Design and Implementation of Flight Dynamics Control Strategies for a Smartphone-based Quadrotor

Thesis for obtaining the degree of

MASTER OF SCIENCE IN ENGINEERING with emphasis in Automation

Alejandro Astudillo Vigoya

alejandro. astudillo @correounivalle. edu. co

School of Electrical and Electronic Engineering UNIVERSIDAD DEL VALLE Cali, COLOMBIA

November 1, 2017

Supervised by:

Dr.-Ing. Esteban Rosero Industrial Control Research Group - GICI School of Electrical and Electronic Engineering Universidad del Valle

Bladimir Bacca Ph.D.
Perception and Intelligent Systems Research Group - PSI School of Electrical and Electronic Engineering Universidad del Valle

Abstract

Contents

\mathbf{A}	bstra	et e e e e e e e e e e e e e e e e e e
C	onter	ii
Li	st of	Figures
Li	st of	Tables vi
1	Intr	oduction
	1.1	Motivation
	1.2	Research Problem
	1.3	Objectives
	1.4	State of Art
		1.4.1 Quadrotors
		1.4.2 Smartphones as Controllers
		1.4.3 Smartphone-based Quadrotors
	1.5	Outline
2	Dyr	amic Model of the Quadrotor
	2.1	Non-linear Model
	2.2	Linearized Model
	2.3	Conclusions
3	Sma	rtphone-based Quadrotor Prototype
	3.1	Description of the Components
		3.1.1 Smartphone
		3.1.2 Frame
		3.1.3 Motors and Electronic Speed Controllers (ESC)
		3.1.4 Smartphone-ESC Gateway
		3.1.5 Battery
		3.1.6 Assembled Smartphone-based Quadrotor
	3.2	Quadrotor Parameters
		3.2.1 Mass
		3.2.2 Inertial Momentum

iv CONTENTS

		3.2.3 Motors Thrust	10
		3.2.4 Motors Torque	10
	3.3	Conclusions	10
4	Cor	ntrol Strategies and State Estimation	11
	4.1	Linear Quadratic Regulator	11
	4.2	H_{∞} Controller	
	4.3	State Estimation Through Kalman Filter	
		4.3.1 Particle Model	
		4.3.2 Quadrotor Model	
	4.4	Conclusions	
5	Imp	plementation and Results	13
	5.1	Kalman Filter for State Estimation	13
	5.2	Linear Quadratic Regulator Results	
		5.2.1 Simple Translational Movements (LQR)	
		5.2.2 Trajectory Tracking (LQR)	
	5.3	$H\infty$ Regulator Results	
		5.3.1 Simple Translational Movements $(H\infty)$	
		5.3.2 Trajectory Tracking $(H\infty)$	
	5.4	Conclusions	
C	onclu	usions and Outlook	14
Pι	ublic	ations	17
$\mathbf{B}_{\mathbf{i}}$	ibliog	graphy	19

List of Figures

o 1		his droton	ganama mi	th movement	orrig on	d though	foreces				/
4.1	- L	uadrotor	squeme wi	ın movemeni	axis and	a uniust	iorces				- 4

List of Tables

Introduction

- 1.1 Motivation
- 1.2 Research Problem
- 1.3 Objectives
- 1.4 State of Art
- 1.4.1 Quadrotors
- 1.4.2 Smartphones as Controllers
- 1.4.3 Smartphone-based Quadrotors
- 1.5 Outline

Dynamic Model of the Quadrotor

2.1 Non-linear Model

This section describes the dynamic modeling used to perform the quadrotor control, based on the study carried out in Castillo and Lozano [2004], Tamami et al. [2014], Voos [2007]. This model represents the quadrotor as a solid symmetrical object subject to a total thrust and three torques, without considering the dynamics of the actuators.

The general coordinates representing the position and attitude of the quadrotor are defined as

$$q = \begin{bmatrix} \xi & \eta \end{bmatrix}^T, \tag{2.1}$$

where $\xi = \begin{bmatrix} x & y & z \end{bmatrix}^T$ is the vector representing the position of the center of mass of the quadrotor relative to the body reference frame shown in Fig. 2.1 and $\eta = \begin{bmatrix} \psi & \theta & \phi \end{bmatrix}^T$ represent the quadrotor's attitude.

