AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (currently amended) A pharmaceutical composition comprising an effective amount of a compound chosen from the compounds of general formulae I and Ia below for treating, by virtue of their cytotoxic properties, cancerous tumors and their metastases:

in which:

- X is chosen from oxygen, an -NH group and an -N-OH group,
- R_1 is chosen from hydrogen, halogens, a nitro group and groups -NR₈R₉ in which R₈ and R₉ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₂ is chosen from hydrogen and halogens,
- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups $-NR_{10}R_{11}$

in which R_{10} and R_{11} are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl groups and groups $-(CH_2)_n-Y$ with Y being chosen from halogens and CN, $-CH(O-Et)_2$, (C_1-C_6) alkoxy, $-O-(CH_2)_2-N(CH_3)_2$ and $-N(CH_3)_2$ groups and n=1 to 3,

- $^{\circ}R_4$ is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R_5 , R_6 and R_7 are chosen from:

hydrogen or a halogen atom,

 C_1 - C_6 alkyl, hydroxyl, C_1 - C_6 alkoxy, $(C_1$ - $C_6)$ alkoxy(C_1 - C_6) alkyl, $(C_1$ - C_4) alkylcarbonyloxy(C_1 - C_4) alkyl, -CHO, -COOH, -CN, -CO₂R₁₄, -CONHR₁₄ and -CONR₁₄R₁₅ groups, -NHCOR₁₄ and -NR₁₄R₁₅ in which R₁₄ and R₁₅ are chosen, independently of each other, from hydrogen and (C_1 - C_6) alkyl, -phenyl-CO-CH₃ and -CH₂-CH₂-N(CH₃)₂ groups,

 $-phenyl-CO-CH_{3} \ \ or \ \ -phenyl-CO-CH=CH-N\,(CH_{3})_{\,2}\,,$ morpholino, nitro or SO_3H groups,

groups:

 R_{16} and R_{17} being chosen from C_1-C_6 alkyl groups and Ar being a C_6-C_{14} aryl group,

with the exclusion of the compounds of formula I containing the combination:

x - 0,

and, either -: R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 - H, or :- R_1 , R_3 , R_4 , R_5 , R_6 , R_7 - H and R_2 - Br,

or R_1 , R_2 , R_3 , R_4 , R_6 , R_7 - H and R_5 - OH

and with the exclusion of the compound formula Ia containing the combination X = O and R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , $R_7 = H$,

- 2. (currently amended) A pharmaceutical composition comprising an effective amount of a compound chosen from the compounds of formula I in which:
- X is chosen from oxygen, an =NH group and an =N-OH group,
- R_1 is chosen from hydrogen, halogens, a nitro group and groups $-NR_8R_9$ in which R_8 and R_9 are chosen, independently of each other, from hydrogen and (C_1-C_4) alkyl groups,
 - R₂ is chosen from hydrogen and halogens,
- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups $-NR_{10}R_{11}$ in which R_{10} and R_{11} are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl, $-(CH_2)_2-N(CH_3)_2$, and $-(CH_2)_2-O-(CH_2)_2-N(CH_3)_2$ groups,

- R_4 is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₅, R₆ and R₇ are chosen from:

hydrogen or a halogen atom,

 C_1-C_6 alkyl, hydroxyl, C_1-C_6 alkoxy, -CHO, -COOH, -CN, -CO $_2$ R $_{14}$, -CONHR $_{14}$ and -CONR $_{14}$ R $_{15}$ groups, -NHCOR $_{14}$ and -NR $_{14}$ R $_{15}$ groups in which R $_{14}$ and R $_{15}$ are chosen, independently of each other, from hydrogen and (C_1-C_6) alkyl and -CH $_2$ -CH $_2$ -N(CH $_3$) $_2$ groups,

-phenyl-CO-CH $_3$ or -phenyl-CO-CH=CH-N(CH $_3$) $_2$, morpholino, nitro or SO $_3$ H groups,

groups:

$$-CH_2 - N - COOR_{16}$$
 , $-CH_2 - N - COOR_{16}$, $-CH_2 - N - COOR$

 R_{16} and R_{17} being chosen from C_1-C_6 alkyl groups and Ar being a C_6-C_{14} aryl group,

with the exclusion of the compounds in which X = 0, and, either: $R_{17}, R_{27}, R_{37}, R_{47}, R_{57}, R_{67}, R_{7} = H, \text{ or } : R_{17}, R_{37}, R_{47}, R_{57}, R_{67}, R_{7} = H$ and $R_{2} = Br_{7}$ or $R_{17}, R_{27}, R_{37}, R_{47}, R_{67}, R_{7} = H$ and $R_{5} = OH_{7}$

