Capítulo 05

Problema 01.

Representando por C a ocorrência cara e por V a ocorrência de coroa no arremesso, e também por B a retirada de bola branca e por V a retirada de bola vermelha, um espaço amostral para este experimento pode ser descrito por

$$\Omega = \{BC, BR, VB, VV\}$$

Problema 02.

O espaço amostral para esse experimento é um conjunto infinito. Seja 5 a representação da ocorrência da face 5 e Q a representação de outra face qualquer do dado. Então o experimento tem um espaço amostral dado por

$$\Omega = \{5, Q5, QQ5, QQQ5, ...\}$$

Problema 03.

Os resultados possíveis desse torneio de tênis constituem o espaço amostral de um experimento que consiste em verificá-los. Desse modo, podemos representar esse conjunto da seguinte forma:

$$\Omega = \{AA, ACC, ACBB, ACBA, BB, BCC, BCAA, BCAB\}$$

Problema 04.

Dois possíveis espaços amostram para o experimento podem ser obtidos através de maneiras diferentes de definir os pontos amostrais do experimento:

- designando C para cara e R para coroa, temos um primeiro espaço amostral, $\Omega_1 = \{CC, CR, RC, RR\};$
- se cada ponto amostral ω representa o número de caras nos lançamentos, um outro espaço amostral é descrito por $\Omega_2 = \{0, 1, 2\}$.

Podemos representar Ω_1 como produto cartesiano da seguinte forma:

$$\Omega_1 = \{C, R\} \times \{C, R\}$$

Problema 05.

Usando a mesma representação dos problemas anteriores,

$$\Omega = \{(C,1),(C,2),...,(C,6),(R,1),...,(R,6)\} = \{C,R\} \times \{1,2,3,4,5,6\}$$

Problema 06.

- (a) $\Omega = \{(1,1), (1,2), (1,3), \dots, (2,1), (2,2), \dots, (2,6), \dots, (6,6)\}$
- (b) $\Omega = \{0,1,2,...,M\}$, em que M é o número máximo de peças defeituosa s.
- Representando por M a ocorrência de uma criança do sexo masculino e por F a ocorrência de uma criança do sexo feminino, temos:
 Ω = {(M, M, M), (M, M, F), (M, F, M), (F, M, M), (M, F, F), (F, M, F), (F, F, M), (F, F, F)}
- (d) Sendo S (sim) e N (não), segue o espaço amostral do experimento:

$$\Omega = \{ (N, N, N, ..., N), (S, N, N, ..., N), ..., (S, S, N, ..., N), ..., (S, S, S, ..., S) \}$$

- (e) O espaço amostral desse experimento é contínuo, dado por $\Omega = \{t \in \mathbb{R}, t > 0\}$
- (f) $\Omega = \{3, 4, 5, ..., 10\}$
- (g) Outro exemplo de espaço amostral dado por um conjunto infinito: $\Omega = \{1, 2, 3, 4, ...\}$
- **(h)** $\Omega = \{0^{\circ}, 6^{\circ}, 12^{\circ}, \dots, 354^{\circ}\}$
- (i) $\Omega = [0^{\circ}, 360^{\circ})$ (espaço amostral contínuo)
- (j) $\Omega = \{(A, A), (A, B), ..., (A, E), (B, A), (B, B), ..., (E, A), (E, B), ..., (E, E)\}$
- (I) $\Omega = \{ (A, B), (A, C), \dots, (A, E), (B, A), (B, C), \dots, (E, A), (E, B), \dots, (E, D) \}$
- (m) $\Omega = \{ (A, B), (A, C), (A, D), (A, E), (B, C), (B, D), (B, E), (C, D), (C, E), (D, E) \}$
- (n) Denotando cada estado civil por: S (solteiro), Ca (casado) e V (viúvo), temos $\Omega = \{(A,S), (A,Ca), (A,V), (B,S), (B,Ca), (B,V), (C,S), (C,Ca), (C,V), (D,S), (D,Ca), (D,V)\}.$

Problema 07.

- (a) $\{CC, CR, RC\}$
- **(b)** {*CC*}
- (c) $\{CR,RC,RR\}$

Problema 08.

- (a) $A \cap B^c$
- **(b)** $(A \cap B^c) \cup (A^c \cap B)$
- (c) $(A \cup B)^c = A^c \cap B^c$

Problema 09.

(a)
$$\sum_{i=1}^{8} P(\omega_i) = 2\left(\frac{1}{4}\right) + 2\left(\frac{1}{8}\right) + 4\left(\frac{1}{16}\right) = 1$$

- (b) $P(A \text{ vencer}) = P(AA \cup BCAA) = \left(\frac{1}{4}\right) + \left(\frac{1}{16}\right) = \frac{5}{16} \text{ (no lugar da vírgula, sinal de união)}$ $P(B \text{ vencer}) = P(BB \cup ACBB) = \left(\frac{1}{4}\right) + \left(\frac{1}{16}\right) = \frac{5}{16}$
- (c) $P(\text{não haver decisão}) = P(ACBA \cup BCAB) = \left(\frac{1}{16}\right) + \left(\frac{1}{16}\right) = \left(\frac{1}{8}\right)$

Problema 10.

