Matrix Data Structures

Shusen Wang

- **Dense matrix:** most of the elements are non-zero.
- Dense matrix can be stored in a fixed-size array.

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Array:									
--------	--	--	--	--	--	--	--	--	--

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$\overline{a_{11}}$	a_{12}	a_{13}					

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{12}	a_{12}	a_{21}	a_{22}	a_{23}			
	14	13			43			

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23} & a_{31} & a_{32} & a_{33} \end{vmatrix}$	
--	--

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	a_{43}
- 1	14	1.12	- 2 1		23	31	32	33	41	42	43

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{21}	a_{31}	a_{41}				
							i

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

a_{11}	a_{21}	a_{31}	a_{41}	a_{12}	a_{22}	a_{32}	a_{42}		
1			**	12		52	1 4		

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Row-Major Order

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Getting a row is fast.

a_{11}	a_{12}	$ a_{13} $	a_{21}	a_{22}	a_{23}	$ a_{31} $	a_{32}	a_{33}	a_{41}	a_{42}	a_{43}	
						-						ı

a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	$ a_{43} $

Row-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Column-Major Order

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Getting a column is slow.

$ a_{11} $	a_{12}	$ a_{13} $	a_{21}	a_{22}	a_{23}	a_{31}	a_{32}	a_{33}	a_{41}	a_{42}	$ a_{43} $

Sparse Matrix Data Structures

Sparse Matrix

Example of sparse matrix

- Sparse matrix: A matrix in which most elements are zeros.
- Question: How to store a sparse matrix?
- Bad solution: As a dense matrix.
- Good solution: Storing only the nonzero elements and their indices.

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:

nnz(A)

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a row?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a row?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a row?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Getting a row is fast.

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a column?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a column?

CSR Matrix:
$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

How to slice a column?

CSR Matrix:
$$A = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Getting a column is slow.

Value:	10	5.5	30	40	7.1	2	70	9.2	26
Row Index:	1	1	2	2	2	3	3	4	4
Col Index:	1	2	3	4	6	2	5	4	6

Compressed Sparse Column (CSC)

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Compressed Sparse Column (CSC)

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:

Compressed Sparse Column (CSC)

$$\mathbf{A} = \begin{bmatrix} 10 & 5.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 40 & 0 & 7.1 \\ 0 & 2 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 9.2 & 0 & 26 \end{bmatrix}$$

Value:	10	5.5	2	30	40	9.2	70	7.1	26
Row Index:	1	1	3	2	2	4	3	2	4
Col Index:	1	2	2	3	4	4	5	6	6

Memory Cost

- 8 Bytes for a double-precision floating-point number.
- 4 Bytes for a long integer.
- Memory cost (Bytes) of CSR or CSC:

$$(8 + 4 + 4) \cdot \text{nnz}(\mathbf{A}) = 16 \cdot \text{nnz}(\mathbf{A}).$$

• Memory cost (Bytes) of an $m \times n$ dense matrix:

8mn.

• If over 50% elements are zeros, then CSR and CSC save memory.

Questions

From CSR to dense matrix

Value:

29

Row Index:

Col Index:

Matrix L1 Norm

Value: Row Index: Col Index:

- The 4×6 matrix **A** is stored as CSR matrix (in the above).
- Question: What is the ℓ_1 -norm of **A**?
- Hint: The matrix ℓ_1 -norm is $||\mathbf{A}||_1 = \sum_{i=1}^4 \sum_{j=1}^6 |a_{ij}|$.

Thank You!