AUG 6 1964

CRPL-F239 PART B

FOR OFFICIAL USE

Reference book not to be taken from the library.

PART B SOLAR - GEOPHYSICAL DATA

ISSUED JULY 1964

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

SOLAR - GEOPHYSICAL DATA

CONTENTS

I DAILY SOLAR INDICES

- (a) Relative Sunspot Numbers and 2800 Mc/s Solar Flux May June 1964
- (b) Graph of Sunspot Cycle

II SOLAR CENTERS OF ACTIVITY

- (a) Calcium Plage and Sunspot Regions June 1964
- (b) Magnetic Classifications of Sunspots (Mt. Wilson) June 1964
- (c) Provisional Coronal Line Emission Indices June 1964

III SOLAR FLARES

- (a-e) Optical Observations June 1964
- (f) Flare Patrol Observations June 1964
- (g-i) Optical Observations March 1964
- (j) Flare Patrol Observations March 1964
- (k) Ionospheric Effects (SWF-SEA-SCNA-SPA-SES-SFD-Bursts) May 1964
- (1) 26 Mc/s Riometer Events (South Pole) May 1964

IV SOLAR RADIO WAVES

- (a) 2800 Mc/s Outstanding Occurrences (ARO-Ottawa) June 1964
- (b) 169 Mc/s Interferometric Occurrences (Nancay) June 1964
- (c) 108 Mc/s Outstanding Occurrences (NBS-Boulder) June 1964
- (d) 7.6-41 Mc/s Spectral Observations (HAO-Boulder) June 1964
- (e-i) 9.1 cm Spectroheliograms (Stanford) June 1964

V COSMIC RAY INDICES

- (a) Climax Neutron Monitor May 1964
- (b) Deep River Neutron Monitor May 1964

VI GEOMAGNETIC ACTIVITY INDICES

- (a) C, Kp, Ap and Selected Quiet and Disturbed Days May 1964
- (b) Chart of Kp by Solar Rotations 1964

VII RADIO PROPAGATION QUALITY INDICES

- (a) CRPL Quality Figures and Forecasts North Atlantic and North Pacific - May 1964
- (b) Graphs Comparing Forecasts and Observed Quality North Atlantic and North Pacific May 1964
- (c-d) Graphs of Useful Frequency Ranges North Atlantic May 1964

VIII ALERT PERIODS

(a) IQSY Alert Periods - May 1964

May 1964	American Relative Sunspot Numbers RA [†]
1	0
2	0
3	0
4	11
5	14
6	9
7	10
8	10
9	9
10	4
11	0
12	0
13	0
14	0
15	5
16	16
17	14
18	9
19	3
20	3
21	1
22	10
23	13
24	10
25	3
26	1
27	10
28	11
29	11
30	11
31	12
Mean:	6.8

June 1964	Zürich Provisional Relative Sunspot Numbers R _Z	Daily Values Solar Flux at 2800 Mc, Ottawa, Canada Flux
1	8	67.7
2	8	68.0
3 4	8	68.2
5	8	68.2
>	7	67.8
6	0	68.4
7	14	69.6
8	0	69.8
9	7	69.0
10	7	70.3
11	14	70.3
12	23	68.9
13	11	70.2
14	18	70.5
15	24	71.6
16	23	70.6
17	11	71.1
18	22	71.7
19	23	70.1
20	19	70.4
21	9	69.7
22	0	69.5
23	0	67.4
24	0	68.0
25	U	67.7
26	0	67.6
27	0	67.4
28	0	67.3
29	7	67.1
30	7	67.2
Mean:	9.3	69.0

JUNE 1964

	L AT.	MCMATH	RETURN			CALCIUM PLA	GF DATA	A		S	UNSPOT	DATA
June 1964		PLAGE NUMBER	OF REGION	CMP VA AREA	LUES	HISTORY	AGE (ROTA- TIONS)	DATE FIRST SEEN(1)	DURA- TION (DAYS)	CMP VA		HISTORY
0.5 1.5 1.6 1.8 2.5	N08 N36 S05 N05 N3 1	7341(2) 7331(2) 7324 7316 7328(2)	New New New New New	(200) 100 400 1400 100	(2.5) 1.5 1.5 3 2	$b - d$ $b - d$ $b \wedge d$ $\ell \wedge \ell$ $b - d$	1 1 1 1	6/5 6/2 5/29 5/26 6/1	1 7 13 1	30	1	ℓ — d
2.6 2.7 3.3 3.6 3.7	S30 N28 S17 N06 N06	7329(2) 7332 7333(2) 7346 7330	New New New New New	100 100 100 (300) 200	1.5 1.5 1.5 (2.5)	b - d b - d b - d b - £ b \(d	1 1 1 1	6/1 6/2 6/2 6/8 6/1	1 2 1 2 6			
4.5 4.8 5.2 5.5 6.3	S12 N07 N35 N32 S23	7342 (2) 7336 7338 7349 7339	New New New New New	(200) 100 300 (200) 200	(1.5) 1 1 (2.5) 1	$b - d$ $b - d$ $b - d$ $b - \ell$ $b - \ell$	1 1 1 1	6/7 6/3 6/4 6/10 6/4	1 3 2 2 2			
7.1 7.7 8.2 8.2 8.1	S08 N25 N28 N06 N08	7334 7335 7350 7354(2) 7340(2)	New 7273 New New New	(200) 600 (200) (200) (200)	(1.5) 1.5 (3) (1.5) (1)	b / d l / d b - d b - d b - d	1 3 1 1 1	6/2 6/2 6/10 6/11 6/4	3 8 2 1 1			
9.5 11.0 11.2 11.5 11.7	S02 N24 N08 N01 N32	7358 7362 (2) 7359 (2) 7344 (2) 7343	New New New New New	(200) (300) 200 (100) 300	(1.5) (3) 1.5 (2) 2.5	$b - \ell$ $b - d$ $b - d$ $b - d$ $b - \ell$	1 1 1 1	6/12 6/14 6/12 6/7	3 1 1 1 10			
12.0 12.7 13.1 13.1 13.5	N47 N15 N21 N45 N26	7355 (2) 7351 7367 7356 7345 (2)	New New New New New	100 100 (100) 200 (400)	1 1.5 (1.5) 1 (1)	$b - \ell$ $b - d$ $b - d$ $b - d$ $\ell - d$	1 1 1 1	6/11 6/10 6/16 6/11 6/7	1 4 1 2	:		
13.7 13.9 14.2 14.5 15.1	N34 N12 N04 S43 N27	73 52 (2) 73 63 73 57 73 64 73 48	New New New New New	(200) 100 800 200 1200	(1.5) 1.5 3 1.5 2.5	$b - d$ $b - d$ $b - \ell$ $b - d$ $\ell - \ell$	1 1 1 1 1	6/10 6/14 6/11 6/14 6/8	1 10 1 13	190	4 2	b
15.1 15.3 15.9 16.3 16.4	N3 7 N06 N2 9 S2 1 N15	7365 7347 7353 7368 7360	New 7286 New New New	100 900 (100) 200 (100)	1.5 2.5 (1) 2 (1.5)	$b - d$ $\ell \sim \ell$ $\ell \sim d$ $b + d$ $b \sim d$	1 2 1 1	6/14 6/8 6/10 6/16 6/12	1 13 4 1 2			
17.2 17.9 18.1 18.1 19.1	\$34 N20 \$22 N10 N26	7374 7370 7375 7366 7361	New New New New New	(400) 200 (100) (200) 1000	(2) 1.5 (1.5) (1) 3.5	$b - \ell$ $b - d$ $b - d$ $b - d$ $\ell - \ell$	1 1 1 1	6/22 6/17 6/22 6/14 6/12	1 2 1 1 14	100	1	b∼d
19.8 19.3 21.4 21.6 21.8	\$10 N24 N08 N03 N11	7372 7371 7373 7377 7369	New New New New New	200 600 200 (200) (200)	2 3.5 1.5 (1.5)	b − d b ∕ ℓ b − d b − d d − d ℓ − d	1 1 1 1 1	6/18 6/17 6/20 6/24 6/16	2 9 1 1	150	7	b — d
27.3 28.6 30.5 30.5 30.9	N23 N07 N49 N10 N06	7381 7376 7379 7380 7378	New New New New New	500 (400) (200) 200 (300)	1.5 (1) (1) 2 (1.5)	$b - d$ $\ell - d$ $b - d$ $b - d$ $\ell - d$	1 1 1 1 1	6/28 6/24 6/27 6/27 6/24	1 1 1 2			

