R3.A.09

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel, Lesli Natasha A. Navarro, Joachim Alfonso A.

Musical Chords BACKGROU

2 or more notes

Played together

Follow "rules of harmony"

(Leino, Brattico, Tervaniemi, & Vurst, 2007)

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Musical Chords BACKGROL

Each has a name

Amaj C#

D7 F#

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Musical Chords BACKGROU

Each has a root note

C5

Amaj C#

D7 F#

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Musical Chords BACKGROU

Each has a type

C5

Amaj C#

D7 F#

Musical Chords BACKGROUND

Simple vs Extended

Chord types

Am

E

C

A

Simple More common chord type

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Musical Chords

BACKGROUND

Simple vs
Extended
Chord types

AmM7

Extension

C

A

Extended
Less common chord type

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Chord Identification DEFINITION

The determination of the name of the chord from the notes that constitute it

Definition of chord identification

Chord Identification PROBLEM

Majority of general music learning public can't do this by themselves due to lack of skill or training

Situation with chord identification

Neural networks

DEFINITION

Computational model of neurons in a brain

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Neural networks

DEFINITION

Many neurons = neural network

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Artificial Neural Networks (ANNs)

ANN learns by repetitive training

Colina, Perez, & Paraan, 2017

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

ANN training & testing

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Why neural networks? PROBLEM

Previous studies with neural network implementations have not included extended chords in their research

Osmalskyj, Embrechts, Piérard, & Van Droogenbroeck, 2012 Perera & Kodithuwakku, 2005 Zhou & Lerch, 2015

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Problem statement

PROBLEM

Using neural networks to identify both common and extended chords is unexplored

Osmalskyj, Embrechts, Piérard, & Van Droogenbroeck, 2012 Perera & Kodithuwakku, 2005 Zhou & Lerch, 2015

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

OBJECTIVE

Develop a neural network that quickly identifies simple and extended musical chords

OBJECTIVES

Input is a group of 3 or more MIDI note signals played in real-time

OBJECTIVES

Input chords have one root note and are not inverted

OBJECTIVES

Identification must be quick enough to be used in live performance (<40ms)

Greeff, 2016

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

OBJECTIVES

Implemented in programming languages with neural network, realtime MIDI, and GPU processing libraries

thestk, 2017; Bretschneider, 2017

OBJECTIVES

Neural network must be run on a GPU for efficient processing

Nickolls, Buck, Garland, & Skadron, 2008

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Level 0

PROCESS

1 Redesign

PROCESS

2 Database Reconstr. PROCESS

3 ANN Development

PROCESS

4 Training, Testing, DC PROCESS

RESULTS

Peak validation accuracy after 30K epochs

Peak training accuracy after 30K epochs

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

RESULTS

Peak training accuracy after 30K epochs

Plateaus on learning training dataset

Trend

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

RESULTS

Peak validation accuracy after 2800 epochs

Overfitting on training dataset

Reason

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

RESULTS

Mean total response time, 30 samples

Null hypothesis	Alternative hypothesis
r ≥ 40ms	r < 40ms

T-test for one mean

Sample size = 30; Significance = 5%

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

RESULTS

Mean total response time, 30 samples

Null hypothesis	Alternative hypothesis
$t \ge -1.699$	t < -1.699

T-test for one mean

Sample size = 30; Significance = 5%

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

RESULTS

Mean total response time, 30 samples

Null hypothesis	Alternative hypothesis
t ≥ -1.6 ₉₉	t < -1.699
$t_{4.9ms} = -3.17$	

T-test for one mean

Sample size = 30; Significance = 5%

RESULTS

Mean total response time, 30 samples

T-test for one mean

Sample size = 30; Significance = 5%

Real-Time Identification of
Common and Extended Musical Chords
using Artificial Neural Networks

Coronel Navarro

Conclusion

CLOSING

Our chords are too complex for NN...

...but NNs are fast enough

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

Recommendations

CLOSING

Other machine learning algorithms

Simplified set of chords

2

Use audio rather than MIDI as input

3

Real-Time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

References

- Baharloo, S., Service, S., Risch, N., Gitschier, J., & Freimer, N. (2000). Familial aggregation of absolute pitch. *American Journal of Human Genetics*, *67*, *755-758*. doi:10.1086/303057.
- Chord. (2004). In *The concise Oxford dictionary of music* (4th ed.) Oxford, UK: Oxford University Press.
- Colina, N. C. A., Perez, C. E., & Paraan, F. N. C. (2017). Simple techniques for improving deep neural network outcomes on commodity hardware. *AIP Conference Proceedings*, 1871, 040001. doi:10.1063/1.4996523.
- Daniel, G. (2013). *Principles of artificial neural networks* (3rd ed.) Chicago, IL: World Scientific.
- Fujishima, T. (1999). Realtime chord recognition of musical sound: A system using common Lisp music. Retrieved from http://www.music.mcgill.ca/~jason/mumt621/papers5/fujishima_1999.pdf
- Greeff, W. (2016). The influence of perception latency on the quality of musical performance during a simulated delay scenario. Retrieved from https://repository.up.ac.za/bitstream/handle/2263/58578/Greeff_Influence_2017.pdf?sequence=4.
- Humphrey, E., Bello, J. P., & Cho, T. (n.d.). Chord Recognition. Retrieved from http://steinhardt.nyu.edu/marl/research/chord_recognition.
- Kidd, P. (2017). pyrtmidi: Real-time MIDI I/O for Python [GitHub repository]. Retrieved August 23, 2017, from https://github.com/patrickkidd/pyrtmidi.

- Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel programming with CUDA. *ACM Queue*, *6*(2), 40-53.
- Osmalskyj, J., Embrechts, J-J., Piérard, S., & Van Droogenbroeck, M. (2012, May 9). Neural networks for musical chords recognition. Retrieved at http://jim.afim-asso.org/jim12/pdf/jim2012 08 p osmalskyj.pdf.
- Perera, N., & Kodithuwakku, S. R. (2005, December 15). Music chord recognition using artificial neural networks. *1st Proceedings of the International Conference on Information and Automation*, 304-308.
- Root. (2004). In *The concise Oxford dictionary of music* (4th ed.) Oxford, UK: Oxford University Press.
- Stark, A. M., & Plumbley, M. D. (2009). Real-time chord recognition for live performance [PDF file]. Retrieved at https://www.eecs.qmul.ac.uk/~markp/2009/StarkPlumbley09-icmc.pdf.
- Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. *Proceedings of the National Academy of Sciences*, 95, 3172-3177. Retrieved at http://www.pnas.org/content/95/6/3172.full.
- Zhou, X., & Lerch, A. (2015). Chord detection using deep learning. 16th
 International Society for Music Information Retrieval Conference, 52-58.
 Retrieved at http://ismir2015.uma.es/articles/96 Paper.pdf.

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro