Estensioni algebriche di K

§1.1 Morfismi di valutazione, elementi algebrici e trascendenti

Si definisce adesso il concetto di *omomorfismo di valutazione*, che impiegheremo successivamente nello studio dei quozienti $\mathbb{K}[x]/(f(x))$ e dei cosiddetti *elementi algebrici* (o trascendenti).

Definizione 1.1.1. Sia B un anello commutativo, e sia $A \subseteq B$ un suo sottoanello. Si definisce **omomorfismo di valutazione** di $\alpha \in B$ in A l'omomorfismo:

$$\varphi_{\alpha}: A[x] \to B, f(x) \mapsto f(\alpha).$$

Osservazione. L'omomorfismo di valutazione è effettivamente un omomorfismo di anelli. Innanzitutto $\varphi_{\alpha}(1) = 1$. Inoltre vale la linearità:

$$\varphi_{\alpha}(f(x)) + \varphi_{\alpha}(g(x)) = f(\alpha) + g(\alpha) = (f+g)(\alpha) = \varphi_{\alpha}((f+g)(x)) = \varphi_{\alpha}(f(x) + g(x)),$$

$$= \varphi_{\alpha}(f(x)) + \varphi_{\alpha}(g(x)) = f(\alpha) + g(\alpha) = (f+g)(\alpha) = \varphi_{\alpha}((f+g)(x)) = \varphi_{\alpha}(f(x) + g(x)),$$

così come la moltiplicatività:

$$\varphi_{\alpha}(f(x))\varphi_{\alpha}(g(x)) \quad = \quad f(\alpha)g(\alpha) \quad = \quad (fg)(\alpha) \quad = \quad \varphi_{\alpha}((fg)(x)) \quad = \quad \varphi_{\alpha}(f(x)g(x)).$$

Si evidenziano adesso le principali proprietà di tale omomorfismo.

Proposizione 1.1.2

$$\operatorname{Im}\varphi_{\alpha} = A[\alpha]$$

Dimostrazione. Sicuramente Im $\varphi_{\alpha} \subseteq A[\alpha]$, dacché ogni immagine di φ_{α} è una valutazione di un polinomio a coefficienti in A in α .

Sia dunque $a = a_n \alpha^n + \ldots + a_0 \in A[\alpha]$. Allora $\varphi_\alpha(a_n x^n + \ldots + a_0) = a$. Pertanto $a \in \text{Im } \varphi_\alpha$, da cui $A[\alpha] \in \text{Im } \varphi_\alpha$.

Poiché vale la doppia inclusione, si desume che Im $\varphi_{\alpha} = A[\alpha]$.

Prima di applicare il *Primo teorema d'isomorfismo*, si distinguono due importanti casi, sui quali si baseranno le definizioni di *elemento algebrico* e di *elemento trascendente*.

Definizione 1.1.3. Sia $\alpha \in B$. Se Ker $\varphi_{\alpha} = (0)$, allora si dice che α è un **elemento** trascendente di B su A.

Osservazione. Equivalentemente, se $\alpha \in B$ è trascendente su A, significa che non vi è alcun polinomio non nullo in A[x] che ha α come soluzione.

Esempio 1.1.4

Per esempio, il numero di Nepero-Eulero e è trascendente su $\mathbb{Q}[x]^a$. Quindi Ker $\varphi_e = (0)$, e dunque, dal *Primo teorema di isomorfismo*, vale che:

$$\mathbb{Q}[x] \cong \mathbb{Q}[x]/(0) \cong \mathbb{Q}[e].$$

Possiamo generalizzare questo esempio nel seguente teorema.

Teorema 1.1.5

Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Se $\alpha \in B$ è trascendente su A, allora vale la seguente relazione:

$$A[x] \cong A[\alpha].$$

Dimostrazione. Si consideri l'omomorfismo φ_{α} . Dacché α è trascendente, Ker $\varphi_{\alpha} = (0)$. Allora, combinando il *Primo teorema di isomorfismo* con la *Proposizione 1.1.2*, si ottiene proprio $A[x] \cong A[x]/(0) \cong A[\alpha]$, ossia la tesi.

Definizione 1.1.6. Sia $\alpha \in B$. Se Ker $\varphi_{\alpha} \neq (0)$, allora si dice che α è un **elemento** algebrico di B su A, mentre il generatore monico^a non nullo di Ker φ_{α} si dice **polinomio** minimo di α su A. Il grado di tale polinomio minimo è detto **grado di** α .

