

DGtal: Digital Geometry Tools and Algorithms Library module Géométrie 2D

Module géométrie 2D

Développement

- courbes : 4-connexes
- primitives : segment de droite discrète (DSS)
- décompositions : segmentation gloutonne

Participants

- (David Coeurjolly)
- (Jacques-Olivier Lachaud)
- Bertrand Kerautret
- Isabelle Sivignon
- Tristan Roussillon

Intérêts

Intérêt collectif

Fournir une première ébauche de code sur un cas d'école (segmentation d'une courbe en DSS)

Intérêt personnel

Me familiariser avec la bibliothèque et la programmation générique en implémentant un algorithme assez simple.

Exemple (greedy-dss-decomposition.cpp)

http://liris.cnrs.fr/dgtal/doc/nightly/

greedy-dss-decomposition.cpp

```
Point p1( 0. 0 ):
Point p2( 31, 31 ):
Domain domain( pl. p2 ):
DGtalBoard aBoard:
aBoard << SetMode( domain.styleName(), "Grid" )
<< domain
<< theContour:
//for each segment
DSS seament:
aBoard << SetMode( segment.styleName(), "BoundingBox" ):
string styleName = segment.styleName() + "/BoundingBox":
for ( Decomposition::ConstIterator i = theDecomposition.begin():
i != theDecomposition.end(): ++i )
    seament = *i:
    aBoard << CustomStyle( styleName,
         new CustomPenColor( DGtalBoard::Color::Blue ) )
    << segment: // draw each segment
aBoard.saveSVG("dgtalboard-5-greedy-dss.svg"):
aBoard.saveSVG("dgtalboard-5-greedy-dss.eps");
trace.endBlock():
```


GreedyDecomposition.ih

}

ArithmeticalDSS.ih

```
//remainder
Integer r = myA*aPoint[0] - myB*aPoint[1];
if ((r < myMu-1)||(r > myMu+myOmega))
  return false: //strongly exterior
else {
  //add aPoint to the DSS
  myL = aPoint;
 //leaning points update
 //weakly interior
  if (r == myMu) myUl = aPoint;
  if (r == myMu+myOmega-1) myLl = aPoint;
  //weakly exterior
  if (r == myMu-1) {
    mvUl = aPoint:
    myLf = myLl;
    mvA = mvUl[1] - mvUf[1]:
    myB = myUl[0] - myUf[0];
    myMu = myA*myUl[0] - myB*myUl[1];
    myOmega = TDSS::norm(myA.myB):
  } else if (r == myMu+myOmega) {
    myLl = aPoint:
    mvUf = mvUl:
    myA = myLl[1] - myLf[1];
    mvB = mvLl[0] - mvLf[0]:
    myMu = myA*myUl[0] - myB*myUl[1];
    myOmega = TDSS::norm(myA,myB);
  return true;
```

Choix algorithmiques

Algorithme de Debled et Reveillès (1995)

- caractéristiques a, b, μ, ω
- 4 points d'appui
- premier et dernier points
- pas de changement d'octant, mais une orientation

DGtal 6 / 9

Choix d'implémentation

Paramètres templates

- Entier (Domaine ?)
- Connexité {naïf, standard}

Méthodes principales

- Initialisation à partir de deux points (un seul point ?)
- ajout d'un point à l'avant
 - addFront
 - prends un point comme paramètre en entrée (un vecteur, un caractère ?)
 - retourne un booleen (V si DSS, F sinon)
- retrait d'un point à l'arrière
 - removeBack
 - pas de paramètre en entrée
 - retourne un booleen (V s'il reste plus de 2 points, F sinon)

Bilan

Définition des concepts (à discuter)

- courbe : liste (circulaire) de points (ordre)
 - fournit un itérateur sur les points (ou les vecteurs de déplacement entre deux points consécutifs ?)
- primitive : courbe vérifiant une propriété donnée
 - initialisation (un point plutôt que deux pour que la propriété soit toujours vérifiée)
 - ajout à l'avant (un point, un vecteur déplacement ?), retourne V si la propriété reste vraie (et le point est ajouté), F sinon (et le point n'est pas ajouté pour que la propriété reste vraie)
 - ...
- décomposition : liste (circulaire) de primitives recouvrant une courbe (ordre)
 - fournit un itérateur sur les primitives

Perspectives

Regarder ce qu'on a fait

- Améliorations de FreemanChain, ArithmeticalDSS, GreedySegmentation (si besoin)
- Ecriture des concepts de courbe, primitive et décomposition (si on est d'accord).

Aller plus loin...

- D'autres courbes (8-connexes ?)
 - discrétisation de courbes euclidiennes
 - extraction du bord de régions connexes
- D'autres primitives (il y a le choix!)
- D'autres décompositions (couverture)

DGtal 9/9