⁽¹⁾ No calcium plage data were secured at the McMath-Hulbert Observatory on June 15 and 23, 1964.

It is worthy of note that, for the first time during the declining phase of the cycle, there were no reportable calcium plages on the sun on June 26, 1964.

⁽²⁾ These very small and ephemeral plages last for only one day.

JUNE 1961

June 1964	TIME MEAS. UT	LAT	MER DIST	TYPE	June 1964	TIME MEAS UT	LAT	MER DIST	TYPE
1	1420	E02	NO7	αp	13	1915	E07	N05	βf
2	2255	W17	NO7	$\alpha_{\mathbf{p}}$			E67	N25	αp*
3	2310	W30	NO 7	$\alpha_{\mathbf{p}}$	14	1735	W05 E55	N05 N25	β β p *
4-7	No Spots				15	No Obs.			
8	No Obs.				16	2220	E26	N25	βf*
9	No Spots				17	2335	E07	N2 7	αf*
10	No Obs.						E 14 E27	N26 N26	βγ* β*
11	2215	E30 E37	NO4 N24	βf βp*	18-20	No Obs.			
12	2345	E18	NO5	αf	21-28	No Spots			
				-	29 July	2235	E61	S04	$\alpha_{\mathbf{p}}$
					1	0005	E46	S05	αp
						1	COMME	RCE - STANDARD	S - BOULDER

^{*} New cycle

PROVISIONAL CORONAL LINE EMISSION INDICES

JUNE 1964

ĵ.	R ₁	20 20 20 18 18	24a 20 x 16	114 222 330 14	20 x x 20 20 20 20 20 20 20 20 20 20 20 20 20	75 x L1 x x	x x Z x x
rant late			15a 12 x 1	111 119 119 119	112 14 12 x x 51	[[x 6 x x	* * * * * *
70	Re	100 170 170 170 170 170 170 170 170 170	^ A A ^ A		Н	Н	
North West (observed 7	G ₁	22 12 11 0 ×	X X O X X	22 12 18 18	11 71 × × ×	×∞××1	* * * * *
Sqo)	99	90 000 x	* * ∞ * 0	14 9 13	00 x x x	0	* * * * *
lrant later)	R1	25 12 18 19	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	118 20 20 15	19 21 x x x 24	15 13 × ×	* * * * * *
-duad	R6	14 10 12 15 15	14 ka 19 x 15 15	12 27 17 19	27 x x 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12 x x x x	* * C * *
South west (observed 7 d	G_1	∞ 0.00 ×	××0×~	14 12 13 13	51 0 x x x	×~ × × ×	* * * * *
Sol Solos	95	88 C- O X	* * O * H	rv∞ ti x∞	0 0 X X X	×HXXW	****
nt lier)	R ₁	x x x Z x	* * * * *	16 20 x x 5	12 20 20 x 14 x	16a 122 × 21	24 20 20 25 13
st juadrant days earlier	R6	x x x L x	* * * * *	2 x x x 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 X X X X	1,53 1,4 1,0 1,0	20 110 122
Bas 7	G ₁	****	* * * * *	x x x x x 5 7 7	~00 X X	20 20 50	14 13 7 x 2 0
South (observed	95	××××	* * * * *	10 / x x x	900××	たたX N X	12 2 x 2 v
r)	$^{\mathrm{R}_{\mathrm{J}}}$	x x x x x	* * * * *	28 × × 50	24 18 13 13	26a 20 .x 10	26 18 21 26 16
st Quadrant days earlier)	R6 F	x x x 122 1	* * * * *	15 x x x 24 29	13 13 15 1 15 1	20a 15 12 12	15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17
ਜੁਕ:		* * * * v	* * * * *	× × × 0 %	70 8 x x	× (~ × 0 %	11 14 x 20
North (observed	95	××××	* * * * *	x x x 581	11 22 22 24 44 44 44 44 44 44 44 44 44 44	×0×00	88 Z × 00
CMP June	1961	U V M 4 IV	9 8 8 9 0 1	111 122 114 114	16 17 19 20	21 22 23 24 25	26 27 29 30 30

SOLAR FLARES JUNE 1964

•	DATE		OBSERVED		LOCATION		DURA.	Ä	OBS COND.			MEASUREMENTS			PROVISIONAL
OBSERVATORY	JUNE 1964	START	END END	MAX. PHASE	LAT. MER.	PLAGE PEGION	TION - MINUTES	POR.		TIME.	MEAS AREA Sq. Deg.	CORR. AREA Sq Deg	MAX WIDTH Ha	MAX INT.	IONOSPHERIC EFFECT
SAC PEAK	01	0545	0605	NO FLARE 2100	PATROL NO6 WO4			1-	U		•63	•61		17	
CAPRI—S MCMATH LOCKHEED LOCKHEED	002	0145 0245 0805 E 1631 1920 1931	0155 0305 0808 1650 D 1939	NO FLARE NO FLARE 1635 1926 1938	PATROL PATROL NOS W10 NOS W10 N14 E58	7316		1 1 1 1	2222	0806 1635 1926 1938	. 50			10	
MCMATH MCMATH	00000	0135 0230 0435 1556 1706	0200 0325 0605 1615 D 1720	NO FLARE NO FLARE NO FLARE 1601	PATROL PATROL PATROL NO7 W23	7316 7316		1 +	7 7	1601	°70 °70	. 70			
	04	0155	0400	NO FLARE NO FLARE	PATROL										
— SAC PEAK — MCMATH	05 05 05	0215 0330 1508 1509	0250 0420 1521 1518	NO FLARE NO FLARE 1510 1510	PATROL PATROL NO5 W49 NO7 W48	7316		1 1	VI	1510	.16 .40	*21		18	
CAPRI-S CAPRI-S CAPRI-S	9000	0200 1305 E 1414 E 1430 E	0450 1320 1427 1505	NO FLARE	PATROL N25 E90 N25 E90 N25 E90			1 1 1	ттт	1315 1417 1432	0000	.30			
CAPRI-S CATANIA MANILA CAPRI-S CAPRI-S CAPRI-S	07 07 07 07 07	0814 E 0853 E 0900 E 0932 E 0956 E	0820 0910 D 0902 0915 0940 1005	NO FLARE	NOS E90 NOS E87 NOS E85 NOS E85 NOS E85 PATROL	7347	9	1111	m	0818 0855 0858 0935 0935	1.50 .17 .60 .50	1.50			
OTTAWA CAPRI-S SAC PEAK	888888	0315 1125 1422 1425 1820 1843	0335 1200 1444 D 1435 D 1830 2400	NO FLARE 1430 1630 NO FLARE 1846 NO FLARE	PATROL NZB E90 N32 E90 PATROL N22 E79	7348	22 b 10 D	+ 1	Um U	1430	1.09	2.00		17	
ARCETRI CAPRI-S ARCETRI	600000	0330 0910 E 0953 E 1000 E 2340	1003	NO FLARE	PATROL NO1 E15 N27 E73 N28 E75 PATROL			1 1 1	ጠጠጠ	0910 0955 1000	• 440 • 450 • 65	.51 1.60 1.78			
	10	0320	0425	NO FLARE	PATROL								COMMER	OL STANG	COMMERCE STANDARDS - BOULDER