Osservazione. Equivalentemente, se $\alpha \in B$ è trascendente su A, significa che esiste un polinomio non nullo in A[x] che ha α come soluzione. In particolare, ogni polinomio in A[x] che ha α come soluzione è un multiplo del suo polinomio minimo su A.

^aPer una dimostrazione di questo fatto, si guardi a [H, pp. 234-237]

^aVi potrebbero essere infatti più generatori di Ker φ_{α} , sebbene tutti associati tra loro. L'attributo *monico* garantisce così l'unicità del polinomio minimo.

Esempio 1.1.7

Sia $\alpha \in A$. Allora α è banalmente un elemento algebrico su A, il cui polinomio minimo è $x - \alpha$. Vale dunque che Ker $\varphi_{\alpha} = (x - \alpha)$, da cui, secondo il *Primo teorema di isomorfismo*, si ricava che:

$$A[x]/(x-\alpha) \cong A[\alpha] \cong A.$$

Esempio 1.1.8

 $i \in \mathbb{C}$ è un elemento algebrico su \mathbb{R} . Infatti, si consideri φ_i : poiché i è soluzione di $x^2 + 1$, si ha che $x^2 + 1 \in \operatorname{Ker} \varphi_i$, che è quindi non vuoto.

Inoltre, dal momento che $x^2 + 1$ è irriducibile in $\mathbb{R}[x]$, esso è generatore di Ker φ_i . Inoltre, poiché monico, è anche il polinomio minimo di i su \mathbb{R} .

Allora, poiché dalla Proposizione 1.1.2 Im $\varphi_i = \mathbb{R}[i]$, si deduce dal Primo teorema di isomorfismo che:

$$\mathbb{R}[x]/(x^2+1) \cong \mathbb{R}[i] \cong \mathbb{C}.$$

Ancora una volta possiamo generalizzare questo esempio con il seguente teorema.

Teorema 1.1.9

Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Se $\alpha \in B$ è algebrico su A, allora, detto f(x) il polinomio minimo di α , vale la seguente relazione:

$$A[x]/(f(x)) \cong A[\alpha].$$

Dimostrazione. Si consideri l'omomorfismo φ_{α} . Dacché Ker $\varphi_{\alpha} = (f(x))$ per definizione di polinomio minimo, combinando il *Primo teorema di isomorfismo* con la *Proposizione* 1.1.2, si ottiene proprio $A[x]/(f(x)) \cong A[\alpha]$, ossia la tesi.

Definizione 1.1.10. Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Allora, dato $\alpha \in B$, si definisce con la notazione $A(\alpha)$ il sottocampo di B che contiene A e α che sia minimale rispetto all'inclusione.

Osservazione. Le notazioni $\mathbb{K}(\alpha, \beta)$ e $\mathbb{K}(\alpha)(\beta)$ sono equivalenti.

Proposizione 1.1.11

Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Se $\alpha \in B$ è algebrico su A, allora $A(\alpha) = A[\alpha]$.

Dimostrazione. Se α è algebrico, allora $\operatorname{Ker} \varphi_{\alpha} = (f(x)) \neq (0)$, dove $f(x) \in A[x]$ è irriducibile. Pertanto A[x]/(f(x)) è un campo.

Dunque dal *Teorema 1.1.9* si ricava che:

$$A[x]/(f(x)) \cong A[\alpha].$$

Pertanto $A[\alpha]$ è un campo. Dacché $A[\alpha] \subseteq A(\alpha)$ e $A(\alpha)$ è minimale rispetto all'inclusione, si deduce che $A[\alpha] = A(\alpha)$, ossia la tesi.

Osservazione. Il teorema che è stato appena enunciato non vale per gli elementi trascendenti. Infatti, $A[\alpha]$ sarebbe isomorfo a A[x], che non è un campo. Al contrario $A(\alpha)$ è un campo, per definizione.

Proposizione 1.1.12

Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Se α , $\beta \in B$ sono algebrici su A e condividono lo stesso polinomio minimo, allora $A[\alpha] \cong A[\beta]$.

