TD N°5 : Équations différentielles ordinaires

Ahmed Ammar (ahmed.ammar@fst.utm.tn)

Institut Préparatoire aux Études Scientifiques et Techniques, Université de Carthage.

Mar 10, 2020

Contents

Exercice 1: Pendule simple

On considère un pendule simple de masse $m=1\ kg$, de longueur $l=1\ m$ qui va osciller d'arrière en avant à cause du champ de gravité de la Terre $g=9.8\ m/s^2$.

Le pendule a l'équation du mouvement :

$$\ddot{\theta} = -\frac{g}{l}sin(\theta) \tag{1}$$

Pour les petites amplitudes d'oscillation, $\theta \ll 1$, on peut faire l'approximation $sin(\theta) \approx \theta$, on retrouve alors l'équation différentielle d'un oscillateur harmonique:

© 2020, Ahmed Ammar. Released under CC Attribution 4.0 license

$$\ddot{\theta} = -\frac{g}{I}\theta\tag{2}$$

La solution exacte de cette équation est simplement:

$$\theta(t) = \theta_0 \cos(\omega_0 t) \tag{3}$$

où $\omega_0 = \sqrt{g/l}$ et nous avons supposé que le pendule partait du repos avec un déplacement initial $\theta_0 = 0.2 \ rad$.

Nous allons transformer l'équation différentielle d'ordre 2 (Eq. (2)) en deux équations différentielles d'ordre 1 afin de pouvoir utiliser simplement la méthode d'Euler. En posant $\omega(t) = \dot{\theta}(t)$ la vitesse angulaire du pendule, on obtient le système de deux fonctions inconnues suivant :

$$\dot{\theta}(t) = \omega(t) \tag{4}$$

$$\dot{\omega}(t) = -\omega_0^2 \ \theta(t) \tag{5}$$

Pour résoudre ce système nous devons connaître les deux conditions initiales suivantes :

$$\theta(0) = \theta_0$$
$$\omega(0) = 0$$

a) Définir une fonction $sol_exacte(t)$ qui renvoie la solution exacte de l'oscillateur harmonique donnée par l'équation (3). Tracer cette solution pour $t \in [0, 10]$ et pour un pas de $\Delta t = 0.01$ s.

Indication.

- Utiliser la fonction numpy.arange() pour créer le vecteur temps t.
- Utiliser la fonction matplotlib.pyplot.plot() pour tracer sol exacte(t).
- b) Rappeler l'expression de la méthode d'Euler explicite pour ce système.
- c) Calculer $\boldsymbol{u} = \begin{pmatrix} \theta(t) \\ \omega(t) \end{pmatrix}$ avec la méthode d'Euler explicite pour $t \in [0, 10]$ et pour un pas d'intégration $\Delta t = 0.01$ s.

Tracer:

- Dans un même graphique, la variation de l'amplitude d'oscillation θ en fonction du temps t et le diagramme des phases (vitesse angulaire ω en fonction de θ).
- Dans un graphique 3D, la vitesse angulaire ω et l'amplitude d'oscillation θ en fonction du temps t.

Que remarquez-vous pour le résultat trouvé?

Indication. On vous donne les instructions nécessaires pour reproduire un graphique en 3D:

```
from mpl_toolkits.mplot3d.axes3d import Axes3D
plt.figure()
ax = plt.axes(projection="3d")
ax.plot(....)
```

- d) Rappeler l'expression de la méthode d'Euler implicite pour ce système.
- e) Calculer $\boldsymbol{u} = \begin{pmatrix} \theta(t) \\ \omega(t) \end{pmatrix}$ avec la méthode d'Euler implicite pour $t \in [0, 10]$ et pour un pas d'integration $\Delta t = 0.01$ s.

Tracer:

- Dans un même graphique, la variation de l'amplitude d'oscillation θ en fonction du temps t et le diagramme des phases (vitesse angulaire ω en fonction de θ).
- Dans un graphique 3D, la vitesse angulaire ω et l'amplitude d'oscillation θ en fonction du temps t.

