《微积分A1》第六讲

教师 杨利军

清华大学数学科学系

2020年09月30日

函数极限的性质

以下各函数极限性质的证明, 与相应序列极限的性质之证明类似, 故从略.

性质一 (极限唯一性): 若极限 $\lim_{x\to a} f(x)$ 存在, 则极限值唯一.

性质二 (有界性): 若极限 $\lim_{x\to a} f(x)$ 存在, 则函数 f(x) 在点 a

附近有界, 即存在 $\delta > 0$, 以及 M > 0, 使得 $|f(x)| \le M$, $\forall x \in (a - \delta, a + \delta) \setminus \{a\}$.

性质三 (保序性): 设 $\lim_{x\to a} f(x) = A$ 且 $\lim_{x\to a} g(x) = B$.

- (i) 若 A < B, 则存在 δ > 0, 使得对 \forall x \in $(a \delta, a + \delta) \setminus \{a\}$, f(x) < g(x).
- (ii) 若存在 $\rho > 0$, 使得 $f(x) \le g(x)$, $\forall x \in (a \rho, a + \rho) \setminus \{a\}$, 则 $A \le B$.

性质四, 两边夹法则

性质四: 设 $f(x) \leq g(x) \leq h(x)$, $\forall x \in (a - \rho, a + \rho) \setminus \{a\}$, 若两个极限 $\lim_{x \to a} f(x)$ 和 $\lim_{x \to a} h(x)$ 均存在且相等. 它们共同的极限记作 L, 则极限 $\lim_{x \to a} g(x)$ 存在且等于 L.

函数极限的四则运算

Theorem

定理: 设 $\lim_{x\to a} f(x) = A$ 且 $\lim_{x\to a} g(x) = B$, 则和差极限

 $lim_{x \to a}[f(x) \pm g(x)]$, 乘积极限 $lim_{x \to a}[f(x)g(x)]$, 以及商极限

 $\lim_{x\to a} \frac{f(x)}{g(x)}$ (补充假设 B \neq 0) 均存在, 并且

- (i) $\lim_{x\to a}[f(x)\pm g(x)]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)=A\pm B$;
- (ii) $\lim_{x\to a} [f(x)g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x) \ (=AB);$
- (iii) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \ (= \frac{A}{B}).$

Example

例: 显然 $\lim_{x\to x_0} x = x_0$. 于是根据函数极限的四则运算可知,

 $\lim_{x \to x_0} x^n = x_0^n$. 进而对多项式 P(x) 有 $\lim_{x \to x_0} P(x) = P(x_0)$,

对于分式函数 $\frac{P(x)}{Q(x)}$, 假设 $Q(x_0) \neq 0$, 有 $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$.

 \underline{i} : 若 $\lim_{x \to x_0} f(x) = f(x_0)$, 我们称函数 f(x) 在点 x_0 处连续. (稍后正式定义). 上述结论表明, 多项式函数 P(x) 处处连续, 有理分式函数 $\frac{P(x)}{Q(x)}$ 在其定义域上处处连续.

复合函数的极限

Theorem

定理: 设 $\lim_{x\to x_0} g(x) = u_0$ 且 $\lim_{u\to u_0} f(u) = A$. 再设(*) g(x) $\neq u_0$, $\forall x \in (x_0-\rho,x_0+\rho)\setminus\{x_0\}$, 则 $\lim_{x\to x_0} f(g(x)) = A$.

注: 假设(*) 是为了复合函数fog有意义. 见课本第51页习题2.3第10题. 证: 由假设 $\lim_{u\to u_0} f(u) = A$ 可知, 对 $\forall \varepsilon > 0$, 存在 $\delta_1 > 0$, 使 $|f(u) - A| < \varepsilon, \forall u \in (u_0 - \delta_1, u_0 + \delta_1) \setminus \{u_0\}.$ 再由假设 $\lim_{x\to x_0} g(x) = u_0$ 可知, 对上述 $\delta_1 > 0$, 存在 $\delta > 0$, 使得 $|g(x) - u_0| < \delta_1, \ \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}.$ 再根据假设(*) $g(x) \neq u_0$, $\forall x \in (x_0 - \rho, x_0 + \rho) \setminus \{x_0\}$ $\not = |f(g(x)) - A| < \varepsilon$, $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$. 此即 $\lim_{x \to x_0} f(g(x)) = A$.