- 3. (currently amended) The pharmaceutical composition as claimed in claim 2, comprising an effective amount of a compound chosen from the compounds of formula I in which:
 - X represents oxygen,
 - R₁ is chosen from hydrogen and an amino group,
 - R₂ is chosen from hydrogen and halogens,
- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups $-NR_{10}R_{11}$ in which R_{10} and R_{11} are chosen, independently of each other, from hydrogen, methyl groups, (C_1-C_4) phenylalkyl, $-(CH_2)_2-N(CH_3)_2$, $-(CH_2)_2-O-(CH_2)_2-N(CH_3)_2$ groups,
- R_4 is chosen from hydrogen, halogens and nitro and amino groups,
 - R₅, R₆ and R₇ represent a hydrogen,

with the exclusion of the compounds in which R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 = H and R_2 = Br,

- 4. (currently amended) The pharmaceutical composition as claimed in claim 1, comprising an effective amount of a compound chosen from the compounds of formulae I and Ia in which:
 - X represents oxygen,
 - R₁ is chosen from hydrogen and an amino group,
 - R₂ is chosen from hydrogen and halogens,

- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups $-NR_{10}R_{11}$ in which R_{10} and R_{11} are chosen, independently of each other, from hydrogen, methyl groups, (C_1-C_4) phenylalkyl groups and groups $-(CH_2)_n-Y$ with Y being chosen from halogens and groups CN, -CH $(O-Et)_2$, (C_1-C_6) alkoxy, $-O-(CH_2)_2-N(CH_3)_2$ and $-N(CH_3)_2$ and n=1 to 3,
- R_4 is chosen from hydrogen, halogens, and nitro and amino groups,
- R_5 is chosen from a hydrogen, a halogen and a methoxy group,
- R_6 and R_7 are chosen from hydrogen and C_1-C_6 alkoxy, (C_1-C_6) alkoxy (C_1-C_6) alkyl and $-CH_2OCOCH_3$ groups,

with the exclusion of the compounds of formula I in which R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 - H or R_1 , R_3 , R_4 , R_5 , R_6 , R_7 - H and R_2 - Br, and of the compound of formula Ia in which R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 = H,

and the addition salts of these compounds with pharmaceutically acceptable acids.

- 5. (currently amended) The composition as claimed in claim 4, in which the compounds are chosen from:
- 5-(dimethylamino)-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

5-(benzylamino)-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one, 5-bromo-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

```
5-amino-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
5-methyl-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
10-methoxy-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
5-methoxy-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
7-nitro-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
5-chloro-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
5-bromo-10-methoxy-9H-quino[4,3,2-de][1,10]phenanthrolin-9-
one,
5-(dimethylamino-2-ethyl)amino-9H-quino[4,3,2-de]-
[1,10]phenanthrolin-9-one,
5-bis(2-chloroethyl)amino-9H-quino[4,3,2-de]-
[1,10]phenanthrolin-9-one,
5-(2-chloroethyl)amino-9H-quino[4,3,2-de][1,10]-
phenanthrolin-9-one,
12-methoxy-9-H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
4-bromo-5-amino-9-H-quino[4,3,2-de][1,10]phenanthrolin-9-
one,
11-acetoxymethyl-9-H-quino[4,3,2-de][1,10]phenanthrolin-9-
one,
5-bromo-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
5-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
5-(dimethylamino-2-ethyl)amino-9-H-quino[4,3,2-
de][1,7]phenanthrolin-9-one,
5-bis(chloroethylamino-2-ethyl)amino-9-H-quino[4,3,2-
de][1,7]phenanthrolin-9-one,
```

5-(chloroethylamino-2-ethyl)amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,

4-bromo-5-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,

7-nitro-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,

7-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,

12-methoxy-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,

and the addition salts thereof with pharmaceutically acceptable acids.

