Mathematica Computations

Sunder Sethuraman and Shankar Venkataramani

This is the accompanying Mathematica notebook for the computations supporting the paper "COUPLED KPZ EQUATIONS AND THEIR

DECOUPLEABILITY" by Fu, Funaki, Sethuraman, and Venkataramani.

Table of contents: Sec. 2.2

Sec. 4

Sec. 7.2

Sec. 7.3

Section 2.2: ODE analysis of decoupleability for n = 2.

```
vars = Table[x[i], {i, 1, n}];

\( \epsilon = \text{Table[0, {i, 1, n}, {j, 1, n}];} \)
\( \epsilon = \text{Table[0, {i, 1, n}, {j, 1, n}];} \)
\( \epsilon = \text{1, 2] = -1; } \( \epsilon = \text{1, 1] = 1;} \)
```

We begin by defining the variables and constructing ϵ , the permutation matrix/generator for rotations in the plane, as it is used in the Proof of Prop. 2.5.

```
 \begin{split} & \ln[5] \coloneqq \ f = a_3 \times [1] \ ^3 + 3 \ a_2 \times [1] \ ^2 \times \times [2] + 3 \ a_1 \times [1] \times [2]^2 + a_0 \times [2]^3 \\ & \text{out}[5] = \ a_3 \times [1]^3 + 3 \ a_2 \times [1]^2 \times [2] + 3 \ a_1 \times [1] \times [2]^2 + a_0 \times [2]^3 \\ & \ln[6] \coloneqq \ \Gamma = \text{Table}[\text{Simplify}[\text{D}[f/6, \times[i], \times[j], \times[k]]], \ \{i, 1, n\}, \ \{j, 1, n\}, \ \{k, 1, n\}]; \\ & \ln[7] \coloneqq \ d\theta \Gamma = \\ & \quad \text{Table}[\text{Sum}[\Gamma[m, j, k] \times \epsilon[i, m] + \Gamma[i, m, k] \times \epsilon[j, m] + \Gamma[i, j, m] \times \epsilon[k, m], \ \{m, 1, n\}], \\ & \quad \{i, 1, n\}, \ \{j, 1, n\}, \ \{k, 1, n\}] \\ & \text{Out}[7] \coloneqq \left\{ \left\{ -3 \ a_2, \ -2 \ a_1 + a_3 \right\}, \ \left\{ -2 \ a_1 + a_3, \ -a_0 + 2 \ a_2 \right\}, \ \left\{ -a_0 + 2 \ a_2, \ 3 \ a_1 \right\} \right\} \end{aligned}
```

We compute the derivative of the evolution of the tensor under rotations.

```
 ln[8]:= drvec = \{der[2, 2, 2], der[2, 2, 1], der[2, 1, 1], der[1, 1, 1]\}   out[8]:= \{3 a_1, -a_0 + 2 a_2, -2 a_1 + a_3, -3 a_2\}
```

The tensor and its derivative are represented as 4 by 1 column vectors.

```
 ln[9] = \mathcal{L} = Grad[drvec, \{a_0, a_1, a_2, a_3\}]   ln[9] = \{\{0, 3, 0, 0\}, \{-1, 0, 2, 0\}, \{0, -2, 0, 1\}, \{0, 0, -3, 0\}\}
```

Matrix representation of the rotation generator.

```
In[10]:= MatrixForm[£]
```

Out[10]//MatrixForm=

$$\begin{pmatrix} 0 & 3 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & -3 & 0 \end{pmatrix}$$

In[11]:= {vals, vecs} = Eigensystem[L]

Out[11]=

$$\{\{3\,\dot{\mathrm{i}},\,-3\,\dot{\mathrm{i}},\,\dot{\mathrm{i}},\,-\dot{\mathrm{i}}\},\,\{\{\dot{\mathrm{i}},\,-1,\,-\dot{\mathrm{i}},\,1\},\,\{-\dot{\mathrm{i}},\,-1,\,\dot{\mathrm{i}},\,1\},\,\{-3\,\dot{\mathrm{i}},\,1,\,-\dot{\mathrm{i}},\,3\},\,\{3\,\dot{\mathrm{i}},\,1,\,\dot{\mathrm{i}},\,3\}\}\}$$

In[12]:= Λ = DiagonalMatrix[vals]

Out[12]=

$$\{\{3\,\dot{\mathbf{1}},\,0,\,0,\,0\},\,\{0,\,-3\,\dot{\mathbf{1}},\,0,\,0\},\,\{0,\,0,\,\dot{\mathbf{1}},\,0\},\,\{0,\,0,\,0,\,-\dot{\mathbf{1}}\}\}$$

If we treat vecs as a matrix instead of a list of vectors, each eigenvector will be treated as a row. To make them columns, as appropriate for a right eigenvector, we need to take a transpose.

$$In[13]:= \mathcal{L}.Transpose[vecs] - Transpose[vecs].\Lambda$$

Out[13]=

$$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}\}$$

Transpose[vecs] gives the right eigenvectors of \mathcal{L} . To get the Left eigenvectors as rows, we need to invert Transpose[vecs]. Below, we include an additional normalization to clear denominators.

Out[14]=

$$\{\{1, -3i, -3, i\}, \{-1, -3i, 3, i\}, \{-1, i, -1, i\}, \{1, i, 1, i\}\}$$

These are the left Eigenvectors of \mathcal{L} as can be checked:

In[15]:= Lvecs. £ - Λ.Lvecs

Out[15]=

$$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}\}$$

In[16]:= MatrixForm[Lvecs]

Out[16]//MatrixForm=

This is the matrix E in Sec. 2.2 and the corresponding eigenvalues are λ_1 =3i, λ_2 =-3i, λ_3 =i, λ_4 =-i.

For a decoupled tensor $(\beta_1, 0, 0, \beta_2)$ we get $v_i = \beta_1 + i \beta_2 = v_4$. This gives $\exp[4 i \theta] = v_4(0) / v_1(0) = \frac{(a_0 + a_2) + i (a_1 + a_3)}{(a_0 - 3 a_2) + i (-3 a_1 + a_3)^2}$. Subject to the necessary condition $(a_0 + a_2)^2 + (a_1 + a_3)^2 = (a_0 - 3 a_2)^2 + (-3 a_1 + a_3)^2$, we get 4 solutions for θ , say φ , $\varphi + \pi/2$, $\varphi + \pi$ and $\varphi + 3\pi/2$.

These solutions define β_1 and β_2 by β_1 + i β_2 = Exp[-i φ] ((a_0 + a_2) + i (a_1 + a_3)). The rotations φ + π /2, φ + π

and $\varphi+3\pi/2$ then correspond to the fully decoupled tensors $(\beta_2, 0, 0, -\beta_1)$, $(-\beta_1, 0, 0, -\beta_2)$ and $(-\beta_2, 0, 0, \beta_1)$ respectively.

Section 4

We begin to compute $\sigma_{\theta} \circ \Gamma$, the action of a rotation on the space of tensors \mathcal{T}_2 .

```
In[17]:= Clear[Γ];
        n = 2;
        vars = Table[x[i], {i, 1, n}];
        rlist = Flatten[Table[r[i, j, k], {i, 1, n}, {j, i, n}, {k, j, n}]];
        rename = Table[\Gammalist[m]] \rightarrow Subscript[a, 4 - m], {m, 1, 4}];
          (Sum[\Gamma@@Sort[\{i, j, k\}] \times x[i] \times x[j] \times x[k], \{i, 1, n\}, \{j, 1, n\}, \{k, 1, n\}] /. rename)
Out[22]=
        a_3 \times [1]^3 + 3 a_2 \times [1]^2 \times [2] + 3 a_1 \times [1] \times [2]^2 + a_0 \times [2]^3
```

The last line is the expression for the cubic polynomial associate to a tensor Γ. Note that the coordinates are x[1] and x[2] where the indices are arguments and not subscripts. We begin by defining a two dimensional rotation matrix $\sigma[\theta]$.

```
In[23]:= Clear[\sigma];
           \sigma[\theta] = \{\{\cos[\theta], -\sin[\theta]\}, \{\sin[\theta], \cos[\theta]\}\};
           MatrixForm[\sigma[\theta]]
Out[25]//MatrixForm=
             Cos[\theta] - Sin[\theta]
            \backslash Sin[\theta] \setminus Cos[\theta] /
```

Multiplying by this rotation matrix on the left gives the action of SO(2) on \mathbb{R}^2 where the elements are thought of a column vectors. The action corresponds to rotating `counter-clockwise' by an angle θ .

The action on tensors, or equivalently on polynomials, is given by $\sigma \circ f(z) = f(\sigma^{-1} \cdot z)$ for $z \in \mathbb{R}^2$.

```
Substitution = Table[x[i] \rightarrow (\sigma[-\theta].\{z[1], z[2]\})[i], {i, 1, n}]
 In[26]:=
Out[26]=
          \{x[1] \rightarrow Cos[\theta] \ z[1] + Sin[\theta] \ z[2], \ x[2] \rightarrow -Sin[\theta] \ z[1] + Cos[\theta] \ z[2]\}
 In[27]:= Transformedf = f //. Substitution
Out[27]=
         a_{\theta} \left( -Sin[\theta] z[1] + Cos[\theta] z[2] \right)^{3} +
           3 a_1 (-Sin[\theta] z[1] + Cos[\theta] z[2])^2 (Cos[\theta] z[1] + Sin[\theta] z[2]) +
           3 a_2 (-Sin[\theta] z[1] + Cos[\theta] z[2]) (Cos[\theta] z[1] + Sin[\theta] z[2])^2 +
           a_3 (Cos[\theta] z[1] + Sin[\theta] z[2])^3
```

This is a cubic polynomial in z[1],z[2]. We can now read off the transformations of the coefficients from $\sigma \circ f(z) = b_3 z [1]^3 + 3 b_2 z [1]^2 z [2] + 3 b_1 z [1] z [2]^2 + b_0 z [2]^3$. We now account for the factors of 3 in the coefficients b[1] and b[2] and order the coefficients as a column vector from b_0 to b_3 .

```
In[28]:= newcoeffs = Simplify[DiagonalMatrix[{1, 1/3, 1/3, 1}].
                     CoefficientList[Transformedf /. \{z[2] \rightarrow 1\}, z[1]]
Out[28]=
              \left\{ \mathsf{Cos}\left[\theta\right]^{3} \mathsf{a}_{0} + \mathsf{Sin}\left[\theta\right] \left( 3 \, \mathsf{Cos}\left[\theta\right]^{2} \mathsf{a}_{1} + \mathsf{Sin}\left[\theta\right] \right. \left( 3 \, \mathsf{Cos}\left[\theta\right] \, \mathsf{a}_{2} + \mathsf{Sin}\left[\theta\right] \, \mathsf{a}_{3} \right) \right),
                \frac{1}{4} \left( -4 \cos \left[\theta\right]^{2} \sin \left[\theta\right] a_{\theta} + \left(\cos \left[\theta\right] + 3 \cos \left[3 \theta\right]\right) a_{1} + \right.
                       2 \sin[\theta] (a_2 + 3 \cos[2\theta] a_2 + \sin[2\theta] a_3), \cos[\theta] \sin[\theta]^2 a_0 +
                  \frac{1}{a} ((Sin[\theta] - 3 Sin[3\theta]) a_1 + 2 Cos[\theta] ((-1 + 3 Cos[2\theta]) a_2 + Sin[2\theta] a_3)),
                -\sin[\theta]^3 a_0 + \cos[\theta] (3\sin[\theta]^2 a_1 + \cos[\theta] (-3\sin[\theta] a_2 + \cos[\theta] a_3))
 In[29]:= L\sigma = Grad[newcoeffs, Table[a_{i-1}, \{i, 1, 4\}]]
Out[29]=
              \left\{\left\{\operatorname{\mathsf{Cos}}\left[\theta\right]^3,\,\operatorname{\mathsf{3}}\left(\operatorname{\mathsf{Cos}}\left[\theta\right]^2\operatorname{\mathsf{Sin}}\left[\theta\right],\,\operatorname{\mathsf{3}}\left(\operatorname{\mathsf{Cos}}\left[\theta\right]\operatorname{\mathsf{Sin}}\left[\theta\right]^2,\,\operatorname{\mathsf{Sin}}\left[\theta\right]^3\right\}\right\}
                \left\{-\cos\left[\theta\right]^{2}\sin\left[\theta\right], \frac{1}{4}\left(\cos\left[\theta\right]+3\cos\left[3\theta\right]\right), \frac{1}{2}\left(1+3\cos\left[2\theta\right]\right)\sin\left[\theta\right], \frac{1}{2}\sin\left[\theta\right]\sin\left[2\theta\right]\right\}
                \left\{ \cos[\theta] \sin[\theta]^2, \frac{1}{4} (\sin[\theta] - 3\sin[3\theta]), \frac{1}{2} \cos[\theta] (-1 + 3\cos[2\theta]), \frac{1}{2} \cos[\theta] \sin[2\theta] \right\}
                \left\{-\text{Sin}[\theta]^3, 3 \cos[\theta] \sin[\theta]^2, -3 \cos[\theta]^2 \sin[\theta], \cos[\theta]^3\right\}
 In[30]:= MatrixForm[Lσ]
Out[30]//MatrixForm=
                This is the representation of SO(2) on the space of 2 \times 2 \times 2 symmetric tensors. We can also compute
             the generator for this action.
```

In[31]:=
$$\mathcal{L} = D[L\sigma, \theta] /. \{\theta \to 0\}$$
Out[31]:=
$$\{ \{0, 3, 0, 0\}, \{-1, 0, 2, 0\}, \{0, -2, 0, 1\}, \{0, 0, -3, 0\} \}$$
In[32]:= MatrixForm[\mathcal{L}]
Out[32]//MatrixForm=
$$\begin{pmatrix} 0 & 3 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & -3 & 0 \end{pmatrix}$$

This is an alternate derivation to obtain the generator \mathcal{L} in the proof of Prop. 2.5.

