

Anna Heath

RECONSTRUCTION OF IPD

Background

- Decision modelling is often (at least in part) based on previously published data.
- In survival analysis, published data for outcomes is frequently insufficient to perform cost-effectiveness analysis
- Extrapolation of survival curves past the trial follow-up time requires individual patient data (IPD)
- We aim to use published graphics to reconstruct IPD so published data can be used in a CEA.

M Reck. ESMO 2016.

M Reck. ESMO 2016.

M Reck. ESMO 2016.

M Reck. ESMO 2016. **Progression-Free** Events. Median, HR P Survival (95% CI) mo n Pembro 73 10.3 0.50 1001 < 0.001 (0.37 - 0.68)Chemo 116 6.0 90 80 62% 50% 70-48% 60 15% PFS, 50 40-30 20 10 3 15 9 12 18 O Time, months No. at risk 154 104 89 22 44 151 99 70 18

Assessed per RECIST v1.1 by blinded, independent central review. Data cut-off: May 9, 2016.

"Digitizing" the curves

https://www.digitizeit.de/

"Digitizing" the curves

4	Α	В	С	D
1	1	0	100	
2	2	0.4	99.8	
3	3	0.5	99	
4	4	0.6	98.9	
5	5	0.7	98.1	
6	6	0.9	97.2	
7	7	0.9	95	
8	8	1.1	94.9	
9	9	1.1	93	
10	10	1.2	92.8	
11	11	1.3	92.5	
12	12	1.4	92.4	
13	13	1.4	91.6	
14	14	1.6	91.5	
15	15	1.6	90.7	
16	16	1.7	90.3	
17	17	1.9	90.1	
18	18	2	88.9	
19	19	2.1	88.9	
20	20	2.2	87.2	
21	21	2.4	87.2	
22	22	2.4	86.7	
23	23	2.6	86.7	

- 1. The index number of click
- 2. The value on the x-axis the time.
- 3. The value on the y-axis the proportion of patients "alive" at that specific time point.

"Digitizing" the curves

- 1. The index number of click
- 2. The value on the x-axis the time.
- 3. The value on the y-axis the proportion of patients "alive" at that specific time point.
 - The times must be increasing
 - The survival proportions must be decreasing.
 - This needs to be checked manually because digitization can be imprecise

Tabulating the number "at risk"

- The index number for the interval
- 2. The time at the beginning of the interval
- 3. Creates a link between the digitized curves and the "At Risk" table this is index of the first click that is within the interval
- 4. This is the index of the last click that is within the interval
- 5. The number of patients at risk at the beginning of the interval

	0	3	6	9	12	15	18
No	. at risk		٦	Time, month	s		
	154	104	89	44	22	3	1
	151	99	70	18	9	1	0

Creating the "pseudo" IPD

- Guyot et al. developed an algorithm to reconstruct the IPD from these two files.
- It is included in R in the package survHE.
 - > library(survHE)
 - > digitise("DIGITIZED.txt","ATRISK.txt",

km_output="KMdata.txt", pd_output="IPDdata.txt")

This creates two datasets:

1	А	В	С	D
1	time	n.risk	n.event	n.censored
2	0	672	0	3
3	72	669	1	3
4	140	665	1	1
5	177	663	1	1
6	210	661	1	4
7	275	656	1	1
8	294	654	1	1
9	311	652	1	0

4	Α	В	С
1	time	event	arm
2	72	1	1
3	140	1	1
4	177	1	1
5	210	1	1
6	275	1	1
7	294	1	1
8	311	1	1
9	323	1	1

Creating the "pseudo" IPD

4	А	В	С	D
1	time	n.risk	n.event	n.censored
2	0	672	0	3
3	72	669	1	3
4	140	665	1	1
5	177	663	1	1
6	210	661	1	4
7	275	656	1	1
8	294	654	1	1
9	311	652	1	0

- Drops correspond to events.
- The digitized data highlights these drops.
- The *si*ze of the drop relates to $\frac{d_t}{n_t}$
 - n_t : patients at risk just before time t
 - d_t : patients with event at time t
- The algorithm randomly spaces censored values and then iteratively matches the number at risk.
- We are solving the KM equation:

$$S(t) = S(t - \delta_t) \frac{n_t - d_t}{n_t}$$

- δ_t : The time since last event

Model Fitting using pseudo IPD

- Parametric survival models can be fitted as normal to the reconstructed IPD.
- The best fitting model can be selected using standard model fitting criterion.
- Extrapolation to the full model horizon can be achieved.
- Partitioned survival analysis can be used to value health states.

Limitations

 There are no links between the curves:

Relationships between linked outcomes (e.g. PFS and OS) are not preserved.

- Data cannot be used to inform a multi-state model
- Cannot perform any subgroup analysis, e.g. by age, tumour category unless these curves are available and have been digitized

