

ВОЗМОЖНОСТИ ОЦЕНКИ МАССЫ ПЕРВИЧНОГО ЯДРА ПО ОБРАЗУ ОТРАЖЕННОГО ОТ СНЕГА ЧЕРЕНКОВСКОГО СВЕТА ШАЛ

В. Иванов^{1,2},

Е. Бонвеч¹, В. Галкин^{1,2}, Д. Подгрудков^{1,2}, Т. Роганова¹, Д. Чернов^{1,2}, К. Азра^{1,2}, Т. Колодкин^{1,2}, Е. Энтина¹, Н. Овчаренко^{1,2}, О. Черкесова^{1,3}, М.Зива¹

- 1 Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Московский государственный университет имени М.В. Ломоносова;
- 2 Физический факультет, Московский государственный университет имени М.В. Ломоносова;
- 3 Факультет космических исследований, Московский государственный университет имени М.В. Ломоносова;
- 4 Факультет вычислительной математики и кибернетики, Московский государственный университет имени М.В. Ломоносова

ID: 134. E-mail: ivanov.va18@physics.msu.ru

Аннотация

Исследуется возможность определения массы первичного ядра по образу отраженного от снега черенковского света ШАЛ на высоте около 1 км над уровнем моря.

Рассмотрен основной вариант телескопа отраженного света для проек- тируемой установки СФЕРА-3. В качестве характеристики, чувствительной к первичной массе, используется форма поперечного распределения черенковского света ШАЛ.

Введение

Задача регистрации первичного космического излучения (ПКИ) решается уже несколько десятилетий. Недавние результаты [1] показывают, что значительная часть событий первичных космических лучей (ПКЛ) с энергией 1-1000 ПэВ может иметь экстрагалактическую природу. Это важно для понимания перехода от галактических к экстрагалактическим космическим лучам и процессов их ускорения и распространения.

Метод детектирования черенковского света, отраженного от снежной поверхности, предложенный А.Е. Чудаковым [2], стал основой серии экспериментов СФЕРА. Научная группа проекта СФЕРА [3] разрабатывает новый детектор СФЕРА-3, который позволит лучше изучить состав ПКЛ в диапазоне энергий 1–1000 ПэВ.

Основная информационная единица — образ на мозаике детектора, поэтому важно получать точные образы событий. Это достигается многошаговым моделированием с использованием программных пакетов CORSIKA, GEANT4 и FORTRAN-приложения. Также создана модель для генерации отклика электроники на языке C++.

Методология

Разработка и моделирование детектора СФЕРА-3

Для создания детектора СФЕРА-3 была использована модифицированная оптическая система Шмидта с линзовым корректором для устранения сферической аберрации. Конструкция детектора объединяет все элементы оптической системы, включая зеркало, бленду, линзу корректора и мозаику кремниевых фотоумножителей. Оптическое разрешение детек- тора планируется не хуже 2000 пикселей, а поле зрения - не менее ±20°.

Многошаговое

моделирование

Для моделирования и оценки характеристик детектора исполь зуется многошаговый подход с применением нескольких программных пакетов:

СОRSIKA: используется для моделирования широких атмосферных ливней (ШАЛ), генерации черенковских фотонов и учета спектральной чувствительности фотосенсоров.

GEANT4: применяется для моделирования прохождения фотоэлектронов через оптическую систему детектора, включая отражение, поглощение и переотражение

Рис.1 Визуализация геометрии детектора СФЕРА-3 в Geant4

ЕФЯТВАХ лучетользуется для генерации данных и клонирования событий для увеличения выборки без потери физического смысла.

C++: разработка модели для генерации отклика электроники, имитирующая регистрацию черенковского света на детекторной мозаике.

Генерация образов на мозаике

Основной задачей моделирования является создание достоверных образов событий на мозаике детектора. Для этого используется пространственно-временное распределение черенковского света на уровне снежной поверхности и прямого черенковского света на нескольких уровнях наблюдения. Данные сохраняются в виде многомерных массивов для последующего анализа.

