Paradigmas de Programación

Cálculo- λ

2do cuatrimestre de 2024

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

El cálculo- λ^b

Sintaxis de los tipos

$$au, \sigma,
ho, \ldots ::= \mathsf{bool} \ ert \ au
ightarrow \sigma$$

Asumimos que el constructor de tipos " \rightarrow " es asociativo a derecha:

$$au o \sigma o
ho \quad = \quad au o (\sigma o
ho) \quad
eq \quad (au o \sigma) o
ho$$

¿Qué es el cálculo- λ ?

Lenguaje de programación definido de manera rigurosa. Se basa sólo en dos operaciones: construir funciones y aplicarlas.

Históricamente

- Concebido en la década de 1930 por Alonzo Church para formalizar la noción de función efectivamente computable.
- ► Usado desde la década de 1960 para estudiar semántica formal de lenguajes de programación.

Actualmente

Núcleo de lenguajes de programación funcionales y asistentes de demostración.

LISP, OCAML, HASKELL, COQ, AGDA, LEAN,

- Laboratorio para investigar nuevas características de lenguajes.
- ► Fuertemente conectado con la teoría de la demostración, matemática constructiva, teoría de categorías, . . .

El cálculo- λ^b

Suponemos dado un conjunto infinito numerable de variables:

$$\mathcal{X} = \{x, y, z, \ldots\}$$

Sintaxis de los términos

Asumimos que la aplicación es asociativa a izquierda:

$$MNP = (MN)P \neq M(NP)$$

La abstracción y el "if" tienen menor precedencia que la aplicación:

$$\lambda x : \tau. M N = \lambda x : \tau. (M N) \neq (\lambda x : \tau. M) N$$

 $\triangleright \lambda x : \mathsf{bool} \to \mathsf{bool}. x$

 \triangleright (λx : bool. x) false

 $(\lambda x : \mathsf{bool} \to \mathsf{bool}.x)(\lambda y : \mathsf{bool}.y)$

▶ $(\lambda x : \mathsf{bool}. \lambda y : \mathsf{bool} \to \mathsf{bool}. y x)$ true

 $\triangleright \lambda x$: bool. if x then false else true

true true

• if λx : bool. x then false else true

Sistema de tipos

La noción de "tipabilidad" se formaliza con un sistema deductivo.

Problema

¿Qué tipo tiene x?

Contextos de tipado

Un **contexto de tipado** es un conjunto finito de pares $(x_i : \tau_i)$:

$$\{x_1:\tau_1,\ldots,x_n:\tau_n\}$$

sin variables repetidas $(i \neq j \Rightarrow x_i \neq x_j)$. Se nota con letras griegas mayúsculas $(\Gamma, \Delta, ...)$.

Juicios de tipado

El sistema de tipos predica sobre **juicios de tipado**, de la forma:

$$\Gamma \vdash M : \tau$$

Variables libres y ligadas

Una ocurrencia de x está **ligada** si aparece adentro de una abstracción " λx ". Una ocurrencia de x está **libre** si no está ligada.

Ejemplo

Marcar ocurrencias de variables libres y ligadas:

$$(\lambda x : \mathsf{bool} \to \mathsf{bool}. \lambda y : \mathsf{bool}. x y)(\lambda y : \mathsf{bool}. x y) y$$

Ejercicio

Definir el conjunto de variables libres fv(M) de M.

Alfa equivalencia

Los términos que difieren sólo en el nombre de variables *ligadas* se consideran iguales:

$$\lambda x : \tau . \lambda y : \sigma . x = \lambda y : \tau . \lambda x : \sigma . y = \lambda a : \tau . \lambda b : \sigma . a$$

 $\lambda x : \tau . \lambda y : \sigma . x \neq \lambda x : \tau . \lambda y : \sigma . y = \lambda x : \tau . \lambda x : \sigma . x$

Sistema de tipos

Reglas de tipado

7

Sistema de tipos

Propiedades del sistema de tipos

Ejemplo — derivaciones de juicios de tipado

Derivar, si es posible, juicios de tipado para los siguientes términos:

1. λx : bool. if x then false else x

2. λy : bool \rightarrow bool \rightarrow bool. λz : bool. $y(y \times z)$

3. xy(xz)

4. true $(\lambda x : bool. x)$

5. xx

Teorema (Unicidad de tipos)

Si $\Gamma \vdash M : \tau \vee \Gamma \vdash M : \sigma$ son derivables, entonces $\tau = \sigma$.

Teorema (Weakening + Strengthening)

Si $\Gamma \vdash M : \tau$ es derivable y $\text{fv}(M) \subseteq \Gamma \cap \Gamma'$ entonces $\Gamma' \vdash M : \tau$ es derivable.

Semántica formal

El sistema de tipos indica cómo se construyen los programas. Queremos además darles **significado** (semántica).

Distintas maneras de dar semántica formal

1. Semántica operacional.

Indica cómo se ejecuta el programa hasta llegar a un resultado.

Semántica *small-step*: ejecución paso a paso.

Semántica big-step: evaluación directa al resultado.

2. Semántica denotacional.

Interpreta los programas como objetos matemáticos.

3. Semántica axiomática.

Establece relaciones lógicas entre el estado del programa antes y después de la ejecución.

4. ...

Vamos a trabajar con semántica operacional *small-step*.

