Normalform für Endomorphismen

POLYNOMRING

- Teiler: $f \in K[X]$ Teiler von $g \in K[X] \Leftrightarrow \exists h \in K[X] : g = f * h$
- Teilerfremdheit: f, g teilerfremd $\Leftrightarrow \forall h \in K[X]$, h teilt g, f: $0 \neq h \in K (h \text{ konstant})$
- **Irreduzibel**: $f \neq 0$ irreduzibel $\Leftrightarrow \forall h \in K[X], h$ teilt f: $h \in K \vee \exists a \in K : h = a^{-1}f \text{ (da dann } f = ah)$
- Polynomdivision: $f, g \in K[X], g \neq 0 \Rightarrow \exists h, r \in K[X]$: $f = gh + r \wedge \operatorname{Grad}(r) < \operatorname{Grad}(g)$
- Euklidischer Algorithmus: $Grad(f_0) \ge Grad(f_1), f_1 \ne 0.$
- 1. $f_0 = h_1 f_1 + f_2 (Grad(f_2) \ge Grad(f_1))$

F1: $f_2 = 0$ Fertig.

F2: $f_2 \neq 0$: $f_{i-1} = h_i f_i + f_{i+1}$. Rekursion.

- 2. $f_{i+1} = 0 \Rightarrow f_i \text{ teilt } f_{i-1}, \dots, f_1, f_0$
 - $\rightarrow f_i$ größter gemeinsamer Teiler von f, g $\rightarrow f$, g teilerfremd $\Rightarrow \exists k, l \in K[X] : 1 = k * f + l * g$.
- $\varphi \in \text{End}(V)$, $C \in K[X]$, $C(\varphi) = 0$, C = f * g, f, g teilerfremd $\Rightarrow V = \text{Kern}(f(\varphi)) \oplus \text{Kern}(g(\varphi)).$

HAUPTRÄUME

- Hauptraum: $\varphi \in \text{End}(V)$, $\lambda \in K \rightsquigarrow H(\varphi, \lambda)$ = Kern $((\varphi - \lambda \operatorname{Id}_V)^{\mu_a(\varphi,\lambda)})$ Hauptraum von φ zu $\lambda, H(\varphi,\lambda) \leq V$
 - $\lambda \in \operatorname{spec}(\varphi) \Leftrightarrow H(\varphi, \lambda) \neq \{0\}$ $\rightsquigarrow \dim(H(\varphi, \lambda)) = \mu_a(\varphi, \lambda)$
- Direkte Summe: V endl.-dim. K-VR, $\varphi \in \text{End}(V), \lambda_1, \ldots, \lambda_k \in K(\lambda_i \neq \lambda_j)$ $\sim \sum_{i=1}^{k} H(\varphi, \lambda_i) = \bigoplus_{i=1}^{k} H(\varphi, \lambda)$
- Äquivalent:
- 1. $V = \bigoplus_{\lambda \in \operatorname{spec}(\varphi)} H(\varphi, \lambda)$
- 2. $\mathsf{CP}_{\varphi}(X) = \prod_{\lambda \in \mathsf{spec}(\varphi)} (X \lambda)^{\mathsf{dim}(H(\varphi, \lambda))}$

NILPOTENTE ENDOMORPHISMEN

- = $\Phi \in \text{End}(V)\exists n \in \mathbb{N} : \Phi^n = 0 (\rightsquigarrow V = \text{Kern}(\Phi^n))$
- Φ nilpotent $\Rightarrow V$ direkte Summe von zyklischen UVR

JORDANSCHE NORMALFORM

lordankästchen:

$$=\begin{pmatrix} \lambda & & & \\ 1 & \cdot & & \\ & \cdot & \cdot & \\ & & \cdot & \cdot \\ & & & \cdot & \\ & & & \cdot & \\ \end{pmatrix} = J_d(\lambda) \in K^{d \times d} \text{ (Länge } d, \text{ Eigenwert } \lambda)$$

