НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРА**Ї**НИ

"КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"
ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ
Кафедра обчислювальної техніки

КУРСОВА РОБОТА

з дисципліні "Комп'ютерна логіка"

Виконав Мазан Ян Владиславович Факультет ЮТ, Група IB-71 Залікова книжка № IB-7109

Допущений до захисту _____

(підпис керівника)

Опис альбому

	№ рядка	Формат		Позна	ченн	ıя	Найменува	ДННЯ	Кількість	Прим ітка
*	1						<u>Документація</u>	загальна		
	2									
	3						розроблена	заново		
	4									
	5	A4	IA/	7Ц.007	109.0	01	Опис аль		1	
	6									
	7	A4	IA/	7Ц.007	109.0	02 T3	Технічне за	вдання	5	
	8									
	9	A2	IA	ЛЦ.007	109.0	03 E2	Керуючий ав	Втомат	0	
	10						Схема елекі	трична		
	11						функціоно	льна		
	12									
	13	A4	IA/	7Ц.007	109.0	04 ПЗ	Пояснювальна	записка	9	
	14									
	15									
	16									
	17									
	18									
	19									
	20									
	21									
	22									
	23									
	24									
	25									
	26									
							<i>IAЛЦ.00710</i>	9.001 DA		
3м.	Арк	_	докум.	Підпис	Дата		•			
Розро			кний О.О иний О.С			_	-	Лит. Аря		Аркушів 1
Перев Рецен		ιισεπιι	UHUU U.L			Un	ис альбому	1		1
Н. Кон								НТУУ «Р	〈ΠI»(ΦΙΟΤ
Затв		I W ⊃6	Siu R I			ı				

Технічне завдання

3міст

1.	Bcmyn	2
	Призначення розроблюваного об'Єкта	
	Вхідні дані для розробки	
	Склад пристроїв	
5.	Етапи і терміни проектування	4
6.	Перелік текстової і графічної докиментації	5

3м.	Арк	№ докум.	Підпис	Дата	IAЛЦ. 0071U	09.002	T3	
Розро	б.	Мазан Я. В.			П 8	Лит.	Арк	Аркушів
Перев	вір.				Пояснювальна		1	20
Реценз. Н. Контр.					20DUCKO	НТУУ «КПІ» ФІОТ Група ІВ-71		
					<i>записка</i>			
Затв.		Жабін В.І				'	рупап	5-/1

1. Bcmyn

У даній курсовій роботі необхідно виконати синтез автомата і комбінаційних схем. Розробка виконується на підставі Технічного завдання ІАЛЦ.001709.004 ТЗ.

2. Призначення розроблювального об'Єкта

У курсовій роботі необхідно виконати синтез автомата Мілі. Керуючий автомат – електрична схема, що виконує відображення вхідного сигналу у вихідний по заданому алгоритму. Практичне застосування даного автомата можливе в області обчислювальної техніки, для керування сигналами в пристроях.

3. Вихідні дані для розробки;

Номер залікової книжки – 7109 = 11011110001012. h_9 = 1; h_8 = 1; h_7 = 1; h_6 = 0; h_5 = 0; h_4 = 0; h_3 = 1; h_2 = 0; h_1 = 1;

Табляця істинності:

X4	X 3	X 2	X 1	f ₁	f ₂	f ₃	f4
0	0	0	0	1	1	1	0
0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	1
0	0	1	1	0	0	0	0
0	1	0	0	ı	0	1	0
0	1	0	1	0	0	0	0
0	1	1	0	1	ı	ı	0
0	1	1	1	ı	ı	1	0
1	0	0	0	1	0	1	1
1	0	0	1	0	0	1	1
1	0	1	0	0	0	1	1
1	0	1	1	1	0	0	0

Зм.	Арк.	№ документа	Підпис	Дата

	1	1	0	0	1	-	1	1
	1	1	0	1	0	0	0	1
Γ	1	1	1	0	1	0	0	1
	1	1	1	1	1	1	1	1

Синтез цифрового автомата з пам'яттю:

h ₈	h ₄ h ₂ 0 0		Порядок з'Єднання фрагментів		
1			3, 1, 4		
h ₈	h ₇	h₃	Послідовність логічних умов		
1	1	1	$\overline{x_1}, \overline{x_2}, \overline{x_1}$		
h ₉	h ₄	h₁	Послідовність вихідних сигналів		
1	0	1	$y_1, y_3, y_2, y_4, y_2, y_1$		
h ₆	h ₂		Сигнал, тривалістю 2†		
0	C)	\mathcal{Y}_1		
h ₉	h	4	Tun mpuzepiß		
1	C)	JK		
	h ₁		Tun автомата		
	1		Мілі		
hз	h ₂ h ₁		Логічні елементи		
1	1 0 1		21-НЕ, 4АБО		

Необхідно виконати сумісну мінімізацію функцій f_1 , f_2 , f_3 . Отримати операторні представлення для реалізації системи функцій на програмувальних логічних матрицях.

