

Replacement Sheet

1/24

- EPIDERMIS
- CORTEX
- ENDODERMIS
- PERICYCLE
- LATERAL ROOT CAP
- COLUMNELLA ROOT CAP
- VASCULAR TISSUE
- CORTEX/ENDODERMAL INITIAL
- EPIDERMAL/ROOT CAP INITIAL
- QUIESCENT CENTER
- COLUMNELLA ROOT CAP INITIAL

PERICLINAL DIVISION

ANTICLINAL DIVISION

FIG. 1A

2/24

FIG. 1B

FIG. 1C

FIG. 1D

3/24

FIG. 1E

FIG. 1F

FIG. 1G

FIG. 1H

4/24

FIG. 2A

5/24

LS	144	PFIREFTQLTANQAI LEAINGNHQAI HIVDFDINHGQWPPLMQALADRYPA-PTLRITG
GAI	248	PYLKFAHFTANQAI LEAFQGK -KRVHVIDFSMSQGLQWPALMQALALRPGGPPVRLTG
RGA	301	PYLKFAHFTANQAI EAFEGK -KRVHVIDFSMNQGLQWPALMQALALREGGPPTFRLTG
SCR	379	PLVKFSHTANQAI QEAFEKE -DSVHIIIDLIMQGLQWPGLFHILASRPGGPPHVRLTG
SHR	233	PWATFGHVAANGAILEAVDGE-AKI HIVDISSTFCT QWP T LLA T RSDDTPHLRLTT

