Vector Spaces and Subspaces

R4 Cheng

June 17, 2024

 \mathbb{R}^n = all (column) vectors with n (real) components. = $\{(v_1, v_2, \dots, v_n) : v_i \in \mathbb{R}, i = 1, 2, \dots, n\}$

$$\begin{bmatrix} 4 \\ \pi \end{bmatrix} \in \mathbb{R}^2, \quad (1, 1, 0, 1, 1) \in \mathbb{R}^5$$

Vector Space V

V: a set of vectors

- 1. Two operations:
 - vector addition: $\underline{v}, \underline{w} \in V \Rightarrow \underline{v} + \underline{w} \in V$
 - scalar multiplication: $c\underline{v} \in V$
- 2. Eight rules:
 - (a) $\underline{v} + \underline{w} = \underline{w} + \underline{v}$ (commutative)
 - (b) $(\underline{v} + \underline{w}) + \underline{z} = \underline{v} + (\underline{w} + \underline{z})$ (associative)
 - (c) There is a unique "zero vector" $\underline{0}$ such that $\underline{v} + \underline{0} = \underline{v}$ for all $\underline{v} \in V$
 - (d) For each \underline{v} , there is a unique vector $-\underline{v}$ such that $\underline{v} + (-\underline{v}) = \underline{0}$
 - (e) $1 \times \underline{v} = \underline{v}$

(f)
$$(c_1c_2)\underline{v} = c_1(c_2\underline{v})$$

(g)
$$c(\underline{v} + \underline{w}) = c\underline{v} + c\underline{w}$$

$$(h) (c_1+c_2)\underline{v} = c_1\underline{v} + c_2\underline{v}$$

$$\Rightarrow 0 \times \underline{v} = \underline{0} \text{ (not 0)}$$
$$\Rightarrow (-1)\underline{v} = -\underline{v}$$

Example:

- \mathbb{R}^n is a vector space
- $M = \{\text{all real } 2 \times 2 \text{ matrices}\}\$ is a vector space
- $F = \{\text{all real functions } f(x) \}$ is a vector space
- $z = \{\underline{0}\}$ is a vector space

Subspaces

Def. A subset W of a vector space V is a subspaces if W itself is a vector space.

Claim Every subspace contains the zero vector.

Proof TODO

Example:

1.

$$U = \{(x, y) : x \ge 0, y \ge 0\}$$
, is *U* a subspace?

No, since
$$-1(1,0) = (-1,0) \notin U$$
 even of $(1,0) \in U$.

2.

$$M = \{\text{all real } 2 \times 2 \text{ matrices}\}$$

$$\{U = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}\}$$

$$A, B \in U, A + B \in U \text{ and } cA \in U$$

 $\therefore U$ is a subspace of M

Column Space

Def. The column space C(A) of a matrix A consists of all linear combinations of the columns of A.

Remark. C(A): C of A

Example:

$$A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix}$$

$$C(A) = \left\{ c_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix} : c_1, c_2 \in \mathbb{R} \right\}$$

$$= \left\{ A\underline{c} : \underline{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \in \mathbb{R}^2 \right\} (A\underline{x} = \underline{b})$$

The set of all $A\underline{x}$ for all x is called the column space.

$$\iff c_1[a_1] + c_2[a_2] + \dots + c_n[a_n] = \underline{b}$$

 \therefore The system $A\underline{x} = \underline{b}$ is solvable iff $\underline{b} \in C(A)$

Example:

What are the column spaces of 1. I, 2. $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, 3. $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$?

1.

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 :: C(I) = \mathbb{R}^2$$

2.

$$x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2x_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = (x_1 + 2x_2) \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2 \Rightarrow x_{real} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\therefore C(A) = \{x \begin{bmatrix} 1 \\ 2 \end{bmatrix} : x \in \mathbb{R}\}$$

3

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 4 \end{bmatrix} = (x_1 + 2x_2 (= x_4)) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x_4 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 is always solvable for any b_1 , b_2

$$\begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$$
 is upper triangular matrix $(b_1, b_2 \text{ must be found}) : C(B) = \mathbb{R}^2$

 \Rightarrow All of them are subspaces of \mathbb{R}^2

Claim If A is an $m \times n$ real matrix, then C(A) is a subspace of \mathbb{R}^m

Proof. TODO

S = the set of vectors in a vector space V (probably not a subspace) SS = the set of all linear combinations of vectors in S

We call SS the "span" of S.

Then SS is a subspace of V, called the subspace "spanned" by S.

E.g.

$$S =$$
the set of columns of $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$

$$SS$$
 = the column space of $A = C(A)$

Null Space of A

$$N(A) = \{\underline{x} : A\underline{x} = \underline{0}\}$$

Remark. related to the "rank"

Claim If A is $m \times n$, then N(A) is a subspace of \mathbb{R}^n .

Proof TODO

Example:
$$C = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix} = \begin{bmatrix} A & 2A \end{bmatrix}$$
 (Two equations in four unknowns)

TODO

$$N(C) = \{\underline{x} : \underline{x} = x_3 \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}, x_3, x_4 \in \mathbb{R} \}$$

Remark. Reduced Row Echelon form (RRE form) 1. Produce 0 above/below pivots 2. Produce 1 in pivots

Example:
$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & 8 & 10 \\ 3 & 3 & 10 & 13 \end{bmatrix}$$

TODO

$$N(A) = \{\underline{x} : \underline{x} = x_2 \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix}, x_2, x_4 \in \mathbb{R} \}$$

Suppose A is $m \times n$. If there are r pivots $(r \leq m, n)$, there are (n - r) free variables. And there are (n - r) special solutions. N(A) consists of all the linear combinations of these (n - r) special solutions.

N(A) = the subspace spanned by these (n-r) special solutions.

Def. The rank of a matrix A is the number of pivots.

Remark. All free columns are linear combinations of the pivot columns, and special solutions describe these combinations.

Complete Solution to $A\underline{x} = \underline{b}$

$$\underline{x} = \underline{x}_{particular} + \underline{x}_{nullspace}$$

Claim If $A\underline{x} = \underline{b}$, then the complete solution is $\underline{x} = \underline{x}_{particular} + \underline{x}_{nullspace}$, where $\underline{x}_{particular}$ is a particular solution to $A\underline{x} = \underline{b}$, and $\underline{x}_{nullspace}$ is a general solution to $A\underline{x} = \underline{0}$.

Proof

- 1. If $\underline{x} = \underline{x}_{particular} + \underline{x}_{nullspace}$, then $A\underline{x} = A(\underline{x}_{particular} + \underline{x}_{nullspace}) = A\underline{x}_{particular} + A\underline{x}_{nullspace} = \underline{b} + \underline{0} = \underline{b}$
- $\therefore \underline{x}$ is a solution to $A\underline{x} = \underline{b}$
- 2. If \underline{x} is a solution to $A\underline{x} = \underline{b}$, then $A(\underline{x} \underline{x}_p) = A\underline{x} A\underline{x}_p = \underline{b} \underline{b} = \underline{0}$
- $\therefore \underline{x} \underline{x}_p = \underline{x}_n$ is a solution to $A\underline{x} = \underline{0} \Rightarrow \underline{x} = \underline{x}_p + \underline{x}_n$