Using network theory to detect concept drift

Ezra Nwobodo

University of Bristol

March 22, 2024

Overview

- Introduction
- 2 Spectral Embedding
- Toy Model
- 4 Conclusion

What is concept drift and why is it important?

• The underlying distribution of data changes over time.

What is concept drift and why is it important?

- The underlying distribution of data changes over time.
- Can help us better understand data dynamics.

What is concept drift and why is it important?

- The underlying distribution of data changes over time.
- Can help us better understand data dynamics.
- Can degrade the performance of a predictive model.

Illustrative example: Clustering in Customer Purchase Data

- C_{t_1} and C_{t_2} represent the clustering configurations at times 1 and 2.
- We say that concept drift has occurred if

$$\mathbf{C}_{t_1} \neq \mathbf{C}_{t_2}$$
.

Illustrative example: Clustering in Customer Purchase Data

- C_{t_1} and C_{t_2} represent the clustering configurations at times 1 and 2.
- We say that concept drift has occurred if

$$\mathbf{C}_{t_1} \neq \mathbf{C}_{t_2}$$
.

 Detection and adaptation to concept drift ensures that strategies are up-to-date.

Unsupervised Concept Drift

• Between times t_0 and t_1 we observe concept drift if, for n-dimensional data ${\bf X}$,

$$\mathbb{P}_{t_0}(\mathbf{X}) \neq \mathbb{P}_{t_1}(\mathbf{X}).$$

5/21

Unsupervised Concept Drift

• Between times t_0 and t_1 we observe concept drift if, for n-dimensional data ${\bf X}$,

$$\mathbb{P}_{t_0}(\mathbf{X}) \neq \mathbb{P}_{t_1}(\mathbf{X}).$$

ullet No response variable Y - lack of a clear signal.

Unsupervised Concept Drift

• Between times t_0 and t_1 we observe concept drift if, for n-dimensional data ${\bf X}$,

$$\mathbb{P}_{t_0}(\mathbf{X}) \neq \mathbb{P}_{t_1}(\mathbf{X}).$$

- ullet No response variable Y lack of a clear signal.
- Difficult for the model to adapt.

Complications from High-Dimensional Data

• The curse of dimensionality

6/21

Complications from High-Dimensional Data

- The curse of dimensionality
- Interpretability

6/21

Existing methods

In the context of unsupervised learning with high-dimensional data:

• Lack of interpretable methods for visualising concept drift, especially for visualising the drift between all covariates at once.

• A network that discretely changes over time with n nodes (covariates).

- A network that discretely changes over time with n nodes (covariates).
- ullet Adjacency matrix $\mathbf{A}^{(t)} \in \mathbb{R}^{n imes n}$,
- $\mathbf{A}_{ij}^{(t)} = Cov(\mathbf{c}_i, \mathbf{c}_j)$ at time t with $\mathbf{c}_1, \dots, \mathbf{c}_n \in \mathbb{R}^m$, representing m observations.

9 / 21

- Dimensionality reduction technique.
- *d*-dimensional representation of data.
- Embed adjacency matrices at different time points while maintaining stability.

- Dimensionality reduction technique.
- *d*-dimensional representation of data.
- Embed adjacency matrices at different time points while maintaining stability.
- Extension of singular value decomposition (SVD).

• Define the *unfolding* $\mathbf{A} = [\mathbf{A}^{(1)}| \cdots | \mathbf{A}^{(T)}] \in \mathbb{R}^{n \times nT}$,

11/21

- Define the *unfolding* $\mathbf{A} = [\mathbf{A}^{(1)}| \cdots | \mathbf{A}^{(T)}] \in \mathbb{R}^{n \times nT}$,
- Compute the (truncated) singular value decomposition:

$$\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top},$$

- Define the *unfolding* $\mathbf{A} = [\mathbf{A}^{(1)}| \cdots | \mathbf{A}^{(T)}] \in \mathbb{R}^{n \times nT}$,
- Compute the (truncated) singular value decomposition:

$$\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top},$$

 $oldsymbol{\Sigma}_{oldsymbol{A}} \in \mathbb{R}^{d imes d}$ diagonal and contains the d largest singular values of $oldsymbol{A}$,

11/21

- Define the unfolding $\mathbf{A} = [\mathbf{A}^{(1)}| \cdots | \mathbf{A}^{(T)}] \in \mathbb{R}^{n \times nT}$,
- Compute the (truncated) singular value decomposition:

$$\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top},$$

- $\Sigma_{\mathbf{A}} \in \mathbb{R}^{d \times d}$ diagonal and contains the d largest singular values of \mathbf{A} ,
- $\mathbf{U}_{\mathbf{A}} \in \mathbb{O}^{n \times d}$ and $\mathbf{V}_{\mathbf{A}} \in \mathbb{O}^{nT \times d}$ contain the left and right singular vectors respectively.

$$\mathbf{A} pprox \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{ op} =$$

12 / 21

$$\mathbf{A} pprox \mathbf{U_A} \mathbf{\Sigma_A} \mathbf{V_A}^{ op} = \mathbf{U_A} \mathbf{\Sigma_A}^{1/2} \mathbf{\Sigma_A}^{1/2} \mathbf{V_A}^{ op}$$

12 / 21

$$\mathbf{A} pprox \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{ op} = \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{V}_{\mathbf{A}}^{ op} = \hat{\mathbf{X}} \hat{\mathbf{Y}}^{ op}$$

$$\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top} = \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{V}_{\mathbf{A}}^{\top} = \hat{\mathbf{X}} \hat{\mathbf{Y}}^{\top}$$

• Embedding: $\hat{\mathbf{Y}} = \mathbf{V_A} \mathbf{\Sigma_A}^{1/2} \in \mathbb{R}^{nT \times d}$.