- 6. (cancelled)
- 7. (currently amended) The use as claimed in claim 6, in which the compounds are chosen from process according to claim 12, wherein said compound is selected from the group consisting of:

one,

5-(benzylamino)-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

5-bromo-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

7-amino-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

5-amino-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

5-methyl-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

10-methoxy-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

5-methoxy-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

7-nitro-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

5-chloro-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

5-(dimethylamino)-9H-quino[4,3,2-de][1,10]phenanthrolin-9-

```
Application No. 10/049,381
Amdt. dated November 20, 2003
Reply to Office Action of May 20, 2003
Docket No. 0512-1004
```

```
5-bromo-10-methoxy-9H-quino[4,3,2-de][1,10]phenanthrolin-9-
one,
5-(dimethylamino-2-ethyl)amino-9H-quino[4,3,2-de]-
[1,10]phenanthrolin-9-one,
5-bis(2-chloroethyl)amino-9H-quino[4,3,2-de]-
[1,10]phenanthrolin-9-one,
5-(2-chloroethyl)amino-9H-quino[4,3,2-de][1,10]-
phenanthrolin-9-one,
12-methoxy-9-H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
4-bromo-5-amino-9-H-quino[4,3,2-de][1,10]phenanthrolin-9-
one,
11-acetoxymethyl-9-H-quino[4,3,2-de][1,10]phenanthrolin-9-
one,
5-bromo-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
5-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
5-(dimethylamino-2-ethyl)amino-9-H-quino[4,3,2-
de][1,7]phenanthrolin-9-one,
5-bis(chloroethylamino-2-ethyl)amino-9-H-quino[4,3,2-
de][1,7]phenanthrolin-9-one,
5-(chloroethylamino-2-ethyl)amino-9-H-quino[4,3,2-
de][1,7]phenanthrolin-9-one,
4-bromo-5-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
7-nitro-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
7-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
12-methoxy-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
```

and the addition salts thereof with pharmaceutically acceptable acids.

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
Formula Ia

in which:

- X is chosen from oxygen, an-NH group-and-an N-OH group,
- R_1 is chosen from hydrogen, halogens, a nitro group and groups -NR₈R₉ in which R₈ and R₉ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₂ is chosen from hydrogen and halogens,
- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups $-NR_{10}R_{11}$ in which R_{10} and R_{11} are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl groups and groups $-(CH_2)_n-Y$ with Y being chosen from halogens and CN, $-CH(O-Et)_2$, (C_1-C_6) alkoxy, $-O-(CH_2)_2-N(CH_3)_2$ and $-N(CH_3)_2$ groups and n=1 to 3,

- R_4 is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R_5 , R_6 and R_7 are chosen from:

hydrogen or a halogen atom,

 $C_1-C_6 \text{ alkyl, hydroxyl, } C_1-C_6 \text{ alkoxy, } (C_1-C_6) \text{ alkyl, } (C_1-C_6) \text{ alkyl, } (C_1-C_4) \text{ alkylcarbonyloxy} (C_1-C_4) \text{ alkyl, } -CHO, \\ -COOH, -CN, -CO_2R_{14}, -CONHR_{14} \text{ and } -CONR_{14}R_{15} \text{ groups, } -NHCOR_{14} \text{ and } -NR_{14}R_{15} \text{ in which } R_{14} \text{ and } R_{15} \text{ are chosen, independently of each } \text{ other, from hydrogen and } (C_1-C_6) \text{ alkyl, } -phenyl-CO-CH_3 \text{ and } -CH_2-CH_2-N(CH_3)_2 \text{ groups, } \dots$

-phenyl-CO-CH $_3$ or -phenyl-CO-CH=CH-N(CH $_3$) $_2$, morpholino, nitro or SO $_3$ H groups,

groups:

 R_{16} and R_{17} being chosen from C_1-C_6 alkyl groups and Ar being a C_6-C_{14} aryl group,

with the exclusion of the compounds of formula I in which X=0, and, either R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , $R_7=H$, or R_1 , R_3 , R_4 , R_5 , R_6 , $R_7=H$ and $R_3=OCH_3$, or

 R_1 , R_2 , R_3 , R_4 , R_6 , R_7 = H and R_5 = OH or OCH₃, or R_1 = NO₂ and R_2 , R_3 , R_4 , R_5 , R_6 , R_7 = H,

and with the exclusion of the compound formula Ia in which X = O and R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , $R_7 = H$,

