23481A0514

Experiment 3:

Aim:Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets

- Explore various options available in Weka for preprocessing data and apply Unsupervised filters like Discretization, Resample filter, etc. on each dataset
- Load weather. nominal, Iris, Glass datasets into Weka and run Apriori Algorithm with different support and confidence values.
- Study the rules generated. Apply different discretization filters on numerical attributes and run the Apriori association rule algorithm. Study the rules generated.
- Derive interesting insights and observe the effect of discretization in the rule generation process.

i.Add attribute ii. Add expression iii. Copy attribute iv. Remove attribute

Filters

Step-1: - Go to start button then select All Programs and then select weka 3.4.1.1

Click on Explorer

To open the required file

ADD ATTRIBUTE

Step-2: - Go to preprocess menu and choose then select attribute of Add option.

Step-3: -To enter the required fields is added to table.

Click on ok button

No.	Nam	ne
1[full name	
2 [sno	
3 [sname	
4 [m1	
5 [m2	
6 [m3	
7 [total	
8 [class	
9 [avg	

Click on Apply button.

Step-4: - if the index position is last to enter the fields

Click on Apply button.

Step-5: -if the index position is middle

Click on ok button.

Click on Apply button.

Click on ok button.

Add Expression

Step-6: - click on choose button and then select AddExpression option.

Click on Apply option.

COPY

Step-7: - Click on choose button and then select copy option.

If the index place is any

Click On ok button.

Click on ok button.

If the last position.

Click on Apply option.

Click on ok button.

If the index position range.

Click on ok button.

No.	Name
1 [sno
2	sname
3	m1
4	m2
5	m3
6	sum
7 [avg
8	max_marks
9 [Copy of sum
10 🗌	Copy of max_marks
11 [Copy of m1
12 🗌	Copy of m2
13	Copy of m3

Click on Apply option.

Click on ok button.

REMOVE

Step-8:- Click on choose button and then select Remove option

If the index position is first.

Click on Apply option.

If the index position is last.

Click on ok button.

If the range.

Click on Apply option.

FILE FORMATES FOR WEKA

1. Create CSV(Comma Separated Values) file.

Step1: Create an excel file and save with specified format as CSV(Comma Delimited).

Step2: Now open with notepad and check the values. Here, the fields of data in each row are delimited with a comma and individual rows are separated by new line.

2. Create arff(Attribute Relation File Format) file.

Step1: Open a notepad and type the data as instructed below:

ARFF files have two distinct sections. The first section is the **Header** information, which is followed the **Data** information.

The **Header** of the ARFF file contains the name of the relation, a list of the attributes (the columns in the data), and their types. An example header on the standard IRIS dataset looks like this:

```
% 1. Title: Iris Plants Database
% 2. Sources:
% (a) Creator: Balu
% (b) Donor: Shiva
% (c) Date: Feb 2023
```

%

@RELATION iris

@ATTRIBUTE sepallength NUMERIC

- @ATTRIBUTE sepalwidth NUMERIC
 - @ATTRIBUTE petallength NUMERIC
 - @ATTRIBUTE petalwidth NUMERIC
 - @ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}

The **Data** of the ARFF file looks like the following:

```
@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
```

5.4,3.9,1.7,0.4,Iris-setosa 4.6,3.4,1.4,0.3,Iris-setosa 5.0,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa

Lines that begin with a % are comments. The @RELATION, @ATTRIBUTE and @DATA declarations are case insensitive.

Step 2: Save the file as .arff.

Step 3: Open with Weka Explorer and check the file values.

3. Convert CSV to ARFF file format.

Step1: Open CSV file with notepad

Step 2: To fill header and data section in CSV file.

Step 3: save the file type as arff.

Strep 4: Open with Weka Explorer.

Load CSV Files in the Weka Explorer

1.Start the weka chooser

2. Launch the Weka Explorer by clicking the "Explorer" button.

3.Click the "Open File....." button

4. Navigate to your current working directory. Change the "Files of Type" to "CSV data files (*.csv)". Select your file and click the "Open" button.

Data PreProcessing

Data Cleaning

1.Missing-values

1.Remove with

Value 1. Start Weka and choose Explorer

2. Load missing.csv data set.

3. Click "Choose" in tab Preproces -> Filter-> unsupervised->instance->RemovewithValues which you will find in.

4.click on filter tag to configure:

5.Set attributeIndex to first

6.Set matchMissingValues to True

7.Press "OK", in order to use filter configuration.

