Lecture 15

Interpolation of Spatial Data II

DSA 8020 Statistical Methods II

Review: Spatial nterpolation

Parameter estimation

A Case Study of Paraná State Precipitation Data

Whitney Huang Clemson University

A Case Study of Paraná State Precipitation Data

Review: Spatial Interpolation

Parameter estimation

Conditional Distribution of Multivariate Normal

Interpolation of Spatial Data II

nterpolation

Parameter estimation

Case Study of araná State recipitation Data

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \end{pmatrix}$$

Then

$$egin{bmatrix} [m{Y}_1 | m{Y}_2 = m{y}_2 \end{bmatrix} \sim \mathrm{N}\left(m{\mu_{1|2}}, \Sigma_{1|2}
ight)$$

where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (y_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Review: Spatial Interpolation

Parameter estimation

Case Study of araná State recipitation Data

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$\begin{pmatrix} Y_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} m_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & k^T \\ k & \Sigma \end{pmatrix} \right)$$

We have

$$[Y_0|\mathbf{Y}=\mathbf{y}] \sim \mathrm{N}\left(m_{Y_0|\mathbf{Y}=\mathbf{y}}, \sigma^2_{Y_0|\mathbf{Y}=\mathbf{y}}\right)$$

where

$$m_{Y_0|\mathbf{Y}=\mathbf{y}} = m_0 + k^{\mathrm{T}} \Sigma^{-1} (\mathbf{y} - \mathbf{m})$$

$$\sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Next, we are going to revisit our toy examples

$$m_{Y_0|\mathbf{Y}=\mathbf{y}} = 0 + k^{\mathrm{T}} \Sigma^{-1} (\mathbf{y} - \mathbf{0}), \quad \sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

$$\sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Spatial uncorrelated field:

$$\bullet$$
 $m_{Y_0|Y} = 0$

$$\bullet \ \sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{u}}^2 = \sigma_0^2$$

Spatial correlated field:

$$\bullet \ m_{Y_0|\mathbf{Y}} = k^{\mathrm{T}} \Sigma^{-1} \mathbf{y}$$

$$\bullet \ \sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

In practice, we would like to predict the values at many locations. The Gaussian conditional distribution formula can still be used:

$$[\boldsymbol{Y}_0|\boldsymbol{Y}=\boldsymbol{y}]\sim \mathrm{N}\left(\boldsymbol{m}_{\boldsymbol{Y}_0|\boldsymbol{Y}=\boldsymbol{y}}, \Sigma_{\boldsymbol{Y}_0|\boldsymbol{Y}=\boldsymbol{y}}
ight)$$

where

$$egin{aligned} m_{oldsymbol{Y}_0|oldsymbol{Y}=oldsymbol{y}} &= oldsymbol{m}_0 + oldsymbol{k}^{\mathrm{T}} \Sigma^{-1} \left(oldsymbol{y} - oldsymbol{m}
ight) \ & \Sigma_{oldsymbol{Y}_0|oldsymbol{Y}=oldsymbol{y}} &= \Sigma_0 - oldsymbol{k}^{\mathrm{T}} \Sigma^{-1} oldsymbol{k} \end{aligned}$$

Interpolation of Spatial Data II

Review: Spatial Interpolation

arameter estimation

Paraná State Precipitation Data

$$\begin{pmatrix} \boldsymbol{Y}_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathrm{N} \left(\begin{pmatrix} \boldsymbol{m}_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_0 & \boldsymbol{k}^{\mathrm{T}} \\ \boldsymbol{k} & \boldsymbol{\Sigma} \end{pmatrix} \right)$$

We have

$$[Y_0|Y=y] \sim N(m_{Y_0|Y=y}, \Sigma_{Y_0|Y=y})$$

where

$$egin{aligned} oldsymbol{m_{Y_0|Y=y}} &= oldsymbol{m}_0 + oldsymbol{k}^{\mathrm{T}} \Sigma^{-1} \left(oldsymbol{y} - oldsymbol{m}
ight) \ & \Sigma_{Y_0|Y=y} &= \Sigma_0 - oldsymbol{k}^{\mathrm{T}} \Sigma^{-1} oldsymbol{k} \end{aligned}$$

Question: what if we don't know $m(s; \beta), C(h; \theta)$?