The Lagrangian of the quadrotor is defined by

$$L(q, \dot{q}) = K_{trans} + K_{rot} - U, \tag{2.2}$$

where $K_{trans} = \frac{m}{2}\dot{\xi}^T\dot{\xi}$ is the translational kinetic energy, $K_{rot} = \frac{1}{2}\dot{\eta}^T J\dot{\eta}$ is the rotational kinetic energy, U = mgz is the potential energy, m is the quadrotor's mass, z is the quadrotor's elevation, g is the gravity acceleration magnitude, and J is the inertial matrix. The dynamic model of the quadrotor is derived from the Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \begin{bmatrix} F_{\xi} \\ \tau \end{bmatrix}, \tag{2.3}$$

Figure 2.1: Quadrotor squeme with movement axis and thrust forces.

where $F_{\xi} = R_b^w \hat{F}_b$ is the translational force applied to the quadrotor by the four motors, τ contains the rolling, pitching and yawing torques, and

$$R_b^w = \begin{bmatrix} c\theta c\psi & c\psi s\theta s\phi - c\phi s\psi & s\phi s\psi + c\phi c\psi s\theta \\ c\theta s\psi & s\psi s\theta s\phi + c\phi c\psi & c\phi s\psi s\theta - s\phi c\psi \\ -s\theta & c\theta s\phi & c\theta c\phi \end{bmatrix}$$
(2.4)

is the rotation matrix from the body to the Earth frame where $c\theta = \cos \theta$ and $s\theta = \sin \theta$.

In the quadrotor's body frame, the translational force \hat{F}_b is only applied in the z_b axis as shown in Fig. 2.1. This force is represented by

$$\hat{F}_b = \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \sum_{i=1}^4 F_i \end{pmatrix}, \tag{2.5}$$

with F_i being the force, in N, exerted by the motor M_i , as shown in Fig. 2.1.

The force F_i has a linear dependency with the square of the motor angular velocity, defined as

$$F_i = k_i w_i^2, (2.6)$$

where w_i is the angular velocity of the motor, and k_i is a proportional constant. However, in practice F_i must be set using the PWM signal input of an ESC. The thrust-PWM relation is found experimentally and is shown in Section ??. 2.2. Linearized Model

5

The rolling, pitching and yawing torques contained in vector τ , are generated using the force exerted by each motor as

$$\tau = \begin{bmatrix} \tau_{\psi} \\ \tau_{\theta} \\ \tau_{\phi} \end{bmatrix} = \begin{bmatrix} T_1 + T_3 - T_2 - T_4 \\ Lcos(\pi/4)(F_3 + F_4 - F_2 - F_1) \\ Lcos(\pi/4)(F_2 + F_3 - F_1 - F_4) \end{bmatrix}, \tag{2.7}$$

where T_i is the torque produced by each motor along the z_b axis, L is the distance between each motor's rotor and the quadrotor's center of mass, and $L\cos(\pi/4)$ is the real distance between the point of application of the rolling and pitching torques and the quadrotor's center of mass along the x_b and y_b axes?

The Euler-Lagrange equations can be divided in two parts, one for the ξ coordinates and another for the η coordinates, getting

$$\ddot{\xi} = \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = \begin{bmatrix} \frac{u_1}{m} (\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi) \\ \frac{u_1}{m} (\cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi) \\ \frac{u_1}{m} (\cos \phi \cos \theta) - g \end{bmatrix}, \tag{2.8}$$

$$\ddot{\eta} = \begin{bmatrix} \ddot{\psi} \\ \ddot{\theta} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} \dot{\phi}\dot{\theta} \frac{J_{xx} - J_{yy}}{J_{zz}} + \frac{u_2}{J_{zz}} \\ \dot{\phi}\dot{\psi} \frac{J_{zz} - J_{xx}}{J_{yy}} + \frac{u_3}{J_{yy}} \\ \dot{\theta}\dot{\psi} \frac{J_{yy} - J_{zz}}{J_{xx}} + \frac{u_4}{J_{xx}} \end{bmatrix}, \tag{2.9}$$

where, $\begin{bmatrix} u_1, u_2, u_3, u_4 \end{bmatrix}^T = \begin{bmatrix} u, \tau_{\psi}, \tau_{\theta}, \tau_{\phi} \end{bmatrix}^T$, and (J_{xx}, J_{yy}, J_{zz}) are the moments of inertia around the quadrotor's body axes ??.

