

Ingénierie Système

Analyse du cahier des charges Définition des besoins des parties prenantes Décomposition du système

Gestion de projet

Organigramme – Composition des groupes Cycle en V Diagramme de Gantt

Software du système

Analyse et génération de flux vidéos - Liaison FPGA-MCU Bus de Communication série Réalisation d'une IHM bidirectionnelle

Hardware et Mecanique du système

Choix des composants Prototype du boitier

Norme ISO 15288

Etape 1

Suciter les besoins des parties prenantes

Identification des parties prenantes.

Suciter les besoins

Etape 2

Définir les besoins des parties prenantes

Identifier les interactions du système.

Spécifier les besoins.

Définir des sequences d'activités (scenarios)

Etape 3

Analyser et maintenir les besoins des parties prenantes

Analyser les besoins.

Résoudre les problems.

Maintenir un lien de traçabilité avec leur origine

es parties prenantes

le projet.

Le client a exprimer son besoin en fournissant un chaier des charges

Promotion Master 2 SME

Maitres d'ouvrages

Le besoin

Fabrication d'un outil labo R&D : Equipement de Tests vidéos

Objectif de l'outil: Test de Caméras et Test d'écrans

Format de l'outil:

Boitier équipé d'un écran tactile

Analyse du cahier des charges

Partie Software

Commandes FPGA

- 1 Analyseur de flux vidéos.
- 2 Génerateur de flux vidéo

VHDL System VHDL C/C++ C/C++

Communication série

Géstion des bus de communication série (UART/SPI/I2C).

Interfaçage FPGA-MicroC

Programmer la communication entre les FPGA et le MicroController.

Programmation de l'IHM

Programmer l'interface de l'IHM. Faire en sorte que les commandes rentrée sur l'IHM passe au microcontrolleur. Programmer l'interface PC.

Partie Hardware

Design du boitier Implémentation du PCB à l'intérieur du boitier

Routage/PCB

Conception du cicrcuit intégré. Routage

Gestion de projet

Introduction

- La gestion de PGE est mener par l'ensemble des délégués du projet incluant les représentants des groupes.
- En utilisant les outils et méthodes de gestion de projet appris lors du cursus.
- Dans les prochaines réunions avec les délégués on décidera sur quel outils on va se basé pour organiser chaque trinôme ainsi que chaque groupe du projet pour but de bien achever le PGE.

Cycle en V

Cycle en V du PGE

PGE ET SCRUM

Chaque équipe avec un SCRUM master.

Ex : équipe génération flux vidéo, équipe IHM... etc.

Chaque équipe doit préplanifier son release et ses sprints en choisissant une ou plusieurs stories du back log du produit.

L'ordonnancement claire des stories et features sur toute la durée du release.

Documentation de la release (revue de release) .

BACKLOG: Equipement de test vidéo

Élements BACKLOG (relier à une exigence)	ESTIMATION
Génération flux vidéo	None estimte
Analyser flux vidéo reçu	//
Analyser les bus de communication	//
Élaborer une ihm	//
Interfaçage FPGA ET MICROCONTROLEUR	//
ROUTAGE PCB	//
etc.	//

Organigramme

Groupes et Diagramme de Gantt

Groupes:

Software				Hardware	Mecanique	Ingénierie Système
fpga	PC-IHM-microC	Bus de communication	communication fpga microC	routage/PCB	disign du boitier	SysML
Sofiane AOUCI				Damien MESSAOUDI	Nazim ARHAB	LACHEB Haitem
Anass MAHRAZ	Alejandro MARTINEZ	Gautier JOBERT	Clement BERGES	Fabien PERICO	Frederic JENN-ALET	
Lamoussa SANOGO	Bouchra BEN	Sebastian CARTEGENA	youssefABBIH	Manoah BERAL	Cyprien QUIVET	
Yasmine OUKZIZ	Kassandra BONHOURE	Thomas JARROSSON	farouk MADOUNI	Ryan HADDAD	Solène BADIBENGA	
lmene HAMIDA	Manoah BERAL	Jayendra SOUBAYA	Souhail HASSANI	Mohamed COND€		
Xavier SALAZAR	Soufiyane El GUERRABI	Alexandre REGNERE		Faouzi YAHMI		
Nijad TARABAY		Bruno MOUTOUNAICK				
El Mehdi BETTAHI						
Soufiyane El GUERRABI						
Badr ABOUYAAQOUB						
Ryan HADDAD						

Diagramme de Gantt : cf Fichier excel

Objectifs

 Analyse et extractions de caractéristiques d'un flux vidéo HDMI/SDI sur FPGA

 Génération d'un flux vidéo HDMI/SDI sur FPGA avec des caractéristiques configurées préalablement et affichage de mires

High-Definition Multimedia Interface (HDMI)

Le HDMI est un standard et une interface numérique qui permet de transmettre des flux vidéos et audio à très hautes définitions.