- 9. (currently amended) Compounds as claimed in claim 8, of formula I in which:
- X is chosen from oxygen, an -NH group-and an -N-OH group,
- R_1 is chosen from hydrogen, halogens, a nitro group and groups -NR₈R₉ in which R₈ and R₉ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₂ is chosen from hydrogen and halogens,
- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups -NR₁₀R₁₁ in which R₁₀ and R₁₁ are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl, - $(CH_2)_2$ -N $(CH_3)_2$, and - $(CH_2)_2$ -O- $(CH_2)_2$ -N $(CH_3)_2$ groups,
- R_4 is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R_5 , R_6 and R_7 are chosen from: hydrogen or a halogen atom,

 C_1 - C_6 alkyl, hydroxyl, C_1 - C_6 alkoxy, -CHO, -COOH, -CN, -CO $_2$ R $_{14}$, -CONHR $_{14}$ and -CONR $_1$ 4R $_{15}$ groups, -NHCOR $_{14}$ and -NR $_1$ 4R $_{15}$ in which R $_{14}$ and R $_{15}$ are chosen, independently of each other, from hydrogen and (C_1 - C_6) alkyl and -CH $_2$ -CH $_2$ -N(CH $_3$) $_2$ groups, -phenyl-CO-CH $_3$ or -phenyl-CO-CH=CH-N(CH $_3$) $_2$, morpholino, nitro or SO $_3$ H groups,

groups:

 R_{16} and R_{17} being chosen from $C_1\text{--}C_6$ alkyl groups and Ar being a $C_6\text{--}C_{14}$ aryl group,

with the exclusion of the compounds in which X = O, and, either R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , $R_7 = H$, or R_1 , R_3 , R_4 , R_5 , R_6 , $R_7 = H$ and $R_3 = OCH_3$, or R_1 , R_2 , R_4 , R_5 , R_6 , $R_7 = H$ and $R_3 = OCH_3$, or R_1 , R_2 , R_3 , R_4 , R_6 , $R_7 = H$ and $R_9 = OCH_9$, or $R_1 = NO_2$ and R_2 , R_3 , R_4 , R_5 , R_6 , $R_7 = H$,

and the addition salts thereof with pharmaceutically acceptable acids.

10. (currently amended) Compounds as claimed in claim 8, which are:

5-(dimethylamino)-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one, 5-(benzylamino)-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,

```
5-bromo-9H-quino[4,3,2-de][1,10] phenanthrolin-9-one,
7-amino-9H-quino [4,3,2-de] [1,10] phenanthrolin-9-one,
5-amino-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
5-methyl-9H-quino[4,3,2-de][1,10] phenanthrolin-9-one,
5-chloro-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
5-bromo-10-methoxy-9H-quino[4,3,2-de][1,10]phenanthrolin-9-
one,
5-(dimethylamino-2-ethyl) amino-9H-quino[4,3,2-de][1,10]-
phenanthrolin-9-one,
5-bis (2-\text{chloroethyl}) amino-9H-quino [4,3,2-de] [1,10] phenan-
throlin-9-one,
5-(2-chloroethyl)amino-9H-quino[4,3,2-de][1,10]phenanthrolin-
9-one,
12-methoxy-9-H-quino[4,3,2-de][1,10]phenanthrolin-9-one,
4-bromo-5-amino-9-H-quino[4,3,2-de][1,10] phenanthrolin-9-one,
11-acetoxymethyl-9-H-quino[4,3,2-de]-[1,10]phenanthrolin-9-one,
5-bromo-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
5-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
5-(dimethylamino-2-ethyl)amino-9-H-quino[4,3,2-de]-
[1,7]phenanthrolin-9-one,
5-bis(chloroethylamino-2-ethyl)amino-9-H-quino[4,3,2-de]-
[1,7]phenanthrolin-9-one,
5-(chloroethylamino-2-ethyl)amino-9-H-quino[4,3,2-de]-
[1,7]phenanthrolin-9-one,
4-bromo-5-amino-9-H-quino[4,3,2-de][1,7] phenanthrolin-9-one,
```

7-nitro-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
7-amino-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,
12-methoxy-9-H-quino[4,3,2-de][1,7]phenanthrolin-9-one,

