

Mark Scheme (Final)

October 2019

Pearson Edexcel International Advanced Level In Statistics S1 (WST01/01)

Question Number	Scheme					
1(a)	$\left[\mathbf{S}_{xy}=\right] = \mathbf{\underline{1818}}$	B1				
(b)	$b = \frac{"1818"}{1754} \left[=1.036 \text{or} \frac{909}{877} \right] $ ALT	M1	(1)			
	$c = -1.036 \times \frac{5}{8}$ $\underline{\text{or}} \overline{f} = 80 \times \frac{5}{8} + 3500$		M1			
	$= -0.6478 \qquad \left[\begin{array}{cc} \underline{\text{or}} & \frac{4545}{7016} \end{array}\right] \qquad \qquad \underline{\text{or}} \overline{h} = 4500 \text{ and } \overline{f} = 3550$		A1			
	y = 1.04x - 0.6478 or eqn of form $h = + 1.04f$	A1ft				
	$\frac{h-4500}{80} = "1.036" \times \frac{f-3500}{80} - 0.6479 \underline{\text{or}} 4500 - "1.04" \times 3550 = (820.467)$	dM1				
	h = 820 + 1.04 f	A1				
(c)	On average for every <u>increase in area of 1</u> (m ²) the annual heating <u>bill increases</u> by approximately (\$) 1.04	B1ft	(6)			
	The cost of heating is (\$) 820 even if there is no floor space (no building)	B1ft				
	or the "standing charge" / "base rate" etc is (\$) 820		(2)			
(d)	"820.46" + "1.036"×4600	M1	(2)			
	= (\$) 5588.31 ans in range (5560-5610)	A1	(2)			
	Notes					
(b)	1 st M1 for use of $\frac{S_{xy}}{S_{xx}}$ ft their S_{xy} (allow correct use of S_{fh} etc.)					
	$2^{\text{nd}} \text{ M1 for } c = -(\text{their } b) \times \frac{5}{8}$ or ALT for a correct expression for \overline{f}					
	1st A1 awrt -0.648 or ALT for correct values for both \overline{h} and \overline{f}					
	2 nd A1ft for equ'n in the form $y = c + bx$ with their c and $b = \text{awrt } 1.04$ (dep on 1 st M1 only) or ALT for $h = + (\text{awrt } 1.04)f$ [ignore any intercept]					
	3^{rd} dM1 (dep on 2^{nd} M1) for substituting $\frac{h-4500}{80}$ and $\frac{f-3500}{80}$ into their regression lin	e of y o	n x			
	or ALT for correct method for intercept in h , f equation – ft their 1.04 g and A1 for $h = awrt 820 + awrt 1.04 f$ [Do not allow fractions for this final mark]					
(c) (i)	Must see correct words used, not just letters f and h B1ft for correct interpretation need: "increase of area by 1" and "increase in bill by "1.04"" Can be other words giving same idea but must see their 1.04 (can ignore units)					
(ii)	B1ft for a suitable explanation e.g. "cost if area is zero" Must see "their 820" (which must be > 0) but can ignore units. Accept reasonable alternatives to "standing charge"					
(d)	M1 for substituting 4600 into their regress' line of h on f (or use of $x = 13.75$ in y , x equation) A1 allow answers in range 5580 - 5610					

