Generalization and Distributed Learning of GFlowNets

Tiago da Silva, Amauri Souza, Omar Rivasplata, Vikas Garg, Samuel Kaski, Diego Mesquita

Keywords — GFlowNets, Distributed learning, PAC-Bayes

TL;DR

- we introduce the first non-vacuous generalization bounds for GFlowNets,
- we develop the first Azuma-type PAC-Bayesian bounds for understanding the generalization of GFlowNets under the light of Martingale theory,
- we demonstrate the harmful effect of the trajectory length on the proven learnability of a generalizable policy for GFlowNets,
- we introduce the first distributed algorithm for learning GFlowNets, Subgraph Asynchronous Learning, and show that it drastically accelerates learning convergence and mode discovery when compared against a centralized approach for relevant benchmark tasks

I. BACKGROUND: GFLOWNETS

GFlowNets are amortized algorithms for sampling from distributions over discrete and compositional objects (such as graphs).

Figure 1: A GFlowNet learns a forward policy on a state graph. Briefly, a **flow network** is defined over an extension $\mathcal S$ of $\mathcal G$, which then represents the sink nodes. To navigate within this network and sample from $\mathcal G$ proportionally to a **reward function** $R:\mathcal G\to\mathbb R_+$, a forward (resp. backward) policy $p_F(\tau)$ ($p_B(\tau|x)$) is used.

$$\mathbf{p}_{F}(\tau) = \prod_{(s,s')\in\tau} p_{F(s'\mid s)} \text{ and } \sum_{\tau \rightsquigarrow g} \mathbf{p}_{F}(\tau) = R(g).$$
(1)

To achieve this, we parameterize $p_F(au)$ as a neural network trained by minimizing

$$\mathcal{L}_{TB}(p_F) = \mathbb{E}\left[\left(\log \frac{p_F(\tau)Z}{p_B(\tau \mid x)R(x)}\right)^2\right]. \tag{2}$$

for a given $p_B(\tau|x)$. GFlowNets can be trained in an **off-policy** fashion and the above expectation can be under any full-support distribution over trajectories.

II. BACKGROUND: PROBABLY APPROXIMATE CORRECT BAYESIAN BOUNDS

Let \mathcal{L} be a loss function on a parameter space Θ , e.g., the squared loss. Also, let $\hat{\mathcal{L}}(\theta, \boldsymbol{X})$ be its empirical counterpart evaluated on a dataset \boldsymbol{X} .

PAC-Bayesian bounds. Given "prior" Q (independent of X) and posterior P distributions over Θ , a PAC-Bayesian bound establishes an upper limit

for the expectation of (unobserved) \mathcal{L} based on the (observed) $\hat{\mathcal{L}}$ and a complexity term φ and a confidence level δ ,

$$\mathbb{E}_{\theta \sim P}[\mathcal{L}(\theta)] \leq \mathbb{E}_{\theta \sim P}\left[\hat{\mathcal{L}}(\theta, \boldsymbol{X})\right] + \varphi(\delta, P, Q, |\boldsymbol{X}|). \tag{3}$$

When $\mathcal{L}(\theta) \leq B$ a.e., we refer to a bound as *vacuous* if

$$\mathbb{E}_{\theta \sim P} \left[\hat{\mathcal{L}}(\theta, \mathbf{X}) \right] + \varphi(\delta, P, Q, |\mathbf{X}|) \ge B. \tag{4}$$

Otherwise, the bound is *non-vacuous*. Historically, the search for non-vacuous PAC-Bayesian bounds has been associated to the search for provably generalizable learning algorithms. In this regard, recent works have built upon the basic PAC-Bayesian inequalities to obtain theoretical guarantees for GANs, transformers, armed bandits, and variational autoencoders.

Data-dependent priors for PAC-Bayesian bounds. Given "prior" Q (independent of X) and posterior P distributions over Θ , a PAC-Bayesian bound establishes an upper limit for the expectation of (unobserved) \mathcal{L} based on the (observed) $\hat{\mathcal{L}}$ and a complexity term φ and a confidence level δ ,

$$\mathbb{E}_{\theta \sim P}[\mathcal{L}(\theta)] \leq \mathbb{E}_{\theta \sim P}\left[\hat{\mathcal{L}}(\theta, \boldsymbol{X})\right] + \varphi(\delta, P, Q, |\boldsymbol{X}|). \tag{5}$$