Algebra 1

Vid Drobnič

Kazalo

1	Vek	ctorji v trirazsežnem prostoru	2
	1.1	Operacije z vektorji	3
	1.2	Linearna neodvisnost	4
	1.3	Skalarni produkt	8
	1.4	Vektorski produkt	9
	1.5	Mešani produkt	12
	1.6	Dvojni vektorski produkt	13
2	Analitična geomterija v \mathbb{R}^3		
	0.1		
	2.1	Premica	13
	2.1	Premica	
			14
3	2.2 2.3	Ravnina	14
3	2.2 2.3	Ravnina	14 16 17

1 Vektorji v trirazsežnem prostoru

 \mathcal{P} - prostor $T \in \mathcal{P}$ - točka

 $\overrightarrow{A}, B \in \mathcal{P}$ \overrightarrow{AB} - usmerjena daljica

Formalno: $\overrightarrow{AB} = (A, B) \in \mathcal{P} \times \mathcal{P}$ (urejen par)

Ekvivalentnost usmerjenih daljic:

 $\overrightarrow{CD} \sim \overrightarrow{AB}$, kadar je \overrightarrow{AB} z vzporednim premikom mogoče premakniti v \overrightarrow{CD} .

- |AB| = |CD| (dolžini daljic sta enaki)
- ullet imata isto smer (če potegnemo premico čez izhodišca daljic (AC), morata biti točki B in D na istem "bregu" te premice)
- \bullet $AB \parallel CD$ (premici skozi točke sta vzporedni)

$$\overrightarrow{CD} \sim \overrightarrow{AB} \iff \overrightarrow{AB} \sim \overrightarrow{CD}$$

<u>Def:</u> Vektor \overrightarrow{AB} je množica $\overrightarrow{AB} = \{\overrightarrow{XY} : \overrightarrow{XY} \sim \overrightarrow{AB}\}$ (usmerjene daljice ekvivalentne daljici \overrightarrow{AB})

- ničelni vektor: $\vec{AA} = \vec{0}$
- \bullet nasprotni vektor
 vektorja \vec{AB} je $\vec{BA}~(\vec{BA}=-\vec{AB})$

Dodatna oznaka: \vec{a} , $-\vec{a}$ nasprotni vektor

 $V = \{ \vec{v} : \vec{v} \text{ vektor} \}$ - vektorski prostor.

 $O \in \mathcal{P};\,O$ fiksiramo (izberemo si neko točko v prostoru, ki jo fiksiramo)

$$f: \mathcal{P} \to V$$
$$f(T) = \vec{OT}$$

fje bijekcija (vsaki točki priredi natanko en vektor). $\vec{a} = \vec{OT}$

1.1 Operacije z vektorji

Seštevanje:

$$\vec{a}, \vec{b} \in V$$

$$\vec{a} = \vec{AB}, \vec{b} = \vec{BC}$$

$$\vec{a} + \vec{b} = \vec{AC}$$

$$\vec{AB} + \vec{BC} = \vec{AC}$$

Lastnosti:¹

- (1) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ asociativnost
- (2) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ komutativnost
- (3) $\vec{a} + \vec{0} = \vec{a}$
- $(4) \ \vec{a} + (-\vec{a}) = \vec{0}$

Za lastnosti od (1) do (4) = (V, +) Abelova grupa.

Razliko dveh vektorjev definiramo tako:

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b})$$

Množenje s skalarjem

Skalar je realno število.

$$\vec{a}, \alpha \in \mathbb{R}$$

 $\alpha \vec{a}$ je vektor.

- $\bullet\,$ ima isto smer kot \vec{a} za $\alpha>0$
- $\bullet\,$ ima nasprotno smer kot \vec{a} za $\alpha<0$
- $|\alpha \vec{a}| = |\alpha||\vec{a}|$

¹Dokaz lastnosti (1) in (2) s skico.

$$\vec{a} = \vec{OA} \neq \vec{0}$$

$$\alpha \vec{a} = \vec{OT}, O, A, T \text{ so na isti premici}$$

S tem uvedemo koordinatni sistem na premici OA.

<u>Lastnosti:</u>

(5)
$$\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a}$$

(6)
$$(\alpha + \beta)\vec{a} = \alpha\vec{a} + \beta\vec{a}$$

(7)
$$\alpha(\vec{a}\vec{b}) = \alpha\vec{a} + \alpha\vec{b}$$

(8)
$$1 \cdot \vec{a} = \vec{a}$$

V, + in množenje s skalaji je **vektorski prostor**: veljajo lastnosti od (1) do (8).

1.2 Linearna neodvisnost

$$\vec{a}, \vec{b} \in V$$

 \vec{a}, \vec{b} sta linearno odvisna kadar je: bodisi $\vec{b} = \alpha \vec{a}$ za ustrezen $\alpha \in \mathbb{R}$,

bodisi $\vec{a} = \beta \vec{b}$ za ustrezen $\beta \in \mathbb{R}$.

V nasprotnem primeru sta \vec{a} in \vec{b} linearno neodvisna.

$$\vec{a} = \vec{OA}, \vec{b} = \vec{OB}$$

- 1. \vec{OA} in \vec{OB} sta linearno odvisna $\Leftrightarrow O, A, B$ kolinearne (ležijo na isti premici).
- 2. \vec{a}, \vec{b} sta linearno neodvisna $\Leftrightarrow (\alpha \vec{a} + \beta \vec{b} = \vec{0} \Rightarrow \alpha = \beta = 0)$

Privzamemo da sta \vec{a}, \vec{b} linearno neodvisna:

$$\{T: \vec{OT} = \alpha \vec{a} + \beta \vec{b}, \alpha, \beta \in \mathbb{R}\} = \mathcal{R}$$

 $\alpha \vec{a} + \beta \vec{b}$ - linearna kombinacija \mathcal{R} - ravnina določena z O, A, B (z vektorji \vec{a}, \vec{b}) in točko O.

$$\vec{r} = \vec{OT}, T \in \mathcal{R}$$

$$\exists \alpha, \beta \in \mathbb{R} : \vec{r} = \alpha \vec{a} + \beta \vec{b}$$

Pri tem sta α in β enolično določena skalarja.

V \mathcal{R} smo z vektorjema \vec{a}, \vec{b} vpeljali koordinatni sistem.

 $\vec{a}, \vec{b}, \vec{c} \in V$ so linearno odvisni, kadar je vsaj eden od njih linearna kombinacija drugih dveh.

$$\text{npr: } \vec{c} = \alpha \vec{a} + \beta \vec{b}$$

V nasprotnem primeru so $\vec{a}, \vec{b}, \vec{c}$ linearno neodvisni.

- 1. $\vec{a} = \vec{OA}, \vec{b} = \vec{OB}, \vec{c} = \vec{OC}$ so linearno odvisni $\Leftrightarrow O, A, B, C$ koplanarne (ležijo na isti ravnini)
- 2. $\vec{a}, \vec{b}, \vec{c}$ so linearno neodvisni $\Leftrightarrow (\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0} \Rightarrow \alpha = \beta = \gamma = 0)$

 $\vec{a}, \vec{b}, \vec{c}$ linearno neodvisni

$$\vec{a} = \vec{OA} \\ \vec{b} = \vec{OB}$$

$$\vec{b} = \vec{OB}$$

$$\vec{c} = \vec{OC}$$

$$V = \{\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} : \alpha, \beta, \gamma \in \mathbb{R}\}\$$

 $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$ je linearna kombinacija vektorjev $\vec{a}, \vec{b}, \vec{c}.$

V - množica vseh vektorjev prostora \mathcal{P}

$$\mathcal{P} = \{ R \in \mathcal{P} : \vec{OR} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}, \alpha, \beta, \gamma \in \mathbb{R} \}$$

<u>Dodatek:</u> V zapisu vektorja $\vec{r} \in V$: $\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, so koeficienti α, β, γ enolično določeni.

<u>Dokaz:</u> Recimo, da lahko vektor \vec{r} izrazimo na 2 različna načina:

$$\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

$$\vec{r} = \alpha_1 \vec{a} + \beta_1 \vec{b} + \gamma_1 \vec{c}$$

$$\Rightarrow \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \alpha_1 \vec{a} + \beta_1 \vec{b} + \gamma_1 \vec{c}$$

$$(\alpha - \alpha_1) \vec{a} + (\beta - \beta_1) \vec{b} + (\gamma - \gamma_1) \vec{c} = \vec{0}$$

$$\vec{a}, \vec{b}, \vec{c} \text{ linearno neodvisni } \Rightarrow \alpha - \alpha_1 = \beta - \beta_1 = \gamma - \gamma_1 = 0$$

$$\alpha = \alpha_1, \beta = \beta_1, \gamma = \gamma_1$$

 $\{\vec{a}, \vec{b}, \vec{c}\}$ je **baza** vektorskega prostora V. $\vec{a}, \vec{b}, \vec{c}$ so linearno neodvisni.

$$R \in \mathcal{P}$$
 (O - fiksirana točka) $\vec{OR} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$
$$R \mapsto (\alpha, \beta, \gamma) \in \mathbb{R}^3 = \{(x, y, z) : x, y, x \in \mathbb{R}\}$$

Urejena trojica (α, β, γ) je s točko R enolično določena. α, β, γ so koordinate točke R glede na koordinaten sistem, ki je določen z bazo $\{\vec{a}, \vec{b}, \vec{c}\}$ in točko O (izhodišče koordinatnega sistema).

Imena koordinat: abscisa, ordinata, aplikata

$$\varphi: V \to \mathbb{R}^3$$

$$\vec{r} \mapsto (\alpha, \beta, \gamma); \vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

 φ je bijekcija.

S φ prenesemo operaciji seštevanja vektorjev in množenja vektorjev s skalarji iz V v $\mathbb{R}^3.$

$$\vec{r_1}, \vec{r_2} \in V$$

$$\vec{r_1} = \alpha_1 \vec{a} + \beta_1 \vec{b} + \gamma_1 \vec{c}$$

$$\vec{r_2} = \alpha_2 \vec{a} + \beta_2 \vec{b} + \gamma_2 \vec{c}$$

$$\varphi(\vec{r_1}) = (\alpha_1, \beta_1, \gamma_1)$$

$$\varphi(\vec{r_2}) = (\alpha_2, \beta_2, \gamma_2)$$

$$\vec{r_1} + \vec{r_2} = (\alpha_1 + \alpha_2) \vec{a} + (\beta_1 + \beta_2) \vec{b} + (\gamma_1 + \gamma_2) \vec{c}$$

$$\varphi(\vec{r_1} + \vec{r_2}) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2)$$

Torej velja:

$$(\alpha_1, \beta_1, \gamma_1) + (\alpha_2, \beta_2, \gamma_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2)$$

seštevanje je definirano po komponentah.

Podobno velja za množenje s skalarji:

$$\lambda(\alpha, \beta, \gamma) = (\lambda \alpha, \lambda \beta, \lambda \gamma)$$

 \mathbb{R}^3 je za te operaciji **vektorski prostor** (zadošča A1-A8).

$$\varphi(\vec{a}) = (1, 0, 0)$$
$$\varphi(\vec{b}) = (0, 1, 0)$$

$$\varphi(\vec{c}) = (0, 0, 1)$$

$$\{(1,0,0),(0,1,0),(0,0,1)\}$$

je **standardna baza** vektorskega prostora \mathbb{R}^3 .

$$(\alpha, \beta, \gamma) = \alpha(1, 0, 0) + \beta(0, 1, 0) + \gamma(0, 0, 1)$$

Oznake:

$$\vec{i} = (1, 0, 0)$$

$$\vec{j} = (0, 1, 0)$$

$$\vec{k} = (0, 0, 1)$$

Dodatna zahteva za standardno bazo vektorskega prostora \mathbb{R}^3 : baza je **ortonormirana**, torej:

- $|\vec{i}| = |\vec{j}| = |\vec{k}| = 1$
- $\vec{i}, \vec{j}, \vec{k}$ so paroma pravokotni.

