§ 1.1. Structure of finite/local/global field

Road map

	finite field	- local Archi	field	global field	adéle
base field F F* integral ring OF units OF	F,	R or C R** 2/2 C* —	3 Qp Fp((+)) Zp Fp((+))*Z Zp Fp((+))*Z Zp Fp((+))*	4 Q (Fp(t) Q* (Fp(t)* Z/22 (Fp[t] Z/22 (Fp*	6 A _K I _k K ? I [×] ?
Gal(F ^{sep} /F) ari Frob # ext of dag n Spec OF	\widehat{Z} ? \widehat{Z} ? can 1? 1 Spec $f_q = k(\widehat{Z}, 1)$ [étale, 2,2,4]	Z/ _{2Z/} Id total order? — 1/0	most known choose a lift finite	unramified Frob q Frob p conj n + 1 inf cou	class abelian Frobp ntable
topology topo of OF measure	? discrete — ? discrete	Euclidean — Lebesgue	profinite cpt, not discrete µ(OF) = 1		restricted K is a lattice in Ak Can be computed

Also, discuss

- field extension, norm, trace,...
- their connection to geometry, ramification theory
- analog with knot theory

1 finite field 1Fg

Any fin field is of form IFq, where $q = p^r$, $r \in IN_{\geq 1}$, IFq = the splitting field of $X^q - X$ over IFp. $Gal(\overline{\mathbb{F}_q}/\mathbb{F}_q) \cong \widehat{\mathcal{Z}}$ as top gps

Frobp \iff 1

2. Archi local field IR or C

No difficulty: $Gal(C/R) \cong Z/2Z$ Gal(C/C) = Id C is the unique local field which is alg closed.

3. NA local field Define NA local field as (finite ext of Q_p) or $F_q((T))$.

Individual structure

Task Read [NAlocal], answer the following questions:

- Describe O, p, k, U, U in terms of v
- What is the structure of Qp??
- For F, Fx, O, Ox, which are opt?
- Can we classify open subgps of F.Fx?
- Give a description of the Haar measure on F and Fx.

Field extension

Task Read [NA ext], answer the following questions.

- Describe the field extension tower of F.
- Find a wild extension of exp & [Fp[[t]]
- Can we "see the geometry of Qp" vividly?

We will discuss section 4 in [NAext] together. Some questions.

- Define IF, PF
- Construct IF/PF ~ 2(P)
- Explain why we have $Fr = T^{-1} = T^{9}$.

Task Read [NAval], answer the following questions: (Not necessary for future discussion)

- What is the difference of NA valued field (with NA local field)?
 When is the field extension over Qp complete?
- Using the result in [NAval], computes the following Galois gps.

$$Gal\left(|F_{p}((t\stackrel{\leftarrow}{p^{\infty}}))^{sep}/_{|F_{p}((t\stackrel{\leftarrow}{p^{\infty}}))}\right), Gal\left(\widehat{\overline{Q}_{p}}/\widehat{\overline{Q_{p^{\infty}}}}\right), Gal\left(\overline{\overline{Q_{p}}(p^{\stackrel{\leftarrow}{p^{\infty}}})}/_{\overline{Q_{p}}(p^{\stackrel{\leftarrow}{p^{\infty}}})}\right)$$

$$G_{|F_{p}((t))}$$

$$I_{Q_{p}}$$

4. global field

Gal (Q/Q) is quite complicated.

Gal (IFp(+) sep/IFp(+)) is less complicated, since by [Vakil, 6.5.D],

we have the equiv of cat

If in ext of $\mathbb{F}_p(t)$ \longrightarrow falg curve over \mathbb{F}_p /birational $\mathbb{F}_p(t)$ (C(t)) is even simpler by [GalFun, Thm 3.4.8],

 $Gal\left(\overline{\mathbb{C}(t)}/\mathbb{C}(t)\right) \cong \widehat{F}(\mathbb{C})$ Free profinite gp on \mathbb{C}

Shafarevich's conj: See wiki: Absolute Galois group $Gal(\overline{\mathcal{Q}}/\mathcal{Q}^{ab})$ is a free profinite qp

Q. Does Cal (Q(Q) also have any natural acted object/geo realizations?

Dessin d'enfants

By [Gal Fun, Prop 4.7.1 - Rmk 4.7.9], we have an including

 $Gal\left(\overline{Q}/Q\right) \longrightarrow Out\left(\pi_{i}^{\text{\'et}}(P_{\overline{Q}} - \{0,1,\infty\})\right)$ induced by $\pi_{i,\overline{Q}}^{\text{\'et}} = \pi_{i}^{\text{\'et}}(P_{\overline{Q}} - \{0,1,\infty\}) \quad , \quad \pi_{i,Q}^{\text{\'et}} = \pi_{i}^{\text{\'et}}(P_{\overline{Q}} - \{0,1,\infty\})$

The space $\mathbb{P}_{\overline{\omega}}$ - $\{0,1,\infty\}$ is designed for guaranteeing that $Gal(\overline{\omega}/\omega) \longrightarrow Out(\pi_{1,\overline{\omega}}^{\text{ft}})$

is inclusion.

Task Read [Dessin d'enfant] or [Collins], understand the Gal(Q/Q)-action on the dessin d'enfants.

- Def of Dessin d'enfact - Connections with Out $(\pi_{i,\overline{\omega}}^{\underline{e}t})$ via Belyi theovem

- Is this action faithful? Yes. in [Collins, Thm 7.1]

- Can we describe this action? Hard

- Can we generalize this to Gal (Fp(+)3ep//Fp(+))?

I don't know how to make a "dessin d'enfant" on alg curves over 1Fp.

The global field has close connections with local fields. We will discuss these connections in next 2 sections in detail.

5 local and global connections

6 local to global: adèle Recall: Ostrowski's thm

Recall: Ostrowski's thm & Product formula.

Task Read [Adèle] and answer the following questions:

- Give a def of AK & IK (set, topo and measure)

- Verify that

 $K \subseteq A_{\mathsf{K}}$ $\mathcal{O}_{\mathsf{T}} \subseteq \prod_{\mathsf{v} \in \mathsf{T}} K_{\mathsf{v}}$ $K^{\mathsf{v}} \subseteq \mathbb{I}_{\mathsf{k}}^{\mathsf{v}}$ $\mathcal{O}_{\mathsf{T}}^{\mathsf{v}} \subseteq (\prod_{\mathsf{v} \in \mathsf{T}} K_{\mathsf{v}})^{\mathsf{v}}$

are lattices. Give fundamental domain in easy cases.

- Deduce the finiteness of class number and Dirichlet unit theorem.

Base field with automorphism

We know that

	finite field	local	field NA	global field	Adéle
base field F	IF _P	IR	Qp 1F,((t))	Q(Fp(t)	A_{k}
•	Autring (IFp) = 1	Aut top ring (IR) = 1	Aution ring (Q)=1	$Aut_{ring}(Q) = 1$	
	•	·	Autopring(IFp((t))) #1	Aut ((Fp(t)) \$1	$Autring(A_{IF_{i}(t)})$ #

Q. Do we have Autring (AW) = SId)?

A. Yes. See [LCFT, Ex 6.3.6]. I don't understand this proof.

Galois extension

Setting: L/K fin ext of global field

Recall that we have an iso

 $L \otimes_{K} A_{K} \xrightarrow{\cong} A_{L}$ of topo rings with compatible embedding of L $\longrightarrow A_{K} \subseteq A_{L}$ subring, $A_{L} \cong A_{K}$ as A_{K} -module.

Lemma [LCFT, Ex 63.2]