A Fiscal Decomposition of Unexpected Inflation: Cross-Country Estimates and Theory

Livio C. Maya

November 2022

Introduction: The Fiscal Sources of Unexpected Inflation

- Connection between fiscal policy and inflation
- Key Equilibrium Condition: The Valuation Equation of Public Debt

$$\frac{\text{Market Value of Debt (Bond Prices)}}{\text{Price Level}} = \text{Intrinsic Value (Discounting, Surpluses)}.$$

- Unexpected inflation must accompany news about:
 - Bond prices
 - Real surpluses
 - Real discounting
- If unexpected inflation exists, it must nowcast/forecast some of these variables
- What are these forecasts? How do they change across countries? How can theory explain them?

Introduction: Exercises, Motivation, Results

This paper.

- 1. Estimate a Bayesian-VAR to measure the decomposition for 25 countries
 - Variance decomposition: "What does +1% unexpected inflation forecast?"
 - "Aggregate demand" shock: "What does +1% unexpected inflation and +1% growth forecast?"
 - Discounted surplus shock: "What does +1% unexpected return on public debt forecast?"
- 2. GMM estimate of New-Keynesian model to reproduce BVAR decompositions
- Motivation. Valuation equation requires very weak assumptions (no bubbles!)
 - Does it mean inflation is "fiscal"?
 - Fixed country: +1% inflation ⇒ +1% deficit/debt?
 - Cross country: +1% inflation in A relative to B ⇒ +1% deficit/debt in A compared to B?
 - Fiscal role to monetary policy?
 - Guidance for monetary-fiscal theory (FTPL vs Spiral-Threat)

Introduction: Exercises, Motivation, Results

This paper.

- 1. Estimate a Bayesian-VAR to measure the decomposition for 25 countries
 - Variance decomposition: "What does +1% unexpected inflation forecast?"
 - "Aggregate demand" shock: "What does +1% unexpected inflation and +1% growth forecast?"
 - Discounted surplus shock: "What does +1% unexpected return on public debt forecast?"
- 2. GMM estimate of New-Keynesian model to reproduce BVAR decompositions
- Motivation. Valuation equation requires very weak assumptions (no bubbles!)
 - Does it mean inflation is "fiscal"?
 - Fixed country: +1% inflation ⇒ +1% deficit/debt?
 - Cross country: +1% inflation in A relative to B ⇒ +1% deficit/debt in A compared to B?
 - Fiscal role to monetary policy?
 - Guidance for monetary-fiscal theory (FTPL vs Spiral-Threat)

Introduction: Preview of Key Results

The variance of unexpected inflation is accounted for by discounted surpluses (all coutries)

$$\begin{array}{lcl} \operatorname{var} \left[\Delta E \pi \right] & = & \operatorname{cov} \left[\Delta E \pi, & Q \right] & + & \operatorname{cov} \left[\Delta E \pi, & \{ -s \} + \{ R \} \right] \\ & & > 0 \end{array}$$

- Most relevant terms (Surplus-to-GDP, GDP growth and Real discounting) vary
- Monetary policy reduces unexpected inflation variance through bond prices
- "Aggregate demand" inflation: high discounting + lower future surplus-to-GDP
- Discount surplus shocks (return on public debt) driven by discounting
- Productivity shocks reproduce findings in NK model
 - Policy shocks do not
- Different policy rules explain differences in variance decomposition across countries

Introduction: Related Literature

- Fiscal Theory of the Price Level. Cochrane (2022a) and Cochrane (2022b).
 - Analysis of multiple countries + more general debt instruments
 - NK model estimated to reproduce decompositions + Productivity shocks

Leeper (1991), Sims (1994), Woodford (1995), Cochrane (1998), Cochrane (2005), Sims (2011), Leeper and Leith (2016), Bassetto and Cui (2018), Cochrane (2022c), Brunnermeier et al. (2022).

- Monetary-Fiscal Interaction.
 - Cagan (1956), Sargent and Wallace (1981), Hall and Sargent (1997), Hall and Sargent (2011), Jiang et al. (2019), Corsetti et al. (2019), Sunder-Plassmann (2020), Du et al. (2020), Akhmadieva (2022)
- Empirical Finance (Decomposition of Returns)
 Campbell and Shiller (1988), Cochrane (1992), Campbell and Ammer (1993), Chen and Zhao (2009).

The Fiscal Decomposition of Unexpected Inflation

Fiscal Decomposition: The Valuation Equation

- Environment with discrete time + single good (price P_t) + households and government
- One-period nominal public bonds (price Q_t)
- In each period, the government:
 - redeems bonds B_{t-1} for currency
 - soaks up currency through primary surpluses $P_t s_t$ and bond sales $Q_t B_t$
- Market clearing + No Currency Holdings M = 0:

$$B_{t-1} = P_t s_t + Q_t B_t$$

Fiscal Decomposition: The Valuation Equation

- **Ex-post** real discounting $\beta_t = Q_t(P_{t+1}/P_t)$ $\beta_{t,t+k} = \prod_{\tau=t}^{t+k} \beta_{\tau}$
- Iterate law of motion forward:

$$\frac{B_{t-1}}{P_t} = \sum_{k=0}^{p} \beta_{t,t+k-1} s_{t+k} + \beta_{t,t+p} \frac{B_{t+p}}{P_{t+p+1}}$$

- **EXECUTE:** $\lim_{\tau \to \infty} \beta_{t,\tau} \frac{B_{\tau}}{P_{\tau+1}} = 0$
- Valuation equation of public debt:

$$\boxed{\frac{B_{t-1}}{P_t} = \sum_{k=0}^{\infty} E_t \left[\beta_{t,t+k-1} S_{t+k} \right]}$$

"A prince who should enact that a certain proportion of his taxes should be paid in a paper money of a certain kind might thereby give a certain value to this paper money"

- Adam Smith

Fiscal Decomposition: In the Simplest Environment

- End-of-period real debt v_t
- Linearized flow condition + valuation equation

$$\underbrace{\frac{1}{\beta} v_{t-1} + \frac{v}{\beta} \left(i_{t-1} - \pi_t \right)}_{B_{t-1}/P_t} = s_t + v_t \qquad = \sum_{k=0}^{\infty} \beta^k E_t s_{t+k} - \frac{v}{\beta} \sum_{k=1} \beta^k E_t r_{t+k}$$

