Aggregatable Subvector Commitments for Stateless Cryptocurrencies

Alin Tomescu¹

@alinush407

Justin Drake²
@drakefiustin

Ittai Abraham¹

@ittaia

Dankrad Feist²
@dankrad

Vitalik Buterin²

@VitalikButerin

Dmitry Khovratovich²

@Khovr

¹VMware Research, ²Ethereum Foundation

May 13th, 2020

While you're at it, feel free to read our blogpost too.

Motivation

Stateful transaction validation (for account-based cryptocurrencies)

Stateful transaction validation (for account-based cryptocurrencies):

Check $tx = [TXFER, PK_i \rightarrow PK_j, v]$ against state on disk

Stateful transaction validation (for account-based cryptocurrencies):

Check $tx = [TXFER, PK_i \rightarrow PK_i, v]$ against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Stateful transaction validation (for account-based cryptocurrencies):

Check
$$tx = [TXFER, PK_i \rightarrow PK_i, v]$$
 against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]

Stateful transaction validation (for account-based cryptocurrencies):

Check $tx = [TXFER, PK_i \rightarrow PK_i, v]$ against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest $\frac{d}{t}$ of the latest state

Stateful transaction validation (for account-based cryptocurrencies):

Check $tx = [TXFER, PK_i \rightarrow PK_i, v]$ against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest d_t of the latest state
- Each user has a proof π_i , which is perpetually updated

Stateful transaction validation (for account-based cryptocurrencies):

Check $tx = [TXFER, PK_i \rightarrow PK_i, v]$ against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest d_t of the latest state
- Each user has a proof π_i , which is perpetually updated

Stateles transaction validation

Stateful transaction validation (for account-based cryptocurrencies):

Check
$$tx = [TXFER, PK_i \rightarrow PK_i, v]$$
 against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest d_t of the latest state
- Each user has a proof π_i , which is perpetually updated

Stateles transaction validation:

Check
$$tx = [\mathsf{TXFER}, PK_i \to PK_j, v, t, \pi_i, bal_i \ge v]$$
 against digest d_t in block t

Stateful transaction validation (for account-based cryptocurrencies):

Check
$$tx = [TXFER, PK_i \rightarrow PK_i, v]$$
 against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- · Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest d_t of the latest state
- Each user has a proof π_i , which is perpetually updated

Stateles transaction validation:

Check
$$tx = [\mathsf{TXFER}, PK_i \to PK_i, v, t, \pi_i, bal_i \ge v]$$
 against digest d_t in block t

Why go stateless?

Stateful transaction validation (for account-based cryptocurrencies):

Check
$$tx = [TXFER, PK_i \rightarrow PK_i, v]$$
 against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest d, of the latest state
- Each user has a proof π_i , which is perpetually updated

Stateles transaction validation:

Check
$$tx = [\mathsf{TXFER}, PK_i \to PK_i, v, t, \pi_i, bal_i \ge v]$$
 against digest d_t in block t

Why go stateless?

(1) Faster validation.

Stateful transaction validation (for account-based cryptocurrencies):

Check
$$tx = [TXFER, PK_i \rightarrow PK_i, v]$$
 against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- · Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest d, of the latest state
- Each user has a proof π_i , which is perpetually updated

Stateles transaction validation:

Check
$$tx = [\mathsf{TXFER}, PK_i \to PK_i, v, t, \pi_i, bal_i \ge v]$$
 against digest d_t in block t

Why go stateless?

(1) Faster validation. (2) Less storage \Rightarrow lower barrier to entry.

Stateful transaction validation (for account-based cryptocurrencies):

Check
$$tx = [TXFER, PK_i \rightarrow PK_i, v]$$
 against state on disk

State is just a dictionary $D(PK_i) \rightarrow bal_i$ (+ counters for replay attacks)

Observations

- · Could "authenticate" state and verify transaction against digest [Mil12, Tod16, But17, RMCI17]
- Each block t now stores digest d_t of the latest state
- Each user has a proof π_i , which is perpetually updated

Stateles transaction validation:

Check
$$tx = [\mathsf{TXFER}, PK_i \to PK_i, v, t, \pi_i, bal_i \ge v]$$
 against digest d_t in block t

Why go stateless?

(1) Faster validation. (2) Less storage \Rightarrow lower barrier to entry. (3) Easy sharding.

An authenticated dictionary (AD) is ideal, but...

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{v}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{v}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

Consider miners validating and including $tx = [TXFER, PK_i \rightarrow PK_j, v, t, \pi_i, bal_i]$

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{v}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{v}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

Consider miners validating and including $tx = [\mathsf{TXFER}, PK_i \to PK_j, v, t, \pi_i, bal_i]$ and users processing it.

1. Miners need $VC.VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{v}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $V_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small
- 2. Miners need $d_{t+1} = VC.UpdateDig(d_{t+1}, \delta_i, i, upk_i)$

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $V_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small
- 2. Miners need $d_{t+1} = VC.UpdateDig(d_{t+1}, \delta_i, i, upk_i)$
 - $oldsymbol{\cdot}$ i.e., update digest with change in balance δ_i for each user i

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $V_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small
- 2. Miners need $d_{t+1} = VC.UpdateDig(d_{t+1}, \delta_i, i, upk_i)$
 - i.e., update digest with change in balance δ_i for each user i
- 3. Users need $\pi'_i = VC.UpdateProof(\pi_i, \delta_j, j, upk_j)$

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $V_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small
- 2. Miners need $d_{t+1} = VC.UpdateDig(d_{t+1}, \delta_i, i, upk_i)$
 - i.e., update digest with change in balance δ_i for each user i
- 3. Users need $\pi'_i = VC.UpdateProof(\pi_i, \delta_i, j, upk_i)$
 - i.e., update i's proof with change in balance δ_i for each user j

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{v}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small
- 2. Miners need $d_{t+1} = VC.UpdateDig(d_{t+1}, \delta_i, i, upk_i)$
 - i.e., update digest with change in balance δ_i for each user i
- 3. Users need $\pi'_i = VC.UpdateProof(\pi_i, \delta_i, j, upk_i)$
 - i.e., update i's proof with change in balance δ_i for each user j
- 4. Miners want $\pi_{i} = VC.AggregateProofs(I, (\pi_{i})_{i \in I})$, where I = set of users sending coins in a block

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{v}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small
- 2. Miners need $d_{t+1} = VC.UpdateDig(d_{t+1}, \delta_i, i, upk_i)$
 - i.e., update digest with change in balance δ_i for each user i
- 3. Users need $\pi'_i = VC.UpdateProof(\pi_i, \delta_i, j, upk_i)$
 - i.e., update i's proof with change in balance δ_i for each user j
- 4. Miners want $\pi_I = VC.AggregateProofs(I, (\pi_i)_{i \in I})$, where I = set of users sending coins in a block
 - Would need corresponding VC.VerifyPos(vrk, d_t , $(H(PK_i)|bal_i)_{i \in I}$, I, Π_I)

An authenticated dictionary (AD) is ideal, but... a vector commitment (VC) is sufficient [CPZ18].

