

Transmission Loss of a Muffler

Actran Student Edition Tutorial

Introduction

- This workshop demonstrates Actran capabilities to model an expansion chamber (simple muffler) and calculate its transmission loss
- The objectives of this workshop are the following :
 - Get introduced to muffler transmission loss
 - Use 2D geometry to model axi-symmetric 3D problem
 - Distinguish plane wave duct propagation and non-plane wave propagation
- Software Version:
 - Actran 19 Student Edition

Workshop Description

- Through this workshop, we will model an expansion chamber using 2D axisymmetric modeling technique and calculate its transmission loss
- The muffler is modeled in 2D
 - A <u>finite fluid</u> component is defined
- Muffler inlet and outlet are modeled by modal ducts
 - Modal basis components are defined

Transmission Loss of Muffler

Incident wave is partially transmitted and partially reflected by the muffler

 The Transmission Loss (TL) is the ratio between the incident power and transmitted power

- Acoustic anechoic condition is applied
 - at outlet for the transmitted wave
 - at inlet for the reflected wave

Analytical solution

For an expansion chamber, the analytical TL can be calculated using the equation

$$TL = 10\log\left[1 + \left(\frac{m^2 - 1}{2m}\sin kl\right)^2\right]$$

- m: cross section area ratio
 between expansion chamber
 and inlet (outlet) tube
 (0.15 / 0.05)² = 9
- I: length of expansion part of the chamber = 0.35
- k: wave number2· π· freq / speed of sound

 This analytical solution is calculated with the assumption of plane wave propagation in the muffler

Workshop Pre-Processing

Direct Frequency Analysis

Start ActranVI

- Start ActranVI:
 - shortcut is available through the Windows Start Menu

(Windows Start Menu)

Set the Working Directory

- The working directory is the default directory where all the files are output
- Click on :
 - File → Set Working Directory...
- Select the workshop directory as the working directory

^{*} Important: The working directory path should not contain any space or special character

Create the mesh using BOXPRO

Create a BOXPRO Topology in
 Add → Mesh → Boxpro Topology

- Enter the X,Y, Z dimensions of the Boxpro topology
 - X: [[0, 0.01, 0.15]]
 - Y: [[0, 0.01, 0.7]]
 - Z: EMPTY (z=0 for entire mesh)

Create the mesh using BOXPRO

 Based on the definition of the global box, the domains may be created

- On the topology properties window click on "Add Domains..."
- Then, in the popup window
 - a. Set the name of the domain
 - b. Set the domain dimension to 2
 - c. Create the three regions
 - d. Click on the check box of Show complete mesh to display the mesh

	Range X	Range Y
Region 1	0.0 , 0.05	0.0 , 0.2
Region 2	0.0 , 0.15	0.2 , 0.55
Region 3	0.0 , 0.05	0.55 , 0.7

- Add a new domain for the Inlet
- Fill the properties of the Domain
 - a. Change domain Name to "Inlet"
 - b. Enter "1" in the Dimension of the domain
 - c. Create a region. X: 0, 0.05 Y: 0 Z: empty
 - d. Click on the check box of Show complete mesh

The line supporting the inlet is now created

- Add a new domain for the Outlet
- Fill the properties of the Domain
 - a. Change domain Name to "Outlet"
 - b. Enter "1" in the Dimension of the domain
 - c. Create a region. X: 0, 0.05 Y: 0.7 Z: empty
 - d. Click on the check box of Show complete mesh

The line supporting the outlet is now created

Create the Direct Frequency Response

 Create a Direct Frequency Response analysis by right-clicking on "Analysis"

The analysis properties window pops-up. It is the window from which the different parts of the analysis are defined

Specify the Frequency Range

- The frequency range of computation is specified through the properties of the analysis
- The maximum frequency is driven by the smallest wave length:
 - For linear elements, a rule of thumb is to use 8 linear elements per wavelength to capture the acoustic fluctuation

 $f_{max} = \frac{c}{\lambda_{min}} \text{ with } L_{max} = \frac{\lambda_{min}}{8} = 0.01m$ $gives f_{max} = \frac{340}{8 * 0.01} = 4250Hz$

The largest element length in the mesh is 10 mm

This analysis is performed from 10Hz up to 2000 Hz with a step of 10 Hz

Axi-symmetry Definition

 The Actran model is a 2D axi-symmetric model. This should be defined in the Direct Frequency Analysis properties → Set the Axisymmetry Order to 0. This specifies a constant solution with varied azimuthal angle in the duct cross section

 By default, the Y axis is always the axis of revolution. The mesh of axisymmetric problems must locate in the right half (X > 0) of the XY plane

Create the Finite Fluid Component

1 – Add a Component

Add a Finite Fluid component

- Component properties:
 - Specify the name of the Finite Fluid component: Muffler_volume
 - Create a new Fluid material

Create the Finite Fluid Component

2 – Set up the Fluid Material

Name: Air

Standard properties of air:

Speed of sound: 340 m/s

Density: 1.255 kg/m³

Remark: These values are defaults values if they are not specified

Close the material properties window

Create the Finite Fluid Component

3 – Assign the Domain

 With the Scope selector, assign the Muffler_volume domain to the Muffler_volume component

Close the component properties window

Modal Ducts Components

- For in-duct propagation problems, acoustic wave can be seen as a mathematical superposition of duct modes
- In Actran, such an analytical representation is used in order to specify non-reflecting BC as well as to inject energy through a given system assuming a connection to semi-infinite ducts
- Two types of modes can be defined:
 - Constrained: allows injecting energy in the system and must be defined in the <u>+1</u> direction (see further slides) if the first axis points inside the system
 - Free: allows representing a non-reflecting BC and must be defined in the <u>-1</u> direction (see further slides) if the first axis points inside the system