(a) Usando o que segue,

Resultado: Se $(a_0, a_1, a_2,...)$ for uma PG (progressão geométrica) infinita de razão q,

$$|q| < 1$$
, então a soma de seus termos é dada por $\sum_{i=0}^{\infty} a_i = \frac{a_0}{1-q}$,

temos
$$\sum_{k=0}^{\infty} \left(\frac{5}{6}\right)^k \frac{1}{6} = \frac{1}{6} \sum_{k=0}^{\infty} \left(\frac{5}{6}\right)^k = \frac{1}{6} \left(\frac{1}{1-5/6}\right) = \frac{1}{6} \left(\frac{1}{1/6}\right) = 1.$$

(b) Nesse caso, k = 2, e então

P(face 5 após três lançamentos do dado) =
$$\frac{1}{6} \left(\frac{5}{6}\right)^2 = \frac{25}{216} \approx 0.12$$

Problema 11.

P(dois números de mesmo sinal) = P(dois positivos) + P(dois negativos) =

$$= \left(\frac{6}{14}\right) \left(\frac{5}{13}\right) + \left(\frac{8}{14}\right) \left(\frac{7}{13}\right) = \frac{43}{91} \approx 0,47$$

Problema 12.

$$A = \{(3,6), (4,5), (5,4), (6,3)\}$$

$$B = \{(4,1), ..., (4,6), (5,1), ..., (5,6), (6,1), ..., (6,6)\}$$

$$A \cup B = \{(3,6), (4,1), \dots, (4,6), (5,1), \dots, (5,6), (6,1), \dots, (6,6)\}$$

$$A \cap B = \{(4,5), (5,4), (6,3)\}$$

 $A^{c} = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,6),(5,1),(5,2),(5,3),(5,5),(5,6),(6,1),(6,2),(6,4),(6,5),(6,6)\}$

Problema 13.

Do Problema 07:

(a)
$$P(\text{pelo menos uma cara}) = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

(b)
$$P(\text{duas caras}) = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4}$$

(c) Seja E o evento "ocorrem duas caras". Então,
$$P(E^c) = 1 - P(E) = 1 - \frac{1}{4} = \frac{3}{4}$$

Do Problema 12:

Se o espaço amostral do experimento (lançamento de dois dados) tem 36 pontos amostrais, então,

•
$$P(A) = \frac{4}{36} \cong 0.11;$$

•
$$P(B) = \frac{18}{36} = 0,50;$$

•
$$P(A \cup B) = \frac{19}{36} \cong 0,53;$$

•
$$P(A \cap B) = \frac{3}{36} \cong 0.08$$
;

•
$$P(A^c) = 1 - P(A) = \frac{32}{36} \cong 0.89$$
.

Problema 14.

- (a) O dado não deve ser viciado, ou seja, todas as faces estão equilibradas.
- **(b)** Devemos ter para cada alternativa de resposta a mesma quantidade de opiniões de moradores, por exemplo, 50% a favor e 50% contra se existirem apenas duas alternativas.

(c)

Problema 15.

(a) Seja P a ocorrência de bola preta, e V a ocorrência de bola vermelha. Então,

Resultado	Probabilidade	
PP	$(3/8)(2/7) = 3/28 \cong 0,107$	
PV	15/56 ≅ 0 , 268	
VP	15/56 ≅ 0 , 268	
VV	$3/28 \cong 0,107$	

(b) Usando a mesma notação,

Resultado	Probabilidade	
PP	$(3/8)(3/8) = 9/64 \cong 0,141$	
PV	$15/64 \cong 0,234$	
VP	$15/64 \cong 0,234$	
VV	25 / 64 ≅ 0 , 391	

Problema 16.

(a) Sem reposição:

 $P(bola preta na primeira e na segunda extrações) \cong 0,107$ Com reposição:

 $P(\text{bola preta na primeira e na segunda extrações}) \cong 0,141$

(b) Sem reposição

P(bola preta na segunda extração) =
$$\left(\frac{3}{28}\right) + \left(\frac{15}{56}\right) = \frac{21}{56} = 0,375$$

Com reposição:

P(bola preta na segunda extração) =
$$\left(\frac{9}{64}\right) + \left(\frac{15}{64}\right) = 0,375$$

(c) Sem reposição

$$P(\text{bola vermelha na primeira extração}) = \left(\frac{15}{56}\right) + \left(\frac{5}{14}\right) = 0,625$$

Com reposição:

P(bola vermelha na primeira extração) =
$$\left(\frac{15}{64}\right) + \left(\frac{25}{64}\right) = 0,625$$

Problema 17.

Sejam os eventos A: A resolve o problema, e B: B resolve o problema. Como trabalham independentemente, temos que $P(A \cap B) = P(A)P(B)$ e

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{2}{3} + \frac{3}{4} - \left(\frac{2}{3}\right)\left(\frac{3}{4}\right) = \frac{2}{3} + \frac{3}{4} - \frac{1}{2} = \frac{11}{12} \approx 0.92$$

Problema 18.

