

Whole-Genome Sequences of Staphylococcus aureus Isolates from Cystic Fibrosis Lung Infections

Eryn E. Bernardy, a,b Robert A. Petit III,c Abraham G. Moller,c Jennifer A. Blumenthal,d,e,f Alexander J. McAdam,g,h Gregory P. Priebe, d.e.f Aroon T. Chande, i.j.k Lavanya Rishishwar, i.j.k I. King Jordan, i.j.k Timothy D. Read, Joanna B. Goldberga, b

ABSTRACT Staphylococcus aureus is an early colonizer in the lungs of individuals with cystic fibrosis (CF), but surprisingly, only a limited number of genomes from CFassociated S. aureus isolates have been sequenced. Here, we present the wholegenome sequences of 65 S. aureus isolates obtained from 50 individuals with CF.

ystic fibrosis (CF) is a genetic disease that affects over 70,000 people worldwide. The major cause of death is chronic bacterial lung infections. Early colonization is often with Staphylococcus aureus, and Pseudomonas aeruginosa emerges later as the major cause of mortality. While many researchers focus on P. aeruginosa, the importance of S. aureus in the history of CF lung infections remains understudied (1). Only a small number of whole-genome sequences of CF-associated S. aureus clinical isolates have been reported (1-4). We have started to fill that gap by performing wholegenome sequence analysis of 65 CF-associated S. aureus isolates, obtained mostly from sputum samples, after cultivation on blood agar. This collection is composed of 50 isolates (from 36 individuals) from the Emory Cystic Fibrosis Biospecimen Registry (CFBR) and 15 isolates (from 14 individuals) from Boston Children's Hospital. Metadata associated with the isolates (e.g., methicillin resistance) and the deidentified patient information (e.g., age and sex) were recorded and made available.

DNA was extracted using the Promega Wizard genomic DNA purification kit, and paired-end libraries were constructed for each isolate using the Nextera XT DNA library kit, with a fragment size of 1,000 bp, and sequenced on an Illumina MiSeq platform using version 3 chemistry. One isolate (CFBR_EB_Sa105, BioSample number SAMN09847825), the first sample of six longitudinal samples from a single patient, also underwent long-read genomic DNA sequencing using the Oxford Nanopore MinION sequencer. DNA was extracted in the same manner as before, and sequencing libraries were prepared using the SQK-RAD003 1D rapid sequencing kit and sequenced on a FLO-MIN106 R9.4 flow cell. The raw Illumina reads for each isolate were processed with the Staphopia analysis pipeline (Docker tag 112017, default parameters) (5). Staphopia performed sequence quality control by removing Illumina adapters and low-quality bases and reads (Q \leq 20). The remaining high-quality reads for each isolate

Citation Bernardy EE, Petit RA, III, Moller AG, Blumenthal JA, McAdam AJ, Priebe GP, Chande AT, Rishishwar L, Jordan IK, Read TD, Goldberg JB. 2019. Whole-genome sequences of Staphylococcus aureus isolates from cystic fibrosis lung infections. Microbiol Resour Announc 8:e01564-18. https://doi.org/10.1128/ MRA.01564-18

Editor Catherine Putonti, Loyola University

Copyright © 2019 Bernardy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Timothy D. Read, tread@emory.edu, or Joanna B. Goldberg, joanna.goldberg@emory.edu.

E.E.B. and R.A.P. contributed equally to this

Received 28 November 2018 Accepted 12 December 2018 Published 17 January 2019

^aDepartment of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University, Atlanta, Georgia, USA

bemory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA

^cDepartment of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA

Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA

eDivision of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA

fDepartments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, Massachusetts, USA

⁹Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA

^hDepartment of Pathology, Harvard Medical School, Boston, Massachusetts, USA

ⁱSchool of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

JIHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, USA

^kPanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia

 TABLE 1
 Sequencing and assembly metrics for Staphylococcus aureus
 CF lung infection isolates in this study