Opomba: Po dogovoru je trojica $(\vec{i}, \vec{j}, \vec{k})$ pozitivno orientirana (pri določanju orientacije si v 3D koordinatnem sistemu pomagamo z pravilom desnega vijaka).

1.3 Skalarni produkt

 $\vec{a}, \vec{b} \in V$

Kot med njima je φ , $0 \le \varphi \le \pi$

 $\underline{\mathrm{Def:}}\ \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \varphi$

V identificiramo² z \mathbb{R}^3 (glede na standardno bazo in dano izhodišče O).

$$O = (0, 0, 0)$$
$$\vec{i} = (1, 0, 0)$$
$$\vec{j} = (0, 1, 0)$$
$$\vec{k} = (0, 0, 1)$$

$$\vec{a} = (a_1, a_2, a_3) \in \mathbb{R}^3$$

$$\vec{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$$

$$\vec{a} \cdot \vec{b} = ?$$

$$\vec{a} = (a_1, a_2, a_3) = \vec{OA}$$

$$|\vec{a}| = |OA| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$d(A, B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}$$

Kosinusni izrek:

$$(\vec{a} - \vec{b})^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\varphi$$

$$(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2 = a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 - 2|\vec{a}||\vec{b}|\cos\varphi$$

$$\Rightarrow |\vec{a}||\vec{b}|\cos\varphi = a_1b_1 + a_2b_2 + a_3b_3$$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

<u>Lastnosti:</u>

(1)
$$\vec{a}\vec{a}=|\vec{a}|^2\geq 0$$
 (enačaj le za $\vec{a}=\vec{0})$

(2)
$$(\vec{a} + \vec{b})\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c}$$

 $^{^2}$ Prej smo vse izpeljevali za splošen vektorski prostor, sedaj pa za V vzamemo \mathbb{R}^3 .

(3)
$$(\alpha \vec{a})\vec{b} = \alpha(\vec{a}\vec{b})$$

$$(4) \ \vec{a}\vec{b} = \vec{b}\vec{a}$$

$$\begin{split} \vec{a} \bot \vec{b} &\Leftrightarrow \varphi \frac{\pi}{2}, \vec{a} \neq \vec{0}, \vec{b} \neq \vec{0} \\ \varphi &= \frac{\pi}{2} \Leftrightarrow \cos \varphi = 0 (0 \leq \varphi \leq \pi) \\ \vec{a} \bot \vec{b} &\Leftrightarrow \vec{a} \cdot \vec{b} = 0 \end{split}$$

Primer:

$$\mathbb{R}^3 \equiv \mathbb{R}^2 \times \{0\}$$

$$\vec{a} = (a_1, a_2, 0)$$

$$\vec{a} \vee \mathbb{R}^2 : \vec{a} = (a_1, a_2)$$

$$\vec{a}\vec{b} = a_1b_1 + a_2b_2$$

p- ploščina paralelograma psi želimo izraziti z a_1,a_2,b_1,b_2

$$p = |\vec{a}||\vec{b}|\sin\varphi$$

$$\vec{a'} \perp \vec{a}$$
$$|\vec{a'}| = |\vec{a}|$$

 $\vec{a}, \vec{a'}$ pozitivno orientirana $\vec{a'} = (-a_2, a_1)$ $\psi = \frac{\pi}{2} - \varphi$ ali $\varphi - \frac{\pi}{2}$ če je orienacija (\vec{a}, \vec{b}) pozitivna.

$$|\vec{a}||\vec{b}|\sin\varphi = |\vec{a}||\vec{b}|\cos\theta = \vec{a'}\vec{b} = (-a2, a_1) \cdot (b_1, b_2) = a_1b_2 - a_2b_1$$

 $p=a_1b_2-a_2b_1,$ če je orientacija \vec{a},\vec{b} pozitivna, če pa je negativna velja: $p=-(a_1b_2-a_2b_1)$

1.4 Vektorski produkt

Vzamemo vektorja \vec{a}, \vec{b} iz prostora. Njun vektorski produkt označimo:

$$\vec{a}\times\vec{b}$$

- (1) $\vec{a} \times \vec{b}$ je pravokoten na \vec{a} in \vec{b} .
- (2) $|\vec{a} \times \vec{b}|$ je enaka ploščini paralelograma, ki ga določata \vec{a} in \vec{b} . (= 0, kadar sta \vec{a} in \vec{b} linearno odvisna)
- (3) Urejena trojica $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ je pozitivno orientirana.

$$\vec{a} = (a_1, a_2, a_3)$$

$$\vec{b} = (b_1, b_2, b_3)$$

$$\vec{a} \times \vec{b} = (x, y, z)$$

$$\vec{k} = (0, 0, 1)$$

$$z = (\vec{a} \times \vec{b}) \cdot \vec{k} =$$

$$= |\vec{a} \times \vec{b}| |\vec{k}| \cos \delta =$$

$$= p \cos \delta$$

p- ploščina paralelograma, ki ga določata vektorja \vec{a} in \vec{b} δ - kot med ravninama, ki ju določata osi (1),(2) in vektorja $\vec{a},\vec{b}.$

$$\vec{a'} = (a_1, a_2, 0)$$

 $\vec{b'} = (b_1, b_2, 0)$
 $p' = \pm (a_1b_2 - a_2b_1)$

p' je ploščina paralelograma, ki ga določata pravokotni projekciji vektorjev \vec{a} in \vec{b} na ravnino (\vec{i}, \vec{j}) , tj. ploščina paralelograma, ki ga določata vektorja $\vec{a'}$ in $\vec{b'}$.

