

Chapter 6.1 Graphs and their Representations

Instructor: Abhishek Santra Email: abhishek.santra@uta.edu

1

What is the basis of a graph?

- > Are you on social media?
 - Facebook, Instagram, ...
- Do you use flights while traveling?
 - American, Lufthansa, ...
- Do you use any navigation while driving?
 - Google Maps, Apple Maps, ...

Fall 2022

CSE2315: Abhishek Santra

Informal Definition of a Graph

- > A graph is
 - A <u>nonempty</u> set of **nodes** (also called **vertices**), and
 - A set of arcs (also called edges) such that each arc <u>connects two</u> nodes
- > Example:
 - The set of nodes in the airline map below is {Chicago, Nashville, Miami, Dallas, St. Louis, Albuquerque, Phoenix, Denver, San Francisco, Los Angeles}
 - There are 16 arcs; Phoenix–Albuquerque, Chicago–Nashville,
 Miami–Dallas, and so on.

 San Francisco

 Phoenix

 Albuquerque

 Dallas

 Nashville

 Los Angeles

Fall 2022

CSE2315: Abhishek Santra

4

Formal Definition of a Graph

- Without the visual representation of a graph, we need a concise way to convey the same information.
- > DEFINITION (FORMAL): A graph is an ordered triple (N, A, g) where:
 - *N* = a nonempty set of **nodes (vertices)**
 - A = a set of arcs (edges)
 - g = a function associating with each arc 'a' an<u>unordered</u> pair 'x-y' of nodes called the <u>endpoints</u> <u>of</u> a
 - Each arc has unique endpoints

Fall 2022

CSE2315: Abhishek Santra

5

5

Formal Definition of a Graph: Example

- > A graph having
 - A set of nodes {1, 2, 3, 4, 5},
 - A set of arcs $\{a_1, a_2, a_3, a_4, a_5, a_6\}$, and
 - function $g(a_1) = 1-2$, $g(a_2) = 1-3$, $g(a_3) = 3-4$, $g(a_4) = 3-4$, $g(a_5) = 4-5$, and $g(a_6) = 5-5$.

Fall 2022

CSE2315: Abhishek Santra

6

Directed Graphs

- Requirement: Direct Flights between cities?
 - <u>Directed Graph</u>: Arcs of a graph begin at one node and end at another.
 - Direction associated with each arc, denoted by arrows
- A directed graph (digraph) is an ordered triple (N, A, g) where:
 - *N* = a nonempty set of nodes
 - A = a set of arcs
 - g = a function associating with each arc 'a' an <u>ordered</u> pair (x, y) of nodes where x is the initial point (source) and y is the terminal point (destination) of a
 - Each arc has unique endpoints

Fall 2022

CSE2315: Abhishek Santra

7

7

Directed Graphs: Example

- \rightarrow Nodes: N = {1, 2, 3, 4}
- ightharpoonup Arcs/Edges: A = { a_1 , a_2 , a_3 , a_4 , a_5 }
- \triangleright The function g
 - $g(a_1) = (1, 2)$, meaning that arc a_1 begins at node 1 and ends at node 2
 - Also, $g(a_3) = (1, 3)$, but $g(a_4) = (3, 1)$.

Fall 2022

CSE2315: Abhishek Santra

В

Other Forms of Graphs

- ➤ Labeled graph: A graph whose nodes carry identifying information
 - Names of the cities in the map of airline routes

- ➤ Weighted graph: A graph where each arc has some numerical value, or weight, associated with it
 - Distances (in miles) of the various routes in the airline map
- The term "graph" is used to mean an undirected graph. To refer to a directed graph, one always says "directed graph."

