MCQ: Choose Only One Answer

1. A contraction mapping is superlinear if the rate is

B. zero. C. a negative value. D. greater than zero, but less than 1. **A.** greater than 1.

2. Consider $f(x) = x^2 - 4$. A fixed point function can be constructed from f(x) = 0 which is $g(x) = \frac{4+x}{x+1}$. Which of the following is a fixed point?

A. 4 **B.** 2. **C.** 0. D.

2. ____**B**____

3. For $g(x) = \frac{4+x}{x+1}$, |g'(2)| equals

A. -1. **B.** 1/3 **C.** 3.

3. ____B

4. For $f(x) = x^2 - 4 = 0$, which of the following is a superlinear g(x)?

A. $x + \frac{x^2 - 4}{2x}$. **B.** $x - \frac{x^2 - 4}{2x}$ **C.** $\frac{x^2 - 4}{2x}$. **D.** $x + \frac{x^2 + 4}{x}$.

4. _____B

5. **Problem Solving**: Answer the following:

(a) (3 marks) A fixed-point function $g(x) = \frac{4-x}{x-1}$ has the fixed points ± 2 . Use $x_{k+1} = g(x_k)$ to calculate six iterations (keep upto 3 decimal places) starting from $x_0 = -3.000$. Which root it seems to be converting to or diverging?

Solution: Here, $x_0 = -3.000$. So, the six iterated values are:

k	$g(x_k)$	$x_{k+1} = \frac{4 - x_k}{x_k - 1}$
0	g(-3.00)	-1.750
1	g(-1.750)	-2.091
2	g(-2.091)	-1.971
3	g(-1.971)	-2.010
4	g(-2.010)	-1.997
5	g(-1.997)	-2.001
6	g(-2.001)	-2.000

Hence it seems to be converging to -2.

(b) (3 marks) In Newton's method the fixed point function is expressed as $g(x) = x - \frac{f(x)}{f'(x)}$, where f(x) satisfies $f(x_{\star}) = 0$ (i.e., x_{\star} is a root of f(x)). Verify that the convergence rate λ for the Newton's method is ZERO (i.e., it is superlinear).

Solution: By definition, the convergence rate is given by

$$\lambda = \left| \frac{dg(x)}{dx} \right|_{x=x_{\star}} = \left| \frac{d}{dx} \left(x - \frac{f(x)}{f'(x)} \right) \right|_{x=x_{\star}},$$

$$= \left| 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^{2}} \right|_{x=x_{\star}},$$

$$= \left| 1 - \frac{[f'(x_{\star})]^{2} - f(x_{\star})f''(x_{\star})}{[f'(x_{\star})]^{2}} \right|,$$

$$= \left| 1 - \frac{[f'(x_{\star})]^{2}}{[f'(x_{\star})]^{2}} \right|, \quad \text{(because } f(x_{\star}) = 0),$$

$$= |1 - 1| = 0. \checkmark$$