NeuroMapping:

PET (Positron Emission Tomography)

(Alteration of Neurochemicals/Neuroligands)

Combined PET – CT Fusion scanner

(To see Anatomical location of Physiological abnormality)

Principle of PET:

Positron Emission Tomography

Radiotracer	Label	Half-life (hours)	Application
Choline	¹¹ C	0.34	Choline metabolism
Acetate	¹¹ C	0.34	Fatty acid/sterol metabolism
Tyrosine	¹¹ C	0.34	Amino acid metabolism
Methionine	¹¹ C	0.34	Amino acid metabolism
Ammonia	^{13}N	0.17	Vascular perfusion
Water	¹⁵ O	0.03	Vascular perfusion
FDG	$^{18}\mathrm{F}$	1.83	Glucose metabolism
FLT	$^{18}\mathrm{F}$	1.83	Cellular proliferation
FHBG	$^{18}\mathrm{F}$	1.83	Gene expression
FIAU	$^{18}\mathrm{F}$	1.83	Gene expression
Galacto-RGD	$^{18}\mathrm{F}$	1.83	Angiogenesis
Dimeric-RGD	$^{18}\mathrm{F}$	1.83	Angiogenesis
FMISO	$^{18}\mathrm{F}$	1.83	Hypoxia
FAZA	$^{18}\mathrm{F}$	1.83	Hypoxia
EF5	$^{18}\mathrm{F}$	1.83	Hypoxia
Cu-ATSM	⁶⁴ Cu	12.70	Hypoxia
Cu-PTSM	⁶⁴ Cu	12.70	Vascular perfusion

P.E.T.

Radiotracers

FDG, [¹⁸F]fluoro-2-deoxyglucose; FLT, [¹⁸F]fluorothymidine; FHBG, ¹⁸F-9-[4-fluoro-3-(hydroxymethyl)butyl]guanine; FIAU, ¹³¹I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil; RGD, arginine-glycine-aspartic acid; FMISO, [¹⁸F]fluoromisonidazole; FAZA, [¹⁸F]fluoroazomycin-arabinoside; EF5, 2-(2-nitro-1*H*-imidazol-1-yl)-N-(2,2,3,3,3-[¹⁸F] pentafluoropropyl)-acetamide; Cu-ATSM: Cu(II)-diacetyl-bis(N(4)-methylthiosemicarbazone); Cu-PTSM: Cu(II)-

SPECT Imaging can <u>not</u> show much difference between brains of: Normal Person & Alzheimer's Disease (Memory Disorder).

However, PET imaging can show much difference [15,000/-]

← SPECT Image [500/-]

(Single Photon Emission Computed Tomography - Cheaper)

/ PET Image

FDG = Fluor-deoxy-glucose--Radioactive biochemical (SPECT)

rCMR = regional Cerebral metabolic rate (glucose)

PiB = Pittsburg Compound – B (benzo-thiazole. Tags amyloid) (PET)

SUV = Standard Uptake Value

Steps of PET Image Processing: Statistical Parametric Mapping (SPM)

Method Adapted from Joshi's paper:

A Semiautomated Method for Quantification of F 18 Florbetapir PET Images

Abhinay D. Joshi, Michael J. Pontecorvo, Ming Lu, Daniel M. Skovronsky, Mark A. Mintun, and Michael D. Devous, Sr.

Avid Radiopharmaceuticals, Inc., Philadelphia, Pennsylvania

J Nucl Med. 2015;56:1736-1741.

Published online: September 3, 2015.

Doi: 10.2967/jnumed.114.153494

Florbetapir PET template in MNI brain atlas space created by averaging PET images of:

Alzheimer's patients (n = 11) & Normal Subjects (n = 15)

Benzo-Thiazole

PET – MRI

Method for obtaining PET mapping of biochemical's uptake

(A) Data used to create <u>VOI</u>s: (Voxels of Interest).

(A) VOIs (red) for 6 cortical regions & 4 reference regions overlaid on MR template images in MNI space.

(First image in top row shows overlay of frontal medial orbital and anterior cingulate regions; only 1 region is seen because of overlap in 2 VOIs.

(C) Example of temporal VOI overlaid on F 18 Florbetapir PET template.

Flowchart of mapping Amyloid toxic protein in Alzheimer's patient's brain

(F¹⁸ Fluor-beta-pir PET scan)

Creation of standard florbetapir PET template in MNI (Montreal standard) space:

One uses the 10-min image at 50 min after injection from 15 Normal Subjects and 11 Alzheimer's Patients

Spatially normalize mean image to MNI space

Apply transformation to coregistered dynamic frame data from 0-90 min

Use a 10 min image from 50-60 min. Average the spatially normalized 50-60 min image across 11 AD and 15 HC

Significant voxels where Florbetapir retention in Alzheimer patients exceeds Normal subjects

$$(p < 5\%)$$

Cerebellum's PET Amyloid Uptake accurately distinguishes Alz. Patients from Normal Subjects

Note:

YCN = Young Control Normal;

AD = Alz. Disease;

ODD = Other Dementia disorders;

HC = Healthy Controls;

MCI = Mild Cognitive Impairment (pre-AD)

