Gibbs measures and the Ising model

Jordan Bell

July 1, 2014

Let Λ be a finite subset of \mathbb{Z}^2 and let $\Lambda' = \mathbb{Z}^2 \setminus \Lambda$. Let $\sigma' \in \{-1, +1\}^{\Lambda'}$, a fixed configuration of spins outside Λ . Let $\Omega = \{-1, +1\}^{\Lambda}$; Ω is the space of all configurations of spins on Λ . We define a Hamiltonian $H_{\Lambda}(\cdot|\sigma'): \Omega \to \mathbb{R}$ (depending on the fixed external configuration σ') by

$$H_{\Lambda}(\sigma|\sigma') = -\sum_{\substack{x,y \in \Lambda \\ |x-y|=1}} \sigma(x)\sigma(y) - \sum_{\substack{x \in \Lambda, y \in \Lambda' \\ |x-y|=1}} \sigma(x)\sigma'(y).$$

 $H_{\Lambda}(\cdot|\sigma')$ gives the energy of a configuration $\sigma \in \Omega$, conditioned on the external configuration σ' .

For a parameter $\beta > 0$ (called the *inverse temperature*), we define the *partition function* by

$$Z(\beta, \Lambda, \sigma') = \sum_{\sigma \in \Omega} \exp(-\beta H_{\Lambda}(\sigma | \sigma')).$$

Then we define the Gibbs distribution for the configuration space Ω , depending on the external configuration σ' , by

$$P_{\beta,\Lambda}(\sigma|\sigma') = \frac{1}{Z(\beta,\Lambda,\sigma')} \exp(-\beta H(\sigma|\sigma')).$$

The purpose of the partition function is to normalize the above expression to be a probability measure on the configuration space Ω .

For example, let Λ be a square of side length 3 centred at the origin, and take σ' to be an external configuration of all negative spins. Define $\sigma \in \Omega$ by

$$\begin{array}{lll} \sigma(-1,1) = +1 & \sigma(0,1) = +1 & \sigma(1,1) = -1 \\ \sigma(-1,0) = -1 & \sigma(0,0) = +1 & \sigma(1,0) = -1 \\ \sigma(-1,-1) = -1 & \sigma(0,-1) = -1 & \sigma(1,-1) = +1. \end{array}$$

We show this configuration in Figure 1. We calculate that the energy of this configuration is $H_{\Lambda}(\sigma|\sigma') = 0$. We can calculate the energy of this configuration in a different way, using line segments separating lattice points with different spins, as follows. For an $n \times n$ square, there are 2n(n+1) nearest neighbor interactions. Put a line segment between every two lattice points with different spins; let $B(\sigma|\sigma')$ be the set of these line segments. We show this in Figure 2.

Figure 1: An example of a configuration (and negative external spins)

Figure 2: Calculating energy using contours

Generally, if Λ is an $n \times n$ square then we have

$$H_{\Lambda}(\sigma|\sigma') = -2n(n+1) + 2|B(\sigma|\sigma')|.$$

Indeed, in our above example, n=3 and $|B(\sigma|\sigma')|=12$, so the above expression is $-24+2\cdot 12=0$, and we have already calculated that $H_{\Lambda}(\sigma|\sigma')=0$. What matters is that if we know the external configuration, then to describe the configuration inside a region Λ it suffices to know the edges that separate opposite spins. And since the energy of any configuration has the term -2n(n+1) and this appears in the numerator and denominator of the expression for the Gibbs distribution, we can omit it to calculate the Gibbs distribution. By a contour we mean a closed path of edges that does not intersect itself. We can express the Gibbs distribution in terms of contours as

$$P_{\beta,\Lambda}(\sigma|\sigma') = \frac{\prod_{\gamma \in \Gamma(\sigma,\sigma')} \exp(-2|\gamma|)}{\sum_{\Gamma} \prod_{\gamma \in \Gamma} \exp(-2\beta|\gamma|)};$$

 $\Gamma(\sigma, \sigma')$ is the set of contours corresponding to the configuration σ with the external configuration σ' , and the summation is over all sets Γ of nonintersecting contours.

