1

Control Systems

G V V Sharma*

1

CONTENTS

1 Ro	uth Hur	witz Crite	erion
------	---------	------------	-------

2 Bode Plot 1

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 ROUTH HURWITZ CRITERION

2 Bode Plot

2.1. For an LTI system, the Bode plot for its gain is as illustrated in the Fig. ?? The number of system poles N_p and number of system zeros N_z in the frequency range 1 Hz \leq f \leq 10⁷ Hz is

Solution:-

Let us consider a generalized transfer gain

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$H(s) = k \frac{(s-z_1)(s-z_2)...(s-z_{m-1})(s-z_m)}{(s-p_1)(s-p_2)....(s-p_{n-1})(s-p_n)}$$

Gain =
$$20\log |H(s)| = 20\log |k| + 20\log |s - z_1|$$

+ $20\log |s - z_2| + \dots + 20\log |s - z_m| - 20\log |s - p_1|$
- $20\log |s - p_2| - \dots - 20\log |s - z_n|$ (2.1.1)

Let us consider a $20 \log |s - z_1|$ Let $s = j\omega$

$$20\log|s - z_1| = 20\log|\sqrt{\omega^2 + z_1^2}$$

Based on log scale plot approximations, to the left of z_1 $\omega \ll z_1$ and towards right $\omega \gg z_1$

For
$$\omega < z_1$$

 $20 \log |s - z_1| = 20 \log \left| \sqrt{\omega^2 + z_1^2} \right| = 20 \log |z_1|$
= constant i.e. Slope = 0

For
$$\omega > z_1$$

 $20 \log |s - z_1| = 20 \log \left| \sqrt{\omega^2 + z_1^2} \right| = 20 \log |\omega|$
i.e Slope = 20

When a zero is encountered the slope always increases by 20 dB/decade

Doing similar analysis for $-20 \log |s - p_1|$ We conclude

When a pole is encountered the slope always decreases by 20 dB/decade

•
$$f = 10Hz$$

Slope($f < 10$) = 0 dB/dec
Slope($f > 10$) = -20 dB/dec
 $\Delta S lope = -20$ dB/dec
 $n_z = 0$ $n_p = 1$

•
$$f = 10^2$$
 Hz
Slope($f < 10^2$) = -20 dB/dec
Slope($f > 10^2$) = -60 dB/dec
 $\Delta S lope = -40$ dB/dec

$$n_z = 0 \ n_p = 2$$

- $f = 10^3 Hz$ Slope($f < 10^3$) = -60 dB/dec Slope($f > 10^3$) = -40 dB/dec $\Delta S lope = +20$ dB/dec $n_z = 1$ $n_p = 0$
- $f = 10^4 Hz$ Slope($f < 10^4$) = -40 dB/dec Slope($f > 10^4$) = 0 dB/dec $\Delta S lope = +40$ dB/dec $n_z = 2 n_p = 0$
- $f = 10^5$ Hz Slope($f < 10^5$) = 0 dB/dec Slope($f > 10^5$) = -40 dB/dec $\Delta S lope = -40$ dB/dec $n_z = 0$ $n_p = 2$
- $f = 10^6$ Hz Slope($f < 10^2$) = -40 dB/dec Slope($f > 10^2$) = -60 dB/dec $\Delta S lope = -20$ dB/dec $n_z = 0$ $n_p = 1$

$$N_p = 6 N_z = 3$$

- 3 Compensators
- 4 Nyquist Plot