Функцію f_4 необхідно представити в канонічних формах алгебри Буля, Жегалкіна, Пірса та Шефера. Визначити належність даної функції до п'яти передповних класів. Виконати мінімізацію функції методами:

- невизначених коефіціЄнтів;
- Квайна (Квайна-Мак-Класкі);

					IA ALL 007400 002 T2	Арк.
					IAЛЦ.007109.002 T3	_
Зм.	Арк.	№ документа	Підпис	Дата		3

- діаграм Вейча.

склад пристроїв, в якому приводиться перелік основних складових частин проектованого пристрою;

4. Склад пристроїв

Керуючий автомат

Керуючий автомат склада€ться з комбінаційної схеми і пам'яті на тригерах. Тип тригерів і елементний базис задані в технічному завданні.

Програмувальна логічна матриця

ПЛМ складається із двох (кон'юктивної і диз'юнктивної) матриць, де виходи першої приєднуються на входи другої і дозволяють реалізувати комбінаційні схеми в базисі {I/ABO, I/ABO-HE}.

5. Етапи і терміни проектування

- 1. Синтез автомата
 - 1) Побудова графічної схеми алгоритму;
 - 2) Розмітка станів автомата;
 - 3) Побудова графу автомата;
 - 4) Побудова таблиці переходів;
 - 5) Побудова структурної таблиці автомата;
- 6) Синтез комбінаційних схем для функцій збудження тригерів та вихідних сигналів;
 - 7) Побудова схеми автомата в заданому базисі;
 - 2. Синтез комбінаційних схем

1) Представлення функції f4 в канонічних формах алгебр Буля,

Шефера, Пірса та Жегалкіна;

		<u> ф</u>				
					IA ALL 007400 002 T2	Арк.
					<i>IAЛЦ.007109.002 ТЗ</i>	,
Зм.	Арк.	№ документа	Підпис	Дата		4

- 2) Визначення належності функції f4 до п'яти передповних класів;
 - 3) Мінімізація функції f4;
 - 4) Спільна мінімізація функцій f1, f2, f3;
 - 5) Одержання операторних форм для реалізації на ПЛМ.
 - 6. Перелік текстової і графічної документації
 - 1. Титульний лист
 - 2. Аркуш з написом «Опис альбому»
 - 3. Опис альбому
 - 4. Аркуш з написом «Технічне завдання»
 - 5. Технічне завдання
 - 6. Аркуш з написом «Схема електрична функціональна»
 - 7. Керуючий автомат. Схема електрична функціональна
 - 8. Аркуш з написом «Пояснювальна записка»
 - 9. Пояснювальна записка

Зм.	Арк.	№ документа	Підпис	Дата

Керуючий автомат. Схема електрична функціональна

Пояснювальна записка

Зміст

1	l. Bcmyn	2
2	2. Синтез автомата	2
3	3. Синтез комбінаційних схем	2
	3.1 Bcmyn	2
	3.2 Представлення f4 в канонічних формах різних алгебр	2
	3.2.1 Представлення функції $f_{\scriptscriptstyle 4}$ в канонічній формі алгебри Буля	2
	3.2.2 Представлення функції f_4 в канонічній формі алге δ ри Шефера	2
	3.2.3 Представлення функції $f_{\scriptscriptstyle 4}$ в канонічній формі алгебри Пірса	3
	3.2.4 Представлення функції f_4 в канонічній формі алгебри Жегалкіна	3
	3.2.5 Визначення належності функції $\mathbf{f}_{\scriptscriptstyle 4}$ до п'яти чудових класів	4
	3.2.6 Мінімізація функці ї ƒ 4	4
	3.3 Спільна мінімізація функцій f_1 , f_2 , f_3	6
	3.3.1. Мінімізація ситеми функцій методом Квайна-Макласкі	6
	3.3.2 Запис мінімізованих функцій у операторному представленні І/АБО.	8
	3.3.3 Реалізація f ₁ , f ₂ , f ₃ на ПЛМ	8
4	+. Висновок	9
5	5. Список використаної літератури	9

