On the IGM heating by low-energy CRs

Carmelo Evoli

Gran Sasso Science Institute, L'Aquila (Italy) INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

> Brainstormings July 25, 2024

On the SFR as a function of the halo mass

- \bullet Assuming SFR $\propto M_{\odot}^{3/2}$ and dN/dM computed from and old routine I took somewhere...
- $\bullet\,$ The SFR at z=10 is dominated by $\sim 10^9~{\rm M}_\odot$ halos

On the average distance among halos

- ullet $\langle d \rangle \sim N^{-1/3}$ where $N \sim M dN/dM$
- ullet For the relevant halos the average distance is $\sim 1~{
 m Mpc}$

On the confinement timescale

- By reasonable assumptions CRs should move at roughly $\beta(E)c$
- ullet The other (unrealistic) extreme would be Bohm diffusion $D_B\sim r_Lc/3$ which is highly dependent on the magnetic field
- ullet If they move ballistic they can cover the average distance between halos on a timescale much smaller than H ightarrow uniform

On the confinement timescale

- But thye loose energy!
- We do not agree on Coulomb losses (to be checked!)

• Notice most of the injected energy stays between 100 MeV and few GeV's