DYNAMIC PARTIAL AWARENESS

JOSEPH Y. HALPERN

Cornell University, Computer Science Department

EVAN PIERMONT

Royal Holloway, University of London, Department of Economics

Awareness is a pervasive form of ignorance:
 An agent is unaware of an object/event/statement/etc if it

is not on her radar screen

Existing models have difficulties with:

Awareness of Unawareness:

"I know I am unaware of current research in immunological oncology."

Partial Awareness:

"I am aware of bitcoin but do not fully understand it."

Growing Awareness:

"I just discovered quantum computing, and it makes me re-evaluate cyber security."

Why do we care?

- More realistic/nuanced representation of ignorance.
- Agents who reason about thier own limitations, may take actions to temper exposure to unawareness
 - Motivate learning, preference for the well understood
- > Has important implications in economic markets:
 - Incomplete contracting, over-confidence, context-dependent preferences, &c.

This talk:

- 1. Develop a formal model of partial awareness.
 - Modal logic extending Halpern Rego (2009, 2013).
- 2. Considers what happens when agents become more aware
 - How do the agent's beliefs change
 - > Becoming aware is in-and-of-itself informative

The language has three building blocks:

- 1. objects
- 2. properties: unary predicates
- 3. concepts: Boolean combination of properties

In each state (possible world), each agent is aware of a subset of objects, properties, and concepts.

The logic also has two modalities:

* $A_i\varphi$: agent i is aware of the formula φ

* $K_i\varphi$: agent *i* explicitly knows formula φ .

Read: φ is true at all possible worlds and $A_i\varphi$

Suppose a quantum computer (Q) is defined as a computer (C) that possesses an additional "quantum property" QP.

$$Q := C \wedge QP$$

- 1. A *partially aware* agent is aware of *Q* but unaware of the specific Boolean combination of properties that characterizes it.
- 2. A *fully unaware* agent is unaware of even the concept of a quantum computer
- 3. A *fully aware* agent is unaware is aware of both the concept of a quantum computer and also what it means to be one, i.e., the properties *C* and *QP*.

We capture introspection via quantification (over both objects and properties).

*
$$K_i \Big(\exists P \forall x \big(Q(x) \Leftrightarrow C(x) \land P(x) \land \neg A_i P(x) \big) \Big) \Big)$$

- * Although the agent is unaware of *QP*, she knows something about *Q* (quantum computers): she knows that they're computers that satisfy some extra property *P*.
- * $K_i(\forall P \forall x ((Q(x) \Leftrightarrow C(x) \land P(x)) \Rightarrow (P(x) \Rightarrow R(x)))$
 - She can even reason about this property.

So what is the limitation imposed by (partial) unawareness?
* "Shadow predicates" cannot be expressed.
Limits information exchange.

Syntax

The syntax of our logic has the following building blocks:

- * A countable set $\mathscr O$ of constant symbols, representing objects. Following Levesque (1990), $\mathscr O$ consists of standard names d_1, d_2, \ldots
- * A countably infinite set $\mathcal{V}^{\mathscr{O}}$ of object variables, which range over objects.
- \triangleright A countable set $\mathscr P$ of unary predicate symbols.
- ightharpoonup A countably infinite set $\mathcal{V}^{\mathscr{P}}$ of predicate variables.
- ightharpoonup A countable set $\mathscr C$ of concept symbols.

If $d \in \mathcal{O}$, $x \in \mathcal{V}^{\mathcal{O}}$, $P \in \mathcal{P}$, $Y \in \mathcal{V}^{\mathcal{P}}$, and $C \in \mathcal{C}$, then P(d), P(x), Y(d), Y(x), C(d), and C(x) are atomic formulas.

Our language $\mathcal{L}(\mathcal{O}, \mathcal{P}, \mathcal{C})$ is the closure under

- conjunction and negation
- quantification over objects and over unary predicates,
 - if φ is a formula, $x \in \mathcal{V}^{\mathscr{O}}$, and $Y \in \mathcal{V}^{\mathscr{P}}$, then so are $\forall x \varphi$ and $\forall Y\varphi$.
- * the modal operators A_1, \ldots, A_n and K_1, \ldots, K_n
 - representing awareness and (explicit) knowledge.
 - if φ is a formula, then so are $A_i\varphi$ and $K_i\varphi$.

Semantics

- $ightharpoonup \Omega$ of possible states.
- * each state ω is associated with a language. Formally, there is a function Φ on states such that $\Phi(\omega) = (\mathscr{O}_{\omega}, \mathscr{S}_{\omega}, \mathscr{C}_{\omega})$
- \triangleright we take the domain D to be the standard names in \mathscr{O} .
- * a binary relation K_i on states; states i considers possible.
- * an awareness set $A_i(\omega) \subseteq \Phi(\omega)$, the symbols i is aware of.

An interpretation I: for each state ω , we have a function I_{ω} :

- * taking \mathscr{O} to elements of the domain D, standard names
 - are mapped to themselves, so that $I_w(d_i) = d_i$. ${\mathscr P}$ to subsets of D.

* \mathscr{C} to $\mathcal{L}^{bc}(\Phi(\omega))$, Boolean combinations of properties (i.e.,

predicates).

The truth of a sentences at a state ω in

$$M = (\Omega, D, \Phi, A_1, \dots, A_n, K_1, \dots, K_n, I)$$

are defined as usual.

