

TÖL403G GREINING REIKNIRITA

8. Kvik bestun 2

Hjálmtýr Hafsteinsson Vor 2022

Í þessum fyrirlestri

Lengsta hækkandi hlutruna (LIS)

- LISbigger með kvikri bestun
 - Gagnagrind fyrir milliniðurstöður
 - Reiknirit
- LISfirst með kvikri bestun
 - Gagnagrind fyrir milliniðurstöður
 - Reiknirit

3.6

Lengsta hækkandi hlutruna (*LIS*)

- Gefið fylki A[1..n] af tölum finna lengd lengstu hækkandi hlutrunu í A
- Sáum síðast tvö endurkvæm endurrakningarreiknirit fyrir verkefnið
- Bæði reiknritin höfðu tímann O(2ⁿ)

LIShigger: Er A[i] næsta stakið í lengstu hækkandi hlutrunu?

LIShirst: Hvar er næsta stakið í lengstu hækkandi hlutrunu?

Hugsa út frá inntaki

Hugsa út frá niðurstöðu

- Byggja á mismunandi endurkvæmum formúlum
- Sjáum nú tvö kvik bestunarreiknirit
 - Byggja á endurkvæmu formúlunum og hafa ólíkar gagnagrindur

Sýnir að hægt er að leysa verkefni á mismunandi vegu með kvikri bestun

LISbigger með kvikri bestun

Skilgreindum fallið LISbigger(i, j):

LISbigger(i, j): lengd lengstu hækkandi hlutrunu í A[j..n] með öll stök stærri en A[i]

Endurkvæm formúla:

 $LISbigger(i, j): \begin{cases} D & \text{ef } j > n \\ LISbigger(i, j+1) & \text{ef } A[i] \ge \\ Max \begin{cases} LISbigger(i, j+1), \\ 1 + LISbigger(j, j+1) \end{cases} & \text{annars} \end{cases}$

ef j > nPá kemur A[j]ef $A[j] \ge A[j]$ Parf að ákveða

hvort taka eigi A[j]með eða ekki

Útgáfa með kvikri bestun

Bætum við varðstakinu A[0] = -∞

- Finnum svo LISbigger(0, 1)
 - þ.e. lengstu hækkandi hlutrunu í A[1..n] með öll stök > -∞
- Skilgreinum tvívíða fylkið LISbigger[0..n, 1..n] sem geymir niðurstöður allra hlutverkefnanna
- Til þess að reikna LISbigger[i, j] þurfum við:
 - LISbigger[i, j+1] ← ef A[j] er ekki með í rununni
 - LISbigger[j, j+1] ← ef A[j] er með í rununni

Útreikningsröð

- Fylkið LISbigger hefur O(n²) stök
- Reiknum það dálk fyrir dálk:
 - Stök í dálki j reiknuð út frá dálki j+1
 - Gerum ráð fyrir að dálkur "n+1" sé allur 0
- Við reiknum aðeins gildi fyrir ofan hornalínu
 - Í stökum fyrir neðan er i > j, en það getur ekki gengið
 - Stakið A[i] er alltaf vinstra megin við A[j]
- Reiknum allan dálk j+1 áður en við byrjum á dálki j
 - Skiptir ekki máli í hvaða röð stök dálkanna eru reiknuð
 - Annað hvort frá i=0 til j-1 (niður) eða frá i=j-1 til 0 (upp)
- Hægt að reikna hvert stak á O(1) tíma

Reikniritiò FastLIS


```
FASTLIS(A[1..n]):
                                     ⟨⟨Add a sentinel⟩⟩ ←
  A[0] \leftarrow -\infty
                                                                          Setja varðstak fyrir framan
                                                                          fremsta stak í A
                                    ((Base cases))
  for i \leftarrow 0 to n
        LISbigger[i, n+1] \leftarrow 0
                                                                          Núllstilla dálk n+1 í LISbigger
  for j \leftarrow n down to 1
        for i \leftarrow 0 to j-1 (\langle \dots \text{ or whatever} \rangle)
              keep \leftarrow 1 + LISbigger[j, j + 1] \leftarrow
                                                                     Lengd ef A[j] er með í rununni
              skip \leftarrow LISbigger[i, j + 1]
                                                                    Lengd ef A[j] ekki með í rununni
              if A[i] \ge A[j]
                    LISbigger[i, j] \leftarrow skip
                                                                          A[i] > A[i], svo A[i] getur verið
              else
                                                                          með, en er það betra?
                    LISbigger[i, j] \leftarrow max\{keep, skip\}
  return LISbigger[0,1]
                                                                      Tími: O(n^2)
                                                                                          Minnispláss: O(n^2)
                                                                                           hægt að minnka í O(n)
```

Sýnidæmi

Gefin talnarunan [3, 1, 4, 1, 5], svo n = 5

Setjum *A*[0] sem -∞ (hér -100):

Fylkið *LISbigger*[0..5, 1..6]

Upphafsstillum aftasta dálk með 0-um

Reiknum svo dálk fyrir dálk fram töfluna

LISbigger[i, j]: lengd lengstu hækkandi hlutrunu í A[j..n] með öll stök stærri en A[i]

	0	1	2	3	4	5
Α	-100	4	1	5	9	2

LISbigger

	1	2	3	4	5	6
0						0
1	1					0
2	1	1				0
3	1	1	1			0
4	1	1	1	1		0
5	-	-	-	-	-	0

Sýnidæmi, frh.

