Обобщенная жадная градиентная оптимизация гиперпараметров

К.Д. Яковлев iakovlev.kd@phystech.edu

Москва, Московский физико-технический институт Научный руководитель: к.ф.-м.н. Бахтеев Олег Юрьевич

Цель исследования

Цель

Предложить градиентный метод оптимизации гиперпараметров с линейейной по количеству параметров и гиперпараметров сложностью итерации и затратами памяти.

Проблема

Существующие методы не гарантируют выполнения следующих условий одновременно: 1) отсутствие требований на сходимость внутренней процедуры оптимизации к единственному решению, 2) отсутствие смещения из-за короткого горизонта, 3) линейная сложность итерации и затраты памяти.

Метод решения

Предлагаемый метод основан на агрегации жадных гиперградиентов без дополнительных вычислительных затрат.

Агрегация жадных гиперградиентов

Пусть задано $\gamma \in (0,1)$. Тогда аппроксимация гиперградиента запишется как:

$$\hat{d}_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}; \gamma) = \nabla_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) + \sum_{t=1}^{\mathcal{T}} \gamma^{\mathcal{T}-t} \nabla_{\mathbf{w}_{t}} \mathcal{L}_{\mathsf{val}}(\mathbf{w}_{t}, \boldsymbol{\alpha}) \mathbf{B}_{t}.$$

	IFT	RMD	DrMAD	T1 - T2	Ours
Онлайн оптимизация	×	✓	×	√	✓
Длинный горизонт	✓	\checkmark	✓	×	✓
Линейная сложность	√	×	✓	\checkmark	✓

Постановка задачи оптимизации гиперпараметров

lacktriangle Пусть задан вектор параметров модели lacktriangle и вектор гиперпараметров $lpha\in\mathbb{R}^h$. Задача оптимизации:

$$egin{aligned} & m{lpha}^* = \arg\min_{m{lpha}} \mathcal{L}_2(m{w}^*, m{lpha}), \\ & \mathrm{s.t.} \quad m{w}^* = \arg\min_{m{w}} \mathcal{L}_1(m{w}, m{lpha}). \end{aligned}$$

lacktriangle Пусть внутренняя задача решается с помощью оптимизатора $oldsymbol{\Phi}(.,.)$:

$$\mathbf{w}_{t+1}(oldsymbol{lpha}) = \mathbf{\Phi}(\mathbf{w}_t, oldsymbol{lpha}), \quad t = \overline{1, \, \mathcal{T}}.$$

Гиперградиент запишется как:

$$\begin{split} & d_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{T}, \alpha) = \nabla_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{T}, \alpha) + \sum_{t=1}^{T} \nabla_{\mathbf{w}_{T}}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{T}, \alpha) \left(\prod_{k=t+1}^{T} \mathbf{A}_{k}\right) \mathbf{B}_{t}, \\ & \mathbf{A}_{k} = \frac{\partial \mathbf{\Phi}(\mathbf{w}_{k-1}, \alpha)}{\partial \mathbf{w}_{k-1}}, \quad \mathbf{B}_{t} = \frac{\partial \mathbf{\Phi}(\mathbf{w}_{t-1}, \alpha)}{\partial \alpha}. \end{split}$$

Аппроксимация гиперградиента

Пусть задано $\gamma \in (0,1)$. Тогда аппроксимация гиперградиента запишется как:

$$\hat{d}_{\boldsymbol{\alpha}}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}},\boldsymbol{\alpha};\boldsymbol{\gamma}) = \nabla_{\boldsymbol{\alpha}}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}},\boldsymbol{\alpha}) + \sum_{t=1}^{I} \boldsymbol{\gamma}^{T-t} \nabla_{\mathbf{w}_{t}}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{t},\boldsymbol{\alpha}) \mathbf{B}_{t}.$$