Dimostrazione. Sia f(x) il polinomio minimo di α e β . Dal Primo teorema di isomorfismo e dalla Proposizione 1.1.2 si desume che $A[x]/(f(x)) \cong A[\alpha]$. Analogamente si ricava che $A[x]/(f(x)) \cong A[\beta]$. Pertanto $A[\alpha] \cong A[\beta]$.

§1.2 Teorema delle torri ed estensioni algebriche

Definizione 1.2.1. Siano $A \subseteq B$ campi. Allora si denota come [B:A] la dimensione dello spazio vettoriale B costruito su A, ossia dim B_A . Tale dimensione è detta **grado** dell'estensione.

Teorema 1.2.2 (*Teorema delle torri algebriche*)

Siano $A \subseteq B \subseteq C$ campi^a. Allora:

$$[C:A] = [C:B][B:A].$$

 $[^]a$ In realtà è sufficiente che Csia uno spazio vettoriale su A e B e che $A\subseteq B,$ posto che A e B siano campi.

Dimostrazione. Siano [C:B]=m e [B:A]=n. Sia $\mathcal{B}_C=(a_1,\ldots,a_m)$ una base di C su B, e sia $\mathcal{B}_B=(b_1,\ldots,b_n)$ una base di B su A.

Si dimostra che la seguente è una base di C su A:

$$\mathcal{B}_A \mathcal{B}_B = \{a_1 b_1, \dots, a_1 b_n, \dots, a_m b_n\}.$$

(i) $\mathcal{B}_C \mathcal{B}_B$ genera A su C.

Sia $c \in C$. Allora si può descrivere a nel seguente modo:

$$c = \sum_{i=1}^{m} \beta_i a_i$$
, con $\beta_i \in B$, $\forall 1 \le i \le m$.

A sua volta, allora, si può descrivere ogni β_i nel seguente modo:

$$\beta_i = \sum_{j=1}^n \gamma_j^{(i)} b_j, \quad \text{con } \gamma_j^{(i)} \in A, \ \forall \ 1 \le j \le n.$$

Combinando le due equazioni, si verifica che $\mathcal{B}_C\mathcal{B}_B$ genera C su A:

$$c = \sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_j^{(i)} b_j a_i, \quad \text{con } \gamma_j^{(i)} \in A, \ \forall 1 \le i \le m, \ 1 \le j \le n.$$

(ii) $\mathcal{B}_C \mathcal{B}_B$ è linearmente indipendente.

Si consideri l'equazione:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_j^{(i)} b_j a_i = 0, \quad \text{con } \gamma_j^{(i)} \in A, \ \forall 1 \le i \le m, \ 1 \le j \le n.$$

Poiché \mathcal{B}_C è linearmente indipendente, si deduce che:

$$\sum_{j=1}^{n} \gamma_j^{(i)} b_j = 0, \ \forall \ 1 \le i \le m.$$

Tuttavia, \mathcal{B}_B è a sua volta linearmente indipendente, e quindi $\gamma_j^{(i)} = 0, \forall i, j$. Dunque $\mathcal{B}_C \mathcal{B}_B$ è linearmente indipendente.

Dal momento che $\mathcal{B}_C\mathcal{B}_B$ è linearmente indipendente e genera C su A, consegue che essa sia una base di C su A. Quindi [C:A]=mn=[C:B][B:A], da cui la tesi. \square

Definizione 1.2.3. Siano $A \subseteq B$ campi. Se $[B:A] \neq \infty$, allora si dice che BA è un'estensione finita di A. Altrimenti si dice che B è un'estensione infinita di A.

Proposizione 1.2.4

Siano $A \subseteq B \subseteq C$ campi. Allora, se C è un'estensione finita di A, anche B lo è. Inoltre C è un'estensione finita di B.

Dimostrazione. Dal momento che B è un sottospazio dello spazio vettoriale C costruito su A, e questo ha dimensione finita, anche B su A ha dimensione finita. Quindi $[B:A] \neq \infty$, e B è dunque un'estensione finita di A.

Infine, dacché una base di C su A è un generatore finito di C su B, si deduce che $[C:B] \neq \infty$, e quindi che C è un'estensione finita di B.

Teorema 1.2.5

Siano $A \subseteq B$ campi. Allora $a \in B$ è algebrico su A se e solo se $[A(a):A] \neq \infty$, ossia solo se A(a) è un'estensione finita di A.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Se $a \in B$ è algebrico su A, allora dal Teorema 1.1.9 si ricava che:

$$A[x]/(f(x)) \cong A[a] \cong A(a).$$

Dacché A[x]/(f(x)) ha dimensione finita, anche A(a) ha dimensione finita, e quindi è un'estensione finita di A.

