Математический анализ-1

Лектор: Подольский Владимир Евгеньевич

Конспект: Кирилл Яковлев, 108 группа, tg: @fourkenz

Содержание

1	Эле	ементы теории множеств	3
	1.1	Условности и обозначения	3
	1.2	Операции над множествами	4
	1.3	Декартово произведение множеств	4
	1.4	Отображения	4
	1.5	Операции над множествами (продолжение)	5
2	Дей	іствительные числа	6
	2.1	Натуральные числа. Аксиоматика Пеано	6
	2.2	Отношение порядка и принцип наименьшего элемента	6
	2.3	Арифметические операции	7
	2.4	Целые числа	8
	2.5	Рациональные числа	8
	2.6	Упорядоченные и архимедовы поля	9
	2.7	Действительные числа. Аксиома полноты	0
	2.8	Модели вещественных чисел	0
		2.8.1 Модель бесконечных десятичных дробей	0
		2.8.2 Сечения Q	1
		2.8.3 Геометрическая модель числовой прямой	1
	2.9	Принципы полноты	2
		2.9.1 Верхние и нижние грани множества	2
		2.9.2 Принцип полноты Вейерштрасса	.3
		2.9.3 Принцип вложеных отрезков (принцип полноты Кантора) 1	4

1 Элементы теории множеств

1.1 Условности и обозначения

Определение. Кванторами будем назать символы, заменяющие слова в выражениях.

Замечание. Пока что кванторы не подразумевают логические операции, мы будем использовать их только для более удобной и формальной записи.

- ∀ квантор всеобщности
- В квантор существования
- ! квантор единственности
- Запись $A \Rightarrow B$ обозначает, что из высказывания A, следует высказывание B.
- Запись $A \Leftrightarrow B$ обозначает, что высказывание A равносильно высказыванию B.
- Запись $a \in A$ означает, что a является элементом множества A, отрицанием такой записи будет $a \notin A$
- Если x объект, а P свойство, то запись $\{x:P(x)\}$ означает класс всех объектов обладающих свойством P.

Определение. Множество не содержащее ни одного элемента называется пустым и обозначается \varnothing .

Определение. Множество A' является подмножеством множества A, если $\forall a \in A'$ верно $a \in A$. Запись $A' \subset A$ обозначает, что A' является подмножеством A.

Определение. Для любого множества A выполнено:

- 1. $\varnothing \subset A$.
- $2. A \subset A.$

Определение. Если $A \subset B$ и $A \neq B$, то A называется собственным подмножеством множества B.

1.2 Операции над множествами

Определение. Множество $C = A \cup B$ называется объединением множеств A и B, если ($\forall a \in A : a \in C$) и ($\forall b \in B : b \in C$) и $\forall c \in C$ выполнено ($c \in A$ или $c \in B$).

Определение. Множество $C=A\cap B$ называется пересечением множеств A и B, если $\forall c\in C:(c\in A$ и $c\in B)$ и $(\forall c:c\in A$ и $c\in B)$ выполнено $c\in C$.

Определение. Множество $C=A\setminus B$ называется разностью множеств A и B, если $\forall c\in C:(c\in A$ и $c\notin B)$ и $(\forall a\in A:a\notin B)$ выполнено $a\in C$.

Утверждение. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Доказательство. $a \in (A \cup (B \cap C)) \Leftrightarrow a \in A$ или $a \in (B \cap C) \Leftrightarrow a \in A$ или $(a \in B \ u \ a \in C) \Leftrightarrow (a \in A \ u$ ли $a \in B)$ и $(a \in A \ u$ ли $a \in C)$.

Утверждение. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Доказательство. $a \in (A \cap (B \cup C)) \Leftrightarrow a \in A$ и $a \in (B \cap C) \Leftrightarrow a \in A$ и $(a \in B)$ или $a \in C) \Leftrightarrow (a \in A)$ и $a \in B$ или $a \in C$.

1.3 Декартово произведение множеств

Определение. Множество A называется одноэлементным, если $\exists a \in A$ такое, что $A \setminus \{a\} = \varnothing$.

Определение. Множество A называется двуэлементным, если $\exists a \in A$ такое, что $A \setminus \{a\}$ - одноэлементное.

