Wellennachweis - Absatz

Geometrie an der Stelle 102 mm der Antriebswelle

 $\begin{array}{ll} \text{großer Durchmesser} & D = 180.0mm \\ \text{kleiner Durchmesser} & d = 100.0mm \\ \text{Radius} & r = 3mm \\ \text{Absatzsprung} & t = 40.0mm \end{array}$

Beanspruchung

Biegemittelspannung:

$$\sigma_{bm} = 0 \frac{N}{mm^2}$$

Biegeausschlagspannung:

$$\sigma_{ba} = 4.769 \frac{N}{mm^2}$$

Torsionsmittelspannung:

$$\tau_{tm} = 0 \frac{N}{mm^2}$$

Torsionsausschlagspannung:

$$\tau_{ta} = -11.99 \frac{N}{mm^2}$$

1 Bauteilwechselfestigkeiten

Kerbwirkungszahlen

$$\beta_{\sigma_b} = 2.457$$

$$\beta_{\tau} = 1.778$$

Gesamteinflussfaktoren

$$K_{\sigma,b} = 3.123$$

$$K_{\tau} = 2.232$$

Bauteilwechselfestigkeit

$$\sigma_{bWK} = 127.97 \frac{N}{mm^2}$$

$$\tau_{tWK} = 107.433 \frac{N}{mm^2}$$

2 Bauteilfließgrenzen

$$\sigma_{bFK} = 763.418 \frac{N}{mm^2}$$

$$\tau_{tFK} = 400.691 \frac{N}{mm^2}$$

3 Gestaltfestigkeit

$$\sigma_{bADK} = 127.97 \frac{n}{mm^2}$$

$$\tau_{tADK} = 107.433 \frac{N}{mm^2}$$

4 Sicherheiten

$$S_F = 32.715$$

$$S_D = 8.499$$