• **Jordanblock** (zu EW λ_i – ggf. $d_{j,i} = d_{j+1,i}$):

$$= \begin{pmatrix} J_{d_{1,i}}(\lambda) & & & \\ & \ddots & & \\ & & J_{d_{k-i}}(\lambda) \end{pmatrix} = D_i \in K^{\mu_a(\Phi, \lambda_i) \times \mu_a(\Phi, \lambda_i)}$$

- JNF: V endl.-dim. K-VR, $\Phi \in End(V)$ zerfalle in Linearfaktoren, $Spec(\Phi) =$
- $\Rightarrow \forall \lambda_i \in \operatorname{Spec}(\Phi) \exists k_i, d_{1,i}, ..., d_{k_i,i} \in \mathbb{N}, d_{1,i} \geq \cdots \geq d_{k_i,i} \geq 1$:

$$D_{BB}(\Phi) = \begin{pmatrix} D_1 & & \\ & \ddots & \\ & & D_1 \end{pmatrix} \text{ (mit Basis } B \text{ von } V\text{)}$$

• JNF-Eigenschaften (für EW λ):

Länge JB: $\mu_a(\Phi, \lambda)$

Anzahl JK: $\mu_q(\Phi, \lambda)$

Länge längstes JK:

 $\min\{e \in \mathbb{N} \mid \operatorname{Kern}((\Phi - \lambda I_n)^e) = \operatorname{Kern}((\Phi - \lambda I_n)^{e+1})\}$

Anzahl JK Größe i: $2 \dim(\text{Kern}((\Phi - \lambda I_n)^i))$

- $-\dim(\operatorname{Kern}((\Phi \lambda I_n)^{i-1})) \dim(\operatorname{Kern}((\Phi \lambda I_n)^{i+1}))$ • Transformationsmatrix: $S \in K^{n \times n} : S^{-1}AS = A'$ JNF
- 1. $\forall \lambda \in \text{Spec}(\Phi)$: Bestimme Basisvektoren für

 $Kern(\Phi - \lambda I_n), Kern((\Phi - \lambda I_n)^2), ...$

bis Dimension sich nicht mehr ändert

 $(:= p \cong \text{Länge längstes JK})$

- 2. Bestimme die Basisvektoren von Kern $((\Phi \lambda I_n)^p)$, die nicht in Kern $((\Phi \lambda I_n)^p)$ $\lambda I_n)^{p-1}$ liegen (=: v_1, \ldots)
- 3. Füge $v_1,$ $(\Phi-\lambda I_n)v_1,$ $(\Phi-\lambda I_n)^2v_1,$ $\dots,$ $v_2,$ $(\Phi-\lambda I_n)v_2,$ \dots S hinzu (Poten-
 - Achtung: Zu JK mit Länge k gehören Basisvektoren aus $Kern((\Phi - \lambda I_n)^k)!$
- 4. Wiederhole 2.-3. für p-1 (Potenzen dann nur bis p-1)
- 5. Angekommen bei Kern $(\Phi \lambda I_n)$: Ggf. S um zu S lin. unabh. Vektoren aus $\mathsf{Kern}(\Phi - \lambda I_n)$ ergänzen
- 6. 2.-5. für alle $\lambda \in \operatorname{Spec}(\Phi)$ durchführen

Bilinearformen

BILINEARE ABBILDUNG

- = $\beta : V \times W \rightarrow U (U, V, W K VRe)$ mit
- 1. $\forall v \in V : W \ni w \mapsto \beta(v, w) \in U$ linear
- 2. $\forall w \in W : V \ni v \mapsto \beta(v, w) \in U$ linear
- Paarung: = bilineare Abb. mit U = K

nicht ausgeartet \Leftrightarrow $(\forall 0 \neq v \in V \exists w \in W : \beta(v, w) \neq 0)$ $\wedge (\forall 0 \neq w \in W \exists v \in V : \beta(v, w) \neq 0)$