Como a probabilidade de sair um certo ponto é proporcional ao seu valor, digamos que a constante de proporcionalidade é k, e então vamos encontrar o valor de k:

$$P(j) = k \cdot j$$
, $j = 1, ..., 6$.

$$\sum_{j=1}^{6} P(j) = 1 \implies \sum_{j=1}^{6} k \cdot j = 1 \implies k = \frac{1}{21}$$

(a) Utilizando o conceito de probabilidade condicional,

$$P(5 | \text{impar}) = \frac{P(5 \cap \text{impar})}{P(\text{impar})} = \frac{P(5)}{P(\text{impar})} = \frac{5.(1/21)}{P(1) + P(3) + P(5)} = \frac{5/21}{(1/21) + (3/21) + (5/21)} = \frac{5}{9} \approx 0.56$$

(b) Novamente, aplicando probabilidade condicional,

$$P(\text{par} > 3) = \frac{P(\text{par} > 3)}{P(>3)} = \frac{P(4) + P(6)}{P(4) + P(5) + P(6)} = \frac{(6+4) \cdot (1/21)}{(4+5+6) \cdot (1/21)} = \frac{10}{15} \approx 0,67$$

Problema 19.

- (a) (1-p)(1-q), pois se A e B são independentes, A^c e B^c também são independentes.
- **(b)** p + q pq (probabilidade da união de dois eventos independentes).

Problema 20.

Os componentes 2 e 3 funcionam em paralelo entre si e em série com o componente 1. Assim, a confiabilidade desse sistema é dada por

$$P(\text{sistema funcionar}) = h(p_1, p_2, p_3) = P((1 \text{ e } 2) \text{ ou } (1 \text{ e } 3)) = p_1(p_2 + p_3 - p_2 p_3)$$

Problema 21.

Dois eventos A e B são independentes se, e somente se, $P(A)P(B) = P(A \cap B)$. Nesse caso, $P(A)P(B) = 0,10.0,12 = 0,012 \neq 0,04 = P(A \cap B)$. Portanto, os eventos A e B não são independentes.

Problema 22.

Os componentes 1 e 2 funcionam em série, bem como os componentes 3 e 4. Os subsistemas formados funcionam em paralelo. Assim,

$$P(\text{sistema funcionar}) = h(p) = P((1 \text{ e } 2) \text{ ou } (3 \text{ e } 4)) = p^2 + p^2 - p^4 = p^2(2 - p^2)$$

Problema 23.

Sejam os eventos:

- D o circuito escolhido não funciona;
- I: o circuito escolhido é feito na fábrica I;
- II: o circuito escolhido é feito na fábrica II;
- III: o circuito escolhido é feito na fábrica III.

São dados do problema:

$$P(D \mid I) = 0.01$$
, $P(D \mid II) = 0.04$, $P(D \mid III) = 0.03$, $P(I) = 0.40$, $P(II) = 0.30$ e $P(III) = 0.30$

Assim,

$$P(D) = P(D | I) P(I) + P(D | II) P(II) + P(D | III) P(III) =$$

= (0,01)(0,40) + (0,04)(0,30) + (0,03)(0,30) = 0,025

Problema 24.

Utilizando a mesma notação, temos

$$P(I \mid D) = \frac{P(I) P(I \mid D)}{P(D)} = \frac{(0,40)(0,01)}{0,025} = 0,16$$

Problema 25.

Sejam os eventos:

- U_i: seleciona se a urna i;
- B_{ii} : é retirada uma bola branca da urna i, na extração j (i, j = 1,2);
- E:retira se, na segunda extração, uma bola branca da mesma urna da primeira extração.

Supondo que a primeira e a segunda extrações sejam independentes, temos

$$P(E) = P(B_{12} | B_{11}) P(U_1) + P(B_{22} | B_{21}) P(U_2) =$$

$$= P(B_{12}) P(B_{11}) P(U_1) + P(B_{22}) P(B_{21}) P(U_2) =$$

$$= \left(\frac{3}{5}\right) \left(\frac{3}{5}\right) \left(\frac{1}{2}\right) + \left(\frac{3}{6}\right) \left(\frac{3}{6}\right) \left(\frac{1}{2}\right) = 0,305$$

Problema 26.
Construindo uma tabela com os dados do problema, temos

	Homens (H)	Mulheres (M)	Total
Salada (A)	0,150	0,175	0,325
Carne (B)	0,600	0,075	0,675
Total	0,750	0,250	1,000

(a)
$$P(H) = 0.75$$

 $P(A \mid H) = 0.20$
 $P(B \mid M) = 0.30$

(b)
$$P(A \cap H) = P(A \mid H)P(H) = (0,20)(0,75) = 0,15$$

 $P(A) = P(A \mid H)P(H) + P(A \mid M)P(M) =$
 $= (0,20)(0,75) + (0,70)(0,25) = 0,325$.
 $P(A \cup H) = P(A) + P(H) - P(A \cap H) =$
 $= 0,325 + 0,750 - 0,150 = 0,925$