Определение. Пусть $x \in X, y \in Y$. Упорядоченной парой называется двуэлементное множество $\{x, \{x, y\}\}$, упорядоченную пару обозначают (x, y).

Определение. Множество всех упорядоченных пар (x,y) называется декартовым произведением множеств X и Y, где $x \in X, y \in Y$. Декартово произведение обозначают $X \times Y$.

1.4 Отображения

Определение. Пусть X,Y - множества. Подмножество $f \subset X \times Y$ такое, что $\forall (x_1,y_1), (x_2,y_2) \in f: y_1 \neq y_2 \Rightarrow x_1 \neq x_2$ называется отображением из X в Y, и обозначается $f: X \to Y$.

Определение. Пусть $f: X \to Y$. Множество $\{x: \exists (x,y) \in f\} = D_f$ называется областью определения функции f.

Определение. Пусть $f: X \to Y$. Множество $\{y: \exists (x,y) \in f\} = R_f$ называется областью значений функции f.

Определение. Пусть $f: X \to Y$. f - инъекция $\Leftrightarrow \forall (x_1, y_1), (x_2, y_2) \in f: x_1 \neq x_2 \Rightarrow y_1 \neq y_2$.

Определение. Пусть $f: X \to Y$. f - сюръекция $\Leftrightarrow Y = R_f$

Замечание. Обычно используют определение f - сюръекция $\Leftrightarrow \forall y \in Y$ $\exists x \in X : y = f(x)$.

Определение. f - биекция $\Leftrightarrow f$ - инъекция и f - сюръекция.

Определение. Пусть $f: X \to Y, X_1 \subset X$. Множество $\{(x,y) \in f: x \in X_1\} = f|_{X_1}$ называется ограничением f на X_1 .

Замечание. Запись $(x,y) \in f$ часто заменяют на y = f(x).

Определение. Пусть $f: X \to Y, X_1 \subset X$. Множество $\{y \in Y : \exists x \in X_1 : y = f(x)\} = f(X_1)$ называют образом множества X_1 .

Определение. Пусть $f: X \to Y, Y_1 \subset Y$. Множество $\{x \in X : \exists y \in Y_1 : y = f(x)\} = f^{-1}(Y_1)$ называют полным прообразом множества Y_1 .

Определение. Пусть $f: X \to Y$. Если $\forall y \in R_f: f^{-1}(y)$ - одноэлементное множество, то подмножество $f^{-1} \subset Y \times X = \{(y,x)\}$ является отображением и называется обратным отображением к f. Если у отображения f существует обратное отображение f^{-1} , то оно называется обратимым.

Утверждение. f - обратимое $\Leftrightarrow f$ - биекция.

Замечание. Иногда $f:X\to Y$ записывают в виде y_x и называют индексацией y элементами x.

1.5 Операции над множествами (продолжение)

Утверждение. $\bigcup_{\alpha \in A} (A \setminus A_{\alpha}) = A \setminus (\bigcap_{\alpha \in A} A_{\alpha}).$

Доказательство. $a \in \bigcup_{\alpha \in A} (A \setminus A_{\alpha}) \Leftrightarrow (a \in A \text{ и } a \notin A_{\alpha_1}) \text{ или } \dots \text{ или } (a \in A \text{ и } a \notin A_{\alpha_n}) \Leftrightarrow a \in A \text{ и } (a \notin A_{\alpha_1} \text{ и } \dots \text{ и } a \notin A_{\alpha_n}) \Leftrightarrow A \setminus (\bigcap_{\alpha \in A} A_{\alpha}).$

Утверждение. $\bigcap_{\alpha \in A} (A \setminus A_{\alpha}) = A \setminus (\bigcup_{\alpha \in A} A_{\alpha}).$

Доказательство. $a \in \bigcap_{\alpha \in A} (A \setminus A_{\alpha}) \Leftrightarrow (a \in A \text{ и } a \notin A_{\alpha_1}) \text{ и ... и } (a \in A \text{ и } a \notin A_{\alpha_n}) \Leftrightarrow a \in A \text{ и } (a \notin A_{\alpha_1} \text{ или ... или } a \notin A_{\alpha_n}) \Leftrightarrow A \setminus (\bigcup_{\alpha \in A} A_{\alpha}).$