Molien's formula and Hilbert series for the SO(2) invariants.

ln[33]:= Simplify[1/(2 π) Integrate[1/Simplify[Det[IdentityMatrix[4] - λ L σ]], { θ , 0, 2 π }]]

Out[33]=

$$\left\{ \begin{array}{ll} \frac{1+\lambda^4}{\left(-1+\lambda^2\right)^3\left(1+\lambda^2\right)} & \text{Abs}\left[\,\lambda\,\right] \,>\, 1 \\ \\ \frac{2+\lambda^{2/3}\left(-1-\lambda^{2/3}+\lambda^{4/3}\right)\left(1+\lambda^{2/3}+\lambda^{4/3}+2\,\lambda^2\right)}{3\left(-1+\lambda^2\right)^3\left(1+\lambda^2\right)} & \frac{1}{\text{Abs}\left[\,\lambda\,\right]^{1/3}} \,<\, 1 & \text{if Abs}\left[\,\lambda\,\right]^{1/3} \,\neq\, 1 \\ \\ -\frac{1+\lambda^4}{\left(-1+\lambda^2\right)^3\left(1+\lambda^2\right)} & \text{True} \end{array} \right. \right.$$

The result for $Abs[\lambda] < 1$ corresponds to Molien's formula.

In[34]:=
$$\Phi SO_2$$
 = Simplify $\left[-\frac{1+\lambda^4}{\left(-1+\lambda^2\right)^3 \left(1+\lambda^2\right)} \right]$
Out[34]:=
$$-\frac{1+\lambda^4}{\left(-1+\lambda^2\right)^3 \left(1+\lambda^2\right)}$$

Molien's formula and Hilbert series for the O(2) invariants.

We now compute the action of O(2) by incorporating a reflection operator corresponding to x[1]-> x[1], x[2]->-x[2]. In terms of the tensor coefficients, this action is given by the matrix:

In[35]:=
$$\mathcal{N}$$
 = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}};

In[36]:= Simplify[Det[IdentityMatrix[4] - $\lambda \mathcal{N}$.L σ]]

Out[36]:= $(-1 + \lambda^2)^2$

This determinant does not depend explicitly on θ . Therefore the integral of the reciprocal is as follows.

Computation of the invariants when n=2

In[38]:= u = Simplify[Grad[Laplacian[f, vars], vars] / 6] Out[38]=
$$\{a_1+a_3,\ a_0+a_2\}$$

This is the trace vector.

In[39]:=
$$\mathbf{u.u}$$

Out[39]= $(a_0 + a_2)^2 + (a_1 + a_3)^2$

We will denote this O(2) invariant by j_2 . We can 'lift' this vector u to form the cubic polynomial f_1 .

 $\begin{aligned} & \inf \{40\} := & \ \mathbf{f_1} = \ \mathbf{3} \ \mathbf{u.vars} \ (\mathbf{vars.vars}) \ / \ (\mathbf{n+2}) \\ & \frac{3}{4} \ (\ (a_1+a_3) \ \mathbf{x} \ [1] \ + \ (a_0+a_2) \ \mathbf{x} \ [2]) \ \left(\mathbf{x} \ [1]^2 + \mathbf{x} \ [2]^2\right) \\ & \lim \{41\} := & \ \mathcal{B} = \ \mathsf{Table} \ [\mathsf{D} \ [\mathbf{f_1} \ / \ \mathbf{6}, \ \mathbf{x} \ [\mathbf{i}], \ \mathbf{x} \ [\mathbf{j}], \ \mathbf{x} \ [\mathbf{k}] \], \ \{\mathbf{i}, \ \mathbf{1}, \ \mathbf{n}\}, \ \{\mathbf{j}, \ \mathbf{1}, \ \mathbf{n}\}, \ \{\mathbf{k}, \ \mathbf{1}, \ \mathbf{n}\} \]; \\ & \lim \{42\} := \ \mathsf{Table} \ [\mathsf{MatrixForm} \ [\mathcal{B} \ [\mathbf{i}] \], \ \{\mathbf{i}, \ \mathbf{1}, \ \mathbf{n}\} \] \\ & \operatorname{Out} \{42\} := \\ & \left\{ \begin{pmatrix} \frac{3}{4} \ (a_1+a_3) & \frac{1}{4} \ (a_0+a_2) \\ \frac{1}{4} \ (a_0+a_2) & \frac{1}{4} \ (a_1+a_3) \\ \frac{1}{4} \ (a_0+a_2) & \frac{1}{4} \ (a_0+a_2) \end{pmatrix} \right\} \end{aligned}$

 \mathcal{B} is the tensor corresponding to the trace part. With our normalization, the trace-free part is given by $f_3 = (n+2)f - f_1$.

 f_3 corresponds to a trace-free 2 × 2 × 2 symmetric tensor \mathcal{D} . To eliminate denominators, we multiply by a factor of (n+2), which equals 4 in the case n=2.

 $ln[44]:= D = Table[Simplify[D[f_3/6, x[i], x[j], x[k]]], \{i, 1, n\}, \{j, 1, n\}, \{k, 1, n\}];$

In[45]:= Table[MatrixForm[D[i]]], {i, 1, n}]

In[46]:= Dstarsqrd = Simplify[TensorContract[$\mathcal{D}\otimes\mathcal{D}$, {{1, 4}, {2, 5}}]]

 $\left\{ \left\{ 2 \, \left(\, \left(\, a_{0} \, - \, 3 \, \, a_{2} \, \right)^{\, 2} \, + \, \left(\, - \, 3 \, \, a_{1} \, + \, a_{3} \, \right)^{\, 2} \right) \, , \, \, 0 \right\} \, , \, \, \left\{ \, 0 \, , \, \, 2 \, \, \left(\, \left(\, a_{0} \, - \, 3 \, \, a_{2} \, \right)^{\, 2} \, + \, \left(\, - \, 3 \, \, a_{1} \, + \, a_{3} \, \right)^{\, 2} \right) \, \right\} \right\} \, d^{-1} \, d^{-$

This is \mathcal{D}^{*2} .

 $In[47]:= \mathbf{W} = Expand[\mathcal{D} \cdot \mathbf{u} \cdot \mathbf{u}]$

Out[47]= $\left\{ a_0^2 \ a_1 - 3 \ a_1^3 + 10 \ a_0 \ a_1 \ a_2 + 9 \ a_1 \ a_2^2 - 3 \ a_0^2 \ a_3 - 5 \ a_1^2 \ a_3 + 2 \ a_0 \ a_2 \ a_3 + 5 \ a_2^2 \ a_3 - a_1 \ a_3^2 + a_3^3, \\ a_0^3 + 5 \ a_0 \ a_1^2 - a_0^2 \ a_2 + 9 \ a_1^2 \ a_2 - 5 \ a_0 \ a_2^2 - 3 \ a_2^3 + 2 \ a_0 \ a_1 \ a_3 + 10 \ a_1 \ a_2 \ a_3 - 3 \ a_0 \ a_3^2 + a_2 \ a_3^2 \right\}$

This is the vector w defined right after (4.4).

In[48]:= Tr[Dstarsqrd]

Out[48]= $4 \, \left(\, \left(\, a_0 \, - \, 3 \, \, a_2 \, \right)^{\, 2} \, + \, \left(\, - \, 3 \, \, a_1 \, + \, a_3 \, \right)^{\, 2} \right)$

This is another O(2) invariant which we denote by h_2 .

In[49]:= Simplify[u.w]

Out[49]= $a_0^4 - 3 \ a_1^4 - 3 \ a_2^4 - 8 \ a_1^3 \ a_3 + 24 \ a_1 \ a_2^2 \ a_3 + 6 \ a_2^2 \ a_3^2 + a_3^4 - \\ 8 \ a_0 \ a_2 \ \left(-3 \ a_1^2 + a_2^2 - 3 \ a_1 \ a_3 \right) + 6 \ a_0^2 \left(a_1^2 - a_2^2 - a_3^2 \right) + 6 \ a_1^2 \left(3 \ a_2^2 - a_3^2 \right)$

This defines the O(2) invariant l_4 .

In[50]:= Simplify[Det[{u, w}]] Out[50]= $4 \left(-3 a_0^2 a_1 a_2 + a_0^3 a_3 + \right)$ $a_2 \left(3 a_1^3 + 6 a_1^2 a_3 - 2 a_2^2 a_3 - 3 a_1 \left(a_2^2 - a_2^2\right)\right) + a_0 \left(2 a_1^3 - 6 a_1 a_2^2 + 3 a_1^2 a_3 - a_3 \left(3 a_2^2 + a_2^2\right)\right)$

This defines the invariant m_4 .

We can now write down the definitions of the SO(2) invariants and the ideal generated by these definitions, using the labels j_2 , h_2 , l_4 and m_4 as slack variables.

In[51]:= Clear[j, h, l, m] Invariants = $\{j_2 - u.u, h_2 - Tr[Dstarsqrd], l_4 - w.u, m_4 - Det[\{u, w\}]\}$ Out[52]= $\left\{-\left(a_{0}+a_{2}\right)^{2}-\left(a_{1}+a_{3}\right)^{2}+i_{2},-4\left(\left(a_{0}-3 a_{2}\right)^{2}+\left(-3 a_{1}+a_{3}\right)^{2}\right)+h_{2},\right\}$ $-((a_0 + a_2) (a_0^3 + 5 a_0 a_1^2 - a_0^2 a_2 + 9 a_1^2 a_2 - 5 a_0 a_2^2 - 3 a_2^3 + 2 a_0 a_1 a_3 + 10 a_1 a_2 a_3 - 3 a_0 a_3^2 + a_2 a_3^2))$ $(a_1 + a_3)$ $(a_0^2 a_1 - 3 a_1^3 + 10 a_0 a_1 a_2 + 9 a_1 a_2^2 - 3 a_0^2 a_3 - 5 a_1^2 a_3 + 2 a_0 a_2 a_3 + 5 a_2^2 a_3 - a_1 a_3^2 + a_3^3) +$ l_4 , $-8 a_0 a_1^3 + 12 a_0^2 a_1 a_2 - 12 a_1^3 a_2 + 24 a_0 a_1 a_2^2 + 12 a_1 a_2^3 - 4 a_0^3 a_3 -$ 12 a_0 a_1^2 a_3 - 24 a_1^2 a_2 a_3 + 12 a_0 a_2^2 a_3 + 8 a_2^3 a_3 - 12 a_1 a_2 a_3^2 + 4 a_0 a_3^3 + m_4

This is the basis for the ideal of polynomials on \mathbb{R}^8 , corresponding to the 4 coefficients a_0, a_1, a_2, a_3 and the 4 invariants j_2,h_2,l_4,m_4

We seek potential relations among the invariants by finding a basis for the ideal generated by the definitions of the invariants intersected with the polynomials in j_2, h_2, l_4, m_4 that do not depend on a_0, a_1, a_2, a_3 , that is, we are eliminating the coefficients between the relations defining the invariants.

