Wrap-up

Course announcements

- Homework 7 is due on <u>Sunday</u> 6th.
 - Any questions about homework 7?
 - How many of you have looked at/started/finished the homework?
- Everyone gets an extra free late day!
 - You can use it either on homework 7, or retroactively for some old homework to remove the late submission penalty.

Class evaluation*s* – please take them!

- CMU's Faculty Course Evaluations (FCE): https://cmu.smartevals.com/
- 16-385 end-of-semester survey: https://docs.google.com/forms/d/e/1FAlpQLSfclxL17cqlRrZ4uQl-8-d6KMlh2-Q Q bRZNtBaFzA1o5XLT1A/viewform
- Please take both, super helpful for developing future offerings of the class.
- Thanks in advance!

Course overview

1. Image processing.

Lectures 1 – 7 See also 18-793: Image and Video Processing

2. Geometry-based vision.

←

Lectures 7 – 12 See also 16-822: Geometry-based Methods in Vision

3. Physics-based vision.

—

See also 16-823: Physics-based Methods in Vision

See also 15-463: Computational Photography

4. Semantic vision.

 \leftarrow

Lectures 17 – 21

Lectures 13 – 16

See also 16-824: Vision Learning and Recognition

5. Dealing with motion.

 \leftarrow

Lectures 22 – 25

See also 16-831: RoboStats

Image processing

Image filtering

Image gradients

image pyramids

Boundaries

Fourier filtering

Hough Transform

Image features

Corner detection Multi-scale detection

Haar-like

HOG

SURF

SIFT

2D alignment

Figure 1: Basic set of 2D planar transformations

DLT

RANSAC

Camera and multi-view geometry

x = PX

 \mathbf{P}

X

camera matrix

pose estimation

triangulation

 ${f F}$

fundamental matrix

epipolar geometry

Reconstruction

Stereo

Stereo Rectification

Block matching

Energy minimization

Image formation and physics

Radiometry and image formation

1.80E+00
1.60E+00
1.40E+00
1.00E+00
8.00E-01
4.00E-01
2.00E-04
0.00E+00
350
400
450
500
500
600
600
700
750

Color and color processing

Image processing pipeline

Photometric stereo

Radiometric and color calibration

Object recognition

Bag-of-words

K-means

Nearest Neighbor

Naive Bayes

SVM

Neural networks

Perceptron

Gradient Decent

Convolutional Neural Networks

Face detection and recognition

Eigenfaces

Viola-Jones detector

Fisherfaces

Optical flow and alignment

$$\begin{bmatrix} I_x(\boldsymbol{p}_1) & I_y(\boldsymbol{p}_1) \\ I_x(\boldsymbol{p}_2) & I_y(\boldsymbol{p}_2) \\ \vdots & \vdots \\ I_x(\boldsymbol{p}_{25}) & I_y(\boldsymbol{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\boldsymbol{p}_1) \\ I_t(\boldsymbol{p}_2) \\ \vdots \\ I_t(\boldsymbol{p}_{25}) \end{bmatrix} \qquad \qquad \min_{\boldsymbol{u}, \boldsymbol{v}} \sum_{ij} \left\{ E_d(i, j) + \lambda E_s(i, j) \right\}$$

Constant Flow

$$\min_{\boldsymbol{u},\,\boldsymbol{v}} \sum_{ij} \left\{ E_d(i,j) + \lambda E_s(i,j) \right\}$$

Horn-Schunck

Lucas-Kanade (Forward additive)

Baker-Matthews (Inverse Compositional)

Tracking in videos

KLT

Kalman Filtering

SLAM

Segmentation

KLT

Kalman Filtering

Mean shift

SLAM

Things you should know how to do

- 1. Detect lines (circles, shapes) in an image.
- 2. Perform automatic image warping and basic AR.
- 3. Reconstruct 3D scene structure from two images.
- 4. Do photometric stereo and render simple images.
- 5. Recognize objects using a bag-of-words model.
- 6. Recognize objects using deep CNNs.
- 7. Track objects in video.

Questions?

Do you plan on taking any other vision courses?

Which part of the class did you like the most?

Which part of the class did you like the least?

Any topics you wanted to learn more about?

Any topics you wanted to learn less about?

Would the class work better if we did learning first?

Which was your favorite homework?

Which was your least favorite homework?

How does homework difficulty compare to other classes?

Would it be better if homeworks were in Python?