Laboratório de CEME - Lab 3 Simulação de de máquina elétrica rotativa

Cleiton M. Freitas

1 Objetivo

O objetivo desta experiência é analisar o funcionamento de uma máquinas elétrica rotativa a partir de suas equações de fluxo concatenado. Diferentemente dos laboratórios anteriores, a analise conduzida será voltada para a condição de regime permanente.

2 Máquina Rotativa Analisada

A máquina elétrica analisada neste semana é conhecida como máquina síncrona. O termo síncrona indica que, para o devido funcionamento dela, deve haver sincronia entre a frequência mecânica de rotação do rotor e a frequência elétrica das tensões e correntes no estator. Além disso, a máquina síncrona possui uma bobina no rotor e esta é alimentada com corrente contínua para produzir o campo magnético principal da máquina ¹. A Figura 1 apresenta a vista frontal de uma máquina síncrona com três bobinas do estator, uma para cada fase, e uma bobina no rotor.

Figura 1: Máquina síncrona de dois polos

 $^{^1\}mathrm{M}$ áquinas reais também podem conter outros enrolamentos, chamados de enrolamentos amortecedores, não considerados aqui

A máquina da Figura 1 poder ser descrita pelo seguinte conjunto de equações de fluxo concatenado:

$$\begin{bmatrix} \lambda_{a}(t) \\ \lambda_{b}(t) \\ \lambda_{c}(t) \\ \lambda_{f}(t) \end{bmatrix} = \begin{bmatrix} L_{aa} & L_{ab} & L_{ac} & L_{af} \\ L_{ba} & L_{bb} & L_{bc} & L_{bf} \\ L_{ca} & L_{cb} & L_{cc} & L_{cf} \\ L_{da} & L_{fb} & L_{fc} & L_{ff} \end{bmatrix} \begin{bmatrix} i_{a}(t) \\ i_{b}(t) \\ i_{c}(t) \\ i_{f}(t) \end{bmatrix}$$
(1)

onde os subescritos a, b e c indicam grandezas referentes as bobinas do estator, enquanto que f indica gradezas relativas a bobina do rotor 2 .

3 Dados do Problema

A Tabela 1 contem os dados construtivos da máquina indicada na Figura 1. Este parâmetros, no entanto, são irrelevantes para as analises que realizaremos.

Tabela 1: Parâmetros da máquina rotativa analisada

Parâmetro	Símbolo	Valor
Distância do Entreferro	g	1mm
Raio do Rotor	r	9.9cm
Profundidade	P	15cm
Número de Espiras por Fase do Estator	N_s	72
Número de Espiras do Rotor	N_r	180
Corrente Nominal das Bobinas do Estator	I_s	$8A_p$
Corrente Nominal das Bobinas do Rotor	I_r	$2A_p$
Velocidade Nominal da Máquina	N	3600 RPM

Com ajuda de um programa voltado para simulação eletromagnética da máquina, o FEMM, foram obtidas as seguintes indutâncias para a máquina:

$$L_{aa} = L_{bb} = L_{cc} = 0.063H (2)$$

$$L_{ff} = 0.449H (3)$$

$$L_{ab} = L_{ac} = L_{bc} = -0.027H (4)$$

$$L_{af} = 0.129\sin(\theta + 1.57)H\tag{5}$$

$$L_{bf} = 0.129\sin(\theta - 0.524)H\tag{6}$$

$$L_{cf} = 0.129\sin(\theta - 2.618)H\tag{7}$$

onde θ é a posição do rotor da máquina medida me radianos.

4 Atividades preliminares

Considerando as equações de fluxo concatenado, obtenha:

- As equações para as tensões induzidas de todas as bobinas da máquina
- O torque eletromagnético em função das correntes e da posição do rotor

 $^{^2}$ A bobina do rotor é chamada de bobina de campo, por isso o f de field geralmente utilizado em livros de máquinas elétricas

5 Casos Teste: Tensão Induzida

As próximas subseções apresentam os casos testes que devem ser simulados usando o Google Colab.

5.1 Tensão induzida: máquina em vazio 1

Considerando que:

- As bobinas do estator estão em vazio (em circuito aberto);
- A bobina do rotor é alimentada com 2A CC;
- A máquina é mantida girando a 3600RPM;
- 1. Plote as tensões induzidas das bobinas
- 2. A partir dos resultados, determine a frequência e a amplitude das tensões induzidas.

5.2 Tensão induzida: máquina em vazio 2

Repita o caso anterior considerando que a velocidade de rotação é 3200RPM.

5.3 Tensão induzida: plena carga 1

Considerando que

• As bobinas do estator conduzem correntes:

$$i_a = 8\sin(120\pi t - \pi/6) \tag{8}$$

$$i_b = 8\sin(120\pi t - \pi/6 - 2\pi/3) \tag{9}$$

$$i_c = 8\sin(120\pi t - \pi/6 + 2\pi/3) \tag{10}$$

- A bobina do rotor é alimentada com 2A CC;
- A máquina é mantida girando a 3600RPM;
- 1. Plote as tensões induzidas das bobinas
- 2. A partir dos resultados, determine a frequência e a amplitude das tensões induzidas.
- 3. A partir dos resultados de tensão e corrente, compute a potência instantânea trifásica das bobinas do estator

5.4 Tensão induzida: plena carga 1

Repita o caso anterior considerando que a velocidade de rotação é 3200RPM.

6 Casos Teste: Torque

Utilizando scripts no Google Colab, compute e plote o toque desenvolvido pela máquina nas seguintes condições.

6.1 Torque: plena carga 1

Considerando que

• As bobinas do estator conduzem correntes:

$$i_a = 8\sin(120\pi t - \pi/6) \tag{11}$$

$$i_b = 8\sin(120\pi t - \pi/6 - 2\pi/3) \tag{12}$$

$$i_c = 8\sin(120\pi t - \pi/6 + 2\pi/3) \tag{13}$$

- A bobina do rotor é alimentada com 2A CC;
- A máquina é mantida girando a 3600RPM;

6.2 Torque: plena carga 2

Repita o caso anterior , mas desta vez considerando que a máquina gira a $3200 \mathrm{RPM}$

6.3 Torque: monofásico

• As bobinas do estator conduzem correntes:

$$i_a = 8\sin(120\pi t - \pi/6) \tag{14}$$

$$i_b = 0 (15)$$

$$i_c = 0 (16)$$

- A bobina do rotor é alimentada com 2A CC;
- A máquina é mantida girando a 3600RPM;

7 Relatório

Além dos gráficos, o relatório deverá conter uma análise detalhada dos resultados envolvendo:

- Explicação dos resultados
- Comparação entre os diferentes casos