FIG. 2B***FIG. 2C***

Replacement Sheet

6/24

FIG. 3A

FIG. 3B

FIG. 3C

1/24

FIG. 3D**FIG. 3E****FIG. 3F****FIG. 3G**

8/24

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

FIG. 4E

FIG. 4F

Replacement Sheet

9/24

FIG. 5A

FIG. 5B

FIG. 5C

Replacement Sheet

10/24

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

Replacement Sheet

11/24

FIG. 6E

FIG. 6F

FIG. 6G

FIG. 6H

Replacement Sheet

12/24

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

FIG. 7E

Replacement Sheet

13/24

1 atcgattaaag agaaaataga gtttcatgc accagtggta atagtaacgt agtcgcggaa
61 tgtctaaaac gattatgagt ttgggtttt gattggtag aattggattt agtaggacat
121 tctaactttt ttgttagtct gttgatttag gatgcgtaaa gagtcctttt attttacacc
181 agttgagact tggatcgat agtacttgaa acacttggtt gtttcatgt atttggccta
241 tatataaaca aacatcgtaa ttatatacgg attttttcg gaattttacg ccatatctgt
301 aagtatatat aacatgcgt tcgtttcaa attcatatga tgaacgatcc acgtaagtgc
361 tactactcct acaatattgc atgagagaga tatgtattta taaatttat tttgaagaag
421 aaataaagagg gaaggttact tgggtggatc gatgtaaaaa caaaagaaga aaaagcgaaa
481 cccactaagc cattacatga tatkacccctt ctatcttt tcctctttt tttattttc
541 tcaggactt tttctactta atgaaacctc caaactatct aactaataca ctccatgt
601 gaataaagaa aattatataa gatattgtt atattttgtt actagaaaaat atatttgctc
661 tptaattttt cgtaagttaa atcaacattt ttcagtagaa acaaataatta ctgaaaaaag
721 taggatcatt attttgtcc aaaatctcag ttagctatag gttttagttaaaaac
781 acattcttga tttccccaa aaaataaaga gagagaagaa tattgttcaa aagtggctc
841 ttctctctt aattatgtt tcactaaacc caatttagatt caaacagtct acaaagtcca
901 aaagataaaac atgggacaac aattcgatgc aaaaaatctt ctttcatgc tctttttt
961 ttctcttagt ttttaaatta ctaataaaaaa ctcacaaatc caccacccattcttaca
1021 actcaccttc atctagattt acccactccc accgagaaac acaagaaaaaa aaatatacat
1081 atataaatat acaagacaac acatgatgct gatgcaatattt acacaacaaa gtattaaatc
1141 ttagatattt tgggtctccc tttctctat tcattttctt attcattttttt aaaaaaaaaat
1201 ggatactctc ttttagacttgc ttagtctcca acaacaacaa caatccgata gtatcattac
1261 aaatcaatct tcgttaagca gaacttccac caccactact ggctctccac aaactgctt
1321 tcactacaac tttccacaaa acgacgtcgt cgaagaatgc ttcaactttt tcatggatga
1381 agaagacctt tccttttctt cttctcacca caaccatcac aaccacaaca atcctaataac
1441 ttactactct ctttcacta ctccccccca ataccatccc gccacatcat caaccccttc
1501 ctccaccgccc gcagccgcag cttagcctc gccttactcc tcctccggcc accataatga
1561 cccttccgcg ttctccatac ctcaactcc tccgtccctt gacttctcag ccaatgccaa
1621 gttggcagac tcggccttc ttgaagcggc acgtccctt tccgacaaag acactgcacg
1681 tgcgcaacaa atcctatgga cgctcaacga gctcttttccgtacggag acaccgagca
1741 aaaactggct tcttacttcc tccaagctt cttcaaccgc atgaccgggtt caggcgaacg
1801 atgctaccga accatggtaa cagctcagc cacagagaag acttgcctt tcgagtcaac
1861 gcggaaaaact gtactaaagt tccaagaagt tagccccgg gccacgttt gacacgtggc
1921 ggcaaacgga gcaatcttgg aagcagtaga cggagaggca aagatccaca tcgttgcacat
1981 aagctccacg tttgcactc aatggccgac tcttctagaa gcttttagcca caagatcaga
2041 cgacacgcct cacctaaggc taaccacagt tgctgtggcc aacaagttt tcaacgatca
2101 aacggcgtcg catcgatga tgaaagagat cggaaacccga atggagaaat tcgctaggct
2161 tatggagtt ctttcaaat ttaacattat tcacacgtt ggagatttat ctgagtttga
2221 tctcaacgaa ctgcacgtt aaccagacga agtcttggcc attaactgcg taggcgcgt
2281 gcatggatc gttcacgtg gaagccctag agacgctgtg atatcgagtt tccgacgggtt
2341 aagaccgagg attgtgacgg tcgtagaaga agaagctgat ctgtcggag aagaagaagg
2401 tggcttgcgt gatgagtttgc tgagagggtt tggagaatgt ttacgatggg ttagggttt
2461 cttcgagtca tggaaagaga gtttccaag gacgagcaac gagagggttga tgcttagagcg
2521 tgcagcggga cgtgcgtatcg ttgatcttgc ggcttgcgt gacgtccggatt ccacggagag
2581 gcggagagaca gcggagaaatg ggtcgaggag gatggagaaat agtgggtttt gacgggtgg
2641 gtagatgtat gagggtggcg atgatgtcag agcttgcgttggaggatata aagaaggtgt
2701 ttggcgtatg gtacagtgtc ctgtatgccgc cggaaatattc cttgttggaa gagatcagcc
2761 ggtggtttgg gctagtgcgt ggcggccaaac gtaaagggtt gtttttattt tttcataagg
2821 aattc

FIG. 8

Replacement Sheet

14/24

MDTLFRLVSL QQQQQSDSII TNQSSLSRTS TTTTGSPQTA YHYNFPQNDV VEECFNFFMD
EEDLSSSSSH HNHHNHNNPN TYYSPFTTPT QYHPATSSTP SSTAAAAALA SPYSSSGHHN
DPSAFSIPQT PPSFDFSANA KWADSVLLEA ARAFSDKDTA RAQQILWTLN ELSSPYGDTE
QKLASYFLQA LFNRMTGSGE RCYRTMVTAA ATEKTCSFES TRKTVLKQFQE VSPWATFGHV
AANGAILEAV DGEAKIHIVD ISSTFCTQWP TLLEALATRS DDTPHLRLTT VVVANKFVND
QTASHRMMKE IGNRMKFAR LMGVPFKFNI IHVGDLSEF DLNELDVKPD EVLAINCVA
MHGIASRGSP RDAVISSFRR LRPRIVTVVE EEADLVGEEE GGFDDFLRG FGECLRWFHV
CFESWEESFP RTSNERLMLE RAAGRAIVDL VACEPSDSTE RRETARKWSR RMRNSGFGAV
GYSDEVADDV RALLRRYKEG VWSMVQCPDA AGIFLCWRDQ PVVWASAWRP T

