```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
```

In [2]: data=pd.read_csv('Sales Data.csv',encoding='unicode_escape')
 data.shape

Out[2]: (11251, 15)

In [3]: data.head()

Out[3]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	W
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	So
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	(
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	So
4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	W

In [4]: #we can check or get the information about the data
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11251 entries, 0 to 11250
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	User_ID	11251 non-null	int64
1	Cust_name	11251 non-null	object
2	Product_ID	11251 non-null	object
3	Gender	11251 non-null	object
4	Age Group	11251 non-null	object
5	Age	11251 non-null	int64
6	Marital_Status	11251 non-null	int64
7	State	11251 non-null	object
8	Zone	11251 non-null	object
9	Occupation	11251 non-null	object
10	Product_Category	11251 non-null	object
11	Orders	11251 non-null	int64
12	Amount	11239 non-null	float64
13	Status	0 non-null	float64
14	unnamed1	0 non-null	float64
	63		

dtypes: float64(3), int64(4), object(8)

memory usage: 1.3+ MB

```
In [5]:
        #drop not related/blank columns
        data.drop(['Status','unnamed1'],axis=1,inplace=True)
        #Now we are getting the 12 columns only
In [6]:
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 11251 entries, 0 to 11250
        Data columns (total 13 columns):
             Column
                               Non-Null Count Dtype
             _ _ _ _ _
                               -----
                                               ----
         0
             User ID
                               11251 non-null int64
         1
             Cust name
                               11251 non-null object
         2
             Product ID
                               11251 non-null object
         3
                               11251 non-null object
             Gender
         4
             Age Group
                               11251 non-null object
         5
                               11251 non-null int64
             Age
         6
             Marital Status
                               11251 non-null int64
         7
                               11251 non-null object
             State
         8
             Zone
                               11251 non-null object
```

11251 non-null object

11251 non-null int64

11239 non-null float64

dtypes: float64(1), int64(4), object(8)

10 Product Category 11251 non-null object

memory usage: 1.1+ MB

Occupation

Orders

Amount

In [7]: |pd.isnull(data)

9

11

12

Out[7]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
11246	False	False	False	False	False	False	False	False	False
11247	False	False	False	False	False	False	False	False	False
11248	False	False	False	False	False	False	False	False	False
11249	False	False	False	False	False	False	False	False	False
11250	False	False	False	False	False	False	False	False	False

11251 rows × 13 columns

```
#checking for the null values
 In [8]:
         pd.isnull(data).sum()
 Out[8]: User ID
                               0
                               0
         Cust name
                               0
         Product ID
         Gender
                               0
         Age Group
                               0
         Age
                               0
         Marital_Status
                               0
         State
                               0
         Zone
                               0
                               0
         Occupation
         Product_Category
                               0
         Orders
                               0
         Amount
                              12
         dtype: int64
 In [9]: |#So, we are now deleting the null values in from the data set
         data.dropna(inplace=True)
In [10]: | data.shape
Out[10]: (11239, 13)
         data['Amount']=data['Amount'].astype('int')
In [12]: | data['Amount'].dtypes
Out[12]: dtype('int32')
In [13]: data.columns
Out[13]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                 'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Categor
         у',
                 'Orders', 'Amount'],
                dtype='object')
```

In [14]: #describe() method returns description of the data in the dataframe (i.e. co data.describe()

Out[14]:

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

Analysing the Data set

Gender column Analysis

```
In [15]: gen=sns.countplot(x='Gender',data=data)
```

for i in gen.containers:
 gen.bar_label(i)


```
In [16]: #analysing the Sales by Gender
gender_sales=data.groupby(['Gender'],as_index=False)['Amount'].sum().sort_v
```

In [17]: gender_sales

Out[17]:

	Gender	Amount		
0	F	74335853		
1	М	31913276		

So, From here we are getting that females are doing more shoping than males.

Ages

```
In [18]: sns.countplot(data=data, x='Age Group',hue='Gender')
```

Out[18]: <Axes: xlabel='Age Group', ylabel='count'>


```
In [19]: #Sales by Age Groups
sales_Age=data.groupby(['Age Group'],as_index=False)['Amount'].sum().sort_value
sns.barplot(x='Age Group',y='Amount',data=sales_Age)
```

Out[19]: <Axes: xlabel='Age Group', ylabel='Amount'>

So, Here we can see that most of the buyers are between the age of 26-35 Age Group

Sate wise analysis

```
In [20]: sate_sales=data.groupby(['State'],as_index=False)['Orders'].sum().sort_value
    sns.set(rc={'figure.figsize':(15,5)})
    sns.barplot(data=sate_sales,x='State',y='Orders')
```

Out[20]: <Axes: xlabel='State', ylabel='Orders'>

Marital Status

```
In [21]: ma=sns.countplot(data=data,x='Marital_Status')
    sns.set(rc={'figure.figsize':(7,5)})
    for i in ma.containers:
        ma.bar_label(i)
```



```
In [22]: ma=data.groupby(['Marital_Status','Gender'],as_index=False)['Amount'].sum()
    sns.set(rc={'figure.figsize':(7,5)})
    sns.barplot(data=ma,x='Marital_Status',y='Amount',hue='Gender')
```

Out[22]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

from above graph we can see that most of thr buyers are married (women) and the have High Purchasing power.

Occupations Analysis

```
In [23]: sns.set(rc={'figure.figsize':(20,5)})
    ac=sns.countplot(data=data,x='Occupation')

for i in ac.containers:
    ac.bar_label(i)
```



```
In [24]: sate_sales=data.groupby(['Occupation'],as_index=False)['Amount'].sum().sort
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data=sate_sales,x='Occupation',y='Amount')
```


from the above graphwe can say that most of the buyers are from Healthcare and IT Sector.

Product Category Analysis

```
In [25]: sns.set(rc={'figure.figsize':(20,8)})
    ac=sns.countplot(data=data,x='Product_Category')
    for i in ac.containers:
        ac.bar_label(i)
```



```
In [26]: sate_sales=data.groupby(['Product_Category'],as_index=False)['Amount'].sum(
    sns.set(rc={'figure.figsize':(20,5)})
    sns.barplot(data=sate_sales,x='Product_Category',y='Amount')
```


from the above graphwe can say that most of the buyers are from Food and Clothing & Apparel.

Conclusion-

As we can see in the above analysis that most of the married womens in age group of 26-35 years are purchasing the High amount of Products and most of the purchase is done from the U.P., Maharastra, Karnataka in Healthcare, IT and Aviation Sector. The most purchased products are Food, Clothing and Electronics items.

Ву-