Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Creazione di una Data Pipeline per il trattamento dei dati con Apache Kafka e Apache Druid

Tesi di laurea

Relatore Prof. Ombretta Gaggi

Laureando
Marco Brugin

Matricola: 2010012

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecento ore, dal laureando Marco Brugin presso l'azienda Sync Lab s.r.L. Gli obbiettivi da raggiungere sono stati: in primo luogo è stata richiesta la comprensione dei vantaggi e degli overhead portati da una architettura Event Driven, in secondo luogo è stata richiesta la comprensione e implementazione di una data pipeline con il trattamento dei dati tramite Apache Kafka e Apache Druid ed infine la comprensione e la gestione gestione delle Time Series e dei Column-based Databases.

Il prototipo sviluppato presenterà una architettura distribuita, ad alta affidabilità, scalabile e resiliente, eseguibile tramite Docker Compose.

"Due cose sono infinite: l'universo e la stupidità umana, ma riguardo l'universo ho ancora dei dubbi."

— Albert Einstein

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine alla Prof. Ombretta Gaggi, relatrice della mia tesi, e al mio tutor aziendale Andrea per il sostegno e il supporto fornitomi durante lo svolgimento dello stage.

Desidero inoltre ringraziare con affetto i miei genitori e la mia famiglia per il sostegno e per essermi stati vicini in ogni momento durante questi lunghi anni segnati pure da una pandemia mondiale.

 $In fine \ desidero \ ringrazio \ tutti \ coloro \ che \ con \ la \ loro \ partecipazione \ hanno \ reso \ unico \ e \ inimitabile \ questo \ percorso.$

Padova, 22 Settebre

Marco Brugin

Indice

1	Intr	troduzione 1				
	1.1	Descrizione dell'azienda				
	1.2	Idea di fondo del progetto	2			
		1.2.1 Il ruolo dello stagista	2			
	1.3	Il progetto di stage	3			
		1.3.1 Descrizione del progetto	3			
		1.3.2 Obiettivi formativi	3			
		1.3.3 Risultati attesi e Obiettivi fissati	3			
		1.3.4 Analisi preventiva dei rischi	4			
		1.3.5 Obiettivi personali	5			
2	Teci	nologie e strumenti utilizzati	7			
	2.1	Linguaggi utilizzati	7			
		2.1.1 YAML	7			
		2.1.2 Python	8			
	2.2	Tecnologie utilizzate	8			
		2.2.1 Metodologia di sviluppo e strumenti di gestione di progetto	8			
		2.2.2 Ambiente di sviluppo	9			
		2.2.3 Versioning	10			
		2.2.4 Documentazione	12			
3	Con	nponenti di una Data Pipeline	14			
	3.1	Apache Kafka	14			
	3.2	Apache Druid	14			
4	Il p	ercorso di stage	16			
5	Valı	ıtazioni e Conclusioni	18			
	5.1	Raggiungimento degli obiettivi	18			
	5.2	Attualizzazione dei rischi	18			
	5.3	Contenuti formativi acquisiti	18			
	5.4	Divario rispetto al percorso di studi	18			
	5.5	Valutazione personale	18			
A	croni	mi e abbreviazioni	20			
\mathbf{G}	Glossario					
Bi	Bibliografia					

Elenco delle figure

1.1	Logo dell'aziedan Sync Lab s.r.L
2.1	Logo di YAML
2.2	Logo di Python
2.3	Logo di ClickUp
2.4	Logo di Docker Compose
2.5	Logo di Git
2.6	Comandi di base di Git
2.7	Logo di GitHub
2.8	Logo di LaTeX

Elenco delle tabelle

Introduzione

1.1 Descrizione dell'azienda

Sync Lab s.r.L. è una azienda italiana attiva nell'abito Information and Communication Technology (ICT), specializzata nello sviluppo e consulenza IT dal 2002 con sedi a Milano, Roma, Napoli, Verona, Como, con più di 300 dipendenti. È una azienda orientata verso la Business Innovation, finalizzata alla creazione di soluzioni innovative che abbracciano i nuovi paradigmi della trasformazione digitale. Sync Lab possiede numerose certificazioni ISO LL-C per l'attestazione della qualità dei prodotti e servizi offerti. In particolare possiede le certificazioni ISO-9001 per la qualità dell'azienda, ISO-14001 per l'adozione quadro sistematico per l'integrazione delle pratiche a protezione dell'ambiente, ISO-27001 per la definizione di un Sistema Gestione Sicurezza Informazioni (SGSI), ISO-45001 per l'adozione di un Occupational Health and Safety (OH&S).

