^{K} P(\omega_k|\mathbf{x}^{(i)}) = 1$ for i = 1..n
- 3. Update mean vectors

$$\mathbf{y}^{(k)} = \frac{\sum_{i=1}^{n} P(\omega_k | \mathbf{x}^{(i)})^m \mathbf{x}^{(i)}}{\sum_{i=1}^{n} P(\omega_k | \mathbf{x}^{(i)})^m}$$

4. Update the degree of membership of $x^{(i)}$ in the cluster k

$$P(\omega_k | \mathbf{x}^{(i)}) = \frac{1}{\sum_{j=1}^{K} \left(\frac{\|\mathbf{x}^{(i)} - \mathbf{y}^{(k)}\|}{\|\mathbf{x}^{(i)} - \mathbf{y}^{(j)}\|} \right)^{\frac{2}{m-1}}}$$

Fuzzy k-means algorithm: Pseudocode

Cluster dataset, given K

- 1. Initialization: Initialize K random mean vectors $\mathbf{Y} = \left\{\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(K)}\right\}$. Initialize $P(\omega_k | \mathbf{x}^i)$ for i = 1..n, k = 1..K
- 2. Normalize $P(\omega_k|\mathbf{x}^{(i)})$ so that $\sum_{k=1}^{K} P(\omega_k|\mathbf{x}^{(i)}) = 1$ for i = 1..n
- 3. Update mean vectors

$$\mathbf{y}^{(k)} = \frac{\sum_{i=1}^{n} P(\omega_k | \mathbf{x}^{(i)})^m \mathbf{x}^{(i)}}{\sum_{i=1}^{n} P(\omega_k | \mathbf{x}^{(i)})^m}$$

4. Update the degree of membership of $x^{(i)}$ in the cluster k

$$P(\omega_k | \mathbf{x}^{(i)}) = \frac{1}{\sum_{j=1}^{K} \left(\frac{\|\mathbf{x}^{(i)} - \mathbf{y}^{(k)}\|}{\|\mathbf{x}^{(i)} - \mathbf{y}^{(j)}\|} \right)^{\frac{2}{m-1}}}$$

5. If $\max_{i,k} P(\omega_k | \mathbf{x}^{(i)})$ is converged, then stop. Else, go to step 2.

Another variation of k-means

- ISODATA, which stands for Iterative Self-Organizing Data Analysis
 Technique (Algorithm) is an extension to the k-means algorithm
 with some heuristics to automatically select the number of clusters
- The algorithm works in an iterative fashion
 - (1) Perform k-means clustering
 - (2) Split any clusters whose samples are sufficiently dissimilar
 - (3) Merge any two clusters sufficiently close
 - (4) Go to (1)

4 □ ト 4 □ ト 4 亘 ト ■ 9 Q ○

Hierarchical clustering

- k-means and ISODATA create disjoint clusters, resulting in a "flat" data representation
 - ► However, sometimes it is desirable to obtain a hierarchical representation of data, with clusters and sub-clusters arranged in a tree-structured fashion (i.e., biological taxonomy)
- Hierarchical clustering methods can be grouped in two general classes
 - ► Agglomerative (bottom-up, merging) : Starting with *n* singleton clusters, successively merge clusters until one cluster is left
 - ▶ Divisive (top-down, splitting) : Starting with a unique cluster, successively split the clusters until n singleton examples are left

Dendrograms

- The preferred representation for hierarchical clusters is the dendrogram
- The dendrogram is a binary tree that shows the structure of the clusters
 - ► In addition to the binary tree, the dendrogram provides the similarity measure between clusters (the vertical axis)
- · An alternative representation is based on sets
 - $\{\{x_1, \{x_2, x_3\}\}, \{\{\{x_4, x_5\}, \{x_6, x_7\}\}, x_8\}\}$
 - However, unlike the dendrogram, sets cannot express quantitative information

Divisive clustering

- 1. Start with one large cluster
- 2. Find "worst" cluster
- 3. Split it
- 4. If K < n, go to step 2
- How to choose the "worst" cluster
- How to split clusters
- The computations required by divisive clustering are more intensive than for agglomerative clustering methods.

