Mecânica e Campo Electromagnético

Ano lectivo de 2011/12 Exercícios do Capítulo 3.4 Capacidade Eléctrica

- *1*. Uma esfera condutora de raio R = 12 cm, isolada no espaço, é carregada de maneira a criar um campo eléctrico $E = 4.9 \times 10^4$ V/m a uma distância d = 21 cm do seu centro.
 - a) Qual é a densidade superficial de carga?
 - b) Qual a capacidade da esfera?
- *2*. Considerando a Terra e uma mancha nebulosa 800 m acima dela como as "placas" de um condensador, calcule a respectiva capacidade se a mancha nebulosa tiver uma área de 1 km². Assuma que o ar entre a nuvem e o solo é puro e seco. Assuma que a nuvem recebe carga até se establecer um campo eléctrico uniforme com a amplitude de 3×10⁶ V/m, altura em que se rompe o isolamento eléctrico entre a nuvem e o solo, formando-se um arco eléctrico com o aspecto de um relâmpago. Qual é a carga máxima que a nuvem pode suportar?
- 3. Um condensador variável, a ar, usado em circuitos de sintonia é feito com N placas semi-circulares, cada uma delas de raio R, distanciadas de d umas das outras. Como se mostra na Figura, um segundo conjunto de placas é intercalado com o primeiro, ficando as suas placas a meia distância das do primeiro conjunto. O segundo conjunto pode rodar como uma unidade. Determine a capacidade como função do ângulo de rotação, θ, correspondendo θ = 0 à máxima capacidade.

- 4. Um cabo coaxial com o comprimento de 50 m tem um condutor interior com um diâmetro de 2,58 mm e contém uma carga de 8,10 μ C. O condutor exterior tem um diâmetro interior de 7,27 mm e uma carga de -8,10 μ C.
 - a) Qual é a capacidade deste cabo?
 - b) Qual é a diferença de potencial entre os dois condutores? Assuma que o espaço entre os condutores é constituído por ar.
- 5. Um condensador esférico com a capacidade de 20 μF é composto por duas coroas esféricas metálicas, tendo uma um raio duas vezes maior que a outra. Se a região entre as coroas for o vácuo, determine o volume desta região.
- **6.** Dois condensadores, $C_1 = 5.0 \,\mu\text{F}$ e $C_2 = 12 \,\mu\text{F}$, são ligados em paralelo a uma pilha de 9 V.
 - a) Qual o valor da capacidade equivalente da combinação?
 - b) Qual a diferença de potencial aos terminais de cada condensador?
 - c) Qual a carga armazenada em cada condensador?
- 7. Os dois condensadores do problema anterior são agora ligados em série a uma pilha de 9 V.
 - a) Qual o valor da capacidade equivalente da combinação?
 - b) Qual a diferença de potencial aos terminais de cada condensador?
 - c) Qual a carga armazenada em cada condensador?

8. Determine a capacidade equivalente das configurações representadas nas Figuras seguintes. Nas alíneas b) e c) todos os condensadores são idênticos e têm capacidade *C*.

9. Considere o circuito representado na Figura, com $C_1 = 6$ μ F, $C_2 = 3 \mu$ F e V = 20 V. O interruptor S_1 é primeiro fechado carregando o condensador C_1 . O interruptor S_1 é então aberto e o condensador C_1 é então ligado por intermédio de um interruptor S_2 a um condensador C_2 .

Calcule a carga inicial adquirida por C_1 e a carga final em cada um dos condensadores.