		NCBI RefSeq or GenBank	Genome	Total length	No. of	N ₅₀ length	GC content
Sample name	SRA accession no.	assembly accession no.	coverage (×)	(bp)	contigs	(bp)	(%)
CFBR_EB_Sa105	SRX4563672, SRX4596105	NZ_CP031779	147; 250	2,782,740	1	2,782,740	32.78
BCH-SA-01	SRX4563649	RIWH00000000	168	2,788,868	43	266,842	32.77
BCH-SA-02	SRX4563648	RIWI0000000	173	2,791,081	31	443,670	32.77
BCH-SA-03	SRX4563647	RIWJ0000000	177	2,695,371	47	443,662	32.71
BCH-SA-04	SRX4563646	RIWK00000000	220	2,741,344	31	711,701	32.72
BCH-SA-05	SRX4563645	RIWL00000000	172	2,702,509	54	137,651	32.76
BCH-SA-06 BCH-SA-07	SRX4563644 SRX4563643	RIWM0000000 RIWN0000000	189 128	2,743,469 2,734,154	51 32	244,024 672,541	32.78 32.71
BCH-SA-08	SRX4563642	RIWO0000000	136	2,871,626	72	150,513	32.74
BCH-SA-09	SRX4563652	RIWP00000000	137	2,738,552	61	242,262	32.85
BCH-SA-10	SRX4563651	RIWQ0000000	287	2,737,369	35	585,329	32.68
BCH-SA-11	SRX4563667	RIWR0000000	153	2,843,748	80	150,770	32.78
BCH-SA-12	SRX4563666	RIWS00000000	179	2,656,854	37	716,196	32.76
BCH-SA-13	SRX4563665	RIWT00000000	113	2,816,350	47	806,706	32.65
BCH-SA-14	SRX4563664	RIWU0000000	111	2,733,025	36	578,911	32.71
BCH-SA-15	SRX4563671	RIWV0000000	268	2,776,591	32	605,345	32.65
CFBR_EB_Sa101	SRX4563670	RIWW0000000	263	2,822,328	67	153,724	32.74
CFBR_EB_Sa102	SRX4563669	RIWX00000000	327	2,819,773	66	136,645	32.72
CFBR_EB_Sa103 CFBR_EB_Sa104	SRX4563668 SRX4563673	RIWY00000000 RIWZ00000000	295 124	2,967,979 2,818,295	176 60	305,135 153,724	32.59 32.73
CFBR_EB_Sa104	SRX4563632	RIXA00000000	156	2,788,410	54	242,088	32.73
CFBR_EB_Sa110	SRX4563633	RIXB00000000	124	2,787,015	49	222,157	32.79
CFBR_EB_Sa112	SRX4563630	RIXC00000000	261	2,787,692	49	222,157	32.80
CFBR_EB_Sa114	SRX4563631	RIXD00000000	172	2,787,023	49	242,088	32.78
CFBR_EB_Sa116	SRX4563628	RIXE00000000	303	2,851,502	61	441,461	32.75
CFBR_EB_Sa117	SRX4563629	RIXF00000000	134	2,723,586	49	430,410	32.75
CFBR_EB_Sa118	SRX4563626	RIXG00000000	155	2,811,738	49	441,461	32.80
CFBR_EB_Sa119	SRX4563627	RIXH00000000	146	2,840,258	80	158,059	32.66
CFBR_EB_Sa121	SRX4563637	RIXI0000000	152	2,861,087	47	378,754	32.62
CFBR_EB_Sa122	SRX4563638	RIXJ00000000	130	2,866,137	148	142,136	32.72
CFBR_EB_Sa123	SRX4563641	RIXK00000000	133	2,748,775	50	222,157	32.76
