COPY OF ALL CLAIMS

1-9. (canceled)

10. (currently amended) A process <u>for continuously preparing 5-alkoxy-substituted</u>

<u>oxazoles of the formula I</u>

$$R_1$$
 R_2
 R_3

where

R₁ is an unsubstituted or substituted C₁-C₆-alkyl radical and

 R_2 is hydrogen or an unsubstituted or substituted C_1 - C_6 -alkyl radical. which comprises

converting continuously added α -isocyanoalkanoate esters of the formula II

$$R_2$$
 O
 R_1

in the presence of continuously added cyclizing assistants selected from the group consisting of bases, alcohols and esters,

at temperatures above 80°C

in a reaction column

to the 5-alkoxy-substituted oxazoles of the formula I, and continuously removing the 5-alkoxy-substituted oxazoles of the formula I from the reaction mixture by rectification as claimed in claim 9, wherein the rectification parameters are set in such a way that

- A the α-isocyanoalkanoate esters of the formula II are converted to the 5alkoxy-substituted oxazoles of the formula I on the internals in the reaction
 column and, if present, in <u>a</u> the liquid phase of the reaction column,
- B the 5-alkoxy-substituted oxazoles of the formula I resulting from the conversion are continuously removed with <u>a</u> the top stream or sidestream of the reaction column and
- the assistant and any high-boilers resulting from the conversion are removed continuously and independently of each other with <u>a</u> the bottom stream or sidestream of the reaction column.
- 11. (currently amended) The process of claim 10 A process as claimed in claim 9, wherein the conversion is carried out in the presence of an inert solvent and the reaction parameters are set in such a way that
 - A the α -isocyanoalkanoate esters of the formula II are converted to the 5-alkoxy-substituted oxazoles of the formula I on the internals and, if present, in the liquid phase of the reaction column,
 - B1 when the solvent has a higher boiling point than the 5-alkoxy-substituted

oxazoles of the formula I resulting from the conversion, the 5-alkoxy-substituted oxazoles of the formula I are continuously removed with the top stream and the solvent is continuously removed via the sidestream or bottom stream of the reaction column,

- when the solvent has a lower boiling point than the 5-alkoxy-substituted oxazoles of the formula I resulting from the conversion, the 5-alkoxy-substituted oxazoles of the formula I are continuously removed with a sidestream and the solvent is continuously removed with the top stream of the reaction column, and
- the assistant and any high-boilers resulting from the conversion are removed continuously and independently of each other with the bottom stream or sidestream of the reaction column.
- 12. (currently amended) The process of claim 10 A process as claimed in claim 9, wherein the reaction column used is a dividing wall column.
- 13. (currently amended) The process of claim 10 A process as claimed in claim 9, wherein, when the assistant forms an azeotrope with the 5-alkoxy-substituted oxazoles of the formula I, the top pressure of the column is set in such a way that the fraction of the assistant in the azeotrope in the top stream is as low as possible.

- 14. (currently amended) The process of claim 10 A process as claimed in claim 9, wherein the top pressure of the column is set to from 5 to 800mbar and the resulting bottom pressure, which depends on the type of column used and, if used, the type of column internals, is from 10 mbar to atmospheric pressure.
- 15. (currently amended) A process for preparing pyridoxine derivatives of the formula IX

where

 R_2 is hydrogen or an unsubstituted or substituted C_1 - C_6 -alkyl radical, which comprises converting amino acids of the formula III

to amino esters of the formula IV,

RUST et al., DIV of SN 10/300,629

$$R_2$$
 O R_1 IV

where

 R_1 is an unsubstituted or substituted C_1 - C_6 -alkyl radical, converting the latter into formamido esters of the formula V,

$$R_2$$
 R_1
 V

converting the latter into α -isocyanoalkanoate esters of the formula II,

$$R_2$$
 R_2
 R_1

converting the latter in a continuous process step

in the presence of cyclizing assistants selected from the group consisting

of bases, alcohols and esters assistants

at temperatures above 80°C

RUST et al., DIV of SN 10/300,629

to 5-alkoxy-substituted oxazoles of the formula I

$$R_1$$
 O
 N
 R_2

reacting the latter with protected diols of the formula VI

where

 R_3 and R_4 independently or R_3 and R_4 together are a protecting group of the hydroxy function,

to give the Diels-Alder adducts of the formula VII

RUST et al., DIV of SN 10/300,629

$$R_3$$
 R_4
 R_1
 R_2
 R_4
 R_4
 R_4
 R_4

and converting the latter by acid treatment and detachment of the protecting group to the pyridoxine derivatives of the formula IX.