

IPCA On Implied Volatility Surface in Predicting Short-Term Option Prices

Group 8: Trenton Potter, Helen Du, Ruilin Wang

Catalogs

	Overview	Options, Black Scholes, and Motivations
2		
	Implied Volatility	Prediction, Challenges, Dimensions, and WHY FOCUS?
3		
	PCA & IPCA Factors for Prediction	Implementations
4		
	Results	Comparisons, Discussions, and Future Applications
(5)		
	Simple Strategy	Extra Content: Option Tradings

Motivations

- Understand what drives implied volatility surface changes
- Find a latent factor structure
- Understand how the factors evolve over time
- 4 How are these factors determined other market inputs
- (5) Can we use this factor structure to better predict option price

Options Overview

Definition

- Financial contract giving the right, not obligation to buy or sell an asset at a set price by a certain date
- 2 types of Contracts: Call and Put
 - Call: Buy the underlying asset at the strike price
 - Intrinsic Value=max(S-K, 0)
 - Put: Sell the underlying asset at the strike price
 - Intrinsic Value: max(K-S, 0)
- 2 types of Options: European and American Options

Option Greeks

- Delta: Price sensitivity to underlying price changes
 - o Call Delta: 0 to 1; Put Delta: -1 to 0
- Gamma: Delta sensitivity
 - High Gamma → Delta changes quickly → unstable hedge
- Theta: Time decay
- Vega: Implied Volatility impact
- Rho: Interest rate impact
 - Impact is more relevant for long-dated options

Terms

- Key Terms:
 - o **Premium**: Cost to purchase the option
 - Strike Price: Agreed price to buy/sell the asset
 - Expiration Date: Last valid date to exercise the option
 - o ITM (In the Money): Option has intrinsic value
 - At-the-Money (ATM): strike ≈ spot price
 - OTM (Out of the Money): No intrinsic value
 - Implied Volatility: Market's forecast of future volatility, derived from option prices

Models

- Option Pricing Models:
 - Black Scholes Model
 - Binomial Tree
 - Monte Carlo Simulation
 - Finite Difference Method
 - Local & Stochastic Volatility Models
 - Analytical Approximations (Barone-Adesi & Whaley)

Option Pricing: Black Scholes Model Overview

Overview

- Developed by Black, Scholes, and Merton in 1973
- Calculates the Fair Value of European Call and Put Option
- Based on the idea of no-arbitrage and replicating portfolio
- Uses a risk-neutral world: Investors are indifferent to risk
- Foundation for modern option pricings
- Basis for calculating Implied Volatility

Formula

$$C = S_0 * N(d_1) - K * e^{-r * T} * N(d_2)$$

$$d_1 = \frac{\left[\ln\left(\frac{S_0}{K}\right) + \left(r + \frac{\sigma^2}{2}\right) * T\right]}{\sigma * \sqrt{T}}, \qquad d_2 = d_1 - \sigma * \sqrt{T}$$

Assumptions

- Lognormal distribution of asset prices not negative
- Constant volatility of the underlying asset
- Constant risk-free interest rate
- No dividends during the life of option
- No Transaction cost or taxes

Variables

- S_0 = Current Stock Price
- K = Strike Price
- T = Time to expiration
- r = Risk-free rate
- σ = volatility of returns
- $N(\cdot)$ = Cumulative Standard Normal Distribution

Option Price Depends on Implied Volatility

In pricing models **like Black-Scholes**, most inputs—Stock Price, Strike Price, Time, Interest rate—are **known** and fixed. The only unknown—and most sensitive input—is **IV**. A small change in IV can lead to a **large change in option price**, especially for ATM options (high Vega). Therefore, **IV** is often the dominant factor in determining short-term price fluctuations in options.

When IV Matters MOST

- Near events (earnings, Fed decisions)
- Short-term options: IV shifts change premium dramatically
- Volatility trading: entire strategy is IV-centric (e.g., straddles)

When IV Matters LESS

- Long-Deep ITM/OTM options: lower Vega → less IV impact
- Short dated options: Theta and Gamma dominate
- Unhedged strategies: price moves may dominate over IV shifts

Not Observable (Changes Depend on Supply/demand, events, and model inputs)

Challenges

No Single "True" IV (smile/skew)

Execute volatility arbitrage, Design IV-driven strategies (e.g., trading vega)

Need Smooth and Predictable Surface

Improve hedging precision

Option Markets Are High-Dimensional

APPL: 2020 February 3rd Option Surface

Market Frictions & Noise

Dimensionality & Structure

Solutions & Tools

- IV quotes may be endogenous or noisy due to market microstructure risk, demand-supply imbalance in certain strikes, etc.
- Option chain spreads not symmetric