- $\mathbf{V}_i = (H(PK_i)|bal_i)$
- $PK_i = (i, tpk_i, upk_i)$ and upk_i is a user-specific update key, which should be small

- 1. Miners need VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i), i, \pi_i)$
 - vrk is a global verification key, which should be small
- 2. Miners need $d_{t+1} = VC.UpdateDig(d_{t+1}, \delta_i, i, upk_i)$
 - i.e., update digest with change in balance δ_i for each user i
- 3. Users need $\pi'_i = VC.UpdateProof(\pi_i, \delta_i, j, upk_i)$
 - i.e., update i's proof with change in balance δ_i for each user j
- 4. Miners want $\pi_I = VC.AggregateProofs(I, (\pi_i)_{i \in I})$, where I = set of users sending coins in a block
 - Would need corresponding VC. $VerifyPos(vrk, d_t, (H(PK_i)|bal_i)_{i \in I}, I, \pi_I)$
- 5. Proof serving nodes would like to compute all π_i 's fast

Contributions

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme $ vrk $ $ upk_i $ $ \pi_i $	Proof update time	00	Verify aggr. proof	Prove all
---	-------------------------	----	--------------------------	--------------

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	logn	×	×	×	n

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	logn	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{ m G}}$	n^2

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	logn	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{ m G}}$	n^2
KZG [KZG10]	b	×	1	×	×	$b \lg^2 b_{\mathbb{F}} + b_{\mathbb{G}}$	n^2

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	logn	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{ m G}}$	n^2
KZG [KZG10]	b	×	1	×	×	$b \lg^2 b_{\scriptscriptstyle \rm F} + b_{\scriptscriptstyle \rm G}$	n^2
CDHK [CDHK15]	n	n	1	1	×	$b \lg^2 b_{\mathbb{F}} + b_{\mathbb{G}}$	n ²

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	log n	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{G}}$	n^2
KZG [KZG10]	b	×	1	×	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \odot}$	n^2
CDHK [CDHK15]	n	n	1	1	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \square}$	n^2
CPZ [CPZ18]	log n	log n	log n	log n	×	×	n log n

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	log n	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{ m G}}$	n^2
KZG [KZG10]	b	×	1	×	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \parallel}$	n^2
CDHK [CDHK15]	n	n	1	1	×	$b \lg^2 b_{\scriptscriptstyle \rm F} + b_{\scriptscriptstyle \rm G}$	n ²
CPZ [CPZ18]	log n	log n	log n	log n	×	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	$\log n + b$	log n	log n	log n	×	$b \lg^2 b_{\rm F} + b_{\rm G}$	n log n

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	logn	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{ m G}}$	n^2
KZG [KZG10]	b	×	1	×	×	$b \lg^2 b_{\scriptscriptstyle E} + b_{\scriptscriptstyle G}$	n^2
CDHK [CDHK15]	n	n	1	1	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \odot}$	n^2
CPZ [CPZ18]	log n	log n	log n	log n	×	×	n log n
TCZ [TCZ ⁺ 20, Tom20]	log n + b	logn	log n	log n	×	$b \log^2 b_{\scriptscriptstyle \rm F} + b_{\scriptscriptstyle \rm G}$	n log n
Pointproofs [GRWZ20]	n	n	1	1	$b_{\scriptscriptstyle{ m G}}$	$b_{\scriptscriptstyle{ m G}}$	n ²

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	log n	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{ m G}}$	n^2
KZG [KZG10]	b	×	1	×	×	$b \lg^2 b_{\mathbb{F}} + b_{\mathbb{G}}$	n^2
CDHK [CDHK15]	n	n	1	1	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \parallel}$	n ²
CPZ [CPZ18]	log n	log n	log n	log n	×	×	n log n
TCZ [TCZ ⁺ 20, Tom20]	$\log n + b$	log n	log n	log n	×	$b \lg^2 b_{\mathbb{F}} + b_{\mathbb{G}}$	n log n
Pointproofs [GRWZ20]	n	n	1	1	$b_{\scriptscriptstyle{ m G}}$	$b_{\scriptscriptstyle{\mathbb{G}}}$	n ²
Our aSVC	b	1	1	1	$b \lg^2 b_{\scriptscriptstyle F} + b_{\scriptscriptstyle G}$		n log n

Table 1: Asymptotic comparison to previous (aS)VCs: n is the size of \vec{v} and b is the # of proofs to aggregate.

(aS)VC scheme	vrk	upk _i	$ \pi_i $	Proof update time	Aggr. proofs time	Verify aggr. proof	Prove all
Merkle trees [Mer88]	1	×	logn	×	×	×	n
CF/LM [CF13,LM19]	n	n	1	1	×	$b_{\scriptscriptstyle{G}}$	n^2
KZG [KZG10]	b	×	1	×	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \odot}$	n^2
CDHK [CDHK15]	n	n	1	1	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \odot}$	n^2
CPZ [CPZ18]	log n	log n	log n	log n	×	×	n log n
TCZ [TCZ ⁺ 20, Tom20]	$\log n + b$	log n	log n	log n	×	$b \lg^2 b_{\scriptscriptstyle \parallel} + b_{\scriptscriptstyle \odot}$	n log n
Pointproofs [GRWZ20]	n	n	1	1	$b_{\scriptscriptstyle{ m G}}$	$b_{\scriptscriptstyle m G}$	n ²
Our aSVC	b	1	1	1	<i>b</i> lg	$g^2 b_{\mathbb{F}} + b_{\mathbb{G}}$	n log n

^{*}All schemes can (1) verify a proof π_i in $O(|\pi_i|)$ time and (2) update digests in O(1) time.

Outline

Motivation

Contributions

Techniques: VCs from Univariate Polynomial Commitments

Committing to Vectors (and Updating Digests)

Computing and Updating Proofs

Aggregating Proofs into Subvector Proofs

Conclusion

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor τ is unknown.

Fix n-SDH public parameters $\left(g^{\tau^i}\right)_{0 \leq i \leq n}$ such that $\operatorname{trapdoor} \tau$ is unknown. For any polynomial $\phi = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor τ is unknown.

For any polynomial $\phi = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c = g^{\phi(\tau)} \tag{1}$$

- (2)
- (3)
- (4)
- (5)

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor τ is unknown.

For any polynomial $\phi = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

- (3)
- (4)
- (5)

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor τ is unknown.

For any polynomial $\phi = \sum_{i=0}^{n} \phi_i X^i = \langle \phi_0, \phi_1, ..., \phi_n \rangle$ of degree $\leq n$:

$$c = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

$$=g^{\phi_n\tau^n}g^{\phi_{n-1}\tau^{n-1}}\dots g^{\phi_1\tau}g^{\phi_0}$$
 (3)

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor τ is unknown.

For any polynomial $\phi = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

$$= g^{\phi_n \tau^n} g^{\phi_{n-1} \tau^{n-1}} \dots g^{\phi_1 \tau} g^{\phi_0}$$
 (3)

$$=g^{\phi_n \tau^n + \phi_{n-1} \tau^{n-1} + \dots + \phi_1 \tau + \phi_0} \tag{4}$$

6

(5)

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor τ is unknown.

For any polynomial $\phi = \sum_{i=0}^{n} \phi_i X^i = \langle \phi_0, \phi_1, ..., \phi_n \rangle$ of degree $\leq n$:

$$c = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

$$=g^{\phi_n\tau^n}g^{\phi_{n-1}\tau^{n-1}}\dots g^{\phi_1\tau}g^{\phi_0} \tag{3}$$

$$=g^{\phi_n \tau^n + \phi_{n-1} \tau^{n-1} + \dots + \phi_1 \tau + \phi_0} \tag{4}$$

$$=g^{\phi(\tau)} \tag{5}$$

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor τ is unknown.

