CS 343 OPERATING SYSTEMS

# File Management in Solaris

AB Satyaprakash
180123062
Mathematics and Computing



#### Presentation Outline

What will we learn today?

- Introduction to Solaris
- Overview of File Management
- Types of File Systems
  - Disk-based
  - Network-based
  - Virtual
- File Handling
- Mounting and Unmounting
- Security and Sharing
- References



## Introduction to Solaris

- Solaris is a <u>proprietary</u> Unix operating system originally developed by Sun Microsystems. It superseded the company's earlier SunOS in 1993. In 2010, after the Sun acquisition by Oracle, it was renamed **Oracle Solaris**.
- Solaris is known for its scalability, especially on <u>SPARC</u> systems, x86-64 workstations and servers from Oracle and other vendors. It also supports Oracle Database and Java applications.





## Overview of File Management

- **File management** describes the fundamental methods for storing, naming, accessing, mounting, sharing and handling files.
- Why is file management necessary?
  - Efficient and organised data storage
  - Data protection and recovery
- A **file system** is used for file maintenance (or management) operations. It is a type of software that manages data files in a computer system.
- ZFS, NTFS, FAT32, ext4, exFAT are some commonly known file management systems, each with unique features.





#### File Sytems in Solaris

- The Oracle Solaris OS uses the <u>virtual file system (VFS)</u> architecture, which provides a standard interface for different file system types.
- The **VFS** architecture enables the kernel to handle basic operations, such as reading, writing, and listing files. The **VFS** architecture also makes it easier to add new file systems.
- Solaris supports a wide variety of system types to handle most storage media (CDs, DVDs, Hard Drives, floppy disks based storage) and network based file system protocols.
- Solaris also uses the system to implement various system interface features, and to export some **kernel** information as files visible to the user.

#### Types of File Systems

- The Solaris OS supports three types of file systems:
  - Disk-based file systems
  - Network-based file systems
  - Virtual file systems
- The classification is done on the basis of the use case, that is based on whether the data is stored on a disk, a server, or is concerned with specific kernel related information. We will see each in more detail in the upcoming slides.





## Disk-based file systems

- Disk-based file systems are stored on **physical media** such as hard disks and DVDs.
- Disk-based file systems can be written in different formats. The available formats are
  - ZFS (Zetabyte File System)
  - UFS (UNIX File System)
  - HSFS (High Sierra File System)
  - PCFS (PC File System)
  - UDFS (Universal Disk File System)
- Each type of disk-based file system is customarily associated with a particular media device, as follows:
  - ZFS or UFS with hard disk
  - HSFS with CD-ROM
  - PCFS with USB diskette
  - UDFS with DVD

| Disk-based file<br>system | Format Description                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZFS                       | ZFS is the default disk-based and root file system in the Oracle Solaris 11 release. For more information, see the Oracle Solaris Administration: ZFS File Systems.                                                                                                                                                                                                                                                                                   |
| UFS                       | Legacy UNIX file system (based on the BSD Fat Fast File system that was provided in the 4.3<br>Tahoe release).                                                                                                                                                                                                                                                                                                                                        |
| HSFS                      | High Sierra, Rock Ridge, and ISO 9660 file system. High Sierra is the first CD-ROM file system. ISO 9660 is the official standard version of the High Sierra file system. The HSFS file system is used on CD-ROMs, and is a read-only file system. Oracle Solaris HSFS supports Rock Ridge extensions to ISO 9660. When present on a CD-ROM, these extensions provide all file system features and file types, except for writability and hard links. |
| PCFS                      | PC file system, which allows read- and write- access to data and programs on DOS-formatted disks that are written for DOS-based personal computers.                                                                                                                                                                                                                                                                                                   |
| UDFS                      | The Universal Disk Format (UDFS) file system, the industry-standard format for storing information on the optical media technology called DVD (Digital Versatile Disc or Digital Video Disc).                                                                                                                                                                                                                                                         |





#### Network-based file systems

- Network-based file systems can be accessed from the network.
   Typically, network-based file systems reside on one system, typically a server, and are accessed by other systems across the network.
- With the **NFS service**, you can provide distributed resources (files or directories) by sharing them from a server and mounting them on individual clients.
- With the **Oracle SMB service**, you can provide distributed resources (files or directories) to Windows and Mac OS systems by sharing them from a server and mounting them on individual clients.



