# Scaling and Benchmarking Self-Supervised Visual Representation Learning

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra

Facebook AI Research 2019

Presenter: Kobee Raveendran Faculty: Dr. Yogesh S. Rawat CAP6412, Spring 2020



### **Topic Overview**

- Introduction
- Background Information
- Scaling Self-supervised Learning
- Domain Transfer
- Benchmarking Suite
- Conclusion



Supervised learning:

Credit: digitweek

$$\min \frac{1}{N} \Sigma \, loss(X, Y)$$

---- car



- Datasets: ImageNet
  - 14+ million images
    - 1 million with bounding boxes
  - 20,000+ classes
    - 3,000 have bounding boxes
  - Human annotated via crowdsourcing





- Supervised methods are data-inefficient
  - Requires an abundance of high-quality, labeled training data



- Supervised methods are data-inefficient
  - Requires an abundance of high-quality, labeled training data
- This data can be hard to obtain



- Supervised methods are data-inefficient
  - Requires an abundance of high-quality, labeled training data
- This data can be hard to obtain
  - Scraping is susceptible to noisiness



- Supervised methods are data-inefficient
  - Requires an abundance of high-quality, labeled training data
- This data can be hard to obtain
  - Scraping is susceptible to noisiness
  - Some data sets require extensive domain expertise for proper labeling



- Supervised methods are data-inefficient
  - Requires an abundance of high-quality, labeled training data
- This data can be hard to obtain
  - Scraping is susceptible to noisiness
  - Some tasks require extensive domain expertise for proper labeling
  - Expensive with respect to time and money



- Semi-supervised
  - Partially labeled, partially unlabeled



- Semi-supervised
  - Partially labeled, partially unlabeled
- Weakly-supervised
  - Coarse-grained labels



Credit: Jisoo Jeong, Seungeu Lee, Jeesoo Kimm, and Nojun Kwak. Consistency-based Semi-supervised

Learning for Object Detection



- Semi-supervised
  - Partially labeled, partially unlabeled
- Weakly-supervised
  - Coarse-grained labels
- Unsupervised
  - No labels



**Credit:** Jisoo Jeong, Seungeu Lee, Jeesoo Kimm, and Nojun Kwak. *Consistency-based Semi-supervised Learning for Object Detection* 



- Self-supervised learning
  - Benefits from the availability of unlabeled data



- Self-supervised learning
  - Benefits from the availability of unlabeled data
  - Pretext tasks
    - Ground truth can be derived from the attributes of the input itself



- Self-supervised learning
  - Benefits from the availability of unlabeled data
  - Pretext tasks
    - Ground truth can be derived from the attributes of the input itself
  - Downstream tasks



#### Rotation



Credit: Shin'ya Yamaguchi, Sekitoshi Kanai, Tetsuya Shioda, Shoichiro Takeda. Multiple Pre-text Task for Self-Supervised Learning via Mixing Multiple Image Transformations



#### Inpainting







- Previous methods haven't yet capitalized on the scalability of unlabeled data
  - Confined to the scale of ImageNet



- Previous methods haven't yet capitalized on the scalability of unlabeled data
  - Confined to the scale of ImageNet
- Scaling along multiple axes:
  - Data set size



- Previous methods haven't yet capitalized on the scalability of unlabeled data
  - Confined to the scale of ImageNet
- Scaling along multiple axes:
  - Data set size
  - Network capacity



- Previous methods haven't yet capitalized on the scalability of unlabeled data
  - Confined to the scale of ImageNet
- Scaling along multiple axes:
  - Data set size
  - Network capacity
  - Pretext problem complexity



- Benchmarking suite for representation evaluation
- Good methods should:
  - Generalize to a variety of tasks
  - Require little to no supervision and fine-tuning



- Pretext tasks
  - Multi-modal
    - i.e. autonomous vehicles sensor fusion for perception, videos with sound, etc.
  - Visual only



• Pretext tasks: Jigsaw puzzle





• Pretext tasks: Jigsaw puzzle





• Pretext tasks: Jigsaw puzzle





- Self-supervised learning on Jigsaw
  - N-way Siamese network





Lab color space



Credit: https://www.xrite.com/blog/lab-color-space



• Pretext tasks: Image colorization





- Hard- vs. soft-encoding
  - Y = [0, 0, 0, 1, 0]



- Hard- vs. soft-encoding
  - Y = [0, 0, 0, 1, 0]
  - What if we don't need to exactly match the GT?
    - Multiple correct answers:
      - Y = [0, 1, 0, 0, 0] (turquoise)
      - Y = [0, 0, 1, 0, 0] (cyan)
      - Y = [0, 0, 0, 1, 0] (light blue)



