TD 0 : Topologie de \mathbb{R}

Exercice 1 Soit f une fonction de \mathbb{R} dans \mathbb{R} . On considère les trois propriétés suivantes.

- (i) $\exists \ell \in \mathbb{R}, \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists M \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ x \ge M \implies |f(x) \ell| < \varepsilon$
- (ii) $\exists \ell \in \mathbb{R}, \ \exists M \in \mathbb{R}, \ \forall \varepsilon \in \mathbb{R}_+^*, \ \forall x \in \mathbb{R}, \ x \geq M \implies |f(x) \ell| < \varepsilon$
- (iii) $\forall \varepsilon \in \mathbb{R}_+^*, \exists M \in \mathbb{R}, \forall x \in \mathbb{R}, x \geq M \implies \exists \ell \in \mathbb{R}, |f(x) \ell| < \varepsilon$

Décrire ces propriétés par une phrase en français la plus simple possible.

Exercice 2 Soient A et B deux parties non vides de \mathbb{R} . Démontrer les résultats suivants :

- 1. Si $A \subset B$, alors inf $A \ge \inf B$ et sup $A \le \sup B$.
- 2. $\sup(A \cup B) = \max(\sup A, \sup B)$.
- 3. Si A et B sont deux parties de \mathbb{R} telles que pour tout $(a,b) \in A \times B$, $a \leq b$, alors sup $A \leq \inf B$.
- 4. $\sup(A + B) = \sup A + \sup B$, en notant $A + B = \{a + b ; (a, b) \in A \times B\}$.

Exercice 3 Soient f et g deux applications d'un ensemble E non vide dans \mathbb{R} . On note

$$\sup_{E} f = \sup_{x \in E} f(x) = \sup\{f(x), x \in E\}.$$

- 1. Montrer que $\sup_{E} (f+g) \leq \sup_{E} f + \sup_{E} g$.
- 2. Si g est minorée, montrer que $\sup_{E} (f+g) \ge \sup_{E} f + \inf_{E} g$.
- 3. Montrer que si pour tout $x \in E$, $f(x) \leq g(x)$, alors $\sup_{E} f \leq \sup_{E} g$

Exercice 4 Soient E et F deux ensembles non vides et f une application de $A \times B$ dans \mathbb{R} . Montrer que

$$\sup_{(x,y)\in A\times B} f(x,y) = \sup_{x\in A} \left(\sup_{y\in B} f(x,y)\right) = \sup_{y\in B} \left(\sup_{x\in A} f(x,y)\right),$$
$$\sup_{x\in A} \left(\inf_{y\in B} f(x,y)\right) \le \inf_{y\in B} \left(\sup_{x\in A} f(x,y)\right)$$

et que l'inégalité peut être stricte.

Exercice 5 Soit F une application croissante de $\mathbb R$ dans $\mathbb R^+$ non constante. On note $m = \inf_{\mathbb R} F$, $M = \sup_{\mathbb R} F$ et on définit sur]m, M[l'application F^\leftarrow par :

$$F^{\leftarrow}(y) = \inf\{x \mid F(x) \ge y\}$$

- 1. Montrer que $\{x \mid F(x) \geq y\} =]F^{\leftarrow}(y), +\infty[$ ou $[F^{\leftarrow}(y), +\infty[$. On suppose maintenant que F est continue à droite.
- 2. Montrer que pour $x \in \mathbb{R}$ et $y \in]m, M[, F(x) \ge y \iff x \ge F^{\leftarrow}(y)$
- 3. Montrer que F^{\leftarrow} est croissante et continue à gauche.
- 4. A quelle condition sur F, F^{\leftarrow} est-elle continue?
- 5. Que représente F^{\leftarrow} si F est continue et strictement croissante?

