MOS Inverter Static Characteristics

(material developed by Prof. Cezhou Zhao with slides from other sources, thanks to Kenneth R. Laker, University of Pennsylvania)

outline

- Voltage Transfer Characteristics (VTC)
- nMOS inverters
 - Resistive load inverter
 - Saturated enhancement load inverter
- CMOS inverter
 - CMOS VTC
 - Comparison between CMOS and MOS inverters
- Combinational CMOS logic gates (static)
- Ratioed Logic

Ideal Inverter: Voltage Transfer Characteristics (VTC)

V _{in}	V _{out}
0	1
1	0

 $nMOSFET : V_{Tn}$ $pMOSFET : V_{Tp}$

inverter: V_{th}

ACTUAL INVERTER'S VOLTAGE TRANSFER

ACTUAL INVERTER'S VOLTAGE TRANSFER

V_{OH} -> max output voltage when output is "1"

 V_{ol} -> min output voltage when output is "0"

> If $V_{th} = 3V$, $V_{IL} = 2V$, and $V_{in} = 2.5V$, then V_{in} is not "0" V_{out} is not

 V_{II} -> max input voltage which can be interpreted as "0"

DD

 V_{IH} -> min input voltage which can be interpreted as "1"

V_{OH}: max output voltage when output is "1"

V_{OL}: min output voltage when output is "0"

V_{IL}: max input voltage which can be interpreted as "0"

V_{IH}: min input voltage which can be interpreted as "1"

$$NM_{L} = V_{IL} - V_{OL}$$

Noise

 $\hfill\Box$ The regions of acceptable high and low voltages are delimited by V_{IH} and V_{II} .

Fan-In and Fan-Out

- Complex digital operations are formed with a variety of gates interconnected to yield the desired logic function.
- Sometimes a number of inputs are connected to one gate input and output of a gate may be connected to a number of gates.
- Typical fan-in and fan-out numbers are 3.
 - Fan-out: the max. number of load gates connected to the output of the driving gate without altering its performance
 - gates with large fan-out are slower
 - **Fan-in**: the max. number of inputs to the gate without altering its performance
 - gates with large fan-in are bigger and slower

Fan-out *N*

Fan-in M

The Ideal Inverter

- The ideal gate should have
 - infinite gain in the transition region
 - a gate threshold located in the middle of the logic swing
 - high and low noise margins equal to half the swing
 - input and output impedances of infinity and zero, respectively.

Delay Definitions

Modeling Propagation Delay

Model circuit as first-order RC network

Matches the delay of an inverter gate.

Dynamic CMOS Inverter Models

It is possible to approximate the transient response to an RC model.

The response is dominated by the output capacitance of the gate, C_L .

Load capacitance, C_L, is due to diffusion, routing and downstream gates.

The propagation delay assuming an instantaneous input transition is $R_p C_L$.

This indicates a fast gate is built by keeping either or both of R_p and C_L small.

R_p is reduced by increasing the W/L ratio.

Bear in mind that, in reality, $R_{n/p}$ is a nonlinear function of the voltage across the transistor.

Propagation Delay: First-Order Analysis

Propagation delay is then computed using a first-order linear RC network model:

$$t_{pHL} = ln(2) R_n C_L = 0.69 R_n C_L$$

 $t_{pLH} = ln(2) R_p C_L = 0.69 R_p C_L$

The propagation delay is the average of the two:

$$t_p = \frac{t_{pHL} + t_{pLH}}{2} = 0.69C_L \left(\frac{R_n + R_p}{2} \right)$$

This indicates to make rise and fall times identical, it is necessary to make the "on" resistance of the NMOS and PMOS equal.

