

> Big Data Tutorial Assignments 6 and 7

Marina Ernst marinaernst@uni-koblenz.de

Institute for Web Science and Technologies Universität Koblenz

> Assignment 6

You are given a graph G. Which type of graph is it?

Weighted

Directed

Bipartite

Undirected

Unweighted

Unlabeled

Labeled

universität koblenz weiter:denken

FYI: Bipartite graph

Bipartite graph definition: Vertices have a disjoint split:

1.
$$\exists A, B \subsetneq V$$

$$2. V = A \cup B$$

3.
$$A \cap B = \emptyset$$

$$4. A = 1, 3, 5; B = 2, 4, 6$$

5. Such that all edges cross the disjoint set

6.
$$\forall e = (u, v) \in E : u \in A \land v \in B \lor u \in B \land v \in A$$

You are given a graph G. Which type of graph is it?

Weighted

Directed

Bipartite

Undirected

Unweighted

Unlabeled

Labeled

You are given the same Graph G as in the previous task. Calculate the diameter of the graph

max(dist(u, v)), for all $u, v \in V$, where dist(u, v) is the distance between u and v.

Or: the maximum node eccentricity in *G*.

Or: the longest shortest path

Diameter=4

 ${4,3,5,2,6}$ ${4,3,1,2,5}$ ${6,2,1,3,4}$ ${6,2,5,3,4}$

You are given the Adjacency Matrix A of graph G. Draw a graph based on this matrix. Please do it on paper and then just upload the picture here.

$$A = egin{bmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 \end{bmatrix}$$

Scale-free vs Random graph		● Not answered			
Which of the following statements are true for scale-free graph and which for the random one?					
	Scale-free graph	Random graph			
Follows the power law					
Pre-given number of nodes					
Vast majority of nodes has only a few connections					
Hubs are NOT present					
Small world phenomena					
Harder to partition					

Scale-free network

https://en.wikipedia.org/wiki/Scale-free_network

Scale-free vs Random graph		Model solution			
Which of the following statements are true for scale-free graph and which for the random one?					
	Scale-free graph	Random graph			
Follows the power law	✓				
Pre-given number of nodes					
Vast majority of nodes has only a few connections	✓				
Hubs are NOT present					
Small world phenomena	✓				
Harder to partition	✓				

Pregel			● Not answered		
Which of the following statements are true for Pregel					
Unanswered	Right	Wrong			
~			The processing happens In-Memory		
✓			A vertex contains information about itself and the incoming edges		
✓			The computation is described in terms of vertices, edges and a sequence of super-steps		
✓			The computation is described in terms of vertices, edges and a sequence of super-steps		
✓			Build on top of Hadoop		
~			Low scalability		

Pregel			Model solution
Which of the following statements are true for Pregel			
Unanswered	Right	Wrong	
			The processing happens In-Memory
		✓	A vertex contains information about itself and the incoming edges
			The computation is described in terms of vertices, edges and a sequence of super-steps
	✓		The computation is described in terms of vertices, edges and a sequence of super-steps
		✓	Build on top of Hadoop
		V	Low scalability

Giraph vs Spark GraphX Not answere			
	Giraph	Spark GraphX	
Computation in memory			
Used by Alibaba			
Adopts a vertex-cut approach to distributed graph partitioning			
Built on top of Hadoop			
Used by Facebook, LinkedIn, etc			

Giraph vs Spark GraphX		Model solution
	Giraph	Spark GraphX
Computation in memory	✓	✓
Used by Alibaba		✓
Adopts a vertex-cut approach to distributed graph partitioning		✓
Built on top of Hadoop	✓	
Used by Facebook, LinkedIn, etc	V	

Graph data models

Carefully study "Knowledge Graphs" article from the further reading materials. There you will find different graph data models.

You are given a very simple graph. Which graph model is represented here? Explain your answer.

universität koblenz

Directed Edge-labelled Graphs. (Multi-relational graph)

Why not Heterogeneous?

Label propagation

Based on further reading materials (Graph at Facebook) what is the label propagation? How does it work?

Label propagation is an iterative graph algorithm that infers unlabeled data from labeled data. The basic idea is that during each iteration of the algorithm, every vertex propagates its probabilistic labels to its neighboring vertices, collects the labels from its neighbors, and calculates new probabilities for its labels.

https://www.researchgate.net/publication/324011683_Semi-Supervised_Classification_of_Hyperspectral_Images_Based_on_Extended_Label_Propagation_and_Rol ling_Guidance_Filtering

BFS

Carefully study the paper Graph structure in the web. Explain what BFS is. And what is it used for in the context of this study?

