STROKE PREDICTION

0 udarach

Według Światowej Organizacji Zdrowia (WHO) udary są drugą w kolejności najczęstszą przyczyną śmierci i trzecią prowadzącą do niepełnosprawności oraz odpowiedzialną za 11% wszystkich zgonów.

Nasza analiza ma na celu określenie czy pacjentowi grozi udar i pozwala stwierdzić, czy potrzebna jest dodatkowa diagnostyka, aby temu zapobiec.

Wielkość zbioru i zmienna celu, wybór metryk

Zbiór posiada **5510** rekordów i **11** kolumn.

Zmienną celu jest numeryczna kolumna **Stroke,** która przyjmuje wartości 0-1.

Wartość zmiennej celu (Stroke)	Liczebność wartości
0	4861 (95%)
1	249 (5%)

Metryki:

- f1-score + macierz pomyłek
- Recall
- Precision

Zmienne niezależne i ich typy

Nazwa zmiennej	typ	braki danych	min	max
gender	kategoryczna	-	-	-
age	ilościowa	-	0.08	82
hypertension	kategoryczna 0-1	-	-	-
heart_disease	kategoryczna 0-1	-	-	-
ever_married	kategoryczna	-	-	-
work_type	kategoryczna	-	-	-
Residence_type	kategoryczna	-	-	-
avg_glucose_leve	ilościowa	-	55.12	271.74
bmi	ilościowa	201 / 4%	10.3	97.6
smoking_status	kategoryczna	-	-	-

WIEK

ŚREDNI POZIOM GLUKOZY

BMI

Zmienne niezależne - inne spostrzeżenia

- gender 1 wartość Other.
- **age** do pierwszych 2 lat życia dane przedstawione są w miesiącach, przy czym brane jest, że 1 miesiąc = 0.08.
- avg_glucose_level poziom jest zależny od tego, czy był mierzony po posiłku czy na czczo, jaką metodą był mierzony, a także normy różnią się u osób starszych, dzieci oraz kobiet w ciąży. Wartość ponad 200 mg/dL wskazuje na cukrzycę. Nasza największa wartość w zbiorze jest poniżej liczby, którą znaleźliśmy w źródłach, więc nasze dane uznaliśmy za poprawne.
- **bmi** wartość powyżej 40 oznacza otyłość III stopnia. Dane uznaliśmy za prawidłowe, gdyż przykładowo osoba o wzroście 175 cm i wadze 300 kg posiada bmi 98 (zbliżone do maksymalnej wartości w naszym zbiorze), więc są to przypadki możliwe (najgrubszy człowiek świata, który trafił do KRG, ważył około 600 kg).

Zmienne niezależne - podsumowanie

Po analizie i w wyniku One-Hot-Encodingu zbiór ostatecznie zawierał 23 zmienne.

W wyniku usunięcia braków danych zbiór ostatecznie posiadał **4909** rekordów.

Dodatkowo zmienną **bmi** podzieliliśmy na kategorie i przeprowadziliśmy drugą turę uczenia najlepszych modeli, podmieniając zmienną ilościową bmi na porządkową.

Transformacja zmiennej bmi

ВМІ	Ryzyko chorób towarzyszących otyłości
< 18.5	minimalne, ale zwiększony poziom wystąpienia innych problemów zdrowotnych
< 25	minimalne
< 30	średnie
< 35	wysokie
< 40	bardzo wysokie
>= 40	ekstremalny poziom ryzyka

Oversampling, Undersampling, SMOTE

Jako że nasz zbiór danych jest niezbalansowany zdecydowaliśmy się na użycie technik balansujących i przetestowanie ich skuteczności na naszym zbiorze:

- Oversampling polega na stworzeniu kopii wierszy klasy rzadziej występującej
- Undersampling polega na usunięciu wierszy klasy częściej występującej
- **SMOTE** generuje syntetyczne dane dla klasy mniejszościowej poprzez minimalne zmiany wartości już istniejących punktów

Ze względu na małą liczbę jedynek w zbiorze zrezygnowaliśmy z Undersamplingu.

Standaryzacja zmiennych, redukcja wymiarów

Po zamianie zmiennych kategorycznych na liczbowe dokonaliśmy **standaryzacji** zmiennych. Do wszystkich modeli użyliśmy tak przeskalowanych danych, również do drzew decyzyjnych czy lasów losowych, które nie potrzebują spełnienia tego założenia.

Ze względu na małą liczbę zmiennych pominęliśmy krok redukcji wymiarów i nie stosowaliśmy PCA.