Power Quantities of Duct Modes

- In the PLT result, a duct modal basis contains two power quantities.
 - Incident power: power along the positive direction (indicated by the thick arrow) of the duct mode
 - Transmitted power: power opposite the positive direction

Create a Modal Duct Component for the Inlet

 Add a Modal Duct component

- Incident wave is injected through this inlet modal duct component
- Reflected wave should be free to go through the inlet modal duct component

- a. Set duct name: Inlet
- b. Choose material: Air 1
- c. Set cross section parameters:

 Center at [0,0]

 Axes: [0,1],[1,0]
- d. Cross section surface:

 $0.007854 \quad (\pi \cdot 0.05^2)$

e. Create incident plane mode

Direction: 1

Format: Amplitude

Value: 1

 f. Create anechoic condition for reflected wave

Direction: -1

Format: Free

- g. Select the domain "inlet"
- h. Click "View Geometry"

Create a Modal Duct Component for the Outlet

 Add a Modal Duct component

 Transmitted wave should be free to go through the outlet modal duct component

- a. Set duct name: outlet
- b. Choose material: air
- c. Set cross section parameters:

Center at [0, 0.7]

Axes: [0,1], [1,0]

d. Cross section surface:

 $0.007854 \quad (\pi \cdot 0.05^2)$

 Create anechoic condition for reflected wave

Direction: 1

Format: Free

- Select the domain "outlet"
- g. Click "View Geometry"
- h. Adjust the components visualization

Local duct systems

Create Post-Processing Requests

- Create an "Output FRF"
 - Right Click on Postprocessing
 - Select Add Output FRF
 - Specify PLT file name:
 muffler_2D_axi.plt
- Create an "Output Map"
 - Right Click on Postprocessing
 - Select Add Output Map
 - Choose "NFF" as map output format
 - NFF name: muffler_2D_axi.nff
 - Type "1" in Step for map results

Specify the Solver

Define the solver of the analysis

- Set the MUMPS solver
- Close the pop-up window of MUMPS

Close the properties window of the Direct Frequency Response

Check the Analysis

- The analysis is now completely defined
- All the parts of the analysis are available and editable on the data tree panel
- Check if the analysis tree is identical to the one shown here

Export the Analysis File

- The analysis can be exported in the EDAT Actran input file
- Right click on the Direct Frequency Response, and choose Export analysis (EDAT format)

- The topology was created with BOXPRO, the analysis may be exported in two different formats:
 - The BOXPRO format: the mesh is written in the EDAT file the same way as in the topology definition. Nodes coordinates and elements are created at the beginning of the analysis
 - The ACTRAN format: the mesh is explicitly written in the EDAT file
- Select BOXPRO as the Output format and name the input file "input_muffler.edat"

Launch Actran Analysis

- Launch the computation:
 - Open the FFT Launcher by right clicking on the input_muffler.edat input file and selecting Launch with ACTRAN [Student Edition]

- In Command line options, specify the allocated memory (in MB): -m 500
- Click on the Green arrow to run the computation

- The computation log progresses as the model runs
- "End of computation job" indicates the computation has finished

Close the Launcher window

Post-processing

Compute the transmission loss in PLTViewer Visualize pressure maps in ActranVI

Open PLTViewer and import field point results

- PLTViewer is the dedicated post-processing utility to visualize FRF curves from Actran (stored in the PLT file) or from measurements
- Open the PLTViewer interface
 - PLTViewer can be launched within ActranVI from the Utilities menu

- Import the file muffler_2D_axi.plt
 - Under File select Open PLT file
 - Select the file muffler_2D_axi.plt

Plot the acoustic pressure

 The transmission loss (TL) index is an indicator of the acoustic efficiency of the muffler

Click on insert in X data vector sub-window

 Choose "TL" for the Y Data vector and click on "Insert" in this sub-window

- Drag and drop the selected outputs at the appropriate locations
 - Inc-Power of "inlet" → "incident" in the TL operator
 - Inc-Power of "outlet" → "transmitted" in the TL operator

Comparison with Analytical Solution

For an expansion chamber, the analytical TL can be calculated using the equation

$$TL = 10\log\left[1 + \left(\frac{m^2 - 1}{2m}\sin kl\right)^2\right]$$

- m: cross section area ratio
 between expansion chamber
 and inlet (outlet) tube
 (0.15 / 0.05)² = 9
- I: length of expansion part of the chamber = 0.35
- k: wave number2· π· freq / speed of sound

- This analytical solution is calculated with the assumption of plane wave propagation in the muffler
- The analytical solution has been calculated and is available in the file TL_analytical.txt

Comparison with Analytical Solution

- Plot the analytical solution
 - Open the results file
 File menu → Open Text file → Choose file "TL_analytical.txt"
 - Add a new Function: Function 2
 - In Function 2, choose "BLANK" for Y Data vector
 - Click "Replace" under Y Data vector
 - Plot the analytical curve
- Adjust the curves parameters to plot the analytical solution with a dashed red line

Visualize Field Map in ActranVI

Switch back to tab ActranVI:

- ActranVI × PLTViewer ×
- Import the pressure results on the field mesh
 - a) Import the NFF: muffler_2D_axi.0.nff (the ".0" indicates that the calculation was run with axisymmetrical order 0)
 - b) Choose Fluid_P(fp) for acoustic pressure
 - c) Import Selection

Going Further – Modeling Muffler in 3D

- A muffler model in 3D is contained in the folder "3D muffler"
- Import the analysis file in ActranVI
 - visualize the mesh
 - view the model set up
- Run the analysis
- Perform post processing in ActranVI
 - Plot TL curve
 - Display pressure maps

Geometry

Mesh

Pressure map with cut planes

Transmission loss