Backcalculation of Undiagnosed HIV in WA State, 2005-2013

Martina Morris and Jeanette Birnbaum

June 26, 2014

1 Background

This report uses the approach developed by Fellows et al¹ to estimate HIV incidence and undiagnosed cases. The method combines data on the number of diagnoses per quarter with information on the distribution of the time between HIV infection and diagnosis, or TID. These two elements are used to "backcalculate" the number of incident cases per quarter that must have occurred to result in the observed number of diagnoses. The number of undiagnosed cases per quarter are those cases who are estimated to have already been infected but not yet diagnosed in a given quarter.

Because TID is not directly observed, the method uses the time between last negative HIV test and diagnosis to approximate TID. The features of this approximation will define the uncertainty in the results.

2 Data

2.1 Description of analytic sample

Data from the advanced HIV/AIDS reporting system (eHARS) and the CDC treatment and testing history questionnaire (HIS) provided records for 25,233 HIV cases in WA state.²

2.1.1 Exclusions

Figure 1 diagrams the construction of the analytic sample. We first restricted to cases diagnosed in WA state in the years 2005-2013. We further excluded cases diagnosed at age 16 or younger if their date of last negative test was missing, because the assumptions we use when date of last negative test is missing are not applicable to this age group (details given in Section 3).

The final sample includes 4,744 cases.

2.1.2 Sample characteristics

Table 1 describes the sample by age, race and mode of transmission. Column % sums to 100% within each characteristic. Six race/ethnicity groups are represented, White, Black, Hispanic, Asian, Native (NHoPI and AI/AN) and Multiracial, and three modes of transmission, MSM (including MSM/IDU), Hetero (including NIR and Female Presumed Hetero) and Blood/Needle (IDU, Ped, Hemo and Transfusion).

For each level of these three characteristics, the table provides the breakdown of responses to the testing history question "Have you ever had a prior negative HIV test?" If a person ever had a negative test prior to diagnosis, they are in the % Yes column. If they never had a negative test prior to diagnosis, they are in the % No column. Those in the % Missing column did not answer the question. These are row %s that sum to 100% across the % Yes, % No and % Missing columns for each row. For example, 56% of MSM have had a negative test, while 10% have not. For 35% of MSM, testing history is unknown. (These %s sum to 101% due to rounding error.)

Table 2 further breaks down the sample into racial composition of cases within transmission modes. Minor assumptions made during data cleaning are given in Section A.1.

¹Fellows I, Morris M, Dombrowski J, Buskin S, Bennett A, and Golden M. A New HIV Testing History-Based Approach for Estimating the Undiagnosed Fraction of Persons with HIV Infection: Findings Suggest That Few HIV-Infected Men Who Have Sex with Men in King County, WA, U.S.A. Are Undiagnosed. Submitted, 2014.

 $^{^2\}mathrm{Provided}$ by Jason Carr, Washington State Department of Health, June 13 2014

Figure 1: Construction of analytic sample

Table 1: Composition of analytic sample by age, race and mode of transmission. Column % sums to 100 within each characteristic. Availability of testing history data within each subgroup level is shown as row percents of % Yes, % No, and % Missing)

Characteristic	Subgroup	N	Column %	% Yes	% No	% Missing
Age Group	≤20	168	4	49	18	33
	21-25	655	14	54	12	34
	26-30	664	14	52	10	38
	31-35	738	16	49	10	41
	36-40	706	15	41	11	48
	41-45	627	13	43	12	46
	46-50	515	11	35	12	52
	51-55	310	7	35	16	48
	56-60	203	4	37	23	40
	61-65	101	2	23	21	56
	66-70	44	1	34	18	48
	71-85	13	0	46	15	38
Race/Ethnicity	White	2773	58	50	10	40
	Black	792	17	35	16	49
	Hisp	732	15	39	13	48
	Asian	220	5	30	23	47
	Native	95	2	28	24	47
	Multi	132	3	50	15	35
Mode of Transmission	MSM	3135	66	56	10	35
	Hetero	1334	28	22	18	60
	Blood/Needle	275	6	29	16	55

2.2 Time trends in diagnoses and testing history

Figure 2 shows a downward trend in quarterly diagnosis counts over time, and Figure 3 shows the overall trend in testing history responses over time. The percent of missing responses appears to have increased in recent years.

Time rends by race and mode of diagnosis subgroups are given in Section B.1.

3 Scenarios

We consider three alternative scenarios to approximate the TID from the testing history data. The essential differences are described below, with more details in Section A.2.

