LCD 항목 설명

LCD설정항목	항목 설명
COMM MODE	수동/통신 제어방법 설정
LOCAL ADDRESS	통신 제어서 Address 설정
SWAP NUMBER	LF/HF Cycle 몇번 할것인가 설정
SET IR	출력 전류 설정
SET PHASE	위상 설정
LOW FREQ	LF 모드의 시작주파수
HIGH FREQ	HF 모드의 시작주파수
LF DISCHAR	LF 모드 동작뒤 방전시간
HF DISCHAR	HF 모드 동작뒤 방전시간
HF FREQ MAX	HF 모드 주파수 상한값 설정
HF FREQ MIN	HF 모드 주파수 하한값 설정
LF FREQ MAX	LF 모드 주파수 상한값 설정
LF FREQ MIN	LF 모드 주파수 하한값 설정
IDLE TIME	LF 모드와 HF 모드사이의 휴지 시간 (0으로 설정)
RUN MODE	장비 가동 방법 설정

LCD설정항목	항목 설명		
LF Time1	LF1 가열시간 설정	٦	
LF Power1	LF1 출력 설정		1Cycle
HF Time1	HF1 가열시간 설정	ſ	TOycie
HF Power1	HF1 출력 설정	J	
LF Time20	LF20 가열시간 설정	٦	
LF Power20	LF20 출력 설정	L	20Cycle
HF Time20	HF20 가열시간 설정		200,010
HF Power20	HF20 출력 설정	J	

※ 참고 사항

- 해당 프로그램은 이중주파수장비를 기본으로 PFM제어다.
- 각 Cycle에 HF와 LF 중복으로 두지 않는다. (중복으로 설정해도 되나 항상 LF가 먼저 기동되므로 편의를 위해 Cycle 단위로 LF,HF 중 하나만 설정한다.
- 각 Time이 0일 때, 게이트 파형이 나가지 않음
- SWAP NUMBER의 설정에 따라 Cycle 설정 개수가 결정된다. Ex) SWAP NUMBER가 4이면 4Cycle까지 설정 가능
- SWQP NUMBER는 최대 20까지 설정 가능 단, LCD에서 10까지 확인, 11~20까지는 DSP 리얼타임으로 확인가능(LCD 용량문제)

D-TEK POWER SYSTEM

- 1. 게이트 채널 설명
 - 1) IR_MODULE 1,3,5 IGBT 스위치 신호 출력
 - 2) IR_MODULE 2,4,6 주파수 절환용 신호 출력 📖

- 2. SCR GATE CONNECTER_V2.1 연결
 - 1) IR_MODULE 1,3,5 에 SCR GATE CONNECTER_V2.1[KBI01033]보드를 DVI 케이블로 연결한다.
 - 2) SCR GATE CONNECTER_V2.1보드를 연결하지 않을 경우 대기 상태에서 IGBT SHORT FAULT 가 발생한다.
 - 3) 만약 SCR GATE CONNECTER_V2.1보드가 없다면 IR_MODULE 1,3,5에 아래 회로를 추가하여 FAULT가 발생하지 않도록 한다.

- 3. Ir OCP
 - 1) Ir_OCP 발생시 J38 연결
- 4. GATE 신호 확인
 - 1) IGBT 스위치 신호
 - a. TP151:Q1 1, TP153:Q3 1, TP152:Q2 1, TP154:Q4 1
 - b. IGBT 모듈측 신호
 - c. LF. HF사용에 따라 주파수 변경됨
 - 2) 주파수 절환용 신호
 - a. HF 사용시 신호 TP155:Q1_2, TP159:Q4_2
 - b. LF 사용시 신호 TP157:Q3_2, TP158:Q2_2

- 3. SMPS 설정
 - 1) SMPS 보드의 JP15 (오른쪽 그림참고) 커넥터를 제거한다.
 - 2) DC전압을 충전하는 부분으로 DC링크에 전압이 충전 되었을 때 전압이 실리는 부분이다.
 - 3) 커넥터 제거시 DC 전압이 실리는지 주의한다.

