Joachim Pomper

BSc

Am Brühlwald 2a 8075 Hart bei Graz Austria # +43 664 73320390 ⊠ joachim.pomper@edu.uni-graz.at in joachim-pomper.github.io/homepage/ **y** JoachimPomper Joachim-Pomper

Personal information

Date of birth 22.04.1997 Nationality Austria

Education

2020-now Master studies in theoretical and computational physics, University of Technology Graz (TUG) and University of Graz (KFU).

2016-2020 Bachelor studies in technical physics, University of Technology Graz (TUG) and University of Graz (KFU). Graduated with distinction (grade 1.0).

2007-2015 **School of general education**, BRG Petersgasse Graz.

2003 -2007 **Elementary school**, Sacré Coeur Graz.

Summer school programs

14.03.2022 - Theoretical Aspects of Astroparticle Physics, Cosmology and Gravitation, 25.03.2022 Galileo Galilei Institute.

Teaching

01.10.2022- Teaching assistant for advanced Quantum Mechanics, Institute of Theoretical 31.01.2023 *Physics of KFU-Graz*, Physics master course.

Correcting homework and tutoring students in the subject of quantum mechanics.

01.10.2021- Teaching assistant for statistical physics, Institute of Theoretical Physics of 31.01.2022 KFU-Graz, Physics master course.

Tutoring and grading of first semester master students in statistical physics.

01.10.2021- Teaching assistant for linear algebra, Institute of Applied Mathematics of TU-

31.01.2022 Graz, Physics Bachelor course.

Tutoring and grading of first semester bachelor students in linear algebra.

01.3.2021- Teaching assistant for differential forms in the context of electromagnetism,

30.06.2021 Institute of Applied Mathematics of TU-Graz, Mathematics master course.

Researching, writing and preparing lecture notes for a mathematics master's program special topic lecture on differential forms in the context of electromagnetism.

	Teaching assistant for vector-calculus , <i>Institute of Applied Mathematics of TU-Graz</i> , Physics bachelor course. Tutoring and grading of second semester bachelor students in vector-calculus.		
	Teaching assistant for calculus , <i>Institute of Applied Mathematics of TU-Graz</i> , Physics Bachelor course. Tutoring and grading of first semester bachelor students in basic calculus.		
	Teaching assistant for programming in physics , <i>Institute of Computational Physics of TU-Graz</i> , Physics bachelor course. Tutoring students in basic Matlab programming.		
	Teaching assistant for linear algebra , <i>Institute of Applied Mathematics of TU-Graz</i> , Physics bachelor course. Tutoring and grading of first semester bachelor students in linear algebra.		
	Teaching assistant for linear algebra , <i>Institute of Applied Mathematics of TU-Graz</i> , Physics bachelor course. Tutoring and grading of first semester bachelor students in linear algebra.		
	Work		
	Part-time jobs		
	Student trainee , <i>BEST - Bioenergy and Sustainable Technologies, Area for automation and control</i> , https://best-research.eu. Primarily focused on testing and developing software for hydraulic and thermal simulation of buildings and district heating grids		
	Internships		
	Internship, BEST - Bioenergy and Sustainable Technologies, Subarea 4.2. Primarily focused on quality analysis of prediction models for a model predictive controller.		
	Languages		
German English	Mother tongue fluent		
	Computer knowledge		
	Programming languages		
Matlab	Advanced knowledge work experience		
Python	Basic knowledge university course		
Julia	Advanced knowledge work experience		
C++	Basic knowledge university course		
Mathematica	Basic knowledge self-taught		
	Organization		
Microsoft Office	Basic knowledge		

Latex Advanced knowledge, used for articles and presentations

Zotero For structured literature management

Git For software version control

Conference talks

I have had the pleasure to give a talk in the parallel sessions of two conference, one at international level, which took place in Sydney in Australia.

DSU2022 Composite dark matter from non-abelian gauge theories with real representations.

Presentation of results of my master's thesis

ÖPG2022 Low energy effective description of dark Sp(4) theory with matter in non fundamental representation.

