Sapienza Università di Roma Laboratorio di Meccanica PPI1-Molla

Giulio Russo

6 maggio 2021

PPII-Molla 1

Indice

1	Sco	po dell'esperienza	2
2	App	parato sperimentale	2
	2.1	Campioni	2
	2.2		
	2.3	Strumenti di misura	2
3	Stra	ategia di misura	3
	3.1	Molla	3
			4
	3.2		4
	3.3	Propagazione incertezze	4
	3.4		5
	0.1	3.4.1 Metodo dei minimi quadrati	5
4	Оре	erazioni sperimentali	6
	4.1	•	6
		4.1.1 Massa m	6
			6
			7
		0000	7
	4.0	0 1	8
	4.2		8
	4.3	Misura di g	9
		4.3.1 Considerazioni sul valore sperimentale di g	10

1 Scopo dell'esperienza

- Eseguire misure dirette di massa, lunghezza e tempo.
- Misura della costante elastica di una molla.
- Misura dell'accelerazione di gravità.

2 Apparato sperimentale

- Una molla appesa ad un supporto con carta millimetrata per effettuare misure di allungamento.
- Una bilancia digitale per la misura dei dischetti.
- Un cronometro a lettura digitale per le misure di periodo.
- Una squadra per ridurre l'errore di parallasse nella misura di allungamento.

2.1 Campioni

• 10 dischetti che si possono appendere alla molla.

2.2 Accorgimenti e consigli

- Attenzione a non allungare eccessivamente la molla rispetto alle condizioni di equilibrio per la misura di periodo (circa 1-1.5 cm).
- Fare attenzione che la molla non urti la parte superiore quando è al minimo della lunghezza in quanto altera le misure di periodo.
- Assicurarsi che le oscillazioni della molla siano, per quanto possibile, verticali e unidimensionali.

2.3 Strumenti di misura

In Tabella 2.1 sono riassunte le caratteristiche degli strumenti usati.

- Bilancia di precisione. La risoluzione è pari a $0.1\,\mathrm{g}$. L'incertezza di tipo B associata alla risoluzione dello strumento è quindi $\frac{\mathrm{RIS}}{\sqrt{12}} = \frac{0.1\,\mathrm{g}}{\sqrt{12}} = 0.03\,\mathrm{g}$.
 - La portata è pari a $3\,\mathrm{kg}$. Eseguendo la misura di massa nulla il valore mostrato sul display è esattamente zero; si assume quindi che l'offset dello strumento sia trascurabile.
- Cronometro. La risoluzione è pari a $0.01\,\mathrm{s}$. L'incertezza di tipo B associata alla risoluzione dello strumento è quindi $\frac{\mathrm{RIS}}{\sqrt{12}} = \frac{0.01\,\mathrm{s}}{\sqrt{12}} = 0.003\,\mathrm{s}$.
- Carta millimetrata. La risoluzione è pari a 1 mm. L'incertezza di tipo B associata alla risoluzione dello strumento è quindi $\frac{\text{RIS}}{\sqrt{12}} = \frac{0.001\,\text{m}}{\sqrt{12}} = 0.0003\,\text{m}$.

La portata è pari a 28 cm. L'offset dello strumento è trascurabile.

Strumento	Portata	Risoluzione	σ_B	Offset
Bilancia di precisione	$3\mathrm{kg}$	$0.1\mathrm{g}$	$0.03\mathrm{g}$	-
Cronometro	-	$0.01\mathrm{s}$	$0.003\mathrm{s}$	-
Carta millimetrata	$28\mathrm{cm}$	$1\mathrm{mm}$	$0.3\mathrm{mm}$	-

Tabella 2.1: Caratteristiche degli strumenti usati e incertezze associate alla singola misura. Sono inoltre riportati gli eventuali fattori correttivi di offset e di scala.