12 / 21

$$\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top} = \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{V}_{\mathbf{A}}^{\top} = \hat{\mathbf{X}} \hat{\mathbf{Y}}^{\top}$$

- $oldsymbol{f \Psi}$ Embedding: $\hat{f Y} = {f V_A} {f \Sigma}_{f A}^{1/2} \in \mathbb{R}^{nT imes d}$.
- ullet Divide $\hat{\mathbf{Y}}$ into T blocks $\hat{\mathbf{Y}}^{(t)}$,

$$\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top} = \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{\Sigma}_{\mathbf{A}}^{1/2} \mathbf{V}_{\mathbf{A}}^{\top} = \hat{\mathbf{X}} \hat{\mathbf{Y}}^{\top}$$

- Embedding: $\hat{\mathbf{Y}} = \mathbf{V_A} \mathbf{\Sigma_A}^{1/2} \in \mathbb{R}^{nT \times d}$.
- ullet Divide $\hat{\mathbf{Y}}$ into T blocks $\hat{\mathbf{Y}}^{(t)}$,
- ullet Rows $\hat{\mathbf{Y}}_i$ of each block are the d-dimensional points to be plotted to represent the drift at time t.

Dynamic Stochastic Block Model

Toy Model

Connection probabilities:

$$\mathbf{B}^{(1)} = \begin{pmatrix} 0.24 & 0.06 & 0.54 & 0.06 \\ 0.06 & 0.60 & 0.12 & 0.06 \\ 0.54 & 0.12 & 0.06 & 0.10 \\ 0.06 & 0.06 & 0.10 & 0.18 \end{pmatrix}, \ \mathbf{B}^{(2)} = \begin{pmatrix} 0.48 & 0.48 & 0.12 & 0.06 \\ 0.48 & 0.48 & 0.12 & 0.06 \\ 0.12 & 0.12 & 0.27 & 0.10 \\ 0.06 & 0.06 & 0.10 & 0.18 \end{pmatrix}.$$

Toy Model

Connection probabilities:

$$\mathbf{B}^{(1)} = \begin{pmatrix} 0.24 & 0.06 & 0.54 & 0.06 \\ 0.06 & 0.60 & 0.12 & 0.06 \\ 0.54 & 0.12 & 0.06 & 0.10 \\ 0.06 & 0.06 & 0.10 & 0.18 \end{pmatrix}, \ \mathbf{B}^{(2)} = \begin{pmatrix} 0.48 & 0.48 & 0.12 & 0.06 \\ 0.48 & 0.48 & 0.12 & 0.06 \\ 0.12 & 0.12 & 0.27 & 0.10 \\ 0.06 & 0.06 & 0.10 & 0.18 \end{pmatrix}.$$

• At t=2 communities 1 and 2 have merged.

14 / 21

Toy Model

Connection probabilities:

$$\mathbf{B}^{(1)} = \begin{pmatrix} 0.24 & 0.06 & 0.54 & 0.06 \\ 0.06 & 0.60 & 0.12 & 0.06 \\ 0.54 & 0.12 & 0.06 & 0.10 \\ 0.06 & 0.06 & 0.10 & 0.18 \end{pmatrix}, \ \mathbf{B}^{(2)} = \begin{pmatrix} 0.48 & 0.48 & 0.12 & 0.06 \\ 0.48 & 0.48 & 0.12 & 0.06 \\ 0.12 & 0.12 & 0.27 & 0.10 \\ 0.06 & 0.06 & 0.10 & 0.18 \end{pmatrix}.$$

- At t=2 communities 1 and 2 have merged.
- Community 4 has same connection probabilities.

14 / 21

What makes a successful embedding?

- Cross-sectional stability: The embeddings for communities 1 and 2 at time 2 are close.
- Longitudinal stability: The embeddings for community 4 at times 1 and 2 are close.

Generating our data frames

Input: Connection matrices $\mathbf{B}^{(1)}$ and $\mathbf{B}^{(2)}$.

Output: Data frames $\mathbf{D}^{(1)}$, $\mathbf{D}^{(2)} \in \mathbb{R}^{m \times n}$.

Generating our data frames

Input: Connection matrices $\mathbf{B}^{(1)}$ and $\mathbf{B}^{(2)}$. **Output:** Data frames $\mathbf{D}^{(1)}$, $\mathbf{D}^{(2)} \in \mathbb{R}^{m \times n}$.