p'ima predznak +, kadar sta $\vec{a'}$ in $\vec{b'}$ pozitivno orientirana, ter -, kadar sta negativno orientirana.

$$p' = \pm p \cos \delta$$

 $\begin{array}{l} + \text{ kadar: } 0 \leq \delta \leq \frac{\pi}{2} \\ - \text{ kadar: } \frac{\pi}{2} \leq \delta \leq \pi \end{array}$

$$z = \pm p' = a_1 b_2 - a_2 b_1$$

 \pm se izniči, ker se predznak, ki nastane zaradi cos in predznak, ki nastane pri izračunu ploščine paralelograma z vektorjema ujemata.

$$x = a_2b_3 - a_3b_2$$
$$y = a_3b_1 - a_1b_3$$

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$
$$\begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} = \alpha\delta - \beta\gamma$$

determinanta (reda 2)

$$\vec{a} \times \vec{b} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix}$$

$$\begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} = - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{i} + \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} \vec{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Lastnosti:

•
$$(\alpha \vec{a}) \times \vec{b} = \alpha (\vec{a} \times \vec{b}), \forall \alpha \in \mathbb{R}$$

•
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$

•
$$\vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \vec{c} \times \vec{b}$$

$$\bullet \ \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

 \vec{a}, \vec{b} linearno neodvisna $\Rightarrow \{\vec{a}, \vec{b}, \vec{a} \times \vec{b}\}$ je baza.

$$\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$$

Poseben primer:

$$|\vec{a}| = |\vec{b}| = 1, \vec{a} \cdot \vec{b} = 0(\vec{a} \perp \vec{b})$$

 $\Rightarrow \{\vec{a}, \vec{b}, \vec{a} \times \vec{b}\}$ je ortonormirana baza.

$$\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b}) / \cdot \vec{a}$$
 (ali $\vec{b}, \vec{c})$

$$\vec{r} \cdot \vec{a} = \alpha$$
$$\vec{r} \cdot \vec{b} = \beta$$

$$\vec{r} \cdot (\vec{a} \times \vec{b}) = \gamma$$

$$(|\vec{a} \times \vec{b}|)^2 = (|\vec{a}||\vec{b}|\sin\varphi)^2$$
$$(\vec{a} \cdot \vec{b})^2 = (|\vec{a}||\vec{b}|\cos\varphi)^2$$
$$\Rightarrow |\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 \cdot |\vec{b}|^2$$

1.5 Mešani produkt

$$(\vec{a} \times \vec{b}) \cdot \vec{c}$$

Paralelepiped je prizma, ki ima za osnovno ploskev paralelogram. V - prostornina pralelepipeda

$$P = |\vec{a} \times \vec{b}|$$

$$V = |\vec{a} \times \vec{b}| \cdot v$$

$$v = \pm |\vec{c}| \cos \delta$$

$$V = \pm |\vec{a} \times \vec{b}| |\vec{c}| \cos \delta =$$

$$= \pm (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \pm V$$

+: $(\vec{a}, \vec{b}, \vec{c})$ pozitivno orienirani -: $(\vec{a}, \vec{b}, \vec{c})$ negativno orientirani $\vec{a}, \vec{b}, \vec{c}$ linearno odvisni $\Leftrightarrow (\vec{a} \times \vec{b})\vec{c} = 0$.

Orientacija se pri cikličnih zamenjavah ohrani:

$$(\vec{a} \times \vec{b})\vec{c} = (\vec{b} \times \vec{c})\vec{a} = \vec{a}(\vec{b} \times \vec{c})$$

$$(\vec{a} \times \vec{b})\vec{c} = \vec{a}(\vec{b} \times \vec{c}) = [\vec{a}, \vec{b}, \vec{c}]$$

$$\vec{a} = (a_1, a_2, a_3)$$

$$\vec{b} = (b_1, b_2, b_3)$$

$$\vec{c} = (c_1, c_2, c_3)$$

$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a}(\vec{b} \times \vec{c}) = a_1e_1 + a_2e_2 + a_3e_3 =$$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$[\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

1.6 Dvojni vektorski produkt

$$(\vec{a} \times \vec{b}) \times \vec{c} = \vec{e} = ?$$

$$\vec{e} \perp \vec{a} \times \vec{b}$$

 $\vec{e} \perp \vec{c}$

$$\vec{a}, \vec{b}$$
linearno neodvisna $\Rightarrow \vec{e} = \alpha \vec{a} + \beta \vec{b}.$ $\vec{e} \cdot \vec{c} = 0$

$$\alpha(\vec{a}\vec{c}) + \beta(\vec{b}\vec{c}) = 0$$

$$\beta = \lambda \vec{a} \vec{c}$$
$$\alpha = -\lambda \vec{b} \vec{c}$$

$$\vec{e} = \lambda(\vec{b}\vec{c})\vec{a} + \lambda(\vec{a}\vec{c})\vec{b}$$
$$\vec{e} = \lambda(-(\vec{b}\vec{c})\vec{a} + (\vec{a}\vec{c})\vec{b})$$

Če razpišemo po komponentah dobimo $\lambda = 1$.

$$(\vec{a} \times \vec{b}) \times \vec{c} = -(\vec{b}\vec{c})\vec{a} + (\vec{a}\vec{c})\vec{b}$$

2 Analitična geomterija v \mathbb{R}^3

2.1 Premica

p podana s točko R_0 na njej in smernim vektorjem \vec{e} .

$$\vec{r_0} = \vec{OR_0} = (x_0, y_0, z_0)$$

$$R \in p$$

$$\vec{r} = \vec{OR} = (x, y, z)$$

Koorinatizirali smo premico.

$$\vec{R_0}R = \vec{r} - \vec{r_0}$$

$$\vec{r} = \vec{r_0} + \lambda \vec{e}, \lambda \in \mathbb{R}$$

Enačba premice p (vektorska parametrična) (λ je parameter)

$$\vec{e} = (a, b, c)$$

$$x = x_0 + \lambda a$$

$$y = y_0 + \lambda b$$

$$z = z_0 + \lambda c$$

(Parametrična) enačba premice.

