Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» – Системное и прикладное программное обеспечение

Отчёт

По лабораторной работе №1 «Обработка результатов измерений: статистический анализ числовой последовательности» По моделированию

Вариант: 19

Задание

Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

Содержание отчета

- 1. оценки математического ожидания, дисперсии, среднеквадратического отклонения, коэффициента вариации заданной числовой последовательности и доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99, сведенные в таблицу (форма 1);
- 2. график (график 1) значений заданной числовой последовательности с результатами анализа характера числовой последовательности (возрастающая, убывающая, периодичная и т.п.);
- 3. результаты автокорреляционного анализа (значения коэффициентов автокорреляции со сдвигом 1, 2, 3, ...), представленные как в числовом (форма 3), так и графическом виде, с обоснованным выводом о характере заданной числовой последовательности (можно ли ее считать случайной);
- 4. гистограмма распределения частот для заданной числовой последовательности (график 2);
- 5. параметры, рассчитанные по двум начальным моментам и определяющие вид аппроксимирующего закона распределения заданной случайной последовательности (равномерный; экспоненциальный; нормированный Эрланга; гипоэкспоненциальный; гиперэкспоненциальный);
- 6. *описание алгоритма (программы) формирования* аппроксимирующего закона распределения и расчета значений всех числовых характеристик с иллюстрацией (при защите отчета) его работоспособности;
- 7. выводы по результатам сравнения сгенерированной в соответствии с полученным аппроксимирующим законом распределения последовательности случайных величин и заданной числовой последовательности, а именно:
 - 1. сравнения *плотности распределения* аппроксимирующего закона с *гистограммой распределения* частот для исходной числовой последовательности (график 3);

- 2. расчета числовых характеристик *сгенерированной* в соответствии с аппроксимирующим законом распределения случайной последовательности: математического ожидания, дисперсии, среднеквадратического отклонения, коэффициента вариации (представленные в таблице по форме 2) и коэффициентов автокорреляции при разных значениях сдвигов (в таблице по форме 3), а также сравнения (в %) полученных значений со значениями, рассчитанными для *заданной* числовой последовательности;
- 3. проведения *корреляционного анализа* сгенерированной в соответствии с аппроксимирующим законом распределения последовательности случайных величин и заданной числовой последовательности на основе коэффициента корреляции.
- 8. по каждому из перечисленных выше пунктов отчета должны быть сформулированы результативные выводы и заключения.

Ход работы

Этап 1. Форма №1. Оценки математического ожидания, дисперсии, среднеквадратического отклонения, коэффициента вариации заданной числовой последовательности и доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99, сведенные в таблицу.

Vanasaman		Количество случайных величин										
Характеристика		10	20	50	100	200	300					
Матром	Знач.	125.718	129.050	101.401	104.779	99.451	104.923					
Мат. ож.	%	19.820	22.995	-3.356	-0.137	-5.215	104.923					
Пор. иит. (0.0)	Знач.	61.764	43.877	21.721	15.113	10.461	9.470					
Дов. инт. (0,9)	%	552.177	363.309	129.351	59.580	10.462	9.470					
Пор. ууут (0.05)	Знач.	73.597	52.283	25.882	18.008	12.465	11 205					
Дов. инт. (0,95)	%	552.177	363.309	129.351	59.580	10.462	11.285					
Пор. иит. (0.00)	Знач.	96.722	68.712	34.014	23.667	16.382	14.831					
Дов. инт. (0,99)	%	552.177	363.309	129.351	59.580	10.462	14.651					
Дисперсия	Знач.	14099.984	14231.758	8718.838	8441.928	8089.905	9945.089					
дисперсия	%	41.778	43.103	-12.330	-15.115	-18.654	7743.007					
Cros	Знач.	118.743	119.297	93.375	91.880	89.944	99.725					
С. к. о.	%	19.071	19.626	-6.368	-7.867	-9.808	99.723					
К-т вариации	Знач.	0.945	0.924	0.921	0.877	0.904	0.050					
	%	-0.625	-2.739	-3.116	-7.740	-4.846	0.950					

^{% —} относительные отклонения полученных значений от наилучших значений, полагая, что наилучшими (эталонными) являются значения, рассчитанные для наиболее представительной выборки из трехсот случайных величин.