3 Strategia di misura

3.1 Molla

Un corpo di massa M soggetto alla sola forza elastica segue la legge di Hooke in una dimensione:

$$F = -k\Delta x$$

$$M\ddot{x} = -k(x - x_0)$$
(3.1)

con k costante elastica della molla e x_0 lunghezza a riposo della molla. La soluzione generale di questa equazione differenziale è

$$x(t) = A\cos(\omega t + \varphi) + x_0 \tag{3.2}$$

con $\omega = \sqrt{\frac{k}{M}}$. Il periodo di oscillazione è legato alla pulsazione ω dalla relazione

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{M}{k}} \,. \tag{3.3}$$

Nel caso di una massa M appesa ad una molla c'è un termine in più dovuto alla forza peso (g è l'accelerazione di gravità). L'equazione del moto diventa quindi

$$F = -k(x - x_0) + Mg = M\ddot{x} \tag{3.4}$$

che ha come soluzione

$$x(t) = A\cos(\omega t + \varphi) + \frac{Mg}{k} + x_0 \tag{3.5}$$

con periodo di oscillazione uguale al caso precedente.

Nel caso statico (senza oscillazione, $\dot{x}=0$ e $\ddot{x}=0$) la posizione di equilibrio corrisponde a

$$x_{eq} = \frac{Mg}{k} + x_0. (3.6)$$

In questo esperimento non conosciamo la massa totale M dell'oscillatore ma solo la massa m dei dischi che aggiungiamo; possiamo quindi riscrivere $M=(m_0+m)$ dove m_0 è la massa della molla (incluso il supporto ad essa collegato) senza dischi. Anche la lunghezza a riposo della molla non è nota poiché la molla comincia ad allungarsi solo con una sollecitazione sufficientemente intensa.

Dall'equazione del periodo (3.3) ricaviamo quindi la seguente relazione:

$$T^2 = 4\pi^2 (m_0 + m)/k. (3.7)$$

Eseguendo misure di periodo per due diverse masse otteniamo una formula per calcolare la costante elastica k della molla:

$$T_1^2 = 4\pi^2 (m_0 + m_1)/k;$$

$$T_2^2 = 4\pi^2 (m_0 + m_2)/k;$$

$$T_2^2 - T_1^2 = 4\pi^2 (m_2 - m_1)/k;$$

$$k = 4\pi^2 \frac{m_2 - m_1}{T_2^2 - T_1^2}.$$
(3.8)

Esplicitando k in funzione delle altre grandezze a partire dalla (3.7) e sostituendo tale valore di k in (3.6) otteniamo la relazione lineare tra x_{eq} e T^2 :

$$x_{eq} = \frac{g}{4\pi^2} T^2 + x_0$$

= $\alpha T^2 + x_0$. (3.9)

Da questa relazione è possibile stimare l'accelerazione di gravità g.

PPII-Molla 4

3.1.1 Passaggi riassuntivi

È quindi possibile:

- 1. aggiungere diverse masse alla molla;
- 2. per ciascuna configurazione misurare la posizione statica di equilibrio x_{eq} e il periodo di una singola oscillazione T;
- 3. calcolare il coefficiente elastico k della molla;
- 4. studiare l'andamento lineare di " x_{eq} in funzione di T^2 " per estrarre l'accelerazione di gravità g.

3.2 Formule generali

La miglior stima del valore vero di una grandezza è data dalla $media\ aritmetica\ delle\ N$ misurazioni:

$$\overline{x} = \frac{1}{N} \sum_{i} x_i \,. \tag{3.10}$$

L'incertezza di misura è data dalla somma in quadratura dell'incertezza di tipo A, valutabile attraverso misure ripetute, e l'incertezza di tipo B, in cui rientrano tutte le altre informazioni a disposizione:

$$\sigma_T = \sqrt{\sigma_A^2 + \sigma_B^2}$$

$$= \sqrt{S_N(x)^2 + \sigma_B^2}$$
(3.11)

dove $S_N(x)$ è la deviazione standard campionaria:

$$S_N(x) = \sqrt{\frac{\sum_i (x_i - \overline{x})^2}{N - 1}}$$
 (3.12)

L'incertezza di una singola misura diretta è data dalla sola incertezza di tipo B. Se le diverse misure ripetute producono sempre lo stesso risultato allora $\sigma_A = 0$. Se la deviazione standard campionaria è maggiore dell'incertezza di tipo B posso trascurare quest'ultima per il calcolo dell'incertezza totale.