FIVE CRITICAL VOLTAGES: V_{OL} , V_{OH} , V_{IL} , V_{IH} , V_{th} determine:

- --> DC Output Voltage Behavior
- --> Noise Margins
- --> Width and Location of Transition Region

POWER DISSIPATION AND DIE AREA

Power Dissipation

$$P --> P_{DC}, P_{dynamic}$$

$$P_{DC} = V_{DD} I_{DC}$$

$$V_{in}$$

$$V_{out}$$

ASSUME: $V_{in} = "1" 50\%$ of Op Time, "0" 50% of Op Time

$$P_{DC} = \frac{V_{DD}}{2} [I_{DC}(V_{in} = "0") + I_{DC}(V_{in} = "1")]$$

DIE AREA --> MIN W x L and routing --> limited by design rules

I_D vs. V_{DS} or V_{GS} Characteristics

$$\mathbf{For} \ V_{DS} \leq V_{GS} - V_T \quad \& \quad V_{GS} \geq V_T,$$

$$I_D = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} \left(2 \left(V_{GS} - V_T \right) V_{DS} - V_{DS}^2 \right); \qquad (1)$$

$$\mathbf{for}\ V_{DS} \geq V_{GS} - V_T \quad \& \quad V_{GS} \geq V_T,$$

$$I_{D,sat} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2.$$
 (2)

- 1. The top graph is the <u>output</u> <u>characteristics</u>,
- 2. The lower one is the 'transfer characteristics'.

I_D vs. V_{DS} or V_{GS} Characteristics

$$I_{D} = \frac{\mu_{n} C_{Ox}}{2} \frac{W}{L} \left(2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right)$$
 (1) **for** $V_{DS} \ge V_{DS,sat}$

$$I_{D,sat} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L - \Delta L} (V_{GS} - V_T)^2$$
 (2)

Channel length modulation

How to obtain VTC (V_{in} & V_{out})

How to obtain VTC (V_{in} & V_{out})

RESISTIVE-LOAD INVERTER

If
$$V_{in} > V_{T0n}$$
 and $V_{out} < V_{in} - V_{T0n}$, it is then in linear region.

If
$$V_{in} > V_{T0n}$$
 and $V_{out} > V_{in} - V_{T0n}$, it is then saturation mode.

NMOS Inverter: Load Line

How to obtain VTC (V_{in} & V_{out})

Review:

I-V Plot (NMOS)

$$I_{Dn} \sim V_{DSn}$$

$$V_{DD} = 2.5 V, V_{T} = 0.4 V$$

Review:

I-V Plot (PMOS)

All polarities of all voltages and currents are reversed

 $V_{DD} = 2.5V, V_{T} = -0.4V$

Transforming PMOS I-V Lines

Have a common coordinate set V_{in}, V_{out}, and I_{Dn}

24

CMOS Inverter Load Lines

outline

- Voltage transfer characteristic (VTC)
- nMOS inverters
 - Resistive load inverter
 - Saturated enhancement load inverter
- CMOS inverter
 - CMOS VTC
 - Comparison of CMOS and MOS inverters
- Ratioed Logic
- Combinational CMOS logic gates (static)

RESISTIVE-LOAD INVERTER

If
$$V_{in} > V_{T0n}$$
 and $V_{out} < V_{in} - V_{T0n}$, it is then in linear region.

If
$$V_{in} > V_{T0n}$$
 and $V_{out} > V_{in} - V_{T0n}$, it is then saturation mode.

If $V_{in} > V_{T0n}$ and

 $V_{out} < V_{in} - V_{T0n}$, it is then in linear region.

$$V_{out} > V_{in} - V_{T0n}$$

 $V_{out} > V_{in} - V_{T0n}$, it is then saturation mode.

