

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos - 2020

Prova escrita de conhecimentos específicos de MATEMÁTICA

Instruções gerais

- 1. A prova é constituída por dois grupos de questões obrigatórias.
- 2. A duração da prova é de 2 horas, estando prevista uma tolerância de 30 minutos;
- Só pode utilizar para elaboração das suas respostas e para efetuar os rascunhos as folhas distribuídas pelo docente vigilante, salvo se previsto outro procedimento;
- 4. Não utilize qualquer tipo de corretor. Se necessário risque ou peça uma troca de folha;
- **5.** Não é autorizada a utilização de quaisquer ferramentas de natureza eletrónica (telemóvel, *ipad*, computador portátil, leitores/gravadores digitais de qualquer natureza ou outros não especificados), exceto máquina de calcular para realizar cálculos e obter representações gráficas de funções, devidamente autorizada.
- **6.** Deverá disponibilizar ao docente que está a vigiar a sala, sempre que solicitado, um documento válido de identificação (cartão de cidadão, bilhete de identidade, carta de condução ou passaporte);
- 7. Na última página do teste encontra as cotações de cada questão.

Leiria, 20 de junho de 2020

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos – 2020

Prova de Avaliação de MATEMÁTICA

- Identifique claramente os grupos e as questões a que responde.
- As funções trigonométricas estão escritas no idioma anglo saxónico.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- É interdito o uso de "esferográfica lápis" e de corretor.
- A prova de avaliação tem 9 páginas.
- A prova de avaliação inclui um formulário na página 8.
- As cotações da prova de avaliação encontram-se na página 9.

Grupo I

- As dez questões deste grupo são de escolha múltipla.
- Em cada questão são indicadas **quatro alternativas** de resposta das quais **só uma está correta**.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que selecionar para responder a cada questão.
- Se apresentar mais do que uma letra ou se esta for ilegível, a sua **resposta** será considerada **incorreta**.
- As respostas incorretas terão cotação nula.
- Não apresente nem cálculos nem justificações.
- 1. Considere a igualdade racional definida por,

$$\frac{x+a^2}{x^2-2x-3} = \frac{a}{x-3} - \frac{2}{x+b}$$

onde a e b são constantes reais.

Quais os valores de a e b de modo a que a igualdade racional seja verdadeira?

(A)
$$a = 1 \land b = 3$$
.

(B)
$$a = 3 \land b = -1.$$

(C)
$$a = 3 \land b = 1$$
.

(D)
$$a = -1 \land b = 3.$$

2. Considere a função f, real de variável real, de domínio $\mathbb{R}.$

Sabe-se que 3 é um zero da função f.

Considere a função g, real de variável real, definida por,

$$g(x) = |f(2x - 1) - 5|$$

qualquer que seja o número real x.

Qual o ponto que pertence ao gráfico da função g?

$$(A)$$
 $(3,5).$

$$(\mathbf{B})$$
 $(3, -5).$

$$(\mathbf{C})$$
 $(2,5).$

(**D**)
$$(2, -5)$$
.

				$h\left(x\right) = \log_{10}$	(x)							
	onde \log_{10} designa o logaritmo na base 10.											
	Qual é o valor da constante real k para o qual se verifica a igualdade definida por,											
				$h\left(kx\right) = 1 + h$	u(x)							
	aualau	ıer que seja o número	o real	positivo x ?								
	(\mathbf{A})		(\mathbf{B})	10.	(C) 8.		(\mathbf{D})	6.				
	,		` '		` ,		` ,					
4.	Consid	dere que $\tan(\theta) = -\frac{1}{2}$	$\sqrt{3}$ e	$\theta \in]0^o, 180^o[$, onde ta	an designa a	a tangente.		lade.				
	Consid	dere a expressão defin	nida p	oor,								
				$\sin^2(\theta) + 3\cos^2(\theta)$	$\mathbf{s}\left(heta ight)$							
	onde s	sin designa o seno e o	os de	signa o cosseno.								
	Qual é	é o valor da expressão	o?									
	(\mathbf{A})	$-\frac{4}{3}$.	$(\mathbf{E}$	$-\frac{3}{4}$.	(\mathbf{C})	$\frac{3}{4}$.	$(\mathbf{I}$))	$\frac{4}{3}$.			
		, and the second		-								
5.				tória, com espaço de	resultados	Ω finito e dois ac	contec	eime	ntos			
		$B \in B \subset \Omega$, associados		_	0.5	D 1	1 .1. 1					
	Sabe-se que $P(A) = 0, 3, P(B) = 0, 4$ e $P(A \cup B) = 0, 5$, onde P designa a probabilidade.											
		4		$\lim_{1} A$, sabendo que				1				
	(\mathbf{A})	$\frac{1}{6}$.	(\mathbf{B})	$\frac{1}{4}$.	(C) $\frac{1}{3}$.		(\mathbf{D})	$\frac{1}{2}$.				
6.	Consid	dere a progressão geo	métri	ca (u_n) , monótona cr	rescente.			1				
	Sabe-s	se que $u_4 = 32$ e que	$u_0 = 1$	8199								

3. Considere a função h, real de variável real, de domínio $\mathbb{R}^+,$ definida por,

 (\mathbf{C})

128.

