

Continuous Assessment Test I - Oct/Nov 2022

Programme	: Integrated M. Tech (BA)	Semester	Fall 22-23
Course	: Engineering Physics	Code	PHY1701
Faculty	: Dr. N. Manikandan & Dr. M.G. Shalini	Slot	: A1 + TA1
		Class Numbers	: CH2022231700950 CH2022231700886
Time	: 1½ Hours	Max. Marks	: 50

Answer any FIVE Questions (5 x 10 = 50)

Useful constants

 $m_e = 9.1 \times 10^{-31} \text{ kg}; m_p = 1.67 \times 10^{-27} \text{ kg}; h = 6.626 \times 10^{-34} \text{ Js}$

- Derive the Compton shift in terms of scattering angle when an X-ray photon collides with a 10 graphite target.
- (i) Arrive at the Time Independent Schrodinger equation.

10

- (ii) Calculate the de Broglie wavelength of a 50 keV electron.
- 3. (i) Calculate the uncertainty in the velocity of a proton confined in a 20 nm box.

10

- (ii) What is a wave function? Write down four properties of wavefunction.
- (i) Briefly discuss the concept of ultraviolet catastrophe with a neat diagram.

10

10

- (ii) Write down the energy Eigen values for an electron confined in a 1D box in states n=3 and n=4. What will be the energy difference for that electron between these 2 states?
- (i) Consider a particle with energy 0.6 eV moving along the positive x-direction. It is obstructed 10 in its path by a 0.2 nm wide barrier with energy 4 eV. If the particle is considered to be an electron, what will be the probability of it to be found on the other side of the barrier?
 - (ii) State and explain Heisenberg's uncertainty principle of space and time.
- 6. (i) Consider an object moving at a constant velocity on a flat surface from east to west. As it moves along, it sees a wall of finite height in its path over which it cannot jump. What will happen to the object as it hits the wall (a) if it is a classical object in macroscopic world and (b) if it is quantum object in microscopic world?
 - (ii) A nonrelativistic particle is moving three times as fast as an electron. The ratio of their de Broglie wavelength's, particle to electron is 1.813 x 10⁻⁴. Identify the particle.