- 10. Dois condensadores, $C_1 = 25 \,\mu\text{F}$ e $C_2 = 5 \,\mu\text{F}$ são ligados em paralelo e carregados com uma fonte de alimentação de 100 V.
 - a) Faça um diagrama do circuito e calcule a energia total armazenada nos dois condensadores.
 - b) Que diferença de potencial através dos mesmos condensadores em série seria necessária para que a energia total armazenada fosse igual à da alínea a)? Faça um diagrama deste circuito.
- *11*. Um condensador de placas paralelas é carregado e depois desligado da bateria. De que fracção varia a energia armazenada (aumento ou diminuição) se a distância entre as placas for aumentada para o dobro?
- 12. Um condensador de placas paralelas de área A está carregado com uma carga Q. Mostre que a força exercida por cada placa na outra é dada por $F = Q^2/2\varepsilon_0 A$. (Considere que a energia necessária para afastar as placas de um condensador de um valor dx é $dW = F \cdot dx$).
- 13. A placa a de um condensador de placas paralelas com ar entre elas está ligada a uma mola de constante k, e a placa b está fixa. O conjunto repousa numa mesa como mostra a Figura (vista de cima). Se uma carga Q for colocada na placa a e uma carga -Q for colocada na placa b, de que valor se expande a extremidade da mola?
- 14. O circuito da Figura consiste em duas placas metálicas paralelas ligadas por duas molas metálicas idênticas a uma fonte de 100 V. Com o interruptor aberto, as placas estão descarregadas e a separação entre elas é de d=8 mm e o conjunto tem uma capacidade $C=8\mu F$. Quando o interruptor é fechado, a distância entre as placas decresce para d/2.
 - a) Qual o valor da carga adquirida por cada placa?
 - b) Qual é a constante elástica das molas?

- 15. Considere um condensador plano de capacidade C ligado a um gerador que fornece uma tensão constante V.
 - a) Calcule a energia armazenada no condensador.
 - b) Se mantiver o gerador ligado, o que aconteceria à energia armazenada se a distância entre placas aumentar para o triplo? Utilize a expressão da capacidade de um condensador de placas paralelas.
 - c) Verifique que a resposta é a mesma se utilizar a expressão da energia em função do campo eléctrico.
 - d) Se o afastamento das placas se fizesse depois de desligar o gerador, como iria variar a energia do condensador? De onde vem a energia extra?
- **16.** Dois condensadores de capacidades C_1 e C_2 inicialmente descarregados estão ligados em série com um gerador de f.e.m. ε .
 - a) Determine para cada condensador:
 - (i) a carga de cada placa;
 - (ii) a diferença de potencial entre as placas;
 - (iii) a energia electrostática W_1 e W_2 .
 - b) Calcule o trabalho W' fornecido pelo gerador para carregar os condensadores. Interprete a diferença entre W' e $(W_1 + W_2)$.
- **17.** Determine a capacidade e a máxima diferença de potencial que pode ser aplicada a um condensador de placas paralelas com a área de 1,75 cm² separadas por uma camada de Teflon de 0,040 mm.
- 18. Que valor da carga pode ser colocada num condensador de placas paralelas ($A = 5 \text{ cm}^2$) com dieléctrico de ar antes de ocorrer a sua ruptura? Obtenha a máxima carga se for utilizado polistireno em vez de ar.
- 19. Um condensador com ar entre as placas é ligado a uma d.d.p. de 12 V e armazena $48 \mu\text{C}$ de carga. É depois desligado da fonte ainda carregado.
 - a) Calcule a capacidade do condensador.
 - b) Um pedaço de Teflon é inserido entre as placas. Calcule a nova capacidade.
 - c) Calcule a tensão e a carga no condensador nas condições da alínea anterior.
 - d) Calcule as energias inicial e final armazenadas no condensador e interprete o resultado.
- *20*. Uma superfície esférica condutora de raio a é concêntrica com outra idêntica de raio c. O espaço entre estas duas superfícies é preenchido com um dieléctrico de permitividade ε_l entre a e b e ε_2 entre b e c (ver Figura). Determine a capacidade deste sistema.

Soluções:

Na resolução de alguns problemas é necessário consultar as seguintes tabelas:

Tabela de resistividades e coeficientes de temperatura para a resistividade.			Tabela de constantes dieléctricas.		
Material	ρ (Ω.m)	α (°C ⁻¹)	Material	\mathcal{E}_r	Rigidez dieléctrica (V/m)
Prata	1,59x10 ⁻⁸	3,8x10 ⁻³	Ar (seco)	1,00059	$3x10^{6}$
Cobre	1,7x10 ⁻⁸	$3,9x10^{-3}$	Baquelite	4,9	$24x10^{6}$
Ouro	2,44x10 ⁻⁸	$3,4x10^{-3}$	Borracha	6,7	12x10 ⁶
Alumínio	2,82x10 ⁻⁸	$3,9x10^{-3}$	Nylon	3,4	$14x10^{6}$
Tungsténio	5,6x10 ⁻⁸	4,5x10 ⁻³	Papel	3,7	$16x10^6$
Ferro	10x10 ⁻⁸	$5,0x10^{-3}$	Polistireno	2,56	$24x10^{6}$
Platina	11x10 ⁻⁸	3,92x10 ⁻³	Porcelana	6	$12x10^{6}$
Chumbo	22x10 ⁻⁸	3,9x10 ⁻³	Vidro pirex	5,6	$14x10^{6}$
Carvão	3,5x10 ⁻⁵	-0.5×10^{-3}	Teflon	2,1	$60x10^6$
Silício	640	-75x10 ⁻³	Vácuo	1	-
Vidro	10 ¹⁰ a 10 ¹⁴		Água	80	-