- Nearby IV points are naturally correlated
 - Creates multicollinearity -> III-conditioned matrices
- Covariance Patterns change during events
- IV Surface = Strike * Expiration days * IV
- Principal Component Analysis / IPCA
 - Reduce dimensions
- Instrumented PCA
 - Extracts exogenous latent factors
 - Mapping to time-varying Latent factors

Decomposition: PCA vs. Incremental PCA

PCA Implementation

STEP 1: Data Extracting, Cleaning, Wrangling

- Options from OptionMetrics, it have Expiration Days, dates, delta, implied volatility, ticker, put, and call; 3-year of data 2015 2018
 - Extracted tickers (e.g. Apple) options, groupedby date, delta, and days.
 - Then we find the difference of the next day IV under same delta and expiration dates
- Forward price from Option Metrics

PCA uses matrix format:					
Date	(30, 10)	(30, 25)		(730, 90)	
2023-01-02	0.01	-0.02		0.03	
2023-01-03	0.02	-0.01		0.02	

STEP 2: PCA Algorithm

- X is lagged features Lagged IV (t-1 and t-2 diff), Paste IV Level, and forward price of a stock
- Y is difference of the n and n+1 IV under same delta and expiration dates
- Train and Test split 80/20, without shuffling due to time-series characteristics. Time-series CV, spliting into 5 expanding folds
- Pricipal Components (from none to 10), Ridge Regression alpha (0, 10, 20)

STEP 3: PCA Results

- Compute Vega-weighted error
- OOS R^2 and RMSE
- Pick the hyperparameter set with the lowest average error

Prediction Results: PCA GRAPH

Best results found with no dimension reduction when running a penalized multi-variate regression.

IPCA Implementation

STEP 1: Data Extracting, Cleaning, Wrangling

- Data is from OptionMetrics too
- But presented in different way than PCA
- ★ X: shape = (100 × 50, 7)

Date	(Days, Δ)	IV_level	Vega	Log Fwd	Log Fwd Δ	Days	Delta
2023-01-02	(30, 10)	0.21	11.5	4.51	0.01	30	10
2023-01-02	(60, 25)	0.19	13.0	4.51	0.01	60	25
2023-01-03	(30, 10)	0.22	12.0	4.52	0.01	30	10

Y: shape = (100 × 50, 1)

Date	(Days, Δ)	ΔΙV
2023-01-02	(30, 10)	+0.01
2023-01-02	(60, 25)	-0.02
2023-01-03	(30, 10)	+0.02

STEP 2: IPCA Algorithm

- X is lagged features Lagged IV (t-1 and t-2 diff), Vega, and forward price of a stock
- Y is difference of the n and n+1 IV under same delta and expiration dates
- Use alternating least squares to solve for the factors and the loadings

STEP 3: IPCA Results

- Compute Vega-weighted error
- OOS R^2 and RMSE
- Pick the hyperparameter set with the lowest average error

Prediction Results: IPCA GRAPH

First loading heavily on day-on-day implied volatility change, second on forward change, third on IV level. No clear ordering unlike PCA.

Prediction Results: IPCA GRAPH

Sample predictions from IPCA mirror shapes found in the components of PCA. Estimates are muted relative to the variance of IV.

Prediction Results: STATISTICS

We are capturing **a lot of variances** with IPCA. OOS R squared and RMSE are **positive**. The RMSE OOS is lower in IPCA than PCA but not overly differentiate. **IPCA OOS R squared has tremendous improvement**.

Discussion

Interpretability

• More interpretability: adding more covariates (index levels, macro indicators, other equities)

Modeling Nonlinearity

- IPCA assumes a linear relationship between factors and outcomes
 - Kernel IPCA
 - Autoencoders or transformer-based factor models
 - FPCA (Functional PCA)

Hyperparameter Optimization

- Number of factors (n_factors) & regularization strength (alpha) are tested via basic grid
 - Bayesian optimization (skopt, optuna) for more efficient and principled tuning

Regime Awareness

- IV evolves under different market regimes (calm vs crisis)
 - Use regime-switching IPCA
 - Cluster time periods and apply separate IPCA models per regime

EXTRA: Simple Strategy

Assumptions

- Assume continuous free hedging, no transaction costs
- One-day Holding period, buy today sell tomorrow.
- Quantities are equal to the price changes.

Conclusion

- Returns largely in the deep-out-of-the-money IV ranges; this corresponds with relatively high variance
- Adjusting for return on a given strike X expiry, pseudo-Sharpe gives the best returns in ~6 month far-downside puts.

