Reductive subgroup schemes of a parahoric group scheme

George McNinch

Department of Mathematics Tufts University

Workshop at Rühr University Bochum - February 2016

Contents

Overview

Levi factors

 $\mu\text{-homomorphisms}$ and centralizers

Outline

Overview

Levi factors

 μ -homomorphisms and centralizers

Local fields

- Notations:
 - ▶ A: complete DVR
 - \triangleright F: fractions of A a "local field"
 - $k = A/\pi A$: residues assumed to be *perfect*
- Examples:
 - "equicharacteristic": A = k[t], F = k((t))
 - ▶ $[F: \mathbf{Q}_p] < \infty$, $A = \text{int. clos. of } \mathbf{Z}_p \text{ in } F$, $k = A/\pi A \simeq \mathbf{F}_q$.
 - ▶ k perfect of char. p > 0, A = W(k) "Witt vectors". Then F has char. 0.

Reductive groups over local fields

- ▶ Let *G* be a reductive algebraic group over a local field *F*.
- ▶ If \mathcal{A} is the ring of integers of F, then G can be viewed as the *generic fiber* of various smooth affine \mathcal{A} -group schemes.
- ▶ For example, if G is *split* over F, then G is the generic fiber of a *split reductive* group scheme over A.
- ▶ There are other natural group schemes \mathcal{P} over \mathcal{A} to with $\mathcal{P}_F = G$ they were studied especially by Bruhat and Tits, and I'll call them the "parahoric group schemes" attached to G.
- ▶ In general a parahoric group scheme \mathcal{P} is not reductive over \mathcal{A} , since its special fiber \mathcal{P}_k is a linear algebraic group over k which need not be reductive.

Target theorem

Let G be a reductive group over a local field F, and suppose that G splits over an unramified extension of F. Let \mathcal{P} be a parahoric group scheme with generic fiber G.

Theorem

There is a reductive A-subgroup scheme $\mathcal{H} \subset \mathcal{P}$ for which \mathcal{H}_F is a reductive subgroup of G containing a maximal torus of G, and \mathcal{H}_k is a Levi factor for \mathcal{P}_k .

Remarks

- 1. In fact, we will be a bit more precise about "which \mathcal{H}_F occur", below.
- 2. And we need to discuss Levi factors in more detail.

Outline

Overview

Levi factors

 μ -homomorphisms and centralizers

Levi factors

Suppose that k is a perfect field, and that H is a linear algebraic group over k.

- Since k is perfect, the unipotent radical R of H is defined over k.
- write $\pi: H \to H/R$ for quotient map.
- ▶ A closed k-subgroup $M \subset H$ is a *Levi factor* of H if $\pi_{|M}: M \to H/R$ is an isomorphism of algebraic groups.
- ▶ If *H* has a Levi factor *M*, then the multiplication map defines an isomorphism from the *semidirect product* to *H*:

$$M \ltimes R \xrightarrow{\sim} H$$

Levi factors: existence?

- ▶ If char. of k is 0, H has a Levi factor, and any two Levi factors are conjugate by an element of H(k).
- Now suppose k has char. p > 0.
- ▶ Let *G* be a reductive group over *k*, and let *V* be a linear representation of *G* (over *k*).
- ▶ The cohom. gp $H^2(G, V)$ is a quotient of the space $Z^2(G, V)$ of all regular 2-cocycles $\alpha : G \times G \rightarrow V$.
- ▶ Given $\alpha \in Z^2(G, V)$, one may construct an algebraic group H_α fitting in a strictly exact seq

(b)
$$0 \rightarrow V \rightarrow H_{\alpha} \rightarrow G \rightarrow 1$$

▶ H_{α} has a Levi factor \iff (\flat) is split \iff 0 = [α] \in $H^2(G, V)$.

Previous results

Theorem (M)

Suppose that G is a reductive group over the local field F, and let \mathcal{P} be a parahoric group scheme associated to G.

- (a) If G splits over an unramified extension of F, the special fiber \mathcal{P}_k has a Levi factor.
- (b) If G is split, any two Levi factors of \mathcal{P}_k are conjugate by an element of $\mathcal{P}(k)$.
- (c) If G splits over a tamely ramified extension of F, the geometric special fiber $\mathcal{P}_{\overline{k}}$ has a Levi factor, where \overline{k} is an algebraic closure of k.

Theorem (M)

If H is a linear algebraic group over k of characteristic p > 0, and if H_{ℓ} has a Levi factor for a finite galois extension $\ell \supset k$ for which $[\ell : k]$ is prime to p, then H has a Levi factor ("over k").

