PARTE 1. RESTRICCIONES DE INTEGRIDAD

- Suponga que se aplican las siguientes operaciones de actualización directamente a la base de datos de la Figura 7.7. Analice todas las restricciones de integridad que viola cada operación, si lo hacen, y las diferentes formas de imponer dichas restricciones.
 - Insertar < 'Robert', 'F', 'Scott', '943775543', '1952-06-21', '2365 Newcastle Rd, Belaire, TX', M, 58000, '888665555', 1> en EMPLEADO.
 - b) Insertar < 'ProductoA', 4, 'Bellaire', 2> en PROYECTO.
 - Insertar < 'Producción', 4, '943775543', '1998-10-01' > en DEPARTAMENTO.
 - d) Insertar < '677678989' nulo, '40.0' > en TRABAJA_EN.
 - e) Insertar < '453453453', 'John', M, '1970-12-12', 'CONYUGE' > en DEPENDIENTE.
 - Eliminar las tuplas de TRABAJA_EN con NSSE = '333445555'.
 - g) Eliminar la tupla EMPLEADO con NSS = '987654321'.
 - h) Eliminar la tupla PROYECTO con NOMBREP = 'ProductoX'.
 - Modificar NSS_JEFE y FECHA_INIC_JEFE de la tupla DEPARTAMENTO con NUMEROD = 5 con los valores '123456789' y '1999-10-01', respectivamente.
 - Modificar el atributo NSS_SUPERV de la tupla EMPLEADO con NSS = '999887777' cambiándolo a '943775543'.
 - Modificar el atributo HORAS de la tupla TRABAJA_EN con NSSE = '999887777' y NUMP = 10 cambiándolo a '5.0'.

EMPLEADO	NOMBRE.	INIC	APELLIDO	NSS	FECHA_NCTO	DIRECCIÓN	SEXO	SALARIO	NSS_SUPERV	ND
	John	.В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	н	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	Н	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	M	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	M	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	Н	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	M	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	н	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	Н	55000	nulo	1

				LOCALIZACIONES	_DEPT	NÚMEROD	LOCALIZACIÓND
						1	Houston
					. [4	Stafford
DEPARTAMENTO	NOMBRED	NÚMEROD	NSS_JEFE	FECHA_INIC_JEFE	[5	Bellaire
	Investigación	5	333445555	1988-05-22	[5	Sugarland
	Administración	4	987654321	1995-01-01] [5	Houston
	Dirección ·	1	888665555	1981-06-19			

TRABAJA_EN	NSSE	NP	HORAS
	123456789	1	32,5
	123456789	2	7,5
7	666884444	3	40,0
h-	453453453	1	20,0
	453453453	2	20,0
	333445555	2	10,0
	333445555	3	10,0
81	333445555	10	10,0
8 85:	333445555	20	10,0
	999887777	30	30,0
	999887777	10	10,0
-	987987987	10	35,0 ·
6	987987987	30	5,0
5:7' 5:2'	987654321	30	20,0
B:88 :	987654321	20	15,0
B1814 .	888665555	20	- nulo

			-	
PROYECTO	NOMBREP	NÚMEROP	LOCALIZACIÓNP	ND
	ProductoX	. 1	Bellaire	5
. '[ProductoY	2	Sugarland	5
1	ProductoZ	3	Houston	5
	Automatización	10	Stafford	4
	Reorganización	20	Houston	1
i	Nuevos beneficios	30	Stafford	4

2) Dado el siguiente esquema de relación en lenguaje SQL

```
CREATE TABLE empleado

(
num_empleado character(2) NOT NULL,
nombre text,
responsable character(2),
CONSTRAINT pk PRIMARY KEY (num_empleado),
CONSTRAINT fk FOREIGN KEY (responsable)

REFERENCES empleado (num_empleado)
ON UPDATE RESTRICT ON DELETE CASCADE
);
Y la siguiente extensión de la relación empleado:
```

EMPLEADO

num_empleado	nombre	responsable
E1	Juan	NULL
E2	María	E1
E3	Pedro	E1
E4	Isabel	E3
E5	Lucía	E3

Se pide:

- a) Explique las restricciones definidas para este caso concreto e indique si la extensión de la relación EMPLEADO es válida.
- b) Represente la extensión resultante para cada uno de los siguientes casos y explique brevemente el resultado.
 - b.1 Se borra el empleado E5.
 - b.2 Se borra el empleado E1.
 - b.3 Se modifica el atributo num_empleado del empleado E4 a E40. b.4 Se modifica el atributo num_empleado del empleado E5 a E2.

