Leinster - Basic Category Theory - Selected problem solutions for Chapter 2

Adam Barber

October 26, 2021

2.1.16

(a) Interesting adjoint functors to G-sets.

The trivial group functor I sends a set to a **G**-set with the trivial action gx = x. Interesting functors

Orbit functor sends a G-set with underlying set elements a of A to:

$$A_G = \{g \cdot a, g \in G\}$$

Fixed point functor sends a G-set with underlying set elements a of A to:

$$A^G = \{a \text{ such that } g \cdot a = a \text{ for all } g \in G, a \in A\}$$

Fixed point functor - right adjoint Morphisms in a G-set are functions on the underlying set, where f commutes with g for every $g \in G$.

There is a bijection for each $A \in \mathbf{Set}$ and $B \in [G, \mathbf{Set}]$ as follows

$$[G,\mathbf{Set}](I(A),B) \to \mathbf{Set}(A,B^G)$$

 $\psi \mapsto \overline{\psi}$

 $\overline{\psi}$ sends each element a of A to $\psi(a)$ if $g \cdot a = a$, otherwise it sends a to $\psi(\emptyset)$.

$$\mathbf{Set}(A, B^G) \to [G, \mathbf{Set}](I(A), B)$$

 $\phi \mapsto \overline{\phi}$

 ϕ sends each $a\in A$ in the underlying set of the G-set to the G-set $(g,\overline{\phi}(a)),g\in G.$

Orbit functor - left adjoint There is a bijection for each $A \in \mathbf{Set}$ and $B \in [G, \mathbf{Set}]$ as follows

$$\mathbf{Set}(A_G,B) \to [G,\mathbf{Set}](A,I(B))$$

$$\psi \mapsto \overline{\psi}$$

So each morphism in **Set** sends the orbit set of an element a of A, call it a_G , to $\psi(a_G)$, where ψ is a function of sets. Set G-set morphism to $\overline{\psi} = \psi$, where $\overline{\psi}$ commutes with g for every g in G.

$$[G,\mathbf{Set}](A,I(B))\to\mathbf{Set}(A_G,B)$$

$$\phi\mapsto\overline{\phi}$$

Choose $\overline{\phi}$ to be a disjoint union of each orbit of a in A, $\overline{\phi}(a) = \coprod \{\phi(a), g \cdot a, g \in G\}$