

Vellore – 632014, Tamil Nadu, India DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES

WINTER SEMESTER - 2022~2023

CONTINUOUS ASSESSMENT TEST – I

Programme Name & Branch

: B.Tech

Course Code

: BMAT202L

Course Name

: PROBABILITY AND STATISTICS .

Slot

: B2+TB2

Date of the Examination

: 23.01.2023

Time: 2.00 -3.30 PM

Duration

: 90 minutes

Max. Marks : 50

General instruction(s):

Answer ALL the Questions (5 \times 10 = 50)

1. Compute the mean, median, mode, standard deviation and variance for the following frequency distribution.

Marks :	1000-2000	2000–3000	3000–4000-	4000–5000	5000–6000	6000–7000	7000–8000
No. of Students:	6	10	15	22	13	7	3

From the following data find quartile deviation and its coefficient.

Class Interval	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50
Frequencies	8	10	12	15	10	7	8	5

3. A random variable 'X' has the following probability function

		6 P	1000	Office	Turic	tion			
Value of X	Х	0	1	2	3	4	5	6	7
¥	P(x)	0	k	2k	2k	3k	k ²	2k ²	$7k^2 + k$

(i) Find k

(ii) Evaluate P(X < 6), $P(X \ge 6)$ and P(0 < X < 5)

- (iii) If $P(X \le k) > \frac{1}{2}$, Find the minimum value of k and determine the distribution function of X.
- 4. Let X and Y be two jointly continuous random variables with joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 6xy, & 0 \le x \le 1, & 0 \le y \le \sqrt{x} \\ 0, & Otherwise \end{cases}$$

(i) Find $f_X(x)$ and $f_Y(y)$.

(ii) Are X and Y independent?

(iii) Find the conditional PDF of X given Y=y, $f_{X|Y}(x|y)$.

(iv) Find E[X|Y=y], for $0 \le y \le 1$

(v) Find $V_{ar}(X|Y=y)$, for $0 \le y \le 1$.

5. From following information find the correlation coefficient between advertisement expenses and sales volume using Karl Pearson's coefficient of correlation method.

E:		40.000			CLIOU	•					
Firm	1	2	3	4	5	6	7	0			
Advertisement Exp. (Rs. In Lakhs)	11	13	14	16	16	1.5	/	8	9	10	
Sales Volume (Rs. In Lakhs)	50	50	55	10	10	15	15	14	13	13	
****	k * * *	***	33	60	65	65	65	60	60	50	

DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES

Winter Semester - 2022 - 2023

Continuous Assessment Test - I, January 2023

Course Code : BMAT202L

Course Name: Probability and Statistics

Duration : 90 Minutes

Slot: B1+TB1 Max. Marks: 50

Answer All Questions:

Q.No				Quest	ions				Max. Marks	CO	ві
//	Calculate the	Mean, Me	dian and M	ode for the	following	data:					+
Y	Class	130-134	135-139	140-144	145-149	150-154	155-159	160-164	10	COI	L3
	Frequency	5	15	28	24	17	10	1			
N	Calculate the marks obtaine	quartile dev d by 49 stu	riation for t dents in a c	he followir lass	ng frequen	cy distribu	tion of the	number of	10	COI	L3
			Marks gro	цр	No. of stu	dents					
			5-10		5						
		_	10-15		6						
		-	15-20 20-25	_	15						
			25-30		10						
			30-35		4						
			35-40		2						
			40-45		2						
4	From the follow	wing data:							10	CO2	L4
	x -3	-2	-1	0	1	2	3		10	C02	1.4
	p(x) 0.03	5 0.1	0.3	0	0.3	0.15	0.1				
F	ind (i) $E(X)$, ((ii) E(2X ±	3), (iii) <i>E</i> ($((X-\bar{X})^2)$	and (iv) l	ar(2X ±	3) .				
	uppose that tweensity function		onal continu	ous rando	m variable	(X, Y) has	s joint prob	pability	10	CO2	L4
f	$(x, y) = \begin{cases} 6x^2 \\ 0 \end{cases}$ Verify that $\int_0^{\infty} $	y, 0.	< x < 1, (elsewhe	0 < y < 1 re	,						
9	Verify that \(\int_0 \)	$\int_0^1 \int_0^1 f(x,y)$	dx dy = 1	, An) F	Find $P(0 \leftarrow$	$< X < \frac{3}{4}, \frac{1}{3}$	< Y < 2				
	ii) Find $P(X > $						2)				
5 T	he marks obtai	ned by 10 s	students in t	wo subjec	ts are give	n below:			10	CO3	L2
	Subject 1	48 75		60 80	53 3		40	38	7.5		_
	Subject 2	44 85	45	54 91	58 63	3 35	43	45			
Fi	nd the correlat	ion coeffic	ient.								