■ Take innovations $\Delta E_t = E_t - E_{t-1}$

$$\Delta E_t \pi_t \; = \; -\frac{\beta}{v} \, \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} \; + \sum_{k=0}^{\infty} \beta^k \Delta E_t r_{t+k}$$

Fiscal Decomposition: In the Simplest Environment

- End-of-period real debt v_t
- Linearized flow condition + valuation equation

$$\underbrace{\frac{1}{\beta} \mathbf{v}_{t-1} + \frac{\mathbf{v}}{\beta} \left(\mathbf{i}_{t-1} - \mathbf{\pi}_{t} \right)}_{\mathbf{B}_{t-1}/P_{t}} = \mathbf{S}_{t} + \mathbf{v}_{t} \qquad = \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{S}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1} \beta^{k} \mathbf{E}_{t} \mathbf{r}_{t+k}$$

■ Take innovations $\Delta E_t = E_t - E_{t-1}$:

$$\Delta E_{t} \pi_{t} = -\frac{\beta}{v} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} s_{t+k} + \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} r_{t+k}$$

Fiscal Decomposition: Generalizing

- GDP Growth
- Nominal, inflation-linked and dollar-denominated bonds
- Long-term bonds

$$\frac{\textbf{Bond Price in Home Currency} \times \textbf{Bonds}}{\textbf{Price Level}} = \sum_t \frac{\textbf{Surplus-to-GDP} \times \Delta \textbf{GDP}}{\textbf{Discounting}}$$

$$\frac{\mathbf{v}_{t-1}}{\beta} + \frac{\mathbf{v}}{\beta} \sum_{j} \delta_{j} \left(\mathbf{r} \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta \mathbf{h}_{j,t} - \pi_{j,t} \right) = \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{s}_{t+k} + \frac{\mathbf{v}}{\beta} \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{g}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j} \beta^{k} \mathbf{E}_{t} \mathbf{r}_{j,t+k}$$

Details Currency Table

Fiscal Decomposition of Unexpected Inflation

Ex-post real return $r_{j,t} = rx_{j,t} + i_{j,t-1} + \Delta h_{j,t} - \pi_{j,t}$

$$\Delta E_{t}\pi_{t} = \underbrace{\left[\Delta E_{t}rx_{t} + \sum_{j \neq N} \frac{\delta_{j}}{\delta} \Delta E_{t}r_{j,t}\right]}_{} - \frac{\beta}{\delta v} \underbrace{\left[\sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}s_{t+k} + \frac{v}{\beta} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}g_{t+k} - \frac{v}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j}\beta^{k} \Delta E_{t}r_{j,t+k}\right]}_{}$$

Innovation to Bond Prices

Innovation to Discounted Surpluses

$$\equiv d(rx) + d(r_0) - d(s) - d(g) + d(r)$$

Variance decomposition.

$$\operatorname{\mathsf{var}}\left[\Delta E_t \pi_t\right] = \operatorname{\mathsf{cov}}_{\pi} \left[d(rx) \right] + \operatorname{\mathsf{cov}}_{\pi} \left[d(r_0) \right] - \operatorname{\mathsf{cov}}_{\pi} \left[d(s) \right] - \operatorname{\mathsf{cov}}_{\pi} \left[d(g) \right] + \operatorname{\mathsf{cov}}_{\pi} \left[d(r) \right]$$

Bayesian-VAR: Data and Model

• Annual data on observables x_t^{OBS}

$$egin{aligned} x_t^{ extit{OBS}} = egin{bmatrix} i_t & ext{(Nominal Interest)} \\ \pi_t & ext{(CPI Inflation)} \\ v_t^b & ext{(Par-Value Debt-to-GDP)} \\ g_t & ext{(GDP growth)} \\ \Delta h_t & ext{(Δ Real Exchange to US Dollar)} \end{bmatrix}$$

- 25 countries (samples starting at 1945, 1960, 1975, 1998)
- General VAR

$$X_t = AX_{t-1} + Ke_t$$

Decompose $X'_t = [x_t^{OBS'} x_t^{NOT'}]$

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

 $x_t^{NOT} = b x_{t-1}^{OBS} + c x_{t-1}^{NOT} + k e_t$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperpar

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public deb
 - $oldsymbol{s}_t = rac{ extsf{v}_{t-1}}{eta} extsf{v}_t + rac{ extsf{v}}{eta} \left[-g_t + \sum_j \delta_j \left(r extsf{x}_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t}
 ight)
 ight]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + rac{v}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b\right)$
- 4. No data on bond prices Geometric Term Structure
 - \circ Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i_j$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperpar

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public debt
 - $\quad \text{ Define surplus from the law of motion: } \qquad \mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + rac{v}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b\right)$
- 4. No data on bond prices Geometric Term Structure
 - \circ Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i_j$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperpar

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public debt
 - $\quad \text{ Define surplus from the law of motion: } \qquad \mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $\mathbf{v}_t = \mathbf{v}_t^b + \frac{\mathbf{v}}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b\right)$
- 4. No data on bond prices Geometric Term Structure
 - Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperpar

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public debt
 - $\quad \text{ Define surplus from the law of motion: } \qquad \mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $\mathbf{v}_t = \mathbf{v}_t^b + \frac{\mathbf{v}}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b\right)$
- 4. No data on bond prices Geometric Term Structure
 - Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i_{j,t}$

Bayesian-VAR: Variance Decomposition

- Variance decomposition \iff Innovations decomposition applied to shock $E[e \mid \Delta E_t \pi_t = 1]$
- "Given 1% unexpected inflation, how do we change expectations over surplus, discounting, bond prices?"