"A breadth-first search (BFS) on a directed graph begins at a node u of the graph, and proceeds to build up the set of nodes reachable from u in a series of layers. Layer 1 consists of all nodes that are pointed to by an arc from u. Layer k consists of all nodes to which there is an arc from some vertex in layer k-1, but are not in any earlier layer.

BFS algorithm is used to search a tree or graph data structure for a node that meets a set of criteria.

BFS

Carefully study the paper Graph structure in the web. Explain what BFS is. And what is it used for in the context of this

study?

"we use the BFS runs to estimate the positions of the remaining nodes"

> Assignment 7

Dijkstra's algorithm

You're given a weighted graph.

Please perform Dijkstra's algorithm on it. Remember, that for every step, you should redraw the graph (see the examples from

the lecture)

Parallel BFS in Pregel

You're given a weighted graph (Same as in previous task) Please perform Parallel BFS in Pregel on it. Remember, that for every step, you should redraw the graph. (See the examples from

the lecture)

Parallel BFS in Pregel

Parallel BFS in Pregel

Parallel BFS in Pregel

Page Rank

You are given a small network of 4 web pages - A, B, C and D. The network is modeled as a graph, where pages are represented as modes and links as edges.

Your task is to calculate Page Ranks for A, B, C and D in 2

iterations.

Page Rank

$$PR'_{n} = c \cdot \sum_{m \in S_{n}} \frac{PR_{m}}{outd \ egree_{m}}$$

OR
$$PR(A) = 1 - d + d \left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots \right).$$

Damping factor (*d*) - The probability, at any step, that the person will continue following links is a damping factor d.

We assume here d=1

Page Rank

$$PR'_{n} = c \cdot \sum_{m \in S_{n}} \frac{PR_{m}}{outd \ egree_{m}}$$

Node	Initial	Iteration 1	Iteration 2
Α	1/4		
В	1/4		
С	1/4		
D	1/4		

Page Rank

$$PR'_{n} = c \cdot \sum_{m \in S_{n}} \frac{PR_{m}}{outd \ egree_{m}}$$

Node	Initial	Iteration 1	Iteration 2
A	1/4	0	0
В	1/4	1/12	0
С	1/4	7/12	5/12
D	1/4	4/12	7/12

Betweenness centrality

You are given a graph. Calculate the Betweenness centrality of the node C. Don't forget to provide the formula of Betweenness centrality as well.

universität koblenz

Betweenness centrality

$$C_{b}(i) = \sum_{\substack{j < k \\ j \neq i \neq k}} \frac{d_{j,k}(i)}{d_{j,k}}$$

$$C_b(c) = \frac{d_{b,d}(c)}{d_{b,d}} = \frac{1}{2}$$

Based on slides from Prof. Steffen Staab

Betweenness centrality

$$C_{b}(i) = \sum_{\substack{j < k \\ j \neq i \neq k}} \frac{d_{j,k}(i)}{d_{j,k}}$$

$$C_b(a) = \frac{d_{b,d}(a)}{d_{b,d}} + \frac{d_{b,c}(a)}{d_{b,c}} + \frac{d_{c,d}(a)}{d_{c,d}} = \frac{1}{1} + \frac{0}{1} + \frac{1}{1} = 2$$

$$C_b(d) = 0$$

Based on slides from Prof. Steffen Staab

Dijkstra's algorithm limitations

What are the limitations of Dijkstra's algorithm? When is it impossible to use it?

Dijkstra's algorithm limitations

What are the limitations of Dijkstra's algorithm? When is it impossible to use it?

When working with graphs that have negative weights, Dijkstra's algorithm fails to calculate the shortest paths correctly.

Graph Partition

Based on further reading materials explain what is Graph Partition and how it works

Graph Partition is used to separate a graph into several subsets or partitions depending on preset criteria.

The process of graph partitioning involves the following steps:

- 1. Graph representation: Start with a graph consisting of nodes and edges.
- 2. Partitioning objectives: Define the objectives for partitioning, such as minimizing cut size or maximizing modularity, based on the specific requirements of the application.
- 3. Partitioning algorithms: Apply partitioning algorithms, such as spectral methods, Kernighan-Lin algorithm, or multilevel algorithms.
- 4. Partition optimization: Evaluate the resulting partitions based on the defined objectives and refine them if necessary.

Q&A

> That's all, folks!