Attualmente Sync Lab lavora per più di 150 clienti diretti e finali, tra i più rilevanti ci sono nomi come: TIM, Trenitalia, PosteItaliane, UniCredit, ENI, ENEL, Vodafone, Fastweb.

Inoltre è un'azienda che si pone come obiettivo quello di essere un punto di riferimento per i propri clienti nella realizzazione di prodotti e soluzioni innovative per diversi settori di mercato, come: Sanità, Industria, Energia, Telco, Finanza e Trasporti & Logistica.

Lo spirito di Sync Lab è ampiamente rappresentato dal logo aziendale (Figura 1.1): un'onda che si propaga in modo circolare, che simboleggia la capacità di adattarsi e di evolversi in modo continuo.

Figura 1.1: Logo dell'aziedan Sync Lab s.r.L.

1.2 Idea di fondo del progetto

Oggigiorno la gestione e l'analisi di grandi moli di dati in tempo reale sta diventando fondamentale per le aziende che vogliono rimanere competitive sul mercato.

Per questo motivo è necessario utilizzare tecnologie e software che permettano di analizzare e archiviare i dati in tempo reale in modo efficiente e veloce.

D'altra parte è necessario anche che tali tecnologie siano in grado di scalare in modo verticale e orizzontale in base al carico di lavoro da sostenere, mantenendo sempre alte prestazioni e resilienza in caso di guasti.

Per questo motivo Sync Lab ha deciso d' investire in un progetto di ricerca e sviluppo che ha come obiettivo quello di creare una Data Pipeline in grado di garantire le caratteristiche sopra descritte.

L'azienda ha già a disposizione un sistema di raccolta dati in real time, basato su Apache Kafka, che permette di ricevere dati da diversi sistemi e applicazioni per poi inviarli ad un sistema di archiviazione.

Il progetto prevede l'inserimento di un sistema di Data Processing basato su Apache Druid, che permetta di effettuare operazioni sui dati grezzi ricevuti da Apache Kafka, in modo da rendere più efficienti le successive operazioni di estrazione.

Particolarmente importante dovrà essere la fase di processing dei dati, in quanto dovrà permettere di eseguire operazioni di aggregazione e trasformazione dei dati in modo efficiente e veloce riducendo al minimo i tempi di latenza e mantenendo alte prestazioni.

1.2.1 Il ruolo dello stagista

Lo stagista ha un ruolo fondamentale in tale tipologia di progetto, infatti è colui che porta uno spirito d'innovazione e consolida il valore aggiunto aziendale.

Le attività che costituiscono il percorso che lo stagista ha intrapreso sono state elencate all'interno di un *Piano di lavoro*, concordato con il tutor aziendale, che ha lo scopo di guidare lo stagista durante il periodo di stage permettere al tutor aziendale di monitorare l'andamento delle attività delle attività svolte e di valutare il raggiungimento degli obiettivi.

Inoltre al termine del periodo di stage, sotto la supervisione del tutor aziendale è stata svolta una presentazione rivolta a tutti *Stakeholder* aziendali, mirata a mostrare i risultati ottenuti con le tecnologie utilizzate e mettere in risalto le potenzialità del prototipo sviluppato.

Il progetto in sè fa parte di una rivoluzione tecnologica messa in atto da Sync Lab nel campo del Data Processing e Data Analytics.

1.3 Il progetto di stage

1.3.1 Descrizione del progetto

Le attività descritte nel presente lavoro di stage illustrano la progettazione e lo sviluppo di un prototipo di una Data Pipeline eseguibile con Docker Compose, utilizzando Apache Druid come componente Online Analytical Processing (OLAP).

Il prototipo finale riceve i dati da un sistema di raccolta basato su Apache Kafka eseguendo il Data Processing con Apache Druid sui dati grezzi ricevuti.

L'obiettivo dello stage oltre a essere quello di sviluppare un prototipo funzionante, che soddisfi quanto richiesto, è anche quello di studiare e analizzare le funzionalità offerte dalle tecnologie utilizzate, in modo da poterne evidenziare i punti di forza e le differenze con le tecnologie tradizionali, utilizzate per il medesimo scopo.