FIG. 9

Replacement Sheet

15/24

1 aaaaaaaaaaa aatggatact ctcttagac tagtcagtct ccaacaacaa caacaatccg
61 atagtatcat tacaaatcaa tcttcgttaa gcagaacttc caccaccact actggctctc
121 cacaaactgc ttatcactac aactttccac aaaacgacgt cgtcgaagaa tgcttcaact
181 ttttcatgga tgaagaagac ctttcttctt ctttcttca ccacaaccat cacaaccaca
241 acaatcctaa tacttactac ttccttca ctactcccac ccaataccat cccgccacat
301 catcaacccc ttccctccacc gcccagccg cagctttagc ctcgccttac tcctccctcg
361 gccaccataa tgacccttcc gcgttctcca tacctcaaac tcctccgtcc ttgcacttct
421 cagccaatgc caagtggca gactcggtcc ttcttgaagc ggcacgtgcc ttctccgaca
481 aagacactgc acgtgcgaa caaatcctat ggacgctcaa cgagctctct ttcgcgtaa
541 gaaaaccgct tcattttctt tgtatttgc tgaggtagg attagaccat tggttgttac
601 tttcgaattc ttccaattta gttgttactt tcgaatttctt ccatctctta gttactaaa
661 acaaacttat gtccccata tttctccaac aatttgttga gtggtagctt acgtttact
721 gtatacgctt ttgcaggta tatcagcaca accattaatg atggcccggg atgtttgatg
781 ctaagatgtc ctgacccatc ttgtcttgct gctgttggc atgatatggt tgacaaatta
841 gcgtctgaag acaaaaaggaa gaagtacaac agatattttc ttaggtctta tattgaagac
901 aacagaaaagg taagcagtct agaaaattta tatcacacag actggattttt atgtcgctgg
961 tcttttattt agcaaaaact ggcttcttac ttccctccaag ctctcttcaa ccgcatttgc
1021 gtttcaggcg aacgatgcta ccgaaccatg gtaacagctg cagccacaga gaagacttgc
1081 tccttcgagt caacgcgaaa aactgtacta aagttccaag aagtttagccc ctggccacg
1141 tttggacacg tggcgcaaa cggagcaatc ttggaaagcag tagacggaga ggcaaaagatc
1201 cacatcggtt acataagctc cacgtttgc actcaatggc cgactcttctt agaagcttta
1261 gccacaagat cagacgacac gcctcaccta aggctaacca cagttgtcgt ggccaacaaag
1321 tttgtcaacg atcaaacggc gtcgcacatcgg atgatgaaag agatcgaaa ccgaatggag
1381 aaattcgcta ggcttatggg agttcttca aaatttaaca ttattcatca cggtggagat
1441 ttatctgagt ttgatctcaa cgaactcgac gttaaaccag acgaagtctt ggccatttaac
1501 tgcgttaggcg cgatgcatttca gatcgcttca cgtggaaagcc ctagagacgc tgtgatatcg
1561 agttccgac ggttaagacc gaggattgtg acggtcgttag aagaagaagc tgatcttgc
1621 ggagaagaag aaggtggctt tgatgatgag ttcttggagag gttttggaga atgtttacga
1681 tggtttaggg ttgcatttca gtcattggaa gagagtttc caaggacgag caacgagagg
1741 ttgatgcttag agcgtgcacg gggacgtgcg atcgttgcatttgc ttgtggctt tgagccgtcg
1801 gattccacgg agaggcgaga gacagcgagg aagtggtcga ggaggatgag gaatagtggg
1861 tttggagcgg tgggtatag tgatgaggtg gcggatgatg tcagagctt gttgaggaga
1921 tataaagaag gtgtttggc gatggatcag tgccttgcatttgc ccggccggat attcctttgt
1981 tggagagatc agccgggtggt ttggcttagt gcgtggccggc caacgtaaag gtttgggg
2041 atttttcat aaggaaattc