Of interest:

$$*(M \omega) \models C(d) \text{ iff } (M \omega) \models C^{I}(d)$$

$$(M,\omega) \models C(d) \text{ iff } (M,\omega) \models C^I_{\omega}(d),$$

$$(M,\omega) \models \forall Y \varphi \text{ iff } (M,\omega) \models \varphi[Y/\psi], \text{ where } \psi \in \mathcal{L}^{bc}$$

$$(M,\omega) \models A_i \varphi \text{ iff } \varphi \in \mathcal{L}(\mathcal{A}_i(\omega)),$$

*
$$(M, \omega) \models K_i \varphi$$
 iff $(M, \omega) \models A_i \varphi$ and $(M, \omega') \models \varphi$ for all $\omega' \in \mathcal{K}_i(\omega)$.

We assume agents know what they are aware of:

* if
$$(\omega,\omega')\in\mathcal{K}_i$$
, then $\mathcal{A}_i(\omega)=\mathcal{A}_i(\omega')$

and \mathcal{K}_i is an equivalence relation, and thus partitions the states in Ω .

why different languages at different states? Otherwise:	
$(\neg K_i \neg \forall P(A_i P(d))) \Rightarrow K_i \forall P(A_i P(d))$	

When different languages at different states? Otherwise

Because different languages at different states:

- $\Rightarrow \varphi$ is true at ω only if it is expressible at ω .
- > Non-standard notion of validity:
 - φ is valid in M if $(M, \omega) \models \varphi$ for all $\omega \in \Omega$ such that $\varphi \in \mathcal{L}(\Phi(\omega))$.

How do beliefs change as awareness changes?

ightharpoonup Becoming aware of φ is informative

More likely the opponent is rational

- Ex. playing a game with an irrational opponent
 - ◆ Become aware of a new rule (without knowing what the
 - rule specifies)

The state space	Ω is God's stat	e-space. The	'objective'	view of
ام اسم در د ما ط				

But the agent's view is limited by her own language.

the world.

An event $E\subseteq\Omega$ is $\omega\text{-conceivable}$ of there is a sentence φ such that

- 1. The agent is aware of φ at ω .
- 2. φ is true exactly on E.

Under basic regularity conditions

$$\Sigma_{\omega} = \{ E \subseteq \Omega \mid \text{ is ω-conceivable} \}$$

is a σ -algebra on Ω .

A modeler can obtain a subjective probability $\pi \in \Delta(\Omega, \Sigma_{\omega})$

- \Rightarrow Use bets on the truth of φ (usual decision theory).
- > Only consider sentences the agent is already aware of.
- **▶** The support of π is $\mathcal{K}(\omega)$.

Now what happens when the agent becomes more aware, e.g., of a new property P.

- Her language gets richer
 - Implies: She might be able to differentiate new states
- She learns that she used to be unaware of whatever she discovered
 - Implies: she might condition her beliefs

Formally: becoming aware of φ changes the model from M to $M^{[\varphi]}$:

- * The 'physical' properties of the states do not change: $\Omega = \Omega^{[\varphi]}$, and P(d) is true at ω if and only if it is true at $\omega^{[\varphi]}$.
- > The agent becomes aware of all the symbols in arphi

$$\mathcal{A}^{[\varphi]}(\omega) = \mathcal{A}(\omega) \cup \mathsf{SYM}(\varphi)$$

• The agent learns she was unaware of φ :

$$\mathcal{K}^{[\varphi]}(\omega^{[\varphi]}) = \mathcal{K}(\omega) \cap \{\omega \mid \text{the agent could have been unaware of } \varphi\}$$

Say π_0 is ex-ante probability and π_1 is ex-post (the agent becomes aware of φ):

$$\Sigma_{\omega}\subseteq \Sigma_{\omega}^{[arphi]}$$
 (can differentiate new states)

* $\Sigma_{\omega} \subseteq \Sigma_{\omega}^{\omega}$ ' (can differentiate new states) * $\operatorname{supp}(\pi_1) \subseteq \operatorname{supp}(\pi_0)$ ('condition' her beliefs).

Bayes' rule states
$$\pi_1(E) = \frac{\pi_0(E \cap \text{supp}(\pi_1))}{\pi_0(\text{supp}(\pi_1))}$$
, but what if $\text{supp}(\pi_1) \notin \Sigma_{\omega}$?

Theorem.

If for all $E, E' \in \Sigma_{\omega}$ with $E, E' \subseteq \text{supp}(\pi_1)$, we have

$$\frac{\pi_0(E)}{\pi_0(E')} = \frac{\pi_1(E)}{\pi_1(E')}$$

and $\pi_0(E) \leq \pi_1(E)$ then it is as if π_1 is a conditional distribution of π_0 .

* There exists a
$$\pi^* \in \Delta(\Omega, \Sigma_\omega^{[\varphi]})$$
 such that π^* is an extension of π_0 and
$$\pi_1(E) = \frac{\pi^*(E \cap \operatorname{supp}(\pi_1))}{\pi^*(\operatorname{Supp}(\pi_1))}$$

Hence the model:

- Allows for growing awareness to change beliefs about
 - previously describable events
 - Has testable predictions
 - > This is in juxtaposition to Karni and Viero (2015) and Dominiak and Tserenjigmid (2019)