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

enačba premice (brez parametra)

a = 0?

$$\frac{x - x_0}{0} \equiv (x = x_0 \text{ ali } ax - x_0 = 0)$$

Podobno za b = 0 in c = 0.

 $\vec{R_0R}, \vec{e}$ linearno odvisna $\Leftrightarrow R \in p$

To je kadar: $\vec{R_0}R \times \vec{e} = \vec{0} \Leftrightarrow (\vec{r} - \vec{r_0}) \times \vec{e} = \vec{e} \times (\vec{r} - \vec{r_0}) = \vec{0}$ (vektorska enačba premice)

Če imamo točko R_1 izven premice, je razdalja med premico p in to točko enaka:

$$\Delta = |\vec{r_1} - \vec{r_0}| \sin \varphi$$

To enačbo lahko preoblikujemo da dobimo:

$$\Delta = \frac{|\vec{e} \times (\vec{r_1} - \vec{r_0})|}{|\vec{e}|}$$

To je posebej ugodno, kadar $|\vec{e}| = 1$, saj iz tega sledi $\Delta = |\vec{e} \times (\vec{r_1} - \vec{r_0})|$.

Razdaljo med točko in premico lahko zapišemo tudi kot: $\Delta = d(R_1, p)$.

2.2 Ravnina

Da določimo ravnino Σ , potrebujemo točko $R_0 \in \Sigma$ in vektor normale \vec{n} , kjer $\vec{n} \perp \Sigma$ in $\vec{n} \neq \vec{0}$.

Da določimo kdaj točka leži na ravnini zapišemo:

$$R \in \Sigma \Leftrightarrow \vec{r} - \vec{r_0} \perp \vec{n} \Leftrightarrow \vec{n} \cdot (\vec{r} - \vec{r_0}) = 0$$

To pomeni da nam ravnino Σ določa enačba:

$$\vec{n} \cdot (\vec{r} - \vec{r_0}) = 0$$

Če zapišemo vektorje $\vec{r_0}$, \vec{r} in \vec{n} kot:

$$\vec{r_0} = (x_0, y_0, z_0)$$

 $\vec{r} = (x, y, z)$
 $\vec{n} = (a, b, c)$

lahko zapišemo enačbo ravnine kot:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

To enačbo lahko naprej pretvorimo v implicitno obliko:

$$ax + by + cz + d = 0$$

 $kjer je d = -ax_0 - by_0 - cz_0.$

Če imamo podane točke R_0, R_1 in R_2 , lahko izračunamo vektor normale kot:

$$\vec{n} = (\vec{r_1} - \vec{r_0}) \times (\vec{r_2} - \vec{r_0})$$

če to vstavimo v en "acbo ravnine, dobimo da lahko ravnino Σ zapišemo kot:

$$((\vec{r_1} - \vec{r_0}) \times (\vec{r_2} - \vec{r_0})) \cdot (\vec{r} - \vec{r_0}) = 0$$

Opazimo, da nam ta enačba predstavlja mešani produkt kar lahko zapišemo z determinanto reda 3:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$$

kjer je vektor $\vec{r_n}$ zapisan kot: $\vec{r_n} = (x_n, y_n, z_n)$.

Če imamo točko R_1 , ki ni na ravnini, lahko zapišemo razdaljo te točke do ravnine kot:

$$\Delta = \pm |\vec{r_1} - \vec{r_0}| \cos \varphi \tag{1}$$

To enačbo lahko s pomočjo enačbe ravnine preoblikujemo v:

$$\Delta = \frac{|\vec{n} \cdot (\vec{r_1} - \vec{r_0})|}{|\vec{n}|}$$

v števcu lahko uprabimo absolutno vrednost s katero se znebimo predznaka, ki se pojavi v (1), ker je razdalja vedno pozitivna.

Razdaljo med ravnino Σ in točko R_1 lahko zapišemu tudi kot:

$$\Delta = d(R_1, \Sigma)$$

Če si pomagamo z že izpeljano implicitno enačbo ravnine, se lahko znebimo vektorjev in dobimo naslednjo ena"bo:

$$d(R_1, \Sigma) = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

kjer $\vec{OR}_1 = \vec{r_1} = (x_1, y_1, z_1).$

2.3 Razdalja med mimobežnima premicama

 p_1 : e_1 je smerni vektor; $R_1 \in p_1, r_1$ p_2 : e_2 je smerni vektor; $R_2 \in p_2, r_2$

Da sta premici mimobežni imamo dva pogoja:

- $\vec{e_1} \times \vec{e_2} \neq \vec{0}(p_1 \not\parallel p_2)$
- $p_1 \cap p_2 = \emptyset$ (ne sekata se)

$$d(p_1, p_2) = \min\{d(T_1, T_2) : T_1 \in p_1, T_2 \in p_2\}$$

Z pomočjo skice in premisleka opazimo, da je najmanjša razdalja takrat, ko $S_1S_2\perp p_1,p_2.$ To pomeni:

$$\begin{split} \vec{S_1S_2} &\perp \vec{e_1}, \vec{e_2} \\ \vec{S_1S_2} &= \lambda \vec{e_1} \times \vec{e_2}, \lambda \in \mathbb{R} \end{split}$$

Tu je spet v veliko pomoč skica. Ideja je, da z vzporednim premikom premaknemo vektor $\vec{e_2}$ v izhodišče vektorja $\vec{e_1}$. S tem lahko naredimo ravnino Σ_1 , ki jo tvorita ta dva vektorja. Nato naredimo ravnino Σ_2 na podoben način – z vzporednim premikom premaknemo vektor $\vec{e_1}$ v izhošče vektorja $\vec{e_2}$. Velja $\Sigma_1 \parallel \Sigma_2$. Ker sta si ravnini vzporedni lahko premico p_1 z vzporednim premikom premaknemo iz Σ_1 v Σ_2 in dobimo premico p_1 , ki se seka s premico p_2 v točko p_2 . Podobno lahko premaknemo premico p_2 v ranino p_2 in dobimo točko p_2 kjer se sekata p_1 in p_2 . Opazimo, da je daljica p_2 pravokotna na premici p_2 in je tudi najkrajša razdalja med tema premicama. To pomeni, da je dolžina daljice p_2 razdalja med premicama p_2 in p_2 .