1: Divide covariates into k = 4 communities

- 1: Divide covariates into k = 4 communities
- 2: Use connection probabilities to simulate adjacency matrix $\mathbf{C}^{(1)}$ where $\mathbf{C}_{ij}^{(1)}=1$ if and only if \mathbf{c}_i and \mathbf{c}_j are connected

- 1: Divide covariates into k = 4 communities
- 2: Use connection probabilities to simulate adjacency matrix $\mathbf{C}^{(1)}$ where $\mathbf{C}_{ij}^{(1)}=1$ if and only if \mathbf{c}_i and \mathbf{c}_j are connected
- 3: **for** observation $k \in [m]$ **do**
- 4: Simulate $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$

- 1: Divide covariates into k = 4 communities
- 2: Use connection probabilities to simulate adjacency matrix $\mathbf{C}^{(1)}$ where $\mathbf{C}_{ij}^{(1)}=1$ if and only if \mathbf{c}_i and \mathbf{c}_j are connected
- 3: **for** observation $k \in [m]$ **do**
- 4: Simulate $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$
- 5: for $i \in [n]$ do
- 6: $\mathbf{D}_{k,i}^{(t)} = \sum_j \mathbf{x}_j$ for j where \mathbf{c}_i and \mathbf{c}_j are connected

- 1: Divide covariates into k = 4 communities
- 2: Use connection probabilities to simulate adjacency matrix $\mathbf{C}^{(1)}$ where $\mathbf{C}_{ij}^{(1)}=1$ if and only if \mathbf{c}_i and \mathbf{c}_j are connected
- 3: **for** observation $k \in [m]$ **do**
- 4: Simulate $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$
- 5: for $i \in [n]$ do
- 6: $\mathbf{D}_{k,i}^{(t)} = \sum_j \mathbf{x}_j$ for j where \mathbf{c}_i and \mathbf{c}_j are connected
- 7: end for
- 8: end for

Computing the embedding

- Separately compute $Cov(\mathbf{D}^{(1)})$ and $Cov(\mathbf{D}^{(2)})$.
- Let $\mathbf{A}^{(1)} = \mathsf{Hollow}(Cov(\mathbf{D}^{(1)}))$ and $\mathbf{A}^{(2)} = \mathsf{Hollow}(Cov(\mathbf{D}^{(2)}))$ be our adjacency matrices.

Ezra Nwobodo Detecting concept drift March 22, 2024

Computing the embedding

- Separately compute $Cov(\mathbf{D}^{(1)})$ and $Cov(\mathbf{D}^{(2)})$.
- Let $\mathbf{A}^{(1)} = \mathsf{Hollow}(Cov(\mathbf{D}^{(1)}))$ and $\mathbf{A}^{(2)} = \mathsf{Hollow}(Cov(\mathbf{D}^{(2)}))$ be our adjacency matrices.
- Column concatenate: $\mathbf{A} = [\mathbf{A}^{(1)}|\mathbf{A}^{(2)}] \in \mathbb{R}^{n \times 2n}$.
- Compute truncated (d-dimensional) SVD: $\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top} = \hat{\mathbf{X}} \hat{\mathbf{Y}}^{\top}$.

17/21

Computing the embedding

- Separately compute $Cov(\mathbf{D}^{(1)})$ and $Cov(\mathbf{D}^{(2)})$.
- Let $\mathbf{A}^{(1)} = \mathsf{Hollow}(Cov(\mathbf{D}^{(1)}))$ and $\mathbf{A}^{(2)} = \mathsf{Hollow}(Cov(\mathbf{D}^{(2)}))$ be our adjacency matrices.
- Column concatenate: $\mathbf{A} = [\mathbf{A}^{(1)}|\mathbf{A}^{(2)}] \in \mathbb{R}^{n \times 2n}$.
- Compute truncated (*d*-dimensional) SVD: $\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Sigma}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\top} = \hat{\mathbf{X}} \hat{\mathbf{Y}}^{\top}$.
- Plot first 2 entries for each row of $\hat{\mathbf{Y}}^{(1)}$ and $\hat{\mathbf{Y}}^{(2)}$.

Stability of UASE

Comparison: Independent Spectral Embedding

Under some assumptions, you can prove:

Under some assumptions, you can prove:

• The cross sectional, and longitudinal stability of UASE.

20 / 21

Under some assumptions, you can prove:

- The cross sectional, and longitudinal stability of UASE.
- That each embedding $\hat{\mathbf{Y}}^{(t)}$ converges to some underlying 'true' or 'noise-free' $\tilde{\mathbf{Y}}^{(t)}$ as the size of n increases, up to rotation.

Under some assumptions, you can prove:

- The cross sectional, and longitudinal stability of UASE.
- That each embedding $\hat{\mathbf{Y}}^{(t)}$ converges to some underlying 'true' or 'noise-free' $\tilde{\mathbf{Y}}^{(t)}$ as the size of n increases, up to rotation.
- That the points point clouds converge to a multivariate Gaussian distribution.