Question Number	Scheme					
2(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<5×18 15	M1 A1 B1ft			
(b)(i)	$\left[\text{Mean} = \frac{11087.5}{260}\right] = 42.644$	wrt <u>42.6</u>	(3) B1 (1)			
(ii)	Standard deviation = $\sqrt{\frac{505718.75}{260} - \left(\frac{11087.5}{260}\right)^2} = 11.249(s = 11.27)$ awrt <u>11.2</u>					
(c)	Median = $(30)+15 \times \frac{130-20}{145}$ or $(45)-15 \times \frac{(165-130)}{145}$ = 41.379 awrt 41.4					
(d)	Positive (skew) since the median is less than the mean $\underline{\text{or}}$ Positive (skew) since the histogram has a "tail" on the right oe (Allow use of quartiles if $Q_1 = [34.65]$ and $Q_3 = [49.61]$ are correct to 2sf)					
(e)	Number of people = $\frac{6}{15} \times 145 + 20$ [= 78]		M1			
	Probability being less than 36 seconds = $\frac{78}{260}$ = 0.3 o.e.		A1			
	$\left(\frac{"78"}{260}\right) \times \left(\frac{"77"}{259}\right) \times \left(\frac{"76"}{258}\right); = \frac{209}{7955} \text{ or } 0.02627 \text{ awrt } \underline{0.0263}$					
(a)	Notes M1 for a correct expression for one frequency A1 for 65 or 15 B1 for 15 or 65 ft one of their incorrect frequency or their "180" Look in the stable and disagree to the stable					
(b)(i)	B1 for awrt 42.6 [Beware use of units e.g. 42.6s which looks like 42.65] (Allow					
(ii) NB	M1 ft their mean. Must have the square root. [Allow use of their $\Sigma ft^2 > 300\ 000\ here]$ A1 for awrt 11.2 [but allow 11.25] (allow $s = 11.3$) [Answer only 2/2] [Beware correct formula with mean = 42.64 gives 11.265 = 11.3 (3sf) but scores M1A0]					
(c)	 M1 for correct use of linear interpolation to find the median ignore the end points (may be implied by correct answer). NB may work up or down and allow use of 130.5 A1 for awrt 41.4 (Use of 130.5 gives 41.43) [Again beware of units 41.4s etc] 					
(d)	B1 positive (skew) with either reason[No ft for –ve skew if $Q_2 >$ mean]. Ignore use of mode and condone "positive correlation" If $ Q_2 - \overline{t} < 1$ allow mean close to median so no skew or symmetric.					
(e)	1^{st} M1 for a correct method for finding the number of people. [Correct expression or 78] 1^{st} A1 for the correct probability of 0.3 or exact equivalent 2^{nd} M1 for use of their probability without replacement (condone with replacement) Score this mark for p^3 where $p = \text{their } 0.3$ from any method e.g. use of normal etc 2^{nd} A1 for awrt 0.0263					

Question Number	Scheme					
3(a)	$P(X < 40) = P(Z < \frac{40 - 42}{5}) = P(Z < -0.4)$	M1				
	=1-0.6554	M1				
	= 0.3446 awrt <u>0.345</u>	A1				
(b)	P(Qualify) = $1 - ("0.3446")^3$ or $(1 - "0.3446") + ("0.3446")(1 - "0.3446") + ("0.3446")^2(1 - "0.3446")$ [$q = 0.9590$ full cale: 0.9590867]					
	$P(X > 45) = P(Z > \frac{45-42}{5}) = P(Z > 0.6)$	M1				
	= 1 - 0.7257 or 0.2743 allow $1 - awrt 0.726$ or awrt 0.274	A1				
	$P(X > 45 \text{ on 3rd throw } \text{ in final}) = \frac{"0.3446"^2 \times "0.2743"}{"0.959"}$	dM1				
	$= \frac{"0.0326"}{"0.9590"} \text{(calc: } 0.033952\text{)}$					
	= awrt <u>0.034</u>	A1				
		(5)				
	N. A.	Total 8				
(a)	Notes 1st M1 for standardising with 40, 42 and 5. Allow $\pm \frac{40-42}{5}$					
(a)	3					
	2^{nd} M1 for $1-p$ (where $p > 0.5$) A1 awrt 0.345 (NB Calc gives 0.3445783)					
(b)	1 st M1 for identifying <u>all</u> the cases to qualify with correct ft probabilities					
	2^{nd} M1 for an attempt standardise with 45, 42 and 5 ie $\pm \frac{45-42}{5}$					
	Use $\mu = 40$ Using $\mu = 40$ to find P(X > 45) will give 0.1587 and can award B1	if we see this				
SC B1	used in an expression of the form $("0.3446")^2 \times 0.1587$. Score on epen as 2^{nd} N	M0 1 st A1				
	They may also be able to score 1st M1 and 3rd M1 as well					
	1 st A1 for 1 – awrt 0.726 or awrt 0.274 (sight of either of these scores 2 nd M1 and 1 st A1)					
	May be part of an expression such as $("0.3446")^2 \times 0.2743$					
	3 rd dM1 dep on 1st M1 for $\frac{("their 0.3446")^2 \times "their 0.2743"}{their q}$					
	providing the numerator < denominator and num and denom are both	th probs				
	2 nd A1 for awrt 0.034 (NB numerator is awrt 0.033 so <u>must</u> be awrt 0.034)					

