

No hierarchical clustering

Prof. Miquel Salicrú Prof. Sergi Civit

What is clustering?

 A grouping of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Partitioning algorithms

Partitioning algorithms: basic concept

- Construct a partition of a set of *n* objects into a set of *k* clusters
 - Each object belongs to exactly one cluster
 - The number of clusters k is given in advance
- <u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters (C₁, C₂,, C_k) s.t., min sum of squared distance

$$TESS = \sum_{i=1}^{k} \sum_{j=1}^{|C_j|} d^2(\omega_{ij} - c(i))$$

where c(i) is a centroid or a medoid (representative object) of the group i

Heuristic methods

<u>k-means</u> (MacQueen 1967): Each cluster is represented by the <u>center of</u> the cluster

<u>k-medoids</u> or PAM (Partition around medoids) (Kaufman and Rousseeuw 1987): Each cluster is represented by one of the objects in the cluster

Possible combinations:

$$C(n,k) = \frac{1}{k!} \sum_{j=1}^{k} (-1)^{k-j} {k \choose j} j^n \approx \frac{k^n}{k!}$$

n=25, k=8: C(25, 8) $\sim 6.9 \cdot 10^{17}$

"Time efficiency" problem: Computational resources used by the algorithm

The K-Means Clustering Algorithm

Basic algorithm:

- Decide on a value for k.
- Initialize the k cluster centers (randomly, if necessary).
- Decide the class memberships of the N objects by assigning them to the nearest cluster center (arithmetic average).
- Re-estimate the k cluster centers, by assuming the memberships found above are correct.
- If none of the N objects changed membership in the last iteration, exit. Otherwise go to 3.

Cluster Validity Indices 1/3

TESS (total error sum of squares).

- Evaluate the within-group variability
- Decrease when increase the number of clusters (TESS=0 with n clusters)
- Criterion: maximize the gradient (variation or drift)

$$\Delta(k-1,k) = \frac{\mathsf{TESS}(k-1) - \mathsf{TESS}(k)}{\mathsf{TESS}(k-1)}$$

Cluster Validity Indices 2/3

Pseudo-F statistics (Calinski-Harabasz, 1974)

- Ratio of the mean sum of squares between groups to the mean sum of squares within group
- Increase according to homogeneity of the groups
- Criterion: maximize F(k)

$$F(k) = \frac{\sum_{i=1}^{k} d^{2}(c(i) - \overline{c}) / (k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{|C_{i}|} d^{2}(\omega_{ij} - c(i)) / (n-c)}$$

Cluster Validity Indices 3/3

Silhouettes (Rousseuw, 1987)

- Based on interdistances differences from the ω_i to cluster/partition (C) and to "nearest neighbor" cluster/partition.
- -1<s(ω_i)<+1: s(ω_i)<0 would be more appropriate if it was clustered in its neighbouring cluster, s(ω_i)=0 between partition, and s(ω_i)>0 means it is well matched.
- Criterion: maximize silhouette statistic

$$\begin{split} \overline{s} &= \frac{1}{n} \sum\nolimits_{i=1}^n s(\omega_i) = \frac{1}{n} \sum\nolimits_{i=1}^n \frac{b(\omega_i) - a(\omega_i)}{max\{a(\omega_i), b(\omega_i)\}} \\ & a(\omega_i \, / \, \omega_i \in C_i) = \frac{1}{|C_i|} \sum\nolimits_{\omega_j \in C_i} d^2(\omega_i, \omega_j) \\ & b(\omega_i \, / \, \omega_i \in C_i) = min_{s \neq i} \{ \frac{1}{|C_i|} \sum\nolimits_{\omega_s \in C_s} d^2(\omega_i, \omega_s) \} \end{split}$$

Euclidean distance Metric: Relationship

 $(P_1, P_2, ..., P_n)$ be the set (objects, populations) to classify and $D=(d_{ij})$, a distance $X=(X_1, ..., X_r, X_{r+1}, ..., X_s)$, displays the *coordinates of the objects in PCoA space*