1.3.2 Obiettivi formativi

In generale lo stage ha come obiettivo quello di far acquisire allo stagista concetti fondamentali riguardanti il contesto del prototipo sviluppato come:

- * Container technology;
- * Apache Kafka e le Event Driven Architecture, design pattern publisher/subscriber;
- * Column Based Database e la relazione/confronto con i classici Database relazionali;
- * Middleware, Data Pipeline, le architetture distribuite, scalabili e resilienti.

1.3.3 Risultati attesi e Obiettivi fissati

I risultati attesi e gli obiettivi fissati per lo stage sono riportati nella Tabella 1.1, con rispettivo identificativo, importanza e breve descrizione.

L'identificativo (riportato in breve con "ID") è la sigla che identifica ogni requisito e rispetta la seguente notazione [Importanza][Identificativo].

L'importanza è indicata dalla sigla \mathbf{O} oppure \mathbf{F} ad indicare rispettivamente un obiettivo obbligatorio oppure facoltativo; mentre l'identificativo è un numero incrementale che segnala in modo univoco l'obiettivo o il risultato in esame.

Tabella 1.1: Tabella degli obiettivi

ID	Importanza	Descrizione		
01	Obbligatorio	comprensione e definizione di una piccola Data Pipeline che		
		preveda il trattamento dei dati tramite Apache Kafka e Apa-		
		che Druid		
O2	Obbligatorio	comprensione dei vantaggi e degli overhead che le Event		
		Driven Architecture portano con sé		
O3	Obbligatorio	comprensione del pattern publisher/subscriber		
04	Obbligatorio	set-up di un cluster Apache Kafka in ambiente containerizzato		
O5	Obbligatorio	gestione delle Time Series e dei Column-based Databases		
O6	Obbligatorio	comprensione delle differenze tra i database relazionali classici		
		e i Column-based Databases		
O7	Obbligatorio	comprensione dell'impiego e utilità dei Middleware		
F1	Facoltativo	produzione di documentazione e un pacchetto di configurazio-		
		ne dell'ambiente di sviluppo e esecuzione della Data Pipeline		
F2	Facoltativo	produzione di documentazione che riporti le differenze di		
		performance tra Apache Druid e altri database relazionali		
		classici per alcune operazioni OLAP		
F3	Facoltativo	realizzazione di una presentazione che illustri l'architettura		
		sviluppata a personale di settore o Stakeholder		

1.3.4 Analisi preventiva dei rischi

Durante la fase di analisi iniziale del progetto di stage, sono stati individuati i seguenti rischi, cui si è cercato di porre rimedio con le azioni di mitigazione indicate.

1. **Inesperienza tecnologica**: il progetto prevede l'utilizzo di tecnologie con cui lo stagista non ha mai avuto a che fare.

Rischio: Medio.

Soluzione: Per mitigare tale rischio, è stato previsto un periodo di ambientamento e formazione sulle tecnologie coinvolte, in modo da poter affrontare il progetto con maggiore consapevolezza.

2. Scelte errate nella progettazione dell'architettura: il progetto prevede la progettazione di un'architettura complessa, con molte componenti, di natura differente che interagiscono tra di loro.

Rischio: Alto.

Soluzione: Per mitigare tale rischio, è stato previsto un periodo di analisi e progettazione dell'architettura, con il supporto del tutor aziendale, in modo da poter ovviare tale rischio.

3. Prestazioni insufficienti delle macchine a disposizione: il progetto prevede l'impiego di tecnologie che richiedono un elevato dispendio di risorse. Tale fattore se non tenuto in considerazione potrebbe portare a risultati penalizzanti.

Rischio: Alto.

Soluzione: Per mitigare tale rischio, è stato previsto una configurazione di tali macchine in modo da poter sfruttare al meglio le risorse a disposizione.

1.3.5 Obiettivi personali

Nonostante la realizzazione del progetto sia l'obiettivo principale, il percorso di stage offre anche la possibilità di raggiungere una serie di obiettivi personali come:

- * imparare a utilizzare nuove tecnologie e strumenti legati ad architetture distribuite:
- * comprendere i fattori da tenere in considerazione nella progettazione di un'architettura distribuita;
- * comprendere i vantaggi e come suddividere il lavoro tra i componenti, in modo da poter lavorare in parallelo;
- * imparare a lavorare in un team, condividendo le conoscenze e le esperienze;
- * confrontarsi con persone del settore, per capire come si lavora in un'azienda.