DEPARTMENT OF MATHEMATICS

SCHOOL OF ADVANCED SCIENCES

WINTER SEMESTER 2022-2023

CONTINUOUS ASSESSMENT TEST - I

Programme Name

B.Tech

Course Code

BMAT202L

Course Name

Probability and Statistics

Slot

Duration

D1+TD1

90 minutes

Max. Marks:50

Answer all the questions Marks S.NoQuestions The following table gives the daily wages in rupees in a commercial organization 10M X 70-80 50-60 60 - 7030-40 40-50 20 - 3010 - 20Daily wages 6 9 10 5 19 No. of persons 12 Find the mean value using deviation method and third Quartile for the above The score of two players A and B in ten innings during a certain season are: 10M 2 14 7139 10, 60 96 28 47. 63. 32 80 10 62 40 67 90 19 48 53Find which of the two players A, B is more consistent in scoring. 37 (a) A dice is tossed twice. A success is getting an odd number on a toss. Find 7Mthe variance of the probability distribution of the number of successes. b) The diameter of an electric cable X is assumed to be continuous random 3Mvariable with p.d.f $f(x) = 6x(1-x), 0 \le x \le 1$. Determine $b \in \mathbb{R}$, such that P(X < b) is same as P(X > b). Given a Joint density function $f(x,y) = \begin{cases} \frac{6-x-y}{8} & 0 < x < 2, 2 < y < 4, \\ 0 & \text{elsewhere} \end{cases}$ 10MFind Marginal density of X and Y. 2. P(2 < Y < 3 | X < 2). 3. $P(0 \le X \le \frac{1}{2} \text{ and } 2 \le Y \le 3).$ Find Karl Pearson's coefficient of correlation from the following data between 5 10M 65 66 67686970 64 height of father (X) and son (Y). 66 67 65 68 70 68 72Comment on the result.

DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES WINTER SEMESTER 2022-23 CONTINUOUS ASSESSMENT TEST - I

Programme Name

B. Tech.

Course Code

: BMAT202L

Course Name

: Probability and Statistics

Slot

: D2+TD2

Exam Duration

: 90 minutes

Maximum Marks

: 50

Answer All the Questions (5 × 10 = 50)

S. No.					estions			
140.	Compute	the mea	sures of central	tendency o	of the following	data:		
			Marks obt		No of Cand			
			0-10		22			
			10-20		35			
			20-30		8			10M
			30-40		0			
•			40-50		38			
			50-60		15		_	
			60-70		5			
			70-80		5			
			80-90		10			
			90-100		2			
			the football r of games:				football team	ns A
	Team A	12	15	6	13	7	19	10
	Team B	27	12	16	12	4	21	
v	Vhich tean	n has t	he better run	ning gam	e and which	is more	consistent?	

	The she	elf life (in ho probability d					d is a random variable	
				$f(x) = \begin{cases} \overline{(x)} \end{cases}$	$\frac{20000}{(+100)^3}$, 0, otherw	if x > 0		1
3.	Find the	probability	that one	e of the page	ckages will	have a she	If life of (a) atleast 200	
	The join	probability			341 -507 -5			
		X	0	1	2			
		0	0	K	2k			
		1	2k	3k	4k			
		2	4k	5k	6k			1
•		and the value $P(Y < 2)$						
	(d) Fir	and $P(X \ge 1)$ and $P(X \ge 1)$	Y < 2).		stribution of	fX		
						the followin	g table:	
	1		10	14	18	22		1
	г	X			1.10	22		
			18	12	24	6	26 30	

SCHOOL OF ADVANCED SCIENCES DEPARTMENT OF MATHEMATICS

SLOT F1

CONTINUOUS ASSESMENT TEST-I (January 2023)