In[53]:= GroebnerBasis[Invariants, {m4, l4, h2, j2}, {a₀, a₁, a₂, a₃}, MonomialOrder → EliminationOrder] Out[53]= $\{h_2 j_2^3 - 4 l_4^2 - 4 m_4^2\}$

> We see that there is one identity that allows us to replace m_4^2 by an expression in the other invariants. There are no further relations, so this implies l_4 , h_2 and j_2 are algebraically independent.

> Alternate choices for the fundamental invariants are the trace and determinant of Γ^{*2} , which are themselves O(2) invariants.

 $ln[54] = \Gamma = Table[D[f/6, x[i], x[j], x[k]], \{i, 1, n\}, \{j, 1, n\}, \{k, 1, n\}];$ Q = Simplify[TensorContract[$\Gamma \otimes \Gamma$, {{1, 4}, {2, 5}}]]; MatrixForm[Q]

Out[55]//MatrixForm $\begin{pmatrix} a_1^2 + 2 a_2^2 + a_3^2 & a_0 a_1 + a_2 (2 a_1 + a_3) \\ a_0 a_1 + a_2 (2 a_1 + a_3) & a_0^2 + 2 a_1^2 + a_2^2 \end{pmatrix}$

This is the matrix Γ^{*2} .

```
In[56]:= NewInvariants = \{\tau - Tr[Q], \delta - Det[Q]\}
Out[56]=
           \{\tau - a_0^2 - 3 a_1^2 - 3 a_2^2 - a_3^2,
             \delta - 2 a_1^4 + 4 a_0 a_1^2 a_2 - 2 a_0^2 a_2^2 - a_1^2 a_2^2 - 2 a_2^4 + 2 a_0 a_1 a_2 a_3 + 4 a_1 a_2^2 a_3 - a_0^2 a_3^2 - 2 a_1^2 a_3^2
```

These are the trace τ and the determinant δ of Γ^{*2} , used in the general framework for fully decoupled tensors in Sec. 6 when n=2. We now express τ and δ in terms of the fundamental invariants j_2 , h_2 and l_4 , the O(2) invariants found earlier.

```
In[57]:= GroebnerBasis[Join[NewInvariants, Invariants],
          \{\tau, \delta, l_4, h_2, j_2\}, \{m_4, a_0, a_1, a_2, a_3\}, MonomialOrder \rightarrow EliminationOrder]
Out[57]=
         \{16 \tau - h_2 - 12 j_2, -1024 \delta + h_2^2 + 8 h_2 j_2 + 80 j_2^2 - 128 l_4\}
```

These are the relations at the end of section 4: $Tr[\Gamma^{*2}] = \frac{h_2+12j_2}{16}$, $Det[\Gamma^{*2}] = \frac{h_2^2+8h_2j_2+80j_2^2-128l_4}{1024}$.

Section 7.2

Fully decoupleable $3 \times 3 \times 3$ tensors

```
ln[58] = n = 3; vars = Table[x[i], {i, 1, n}]; f = Sum[\beta_i x[i]^3, {i, 1, n}]
Out[58]=
         \beta_1 \times [1]^3 + \beta_2 \times [2]^3 + \beta_3 \times [3]^3
```

This is the cubic polynomial corresponding to a fully decoupleable tensor when n=3. We now compute the tracial and trace-free parts of Γ .

```
ln[59]:= \Gamma = Simplify[Table[D[f, x[i], x[j], x[k]], \{k, 1, n\}, \{j, 1, n\}, \{i, 1, n\}] / 6];
                                                                           u = Simplify[Table[D[Laplacian[f, vars], x[i]], {i, 1, n}]/6];
                                                                          f_3 = (n+2) f - 3 (u.vars) (vars.vars)
Out[61]=
                                                                       -3 \, \left(\beta_{1} \, x \, [\, 1] \, + \beta_{2} \, x \, [\, 2\, ] \, + \beta_{3} \, x \, [\, 3\, ]\,\right) \, \left(x \, [\, 1\, ]^{\, 2} \, + \, x \, [\, 2\, ]^{\, 2} \, + \, x \, [\, 3\, ]^{\, 2}\right) \, + \, 5 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 2\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 3\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 1\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{3} \, x \, [\, 1\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 1\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 1\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1} \, x \, [\, 1\, ]^{\, 3} \, + \, \beta_{2} \, x \, [\, 1\, ]^{\, 3}\right) \, + \, 3 \, \left(\beta_{1
```

This is the trace-free part.

```
ln[62]:= D = Simplify[Table[D[f_3, x[i], x[j], x[k]], \{k, 1, n\}, \{j, 1, n\}, \{i, 1, n\}] / 6];
      v = Simplify[TensorContract[(D \otimes D) \otimes D, \{\{1, 4\}, \{2, 5\}, \{3, 7\}, \{6, 8\}\}]];
      w = Simplify[D.u.u];
```

We have now computed the vectors u,v and w and the trace-free tensor \mathcal{D} , which are the ingredients needed to compute the Integrity basis given by Olive and Auffray as follows.

```
In[65]:= Clear[H, J, K, L, M, Q];
     Q = Simplify[TensorContract[\mathcal{D}\otimes\mathcal{D}, {{1, 4}, {2, 5}}]];
     \gamma uu = w;
     Coeffs = Table [\beta_i, {i, 1, n}];
     Trivialize = Table[Coeffs[j] → 0, {j, 1, Length[Coeffs]}];
     IntegrityPolys =
        \{H[2] - Simplify[Tr[Q]], H[4] - Simplify[Tr[Q.Q]], J[2] - Simplify[u.u],
         L[4] - Simplify[\gamma uu.u], H[6] - Simplify[v.v], H[10] - Simplify[D.v.v.v],
         J[4] - Simplify[u.Q.u], K[4] - Simplify[Tr[Q.(D.u)]],
         J[6] - Simplify[(u.Q).yuu], K[6] - Simplify[v.w], L[6] - Simplify[(u.Q).v],
         M[6] - Simplify[\gammauu.\gammauu], H[8] - Simplify[(u.Q).(Q.v)]};
     OAInvariants = IntegrityPolys /. Trivialize;
```

The Ideal IntegrityPolys is generated by the polynomials defining the Integrity basis elements in terms of the coefficients of a fully decoupled tensor, with diagonal entries β_1 , β_2 and β_3 , and with the labels of the Integrity invariants as the slack variables.

```
In[71]:= IntegrityPolys
```

Out[71]=

```
\{H[2] - 10 (\beta_1^2 + \beta_2^2 + \beta_3^2), H[4] - 44 \beta_1^4 - 44 \beta_2^4 - 58 \beta_2^2 \beta_3^2 - 44 \beta_3^4 - 58 \beta_1^2 (\beta_2^2 + \beta_3^2),
  J[2] - \beta_1^2 - \beta_2^2 - \beta_3^2, L[4] - 2(\beta_1^4 + \beta_2^4 - 3\beta_2^2\beta_3^2 + \beta_3^4 - 3\beta_1^2(\beta_2^2 + \beta_3^2)),
 H[6] - 4 (\beta_3^2 (\beta_1^2 + \beta_2^2 - 4 \beta_3^2)^2 + \beta_2^2 (\beta_1^2 - 4 \beta_2^2 + \beta_3^2)^2 + \beta_1^2 (-4 \beta_1^2 + \beta_2^2 + \beta_3^2)^2),
  H[10] - 8 (128 \beta_1^{10} + 128 \beta_2^{10} - 60 \beta_2^8 \beta_3^2 - 95 \beta_2^6 \beta_3^4 - 95 \beta_2^4 \beta_3^6 -
             60 \beta_2^2 \beta_3^8 + 128 \beta_3^{10} - 60 \beta_1^8 \left(\beta_2^2 + \beta_3^2\right) + \beta_1^6 \left(-95 \beta_2^4 + 60 \beta_2^2 \beta_3^2 - 95 \beta_3^4\right) +
             \beta_1^4 \left( -95 \beta_2^6 + 90 \beta_2^4 \beta_3^2 + 90 \beta_2^2 \beta_3^4 - 95 \beta_3^6 \right) - 30 \beta_1^2 \left( 2 \beta_2^8 - 2 \beta_2^6 \beta_3^2 - 3 \beta_2^4 \beta_3^4 - 2 \beta_2^2 \beta_3^6 + 2 \beta_3^8 \right) 
  J[4] - 2(3\beta_1^4 + 3\beta_2^4 + \beta_2^2\beta_3^2 + 3\beta_3^4 + \beta_1^2(\beta_2^2 + \beta_3^2)), K[4] - 8\beta_1^4 - 8\beta_2^4 + 4\beta_2^2\beta_3^2 - 8\beta_3^4 + 4\beta_1^2(\beta_2^2 + \beta_3^2),
  J[6] - 12 \beta_1^6 - 12 \beta_2^6 + 19 \beta_2^4 \beta_3^2 + 19 \beta_2^2 \beta_3^4 - 12 \beta_3^6 + 19 \beta_1^4 (\beta_2^2 + \beta_3^2) + \beta_1^2 (19 \beta_2^4 + 18 \beta_2^2 \beta_3^2 + 19 \beta_3^4),
  K[6] - 2(8\beta_1^6 + 8\beta_2^6 - 11\beta_2^4\beta_3^2 - 11\beta_2^2\beta_3^4 + 8\beta_3^6 - 11\beta_1^4(\beta_2^2 + \beta_3^2) + \beta_1^2(-11\beta_2^4 + 18\beta_2^2\beta_3^2 - 11\beta_3^4)),
  L[6] - 6(8\beta_1^6 + 8\beta_2^6 - \beta_2^4\beta_3^2 - \beta_2^2\beta_3^4 + 8\beta_3^6 - \beta_1^4(\beta_2^2 + \beta_3^2) - \beta_1^2(\beta_2^2 + \beta_3^2)^2),
  M[6] - \beta_3^2 (3 \beta_1^2 + 3 \beta_2^2 - 2 \beta_3^2)^2 - \beta_2^2 (3 \beta_1^2 - 2 \beta_2^2 + 3 \beta_3^2)^2 - (2 \beta_1^3 - 3 \beta_1 (\beta_2^2 + \beta_3^2))^2
  H[8] - 4 (72 \beta_1^8 + 18 \beta_1^6 (\beta_2^2 + \beta_3^2) - 11 \beta_1^4 (3 \beta_2^4 + \beta_2^2 \beta_3^2 + 3 \beta_3^4) +
             \beta_1^2 \left( 18 \beta_2^6 - 11 \beta_2^4 \beta_3^2 - 11 \beta_2^2 \beta_3^4 + 18 \beta_3^6 \right) + 3 \left( 24 \beta_2^8 + 6 \beta_2^6 \beta_3^2 - 11 \beta_2^4 \beta_3^4 + 6 \beta_2^2 \beta_3^6 + 24 \beta_3^8 \right) \right)
```

Characteristic Polynomial coefficients of Γ*2

```
In[72]:= rstarsqrd = Simplify[TensorContract[\Gamma \otimes \Gamma, {{1, 4}, {2, 5}}]];
 In[73]:= Clear[q, \( \mathcal{E} \)];
            \xi = \text{Rest}[\text{Reverse}[\text{CoefficientList}[\text{Simplify}[\text{Det}[\lambda \, \text{IdentityMatrix}[3] + \Gamma \text{starsqrd}]], \lambda]]]
Out[73]=
            \{\beta_1^2 + \beta_2^2 + \beta_3^2, \beta_1^2 \beta_2^2 + \beta_1^2 \beta_3^2 + \beta_2^2 \beta_3^2, \beta_1^2 \beta_2^2 \beta_3^2\}
```

As expected, these coefficients are the elementary symmetric polynomials of the quantities β_i^2 .

```
In[74]:= DiagInvars = Table[q_i - \xi[i]], {i, 1, 3}]
Out[74]=
              \{q_1 - \beta_1^2 - \beta_2^2 - \beta_3^2, q_2 - \beta_1^2 \beta_2^2 - \beta_1^2 \beta_3^2 - \beta_2^2 \beta_3^2, q_3 - \beta_1^2 \beta_2^2 \beta_3^2\}
```

This is the basis of invariants for the stabilizer group $G_R = S_3 \times (\mathbb{Z}_2)^3$ with respect to fully decoupled reduced form tensors. Since all the Olive and Auffray invariants, when restricted to fully decoupled tensors, are also G_R invariants, we can express them in terms of the quantities q_i .

```
In[75]:= Table[GroebnerBasis[Join[{IntegrityPolys[i]}}, DiagInvars],
            Join[{OAInvariants[i]}, {q_1, q_2, q_3}], {\beta_1, \beta_2, \beta_3},
            MonomialOrder → EliminationOrder] [1], {i, 1, Length[OAInvariants]}]
Out[75]=
        \{H[2] - 10 q_1, -H[4] + 44 q_1^2 - 30 q_2, J[2] - q_1,
         -L[4] + 2q_1^2 - 10q_2, -H[6] + 64q_1^3 - 220q_1q_2 + 300q_3,
         -H[10] + 1024 q_1^5 - 5600 q_1^3 q_2 + 5800 q_1 q_2^2 + 7600 q_1^2 q_3 - 7000 q_2 q_3
         -J[4] + 6q_1^2 - 10q_2, -K[4] + 8q_1^2 - 20q_2, -J[6] + 12q_1^3 - 55q_1q_2 + 75q_3,
         -K[6] + 16 q_1^3 - 70 q_1 q_2 + 150 q_3, -L[6] + 48 q_1^3 - 150 q_1 q_2 + 150 q_3,
         -M[6] + 4q_1^3 - 15q_1q_2 + 75q_3, -H[8] + 288q_1^4 - 1080q_1^2q_2 + 300q_2^2 + 1300q_1q_3
```

This is the ideal corresponding to the relations in Eq. (7.4).