2 Действительные числа

2.1 Натуральные числа. Аксиоматика Пеано

Определение. (Аксиоматика Пеано)

- 1. В множестве $\mathbb{N} \ \forall n \in \mathbb{N}, \exists !$ элемент называемый следующим и обозначающийся как S(n).
- 2. $\forall n \in \mathbb{N} \exists$ не более одного элемента \mathbb{N} , для которого n следующий.
- 3. ∃! элемент № не являющийся следующим ни для какого элемента. Этот элемент обозначается 1 и называется единицей.
- 4. (Аксиома индукции) Пусть $M \subset \mathbb{N}$, такое, что $1 \in M$ и $\forall m \in M$: $S(m) \in M$. Тогда $M = \mathbb{N}$.

Множество удовлетворяющее этим аксиомам называется множеством натуральных чисел и обозначается N.

Определение. Рассмотрим множество X. Если для некоторого $n \in \mathbb{N} \exists$ биекция $\varphi: X \to \{1, \dots n\}$, то X называется n-элементным, или говорят, что количество элементов в X равно n. Тот факт что множество X - n-элементное обозначается как |X| = n или cardX = n.

Замечание. По определению считаем, что $card(\varnothing) = 0$.

Определение. Все множества, количество элементов которых равно какому-то натуральному числу или нулю, называются конечными. Все остальные множетсва называются бесконечными.

2.2 Отношение порядка и принцип наименьшего элемента

Определение. $R \subset X \times Y$ называется отношением между элементами X и Y. Обозначают xRy, если $(x,y) \in R$.

Определение. Отношение R называется отношением порядка, если выполнено:

- 1. $\forall x, y : xRy$ или yRx.
- 2. Если верно xRy и yRx, то x=y.

3. Если xRy и yRz, то xRz.

Такое отношение обозначают ≤.

Теорема. \exists ! отношение порядка на \mathbb{N} , такое, что $\forall n \in \mathbb{N} : n \leq S(n)$. (Можно использовать на экзамене без доказательства)

Теорема. (Принцип наименьшего элемента)

 $M \subset \mathbb{N}, M \neq \emptyset$ имеет наименьшей элемент, т.е. $\exists n_{min} \in M, \forall n \in M : n_{min} \leq n$.

Доказательство. База: Если $1 \in M$, то $n_{min} = 1$. Пусть $1 \notin M$, тогда $1 \in \mathbb{N} \setminus M$. Шаг: Пусть $\{1, 2, \ldots, n\} \subset \mathbb{N} \setminus M$. Тогда $S(n) \in \mathbb{N} \setminus M \Rightarrow$ по аксиоме индукции $\mathbb{N} \setminus M = \mathbb{N} \Rightarrow M = \emptyset$ - противоречие.

2.3 Арифметические операции

Определение. Рассмотрим $A, B, card(A) = n, card(B) = k, n, k \in \mathbb{N}$. Пусть $A \cap B = \emptyset$. Тогда число $card(A \cup B)$ называется суммой n и k и обозначается $card(A \cup B) = n + k$.

Замечание. Естественно выполняется n + k = k + n (коммутативность) и (n + k) + m = n + (k + m) (ассоциативность).

Замечание. n+0=0+n=n, т.к. $cardA=card(A\cup\varnothing).$

Замечание.
$$A \leftrightarrow \{1, \dots, n\}, B \leftrightarrow \{1, \dots, k\}$$
. Возьмем $card(A \cup B) = \{1, \dots, n\} \cup \{\underbrace{S(n), S(S(n)), \dots, S(S(\dots(S(n)) \dots)}_{k}\},$ (где $\{1, \dots, k\} \leftrightarrow \{\underbrace{S(n), S(S(n)), \dots, S(S(\dots(S(n)) \dots)}_{k}\}) \Rightarrow S(n) = n+1$.

Определение. $n,k\in\mathbb{N}$. Тогда $\sum\limits_{i=1}^k n=nk$ называется произведением n на k.

Замечание.
$$nk = \underbrace{(n+n+\cdots+n)}_{k}$$
.