La deviazione standard della media di N misure indipendenti di una stessa grandezza diminuisce come $1/\sqrt{N}$, di conseguenza:

$$S_N(\overline{x}) = \frac{S_N(x)}{\sqrt{N}} \,. \tag{3.13}$$

3.3 Propagazione incertezze

ullet Propagazione incertezze T^2

$$\sigma_{T^2} = \sqrt{\left(\frac{\partial T^2}{\partial T}\sigma_T\right)^2} = 2T\sigma_T \tag{3.14}$$

• Propagazione incertezze $\Delta m = m_2 - m_1$

$$\sigma_{\Delta m} = \sqrt{\left(\frac{\partial \Delta m}{\partial m_2} \sigma_{m_2}\right)^2 + \left(\frac{\partial \Delta m}{\partial m_1} \sigma_{m_1}\right)^2} = \sqrt{\sigma_{m_2}^2 + \sigma_{m_1}^2}$$
(3.15)

• Propagazione incertezze $\Delta T = T_2^2 - T_1^2$

$$\sigma_{\Delta T} = \sqrt{\left(\frac{\partial \Delta T}{\partial T_2^2} \sigma_{T_2^2}\right)^2 + \left(\frac{\partial \Delta T}{\partial T_1^2} \sigma_{T_1^2}\right)^2} = \sqrt{\sigma_{T_2^2}^2 + \sigma_{T_1^2}^2}$$
(3.16)

• Propagazione incertezze $k = 4\pi^2 \frac{\Delta m}{\Delta T}$

$$\sigma_{k} = \sqrt{\left(\frac{\partial k}{\partial \Delta m} \sigma_{\Delta m}\right)^{2} + \left(\frac{\partial k}{\partial \Delta T} \sigma_{\Delta T}\right)^{2}}$$

$$= 4\pi^{2} \sqrt{\left(\frac{1}{\Delta T} \sigma_{\Delta m}\right)^{2} + \left(-\frac{\Delta m}{(\Delta T)^{2}} \sigma_{\Delta T}\right)^{2}}$$
(3.17)

3.4 Fit lineare

Per fit si intende il processo di adattamento di una curva ai dati sperimentali.

Come descritto precedentemente (Formula 3.9), c'è una relazione lineare tra x_{eq} e T^2 :

$$x_{eq} = \alpha T^2 + x_0; (3.18)$$

$$\alpha = \frac{g}{4\pi^2} \,. \tag{3.19}$$

Una volta ricavato α con il fit è quindi possibile stimare g:

$$g = 4\pi^2 \alpha \,; \tag{3.20}$$

$$\sigma_g = \sqrt{\left(\frac{\partial g}{\partial \alpha}\sigma_\alpha\right)^2} = 4\pi^2 \sigma_\alpha \,. \tag{3.21}$$

Per valutare in maniera quantitativa la compatibilità del valore di g così ottenuto con il valore atteso $(g_{Roma} = 9.805\,\mathrm{m\,s^{-2}})$ possiamo definire la variable standardizzata

$$z = \frac{|g - g_{Roma}|}{\sigma_g}, \tag{3.22}$$

dove $|g - g_{Roma}|$ è la discrepanza dal valore atteso. z quindi è la distanza della discrepanza da 0 in unità di sigma; maggiore è il valore di z maggiore è la distanza del valore sperimentale dal valore atteso. Nel nostro caso se $z \le 2$, ovvero se il valore sperimentale rientra entro 2σ (95.4%) dal valore di riferimento, possiamo ritenere la misura sperimentale compatibile.

3.4.1 Metodo dei minimi quadrati

Il metodo utilizzato per il fit lineare è il metodo dei minimi quadrati.