Table 2: Composition of racial groups within modes of transmission. Column % sums to 100 within each mode. Availability of testing history data by mode-race subgroup levels is shown as row percents of % Yes, % No, and % Missing

Mode of Transmission	Race/Ethnicity	N	Column %	% Yes	% No	% Missing
MSM	White	2141	45	57	8	35
MSM	Black	281	6	55	12	33
MSM	Hisp	461	10	54	11	35
MSM	Asian	112	2	49	13	38
MSM	Native	45	1	44	22	33
MSM	Multi	95	2	58	16	26
Hetero	White	454	10	27	15	58
Hetero	Black	476	10	25	17	58
Hetero	Hisp	236	5	12	18	70
Hetero	Asian	102	2	12	32	56
Hetero	Native	39	1	10	31	59
Hetero	Multi	27	1	26	15	59
Blood/Needle	White	178	4	30	16	54
Blood/Needle	Black	35	1	29	20	51
Blood/Needle	Hisp	35	1	23	17	60
Blood/Needle	Asian	6	0	0	33	67
Blood/Needle	Native	11	0	27	9	64
Blood/Needle	Multi	10	0	40	10	50

Figure 2: Quarterly diagnosis counts over time

- 1. Base Case Missing testing history data are considered missing at random and are excluded from calculating the TID. The probability of infection is uniformly distributed between the time of last negative test and time of diagnosis.
- 2. Worst Case (Obs) Missing testing history data are considered missing at random and are excluded from calculating the TID. Infection is assumed to occur immediately following the date of last negative test, a worst case assumption.
- 3. Worst Case (Miss) Missing testing history data are imputed using the assumption that infection occurred either 18 years prior to diagnosis or at age 16, whichever is more recent. For cases with testing history, infection is assumed to occur immediately following the date of last negative test.

In all three scenarios, cases who reported "No" to ever having a negative test are also assumed to have a last negative test either 18 years prior to diagnosis or at age 16, whichever is more recent (see Section A.2

Figure 3: Testing history responses over time (y-axis is in %)

for more details).

4 Results

4.1 Time from infection to diagnosis (TID)

Figure 4 shows the estimated distribution of TID in the analytic sample for each of the three scenarios. When worst case assumptions are made, the proportion of undiagnosed cases at shorter times since infection increases. The artifical drop at 18 years is a result of the assumption that all cases are diagnosed within 18 years.

Figure 4: Time from infection to diagnosis (TID) under the three scenarios

Times from infection to diagnosis by race and mode of diagnosis subgroups are given in Section B.2.

4.2 Incidence and undiagnosed cases

We use observed quarterly diagnoses with each the three TID scenarios shown in Figure 4 to perform the backcalculation for each scenario. The estimated incidence and undiagnosed counts for each scenario are shown as quarterly counts in Figure 5 and summarized over all quarters in Table 3.

Figure 5: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state

Table 3: Observed diagnoses and estimated quarterly incidence and undiagnosed counts over 2005-2013 in WA state

	Min	1st Qu	Median	Mean	3rd Qu	Max
# Diagnosed	106	121	130	132	140	162
Incidence (Base Case)	115	120	129	128	136	138
Incidence (Worst Case Obs)	112	116	124	124	132	136
Incidence (Worst Case Miss)	110	112	117	117	123	126
Undiagnosed (Base Case)	1329	1386	1446	1429	1480	1501
Undiagnosed (Worst Case Obs)	2652	2735	2836	2816	2910	2942
Undiagnosed (Worst Case Miss)	4700	4807	4952	4950	5098	5217

Estimated incidence and undiagnosed counts by race and mode of diagnosis subgroups are given in Section B.3.

A Assumptions

A.1 Assumptions for missing or inconsistent data

The following assumptions were made during data cleaning:

Table 4: Assumptions for missing or inconsistent data

Issue	Assumption	Cases Affected
Year of diagnosis is recorded but quarter is not	Quarter is randomly as-	9
	signed	
Case responded "No" or missing to "Ever had nega-	Change response to "Yes"	17
tive test?" but has a date of last negative test		
Case responded "Yes" to "Ever had negative test?"	Change response to "No"	83
but has no date of last negative test		

Note: the analysis assumes that that there are a negligible number of cases whose HIV/AIDS diagnosis is never captured by eHARS.

A.2 Assumptions for TID

As described in Section 3, we construct three scenarios for TID that use different assumptions for missing data and the precise time of infection within the window between last negative test and diagnosis.

