

				S	ubje	ect C	ode	: KI	CZ	VI I
Roll No:										

Printed Page: 1 of 3

BTECH (SEM II) THEORY EXAMINATION 2021-22 EMERGING DOMAIN IN ELECTRONICS ENGINEERING

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.	2*10 = 20
------------------------------------	-----------

Qno	Questions	CO
(a)	Discuss the formation of depletion layer in diode.	1
(b)	Explain the effect of temperature on diode.	1
(c)	What is difference between BJT and JFET.	2
(d)	Determine β_{dc} and I_{CBO} , If $I_E = 6mA$, $I_C = 5.92mA$ and $I_{CEO} = 200mA$.	2
(e)	What do you mean by CMRR in OP-AMP.	3
(f)	Which is better among microprocessor or microcontroller? Justify your answer with valid reason.	3
(g)	Determine base of the following: (i) $(345)_{10}$ = $(531)_x$ (ii) $(2374)_{16}$ = $(9076)_x$	4
(h)	Write the truth table of two input X-OR gate and two input X-NOR gate.	4
(i)	Calculate the transmission efficiency if the modulation factor is 0.5.	5
(j)	Enlist the merits of satellite communication.	5

SECTION B

2. Attempt any *three* of the following: 10*3 = 30

Atten	apt any three of the following:	3 = 30
Qno	Questions	CO
(a)	Define Clamper. Determine output voltage for the given network. 10V 10V 10V -20V	1
(b)	Draw and explain common base N-P-N Transistor with its input and output characteristic graph. Also write an expression for output current.	2
(c)	Explain the concept of virtual ground in OP-AMP. Determine output Voltage for given network. $ \frac{6 \text{ k}\Omega}{2 \text{ k}\Omega} $	3
(d)	Perform following operation as indicated. (i) Determine2's complement of (1010.110) ₂ . (ii) Convert (25.125) ₁₀ into Hexadecimal number. (iii) Add binary number (1011) ₂ and (1111) ₂ . (iv) State De Morgan's Law. (v) Define minterm and maxterm.	4
(e)	Explain Amplitude modulation. Derive the expression for the total power radiated by the modulated signal. Also calculate modulation efficiency.	5

Subject Code: KEC201T
Roll No:

Printed Page: 2 of 3

BTECH (SEM II) THEORY EXAMINATION 2021-22 EMERGING DOMAIN IN ELECTRONICS ENGINEERING

SECTION C

3. Attempt any *one* part of the following: 10*1 = 10

Qno	Questions	CO
(a)	In the bridge rectifier circuit, the secondary voltage Vs= 100 sin50t and	1
	load resistance is $1k\Omega$. Calculate:(i) DC current(ii) RMS value of	
	current (iii) Efficiency (iv) Ripple factor.	
(b)	Determine and draw output voltage for given network.	1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

4. Attempt any *one* part of the following: 10*1=10

1 100011	prung one part of the fone wing.	
Qno	Questions	CO
(a)	Explain the working of enhancement type MOSFET along with their transfer characteristics.	2
(b)	Describe the construction and working of P-Channel Depletion MOSFET, with characteristic graph. Also Justify that it is a voltage controlled device.	2

5. Attempt any *one* part of the following: 10*1 = 10

INCCL	ipt any one part of the following.	1 10
Qno	Questions	CO
(a)	Briefly explain:	3
	(i) OP-Amp as Non-Inverting Amplifier.	
	(ii) Inverting summer.	
	(iii) Blue Tooth and Wi-Fi Technology.	
(b)	Enlist the characteristics of ideal OP-Amp. Also determine the output voltage of following circuit.	3
	$V_{1} = 7 \text{ V} $ $V_{2} = 11 \text{ V} $ $20 \text{ k}\Omega$ $20 \text{ k}\Omega$	

Roll No: Subject Code: KEC201T

BTECH (SEM II) THEORY EXAMINATION 2021-22 EMERGING DOMAIN IN ELECTRONICS ENGINEERING

6.	Attempt any one	part of the following:
----	-----------------	------------------------

10*1 = 10

Printed Page: 3 of 3

	-powing one pure or one rone wing	
Qno	Questions	CO
(a)	Define universal logic Gates. Realize basic logic gates using NAND and NOR gates.	4
(b)	Simplify the function $F(A, B,C,D) = \Sigma m(0,2,5,6,7,13,14,15) + d(8,10)$ using K-map and implement the simplified function using NAND gates	4
	only.	

7. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Why do we need modulation? The antenna current of an AM	5
	transmitter is 8 A when only the carrier is sent, but it increases to 8.93 A, when the carrier is modulated by a single sine wave. Find	
	percentage modulation. Determine the antenna current when the	
	percent of modulation changes to 0.8.	
(b)	An Audio frequency signal 0 Sin $6\pi \times 400$ t is used to amplitude	5
	modulate a carrier of 25 sin 4 $\pi \times 10^5$ t. Calculate	
	(i) Modulation Index	
	(ii) Amplitude of each side band	
	(iii) Total power delivered to the load of $2K\Omega$	
	(iv) Bandwidth	
	(v) Transmission efficiency	