Samanfatning av SF1673 Analys i en variabel

Yashar Honarmandi

21 november 2017

Sammanfattning

Denna samanfattning samlar centrala definitioner och satsar användt i KTH:s kurs SF1673 Analys i en variabel.

Innehåll

1	Mä	ngder 1	
		Definitioner	
	1.2	Satser	
2	Fun	ektioner 1	
	2.1	Definitioner	
	2.2	Satser	
3	Talföljder 3		
	3.1	följder3Definitioner3	
	3.2	Satser	
4	Grä	insvärden 5	
	4.1	Definitioner	
	4.2	Satser 5	

1 Mängder

1.1 Definitioner

Delmängder Låt A, B vara mängder. A är en delmängd av B om det för varje $x \in A$ gäller att $x \in B$. Notation: $A \subset B$.

Union och snitt Låt A, B vara mängder. Unionen $A \cup B$ består av de element som ligger i någon av mängderna. Snittet $A \cap B$ består av de element som är i båda.

Övre och undra begränsningar Ett tal m är en övre begränsning av en mängd A om $x \leq m$ för varje $x \in A$, och en undra begränsning om $x \geq m$ för varje $x \in A$.

Supremum och infimum Ett tal m är supremum till en mängd A om m är den minsta övre begränsningen till A. m är infimum till A om m är den största undra begränsningen till A. Notation: $\sup A$, $\inf A$.

1.2 Satser

Supremumsegenskapen Varje uppåt begränsade delmängd av \mathbb{R} har en minsta övre begränsning.

2 Funktioner

2.1 Definitioner

Definition av en funktion Låt X, Y vara mängder. En funktion $f: X \to Y$ är ett sätt att till varje element $x \in X$ tilldela ett välbestämt element $y \in Y$. Vi säger att x avbildas på y och att y är bilden av

x. x kallas argumentet till f. X kallas funktionens definitionsmängd, och betecknas även D_f . Y kallas funktionen målmängd.

Värdemängd Värdemängden till $f: X \to Y$ definieras som:

 $V_f = \{ y \in Y : y = f(x) \text{ för något } x \in X \}$

alltså alla värden f antar.

Injektivitet f är injektiv om det för varje $x_1, x_2 \in X$ gäller att om $f(x_1) = f(x_2)$ så är $x_1 = x_2$.

Surjektivitet f är surjektiv om $V_f = Y$.

Bijektivitet Om f är injektiv och surjektiv, är f bijektiv.

Inversa funktioner Låt $f: X \to Y$ vara en bijektiv funktion. Inversen till f är avbildningen $f^{-1}: Y \to X$ som ges av $f^{-1}(y) = x$, där y = f(x). Funktioner som har en invers kallas inverterbara.

Växande och avtagande funktioner En funktion f är växande på en mängd $M \in D_f$ om det för varje $x, y \in M : x < y$ gäller att $f(x) \leq f(y)$. Om $M = D_f$ kallas f växande. Avtagande funktioner definieras analogt.

Strängt växande och avtagande funktioner En funktion f är strängt växande på en mängd $M \in D_f$ om det för varje $x, y \in M : x < y$ gäller att f(x) < f(y). Om $M = D_f$ kallas f strängt växande. Strängt

avtagande funktioner definieras analogt.

Monotona funktioner Om en funktioner är antingen strängt växande respektiva strängt avtagande eller växande respektiva avtagande i ett intervall, är den strängt monoton respektiva monoton.

Uppåt och nedåt begränsade funktioner En funktion f är uppåt begränsad om V_f är uppåt begränsad. Nedåt begränsade funktioner definieras analogt. Om funktioner saknar övre eller nedra begrensning är den uppåt eller nedåt obegränsad.

Trigonometriska funktioner Betrakta enhetssirkeln i figur 1, med radie 1.

Figur 1: Enhetssirkeln.

Man tenker sig en punkt på cirkeln enligt figuren, var linjen från cirkelns centrum till cirkeln bildar en vinkel θ med x-axeln. Denna vinkeln startar när punkten på cirkeln ligger på den positiva sidan av x-axeln, och

ökar moturs. Från denna konstruktionen definieras sin och cos utifrån x- och y-koordinaterna till punkten för en given θ , var θ mäts i radianer. Vi definierar även $\tan \theta = \frac{\sin \theta}{\cos \theta}$.

Från definitonerna ser vi at $\sin x$ och $\cos x$ är definierade för alla $x \in \mathbb{R}$, medan $\tan x$ är definierad för alla $x \neq \frac{\pi}{2}n, n \in \mathbb{Z}$.

