Problem Set 4

Due 24nd September 2021

Abstract

Only the questions with a star (*) are compulsory for submission; It is however *strongly* advised to attempt all question.

1 Sequences

Question 1. X, Norm() is a norm space; (x_n) is a sequence in X. Define what is meant by $x_n \to x$ in this case (remember we defined it in class for X, d a metric space, and we also saw how to define a metric space from a norm space).

Question 2. (Arithmetic Sequence) (x_n) is defined by iteration as follows: $x_0 = b$, $x_{n+1} = a + x_n$.

- a^*) Prove that the explicit formula for x_n is $x_n = b + a * n$.
- b^*) State and prove the behavior as $n \to +\infty$ (split in cases for different values of a or b if needed).

Question 3. (Geometric Sequence) (x_n) is defined by iteration as follows: $x_0 = b$, $x_{n+1} = a * x_n$.

- a^*) Prove that the explicit formula for x_n is $x_n = b * a^n$.
- b^*) State and prove the behavior as $n \to +\infty$ (split in cases for different values of a or b if needed).

Question 4. The Syracuse sequence is defined by the recurrence relation as follows:

- $x_{n+1} = \frac{x_n}{2}$ if x_n is even
- $x_{n+1} = 3 * x_n + 1$ if x_n is odd

We start with a natural number (note that the sequence takes only integral values).

- a) Conjecture how many iterations it takes to reach 1 starting from 7,8,15,16.
- b) Calculate how many iterations it takes to reach 1 starting from 7,8,15,16.
- c) Was your first intuition correct?

(You may want to use a calculator to speed up calculations)

Question 5. (*) Let $f(x) = \frac{2x^2 - 3x + 9}{4x - 5}$ Find the asymptote as $x \to \pm \infty$; Find the singularity of f.

Draw a graph of f to the best of your knowledge, using the above information.

Question 6. (*) Let $x_{n+1} = \frac{1}{2}x_n + 1$, $x_0 = 0$.

Show that the general term of this sequence is given by $x_n = 2 - \frac{2}{2^n}$.

Deduce the limit of the sequence.

Question 7. Find a set X such that $\forall x, y \in X, d(x, y) < Diam(X)$ (i.e. $Diam(X) = \sup\{\{d(x, y) \mid x, y \in X\}\}$) but $Diam(X) \neq \max(\{d(x,y) \mid x,y \in X\})$.

 $(X, d \ can \ be \ a \ metric \ space \ of \ your \ choice, \ but \ I \ advise \ X = \mathbb{R}, \ d(x,y) = |x-y| \ to \ begin \ with)$