- **Bilinearform**: = bilineare Abb. der Form $\beta: V \times V \to W$
- BLF im Dualraum: nicht ausgeartete Paarung der Form $\beta: V \times V^* \to K \text{ mit } \beta(\upsilon,\lambda) \mapsto \lambda(\upsilon)$
- · Zusammenhang Abb.:
 - 1. $\varphi \in Abb(V, W^*)$
 - $\Rightarrow \beta_{\varphi}: V \times W \ni (\upsilon, \, w) \mapsto (\varphi(\upsilon))(w) \in K \; \mathsf{Paarung}$
 - 2. $\beta: V \times V^*(v, \lambda) \mapsto \lambda(v) \in K$ nicht ausgeartete Paarung
 - $\rightsquigarrow \text{hom}(V, W^*) \cong \{\text{Paarungen auf } V \times W\}$

FUNDAMENTALMATRIX

- $\langle \{b_1,\ldots,b_n\} \rangle =: V, \langle \{c_1,\ldots,c_n\} \rangle =: W, \beta: V \times W \to U$ bilin. $\leadsto u_{i,j} := \beta(b_i, c_i)$
- $U = K \Rightarrow D_{BC} := (u_{ij}) \in K^{n \times n}$

β-Fundamentalmatrix bezüglich B und C

- $v := \sum_{i=1}^{n} x_i b_i$, $w := \sum_{j=1}^{m} y_j c_j$: $\beta(v, w) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j u_{i,j}$
- $\Rightarrow \beta(v, w) = (x_1, \dots, x_n)^{\mathsf{T}} D_{BC}(\beta)(y_1, \dots, y_m)$ $\rightarrow \beta(v, w) = D_B(v)^{\mathsf{T}} D_{BC}(\beta) D_C(w)$

BILINEARE FORTSETZUNG

- $\forall (f_{i,j}) \in K^{n \times m} \exists \text{ Paarung } \beta(b_i, c_j) = f_{i,j}(i,j)$ = bilineare Fortsetzung v. $g: B \times C \ni (b_i, c_j) \mapsto f_{i,j} \in K$
- $\beta: V \times W \to K$ nicht ausgeartet $\Leftrightarrow D_{BC}(\beta)$ invertierbar $(\rightsquigarrow \dim(V) = \dim(W) = \operatorname{Rang}(D_{BC}(\beta)))$

Skalarprodukte

LÄNGEN UND ABSTÄNDE

- Skalarprodukt: = BLF $F: V \times V \rightarrow K$ mit
- 1. symmetrisch: F(x, y) = F(y, x)
- 2. positiv definit: $x \neq 0 \Rightarrow F(x, x) > 0$
- Standard-SKP: $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \ni (x, y) \mapsto x^\top y$
- Euklidischer Standardraum: = $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$
- Norm: = $||v|| = \sqrt{\langle v, v \rangle}$
- **Abstand**: = d(v, w) = ||v w||
- Rechenregeln:
 - 1. Dreiecksungleichung: $\langle v, v \rangle^2 \le \langle v, v \rangle * \langle w, w \rangle$ wenn =, dann v, w lin. abh.
- 2. Cauchy-Schwartzsche Ungleichung $||u - v|| \le ||u - w|| + ||w - v||$
- Normierter VR: = $(V, N), N : V \rightarrow \mathbb{R}$ mit
- 1. $\forall 0 \neq v \in V : N(v) > 0$
- 2. $N(\alpha v) = |\alpha| N(v) (\alpha \in \mathbb{R})$
- 3. $N(v) + N(w) \ge N(v + w)$
- Metrischer VR: = $(M, d), d: M \times M \rightarrow \mathbb{R}$ mit
 - 1. Symmetrie: d(m, n) = d(n, m)
- 2. Positivität: $d(m, n) \ge 0 \land (d(m, n) = 0 \Leftrightarrow m = n)$
- 3. *Dreiecksugl.*: $d(m, 0) \le d(m, n) + d(n, 0)$
- (V, N) normierter $VR \rightsquigarrow d_N(v, w) = N(v w)$ Metrik
- Winkel: $\angle(v, w) = \alpha \in [0, \pi] : \cos(\alpha) = \frac{\langle v, w \rangle}{||v|| * ||w||}$ Orthogonalität: v, w orthogonal $\Leftrightarrow \langle v, w \rangle = 0 \Rightarrow v \perp w$
- Pythagoras: $v \perp w \Leftrightarrow ||v||^2 + ||w||^2 = ||v + w||^2$