Missing data There are two ways we can treat cases whose date of last negative test is not known. The first is to exclude them when TID is computed, which assumes that their data are missing at random. This is reasonable only if the cases who do have a date of last negative test are representative of those who do not. Alternatively, we can impute their date of last negative test using a worst case assumption, that the last negative test occurred either 18 years ago or at age 16, whichever is more recent. This assumption is based on data suggesting that 95% of HIV infections will develop AIDS within 18 years³ and on the median age of sexual debut in the U.S.

Time of infection within the window between negative test and diagnosis There are also two ways we can assign the precise time of infection within the possible infection window. The first is to assume that infections are uniformly distributed within the window, i.e. there is equal probability of infection at each time point within the window. The second is a worst case assumption, that infection occurred immediately after the negative test.

Assumptions for all scenarios We additionally make three assumptions in all three scenarios. The first is that those who repond "No" to the question "Ever had a negative test?" have a date of last negative test imputed using the minimum of 18 years and age-16 approach described above. Since these cases confirmed never having a negative test, we use a worst case testing history to bound their infection window. The second is that dates of last negative test occurring more than 18 years prior to diagnosis are re-set to 18 years prior to diagnosis, to reflect a more likely maximum window in which infection could occur. Finally, we assume that the TID distrition does not change over time. In order to have enough cases to stably estimate the TID, we pool testing history data over all years. The time trends in the results are thus driven by the time trends in diagnosis counts.

Table 5 outlines which assumptions are used for each of the three scenarios. Note that these assumptions influence the analysis solely through the TID distribution (see Figures 4, 9 and 10).

³Liu, K.J, et al., A model-based approach for estimating the mean incubation period of transfusion-associated acquired-immunodeficiency-syndrome. PNAS, 1986. 83(10):p.3051-3055.

Table 5: Assumptions for each of the three cases used to approximate TID from testing history data

Assumption	Base	Worst	Worst	Cases Af-
	Case	Case	Case	fected
		(Obs)	(Miss)	
Data are missing at random	X	X		2104
Those with missing testing history are given a			X	2104
TID that is the minimum of 18 years or their				
age at diagnosis minus 16 years				
Time of infection is uniformly distributed	X			All
across the TID period				
Infection occurs immediately after last nega-		X	X	All
tive test				
Those who never had a negative test are given	X	X	X	592
a TID that is the minimum of 18 years or their				
age at diagnosis minus 16 years				
TID is capped at 18 years	X	X	X	20
TID is stationary over time	X	X	X	All

B Subanalyses by Race and Mode of Diagnosis

B.1 Trends in diagnoses and testing history

Figure 6 shows the trend in quarterly diagnoses for subgroups over time. Figure 7 shows the yearly trend in testing history by mode of transmission, and Figure 8 shows the trend by race. Trends appear similar across subgroups, with variations in the levels of yes, no and missing responses each year.

Figure 6: Quarterly diagnosis counts over time, by mode of transmission and race

Figure 7: Testing history responses over time, by mode of transmission (y-axis is in %)

B.2 Times from infection to diagnosis

The estimated TIDs for each of the three scenarios is shown by mode of transmission in Figure 9 and by race in Figure 10.

B.3 Incidence and undiagnosed cases

Table 6 summarizes quarterly observed diagnoses and estimated incidence and undiagnosed counts over 2005-2013 and Figures 11-18 show the quarterly estimates for 2 mode and 6 race groups. No estimates were obtained for the "Blood/Needle" subgroup due to an estimation problem with the smoothing parameter.⁴ We will investigate whether this can be overcome to produce results for this subgroup.

⁴Error given by rootSolve: Error in stode(y, time, func, parms = parms, ...): Model function must return a list of values, of which first element has length = length of y

Figure 8: Testing history responses over time, by race (y-axis is in %)

Figure 9: Time from infection to diagnosis (TID) under the three scenarios, by mode

Figure 10: Time from infection to diagnosis (TID) under the three scenarios, by race

Table 6: Observed diagnoses and estimated quarterly incidence and undiagnosed counts over 2005-2013 in WA state, by subgroup