JUNE 1964

PROVISIONAL	IONOSPHERIC	EFFECT																																							
	MAX INT.) T			17		17		10	- 0	10	18	10	10			18					10		17	18			10)				10	
	WIDTH	На	2.10				•																																1.90		-
MEASUREMENTS	AREA	Sq Deg	(600	000	04.	3.00	1.30	. 4 .	00.1	1.00	643	3 • 00	• 62	1.40	. 30	1,00	• 70	1,44	040	• 50	.33		• 29	80 (. O)	1.32	30	000	• 33	• 39		(96.	1	.1.		_	. 50	
	MEAS.	Sq. Deg.	0	200	0.9	• 30		09.	080	9 6	. 50	• 28		643	06.	. 50	1 7	09.	1.00	•20	040	33		• 29	930	4 7 5	•	•92	• 30	01.0	.27	.35		ì	• 75	1	080			.30	88.5
	TIME	T O	0710	1035	1205	1228		1212	2,0,0	1420	1430		_	,	1641	1631	2132	2211		2230	9000	0144			1456	1505) ;	1637	1709	2039					2257		1340		1618	2100	0211
OBS.			60 (3)	1		2	U	-	1	U		U	(N) (2	U	2	2	2		U	U	J ~		9	2	, -		U		(n 0		7 60		3	2 2	2
Σ	POR.	ANCE	1-	1 1		1-	rt	-				1-	7			1 .	- 1			1-	-	-		1-	1	1 [1-	1-		1 .	-	1-		-1,				1-	-	1 -	- 1
DURA.		TES					24						12																					8 D						_	
	PLAGE	REGION				7357	3	7348		5	7348		7348													7348				7348											
LOCATION	APPROA.	DIST	E60	П 3		E50		E58	_	_				E55				E52		7		E51	0	8	1 × 83	F47	E43	E41	ш.		ıω	ш	$-\alpha$	_	E32		E15	ш		E65	E03
•	TAT	-	N26	N 26	NON	N05	N23	N 24	N 23	2 N N	N24	N23	N23	N23	42N	2 Z Z	2 2	N24	N24	N35	40V	N 2 5	PAT	N33	N32	N 25	N25	N27	N06	2 C N	N25	N24	PAT	N33	N2 / N28	2	NO5	N05	N05	N 24 N 24	N 0 6
		PHASE	0710	0/11	1205	1		1212	1215	1420	1430	1429		1641	1641	1937	2132	2211		2230	9000	0144	NO FLAR	1455	1456	1506			1709	2039	2039	2315	NO FLAR		2257		1660			2100	0211
OBSERVED	FND FND		0735	1044 0		1241 D	1228	1221	1224		1432 D	1448	1650	1651	1648	1958	2140	2235	2211	2245	0038	0151	0320	1510	1501	1512	1515		1720	2050	2048	2329			0920 D 2330	7000	1400 D	1620	1628	2130 2310	0214
	START	-	0708	1035 F		1225 E			1212 E	1212	1428	1428	1638	1639	1640	1928	2127	2202	2204	2222	2355	0142	0245	1445	454	1501 E	1505	1637 E	1706	2037	2038	2309		0516 E	2245	000	1328		1617 E	2042 2253	0209
DATE	JONE C	1964	10	0 0	2 0	10	10	10	10	20	10	10	10	10	10	100	2 -	10	10	10	10	11	11	11	11	17	11	11	77	1.	11	11	12	12	12		13	13	13	13	14
	OBSERVATORY		- ONDREJOV	APORTE	HTF-PROVEN	L MCMATH	- WENDEL	- MCMATH	- SAC PEAK	MOMATH	T MCMATH	L SAC PEAK	- WENDEL		HTE-PROVEN	LOCKHEED SAC BEAN		I LOCKHEED	L SAC PEAK	LOCKHEED	LOCKHEED	MANILA		SAC PEAK		MOMATH	HTE-PROVEN	ARCETRI	LOCKHEED	MCMATH	SAC PEAK	SAC PEAK		WENDEL	LOCKHEED	2	CAPRI-S	── HTE-PROVEN	ONDREJOV	LOCKHEED	MANILA

PROVISIONAL	IONOSPHERIC	EFFECT																																	
	MAX	INT °°					α	10	10										2 8	24				-									17		
	MAX	WIDTH Ha		00.5																															
MEASUREMENTS	CORR.	AREA Sq Dog	• 20				1.60	04.	0 + •		• 33	-17	1.70	•	• 33			3.10	1 • 90	04.0	1.40	1.10					•17	•17	• 20	2,20	• 80	• 52	080	1.20	77
	MEAS.	AREA Sq. Deg.	• 20				080	300	•30		6.3	•17	1.00		• 33			1.80	1 • 40	.59	06.	.70					•17	• 17	• 20	1,60	09.	• 39	• 60 • 87	1.00	77
	TIME	T U	0251	0412	0660		1339	25	2356		0249	0259	0655	0650	0655	1042	† †	1333	27.0	1400	1458	1619				0121	0222	0338	0507	0516	0712	0912	1853	2205	
OBS.	COND		2	n			m (> <	2			2 0	7		2			2	م ر	V U		>				2	2		1	C	7	8	- C	2	. (
É	POR.	TANCE			-			1-	1		1-	1-	1 [٠, ٦	1-	1	-	+	l .	+	1-	-	1					1-	-		1	- 1	1 1		
DURA-	TION	MINUTES		37 D	80								21 C	37 D		0		26	7.7	4		71								54 D					
	McMATH	PLAGE		7357	7357							7361	1001	7361		7361	1001	7361	7273	1961		1361								7361			7361	7361	
LOCATION	APPROX.	LAT. MER. DIST.	N25 E62 N25 E61	N25 E65 N07 W00	NO7 WOO	PATROL	N28 E56	N25 F52	N10 E52	PATROL	N25 E50	N25 E50	N 2 2 F 5 0	N26 E47	N25 E48	NO7 W20	PATROL	N26 E46	N27 E46	N20 E40	N26 E45	N26 E43	N26 E42	PATROL	PATROL	PATROL N24 F40	N26 E34	N26 E34	N24 E38	N27 E35	N27 F34	N27 E30	N27 E28	PATROL N27 F25	PATRO
		MAX. PHASE	0251		FIARE			2250	2356	NO FLARE		0259			0655		NO FLARE		1326		458	619		ICI TI	FLARE	A R E	0222		0507	0	n		1853	AR E	NO FLARE
OBSERVED	UNIVERSAL TIME	END	0256				1349 D	2310	2400	0215	0255	0309		0725 D	0713	1045 D		1434	1348	1510	1525	1629			2400	0025	0230	0340	0510	0604	0745	0920 D	1915 D	2220 2235 D	530
		START	0248	0402 E 0818 E		1320	1335	2238	2353	- 4	0248 E	0256	2 0	0648 E	52	1040 E	00	1257	1317	1450	1450	1611	1702	1805	2040	0000		0337 E		0510 E	0700	0905 E	1845	2145 2153 F	
DATE	JUNE	1964	14 14	14	14	14	14	14	14	15	15	15	15	15	15	15	15	15	5 .	15	15			15	15	16	16	16			16	16	16	16	17
	OBSERVATORY		MANILA	ONDRE JOV CATANIA	CATANIA		CAPRI-S		LOCKHEED		MANILA	MANILA	HIF-PROVEN	- CATANIA	MANILA	CATANIA	CA LAN I A	CAPRI-S	- SAC PEAK	- CAPRIES - SAC PEAK	- HTE-PROVEN	- ZURICH HTE-PROVEN	HTE-PROVEN			MANTIA	MANILA	MANILA	- MANILA		HTE-PROVEN	ARCETRI	SAC PEAK	MCMATH	V M V LLO