 \Rightarrow We need to estimate the mean and covariance from the data y.

Parameter estimation

Paraná State Precipitation Data

A Case Study of Paraná State Precipitation Data

Review: Spatial Interpolation

Parameter estimation

A Case Study of Paraná State Precipitation Data

Assume $\{y(s_i)\}_{i=1}^n$ is one partial realization of a spatial stochastic process $\{Y(s)\}_{s\in\mathcal{S}}$.

- Gaussian Processes $\operatorname{GP}(m(\cdot),K(\cdot,\cdot))$ are widely used in modeling spatial stochastic processes, where the covariance $K(\cdot,\cdot)$ is typically assumed to be a stationary and isotropic covariance function C(h) that depends on spatial distance h only
- Spatial statisticians often focus on the covariance function. $(\sqrt{2\pi}k_1)^{\nu}K_1(\sqrt{2\pi}k_2)^{\nu}$

e.g.
$$C(h) = \sigma^2 \frac{\left(\sqrt{2\nu}h/\gamma\right)^{\nu} \mathcal{K}_{\nu}\left(\sqrt{2\nu}h/\gamma\right)}{\Gamma(\nu)2^{\nu-1}}$$

Variogram, Semivariogram, and Covariance Function

Interpolation of

Under the stationary and isotropic assumptions

Variogram:

$$2\gamma(\mathbf{s}_i, \mathbf{s}_j) = \operatorname{Var}(Y(\mathbf{s}_i) - Y(\mathbf{s}_j))$$

$$= \operatorname{E}\left\{ ((Y(\mathbf{s}_i) - \mu(\mathbf{s}_i)) - (Y(\mathbf{s}_j) - \mu(\mathbf{s}_j)))^2 \right\}$$

$$= \operatorname{E}\left\{ (Y(\mathbf{s}_i) - Y(\mathbf{s}_j))^2 \right\}$$

$$= 2\gamma(\|\mathbf{s}_i - \mathbf{s}_j\|) = 2\gamma(h)$$

Semivariogram and covariance function:

$$\gamma(h) = C(0) - C(h)$$

nterpolation

Parameter estimation

CLEMS#N U N I V E R S I T Y

Review: Spatial Interpolation

Parameter estimation

A Case Study of Paraná State Precipitation Data

Source: fields vignette by Wiens and Krock, 2019

Estimation: Weighted Least Squares Method

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{u \in \mathcal{U}} \frac{N(h_u)}{[\gamma(h_u; \boldsymbol{\theta})]^2} \left[\hat{\gamma}(h_u) - \gamma(h_u; \boldsymbol{\theta}) \right]^2$$

Review: Spatial Interpolation

Parameter estimation

Log-likelihood:

Given data
$$y = (y(s_1), \dots, y(s_n))^T$$

$$\ell_n(\boldsymbol{\beta}, \boldsymbol{\theta}; \boldsymbol{y}) \propto -\frac{1}{2} \log |\boldsymbol{\Sigma}_{\boldsymbol{\theta}}| - \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta})^{\mathrm{T}} [\boldsymbol{\Sigma}_{\boldsymbol{\theta}}]_{n \times n}^{-1} (\boldsymbol{y} - \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta})$$
where $\boldsymbol{\Sigma}_{\boldsymbol{\theta}}(i, j) = \sigma^2 \rho_{\rho, \nu} (\|\boldsymbol{s}_i - \boldsymbol{s}_j\|) + \tau^2 \boldsymbol{1}_{\{\boldsymbol{s}_i = \boldsymbol{s}_j\}}, i, j = 1, \dots, n$

