Основные классы случайных процессов

- 1. $\xi_t = \sin w_t, \ t \ge 0.$
 - 1) Найти $\lim_{t \to +\infty} m_{\xi}(t)$, $\lim_{t \to +\infty} K_{\xi\xi}(t+s,t)$.
 - 2) Является ли процесс ξ_t α) непрерывным в среднем квадратичном; δ) стационарным;
 - в) гауссовским?
- 2. $\xi_t = \sin w_t, \ t \ge 0.$
 - 1) Найти конечномерные распределения.
 - 2) Вычислить слабый предел одномерного распределения при $t \to \infty$.
- 3. $\xi_t = w_t^2 t$, $t \ge 0$.
 - 1) Найти одномерные распределения.
 - 2) Является ли процесс а) гауссовским; б) стационарным; в) непрерывным в среднем квадратичном.
- 4. $\xi_t = \cos \pi_t, \ t \ge 0.$

 - 1) Найти $\lim_{t\to +\infty} m_{\xi}(t)$, $\lim_{t\to +\infty} K_{\xi\xi}(t+s,t)$. 2) Будет ли процесс ξ_t a) непрерывным в среднем квадратичном; δ) стационарным;
 - в) гауссовским?
- 5. $\xi_t = (-1)^{\pi_t}$, где π_t пуассоновский процесс.
 - 1) Является ли ξ_t цепью Маркова с непрерывным временем ? Если ответ утвердительный, найти переходные вероятности, матрицу интенсивностей, стационарное распределение?
 - 2) Является ли процесс ξ_t дифференцируемым в среднем квадратичном ?
- 6. Пусть $\xi_t = \left\{ \frac{1}{4} \pi_t \right\}$, $t \ge 0$, где π_t пуассоновский процесс. Найти конечномерные распределения ξ_t .
- 7. Пусть $\xi_t = \exp{(w_t t/2)}$. Найти $m_\xi(t)$, $K_{\xi\xi}(s,t)$. Будет ли процесс $\xi_t = a$) непрерывным в среднем квадратичном; б) стационарным; в) гауссовским?

Марковские процессы

- 8. Игральная кость последовательно перекладывается с одной грани равновероятно на любую из четырех соседних независимо от предыдущего. Найти предел при $t \to \infty$ вероятности того, что после t-го перекладывания кость окажется на грани "6" ?
- 9. Пусть π_t , t > 0, пуассоновский процесс с параметром $\lambda > 0$. Найти матрицу переходов и стационарное распределение цепи Маркова

$$\xi_n = \pi_{nh} \, (mod \, 9),$$

где h > 0 — постоянная.

10. Является ли процесс $\xi_t = [w_t]$, $t \ge 0$, цепью Маркова ?

- 11. Является ли процесс $\xi_n = w_n$, $n \in \mathbb{N}$, цепью Маркова ?
- 12. Является ли процесс $\xi_n = w_n \, (mod \, 10)$, $n \in \mathbb{N}$, цепью Маркова ?
- 13. Найти стационарное распределение цепи Маркова с непрерывным временем, имеющей пространство состояний $\mathbb{Z}_+ = \{0,1,2,\ldots\}$ и следующие ненулевые интенсивности переходов: $q_{k,k+1} = \alpha_k, \ k \in \mathbb{Z}_+, \ q_{j,j-1} = \beta_j, \ j \in \mathbb{N}.$
- 14. Найти стационарное распределение дискретной цепи Маркова $(t \in \mathbb{Z}_+)$ с пространством состояний $\mathbb{Z}_+ = \{0,1,2,\ldots\}$ и со следующими ненулевыми вероятностями переходов за один шаг: $p_{j,,j-1}=1$, $j \in \mathbb{N}$, и $p_{0,k}=\gamma_k$, $k \in \mathbb{Z}_+$, где $\gamma_k>0$, $\sum_k \gamma_k=1$.
- 15. Пусть $\xi_t = \left\{\frac{1}{4}\pi_t\right\}$, $t \ge 0$, где π_t пуассоновский процесс. Является ли процесс ξ_t цепью Маркова ? Если ответ утвердительный, найти переходные вероятности, матрицу интенсивностей, стационарное распределение ?
- 16. Является ли процесс $\xi_t = |w_t|$, $t \ge 0$, марковским процессом? Найти его конечномерные распределения, переходную функцию, стационарное распределение.
- 17. Является ли процесс $\xi_t = (1 + |w_t|)^{-1}$, $t \ge 0$, марковским процессом ? Найти его конечномерные распределения, переходную функцию, стационарное распределение.
- 18. Пусть $\xi_t = w_t \pmod{2\pi}$. Является ли процесс ξ_t , $t \ge 0$, марковским процессом ? Найти его конечномерные распределения, переходную функцию, стационарное распределение.

Мартингалы

19. В начальный момент в урне находятся белый и черный шары. Каждый раз из урны вынимается один шар и заменяется двумя шарами того же цвета. Пусть ξ_n — доля белых шаров в урне после n таких операций. Доказать, что $(\xi_n, n \in \mathbb{N})$ — мартингал.

20.