

Consider two different implementations, M1 and M2, of the same instruction set. There are 3 different classes of instructions in the ISA. M1 has a clock rate of 800 MHz and M2 has a clock rate of 500 MHz. CPI and instruction mix is as follows.

	100 100 100 100 100 100 100 100 100 100		mI .	MZ
Class	M1 CPI	M2 CPI	C1 Usage (%)	C2 Usage (%)
Α	4	1	30	70
В	6	4	50	20
С	8	6	20	10

C1 is a compiler produced by the manufacturers of M1, C2 is a compiler produced by the manufacturers of M2.

Assume that each compilfé uses the same number of instructions for a given program but that the instruction mix is as described in the table above.

- 1) Using C1 on both machines, compare the performance of the two machines. Which machine is faster, and by how much?
- 2) Using C2 on both machines, compare the performance of the two machines. Which machine is faster, and by how much?
- 3) If you could mix and match compilers and machines, what configuration would you choose? Assume that costs are identical.