CFBR_EB_Sa125	SRX4563640	RIXL00000000	264	2,902,592	68	209,697	32.70
CFBR_EB_Sa126 CFBR_EB_Sa127	SRX4563650 SRX4563661	RIXM00000000 RIXN00000000	111 126	2,793,970 2,936,734	44 68	603,205 345,554	32.63 32.65
CFBR_EB_Sa129	SRX4563677	RIXO0000000	166	2,881,105	38	403,760	32.64
CFBR_EB_Sa130	SRX4563634	RIXP00000000	148	2,879,733	41	605,839	32.63
CFBR_EB_Sa131	SRX4563639	RIXQ0000000	136	2,769,595	42	393,217	32.84
CFBR_EB_Sa133	SRX4563636	RIXR00000000	111	2,880,683	40	605,719	32.63
CFBR_EB_Sa135	SRX4563675	RIXS00000000	149	2,809,235	45	380,091	32.66
CFBR_EB_Sa138	SRX4563674	RIXT00000000	279	2,813,106	35	592,726	32.68
CFBRSa03	SRX4563678	RIXU00000000	326	2,714,903	43	206,745	32.75
CFBRSa04	SRX4563679	RIXV00000000	272	2,790,920	49	161,318	32.77
CFBRSa05	SRX4563680	RIXW0000000	147	2,791,679	37	574,969	32.63
CFBRSa06	SRX4563681	RIXX00000000	122	2,898,057	83	174,877	32.65
CFBRSa07	SRX4563682	RIXY00000000	320	2,817,443	62	351,360	32.85
CFBRSa21	SRX4563683	RIXZ00000000	170	2,784,304	37	434,050	32.70
CFBRSa22 CFBRSa23	SRX4563684 SRX4563685	RIYA00000000 RIYB00000000	111 138	2,927,132 2,748,954	117 42	221,278 443,595	32.82 32.77
CFBRSa23	SRX4563686	RIYC00000000	119	2,748,934	43	443,593	32.77
CFBRSa25	SRX4563687	RIYD00000000	167	2,828,883	46	441,089	32.79
CFBRSa26	SRX4563660	RIYE00000000	243	2,822,821	71	136,638	32.74
CFBRSa27	SRX4563659	RIYF00000000	113	2,751,330	62	122,702	32.77
CFBRSa28	SRX4563658	RIYG00000000	303	2,761,455	33	587,976	32.78
CFBRSa29	SRX4563657	RIYH00000000	258	2,926,156	52	379,601	32.66
CFBRSa30	SRX4563656	RIYI00000000	140	2,741,496	40	288,439	32.76
CFBRSa47	SRX4563655	RIYJ00000000	123	2,787,985	49	242,088	32.79
CFBRSa48	SRX4563654	RIYK00000000	138	2,702,434	39	304,792	32.76
CFBRSa49	SRX4563653	RIYL00000000	147	2,895,019	46	302,780	32.64
CFBRSa50	SRX4563663	RIYM00000000	313	2,753,672	37	500,538	32.81
CFBRSa51	SRX4563662	RIYN00000000	267	2,662,831	40	262,319	32.76
CFBRSa66A CFBRSa66B	SRX4563688 SRX4563689	RIYO00000000 RIYP00000000	395 114	2,783,493	37 35	443,669 443,669	32.80 32.80
CEDUOQUOD	プルマナンいつのグ	MITFUUUUUUU	114	2,782,586	35	443,669	
	SRX4563676	RIYOOOOOO	244	2 691 630	47	500 578	37 77
CFBRSa70 CFBRSa74	SRX4563676 SRX4563635	RIYQ0000000 RIYR00000000	244 298	2,691,630 2,823,147	42 43	500,528 321,988	32.72 32.81

