UNIT 8B: Coronavirus

1 Initial projections

What happens when we flatten?

• Poll: Which scenario has the lowest total number of cases shown (area under the curve)?

Flattening the curve

Flattening the curve

- More flattening than reduction in total
 - _
- \bullet What are some benefits of just flattening?
 - _
 - *
 - *

Behaviour and policy change

• Why were our early models so wrong?

>

_

2 Endemic coronavirus

• Poll: What does it mean for SARS-CoV-2 to become "endemic"

_

• What it doesn't mean:

Disease burnout

- A disease that has a big epidemic and leaves very few susceptibles behind can go locally or globally extinct we call this burnout
- Lots of evidence for influenza or measles burning out in isolated areas during less global times

Disease burnout

Adaptive responses

• How	do people respond to fear of COVID-19?
_	
_	
	effects do we expect if people's worry levels about SARS-CoV-2 fluctuate with levels?
_	
_	
Burnout	and SARS-CoV-2
• Burne	out seems very rare in the global era
• Adap	tive responses work against burnout
_ `	When things are bad, people are more careful: less overshoot
_ `	When things are good, people are less careful: less chance to keep the virus down
3 Pat	shogen aggressiveness
• Poll:	Should viruses evolve to become more or less dangerous?
_	
_	
_	
Which s	train will win?
	e competing strains produce similar immune responses, this is exactly like equal etition: infections are competing for a single resource:
_	
• The v	winner will be the strain that has the highest "carrying capacity":
_	
_	
_	

Pathogen aggressiveness

- Pathogen will evolve to maximize \mathcal{R}_0 .
- ullet Is not affected by whether duration D is ended by host death, or by immune system clearing the pathogen

Human evolution

- We have evolved very good immune systems, but we can't always stay ahead of the viruses
- Should people evolve to favor the spread of more or less dangerous viruses?
 - _
 - _

Omicron example

- \bullet Omicron spreads much better than earlier SARS-CoV-2 viruses
- ullet It does less well in the lungs and better in the upper airways
- \bullet SARS-CoV-2 may be evolving in a less dangerous direction
 - There is no guarantee
 - $-\,$ Delta spread better and was more dangerous than previous

4 The future of SARS-CoV-2

What is different about SARS-CoV-2?

What is different about Silies Co.
• What is the main difference between SARS-CoV-2 and other colds and flus?
_
_
Human immunity
• The immune system is very complicated and very effective
 T cells and B cells recognize different parts of the pathogen Even partial recognition often protects people against severe outcomes
• Vaccines
 Also likely to protect against severe outcomes
Immunity and the virus
• Our immune systems may see different variants of the virus differently:
 Cross-immunity to a different strain might be less effective than direct immunity to the strain I was infected with
• How will this change our picture of competition?
_
_
Herd immunity
• Poll: What is meant by herd immunity?
_
_
• How much herd immunity do we need?
_
_

Can herd immunity drive SARS-CoV-2 extinct?

•	What	extinct	viruses	do we	know	about?	How	did	they	get	there?
	_										
	_										
	_										

Levels of disease

• In the long run, how long we go between COVID-19 infections will likely depend mostly on how long our immunity lasts, or else on

Just another seasonal coronavirus (JASC)

- This is a *theory* that lack of population immunity is the *only* difference between SARS-CoV-2 and other viruses that cause common colds
 - Some versions of the theory account for SARS-CoV-2 continuing to evolve in that direction
- Poll: What do you think of this theory?
 –
 –

Moving forward

- We need to pay attention and figure out how strongly to prioritize SARS-CoV-2 control
- We also need to be thinking about detecting and responding to the next pandemic!