

Entrega 1, Proyecto 0 Metodos Computacionales en OOCC, IOC 4201

Profesor: Patricio Moreno

Ayudante: Maximiliano Biasi

Alumno: Lukas Wolff Casanova

$\acute{\mathbf{I}}\mathbf{ndice}$

Ι	En	trega 0	1
1.	Intr	oducción	1
2.	Desa	arrollo	1
		Dibujos	
	2.2.	Presion de Poros	1
	2.3.	Presion Ataguia	
		2.3.1. Presiones Totales	1
		2.3.2. Mapa de Presion	3
		2.3.3. Presiones Netas	
		2.3.4. Centroide de la distribucion de Presiones	
	2.4.	Maximo Gradiente Hidraulico	4
	2.5.	Falla por Licuefaccion	4
	2.6.	Factor de Seguridad	4

Índice de figuras

1.	Caso 1 Base	1
2.	Caso 2 Base	1
3.	Caso 3 Base	1
4.	Caso 1 Presiones Ataguia	1
5.	Caso 2 Presiones Ataguia	1
6.	Caso 3 Presiones Ataguia	1
7.	Caso 1 Presiones de Poros	9
8.	Caso 2 Presiones de Poros	9
9.	Caso 3 Presiones de Poros	9
10.	Caso 1 Presiones Ataguia Neta	5
11.	Caso 2 Presiones Ataguia Neta	5
12.	Caso 3 Presiones Ataguia Neta	
13.	Caso 1 Centroide Presiones	4
14.	Caso 2 Centroide Presiones	4
15.	Caso 3 Centroide Presiones	/

Entrega 0

Ver repositorio en GitHub.

1. Introducción

2. Desarrollo

2.1. Dibujos

Figura 1: Caso 1 Base

Figura 2: Caso 2 Base

Figura 3: Caso 3 Base

Los dibujos en tamaño A4 como fue solicitado, y con un espaciado de 5mm (en escala correspondiente a 1 metro), se encunetran en el siguiente link: Dibujos A4.

2.2. Presion de Poros

2.3. Presion Ataguia

2.3.1. Presiones Totales

Figura 4: Caso 1 Presiones Ata- Figura 5: Caso 2 Presiones Ata- Figura 6: Caso 3 Presiones Ataguia guia guia

Donde las presiones en los distintos puntos solicitados son:

Caso	A	В	С	D	E	F	G	Η
1	0	37.28	71.14	79.33	79.35	68.13	63.59	0
2	0	37.28	59.70	78.65	89.44	81.17	27.47	0
3	0	37.28	50.01	56.37	95.33	88.45	7.85	0

Cuadro 1: Presiones en Ataguia en [KPa]

Para calcular esta presiones, se primero se calcularon las presiones en los distintos puntos conocidos de las lineas piezometircas:

```
#Primero Calulo el delta H, el cual debe ser en metros
    Delta_H = (C1+B1) - (C2+B2)
    #Luego calculo Z, el cual es la altura para el grafico obtenido
    #a partir de una lista de coordenadas, por lo tanto,
    #conviero las coordenas a metros.
    z = ((coor[clave][1]-altura_rel)*200)/1000
    #Calculo Zg
    Zg = z
10
11
    #Luego calculo ni, el numero de linea equipotencial
    ni = int(clave.split('_')[1])
13
    #en base a esto, es posible obtener delta_hi
15
    Delta_Hi = (C1+B1)-((Delta_H*ni)/Nd)
16
17
    #Calculo hp
18
    hp = Delta_Hi - Zg
19
20
21
    #Y finalmente U en [KPa]
22
    u = (hp*gamma_agua)/1000
23
    #Este proceso es aplicado en todos los puntos conocidos
```

Posteriormente, aplico una regrecion lineal a la curva obtenida y asi calculo las presiones en los distintos puntos solicitados.

```
from scipy.interpolate import interp1d

interpolacion = interp1d(x_known, y_known, kind='linear')
```

En base a todas las presiones de poros conocidas, fue posible aplicar un mapa de calor:

2.3.2. Mapa de Presion

Figura 7: Caso 1 Presiones de Po- Figura 8: Caso 2 Presiones de Po- Figura 9: Caso 3 Presiones de Poros ros ros

2.3.3. Presiones Netas

Figura 10: Caso 1 Presiones Ata- Figura 11: Caso 2 Presiones Ata- Figura 12: Caso 3 Presiones Ataguia Neta guia Neta guia Neta

De lo cual es posible conocer el equilibrio estatico de la ataguia:

2.3.4. Centroide de la distribucion de Presiones

La siguiente funcion en python permite conocer el centroide de una funcion:

```
import numpy as np
from scipy.integrate import simps

# Calcular el area bajo la curva usando integracion numerica (Simpson)
area = simps(y, x)

# Centroide en x
x_bar = simps(x * y, x) / area
```

De lo cual se obtiene lo siguiente:

Figura 13: Caso 1 Centroide Pre- Figura 14: Caso 2 Centroide Pre- Figura 15: Caso 3 Centroide Presiones siones

2.4. Maximo Gradiente Hidraulico

Se calculo el maximo gradiente hidraulico como:

```
max_g = Delta_H/((C1-C2) + 2*D)

#es decir, el minimo recorrido posible entre los dos puntos

#Donde delta_H ya fue definido anteriormente
```

De lo cual se obtuvo:

Caso	Maximo Gradiente Hidraulico
1	1.095
2	0.629
3	0.380

Cuadro 2: Maximo Gradiente Hidraulico

2.5. Falla por Licuefaccion

Definir que es la Licuefaccion

2.6. Factor de Seguridad

hola