Z nadaljnim premislekom in zelo natančno narisano skico opazimo, da vektorji $\vec{e_1}, \vec{e_2}$ in $\vec{r_1} - \vec{r_2}$ tvorijo paralelepiped, katerega višina je enaka daljici S_1S_2 . To pomeni, da lahko uporabimo naše znanje o mešanem produktu in naredimo naslednje:

$$V = |[\vec{r_1} - \vec{r_2}, \vec{e_1}, \vec{e_2}]|$$
$$V = |\vec{e_1} \times \vec{e_2}| \cdot \Delta$$

kjer je $\Delta = |S_1 S_2|$.

To lahko izenačimo in dobimo:

$$\Delta = \frac{|[\vec{r_1} - \vec{r_2}, \vec{e_1}, \vec{e_2}]|}{|\vec{e_1} \times \vec{e_2}|}$$

3 Osnovne algebrske strukture

3.1 Preslikave in relacije

A, B sta neprazni množici.

Preslikavo, ki slika iz A v B lahko zapišemo kot $f:A\to B$ ali $A\xrightarrow{f}B.$

 $\forall x \in A$ predpis f določi natanko en element, ki je iz množice B. Množici A rečemo domena (včasih tudi definicijsko območje), množici B pa rečemo kodomena. f(x) pravimo slika elementa x. $(x \mapsto f(x))$

Zaloga (vrednosti) preslikave $f: A \to B$ je množica $\{f(x): x \in A\} \subseteq B$.

 $f: A \to B$ je surjektivna (surjekcija), kadar je njena zaloga B.

$$\forall y \in B \ \exists x \in A : y = f(x)$$

 $f: A \to B$ je *injektivna* (injekcija), kadar velja sklep:

$$x_1, x_2 \in A, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Za preverjanje uporabimo:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2, x_1, x_2 \in A$$

 $f:A\to B$ je bijektivna (bijekcija), kadar je injektivna in hkrati surjektivna. Če je $f:A\to B$ bijekcija, obstaja točno določena preslikava $g:B\to A$, da velja:

$$(\forall x \in A : g(f(x)) = x) \land (\forall y \in B : f(g(y)) = y)$$

Preslikavo $g:B\to A$ imenujemo inverz preslikave $f:A\to B$ in jo označimo z:

$$g = f^{-1}$$

Kompozitum preslikav $f: A \to B$ in $g: B \to C$ je:

$$g \circ f$$
 ali gf
 $g \circ f : A \to C$
 $(g \circ f)(x) = g(f(x))$

za vsak $x \in A$.

Preslikavo $A \to A$ imenujemo identična preslikava ali identiteta:

$$id_A: A \to A$$

 $\forall x \in A: id_A(x) = x$

$$f:A \to B$$
 bijekcija
$$g:B \to A$$

$$g \circ f = id_A$$

$$f \circ g = id_B$$

 $f:A\to B$ je bijekcija in $g:B\to A$ je inverzana preslikava $f\iff (g\circ f=id_A\wedge f\circ g=id_B)$

Graf preslikave $f:A\to B$ je množica:

$$G(f) = \{(x, f(x)) : x \in A\}$$

$$G(f) \subseteq A \times B$$

Relacija med elementi množice A in elementi množice B je podmnožica množice $A \times B$.

$$R \subseteq A \times B$$
 (R je relacija)
 $(x,y) \in R \equiv xRy$

Primeri kjer A = B (relacija $R \subseteq A \times A$ je binarjna relacija na množici A).

(1) $A = \mathbb{R}$ R relacija na \mathbb{R} : \leq

$$(x,y) \in R \subseteq \mathbb{R} \times \mathbb{R} \iff x \le y$$

$$R = \le$$

$$R = \{(x,y) \in \mathbb{R}^2 : x \le y\}$$

(2) $A = \{p : p \text{ - premica v prostoru}\}\$ R relacija vzporednosti

$$p, q \in A$$
 $pRq \equiv p \parallel q$

(3) $M \neq \emptyset$, $A = \mathcal{P}M R$ relacija $inkluzije \subseteq$

$$x, y \in A$$
 $(x \subseteq A, y \subseteq A)$
 $xRy \equiv x \subseteq y$

Definicije:

- (1) Relacija R nad A je refleksivna, kadar velja xRx za vsak $x \in A$.
- (2) Relacija R nad A je tranzitivna, kadar velja sklep:

$$(xRy \land yRz) \Rightarrow xRz$$

(3) Relacija R nad A je antisimetrična, kadar velja sklep:

$$(xRy \land yRx) \Rightarrow x = y$$

(4) Relacija R nad A je simetrična, kadar velja sklep:

$$xRy \Rightarrow yRx$$

- (5) R je relacija delne urejenosti, kadar je refleksivna, antisimetrična in tranzitivna ($R \equiv \leq$).
- (6) R je relacija ekvivalence (ali ekvivalenčna relacija), kadar je refleksivna, simetrična in tranzitivna $(R \equiv \sim)$.

Naj bo A neprazna množica, \sim ekvivalenčna relacija na A in $a \in A$.

$$[a] = \{x \in A : x \sim a\}$$

[a] je ekvivalenčni razred elementa a.

$$a \sim a \Rightarrow a \in [a]$$

a je predstavnik tega ekvivalnečnega razreda.

$$[a] = [b]$$
?