We are not in fact interested in the Gibbs distribution on the configurations on a finite subset Λ of \mathbb{Z}^2 , but instead limits of Gibbs distributions with $\Lambda_n \to \mathbb{Z}^2$. A Gibbs distribution $P_{\beta,\Lambda}(\cdot|\sigma')$ on Ω is in fact a probability measure on $\{+1,-1\}^{\mathbb{Z}^2}$: for $\sigma \in \{+1,-1\}^{\mathbb{Z}^2}$, a configuration on the plane, we define

$$\widetilde{P}_{\beta,\Lambda}(\sigma|\sigma') = \begin{cases} 0 & \sigma|\Lambda' \neq \sigma' \\ P_{\beta,\Lambda}((\sigma|\Lambda)|\sigma') & \sigma|\Lambda' = \sigma'. \end{cases}$$

Fix some β . Let Λ_n be a sequence of $n \times n$ squares centred at the origin, let $\sigma'_{n,+}$ be a sequence of external configurations where all lattice points outside Λ_n have positive spins, and let $\sigma'_{n,-}$ be a sequence of external configurations where all lattice points outside Λ_n have negative spins. Let $P_{n,+}$ be the sequence of Gibbs distributions corresponding to the positive external spins, and let $P_{n,-}$ be the sequence of Gibbs distributions corresponding to the negative external spins. These extend to probability measures $\widetilde{P}_{n,+}$ and $\widetilde{P}_{n,-}$ on $\{+1,-1\}^{\mathbb{Z}^2}$. Since $\{+1,-1\}$ is a compact metrizable space, the product $\{+1,-1\}^{\mathbb{Z}^2}$ is a compact metrizable space and thus the space of probability measures on it is compact. Hence the sequence $\widetilde{P}_{n,+}$ has at least one limit point, say P_- . We shall show that $P_+ \neq P_-$, namely that there is not a unique limit Gibbs measure on the set of all configurations on \mathbb{Z}^2 .

Let $V_+ = \{\sigma \in \{+1, -1\}^{\mathbb{Z}^2} : \sigma(0) = +1\}$ and $V_- = \{\sigma \in \{+1, -1\}^{\mathbb{Z}^2} : \sigma(0) = -1\}$. Suppose that for all n we had $\tilde{P}_{n,+}(V_-) < \frac{1}{3}$. Taking limits we have that $P_+(V_-) \leq \frac{1}{3}$ and so $P_+(V_+) \geq \frac{2}{3}$ (since the events V_+ and V_- are disjoint and their union is the set of all configurations on \mathbb{Z}^2). But $\tilde{P}_{n,+}(V_-) = \tilde{P}_{n,-}(V_+)$, so taking limits we also get $P_-(V_+) \leq \frac{1}{3}$. Therefore the measures P_+ and P_-

give different measures to the set V_+ , so they are distinct. Thus to show that the measures P_+ and P_- are distinct it suffices to show that for all n we have $\widetilde{P}_{n,+}(V_-) < \frac{1}{3}$.

We have

$$\widetilde{P}_{n,+}(V_{-}) \leq \operatorname{Prob}\left(\operatorname{there\ exists\ a\ contour\ }\gamma \subset B(\sigma|\sigma'), 0 \in \operatorname{Int}(\gamma)\right)$$

$$\leq \sum_{\substack{0 \in \operatorname{Int}(\gamma) \\ 0 \in \operatorname{Int}(\gamma)}} \operatorname{Prob}(\gamma \subset B(\sigma|\sigma'))$$

$$\leq \sum_{\substack{0 \in \operatorname{Int}(\gamma) \\ 0 \in \operatorname{Int}(\gamma)}} \exp(-2\beta|\gamma|).$$

The above sum is over all contours such that the origin lies in their interior. We can write the set of all contours around the origin as a union of the set of all contours of length k around the origin, $k \geq 4$. There are at most $\left(\frac{k}{4}\right)^2 4^k$ contours of length k around the origin. Therefore

$$\widetilde{P}_{n,+}(V_{-}) \le \sum_{k=4}^{\infty} \frac{k^2}{16} \cdot 4^k \exp(-2\beta k).$$

As $\beta \to \infty$, this is $O(\exp(-8\beta))$. In particular there is some β_0 such that if $\beta \geq \beta_0$ then for all n we have $\widetilde{P}_{n,+}(V_-) < \frac{1}{3}$. This shows that the limit Gibbs measures gives different measures to the set V_+ , hence they are distinct.

Further reading

Minlos [4], Sinai [6], Cipra [1], Simon [5], Le Ny [3], Kadanoff [2].

References

- [1] Barry A. Cipra, An introduction to the Ising model, Amer. Math. Monthly 94 (1987), no. 10, 937–959.
- [2] Leo P. Kadanoff, More is the same; phase transitions and mean field theories, J. Stat. Phys. **137** (2009), 777–797.
- [3] Arnaud Le Ny, Introduction to (generalized) Gibbs measures, 2007, arXiv:0712.1171.
- [4] R. A Minlos, *Introduction to mathematical statistical physics*, University Lecture Series, vol. 19, American Mathematical Society, Providence, R.I., 2000.
- [5] Barry Simon, The statistical mechanics of lattice gases, vol. I, Princeton University Press, 1993.

[6] Ya. G. Sinai, *Theory of phase transitions: rigorous results*, Pergamon Press, Oxford, 1982, Translated from the Russian.