Applied Macroeconomics

Practical Session L6 Diego Ariel Soto Díaz

The investigation of the dynamic interactions of investment, income, and consumption in the United States involves analyzing the relationship between these three economic variables over time.

By studying the patterns and relationships between these three variables over time, we can gain insight into the dynamics of the US economy and the factors that drive economic growth and stability.

We will follow the following structure to obtain the best possible model:

- 1. ADF test
- 2. Determine the optimal lag length for the VAR model.
- 3. Estimate the reduced-form VAR model.
- 4. See the impulse response functions.
- 5. Estimate an exactly identified structural VAR (SVAR) model.

Overall, the investigation of the dynamic interactions of investment, income, and consumption in the United States is an important area of research that can provide valuable insights into the workings of the US economy and inform economic policy and investment decisions.

1. Perform the ADF test to confirm that the three variables are stationary.

The results of the Augmented Dickey Fuller test suggest that all three variables, investment, income, and consumption, are stationary. This means that the mean, variance, and autocorrelation structure of these variables remain relatively constant over time, indicating a greater degree of stability and predictability with and without the trend (not shown).

2. Using the *varsoc* command and diagnostic checks on the residuals, determine the optimal lag length for the VAR model.

Using 12 lags we found that the AIC suggested that the optimal lag length is 6, while the HQIC and SBIC indicated that the optimal lag length is 1. Now we will compare these two VAR models and determine which one is preferred analyzing the serial correlation.

Testing for autocorrelation on 6 lags

```
var dlrinv dlrgdp dlrcons, lags(1/6)
predict r_dlrinv, r eq(dlrinv)
predict r_dlrgdp, r eq(dlrgdp)
predict r_dlrcons, r eq(dlrcons)

corrgram r_dlrinv, lags(20)
corrgram r_dlrgdp, lags(20)
corrgram r_dlrcons, lags(20)
```

Output omitted for simplicity.

After running all the *corrgram* commands, we found no evidence for autocorrelation. There were no p-values lower than 0.05 in the Prob > Q column.

Testing for autocorrelation on 1 lag

```
drop r_dlrinv r_dlrcons r_dlrgdp
var dlrinv dlrgdp dlrcons, lags(1)
predict r_dlrinv, r eq(dlrinv)
predict r_dlrgdp, r eq(dlrgdp)
predict r_dlrcons, r eq(dlrcons)
corrgram r_dlrinv, lags(20)
corrgram r_dlrgdp, lags(20)
corrgram r_dlrcons, lags(20)
```

We found evidence for autocorrelation on investment on lags 8 through 20.

We keep the model without autocorrelation (6 lags).

3. Estimate the reduced form var model using the number of lags chosen and run all the possible Granger causality tests.

. var dlrinv dlrgo	dp dlrcons,	, lags(1/6	5)				
Vector autoregress	ion						
Sample: 1960q4 -				Number of	obs	=	181
Log likelihood =	-595.1042			AIC		=	7.205571
FPE =	.2709742			HQIC		=	7.613936
Det(Sigma_ml) =	.1440068			SBIC		=	8.212832
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
dlrinv	19	1.6595	0.3240	86.7694	0.0000		
dlrgdp	19	.74305	0.3175	84.21454	0.0000		
dlrcons	19	.659355	0.1531	32.72376	0.0180		

All variables are jointly significant but just some lags are (omitted output for simplicity).

And running the Granger causality tests:

٠ ١	vargranger						
	Granger causality Wald tests						
	Equation	Excluded	chi2	df P	rob > chi2		
	dlrinv	dlrgdp	16.453	6	0.012		
	dlrinv	dlrcons	8.3024	6	0.217		
	dlrinv	ALL	30.926	12	0.002		
	dlrgdp	dlrinv	24.634	6	0.000		
	dlrgdp	dlrcons	16.228	6	0.013		
	dlrgdp	ALL	51.837	12	0.000		
	dlrcons	dlrinv	8.3244	6	0.215		
	dlrcons	dlrgdp	8.1708	6	0.226		
	dlrcons	ALL	14.685	12	0.259		

This table shows the results of the Granger causality Wald tests. The granger causality test evalueates whether the past values of one variable can be used to predict another variable, providing evidence of 'causal' relationship.

Looking at the table we can see that income (*dlrgdp*) granger causes investment (*dlrinv*) and both investment and consumption jointly granger cause income. Also, investment and investment & consumption jointly granger cause income. No variable granger causes consumption.

- 4. Suppose we are interested to see:
 - a. How the growth rate of consumption responds to a one-time positive shock in the growth rate of income.

```
irf create myirf, step(20) set(myirfs, replace)
irf graph oirf, impulse(dlrgdp) response(dlrcons)
```


This graph shows that a one-standard-deviation shock to income has a positive and significant effect on consumption in the short term (step 0), with the response peaking at step 2. However, the effect diminishes over time and become statistically insignificant beyond step 3.

b. How the growth rate of investment responds to one-time positive shock in the growth rate of consumption.

No step is statistically significant, meaning that a shock in consumption has no effect on investment. There could be several reasons why a shock in consumption doesn't increase investment, one possible explanation is that the increase in consumption is only temporary, and businesses are hesitant to invest in long-term projects based on short-term changes in demand.

5. Estimate an exactly-identifies structural VAR (SVAR). Assume that: (i) percentage changes in investments are not contemporaneously affected by consumption or income; (ii) percentage changes in income is affected by contemporaneous changes in investments but not consumption; (iii) percentages changes in consumption are affected by contemporaneous changes in both investments and income.

Following these assumptions we can create two matrices to apply this to the model:

```
* '\' represents a row change *
matrix A = (1,0,0 \ .,1,0 \ .,.,1)
matrix B = (.,0,0 \ 0,.,0 \ 0,0,.)
```

Now we can run the next model:

```
svar dlrinv dlrgdp dlrcons, aeq(A) beq(B) lags(1/6)
```

Sample: 19600 Exactly ident:				of obs = celihood =	181 -595.1042
	Coef.	Std. Err. z	P> z	[95% Conf.	Interval]
/A					
1_1	1	(constrained)			
2_1	2868243	.0255565 -11.22	0.000	3369142	2367345
3_1	0629795	.0276076 -2.28	0.023	1170893	0088696
1_2	0	(constrained)			
2_2	1	(constrained)			
3_2	5181778	.0616576 -8.40	0.000	6390246	3973311
1_3	0	(constrained)			
2_3	0	(constrained)			
3_3	1	(constrained)			
/B					
1_1	1.569981	.0825164 19.03	0.000	1.408252	1.73171
2 1	0	(constrained)			
3_1	0	(constrained)			
1_2	0	(constrained)			
2_2	.5398032	.0283714 19.03	0.000	.4841962	.5954101
3_2	0	(constrained)			
1_3	0	(constrained)			
2_3	0	(constrained)			
3_3	.4477768	.0235346 19.03	0.000	.4016498	.4939038
					

Here we can see every coefficient is significant and to see the estimated matrices we use:

```
matlist e(A)
matlist e(B)
```


We were asked to prove that the next relationship is true:

$$dlrcons = 0.06 dlrinv + 0.52 dlrgdp$$

We can see at the last row of the first table that this relationship is, in fact, true.

In conclusion, the VAR and SVAR models are powerful tools for analyzing the relationship between investment, income, and consumption in the US economy. The findings suggest that income is the main driver of consumption.