Presentation of preliminary results of my master's thesis

Project selection from my time as a student

Bachelor Analytische Berechnung der spontanen Magnetisierung von isotropen homo-

thesis **genen Ising Ferromagneten unter der Verwendung von Graßmann Zahlen**. Supervisor: Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Wolfgang von der Linden

(WIP) QCD.

Supervisor: PD. Dr. Suchita Kulkarni

Uni course A simple way to explain phenomena at the horizon of a static black hole.

project Supervisor: Univ.-Prof. Dr.rer.nat. Reinhard Alkofer

Uni course Particle creation in an expanding universe.

project Supervisor: Univ.-Prof. Dr.rer.nat. Reinhard Alkofer

Uni course Functional renormalization group approach for interacting Dirac fermions.

project Supervisor: Univ.-Prof. Dr.rer.nat. Reinhard Alkofer

For more information look at my personal website.

Further presentations during my time as a student

Besides the presentations above, I also gave a talk in the institutes master seminar.

Master Introduction to dark matter phenomenology.

seminar General introduction to the topic of dark matter

Furthermore, I have gathered experience in reading, communicating and discussing research by presenting papers in my research groups journal club. Nine of the papers I presented are stated in terms of their arXiv numbers below.

[arXiv:hep-ph/2205.08088], [arXiv:gr-qc/1111.4824], [arXiv:gr-qc/0507028], [arXiv:hep-ph/2112.03755], [arXiv:astro-ph/1706.07433], [arXiv:hep-ph/1402.5143], [arXiv:hep-ph/1312.3325], [arXiv:hep-th/1803.07585], [arXiv:hep-th/9602093]

Transcript of records

Vizerektor für Lehre

Studiendekan Physik

Univ.-Prof. Dr.rer.nat. Wolfgang von der Linden

Petersgasse 16, A-8010 Graz

Tel.: +43(0)316 873-8112 Fax: +43(0)316 873-8113

SB: Martina Pichler physik.mpug@tugraz.at

Joachim Pomper

Mr

22.04.1997

Date of Birth: Citizenship:

Austria

Code for study programme: UF 033 678

Registration number:

01530093

NOTIFICATION

You have duly completed the inter-university

Bachelor programme **Physics**

[joint study programme with the University of Graz in the framework of NAWI Graz]

according to the Universities Act 2002, BGBI. I No. 120/2002 at Graz University of Technology.

According to § 87 (1) Universities Act 2002 I herewith confer upon you the academic degree, to be used after your name, of

Bachelor of Science

(BSc)

Information on legal remedy:

This notification becomes legally valid on the date given below. Further information on legal remedy is waived.

Graz, 22.09.2020

For the: Vizerektor für Lehre

Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Wolfgang von der Linden, Studiendekan

TECHNISCHE UNIVERSITÄT GRAZ GRAZ UNIVERSITY OF TECHNOLOGY - AUSTRIA

Rechbauerstraße 12 8010 Graz Österreich

TRANSCRIPT OF RECORDS

NAME OF STUDENT: Pomper First name: Joachim

Date of birth: 22 April 1997 Academic degree: BSc

Date of admission: 19 August 2016 **Matriculation number:** 01530093

Study: Bachelor programme; Physics; [joint study programme with the University of