证明图示

Example

 \underline{M} : 证明 $\lim_{x\to x_0} \cos x = \cos x_0$.

证明: 由于 $\cos x = 1 - 2\sin^2 \frac{x}{2}$, 故

$$\underset{\mathsf{x} \to \mathsf{x}_0}{\text{lim}} \cos \mathsf{x} = \underset{\mathsf{x} \to \mathsf{x}_0}{\text{lim}} \left(1 - 2\mathsf{sin}^2 \frac{\mathsf{x}}{2}\right)$$

$$= 1 - 2 \underset{\mathsf{x} \to \mathsf{x}_0}{\text{lim}} \, \mathsf{sin}^2 \frac{\mathsf{x}}{2} = 1 - 2 \mathsf{sin}^2 \frac{\mathsf{x}_0}{2} = \mathsf{cos} \, \mathsf{x}_0.$$

命题得证.

 \underline{i} : 极限 $\lim_{x o x_0}\sin^2rac{x}{2}$ 可看作三重复合函数的极限 $\lim_{x o x_0}f(g(h(x)))$,同样

可应用复合函数极限定理, 其中 $h(x) = \frac{x}{2}$, $g(y) = \sin y$, $f(z) = z^2$.

一个重要的函数极限

<u>定理</u>: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

 \underline{iuy} : 由于函数 $\frac{\sin x}{x}$ 是偶函数, 故只需证 $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$. 如图作单位圆. 取弧度 $x \in (0,\frac{\pi}{2})$.

由图可知, \triangle AOC 面积 < 扇形 AOC 面积 < \triangle AOB 面积, 即 $\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x$. 亦即 $\sin x < x < \tan x$, $0 < x < \frac{\pi}{2}$.

证明续

由 $\sin x < x$ 得 $\frac{\sin x}{x} < 1$. 再由 $x < \tan x$ 得 $\frac{x}{\sin x} < \frac{1}{\cos x}$,即 $\cos x < \frac{\sin x}{x}$.总结得

$$\cos x < \frac{\sin x}{x} < 1, \quad 0 < x < \frac{\pi}{2}.$$

在上式中令 $x\to 0^+$,并利用挤夹法则得 $\lim_{x\to 0^+}\frac{\sin x}{x}=1$. 因 $\frac{\sin x}{x}$ 是偶函数,故 $\lim_{x\to 0^-}\frac{\sin x}{x}=1$. 于是 $\lim_{x\to 0}\frac{\sin x}{x}=1$. 证毕.

例子

Example

例: 求极限 $\lim_{x\to 0} \frac{\sin ax}{\sin bx}$, 其中 a,b 为非零常数.

解:

$$\frac{\sin ax}{\sin bx} = \frac{\sin ax}{ax} \cdot \frac{ax}{bx} \cdot \frac{1}{\frac{\sin bx}{bx}}$$

$$ightarrow 1 \cdot \frac{a}{b} \cdot \frac{1}{1} = \frac{a}{b}, \quad x \to 0.$$

解答完毕.

另一个重要的函数极限

$\mathsf{Theorem}$

定理:
$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$$
.