1. a)
$$\sigma = 1.33 \,\mu\text{C/m}^2$$
 b) $C = 13.3 \,\text{pF}$

2.
$$C = 11.1 \text{ nF}$$
 $Q = 26.6 \,\mu\text{C/m}^2$.

$$3. C = \frac{\varepsilon_0 N R^2 (\pi - \theta)}{2d}.$$

4. a)
$$C = 2,68 \text{ nF}$$
 b) $\Delta V = 3,02 \text{ KV}$.

5.
$$Vol = 6.3 \times 10^{16} \text{ m}^3.$$

6. a)
$$C_{eq} = 17 \, \mu \text{F}$$
.

b)
$$\Delta V = 9 \text{ V}$$
.

7. a)
$$C_{aa} = 3.53 \text{ uF}$$

6. a)
$$C_{eq} = 17 \, \mu\text{F}.$$
b) $\Delta V = 9 \, \text{V}.$ c) 45 e 108 μC.**7.** a) $C_{eq} = 3,53 \, \mu\text{F}$ b) $\Delta V = 6,35 \, \text{e} \, 2,65 \, \text{V}$ c) $Q = 31,8 \, \mu\text{C}.$ **8.** a) $C_{eq} = 5,96 \, \mu\text{F}$ b) $C_{eq} = 11C/6$ c) $C_{eq} = 8C/13.$

c)
$$Q = 31.8 \text{ uC}$$
.

8. a)
$$C_{aa} = 5.96 \, \mu \text{F}$$

b)
$$C_{aa} = 11C/6$$

c)
$$C_{aa} = 8C/13$$
.

9.
$$Q_i = 120 \,\mu\text{C}$$
; $Q_f = 80 \,\mu\text{C} \text{ e } 40 \,\mu\text{C}$.

10. a)
$$W = 0.15 \text{ J b}$$
 $\Delta V = 268 \text{ V}$.

11. Para o dobro.

12.

13.
$$\Delta x = Q^2/(2\varepsilon_0 Ak)$$
.

14. a)
$$Q = 1.6$$
 mC. b) $\kappa = 10^4$ N/m.

b)
$$\kappa = 10^4 \,\text{N/m}$$

15. a)
$$W = \frac{1}{2}CV^2$$
.

15. a)
$$W = \frac{1}{2}CV^2$$
. b) $W' = \frac{1}{3}W$. d) $W'' = 3W$.

16. a) i)
$$Q = \frac{C_1 C_2}{C_1 + C_2} \varepsilon$$
 ii) $W_1 = \frac{C_1 C_2^2}{(C_1 + C_2)^2} \frac{\varepsilon^2}{2}$ iii) $W_2 = \frac{C_1^2 C_2}{(C_1 + C_2)^2} \frac{\varepsilon^2}{2}$ b) $W = \frac{C_1 C_2}{C_1 + C_2} \varepsilon^2$.

17.
$$\Delta V = 2400 \text{ V}.$$

18.
$$Q = 13.3 \text{ nC}$$
 $Q' = 106 \text{ nC}$.

c)
$$\Delta V = 5.71 \text{ V e } Q = 48 \text{ µC}$$

19. a)
$$C = 4 \mu F$$
. b) $C' = 4 \mu F$. c) $\Delta V = 5.71 \text{ V e } Q = 48 \mu C$. d) $W_i = 0.288 \text{ mJ}$; $W_f = 0.137 \text{ mJ}$.

20.
$$C = \frac{4\pi\varepsilon_1\varepsilon_2}{\varepsilon_1(1/b-1/c)+\varepsilon_2(1/a-1/b)}$$