Machine Learning for Engineering and Science Applications

Numerical Optimization
Gradient Descent

Need for Numerical Optimization

- Optimization we saw so far was analytical.
- This requires explicit expressions for the objective function in terms of the features (variables).
 - Example : $J(x) = x_1^2 + x_2^2 + x_3^2 + 4$
- However, usually we only know the function as a "black" box.
 - In machine learning this "black box" is our Machine Learning Model (e.g. Neural network)
- So, we have to develop numerical (rather than analytical techniques)

Iterative optimization -- Fundamental idea

- We want to drive $\nabla_x J$ to 0 but we do not have an analytical expression.
- Guess for x
- However, usually we only know the function as a "black" box.
 - In machine learning this "black box" is our Machine Learning Model (e.g. Neural network)
- So, we have to develop numerical (rather than analytical techniques)

Optimization

- The general optimization task is to maximize or minimize a function f(x) by varying x.
 - \Box The function f(x) is called the objective function or cost function or loss function
 - \Box The function f(x) maybe a scalar (single objective) or a vector (multi-objective)
 - In this course (and most of Machine Learning) we deal only with a single objective. That is, f(x) is a scalar.
 - However, x is, in general, a vector.
 - \Box Therefore, $f: \mathbb{R}^n \to \mathbb{R}$
 - □ For example, $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$. Here, $f: \mathbb{R}^3 \to \mathbb{R}$
- It is possible to reduce all optimization problems to minimization problems.
 - \Box That is, all problems can be written as find x that minimizes f(x)
 - \Box Any maximization problem can be written as minimization of -f(x)
- We denote the solution to the problem as $x^* = \arg \min f(x)$

Optimization – Scalar x

- We will look at the unconstrained problem. That is, find x that minimizes f(x) with $x \in \mathbb{R}$. That is, no constraints on x.
- It can be shown that any local extremum will have the property f'(x) = 0
 - Such points are called stationary points or critical points.
 - The stationary point may be a (local) minimum, maximum or saddle point
- If f''(x) > 0, it is a local minimum
- If f''(x) < 0, it is a local maximum
- If f''(x) = 0, it could be a saddle point
- The absolute lowest/highest level of f(x) is called the global maximum/minimum

Optimization – Multivariate x

- In this case the unconstrained optimization problem is to find x that minimizes f(x) with $x \in \mathbb{R}^n$. That is, there are no constraints on x.
- Since x is now a vector quantity, we need to evaluate the gradient $\frac{\partial f}{\partial \mathbf{x}} \equiv \nabla_x f$
 - It can be shown that any local extremum will have the property $\nabla_{\mathbf{x}} f = \mathbf{0}$
 - Such points are called stationary points or critical points.
 - The stationary point may be a (local) minimum, maximum or saddle point
- The type of critical point is decided by the nature of the Hessian $H_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$
- If $H_{i,j}$ is positive definite it is a local minimum
- If $H_{i,j}$ is negative definite it is a local maximum
- If $H_{i,j}$ is indefinite (i.e. neither p.d or n.d) then it is a saddle point