Зм.	Арк.	№ документа	Підпис	Дата

1. Bcmyn

Курсова робота виконана за номером технічного завдання 7109 (101111000101₂) і складаЄться з двох частин: синтез автомата та синтез комбінаційних схем. Вихідними даними при синтезі автомата € заданий алгоритм, тип тригера та елементна база. Вихідними даними при синтезі комбінаційних схем € таблиця істиності та елементна база.

- 2. Синтез автомата
- 3. Синтез комбінаційних схем
- 3.1 Bcmyn

На основі Технічного завдання «ІА/ІЦ.007109.004 ТЗ» виконуємо синтез комбінаційних схем.

Умова курсової роботи вимага ϵ представлення функції f_4 в канонічних формах алгебри Буля, Жегалкіна, Пірса і Шефера.

- 3.2. Представлення f_4 в канонічних формах різних алгебр
- 3.2.1. Представлення функції f_4 в канонічній формі алгебри Буля

Алгебра Буля

$$\begin{split} f_4 &= \overline{x_4} \ \overline{x_3} \ \overline{x_2} \ x_1 \lor \overline{x_4} \ \overline{x_3} x_2 \overline{x_1} \lor x_4 \overline{x_3} \ \overline{x_2} \ \overline{x_1} \lor x_4 \overline{x_3} \ \overline{x_2} x_1 \lor x_4 \overline{x_3} x_2 \overline{x_1} \lor x_4 x_3 \overline{x_2} \ \overline{x_1} \lor x_4 x_3 \overline{x_2} x_1 \lor x_4 \overline{x_3} x_2 \lor x_1) \end{split}$$

$$(x_4 \lor \overline{x_3} \lor \overline{x_2} \lor \overline{x_1}) (x_4 \lor \overline{x_3} \lor \overline{x_2} \lor \overline{x_1}) \cdot (x_4 \lor \overline{x_3} \lor \overline{x_1}) \cdot (x_4 \lor \overline{x_3} \lor \overline{x_1}) \cdot (x_4 \lor \overline{x_3} \lor \overline{x_1}) \cdot (x_4 \lor \overline{x_1} \lor \overline{x_1} \lor \overline{x_1}) \cdot (x_4 \lor \overline{x_1} \lor \overline{x_1} \lor \overline{x_1}) \cdot (x_4$$

3.2.2. Представлення функції f_4 в канонічній формі алгебри Шефера

$$f_{4} = (\overline{x_{4}}/\overline{x_{3}}/\overline{x_{2}}/x_{1})/(\overline{x_{4}}/\overline{x_{3}}/x_{2}/\overline{x_{1}})/(x_{4}/\overline{x_{3}}/\overline{x_{2}}/\overline{x_{1}})/(x_{4}/\overline{x_{3}}/\overline{x_{2}}/x_{1})/(x_{4}/\overline{x_{3}}/\overline{x_{2}}/x_{1})/(x_{4}\overline{x_{3}}\overline{x_{2}}\overline{x_{1}})/(x_{4}x_{3}\overline{x_{2}}\overline{x_{1}})/(x_{4}x_{3}/\overline{x_{2}}/\overline{x_{1}})/(x_{4}x_$$

Зм.	Арк.	№ документа	Підпис	Дата

IA/IЦ.007109.004 П3

Перетворення в канонічну форму алгебри Шефера:

$$f_{4} = \overline{x_{4}} \, \overline{x_{3}} \, \overline{x_{2}} \, x_{1} \vee \overline{x_{4}} \, \overline{x_{3}} x_{2} \overline{x_{1}} \vee x_{4} \overline{x_{3}} \, \overline{x_{2}} \, \overline{x_{1}} \vee x_{4} \overline{x_{3}} \, \overline{x_{2}} x_{1} \vee x_{4} \overline{x_{3}} \, \overline{x_{2}} x_{1} \vee x_{4} x_{3} \overline{x_{2}} \overline{x_{1}} \vee x_{4} \overline{x_{3}} \overline{x_{2}} \overline{$$

3.2.3. Представлення функці $\ddot{\mathbf{I}}$ f_4 в канонічній формі алгебри Пірса:

Απεεδρα Πίρςα

$$f_{4} = \begin{pmatrix} x_{4} \downarrow x_{3} \downarrow x_{2} \downarrow x_{1} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow x_{3} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow x_{2} \downarrow x_{1} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow x_{2} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{3}} \downarrow \overline{x_{2}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}} \end{pmatrix} \downarrow \begin{pmatrix} x_{4} \downarrow \overline{x_{1}} \downarrow \overline{x_{1}}$$

Перетворення в канонічну форму алгебри Пірса:

$$f_{4} = (x_{4} \lor x_{3} \lor x_{2} \lor x_{1}) (x_{4} \lor x_{3} \lor \overline{x_{2}} \lor \overline{x_{1}}) (x_{4} \lor \overline{x_{3}} \lor x_{2} \lor x_{1}) (x_{4} \lor \overline{x_{3}} \lor x_{2} \lor \overline{x_{1}}) (x_{4} \lor \overline{x_{3}} \lor x_{2} \lor \overline{x_{1}}) \cdot \underbrace{(x_{4} \lor \overline{x_{3}} \lor \overline{x_{2}} \lor \overline{x_{1}}) \lor (\overline{x_{4}} \lor x_{3} \lor \overline{x_{2}} \lor \overline{x_{1}}) \lor (\overline{x_{4}} \lor \overline{x_{3}} \lor \overline{x_{2}} \lor \overline{x_{1}}) \lor (\overline{x_{4}} \lor \overline{x_{$$

3.2.4. Представлення функції f_4 в канонічній формі алге δ ри Жегалкіна:

Алгебра Жегалкіна

$$f_4 = x_2 x_1 \oplus x_3 x_1 \oplus x_3 x_2 \oplus x_2 \oplus x_4 x_3 x_1 \oplus x_4 x_1 \oplus x_4 x_2 x_1 \oplus x_4 x_2$$

Перетворення в канонічну форму алгебри Жегалкіна:

$$\begin{split} f_4 &= \overline{x_4} \ \overline{x_3} \ \overline{x_2} \ x_1 \lor \overline{x_4} \ \overline{x_3} x_2 \overline{x_1} \lor x_4 \overline{x_3} \ \overline{x_2} \ \overline{x_1} \lor x_4 \overline{x_3} \ \overline{x_2} x_1 \lor x_4 \overline{x_3} x_2 \overline{x_1} \lor x_4 x_3 \overline{x_2} \ \overline{x_1} \lor x_4 x_3 \overline{x_2} x_1 \lor x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_1 \lor (x_4 \oplus 1) \ (x_3 \oplus 1) \ x_2 \ (x_1 \oplus 1) \lor x_4 x_3 (x_2 \oplus 1) \ (x_1 \oplus 1) \lor x_4 x_3 x_2 (x_1 \oplus 1) \lor x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \lor x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \lor x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1) \ (x_2 \oplus 1) \ x_4 x_3 x_2 x_1 = (x_4 \oplus 1) \ (x_3 \oplus 1)$$

Зм.	Арк.	№ документа	Підпис	Дата

Перетворення конституент у формі до конституент першого рангу:

$$(x_{4} \oplus 1)(x_{3} \oplus 1)(x_{2} \oplus 1)x_{1} = (x_{4}x_{3} \oplus x_{4} \cdot 1 \oplus x_{3} \cdot 1 \oplus 1)(x_{2}x_{1} \oplus x_{1} \cdot 1) = (x_{4}x_{3} \oplus x_{4} \oplus x_{3} \oplus 1) \cdot (x_{2}x_{1} \oplus x_{1}) = (x_{4}x_{3} \oplus x_{4} \otimes x_{4} \oplus x_{3} \otimes x_{4} \otimes$$

$$(x_4 \oplus 1)(x_3 \oplus 1)x_2(x_1 \oplus 1) = ((x_4 \oplus 1)(x_3 \oplus 1))(x_2(x_1 \oplus 1)) = (x_4x_3 \oplus x_4 \oplus x_3 \oplus 1)(x_2x_1 \oplus x_2) = x_4x_3x_2x_1 \oplus x_4x_3x_2 \oplus x_4x_2x_1 \oplus x_4x_2 \oplus x_3x_2x_1 \oplus x_3x_2 \oplus x_2$$