Motivation for our "target theorem"

- In some older work, DeBacker related certain data for G − e.g. rational nilpotent classes and certain maximal tori ("unramified maximal tori") of G − to some data for the reductive quotients of the special fibers of various P for G.
- ► Some of his arguments can be simplified by working with a Levi factor M of \mathcal{P}_k , rather than $\mathcal{P}_k/R_u\mathcal{P}_k$.
- ▶ But it should be better yet to realize *M* as the special fiber of a reductive subgroup scheme.

Motivation for target theorem, continued

Theorem (M)

Let \mathcal{H} be a standard reductive group scheme over \mathcal{A} , let $X \in \text{Lie}(\mathcal{H}_k)$ be a nilpotent element. Then there is a nilpotent section $\widetilde{X} \in \text{Lie}(\mathcal{H})$ and an \mathcal{A} -homomorphism $\phi : \mathbf{G}_m \to \mathcal{H}$ such that X is the image of \widetilde{X} , the centralizer $C_{\mathcal{H}}(\widetilde{X})$ is smooth over \mathcal{A} , ϕ_k is a cocharacter associated to X, and ϕ_F is a cocharacter associated to $X_F \in \text{Lie}(\mathcal{H}_F)$.

Remarks

- 1. I've suppressed the defn of "stndrd"; for ss gps it amounts to requiring the char of both F and k to be very good for the (geom.) root system of \mathcal{H} .
- 2. Recall that "assoc cochars" play the role of \$\(\mathbf{sl}_2\)-triples for reduc gps in pos char.
- 3. If $\mathcal{H} \subset \mathcal{P}$ is a reduc subgp scheme for which $\mathcal{H}_k \subset \mathcal{P}_k$ is a Levi, Thm gives a way to "lift" nilp elts and their assoc cochars from the reductive quotient of \mathcal{P}_k to $\mathcal{H}_F \subset \mathcal{G}_F$.

Outline

Overview

Levi factors

 $\mu\text{-homomorphisms}$ and centralizers

The group scheme μ_n

Fix an integer $n \ge 1$ and let μ_n be the group scheme with coordinate ring $k[\mu_n] = k[T]/\langle T^n - 1 \rangle$.

- if n is invertible in k, then μ_n is smooth and $\mu_n(\ell)$ is the group of n-th roots of unity in ℓ for an extension ℓ of k.
- if $n=p^n$ where p is the char. of k, note that the image u of T-1 in $k[\mu_n]$ is *nilpotent*, hence μ_n is not smooth. In this case,
 - $\mu_n(\ell) = \{1\}$ for any field extension ℓ of k, and
 - Lie(μ_n) $\neq 0$.

μ -homomorphisms

Let G be a connected and reductive group over a field k, and let $\phi: \mu_n \to G$ be a homom of gp schemes over k.

▶ A second homom $\psi: \mu_m \to G$ is equivalent to ϕ provided $\exists N \in \mathbf{Z}$ such that $n \mid N$ and $m \mid N$, and that

$$\mu_N \to \mu_m \xrightarrow{\psi} G$$
 and $\mu_N \to \mu_n \xrightarrow{\phi} G$

coincide.

▶ A μ -homomorphism with values in G is an equivalence class of some ϕ as above.

► Proposition

If ϕ is a μ -homomorphism, there is a max'l k-torus T of G such that ϕ factors through T.

The centralizer of a μ -homomorphism

- ▶ If T is a split torus with character group $Y = X_*(T)$, the collection of μ -homoms with values in T identifies with $Y \otimes \mathbf{Q}/\mathbf{Z}$. (use that $\lim_{n \to \infty} \mathbf{Z}/n\mathbf{Z}$ identifies with \mathbf{Q}/\mathbf{Z}).
- Let T be a split maximal torus in G, let $\Phi \subset X^*(T)$ be the set of roots, and let $x \in Y \otimes \mathbf{Q}$. Then $\overline{x} \in Y \otimes \mathbf{Q}/\mathbf{Z}$ determines a μ -homom $\phi_{\overline{x}}$, and the connected centralizer M_X of the image of $\phi_{\overline{x}}$ in G is the reductive subgroup given by

$$M_x = \langle T, U_\alpha \mid \alpha \in \Phi_x \rangle,$$

where U_{α} is the root subgroup determined by the root α , and

$$\Phi_x = \{ \alpha \in \Phi \mid \langle \alpha, x \rangle \in \mathbf{Z} \}.$$

▶ Indeed, the action of $\phi_{\overline{x}}$ on U_{α} is trivial $\iff \langle \alpha, x \rangle \in \mathbf{Z}$.

