Process Algebra Uitwerkingen opgaven practicum 2

Hieronder staan uitwerkingen van de volgende opgaven:

2.1.13

- 1 tb + tc
- 2 q(c+h)
- $3 \ a(b+b) = ab = ab + ab$ (gebruik A3)
- 7i Bewijs dat geldt: $x \le y \Leftrightarrow \exists \ z : x + z = y$. Zie 2.1.9 voor de definitie van \le .

We bewijzen eerst de implicatie naar rechts $\Rightarrow:$

$$x \le y$$

$$= \{ \text{Definitie } 2.1.9 \text{ van } \le \}$$

$$y = x + y$$

$$\Rightarrow \{ \text{neem } z \equiv y \}$$

$$y = x + z$$

De implicatie naar links, \Leftarrow gaat als volgt

$$y = x + z$$

$$= \{\text{gebruik axioma A3}\}$$

$$y = (x + x) + z$$

$$= \{\text{gebruik axioma A2}\}$$

$$y = x + (x + z)$$

$$= \{\text{gebruik } y = x + z\}$$

$$y = x + y$$

$$= \{\text{Definitie 2.1.9 van } \leq \}$$

$$x \leq y$$

7ii Bewijs dat \leq een partiele ordening is, d.w.z., toon aan dat \leq reflexive, symmetric, and transitive is.

Reflexivity:

$$x \le x$$

$$= \{ \text{Definitie van } \le \}$$

$$x = x + x$$

$$= \{ \text{Axioma A3} \}$$
true

Symmetry:

$$x \le y \land y \le x$$

$$= \{ \text{Definitie van } \le \}$$

$$y = x + y \land x = y + x$$

$$= \{ \text{Axioma A1} \}$$

$$y = y + x \land x = y + x$$

$$=$$

$$y = x$$

Transitivity:

$$x \leq y \land y \leq z$$

$$= \{ \text{Definitie van } \leq \}$$

$$y = x + y \land z = y + z$$

$$\Rightarrow$$

$$z = (x + y) + z \land z = y + z$$

$$= \{ \text{Axioma A2} \}$$

$$z = x + (y + z) \land z = y + z$$

$$\Rightarrow$$

$$z = x + z$$

$$= \{ \text{Definitie van } \leq \}$$

$$x \leq z$$

7iii Voor alle atomaire acties $a, b \in A$ met $a \neq b$ geldt $\neg (a \leq b) \land \neg (b \leq a)$, dus neem bijvoorbeeld $s \equiv a, t \equiv b$.

7iv Bewijs $x \le y \Rightarrow x + z \le y + z$.

$$x \leq y$$

$$y = x + y$$

$$\Rightarrow \{ \text{Voeg links en rechts een sommand } z \text{ toe} \}$$

$$y + z = (x + y) + z$$

$$= \{ \text{Herschrijven met axioma's A1, A2 en A3} \}$$

$$y + z = (x + z) + (y + z)$$

$$= \{ \text{Definitie van } \leq \}$$

$$x + z \leq (y + z)$$

Bewijs $x \le y \Rightarrow xz \le yz$. $x \le y$ $= \{ \text{Definitie van } \le \}$ y = x + y $\Rightarrow \{ \text{Zet beide processen in sequentiele compositie met een proces } z \}$ yz = (x + y)z

yz = (x + y)z $= \{ \text{Herschrijven met axioma A4} \}$ yz = xz + yz $= \{ \text{Definitie van } \leq \}$ $xz \leq yz$

7
v Geef twee gesloten termen s en t, zoda
t $s \leq t$ maar niet $as \leq at$.

Een mogelijke oplossing is: s = a, t = a + b.