Country	$\Delta E_t \pi_t =$		ΔE_t (Bon	d Prices)		$-\Delta E_t$	luses)	
		Ī	$d(r_0)$	d(rx)	1	-d(s)	-d(g)	d(r)
United States	1	Ī	0	*-0.8	I	0.6	0.2	1.0
1960 Sample								
Canada	1	1	* -0.1	* -1.6	1	0.6	* 1.2	0.9
Denmark	1	П	* -0.3	-0.3		0.4	0	1.2
Japan	1		0	* -0.5		* 1.6	-0.4	0.3
Norway	1		0	* -0.4		0.6	0.5	0.3
Sweden	1	П	-0.2	* -0.9		-0.3	* 1.0	* 1.4
United Kingdom	1		* 0.5	* -0.7		* 2.9	* 1.0	* -2.7
1973 Sample								
Australia	1	1	* 0.1	* -0.8	1	* 2.1	0.7	-1.1
New Zealand	1		-0.1	* -0.9		0.4	* 0.9	0.7
South Korea	1		0	* -0.5		* 1.9	0.2	-0.6
Switzerland	1		0	* -0.7		0.9	* 0.9	-0.3

Country	$\Delta E_t \pi_t =$		ΔE_t (Bon	d Prices)		$-\Delta E_t$	t(Disc Surpluses)		
		Ε	$d(r_0)$	d(rx)	I	-d(s)	-d(g)	d(r)	
1998 Sample									
Brazil	1	1	-0.3	* -0.2	-	-1.5	1.1	1.9	
Chile	1		-3.8	-1.3		9.0	-5.7	2.9	
Colombia	1		1.5	* -1.0		1.4	-1.1	0.2	
Czech Republic	1		* -0.2	* -0.4		-2.3	2.4	1.4	
Hungary	1		* -0.6	* -0.9		-1.0	1.6	1.9	
India	1		* 0.2	* -0.5		1.5	0.1	-0.3	
Indonesia	1		* -2.6	* -1.1		1.7	* 2.6	0.4	
Israel	1		-0.1	* -0.8		-0.6	* 1.5	0.9	
Mexico	1		0	* -0.7		1.4	0	0.3	
Poland	1	ı	* -0.5	* -1.2		0.9	-0.4	* 2.	
Romania	1		-0.4	* -1.0		2.2	0.4	-0.3	
South Africa	1		0.4	* -0.5		1.6	0.3	-0.7	
Turkey	1	1	0.4	* -0.4		-1.2	-0.2	* 2.:	
Ukraine	1		0	* -0.8		0.7	0.4	* 0.7	

Advanced Markets

Emerging Markets

Decomposition 2 Proposition

Bayesian-VAR: Variance Decomposition - Takeaways

Figure: IRF - Brazil

$$d(rx) < 0$$
 $-d(g) > 0$
 $d(r) > 0$ $-d(s) < 0$

- lacksquare $\Delta E\pi$ accounted for by discounted surpluses
- Surplus-to-GDP, GDP growth and real discounting...
 - ...account for unexpected inflation alone in 0/25
 - ...have a positive contribution in 18+/25
- Is inflation "fiscal"? Yes, but not only.
- Is inflation "fiscal" cross-country? Not at all.
- Bond price dynamics reduce $\Delta E\pi$ in 25/25

Bayesian-VAR: Variance Decomposition - Takeaways

Figure: IRF - Brazil

$$d(rx) < 0$$
 $-d(g) > 0$
 $d(r) > 0$ $-d(s) < 0$

- lacktriangle $\Delta E\pi$ accounted for by discounted surpluses
- Surplus-to-GDP, GDP growth and real discounting...
 - ...account for unexpected inflation alone in 0/25
 - ...have a positive contribution in 18+/25
- Is inflation "fiscal"? Yes, but not only.
- Is inflation "fiscal" cross-country? Not at all.
- Bond price dynamics reduce $\Delta E\pi$ in 25/25

Bayesian-VAR: "Aggregate Demand" Inflation

- "Aggregate demand" recessions: low inflation, low growth, fiscal deficits. How come?
- Shock: $E[e \mid \Delta E_t \pi_t = 1, \Delta E_t g_t = 1]$
- "Given +1% unexpected inflation and +1% growth, how do we change expectations?"

Country	$\Delta E_t \pi_t =$	1	ΔE_t (Bon	d Prices)		$-\Delta E_t$	luses)	
		Ī	$d(r_0)$	d(rx)	I	-d(s)	-d(g)	d(r)
United States	1	ī	0	* -1.4	Ī	1.0	* -1.3	* 2.8
1960 Sample								
Canada	1	1	* -0.2	* -2.9	1	0.8	0.3	* 3.0
Denmark	1		* -0.4	* -1.1		3.0	* -2.9	2.3
Japan	1		0	* -1.2		* 2.4	* -2.1	* 1.8
Norway	1		0	* -0.9		1.8	* -1.7	1.8
Sweden	1		* -0.5	* -1.7	ı	0.5	-0.4	* 3.1
United Kingdom	1		0.1	* -3.2		* 3.7	-0.4	0.8
1973 Sample								
Australia	1	1	0	* -2.1	1	2.6	-0.5	1.0
New Zealand	1	1	* -0.3	* -1.3	1	1.1	-0.3	1.9
South Korea	1		* -0.1	* -1.0		* 4.4	* -1.9	-0.4
Switzerland	1		0	* -1.3	İ	* 1.3	0.6	0.4

Country	$\Delta E_t \pi_t =$	ΔE_t (Bon	d Prices)	$-\Delta t$	−∆E _t (Disc Surp				
	Ī	$d(r_0)$	d(rx)	-d(s)	-d(g)	d(r)			
1998 Sample									
Brazil	1	* -0.6	* -0.2	-2.9	0.2	4.3			
Chile	1	* -18.4	* -3.7	36.4	-34.9	21.7			
Colombia	1	-1.3	* -1.2	12.3	-8.6	-0.3			
Czech Republic	1	* -0.5	* -0.8	-1.0	0.9	2.4			
Hungary	1	* -1.3	* -1.1	-12.2	6.5	9.2			
India	1	0.1	-0.4	2.0	-0.8	0			
Indonesia	1	* -9.9	0.1	* 12.6	-0.2	-1.6			
Israel	1	* -2.1	* -0.8	3.4	-0.7	1.1			
Mexico	1	* -1.9	* -1.2	* 5.6	-2.1	0.6			
Poland	1	* -1.0	* -1.5	0.6	-1.3	* 4.3			
Romania	1	* -2.1	* -0.7	* 8.7	-1.7	-3.2			
South Africa	1	0.3	-0.6	* 32.2	* -11.6	* -19.3			
Turkev	1	-0.7	* -0.4	-1.2	-0.6	* 3.9			
Ukraine	1	0	0.5	* 4.1	* -2.1	-1.4			

Advanced Markets

Emerging Markets

Bayesian-VAR: "Aggregate Demand" Inflation - Takeaways

Figure: IRF - United States

$$d(rx) < 0$$
 $-d(g) < 0$
 $d(r) > 0$ $-d(s) > 0$

- Higher inflation follows from...
 - higher discounting (monetary policy) in 19/25
 - lower surplus-GDP ratios, current or in the future in 21/25
- (Level) Surpluses increase in 23/25
- COVID inflation: decline in {s}?

