Pre-requisites

Python

Basics of Spark

- 1) What is Bigdata?
- 2) Hadoop Yarn Architecture
- 3) An Introduction to Apache Spark
 - a) Spark's Basic Architecture
 - b) Spark's Language APIs
 - c) Starting Spark
 - d) The SparkSession
 - e) Data Frames
 - i) Partitions
 - f) Transformations
 - i) Lazy Evaluation
 - g) Actions
 - h) Spark UI
- 2) Spark's Toolset
- 3) Structured API
 - a) Data Frames and Datasets
 - b) Schemas
 - c) Overview of Structured Spark Types
 - i) Data Frames Versus Datasets
 - ii) Columns
 - iii) Rows
 - iv) Spark Types

- d) Overview of Structured API Execution
 - i) Logical Planning
 - ii) Physical Planning
 - iii) Execution
- 4) Basic Structured Operations
 - a) Schemas
 - b) Columns and Expressions
 - c) Records and Rows
 - d) Data Frame Transformations
- 5) Executing on Spark
 - a) Run job from command line
 - b) Go through execution plan / DAG on spark for existing model
- 6) Using logging

- 8) Details of the Case Study which we will use in our hands-on
- 9) Aggregations
 - a) Aggregation Functions
 - i) count
 - ii) min and max
 - iii) sum
 - iv) avg
 - b) Grouping
 - c) Window Functions
 - d) User-Defined Aggregation Functions
- 10) Joins
 - a) Join Expressions
 - b) Join Types
 - c) Inner Joins
 - d) Outer Joins
 - e) Left Outer Joins
- 11) Right Outer Joins
- 12) Data Sources
 - a) The Structure of the Data Sources API
 - b) CSV Files
 - c) JSON Files
 - d) ORC Files
 - e) AVRO Files
 - f) Parquet Files`
 - g) Advanced I/O Concepts
 - i) Splitable File Types and Compression
 - ii) Reading Data in Parallel

- iii) Writing Data in Parallel
- iv) Managing File Size
- 13) Integrating Spark with Hive
- 14) Spark SQL
 - a) What Is SQL?
 - b) How to Run Spark SQL Queries?
 - c) Catalog
 - d) Tables
 - e) Views
 - f) Select Statements
 - g) Databases

- 15) Resilient Distributed Datasets (RDDs)
 - a) What Are the Low-Level APIs?
 - b) About RDDs
 - i) Types of RDDs
 - ii) When to Use RDDs?
 - c) Creating RDDs
 - d) Manipulating RDDs
 - e) Transformations
 - i) distinct
 - ii) filter
 - iii) map
 - iv) sort
 - v) Random Splits
 - f) Actions
 - i) reduce
 - ii) count
 - iii) first
 - iv) max and min
 - v) take
 - g) Saving Files
 - i) saveAsTextFile
 - ii) SequenceFiles
 - iii) Hadoop Files
- 16) Caching
- 17) Persistence
 - i) Different types of persistence
 - ii) When to use which kind of persistence.

18) Checkpointing

- i) What is checkpointing?
- ii) localCheckpoint
- iii) When and where to use?

19) Distributed Shared Variables

- a) Broadcast Variables
- b) Accumulators
 - i) Basic Example
 - ii) Custom Accumulators

- 20) Configuring Applications
- 21) PySpark UDF Introduction
 - a) What is UDF?
 - b) Why do we need it?
- 22) Create PySpark UDF (User Defined Function)
 - a) Create a Data Frame
 - b) Create a Python function
 - c) Convert python function to UDF
- 23) Using UDF with Data Frame
 - a) Using UDF with Data Frame select()
 - b) Using UDF with Data Frame withColumn()
 - c) Registering UDF & Using it on SQL query
- 24) Introducing Apache Parquet file format
 - a) What is Apache Parquet?
 - b) Parquet Format vs. CSV
 - c) Advantages of Parquet Columnar Storage
 - d) Primitive data types in Parquet format
 - e) Apache Parquet Spark Example
 - i) Spark Write Data Frame to Parquet file format
 - ii) Spark Read Parquet file into Data Frame
 - iii) Append to existing Parquet file
 - iv) Using SQL queries on Parquet
 - v) Spark parquet partition Improving performance
 - vi) Spark Read a specific Parquet partition
- 25) Apache Arrow in PySpark