Tecnologie e strumenti utilizzati

Per il raggiungimento degli obiettivi del progetto di stage sono state utilizzate diverse tecnologie e strumenti. In questa sezione verranno riepilogate con una breve descrizione del loro utilizzo.

2.1 Linguaggi utilizzati

2.1.1 YAML

YAML, acronimo di YAML Ain't Markup Language, è un linguaggio di Markup, noto per la sua leggibilità e la sua chiarezza espressiva.

La prima idea attorno al linguaggio YAML nasce attorno agli anni '90 quando Clark C. Evans, software developer, lo propone come alternativa a XML.

Nel 2001 Evans pubblica la prima specifica del linguaggio, che va a definire i principi fondamentali del linguaggio.

Negli anni YAML ha acquisito sempre più popolarità e interesse di utilizzo, in quanto ha offerto una configurazione semplice e leggibile per strumenti si DEVOPS, orchestrazione, automazione e molto altro (Figura 2.1).

La storia di YAML è strettamente legata alla esigenza di semplificare la rappresentazione di dati complessi, in un formato più comprensibile a un essere umano e a macchine.

Figura 2.1: Logo di YAML

2.1.2 Python

Python è un linguaggio di programmazione ad alto livello, orientato agli oggetti, che si distingue per la sua sintassi chiara e intuitiva (Figura 2.2).

Creato da Guido van Rossum e rilasciato per la prima volta nel 1991, è cresciuto fino a diventare uno dei linguaggi più utilizzati al mondo.

Data la sua semplicità e la sua versatilità, Python è utilizzato in diversi ambiti dallo sviluppo web, alla Data Analytics, allo sviluppo di applicazione desktop e mobile, fino ad arrivare all'automazione e all'intelligenza artificiale.

Figura 2.2: Logo di Python

2.2 Tecnologie utilizzate

2.2.1 Metodologia di sviluppo e strumenti di gestione di progetto

Perseguendo la metodologia utilizzata da Sync Lab, il progetto di stage è stato sviluppato seguendo un approccio agile, simil Scrum insieme a un modello incrementale. Come risultato di tutto ciò, il carico di lavoro pianificato, suddiviso in task, è stato distribuito in più incrementi successivi, chiamati sprint.

Come prima operazione sono state definite le attività da svolgere e inserite all'interno del Product Backlog e in seguito sono state pianificate all'interno di ogni sprint.

L'adozione di tale metodologia di sviluppo, la si ritiene una scelta vincente, in quanto ha permesso di avere un'idea chiara delle attività da svolgere e di avere un'idea chiara dei tempi di sviluppo. Inoltre ha permesso quanto prima di ottenere parti del prototipo funzionanti, che hanno permesso di avere un feedback da parte del tutor aziendale.

Per quanto riguarda il modello incrementale, il maggiore vantaggio ottenuto è stato la metodologia di sviluppo: le componenti con maggiore priorità sono state sviluppate per prime, perchè hanno fornito la base su cui sviluppare le componenti successive. Ciò significa che le funzionalità essenziali del prototipo sono state disponibili sin da subito e sono state migliorate e ampliate con il progredire dello sviluppo del progetto.

ClickUp

ClickUp (Figura 2.3) è lo strumento di project management utilizzato per la gestione del progetto di stage.

È una piattaforma cloud che offre strumenti e funzionalità per la gestione di attività in modo efficente.

Presenta una interfaccia intuitiva e semplice da utilizzare, che permette di gestire le attività in modo semplice e veloce.

Offre la possibilità di creare board personalizzate, in cui inserire le attività da svolgere, e di creare task personalizzati, permette di dare priorità alle attività, di assegnarle a un membro del team e d'impostare una data di scadenza.

Figura 2.3: Logo di ClickUp

2.2.2 Ambiente di sviluppo

Docker Compose

Docker Compose (Figura 2.4) è uno strumento che permette di definire e gestire applicazioni Docker multi-container.

Utilizza il linguaggio YAML per configurare i servizi dell'applicazione e fornisce un'interfaccia da riga di comando per la gestione dei container.

Docker Compose permette di definire ed avviare più container Docker in modo coordinato, risolvendo la sfida dell'orchestrazione dei container.

