BIRKBECK, UNIVERSITY OF LONDON

Computer Systems Coursework 1

BARAN BULUTTEKIN

I have read and understood the sections of plagiarism in the College Policy on assessment offences and confirm that the work is my own, with the work of others clearly acknowledged.

I give my permission to submit my report to the plagiarism testing database that the College is using and test it using plagiarism detection software, search engines or meta-searching software.

Answers

```
1. (a) 1 LOAD r3, M
       2 LOAD r0, #1
                           // f(n-2)
                            // f(n-1)
       3 LOAD r1, #1
       4 LOAD r2, #1
                            //f(n)
       5 SUB r3, r3, #1
       6 ADD r4, r1, r0
       7 MUL r4, r4, r2
       8 LOAD r0, r1
       9 LOAD r1, r2
       10 LOAD r2, r4
       11 BNE 5, r3, #3
                           // jump to instruction 5 if r3 not equal to 3
       12 STOR M, r2
```

where # indicates immediate addressing and BNE stands for "branch if not equal"

(b) F stage is first stage for all the instructions, where they loaded onto CPU. D is the stage where fetched instructions decoded. We assume data transfer between main memory and CPU happens E (execution) stage and using immediate addressing skips R and E stages. For immediate addressing data is written back to register in W stage. All arithmetic instructions will go through R, E stages and written back to register in W stage. If any instruction that can not move forward to further stages after the D stage for any reason, will be hold in IW (instruction window) until the restriction of the instruction is lifted. For example E stage is busy while next stage is execution or register instruction depends on is not ready for read.

(c) Below is the pipeline for execution of program where $\mathbf{k}=5$

	F	D	IW	R	Е	W	Comments
1	I1						
$\parallel 2 \mid$	I2	I1					
3	I3	I2			I1		I1 skips R
$\parallel 4 \parallel$	I4	I3	I2			I1	
5	I5	I4	I3			I2	I2, I3 skip R,E
6	I6	I5	I4			I3	I4 skips R,E
7	I7	I6		I5		I4	
8	I8	I7		I6	I5		
9	I9	I8	I7		I6	I5	r3 = 4
10	I10	I9	I7, I8			I6	r4 not ready
11	I11	I10	I8, I9	I7			Read busy
12	I12	I11	I9, I10	I8	I7		Read busy for I9
13		I12	I11, I10	I9		I7	I8, I9, I10 skips E and W busy
14			I11, I12	I10		I8	R busy
15			I12	I11		I9	
16			I12	\mathbf{X}	I11	I10	Condition holds
$\parallel 17 \mid$			I12	\mathbf{X}		I11	PC updated, I12 discarded
18	I5			\mathbf{X}			
19	I6	I5		\mathbf{X}			
20	I7	I6		I5			
21	I8	I7		I6	I5		
22	I9	I8	I7		I6	I5	r3 = 3
23	I10	I9	I7, I8			I6	r4 not ready
24	I11	I10	I8, I9	I7			Read busy
25	I12	I11	I9, I10	I8	I7		Read busy for I9
26		I12	I10, I11	I9		I7	I8, I9, I10 skips E and w busy
27			I11, I12	I10		I8	R busy
28			I12	I11		I9	
29			I12	\mathbf{X}	I11	I10	Condition fails
30				I12	_		No need to update PC
31					I12		

Table 1: Table for pipeline execution for k = 5.

2.
$$15 \text{ ns} = 15 \times 10^{-9} \text{ seconds}$$

 $85 \text{ ns} = 85 \times 10^{-9} \text{ seconds}$
 $10 \text{ ms} = 1 \times 10^{-2} \text{ seconds}$

Probability of being in main memory is 0.7 and cache hit ratio is 0.4.

Therefore time to load is:
$$0.7\times (1\times 10^{-2}+85\times 10^{-9}+15\times 10^{-9})+0.3\times (0.4\times 15\times 10^{-9}+0.6\times (85\times 10^{-9}+15\times 10^{-9}))$$
$$7,0000898\times 10^{-2}$$
$$\approx 7ms$$