PARTE 2. Ejercicios Dependencias Funcionales y Normalización

- Suponer el esquema de relación R(A,B,C,D,E) con el siguiente conjunto F de dependencias funcionales: F{ A→BC , CD→E , B→D , E→A}.
 - a. Demostrar que la descomposición del esquema R en R1(A,B,C) y R2(A,D,E) es una descomposición de reunión sin pérdida.
 - Demostrar que la siguiente descomposición R1(A,B,C) y R2(C,D,E) de R(A,B,C,D,E) no es una descomposición de reunión sin pérdida.
- 2) Indicar todas las dependencias funcionales que satisface la relación siguiente

Α	В	С
a ₁	b1	c1
a ₁	b1	c2
a2	b1	c1
a2	b ₁	c3

3) Para el siguiente conjunto de dependencias funcionales F del esquema de relación

R(A,B,C,D,E): F{ $A \rightarrow BC$, $CD \rightarrow E$, $B \rightarrow D$, $E \rightarrow A$ } , se pide:

- a. Calcular el cierre del conjunto F.
- b. Calcular las claves candidatas de R.
- c. Calcular el cierre del atributo B.
- d. Calcular el recubrimiento canónico de F.
- 4) Dado el esquema de base de datos R(a,b,c) y una relación r del esquema R, escribir una consulta SQL para comprobar si la dependencia funcional b→c se cumple en la relación
 - r.¿Cómo se podría hacer cumplir siempre esa dependencia funcional en la base de datos?
- 5) Proporcionar un ejemplo de esquema de relación R y de un conjunto F de dependencias funcionales tales que haya al menos tres descomposiciones de reunión sin pérdida distintas de R en FNBC.
- 6) Dada la siguiente relación

dni	nombre	calle	ciudad
31276123	Luis	Bravo Murillo	Madrid
52233364	Antonio	Bravo Murillo	Barcelona
1291621	Luis	Goya	Sevilla

Normalizarla (si no lo está) hasta FNBC.

7) Dada la siguiente relación, utilizada para almacenar información sobre los artículos que un dependiente vende, además de información del propio dependiente, normalizarla hasta FNBC

	dni	calle	ciudad	codigo	cantidad
	31276123	Bravo Murillo	Madrid	1	10
1	31276123	Bravo Murillo	Madrid	2	3
1	52233364	Bravo Murillo	Barcelona	1	4
1	1291621	Goya	Sevilla	3	7

8) Normalizar la siguiente relación:

dni	calle	ciudad	comunidad	codigo	cantidad
31276123	Bravo Murillo	Madrid	Madrid	1	10
31276123	Bravo Murillo	Madrid	Madrid	2	3
52233364	Bravo Murillo	Barcelona	Cataluña	1	4
1291621	Goya	Sevilla	Andalucia	3	7

9) Normalizar hasta FNBC una relación R(a,b,c,d) cuyo diagrama de dependencias funcionales es:

10) Normalizar hasta 5FN una relación R(a,b,c,d,e) cuyo diagrama de dependencias funciones es:

Nota: el rectángulo que engloba a 2 atributos o más es la clave primaria

- 11) Normalizar hasta FNBC una relación R(dni, nombre, codigo, cantidad) que representa una base de datos con información sobre proveedores, códigos de piezas y cantidades que de esa pieza vendan los proveedores. Se impone la condición que NO existen dos instancias de nombre repetidas en toda la relación.
- 12) Normalizar hasta FNBC una relación R(estudiante, asignatura, profesor) que representa una base de datos con información sobre alumnos, asignaturas y profesores que imparten las mismas, en un centro de enseñanza. Se imponen además las siguientes restricciones:
 - Para cada asignatura, cada estudiante tiene sólo un profesor.
 - Cada profesor sólo imparte una asignatura.
 - Una asignatura puede estar dadas por varios profesores.