- a) What is Apache Arrow?
- b) Apache PyArrow with Apache Spark
- c) What is the problem with existing Pandas/Spark conversion without PyArrow?
- d) How to use PyArrow in Spark to optimize?
- e) Enabling for Conversion to/from Pandas
- f) Pandas UDFs
- g) Compatibility Setting for PyArrow
- h) Converting Pandas Data frame to Apache Arrow Table
- i) PyArrow Table to Pandas Data Frame
- j) How does the PyArrow enabled conversion work internally?

26) Performance Tuning

- a) Indirect Performance Enhancements
 - i) Design Choices
 - ii) Object Serialization in RDDs
 - iii) Cluster Configurations
 - iv) Scheduling
 - v) Data at Rest
 - vi) Shuffle Configurations
 - vii) Memory Pressure and Garbage Collection
- b) Direct Performance Enhancements
 - i) Parallelism
 - ii) Improved Filtering
 - iii) Repartitioning and Coalescing
 - iv) User-Defined Functions (UDFs)
 - v) Temporary Data Storage (Caching)
 - vi) Joins
 - vii) Aggregations
 - viii) Broadcast Variables

- 29) Machine Learning Basic Concepts
 - a) Importing the Libraries
 - b) Importing the Dataset
 - c) Summary of Object-oriented programming: classes & objects
 - d) Missing Data Treatment
 - e) Categorical Data
 - f) Splitting the Dataset into the Training set and Test set
 - g) Feature Scaling
- 30) Analytics and Machine Learning
 - a) What Is Spark's MLlib?
 - b) High-Level MLlib Concepts
 - c) MLlib in Action
 - i) Feature Engineering with Transformers
 - ii) Estimators
 - iii) Pipelining Our Workflow
 - iv) Training and Evaluation
 - v) Persisting and Applying Models
- 31) Preprocessing and Feature Engineering
 - a) Formatting Models According to Use Case
 - b) Transformers
 - c) Estimators for Preprocessing
 - i) Transformer Properties
 - d) High-Level Transformers
 - i) SQL Transformers
 - ii) VectorAssembler
 - e) Working with Continuous Features
 - i) Bucketing

- ii) Scaling and Normalization
- iii) StandardScaler
- f) Working with Categorical Features
 - i) StringIndexer
 - ii) Converting Indexed Values Back to Text
 - iii) Indexing in Vectors
 - iv) One-Hot Encoding
- g) Feature Manipulation
- h) Feature Selection

32) Pipeline

- a) Building of pipeline
- b) Saving it
- c) Use on a different dataset

33) Classification

- a) Use Cases
- b) Types of Classification
- c) Classification Models in MLlib
- d) Logistic Regression
 - i) Logistic Regression Intuition
 - ii) Sigmoid Function
 - iii) Model Hyperparameters
 - iv) Training Parameters
 - v) Prediction Parameters
 - vi) Example
- e) Decision Trees
 - i) Decision Tree Regression Intuition
 - ii) Pruning
 - iii) Overfitting in Decision Tree
 - iv) Entropy
 - v) Information Gain
 - vi) Model Hyperparameters
 - vii) Training Parameters
 - viii) Prediction Parameters

34) Regression

a) Use Cases

- b) Regression Models in MLlib
- c) Linear Regression
 - i) Simple Linear Regression Intuition
 - ii) RMSE
 - iii) Model Hyperparameters
 - iv) Training Parameters
 - v) Example
 - vi) Training Summary
- d) Decision Trees
 - i) Model Hyperparameters
 - ii) Training Parameters
 - iii) Example