数学分析 II 习题课讲义 (2025 春)

龚诚欣

gongchengxin@pku.edu.cn

2025年6月17日

目录

1	定积分的基本概念与可积性	3
	1.1 问题	3
	1.2 解答	3
2	定积分的性质与计算	5
	2.1 问题	5
	2.2 解答	5
3	定积分中值定理, 定积分的应用 (1)	7
	3.1 问题	7
	3.2 解答	8
4	定积分的应用 (2)	10
	4.1 问题	10
	4.2 解答	10
5	广义积分	12
	5.1 问题	12
	5.2 解答	13
6	数项级数	16
	6.1 问题	16
	6.2 解答	17
7		21
	7.1 问题	21
	7.2 解答	22
8	幂级数的基本概念与性质	25
	8.1 问题	25
	8.2 解答	26
9	幂级数展开与多项式逼近	27
	9.1 问题	27
	9.2 解答	28

目录

Fourier 级数 10.1 问题	
Fourier 变换 * 11.1 问题	
· 致谢	3

1 定积分的基本概念与可积性

1.1 问题

- 1. $\lim_{n \to +\infty} \frac{a_n}{n^{\alpha}} = 1, \alpha > 0, \ \ \ \ \ \lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_1 + a_2 + \dots + a_n).$
- 2. 设函数 f(x) 在区间 [a,b] 上有界, 试证明 $f(x) \in R[a,b]$ 的充要条件是: $\forall \varepsilon > 0$, $\exists [a,b]$ 上满足以下条件的连续函数 g(x) 和 h(x): (1) $g(x) \leq f(x) \leq h(x)$, $\forall x \in [a,b]$; (2) $\int_{a}^{b} [h(x) g(x)] dx < \varepsilon$.
- 3. 函数 $g(x) \in R[a,b], f(u) \in C[A,B]$, 这里 A,B 分别是 g(x) 在区间 [a,b] 的上下确界. 证明 $f(g(x)) \in R[a,b]$.
- 4. 函数 $f(x) \in R[a, b]$, 证明存在点 $x_0 \in (a, b)$ 使得 f(x) 在 x_0 处连续.
- 5. 函数 $f(x) \in R[a,b]$, 且 $\forall x \in [a,b]$ 有 f(x) > 0. 证明 $\int_a^b f(x) dx > 0$.
- 6. 函数 f(x) 在 \mathbb{R} 上有定义,且在任何有限闭区间上可积. 证明对于任意的 [a,b], $\lim_{h\to 0}\int_a^b [f(x+h)-f(x)]\mathrm{d}x=0$.
- 7. (Hölder 不等式). 非负函数 $f(x), g(x) \in R[a, b], p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 证明 $\int_a^b f(x)g(x) dx \le \left(\int_a^b f^p(x)\right)^{\frac{1}{p}} \left(\int_a^b g^q(x)\right)^{\frac{1}{q}}$. (编者注: 本题实际上是 $||f||_p ||g||_q \ge ||fg||_1$.)

[一个简单应用, 留作思考题] $0 < q \le p \le s \le \infty$, 那么存在 $\theta \in [0,1]$ 使得 $\frac{1}{p} = \frac{\theta}{q} + \frac{1-\theta}{s}$. 证明 $\|f\|_p \le \|f\|_q^{\theta} \|f\|_s^{1-\theta}$.

8. (Minkowski 不等式). 同上题条件, 证明 $\left(\int_{a}^{b} (f+g)^{p}(x) dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} f^{p}(x) dx\right)^{\frac{1}{p}} + \left(\int_{a}^{b} g^{p}(x) dx\right)^{\frac{1}{p}}$. (编者注: 本题实际上是 $||f||_{p} + ||g||_{p} \geq ||f+g||_{p}$, 这表明 L_{p} 空间是赋范线性空间.)

■ 自由选讲

- 9. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_{a}^{b} f(x) dx = 0$.
- 10. 已知 (0,1) 上的单调函数 f(x) 满足 $\lim_{n\to+\infty}\sum_{k=1}^{n-1}\frac{1}{n}f\left(\frac{k}{n}\right)$ 存在,问是否有 $f(x)\in R[0,1]$?
- 11. 计算极限 $\lim_{n \to +\infty} \frac{[1^{\alpha} + 3^{\alpha} + \dots + (2n+1)^{\alpha}]^{\beta+1}}{[2^{\beta} + 4^{\beta} + \dots + (2n)^{\beta}]^{\alpha+1}}.$
- 12. $n \in \mathbb{N}_+, f(x) \in C[a,b], \int_a^b x^k f(x) dx = 0, k = 0, 1, \dots, n$. 证明 f(x) 在 (a,b) 内至少有 n+1 个零点.

1.2 解答

$$1. \ \forall \varepsilon > 0, \exists N, \forall n > N, n^{\alpha}(1-\varepsilon) < a_n < n^{\alpha}(1+\varepsilon). \ \text{从而当 } n \ \text{足够大时}, \ \frac{1}{n^{1+\alpha}}(1^{\alpha}+2^{\alpha}+\cdots+N^{\alpha}) < \varepsilon, \frac{1}{n^{1+\alpha}}(a_1+a_2+\cdots+a_N) < \varepsilon, \left|\frac{1}{n^{1+\alpha}}[(a_{N+1}-(N+1)^{\alpha})+\cdots+(a_n-n^{\alpha})]\right| \leq \frac{\varepsilon}{n^{1+\alpha}}[(N+1)^{\alpha}+\cdots+n^{\alpha}] \leq \frac{\varepsilon}{n^{1+\alpha}}\sum_{i=1}^{n}i^{\alpha} = \frac{\varepsilon}{n}\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{\alpha} \leq \frac{\varepsilon}{n^{1+\alpha}}\left[(a_{N+1}-(N+1)^{\alpha})+\cdots+(a_{N-1}-n^{\alpha})\right]$$

$$\varepsilon \int_0^1 x^\alpha dx + \varepsilon = \frac{\varepsilon}{\alpha + 1} + \varepsilon \le 2\varepsilon. \quad \dot{\text{这意味着}} \left| \frac{1}{n^{1 + \alpha}} \left(\sum_{i=1}^n a_i - \sum_{i=1}^n i^\alpha \right) \right| \le 4\varepsilon \Rightarrow 原极限 = \lim_{n \to +\infty} \frac{1}{n^{1 + \alpha}} \sum_{i=1}^n i^\alpha = \frac{1}{\alpha + 1}.$$

2. 必要性:
$$f(x) \in R[a,b] \Rightarrow \forall \varepsilon > 0, \exists$$
 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{i=1}^n \omega_i(x_i - x_{i-1}) < \frac{\varepsilon}{2} \Rightarrow \exists$ 阶梯函数

$$s_1(x), s_2(x)$$
 满足 $s_1(x) \le f(x) \le s_2(x)$ 且 $\int_a^b [s_2(x) - s_1(x)] dx < \frac{\varepsilon}{2} \Rightarrow \exists$ 连续函数 $g(x), h(x)$ 满足 $g(x) \le f(x) \le h(x)$ 且 $\int_a^b [h(x) - g(x)] < \varepsilon$.

充分性:
$$g(x)$$
 连续, $\int_a^b [h(x) - g(x)] dx < \frac{\varepsilon}{4} \Rightarrow \exists$ 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{i=1}^n \sup_{x \in [x_{i-1}, x_i]} \{h(x) - g(x)\}(x_i - x_i)$

$$|x_{i-1}| < \frac{\varepsilon}{2}$$
且 $\sum_{i=1}^n w_i^g(x_i - x_{i-1}) < \frac{\varepsilon}{2}$. 在此分割下, $\sum_{i=1}^n w_i^f(x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\inf_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1})$

$$\sum_{i=1}^{n} \left[\sup_{x \in [x_{i-1}, x_i]} \{h(x) - g(x)\} + w_i^g \right] (x_i - x_{i-1}) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

3. 用 Lebesgue 定理显然. 如不用 Lebesgue 定理, 则 $\forall \delta > 0, \exists \tau > 0$ s.t. $\forall |x - x'| < \tau, |f(x) - f(x')| < \delta$. 从而 $\forall \varepsilon > 0$, \exists 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{w^g > \tau} (x_i - x_{i-1}) < \varepsilon$. 因为 $\{[x_{i-1}, x_i] : w_i^{f \circ g} > \delta\} \subset \{[x_{i-1}, x_i] : w_i^g > \tau\}$, 从

而
$$\sum_{w_i^{f \circ g} > \delta} (x_i - x_{i-1}) \le \sum_{w_i^g > \tau} (x_i - x_{i-1}) < \varepsilon, \, \mathbb{P} f \circ g \, 可积.$$

4. 由 $f(x) \in R[a,b]$ 知存在 $[a_1,b_1] \subset (a,b)$,使得 $w^f_{[a_1,b_1]} < 1$. 同样的道理,由 $f(x) \in R[a_1,b_1]$ 知存在 $[a_2,b_2] \subset (a_1,b_1)$ 使得 $w^f_{[a_2,b_2]} < \frac{1}{2}$. 依此类推,存在一系列闭区间套满足于 $w^f_{[a_n,b_n]} < \frac{1}{n}$,只需取 $x_0 \in \cap_{n=1}^{+\infty} [a_n,b_n]$ 即可.

5. 由 4 题知存在连续点 $x_0 \in (a,b)$, 因此 $\exists \delta > 0$ s.t. $\forall x \in [x_0 - \delta, x_0 + \delta] \subset [a,b]$, $f(x) > \frac{f(x_0)}{2}$. 从而 $\int_a^b f(x) dx \ge \int_{x_0 - \delta}^{x_0 + \delta} f(x) dx \ge f(x_0) \delta > 0$.

6.
$$\forall \varepsilon > 0$$
,存在连续函数 $g(x)$ 满足 $\int_{a-1}^{b+1} |f(x) - g(x)| dx < \frac{\varepsilon}{3}$. 因此

$$\left| \int_{a}^{b} [f(x+h) - f(x)] dx \right| \leq \left| \int_{a}^{b} [f(x+h) - g(x+h)] dx \right| + \left| \int_{a}^{b} [g(x+h) - g(x)] dx \right| + \left| \int_{a}^{b} [g(x) - f(x)] dx \right|$$

$$\leq 2 \int_{a-1}^{b+1} |f(x) - g(x)| dx + \int_{a}^{b} |g(x+h) - g(x)| dx.$$

由一致连续性知 $\exists H>0$ s.t. $\forall x,x'\in[a-1,b+1], |x-x'|< H, |g(x)-g(x')|<\frac{\varepsilon}{3(b-a)}$. 取 h< H 知 RHS $<\varepsilon$. 这意味着原极限为 0.

7. WLOG
$$\left(\int_a^b f^p(x) dx\right)^{\frac{1}{p}} = \left(\int_a^b g^q(x) dx\right)^{\frac{1}{q}} = 1$$
, 则原命题的结论可改写为 $\int_a^b f(x)g(x) dx \le 1$. 由 $\ln x$ 的凹性, 我

们有
$$\alpha \ln a + (1-\alpha) \ln b \le \ln(\alpha a + (1-\alpha)b) \Leftrightarrow a^{\alpha}b^{1-\alpha} \le \alpha a + (1-\alpha)b.$$
 $\Leftrightarrow \alpha = \frac{1}{p}, 1-\alpha = \frac{1}{q}, a = x^p, b = y^q \Rightarrow xy \le xy \le xy$

$$\frac{x^p}{p} + \frac{y^q}{q} \Rightarrow \int_a^b f(x)g(x)\mathrm{d}x \le \int_a^b \left(\frac{f(x)^p}{p} + \frac{g(x)^q}{q}\right)\mathrm{d}x = \frac{1}{p} + \frac{1}{q} = 1.$$

(编者注:本题也可将积分离散化后使用离散版本的 Hölder 不等式.)

8. 由 Hölder 不等式,
$$\int_{a}^{b} (f+g)^{p} dx = \int_{a}^{b} (f+g)^{p-1} f dx + \int_{a}^{b} (f+g)^{p-1} g dx \le \left(\int_{a}^{b} (f+g)^{(p-1)q} dx \right)^{\frac{q}{q}} \left(\int_{a}^{b} f^{p} dx \right)^{\frac{p}{p}} + \left(\int_{a}^{b} (f+g)^{(p-1)q} dx \right)^{\frac{1}{q}} \left(\int_{a}^{b} g^{p} dx \right)^{\frac{1}{p}} = \left(\int_{a}^{b} (f+g)^{p} dx \right)^{\frac{1}{q}} \left(\left(\int_{a}^{b} f^{p} dx \right)^{\frac{1}{p}} + \left(\int_{a}^{b} g^{p} dx \right)^{\frac{1}{p}} \right).$$
 消去 $\left(\int_{a}^{b} (f+g)^{p} dx \right)^{\frac{1}{q}}$

(编者注: 本题也可将积分离散化后使用离散版本的 Minkowski 不等式.)

9. 由聚点原理知有界性, 即 $|f(x)| \leq M$. 其次 $\forall \varepsilon > 0, \forall x \in [a,b], \exists \delta_x > 0$, s.t. $\omega_{U_0(x,\delta_x)} < \varepsilon$. 开覆盖 $\cup_{x \in [a,b]} (x - \delta_x, x + \delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\cup_{i=1}^n (x_i - \delta_i, x_i + \delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \dots < x_n \leq b$. 取分割

对此分割,
$$\sum_{i=1}^{3n} \omega_i \Delta x_i < \varepsilon(b-a+1),$$
 因此有可积性. 由于
$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx \le \sum_{i=1}^{3n} \int_{y_{i-1}}^{y_i} |f(x)| dx \le \varepsilon(b-a+1),$$

由 ε 的任意性知 $\int_a^b f(x) dx = 0$.

10. 考虑
$$f(x) = \tan\left(\pi x - \frac{\pi}{2}\right)$$
. $\lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{1}{n} f\left(\frac{k}{n}\right) = 0$, 但是 $\int_{0}^{1} f(x) dx$ 不存在.

11.
$$\mathbb{R} \vec{\pi} = 2^{\alpha - \beta} \frac{\left[\frac{2}{n} \left(\frac{1}{n}\right)^{\alpha} + \frac{2}{n} \left(\frac{3}{n}\right)^{\alpha} + \dots + \frac{2}{n} \left(\frac{2n+1}{n}\right)^{\alpha}\right]^{\beta+1}}{\left[\frac{2}{n} \left(\frac{2}{n}\right)^{\beta} + \frac{2}{n} \left(\frac{4}{n}\right)^{\beta} + \dots + \frac{2}{n} \left(\frac{2n}{n}\right)^{\beta}\right]^{\alpha+1}} \xrightarrow{\widehat{\mathbb{R}} \mathcal{R} \to \widehat{\mathbb{R}}} 2^{\alpha - \beta} \frac{\left(\int_{0}^{2} x^{\alpha} dx\right)^{\beta+1}}{\left(\int_{0}^{2} x^{\beta} dx\right)^{\alpha+1}} = 2^{\alpha - \beta} \frac{(\beta + 1)^{\alpha+1}}{(\alpha + 1)^{\beta+1}}.$$

12.
$$\int_{a}^{b} f(x) dx = 0 \Rightarrow$$
 存在至少 1 个零点, 记为 x_1 . $\int_{a}^{b} (x - x_1) f(x) dx = 0 \Rightarrow$ 存在至少 2 个零点, 记另一个为 x_2 . 依

此类推,
$$\int_a^b \left[\prod_{i=1}^n (x - x_i) \right] f(x) dx = 0 \Rightarrow 存在至少 n + 1 个零点.$$

定积分的性质与计算 2

2.1问题

1.
$$f(x) \in C[-1,1]$$
, if $\lim_{n \to +\infty} \frac{\int_{-1}^{1} (1-x^2)^n f(x) dx}{\int_{-1}^{1} (1-x^2)^n dx} = f(0)$.