참고사항

- 1. JP 커넥터를 뽑고 제어전원 인가 시 SMPS 보드의 D27~D30(다이오드)가 손상 될 수 있다
- 2. D27~D30이 손상될 경우 프로그램의 인러시 충전기울기 관련부분을 수정 한다.

- 4. LCD 항목 설명
 - 1) COMM MODE: INTERNAL
 - 2) SWAP NUMBER : 1 (제어전원 테스트 용으로는 1로 충분함)
 - 3) SET IR / SET PHASE : 자유롭게 설정 (제어전원에서 의미 없음)
 - 4) Low / HIGH FREQ : 시작 주파수 설정
 - 5) HF / LF FREQ MIN/MAX : HF / LF 주파수 상한 하한설정
 - 6) LF / HF DISCHAR : 자유롭게 설정

LF / HF 동작 후 방전시간으로 제어전원에서 의미 없음

LF Discharge 구간에서는 Q1.2. Off / Q3.Q4 On

HF Discharge 구간에서는 Q1,2,3,4 Off

7) IDLE TIME: 0으로 설정 (실 조업에서도 사용하지 않음)

LF와 HF간의 휴지 시간의미로 제어전원에서 의미 없음

1Cycle				2Cycle					
LF	Discharge	Idle Time	HF	Discharge	LF	Discharge	Idle Time	HF	Discharge

8) RUN MODE : TEST 설정(Phase Fail 동작하지 않음)

제어전원 확인 후 NORMAL(Phase Fail 동작함)로 변경한다.

9) LF(HF) TIME1 : 원하는 동작시간 설정

10) LF(HF) POWER1 : 자유롭게 설정 (제어전원에서 의미 없음)

0일 경우 게이트 파형 나오지 않음

11)Dead Time : 관리자 모드에 Set DT High(LOW)에 HF/LF 모드 각각 설정가능

설정값의 2배로 Dead Time이 적용됨

- 5. Pulse Gate 확인
 - 1) Q1_2(TP155), Q3_2(TP157), Q2_2(TP158), Q4_2(TP159)가 Pulse Gate 신호 이다.
 - 2) HF 모드 동작시 Q1_2(TP155), Q4_2(TP159) Pulse Gate 출력
 - 3) LF 모드 동작시 Q3_2(TP157), Q2_2(TP158) Pulse Gate 출력
 - 4) Pulse Gate 파형은 80kHz로 동작하며 On Time은 5us로 일정

스위치 절환용 IGBT 확인 방법

- 1. PULSE_DRIVE_DUAL FREQUENCY 보드 세팅
 - 1) 해당 보드는 점퍼 세팅에 따라 HF모드, LF 모드 사용 가능.
 - 2) HF 모드 사용시 JP7~JP10 연결
 - 3) LF 모드 사용시 JP11~JP14 연결

스위치 절환용 IGBT 확인 방법

- 2. 해당보드에 IGBT 연결(Gate, Emitter)
 - 1) PULSE_DRIVE_DUAL FREQUENCY 보드의 Gate, Emitter에 프로브 연결
 - 2) 컨트롤보드의 TP[(Q1_2(TP155), Q3_2(TP157)]에 프로브 연결
 - 3) LF 모드와 HF 모드 설정하여 게이트 파형 확인
 - 4) 원하는 모드 동작시 PULSE_DRIVE_DUAL FREQUENCY 보드의 G-E간 전압이 20V로 상승하여 유지 되는지 확인한다.
 - 5) 이때, IGBT Collector- Emitter 양방향 다이오드가 측정(약 0.24~0.27V)되는지 확인한다.
 - 6) 인버터 IGBT가 스위칭 되면 경우에 따라 0V로 측정될 수 있다. 인버터 IGBT에 신호 차단(또는 모듈부에 전원차단) 한 뒤 측정하는 방법 추천