Interpolation of Spatial Data II

Interpolation

Parameter estimation

$$\ell_n(\boldsymbol{\beta}, \boldsymbol{\theta}; \boldsymbol{y}) \propto -\frac{1}{2} \log |\boldsymbol{\Sigma}_{\boldsymbol{\theta}}| - \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta})^{\mathrm{T}} [\boldsymbol{\Sigma}_{\boldsymbol{\theta}}]_{n \times n}^{-1} (\boldsymbol{y} - \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta})$$
where $\boldsymbol{\Sigma}_{\boldsymbol{\theta}}(i, j) = \sigma^2 \rho_{\rho, \nu} (\|\boldsymbol{s}_i - \boldsymbol{s}_j\|) + \tau^2 1_{\{\boldsymbol{s}_i = \boldsymbol{s}_i\}}, i, j = 1, \cdots, n$

for any fixed $\theta_0 \in \Theta$ the unique value of β that maximizes ℓ_n is given by

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}_0}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}_0} \boldsymbol{y}$$

Then we obtain the profile log likelihood

$$\ell_n(\boldsymbol{\theta}; \boldsymbol{y}) \propto -\frac{1}{2} \log |\boldsymbol{\Sigma}_{\boldsymbol{\theta}}| - \frac{1}{2} \boldsymbol{y}^{\mathrm{T}} P(\boldsymbol{\theta}) \boldsymbol{y}$$

where

$$P(\boldsymbol{\theta}) = \Sigma_{\boldsymbol{\theta}}^{-1} - \Sigma_{\boldsymbol{\theta}}^{-1} \boldsymbol{X} \left(\boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}}$$

Solve the maximization problem above to get the MLE

Interpolation

Parameter estimation

Remarks on Likelihood-based estimation

Review: Spatial Interpolation

Parameter estimation

- Maximizing $\ell_n(\theta; y)$ involves solving a constrained nonlinear optimization problem, necessitating numerical methods for obtaining ML estimates.
- Alternatively, Restricted (or residual) maximum likelihood (REML) can be employed.
- Likelihood-based estimation poses computational challenges with large spatial datasets, primarily due to the significant computational complexity, requiring $\mathcal{O}(n^3)$ operations and $\mathcal{O}(n^2)$ memory.

Paraná State Precipitation Data

We look at the average winter (May-June, dry season) rainfall at 143 locations throughout Paraná, Brazil

Interpolation of

nterpolation

A Case Study of Paraná State Precipitation Data

Goal: To interpolate the values in the spatial domain

Exploratory Data Analysis

A linear trend in space (both longitude and latitude) may be suitable to characterize the large-scale spatial trend

CLEMS N

Demonstration

Variogram Analysis

Interpolation of

An increasing variogram pattern suggests a positive spatial dependence structure.


```
(parana.ml1 <- likfit(parana, trend = "1st", ini = c(1000, 50), nug = 100))
## likfit: likelihood maximisation using the function optim.
## likfit: Use control() to pass additional
            arguments for the maximisation function.
##
           For further details see documentation for optim.
## likfit: It is highly advisable to run this function several
##
           times with different initial values for the parameters.
## likfit: WARNING: This step can be time demanding!
## likfit: end of numerical maximisation.
## likfit: estimated model parameters:
                   beta1
                              beta2
        beta0
                                         tausq
                                                  sigmasq
## "416.4984" " -0.1375" " -0.3997" "385.5180" "785.6904" "184.3863"
## Practical Range with cor=0.05 for asymptotic range: 552.3719
##
## likfit: maximised log-likelihood = -663.9
```

Next, we will use these information to conduct spatial interpolation

Interpolation of Spatial Data II

into polation

Setting Up the Spatial Grids for Prediction

nterpolation

Spatial Predicted Map

Interpolation

Prediction Uncertainty Map

Interpolation

Summary

These slides cover:

- Parameter Estimation for Gaussian Process Spatial Models
- Spatial predictions using Gaussian Process Spatial Models

R functions to know:

- quilt.plot (under the package fields) for visualizing irregularly distributed spatial data
- vgram and variog (under the package fields and geoR, respectively) for visualizing spatial dependence
- variofit and likfit from the package geoR for condcuting weighted least squares and maximum likelihood estimation

nterpolation

Parameter estimation