2. (Riemann-Lebesgue 引理). 设函数 f(x), g(x) 在 \mathbb{R} 上有定义且内闭可积, g(x+T)=g(x), 证明

$$\lim_{n \to +\infty} \int_a^b f(x)g(nx) dx = \int_a^b f(x) dx \frac{1}{T} \int_0^T g(x) dx.$$

3. 设函数
$$f(x) \in C^1[a,b]$$
 且 $f(a) = f(b) = 0$, 证明: (1) $\int_a^b x f(x) f'(x) dx = -\frac{1}{2} \int_a^b f^2(x) dx$; (2) 若 $\int_a^b f^2(x) dx = 1$, 则 $\int_a^b [f'(x)]^2 dx \int_a^b [x f(x)]^2 dx \ge \frac{1}{4}$.

4.
$$f(x), g(x)$$
 在 $[0,1]$ 上非负连续. (1) 若 $f^2(t) \le 1 + 2 \int_0^t f(s) ds$, 证明 $f(t) \le 1 + t$. (2) 若 $f(t) \le K + \int_0^t f(s) g(s) ds$, 其中 $K \ge 0$ 是常数, 证明 $f(1) \le K \exp\left(\int_0^1 g(s) ds\right)$.

- 5. 试构造 $f(x) \in D[0,1]$ 但 $f'(x) \notin R[0,1]$ 的例子. 如果额外加上 f'(x) 有界条件呢?
- 6. 试构造可积函数 f 和连续函数 g 使得 $f \circ g$ 不可积. 如果额外要求 g 是 C^{∞} 函数呢?
- 7. 设函数 $f(x), g(x) \in R[a, b]$, 记 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ 为 [a, b] 的一个分割, $\lambda(\Delta) = \max_{1 \le i \le n} \{ \Delta x_i = x_i x_{i-1} \}$.

任取
$$\xi_i, \eta_i \in [x_{i-1}, x_i]$$
, 证明 $\lim_{\lambda(\Delta) \to 0} \sum_{i=1}^n f(\xi_i) g(\eta_i) \Delta x_i = \int_a^b f(x) g(x) dx$.

8.
$$f(x) \in C[a,b]$$
, 且 $\exists \delta > 0, M > 0$, s.t. $\forall [\alpha, \beta] \subset [a,b]$ 成立 $\left| \int_{\alpha}^{\beta} f(x) dx \right| \leq M(\beta - \alpha)^{1+\delta}$. 证明 $f(x) \equiv 0$.

- 9. f(x) 在 \mathbb{R} 上有定义且内闭可积,且 f(x+y) = f(x) + f(y). 证明 f(x) = xf(1).
- 10. 求积分 $I = \int_0^{\frac{\pi}{2}} \sin x \ln \sin x dx$.
- 11. 求积分 $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2 nx}{\sin x} dx$, 并求极限 $\lim_{n \to +\infty} \frac{I_n}{\ln n}$. 12. 求积分 $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx$.

2.2解答

1. 往证
$$\lim_{n \to +\infty} \frac{\int_{-1}^{1} (1-x^2)^n [f(x) - f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} = 0.$$

设 $\max_{x \in [-1,1]} |f(x)| \leq M$. 由连续性知 $\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x \in (-\delta, \delta), \, |f(x) - f(0)| < \varepsilon.$

注意到

$$\frac{\int_{-1}^{1} (1-x^2)^n f(x) dx}{\int_{-1}^{1} (1-x^2)^n dx} = \frac{\int_{-\delta}^{\delta} (1-x^2)^n [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} + \frac{\int_{-1}^{-\delta} (1-x^2)^n [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} + \frac{\int_{\delta}^{1} (1-x^2)^n [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} + \frac{\int_{\delta}^{1} (1-x^2)^n [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} = I_1 + I_2 + I_3.$$

其中,
$$|I_1| \le \frac{\int_{-\delta}^{\delta} (1-x^2)^n \varepsilon dx}{\int_{-1}^{1} (1-x^2)^n dx} \le \varepsilon$$
,

$$|I_2| \le 2M \frac{\int_{-1}^{-\delta} (1-x^2)^n \varepsilon \mathrm{d}x}{\int_{-1}^{1} (1-x^2)^n \mathrm{d}x} \le 2M \frac{(1-\delta)(1-\delta^2)^n}{\int_{-\frac{\delta}{\delta}}^{\frac{\delta}{2}} (1-x^2)^n \mathrm{d}x} \le 2M (1-\delta) \frac{(1-\delta^2)^n}{\delta(1-\frac{\delta^2}{4})^n} = 2M \frac{1-\delta}{\delta} \left(\frac{4-4\delta^2}{4-\delta^2}\right)^n.$$

由于 $\frac{4-4\delta^2}{4-\delta^2}$ < 1, 从而可取足够大的 n 使得 $|I_2|$ < ε . 类似放缩 I_3 . 此时 $|I_1+I_2+I_3|$ < 3ε .

2. WLOG 设
$$\int_0^T g(x) dx = 0$$
, 否则考虑 $h(x) = g(x) - \frac{1}{T} \int_0^T g(x) dx$.

$$\forall \varepsilon > 0,$$
 存在阶梯函数 $s_{\varepsilon}(x) = \begin{cases} C_1 & a = x_0 \leq x < x_1 \\ C_2 & x_1 \leq x < x_2 \\ \dots & \\ C_m & x_{m-1} \leq x \leq x_m = b \end{cases}$ 使得
$$\int_a^b |f(x) - s_{\varepsilon}(x)| \mathrm{d}x < \varepsilon.$$
 设 $M = \sup_{x \in [0,T]} |g(x)|.$ 则

$$\left| \int_{a}^{b} f(x)g(nx) dx \right| = \left| \int_{a}^{b} (f(x) - s_{\varepsilon}(x))g(nx) dx + \int_{a}^{b} s_{\varepsilon}(x)g(nx) dx \right|$$

$$\leq \int_{a}^{b} |f(x) - s_{\varepsilon}(x)|g(nx) dx + \left| \sum_{i=1}^{m} C_{i} \int_{x_{i-1}}^{x_{i}} g(nx) dx \right|$$

$$\leq M\varepsilon + \frac{1}{n} \sum_{i=1}^{m} C_{i} \int_{nx_{i-1}}^{nx_{i}} g(x) dx \leq M\varepsilon + \frac{1}{n} \sum_{i=1}^{m} C_{i} MT.$$

其中最后一个等式利用了 $\int_0^T g(x)\mathrm{d}x = 0, \text{ 这也意味着} \int_c^d g(x)\mathrm{d}x = \int_c^{c+T} g(x)\mathrm{d}x + \int_{c+T}^{c+2T} g(x)\mathrm{d}x + \cdots + \int_{c+kT}^d g(x)\mathrm{d}x$ (设 $c+kT \le d < c+(k+1)T$) = $\int_{c+kT}^d g(x)\mathrm{d}x \le MT, \text{ 对于 } \forall c,d \in \mathbb{R}.$

选择一个足够大的 n, 使得 $\frac{1}{n}\sum_{i=1}^{m}C_{i}MT<\varepsilon$. 从而 $\left|\int_{a}^{b}f(x)g(nx)\mathrm{d}x\right|\leq (M+1)\varepsilon$. 由极限定义立得结论.

3. (1) 由分部积分,

$$\int_a^b x f(x) f'(x) dx = x f^2(x) \Big|_a^b - \int_a^b f(x) [x f(x)]' dx = - \int_a^b f^2(x) dx - \int_a^b x f(x) f'(x) dx$$

$$\Rightarrow \int_a^b x f(x) f'(x) dx = -\frac{1}{2} \int_a^b f^2(x) dx.$$

(2) 由 Cauchy 不等式立得.

4. (1) 原条件等价于
$$\frac{f(t)}{\sqrt{1+2\int_0^t f(s)\mathrm{d}s}} \le 1$$
 两边积分 $\int_0^x \frac{f(t)}{\sqrt{1+2\int_0^t f(s)\mathrm{d}s}} \mathrm{d}t \le \int_0^x 1\mathrm{d}t$ 原函数 $\sqrt{1+2\int_0^t f(s)\mathrm{d}s} \Big|_0^x \le x \Rightarrow \sqrt{1+2\int_0^x f(s)\mathrm{d}s} \le 1+x \Rightarrow f(x) \le \sqrt{1+2\int_0^x f(s)\mathrm{d}s} \le 1+x.$
(2) 注意到

$$\left[\int_0^t f(s)g(s)\mathrm{d}s \exp\left(-\int_0^t g(s)\mathrm{d}s\right) \right]' = f(t)g(t) \exp\left(-\int_0^t g(s)\mathrm{d}s\right) - g(t) \int_0^t f(s)g(s)\mathrm{d}s \exp\left(-\int_0^t g(s)\mathrm{d}s\right) \\ \leq Kg(t) \exp\left(-\int_0^t g(s)\mathrm{d}s\right) = \left[K - K \exp\left(-\int_0^t g(s)\mathrm{d}s\right)\right]',$$

两边积分得到

$$\int_0^1 f(s)g(s)ds \exp\left(-\int_0^1 g(s)ds\right) \le K - K \exp\left(-\int_0^1 g(s)ds\right) \Rightarrow f(1) \le K + K \int_0^1 f(s)g(s)ds \le K \exp\left(\int_0^1 g(s)ds\right).$$

(请大家在积分时注意从相同起点开始积分, 这里补上常数 K 也是为了保证两边在 t=0 处都取 0. 这个题有微分方程背景, 可以先看懂答案, 再试图理解.)

5. 可以验证
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 $\in D[0,1]$, 但 $f'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 $[0,1]$ 上无界. 若额外有 $f'(x)$ 有界, 可参考 Volterra's function.

6. 设 \mathcal{C} 是 fat cantor set. 考虑 $f(x) = \begin{cases} 0, & x < 1 \\ 1, & x = 1 \end{cases}$, $g(x) = 1 - \operatorname{dist}(x, \mathcal{C})$, 但 $f(g(x)) = 1_{x \in \mathcal{C}}$ 在正测集 \mathcal{C} 上不连续. 若额外有 $g(x) \in C^{\infty}$, 可使用光滑版本的 Urysohn 引理.

7.
$$\sum_{i=1}^{n} f(\xi_i)g(\eta_i)\Delta x_i = \sum_{i=1}^{n} f(\xi_i)g(\xi_i)\Delta x_i + \sum_{i=1}^{n} f(\xi_i)[g(\eta_i) - g(\xi_i)]\Delta x_i := S_1 + S_2.$$
 显然 $\lim_{\lambda(\Delta) \to 0} S_1 = \int_a^b f(x)g(x)dx$. 记
$$\max_{x \in [a,b]} |f(x)| = M_f. \text{ 由 } g(x) \text{ 的可积性, } \text{知} |S_2| \leq \sum_{i=1}^{n} M_f \omega_g([x_{i-1},x_i])\Delta x_i = M_f[\overline{S}_g(\Delta) - \underline{S}_g(\Delta)] \overset{\lambda(\Delta) \to 0}{\to} 0.$$

8. 不妨设
$$\exists x_0$$
 s.t. $f(x_0) > 0$. 由连续性, $\exists \kappa > 0$, s.t. $\forall x \in (x_0 - \kappa, x_0 + \kappa), f(x) > \frac{f(x_0)}{2}$. 从而 $\forall [\alpha, \beta] \subset (x_0 - \kappa, x_0 + \kappa)$, 成立 $\left| \int_{\alpha}^{\beta} f(x) dx \right| > \frac{f(x_0)}{2} (\beta - \alpha) > M(\beta - \alpha)^{1+\delta}$ (最后一个大于号成立只需令 $\beta - \alpha < \left(\frac{f(x_0)}{2M}\right)^{\frac{1}{\delta}}$), 矛盾.

9. 只需证明对无理数点成立. 考察
$$\alpha \in \mathbb{R} \setminus \mathbb{Q}$$
. 由有理数点的稠密性, $\int_0^\alpha f(x) \mathrm{d}x = \frac{\alpha^2}{2} f(1)$. 由集合 $\{q\alpha: q \in \mathbb{Q}\}$ 的稠密性且 $f(q\alpha) = qf(\alpha)$, $\int_0^\alpha f(x) \mathrm{d}x = f(\alpha) \frac{\alpha}{2}$. 因此 $f(\alpha) \frac{\alpha}{2} = \frac{\alpha^2}{2} f(1) \Rightarrow f(\alpha) = \alpha f(1)$.

$$10. \ I = \int_0^{\frac{\pi}{2}} \ln \sin x \, d(1 - \cos x) \stackrel{\text{find}}{=} (1 - \cos x) \ln \sin x \Big|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (1 - \cos x) \, d(\ln \sin x) = -\int_0^{\frac{\pi}{2}} (1 - \cos x) \frac{\cos x}{\sin x} \, dx = -\int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \cos x} \, dx = \int_0^{\frac{\pi}{2}} \left(-\sin x + \frac{\sin x}{1 + \cos x} \right) \, dx = \left[\cos x - \ln(1 + \cos x) \right] \Big|_0^{\frac{\pi}{2}} = \ln 2 - 1.$$

$$\begin{split} I_n &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2nx)}{2\sin x} \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]\cos 2x + \sin[(2n-2)x]\sin 2x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x](1 - 2\sin^2 x) + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]}{2\sin x} \mathrm{d}x + \int_0^{\frac{\pi}{2}} \frac{2\sin^2 x \cos[(2n-2)x] + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= I_{n-1} + \int_0^{\frac{\pi}{2}} \sin x \cos[(2n-2)x] + \sin[(2n-2)x]\cos x \mathrm{d}x = I_{n-1} + \int_0^{\frac{\pi}{2}} \sin(2n-1)x \mathrm{d}x \\ &= I_{n-1} - \frac{1}{2n-1} \cos[(2n-1)x] \Big|_0^{\frac{\pi}{2}} = I_{n-1} + \frac{1}{2n-1}. \end{split}$$

由于
$$I_1 = 1$$
, 因此 $I_n = \sum_{i=1}^n \frac{1}{2i-1}$, 从而 $\lim_{n \to +\infty} \frac{I_n}{\ln n} = \lim_{n \to +\infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} - \lim_{n \to +\infty} \frac{1}{2} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} = \frac{1}{2}$.
12. $I = \int_{-\frac{\pi}{4}}^0 \frac{\cos^2 x}{1 + e^{-x}} dx + \int_0^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx = \int_0^{\frac{\pi}{4}} \frac{\cos^2 (-x)}{1 + e^x} dx + \int_0^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx = \int_0^{\frac{\pi}{4}} \cos^2 x dx = \frac{\pi}{8} + \frac{1}{4}$.

3 定积分中值定理, 定积分的应用 (1)

3.1 问题

- 1. 证明对于 $\forall x > 0$, 存在唯一的 $\xi_x > 0$ 使得 $\int_0^x e^{t^2} dt = xe^{\xi_x^2}$ 成立, 并求 $\lim_{x \to +\infty} \frac{\xi_x}{r}$.
- 2. 证明 $\left| \int_{a}^{b} \sin x^{2} dx \right| \leq \frac{1}{a},$ 其中 0 < a < b.
- 3. 函数 $f(x) \in D[0,1]$, 且 $f(1) = 2 \int_0^{\frac{1}{2}} e^{1-x} f(x) dx$. 证明存在 $\xi \in (0,1)$ 使得 $f(\xi) = f'(\xi)$.
- 4. 求由下列曲线所围成的平面图形的面积: (1) $y^2 = x^2(1-x^2)$; (2) $y^2 = x, x^2 + y^2 = 1$ (在第一、四象限的部分).
- 自由选讲.
- 5. f(x) 在 $(0, +\infty)$ 上是凸函数. 证明 $f(x) \in R[0, x], \forall x \in (0, +\infty), 且 <math>F(x) = \frac{1}{x} \int_{0}^{x} f(t) dt$ 也是 $(0, +\infty)$ 上的凸函数.
- 6. $f(x) \in C(\mathbb{R})$, 定义 $g(x) = f(x) \int_0^x f(t) dt$. 证明若 g(x) 单调递减, 则 $f(x) \equiv 0$.
- 7. $f(x) \in R[0,1], 0 < m \le f(x) \le M$, 求证 $\int_0^1 f(x) dx \int_0^1 \frac{1}{f(x)} dx \le \frac{(m+M)^2}{4mM}$. (编者注: 本题比较 tricky.) 8. f(x) 在 \mathbb{R} 上有定义且内闭可积, f(x+y) = f(x) + f(y) + xy(x+y), 求 f(x).
- 9. 求积分 $I = \int_{0}^{1} \frac{\ln(1+x)}{1+x^2} dx$.

