- 1. (a) [5 marks] Recall that a hyperplane H=(w,b) for some $w\neq 0\in \mathbb{R}^d$ and $b\in \mathbb{R}$ is defined as $H=\{x\in \mathbb{R}^d: \langle w,x\rangle=b\}$. Show that for every hyperplane H and for every $\beta>0$, there exists another hyperplane $\tilde{H}=(\tilde{w},\tilde{b})$ such that $\|\tilde{w}\|_2=\beta$. Illustrate the relationship between (w,b) and (\tilde{w},\tilde{b}) . (Recall that for $u\in \mathbb{R}^d$, $\|u\|_2=\sqrt{\langle u,u\rangle}=\sqrt{\sum_{i=1}^d |u_i|^2}$ is the ℓ_2 norm of u).
 - (b) [5 marks] Consider a data set $D = \{(x^1, y^1), \dots, (x^n, y^n)\}$, where $x^j \in \mathbb{R}^d$, $y^j \in \{+1, -1\}, \forall j = 1, 2, \dots, n$. Let $\max_j \|x^j\|_2 \leq R$. Recall that D is linearly separable if there exist $w^* \in \mathbb{R}^d$ and $\gamma > 0$ such that $y^j \langle w^*, x^j \rangle \geq \gamma$, $\forall j = 1, \dots, n$. Show that if D is linearly separable, the mistake bound proved in class

$$M \leq \frac{R^2 \|w^*\|_2^2}{\gamma^2}$$

can be rewritten simply as $M \leq \frac{R^2}{\eta^2}$, where $\eta > 0$ (which might be same as γ or different from γ). (Hint: Use the previous result about hyperplane.)

Debts
(a) we have H = { x & Rd, <w.x> = 6}</w.x>
now we define an another Hyperplane $H' = \{ x \in \mathbb{R}^d , < \frac{B}{11w11} w, x > \frac{\beta^2}{11w11} b \}$
$\mathcal{L} = \mathcal{L} \cup \mathcal{L} = \mathcal{L} \cup \mathcal{L} \cup \mathcal{L} = \mathcal{L} \cup $
and assume that $S = \frac{\beta}{11w11}$
Hen $\tilde{H} = \{ n \in \mathbb{R}^d : \langle \tilde{\omega}, n \rangle = \tilde{b} \}$
-> Hence we can always And a Hyperplane
and relation between (w,5) and (w,5) is-
$\omega = \frac{\beta \omega}{11 \omega 11}$
$\hat{b} = \frac{\beta}{11\omega 11} b$

	Ib) Given a data set $D = \{(x', y'),, (x', y')\}$ ab where $x' \in \mathbb{R}^d$, $y' \in \{+1, -1\}$ of $j = 1,, n$ let $ x' _{\ell} \leq R $ Given $ D _{\ell}$ linearly separable.
	=> 3 w* 6 Rd . and 1 >0
100	duch that $y^{3} < \omega^{*}, \chi^{3} > \gg \sqrt{2}$
	$\forall j=1,2,,n$
	Hen Fre Edick: Com more El
	we know that by mistake bound ->
	MITTON
	Various las
	now for $y^{\dot{\sigma}} = 1$
	< w*, n'> > 1
	$\Rightarrow \langle \frac{\beta}{ w _2}; \pi^i \rangle > \frac{\sqrt{\beta}}{ w _2}$
	(dince \$70 (twile>0)
-	

ond for
$$y^{i} = -1$$
 $\langle w^{i}, x^{i} \rangle \geq \sqrt{B}$
 $|w^{i}|_{2}$

Hence (\vec{w}, \vec{b}) is also linearly beparable.

When $\vec{w} = \frac{Pw^{i}}{|w^{i}|_{2}}$
 $\vec{b} = \frac{\sqrt{B}}{|w^{i}|_{2}}$

by mulake bound inequality:

 $M < \frac{R^{2}}{R^{2}}$
 $M < \frac{R^{2}}{R^{2}}$

Hence $M = \frac{R^{2}}{R^{2}}$

- 2. Consider the perceptron learning algorithm with a starting point $w^0 = [\theta \ \theta \ \dots \ \theta]^{\top}$ where $\theta \in [0, 1]$, used to train on a linearly separable data set.
 - (a) [7 marks] Find a suitable upper bound on the number of mistakes for the choice of starting point w⁰ given above.
 - (b) [3 marks] Compare and contrast the bound you obtained in part (a) with the bound discussed in class. Explain the changes observed in the bound, and explain the dependence of the bound you obtained in part (a) on the choice of w⁰.
 - (c) [2 marks] Justify if your bound is tight.