ORTHONORMALBASEN

- Orthogonalsystem: = $S \subseteq V$ (eukl. VR): $0 \notin S \land s, s' \in S : s \perp s'$
- Orthonormalsystem: = OGS mit $\forall s \in OGS : ||s|| = 1$ → OGS und ONS sind lin. unabh.
- Orthogonalbasis: $= S \subseteq V : \langle S \rangle = V \land S \text{ ist OGS}$
- Orthonormal basis: = $S \subseteq V : \langle S \rangle = V \land S$ ist ONS
- Fourierformel: V eukl. VR, $B = \{b_1, \ldots, b_n\}$ V-ONB
- $\rightsquigarrow V \ni v = \sum_{i=1}^{n} \langle v, b_i \rangle b_i$
- $\leadsto D_B(v) = (\langle v, b_i \rangle)_{1 \le i \le n} \in \mathbb{R}^n$
- $\rightsquigarrow \langle v, w \rangle = D_B(v)^{\mathsf{T}} D_B(w)$

- Orthogonale Matrix: = $A \in \mathbb{R}^{n \times n} : A^{\top}A = I_n$ $\{v_1, \ldots, v_n\} \text{ ONB} \Rightarrow A = (v_1, \ldots, v_n) \text{ OGM}$
- Orthogonale Gruppe: = O(n) $= \{ A \in \mathbb{R}^{n \times n} \mid A^{\top} A = I_n \} \subseteq GL_n(\mathbb{R})$ $\rightarrow \det(A^{\top}A) = \det(I_n) = 1 \Rightarrow \det(A) = \pm 1$
- Spezielle orthogonale Gruppe: = SO(n) $= \{ A \in O(n) \mid \det(A) = 1 \}$
- Orthogonalisierung: $\{v_1, \ldots, v_n\}$ Basis von eukl. VR V
- $\rightsquigarrow S = \{w_1, \ldots, w_n\}$ OGB mit: 1. $w_1 = v_1$
- 2. $w_l = v_l \sum_{i=1}^{l-1} \left(\frac{\langle v_l, w_i \rangle}{\langle w_i, w_i \rangle} w_i \right) (l = 1, \dots, n)$ $\rightarrow \widetilde{S} := \left\{ \frac{|w_1|}{||w_1||}, \dots, \frac{|w_n|}{||w_n||} \right\} \text{ ist ONB}$ Iwasawa-Zerlegung: $GL_n(\mathbb{R}) = O(n) * \mathcal{B}(n)$

 $(\mathcal{B}(n) = \{\text{obere } n \times n - \triangle\text{-Matrizen mit pos. Diagonaleinträgen}\})$

- Orthogonale Polynome: Eukl. $VR \mathbb{R}[X]_{Grad \leq n}$ mit SKP
 - \rightsquigarrow ONB bauen aus $\{1, x, \ldots, x_n\}$
- → orthogonale Polynome
- Positiv definit: $F = (f_{i,j}) \in \mathbb{R}^{n \times n}$ symmetrisch. Dann äquivalent:
- 1. *F* positiv definit
- 2. $\exists A \in GL_n(\mathbb{R})$ (obere \triangle -Matrix): $F = A^{\top}A$
- 3. $\forall 1 \le k \le n : \det((f_{i,j})_{1 \le i, j \le k}) > 0$
- 3.-1.: Hurwitz-Kriterium
- · Hauptminoren: Matrizen aus Bedingung v. Hurwitzkriterium
- · Minoren: Determinanten der Matrizen, die durch Streichen von Zeilen/Spalten von A entstehen