For any polynomial $\phi = \sum_{i=0}^{n} \phi_i X^i = \langle \phi_0, \phi_1, ..., \phi_n \rangle$ of degree $\leq n$:

$$c = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

$$=g^{\phi_n\tau^n}g^{\phi_{n-1}\tau^{n-1}}\dots g^{\phi_1\tau}g^{\phi_0} \tag{3}$$

$$= g^{\phi_n \tau^{n} + \phi_{n-1} \tau^{n-1} + \dots + \phi_1 \tau + \phi_0} \tag{4}$$

$$=g^{\phi(\tau)} \tag{5}$$

Can interpolate polynomial from n points $(x_i, \phi(x_i))_{i \in [n]}$ in $O(n \log^2 n)$ field operations.

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor τ is unknown.

For any polynomial $\phi = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, ..., \phi_n \rangle$ of degree $\leq n$:

$$c = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

$$=g^{\phi_n\tau^n}g^{\phi_{n-1}\tau^{n-1}}\dots g^{\phi_1\tau}g^{\phi_0}$$
 (3)

$$= g^{\phi_n \tau^n + \phi_{n-1} \tau^{n-1} + \dots + \phi_1 \tau + \phi_0} \tag{4}$$

$$=g^{\phi(\tau)} \tag{5}$$

Can interpolate polynomial from n points $(x_i, \phi(x_i))_{i \in [n]}$ in $O(n \log^2 n)$ field operations. Time to commit is an O(n)-sized multi-exponentiation.

Compute $\phi(X)$ s.t. $\phi(i) = v_i$:

Compute $\phi(X)$ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X), \text{ where } L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j}$$
 (6)

Compute $\phi(X)$ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X), \text{ where } L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j}$$
 (6)

Setup Lagrange basis polynomial commitments $\ell_i = g^{L_i(\tau)}, \forall i \in [0, n)$ (speed?)

7

Compute $\phi(X)$ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X), \text{ where } L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j}$$
 (6)

Setup Lagrange basis polynomial commitments $\ell_i = g^{L_i(\tau)}, \forall i \in [0, n)$ (speed?). Then, commit to \vec{v} as [CDHK15]:

7

Compute $\phi(X)$ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X), \text{ where } L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j}$$
 (6)

Setup Lagrange basis polynomial commitments $\ell_i = g^{L_i(\tau)}, \forall i \in [0, n)$ (speed?). Then, commit to \vec{v} as [CDHK15]:

$$c = \prod_{i \in [0,n)} \ell_i^{v_i} \tag{7}$$

- (8)
- (9)

Compute $\phi(X)$ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X), \text{ where } L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j}$$
 (6)

Setup Lagrange basis polynomial commitments $\ell_i = g^{L_i(\tau)}, \forall i \in [0, n)$ (speed?). Then, commit to \vec{v} as [CDHK15]:

$$c = \prod_{i \in [0,n)} \ell_i^{V_i} \tag{7}$$

$$=g^{\sum_{i\in[0,n)}L_i(\tau)v_i} \tag{8}$$

(9)

Compute $\phi(X)$ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X), \text{ where } L_i(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j}$$
 (6)

Setup Lagrange basis polynomial commitments $\ell_i = g^{L_i(\tau)}, \forall i \in [0, n)$ (speed?). Then, commit to \vec{v} as [CDHK15]:

$$C = \prod_{i \in [0,n)} \ell_i^{v_i} \tag{7}$$

$$=g^{\sum_{i\in[0,n)}L_i(\tau)v_i} \tag{8}$$

$$=g^{\phi(\tau)} \tag{9}$$

Let $\phi'(X)$ be the updated polynomial after v_i changes to $v_i + \delta_i$:

Let $\phi'(X)$ be the updated polynomial after v_i changes to $v_i + \delta_i$:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

Let $\phi'(X)$ be the updated polynomial after v_i changes to $v_i + \delta_i$:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

To update c via $VC.UpdateDig(c, \delta_i, i, upk_i)$:

Let $\phi'(X)$ be the updated polynomial after v_i changes to $v_i + \delta_i$:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

To update c via $VC.UpdateDig(c, \delta_i, i, upk_i)$:

$$c' = c \cdot \ell_i^{\delta_i} \tag{11}$$

- (12)
- (13)

Let $\phi'(X)$ be the updated polynomial after v_i changes to $v_i + \delta_i$:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

To update c via $VC.UpdateDig(c, \delta_i, i, upk_i)$:

$$c' = c \cdot \ell_i^{\delta_i} \tag{11}$$

$$=g^{\phi(\tau)}\cdot g^{\delta_i L_i(\tau)} \tag{12}$$

(13)

Let $\phi'(X)$ be the updated polynomial after v_i changes to $v_i + \delta_i$:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

To update c via $VC.UpdateDig(c, \delta_i, i, upk_i)$:

$$c' = c \cdot \ell_i^{\delta_i} \tag{11}$$

$$=g^{\phi(\tau)}\cdot g^{\delta_i L_i(\tau)} \tag{12}$$

$$=g^{\phi'(\tau)} \tag{13}$$

Let $\phi'(X)$ be the updated polynomial after v_i changes to $v_i + \delta_i$:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

To update c via $VC.UpdateDig(c, \delta_i, i, upk_i)$:

$$c' = c \cdot \ell_i^{\delta_i} \tag{11}$$

$$=g^{\phi(\tau)}\cdot g^{\delta_i L_i(\tau)} \tag{12}$$

$$=g^{\phi'(\tau)} \tag{13}$$

Jon done: Each upk_i must include ℓ_i .

8

Outline

Motivation

Contributions

Techniques: VCs from Univariate Polynomial Commitments

Committing to Vectors (and Updating Digests)

Computing and Updating Proofs

Aggregating Proofs into Subvector Proofs

Conclusion

Proof π_i **for** v_i **Refresher**

A proof for v_i is just a KZG evaluation proof:

A proof for v_i is just a KZG evaluation proof: **Step 1:** Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

Step 3: Compute $\pi_i = g^{q_i(\tau)}$ using an O(n)-sized multiexp.

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

Step 3: Compute $\pi_i = g^{q_i(\tau)}$ using an O(n)-sized multiexp.

To verify, use pairings and g^{τ} from vrk to check:

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

Step 3: Compute $\pi_i = g^{q_i(\tau)}$ using an O(n)-sized multiexp.

To verify, use pairings and g^{T} from vrk to check:

$$e(c/g^{v_i},g) = e(\pi_i,g^{\tau}/g^i) \Leftrightarrow \tag{14}$$

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

Step 3: Compute $\pi_i = g^{q_i(\tau)}$ using an O(n)-sized multiexp.

To verify, use pairings and g^{τ} from vrk to check:

$$e(c/g^{v_i},g) = e(\pi_i,g^{\tau}/g^i) \Leftrightarrow \tag{14}$$

$$e(g^{\phi(\tau)}/g^{v_i},g) = e(g^{q_i(\tau)},g^{\tau-i}) \Leftrightarrow \tag{15}$$

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

Step 3: Compute $\pi_i = g^{q_i(\tau)}$ using an O(n)-sized multiexp.

To verify, use pairings and g^{T} from vrk to check:

$$e(c/g^{v_i},g) = e(\pi_i,g^{\tau}/g^i) \Leftrightarrow \tag{14}$$

$$e(g^{\phi(\tau)}/g^{v_i},g) = e(g^{q_i(\tau)},g^{\tau-i}) \Leftrightarrow \tag{15}$$

$$e(g^{\phi(\tau)-v_i},g) = e(g,g)^{q_i(\tau)(\tau-i)} \Leftrightarrow$$
 (16)

(17)

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

Step 3: Compute $\pi_i = g^{q_i(\tau)}$ using an O(n)-sized multiexp.

