Association Rule Learning

Learning Algorithm Implementations

Mining association rules

- Standard separate-and-conquer method
- Looking at every possible combination of attributes, every combination of values on righthand side
- Problems:
 - Computational complexity
 - Resulting in enormous number of rules
 - pruned based on support and confidence

Association Rule Learning

- Popular and well researched method for discovering interesting relations between variables in large datasets
- It is intended to identify strong rules discovered in databases using different measures of interestingness
- Market Basket Analyses
 - Promotional pricing, product placement, web usage mining, intrusion detection, bioinformatics
- Does not consider order (sequence mining)

Item sets

- Coverage = Support
 - Number of instances rule predicts correctly
- Accuracy = Confidence
 - proportion of the number of instances that the rule applies to
- Item: one attribute-value pair
- Item set: all items occurring in a rule

Goal

- Produce only rules that exceed pre-defined support
 - Find all item sets with the given minimum support
 - generating rules from these item sets
- Generate one item sets, two item sets, etc.

Weather data example

One-item sets	Two-item sets	Three-item sets	Four-item sets
Outlook = Sunny (5)	Outlook = Sunny	Outlook = Sunny	Outlook = Sunny
	Temperature = Mild (2)	Temperature = Hot Humidity = High (2)	Temperature = Hot Humidity = High Play = No (2)
Temperature = Cool (4)	Outlook = Sunny Humidity = High (3)	Outlook = Sunny Humidity = High Windy = False (2)	Outlook = Rainy Temperature = Mild Windy = False Play = Yes (2)

Total number of item sets

- With minimum support = 2
 - 12 one-item sets
 - 47 two-item sets
 - 39 three-item sets
 - 6 four-item sets
 - 0 five-item sets
- Once all item sets with minimum support have been generated they are turned into association rules

Association rules

Example: 3 item set with coverage=4

Humidity = Normal, Windy = False, Play = Yes (4)

Produces seven (2N-1) potential rules:

If Humidity=Normal and Windy=False then Play=Yes		4/4
If Humidity=Normal and Play=Yes then Windy=False		4/6
If Windy=False and Play=Yes then Humidity=Normal		4/6
If Humidity=Normal then Windy=False and Play=Yes		4/7
If Windy=False then Humidity=Normal and Play=Yes		4/8
If Play=Yes then Humidity=Normal and Windy=False		4/9
If True then Humidity=Normal and Windy=False and Play=Yes	4/12	

Rules with support > 1 and confidence = 100%

	Association rule		Sup.	Conf.
1	Humidity=Normal Windy=False	⇒Play=Yes	4	100%
2	Temperature=Cool	⇒Humidity=Normal	4	100%
3	Outlook=Overcast	⇒Play=Yes	4	100%
4	Temperature=Cold Play=Yes	⇒Humidity=Normal	3	100%
58	Outlook-Sunny Temperature-Hot	⇒Humidity-High	2	100%

Total

- 3 rules with support four
- 5 with support three
- 50 with support two

Generating rules from the same item set

- Item set
 - Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)
- Sub-sets with coverage of (2):

```
Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)
```

Resulting rules (coverage=2 & confidence=100%):

Temperature = Cool, Windy = False Than Humidity = Normal, Play = Yes Temperature = Cool, Windy = False, Humidity = Normal Than Play = Yes Temperature = Cool, Windy = False, Play = Yes Than Humidity = Normal

How to efficiently find all frequent item sets?

- First find one-item sets
 - Use them to generate two-item sets
 - use two-item sets to generate three-item sets ...
- If (A B) is frequent item set then
 - (A) and (B) have to be frequent item sets as well
- if X is frequent k-item set than
 - all (k-1)- item subsets of X are also frequent
 - compute k-item set by merging (k-1)-item sets

Efficient item set generation

- Given: five three-item sets
- (A B C), (A B D), (A C D), (A C E), (B C D)
- Candidate four-item sets:
- (A B C D) OK because of (B C D)
- (A C D E) Not OK because of (C D E)
- Second stage:
 - take each item and generate rules checking minimum accuracy

Summary

- Practical issue need to generate a certain number of rules
 - by incrementally reducing min. support required
- ARFF format very inefficient for typical market basket data
 - Attributes represent items in a basket and most items are usually missing