Question Number	Scheme						
4(a)	If any part, especially (a) or (b), is missing send to review 0.72	B1 (1)					
(b)	C (is most likely to be the 100 metre junior champion)	B1 (1)					
(c) (i)	$S_{xx} = 3445.26 - \frac{164.4^2}{8} \left[= 66.84 \text{ or } \frac{1671}{25} \right]$	M1					
	$r = \frac{60.85}{\sqrt{\text{"}66.84" \times 67.52}}$	M1					
	= 0.90578 awrt <u>0.906</u>	Al					
(ii)	The faster boys are in the the 100 metres, the faster they are in the 200 metres	B1 (3)					
		(1) Total 6					
	Notes						
(c) (i)	1 st M1 for a correct expression, allow the use of $n = 10$, ie $S_{xx} = 3445.26 - \frac{164.4^2}{10} [= 742.524]$						
	Condone one slip e.g. 3445.6 instead of 3445.26 etc						
	2^{nd} M1 for an attempt at a correct formula for r using S_{yy} and S_{xy} and their S_{xx}						
	Condone one slip e.g. 60.84 or 66.48 miscopied for 66.84 A1 for awrt 0.906						
	NB Use of $S_{xx} = 742.524$ gives $r = 0.272$ and can score M1M1A0 provided expressions						
	are seen for S_{xx} and r	-					
(ii)	NB on epen this is an A1 mark but we are treating it as a B1 It does not depend on	n M1 in (c)(i)					
	B1 allow equivalent statements e.g. on average boys that are faster/slower in the 100 metres are also faster/slower in the 200 metres Comment must be: (1) a comparison of time e.g. faster, quicker, slower etc (not "higher") and (2) mention 100 metres or 200 metres (and imply the other)						

Question Number	Scheme					
5(a)(i)	$P(D) = \frac{200}{320} = \frac{5}{8} \text{(or exact equivalent e.g. 0.625)}$	В1				
(ii)	$P(D \cap X') = \frac{1}{2} \text{oe}$	B1 (1)				
(iii)	$P(D' \cup Z') = \frac{320 - 88}{320}; = \frac{29}{40} = 0.725$ o.e.	M1; A1 (2)				
(b)	$P(Z \mid D) = \frac{\frac{88}{320}}{\frac{200}{320}}; = \frac{88}{200} \text{ or } \frac{11}{25} \text{ or } 0.44$ oe	M1; A1				
(c)	X and Y or X and Z or Y and Z (Allow X , Y etc)	B1 (2) (1)				
(d)	$P(D) \times P(X) = 0.625 \times 0.2 \underline{\text{or}} \text{"}\frac{5}{8}\text{"} \times \frac{64}{320} = 0.125 = P(D \cap X) \text{ or}$ $P(D X) = \frac{40}{64} = 0.625 = P(D) \underline{\text{or}} P(X D) = \frac{40}{200} = \frac{1}{5} = P(X) = \frac{24 + 40}{320}$	M1				
	So yes they are independent	A1 (2)				
(e)(i)	A house that does not have a driveway but has exactly two cars	B1 (2)				
(ii)	A house that has a driveway (with) fewer than two cars (oe)	(1) B1 B1 (2) Total 12				
	Notes Notes					
(a)(iii)	If any part(s) of this question are missing please send to review M1 for identifying the correct 7 values: 24, 40, 35, 37, 32, 44 and 20 or sum of 232 A1 for $\frac{29}{40}$ or exact equivalent e.g. 0.725					
(b)	M1 for a ratio of probabilities with numerator of $\frac{88}{320}$ and denominator of their (a)(i) A1 for 0.44 or exact equivalent					
(c)	B1 for at least one correct pair and no incorrect ones. Do not allow e.g. $P(Y \cap Z) = 0$ etc					
(d)	M1 for a correct test with all required probs (labels and values) stated or implied - ft $P(D)$ A1 for a correct conclusion – allow "yes they are" but must be events not probabilities e.g. a conclusion that $P(D)$ and $P(X)$ are independent is A0					
(e)(ii)	1 st B1 for a house that has a driveway 2 nd B1 for fewer than two cars (Allow 0 or 1 but must not include both no car and 1 car) e.g. "has a driveway with 1 car and has a driveway with no car" is B1B0 but "has a driveway with 1 car or has a driveway with no car" is B1B1					

