Due 2pm on 9/8/2022

Exercise 1. If X is a random variable with mean m and variance s^2 show (X - m)/s has mean 0 and variance 1.

Recall the *cumulant* of a random variable X is $\kappa^X(s) = \log E[e^{sX}]$.

Exercise 2. Let F be any positive random variable where $\log F$ has finite mean and variance. Show $F = f e^{-\kappa^X(s) + sX}$ where f = E[F], $s^2 = \operatorname{Var}(\log F)$, and X has mean 0 and variance 1.

Hint: $\log F = m + sX$ where X has mean 0 and variance 1.

Exercise 3. If $F = fe^{-\kappa(s)+sX}$ show $F \le k$ if and only if $X \le (\log k/f + \kappa(s))/s$.

Hint: Assume s > 0.

We call the functions $x(k; f, s) = (\log k/f + \kappa(s))/s$ the moneyness at k.

The Fischer Black model assumes X is normal and $s = \sigma \sqrt{t}$.

Exercise 4. Find the formula for moneyness in the Black model.

Recall if N is a normally distributed random variable then $E[e^N] = e^{E[N] + \mathrm{Var}(N)/2}.$