Exercice 6 (Exemples)

- 1. Déterminer le sup et l'inf de $x^{1/x}$ pour x parcourant \mathbb{R}_+^* , \mathbb{Q}_+^* , et \mathbb{N}^* .
- 2. Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$. Montrer que $\sup_{\mathbb Q} f = \sup_{\mathbb R} f$.
- 3. Soit f une fonction dérivable de \mathbb{R} dans \mathbb{R} . Montrer que

$$\sup_{\mathbb{R}} f' = \sup_{x \neq y} \frac{f(y) - f(x)}{y - x}.$$

Exercice 7 (Théorème des valeurs intermédiaires)

Soit f une fonction de \mathbb{R} dans \mathbb{R} . Soient a et b deux réels vérifiants a < b. On suppose que f est continue sur [a, b] et que f(a) < f(b). Pour $y \in]f(a), f(b)[$ on pose,

$$g(y) = \inf\{x \in [a, b] : f(x) \ge y\}$$

Montrer que $g(y) \in]a, b[$ et que f(g(y)) = y.

Exercice 8 (Un théorème de point fixe)

Soit $f: [0,1] \to [0,1]$ une fonction croissante (pas forcément continue). On considère $\Omega = \{x \in [0,1] \mid f(x) \ge x\}$.

- 1. Montrer que Ω est non vide et qu'il admet une borne supérieure $\omega \in [0,1]$.
- 2. Montrer que $f(\omega) \geq \omega$.
- 3. Montrer que $f(\omega) \leq \omega$.
- 4. en conclure que f admet un point fixe (i.e. il existe $x \in [0,1]$ tel que f(x) = x).

Exercice 9

1. Soit f une fonction de \mathbb{R} dans \mathbb{R} majorée sur un intervalle ouvert non vide I. En utilisant la borne supérieure M de l'ensemble f(I), montrer que pour tout $\varepsilon > 0$, il existe $a \in I$ et $\eta > 0$ tels que

$$|h| < \eta \implies f(a+h) - f(a) < \varepsilon.$$

Que peut-on dire si f est minorée sur un intervalle ouvert non vide?

2. Soit f une fonction de $\mathbb R$ dans $\mathbb R$ ayant la propriété d'additivité

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$$

Montrer que s'il existe un intervalle ouvert sur lequel f est bornée alors f est continue sur \mathbb{R} . De quelle forme est alors f?

3. Si on ne suppose rien sur f, l'affirmation de la première question 1 est-elle vraie?

Remarque : Avec l'axiome du choix on peut construire des fonctions additives discontinues.

Exercice 10 (Développement décimal)

- 1. Calculer le développement décimal de 13/7.
- 2. Calculer $0,454545\cdots+0,565656\cdots$.

^{1.} Indice : (m)f to ((m)f)f and understanding the state of the st

Exercice 11 Soit $(A_n)_{n\in\mathbb{Z}}$ une suite d'intervalles de \mathbb{R} . On s'intéresse aux propriétés suivantes.

- (i) $\forall n \neq m, A_n \cap A_m = \emptyset.$
- (ii) $\bigcup_{n\in\mathbb{Z}} A_n = \mathbb{R}$
 - 1. Trouver une suite d'intervalles $(A_n)_{n\in\mathbb{Z}}$ vérifiant (i) et (ii) telle que pour tout $n\in\mathbb{Z}$ $A_n\neq\emptyset$.
 - 2. Est-il possible de trouver une suite $(A_n)_{n\in\mathbb{Z}}$ vérifiant (i) et (ii) telle que, pour tout $n\in\mathbb{Z}$, A_n est un intervalle ouvert $]a_n,b_n[$ non vide.
 - 3. Est-il possible de trouver une suite $(A_n)_{n\in\mathbb{Z}}$ vérifiant (i) et (ii) telle que, pour tout $n\in\mathbb{Z}$, A_n est un intervalle fermé $[a_n,a_n+1]$ non vide et de longueur 1. Quid pour des intervalles $[a_n,b_n]$?

Exercice 12 (Sous groupes de \mathbb{R}) Soit G un sous-groupe de \mathbb{R} non réduit à $\{0\}$. On note $P = G \cap \mathbb{R}_+^*$ et $\omega = \inf P$.

