Contents

1	Definizione			
	1.1	Formula	1	
	1.2	Rapporto con Fourier	1	
2	F			
	2.1	Sequenza finita	2	
	2.2	Monolatera destra	2	
	2.3	Monolatera sinistra	3	
	2.4	Importanza della RoC	3	
3	Teo	remi	3	
	3.1	Linearità	3	
	3.2	Ritardo	3	
	3.3	Inversione temporale	3	
	3.4	Derivazione in z	3	
	3.5	Convoluzione	4	

1 Definizione

1.1 Formula

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

con z variabile complessa

1.2 Rapporto con Fourier

prendiamo la definizione di trasformata z \mathbf{e} la definizione di Fourier per sequenze

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$
$$\overline{X}(F) = \sum_{n = -\infty}^{\infty} x[n]e^{-j2\pi Fn}$$

le due formule sono abbastanza simili, entrambe hanno $\sum x[n]$ qualcos a^{-n} , nel caso di Fourier questo qualcosa $=e^{j2\pi F}$, nel caso della z questo può essere qualsiasi cosa, vediamo allora il caso particolare in cui z ha la forma $e^{j2\pi F}$.

$$X(z)|_{z=e^{j2\pi F}}$$

$$=(\sum_{n=-\infty}^{\infty}x[n]z^{-n})|_{z=e^{j2\pi F}}$$

$$=\sum_{n=-\infty}^{\infty}x[n](e^{j2\pi F})^{-n}$$

$$=\sum_{n=-\infty}^{\infty}x[n]e^{-j2\pi Fn}$$

$$=\overline{X}(F)$$

quindi $X(z)|_{z=e^{j2\pi F}}=\overline{X}(F)$, vale a dire, la trasformata z equivale alla trasformata di Fourier per sequenze nei punti della forma $z=e^{j2\pi F}$, se lo riscriviamo come $z=1\times e^{j2\pi F}$ si può notare un po' meglio che questa è una forma generica per indicare punti con modulo 1 e fase arbitraria, in umanese vuol dire che è un punto sul cerchio unitario. (se F arbitrario $\in (-\frac{1}{2}, \frac{1}{2})$ allora $2\pi F$ arbitrario $\in (-\pi e \pi)$)

2 Esempii

2.1 Sequenza finita

2.2 Monolatera destra

si prenda la sequenza

$$x[n] = 2^n u[n]$$

allora

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$
$$X(z) = \sum_{n = -\infty}^{\infty} x[n] = 2^n u[n]z^{-n}$$

per il gradino

$$X(z) = \sum_{n=0}^{\infty} x[n] = 2^n z^{-n}$$
$$X(z) = \sum_{n=0}^{\infty} x[n] = (2z^{-1})^{-1}$$

essendo questa diventata una serie geometrica, si ricordi intanto che

$$f(q) = \sum_{n=0}^{\infty} q^n \Rightarrow f(q) = \begin{cases} \frac{1}{1-q} & \text{se } |q| < 0\\ \text{non converge} & \text{se } |q| \ge 0 \end{cases}$$

- 2.3 Monolatera sinistra
- 2.4 Importanza della RoC
- 3 Teoremi
- 3.1 Linearità
- 3.2 Ritardo
- 3.3 Inversione temporale
- 3.4 Derivazione in z

L'ipotesi è che

$$x[n] \iff X(z)$$

 $nx[n] \iff -z \frac{dX(z)}{dz}$

la dimostrazione è che se

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

allora facendo la derivata a entrabmi i lati ottieni

$$\frac{dX(z)}{dz} = \frac{d}{dz} \left(\sum_{n=-\infty}^{\infty} x[n]z^{-n} \right)$$

sia la derivata che la sommatoria sono lineari, quindi puoi fare

$$\frac{dX(z)}{dz} = \sum_{n=-\infty}^{\infty} \frac{d}{dz} (x[n]z^{-n})$$

x[n] non dipende da z, quindi si porta fuori dalla derivata e

$$\frac{dX(z)}{dz} = \sum_{n=-\infty}^{\infty} \frac{d}{dz} (x[n]z^{-n})$$

$$\frac{dX(z)}{dz} = \sum_{n=-\infty}^{\infty} x[n] \frac{dz^{-n}}{dz}$$

$$\frac{dX(z)}{dz} = \sum_{n=-\infty}^{\infty} x[n] - nz^{-n-1}$$

$$\frac{dX(z)}{dz} = \sum_{n=-\infty}^{\infty} x[n] - nz^{-n}z^{-1}$$

 z^{-1} non dipende da
n quindi lo portiamo fuori insieme al segno — del-nintrodotto dalla derivazione

$$\frac{dX(z)}{dz} = -z^{-1} \sum_{n=-\infty}^{\infty} x[n]nz^{-n}$$
$$-z\frac{dX(z)}{dz} = \sum_{n=-\infty}^{\infty} x[n]nz^{-n}$$

si nota 1 che la parte destra dell'equazione corrisponde a $\mathcal{Z}\{nx[n]\},$ da ciò si ottiene la tesi.

$$\mathcal{Z}\{nx[n]\} = -z\frac{dX(z)}{dz}$$

3.5 Convoluzione

¹come se qualcuno andasse effettivamente a cercarsi ste cose