ERICP342USA

Listing of Claims

Please amend the claims as in the following listing:

- 1. (Previously Presented) An ignitable solid material comprising:
- a metal-producing reaction mixture that includes:
 - a reducing agent; and
 - a metallic compound powder,
- a heat-retaining material; and
- a binder;

wherein the material substantially maintains its shape during use.

- 2. (Original) The material of claim 1, wherein the reducing agent includes a reductant metal powder.
- 3. (Previously Presented) The material of claim 2, wherein the reductant metal powder includes one or more of aluminum powder and copper powder.
- 4. (Original) The material of claim 1, wherein the metallic compound powder includes a metal oxide powder.
- 5. (Original) The material of claim 4, wherein the metal oxide powder includes a transition metal oxide powder.
- 6. (Previously Presented) The material of claim 5, wherein the transition metal oxide powder includes one or more of iron oxide powder, copper oxide powder, manganese dioxide powder, and titanium dioxide powder.

10/660,270

ERICP342USA

- 7. (Original) The material of claim 1, wherein the heat-retaining material includes sand.
- 8. (Previously Presented) The material of claim 1, wherein the binder includes one or more of sodium silicate and potassium hydroxide.
- 9. (Original) The solid material of claim 1, in a combination with an insulating material covering part of an outer surface of the solid material.
- 10. (Original) The combination of claim 9, wherein the insulating material includes a ceramic material.
- 11. (Original) The combination of claim 9, wherein the insulating material includes a ceramic fiber material.
- 12. (Original) The combination of claim 11, wherein the ceramic fiber material includes a ceramic blanket.
- 13. (Original) The combination of claim 9, further comprising an exothermic ignition material between part of the insulating material and the solid material.
- 14. (Original) The material of claim 1, in combination with an exothermic ignition material in contact with the solid material.
- 15. (Original) The material of claim 1, wherein the material is formed from a slurry that includes 33-56% iron oxide, 13-22% aluminum, 18-36% sand, 2-8% sodium silicate, and 3-12% water.

10/660,270

ERICP342USA

- 16. (Canceled)
- 17. (Currently Amended) A heat-producing The device comprising: of claim 16, the ignitable solid material of claim 1; and

an insulating material covering at least part of an outer surface of the solid material;

wherein the insulating material leaves a side of the outer surface of the solid material uncovered, and wherein ignition of the solid material causes heat to be preferentially emitted along the side.

- 18. (Original) The device of claim 17, wherein the insulating material has an opening therein, exposing part of another side of the outer surface of the solid material.
- 19. (Original) The device of claim 18, further comprising an exothermal ignition material in the opening.
- 20. (Original) The device of claim 19, further comprising a metal foil ignitor in the ignition material.
- 21. (Original) The device of claim 19, wherein the ignition material includes a powdered mixture of a reductant material and a metal oxide.
- 22. (Currently Amended) The device of claim 17, 46, further comprising a protrusion;

wherein the protrusion contains an exothermic ignition material in contact with the solid material; and

wherein the protrusion includes a removable cover.

ERICP342USA

- 23. (Original) The device of claim 22, wherein the cover of the protrusion is a substantially-continuous part of the insulating material.
- 24. (Original) The device of claim 23, wherein the insulating material includes ceramic fibers.
- 25. (Original) The device of claim 22, wherein the ignition material includes a powdered mixture of a reductant material and a metal oxide.
 - 26. (Canceled)
- 27. (Currently Amended) The device of claim 17, 26, wherein the reducing agent includes a reductant metal powder including one or more of aluminum powder and copper powder.
- 28. (Currently Amended) The device of claim <u>17</u>, 26, wherein the metallic compound powder <u>includes</u> one or more of iron oxide powder, copper oxide powder, manganese dioxide powder, and titanium dioxide powder.
- 29. (Currently Amended) The device of claim 17, 26, wherein the heat-retaining material includes sand.
- 30. (Currently Amended) The device of claim 17, 26, wherein the binder includes one or more of sodium silicate and potassium hydroxide.
- 31. (Currently Amended) The device of claim <u>17</u>, 26, wherein the solid material is formed from a slurry that includes 33-56% iron oxide, 13-22% aluminum, 18-36% sand, 2-8% sodium silicate, and 3-12% water.

ERICP342USA

32. (Previously Presented) A method of heating at least a portion of an object, using the ignitable solid material of claim 1, the method comprising:

placing the ignitable solid material on the object;

chemically reacting the solid material to exothermically produce molten metal; and

using heat produced by the chemical reaction to heat the at least a portion of the object;

wherein the molten metal is retained in the solid material during the chemically reacting.

- 33. (Previously Presented) The method of claim 32, wherein the chemically reacting includes chemically reacting the reducing agent and the metallic compound powder.
- 34. (Original) The method of claim 32, wherein the chemically reacting includes reacting iron oxide and aluminum.
- 35. (Original) The method of claim 32, wherein a material matrix of the solid material is maintained during the reacting.
- 36. (Original) The method of claim 32, wherein the object is an object to be welded.
 - 37. (Original) The method of claim 32, wherein the object is a steel rail.
- 38. (Original) The method of claim 32, wherein the heating includes heating the at least a portion of the object to a temperature in excess of 200°F.

Ø007

ERICP342USA 10/660,270

39. (Original) The method of claim 32, wherein the heating includes melting at least part of the object.