Predpostavimo $b \sim a$ (zaradi simetričnosti sledi $a \sim b$).

$$x \in [a] \Rightarrow x \sim a \sim b \Rightarrow x \sim b \Rightarrow x \in [b]$$

Torej velja:

$$[a] \subseteq [b]$$

$$[b] \subseteq [a]$$

Zato [a] = [b].

Velja tudi $[a] = [b] \Rightarrow a \sim b$

$$[a] = [b] \Rightarrow a \in [a] \Rightarrow a \in [b] \Rightarrow a \sim b$$

$$a \sim b \iff [a] = [b]$$

Naj velja $[a] \cap [b] \neq \emptyset$:

$$\exists c \in [a] \cap [b]$$

$$\Rightarrow c \sim a \land c \sim b \Rightarrow a \sim b \Rightarrow [a] = [b]$$

$$[a] \cap [b] \neq \emptyset \Rightarrow [a] = [b]$$

 $[a] \neq [b] \Rightarrow [a] \cap [b] = \emptyset$

 $A/_{\sim}=\{[a]:a\in A\}$ je kvocientnaali faktorskamnožica glede na ekvivalenčno relacijo $\sim.$

 $A = \cup [a]$ pravimo razčlenitev A-ja.

Primera:

(1) $A = \{\overrightarrow{MN}: M, N - \text{točki v prostoru}\}$ $\overrightarrow{MN} \text{ je usmerjena daljica}$ $\overrightarrow{XY} \sim \overrightarrow{MN} \iff \text{obstaja translacija, ki } XY \text{ prenese v } MN. \sim \text{je ekvivalenčna relacija.}$

$$\left[\overrightarrow{MN}\right] = \left\{\overrightarrow{XY}: \overrightarrow{XY} \sim \overrightarrow{MN}\right\} = \overrightarrow{MN}$$

(2)
$$A = \mathbb{Z} \times \mathbb{N} = \{(m, n); m \in \mathbb{Z}, n \in \mathbb{N}\}$$

$$\sim: (m,n) \sim (p,q) \iff mq = np$$

 \sim je ekvivalenčna relacija

$$A/_{\sim} = \mathbb{Q}$$

$$[(m,n)] = \{(p,q): (p,q) \sim (m,n)\}$$

3.2 Operacije

 $M \neq \varnothing$

Operacija na M je preslikava $M \times M \to M, (a, b) \mapsto a \circ b$ $a \circ b$ je kompozitum elementov a in b.

Primeri:

- 1) $M = \mathbb{N}$ ali \mathbb{Z} ali \mathbb{Q} ali \mathbb{R} . \circ je lahko + ali \cdot .
- $2) A \neq \emptyset$

$$M = \{f : A \to A\} \equiv F(A)$$

o je kompozitum preslikav

M z dano operacijo \circ je grupoid (M, \circ) .

Zapis operacije brez znaka $(a,b)\mapsto ab$ je multiplikativen zapis operacije.

Imamo grupoid (M, \sim, \circ) . Radi bi prenesli \circ v $M/_{\sim}$.

Operacija \circ je usklajena z ekvivalenčno relacaijo \sim , kadar velja sklep:

$$(m_1 \sim m \land n_1 \sim n) \Rightarrow m_1 \circ n_1 \sim m \circ n$$

kjer $m, n, m_1, n_1 \in M$.

Primer: $M = \mathbb{Z} \times \mathbb{N}$

 \sim iz primera (2)

$$(p_1, q_1) \sim (p, q) \wedge (m_1, n_1) \sim (m, n) \Rightarrow (p_1, q_1) + (m_1, n_1) \sim (p, q) + (m, n)$$

 $(p, q) + (m, n) := (pn + mq, nq)$

v + iz $\mathbb{Z} \times \mathbb{N}$ lahko prenesemo na $\mathbb{Q} = (\mathbb{Z} \times \mathbb{N})/_{\sim}$.

 $(M,\sim,\circ),\,\sim$ in
 \circ usklajeni.

V $M/_{\sim}$ lahko uvedemo operacijo $\stackrel{\sim}{\circ}$ s predpisom:

$$[a] \stackrel{\sim}{\circ} [b] = [a \circ b]$$

Definicija je dobra zaradi uklajenosti operacije o z relacijo ~:

$$[a_1] = [a] \text{ in } [b_1] = [b] \Rightarrow [a_1 \circ b_1 \sim a \circ b]$$

DEFINICIJE:

• (M, \circ) grupoid $e \in M$ je enota ali nevtralni element grupoida (M, \circ) kadar velja:

$$\forall a \in M : a \circ e = e \circ a = a$$

Če enota obstaja je ena sam $e_1, e_2 \in M$ sta enoti. Sledi:

$$e_1 \circ e_2 = e_2$$

če upoštevamo da je e_1 enota,

$$e_1 \circ e_2 = e_1$$

če upoštevamo da je e_2 enota

$$\Rightarrow e_1 = e_2$$

• Grupoid (M, \circ) je polgrupa, kadar je opracije \circ asociativna:

$$\forall a, b, c \in M : (a \circ b) \circ c = a \circ (b \circ c)$$

V polgrupi oklepaji niso potrebni: $a \circ b \circ c$.

• Naj bo (M, \circ) polgrupa z enoto e. Element $b \in M$ je inverz elementa $a \in M$, kadar velja:

$$a \circ b = b \circ a = e$$

Kadar ima element $a \in M$ inverz, pravimo, da je a invertabilen ali obrnljiv.

