# ANOVA - Chapter 3

#### Outline

- ANOVA what is it...
- How to compute ANOVA
  - Examples
- Assumption checking
- Extensions (next class):
  - Unbalanced samples
  - Differing variances
  - Regression / fitted models

#### ANOVA

- Assume *a* set of samples
  - Each experiment has *n* replicants
  - Want to see if any of the sets are "significantly" different from the others
- Compute:
  - The overall mean
  - The mean for each set
  - The total sum of squares (SS<sub>T</sub>)
  - The sum of squares of just the means (times n) (SS<sub>Treatments</sub>)
  - The sum of squares of the errors =  $SS_T$   $SS_{Treatments}$

# Examples:

- 3.17
- 3.29

### 3.4.1. Normal probability plot of residuals

- NPP of residuals combine observations in *a* treatments in one plot
  - Chapter 2 for t-test: NPP of raw data at 2 conditions.
  - In ANOVA, it is usually more effective to work with residuals
- No evidence of a violation of the normality assumption



# Departures from normality - Skewed residuals





# Departures from normality - Heavy tailed residuals





### 3.4.2. Check for independence

- Residuals versus run order: To satisfy independence assumption, there should not be strong correlation between residuals
  - Tendency to have "runs" of positive or negative residuals indicates strong correlation and indicates that the observations are not independent
  - In this experiment there is no indication of correlation between residuals



### 3.4.3. Check for constant variance

- Residuals versus fitted values  $\hat{y}_{ij}$ 
  - To satisfy the constant variance assumption at all treatments plot should look like a "parallel band" centered about zero
  - In this experiment there is no indication of non-constant variation at different treatments



### Moving beyond the basic assumptions

■ TABLE 3.3

The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

| Source of Variation       | Sum of<br>Squares                                                         | Degrees of<br>Freedom | Mean<br>Square             | ${F}_0$                                     |
|---------------------------|---------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------------------------|
|                           | $SS_{\text{Treatments}}$                                                  |                       |                            | 146                                         |
| Between treatments        | $= n \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}_{})^2$              | a - 1                 | $MS_{\mathrm{Treatments}}$ | $F_0 = \frac{MS_{\text{Treatments}}}{MS_E}$ |
| Error (within treatments) | $SS_E = SS_T - SS_{\text{Treatments}}$                                    | N-a                   | $MS_E$                     |                                             |
| Total                     | $SS_{\rm T} = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{})^2$ | N-1                   |                            |                                             |

# Varying Replicate count (Unbalanced Data)

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{N}$$

$$SS_{Treatments} = \sum_{i=1}^{a} \frac{y_{i.}^2}{n_i} - \frac{y_{..}^2}{N}$$

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

$$SS_{Treatments} = \sum_{i=1}^{a} n_i (\bar{y}_{i.} - \bar{y}_{..})^2$$

### Examples...

- Divide into 2 groups
  - Group A From the same model
  - Group B From different models
  - Do 5 batches, each batch having random (4,8) elements
  - Same model

$$\mathcal{N}(10, 1)$$

- Different model
  - $\mathcal{N}(10,1)$  for (3 or 4) batches
  - $\mathcal{N}(8,1)$  for (2 or 1) batches

### Linear Regression

- $\bar{y}_i$  modeled as linear model  $y = \beta_1 + \beta_2 x$
- 2 degrees of freedom for overall model (a-2!)
- Quadratic?

#### The Regression Model

$$\hat{y} = 137.62 + 2.527x$$

$$\hat{y} = 1147.77 - 8.2555 x + 0.028375 x^2$$



■ FIGURE 3.10 Scatter diagrams and regression models for the etch rate data of Example 3.1

### Examples...

- Divide into 2 groups
  - Group A Follows linear regression model
  - Group B Does not follow linear regression model
  - Do 5 batches, each batch having random (4,8) elements
  - Same model

$$\mathcal{N}(10, 1)$$

- Different model
  - $\mathcal{N}(10,1)$  for (3 or 4) batches
  - $\mathcal{N}(8,1)$  for (2 or 1) batches

### Unbalanced with regression?

### Variance stabilizing transformation

- When the error variance is not constant
  - response must be transformed to have constant variance—
     variance—
     stabilizing transformation
  - Use a power transformation of original data as  $y^* = y^{\lambda}$
  - Run the ANOVA on the transformed data  $y^*$





Constant variance

nonconstant variance

# Choice of transformation when distribution of y is approximately known

• In general, the standard deviation could be proportional to a power of the mean

$$\sigma_{\nu} \propto \mu^{\alpha}$$

• We hope that transformed response  $(y^* = y^{\lambda})$  standard deviation will be stabilized

$$\sigma_{y^*} \propto \mu^{\lambda + \alpha - 1}$$

• Choose  $\lambda = 1 - \alpha$  so that

$$\sigma_{v^*} \propto \text{constant}$$

# Choice of transformation when distribution of y is approximately known

- If the theoretical distribution of *y* is known then transformation is chosen accordingly
  - **TABLE 3.9**

Variance-Stabilizing Transformations

| Relationship<br>Between $oldsymbol{\sigma}_{\!\scriptscriptstyle y}$ and $oldsymbol{\mu}$ | α   | $\lambda = 1 - \alpha$ | Transformation         | Comment              |
|-------------------------------------------------------------------------------------------|-----|------------------------|------------------------|----------------------|
| $\sigma_{\rm y} \propto {\rm constant}$                                                   | 0   | 1                      | No transformation      |                      |
| $\sigma_{\rm y} \propto \mu^{1/2}$                                                        | 1/2 | 1/2                    | Square root            | Poisson (count) data |
|                                                                                           | 1   | 0                      | Log                    |                      |
| $\sigma_{\rm v} \propto \mu^{3/2}$                                                        | 3/2 | -1/2                   | Reciprocal square root |                      |
| $\sigma_{y} \propto \mu$ $\sigma_{y} \propto \mu^{3/2}$ $\sigma_{y} \propto \mu^{2}$      | 2   | -1                     | Reciprocal             |                      |

#### Example 3.5 (p. 85) – Flood flow estimation

- Determine whether four different methods that measure flood flow frequency produce equivalent results
  - Measure peak discharge(ft³/sec) with 4 methods
  - Each method is tested 6 times

| Method |       | Peak discharge data |       |      |       |       |
|--------|-------|---------------------|-------|------|-------|-------|
| 1      | 0.34  | 0.12                | 1.23  | 0.7  | 1.75  | 0.12  |
| 2      | 0.91  | 2.94                | 2.14  | 2.36 | 2.86  | 4.55  |
| 3      | 6.31  | 8.37                | 9.75  | 6.09 | 9.82  | 7.24  |
| 4      | 17.15 | 11.82               | 10.95 | 17.2 | 14.35 | 16.82 |

