======
README: Data, Figures, and Code for "The Resonant Dark Universe"
======

PROJECT TITLE: The Resonant Dark Universe: A Unified Framework for Cosmology and the

Standard Model

AUTHOR: Joshua Knoechelman

DATE: August 2025

CONTACT: [Enter Your Email Address Here]

======

DESCRIPTION

======

This repository contains the preprint, all supporting figures, and simulation code for the paper, "The Resonant Dark Universe: A Unified Framework for Cosmology and the Standard Model."

Abstract: Standard cosmological and particle physics models face foundational challenges regarding the nature of time, dark energy, dark matter, and their lack of unification. We present the Resonant Dark Universe (RDU), a complete cosmological and particle physics framework that resolves these issues from first principles. The RDU is predicated on a "no-time" philosophy in which reality is a discrete sequence of quantum states governed by a single scalar entity, the Chronos Field. [...] By reducing the universe's free parameters from 19 to 8 and providing a complete, self-consistent, and falsifiable framework, the RDU stands as a candidate for a final Theory of Everything.

=======

FILE MANIFEST

======

- -- Main Publication --
- * Knoechelman_2025_Resonant_Dark_Universe.pdf The full preprint of the paper.
- -- Foundational & Conceptual Figures --
- * Figure_01_Genesis_Simulation.png

"The Genesis Simulation: Emergence of Particles from the Primordial Chronos Field".

- * Figure_02_Egress_Factor_vs_DRC_Class.png
 "RDU Data Analysis: Egress Factor vs. DRC Class".
- * Figure_03_Gravitational_Wave_from_Binary_DRCs.png "RDU Simulation: Gravitational Wave from Binary DRCs".
- -- Cosmological Validation Figures --
- * Figure_04_Simulated_CMB_Slice.png
 "RDU Simulated CMB High-Resolution 2D Slice".
- * Figure_05_CMB_Power_Spectrum.png
 "RDU Final Prediction vs. Standard Cosmological Model".
- * Figure_06_Dark_Energy_Constraints.png
 "Cosmological Constraints on Dark Energy Parameters".
- -- N-Body & Galactic Simulation Figures --
- * Figure_07_Proto_Galaxy_Particle_Tracks.png "RDU Proto-Galaxy (Steps 0 to 320000)".
- * Figure_08_Proto_Galaxy_Early_State.png "RDU Proto-Galaxy (Steps 0 to 51000)".
- * Figure_09_Galaxy_State_Dashboard.png
 "Galaxy State at Step 49900" (Dashboard View).
- * Figure_10_Dark_Matter_Halo_Profiles.png
 "Comparative Radial Density Profiles of Dark Matter Halos".
- -- Particle Derivations: Leptons --
- * Figure_11_Electron_Soliton.png
 "RDU Simulation: Stable Electron Soliton".
- * Figure_12_Electron_Energy_Convergence.png
 "RDU Simulation: Energy Convergence to Electron Mass" (0.511 MeV).
- * Figure_13_Muon_Soliton.png
 "RDU Simulation: Stable Muon Soliton".

