EHTIMOLLIK VA STATISTIKA fanidan shaxsiy topshiriqlar.

№2- Tasodifiy miqdorlar.

DISKRET TASODIFIY MIQDOR VA UNING SONLI XARAKTERISTIKALARI

- 1. Qurilma 3ta elementdan iborat, har bir elementning buzilish ehtimolligi 0.1ga teng. Qurilma ishga tushganda buzilgan elementlar sonining taqsimoti, taqsimot funksiyasi, birinchi va ikkinchi momentlari topilsin.
- 2. Tasodifan 4 ta tanga tashlanmoqda. Tushgan "GERB"lar sonining taqsimot funksiyasi va o'rta kvadratik og'ishi topilsin.
- 3. X tasodifiy miqdor quyidagi taqsimot qonuni bilan berilgan.

Taqsimot qonuni, taqsimot funksiyasi, matematik kutilma va dispersiyasi topilsin.

- 4. Qutida 4 ta oq va 6 ta qora shar bor. Yashikdan 1 ta shar olindi. X tasodifiy miqdor olingan oq sharlar soni boʻlsa, uning taqsimoti qonunini va oʻrta kvadratik ogʻishini toping.
- 5. 20 ta detal solingan yashikda 18 ta yaroqli detal bor. Tavakkaliga 2 ta detal olingan. Olingan detallar orasidagi yaroqli detallar sonining taqsimot funksiyasini va ikkinchi momentini toping.
- 6. X diskret tasodifiy miqdor quyidagi taqsimot qonuni bilan berilgan:

Tasodifiy miqdorning taqsimot funksiyasi, birinchi va ikkinchi momentlari topilsin.

- 7. Ma'lum bir partiyada yaroqsiz detallar 10% ni tashkil etadi. Tavakkaliga 4 ta detal tanlab olinadi. Bu 4 ta detal orasida yaroqsiz detallar sonidan iborat bo'lgan X tasodifiy miqdorning taqsimot qonuni, o'rta qiymati va dispersiyasi topilsin.
- 8. Qiz va oʻgʻil bolalarning tugʻilish ehtimollari teng deb faraz qilinadi. Toʻrtta farzandi boʻlgan oiladagi oʻgʻil bolalar sonidan iborat X tasodifiy miqdorning taqsimot qonunini va ikkinchi momenti topilsin.
- 9. Koʻrgazmada uchta firma oʻz maxsulotlari bilan qatnashmoqda. birinchi firma gʻolib boʻlish ehtimoli 0,8 ga, ikkinchisi uchun 0,6 ga, uchinchisi uchun 0,5 ga teng. Koʻrgazmada gʻolib boʻlgan firmalar sonidan iborat X tasodifiy miqdorning taqsimot funksiyasi va dispersiyasi topilsin.

