Strictifying monoidal structure, revisited

Paul Blain Levy

University of Birmingham

November 19, 2024

Outline

- The problem
- 2 Label-bearing categories
- The results
- Warning
- Conclusions

Two kinds of strictification

 A monoidal structure is strict when the associator, left unitor and right unitor consist of identity maps.

Two kinds of strictification

- A monoidal structure is strict when the associator, left unitor and right unitor consist of identity maps.
- Strictifying a monoidal category means finding an equivalent monoidal category that's strict.
- This is always possible.

Two kinds of strictification

- A monoidal structure is strict when the associator, left unitor and right unitor consist of identity maps.
- Strictifying a monoidal category means finding an equivalent monoidal category that's strict.
- This is always possible.
- Let $\mathcal C$ be a category. Strictifying a monoidal structure on $\mathcal C$ means finding an isomorphic monoidal structure on $\mathcal C$ that's strict.
- When is this possible?

For structured sets, structure strictification isn't straightforward

- Schauenburg (2001) claimed that, on a category of structured sets, any monoidal structure can be strictified.
- This was incorrect, but his methods work in many cases.

Counterexample

Let $\mathcal C$ be the category of sets with at most one element, and bijections. Monoidal structure:

$$\begin{array}{cccc} \emptyset \oplus \emptyset & \stackrel{\mathrm{def}}{=} & \emptyset \\ \emptyset \oplus \{x\} & \stackrel{\mathrm{def}}{=} & \{0\} \\ \{x\} \oplus \emptyset & \stackrel{\mathrm{def}}{=} & \{0\} \\ \{x\} \oplus \{y\} & \stackrel{\mathrm{def}}{=} & \emptyset \end{array}$$

with \emptyset as unit. It's strictly associative and strictly symmetric.

Counterexample

Let $\mathcal C$ be the category of sets with at most one element, and bijections. Monoidal structure:

$$\begin{array}{ccc} \emptyset \oplus \emptyset & \stackrel{\mathrm{def}}{=} & \emptyset \\ \emptyset \oplus \{x\} & \stackrel{\mathrm{def}}{=} & \{0\} \\ \{x\} \oplus \emptyset & \stackrel{\mathrm{def}}{=} & \{0\} \\ \{x\} \oplus \{y\} & \stackrel{\mathrm{def}}{=} & \emptyset \end{array}$$

with \emptyset as unit. It's strictly associative and strictly symmetric. A strictification \square would satisfy

$$(\{0\} \square \{0\}) \square \{1\} = \{0\} \square (\{0\} \square \{1\})$$

 $\emptyset \square \{1\} = \{0\} \square \emptyset$
 $\{1\} = \{0\}$

Label-bearing categories

A label-bearing category consists of the following:

A category C, with certain objects designated empty.
 Requirement

Any isomorphism to or from an empty object is an identity.

Label-bearing categories

A label-bearing category consists of the following:

- A category C, with certain objects designated empty.
 Requirement
 Any isomorphism to or from an empty object is an identity.
- ② For any thing x and object a, an isomorph $(x \cdot a, \theta_{a,x})$ of a. Requirement
 - If a is nonempty, then $x \cdot a = y \cdot b$ implies x = y.

Examples of label-bearing categories

- Set, Grp, Top. Take $x \cdot a \stackrel{\text{def}}{=} \{x\} \times a$.
- Categories of structured sets.
- \bullet \mathcal{C}^{op} , for a label-bearing category \mathcal{C} .
- $\prod_{i \in I} C_i$, for label-bearing categories $(C_i)_{i \in I}$. An object is empty when all its components are.
- ullet Fam(\mathcal{C}), for a category \mathcal{C} .

Results

Key result

On a label-bearing category, any product-like or sum-like structure is strictifiable.

We need to define these notions.

Results

Key result

On a label-bearing category, any product-like or sum-like structure is strictifiable.

We need to define these notions.

Compositionality

- Product-like structure on C gives one on C^{op} .
- Sum-like structure on $\mathcal C$ gives one on $\mathcal C^{\mathsf{op}}$.
- Product-like structures on $(C_i)_{i \in I}$ gives one on $\prod_{i \in I} C_i$.
- Sum-like structures on $(C_i)_{i \in I}$ gives one on $\prod_{i \in I} C_i$.

Product-like structure

On a label-bearing category C, a monoidal structure is product-like when $a \otimes b$ is empty if a or b is.

Product-like structure

On a label-bearing category C, a monoidal structure is product-like when $a \otimes b$ is empty if a or b is.

- Why not require that $a \otimes b$ is nonempty if a and b are? Because this would exclude the product on \mathbf{Set}^2 .
- Why not require the unit to be nonempty?
 Because this would exclude the product on Set⁰.

Decomposing the unit

A monoid has indecomposable unit when $a \otimes b = I$ implies a = I and hence b = I.

Decomposing the unit

A monoid has indecomposable unit when $a \otimes b = I$ implies a = I and hence b = I.

Examples

- Nonnegative reals under addition.
- 2 Any monoid where \otimes is idempotent. Proof:

$$a\otimes b=I$$
 implies $a=a\otimes I$
$$=a\otimes a\otimes b$$

$$=a\otimes b$$

$$=I$$

Sum-like structure

On a label-bearing category C, a monoidal structure is sum-like when:

- The unit is empty.
- $a \otimes b$ is empty iff both a and b are.
- The class monoid of empty objects has indecomposable unit.

All monoidal structures?

Let $\mathcal C$ be a label-bearing category such that:

- Every nonempty object is weakly terminal.
- Every empty object is initial.
- Every morphism to an empty object is from an empty object.

Then every monoidal structure on $\mathcal C$ can be strictified.

Examples include Set and Poset.

All monoidal structures?

Let C be a label-bearing category such that:

- Every nonempty object is weakly terminal.
- Every empty object is initial.
- Every morphism to an empty object is from an empty object.

Then every monoidal structure on $\mathcal C$ can be strictified.

Examples include Set and Poset.

Don't know about \mathbf{Rel} or \mathbf{Bij} or \mathbf{Set}^2 or $\mathsf{Fam}(\mathbf{Set})$.

Warning: preservation of inclusions

On Set, the standard implementation of \times and + preserve inclusions.

Warning: preservation of inclusions

On $\mathbf{Set},$ the standard implementation of \times and + preserve inclusions.

But no implementation of products preserves inclusions and is strict.

Likewise for sums.

Conclusions

Many categories such as \mathbf{Set} and \mathbf{Set}^2 and $\mathsf{Fam}(\mathbf{Set})$ are label-bearing.

On such a category, a monoidal structure that is either product-like or sum-like can be strictified.

And for certain categories e.g. Set, this means any monoidal structure.

Conclusions

Many categories such as \mathbf{Set} and \mathbf{Set}^2 and $\mathsf{Fam}(\mathbf{Set})$ are label-bearing.

On such a category, a monoidal structure that is either product-like or sum-like can be strictified.

And for certain categories e.g. Set, this means any monoidal structure.

Bonus corollary

As a "category with two monoidal structures",

 $(\mathbf{Set}, \times, +)$ is equivalent to one where both structures are strict.