证明分三步. 第一步: 证明 $\lim_{x\to +\infty}\left(1+\frac{1}{|x|}\right)^{|x|}=e$, 这里 [x] 为取整函数. 已证 $(1+\frac{1}{n})^n \uparrow e$ 严格, 即对任意 $\varepsilon>0$, 存在正整数 N, 使得 $0<e-(1+\frac{1}{n})^n<\varepsilon$, $\forall n\geq N$. 故对任意 $x\geq N$, 则 $[x]\geq N$, 从而

$$0 < \mathrm{e} - \left(1 + rac{1}{[\mathrm{x}]}
ight)^{[\mathrm{x}]} \leq \mathrm{e} - \left(1 + rac{1}{\mathsf{N}}
ight)^{\mathsf{N}} < arepsilon.$$

这就证明了 $\lim_{x\to+\infty}\left(1+\frac{1}{[x]}\right)^{[x]}=e.$

证明续一

第二步:证明

$$\lim_{\mathsf{x}\to +\infty} \left(1+\frac{1}{[\mathsf{x}]}\right)^{[\mathsf{x}]+1} = \mathsf{e}, \quad \lim_{\mathsf{x}\to +\infty} \left(1+\frac{1}{[\mathsf{x}]+1}\right)^{[\mathsf{x}]} = \mathsf{e}.$$

这是因为

$$\left(1 + \frac{1}{[x]}\right)^{[x]+1} = \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right) \rightarrow e \cdot 1 = e;$$

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} = \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \left(1 + \frac{1}{[x]+1}\right)^{-1}$$

$$\rightarrow e \cdot 1^{-1} = e.$$

证明续二

第三步, 证明结论 $\lim_{x\to +\infty}\left(1+\frac{1}{x}\right)^x=e$.

对任意 x > 1, 显然有 $[x] \le x < [x] + 1$. 因此

$$\left(1+\frac{1}{[\mathtt{x}]+1}\right)^{[\mathtt{x}]}<\left(1+\frac{1}{\mathtt{x}}\right)^{\mathtt{x}}<\left(1+\frac{1}{[\mathtt{x}]}\right)^{[\mathtt{x}]+1}.$$

根据第二步的结论知,上式两端的极限均为 e. 故由函数极限的两边夹法则可知,中间项的极限也存在且等于 e. 即

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{x} = e.$$

证毕.

推论

Corollary

推论: (i)
$$\lim_{x\to-\infty}(1+\frac{1}{x})^x=e$$
; (ii) $\lim_{x\to0}(1+x)^{\frac{1}{x}}=e$.

$$\left(1+\frac{1}{x}\right)^{x} = \left(1+\frac{1}{-y}\right)^{-y} = \left(\frac{y-1}{y}\right)^{-y} = \left(\frac{y}{y-1}\right)^{y}$$

证(i). $\diamond v = -x$. 则当 $x \to -\infty$ 时, $v \to +\infty$. 于是

$$=\left(1+\frac{1}{\mathsf{y}-1}\right)^{\mathsf{y}}=\left(1+\frac{1}{\mathsf{y}-1}\right)^{\mathsf{y}-1}\left(1+\frac{1}{\mathsf{y}-1}\right)$$

$$\rightarrow e \cdot 1 = e, \quad y \rightarrow +\infty.$$

结论(i)得证.

证明续

证(ii). 要证
$$\lim_{x\to 0}(1+x)^{\frac{1}{x}}=e$$
,考虑两个单侧极限. 当 $x\to 0^+$ 时, $y=\frac{1}{x}\to +\infty$. 于是

$$(1+x)^{\frac{1}{x}} = \left(1+\frac{1}{y}\right)^y \to e, \quad y \to +\infty.$$

当 $x \to 0^-$ 时, $y = \frac{1}{x} \to -\infty$. 于是

$$(1+x)^{\frac{1}{x}} = \left(1+\frac{1}{y}\right)^y \to e, \quad y \to -\infty.$$

即两个单侧极限存在且均等于 e. 结论(ii) 得证.

更多重要的函数极限

Example

<u>例一</u>: 求极限 $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

解:

$$\frac{1-\cos x}{x^2} = \frac{2\sin^2\frac{x}{2}}{x^2} = \frac{1}{2}\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 \to \frac{1}{2}1^2 = \frac{1}{2}.$$

故 $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$. 解答完毕.

例二

Example

例二: 求极限 $\lim_{x\to +\infty} \frac{x}{a^x}$, 其中 a>1.