(c)
$$P(M \mid A) = \frac{P(A \mid M) P(M)}{P(A)} = \frac{(0,70)(0,25)}{0,325} = \frac{175}{325} \approx 0,538$$

Problema 27. Abaixo, construímos a tabala com as fragüências ra

Abaixo, construímos a tabela com as freqüências relativas:

	Homens	Mulheres	Total
Usaram o hospital	0,050	0,075	0,125
Não usaram o hospital	0,450	0,425	0,875
Total	0,500	0,500	1,000

(a)
$$P(\text{pessoa segurada use o hospital}) = \frac{250}{2000} = 0,125$$

(b) Não, pois

$$P(\text{usar o hospital } | \text{homem}) = \frac{100}{1000} = 0,100 \neq P(\text{pessoa segurada use o hospital})$$

Problema 28.

Sejam os eventos:

- A: o motorista A sofre acidente;
- B: o motorista B sofre acidente;
- *C*: o motorista C sofre acidente.

Suponha que esses eventos sejam independentes. Tem se que "todos os três motoristas sofrem acidentes" pode ser escrito como $A \cap B \cap C$ e "pelo menos um dos motoristas guiar até em casa a salvo" equivale a $A^c \cup B^c \cup C^c$. Assim,

$$P(A \cap B \cap C) = P(A)P(B)P(C) = \left(\frac{2}{3}\right)\left(\frac{3}{4}\right)\left(\frac{4}{5}\right) = \frac{2}{5} = 0,40$$

$$P(A^c \cup B^c \cup C^c) = P([A \cap B \cap C)]^c) = 1 - P(A \cap B \cap C) = \frac{3}{5} = 0,60$$

Problema 29.

Representando por B uma lâmpada boa e por D uma lâmpada defeituosa, há três configurações possíveis para que a segunda lâmpada defeituosa seja encontrada no quarto teste: *DBBD*, *BDBD* e *BBDD*.

Os testes são feitos sem reposição das lâmpadas testadas. Assim, se X for o número de testes necessários para encontrar a segunda lâmpada defeituosa, tem-se que

$$P(X=4) = \left(\frac{2}{8}\right)\left(\frac{6}{7}\right)\left(\frac{5}{6}\right)\left(\frac{1}{5}\right) + \left(\frac{6}{8}\right)\left(\frac{2}{7}\right)\left(\frac{5}{6}\right)\left(\frac{1}{5}\right) + \left(\frac{6}{8}\right)\left(\frac{5}{7}\right)\left(\frac{2}{6}\right)\left(\frac{1}{5}\right) = \frac{3}{28} \approx 0,107$$

Problema 30

Sejam os eventos E_i = ganhar na loteria i, (i = 1, 2). Suponha que estes eventos sejam independentes. Então

(a)
$$P(\text{ganhar exatamente um prêmio}) = P([E_1 \cap E_2^c] \cup [E_2 \cap E_1^c]) =$$

= $\left(\frac{100}{10000}\right) \left(\frac{4900}{5000}\right) + \left(\frac{100}{5000}\right) \left(\frac{9900}{10000}\right) = 0,0296$

(b)
$$P(\text{ganhar alguma coisa}) = P(E_1 \cup E_2) = 0.01 + 0.02 - (0.01)(0.02) = 0.03 - 0.0002 = 0.0298$$

Problema 31. Foi usada a binomial

Seja X o número de segurados vivos daqui a 30 anos. Suponha independência e que o valor 2/3 (probabilidade de cada um deles estar vivo daqui a 30 anos) permaneça por todo o período.

(a) Uma combinação possível para que dois estejam vivos daqui a 30 anos é VVMMM, onde V indica estar viva e M que ela está morta. Pelas informações do problema

temos que P(VVMMM) =
$$\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right) = \left(\frac{2}{3}\right)^2\left(\frac{1}{3}\right)^3$$
, porém, podemos ter também outras combinações como VMVMM com a mesma probabilidade.

Podemos construir 10 dessas combinações, ou seja, as duas letras V podem combinar-se em 10 possibilidades pelas 5 posições. Esse número é representado

pela combinação de 5 elementos dois a dois, ou seja, $\binom{5}{2} = \frac{5!}{(5-2)!2!} = 10$. Desse modo, a resposta final será:

$$P(X=2) = {5 \choose 2} \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^3 = \frac{40}{243} \approx 0.165$$

(b)
$$P(X = 5) = \left(\frac{2}{3}\right)^5 = \frac{32}{243} \approx 0.132$$

(c)
$$P(X=3) = {5 \choose 3} \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^2 = \frac{80}{243} \approx 0,329$$

$$P(X = 4) = {5 \choose 4} {\left(\frac{2}{3}\right)}^4 {\left(\frac{1}{3}\right)} = \frac{80}{243} \cong 0,329$$

$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5) = \frac{80}{243} + \frac{80}{243} + \frac{32}{243} = \frac{192}{243} \cong 0,790$$

Problema 32.