Section 7.3

Partially decoupleable 3 × 3 × 3 tensors

```
In[76]:= n = 3;
        vars = Table[x[i], {i, 1, n}];
        f = 3 \alpha x[1] (x[1]^2 + x[2]^2) +
           \gamma_1 (3 x[2] ^2 × x[1] - x[1] ^3) + \gamma_2 (3 x[1] ^2 × x[2] - x[2] ^3) + \beta_3 x[3] ^3
Out[76]=
        3 \alpha x [1] (x [1]^2 + x [2]^2) + \gamma_1 (-x [1]^3 + 3 x [1] x [2]^2) + \gamma_2 (3 x [1]^2 x [2] - x [2]^3) + \beta_3 x [3]^3
```

This is the canonical form R corresponding to a partially decoupleable tensor when n=3.

```
In[77]:= Coeffs = \{\alpha, \gamma_1, \gamma_2, \beta_3\};
```

This is the list of the tensor parameters in the canonical form.

```
ln[78] = \Gamma = Simplify[Table[D[f, x[i], x[j], x[k]], \{k, 1, n\}, \{j, 1, n\}, \{i, 1, n\}] / 6]
Out[78]=
               \{\{\{3\alpha-\gamma_1, \gamma_2, 0\}, \{\gamma_2, \alpha+\gamma_1, 0\}, \{0, 0, 0\}\}\},\
                  \{\{\gamma_2, \alpha + \gamma_1, 0\}, \{\alpha + \gamma_1, -\gamma_2, 0\}, \{0, 0, 0\}\}, \{\{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, \beta_3\}\}\}
 In[79]:= Table[MatrixForm[r[i]], {i, 1, n}]
Out[79]=
              \left\{ \begin{pmatrix} 3 & \alpha - \gamma_1 & \gamma_2 & 0 \\ \gamma_2 & \alpha + \gamma_1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \gamma_2 & \alpha + \gamma_1 & 0 \\ \alpha + \gamma_1 & -\gamma_2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_2 \end{pmatrix} \right\}
```

```
in(80):= u = Simplify[Table[D[Laplacian[f, vars], x[i]], {i, 1, n}] / 6];
        f_3 = (n+2) f - 3 (u.vars) (vars.vars)
Out[81]=
        -3 (4 \alpha x [1] + \beta_3 x [3]) (x [1]^2 + x [2]^2 + x [3]^2) +
         5 \left(3 \alpha x [1] \left(x [1]^2 + x [2]^2\right) + \gamma_1 \left(-x [1]^3 + 3 x [1] x [2]^2\right) + \gamma_2 \left(3 x [1]^2 x [2] - x [2]^3\right) + \beta_3 x [3]^3\right)
        This is the trace-free part.
 ln[82] = D = Simplify[Table[D[f_3, x[i], x[j], x[k]], \{k, 1, n\}, \{j, 1, n\}, \{i, 1, n\}] / 6];
        v = Simplify[TensorContract[(\mathcal{D}\otimes\mathcal{D})\otimes\mathcal{D}, \{\{1, 4\}, \{2, 5\}, \{3, 7\}, \{6, 8\}\}]];
        w = Simplify[D.u.u];
        The calculations follow the same steps as in the fully decoupled case.
 In[85]:= Clear[H, J, K, L, M, Q];
        v = Simplify[TensorContract[(\mathcal{D}\otimes\mathcal{D})\otimes\mathcal{D}, \{\{1, 4\}, \{2, 5\}, \{3, 7\}, \{6, 8\}\}]];
        w = Simplify[D.u.u];
        Q = Simplify[TensorContract[\mathcal{D}\otimes\mathcal{D}, {{1, 4}, {2, 5}}]];
        \gamma uu = w;
        Trivialize = Table[Coeffs[j] → 0, {j, 1, Length[Coeffs]}];
        In what follows, we use the decomposition I = I^+ \cup I'. We will call I^+ as 'Fundamental' and I' as
        'Secondary' in the following.
 In[91]:= FundamentalRelations = {H[2] - Simplify[Tr[Q]],
            H[4] - Simplify[Tr[Q.Q]], J[2] - Simplify[u.u], L[4] - Simplify[γuu.u]);
        FundamentalInvariants = FundamentalRelations /. Trivialize;
        SecondaryRelations = { H[6] - Simplify[v.v], H[10] - Simplify[v.v.v.v],
            J[4] - Simplify[u.Q.u], K[4] - Simplify[Tr[Q.(\mathcal{D}.u)]],
            J[6] - Simplify[(u.Q).\gamma uu], K[6] - Simplify[v.w], L[6] - Simplify[(u.Q).v],
            M[6] - Simplify[\(\gamma\)uu.\(\gamma\)uu], H[8] - Simplify[(u.Q).(Q.v)]};
        SecondaryInvariants = SecondaryRelations /. Trivialize;
        PartialDecoupleRelations = Join[FundamentalRelations, SecondaryRelations];
 In[96]:= G = Table[\Gamma[i, j, k], \{i, 1, 2\}, \{j, 1, 2\}, \{k, 1, 2\}]
Out[96]=
        \{\{\{3\alpha-\gamma_1, \gamma_2\}, \{\gamma_2, \alpha+\gamma_1\}\}, \{\{\gamma_2, \alpha+\gamma_1\}, \{\alpha+\gamma_1, -\gamma_2\}\}\}
        This is the 2 \times 2 \times 2 block of R.
 ln[97] = GStarSqrd = Expand[TensorContract[G \otimes G, \{\{1, 4\}, \{2, 5\}\}]]
Out[97]=
        \{\{10 \alpha^2 - 4 \alpha \gamma_1 + 2 \gamma_1^2 + 2 \gamma_2^2, 4 \alpha \gamma_2\}, \{4 \alpha \gamma_2, 2 \alpha^2 + 4 \alpha \gamma_1 + 2 \gamma_1^2 + 2 \gamma_2^2\}\}
 In[98]:= MatrixForm[GStarSqrd]
Out[98]//MatrixForm=
```

```
In[99]:= ured = TensorContract[G, {1, 2}]
Out[99]=
          \{4\alpha, 0\}
          This is the trace of the 2 \times 2 \times 2 block of R.
In[100]:=
          Clear[q];
          defns = \{q_1 - \beta_3^2, q_2 - ured.ured, q_4 - Tr[GStarSqrd], q_3 - Det[GStarSqrd]\}
Out[101]=
           \{q_1 - \beta_3^2, -16 \alpha^2 + q_2, -12 \alpha^2 + q_4 - 4 \gamma_1^2 - 4 \gamma_2^2,
            -20 \alpha^4 + q_3 - 32 \alpha^3 \gamma_1 - 8 \alpha^2 \gamma_1^2 - 4 \gamma_1^4 - 8 \alpha^2 \gamma_2^2 - 8 \gamma_1^2 \gamma_2^2 - 4 \gamma_2^4
          The quantities q_1, q_2, q_3, q_4 are O(2) \times \mathbb{Z}_2 invariants in terms of the parameters defining the
          Canonical form.
In[102]:=
          EliminateCoeffs = Table[
              GroebnerBasis[Join[{FundamentalRelations[i]}, defns], Join[FundamentalInvariants,
                    \{q_3, q_4, q_2, q_1\}\}, Coeffs, MonomialOrder \rightarrow EliminationOrder] [1], \{i, 1, 4\}]
Out[102]=
           \{H[2] - 10 q_1 + 15 q_2 - 25 q_4,
            -H[4] + 44 q_1^2 - 42 q_1 q_2 + 144 q_2^2 - 30 q_3 + 100 q_1 q_4 - 420 q_2 q_4 + 320 q_4^2
            J[2] - q_1 - q_2, -2L[4] + 4q_1^2 - 12q_1q_2 + 4q_2^2 - 20q_3 - 5q_2q_4 + 5q_4^2
          This is Eq. (7.8) expressing the elements in \mathcal{I}^+ in terms of the O(2) x \mathbb{Z}_2 invariants q_i. We can invert these
          relations and solve for the quantities q_i.
In[103]:=
          TriangularSystem =
            GroebnerBasis[EliminateCoeffs, \{q_4, q_3, q_2, q_1, H[2], H[4], J[2], L[4]\}]
Out[103]=
           \{-H[2]^2 + 2H[4] + 3H[2] \times J[2] - 6J[2]^2 - 6L[4] + 9H[2] q_1 - 90J[2] q_1,
            -J[2] + q_1 + q_2, 8H[2]^2 - 25H[4] - 60H[2] \times J[2] - 1500J[2]^2 + 1200L[4] +
              11 250 J[2] q_1 - 11 250 q_1^2 + 11 250 q_3, -H[2] - 15 J[2] + 25 q_1 + 25 q_4
In[104]:=
          Substitutions = Table [Solve [TriangularSystem[i]] == 0, q_i] [1, 1], \{i, 1, 4}]
Out[104]=
          \Big\{q_1 \to \frac{\,H\,[\,2\,]^{\,2}\,-\,2\,\,H\,[\,4\,]\,\,-\,3\,\,H\,[\,2\,]\,\times\,J\,[\,2\,]\,\,+\,6\,\,J\,[\,2\,]^{\,2}\,+\,6\,\,L\,[\,4\,]}{\,9\,\,(H\,[\,2\,]\,\,-\,10\,\,J\,[\,2\,]\,)}\,\,,\,\,q_2 \to J\,[\,2\,]\,\,-\,q_1\,,
           q_{3} \rightarrow \frac{-8 \; H \, [\, 2\, ]^{\, 2} \, + \, 25 \; H \, [\, 4\, ] \, + \, 60 \; H \, [\, 2\, ] \, \times \, J \, [\, 2\, ] \, + \, 1500 \; J \, [\, 2\, ]^{\, 2} \, - \, 1200 \; L \, [\, 4\, ] \, - \, 11 \, 250 \; J \, [\, 2\, ] \; \; q_{1} \, + \, 11 \, 250 \; q_{1}^{\, 2}}{11 \, 250}
           q_4 \rightarrow \frac{1}{25} (H[2] + 15 J[2] - 25 q_1)
```

These are the substitutions implied by Eq. (7.9).

In[105]:=

Eliminated =
$$\{\alpha, \gamma_1, \gamma_2\}$$
;

We make a choice to include β_3 in defining the necessary/sufficient conditions and only eliminate α , γ_1 and γ_2 . The rationale is that among all the relations between the parameters of the canonical form and the invariants, the only relation which is not a polynomial is the relation for β_3^2 in terms of the OA invariants. So, we can get more compact expressions without denominators if we also include it in the set of `basic' quantities for expressing the rest of the invariants.

In[106]:=

GroebnerBasis[FundamentalRelations, FundamentalInvariants, Eliminated]

Out[106]=

$$\left\{ \text{H[2]}^{\,2} - 2\,\text{H[4]} - 3\,\text{H[2]} \times \text{J[2]} + 6\,\text{J[2]}^{\,2} + 6\,\text{L[4]} - 9\,\text{H[2]}\,\,\beta_{3}^{\,2} + 90\,\text{J[2]}\,\,\beta_{3}^{\,2} \right\}$$

This is the relation for β_3^2 in terms of the OA invariants. Inverting gives a rational function for β_3^2 which is uniquely defined only if H[2] \neq 10 J[2]. This will give $\beta_3^2 = \frac{H[2]^2 - 2 H[4] - 3 H[2] \times J[2] + 6 J[2]^2 + 6 L[4]}{9 (H[2] - 10 J[2])}$. We now calculate the polynomial expressions for the Secondary invariants in terms of the Fundamental invariants and β_3^2 with an ordering that promotes low order polynomials in β_3 .

