ACT Adjoint School 2022 Nathan, Phoebe, Ralph, Rowan

s/o Filippo, Chad, organizers

Motto: "string diagrams for string diagrams"

Tape diagrams

ACT Adjoint School 2022 Nathan, Phoebe, Ralph, Rowan

s/o Filippo, Chad, organizers

Intro to tape diagrams

• Euclid's algorithm

Rns

RU5

• Motivation: Towards programming...

Predicates and Co-reflexives

Predicates and Co-reflexives

Given a Predicate PEX2

P (complement of P) satisfies:

"if p then c, else c2"

• Iteration...

• Iteration...

• Uniform trace...

$$\begin{cases} x = A \quad x = B \end{cases}$$

$$While (x \neq y) do \begin{cases} x = x - y \\ x \neq y \end{cases}$$

$$When x = x - y \end{cases}$$

$$Clsc y = y - x \end{cases}$$

$$\begin{cases} x = y = mcd (A, B) \end{cases}$$

Euclid algorithm with tape diagrams

• If we set a=x and y=b at the start of the program, we want to show mcd(a,b)=x.

Proof strategy: If we can show

• For some h, then we can conclude:

- Clever choice is I.
- Substitute I for P
 everywhere, okay
 since P less than I

New Formulation

Future directions...

Show universal property of S*

- Link to distributive allegories? maybe division allegories?
- Other models of type: T_{€,€}

End