Control of DC Motors

Galina Demidova, PhD, Associate Professor, Faculty of Control System and Robotics demidova@itmo.ru

DC series motor

Pictorial drawing

Wiring diagram

Schematic diagram

DC series motor

$$k \cdot \Phi_m(I_a) = k' \cdot I_a$$

$$I_a = V_a / (R_a + R_u + k'\Omega_a)$$

$$T_a = k' \cdot I_a^2$$

$$T_a = \frac{k'V_a^2}{(R_a + R_u + k'\Omega_a)^2}$$

DC series motor

Schematic diagram

decreasing armature voltage decreases motor speed DC VOLTAGE because of decreasing magnetic repulsion between F1 SHUNT F2 armature and stator magnetic **FIELD** fields armature rheostat ARMATURE DC VOLTAGE decreasing field voltage increases motor speed SHUNT F2 because of decreasing EMF in field rheostat armature A2

ARMATURE

A field rheostat or armature rheostat is used to adjust the speed of a DC shunt motor

DC separately motor

$$\Omega_{a0} = rac{V_a}{k \cdot \Phi_m}$$
 no-load speed

Schematic diagram

Schematic diagram

Wiring diagram

Schematic diagram

Cumulative compound motor

Differential compound motor

$$V_a = R_a i_a + L_a \frac{di_a}{dt} + e_a$$

where i_a is winding current,

 L_a is winding inductance,

 R_a is winding resistance,

 e_a is back-EMF induced by the rotation of the armature winding in a magnetic field.

 $di_d/dt = 0$

$$\omega_m = \frac{V_a}{k\phi_f} - \frac{R_a}{(k\phi_f)^2} T_L \quad (k = k_T = k_e)$$

Steady-state characteristics of DC motor with shunt field coil

$$E_a = \mathbf{k} \cdot \Phi \cdot \omega$$
$$T_{em} = \mathbf{k} \cdot \Phi \cdot I_a$$

$$T_{em} = k \cdot \Phi \cdot I_a$$

$$U = E_a + I_a \cdot \Sigma R$$

where:

 $\boldsymbol{E_a}$ - EMF of anchor winding;

- electromagnetic torque developed by the motor;

 I_a - armature current;

 $m{k}$ - design gain of the motor determined by the number of poles, anchor windings and the number of parallel tracks;

 Φ - magnet flow;

 ΣR - anchor chain resistance $\Sigma R = R_a + R_{ex}$.

Steady-state characteristics of DC motor with shunt field coil

• DC motor current-speed characteristic:

$$\boldsymbol{\omega} = \frac{\boldsymbol{U}}{\boldsymbol{k} \cdot \boldsymbol{\Phi}} - \frac{\boldsymbol{I}_{\boldsymbol{a}} \cdot \boldsymbol{\Sigma} \boldsymbol{R}}{\boldsymbol{k} \cdot \boldsymbol{\Phi}}$$

No load speed

Steady-state characteristics of DC motor with shunt field coil

• DC motor torque-speed characteristic:

$$\omega = \frac{U}{k \cdot \Phi} - \frac{T_{em} \cdot \Sigma R}{(k \cdot \Phi)^2}$$

DC motor revers

- To reverse the DC motor, the direction of the armature or field current should be changed.
- Usually, the direction of the armature current is changed because the lower inductance of the armature winding ensures a shorter duration of the transient operation and avoids commutative overvoltage.
- To change the direction of the armature current, the polarity of the armature terminals should be changed.

Speed control of DC motor with shunt field coil

☐ The external **resistance** in armature circuit

Speed control of DC motor with shunt field coil

☐ The external **resistance** in armature circuit

Starting of the DC motor with shunt field coil

Starting of DC motor

 At the moment a DC motor is started the armature is stationary and there is no counter EMF being generated.

$$E_a = 0$$

• The only component to limit starting current is the armature resistance, which, in most DC motors is a very low value (approximately one ohm or less)

$$U = E_a + I_a \cdot R_a \implies I_a = \frac{U - 0}{R_a}$$

- Usually, starting current of the DC motor 10..20 times higher than rated current
- In order to reduce this very high starting current, an external resistance must be placed in series with the armature during the starting period.

☐ The external resistance in **flux** circuit

$$T_{em} = k \cdot \Phi \cdot I_a$$

lue The reduction of terminal **voltage**

DC motor with independent field coil

DC motor with shunt field coil

DC motor with independent field coil

DC motor with shunt field coil

Ways to control DC motor speed:

- ☐ The external **resistance** in armature circuit
- ☐ The external resistance in **flux** coil circuit
- ☐ The reduction of terminal **voltage**

Series DC motor

$$\omega = \frac{U}{k \cdot \Phi} - \frac{I_a \cdot \Sigma R}{k \cdot \Phi}$$

$$\omega = \frac{U}{k \cdot \Phi} - \frac{T_{em} \cdot \Sigma R}{(k \cdot \Phi)^2}$$

Series DC motor

Speed control of series DC motor

Armature current [A]

$$\omega = \frac{U}{\sqrt{k_a \cdot k_s \cdot T_{em}}} - (R_a + R_s + R_{ex}) \sqrt{T_{em}/k_a \cdot k_s}$$

Four Complete Actuator Systems

Brushed DC motor with linear and PWM amplifier, brushless DC motor, stepper motor, and servo motor

Access full system I/O including sensor data and commands

3 - Brushed DC Motor

The Mechatronic Actuators board features a direct drive 24 V DC motor. This motor can be driven either by a linear or PWM amplifier. The included motor is a Kinmore Motor RF-370CHV-13455.

7 - Photomicrosensor

The speed of the brushed DC motor is measured using an onboard photomicrosensor which detects the teeth on the motor-mounted gear. The included sensor is a Omron EE-SX1081.

Operational amplifier (op-amp) symbol

$$V_x = \frac{R_1}{R_1 + R_2} V_{\text{out}}$$

$$\text{Voltage Gain} = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}$$

Visit ni.com/teach/actuator

