MSc Thesis Defense

COSMIC RAY CAMERA DISCOSAT-1 CMOS CHARACTERIZATION USING A PROTON BEAM

Christina Gaitanou

MSc Software Design

In collaboration with Aarhus University and Danish Centre for Particle Therapy, as part of DISCOSAT project

Supervisors: Julian Priest & Sebastian Büttrich

Agenda

- 1. Background & Previous Work
 - DISCOSAT-1 & Cosmic Rays
 - Cosmic Ray Experiment
- 2. Thesis Project Objectives
- 3. Cosmic Radiation & Radiation in LEO
- 4. Complementary Metal-Oxide-Semiconductor (CMOS) & Particle Detection
- 5. Irradiation Experiments
- 6. Proton Beam Experiment
 - Data Acquisition & Data Processing
 - Dose Measurement & Energy Dependency
- 7. Limitations & Future work

Background: DISCOSAT-1

- Danish Student CubeSat Program (DISCO)
- 1U CubeSat in Low Earth Orbit (LEO) launched in April 2023

Goals:

- Demonstrate the viability of certain technologies for DISCOSAT-2 (3U CubeSat Earth-imaging satellite).
- ➤ Validate the image pipeline through a model system (IPU), which consists of a Tensor Processing Unit (TPU) chip within a Coral Board mini, and a Coral camera (CMOS sensor).
- Cosmic Ray Experiment: exploring the effects of cosmic rays on hardware components by counting high energetic particles that pass through the satellite.

Background: Cosmic Rays

- Cosmic Rays:
 - High-energy particles originating from outer space.
 - Primarily composed of protons, traveling close to the speed of light
- Primary Cosmic Rays (PCRs):
 - Cosmic Rays that directly reach the Earth's atmosphere.
 - Composed mainly of protons and some heavier nuclei.
- Secondary Cosmic Rays (SCRs):
 - Produced when PCRs interact with particles in the Earth's atmosphere.
 - Include neutrons, muons and other particle fragments.

Source: Eishi H. Ibe. (2015)

Previous work: Cosmic Ray Experiment

Development of CubeSat Camera Control software for DISCOSAT-1 particle detection.

Cosmic Ray flux measurements at ground level (SCRs).

$$\phi = N/(A*T)$$

Flux (muons/cm ² /min)	Duration (minutes)	Duration (hours)	Detections (N)
0.03060	324.68	5.41	1
0.04366	227.60	3.79	1
0.18238	54.48	0.91	1
0.02200	451.60	7.53	1
0.23211	85.62	1.43	2
0.08791	565.12	9.42	5
0.09660	1440.00	24.00	14
0.06900	1440.00	24.00	10

SCRs flux measurements

Thesis Project Objectives

- Investigation of camera's response and performance under irradiation.
- Evaluation of camera sensitivity, durability and performance.
- Gaining insights into dose measurement and energy dependency.
- Identification of potential vulnerabilities and performance limitations.

Methodology:

- Camera irradiation experiments
- Data collection and analysis

Cosmic Radiation

- Critical factor in the design and operation of spacecraft and electronics.
- Affects mission reliability and astronaut safety in space.

Effects on electronic components:

- Single-Event Upsets (SEUs): Disruption of circuits by a single particle leading to data corruption or system failures.
- Latch-Ups: Persistent malfunctions triggered by cosmic particles.
- Total lonizing Dose (TID): Long-term radiation exposure degrades materials causing permanent damage.

Radiation in LEO: DISCOSAT-1

The radiation environment for DISCOSAT-1 in Low Earth Orbit (LEO)
using the Space Environment Information System (SPENVIS).

Trapped Proton Radiation:

Significant flux in regions like the South Atlantic Anomaly (SAA).

Solar Proton Events (SPE) :

Higher exposure expected during the Solar Cycle 25 peak (2024-2026).

Galactic Cosmic Rays (GCR):

Frequent encounters with 5-250 MeV protons, with lower occurrence of higher-energy protons.

Trapped proton flux > 5 MeV world view

Complementary Metal-Oxide-Semiconductor (CMOS)

- Low power consumption COTS sensors with high spatial resolution and real-time data processing.
- Widely used in scientific applications due to better sensitivity and lower cost than CCD sensors.

Schematic diagram of a CMOS camera's components.

Light to Digital Conversion:

- Photodiodes in the sensor convert light into electrical signals.
- Nearby amplifiers convert these signals into voltages.
- On-chip Analog-to-Digital Conversion (ADC) transforms voltages into digital values.
- Image Signal Processor (ISP) enhances the image (noise reduction, colour correction).
- Interface transmits data to external devices.

CMOS sensors as Particle Detectors

- Widely used in consumer electronics; repurposed for radiation detection.
- Cost-effective alternative to specialized radiation detectors.

Types of radiation detected:

Alpha (α) **particles:** Heavy, double positive charge, low penetration (stopped by paper/skin).

Beta (β) particles: Electrons (β -) or positrons (β +), moderate penetration (stopped by aluminum foil).

X-rays: High-energy photons, deep penetration, widely used in medical imaging.

Gamma (γ) rays: High-energy photons, extremely penetrating (passes through lead), ionizing.

