

Nonlinear physics, dynamical systems and chaos theory

jean-christophe. loiseau@ensam. eu DynFluid, Arts et Métiers ParisTech, France

Overview from last time

Given the non-linear dynamical system

$$\dot{\mathbf{X}} = \mathcal{F}(\mathbf{X}),$$

we have seen in the previous lectures how to:

 \hookrightarrow Compute fixed points \mathbf{X}^* of the system, i.e. solutions to

$$\mathcal{F}(\mathbf{X}) = 0.$$

 \hookrightarrow Derive the linearized the equations governing the dynamics of a perturbation x:

$$\dot{\mathbf{x}} = \mathcal{A}\mathbf{x}$$
.

 \hookrightarrow Characterize the linear stability of the fixed point X^* based on the eigenspectrum of \mathcal{A} .

Question

Let us now consider a parametrized dynamical system

$$\dot{\mathbf{x}} = \mathcal{F}(\mathbf{x}, \mu)$$
.

How do its fixed points evolve when varying the parameter μ ? Can we characterize this evolution and make predictions?

Flows on the line (again)

Let us consider a first-order dynamical system

$$\dot{x} = f(x, \mu),$$

where μ is our **control parameter**.

- We have seen that such systems have relatively simple dynamics dictated by fixed points.
- These fixed points may however change as a function of μ .
 - → Qualitative variations of the dynamics are called **bifurcations**.
 - The values of μ at which these changes occurs are called **bifurcation points**.

 \blacktriangleright To facilitate discussions to come, the Taylor expansion of f(x) (for a constant μ) is given by

$$f(x) \simeq a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \cdots$$

Depending on the coefficients a_k , different behaviors will be observed.

First-order dynamical system

► As a starting point, let us look at the system

$$\dot{x} = \mu - x^2$$

and plot its phase line for different values of μ .

Phase line

Evolution of the phase line of the system for $\mu = -1/2, 0$ and 1/2.

Fixed points and stability

- \triangleright Depending on the value of μ , different behaviors are possible.
 - \hookrightarrow For $\mu < 0$, the system admits no fixed points and $\lim_{t \to \infty} x(t) = -\infty$.
 - \hookrightarrow For $\mu=0$, the system admits a single **meta-stable** fixed point $x^*=0$. For x(0)>0, $\lim_{t\to\infty}x(t)=0$, otherwise, for x(0)<0, $\lim_{t\to\infty}x(t)=-\infty$.
 - \hookrightarrow For $\mu>0$, the system admits to fixed points $x^*=\pm\sqrt{\mu}$. One is linearly stable, while the other one is linearly unstable.
- As μ becomes positive, we observe a transition from the absence of fixed points to the creation of two of them, one stable and the other unstable. This is known as the **saddle node bifurcation**.

Bifurcation diagram

Bifurcation diagrams for the different combinations of saddle-node bifurcations.

Example from real life

Let us consider a damped pendulum driven by a constant torque

$$mL^{2}\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}} + b\frac{\mathrm{d}\theta}{\mathrm{d}t} + mgL\sin(\theta) = \Gamma.$$

▶ Introducing the time scale $t = T\tau$, one can write

$$\frac{L}{gT^2}\ddot{\theta} + \frac{b}{mgLT}\dot{\theta} + \sin(\theta) = \frac{\Gamma}{mgL}.$$

Example from real life

▶ If $b/mgT \gg L/gT^2$, we can neglect $\ddot{\theta}$ and our equation becomes

$$\dot{\theta} = \gamma - \sin(\theta),$$

with T = b/mgL and $\gamma = \Gamma/mgL$.

- ▶ You can now easily show that the system experiences a saddle-node bifurcation at $\gamma = 1$.
- ▶ Interpret your results from physical point of view!

First-order dynamical system

Let us now consider the following first-order dynamical system

$$\dot{x} = \mu x - x^2$$

and plot its phase line for different values of μ .

Phase line

Evolution of the phase line of the system for $\mu = -3/2, 0$ and 3/2.

Fixed points and linear stability

▶ The system admits two fixed points

$$x_1^* = 0$$
 and $x_2^* = \mu$.

- ightharpoonup Depending on the sign of μ , we have
 - \hookrightarrow For $\mu < 0$, x_1^* is linearly stable while x_2^* is linearly unstable.
 - \rightarrow For $\mu = 0$. $x_1^* = x_2^*$ is meta-stable.
 - \hookrightarrow For $\mu > 0$, x_1^* is now linearly unstable, while x_2^* has become linearly stable.
- ightharpoonup As μ becomes positive, the two fixed points have exchanged their stability. This is known as the **transcritical bifurcation**.

Bifurcation diagram

Bifurcation diagram of the transcritical bifurcation.

First-order dynamical system

▶ Let us consider the following system

$$\dot{x} = \mu x - x^3$$

and plot its phase line for different values of μ .

Phase line

Evolution of the phase line of the system for $\mu = -1/2, 0$ and 1/2.

Fixed points and linear stability

- **Depending on the value of** μ , different behaviors are possible.
 - \hookrightarrow For $\mu < 0$, the system admits a single linearly stable fixed point $x^* = 0$.
 - \hookrightarrow For $\mu=0$, the fixed point $x^*=0$ is marginal from a linear point of view, yet still nonlinearly stable.
 - \hookrightarrow For $\mu>0$, the system now admits three fixed points. $x_1^*=0$ is now linearly unstable, while $x_{2,3}^*=\pm\sqrt{\mu}$ are linearly stable.
- As μ becomes positive, we observe that the origin becomes linearly unstable and two additional stable fixed points are created. This is known as the **supercritical pitchfork bifurcation**.