Вывод из 1 этапа: Дисперсия и среднеквадратическое отклонение убывают с увеличением выборки, это свидетельствует о повышении точности и стабильности статистических оценок, приближающих их к истинным параметрам генеральной совокупности. Коэффициент вариации показывает умеренные изменения, что указывает на относительную стабильность отношения стандартного отклонения к среднему при увеличении выборки.

Этап 2. График №1. Значений заданной числовой последовательности с результатами анализа характера числовой последовательности.

Вывод из 2 этапа: Изучив график, можно сделать вывод, что исходная последовательность не является периодической, возрастающей или убывающей.

Этап 3. Форма 3. Результаты автокорреляционного анализа (значения коэффициентов автокорреляции со сдвигом 1, 2, 3, ...), представленные как в числовом (форма 3), так и графическом виде.

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	-0.0434	-0.0209	-0.0090	0.0066	0.0163	0.0482	0.0003	0.0490	0.0200	-0.0543

Вывод из 3 этапа: Последовательность можно считать случайной так как данные коэффициенты указывают на то, что между числами не было выявлено ни линейной, ни циклической зависимости, нет тенденции и периодичности.

Этап 4. График 2. Гистограмма распределения частот для заданной числовой последовательности (график 2).

	Интервалы																	
№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Левая граница	10.18	47.32	84.45	121.59	158.73	195.86	233.00	270.14	307.27	344.41	381.55	418.68	455.82	492.95	530.09	567.23	604.36	641.50
Правая граница	47.32	84.45	121.59	158.73	195.86	233.00	270.14	307.27	344.41	381.55	418.68	455.82	492.95	530.09	567.23	604.36	641.50	678.64
Частота	109	68	26	27	22	17	9	8	3	5	2	1	1	1	0	0	0	1

Вывод из 4 этапа: Исходя из гистограммы мы можем видеть, что большая часть значений располагается в промежутке от 10.18 до 84.45, еще часть располагается до 381.55 и наименьшая часть значений располагается в диапазоне больше 381.55. Из коэффициента вариации (близок к 1), можно предположить, что закон распределения ЧП – Эрланга.

<u>5 этап.</u> Параметры, рассчитанные по двум начальным моментам и определяющие *вид* аппроксимирующего закона распределения заданной случайной последовательности (равномерный; экспоненциальный; <u>нормированный Эрланга</u>; гипоэкспоненциальный; гиперэкспоненциальный).

Для данной по варианту выборки коэффициент вариации практически равен единице, следовательно, для аппроксимации последовательности будем использовать закон: Эрланга. Значения математического ожидания (t = M(X) = 104.923) и коэффициента вариации v = 0.95) были определены ранее.

$$k = \left| \frac{1}{v^2} \right| = 2$$

где]x[означает ближайшее целое, большее x

Соответственно, получаем следующий аппроксимирующий закон распределения:

$$F(r1,r2) = -\frac{t}{k} * \ln((1-r1)*(1-r2))$$
 где $t-$ математическое ожидание

Вывод из 5 этапа: Исходя из прошлого этапа и вычислений в данном этапе, можем сказать, что аппроксимирующий закон распределения данной ЧП: Эрланга 2-го порядка.

6 этап. Описание алгоритма (программы) формирования аппроксимирующего закона распределения и расчета значений всех числовых характеристик с иллюстрацией (при защите отчета) его работоспособности.

Описание:

Для генерации случайной последовательности используем Excel. В листе Генератор создадим 300 пар случайных чисел (r1, r2) с помощью =СЛМАССИВ(300; 2). Используем эти данные для генерации распределения Эрланга 2-го порядка:

 $=-($H$1/$E$1)*LN((1-\Gamma_{e}+e_{p})*(1-\Gamma_{e}+e_$

Получим числовую последовательность.

