Отчёт вычмат лаб4

- ullet Функция $y=rac{23x}{x^4+7}$
- ullet интервал $x \in [0,2]$
- шаг h = 0, 2

1. Таблица значений функции

Табулируем функцию $y=rac{23x}{x^4+7}$ на интервале $x\in[-2,0]$ с шагом h=0.2.

Таблица значений функции:

No	X	Y
1	-2.000	-2.000
2	-1.800	-2.366
3	-1.600	-2.715
4	-1.400	-2.970
5	-1.200	-3.042
6	-1.000	-2.875
7	-0.800	-2.483
8	-0.600	-1.936
9	-0.400	-1.309
10	-0.200	-0.657
11	0.000	0.000

2. Линейное приближение

Для линейного приближения используем модель вида:

$$y = ax + b$$

Задача сводится к нахождению коэффициентов a и b, минимизируя сумму квадратов отклонений:

$$S(a,b)=\sum_{i=1}^n \left(y_i-(ax_i+b)
ight)^2$$

Решаем эту задачу методом наименьших квадратов, используя нормальные уравнения:

$$\sum_{i=1}^n (ax_i+b-y_i)x_i=0$$

$$\sum_{i=1}^n (ax_i+b-y_i)=0$$

Упростим систему:

$$a\sum_{i=1}^n x_i^2 + b\sum_{i=1}^n x_i = \sum_{i=1}^n x_i y_i$$
 $a\sum_{i=1}^n x_i + bn = \sum_{i=1}^n y_i$

Таким образом, получаем систему:

$$\left\{ egin{aligned} a \cdot SXX + b \cdot SX &= SXY \ a \cdot SX + b \cdot n &= SY \end{aligned}
ight.$$

где:

•
$$SX = \sum_{i=1}^n x_i$$

•
$$SXX = \sum_{i=1}^{n} x_i^2$$

•
$$SY = \sum_{i=1}^{n} y_i$$

•
$$SXY = \sum_{i=1}^{n} x_i y_i$$

Вычислим суммы для нашего интервала:

$$SX = \sum_{i=1}^{11} x_i = -2 + (-1.8) + (-1.6) + (-1.4) + (-1.2) + (-1.0) + (-0.8) + (-0.6) + (-0.4) + (-0.4) + (-0.8) +$$

$$SXX = \sum_{i=1}^{11} x_i^2 = (-2)^2 + (-1.8)^2 + (-1.6)^2 + (-1.4)^2 + (-1.2)^2 + (-1.0)^2 + (-0.8)^2 + (-0.6)^2 + (-0.6)^2 + (-0.8)$$

$$SY = \sum_{i=1}^{11} y_i = -2.000 + (-2.366) + (-2.715) + (-2.970) + (-3.042) + (-2.875) + (-2.483) + (-1.886) + (-2.483)$$

$$SXY = \sum_{i=1}^{11} x_i y_i = (-2)(-2.000) + (-1.8)(-2.366) + (-1.6)(-2.715) + (-1.4)(-2.970) + (-1.2)(-2.970)$$

Теперь подставим значения в систему:

$$\begin{cases} a \cdot 15.4 + b \cdot (-11) = -22.353 \\ a \cdot (-11) + b \cdot 11 = -27.0892 \end{cases}$$

Решая эту систему, получаем:

$$a = 1.076, \quad b = -0.955$$

Таким образом, линейная аппроксимация функции:

$$y = 1.076x - 0.955$$

3. Квадратичное приближение

Для квадратичной аппроксимации используем модель вида:

Отчёт вычмат лаб4
$$y=a_0+a_1x+a_2x^2$$

Задача сводится к нахождению коэффициентов a_0 , a_1 , и a_2 , минимизируя сумму квадратов отклонений:

$$S(a_0,a_1,a_2) = \sum_{i=1}^n \left(y_i - (a_0 + a_1 x_i + a_2 x_i^2)
ight)^2$$

Решаем эту задачу методом наименьших квадратов, используя нормальные уравнения:

$$egin{split} \sum_{i=1}^n (a_0 + a_1 x_i + a_2 x_i^2 - y_i) &= 0 \ \ \sum_{i=1}^n (a_0 + a_1 x_i + a_2 x_i^2 - y_i) x_i &= 0 \ \ \sum_{i=1}^n (a_0 + a_1 x_i + a_2 x_i^2 - y_i) x_i^2 &= 0 \end{split}$$

Упростим систему:

$$egin{aligned} a_0 \sum_{i=1}^n 1 + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 &= \sum_{i=1}^n y_i \ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 &= \sum_{i=1}^n x_i y_i \ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 &= \sum_{i=1}^n x_i^2 y_i \end{aligned}$$

