

Final 14/05/2021

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: $(++54\ +11)\ 4576-3300$ http://www.exactas.uba.ar

${\rm \acute{I}ndice}$

L.	Fina	al $14/05/2021$	2
	1.1.	Ejercicio 1	2
	1.2.	Ejercicio 2	2
		1.2.A. Pregunta i	9
		1.2.B. Pregunta ii	•
	1.3.	Ejercicio 3	9
	1.4.	Ejercicio 5	4

1. Final 14/05/2021

1.1. Ejercicio 1

Defino $p(n): \frac{4^n}{n+1} < \binom{2n}{n}; \forall n \geq 2$

Caso base n = 2

$$p(2): \frac{4^2}{2+1} < \binom{2.2}{2}$$

$$p(2): \frac{16}{3} < \binom{4}{2}$$

$$p(2): \frac{16}{3} < \frac{4!}{2!2!}$$

$$p(2): \frac{16}{3} < 6$$

p(2) es verdadero.

Paso inductivo

Dado $h \ge 2$, quiero probar que $p(h) \implies p(h+1)$

$$\text{HI: } \tfrac{4^h}{h+1} < {2h \choose h} \implies \tfrac{4^h}{h+2} < {2h \choose h} \tfrac{h+1}{h+2}$$

QpQ:
$$\frac{4^{h+1}}{h+2} < \binom{2(h+1)}{h+1}$$

Pero,

$$\frac{4^{h+1}}{h+2} = \frac{4^h}{h+2} \cdot 4$$

$$\leq {2h \choose h} \frac{h+1}{h+2} \cdot 4$$

Luego alcanza probar que,

$$\binom{2h}{h} \frac{h+1}{h+2} \cdot 4 < \binom{2(h+1)}{h+1}$$

$$\frac{(2h)!}{h!h!} \cdot \frac{h+1}{h+2} \cdot 4 < \frac{(2h+2)!}{(h+1)!(h+1)!}$$

$$\frac{(2h)!(h+1)4}{h!h!(h+2)} < \frac{(2h+2)(2h+1)(2h)!}{(h+1)h!(h+1)h!}$$

$$\frac{(h+1)4}{h+2} < \frac{(2h+2)(2h+1)}{(h+1)^2}$$

$$(h+1)^3 \cdot 4 < 2(h+1)(2h+1)(h+2)$$

$$(h+1)^2 \cdot \frac{4}{2} < (2h+1)(h+2)$$

$$2h^2 + 4h + 2 < 2h^2 + 4h + h + 2$$

$$0 < h$$

Dado que $h \ge 2$ qued probado el paso inductivo.

Luego p(n) es verdadero, $\forall n \in \mathbb{N}_{\geq 2}$

1.2. Ejercicio 2

Tengo el conjunto $X = P(\{1, 2, 3, ..., 12\})$. Se define R relación tal que $ARB \iff \#pares(A) = \#pares(B)$

1.2.A. Pregunta i

Voy a probar cada propiedad de la relación de equivalencia por separado.

Reflexividad

Por definición de reflexividad, R es reflexiva $\iff \forall A \in X : ARA$

Por definición de la relación, $ARA \iff \#pares(A) = \#pares(A)$

Dado que A = A, en particular tienen los mismos elementos pares, luego R es reflexiva.

Simetría

Por definición de simetría, R es simétrica $\iff \forall (A,B) \in X^2 : ARB \implies BRA$

Por definición de la relación, $ARB \iff \#pares(A) = \#pares(B)$

Y quiero probar que $BRA \iff \#pares(B) = \#pares(A)$

Pero.

$$ARB \iff \#pares(A) = \#pares(B)$$

 $\iff \#pares(B) = \#pares(A)$
 $\iff BRA$

Luego R es simétrica.

Transitividad

Por definición de transitividad, R es transitiva $\iff \forall (A, B, C) \in X^3 : (ARB \land BRC) \implies ARC$ Por definición de la relación,

$$ARB \iff \#pares(A) = \#pares(B)$$

 $BRC \iff \#pares(B) = \#pares(C)$

Luego,

$$ARB \land BRC \iff \# \mathrm{pares}(A) = \# \mathrm{pares}(B) \land \# \mathrm{pares}(B) = \# \mathrm{pares}(C)$$

 $\implies \# \mathrm{pares}(A) = \# \mathrm{pares}(C)$
 $\implies ARC$

Luego R es transitiva.

Dado que R es reflexiva, simétrica y transitiva; R es una relación de equivalencia.

1.2.B. Pregunta ii

Veo que por definición de la relación, lo que determina que un conjunto pertenezca a una clase de equivalencia es la cantidad de pares que contenga.

Luego existen 7 clases de equivalencia: clases con elementos que contienen 0, 1, 2, 3, 4, 5, 6 pares.