## Virtual file systems

- Virtual file systems are memory-based file systems that provide access to special **kernel information** and facilities.
- Most virtual file systems do not use file system disk space. Also, some virtual file systems, such as the temporary file system (TMPFS), use the swap space on a disk.
- Other examples include the loopback file system, process file system, swap file system, etc.



TYPES OF FILE SYSTEMS



- Solaris ZFS, a new file system provides simple administration transactional semantics, end-to-end data integrity and immense scalability.
- Features in OS Lab 4 Data
   Deuplication, Data Compression
- The ZFS file system is hierarchical, starting with the root directory (/) and continuing downwards through a number of directories..



11

#### File Handling

• The **fstyp** command is used to determine the file system type of a disk

\$ fstyp /dev/rdsk/c0t0d0s0 zfs

- The **cp** command is used to copy a file or a directory. There are 2 options:
  - i : for showing confirmation message before overwriting
  - r : for copying directories recursively

\$ cp -i <file-name> <new-location>
\$ cp -r <directory-name> <new-location>

• The mv command is used to rename a file or move it.

\$ mv <source> <target>

• The touch command is used to create an empty file.

\$ touch <file-name>





• The **mkdir** command is used to create directories. We can create the parent and child directories simulataneously using the -**p** option.

#### \$ mkdir directory(ies)

• The rm command is used to remove files, while rmdir is used to remove empty directories. The option -r, recursively, removes directories and their contents. One important thing to note here is that the files/directories are permanently removed, and not sent to the trash.

\$ rm <file-name>
\$ rmdir <empty directory-name>
\$ rmdir -r <directory-name>

• The diff command is used to find difference in contents of similar files.

#### \$ diff <left file-name> <right file-name>

There are several other important file handling commands like cat, find,
 ls, cd, chmod (we will see this later), etc. For more information visit
 docs.

## Mounting and Unmounting

- **Mounting** is a process by which the OS makes files and directories on a storage device available for users to access via the file system.
- In Oralce Solaris, we have several different file systems such as **ZFS**, **LOFS**, **TMPFS**, etc. Since **TMPFS** and **LOFS** are virtual file systems, you actually **access** them by mounting them.
- Let's look at 2 different cases and understand the way mouting occurs for these file systems.
  - O Mouting ZFS:

We first create a mirror storage pool with the name **tank**. We assume that the disk /**dev/sdb** is available for use. The pool is automatically mounted at /**tank**.

```
$ zpool create tank mirror /dev/sdb
$ zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 117K 268G 21K /tank
```





#### O Mouting TMPFS:

We create, mount, and limit the size of the **TMPFS** file system, /export/reports, to 50 MB. You can set up the system to automatically mount a TMPFS file system at boot time by adding an /etc/vfstab entry.

```
$ mkdir /export/reports
$ chmod 777 /export/reports
$ mount -F tmpfs -o size=50m swap /export/reports
$ mount -v
```

- Similarly one can mount other file systems like LOFS and Legacy UFS
   File Systems.
- For unmounting file systems, we simply specify the mount-point and use umount. We can use -f option for forcibly unmounting.

\$ umount < mount-point >

#### Security and Sharing

- **File Security** in Solaris OS is an important concern, since it's an **enterprise** operating system. Files are kept secure by restricting and monitoring access to them by different users.
- Access Control Lists (ACLs) can provide greater control over file permissions. You add ACLs when traditional UNIX file protections are not sufficient.
- Traditional UNIX file protections provide read, write, and execute permissions for the three user classes: owner, group, and other. An ACL provides finer-grained file security.
- A network file server can control which files are available for sharing.

  Access control is specified when resources are made available with the share command.
- The Basic Audit Reporting Tool (BART) enables you to comprehensively validate systems by performing file-level checks.



16 SECURITY AND SHARING

#### References

- Oracle Solaris Administration: Devices and File Systems
   <a href="https://docs.oracle.com/cd/E23824">https://docs.oracle.com/cd/E23824</a> 01/html/821-1459/toc.html
- Solaris (operating system)
   <a href="https://en.wikipedia.org/wiki/Solaris">https://en.wikipedia.org/wiki/Solaris</a> (operating system)
- Operating Systems Documentation <u>https://docs.oracle.com/en/operating-systems/index.html</u>
- Operating Systems (CS 343) Module 6 File System Management, IIT Guwahati



#### Thank You!

#### COURSE INSTRUCTORS



Dr. John Jose

Assistant Professor

Department of Computer

Science & Engineering



Dr. T. Venkatesh

Associate Professor

Department of Computer

Science & Engineering