Récursivité

Jean-Pierre Becirspahic Lycée Louis-Le-Grand

Principe de récurrence simple

Soit \mathscr{P} un prédicat défini sur \mathbb{N} , tel que $\mathscr{P}(0)$ est vrai, ainsi que l'implication $\mathscr{P}(n-1) \Longrightarrow \mathscr{P}(n)$. Alors pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vrai.

Conséquence. La suite $(u_n)_{n\in\mathbb{N}}$ définie par les relations $u_0=a$ et $u_n=f(u_{n-1})$ est calculable; la fonction récursive suivante se termine.

Principe de récurrence simple

Soit \mathscr{P} un prédicat défini sur \mathbb{N} , tel que $\mathscr{P}(0)$ est vrai, ainsi que l'implication $\mathscr{P}(n-1) \Longrightarrow \mathscr{P}(n)$. Alors pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vrai.

Conséquence. La suite $(u_n)_{n\in\mathbb{N}}$ définie par les relations $u_0 = a$ et $u_n = f(u_{n-1})$ est calculable; la fonction récursive suivante se termine.

Il est aisé de donner des exemples de fonctions qui ne se terminent pas, telle la fonction de MORRIS :

En effet, m(1,0) = m(0,m(1,0)) et le passage d'argument se faisant par valeur, le calcul ne se termine pas.

Principe de récurrence simple

Soit \mathscr{P} un prédicat défini sur \mathbb{N} , tel que $\mathscr{P}(0)$ est vrai, ainsi que l'implication $\mathscr{P}(n-1) \Longrightarrow \mathscr{P}(n)$. Alors pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vrai.

Conséquence. La suite $(u_n)_{n\in\mathbb{N}}$ définie par les relations $u_0 = a$ et $u_n = f(u_{n-1})$ est calculable; la fonction récursive suivante se termine.

Pour des fonctions récursives plus complexes, la preuve de la terminaison peut rester un problème ouvert ; c'est le cas de la fonction Q de Hofstadter :

Problème de l'arrêt

Existe-t-il un moyen algorithmique de déterminer la terminaison d'une fonction?

Problème de l'arrêt

Existe-t-il un moyen algorithmique de déterminer la terminaison d'une fonction?

Considérons l'ensemble $\mathscr F$ des fonctions de type $int \to int$. $\mathscr F$ est en bijection avec un sous-ensemble de l'ensemble des suites finies sur $\{0,1\}$ donc est dénombrable : il existe une bijection $\varphi:\mathbb N\to\mathscr F$.

Supposons l'existence d'une fonction **termine** de type *int -> int -> bool* qui fonctionne ainsi :

Problème de l'arrêt

Existe-t-il un moyen algorithmique de déterminer la terminaison d'une fonction?

Considérons l'ensemble $\mathscr F$ des fonctions de type $\mathit{int} \to \mathit{int}. \mathscr F$ est en bijection avec un sous-ensemble de l'ensemble des suites finies sur $\{0,1\}$ donc est dénombrable : il existe une bijection $\phi: \mathbb N \to \mathscr F$.

Supposons l'existence d'une fonction **termine** de type $int \rightarrow int \rightarrow bool$ qui fonctionne ainsi :

termine p q =
$$\begin{cases} \text{true} & \text{sile calcul de } \varphi(p)(q) \text{ se termine} \\ \text{false} & \text{sinon} \end{cases}$$

On définit alors la fonction :

Notons $r \in \mathbb{N}$ tel que $f = \varphi(r)$. Dans les deux cas, la considération de la valeur de **termine** r r conduit à une absurdité (principe de la diagonale de Cantor).

Un ensemble ordonné (E, \leq) est bien fondé lorsque toute partie non vide possède un élément minimal, et bien ordonné lorsque toute partie non vide possède un plus petit élément.

Deux exemples sur \mathbb{N}^2 :

- l'ordre produit $(a,b) \le (a',b') \iff a \le a'$ et $b \le b'$ est bien fondé;
- l'ordre lexicographique $(a,b) \le (a',b') \iff a < a'$ ou (a=a') et $b \le b'$ est bien ordonné.

Un ensemble ordonné (E, \leq) est bien fondé lorsque toute partie non vide possède un élément minimal, et bien ordonné lorsque toute partie non vide possède un plus petit élément.

Deux exemples sur \mathbb{N}^2 :

- l'ordre produit $(a,b) \le (a',b') \iff a \le a'$ et $b \le b'$ est bien fondé;
- l'ordre lexicographique $(a,b) \le (a',b') \iff a < a'$ ou (a=a') et $b \le b'$ est bien ordonné.

