MLS					PCR(HQIC)	
	automobile	413.02(3)	413.02(3)	413.02(3)	413.02(3)	413.02(3)
	fertility	107.29(3)	107.29(3)	107.29(3)	107.29(3)	104.45(1)
	flow	289.44(3)	289.44(3)	289.44(3)	289.44(3)	289.44(3)
	forest	101.70(3)	101.70(3)	101.70(3)	101.70(3)	101.70(3)
Ridge	servo	60.53(3)	60.53(3)	60.53(3)	60.53(3)	60.53(3)
	slump	85.74(3)	85.74(3)	85.74(3)	85.74(3)	85.74(3)
	traffic	43.77(4)	43.77(4)	43.61(1)	43.77(4)	43.61(1)
	wine_red	67.16(3)	67.16(1)	67.16(4)	67.16(1)	69.73(5)
	wine_white	76.79(2)	76.79(2)	78.61(4)	76.79(2)	83.61(5)
Avg. Ran	ık	(3.06)	(2.89)	(3.11)	(2.89)	(3.06)
SVR	automobile	385.00(3)	385.00(3)	385.00(3)	385.00(3)	385.00(3)
	fertility	106.90(3)	106.90(3)	106.90(3)	106.90(3)	106.90(3)
	flow	886.92(4)	677.39 (1)	882.27(2)	886.92(4)	886.92(4)
	forest	104.71(3)	104.71(3)	104.71(3)	104.71(3)	104.71(3)
	servo	17.16(2)	17.16(2)	17.16(2)	17.16(2)	28.68(5)
	slump	212.16(3)	210.01(1)	334.00(5)	212.16(3)	212.16(3)
	traffic	61.08(2)	61.08(2)	359.33(5)	61.08(2)	61.08(2)
	wine_red	72.08(4)	64.17(1)	70.24(3)	70.24(2)	89.14(5)
	wine_white	83.79(4)	65.01 (1)	72.03(3)	69.15(2)	121.59(5
Avg. Ran		(3.22)	(2.00)	(3.28)	(2.78)	(3.72)
RF	automobile		408.94(3)	408.94(3)	408.94(3)	408.94(3
	fertility	100.19(3)	100.19(3)	100.19(3)	100.19(3)	98.40(1)
	flow	871.96(3)	871.96(3)	871.96(3)	871.96(3)	871.96(3)
	forest	105.20(3)	105.20(3)	105.20(3)	105.20(3)	105.20(3)
	servo	21.59 (3)	21.59(3)	21.59(3)	21.59(3)	21.59(3)
	slump	502.16(1)	503.21(2)	515.51(4)	515.51(4)	515.51(4
	traffic	258.92(2)	235.82(1)	523.38(4)	523.38(4)	523.38(4
	wine_red	77.79(3)	73.95(1)	77.79(4)	73.95(2)	97.11(5
	wine_white	76.06(3)	73.72(1)	76.06(4)	75.43(2)	95.86(5
Avg. Ran		(2.72)	(2.28)	(3.50)	(3.06)	(3.44
Mean Rai	nk	(3.00)	(2.39)	(3.30)	(2.91)	(3.41

Table 12: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when PCR, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RF) and the BO sampling strategy.