10. 求积分
$$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^{2025} x} \mathrm{d}x.$$

11. 求积分
$$I = \int_0^1 [\sqrt[7]{1-x^3} - \sqrt[3]{1-x^7}] dx.$$

12.
$$f(x)$$
 在 $[a,b]$ 上单调递增, 证明 $\int_a^b x f(x) dx \ge \frac{a+b}{2} \int_a^b f(x) dx$. (能试着用定积分第二中值定理吗?)

13.
$$f(x) \in C[a,b]$$
, 且对任意 $g(x) \in C^{\infty}[a,b]$ 满足 $g(a) = g(b) = 0$ 都有 $\int_a^b f(x)g(x)dx = 0$. 证明 $f(x) \equiv 0$.

14. (Dirichlet 判别法). 设
$$f(x)$$
 在 $(a, +\infty)$ 上单调, $\lim_{x \to +\infty} f(x) = 0$. $\forall A \ge a, g(x) \in R[a, A]$ 且 $\left| \int_a^A g(x) dx \right| \le M$ 恒成立. 证明极限 $\lim_{A \to +\infty} \int_a^A f(x)g(x)dx$ 存在.

15. 试求由拋物线 $y^2 = 2x$ 与过其焦点的弦所围的图形面积的最小值.

3.2 解答

1. 第一问由定积分第一中值定理和函数 e^{t^2} 的单调性显然. 其次

$$\lim_{x \to +\infty} \frac{\xi_x}{x} = \lim_{x \to +\infty} \frac{\sqrt{\ln \int_0^x e^{t^2} dt - \ln x}}{x} = \sqrt{\lim_{x \to +\infty} \frac{\ln \int_0^x e^{t^2} dt - \ln x}{x^2}} \stackrel{\text{L'Hospital}}{=} \sqrt{\lim_{x \to +\infty} \frac{\frac{e^{x^2}}{\int_0^x e^{t^2} dt} - \frac{1}{x}}{2x}}$$

$$= \sqrt{\lim_{x \to +\infty} \frac{x e^{x^2} - \int_0^x e^{t^2} dt}{2x^2 \int_0^x e^{t^2} dt}} \stackrel{\text{L'Hospital}}{=} \sqrt{\lim_{x \to +\infty} \frac{2x^2 e^{x^2}}{2x^2 e^{x^2} + 4x \int_0^x e^{t^2} dt}}$$

$$= \sqrt{\lim_{x \to +\infty} \frac{x e^{x^2}}{x e^{x^2} + 2 \int_0^x e^{t^2} dt}} \stackrel{\text{L'Hospital}}{=} \sqrt{\lim_{x \to +\infty} \frac{(2x^2 + 1)e^{x^2}}{(2x^2 + 3)e^{x^2}}}} = 1.$$

$$2. \left| \int_a^b \sin x^2 \mathrm{d}x \right| \stackrel{t=x^2}{=} \left| \int_{a^2}^{b^2} \frac{\sin t}{2\sqrt{t}} \mathrm{d}t \right|. \text{ 由于 } \frac{1}{\sqrt{t}} \text{ 非负单调递减, 因此由定积分第二中值定理, 原积分} = \frac{1}{2a} \left| \int_{a^2}^\xi \sin t \mathrm{d}t \right| \leq \frac{1}{a}.$$

3. 由定积分第一中值定理, $\exists \xi \in [0, \frac{1}{2}]$, s.t. $f(1) = 2 \int_0^{\frac{1}{2}} e^{1-x} f(x) dx = e^{1-\xi} f(\xi)$, 这也意味着对于函数 $g(x) = e^{-x} f(x)$ 成立 $g(1) = g(\xi)$. 由 Rolle 微分中值定理知存在 $g'(\zeta) = 0 \Rightarrow f'(\zeta) = f(\zeta)$.

4. (1)
$$S = 4 \int_0^1 \sqrt{x^2 (1 - x^2)} dx \stackrel{x = \sin \theta}{=} 4 \int_0^{\frac{\pi}{2}} \sin \theta \cos^2 \theta d\theta = -\frac{4 \cos^3 \theta}{3} \bigg|_0^{\frac{\pi}{2}} = \frac{4}{3}.$$

(2) 先解出交点, 然后用原函数直接计算
$$S=2\int_0^{\frac{-1+\sqrt{5}}{2}}\sqrt{x}\mathrm{d}x+2\int_{\frac{-1+\sqrt{5}}{2}}^1\sqrt{1-x^2}\mathrm{d}x=\frac{1}{3}\left(\frac{\sqrt{5}-1}{2}\right)^{\frac{3}{2}}+\frac{\pi}{2}-\arcsin\frac{\sqrt{5}-1}{2}.$$

5. 凸函数开区间上连续
$$\Rightarrow$$
 闭区间上可积. 由 $F(x) = \frac{1}{x} \int_0^x f(t) dt = \int_0^x f\left(\frac{t}{x} \cdot x\right) d\frac{t}{x} = \int_0^1 f(ux) du \Rightarrow F\left(\sum_{i=1}^n t_i x_i\right) = \int_0^x f(t) dt$

$$\int_{0}^{1} f\left(\sum_{i=1}^{n} t_{i}(ux_{i})\right) du \leq \int_{0}^{1} \sum_{i=1}^{n} t_{i} f(ux_{i}) du = \sum_{i=1}^{n} t_{i} F(x_{i}) \, \, \Box F(x) \, \, \Box.$$

6. 构造
$$G(x) = \frac{1}{2} \left(\int_0^x f(t) dt \right)^2$$
, $G'(x) = g(x)$ 单调递减, $g(0) = 0$. 因此 $G(x)$ 在 $(0, +\infty)$ 上单调递减, 在 $(-\infty, 0)$ 上

单调递增. 又因为
$$G(0) = 0$$
, $G(x) \ge 0$ 恒成立 $\Rightarrow G(x) \equiv 0 \Rightarrow \int_0^x f(t) dt \equiv 0 \Rightarrow f(x) \equiv 0$.

7. 显然有
$$(M - f(x))$$
 $\left(\frac{1}{f(x)} - \frac{1}{m}\right) \le 0$, 因此 $\int_0^1 (M - f(x)) \left(\frac{1}{f(x)} - \frac{1}{m}\right) dx \le 0 \Leftrightarrow M \int_0^1 \frac{1}{f(x)} dx + \frac{1}{m} \int_0^1 f(x) dx \le 0$

$$1 + \frac{M}{m}.$$
 利用均值不等式, LHS $\geq 2\sqrt{\frac{M}{m}}\sqrt{\int_0^1 f(x)\mathrm{d}x\int_0^1 \frac{1}{f(x)}\mathrm{d}x} \Rightarrow \int_0^1 f(x)\mathrm{d}x\int_0^1 \frac{1}{f(x)}\mathrm{d}x \leq \frac{(m+M)^2}{4mM}.$

8. 等式左右两边对
$$x$$
 积分,得到 $\int_{y}^{x+y} f(t)dt = \int_{0}^{x} f(t)dt + xf(y) + \frac{x^{3}y}{3} + \frac{x^{2}y^{2}}{2}$. 类似有 $\int_{x}^{x+y} f(t)dt = \int_{0}^{y} f(t)dt + xf(y) + \frac{x^{3}y}{3} + \frac{x^{2}y^{2}}{2}$.

$$yf(x) + \frac{xy^3}{3} + \frac{x^2y^2}{2}$$
. 两式相減得 $xf(y) + \frac{x^3y}{3} = yf(x) + \frac{xy^3}{3}$, 即是 $\frac{f(x)}{x} - \frac{x^2}{3} = \frac{f(y)}{y} - \frac{y^2}{3}$. 从而 $\frac{f(x)}{x} - \frac{x^3}{3} \equiv C \Rightarrow$

 $f(x) = \frac{x^3}{3} + Cx$. 经验证符合题意.

9. 作代换
$$x = \tan t$$
 得 $I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan t) dt$. 再作代换 $t = \frac{\pi}{4} - t$ 得 $I = \int_0^{\frac{\pi}{4}} \ln\left(1 + \tan\left(\frac{\pi}{4} - t\right)\right) dt = \frac{\pi}{4} \ln 2 - \int_0^{\frac{\pi}{4}} \ln(1 + \tan t) dt = \frac{\pi}{4} \ln 2 - I \Rightarrow I = \frac{\pi}{8} \ln 2.$

10. 记
$$J = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \cot^{2025} x} dx$$
. 作换元 $t = \frac{\pi}{2} - x$ 知 $I = J$. 而 $I + J = \int_0^{\frac{\pi}{2}} 1 dx = \frac{\pi}{2}$, 因此 $I = J = \frac{\pi}{4}$.

11.
$$\int_0^1 \sqrt[7]{1-x^3} dx^{y=\sqrt[7]{1-x^3}} \int_0^1 y dx \stackrel{\text{I.fig.} \chi}{=} \int_0^1 x dy = \int_0^1 \sqrt[3]{1-y^7} dy \Rightarrow I = \int_0^1 \sqrt[3]{1-y^7} dy - \int_0^1 \sqrt[3]{1-x^7} dx = 0.$$

12. f(x) 单调, 并考虑 $g(x) = x - \frac{a+b}{2}$. 由定积分第二中值定理,

$$\int_{a}^{b} \left(x - \frac{a+b}{2} \right) f(x) dx = f(a) \int_{a}^{\xi} \left(x - \frac{a+b}{2} \right) dx + f(b) \int_{\xi}^{b} \left(x - \frac{a+b}{2} \right) dx$$

$$= f(a) \int_{a}^{b} \left(x - \frac{a+b}{2} \right) dx + (f(b) - f(a)) \int_{\xi}^{b} \left(x - \frac{a+b}{2} \right) dx = (f(b) - f(a)) \frac{1}{2} (b - \xi) (\xi - a) \ge 0.$$

13. 用反证法. WLOG 设 $f(x_0) > 0$, 由连续性知 $\exists \delta > 0$ s.t. $\forall x \in (x_0 - \delta, x_0 + \delta) \subset [a, b], f(x) > \frac{f(x_0)}{2}$. 从而定义

$$g(x) = \begin{cases} \frac{f(x_0)}{2}, & x \in [x_0 - \frac{\delta}{2}, x_0 + \frac{\delta}{2}] \\ 0, & x \in [a, x_0 - \delta] \cup [x_0 + \delta, b], \\ C^{\infty} \dot{\mathfrak{E}} \dot{\mathfrak{E}}, & \text{otherwise} \end{cases}$$

此时
$$\int_a^b f(x)g(x)\mathrm{d}x \ge \int_{x_0-\frac{\delta}{2}}^{x_0+\frac{\delta}{2}} \frac{f^2(x_0)}{4}\mathrm{d}x > 0$$
, 矛盾.

14.
$$\forall \varepsilon > 0, \exists X > a, \text{s.t.} \forall x \geq X, |f(x)| \leq \frac{\varepsilon}{4M}$$
. 从而 $\forall A', A'' \geq X, \left| \int_{A'}^{A''} f(x)g(x) dx \right|$ 定积分第二中值定理 $\left| f(A') \int_{A'}^{\xi} g(x) dx + \frac{\varepsilon}{2M} \right|$

$$\left| f(A'') \int_{\xi}^{A''} g(x) \mathrm{d}x \right| \leq 2M(|f(A')| + |f(A'')|) \leq \varepsilon. \text{ 然后由柯西收敛定理知极限存在.}$$

15. 设弦方程为
$$x - \frac{1}{2} = ky$$
, 与抛物线交点纵坐标为 y_1, y_2 , 则围成区域的面积 $S = \int_{y_1}^{y_2} \left(ky + \frac{1}{2} - \frac{y^2}{2} \right) dy = \frac{k}{2} (y_2 - y_1)(y_2 + y_1) + \frac{1}{2} (y_2 - y_1) - \frac{1}{6} (y_2 - y_1)(y_2^2 + y_1 y_2 + y_1^2)$. 联立直线与抛物线, 由韦达定理知 $y_1 + y_2 = 2k$, $y_1 y_2 = -1$. 则 $S = \frac{2}{3} (k^2 + 1)^{\frac{3}{2}}$. 因此 $k = 0$ 时面积最小,为 $\frac{2}{3}$.

补充 (不要求掌握)

等周问题: 长为 L 的曲线何时围成区域面积最大? 答案: 圆 (一年级小学生皆可猜出).

证明: 设 D 为凸区域 (D 中任意两点连线都在 D 内). 设 Γ : $\begin{cases} x=x(s) \\ y=y(s) \end{cases} \in C^1[0,L],$ 此处选

择 Γ 的弧长为参数, 则 $x'(s)^2 + y'(s)^2 = 1$, 且 D 的面积为 $A = \int_0^L x dy = \int_0^L x(s)y'(s)ds$. 设

 $C: \left\{ egin{aligned} x = arphi(s) = x(s) \\ y = \psi(s) \end{aligned}
ight.$ 是以 O 为中心, R 为半径的圆, 此处选择 Γ 的弧长为参数, 则 C 的面

积为
$$\pi R^2 = -\int_0^L y dx = -\int_0^L \psi(s) x'(s) ds$$
. 从而 $A + \pi R^2 = \int_0^L (x(s)y'(s) - \psi(s)x'(s)) ds \le$

$$\int_{0}^{L} \sqrt{(x(s)y'(s) - \psi(s)x'(s))^{2}} ds \le \int_{0}^{L} \sqrt{(x'(s)^{2} + y'(s)^{2})(x(s)^{2} + \psi(s)^{2})} ds = RL.$$
 因此成立 $2\sqrt{A}\sqrt{\pi R^{2}} \le A + \pi R^{2} \le RL$ 为 $A \le L^{2}$ 其中等异成立当日仅当以上每年相等,尤其是 $(x(s)y'(s) - y(s)x'(s))^{2} - (x'(s)^{2} + y'(s)^{2})(x(s)^{2} + y(s)^{2})$

 $RL \Rightarrow A \leq \frac{L^2}{4\pi}$. 其中等号成立当且仅当以上每步相等,尤其是 $(x(s)y'(s)-\psi(s)x'(s))^2=(x'(s)^2+y'(s)^2)(x(s)^2+\psi(s)^2)$. 用右边减去左边得到 $(x(s)x'(s)+\psi(s)y'(s))^2=0$. 由于 $x(s)^2+\psi(s)^2=R^2$, 两边求导得 $x(s)x'(s)+\psi(s)\psi'(s)=0 \Rightarrow \psi'(s)=y'(s), \psi(s)=y(s)+y_0$, 即 Γ 方程为 $x^2+(y-y_0)^2=R^2$, 圆也!

定积分的应用(2)

4.1 问题

■ 自由选讲.

- 1. 半径为 R 的球正好有一半沉入水中, 球的密度为 1. 现将球从水中匀速取出, 需要做多少功?
- 2. 求质量分布均匀的对数螺旋线 $r=e^{\theta}$ 在 $(r,\theta)=(1,0)$ 和 $(r,\theta)=(e^{\phi},\phi)$ 之间一段的重心坐标
- 3. 求双扭线 $r^2=2a^2\cos2\theta$ 绕轴 $\theta=\frac{\pi}{4}$ 旋转一周所得的曲面的面积.
- 4. 证明极坐标下曲线 $r = r(\theta)$ 与 $\theta = \alpha$, $\theta = \beta$ 所围平面图形绕极轴旋转一周所得立体体积为 $V = \frac{2\pi}{3} \int_{\alpha}^{\beta} r^{3}(\theta) \sin \theta d\theta$.

 5. 求圆的渐伸线 $\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t t \cos t) \end{cases}$, $t \in [0, 2\pi]$ 上 $A(a, 0), B(a, -2\pi a)$ 之间部分与直线 \overline{AB} 围成图形的面积.

 6. 推导重力场中粒子数量密度的分布率 $n(z) = n(0)e^{-\frac{mgz}{kBT}}$, 其中 T 是温度, k_{B} 是玻尔兹曼常量.