- Hard- vs. soft-encoding
  - Y = [0, 0, 0, 1, 0]
  - What if we don't need to exactly match the GT?
    - Multiple correct answers:
      - Y = [0, 1, 0, 0, 0] (turquoise)
      - Y = [0, 0, 1, 0, 0] (cyan)
      - Y = [0, 0, 0, 1, 0] (sky blue)
    - Instead: Y = [0, 0.33, 0.33, 0.33, 0]



Self-supervised learning on Colorization





# Scaling Self-Supervised Learning

- Scaling along three axes:
  - Data set size
  - Model capacity
  - Pretext task complexity
- Setup
  - Train linear SVMs on output of CNN
  - YFCC-100M dataset for self-supervised pre-training
    - 99.2 million images
    - 0.8 million videos
  - Transfer learning for image classification on VOC 2007 data set



# Scaling Self-Supervised Learning

- Setup
  - YFCC-100M dataset for self-supervised pre-training
    - 99.2 million images
    - 0.8 million videos
  - Train linear SVMs on output of CNNs from pretext
  - Transfer learning for image classification on VOC 2007 data set



## Scaling Self-Supervised Learning

- Scaling data set size
  - Training on multiple randomly-sampled subsets of YFCC-100M
    - 1, 10, 50, and the full 100 million images
    - Problem complexity is kept constant
      - |P| = 2000
      - K = 10
    - Size variations also tested on both AlexNet and ResNet-50



- Scaling model capacity
  - Trained on shallow and deep models
    - AlexNet and ResNet-50
    - Problem complexity is kept constant
      - |P| = 2000
      - K = 10
    - Tested for each subset of the full data shown on the previous slide



- Scaling problem complexity
  - Jigsaw
    - Tested various configurations of the number of permutations of each puzzle
      - {100, 701, 2000, 5000, 10000}
  - Image colorization
    - Tested on various values of K
      - {2, 5, 10, 20, 40, 80, 160, 313}
  - Data set size kept constant at 1 million images
  - Evaluated on both AlexNet and ResNet-50



- Scaling problem complexity
  - Jigsaw
    - Tested various configurations of the number of permutations of each puzzle
      - {100, 701, 2000, 5000, 10000}



- Scaling problem complexity
  - Jigsaw
    - Tested various configurations of the number of permutations of each puzzle
      - {100, 701, 2000, 5000, 10000}
  - Image colorization
    - Tested on various values of K
      - {2, 5, 10, 20, 40, 80, 160, 313}



- Scaling problem complexity
  - Jigsaw
    - Tested various configurations of the number of permutations of each puzzle
      - {100, 701, 2000, 5000, 10000}
  - Image colorization
    - Tested on various values of K
      - {2, 5, 10, 20, 40, 80, 160, 313}
  - Data set size kept constant at 1 million images
  - Evaluated on both AlexNet and ResNet-50



Scaling data set size: Observations





Scaling model capacity: Observations





- Scaling problem complexity: Observations
  - Jigsaw





- Scaling problem complexity: Observations
  - Image colorization





- Comprehensive Observations
  - The three scaled axes complement each other





#### **Domain Transfer**

• Effects of pre-training and transfer learning domain differences





- Based on the premise that good representations should:
  - Generalize to a diverse set of tasks
  - Require limited supervision and fine-tuning



- Setup:
  - Self-supervised pre-training
    - Jigsaw or Colorization
    - YFCC-xM, ImageNet-1k, or ImageNet-22k



- Setup:
  - Self-supervised pre-training
    - Jigsaw or Colorization
    - YFCC-xM, ImageNet-1k, or ImageNet-22k
  - Feature extraction from multiple layers of the CNN
    - AlexNet: following every convolution layer
    - ResNet-50: final layer of every residual block



- Setup:
  - Self-supervised pre-training
    - Jigsaw or Colorization
    - YFCC-xM, ImageNet-1k, or ImageNet-22k
  - Feature extraction from multiple layers of the CNN
    - AlexNet: following every convolution layer
    - ResNet-50: final layer of every residual block
  - Transfer learning on fully-supervised data sets and tasks



- The benchmarking suite evaluates on multiple downstream tasks:
  - Image classification
  - Low-shot image classification
  - Visual navigation
  - Object detection
  - Surface normal estimation



- Low-shot image classification
  - Something we're already somewhat familiar with!