A description of Φ_x

- Let $V = Y \otimes \mathbf{Q}$, choose a postive definite W-invariant quadratic form on V
- ▶ For $x \in V$, the root subsystem Φ_x is independent of the W_{aff} -orbit of x.
- Let us suppose that G is split and simple with simple roots $\alpha_1, \ldots, \alpha_\ell$, and write $\alpha_0 = -\widetilde{\alpha}$.
- ▶ The roots $\widetilde{S} = \{\alpha_0, \dots, \alpha_\ell\}$ label the walls of the lowest alcove A for the action of W_{aff} on V.

Description of Φ_{χ} , continued

- ▶ Fix $\varpi_i \in V$ for which $\langle \alpha_i, \varpi_j \rangle = \delta_{i,j}$ "fundamental dominant coweights".
- ▶ Then A is the open simplex defined by 0 and the ϖ_i/n_i where $\widetilde{\alpha} = \sum_i n_i \alpha_i$.
- ▶ A point y in \overline{A} thus has the form $y = \sum_{i=1}^{n} t_i \varpi_i / n_i$ where $0 \le t_i$, $t_i \in \mathbf{Q}$ and $\sum_i t_i \le 1$. The t_i are the Kac coordinates of the point y.

Proposition

Suppose $x \in \overline{A}$. The roots of \widetilde{S} which label those walls of A containing x form a simple system of roots for Φ_x .

▶ This amounts to the *Borel-de Siebenthal* description of the connected centralizer of a semisimple element.

Outline

Overview

Levi factors

 μ -homomorphisms and centralizers

Chevalley systems

Suppose that G is *split* over F and fix a split maximal torus T. Write $\Phi \subset X^*(T)$ for the roots, and for $\alpha \in \Phi$, write U_α for the root subgroup.

- ▶ can choose a "Chevalley system" i.e. a system of F-isomorphisms $x_{\alpha}: \mathbf{G}_{a} \to U_{\alpha}$ for each α with good properties.
- ▶ For each root α , there is an \mathcal{A} -forms \mathcal{U}_{α} of \mathcal{U}_{α} for which

$$x_{\alpha}^{-1}(\mathcal{U}_{\alpha}(\mathcal{A})) = \mathcal{A} \subset \mathcal{F} = \mathbf{G}_{\mathsf{a}}(\mathcal{F}).$$

- ▶ let T be the A-split torus with generic fiber T.
- ▶ then $(\mathcal{T}, (\mathcal{U}_{\alpha})_{\alpha \in \Phi})$ is a schematic root datum which determines a split reductive group scheme \mathcal{G} over \mathcal{A} with $\mathcal{G}_F = \mathcal{G}$.

Parahorics via schematic root data

▶ More generally, given $m \in \mathbf{Q}$ and a root α , there is an \mathcal{A} -form $\mathcal{U}_{\alpha,m}$ of \mathcal{U}_{α} for which

$$x_{\alpha}^{-1}(\mathcal{U}_{\alpha,m}(\mathcal{A})) = v^{-1}([m,\infty)) \subset F$$

where v is the valuation of F.

- e.g. $x_{\alpha}^{-1}(\mathcal{U}_{\alpha,1}(\mathcal{A})) = \pi \mathcal{A}$.
- Recall $V = X_*(T) \otimes \mathbf{Q}$.
- ▶ A point $x \in V$ determines a schematic root datum $(\mathcal{T}, (\mathcal{U}_{\alpha,\langle\alpha,x\rangle})_{\alpha\in\Phi}).$
- ▶ And thus x determines a smooth \mathcal{A} -group scheme \mathcal{P}_x with generic fiber G.
- ▶ The \mathcal{P}_{x} are the parahoric group schemes.

Levi factors

- ▶ The root system of the reductive quotient of $\mathcal{P}_{x,k}$ is Φ_x .
- ▶ $\mathcal{D} = (\mathcal{T}, (\mathcal{U}_{\alpha})_{\alpha \in \Phi_{x}})$ is a schematic root datum for M_{x} , and hence determines a split reductive \mathcal{A} -group scheme \mathcal{M}_{x} with generic fiber M_{x} .
- ▶ in a suitable sense, $\mathcal{D}' = (\mathcal{T}, (\mathcal{U}_{\alpha,\langle \alpha, x \rangle})_{\alpha \in \Phi_x})$ is conjugate to \mathcal{D} .
- ▶ It follows that \mathcal{M}_X embeds in \mathcal{P}_X , hence the "target theorem" follows, at least when G is split.