Detecting Hate Speech in Tweets

LING 573 Deliverable 4
Team: PlaceboAffect
(Mohamed Elkamhawy, Karl Haraldsson, Alex Maris, Nora Miao)

Our Team: PlaceboAffect

Mohamed Elkamhawy mohame@uw.edu

Karl Haraldsson kharalds@uw.edu

Alex Maris alexmar@uw.edu

Nora Miao norah98@uw.edu

The Shared Task: Detecting Hate Speech

- **SemEval 2019 Task 5**: Multilingual detection of hate speech against immigrants and women in Twitter (HatEval)
- Language: English (primary) and Spanish (adaptation)
- Recognition type: binary classification (hate speech or non-hate speech)
- Affect type: attitude
- Target: aspect-specific
- **Genre**: tweets
- Modality: text

The Data

- Dataset requested via http://hatespeech.di.unito.it/hateval.html
- Collected from July to November 2017 for women-targeted tweets and July to September 2018 for immigrant-targeted tweets
- English language dataset: 13,000 tweets (9,000 training, 1,000 development, and 3,000 testing)
- **Spanish** language dataset: **6,600 tweets** (4,500 training, 500 development, and 1,600 testing)

Examples

@ Hurray, saving us \$\$\$ in so many ways @potus @realDonaldTrump #LockThemUp #BuildTheWall #EndDACA #BoycottNFL #BoycottNike

[HATEFUL]

Orban in Brussels: European leaders are ignoring the will of the people, they do not want migrants

[NOT HATEFUL]

https://t.co/NeYFyqvYIX

System Architecture

Approach

	Preprocessing	Feature Extraction	Training	Inference	Evaluation
Initial System	 Tokenize (nltk tweet tokenizer) Lemmatize tokens w/WordNet lemmatizer 	 Apply CBOW word2vec to produce average tweet embeddings Concatenate lexical information from empath library 	 SVC from sklearn Grid search for best hyperparameters using dev set Select and save model with best f1_macroscore 	 Use best model from training step (or load model if only performing inference) Feed dev instances into model.predict() 	Compare predictions to golden labels, applying sklearn's accuracy measure as well as macro-averaged
Enhanced System		Concatenate sentiment score from vaderSentiment	 Tested alternative classification algorithms, e.g., XGBoost, Naive Bayes, Random Forest,etc 	Save predictions to output/	versions of precision, recall and f1. Output results to txt file.
Adaptation	deep-translator to translate Spanish tweets into English		 concatenate english and spanish (translated) training sets 		tat ille.
Inputs & Outputs		I: array of tweets & labels O: train and dev vectors	I: training vectors O: model object, model file	I: model object, unlabeled instances O: predictions	I: predictions O: results file
Module(s)	features.preprocess	features.extract_features	modeling.classifier	modeling.classifier	main.evaluate

Results (Primary)

Our model substantially outperformed the SemEval 2019 Task 5 Baseline for the Subtask. Also it outperformed our own bag of words baseline model F1-macro (BOW-SVM) by 0.10.

Model	Acc	Prec	Rec	F1-Macro
W2V-SVM (alpha)	0.52	0.54	0.54	0.52
W2V-EMP-SVM (beta)	0.50	0.54	0.55	0.49
W2V-EMP-NG-SVM (gamma)	0.52	0.56	0.60	0.49
KITCHNSNK-SVM (delta)	0.49	0.55	0.58	0.46
KITCHNSNK-XGBoost (delta)	0.51	0.56	0.60	0.49
BOW-SVM (D4 baseline)	0.47	0.53	0.56	0.42
tf-idf SVC (Shared Task Baseline)	-	-	-	0.45

Results (Adaptation)

Our model substantially outperformed the SemEval 2019 Task 5 Baseline for the Subtask.

Model	Acc	Prec	Rec	F1-Macro
W2V-SVM (alpha)	0.66	0.64	0.65	0.64
W2V-EMP-SVM (beta)	0.70	0.65	0.77	0.64
W2V-EMP-NG-SVM (gamma)	0.72	0.68	0.76	0.68
KITCHNSNK-SVM (delta)	0.73	0.70	0.74	0.71
KITCHNSNK-XGBoost (delta)	0.73	0.70	0.73	0.71
BOW-SVM (D4 baseline)	0.72	0.71	0.71	0.71
tf-idf SVC (Shared Task Baseline)	-	-	-	0.70

Issues and successes

- Adaptation task methodology: translating Spanish to English
 - (+) Reuse English lexical features from primary task
 - (+) Ability to concatenate primary (English) and adaptation (Spanish) training data
 - (-) Performance depends on quality of translation
 - (-) Lose cultural context with translation, and hate speech is often correlated with language-specific slang

Issues and successes

Better performance on dev set compared to test set. Overfit to dev set?

