Tópicos de Matemática Discreta

– Exame – Época Normal $[2^a$ chamada] — — 25.jan'07 $\,$ [resolução] — — —

- 1. Indique, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - (a) Se pelo menos uma das proposições p ou q é verdadeira, então o valor lógico da fórmula proposicional $(\neg p \land r) \Rightarrow (\neg q \lor (p \Leftrightarrow r))$ é o de falsidade.

Falsa: No caso em que $p \notin V$, $q \notin V$ e $r \notin F$, temos que a fórmula dada é verdadeira. Portanto, o facto de uma das proposição p ou q ser verdadeira não implica que a fórmula $(\neg p \land r) \Rightarrow (\neg q \lor (p \Leftrightarrow r))$ seja falsa.

(b) Existe um conjunto A tal que $\mathcal{P}(A) \cap A = \{\{1\}\}.$

Verdadeira: Consideremos $A = \{1, \{1\}\}$. Como $\mathcal{P}(A) = \{\emptyset, \{1\}, \{\{1\}\}, \{1, \{1\}\}\}\}$, segue-se que $\mathcal{P}(A) \cap A = \{\{1\}\}$.

(c) Dada a função $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $g(x) = x^2 |x|$, para todo o $x \in \mathbb{R}$, $g^{\leftarrow}(\mathbb{R}) = \mathbb{R}$ e $g(\mathbb{R}) = \mathbb{R}_0^+$.

Verdadeira: Facilmente se verifica que $g(x) \ge 0$ para todo o real x e se $x \in \mathbb{R}_0^+$ temos que x é imagem de $\sqrt[3]{x}$. Portanto, $g(\mathbb{R}) = \{g(x) : x \in \mathbb{R}\} = \mathbb{R}_0^+$. Como todas as imagens são reais, é claro que $g^+(\mathbb{R}) = \{x : g(x) \in \mathbb{R}\} = \mathbb{R}$.

(d) A função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = x se $x \le 0$ e por f(x) = x - 1 se x > 0 é injectiva e sobrejectiva.

Falsa: f não é injectiva porque, por exemplo, f(0) = 0 = f(1).

- 2. Construa uma prova para cada uma das seguintes afirmações:
 - (a) Se $A, B \in C$ são conjuntos não vazios tais que $A \cap B \neq \emptyset$ então $(A \times C) \cap (B \times C) \neq \emptyset$. Dado que $A \cap B \neq \emptyset$, sabemos que existe $x \in A \cap B$. Logo, $x \in A$ e $x \in B$. Como C é não vazio, existe $y \in C$. Assim, o par (x,y) é um elemento de $A \times C$ e também de $B \times C$, ou seja, $(x,y) \in (A \times C) \cap (B \times C)$, pelo que $(A \times C) \cap (B \times C) \neq \emptyset$.
 - (b) Para todo o natural $n \ge 1$, $6^n 5n + 4$ é um múltiplo de 5. Seja p(n) o predicado ' $6^n - 5n + 4$ é um múltiplo de 5' sobre os naturais. Mostremos que p(n) é uma proposição verdadeira para cada $n \in \mathbb{N}$.
 - $[\mathbf{i}]$ Para n=1,temos que $6^n-5n+4=5.$ Logo, p(1) é uma proposição verdadeira.
 - [ii] Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira. Então, $6^k 5k + 4 = 5q$, para algum $q \in \mathbb{Z}$. Note-se que, assim, $6^k = 5k + 5q 4$. Mostremos que p(k+1) também é verdadeira, ou seja, que $6^{(k+1)} 5(k+1) + 4 = 5p$, para algum $p \in \mathbb{Z}$:

$$6^{(k+1)} - 5(k+1) + 4 = 6^k \times 6 - 5k - 5 + 4$$
$$= (5k + 5q - 4) \times 6 - 5k - 1,$$

pela hipótese de indução. Segue-se, então, que

$$6^{(k+1)} - 5(k+1) + 4 = 30k + 30q - 24 - 5k - 1$$

$$= 25k + 30q - 25$$

$$= 5(5k + 6q - 5)$$

$$= 5p,$$

onde $p = (5k + 6q - 5) \in \mathbb{Z}$. Portanto, p(k+1) é verdadeira.