Če ima $a \in M$ inverz, je ta en sam b_1, b_2 inverza elementa a.

$$a \circ b_1 = b_1 \circ a = e$$
$$a \circ b_2 = b_2 \circ a = e$$

$$\Rightarrow b_1 = b_1 \circ e = b_1 \circ (a \circ b_2) = (b_1 \circ a) \circ b_2 = e \circ b_2 = b_2$$

Če je $a \in M$ obrnljiv, njegov inverz zaznamujemo (v splošnem) z a^{-1} .

$$a \circ a^{-1} = a^{-1} \circ a = e$$

• Polgrupa z enoto, v kateri je vsak element obrnljiv se imenuje grupa. Z multiplikativnim zapisom: (G, \circ) je grupa, kadar velja:

- $(1) \ \forall a, b, c \in G : (ab)c = a(bc)$
- (2) $\exists e \in G \forall a \in G : ae = ea = a$
- (3) $\forall a \in G \exists b \in G : ab = ba = e$
- (M, \circ) grupoid je komutativen, kadar velja:

$$\forall a, b \in M : a \circ b = b \circ a$$

PRIMERI:

- (1) $(\mathbb{N}, +)$ polgrupa brez enote (če $0 \notin \mathbb{N}$).
- (2) (\mathbb{N}, \cdot) polgrupa z enoto 1
- (3) $(\mathbb{Z}, +)$ grupa
- (4) (\mathbb{Z}, \cdot) polgrupa z enoto 1
- (5) $A \neq \emptyset, M = F(A) = \{f : A \to A\}$ operacija: komponiranje preslikave (M, \circ) je polgrupa z enoto e = id
- (6) $M = S(A) = \{f : A \mapsto A, f \text{ je bijekcija}\}$ (M, \circ) je grupa

Prejšen primer lahko nekoliko spremenimo in dobimo:

$$A = \{1, 2, \dots, n\}$$
$$S(A) \equiv S_n$$

 S_n je simetrična grupa.

$$\pi \in S_n$$

 $\pi : \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}$

Če preslikamo vse elemente s preslikavo π dobimo:

$$\{\pi(1), \pi(2), \dots, \pi(n)\} = \{1, 2, \dots, n\}$$

Pravimo, da je π permutacija in jo zapišemo kot:

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$$

Zapis $\pi(k)$ je ralitvno dolg, zato ga skrajšamo na:

$$\pi(k) = i_k$$

S tem lahk permutacijo π zapišemo kot:

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

Zelo lahko je izplejati, da S_n ima n! elementov.

Ker so permutacije elementi grupe, ki ima za operacijo komponiranje preslikav (kompozitum), lahko z njimi računamo. Poglejmo si primer:

$$\rho = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

kjer $\rho, \sigma \in S_3$

$$\rho\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
$$\sigma\rho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Opazimo, da $\rho \sigma \neq \sigma \rho$.

Poglejmo si, kako lahko v grupi krajšamo. Naj bo (G, \cdot) grupa.

$$ab = ac$$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$(a^{-1}a)b = (a^{-1}a)c$$

$$eb = ec$$

$$b = c$$

Pozorni moramo biti na vrstni red, ker v grupi ni obvezno da velja komutativnost. Pri tem primeru smo na obeh straneh enačbe a imeli na levi strani. Analogno bi lahko pravilo krajšanja izpeljali, če bi bil a na desni strani, vendar ne če je na eni strani enačbe desni, na drugi pa levi člen. To pomeni da v grupi vlejajo naslednje trditve:

$$ab = ac \Rightarrow b = c$$

 $ab = ca \Rightarrow b = c$
 $b \neq c \Rightarrow ab \neq ac$

Grupa s tremi elementi je samo ena

Naj bo G grupa s tremi elementi.

$$G = \{e, a, b\}$$

kjer je e enota.

Zapišimo naslednjo tabelo:

Prva vrstica in prvi stolpec sta trivialna, saj imamo na eni strani enoto. Tabelo lahko dopolnimo in dobimo:

Potrebujemo premisliti drugo vrstico. Vemo že, da ae = a, potrebujemo pa se odločiti, kaj bomo zapisali pri aa in pri ab.

Zgoraj smo zapisali pravilo, ki nam pravi naslednje: $b \neq c \Rightarrow ab \neq ac$. V grupi so trije različni elementi, to pomeni: $e \neq a \neq b \Rightarrow ae \neq aa \neq ab$. Drugače povedano, v vsaki vrstici bo vsak element nastopil natanko enkrat in tudi v vsakem stolpcu bo vsak element nastopil natanko enkrat. To si lahko predstavljamo kot nekakšen sudoku.

Če se vrnemo na prejšen problem - odločitev kaj je aa in kaj ab. Sedaj vemo da imamo dve možnosti:

- 1) $ab = b \Rightarrow a = e \rightarrow \leftarrow$ ni možno, ker bi potem a bil enota, vemo pa da mora biti različen od enote.
- 2) ab = e

Torej se odločimo da bo veljalo ab = e. Za aa nam torej ostane samo ena možnost, to je: aa = b. Tabelo lahko še nekoliko dopolnimo:

Za izpolniti nam ostane samo še ba in bb. Zapisali smo že, da se mora v vsaki vrstici vsak element nahajat natanko enkrat. Torej lahko samo dopolnimo tabelo do konca in dobimo:

Definirajmo potence. To bomo naredili podobno kot pri analizi. Za pozitivne cele eksponente torej velja:

$$aa = a^{2}$$

$$aaa = a^{3}$$

$$\underbrace{aa \dots a}_{n} = a^{n}$$

Za negativne cele eksponente velja podobno:

$$a^{-1}a^{-1} = a^{-2}$$

$$a^{-1}a^{-1}a^{-1} = a^{-3}$$

$$\underbrace{a^{-1}a^{-1} \dots a^{-1}}_{x} = a^{-n}$$

Definirati moramo še a^0 . To naredimo na sledeč način:

$$a^0 = \epsilon$$

Sedaj lagko zapišemo Gkot $G=\{e,a,a^2\}.$ Vemo tudi, da $a^3=e.$

Primer take je grupe je podmnožica kompleksnih števil kjer je opracija množenje:

$$\begin{split} G &\subseteq \mathbb{C} \\ G &= \{1, a, a^2\} \\ a &= -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{split}$$

Za katerikoli n obstaja grupa. Zgornji grupi G pravimo tudi ciklična grupa.