Budowa modeli

Wykorzystaliśmy 6 algorytmów:

- Drzewo decyzyjne
- Las losowy
- XGBoost
- SVM
- KNN
- Regresja logistyczna

Dla każdego algorytmu wytypowaliśmy zestaw parametrów i **GridSearchem** wyznaczyliśmy najlepsze modele wg **fl-score** i **macierzy pomyłek** dla każdego z 2 sposobów zbalansowania zbioru (Oversampling, SMOTE).

Dodatkowo w regresji logistycznej w przypadku zmiennych dopełniających się (np. female, male) eliminowaliśmy z modelu jedną zmienną ze względu na założenie braku współliniowości zmiennych.

TOP 3 najlepszych modeli

XGBOOST

Dla danych z oversamplingu

Paramtery modelu: max_depth: 3, booster: gbtree, learning_rate: 0.05 criterion: entropy, max_features: 3, n_estimators: 50, min_impurity_decrease: 0.3, min_samples_split: 100, min_samples_leaf: 50, min_child_weigh: 20, reg_lambda: 0.1, reg_alpga: 0 precision recall f1-score support

0 0.99 0.74 0.84 929

1 0.15 0.83 0.26 53

accuracy 0.74 982
macro avg 0.57 0.78 0.55 982
weighted avg 0.94 0.74 0.81 982

[[684 245] [9 44]]

ROC score: 0.783232122184536

Dla danych ze SMOTE

	precision	recall	f1-score	support
0	0.98	0.72	0.83	929
1	0.14	0.79	0.23	53
accuracy			0.72	982
macro avg	0.56	0.75	0.53	982
weighted avg	0.94	0.72	0.80	982

[[665 264]

ROC score: 0.754138148140626

SVM

Dla danych z oversamplingu

Paramtery modelu: C: 1, kenrel: poly, gamma: auto, degree: 1 precision recall f1-score support 0.99 0.73 0.84 929 0.15 0.85 0.26 53 accuracy 0.74 982 0.79 0.55 982 macro avg 0.57 weighted avg 0.94 0.74 0.81 982

[[678 251] [8 45]]

ROC score: 0.7894368056542844

Dla danych ze SMOTE

		precision	recall	f1-score	support
	0	0.98	0.72	0.83	929
	1	0.14	0.79	0.24	53
accur	racy			0.73	982
macro	avg	0.56	0.76	0.54	982
weighted	avg	0.94	0.73	0.80	982

[[673 256] [11 42]] ROC score: 0.7584438531998294

Regresja logistyczna

Dla danych z oversamplingu

	precision	recall	f1-score	support
0	0.99	0.74	0.84	929
1	0.15	0.83	0.26	53
accuracy			0.74	982
macro avg	0.57	0.78	0.55	982
weighted avg	0.94	0.74	0.81	982
[[685 244] [9 44]]	Ų			
-	.78377033531	69365		

Dla danych ze SMOTE

ROC score: 0.7697463289802384

	precision	recall	f1-score	support
0	0.98	0.75	0.85	929
1	0.15	0.79	0.25	53
accuracy			0.75	982
macro avg	0.57	0.77	0.55	982
weighted avg	0.94	0.75	0.82	982
[[694 235] [11 42]]	U			

Najlepsze modele

XGBoost (oversampling)

Po zmianie 'bmi' na zmienna kategoryczną dwa modele poprawiły nieco swoje wyniki.

Paramtery modelu: max_depth: 5, booster: gbtree, learning_rate: 0.05 criterion: entropy, max_features: 3, n_estimators: 50, min _impurity_decrease: 0.3, min_samples_split: 100, min_samples_leaf: 50, min_child_weigh: 20

	precision	recall	f1-score	support
0	0.98	0.79	0.88	929
1	0.17	0.75	0.28	53
accuracy			0.79	982
macro avg	0.58	0.77	0.58	982
weighted avg	0.94	0.79	0.85	982

training time = 0.177

[[737 192] [13 40]]

ROC score: 0.7740215691451551

Regresja logistyczna (oversampling)

	precision	recall	f1-score	support	training_time = 0.029
0	0.99	0.74	0.85	929	2
1	0.16	0.85	0.27	53	
accuracy			0.75	982	
macro avg	0.57	0.79	0.56	982	
weighted avg	0.94	0.75	0.82	982	

ROC score: 0.7948189369782886

Najważniejsze zmienne

Regresja logistyczna - features coefficients:
age 1.808 —
hypertension 0.177 —
heart_disease 0.036
avg_glucose_level 0.156
bmi 0.167
gender_Female -0.018
work_type_Govt_job -0.38 —
work_type_Never_worked -0.298 —
work_type_Private -0.55 —
work_type_Self-employed -0.586 —
residence_type_Urban 0.028
smoking_status_formerly smoked 0.061
smoking_status_never smoked -0.015
smoking_status_smokes 0.139

DZIĘKUJEMY ZA UWAGĘ

