Energy conversion I

Lecture 23:

Topic 6: DC Machines (S. Chapman ch. 8 &9)

- A Simple Rotating Loop between Curved Pole Faces.
- Structure of DC machines
- Commutation Problems in Real Machine.
- The Internal Voltage and Torque Equations of Real DC Machine.
- The Equivalent Circuit of a DC Motor.
- Power Flow and Losses in DC Machines.
- Separately Excited, Shunt, Permanent-Magnet and Series DC
 Motors
- DC Motor Starter
- Introduction to DC Generators

Power Flow and Losses in DC Machines

Origin of losses:

Efficiency =
$$\frac{P_{\text{out}}}{P_{\text{in}}} = \frac{P_{\text{in}} - P_{\text{loss}}}{P_{\text{in}}} \times 100\%$$

Electrical or Copper Losses (RI² Loss)

in both rotor and stator

Armature loss: $P_A = I_A^2 R_A$

Field loss: $P_F = I_F^2 R_F$

Brush Losses : $P_{BD} = V_{BD} \times I_A$

Core Losses: Hysteresis and Eddy current loss

Mechanical Losses: Friction and windage loss

Stray Loss

Power Flow and Losses in DC Machines

Generators

EE Course No: 25741 Energy Conversion I Sharif University of Technology

modifications based on machine connections

Example:

A DC machine (12 kW, 100V, 1000 rpm, Ra = 0.1 Ω) is connected to 100 V. At no-load condition, the motor runs at 1000 rpm and the armature takes 6 amperes while the field current is 0.99 amperes.

when rated current flows in the armature, find:

A: the speed

B: electromagnetic torque

C: efficiency

Solution:

Speed can be calculated comparing induced voltage in two cases (noload and rated current.

$$\mathsf{E}_{\mathsf{a}} = \mathsf{V}_{\mathsf{t}} - \mathsf{R}_{\mathsf{a}} \times \mathsf{I}_{\mathsf{a}}$$

$$E_{a,nl} = 100 - 0.1 \times 6 = 99.4 \text{ V}$$

$$Ea_{fl} = 100 - 0.1 \times 120 = 88 \text{ V}$$

$$\begin{split} \frac{E_{a,nl}}{E_{a,fl}} &= \frac{K \phi \omega_{nl}}{K \phi \omega_{fl}} = \frac{\omega_{nl}}{\omega_{fl}} = \frac{n_{nl}}{n_{fl}} \Rightarrow n_{fl} = \frac{E_{a,fl}}{E_{a,nl}} n_{nl} \\ n_{fl} &= \frac{Ea_{fl}}{Ea_{nl}} n_{nl} \Rightarrow n_{fl} = \frac{88}{99.4} 1000 = 885.3 \text{ rpm} \end{split}$$

Torque can be calculated using output power

$$P_{conv} = E_a \times I_a = T_{ind}\omega_m$$
 $T_{ind} = E_a \times I_a / \omega_m = 88 \times 120 / (2 \pi \times 885.4 / 60)$
 $T_{ind} = 113.9 \text{ N.m}$

To calculate the efficiency, rotational loss should be calculated. This one can be calculated based on no-load behavior

$$P_{\text{rotat}} = E_{\text{a,nl}} \times I_{\text{a,nl}} = 99.4 \times 6 = 596.4 \text{ W}$$
 (assumed to be constant)
 $P_{\text{out}} = P_{\text{conv}} - P_{\text{rotat}} = 88 \times 120 - 596.4 = 9963.6 \text{ W}$

$$\eta$$
= Pout / Pin = 9963.6 / [(120 +0.99) × 100)] = 82.35%

Separately Excited DC Motors

Think about effect of different parameters on torque speed characteristics!

EE Course No: 25741 Energy Conversion I Sharif University of Technology

DC Shunt Motors

Field voltage is the same as Armature voltage!

$$Va - R_a I_a = E_A$$

 $I_f = V_f / R_f$
 $\bullet V_t = V_f = V_a$

$$\bullet I_t = I_a + I_f$$

$$\bullet T_A = K \phi I_a$$

$$\bullet E_A = K \phi \omega$$

$$\omega = \frac{V_a}{K\phi} - \frac{R_a}{(K\phi)^2} T_A$$

Think about effect of different parameters on torque speed characteristics.

How V₁ can be changed?

How it affects the characteristics?

Is it a good choice for a variable speed motor?

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

Example:

A 50HP, 250V, 1200 r/min DC shunt motor with compensating windings has an armature resistance (including the brushes, compensating windings, and interpoles) of 0.06 Ω . Its field circuit has a total resistance of 50 Ω , which produces a no-load speed of 1200r/min.

Find the speed of this motor when its input current is:

A: 100A.

B: 200A.

C: 300A.

Solution:

@No-load, $I_a = 0$ and therefore $V_t = E_a = 250 \text{ V}$ If field current is constant (If = 250 /50 = 5 A), then E_a is proportional to n:

$$\frac{n}{n_{nl}} = \frac{E_a}{E_{anl}}$$

$$E_a = V_t - R_a I_a = \begin{cases} 250 - 0.06 \times (100 - 5) = 244.3 \\ 250 - 0.06 \times (200 - 5) = 238.3 \\ 250 - 0.06 \times (300 - 5) = 232.3 \end{cases}$$

$$n = n_{nl} \times \frac{E_a}{E_{a,nl}} = \begin{cases} 1200 \times \frac{244.3}{250} = 1173 \\ 1200 \times \frac{238.3}{250} = 1144 & \text{rpm} \\ 1200 \times \frac{232.3}{250} = 1115 \end{cases}$$

Speed Control of DC SE/Shunt Motors

For speed control, torque-speed characteristics should be modified

Parameters affecting: V_a , ϕ (/I_f), R_a

 $\omega = \frac{V_a}{K\phi} - \frac{R_a}{(K\phi)^2} T_A$

A: V_a,

Needs controlled DC power supply

Changes no-load speed (if I_f can be controlled to be constant)

Changes the slop while no load speed is almost constant

(neglecting saturation) (Compare it with Separately excited motors)

Speed Control of DC SE/Shunt Motors

B: ϕ (/ If),

Can be controlled adding a rheostat

 $\omega = \frac{V_a}{K\phi} - \frac{R_a}{(K\phi)^2} T_A$

Decreasing flux increases no-load speed while increasing the slope (increasing the speed in normal operating point)

for the same torque, increases I_a (Why?, What is the problem?

What happens if field is open?)

C: Ra

Can be increased using a rheostat

Increases the slop

Decreases the efficiency

Not in use in recent systems

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Wide Range Speed Control of DC Shunt Motors

Less than rated speed: Armature voltage control

Constant stator field, maximum current

maximum torque

power increases with speed

More than rated speed: Field current control, Constant armature voltage

maximum current maximum torque

Energy Conversion I

maximum power

Sharif University of **Technology**

12

Permanent Magnets DC Motors

Stator Magnetic field is generated by Permanent Magnets

No power loss in the field

High efficiency

Smaller magnetic field

Higher armature current for the same torque!!

No control on the field

Speed control using armature voltage

Speed less than rated