Bifurcation diagram

Bifurcation of the supercritical pitchfork.

First-order dynamical system

▶ Let us consider the following system

$$\dot{x} = \mu x + x^3$$

and plot its phase line for different values of μ .

Phase line

Evolution of the phase line of the system for $\mu = -1/2, 0$ and 1/2.

Fixed points and linear stability

- \triangleright Depending on the value of μ , different behaviors are possible.
 - \hookrightarrow For $\mu<0$, the system admits three fixed points. $x_1^*=0$ is linearly stable, while $x_{2,3}^*=\pm\sqrt{-\mu}$ are linearly unstable.
 - \hookrightarrow For $\mu=0$, the fixed point $x^*=0$ is marginal from a linear point of view, but nonlinearly unstable.
 - \rightarrow For $\mu < 0$, the system now admits a single linearly unstable fixed point $x^* = 0$.
- As μ becomes positive, we observe that the origin becomes linearly unstable and the other two unstable fixed points are destroyed. This is known as the **subcritical pitchfork bifurcation**.

Bifurcation diagram

Bifurcation of the subcritical pitchfork.

Summary

	\int	f_x	f_{μ}	f_{xx}	$f_{x\mu}$	f_{xxx}
Fixed point	0					
Fixed point Bifurcation	0	0	$\neq 0$			
Saddle-node	0	0	$\neq 0$	$\neq 0$		
Transcritical	0	0	0	$\neq 0$	$\neq 0$	
Pitchfork	0	0	0	0	$\neq 0$	$\neq 0$

Exercise

► Consider the following dynamical system

$$\dot{x} = \mu x + x^3 - 0.25x^5$$

and study its different fixed points and bifurcations.

Bifurcations of second-order systems

Creation of limit cycles

Bifurcations of second-order systems

Let us now consider a second-order dynamical system given by

$$\dot{x} = f(x, y, \mu)$$

$$\dot{y} = g(x, y, \mu).$$

- As seen in the previous lectures, such systems have dynamics much richer that those of first-order systems.
- How do they evolve as the control parameter μ changes?
 - → Note that all bifurcations seen so far also apply to fixed points of second-order dynamical systems.

Saddle-node bifurcation revisited

The reason it is called saddle-node

► Consider the following system

$$\dot{x} = \mu - x^2$$

$$\dot{y} = -y$$

and draw qualitatively its phase space for $\mu < 0$, $\mu = 0$ and $\mu > 0$.

Saddle-node bifurcation revisited

The reason it is called saddle-node

Creation of limit cycles

► Let us consider the following system

$$\dot{x} = \mu x - \omega y - (x^2 + y^2)x$$
$$\dot{y} = \omega x + \mu y - (x^2 + y^2)y.$$

It admits a single fixed point given by

$$(x^*, y^*) = (0, 0).$$

Exercise

- 1. Study the linear stability of the fixed point as μ varies.
- 2. Introducing the complex variable z = x + iy, show that the equation for z reads

$$\dot{z} = (\mu + i\omega)z - |z|^2 z.$$

- 3. From this complex equation, determine the first-order system that governs the amplitude of oscillation $r = \sqrt{x^2 + y^2}$.
- 4. Study the properties of this equation an determine what type of bifurcation does the first-order system $\dot{r} = f(r, \mu)$ experiences.
- 5. Sketch the evolution of the phase plane of our original system as μ varies and conclude.

Phase plane

Evolution of the phase plane of the system as a function of μ for the supercritical Hopf bifurcation.

Phase plane

Evolution of the phase plane of the system as a function of μ for the subcritical Hopf bifurcation.

Normal form

▶ The normal form of the Hopf bifurcation reads

$$\dot{r} = \mu r \pm r^3$$

$$\dot{\theta} = \omega,$$

where r is the amplitude of oscillator and θ its phase.

Example from real life

► The dynamics of the flow are governed by the Navier-Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{Re}\nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0.$$

► These are partial differential equations having only a quadratic nonlinearity.

Evolution of the vorticity field for the fluidic pinball at Re=60.

Example from real life

Question

How come a system with quadratic nonlinearities exhibit a Hopf bifurcation whose normal form involve cubic ones?

Example from real life

These dynamics can be modeled by the following generalized mean-field model

$$\dot{x} = \sigma x - y - xz$$

$$\dot{y} = x + \sigma y - yz$$

$$\dot{z} = -\lambda(z - x^2 - y^2).$$

where x and y capture the vortex shedding and z describes the mean flow distortion.

Trajectory given by the generalized mean field model.

Example from real life

Let us compute the two-dimensional unstable manifold. For that purpose, assume

$$z = h(x, y)$$
$$= ax^2 + bxy + cy^2.$$

After some calculations, we finally get

$$z = \frac{1}{2\sigma + 1} \left(x^2 + y^2 \right).$$

 \hookrightarrow If $\lambda \gg \sigma$, the system rapidly evolves onto this two-dimensional paraboloid manifold.

Slice in the y=0 plane of the phase space.

Example from real life

Our dynamical system finally reduces to

$$\dot{x} = \sigma x - y - \alpha (x^2 + y^2)x$$
$$\dot{y} = x + \sigma y - \alpha (x^2 - y^2)y.$$

Introducing A = x + iy, we finally arrive to the normal form of the supercritical Hopf bifurcation

$$\dot{A} = (\sigma + i)A - \alpha |A|^2 A.$$

Though our system has only quadratic nonlinearities, dynamics on the manifold mimic cubic ones.

Trajectory of the system on the 2D manifold.