- 1. Montrer que P est non vide. Qu'en déduit-on pour ω ?
- 2. On suppose que $\omega > 0$. Montrer que $G = \omega \mathbb{Z} = \{n\omega, n \in \mathbb{Z}\}.$
- 3. On suppose $\omega = 0$. Montrer que pour tout a < b, il existe $g \in G$ tel que a < g < b. (On dit que G est dense dans \mathbb{R}).
- 4. Retrouver ainsi le fait que \mathbb{Q} est dense dans \mathbb{R} .
- 5. Soit $\alpha \in \mathbb{Q}_+^*$. Déterminer $\mathbb{Z} + \alpha \mathbb{Z}$.
- 6. Soit $\alpha \in \mathbb{R}_+^* \setminus \mathbb{Q}_+^*$. Montrer les résultats suivants.
 - (a) $\mathbb{Z} + \alpha \mathbb{Z}$ est dense dans \mathbb{R} .
 - (b) Pour tout $\varepsilon > 0$, il existe $n \in \mathbb{N}$, $m \in \mathbb{Z}$ tels que $|n + m\alpha| < \varepsilon$. En déduire que $\mathbb{N} + \alpha \mathbb{Z}$ est dense dans \mathbb{R} .
 - (c) Pour tout $0 \le a < b \le 1$, il existe $n, n' \in \mathbb{N}$ tel que $a < \cos n < b$. et $a < \sin n' < b$.

Exercice 13 Soit $(x_n)_{n\geq 0}$ une suite de réels. Montrer l'équivalence entre

- 1. $(x_n)_{n\geq 0}$ n'a pas de valeur d'adhérence dans \mathbb{R} .
- 2. $(x_n)_{n\geq 0}$ n'a pas de sous-suite bornée.
- 3. $|x_n| \to +\infty$ quand $n \to +\infty$.

Exercice 14 Soient $(x_n)_{n\geq 0}$ une suite de réels à valeurs dans un segment [a,b] et f une application continue de [a,b] dans \mathbb{R} . On note A l'ensemble des valeurs d'adhérence de $(x_n)_{n\geq 0}$. Montrer que l'ensemble des valeurs d'adhérence de $(f(x_n))_{n\geq 0}$ est f(A).

Exercice 15 Soit $(x_n)_{n\geq 0}$ une suite de réels. Pour tout $n\in\mathbb{N}$, on note $y_n=x_{2n}$ et $z_n=x_{2n+1}$. On note respectivement A,B,C l'ensemble des valeurs d'adhérence de $(x_n)_{n\geq 0},(y_n)_{n\geq 0},(z_n)_{n\geq 0}$. Trouver une relation entre A,B et C. En déduire une expression de $\limsup x_n$ en fonction de $\limsup y_n$ et $\limsup z_n$.

Exercice 16 Donner un exemple de suite réelle :

- 1) sans valeur d'adhérence (dans \mathbb{R}).
- 2) dont l'ensemble des valeurs d'adhérence est F, où F est une partie finie non vide de \mathbb{R} fixée.
- 3) dont l'ensemble des valeurs d'adhérence est \mathbb{N} .
- 4) avec une seule valeur d'adhérence, mais divergente.
- 5) dont l'ensemble des valeurs d'adhérence est [0, 1].

Exercice 17 Soit $(r_n)_{n\geq 0}$ une suite de rationnels énumérant \mathbb{Q} (autrement dit, l'application $n\mapsto r_n$ est une bijection de \mathbb{N} dans \mathbb{Q}). Quelles sont les valeurs d'adhérence de $(r_n)_{n\geq 0}$?

Exercice 18 Montrer que si deux suites réelles bornées (u_n) et (v_n) sont telles que $(u_n - v_n)$ converge vers 0, elles ont les mêmes valeurs d'adhérence.

Exercice 19 Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels.

- 1) Montrer que $(x_n)_{n\in\mathbb{N}}$ est de Cauchy si et seulement si pour toute sous-suite $(y_n)_{n\in\mathbb{N}}$ de $(x_n)_{n\in\mathbb{N}}$, la suite $(y_n-x_n)_{n\in\mathbb{N}}$ tend vers 0.
 - 2) En déduire que si $(x_n)_{n\in\mathbb{N}}$ est de Cauchy, alors :
 - $(x_n)_{n\in\mathbb{N}}$ a au plus une valeur d'adhé rence.
 - si $(x_n)_{n\in\mathbb{N}}$ a une valeur d'adhé rence, elle converge.