1961 3NJf

PROVISIONAL	EFFECT														10
×	Æ:	18				10	10	20 20 21		10				10	10
MAX	WIDTH														
MEASUREMENTS	AREA Sq Deg	.30		3,00	4.00	09.	. 50	3.30	080	. 20 . 20 . 20				040	.50
MEAS	AREA Sq Deg	• 29				.30	500	2.60 2.16 2.88	920	2002.				.20	• 30
TIME	I D	1228		0810	0855	0030	0710 1254 1955 2341	2340	0746	2127 2218 2314				1745	2206
OBS. COND.		Ü				2 2	EE 2 2	1200	m m	2 2 2		-		2 2	2
Σ	TANCE	1.1		-1.1.	1 1 1	1-	1 1 1 .		1 1	1-1-				1.1.	1
DURA	MINUTES				10 D 55 D 21 D		30	56 15							
McMath	PLAGE			1371	7357		7361	7361 7361 7361							
APPROX	LAT MER DIST	NZ6 E21 NZ7 E20 PATROL PATROL	PATROL	PATROL PATROL N28 W05 N26 W06	N28 W15 N05 W71 N07 W73 PATROL	NO6 W80	501 W90 500 W90 N32 W90 N35 W71	N28 W39 N27 W39 N28 W39	PATROL PATROL PATROL N26 W42	PATROL N27 W43 N27 W43 N27 W43	PATROL	PATROL	PATROL PATROL PATROL	560 E34 N75 E70	S40 E59
	PHASE	1224 1228 NO FLARE NO FLARE	NO FLARE	NO FLARE NO FLARE	NO FLARE		NO FLAKE 1955 2341		NO FLARE NO FLARE NO FLARE	NO FLARE 2127 2218 2314	NO FLARE NO FLARE	NO FLARE NO FLARE	NO FLARE NO FLARE NO FLARE	1745	2206
OBSERVED UNIVERSAL TIME	END	1230 1230 2200 2220	0515		0906 D 0937 D 0915 D 1210	0045	0535 0726 0728 1258 2006 2400	2350 2350 2359 D	0300 0445 0550 0751 0759	1210 2134 2225 2325	0430	0335	0400 0430 0505	1758	2214
	START	1223 1227 2145 2210	0450		0856 E 0842 E 0854 E 1200	0010	0315 0707 E 1249 1945		0245 0410 0530 0742 0754	1205 2124 2212 2309	0310	0245	0150 0405 0445	1730	2200
DATE	1964	17 17 17 17 17 17 17 17 17 17 17 17 17 1	19	20 20 20 20 20	20	21	21222	21 21 21 21	22 22 22 22 22 22 22 22 22 22 22 22 22	22 22 22 22 22	23	24	25	27	27
-	OBSERVATORY	SAC PEAK HTE-PROVEN		CATANIA WENDEL	WENDEL WENDEL CATANIA	LOCKHEED	CAPRI-S CAPRI-S LOCKHEED	LOCKHEED SAC PEAK SAC PEAK	CAPRI-S CAPRI-S	LOCKHEED				LOCKHEED	LOCKHEFD

JUNE 1961

Ha				10000	
Sq Deg	Ľ			. 30 . 70 . 70 . 70	
Sq Deg				30000	
I O	1936	1936 2150 2250	1936 2150 2250 2325 0005	1936 2150 2250 2325 0005	1936 2150 2250 2325 0005
	2	77	2222	2222	00000
	1-	1 1 1	11111	1	1 1 1 1 1
MINUTES					
REGION					
DIST					
PHASE				1936 2150 2250 2325 0005	RE
	1955	1955 2230 2310	2230 2310 2335 0105 D	1955 2230 2310 2335 0105 D	Q
		2130	2130 2240 2320 2355	2130 2240 2320 2355	2130 2240 2320 2355 0105
28		28	28 28 28	28 28 28 28 28	28 28 28 28 29
LOCKHEED		LOCKHEED	LOCKHEED LOCKHEED LOCKHEED	LOCKHEED LOCKHEED LOCKHEED LOCKHEED LOCKHEED	LOCKHEED LOCKHEED LOCKHEED LOCKHEED LOCKHEED

	KRASNAYA PAKHRA, USSR					WENDELSTEIN, GFR	
NERA	NIZMIR	SAC PEAK	SALISJOBADE	SCHAUINS	TACHKENT	WENDEL	
HAWAII, USA KYOTO, JAPAN	KIEV GAO, USSR	KIEV UNIVERSITY, USSR	LOS ANGELES, CALIF., USA	MCMATH-HULBERT	PONTIAC, MICH., USA	MOSCOW-GAISH, USSR	WEW SCHAUIN FREIBLIG, GFR
HONOLULU IKOMASAN	KIEV KO	KIEV KY	LOCKHEED	MCMA TH		MOSCOU	NEW SCHAUI
ATHENS, GREECE PIRCULI, USSR	ROYAL OBSERVATORY,	CAPE OF GOOD HOPE	CAPRI, ITALY (GERMAN)	CAPRI, ITALY (SWEDISH)	SIMEIZ, USSR	ROYAL GREENWICH OBSERVATORY, HERSTMONCEUX, ENGLAND	HAUTE - PROVENCE
A THENES BAKOU	CAPETOWN		CAPRI F	CAPRI S	CRIMÉE	HERSTMONCEU	HTE-PROVEN

SEE DESCRIPTIVE TEXT PUBLISHED NOVEMBER 1961 FOR DEFINITION OF CORRECTED AREA VALUES LISTED FOR CLIMAX, HAWAII, LOCKHEED AND SACRAMENTO PEAK. ALL VALUES IN THE MAXIMUM INTENSITY COLUMN FOR SAC PEAK ARE ARBITRARY UNITS (0-40) AND FOR LOCKHEED ARE ARBITRARY UNITS (10-40), NOT PERCENT OF CONTINUOUS SPECTRUM.

