

NVF OpenData

Background & Problem Definition

Background

- Housing maintenance violation in the United States affects tenants, landlords, and city officials
- Many individuals find it difficult to obtain housing violation information
 - Challenging for landlords to track outstanding violations
 - City officials need an organized way to monitor and enforce housing regulations
- Goal:
 - Create a website and simplify the violation lookup process for tenants, landlords, and city officials in NYC area
 - Allow users to key in location details to search for potential violations

Problem Definition

- This project is significant as it helps ensure safe living conditions for everyone including tenants, landlords, and city officials
- From this project, we hope to gain insights into violation patterns across the city which helps to improve housing standards

Data Source Specification

- Department of Housing Preservation & Development (HPD) Dataset (<u>NYC opendata</u>)
 - Size: 4.35 GB (csv format)
 - Approximately 9.89M rows and 41 columns
 - Unique violation ID and building ID
 - Detailed address information (house number, street, zip, apartment)
 - Dates and times of inspection or violation discovery
 - Additional descriptive information about the violation
- This dataset is useful since it provides a clear record of housing violations and offers a practical context for our topic. It has various kinds of variables (violation codes, addresses, text descriptions) that enable us to do a comprehensive analysis
- The data source is published by a reliable source, which ensures authenticity for our data management tasks

NY Gopen Data

3

Technical Viability & Relevance

- Python will be used to create an ETL pipeline that extracts the data from the CSV file, transforms the data by handling missing values, convert data types, and filter relevant records, and finally load the transformed data into a PostgreSQL database
- Using psycopg, we define the define the table schemas and insert the data into Postgres

- Data contains structured data with rows and columns. Postgres is a RDBMS that satisfies our data requirements to maintain accurate historical records of violations
- Prioritize consistency and availability over partition tolerance in the CAP Theorem:
 - Dataset contains official records of housing code violations, which must adhere to consistency for the data to be accurate and up to date
 - NYC government and public rely on this dataset for real-time queries. For example, tenants checking violations on their buildings or landlords verifying compliance. Thus, we must prioritize availability to ensure the data remains accessible 24/7 for audits

- As a front-end Javascript library, React.js will be used to build an interaction web application that allows users to search housing violation records in different NYC neighborhoods
- Integrate React with PostgreSQL as the backend to fetch violation data

Data Cleaning

Before

(9936776, 20) ViolationID int64 BuildingID int64 BoroID int64 Borough object HouseNumber object StreetName object StreetCode int64 Postcode int64 object Apartment object Story Class object InspectionDate object ApprovedDate object **NOVDescription** object CurrentStatus object CurrentStatusDate object NovType object ViolationStatus object RentImpairing object NTA object

After

(9936776, 21)	
ViolationID	Int64
BuildingID	Int64
BoroID	Int64
Borough	string[python]
HouseNumber	string[python]
StreetName	string[python]
StreetCode	Int64
Postcode	Int64
Apartment	string[python]
Story	string[python]
Class	string[python]
InspectionDate	<pre>datetime64[ns]</pre>
ApprovedDate	datetime64[ns]
NOVDescription	string[python]
CurrentStatus	string[python]
CurrentStatusDate	datetime64[ns]
NovType	string[python]
ViolationStatus	string[python]
RentImpairing	boolean
NTA	string[python]
ClassDescription	object

Rename Columns

```
= df.rename(columns={
 'ViolationID'
                        : 'violation id',
'BuildingID'
                        : 'building id',
 'BoroID'
                        : 'borough_id',
                        : 'class_type',
 'InspectionDate'
                        : 'inspection_date',
                        : 'approved_date',
                        : 'current_status_date'
 'NOVDescription'
                        : 'nov_description',
                         'nov_type',
 'NovType'
                         'violation status',
 'RentImpairing'
                          'rent_impairing',
'NTA'
                          'nta_name',
 'StreetCode'
                        : 'street_code',
'Postcode'
                       : 'house_number',
'StreetName'
                        : 'street name',
'Apartment'
                        : 'apartment',
                        : 'current_status',
                        : 'class_description',
 'Borough'
                        : 'borough_name'
```

5

NYC OpenData

Database Design - Entity Relationship Diagram

 Relational database in 3rd normal form (3NF) to reduce data redundancy, improve data integrity, and maintain referential integrity

Data Table (Borough, Violation Class, NTA)