•		Basilisis programme, riferes, point state programme marking citizens, ci				
		Graz in the framework	of NAWI Graz] (as a	degree student)		
Number / A Yea		type / semester hour co	Duration of the urse / examination / recognition date	Local grade	ECTS Credits	
(1)		(2)	(3)	(4)	(5)	
PHYA10	16/17	Introducton to Bachelor Study of Physics; SE; 0,50	1S / 05.10.2016*	successfully completed	0.50	
PHYA30	16/17	Introduction to Mathematical Methods; SE; 1,00	1S / 04.11.2016	1	1.00	
PHYA20	16/17	Concepts and Applications of Modern Physics; L; 1,	50 1S / 31.01.2017	1	1.50	
PHYB10	16/17	Experimental Physics I (Mechanics, Thermodynamic L; 4,00	cs); 1S / 06.02.2017*	1	6.00	
PHYC30	16/17	Differential- and Integral Calculations; L; 4,00	1S / 07.02.2017*	2	6.00	
PHYC20_1	16/17	Linear Algebra; PE; 2,00	18 / 27.02.2017	1	3.00	
PHYC40_1	16/17	Calculus; PE; 2,00	1S / 27.02.2017	1	3.00	
PHYA40	16/17	Introduction to Basic Chemistry; L; 2,00	1S / 01.03.2017	1	3.00	
PHYC10	16/17	Elementary Mathematical Methods: Linear Algebra; 2,00	L; 1S / 01.03.2017	1	3.00	
PHYB20_1	16/17	Experimental Physics I (Mechanics, Thermodynamic PE; 2,00	cs); 1S / 08.03.2017	1	3.00	
PHYC50	16/17	Ordinary Differential Equations; SE; 2,00	1S / 22.06.2017	1	3.00	
PHYD10_1	16/17	Introduction in measuring techniques; SE; 2,00	1S / 26.06.2017	1	2.50	
PHYE20_1	16/17	Vector Analysis; PE; 2,00	1S / 28.06.2017	1	3.00	
PHYE10	16/17	Vector Analysis; L; 3,00	1S / 03.07.2017*	1	4.50	
PHYA50	16/17	Programming in Physics: Matlab; L; 2,00	1S / 04.07.2017	1	2.00	
PHYA60	16/17	Programming in Physics: Matlab; PE; 2,00	1S / 04.07.2017	1	3.00	
PHYD20_1	16/17	Laboratory Course 1 (Mechanics and Thermodynamics); PE; 3,00	1S / 06.07.2017	1	3.00	
PHYB40_1	16/17	Experimental Physics II (Electricity, Magnetism, Opti PE; 2,00	ics); 1S / 19.07.2017	1	3.00	
PHYB30	16/17	Experimental Physics II (Electricity, Magnetism, Opti L; 4,00	ics); 1S / 02.10.2017*	1	6.00	
PHYD30UF	17/18	Laboratory Course 2 (Electricity Magnetism and Opt PE; 5,00	ics); 1S / 02.02.2018	1	6.00	
PHYG20_2UE	3 17/18	Practical Exercises in Theoretical Mechanics; PE; 2,	00 1S / 05.02.2018*	1	3.00	
PHYG10UF	17/18	Theoretical Mechanics; L; 4,00	1S / 06.02.2018	1	6.00	
PHYE30UB	17/18	Functional analysis and partial differential equations 4,00	; L; 1S / 08.02.2018*	1	6.00	
PHYE40_1UF	17/18	Functional Analysis and Partial Differential Equation PE; 2,00	s; 1S / 19.02.2018	1	3.00	
PHYF10UB	17/18	Atomic, nuclear and particle physics; L; 4,00	1S / 12.03.2018*	1	6.00	
PHYL10UF	17/18	Cryo Technology, Vacuum Technology, and Analysis	1S / 18.06.2018	1	4.50	

NAME OF STUDENT: Pomper First name: Joachim

Date of birth: 22 April 1997 Academic degree: BSc

Date of admission: 19 August 2016 **Matriculation number:** 01530093

Study: Bachelor programme; Physics; [joint study programme with the University of

Graz in the framework of NAWI Graz] (as a degree student)