INTERVALS OF NO FLARE PATROL OBSERVATIONS (PROVISIONAL)

JUNE 1964

Observatories included:

Arcetri Athenes Bucharest Catania

Haute-Provence Huancayo Istanbul Locarno

Lockheed Manila Ondrejov Ottawa

Sacramento Peak Wendelstein Wroclaw Zurich

MARCII 1964

PROVISIONAL	IONOSPHERIC													1,38
	. F	Ηα				1.60			1.50	1.44				1,38
MEASUREMENTS		Sq Deg							2.78 2.78		1, 00 1, 00 1, 00 1, 00 1, 00 1, 00			2.50
		Sq Deg. S			_	2, 25			1.82	1	. 640 . 80 . 40 . 60 1 00			3.75
Tivit	TIME!	T D							0509	00594 02534 02552 0325 0412 0430	0217 0412 0443 0447 0457			0403
OBS. COND.				·					22	000 4 00mw	00000			V
Ě	POR-								1		11111			1
DURA.		MINUTES				18 D			12 6	8				21 D 10
N-MATERIAL MATERIAL M	PLAGE	REGION				7171			7180	7180				7182
LOCATION	LAT. MER.	DIST.	PATROL	PATROL	PATROL	PATROL NO9 W38 PATROL PATROL PATROL PATROL	PATROL	PATROL	N41 E09 N42 E10	000 000 000 000 000 000 000 000 000 00	PATROL NA3 W14 NA3 W14 N44 W13 N41 W15 S03 W67	PATROL	PATROL PATROL PATROL PATROL	NO5 W67 NO3 W68
	MAX	PHASE	NO FLARE P	NO FLARE P	NO FLARE P	NO FLARE NO FLARE NO FLARE NO FLARE NO FLARE	NO FLARE P	NO FLARE P	0509 1041	00234 0234 0252 0325 0430 0430 0430 0430	NO FLARE P P 0217 NO 0412 N 0443 N 0447 N 0457 N 0457 N 0457 N 0457 N 0457 N N 0457 N N 0457 N N N N N N N N N N N N N N N N N N N	NO FLARE P	NO FLARE P NO FLARE P NO FLARE P	0206 0403
OBSERVED UNIVERSAL TIME	END		0335	0620	2335	0040 0200 0312 1035 1120 1500	0150	0200	0518 1045	0105 0245 0258 0336 0344 0420 1420 1521	0100 0155 0225 0417 0445 0503 0511	0320	0810 0905 0935 0945	0222
	START		0330	0610	2220	0010 0120 0254 E 1005 1100 1125	0120	0400	0506 1039	0057 0230 0240 0243 0313 E 0408 1412 E	0055 0150 0205 0409 0441 0445	0105	0745 0900 0925 0940	0201 E 0359
DATE		MAR 1964	01	02	03	4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07	90	11	122 112 122 122 122 122 122 122 122 122	1133	14	15	16
	OBSERVATORY					IRKUISK			N I ZAM I AH N I ZAM I AH	SYDNEY SYDNEY SYDNEY SYDNEY SYDNEY SYDNEY SYDNEY SYDNEY CLIMAX	SYDNEY SYDNEY SYDNEY SYDNEY SYDNEY CAPETOWN			IRKUTSK SYDNEY

MARCH 1961

PROVISIONAL	IONOSPHERIC	EFFECT		-IMC+C					S1-S-SWF																							
	MAX.	H.		100	2								4	· -																		
	MAX	WIDTH		1001							1.50												1.50		1.60							
MEASUREMENTS	CORR.	AREA Sq Deg.			1.60	2.60		2.60	3.420	2,30	2.18		00,1	000			0 4 0	• 70	1.60	1.30	000	. 80	2.48	• 50	2.16	1.90			2.60			
	MEAS	AREA Sq. Dog	ò	0001	• 50	080	• 30	.80	1.50	1.00	1.82		1,80	•		ć	07.	09.	1.00	.80	040	09.	1.82	.40	1.22	1.10			2 • 00			6
	TIME	u T		2770	0719	0816	1137	1214	1608	0025	1056		0549	r			1605	1843	2358	0018	1440		0952	1442	0506	0817	-		0708			6,7
OBS.	Comp			>	. U	U	U	U		U	2		C	,		(2 60	с	۵	Q.		U	2	5 EN	2 (<i>J</i> ()	2 0	1				(
÷.	POR.	TANCE			1	- 1	1	1,		-	-		t	:			1 [1-	1-	1-	-		_ ,	<u> </u>		1 1	+ 1	4				
DUBA.	TION	MINUTES	ů	0.7		41			0 19	11	70												12		9		61 D		34			
	McMATH	PLAGE	6	701/		7182		,	/182	7187	7187											_	7189		7189		7192		7192			
LOCATION	APPROX	MER	_	E A Z				0 L		E60	E29	PATROL	PATROL	ROL	PATROL	PATROL	N10 W30	W29	NIZ E46		W 38			W 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	W53		E48	PATROL	NO8 E39 PATROL	PATROL	PATROL	PATROL
	APP	LAT.	:	200	N05	N05	N07	N05	N 0 5	N10	60N	PAT		PAT	PAT	PAT	N N	_		N12	00N N109	N08	N12	N 1 4	NII	N09	80 N	PAT	- 17.7			
		MAX PHASE	3	0440	0719	0816	1137	1214	1608	0025	1056	NO FLARE NO FLARE	NO FLARE	NO FLARE	NO FLARE	NO FLARE	1605	1843	2358		0447		0952	1442	0506	0817	0825	NO FLARE	0708 NO FLARE	NO FLARE	NO FLARE	NO FLARE
OBSERVED	UNIVERSAL TIME	END		0450	0730	0852	1151	1227	1656	0600	1101	0720	0500		1210		1532	1851	00004 D	0045	0451	0250		1038 D 1444	0510	0857	0913 D	2200	0737	0635	0225	0145
		START		0431		0811	1132		1555 E	0019	0951	0710	0420	1140	1200	1300	1521	1839	2354	0018 E	0445	0445		1034 E 1441	0504	6080	0812 E		0703	0610	0500	0110
DATE		MAR		16	16	16	16	16	16	18	20	21	22	22	22	22	22	22	22	23	23	23	23	23	24	54	24	24	25	26	27	28
	OBSERVATORY			L KONATKNI	CAPETOWN	CAPETOWN	CAPETOWN	CAPETOWN	CLIMAX	SYDNEY	NIZAMIAH		ARACTHMANI				CLIMAX	CLIMAX	SYDNEY	SYDNEY	- SYDNEY	- SYDNEY	NIZAMIAH	CLIMAX	NIZAMIAH	- CAPETOWN	BUCHAREST BUCHAREST		CAPETOWN			CAPFTOWN

MARCH 1964

PROVISIONAL	IONOSPHEBIC	EFFECT								
	MAX	INI								
	MAX.	WIDTH	Ha							
MEASUREMENTS	CORR.	AREA	Sq. Deg.							
M	MEAS.	AREA	Sq Deg							
	TIME	ı	ı ı							
OBS.	COND.									
Ė	POR.	TANCE								
DIIBA.	TION	ı	MINUTES							
Z	McMATH	PLAGE	REGION							
LOCATION	APPROX	MER	DIST.		ROL	ROL	ROL	ROL	ROL	ROL
	APP	LAT.			PATROL	PATROL	PAT	PATROL	PAT	PAT
		MAX	PHASE		NO FLARE					
OBSERVED	UNIVERSAL TIME	END			0200	0525	1925	2035	2130	2330
		START			0430	0150	1915	2005	2110	2205
DATE			MAK	1964	29	59	31	31	3.1	31
	>aCTellallalla	CESERVALORI								

These flare reports are addenda to the March 1964 flares published in CRPL-F 236 for April 1964.

