Computational Number Theory I

Math Fundamentals: Group Theory,
Algorithmic Number Theory, Abstract Algebra

Why study this?

- This is a crypto (i.e., security) course right? What relevance does pure mathematics have?
- Old math, new uses
- Cryptography relies heavily on pure math:
 - Number theory (Prime number theory)
 - Abstract algebra (Groups, Rings, Fields, Monoids,...)
- So, we take a review of (undergrad?) math, but from an algorithmic perspective

Divisibility

- n|a; n ≠ 0 read as "n divides a"
 - 3|9, 4|16, -5|20, 17|0, ...
- Division theorem (a.k.a. Division algorithm)

For any integers n > 0, $a \ge 0$, there exist unique integers q > 0, r > 0 such that

$$a = qn + r$$
, and $0 \le r < n$, where $q = \lfloor a/n \rfloor$ $q = quotient$, $r = remainder$, $a = dividend$, $n = divisor$ Given a, b, we can compute q, r in polynomial time

Primes

- Prime: any positive integer, p > 1, with no factors (divisors) other than those in set {1,p}
- Composite number: any positive integer, n > 1, that is not prime
- 1: neither prime nor composite
- Fundamental theorem of arithmetic:

$$N = \prod_i p_i^{e_i}$$

For all N > 1, p_i are distinct primes, and e_i > 1 for all i

GCD

- c = gcd (a,n) is the largest integer that divides both a and n; a,n > 0
- gcd (a,n) = max [c, such that c|a and c|n]
- E.g., gcd (10,15) = 5, gcd (20,30) = 10
- gcd (a,0) = |a| (absolute value)
- gcd (0,0): undefined

• Co-prime or relatively prime integers:

If a,n such that a \neq 0 and n \neq 0, and gcd (a,n) = 1, then a, n are co-prime or relatively prime

Modular Arithmetic

- If n > 0 and $a \ge 0$, and a = qn + r, where $0 \le r < n$, then a mod n = r
- n = modulus, r = remainder
- E.g., $5 \mod 3 = 2$, $16 \mod 3 = 1$
- Let $a \ge 0$, $b \ge 0$, n > 0 be integers. Then:

If (a mod n) = (b mod n), a and b are said to be **congruent modulo n**. $a \equiv b \pmod{n}$ iff (a mod n) = (b mod n)

Modular Arithmetic Congruence

- E.g., $17 \equiv 5 \pmod{3}$
- Why? Because 17/3 --> r = 2 and 5/3 --> r = 2
- $24 \equiv 9 \pmod{5}$
- Note we used 17/3 and not 3 | 17
- Why? Because r ≠ 0

- 1. If $a \equiv 0 \pmod{n}$, then $n \mid a$, i.e., for a/n, r = 0
 - Check: $6 = 0 \pmod{3}$, 6/3 = 0
- 2. $a \equiv b \pmod{n}$ iff $n \mid (a b)$
 - Check: $17 \equiv 5 \pmod{3}$, and $3 \mid 12$
- 3. $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$ (Symmetric)
 - Check: $17 \equiv 5 \pmod{3}$, and $5 \equiv 17 \pmod{3}$

- 4. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$ (Transitivity)
 - Check: 17 ≡ 5 (mod 3) and 5 ≡ 14 (mod 3), then 17 ≡ 14 (mod 3)
- 5. $[(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n$
 - Check: [(17 mod 3) + (11 mod 3)] mod 3 = 4 mod 3 = 1
 - (17+11) mod 3 = 28 mod 3 = 1

- 6. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
 - Check: [(17 mod 3) (11 mod 3)] mod 3 = (2-2) mod 3 =
 0
 - (17-11) mod 3 = 6 mod 3 = 0
- 7. $[(a \mod n) \cdot (b \mod n)] \mod n = (a \cdot b) \mod n$
 - Check: $[(17 \mod 3) \cdot (11 \mod 3)] \mod 3 = 4 \mod 3 = 1$
 - (17 11) mod 3 = 187 mod 3 = 1

- Congruence modulo division does not respect divison, generally
 - [(a mod n) / (b mod n)]mod n ≠ (a / b) mod n

Except in groups where multiplicative inverses exist

Modular Arithmetic Tricks

- Find (4*9*9*11*23) mod 5
- One way
 - (36*99*23) mod 5 = 81972 mod 5 = 2
- Better way:
 - $(4*9) \mod 5 = 1$
 - $(1*9) \mod 5 = 4$
 - $(4*11) \mod 5 = 44 \mod 5 = 4$
 - $(4*23) \mod 5 = 92 \mod 5 = 2$

Modular Arithmetic Tricks

- Let n = 21
- Find 4¹⁰ mod n
- $4^{10} \mod 21 = (4^2 \cdot 4^8) \mod 21 = (16 \cdot 4^8) \mod 21$
- \equiv (16·(4⁴·4⁴) mod 21) mod 21
- $\bullet \equiv (16 \cdot (256.4^4) \mod 21) \mod 21$
- \equiv (16·4·(4⁴) mod 21) mod 21
- $\bullet \equiv (16.4.4 \mod 21) \mod 21$
- = 256 mod 21
- = 4

GCD Useful Results

Let a, b > 0. There exist integers X, Y, such that:Xa + Yb = gcd(a,b)

- For any a,b,c > 0, if c|ab and gcd(a,c) = 1, then c|b. If
 p > 1 is a prime, and p|ab, then p|a or p|b
- For a,b,N > 0, if a | N, and b | N, and gcd(a,b) = 1, then
 ab | N

Set Algebra

- What is a set?
- Any attempt to define a set has been very challenging for mathematicians
 - We are referring to an abstract notion of set, not defining specific sets
- We make no attempt to define a set
- We think of a set as a well-defined collection of some objects
- Collection of all outstanding baseball players not a set
- Collection of all baseball players who have scored more than 100 home runs – set

Basic Set Notations

- N : set of natural numbers
- N = { 0, 1, 2, 3, ..., }
- Z: set of integers
- Z = { -3, -2, -1, 0, 1, 2, 3, ... }
- Z+: set of positive integers
- $Z = \{1, 2, 3, ...\}$
- Z*: set of non-negative integers, {0, 1, 2, 3, ...}
- $Z^* = 0 U Z^+$

Set Notations Modulo n

• For $n \in Z^*$:

- $Z_n = \{0,1, ..., n-1\}$
 - Set of residues
 - Math: Z/nZ, CS: Zn; we'll just use Zn
- $Z_n^* = \{ a \in Z_n \mid \gcd(a,n) = 1 \}$
 - Set of integers co-prime with n
 - E.g., n = 15
 - \bullet Z_n = {0,1, 2, ...,14}
 - $\bullet Z_n^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$