

- Motivation und Einführung
- Preprocessing
- Model Selection
- Evaluation
- Bewertung und Potenziale
- Nächste Schritte

Motivation

- NLP und Word-Tokenizing steigende Relevanz (insb. Wegen Stimmerkennung und KI-Chatbots)
- Automatisch Sentiment/Gefühle von großen Menschmengen/Datensätzen erkennen kann entscheidende Vorteile bieten
- Finanzsektor bietet viele Daten und Möglichkeiten der Weiterentwicklung

Exploratory data analysis: Einführung in den Datensatz

Absolute und relative Häufigkeiten der Klassen

	Negativ	Neutral	Positiv	Gesamt
n	604	2879	1363	4846
h	12,5 %	59,4 %	28,1 %	

Häufigkeitsverteilung über Stringlänge

Beispiele der Klassen

Text	Sentiment
Sales in Finland decreased by 10.5 % in January, while sales outside Finland dropped by 17 %.	Negativ
According to Gran, the company has no plans to move all production to Russia, although that is where the company is growing.	Neutral
In the third quarter of 2010, net sales increased by 5.2 % to EUR 205.5 mn, and operating profit by 34.9 % to EUR 23.5 mn.	Positiv

Quelle: Datensatz; Vaughan, D. 2020

- Motivation und Einführung
- Preprocessing
- Model Selection
- Evaluation
- Bewertung und Potenziale
- Nächste Schritte

Preprocessing Prozess: Data Cleaning

Originaler Text	Störende Elemente	Zeichensetzung	Tokenizing	Stopwords	Lemmatizing	Final	Anz. Chars
"Technopolis" plans to develop in 2 mio. stages an area	"technopolis" plans to develop in stages an area	'	[technopolis, plans, to, develop, in, stages,	[technopolis, plans, develop, stages, area, le	[technopolis, plan, develop, stage, area,	technopolis plan develop stage area 	178

Preprocessing Prozess: Verworfene Preprocessing-Ideen

- Klassenbias durch Löschen aufgeben; Verworfen, weil zu viele Samples verloren gingen
- Ersetzen von Störenden Elementen (statt löschen); Verworfen, weil künstlicher Bias erzeugt wurde
- (Feature Creation) Anz. Chars verwenden; Verworfen, weil nicht aussagekräftig

Preprocessing Prozess: Vectorizing

N-Gram

- Reihenfolge der Wörter berücksichtigen
- K-Tupel für aufeinanderfolgender Wörter s.d. k <= N (N-Gram länge)

TF-IDF Vectorizer

- Anzahl des Vorkommens mit inverser Dokumentfrequenz Gewichten (häufige Wörter abgewichten)
- Vektor f
 ür sp
 äteres Modell

$$IDF(wort_i) = \log \frac{\text{#Dokumente}}{\text{#Dokumente , in denen Wort}_i \text{ vorkommt}}$$

$$TFIDF(\mathbf{x}) = \frac{1}{|\mathbf{x}|} \begin{pmatrix} TF(Wort_1) \cdot IDF(Wort_1) \\ \vdots \\ TF(Wort_n) \cdot IDF(Wort_n) \end{pmatrix}$$

- Motivation und Einführung
- Preprocessing
- Model Selection
- Evaluation
- Bewertung und Potenziale
- Nächste Schritte

Preelimiary Model Consideration: Intuition

Modell	Descision Trees	Linear Classification	Neural Networks	Bayesian Models
Intuition	 Mächtige (Ensemble) Methode Gut nachvollziehbar (bspw. Feature Importances) Hochdimensionierte TF-IDF Datensätze gut lösbar Nicht-Lineare Zusammenhänge erkennbar 	 Einfache, lineare Methode (komplementär zu Decision Trees) Schnell in Primaler und Dualer (kernelized) Sicht anwendbar Potenziell Vorteile durch Kernel, weil deutlich mehr Features als Samples 	 Hochdimensionierter Datensatz benötigt großes Modell Viel Rechenleistung Wäre für V2 des Modells (ggf. auf verteilten Systemen) geeignet 	 Könnte statt dem Linearen Modell verwendet werden (SVC) Kein Vor-/Nachteil erwartet
Entscheidung	Angenommen; RandomForest Classifier	Angenommen; SVM Classifier	Abgewiesen	Abgewiesen