NEDERHORST den BERGH,	NETHERLANDS		SACRAMENTO PEAK, N.MEX. USA				WENDELSTEIN, GFR		
NERA		NIZMIR	SAC PEAK	SALTSJOBADE	SCHAUINS	TACHKENT	WENDEL		
HAWAII, USA	KYOTO, JAPAN	KIEV CAO, USSR	KIEV UNIVERSITY, USSR	LOS ANGELES, CALIF., USA	MCMA TH-HULBERT	PONTIAC, MICH., USA	MOSCOW-CAISH, USSR		EW SCHAUIN FREIBURC, CFR
HONOLULU	IKOMASAN	KIEV KO	KIEV KY	LOCKHEED	MCMA TH		MOSCOU		NEW SCHAUIN
ATHENS, GREECE	PTRCULL	ROYAL OBSERVATORY.	CAPE OF GOOD HOPE	CAPRI, ITALY (CERMAN)	CAPRI, ITALY (SWEDISH)	SIMEIZ, USSR	ROYAL GREENWICH OBSERVATORY,	HERSTMONCEUX, ENGLAND	HAUTE-PROVENCE
ATHENES	BAKOII	CAPETOWN		CAPRI F	CAPRIS	CRIMÉE	HERS TMONCEU		HTE-PROVEN

ALL VALUES IN THE MAXIMUM INTENSITY COLUMN FOR SAC PEAK ARE ARBITRARY UNITS (0-40) AND FOR LOCKHEED ARE ARBITRARY UNITS (10-40), NOT PERCENT OF CONTINUOUS SPECTRUM.

SEE DESCRIPTIVE TEXT PUBLISHED NOVEMBER 1961 FOR DEFINITION OF CORRECTED AREA VALUES LISTED FOR CLIMAX, HAWAII, LOCKHEED AND SACRAMENTO PEAK. □= NOT REPORTED. E = LESS THAN D = GREATER THAN U = APPROXIMATE In CRPL-F 238B page IIIa, the coordinates for the flare reported by Ottawa for May 7, 1964 which began at 1428 and ended at 1439 UT at SOI and E31 should read SOI and W31. The McMath plage region number is 7269. Erratum:

Observatories include:

Abastumani Arcetri Arosa Bucharest Capetown Capri-F (German)

31

Capri-S (Swedish)
Climax
Crimee
Dunsink
Haute-Provence
Herstmonceux

Huancayo Ikomasan Irkutsk Istanbul Izmiran Kiev-KO Kodaikanal Locarno Lockheed Manila McMath-Hulbert Mitaka

Nizamiah Ondrejov Ottawa Sacramento Peak Sydney Tachkent Thessaloniki Uccle Voroshilov Wendelstein Wroclaw Zurich SHORT WAVE RADIO FADEOUTS
SUDDEN COSMIC NOISE ABSORPTION
SUDDEN ENHANCEMENTS OF ATMOSPHERICS
SOLAR NOISE BURSTS AT 18 Mc/s

MAY 1964

MAY	U	UNIVERSAL TIME TYPE IMPORTANCE WIDE SPREAD		STATIONS	KNDWN									
1964	START	END	MAX	IMP	ABS	SCNA	SEA	SPA	SES	SFD	BUR	INDEX	STATIONS	FLARE
24	1932	1935	1932D							04		1	BO(WWV10-0.4,WWV15-0.2)	

Addendum

On March 17, 1962 a short wave fadeout should be added to the events published in CRPL-F 213 B issued May 1962.

Mar. 1962	Start	End	Max	Type SWF IMP	Wide spread index	Stations
17	0330	0355ช	0335	SL 1+	1	OK,CW+
17	0355U	0530	0410	S 2+	5	

(Provisional)

MAY 1964

South Pole

26 Mc/s

MAY 1964	START UT	END UT	MAX. UT	MAX. ABSORP. db, (tenths)	NO. OF PEAKS	MAY 1964	START UT	END UT	MAX. UT	MAX. ABSORP. db, (tenths)	NO. OF PEAKS
1 2 2 2 2 3	0800 0059 0654 2153 0942	2011 0430 1708 0514 1857	1227 0353 0818 0039 1413	47 6 21 30 8	1 2 3 5 2	18 19 20 20 21	2047 0405 0207 1646 0406	2108 1608 0417 2134 0421	2 105 04 17 0 149 1700 04 11	4 7 11 4 3	3 3 3 5 1
4 4 5 5 6	0144 1007 0021 0547 0210	0233 1151 0223 2347 0355	0206 1042 0038 1204 0324	22 4 17 7 5	2 3 3 12 5	21 22 23 23 23	1007 1321 0343 0529 2234	17 16 18 15 0442 06 10 00 10	1213 1700 0408 0540 2326	12 3 8 3 5	2 2 1 1 2
7 7 8 9	0331 0826 * 1409 0426	0458 0850 1545 0504	0426 0844 1429 0445	6 3 3	3 2 3 2	24 24 25 25 25	0406 2035 0924 1548 2017	1528 0134 1331 1643 0600	0417 2231 0951 1552 2350	11 46 88 4 68	5 2 1 1 4
10 11 12 13 14	1234 2358 2004 1514 0914	1700 0008 2105 1817 1433	1346 0001 2037 1701 0926	6 5 5 7 13	2 1 2 1 3	26 27 27 28 28	1159 ** 2217 0248 0945	** 1625 2316 0531 1434	13 14 07 12 2235 0308 1301	3 31 10 20 4	17 4 2 2 7
15 15 16 17 18	0342 2339 0830 0638 1001	1737 0635 2110 1838 1757	0402 2347 1508 1549 1306	85 96 30 26 10	2 3 4 3 5	28 29 29 30 30	2211 0316 1115 0016 0655	2303 0644 1640 0354 1732	2217 0322 1345 0028 1148	18 15 7 15 7	2 2 1 3 2
						30 31	2244 1002	0053 1613	2254 1428	47 4	1 11

COMMERCE - STANDARDS - BOULDER

* No Data
** No Event
*** Uncertain

SOLAR RADIO EMISSION **OUTSTANDING OCCURRENCES**

JUNE 1964

ARO - OTTAWA

2800 Mc/s

JUNE	U R	DESCRIPTIVE	START	DURATION	MEAN	MAXIM	JM	REMARKS
1964	N E	ТҮРЕ	UT	HRS. MIN.	FLUX	TIME	FLUX	NE MANNS
16	1	Simple 1 f	1757	1.5	1757.1	2.7	0.7	

COMMERCE - STANDARDS - BOULDER

HOURS OF OBSERVATION, APRIL, MAY, JUNE, 1964

OBSERVING PERIOD:

April 11:10 - 23:05 UT May 10:55 - 23:20 UT 10:55 - 23:25 UT June

With the following exceptions:

(1) Observations commenced: Apr. 20 at 13:25 UT

May 5 at 12:20 UT 9 at 14:10 UT 10 at 12:15 UT June 6 at 12:25 UT 12 at 12:25 UT

(2) Interruption of observations, approximately 20 minutes in duration, for calibration purposes:

Daily - In the period 20:00 - 21:00 UT

Apr. 1-26, inclusive - In the period 16:00 - 17:00 UT Apr. 28 - June 11, inclusive - In the period 15:00 - 16:00 UT June 12 - 30, inclusive - In the periods 14:00 - 15:00 UT and 17:00 - 18:00 UT

(3) No observations:

Apr. 21 18:30 - 19:50 UT 27 14:10 - 14:35 UT May 9 21:10 - 22:30 UT

June 24 14:45 - 15:45 and 17:55 - 18:20 UT

(4) Interference obscuring portions of the records on:

Apr. 22

May 4, 6, 11, 28 June 5, 8, 9, 10, 19, 23, 25, 26, 30.

