V47 Temperaturabhängigkeit der Molwärme von Festkörpern

Dominik Birkwald, Domink.Birkwald@tu-dortmund.de David Pachurka, David.Pachurka@tu-dortmund.de

Durchführung 11.12.2017, Abgabe

1 Ziel

Im folgenden werden drei Modelle vorgestellt, welche Näherungen zur Temperaturabhängigkeit der Molwärme von Festkörpern geben. Daraufhin wird die Molwärme gemessen und so das Debye-Modell untersucht werden.

2 Theorie

2.1 Klassisches Modell

Das klassische Modell geht davon aus, dass Molwärme sich gleichmäßig auf alle Freiheitsgrade der Atome verteilt. Jedes Atom hat so eine Energie von $\frac{1}{2}k_BT$ pro Freiheitsgrad. Im Kristallgitter hat jedes Atom drei Freiheitsgrade und somit eine Energie von

$$\langle u \rangle = \frac{6}{2} k_B T. \tag{1}$$

Für einen Mol gilt somit

$$U = 3k_B N_L T = RT, (2)$$

mit der Loschmidtschen Zahl N_L und der allgemeinen Gaskonstanten R. Durch Ableiten lässt sich die spezifische Molwärme berechnen.

$$C_v = \left(\frac{\partial U}{\partial T}\right) = 3R\tag{3}$$

Offensichtlich widerspricht dies den Erwartungen, da die spezifische Molwärme temperaturund materialunanbhängig ist. Allerdings gehen im Allgemeinen die Grenzwerte der spezifischen Molwärme gegen 3R.

2.2 Modell nach Einstein

Das Einsteinsche Modell beachtet, dass die Schwinungsenergie gequantelt ist, indem sie die Annahme trifft, dass alle Atome mit der Kreisfrequenz ω schwingen. Außerdem werden nur ganzzahlige vielfache der Energie $\hbar\omega$ angenommen. Mit der Wahrscheinlichkeit, dass ein Oszillator die Energie $n\hbar\omega$ hat

$$W(n) = \exp{-\frac{n\hbar\omega}{k_B T}} \tag{4}$$

kann die mittlere Energie berechnet werden.

$$\langle u \rangle = \frac{\sum_{n=0}^{\inf} n\hbar\omega \exp{-\frac{n\hbar\omega}{k_B T}}}{\sum_{n=0}^{\inf} \exp{-\frac{n\hbar\omega}{k_B T}}}$$

$$\langle u \rangle = \frac{\hbar\omega}{\exp{\frac{\hbar\omega}{k_B T}} - 1} < k_B T$$
(6)

$$\langle u \rangle = \frac{\hbar \omega}{\exp \frac{\hbar \omega}{k_B T} - 1} < k_B T \tag{6}$$

Durch für die spezifische Wärme ergibt sich durch Ableiten

$$C_{vE} = 3R \left(\frac{1}{T} \frac{\hbar \omega}{k_B}\right)^2 \frac{\exp \frac{\hbar \omega}{k_B T}}{\left(\exp \frac{\hbar \omega}{k_B T} - 1\right)^2}$$
 (7)

Wie im klassischen Modell geht der Limes für T gegen inf gegen 3R. Besonders im Bereich tiefer Temperaturen ist diese Näherung nicht sehr genau, da die Atome tatsächlich mit verschiedenen Frequenzen schwingen.

2.3 Debye-Modell

Das Debye-Modell ersetzt man die Frequenz mit einer Frequenzverteilung $Z(\omega)$. Diese ist

$$Z(\omega)d\omega = \frac{3L^3}{2\pi^2 v^3} \omega^2 d\omega \text{ oder} \qquad Z(\omega)d\omega = \frac{3L^3}{2\pi^2} \omega^2 \left(\frac{1}{v_l^3} + \frac{1}{v_t^3}\right) d\omega \qquad (8)$$

wenn man die longitudinal und transversal Geschwindigkeiten unterscheidet. Da ein Kristall endlich viel Atome hat folgt, dass er auch endlich viele Eigenschwingungen hat. Deshalb gibt es die Grenzfrequenz ω_D , die Debye-Frequenz. Sie ist gegeben durch

$$\int_{0}^{\omega_{D}} Z(\omega) d = 3N_{L}$$
 (9)

Daraus folgt

$$\omega_D^3 = \frac{6\pi^2 v^3 N_L}{L^3} \qquad \text{oder } \omega_D^3 = \frac{18\pi^2 N_L}{L^3} \frac{1}{\frac{1}{v_1^3} + \frac{1}{v_2^3}}$$
 (10)

So ergibt sich für die Verteilung der Frequenzen

$$Z(\omega)d\omega = \frac{9N_L}{\omega_D^3}\omega^2d\omega \tag{11}$$

und für die spezifische Molwärme, mit $x=\frac{\hbar\omega}{k_BT}$ und $\frac{\theta_D}{T}=\frac{\hbar\omega_D}{k_BT},$

$$C_{vD} = 9R \left(\frac{\theta_D}{T}\right)^3 \int_0^{\omega_D/T} \frac{x^4 \exp x}{(\exp x - 1)} \mathrm{d}x. \tag{12}$$

 θ_D ist die sogenannte Debye-Temperatur. Sie ist eine materialspezifische Größe.

Wie im klassischem und im einsteinschem Modell geht die spezifische Molwärme auch im Debye-Modell gegen 3R für T gegen inf.