Dataset (Primary task)	Model	F1-Macro	Dataset (Adaptation task)	Model	F1-Macro
Dev	W2V-SVM (alpha)	0.65	Dev	KITCHNSNK-SVM (delta)	0.76
Test	W2V-SVM (alpha)	0.52	Test	KITCHNSNK-SVM (delta)	0.71

- Inefficiencies in training, e.g. speed
- Communication norms established early, well-defined task breakdowns

Related Readings

- Doris Chinedu Asogwa, Chiamaka Ijeoma Chukwuneke, CC Ngene, and GN Anigbogu. 2022. Hate speech classification using SVM and Naive BAYES. arXiv preprint arXiv:2204.07057.
- Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel Rangel Pardo,
 Paolo Rosso, and Manuela Sanguinetti. 2019. SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against
 Immigrants and Women in Twitter. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages
 54–63, Minneapolis, Minnesota, USA. Association for Computational Linguistics.
- Steven Bird, Ewan Klein, and Edward Loper. 2009. *Natural language processing with Python: analyzing text with the natural language toolkit.* O'Reilly Media, Inc.
- Elisabetta Fersini, Paolo Rosso, and Maria Anzovino. 2018. Overview of the task on automatic misogyny identification at ibereval 2018. In *Proceedings of the 3rd Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)*, volume 2150, pages 214–228.
- Ethan Fast, Binbin Chen, and Michael S Bernstein. 2016. Empath: Understanding topic signals in large-scale text. In *Proceedings of the 2016 CHI conference on human factors in computing systems*, pages 4647–4657.

Thank you.

Appendices

Appendix A: Annotation Guidelines

HS against immigrants may include:

- insults, threats, denigrating or hateful expressions
- incitement to hatred, violence or violation of rights to individuals or groups perceived as different for somatic traits (e.g. skin color), origin, cultural traits, language, etc.
- presumed association of origin/ethnicity with cognitive abilities, propensity to crime, laziness or other vices
- references to the alleged inferiority (or superiority) of some ethnic groups with respect to others
- delegitimation of social position or credibility based on origin/ethnicity
- references to certain backgrounds/ethnicities as a threat to the national security or welfare or as competitors in the distribution of government resources
- dehumanization or association with animals or entities considered inferior

Tweets had to meet BOTH of the following criteria:

- 1. the tweet content MUST have IMMIGRANTS/REFUGEES as main TARGET, or even a single individual, but considered for his/her membership in that category (and NOT for the individual characteristics)
- we must deal with a message that spreads, incites, promotes or justifies HATRED OR VIOLENCE TOWARDS
 THE TARGET, or a message that aims at dehumanizing, hurting or intimidating the target

Appendix B: Model Selection

Appendix C: Issues and successes

- High amount of false negatives for the W2V approaches
- Improvement in recall when using more lexical features (for English evaltest)

English Evaltest

Model	TP	TN	FP	FN
BOW-SVM	1134	277	1463	126
W2V-SVM	845	713	1027	415
W2V-EMP-SVM	979	528	1212	281
W2V-EMP-NG-SVM	1090	460	1280	170
KITCHNSNK-SVM	1120	361	1379	140

Spanish Evaltest

Model	TP	TN	FP	FN
BOW-SVM	423	727	213	237
W2V-SVM	329	727	213	331
W2V-EMP-SVM	218	908	32	442
W2V-EMP-NG-SVM	277	877	63	383
KITCHNSNK-SVM	349	821	119	311

Appendix C: Issues and successes (evaltest primary)

 Scores of words containing 'stupid' for the BOW approach

	Negative	Positive
Model predictions	2	13
True labels	13	2

 Scores of words containing 'stupid' for the W2V-SVM approach

	Negative	Positive
Model predictions	7	8
True labels	13	2

 Scores of words containing 'stupid' for the W2V-EMP-SVM approach

	Negative	Positive
Model predictions	7	8
True labels	13	2

Appendix C: Issues and successes (evaltest adaptation)

Tweets containing "deportation"

Spanish evaltest:

	Negative (non-HS)	Positive (HS)
BOW predictions	3	4
W2V predictions	6	1
EMP predictions	6	1
NG predictions	5	2
KS predictions	3	4
True labels	0	7

Appendix C: Issues and successes

Train vs. dev vs. test set distributions

Dataset (Primary task)	# documents	% hate speech
Train	9000	42.0%
Dev	1000	42.7%
Test	3000	42%

Dataset (Adaptation task)	# documents	% hate speech
Train*	13500	41.8%
Dev	500	44.4%
Test	1600	41.3%

^{*}adaptation training set consisted of the original adaptation training data and the primary training data

Appendix C: Issues and successes (evaltest primary)

TP tweets had the highest average empath 'hate' score, then TN and FP, and last FN

	TP	TN	FP	FN
Average score of 'hate'	0.00462	0.00341	0.00324	0.00318

- 'swearing_terms' scores had the largest difference between true labeled hate speech (TP, 0.0601) and non hate speech (FP, 0.0187)
- However, the model classified high scoring 'swearing_terms' tweets as positive for hate speech

	TP	TN	FP	FN
Average score of 'swearing_terms'	0.0601	0.0187	0.0346	0.0152

Appendix C: Issues and successes (evaltest adaptation)

FP tweets had the highest average empath 'hate' score, then FN and TP, and last TN

	TP	TN	FP	FN
Average score of 'hate'	0.00275	0.00253	0.00486	0.00441

- 'swearing_terms' scores had the largest difference between true labeled hate speech (TP, 0.1078) and non hate speech (FP, 0.0701)
- However, the model classified high scoring 'swearing_terms' tweets as positive for hate speech

	TP	TN	FP	FN
Average score of 'swearing_terms'	0.1078	0.0090	0.0701	0.0116