(D) 64.

Qual é o quinto termo da progressão geométrica (u_n) ?

 (\mathbf{B})

256.

(**A**) 512.

- 7. Considere a sucessão (v_n) de termo geral $v_n = \left(\frac{1}{4}\right)^{1-n}$. Qual das afirmações é verdadeira?
 - A sucessão (v_n) é uma progressão geométrica de razão $\frac{1}{4}$.
 - A sucessão (v_n) é uma progressão geométrica de razão 4.
 - A sucessão (v_n) é uma progressão aritmética de razão 4.
 - A sucessão (v_n) é uma progressão aritmética de razão $\frac{1}{4}$.
- 8. Considere a função f, real de variável real, de domínio \mathbb{R} .

Sabe-se que a reta tangente ao gráfico da função f no ponto de abcissa 3 é a reta definida por, y = 2x + 1.

Considere o limite definido por,

$$\lim_{x \to 3} \frac{[f(x)]^2 - [f(3)]^2}{x - 3}.$$

Qual é o valor do limite?

(A) -28.

 (\mathbf{B}) 0.

 (\mathbf{C}) 28.

- (\mathbf{D}) 29.
- 9. Considere as funções $g \in h$, reais de variável real, de domínio \mathbb{R} , definidas por,

$$g\left(x\right) = xe^{2x-1}$$

$$g(x) = xe^{2x-1}$$
 e $h(x) = x^2 + \sin(\pi x)$

onde e designa o número de Neper e sin designa o seno.

Qual é o valor da derivada $(g \times h)' \left(\frac{1}{2}\right)$?

3. (\mathbf{A})

(B) 2.

(C) $\frac{1}{2}$.

- (\mathbf{D})
- 10. Considere que num plano existem 15 pontos, entre os quais não há três pontos alinhados.

Sabe-se que desses 15 pontos, 4 são vermelhos, 5 são verdes e 6 são azuis.

Quantas retas se podem formar com dois pontos de cores diferentes?

105. (\mathbf{A})

 (\mathbf{B}) 74. (\mathbf{C}) 44.

31. (\mathbf{D})

Grupo II

- Nas questões deste grupo apresente o seu raciocínio de maneira clara, indicando todos os cálculos que efetuar e todas as justificações necessárias.
- Pode **recorrer à sua máquina de calcular** para efetuar cálculos e obter representações gráficas de funções.
- <u>Atenção</u>: quando, para um resultado, não é pedida uma aproximação, pretende-se sempre o valor exato.
- 1. Considere as funções reais de variável real:
 - a função polinomial f, definida por, $f(x) = x^2 2x 3$;
 - a função polinomial g, definida por, $g(x) = x^3 x^2 9x + 9$;
 - a função polinomial h, definida por, $h(x) = x^4 3x^2 + ax^2 + bx + 6$, onde a e b são constantes reais;
 - a função racional R, definida por, $R(x) = \frac{f(x)}{g(x)}$.

Recorrendo exclusivamente a processos analíticos, resolva os itens.

- (a) Determine a decomposição em fatores do 1.º grau da função polinomial g.
- (b) Determine o valor de a e b de modo a que a função polinomial h seja divisível pela função polinomial f.
- (c) Determine o conjunto solução da condição, $R(x) \ge 0$.
- (d) Determine o valor do limite, $\lim_{x \to -\infty} R(x)$.

2. Uma fábrica utiliza as máquinas $A,\,B$ e $C,\,$ no fabrico de um determinado tipo de peças.

As máquinas $B \in C$ produzem o mesmo número de peças e a máquina A produz o dobro das peças, no mesmo tempo.

Durante a produção das peças ocorrem erros que provocam a produção de peças defeituosas.

Suponha que 2% das peças produzidas tanto pela máquina A, como pela B e que 4% das peças produzidas pela máquina C, são defeituosas.

5

Retirou-se ao acaso uma peça do conjunto das que foram produzidas por aquelas máquinas.

Recorrendo exclusivamente a processos analíticos, resolva os itens.