Замечание. Выполнены:

- nk = kn (коммутативность)
- n(km) = (nk)m (ассоциативность)
- k(n+m) = kn + km (дистрибутивность)
- ullet Если $k \leq n$, то $k+m \leq n+m$ и если $k \leq m$, то $kn \leq mn$

Определение. Если n+k=m, то n=m-k, k=m-n называются разностью m и n.

Замечание. m-0=m, m+0=m, m-m=0.

Определение. $nk=m, \frac{m}{n}=k, \frac{m}{k}=n.$

2.4 Целые числа

Определение. Введем набор символов $-\mathbb{N} = \{\dots, -2, -1\}$. Множество символов $-\mathbb{N} \cup \{0\} \cup \mathbb{N}$ называются целыми числами и обозначаются \mathbb{Z} .

Замечание. Принимаем выполнеными следующие свойства:

1.
$$k + (-n) = \begin{cases} k - n, \text{ если } k \ge n, \\ -(n - k), \text{ если } k < n. \end{cases}$$
 .
$$(-k) + (-n) = -(k + n)$$

2.
$$k \cdot 0 = (-k) \cdot 0 = 0$$
,
 $(-k) \cdot n = (-kn)$,
 $(-k)(-n) = kn$.

3.
$$(\pm k)((\pm n) + (\pm m)) = (\pm k)(\pm n) + (\pm k)(\pm m)$$
.

4.
$$\forall k : (-k) \leq 0,$$
 $(-k) \leq (-n), \text{ если } n \leq k.$

5.
$$\forall (\pm k), (\pm n), (\pm m) \in \mathbb{Z}$$
, если $(\pm k) \leq (\pm n)$, то $(\pm k) + (\pm m) \leq (\pm n) + (\pm m)$.

6.
$$\forall (\pm n), (\pm k) \in \mathbb{Z}, m \in \mathbb{N}, \text{ если } (\pm n) \leq (\pm k), \text{ то } (\pm n)m \leq (\pm k)m.$$

Далее пишем -k вместо (-k).

$$\forall k, n \in \mathbb{Z} \ \exists (k-n) = k + (-n).$$

2.5 Рациональные числа

Определение. Множество $\mathbb{Q} = (m,n) \in \mathbb{Z} \times \mathbb{N}$ называется множеством рациональных чисел, если введены следующие операции:

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + pn}{nq}$$
$$\frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

а также введено отношение порядка:

$$\frac{m}{n} \le \frac{p}{a}$$

Свойства операций $(a, b, c \in \mathbb{Q})$:

(1)
$$a + b = b + a$$

(2)
$$a + (b+c) = (a+b) + c$$

(3)
$$\exists ! \ 0 \in \mathbb{Q} : a + 0 = 0 + a = a$$

$$(4) \ \forall a \in \mathbb{Q} \ \exists! \ (-a) \in \mathbb{Q} : a + (-a) = 0$$

$$(5)$$
 $ab = ba$

$$(6) \ a(bc) = (ab)c$$

(7)
$$\exists ! \ 1 \in \mathbb{Q} \ \forall a : a \cdot 1 = 1 \cdot a = a$$

(8)
$$\forall a \neq 0 \ \exists ! \ a^{-1} : aa^{-1} = a^{-1}a = 1$$

$$(9) \ a(b+c) = ab + ac$$

$$(10)\ \forall a,b\in\mathbb{Q}\ a\leq b$$
 или $b\leq q$

$$(11)$$
 $a \le b$ и $b \le a \Rightarrow a = b$

$$(12)$$
 $a < b$ и $b < c \Rightarrow a < c$

(13)
$$\forall c \in \mathbb{Q} : a < b \Rightarrow a + c < b + c$$

$$(14) \ \forall c > 0 : a \le b \Rightarrow ac \le bc$$

2.6 Упорядоченные и архимедовы поля

Определение. Миножество X с операциями $(\cdot, +)$ и отношением порядка \leq называется упорядоченным полем.

Замечание. \mathbb{Q} - упорядоченное поле.

Определение. Упорядоченное поле X называется архимедовым, если (15) $\forall x \in X \ \exists n \in \mathbb{N} : a \leq n \cdot 1$.

Замечание. \mathbb{Q} - архимедово поле.