Bayesian-VAR: "Aggregate Demand" Inflation - Takeaways

Figure: IRF - United States

$$d(rx) < 0$$
 $-d(g) < 0$
 $d(r) > 0$ $-d(s) > 0$

- Higher inflation follows from...
 - higher discounting (monetary policy) in 19/25
 - lower surplus-GDP ratios, current or in the future in 21/25
- (Level) Surpluses increase in 23/25
- COVID inflation: decline in {s}?

Bayesian-VAR: "Aggregate Demand" Inflation - Takeaways

Figure: IRF - United States

$$d(rx) < 0$$
 $-d(g) < 0$
 $d(r) > 0$ $-d(s) > 0$

- Higher inflation follows from...
 - higher discounting (monetary policy) in 19/25
 - lower surplus-GDP ratios, current or in the future in 21/25
- (Level) Surpluses increase in 23/25
- COVID inflation: decline in {s}?

Bayesian-VAR: Discounted Surplus Shock

- Unexpected inflation \implies lower discounted surpluses (either s, g or r)
- Is the converse true? $E[e \mid \Delta E_t \text{Disc Surpluses} = -1]$
- ΔE_t {Disc Surpluses} = ΔE_t {Bond Prices} $\Delta E_{\pi} = \Delta E_t$ {Return on Public Debt}

Country	$\Delta E_t \pi_t =$		ΔE_t (Bor	d Prices)		$-\Delta E_t$ (Disc Surplus		
		Ī	$d(r_0)$	d(rx)	Ī	-d(s)	-d(g)	d(r)
United States	* 0.4	ı	0	* -0.6	ī	0.2	0	* 0.8
1960 Sample								
Canada	* 0.2	1	* -0.1	* -0.8	-1	-0.1	0	* 1.2
Denmark	* 0.2		* -0.2	* -0.6		0.2	* -0.6	* 1.4
Japan	* 0.5		0	* -0.5		0.7	-0.2	* 0.5
Norway	* 0.4		0	* -0.6		-0.3	-0.1	* 1.4
Sweden	* 0.2		* -0.3	* -0.5		-0.1	0.1	* 1.0
United Kingdom	* 0.1		-0.1	* -0.8		0.2	-0.1	0.9
1973 Sample								
Australia	* 0.2	1	0	* -0.8	- [-0.3	0	* 1.3
New Zealand	* 0.3		* -0.1	* -0.5		-0.3	0.4	* 0.9
South Korea	* 0.5		0	* -0.5		1.5	-0.2	-0.3
Switzerland	* 0.3		0	* -0.7		0.3	0.2	* 0.5

Country	$\Delta E_t \pi_t =$	ΔE _t (Bor	d Prices)	$-\Delta E_t$	E _t (Disc Surpluses)			
	ĺ	$d(r_0)$	d(rx)	-d(s)	-d(g)	d(r)		
1998 Sample								
Brazil	* 0.4	* -0.4	* -0.1	* -2.4	0.3	* 3.1		
Chile	0	* -0.9	* -0.1	0.6	-0.4	0.9		
Colombia	0	* -0.9	* -0.1	* 1.7	-0.7	0		
Czech Republic	* 0.4	* -0.2	* -0.4	-1.0	0.8	1.1		
Hungary	* 0.2	* -0.4	* -0.3	-4.1	2.6	* 2.6		
India	* 0.5	0	* -0.5	0.6	0.1	0.2		
Indonesia	0	* -0.9	-0.1	0.5	0.2	0.3		
Israel	* 0.1	* -0.6	* -0.3	-0.9	0.1	* 1.8		
Mexico	* 0.1	* -0.7	* -0.2	* 1.4	-0.4	0.1		
Poland	* 0.2	* -0.4	* -0.3	-0.2	0.1	* 1.0		
Romania	* 0.1	* -0.9	0	* 1.6	-0.2	-0.4		
South Africa	* 0.2	* -0.5	* -0.3	-0.2	0.3	0.9		
Turkey	* 0.1	* -0.8	* -0.1	-0.1	0.1	* 1.0		
Ukraine	* 0.4	0	* -0.6	0	* 0.3	* 0.6		

Advanced Markets

Emerging Markets

Theory: The New Keynesian Model

The New-Keynesian Model

- BVAR decompositions not structural
- Closed-economy New-Keynesian model
- **FTPL.** Decomposition determines $\Delta E_t \pi_t$
- **Trend Shocks.** Production function $A_t N = T_t A_t N$

(Trend component)
$$\log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t}$$

(AR(1) component) $a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$

 $rx_{i,t} = (\omega_i \beta) q_{i,t} - q_{i,t-1} - i_{i,t-1}$

- Four shocks: ε_a , ε_g , ε_i , ε_s
- Method of moments:

$$\mathsf{Min}_{\Psi} \quad _{lpha_1} \| \mathcal{D}_{\mathsf{VAR}} - \mathcal{D}_{\mathsf{NK}}(\Psi) \| +_{lpha_2} \| \mathcal{M} - \mathcal{M}_{\mathsf{NK}}(\Psi) \|$$

Why Trend? Growth

The New-Keynesian Model: Reproducing the Variance Decomposition

Simple version of the model. Target: variance decomposition

- **Result.** AR(1) productivity shocks $\varepsilon_{a,t}$ alone reproduce the **variance decomposition** with positive contributions from surplus-to-output, growth and real interest terms
- **Result.** Monetary, fiscal and trend shocks do not, even if combined.

Target: United States. AR(1) productivity shocks. All others.

The New-Keynesian Model: Reproducing the Variance Decomposition

Simple version of the model. Target: variance decomposition

- **Result.** AR(1) productivity shocks $\varepsilon_{a,t}$ alone reproduce the **variance decomposition** with positive contributions from surplus-to-output, growth and real interest terms
- **Result.** Monetary, fiscal and trend shocks do not, even if combined.

Target: United States. AR(1) productivity shocks. All others.

The New-Keynesian Model: Reproducing the Variance Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- Story: negative productivity shock $\varepsilon_a < 0$
- Persistent shock: $\rho_a = 0.96$, low growth

$$-d(g) > 0$$

Procyclical surpluses: $\tau_a = 1.5$

$$-d(s) > 0$$

• Strong Taylor rule: $\phi_{\pi} = 0.6$

Figure: IRF to $\Delta E_t \pi_t = 1$ ($\varepsilon_{a,t} = -0.85$)

Marginal Costs

VS R-VAR IRE

Targets: three decompositions + second moments

■ **Result.** In the absence of trend shocks, NK model fails to replicate the variance ($\Delta E\pi=1$) and "aggregate demand" ($\Delta Eg=\Delta E\pi=1$) decompositions. Policy shocks do not help.