Exercice 20 Soit (u_n) une suite réelle et $A \subset \mathbb{R}$ l'ensemble de ses valeurs d'adhérence. Déterminer lesquelles des assertions suivantes sont toujours vraies.

- 1) $u_n \in A$ à partir d'un certain rang.
- 2) Si A est non vide, alors $(u_n)_{n\in\mathbb{N}}$ est bornée.
- 3) Tout segment ne rencontrant pas A ne contient qu'un nombre fini des u_n .
- 4) Pour tout $\varepsilon > 0$ fixé, il n'existe qu'un nombre fini de n tels que $u_n \ge \sup A + \varepsilon$.
- 5) Si A est borné, alors (u_n) est bornée.
- 6) Si $A = \emptyset$ et $u_n \ge 0$ pour tout n, alors (u_n) tend vers $+\infty$.
- 7) Si (v_n) est une suite extraite de (u_n) , alors $\liminf v_n = \liminf u_n$.
- 8) Si (v_n) est une suite extraite de (u_n) , alors toute valeur d'adhérence de (v_n) est dans A.
- 9) Si (v_n) est une suite extraite de (u_n) et si A est un singleton $\{\ell\}$, alors ℓ est une valeur d'adhérence de (v_n) .
 - 10) Une suite bornée ayant une seule valeur d'adhérence converge.

Exercice 21 Soit (u_n) une suite réelle. Pour quelles valeurs de $\lambda \in \mathbb{R}$ l'ensemble $N_{\lambda} = \{n \in \mathbb{N}, u_n \geq \lambda\}$ est-il fini?

Exercice 22 Soient (u_n) une suite réelle et $(\lambda_k)_{k\in\mathbb{N}}$ une suite réelle convergeant vers $\lambda\in\mathbb{R}$. Montrer que, si pour tout k, λ_k est valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$, alors il en est de même de λ .

Exercice 23 * Soit (v_n) une suite réelle que $v_{n+1} - v_n$ tend vers 0 quand n tend vers l'infini. Démontrer que l'ensemble des valeurs d'adhérence de la suite (v_n) est un intervalle.

Exercice 24 Soit $(u_n)_{n\geq 0}$ une suite de réels strictement positifs telle que $u_{n+m}\leq u_nu_m$ pour tous m et n dans \mathbb{N} .

- 1) Soit $m \ge 1$ fixé. Montrer que $\limsup u_n^{1/n} \le u_m^{1/m}$. Indication : utiliser la division euclidienne de n par m.
 - 2) Montrer que la suite $(u_n^{1/n})$ converge vers $\inf_{m\geq 1} u_m^{1/m}$.
- 3) Application : Si A est une matrice carrée à coefficients réels, et $\|\cdot\|$ une norme matricielle, montrez que $\|A^n\|^{1/n}$ converge vers $\inf_{m\geq 1}\|A^m\|^{1/m}$.

Exercice 25 * Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue et (u_n) une suite vérifiant $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. On suppose que la suite u possède une unique valeur d'adhérence ℓ . Le but de l'exercice est de montrer que (u_n) converge vers ℓ .

- 1) Montrez que $f(\ell) = \ell$.
- 2) Montrer qu'il existe $\delta \in [0,1]$ tel que $f([\ell-\delta,\ell+\delta[)]) \subset [\ell-1,\ell+1[$.
- 3) Montrer qu'il existe un rang N_1 à partir duquel $u_n \notin [\ell 1, \ell \delta] \cup [\ell + \delta, \ell + 1]$.
- 4) Montrer qu'il existe $N_2 \geq N_1$ tel que $u_{N_2} \in]\ell \delta, \ell + \delta[$.
- 5) Montrer que pour tout $n \geq N_2$, $u_n \in]\ell \delta, \ell + \delta[$, et conclure.