To verify, use pairings and g^{T} from vrk to check:

$$e(c/g^{v_i},g) = e(\pi_i, g^{\tau}/g^i) \Leftrightarrow \tag{14}$$

$$e(g^{\phi(\tau)}/g^{v_i},g) = e(g^{q_i(\tau)},g^{\tau-i}) \Leftrightarrow \tag{15}$$

$$e(g^{\phi(\tau)-v_i},g) = e(g,g)^{q_i(\tau)(\tau-i)} \Leftrightarrow$$
 (16)

$$\phi(\tau) - v_i = q_i(\tau)(\tau - i) \tag{17}$$

A proof for v_i is just a KZG evaluation proof:

Step 1: Interpolate $\phi(X)$ in $O(n \log^2 n)$ time.

Step 2: Compute $q_i(X) = \frac{\phi(X) - v_i}{X - i}$ in O(n) time.

Step 3: Compute $\pi_i = g^{q_i(\tau)}$ using an O(n)-sized multiexp.

To verify, use pairings and g^{T} from vrk to check:

$$e(c/g^{v_i}, g) = e(\pi_i, g^{\tau}/g^i) \Leftrightarrow \tag{14}$$

$$e(g^{\phi(\tau)}/g^{v_i},g) = e(g^{q_i(\tau)},g^{\tau-i}) \Leftrightarrow \tag{15}$$

$$e(g^{\phi(\tau)-v_i},g) = e(g,g)^{q_i(\tau)(\tau-i)} \Leftrightarrow$$
 (16)

$$\phi(\tau) - v_i = q_i(\tau)(\tau - i) \tag{17}$$

New technique: O(n) time w/o interpolating $\phi(X)$ via upk_i 's (see [TAB+20, Appendix D.7]).

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

(20)

(21)

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

(21)

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

$$=q_i(X)+\delta_i\left(\frac{L_i(X)-1}{X-i}\right) \tag{21}$$

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

$$= q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right) \tag{21}$$

Let u_i be a KZG commitment to $\frac{L_i(X)-1}{X-i}$.

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

$$= q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right) \tag{21}$$

Let u_i be a KZG commitment to $\frac{L_i(X)-1}{X-i}$. Then, $\pi_i'=g^{q_i'(\tau)}$ can be computed as:

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q_i'(X) = \frac{\phi'(X) - (v_i + \delta_i)}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

$$= q_i(X) + \delta_i\left(\frac{L_i(X) - 1}{X - i}\right) \tag{21}$$

Let u_i be a KZG commitment to $\frac{L_i(X)-1}{X-i}$. Then, $\pi_i'=g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot \left(u_i\right)^{\delta_i} \tag{22}$$

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

$$=q_i(X)+\delta_i\left(\frac{L_i(X)-1}{X-i}\right) \tag{21}$$

Let u_i be a KZG commitment to $\frac{L_i(X)-1}{X-i}$. Then, $\pi_i' = g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot (u_i)^{\delta_i} \tag{22}$$

Job done: Each upk_i must include u_i .

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

$$= q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right) \tag{21}$$

Let u_i be a KZG commitment to $\frac{L_i(X)-1}{X-i}$. Then, $\pi_i'=g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot (u_i)^{\delta_i} \tag{22}$$

Job done: Each upk_i must include u_i . Wait, what about computing all u_i 's?

Consider new $q'_i(X)$ when v_i changed to $v_i + \delta_i$:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (18)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{19}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (20)

$$= q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right) \tag{21}$$

Let u_i be a KZG commitment to $\frac{L_i(X)-1}{X-i}$. Then, $\pi_i'=g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot (u_i)^{\delta_i} \tag{22}$$

Job done: Each upk_i must include u_i . Wait, what about computing all u_i 's? Later.

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q'_{i}(X) = \frac{\phi'(X) - v_{i}}{X - i}$$
 (23)

(24)

(25)

(26)

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i} \tag{23}$$

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}$$
(24)

(25)

(26)

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q'_{i}(X) = \frac{\phi'(X) - v_{i}}{X - i}$$
 (23)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i} \tag{24}$$

$$=\frac{\phi(X)-v_i}{X-i}-\frac{\delta_j L_j(X)}{X-i} \tag{25}$$

(26)

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i} \tag{23}$$

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{24}$$

$$=\frac{\phi(X)-v_i}{X-i}-\frac{\delta_j L_j(X)}{X-i} \tag{25}$$

$$= q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right) \tag{26}$$

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i} \tag{23}$$

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{24}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (25)

$$= q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right) \tag{26}$$

Let $u_{i,j}$ be a KZG commitment to $U_{i,j}(X) = \frac{L_j(X)}{X-i}$.

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q'_{i}(X) = \frac{\phi'(X) - v_{i}}{X - i}$$
 (23)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{24}$$

$$=\frac{\phi(X)-v_i}{X-i}-\frac{\delta_j L_j(X)}{X-i} \tag{25}$$

$$= q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right) \tag{26}$$

Let $u_{i,j}$ be a KZG commitment to $U_{i,j}(X) = \frac{L_j(X)}{X-i}$. Then, $\pi_i' = g^{q_i'(\tau)}$ can be computed as:

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q'_{i}(X) = \frac{\phi'(X) - v_{i}}{X - i}$$
 (23)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{24}$$

$$=\frac{\phi(X)-v_i}{X-i}-\frac{\delta_j L_j(X)}{X-i} \tag{25}$$

$$= q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right) \tag{26}$$

Let $u_{i,j}$ be a KZG commitment to $U_{i,j}(X) = \frac{L_j(X)}{X-i}$. Then, $\pi_i' = g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot \left(u_{i,j}\right)^{\delta_j} \tag{27}$$

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q'_{i}(X) = \frac{\phi'(X) - v_{i}}{X - i}$$
 (23)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{24}$$

$$=\frac{\phi(X)-v_i}{X-i}-\frac{\delta_j L_j(X)}{X-i} \tag{25}$$

$$=q_i(X)+\delta_j\left(\frac{L_j(X)}{X-i}\right) \tag{26}$$

Let $u_{i,j}$ be a KZG commitment to $U_{i,j}(X) = \frac{L_j(X)}{X-i}$. Then, $\pi_i' = g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot \left(u_{i,j}\right)^{\delta_j} \tag{27}$$

Big problem: To update π_i after a change to any j, need $upk_i = \{u_{i,i}, \forall i \neq j\}$

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (23)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i} \tag{24}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (25)

$$= q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right) \tag{26}$$

Let $u_{i,j}$ be a KZG commitment to $U_{i,j}(X) = \frac{L_j(X)}{X-i}$. Then, $\pi_i' = g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot \left(u_{i,j}\right)^{\delta_j} \tag{27}$$

Big problem: To update π_i after a change to any j, need $upk_i = \{u_{i,i}, \forall i \neq j\} \Rightarrow |upk_i| = O(n)$.

