Modo de Uso do Teste do Mips Single Cycle

Grupo 4: Raphael Costa Frederico Curti Elisa Malzoni Bruna Kimura

Como utilizar o projeto

Para ser possível ver o projeto em seu correto funcionamento foram feitas algumas alterações para mostrar no display de 7 segmentos os valores em alguns sinais no circuito.

A figura 1 mostra como se configura as chaves (switches) e botões (keys) utilizados.

figura 1 - SW e KEYS utilizadas da FPGA

figura 2 - mux que seleciona a próxima instrução a ser executada

O mux definido acima (figura 2) tem como entradas o PROXPC, que é a próxima instrução a ser executada, vinda normalmente do fluxo de dados e o valor dos switches 15~10, tendo seu seletor o switch 17 e sua saída ligada na entrada do registrador que armazena o PC. Assim, caso o switch 17 esteja em alta, o valor de entrada do PC será o endereço que o usuário colocar nos switches, caso contrário, será a próxima instrução a ser executada pelo PC+4 ou BEQ/JMP.

Os endereços criados pelo switch $15 \sim 10$ são escritos em binário. Dessa forma, os switchs em baixa representam '0' e os em alta '1'.

A KEY(3) reseta o registrador do PC, fazendo com que seu valor seja 0. Já a KEY(1) é responsável por passar para a próxima instrução do banco de instruções.

figura 3 - registrador que armazena os valores de entrada

Desta forma, a próxima instrução só será executada se, e somente se, o botão de enable seja pressionado para que o registrador assuma o valor da nova entrada.

Tabela Switches vs Display

A tabela 1 abaixo mostra a relação entre os números gerados pelos switchs de 3 à 0, com os valores mostrados pelos displays de 7 segmentos.

Por exemplo, caso queira checar o valor da saída ULA, basta fazer o número três em binário com os switchs de 3 à 0 (0011), ou seja, SW0 e SW1 em alta e SW2 e SW3 em baixa. Os valores mostrados pelos display são os 32 bits da saída da ULA escritas em hexadecimal.

valor do SW (15~10)	HEX 0	HEX 1	HEX 2	HEX 3	HEX 4	UX HEX 5	HEX 6	HEX 7
0	INST	INST	INST	INST	INST	INST	INST	INST
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
1	DADO LIDO	DADO LIDO	DADO LIDO	DADO LIDO				
	REG 1	REG 1	REG 1	REG 1				
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
2	DADO LIDO	DADO LIDO	DADO LIDO	DADO LIDO				
	REG 2	REG 2	REG 2	REG 2				
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
3	ULA OUT	ULA OUT	ULA OUT	ULA OUT				
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
4	-	-	-	-	MUX PC BEQ JMP	BEQ	HABILITA MEMÓRIA	ULActrl
5	MEM W	MEM W	MEM W	MEM W				
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
6	MEM R	MEM R	MEM R	MEM R				
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
7	ENDEREÇO	ENDEREÇO	ENDEREÇO	ENDEREÇO	ENDEREÇO	ENDEREÇO	ENDEREÇO	ENDEREÇO
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
8	PC OUT	PC OUT	PC OUT	PC OUT				
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)
9	PC+4	PC+4	PC+4	PC+4	PC+4	PC+4	PC+4	PC+4
	+Badd	+Badd	+Badd	+Badd	+Badd	+Badd	+Badd	+Badd
	(3~0)	(7~4)	(11~8)	(15~12)	(19~16)	(23~20)	(27~24)	(31~28)

