МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕНЕРА И НОЕ ГОСУНАРСТВЕННОЕ БІОНУЕТНОЕ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Институт информационных технологий и технологического образования Кафедра компьютерных технологий и электронного обучения

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине: «Физика полупроводников» "Р-п переход"

 Цель работы: Исследование вольт-амперной характеристики полупроводникового диода.

Теоретические сведения

Диод – это двухполюсный электронный компонент, который проводит ток преимущественно в одном направлении (асимметричная проводимость); он имеет низкое (в идеале нулевое) сопротивление в одном направлении и высокое (в идеале бесконечное) сопротивление в другом.

Основа диода – p-n переход (образуется при контакте полупроводников p-n типа).

Вольт-амперная характеристика диода — это графическая зависимость тока, проходящего через диод, от приложенного к нему напряжения при прямом и обратном включении.

Электроны являются основными носителями заряда в области n-типа и неосновными в области p-типа. Дырки же — основные носители заряда в области p-типа и неосновные в области n-типа.

Различие в концентрациях носителей одного типа по обе стороны контакта ведет в возникновению диффузионных потоков дырок из области Р-типа в область n-типа и электронов в обратном направлении.

Диффузия — это самопроизвольное взаимное проникновение молекул одного вещества в промежутки между молекулами другого. Причиной диффузии — это градиент концентрации, при этом происходит переход носителя заряда в соседнюю область.

Если к полупроводнику, содержащему p-n переход, приложить внешнее поле так, что n-область будет соединена с положительным полюсом источника тока, а p-область – с отрицательным, то полупроводник практически не будет проводить электрический ток.

При пропускном (прямом) направлении внешнего поля, когда n-область соединена с отрицательным полюсом источника тока, а p-область – с положительным, через p-n-переход будет проходить электрический ток, величина которого экспоненциально возрастает с ростом напряжения.

Детектирующие свойства кристаллических диодов характеризуются коэффициентом выпрямления:

$$\eta = \frac{I_{\text{np}}}{I_{\text{ofp}}},$$

Где $I_{\rm np}$ и $I_{\rm o6p}$ — прямой и обратный токи при одном и том же абсолютном значении напряжения.

Дифференциальное сопротивление диода – это сопротивление малого приращения напряжения диода к малому приращению тока.

$$R_{\rm диф} = \frac{dU}{dI}$$

Результаты проведённого эксперимента:

A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P
Red LED		U, V	Green LE		U, V	Yellow L		U, V	Red LED	I обр, A		Кремни	I обр, A		
	0	0		0	0		0	0		0	0		0	0	
	0	0,1		0	0,1		0	0,1		0	0,05		0	0,05	
	0	0,2		0	0,2		0	0,2		0	0,1		0	0,1	
	0	0,3		0	0,3		0	0,3		0	0,15	-	0	0,15	
	0	0,4		0	0,4		0	0,4		0	0,2		0	0,2	
	0	0,5		0	0,5		0	0,5		0	0,25		0	0,25	
	0	0,6		0	0,6		0	0,6		0	0,3		0	0,3	
	0	0,7		0	0,7		0	0,7		0	0,35		0	0,35	
	0	0,8		0	0,8		0	0,8		0	0,4		0,009	0,4	
	0	0,9		0	0,9		0	0,9		0	0,45		0,022	0,45	
	0	1		0	1		0	1		0	0,5		0,05	0,5	
	0	1,1		0	1,1		0	1,1		0	0,55			0,55	
	0	1,2		0	1,2		0	1,2		0	0,6			0,6	
	0	1,3		0	1,3		0	1,3		0	0,65			0,65	
	0	1,4		0	1,4		0	1,4		0	0,7			0,7	
	0	1,5		0	1,5		0	1,5		0	0,75			0,75	
	0	1,6		0	1,6		0	1,6		0	0,8			0,8	
	0,001	1,7		0	1,7		0	1,7		0	0,85			0,85	
	0,005	1,8		0	1,8		0	1,8		0	0,9			0,9	
	0,016	1,9		0	1,9		5E-04	1,9		0	0,95			0,95	
	0,029	2		0,002	2		0,003	2		0	1			1	
				0,005	2,1		0,009	2,1		0	1,05			1,05	
	R диф	U		0,01	2,2		0,023	2,2		5E-05	1,1			1,1	
	100	1,7		0,015	2,3		0,031	2,3		3E-04	1,15			1,15	
	25	1,8		0,021	2,4					9E-04	1,2			1,2	
	9,091	1,9		0,028	2,5		R диф	U		0,002	1,25			1,25	
	7,692	2					200	1,9		0,003	1,3			1,3	
				R диф	U		40	2						1,35	
				50	2		16,67	2,1		R обр. д	U			1,4	
				33,33	2,1		7,143	2,2		1000	1,1			1,45	
				20	2,2		12,5	2,3		200	1,15			1,5	
				20	2,3					83,33	1,2				
				16,67	2,4					50	1,25		R обр. д	U	
				14,29	2,5					62,5	1,3		5,882	0,4	
													3,704	0,45	
													1,786	0,5	

Таблица 1 (сводная таблица результатов измерений)

График 1 (зависимость прямого тока от прямого напряжения для красного диода)

График 2 (зависимость прямого тока от прямого напряжения для желтого диода)

График 3 (зависимость прямого тока от прямого напряжения для зеленого диода)

График 4 (зависимость обратного тока от обратного напряжения для красного диода)

График 5 (зависимость обратного тока от обратного напряжения для кремниевого диода)

Вывод: Мы сделали замеры для разных диодов. Измерили прямой и обратный токи. Построили графики зависимости прямых токов от напряжения и обратных токов от напряжения, тем самым получили BAX. А также, построили посчитали дифференциальное сопротивление.12:30