ORTHOGONALE KOMPLEMENTE, ABSTÄNDE

- Orthogonalraum: $M \subseteq V$ (eukl. VR)
 - $\leadsto M^\perp = \{ v \in V \mid \forall m \in M : m \perp v \}$ $= \{ \upsilon \in V \mid \forall m \in M : \langle \upsilon, m \rangle = 0 \}$ $\rightarrow N \subseteq M \Rightarrow M^{\perp} \subseteq N^{\perp}, M^{\perp} = \langle M \rangle^{\perp}$
- Orthogonales Komplement: $U \le V$ (eukl. VR)

 $\rightarrow U^{\perp}$ orthogonales Komplement zu U $V = U \oplus U^{\perp}$

• Orthogonale Projektion: $u \in U, u' \in U^{\perp}$.

 $\Pi_U: V \ni (u + u') \mapsto u \in U$ orthogonale Projektion (von V auf U längs U^{\perp})

• **Abstand**: $d(A, B) = \inf(\{d(a, b) \mid a \in A, b \in B\})$

Abstand von A und B ($\emptyset \neq A, B \subseteq V$)

- $\rightsquigarrow d(a, B) = d(\{a\}, B)$
- Abstand UVRe: $U, W \subseteq V$ (eukl. VR)
- 1. $\forall a \in V : d(a, U) = ||\Pi_{U^{\perp}}(a)||$
- 2. $\forall A \subseteq V : d(A, U) = ||\Pi_{U^{\perp}}(A), 0)||$
- 3. $d(v + W, U) = ||\Pi_{(U+W)^{\perp}}(v)||$
- Affiner Teilraum: $= v + W (W \le V, v \in V)$
- Affine Gerade (durch $a, b \in V$): = $\overline{a, b} = \{\lambda a + (1 \lambda)b \mid \lambda \in K\}$ (= a + K(b - a))
- **Strecke**: = $[a, b] = {\lambda a + (1 \lambda)b \mid 0 \le \lambda \le 1}$ (zwischen $a, b \in V, K = \mathbb{R}$)
- Lot: = [u, v w] Lot zwischen U und v + W(Lotfußpunkte $u \in U$, $v - w \in V + W$)

SKP & Homomorphismen

ISOMETRIEN

- Isometrie: = $f:(M,d) \rightarrow (N,e)$, e(f(x),f(y)) = d(x,y)
- **Isometriegruppe**: = lso(M, d)
 - = $\{f: M \to M \mid f \text{ ist symmetrische Isometrie}\}$
- **lineare Isometrie**: = $\Phi: V \to W: \Phi \in \mathsf{Abb}(V, W) \land \Phi$ ist Isometrie
- · Polarisierungsformel: SKP aus Metrik:
 - $\langle x, y \rangle = \frac{1}{4} (\langle x + y, x + y \rangle \langle x y, x y \rangle)$
- $\rightarrow \Phi$ ist lin. Iso $\Leftrightarrow \langle x, y \rangle_V = \langle \Phi(x), \Phi(y) \rangle_W$ • Koordinatenabb.: $B \ V$ -ONB $\leadsto D_B : V \to \mathbb{R}^{\dim(V)}$ lin. Iso.
- **Drehkästchen**: $\Phi \in Aut((\mathbb{R}^2), \langle \cdot, \cdot \rangle)$ lin. Iso.
- \rightarrow Beschreibung bzgl. Standardbasis S: $D_{SS}(\Phi) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 - mit $a^2 + c^2 = b^2 + d^2 = 1$ und ab + cd = 0
 - $\rightarrow \exists \varphi \in [0, 2\pi] : a = \cos(\varphi), c = \sin(\varphi)$
 - $\Rightarrow \begin{pmatrix} b \\ d \end{pmatrix} = \pm \begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix}$
- $D_{SS}(\Phi) = D_{\varphi} = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & -\cos(\varphi) \end{pmatrix}$ Drehkästchen zu Winkel φ
- Kriterium lin. Iso.: $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, V, W eukl. \mathbb{K} -VR, $\Phi \in \mathsf{Abb}(V, W)$ $\Rightarrow \Phi \in Iso(V, W) \Leftrightarrow \forall V$ -ONB injektiv auf W-ONB abgebildet
- $\rightarrow \dim(V) < \infty : \Phi \in \operatorname{Iso}(V, W)$
 - ⇔ ∃ ONB, die injektiv auf ONS abgebildet wird