In[107]:=

NeccSuffRelations =

Join[GroebnerBasis[FundamentalRelations, FundamentalInvariants, Eliminated], Table[GroebnerBasis[Join[{SecondaryRelations[i]}, FundamentalRelations], Join[{SecondaryInvariants[i]}, FundamentalInvariants], Eliminated][2], {i, 1, 9}]]

```
Out[107]=
                                                 \left\{ \text{H[2]}^2 - 2 \text{H[4]} - 3 \text{H[2]} \times \text{J[2]} + 6 \text{J[2]}^2 + 6 \text{L[4]} - 9 \text{H[2]} \beta_3^2 + 90 \text{J[2]} \beta_3^2 \right\}
                                                          H[6] - 2H[4] \times J[2] + 8H[2] J[2]^2 - 24J[2]^3 - 4H[2] \times L[4] + 24J[2] \times L[4] -
                                                                  15\,\mathrm{H}[2]\times\mathrm{J}[2]\,\,\beta_3^2+90\,\mathrm{J}[2]^2\,\beta_3^2+30\,\mathrm{L}[4]\,\,\beta_3^2+39\,\mathrm{H}[2]\,\,\beta_3^4-90\,\mathrm{J}[2]\,\,\beta_3^4-300\,\beta_3^6,
                                                        H[10] - 3H[2] \times H[4] J[2]^{2} + 40H[4] J[2]^{3} - 63H[2] J[2]^{4} + 114J[2]^{5} -
                                                                  2 H[2] \times H[4] \times L[4] + 6 H[4] \times J[2] \times L[4] + 42 H[2] J[2]^{2} L[4] - 246 J[2]^{3} L[4] -
                                                                 4 \text{ H[2] L[4]}^2 + 24 \text{ J[2] L[4]}^2 - 6 \text{ H[2]} \times \text{H[4]} \times \text{J[2] } \beta_3^2 - 36 \text{ H[4] J[2]}^2 \beta_3^2 +
                                                                 485 H[2] J[2]^3 \beta_3^2 - 2442 J[2]^4 \beta_3^2 + 30 H[4] \times L[4] \beta_3^2 - 72 H[2] \times J[2] \times L[4] \beta_3^2 +
                                                                 348 J[2]^2 L[4] \beta_3^2 - 20 L[4]^2 \beta_3^2 + 17 H[2] \times H[4] \beta_3^4 + 36 H[4] \times J[2] \beta_3^4 -
                                                                 807 H[2] \times J[2] \beta_3^6 - 3630 J[2]<sup>2</sup> \beta_3^6 + 140 L[4] \beta_3^6 - 210 H[2] \beta_3^8 + 2100 J[2] \beta_3^8,
                                                          -H[2] \times J[2] + 2J[2]^2 + 2J[4] - 2L[4] + H[2] \beta_3^2 - 10J[2] \beta_3^2
                                                           -H[2] \times J[2] + 6J[2]^2 + K[4] - 2L[4] + 2H[2] \beta_3^2 - 20J[2] \beta_3^2
                                                          -H[2]J[2]^2 + 6J[2]^3 + 4J[6] - 2H[2] \times L[4] - 2J[2] \times L[4] -
                                                                 4 \text{ H}[2] \times \text{J}[2] \beta_3^2 - 20 \text{ J}[2]^2 \beta_3^2 + 30 \text{ L}[4] \beta_3^2 + 9 \text{ H}[2] \beta_3^4 + 210 \text{ J}[2] \beta_3^4 - 300 \beta_3^6
                                                         -H[2] J[2]^2 + 6 J[2]^3 + 2 K[6] - 2 H[2] \times L[4] + 6 J[2] \times L[4] - 10 H[2] \times J[2] \beta_3^2 + 10 H[2] \times J[2] \beta_4^2 + 10 H[2] \times J[2] \beta_5^2 + 10 H[2] \beta_5^2 + 10 H[2] \delta_5^2 + 10 H[2] 
                                                                 40 J[2]^2 \beta_3^2 + 30 L[4] \beta_3^2 + 19 H[2] \beta_3^4 + 110 J[2] \beta_3^4 - 300 \beta_3^6
                                                         -H[4] \times J[2] + 2H[2] J[2]^2 - 2H[2] \times L[4] + 8J[2] \times L[4] + L[6] + H[4] \beta_3^2 - 2H[4] \times J[2] \times L[4] + L[6] + L[6] + H[4] \beta_3^2 - 2H[4] \times J[4] + R[4] \times J[4] + L[6] + L[6] + H[4] \beta_3^2 - 2H[4] + R[4] + R[4
                                                                  11 H[2] \times J[2] \beta_3^2 + 42 J[2] \beta_3^2 + 12 L[4] \beta_3^2 + 19 H[2] \beta_3^4 - 40 J[2] \beta_3^4 - 150 \beta_3^6,
                                                         -H[2]J[2]^2 + 6J[2]^3 - 6J[2] \times L[4] + 4M[6] + 2H[2] \times J[2]\beta_3^2 -
                                                                 80 J[2]^2 \beta_3^2 + 30 L[4] \beta_3^2 - H[2] \beta_3^4 + 310 J[2] \beta_3^4 - 300 \beta_3^6,
                                                          4 \, H[2] \times J[2] \times L[4] + 14 \, J[2]^2 \, L[4] + 12 \, L[4]^2 + H[2] \times H[4] \, \beta_3^2 - 32 \, H[4] \times J[2] \, \beta_3^2 + 12 \, L[4] + 12 \, L[4]^2 + 12 \, 
                                                                 36\,H[2]\,\,J[2]^2\,\beta_3^2-44\,\,J[2]^3\,\beta_3^2+10\,H[2]\times L[4]\,\,\beta_3^2+226\,\,J[2]\times L[4]\,\,\beta_3^2+40\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,\,\beta_3^4+10\,\,H[4]\,
                                                                 69 H[2] \times J[2] \beta_3^4 + 390 J[2] ^2 \beta_3^4 - 120 L[4] \beta_3^4 - 70 H[2] \beta_3^6 - 1900 J[2] \beta_3^6
```

The first relation defines β_3 . We only need consider the rest of the relations since we allow ${\beta_3}^2$ as a 'variable'.

In[108]:=

NeccSuffRelations = Rest[NeccSuffRelations]

```
Out[108]=
                                                                    \{H[6] - 2H[4] \times J[2] + 8H[2]J[2]^2 - 24J[2]^3 - 4H[2] \times L[4] + 24J[2] \times L[4] -
                                                                                        15 H[2] \times J[2] \beta_3^2 + 90 J[2] ^2 \beta_3^2 + 30 L[4] \beta_3^2 + 39 H[2] \beta_3^4 - 90 J[2] \beta_3^4 - 300 \beta_3^6,
                                                                            H[10] - 3H[2] \times H[4] J[2]^{2} + 40H[4] J[2]^{3} - 63H[2] J[2]^{4} + 114J[2]^{5} -
                                                                                        2 H[2] \times H[4] \times L[4] + 6 H[4] \times J[2] \times L[4] + 42 H[2] J[2]^{2} L[4] - 246 J[2]^{3} L[4] -
                                                                                      4 \text{ H}[2] \text{ L}[4]^2 + 24 \text{ J}[2] \text{ L}[4]^2 - 6 \text{ H}[2] \times \text{H}[4] \times \text{J}[2] \beta_3^2 - 36 \text{ H}[4] \text{ J}[2]^2 \beta_3^2 +
                                                                                      485 H[2] J[2]^3 \beta_3^2 - 2442 J[2]^4 \beta_3^2 + 30 H[4] \times L[4] \beta_3^2 - 72 H[2] \times J[2] \times L[4] \beta_3^2 +
                                                                                      348 J[2]^2 L[4] \beta_3^2 - 20 L[4]^2 \beta_3^2 + 17 H[2] \times H[4] \beta_3^4 + 36 H[4] \times J[2] \beta_3^4 -
                                                                                        363 H[2] J[2]^2 \beta_3^4 + 2002 J[2]^3 \beta_3^4 + 70 H[2] \times L[4] \beta_3^4 - 618 J[2] \times L[4] \beta_3^4 - 280 H[4] \beta_3^6 + 618 J[2] \times L[4] \beta_3^4 + 618 J[2] \times L[4] \beta_3^6 + 618 J[2] \times L[4] \lambda_3^6 + 618 J[2] \times L[4] 
                                                                                      807 H[2] \times J[2] \beta_3^6 - 3630 J[2] ^2 \beta_3^6 + 140 L[4] \beta_3^6 - 210 H[2] \beta_3^8 + 2100 J[2] \beta_3^8,
                                                                            -\,H\,[\,2\,]\,\times\,J\,[\,2\,]\,+\,2\,\,J\,[\,2\,]^{\,2}\,+\,2\,\,J\,[\,4\,]\,\,-\,2\,\,L\,[\,4\,]\,\,+\,H\,[\,2\,]\,\,\,\beta_3^{\,2}\,-\,10\,\,J\,[\,2\,]\,\,\beta_3^{\,2}\,,
                                                                              -H[2] \times J[2] + 6J[2]^2 + K[4] - 2L[4] + 2H[2]\beta_3^2 - 20J[2]\beta_3^2
                                                                              -H[2]J[2]^2 + 6J[2]^3 + 4J[6] - 2H[2] \times L[4] - 2J[2] \times L[4] -
                                                                                     4 \text{ H}[2] \times \text{J}[2] \ \beta_3^2 - 20 \ \text{J}[2]^2 \ \beta_3^2 + 30 \ \text{L}[4] \ \beta_3^2 + 9 \ \text{H}[2] \ \beta_3^4 + 210 \ \text{J}[2] \ \beta_3^4 - 300 \ \beta_3^6,
                                                                            -H[2] J[2]^2 + 6 J[2]^3 + 2 K[6] - 2 H[2] \times L[4] + 6 J[2] \times L[4] - 10 H[2] \times J[2] \beta_3^2 + 10 H[2] \beta_3^2 + 10 H[2] \delta_3^2 + 10 H[2] 
                                                                                      40 \mathrm{J[2]}^2\,\beta_3^2 + 30 \mathrm{L[4]}\,\,\beta_3^2 + 19 \mathrm{H[2]}\,\,\beta_3^4 + 110 \mathrm{J[2]}\,\,\beta_3^4 - 300 \beta_3^6,
                                                                            -H[4] \times J[2] + 2H[2] J[2]^2 - 2H[2] \times L[4] + 8J[2] \times L[4] + L[6] + H[4] \beta_3^2 - 2H[2] \times L[4] + 8J[2] \times L[4] + L[6] + H[4] \beta_3^2 - 2H[2] \times L[4] + 8J[2] \times L[4] + L[6] + H[4] \beta_3^2 - 2H[2] \times L[4] + R[4] + R[4] + L[6] + L[6] + H[4] + R[4] + R
                                                                                        11 H[2] \times J[2] \beta_3^2 + 42 J[2] \beta_3^2 + 12 L[4] \beta_3^2 + 19 H[2] \beta_3^4 - 40 J[2] \beta_3^4 - 150 \beta_3^6,
                                                                              -H[2] J[2]^2 + 6 J[2]^3 - 6 J[2] \times L[4] + 4 M[6] + 2 H[2] \times J[2] \beta_3^2 -
                                                                                      80 J[2]^2 \beta_3^2 + 30 L[4] \beta_3^2 - H[2] \beta_3^4 + 310 J[2] \beta_3^4 - 300 \beta_3^6,
                                                                            4\,H[2]\times J[2]\times L[4]\,+\,14\,J[2]^2\,L[4]\,+\,12\,L[4]^2\,+\,H[2]\times H[4]\,\,\beta_3^2\,-\,32\,H[4]\times J[2]\,\,\beta_3^2\,+\,12\,L[4]^2\,+\,H[2]\times H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,+\,H[4]^2\,
                                                                                      36\,\text{H[2]}\,\,\text{J[2]}^2\,\beta_3^2\,-\,44\,\text{J[2]}^3\,\beta_3^2\,+\,10\,\text{H[2]}\,\times\,\text{L[4]}\,\,\beta_3^2\,+\,226\,\text{J[2]}\,\times\,\text{L[4]}\,\,\beta_3^2\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,\beta_3^4\,+\,40\,\text{H[4]}\,\,
                                                                                      69 H[2] \times J[2] \beta_3^4 + 390 J[2] ^2 \beta_3^4 - 120 L[4] \beta_3^4 - 70 H[2] \beta_3^6 - 1900 J[2] \beta_3^6
```

In[109]:=

Normalizations = Table[D[NeccSuffRelations[i]], SecondaryInvariants[i]]], {i, 1, 9}]

Out[109]=

$$\{1, 1, 2, 1, 4, 2, 1, 4, 2\}$$

These relations are linear in the Secondary invariants. We compute the coefficients to ensure they are nonzero constants. This also identifies the denominators that we will get in solving for the Secondary invariants.