Mentre Docker permette di definire singoli container, Docker Compose estende queste funzionalità permettendo agli sviluppatori di definire in modo dichiarativo, oltre ai servizi contenuti in ogni applicazione, anche le relazioni tra i container e le configurazioni di rete, volumi e variabili d'ambiente.

Figura 2.4: Logo di Docker Compose

2.2.3 Versioning

 \mathbf{Git}

Git è un sistema di controllo versione distribuito, utilizzato per il tracciamento delle modifiche ai file di un progetto.

Creato da Linus Torvalds nel 2005, GIT è stato pensato per la gestione del codice sorgente del kernel Linux, ma è stato adottato per progetti di ogni genere, di piccole e grandi dimensioni (Figura 2.5).

Figura 2.5: Logo di Git

È uno dei sistemi di controllo di versione più utilizzati al mondo, grazie alla sua velocità, alla sua efficienza e alla sua flessibilità.

Come tutti i sistema di controllo di versione si basa sul concetto di repository, ovvero un archivio contenente i file e tutti i metadati relativi alle modifiche effettuate.

In **Git** un file può trovarsi in tre stati diversi: *committed* (versionati), *modified* (modificati) e *staged* (pronti per essere versionati).

Ogni nuovo modifica, se versionata all'interno del repository viene identificata da un *commit*, avente un identificativo univoco di 40 caratteri. Modificato significa che il file è stato modificato ma non è ancora stato versionato, mentre staged significa che il file è stato modificato e preparato per essere inserito nel prossimo *commit*.

Quanto detto illustra le operazioni essenziali che possono essere effettuate con **Git** (Figura 2.6). Essenzialmente un workflow di bse con **Git** prevede:

Figura 2.6: Comandi di base di Git

- Clonare un repository, se già esistente;
- Modificare i file all'interno della working directory;

- **Stage** dei file, ovvero prepararli per il prossimo *commit*, aggiungendoli alla *staging area* con il comando *git add*;
- **Commit** dei file, ovvero versionarli, con il comando *git commit*, i file così come son salvati nella *staging area* vengono versionati all'interno del repository;
- Push delle modifiche sul repository remoto.

GitHub

Per quanto riguarda il servizio di hosting che ha ospita il repository remoto è stato utilizzato **GitHub**, andando a condividere i contenuti tra il mio account e quello del tutor aziendale (Figura 2.7).

Figura 2.7: Logo di GitHub

GitHub è una piattaforma di hosting per progetti software, che utilizza **Git** come sistema di controllo di versione e contiene tutti i file e i metadati relativi alle modifiche validate lungo le fasi del progetto.

2.2.4 Documentazione

Per quanto riguarda la redazione della documentazione, Sync Lab non ha uno standard prefissato e mi ha permesso di scegliere quale software utilizzare per la produzione dei documenti. La scelta è ricaduta su **LaTeX**, un linguaggio di markup per la preparazione di testi.

LaTeX

LaTex è un sistema di composizione tipografica ampiamente utilizzato per la creazione di documenti di alta qualità. A differenza dei tradizionali editor di testo, LaTeX si basa su comandi di formattazione e struttura, consentendo agli utenti di concentrarsi sul contenuto del documento anziché sul suo aspetto visivo.

È stato sviluppato da Leslie Lamport negli anni '80 come estensione di TeX, un linguaggio e motore di composizione sviluppati da Donald Knuth (Figura 2.8).

LaTeX semplifica notevolmente la creazione di documenti complessi, grazie alla sua capacità di gestire automaticamente numerazione delle sezioni, citazioni bibliografiche, tabelle dei contenuti e molte altre funzionalità tipografiche avanzate. L'ecosistema che LaTeX offre una vasta gamma di pacchetti e stili predefiniti che consentono di creare documenti sofisticati e professionali. Per quanto riguarda la scelta dell'editor da utilizzare l'azienda non ha dato vincoli rilevanti, quindi la scelta è ricaduta su TexLive, un distribuzione LaTeX per sistemi operativi Linux e su Texworks come editor di testo.

