Введем цилиндрические координаты. Ось выберем так, чтобы тор получался вращением сферы именно вокруг нее. Новые переменные: z - сдвиг вдоль оси;  $\rho$  - расстояние от оси z;  $\psi \in [0,2\pi]$ 



Рис. 1.

Рассмотрим одну сферу. Пусть ее центр располагается в точке  $(R,z_0,\psi_0)$  (что в дальнейшем не играет роли). Точка на сфере однозначно определяется тремя параметрами  $\rho$ , z и  $\psi$ . В частности, при заданных  $\rho$  и z существуют два угла  $\psi_1$  и  $\psi_2$ , задающих разные точки. Однако, мы знаем, что итоговое распределение не зависит от  $\psi$ . Поэтому будем в дальнейшем считать эти точки эквивалентными, то есть параметризировать одну полусферу, отсекаемую полуплоскостью  $\psi = \psi_0$  с помощью двух переменных.

Определим вектор  $\mathbf{R}$ : пусть он лежит на пересечении плоскости  $z=z_0$  и полуплоскости  $\psi=\psi_0$  и берет начало при  $\rho=0$ . Зададим теперь сферическую систему координат с началом отсчета на конце вектора  $\mathbf{R}$ . Координатами произвольно выбранной точки будут  $r, \theta$  и  $\varphi$ . Здесь r - расстояние от начала отсчета до точки,  $\theta$  - угол между вектором, идущим из начала отсчета в точку, и вектором  $\mathbf{R}$ . Пусть также имеется плоскость, перпендикулярная вектору  $\mathbf{R}$  и проходящая через его конец. Угол  $\varphi$  - это угол между проекцией вектора на данную плоскость и положительным направлением оси z.

Имеем геометрические соотношения, задающие связь старых переменных с новыми:

$$z = R\sin\theta\cos\varphi \tag{1a}$$

$$\rho^2 = R^2[(1+\cos\theta)^2 + \sin^2\theta \sin^2\varphi]. \tag{1b}$$



Рис. 2.

Из последних равенств нетрудно вывести:

$$\theta = \arccos\left(\frac{\rho^2 + z^2}{2R^2} - 1\right),\tag{2a}$$

$$\varphi = \arccos\left(\frac{z}{R\sin\theta}\right) = \arccos\left(\frac{z}{R\sqrt{1 - (1 - \frac{\rho^2 + z^2}{2R^2})^2}}\right). \tag{2b}$$

Якобиан перехода:

$$J = \frac{\partial(\theta, \varphi)}{\partial(\rho, z)},\tag{3}$$

$$J = \frac{4\rho R}{\left(\rho^2 + z^2\right)\left(4R^2 - \rho^2 - z^2\right)\sqrt{1 - \frac{4R^2z^2}{(\rho^2 + z^2)(4R^2 - \rho^2 - z^2)}}}.$$
(4)

Найдем плотность распределения:

$$\iint \frac{1}{4\pi} \sin \theta d\theta d\phi = \iint \frac{2J}{4\pi} \sin(\theta(\rho, z)) d\rho dz \equiv \iint f(\rho, z) d\rho dz$$
(5)

$$f(\rho, z) = \frac{2J\sin\theta(\rho, z)}{4\pi}.$$
 (6)

Коэффициент 2 восходит от описанного утверждения, что каждая точка с фиксированными  $\rho$  и z, в действительности, отвечает за две точки на сфере (с разными  $\psi$ );  $\frac{1}{4\pi}$  - плотность вероятности в старых координатах.

Для того чтобы найти распределение по тору, будем использовать тот факт, что при равномерном распределении  $f(\rho,z)$  не зависит от  $\psi$ :

$$f(\rho, z) = \int f(\rho, z, \psi) \rho d\psi = 2\pi \rho f(\rho, z, \psi), \qquad (7)$$

$$f(\rho, z, \psi) = \frac{f(\rho, z)}{2\pi\rho}.$$
 (8)

Итоговое распределение:

$$f_{uniform}(\rho, z, \psi) = \frac{R\sqrt{1 - \left(1 - \frac{\rho^2 + z^2}{2R^2}\right)^2}}{\pi^2 \left(\rho^2 + z^2\right) \left(4R^2 - \rho^2 - z^2\right) \sqrt{1 - \frac{4R^2 z^2}{(\rho^2 + z^2)(4R^2 - \rho^2 - z^2)}}},$$
(9a)

$$\rho \in [0, 2R],\tag{9b}$$

$$z \in \left[-\sqrt{2Rr - r^2}, \sqrt{2Rr - r^2}\right]. \tag{9c}$$



Рис. 3.

Перейдем к рассмотрению неизотропного случая, когда вероятность рассеяния зависит от угла рассеяния. Удобно выбрать направление  $\theta=0$  системы вдоль направления скорости  $\mathbf{u}_f$  электрона до перерассеяния. Тогда  $\theta$  - это и будет угол рассеяния. Заметим, что определенная ранее сферическая система координат удовлетворяет этому критерию. Этот

факт несложно понять. Направление  $\theta=0$  совпадает с некоторым направлением  $\phi$ . которое в задаче перерассеяния определяется только временем  $t_i$ , и для любого  $t_i$  совпадает с направлением  $\mathbf{u}_f$ . Таким образом, оси достаточно удобные, чтобы посчитать ответ для любого распределения угла рассеяния.

$$f(r,y,\psi) = f_{uniform}(\rho,z,\psi) \frac{f(\theta(\rho,z,\psi))}{1/(4\pi)} = f(\theta(\rho,z,\psi)) \frac{4R\sqrt{1 - \left(1 - \frac{\rho^2 + z^2}{2R^2}\right)^2}}{\pi \left(\rho^2 + z^2\right) \left(4R^2 - \rho^2 - z^2\right) \sqrt{1 - \frac{4R^2z^2}{(\rho^2 + z^2)(4R^2 - \rho^2 - z^2)}}}, (10a)$$

$$\rho \in [0, 2R],\tag{10b}$$

$$z \in [-\sqrt{2Rr - r^2}, \sqrt{2Rr - r^2}].$$
 (10c)

1