Model Selection; Hyperparametertuning

- Nested Cross Validation und Grid Search
- Evaluierung der Vectorizing-Strategie und Modelparametern
- · Verwendung der AUC (Area under the ROC Curve) als Messinstrument bei der GridSearch
 - Klassenbias könnte Precision künstlich in die Höhe treiben
 - AUC ist weniger von Klassenbias beeinflusst (Verhältnis von True-Positive Rate und False-Positive Rate bei verändertem Klassifikations-Threshold)

$$r_{TP} = rac{n_{TP}}{n_{TP} + n_{FN}}$$
 $r_{FP} = rac{n_{FP}}{n_{FP} + n_{TN}}$

Nested Cross Validation; Prinzip

Model Selection; Support Vector Classifier

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[\max(0, 1 - y_i \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\theta}) + \frac{\lambda}{n} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \right]$$

Rank	Fit-Time	AUC	C	Dual	N-Gram
1	7.325071	0.855051	1.5	True	(1,2)
2	5.867231	0.854483	1	True	(1,2)
3	8.328862	0.853669	2	True	(1,2)
Grid			0.5/1/1.5/2	True / False	(1,2) (1,3) (2,3)

Model Selection; Random Forest Classifier

C4.5/C5.0 Algorithmus für kontinuierliche Attribute mit Gini als Split-Kriterium

Rank	Fit-Time	AUC	n-Estimators	Max-Depth	N-Gram
1	3.612475	0.829797	100	150	(1,2)
2	3.899151	0.829081	150	150	(1,2)
3	2.447473	0.827331	100	100	(1,2)
Grid			50 / 100 / 150	100 / 150 / 200	(1,2) (1,3) (2,3)

- Motivation und Einführung
- Preprocessing
- Model Selection
- Evaluation
- Bewertung und Potenziale
- Nächste Schritte

Model Evaluation: Strategie

- · GridSearch mit AUC (statt Accuracy) liefert das beste Modell (trainiert auf Gesamtdatensatz)
- Holdout-Set erstellen
- · Confusion Matrix zur Prüfung der Vorhersagen und Identifikation des Bias (Ausschluss der Accuracy-Score) auf Holdout-Set
- ROC Kurven, um SVC und RFC miteinander zu vergleichen (auf Holdout-Set)
 - · Multi-Class ROC Kurven (Receiver Operating Characteristic): Averaging, um mit Multi-Class Setting umzugehen

$$Pr_{micro} = \frac{TP_1 + TP_2 + \dots + TP_k}{(TP_1 + TP_2 + \dots + TP_k) + (FP_1 + FP_2 + \dots + FP_k)}$$

Wenn Klassenbias groß

$$Pr_{macro} = \frac{Pr_1 + Pr_2 + \dots + Pr_k}{k} = Pr_1 \frac{1}{k} + Pr_2 \frac{1}{k} + \dots + Pr_k \frac{1}{k}$$

Unterrepräsentierte Klasse stärker gewichten

Model Evaluation: Ergebnisse

Top 10 Features nach Wichtigkeit für Klassifizierung (RFC)

Rank	Feature
1	profit
2	decreased
3	rose
4	year
5	operating
6	fell
7	operating profit
8	increase
9	sale
10	said

Confusion Matrix SVC

Confusion Matrix RFC

Model Evaluation: Ergebnisse

- Jeweils wie erwartet Micro-Average größer als Macro-Average
- SVC deutlich bauchiger als ROC-Kurve des RFC
- Folglich AUC bei SVC größer als bei RFC