Radianer Radianer är ett mått på vinklar som är baserad på enhetscirkeln. Om man tenker sig att punkten i figur 1 beväger sig från startpunktet och till nån

Trigonometriska funktioners egenskaper Från definitionen av dom trigonometriska funktionerna följer många egenskaper vid dissa. Några essensiella är listad under:

$$\cos^2 x + \sin^2 x = 1$$
$$\sin(\theta + 2\pi n) = \sin \theta$$
$$\cos(\theta + 2\pi n) = \cos \theta$$
$$\sin(\theta - \frac{\pi}{2}) = \cos \theta$$
$$\cos(\theta + \frac{\pi}{2}) = \sin \theta$$
$$\sin(-\theta) = -\sin \theta$$
$$\cos(-\theta) = -\cos \theta$$
$$\sin(\theta + \pi) = -\sin \theta$$
$$\cos(\theta + \pi) = -\cos \theta$$

Inversa trigonometriska funktioner Låt $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ sådan att $f(x) = \sin x$. Inversen till denna funktionen betecknas $f^{-1}(x) = \arcsin x$.

Låt $f:[0,\pi]\to [-1,1]$ sådan att $f(x)=\cos x$. Inversen till den-

na funktionen betecknas $f^{-1}(x) = \arccos x$.

Låt $f: (-\inf, \inf) \to \left[-\frac{\pi}{2}\right], \frac{\pi}{2}$ sådan att $f(x) = \tan x$. Inversen till denna funktionen betecknas $f^{-1}(x) = \arctan x$.

Exponentialfunktionen I häftet definieras inte exponentialfunktionen a^x , a > 1, utan den antas vara en strängt växande funktion med värdemängd $(0, \inf)$ som uppfyller

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{x+y} = a^{x}a^{y}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$(a^{x})^{y} = a^{xy}$$

Logaritmfunktionen Låt

 $f: \mathbb{R} \to (0, \inf)$ sådan att $f(x) = a^x$ för något a > 1. Inversen till denna funktionen betecknas som $f^{-1}(x) = \log_a x$.

Absolutbelopp Absolutbeloppet definieras som $|x| = \sqrt{x^2}$. Detta impliserar att

$$|x| = \begin{cases} -x, & x < 1\\ x, & x \ge 1 \end{cases}$$

Kontinuitet Låt f vara en reellvärd funktion med $D_f \subset \mathbb{R}$, sådan att varje punkterad omgivning till x = a innehåller punkter från D_f och $a \in D_f$. f är kontinuerlig i a om

$$\lim_{x \to a} f(x) = f(a).$$

2.2 Satser

Trigonometriska funktioner med vinkelsummor

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

Cosinussatsen Låt a, b, c vara sidorna i en triangel och θ vinkeln där sidlängderna a och b möts. Då gäller att

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Logaritmfunktionens egenskaper Låt a > 1. Då gäller att

$$\log_a 1 = 0 \tag{1}$$

$$\log_a(xy) = \log_a(x) + \log_a(y) \quad (2)$$

$$\log_a(x^y) = y \log_a(x) \tag{3}$$

Bevis Alla identiteter är baserade på inverterbarheten till exponentialfunktionen - $a^{\log_a x} = x$ - och injektiviteten till exponentialfunktionen, samt reglerna som exponentialfunktionen uppfyllar.

Ekvation 1 fås från att $a^{\log_a 1} = 1$ och att $a^0 = 1$. Eftersom exponentialfunktionen är injektiv, är det bevisad.

Ekvation 2 fås från att $a^{\log_a xy} = xy$ och att $a^{\log_a x + \log_a y} = a^{\log_a x} a^{\log_a y} = xy$.

Ekvation 3 fås från att $a^{\log_a x^y} = x^y$ och att $a^{y \log_a x} = (a^{\log_a x})^y = x^y$.

Absolutbeloppens egenskaper

$$|xy| = |x||y| \tag{4}$$

$$|x+y| < |x| + |y|$$
 (5)

Bevis Kommer kanskje någon gång.

3 Talföljder

3.1 Definitioner

Definitionen av en talföjld En talföljd är en följd av tal $a_1, a_2, ...$ och betecknas $(a_n)_{n=1}^{\infty}$.

Växande och avtagande talföljder En talföljd är växande om $a_{n+1} \geq a_n$ för varje $n \geq 1$. Avtagande talföljder definieras analogt.

Uppåt och nedåt begränsade talföljder En talföljd är uppåt begränsad om det finns ett M så att $a_n \leq M$ för alla $n \geq 1$.

Begränsade talföljder En talföljd är begränsad om den är både uppåt och nedåt begränsad.

Konvergens av talföljder En talföljd konvergerar mot ett gränsvärde A om det för alla $\varepsilon > 0$ finns ett N sådant att $|a_n - A| < \varepsilon$ för varje n > N. Detta beteendet betecknas

$$\lim_{n \to \infty} a_n = A.$$

Divergenta talföljder En divergent talföljd är inte konvergent.

Binomialsatsen För $n \in \mathbb{Z}$ har man

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Binomialkoefficienter

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

e, Eulers tal

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

3.2 Satser

Gränsvärden för kombinationer av talföljder Låt $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ vara talföljder med gränsvärden A och B. Då följer att

- a) $(a_n + b_n)_{n=1}^{\infty}$ är konvergent med gränsvärdet A + B.
- b) $(a_n b_n)_{n=1}^{\infty}$ är konvergent med gränsvärdet AB.
- c) om $B \neq 0$ är $\left(\frac{a_n}{b_n}\right)_{n=1}^{\infty}$ konvergent med gränsvärdet $\frac{A}{B}$.
- d) om $a_n \leq b_n$ för varje n så gäller att $A \leq B$.

