

Supervised Learning Organization & Intro

Prof. Dr. Johannes Jurgovsky

Slides based on lectures of Prof. Dr. Markus Breunig & Prof. Dr. Jochen Schmidt

Organization

- Lecture
 - Wednesdays 9:45 11:15
 - Room: A5.07
- Exercises
 - Wednesdays 11:45 13:15
 - Room: B0.08a
 - Exercise sheets: Questions, Coding tasks (jupyter notebook)
- Certificate of achievement
 - Written exam
 - 90 min
 - End of semester

Machine Learning is hard...

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

© xkcd, https://xkcd.com/1425/, CC BY-NC 2.5

Chihuahua or Muffin?

© Twitter / Karen Zack / @teenybiscuit, https://twitter.com/teenybiscuit/status/707727863571582978

Content

- 1. Introduction
- 2. Model Formation & Terminology
- 3. Data and Preprocessing
- 4. Refresher: Probability & Descriptive Statistics
- 5. Supervised Learning Basics
- 6. Decision Tree Learning
- 7. Artificial Neural Networks
- 8. Ensemble Learning
- 9. Feature Selection

Objectives

- Understand and explain the basic concepts of supervised learning
- Understand formalized concepts and methods and be able to implement them in the form of algorithms
- Sensibly select, adapt, and apply relevant methods
- Being able to educate oneself

Unravelling the Buzzword Bingo

- Agents in Environments
- Perceive, Think & Act
- Knowledge Representation
- Planning
- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Pre-Training
- Architectures
- Representation Learning
- Data Cleaning, Analysis, Visualization
- Knowledge Extraction
- Goal: Create value from data

Study Curriculum

Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Deep Learning

Data Science

Computer Vision

Speech Recognition

APPLICATIONS

Quality Assurance

Example: fruit and vegetable analysis

[Dubey et al., 2015]

License-Plate Recognition

- electronic toll collection,
- law enforcement,
- speed-limit enforcement

© Apfel3748 / B. Seidl, CC BY-SA 3.0

Brenner toll station, © Peter Müller, CC BY-SA 3.0 DE

Optical Character Recognition (OCR)

- offline/online recognition
- Example: MNIST data base
 - Training:
 contains 60000 hand-written digits, labeled, 20x20 = 400 Pixel
 - Validation: 10000 digits

Classifier	Year	Error Rate
2-layer neural network, 300 hidden units	1998	4,7%
Support Vector Machine, Gaussian Kernel	1998	1,4%
product of stumps on Haar features (Boosting)	2009	0,87%
committee of 35 convolutional networks, 1-20-P-40-P-150-10	2012	0,23%
Human		2,5%

Source: http://yann.lecun.com/exdb/mnist/

Face Detection & Recognition

0.99

[Farfade et al., 2015]

[Jain & Learned-Miller, 2010]

Advanced Driver Assistance Systems

Traffic-Sign Recognition

Vehicle Recognition

Pedestrian Recognition

Images: Continental, A.D.C. GmbH, Lindau

Speech Processing

Speech Processing

Speech Processing

- The human voice a very accessible bio-signal
- We can learn biometrics of a speaker
 - Sex
 - Age

- Identity
- Health 🔲 🕽

- Emotional state (arousal, nervous, anxious, ...)

Speech Processing

- We can learn to transcribe speech (speech-to-text)
- We can learn to index speech (keyword search)
 - It's hard to recognize speech.
 - It's hard to wreck a nice beach.

Speech Processing

- We can learn to understand speech
 - Command and control
 - Information extraction

Literature

- J. Beyerer, M. Richter, M. Nagel: Pattern Recognition, de Gruyter, 2018
- Frochte, J.: Maschinelles Lernen: Grundlagen und Algorithmen in Python, Hanser, 2. Auflage 2019.
- Bishop, Ch.: Pattern Recognition and Machine Learning, Springer 2006.
- Mitchell, Tom. Machine Learning. 1st edition, McGraw-Hill, 1997. www.cs.cmu.edu/~tom/mlbook.html
- Duda, R.O., Hart, P.E.: Pattern Classification, John Wiley & Sons, 2. Auflage, 2000.
- Niemann, H.: Klassifikation von Mustern,
 2. überarbeitete Auflage, 2003. http://www5.informatik.uni-erlangen.de/fileadmin/Persons/NiemannHeinrich/klassifikation-von-mustern/m00links.html
- Han J., Kamber, M.: Data Mining.
 Morgan Kaufmann, 2011.
- Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, MIT Press, 2017. http://www.deeplearningbook.org/

Links & Resources

- scikit-learn
 - comprehensive ML library (Python)
 - https://scikit-learn.org
- Tensorflow/Keras
 - neural networks (Python)
 - https://www.tensorflow.org
- PyTorch
 - neural networks (Python)
 - https://pytorch.org/
- Python
 - https://www.python.org/
- Python IDE
 - PyCharm https://www.jetbrains.com/pycharm/
 - Spyder https://www.spyder-ide.org/
 - Jupyter-Notebook https://jupyter.org/
- Data sets
 - Kaggle https://www.kaggle.com/
 - UCI ML Repository https://archive.ics.uci.edu/ml/

References

- Kulin, Merima & Kazaz, Tarik & De Poorter, Eli & Moerman, Ingrid. (2021). A Survey on Machine Learning-Based Performance Improvement of Wireless Networks: PHY, MAC and Network Layer. Electronics.
- Yan, Ma & Liu, Kang & Guan, Zhibin & Xinkai, Xu & Qian, Xu & Bao, Hong. (2018). Background Augmentation Generative Adversarial Networks (BAGANs): Effective Data Generation Based on GAN-Augmented 3D Synthesizing. Symmetry.
- Dubey, Shiv Ram, and Anand Singh Jalal. "Application of image processing in fruit and vegetable analysis: A review." *Journal of Intelligent Systems* 24(4): 405-424, 2015.
- Farfade, Sachin Sudhakar, Mohammad J. Saberian, and Li-Jia Li. Multi-view face detection using deep convolutional neural networks. Proc. 5th ACM International Conference on Multimedia Retrieval. ACM, 2015.
- V. Jain and E. Learned-Miller. FDDB: A Benchmark for Face Detection in Unconstrained Settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst, 2010. http://vis-www.cs.umass.edu/fddb