JUNE 1964

108 Mcs

SOLAR RADIO EMISSION OUTSTANDING OCCURRENCES

JUNE 1964

NBS BOULDER

108 Mc/s

1964 June	TYPE	START UT	TIME OF MAXIMUM UT	DURATION MINUTES	INTENSITY
7	8	1629.5	1630.0	3.8	3

COMMERCE - STANDARDS - BOULDER

NOMINAL TIMES OF OBSERVATION

JUNE 1964

NBS BOULDER

HOURS OF HOURS OF HOURS OF HOURS OF 1964 1964 INTERFERENCE OBSERVATION INTERFERENCE OBSERVATION June June U.T. U.T. U.T. U.T. 16 1136-1540 1138-0200 1 2 1138-0201 2320-0010; 17 2135-0208 0100-0150 18 1601-1650; 3 1138-0201 0038-0042 1745-2000; 1512-0202 4 2356-0208 5 1137-0202 19 1136-2101; 2117-0209 6 1137-0203 2005-2100 20 1136-0209 1810-1812; 7 1136-0204 1817-1820; 8 1136-0204 2312-0209 1210-1325; 1533-1539; 1600-1845 21 1136-0209 1617-1629; 9 1136-0205 0009-0209 10 1136-0205 22 1136-0209 23 1200-0210 1730-1828 11 1136-1745; 24 1137-0210 1800-0206 25 1137-0210 12 1136-0206 2045-0206 13 1135-0207 1135-1500; 26 1137-2049; 1735-2330; 2118-0210 2356-0210 0128-0207 27 1138-0210 14 1710-0146 1135-0207 1340-1640 28 1138-0210 15 1135-0207 29 1139-0210 1800-0210 30 1139-1540; 2001-2308 2001-0210

COMMERCE - STANDARDS - BOULDER

Note: Most of the interference is due to atmospherics.

SOLAR RADIO EMISSION SPECTRAL OBSERVATIONS

JUNE 1964

High Altitude Observatory Boulder

7.6-41 Mc/s

Date		Bursts			Date		Bursts		
June 1964	Type	Time (U.T.)	Inten- sity	Frequency Range (Mc/s)	June 1964	Type	Time (U.T.)	Inten- sity	Frequency Range (Mc/s)
10 Jun 13	111 111 111 111	2150-2150:30 1535:30-1537:45 1539:15-1539:30 1551-1551:45 1726:30-1726:45	1 - 2	12-36 12-41 18-30 8-41 16-38	15 Jun	III III III III	2144:15-2145:15 2147-2148:30 2150-2150:30 2338:30-2338:45 2340:45-2341	1 1+ 1- 1- 2	16-41 13-41 16-41 18-41 7-41
15	III III III III	1729:30-1729:45 1800:15-1801:15 1802-1802:15 1833:15-1833:30 1906:15-1906:30	1+ 1- 1	23-41 7-41 20-41 18-41 18-41	16	III III III	2342-2342:15 2343-2343:15 0007-0008 0045:30-0048:30 0102-0103	1- 1- 1- 1-	11-41 11-41 14-41 14-41 15-41
	III III III III	1907:15-1907:45 1923:15-1924:45 1942:45-1943 1950:15-1950:30 1957-1958		15-41 17-41 18-39 18-36 20-41		III III III	1240:45-1241 1345-1345:30 1346-1346:30 d 1432:45-1433:15 1818-1818:30	1- 1- 1 2	16-41 18-41 18-41 11-41 18-41
	III III III III	2033:45-2034 2037:15-2037:30 2106:15-2106:45 2108:15-2109 2136:45-2137:15	1 1+	20-41 25-39 16-41 7-41 18-41	21	III III III No Observ.	1938:30-1938:45 1958:45-1959 2000:15-2001 1400-2311	1 1-	17-41 20-41 16-41

d = harmonic structure

JUNE 1961

STANFORD

JUNE 1961

COSMIC RAY INDICES

(Climax Neutron Monitor)
IGC Station B 305

MAY 1964

May 1964	DAILY AVERAGE COUNTS / HOUR*	May 1964	DAILY AVERAGE COUNTS / HOUR*
1	3729.6 3288.2**	16	3260.3
2 3	3288.2* ** 3294.0	17	3258.9 3262. 7 **
4	3287.3	19	3260.9
5	3289.1	20	3270.8
6	3287.8	21	3271.9
7	3287.5	22	3279.4
8	3285.1**	23	3290.7
9	3289.2	24	3286.5
10	3274.3	25	3280.9**
11	3284.9**	26	3285.9
12	3260.4	27	3295.8
13	3266.2	28	3300.8**
14	3259.2	29	3305.3
15	3262.7	30	3304.9
		31	3291.5 * *

^{*}Scaling Factor 128.

^{**} No. of Section Hours Less Than 40

COSMIC RAY INDICES
(Pressure Corrected Hourly Totals)

MAY 1964

May 1964 C Three hour Gr. interval 1 2 3 4 5 6 7 8 Sum Ap Selected Days				-		
2		С	Three hour Gr. interval	Sum	Ар	Selected
6	2 3 4	0.6 0.3 0.0	2+ 3- 40 2+ 20 1+ 10 3- 20 2- 1- 1+ 1- 1- 10 1+ 10 1- 1+ 1- 1- 0+ 10 10	18+ 9+ 7-	11 4 4	Quiet 7 8
12	7 8 9	0.1 0.0 0.0	1- 2- 10 10	5+ 1+ 3-	3 1 2	12
16 1.2 40 30 5- 40 30 2+ 4+ 20 27+ 21 24 17 0.7 1+ 1+ 2+ 3+ 3- 2- 1+ 2+ 16+ 9 25 18 0.3 1- 20 2- 2+ 2- 1- 1- 0+ 100 5 25 19 0.3 2- 10 1+ 1+ 0+ 10 2- 10 9+ 4 4 4 20 0.2 0+ 10 10 2- 2- 2- 10 2- 100 5 Ten 22 0.2 0+ 10 10 10 1+ 1+ 1- 10 10 7+ 4 Quiet 23 0.6 2- 2- 10 1- 10 10 1- 4+ 11+ 6 24 1.2 4- 5- 40 4- 3+ 3- 30 30 280 21 4 25 1.4 20 10 5+ 6+ 4- 4- 40 3+ 29+ 31 6 26 0.5 4- 10 2- 0+ 20 2- 1+ 1- 12+ 7 8 27 0.8 20 2+ 4- 3+ 3- 20 2- 2+ 200 11 9 28 0.5 20 2- 1+ 20 2- 3- 3- 20 160 8 12 29 0.3 1+ 20 1	12 13 14	0.0 1.1 1.2	1- 10 1+ 10	5- 19+ 29-	2 18 27	Disturbed 1 14
22	17 18 19	0.7 0.3 0.3	1+ 1+ 2+ 3+ 3- 2- 1+ 2+ 1- 20 2- 2+ 2- 1- 1- 0+ 2- 10 1+ 1+ 0+ 10 2- 10	16+ 10o 9+	9 5 4	24
26	22 23 24	0.2 0.6 1.2	0+ 10 10 10 1+ 1- 10 10 2- 2- 10 1- 10 10 1- 4+ 4- 5- 40 4- 3+ 3- 30 30	7+ 11+ 280	4 6 21	Quiet 4 6
	27 28 29 30	0.8 0.5 0.3 0.5	20 2+ 4- 3+ 3- 20 2- 2+ 20 2- 1+ 20 2- 3- 3- 20 1+ 20 1+ 1- 1+ 0+ 1+ 20 1+ 1- 1- 1+ 2- 2- 1+ 3+	200 160 10+ 120	11 8 5 6	8 9 12 19 20 22
	Mean:	0.58		Mean:	10	