Number / Acaden Year		Duration of the course / examination / recognition date	Local grade	ECTS Credits
(1)	(2)	(3)	(4)	(5)
	Methods; L; 3,00			
PHYG40_2UB 17/18	Exercises on Quantum Mechanics; PE; 2,00	1S / 26.06.2018*	1	4.00
PHYE60UF 17/18	Probability Theory, Statistics and Data Analysis; P 1,00	E; 1S / 27.06.2018	1	2.00
PHYM30UF 17/18	Introduction to mechanical applications; PE; 1,00	1S / 28.06.2018	1	1.00
PHYG30UB 17/18	Quantum Mechanics; L; 4,00	1S / 05.07.2018*	2	6.50
PHYE50UF 17/18	Mathematical Methods: Statistical Methods; L; 2,0	0 1S / 06.07.2018	1	3.00
PHYM20UF 17/18	Electronics and Computer Supported Measureme Technique; PE; 2,00	nt 1S / 12.07.2018	1	2.50
MAB01012UB 17/18	3 Analysis 1; L; 5,00	1S / 18.10.2018	2	7.50
PHYM10UF 17/18	Electronics and Computer Supported Measureme Technique; L; 3,00	nt 1S / 13.12.2018	1	4.50
PHYH40UB 18/19	Practical Exercises in Thermodynamics; PE; 1,00	1S / 31.01.2019*	1	2.00
PHYI10UB 18/19	Academic Writing and Presentation Techniques; S 2,00	E; 1S / 31.01.2019*	1	2.00
PHYH20UF 18/19	Theoretical Electrodynamics; PE; 2,00	1S / 01.02.2019	1	4.00
PHYH10UF 18/19	Theoretical Electrodynamics; L; 4,00	1S / 07.02.2019	1	6.50
PHYH30UB 18/19	Thermodynamics; L; 2,00	1S / 12.02.2019*	1	3.00
PHYL30UF 18/19	Computational Methods in Technical Physics; PE;	2,00 1S / 05.03.2019	1	3.00
PHYL20UF 18/19	Computational Methods in Technical Physics; L; 2	,00 1S / 12.03.2019	1	3.00
PHYF30UF 18/19	Molecule and Solid State Physics Exercises; PE;	1,00 1S / 25.06.2019	1	2.00
MAT152UF 18/19	Analysis 2; PE; 2,00	1S / 27.06.2019	1	3.00
PHYL50UF 18/19	Continuum and Fluid Mechanics; SE; 1,50	1S / 04.07.2019	1	3.00
PHYA70UB 18/19	Programming in Physics: C++ and Mathematica; L	_; 2,00 1S / 09.07.2019*	1	2.00
PHYA80UB 18/19	Exercises to Programming in Physics: C++ and Mathematica; PE; 2,00	1\$ / 09.07.2019*	1	3.00
PHYM40UF 18/19	Advanced Laboratory Technical Physics 1; PE; 2,5	50 1S / 01.08.2019	1	4.00
PHYM50UF 18/19	Advanced Laboratory Technical Physics 2; PE; 2,5	50 1S / 01.08.2019	1	4.00
MAT151UF 18/19	Analysis 2; L; 5,00	1S / 28.10.2019	1	7.50
MAT211UB 19/20	Measure and Integration Theory; PE; 0,50	1S / 31.01.2020*	1	1.00
MAT202UF 19/20	Analysis 3; PE; 2,00	1S / 05.02.2020	1	3.00
MAT210UB 19/20	Measure and Integration Theory; L; 2,50	1S / 25.02.2020*	1	3.50
MAT156UB 19/20	Programming in C++; SE; 4,00	1S / 24.06.2020	1	6.00
PHYF20UF 19/20	Molecule and solid state-physics; L; 3,00	1S / 25.06.2020	1	5.00
PHYL40UF 19/20	Physical Principles of Materials Science; L; 3,00	1S / 14.07.2020	1	4.50
MAT258UF 19/20	Introduction to Functional Analysis; PE; 1,00	1S / 28.08.2020	1	1.50
PHYI20_5UF 19/20	Bachelorarbeit; PE; 1,00	1S / 22.09.2020	1	6.00

* ... recognised Page 2 of 4

NAME OF STUDENT: Pomper First name: Joachim

Date of birth: 22 April 1997 Academic degree: BSc

Date of admission: 19 August 2016 **Matriculation number:** 01530093

Study: Bachelor programme; Physics; [joint study programme with the University of