- $\leadsto \Phi \in \mathsf{Iso}(V, W) \Leftrightarrow D_{BB}(\Phi)$ ist orthogonal/unitär
- Eigentliche Bewegung: = lineare Isometrie mit Determinante 1
- Häufigkeit lin. Iso.: $\Phi \in Iso(V) \Rightarrow \exists \delta \in V$, lin. Iso. $\Phi_0 \forall v \in V : \Phi(v) = V : \Phi(v$
- Darstellung Iso.: Jede V-W-Isometrie kann als lineare V-W-Isometrie mit $W\hbox{-}\mathsf{Translation}\ \mathsf{dargestellt}\ \mathsf{werden}$
- Spiegelung: = $\sigma_v: V \ni x \mapsto x 2 \frac{\langle x, v \rangle}{\langle v, v \rangle} v \in V$ (Spiegelung an Hyperebene v^{\perp} , $0 \neq v \in V$)

Jede lin. Iso. ist Produkt von höchstens $\dim(V)$ Spiegelungen

- Iso. + inv. Komplement: $\Phi \in Iso(V)$, $U \leq V \Phi$ -invariant $\Rightarrow U^{\perp} \Phi$ -invariant
- Eigenwerte: $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, V eukl. \mathbb{K} -VR
- 1. $\Phi \in \mathsf{Iso}(V) \ \mathsf{linear} \Rightarrow \forall \lambda \in \mathsf{Spec}(\Phi) : |\lambda| = 1$
- 2. $\alpha \in K$, $|\alpha| = 1$, $V \neq \{0\} \Rightarrow \exists \Phi \in \mathsf{Iso}(V) : \alpha \in \mathsf{Spec}(\Phi)$
- Isometrienormalform: $\Phi \in Iso(V)$ linear:
- 1. V hat ONB aus EV ($\cong \Phi$ orthogonal diagonalisierbar)
- 2. $V = \text{direkte } \sum \text{zueinander orthogonaler } \Phi \text{-inv.}$, ein-/zweidim. UVR
 - → Φ wirkt auf 2-dim. Summanden als Drehung
- Iso-NF: Matrizen: $n \in \mathbb{N}_0, A \in O(n)$

 $(d_+: \dim(\text{Eig}(A, 1)), d_-: \dim(\text{Eig}(A, -1)), l: \frac{1}{2}(n - d_+ - d_-))$

- Klausurmatrizen: Es sei $B := A + A^{T}$.
- 1. Bestimme $CP_B(\lambda)$
- 2. $\mu_a(B, 2) = \# 1 \text{er in Iso-NF}$
- 3. $\mu_a(B, -2) = \# -1$ er in Iso-NF
- 4. Restliche $\lambda_i \in \operatorname{Spec}(B)$: Drehkästchen

(mit
$$cos(\lambda_i) = \frac{\lambda_i}{2}$$
, $sin(\lambda_i) = \sqrt{1 - \frac{\lambda_i^2}{4}}$

(mit $\cos(\lambda_i) = \frac{\lambda_i}{2}$, $\sin(\lambda_i) = \sqrt{1 - \frac{\lambda_i^2}{4}}$) 5. *Transformationsmatrix*: Alle $\operatorname{Eig}(\lambda_i)$ berechnen, für jeden ER ONB aus EV berechnen (Gram-Schmmidt)