Visual navigation





Object detection





Credit: https://towardsdatascience.com/r-cnn-3a9beddfd55a

Surface normal estimation





| Method                           | layer1 | layer2 | layer3 | layer4 | layer5 |
|----------------------------------|--------|--------|--------|--------|--------|
| ResNet-50 ImageNet-1k Supervised | 24.5   | 47.8   | 60.5   | 80.4   | 88.0   |
| ResNet-50 Places 205 Supervised  | 28.2   | 46.9   | 59.1   | 77.3   | 80.8   |
| ResNet-50 Random                 | 9.6    | 8.3    | 8.1    | 8.0    | 7.7    |
| ResNet-50 Jigsaw ImageNet-1k     | 27.1   | 45.7   | 56.6   | 64.5   | 57.2   |
| ResNet-50 Jigsaw ImageNet-22k    | 20.2   | 47.7   | 57.7   | 71.9   | 64.8   |
| ResNet-50 Jigsaw YFCC-100M       | 20.4   | 47.1   | 58.4   | 71.0   | 62.5   |
| ResNet-50 Coloriz. ImageNet-1k   | 24.3   | 40.7   | 48.1   | 55.6   | 52.3   |
| ResNet-50 Coloriz. ImageNet-22k  | 25.8   | 43.1   | 53.6   | 66.1   | 62.7   |
| ResNet-50 Coloriz. YFCC-100M     | 26.1   | 42.3   | 53.8   | 67.2   | 61.4   |

Image classification





Low-shot Image classification





**Visual Navigation** 



#### **Surface Normal Estimation**

| Angle  | Distance                                               | Within $t^{\circ}$                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |
|--------|--------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mean   | Median                                                 | 11.25                                                               | 22.5                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                          |
| (Lower | is better)                                             | (High                                                               | ıer is                                                                                                                                                                                                                                                                                   | better)                                                                                                                                                                                                                                                                                                                     |
| 26.4   | 17.1                                                   | 36.1                                                                | 59.2                                                                                                                                                                                                                                                                                     | 68.5                                                                                                                                                                                                                                                                                                                        |
| 23.3   | 14.2                                                   | 41.8                                                                | 65.2                                                                                                                                                                                                                                                                                     | 73.6                                                                                                                                                                                                                                                                                                                        |
| 26.3   | 16.1                                                   | 37.9                                                                | 60.6                                                                                                                                                                                                                                                                                     | 69.0                                                                                                                                                                                                                                                                                                                        |
| 24.2   | 14.5                                                   | 41.2                                                                | 64.2                                                                                                                                                                                                                                                                                     | 72.5                                                                                                                                                                                                                                                                                                                        |
| 22.6   | 13.4                                                   | 43.7                                                                | 66.8                                                                                                                                                                                                                                                                                     | 74.7                                                                                                                                                                                                                                                                                                                        |
| 22.4   | 13.1                                                   | 44.6                                                                | 67.4                                                                                                                                                                                                                                                                                     | 75.1                                                                                                                                                                                                                                                                                                                        |
|        | Mean<br>(Lower<br>26.4<br>23.3<br>26.3<br>24.2<br>22.6 | (Lower is better) 26.4 17.1 23.3 14.2 26.3 16.1 24.2 14.5 22.6 13.4 | Mean         Median         11.25           (Lower is better)         (High           26.4         17.1         36.1           23.3         14.2         41.8           26.3         16.1         37.9           24.2         14.5         41.2           22.6         13.4         43.7 | Mean         Median         11.25 22.5           (Lower is better)         (Higher is           26.4         17.1         36.1 59.2           23.3         14.2         41.8 65.2           26.3         16.1         37.9 60.6           24.2         14.5         41.2 64.2           22.6         13.4         43.7 66.8 |

#### **Object Detection**

| Method                            | VOC07                 | VOC07+12       |  |
|-----------------------------------|-----------------------|----------------|--|
| ResNet-50 ImageNet-1k Supervised* | $66.7 \pm 0.2$        | $71.4 \pm 0.1$ |  |
| ResNet-50 ImageNet-1k Supervised  | $68.5 \pm 0.3$        | $75.8 \pm 0.2$ |  |
| ResNet-50 Places205 Supervised    | $65.3 \pm 0.3$        | $73.1 \pm 0.3$ |  |
| ResNet-50 Jigsaw ImageNet-1k      | $56.6 \pm 0.5$        | $64.7 \pm 0.2$ |  |
| ResNet-50 Jigsaw ImageNet-22k     | <b>67.1</b> $\pm$ 0.3 | $73.0 \pm 0.2$ |  |
| ResNet-50 Jigsaw YFCC-100M        | $62.3 \pm 0.2$        | $69.7 \pm 0.1$ |  |



#### Conclusion

- Scaling self-supervised methods along three axes (data size, model capacity, and problem complexity) noticeably improves transfer learning performance
- Scaling along each axis complements the others



#### Conclusion

- Self-supervised representation learning can meet or exceed stateof-the-art supervised performance on some tasks
  - Surface normal estimation, visual navigation, object detection
- Falls short of supervised methods on other tasks
  - Image classification, low-shot image classification