$\frac{\text{state, by su}}{2}$		3.61	371 . 0	3.6.11	3.6	W0 10	
Subgroup	Quantity	Min.	X1st.Qu.	Median	Mean	X3rd.Qu.	Max.
MSM	# Diagnosed	65	79	88	87	94	108
MSM	Incidence (Base Case)	76	81	88	85	90	90
MSM	Incidence (Worst Case Obs)	74	79	86	84	89	90
MSM	Incidence (Worst Case Miss)	72	75	81	80	84	86
MSM	Undiagnosed (Base Case)	672	706	731	721	740	751
MSM	Undiagnosed (Worst Case Obs)	1341	1389	1445	1424	1459	1473
MSM	Undiagnosed (Worst Case Miss)	2600	2665	2765	2741	2814	2856
Hetero	# Diagnosed	18	32	37	37	42	51
Hetero	Incidence (Base Case)	31	32	33	35	39	39
Hetero	Incidence (Worst Case Obs)	30	30	31	32	35	36
Hetero	Incidence (Worst Case Miss)	32	32	32	32	33	34
Hetero	Undiagnosed (Base Case)	654	682	709	709	740	754
Hetero	Undiagnosed (Worst Case Obs)	1264	1307	1338	1349	1407	1425
Hetero	Undiagnosed (Worst Case Miss)	1742	1771	1793	1815	1869	1907
White	# Diagnosed	57	67	78	77	85	97
White	Incidence (Base Case)	62	67	74	73	80	84
White	Incidence (Worst Case Obs)	59	63	70	70	76	82
White	Incidence (Worst Case Miss)	54	57	63	63	68	73
White	Undiagnosed (Base Case)	651	701	746	734	770	796
White	Undiagnosed (Worst Case Obs)	1303	1385	1465	1449	1515	1568
White	Undiagnosed (Worst Case Miss)	2439	2562	2702	2694	2819	2953
Black	# Diagnosed	11	19	22	22	25	31
Black	Incidence (Base Case)	18	19	21	21	22	24
Black	Incidence (Worst Case Obs)	17	18	19	20	21	22
Black	Incidence (Worst Case Miss)	18	18	18	19	20	20
Black	Undiagnosed (Base Case)	298	311	320	324	340	348
Black	Undiagnosed (Worst Case Obs)	583	611	622	629	660	673
Black	Undiagnosed (Worst Case Miss)	878	915	930	938	975	1002
$_{ m Hisp}$	# Diagnosed	10	16	21	20	23	32
$_{ m Hisp}$	Incidence (Base Case)	16	18	19	20	23	24
$_{ m Hisp}$	Incidence (Worst Case Obs)	16	17	20	20	23	24
$_{ m Hisp}$	Incidence (Worst Case Miss)	17	17	20	20	22	22
$_{ m Hisp}$	Undiagnosed (Base Case)	218	227	232	234	241	255
$_{ m Hisp}$	Undiagnosed (Worst Case Obs)	431	442	452	454	468	480
$_{ m Hisp}$	Undiagnosed (Worst Case Miss)	772	779	793	794	809	814
Native	# Diagnosed	0	2	2	3	3	6
Native	Incidence (Base Case)	1	2	3	3	3	5
Native	Incidence (Worst Case Obs)	1	2	3	3	3	5
Native	Incidence (Worst Case Miss)	2	2	3	3	3	4
Native	Undiagnosed (Base Case)	36	38	40	40	42	46
Native	Undiagnosed (Worst Case Obs)	70	71	75	74	77	81
Native	Undiagnosed (Worst Case Miss)	111	114	115	116	118	126
Asian	# Diagnosed	3	4	6	6	8	9
Asian	Incidence (Base Case)	4	6	7	6	7	8
Asian	Incidence (Worst Case Obs)	5	6	7	6	7	7
Asian	Incidence (Worst Case Miss)	5	6	7	6	7	7
Asian	Undiagnosed (Base Case)	83	90	94	93	97	100
Asian	Undiagnosed (Worst Case Obs)	165	175	178	178	182	185
Asian	Undiagnosed (Worst Case Miss)	262	271	272	272	275	278
Multi	# Diagnosed	0	2	4	4	5	7
Multi	Incidence (Base Case)	2	4	4	4	5	6
Multi	Incidence (Worst Case Obs)	2	4	4	4	5	6
Multi	Incidence (Worst Case Miss)	3	4	5	4	5	5
Multi	Undiagnosed (Base Case)	20	31	35	33	37	39
Multi	Undiagnosed (Worst Case Obs)	41	55	61	59	64	67
Multi	Undiagnosed (Worst Case Miss)	86	96	105	103	110	114

Figure 11: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state, MSM

Figure 12: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state, Hetero

Figure 13: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state, White

 $\label{thm:continuous} Figure~14:~Observed~diagnoses~and~estimated~quarterly~and~undiagnosed~counts~over~2005-2013~in~WA~state,\\ Black$

Figure 15: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state, Hisp

Figure 16: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state, Native

Figure 17: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state, Asian

Figure 18: Observed diagnoses and estimated quarterly and undiagnosed counts over 2005-2013 in WA state, Multi