The next step solves for the Secondary invariants and replaces β_3^2 by q_1 .

In[110]:=

Out[110]=

SolveNeccSuff =

Table[Solve[NeccSuffRelations[i]] == 0, SecondaryInvariants[i]][1, 1], {i, 1, 9}] /. $\{\beta_3^{k_-} \rightarrow q_1^{k/2}\}$

 $\Big\{ \text{H[6]} \rightarrow \text{2 H[4]} \times \text{J[2]} - \text{8 H[2]} \; \text{J[2]}^2 + \text{24 J[2]}^3 + \text{4 H[2]} \times \text{L[4]} - \text{24 J[2]} \times \text{L[4]} + \text{24 J[2]} \times \text{L[4]} \Big\} + \text{24 J[2]} + \text$ $15 \; \text{H}\,[\,2\,] \; \times \; \text{J}\,[\,2\,] \; \; q_1 \; - \; 90 \; \text{J}\,[\,2\,] \;^2 \; q_1 \; - \; 30 \; \text{L}\,[\,4\,] \; \; q_1 \; - \; 39 \; \text{H}\,[\,2\,] \; \; q_1^2 \; + \; 90 \; \text{J}\,[\,2\,] \; \; q_1^2 \; + \; 300 \; q_1^3 \; ,$ $H[10] \rightarrow 3 H[2] \times H[4] J[2]^{2} - 40 H[4] J[2]^{3} + 63 H[2] J[2]^{4} - 114 J[2]^{5} +$ $2 H[2] \times H[4] \times L[4] - 6 H[4] \times J[2] \times L[4] - 42 H[2] J[2]^{2} L[4] + 246 J[2]^{3} L[4] +$ $4\,H[2]\,\,L[4]^{\,2}\,-\,24\,J[2]\,\,L[4]^{\,2}\,+\,6\,H[2]\,\times\,H[4]\,\times\,J[2]\,\,q_{1}\,+\,36\,H[4]\,\,J[2]^{\,2}\,q_{1}\,-\,24\,J[2]^{\,2}\,q$ $485\,H[2]\,\,J[2]^{3}\,q_{1}+2442\,J[2]^{4}\,q_{1}-30\,H[4]\times L[4]\,\,q_{1}+72\,H[2]\times J[2]\times L[4]\,\,q_{1}-100\,H[4]\times L[4]\,\,q_{1}+100\,H[4]\times L[4]\times L[4]\,\,q_{1}+100\,H[4]\times L[4]\times L$ $348 \; \text{J} \; [2]^2 \; \text{L} \; [4] \; \; q_1 \; + \; 20 \; \text{L} \; [4]^2 \; q_1 \; - \; 17 \; \text{H} \; [2] \; \times \; \text{H} \; [4] \; \; q_1^2 \; - \; 36 \; \text{H} \; [4] \; \times \; \text{J} \; [2] \; \; q_1^2 \; + \; 10 \; \text{H} \; [4] \; \times \; \text{H} \; [4] \; \; q_1^2 \; - \; 10 \; \text{H} \; [4] \; \times \; \text{H} \; [4] \; \; q_1^2 \; - \; 10 \; \text{H} \; [4] \; \times \; \text{H} \; [4] \; \; q_1^2 \; - \; 10 \; \text{H} \; [4] \; \times \; \text{H} \; [4] \; \; q_1^2 \; - \; 10 \; \text{H} \; [4] \; \times \; \text{H} \; [4] \; \; q_1^2 \; - \; 10 \; \text{H} \; [4] \; \; q_1^2$ $363\,H[2]\,\,J[2]^{2}\,\,q_{1}^{2}\,-\,2002\,\,J[2]^{3}\,\,q_{1}^{2}\,-\,70\,H[2]\,\times\,L[4]\,\,q_{1}^{2}\,+\,618\,\,J[2]\,\times\,L[4]\,\,q_{1}^{2}\,+\,280\,H[4]\,\,q_{1}^{3}\,-\,2002\,\,J[2]^{2}\,\,q_{1}^{2}\,-\,2002\,\,J[2]^{3}\,\,q_{1}^{2}\,-\,70\,\,H[2]\,\times\,L[4]\,\,q_{1}^{2}\,+\,618\,\,J[2]\,\times\,L[4]\,\,q_{1}^{2}\,+\,280\,\,H[4]\,\,q_{1}^{3}\,-\,2002\,\,J[2]^{3}\,\,q_{1}^{2}\,-\,20$ $807\,H[2]\times J[2]\,\,q_1^3+3630\,J[2]^2\,q_1^3-140\,L[4]\,\,q_1^3+210\,H[2]\,\,q_1^4-2100\,J[2]\,\,q_1^4,$ $J[4] \rightarrow \frac{1}{2} (H[2] \times J[2] - 2J[2]^2 + 2L[4] - H[2]q_1 + 10J[2]q_1)$ $\mbox{K[4]} \rightarrow \mbox{H[2]} \times \mbox{J[2]} - \mbox{6} \mbox{J[2]}^2 + 2 \mbox{L[4]} - 2 \mbox{H[2]} \mbox{ } \mbox{q}_1 + 20 \mbox{J[2]} \mbox{ } \mbox{q}_1, \label{eq:approx}$ $J[6] \rightarrow \frac{1}{4} (H[2] J[2]^2 - 6 J[2]^3 + 2 H[2] \times L[4] + 2 J[2] \times L[4] +$ $4\;\text{H[2]}\times\text{J[2]}\;\;q_1+20\;\text{J[2]}^2\;q_1-30\;\text{L[4]}\;\;q_1-9\;\text{H[2]}\;\;q_1^2-210\;\text{J[2]}\;q_1^2+300\;q_1^3)\;\text{,}$ $\mathsf{K[6]} \to \frac{1}{2} \left(\mathsf{H[2]} \; \mathsf{J[2]}^2 - 6 \, \mathsf{J[2]}^3 + 2 \, \mathsf{H[2]} \times \mathsf{L[4]} - 6 \, \mathsf{J[2]} \times \mathsf{L[4]} + 10 \, \mathsf{H[2]} \times \mathsf{J[2]} \; \mathsf{q_1} - 10 \, \mathsf{H[2]} \times \mathsf{J[2]} \; \mathsf{q_2} \right)$ 40 $J[2]^2 q_1 - 30 L[4] q_1 - 19 H[2] q_1^2 - 110 J[2] q_1^2 + 300 q_1^3)$, $L[6] \rightarrow H[4] \times J[2] - 2H[2]J[2]^{2} + 2H[2] \times L[4] - 8J[2] \times L[4] - H[4]q_{1} + 2H[4] + 2H[4]$ $11\,H[\,2\,]\,\times\,J[\,2\,]\,\,q_{1}\,-\,42\,J[\,2\,]^{\,2}\,q_{1}\,-\,12\,L[\,4\,]\,\,q_{1}\,-\,19\,H[\,2\,]\,\,q_{1}^{2}\,+\,40\,J[\,2\,]\,\,q_{1}^{2}\,+\,150\,q_{1}^{3}\,,$ $M[6] \rightarrow \frac{1}{4} (H[2] J[2]^2 - 6J[2]^3 + 6J[2] \times L[4] - 2H[2] \times J[2] q_1 +$ 80 $\mbox{J[2]}^2 \ q_1 - 30 \ \mbox{L[4]} \ q_1 + \mbox{H[2]} \ q_1^2 - 310 \ \mbox{J[2]} \ q_1^2 + 300 \ q_1^3 \big) \ ,$ $H[8] \rightarrow \frac{1}{2} (H[2] \times H[4] \times J[2] - 4H[4] J[2]^2 - 9H[2] J[2]^3 + 30J[2]^4 + 6H[4] \times L[4] - 4H[4] + 4H[4] +$ $4\,H[2]\times J[2]\times L[4]\,-\,14\,J[2]^2\,L[4]\,-\,12\,L[4]^2\,-\,H[2]\times H[4]\,\,q_1\,+\,32\,H[4]\times J[2]\,\,q_1\,-\,12\,L[4]^2\,-\,H[2]\times H[4]\,\,q_1\,+\,32\,H[4]\times J[2]\,\,q_1\,-\,12\,L[4]^2\,-\,H[2]\times H[4]\,\,q_1\,+\,32\,H[4]\times J[2]\,\,q_1\,-\,12\,L[4]^2\,-\,H[2]\times H[4]\,\,q_1\,+\,32\,H[4]\times J[2]\,\,q_1\,-\,12\,L[4]^2\,-\,H[2]\times H[4]\,\,q_1\,+\,32\,H[4]\times J[2]\,\,q_1\,-\,12\,L[4]^2\,-\,H[2]\times H[4]\,\,q_1\,+\,32\,H[4]\times J[2]\,\,q_1\,-\,12\,L[4]^2\,-\,H[2]\times H[4]^2\,-\,H[4]^2\, 36\,H[2]\,\,J[2]^{2}\,q_{1}+44\,J[2]^{3}\,q_{1}-10\,H[2]\times L[4]\,\,q_{1}-226\,J[2]\times L[4]\,\,q_{1}-40\,H[4]\,\,q_{1}^{2}-40$

Multiplying out the denominators to get relations with integer coefficients.