 $\underline{\underline{H}}$: 己证 $\lim_{n \to +\infty} \frac{n}{a^n} = 0$. 故 $\lim_{x \to +\infty} \frac{[x]}{a^{[x]}} = 0$. 由于

$$0<\frac{x}{a^x}<\frac{[x]+1}{a^{[x]}}\leq\frac{[x]}{a^{[x]}}+\frac{1}{a^{[x]}}\rightarrow0,\quad x\rightarrow+\infty.$$

故 $\lim_{x\to +\infty} \frac{x}{a^x} = 0$. 解答完毕.

例三

Example

<u>例三</u>: 求极限 $\lim_{x\to+\infty} \frac{\ln x}{x}$.

 $\underline{\underline{H}}$: 已证 $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$. 故 $\lim_{x \to +\infty} \frac{\ln[x]}{[x]} = 0$. 故对 x > 0

$$0 < \frac{\ln x}{x} \le \frac{\ln([x]+1)}{[x]} \le \frac{\ln([x]+1)}{[x]+1} \frac{[x]+1}{[x]} \to 0 \cdot 1 = 0.$$

根据函数极限的两边夹法则可知 $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$. 解答完毕.

函数极限与序列极限

Theorem

<u>定理</u>: 函数极限 $\lim_{x\to a} f(x)$ 存在 \iff 对任意序列 $x_n \to a$ $(x_n \neq a)$, 序列 $\{f(x_n)\}$ 均收敛, 且收敛于相同的极限值.

注: 定理也可表述如下: 函数极限 $\lim_{x\to a} f(x)$ 存在 \iff 对任意序列 $x_n\to a$ $(x_n\neq a)$, 序列 $\{f(x_n)\}$ 均收敛. 因为可以断言: 若对任意一个序列 $x_n\to a$ $(x_n\neq a)$, 序列 $\{f(x_n)\}$ 均收敛,则序列 $\{f(x_n)\}$ 均收敛于同一个极限值. 理由: 对于任意两个序列 $x_n\to a$, $x_n'\to a$, $(x_n\neq a,x_n'\neq a)$, 构造一个新序列 $\{x_n''\}=\{x_1,x_1',x_2,x_2',\cdots\}$. 显然 $x_n''\to a$. 如果三个序列 $\{f(x_n)\}$, $\{f(x_n')\}$ 和 $\{f(x_n'')\}$ 均收敛,那么序列 $\{f(x_n)\}$ 和 $\{f(x_n'')\}$ 必收敛于相同的极限值.

例一

Example

例一: 证明极限 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

证明: 取两个序列 $x_k = \frac{1}{2k\pi}$, $x_k' = \frac{1}{2k\pi + \frac{\pi}{2}}$. 它们都趋向于零. 但 $\sin x_k = 0 \rightarrow 0$, $\sin x_k' = 1 \rightarrow 1$. 如果极限 $\lim_{x \rightarrow 0} \sin \frac{1}{x}$ 存在, 那 么根据上述定理可知, 两个序列 $\{\sin x_k\}$ 和 $\{\sin x_k'\}$ 收敛于相 同的极限值, 这就异出了矛盾, 证毕.

例二

Example

例二:设 $\lim_{x\to x_0} u(x) = u_0$,证明(i) $\lim_{x\to x_0} e^{u(x)} = e^{u_0}$; (ii) $\lim_{x\to x_0} \ln u(x) = \ln u_0$, 其中 u(x) > 0 且 $u_0 > 0$. 特别我们有 $\lim_{x\to x_0} e^x = e^{x_0}$. 这表明指数函数 e^x 在任意点 x_0 处连续(稍后 定义). 证(i): 由上述定理可知对于任意 $x_n \to x_0$, 序列 $u_n \stackrel{\triangle}{=} u(x_n)$ 收敛 于同一个极限 u_n . 已证对于任意 $u_n \to u_n$. 则有 $e^{u_n} \to e^{u_0}$. 于 是 $e^{u(x_n)} = e^{u_n} \rightarrow e^{u_0}$. 再次利用根据上述定理可知 $e^{u(x)} \rightarrow e^{u_0}$. $x \to x_0$. 结论(i)得证. 结论(ii)的证明类似. 细节略去.