Graz in the framework of NAWI Graz] (as a degree student)

Number / Academic Year type / semester hour Duration of the course / examination / recognition date

(1) (2) (3) (4) (5)

208.00

(1) (2) (3) (4) (5) See explanations on next page

Certificate (678) 22 September 2020

Date For the Rectorate:

19 January 2023 The Vice Rector for Academic Affairs: Univ.-Prof. Dipl.-Ing.

Dr.techn. Stefan Vorbach

* ... recognised Page 3 of 4

ECTS - EUROPEAN CREDIT TRANSFER SYSTEM

Information available on the Europe server: http://ec.europa.eu/education/lifelong-learning-policy/doc48_en.htm

(1) Number / Academic Year

Information available on INTERNET: https://online.tugraz.at

(2) Type of course

SE = Seminar PE = Practical

L = Lecture

Semester hour: unit of academic credit: 45 minutes a week for one semester

(3) Duration of course unit:

Y = 1 full academic year

1S = 1 semester

(4) Description of the institutional grading system:

Austrian Grading Scale Definition

1 EXCELLENT: outstanding performance

2 GOOD: above the average standard but with some errors

3 SATISFACTORY: generally sound work with a number of notable errors

4 SUFFICIENT: performance meets the minimum criteria

5 UNSATISFACTORY: Substantial improvement necessary; requirement of further work

successfully completed Positive performance, where a strict differentiation is not adequate not completed Negative performance, where a strict differentiation is not adequate

Overall classification of the qualification:

"mit Auszeichnung bestanden" Pass with Distinction (in case of excellent performance)

"bestanden" Pass (in case of positive assessment)
"nicht bestanden" Fail (in case of negative assessment)

Recommended ECTS grades:

Grade at TU Graz ECTS grade

1 A B B C D/E F

ECTS-Credits

1 Academic Year = 60

1 Semester = 30

* ... recognised Page 4 of 4

TECHNISCHE UNIVERSITÄT GRAZ GRAZ UNIVERSITY OF TECHNOLOGY - AUSTRIA

Rechbauerstraße 12 8010 Graz Österreich

TRANSCRIPT OF RECORDS

NAME OF STUDENT: Pomper First name: Joachim

Date of birth: 22 April 1997 Academic degree: BSc

Date of admission: 29 September 2020 **Matriculation number:** 01530093

Study: Master's programme; Physics (as a degree student)

