Nome:______ Nº Mec.:_____ Assinale a sua opção: Respondo só à Parte 1 do exame Respondo só à Parte 2 do exame Respondo ao exame completo Declaro que desisto ______

19 de julho de 2021

Duração total: 2 h 30 min

Informações

- 1. Esta prova é constituída por 2 partes: parte 1 e parte 2.
- 2. Os alunos que realizaram os dois testes de avaliação discreta podem optar por responder apenas a uma das partes correspondente ao teste em que tiveram pior nota (Teste 1 Parte 1, Teste 2 Parte 2). Nesse caso, a classificação final à UC será a média aritmética da nota do melhor teste e a nota da parte que responderem neste exame. Podem também optar por resolver o exame na totalidade (Parte 1+Parte 2) e, nesse caso, a classificação final será a nota obtida neste exame. A nota final à UC para os estudantes que realizam o exame de recurso para melhoria será a melhor nota entre a classificação obtida na época normal e a obtida na época de recurso.
- 3. Deve usar uma folha para responder a cada questão e, se necessário, folhas de continuação distintas para cada questão.
- 4. Quando terminar a sua prova organize-a por questões e junte à folha de resposta de cada questão as correspondentes folhas de continuação (caso as tenha utilizado).
- 5. Preencha o cabeçalho desta folha com os seus dados e indicando a sua opção: Respondo só à Parte 1, Respondo só à parte 2, Respondo ao exame completo. No final, juntamente com a sua prova, entregue esta folha com o cabeçalho preenchido.
- 6. <u>Justifique</u> todas as suas respostas das questões, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.
- 7. Caso pretenda desistir desta prova, <u>assinale-o no cabeçalho desta folha</u> assinando no local a isso destinado e entregue todas as folhas de prova que lhe foram distribuídas.
- 8. Garanta que tem em cima da mesa de prova um documento que o identifique, com fotografia (preferencialmente o Cartão de Cidadão).
- 9. Só pode levar para a mesa onde vai realizar a prova material de escrita, não sendo permitido o uso de qualquer tipo de calculadora. **Não pode ter consigo telemóvel nem qualquer dispositivo eletrónico** (ainda que desligado).
- 10. No verso desta folha tem o formulário que pode usar na prova.

Formulário Transformada de Laplace

Função	Transformada	Função	Transformada	Função	Transformada
t^n $(n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$		$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ cos(at) (a \in \mathbb{R}) $	$\frac{s}{s^2 + a^2}$ $(s > 0)$		$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

Propriedades da transformada de Laplace

$$F(s) = \mathcal{L}{f(t)}(s)$$
, com $s > s_f$

$\mathcal{L}{f(t) + g(t)}(s) = F(s) + G(s), \ s > \max{s_f, s_g}$	$\mathcal{L}\{\alpha f(t)\}(s) = \alpha F(s), \ s > s_f \in \alpha \in \mathbb{R}$
$\mathcal{L}\lbrace e^{\lambda t} f(t) \rbrace (s) = F(s-\lambda), \ s > s_f + \lambda \ e \ \lambda \in \mathbb{R}$	$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s), \ s > s_f \in \mathbb{N}$
$\mathcal{L}{f(t-a)}(s) = e^{-as}F(s), \ s > s_f \ e \ a > 0$	$\mathcal{L}\lbrace f(at)\rbrace(s) = \frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f \in a > 0$

$$\mathcal{L}\lbrace f^{(n)}(t)\rbrace(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-2} f''(0) - \dots - f^{(n-1)}(0)$$
$$com \ s > \max\lbrace s_f, s_{f'}, s_{f''} \dots, s_{f^{(n-1)}}\rbrace, \ n \in \mathbb{N}$$

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva
$ \begin{array}{c} u^r u' \\ (r \neq -1) \end{array} $	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u'\sec u$	
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	