- 7. 计算极限 $\lim_{x \to +\infty} \frac{\int_0^x t |\sin t| dt}{x^2}$.

 8. 已知 $b > e^2$, 证明 $\int_{e^2}^b \frac{dx}{\ln x} < \frac{2b}{\ln b}$. BTW, 你能不能找到最优常数 $C \ge 0$, 使得 $\int_{e^2}^b \frac{dx}{\ln x} + C \le \frac{2b}{\ln b}$ 恒成立.

 9. 证明 π 是无理数. 可以按照以下步骤: (1) 设 $\pi = \frac{a}{b}, a, b \in \mathbb{Z}$, 定义 $f(x) = \frac{b^n x^n (\pi x)^n}{n!}$, 证明 $\forall i \in \mathbb{N}_+, f^{(i)}(0), f^{(i)}(\pi)$
- 都是整数. (2) 证明定积分 $\int_0^{\pi} f(x) \sin x dx$ 也是整数. (3) 证明 $0 < \int_0^{\pi} f(x) \sin x dx < 1$, 得到矛盾.
- 10. $f(x) \in C^2[0,1], f(0) = f(1) = f'(0) = 0, f'(1) = 1$, 证明 $\int_0^1 [f''(x)]^2 dx \ge 4$, 取等号当且仅当 $f(x) = x^3 x^2$. 11. $f(x) \in C^1[0,1], f(x) \in [0,1], f(0) = f(1) = 0, f'(x)$ 单调递减. 证明曲线 y = f(x) 在 [0,1] 上的弧长不大于 3.
- 12. $f(x) \in C^2[a,b]$, 证明存在 $\xi \in (a,b)$ 使得 $\int_a^b f(x) dx (b-a) f\left(\frac{a+b}{2}\right) = \frac{f''(\xi)(b-a)^3}{24}$.
- 13. $f(x) \in D[0,1], f'(x) \in R[0,1], |f'(x)| \le M.$ 定义 $A_n = \int_0^1 f(x) dx \frac{1}{n} \sum_{n=1}^n f\left(\frac{k}{n}\right).$ (1) 证明 $|A_n| \le \frac{M}{2n}$. (你可以 推广到高阶和高维吗? 答案是 $O(n^{-\frac{k}{d}})$.) (2) 计算极限 $\lim_{n\to +\infty} nA_n$.
- 14. (Jensen 不等式). 凸函数 $\varphi(x): \mathbb{R} \to \mathbb{R}, \ p(x): [a,b] \to [0,\infty)$ 可积且 $\int_a^b p(x) \mathrm{d}x > 0$. 证明对于任意 $f(x) \in R[a,b],$ $\varphi\left(\frac{\int_a^b f(x)p(x)dx}{\int_a^b p(x)dx}\right) \le \frac{\int_a^b \varphi(f(x))p(x)dx}{\int_a^b p(x)dx}.$

1. 球心向上移动距离 h 时, 球位于水外的体积为 $V(h) = \frac{1}{2} \frac{4}{3} \pi R^3 + \int_0^h \pi \left(\sqrt{R^2 - z^2} \right)^2 dz = \frac{2}{3} \pi R^3 + \pi \left(R^2 h - \frac{1}{3} h^3 \right).$

对应位移 $[h, h + \mathrm{d}h]$ 所做的微功 $\mathrm{d}W = gV(h)\rho\mathrm{d}h$. 从而 $W = g\int_0^R V(h)\mathrm{d}h = g\left(\frac{2}{3}\pi R^4 + \frac{5}{12}\pi R^4\right) = \frac{13}{12}g\pi R^4$.

$$2. \ \bar{x} = \frac{\int_0^{\phi} e^{2\theta} \cos \theta d\theta}{\int_0^{\phi} e^{\theta} d\theta} = \frac{e^{2\phi} (\sin \phi + 2\cos \phi) - 2}{5(e^{\phi} - 1)}, \\ \bar{y} = \frac{\int_0^{\phi} e^{2\theta} \sin \theta d\theta}{\int_0^{\phi} e^{\theta} d\theta} = \frac{e^{2\phi} (2\sin \phi - \cos \phi) + 1}{5(e^{\phi} - 1)}.$$

- 3. 原命题等价于 $r^2=2a^2\sin 2\theta$ 绕极轴旋转一周所得的曲面的面积. 改写成平面坐标系 $\begin{cases} x=a\sqrt{2\sin 2\theta}\cos \theta \\ y=a\sqrt{2\sin 2\theta}\sin \theta \end{cases}$
- 面积 $S = 2 \int_{0}^{\frac{\pi}{2}} 2\pi y(\theta) \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta = 8\pi a^2.$
- 4. 对应 $[\theta, \theta + \mathrm{d}\theta]$ 的扇形面积 $\mathrm{d}S = \frac{1}{2}r^2(\theta)\mathrm{d}\theta$,其质心位于 $\frac{2}{3}r(\theta)$ 处. 由 Guldin 第二定理,此扇形绕极轴旋转体体积 为 $dV = \frac{1}{2}r^2(\theta)d\theta 2\pi \frac{2}{3}r(\theta)\sin\theta = \frac{2\pi}{3}r^3(\theta)\sin\theta d\theta$. 两边积分得到结果.
- 5. 直线 AB 的参数方程是 $\begin{cases} x = \phi(t) = a \\ y = \psi(t) = t \end{cases}$, $t \in [-2\pi a, 0]$. 故 $S = -\int_0^{2\pi} y(t) \mathrm{d}x(t) \int_{-2\pi a}^0 \psi(t) \mathrm{d}\phi(t) = -\int_0^{2\pi} a(\sin t t) \mathrm{d}t = 0$

$$t\cos t)a(t\cos t)dt + 0 = \frac{4}{3}\pi^3a^2 + \pi a^2$$
.
6. 由二力平衡, 压力差 dF 托起了单位体积内的粒子重力 dG. 从而 dF+dG = 0 \Rightarrow Sdp+ ρg Sdz = 0 \Rightarrow dp+ nmg dz = 0. 由 $p = nk_BT$ 知 d $p = k_BT$ d $n \Rightarrow \frac{\mathrm{d}n}{n} = -\frac{mg}{k_BT}$ dz. 两边积分知 $\log n(z) - \log n(0) = \frac{-mgz}{k_BT} \Rightarrow n(z) = n(0)e^{-\frac{mgz}{k_BT}}$.

7. 原式
$$\stackrel{t=xt}{=} \lim_{x \to +\infty} \frac{\int_0^1 xt |\sin(xt)| \mathrm{d}(xt)}{x^2} = \lim_{x \to +\infty} \int_0^1 t |\sin(xt)| \mathrm{d}t \stackrel{\mathrm{R-L \ Lemma}}{=} \int_0^1 t \mathrm{d}t \frac{1}{\pi} \int_0^\pi |\sin t| \mathrm{d}t = \frac{1}{\pi}.$$

8. 考虑 $f(x) = \frac{\sqrt{x}}{\ln x}$, 从而 $f'(x) = \frac{\ln x - 1}{(\ln x)^2} > 0 \Rightarrow f(x)$ 单调递增. 因此由定积分第二中值定理, $\exists \xi \in [e^2, b]$ 使得

$$\int_{e^2}^b \frac{\mathrm{d}x}{\ln x} = \int_{e^2}^b \frac{\sqrt{x}}{\ln x} \frac{\mathrm{d}x}{\sqrt{x}} = \frac{\sqrt{b}}{\ln b} \int_{\xi}^b \frac{\mathrm{d}x}{\sqrt{x}} = \frac{2\sqrt{b}}{\ln b} (\sqrt{b} - \sqrt{\xi}) < \frac{2b}{\ln b}.$$

上述做法纯扯淡. 其实我们可以构造 $g(b)=\frac{2b}{\ln b}-\int_{e^2}^b\frac{\mathrm{d}x}{\ln x},$ $g'(b)=\frac{2\ln b-2}{(\ln b)^2}-\frac{1}{\ln b}=\frac{\ln b-2}{(\ln b)^2}>0$ \Rightarrow $g(b)>g(e^2)=e^2$. 9. (1) f(x) 是一个次数从 n 到 2n 的多项式. 至于 $f^{(i)}(0)$ 是不是整数, 我们只需讨论求导后的非零常数项. 此时 $i\geq n$, 求导后得到的非零常数值是 i!c, 且 c 是整数除以 n! 得到的有理数, 从而 i!c 是整数. 由于 $f(x) = f(\pi - x) \Rightarrow f^{(i)}(\pi) = f(\pi - x)$ $(-1)^n f^{(i)}(0)$, 因此 $f^{(i)}(\pi)$ 也是整数.

(2) 由分部积分,
$$\int_0^{\pi} f(x) \sin x dx = f(x)(-\cos x)|_0^{\pi} + \int_0^{\pi} f'(x) \cos x dx = f(0) + f(\pi) + f'(x) \sin x|_0^{\pi} - \int_0^{\pi} f''(x) \sin x dx = f(0) + f(\pi) - \int_0^{\pi} f''(x) \sin x dx$$
. $f(x) \neq 2n$ 此多项式, 重复以上过程, 最后的结果是 $\int_0^{\pi} f(x) \sin x dx = f(0) + f(\pi) - f''(0) - f''(\pi) + \dots + (-1)^n f^{(2n)}(0) + (-1)^n f^{(2n)}(\pi)$, 因此是整数.

(3) 在区间
$$[0,\pi]$$
 上成立 $0 \le a - bx = b(\pi - x) \le a$, 因此 $0 \le f(x) = \frac{x^n (a - bx)^n}{n!} \le \frac{\pi^n a^n}{n!}$, 从而 $0 < \int_0^{\pi} f(x) \sin x dx \le \int_0^{\pi} f(x) dx < \frac{\pi^{n+1} a^n}{n!}$. 当 n 足够大时, $\frac{\pi^{n+1} a^n}{n!} < 1$.

$$10. \Leftrightarrow p(x) = x^3 - x^2, \, \text{从而有} \int_0^1 [(f''(x))^2 - (p''(x))^2] \mathrm{d}x = \int_0^1 [f''(x) - p''(x)]^2 \mathrm{d}x + 2 \int_0^1 f''(x) p''(x) \mathrm{d}x - 2 \int_0^1 [p''(x)]^2 \mathrm{d}x \ge 0 + 2f'(x)p''(x)|_0^1 - 2 \int_0^1 f'(x)p'''(x) \mathrm{d}x - 8 = 2f'(1)p''(1) - 2f(x)p'''(x)|_0^1 + 2 \int_0^1 f(x)p''''(x) \mathrm{d}x - 8 = 0.$$

11. 设 $x_0 = \underset{x \in [0, 1]}{\arg \max} f(x) \Rightarrow f'(x_0) = 0$. 从而成立弧长估计

$$s = \int_0^1 \sqrt{1 + f'(x)^2} dx \le \int_0^1 (1 + |f'(x)|) dx = 1 + \int_0^{x_0} f'(x) dx - \int_{x_0}^1 f'(x) dx = 1 + 2f(x_0) \le 3.$$

12. 由分部积分和定积分第一中值定理,

$$\int_{a}^{\frac{a+b}{2}} f(x) dx = \int_{a}^{\frac{a+b}{2}} f(x) d(x-a) = f\left(\frac{a+b}{2}\right) \frac{b-a}{2} - \int_{a}^{\frac{a+b}{2}} f'(x) d\frac{(x-a)^{2}}{2}$$

$$= f\left(\frac{a+b}{2}\right) \frac{b-a}{2} - f'\left(\frac{a+b}{2}\right) \frac{(b-a)^{2}}{8} + \int_{a}^{\frac{a+b}{2}} \frac{(x-a)^{2}}{2} f''(x) dx$$

$$= f\left(\frac{a+b}{2}\right) \frac{b-a}{2} - f'\left(\frac{a+b}{2}\right) \frac{(b-a)^{2}}{8} + f''(\xi_{1}) \int_{a}^{\frac{a+b}{2}} \frac{(x-a)^{2}}{2} dx.$$

同理.

$$\int_{\frac{a+b}{2}}^{b} f(x) dx = f\left(\frac{a+b}{2}\right) \frac{b-a}{2} + f'\left(\frac{a+b}{2}\right) \frac{(b-a)^2}{8} + f''(\xi_2) \int_{\frac{a+b}{2}}^{b} \frac{(x-b)^2}{2} dx.$$

两式相加得 $\int_a^b f(x) dx = f\left(\frac{a+b}{2}\right)(b-a) + (f''(\xi_1) + f''(\xi_2)) \frac{(b-a)^3}{48} \stackrel{\text{Darboux}}{=} f\left(\frac{a+b}{2}\right)(b-a) + f''(\xi) \frac{(b-a)^3}{24}.$ 13. (1) 直接计算即可:

$$\left| \int_0^1 f(x) dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| = \left| \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(f(x) - f\left(\frac{k}{n}\right) \right) dx \right| \le \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| f(x) - f\left(\frac{k}{n}\right) \right| dx$$
$$\le \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} M\left(\frac{k}{n} - x\right) dx = \sum_{k=1}^n \frac{M}{2n^2} = \frac{M}{2n}.$$

(2) 注意到

$$A_n = \int_0^1 f(x) dx - \frac{1}{n} \sum_{k=1}^n \frac{f(\frac{k-1}{n}) + f(\frac{k}{n})}{2} + \frac{1}{2n} (f(0) - f(1))$$
$$= \sum_{k=1}^n \left(\int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx - \frac{f(\frac{k-1}{n}) + f(\frac{k}{n})}{2n} \right) + \frac{1}{2n} (f(0) - f(1)).$$

利用分部积分,

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) d\left(x - \frac{2k-1}{2n}\right) = f(x)\left(x - \frac{2k-1}{2n}\right) \Big|_{\frac{k-1}{n}}^{\frac{k}{n}} - \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(x - \frac{2k-1}{2n}\right) f'(x) dx := \frac{f(\frac{k-1}{n}) + f(\frac{k}{n})}{2n} - B_n^k,$$

其中

$$B_n^k = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(x - \frac{2k-1}{2n} \right) f'(x) dx = \int_{\frac{k-1}{n}}^{\frac{2k-1}{2n}} \left(x - \frac{2k-1}{2n} \right) f'(x) dx + \int_{\frac{2k-1}{2n}}^{\frac{k}{n}} \left(x - \frac{2k-1}{2n} \right) f'(x) dx$$
$$= f'(\xi_{k,1}) \int_{\frac{k-1}{n}}^{\frac{2k-1}{2n}} \left(x - \frac{2k-1}{2n} \right) dx + f'(\xi_{k,2}) \int_{\frac{2k-1}{2n}}^{\frac{k}{n}} \left(x - \frac{2k-1}{2n} \right) dx = -\frac{f'(\xi_{k,1})}{8n^2} + \frac{f'(\xi_{k,2})}{8n^2}.$$

综上所述, 我们有

$$nA_n = \sum_{k=1}^n \frac{f'(\xi_{k,2}) - f'(\xi_{k,1})}{8n} + \frac{f(0) - f(1)}{2}$$

$$\Rightarrow \lim_{n \to +\infty} nA_n = \frac{1}{8} \left(\int_0^1 f'(x) dx - \int_0^1 f'(x) dx \right) + \frac{f(0) - f(1)}{2} = \frac{f(0) - f(1)}{2}.$$

14. WLOG $\int_{a}^{b} p(x) dx = 1$, 并设 $\int_{a}^{b} f(x) p(x) dx = c$, 任取 $k \in [\varphi'_{-}(c), \varphi'_{+}(c)]$, 构造 "切" 直线 $l : y = k(x-c) + \varphi(c)$. 由 凸函数性质知 $\varphi(x) \ge l(x)$ 恒成立. 从而 $\varphi(c) = l(c) = k\left(\int_a^b f(x)p(x)\mathrm{d}x - c\right) + \varphi(c) = \int_a^b [k(f(x)-c)+\varphi(c)]p(x)\mathrm{d}x = 0$ $\int_{a}^{b} l(f(x))p(x)dx \le \int_{a}^{b} \varphi(f(x))p(x)dx.$

广义积分

5.1 问题

- 1. 讨论广义积分 $\int_{1}^{+\infty} x \left(1 \cos \frac{1}{x}\right)^{\alpha} dx$, $\alpha > 0$ 的收敛性.
- 2. 讨论广义积分 $\int_{1}^{+\infty} \sin\left(\frac{\sin x}{x}\right) dx$ 的收敛性与绝对收敛性.
- 3. 讨论广义积分 $\int_{0}^{1} \frac{\sin \frac{1}{x}}{x^{\frac{3}{2}} \ln \left(1 + \frac{1}{x}\right)} dx$ 的收敛性. 4. 讨论广义积分 $\int_{0}^{+\infty} \frac{\sin \left(x + \frac{1}{x}\right)}{x^{p}} dx$ 的收敛性.
- 5. 函数 f(x) 在 $[a, +\infty)$ 上单调, 无穷积分 $\int_a^{+\infty} f(x) dx$ 收敛. 证明 $\lim_{x \to +\infty} x f(x) = 0$.
- 6. 函数 f(x) 在 $[0,+\infty)$ 上单调, $g(x) \not\equiv 0$ 是 \mathbb{R} 上以 T>0 为周期的连续函数. 证明无穷积分 $\int_{0}^{+\infty} f(x) \mathrm{d}x$ 收敛的充 要条件是无穷积分 $\int_{0}^{+\infty} f(x)|g(x)|dx$ 收敛.
- 7. f(x), g(x) 是 $[0, +\infty)$ 上单调递减的连续正函数, 并且 $\int_{0}^{+\infty} f(x) dx, \int_{0}^{+\infty} g(x) dx$ 发散. 记 $h(x) = \min\{f(x), g(x)\},$ 讨论 $\int_0^{+\infty} h(x) dx$ 的收敛性.