- (a) Se ele não possui habilidades especiais, pode-se supor que a resposta seja dada para a marca A ou para a marca B com igual probabilidade. Assim, se as tentativas são independentes, a probabilidade de se acertar três vezes em três tentativas é dada por $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$.
- (b) Se a probabilidade de se distinguir corretamente for de 90% em cada tentativa, e se as tentativas são independentes, a probabilidade de três acertos é $(0.90)^3 = 0.729$.

Problema 33.

Vamos designar por H o evento "foi sorteado um homem", e por M o evento "foi sorteada uma mulher".

(a)
$$P(H^c H^c H^c) = P(MMM) = \left(\frac{8}{20}\right)\left(\frac{7}{19}\right)\left(\frac{6}{18}\right) = \frac{14}{285} \approx 0,049$$

(b)
$$P(HMM, MHM, MMH) = 3\left(\frac{12}{20}\right)\left(\frac{8}{19}\right)\left(\frac{7}{18}\right) = \frac{28}{95} \approx 0,295$$

(c)
$$P(HHM, HMH, MHH) = 3\left(\frac{12}{20}\right)\left(\frac{11}{19}\right)\left(\frac{8}{18}\right) = \frac{44}{95} \approx 0,463$$

Problema 34.

Sejam os eventos A: ganhar a concorrência da parte elétrica e B: ganhar a concorrência da parte de encanamento. A partir das informações do problema, temos

$$P(A) = \frac{1}{2}$$
 $P(B|A) = \frac{3}{4}$ e $P(B|A^c) = \frac{1}{3}$.

Com isso.

$$P(B) = P(B|A)P(A) + P(B|A^c)P(A^c) = \left(\frac{3}{4}\right)\left(\frac{1}{2}\right) + \left(\frac{1}{3}\right)\left(\frac{1}{2}\right) = \frac{13}{24}$$
 e

(a)
$$P(A \cap B) = P(A)P(B|A) = \left(\frac{1}{2}\right)\left(\frac{3}{4}\right) = \frac{3}{8} = 0,375$$

(b)
$$P((A \cap B^c) \cup (A^c \cap B)) = P(A \cap B^c) + P(A^c \cap B) =$$

= $P(A)P(B^c \mid A) + P(A^c)P(B \mid A^c) = \left(\frac{1}{2}\right)\left(\frac{1}{4}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{3}\right) = \frac{7}{24} \approx 0,292$

(c)
$$P(A^c \cap B^c) = P((A \cup B)^c) = 1 - P(A \cup B) =$$

$$= 1 - [P(A) + P(B) - P(A \cap B)] = 1 - \left[\frac{1}{2} + \frac{13}{24} - \frac{3}{8}\right] = \frac{1}{3} \approx 0,333$$

Problema 35.

Supondo que as próximas 4 unidades sejam vendidas independentemente, a probabilidade de que duas sejam devolvidas é dada por

$$\binom{4}{2}(0,05)^2(0,95)^2 \cong 0,0135$$

Problema 36.

Seja X o número de alarmes que funcionam quando necessário.

$$P(X \ge 1) = 1 - P(X = 0) = 1 - (0.10)^3 = 0.999$$

Problema 37.

Sendo D o evento "o parafuso encontrado é defeituoso", temos

$$P(D) = P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C) =$$
= (0.05)(0.25) + (0.04)(0.35) + (0.02)(0.40) = 0.0345

$$P(A|D) = \frac{P(D|A)P(A)}{P(D)} = \frac{(0,05)(0,25)}{0.0345} \approx 0.36$$

$$P(B \mid D) = \frac{P(D \mid B)P(B)}{P(D)} = \frac{(0,04)(0,35)}{0,0345} \cong 0,41$$

$$P(C \mid D) = \frac{P(D \mid C)P(C)}{P(D)} = \frac{(0,02)(0,40)}{0,0345} \cong 0,23$$

Problema 38

Seja X: número de peças com duração inferior a 20 horas. Usando os mesmos argumentos usados no problema 31 podemos escrever:

(a)
$$P(X \ge 2) = 1 - P(X < 2) = 1 - [P(X = 0) + P(X = 1)]$$

= $1 - [(0,95)^{10} + 10(0,05)(0,95)^9] \cong 0,086$

(b)
$$P(X \le 1) = \left[(0.90)^{10} + 10(0.10)(0.90)^9 \right] \approx 0.736$$

Problema 39.

Vamos indicar a ordem de compra dos carros através de índices ao lado das marcas. São dados $P(W_1) = 0.50$, $P(F_1) = 0.30$ e $P(X_1) = 0.20$.

(a) Temos que $P(W_3) = P(W_3 | W_2) P(W_2) + P(W_3 | F_2) P(F_2) + P(W_3 | X_2) P(X_2).$ Mas $P(W_2) = P(W_2 | W_1) P(W_1) + P(W_2 | F_1) P(F_1) + P(W_2 | X_1) P(X_1) =$ = (0,50)(0,50) + (0,15)(0,30) + (0,30)(0,20) = 0,355; $P(F_2) = P(F_2 | W_1) P(W_1) + P(F_2 | F_1) P(F_1) + P(F_2 | X_1) P(X_1) =$ = (0,25)(0,50) + (0,70)(0,30) + (0,30)(0,20) = 0,395 e

$$P(X_2) = P(X_2 | W_1) P(W_1) + P(X_2 | F_1) P(F_1) + P(X_2 | X_1) P(X_1) =$$

= $(0,25)(0,50) + (0,15)(0,30) + (0,40)(0,20) = 0,250$.
Logo,
 $P(W_3) = (0,500)(0,355) + (0,150)(0,395) + (0,300)(0,250) \approx 0,312$.