Algumas fórmulas trigonométricas

$\sec u = \frac{1}{\cos u}$	$\mathrm{sen}\left(2u\right) = 2\mathrm{sen}u\mathrm{cos}u$	$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$1 + tg^2 u = \sec^2 u$
$\csc u = \frac{1}{\sin u}$	$\cos(2u) = \cos^2 u - \sin^2 u$	$\operatorname{sen}^2 u = \frac{1 - \cos(2u)}{2}$	$1 + \cot^2 u = \csc^2 u$

Parte 1 (100pts)

- 1. (40pts) Considere a série de potências $\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$
 - (a) Determine o domínio de convergência, D, desta série de potências, indicando os pontos onde a série é absolutamente convergente.
 - (b) Mostre que a série dada converge uniformemente em qualquer intervalo da forma [-a, a]com $a \in \mathbb{R}^+$.
 - (c) Sabendo que sen $x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in D,$
 - i. escreva o polinómio de Taylor de ordem 2n + 1 em torno de 0 da função $f(x) = \operatorname{sen} x$;
 - ii. indique um polinómio de Taylor em torno de 0 da função f(x) = sen(x) de modo a que o erro cometido ao aproximar f por esse polinómio seja inferior a 10^{-3} quando |x| < 1. Justifique a sua resposta.
- 2. (35pts) Seja $f: \mathbb{R} \to \mathbb{R}$ a função periódica de período 2π definida em $]-\pi, \pi]$ por $f(x) = \pi |x|$.
 - (a) Mostre que a função f é par.
 - (b) Prove que a série de Fourier de f é dada por

$$\frac{\pi}{2} + \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\cos((2n+1)x)}{(2n+1)^2}.$$

- (c) Determine a função soma da série de Fourier de f e esboce o seu gráfico no intervalo $\left[-\frac{3\pi}{2}, 2\pi\right].$
- (d) Calcule a soma da série numérica $\sum_{i=1}^{+\infty} \frac{(-1)^n 1}{n^2}$.
- 3. (25pts) Sejam $\alpha \in \mathbb{R}$ e f a função definida em \mathbb{R}^2 por

$$f(x,y) = \begin{cases} \frac{(x-4)^2(y-4)}{3(x-4)^2 + 3(y-4)^2}, & (x,y) \neq (4,4) \\ \alpha^2 + \alpha, & (x,y) = (4,4) \end{cases}.$$

- (a) Mostre que $\lim_{(x,y)\to(4,4)} f(x,y) = 0$.
- (b) Determine o(s) valor(es) de α de modo a que f seja contínua em (4,4).

Parte 2 (100pts)

4. (25pts) Considere a equação diferencial

$$y' + 4xy = 2xe^{-x^2}\sqrt{y}.$$

- (a) Determine o integral geral da equação diferencial. Sugestão: Use a substituição $\sqrt{y}=z$.
- (b) Determine uma solução particular da equação dada que satisfaça y(0) = 2.
- 5. (25pts) Determine uma equação diferencial linear completa de 2^a ordem de coeficientes constantes que satisfaça as seguintes condições:
 - $y_p = x^2$ é uma solução particular da equação completa;
 - $\{e^x, xe^x\}$ é um sistema fundamental de soluções para a equação diferencial linear homogénea associada.
- 6. (25pts) Seja f a função definida em \mathbb{R}^2 por $f(x,y) = 2x^3 + xy^2 + 6x^2 + y^2$. Encontre e classifique todos os pontos críticos de f.
- 7. (25pts) Considere a função definida em \mathbb{R}^2 por f(x,y)=x e a curva C de equação $y^2+x^4-x^3=0$ representada na figura seguinte.

- (a) Justifique que a função f admite máximo e mínimo absolutos sobre a curva C.
- (b) Utilize o método dos multiplicadores de Lagrange para obter o máximo da função f sobre a curva C.
- (c) Indique, justificando, o mínimo da função f sobre a curva C.

Observação: Caso esteja nas condições do ponto 2 das informações e responda só a uma das partes do exame, a cotação de cada questão é o dobro da indicada.