WHAT IS CLAIMED IS:

1	1. A method for determining temperature of a transducer of an ultrasonic hand pi
2	comprising the steps of:
3	determining a shunt capacitance of the transducer;
4	calculating the temperature of the transducer based on the shunt capacitance
5	of the transducer; and
6	providing a warning to a user of the hand piece if one of the temperature of
	the transducer and a rate of change of the temperature is excessive.
1	2. The method of claim 1, wherein said determining step comprising the steps of:
	applying an ultrasonic drive signal to the transducer across a pre-defined
2 1 1 1 1 1 1 1 1	frequency range;
4	measuring shunt capacitances of the transducer at frequencies across the
5	predefined frequency range;
6	comparing the measured shunt capacitances;
7	determining whether any measured shunt capacitance varies by more than
8	a predetermined value for all measured shunt capacitances; and
9	averaging the measured shunt capacitances and calculating the transducer
10	temperature.

2

7. The method of claim 2, wherein the pre-defined frequency range is set such that non-resonant frequencies are located in the predefined frequency range.

- 8. The method of claim 2, wherein said measuring step comprises the step of:
 measuring shunt capacitances at several different frequencies within and
 spaced along the predefined frequency range.
- 9. The method of claim 8, wherein the shunt capacitances are measured at five different frequencies.
 - 10. The method of claim 2, wherein the pre-determined value is approximately 10 percent.
 - 11. The method of claim 2, wherein the calculation is performed in accordance with the relationship:

$$\Delta C_0 = C_s - C_0 ,$$

where C_s is the capacitance at an off-resonance frequency which is stored in memory and C_0 is the shunt capacitance.

- 12. The method of claim 1, wherein said determining step comprises the steps of: applying an ultrasonic drive signal to the transducer across a pre-defined frequency range;
- measuring the hand piece impedance;

1

1

2

3

4

5

6

determining whether the hand piece phase difference is less than a predetermined value;

13

computing a hand piece average shunt capacitance; incrementing the drive signal by a set frequency value;	nes;
determining whether one of the drive frequency is greater than a pr	re-set
frequency and a number of impedance measurements is less than a pre-de	fined
number; and	

computing an average shunt capacitance value at each drive frequency.

13. The method of claim 12, further comprising the step of:

incrementing the drive signal by the set frequency value, if the absolute value of the hand piece phase difference is greater than the predetermined value; and

returning to the step of measuring the hand piece impedance.

- The method of claim 13, wherein the set frequency value is 25 Hz and the predetermined value is 89.5°.
- The method of claim 12, wherein the predefined frequency range is from 15. 2 approximately 34 kHz to 44 kHz.

- performing a calculation to determine whether the hand piece is within
- 3 acceptable temperature limits; and
- 4 providing a warning, if the transducer temperature is not within acceptable
- 5 limits.
- 1

3

- 17. The method of claim 16, wherein the calculation is performed in accordance with the
- 2 relationship:

$$\Delta C_0 = C_s - C_0 ,$$

where C_s is the capacitance at an off-resonance frequency which is stored in memory and C_0 is the shunt capacitance.

- 18. The method of claim 12, wherein the pre-established number is 10 percent.
- 19. The method of claim 12, wherein the average shunt capacitance is computed in 2 accordance with the relationship:

$$C_0 = \frac{1}{2\pi f \left| Z_{HP} \right|},$$

where f is the drive frequency of the generator, and Z_{HP} is the hand piece impedance. 4

20	The	method	of	claim	12,	wherein	the	pre-set	frequency	is	44.5	kHz	and	the
pre-define	d numb	per is 100).											

21. The method of claim 1, wherein said determining step comprises the steps of: applying an ultrasonic drive signal to the hand piece/blade across a pre-defined frequency range;

measuring a first hand piece shunt capacitance when a user first activates the hand piece/blade;

measuring a second hand piece/blade shunt capacitance when the surgeon deactivates the hand piece/blade;

calculating a time difference between when the hand piece/blade is activated and deactivated using a time when the first measured hand piece/blade shunt capacitance is obtained and a time when the second measured hand piece/blade shunt capacitance is obtained;

computing a rate of change value of the hand piece/blade shunt capacitance using the calculated time difference;

determining whether the rate of change value of the hand piece/blade shunt capacitance is greater than a predetermined threshold above a value stored in memory; and

providing a warning to the user, if the rate of change value of the hand piece/blade shunt capacitance is greater than the predetermined threshold above the value stored in memory.

- 22. The method of claim 21, wherein the predefined frequency range is from approximately 34 kHz to 44 kHz.
 - 23. The method of claim 21, wherein said computing step comprises the step of:

 dividing a difference between the first measured hand piece/blade shunt
 capacitance and the second measured hand piece/blade shunt capacitance by a
 difference in time between when the first measured hand piece/blade shunt
 capacitance is obtained and when the second measured hand piece/blade shunt
 capacitance is obtained.
- 24. The method of claim 21, wherein the predetermined threshold is a shunt capacitance rate of change value stored in memory.
 - 25. The method of claim 24, wherein the predetermined threshold is 120 pF/min.
 - 26. The method of claim 1, wherein said determining step comprises the steps of: applying an ultrasonic drive signal to the transducer across a pre-defined frequency range;

measuring the hand piece impedance at fixed frequency intervals to obtain a measured impedance at each frequency interval;

performing a curve fit based on each measured impedance at each frequency interval to obtain a curve fit equation;

11

12 13

14

1 2

1

1

2

9 10

calculating a shunt capacitance based on each distinct impedance value; discarding a maximum and a minimum calculated shunt capacitance value

to obtain a residual group of shunt capacitances; and

a group of distinct impedance values;

averaging the residual group of shunt capacitances to obtain a final shunt

capacitance value of the hand piece.

27. The method of claim 26, wherein the curve fit is performed in accordance with the relationship:

$$Z_{HP} = af_0^2 + bf_0 + c ,$$

where a, b and c are constants which are calculated via the curve fit and f_0 is a fixed frequency at which the hand piece impedance is measured.

solving the curve fit equation at equally spaced frequency values to obtain

- The method of claim 22, wherein the pre-defined frequency range is from 28. approximately 34.5 kHz to 44.5 kHz.
 - 29. The method of claim 26, wherein the fixed frequency interval is 50 Hz.
- 30. The method of claim 26, wherein the shunt capacitance is calculated in accordance with the relationship:

 $C_0 = -(1/f_0) * (Z_{HP}^2 - 1/R_p^2)^{\frac{1}{2}} - (C_{v1} * C_{v2})/(C_{v1} + C_{v2}) + 1/(f_0^2 * L_t) - C_c - C_{pcb},$

where C_o is the shunt capacitance, f_0 is a fixed frequency at which the hand piece impedance is measured, Z_{HP} is the hand piece impedance at the fixed frequency f_0 , R_p is a value of a limiting resistor, C_{v1} and C_{v2} are values of voltage dividing capacitors, L_t is a value stored in memory of the generator which represents a transducer tuning inductor, C_c is a capacitance of a hand piece cable and C_{pcb} is a contribution of capacitance from a printed circuit board in the generator.

- 31. The method of claim 26, wherein the group of distinct impedance values comprises eleven impedance values.
- 32. The method of claim 26, wherein the equally spaced frequency values are spaced apart at 1000 Hz intervals.