(b) Como
$$P(W_1 | W_3) = \frac{P(W_3 | W_1) P(W_1)}{P(W_3)}$$
 e
$$P(W_3 | W_1) = P(W_3 | W_2) P(W_2 | W_1) + P(W_3 | F_2) P(F_2 | W_1) + P(W_3 | X_2) P(X_2 | W_1)$$
$$= (0,50)(0,50) + (0,15)(0,25) + (0,30)(0,25) = 0,3625.$$
então
$$P(W_1 | W_3) = \frac{(0,3625)(0,50)}{0,312} \cong 0,58$$

Problema 40.

(a)
$$\frac{2800 + 7000}{15800} \cong 0,62$$

(b)
$$\frac{800 + 2500}{15800} \cong 0,21$$

(c)
$$\frac{1800}{15800} \cong 0.11$$

(d)
$$\frac{800}{2800} \approx 0.29$$

Problema 41.

(a)
$$\left(\frac{8300}{15800}\right) \left(\frac{8300}{15800}\right) \approx 0.28$$

(b)
$$\left(\frac{2800}{15800}\right) \left(\frac{2000}{15800}\right) \cong 0.02$$

(c)
$$\left(\frac{13000}{15800}\right) \left(\frac{13000}{15800}\right) \approx 0.68$$

Problema 42.

(a)
$$\left(\frac{8300}{15800}\right) \left(\frac{8299}{15800}\right) \approx 0.28$$

(b)
$$\left(\frac{13000}{15800}\right) \left(\frac{12999}{15800}\right) \cong 0,68$$

Os resultados obtidos são muito próximos, pois é grande o número de empregados na empresa, de modo que não faz grande diferença se a seleção for feita com ou sem reposição.

Problema 43.

- (a) Representando o espaço amostral por Ω , temos $\Omega = \{(a, a, a), (a, a, b), (a, b, a), (a, b, b), (a, a, c), (a, c, a), (a, c, c), (a, b, c), (a, c, b), (b, b, b), (b, b, a), (b, a, b), (b, a, a), (b, b, c), (b, c, b), (b, c, c), (b, a, c), (b, c, a), (c, c, a), (c, a, a), (c, a, c), (c, c, b), (c, b, b), (c, b, c), (c, a, b), (c, b, a), (c, c, c)\}$
- (b) $A = \{(a, a, a), (b, b, b), (c, c, c)\}$ $B = \{(a, a, a), (a, a, b), (a, a, c), (b, b, a), (b, b, b), (b, b, c), (c, c, a), (c, c, b), (c, c, c)\}$

Problema 44.

O enunciado fornece os seguintes dados:

- $P(R \mid A) = 0.40$;
- $P(R \mid B) = 0.20$;
- $P(R \mid C) = 0.10$.

Sendo X = RRRMMMMM, tem-se:

- $P(X \mid A) = (0.40)^3 (0.60)^5 \approx 0.00498$;
- $P(X \mid B) = (0.20)^3 (0.80)^5 \approx 0.00262$;
- $P(X \mid C) = (0.10)^3 (0.90)^5 \cong 0.00059$.

E logo,

$$P(X) = P(X \mid A) P(A) + P(X \mid B) P(B) + P(X \mid C) P(C)$$

$$\cong (0,00498) \left(\frac{1}{3}\right) + (0,00262) \left(\frac{1}{3}\right) + (0,00059) \left(\frac{1}{3}\right) \cong 0,0273,$$

$$P(C \mid X) = \frac{P(X \mid C) P(C)}{P(X)} \cong \frac{(0,00059)(1/3)}{0,00273} \cong 0,072$$

Problema 45

Para que pelo menos um dos dois próximos artigos selecionado seja de segunda qualidade, ou ambos são, ou apenas o próximo artigo é de segunda qualidade, ou apenas o seguinte é de segunda qualidade. Uma vez que já foram retirados b artigos e todos foram de segunda qualidade, atualmente há m itens de primeira qualidade e n - b de segunda, num total de m + n - b itens ainda para inspeção. Para as duas próximas seleções poderia ocorrer uma das seguintes possibilidades : SS, SP, PS ou PP, portanto a resposta será:

$$P(SS) + P(SP) + P(PS) = 1 - P(PP)$$

Calculando obtém-se

$$1 - P(PP) = 1 - \frac{\binom{n-b}{0}\binom{m}{2}}{\binom{m+n-b}{2}}$$

$$= 1 - \frac{m!}{2!(m-2)!} \frac{2!(m+n-b-2)!}{(m+n-b)!} = 1 - \frac{m(m-1)}{(m+n-b)(m+n-b-1)}$$

Problema 46.

