МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 (Вар. 1) по дисциплине «Построение и анализ алгоритмов»

Тема: Ахо-Корасик

Студент гр. 3388	 Сабалиров М.З.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

2025

Задание (Вариант 1. Выполнение на Stepik двух заданий в разделе

2)

Вход:

Первая строка содержит текст T (1 \leq |T| \leq 100000).

Вторая строка содержит число n (1< n< 3000). Каждая следующая из n строк содержит шаблон из набора $P = \{ p_1, ldots, p_n \} (1 < |p_i| < 75).$

Все строки содержат символы из алфавита { A, C, G, T, N }.

Выход:

Все вхождения образцов из Р в Т.

Каждое вхождение образца в текст представить в виде двух чисел - і р.

Где і - позиция в тексте (нумерация начинается с 1), с которой начинается вхождение образца с номером р (нумерация образцов начинается с 1).

Строки выхода должны быть отсортированы по возрастанию, сначала по номеру позиции, затем по номеру шаблона.

Задача:

Используя реализацию точного множественного поиска, решите задачу точного поиска для одного образца с джокером.

В шаблоне встречается специальный символ, именуемый джокером (wild card), который "совпадает" с любым символом. По заданному содержащему шаблоны образцу (P) необходимо найти все вхождения (P) в текст (T).

Например, образец (ab??c?c) с джокером ? встречается дважды в тексте *zabuccbababcax*.

Символ джокер не входит в алфавит, символы которого используются в (Т). Каждый джокер соответствует одному символу, а не подстроке неопределённой длины. В шаблон входит хотя бы один символ не джокер, т.е. шаблоны вида $\ref{eq:constraint}$ недопустимы. Все строки содержат символы из алфавита ({A, C, G, T, N}).

Вход:

- Текст (T) (($1 \le |T| \le 100000$))
- Шаблон (P) (($1 \le |P| \le 40$))
- Символ джокера

Выход:

- Строки с номерами позиций вхождений шаблона (каждая строка содержит только один номер).
- Номера должны выводиться в порядке возрастания.

Выполнение работы

Для выполнения был использован алгоритм Ахо-Корасика. Алгоритм реализует поиск подстрок при помощи реализации конечного автомата на боре. В бор добавляются паттерны O(M), M — суммарная длина паттернов. Потом совершается итерация по тексту, на каждом шаге проверяется наличия вхождения патерна. Количество детей у каждой вершины бора не более k — длина алфавита. Значит вычисление всех хороших ссылок займет O(M*k). А поиск в тексте займет O(N+t), N — длина текста, t — количество всех возможных вхождений паттернов в текст. Итого сложность O(M*k+N+t). Память соответственно O(M*k).

Тестирование:

Input	Output
NTAG	2 2
3	2 3
TAGT	
TAG	
T	
ABOBA	2 2
3	4 1
BA	
BOB	
MOEVM	

Input	Output
ACTANCA A\$\$A\$ \$	1
ABOBA B\$	1 4

Input	Output
ACTANCA	
A\$\$A\$	
\$	
Т	
ACTANCAG	4
A\$\$A\$	
\$	
T	

Выводы:

В ходе работы был разработан и протестирован алгоритм для поиска вхождений шаблона с джокером, без джокера, с ограниченным джокером в тексте. Алгоритм использует автомат Ахо-Корасик для эффективного поиска подстрок, учитывая, что джокер может совпадать с любым символом. Были добавлены подробные отладочные выводы для отслеживания выполнения программы, что упрощает поиск и исправление ошибок. Программа корректно обрабатывает входные данные, находит все вхождения шаблона и выводит их в порядке возрастания. Решение успешно справляется с задачей, демонстрируя высокую производительность даже на больших объемах данных.