1.
Question 1
Which of the following is an example of clustering?
1 point
 □ Separate the data into distinct groups by similarity □ Creating a new representation of the data with fewer features □ Compress elongated clouds of data into more spherical representations □ Accumulate data into groups based on labels
2.
Question 2
Which of the following are advantages to using decision trees over other models? (Select all that apply)
1 point
 Decision trees can learn complex statistical models using a variety of kernel functions Decision trees are highly efficient on high-dimensional data Decision trees are easy to interpret and visualize Decision trees often require less preprocessing of data Decision trees are naturally resistant to overfitting
3.
Question 3
What is the main reason that each tree of a random forest only looks at a random subset of the features when building each node?
1 point
 To improve generalization by reducing correlation among the trees and making the model more robust to bias. To learn which features are not strong predictors To increase interpretability of the model To reduce the computational complexity associated with training each of the trees needed for the random forest.

4.

Question 4

For which of the following supervised machine learning methods is it usually important to use
some form of feature normalization/scaling? (Select all that apply)

1 point
 Support Vector Machines Neural Networks Naive Bayes Regularized logistic regression Decision Trees K-Nearest Neighbors (KNN)
5. Question 5
Select which of the following statements are true.
1 point
 For predicting income over time from future sales of a new product, linear regression would be a better choice than a k-nearest neighbors regressor. For a fitted model that doesn't take up a lot of memory, KNN would be a better choice than logistic regression. For having an audience easily interpret the most important features in a fitted classification model, a support vector machine would be a better choice than a decision tree. For a model that won't overfit a training set, Naive Bayes would be a better choice than a decision tree.
6.
Question 6

Match each of the prediction probabilities decision boundaries visualized below with the model that created them.

Question 7

A decision tree of depth 2 is visualized below. Using the `value` attribute of each leaf, find the accuracy score for the tree of depth 2 and the accuracy score for a tree of depth 1.

What is the improvement in accuracy between the model of depth 1 and the model of depth 2? (i.e. accuracy2 - accuracy1) 0.067

	Predicted Poison	Pred Editable
Actual Poison	3796	120
Actual Editable	800	3408
	Predicted Poison	Pred Editable
Actual Poison	3760+72	36+48
Actual Editable	288+0	512+3408

1 point

8.

Question 8

Which of the following might be good ways to help prevent a data leakage situation?

1 point

Ш	If time is a factor, remove any data related to the event of interest that doesn't take place
	prior to the event.
	Remove variables that a model in production wouldn't have access to
	Sanity check the model with an unseen validation set
	Perform a feature importance analysis on a fitted model
	Ensure that data is preprocessed outside of any cross validation folds.

9.

Question 9

Given the neural network below, find the correct outputs for the given values of x1 and x2.

The neurons that are shaded have an activation threshold, e.g. the neuron with >1? will be activated and output 1 if the input is greater than 1 and will output 0 otherwise.

1 point

x1	x2	output
0	0	0
0	1	1
1	0	1
1	1	1

x1	x2	output
0	0	0
0	1	0
1	0	0
1	1	1
x1	x2	output
0	0	
0	1	0
1	0	0
1	1	1
x1	x2	output
0	0	0
0	1	1
1	0	1
1	1	0
10. Ques	tion 1	0
	h of th	ne following are true statements about gradient boosted decision trees? (Select all
1 poir	nt	
 Like decision trees, gradient boosted decision trees easily handle a mixture of feature types. Like decision trees, gradient boosted decision tree models are easy to interpret. Typically the number of weak estimators (n_estimators) parameter is adjusted first to best exploit computational resources, followed by other key parameters such as the boosting learning rate (learning_rate). 		

Gradient boosted decision trees have often achieved among the best 'off the shelf'
results on many prediction problems with structured data.
Training gradient boosted decision trees usually requires significant computation and careful parameter tuning.
careful parameter turing.