SIGNAL PROCESSING

FUNDAMENTALS

Through NCERT

G. V. V. Sharma

Copyright ©2024 by G. V. V. Sharma.

https://creative commons.org/licenses/by-sa/3.0/

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

Introd	luction	iii
1 Ar	nalog	1
1.1	Harmonics	1
2 Di	iscrete	3
A A	axioms	5
В Z .	í-transform	7

Introduction

This book introduces some concepts in signal processing through maths and physics problems in NCERT textbooks.

Chapter 1

Analog

1.1. Harmonics

1.1.1 A charged particle oscillates about its mean equilibrium position with a frequency of $10^9 Hz$. What is the frequency of the electromagnetic waves produced by the oscillator? Solution:

Symbol	Value	Description
y(t)	$\cos\left(2\pi f_c t\right)$	Wave equation of electro-magnetic wave
f_c	10^{9}	Frequency of electromagnetic wave
t	seconds	Time

Table 1.1: Variable description

Figure 1.1: $y(t) = \cos(2\pi \times 10^9 t)$

Chapter 2

Discrete

Appendix A

Axioms

Appendix B

Z-transform

B.1 The Z-transform of p(n) is defined as

$$P(z) = \sum_{n = -\infty}^{\infty} p(n)z^{-n}$$
(B.1.1)

B.2 If

$$p(n) = p_1(n) * p_2(n), (B.2.1)$$

$$P(z) = P_1(z)P_2(z)$$
 (B.2.2)

The above property follows from Fourier analysis and is fundamental to signal processing.

B.3 For a Geometric progression defined as follows

$$x(n) = x(0) r^n u(n)$$
(B.3.1)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
(B.3.2)

$$= \sum_{n=0}^{\infty} x(0) r^n z^{-n}$$
 (B.3.3)

$$= \sum_{n=0}^{\infty} x(0) (rz^{-1})^n$$
 (B.3.4)

$$= \frac{x(0)}{1 - rz^{-1}} \qquad |rz^{-1}| < 1 \qquad (B.3.5)$$

$$ROC \implies |z| > |r|$$
 (B.3.6)

B.4 For a given Arithmetic progression defined as follows

$$x(n) = [x(0) + nd] u(n)$$
(B.4.1)

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$
(B.4.2)

$$= \sum_{n=-\infty}^{\infty} [x(0) + nd] u(n) z^{-n}$$
 (B.4.3)

$$= x(0) \sum_{n=-\infty}^{\infty} u(n)z^{-n} + d \sum_{n=-\infty}^{\infty} nu(n)z^{-n}$$
 (B.4.4)

Let us consider

$$U(z) = \sum_{n=-\infty}^{\infty} u(n)z^{-n} = \frac{1}{1-z^{-1}}$$
 For $|z| > 1$ (B.4.5)

$$\frac{dU(z)}{dz} = \frac{-1}{z} \sum_{n=-\infty}^{\infty} nu(n)z^{-n}$$
(B.4.6)

$$\implies z^{-1} \frac{1}{(1 - z^{-1})^2} = \sum_{n = -\infty}^{\infty} nu(n)z^{-n}$$
(B.4.7)

$$\implies X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2} \qquad \text{For } |z| > 1$$
 (B.4.8)