EDEXCEL PURE MATHEMATICS S1 (6683) – JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
1.	Frequency densities: 0.16, 1.0, 1.0, 0.4, 0.4, 0.08	M1, A1
	Histogram: Scale and labels	B1
	Correct histogram	B1
		(4 marks)
2 . (a)	$P(A \cap B) = \frac{10}{100} = \frac{1}{10} = 0.1$ $P(A') = \frac{75}{100} = 0.75$	M1 A1 (2)
(<i>b</i>)	$P(A') = \frac{75}{100} = 0.75$	M1 A1 (2)
(c)	$P(B' A) = \frac{P(B' \cap A)}{P(A)} = \frac{\frac{15}{100}}{\frac{25}{100}} = \frac{15}{25} = \frac{3}{5} = 0.6$	M1 A1 (2)
(<i>d</i>)	$P(A' \cap B) = 0.4$; $P(A')P(B) = 0.75 \times 0.5 = 0.375$	M1
	Since $P(A' \cap B) \neq P(A')P(B) \Rightarrow$ not independent	A1
	One of models is less reliable	A1 (3)
		(9 marks)
3.	Let X represent amount dispersed into cups	
	$\therefore X \sim N(55, \sigma)$	
(a)	∴ $X \sim N(55, \sigma)$ $P(X < 50) = 0.10 \Rightarrow \frac{50 - 55}{\sigma} = -1.2816$	M1 B1
	$\sigma = 3.90137$	M1 A1 (4)
(b)	$P(X > 61) = P(Z > \frac{61-55}{3.90137})$	M1
	= P(Z > 1.54)	A1
	= 1 - 0.90382 = 0.0618; 6.18%	A1 (3)
(c)	Let <i>Y</i> represent new amount dispensed.	
	$\therefore Y \sim N(\mu, 3)$	
	:. $Y \sim N(\mu, 3)$ $P(Y < 50) = 0.025 \Rightarrow \frac{50 - \mu}{3} = -1.96$	M1 B1
	$\mu = 55.88$	M1 A1 (4)
		(11 marks)

EDEXCEL PURE MATHEMATICS S1 (6683) – JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	5	
4 (.	0 = 16 + 16 = 16; $0 = 15$; $0 = 165$; $10P = 165$	M1A1; B1;	M1A1; B1; B1;	
4. ($Q_2 = \frac{16+16}{2} = 16; Q_1 = 15; Q_3 = 16.5; IQR = 16$	B1	(5)	
($1.5 \times IQR = 1.5 \times 1.5 = 2.25$	M1 A1		
	$Q_1 - 1.5 \times IQR = 12.75 \Rightarrow \text{no outliers below } Q_1$	A1		
	$Q_3 + 1.5 \times IQR = 18.75 \Rightarrow 25$ is an outlier	A1		
	Boxplot, label scale	M1		
	14, 15, 16, 16.5, 18.75 (18)	A1		
	Outlier	A1	(7)	
(0	$\bar{x} = \frac{322}{20} = 16.1$	M1 A1	(2)	
(0	Almost symmetrical/slight negative skew	B1		
	Mean (16.1) \approx Median (16) and $Q_3 - Q_2 (0.5) \approx Q_2$	$_{2}-Q_{1}$ (1.0) B1	(2)	
		(16 m	arks)	
5. (<i>a</i>	2k + k + 0 + k = 1	M1		
	$\therefore 4k = 1 \Rightarrow k = 0.25 \ (\clubsuit)$	A1	(2)	
	x 0 1 2 3			
(i	P(X=x) 0.5 0.25 0 0.25			
(b)	xP(X=x) 0 = 0.25 = 0 = 0.75			
	$x^2 P(X=x) = 0$ 0.25 0 2.75			
	$E(X) = \sum x P(X = x) = 0 + 0.25 + 0 + 0.75 = 1$	M1 A1		
	$E(X^2) = 0 + 0.25 + 0 + 2.25 = 2.5$ (*)	M1 A1	(4)	
(0	$ \operatorname{Var}(3X - 2) = 3^2 \operatorname{Var}(X)$	M1		
	$=9(2.5-1^2)=13.5$	M1 A1	(3)	
($P(X_1 + X_2) = P(X_1 = 3 \cap X_2 = 2) + P(X_1 = 2 \cap X_2 = 2)$	=3)=0+0=0 B1	(1)	
(Let $Y = X_1 + X_2$ y 0 1 2 3 $P(Y = y)$ 0.25 0.25 0.0625 0.2		(3)	
(f) $P(1.3 \le X_1 + X_2 \le 3.2) = P(X_1 + X_2 = 2) + P(X_1 + X_2 = 2)$	$V_2 = 3$) M1		
	= 0.0625 + 0.25 = 0.3125	A1ft, A1ft	(3)	
			(16 marks)	

EDEXCEL PURE MATHEMATICS S1 (6683) – JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
6 . (a)	x 20 26 32 34 37 44 48 50 53 58 y 24 38 42 44 43 52 59 66 70 79	B1	
	Change in cost of advertising influences number of new car sales	B1	
	Graph: Scale and labels	B1	
	Points all correct	B2	(5)
(b)	$S_{xy} = 22611 - \frac{402 \times 517}{10} = 1827.6$	M1 A1	
	$S_{xx} = 17538 - \frac{402^2}{10} = 1377.6$	A1	
	$b = \frac{S_{xy}}{S_{xx}} = \frac{1827.6}{1377.6} = 1.326655$	M1 A1	
	$a = \frac{517}{10} - (1.326655) \times \frac{402}{10} = -1.63153$	B1	
	$\therefore y = -1.63 + 1.33x$	B1ft	(7)
(c)	$\frac{c - 4000}{10} = -1.63 + 1.33(p - 100)$	M1 A1ft	
	c = 2653.7 + 13.3p	A1	(3)
(d)	No. sold if no money spent on advertising	B1	
	p = 0 is well outside valid range – meaningless	B1	(2)
(e)	$2 \times 13.3 = 27$ extra cars sold	B1	
	Only valid in range of data for 1990s	B1	(2)
		(19 ma	rks)