Автоматизация и интеграция

Для автоматизации процесса моделирования и исключения ошибок, связанных с человеческим фактором, был разработан скрипт на языке Python. Этот скрипт унифицирует вводные параметры и автоматизирует работу с файлами, связывая все приложения в один программный комплекс. Автоматизация включает:

- Исправление вводных параметров для отдельных шагов.
- Взаимодействие с базой данных и сохранение файлов по установленной логике хранения.

Эта методология обеспечивает высокую точность моделирования, улучшает процесс набора статистики событий и позволяет эффективно проверять новые геометрии детектора.

Идея критерия для разделения событий ШАЛ по типу частиц

Поперечное распределение черенковского света коррелирует с продольным развитием ливня, что позволяет использовать безразмерный параметр, характеризующий форму этого распределения. Критерий

Для почти вертикальных событий с энергией первичного ядра 10 ПэВ был построен одномерный критерий, определяемый как отношение интеграла от аппроксимации поперечного распределения света на мозаике по области центрального круга радиуса r_1 к интегралу по кольцу с внутренним радиусом r_1 [мм] и внешним радиусом r_2 [мм]:

$$cri = \frac{\int_0^{r_1} Idr}{\int_{r_1}^{r_2} Idr}$$

Подбор радиусов производился в пределах $r_1 \in [80,200]$ и $r_2 \in [100,300]$.

Результаты

Из теории следует, что чем выше масса начального ядра, тем уже будет пятно черенковского света, таким образом – чем выше значение критерия, тем легче изначальное ядро. Рассматривались две границы для разделения классов р-N и N-Fe. За основную метрику был взят минимум от максимума ошибок разделения для каждого ядра в паре класса. За ошибку классификации было взято отношение числа неправильно классифицированных событий относительно рассчитанного порога.

Минимизация ошибок разделения для каждого ядра в паре класса позволила получить следующие результаты (ошибки одинаковы в паре):

Класс	p-N	N-Fe	
граница/ошибки	0.70 / 0.31	0.61 / 0.32	

Рис.2 Гистограмма распределения критериального параметра для E = 10 ПэВ, наклона 10 градусов, модели атмосферы 1 из списка CORSIKA и высоты наблюдения 1000 м детектора СФЕРА-3

Заключение

В данной работе представлен программный комплекс для моделирования работы телескопа СФЕРА-3. Модель показывает, что разрешающая способность по массе первичных частиц улучшится по сравнению с телескопом СФЕРА-2. Применение одномерного критерия дает удовлетворительные ошибки классификации. В будущем планируется использование двумерного критерия, учёт аберрационных эффектов и фонового излучения, а также оценка на более мелкой сетке в пиксельном варианте для различных высот полёта детектора и более высоких энергий частиц.

Благодарности

Работа выполнена с использованием оборудования Центра коллектив- ного пользования сверхвысокопроизводительными вычислительными ре- сурсами МГУ имени М.В. Ломоносова.

Исследование выполнено за счет гранта Российского научного фонда No 23-72-00006. rscf.ru/project/23-72-00006/

Источники

[1] Dova M.T., Mancenido M.E., Mariazzi A.G et al. / The Mass Composition of Cosmic Rays near 10^18 eV as Deduced from Measurements Made at Volcano Ranch // Astroparticle Physics, Vol. 21, No. 6, 2004. pp. 597-607.
[2] Чудаков А.Е. / Возможный метод регистрации ШАЛ по черенковскому излучению, отраженному от заснеженной поверхности Земли // Экспериментальные методы исследования космических лучей сверхвысоких энергий: Материалы Всесоюз. симп., 19-23 июня 1972 г. Якутск. фил. Сиб. отд. АН СССР, 1974. С.69-74
[3] Чернов Д.В. и др. // Ядерная физика. 85, № 6. 435 (2022).