

Python 資料科學應用開發

第七堂:機器學習概念簡介

(Introduction to Machine Learning)

同學,歡迎你參加本課程

- **☑** 請關閉你的FB、Line等溝通工具,以免影響你上課。
- ✓ 考量頻寬、雜音,請預設關閉攝影機、麥克風,若有需要再打開。
- ☑ 隨時準備好,老師會呼叫你的名字進行互動,鼓勵用麥克風提問。
- 如果有緊急事情,你必需離開線上教室,請用<mark>聊天室私訊</mark>給老師,以免老師癡癡呼喚你的名字。
- ✓ 軟體安裝請在上課前安裝完成,未完成的同學,請盡快進行安裝。

課程檔案下載

ZOOM 學員操作說明

Types of Machine Learning

Machine Learning

監督式學習 Supervised

Task driven (Regression / Classification)

非監督式學習 Unsupervised

Data driven (Clustering)

Analytics Vidhya
Learn Everything About Analytics

強化學習 Reinforcement

Algorithm learns to react to an environment

http://en.proft.me/2015/12/24/types-machine-learning-algorithms/

監督式學習 vs.非監督式學習

Western Digital.

機器學習的區別

Labeled data Supervised Learning Direct feedback Predict outcome/future No labels/targets Unsupervised Learning No feedback Find hidden structure in data Decision process Reinforcement Learning Reward system Learn series of actions

7

機器學習演算法

https://yourfreetemplates.com/free-machine-learning-diagram/

8

十大熱門方法(資料探勘 Data Mining)

- 1. C4.5 (decision tree)
- 2. k-means (clustering)
- 3. Support vector machines (next to C4.5, a classifier to try out first)
- 4. Apriori (association rule learning --> recommendation engine)
- 5. EM (i.e. expectation-maximization for clustering)
- PageRank (network analysis; think of the PageRank in Google's search engine)
- AdaBoost (boosting, and thus an ensemble learning algorithm; taking in and combining multiple learning algorithm)
- 8. kNN (aka k-Nearest Neighbors, thus classification)
- 9. Naive Bayes (family of classification algorithms assuming that all features is independent of each other)
- 10. CART (aka classification and regression trees, thus a classifier)

http://oliviaklose.azurewebsites.net/machine-learning-11-algorithms-explained/

機器學習的分類與演算法選擇

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

監督式學習

- ◆ 監督式學習(Supervised learning)分為兩類:
 - ♦ regression: predict results within a continuous output, meaning that we are trying to map input variables to some continuous function.
 - classification : predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.

迴歸(Regression)

Housing price prediction.

Supervised Learning

"right answers" given

分類 (Classification)

集群 (Clustering)

http://en.proft.me/2015/12/24/types-machine-learning-algorithms/

www.pcschoolonline.com.tw

強化學習(Reinforcement Learning)

15

機器學習流程

機器學習流程(另一個角度)

資料科學流程(拉遠一點看)

Team Data Science Process (TDSP)

資料的配置(Data Split)

專有名詞(Terminology)

Samples: 樣本

• Observations: 觀察值

Features:特徵

Labels:標籤

Classes:類別

個案研究 (1) 線性迴歸(Linear Regression)

線性迴歸-評估業績

◆ 由氣溫與營業額預估當日的業績

氣溫	29	28	34	31	25	29	32	31
營業額	7.7	6.2	9.3	8.4	5.9	6.4	8.0	7.5

氣溫	24	33	25	31	26	30
營業額	5.8	9.1	5.1	7.3	6.5	8.4

評估業績:請留意輸出結果

import numpy as np import pandas as pd

★操作檔案

「linear01.py」

from sklearn.linear_model import LinearRegression

temperatures = np.array([29, 28, 34, 31,25, 29, 32, 31,24, 33, 25, 31,26, 30])

drink_sales = np.array([7.7, 6.2, 9.3, 8.4,5.9, 6.4, 8.0, 7.5,5.8, 9.1, 5.1, 7.3,6.5, 8.4])

X = pd.DataFrame(temperatures, columns=["Temperature"])

target = pd.DataFrame(drink_sales, columns=["Drink_Sales"])

y = target["Drink_Sales"]

Im = LinearRegression()

Im.fit(X, y)

print("迴歸係數:", Im.coef_)

print("截距:", lm.intercept_)