Non-uniform Binary Split Algorithm

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

Non-uniform Binary Split Algorithm

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

2. Choose a class which has the largest distortion among current classes

$$J_i \geq J_j, \ \forall j = 1, \ldots, k$$

Non-uniform Binary Split Algorithm

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

2. Choose a class which has the largest distortion among current classes

$$J_i \geq J_j, \ \forall j = 1, \ldots, k$$

3. Split the class into two subclasses by using a small random vector

$$oldsymbol{X}_a = \left\{ oldsymbol{x} ext{ which is closer to } oldsymbol{y}^{(i)} + oldsymbol{v}_i
ight\}$$

$$oldsymbol{X}_b = \left\{ oldsymbol{x} ext{ which is closer to } oldsymbol{y}^{(i)} - oldsymbol{v}_i
ight\}$$

Non-uniform Binary Split Algorithm

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

2. Choose a class which has the largest distortion among current classes

$$J_i \geq J_j, \ \forall j = 1, \ldots, k$$

3. Split the class into two subclasses by using a small random vector

$$oldsymbol{X}_a = \left\{ oldsymbol{x} ext{ which is closer to } oldsymbol{y}^{(i)} + oldsymbol{v}_i
ight\}$$

$$oldsymbol{X}_b = \left\{ oldsymbol{x} ext{ which is closer to } oldsymbol{y}^{(i)} - oldsymbol{v}_i
ight\}$$

4. Update the code vectors

$$\mathbf{y}^{(i)} := \mathcal{C}(\mathbf{X}_a)$$
 and $\mathbf{y}^{(k+1)} := \mathcal{C}(\mathbf{X}_b)$

Non-uniform Binary Split Algorithm

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

2. Choose a class which has the largest distortion among current classes

$$J_i \geq J_j, \ \forall j = 1, \ldots, k$$

3. Split the class into two subclasses by using a small random vector

$$oldsymbol{X}_a = \left\{ oldsymbol{x} ext{ which is closer to } oldsymbol{y}^{(i)} + oldsymbol{v}_i
ight\}$$

$$oldsymbol{X}_b = \left\{ oldsymbol{x} ext{ which is closer to } oldsymbol{y}^{(i)} - oldsymbol{v}_i
ight\}$$

4. Update the code vectors

$$\mathbf{y}^{(i)} := \mathcal{C}(\mathbf{X}_a)$$
 and $\mathbf{y}^{(k+1)} := \mathcal{C}(\mathbf{X}_b)$

5. If k = K, stop. Else, k := k + 1 and go to step 2.

k-means vs. Non-uniform binary split

Non-uniform binary split: Not good quality of codebook. But very fast

LBG algorithm

- · Combination of k-means and Binary split
- Proposed by Linde, Buzo, and Gray (1980)
- Instead of random initial codebook, let's use codebook from binary split
- Faster convergence and better quality codebook than k-means algorithm

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

2. Splitting: For each cluster, split it into two subclasses. k := 2k

$$\mathbf{y}_a^{(i)} = \mathbf{y}^{(i)} + \mathbf{v}_i$$
 and $\mathbf{y}_b^{(i)} = \mathbf{y}^{(i)} - \mathbf{v}_i$

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

2. Splitting: For each cluster, split it into two subclasses. k := 2k

$$\mathbf{y}_a^{(i)} = \mathbf{y}^{(i)} + \mathbf{v}_i$$
 and $\mathbf{y}_b^{(i)} = \mathbf{y}^{(i)} - \mathbf{v}_i$

- 3. Iteration (k-means algorithm)
 - a E-step: For each data point, find the closest cluster which achieves the minimum distance measure
 - b M-step: From the current cluster, update their mean vectors $\mathbf{v}^{(i)} = \mathcal{C}(\mathbf{X}_i)$
 - c Iterate E-step and M-step until it converges

1. Initialization: Calculate a center for all data points. k := 1

$$\mathbf{y}^{(1)} = \mathcal{C}(\mathbf{X})$$

2. Splitting: For each cluster, split it into two subclasses. k := 2k

$$y_a^{(i)} = y^{(i)} + v_i$$
 and $y_b^{(i)} = y^{(i)} - v_i$

- 3. Iteration (k-means algorithm)
 - a E-step: For each data point, find the closest cluster which achieves the minimum distance measure
 - b M-step: From the current cluster, update their mean vectors $\mathbf{y}^{(i)} = \mathcal{C}(\mathbf{X}_i)$
 - c Iterate E-step and M-step until it converges
- 4. If the desired number of code vectors is obtained (k = K), stop. Else, go to step 2.

