Math 308B Spring, 2004 Final Exam 9 June 2004

Name:	
Student Number:	

- There are five problems; read the instructions to each problem carefully.
- Show all your work, and justify all your answers. If you're asked to give an example of a Thingy which has property Whatsit, demonstrate explicitly that your example does indeed have property Whatsit.
- You may not use the textbook or your lecture notes; you may use a card of notes.
- You may use a scientific calculator if you wish, but you won't need one.
- Read the exam carefully; if you have any questions about the wording, raise your hand and I'll explain.
- If you get stuck on one problem, go on and do the rest, and come back to it later.
- There are 100 points possible in all.
- Have fun.

For grader's use only

Problem	Points
1	
2	
3	
4	
5	
Total	

1. (a) Let

$$A = \left[\begin{array}{ccc} 0 & 6 & 30 \\ 0 & 3 & 6 \\ 0 & 6 & 3 \end{array} \right].$$

(10pts.) Compute $\det(A)$. Find the eigenvalues of A, and for each eigenvalue λ find a basis for the eigenspace E_{λ} . What is the sum of the dimensions of all the eigenspaces?

(b) Let

$$B = \left[\begin{array}{rrrr} 1 & 2 & 1 & 2 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 \end{array} \right].$$

(10pts.) Compute $\det(B)$. Find the eigenvalues of B, and for each eigenvalue λ find a basis for the eigenspace E_{λ} . What is the sum of the dimensions of all the eigenspaces?

2. You have a sample of a certain long-lived radioactive substance in your laboratory. You have been detecting and recording decay events with your instruments; for several times t, you have recorded the total number y(t) of decay events up to time t. Your data looks like this, in appropriate units:

(a) (15pts.) Because the substance has such a long half-life, you expect y(t) to be approximately linear over reasonable time-scales. Find a least-squares linear fit y(t) = at + b to the given data.

(b) Now drop some of the data points:

$$\begin{array}{c|ccc} t & 1 & 4 \\ \hline y(t) & 2 & 5 \end{array}$$

(5pts.) Find a least-squares linear fit y(t) = ct + d to this new data.

3. Let

$$\overrightarrow{v_1} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \overrightarrow{v_2} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}, \overrightarrow{v_3} = \begin{bmatrix} 11 \\ -15 \\ 5 \end{bmatrix}, \overrightarrow{u} = \begin{bmatrix} 4 \\ -5 \\ 2 \end{bmatrix}.$$

- (a) **(5pts.)** Find scalars c_1, c_2, c_3 with $c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + c_3 \overrightarrow{v_3} = \overrightarrow{u}$.
- (b) **(5pts.)** A certain 3×3 matrix C satisfies $C\overrightarrow{v_1} = \overrightarrow{0}, C\overrightarrow{v_2} = \overrightarrow{0}, C\overrightarrow{v_3} = \overrightarrow{v_2} + \overrightarrow{v_3}$. What is $C^4\overrightarrow{u}$?

(c) (10pts.) Find a 3×3 matrix D such that $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ is a basis for the nullspace of D.

4. Let

$$\overrightarrow{u_1} = \left[\begin{array}{c} 1 \\ 2 \end{array} \right], \overrightarrow{u_2} = \left[\begin{array}{c} -2 \\ 1 \end{array} \right].$$

- (a) (5pts.) Find scalars a_1, a_2, b_1, b_2 such that $\overrightarrow{e_1} = a_1 \overrightarrow{u_1} + a_2 \overrightarrow{u_2}$ and $\overrightarrow{e_2} = b_1 \overrightarrow{u_1} + b_2 \overrightarrow{u_2}$.
- (b) (15pts.) A certain 2×2 matrix F satisfies $F\overrightarrow{u_1} = 5\overrightarrow{u_1}, F\overrightarrow{u_2} = -10\overrightarrow{u_2}$. Find F and F^{-1} .

- 5. We say an $n \times n$ matrix N is **nilpotent** if for some positive integer k, $N^k = 0$. We say an $n \times n$ matrix P is **idempotent** if $P^2 = P$.
 - (a) (3pts.) Show that any nilpotent matrix N is singular.
 - (b) (5pts.) Suppose that λ is **any** eigenvalue of a nilpotent matrix N. Find all possible values of λ . For each possible λ , find a nilpotent matrix having that λ as an eigenvalue.
 - (c) (4pts.) Show that, if N is any nilpotent matrix, I N is nonsingular.
 - (d) (6pts.) Suppose that λ is any eigenvalue of an idempotent matrix P. Find all possible values of λ . For each possible λ , find an idempotent matrix having that λ as an eigenvalue.
 - (e) (2pts.) Show that, if P is idempotent, I P is also idempotent.