$$\begin{array}{l} x_{4}\left(x_{3}\oplus1\right)\left(x_{2}\oplus1\right)\left(x_{1}\oplus1\right)=\left(x_{4}x_{3}\oplus x_{4}\right)\left(x_{2}x_{1}\oplus x_{2}\oplus x_{1}\oplus1\right)=x_{4}x_{3}x_{2}x_{1}\oplus x_{4}x_{3}x_{2}\oplus x_{4}x_{3}x_{1}\oplus x_{2}\otimes1\right)\\ \oplus\ x_{4}x_{3}\oplus\ x_{4}x_{2}x_{1}\oplus\ x_{4}x_{2}\oplus\ x_{4}x_{1}\oplus\ x_{1}\otimes1\end{array}$$

$$x_4 \, (x_3 \oplus 1) \, (x_2 \oplus 1) \, x_1 = (x_4 x_3 \oplus x_4) \, (x_2 x_1 \oplus x_1) = x_4 x_3 x_2 x_1 \oplus x_4 x_3 x_1 \oplus x_4 x_2 x_1 \oplus x_4 x_1$$

$$x_4 \, (x_3 \oplus 1) \, x_2 \, (x_1 \oplus 1) = (x_4 x_3 \oplus x_4) \, (x_2 x_1 \oplus x_2) = x_4 x_3 x_2 x_1 \oplus x_4 x_3 x_2 \oplus x_4 x_2 x_1 \oplus x_4 x_2$$

$$\begin{array}{l} x_{4}x_{3}\left(x_{2}\oplus1\right)\left(x_{1}\oplus1\right)=\left(x_{4}\left(x_{2}\oplus1\right)\right)\left(x_{3}\left(x_{1}\oplus1\right)\right)=\left(x_{4}x_{2}\oplus x_{4}\right)\left(x_{3}x_{1}\oplus x_{3}\right)=x_{4}x_{3}x_{2}x_{1}\oplus2x_{2}+x_{3}x_{2}\otimes1x_{3}\otimes1x_{4}\otimes1x_{5}\otimes$$

$$x_4 x_3 (x_2 \oplus 1) x_1 = x_4 x_3 (x_2 x_1 \oplus x_1) = x_4 x_3 x_2 x_1 \oplus x_4 x_3 x_1$$

Підстановка отриманих конституент у форму:

 $f_4 = \underbrace{x_4 x_3 x_2 x_1} \oplus \underbrace{x_4 x_2 x_1} \oplus \underbrace{x_3 x_2 x_1} \oplus \underbrace{x_2 x_1} \oplus \underbrace{x_4 x_3 x_1} \oplus \underbrace{x_4 x_1} \oplus \underbrace{x_3 x_1} \oplus \underbrace{x_4 x_3 x_2} \oplus \underbrace{x_4 x_3 x_2 x_1} \oplus$

Після скорочення:

$$f_4 = x_2 x_1 \oplus x_3 x_1 \oplus x_3 x_2 \oplus x_2 \oplus x_4 x_3 x_1 \oplus x_4 x_1 \oplus x_4 x_2 x_1 \oplus x_4 x_2$$

- 3.2.5 Належність f4 до п'яти чудових класів:
- 1. $f_4(0;0;0;0) = 0 \Rightarrow f_4 \in K_0$
- 2. $f_4(1;1;1;1) = 1 \Rightarrow f_4 \in K_1$
- 3. $f_4(0;0;0;1) = f_4(1;1;1;0) \Rightarrow f_4 \notin K_c$
- 4. $f_4(0;0;1;0) = 1$, $f_4(0;0;1;1) = 0 \Rightarrow f_4 \notin K_{M}$
- 5. $f_4 \not\in K_{\pi}$, тому що в $\overline{\Pi}$ поліномі Жегалкіна \in дво- та трирангові терми 3.2.6. Мінімізація f_4

Метод діаграм Вейча:

$$f_{_{4\mathrm{MДH}\Phi}} = x_4 x_3 \vee \overline{x_3} \ \overline{x_2} x_1 \vee x_4 \overline{x_1} \vee \overline{x_3} x_2 \overline{x_1}$$

					IA ALL 007400 007 - EI2	Αp
					IAЛЦ.007109.004 ПЗ	Ε,
Зм.	Арк.	№ документа	Підпис	Дата		

Метод невизначених коефіціЄнтів

Ядро: $\{x_4x_3; \overline{X_3} \ \overline{X_2}x_1; \overline{X_3}x_2\overline{X_1}\}$