Preuve : si $A \subset \mathbb{N}^2$ est non vide, on définit :

$$a_0 = \min \{ a \in \mathbb{N} \mid \exists b \in \mathbb{N} \operatorname{tq} (a, b) \in A \}$$
 et $b_0 = \min \{ b \in \mathbb{N} \mid (a_0, b) \in A \}$

 (a_0, b_0) est minimal pour l'ordre produit, et est le plus petit élément de A pour l'ordre lexicographique.

Un ensemble ordonné (E, \leq) est bien fondé lorsque toute partie non vide possède un élément minimal, et bien ordonné lorsque toute partie non vide possède un plus petit élément.

Soit (E, \leq) un ensemble bien fondé, $A \subset E$ non vide, et $\varphi : E \setminus A \to E$ vérifiant : $\forall x \in E \setminus A$, $\varphi(x) < x$. On considère un prédicat \mathscr{P} vérifiant :

- pour tout $a \in A$, $\mathcal{P}(a)$ est vrai;
- pour tout $x \in E \setminus A$, $\mathscr{P}(\varphi(x)) \Longrightarrow \mathscr{P}(x)$.

Alors $\mathcal{P}(x)$ est vrai pour tout élément x de E.

Un ensemble ordonné (E, \leq) est bien fondé lorsque toute partie non vide possède un élément minimal, et bien ordonné lorsque toute partie non vide possède un plus petit élément.

Soit (E, \leq) un ensemble bien fondé, $A \subset E$ non vide, et $\varphi : E \setminus A \to E$ vérifiant : $\forall x \in E \setminus A$, $\varphi(x) < x$. On considère un prédicat \mathscr{P} vérifiant :

- pour tout $a \in A$, $\mathcal{P}(a)$ est vrai;
- pour tout $x \in E \setminus A$, $\mathscr{P}(\varphi(x)) \Longrightarrow \mathscr{P}(x)$.

Alors $\mathcal{P}(x)$ est vrai pour tout élément x de E.

Soit $X = \{x \in E \mid \mathcal{P}(x) \text{ est faux}\}$, et supposons $X \neq \emptyset$: alors X possède un élément minimal x_0 .

 $\mathcal{P}(x_0)$ est faux, donc $x_0 \in E \setminus A$ et donc $\varphi(x_0) < x_0$.

 x_0 est minimal dans X, donc $\varphi(x_0) \notin X$, et $\mathscr{P}(\varphi(x_0))$ est vrai.

Ceci implique que $\mathcal{P}(x_0)$ est vrai, donc que $x_0 \notin X$. Contradiction!

Le principe d'induction permet de justifier la terminaison d'une fonction $f: E \to F$ définie par :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = h(x, f \circ \varphi(x))$

où $g: A \to F$ et $h: E \setminus A \times F \to F$ sont deux fonctions quelconques et $\varphi: E \setminus A \to E$ vérifie $\varphi(x) < x$.

Le principe d'induction permet de justifier la terminaison d'une fonction $f: E \to F$ définie par :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = h(x, f \circ \varphi(x))$

où $g: A \to F$ et $h: E \setminus A \times F \to F$ sont deux fonctions quelconques et $\varphi: E \setminus A \to E$ vérifie $\varphi(x) < x$.

Exemples de fonctions inductives :

· La fonction factorielle.

$$E = \mathbb{N}$$
, $A = \{0\}$, $\varphi : n \longmapsto n-1$.

Le principe d'induction permet de justifier la terminaison d'une fonction $f: E \to F$ définie par :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = h(x, f \circ \varphi(x))$

où $g: A \to F$ et $h: E \setminus A \times F \to F$ sont deux fonctions quelconques et $\varphi: E \setminus A \to E$ vérifie $\varphi(x) < x$.

Exemples de fonctions inductives :

· La fonction pgcd.

$$E = \mathbb{N}^2$$
, $A = \{(0,q) \mid q \in \mathbb{N}\}$, $\varphi : (p,q) \longmapsto (q \mod p, p)$.

Le principe d'induction permet de justifier la terminaison d'une fonction $f: E \to F$ définie par :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = h(x, f \circ \varphi(x))$

où $g: A \to F$ et $h: E \setminus A \times F \to F$ sont deux fonctions quelconques et $\varphi: E \setminus A \to E$ vérifie $\varphi(x) < x$.

Exemples de fonctions inductives :

• La fonction de Fibonacci (avec deux appels récursifs).

$$E = \mathbb{N}, A = \{0, 1\}, \varphi_1 : n \longmapsto n - 1, \varphi_2 : n \longmapsto n - 2.$$

Le principe d'induction permet de justifier la terminaison d'une fonction $f: E \to F$ définie par :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = h(x, f \circ \varphi(x))$

où $g: A \to F$ et $h: E \setminus A \times F \to F$ sont deux fonctions quelconques et $\varphi: E \setminus A \to E$ vérifie $\varphi(x) < x$.

