Estrutura de Dados

Hamilton José Brumatto

Bacharelado em Ciências da Computação - UESC

7 de fevereiro de 2024

Heaps e Aplicações

Неар

- Heap é conceito mais amplo de árvores que pode ser implementado na forma de um vetor.
- Um exemplo de Heap é o Heap Binário (Binary Heap) que implementa uma árvore binária na forma de um vetor.
- Como a estrutura segue uma classificação de vetor, o Heap Binário representa uma árvore binária (quase-)completa.
- Outros tipos de Heap:
 - Heap d-ário: baseado em uma árvore d-ária.
 - Heap Binomial: Uma coleção de árvores binomiais (de fatores de potência de 2).
 - Heap de Fibonacci, Beap, Heap 2-3, ...

Неар

- O Heap é uma estrutura baseada em árvores ordenadas (Heap Máximo, ou Heap Mínimo).
 - O nó pai não é maior que seus filhos. (Ou menor).
 - O heap pode ser uma coleção de árvores deste tipo.
- Como estrutura de dados dinâmica o Heap traz consigo algumas operações:
 - BuscaMax ou BuscaMin dependendo de ser um Heap Máximo ou Mínimo como determinante de prioridade.
 - Inserir Insere um elemento na fila, respeitando a prioridade
 - RemoverMax (RemoverMin) Remove um elemento na fila.
 - AlterarChave Altera o valor de um elemento da fila, alterando sua prioridade.
 - ConstruirHeap A partir de uma sequência de valores, transformar a sequência em um Heap.

Heap

- O Heap é eficiente para implementar filas de prioridade.
- Podemos comparar os tempos em uma fila de prioridade considerando algumas implementações de Heap:

Operação	Fila	Fila	Heap	Heap	Heap de
	Simples	Ordenada	Binário	Binomial	Fibonacci
BuscaMax	O(n)	$O(\log n)$	$\Theta(1)$	$\Theta(\log n)$	Θ(1)
Inserir	$\Theta(1)$	O(n)	$O(\log n)$	$\Theta(1)$	$\Theta(1)$
RemoverMax	$\Theta(n)$	$\Theta(1)$	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
AlterarChave	$\Theta(1)$	O(n)	$\Theta(\log n)$	$\Theta(\log n)$	Θ(1)

Heap Binário

- O heap binário é a representação de uma árvore binária única (quase-)completa.
- A representação da árvore acontece em uma sequência linear de seus nós:
 - O raiz é o primeiro nó, seus filhos os nós seguintes, os descendentes de segundo nível...

Heap Binário

Definição

- Considere um vetor A[1,..,n] representando um Heap.
- Cada posição do vetor corresponde a um nó da árvore do Heap.
- O pai de um nó i é $\lfloor i/2 \rfloor$.
- Um nó i tem 2i como filho esquerdo e 2i + 1 como filho direito.
- Naturalmente, o nó i tem filho esquerdo apenas se $2i \le n$. e tem filho direito apenas se $2i + 1 \le n$.
- Um nó i é uma folha se não tem, ou seja, se 2i > n.
- As folhas são |n/2| + 1, ..., n 1, n.

Níveis do Heap

• Cada nível p, exceto talvez o último, tem exatamente 2^{p-1} nós, e esses são:

$$2^{p-1}, 2^{p-1} + 1, 2^{p-1} + 2, \dots, 2^p - 1$$

- O nó i pertence ao nível $|\log i|$.
- O número total de níveis é $1 + |\log n|$

Max-Heap e Min-Heap

- Um nó *i* satisfaz a propriedade de (max)-heap se:
 - $A[\lfloor i/2 \rfloor] \geqslant A[i]$ (ou seja, pai \geqslant filho).
- Uma árvore binária completa é um (max)-heap se todo nó distinto da raiz satisfizer a propriedade de (max)-heap.
- O (máx)imo ou (mai)or elemento de um (max)-heap está na raiz da árvore.
- De forma análoga é definido o Min-Heap (basta trocar max por min).

Construindo um Heap Máximo

- São Duas Etapas:
 - Max-Heapfy (Joga um elemento menor para uma folha)
 - Pegamos um elemento na posição i e comparamos com seus filhos: 2i e 2i+1.
 - Trocamos com o maior.
 - Continuamos recursivamente a partir da nova posição deste elemento.
 - 2 Build-Max-Heap (Construir o Heap-Máximo)
 - A partir do primeiro elemento n\u00e3o folha (de tr\u00e1s para frente):
 n/2
 - Iterativamente aplicamos o algoritmo Max-Heapfy até o elemento na posição 1.
- Garantimos a cada iteração que os pais são sempre os maiores e que os menores elementos sempre são jogados para as folhas.

Este Heap não é máximo, mas o elemento "33" não tem descendentes menores que ele.