Pour la suite des recherches :

4 TMDS: (Transition Minimized **Differential Signaling**

- 3 canaux pour le signal vidéo (RGB/YCrCb) + audio
- 1 signal d'horloge

DDC: (Display Data Channel) (bus

I²C)

CEC: (Consumer Electronics

Control)

HPD: (Hot Plug Detection)

+5 V

Objectifs

 Implémenter une interface de communication entre le microcontrôleur et les FPGA afin d'exécuter les commandes de l'utilisateur et afficher les résultats d'analyse du flux vidéo sur l'écran.

Plusieurs solutions possibles

Solution 1

Interface parallèle via les broches d'entrées et sorties (PIO)

Gros inconvénients:

- Utilisation d'un nombre important de Pins
- Utilisation intensive du processeur

Solution 2

Bus de communication série (UART / I²C / SPI)

Avantages

Bonne maitrise de ce type de protocoles

Bus à implémenter par l'équipe « BUS de COM »

Inconvénients

Limitation de la vitesse du FPGA à celle du Microcontrolleur

Synchronisation du FPGA et du microcontrolleur

Solution 3

Mémoire externe partagée

- Utilisation d'une mémoire partagée par le microcontrôleur et le FPGA.
- Passage par bus externe (External Bus interface)

Liaison série

- Bit par bit (≠ liaison parallèle)
- Synchrone (même horloge)
- Asynchrone (horloges séparées)
- Bit de parité pour détecter des erreurs

UART*: Universal Asychronous Receiver Transmitter

Communication

Trame UART

I2C: Inter-Integrated Circuit

Communication

• Trame I2C:

*SPI: Synchronous Peripheral Interface

Communication

4 modes de fonctionnement dépendant de CPOL et CPHA

• Trame SPI:

Détection du protocole

Le système doit pouvoir **identifier** le protocole et donc savoir quel bus de communication est utilisé.

Première idée d'identification :

✓ Le système utilise 2 pins + GND : UART ou

I2C

S'il y a présence d'une horloge :

I2C

Sinon: UART

✓ Le système utilise plus de 3 pins : SPI

La lecture se fait alors suivant le protocole associé.

Matériel proposé pour l'application

Module d'affichage LCD TFT 7 "

Spécifications:

Écrans Tactiles 800 x 480 / 1024 x 600 Pixels

Ces module LCD TFT 7,0" offre une image colorée de haute qualité et un grand angle de visualisation.

Haute résolution, performances d'écran de haute qualité. Utilisation dans tous les systèmes embarqués, professionnels et pratiques.

Type d'écran tactile : Capacitif ou Résistif

Interface: DBI ou DPI

Prix: autour de 60 €

Matériel et logiciel proposé pour l'application

Microcontrôleur: STM32F4 ou F7

TouchGFX:

Application de ST qui permet de créer facilement des interfaces graphiques pour les produits utilisant des microcontrôleurs stm32. Elle est intégrée dans CubeMX.

Logiciel proposé

 Le développement de l'interface graphique se fera suivant l'architecture MVC (= Model View Control)

Liaison PC – Microcontrôleur

- Objectif: Commander le système via un ordinateur.
- **Exigence**: Liaison par câble USB
- Solution: Utilisation du protocole UART + Virtual Communication Port (VCP)

Architecture

Ecran Tactile

GEN4-ULCD-50D-SB-AR

Resolution: 800 x 480

5" TFT Screen

Capacitive Touch

https://4dsystems.com.au/g en4-ulcd-50dct-clb-ar

GEN4-ULCD-70D-SB-AR

Resolution: 800 x 480

7" TFT Screen

Capacitive Touch

https://4dsystems.com.au/g en4-ulcd-70dct-clb-ar

Module lattice tachyssema

Micro module industriel - ECP3 - Dual DDR2 HV3 Module

Configuration: 32Mb / 64Mb SPI DDR2 : 2 x 1Gb @ 400MHz

1

External I/Os: 32 CFI user flash: 512Mb to 1Gb

2

6 Supply voltage Single 3.3V

Dimensions (mm) 59 x 62 mm

3

Dimensions

Premier prototype