- * Figure_14_Muon_Energy_Convergence.png "RDU Simulation: Energy Convergence to Muon Mass" (105.8 MeV).
- * Figure_15_Tau_Soliton.png
 "RDU Simulation: Stable Tau Soliton".
- * Figure_16_Tau_Energy_Convergence.png
 "RDU Simulation: Energy Convergence to Tau Mass" (1779.0 MeV).
- -- Particle Derivations: Neutrinos --
- * Figure_17_Electron_Neutrino_Soliton.png
 "RDU Simulation: Stable Electron Neutrino Soliton".
- * Figure_18_Electron_Neutrino_Energy_Convergence.png
 "RDU Simulation: Energy Convergence to Electron Neutrino Mass" (5.0e-08 MeV).
- * Figure_19_Muon_Neutrino_Soliton.png
 "RDU Simulation: Stable Muon Neutrino Soliton".
- * Figure_20_Muon_Neutrino_Energy_Convergence.png
 "RDU Simulation: Energy Convergence to Muon Neutrino Mass" (9.0e-08 MeV).
- * Figure_21_Tau_Neutrino_Soliton.png
 "RDU Simulation: Stable Tau Neutrino Soliton".
- * Figure_22_Tau_Neutrino_Energy_Convergence.png
 "RDU Simulation: Energy Convergence to Tau Neutrino Mass" (1.2e-07 MeV).
- -- Particle Derivations: Gauge Bosons --
- * Figure_23_Photon_Generation.png
 "RDU Simulation: Photon Generation from Electron".
- * Figure_24_W_Boson_Generation.png
 "RDU Simulation: W Boson Generation via Quark Transformation".
- * Figure_25_Z_Boson_Fluctuation.png "RDU Simulation: Z Boson Fluctuation".
- * Figure_26_Gluon_Field_Confinement.png
 "RDU Analysis: The Gluon Field as the Confinement Potential".
- -- Particle Derivations: Quarks & Hadrons --

- * Figure_27_Quark_Mass_Spectrum.png
 "RDU Simulation: Derived Quark Mass Spectrum (Generations 1 & 2)".
- * Figure_28_Quark_Antiquark_Energy_Convergence.png "RDU Simulation: Quark-Antiquark System Energy Convergence".
- * Figure_29_Strange_Quark_Soliton.png
 "RDU Simulation: Stable Strange Quark Soliton".
- * Figure_30_Strange_Quark_Energy_Convergence.png "RDU Simulation: Energy Convergence to Strange Quark Mass" (96.1 MeV).
- * Figure_31_Charm_Quark_Soliton.png
 "RDU Simulation: Stable Charm Quark Soliton".
- * Figure_32_Charm_Quark_Energy_Convergence.png
 "RDU Simulation: Energy Convergence to Charm Quark Mass" (1278 MeV).
- * Figure_33_Bottom_Quark_Soliton.png
 "RDU Simulation: Stable Bottom Quark Soliton".
- * Figure_34_Bottom_Quark_Energy_Convergence.png
 "RDU Simulation: Energy Convergence to Bottom Quark Mass" (4.18 GeV).
- * Figure_35_Top_Quark_Soliton.png
 "RDU Simulation: Stable Top Quark Soliton".
- * Figure_36_Top_Quark_Energy_Convergence.png "RDU Simulation: Energy Convergence to Top Quark Mass" (173.15 GeV).
- * Figure_37_Meson_Bound_State.png
 "RDU Simulation: Stable Up-Down Bound State (Meson)".
- * Figure_38_Proton_Bound_State.png
 "RDU Simulation: Stable Proton Bound State (Baryon)".
- * Figure_39_Proton_Energy_Convergence.png "RDU Simulation: Energy Convergence to Proton Mass" (938.5 MeV).
- * Figure_40_Neutron_Bound_State.png
 "RDU Simulation: Stable Neutron Bound State (Baryon)".
- * Figure_41_Neutron_Energy_Convergence.png

Source Code
* Helios_v18_Simulation_Code.pdf Python script ("Helios v18") for the Dark Sector Physics Simulation.
======================================
=======================================
======
* The main paper is in PDF format and requires a standard PDF reader. * All figures are provided as high-resolution PNG/JPG files. * The simulation code is in Python (.py) and requires a Python environment with the `numpy` and `cupy` packages installed. The code is optimized for use with a CUDA-enabled GPU.
======
HOW TO CITE ====================================
======
If you use this work, please cite the main paper. To cite this dataset and its contents specifically,

"RDU Simulation: Energy Convergence to Neutron Mass" (939.8 MeV).

If you use this work, please cite the main paper. To cite this dataset and its contents specifically, please use the following information:

Knoechelman, Joshua. (2025). Data, Figures, and Code for "The Resonant Dark Universe: A Unified Framework for Cosmology and the Standard Model". Zenodo. [DOI will be assigned here upon publication]