§ 9. Раскрытие неопределенностей

1-й случай правила Лопиталя (раскрытне неопределенности вида $\frac{0}{0}$). Если: 1) функции f(x) и g(x) определены и непрерывны в некоторой окрестности U_e *) точки a, где a— число или символ ∞ , и при $x \rightarrow a$ обе стремятся к нулю:

$$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0;$$

2) производные f'(x) и g'(x) существуют в окрестности U_8 точки a, за исключением, быть может, самой точки a, причем одновременно не обращаются в нуль при $x \neq a$; 3) существует конечный или бесконечный предел

$$\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

то нмеем:

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}.$$

2-й случай правила Лопвталя (раскрытие пеопределенности вида $\frac{\infty}{\infty}$). Если: 1) функции f(x) в g(x) при $x \rightarrow a$ обе стремятся к бесконечности:

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty,$$

где а - число или символ оо;

2) производные f'(x) и g'(x) существуют для всех x, принадлежащих некоторой окрестности $U_{\bf B}$ точки ${\bf a}$ и отличных от ${\bf a}$, причем

$$f'^{2}(x) + g'^{2}(x) \neq 0$$
 npu $x \in U_{2}$ u $x \neq a$;

3) существует конечный или бесконечный предел

$$\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

TO

$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}.$$

Аналогичные правила справедливы для односторониих пределов.

Раскрытие неопределенностей видов 0·ю, ю — ю, 1°, 0° и т. п. путем алгебранческих преобразований и логарифмирова-

^{*)} Под окрестностью $U_{\bf 0}$ точки a понимается совокупность чисел x, удовлетворяющих неравенству: 1) $0 < |x-a| < {\bf 0}$, если a — число, и 2) $|x| > 1/{\bf 0}$, если a — снивол ∞ .