Data Science Workshop

British Society for Proteomic Research Meeting 2018

Alistair Bailey

June 08 2018

Contents

Overview					
	Req	uirements	5		
1	1 Introduction				
	1.1	What are R and RStudio?	8		
	1.2	Why learn R, or any language ?	8		
	1.3	Finding your way around RStudio	8		
	1.4	Where am I?	8		
	1.5	R projects	8		
	1.6	Naming things	8		
	1.7	Seeking help	8		
2 Getting started in R and the tidyverse					
	2.1	Tidy data and the tidyverse	10		
	2.2	Data visualisation	10		
	2.3	Workflow basics	10		
	2.4	Learning more R	10		

4 CONTENTS

3	Crea	ating scripts and importing data	11			
	3.1	Some definitions	12			
	3.2	Using scripts	12			
	3.3	Running code	12			
	3.4	Creating a R script	12			
	3.5	Setting up our environment	12			
	3.6	Importing data	12			
	3.7	Exploring the data	12			
4	Tran	nsformation and visualisation	13			
	4.1	Fold change and log-fold change	13			
	4.2	Dealing with missing values and normalisation	13			
	4.3	Heatmap transformation	13			
	4.4	Visualising proteomics data	13			
	4.5	Creating a volcano plot	13			
	4.6	Creating a heatmap	13			
5	Goii	ng further	15			
	5.1	Getting help and joining the R community	15			
	5.2	Communication: creating reports, presentations and websites	15			
Re	References 1					

Overview

These lessons cover:

- 1. An introduction to R and RStudio
- 2. An introduction to the tidyverse
- 3. Importing and transforming proteomics data
- 4. Visualisation of proteomics analysis

The analysis is of an example data set of observations for 7702 proteins from cells in three control experiments and three treatment experiments. The observations are signal intensity measurements from the mass spectrometer. These intensities relate to the amount of protein in each experiment and under each condition. The analysis transforms the data to examine the effect of treatment on the cellular proteome and visualise the output using a volcano plot and a heatmap. Click here to download the csv file.

Requirements

Up to date version of R (R Core Team, 2018) and Rstudio (RStudio Team, 2018)

The following R packages:

```
install.packages(c("tidyverse", "gplots", "pheatmap"))
```

6 CONTENTS

Introduction

- 1.1 What are R and RStudio?
- 1.1.1 Environments
- 1.2 Why learn R, or any language?
- 1.3 Finding your way around RStudio
- 1.3.1 What is real?
- 1.4 Where am I?
- 1.5 R projects
- 1.6 Naming things
- 1.7 Seeking help
- 1.7.1 Asking for help

Getting started in R and the tidyverse

2.1 Tidy data and the tidyverse

- 2.2 Data visualisation
- 2.3 Workflow basics
- 2.3.1 Assigning objects
- 2.3.2 Calling functions
- 2.3.3 Atomic vectors
- 2.3.4 Attributes
- 2.3.5 Factors
- 2.3.6 Lists
- 2.3.7 Matrices and arrays
- 2.3.8 Data frames
- 2.4 Learning more R

Creating scripts and importing data

- 3.1 Some definitions
- 3.2 Using scripts
- 3.3 Running code
- 3.4 Creating a R script
- 3.5 Setting up our environment
- 3.5.1 Bioconductor
- 3.6 Importing data
- 3.7 Exploring the data

Transformation and visualisation

- 4.1 Fold change and log-fold change
- 4.2 Dealing with missing values and normalisation
- 4.3 Heatmap transformation
- 4.4 Visualising proteomics data
- 4.5 Creating a volcano plot
- 4.6 Creating a heatmap

Going further

- 5.1 Getting help and joining the R community
- 5.2 Communication: creating reports, presentations and websites

References

R Core Team (2018). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.

RStudio Team (2018). *RStudio: Integrated Development Environment for R.* RStudio, Inc., Boston, MA.