HW 4: PMATH 945

Due Feb. 21 at 11:59 pm

(1) An element $m \in M$ of a module over an integral domain A is called torsion if am = 0 for some $a \in A - \{0\}$. A module is called torsion if every element of it is torsion, and torsion-free if no non-zero element of it is torsion.

Assume X is an integral locally Noetherian scheme. Call a quasicoherent sheaf \mathcal{F} on X torsion (torsion-free) if its stalk \mathcal{F}_p at every point $p \in X$ is a torsion (torsion-free) $\mathcal{O}_{X,p}$ -module.

- (a) Prove that every quasi-coherent sheaf \mathcal{F} has a unique subsheaf \mathcal{F}_{tors} such that \mathcal{F}_{tors} is torsion and $\mathcal{F}/\mathcal{F}_{tors}$ is torsion-free.
- (b) Prove that the following are equivalent:
 - (i) \mathcal{F} is torsion-free
 - (ii) Ass_X \mathcal{F} , the set of associated points to \mathcal{F} , only contains the generic point η of X
 - (iii) for all non-empty open sets U, the map $\mathcal{F}(U) \to \mathcal{F}_{\eta}$ is injective
- (c) Prove that the following are equivalent:
 - (i) \mathcal{F} is torsion
 - (ii) Ass_X \mathcal{F} , the set of associated points to \mathcal{F} , does not contain the generic point η of X
 - (iii) $\mathcal{F}_{\eta} = 0$
- (2) Let X be a Noetherian scheme.
 - (a) Show that $\mathfrak{N}(U) = \{ f \in \mathcal{O}_X(U) \mid f^n = 0 \text{ for some } n \}$ is a coherent sheaf.
 - (b) Show that $X \{ \operatorname{Supp}(\mathfrak{N}) \}$ is a reduced scheme.
 - (c) Show that any embedded point in $\operatorname{Ass}_X \mathcal{O}_X$ lies in $\operatorname{Supp}(\mathfrak{N})$ (Vakil gives a long hint on pg. 195. I think a better hint is to think about how the vanishing locus V(f) and support $\operatorname{Supp} f$ of $f \in \mathcal{O}_X(U)$ compare).