Rapport de Projet – Architecture Business Intelligence (Scala)

Participant: Lisa AU, Zohra Hussan, Dorine HENRY

Classe: M2TL

Ecole : Digital Campus Paris

Année: 2025

Encadrant: Rakib Sheikh

Contexte

Dans le cadre du cours de Big Data, nous avons travaillé sur la mise en place d'une architecture BI de type CAC40, allant de la collecte de données jusqu'à l'orchestration de pipelines. Nous avons pu réaliser les TPs 1 à 4, mais par manque de temps, le TP5 n'a pas pu être finalisé.

TP1 – Collecte de données via Minio

Le TP1 a été réalisé assez facilement sur un poste sur trois, notamment sur macOS. Cependant, sous Windows, nous avons rencontré des problèmes avec le service Minio, principalement liés à Docker (réseau local, port mapping, compatibilité système de fichiers).

Étapes réalisées :

- Téléchargement des fichiers parquet (taxis jaunes de New York).
- Dépôt dans le dossier data/raw/.
- Upload vers le bucket Minio via un script Spark fourni.

TP2 – Ingestion vers un Data Warehouse

Ce TP a été bien réussi, sur des machines Windows plus performantes.

Étapes:

- Lecture des fichiers parquet depuis Minio.
- Transformation et ingestion dans PostgreSQL en tant que Data Warehouse.
- Utilisation de scripts Scala/Spark pour automatiser l'ingestion.

TP3 – Création du Data Mart et modélisation

Complications initiales dues à une compréhension floue du besoin.

La partie SQL a été fluide, mais nous avons eu des difficultés de connexion dues à un manque d'informations reçues tardivement.

Points clés:

- Données utilisé : parquet des taxis jaunes de NYC de octobre 2024.
- Création d'un modèle en étoile.
- Scripts creation.sql et insertion.sql.
- Utilisation de deux serveurs SGBD distincts comme demandé.

Base de donnée

✓ ■ public	
→ dim_datetime	
datetime_id	int4(32,0)
datetime	timestamp(6)
year	int2(16,0)
month	int2(16,0)
day	int2(16,0)
hour	int2(16,0)
minute	int2(16,0)
→ ■ dim_location	
location_id	int4(32,0)
dim_payment_type	
payment_type	int2(16,0)
payment_description	text
→ ■ dim_ratecode	
ratecode_id	int2(16,0)
rate_description	text
✓ ■ dim_vendor	
vendor_id	int2(16,0)
vendor_description	text

		_
~	fact_trips	
	trip_id	int4(32,0)
	vendor_id	int2(16,0)
	pickup_datetime_id	int4(32,0)
	dropoff_datetime_id	int4(32,0)
	passenger_count	int2(16,0)
	trip_distance	float4(24)
	ratecode_id	int2(16,0)
	store_and_fwd_flag	bpchar(1)
	pickup_location_id	int4(32,0)
	dropoff_location_id	int4(32,0)
	payment_type	int2(16,0)
	fare_amount	numeric(10,2)
	extra	numeric(10,2)
	mta_tax	numeric(10,2)
	tip_amount	numeric(10,2)
	tolls_amount	numeric(10,2)
	improvement_surcharge	numeric(10,2)
	total_amount	numeric(10,2)
	congestion_surcharge	numeric(10,2)
	airport_fee	numeric(10,2)
~	taxi_zones	
	locationid	int4(32,0)
	borough	text
	zone	text
	service_zone	text

TP4 – Visualisation des données

Réalisé avec JupyterLab au format .ipynb .

Réalisation rapide grâce aux bases mathématiques vues le mois précédent.

Étapes:

- Connexion au Data Mart.
- Analyse exploratoire des données (EDA).
- Génération de premières visualisations.

Apperçu des données

	trip_id	vendor_id	pickup_datetime_id	dropoff_datetime_id	passenger_count	trip_distance	ratecode_id	pickup_location_id
count	20.00000	20.000000	2.000000e+01	2.000000e+01	20.000000	20.000000	20.000000	20.000000
mean	10.50000	1.950000	5.250967e+05	9.695724e+05	1.050000	2.549500	1.450000	132.300000
std	5.91608	0.223607	6.197570e+05	7.258437e+05	0.223607	4.356014	1.234376	67.097808
min	1.00000	1.000000	5.497000e+03	2.419300e+04	1.000000	0.000000	1.000000	43.000000
25%	5.75000	2.000000	2.496400e+04	4.356855e+05	1.000000	0.527500	1.000000	79.000000
50%	10.50000	2.000000	1.236685e+05	8.579585e+05	1.000000	0.835000	1.000000	134.500000
75%	15.25000	2.000000	1.049532e+06	1.451914e+06	1.000000	2.540000	1.000000	155.250000
max	20.00000	2.000000	1.645849e+06	2.109584e+06	2.000000	17.770000	5.000000	249.000000

Visualisation des distributions

Moyenne des pourboires par type de paiement

Analyse temporelle

Corrélation entre variable

TP5 – Orchestration avec Airflow

Non réalisé.

Le projet étant hébergé sur des machines extérieures, nous n'avons pas eu le temps de finaliser cette partie.

Conclusion

Ce projet nous a permis de comprendre les différentes briques d'une architecture BI : collecte, transformation, modélisation et visualisation. Malgré l'absence du TP5, nous avons mis en œuvre un pipeline BI fonctionnel et structuré.