1 Groups 1.4 The Sylow theorem

- 1. If $a \in G$ with ord(a) = 5, then < a > is a Sylow 5-subgroup of group G whose order is 20. Since 5k + 1|4, k = 0, then G has a unique Sylow 5-subgroup, thus all elements of order 5 in G are contained in < a >, hence there are 4 elements of order 5 in G.
- 2. It is obvious that $\langle \sigma \rangle$ is a subgroup of S_p . Since $|S_p| = p!$ and $|\langle \sigma \rangle| = p$, $|\langle \sigma \rangle| ||S_p|$. Moreover, (p, (p-1)!) = 1, therefore $p^2 \nmid p!$. Hence $\langle \sigma \rangle$ is a Sylow p-subgroup of S_p .
- 3. For any Sylow p-subgroup Q of G, then there are $a \in G$ such that $a^{-1}Pa = Q$, thus $Q = aPa^{-1} \subseteq aHa^{-1} \subseteq H$.
- 4. $|S_5| = 120 = 2^3 \times 3 \times 5$. Since all Sylow 3-subgroups of S_5 are cyclic groups, consider $<\sigma>$ s which is generated by a 3-cycle acts on the set $\{1,2,3,4,5\}$, then there are 1 element or 3 elements contained in the orbit $<\sigma>$ ·a and there are only one orbit contains 3 elements, therefore $\sigma=(i,j,k)$ for some $1 \leq i,j,k \leq 5$.

Since $|S_4| = 24 = 8 \times 3$, 2l + 1|3, then l = 0, 1, thus there are 1 or 3 Sylow 2-subgroup of S_4 . $K = \{(1), (12)(34), (13)(24), (14)(23)\}$ is a subgroup with order 4 of S_4 , then

$$\langle K \cup \{(12)\} \rangle = \{(1), (12)(34), (13)(24), (14)(23), (12), (34), (1324), (1423)\},\$$

$$\langle K \cup \{(13)\} \rangle = \{(1), (12)(34), (13)(24), (14)(23), (24), (13), (1234), (1432)\},\$$

$$\langle K \cup \{(14)\} \rangle = \{(1), (12)(34), (13)(24), (14)(23), (14), (23), (1342), (1243)\}$$

are subgroups of order 8, therefore these three subgroups are all Sylow 2-subgroups of S_4 . For S_5 , since $2k+1|3\times 5$, k=0,1,2,7, then then there are 1, 3,5 or 15 Sylow 2-subgroups. In the above three Sylow 2-subgroups, substitute 1,2,3,4 with 5 respectively, then we get another 12 Sylow 2-subgroups of S_5 . Hence there are 15 Sylow 2-subgroups of S_5 .

Similarly, Sylow 3-subgroups of S_4 are generated by (i, j, k) for some $1 \le i, j, k \le 4$, therefore there are 4 Sylow 3-subgroups.

For S_3 , there are 3 Sylow 2-subgroups:< (12) >,< (13) >,< (23) >, and unique Sylow 3-subgroup:< (123) >.

- 5. (a) For $ord(G)=12=2^2\times 3$, since 3k+1|4, k=0,1. If k=0, then there are only one Sylow 3-subgroup P, thus $P=a^{-1}Pa$ for any $a\in G$. If k=1, then there are 4 Sylow 3-subgroup. Since there are 8 elements of order 3, there are 4 elements at most contained in Sylow 2-subgroup, thus there are only one Sylow 2-subgroup Q, hence $Q=a^{-1}Qa$ for any $a\in G$.
 - (b) For $ord(G) = 28 = 2^2 \times 7$, since 7k + 1|4, k = 0, then there are only one Sylow 7-subgroup P, thus $P = a^{-1}Pa$ for any $a \in G$.

