

Image Processing

Image Segmentation (Part II)

Pattern Recognition and Image Processing Laboratory (Since 2012)

Line Detection Using the Hough Transform

One approach that can be used to find and link line segments in an image is the Hough transform.

Line Detection Using the Hough Transform

Line Detection Using the Hough Transform

Line Detection Using the Hough Transform

Binary image with five dots

Hough transform

Line Detection Using the Hough Transform

• Line segments corresponding to the Hough transform peaks

Edge detection image

Hough transform

Line Detection Using the Hough Transform

• Line segments corresponding to the Hough transform peaks

line_segment.m

Tresholding

T is a specified threshold.

Tresholding

Global Thresholding

For choosing a threshold automatically, Gonzalez and Woods describe the following iterative procedure.

1. Select an initial estimate for T

$$T = \frac{I_{\text{max}} + I_{\text{min}}}{2}$$

2. Segment the image using T

Tresholding

• Global Thresholding

- 3. Compute the average intensity values μ_1 and μ_2 for the pixels in regions G_1 and G_2
- 4. Compute a new threshold T

$$T = \frac{\left(\mu_1 + \mu_2\right)}{2}$$

5. Repeat steps 2-4 until *T* is not change or less than a specified value.

Tresholding

Global Thresholding

Tresholding

• Local Thresholding

Local threshold

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) \ge T(x,y) \\ 0 & \text{if } f(x,y) < T(x,y) \end{cases}$$

where
$$T(x, y) = f_o(x, y) + T_o$$

Morphological opening of f

Automatic threshold

Tresholding

Local Thresholding: MATLAB code

```
>> f =imread('rice.tif');
>> figure(1); imshow(f);
>> se =strel('disk', 10);
>> fo =imopen(f, se);
>> figure(2); imshow(fo);
>> To =graythresh(fo);
>> T =fo +(To*255);
>> figure(3); imshow(T);
>> [m, n] = size(f);
>> out = zeros(m, n);
>> out_idx = find(f >=T);
>> out(out_idx)) = 1;
>> figure(4); imshow(out);
```


Region-Based Segmentation

• Basic Formulation

Let R representation the entire image region. We may view segmentation as a process that partitions R into n subregions, $R_1, R_2, ..., R_n$, such that

Region-Based Segmentation

• Basic Formulation

$$1 \quad \bigcup_{i=1}^n R_i = R$$

- **2** R_i is a connected region, i = 1, 2, ..., n
- **3** $R_i \cap R_j = \emptyset$ for all i and $j, i \neq j$
- **4** $P(R_i) = \text{TRUE for } i = 1, 2, ..., n$
- **5** $P(R_i \cup R_j)$ = FALSE for any adjacent regions R_i and R_j .

 $P(R_i)$ is a logical predicate.

Segmentation Using the Watershed Transform

 Watershed Segmentation Using the Distance Transform

1 1 0 0 0	0.0	0.0	1.0	2.0	3.0
1 1 0 0 0	0.0	0.0	1.0	2.0	3.0
00000	1.0	1.0	1.4	2.0	2.2
00000	1.4	1.0	1.0	1.0	1.4
0 1 1 1 0	1.0	0.0	0.0	0.0	1.0

It is the distance from every pixels to the nearest nonzero-valued pixel.

D = bwdist(x)

Segmentation Using the Watershed Transform

Example: Segmenting a binary image using the distance and Watershed Transforms.

>> watershed_dt.m % See demo

Watershed Segmentation Using Gradients

The key concept of this method is that the gradient magnitude is used often to preprocess a gray-scale image prior to using the Watershed Transform for segmentation.

Segmentation Using the Watershed Transform

Example: Segmenting a gray-scale image using gradients and the Watershed Transform.

>> watershed_g.m % See demo

Marker Controlled Watershed Segmentation

?

Direct application of the watershed transform to a gradient image usually leads to over-segmentation due to noise and other local irregularities of the gradient.

Segmentation Using the Watershed Transform

Marker Controlled Watershed Segmentation

An approach used to control over-segmentation is based on the concept of markers

Original image

Internal marker image

External marker image

Marker Controlled Watershed Segmentation

Original image

Segmented image

last_ex.m