Вывод из 6 этапа: Удалось сформировать ЧП по аппроксимирующему закону в Excel и описать алгоритм формирования ЧП.

<u>7 этап. График 3. Форма 2.</u> Выводы по результатам сравнения сгенерированной в соответствии с полученным аппроксимирующим законом распределения последовательности случайных величин и заданной числовой последовательности.

Закон распределения: Эрланга 2-го порядка										
Vanavana	_		Колич	ество случ	найных ве.	личин				
Характеристика		10	20	50	100	200	300			
M	Знач,	125.532	113.581	105.492	105.908	102.140	104.498			
Мат. ож.	%	20.128	8.693	0.952	1.350	-2.256	104.490			
Пор. иит. (0.0)	Знач,	52.416	27.853	18.304	11.714	8.119	6.996			
Дов. инт. (0,9)	%	649.264	298.151	161.653	67.448	16.058	0.990			
Пов. 2222 (0.05)	Знач,	62.458	33.189	21.811	13.958	9.674	9 226			
Дов. инт. (0,95)	%	649.264	298.151	161.653	67.448	16.058	8.336			
Пор. иит. (0.00)	Знач,	82.083	43.618	28.665	18.344	12.714	10.955			
Дов. инт. (0,99)	%	649.264	298.151	161.653	67.448	16.058	10.933			
Пустопоча	Знач,	10154.930	5734.981	6191.944	5071.840	4872.914	5426 602			
Дисперсия	%	87.132	5.683	14.104	-6.537	-10.203	5426.602			
C	Знач,	100.772	75.730	78.689	71.217	69.806	72.665			
С. к. о.	%	36.796	2.802	6.819	-3.324	-5.239	73.665			
К-т вариации	Знач,	0.803	0.667	0.746	0.672	0.683	0.705			
	%	13.875	-5.419	5.812	-4.612	-3.052	0.705			

Математическое ожидание отличается от математического ожидания исходной выборки на величину, не превосходящую доверительные интервалы. Это говорит о том, что аппроксимация выполнена качественно.

При сравнении полученных гистограмм видно, что полученная нами последовательность похожа на исходную. Тем самым, мы доказали, что выбранная нами аппроксимация подходит.

О.10 - Автокорреляционный анализ 0.10 - О.05 - О.00 - О.05 - О.10 - О.15 - О.

Коэффициент автокорреляции интервалов от 1 до 10 приближены к нулю, следовательно, можно сказать, что выборка случайна.

Коэффициент корреляции между двумя числовыми последовательностями:

$$r = \frac{\sum_{i=1}^{n} (x_i - \underline{x})(y_i - \underline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \underline{x})^2 \times \sum_{i=1}^{n} (y_i - \underline{y})^2}} = 0.0182$$

Сдвиг

Для сгенерированной и полученной последовательности мы рассчитали корреляционную зависимость. Корреляция между исходной и сгенерированной случайной последовательностями очень слабая, и это можно расценивать, как независимость.

Вывод из 7 этапа: Сравнение гистограммы распределения частот исходной числовой последовательности и плотности распределения закона Эрланга 2-го порядка показало, что действительно исходная ЧП соотносится с Эрлангом 2-го порядка. Сравнение числовых характеристик исходной и сгенерированной ЧП показало явное сходство характеристик.

Выводы

В рамках лабораторной работы была дана числовая последовательность, для которой были определены математическое ожидание, дисперсия и другие параметры. Далее была проанализирована построенная гистограмма, по которой не было выявлено возрастания, убывания или периодичности последовательности. Исследуемую последовательность можно назвать случайной исходя из автокорреляционного анализа. Затем были вычислены параметры аппроксимирующего закона и по ним в итоге сгенерирована новая последовательность. Коэффициент вариации первой и второй последовательности близится к 1. Коэффициент автокорреляции первой и второй последовательности варьируется около нуля, исходя из этого можно сделать вывод о том, что выборка случайна.