Замечание. $\frac{m}{n} = \frac{p}{q} \Leftrightarrow mq = pn$.

Замечание. $\forall m \in \mathbb{Z}$ число $\frac{m}{1} \in \mathbb{Q}$ можно отождествить с m.

2.7 Действительные числа. Аксиома полноты

Определение. Множество \mathbb{R} называется множеством действительных чисел, если $\mathbb{Q} \in \mathbb{R}$, \mathbb{R} удовлетворяет (1)-(15) и дополнительно выполняется (16).

Определение. (Аксиома полноты)

(16)
$$\forall A, B \subset \mathbb{R}$$
 таких, что $\forall a \in A, \forall b \in B : a \leq b \; \exists c \in \mathbb{R} : a \leq c \leq b$.

Пример. Аксиома полноты не выполняется в \mathbb{Q} .

$$A=\{a\leq 0$$
 или $a>0:a^2<2\},\ B=\{b>a:b^2>2\},$ но $ot \exists \frac{m}{n},\frac{m^2}{n^2}=2$

2.8 Модели вещественных чисел

2.8.1 Модель бесконечных десятичных дробей

Определение. Отображение $\{a_n\}: \mathbb{N} \to X$ называется последовательностью элементов X.

Определение. Выражение вида $\pm a_0, a_1, \ldots, a_n, \ldots$ называется бесконечной десятичной дробью, если $a_0 \in \mathbb{N}$ или $a_0 = 0 \ \forall i \in \mathbb{N}$ и $a_i \in \{0, 1, \ldots, 9\}$.

Определение. Введем отношение порядка \leq на множестве всех бесконечных дробей следующим образом:

- 1. Если $a_0 \le 0, b_0 > 0$, то $a \le b$.
- 2. Если $a_0, b_0 \ge 0$, то $a \le b$
 - если $a_0 < b_0$ или $a_0 = b_0$, $a_1 < b_1$ или $a_0 = b_0$, $a_1 = b_1$, $a_2 < b_2$, или ... или $a_0 = b_0$, $a_1 = b_1$, $a_2 = b_2$, ..., $a_{n-1} = b_{n-1}$, $a_n < b_n$.
 - если $a_0 = b_0$, $a_1 = b_1, \ldots, a_n \neq 9, b_n = a_{n+1}$. $a_{n+k} = 9$. $a_{n+k} = 9$, $k \in \mathbb{N}$, $b_{n+k} = 0$, $k \in \mathbb{N}$, т.е $a = \overline{a_0 a_1 \ldots a_n(0)}$, а $b = \overline{b_0 b_1 \ldots b_n(9)}$ (в числе a начиная с a_{n+1} все a_i равны 9, а в числе b начиная с b_{n+1} все b_i равны 0), то a = b.
- 3. Если $a_0, b_0 < 0$, то a < b, если -b < -a (случай 3 сведен к случаю 2)

Теорема. Множество бесконечных десятичных дробей с введенным отношением порядка (\leq) удовлетворяет аксиоме полноты.

Доказательство. (Еще не смог привести это в адекватный, читаемый вид. Пока что написано так, как BE написал на доске)

Пусть $A,B\subset \{$ множество бесконечных десятичных дробей $\}$ и $\forall a\in A, \forall b\in B: a\leq b.$

1. $a < 0, b \ge 0$, тогда c = 0.

2.
$$a > 0, b > 0$$

Пусть

 $\overline{b_0} = \min\{b_0 : b_0 b_1 b_2 \dots \in B\},\$

 $\overline{b_1} = \min\{b_1 : \overline{b_0}b_1b_2 \dots \in B\},\,$

 $\overline{b_2} = \min\{b_2 : \overline{b_0 b_1} b_2 \dots \in B\},\$

:

 $\Rightarrow \overline{b} = \overline{b_0 b_1 b_2} \dots \overline{b_n} \dots$

 $\forall a \in A, \forall b \in B : a \leq \bar{b} \leq b.$

Предположим, что $\exists a' \in A, a' > \overline{b_0} \Rightarrow \exists k \in \mathbb{N} : a' = a_0 a_1 \dots a_k \dots$, но тогда $a' > \overline{b_0}, \overline{b_1}, \overline{b_2}, \dots, \overline{b_k}, \dots \in B$ - противоречие.

