Week 6: Evaluation

Assignment 1: Test Collections

a) Find three other test collections used for information retrieval evaluation in the literature and describe them (number of documents, number of queries, how relevance was assessed).

Collection	Documents	Queries	Relevance assessment
Cranfield 2 (1962)	1,400	225	Manually-rated references
ADI (1968)	82	35	Manual binary rating, based on abstracts
IRE-3 (1968)	780	34	Manual binary rating, based on abstracts

"Doubt in relevance decisions was usually settled by accepting the document as relevant."

Sources:

"Test Collection Based Evaluation of Information Retrieval Systems" by Mark Sanderson http://www-nlpir.nist.gov/projects/irlib/pubs/irs13/irs13_text/p1-09.txt

Assignment 2: Measures

Compute the following evaluation measures:

a) Precision and recall Precision: 6 / 10 = 0.6 Recall: 6 / 40 = 0.15

b) Precision at 7 and recall at 7 Precision at 7: 4 / 7 = 0.57 Recall at 7: 4 / 40 = 0.1

c) MAP

MAP / average precision: (1 + 2/3 + 3/4 + 4/7 + 5/9 + 6/10) / 6 = 0.69

d) NDCG (assume binary gain value)

DCG: $1 + 1/\log_2(3) + 1/\log_2(4) + 1/\log_2(7) + 1/\log_2(9) + 1/\log_2(10) = 3.10$

Perfect ranking: 1, 1, 1, 1, 1, 1, 0, 0, 0, 0

Ideal DCG: $1 + 1/\log_2(2) + 1/\log_2(3) + 1/\log_2(4) + 1/\log_2(5) + 1/\log_2(6) = 3.95$

NDCG: 3.10 / 3.95 = 0.78

Stefan Bunk 756006 Franz Liedke 757081 Cornelius Bock 754432

Assignment 3: (Programming) Evaluation

Print the ranking of Wikipedia titles in your development set together with its NDCG values for the queries:

*a) "Anschluss"*Anschluss (Soziologie)
Ang Lee
Anschlussfähigkeit

nDCG@10: 1.0

b) "Soziologie"
Anschluss (Soziologie)

nDCG@10: 0.0

The (questionable) NDCG rating of 1.0 in a) is caused by our filtering: We throw away all results in the "ideal" list that do not appear in our results.