Elementi Finiti - Esercitazione 5 Il problema di Poisson con condizioni di Dirichlet

Prof. Giancarlo Sangalli

Ivan Bioli

30 Aprile 2025

1 Condizioni al bordo di Dirichlet omogenee

Ripartiamo da quanto visto durante la scorsa esercitazione. Nel caso di condizioni di Dirichlet omogenee, lo spazio $V_h \subset V$ è un sottospazio di $H_0^1(\Omega)$ e contiene quindi funzioni nulle su $\partial\Omega$. Pertanto, si ha che

$$V_h = \operatorname{Span}\{\varphi_i : \mathbf{v}_i \notin \partial\Omega\}.$$

L'assemblaggio iniziale ha incluso tutti i gradi di libertà, compresi quelli di bordo (non conviene distinguere tra indici interni e indici di bordo durante l'assemblaggio). Tuttavia, per il calcolo effettivo, è sufficiente rimuovere le righe e colonne corrispondenti ai nodi di bordo. Se indichiamo con $\tilde{\bf A}$ la matrice assemblata su tutti i nodi e con $\bf F$ e $\bf D$ rispettivamente l'insieme degli indici dei nodi liberi (cioè, in questo caso, quelli interni) e di Dirichlet (cioè, in questo caso, di bordo), dove $\bf F \cap \bf D = \emptyset$ e $\bf F \cup \bf D = \{1, \ldots, N_{\rm points}\}$, allora la matrice risultante è la sottomatrice di $\tilde{\bf A}$ associata agli indici $\bf F$. Usando la notazione di Julia

$$\mathbf{A}_{\mathrm{cond}} = \tilde{\mathbf{A}}[F,F].$$

Esercizio 1

Determinare gli indici dei nodi interni e dei nodi di bordo. A tal fine, utilizzare la funzione get_boundary_nodes presente in Meshing.jl. Successivamente, integrare queste informazioni nella struttura della mesh utilizzando la funzione set_dirichletdofs!. Il codice di riferimento è il seguente:

```
# Build the mesh with mesh-size h

out_file = mesh_circle(h)

T, p = get_nodes_connectivity(out_file)

msh = Mesh(T, p)

# Get Dirichlet dofs

bnd_tags, bnd_coords = get_boundary_nodes(out_file)

set_dirichletdofs!(msh, bnd_tags)
```

Esercizio 2

Verificare che $\mathbf{A}_{\text{cond}} = \tilde{\mathbf{A}}[F, F]$ ha nucleo $\{\mathbf{0}\}$.

Suggerimento: Potete usare la funzione LinearAlgebra.nullspace.

1.1 Test per il problema di Poisson con condizioni di Dirichlet omogenee

Esercizio 3

Consideriamo il problema di Poisson sul cerchio unitario con condizioni di Dirichlet omogenee:

$$\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u = 0 & \text{su } \partial\Omega
\end{cases}$$
 (1)

Per il caso particolare f = 1, la soluzione esatta è

$$u(x,y) = \frac{1}{4}(1 - x^2 - y^2).$$

Vogliamo approssimare questa soluzione mediante il metodo degli elementi finiti e tracciare il diagramma degli errori $||u_h - u||_{L^2(\Omega)}$ e $|u_h - u|_{H^1(\Omega)}$ in funzione di h.

Assemblare e risolvere il sistema lineare

$$\mathbf{A}_{\mathrm{cond}}\mathbf{u}_{\mathtt{F}}=\mathbf{b}_{\mathrm{cond}},$$

dove $\mathbf{b}_{\mathrm{cond}} = \mathbf{b}_{\mathtt{F}} \coloneqq \mathbf{b}[\mathtt{F}].$

Parte II

Ricostruire l'intero vettore dei coefficienti

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_{\mathtt{F}} \\ \mathbf{u}_{\mathtt{D}} \end{bmatrix}, \qquad \mathbf{u}_{\mathtt{D}} = \mathbf{0}.$$

Parte III

Tracciare il grafico della soluzione approssimata u_h utilizzando le funzioni plot_flat e plot_surf in Meshing.jl. Dovreste ottenere dei risultati simili a quelli riportati nella Figura 1.