定理证明

 \Leftarrow : 设对任意序列 $x_n \to a$ $(x_n \neq a)$, 序列 $\{f(x_n)\}$ 均收敛, 且收敛于相同的极限值 A. 要证 $\lim_{x\to a} f(x)$ 存在, 且等于A. 反证. 若不然, 则存在 $\varepsilon_0 > 0$, 使得对任意正整数 n, 存在 $x_n \neq a$, $|x_n - a| < \frac{1}{n}$, $|f(x_n) - A| \ge \varepsilon_0$. 故存在序列 $x_n \to a$ $(x_n \neq a)$, 序列 $\{f(x_n)\}$ 不收敛于 A. 矛盾. 证毕.

例子

Example

例: 证明 (i)
$$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$$
; (ii) $\lim_{x\to 0}\frac{e^x-1}{x}=1$; (iii) $\lim_{x\to 0}\frac{a^x-1}{x}=\ln a$, 其中 $a>0$.

证 (i). (回忆例二的结论:设
$$\lim_{x\to x_0}u(x)=u_0$$
,其中 $u(x)>0$ 且 $u_0>0$,

則
$$\lim_{x \to x_0} \ln u(x) = \ln u_0$$
). 于是 $\frac{\ln(1+x)}{x} = \ln (1+x)^{\frac{1}{x}} \to \ln e = 1$,

$$\mathsf{x} o \mathsf{0}.$$

证 (ii). 令 y = e^x - 1, 则 y → 0, x → 0, 且 e^x = 1 + y, 即
$$x = \ln(1+y). \ \ \text{ } \ \ \text{ } \ \ \text{ } \ \ \text{ } \ \ \frac{y}{\ln(1+y)} = \frac{1}{\ln(1+y)} \to \frac{1}{1} = 1.$$

证 (iii).
$$\frac{a^x-1}{x} = \frac{e^{x \ln a}-1}{x \ln a} \cdot \ln a \rightarrow 1 \cdot \ln a = \ln a$$
.

函数极限的 Cauchy 准则

$\mathsf{Theorem}$

<u>定理</u>: 极限 $\lim_{x\to a} f(x)$ 存在 $\iff \forall \varepsilon > 0$, 存在 $\delta > 0$, 使得

$$|f(x) - f(x')| < \varepsilon$$
, $\forall x, x' \in (a - \delta, a + \delta) \setminus \{a\}$.

 $\underline{\iota\iota}$: \Rightarrow : 设 $\lim_{x\to x_0} f(x) = A$, 则依定义知对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得 $|f(x) - A| < \varepsilon$, $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$. 于是对任意 $x, x' \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$,

$$|f(x) - f(x')| = |f(x) - A + A - f(x')|$$

$$< |f(x) - A| + |f(x') - A| < 2\varepsilon.$$

必要性得证.

证明续

⇐: 设对于任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得 $|f(x) - f(x')| < \varepsilon$, $\forall x, x' \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$. 要证极限 $\lim_{x \to x_0} f(x)$ 存在. 对 任意序列 $x_n \to x_0$, $(x_n \neq x_0)$, 关于上述 $\delta > 0$, 存在正整数 N, 使得 $|x_n - x_0| < \delta$, $\forall n > N$. 于是对任意 n, m > N, $x_n, x_m \in$ $(x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$, 故有 $|f(x_n) - f(x_m)| < \varepsilon$, 这说明序列 {f(xn)} 是 Cauchy 序列, 从而收敛. 根据函数极限与序列极限 定理知极限 $\lim_{x\to x_0} f(x)$ 存在.

无穷小量, 无穷大量

Definition

定义: 设函数 f(x) 在 $(a-\rho,a+\rho)\setminus\{a\}$ 上定义.