 $3. \ a < 0, b < 0$ очевидно.

2.8.2 Сечения **ℚ**

Определение. (Дедекиндовы сечения)

Пусть $A,B\subset\mathbb{Q}:A\cap B\neq\varnothing,A\cup B=\mathbb{Q}, \forall a\in A, \forall b\in B:a\leq b$ и в B не существует минимального элемента, тогда (A,B) - пара сечений $\mathbb{Q}.$

Теорема. На множестве всех пар сечений $\{(A, B)\}$ можно ввести операции $(+), (\cdot)$ и отношение (\leq) , так что будут выполняться (1) - (16).

Доказательство. Без доказательства.

2.8.3 Геометрическая модель числовой прямой

Выбираем точку, называем ее 0

затем выбираем точку справа от него, называем ее 1

затем вводим сложение и получаем 2, 3, 4, и т.д. (натуральный ряд)

затем делаем также в другую сторону, получаем целые числа

Проведем через 0 под непрямым углом вспомогательную прямую на ней выберем точку, назовем ее 1' и аналогично первой прямой получаем на ней целые числа. Проведем прямую через n' и 1 тогда параллельная ей прямая проходящая через 1' проходит через $\frac{1}{n}$ (по теореме Фаллеса)

таким образом складывая m раз $\frac{1}{n}$, получим любое рациональное число $\frac{m}{n}$. Построим бесконечную десятичную дробь, например $0,37152\dots$ Разобьем отрезок:

Разооьем отрезок:

 $0,37152\dots$ находится между 0.2 и 0.4, теперь разобьем этот отрезок:

0, 37152... находится между 0.36 и 0.4, теперь разобьем этот отрезок и т.д. Получаем последовательность вложеных отрезков, у которых длина стремится к нулю, значит у них есть единственная общая точка - наше число.

Таким образом, прямая - множество бесконечных десятичных дробей, а значит на ней выполняеются (1)-(16).

2.9 Принципы полноты

2.9.1 Верхние и нижние грани множества

Определение.

• Элемент $a \in \mathbb{R}$ называется максимальным элементом множества A $(\max A \subset \mathbb{R}), A \neq \emptyset$, если $\forall a' \in A : a \geq a'$ и $a \in A$.

• Элемент $a \in \mathbb{R}$ называется минимальным элементом множества A $(\min A \subset \mathbb{R}), A \neq \emptyset$, если $\forall a' \in A : a \leq a'$ и $a \in A$.

Определение.

- Элемент $m \in \mathbb{R}$ называется верхней гранью $A \subset \mathbb{R}, A \neq \emptyset$, если $\forall a \in A : a < m$.
- Элемент $m \in \mathbb{R}$ называется нижней гранью $A \subset \mathbb{R}, A \neq \emptyset$, если $\forall a \in A : a \geq m$.

Определение.

- Множество $A \subset \mathbb{R}, A \neq \emptyset$ называется ограниченым сверху, если у A существует верхняя грань.
- Множество $A \subset \mathbb{R}, A \neq \emptyset$ называется ограниченым снизу, если у A существует нижняя грань.
- Множество $A \subset \mathbb{R}$ называется ограниченым, если A ограничено и сверху и снизу.

Определение.

- Пусть множество $A \subset \mathbb{R}$ ограничено сверху, B множество верхних граней A. Элемент $c = \min B$ называется точной верхней гранью A и обозначается $\sup A$.
- Пусть множество $A \subset \mathbb{R}$ ограничено снизу, B множество нижних граней A. Элемент $c = \max B$ называется точной нижней гранью A и обозначается inf A.

2.9.2 Принцип полноты Вейерштрасса

Теорема. (Принцип полноты Вейерштрасса)

Для каждого ограниченого сверху или снизу множества A существует $\sup A$ или $\inf A$ соответственно.

Доказательство. Докажем для верхней грани (аналогично для нижней) A - ограничено сверху, B - множество верхних граней. Значит $\forall a \in A$ и $\forall b \in B: a \leq b \Rightarrow$ по аксиоме полноты $\exists c \in \mathbb{R}: a \leq c \leq b \Rightarrow c = \sup A$.