Consider new $q'_i(X)$ when v_j changed to $v_j + \delta_j$:

$$q'_{i}(X) = \frac{\phi'(X) - v_{i}}{X - i}$$
 (23)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i} \tag{24}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (25)

$$= q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right) \tag{26}$$

Let $u_{i,j}$ be a KZG commitment to $U_{i,j}(X) = \frac{L_j(X)}{X-i}$. Then, $\pi_i' = g^{q_i'(\tau)}$ can be computed as:

$$\pi_i' = \pi_i \cdot \left(u_{i,j} \right)^{\delta_j} \tag{27}$$

Big problem: To update π_i after a change to any j, need $upk_j = \{u_{i,j}, \forall i \neq j\} \Rightarrow |upk_j| = O(n)$. **New technique:** Compute $u_{i,j}$ in O(1) time from upk_j and upk_j .

New Technique: Compute $u_{i,j}$ in O(1) time

New Technique: Compute $u_{i,j}$ in O(1) time

Let
$$A(X) = \prod_{i \in [0,n)} (X - i)$$
.

Let
$$A(X) = \prod_{i \in [0,n)} (X-i)$$
. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2),

Let
$$A(X) = \prod_{i \in [0,n)} (X - i)$$
. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-i)}$ (see Appendix 2), and:

Let
$$A(X) = \prod_{i \in [0,n)} (X - i)$$
. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(i)(X-i)}\right)/(X-i)$$
(28)

(29)

(30)

Let
$$A(X) = \prod_{i \in [0,n)} (X-i)$$
. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(i)(X-i)}\right)/(X-i)$$
(28)

$$= \frac{1}{A'(j)} \cdot \frac{A(X)}{(X-j)(X-i)}$$
 (29)

(30)

Let
$$A(X) = \prod_{i \in [0,n)} (X-i)$$
. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(i)(X-i)}\right)/(X-i)$$
(28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(i)(X-i)}\right)/(X-i)$$
(28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Fortunately, it happens that (see Appendix 1):

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(i)(X-i)}\right)/(X-i)$$
(28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Fortunately, it happens that (see Appendix 1):

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{A(X)}{(X-i)(X-j)} = W_{i,j}(X)$$
 (31)

Let $A(X) = \prod_{i \in [0,n)} (X-i)$. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(j)(X-j)}\right)/(X-i)$$
(28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Fortunately, it happens that (see Appendix 1):

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{A(X)}{(X-i)(X-j)} = W_{i,j}(X)$$
(31)

New technique: Let $a_i = g^{A(\tau)/(\tau-i)}$ and compute $u_{i,j}$ as:

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(j)(X-j)}\right)/(X-i)$$
(28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Fortunately, it happens that (see Appendix 1):

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{A(X)}{(X-i)(X-j)} = W_{i,j}(X)$$
 (31)

New technique: Let $a_i = g^{A(\tau)/(\tau-i)}$ and compute $u_{i,j}$ as:

$$u_{i,j} = \left(a_i^{\frac{1}{i-j}} \cdot a_j^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$
 (32)

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(j)(X-j)}\right)/(X-i)$$
 (28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Fortunately, it happens that (see Appendix 1):

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{A(X)}{(X-i)(X-j)} = W_{i,j}(X)$$
 (31)

New technique: Let $a_i = g^{A(\tau)/(\tau-i)}$ and compute $u_{i,j}$ as:

$$u_{i,j} = \left(a_i^{\frac{1}{i-j}} \cdot a_j^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$
 (32)

Job done: Each upk_i must include a_i and A'(i).

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(j)(X-j)}\right)/(X-i)$$
(28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Fortunately, it happens that (see Appendix 1):

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{A(X)}{(X-i)(X-j)} = W_{i,j}(X)$$
 (31)

New technique: Let $a_i = g^{A(\tau)/(\tau-i)}$ and compute $u_{i,i}$ as:

$$u_{i,j} = \left(a_i^{\frac{1}{i-j}} \cdot a_j^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$
 (32)

Job done: Each upk_i must include a_i and A'(i). Wait, what about computing all a_i 's?

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then, $L_j(X) = \frac{A(X)}{A'(j)(X-j)}$ (see Appendix 2), and:

$$U_{i,j}(X) = L_j(X)/(X-i) = \left(\frac{A(X)}{A'(j)(X-j)}\right)/(X-i)$$
(28)

$$=\frac{1}{A'(j)}\cdot\frac{A(X)}{(X-j)(X-i)}\tag{29}$$

$$=\frac{1}{A'(j)}\cdot W_{i,j}(X) \tag{30}$$

Fortunately, it happens that (see Appendix 1):

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{A(X)}{(X-i)(X-j)} = W_{i,j}(X)$$
 (31)

New technique: Let $a_i = g^{A(\tau)/(\tau-i)}$ and compute $u_{i,i}$ as:

$$u_{i,j} = \left(a_i^{\frac{1}{i-j}} \cdot a_j^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$
 (32)

Job done: Each upk_i must include a_i and A'(i). Wait, what about computing all a_i 's? Later.

Outline

Motivation

Contributions

Techniques: VCs from Univariate Polynomial Commitments

Committing to Vectors (and Updating Digests)

Computing and Updating Proofs

Aggregating Proofs into Subvector Proofs

Conclusion

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

(34)

(35)

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{I}(X) = \sum_{i \in I} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in I, j \neq i} \frac{X - j}{i - j}$$
 (34)

(35)

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{l}(X) = \sum_{i \in l} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in l, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{l}(X) = \sum_{i \in l} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in l, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{l}(X) = \sum_{i \in l} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in l, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

$$A_I(i) = 0$$
 and $R_I(i) = v_i$, $\forall i \in I$.

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{I}(X) = \sum_{i \in I} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in I, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

 $A_{I}(i) = 0$ and $R_{I}(i) = V_{i}$, $\forall i \in I$.

Can compute $A_i(X)$ and $R_i(X)$ in $O(|I| \log^2 |I|)$ field operations.

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{i}(X) = \sum_{i \in I} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in I, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

 $A_{I}(i) = 0$ and $R_{I}(i) = v_{i}$, $\forall i \in I$.

Can compute $A_i(X)$ and $R_i(X)$ in $O(|I| \log^2 |I|)$ field operations.

Can compute $q_i(X)$ in $O(n \log n)$ field operations.

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{I}(X) = \sum_{i \in I} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in I, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

 $A_{I}(i) = 0$ and $R_{I}(i) = v_{i}$, $\forall i \in I$.

Can compute $A_i(X)$ and $R_i(X)$ in $O(|I| \log^2 |I|)$ field operations.

Can compute $q_i(X)$ in $O(n \log n)$ field operations.

I-subvector proof is $\pi_I = g^{q_I(\tau)}$, computed with O(n - |I|)-sized multiexp.

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{I}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{I}(X) = \sum_{i \in I} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in I, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

 $A_{I}(i) = 0$ and $R_{I}(i) = v_{i}$, $\forall i \in I$.

Can compute $A_i(X)$ and $R_i(X)$ in $O(|I| \log^2 |I|)$ field operations.

Can compute $q_i(X)$ in $O(n \log n)$ field operations.

I-subvector proof is $\pi_I = g^{q_I(\tau)}$, computed with O(n - |I|)-sized multiexp. To verify:

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{i}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{I}(X) = \sum_{i \in I} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in I, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

 $A_I(i) = 0$ and $R_I(i) = v_i$, $\forall i \in I$.

Can compute $A_i(X)$ and $R_i(X)$ in $O(|I| \log^2 |I|)$ field operations.

Can compute $q_i(X)$ in $O(n \log n)$ field operations.