Model Evaluation: Real World Testing

- Test des Modells auf echten, aktuellen Finanzheadlines
- Manuelle Erstellung einer Decision-Pipeline

```
    step_0 = remove_numbers(string.lower())
    step_1 = remove_punctuation(step_0)
    step_2 = nltk.word_tokenize(step_1)
    step_3 = remove_stopwords(step_2)
    step_4 = lemmatizing(step_2)
```

- Motivation und Einführung
- Preprocessing
- Model Selection
- Evaluation
- Bewertung und Potenziale
- Nächste Schritte

Bewertung und Potenziale

- Klassenbias entfernen:
 - SMOTE (Synthetic Minority Oversampling Technique)
 - Händisch auffüllen/Webscrapen
- · Strategie um numerische Werte zu interpretieren
- · Verbindung mehrerer Modelle und Ensemble Methoden (v.a. für SVC) anwenden:
 - Boosting, um negative Klassen besser zu klassifizieren
- Transformermodelle (NN) anwenden

Bsp.: Relevanz numerischer Werte

Text	Sentiment
Compared with the FTSE 100 index, which rose 36.7 points (or 0.6 %) on the day, this was a relative price change of -0.2 %.	Negativ

Nächste Schritte

- Modulares Projekt zur technischen Analyse von Wirtschaftskonjunktur und Aktienverläufen
- · Sentiment Analysis (historisch) mit Kursentwicklung verbinden
- Korrelation von Sentiment aus anderen Bereichen (ggf. "Normalen" Nachrichten) mit Finanznachrichten und Auswirkungen untersuchen
- Zeitreihenanalysen/-vorhersagen und mit Sentimentanalysis verbinden

Key-Takeaways

Multi-Layer Preprocessing und N-Gram als TF-IDF Vector

RFC und SVC evaluiert und AUC auf über 0,85 getunt

Multi-Klassen ROC Kurven und Confusion-Matrices um Verfälschung durch Bias auszuschließen

Quellen

- VanderPlas, Jake: Python Data Science Handbook (2016)
- Sinha, A.: (Datensatz für Projekt) Sentiment Analysis for Financial News (2020), https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news (Aufgerufen: 10.10.2020)
- Gunjit, B.: A guide to Text Classification(NLP) using SVM and Naive Bayes with Python (2018), Web: https://medium.com/@bedigunjit/simple-guide-to-text-classification-nlp-using-svm-and-naive-bayes-with-python-421db3a72d34 (Aufgerufen: 9.9.2020)
- Precision-Recall, Web: https://scikit-learn.org/stable/auto-examples/model-selection/plot-precision-recall.html (Aufgerufen: 9.9.2020)
- Goonewardana, H.: Evaluating Multi-Class Classifiers (2019), https://medium.com/apprentice-journal/evaluating-multi-class-classifiers-12b2946e755b (Aufgerufen: 9.9.2020)
- Hilfestellungen zur Multi-Class ROC Kurve mit Scikit-Learn, Web: https://scikit-learn.org/stable/auto-examples/model-selection/plot-roc.html (Aufgerufen: 01.10.2020)
- Vaughan, D.: Multiclass Averaging (2020), Web: https://cran.r-project.org/web/packages/yardstick/vignettes/multiclass.html (Aufgerufen: 01.10.2020)
- · How to increase the speed for SVM classifier using Sk-learn, https://stackoverflow.com/questions/34939683/how-to-increase-the-speed-for-svm-classifier-using-sk-learn (Aufgerufen: 9.9.2020)
- SVC classifier taking too much time for training, https://stackoverflow.com/questions/53940258/svc-classifier-taking-too-much-time-for-training (Aufgerufen: 9.9.2020)

Model Evaluation: Bsp. Precision Recall für Klasse Negativ

$$P = \frac{n_{TP}}{n_{TP} + n_{FP}}$$

$$R = \frac{n_{TP}}{n_{TP} + n_{FN}}$$

Confusion Matrix RFC

Precision