Target: United States - Variance "Agg Demand" Disc Surplus Structural Shocks

Targets: three decompositions + second moments

Result. In the absence of trend shocks, NK model fails to replicate the variance ($\Delta E\pi=1$) and "aggregate demand" ($\Delta Eg=\Delta E\pi=1$) decompositions. Policy shocks do not help.

Target: United States - Variance "Agg Demand" Disc Surplus Structural Shocks

Targets: three decompositions + second moments

■ **Result.** In the absence of trend shocks, NK model fails to replicate the variance ($\Delta E\pi=1$) and "aggregate demand" ($\Delta Eg=\Delta E\pi=1$) decompositions. Policy shocks do not help.

Target: United States - Variance "Agg Demand" Disc Surplus Structural Shocks

Targets: three decompositions + second moments

Result. In the absence of trend shocks, NK model fails to replicate the variance ($\Delta E\pi=1$) and "aggregate demand" ($\Delta Eg=\Delta E\pi=1$) decompositions. Policy shocks do not help.

Target: United States - Variance "Agg Demand" Disc Surplus Structural Shocks

The New-Keynesian Model: Reproducing the "Aggregate Demand" Shock

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- High Marginal Costs + Positive Growth?
- Protracted productivity growth

$$\varepsilon_a = 1.49$$
 $\varepsilon_a = -0.76$

Marginal costs high relative to trend

$$\pi_t = \beta E_t \pi_{t+1} + y_t - \kappa_a a_t$$
 $a_t < 0$
 $a_t = \Delta y_t + u_{a,t}$ $u_{a,t} > 0$

Figure: IRF to $\Delta E_t g_t = 1$, $\Delta E_t \pi_t = 1$

The New-Keynesian Model: Reproducing the Discounted Surplus Shock

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

■ Why no inflation? (Small) Monetary Shock

Shock	Variance	Disc Surp
ε_a	-0.72	-0.40
$\varepsilon_{m{q}}$	-0.13	0.05
ε_{i}	-0.12	-0.01

Structural Shocks

Figure: Disc Surp Variance

The New-Keynesian Model: Reproducing the Discounted Surplus Shock

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

■ Why no inflation? (Small) Monetary Shock

Shock	Variance	Disc Surp
ε_a	-0.72	-0.40
$arepsilon_{oldsymbol{g}}$	-0.13 -0.12	0.05 -0.01

Structural Shocks

Figure: Disc Surp Variance

The New-Keynesian Model: Variance Decompostion (Cross-Country)

- Can cross-country differences in policy rules explain differences in variance decomposition?
- **Estimation.** Solve optimization problem to all countries; keep productivity parameters constant

The New-Keynesian Model: Some Comparative Statics

- $\uparrow \sigma_i \implies$ Inflation driven by monetary policy. But bond price dynamics reduces $\Delta E_t \pi_t$ variance!
- $\bullet \uparrow \phi_g \implies \text{Lower } \Delta E_t \pi_t \text{ during high growth. } \Delta E_t \pi_t \text{ not driven by "aggregate demand" shocks.}$

Parameters

The New-Keynesian Model: Some Comparative Statics

- $\uparrow \sigma_i \implies$ Inflation driven by monetary policy. But bond price dynamics reduces $\Delta E_t \pi_t$ variance!
- $\uparrow \phi_g \implies$ Lower $\Delta E_t \pi_t$ during high growth. $\Delta E_t \pi_t$ not driven by "aggregate demand" shocks.

Parameters

The New-Keynesian Model: The Open Economy

$$y_t = E_t y_{t+1} - \gamma \left[i_t - E_t \pi_{H,t+1} + \alpha (\bar{\omega} - 1) E_t \Delta z_{t+1} \right] + E_t u_{g,t+1}$$

$$\pi_{H,t} = \beta E_t \pi_{H,t+1} + \kappa y_t - \kappa_a a_t - \kappa_z z_t$$

$$\gamma_\alpha z_t = y_t - y_t^*$$

$$\pi_t = \pi_{H,t} + \alpha \Delta z_t$$

 $h_t = (1 - \alpha) z_t$

- **Home**: small and open ($\alpha = 0.45$)
- Foreign: large and "closed"
- Same United States parameters:
 - \circ Variance decomposition \checkmark ($arepsilon_a = -0.6$, $arepsilon_a^* = -0.7$)
 - "Aggregate Demand" shock ✓
- Terms of trade dynamics and marginal costs:
 - ε_a and ε_a^* : same impact on Home's MC
 - Foreign Mon. Shocks: opposite $\Delta E_t \pi^*$ and $\Delta E_t \pi$

Shock to **Foreign**'s Productivity Interest

The New-Keynesian Model: The Open Economy

$$\begin{aligned} y_t &= E_t y_{t+1} - \gamma \left[i_t - E_t \pi_{H,t+1} + \alpha (\bar{\omega} - 1) E_t \Delta z_{t+1} \right] + E_t u_{g,t+1} \\ \pi_{H,t} &= \beta E_t \pi_{H,t+1} + \kappa y_t - \kappa_a a_t - \kappa_z z_t \\ \gamma_{\alpha} z_t &= y_t - y_t^* \\ \pi_t &= \pi_{H,t} + \alpha \Delta z_t \end{aligned}$$

Complete markets

 $h_t = (1 - \alpha) z_t$

- **Home**: small and open ($\alpha = 0.45$)
- Foreign: large and "closed"
- Same United States parameters:
 - Variance decomposition \checkmark ($\varepsilon_a = -0.6$, $\varepsilon_a^* = -0.7$)
 - "Aggregate Demand" shock ✓
- Terms of trade dynamics and marginal costs:
 - ε_a and ε_a^* : same impact on Home's MC
 - Foreign Mon. Shocks: opposite $\Delta E_t \pi^*$ and $\Delta E_t \pi$

Shock to Foreign's Productivity Interest

Conclusion

- Variance Decomposition.
 - Either discount rates or surpluses drive unexpected inflation
 - Inflation is partially "fiscal", but not cross-country
- Discounted Surpluses Shock.
 - Discount rates drive discounted surplus innovations (returns on public debt)
- "Aggregate Demand" Shock.
 - Discount rates and countercyclical future surpluses drive "aggregate demand" inflation
- New-Keynesian models reproduce BVAR decompositions
 - Relevance of productivity shocks
 - Relevance of policy rules

References

Economic Dynamics and Control, 89:5-22.