I-subvector proof is $\pi_i = g^{q_i(\tau)}$, computed with O(n - |I|)-sized multiexp. To verify:

$$e(c/g^{R_l(\tau)}, g) = e(\pi_l, g^{A_l(\tau)})$$
 (36)

Can use KZG batch proofs to compute a constant-sized *I*-subvector proof π_I for all $(v_i)_{i \in I}$:

$$A_{i}(X) = \prod_{i \in I} (X - i) \tag{33}$$

$$R_{I}(X) = \sum_{i \in I} v_{i} \cdot L_{i}^{*}(X), \text{ where } L_{i}^{*}(X) = \prod_{j \in I, j \neq i} \frac{X - j}{i - j}$$
 (34)

$$q_{I}(X) = \frac{\phi(X) - R_{I}(X)}{A_{I}(X)} \tag{35}$$

Note that

 $A_I(i) = 0$ and $R_I(i) = V_i$, $\forall i \in I$.

Can compute $A_i(X)$ and $R_i(X)$ in $O(|I| \log^2 |I|)$ field operations.

Can compute $q_i(X)$ in $O(n \log n)$ field operations.

I-subvector proof is $\pi_I = g^{q_I(\tau)}$, computed with O(n - |I|)-sized multiexp. To verify:

$$e(c/g^{R_I(\tau)}, g) = e(\pi_I, g^{A_I(\tau)})$$
 (36)

Note: vrk contains $(g^{\tau^i})_{i \in [0,|I|]}$

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_I(X)} = \frac{1}{\prod_{i \in I} (X - i)} = \sum_{i \in I} \frac{1}{A_I'(i)} \cdot \frac{1}{X - i}$$
 (37)

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_{I}(X)} = \frac{1}{\prod_{i \in I} (X - i)} = \sum_{i \in I} \frac{1}{A'_{I}(i)} \cdot \frac{1}{X - i}$$
(37)

We "decompose" the quotient $q_I(X) = \frac{\phi(X) - R_I(X)}{A_I(X)}$ in π_I as:

Aggregating *I*-subvector Proof $\pi_{_{I}}$ From $(\pi_{_{i}})_{_{i\in I}}$

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_I(X)} = \frac{1}{\prod_{i \in I} (X - i)} = \sum_{i \in I} \frac{1}{A_I'(i)} \cdot \frac{1}{X - i}$$
 (37)

We "decompose" the quotient $q_I(X) = \frac{\phi(X) - R_I(X)}{A_I(X)}$ in π_I as:

$$q_{I}(X) = \phi(X) \frac{1}{A_{I}(X)} - R_{I}(X) \frac{1}{A_{I}(X)}$$
(38)

Aggregating *I*-subvector Proof $\pi_{_{I}}$ From $(\pi_{_{i}})_{_{i\in I}}$

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_{I}(X)} = \frac{1}{\prod_{i \in I} (X - i)} = \sum_{i \in I} \frac{1}{A'_{I}(i)} \cdot \frac{1}{X - i}$$
(37)

We "decompose" the quotient $q_I(X) = \frac{\phi(X) - R_I(X)}{A_I(X)}$ in π_I as:

$$q_{I}(X) = \phi(X) \frac{1}{A_{I}(X)} - R_{I}(X) \frac{1}{A_{I}(X)}$$
 (38)

$$= \phi(X) \frac{1}{A_I(X)} - \left(\sum_{i \in I} v_i \cdot L_i^*(X) \right) \frac{1}{A_I(X)}$$
 (39)

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_{I}(X)} = \frac{1}{\prod_{i \in I} (X - i)} = \sum_{i \in I} \frac{1}{A'_{I}(i)} \cdot \frac{1}{X - i}$$
(37)

We "decompose" the quotient $q_I(X) = \frac{\phi(X) - R_I(X)}{A_I(X)}$ in π_I as:

$$q_I(X) = \phi(X) \frac{1}{A_I(X)} - R_I(X) \frac{1}{A_I(X)}$$
 (38)

$$= \phi(X) \frac{1}{A_i(X)} - \left(\sum_{i \in I} v_i \cdot L_i^*(X) \right) \frac{1}{A_i(X)}$$
 (39)

$$= \phi(X) \sum_{i \in I} \frac{1}{A_i'(i)(X-i)} - \left(\sum_{i \in I} v_i \cdot \frac{A_i(X)}{A_i'(i)(X-i)}\right) \cdot \frac{1}{A_i(X)}$$
(40)

(41)

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_{I}(X)} = \frac{1}{\prod_{i \in I} (X - i)} = \sum_{i \in I} \frac{1}{A'_{I}(i)} \cdot \frac{1}{X - i}$$
(37)

We "decompose" the quotient $q_I(X) = \frac{\phi(X) - R_I(X)}{A_I(X)}$ in π_I as:

$$q_{I}(X) = \phi(X) \frac{1}{A_{I}(X)} - R_{I}(X) \frac{1}{A_{I}(X)}$$
(38)

$$= \phi(X) \frac{1}{A_I(X)} - \left(\sum_{i \in I} v_i \cdot L_i^*(X) \right) \frac{1}{A_I(X)}$$
 (39)

$$= \phi(X) \sum_{i \in I} \frac{1}{A_i'(i)(X-i)} - \left(\sum_{i \in I} v_i \cdot \frac{A_i(X)}{A_i'(i)(X-i)}\right) \cdot \frac{1}{A_i(X)}$$
(40)

$$= \sum_{i \in I} \frac{\phi(X)}{A_i'(i)(X-i)} - \sum_{i \in I} \frac{V_i}{A_i'(i)(X-i)}$$
(41)

(42)

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_{I}(X)} = \frac{1}{\prod_{i \in I} (X - i)} = \sum_{i \in I} \frac{1}{A'_{I}(i)} \cdot \frac{1}{X - i}$$
(37)

We "decompose" the quotient $q_I(X) = \frac{\phi(X) - R_I(X)}{A_I(X)}$ in π_I as:

$$q_I(X) = \phi(X) \frac{1}{A_I(X)} - R_I(X) \frac{1}{A_I(X)}$$
 (38)

$$= \phi(X) \frac{1}{A_I(X)} - \left(\sum_{i \in I} v_i \cdot L_i^*(X) \right) \frac{1}{A_I(X)}$$
 (39)

$$= \phi(X) \sum_{i \in I} \frac{1}{A_{I}'(i)(X-i)} - \left(\sum_{i \in I} v_{i} \cdot \frac{A_{I}(X)}{A_{I}'(i)(X-i)}\right) \cdot \frac{1}{A_{I}(X)}$$
(40)

$$= \sum_{i \in I} \frac{\phi(X)}{A_i'(i)(X-i)} - \sum_{i \in I} \frac{V_i}{A_i'(i)(X-i)}$$
(41)

$$=\sum_{i=1}^{\infty}\frac{1}{A_i'(i)}\cdot\frac{\phi(X)-v_i}{X-i}$$
(42)

We use partial fraction decomposition, as proposed by Drake and Buterin [But20] (see Appendix 2):

$$\frac{1}{A_i(X)} = \frac{1}{\prod_{i=1}(X-i)} = \sum_{i=1}^{N} \frac{1}{A_i'(i)} \cdot \frac{1}{X-i}$$