- 10.Ichida 4ta oq va 8qora shar boʻlgan idishdan 3 ta shar olinadi. Olingan oq sharlar sonining taqsimot qonunini, matematik kutilmasi va modasi topilsin.
- 11. Tajriba ikkita tangani 3 marta tashlashdan iborat bo'lsa, «2 ta gerb» tushgan tajribalar sonining taqsimot qonuni, taqsimot funksiyasi va o'rta kvadratik og'shi topilsin.
- 12. Agar bitta oʻq uzishda nishonga tegish ehtimoli 0.8 ga teng boʻlsa, 3 ta oʻq uzishda nishonga tegishlar sonidan iborat boʻlgan X tasodifiy miqdorning taqsimot qonuni va ikkinchi momenti topilsin.
- 13.Ichida 5 ta oq va 8 ta qora shar boʻlgan idishdan 4 ta shar olinadi. Chiqqan oq sharlar sonidan iborat boʻlgan X tasodifiy miqdorning taqsimot qonuni, oʻrta qiymati va modasi topilsin.
- 14.X va Y tasodifiy miqdorlar bir-biriga bogʻliq boʻlmagan, bir xil p parametrli geometrik taqsimot qonunga ega. Z=X+Y tasodifiy miqdorning taqsimot qonunini, oʻrta qiymati va dispersiyasini toping.
- 15.X va Y tasodifiy miqdorlar o'zaro bir-biriga bog'liq bo'lmagan, 5 parametrli Puasson taqsimot qonunga ega. Z=X+Y tasodifiy miqdorning taqsimot qonunini, matematik kutilmasi va dispersiyasini toping.
- 16.X va Y tasodifiy miqdorlar bir-biriga bogʻliq boʻlmagan, hamda (20;0,1) parametrli binomial taqsimot qonuniga boʻysunadi. Z=X+Y tasodifiy miqdorning taqsimot qonunini va ikkinchi momentini toping.
- 17.R radiusli doiraga kvadrat ichki chizilgan. Doiraga 6ta nuqta tashlanmoqda, kvadratga tushgan nuqtalar soninig taqsimoti, taqsimot funksiyasi, matematik kutilmasi topilsin.
- 18.X va Y tasodifiy miqdorlar o'zaro bog'liqsiz va har biri 3 parametrli Puasson taqsimlangan. Ularning kvadratlari yig'indisining matematik kutilmasi topilsin.
- 19.X tasodifiy miqdor 0,9 parametrli geometric taqsimlangan, Y tasodifiy miqdor (10;0,1) parametrli binomial taqsimlangan, hamda ular o'zaro bog'liqsiz. Z=4X+3Y tasodifiy miqdor uchun MZ va DZ topilsin.
- 20.X va Y tasodifiy miqdorlar bir xil 5 parametrli Puasson taqsimlangan bo'lib, o'zaro bogliqsiz. Ularning kvadratlari yig'indisining birinchi va ikkinchi momenti topilsin.
- 21. Shaharda 10 ta tijorat banki bor. Bir yil ichida har bir bankning bankrotga uchrash ehtimoli 0,1 ga teng. Kelgusi yil ichida bankrotga uchrashi mumkin boʻlgan banklar sonidan iborat X tasodifiy miqdorning taqsimot qonunini tuzing. MX va DX ni toping.
- 22.20 ta tanga tashlanmoqda. Tushgan gerlar sonining taqsimoti, o'rta qiymati va dispersiyasi topilsin.
- 23.X, Y, Z tasodifiy miqdorlar bir xil ¼ parametrli Bernulli taqsimotiga ega bo'lib, o'zaro bog'liqsizdir.Ularning kvadratlari yig'indisining birinchi va ikkinchi momentlari topilsin.

- 24.20 ta o'yin toshi tashlanmoqda. Juft ochkolar sonining taqsimoti, matematik kutilmasi va dispersiyasi topilsin.
- 25. Ikkita X va Y tasodifiy miqdorlar mos ravishda 2 va 4 parametrli Puasson taqsimotiga ega bo'lib, o'zaro bog'liqsizdir.Z=3X+2Y tasodifiy miqdorning matematik kutilmasi va dispersiyasi topilsin.
- 26.X tasodifiy miqdor 25 va 0.2 parametrli binomial taqsimlangan. Shu tasodifiy miqdorning o'rta qiymati, dispersiyasi va ikkinchi momenti topilsin.
- 27. Idishda 2 ta oq va 2ta qora sharlar bor. Idishdan 2ta shar olinmoqda, olinganlar orasidagi oq shar sonining 1- va 2-momentlari topilsin.
- 28.X tasodifiy miqdor 5 parametrli Puasson taqsimlangan. Shu tasodifiy miqdorning o'rta qiymati, dispersiyasi va ikkinchi momenti topilsin.
- 29. Qurilma 10ta elementdan iborat, har bir elementning buzilish ehtimolligi 0.1ga teng. Qurilma ishga tushganda buzilgan elementlar sonining 1- va 2-momentlari topilsin.
- 30.X tasodifiy miqdor -1 va 1 qiymatlarni bir xil ehtimolliklar bilan qabul qiladi. Shu tasodifiy miqdorning taqsimot funksiyasi va o'rta kvadratik chetlanishi topilsin.

UZLUKSIZ TASODIFIY MIQDOR VA UNING SONLI XARAKTERISTIKALARI

1. Quyidagi funksiyalardan qaysilari zichlik funksiya boʻladi: .

$$f_1(x) = -x^2$$
, $f_2(x) = \frac{1}{2}\sin x + \frac{1}{2}$, $f_3(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$

2. Tasodifiy miqdorning zichlik funksiyasi

$$f(x) = \begin{cases} \frac{3}{2}x^2, & |x| \le h, \\ 0, & |x| > h, \end{cases}$$

ko'rinishda bo'lsa, h ning qiymatini va ikkinchi momentini toping.