Question Number	Scheme					
6 (a)	$\frac{3.968 - \mu}{\sigma} = -1.2816 \qquad \underline{\text{or}} \frac{4.026 - \mu}{\sigma} = 1.0364$ $\mu - 1.2816\sigma = 3.968 \qquad \text{(Calc: } -1.28155156\text{)}$	M1A1A1				
	$\mu - 1.2816\sigma = 3.968$ (Calc: -1.28155156)					
	$\mu + 1.0364\sigma = 4.026$ (Calc: 1.03643338)					
	$2.318\sigma = 0.058$	dM1				
	$\sigma = 0.0250$ $\mu = 4.00$ awrt <u>0.025 and 4</u>	A1				
<i>a</i> >		(5)				
(b)	$Q_3 = \text{awrt } 30.3 \text{ (calc: } 30.337) \text{ or } Q_3 - Q_1 = \text{awrt } 0.6 \text{ oe (calc: } 0.6744)$	B1				
	30.3+1.5("30.3"-29.7)[=31.2] or $29.7-1.5("30.3"-29.7)[=28.8]$	M1				
	$P(L > "31.2") = P\left(Z > \frac{"31.2" - 30}{0.5}\right) \text{ or } P(L < "28.8") = P\left(Z < \frac{"28.8" - 30}{0.5}\right)$	M1				
	= 0.0082					
	Probability it is an outlier = 2×0.0082	M1				
	= 0.0164 answer in range (0.006~0.017)	A1				
		(5) Total 10				
	Notes	1 Utai 10				
(a)	1 st M1 for standardising with μ and σ and forming an equation in μ and σ w	z > 1				
	1 st A1 for one correct equation in any form with z value as given or better					
	2 nd A1 for a 2 nd correct equation in any form allow 2dp or better for the z value					
	2 nd dM1 (dep on 1 st M1) for correct method to solve* their 2 linear, simultaneous equations. Can be implied by both correct answers.					
	[*Must see correct substitution or correct addition/subtraction of all 3 ter	-				
	2^{nd} A1 for both μ = awrt 4 and σ = awrt 0.025 [Check it follows from their working.] NB Could score M1A0A1M1A1 or M1A1A0M1A1 here					
(b)	B1 awrt 30.3 or IQR = awrt 0.6 or awrt 0.67					
(~)	1^{st} M1 correct method for finding 1 outlier limit – ft their Q_3 or their IQR					
	2^{nd} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability of 10^{-1} M1 standardising with the 10^{-1} M1 standardis					
	Can be implied by a correct probability statement e.g. $P(L < 28.8) = 0.0$ 3 rd M1 multiplying their probability by 2 (or adding their two probs both < 0.05					
	A1 (dependent on all 3 M marks) for an answer in the range $0.006 \sim 0.017$,				
Calc	Use of full calc values: If they use a calculator the lower limit is 28.651 upper 31.3489 and probability comes to $2 \times 0.00348835 = av$					

