20

Indian Institute of Technology
Department of Mathematics
Autumn End Semester Examination-2012
Subject Name: Mathematics I
Subject No: MA10001

No. of students:1400 Time: 3 hrs F.M. 50

Instructions: Answer ALL questions. Numerals in right margin indicate marks. Answer each question in a NEW page and all the parts of the same question TOGETHER. Write question SET NUMBER on the top of your answer script.

1. (a) Evaluate the integral $\oint \frac{z-1}{z^2+1} dz$ around each curve in counter clockwise direction,

(i)
$$|z-i|=1$$
 (ii) $|z-1|=1$ (iii) $|z+i|=1$

- (b) Find the value of the integral $\oint_{|\mathbf{z}|=1} \frac{e^{3\mathbf{z}}}{(4\mathbf{z}-\pi i)^3} d\mathbf{z}$. Also name the singularity of the integrand at $\mathbf{z} = \frac{\pi i}{4}$.
- (c) Find Laurent series expansion of $f(z) = \frac{1}{(z+3)(z+1)}$ in the region 1 < |z| < 3. [3+2+3]

[3+2+3]

2. Find the general solution of the following differential equations.

(a)
$$y \sin x dx + (y^3 - 2y^2 \cos x + \cos x) dy = 0$$

(b)
$$(x^2 + y^2 + 2x)dx + 2ydy = 0$$

(c)
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - y = e^x + xe^x$$

- 3. (a) Solve $y'' 3y' + 2y = \frac{e^x}{1+e^x}$ using method of variation of parameters.
 - (b) Solve the following system of differential equations,

$$(5D+4)x - (2D+1)y = e^{-t}, (D+8)x - 3y = 5e^{-t}$$

- (c) Find the general solution of $x^3y''' + 3x^2y'' + xy' + 8y = 65\cos(\log x)$. [3+2+3]
- 4. (a) Given that $\sin \mathbf{u} = \phi(\mathbf{x}, \mathbf{y})$, where ϕ is a homogeneous function of degree 2. Using Euler's Theorem express $\mathbf{x^2}\mathbf{u_{xx}} + \mathbf{2xy}\mathbf{u_{xy}} + \mathbf{y^2}\mathbf{u_{yy}}$ as a function of \mathbf{u} .
 - (b) Find the extreme values of x 2y + 2z on the surface $x^2 + y^2 + z^2 = 1$ using Lagrange multiplier method. (Given that there is no point of inflection.)

(c) Test the continuity of the complex valued function

$$f(z) = \frac{\mathrm{Re}(z)}{\mathrm{Im}(z) - 1} + \mathrm{i} \frac{(\mathrm{Re}(z + \mathrm{i} \overline{z}))(\mathrm{Im}(z - \mathrm{i} \overline{z}))}{\mid z \mid^2}$$

at z = i and z = 0.

[3+3+3]

- 5. (a) Find the radius of curvature of the curve $y = 4 \sin x \sin 2x$ at $x = \pi/2$.
 - (b) Find $\frac{dy}{dx}$ if $x^y + y^x = a^b$.
 - (c) If $\mathbf{z} = \mathbf{z}(\mathbf{x}, \mathbf{y})$ and $\mathbf{x} = \mathbf{e}^{\mathbf{u}} + \mathbf{e}^{-\mathbf{v}}$, $\mathbf{y} = \mathbf{e}^{-\mathbf{u}} \mathbf{e}^{\mathbf{v}}$, then write $\frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{u}}$ in terms of the partial derivatives of \mathbf{z} with respect to \mathbf{x} and \mathbf{y} .
 - (d) Discuss the continuity of the function $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where

$$f(x,y) = \frac{x^2 - x\sqrt{y}}{x^2 + y}, \ \ \text{for} \ \ (x,y) \neq (0,0) \ \ \text{and} \ \ 0 \ \ \text{at} \ \ (x,y) = (0,0).$$

[2+2+2+2]

- 6. (a) If f(z) = u + iv is an analytic function of z = x + iy such that $u v = (x y)(x^2 + 4xy + y^2)$, then find f(z) in terms of z.
 - (b) Find the value of the integral $\int_0^{1+i} (x-y+ix^2) dz$
 - (i) Along the straight line from z = 0 to z = 1 + i
 - (ii) Along the real axis from 0 to 1 and then from 1 to 1+i.
 - (c) Applying Cauchy's Integral Theorem for multiply connected domain find the value of $\oint_{\mathbf{C}} \frac{2\mathbf{z}-3}{\mathbf{z}^2-3\mathbf{z}-18} d\mathbf{z}$, where $\mathbf{C}: |\mathbf{z}| = 8$ in counter clockwise direction. [3+3+3]

***************THE END**********