CALCULATION OF V_{IL}:

$$\frac{dV_{out}}{dV_{in}} = -1 \quad @ V_{in} = V_{IL}$$

Find
$$V_{out}(V_{in} = V_{IH})$$
:

$$\frac{V_{DD} - V_{out}}{R_{I}} = \frac{k_{n}}{2} \left[2(V_{IH} - V_{T0,n}) V_{out} - V_{out}^{2} \right]$$

where

$$V_{IH} = V_{T0,n} + 2 V_{out} - \frac{1}{k_n R_L}$$

$$\frac{V_{DD} - V_{out}}{R_{L}} = \frac{k_{n}}{2} \left[2(V_{T0,n} + 2V_{out} - \frac{1}{k_{n}R_{L}} - V_{T0,n})V_{out} - V_{out}^{2} \right]$$

$$\frac{V_{\rm DD}}{R_{\rm L}} = \frac{3}{2} k_{\rm n} V_{\rm out}^2$$
 $V_{\rm out}(V_{\rm in} = V_{\rm IH}) = \sqrt{\frac{2}{3} \frac{V_{\rm DD}}{k_{\rm n} R_{\rm L}}}$

$$V_{IH} = V_{T0,n} + 2\sqrt{\frac{2}{3}\frac{V_{DD}}{k_n R_L}} - \frac{1}{k_n R_L}$$

CALCULATION OF
$$V_{th}$$
:
$$V_{in} = V_{out} = V_{th} => V_{DS} = V_{GS} > V_{GS} - V_{T0,n} \longrightarrow B$$

$$V_{th} = V_{T0,n} - \frac{1}{k_n R_L} + \sqrt{\left(V_{T0,n} - \frac{1}{k_n R_L}\right)^2 + \frac{2 V_{DD}}{k_n R_L}} - V_{T0,n}^2$$

$$\longrightarrow V_{IL} = V_{T0,n} + \frac{1}{k_n R_L}$$

$$V_{IH} = V_{T0,n} + 2\sqrt{\frac{2}{3}} \frac{V_{DD}}{k_n R_L} - \frac{1}{k_n R_L}$$

$$V_{\text{OL}} = V_{\text{DD}} - V_{\text{T0,n}} + \frac{1}{k_{\text{n}}R_{\text{L}}} - \sqrt{\left(V_{\text{DD}} - V_{\text{T0,n}} + \frac{1}{k_{\text{n}}R_{\text{L}}}\right)^{2} - \frac{2}{k_{\text{n}}R_{\text{L}}}}V_{\text{DD}}$$

$$ightharpoonup V_{OH} = V_{DD}$$

$$k_n = C_{ox} \mu_n \left(\frac{W}{L}\right)_n$$

$$V_{DD} = 5V$$

$$V_{T0,n} = 1 V$$

$$V_{DD} = 5V$$

$$V_{T0,n} = 1 V$$

Disadvantages of NMOS Logic Gates

- Large values of R_L are required in order to
 - achieve a low value of V_{OL}
 - keep power consumption low

- → Large resistors are needed, but these take up a lot of space.
 - One solution is to replace the resistor with an NMOSFET that is always on.

$$t_{pLH} = 0.69 R_L C_L$$
 $t_{pHL} = 0.69 (R_L // R_{PND}) C_L$ 37

EXAMPLE 5.1 Cont. $\frac{W}{L}R_L = 2.05x10\Omega$

(W/L) - RATIO	$R_{_{L}}[k\Omega]$	P _{DC} (average) [μW]
1	205.0	58.5
2	102.5	117.1
3	68.4	175.4
4	51.3	233.9
5	41.0	292.7
6	34.2	350.8

EXAMPLE 5.2

Consider a resistive-load inverter with

 $V_{DD}=5~V,~k_{_{I}}{'}=20~\mu A/V^2,~V_{_{T0n}}=0.8~V,~R_{_{L}}=200~k\Omega,~W/L=2$ Calculate the critical voltages (V_{OL'}, V_{OH'}, V_{_{IL'}}, V_{_{IH}}) on the VTC and determine the noise margins.

$$V_{OH} = V_{DD} = 5 \text{ V}$$

$$k_n = k_n' (W/L) = 40 \mu A/V^2 \implies k_n R_L = 8 V^{-1}$$

$$V_{\text{OL}} = V_{\text{DD}} - V_{\text{T0,n}} + \frac{1}{k_{\text{n}}R_{\text{L}}} \pm \sqrt{\left(V_{\text{DD}} - V_{\text{T0,n}} + \frac{1}{k_{\text{n}}R_{\text{L}}}\right)^{2} - \frac{2}{k_{\text{n}}R_{\text{L}}}}V_{\text{DD}}$$

$$V_{OL} = 0.147 \text{ V}$$

$$V_{IL} = V_{T0,n} + \frac{1}{(k_n R_I)}$$
 $V_{IL} = 0.925 \text{ V}$

EXAMPLE 5.2 Cont.