Que remarquez-vous pour le résultat trouvé?

- f) Tracer dans un même graphique pour $t \in [0, 10]$ et avec un pas $\Delta t = 0.01$ s:
 - sol_exacte(t) calculée dans a).
 - $\theta(t)$ calculée dans c) par la méthode d'Euler explicite.
 - $\theta(t)$ calculée dans e) par la méthode d'Euler implicite.

Que remarquez-vous si nous modifions la valeur du pas d'intégration par $\Delta t = 0.001$ s? Expliquer le résultat trouvé.

Exercice 2: Comparaison des schémas d'Euler explicite et implicite

On considère le problème de Cauchy:

$$\frac{dz(t)}{dt} = 1 - \frac{t}{\mu}, \ t \in \Re, \ z(0) = z_0 \tag{6}$$

On rappelle que la solution exacte de ce problème est donnée par:

$$z(t) = \mu - (\mu - z_0)e^{-\frac{t}{\mu}} \tag{7}$$

a) Définir une fonction sol_exacte(t, mu, z0) qui renvoie la solution exacte donnée par l'équation (7). Tracer sur un même graphique pour $\mu = 1$ et $z_0 \in \{0,1,2\}$ ces solutions. Soit $t \in [0,2]$ et pour un pas de $\Delta t = 0.1$ s.

- **b)** Même questions pour $\mu = 0.05$ et $z_0 \in \{0, 1, 2\}$. On suppose dans cette question que $\mu = 0.05$ et que $z_0 = 2$.
- c) Rappeler l'expression de la méthode d'Euler explicite pour ce problème. Calculer z(t) avec la méthode d'Euler explicite pour $t \in [0,2]$ et pour un pas d'intégration $\Delta t = 0.1$ s.
- d) Montrer que l'expression de la méthode d'Euler implicite est:

$$z_{n+1} = \frac{z_n + \Delta t}{1 + \frac{\Delta t}{\mu}}, \ n = 0, 1, 2, ..., N - 1.$$

Calculer z(t) avec la méthode d'Euler implicite pour $t \in [0,2]$ et pour un pas d'intégration $\Delta t = 0.1$ s.

- e) Tracer dans un même graphique pour $t\in[0,2]$ et avec des pas d'intégration $\Delta t=0.5,0.1,0.05,0.01,0.005$ s:
 - La solution exacte: sol_exacte(t, 0.05, 2)
 - z(t) calculée par la méthode d'Euler explicite.
 - z(t) calculée par la méthode d'Euler explicite.

Que remarquez-vous pour les résultats trouvés? Quelle est la méthode la plus proche de la solution exacte?

Exercice 3: Atterrissage d'un vaisseau spatial

Un vaisseau spatial est lancé à l'altitude $H=772\ km$ au-dessus du niveau de la mer avec la vitesse $v_0=6700\ m/s$ dans la direction indiquée sur la figure ci-dessus. Les équations différentielles décrivant le mouvement du vaisseau spatial sont:

$$\ddot{r} = r\dot{ heta}^2 - rac{GM_T}{r^2}$$
 $\ddot{ heta} = -rac{2\dot{r}\dot{ heta}}{r}$

où r et θ sont les coordonnées polaires du vaisseau spatial. Les constantes impliquées dans le mouvement sont:

- $G = 6.672 \times 10^{-11} \ m^3 kg^{-1} s^{-2} = \text{constante gravitationnelle universelle}.$
- $M_T = 5.9742 \times 10^{24} \ kg = \text{masse de la terre.}$
- $R_T = 6378.14 \ km =$ rayon de la terre au niveau de la mer.
- a) Dériver les équations différentielles du premier ordre et les conditions initiales de la forme $\dot{y} = F(t, y), y(0) = b$.
- b) Utiliser la méthode Runge-Kutta du quatrième ordre (RK4) pour intégrer les équations depuis le lancement jusqu'à ce que le vaisseau spatial touche la terre. Déterminez θ au site d'impact.