92 (0) Let w° = [0 0 ... 0] where O & [0,1]. Consider the data set D= {(x', y'), ..., (2", y")}, where xielRo, yie {+1,-11, \forall_j=1,2,..., n. Let max || xill_z \le R

As Die linearly separable For R and 8 >0 s.t. y 1 (~* , x 1 > > r , \ j = 1, 2, ..., n. Using Perceptron update, w++1 = w++y+x+ $\langle \omega^*, \omega^{t+1} \rangle - \langle \omega^*, \omega^t \rangle = \langle \omega^*, \omega^{t+1} - \omega^t \rangle$ $= \langle \omega^*, y^{\dagger} x^{\dagger} \rangle$ $= v^{\dagger} \langle \omega^*, x^{\dagger} \rangle > \gamma \gamma - (*)$ For a total progress of Trounds, where M mistakes are made, we obtain: $\sum_{t=0}^{T} \langle \omega^*, \omega^{t+1} \rangle - \langle \omega^*, \omega^t \rangle = \sum_{t \in \{0, \dots, T\}} \langle \omega^*, \omega^{t+1} \rangle - \langle \omega^*, \omega^t \rangle$ > > + [(w*, w++ 1) - (w*, w+) > > > = 5 (w*, w++1> - (w*, w+) > timistake is made in round t > M & [As total M mistakes how been nad and

... [(v*, v*+") - (v*, v*) > Mr - (**) (*)]

```
> | w++1 = | w+ + y+x+ =
                                                                                                                                                   = 11 wt 112 + 11 ytx+112 + 2 (wt, ytx+)
                                                                                                               = \|\omega^{t}\|^{2} + \|y^{t}\|\|x^{t}\|^{2} + 2y^{t}(\omega^{t}, x^{t})
                                                                                                                                                    ≤ 11 w+112+11x+112 BAS
                                                          As ytelli-11 and whenever update occurs (mistake
                                         has occured) ygt & O (as yt + gt)
                                                                                                                 > ytsign((wt,xt)) & O
                                                                                                                 \Rightarrow y^{\dagger}\langle \omega^{\dagger}, z^{\dagger} \rangle \leq 0.
                                                                   .. 11 w++1112 - 11 w+112 < 11 x+112
                                                                                                                                                                                                         < R [ || x + || 2 < R,

- (xx xx) + 1 = 1,2,...,n]
                                          = \sum_{i=1}^{T} (\|\omega^{++i}\|^2 - \|\omega^{+}\|^2)
                                                                            = \sum_{t \in [0, 1]} (\|\omega^{t+1}\|^2 - \|\omega^{t}\|^2) + \sum_{t \in [0, 1]} (\|\omega^{t+1}\|^2 - \|\omega^{t}\|^2)
   -
                                                                                                                 t: miskake
00000
                                                                                                                      at round t
                                                                                                                   = \( \langle \
                                                                                                                                t:mistahe
 2
                                                                                                                      < MR2 [Using (***)]
```

..
$$\|\omega^{T+1}\|^{2} - \|\omega^{0}\|^{2} \le MR^{2}$$

 $\Rightarrow \|\omega^{T} + 1\|^{2} \le MR^{2} + d\theta^{2}$
Using (* * *)
 $\frac{M^{2}\gamma^{2}}{\|\omega^{*}\|^{2}} < \left[MR^{2} + d\theta^{2} + 2\sqrt{d}\theta\sqrt{MR^{2} + d\theta^{2}} + d\theta^{2}\right]$
 $= \left[MR^{2} + 2d\theta^{2} + 2\sqrt{d}\theta\sqrt{MR^{2} + d\theta^{2}}\right]$
Considering $M > 1$,
 $MR^{2} + d\theta^{2} \le M^{2}R^{2} + M^{2}d\theta^{2}$
and $2d\theta^{2} \le 2Md\theta^{2}$

$$\frac{1}{\|\omega^*\|^2} < \left[MR^2 + 2Hd\theta^2 + 2M\sqrt{d}\theta\sqrt{R^2+d\theta^2}\right]$$

$$\Rightarrow M \subset \frac{||\omega^*||^2}{\gamma^2} \left[R^2 + 2d\theta^2 + 2\theta \sqrt{d(R^2 + d\theta^2)} \right]$$

(b) The bound obtained is greater than the one obtained in class for zero weight initialization. The bound increases with increase in d,R and O. For, O= O, are obtain the same bound 1 will R2. On the other hand when 0 = 1, the bound be comes \(\frac{||w^*||^2}{n^2} \left[R^2 + 2d + 2 \(\sqrt{d} \(R^2 + d \) \) \(\]

(c) The bound is not tight as are can see from the example below:

For perception with w= (1/2) no mistakes are made.

But the bound obtained is given by

$$\frac{\|\omega^*\|^2}{\gamma^2} \left[R^2 + 2d\theta^2 + 20\sqrt{d(R^2 + d\theta^3)} \right]$$

$$= \frac{2}{\sqrt{4}} \left[5 + 2\times2\times\frac{1}{4} + 2\times\frac{1}{2}\sqrt{2(5 + 2\times\frac{1}{4})} \right]$$