FIG. 10

FIG. 11

16/24

2.5-kb SHORT-ROOT PROMOTER SEQUENCE

10	20	30	40	50	
<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	<u>1234567890</u>	
AGAAGCAGAG	CGTGGGGTTT	CTTCTAATAA	TTGTAGAAGA	AACTGATCAT	50
GAGAACATT	GATCTACCAAG	AGATGGTGAT	GACTCATAAG	ATGTAATAT	100
CTACTGCATT	ATGTCTAGCC	TAGGCTATAA	TGTAGATTTG	ATCACTTTCT	150
TCATTAATTA	GTGGGAATT	TTAGCATGAT	ATAGCATATA	TCTAAATATG	200
TCCGAAACTT	TCCTACATAC	TAGAAAATAT	GGAGAGTTAT	GTAATGTAGG	250
TTTGCTTGT	AATATACAAA	ATAACATCAT	CATTTAGTTT	TTAGATTTT	300
TATTTTATT	TTTATAATGG	TGCTACGTAC	GTGGCGATCA	AATTATTCCA	350
ATTTTGAGAC	TTCGGGATT	AAACGAAAT	TAAACAATGG	GCATGAGCTC	400
GGGGGGATAG	ACAAGATTAA	TGCTTTGTAT	CGAGACAAAC	GAGAAAATCA	450
TGATGAGCCT	ATGCATTAAG	TGCCGTTGGT	TAATTAGAGG	TTCGCATATA	500
CATAAACAG	TAGACATATG	GATAAATATG	AACACACACA	CCAAAAAAAGT	550
GGGAAATCTA	AATAAGTGT	GAGAATAATA	AGTCCTCAGG	TGGGAGATTC	600
AAAGAGAGGA	CAATGAAGGG	TATATAGACT	CTAAACAAAAA	ATGGCATGAC	650
TTAGTGGAGA	GGGTTTTAAA	TTGAAACAAG	TAGGATTGAA	GAACAAGAAA	700
ACAAAGAAGC	ATGCCCTAGA	TTTCTGAGAT	AATAATTACA	CATTGCTGTT	750
TATATAAGGT	AAGAGAATAT	GACACATTGG	TTGGTTTCTT	ACGGGTAAAT	800
GTGAAGAAAA	AAAAATAGTA	ATATTGAGA	AAATCTAAA	TAGTAAAGAG	850
GTATATATGG	AGAAGAAGAG	AGAAAAGGGA	AAAATAGTGG	CAGAGAATGG	900
AGAGAGGT	GGAGGCAAAG	GCAAATGTGG	AGCTTTGATG	ATGTTGATGC	950
ACGCCGTCAG	CTTTCTTCA	CGCCTGCTCC	CACTCACTCA	CACCTATGAA	1000
CATTCTCTCT	CTATTTTATA	ATTATATTCA	CATGTCTCTA	TGTTACTATG	1050
TAAATGGTGA	CCACTTAAGT	ATTTATATAT	CATGTATATA	TCTTATAGGT	1100
ATCATACAAA	ATGGTCATGA	AACTTTGCA	ATTCACATCT	ACTTGTTCAT	1150
TGTAGATGCT	AGCTTTTCAC	ATGTTTGAA	AATTAGTCTG	GATCTGAAAT	1200
TCTTTAATTA	GCATTGTTT	GTTGGTCAAC	GTTTAATTTC	TTGATTATTG	1250
ATGTCAAAAA	TTCAGAGCGT	TCAGAACTCT	TACACTAATT	TCTTAAAAAT	1300
AATCGATTA	GAGAAAATAG	AGTTTCATG	CACCAGTGT	GATAGTAACG	1350
TAGTCGCGGA	ATGTCTAAA	CGATTATGAG	TTTGGTGT	TGATTGGTTA	1400
GAATTGGTAT	TAGTAGGACA	TTCTAACTTT	TTTGTAGTC	TGTTGATTAA	1450
GGATGCGTAA	AGAGTCTTT	TATTTTACAC	CAGTTGAGAC	TTGGGATCGA	1500
TAGTACTTGA	AACACTTGGT	TGGTTTCATG	TATTTGGCCT	ATATATAAAC	1550
AAACATCGTA	ATTATATACG	GATTTTTTC	GGAATTTCAC	GCCATATCTG	1600
TAAGTATATA	TAACATGCAT	GTCGTTTCA	AATTCAATG	ATGAACGATC	1650
CACGTAAGTG	CTACTACTCC	TACAATATTG	CATGAGAGAG	ATATGTATT	1700
ATAAAATT	TTTGAGAAGA	GAAATAAGAG	GGAAGGTTAC	TTGGGTGGAT	1750
CGATGTGAAA	ACAAAAGAAG	AAAAGCGAA	ACCCACTAAG	CCATTACATG	1800
ATATCGACCT	TCTTATCTT	TTCTCTTTA	TTTTATT	CTCAGGACTT	1850
TTTCTACTT	AATGAAACCT	CCAAACTATC	TAACTAATAC	ACTCCCATGT	1900
AGAATAAAGA	AAATTATATA	AGATATTGTT	GATATTGTT	AACTAGAAAA	1950
TATATTGCT	CTGTAATT	TCGTAAGTTA	AATCAACATT	TTTCAGTAGA	2000
AACAAATATT	ACTGCAAAAA	GTAGGATCAT	TATTTTGTC	CAAAATCTCA	2050
GTTAGCTATA	GGGTTGTAGT	AAAAACAAAA	CACATTCTTG	ATTGCCCCA	2100
AAAAATAAAG	AGAGAGAAGA	ATATTGTTCA	AAAGTGGTCT	CTTCTCTCTC	2150
TAATTATGTT	TTCACTAAC	CCAATTAGAT	TCAAACAGTC	TACAAAGTCC	2200
AAAAGATAAA	CATGGGACAA	CAATTCGATG	CAAAATCC	TCTTTTCATG	2250
CTCTTTTTT	ATTCTCTAGT	CTTTAAATT	ACTAATAAA	ACTCACAAAT	2300
CCACCAAACC	CATTCTCTAC	AACTCACCTT	CATCTAGATT	TACCCACTCC	2350
CACCGAGAAA	CACAAGAAAA	AAAATATACA	TATATAATA	TACAAGACAA	2400
CACATGATGC	TGATGCAATA	TACACAACAA	AGTATTAAT	CTTAGATATT	2450
GTGGGTCTCC	CTTTCTTCTA	TTCATTTCT	TATTCATTAA	AAAAAA	2500
TG					2502

