

III 해커스HRD

1 학습목표

- ◆ 그룹함수의 종류와 사용법에 대해서 알아본다.
- ◆ 윈도우함수의 종류와 사용법에 대해서 알아본다.

그룹함수 개념 및 종류

특정 칼럼을 기준으로 그룹화하여 그룹별로 값의 집계를 계산하여 출력하는 함수

- ◆ ROLLUP : 부분집계를 생성하는 함수
- ◆ CUBE : 결합 가능한 모든 값에 대해서 다차원 집계를 생성하는 함수
- ◆ GROUPING SETS : 인수들에 대해 개별 집계를 생성하는 함수

부분집계를 생성하는 함수. 그룹 칼럼 수가 N이면, N+1 의 부분합계가 생성됨

GROUP BY ROLLUP (A , B)

1:

2:

③ : 전체

부분집계를 생성하는 함수. 그룹 칼럼 수가 N이면, N+1 의 부분합계가 생성됨

◆ GROUP BY ROLLUP(A, B)

GROUP BY A, B

GROUP BY A

부분집계를 생성하는 함수. 그룹 칼럼 수가 N이면, N+1 의 부분합계가 생성됨

◆ GROUP BY ROLLUP(A, B, C)

GROUP BY A, B, C

GROUP BY A, B

GROUP BY A

부분집계를 생성하는 함수. 그룹 칼럼 수가 N이면, N+1 의 부분집계가 생성됨

◆ GROUP BY ROLLUP(A, (B, C))

GROUP BY A, (B, C) (= GROUP BY A,B,C 와 동일)

GROUP BY A

결합 가능한 모든 값에 대해 다차원 집계 생성. 2^N의 부분집계가 생성됨.

결합 가능한 모든 값에 대해 다차원 집계 생성. 2^N의 부분집계가 생성됨.

◆ GROUP BY CUBE (A, B)

=

GROUP BY A

+

GROUP BY B

+

GROUP BY A,B

+

결합 가능한 모든 값에 대해 다차원 집계 생성. 2^N의 부분집계가 생성됨.

◆ GROUP BY CUBE (A, B, C)

```
GROUP BY A + GROUP BY B + GROUP BY C

+
GROUP BY A,B + GROUP BY A,C + GROUP BY B,C

+
GROUP BY A,B,C

+
```


결합 가능한 모든 값에 대해 다차원 집계 생성. 2^N의 부분집계가 생성됨.

◆ GROUP BY CUBE (A, (B, C))

=

GROUP BY A

+

GROUP BY B,C

+

GROUP BY A,B,C

+

인수들에 대해 개별 집계를 생성하는 함수

GROUP BY GROUPING SETS (A, B)

2:

인수들에 대해 개별 집계를 생성하는 함수

◆ GROUP BY GROUPING SETS (A, B)

=

GROUP BY A

+

GROUP BY B

인수들에 대해 개별 집계를 생성하는 함수

◆ GROUP BY GROUPING SETS ((A, B))

=

GROUP BY A,B

인수들에 대해 개별 집계를 생성하는 함수

◆ GROUP BY GROUPING SETS ((A, B), C)

=

GROUP BY A,B

+

GROUP BY C

인수들에 대해 개별 집계를 생성하는 함수

◆ GROUP BY GROUPING SETS ((A, B), (A,C))

=

GROUP BY A,B

+

GROUP BY A,C

윈도우함수 개념

행과 행간의 관계를 정의하거나 행과 행간을 비교, 연산하여 각 행별로 단일 결과값을 출력하는 함수

1 윈도우함수 작성

행과 행간의 관계를 정의하거나 행과 행간을 비교, 연산하여 각 행별로 단일 결과값을 출력하는 함수

WINDOW_FUNCTION (ARGUMENTS)

OVER ([PARTITION BY 컬럼][ORDER BY 컬럼][WINDOWING 절])

- ◆ WINDOW_FUNCTION : 윈도우 함수
- ◆ ARGUMENTS(인수): 함수에 따라 0 ~ N개 인수가 지정
- ◆ PARTITION BY 칼럼 : 전체 집합을 특정 기준(칼럼)에 의해 소그룹 분할
- ◆ ORDER BY 절 : 순위 지정할 특정 기준을 명시
- ◆ WINDOWING 절 : 함수 대상이 되는 기준 행의 범위 지정

2 순위 관련 윈도우함수

- ◆ RANK : 순위 구하는 함수. 동일한 값에 대해서는 동일한 순위 부여.
- ◆ DENSE_RANK : 순위 구하는 함수. 동일한 값에 대해 동일순위 부여하나 동일한 순위를 하나의 건수로 취급하는 것이 차이
- ◆ ROW_NUMBER : 순위 구하는 함수. 동일한 값에 대해서도 고유한 순위 부여.