Question Number	Scheme					Marl	ks	
7(a)(i)	2a + 2b = 0.5	$5 \text{ oe} \; ; \; 5a+1$	1b = 1.55 oe	(any unsim	olified form)		B1; B1	
	e.g. $5a + 1$	1(0.25-a) =	= 1.55 [imp	olies $6a = 1.2$	2 oe]		M1	
		a =	= 0.2*				A1 cso	
(ii)			b = 0.0	<u>5</u>			B1	(7)
a >	$\Gamma_{\mathbf{E}(\mathbf{V}^2)} = \mathbb{I}_{12}$	0.25220	$2 \cdot 2^2 \cdot 0.2 \cdot$	120 1552	0.05626) O E F O A]	3.54	(5)
(b)	$\left[\mathbf{E}(X^2) = \right] 1^2$			4 ×0.15+5	×0.05+6 ×0	0.05 [=8.4]	M1	
	Var(X) = "8.4	$-2.5^2 = [2.1]$	5]				M1	
	Var (4X+3)	= 16 Var (X)	24.4				M1	
			$=$ $\underline{34.4}$				A1	(4)
(c)	Expected pro	of $it = 2.5 \times 60$	or 2.5×80	-2.5×20 oe			M1	(4)
(-)	1 1		ts) or \$1.50 p				A1	
								(2)
(d)	Let W be the	profit, in cen	-					
	У	1	2	3	5	6	D4 D4	
	W	60	120	180	220	280	B1; B1	
	P(Y=y)	3 40	$\frac{4}{40}$	$\frac{3}{40}$	$\frac{22}{40}$	8 40		
	$\left[E(W) \right] = \frac{1}{40} \left($	$(60\times3+120\times$	$4 + 180 \times 3 +$	$220 \times 22 + 28$,		M1	
	ГМ (1- :	1.11	ФО <i>СТ</i> ФО О	= 7 D1D		er customer	A1	(4)
	[May work ii	n dollars e.g.	\$2.67 or \$2.2	/ scores B1B	OWITAU and S	\$2.0 / 4/4]	Total	(4) 15
				Notes			1000	10
			,)(i) and (a)(ii	i) together			
(a)(i)		correct equati						
		2^{nd} B1 for a correct equation using $E(X) = 2.5$ M1 dep on at least B1 for <u>eliminating</u> a or b leading to a linear equation in a or b only						
	Alcso for $a = 0.2$ correctly shown. Dependent on M1 scored and two correct equations seen.							
(ii)	B1 for $b = 0.05$ (or exact equivalent) Independent of other marks in (a)(i). Look by table							able
(b)	1^{st} M1 for an attempt at $E(X^2)$ with at least 3 correct products. Allow ft of their value of b						b	
	Allow expre	ession even if	labelled Var((X) but label of	of Var(X) lose	es 2 nd M1 but o		
	2^{nd} M1 for use of $E(X^2) - [E(X)]^2$ ft their value of $E(X^2)$							
		3^{rd} M1 for seeing 16 Var(X) [Allow this mark if clearly stated Var(X) = E(X ²) = 8.4] A1 for 34.4 or exact equivalent e.g. $\frac{172}{5}$						
	A1 for 34.	4 or exact equ	iivaieni e.g.	5				
(c)		•	-	-	• '	allow 2.5×0.6	5)	
	A1 for 150 c	or accept \$1.5	(working w	ith dollars rec	quires units)			
(d)		1^{st} B1 for 1^{st} 3 values of W (can allow in an expression for $E(W)$) Look by table but must						
		st 2 values for		1 1	. 2	be in part (d	1)	
		tempt at $E(W)$				tt products		
	Depe A1 for 207	ndent on at le	ast one of the	e iirsi two Bl	marks			
ALT		[= 4.45] with	at least 3 cor	rect products	seen and E(V	V) = pE(Y) - a	,	
	Use of E(Y) [= 4.45] with at least 3 correct products seen <u>and</u> E(W) = pE(Y) – q 1 st B1 for $p = 60$ and 2 nd B1 for $q = (\frac{22}{40} + \frac{8}{40}) \times 80$ (or 60)							
			`	,		ne B mark sco	red	
	M1 for $E(W)$ expression of the form above and dep on at least one B mark scored							