Number / Ao Year			Duration of the ourse / examination / recognition date	Local grade	ECTS Credits
(1)		(2)	(3)	(4)	(5)
PHU001UB	20/21	Statistical Physics; L; 2,00	1S / 24.11.2020	1	4.00
PHU002UF	20/21	Statistical Physics; PE; 1,00	1S / 22.01.2021	1	2.00
PHU004UF	20/21	Advanced Quantum Mechanics; PE; 1,00	1S / 27.01.2021	1	2.00
PHU003UF	20/21	Advanced Quantum Mechanics; L; 2,00	1S / 01.02.2021	1	4.00
PHM509UB	20/21	Computational Methods in Solid State Physics; SE	; 2,00 1S / 11.02.2021	1	3.00
PHU012UB	20/21	Advanced Statistical Physics; L; 2,00	1S / 12.02.2021	1	3.00
PHM508UB	20/21	Monte-Carlo Methods; SE; 2,00	1S / 26.02.2021	1	3.00
PHM500UB	20/21	Advanced Mathematical Methods; L; 3,00	1S / 04.06.2021	1	4.50
PHM501UB	20/21	Advanced Mathematical Methods; PE; 1,00	1S / 04.06.2021	1	1.50
PHM504UB	20/21	Advanced Quantum Mechanics II; L; 2,00	1S / 24.06.2021	1	3.00
PHM503UB	20/21	Quantum Field Theory; PE; 1,00	1S / 05.07.2021	1	1.50
PHT508UF	20/21	Green's Functions in Many-Particle Physics; SE; 2	,00 1S / 05.07.2021	1	3.00
PHM502UB	20/21	Quantum Field Theory; L; 3,00	1S / 16.07.2021	1	4.50
PHM525UB	20/21	Hadron Physics; L; 2,00	1S / 29.07.2021	1	3.00
PHM524UB	20/21	Project in: "Foundations of Particle Physics"; PE; 2	,00 1S / 30.07.2021	1	3.00
MAT656UF	20/21	Elective Subject Mathematics (Electromagnetics at Differential Forms); L; 2,00	nd 1S / 03.09.2021	1	3.00
PHM001UB	21/22	Introduction to General Relativity and Cosmology; 2,00	L; 1S / 14.10.2021	1	3.00
PHM507UB	21/22	Numerical Methods in Linear Algebra; SE; 2,00	1S / 15.11.2021*	1	3.00
A00036996	21/22	M0.3 Master's Seminar in the Area of the Master's Thesis, SE; L; 2,00 $$	18 / 08.02.2022	1	2.00
PHM520UB	21/22	Quantum Field Theory 2: Gauge Theories; SE; 4,0	0 1S / 12.02.2022	1	6.00
PHM528UB	21/22	Project in: "Phenomenology of Particle Physics"; P 2,00	E; 1S / 23.02.2022	1	3.00
PHM802UB	20/21	Astroparticle Physics; L; 2,00	1S / 25.02.2022	1	3.00
PHM506UB	21/22	Basic Concepts in Solid-state Theory; L; 2,00	1S / 28.02.2022	1	3.00
PHM523UB	21/22	Advanced Mathematical Methods 2; L; 2,00	1S / 28.03.2022	1	3.00
PHM012_2UB	21/22	Master's Seminar in the Area of the Master's Thesi (Strong Interaction in QFT); SE; 2,00	s 1S / 28.06.2022	1	2.00

* ... recognised Page 1 of 3

NAME OF STUDENT: Pomper First name: Joachim

Date of birth: 22 April 1997 Academic degree: BSc

Date of admission: 29 September 2020 **Matriculation number:** 01530093

Study: Master's programme; Physics (as a degree student)

Number / Academic Title of the course / Duration of the Local ECTS
Year type / semester hour course / examination / grade Credits
recognition date

(1) (2) (3)

⁽⁵⁾ **76.00**

(4)

(1) (2) (3) (4) (5) See explanations on next page

Date For the Rectorate:

19 January 2023 The Vice Rector for Academic Affairs: Univ.-Prof. Dipl.-Ing.

Dr.techn. Stefan Vorbach

* ... recognised Page 2 of 3

ECTS - EUROPEAN CREDIT TRANSFER SYSTEM

Information available on the Europe server: http://ec.europa.eu/education/lifelong-learning-policy/doc48_en.htm

(1) Number / Academic Year

Information available on INTERNET: https://online.tugraz.at

(2) Type of course

SE = Seminar PE = Practical

L = Lecture

Semester hour: unit of academic credit: 45 minutes a week for one semester

(3) Duration of course unit:

Y = 1 full academic year

1S = 1 semester

(4) Description of the institutional grading system:

Austrian Grading Scale Definition

1 EXCELLENT: outstanding performance

2 GOOD: above the average standard but with some errors

3 SATISFACTORY: generally sound work with a number of notable errors

4 SUFFICIENT: performance meets the minimum criteria

5 UNSATISFACTORY: Substantial improvement necessary; requirement of further work

successfully completed Positive performance, where a strict differentiation is not adequate not completed Negative performance, where a strict differentiation is not adequate

Overall classification of the qualification:

"mit Auszeichnung bestanden" Pass with Distinction (in case of excellent performance)

"bestanden" Pass (in case of positive assessment)
"nicht bestanden" Fail (in case of negative assessment)

Recommended ECTS grades:

Grade at TU Graz ECTS grade

1 A B B C C D/E F

ECTS-Credits

1 Academic Year = 60

1 Semester = 30

* ... recognised Page 3 of 3