- (i) 若 $f(x) \rightarrow 0$ $(x \rightarrow a)$, 则称 f(x) 当 $x \rightarrow a$ 时为无穷小量;
- (ii) 若 $|f(x)| \to +\infty$, $x \to a$, 则称函数 f(x) 当 $x \to a$ 时为无穷大量. 依据 $f(x) \to +\infty$ 或 $f(x) \to -\infty$, 还称 f(x) 当 $x \to a$ 时为正无穷大量, 或负无穷大量.
- (iv) 类似可定义函数 f(x) 当 $x \to +\infty$ 时为无穷小量, (正负)无穷大量和有界量.

例子

Example

- 1). 当 $x \to 0$ 时, $\sin x$, x^n (n 为正整数), $e^x 1$ 均为无穷小量.
- 2). 当 $x \to +\infty$ 时, $\ln x$, x^n (n 为正整数), e^x 均为正无穷大量.
- 3). 设 $f(x) \neq 0$, $\forall x \in (a \rho, a + \rho) \setminus \{a\}$, 则当 $x \to a$ 时,f(x) 为于京小县 \longrightarrow 1 为于京小县

为无穷小量 \iff $\frac{1}{f(x)}$ 为无穷大量.

有界量, 符号大欧 ○ 的意义

Definition

定义: 设 f(x) 和 g(x) 在 a 附近定义(除去 a). 若存在常数 M>0, 以及 $\delta>0$, 使得

$$\left| \frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})} \right| \le \mathbf{M}, \quad \forall \mathbf{x} \in (\mathbf{a} - \delta, \mathbf{a} + \delta) \setminus \{\mathbf{a}\}$$

则称函数 f(x) 与 g(x) 相比为有界量,记作 f(x) = O(g(x)), $x \to a$. 特别 f(x) = O(1) 表示 f(x) 当 $x \to a$ 时有界,即 f(x) 在 a 附近有界. 当 $a = \pm \infty$ 时, f(x) = O(g(x)) 的意义类似.

例一: $\sin x = O(x)$, $x \to 0$;

例二: $3x^2 - x + 10 = O(x^2)$, $x \to +\infty$.

无穷小量之比较, 符号小欧o的意义

定义: 设函数 f(x) 和 g(x) 均为无穷小量 $(x \to a)$, 且 $g(x) \neq 0$ 在点 x = a 附近.

- (i) 若 $\frac{f(x)}{g(x)} \rightarrow 0$ $(x \rightarrow a)$, 则称 f(x) 是 g(x) 的高阶无穷小量 $(x \rightarrow a)$, 记作 f(x) = o(g(x)) $(x \rightarrow a)$.
- (ii) 若 $\frac{f(x)}{g(x)} \rightarrow C \neq 0$, $x \rightarrow a$, 则称函数 f(x) 和 g(x) 为同阶无穷小 $(x \rightarrow a)$. 特别当 C = 1 时, 称 f(x) 和 g(x) 为等价无穷小,记作 $f(x) \sim g(x)$ $(x \rightarrow a)$.
- (iii) 若 f(x) 与 $(x-a)^k$ 为同阶无穷小量 (k) 为正整数),则称 f(x) 为 k 阶无穷小量.

无穷大量之比较, 小欧o的意义

Definition

定义: 设函数 f(x) 和 g(x) 均为无穷大量 $(x \rightarrow a)$.

(i) $\frac{f(x)}{g(x)} \rightarrow 0$ (x \rightarrow a), 则称 g(x) 是 f(x) 的高阶无穷无量, 或

者说 f(x) 是 g(x) 的低阶无穷无量. 此事也记作 f(x) = o(g(x)).

(ii) 若 $\frac{f(x)}{g(x)} \rightarrow C \neq 0$, $x \rightarrow a$, 则称函数 f(x) 和 g(x) 为同阶无穷 大量 $(x \rightarrow a)$. 特别当 C = 1 时, 称 f(x) 和 g(x) 为等价无穷大, 记作 $f(x) \sim g(x)$ $(x \rightarrow a)$.

