MAST30001 Stochastic Modelling

Tutorial Sheet 8

- 1. Consider a population consisting of particles arriving from outside according to a Poisson process with rate λ . The lifetime of each particle (after it arrives) is exponential with rate α and the lifetimes are all independent.
 - (a) Model the system as a birth-death process and find the birth and death rates.
 - (b) Show that the process is ergodic and find its stationary distribution.
 - (c) What is the expected number of living particles in the population in stationary?
- 2. A system has N particles each of which at any given time are in one of the two energy states α or β . The particles switch between states α and β according to the following rules. When a particle enters state α , it switches to state β after an exponentially distributed with rate $\mu > 0$ amount of time, independent of the other particles' behaviour and the time the particle entered state α . Similarly, when a particle enters state β , it switches to state α after an exponentially distributed with rate $\lambda > 0$ amount of time, independent of the other particles' behaviour and the time the particle entered state β .
 - (a) Model the number of particles in the energy state α as a continuous time Markov chain and define its generator.
 - (b) Describe the long run behaviour of the chain.
 - (c) If the chain starts with N particles in the α energy state and X_t is the number of α particles at time t, find the mean and variance of X_t as $t \to \infty$. Your answer should be a tidy formula.
- 3. The following continuous time Markov chain is used to model population growth without death. The basic assumption of the model is that every member of the population gives birth to a new member with rate λ (that is, at times with distribution exponential with rate λ), independently of the other members of the population. Let X_t be the size of the population at time t.
 - (a) What is $\mathbb{P}(X_t = n | X_0 = 1)$?
 - (b) If U is uniform on the interval (0,1), independent of X_t , find the distribution of $X_U|X_0=1$.
- 4. Show that in in M/M/1 queue with arrival rate λ and service rate $\mu > \lambda$, the expected lengths of the idle and busy periods are $1/\lambda$ and $1/(\mu \lambda)$, respectively. [Hint: the proportion of time the server is idle is equal to the stationary chance the system is empty.]