

Fig. 1





E





Sample clock signal over period of clock recovery window or greater Create interpolated data points using Sinc interpolation Estimate clock transition points using linear Interpolation termme clock period and alignment using a minimize deviation fit algorithm within the clack recovery window Determine litter relative to recovered clock within -505 the litter analysis Window Calulate jitter figure of merit 2 506 Plot eye diagram for comparison with jitter limit eye template No Increment clock recovery window