EX) CH1: LF모드 동작시

PULSE_DRIVE_DUAL FREQUENCY 보드의 G-E

CH2: HF 모드 동작시

PULSE_DRIVE_DUAL FREQUENCY 보드의 G-E

CH3: 컨트롤 보드의 TP155 HF Pulse Gate CH4: 컨트롤 보드의 TP157 LF Pulse Gate

스위치 절환용 IGBT 확인 방법

CH1: LF Pulse Tr, CH2: HF Pulse TR, CH3: Q1 Gate, CH4: Q2 Gate

3. 파형 설명

- 1) HF모드->LF 모드 절환
 - A. HF모드의 게이트파형이 꺼진 후(①) HF Pulse TR은 ON(IGBT On 의미)되어있다.
 - B. LF모드가 On(②)되면 HF Pulse TR이 Off되며 LF Pulse TR이 ON(IGBT On)이 된다.
 - C. 해당 IGBT가 켜지는 시간 뒤 LF Gate(③)가 동작된다.
- 2) LF모드->HF 모드 절환
 - A. LF모드의 게이트파형이 꺼진 후(④) LF Pulse TR은 ON(IGBT On 의미)되어있다.
 - B. HF모드가 On(⑤)되면 LF Pulse TR이 Off되며 HF Pulse TR이 ON(IGBT On)이 된다.
 - C. 해당 IGBT가 켜지는 시간 뒤 HF Gate(⑥)가 동작된다.
- 4. IGBT의 C-E간 다이오드
 - 1) 해당 모드에 사용되는 IGBT는 C-E 양방향 다이오드값이 측정된다.

설정에 따른 파형 설명 (예시)

- 1. SWAP NUMBER=4 설정하여 4Cycle로 설정
- 2. 1Cycle = LF 1초, 2Cycle = HF 1초, 3Cylce = LF 1초, 4Cycle = HF 1초 설정
- 3. HF Discharge = 100ms, LF Discharge = 100ms 설정
- 4. IDLE TIME = 0 설정
- 5. LF 동작시간 = LF Time LF Discharge
- 6. HF 동작시간 = HF Time HF Discharge
- 7. LF, HF 각각 동작후 Soft Stop으로 동작함 (이때 시간은 정확하게 알 수 없음)

EX) CH1: Q1 Gate CH2: Q2 Gate

CH3: LF 모드 동작시 PULSE_DRIVE_DUAL FREQUENCY 보드의 G-E CH4: HF 모드 동작시 PULSE_DRIVE_DUAL FREQUENCY 보드의 G-E

참고사항

- 1. LF Discharge 구간에서는 Q3_Gate 와 Q4_Gate가 On 된다.
- 2. LF와 HF에 따른 방전시간 차이 때문 에 LF에서만 동작함
- 3. Idle Time의 경우 1Cycle(LF+HF)일 때만 동작하기 때문에 0으로 설정 하 는것

- 1. DISCHARGE 설정 방법
 - 1) DISCHARGE의 경우 주파수변경에 따른 스위치 절환 시 중요.
 - 2) 모듈의 IGBT스위치가 멈춘 후 절환 되야 한다.
 - 3) SWAP NUMBER=1로 설정한 후 LF 또는 HF 둘 중 하나를 선택한다.
 - 4) 해당 모드의 Off파형을 확인한다. (Ir 및 출력 전압)
 - 5) Ir 및 출력 전압이 0으로 도달되는 시간을 측정한다.
 - 6) Off시 파워값과 소재의 유무에 따라 시간이 달라진다.
 - 7) 해당 시간을 측정한 후 충분한 마진을 줘서 DISCHARGE를 설정한다.
 - 8) LF 및 HF 두 가지 모드 측정하여 설정한다.

