## Topic 3 recap

- Superposition principle in linear circuits (circuit analysis).
  - The response of a linear circuit (a voltage or current of an element) with multiple sources is the algebraic sum of individual responses due to each independent source when the rest are turned off.
  - Dependent sources are left intact during all calculations.
- Source transformation (circuit analysis/simplification).
  - Consists in replacing a **voltage source**  $v_s$  (independent or dependent) in **series** with a **resistor** with a **current source**  $i_s$  (independent or dependent, respectively) in **parallel** with another resistor at the **same terminal** or vise versa.
    - $i_S = \frac{v_S}{R}$  or  $v_S = Ri_S$ .
    - The transformed resistors are the same.
- Thevenin's theorem.
  - A linear circuit can be **replaced** (modelled) with a **voltage source**  $V_{Th}$  in **series** with a **resistor**  $R_{Th}$  from a given terminal.
  - $V_{\rm Th}$  is equal to the **open-circuit voltage** across the terminals ( $V_{\rm Th} = v_{oc}$ ).
  - R<sub>Th</sub> is obtained as:
    - Ratio of the open-circuit voltage to the short-circuit current at the terminal pair.
    - **Input resistance** measured at the terminal pair when **all independent sources** are **turned off** (note that this method cannot be used for dependent sources).



## Topic 3 recap

- Norton's theorem.
  - A linear circuit can be replaced (modelled) with a current source I<sub>N</sub> in parallel with a resistor R<sub>N</sub> from a given terminal.
  - $I_N$  is equal to the **short-circuit current** at the terminals  $(I_N = i_{sc})$ .
  - $R_N$  is the **same** as  $R_{\rm Th}$ .
- Thevenin-Norton transformation is exactly the same as source transformation.

- 
$$V_{\mathrm{Th}} = R_N I_N \text{ or } I_N = \frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}}$$

$$- R_{\rm Th} = R_N = \frac{v_{\rm oc}}{i_{\rm sc}}$$

- Maximum power transfer
  - If  $R_L = R_{Th}$  the power transferred to the load  $R_L$  is maximum.

$$- p_{max} = \frac{V_{Th}^2}{4R_{Th}}$$

$$- v_L = \frac{V_{\rm Th}}{2}$$