SELBSTADJUNGIERTE ENDOMORPHISMEN

- = $\Phi \in \text{End}(V) \forall v, w \in V : \langle v, \Phi(w) \rangle = \langle \Phi(v), w \rangle$ $\rightarrow \Phi$ selbstadjungiert $\Leftrightarrow D_{BB}(\Phi) = \overline{D_{BB}(\Phi)^{\top}}$ (ONB B)
- **Eigenwerte**: $\Phi \in \text{End}(V)$ selbstadjungiert. Dann:
- 1. $\forall \lambda \in \text{Spec}(\Phi) : \lambda \in \mathbb{R}$
- 2. $\forall U \leq V \Phi$ -inv.: $U^{\perp} \Phi$ -inv.
- **Spektralsatz**: $\{0\} \neq V$ endl.-dim. eukl. $VR, \Phi \in Iso(V)$ selbstadj.
 - $\Leftrightarrow V \text{ hat ONB aus } \Phi\text{-EV}, \forall \lambda \in \operatorname{Spec}(\Phi) : \lambda \in \mathbb{R}$
- $A \in \mathbb{R}^{n \times n}$ symm. $\Rightarrow \exists S \in O(n) : S^{-1}AS$ Diagonalmatrix
- $\rightarrow A \in \mathbb{R}^{n \times n}$ symm. positiv definit $\Leftrightarrow \forall \lambda \in \operatorname{Spec}(A) : \lambda > 0$
- Trägheitssatz: $P: V \times V \rightarrow \mathbb{R}$ symm. BLF. Dann:
- 1. $V = V_0 \oplus V_+ \oplus V_-$ mit
- (a) P auf V_+ positiv definit
- (b) P auf V_ negativ definit
- (c) P auf V_0 konstant 0
- (d) $P(v_o, v_+) = P(v_0, v_-) = P(v_-, v_+) = 0$
- 2. $\dim(V_0)$, $\dim(V_-)$, $\dim(V_+)$ nur von P abhängig

NORMALE ENDOMORPHISMEN

- Adjungiert: $\Phi: V \to W$ linear $\leadsto \Phi^*: W \to V$ zu Φ adjungiert $\Leftrightarrow \forall v \in V, w \in W : \langle \Phi(v), w \rangle_W = \langle v, \Phi^*(w) \rangle_V$
- Normal: V=W und Φ^* ex. $\Rightarrow \Phi$ normal, wenn $\Phi \circ \Phi^* = \Phi^* \circ \Phi$ (Matrizen: $A \in \mathbb{R}^{n \times n}$ normal $\Leftrightarrow AA^{\top} = A^{\top}A$)
- \rightarrow Φ selbstadjungiert \Rightarrow Φ = Φ^* , Φ normal
- $\rightarrow \Phi$ Isometrie $\Rightarrow \Phi^{-1} = \Phi^*, \Phi$ normal
- $\rightarrow D_{BC}(\Phi^*) = (D_{CB}(\Phi))^* \text{ (ONB } B, C \text{ von } V, W)$

Blockdiagonalmatrix mit $(1 \times 1)/(2 \times 2)$ -Matrizen ist normal

- Invariante Komplemente: $\Phi \in \operatorname{End}(V)$ normal, $U \leq V$ Φ -inv. $\Rightarrow U^\perp \; \Phi\text{-invariant}$
 - $\rightsquigarrow \Phi|_U \in \operatorname{End}(U)$ normal
- **Spektralsatz**: $\Phi \in \text{End}(V)$ (V eukl. \mathbb{K} -VR) normal. Dann:
- 1. $\mathbb{K} = \mathbb{C}$: es gibt eine ONB aus Φ -EV
 - $\rightarrow A \in \mathbb{C}^{n \times n}$ normal
 - $\Rightarrow \exists S \in U(n) : S^{-1}AS$ Diagonalmatrix
- 2. $\mathbb{K} = \mathbb{R}$: V ist orthogonale Σ aus ein-/zweidim. Φ -inv. UVR $\rightarrow A \in \mathbb{R}^{n \times n}$ normal
 - $\Rightarrow \exists S \in O(N) : S^{-1}AS$ Blockdiagonalmatrix
 - (Diagonale entweder reelle Eigenwerte oder Matrizen
 - der Form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, $b \neq 0$