Fourier Series

Definition

Exponential Form

Let x(t) be a complex-valued periodic signal with period T>0 and angular frequency $\omega_0=\frac{2\pi}{T}$. Then,

$$ilde{x}(t) = \sum_{k=-\infty}^{\infty} X_n e^{jn\omega_0 t}$$

where,

$$X_n = rac{1}{T} \int_{-rac{T}{2}}^{rac{T}{2}} x(t) e^{-jn\omega_0 t} dt, \qquad n \in \mathbb{Z}$$

and $\tilde{x}(t)$ is the **Fourier Series** of x(t).

Special Case for Real Periodic Signals

Let x(t) be a real-valued periodic signal with period T>0 and angular frequency $\omega_0=rac{2\pi}{T}.$ Then,

$$ilde{x}(t) = X_0 + 2\sum_{n=1}^{\infty} Re(X_n e^{jn\omega_0 t})$$

where,

$$X_n=rac{1}{T}\int_{-rac{T}{2}}^{rac{T}{2}}x(t)e^{-jn\omega_0t}dt, \qquad n\in\mathbb{Z}$$

and $\tilde{x}(t)$ is the **Fourier Series** of x(t).

Trigonometric Form

Let x(t) be a complex-valued periodic signal with period T>0 and angular frequency $\omega_0=\frac{2\pi}{T}$. Then,

$$ilde{x}(t) = rac{1}{2}a_0 + \sum_{n=1}^{\infty}(a_n cos(n\omega_0 t) + b_n sin(n\omega_0 t))$$

where,

$$a_0 = rac{1}{T} \int_{-T}^T x(t) dt$$

$$a_n = rac{1}{T} \int_{-T}^T x(t) cos(n \omega_0 t) dt$$

$$b_n = rac{1}{T} \int_{-T}^T x(t) sin(n\omega_0 t) dt$$

Fourier Transform

Definition

Let x(t) be a complex-valued signal and $\omega=2\pi f$. Then,

$$\mathcal{F}\{x(t)\} = X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt, \qquad for \ all - \infty < \omega < \infty$$
 $\mathcal{F}\{x(t)\} = X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt, \qquad for \ all - \infty < f < \infty$

and,

$$egin{aligned} x(t) &= rac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega, \qquad for \ all - \infty < t < \infty \ & x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df, \qquad for \ all - \infty < t < \infty \end{aligned}$$

where $\mathcal{F}\{x(t)\}=X(\omega)$ and $\mathcal{F}\{x(t)\}=X(f)$ are **Fourier Transforms** of x(t).

Properties

Linearity

•
$$\mathcal{F}\{c_1x_1(t) + c_2x_2(t)\} = c_1\mathcal{F}\{x_1(t)\} + c_2\mathcal{F}\{x_2(t)\}$$

Duality

- $\mathcal{F}{X(t)} = 2\pi x(-\omega)$
- $\mathcal{F}{X(t)} = x(-f)$

Complex Conjugate

- $\mathcal{F}\{x^*(t)\} = X^*(-\omega)$
- $\mathcal{F}\{x^*(t)\} = X^*(-f)$

Symmetry

- $X(-\omega) = X^*(\omega)$
- $X(-f) = X^*(f)$

Time Scaling

- $\mathcal{F}\{x(\alpha t)\} = \frac{1}{|a|}X(\frac{\omega}{\alpha})$
- $\mathcal{F}\{x(\alpha t)\} = \frac{1}{|a|}X(\frac{f}{\alpha})$

Time Shift

- $\mathcal{F}\{x(t-t_0)\}=e^{-j\omega t_0}X(\omega)$
- $\mathcal{F}\{x(t-t_0)\}=e^{-j2\pi f t_0}X(f)$

Frequency Shift

- $\mathcal{F}\{e^{j\omega t}x(t)\}=X(\omega-\omega_0)$
- $\mathcal{F}\{e^{j2\pi ft}x(t)\} = X(f-f_0)$
- ullet $\mathcal{F}\{cos(\omega_0t)x(t)\}=rac{X(\omega+\omega_0)+X(\omega-\omega_0)}{2}$

- $\begin{array}{l} \bullet \ \ \mathcal{F}\{cos(2\pi f_0t)x(t)\} = \frac{2}{2} \\ \bullet \ \ \mathcal{F}\{cos(2\pi f_0t)x(t)\} = \frac{X(f+f_0)+X(f-f_0)}{2} \\ \bullet \ \ \mathcal{F}\{sin(\omega_0t)x(t)\} = j\frac{X(\omega+\omega_0)-X(\omega-\omega_0)}{2} \\ \bullet \ \ \mathcal{F}\{sin(2\pi f_0t)x(t)\} = j\frac{X(f+f_0)-X(f-f_0)}{2} \end{array}$

Derivatives

- $\mathcal{F}\{x^{(n)}(t)\}=(j\omega)^nX(\omega)$
- $\mathcal{F}\{x^{(n)}(t)\} = (j2\pi ft)^n X(f)$

Integrals

- $\mathcal{F}\{\int_{-\infty}^{t} x(\tau)d\tau\} = \frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$ $\mathcal{F}\{\int_{-\infty}^{t} x(\tau)d\tau\} = \frac{X(f)}{j2\pi ft} + \frac{1}{2}X(0)\delta(f)$

Convolution

- $\mathcal{F}\{x(t) * y(t)\} = X(\omega)Y(\omega)$
- $\mathcal{F}\{x(t) * y(t)\} = X(f)Y(f)$

Multiplication

- $\mathcal{F}\{x(t)y(t)\} = \frac{1}{2\pi}(X(\omega) * Y(\omega)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\lambda)Y(\omega \lambda)d\lambda = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\lambda)X(\omega \lambda)d\lambda$ $\mathcal{F}\{x(t)y(t)\} = X(f) * Y(f) = \int_{-\infty}^{\infty} X(\lambda)Y(f \lambda)d\lambda = \int_{-\infty}^{\infty} Y(\lambda)X(f \lambda)d\lambda$

Parseval's Theorem

- $\int_{-\infty}^{\infty} x(t)y^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)Y^*(\omega)d\omega$ $\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df$

Fourier Transform Table

Signal $x(t)$ for $t\geq 0$	Fourier Transform $X(\omega)$	Fourier Transform $\boldsymbol{X}(f)$
$\delta(t)$	1	1
1	$2\pi\delta(\omega)$	$\delta(f)$
$\delta(t-t_0)$	$e^{-j\omega t_0}$	$e^{-j2\pi ft_0}$
$cos(\omega_0 t),\ cos(2\pi f_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$rac{1}{2}[\delta(f-f_0)+\delta(f+f_0)]$
$sin(\omega_0 t), \ sin(2\pi f_0 t)$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$rac{1}{2j}[\delta(f-f_0)-\delta(f+f_0)]$
u(t)	$\pi\delta(\omega)+rac{1}{j\omega}$	$rac{1}{2}\delta(f)+rac{1}{j2\pi f}$
$\prod(t)$	$\pi sinc(rac{\omega}{2\pi})^*$	$sinc(f)^*$
$\Lambda(t)$	$\pi^2 sinc^2(rac{\omega}{2\pi})^*$	$sinc^2(f)^*$
sgn(t)	$\frac{2}{j\omega}$	$\frac{1}{j\pi f}$

* $sinc(t) = rac{sin(\pi t)}{\pi t}$