CH1: Q1 Gate, CH2: Ir avg, CH3: 출력 전압, CH4: 로고스키 코일

2. 절환동작

- 1) 절환 동작시 이전 동작의 주파수(빨간색)를 기억하고 있어서 동작한다.
- 2) 이전 동작의 주파수(노란색)로 시작하므로 Ir 및 Vc Overshoot 발생
- 3) 프로그램 수정하여 이전 동작의 주파수에서 일정 비율 주파수를 상승 시킨 후 동작한다.
- 4) 주파수 상승시켜 동작하는 것은 Ir 및 Vc Overshoot을 줄이는 것 목적이다.
- 5) IGBT 용량(전류,전압). 콘덴서등의 마진이 충분하다면 주파수 상승시키는 동작은 생략 해도 된다.

이전 동작주파수로 동작시

이전 동작주파수에 일정비율 상승하여 동작시

2. 절환동작

- 6) 절환시 LF시작 주파수 = 이전 LF 동작주파수 / 0.6 (0.6은 성보P&T시운전시 적용한 값)
- 7) 절환시 HF시작 주파시 = 이전 HF 동작주파수 / 0.8 (0.8은 성보P&T시운전시 적용한 값)
- 8) 이때 주파수 는 최대 주파수까지로 제한된다.

6.48kHz / 0.6 = 10.8kHz

34.58kHz / 0.8 = 43.2kHz

3. QRC

- 1) 성보 P&T장비의 경우 CT의 1차측과 수냉식케이블에 의한 공진이 발생한다.
- 2) CT의 1차측이 C성분으로 보이고 수냉식 케이블이 L성분으로 보인다.
- 3) 이와 같은 C와 L성분으로 인해 원하는 동작 외의 기생공진이 발생한다.
- 4) 이러한 기생공진을 완화시키는 목적으로 QRC를 적용한다.
- 5) HF때와 LF일 때 절환 스위치가 달라져 기생공진의 주파수도 달라진다.
- 6) 그렇기 때문에 HF와 LF의 QRC동작도 달라져야 한다.

HF시 CT1차 파형 CH4: QRC 적용 SNAP: QRC 미적용 LF시 CT1차 파형 CH4: QRC 적용 SNAP: QRC 미적용

- 4. Vc 전압 제어 설정
 - 1) $Vc=(Ir*0.91)/(2\pi*fr*C)$
 - 2) 성보 P&T의 경우 M/T의 비율이 '0.91:1'이여서 Vc 구하는 공식에 0.91이 곱해짐
 - 3) 저주파의 800V, 고주파 2000V로 제한됨 (설정항목 없으며 프로그램상에 적용되어있음)
- 5. Soft Stop
 - 1) Hard Stop 할 경우 DC 전압 상승폭이 커 Soft Stop으로 변경함
 - 2) Soft Stop 하더라도 DC 전압의 상승폭은 큼
 - 3) DC 전압 상승폭 때문에 OVP Fault는 사용 하지 않음

Hard Stop시 파형 CH1: Vdc 센싱 CH2: Ir_avg CH3: 로고스키 코일 CH4: Vdc 전압 Soft Stop시 파형 CH1: Q1 Gate 파형 CH2: Ir_avg CH3: 로고스키 코일 CH4: Vdc 전압

절환용 IGBT 전압측정

- 1. HF
 - 1) 출력케이블과 절환용 IGBT 전압 측정 비교

- 2) 오른쪽 파형에 CH3 ① 측정
- 3) 오른쪽 파형에서 Snap ② 측정
- 4) ①, ② 파형 동일
- 5) IGBT 1700V이므로 측정전압 최대 3400V까지 가능

단, 전압 마진 고려할 것

절환용 IGBT 전압측정

- 2. LF
 - 1) 출력케이블과 절환용 IGBT 전압 측정 비교 ①,②의 전압은 ③의 절반
 - 2) IGBT 1200V 이므로 ③의 측정전압 최대 2400V 까지 괜찮음 단, IGBT 전압 마진 고려할 것
 - 3) 현장시운전시 1200V/2400A -> 1700V/3600A IGBT로 변경

