

- **First fit**. Allocate the first hole that is big enough. Searching can start either at the beginning of the set of holes or at the location where the previous first-fit search ended. We can stop searching as soon as we find a free hole that is large enough.
 - **Best fit**. Allocate the smallest hole that is big enough. We must search the entire list, unless the list is ordered by size. This strategy produces the smallest leftover hole.
 - Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is sorted by size. This strategy produces the largest leftover hole, which may be more useful than the smaller leftover hole from a best-fit approach.

8.11 Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use memory.

Process size	Goes to		Holes	Resid	dual	
115	200		300	185	/	
500	600		600	100		
358	760		350	150	\checkmark	
200	250		200		V	
375	392		750	398	17-	
	Ÿ	I	125			

8.11 Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use memory.

8.11 Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use memory.

Process size	Goes to		Holes	Residual	
115	750		125		125
500	635		200		135
358	600		300		150
200	250		350	150	2 M 2
375	wait	م	600	242	300
			750	635 135	
			I	1/	1

8.20 Assuming a 1-KB page size, what are the page numbers and offsets for the following address references (provided as decimal numbers):
the following address references (provided as decimal numbers): a. 3085 b. 42095 c. 215201
c. 215201 d. 650000 634 / 784 e. 2000001
C. 2000001
page number = address // page size offset = address % page size
Payl number Offset
3 13

	a. How many bits are required in the logical address?
	b. How many bits are required in the physical address?
(eg 1	$\frac{256 \times (029)}{2} = (2.2.2.2) = 26hi$
	16 (1 ²) - 2 ¹ 8

Consider a logical address space of 256 pages with a 4-KB page size, mapped onto a physical memory of 64 frames.

8.23

	a. If a memory reference takes 50 nanoseconds, how long does a paged memory reference take?
	b. If we add TLBs, and 75 percent of all page-table references are found in the TLBs, what is the effective memory reference time? (Assume that finding a page-table entry in the TLBs takes 2 nanoseconds, if the entry is present.)
	the entry is present.)
0	1 hofl = loonsec mem
	TLB
	0.2+50)+75
, (0.7 + 50 + 50 + 25 = 64.5 nsec
— (0.2 + 50 + 50) + 25 = 64.5 nsec
	· ·

8.25 Consider a paging system with the page table stored in memory.

8.28 Consider the following segment table:

Segment	Base	Length
0	219	(600)
1	2300	14
2	90	100
3	1327	580
4	1952	96

What are the physical addresses for the following logical addresses?

- a. 0,430 <600 / 430 + 219 6 49
- b.

- 2300+10=2310
- \$500 trap c.
- 3,400 d.

- 1327+400=1727