Volume 8 Issue 3 e01564-18 mra.asm.org **2**

were then subsampled to $100 \times$ coverage by Staphopia and assembled using the *de novo* assembler SPAdes (version 3.11.1, default parameters) (6). Illumina reads and Nanopore reads for isolate CFBR_EB_Sa105 were assembled using the hybrid assembler Unicycler (version 0.4.0, default parameters) (7).

CFBR_EB_Sa105 was sequenced to a total 397× genome coverage (Nanopore, 250×; Illumina, 147×) and assembled into a single 2,782,740-bp-long contig. Genome coverage for the remaining 64 isolates with only Illumina sequencing ranged from 111× to 395×, with an average of 192× coverage, which is sufficient to produce a reliable draft assembly. The N_{50} values ranged from 122,702 bp to 806,706 bp, with an average N_{50} value of 370,074 bp. The assembled genome sizes ranged from 2,656,854 bp to 2,967,979 bp, with an average size of 2,799,404 bp. The GC contents for these assemblies ranged from 32.59% to 32.85%, with an average GC content of 32.74%. The genome size and GC content values are consistent with what is expected for *S. aureus*. All assemblies were annotated with the Prokaryotic Genome Annotation Pipeline available from the National Center for Biotechnology Information (NCBI) (8, 9).

Genome sequence analysis along with the metadata of these *S. aureus* isolates can be used to understand phenotypic adaptations of this pathogen that are required for survival within the multispecies community of the CF lung.

Data availability. The complete assembly for CFBR_EB_Sa105 and draft assemblies for the remaining samples, as well as the raw Illumina reads, have been deposited in NCBI and are available under BioProject accession number PRJNA480016. Information for each isolate, including accession numbers, is shown in Table 1.

ACKNOWLEDGMENTS

This work was supported in part by a Pediatric Research Alliance Pilot Project (grant 00068914 to J.B.G. and T.D.R.) from Cystic Fibrosis and Airways Disease (CF-AIR) and Children's Healthcare of Atlanta. A.G.M. was supported by the National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP). Bacterial isolates were obtained from the Cystic Fibrosis Biospecimen Registry, which is supported in part by the CF Discovery Core of the CF@LANTA RDP Center, and by the Center for CF and Airways Disease Research, components of the Emory+Children's CF Center of Excellence at Emory University and Children's Healthcare of Atlanta. We also thank the NIH IRACDA Fellowships in Research and Science Teaching program at Emory for additional financial support (project number 5K12GM000680-19). This work was also supported in part by the Richard A. and Susan F. Smith President's Innovation Award (to G.P.P.) and by funds from the Translational Research for Infection Prevention in Pediatric Anesthesia and Critical Care (TRIPPACC) Program of the Department of Anesthesiology, Critical Care and Pain Medicine at Boston Children's Hospital (to G.P.P.).

REFERENCES

- McAdam PR, Holmes A, Templeton KE, Fitzgerald JR. 2011. Adaptive evolution of Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. PLoS One 6:e24301. https://doi.org/10 .1371/journal.pone.0024301.
- Ankrum A, Hall BG. 2017. Population dynamics of Staphylococcus aureus in cystic fibrosis patients to determine transmission events by use of whole-genome sequencing. J Clin Microbiol 55:2143–2152. https://doi. org/10.1128/JCM.00164-17.
- Lima DF, Cohen RW, Rocha GA, Albano RM, Marques EA, Leao RS. 2017. Genomic information on multidrug-resistant livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolated from a Brazilian patient with cystic fibrosis. Mem Inst Oswaldo Cruz 112:79–80. https://doi.org/10.1590/0074-02760160342.
- 4. Tan X, Coureuil M, Ramond E, Euphrasie D, Dupuis M, Tros F, Meyer J, Nemanzny I, Chhuon C, Guerrera IC, Ferroni A, Sermet-Gaudelus I, Nassif X, Charbit A, Jamet A. 2018. Chronic Staphylococcus aureus lung infection correlates with proteogenomic and metabolic adaptations leading to an increased intracellular persistence. bioRxiv https://doi.org/10.1101/414409.
- 5. Petit RA, III, Read TD. 2018. Staphylococcus aureus viewed from the

- perspective of 40,000+ genomes. PeerJ 6:e5261. https://doi.org/10.7717/peeri.5261.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
- Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/qkw569.
- Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. 2018. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi .org/10.1093/nar/gkx1068.

Volume 8 Issue 3 e01564-18