Определение. $\forall a,b \in \mathbb{R}: a < b$ рассмотрим следующие множетсва:

• $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$ - отрезок

- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ интервал
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ полуинтервал
- $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ полуинтервал

Такие множества называют промежутками.

Определение. $\forall a \in \mathbb{R}$ функция

$$|a| = \begin{cases} a, & a \ge 0, \\ -a, & a < 0. \end{cases}$$

называется модулем.

Определение. Для любого промежутка с концами $\forall a,b \in \mathbb{R}$ длиной называется число |b-a|.

Определение. Рассмотрим последовательность $\{[a_n,b_n]\}_{n=1}^{\infty}$. Говорят, что $|b_n-a_n|\to 0$ при $n\to\infty$, если $\forall \varepsilon>0$ $\exists N\in\mathbb{N}: \forall n>N$ выполнено $|b_n-a_n|<\varepsilon$.

2.9.3 Принцип вложеных отрезков (принцип полноты Кантора)

Теорема. (Принцип вложеных отрезков)

Пусть последовательность $\{[a_n,b_n]\}_{n=1}^{\infty}$ такова, что $\forall n:[a_{n+1},b_{n+1}]\subset [a_n,b_n].$ Тогда $\exists c\in\mathbb{R}:c\in[a_n,b_n], \forall n.$ Если $|b_n-a_n|\to 0$ то c - единственная.

Доказательство. $\forall n, m \in \mathbb{N} : a_n \leq a_m$

- если n < m, то $a_n \le a_m < b_m$.
- если m > n, то $a_n \le b_n \le b_m$.

Рассмотрим множества $A = \{a_n\}$ и $B = \{b_n\}$. По аксиоме полноты $\exists c \in \mathbb{R}$: $a_n \le c \le b_m, \forall n, m \Rightarrow a_n \le c \le b_n, \forall n$. Если $|b_n - a_n| \to 0$, то $\not\exists c_1, c_2 : c_1 \ne c_2$ - различные общие точки. Значит $|c_2 - c_1| > 0$ и $[c_1, c_2] \subset [a_n, b_n], \forall n$ и $|b_n - a_n| \ge |c_2 - c_1| \not\to 0$ противоречие.

Теорема. (Неравенство Бернулли)

Пусть $\{x_k\}_{k=1}^n, x_k \in \mathbb{R} \ \forall k : x_k > 0 \$ или $x_k \in (-1,0)$. Тогда

$$\prod_{k=1}^{n} (1+x_k) \ge 1 + \sum_{k=1}^{n} x_k$$

Доказательство. Индукция по n. База: $n=1:1+x_1\geq 1+x_1$. Пусть при n утверждение верно.

$$\prod_{k=1}^{n+1} (1+x_n) \ge (1+x_{n+1})(1+\sum_{k=1}^n x_k) = 1+\sum_{k=1}^{n+1} x_k + (\sum_{k=1}^n x_k) \cdot x_{n+1} > 1+\sum_{k=1}^{n+1} x_n$$

Определение. Число $\frac{n!}{k!(n-k)!}$ называется биномиальным коэффициентом и обозначается C_n^k .

Замечание. По определнию считается, что 0! = 1.

Теорема. (Бином Ньютона)

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Доказательство. Индукция по n. База: для n=1 верно. Пусть верно для n. Распишем выражение для n+1:

$$(a+b)^{n+1} = (a+b)\sum_{k=0}^{n} C_n^k a^k b^{n-k} = \sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_n^k a^k b^{n-k+1}$$

Сдвинем нумерацию в первой сумме:

$$\sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} = \sum_{m=1}^{n} C_n^{m-1} a^m b^{n-m+1}$$

Получаем, что

$$\sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_n^k a^k b^{n-k+1} = \sum_{m=1}^{n} C_n^{m-1} a^m b^{n-m+1} + \sum_{m=0}^{n} C_n^m a^m b^{n-m+1} =$$

$$= C_n^n a^{n+1} b^0 + \sum_{m=1}^{n} (C_n^{m-1} + C_n^m) a^n b^{n-m+1} + C_n^0 a^0 b^{n+1} = \sum_{m=0}^{n+1} C_{n+1}^m a^m b^{n-m+1}$$

Определение. Отношение \sim называется отношение эквивалентности, если оно удовлетворяет:

- 1. $x \sim x$ (Рефлексивность)
- 2. $x \sim y \Rightarrow y \sim x$ (Симметричность)

3. $x \sim y$ и $y \sim z \Rightarrow x \sim z$ (Транзитивность)

Определение. Множества называются равномощными, если между ними существует биекция.