We "decompose" the quotient $q_I(X) = \frac{\phi(X) - R_I(X)}{A(X)}$ in π_I as:

$$q_{I}(X) = \phi(X) \frac{1}{A_{I}(X)} - R_{I}(X) \frac{1}{A_{I}(X)}$$

$$= \phi(X) \frac{1}{A_i(X)} - \left(\sum_{i=1}^{n} v_i \cdot L_i^*(X)\right) \frac{1}{A_i(X)}$$

$$\frac{\Phi(X)}{A_{I}(X)} - \left(\sum_{i \in I} V_{i} \cdot L_{i}(X)\right) \frac{1}{A_{I}(X)}$$

$$=\phi(X)\sum_{i\in I}\frac{1}{A_{I}'(i)(X-i)}-\left(\sum_{i\in I}v_{i}\cdot\frac{A_{I}(X)}{A_{I}'(i)(X-i)}\right)\cdot\frac{1}{A_{I}(X)}$$

$$= \sum_{i \in I} \frac{\phi(X)}{A_i'(i)(X-i)} - \sum_{i \in I} \frac{v_i}{A_i'(i)(X-i)}$$

$$= \sum_{i \in I} \frac{1}{A_i'(i)} \cdot \frac{\phi(X) - v_i}{X - i}$$

$$= \sum_{i \in I} \frac{1}{A_i'(i)} \cdot \frac{\varphi(X)}{X} -$$

$$= \sum_{i \in I} \frac{1}{A_i'(i)} \cdot q_i(X)$$

(40)

$$\overline{i}$$
) $\overline{A_i(X)}$ (41)

(37)

(38)

(39)

To aggregate π_I :

To aggregate π_i :

Step 1: Interpolate $A_I(X) = \prod_{i \in I} (X - i)$ in $O(|I| \log^2 |I|)$ field operations.

To aggregate π_i :

Step 1: Interpolate $A_i(X) = \prod_{i \in I} (X - i)$ in $O(|I| \log^2 |I|)$ field operations.

Step 2: Compute its derivative $A'_{I}(X)$ in O(|I|) field operations.

To aggregate π_l :

Step 1: Interpolate $A_i(X) = \prod_{i \in I} (X - i)$ in $O(|I| \log^2 |I|)$ field operations.

Step 2: Compute its derivative $A'_{I}(X)$ in O(|I|) field operations.

Step 3: Compute all $A'_{I}(i)$ in $O(|I| \log^2 |I|)$ field operations via a polynomial multipoint evaluation [vzGG13].

To aggregate π_l :

Step 1: Interpolate $A_i(X) = \prod_{i \in I} (X - i)$ in $O(|I| \log^2 |I|)$ field operations.

Step 2: Compute its derivative $A'_{I}(X)$ in O(|I|) field operations.

Step 3: Compute all $A'_{I}(i)$ in $O(|I| \log^2 |I|)$ field operations via a polynomial multipoint evaluation [vzGG13].

Step 4: Compute π_I using an O(|I|)-sized multiexp:

To aggregate π_l :

Step 1: Interpolate $A_i(X) = \prod_{i \in I} (X - i)$ in $O(|I| \log^2 |I|)$ field operations.

Step 2: Compute its derivative $A'_{I}(X)$ in O(|I|) field operations.

Step 3: Compute all $A'_{I}(i)$ in $O(|I| \log^2 |I|)$ field operations via a polynomial multipoint evaluation [vzGG13].

Step 4: Compute π_i , using an O(|I|)-sized multiexp:

$$\pi_{l} = \prod_{i \in l} \pi_{i}^{1/A'_{l}(i)} \tag{44}$$

To aggregate π_l :

Step 1: Interpolate $A_i(X) = \prod_{i \in I} (X - i)$ in $O(|I| \log^2 |I|)$ field operations.

Step 2: Compute its derivative $A'_{I}(X)$ in O(|I|) field operations.

Step 3: Compute all $A'_{I}(i)$ in $O(|I| \log^2 |I|)$ field operations via a polynomial multipoint evaluation [vzGG13].

Step 4: Compute π_l using an O(|I|)-sized multiexp:

$$\pi_{l} = \prod_{i \in l} \pi_{i}^{1/A'_{l}(i)} \tag{44}$$

Job done: Can aggregate π_i 's for $(v_i)_{i \in I}$ into constant-sized π_I .

Conclusion

Main contributions:

• New aSVC with constant-sized (subvector) proofs and constant-sized update keys

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- Proofs can be aggregated efficiently into subvector proof

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- · Proofs can be aggregated efficiently into subvector proof
- Proofs can be updated efficiently

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- · Proofs can be aggregated efficiently into subvector proof
- Proofs can be updated efficiently
- Can be used to build highly-efficient, account-based stateless cryptocurrencies

Main contributions:

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- · Proofs can be aggregated efficiently into subvector proof
- Proofs can be updated efficiently
- Can be used to build highly-efficient, account-based stateless cryptocurrencies

Main contributions:

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- Proofs can be aggregated efficiently into subvector proof
- Proofs can be updated efficiently
- · Can be used to build highly-efficient, account-based stateless cryptocurrencies

Other goodies (not in this talk):

aSVC formalization that accounts for update keys

Main contributions:

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- · Proofs can be aggregated efficiently into subvector proof
- Proofs can be updated efficiently
- · Can be used to build highly-efficient, account-based stateless cryptocurrencies

- aSVC formalization that accounts for update keys
- Each update key *upk*; is verifiable against *vrk*

Main contributions:

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- Proofs can be aggregated efficiently into subvector proof
- · Proofs can be updated efficiently
- · Can be used to build highly-efficient, account-based stateless cryptocurrencies

- aSVC formalization that accounts for update keys
- Each update key upk; is verifiable against vrk
- New security definition for KZG batch proofs, which reduces to $n ext{-SBDH}$

Main contributions:

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- Proofs can be aggregated efficiently into subvector proof
- · Proofs can be updated efficiently
- · Can be used to build highly-efficient, account-based stateless cryptocurrencies

- aSVC formalization that accounts for update keys
- Each update key *upk*, is verifiable against *vrk*
- New security definition for KZG batch proofs, which reduces to $n ext{-SBDH}$
- Subtleties of VC-based stateless cryptocurrencies

Main contributions:

- New aSVC with constant-sized (subvector) proofs and constant-sized update keys
- Proofs can be aggregated efficiently into subvector proof
- · Proofs can be updated efficiently
- · Can be used to build highly-efficient, account-based stateless cryptocurrencies

- aSVC formalization that accounts for update keys
- Each update key upk; is verifiable against vrk
- ullet New security definition for KZG batch proofs, which reduces to $n ext{-SBDH}$
- Subtleties of VC-based stateless cryptocurrencies
- Aggregating multiple *I*-subvector proofs across different commitments [GRWZ20].

Our scheme actually uses $\phi(\omega_i) = v_i$, where ω is a primitive *n*th root of unity.

Our scheme actually uses $\phi(\omega_i) = v_i$, where ω is a primitive nth root of unity. This has several advantages:

• Our public parameters can be *efficiently* derived from "powers-of-tau" g^{τ^i} 's:

- Our public parameters can be *efficiently* derived from "powers-of-tau" g^{τ^i} 's:
 - ℓ_i's via an inverse FFT [Vir17]

- Our public parameters can be *efficiently* derived from "powers-of-tau" g^{τ^i} 's:
 - ℓ_i 's via an inverse FFT [Vir17]
 - a_i 's via the Feist-Khovratovich (FK) technique [FK20]

- Our public parameters can be *efficiently* derived from "powers-of-tau" $g^{\tau'}$'s:
 - ℓ_i 's via an inverse FFT [Vir17]
 - a,'s via the Feist-Khovratovich (FK) technique [FK20]
 - u_i's via our new, FK-like, technique (see [TAB⁺20, Sec 3.4.5])

- Our public parameters can be *efficiently* derived from "powers-of-tau" g^{τ^i} 's:
 - ℓ_i 's via an inverse FFT [Vir17]
 - a,'s via the Feist-Khovratovich (FK) technique [FK20]
 - u_i 's via our new, FK-like, technique (see [TAB $^+$ 20, Sec 3.4.5])
- Since g^{τ^i} 's are updatable, our public parameters are *updatable*.