(\Leftarrow) Sia A(a) un'estensione finita di A e sia [A(a):A]=m. Allora $I=(1,a,a^2,\ldots,a^m)$ è linearmente dipendente, dal momento che contiene m+1 elementi. Quindi esiste una sequenza finita non nulla $(\alpha_i)_{i=0\to m}$ con elementi in A tale che:

$$\alpha_m a^m + \ldots + \alpha_2 a^2 + \alpha_1 a + \alpha_0 = 0.$$

Quindi a è soluzione del polinomio:

$$f(x) = \alpha_m x^m + \ldots + \alpha_2 x^2 + \alpha_1 x + \alpha_0 \in A[x],$$

pertanto a è algebrico su A, da cui la tesi.

Definizione 1.2.6. Siano $A \subseteq B$ campi. Allora si dice che B è un'estensione algebrica di A se ogni elemento di B è algebrico su A.

Proposizione 1.2.7

Siano $A\subseteq B$ campi. Se B è un'estensione finita di A, allora B è una sua estensione algebrica.

Dimostrazione. Sia $\alpha \in B$ e si consideri la catena di campi $A \subseteq A(\alpha) \subseteq B$. Dacché $[B:A] \neq \infty$, per la Proposizione 1.2.4 anche $[A(\alpha):A] \neq \infty$. Pertanto, dal Teorema 1.2.5, α è algebrico. Così tutti gli elementi di B sono algebrici in A, e dunque, per definizione, B è un'estensione algebrica di A.

Teorema 1.2.8

Siano $A \subseteq B$ campi e siano $\beta_1, \beta_2, \ldots, \beta_n$ elementi algebrici di B su A, con $n \ge 1$. Allora $[A(\beta_1, \beta_2, \ldots, \beta_n) : A] \ne \infty$.

Dimostrazione. Si procede applicando il principio di induzione su n.

(passo base) La tesi è verificata per il Teorema 1.2.5.

(passo induttivo) Per l'ipotesi induttiva, si sa che $[A(\beta_1, \beta_2, \dots, \beta_{n-1}) : A] \neq \infty$.

Poiché β_n è algebrico su A, sin da subito si osserva che $[A(\beta_n):A] \neq \infty$ per il Teo-rema~1.2.5. Sia allora f(x) il polinomio minimo di β_n appartenente a A[x]. Esso è un polinomio che ammette β_n come radice anche in $A(\beta_1,\beta_2,\ldots,\beta_{n-1})[x]$, e quindi $\operatorname{Ker} \varphi_{\beta_n} \neq (0)$ ammette un generatore p(x), che divide f(x). Si ottiene pertanto la seguente disuguaglianza:

$$[A(\beta_1, \beta_2, \dots, \beta_{n-1})(\beta_n) : A(\beta_1, \beta_2, \dots, \beta_{n-1})] = \deg p(x) \le \deg f(x) = [A(\beta_n) : A].$$

Poiché
$$[A(\beta_n):A]$$
 è finito, anche $[A(\beta_1,\beta_2,\ldots,\beta_{n-1})(\beta_n):A(\beta_1,\beta_2,\ldots,\beta_{n-1})]$ lo è.

Combinando i due risultati, si ottiene con il Teorema delle torri algebriche che:

$$[A(\beta_1, \beta_2, \dots, \beta_n) : A] = [A(\beta_1, \beta_2, \dots, \beta_{n-1})(\beta_n) : A(\beta_1, \beta_2, \dots, \beta_{n-1})] \cdot [A(\beta_1, \beta_2, \dots, \beta_{n-1}) : A] \neq \infty,$$

da cui la tesi.

Corollario 1.2.9

Siano $A \subseteq B$ campi e siano $\alpha, \beta \in B$ elementi algebrici su A. Allora $A(\alpha, \beta)$ è un'estensione algebrica.