WINTER SEMESTER 2022-23

Programme Name & Branch: B.Tech

Course Code: BMAT202L

Course Name: Probability and Statistics

Exam Duration: 90 minutes

Maximum Marks: 50

General instruction(s): Answer all questions 5×10=50

Sl.No.				Qu	estion					Marks		
1.	Calculate the lower quartile, median and upper quartile for the following distribution.											
	Age	54-57	58-61	62-65	66-69	70-73	74-77	78-81	82-85			
	No. of employees	5	7	10	12	6	5	4	1			
2.	Find the coef data.	ficient of m	ean devia	tion from	mean, co	efficient (of variation	on for the	following	10		
	x 0	1	2	3	4	5	6	7	8	ıl		
	f 4	36	100	232	280	204	112	28	4	211		
3.	Let X and $f(x,y) = \frac{1}{27}$	Y are two $(2x+y)$ who	random ere x and	variables y can assu	s having	the join	t probab r values 0	ility mas	(i) Find al			
4.	Let X and $f(x,y) = \frac{1}{27}$ marginal distribution Let X and Y is	Y are two $(2x + y)$ who ibutions and	random ere x and y d means of	variables y can assu f X and Y	s having ame only (ii) Dete	the join the integer	t probab r values 0	ility mas	(i) Find al			
	Let X and $f(x,y) = \frac{1}{27}$ marginal distribution $f(x,y) = \frac{1}{27}$ $f(x,y) = \frac{1}{27}$	Y are two $(2x+y)$ who ibutions and ave the join $\begin{cases} x^2 + \frac{x}{3} \end{cases}$	random ere x and the distribution of the probability, $0 \le \frac{y}{3}$, $0 \le \frac{y}{3}$	variables y can assure f X and Y lity density $x \leq 1,0$ othery	s having time only in the condition of	the join the integer rmine the	t probab r values 0	ility mas	(i) Find al	1		
	Let X and $f(x,y) = \frac{1}{27}$ marginal distribution $f(x,y) = \frac{1}{27}$ Then Find (i)	Y are two $(2x + y)$ who ibutions and ave the join $\begin{cases} x^2 + \frac{x}{3} \\ 0 \end{cases}$	random ere x and the distribution of the probability $\frac{y}{3}$, $0 \le 0$, (ii) $P(Y < 0)$	variables y can assure f X and Y lity density $x \leq 1,0$ other v X)(iii) P	s having time only to the function $0 \le y \le y$ $y(y) = (y < \frac{1}{2} / y)$	the join the integer rmine the	t probab r values 0	ility mas	(i) Find al	1		
	Let X and $f(x,y) = \frac{1}{27}$ marginal distribution $f(x,y) = \frac{1}{27}$ $f(x,y) = \frac{1}{27}$	Y are two $(2x + y)$ who ibutions and ave the join $\begin{cases} x^2 + \frac{x}{3} \\ 0 \end{cases}$	random ere x and the distribution of the probability $\frac{y}{3}$, $0 \le 0$, (ii) $P(Y < 0)$	variables y can assure f X and Y lity density $x \leq 1,0$ other v X)(iii) P	s having time only to the function $0 \le y \le y$ $y(y) = (y < \frac{1}{2} / y)$	the join the integer rmine the	t probab r values 0	ility mas	(i) Find al	1		
	Let X and $f(x,y) = \frac{1}{27}$ marginal distribution $f(x,y) = \frac{1}{27}$ Then Find (i)	Y are two $(2x + y)$ who ibutions and ave the join $\begin{cases} x^2 + \frac{x}{3} \\ 0 \end{cases}$ $P\left(X > \frac{1}{2}\right)$ whether X and	random ere x and a d means of at probabilate $\frac{y}{3}$, $0 \le \frac{y}{3}$, $0 \le \frac{y}{3}$	variables y can assure f X and Y lity density $x \leq 1,0$ other v X)(iii) P dependent	s having time only in the condition of	the join the integer rmine the $\frac{1}{2}$	t probab r values 0 value of 1	ility mas $0, 1 \text{ and } 2.$ $P[X \le 1/Y]$	(i) Find al	1		
4.	Let X and $f(x,y) = \frac{1}{27}$ marginal distribution $f(x,y) = \frac{1}{27}$ Then Find (i) (iv) Verify where	Y are two $(2x + y)$ who ibutions and ave the join $\begin{cases} x^2 + \frac{x}{3} \\ 0 \end{cases}$ $P\left(X > \frac{1}{2}\right)$ whether X and	random ere x and a d means of at probabilate $\frac{y}{3}$, $0 \le \frac{y}{3}$, $0 \le \frac{y}{3}$	variables y can assure f X and Y lity density $x \leq 1,0$ otherv X)(iii) P dependent or the foll	s having time only in the control of the control o	the join the integer rmine the $\frac{1}{2}$	value of i	ility mas $A = 1 - 1$ and wives	(i) Find al (= 1].	10		