- Our public parameters can be *efficiently* derived from "powers-of-tau" $g^{\tau'}$'s:
 - ℓ_i 's via an inverse FFT [Vir17]
 - a,'s via the Feist-Khovratovich (FK) technique [FK20]
 - u_i 's via our new, FK-like, technique (see [TAB $^+$ 20, Sec 3.4.5])
- Since g^{τ^i} 's are updatable, our public parameters are *updatable*.
- Can precompute all n proofs in $O(n \log n)$ time via FK technique [FK20].

- Our public parameters can be *efficiently* derived from "powers-of-tau" g^{τ^i} 's:
 - ℓ_i 's via an inverse FFT [Vir17]
 - a,'s via the Feist-Khovratovich (FK) technique [FK20]
 - u_i 's via our new, FK-like, technique (see [TAB $^+$ 20, Sec 3.4.5])
- Since g^{τ^i} 's are updatable, our public parameters are *updatable*.
- Can precompute all *n* proofs in *O*(*n* log *n*) time via FK technique [FK20].
- Can remove A'(i) from upk_i.

Questions?

Outline

Decomposition of 1/((X-i)(X-j))

Decomposition of $1/A_I(X)$

Decomposition of A(X)/((X-i)(X-j))

Note that:

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{1}{i-j} \cdot \frac{A(X)(X-j)}{(X-i)(X-j)} + \frac{1}{j-i} \cdot \frac{A(X)(X-i)}{(X-j)(X-i)}$$

$$= \frac{\frac{1}{i-j}A(X)(X-j) - \frac{1}{i-j}A(X)(X-i)}{(X-i)(X-j)}$$

$$= \frac{\frac{1}{i-j}A(X)[(X-j) - (X-i)]}{(X-i)(X-j)}$$

$$= \frac{\frac{1}{i-j}A(X)(-j+i)}{(X-i)(X-j)}$$

$$= \frac{A(X)}{(X-i)(X-j)}$$
(45)

Outline

Decomposition of 1/((X-i)(X-j))

Decomposition of $1/A_I(X)$

Partial Fraction Decomposition From Lagrange Interpolation

It is well-known that Lagrange coefficients can be rewritten as [BT04, vzGG13]:

$$L_{i}(X) = \prod_{i \in I, i \neq i} \frac{X - j}{i - j} = \frac{A_{i}(X)}{A_{i}'(i)(X - i)}, \text{ where } A_{i}(X) = \prod_{i \in I} (X - i)$$
 (50)

Here, $A'_{i}(X)$ is the derivative of $A_{i}(X)$ and has the (non-obvious) property that $A'_{i}(i) = \prod_{j \in I, j \neq i} (i - j)$. Next, consider the Lagrange interpolation of $\phi(X) = 1$:

$$\phi(X) = \sum_{i=1}^{n} v_i L_i(X) \Leftrightarrow \tag{51}$$

$$1 = A_I(X) \sum_{i \in [0, n]} \frac{V_i}{A_I'(i)(X - i)} \Leftrightarrow$$
 (52)

$$\frac{1}{A_{I}(X)} = \sum_{i \in I} \frac{1}{A_{I}'(i)(X - i)} \Leftrightarrow \tag{53}$$

$$\frac{1}{A_{l}(X)} = \sum_{i=1}^{l} \frac{1}{A_{l}'(i)} \cdot \frac{1}{(X-i)} \Rightarrow \tag{54}$$

$$c_i = \frac{1}{A_i'(i)} \tag{55}$$

References i

J. Berrut and L. Trefethen.

Barycentric Lagrange Interpolation.

SIAM Review, 46(3):501-517, 2004.

Vitalik Buterin.

The stateless client concept.

ethresear.ch, 2017.

https://ethresear.ch/t/the-stateless-client-concept/172.

Vitalik Buterin.

Using polynomial commitments to replace state roots.

https://ethresear.ch/t/ using-polynomial-commitments-to-replace-state-roots/7095,2020.

References ii

Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss.

Composable and Modular Anonymous Credentials: Definitions and Practical

Constructions.

In Tetsu Iwata and Jung Hee Cheon, editors, *Advances in Cryptology – ASIACRYPT 2015*, pages 262–288, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

Dario Catalano and Dario Fiore.

Vector Commitments and Their Applications.

In Kaoru Kurosawa and Goichiro Hanaoka, editors, *Public-Key Cryptography – PKC 2013*, pages 55–72, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. **Edrax: A Cryptocurrency with Stateless Transaction Validation.** Cryptology ePrint Archive, Report 2018/968, 2018. https://eprint.iacr.org/2018/968.

References iii

Dankrad Feist and Dmitry Khovratovich.

Fast amortized Kate proofs, 2020.

https://github.com/khovratovich/Kate.

Sergev Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.

Pointproofs: Aggregating Proofs for Multiple Vector Commitments.

Cryptology ePrint Archive. Report 2020/419, 2020. https://eprint.iacr.org/2020/419.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.

Constant-Size Commitments to Polynomials and Their Applications.

In Masayuki Abe, editor, ASIACRYPT '10, pages 177-194, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

References iv

Russell W. F. Lai and Giulio Malavolta.

Subvector Commitments with Application to Succinct Arguments.

In Alexandra Boldyreva and Daniele Micciancio, editors, *Advances in Cryptology – CRYPTO 2019*, pages 530–560, Cham, 2019. Springer International Publishing.

Ralph C. Merkle.

A Digital Signature Based on a Conventional Encryption Function.

In Carl Pomerance, editor, *CRYPTO '87*, pages 369–378, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

Andrew Miller.

Storing UTXOs in a balanced Merkle tree (zero-trust nodes with O(1)-storage). BitcoinTalk Forums. 2012.

https://bitcointalk.org/index.php?topic=101734.msg1117428.

References v

Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. Improving Authenticated Dynamic Dictionaries, with Applications to Cryptocurrencies.

In Aggelos Kiayias, editor, *Financial Cryptography and Data Security*, pages 376–392, Cham, 2017. Springer International Publishing.

Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich.

Aggregatable Subvector Commitments for Stateless Cryptocurrencies.

Cryptology ePrint Archive, Report 2020/527, 2020.

https://eprint.iacr.org/2020/527.

References vi

Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta, and Srinivas Devadas.

Towards Scalable Threshold Cryptosystems.

In 2020 IEEE Symposium on Security and Privacy (SP), May 2020.

Peter Todd.

Making utxo set growth irrelevant with low-latency delayed txo commitments, 2016.

https://petertodd.org/2016/delayed-txo-commitments.

Alin Tomescu.

How to Keep a Secret and Share a Public Key (Using Polynomial Commitments). PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2020.

References vii

Madars Virza.

On Deploying Succinct Zero-Knowledge Proofs.

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017.

Joachim von zur Gathen and Jurgen Gerhard.

Fast polynomial evaluation and interpolation.

In *Modern Computer Algebra*, chapter 10, pages 295–310. Cambridge University Press, New York, NY, USA, 3rd edition, 2013.