■ 自由选讲.

8. 讨论广义积分
$$\int_0^{+\infty} \frac{\cos ax}{1+x^p} dx, p \ge 0, a \in \mathbb{R}$$
 的收敛性.

9. 讨论广义积分
$$\int_{0}^{+\infty} \frac{x^{p}}{1+x^{q}|\sin x|^{r}} dx, p, q, r > 0$$
 的收敛性.

10. 讨论广义积分
$$\int_0^{+\infty} \frac{x dx}{1 + x^6 \sin^2 x}$$
 的收敛性.

10. 讨论广义积分
$$\int_0^{+\infty} \frac{x dx}{1 + x^6 \sin^2 x}$$
 的收敛性.
11. 讨论广义积分 $\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx$ 的收敛性和绝对收敛性.

12. 证明
$$\lim_{n \to +\infty} \int_0^1 \cos^n \frac{1}{x} dx = 0.$$

13. 求积分
$$I(\alpha) = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)}$$
.

14. 求积分
$$I = \int_0^{+\infty} \frac{\ln x}{(x^2 + 1)(x^2 + 4)} dx.$$

15. (Dirichlet 积分). 求积分
$$I = \int_0^{+\infty} \frac{\sin x}{x} dx$$
. 你可以利用恒等式 $\frac{\sin(n + \frac{1}{2})x}{2\sin\frac{x}{2}} = \frac{1}{2} + \sum_{k=1}^n \cos kx$.

16. (Euler 积分). 求积分
$$I = \int_0^{\frac{\pi}{2}} \ln \sin x dx$$
.

17. (Euler-Poisson 积分). 利用数列
$$\left\{\left(1-\frac{t^2}{n}\right)^n\right\}$$
 的极限, 求积分 $I=\int_0^{+\infty}e^{-t^2}\mathrm{d}t$. (你可以使用如下命题: 当 $a\geq 1$

时,
$$0 \le e^{-x} - \left(1 - \frac{x}{a}\right)^a \le \frac{x^2}{a}e^{-x}$$
 在区间 $[0, a]$ 上恒成立. 这由导数知识容易验证.)

18.
$$f(x)$$
 在 \mathbb{R} 上内闭可积, $f(+\infty) = A$, $f(-\infty) = B$. 证明 $\forall a \in \mathbb{R}$, 积分 $\int_{-\infty}^{+\infty} [f(x+a) - f(x)] dx$ 收敛, 并求其值.

19.
$$\int_{-\infty}^{+\infty} f(x) dx$$
 收敛, 证明 $\int_{-\infty}^{+\infty} f\left(x - \frac{1}{x}\right) dx$ 收敛.

20. 广义积分
$$\int_0^{+\infty} f(x) dx$$
 收敛, 且 $\forall k = 1, 2, \cdots, n, u_k(x)$ 均单调有界. 证明 $\int_0^{+\infty} f(x) \prod_{k=1}^n u_k(x) dx$ 收敛.

21.
$$a, b > 0$$
,广义积分 $\int_0^{+\infty} f\left(ax + \frac{b}{x}\right) dx$ 收敛,证明 $\int_0^{+\infty} f\left(ax + \frac{b}{x}\right) dx = \frac{1}{a} \int_0^{+\infty} f(\sqrt{t^2 + 4ab}) dt$.

22. 利用余元公式
$$\operatorname{Beta}(p, 1-p) := \int_0^1 x^{p-1} (1-x)^{-p} dx = \frac{\pi}{\sin p\pi} (0 计算积分 $I = \int_0^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx$.$$

23. 计算极限
$$\lim_{t\to 0+0} \frac{1}{\sqrt{t}} \int_{0}^{+\infty} e^{-\frac{1}{t}(e^x-x-1)} dx$$
. 你可能需要用到第 17 题的结论.

5.2 解答

1. 由于当
$$x \to +\infty$$
 时 $x\left(1-\cos\frac{1}{x}\right)^{\alpha} \sim x\left(\frac{1}{2x^2}\right)^{\alpha} \sim x^{1-2\alpha}$, 因此 $\alpha > 1$ 时收敛, $0 < \alpha \le 1$ 时发散.

2. 由带 Lagrange 余项的 Taylor 展开,
$$\sin\left(\frac{\sin x}{x}\right) = \frac{\sin x}{x} - \frac{\cos(\xi(x))}{6} \left(\frac{\sin x}{x}\right)^3$$
, 其中 $\xi(x) \in \left[0, \frac{\sin x}{x}\right] \cup \left[\frac{\sin x}{x}, 0\right]$.

由于
$$\left| \frac{\cos(\xi(x))}{6} \left(\frac{\sin x}{x} \right)^3 \right| \le \frac{1}{6x^3}$$
 绝对收敛, 而 $\frac{\sin x}{x}$ 条件收敛, 因此原积分条件收敛.

3. 做变元替换
$$t = \frac{1}{x}$$
 知原积分为 $\int_{1}^{+\infty} \frac{\sin t dt}{t^{\frac{1}{2}} \ln(1+t)}$. 由于变上限积分 $\int_{1}^{T} \sin t dt$ 有界, $\frac{1}{t^{\frac{1}{2}} \ln(1+t)}$ 单调递减趋于 0,因

此由 Dirichlet 判别法知收敛.
4. 记
$$I_1 = \int_1^{+\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx$$
, $I_2 = \int_0^1 \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx$ $\stackrel{x=\frac{1}{x}}{=} \int_1^{+\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^{2-p}} dx$. 先讨论 I_1 , 有 $\int_1^{+\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx$ $\stackrel{t=x+\frac{1}{x}}{=} \int_1^{+\infty} \frac{2^{p-1} \sin t}{(t + \sqrt{t^2 - 4})^{p-1} \sqrt{t^2 - 4}} dt$. 当 $p > 0$ 时,变上限积分 $\int_2^A \sin t dt$ 有界, $\frac{1}{(t + \sqrt{t^2 - 4})^{p-1} \sqrt{t^2 - 4}}$ 在 t 充分大后单调递减趋于 0,因此原积分收敛. 当 $p = 0$ 时,后者在 t 充分大后单调且不趋于 0 或 $t = \infty$,由 Abel 判别法知其收敛性与 $\int_2^{+\infty} \sin t dt$ 收敛性相同,因此发散. 当 $t = 0$ 时显然发散. 对于 $t = 0$ 可直接将 $t = 0$ 可有接得 $t = 0$ 可以致,否则 发散. 原积分收敛当且仅当 $t = 0$ 可以致,因此其在 $t = 0$ 可以致。

5. 不妨设 $f(x) \ge 0$ 且单调递减. 从而 $xf(x) = 2\frac{x}{2}f(x) \le 2\int_{\frac{x}{2}}^{x}f(t)\mathrm{d}t$, 由 Cauchy 收敛准则知 x 充分大后 xf(x) 充分小, 即极限为 0.

6. "⇒": 由无穷积分收敛, f(x) 单调知可不妨设 $f(x) \ge 0$ 且单调递减, 那么由 |g(x)| 的有界性立得结果.

"←":由无穷积分收敛,f(x) 单调,g(x) 连续且不恒为 0 知可不妨设 $f(x) \ge 0$ 且单调递减,并找到区间 $[a,b] \subset [0,T]$ 使得 $\forall x \in [a,b], |g(x)| \ge m$. 从而对于 $\forall k_1 \le k_2 \in \mathbb{Z}$,成立

$$\begin{split} \int_{a+k_1T}^{a+k_2T} f(x) \mathrm{d}x &= \sum_{k=k_1}^{k_2-1} \int_{a+kT}^{b+kT} f(x) \mathrm{d}x + \sum_{k=k_1}^{k_2-1} \int_{b+kT}^{a+(k+1)T} f(x) \mathrm{d}x \\ &= \sum_{k=k_1}^{k_2-1} \int_{a+kT}^{b+kT} f(x) \mathrm{d}x + \frac{T-b+a}{b-a} \sum_{k=k_1}^{k_2-1} \int_{a+kT}^{b+kT} f\left(\frac{T-b+a}{b-a}(x-a-kT)+b+kT\right) \mathrm{d}x \\ &\leq \sum_{k=k_1}^{k_2-1} \int_{a+kT}^{b+kT} f(x) \mathrm{d}x + \frac{T-b+a}{b-a} \sum_{k=k_1}^{k_2-1} \int_{a+kT}^{b+kT} f(x) \mathrm{d}x \\ &= \frac{T}{b-a} \sum_{k=k_1}^{k_2-1} \int_{a+kT}^{b+kT} f(x) \mathrm{d}x \leq \frac{T}{(b-a)m} \sum_{k=k_1}^{k_2-1} \int_{a+kT}^{b+kT} f(x) |g(x)| \mathrm{d}x \leq \frac{T}{(b-a)m} \int_{a+k_1T}^{a+k_2T} f(x) |g(x)| \mathrm{d}x, \end{split}$$

其中第一个不等号是因为当 $x \in [a+kT,b+kT]$ 时, $f\left(\frac{T-b+a}{b-a}(x-a-kT)+b+kT\right) \leq f(x)$,这由 f(x) 单调递减保证.然后利用 Cauchy 收敛原理知广义积分 $\int_0^{+\infty} f(x) \mathrm{d}x$ 收敛.

7. 可收敛可发散. 可发散是显然的, 一个可收敛的例子是 $h(x) = \begin{cases} 1, & x \in [0,1] \\ \frac{1}{x^2}, & x \in (1,+\infty) \end{cases}$, 然后交替构造 f(x) 和 g(x) 让

它们在许多区间为常数函数. 比如说, 他们在 x=n 处分开后, 在接下来长度为 n^2 的区间里, 令 $f(x)\equiv \frac{1}{n^2}, g(x)=\frac{1}{x^2};$ 然后在长度为 1 的区间里, f(x) 连续地连接两点 $\left(n^2+n,\frac{1}{n^2}\right)$ 和 $\left(n^2+n+1,\frac{1}{(n^2+n+1)^2}\right)$, $g(x)\equiv \frac{1}{x^2};$ 再在接下来长度为 $(n^2+n+1)^2$ 的区间里, 令 $f(x)=\frac{1}{x^2}, g(x)\equiv \frac{1}{(n^2+n+1)^2}.$

8. (1) 当 $a \neq 0, p > 0$ 时, $\frac{1}{1+x^p}$ 单调递减趋于 $0, \int_0^N \cos ax dx$ 有界, 由 Dirichlet 判别法知收敛.

(2) 当 $a \neq 0, p = 0$ 时显然发散. (3) 当 a = 0, p > 1 时显然收敛. (4) 当 $a = 0, 0 \le p \le 1$ 时显然发散.

9. 显然当 $q \le p+1$ 时原积分发散. 当 q > p+1 时, 一方面,

$$I = \sum_{k=0}^{+\infty} \int_0^{\pi} \frac{(k\pi + t)^p}{1 + (k\pi + t)^q |\sin t|^r} dt \le 2 \sum_{k=0}^{+\infty} (k+1)^p \pi^p \int_0^{\pi} \frac{dt}{1 + (k\pi)^q |\frac{2}{\pi}t|^r} \le C_1 \sum_{k=0}^{+\infty} \frac{(k+1)^p}{k^{\frac{q}{r}}} \int_0^{2(k\pi)^{\frac{q}{r}}} \frac{dt}{1 + t^r}.$$

另一方面,

$$I = \sum_{k=0}^{+\infty} \int_0^{\pi} \frac{(k\pi + t)^p}{1 + (k\pi + t)^q |\sin t|^r} \mathrm{d}t \ge \sum_{k=0}^{+\infty} (k\pi)^p \int_0^{\pi} \frac{\mathrm{d}t}{1 + [(k+1)\pi]^q |t|^r} \ge C_2 \sum_{k=0}^{+\infty} \frac{k^p}{(k+1)^{\frac{q}{r}}} \int_0^{\pi[(k+1)\pi]^{\frac{q}{r}}} \frac{\mathrm{d}t}{1 + t^r}.$$

由于: (1) r > 1 时 $\int_0^A \frac{\mathrm{d}t}{1+t^r}$ 一致有界; (2) r = 1 时 $\int_0^A \frac{\mathrm{d}t}{1+t^r} \sim \ln A$; (3) r < 1 时 $\int_0^A \frac{\mathrm{d}t}{1+t^r} \sim A^{1-r}$; 因此原积分收敛当且仅当 $q > (p+1) \max(r,1)$.

10. 函数恒正, 只需讨论有界性. 令 $u_k = \int_{(k-1)\pi}^{k\pi} \frac{x dx}{1 + x^6 \sin^2 x}$, 则

$$u_k \le k\pi \int_{(k-1)\pi}^{k\pi} \frac{\mathrm{d}x}{1 + (k-1)^6 \pi^6 \sin^2 x} = k\pi \int_0^{\pi} \frac{\mathrm{d}x}{1 + (k-1)^6 \pi^6 \sin^2 x} = 2k\pi \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{1 + (k-1)^6 \pi^6 \sin^2 x}$$

$$\le 2k\pi \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{1 + 4(k-1)^6 \pi^4 x^2} = \frac{k}{\pi (k-1)^3} \int_0^{(k-1)^3 \pi^3} \frac{\mathrm{d}t}{1 + t^2} \sim \frac{1}{2k^2}.$$

由于
$$\int_0^{n\pi} \frac{x dx}{1 + x^6 \sin^2 x} = \sum_{k=1}^n u_k \sim \frac{1}{2} \sum_{k=1}^n \frac{1}{k^2} < +\infty$$
, 因此原广义积分收敛.