Akhmadieva, V. (2022). Fiscal adjustment in a panel of countries 1870–2016. *Journal of Comparative Economics*, 50(2):555–568.

Bassetto, M. and Cui, W. (2018). The fiscal theory of the price level in a world of low interest rates. *Journal of*

Brunnermeier, M. K., Merkel, S., and Sannikov, Y. (2022). The Fiscal Theory of the Price Level With a Bubble. Cagan, P. (1956). The Monetary Dynamics of Hyperinflation. In *Studies in the Quantity Theory of Money*, pages 25–117. University of Chicago Press, milton friedman edition.

Campbell, J. Y. and Ammer, J. (1993). What Moves the Stock and Bond Markets? A Variance Decomposition for

Long-Term Asset Returns. *The Journal of Finance*, 48(1):3–37.

Campbell, J. Y. and Shiller, R. J. (1988). The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors. *The Review of Financial Studies*. 1(3):195–228.

Chen, L. and Zhao, X. (2009). Return Decomposition. *Review of Financial Studies*, 22(12):5213–5249.

Cochrane, J. H. (1992). Explaining the Variance of Price–Dividend Ratios. *The Review of Financial Studies*, 5(2):243–280.

Cochrane, J. H. (1998). A Frictionless View of U.S. Inflation. *NBER Macroeconomics Annual*. 13:323–384.

Cochrane, J. H. (2005). Money as stock. *Journal of Monetary Economics*, 52(3):501–528.

Cochrane, J. H. (2022a). The fiscal roots of inflation. *Review of Economic Dynamics*, 45:22–40.

Cochrane, J. H. (2022b). A fiscal theory of monetary policy with partially-repaid long-term debt. *Review of Economic Dynamics*, 45:1–21.

Cochrane, J. H. (2022c). The Fiscal Theory of the Price Level.

Appendix: Debt Instruments and Growth

Return

- **Real market value** debt-to-GDP v_t , surplus-to-GDP s_t and GDP growth q_t (stationarity!)
- Bonds (j, n) promisses one unit of currency j after n periods
 - Nominal bonds
 - Real bonds (currency denomination = final goods)
 - US Dollar bonds

Constant structure $\{\delta_i\}$, $\{\omega_i^n\}$

- Bond price $Q_{j,t}^n$, excess return $rx_{j,t}$ 1+ return_{j,t} = 1 + $rx_{j,t} + i_{j,t-1} = \frac{\sum_n Q_{j,t}^{n-1} B_{j,t-1}^n}{\sum_n Q_{j,t-1}^n B_{j,t-1}^n}$ (one-period bonds $\implies rx = 0$)
- Debt law of motion:

$$\frac{\mathbf{v}_{t-1}}{\beta} + \frac{\mathbf{v}}{\beta} \left[-\mathbf{g}_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta h_{j,t} - \pi_{j,t} \right) \right] = \mathbf{v}_t + \mathbf{s}_t$$

Appendix: Debt Instruments and Growth

Return

Law of motion:

$$\sum_{j} \mathcal{E}_{j,t} B_{j,t-1}^{1} = P_{t}^{s} S_{t} + \sum_{j} \mathcal{E}_{j,t} \sum_{n=2}^{\infty} Q_{j,t}^{n-1} \left(B_{j,t}^{n-1} - B_{j,t-1}^{n} \right),$$

• $V_{j,t} = \sum_{n=0}^{\infty} Q_{j,t}^n B_{j,t}^n$ (end-of-period market value of debt)

$$\sum_{j} (1 + rx_{j,t} + i_{j,t-1}) \mathcal{E}_{j,t} \mathcal{V}_{j,t-1} = P_t^s S_t + \sum_{j} \mathcal{E}_{j,t} \mathcal{V}_{j,t}$$

■ $V_{j,t} = V_{j,t}/P_{j,t}Y_t$ (real value of *j*-indexed debt)

$$V_{t-1} \sum_{j} \frac{(1 + rx_{j,t} + l_{j,t-1})(1 + \Delta h_{j,t})}{(1 + \pi_{j,t})(1 + g_t)} \delta_j = s_t + V_t.$$

Appendix: Public Debt Currency Denomination

Return

Symbol	Description	Nominal Debt	Real Debt	Dollar Debt
j	Index Symbol	N	R	D
	Notation	δ , ω	$\delta_{\it R}$, $\omega_{\it R}$	$\delta_{ extsf{D}}$, $\omega_{ extsf{D}}$
P_j	Price per Good	Р	1	P_{t}^{US}
\mathcal{E}_{i}	Nominal Exchange Rate	1	Р	Dollar NER
H_j	Real Exchange Rate	1	1	Dollar RER
π_{j}	Log Variation in Price	π	0	$\pi_t^{ extsf{US}}$
Δh_j	Log Real Depreciation	0	0	Δh_t

Table: Public Debt Denomination

Appendix: Bayesian Prior

Return

Complete model (with US variables):

$$x_{t}^{OBS} = a x_{t-1}^{OBS} + b u_{t-1}^{OBS} + e_{t}$$

 $u_{t}^{OBS} = a_{u} u_{t-1}^{OBS} + e_{u,t}$

- Group $\theta = [\operatorname{vec}(a)' \operatorname{vec}(b)']'$
- $\blacksquare \; \; \Sigma \sim \mathit{IW}(\Phi; d) \qquad \theta | \Sigma \sim \mathit{N}(\bar{\theta}, \Sigma \otimes \Omega)$
- \blacksquare $\Phi = Identity and <math>d = 7$ sets a loose prior
- $\bar{\theta}$ sets the mean of the prior for a to be OLS estimate of a_u

$$\operatorname{\mathsf{cov}} \left(a_{ij}, a_{kl} \mid \Sigma \right) = \begin{cases} \lambda^2 \frac{\Sigma_{ij}}{\Phi_{jj}} & \text{ if } j = l \\ 0 & \text{ otherwise.} \end{cases} \qquad \operatorname{\mathsf{cov}} \left(b_{ij}, b_{kl} \mid \Sigma \right) = \begin{cases} (\xi \lambda)^2 \frac{\Sigma_{ij}}{\Phi_{u, ij}} & \text{ if } j = l \\ 0 & \text{ otherwise.} \end{cases}$$