Skoðum *LISbigger*[1,3]:

LIS í
$$A$$
[3..5] með öll stök > A [1] [5, 9, 2] 4

Sjáum að A[3] > A[1] (5 > 4), svo A[3] getur verið með í LIS í A[3..5] með öll stök > A[1]

Setjum sem max{ LISbigger[1,4], 1+LISbigger[3,4] }

 $LISbigger[1,3] = max\{1, 1+1\} = 2$

LISbigger[i, j]: lengd lengstu hækkandi hlutrunu í A[j..n] með öll stök stærri en A[i]

	0	1	2	3	4	5
A	-100	4	1	5	9	2

LISbigger

 1	2	3	4	5	6
		2	1	1	0
-		2	1	0	0
-	-		1	1	0
-	1	1	1)+	1 0	0
_	-	-	-	0	0
_	-	-	-	-	0

Æfingadæmi

• Reiknið *LISbigger*[2, 3]:

$$LIS$$
 í $A[__]$ með öll stök > $A[_]$

Getur fremsta stakið í hlutfylkinu verið með?

LISbigger[i, j]: lengd lengstu hækkandi hlutrunu í A[j..n] með öll stök stærri en A[i]

	0	1	2	3	4	5
Α	-100	4	1	5	9	2

LISbigger

	1	2	3	4	5	6
0			2	1	1	0
1	1		2	1	0	0
2	-	-		1	1	0
3	1	1	1	1	0	0
4	1	1	1	1	0	0
5	-	-	-	-	-	0

Sýnidæmi, frh.

Lokatafla:

LISbigger

	1	2	3	4	5	6
0	3	3	2	1	1	0
1	-	2	2	1	0	0
2	-	1	2	1	1	0
3	-	1	1	1	0	0
4	-	1	1	1	0	0
5	-	-	-	-	-	0

	0	1	2	3	4	5
A	-100	4	1	5	9	2

LISbigger[0,1] = 3, svo lengd lengstu hækkandi hlutrunu í *A* er 3

Sjáum líka að LISbigger[0,2] = 3, svo lengd lengstu hækkandi hlutrunu í A[2..5] er líka 3 það er [1, 5, 9]

Að finna hlutrununa

- Lokagildin í LISbigger gefa okkur aðeins lengd lengstu hækkandi hlutrunu, en ekki hlutrununa sjálfa
- Til að finna hana þurfum við að geyma upplýsingar um hverja ákvörðun sem er tekin
 - Við útreikning á LISbigger[0,1] er fundið max{ LISbigger[0,2], 1+LISbigger[1,2] }
 - Ef LISbigger[0,2] var valið þá er A[1] ekki í lengstu hlutrununni
 - Ef 1+LISbigger[1,2] var valið þá er A[1] í lengstu hlutrununni

■ Tími: *O*(*n*)

Hin útgáfan: LISfirst

LISfirst(i) er lengd lengstu hækkandi hlutrunu (LIS) í A[i..n] sem byrjar á A[i]

Endurkvæm skilgreining:

$$LISfirst(i) = 1 + \max\{LISfirst(j)|j > i \text{ og } A[j] > A[i]\}$$

- Bætum varðstaki framan við fremsta stakið í A
 - Setjum $A[0] = -\infty$
 - Útkoman er þá LISfirst(0)-1, því A[0] er talið með
- Hér hafa undirverkefnin aðeins vísinn i, svo okkur nægir einvíða fylkið LISfirst[0..n] til að geyma milliniðurstöður
 - Hvert stak LISfirst[i] byggir aðeins á stökum LISfirst[j], með j > i
 - Getum því reiknað út fylkið aftan frá

Reikniritið FastLIS2

Sýnidæmi

<i>i</i> = 5:	LISfirst[5] = 1		0	1	2	3	4	5
	Lisinsi(s) = 1	LISfirst				#2	1	1
i = 4:	LISfirst[4] = 1							
<i>j</i> = 5:	A[j] > A[i] ósatt							

$$i = 3$$
: $LISfirst[3] = 1$
 $j = 4$: $A[j] > A[i]$ satt og $1 + LISfirst[j] > LISfirst[i]$ satt $LISfirst[3] = 1 + LISfirst[4]$
 $j = 5$: $A[j] > A[i]$ ósatt Framhald í

Framhald í heimadæmum!

Samanburður á reiknritum

- FastLIS (LISbetter) notar O(n²) minni og O(n²) tíma
 - Hægt að minnka minnisnotkun í O(n), því við þurfum aðeins síðasta dálk í hvert sinn
 - Reiknar ~n²/2 gildi og hvert þeirra tekur O(1) tíma

- FastLIS2 (*LISfirst*) notar *O*(*n*) minni og *O*(*n*²) tíma
 - Reiknar hvert stak i með því að skoða öll stökin fyrir aftan (i+1, ..., n)

- Ekki hægt að segja að önnur aðferðin sé mikið betri en hin
 - Nota ólíka sýn á verkefnið
 - Fáum sömu tímaflækju

Fyrirlestraæfingar

- 1. Hvaða röð á n-staka inntaki gefur <u>lengstu</u> hækkandi hlutrunu? Hvaða röð gefur <u>stystu</u> hækkandi hlutrunu? Hvað giskið þið á að sé **vænt lengd** (*expected length*) á lengstu hækkandi hlutrunu í n-staka inntaki í slembiröð (allar n! umraðanir jafnlíklegar)?
- 2. Lát *A* vera [3, 1, 4]. Reiknið út tvívíða fylkið *LISbigger*[0..3, 1..4] samkvæmt kvika bestunarreikniritinu fyrir *LIS*.
- 3. [Aukaæfing, ef búin með hinar]: Eitt mögulegt gráðugt reiknirit fyrir *LIS* er að finna minnsta stakið í *A* og setja það sem fyrsta stakið í lengstu hækkandi hlutrunu. Finna síðan minnsta stakið sem kemur fyrir aftan það í *A*, setja það sem annað stakið, o.s.frv. Sýnið mótdæmi þar sem þetta reiknirit finnur ekki lengstu hækkandi hlutrunu.