Обобщение метода T1-T2

Определение

Аппроксимация гиперградиента, определяемая методом T1-T2 запишется как:

$$\hat{d}_{\alpha}^{T1-T2}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}},\alpha) = \nabla_{\alpha}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}},\alpha) + \nabla_{\mathbf{w}_{\mathcal{T}}}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}},\alpha)\mathbf{B}_{\mathcal{T}}.$$

Теорема (Яковлев, 2024)

Пусть $\hat{d}_{\alpha}(\mathbf{w}_T, \alpha; \gamma)$ — предложенная аппроксимация гиперградиента. Тогда имеет место следующий предел:

$$\lim_{\gamma \to 0^+} \hat{d}_{\boldsymbol{\alpha}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}; \gamma) = \nabla_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) + \nabla_{\mathbf{w}_{\mathcal{T}}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) \mathbf{B}_{\mathcal{T}}.$$

Таким образом, предложенный подход является обобщением T1-T2.

Достаточное условие спуска

Предположения

- 1. $\mathcal{L}_{\mathrm{val}}(., \alpha)$ является L-гладкой and μ -сильно выпуклой для любого α .
- 2. $\frac{\partial \Phi(.,\alpha)}{\partial \alpha}$ является C_B -Липшицевой для любого α .
- 3. $\|\frac{\partial \widehat{\Phi}(\mathbf{w}, \alpha)}{\partial \alpha}\| \leq B$ для любой пары (\mathbf{w}, α) для некоторого $B \geq 0$.
- 4. **w** принадлежит некоторому выпуклому множеству с диаметром $D < \infty$.
- 5. $\Phi(\mathbf{w}, \alpha) = \mathbf{w} \eta \nabla_{\mathbf{w}} \mathcal{L}_{\text{train}}(\mathbf{w}, \alpha)$ для некоторого $\eta \geq 0$.
- 6. $\nabla^2_{\mathbf{w}} \mathcal{L}_{\mathrm{train}}(., \alpha) = \mathbf{I}$ для любого α , а также $\nabla_{\alpha} \mathcal{L}_{\mathrm{val}}(\mathbf{w}, \alpha) = \mathbf{0}$ для любого \mathbf{w} .
- 7. $\mathbf{B}_t \mathbf{B}_t^{\top} \succeq \kappa \mathbf{I}$ для некоторого $\kappa > 0$.
- 8. Определим $\mathbf{w}_{\infty} := \arg\min_{\mathbf{w}} \mathcal{L}_{\mathrm{train}}(\mathbf{w}, \boldsymbol{\alpha}), \ \mathbf{w}_{2}^{*} := \arg\min_{\mathbf{w}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}, \boldsymbol{\alpha}).$ Пусть $\|\mathbf{w}_{\infty} \mathbf{w}_{2}^{*}\| \geq 2De^{-\mu\eta T} + \delta$, для некоторого $\delta > 0$.

Теорема (Яковлев, 2024)

Пусть $\gamma=1-\eta\in(0,1)$. Пусть также выполнены предположения (1-8), тогда найдется достаточно большое T и универсальная константа c>0 такая, что:

$$d_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{T}, \boldsymbol{\alpha}) \hat{d}_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{T}, \boldsymbol{\alpha}; \boldsymbol{\gamma})^{\top} \geq c \|d_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{T}, \boldsymbol{\alpha})\|_{2}^{2}.$$

Постановка вычислительного эксперимента

- ▶ Цель сравнение качества предложенного подхода с существующими методами подсчета гиперградиента.
- ▶ Эксперимент проводится на задаче мета-обучения.

$$\begin{split} \boldsymbol{\alpha}^* &= \arg\min_{\boldsymbol{\alpha}} \mathbb{E}_{\mathcal{T}} \mathbb{E}_{\mathcal{S}|\mathcal{T}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}^*, \boldsymbol{\alpha}; \mathcal{S}), \\ \mathrm{s.t.} \quad \mathbf{w}^* &= \arg\min_{\mathbf{w}} \mathcal{L}_{\mathrm{train}}(\mathbf{w}, \boldsymbol{\alpha}; \mathcal{S}). \end{split}$$