8. Press "Apply", in order to use selected filter.

Before applying result

After Applying result

2.Replacing Missing with userConstant

1. Start Weka and choose Explorer

2. Load missing.csv data set.

3. Click "Choose" in tab Preproces -> Filter-> unsupervised->attribute-

>ReplaceMissingWithUserConstant which you will find in.

4. Click on filter tab to configure it

- 5. Set attributeIndex to first
- 6. Set igonreClass to True
- 7. set numericReplacementValue to 0

8. Press "OK", in order to use filter configuration.

9. Press "Apply", in order to use selected filter.

Before applying result

After Applying result

3. Replace Missing Values

Start Weka and choose Explorer

1. Load missing.csv data set.

2. Click "Choose" in tab Preproces -> Filter-> unsupervised- >attribute-

>ReplaceMissingWithUserConstant which you will find in.

3.Click on filter tab to configure it

- 3. Set ignoreClass to True
- 4. Press "OK", in order to use filter configuration.
- 5. Press "Apply", in order to use selected filter.

Before applying result

After Applying result

Noisy Data- outlier / Extreme Values

1. Start Weka and choose Explorer

2. Load noisy.csv data set.

3. Click "Choose" in tab Preproces -> Filter-> unsupervised->attribute->NumericCleaner which you will find in.

4. Click on filter tab to configure it

Set includeClass to True

- 5. Set maxDefault to 100
- 6. Set maxThreshold to 100
- 7. Set minDefault to 0
- 8. Set minThreshold to 0

- 9. Press "OK", in order to use filter configuration.
- 10. Press "Apply", in order to use selected filter.
- 11. Before applying result

After Applying result

Discretization

1. Start Weka and choose Explorer

2. Load bin.csv data set.

3. Click "Choose" in tab Preproces -> Filter-> unsupervised->attribute->Discretize which you will find in.

4. Click on filter tab to configure it

5.Set attributeIndices to first-last

- 4. set bins to 3
- 5. Set igonreClass to True

- 6. Press "OK", in order to use filter configuration.
- 7. Press "Apply", in order to use selected filter.

Before applying result

After applying result

Normalization

Min-Max-Normalization

1. Start Weka and choose Explorer

2. Load bin.csv data set.

3. Click "Choose" in tab Preproces -> Filter-> unsupervised->attribute->Normalize which you will find in.

4. Click on filter tab to configure it

- 5. Set igonreClass to True
- 6. Press "OK", in order to use filter configuration.
- 7. Press "Apply", in order to use selected filter.

Before applying result

After applying result

Z-Score-Normalization

1. Start Weka and choose Explorer

2. Load bin.csv data set.

Click "Choose" in tab Preproces -> Filter-> unsupervised->attribute->Standardize which you will find in.

3. Click on filter tab to configure it

- 4. Set igonreClass to True
- 5. Press "OK", in order to use filter configuration.
- 6. Press "Apply", in order to use selected filter.

Before applying result

After applying result

Decimal-Scale-Normalization

1. Start Weka and choose Explorer

2. Load bin.csv data set.

3. Click "Choose" in tab Preproces -> Filter-> unsupervised->attribute->MathExpression which you will find in.

4. Click on filter tab to configure it to specify expression

- 5. Set igonreClass to True
- 6. Press "OK", in order to use filter configuration.
- 7. Press "Apply", in order to use selected filter.
 - 8. Before applying result

After applying result

Feature Selection-Measure

Correlation Based Feature Selection

- 1. Open the Weka GUI Chooser.
- 2. Click the "Explorer" button to launch the Explorer.
- 3. Open the Pima Indians dataset.
- 4. Click the "Select attributes" tab to access the feature selection methods.

Feature selection is divided into two parts:

☐ Attribute Evaluator ☐ Search Method.