 $69\,H[2]\times J[2]\,\,q_1^2-390\,J[2]^2\,q_1^2+120\,L[4]\,\,q_1^2+70\,H[2]\,\,q_1^3+1900\,J[2]\,\,q_1^3\big)\,\Big\}$

```
In[111]:=
                                                                                      FormatAsEquations = Table[Normalizations[i] × SecondaryInvariants[i] → Collect[
                                                                                                                                                      (Normalizations[i] \times SecondaryInvariants[i] /. SolveNeccSuff), q_1], {i, 1, 9}]
Out[111]=
                                                                                        \left\{ \text{H[6]} \rightarrow \text{2H[4]} \times \text{J[2]} - \text{8H[2]} \, \text{J[2]}^2 + \text{24J[2]}^3 + \text{4H[2]} \times \text{L[4]} - \text{24J[2]} \times \text{L[4]} + \text{24J[2]} \times \text{L[
                                                                                                                                     (15 H[2] \times J[2] - 90 J[2]^2 - 30 L[4]) q_1 + (-39 H[2] + 90 J[2]) q_1^2 + 300 q_1^3,
                                                                                                 \text{H[10]} \rightarrow \text{3 H[2]} \times \text{H[4]} \; \text{J[2]}^2 - \text{40 H[4]} \; \text{J[2]}^3 + \text{63 H[2]} \; \text{J[2]}^4 - \text{114 J[2]}^5 + \text{2 H[2]} \times \text{H[4]} \times \text{L[4]} - \text{200} \times \text{
                                                                                                                                   6 H[4] \times J[2] \times L[4] - 42 H[2] J[2]^2 L[4] + 246 J[2]^3 L[4] + 4 H[2] L[4]^2 - 24 J[2] L[4]^2 + 246 J[2]^2 L[4]^2 L[4]^2 L[4]^2 + 246 J[2]^2 L[4]^2 L[4
                                                                                                                                       (6 H[2] \times H[4] \times J[2] + 36 H[4] J[2]^{2} - 485 H[2] J[2]^{3} + 2442 J[2]^{4} - 30 H[4] \times L[4] + 2442 J[2]^{4} + 36 H[4]^{4} + 36 H[4]^{4
                                                                                                                                                                                72 H[2] \times J[2] \times L[4] - 348 J[2]^{2} L[4] + 20 L[4]^{2} q_{1} + (-17 H[2] \times H[4] - 12 H[4] + 20 L[4]^{2}) q_{1} + (-17 H[2] \times H[4] - 12 H[4] + 20 L[4]^{2}) q_{1} + (-17 H[2] \times H[4] - 12 H[4]^{2}) q_{1} + (-17 H[2] \times H[4]^{2}) q_{1} + (-17 H[2] 
                                                                                                                                                                              36\,H[4]\times J[2]\,+\,363\,H[2]\,\,J[2]^{2}\,-\,2002\,J[2]^{3}\,-\,70\,H[2]\times L[4]\,+\,618\,J[2]\times L[4]\,\big)\,\,q_{1}^{2}\,+\,618\,J[2]\times L[4]\,\big)\,q_{1}^{2}\,+\,618\,J[2]\times L[4]\,J[2]\,\big)\,q_{1}^{2}\,+\,618\,J[2]\,\big)\,q_{1}^{2}\,+\,618\,J[2]\,\big)\,q_{1}^{2}\,+\,618\,J[2]\,\big)\,q_{1}^{2}\,+\,618\,J[2]\,\big)\,q_{1}^{2}\,+\,618\,J[2]\,\big)\,q
                                                                                                                                       (280 \,H[4] - 807 \,H[2] \times J[2] + 3630 \,J[2]^2 - 140 \,L[4]) \,q_1^3 + (210 \,H[2] - 2100 \,J[2]) \,q_1^4
                                                                                                     2 J[4] \rightarrow H[2] \times J[2] - 2 J[2]^{2} + 2 L[4] + (-H[2] + 10 J[2]) q_{1}
                                                                                                   \mbox{K[4]} \rightarrow \mbox{H[2]} \times \mbox{J[2]} - \mbox{6} \mbox{J[2]}^2 + 2 \mbox{L[4]} + (-2 \mbox{H[2]} + 20 \mbox{J[2]}) \mbox{ } \mbox{q}_{\mbox{\scriptsize 1}},
                                                                                                   4 J[6] \rightarrow H[2] J[2]^2 - 6 J[2]^3 + 2 H[2] \times L[4] + 2 J[2] \times L[4] +
                                                                                                                                     \left(4\,\,H\,[\,2\,]\,\times\,J\,[\,2\,]\,+\,20\,\,J\,[\,2\,]^{\,2}\,-\,30\,\,L\,[\,4\,]\,\right)\,\,q_{1}\,+\,\,(\,-\,9\,\,H\,[\,2\,]\,-\,210\,\,J\,[\,2\,]\,)\,\,\,q_{1}^{\,2}\,+\,300\,\,q_{1}^{\,3}\,,
                                                                                                     2 K[6] \rightarrow H[2] J[2]^{2} - 6 J[2]^{3} + 2 H[2] \times L[4] - 6 J[2] \times L[4] +
                                                                                                                                       (10 \text{ H}[2] \times \text{J}[2] - 40 \text{ J}[2]^2 - 30 \text{ L}[4]) q_1 + (-19 \text{ H}[2] - 110 \text{ J}[2]) q_1^2 + 300 q_1^3,
                                                                                                   L\,[\,6\,] \to H\,[\,4\,] \times J\,[\,2\,] \, - \, 2\,H\,[\,2\,] \,\,J\,[\,2\,]^{\,2} \, + \, 2\,H\,[\,2\,] \,\times L\,[\,4\,] \, - \, 8\,J\,[\,2\,] \,\times L\,[\,4\,] \, + \, 2\,H\,[\,2\,] \,\times L\,[\,4\,] \, + \, 2\,H\,[\,2\,
                                                                                                                                     \left(-\,H\,[\,4\,]\,+\,11\,H\,[\,2\,]\,\times\,J\,[\,2\,]\,-\,42\,J\,[\,2\,]^{\,2}\,-\,12\,L\,[\,4\,]\,\right)\,q_{1}\,+\,\left(-\,19\,H\,[\,2\,]\,+\,40\,J\,[\,2\,]\,\right)\,q_{1}^{\,2}\,+\,150\,q_{1}^{\,3}\,,
                                                                                                   4M[6] \rightarrow H[2] J[2]^2 - 6J[2]^3 + 6J[2] \times L[4] +
                                                                                                                                     (-2 H[2] \times J[2] + 80 J[2]^2 - 30 L[4]) q_1 + (H[2] - 310 J[2]) q_1^2 + 300 q_1^3
                                                                                                   2 H[8] \rightarrow H[2] \times H[4] \times J[2] - 4 H[4] J[2]^{2} - 9 H[2] J[2]^{3} + 30 J[2]^{4} +
                                                                                                                                 6 H[4] \times L[4] - 4 H[2] \times J[2] \times L[4] - 14 J[2]^{2} L[4] - 12 L[4]^{2} +
                                                                                                                                     (-H[2] \times H[4] + 32 H[4] \times J[2] - 36 H[2] J[2]^{2} + 44 J[2]^{3} - 10 H[2] \times L[4] - 226 J[2] \times L[4])
                                                                                                                                                q_1 + (-40 H[4] - 69 H[2] \times J[2] - 390 J[2]^2 + 120 L[4]) q_1^2 + (70 H[2] + 1900 J[2]) q_1^3
```

Calculations with respect to Lemma 7.3

The presentation in the paper summarizes the main points in the following systematic analysis.

```
In[112]:=
           GroebnerBasis[defns, Join[\{\beta_3\}, Table[q_i, \{i, 1, 4\}]], \{\alpha, \gamma_1, \gamma_2\}]
Out[112]=
           \left\{-q_1 + \beta_3^2\right\}
```

We first eliminate α , γ_1 and γ_2 . We find that $q_1 \ge 0$ is necessary to solve for a real β_3 . Also, $q_1 > 0$ is `generic' while q_1 = 0 is `degenerate' and a case we should look at further. The degenerate case corresponds to β_3 = 0. We first look at the `generic' case, then we will return to the case β_3 = 0.

```
In[113]:=
             GenericBeta = GroebnerBasis[defns, Join[Table[q_i, {i, 1, 4}], {\alpha, \gamma_1, \gamma_2}], {\beta_3}]
Out[113]=
              \left\{-12 \alpha^{2}+q_{4}-4 \gamma_{1}^{2}-4 \gamma_{2}^{2},-20 \alpha^{4}+q_{3}-32 \alpha^{3} \gamma_{1}-8 \alpha^{2} \gamma_{1}^{2}-4 \gamma_{1}^{4}-8 \alpha^{2} \gamma_{2}^{2}-8 \gamma_{1}^{2} \gamma_{2}^{2}-4 \gamma_{2}^{4},-16 \alpha^{2}+q_{2}\right\}
```

In the generic case $q_1 > 0$, we have three relations for the remaining parameters in terms of the quantities q_i . We note that there is one equation isolating α , so we solve for α first. Also note that, α^2 is deter-

mined by q_2 but not α itself. In this system, the terms involving γ_2 only have even powers of α , so they are completely determined by the q_i . There however are terms in γ_1 that involve odd powers of α . Here, we should not eliminate α when we are trying to solve for γ_1 .

In[114]:= GroebnerBasis[GenericBeta, Join[$\{\alpha\}$, Table[q_i , $\{i, 1, 4\}$]], $\{\gamma_1, \gamma_2\}$]

Out[114]= $\{16 \alpha^2 - q_2\}$

In[115]:=

In[116]:=

In[118]:=

In[119]:=

We find that $q_2 \ge 0$ is necessary for a real solution α . The case $q_2 > 0$ is `generic', and the case $q_2 = 0$ is `degenerate'.

Generica β = GroebnerBasis[GenericBeta, Join[$\{\gamma_1, \gamma_2\}$, Table[$q_i, \{i, 1, 4\}$]], $\{\alpha\}$]

Out[115]= $\left\{q_{2}^{4}-4 \, q_{2}^{2} \, q_{3}+16 \, q_{3}^{2}-2 \, q_{2}^{3} \, q_{4}+8 \, q_{2} \, q_{3} \, q_{4}+2 \, q_{2}^{2} \, q_{4}^{2}-8 \, q_{3} \, q_{4}^{2}-2 \, q_{2} \, q_{4}^{3}+q_{4}^{4}+4 \, q_{2}^{3} \, \gamma_{2}^{2}\right\}$ $3 q_2 - 4 q_4 + 16 \gamma_1^2 + 16 \gamma_2^2$

This is a triangular system with two equations for γ_1 and γ_2 . We can solve them in turn to find γ_2 and γ_1

 γ 2eqn = GroebnerBasis[Generic $\alpha\beta$, Join[{ γ_2 }, Table[q_i , {i, 1, 4}]], { γ_1 }]

Out[116]= $\left\{q_{2}^{4}-4\ q_{2}^{2}\ q_{3}+16\ q_{3}^{2}-2\ q_{2}^{3}\ q_{4}+8\ q_{2}\ q_{3}\ q_{4}+2\ q_{2}^{2}\ q_{4}^{2}-8\ q_{3}\ q_{4}^{2}-2\ q_{2}\ q_{4}^{3}+q_{4}^{4}+4\ q_{2}^{3}\ \gamma_{2}^{2}\right\}$

We isolate γ_2 . This equation has a unique solution for γ_2^2 provided $q_2 \neq 0$, which is true in the generic case $q_2 > 0$.

In[117]:= Solve $\lceil (\gamma 2 \operatorname{eqn} / . \{ \gamma_2^2 \rightarrow \gamma 2 \operatorname{sqrd} \}) = 0, \gamma 2 \operatorname{sqrd} \llbracket 1 \rrbracket$

Out[117]= $\left\{ \gamma 2 \text{sqrd} \rightarrow \frac{-\,q_2^4\,+\,4\,\,q_2^2\,\,q_3\,-\,16\,\,q_3^2\,+\,2\,\,q_2^3\,\,q_4\,-\,8\,\,q_2\,\,q_3\,\,q_4\,-\,2\,\,q_2^2\,\,q_4^2\,+\,8\,\,q_3\,\,q_4^2\,+\,2\,\,q_2\,\,q_4^3\,-\,q_4^4}{4\,\,q_3^3} \,\right\}$

Still in the generic case $q_2 > 0$ and so $\alpha > 0$, we may solve for γ_1 below.

 γ leqns = GroebnerBasis[GenericBeta, Join[$\{\gamma_1, \alpha\}$, Table[$q_i, \{i, 1, 4\}$]], $\{\gamma_2\}$]

Out[118]= $\{16 \alpha^2 - q_2, \alpha q_2^2 - 8 \alpha q_3 - 2 \alpha q_2 q_4 + 2 \alpha q_4^2 + q_2^2 \gamma_1, q_2^2 - 8 q_3 - 2 q_2 q_4 + 2 q_4^2 + 16 \alpha q_2 \gamma_1\}$

Solve[γ 1eqns[3] == 0, γ_1][1]

Out[119]= $\left\{\gamma_{1} \rightarrow \frac{-q_{2}^{2} + 8 \; q_{3} + 2 \; q_{2} \; q_{4} - 2 \; q_{4}^{2}}{16 \; \alpha \; q_{2}}\right\}$

This concludes the discussion of the generic case, $q_2 \neq 0$, $q_1 \neq 0$.

We next specialize to the case $q_2 = 0$ which implies $\alpha = 0$.

In[120]:=

Specialized α eq0 = GenericBeta /. { $\alpha \rightarrow 0$, $q_2 \rightarrow 0$ }

Out[120]=

$$\left\{q_4 - 4\gamma_1^2 - 4\gamma_2^2, q_3 - 4\gamma_1^4 - 8\gamma_1^2\gamma_2^2 - 4\gamma_2^4, 0\right\}$$

We obtain two equations for γ_1 and γ_2 . We check for any additional necessary conditions for solvability by eliminating γ_1 and γ_2 .

In[121]:=

GroebnerBasis[Specialized α eq0, Join[Table[q_i , {i, 1, 4}]], { γ_1 , γ_2 }]

Out[121]=

$$\{4 q_3 - q_4^2\}$$

We do obtain an additional solvability condition. In the case that $q_2 = 0$, we also need $q_3 = \frac{q_4^2}{4}$. We redefined the specialization to include this condition.

In[122]:=

Specialized α eq0 = GenericBeta /. $\{\alpha \rightarrow 0, q_2 \rightarrow 0, q_3 \rightarrow q_4^2/4\}$

Out[122]=

$$\left\{q_{4}-4\ \gamma_{1}^{2}-4\ \gamma_{2}^{2}\text{, }\frac{q_{4}^{2}}{4}-4\ \gamma_{1}^{4}-8\ \gamma_{1}^{2}\ \gamma_{2}^{2}-4\ \gamma_{2}^{4}\text{, }0\right\}$$

In[123]:=

GroebnerBasis[Specialized α eq0, {q₄, γ ₁, γ ₂}]

Out[123]= $\left\{ q_4 - 4 \gamma_1^2 - 4 \gamma_2^2 \right\}$

> We obtain a single equation for ${\gamma_1}^2 + {\gamma_2}^2$. This equation is solvable if $q_4 \ge 0$. We have a continuum of solutions in this case. This concludes the discussion of the case $q_1 > 0$, $q_2 = 0$, where we have the additional solvability conditions $4q_3 = q_4^2$ and $q_4 \ge 0$. The full solution is $\beta_3 = \sqrt{q_1}$, $\alpha = 0$, ${\gamma_1}^2 + {\gamma_2}^2 = \frac{q_4}{4}$.