Data una relazione lineare tra due grandezze fisiche

$$\mu_Y = m \cdot \mu_X + c \,, \tag{3.23}$$

indichiamo con μ_X e μ_Y i valori veri delle grandezze e con x_i e y_i i valori osservati sperimentalmente. Formule che legano le migliori stime dei parametri m e c ai dati sperimentali:

$$\hat{m} = \mathbf{E}[m] = \frac{\mathbf{Cov}[x, y]}{\mathbf{Var}[x]} \tag{3.24}$$

$$\hat{c} = \mathbf{E}[c] = \overline{y} - \hat{m} \cdot \overline{x} \tag{3.25}$$

$$\operatorname{Var}[\hat{m}] = \frac{1}{\operatorname{Var}[x] \sum_{i} \sigma_{y_i}^{-2}}$$
(3.26)

$$Var[\hat{c}] = \overline{x^2} \cdot Var[\hat{m}] \tag{3.27}$$

$$Cov[\hat{m}, \hat{c}] = -\overline{x} \cdot Var[\hat{m}]$$
(3.28)

$$\rho[\hat{m}, \hat{c}] = \frac{\operatorname{Cov}[\hat{m}, \hat{c}]}{\sqrt{\operatorname{Var}[\hat{m}]\operatorname{Var}[\hat{c}]}}$$
(3.29)

$$\sigma_{y_i} = \sqrt{\sigma_{y_i}^2 + (m\sigma_{x_i})^2} \tag{3.30}$$

L'incertezza su μ_Y è ottenuta dalla propagazione delle incertezze, tenendo conto del termine di correlazione:

$$\sigma_{\mu_Y} = \sqrt{\left(\frac{\partial \mu_Y}{\partial m}\sigma_m\right)^2 + \left(\frac{\partial \mu_Y}{\partial c}\sigma_c\right)^2 + 2\frac{\partial \mu_Y}{\partial m}\frac{\partial \mu_Y}{\partial c}\rho[m,c]\sigma_m\sigma_c}$$

$$= \sqrt{\mu_X^2\sigma_m^2 + \sigma_c^2 + 2\mu_X \text{Cov}[m,c]}$$
(3.31)

4 Operazioni sperimentali

4.1 Misure dirette

Le misure sono state effettuate in quattro configurazioni diverse: 4 dischi, 6 dischi, 8 dischi e 10 dischi.

4.1.1 Massa m

n°	$m_4 [g]$	m_6 [g]	m_8 [g]	$m_{10} [g]$
1	317.7	475.5	630.4	788.1
2	317.6	475.5	630.4	787.9
3	317.7	475.4	630.4	788.2
4	317.8	475.6	630.4	788.3
5	317.7	475.5	630.3	788.2
6	317.7	475.2	630.4	788.3
7	317.6	475.4	630.4	788.1
8	317.8	475.5	630.3	788.2
9	317.8	475.3	630.3	788.3
10	317.7	475.4	630.1	788.3
S_N	0.0738	0.1160	0.0966	0.1287

Tabella 4.1: Misure di massa m dei dischi nelle 4 configurazioni.

4.1.2 Posizione di equilibrio x_{eq}

n°	$x_{eq,4}$ [cm]	$x_{eq,6}$ [cm]	$x_{eq,8}$ [cm]	$x_{eq,10} \text{ [cm]}$
1	13.0	16.3	19.6	23.0
2	12.9	16.2	19.6	23.0
3	12.9	16.3	19.5	23.1
4	12.9	16.3	19.6	23.0
5	13.0	16.2	19.6	23.0
6	12.9	16.3	19.6	23.0
7	12.9	16.3	19.6	23.1
8	12.9	16.3	19.6	23.0
9	12.9	16.3	19.6	23.0
10	12.9	16.2	19.6	23.0
S_N	0.0422	0.0483	0.0316	0.0422

Tabella 4.2: Misure di posizione di equilibrio \boldsymbol{x}_{eq} nelle 4 configurazioni.