- 13) Normalizar hasta FNBC una relación R(dni, nif, ciudad, provincia, teléfono, codtel) que representa una base de datos con información sobre personas físicas. El atributo codtel representa el prefijo telefónico de cada provincia. Se impone como restricción el que varias personas pueden tener el mismo teléfono.
- 14) Normalizar hasta FNBC una relación R(a,b,c,d) cuyo diagrama de dependencias es el siguiente:

Nota: el rectángulo que engloba a 2 atributos o más es la clave primaria

- 15) Normalizar hasta FNBC una base de datos de una academia que contenga información sobre cursos, profesores, libros, editorial de los libros, ciudad de la editorial, teléfono de los profesores y aulas. Se imponen las siguientes restricciones:
 - Cada Curso, es impartido siempre por un grupo bien definido de profesores.
 - Cada Curso, tiene un grupo bien definido de libros (se utilizan todos ellos).
 - Cada Curso impartido por un profesor con un cierto libro, se realizará en un aula distinta.

Se muestra una hipotética tabla con los tipos de datos anteriormente citados.

curso	profesor	libro	aula	editorial	ciudad	teléfono
Fisica	Luis	Α	1	Ciencia	Madrid	212121
Física	Luis	В	2	Saber	Sevilla	212121
Física	Paco	Α	3	Ciencia	Madrid	434343
Física	Paco	В	4	Saber	Sevilla	434343
Lengua	Pepe	С	5	Saber	Sevilla	545454
Lengua	Pepe	D	6	Futuro	Barcelona	545454
Lengua	Ana	С	7	Saber	Sevilla	323232
Lengua	Ana	D	8	Futuro	Barcelona	323232
Lengua	Juan	С	9	Saber	Sevilla	121212
Lengua	Juan	D	10	Futuro	Barcelona	121212

- **16)** Dado el esquema de relación R(A,B,C,D,E)
 - a) Escribir una consulta SQL que permita determinar si se cumple la dependencia AB→C. Justificar la respuesta.
 - b) Si la relación R se descompone en R1(C,D,E) y R2(A,B,D,E). Se podría determinar utilizando SQL si es una descomposición sin pérdida?. Si es así, escribir una consulta que lo comprobase. Justificar la respuesta.
- 17) Sea el esquema de relación R(A,B,C,D,E,G) con el conjunto de dependencias funcionales F={ABD \rightarrow EG, A \rightarrow B, A \rightarrow D, CB \rightarrow DG, AG \rightarrow EB, G \rightarrow BA}. Se pide:
- 1) Hallar todas las claves. Justificar la respuesta.
- 2) Hallar el recubrimiento canónico de F. Mostrar los pasos seguidos.
- 3) Considerar a descomposición de R en R1(A,B,E,G) y R2(B,C,D,G). ¿Es una descomposición de reunión sin pérdida?. Justificar la respuesta.
- 4) Justificar en qué forma normal se encuentra cada una de las relaciones del apartado c) y normalizar esa descomposición hasta la forma normal más alta posible.
- 18) Se conocen las siguientes dependencias funcionales de una realidad F={A→BCD, B→A, D→C, E→D, F→GH, I→A}

Alguien diseñó el siguiente esquema para la realidad anterior

Se pide:

- a) Obtener todas las claves candidatas de cada tabla. Justificar.
- b) Obtener la forma normal del esquema anterior. Justificar.
- c) Normalizar el esquema a FNBC y dar todas las claves candidatas cada una de las tablas del esquema en FNBC.
- d) Determinar si se perdieron dependencias funcionales indicando cuales han sido.