We consider the last remaining case, the specialization $q_1 = 0$, $\beta_3 = 0$.

In[124]:=

$$\beta$$
3eq0 = defns /. { $\beta_3 \rightarrow 0$, $q_1 \rightarrow 0$ }

Out[124]=

$$\begin{aligned} & \left\{ 0 \,,\, -16 \,\alpha^2 + q_2 \,,\, -12 \,\alpha^2 + q_4 - 4 \,\gamma_1^2 - 4 \,\gamma_2^2 \,, \right. \\ & \left. -20 \,\alpha^4 + q_3 - 32 \,\alpha^3 \,\gamma_1 - 8 \,\alpha^2 \,\gamma_1^2 - 4 \,\gamma_1^4 - 8 \,\alpha^2 \,\gamma_2^2 - 8 \,\gamma_1^2 \,\gamma_2^2 - 4 \,\gamma_2^4 \right\} \end{aligned}$$

We now specialize to the degenerate case $\beta_3 = 0$.

In[125]:=

GroebnerBasis[β 3eq0, { α , γ_1 , γ_2 }, { q_1 , q_2 , q_3 , q_4 }, MonomialOrder \rightarrow EliminationOrder]

Out[125]=

We first check that setting $\beta_3 = 0$ does not impose conditions among the 'independent' quantities α , γ_1 and y_2 which define R.

In[126]:=

GroebnerBasis[β 3eq0, {q₁, q₂, q₃, q₄}, { α , γ ₁, γ ₂}, MonomialOrder \rightarrow EliminationOrder]

Out[126]=

We determine all the consequences of having $\beta_3 = 0$. The only relation is $q_1 = 0$ and there are no additional solvability conditions from imposing $\beta_3 = 0$.

In[127]:=

GroebnerBasis[β 3eq0, Join[{ α }, Table[q_i , {i, 1, 4}]], { γ_1 , γ_2 }]

Out[127]=

$$\{16 \alpha^2 - q_2\}$$

 α is given by 16 $\alpha^2 = q_2$. We can solve this for a real α if $q_2 \ge 0$. The degenerate case is $\alpha = 0$, $q_2 = 0$. We first consider the generic case $q_2 > 0$. We begin by eliminating α , which now has a generic value.

In[128]:=

Generica β eq0 = GroebnerBasis[β 3eq0, Join[$\{\gamma_1, \gamma_2\}$, Table[q_i , $\{i, 1, 4\}$]], $\{\alpha\}$]

Out[128]=

$$\left\{ q_2^4 - 4 \; q_2^2 \; q_3 + 16 \; q_3^2 - 2 \; q_2^3 \; q_4 + 8 \; q_2 \; q_3 \; q_4 + 2 \; q_2^2 \; q_4^2 - 8 \; q_3 \; q_4^2 - 2 \; q_2 \; q_4^3 + q_4^4 + 4 \; q_2^3 \; \gamma_2^2 \right\}$$

$$3 \; q_2 - 4 \; q_4 + 16 \; \gamma_1^2 + 16 \; \gamma_2^2 \right\}$$

This is the same triangular system as before with two equations for γ_1 and γ_2 and the solutions are still the same. We get ${\gamma_2}^2 = \frac{-q_2^4 + 4\ q_2^2\ q_3 - 16\ q_3^2 + 2\ q_2^3\ q_4 - 8\ q_2\ q_3\ q_4 - 2\ q_2^2\ q_4^2 + 8\ q_3\ q_4^2 + 2\ q_2\ q_4^3 - q_4^4}{4\ q_2^3}$, ${\gamma_1} = \frac{-q_2^2 + 8\ q_3 + 2\ q_2\ q_4 - 2\ q_4^2}{16\ \alpha\ q_2}$.

We now consider the 'doubly degenerate' case $q_1 = q_2 = 0$ which implies $\alpha = \beta_3 = 0$.

In[129]:=

$$\alpha eq0\beta eq0 = defns /. \{\alpha \rightarrow 0, \beta_3 \rightarrow 0, q_1 \rightarrow 0, q_2 \rightarrow 0\}$$

Out[129]=

$$\left\{ \text{0, 0, } \text{q}_{\text{4}} - \text{4} \, \gamma_{1}^{2} - \text{4} \, \gamma_{2}^{2} \,, \, \text{q}_{\text{3}} - \text{4} \, \gamma_{1}^{4} - 8 \, \gamma_{1}^{2} \, \gamma_{2}^{2} - \text{4} \, \gamma_{2}^{4} \right\}$$

In[130]:=

GroebnerBasis[αeq0βeq0, {q1, q2, q3, q4}, {γ1, γ2}, MonomialOrder → EliminationOrder]

Out[130]=

$$\left\{-4 \, q_3 + q_4^2\right\}$$

Just as before, we get the additional solvability condition $4q_3 = q_4^2$. We now find the equations for γ_1 and y_2 by imposing this additional condition.

In[131]:=

$$\alpha eq0\beta eq0 /. \{q_3 \rightarrow q_4^2/4\}$$

Out[131]=

$$\left\{0, \ 0, \ q_4 - 4 \ \gamma_1^2 - 4 \ \gamma_2^2, \ \frac{q_4^2}{4} - 4 \ \gamma_1^4 - 8 \ \gamma_1^2 \ \gamma_2^2 - 4 \ \gamma_2^4\right\}$$

In[132]:=

GroebnerBasis
$$\left[\left\{0, 0, q_4 - 4 \gamma_1^2 - 4 \gamma_2^2, \frac{q_4^2}{4} - 4 \gamma_1^4 - 8 \gamma_1^2 \gamma_2^2 - 4 \gamma_2^4\right\}, \left\{q_4, \gamma_1, \gamma_2\right\}\right]$$

Out[132]=

$$\left\{q_4-4\ \gamma_1^2-4\ \gamma_2^2\right\}$$

We again get a continuum of solutions contingent on $q_4 \ge 0$.

In summary, in both cases $q_1 > 0$ and $q_1 = 0$, we get $\beta_3 = \sqrt{q_1}$ and we get the same set of equations for the parameters α , γ_1 and γ_2 .

```
If q_2 > 0, we get the solvability condition
-q_{2}^{4}+4\ q_{2}^{2}\ q_{3}-16\ q_{3}^{2}+2\ q_{2}^{3}\ q_{4}-8\ q_{2}\ q_{3}\ q_{4}-2\ q_{2}^{2}\ q_{4}^{2}+8\ q_{3}\ q_{4}^{2}+2\ q_{2}\ q_{4}^{3}-q_{4}^{4}>=0. The parameters are given by \alpha=\frac{\sqrt{q_{2}}}{4}\ ,\ \gamma_{2}{}^{2}=\frac{-q_{2}^{4}+4\ q_{2}^{2}\ q_{3}-16\ q_{3}^{2}+2\ q_{2}^{3}\ q_{4}-8\ q_{2}\ q_{3}\ q_{4}-2\ q_{2}^{2}\ q_{4}^{2}+8\ q_{3}\ q_{4}^{2}+2\ q_{2}\ q_{4}^{3}-q_{4}^{4}}{4\ q_{3}^{2}}\ ,
\gamma_1 = \frac{-q_2^2 + 8 \, q_3 + 2 \, q_2 \, q_4 - 2 \, q_4^2}{16 \, \alpha \, q_2}.
If q_2 = 0, we get the solvability condition q_4^2 = 4 q_3 and the parameters are given by \alpha = 0,
\gamma_1^2 + \gamma_2^2 = \frac{q_4}{4}.
Example 7.4
n = 3;
vars = Table[x[i], {i, 1, n}];
f = Sum[2ix[i]^3, \{i, 1, n\}] + (3x[1]^2 \times x[2] - x[2]^3) - 12x[1] \times x[2] \times x[3]
2 \times [1]^3 + 3 \times [1]^2 \times [2] + 3 \times [2]^3 - 12 \times [1] \times [2] \times [3] + 6 \times [3]^3
This is an explicit numerical example.
r = Simplify[Table[D[f, x[i], x[j], x[k]], \{k, 1, n\}, \{j, 1, n\}, \{i, 1, n\}] / 6];
u = Simplify[Table[D[Laplacian[f, vars], x[i]], {i, 1, n}] / 6];
f_3 = (n+2) f - 3 (u.vars) (vars.vars);
 \mathcal{D} = \mathsf{Simplify}[\mathsf{Table}[\mathsf{D}[\mathsf{f}_3,\,\mathsf{x}[\mathsf{i}],\,\mathsf{x}[\mathsf{j}],\,\mathsf{x}[\mathsf{k}]],\,\{\mathsf{k},\,\mathsf{1},\,\mathsf{n}\},\,\{\mathsf{j},\,\mathsf{1},\,\mathsf{n}\},\,\{\mathsf{i},\,\mathsf{1},\,\mathsf{n}\}]\,/\,6]; 
Clear[H, J, K, L, M, Q];
v = Simplify[TensorContract[(\mathcal{D}\otimes\mathcal{D})\otimes\mathcal{D}, \{\{1, 4\}, \{2, 5\}, \{3, 7\}, \{6, 8\}\}]];
```

w = Simplify[D.u.u]; Q = Simplify[TensorContract[$\mathcal{D}\otimes\mathcal{D}$, {{1, 4}, {2, 5}}]];

FundamentalValues = {H[2] → Simplify[Tr[Q]],

 $H[4] \rightarrow Simplify[Tr[Q.Q]], \ J[2] \rightarrow Simplify[u.u], \ L[4] \rightarrow Simplify[\gamma uu.u]\};$ SecondaryValues =

 $\{H[6] \rightarrow Simplify[v.v], H[10] - Simplify[v.v.v.v], J[4] - Simplify[u.Q.u], J[4] - Simplify[v.v], J[4]$

K[4] - Simplify[Tr[Q.(D.u)]], J[6] - Simplify[(u.Q).yuu], K[6] - Simplify[v.w],

 $L[6] - Simplify[(u.Q).v], M[6] - Simplify[\gamma uu.\gamma uu], H[8] - Simplify[(u.Q).(Q.v)]$;

FundamentalValues

yuu = w;

In[133]:=

Out[133]=

In[134]:=

In[145]:=

Out[145]=

 $\{H[2] \rightarrow 1060, H[4] \rightarrow 518384, J[2] \rightarrow 56, L[4] \rightarrow -4528\}$

In[146]:=

Specialization = FundamentalRelations /. FundamentalValues

Out[146]=

$$\left\{ 1060 - 10 \, \left(6 \, \alpha^2 + \beta_3^2 + 10 \, \gamma_1^2 + 10 \, \gamma_2^2 \right) \text{, } 518 \, 384 - 32 \, \alpha^2 \, \beta_3^2 - \left(32 \, \alpha^2 + 6 \, \beta_3^2 \right)^2 - 800 \, \alpha^2 \, \gamma_2^2 - 4 \, \left(13 \, \alpha^2 + \beta_3^2 - 10 \, \alpha \, \gamma_1 + 25 \, \gamma_1^2 + 25 \, \gamma_2^2 \right)^2 - 4 \, \left(\beta_3^2 + \left(\alpha + 5 \, \gamma_1 \right)^2 + 25 \, \gamma_2^2 \right)^2 \text{, } 56 - 16 \, \alpha^2 - \beta_3^2 \text{, } -4528 - 2 \, \left(-48 \, \alpha^2 \, \beta_3^2 + \beta_3^4 + 32 \, \alpha^3 \, \left(3 \, \alpha - 5 \, \gamma_1 \right) \right) \right\}$$

In[147]:=

GroebnerBasis[Specialization, Coeffs]

Out[147]=

$$\left\{ 332 + 15 \ \beta_3^2, \ 3173103609 + 125768785 \ \gamma_2^2, \right. \\ \left. -52993421209 + 1509225420 \ \gamma_1^2, \ 230203 \ \alpha - 85849 \ \gamma_1 \right\}$$