* nta_id bigint ◆∇	* nta_name text	* † borough ♦ ∀ bigint
1	Williamsbridge-Olinville	2
2	Mount Hope	2
3	Prospect Lefferts Gardens-Wingate	3
4	Belmont	2
5	Grasmere-Arrochar-South Beach-Dongan Hills	5
6	Co-op City	2
7	Queens Village	4
8	Mount Eden-Claremont (West)	2
9	Manhattanville-West Harlem	1
10	Inwood	1
11	Upper East Side-Lenox Hill-Roosevelt Island	1
12	Astoria (North)-Ditmars-Steinway	4
13	Bedford-Stuyvesant (East)	3
14	Brownsville	3
15	University Heights (South)-Morris Heights	2

NYE OpenData

Data Table (Building)

* building_id	house_number text	street_name text	street_code bigint	postcode bigint ◆7	nta_id ◆ ▽ bigint	* † borough ♣ 7 bigint
1016834	66	SOUTH 6 STREET	78630	11249	96	3
1016734	2077	RYER AVENUE	26272	10457	2	2
1016638	370	54 STREET	92800	11220	204	3
1016477	373	68 STREET	99800	11220	76	3
1016342	165	MALCOLM X BOULEVARD	73190	11221	13	3
1016189	144-39	SANFORD AVENUE	61390	11355	31	4
1016184	603	4 AVENUE	54300	11215	204	3
1016156	2615	FARRAGUT ROAD	40230	11210	20	3
1016149	481	EAST 53 STREET	33713	11203	86	3
1015925	145-26	177 STREET	24940	11434	160	4
1015891	110-36	SAULTELL AVENUE	61480	11368	148	4
1015840	147-17	223 STREET	26990	11413	160	4
1015779	25-10	94 STREET	18740	11369	150	4
1015582	1124	AVENUE K	14130	11230	68	3
1015555	578	5 AVENUE	55800	11215	170	3
1015440	751	CROTONA PARK NORTH	22520	10457	46	2

Data Table (Violation)

NYE OpenData

9

Data Quality

Dimension	Assessment
Accuracy	This dataset is maintained by the City of New York. It's the most accurate in terms of housing violations and actual information being reported.
Completeness	There are some null values in the data. However, the dataset contains 9+ million rows and 41 columns which provide comprehensive data
Consistency	Some columns in the dataset are stored as the wrong type, which is a clear sign of data inconsistency. This is a major issue when inserting data
Timeliness	Per the NYC HPD, the data is updated daily on NYC OpenData (latest updated on May 1, 2025)
Validity	While this dataset meets basic validity of being structured data in rows and columns, many columns' data types are improperly formatted
Uniqueness	The dataset is unique as the information comes directly from the City of New York. There are unique buildings, housing address, and street data

Technical Challenges

- Data inconsistency
 - Some data consists of special / unusual characters
- ETL process
 - Need to make sure Pandas dataframe aligns with PostgreSQL supported data types
 - Convert pandas NaN & NaT to None so PostgreSQL can read
- Database Design
 - Deciphering relationships between different tables
 - Referential integrity issues
- Inserting Data
 - Speed up runtime of inserting 9M rows of data
 - o Process in-memory vs on disk

NYC OpenData

11

Data Governance & Licensing

Governance

- Organization
 - NYC HPD. Each violation is verified by the NYC Housing Maintenance Code or New York State Multiple Dwelling Law
- Metadata
 - Detailed information about violations and location information (41 columns)
- Data Privacy
 - NYC HPD open source data
- Business process integration
 - Business owner have to fix hazardous violation within 24 hours. Tenants have rights to view the violation history
- Master Data Integration
 - BIN (building id), detailed location (zip, borough)
- Managing the Data Lifecycle
 - HPD open source data; Inspection date (Years: 1909 to 2025)

Licensing

- Licensed under The Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0)
- Housing violation data sourced from NYC Open Data under their terms of use

Scalability & Cost

Hardware & Software	Cost
10 core CPU (Intel i5)	~\$200
32GB RAM	~\$50
1TB SSD	~\$75
ASUS Z790 Motherboard	~\$180
300W Power Supply	~\$85
Linux	Free
PostgreSQL	Free
Python	Free
Docker	Free
React.js	Free

Total: ~\$590 (Hardware + Software)

Cloud Cost Estimation for 1TB, 10TB, 50TB Datasets:

- On-premise is sufficient to handle our current workload with a cost estimate of \$590
- As we scale our service by entering more US markets and adding more data, we will use cloud computing services like AWS EC2 as a pay-as-you-go service to meet user demand

