Ejercicio I

En el contexto de una comunicación cifrada entre Alice y Bob con RSA, donde la clave pública de Bob es [n = 187, e = 3], respondemos a las siguientes cuestiones:

1. Cálculo de los valores p y q

$$n = p \times q$$

$$187 = p \times q$$

Descomponiendo 187 en factores primos:

$$187 = 11 \times 17$$

Por lo tanto, p = 11 y q = 17.

2. Clave privada de Bob La clave privada se calcula determinando el exponente d, que satisface:

$$d \times e \equiv 1 \mod \varphi(n)$$

Donde $\varphi(n) = (p-1) \times (q-1)$:

$$\varphi(187) = (11-1) \times (17-1) = 10 \times 16 = 160$$

Hallamos d resolviendo:

$$d\times 3\equiv 1\mod 160$$

El inverso modular de 3 módulo 160 es d = 107, por lo que la clave privada de Bob es (n, d) = (187, 107).

3. Cálculo del criptograma C

$$C = M^e \mod n$$

$$C = 40^3 \mod 187$$

$$40^3 = 64000$$

$$64000 \mod 187 = 40$$

Por lo tanto, C = 40.

4. Descifrado del criptograma C=4 El atacante debe calcular:

$$M = C^d \mod n$$

$$M = 4^{107} \mod 187$$

Usando exponentiación modular rápida, obtenemos M=23.

Ejercicio II

En el protocolo Diffie-Hellman con \mathbb{Z}_{73} y $\alpha=2$:

- 1. Cálculo de las claves públicas:
- Alice envía: $A = \alpha^a \mod p = 2^{13} \mod 73 = 61$.
- Bob envía: $B = \alpha^b \mod p = 2^{19} \mod 73 = 24$.
- 2. Cálculo de la clave compartida:
- Alice computa: $K = B^a \mod p = 24^{13} \mod 73 = 39$.
- Bob computa: $K = A^b \mod p = 61^{19} \mod 73 = 39$.

La clave acordada es K = 39.

Ejercicio III

- 1. Niveles de seguridad postcuántica del NIST
 - Nivel 1: Equivalente a AES-128 y SHA-256.
 - Nivel 2: Equivalente a SHA3-256.
 - Nivel 3: Equivalente a AES-192 y SHA3-384.
 - Nivel 4: Equivalente a SHA3-384.
 - Nivel 5: Equivalente a AES-256 y SHA3-512.
 - 2. Tabla de algoritmos postcuánticos:

Algoritmo	Variante	Tamaño Clave	de	Tamaño Firma	de	Nivel de Seguridad	
CRYSTALS-	2	1312 bytes		2420 bytes		2	
Dilithium							
CRYSTALS-	3	1952 bytes		3293 bytes		3	
Dilithium CRYSTALS-	-	0500 1		4505 barter		-	
Dilithium	5	2592 bytes		4595 bytes		5	
CRYSTALS-Kyber	512	800 bytes		N/A		1	
CRYSTALS-Kyber	768	1184 bytes		N/A		3	
CRYSTALS-Kyber	1024	1568 bytes		N/A		5	
FALCON	512	897 bytes		666 bytes		1	
FALCON	1024	1793 bytes		1280 bytes		5	

Table 1: Tabla de algoritmos postcuánticos

- 3. **Definición de KEM** Un Key Encapsulation Mechanism (KEM) es un mecanismo criptográfico utilizado para compartir claves de sesión de manera segura, evitando la necesidad de intercambiar claves directamente.
 - 4. Inconvenientes de reemplazar Diffie-Hellman por Kyber

- Mayores requerimientos computacionales.
- Tamaños de clave más grandes.
- $\bullet\,$ Adaptación de infraestructuras existentes.
- $\bullet\,$ Posible incompatibilidad con sistemas legados.