4.1.3 Periodo T_{5osc}

n°	$T_{5osc,4}$ [s]	$T_{5osc,6}$ [s]	$T_{5osc,8}$ [s]	$T_{5osc,10}$ [s]
1	2.81	3.51	3.90	4.40
2	2.91	3.44	3.89	4.40
3	2.76	3.39	3.95	4.34
4	2.81	3.38	3.83	4.32
5	2.76	3.44	3.91	4.27
6	2.91	3.40	3.81	4.34
7	2.82	3.51	3.84	4.32
8	2.75	3.41	3.90	4.37
9	2.81	3.32	3.84	4.25
10	2.82	3.34	3.88	4.35
S_N	0.0562	0.0633	0.0435	0.0493

Tabella 4.3: Misure del tempo complessivo di 5 oscillazioni T_{5osc} nelle 4 configurazioni.

4.1.4 Valori finali

	m [g]	x_{eq} [cm]	T[s]	T^2 [s ²]
4 dischi	317.710 ± 0.023	12.920 ± 0.013	0.5632 ± 0.0036	0.317 ± 0.004
6 dischi	475.430 ± 0.037	16.270 ± 0.015	0.683 ± 0.004	0.4664 ± 0.0055
8 dischi	630.340 ± 0.031	19.59 ± 0.01	0.7750 ± 0.0028	0.6007 ± 0.0043
10 dischi	788.190 ± 0.041	23.020 ± 0.013	0.8672 ± 0.0031	0.7521 ± 0.0054

Tabella 4.4: Misure di massa m, posizione di equilibrio x_{eq} , periodo di una singola oscillazione T e periodo al quadrato T^2 nelle 4 configurazioni con le corrispondenti incertezze.

4.1.5 Istrogrammi periodo singola oscillazione

Figura 4.1: Periodo singola oscillazione 4 dischi.

Figura 4.2: Periodo singola oscillazione 6 dischi.

Figura 4.3: Periodo singola oscillazione 8 dischi. Figura 4.4: Periodo singola oscillazione 10 dischi.

4.2 Misura di k

	valore	σ	unità
\overline{k}	42.72	0.66	${ m Nm^{-1}}$

Tabella 4.5: Risultato finale per la costante elastica della molla k con la corrispondente incertezza.

4.3 Misura di g

Stimando in maniera preliminare il coefficiente angolare con le $\sigma_{x_i}=0$ si ottiene $\alpha=23.372185935$. Usando questo α per calcolare le σ_{y_i} (Formula 3.30) e ripetendo il fit lineare si ottengono i seguenti valori:

	valore	unità
\overline{x}	0.5105315019	s^2
$\frac{\overline{y}}{x^2}$	17.414106141	cm
$\overline{x^2}$	0.2867690409	s^4
\overline{xy}	9.5005831583	$\rm s^2cm$
$\operatorname{Var}[x]$	0.0261266264	s^4
Cov[x, y]	0.6101333948	$\rm s^2cm$
$\sum_i \sigma_{y_i}^{-2}$	332.36736075	${\rm cm}^{-2}$

Figura 4.6: Quantità utilizzate come input nel fit lineare. $y=x_{eq},\ x=T^2,\ \sigma_{y_i}=$ incertezze finali associate alle y_i tenendo conto anche delle incertezze sulle x_i .

Figura 4.7: Residui.

Figura 4.8: Residui standardizzati.

	valore	σ	unità
α	23.35	0.34	${\rm cms^{-2}}$
x_0	5.49	0.18	cm

Tabella 4.6: Risultato del fit lineare $x_{eq} = \alpha T^2 + x_0$. Migliori stime dei parametri α e x_0 con le relative incertezze.

PPII-Molla 10

	valore	σ	unità
g	9.22	0.13	${ m ms^{-2}}$

Tabella 4.7: Risultato finale per l'accelerazione di gravità g con la corrispondente incertezza.

4.3.1 Considerazioni sul valore sperimentale di g

$$z = \frac{|g - g_{Roma}|}{\sigma_g} = 4.37$$

È evidente un elevata discrepanza dal valore aspettato. Questo è dovuto probabilmente a diversi fattori: il tempo di reazione durante le misure dei periodi, la non perfetta oscillazione verticale della molla e la non perfetta lettura delle x_{eq} dovuta ad un probabile errore di parallasse (nonostante l'utilizzo della squadra).