

VXLAN

Terminology

VXLAN Overlay layer 2 overlay on top of Layer 3 underlay, identified by VNID & extends/tunnels traffic from one VTEP to another

VXLAN Underlay services such as OSPF, IS-IS, EIGRP, Multicast & BGP that provides the transport for VXLAN

VXLAN Tunnel End Point (VTEP) a device that perform VXLAN encap/decapsulation, could be hardware or software

VNI/VNID each VXLAN segment identified by 24-bit segment ID, only hosts on the same VNI are allowed to communicate with each other. It overcome 4094 VLAN scale limitation. Thus, segment IDs are globally significant and VLAN IDs are locally significant

VXLAN Gateway VTEP that bridge layer 2/3 traffic between VXLAN segments

Network virtualization Edge (NVE) logical representation of the VTEP, I.e. NVE is the tunnel interface

BUM Traffic Broadcast, Unknown Layer-2 Unicast and Multicast

Flood & Learn vs EVPN Control Plane					
	Encapsulation	Peer Discovery	Peer Authentication	Host Route Distribution	Host Route Learning
Flood & Learn	MAC in UDP	Data driven flood & Learn	Not available	No route distribution	Local & Remote host: Data driven flood & Learn
EVPN Control Plane	MAC in UDP	MP-BGP	MP-BGP	MP-BGP	Local host: Data driven Remote host: MP-BGP

VXLAN - Flood & Learn ARP IP B MAC A + ALL VTEP 3 Host C MAC VXLAN ID NH MAC A 10 Multicast/Unicast Host B Replication B MAC_A → ALL ARP IP_B MAC_A → ALL VTEP 2 VTEP 1 MAC VXLAN ID NH MAC VXLAN ID NH MAC_B 10 VTEP2 4 MAC_A 10 VTEP1

Data Plane learning technique for VXLAN, VTEP will flood the packet to all neighbor and will learn the remote end.

VXLAN - EVPN Control Plane

MP-BGP EVPN introduces control-plane learning for end hosts behind remote VTEPs. Provides control & data plane separation

VXLAN

Gateway Types

Layer 2 Gateway is required when layer 2 traffic (802.1q) comes from VLAN into VXLAN segment (encapsulation) or the ingress VXLAN packet egresses out an 802.1g tagged interface (decapsulation) where packet is bridged to a new vlan

Laver 3 Gateway is used when there is a VXLAN to VXLAN routing. The ingress packet is a VXLAN packet on a routed segment but the packet egresses out on a tagged 802.1g interface and the packet is routed to a new VLAN

Asymmetric IRB

Routing and Bridging on the ingress VTEP, Bridging on the egress VTEP, both source and destination VNI need to reside on the ingress VTEP. Similar to Inter-VLAN routing

Symmetric IRB

Routing on both ingress and egress VTEPs, Ingress VTEP routes packets onto the layer 3 VNI, Egress VTEP routes packet to the destination layer 2 VNI

Leaf Node Configuration - L2 VNI

1-Feature enablement feature bgp/pim/interface-vlan fabric forwar any-castvn-segment-vlan-based nv overlay/nxapi/lldp fabric/fabric forwar nv overlay evpn

2-Map VLAN to VXLAN vlan 100 vn-segment 10000

3-Create L2 VNI evpn vni 10000 l2 rd 10000:1 route-target import 10000:1 route-target export 10000:1

4-Configure NVE Interface interface nve1 source-interface lo 0 host-reachability prot bgp member vni 10000 mcast-group 239.1.1.1 supress-arp

5-Anycast addresses gateway 0001.0001.0001

interface vlan 100 vrf member EVPN-TENANT ip add 100.1.1.254/24 fabric forw mode anycast

6-Configure BGP router bap 100 router-id 192.168.1.1 address-family 12vpn evpn neighbor 192.168.10.10 remote-as 100 update-source lo0 address-fam l2vpn evpn send-comm extended vrf EVPN-TENENT address-fam ipv4 unicast advertise l2vpn evpn

Leaf Node Configuration - L3 VNI

1-Feature enablement feature bgp/pim/interface-vlan vn-segment-vlan-based nv overlay/nxapi/lldp fabric/fabric forwar nv overlay evpn

2-Map VLAN to VXLAN vlan 200 vn-segment 20000

3-Create L3 VNI vrf context EVPN-TENANT vni-20000 rd 20000:1 address-famil ipv4 unicast route-target imp 20000:1 route-target imp 20000:1 evpn route-target exp 20000:1 route-target exp 20000:1 evpn

4-Configure NVE Interface interface nve1 source-interface lo 0 host-reachability prot bgp member vni 20000 associate-vrf

5-Configure interface interface vlan 200 vrf member EVPN-TENANT ip forward

interface loopback 200 vrf member EVPN-TENANT ip add 200.1.1.1/32

6-Configure BGP router bap 100 vrf EVPN-TENANT address-family ipv4 un network 200.1.1.1/32 advertise l2vpn evpn

Troubleshooting & Debugging

show bgp 12vpn evpn show nve [interface | vni | peers | vxlan-param] show interface nve1 show forwarding nve 13 peers show l2route evpn mac-ip evi 100 show ip arp suppression-cache [local | remote] show ip route vrf EVPN-TENANT debug nve [errors | events | pim-library | all]