Objective

이 프로젝트에서는 Kaggle competition을 통해서 Quora Question Pairs에 관해 진행이 되는데, 그 내용은 다음과 같다. Quora에는 많은 질문들이 올라오는데, 중복된 질문들이 있다면 그 질문에 관해서 답을 주는 것들이 이득을 취할 수 있기 때문에 우리가 만약 그러한 질문들의 유사성을 판단해서 결정을 내려 주기를 바라는 것 이다.

2. Strategy_1

나의 경우 Keras를 사용해서 sentence-pair classification을 위한 딥러닝 모델을 구현했다. 맨 처음에 전처리와 자연어처리를 하게 되는데, 다행히도 sample.csv 가 정갈하게 되어 있어서 String, Character 등 으로 먼저 변환할 필요는 없었다. 다만 처리한 부분은 크게 2 가지로 나누어 진다. 첫째는 '알파벳과 종결어미로만 표현하기' 라는 것인데, 다음 코드를 보는 것이 이해가 빠를 수 있다.

```
re.sub(r"[^A-Za-ze
re.sub(r"what's", "what is
re.sub(r"\'s", " ", text)
"" have ", text)
"" have ", text)
"cannot ", text)
                                                                                                 " ", text)
text
text
               re.sub(r"n't",
re.sub(r"i'm",
                                                   "not ", text)
"i am ", text)
, "are ", text)
"would ", text)
text
               re.sub(r"\'ll"
text
                                                                              text)
               re.sub(r"!",
re.sub(r"\/"
text
                                                             . text)
               re.sub(r"\+"
text
                                                                  text)
               re.sub(r"\="
re.sub(r"'",
text
                                                           text)
                                                           ', r"\g<1>000", text)
               re.sub(r":", 're.sub(r" e g
                                                               text)
                                                        " eg ", text)
" bg ", text)
" american ", text)
text
              re.sub(r" b g ", " bg ", text)
re.sub(r" u s ", " american ", tex
re.sub(r"\0s", "0", text)
re.sub(r" 9 11 ", "911", text)
re.sub(r"e - mail", "email", text)
re.sub(r"j k", "jk", text)
re.sub(r"\s{2,}", " ", text)
text
text
text
```

옆의 sub함수를 통해서 하는 방법은 다음과 같다. 알파벳과 숫자, 그리고 종결어미와 계산기호를 제외한 모든 문자는 공백으로 처리하며, 우리가 일상생활에서 사용하는 축약어는 그 문자를 풀어서, 그리고 아무래도 질문의 대다수를 포함하는 곳이 미국이므로 우리를 아메리카로 변경을 해서 사용을 하도록 한다. '\문자'로 받아들이는 것을 그냥 '문자'로 변환하도록 한다.

3. Method 1

첫째 방법이 전처리의 영역이었다면, <mark>둘째</mark>는 자연어처리의 방법이었다. 각각의 단어에 고유번호를 만들고 문장을 그 인덱스의 연결로 처리를 하고자 한다. 이를 돕기 위해서 Keras의 Tokenizer를 필요로 한다.

```
tokenizer = Tokenizer(num_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts_1 + texts_2 + test_texts_1 + test_texts_2)
```

Tokenizer.fit_on_texts는 입력에 맞게 내부의 단어 인덱스를 만드는 함수여서 각각의 단어마다고유의 인덱스가 할당된 것을 알 수 있다. 그후 이들의 연결, 즉 시퀀스로 만들어야 하는데 이는 Tokenizer.tests_to_sequence를 통해서 매우 쉽게 얻어 낼 수 있다. 그 전에 워드의 총 갯수를 구해두는 것이 나중에 도움이 된다.

```
sequences_1 = tokenizer.texts_to_sequences(texts_1)
sequences_2 = tokenizer.texts_to_sequences(texts_2)
test_sequences_1 = tokenizer.texts_to_sequences(test_texts_1)
test_sequences_2 = tokenizer.texts_to_sequences(test_texts_2)
word_index = tokenizer.word_index
print('Found %s unique tokens' % len(word_index))
```

여기서 문장의 길이가 각각 다르기 때문에 이제 서로 같게 처리를 해주는 방식을 이용하는데 이 함수는 pad_sequences를 통해서 서로 같은 입력 길이를 하는데, 빈공간은 0으로 채워지게 된다.

```
data_1 = pad_sequences(sequences_1, maxlen=MAX_SEQUENCE_LENGTH)
data_2 = pad_sequences(sequences_2, maxlen=MAX_SEQUENCE_LENGTH)
labels = np.array(labels)
```

이제 입력 데이터를 통해서 단어 임베딩을 해야하는데, 나의 경우는 워드투 백터를 이용해서 임베딩을 하게 해 두었다. GoogleNews-vectors-negative300.bin을 통해서 사용을 하게 되어 있는데, 이는 구글 도메인에 파일명만 기입해도 받을 수 있으니 명시하지 않겠다. 그리고 용량이 커서 zip파일 속에는 없을 터이니 채점하실때 받아주시면 감사하겠다. 워드 임베딩에서는 인덱스를 단어로 다시 재 변환해서 그 단어로 임베딩을 찾는 방법을 사용을 한다.

LSTM 2개로 듀얼 인코더를 만들고 우리가 loss 함수를 구하는 부분을 만들어서 진짜면 1, 가짜면 0에 가까워지도록 훈련을 시키고자 한다. 그래서 다음과 같은 코드가 필요하다.

4. Strategy_2

모델을 학습시키기 이전에 weight를 설정해서 넣어주도록 한 점이 약간 다른 방법이었다. 점수가

잘 나온 것들의 weight를 리서치 해봤는데, 0일때 1.309정도, 1일때 0.472정도를 weight를 한다면 좋은 결과가 나온다고 찾을 수 있었다.

```
if re_weight:
    class_weight = {0: 1.309028344, 1: 0.472001959}
else:
    class_weight = None
```

5. Method 2

이제 머신러닝을 시키도록 하는데, 한번에 처리하고자 하는 입력의 개수는 2048개, 그리고 섞는 것도 가능하다구 주며, 위에서 설정한 weight들을 넣어서 계산을 해 보았다. 데이터의 학습 바퀴수를 10으로 설정했는데, 노트북이 GPU가 없는 상태여서 총 12시간 정도 걸렸다.

```
model.load_weights(bst_model_path)
bst_val_score = min(hist.history['val_loss'])

print('Start making the submission before fine-tuning_moon')

preds = model.predict([test_data_1, test_data_2], batch_size=8192, verbose=1)
preds += model.predict([test_data_2, test_data_1], batch_size=8192, verbose=1)
preds /= 2

submission = pd.DataFrame({'test_id':test_ids, 'is_duplicate':preds.ravel()})
```

머신러닝에서 가장 loss가 낮은 것을 찾아서 이제 dataFrame을 저장하고 그 후 그것을 제출하도 록 해 주면 된다.

6. Comparison

word2vec가 보여주는 performance가 GloVe보다 더 강력하게 보여지는것 같다. 두개를 받아서 각각을 다 실행해 보았는데, GloVe의 경우 loss가 조금 큰것 같았다.