Register Number	where the second residue is now beyond the property of the second of the	

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test - I Question Paper

Degree & Branch	B.E., Computer	· Science &	Engineering	Marie and America . The	Semester	7
Subject Code & Name	UCS1722 - SO	astrono migro ino do no replación interessendo estimatorio en	Regulation:	2018		
Academic Year	2022 – 2023 ODD	Batch	2019 - 2023	Date	21.09.22	FN
Time: 8:15 – 9:45am (90 Minutes)	A	Answer All Questions		Maximum:	50 Marks	

$Part - A (6 \times 2 = 12 Marks)$

	What is Social Newsol. Applyaic?	COI
KLI	1. What is Social Network Analysis?	COI
KLI	2. What are the different kinds of global structures of social networks?	
KL3	3. Apply the social network concepts to find the degree centrality of the nodes in the given network.	COL
KL3	4. Assume a network of 20 countries that shares common borders between them. Identify whether the network is a directed or non-directed network and find out the maximum possible borders that can exist between the countries.	COI
		CO2
KLI	5. What are signed graphs?6. What is the significance in applying matrix permutation to social network?	

$Part - B (3 \times 6 = 18 Marks)$

K1.2	7. Explain the different graph models for social networks and their pros and cons.	(3)
	8. Apply the social network concepts to find the betweenness centrality and closeness centrality measures for all the nodes in the network given below.	
KL3		сог
KL3	 Build one-mode affiliation network for the given two-mode affiliation network, where the actors are children and the events are the birthday parties they attended. 	coi

$Part - C (2 \times 10 = 20 Marks)$

KL2	10. Explain the different dimensions of Social Capital by Nahapiet and Ghoshal.	COI
	(OR)	
KLZ	11. Explain the data collection complexities in social networks and detail the alternatives.	COI
	12. Apply the appropriate matrix operations for the network shown below and find the following measures.	
KL3		CO2
	a) Distance/connectivity matrix	
	b) Geodesic of length 2	
	d) Outdegrees of nodes	
	e) Density of the network	
F-1-16 1-161-16-16-16-16-16-16-16-16-16-16-16-1	(OR)	
	13. Apply the graph theory concepts for social networks and find the following measures for the network-shown below.	
KL3	1. Fecentricity of Node3. 2. A Walk 3. A Trial 4. Tour in the graph 5. Nodal degree of all nodes 6. Mean nodal degree 7. Variance of degree 8. Density of the graph 9. Cut-Point or node connectivity 10. Edge connectivity	CO2

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test - II Question Paper

Degree & Branch	B.E. Computer Science & Engineering			Semester	7	
Subject Code & Name	UCS1722 - Social Netwo				Regulation:	2018
Academic Year	2022 – 2023 ODD	Batch	2019 - 2023	Date	19.10.2022	FN
Time: 08:15 – 09:45 a.m (90 Minutes)	Answer All Questions		Maximum:	50 Marks		

$Part - A (6 \times 2 = 12 Marks)$

KLI	1. List any four examples of non-directional relations in social network.	CO2
KL3	2. What kind of social network analysis can be performed for a scenario where "children playing together"?	CO2
KLI	4. Why detecting communities in a social network is important.	CO3
KLI	5. What is the rewritten form of the formula for the modularity of Newman and Girivan and write down what each term refers to?	CO3
KL4	6. Distinguish between optimization-based and heuristics-based algorithms for solving Network Community Mining Problems in Social Networks.	CO3
KL3	3. Develop a NetworkX code to remove nodes with dee > 2 from the network.	CO4

$Part - B (3 \times 6 = 18 Marks)$

KL2	7. Explain three categories of definitions for communities.	CO3
KL3	8. Evaluate the quality of the communities in social networks using Newman-Girivan's formula.	CO3
KL4	9. Examine how network community mining algorithms finds the communities in a network using heuristic approach.	CO4

$Part - C (2 \times 10 = 20 \text{ Marks})$

KL2	10. Explain the various optimization-based algorithms for detecting the communities in social networks.	CO3
	(OR)	
KL2	11. Explain any three applications of community mining algorithms.	CO3

	unity-based network. A researcher wants to	
KL4	 12. Assume there is a large community-based network. A researcher wants to analyze the network based on certain criteria of interest. But he is clueless where to start. a) What are the different types of approaches he should follow to simplify the network for analysis b) Write the NetworkX code for any one of the approaches that reduces the network size. c) Suggest different ways to find the most influential node in the network. d) Justify why a node with less degree is still a popular node in the network. 	CO4
and the second second second second second	(OR)	
	13. Consider an API that retrieves the connection information between a particular user and his friends circle at several levels in a social network. The connections are directional and are in the following format.	
	Alice > bob	
KL4	Dave < Alice	CO4
	Carol > Alice	
	a) Write a NetworkX code to draw an Ego network for "Alice" at friend-of-friend-of-friend degree level	
	b) For the same network, write a NetworkX code to perform data collection using snowball sampling.	

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Computer Science and Engineering

Continuous Assessment Test – III

Question Paper

Degree & Branch	B.E. Computer	Science ar	d Engineering		Semester	7
Subject Code & Name		UCS 1722 Social Network Analysis				2018
Academic Year	2022-2023 ODD	Batch	2019 - 2023	Date	17.11.22	FN
Time: 08:15 – 09:45 a.m (90 Minutes)	Answer All Questions			Maximum	: 50 Marks	

$Part - A (6 \times 2 = 12 Marks)$

KLI	1. What is meant by triadic analysis?	CO4
KL3	2. Identify the significance of the forbidden triads in a social network.	CO4
KL2	3. How does visualization help in social network analysis?	CO5
KLI	4. Which kind of network is suited for matrix-based visualization?	CO5
KL3	5. Compare the functionalities of the 3 most popular centrality measures used in social network analysis.	CO5
KLI	6. List the advantages of Node-Link Diagrams.	CO5

$Part - B (3 \times 6 = 18 Marks)$

KI /	7. Explain the various kinds of Node-Edge diagrams used for social network	CO5
KL3	visualizations 8. Identify the similarities and dissimilarities in the functionalities of user-centric, content-centric and hybrid visualization.	CO5
	9. Distinguish between matrix based and node-link based diagrams.	CO5

$Part - C (2 \times 10 = 20 \text{ Marks})$

-	10. Discuss the different solutions that could be used to make visualization in	CO5
KL2	readable form when scaling to larger networks	
	(OR)	1 (Sept.)
	11. Explain how the combination of matrix and node link diagrams is leveraged for	CO5
KL2	better visualization. 12. Analyze and explain the process of how Girvan-Newman algorithm is applied	COS
KI3	to the below network for detecting the communities.	COS
KL3	to the below network for detecting the command	