Set
$$\xi = (1/3)$$

Appendix: Hyperparameters + Debt Structure

Return

Country	v (%)	δ _N (%)	δ _R (%)	δ _D (%)	Avg. Term (Years)	λ	$\sigma(\Delta E_t \pi$ (%)
United States	60	93	7	0	5	10	1.9
Advanced - 1960 Sample							
Canada	71	92	5	3	6.5	0.21	1.0
Denmark	37	84	0	16	5.6	0.18	1.2
Japan	98	100	0	0	5.5	0.01	2.2
Norway	35	99	0	1	3.7	0.19	1.5
Sweden	46	69	16	14	4.8	0.16	1.5
United Kingdom	61	76	24	0	12.3	0.17	2.0
Advanced - 1973 Sample							
Australia	24	90	10	0	7.2	0.18	1.5
New Zealand	41	82	6	13	4.3	0.15	2.0
South Korea	21	97	0	3	4	0.15	2.8
Switzerland	43	100	0	0	6.9	0.23	1.0

(a) Advanced Economies

Country	v (%)	δ _N (%)	δ _R (%)	δ _D (%)	Avg. Term (Years)	λ	$\sigma(\Delta E_t \pi)$ (%)
Emerging - 1998 Sample							
Brazil	70	70	25	5	2.6	0.12	1.4
Chile	14	10	57	33	12.8	0.27	1.0
Colombia	41	45	23	32	5.6	0.13	0.8
Czech Republic	31	91	0	9	5.6	0.15	1.1
Hungary	68	76	0	23	4.1	0.14	1.3
India	73	90	3	7	10.1	0.25	1.1
Indonesia	43	44	0	56	9.2	0.21	1.2
Israel	77	43	34	23	6.6	0.13	1.3
Mexico	45	65	10	26	5.5	0.15	1.0
Poland	47	79	1	20	4.2	0.10	1.3
Romania	28	50	0	50	4.8	0.10	1.9
South Africa	41	70	20	10	12.9	0.25	1.0
Turkey	43	47	23	30	3.6	0.13	2.1
Ukraine	43	100	0	0	9.1	0.07	5.7

(b) Emerging Economies

Appendix: Public Finances Model

Return

■ Convert par to market value of debt (Cox and Hirschhorn (1983))

$$\mathcal{V}_{j,t} = \mathcal{V}_{j,t}^b imes rac{\mathsf{market \ price \ of \ debt}}{\mathsf{book \ price \ of \ debt}} = \mathcal{V}_{j,t}^b imes rac{Q_{j,t}}{Q_{j,t}^b}.$$

Linearized average interest follows

$$i_{j,t}^b = \omega_j i_{j,t-1}^b + (1 - \omega_j) i_{j,t} = (1 - \omega_j) \sum_{k=0}^{\infty} \omega_j^k i_{j,t-k}$$

since government rolls over share ω_j of public debt in steady state

Linearized book price of debt:

$$q_{j,t}^b = (\omega_j \beta) E_t q_{j,t+1}^b - i_{j,t}^b$$

Appendix: Public Finances Model

(b) Emerging Economies

Appendix: Geometric Term Structure

Return Decomposition 2

■ To each currency portfolio j, fixed geometric maturity structure:

$$B_{j,t}^n = \omega_j B_{j,t}^{n-1}$$

■ Total return on currency-*j* portfolio:

$$1+r\mathsf{x}_{j,t}+i_{j,t-1}=\frac{1+\omega_jQ_{j,t}}{Q_{i,t-1}}\qquad\Longrightarrow\qquad \boxed{\mathsf{rx}_{j,t}+i_{j,t-1}=(\omega_j\beta)q_{j,t}-q_{j,t-1}}$$

Assume constant risk premia $E_t r x_{i,t+1} = 0$

$$\boxed{\mathbf{q}_{j,t} = (\omega_j \beta) E_t q_{j,t+1} - i_{j,t}} = -\sum_{k=0}^{\infty} (\omega_j \beta)^k E_t i_{j,t+k}$$

Appendix: Second Decomposition

Return

■ From geometric maturity structure Geometric Term Structure

$$\Delta E_t r x_{j,t} = -\sum_{i=0}^{\infty} (\omega_j \beta)^k \left[\Delta E_t r_{j,t+k} + \Delta E_t \pi_{j,t+k} - \Delta E_t \Delta h_{j,t+k} \right]$$

Replace on the original fiscal decomposition

 $\Delta E_{t}\pi_{t} = \left[-\sum_{k=1} (\omega\beta)^{k} \Delta E_{t}\pi_{t+k} - \frac{\delta_{D}}{\delta} \sum_{k=0}^{\infty} (\omega_{D}\beta)^{k} \Delta E_{t}\pi_{t+k}^{US} \right] \\ - \frac{\beta}{\delta \mathbf{v}} \left[\sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}\mathbf{S}_{t+k} + \frac{\mathbf{v}}{\beta} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}\mathbf{g}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j}\beta^{k} (1 - \omega^{k}) \Delta E_{t}\mathbf{r}_{j,t+k} - \frac{\delta_{D}\mathbf{v}}{\beta} \sum_{k=0}^{\infty} (\omega_{D}\beta)^{k} \Delta E_{t}\Delta h_{t+k} \right] \\ \text{Innovation to Real Variables}$

$$\equiv -d_2(\pi) - d_2(\pi^{US}) - d_2(s) - d_2(g) + d_2(r) + d_2(\Delta h)$$

Innovation to Nominal Variables

Appendix: Second Decomposition

Return

Country	$\Delta E_t \pi_t =$	$\tau_t = -\Delta E_t(\text{Future Inflation})$					$\pm \Delta E_t$ (Real Variables)		
		İ	$-d_2(\pi)$	$-d_2(\pi^{US})$	I	$-d_2(s)$	$-d_2(g)$	$d_2(r)$	$d_2(\Delta h)$
United States	1	ı	*-1.12		ı	0.57	0.23	*1.32	(
Advanced - 1960 Sample									
Canada	1	1	*-1.53	*-0.07	- 1	0.62	*1.22	0.78	-0.03
Denmark	1	П	*-0.49	*-0.20		0.42	-0.04	1.23	0.08
Japan	1		*-1.14	0		*1.60	-0.38	*0.91	
Norway	1		*-0.70	0		0.60	0.47	0.64	
Sweden	1		*-1.02	-0.10		-0.34	*0.98	*1.54	-0.0
United Kingdom	1		*-2.34	0		*2.89	*0.97	-0.52	
Advanced - 1973 Sample									
Australia	1	1	*-1.47	0	- 1	*2.09	*0.66	-0.27	
New Zealand	1		*-1.02	*-0.08		0.40	*0.87	1.04	-0.2
South Korea	1	1	*-0.74	*-0.03		*1.91	0.17	-0.33	0.0
Switzerland	1	П	*-0.79	0		0.90	*0.91	-0.02	