Replacement Sheet

17/24

RB, right border sequence from *Agrobacterium* Ti plasmid
SHRpro, 2.5-Kb 5' upstream region of *SHORT-ROOT* gene
TE, translational enhancer element of tobacco etch virus
SHR cds, *SHORT-ROOT* protein coding region
GR, rat glucocorticoid receptor domain coding sequence
GFP, green fluorescent protein coding sequence
Nos-T, transcription terminator of nopaline synthetase gene
35S-P, cauliflower mosaic virus 35S promoter
HPT, hygromycin phosphotransferase coding sequence
NPT, neomycin phosphotransferase coding sequence
LB, left border sequence from *Agrobacterium* Ti plasmid

FIG. 12A

Replacement Sheet

18/24

FIG. 12B

Replacement Sheet

19/24

FIG. 12C

20/24

FIG. 12D

Replacement Sheet

21/24

22/24

ECTOPIC *SHR* EXPRESSION CAUSED ABNORMAL ROOT CELL DIVISIONS

FIG. 14

23/24

SCRpro::SHR transgenic

WT

hypocotyl

root

ECTOPIC *SHR* EXPRESSION UNDER THE *SCR* PROMOTER RESULTED
IN THE INDETERMINATE CELL DIVISIONS IN GROUND TISSUE.

FIG. 15

24/24

SCRpro::SHR transgenic

WT

Casparyan strip occurs ectopically in the *SCRpro::SHR* transgenic root

FIG. 16