Temos, por hipótese, que $P(A \cap B) = P(A)P(B)$. Então,

•
$$P(A^c \cap B^c) = P((A \cap B)^c) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(A \cap B) =$$

= $[1 - P(A)][1 - P(B)] = P(A^c)P(B^c)$
• $P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A)P(B) =$

•
$$P(A \cap B^*) = P(A) - P(A \cap B) = P(A) - P(A)P(B) =$$

$$= P(A)[1-P(B)] = P(A)P(B^{c})$$

•
$$P(A^c \cap B) = P(B) - P(A \cap B) = P(B) - P(A)P(B) =$$

= $P(B)[1 - P(A)] = P(A^c)P(B)$

Problema 47.

$$P(A \cup B \cup C) = P(A \cup (B \cup C)) = P(A) + P(B \cup C) - P(A \cap (B \cup C)) =$$

$$= P(A) + P(B) + P(C) - P(B \cap C) - [P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)] =$$

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Problema 48.

Os componentes 1 e 2, bem como os componentes 4 e 5, estão ligados em série. Esses dois sub-sistemas estão em paralelo com o componente 3. Assim, a confiabilidade do sub-sistema formado pelos componentes 1, 2 e 3 é dada por $p^2 + p - p^3$. Logo, a confiabilidade total do sistema é dada por

$$h(p) = p^{2} + p - p^{3} + p^{2} - p^{2}(p^{2} + p - p^{3}) = 2p^{2} + p - p^{3} - p^{4} - p^{3} + p^{5} =$$

$$= p^{5} - p^{4} - 2p^{3} + 2p^{2} + p = p(p^{4} - p^{3} - 2p^{2} + 2p + 1)$$

Problema 49.

(a) Como mostra a figura abaixo, esse evento está delimitado por um semi-círculo de raio 1, cuja origem é o ponto (0,0).

(b) A probabilidade P(A) equivale à área da região A dividida pela área do quadrado todo. Como a área do quadrado é 1, temos que P(A) é a área da região A, ou seja,

$$P(A) = \frac{\pi R^2}{4} = \frac{\pi}{4}$$

(c) O evento B está representado na figura seguinte:

Vamos então calcular P(B), o que equivale a calcular a área da região B. Uma maneira simples de calcular a área de B é retirar a área do quadrado de lado b da área total, que é 1. Desse modo,. $P(B) = 1 - b^2$

(d) O evento B^c está representado na figura seguinte:

Utilizando a definição de probabilidades de eventos complementares,

$$P(B^c) = 1 - P(B) = b^2$$
.

Problema 50.

Representação gráfica do evento A

Representação gráfica do evento B

•
$$P(A) = \left(\frac{2}{3} - \frac{1}{3}\right)\frac{1}{2} = \frac{1}{6}$$

•
$$P(B) = \frac{1}{2} \left(\frac{3}{4} - \frac{1}{4} \right) = \frac{1}{4}$$

•
$$P(A \cap B) = \left(\frac{2}{3} - \frac{1}{2}\right)\left(\frac{1}{2} - \frac{1}{4}\right) = \frac{1}{24}$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{6} + \frac{1}{4} - \frac{1}{24} = \frac{3}{8}$$

•
$$P(A^c) = 1 - P(A) = 1 - \frac{1}{6} = \frac{5}{6}$$

•
$$P(B^c) = 1 - P(B) = 1 - \frac{1}{4} = \frac{3}{4}$$

•
$$P(A^c \cap B^c) = P((A \cup B)^c) = 1 - P(A \cup B) = 1 - \frac{3}{8} = \frac{5}{8}$$

Problema 51.

A probabilidade de um evento qualquer A seria definida como a área da região no plano (ou seja, a área de A) dividida pela área do quadrado.

Problema 52.

Problema 53.

Esta probabilidade (representada aqui por p) é o quociente entre o número de amostras em que não há repetição sobre o número total de amostras com reposição. Do problema anterior, tem-se que o número de amostras de tamanho n (obtidas de uma população de tamanho N) em que não ocorrem repetições é dado por $(N)_n$. Assim,

$$p = \frac{(N)_n}{N^n}$$

Problema 54.

Considere o caso particular em que N=5 e n=2. Do conjunto $a_1,...,a_5$, retiram-se amostras de tamanho 2, sem reposição. Os resultados possíveis são:

$$a_1 a_2$$
, $a_1 a_3$, $a_1 a_4$, $a_1 a_5$
 $a_2 a_3$, $a_2 a_4$, $a_2 a_5$
 $a_3 a_4$, $a_3 a_5$

Como se vê, nesse caso existem $10 = \binom{5}{2} = \binom{N}{n}$ amostras sem reposição.

Problema 55.