Country	$\Delta E_t \pi_t =$	$-\Delta E_t$ (Futu	ire Inflation)	$\pm \Delta E_t$ (Real Variables)			
		$-d_2(\pi)$	-d ₂ (π ^{US})	$-d_2(s)$	$-d_2(g)$	$d_2(r)$	$d_2(\Delta h)$
Emerging - 1998 Sample							
Brazil	1	*-0.11	0	-1.46	1.05	1.46	0.07
Chile	1	-0.76	-2.75	8.95	-5.71	-0.35	1.62
Colombia	1	*-0.61	-0.04	1.39	-1.09	0.02	1.34
Czech Republic	1	-0.02	-0.05	-2.31	2.42	0.98	-0.03
Hungary	1	*-0.69	*-0.15	-0.98	1.60	1.83	*-0.61
India	1	*-1.05	*0.09	1.54	0.05	0.41	-0.04
Indonesia	1	*-0.79	*-1.33	1.69	*2.61	0.26	-1.4
Israel	1	*-0.54	0.10	-0.55	*1.51	0.61	-0.13
Mexico	1	*-0.60	0.17	1.41	0.03	0.52	-0.52
Poland	1	*-0.59	*-0.21	0.87	-0.39	*1.43	-0.11
Romania	1	*-1.14	*-0.53	2.24	0.42	-0.54	0.55
South Africa	1	0.05	-0.01	1.58	0.25	-0.79	-0.03
Turkey	1	*-0.76	*-0.40	-1.18	-0.15	*3.35	0.14
Ukraine	1	-0.29	0	0.65	*0.41	0.23	

(a) Advanced Economies

(b) Emerging Economies

Appendix: Variance Decomposition

Return

Proposition. The variance decomposition

$$1 = \frac{\mathsf{cov}_{\pi} \bigg[d(rx) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} + \frac{\mathsf{cov}_{\pi} \bigg[d(r_{0}) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} - \frac{\mathsf{cov}_{\pi} \bigg[d(s) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} - \frac{\mathsf{cov}_{\pi} \bigg[d(g) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} + \frac{\mathsf{cov}_{\pi} \bigg[d(r) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]}$$

is equivalent to the innovations decomposition applied to VAR shock $Proj(e \mid \Delta E_t \pi_t = 1)$

$$1 = \Delta E_t \pi_t \equiv d(rx) + d(r_0) - d(s) - d(g) + d(r)$$

Proof:

$$\begin{split} \mathbf{1} &= -\beta \underbrace{ \mathbf{1}_s'(I - \beta A)^{-1} K \Omega K' \mathbf{1}_\pi}^{\text{cov} \left[\Delta E_t \pi_t, \sum_k \beta^k \Delta E_t s_{t+k} \right]} \underbrace{ \underbrace{ \text{var}(\Delta E_t \pi_t)^{-1}}_{\text{var}(\Delta E_t \pi_t)^{-1}} + \mathbf{1}_r' (I - \beta A)^{-1} K \Omega K' \mathbf{1}_\pi \left(\mathbf{1}_\pi' K \Omega K' \mathbf{1}_\pi \right)^{-1}}_{\text{e} - \beta \mathbf{1}_s' (I - \beta A)^{-1} K \text{ Proj}(e_t \mid \Delta E_t \pi_t = 1) + \mathbf{1}_r' (I - \beta A)^{-1} K \text{ Proj}(e_t \mid \Delta E_t \pi_t = 1). \end{split}$$

Appendix: NK Model Parameters

Equations NK Complete

Comparative Statics

Parameter	Value
β	0.98
γ	0.4
arphi	3
$\overset{\cdot}{ heta}$	0.25
α	0.45
$\bar{\omega}$	γ^{-1}

Table: Fixed Parameters

Parameter	Simple	Complete
$ ho_a$	0.96	0.84
$ ho_{ extsf{g}}$		0.29
$ ho_{i}$		0
$ ho_{s}$		0.39
ϕ_{π}	0.60	0.95
$\phi_{m{g}}$		0.61
$ au_{\pi}$		0.12
$ au_{m{g}}$	1.51	0.05
σ_a	1	1
$\sigma_{m{g}}$		1.79
σ_{i}		0.53
$\sigma_{ t S}$		0

Table: Estimated Parameters

Appendix: Why Trend Shocks? The Growth Component

Return

- Empirical decompositions: often $d(g) \neq 0$
- But in the absence of trend shocks:

$$g_t = (1-L)y_t = \mathbf{1}'_y(1-L)a(L)e_t \equiv \mathbf{1}'_yb(L)e_t$$

- Stationary model $a(L)^{-1}X_t = e_t \implies$ the roots of $a(L)^{-1}$ are outside the unit circle
- Therefore $||a(1)|| < \infty$ and b(1) = 0
- Finally, note that

$$d(g) \propto \mathbf{1}_y' b(eta) e_t pprox \mathbf{1}_y' b(1) e_t = 0$$

With trend shocks:

$$g_t = (1 - L)y_t + u_{g,t}$$

Appendix: Estimated Moments

NK Simple NK Complete

Moments	Data	Model	Moments	Data	Model
σ_i/σ_q	1.00	1.16	$ cor(\pi, i)$	0.54	0.84
σ_π/σ_g	1.01	1.24	$ \operatorname{cor}(\pi, g) $	-0.24	-0.25
$\sigma_{\Delta v}/\sigma_g$	1.43	0.90	cor(g,i)	0.16	0.27
a-cor(i)	0.92	0.75	$cor(i, \Delta v)$	0.02	-0.60
$a\text{-}cor(\pi)$	0.69	0.79	$ cor(\pi, \Delta v) $	-0.29	-0.42
a-cor(g)	0.27	0.25	$ cor(g, \Delta v) $	-0.39	-0.36
a -cor (Δv)	0.50	-0.13			

Table: Second Moment Fit - Complete Model ($lpha_2=0.05$)

Appendix: Simple Model - US Data vs Model

Appendix: "Agg Demand" Shock - US Data vs Model