Exemples de fonctions inductives :

• Plus généralement, toute fonction de la forme :

Avec

```
dans_A: 'a \rightarrow bool phi: 'a \rightarrow 'a g: 'a \rightarrow 'b h: 'a \rightarrow 'b \rightarrow 'b
```

La traduction en assembleur de cette fonction ressemble à :

```
fonc_f:
    dup
    call fonc_dans_A;
    jz etiq_1;
    call fonc_g;
    call fonc_h;
    ret
```

La traduction en assembleur de cette fonction ressemble à :

```
fonc_f : x
```

La traduction en assembleur de cette fonction ressemble à :

dup:

La traduction en assembleur de cette fonction ressemble à :

```
fonc_f:
    dup
    call fonc_dans_A;
    jz etiq_1;
    call fonc_g;
    call fonc_h;
    ret
```

```
fonc_dans_A :
```


La traduction en assembleur de cette fonction ressemble à :

```
fonc_f:
    dup
    call fonc_dans_A;
    jz etiq_1;
    call fonc_g;
    call fonc_h;
    ret
```

```
jz etiq_1 : x
```

La traduction en assembleur de cette fonction ressemble à :

dup:

La traduction en assembleur de cette fonction ressemble à :

```
fonc_f:
    dup
    call fonc_dans_A;
    jz etiq_1;
    call fonc_g;
    call fonc_h;
    ret
```

fonc phi :

Illustration du débordement de capacité de la pile :

```
# let n = ref 0;;
n: int ref = ref 0
# let rec f () =
    n:= !n + 1; 1 + f ();;
f: unit -> int = <fun>
# try f () with Out_of_memory -> !n;;
-: int = 131027
```

Au bout de 131027 appels l'interprète de commande est à cours de mémoire.

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
```

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
fact <-- 4
```

4

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
fact <-- 4
fact <-- 3
```

3

4

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
fact <-- 4
fact <-- 3
fact <-- 2
```

2

3

4

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
fact <-- 4
fact <-- 3
fact <-- 2
fact <-- 1
```

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;

fact <-- 5

fact <-- 4

fact <-- 3

fact <-- 2

fact <-- 1

fact <-- 0
```

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;

fact <-- 5

fact <-- 4

fact <-- 3

fact <-- 2

fact <-- 1

fact <-- 0

fact --> 1
```

1	
1	
2	
3	
4	
5	

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
fact <-- 4
fact <-- 2
fact <-- 1
fact <-- 0
fact --> 1
fact --> 1
```

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;

fact <-- 5

fact <-- 4

fact <-- 2

fact <-- 1

fact <-- 0

fact --> 1

fact --> 1

fact --> 2
```

2

3

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;

fact <-- 5

fact <-- 4

fact <-- 2

fact <-- 1

fact <-- 0

fact --> 1

fact --> 2

fact --> 6
```

6

4

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
fact <-- 4
fact <-- 2
fact <-- 1
fact <-- 0
fact --> 1
fact --> 2
fact --> 2
fact --> 2
fact --> 2
```

24

On peut « suivre à la trace » la fonction factorielle :

```
# fact 5 ;;
fact <-- 5
fact <-- 4
fact <-- 3
fact <-- 2
fact <-- 1
fact <-- 0
fact --> 1
fact --> 1
fact --> 2
fact --> 6
fact --> 24
fact --> 120
-: int = 120
```

Une fonction inductive est dite terminale lorsque l'appel récursif est la dernière opération qu'on effectue :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = f(\varphi(x))$

Une fonction inductive est dite terminale lorsque l'appel récursif est la dernière opération qu'on effectue :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = f(\varphi(x))$

Dans ce cas, la pile d'exécution de la fonction ne croit pas : il n'y a pas de débordement de capacité.

```
# let n = ref 0 ;;
n : int ref = ref 0
# let rec f () =
    n := !n + 1 ; f () ;;
f : unit -> 'a = <fun>
# try f () with Out_of_memory -> !n
Interruption.
```

(il faut interrompre manuellement l'exécution de la fonction).

Une fonction inductive est dite terminale lorsque l'appel récursif est la dernière opération qu'on effectue :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = f(\varphi(x))$

La fonction pgcd est récursive terminale :

```
let rec pgcd = function
  | (0, q) -> q
  | (p, q) -> pgcd (q mod p, p) ;;
```

Une fonction inductive est dite terminale lorsque l'appel récursif est la dernière opération qu'on effectue :

$$\forall a \in A, \quad f(a) = g(a)$$

 $\forall x \in E \setminus A, \quad f(x) = f(\varphi(x))$

La fonction pgcd est récursive terminale :

```
# pgcd (95, 115) ;; pgcd --> 5
pgcd <-- 95, 115 pgcd --> 5
pgcd <-- 20, 95 pgcd --> 5
pgcd <-- 15, 20 pgcd --> 5
pgcd <-- 5, 15 pgcd --> 5
pgcd <-- 0, 5 -: int = 5
```