3. Taqsimot funksiyasi

$$F(x) = \begin{cases} 0, & \text{agar } x \le 0, \\ \frac{x^2}{2}, & \text{agar, } 0 < x \le \sqrt{2}, \\ 1, & \text{agar } x > \sqrt{2}, \end{cases}$$

boʻlgan X t.m.ning zichlik funksiyasini, P(0,5<X<1) ehtimollikni va uchinchi momentini hisoblang.

4.
$$f(x) = \begin{cases} 0, & x \le 0 \\ ce^{x}, & 0 < x \le 1 \\ 0, & x > 1 \end{cases}$$
$$MX^{3} - ?$$
$$C - ?, P(0,1 \le X \le 0,3) - ?, F(x) - ?,$$

5.
$$f(x) = \begin{cases} 0, & x \le 0 \\ csinx, & 0 < x \le \frac{\pi}{2} \\ 0, & x > \frac{\pi}{2} \end{cases}$$
 C-?, $P\left(X < \frac{\pi}{4}\right)$ -?, $F(x)$ -?,

 $MX^2-?$

6.
$$f(x) = \begin{cases} 0, & x < 0 \\ 2e^{-2x}, & x \ge 0 \end{cases}$$
 $P(1 \le X \le 3) - ?, F(x) - ?, DX - ?,$

7.
$$f(x) = \begin{cases} 0, & x \le 0 \\ cx^2, & 0 < x \le 1 \\ 0, & x > 1 \end{cases}$$
 C-?, $F(x)$ -?, MX -?, $\sigma(X)$ -?

8.
$$f(x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{3}, & 0 < x \le 4 \\ 0, & x > 4 \end{cases}$$
 $P(2 \le X \le 3) - ?, F(x) - ?,$

$$D(X)-?$$
, $MX^4-?$

9.
$$f(x) = \frac{C}{1+x^2}$$
,
 $C-?$, $P(-1 \le X \le 1)-?$, $F(X)-?$, $MX-?$

10.
$$F(x) = \begin{cases} 0, & x \le -1 \\ \frac{3x+3}{4}, & -1 < x \le \frac{1}{3} \\ 1, & x > \frac{1}{3} \end{cases} \qquad P(0 < X < 1) -?, MX -?,$$

$$D(X)-?$$

11.
$$F(x) = \frac{1}{2} + \frac{1}{\pi} \operatorname{arct} gx$$
 $P(0 \le X \le 1) - ?, f(x) - ?, P(X > \sqrt{3}) - ?$

12.
$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-x}, & x \ge 0 \end{cases}$$

$$f(x)-?$$
, $P(X > 4)-?$, $MX-?$, $MX^2-?$

13.
$$F(x) = \begin{cases} 0, & x \le -2 \\ \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{2}, & -2 < x \le 2 \\ 0, & x > 2 \end{cases}$$

$$f(x)-?$$
, $P(X<1)-?$, $MX-?$,

14.
$$F(x) = \begin{cases} 0, & x \le 2 \\ \frac{x}{2} - 1, & 2 < x \le 4 \\ 1, & x > 4 \end{cases} \quad P(0 \le X \le 2) - ?,$$

$$f(x)-?$$
, $MX-?$, $MX^3-?$

15.
$$F(x) = \begin{cases} 0, & x \le 0 \\ \sin 2x, & 0 < x \le \frac{\pi}{4} \\ 1, & x > \frac{\pi}{4} \end{cases} \qquad f(x) - ?,$$

$$1, & x > \frac{\pi}{6} - ?, & MX - ?, & MX^2 - ? \end{cases}$$

$$16. F(x) = \begin{cases} 0, & x \le 0 \\ 1 - \cos x, & 0 < x \le \frac{\pi}{2} \\ 1, & x > \frac{\pi}{2} \end{cases} \qquad f(x) - ?, & P\left(\frac{\pi}{6} \le X \le \frac{\pi}{3}\right) - ?,$$