- Ionizing particles create charge in CMOS pixels.
- Charge collected is proportional to particle energy.
- Sensor can be calibrated to distinguish different particles and measure dose rate.

Irradiation Experiments

Camera irradiation experiments with DISCOSAT-1 prototype.

In collaboration with the Physics Department of Aarhus University.

Block diagram of the experimental set up.

Source	Particle	Detections
Uranium-238	α	227
Bismuth-207	β	282
Cobalt-60	γ	42
Sodium022	γ	140

Table of acquired experimental data.

Irradiation Experiments: Results

- Initial feature extraction exploration
- Histograms for activated pixels, average, maximum and total pixel intensity for Uranium-238 (α) and Bismuth-207 (β) radiation sources

- ✓ Successful particle detection
- ✓ Extract important features for deposited energy
- √ Particle classification potentiality
- √ No saturation or degradation
- √ Insignificant noise

Irradiation Experiments: Results

- Multiple particle emissions per source (e.g. secondary radiation)
- High likelihood of mislabelled data
- Overlapping clustering
- Limited data

Box and Swarm Plot of Track Lengths for all sources.

Principal Component Analysis on the whole dataset.

Proton Beam Experiment

- Testing the camera's durability under high energetic protons, its performance as a dosimeter and extracting information regarding the particles Linear Transfer Energy (LET) levels.
- Horizontal proton pencil beam scanning (PBS) in the Danish Centre for Particle Therapy at Aarhus University Hospital.

Side view of the camera irradiation experimental set up.

Proton Beam Experiment: Data Acquisition

Parameters:

• Monitor Units (MU): 1, 10, 100, 1.000, 10,000, 50.000

• Energy (LET): 5.5, 23, 33, 122, 244 MeV

Current: 50 nA

• Frames per second (FPS): 40

• Image resolution: 1920 x 1080 pixels

Pixel Value Threshold: 30

- > High-energetic particle detection
- > No damage or degradation shows durability
- Insignificant noise (pixel value smaller than 10)
- ➤ Saturation between 122 244 MeV energy level

(c) 122 MeV frame

(b) 23 MeV frame

(d) 244 MeV frame

Proton Beam Experiment: Data Processing

K-means Colour Quantization key steps:

Euclidean Distance Calculation:

$$d(x,c) = \sqrt{(R_x - R_c)^2 + (G_x - G_c)^2 + (B_x - B_c)^2}$$

Cluster assignment:

$$label(x) = \arg\min_{k} \ d(x, c_k)$$

Centroid Update:

$$c_k = \frac{1}{N_k} \sum_{x \in C_k} x$$

Convergence Criteria:

$$\text{converged if } \|c_k^{(t)} - c_k^{(t-1)}\| < \epsilon \quad \forall k$$

- Convert to grayscale
- Binarization with Otsu's thresholding
- ✓ Particle counting for each frame

Image segmentation steps for Class 244 MeV frame.

MU Class	Number of Frames	Total Particle Count	Avg Particle Size
1	1	22	2.227
10	2	84	3.194
100	4	428	3.784
1000	15	1327	3.723
10000	108	12237	3.702
50000	449	85304	3.716

Particle Count, Size, and Number of Frames by MU Class.

Proton Beam Experiment: Dose measurement

- Determine camera's dosimeter capabilities
- Constant energy level at 122 MeV
- Monitor Units values: 1, 10, 1.000, 10.000, 50.000 MU
- Features extraction: Activated Pixels and Pixel Intensity
- Particle counts
- ✓ Proportionality is observed

Total Particle counts for each MU Class (1 - 50000) and (1-1000) MU respectively.

Average activated pixels and average intensity (log) by MU.

Proton Beam Experiment: Dose Measurement

- Linear Regression Line for particle counts versus MU
- High Mean Squared Error (MSE)
- Very few data points

Total Particle Count =
$$-814.30 + 1.71 \times MU$$
 Class

- Expected number of protons vs Number of protons detected
- Estimated proton flux: 5000 protons/cm²/s for 1 MU

Total expected protons =
$$Flux \times Exposure Time per Frame$$

Total Expected Protons =
$$5000 \, \text{protons/cm}^2/\text{sec} \times 0.1006 \, \text{cm}^2 \times 0.025 \, \text{sec}$$

= $5000 \times 0.1006 \times 0.025$
= $12.575 \, \text{protons}$

The detection algorithm detected 22 particles for 1 MU

Total particle counts vs MU with Regression and Confidence Bands.

Proton Beam Experiment: Energy Dependency

Class 5.5 MeV

- Time-series plots show particle counts for each class.
- Fluctuations are observed, except for Class 244 MeV.
- Overall lack of proportionality between energy levels and pixel activations is noticed.

Class 33 MeV

Class 23 MeV

20/08/24

19

Limitations & Future Work

- Limited amount of data across all experiments.
- Complexity of the real-world radiation detection and irradiation studies for spacecraft cameras.
- Repeating experiments under a well-considered and controlled set up to improve reliability and performance.
- Future camera characterization efforts within the DISCOSAT project.

Dose measurement:

- Not precise measurements.
- Thorough camera irradiation calibration is essential.

Energy dependency:

- Collect data across a wider spectrum of proton energies.
- Discover energy level of sensor saturation and degradation.

Thank you for listening