Figura 2.8: Logo di LaTeX

Componenti di una Data Pipeline

- 3.1 Apache Kafka
- 3.2 Apache Druid

Il percorso di stage

Valutazioni e Conclusioni

- 5.1 Raggiungimento degli obiettivi
- 5.2 Attualizzazione dei rischi
- 5.3 Contenuti formativi acquisiti
- 5.4 Divario rispetto al percorso di studi
- 5.5 Valutazione personale

Acronimi e abbreviazioni

ICT Information and Communication Technology. 1, 21

 $\mathbf{OH\&S}$ Occupational Health and Safety. 1, 22

OLAP Online Analytical Processing. 3, 4, 22

SGSI Sistema Gestione Sicurezza Informazioni. 1, 22

Glossario

- agile Il termine agile si riferisce a un insieme di metodi di sviluppo software che si basano su un approccio iterativo e incrementale. L'obiettivo principale dei metodi agili è quello di fornire risultati di alta qualità in modo rapido ed efficiente, consentendo ai team di adattarsi ai cambiamenti delle specifiche o dei requisiti durante il processo di sviluppo.. 8, 21
- board La board è una bacheca virtuale che permette di visualizzare le attività da svolgere, quelle in corso e quelle completate. 9, 21
- Business Innovation La Business Innovation è un processo che permette d' introdurre nuovi metodi, idee, prodotti e servizi per migliorare l'efficienza, la produttività e la competitività di un'organizzazione. 1, 21
- container Il container è un'unità software standard che raggruppa il codice e tutte le sue dipendenze in modo da poter essere eseguito in modo affidabile e veloce in qualsiasi ambiente. 9, 21
- Data Analytics Il Data Analytics (analisi dati) è il processo di esaminare i dati per trarne conclusioni sull'informazione che contengono. 2, 8, 21
- Data Pipeline Una Data Pipeline è un insieme di operazioni che permettono di trasformare e analizzare i dati in modo da renderli pronti per l'archiviazione. 2–4, 21
- Data Processing Il Data Processing (elaborazione dati) si riferisce alla manipolazione, trasformazione e analisi di dati grezzi al fine di ottenere informazioni significative e approfondite. Comprende una serie di passaggi che permettono di convertire dati non strutturati in forme più utili e che facilitano la loro elaborazione. 2, 3, 21
- Docker Docker è un progetto open-source che automatizza il deployment di applicazioni all'interno di container software. 9, 21
- ICT ICT è un termine generico che indica tutte le tecnologie che riguardano la trasmissione, la ricezione e l'elaborazione di informazioni sotto forma di segnali elettronici o elettromagnetici. 20
- metadati I metadati sono dati che descrivono altri dati. Sono utilizzati per descrivere le caratteristiche dei dati e per facilitarne la ricerca e l'organizzazione. 10, 11, 21

- Middleware Il Middleware è un software che si interpone tra un sistema operativo e le applicazioni che vengono eseguite al di sopra. Il suo scopo è quello di facilitare lo sviluppo di applicazioni e di nascondere la complessità del sistema operativo sottostante. 3, 4, 22
- modello incrementale Il modello incrementale è un modello di sviluppo software che prevede la consegna di funzionalità in maniera incrementale, cioè il prodotto finale viene sviluppato attraverso una serie di rilasci parziali. 8, 22
- OH&S L'Occupational Health and Safety è un sistema di gestione che permette di gestire in modo strutturato la salute e sicurezza dei lavoratori. 20
- OLAP L'Online Analytical Processing è un insieme di metodi finalizzato a effettuare analisi rapide e approfondite su grandi volumi di dati, provenienti da uno o piu sorgenti, per prendere decisioni a riguardo. 20
- Product Backlog Il Product Backlog è un elenco ordinato di requisiti che rappresentano le funzionalità del prodotto finale. 8, 22
- **repository** Un repository è un ambiente di archiviazione centralizzato in cui vengono conservati e gestiti i dati. 10, 11, 22
- Scrum Scrum è un framework agile per la gestione del ciclo di sviluppo del software. 8, 22
- SGSI Lo SGSI è un sistema di gestione che permette di gestire in modo strutturato la sicurezza delle informazioni aziendali. 20
- sprint Lo sprint è un periodo di tempo breve, della durata di una o due settimane, in cui viene sviluppata una funzionalità del prodotto finale. 8, 22

task Il task è un'attività che deve essere svolta. 9, 22

working directory La working directory è la directory di lavoro corrente. 10, 22

Bibliografia

Riferimenti bibliografici

James P. Womack, Daniel T. Jones. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010.

Siti web consultati

Manifesto Agile. URL: http://agilemanifesto.org/iso/it/.