절환용 IGBT 전압측정

- 2. LF
 - 2) 오른쪽 파형에서 CH3 ① 측정
 - 3) 오른쪽 파형에서 CH4 ② 측정

- 3) 오른쪽 파형에서 CH3 ① 측정
- 4) 오른쪽 파형에서 CH4 ③ 측정
- 5) ①,②의 전압은 ③의 절반

PLC 동작 관련

- 1. IH SW와 PLC
 - 1) 해당 프로그램의 기본 골격은 이중주파수 프로그램이다
 - 2) 설정 파워 및 설정 시간에 따라 동작
 - 3) 성보의 경우 기계장치와 연동되어 PLC 작화에서 기계장치 구동(소재이송)과 전원 장치의 설정 값이 같이 연계되어 있다
 - 4) 그로 인해 링기어와 샤프트에 따른 PLC 프로그램이 별개로 동작함
- 2. 수동가열
 - 1) 소재의 가열 정도를 육안으로 확인하는 용도로 사용됨
 - 2) LF 모드 사용시 LF Power1, LF Time1 사용
 - 3) HF 모드 사용시 HF Power1, HF Tiem1 사용
 - 4) 수동 가열시 최대 120초
 - 5) OP에서 '수동가열' 버튼을 누르고 있을최대 120초 가동 됨
- 3. 링기어
 - 1) PLC 설정값으로 동작
- 4. 샤프트
 - 1) 소재를 이송하면서 가열하게 됨
 - 2) 샤프트 특성상 저주파만 사용함
 - 3) LF Time1 과 LF Power1만 사용
 - 4) LF Time1 = 120초 고정 (샤프트 공정시간이 120초 초과하지는 않음,)
 - 5) 소재 위치에 따라 LF Power1만 변경됨
 - 6) 소재 위치에 따라 출력이 변경되므로 정확한 시간을 산정할 수 없음

시운전시 문제점

- 1. PLC 오동작
 - 1) 고주파 동작시 PLC 오동작 발생
 - 2) 코일리드 부분의 절연파괴로 인해 오동작

2. 런 안 되는 현상

- 1) Po=1100kW 기동 정지후 런 안되는 현상 발생
- 2) 정지시 DC 전압이 상승하여 OVP Fault 발생 (프로그램 실수로 LCD에 Fault 발생하지 않으나 DSP는 Fault로 인식)
- 3) 소프트 스탑 동작을 하지만 일반적인 설비에 비해 빠른시간에 정지함
- 4) 그로 인해 DC 전압 상승

시운전시 문제점

- 3. 코일 소재간 아크 발생 (고주파)
 - 1) 공진콘덴서 변경 (개선 안됨)
 - 공진 콘덴서 6uF -> 10uF 변경
 - 주파수 약 26kHz -> 21kHz 변경주파수 감소목적
 - 2) IGBT 스너버 변경 (개선 안됨)
 - IGBT 스위칭 전압 기울기 변경 목적으로 변경
 - PBA 1개당 223 9EA 변경
 - 3) 코일 부분 모따기 (개선안됨)

- 4) 소재 절연 작업
 - 소재와 기계장치(척) 절연작업(테프론으로 임시)
 - 아크 발생 하지 않음
 - 이후 MC로 척을 만들어 제공
 - 고객사에서 MC로 만든 척은 내구성이 의심된다는 의견 제시
 -> 개선품 제공 1년간 테스트후 사용여부 결정

시운전시 문제점

- 4. 고주파 동작시 게이트 파형이상
 - 1) 간헐적으로 컨트롤 보드에서 게이트 파형 이상 발생
 - 2) 60Hz 주기로 이상 발생
 - 3) SMPS 보드 (+5V, +3.3V등 이상 없음)
 - 4) 컨트롤 보드 교체후 정상 동작