Parte IV

Calcolare l'errore:

- 1. $\max_i |u_i u(\mathbf{v}_i)| \approx ||u_h u||_{\mathbf{L}^{\infty}(\Omega)}$
- 2. Approssimare $||u_h u||_{L^2(\Omega)}$ usando le regole di quadratura Q_0 e Q_2 . Sfruttare che u_h è lineare affine sui triangoli della mesh, e dunque per valutarla in un punto $\mathbf{p} = \alpha \mathbf{v}_{i_1} + \beta \mathbf{v}_{i_2} + \gamma \mathbf{v}_{i_3}$ combinazione convessa dei vertici $\mathbf{v}_{i_1}, \mathbf{v}_{i_2}, \mathbf{v}_{i_3}$ di un triangolo della mesh è sufficiente calcolare

$$u_h(\mathbf{p}) = \alpha u_h(\mathbf{v}_{i_1}) + \beta u_h(\mathbf{v}_{i_2}) + \gamma u_h(\mathbf{v}_{i_3}) = \alpha u_{i_1} + \beta u_{i_2} + \gamma u_{i_3}.$$

- 3. Costruire il grafico dell'errore rispetto alla mesh size h e stimare l'ordine di accuratezza del metodo.
- 4. Facoltativo: approssimare $|u_h u|_{H^1(\Omega)}$ usando le regole di quadratura Q_0 e Q_2 . Confrontare i risultati ottenuti per diversi valori di h e discutere le differenze osservate con le due regole di quadratura.

Figura 1: Plot della soluzione $u(x,y) = \frac{1}{4}(1-x^2-y^2)$.

2 Condizioni di Dirichlet non omogenee

Consideriamo adesso il problema di Poisson con condizioni di Dirichlet non omogenee

$$\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u = g & \text{su } \partial\Omega
\end{cases}$$
 (2)

Se $u|_{\partial\Omega}=g$, possiamo "rilevare" $g:\partial\Omega\to\mathbb{R}$ all'interno del dominio costruendo un'estensione $\tilde{g}:\Omega\to\mathbb{R}$ tale che $\tilde{g}|_{\partial\Omega}=g$. Definiamo quindi una nuova incognita $\tilde{u}:=u-\tilde{g}$ che soddisfa condizioni al bordo di Dirichlet omogenee. Sostituendo questa espressione nel problema variazionale, otteniamo

Trovare
$$\tilde{u}$$
 tale che $a(\tilde{u} + \tilde{g}, v) = \langle f, v \rangle_{V' \times V}, \quad \forall v \in V,$

dove sia \tilde{u} che v sono nulle al bordo. Portando i termini noti al secondo membro, il problema si riscrive come:

Trovare
$$\tilde{u}$$
 tale che $a(\tilde{u}, v) = \langle f, v \rangle_{V' \times V} - a(\tilde{g}, v), \quad \forall v \in V,$

Nel metodo agli elementi finiti, una \tilde{g} può essere calcolata in modo semplice imponendo che $\tilde{g}=g$ sui nodi di bordo e $\tilde{g}=0$ sui nodi interni. Si noti che con questa scelta, \tilde{g} coincide con g su $\partial\Omega$ solo se quest'ultima è una funzione lineare a tratti; altrimenti, \tilde{g} rappresenta un'interpolazione discreta di g sui nodi di bordo. Denotando con F l'insieme degli indici dei nodi interni e con D quello dei nodi di bordo, possiamo scrivere

$$\tilde{g}(\mathbf{x}) = \sum_{j \in \mathbb{D}} g(\mathbf{v}_j) \varphi_j(\mathbf{x}), \qquad \tilde{u}(\mathbf{x}) = \sum_{j \in \mathbb{F}} u_j \varphi_j(\mathbf{x}).$$