Теорема. Равномощность множеств является отношением эквивалентности.

Доказательство. Пусть A, B, C - множества, $\varphi : A \to B, \psi : B \to C$ - биекции.

- 1. Рефлексивность очевидна, поскольку у любого множества существует биекция в себя.
- 2. Для любой биекции $\varphi:A\to B$ существует $\varphi^{-1}:B\to A.$
- 3. $\varphi: A \to B, \psi: B \to C$, to $\varphi \circ \psi: A \to C$.

Теорема. Конечные множества равномощны \Leftrightarrow они содержат одинаковое количество элементов.

Доказательство. (\Leftarrow) Пусть $\varphi:A\to\{1,\ldots,n\},\ \psi:B\to\{1,\ldots,n\}$ \Rightarrow $\exists\ \psi^{-1}:\{1,\ldots,n\}\to B.$ Тогда $\varphi\circ\psi^{-1}:A\to B$ - искомая биекция.

(\Rightarrow) Пусть $\varphi:A\to B$ - биекция. Если $A=\varnothing$, то $B=\varnothing$. Докажем индукцией по количеству элементов. Пусть $A=\{a\}$, тогда $\exists \ b\in B: \varphi(a)=b$. Пусть утверждение верно для случая когда A - n-элементное множество. Теперь если A - n+1-элементное, то $\exists \ \varphi:A\to \{1,2,...,n+1\}$ - биекция. Значит $\exists \ a\in A$, что $\varphi(a)=n+1$. Тогда $A\setminus \{a\}$ - n-элементное. Также $\exists \ b\in B: b=\varphi(a)\Rightarrow B\setminus \{b\}$ - n-элементное $\Rightarrow B$ - n+1-элементное.

Определение. Множества равномощные № называются счетными.

Теорема. A_i - счетные множества $\Rightarrow \bigcup_{n=1}^{\infty} A_i$ - счетно.

Доказательство. Предъявим проход по элементам, который задает биекцию:

$$a_{11}$$
 a_{12} a_{13} a_{14} \cdots a_{1n} a_{21} a_{22} a_{23} \cdots \cdots a_{2n} a_{31} a_{32} a_{33} \cdots \cdots a_{3n} \vdots

Определение. Множество называется не более чем счетным, если оно конечно или счетно.

Примеры.

- 1. Множество целых чисел \mathbb{Z}
- 2. Множество рациональных чисел Q
- 3. Множество многочленов с рациональными коэффициентами.
- 4. Множество алгебраических чисел (чисел которые являются корнями многочлена с рациональными коэффициентами).

Теорема. (Теорема Кантора)

Множество бесконечных последовательностей, состоящих из нулей и единиц несчетно.

Доказательство. Предположим, что оно счетно. Тогда все последовательности нулей и единиц можно перенумеровать. Составим бесконечную вниз таблицу, строками которой будут наши последовательности:

```
a_1 = \underline{a_{11}} \ a_{12} \ a_{13} \ a_{14} \ \dots
a_2 = a_{21} \ \underline{a_{22}} \ a_{23} \ a_{24} \ \dots
a_3 = a_{31} \ a_{32} \ \underline{a_{33}} \ a_{34} \ \dots
a_4 = a_{41} \ a_{42} \ a_{43} \ \underline{a_{44}} \ \dots
```

 a_{ij} - j-й член i-й последовательности. Рассмотри последовательность b у которой $b_i = 1 - a_{ii}$. Такая последовательность отличается от всех последовательностей на i-й позицции, значит она не была посчитана, получаем противоречие.

Утверждение. 1. Алгебраических чисел счетно.

2. Действительных чисел несчетно.

Определение. Действительные числа не являющееся алгебраическими называются трансцендентными.