TRIGONOMETRY Chapter 20

FUNCIONES
TRIGONOMÉTRICAS I

MOTIVATING STRATEGY

LA TRIGONOMETRÍA DEL CORAZÓN

El electrocardiograma (ECG) es la representación gráfica de la actividad eléctrica del corazón en función del tiempo. Para ello se colocan electrodos en diversas partes del cuerpo para obtener información.

El aparato que genera el ECG, usa las funciones trigonométricas seno y coseno modificando las amplitudes y los periodos.

Se recomienda a personas mayores de 40 años realizarse un examen ECG anualmente.

¿ Tu profesor ya tiene su ECG?

FUNCION SENO:

$$\mathbf{F} = \{(\mathbf{x}; \mathbf{y})/\mathbf{y} = \mathbf{senx}; \mathbf{x} \in \mathbb{R}\}\$$

Tabulando para algunos valores de x :

v	0	π	π	π	π	2π	3π	5π	π
^)	6	4	3	2	3	4	6	
y = senx	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0
y – schx		2	2	2		2	$\overline{2}$	$\overline{2}$	

Tabulando para más valores y uniendo dichos puntos obtenemos la curva :

Dominio: **Dom**(\mathbf{F}) = \mathbb{R} ; $\mathbf{x} \in \mathbb{R}$

Rango: Ran(F) = $[-1;1] \Rightarrow -1 \leq \text{senx} \leq 1$

Periodo: $T = 2\pi$

Es función impar : sen(-x) = -senx

HELICO | THEORY

OBSERVACIÓN:

Sea la función : y = A senBx

Amplitud : | A |

Período :
$$T = \frac{2\pi}{|B|}$$

Ejemplos:

$$|A| = |3| = 3$$

$$T = \frac{2\pi}{|B|} = \frac{2\pi}{|2|} = \frac{2\pi}{2} = \pi$$

Halle el rango de la función f(x) = 2 senx - 3

RESOLUCIÓN

Recordar: $\forall x \in \mathbb{R} : -1 \leq \text{sen} x \leq 1$

Luego: $(-1 \le \operatorname{senx} \le 1)(2)$

$$-2 -3 \leq 2 \operatorname{senx} - 3 \leq 2 - 3$$

$$-5 \leq f(x) \leq -1$$

Ran
$$(f) = [-5; -1]$$

Halle el rango de la función g(x) = 4 senx.cosx - 1

RESOLUCIÓN

$$g(x) = 2(2 senx.cosx) - 1 = 2 sen2x - 1$$

Recordar:
$$\forall x \in \mathbb{R}$$
: $-1 \leq \text{sen} 2x \leq 1$

Luego:
$$(-1 \le \text{sen} 2x \le 1)(2)$$

$$-2 -1 \le 2 \operatorname{sen} 2x - 1 \le 2 - 1$$

 $-3 \le g(x) \le 1$

Ran(
$$g$$
) = [-3;1]

Calcular $T_1 + T_2$, siendo T_1 y T_2 los periodos de las funciones f(x) y g(x), respectivamente ; donde f(x) = 2 sen $\left(\frac{x}{2}\right)$

RESOLUCIÓN

$$f(x) = 2 \operatorname{sen}(4x)$$

$$g(x) = 3 \operatorname{sen}(\frac{1}{2}x)$$

$$H_{1} = \frac{2\pi}{|B_{1}|} = \frac{2\pi}{|4|} = \frac{2\pi}{4} = \frac{\pi}{2}$$

$$T_{2} = \frac{2\pi}{|B_{2}|} = \frac{2\pi}{|\frac{1}{2}|} = \frac{2\pi}{\frac{1}{2}} = 4\pi$$

Luego:
$$T_1 + T_2 = \frac{\pi}{2} + 4\pi$$

$$T_1 + T_2 = \frac{9\pi}{2}$$

Del gráfico, calcule E = m . n

RESOLUCIÓN

Dato: $f(x) = y = 2 \operatorname{sen}2x$

$$P(\frac{\pi}{6}; m) \in f$$

$$\Rightarrow$$
 m = 2 sen $\left(2.\frac{\pi}{6}\right)$

$$m = 2 sen60^{\circ}$$

$$\mathbf{m} = \mathbf{2} \left(\frac{\sqrt{3}}{2} \right)$$

$$m = \sqrt{3}$$

$$Q(\frac{7\pi}{8};n) \in f$$

$$\Rightarrow$$
 n = 2 sen $\left(2.\frac{7\pi}{8}\right)$

$$n = 2 sen315^{\circ}$$

IV C

$$n = 2 sen(360^{\circ} - 45^{\circ})$$

$$n = 2 (-sen45^{\circ})$$

$$\mathbf{n} = 2\left(-\frac{\sqrt{2}}{2}\right)$$

$$n = -\sqrt{2}$$

Luego:

$$E = m \cdot n$$

$$E = (\sqrt{3})(-\sqrt{2})$$

$$\therefore E = -\sqrt{6}$$

Del gráfico, calcule el área de la región sombreada.

RESOLUCIÓN

$$f(x) = y = 3 sen(1x)$$

$$A = 3$$
; $B = 1$

Calculamos el periodo T:

$$T = \frac{2\pi}{|B|} = \frac{2\pi}{|1|} \Rightarrow T = 2\pi$$

$$\frac{T}{4} = \frac{2\pi}{4} = \frac{\pi}{2}$$

Calculamos el área sombreada:

$$S = \frac{\left(2\pi - \frac{\pi}{2}\right)(3)}{2}$$

$$S = \frac{9\pi}{4} u^2$$

La fecha de cumpleaños de Aracely es el (2A + B - 1) de julio. Los valores de A y B son parte de la regla de correspondencia de la función f(x) = A sen(Bx) mostrada en la figura :

¿ Cuándo es el cumpleaños de Aracely?

RESOLUCIÓN

Según datos:
$$A > 0$$
; $B > 0$

Según figura :
$$A = 5$$
 ; $T = \frac{\pi}{4}$

$$\Rightarrow \frac{2\pi}{B} = \frac{\pi}{4} \Rightarrow B = 8$$

Calculamos el día:

$$2A + B - 1 = 2(5) + 8 - 1 = 17$$

El cumpleaños de Aracely es el 17 de julio .

Una boya en el océano oscila de arriba hacia abajo mientras las olas pasan, tal como muestra la figura.

Si la boya se mueve 80 cm desde el punto más alto cada 10 segundos, determine la ecuación de la boya en movimiento.

RESOLUCIÓN

Sea la función de la boya:

$$f(x) = y = A sen(Bx)$$

Donde: A > 0; B > 0;

x en segundos, y en cm

Luego:
$$2A = 80 \implies A = 40$$

$$T = 10 \implies \frac{2\pi}{B} = 10 \implies B = \frac{\pi}{5}$$

$$\therefore f(x) = y = 40 \operatorname{sen}\left(\frac{\pi}{5}x\right)$$