Dimostrazione. Dal Teorema 1.2.8 si ricava che $[A(\alpha, \beta) : A] \neq \infty$. Quindi $A(\alpha, \beta)$ è un'estensione finita di A, ed in quanto tale, per la Proposizione 1.2.7, essa è algebrica. \square

Osservazione. Esistono estensioni algebriche che hanno grado infinito. Un esempio notevole è \mathcal{A} , l'insieme dei numeri algebrici di \mathbb{C} su \mathbb{Q} . Infatti, si ponga $[\mathcal{A}:\mathbb{Q}]=n-1\in\mathbb{N}$ e si consideri x^n-2 . Dal momento che per il *Criterio di Eisenstein* tale polinomio è irriducibile, si ricava che $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}]=n$.

Poiché $\sqrt[n]{2}$ è algebrico, si deduce che $\mathbb{Q}(\sqrt[n]{2}) \subseteq \mathcal{A}$, dal momento che per il *Corollario 1.2.9* ogni elemento di $\mathbb{Q}(\sqrt[n]{2})$ è algebrico su \mathbb{Q} . Tuttavia questo è un assurdo dal momento che $\mathbb{Q}(\sqrt[n]{2})$ ha dimensione maggiore di \mathcal{A} , di cui è sottospazio vettoriale.

Proposizione 1.2.10

Siano $A \subseteq B$ campi e sia $\alpha \in B$. Se $[A(\alpha) : A]$ è dispari, allora $A(\alpha^2) = A(\alpha)$.

Dimostrazione. Innanzitutto, si osserva che $A(\alpha^2) \subseteq A(\alpha)$, ossia che $A(\alpha)$ è un'estensione di $A(\alpha^2)$. Grazie a questa osservazione è possibile considerare il grado di $A(\alpha)$ su $A(\alpha^2)$, ossia $[A(\alpha):A(\alpha^2)]$. Poiché α è radice del polinomio $x^2 - \alpha^2$ in $A(\alpha^2)$, si deduce che tale grado è al più 2.

Si applichi il *Teorema delle torri algebriche* alla catena di estensioni $A \subseteq A(\alpha^2) \subseteq A(\alpha)$:

$$[A(\alpha):A] = \underbrace{[A(\alpha):A(\alpha^2)]}_{\leq 2} [A(\alpha^2):A].$$

Se $[A(\alpha):A(\alpha^2)]$ fosse 2, $[A(\alpha):A]$ sarebbe pari, f. Pertanto $[A(\alpha):A(\alpha^2)]=1$, da cui si ricava che $[A(\alpha):A]=[A(\alpha^2):A]$, ossia che $A(\alpha^2)$ ha la stessa dimensione di $A(\alpha)$ su A.

Dal momento che $A(\alpha^2)$ è un sottospazio vettoriale di $A(\alpha)$, avere la sua stessa dimensione equivale a coincidere con lo spazio stesso. Si conclude allora che $A(\alpha^2) = A(\alpha)$.

Osservazione. Si osserva che la *Proposizione 1.2.10* si può generalizzare facilmente ad un esponente n qualsiasi, finché sia data come ipotesi la non divisibilità di $[A(\alpha):A]$ per nessun numero primo minore o uguale di n.

Si può infatti considerare, per la dimostrazione generale, il polinomio $x^n-\alpha^n$, la cui esistenza

implica che $[A(\alpha):A(\alpha^n)]$ sia minore o uguale di n.

Teorema 1.2.11

Siano $A \subseteq B \subseteq C$ campi. Se B è un'estensione algebrica di A e C è un'estensione algebrica di B, allora C è un'estensione algebrica di A.

Dimostrazione. Per mostrare che C è un'estensione algebrica di A, verificheremo che ogni suo elemento è algebrico in A. Sia dunque $c \in C$.

Poiché per ipotesi c è algebrico su B, esiste un polinomio $f(x) \in B[x]$ tale che c ne sia radice. Sia f(x) il polinomio minimo di c su B, descritto come:

$$f(x) = b_0 + b_1 x + \dots + b_n x^n, \quad n = [B(c) : B].$$

Dacché B è un'estensione algebrica di A, ogni coefficiente b_i di f(x) è algebrico su A, ossia $[A(b_i):A] \neq \infty$. Allora, per il $Teorema~1.2.8,~[A(b_0,\ldots,b_n):A] \neq \infty$.

Anche $[A(c,b_0,\ldots,b_n):A(b_0,\ldots,b_n)]\neq\infty$, dal momento che c è soluzione di $f(x)\in A(b_0,\ldots,b_n)[x]$.