Вибираємо імпліканту $X_4\overline{X_1}$ у якості способу покриття набору 1000 $f_{4{\rm MДH\Phi}}=x_4x_3\vee\overline{x_3}\ \overline{x_2}x_1\vee x_4\overline{x_1}\vee\overline{x_3}x_2\overline{x_1}$

Метод Квайна-МакКласкі:

K ₀	K ₁	K ₂	Z
0001 0010	X001 X010	1X0X 1XX0	X001 X010
1000	1X00	11XX	1X0X
1001 1010	1X01 1X10	11XX	1XX0 11XX
1100	11X0		
1101	11X1		
1110	111X		
1111	110X		

Зм.	Арк.	№ документа	Підпис	Дата

Таблиця покриття

Конституенти→ Імпліканти↓	0001	0010	1000	1001	1010	1100	1101	1110	1111
1X0X			+	+		+	+		
1XX0			+		+	+		+	
11XX				Ф		Ф	Ф	Ф	Ф
X001	Ф				Ф				
X010		0							

Ядро:
$$\{x_4x_3; \overline{x_3}\ \overline{x_2}x_1; \overline{x_3}x_2\overline{x_1}\}$$

У якості покриття конституенти 1000 вибира€мо імпліканту 1XX0

мднф:
$$f_{4\mathrm{MДH\Phi}} = x_4 x_3 \vee \overline{x_3} \ \overline{x_2} x_1 \vee x_4 \overline{x_1} \vee \overline{x_3} x_2 \overline{x_1}$$

3.3. Спільна мінімізація функцій f_1 , f_2 , f_3

Щоб одержати схеми з мінімальними параметрами необхідно виконати сумісну мінімізацію системи функцій та їх заперечень. Викона ϵ мо мінімізацію системи функцій f_1 , f_2 , f_3 , заданих таблицею істинності (технічного завдання ІАЛЦ.007109.002 ТЗ) методом Квайна-Макласкі.

3.3.1. Мінімізація ситеми функцій методом Квайна-Макласкі.

Зм.	Арк.	№ документа	Підпис	Дата

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_0	K_1	K_2	Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0000 {1, 2, 3} 0001 {1, 2} 0010 {1, 2, 3} 0100 {1, 3} 0110 {1, 2, 3} 0111 {1, 2, 3} 1000 {1, 3} 1010 {3} 1011 {1} 1100 {1, 2, 3} 1110 {1}	3} 000X {1,2} 00X0 {1,2,3} 0X00 {1,3} X000 {1,3} 0X10 {1,2,3} X010 {3} 01X0 {1,3} X100 {1,3} X111 {1,2,3} 10X0 {3} 1X11 {1,2,3} 1X11 {1,2,3} 1X11 {1,2,3} 1X11 {1,3} 1X11 {1}	X0X0 {3} 0XX0 {1,3} XX00 {1} XX00 {3} XX00 {1}	0XX0 {1, 3} XX00 {1} X1X0 {1} 000X {1, 2} 00X0 {1, 2, 3} X000 {1, 3} 0X10 {1, 2, 3} X111 {1, 2, 3} 1X00 {1, 3} 1X11 {1} 111X {1} 1001 {3}

Таблиця покриття

					f ₁						f	2						f_{3}				
Конституенти→	0000	0001	00	91	10	10	⊒	\Rightarrow	⇉	00			1	00	00	91	2	10	10	10	<u> </u>	1111
Імпліканти↓	00	9	10	10	8	\Rightarrow	00	6	⇉	00	91	10	=	00	10	00	\Rightarrow	00	91	10	00	=======================================
X0X0 {3}														+	+			+		+		
0XX0 {1,3}	+		+	+										+	+	+						
XX00 {1}	+				+		+															
X1X0 {1}				+			+	+														
000X {1,2}	+	+								+	+											
00X0 {1,2,3}	+		+							+		+		+	+							
X000 {1,3}	+				+									+				+				
0X10 {1,2,3}			+	+								+			+							
X111 {1,2,3}									+				+				+					+
1X00 {1,3}					+		+											+			+	
1X11 {1}						+			+													
111X {1}								+	+													
1001 {3}																			+			
1100 {1,2,3}								+													+	