(a)
$$P(A \cap (B \cap C)) = P(A \cap B \cap C) = P(A)P(B)P(C) = P(A)P(B \cap C)$$

(b)
$$P((A \cup B) \cap C) = P(A \cup B) + P(B) + P(C) - P((A \cup B) \cup C) =$$

 $= P(A) + P(B) - P(A)P(B) + P(C)$
 $- [P(A) + P(B) + P(C) - P(A)P(B) - P(A)P(C)$
 $- P(B)P(C) + P(A)P(B)P(C)]$
 $\Rightarrow P((A \cup B) \cap C) = P(A)P(C) + P(A)P(C) - P(A)P(B)P(C) =$

$$= [P(A) + P(B) - P(A)P(B)]P(C) = P(A \cup B)P(C)$$

Problema 56.

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

$$P(A) \leq P(A \cap B) + P(B^{c})$$

$$\frac{1}{3} \leq P(A \cap B) + \frac{1}{4}$$

$$\Rightarrow P(A \cap B) \geq \frac{1}{12}$$

Portanto, os eventos A e B não podem ser mutuamente exclusivos, pois $P(A \cap B) \neq 0$.

Problema 57.

O enunciado indica que os componentes 2 e 3 estão ligados em paralelo entre si e em série com o componente 1. Desse modo,

$$h(p) = (0.90)(0.80 + 0.70 - 0.56) = 0.846$$

Problema 58.

Os eventos $V \in U \cup V$ podem ser escritos como

$$V = (U \cap V) \cup (U^c \cap V)$$
$$V \cup U = (U^c \cap V) \cup U$$

Assim.

$$P(V) = P(U \cap V) + P(U^c \cap V)$$
 (1)

$$P(V \cup U) = P(U^c \cap V) + P(U) \quad (2)$$

A partir disso, subtraindo (2) de (1), temos

$$P(V) - P(U \cup V) = P(U \cap V) - P(U)$$

e logo

$$P(U \cup V) = P(U) + P(V) - P(U \cap V)$$

Problema 59.

(a) De acordo com o enunciado, tem-se

$$A_1 = \{101, 110\}, A_2 = \{011, 110\} \text{ e } A_3 = \{011, 101\}.$$
 Assim,

$$P(A_1) = \frac{1}{2};$$
 $P(A_2) = \frac{1}{2};$ $P(A_3) = \frac{1}{2};$ $P(A) = 0$

(b) Os conjuntos indicados são os seguintes:

$$A = \emptyset$$
, $A_1 \cap A_2 = \{110\}$, $A_1 \cap A_3 = \{101\}$, $A_2 \cap A3 = \{011\}$. Desse modo,

•
$$P(A_1 \cap A_2) = \frac{1}{4} = P(A_1)P(A_2);$$

•
$$P(A_1 \cap A_3) = \frac{1}{4} = P(A_1)P(A_3);$$

•
$$P(A_2 \cap A_3) = \frac{1}{4} = P(A_2)P(A_3);$$

•
$$P(A_1 \cap A_2 \cap A_3) = 0 \neq P(A_1) P(A_2) P(A_3)$$

Portanto, os eventos são mutuamente independentes, ou seja, são independentes dois a dois, mas não são independentes.

Problema 60.

Para n eventos qua isquer $A_1, ..., A_n$, (5.10) pode ser escrita como

$$P(A_1 \cap ... \cap A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 \cap A_2) ... P(A_n | A_1 \cap ... \cap A_{n-1})$$

Problema 61.

Os eventos A_1 , ..., A_n são independentes se, e somente se,

$$P(A_1 \cap ... \cap A_n) = \prod_{i=1}^n P(A_i), \forall i, i=1,...n.$$

Problema 62.

Como já foi visto no problema anterior, a probabilidade de uma amostra ordenada com reposição, de tamanho k, ter todos os elementos distintos é igual a $\frac{(365)_k}{365^k}$. Logo, no caso,

$$1 - p = \frac{365 (365 - 1) \dots (365 - (k - 1))}{365^{k}} = \left(\frac{365}{365}\right) \left(\frac{365 - 1}{365}\right) \dots \left(\frac{365 - (k - 1)}{365}\right)$$

ou seja,

$$1 - p = \left(1 - \frac{1}{365}\right) \left(1 - \frac{2}{365}\right) \dots \left(1 - \frac{k-1}{365}\right).$$

Problema 63.

$$1-p \approx 1-\frac{1+2+...+(k-1)}{365}$$
,

desprezando os produtos com denominadores (365)², (365)³, etc.

Problema 64.

Temos que P(A) = 0.20, P(B) = 0.50, P(C) = 0.30, $P(F \mid A) = 0.20$, $P(F \mid B) = 0.05$, $P(F \mid C) = 0.02$, sendo F o evento "contrato futuro em dólares". Então,

$$P(F) = P(F \mid A)P(A) + P(F \mid B)P(B) + P(F \mid C)P(C) =$$

= $(0,20)(0,20) + (0,05)(0,50) + (0,02)(0,30) = 0,071$
Segue que

$$P(A|F) = \frac{P(F|A)P(A)}{P(F)} = \frac{(0,20)(0,20)}{0.071} = \frac{4}{71} \approx 0,563$$

e

$$P(C \mid F) = \frac{P(F \mid C) \ P(C)}{P(F)} = \frac{(0,02)(0,30)}{0,071} = \frac{60}{71} \approx 0,084$$