11. 先考虑收敛性. 显然 $p \le 0$ 时发散. p > 0 时,由于 $\left| \int_a^A e^{\sin x} \sin 2x \mathrm{d}x \right| = 2 \left| \int_{\sin a}^{\sin A} e^{\sin x} \sin x \mathrm{d}\sin x \right| = 2 |e^{\sin A}(\sin A - 1) - e^{\sin a}(\sin a - 1)| < 8e$,且 $\frac{1}{x^p}$ 单调递减趋于 0,因此由 Dirichlet 判别法, $\int_1^{+\infty} \frac{e^x \sin 2x}{x^p} \mathrm{d}x$ 收敛,我们只需考察积分在 0 处的性质. 由于当 $x \to 0$ 时 $\frac{e^{\sin x} \sin 2x}{x^p} \sim \frac{2}{x^{p-1}}$,因此 $p \ge 2$ 时发散, $0 时收敛. 再考虑绝对收敛性. <math>1 时,<math>\left| \frac{e^{\sin x} \sin 2x}{x^p} \right| \le \frac{e}{x^p}$,因此绝对收敛. $0 时,<math>\left| \frac{e^{\sin x} \sin 2x}{x^p} \right| \ge \frac{2^p}{e} \left| \frac{\sin 2x}{(2x)^p} \right| \ge \frac{1}{e} \left| \frac{\sin^2 2x}{(2x)^p} \right| = \frac{1}{2e} \left(\frac{1 - \cos 4x}{(2x)^p} \right)$,而 $\int_0^{+\infty} \frac{\cos 4x}{(2x)^p} \mathrm{d}x$ 收敛, $\int_0^{+\infty} \frac{1}{(2x)^p} \mathrm{d}x$ 发散,因此原积分条件收敛.

$$\int_0^1 \cos^n \frac{1}{x} dx = \int_1^{+\infty} \frac{\cos^n t}{t^2} dt = \int_1^A \frac{\cos^n t}{t^2} dt + \int_A^{+\infty} \frac{\cos^n t}{t^2} dt := I_1 + I_2.$$

对于 I_1 , 由定积分第二中值定理知 $\exists \xi_A \in [1,A]$ s.t. $I_1 = \int_1^{\xi_A} \cos^n t dt$. 因此对于任意固定的 A, 当 $n \to +\infty$ 时 $I_1 \to 0$. 对于 I_2 , 成立 $|I_2| \leq \int_A^{+\infty} \frac{1}{t^2} dt = \frac{1}{A}$. 因此 $\forall \varepsilon > 0$, 选择 $A = \frac{2}{\varepsilon}$, 则 $|I_2| \leq \frac{\varepsilon}{2}$, 并选择充分大的 n 使得 $|I_1| < \frac{\varepsilon}{2}$. 此时 $|I| \leq \varepsilon$, 由极限定义知结论成立.

13. 做倒数变换, 知
$$I(\alpha) = \int_{+\infty}^{0} \frac{\mathrm{d}\frac{1}{x}}{(1+x^{-2})(1+x^{-\alpha})} = I(-\alpha)$$
. 又有 $I(\alpha) + I(-\alpha) = \int_{0}^{+\infty} \frac{\mathrm{d}x}{1+x^{2}} = \frac{\pi}{2}$, 因此 $I(\alpha) \equiv \frac{\pi}{4}$. 14. $I = \frac{1}{3} \int_{0}^{+\infty} \frac{\ln x}{x^{2}+1} \mathrm{d}x - \frac{1}{3} \int_{0}^{+\infty} \frac{\ln x}{x^{2}+4} \mathrm{d}x \stackrel{x=2x}{=} \frac{1}{3} \int_{0}^{+\infty} \frac{\ln x}{x^{2}+1} \mathrm{d}x - \frac{1}{3} \int_{0}^{+\infty} \frac{\ln(2x)}{(2x)^{2}+4} \mathrm{d}(2x) = \frac{1}{6} \int_{0}^{+\infty} \frac{\ln x}{x^{2}+1} \mathrm{d}x - \frac{\ln 2}{12} \int_{0}^{+\infty} \frac{1}{x^{2}+1} \mathrm{d}x \stackrel{x=e^{t}}{=} \frac{1}{6} \int_{0}^{+\infty} \frac{te^{t}}{e^{2t}+1} \mathrm{d}t - \frac{\pi \ln 2}{12} = -\frac{\pi \ln 2}{12}.$

15. 对恒等式两边积分知
$$\int_0^\pi \frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}} dx = \frac{\pi}{2}$$
. 记 $f(x) = \frac{1}{x} - \frac{1}{2\sin\frac{x}{2}}$. 由于 $x \to 0$ 时 $f(x) = O(x)$, 故 $f(x) \in R[0,\pi]$. 由 R-L 引理知 $\lim_{n \to +\infty} \int_0^\pi f(x) \sin\left(n+\frac{1}{2}\right) x dx = 0$, 即是 $\lim_{n \to +\infty} \int_0^\pi \frac{\sin\left(n+\frac{1}{2}\right)x}{x} dx = \lim_{n \to +\infty} \int_0^\pi \frac{\sin\left(n+\frac{1}{2}\right)x}{2\sin\frac{x}{2}} = \frac{\pi}{2}$. 再利用恒等式 $\int_0^\pi \frac{\sin(n+\frac{1}{2})x}{x} dx = \int_0^{(n+\frac{1}{2})\pi} \frac{\sin x}{x} dx$ $\frac{1}{x} dx = \frac{1}{x} dx$ 立得结论.

16. 由对称性知 $I = \frac{1}{2} \int_{a}^{\pi} \ln \sin x dx$. 做变换 x = 2x 知

$$I=\int_0^{\frac{\pi}{2}}\ln\sin 2x\mathrm{d}x=\frac{\pi}{2}\ln 2+\int_0^{\frac{\pi}{2}}\ln\sin x\mathrm{d}x+\int_0^{\frac{\pi}{2}}\ln\cos x\mathrm{d}x=\frac{\pi}{2}\ln 2+2I\Rightarrow I=-\frac{\pi}{2}\ln 2.$$

17. 记 $I_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n \mathrm{d}t$. 做变元替换 $t = \sqrt{n} \sin x$ 知 $I_n = \sqrt{n} \int_0^{\frac{\pi}{2}} \cos^{2n+1} x \mathrm{d}x = \sqrt{n} \frac{(2n)!!}{(2n+1)!!} \overset{n \to +\infty}{\to} \frac{\sqrt{\pi}}{2}$. 由于 $\int_0^{+\infty} e^{-t^2} \mathrm{d}t = \lim_{n \to +\infty} \int_0^{\sqrt{n}} e^{-t^2} \mathrm{d}t$,因此只需求出极限 $\lim_{n \to +\infty} \int_0^{\sqrt{n}} \left[e^{-t^2} - \left(1 - \frac{t^2}{n}\right)^n \right] \mathrm{d}t$. 在提示中令 $x = t^2, a = n$,得到估计式 $0 \le \int_0^{\sqrt{n}} \left[e^{-t^2} - \left(1 - \frac{t^2}{n}\right)^n \right] \mathrm{d}t \le \frac{\int_0^{\sqrt{n}} t^4 e^{-t^2} \mathrm{d}t}{n}$. 当 $n \to +\infty$ 时右边分子上的广义积分收敛,因此右边极限为 0,由夹逼原理知欲求极限存在且为 0. 从而 $\int_0^{+\infty} e^{-t^2} \mathrm{d}t = \frac{\sqrt{\pi}}{2}$.

18. 直接用定义.
$$\int_{M}^{N} [f(x+a) - f(x)] dx = \int_{N}^{N+a} f(x) dx - \int_{M}^{M+a} f(x) dx \xrightarrow{N \to +\infty, M \to -\infty} (A-B)a.$$

19. 做变量替换
$$t = x - \frac{1}{x}$$
, 知 $\int_{0}^{+\infty} f\left(x - \frac{1}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{x^2}{x^2 + 1} f\left(x - \frac{1}{x}\right) d\left(x - \frac{1}{x}\right) = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{t + \sqrt{t^2 + 4}}{\sqrt{t^2 + 4}} f(t) dt$. 由于 $\int_{-\infty}^{+\infty} f(t) dt$ 收敛, $\frac{t + \sqrt{t^2 + 4}}{\sqrt{t^2 + 4}}$ 单调有界, 因此由 Abel 判别法知 $\int_{0}^{+\infty} f\left(x - \frac{1}{x}\right) dx$ 收敛. 另一侧同理.

20. 由 Abel 判别法,
$$\int_0^{+\infty} f(x)u_1(x)dx$$
 收敛, 而 $u_2(x)$ 单调有界, 因此 $\int_0^{+\infty} f(x)u_1(x)u_2(x)dx$ 收敛, 依此类推.

$$\int_{0}^{+\infty} f\left(ax + \frac{b}{x}\right) dx = \frac{1}{2a} \int_{-\infty}^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{t + \sqrt{t^2 + 4ab}}{\sqrt{t^2 + 4ab}} dt$$

$$= \frac{1}{2a} \int_{-\infty}^{0} f(\sqrt{t^2 + 4ab}) \frac{t + \sqrt{t^2 + 4ab}}{\sqrt{t^2 + 4ab}} dt + \frac{1}{2a} \int_{0}^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{t + \sqrt{t^2 + 4ab}}{\sqrt{t^2 + 4ab}} dt$$

$$= \frac{1}{2a} \int_{0}^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{\sqrt{t^2 + 4ab} - t}{\sqrt{t^2 + 4ab}} dt + \frac{1}{2a} \int_{0}^{+\infty} f(\sqrt{t^2 + 4ab}) \frac{\sqrt{t^2 + 4ab} + t}{\sqrt{t^2 + 4ab}} dt$$

$$= \frac{1}{a} \int_{0}^{+\infty} f(\sqrt{t^2 + 4ab}) dt.$$

$$22. \ I = \int_0^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} \mathrm{d}x \stackrel{t = \frac{1}{1+x^{\beta}}}{=} \frac{1}{\beta} \int_0^1 t^{-\frac{\alpha+1}{\beta}} (1-t)^{\frac{\alpha+1}{\beta}-1} \mathrm{d}t = \frac{1}{\beta} \mathrm{Beta}\left(1-\frac{\alpha+1}{\beta},\frac{\alpha+1}{\beta}\right) = \frac{1}{\beta} \frac{\pi}{\sin\frac{\alpha+1}{\beta}\pi}.$$

23. 利用带 Lagrange 余项的 Taylor 展开和变元替换 $x=x\sqrt{t}$, 我们有

$$\begin{split} \frac{1}{\sqrt{t}} \int_0^{+\infty} e^{-\frac{1}{t}(e^x - x - 1)} \mathrm{d}x &= \frac{1}{\sqrt{t}} \int_0^{+\infty} e^{-\frac{1}{t} \frac{e^{\xi(x)} x^2}{2}} \mathrm{d}x \quad (0 \le \xi(x) \le x) \\ &= \int_0^{+\infty} e^{-\frac{e^{\xi(x\sqrt{t})} x^2}{2}} \mathrm{d}x \\ &= \int_0^M e^{-\frac{e^{\xi(x\sqrt{t})} x^2}{2}} \mathrm{d}x + \int_M^{+\infty} e^{-\frac{e^{\xi(x\sqrt{t})} x^2}{2}} \mathrm{d}x := I_1(t) + I_2(t). \end{split}$$

对于
$$I_1$$
, 由于 $\lim_{t\to 0+0}e^{-\frac{e^{\xi(x\sqrt{t})}x^2}{2}}=e^{-\frac{x^2}{2}}$ 且有一致性 $\lim_{t\to 0+0}\sup_{x\in[0,M]}\left|e^{-\frac{e^{\xi(x\sqrt{t})}x^2}{2}}-e^{-\frac{x^2}{2}}\right|=0$, 因此 $\lim_{t\to 0+0}I_1(t)=\int_0^Me^{-\frac{x^2}{2}}\mathrm{d}x$.

对于 I_2 , 我们有 $|I_2(t)| \leq \int_{M}^{+\infty} e^{-\frac{x^2}{2}} dx$ 恒成立. 因此我们取充分大的 M, 此时有

$$\left| I_1(t) + I_2(t) - \int_0^{+\infty} e^{-\frac{x^2}{2}} \mathrm{d}x \right| \leq \left| I_1(t) - \int_0^M e^{-\frac{x^2}{2}} \mathrm{d}x \right| + \left| I_2(t) \right| + \left| \int_0^M e^{-\frac{x^2}{2}} \mathrm{d}x - \int_0^{+\infty} e^{-\frac{x^2}{2}} \mathrm{d}x \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

对充分小的 t 成立. 因此原极限值为 $\frac{\sqrt{\pi}}{2}$. (编者注: 你也可以直接使用 Lebesgue 控制收敛定理.)

6 数项级数

- 1. 讨论级数 $\sum_{n=1}^{+\infty} \frac{1}{(\ln n)^{\ln(\ln n)}}$ 的收敛性.
- 2. 讨论级数 $\sum_{n=0}^{+\infty} \frac{1-n\sin\frac{1}{n}}{n^{\alpha}}, \alpha > 0$ 的收敛性.
- 3. 讨论级数 $\sum_{n=0}^{+\infty} (-1)^n \left(1 \cos \frac{1}{n}\right)^{\alpha}$, $\alpha > 0$ 的收敛性和绝对收敛性.
- 4. 设非常数函数 f(x) 在 [0,1] 上连续非负, 且 $f(x) \le 1$, 并记 $a_n = \left[\int_0^1 f(x) dx \right]^{\frac{1}{n}}$. 证明级数 $\sum_{n=0}^{+\infty} (1-a_n)$ 发散.
- 自由选讲. 5. 讨论级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n}$ 的收敛性.
- 6. 讨论级数 $\sum_{n=0}^{+\infty} \frac{\sin n}{\ln n}$ 的收敛性和绝对收敛性.
- 7. 讨论级数 $\sum_{n=0}^{+\infty} \frac{n^{n+\frac{1}{n}}}{(n+\frac{1}{n})^n}$ 的收敛性.

8. 讨论级数
$$\sum_{n=1}^{+\infty} \frac{\sin n}{\sqrt{n} + \sin n}$$
 的收敛性.

9. 讨论级数
$$\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2 + \sqrt{2}}} + \sqrt{2 - \sqrt{2 + \sqrt{2}}} + \cdots$$
 的收敛性.

10. 讨论级数
$$\sum_{n=1}^{+\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}$$
 的收敛性.

11.
$$0 < a_1 < \frac{\pi}{2}, a_n = \sin a_{n-1}$$
,讨论级数 $\sum_{n=1}^{+\infty} a_n^p$ 的收敛性.

12.
$$p,q>0$$
, 讨论级数 $1-\frac{1}{2^q}+\frac{1}{3^p}-\frac{1}{4^q}+\cdots+\frac{1}{(2n-1)^p}-\frac{1}{(2n)^q}+\cdots$ 的收敛性与绝对收敛性.

13.
$$a_n > 0$$
, 级数 $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ 收敛, 证明 $\sum_{n=1}^{+\infty} \frac{n}{a_1 + a_2 + \dots + a_n}$ 收敛.
14. 是否存在部分和序列有界且通项趋于 0 的发散级数?

15. 如果对任意以 0 为极限的数列
$$\{x_n\}$$
 都有 $\sum_{n=1}^{+\infty} a_n x_n$ 收敛, 证明 $\sum_{n=1}^{+\infty} a_n$ 也收敛. 绝对收敛性呢?

16. 计算级数
$$\sum_{k=2}^{+\infty} \arctan \frac{2}{4k^2 - 4k + 1}$$
.

17. 计算级数
$$\sum_{n=1}^{+\infty} \frac{\sin(\sqrt{5}n)}{n}$$
.

18. (Bertrand 判别法). 对于正项级数, 证明:
$$\begin{cases} \frac{\lim_{n \to +\infty} \ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] > 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
收敛
$$\frac{\lim_{n \to +\infty} \ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] < 1 \Rightarrow \sum_{n=1}^{+\infty} a_n$$
发散

19.
$$\sum_{n=1}^{+\infty} a_n$$
 收敛, 数列 $p_n > 0$ 且单调递增趋于 $+\infty$. 证明 $\lim_{n \to +\infty} \frac{\sum_{k=1}^n p_k a_k}{p_n} = 0$.

20. 级数
$$\sum_{n=1}^{+\infty} na_n$$
 收敛, 证明: (1) $\forall k \in \mathbb{N}_+, \sum_{n=1}^{+\infty} na_{n+k}$ 收敛; (2) $\lim_{k \to +\infty} \sum_{n=1}^{+\infty} na_{n+k} = 0$.

21.
$$\sum_{n=1}^{+\infty} a_n = A$$
 且绝对收敛, $\sum_{n=1}^{+\infty} b_n = B$ 且条件收敛, 证明它们的 Cauchy 乘积收敛且 $\sum_{n=1}^{+\infty} c_n = AB$.

- 23. (1) 对于收敛级数和发散级数, 它们的 Cauchy 乘积是否一定发散?
- (2) 对于正项收敛级数和正项发散级数, 它们的 Cauchy 乘积是否一定发散?