- ядро

- можливе покриття залишкових конституент

					IA ALL 007400 007 - E2	Арк.
					IA/IЦ.007109.004 ПЗ	7
Зм.	Арк.	№ документа	Підпис	Дата		_ /

$$\begin{split} f_1 &= \overline{x_4} \ \overline{x_1} \vee x_3 \overline{x_1} \vee \overline{x_4} \ \overline{x_3} \ \overline{x_2} \vee x_4 \overline{x_2} \ \overline{x_1} \vee x_4 x_2 x_1 \\ f_2 &= \overline{x_4} \ \overline{x_3} \ \overline{x_2} \vee \overline{x_4} \ \overline{x_3} \ \overline{x_1} \vee x_3 x_2 x_1 \\ f_3 &= \overline{x_3} \ \overline{x_1} \vee \overline{x_4} \ \overline{x_1} \vee x_3 x_2 x_1 \vee x_4 \overline{x_2} \ \overline{x_1} \vee x_4 \overline{x_3} \ \overline{x_2} \ x_1 \end{split}$$

3.3.2 Запис мінімізованих функцій у операторному представленні І/АБО:

$$\begin{split} f_1 &= \overline{x_4} \, \overline{x_1} \vee x_3 \overline{x_1} \vee \overline{x_4} \, \overline{x_3} \, \overline{x_2} \vee x_4 \overline{x_2} \, \overline{x_1} \vee x_4 x_2 x_1 \\ f_2 &= \overline{x_4} \, \overline{x_3} \, \overline{x_2} \vee \overline{x_4} \, \overline{x_3} \, \overline{x_1} \vee x_3 x_2 x_1 \\ f_3 &= \overline{x_3} \, \overline{x_1} \vee \overline{x_4} \, \overline{x_1} \vee x_3 x_2 x_1 \vee x_4 \overline{x_2} \, \overline{x_1} \vee x_4 \overline{x_3} \, \overline{x_2} \, x_1 \end{split}$$

3.3.3 Реалізація f_1 , f_2 , f_3 на ПЛМ

Визначимо мінімальні параметри ПЛМ:

- n = 4 число інформаційних входів, що дорівню€ кількості аргументів системи перемикальних функцій.
- р = 9 число проміжних внутрішніх шин, яке дорівню€ кількості різних термів системи.
- $\mathbf{m} = \mathbf{3}$ число інформаційних виходів, котре дорівнює кількості функцій виходів.

Визначимо проміжні внутрішні шини ПЛМ та позначимо їх

$$\begin{split} P_1 &= \overline{x_3} \, \overline{x_1} \\ P_2 &= \overline{x_4} \, \overline{x_1} \\ P_3 &= x_3 \overline{x_1} \\ P_4 &= \overline{x_4} \, \overline{x_3} \, \overline{x_2} \\ P_5 &= \overline{x_4} \, \overline{x_3} \, \overline{x_1} \\ P_6 &= x_3 x_2 x_1 \\ P_7 &= x_4 \overline{x_2} \, \overline{x_1} \\ P_8 &= x_4 x_2 x_1 \\ P_9 &= x_4 \overline{x_3} \, \overline{x_2} \, x_1 \end{split}$$

Побуду∈мо спрощену мнемонічну схему П/ІМ (4,9,3):

					IA ALL 007400 007 - EI2	Арк.
					IAЛЦ.007109.004 ПЗ	
Зм.	Арк.	№ документа	Підпис	Дата		ď

4. Висновок

У розділі «Синтез комбінаційних схем» виконана мінімізація функції різними методами (методом діаграм Вейча, невизначених коефіціентів і Квайна – Мак-Класкі). Також виконана спільна мінімізація трьох функцій. Було отримано їхні операторні представлення, які дають можливість реалізувати систему перемикальних функцій на програмувальних логічних матрицях (ПЛМ). ПЛМ представлено у розділі «Синтез комбінаційних схем».

Були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також оформлення проектно-конструкторської документації згідно з ЄСКД.

- 5. Список використаної літератури
- 1. Прикладна теорія цифрових автоматів : навч. посіб. / В.І. Жабін, В.В. Ткаченко К.: Вид-во Нац. авіа. ун-ту «НАУ-друк», 2009. 360 с.
- 2. Конспект лекцій з курсу «Комп'ютерна логіка».-2017.

						IAЛЦ.007109.004 ПЗ	Арк.
							n
Ę	Зм.	Арк.	№ документа	Підпис	Дата		9