Matemática Discreta Guião Aula Teórica 1

Cálculo de formas fechadas de somatórios

SEGUNDO MÉTODO:

- ullet útil para somatórios $\sum_{k=p}^n u_k$ onde u_k é um polinómio
- baseia-se na noção de POTÊNCIA FATORIAL DE EXPOENTE $r \in \mathbb{N}$

u_k	perturbação da soma	cálculo finito explícito (cap 5)	cálculo finito implícito (cap 5)
$a_n k^n + \ldots + a_1 k + a_0$ (polinómio)	√		(potência fatorial com expoente natural)
$\frac{p(x)}{q(x)}$ $(p(x), q(x) \text{ polinómios})$			(potência fatorial com expoente negativo)
a^k ou $k^p a^k$ $(a \in \mathbb{R}, p \in \mathbb{Z})$	√	(estudado hoje aula teorico-prátia)	(integração finita por partes)

DEFINIÇÃO: POTÊNCIA FATORIAL DE EXPOENTE
$$r \in \mathbb{N}$$
 E BASE u_k

•
$$u_k = 0$$
 = • $u_k = 0$

•
$$u_{\nu} \frac{r}{} =$$

quando $r \geq 1$ Nota que $u_k^1 = u_k$

EXEMPLOS:

•
$$u_k = 2k$$

•
$$u_k = k + 1$$

CASO PARTICULAR: POTÊNCIA FATORIAL DE EXPOENTE $r \in \mathbb{N}$ E BASE $u_k = k$

- $k^{0} = 1$
- $k^{\underline{r}} = k \times (k-1) \times (k-2) \times \cdots \times (k-(r-1))$ quando $r \geq 1$

Nota que $k^{\underline{1}} = k$

monómios fatoriais:

polinómios fatoriais:

TEOREMA:	$n, p, r \in \mathbb{N}, n \ge p$	

Justificação:

SEGUNDO MÉTODO: aplica-se a somatórios $\sum_{k=n}^{n} u_k$ onde u_k é um polinómio

- transforma-se u_k numa potência fatorial de base k e expoente $r \in \mathbb{N}$ (ou combinação linear destas potências)
- usa-se $\sum_{k=p}^{n} k^{r} = \left[\frac{k^{r+1}}{r+1}\right]_{p}^{n+1}$ (teorema anterior)

EXEMPLO SIMPLES:

$$\sum_{k=1}^{n} (k^2 - k) =$$

EXEMPLO: Calcular forma fechada para $\left| \sum_{k=1}^{n} (5k^3 + k^2 + k) \right|$

a para
$$\sum_{k=1}^{n} (5k^3 + k^2 +$$

EXEMPLO: Calcular forma fechada para $\left| \sum_{k=1}^{n} (5k^4 - k^3 - k) \right|$

a para
$$\sum_{k=1}^{\infty} (5k^4 -$$

EXEMPLO: Calcular forma fechada para $\left| \sum_{k=1}^{n} (5k^4 - k^3 - k + 2) \right|$

TEOREMA: $a,b\in\mathbb{R},\ n,p\in\mathbb{N},\ n\geq p,\ r\in\mathbb{N}_1$

 $\textbf{Justifica} \\ \textbf{\~{a}} \text{o} \text{ Generaliza} \\ \textbf{\~{a}} \text{o} \text{ do resultado anterior (ver cap 5 do livro pags } 283/283)$

EXEMPLO: Calcular forma fechada para
$$\sum_{k=1}^{n} (2k+5)(2k+3)$$

EXEMPLO: Calcular forma fechada para $\left| \sum_{k=1}^{n} (3k+2)(3k-1)(3k-4) \right|$