Information Gain Based Feature Selection

Association:

1) open the weka tool

2)create a csv file

	Α	В	С	D	Е	F	G
1	Transacti onID	Milk	Bread	Eggs	Butter	Chips	
2	T1	yes	yes			yes	
3	T2		yes	yes	yes		
4	T3	yes			yes	yes	
5	T4	yes	yes	yes			
6	T5		no	yes		yes	
7							
8							
9							

3) open the csv file in weka tool

4) select the Associate option

5)Click "choose" in tab associate->Apriori

6)Click on filter tab to configure it

- 7)set upper bound min support 2.0
- 8)set num rules 5
- 9)set min metric 0.5

- 10)Press "ok",in order to use filter configuration.
- 11)press "start",In order to use selected filter Associate output:

```
Associator output
=== Run information ===
Scheme:
            weka.associations.Apriori -N 5 -T 0 -C 0.5 -D 0.05 -U 2.0 -M 0.1 -S -1.0 -c -1
Relation:
            super market
Instances: 5
Attributes: 6
            TransactionID
            Milk
            Bread
            Eggs
            Butter
            Chips
=== Associator model (full training set) ===
Apriori
_____
Minimum support: 0.5 (2 instances)
Minimum metric <confidence>: 0.5
Number of cycles performed: 10
Generated sets of large itemsets:
Size of set of large itemsets L(1): 5
Size of set of large itemsets L(2): 3
Best rules found:
1. Bread=yes 3 ==> Milk=yes 2 <conf:(0.67)> lift:(1.11) lev:(0.04) [0] conv:(0.6)
2. Milk=yes 3 ==> Bread=yes 2 <conf:(0.67)> lift:(1.11) lev:(0.04) [0] conv:(0.6)
4. Milk=yes 3 ==> Chips=yes 2 <conf:(0.67)> lift:(1.11) lev:(0.04) [0] conv:(0.6)
5. Eggs=yes 3 ==> Bread=yes 2 <conf:(0.67)> lift:(1.11) lev:(0.04) [0] conv:(0.6)
```

Set numrules 10

Output:

```
Associator output
 === Run information ===
           weka.associations.Apriori -N 10 -T 0 -C 0.5 -D 0.05 -U 2.0 -M 0.1 -S -1.0 -c -1
 Scheme:
 Relation:
           super market
 Attributes:
           TransactionID
           Milk
           Bread
           Eggs
           Butter
           Chips
 === Associator model (full training set) ===
 Apriori
 ======
 Minimum support: 0.3 (1 instances)
 Minimum metric <confidence>: 0.5
 Number of cycles performed: 14
 Generated sets of large itemsets:
 Size of set of large itemsets L(1): 11
 Size of set of large itemsets L(2): 27
 Size of set of large itemsets L(3): 20
 Size of set of large itemsets L(4): 5
 Best rules found:
 1. TransactionID=T1 1 ==> Milk=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
 2. TransactionID=T1 1 ==> Bread=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
 <conf: (1) > lift: (1.67) lev: (0.08) [0] conv: (0.4)
 4. TransactionID=T2 1 ==> Bread=yes 1
 5. TransactionID=T2 1 ==> Eggs=yes 1
                                    <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
 6. TransactionID=T2 1 ==> Butter=yes 1 <conf:(1)> lift:(2.5) lev:(0.12) [0] conv:(0.6)
 7. TransactionID=T3 1 ==> Milk=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
 8. TransactionID=T3 1 ==> Butter=yes 1 <conf:(1)> lift:(2.5) lev:(0.12) [0] conv:(0.6)
 Output:
```

=== Run information ===

Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.5 -D 0.05 -U 2.0 -M 0.1 -S -1.0 -c

-1

Relation: super market

Instances: 5 Attributes: 6

TransactionID

Milk Bread

```
Eggs
        Butter
        Chips
=== Associator model (full training set) ===
Apriori
======
Minimum support: 0.3 (1 instances)
Minimum metric <confidence>: 0.5
Number of cycles performed: 14
Generated sets of large itemsets:
Size of set of large itemsets L(1): 11
Size of set of large itemsets L(2): 27
Size of set of large itemsets L(3): 20
Size of set of large itemsets L(4): 5
Best rules found:
1. TransactionID=T1 1 ==> Milk=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
2. TransactionID=T1 1 ==> Bread=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
3. TransactionID=T1 1 ==> Chips=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
4. TransactionID=T2 1 ==> Bread=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
5. TransactionID=T2 1 ==> Eggs=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
6. TransactionID=T2 1 ==> Butter=yes 1 <conf:(1)> lift:(2.5) lev:(0.12) [0] conv:(0.6)
7. TransactionID=T3 1 ==> Milk=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
8. TransactionID=T3 1 ==> Butter=yes 1 <conf:(1)> lift:(2.5) lev:(0.12) [0] conv:(0.6)
9. TransactionID=T3 1 ==> Chips=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] conv:(0.4)
10. TransactionID=T4 1 ==> Milk=yes 1 <conf:(1)> lift:(1.67) lev:(0.08) [0] con
```