Allora, per il Teorema delle torri algebriche, $[A(c,b_0,\ldots,b_n):A]=[A(c,b_0,\ldots,b_n):A(b_0,\ldots,b_n)][A(b_0,\ldots,b_n):A]\neq\infty$. Quindi $A(c,b_0,\ldots,b_n)$ è un'estensione finita di A.

Poiché $A \subseteq A(c) \subseteq A(c, b_0, \ldots, b_n)$ è una catena di estensione di campi, per la *Proposizione* 1.2.4, A(c) è un'estensione finita di A, ed in quanto tale, per la *Proposizione* 1.2.7, è anche algebrica. Quindi c è algebrico su A, da cui la tesi.

Teorema 1.2.12

Sia A un campo, e sia $f(x) \in A[x]$. Allora esiste sempre un estensione di A in cui siano contenute tutte le radici di f(x).

Dimostrazione. Si dimostra il teorema applicando il principio di induzione sul grado di f(X).

 $(passo\ base)$ Sia $\deg f(x) = 0$. Allora A stesso è un campo in cui sono contenute tutte le radici, dacché esse non esistono.

(passo induttivo) Sia deg f(x) = n. Sia $f_1(x)$ un irriducibile di f(x) e sia $\gamma(x) \in A[x]$ tale che $f(x) = f_1(x)\gamma(x)$. Allora $A[x]/(f_1(x))$ è un campo in cui $f_1(x)$ ammette radice.

Poiché deg $\gamma(x) < n$, per il passo induttivo esiste un campo C che estende $A[x]/(f_1(x))$ in cui risiedono tutte le sue radici. Dacché C contiene $A[x]/(f_1(x))$, sia le radici di $f_1(x)$ che di $\gamma(x)$ risiedono in C. Tuttavia queste sono tutte le radici di f(x), si conclude che C, che è un'estensione di $A[x]/(f_1(x))$, e quindi anche di A, è il campo ricercato.

§1.3 Campi di spezzamento di un polinomio

Pertanto ora è possibile enunciare la definizione di campo di spezzamento.

Definizione 1.3.1. Si definisce **campo di spezzamento** di un polinomio $f(x) \in A[x]$ un campo C con le seguenti caratteristiche:

- f(x) si fattorizza in C[x] come prodotto di irriducibili di primo grado (i.e. in C[x] risiedono tutte le radici di f(x)),
- Se B è un campo tale che $A \subseteq B \subsetneq C$, allora f(x) non si fattorizza in B[x] come prodotto di irriducibili di primo grado.

Osservazione. Per il *Teorema 1.2.12* esiste sempre un campo di spezzamento di un polinomio, dunque la definizione data è una buona definizione.

Osservazione. In generale i campi di spezzamento non sono uguali, sebbene siano tutti isomorfi tra loro a .

^aPer la dimostrazione di questo risultato si rimanda a TODO

Teorema 1.3.2

Sia A un campo e sia $B \supseteq A$ un campo di spezzamento di $f(x) \in A[x]$ su A, con f(x) non costante. Sia deg f(x) = n. Allora $[B:A] \le n!$.

Dimostrazione. Siano $\lambda_1, \lambda_2, \ldots, \lambda_n$ le radici di f(x). Allora $[\mathbb{K}(\lambda_1) : \mathbb{K}] \leq n$, dacché λ_1 è radice di f(x).

Sia ora $f(x) = (x - \lambda_1)g(x)$, con deg g(x) = n - 1. Sicuramente λ_2 è radice di g(x), pertanto $[\mathbb{K}(\lambda_1, \lambda_2) : \mathbb{K}(\lambda_1)] \leq n - 1$. Reiterando il ragionamento si può applicare infine il *Teorema delle torri algebriche*:

$$[\mathbb{K}(\lambda_1,\ldots,\lambda_n):\mathbb{K}]=[\mathbb{K}(\lambda_1,\ldots,\lambda_n):\mathbb{K}(\lambda_1,\ldots,\lambda_{n-1})]\cdots[\mathbb{K}(\lambda_1):\mathbb{K}]\leq 1\cdot 2\cdots n=n!,$$

da cui la tesi. \Box

Riferimenti bibliografici

[H] I.N. Herstein. Algebra. Editori Riuniti University Press, 2010. ISBN: 9788864732107.