Applicant: Jun KOYAMA et Serial No.: Not yet assigned Filed: April 17, 2001 Page: 2

Attorney's Docket 12732-026001 / US4850

terminal No.	symbol of treminal	valtage (range)[V]	remarks (name of signal etc.)		
1	EL CATU		pad (dummy terminal)		
2	EL_CATH	approximately 4 (0.0~9.0)/9	EL driving direct current power supply (positive terminal)		
	EL ANOD	9	EL driving direct current power supply (negative terminal)		
3	S LATE	0.0/9.0	latch inversion signal of source driver circuit		
4	SLAT	0.0/9.0	latch signal of source driver circuit		
5	VD 16	0.0/9.0	digital video signal 16		
6	VD 15	0.0/9.0	digital video signal 15		
	VD 14	0.0/9.0	digital video signal 14		
8	VD_13	0.0/9.0	digital video signal 13		
9	VD_12	0.0/9.0	digital video signal 12		
11	VD_11	0.0/9.0	digital video signal 11		
12	VD_10	0.0/9.0	digital video signal 10		
13	VD_09	0.0 / 9.0	digital video signal 9		
	VD_08	0.0 / 9.0	digital video signal 8		
14	VD_07	0.0 / 9.0	digital video signal 7		
16	VD_06 VD_05	0.0 / 9.0	digital video signal 6		
17	VD 04	0.0 / 9.0	digital video signal 5		
18	VD_03 -	0.0 / 9.0	digital video signal 4		
	VD 03 - VD 02	0.0 / 9.0	digital video signal 3		
19 20		0.0 / 9.0	digital video signal 2		
21	VD 01	0.0 / 9.0	digital video signal 1		
	S GND	0	negative power supply of source driver circuit		
	S VDD	9	positive power supply of source driver circuit		
<u></u> ≥ 23	S_LEFT -	0.0 or 9.0	switching of scanning direction of source driver circuit (0.0: scanning to the right, 9.0: scanning to the left)		
24	S_SP	0.0/9.0	start pulse of source driver circuit		
25	S_CKb	0.0/9.0	inverted clock signal of source driver circuit		
26	S_CK	0.0/9.0	clock signal of source driver circuit		
<u>l</u> ≟ 27	VD_01	0.0 / 9.0	digital video signal 1		
հա ≩ 28	VD_02	0.0/9.0	digital video signal 2		
29	VD_03	0.0/9.0	digital video signal 3		
30	VD_04	0.0/9.0	digital video signal 4		
5 31	VD_05	0.0/9.0	digital video signal 5		
32	VD_06	0.0/9.0	digital video signal 6		
33	VD_07	0.0/9.0	digital video signal 7		
34	VD_08	0.0 / 9.0	digital video signal 8		
35	VD_09	0.0/9.0	digital video signal 9		
36	VD 10	0.0/9.0	digital video signal 10		
37	VD_11		digital video signal 11		
38 -	VD_12		digital video signal 12		
39 -	VD_13		digital video signal 13		
40	VD_14	0.0/9.0	digital video signal 14		
41	VD_15		digital video signal 15		
42	VD 16		digital video signal 16		
43	G GND		negative power supply of gate driver circuit		
44 -	G VDD		positive power supply of gate driver circuit		
45	G_UP		switching of scanning direction of gate driver circuit (0.0: scanning to		
		1	the right, 9.0: scanning to the left)		
46	G_CKb		inverted clock signal of gate driver circuit		
47.	G_CK		clock signal of gate driver circuit		
48	G_SP		start pulse of gate driver circuit		
49	EL ANOD		EL driving direct current power supply (positive terminal)		
50	ELCATH		EL driving direct current power supply (negative terminal)		
			pad (dummy terminal)		

Replace the paragraph beginning at page 27, line 10 with the following rewritten paragraph:

Table 2 shows the size of TFTs included in the shift register, the NAND circuits, and the buffers which constitute the gate driver circuits of this embodiment. The shift register, the NAND circuits, and the buffers use p-channel TFTs and n-channel TFTs, and both of them are shown in Table 2. The symbols in Table 2 correspond to reference symbols of Fig. 11. L[µm] in Table 2 represents the channel length of the TFT whereas $W[\mu m]$ represents the channel width of the TFT.

Pch-TFT	L[µm]	W[µm]	Nch-TFT	L[µm]	Lov[µm]	W[µm]
g chsw a	- 4.5	20	g_chsw_a	5	0.5	10
g sftr b	4.5	16	g sftr b	5	0.5	. 8
g_sftr_c	4.5	40	g_sftr_c	5	0.5	20
g_sftr_d	4.5	10	g sftr d	5	0.5	5
g_nand_e	- 4.5	22	g nand e_	5	0.5	22
g buff f	4.5	50	g buff f	5	0.5	25

Filed : April 17, 2001

Page

Replace the paragraph beginning at page 28, line 8, with the following rewritten paragraph:

Table 3 shows the size of TFTs included in the shift register, the NAND circuits, and the buffers which constitute the source driver circuit of this embodiment. The shift register, the NAND circuits, and the buffers use p-channel TFTs and n-channel TFTs, and both of them are shown in Table 3. The symbols in Table 3 correspond to the reference symbols of Fig. 12. $L[\mu m]$ in Table 3 represents the channel length of the TFT whereas W[μm] represents the channel width of the TFT. The channel length of the n-channel TFT includes an LOV region.

Pch-TFT	L[µm]	W[μm]	Nch-TFT	L[µm]	Lov µ m	W[µm]
s_chsw_a	- 4.5	60	s_chsw_a	5	0.5	40
s_sftr_b	4.5	50	s_sftr_b	5	0.5	25
s_sftr_c	4.5	100	s_sftr_c	5	0.5	50
s_sftr_d	4.5	30	s_sftr_d	5	0.5	15
s_nand_e	4.5	50	s_nand_e	5	0.5	50
s_buf1_f	4.5	100	s_buf1_f	5	0.5	50
s_buf1_g	4.5	100	s_buf1_g	5	0.5	50
s_buf1_h	4.5	300	s_bufi_h	5	0.5	150
s_buf1_i	4.5	400	s_buf1_i	5	0.5	200
s_lat1_i	4.5	16	s_lat1_j	5	0.5	8
s_lat1_k	4.5	16	s lat1 k	5	0.5	8
s_lat1_m	4.5	4	s_lat1_m	5	0.5	2
s_buf2_n	4.5	30	s_buf2_n	5	0.5	15
s_lat2_p	4.5	16	s_lat2_p	5	ე.5	8
s_lat2_r	4.5	16	s_lat2_r	5	0.5	8
s_lat2_s	4.5	4	s_lat2_s	5	0.5	. 2
s_buf3_t	4.5	30	s_buf3_t	5	0.5	15

Replace the paragraph beginning at page 28, line 23 and continuing to page 29, line 3 with the following rewritten paragraph:

Specifications of the display panel according to this embodiment are shown in Table 4.

size of screen	diagonal 4.0 inches	
number of pixels	640×480	
interval of pixels	126 μ m	
grey scales	64 (6bit)	
aperture ratio	60%	
operating clock frequency of source driver circuit	12. 5MHz	
operating clock frequency of gate driver circuit	252kHz	
voltage of driver circuit	12V	
voltage of display region	6V	
duty ratio	61.5%	
color	monochrome	

The molecular formula of the EL material (coumarin pigment) reported in the above article is shown below.

Replace the paragraph beginning at page 59, line 3, with the following rewritten paragraph:

The molecular formula of the EL material (Pt complex) reported in the above article is shown below.