Algoritmo Max-Heapfy

```
Algoritmo MAX_HEAPFY(A,n,i)
    e \leftarrow 2 * i
    d \leftarrow 2 * i + 1
    se e \le n e A[e] > A[i] então
        max \leftarrow e
    senão
        max \leftarrow i
    se d \le n e A[d] > A[max] então
        max \leftarrow d
    se max \neq i então
        A[i] \leftrightarrow A[max]
        Max_Heapfy(A, n, max)
```


Heap Máximo atingido

Algoritmo Build_Max_Heap

```
Algoritmo BUILD_MAX_HEAP(A,n)

para i \leftarrow \lfloor n/2 \rfloor até 1 faça

Max_Heapfy(A, n, i)
```

Heap Binário como Fila de Prioridade

- Inserir um elemento é $O(\log n)$:
 - A fila inicialmente deve ser um Heap-Máximo.
 - Insere-se o elemento no final da fila.
 - Ele vai trocando de posição com o pai, enquanto for maior que o mesmo.
 - No final, continuaremos com um Heap-Máximo.
- A busca de um elemento é $\Theta(1)$: é o primeiro da fila.
- Remover um elemento é $\Theta(\log n)$:
 - Pegamos o último elemento da fila e colocamos como primeiro.
 - Aplica-se o Max-Heapfy.

Definição de Fila de Prioridade baseada em heap

```
typedef struct heapfila { int itens[TAMANHOFILA]; int fim; // Marcadores de 1 a n --> vetor de 0 a n-1. } heapfila;
```

Inserir um elemento na Fila de Prioridade

```
void enfileirar(heapfila *p, int obj) {
 int i:
 if(p-)fim != TAMANHOFILA) {
   p->itens[p->fim++]=obi;
  i = p - > fim;
   while((i > 1) && (p- >itens[i-1] > p- >itens[i/2 - 1])) {
    int aux = p- >itens[i - 1]; //p- >itens[i - 1] \leftrightarrow p- >itens[i/2 - 1]
    p->itens[i-1] = p->itens[i/2-1];
    p->itens[i/2 - 1] = aux;
    i = i/2;
 return;
```

Remover um elemento da Fila de Prioridade

```
int desenfileirar(heapfila *p) {
 int i = 1, max=1;
 int o. para = 0:
 o = p - > itens[0]; //elemento que sai
 p->itens[0] = p->itens[--p->fim]; //ultimo vai para o começo da fila
 while(!para) { // max-heapfy
   if(((2*i) \le p- > fim) \&\& (p- > itens[i-1] < p- > itens[2*i-1])) max = 2*i;
   if(((2*i+1) \le p- > fim) \&\& (p- > itens[max-i] < p- > itens[2*i]))
    max = 2*i+1:
   if(i != max) {
    int aux = p- >itens[i-1];
    p->itens[i-1] = p->itens[max-1];
    p->itens[max-1] = aux;
    i = max:
   else para = verdade;
 return o:
```

Aplicações de filas de prioridade

- Vários algoritmos importantes utilizam fila de prioridade para processar seus elementos, veja alguns:
 - Algoritmo de Ordenação por Heap.
 - Compressão de dados de Huffamn.
 - Algoritmo de Dijkstra de caminhos mínimos em Grafos.
 - Gerenciamento de fila de processamento (quando baseada em prioridade).
 - Roteamento de pacotes (pacote de voz tem prioridade).
 - Algoritmo de Prim para árvore geradora mínima em Grafos.

Heap Sort

- O algoritmo de ordenação por Seleção em estrutura Heap segue as sequintes etapas:
 - 1 Primeiro construimos um Heap Máximo.
 - O primeiro elemento é o maior da sequência. Trocamos este com o último, o último já está na posição. Vamos considerar agora a sequência sem este elemento.
 - 3 Aplicamos um Max-Heapfy nos n-1 elementos restantes e o elemento pequeno que ficou no raiz é jogado para uma folha.
 - Repete-se o processo até que sobre somente um elemento na sequência considerada.

Ordenação: Build-Max-Heap

Heap Máximo atingido

Ordenação: Troca de Elementos e Max-Heapfy

Ordenação: Troca de Elementos e Max-Heapfy

Sequência classificada em ordem crescente

Algoritmo Heap-Sort

```
Algoritmo HEAP_SORT(A, n)
Build_Max_Heap(A, n)
para i \leftarrow n até 2 faça
A[1] \leftrightarrow A[i]
Max_Heapfy(A, i - 1, 1)
```

Algoritmo Heap-Sort - Custo

- O algoritmo Max-Heapfy executa em $O(\log n)$, que é a altura da árvore.
- O algoritmo Build-Max-Heap possui um cálculo mais complexo de complexidade, mas é O(n).
- O Algoritmo Heap-Sort aplica n vezes o Max-Heapfy, portanto é $O(n \log n)$.

