

NP-C: 3 Dimensional Matching

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

3 Dimensional Matching

Dados

3 sets disjuntos X.Y,Z de tamaño n cada uno.

Un set $C \subseteq X,Y,Z$ de triplas ordenadas

Determinar

Si existe un subset de n triplas en C tal que cada elemento de XUYUZ sea contenido exactamente en una de esa triplas?

Ejemplo

Ver si es posible asignar un chofer, auto y pasajeros según preferencias

```
Autos={Fiat, Peugeot, Renault, Volvo, Honda}

Choferes={Ana, Bruno, Clara, Diego, Elvira}

Pasajeros={Alvaro, Belen, Carlos, Daniela, Elias}

Posibles equipos = { (Fiat,Ana,Belen), (Fiat,Bruno,Daniela), (Peugeot,Clara,Carlos), (Peugeot,Diego,Elias), (Peugeot,Elvira,Alvaro), (Renault,Bruno,Daniela), (Renault,Ana,Alvaro), (Renault,Clara,Elias), (Volvo,Diego,Elias), (Honda,Clara,Carlos), (Honda,Clara,Daniela), (Honda,Diego,Alvaro) }
```


Ejemplo (cont)

Posibles equipos = { (Fiat,Ana,Belen), (Fiat,Bruno,Daniela), (Peugeot,Clara,Carlos), (Peugeot,Diego,Elias), (Peugeot,Elvira,Alvaro), (Renault,Bruno,Daniela), (Renault,Ana,Alvaro), (Renault,Clara,Elias), (Volvo,Diego,Elias), (Honda,Clara,Carlos), (Honda,Clara,Daniela), (Honda,Diego,Alvaro) }

Ejemplo (cont)

Posibles equipos = { (Fiat,Ana,Belen), (Fiat,Bruno,Daniela), (Peugeot,Clara,Carlos), (Peugeot,Diego,Elias), (Peugeot,Elvira,Alvaro), (Renault,Bruno,Daniela), (Renault,Ana,Alvaro), (Renault,Clara,Elias), (Volvo,Diego,Elias), (Honda,Clara,Carlos), (Honda,Clara,Daniela), (Honda,Diego,Alvaro) }

3DM: variante de 2DM

2 Dimensional Macthing

(También conocido como bipartite Mathing)

Versión de decisión

Existe un subconjunto de tamaño máximo que empareje a todos los elementos de los 2 conjuntos

Existe un algoritmo polinomial que lo resuelve

Analizamos uno cuando trabajamos redes de flujo

¿3DM ∈ "NP"?

Dado

X,Y,Z conjuntos de n elementos

C=(x,y,z) conjunto de triplas

T certificado, triplas con un subconjunto de C

Podemos certificar en tiempo polinomial

|T| igual a n

Todo elemento en X,Y y Z, se encuentra 1 y solo 1 vez en algun T_i

 \Rightarrow 3DM \in NP

¿3DM ∈ "NP-Hard"?

Probaremos que

La instancia I a un problema de 3DM

Reducción de 3SAT a 3DM

Por cada variable Xi

Crearemos un "gadget" formado por los siguientes elementos: $A_i = \{a_{i,1}, a_{i,2}, \dots, a_{i,2k}\} \quad \leftarrow \text{nucleo del gadget (2k elementos)}$ $B_i = \{b_{i,1}, b_{i,2}, \dots, b_{i,2k}\} \quad \leftarrow \text{puntas del gadget (2k elementos)}$ $A_{i,1} \qquad A_{i,2} \qquad B_{i,2} \qquad B_{i,3} \qquad B_{i,3}$

Variable i: ejemplo para k=2 clausulas

Por cada variable Xi

Crearemos las triplas:

$$t_{ij} = \{a_{i,j}, a_{i,j+1}, b_{i,j}\}$$

Llamaremos

Tripla par, si j es par

Tripla inpar si j es impar

Variable i: ejemplo para k=2 clausulas

Por cada clausula Cj

Crearemos un set de elementos núcleo:

$$Cj = \{p_j, p'_j\}$$

Por cada variable i en la clausula Cj

Si contiene la variable $\bar{x}_i \rightarrow Crearemos un tripla (p_i, p'_i, bi, 2_{i-1})$

Si contiene la variable x_i → Crearemos un tripla (p_i, p'_j,bi,2_j)

Clausula 1: con la variable xi

(cada clausula tendrá 3 triplas)

Si una variable i en la solución esta en 1 (x_i=1)

Las puntas del gadget i correspondientes a su valor 0 estarán cubiertas por las triplas de su nucleo.

Las puntas correspondientes a su valor 1, pueden usarse para activar clausulas

(lo mismo aplica para la variable en 0)

Cada clausula

En total hay 2*n*k puntas, si hay solución

Las triplas de la clausulas cubren k de ellas

Las triplas de los gadget cubren nk puntas

Faltan cubrir (n-1)k puntas

Agregaremos un tipo de gadget

"Cleanup gadgets"

Construiremos (n-1)k

Cleanup gadgets

Cada Cleanup gadget i

Tendrá los elementos $Qi = \{q_i, q_1\}$

Agregaremos las triplas {q_i, q'₁,b} con b son todas las puntas de los gadgets

Ejemplo de cleanup gadget (solo mostrando las triplas en 1 gadget de variable)

Para terminar

Necesitamos construir los conjuntos disjuntos X,Y,Z

Conjunto X

a_{ij} con j par (de los widgets variables)

 \rightarrow nk

p_i (de los widget clausula) → k

 q_i (de los widget cleanups) \rightarrow (n-1)k

Conjunto Z

Todos los b_{ij} (de los widgets variables) $\rightarrow 2nk$

Conjunto Y

a_{ij} con j impar (de los widgets

variables) → nk

p'_i (de los widget clausula) → k

q'_i (de los widget cleanups) → (n-1)k

Triplas "C"

serán todas las triplas definidas

Ejemplo

Ejemplo

3DM es NP-C

Como

Presentación realizada en Junio de 2020