IT 304 Computer Networks Introduction Week 2-Lecture 3

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Organization of air travel

```
ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing
```

a series of steps

Layering of airline functionality

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Question:

How is the Internet structured?

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered *reference model* for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system

The TCP/IP Model

Vint Cerf and Bob Kahn

- Link layer
- Internet layer
- Transport layer
- Application layer

SMTP RTP DNS Application HTTP UDP TCP **Fransport** IP is the "narrow waist" of the Internet IΡ Internet **ICMP** DSL SONET 802.11 Ethernet Link

Kleinrock's "Narrow Waist" Model

Internet protocol stack

- *application:* supporting network applications
 - FTP, SMTP, HTTP
- *transport:* process-process data transfer
 - TCP, UDP
- *network*: routing of datagrams from source to destination
 - IP, routing protocols
- *link:* data transfer between neighboring network elements
 - Ethernet (802.3), WiFi (802.11), PPP
- *physical*: bits "on the wire"

application
transport
network
link
physical

The Open Systems Interconnection (OSI) Reference Model by International Standards Organization (ISO)

- Layers created for different abstractions
- Each layer performs well-defined function
- Function of layer chosen with standards in mind
- Minimize information flow across layer interfaces
- Find the optimum number of layers

Protocol Layers (1)

Protocol layering is the main structuring method used to divide up network functionality.

- Each protocol instance talks virtually to its peer
- Each layer communicates only by using the one below
- Lower layer services are accessed by an interface
- At bottom, messages are carried by the medium

Design Issues for the Layers

Each layer solves a particular problem but must include mechanisms to address a set of recurring design issues

Issue	Example mechanisms at different layers
Reliability despite failures	Codes for error detection/correction Routing around failures
Network growth and evolution	Addressing and naming Protocol layering
Allocation of resources like bandwidth	Multiple access Congestion control
Security against various threats	Confidentiality of messages Authentication of communicating parties

Name of unit Layer exchanged Application protocol APDU Application Application Interface Presentation protocol PPDU Presentation Presentation 6 Session protocol SPDU Session 5 Session Transport protocol Transport **TPDU** Transport Communication subnet boundary Internal subnet protocol Packet 3 Network Network Network Network Data link Data link Data link Data link Frame Physical Physical Physical Physical Bit Router Host A Router Host B Network layer host-router protocol Data link layer host-router protocol Physical layer host-router protocol

PDU is Protocol Data Unit

Encapsulation

- Who is the source (S) computer?
- Who is the destination (D) computer?
- Who is passing this message to whom?

A gift box example for encapsulating / packing message from S to D

Relationship of Services to Protocols

Recap:

- A layer provides a service to the one above (vertical)
- A layer talks to its peer using a protocol (horizontal)

CONNECT ACCEPT

Example Protocol Stack

Encapsulation