Códigos de Huffman

- Representa uma técnica de compressão de dados que pode atingir valores entre 20 e 90%.
- É aplicado em arquivos de símbolos (texto) onde existe um distribuição diferenciada na freqüência com que cada símbolo aparece.
- Codifica-se os símbolos com tamanhos distintos de bits.
 Símbolos mais frequentes recebem menos bits, símbolos menos frequentes recebem mais bits.
- Na média o número de bits do arquivo será menor.

Exemplo do código de Huffman

- Considere o alfabeto $C = \{a, b, c, d, e, f\}$.
- Um dado arquivo possui a freqüência indicada na tabela abaixo para os caracteres do alfabeto.
- Também na tabela estão indicadas duas possíveis codificações para cada objeto, uma de tamanho fixo e outra de tamanho variável.

	а	Ь	С	d	e	f
Freqüência (milhares)	45	13	12	16	9	5
Código: Tamanho Fixo	000	001	010	011	100	101
Código: Tamanho Variável	0	101	100	111	1101	1100

• Qual o tamanho do arquivo para cada uma das codificações?

Calculando o custo para cada tipo de codificação

• Codificação com códigos de tamanho fixo:

$$Totaldebits = 3 \times 100.000 = 300.000bits$$

Codificação com códigos de tamanho variável:

$$\underbrace{1\times45}_{a} + \underbrace{3\times13}_{b} + \underbrace{3\times12}_{c} + \underbrace{3\times16}_{d} + \underbrace{4\times9}_{e} + \underbrace{4\times5}_{f} = 224.000 \textit{bits}$$

 Há um ganho de aproximadamente 25% se utilizarmos a codificação de tamanho variável.

O método

- A solução implica no uso de uma "codificação livre de prefixo".
- Em uma codificação livre de prefixo, para quaisquer símbolos distintos i e j codificados, a codificação de i não é prefixo da codificação de j.
- No exemplo anterior, usando a codificação variável para a palavra "abc" obtemos: 0101100.
 - O único caracter começado com 0 e que portanto utiliza somente um bit é o 'a';
 - A sequência 101 define o caracter 'b' e não há qualquer outro caracter que inicie com o código 101;
 - O restante 100 representa o caracter 'c'.

Representando o código

- Precisamos identificar uma estrutura que associe um código ao caracter, de forma que na decodificação encontremos facilmente o símbolo utilizando o código fornecido.
- Uma solução é utilizar uma árvore binária:
 - Um filho esquerdo está associado a um bit 0.
 - Um filho direito a um bit 1.
 - Nas folhas se encontram os símbolos.
 - O código lido 0 ou 1 faz com que na navegação na árvore chegue a um símbolo.
 - Ao achar um símbolo o próximo código é aplicado a partir do raiz.

Código de tamanho fixo na forma de árvore

	а	b	С	d	е	f
Freqüência (milhares)	45	13	12	16	9	5
Código	000	001	010	011	100	101

Código de tamanho variável na forma de árvore

	а	b	С	d	e	f
Freqüência (milhares)	45	13	12	16	9	5
Código	0	101	100	111	1101	1100

Propriedades da árvore de código

- Cada código é livre de prefixo: Só há um único caminho para chegar a uma folha, que não passa por outra folha, assim o código de um símbolo não é um prefixo de outro símbolo.
- Uma codificação ótima deve ser representado por uma árvore binária cheia, cada vértice interno tem dois filhos. Seja uma codificação com um vértice interno que só tenha um filho:
 - Se o filho for uma folha. Podíamos colocar esta folha no lugar do vértice e economizaríamos um bit para o código deste símbolo.
 - Se o filho for outro vértice. A partir deste vértice buscamos uma folha, colocamos esta folha como segundo filho do vértice. Economizaríamos no mínimo um bit.
- Buscamos uma árvore binária cheia com |C| folhas (o tamanho do alfabeto) e |C-1| vértices internos.

Entendendo a proposta de solução

- Começar com |C| árvores folhas isoladas e realizar seqüencialmente |C-1| operações de agregação, agregando duas árvores a um novo vértice raiz comum. O raiz passa a ter como "peso" a soma dos custos de cada árvore agregada.
- A escolha do par de árvores que serão agregadas dependerá do custo de cada árvore. As duas árvores de menor custo serão escolhidas.
- O raiz de uma árvore carrega como informação o custo da árvore.

O algoritmo de Huffman

```
Entrada: Conjunto de caracteres de C e a freqüências f de cada
  caracter
Saída: Raiz da árvore binária representando codificação ótima
  livre de prefixo
  Algoritmo HUFFMAN(C)
      n \leftarrow |C|
      Q \leftarrow C

▷ Q é fila prioriadade de árvores

      para i \leftarrow 1 até n-1 faça
          z \leftarrow novo Arvore
          z.esg \leftarrow Extrai\_Minimo(Q)
          z.dir \leftarrow Extrai\_Minimo(Q)
          z.info = z.esq.info + z.dir.info
          Insere(Q, z)
      retorne Extrai_Minimo(Q)
```