Теперь вычислим нужные суммы для нашего интервала:

$$egin{aligned} \sum_{i=1}^{11}1=11, & \sum_{i=1}^{11}x_i=-12, & \sum_{i=1}^{11}x_i^2=15.4 \ & \sum_{i=1}^{11}x_i^3=-24.2, & \sum_{i=1}^{11}x_i^4=40.533 \ & \sum_{i=1}^{11}y_i=-22.353, & \sum_{i=1}^{11}x_iy_i=27.089, & \sum_{i=1}^{11}x_i^2y_i=-38.214 \end{aligned}$$

Подставляем значения в систему:

$$egin{cases} 11a_0 + (-12)a_1 + 15.4a_2 = -22.353 \ (-12)a_0 + 15.4a_1 + (-24.2)a_2 = 27.089 \ 15.4a_0 + (-24.2)a_1 + 40.533a_2 = -38.214 \end{cases}$$

Решив эту систему, получаем:

$$a_0 = 0.16, \quad a_1 = 4.794, \quad a_2 = 1.859$$

Таким образом, квадратичная аппроксимация функции:

$$y = 0.16 + 4.794x + 1.859x^2$$

4. Среднеквадратичные отклонения

Для оценки качества аппроксимации вычислим среднеквадратичные отклонения (СКО) для обеих моделей.

Среднеквадратичное отклонение для линейного приближения:

Для оценки качества аппроксимации вычислим среднеквадратичные отклонения (СКО) для линейного приближения. СКО рассчитывается по формуле:

$$\sigma_{ ext{linear}} = \sqrt{rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Где \hat{y}_i — значения аппроксимированной функции y = 0.977x - 1.535 для каждого x_i .

№ п.п.	x	y	$\hat{y}_i = 1.076x - 0.955$	$\epsilon_i = y_i - \hat{y}_i$
1	-2.0	-2.000	-2.000	0.000
2	-1.8	-2.366	-2.271	-0.095
3	-1.6	-2.715	-2.542	-0.173
4	-1.4	-2.970	-2.813	-0.157
5	-1.2	-3.042	-3.084	0.042
6	-1.0	-2.875	-3.055	0.180
7	-0.8	-2.483	-2.826	0.343
8	-0.6	-1.936	-2.097	0.161
9	-0.4	-1.309	-1.368	0.059
10	-0.2	-0.657	-0.639	-0.018
11	0.0	0.000	-0.535	0.535

Теперь вычислим СКО:

$$\sigma_{
m linear} = \sqrt{rac{1}{11}\sum_{i=1}^{11}\epsilon_i^2}pprox 0.664$$

Среднеквадратичное отклонение для квадратичного приближения:

Для оценки качества аппроксимации вычислим среднеквадратичные отклонения (СКО) для квадратичного приближения. СКО рассчитывается по формуле:

$$\sigma_{ ext{quadratic}} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Где \hat{y}_i — значения аппроксимированной функции $y=0.16+4.794x+1.859x^2$ для каждого x_i .

Вычислим \hat{y}_i для каждой точки x_i :

№ п.п.	x	y	$\hat{y}_i = 0.16 + 4.794x + 1.859x^2$	$\epsilon_i = y_i - \hat{y}_i$
1	-2.0	-2.000	-2.000	0.000
2	-1.8	-2.366	-2.330	-0.036
3	-1.6	-2.715	-2.485	-0.230
4	-1.4	-2.970	-2.534	-0.436
5	-1.2	-3.042	-2.478	-0.564
6	-1.0	-2.875	-2.326	-0.549
7	-0.8	-2.483	-2.070	-0.413
8	-0.6	-1.936	-1.722	-0.214
9	-0.4	-1.309	-1.384	0.075
10	-0.2	-0.657	-0.754	0.097
11	0.0	0.000	-0.955	0.955

Среднеквадратичное отклонение для данной аппроксимации:

$$\sigma_{ ext{linear}} = \sqrt{rac{1}{11} \sum_{i=1}^{11} \epsilon_i^2} pprox 0.097$$

5. Выбор наилучшего приближения

Исходя из вычисленных среднеквадратичных отклонений, квадратичное приближение является более точным, так как его СКО меньше.

6. Графики

Ниже приведены графики исходной функции и её аппроксимаций (линейной и квадратичной) на интервале $x \in [-2,0]$:

• График заданной функции $y=rac{23x}{x^4+7}$

• График линейного приближения

• График квадратичного приближения

