$[s/mm] \frac{00}{NG\pi} = v$ 赵玄周

 $\log_{[\text{cal}]} \frac{N\pi \text{C}}{60}$

 $[g_1] = [g_2]$

 $1 [N/mm^2] = 1 [MPa]$

180°=π [rad]

[wd.i]=N:%

S··· 辦速回 談家固 ₽・・・・粋玄固粋両 u 神回 w]

<u>↑</u>···點由自 u [···散連回談面 ΜÛ 遊系未談

 $\overline{u}_{z} = M$ 重型國 **注**の一∈ト卡※

国型.₽

dΙ $\frac{15}{p(y_3^2 - y_3^1)}$ $\overline{p(y_3^2 - y_3^1)}$ $\frac{IS}{\epsilon yq}$ $_{7}$ γq $35q^{5}$ $\overline{u(q_4^7-q_4^1)}$ $\overline{u(q_{4}^{2}-q_{4}^{1})}$ $\frac{1}{\sqrt{p}}$ 32 $_{\rm E}$ pu遊別面間 イベベーチ

 $I \times Z = qI$

欢二面裙

 $\frac{p}{dI*Z} = \frac{dI}{\frac{p}{Z}} = dZ$

法公Ω面褪.ε

办单.∂

1.応力とひずみ

ヤング率 縦ひずみ $\overset{\bar{\kappa}}{\sigma} = \frac{W}{A}_{[N/mm^2]}$

荷重による伸び

 $\lambda = \frac{WL}{AE} \text{ [mm]} \quad \begin{array}{ll} \text{W=[N]} \\ \text{L = [mm]} \\ \text{A = [mm^2]} \\ \text{F = [MD^2]} \end{array}$ 安全率=基準強さ

ΔT℃の温度変化による伸び

α=線膨張係数

$\lambda = \Delta T \times L \times \alpha_{[mm]}$

フープ応力

 $\sigma_1 = \frac{pD}{2t}$ [MPa] p(Δ E) = [MPa] p(Δ E) = [mm] p(Δ E) = [mm] p(Δ E) = [mm] p(Δ E) = [mm]

 $\sigma = \frac{1}{2} \sigma_{1} \,_{\text{[MPa]}}$

2.曲げ・ねじり)	モーメント [Nm]	
	はりの曲げ応力	σ	$\sigma = \frac{ M }{Z}$	[N/mm²]
	ねじりモーメント	Т	T=F•r	[N·m]
	巻上げ動力	Р	P=T•ω	[N·m/s]
			角加速度	=[J/s]
			(p5参照)	=[w]
	円筒に生じる 最大応力	τ	$\tau = \frac{T}{Zp}$	[Pa]
	ねじれ角の 基本式	θ	$\theta = \frac{T \cdot L}{G \cdot Ip}$	[rad]
	横弾性係数	G		
	断面係数	Z	p3参照	
	極断面係数	Zp	p3参照	
	断面二次極 モーメント	Iр	p3参照	

暗記ノート

機械設計技術者試験3級

材料力学編

2016/6/12 のぼゆエンジニアリング http://noboyu.hatenablog.com/