- (a) Qual a probabilidade da peça ser defeituosa?
- (b) Sabendo que a peça é defeituosa, qual a probabilidade de ter sido produzida pela máquina A?

3. Considere uma experiência aleatória, com espaço de resultados Ω finito e dois acontecimentos $A\subset\Omega$ e $B\subset\Omega$, associados a essa experiência.

Sabe-se que:

- $P(A \cap B) = 0, 10;$
- $P(A \cup B) = 0.80;$
- P(A|B) = 0,25;

onde ${\cal P}$ designa a probabilidade.

Recorrendo exclusivamente a processos analíticos, resolva o item.

Demonstre que os acontecimentos A e \overline{A} são acontecimentos equiprováveis, onde \overline{A} designa o acontecimento contrário de A.

4. Considere a progressão aritmética (a_n) .

Sabe-se que $a_1=k,\,a_2=k+2$ e $a_3=4k-8,$ onde k é um valor real.

Recorrendo exclusivamente a processos analíticos, resolva os itens.

- (a) Determine o valor real k.
- (b) Indique, justificando, a razão da progressão e o seu sexto termo.
- (c) Determine a soma dos quinze termos da progressão, começando no sexto termo inclusive.

6

5. Considere a função f, real de variável real, definida por,

$$f\left(x\right) = \frac{1 + \ln\left(x\right)}{x^2}$$

onde l
n designa logaritmo na base e e e designa o número de Neper.

Recorrendo exclusivamente a processos analíticos, resolva os itens.

- (a) Determine o domínio da função f.
- (b) Determine a derivada da função f.
- (c) Estude a função f quanto à monotonia e quanto à existência de extremos relativos.
- (d) Determine a equação reduzida da reta tangente ao gráfico da função f no ponto de abcissa 1.

6. Considere a função T, real de variável real, definida por,

$$T(t) = 19 + 4\cos\left(\frac{14 - t}{12}\pi\right)$$

onde t designa a hora do dia (0 $\leq t \leq$ 24) e cos designa o cosseno.

Sabe-se que a função T descreve a variação da temperatura, em graus Celsius, ao longo das horas de um dia do mês de junho na cidade de Leiria.

Recorrendo exclusivamente a processos analíticos, resolva os itens.

- (a) Determine a temperatura às 8 horas.
- (b) Determine a que horas do dia a temperatura foi igual a 21 graus Celsius.
- (c) Indique, justificando, a que horas do dia se verifica a temperatura máxima e a temperatura mínima.

FORMULÁRIO

Regras de Derivação

$$(u+v)' = u' + v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^k)' = k \cdot u^{k-1} \cdot u' \quad (k \in \mathbb{R})$$

$$\left(\sin\left(u\right)\right)' = u' \cdot \cos\left(u\right)$$

$$\left(\cos\left(u\right)\right)' = -u' \cdot \sin\left(u\right)$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln(a) \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln\left(u\right))' = \frac{u'}{u}$$

$$(\log_a(u))' = \frac{u'}{u \cdot \ln(a)} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Trigonometria

$$\sin(a+b) = \sin(a) \cdot \cos(b) + \sin(b) \cdot \cos(a)$$

$$\cos(a+b) = \cos(a) \cdot \cos(b) - \sin(a) \cdot \sin(b)$$

Probabilidades

$$\mu = p_1 \cdot x_1 + \ldots + p_n \cdot x_n$$

$$\sigma = \sqrt{p_1 \cdot (x_1 - \mu)^2 + \ldots + p_n \cdot (x_n - \mu)^2}$$

Se
$$X \in N(\mu, \sigma)$$
 então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P\left(\mu - 2\sigma < X < \mu + 2\sigma\right) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1 + u_n}{2} \cdot n$

Progressão geométrica: $u_1 \cdot \frac{1-r^n}{1-r}$

Limites Notáveis

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e \qquad \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{u_n \to +\infty} \left(1 + \frac{x}{u_n} \right)^{u_n} = e^x \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Área de Figuras Planas

Trapézio: $\frac{Base\ maior + Base\ menor}{2} \cdot Altura$

COTAÇÕES

	Cada	resposta certa	7	
	Cada	resposta errada, anulada ou não respondida · · · · · · · · ·	0	
ru	po I	[
1.			• •	30
	(a)		6	
	(b)		8	
	(c)		10	
	(d)		6	
2.				20
	(a)		10	
	(b)		10	
3.				15
4.				20
	(a)		6	
	(b)		6	
	(c)		8	
5.				25
	(a)		5	
	(b)		7	
	(c)		8	
	(d)		5	
6.			• •	20
	(a)		5	
	(b)		6	
	(c)		9	