- (c) For $ord(G)=56=2^3\times 7$, since $7k+1|8,\ k=0,1$. If k=0, then there are only one Sylow 7-subgroup P, thus $P=a^{-1}Pa$ for any $a\in G$. If k=1, then there are 8 Sylow 7-subgroup. Since there are 48 elements of order 7, there are 8 elements at most contained in Sylow 2-subgroup, thus there are only one Sylow 2-subgroup Q, hence $Q=a^{-1}Qa$ for any $a\in G$.
- (d) For $ord(G) = 200 = 2^3 \times 5^2$, since 5k + 1|8, k = 0, then there are only one Sylow 5-subgroup P, thus $P = a^{-1}Pa$ for any $a \in G$.
- 6. $|G| = p^n a$ where 1 < a < p, then pk + 1|a, we get k = 0, therefore there are only one Sylow p-subgroup H, thus $H = gPg^{-1}$ for any $g \in G$.
- 7. According to Exercise 1.3.9 $|C(G)| = p^s$ where $1 \le s \le 3$. If $ord(C(G) = p^2$, in G/C(G), define $aC(G) \cdot bC(G) = abC(G)$ for any $aC(G), bC(G) \in G/C(G)$, then G/C(G) is a group of order p. Therefore G/C(G) = aC(G) >, then $G = \{a^ib|0 \le i \le p-1, b \in C(G)\}$, while $a^ib \cdot a^jb' = a^{i+j}bb' = a^jb' \cdot a^ib$, thus G is an abelian group, it is contradiction. Hence |C(G)| = p, let $G/C(G) = \overline{(G)}$, then $\overline{(G)}$ is an abelian group of order p^2 . Since C(G) is nontrivial, $|C(\overline{(G)})| = p^s$ where s = 1, 2. If $|C(\overline{(G)})| = p$, then $\overline{(G)}$ is an abelian group; if $|C(\overline{(G)})| = p^2$, then $\overline{(G)}$ is an abelian group. Thus $abC(G) = aC(G) \cdot bC(G) = bC(G) \cdot aC(G) = baC(G)$, then $aba^{-1}b^{-1} = (ab)(ba)^{-1} \in C(G)$. While G is a nonabelian group, then there exist $a, b \in G$ such that $aba^{-1}b^{-1} \neq e$, hence $C(G) = aba^{-1}b^{-1} > aba^{-1}b^{-1}$
- 8. (1) Since $\overline{E_n} := \begin{pmatrix} \overline{1} \\ \ddots \\ \overline{1} \end{pmatrix} \in GL(n, \mathbb{Z}_p) \text{ and } \overline{E_n} := \begin{pmatrix} \overline{1} \\ \ddots \\ \overline{1} \end{pmatrix} \in SL(n, \mathbb{Z}_p), \ GL(n, \mathbb{Z}_p) \neq \emptyset \neq SL(n, \mathbb{Z}_p).$ For any $A = (\overline{a_{ij}}), B = (\overline{b_{ij}}), C = (\overline{c_{ij}}) \in GL(n, \mathbb{Z}_p), \ (AB)C = (\overline{u_{ij}})(\overline{c_{ij}}) = (\overline{d_{ij}}) \text{ where } \overline{u_{ij}} = \sum_{k=1}^{n} \overline{a_{ik}b_{kj}} \text{ and } \overline{d_{ij}} = \sum_{l=1}^{n} \overline{u_{il}c_{lj}}, \text{ since } \overline{d_{ij}} = \sum_{l=1}^{n} \sum_{k=1}^{n} \overline{a_{ik}b_{kl}c_{lj}} = \sum_{l=1}^{n} \overline{a_{ik}}(\sum_{l=1}^{n} \overline{b_{kl}c_{lj}}), \ (AB)C = A(BC).$ Since $A\overline{E_n} = A = \overline{E_n}A, \overline{E_n}$ is the identity of $GL(n, \mathbb{Z}_p)$. Since $|A||A * | = |A|\overline{E_n}$ and $|A| \neq \overline{0}, (\frac{1}{|A|}A*)A = \overline{E_n} = A(\frac{1}{|A|}A*),$ moreover $|\frac{1}{|A|}A*| = \frac{1}{|A|} \neq \overline{0},$ thus A is invertible. Hence $GL(n, \mathbb{Z}_p)$ is a group. Similarly, $SL(n, \mathbb{Z}_p)$ is a group.
 - (2) For any $A \in GL(n, \mathbb{Z}_p)$, $A = (\alpha_1, ..., \alpha_n)$ where $\alpha_i \in \mathbb{Z}_p^n, 1 \le i \le n$, and $\alpha_1, \alpha_2, ..., \alpha_n$ are linear independent. Take $\alpha_1 \ne 0$, then there are $p^n 1$ choice of α_1 . Given α_1 , choose α_2 such that α_1, α_2 are independent. While the vector which is linear dependent with α_1 has the formal $k\alpha_1$ where $k \in \mathbb{Z}_p$, there are P choice. Hence there are $p^n p$ choice of α_2 . Repeat this process, if we have selected $\alpha_1, \alpha_2, ..., \alpha_k, (k < n)$, then the vector which is linear dependent with $\alpha_1, ..., \alpha_k$ has the formal $\sum_{i=1}^k x_i \alpha_i$ where $x_i \in \mathbb{Z}_p, 1 \le i \le k$, there are p^k choice. Thus there are $p^n p^k$ choice of α_{k+1} . Hence $|GL(n, \mathbb{Z}_p)| = (p^n 1)(p^n p)...(p^n p^{n-1})$.