評估業績:請留意輸出結果

import linear01 import matplotlib.pyplot as plt new temperatures = linear01.pd.DataFrame(linear01.np.array([26, 30])) predicted sales = linear01.lm.predict(new temperatures) print(predicted sales) plt.scatter(linear01.temperatures, linear01.drink sales) # 繪點 regression sales = linear01.lm.predict(linear01.X) plt.plot(linear01.temperatures, regression sales, color="blue") plt.plot(new temperatures, predicted sales,color="red", marker="o", markersize=10) plt.show()

★操作檔案「linear02.py」

線性迴歸-預測體重

◆預測體重

身高	147.9	163.5	159.8	155.1	163.3
體重	41.7	60.2	47.0	53.2	48.3

身高	158.7	172.0	161.2	153.9	161.6
體重	55.2	58.5	49.0	46.7	52.5

複迴歸

- ◆ 線性迴歸是一個原因一個結果
- ◆ 複迴歸是多個原因一個結果

複迴歸-使用身高與腰圍預測體重

◆ 預測體重

腰圍	67	68	70	65	80
身高	160	165	167	170	165
體重	50	60	65	65	70

腰圍	85	78	79	95	89
身高	167	178	182	175	172
體重	75	80	85	90	81

評估體重:請留意輸出結果

```
import numpy as np
import pandas as pd ★操作檔案「liner03.py」
```

```
from sklearn.linear model import LinearRegression
waist_heights = np.array([[67,160], [68,165], [70,167],
              [65,170], [80,165], [85,167],
              [78,178], [79,182], [95,175],
               [89,172]])
weights = np.array([50, 60, 65, 65, 70, 75, 80, 85, 90, 81])
X = pd.DataFrame(waist heights, columns=["Waist", "Height"])
target = pd.DataFrame(weights, columns=["Weight"])
y = target["Weight"]
Im = LinearRegression()
```

```
Im.fit(X, y)
print("迴歸係數:", Im.coef_)
print("截距:", Im.intercept_)
new_waist_heights = pd.DataFrame(np.array([[66, 164], [82, 172]]))
predicted_weights = Im.predict(new_waist_heights)
print(predicted_weights)
```

個案研究 (2) 分類 (Classification)

鳶尾花(Iris)資料集

- ◆ 資料集: 鳶尾花 (Iris) , https://archive.ics.uci.edu/ml/datasets/iris
 - ◆ 三個品種: Setosa 、 Versicolour 、 Virginica
 - ◆ 自變數
 - 花萼 (sepal) 長度
 - 花萼(sepal)寬度
 - 花瓣 (petal) 長度
 - 花瓣(petal)寬度
 - ◆ 150個樣本

Iris Setosa

Iris Virginica

K-Nearest-Neighbor (KNN)

目標

- ◆ 以 KNN 演算法預測『鳶尾花』(Iris)分類
- ◆ Lab (DAT275x)
 - Module1-275 / IntroductionToMachineLearning.ipynb

處理流程

- ◆ Examine the data set:載入資料集
- Prepare the data set
 - ♦ Species 轉換為(0,1,2)
 - ◈ 資料切割為訓練及測試資料
- Train and evaluate the KNN model
 - ◈ 訓練模型(Model Fitting)
 - ◆ 預測(Predict)
 - ◈ 繪圖顯示正確(三角形)/錯誤(圓形)結果

♦ From the plot, which species are more separated than the others?

Setosa

Versicolor

Virginica

What is the accuracy printed?

95.0

96.0

97.0

How many cases are mis-classified?

作品:酒類預測

- ◆ 試用本次課程內容分析『酒類資料集』
- data = datasets.load_wine()

Fall In Love WITH THE PROBLEM AND NOT WITH THE SOLUTION

參考用書

◆ 書名: Python機器學習(第三版)
http://www.drmaster.com.tw/bookinfo.asp?BookID=MP11804

◆ 作者: Sebastian Raschka, Vahid Mirjalili ISBN

◆ 譯者:劉立民、吳建華

◆ 出版社:博碩

39

問卷

http://www.pcschoolonline.com.tw

自107年1月1日起,課程錄影檔由180天改為365天(含)內無限次觀看(上課隔日18:00起)。

上課日期	課程名稱	課程節次	教材下載
2017/12/27 2000 ~ 2200	線上真人-ZBrush 3D動畫造型設計	18	上課教材 錄影 3 課堂問卷
2017/12/20 2000 ~ 2200	線上真人-ZBrush 3D動畫造型設計	17	上課教材 錄影檔
2017/12/18 2000 ~ 2200	線上真人-ZBrush 3D動畫造型設計	16	上課教材

@巨匠線上真人

www.pcschoolonline.com.tw