В сравнении участвуют следующие базовые методы:

$$\begin{aligned} & \text{(FO)}: \quad \hat{d}^{\text{FO}}_{\alpha}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \alpha) = \nabla_{\alpha}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \alpha), \\ & \text{(IFT)}: \quad \hat{d}^{\text{IFT}}_{\alpha}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \alpha) = \nabla_{\alpha}\mathcal{L}_{\text{val}} - \nabla_{\mathbf{w}}\mathcal{L}_{\text{val}} \left(\sum_{j \leq i} \left[\mathbf{I} - \nabla_{\mathbf{w}, \mathbf{w}}^{2} \mathcal{L}_{\text{train}} \right]^{j} \right) \nabla_{\mathbf{w}, \alpha}^{2} \mathcal{L}_{\text{train}} \Big|_{(\mathbf{w}_{T}, \alpha)}, \\ & \text{(T1-T2)}: \quad \hat{d}^{T1-T2}_{\alpha}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \alpha) = \nabla_{\alpha}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \alpha) + \nabla_{\mathbf{w}_{T}}\mathcal{L}_{\text{val}}(\mathbf{w}_{T}, \alpha) \mathbf{B}_{T}. \end{aligned}$$

Результаты вычислительного эксперимента

- Рассматриваются задачи классификации на n классов с k примерами на каждый класс (n-way, k-shot).
- Приводится точность предсказаний на мета-контроле, а также вычислительная сложность итерации подсчета гиперградиента.

Method	#JVPs	3-way, 10-shot	4-way, 10-shot	5-way, 10-shot
FO	0	43.48 ± 0.69	34.15 ± 0.53	28.59 ± 0.47
T1 - T2	1	42.96 ± 0.79	33.95 ± 0.64	27.59 ± 0.46
IFT	11	40.14 ± 0.73	33.23 ± 0.41	27.20 ± 0.52
Ours ($\gamma=0.99$)	10	$\textbf{46.10} \pm \textbf{0.82}$	$\textbf{36.94}\pm\textbf{1.07}$	$\textbf{29.79}\pm\textbf{0.62}$

Из таблицы видно, что предложенный метод превосходит существующие методы градиентной оптимизации гиперпараметров в терминах точности предсказаний на мета-контроле, имея сопоставимые вычислительные затраты.

Выносится на защиту

- Рассмотрена задача оптимизации гиперпараметров.
- Предложен метод оптимизации гиперпараметров, удовлетворяющий одновременно трем условиям:
 - онлайн оптимизация
 - ▶ отсутствие смещения из-за короткого горизонта
 - линейная сложность итерации и затраты памяти.
- Продемонстрирована работоспособность предлагаемого решения.
- Проведен теоретический анализ предложенного метода.

Список публикаций

- (core-A*) Yakovlev K. et al. GEC-DePenD: Non-Autoregressive Grammatical Error Correction with Decoupled Permutation and Decoding //Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). – 2023. – C. 1546-1558.
- ➤ (core-A*) Yakovlev K. et al. Sinkhorn Transformations for Single-Query Postprocessing in Text-Video Retrieval //Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023. C. 2394-2398.
- ➤ Yakovlev K. D. et al. Neural Architecture Search with Structure Complexity Control //International Conference on Analysis of Images, Social Networks and Texts. Cham : Springer International Publishing, 2021. C. 207-219.

Выступления на конференциях

- Яковлев К.Д. Обобщенная жадная градиентная оптимизация гиперпараметров. //Труды 66-й Всероссийской научной конференции МФТИ. 2024.
- Яковлев К.Д. Поиск согласованных нейросетевых моделей в задаче мультидоменного обучения. //Труды 65-й Всероссийской научной конференции МФТИ в честь 115-летия Л.Д. Ландау. - 2023.
- Яковлев К.Д., Гребенькова О.С., Бахтеев О.Ю., Стрижов В.В. Выбор архитектуры модели с контролем сложности // Труды 64-й Всероссийской научной конференции МФТИ. - 2021.