24.
$$f(x) \in D[1, +\infty)$$
, 且 $\int_{1}^{+\infty} |f'(x)| dx$ 收敛, 证明广义积分 $\int_{1}^{+\infty} f(x) dx$ 与无穷级数 $\sum_{n=1}^{+\infty} f(n)$ 同敛散.

25.
$$0 0, a_{n+1} = \frac{a_n}{1 + a_n^p}$$
, 证明 $\sum_{n=1}^{+\infty} a_n$ 收敛.

27. (Euler 公式). 证明
$$\sin x = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$$
. 你可以将 $\sin[(2n+1)\phi]$ 写成关于 $\sin \phi$ 的多项式, 并利用零点求解.

28. 计算无穷乘积
$$2\left(\frac{2}{1}\right)^{\frac{1}{2}}\left(\frac{2}{3}\cdot\frac{4}{3}\right)^{\frac{1}{4}}\left(\frac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7}\right)^{\frac{1}{8}}\cdots$$
. 你可以先写出通项公式, 然后逐步化简.

29. 给定
$$\sum_{n=1}^{+\infty} a_n = +\infty, a_n > 0$$
,问是否总存在 $\sum_{n=1}^{+\infty} b_n = +\infty, b_n > 0$ 且满足 $\lim_{n \to +\infty} \frac{b_n}{a_n} = 0$?

6.2 解答

1.
$$\stackrel{\text{.}}{=}$$
 $e^k \le n \le e^{k+1}$ 时, $\frac{1}{(\ln n)^{\ln(\ln n)}} \ge \frac{1}{(k+1)^{\ln(k+1)}}$,从而 $\sum_{n \in [e^k, e^{k+1}]} \frac{1}{(\ln n)^{\ln(\ln n)}} \ge \frac{e^{k+1} - e^k - 2}{(k+1)^{\ln(k+1)}} \to +\infty$,因此发散.

- 2. 由于 $\frac{1-n\sin\frac{1}{n}}{n^{\alpha}}\sim\frac{1}{6n^{2+\alpha}}$, 因此收敛.
- 3. 由于 $\left(1-\cos\frac{1}{n}\right)^{\alpha}$ 单调递减趋于 0, 由 Leibniz 判别法知收敛. 由于 $\left(1-\cos\frac{1}{n}\right)^{\alpha}\sim\frac{1}{2^{\alpha}n^{2\alpha}}$, 因此 $\alpha>\frac{1}{2}$ 时绝对收 敛, $0 < \alpha \le \frac{1}{2}$ 时条件收敛.
- 4. 显然存在 0 < r < 1 使得 $\int_0^1 f(x) dx < r$. 因此 $1 a_n \ge 1 r^{\frac{1}{n}} = 1 e^{\frac{\ln r}{n}} \sim -\frac{\ln r}{n}$, 由调和级数发散知原级数发散.
- 5. $\sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n} = \sum_{n=1}^{+\infty} \frac{\sin(n+n\pi)}{n}$. 部分和序列 $\sum_{k=1}^{n} \sin(k+k\pi)$ 有界, $\frac{1}{n}$ 单调递减趋于 0, 由 Dirichlet 判别法知级数
- 6. $\frac{1}{\ln n}$ 单调递减趋于 $0, \sum_{k=1}^{k} \sin n$ 对于 $\forall k \geq 1$ 有一致上界, 由 Dirichlet 判别法知级数收敛. 又因为 $\left| \frac{\sin n}{\ln n} \right| \geq \frac{\sin^2 n}{\ln n} = \frac{1}{\ln n}$
- $\frac{1 \cos 2n}{2 \ln n} = \frac{1}{2 \ln n} \frac{\cos 2n}{\ln n}, \ \overline{\text{m}} \ \sum_{n=2}^{+\infty} \frac{\cos 2n}{\ln n} \ \text{收敛}, \ \sum_{n=2}^{+\infty} \frac{1}{2 \ln n} \ \text{发散}, \ \underline{\text{因此级数不绝对收敛}}.$
- 7. $\lim_{n \to +\infty} \frac{n^{n+\frac{1}{n}}}{(n+\frac{1}{n})^n} = \lim_{n \to +\infty} \frac{n^{\frac{1}{n}}}{(1+\frac{1}{n})^n} = 1$, 因此原级数发散.
- 8. 首先由 Dirichlet 判别法易知级数 $\sum_{n=1}^{+\infty} \frac{\sin n}{\sqrt{n}}$ 收敛. 注意到 $\frac{\sin n}{\sqrt{n} + \sin n} \frac{\sin n}{\sqrt{n}} = \frac{\sin^2 n}{\sqrt{n}(\sqrt{n} + \sin n)}$, 且成立估计

$$\frac{1 - \cos 2n}{2\sqrt{n}(\sqrt{n} + 1)} = \frac{\sin^2 n}{\sqrt{n}(\sqrt{n} + 1)} \le \frac{\sin^2 n}{\sqrt{n}(\sqrt{n} + \sin n)} \le \frac{\sin^2 n}{\sqrt{n}(\sqrt{n} - 1)} = \frac{1 - \cos 2n}{2\sqrt{n}(\sqrt{n} - 1)}.$$

但级数 $\sum_{n=1}^{+\infty} \frac{1}{2\sqrt{n}(\sqrt{n}\pm 1)}$ 均发散,级数 $\sum_{n=1}^{+\infty} \frac{\cos 2n}{2\sqrt{n}(\sqrt{n}\pm 1)}$ 均收敛 (Abel 判别法),因此级数 $\sum_{n=1}^{+\infty} \frac{\sin^2 n}{\sqrt{n}(\sqrt{n}+\sin n)}$ 发散,从而原级数可写成一个收敛级数和一个发散级数的和,故发散.

- 9. 注意到 $\sqrt{2} = 2\sin\frac{\pi}{4}$, $\sqrt{2-\sqrt{2}} = \sqrt{2-2\cos\frac{\pi}{4}} = 2\sin\frac{\pi}{8}$, $\sqrt{2-\sqrt{2+\sqrt{2}}} = \sqrt{2-\sqrt{2+2\cos\frac{\pi}{4}}} = \sqrt{2-2\cos\frac{\pi}{8}} = \sqrt{2-2\cos\frac{\pi}{8}}$ $2\sin\frac{\pi}{16}$, 依此类推, 再利用 $\sin x \sim x$ 知原级数收敛.
- 10. 合并同号项, 则级数改写为 $\sum_{k=0}^{+\infty} (-1)^k b_k$, 其中 $b_k = \frac{1}{k^2} + \frac{1}{k^2+1} + \dots + \frac{1}{(k+1)^2-1} \le \frac{2k+1}{k^2} \to 0$. 另一方面, $b_k \ge 1$

$$\int_{0}^{1} \frac{1}{k^{2} + x} dx + \int_{1}^{2} \frac{1}{k^{2} + x} dx + \dots + \int_{2k}^{2k+1} \frac{1}{k^{2} + x} dx = \int_{0}^{2k+1} \frac{1}{k^{2} + x} dx = \ln \frac{(k+1)^{2}}{k^{2}}, \quad \text{fif } b_{k+1} \leq \int_{-1}^{0} \frac{1}{(k+1)^{2} + x} dx + \dots + \int_{2k+1}^{2k+2} \frac{1}{(k+1)^{2} + x^{2}} dx = \int_{-1}^{2k+2} \frac{1}{(k+1)^{2} + x^{2}} dx = \ln \frac{(k+1)^{2} + 2(k+1)}{k(k+2)} \Rightarrow b_{k} - b_{k+1} \geq \ln \frac{k(k+1)}{(k+2)(k+3)} \geq 0.$$

- 11. 上学期例题已证 $\lim_{n\to +\infty} na_n^2 = 3$, 因此 $a_n \sim \sqrt{\frac{3}{n}}, a_n^p \sim \left(\frac{3}{n}\right)^{\frac{p}{2}}$, 从而当 $p \leq 2$ 时级数发散, p > 2 时级数收敛.
- 12. (a) 当 p > 1, q > 1 时, $|a_n| \le \frac{1}{n^{\min(p,q)}}$, 因此绝对收敛. (b) 当 0 时,由 Leibniz 判别法知条件收敛.

- (c) 当 $p > 1, 0 < q \le 1$ 或 0 1 时, 级数正部 (或负部) 收敛, 负部 (或正部) 发散, 因此发散. (d) 当 $0 时,由 <math>\lim_{n \to +\infty} \frac{\frac{1}{(2n-1)^p} \frac{1}{(2n)^q}}{\frac{1}{(2n-1)^p}} = 1$ 知级数发散.
- (e) 当 $0 < q < p \le 1$ 时,由 $\lim_{n \to +\infty} \frac{-\frac{1}{(2n)^q} + \frac{1}{(2n+1)^p}}{-\frac{1}{(2n+2)^q}} = 1$ 知级数发散.
- 13. $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ 收敛 $\Rightarrow \frac{1}{a_n} \to 0 \Rightarrow a_n \to +\infty$. 因此可按从小到大顺序将 $\{a_n\}_{n=1}^{+\infty}$ 重排为 $a_{\phi(1)} \le a_{\phi(2)} \le \cdots \le a_{\phi(n)} \le \cdots$.

令
$$b_n = \frac{n}{a_{\phi(1)} + a_{\phi(2)} + \dots + a_{\phi(n)}}$$
, 则 $\{b_n\}$ 单调递减, 且 $b_{2n} = \frac{2n}{a_{\phi(1)} + \dots + a_{\phi(2n)}} \le \frac{2n}{a_{\phi(n)} + \dots + a_{\phi(2n)}} \le \frac{2n}{na_{\phi(n)}} = \frac{2n}{na_{\phi(n)} + \dots + a_{\phi(2n)}} \le \frac{2n}{na_{\phi(n)} + \dots +$

$$\frac{2}{a_{\phi(n)}}$$
,故 $\sum_{n=1}^{+\infty} b_n < +\infty$. 又因为 $\frac{n}{a_1 + \dots + a_n} \le b_n$,因此 $\sum_{n=1}^{+\infty} \frac{n}{a_1 + \dots + a_n}$ 收敛.

14. 存在. 一个例子为
$$1, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \dots$$

15. 不妨设
$$a_n > 0$$
, 否则可将对应 x_n 反号, 题目条件与绝对收敛性结论不变. 如果 $\sum_{n=1}^{+\infty} a_n$ 发散, 则可归纳构造数列 A_n ,

满足
$$A_0 = 0, A_n = \inf_{k \in \mathbb{N}_+} \sum_{i=A_{n-1}+1}^k a_i \ge n$$
. 从而定义数列 $\{x_n\}$ 为 $A_1 - A_0$ 个 $1, A_2 - A_1$ 个 $\frac{1}{2}, \dots, A_n - A_{n-1}$ 个 $\frac{1}{n}, \dots$

的依次排列, 满足
$$\lim_{n\to+\infty} x_n = 0$$
, 而 $\sum_{n=1}^{+\infty} a_n x_n > 1 + 1 + \dots = +\infty$. 因此 $\sum_{n=1}^{+\infty} a_n$ 绝对收敛.

16. 注意到
$$\arctan \frac{2}{4k^2 - 4k + 1} = \arctan \frac{1}{2k - 1} - \arctan \frac{1}{2k}$$
, 从而 $\sum_{k=2}^{+\infty} \arctan \frac{2}{4k^2 - 4k + 1} = \arctan \frac{1}{2}$.

$$17. \ S_n = \sum_{k=1}^n \frac{\sin \sqrt{5}k}{k} = -\int_{\sqrt{5}}^\pi \sum_{k=1}^n \cos kt \mathrm{d}t = -\int_{\sqrt{5}}^\pi \frac{\sin (n + \frac{1}{2})t - \sin \frac{t}{2}}{2 \sin \frac{t}{2}} \mathrm{d}t = -\int_{\sqrt{5}}^\pi \frac{1}{2 \sin \frac{t}{2}} \sin (n + \frac{1}{2})t \mathrm{d}t + \frac{1}{2} (\pi - \sqrt{5}) \overset{\text{R-L}}{\to} \frac{1}{2} (\pi - \sqrt{5}).$$

$$\frac{1}{2}(\pi - \sqrt{5}).$$
18. 先证明第一种情况. 由条件知 $\exists N_1 > 0$, s.t. $\forall n > N_1$, $\ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] > r_1 > 1 \Leftrightarrow \frac{a_{n+1}}{a_n} < \frac{n \ln n}{(n+1) \ln n + r_1}.$
可以验证当 $1 时, $\frac{n \ln n}{(n+1) \ln n + r_1} < \frac{n \ln^p n}{(n+1) \ln^p (n+1)} \Leftrightarrow \frac{(n+1)[\ln^p (n+1) - \ln^p n]}{\ln^{p-1} n} < r_1.$ 利用 $f(x) = x^p$. 的微分中值定理,知 LHS =
$$\frac{(n+1)p \ln^{p-1} (n+\theta)[\ln(n+1) - \ln n]}{\ln^{p-1} n} < p\underbrace{(n+1)[\ln(n+1) - \ln n]}_{\rightarrow 1} \underbrace{\frac{\ln^{p-1} (n+1)}{\ln^{p-1} n}} < r_1 = \frac{(n+1)p \ln^{p-1} (n+\theta)[\ln(n+1) - \ln n]}{\ln^{p-1} n}$$$

的微分中值定理, 知 LHS =
$$\frac{(n+1)p\ln^{p-1}(n+\theta)[\ln(n+1)-\ln n]}{\ln^{p-1}n} < p\underbrace{(n+1)[\ln(n+1)-\ln n]}_{\to 1} \underbrace{\frac{\ln^{p-1}(n+1)}{\ln^{p-1}n}}_{\to 1} < r_1 = r_1$$

RHS 当
$$n$$
 足够大时成立. 因此有 $\exists N_2 > N_1, \text{s.t.} \forall n > N_2, \frac{a_{n+1}}{a_n} < \frac{n \ln^p n}{(n+1) \ln^p (n+1)} \Rightarrow a_n < \frac{C}{n \ln^p n}.$ 由于 $\sum_{n=1}^{+\infty} \frac{C}{n \ln^p n}$

收敛, 因此 $\sum_{n=0}^{\infty} a_n$ 收敛.

19. 记
$$S_n = \sum_{k=1}^n a_k$$
,并设 $\lim_{n \to +\infty} S_n = S$,则

$$\sum_{k=1}^{n} p_k a_k = p_1 S_1 + \sum_{k=2}^{n} p_k (S_k - S_{k-1}) = \sum_{k=1}^{n-1} S_k (p_k - p_{k+1}) + S_n p_n$$

$$\Rightarrow \frac{\sum_{k=1}^{n} p_k S_k}{p_n} = S_n - \sum_{k=1}^{n-1} S_k \frac{p_{k+1} - p_k}{p_n} = (S_n - S) - \sum_{k=1}^{n-1} (S_k - S) \frac{p_{k+1} - p_k}{p_n} + S \frac{p_1}{p_n}.$$

当 n 充分大时, $|S_n - S| < \frac{\varepsilon}{6}$, $\left|S\frac{p_1}{p_n}\right| < \frac{\varepsilon}{6}$. 对于第二项, 设 $|S_n| \le M$, 由极限定义, $\exists N_1 > 1$, s.t. $\forall n \ge N_1, |S_n - S| < \frac{\varepsilon}{2}$. 从而有估计

$$\left| \sum_{k=1}^{n-1} (S_k - S) \frac{p_{k+1} - p_k}{p_n} \right| \leq 2M \sum_{k=1}^{N_1} \frac{p_{k+1} - p_k}{p_n} + \frac{\varepsilon}{2} \sum_{k=N_1+1}^{n-1} \frac{p_{k+1} - p_k}{p_n} \leq 2M \frac{p_{N_1+1} - p_1}{p_n} + \frac{\varepsilon}{2}.$$

由极限定义,
$$\exists N_2 > N_1$$
, s.t. $\forall n \geq N_2$, $\frac{p_{N_1+1}-p_1}{p_n} < \frac{\varepsilon}{12M}$. 此时 $\left| \sum_{k=1}^{n-1} (S_k - S) \frac{p_{k+1}-p_k}{p_n} \right| < \frac{2\varepsilon}{3}$, 从而有 $\left| \frac{\sum_{k=1}^{n} p_k S_k}{p_n} \right| < \varepsilon$.