- 9. $|UT(n,\mathbb{Z}_p)| = p^{\frac{n(n-1)}{2}}$. Similar to Exercise 1.4.7, we could choose first n-1 column vectors of $A \in SL(n,\mathbb{Z}_p)$, and then choose α_n such that $|A| = \overline{1}$. Then the determination is k, k = 1, 2..., p-1 if $k\alpha_n$ is substituted for α_n . Hence $(p-1)|SL(n,\mathbb{Z}_p)| = |GL(n,\mathbb{Z}_p)|$, thus $|SL(n,\mathbb{Z}_p)| = \frac{(p^n-1)(p^n-p)...(p^n-p^{n-1})}{p-1} = (p^n-1)...(p^n-p^{n-2})p^{n-1} = p^{\frac{(n-1)n}{2}}(p^n-1)...(p^2-1)$. While $p \nmid p^k 1$ for k = 2,...n, therefore $UT(n,\mathbb{Z}_p)$ is a Sylow p-subgroup of $SL(n,\mathbb{Z}_p)$. Since $|GL(n,\mathbb{Z}_p)| = (p^n-1)(p^n-p)...(p^n-p^{n-1}) = p^{\frac{(n-1)n}{2}}(p^n-1)...(p^2-1)(p-1)$, $UT(n,\mathbb{Z}_p)$ is a Sylow p-subgroup of $GL(n,\mathbb{Z}_p)$.
- 10. Since aN = Na for any $a \in G$, $PN = NP \le G$, we can get $[NP: P] = [N: P \cap N]$. Because $p \nmid [G: P]$ and [G: P] = [G: NP][NP: P], $p \nmid [N: N \cap P]$. While $|P| = [P: N \cap P]|N \cap P|$, hence $|N \cap P| = p^s$. But $|N| = [N: N \cap P]p^s$, $p \nmid [N: N \cap P]$, therefore $N \cap P$ is a Sylow p-subgroup of N. For example, $G = A_{12}$, $P = \{(1), (12)(34), (13)(24), (14)(23)\}$, N = <(123) >, then $N \cap P = \{(1)\}$ is not a Sylow subgroup.
- 11. It is obvious that $N_G(N_G(P)) \supseteq N_G(P)$. For any $a \in N_G(N_G(P))$, then $aN_G(P)a^{-1} = N_G(P)$, hence $aPa^{-1} \subseteq aN_G(P)a^{-1} = N_G(P)$. Since P is a Sylow subgroup of G, P is a Sylow subgroup of $N_G(P)$, thus aPa^{-1} is a Sylow subgroup of $N_G(P)$, therefore there exists $b \in N_G(P)$ such that $aPa^{-1} = bPb^{-1} = P$. Whence $a \in N_G(P)$, and $N_G(N_G(P)) = N_G(P)$ for the arbitrary of a.