Populations	Coordinates					
	X_1		X_{r}	X_{r+1}		X_s
P_1	X ₁₁		X _{1r}	i∙x _{1r+1}		i∙x _{1s}
P_2	X ₂₁		\mathbf{x}_{2r}	$i \cdot x_{2r+1}$		i∙x _{2s}
:	:		:	:		:
P_n	X _{n1}		X _{nr}	$i \cdot x_{nr+1}$		$i \cdot x_{ns}$

satisfy the condition (Torgerson, 1952):

$$dist^2(P_i,P_j) = \sum\nolimits_{h=1}^r (x_{ih} - x_{jh})^2 - \sum\nolimits_{h=r+1}^s (x_{ih} - x_{jh})^2 = d_{ij}^2$$

Variations of the K-Means Method

- A few variants of the k-means which differ in
 - Selection of the initial k means (random points, the most distant points (from each other),....)
 - Optimization strategy algorithm
 - Objective function (functional, distance, medoid)
 - Robust statistics
 - Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

PAM (Basic algorithm)

- Decide on a value for k.
- Select **k** representative objects arbitrarily (medoids c(1),..., c(k))
- Assign each non-selected object to the most similar representative object
- In each group, compute (Manhattan distance)

$$\mathsf{AD}(\mathsf{c}(\mathsf{i})) \!=\! \frac{1}{\mid \mathsf{G}_{\mathsf{i}} \mid} \sum\nolimits_{\omega_{\mathsf{i}\mathsf{j}} \in \mathsf{G}_{\mathsf{i}}} \mathsf{d}^{\mathsf{Manh}}(\omega_{\mathsf{i}\mathsf{j}}, \mathsf{c}(\mathsf{i}))$$

- In each group, swap the medoid (medoids: c'(1),..., c'(k))
- For each pair of c(i) and c'(i),
 - If AD(c'(i))-AD(c(i)) < 0, c(i) is replaced by c'(i)
 - Then assign each non-selected object to the most similar representative object
- repeat steps 5-6 until there is no change

What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Pam works efficiently for small data sets but does not scale well for large data sets.
 - O(k(n-k)²) for each iteration

where n is # of data, k is # of clusters

→ Sampling based method,

CLARA(Clustering LARge Applications)

CLARA (Clustering Large Applications)

- CLARA (Kaufmann and Rousseeuw in 1990)
 - Built in statistical analysis packages, such as S+
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

Fuzzy algorithms

Basic concept

- Construct a partition of a set of *n* objects into a set of *k* clusters
 - Each object belongs to one or more cluster
 - The number of clusters k is given in advance
- <u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters (C₁, C₂,, C_k) s.t., min sum of squared distance

FTESS =
$$\sum_{i=1}^{k} \sum_{j=1}^{|C_j|} d^2 (\omega_{ij} - c(i)) \cdot u_{ij}^m$$

where c(i) is a centroid/medoid of the group i, u_{ij} is the fuzzy membership of object ω_{ij} to the fuzzy set C_i , and $1 < m < +\infty$, is a fuzziness exponent which determines the incidence of fuzzy values on the computations

Statistical problem

Minimize the function

FTESS =
$$\sum_{i=1}^{k} \sum_{j=1}^{|C_j|} d^2(\omega_{ij}, c(i)) \cdot u_{ij}^m$$

conditions:
$$0 \le u_{ij} \le 1$$
, $\sum_{j=1}^s u_{ij} = 1$, $\sum_{i=1}^k u_{ij} > 0$

$$\text{Solution} \quad u_{ij} = \frac{1}{\sum_{s=1}^{k} \left[\frac{e_{ij}}{e_{is}}\right]^{2/(m-1)}} \quad \text{where } e_{ij} = d(\omega_{ij}, c(j))$$

$$\text{and } c(i) = \frac{\sum_{j} u_{ij}^m \cdot x_{ij}}{\sum_{j} u_{ij}^m}$$