Comparison

Agglomerative clustering

- 1. Start with *n* singleton cluster
- 2. Find nearest clusters
- 3. Merge them
- 4. If K > 1, go to step 2
- How to find the "nearest" pair of clusters
 - ▶ Minimum distance $d_{min}(X_i, X_j) = \min_{\mathbf{x} \in \omega_i, \mathbf{x}' \in \omega_i} \| \mathbf{x} \mathbf{x}' \|$
 - ▶ Maximum distance $d_{max}(X_i, X_j) = \max_{x \in \omega_i, x' \in \omega_i} \|x x'\|$
 - ▶ Average distance $d_{avg}(X_i, X_j) = \frac{1}{N_i N_j} \sum_{x \in \omega_i} \sum_{x' \in \omega_j} ||x x'||$
 - ▶ Mean distance $d_{mean}(X_i, X_j) = \parallel y^{(i)} y^{(j)} \parallel$

4 □ Þ 4 □ Þ 4 □ Þ ■ 9 0 0 0

Agglomerative clustering

Minimum distance

- When d_{min} is used to measure distance between clusters, the algorithm is called the *nearest neighbor* or *single-linkage* clustering algorithm
- If the algorithm is allowed to run until only one cluster remains, the result is a minimum spanning tree (MST)

Maximum distance

- When d_{max} is used to measure distance between clusters, the algorithm is called the farthest neighbor or complete-linkage clustering algorithm
- From a graph-theoretic point of view, each cluster constitutes a complete sub-graph

Average and mean distance

- The average and mean distance approaches are more robust to outliers
- Of the two, the mean distance is computationally more attractive, since Notice that the average distance approach involves the computation of N_iN_i distances for each pair of clusters

Agglomerative clustering example

Perform agglomerative clustering on the following dataset using the single-linkage metric

- $X = \{1, 3, 4, 9, 10, 13, 21, 23, 28, 29\}$
- In case of ties, always merge the pair of clusters with the largest mean
- Indicate the order in which the merging operations occur

Multi-Robot Exploration

- Task definition
 - ► Exploration of unknown areas by means of *k* mobile robots.
 - Application: Search/Rescue robot, planetary exploration, reconnaissance
- Problems
 - Reduce the difference of waiting time among different regions of a workspace.
 - Ensure a balanced exploration of the environment

Wu L., Puig D., and Garcia M. A. *Balanced Multi-Robot Exploration through a Global Optimization Strategy*. Journal of Physical Agents. 2010.

Multi-Robot Exploration

- K-means is used to partition an unexplored space in regions.
- Each region is assigned to a robot solving an optimization problem.

Wu L., Puig D., and Garcia M. A. *Balanced Multi-Robot Exploration through a Global Optimization Strategy*. Journal of Physical Agents. 2010.

Outdoor Robots Navigation

Task definition

- Autonomous navigation for outdoor, unstructured environments.
- Recognize navigable terrain and avoid obstacles, based on their appearance.

Problem

Do reliable segmentation of outdoor scenes in an efficient manner (online).

Blas M. R., Agrawal M., Sundaresan A., and Konolige K. *Fast Color/Texture Segmentation For Outdoor Robots*. IEEE International Conference on Intelligent Robots and Systems. 2008.

Outdoor Robots Navigation

- Use compact texture/color descriptors (feature vectors) and fast unsupervised clustering algorithms.
- K-means is used to cluster neighborhood feature vectors in a small set of basis vectors (textons).
- Each pixel is classified as belonging to one cluster using Euclidean distance (b).

Blas M. R., Agrawal M., Sundaresan A., and Konolige K. *Fast Color/Texture Segmentation For Outdoor Robots*. IEEE International Conference on Intelligent Robots and Systems. 2008.

Outdoor Robots Navigation

- Extract an histogram counting textons in a neighborhood of each pixel
- K-means to extract a set of histogram profiles (k = 8).
- Earth Movers Distance is used to merge similar clusters (c).

Blas M. R., Agrawal M., Sundaresan A., and Konolige K. *Fast Color/Texture Segmentation For Outdoor Robots*. IEEE International Conference on Intelligent Robots and Systems. 2008.

Summary and Next Lecture

- What we have learned
 - k-means algorithm
 - hierarchical clustering
- Reading: Duda Chap. 10.4, 10.6-9, Bishop Chap. 9.1, Michell Chap. 6.12
- Next Lecture
 - Maximum Likelihood Estimation
 - Gaussian Mixture Model