Por [i] e [ii], pelo Princípio de Indução em \mathbb{N} , podemos concluir que 6^n-5n+4 é um múltiplo de 5 para todo o natural n.

- 3. Considere o conjunto $A = \{1, 2, 3, 4, 5, 6\}$, as relações binárias $S = \{(2, 5), (3, 3), (3, 4), (5, 6)\}$ e $R = \{(1, 1), (1, 2), (2, 2), (3, 3), (3, 4), (4, 4), (4, 5), (5, 5), (6, 6)\}$ em A e a partição $\Pi = \{\{2, 5, 6\}, \{1, 3, 4\}\}$ de A.
 - (a) Determine o domínio e o contradomínio de $(S \circ R)^{-1}$.

$$S \circ R = \{(1,5), (2,5), (3,3), (3,4), (4,6), (5,6)\}.$$
 Logo,

$$(S \circ R)^{-1} = \{(5,1), (5,2), (3,3), (4,3), (6,4), (6,5)\}.$$

Assim, $dom((S \circ R)^{-1}) = \{3, 4, 5, 6\} \text{ e } contradom((S \circ R)^{-1}) = \{1, 2, 3, 4, 5\}.$

- (b) Diga, justificando, se a relação R é uma relação de equivalência. Para R ser uma relação de equivalência, R teria de ser reflexiva, simétrica e transitiva. Facilmente se verifica que R é reflexiva, mas R não é simétrica, já que $(1,2) \in R$ mas $(2,1) \notin R$, e tão pouco é transitiva, pois $(3,4), (4,5) \in R$ mas $(3,5) \notin R$. Portanto, R
- (c) Dê exemplo de uma relação binária em A que seja simétrica e transitiva mas não reflexiva

Por exemplo $U = \{(1,1), (1,2), (2,1), (2,2)\}.$

(d) Seja T a relação de equivalência associada a Π , definida em A. Indique três elementos x, y e z de A tais que $[x]_T = [y]_T$ e $[x]_T \neq [z]_T$.

Por exemplo, x = 2, y = 6 e z = 3.

não é uma relação de equivalência.

- 4. Sejam $X = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{2, 3, 6\} \in B = \{1, 4, 5, 7, 8\}.$
 - (a) Considere o c.p.o. (X, \leq) definido pelo diagrama de Hasse ao lado
 - i. Indique, referindo a definição, os elementos minimais e maximais de X.

 $1 \underbrace{}_{5} \underbrace{}_{6} \underbrace{}_{7} \underbrace{}_{8} \underbrace{}_{8} \underbrace{}_{6}$

Os elementos minimais são os elementos a de X tais que não existe $x \in X$ tal que x < a [não existem elementos menores que a]. Os elementos maximais são os elementos b de X tais que não existe $x \in X$ tal que x > b [não existem elementos maiores que b]. Assim, os elementos maximais de X são 1, 2, 3, 4, 8 e os minimais são 5, 6, 7, 8.

- ii. Indique, referindo a definição, os majorantes e os minorantes de A e de B.
 Dado um subconjunto C de X, x ∈ X é um majorante de C se x ≥ c para todo o elemento c de C, e y ∈ X é um minorante de C se y ≤ c para todo o elemento c de C. Assim, A e B não têm majorantes. O único minorante de A é o 6 e B não tem minorantes.
- iii. Indique um subconjunto C de X que admita supremo e ínfimo. Seja $C=\{4,7\}$. O supremo de C é o 4 e o ínfimo é o 7.

(b) O diagrama em cima representa um grafo G com X como conjunto dos vértices (i.e., $\mathcal{V}(G)=X$). O grafo G é conexo? Justifique a sua resposta.

 ${\cal G}$ não é conexo porque não existe, por exemplo, nenhum caminho do vértice 8 até ao vértice 4.

Cotação:

 $1. \sim (1, 5+1, 5+1, 5+1, 5); 2. \sim (2+2); 3. \sim (1, 5+1, 5+1, 5+1); 4. \sim (1+1, 5+1+1)$