- 11. (currently amended) A process for preparing a compound of formula Ia, in which:
- X is chosen from oxygen, an =NH group and an =N-OH group,
- R_1 is chosen from hydrogen, halogens, a nitro group and groups -NR₈R₉ in which R₈ and R₉ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₂ is chosen from hydrogen and halogens,
- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups -NR₁₀R₁₁ in which R₁₀ and R₁₁ are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl groups and groups - $(CH_2)_n$ -Y with Y being chosen from halogens and CN, -CH(O-Et)₂, (C_1-C_6) alkoxy, -O- $(CH_2)_2$ -N(CH₃)₂ and -N(CH₃)₂ groups and n = 1 to 3,
- R_4 is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₅, R₆ and R₇ are chosen from:

hydrogen or a halogen atom,

 $C_1-C_6 \text{ alkyl, hydroxyl, } C_1-C_6 \text{ alkoxy, } (C_1-C_6) \text{ alkoxy}, \\ (C_1-C_6) \text{ alkyl, } (C_1-C_4) \text{ alkylcarbonyloxy} (C_1-C_4) \text{ alkyl, } -CHO, \\ -COOH, -CN, -CO_2R_{14}, -CONHR_{14} \text{ and } -CONR_{14}R_{15} \text{ groups, } -NHCOR_{14} \text{ and } -NR_{14}R_{15} \text{ in which } R_{14} \text{ and } R_{15} \text{ are chosen, independently of each } \\ \text{other, from hydrogen and } (C_1-C_6) \text{ alkyl, } -\text{phenyl-CO-CH}_3 \text{ and } -CH_2-CH_2-N(CH_3)_2 \text{ groups, } \\ \end{array}$

-phenyl-CO-CH $_3$ or -phenyl-CO-CH=CH-N(CH $_3$) $_2$, morpholino, nitro or SO $_3$ H groups,

groups:

 R_{16} and R_{17} being chosen from C_1-C_6 alkyl groups and Ar being a C_6-C_{14} aryl group,

which consists in:

a - condensing a chlorobenzoic acid of formula:

$$R_1$$
 R_2
 R_3

with a dimethoxyaniline of formula:

to give a compound of formula IIa:

b - cyclizing the compound of formula IIa to give a compound of formula:

c - converting the compound into a quinone of formula IIIa:

$$R_2$$

d - reacting the quinone of formula IIIa with an azadiene of formula:

to give a compound of formula IVa:

$$R_7$$
 R_6
 R_5
 R_5
 R_7
 R_8
 R_8
 R_8

- e reacting the compound of the formula IVa with dimethylformamide diethyl acetal to give the compound of formula Ia,
- f and, optionally, converting the compound thus obtained
 into another compound of formula Ia.
- 12. (currently amended) A process for treating patients having a cancer tumor, which consists in inhibiting a tumor in a patient comprising administering an effective amount of a compound as defined in claim 1 to said patient.
- 13. (currently amended) A process for preparing compounds of general formula I, of formula:

$$R_6$$
 R_7
 R_7
 R_7
 R_8
 R_8
 R_8

in which:

- R_1 is chosen from hydrogen, halogens, a nitro group and groups $-NR_8R_9$ in which R_8 and R_9 are chosen, independently of each other, from hydrogen and (C_1-C_4) alkyl groups,
 - R₂ is chosen from hydrogen and halogens,
- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups -NR₁₀R₁₁

in which R_{10} and R_{11} are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl groups and groups $-(CH_2)_n-Y$ with Y being chosen from halogens and CN, $-CH(O-Et)_2$, (C_1-C_6) alkoxy, $-O-(CH_2)_2-N(CH_3)_2$ groups and $-N(CH_3)_2$ and n=1 to 3,

- R_4 is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R_5 , R_6 and R_7 are chosen from:

hydrogen or a halogen atom,

 C_1 - C_6 alkyl, hydroxyl, C_1 - C_6 alkoxy, $(C_1$ - $C_6)$ alkoxy $(C_1$ - $C_6)$ alkyl, $(C_1$ - $C_4)$ alkylcarbonyloxy $(C_1$ - $C_4)$ alkyl, -CHO, -COOH, -CN, -CO $_2$ R $_1$ 4, -CONHR $_1$ 4 and -CONR $_1$ 4R $_1$ 5 groups, -NHCOR $_1$ 4 and -NR $_1$ 4R $_1$ 5 in which R $_1$ 4 and R $_1$ 5 are chosen, independently of each other, from hydrogen and $(C_1$ - $C_6)$ alkyl, -phenyl-CO-CH $_3$ and -CH $_2$ -CH $_2$ -N(CH $_3$) $_2$ groups,

-phenyl-CO-CH $_3$ or -phenyl-CO-CH=CH-N(CH $_3$) $_2$, morpholino, nitro or SO $_3$ H groups,

groups:

 R_{16} and R_{17} being chosen from $C_1\text{--}C_6$ alkyl groups and Ar being a $C_6\text{--}C_{14}$ aryl group,

with the exclusion of the compounds of formula I in which either R_1 , R_2 , R_3 , R_4 , R_6 , R_7 = H, or R_1 , R_3 , R_4 , R_5 , R_6 , R_7 = H and R_2 = Br, or R_1 , R_2 , R_4 , R_5 , R_6 , R_7 = H and R_3 = OCH₃, or R_1 , R_2 , R_4 , R_5 , R_6 , R_7 = H and R_8 = OH or OCH₃ or R_1 = NO₂ and R_2 , R_3 , R_4 , R_6 , R_7 = H,

which consists

a) in reacting a hydroquinone of formula

with a compound of formula

$$R_1$$
 R_2
 R_3
 R_4

in the presence of $CeCl_3$, $7H_2O$ and ethanol to give a compound of formula II

b) in converting the compound of formula II into a compound of formula III in the presence of H_2SO_4 in reflux acetic acid,

$$R_6$$
 R_7
 R_7

c) in reacting the compound of the formula III with $HC\left(OC_2H_5\right){}_2N\left(CH_3\right){}_2\text{ in DMF at }120\,^{\circ}\text{C to form a compound of formula IV}$

$$R_6$$
 R_7
 R_5
 R_4
 R_4
 R_3

d) in cyclizing the compound of formula IV to a compound of formula I in the presence of NH_4Cl and $AcOH_4$

- e) optionally converting the compound of formula I thus obtained into another compound of formula II.
 - 14. (currently amended) A compound of formula

$$R_6$$
 R_7
 R_5
 R_4
 R_4
 R_3
 R_4

in which:

Ę

- R_1 is chosen from hydrogen, halogens, a nitro group and groups $-NR_8R_9$ in which R_8 and R_9 are chosen, independently of each other, from hydrogen and (C_1-C_4) alkyl groups,
 - R₂ is chosen from hydrogen and halogens,
- R₃ is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups -NR₁₀R₁₁ in which R₁₀ and R₁₁ are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl groups and groups - $(CH_2)_n$ -Y with Y being chosen from halogens and CN, -CH(O-Et)₂, (C_1-C_6) alkoxy, -O- $(CH_2)_2$ -N(CH₃)₂ and -N(CH₃)₂ groups and n = 1 to 3,

- R_4 is chosen from hydrogen, halogens, nitro groups and groups -NR₁₂R₁₃ in which R₁₂ and R₁₃ are chosen, independently of each other, from hydrogen and (C₁-C₄) alkyl groups,
 - R₅, R₆ and R₇ are chosen from:

hydrogen or a halogen atom,

 C_1 - C_6 alkyl, hydroxyl, C_1 - C_6 alkoxy, $(C_1$ - $C_6)$ alkoxy(C_1 - C_6) alkyl, $(C_1$ - C_4) alkylcarbonyloxy(C_1 - C_4) alkyl, -CHO, -COOH, -CN, -CO $_2$ R $_{14}$, -CONHR $_{14}$ and -CONR $_{14}$ R $_{15}$ groups, -NHCOR $_{14}$ and -NR $_{14}$ R $_{15}$ in which R $_{14}$ and R $_{15}$ are chosen, independently of each other, from hydrogen and (C_1 - C_6) alkyl, -phenyl-CO-CH $_3$ and -CH $_2$ -CH $_2$ -N(CH $_3$) $_2$ groups,

-phenyl-CO-CH $_3$ or -phenyl-CO-CH=CH-N(CH $_3$) $_2$, morpholino, nitro or SO $_3$ H groups,

groups:

$$-CH_2 - N - COOR_{16}$$
 , $-CH_2 - N - COOR_{16}$, $-CH_2 - N - COOR$

 R_{16} and R_{17} being chosen from C_1-C_6 alkyl groups and Ar being a $C_6 C_{14}$ aryl group,

with the exclusion of compounds in which either R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 = H, or R_1 , R_3 , R_4 , R_5 , R_6 , R_7 = H and R_2 = Br, or R_1 , R_2 , R_4 , R_5 , R_6 , R_7 = H and R_3 = OCH₃, or R_1 , R_2 , R_3 , R_4 , R_6 , R_7 = H and R_5 = OH or OCH₃ or R_1 = NO₂ and R_2 , R_3 , R_4 , R_5 , R_6 , R_7 = H,