Technische Universität München

Ferienkurs Mathematik für Physiker 1

(2021/2022)

Probeklausur

Yigit Bulutlar

25. März 2022

Aufgabe 1 (8 × 1,5 Punkte) In den folgenden Teilaufgaben sind die Ergebnisse ohne Begründung anzugeben. Nebenrechnungen werden nicht gewertet.

(a) Seien $v=\begin{pmatrix} -1\\ 3\\ 0 \end{pmatrix}$ und $w=\begin{pmatrix} 2\\ 0\\ -4 \end{pmatrix}$. Berechnen Sie vw^T und dessen Rang.

(b) Schreiben Sie die Permutation $\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\ 3 & 7 & 4 & 1 & 8 & 2 & 5 & 6 \end{pmatrix}$ in Zykelschreibweise.

(c) Finden Sie eine Basis des Bildes der komplexen Matrix $\begin{pmatrix} -1 & i \\ 4i & 4 \end{pmatrix}$

(d) Bestimmen Sie die Inverse Matrix zu $\begin{pmatrix} 2 & 2 & 2 \\ -1 & -1 & 0 \\ -2 & 0 & 0 \end{pmatrix}$ (e) Bestimmen Sie die Determinante von $\begin{pmatrix} 0 & 0 & 2 & -2 \\ 0 & 0 & 3 & -1 \\ 3 & -2 & 7 & -9 \\ -1 & 3 & -12 & 0 \end{pmatrix}$

(f) Wir betrachten den Vektorraum \mathbb{R}^3 mit den geordneten Basen $E = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \}$ und $B = \{ \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} \}$. Bestimmen Sie die Darstellungsmatrix $M_{E,B}(\varphi)$ der linearen Abbildung: $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$, $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} x_3 \\ x_2 \\ x_1 \end{pmatrix}$

(g) Wie viele Fehlstände hat die Permutation $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 2 & 3 & 1 & 5 \end{pmatrix}$

(h) Geben Sie einen komplementären Untervektorraum zu $\langle \begin{pmatrix} 2 \\ 3 \end{pmatrix} \rangle \subset \mathbb{R}^3.$

Aufgabe 2: (1,5+2,5 Punkte) Wir betrachten \mathbb{R}^2 mit dem Skalarprodukt

$$\langle,\rangle_w:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R},\langle\begin{pmatrix}x_1\\x_2\end{pmatrix},\begin{pmatrix}y_1\\y_2\end{pmatrix}\rangle_w=\sum_{i=1}^2w_ix_iy_i \text{ mit } w=\begin{pmatrix}2\\3\end{pmatrix}$$

- (a) Bestimmen Sie die Darstellungsmatrix $M_E(\langle,\rangle_w)$ von \langle,\rangle_w bezüglich der Standardbasis $E = \{(\frac{1}{0}), (\frac{0}{1})\}.$
- (b) Bestimmen Sie eine Orthonormalbasis von \mathbb{R}^2 bezüglich \langle , \rangle_w .

Aufgabe 3: (1+2+1+2 Punkte) Gegeben sei die Matrix:

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 2 & 0 \\ 1 & \frac{5}{3} & 0 \end{pmatrix}$$

- (a) Bestimmen Sie die Eigenwerte von A, indem Sie die charakteristische Polynom zerlegen.
- (b) Bestimmen Sie zu jedem Eigenraum von A eine Basis.
- (c) Ist A ähnlich zu einer Diagonalmatrix?
- (d) Ist A ähnlich zu einer Matrix in Jordan Normalform? Wenn Ja, geben Sie die Jordan Normalform von A.

Aufgabe 4: (1+2+2+1 Punkte) Wir betrachten die lineare Abbildung

$$\varphi: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}_{\leq 2}[x], f \longmapsto f(x+2) - 2x^2 \cdot f''(x).$$

- (a) Bestimmen Sie die Darstellungsmatrix $M_B(\varphi)$ von φ bezüglich der Basis $B = \{1, x, x^2\}$.
- (b) Bestimmen Sie eine Basis des Kerns von φ .
- (c) Bestimmen Sie eine Basis des Bildes von φ .
- (d) Begründen Sie, ob φ injektiv ist und ob φ surjektiv ist.

Aufgabe 5: (1+2+3 Punkte) Seien U, V, W und X endlich dimensionale K-Vektorräume.

(a) Sei $h: W \to X$ eine Isomorphismus. Zeigen Sie, dass $\dim(W) = \dim(X)$

Seien nun $f:U\to V,g:V\to W$ lineare Abbildungen, so dass $g\circ f$ ein Isomorphismus ist. Beweisen Sie die folgende Aussagen.

- (b) $\dim(\text{Bild}(f)) = \dim(U)$ und $\dim(\text{Kern}(g)) = \dim(V) \dim(W)$.
- (c) $\operatorname{Kern}(q) + \operatorname{Bild}(f) = V$