Consider a resistive-load inverter with

 $V_{DD} = 5 \text{ V, k}_n{}' = 20 \ \mu\text{A}/\text{V}^2\text{, V}_{T0n} = 0.8 \text{ V, R}_L = 200 \ k\Omega\text{, W/L} = 2 \ \text{Calculate the critical voltages (V}_{OL'}, \text{V}_{OH'}, \text{V}_{IL'}, \text{V}_{IH}) \text{ on the VTC}}$ and determine the noise margins.

$$V_{IH} = V_{T0,n} + 2\sqrt{\frac{2}{3}} \frac{V_{DD}}{k_n R_L} - \frac{1}{k_n R_L}$$

$$V_{OH} = V_{DD} = 5 \text{ V}$$

$$V_{OL} = 0.147 \text{ V}$$

$$V_{TI} = 0.925 \text{ V}$$

$$NM_{H} = V_{OH} - V_{IH} = 5V - 1.97V = 3.03V$$

 $NM_{L} = V_{IL} - V_{OL} = 0.93V - 0.15V = 0.78V$

GOOD DESIGN =>
$$NM_{L} > V_{DD}/4 = 1.25 \text{ V}$$

outline

- Voltage transfer characteristic (VTC)
- nMOS inverters
 - Resistive load inverter
 - Saturated enhancement load inverter
- CMOS inverter
 - CMOS VTC
 - Comparison of CMOS and MOS inverters
- Ratioed Logic
- Combinational CMOS logic gates (static)

SATURATED ENHANCEMENT-LOAD INVERTER

LOAD:

$$V_{GS,L} = V_{DS,L} => V_{DS,L} > V_{GS,L} - V_{T,L} SAT cond. is ALWAYS SATISFIED$$

$$I_{L} = \frac{k_{n}^{'}}{2} \left(\frac{W}{L}\right)_{L} \left(V_{GS,L} - V_{T.L}\right)^{2} = \frac{k_{n}^{'}}{2} \left(\frac{W}{L}\right)_{L} \left(V_{DD} - V_{out} - V_{T.L}\right)^{2}$$

Load -> Sat, Driver -> Cutoff A V_{OH}

$$\frac{k'_n}{2} \left(\frac{W}{L} \right)_T \left(V_{DD} - V_{out} - V_{T.L} \right)^2 = 0$$

Load -> Sat, Driver -> Sat (B) V_{IL}

$$\frac{k_{n}^{'}}{2} \left(\frac{W}{L}\right)_{L} \left(V_{DD} - V_{out} - V_{T \cdot L}\right)^{2} = \frac{k_{n}^{'}}{2} \left(\frac{W}{L}\right)_{d} \left(V_{in} - V_{T0,n}\right)^{2}$$

Load -> Sat, Driver -> Lin \bigcirc $V_{IH'}$ V_{OL}

$$\frac{k_{n}^{'}}{2} \left(\frac{W}{L}\right)_{L} \left(V_{DD} - V_{out} - V_{T \perp L}\right)^{2} = \frac{k_{n}^{'}}{2} \left(\frac{W}{L}\right)_{d} \left(2[V_{in} - V_{T0,n}]V_{out} - V_{out}^{2}\right)$$

outline

- Voltage transfer characteristic (VTC)
- nMOS inverters
 - Resistive load inverter
 - Saturated enhancement load inverter
- CMOS inverter
 - CMOS VTC
 - Comparison of CMOS and MOS inverters
- Combinational CMOS logic gates (static)
- Ratioed Logic