Mask Detection and Body Temperature Sensing

Overall Project Goals and Specific Aims

- Using deep learning algorithm for mask detection
- Incoporate a thermal sensor for non-contact temperature measurement
- Store the mask detection and the body temperature data in cloud

Technical Approach

Hardware

- Raspberry Pi 4 Model B (4GB RAM)
- Raspberry Pi camera v2.1
- GY-MLX90614-DCI
- Google Coral (edgetpu)

Mask Detection (1/2)

Deep Learning Algorithm

- Platform: Tensorflow 1.14 and Tensorflow-lite 1.14
- Algorithm
 - Fast: need to be real-time detection so that the processor can have time handle other tasks
 - Small size: able to run on raspberry pi since we only have 4GB RAM.
 - Tensorflow Lite Compatible: a lightweight library designs for edge devices to deploy models
- <u>Dataset</u>: open sources dataset with 7959 images (mask and nomask)
- Training on RTX 2060
- Using Google Coral to accelerate object detection on raspberry pi

Mask Detection (2/2)

Training Steps (Google Object Detection API)

- Step 1: Generating TFRecords from dataset
- Step 2: Configuring training
- Step 3: Training model
- Step 4: Freeze model to .tflite
- Step 5: Convert .tflite to Edge TPU compatible model

COCO-trained models			
Model name	Speed (ms)	COCO mAP[^1]	Outputs
ssd_mobilenet_v1_coco	30	21	Boxes
ssd_mobilenet_v1_0.75_depth_coco ☆	26	18	Boxes
ssd_mobilenet_v1_quantized_coco ☆	29	18	Boxes
ssd_mobilenet_v1_0.75_depth_quantized_coco ☆	29	16	Boxes
ssd_mobilenet_v1_ppn_coco ☆	26	20	Boxes
ssd_mobilenet_v1_fpn_coco ☆	56	32	Boxes
ssd_resnet_50_fpn_coco ☆	76	35	Boxes
ssd mobilenet v2 coco	31	22	Boxes

Body Temperature Sensing

GY-MLX90614-DCI

- High precision contactless temperature measurement
- Detect object temperature from -70 to +380 C
- Minimum of 0.02 C resolution
- The maximum distance measured can go up to 50 cm
- Ideal distance to measure body temperature is within 15 cm

Cloud Storage

- Platform: Google Firebase database
- Able to store and sync data between users in realtime
- Data in Google Firebase is stored as JSON files
- Able to define own data structure

Conclusion and Future Directions

To sum up, I successfully implement a edge computing system that can detect masks, sense body temperature without contacting, and store detection data to cloud service.

Strenghts

- Fast and Accurate deep learning algorithm
- Contactless temperature measurement
- Realtime data storage to cloud

Weakness

- Short temperature measurement range
- The temperature measurement may be inaccurate if the sensor is pointing to hair instead of pointing to forehead

Links

- Github Repo: https://github.com/ChengTseLu/MaskDetectionTempSensing
- Github Page: https://chengtselu.github.io/MaskDetectionTempSensing/

Thanks!