Programas

11

14

Un **programa** es un término M tipable y *cerrado* (fv(M) = \emptyset):

▶ El juicio de tipado $\vdash M : \tau$ debe ser derivable para algún τ .

Juicios de evaluación

La semántica operacional predica sobre **juicios de evaluación**:

$$M \rightarrow N$$

donde M y N son programas.

Semántica operacional *small-step*

Valores

Los valores son los posibles resultados de evaluar programas:

$$V ::= \text{true} \mid \text{false} \mid \lambda x : \tau. M$$

Semántica operacional small-step

Reglas de evaluación para expresiones booleanas

Semántica operacional small-step

Ejemplo

- 1. Derivar el siguiente juicio:
 - if (if false then false else true) then false else true \rightarrow if true then false else true
- 2. ¿Para qué términos M vale que true $\rightarrow M$?
- 3. ¿Es posible derivar el siguiente juicio?

if true then (if false then false else false) else true \rightarrow if true then false else true

16

Semántica operacional small-step

Reglas de evaluación para funciones (abstracción y aplicación)

$$\frac{M \to M'}{M N \to M' N} \text{E-APP1}$$

$$\frac{N \to N'}{(\lambda x : \tau. M) N \to (\lambda x : \tau. M) N'} \text{E-APP2}$$

$$\frac{(\lambda x : \tau. M) V \to M\{x := V\}}{(\lambda x : \tau. M) V \to M\{x := V\}} \text{E-APPABS}$$

Sustitución

La operación de sustitución:

$$M\{x := N\}$$

denota el término que resulta de reemplazar todas las ocurrencias libres de x en M por N.

17

Sustitución

Definición de sustitución

$$x\{x := N\} \stackrel{\text{def}}{=} N$$

$$a\{x := N\} \stackrel{\text{def}}{=} a \text{ si } a \in \{\text{true}, \text{false}\} \cup \mathcal{X} \setminus \{x\}$$

$$\text{(if } M \text{ then } P \text{ else } Q)\{x := N\} \stackrel{\text{def}}{=} \text{ if } M\{x := N\}$$

$$\text{then } P\{x := N\}$$

$$\text{else } Q\{x := N\}$$

$$(M_1 M_2)\{x := N\} \stackrel{\text{def}}{=} M_1\{x := N\} M_2\{x := N\}$$

$$(\lambda y : \tau. M)\{x := N\} \stackrel{\text{def}}{=}$$

$$\begin{cases} \lambda y : \tau. M & \text{si } x = y \\ \lambda y : \tau. M\{x := N\} & \text{si } x \neq y, \ y \notin \text{fv}(N) \\ \lambda z : \tau. M\{y := z\}\{x := N\} & \text{si } x \neq y, \ y \in \text{fv}(N), \\ z \notin \{x, y\} \cup \text{fv}(M) \cup \text{fv}(N) \end{cases}$$

Sustitución

Definición de sustitución (alternativa)

$$x\{x := N\} \stackrel{\text{def}}{=} N$$

$$a\{x := N\} \stackrel{\text{def}}{=} a \text{ si } a \in \{\text{true}, \text{false}\} \cup \mathcal{X} \setminus \{x\}$$

$$(\text{if } M \text{ then } P \text{ else } Q)\{x := N\} \stackrel{\text{def}}{=} \text{ if } M\{x := N\}$$

$$\text{then } P\{x := N\}$$

$$\text{else } Q\{x := N\}$$

$$(M_1 M_2)\{x := N\} \stackrel{\text{def}}{=} M_1\{x := N\} M_2\{x := N\}$$

$$(\lambda y : \tau. M)\{x := N\} \stackrel{\text{def}}{=} \lambda y : \tau. M\{x := N\}$$

$$\text{asumiendo } y \notin \{x\} \cup \text{fv}(N)$$

La asunción se puede cumplir siempre, renombrando la variable ligada *y* en caso de conflicto.

Semántica operacional small-step

Ejemplo — evaluación

Reducir repetidamente el siguiente término hasta llegar a un valor:

$$(\lambda x : \mathsf{bool}. \lambda f : \mathsf{bool} \to \mathsf{bool}. f(fx)) \mathsf{true}(\lambda x : \mathsf{bool}. x)$$

Propiedades de la evaluación

Teorema (Determinismo)

Si $M \rightarrow N_1$ y $M \rightarrow N_2$ entonces $N_1 = N_2$.

Teorema (Preservación de tipos)

 $Si \vdash M : \tau \lor M \to N \text{ entonces} \vdash N : \tau.$

Teorema (Progreso)

 $Si \vdash M : \tau \text{ entonces}$:

- 1. O bien *M* es un valor.
- 2. O bien existe N tal que $M \rightarrow N$.

Teorema (Terminación)

 $Si \vdash M : \tau$, entonces no hay una cadena infinita de pasos:

$$M \to M_1 \to M_2 \to \dots$$

20

Propiedades de la evaluación

Corolario (Canonicidad)

- 1. Si $\vdash M$: bool es derivable, entonces la evaluación de M termina y el resultado es true o false.
- 2. Si $\vdash M : \tau \to \sigma$ es derivable, entonces la evaluación de M termina y el resultado es una abstracción.

Slogan

Well typed programs cannot go wrong. (Robin Milner)