CMA211 AD - Cálculo 2 - Mecânica Diurno

CMA211 AD - Cálculo 2 - Mecânica Diurno									
30 de Novembro de 2018 Prova Substitutiva									
1 Tota sussitua									
	Q:	1	2	3	4	5	6	7	Total
Nome:	P:	15	10	15	25	25	15	10	115
	N:								
Questão 1									
Calcule I $=\int_0^2 \int_0^{\sqrt{2x-x^2}} xdydx$ usando coordenadas polares.									
Questão 2									
Mostre que o limite $\lim_{(x,y)\to(0,1)} \frac{x^3(y-1)-x(y-1)^3}{x^4+(y-1)^4}$ não existe.									
Questão 3									
Questão 4									
(a) $\boxed{7}$ Calcule o plano que passa nos pontos $B, C \in D$.									
(b) 8 Apresente a integral correspondente ao cálculo do volume do tetraedro.									
(c) 10 Resolva a integral.									
Questão 5									
Considere a curva C dada por $\mathbf{r}(t) = 12t\vec{i} + 8t^{3/2}\vec{j} + 3t^2\vec{k}$, com $0 \le t \le 1$. Calcule									
(a) $\boxed{10}$ Calcule o comprimento de curva C .									
(b) 15 Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$ dado $\mathbf{F}(x, y, z) = 12x\vec{i} + y\vec{j} + (z + e^z)\vec{k}$ sobre a curva C .									
Questão 6									
$\mathbf{F}(x,y,z) = \frac{(\ln x)(\ln y)}{y}\vec{i} - 2xyz\vec{j} + xz^2\vec{k}$									
através das superfícies do prisma limitado pelos planos $x=1,x=e,y=1,y=x,z=0,z=1.$									
Questão 7	 or <i>xy</i>	z^5 =	$= e^{x^2}$	$+y^2+$	z^2-3	 e qu	 e y(1	[10 = 1.