

EMBEDDED PHOTOMETRIC VISUAL ODOMETRY

Samuel Bryner

Bachelor Thesis Supervised by Jörn Rehder and Pascal Gohl.

ETH zürich

MOTIVATION

- integrate FPGA and ARM
- stereo on FPGA ⇒ embedded odometry

METHOD

project into space

move camera trough space

project back into camera original image transformed point cloud

but which transformation is the best?

transformation ${\bf T}$

just minimize that!

formularizing the problem

point in image: $\vec{x} := (u, v) \in \mathbb{R}^2$

intensity: $I(\vec{x}) \in \mathbb{R}$

disparity: $\mathbf{D}(\vec{x}) \in \mathbb{R}$

transformation: $T \in \mathbb{R}^6$

$$\pi^{-1}(\vec{x}, \mathbf{D}(\vec{x})) := \frac{b}{\mathbf{D}(\vec{x})} \begin{bmatrix} u - c_u \\ v - c_v \\ f \end{bmatrix}$$

$$\pi(x,y,z) := \frac{f}{z} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c_u \\ c_v \end{bmatrix}$$

FULL WARPING

transformation **T**

A. Comport, E. Malis, and P. Rives, "Accurate quadrifocal tracking for robust 3d visual odometry," in IEEE Conference on Robotics and Automation, April 2007, pp. 40–45.

therefore:

minimize

$$e(T,\vec{x}) := I_k(\vec{x}) - I_c(\tau(T,\vec{x}))$$

for every pixel:

$$\hat{T} = \underset{T}{\operatorname{argmin}} \sum_{\vec{x} \in I_k} e(T, \vec{x})^2$$

using Gauss Newton:

$$\boldsymbol{J}^T \boldsymbol{J} \Delta T = -\boldsymbol{J}^T e(\boldsymbol{T})$$

OPTIMIZATIONS

- use image pyramid
 - full resolution isn't really necessary
- only use pixels with strong gradient
- Huber weights?
- Levenberg-Marquardt?

TODO: provide data on how much a difference these things make

ETH zürich

TODO: RESULTS

TODO: MORE RESULTS

- circular trajectory
- timing data on visensor

TODO: CONCLUSION