$$MX - ?, & MX^2 - ? \qquad 0, & x \le 1 \\ 17. F(x) = \begin{cases} 0, & x \le 1 \\ \frac{1}{2}(x^2 - x), & 1 < x \le 2, \\ 1, & x > 2 \end{cases}$$

$$f(x) - ?, & P(1, 4 \le X \le 1, 6) - ?, & MX - ?, & MX^3 - ? \end{cases}$$

$$18. F(x) = \begin{cases} 0, & x \le 0 \\ \frac{x}{4}, & 0 < x \le 4 \\ 1, & x > 4 \end{cases} \qquad P(X < 2) - ?, & P(1 < X < 3) - ?,$$

$$19. F(x) = \begin{cases} 0, & x \le -2 \\ \frac{x+2}{4}, & -2 < x \le 2 \\ 1, & x > 2 \end{cases} \qquad P(-1 \le X \le 1) - ?, & MX - ?,$$

$$MX^2 - ?, & \sigma(X) - ? \qquad 0 \qquad P(1 \le X \le 3) - ?$$

$$20. F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-3x}, & x \ge 0 \end{cases} \qquad P(1 \le X \le 3) - ?$$

- 21. X tasodifiy miqdor 4 parametrli ko'rsatkichli taqsimlangan. Shu tasodifiy miqdorning ikkinchi momenti va P(X>3) ehtimolligi topilsin.
- 22. X tasodifiy miqdor [1;3] oraliqda tekis taqsimlangan bo'lsa, MX², MX³, P(1.5<X<2.5) lar topilsin.

23.
$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-5x}, & x \ge 0 \end{cases}$$

$$P(1.5 \le X \le 3.5) - ?$$

$$P(X > 2) - ?, \quad MX - ?, \quad DX - ?$$
24.
$$F(x) = \begin{cases} 0, & x \le 1 \\ \frac{x-1}{3}, & 1 < x \le 4 \end{cases}$$

$$P(X < 2.5) - ?,$$

$$1, & x > 4$$

$$P(2 < X < 4) - ?, \quad \sigma(X) - ?$$

$$25. f(x) = \begin{cases} 0, & x \le 0 \\ C, & 0 < x \le 4 \\ 0, & x > 4 \end{cases}$$

$$D(X) -?, MX^{3} -?$$

$$C -?, P(2 \le X \le 3) -?, F(x) -?,$$

- 26. X tasodifiy miqdor 1va4 parametrli normal taqsimlangan. Shu tasodifiy miqdorning ikkinchi momenti va P(X>2) ehtimolligi topilsin.
- 27. X tasodifiy miqdor [0;4] oraliqda tekis taqsimlangan bo'lsa, MX², MX³, P(0.5<X<3.5) lar topilsin.
- 28. Tasodifiy miqdorning zichlik funksiyasi

$$f(x) = \begin{cases} 2x^2 & |h| \le 1 \\ 0 & |h| > 1 \end{cases}$$

ko'rinishda bo'lsa, h ning qiymatini va ikkinchi momentini toping.

$$29.f(x) = \begin{cases} 0, & x \le 0 \\ ce^{-x}, & 0 < x \le 1 \\ 0, & x > 1 \end{cases}$$

$$MX -?$$

$$30.F(x) = \begin{cases} 0, & x \le -3 \\ \frac{x+3}{5}, & -3 < x \le 2 \\ 1, & x > 2 \end{cases}$$

$$MX^{2}-?, \sigma(X)-?$$

$$C-?, P(0,1 \le X \le 0,3)-?, F(x)-?,$$

$$P(-1 \le X \le 1)-?, MX-?,$$

KO'P O'LCHOVLI TASODIFIY MIQDORLAR

 $(\xi; \eta)$ ikki o'lchovli diskret tasodifiy miqdor quyidagicha taqsimot qonuni bilan berilgan

ξ	-N	N+2
N	0.2	0.1
N+5	0.1	0.3
N+10	0.1	0.2

N-talabaninig guruh jurnalidagi nomeri. Quyidagilarni hisoblang:

- 1) $M\xi ?$;
- 2) $M\eta$ –?
- 3) $D\xi ?;$
- 4) $D\eta$ -?
- 5) $M(\xi \cdot \eta)$ -?
- 6) $cov(\xi; \eta) ?$
- 7) $corr(\xi; \eta)$ -?