Bevis Aa.

Växande och uppåt begränsade talföljder Om $(a_n)_{n=1}^{\infty}$ är en växande och uppåt begränsad talföljd så är den konvergent och

$$\lim_{n \to \infty} a_n = \sup \{ a_n : n \ge 1 \}$$

Det analoga gäller för avtagande och nedåt begränsade mängder.

Bevis Oo.

Gränsvärde för potenser

$$\lim_{n \to \infty} n^p = \begin{cases} \infty, & p > 0\\ 0, & p < 0 \end{cases}$$

Bevis Meh.

Standardgränsvärden Låt a > 1 och b > 0. Då gäller att

$$\lim_{n \to \infty} \frac{a^n}{n^b} = \infty$$

$$\lim_{n \to \infty} \frac{n!}{b^n} = \infty$$

Bevis Nä.

Endeligt värde av e Talföljden $(a_n)_{n=1}^{\infty}$ med

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

är konvergent.

Bevis Säkert någon gång.

Bolzano-Weierstrass' sats Låt $(a_n)_{n=1}^{\infty}$ vara en begränsad talföljd. Då finns det konvergent delföljd. En delföljd av en talföljd är en del av talen som fortfarande är oändligt stor.

4 Gränsvärden

4.1 Definitioner

Gränsvärde vid oändligheten Låt f vara en funktion definierad i (a, ∞) . f konvergerar mot gränsvärdet A när $x \to \infty$ om det for varje $\varepsilon > 0$ finns ett N sådant att $|f(x) - A| < \varepsilon$ för varje x > N. Detta skrivs

$$\lim_{x \to \infty} f(x) = A$$

eller $f(x) \to A$ när $x \to \infty$.

Divergens Om det för en funktion f inte finns ett sådant A, sägs f vara divergent då $x \to infty$.

Det oegentliga gränsvärdet Låt f vara en funktion definierad i (a, ∞) . f har det oegentliga gränsvärdet ∞ då x $to\infty$ om det för varje M finns ett N sådant att f(x) > M för varje x > N. Detta skrivs

$$\lim_{x \to \infty} f(x) = \infty.$$

Lokalt gränsvärde Låt f vara en reellvärd funktion med $D_f \subset \mathbb{R}$ sådan att varje punkterad omgivning till x=a innehåller punkter i D_f . f konvergerar mot A när x går mot a om det för varje $\varepsilon>0$ finns ett $\delta>0$ sådant att $|f(x)-A|<\varepsilon$ för varje $x\in D_f$ som uppfyllar $0<|x-a|<\delta$. Detta skrivs $\lim_{x\to a}f(x)=A$.

Vänster- och högergränsvärden Vid att endast studera x > a eller x < a kan man definiera ett vänsteroch högergränsvärde för en funktion f. Dessa skrivs $\lim_{x\to a^-} f(x) = A$ eller $\lim_{x\to a^+} f(x) = A$. För en funktion f definierad i en punkterad omgivning till a existerar $\lim_{x\to a^+} f(x)$ om och endast

om vänster- och högergränsvärden

existerar och är lika.

Det oegentliga lokala gränsvärdet Låt f vara en funktion sådan att varje punkterad omgivning till x=a innehåller punkter i D_f . f har det oegentliga gränsvärdet ∞ då $x \to a$ om det för varje K finns ett delta sådant att f(x) > K för varje $x \in D_f$ som uppfyll ar $0 < |x-a| < \delta$

4.2 Satser

Gränsvärden för kombinationer av funktioner Låt f,g vara kontinuerliga funktioner sådana att $f(x) \to A, g(x) \to B$ när $x \to \infty$. Då gäller att

a)
$$f(x) + g(x) \to A + B$$
 när $x \to \infty$.

- b) $f(x)g(x) \to AB$ när $x \to \infty$.
- c) om $B \neq 0$ så följer att $\frac{f(x)}{g(x)} \rightarrow \frac{A}{B}$ när $x \rightarrow \infty$.
- d) om $f(x) \leq g(x)$ för alla $x \in (a, \infty)$ så gäller att $A \leq B$.

Bevis Mjo.

Gränsvärden och supremum Låt $f:(a,\infty)\to\mathbb{R}$ för något $a\in\mathbb{R}$ vara växande och uppåt begränsad. Då gäller att

$$\lim_{n \to \infty} = \sup f(x) : x \ge a.$$

Bevis Nä.

Standardgränsvärden Låt a > 1, b > 0. Då gäller att

$$\lim_{x \to \infty} \frac{a^x}{x^b} = \infty$$

$$\lim_{x \to \infty} \frac{x^b}{\log_a x} = \infty$$

Bevis Orkar inte.