The Euler-Lagrange equations in (2.8) and (2.9) are linearized using their Jacobian around the hover state where $[\eta, \dot{\eta}, \dot{\xi}] \rightarrow [0, 0, 0]$, getting

$$\ddot{q} = \begin{bmatrix} g\theta \\ g\phi \\ u_1/m \\ u_2/J_{zz} \\ u_3/J_{yy} \\ u_4/J_{xx} \end{bmatrix}, \tag{2.10}$$

that is a simplified representation of the quadrotor complete model found in ?.

2.2 Linearized Model

The linearised model of the quad-rotor helicopter written as a state space model is given by

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$r(t) = Cx(t),$$

where

with the parameters

m = 0.64 kg,

q = 9.81 m/s.

The state vector is defined as

$$x(t) = \begin{bmatrix} r_x & \dot{r}_x & r_y & \dot{r}_y & r & \dot{r}_z \end{bmatrix}^T,$$

and the control inputs as

$$u(t) = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix}^T,$$

and the output vector is defined as

$$r(t) = \begin{bmatrix} r_x & r_y & r_z \end{bmatrix}^T$$
.

2.3. Conclusions 7

2.3 Conclusions

aaaa

Smartphone-based Quadrotor Prototype

- 3.1 Description of the Components
- 3.1.1 Smartphone
- 3.1.2 Frame
- 3.1.3 Motors and Electronic Speed Controllers (ESC)
- 3.1.4 Smartphone-ESC Gateway
- 3.1.5 Battery
- 3.1.6 Assembled Smartphone-based Quadrotor
- 3.2 Quadrotor Parameters
- 3.2.1 Mass
- 3.2.2 Inertial Momentum
- 3.2.3 Motors Thrust
- 3.2.4 Motors Torque
- 3.3 Conclusions

Control Strategies and State Estimation

- 4.1 Linear Quadratic Regulator
- 4.2 H_{∞} Controller
- 4.3 State Estimation Through Kalman Filter
- 4.3.1 Particle Model
- 4.3.2 Quadrotor Model
- 4.4 Conclusions

Implementation and Results

- 5.1 Kalman Filter for State Estimation
- 5.2 Linear Quadratic Regulator Results
- 5.2.1 Simple Translational Movements (LQR)
- 5.2.2 Trajectory Tracking (LQR)
- 5.3 $H\infty$ Regulator Results
- 5.3.1 Simple Translational Movements $(H\infty)$
- 5.3.2 Trajectory Tracking $(H\infty)$
- 5.4 Conclusions

Conclusions and Outlook

In this thesis distributed algorithms

Publications

A. Astudillo, P. Muñoz, F. Alvarez and E. Rosero, "Altitude and attitude cascade controller for a smartphone-based quadcopter," in 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, jun 2017, pp. 1447–1454. [Online]. Available: http://ieeexplore.ieee.org/document/7991400/

A. Astudillo, B. Bacca and E. Rosero, "Optimal and robust controllers design for a smartphone-based quadrotor," in 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC)

(Paper Submitted to Journal) A. Astudillo, P. Muñoz and E. Rosero, "Cascade Controller for Autonomous Flight of a Smartphone-based Quadrotor," in *Journal of Intelligent & Robotic Systems, SI: UAS-2017*.

Bibliography

- P. Castillo and R. Lozano. Stabilization of a mini-rotorcraft having four rotors, 2004.
- N. Tamami, E. Pitowarno, and I. Astawa. Proportional derivative active force control for "x" configuration quadcopter, 2014.
- H. Voos. Nonlinear control of a quadrotor micro-uav using feedback-linearization, 2007.