 \underline{i} : 与标准无穷小量类似, 当 x \to a 时, 通常取 $\frac{1}{x-a}$ 为标准无穷大量. 于是 $\frac{1}{(x-a)^k}$ 为 k 阶无穷大量. 当 x \to + ∞ 时, 取 x 为标准无穷大量. 此时 x^k 为 k 解无穷大量.

小欧o例子

Example

例: (i) 当
$$x \to 0$$
 时, $x^2 + x^3 = o(x)$;

(ii) 当
$$x \to 0$$
 时, $\sin(x^2) = o(x)$. 但不能写作 $o(x) = \sin(x^2)$;

(iii)
$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 = o(x^{n+1}), x \to \infty;$$

(iv)
$$x^n = o(e^x)$$
, $x \to +\infty$.

等价无穷小, 例子

Example

例: $当 x \rightarrow 0$ 时,

- (i) $\sin x \sim x$;
- (ii) $1 \cos x \sim \frac{1}{2}x^2$;
- (iii) $\tan x \sim x$;
- (iv) $\ln(1+x) \sim x$;
- (v) $e^{x} 1 \sim x$;
- (vi) $a^x 1 \sim x \ln a$;
- (vii) $(1+x)^{\alpha}-1\sim \alpha x$, $\alpha\in \mathbb{R}$, $\alpha\neq 0$.

证明

结论(i)至(vi)已证. 以下证(vii).

令 y =
$$(1+x)^{\alpha}-1$$
, 则 y $\rightarrow 0$ (x $\rightarrow 0$) 且 $1+y=(1+x)^{\alpha}$.

故 $\ln (1+y) = \alpha \ln (1+x)$. 于是

$$\frac{(1+\mathsf{x})^\alpha-1}{\alpha\mathsf{x}} = \frac{\mathsf{y}}{\ln(1+\mathsf{y})} \cdot \frac{\alpha \ln(1+\mathsf{x})}{\alpha\mathsf{x}} \to 1 \cdot 1 = 1.$$

这就证明了结论(vii), 即 $(1+x)^{\alpha}-1\sim \alpha x$.

等价无穷小量应用于求极限,例一

Example

例一: 求极限

$$\lim_{x\to 0}\frac{1-\cos(1-\cos x)}{x^4}.$$

解:

$$\frac{1-\cos(1-\cos x)}{x^4} = \frac{1-\cos(1-\cos x)}{\frac{1}{2}(1-\cos x)^2} \frac{\frac{1}{2}(1-\cos x)^2}{x^4}$$

$$= \frac{1-\cos(1-\cos x)}{\frac{1}{2}(1-\cos x)^2} \left(\frac{1-\cos x}{\frac{x^2}{2}}\right)^2 \frac{1}{2\cdot 4} \to 1\cdot 1^2 \cdot \frac{1}{8} = \frac{1}{8}.$$

例: 求极限

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x^4} - \sqrt[3]{1 - x^4}}{\sin^2\!x(1 - \cos x)}.$$

解:

$$\begin{split} \frac{\sqrt{1+2x^4}-\sqrt[3]{1-x^4}}{\sin^2x(1-\cos x)} \\ &=\frac{(\sqrt{1+2x^4}-1)-(\sqrt[3]{1-x^4}-1)}{x^4}\frac{x^4}{\sin^2x(1-\cos x)} \\ &=\left(\frac{(1+2x^4)^{1/2}-1}{x^4}-\frac{(1-x^4)^{1/3}-1}{x^4}\right)\left(\frac{x}{\sin x}\right)^2\frac{2\cdot\frac{x^2}{2}}{1-\cos x} \\ &\to \left(\frac{1}{2}\cdot2-\frac{1}{3}\cdot(-1)\right)(1^2)\cdot2\cdot1=(1+\frac{1}{3})\cdot2=\frac{8}{3}. \end{split}$$

作业

课本习题2.2 (pp. 42-43): 4, 5, 6, 7, 8.

课本习题2.3 (pp. 50-52): 6(偶标号), 7(偶标号).

课本习题2.4 (pp. 56-57): 7, 8, 9(1)(3)(5)(7)(9), 11.