Luego la clase del # $\{3 \text{ pares}\} = \binom{6}{3} \cdot 2^6 = 1280$ tiene más de 1000 elementos como se quería probar.

1.3. Ejercicio 3

Defino $d = (a^{60} + 6:560)$ y se que $560 = 7.2^4.5$

Luego la factorización en primos de d será:

$$d = 2^{i} \cdot 5^{j} \cdot 7^{k} \text{ con} \begin{cases} 0 \le i \le 4\\ 0 \le j \le 1\\ 0 \le k \le 1 \end{cases}$$

Estudio cada primo en particular.

Caso p = 5

$$5|a^{60} + 6 \iff a^{60} + 6 \equiv 0(5)$$

$$\iff a^{60} \equiv 4(5)$$

$$\iff \begin{cases} 0 \equiv 4(5) & 5|a \\ 1 \equiv 4(5) & 5 \not/a \text{ por PTF} \end{cases}$$

En ambos casos se llega a un absurdo, luego j=0

Caso p = 7

$$\begin{aligned} 7|a^{60}+6 &\iff a^{60}+6\equiv 0 (7)\\ &\iff a^{60}\equiv 1 (7)\\ &\iff \begin{cases} 0\equiv 1 (7) & 7|a\\ 1\equiv 1 (7) & 7\not |a \text{ por PTF} \end{cases} \end{aligned}$$

Luego $k = 0 \lor k = 1$

Caso p = 2

Si $a \equiv 0(2) \iff a = 2k$,

$$a^{60} + 6 \equiv 0^{60} + 6 \equiv 0(2)$$

 $a^{60} + 6 \equiv (2k)^{2^{30}} + 6 \equiv 2(4)$

Y si no es divisible por 4 tampoco lo es por 8 y por 16

Si $a \equiv 1(2)$,

$$a^{60} + 6 \equiv 1^{60} + 6 \equiv 1(2)$$

Luego si no es divisible por 2, tampoco lo será por 5, 8, 16

Luego $i = 0 \lor i = 1$

Por lo tanto, los posibles MCD son

- $k = 0 \land i = 0 \implies d = 1$
- $k = 0 \land i = 1 \implies d = 2$
- $k = 1 \land i = 0 \implies d = 7$
- $k = 1 \land i = 1 \implies d = 14$

1.4. Ejercicio 5

P tiene una raíz imaginaria pura $\iff \exists a \in \mathbb{R} : P(ai) = 0$

$$P(ai) = 0 \iff (ai)^{6} + (ai)^{5} + 5(ai)^{4} + 4(ai)^{3} + 8(ai)^{2} + 4(ai) + 4 = 0$$

$$\iff -a^{6} + a^{5}i + 5a^{4} - 4a^{3}i - 8a^{2} + 4ai + 4 = 0$$

$$\iff (-a^{6} + 5a^{4} - 8a^{2} + 4) + (a^{5} - 4a^{3} + 4a)i = 0$$

$$\iff \begin{cases} -a^{6} + 5a^{4} - 8a^{2} + 4 = 0 \\ a^{5} - 4a^{3} + 4a = 0 \end{cases}$$

De donde se obtiene que $a = \sqrt{2}$

Luego $\sqrt{2}i$ es raíz de P \iff $\sqrt{2}i$ es raíz de P.

Por lo tanto $(x - \sqrt{2}i)(x + \sqrt{2}i)|P \iff (x^2 + 2)|P$

Usando el algoritmo de división de polinomios, $P = (x^2 + 2)(x^4 + x^3 + 3x^2 + 2x + 2)$

Y por enunciado se que son raíces múltiples, luego se que $(x^2+2)|(x^4+x^3+3x^2+2x+2)$

Usando el algoritmo de división, $P = (x^2 + 2)^2(x^2 + x + 1)$

Defino $g=x^2+x+1$ y busco sus raíces utilizando la resolvente cuadrática.

Obtengo que $g = (x - (-\frac{1}{2} + \frac{\sqrt{3}}{2}i))(x - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i))$

Por lo tanto,

■
$$P = (x - \sqrt{2}i)^2(x + \sqrt{2}i)^2(x - (-\frac{1}{2} + \frac{\sqrt{3}}{2}i))(x - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i))$$
 es la factorización en $\mathbb{C}[x]$

•
$$P = (x^2 + 2)^2(x^2 + x + 1)$$
 es la factorización en $\mathbb{Q}[x]; \mathbb{R}[x]$

Las raíces de P son sus multiplicidades son:

$$\blacksquare mult(\sqrt{2}i, f) = 2$$

•
$$mult(-\frac{1}{2} + \frac{\sqrt{3}}{2}i, f) = 1$$