Fall 2022

CSE2315: Abhishek Santra

9

9

Graph Terminology

- > Adjacent Nodes: The endpoints associated with an arc
 - 1 and 3 are adjacent nodes, but 1 and 4 are not.
- **Loop**: An arc with endpoints n-n for some node n
 - Arc a_3 is a loop with endpoints 2–2
 - A graph with no loops is loop-free
- Parallel Arcs: Two arcs with the same endpoints (undirected) or same start and end points (directed)
 - Arcs a_1 and a_2 are parallel

Fall 2022

CSE2315: Abhishek Santra

Graph Terminology

- > Simple Graph: A graph with no loops or parallel arcs
- ➤ **Isolated Node**: A **node** that is adjacent to <u>no other node</u>, a node with no associated arc or edge
 - 5 is an isolated node
- > Degree of a node: Number of arc ends at that node
 - Nodes 1 and 3 have degree 3, node 2 has degree 5, node 4 has degree 1, and node 5 has degree 0

11

Graph Terminology

- Complete Graph: A graph in which <u>every two distinct</u> <u>nodes</u> are adjacent OR all possible arcs exist. Example (a)
- ➤ **Subgraph** of a graph: Consists of a set of nodes and a set of arcs that are <u>subsets of the original node set and arc set</u>, respectively, in which the endpoints of an arc must be the same nodes as in the original graph.

Graph Terminology

- A path from node n_0 to node n_k is a sequence $n_0, a_0, n_1, a_1, \ldots, n_{k-1}, a_{k-1}, n_k$ of nodes and arcs where, for each i, the endpoints of arc a_i are $n_i n_{i+1}$. If such a path exists, then n_k is reachable n_0 .
 - One path from **node 2 to node 4** consists of the sequence 2, a_1 , 1, a_2 , 2, a_4 , 3, a_6 , 4

- Length of a path: Number of arcs it contains; if an arc is used more than once, it is counted each time it is used
 - The length of the path described above from node 2 to node 4 is

Fall 2022

CSE2315: Abhishek Santra

14

14

Graph Terminology

- A graph is connected if there is a path from any node to any other node
 - The graph below is not connected because of node 5
- ightharpoonup A **cycle** in a graph is a path from some **node** n_0 back to n_0 ,
 - where no arc appears more than once in the path sequence
 - n_0 is the only node <u>appearing more than once</u>, and n_0 occurs only <u>at the ends</u>
- Example:
 - Cycle: 2, a₁, 1, a₅, 3, a₄, 2
 - Not a cycle: **2**, **a**₄, **3**, **a**₆, **4**

A graph with <u>no cycles</u> is acyclic

Fall 2022

CSE2315: Abhishek Santra

Graph Representation: Adjacency Matrices

- > Suppose a graph has **n** nodes numbered $n_1, n_2, ..., n_n$
 - Having ordered the nodes, we can form an n × n matrix,
 - where entry i, j is the number of arcs between nodes n_i and n_i
 - This matrix is called the adjacency matrix A of the graph with respect to this ordering
 - Thus, $a_{ii} = p$ where there are p arcs between n_i and n_i
- For example, the following <u>undirected graph</u> has a corresponding adjacency matrix.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$

Fall 2022

CSE2315: Abhishek Santra

17

17

Graph Representation: Adjacency Matrices

- ➤ In a directed graph, the adjacency matrix A reflects the direction of the arcs
- For a directed matrix, $a_{ij} = p$ where there are p arcs from n_i to n_j .
- For example, the following <u>directed graph</u> has a corresponding adjacency matrix.

Fall 2022

CSE2315: Abhishek Santra

Adjacency Matrix Drawback

- For Graph with n nodes requires n^2 data items to represent and store the adjacency matrix.
- Many graphs, far from being complete graphs, have relatively few arcs.
 - Sparse adjacency matrices; that is, the adjacency matrices contain many zeros
- Leads to expensive computation of any algorithm in which every arc in the graph must be examined; requires looking at all n² items in the matrix.

Fall 2022

CSE2315: Abhishek Santra

20

20

Graph Representation: Adjacency Lists

- Efficient Storage Alternative: Storing only the nonzero entries of the adjacency matrix!
- Adjacency List: For <u>each node</u>, consists of a list of all adjacent nodes
 - Pointers are used to get us from one item in the list to the next. Such an arrangement is called a linked list.
 - An array of pointers is maintained
 n elements in the array, one for each node

Fall 2022

CSE2315: Abhishek Santra

Graph Representation: Adjacency Lists Example

- ➤ Adjacency list for the graph contains a **four-element array of pointers, one for each node**
- The pointer for each node **points to an adjacent node**, which points to another adjacent node, and so forth.
- The dot indicates a **null pointer**, meaning that there is nothing more to be pointed to or that the **end of the list has been reached**.

22