CRPL RADIO PROPAGATION QUALITY FIGURES AND FORECASTS

M.M. 1961

0		,								
PACIFIC	GEDMAGNETIC Ksi	0.47	60 11 0	1000	1 0 0 (4)	8 2 1 1 1	H O H Z M	11211	0	
PA	GEDM	HALF (II)	3 1 3 9	0 11 0 0 0 0	(5)	3 (6)	1 2 (4) (4)	7 5 7 7 7 7		
NORTH	ECASTS S) FOR ISSUED E BY	-3 1-7 INS W Jp	88111	r r r r r	L 0 0 0 0	99111	7 7 7 5 4	40000	_	
NOI	ADVANCE FORECASTS (Jp REPORTS) FOR WHOLE DAY, ISSUED IN ADVANCE 87	1-7 1-7 1-3 1- DAYS DAYS DAYS DA FINAL JPS SDW J	80111	r r r r r	r 9 9 9 9	99277	r r r s 4	40000	7 14 13 1	0001
	WHOLE DAY INDEX		01000	r r r r 9	noonr	(4) 52 7	r 9 ¢ 9 ¢	99779	_	
	ERM STS AT.	18	99999	00000	00000	9 9 7 7	1 91 99	99999	6 17 17 0 0	0000
	SHORT-TERM FORECASTS ISSUED AT.	60	2 9 7 7 6 9 9	7 L L L L L L L L L L L L L L L L L L L	2 1 2 2 3	5 5 5 7 7 5 5 5 7	1 1 1 2 9	6 6 6 6 7 7 7 7	7 6 5 9 1 19 0 2 0 0	0001
	FO FO ISS	02	4.01-1-1-	1-1 1-1- 0					16 14 0 0	0001
	Y GURES	07 03	0000n	00001	w 0 c w w	40000	00000	20000	0	
	NORTH PACIFIC 8-HOURLY QUALITY FIGURES	- 0 6	00000	7 7 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 9 7	2772	4 9 9 7 7 9 9 9 9	7 - 6 - 6 - 6 - 6 - 5 - 6 - 5 - 6 - 5 - 6 - 5 - 5	6 5 7 6 6	9	
	NO B B IAUQ	03 T0		1-1-1-1-1	31 7 7 0 21	7 0 0 1-1-	1317 0 0 0	001-00		
	ETIC	DAY (2)								
	GEOMAGNETIC KFR	HALF	22123	1000	1 (4) (4)	2 1 2 1 2 3	1 3 3 3 3	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
			9,4,00	H H C O K	64 11 23	4 2 2 2 2 1	0 1 0 4 4	18221		
	VANCE FORECAS J-REPORTS) FOR OLE DAY, ISSUE IN ADVANCE BY	DAYS DAYS SOW J	n n o o o	77600	> < < < < < < < < < < < < < < < < < <	44365	7794	4 4 0 0 0	100 10 3	0 1 0 0
	ADVANCE FORECASTS (J-REPORTS) FOR WHOLE DAY, ISSUED IN ADVANCE BY	DAYS DAYS DAYS DAYS DAYS FINAL JS SOW J	WR O G O	7 9 9 9 7 7	L 00 L 0	R & 9 L L	t 2 2 4 7	44609		
		-			1- (0 81 8 81	8.4.01-1-		7 4 6 0 0	100 100 3	0 0 1 0
	WHOLE	INDEX	(4+ +4+ 60 -60	0 + + + 0	500	50000	+ + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	ASTS ONE OF:	6)	20111	11119	99949	4666	11100	77766	7 26 5 0 0	0000
	SHORT-TERM FORECASTS ISSUED ABOUT ONE HOUR IN ADVANCE OF:	21	11200	rrrr9	22722	9	111111	7 9 7 7 7	23 20 0	0000
	SUED A	90	44000	20000	5 5 5 2 7	44000	00000	8 9 9 9 9	61 19 0	1 4 0 0
	SHOR	8	00000	00400	44444	0000	00000	00000	23 6	0 7 0 0
	TIC	18 TO 24	- 4 - 7 - 7	7 	1 + + + 0	+ + + + + + + + + + + + + + + + + + + +	70 7- 6+ 60 60	6+ 6+ 70 7- 7	P S S U U	SOL
C	RTH ATLAN 6-HOURLY ALITY FIGUR	12 10 18	107	7 - 7 - 7 - 7 - 7 - 7 - 7	0 0 7 - 7 - 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6	6 + + 6 + 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	7 - 7 - 6 + 4	7 + 6 + 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	70	
L	NORTH ATLANTIC 6-HOURLY OUALITY FIGURES	10	+ + + + + + + + + + + + + + + + + + + +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ + + 0 - + + + + - + + + + + + + + + +	+ 1 + 0 + + 1 + 0 + + 1 + 0 + + 1 + 0 + + 1 + 0 + + 1 + 0 + + 1 + 0 + + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 2 2 4 + 2 2 0 + 5 0 + 5 0	spoi	
ATLANTIC		00 40	4++ 6- 6-	000000000000000000000000000000000000000	4 1 0 0 4	10000	1 0 0 0 0	1 0 + 0 +	7- 6. Periods	Disturbed Periods:
A									Quiet	d Pe
TH	MAY	1964	003	06 07 08 09 10	11 12 13 14 15	16 17 18 19 20	21 22 23 24 25	26 27 28 29 30	31 Te: Q	urbe
NORTH									31 Score:	Dist
4						-				

NORTH ATLANTIC

OUTCOME OF ADVANCE FORECASTS -- FINAL ESTIMATES (I TO 7 DAYS AHEAD)

20

COMMERCE - STANDARDS - BOULDER

0

10

MAY 1964

Adapted from Observations by Deutsches Bundespost

IQSY ALERT PERIODS

INTERNATIONAL URSIGRAM AND WORLD DAYS SERVICE

JUNE 1964

JUNE 1964	TIME		WORLDWIDE GEOPHYSICAL ALERT					
	OF ISSUE UT	ADVANCE GEOPHYSICAL ALERT	N 0.	TYPE	TIMING	ELABORATION		
10	1305	Ft. Belvoir, Magnetic Storm 09/15XXZ						
11	0400		73	Magnetic Storm	Exists			
15	1755	Anacapri, Solar Flare 15/14462						
16	0400		74	Solar Activity	Exists	Flares		
17	0400		75	Solar Activity	Exists			
18	0400		76	Solar Activity	Exists			
26	0400		77	Solar Calme	Exists			
27	0400		78	Solar Calme	Exists			
28	0400		79	Solar Calme	Exists			
29	0400		80	Solar Calme	Exists			