In forma matriciale, indicando $g_j = g(\mathbf{v}_j)$, si ha:

$$a(\tilde{g}, \varphi_i) = \sum_{j \in \mathtt{D}} a(\varphi_j, \varphi_i) g_j = \tilde{\mathbf{A}}_{i\mathtt{D}} \mathbf{g}_\mathtt{D}$$

$$a(\tilde{u}, \varphi_i) = \sum_{j \in F} a(\varphi_j, \varphi_i) u_j = \tilde{\mathbf{A}}_{iF} \mathbf{u}_F.$$

Se dividiamo la matrice $\tilde{\mathbf{A}}$ a blocchi, dividendo nodi interni da quelli di bordo (e assumendo che gli indici siano ordinati mettendo prima quelli interni e poi quelli di bordo), questa assume una del tipo

$$ilde{\mathbf{A}} = egin{bmatrix} ilde{\mathbf{A}}_{ ext{FF}} & ilde{\mathbf{A}}_{ ext{FD}} \ ilde{\mathbf{A}}_{ ext{DF}} & ilde{\mathbf{A}}_{ ext{DD}} \end{bmatrix}.$$

A questo punto il vettore dei coefficienti \mathbf{u} è $\mathbf{u} = \begin{bmatrix} \mathbf{u}_F \\ \mathbf{u}_D \end{bmatrix}$ dove $\mathbf{u}_D = \mathbf{g}_D$ e \mathbf{u}_F risolve

$$a(\tilde{g}, \varphi_i) = \sum_{j \in \mathbb{F}} a(\varphi_j, \varphi_i) u_j = \langle f, \varphi_i \rangle_{\mathcal{V}' \times \mathcal{V}} - a(\tilde{g}, \varphi_i) \qquad \forall i \in \mathbb{F},$$

cioè in forma algebrica

$$\tilde{\mathbf{A}}_{FF}\mathbf{u}_{F} = \mathbf{b}_{F} - \tilde{\mathbf{A}}_{FD}\mathbf{g}_{D}.$$

Dunque, usando la notazione di Julia, nel caso di condizioni di Dirichlet non omogenee abbiamo

$$\mathbf{A}_{\text{cond}} = \tilde{\mathbf{A}}[F, F], \qquad \mathbf{b}_{\text{cond}} = \mathbf{b}[F] - \tilde{\mathbf{A}}[F, D]\mathbf{g}[D].$$
 (3)

Esercizio 4

Implementare la funzione

function impose_dirichlet(A, b, g, mesh)

che impone le condizioni di Dirichlet al sistema lineare risultante dalla discretizzazione agli elementi finiti di un problema variazionale, cioè a partire da $\tilde{\bf A}$ e $\bf b$ assembla il sistema (2). La funzione prende in input:

- A: la matrice di stiffness globale;
- b: il vettore dei termini noti globale;
- g: la funzione che definisce le condizioni di Dirichlet;
- mesh: l'oggetto mesh contenente la discretizzazione del dominio;

e restituisce:

- A_cond: la matrice di stiffness modificata estraendo solamente i nodi interni;
- b_cond: il vettore dei termini noti modificato con l'imposizione delle condizioni di Dirichlet;
- uh: il vettore soluzione con le condizioni di Dirichlet già applicate.

Potete trovare un codice da completare in Assembly.jl.

2.1 Test per il problema di Poisson con condizioni di Dirichlet non omogenee

Esercizio 5

Verificare la correttezza della propria implementazione risolvendo il problema di Poisson con condizioni non omogenee (2). Scegliere una soluzione u non polinomiale e da essa stessa definire $f = -\Delta u$ e $g = u|_{\partial\Omega}$. Diagrammare l'errore in funzione della mesh-size come nell'Esercizio 3.