SCORE	RANK	DENSE_RANK	ROW_NUMBER
100	1	1	1
90	2	2	2
90	2	2	3
80	4	3	4

3 집계 관련 윈도우함수

- ◆ SUM : 데이터를 파티션별로 나눠 합계를 구할 수 있음
- ◆ COUNT : 데이터를 파티션별로 나눠 개수를 구할 수 있음
- ◆ MAX / MIN : 데이터를 파티션별로 나눠 최대/최소를 구할 수 있음
- ◆ AVG : 데이터를 파티션별로 나눠 평균을 구할 수 있음

GRP	SCORE	SUM	COUNT	MAX	MIN	AVG
А	100	285	3	100	90	95
Α	95	285	3	100	90	95
Α	90	285	3	100	90	95
В	95	175	2	95	80	87.5
В	80	175	2	95	80	87.5

※ 윈도우함수(SCORE) OVER(PARTITION BY GRP)로 작성했을 경우,

4 행순서 관련 윈도우함수

◆ FIRST_VALUE : 파티션별 처음 값

◆ LAST_VALUE : 파티션별 마지막 값

◆ LAG : 파티션별 이전 몇 번째 행의 값

◆ LEAD : 파티션별 이후 몇 번째 행의 값

GRP	NAME	SCORE	FIRST_VALUE	LAST_VALUE	LAG	LEAD
А	박수지	100	박수지	이정수	NULL	95
А	김민지	95	박수지	이정수	100	90
А	이정수	90	박수지	이정수	95	NULL
В	신철진	95	신철진	최진구	NULL	80
В	최진구	80	신철진	최진구	95	NULL

[※] 윈도우함수(SCORE) OVER(PARTITION BY GRP ORDER BY SCORE DESC)로 작성했을 경우,

4 비율 관련 윈도우함수

- ◆ RATIO_TO_REPORT : 파티션 내 합계에 대한 행별 값의 백분율 비중값
- ◆ PERCENT_RANK : 파티션별 윈도우에서 처음 값을 0, 마지막 값을 1로 하여 행의 순서별 백분율
- ◆ CUME_DIST : 현재 행보다 작거나 같은 건수에 대한 누적백분율
- ◆ NTILE : 파티션별 전체 건수를 인수 값으로 N등분

GRP	NAME	SALARY	RATIO_TO_REPORT	PERCENT_RANK	CUME_DIST	NTILE
А	박수지	300	0.3	0	0.3	1
А	김민지	300	0.3	0.5	0.6	1
А	이정수	400	0.4	1	1	2
В	신철진	500	0.5	0	0.5	1
В	최진구	500	0.5	1	1	2

[※] 윈도우함수() OVER(PARTITION BY GRP ORDER BY SALARY)로 작성했을 경우, NTILE(2)로 설정했을 경우.

1 오늘의 학습 요약

- ◆ 그룹함수란 특정 칼럼을 기준으로 그룹화하여 그룹별로 값의 집계를 계산하여 출력하는 함수이다. (ROLLUP, CUBE, GROUPING SETS 함수)
- ◆ 윈도우함수란 행과 행간의 관계를 정의하거나 행과 행간을 비교, 연산하여 각 행별로 단일 결과값을 출력하는 함수이다.

WINDOW_FUNCTION (ARGUMENTS) OVER ([PARTITION BY 컬럼] [ORDER BY 컬럼] [WINDOWING 절]) 로 표기하며,

순위, 집계, 행순서 관련 함수가 있다.

NEXT>>

13 절차형 SQL(Procedure, 사용자정의함수, Trigger)