

OBJECTIVE

• to write complex numbers into polar and exponential forms

CARTESIAN FORM

$$z = a + bi$$

POLAR FORM

 $P(r\cos\theta, r\sin\theta)$

... on the Argand plane, the complex number represented by \overrightarrow{OP} is $z = r \cos \theta + ir \sin \theta$

where r = |z| and $\theta = \arg z$.

 $\operatorname{cis} \theta = \operatorname{cos} \theta + i \operatorname{sin} \theta$ so that $z = |z| \operatorname{cis} \theta$. We define

Any point P which lies on a circle with centre O(0, 0) and radius r, has Cartesian coordinates $(r\cos\theta, r\sin\theta)$.

POLAR FORM

A complex number z has **polar form** $z = |z| \operatorname{cis} \theta$ where |z| is the **modulus** of z, θ is the **argument** of z, and $\operatorname{cis} \theta = \cos \theta + i \sin \theta$.

Polar form is also called the modulus-argument form.

Write in polar form:

a 2*i*

Ь −3

1-i

EXAMPLE: POLAR TO CARTESIAN FORM

Convert $\sqrt{3} \operatorname{cis} \frac{5\pi}{6}$ to Cartesian form.

We expand $\operatorname{cis} \frac{5\pi}{6}$ using a unit circle diagram.

$$\sqrt{3}\operatorname{cis}\frac{5\pi}{6}$$

$$= \sqrt{3}\left(\operatorname{cos}\frac{5\pi}{6} + i\operatorname{sin}\frac{5\pi}{6}\right)$$

$$= \sqrt{3}\left(-\frac{\sqrt{3}}{2} + i \times \frac{1}{2}\right)$$

$$= -\frac{3}{2} + \frac{\sqrt{3}}{2}i$$

EXAMPLE: POLAR TO CARTESIAN FORM

Simplify $\operatorname{cis} \frac{107\pi}{6}$.

$$\operatorname{cis} \frac{107\pi}{6} = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

Use your calculator to convert:

b 6-5i to modulus-argument form.

- $5 \operatorname{cis}(1.9) \approx -1.62 + 4.73i$
- **b** $6-5i \approx \sqrt{61} \operatorname{cis}(-0.695)$

HISTORICAL NOTE

EULER'S BEAUTIFUL EQUATION

One of the most remarkable results in mathematics is known as Euler's beautiful equation $e^{i\pi}=-1$ named after Leonhard Euler.

It is called beautiful because it links together three great constants of mathematics: Euler's constant e, the imaginary number i, and the ratio of a circle's circumference to its diameter, which is π .

Harvard lecturer **Benjamin Pierce** said of $e^{i\pi} = -1$,

"Gentlemen, that is surely true, it is absolutely paradoxical; we cannot understand it, and we don't know what it means, but we have proved it, and therefore we know it must be the truth."

EXPONENTIAL FORM

For any
$$\theta \in \mathbb{R}$$
, $e^{i\theta} = \cos \theta + i \sin \theta$.

This identity allows us to write any complex number $z = |z| \operatorname{cis} \theta$ in the **exponential form** or **Euler** form $z = |z| e^{i\theta}$.

For example, consider z = 1 + i.

$$|z| = \sqrt{2}$$
 and $\theta = \frac{\pi}{4}$,

$$\therefore 1 + i = \sqrt{2}\operatorname{cis}\frac{\pi}{4} = \sqrt{2}e^{i\frac{\pi}{4}}$$

So, $\sqrt{2} \operatorname{cis} \frac{\pi}{4}$ is the **polar form** of 1+i

and $\sqrt{2}e^{i\frac{\pi}{4}}$ is the **exponential form** of 1+i.

Evaluate:

$$e^{-i\frac{\pi}{4}}$$

$$i^{-i}$$

$$e^{-i\frac{\pi}{4}} = \cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)$$

$$= \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$$

$$\frac{\mathcal{J}}{\sqrt{2}}$$

$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

b Now
$$i = 0 + 1i$$

$$= \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

$$= e^{i\frac{\pi}{2}}$$

$$\therefore i^{-i} = \left(e^{i\frac{\pi}{2}}\right)^{-i}$$

$$= e^{-i^2\frac{\pi}{2}}$$

$$= e^{\frac{\pi}{2}}$$

Write:

- \mathbf{a} -1+i in polar form and exponential form
- **b** $3 \operatorname{cis} \left(-\frac{\pi}{6}\right)$ in Cartesian form and exponential form
- $e^{i\frac{2\pi}{3}}$ in Cartesian form and polar form.

$$\sqrt{2} \operatorname{cis} \frac{3\pi}{4}, \quad \sqrt{2}e^{i\frac{3\pi}{4}}$$

$$-1 + \sqrt{3}i$$
, $2 \operatorname{cis} \frac{2\pi}{3}$

b
$$\frac{3\sqrt{3}}{2} - \frac{3}{2}i$$
, $3e^{-i\frac{\pi}{6}}$

Use your calculator to convert to Cartesian form:

 $e^{1.2i}$

Use your calculator to convert to exponential form:

$$5+2i$$

a
$$\approx 0.362 + 0.932i$$
 b $\approx 3.06 - 2.58i$ c $\approx -7.32 + 4.11i$ d $\approx 0.324 - 0.528i$ a $\approx 5.39e^{0.381i}$ b $\approx 9.85e^{2.72i}$ c $\approx 3.16e^{-2.54i}$ d $\approx 4.90e^{-1.10i}$

