Ferienkurs

Experimentalphysik 2

Sommer 2014

Übung 4 - Angabe

1 Raumschiff

Ein Raumschiff fliegt mit 60% der Lichtgeschwindigkeit an einem Stern vorbei, der sich anschickt als Supernova zu explodieren. Nachdem das Raumschiff den Stern passiert und sich (vom Inertialsystem des Sterns betrachtet) 6 Lichtminuten von ihm entfernt hat, bricht die Supernova aus.

- Zeichnen und beschriften Sie ein Minkowski-Diagramm, das die Situation bezüglich des Inertialsystems des Sterns darstellt. Im Nullpunkt des Diagrams soll sich dabei das Ereignis "Das Raumschiff passiert den Stern" befinden.
- 2. Welche Koordinaten hat der Supernovaausbruch im Inertialsystem des Sterns?
- 3. Berechnen Sie mit Hilfe der Lorentz-Transformation, welche Zeit auf der Raumschiffsuhr zwischen dem Vorbeiflug am Stern und dessen Explosion verstreicht.
- 4. In welcher Entfernung ereignet sich die Supernova vom Raumschiff aus betrachtet?

2 Relativistische Kinematik

In einem Raumschiff, dass sich mit $\frac{5}{13}c$ von der Erde weg bewegt werden verschieden Experimente durchgeführt. In einem ersten Experiment wird der Zerfall eines π^+ - Mesons untersucht. Das π^+ - Meson zerfällt innerhalb von $2,5\cdot 10^{-8}s$ in ein μ^+ - Meson und ein Neutrino. Die kinetische Energie des π^+ - Mesons sei gleich $\frac{2}{3}$ seiner Ruheenergie.

- 1. Geben Sie die Geschwindigkeit des π^+ Mesongs bezüglich des Raumschiffs an.
- Berechnen Sie sodann die Strecke, welche das Meson im Raumschiff zurücklegt, bevor es zerfällt.

In einem zweiten Experiment werden in einem elektrischen Feld Elektronen, Ruheenergie $E_0 = 511 keV$, aus der Ruhe auf $v_2' = \frac{5}{13}c$ relativ zum Raumschiff entgegen der Flugrichtung beschleunigt. Berechnen Sie die Spannung, welche zum Beschleunigen der Elektronen notwendig ist.

3 Sender der Mondlandefähre

Der Sendepol einer Mondlandefähre erzeugt elektromagnetische Wellen, deren maximale elektrische Feldstärke im Abstand $r_1 = 500m$ senkrecht zur Dipolachse $E_1 = 0,4V/m$ beträgt.

1. Für die elektrische und magnetische Energiedichte gilt in diesem Fall:

$$u_E = \frac{1}{2}\varepsilon_0 E^2 = \frac{1}{2\mu_0} B^2 = u_B \tag{1}$$

Was folgt daraus für das Verhältnis E/B, und wie groß ist die maximale magnetische Feldstärke B_1 im Abstand r_1 senkrecht zur Dipolachse?

- 2. Wie groß ist die gesamte maximale Energiedichte $u = u_E + u_B$ in einem Abstand r_2 unter einem Winkel ϑ zur Dipolachse, ausgedrückt durch E_1 und r_1 , und was ist ihr zeitlicher Mittelwert? Wie groß ist dort die mittlere Strahlungsintensität?
- 3. Welche Werte haben die mittleren Strahlungsintensitäten senkrecht zur Dipolachse im Abstand r_1 und auf der Erde ($r_1 = 384000km$)? Welche mittleren Intensitäten erhält man unter einem Winkle von 45° zur Dipolachse?
- 4. Der Empfänger auf der Erde benötigt als Mindesfeldstärle $0, 5\mu V/m$. Kann er die Signale vom Mond senkrecht zur Dipolachse bzw. unter 45° empfangen?

4 Sphärische Welle

In Kugelkoordinaten stellt die sphärische Welle:

$$\vec{E}(t,\vec{r}) = -\frac{\alpha}{r}\sin(\vartheta)\cos(\omega t - kr)\vec{e}_{\vartheta} \quad , \quad \vec{B}(t,\vec{r}) = -\frac{\beta}{r}\sin(\vartheta)\cos(\omega t - kr)\vec{e}_{\varphi}$$
 (2)

mit $\alpha = \beta c$ das Fernfeld eines Hertzschen Dipols dar. Berechnen Sie die mittlere Leistung, die von diesem Dipol durch die Halbsphäre $0 \le \vartheta \le \frac{\pi}{2}$, r = 1km abgestrahlt wird, wenn α den Wert 100 V hat.

Hinweis: Die elektrische Feldkonstante ist $\varepsilon_0 = 8,85 \cdot 10^{-12} C^2/Jm$. Außerdem: $\int_0^{\pi/2} d\vartheta \sin^3 \vartheta = \frac{2}{3}$. Wenn Sie das zeitliche Mittel von $\cos^2(\omega t + \varphi)$ kennen, brauchen Sie es nicht auszurechnen.

5 Verallgemeinerte Wellengleichung

1. Leiten Sie aus den Maxwell-Gleichungen die verallgemeinerte Wellengleichung:

$$\Delta \vec{E} - \frac{1}{c^2} \dot{\vec{E}} = \frac{\sigma}{\varepsilon_0 c^2} \dot{\vec{E}}$$
 (3)

her, die die Ausbreitung des E - Feldes in einem Medium mit Leitfähigkeit $\sigma > 0$ und Ladungsdichte $\rho = 0$ beschreibt. **Hinweis:** In einem solchen Medium gilt zwischen Stromdichte und E - Feld der Zusammenhang $\vec{j} = \sigma \vec{E}$. ε und μ seien 1.

- 2. Lösen Sie die verallgemeinerte Wellenzahl *k* komplex. Bestimmen Sie den Realteil und den Imaginärteil von *k*.
- 3. Betrachten Sie eine elektromagnetische Welle der Frequenz v = 100MHz in Kupfer (Leitfähigkeit $\sigma = 58MS/m$). Berechnen Sie, wie weit die Welle kommt, bevor ihre Feldstärle auf ein e tel ihres Anfangswertes gesunken ist.

6 Polarisation

Beschreiben Sie die Art der Polarisation für die ebenen elektromagnetischen Wellen, die durch die folgenden Gleichungen für das E - Feld beschrieben werden:

- 1. $E_y = E_0 sin(kx \omega t)$, $E_z = 4E_0 sin(kx \omega t)$
- 2. $E_y = -E_0 cos(kx + \omega t)$, $E_z = E_0 sin(kx + \omega t)$
- 3. $E_y=2E_0cos(kx-\omega t+\frac{\pi}{2})$, $E_z=-2E_0sin(kx-\omega t)$