Lecture 1

Dani Nguyen

September 30, 2025

Contents

ΙΙ	nvertible Matrix Theorem
1	.1 Definition
1	.2 Exercise
1	Invertible Matrix Theorem
1.1	Definition
	A be a square n x n matrix. Then the following statements are equivalent is, for a given A, the statements are either all true or all false.
1.	A is invertible.
2.	A is row equivalent to I.
3.	A has n pivot positions.
4.	The equation $A\mathbf{x} = 0$ has only the trivial solution.
5.	The columns of A are linearly independent.
6.	The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
7.	The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .

8. The columns of A span \mathbb{R}^n

- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an n x n matrix C such that CA = I.
- 11. There is an n x n matrix D such that AD = I.
- 12. A^T is invertible.
- 13. The columns of A form a basis of \mathbb{R}^n .
- 14. Col A = \mathbb{R}^n .
- 15. dim Col A = n.
- 16. rank A = n
- 17. Nul A = 0
- 18. dim Nul A = 0
- 19. The number 0 is *not* an eigenvalue of A.
- 20. det $A \neq 0$.
- 21. $(\text{Col A})^{\perp} = \mathbf{0}$
- 22. $(\text{Nul A})^{\perp} = \mathbb{R}^n$
- 23. Row $A = \mathbb{R}^n$

1.2 Exercise

Thm 9.1.16 Let $A \in M_n$ and let $\lambda \in \mathbb{C}$. Then the following statements are equivalent:

- (a) λ is an eigenvalue of A.
- (b) $A\mathbf{x} = \lambda \mathbf{x}$ for some nonzero $\mathbf{x} \in \mathbb{C}^n$.
- (c) $(A \lambda I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution, that is, nullity $(A \lambda I) > 0$.
- (d) $rank(A \lambda I) < n$.
- (e) A λI is not invertible.

- (f) A^{\top} λI is not invertible.
- (g) λ is an eigenvalue of A^{\top} .

Proof

(a) \Leftrightarrow (b)

By definition 9.1.1, if $A\mathbf{x} = \lambda \mathbf{x}$ and $\mathbf{x} \neq \mathbf{0}$ then (λ, \mathbf{x}) is an eigenpair of A, meaning λ is an eigenvalue of A.

(b) \Leftrightarrow (c)

These are restatements of one another.

- (c) \Leftrightarrow (d) By rank nullity theorem, if nullity(A λI) > 0, then rank(A λI) < n.
- (d) \Leftrightarrow (e) By property 1 and 16 of IMT, if rank(A - λI) < n then (A - λI) is not invertible.
- (e) \Leftrightarrow (f) Suppose we have $A - \lambda I = \begin{bmatrix} a - \lambda I & b \\ c & d - \lambda I \end{bmatrix}$, and suppose it is not invertible, its determinant is $(a - \lambda I)(d - \lambda I) - bc = 0$. Consider the case of $A^{\top} - \lambda I$, we have $\begin{bmatrix} a - \lambda I & c \\ b & d - \lambda I \end{bmatrix}$, whose determinant is $(a - \lambda I)(d - \lambda I) - cb$. And by commutativity of multiplication, bc = cb, so

the determinant is also 0, meaning $A^{\top} - \lambda I$ is also not invertible.

(f) \Leftrightarrow (g) Since (a) is equivalent to (e), the same is true for A^{\top} .