20. (1)
$$\sum_{n=1}^{+\infty} (n+k)a_{n+k}$$
 收敛, $\frac{n}{n+k}$ 随 n 单调有界, 由 Abel 判别法知收敛. (2) 记 $R_n = \sum_{k=n}^{+\infty} ka_k$. 则

$$\left| \sum_{n=1}^{m} n a_{n+k} \right| = \left| \sum_{n=1}^{m} \frac{n}{n+k} (n+k) a_{n+k} \right| = \left| \sum_{n=1}^{m} \frac{n}{n+k} (R_{n+k-1} - R_{n+k}) \right|$$

$$= \left| \frac{1}{k+1} R_k - \frac{m}{k+m} R_{k+m} + \sum_{n=1}^{m-1} R_{n+k} \left(\frac{n+1}{n+k+1} - \frac{n}{n+k} \right) \right|$$

$$\leq \frac{1}{k+1}|R_k| + \frac{m}{k+m}|R_{k+m}| + \sup_{k+1 \leq j \leq n+m-1} |R_j| \sum_{n=1}^{m-1} \left(\frac{n+1}{n+k+1} - \frac{n}{n+k}\right)$$

$$\leq \frac{1}{k+1}|R_k| + \frac{m}{k+m}|R_{k+m}| + \sup_{j > k+1} |R_j| \left(\frac{m}{k+m} - \frac{1}{k+1}\right)$$

21. 记
$$A_n = \sum_{k=1}^n a_k, B_n = \sum_{k=1}^n b_k,$$
 则 $\sum_{k=1}^n c_n = a_1 B_n + a_2 B_{n-1} + \dots + a_n B_1 = A_n B + (a_1 \beta_n + a_2 \beta_{n-1} + \dots + a_n \beta_1)$ (定义 $\beta_k = B_k - B$):= $\Delta_1(n) + \Delta_2(n)$. 显然 $\Delta_1(n) \to AB$, 下证 $\Delta_2(n) \to 0$. 设 $|\beta_n| \le \beta$, $\forall n \ge 1$. 由定义, $\forall \varepsilon > 0$, $\exists N \ge 3$, s.t. $\forall n > 0$

22. 不一定, 反例是
$$a_0 = 1$$
, $a_n = -\left(\frac{3}{2}\right)^n$ 和 $b_0 = 1$, $b_n = \left(\frac{3}{2}\right)^{n-1} \left(2^n + \frac{1}{2^{n+1}}\right)$. $\sum_{n=0}^{+\infty} a_n$, $\sum_{n=0}^{+\infty} b_n$ 均发散, 但 Cauchy 乘

积
$$c_n = \left(\frac{3}{2}\right)^{n-1} \left(2^n + \frac{1}{2^{n+1}}\right) - \left(\frac{3}{2}\right)^{n-1} \left(2^{n-1} + \frac{1}{2^n}\right) - \dots - \left(\frac{3}{2}\right)^{n-1} \left(2^1 + \frac{1}{2^2}\right) - \left(\frac{3}{2}\right)^n = \left(\frac{3}{4}\right)^n \Rightarrow \sum_{n=1}^{+\infty} c_n$$
收敛.

23. (1) 不一定, 反例是 $a_n \equiv 0$ 和 $b_n \equiv 1$. 当然也不一定收敛, 如 $a_n = \frac{1}{n^2}, b_n = n$.

(2) 一定. 设
$$\sum_{n=1}^{+\infty} a_n$$
 收敛, $\sum_{n=1}^{+\infty} b_n$ 发散, 则 $c_n = \sum_{k=1}^{n} a_k b_{n-k} \ge a_1 b_{n-1}$, 由比较判别法知 $\sum_{n=1}^{+\infty} c_n$ 发散.

24. 注意到

$$\left| \sum_{k=m}^{n-1} f(k) - \int_{m}^{n} f(x) dx \right| \leq \sum_{k=m}^{n-1} \int_{k}^{k+1} |f(k) - f(x)| dx \leq \sum_{k=m}^{n-1} \int_{k}^{k+1} \int_{k}^{x} |f'(t)| dt dx$$

$$\leq \sum_{k=m}^{n-1} \int_{k}^{k+1} \int_{k}^{k+1} |f'(t)| dx dt \leq \sum_{k=m}^{n-1} \int_{k}^{k+1} |f'(t)| dt = \int_{m}^{n} |f'(t)| dt,$$

因此由 Cauchy 收敛准则知广义积分 $\int_{1}^{+\infty} f(x) dx$ 与无穷级数 $\sum_{n=1}^{+\infty} f(n)$ 同敛散.

25. 易知 a_n 单调递减,且 $a_{n+1}-a_n=-a_{n+1}a_n^p\Rightarrow a_{n+1}=\frac{a_n^{n-1}-a_{n+1}}{a_n^p}<\frac{a_n-a_{n+1}}{\xi_n^p}=\frac{1}{1-p}(a_n^{1-p}-a_{n+1}^{1-p}).$ 然后两边累加得到收敛性.

26.
$$\prod_{n=1}^{+\infty} (1+x^n) = \prod_{n=1}^{+\infty} \prod_{i=0}^{+\infty} (1+x^{2^i(2n-1)}) = \prod_{n=1}^{+\infty} (1-x^{2n-1})^{-1}.$$

27. 注意到 $\sin[(2n+1)\phi]$ 可展开为 $\sin\phi$ 的 2n+1 次多项式,且只含奇次幂项,因此 $\sin[(2n+1)\phi] = \sin\phi P(\sin^2\phi)$, 其中 $P(\cdot)$ 是 n 次多项式.由极限关系知 P(0) = 2n+1,且 LHS 全部零点为 $x_k = \frac{k\pi}{2n+1}$, $k = 1, \dots, n$,因此

$$P(t) = (2n+1) \prod_{k=1}^{n} \left(1 - \frac{t}{\sin^{2}(\frac{k\pi}{2n+1})} \right)$$

$$\Rightarrow \sin[(2n+1)\phi] = (2n+1) \sin \phi \prod_{k=1}^{n} \left(1 - \frac{\sin^{2}\phi}{\sin^{2}(\frac{k\pi}{2n+1})} \right)$$

$$\Rightarrow \sin x = (2n+1) \sin \frac{x}{2n+1} \prod_{k=1}^{n} \left(1 - \frac{\sin^{2}\frac{x}{2n+1}}{\sin^{2}(\frac{k\pi}{2n+1})} \right).$$

现在, 问题变为求 RHS 在 $n \to +\infty$ 时的极限. 记

$$U_m = (2n+1)\sin\frac{x}{2n+1}\prod_{k=1}^m \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2(\frac{k\pi}{2n+1})}\right), V_m = \prod_{k=m+1}^n \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2(\frac{k\pi}{2n+1})}\right).$$

从而

$$\lim_{n \to +\infty} U_m = x \prod_{i=1}^m \left(1 - \frac{x^2}{k^2 \pi^2} \right),$$

$$1 > V_m \ge \prod_{k=m+1}^n \left(1 - \frac{\left(\frac{x}{2n+1}\right)^2}{\frac{4}{\pi^2} \frac{k^2 \pi^2}{(2n+1)^2}} \right) = \prod_{k=m+1}^n \left(1 - \frac{x^2}{4k^2} \right) > \prod_{k=m+1}^{+\infty} \left(1 - \frac{x^2}{4k^2} \right) \stackrel{m \to +\infty}{\to} 1.$$

因此由夹逼原理, $\sin x = \lim_{n \to +\infty} (2n+1) \sin \frac{x}{2n+1} \prod_{k=1}^{n} \left(1 - \frac{\sin^2 \frac{x}{2n+1}}{\sin^2 (\frac{k\pi}{2n+1})} \right) = x \prod_{k=1}^{+\infty} \left(1 - \frac{x^2}{k^2 \pi^2} \right).$

28. 主要难点在于如何写成通式

$$\begin{split} P_n &= 2\sqrt{2} \prod_{k=2}^n \left\{ \frac{1}{2} \left[\frac{(2^{k-1}-1)!!(2^k)!!}{(2^{k-1})} \right]^2 \right\}^{\frac{1}{2^k}} \frac{(2^n-1)!!}{2^{2^k-1}(2^{n-1})!} \frac{1}{2^{2^{k-1}}(2^{n-1})!} 2\sqrt{2} \prod_{k=2}^n \left[\frac{1}{\sqrt{2}} \frac{\frac{(2^{k-1})!}{2^{2^{k-2}}(2^{k-2})!} \cdot 2^{2^{k-1}}(2^{k-1})!}{2^{2^{k-1}}(2^{k-1})!} \right]^{\frac{1}{2^{k-1}}} \\ &= 2\sqrt{2} \prod_{k=2}^n \left[2^{2^{k-1}-\frac{1}{2}} \frac{((2^{k-1})!)^3}{((2^{k-2})!)^2(2^k)!} \right]^{\frac{1}{2^{k-1}}} = 2\sqrt{2} \prod_{k=2}^n \left[2^{1-\frac{1}{2^k}} \frac{\left(\frac{(2^{k-1})!}{(2^k)!} \right)^{\frac{1}{2^{k-1}}}}{\left(\frac{(2^{k-2})!}{(2^{k-1})!} \right)^{\frac{1}{2^{k-1}}}} \right] = 2\sqrt{2} \cdot 2^{n-1-\sum_{k=2}^n \frac{1}{2^k}} \frac{1}{\frac{1}{2}} \left[\frac{(2^{n-1})!}{(2^n)!} \right]^{\frac{1}{2^{n-1}}} \\ &= 2 \cdot 2^{n+\frac{1}{2^n}} \left[\frac{(2^{n-1})!}{(2^n)!} \right]^{\frac{1}{2^{n-1}}} = 2 \left\{ 2^{n2^n+1} \left[\frac{(2^{n-1})!}{(2^n)!} \right]^2 \right\}^{\frac{1}{2^n}} \xrightarrow{\text{Stirling}} 2 \left[2^{n2^n+1} \frac{2\pi 2^{n-1} \left(\frac{2^{n-1}}{e} \right)^{2^n}}{2\pi 2^n \left(\frac{2^n}{e} \right)^{2^{n+1}}} \right] \xrightarrow{-k} e. \end{split}$$

29. 先递归构造 k_n : 设 $k_0 = 0$, $k_n = \inf_{m \in \mathbb{N}_+} \left\{ m > k_{n-1} : \sum_{i=k_{n-1}+1}^m a_i > n \right\}$, 随后定义当 $k_{n-1} < m \le k_n$ 时, $b_m = \frac{a_m}{n}$.

7 函数项级数

7.1 问题

- 1. 求下列函数序列 $\{f_n(x)\}$ 的极限函数, 并讨论在给定的区间上是否一致收敛: $(1) f_n(x) = n^2 x (1-x^2)^n, x \in [0,1];$ $(2) \sin \frac{x}{n^n}$, $(a) x \in [a,b]$, $(b) x \in \mathbb{R}$; $(3) \frac{\sin(n^n x)}{n^\alpha}$, $\alpha > 0, x \in \mathbb{R}$.
- 2. 讨论下列函数序列或函数项级数在指定区间上的一致收敛性: (1) $\sum_{n=1}^{+\infty} \frac{\sin x \sin nx}{\sqrt{n+x^2}}, x \in \mathbb{R}$; (2) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+x^2}, x \in \mathbb{R}$; (3) $\{f_n(x) = n^{\alpha}x(1-x)^n\}, \alpha \in \mathbb{R}, x \in [0,1].$
- 3. 设 $f_n(x)$ 是 [0,1] 上的连续函数序列, 并且满足 $f_n(x) \to f(x)(n \to +\infty)$, 序列 $\{x_n\} \subset [0,1]$ 满足 $x_n \to x_0(n \to +\infty)$.
- (1) 试说明当 $n \to +\infty$ 时, $f_n(x_n)$ 未必收敛到 $f(x_0)$; (2) 设 $f_n(x) \Rightarrow f(x), x \in [0,1]$, 证明必有 $f_n(x_n)$ 收敛到 $f(x_0)$.
- 自由选讲.
- 4. 讨论函数项级数 $\sum_{i=1}^{+\infty} \left(1 + \frac{1}{n}\right)^{-n^2} e^{-nx}$ 的收敛域.
- 5. 讨论函数列 $f_n(x) = \sqrt[n]{1+x^n}$ 在 $[0,+\infty)$ 上的一致收敛性.
- 6. 函数列 $\{f_n\},\{g_n\}$ 在区间 I 上一致收敛,且对于 $\forall n,f_n,g_n$ 在 I 上有界. 讨论函数列 $\{f_ng_n\}$ 在 I 上的一致收敛性.
- 7. $f(x) \in D\left[0, \frac{1}{2}\right], f(0) = 0, f'(x) \ge 0$, 讨论 $\sum_{n=1}^{+\infty} (-1)^n f(x^n)$ 在区间 $\left[0, \frac{1}{2}\right]$ 上一致收敛性.
- 8. 讨论函数项级数 $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^2}{(1+x^2)^n}$ 在 \mathbb{R} 上的绝对收敛性、一致收敛性和绝对一致收敛性.
- 9. 讨论函数项级数 $\sum_{1}^{+\infty} \frac{(1-x)x^n}{1-x^{2n}} \sin nx$ 在区间 $\left(\frac{1}{2},1\right)$ 上的一致连续性.
- 10. $f(x) \in C^1(a,b)$, 定义 $F_n(x) = \frac{n}{2} \left[f\left(x + \frac{1}{n}\right) f\left(x \frac{1}{n}\right) \right]$, 证明函数列 $\{F_n\}$ 在 (a,b) 上內闭一致收敛.
- 11. $f_n(x)$ 在 \mathbb{R} 上可积一致收敛到 f(x), 且存在 \mathbb{R} 上的可积函数 F(x) 满足 $|f_n(x)| \leq F(x)$. 证明 $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} f_n(x) \mathrm{d}x = \int_{-\infty}^{+\infty} f(x) \mathrm{d}x$.
- 12. a_n 单调递减趋于 0, 证明 $\sum_{n=1}^{+\infty} a_n \sin nx$ 在 $[0, +\infty)$ 上一致收敛的充要条件是 $a_n = o\left(\frac{1}{n}\right)$. (这题稍微难了点!)

13. 证明: (1)
$$\int_0^1 x^{-x} dx = \sum_{n=1}^{+\infty} \frac{1}{n^n}$$
; (2) $\int_0^1 \frac{\ln x}{1-x} dx = -\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

14.
$$x > 1$$
, 求导数 $\left[\frac{x}{x+1} + \frac{x^2}{(x+1)(x^2+1)} + \frac{x^4}{(x+1)(x^2+1)(x^4+1)} + \frac{x^8}{(x+1)(x^2+1)(x^4+1)} \cdot \cdots \right]'$. 15. 试构造一个函数列 $\{f_n(x)\}$,使得 $\{f'_n(x)\}$ 在 \mathbb{R} 上一致收敛, $\{f_n(x)\}$ 在 \mathbb{R} 上处处收敛但不一致收敛.

- 16. 可积函数列 $\{f_n\}$ 在 [a,b] 上一致收敛于函数 f, 且 $\forall n \in \mathbb{N}_+, f_n$ 有原函数 F_n , 证明 f 也有原函数 F.
- 17. (Arzela-Ascoli 引理). E 是紧集, 函数列 $\{f_n(x)\}$ 在 E 上逐点有界, 等度连续 $(\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall n \in \mathbb{N}_+, \forall | x \theta = 0, \forall n \in \mathbb{N}_+, \forall$ $|x'| < \delta$,成立 $|f_n(x) - f_n(x')| < \varepsilon$). 证明 $\{f_n(x)\}$ 存在 E 上的一致收敛子列. 18. 求级数 $1 - \frac{1}{7} + \frac{1}{9} - \frac{1}{15} + \frac{1}{17} - \frac{1}{23} + \cdots$ 的和.
- 19. $x \in (-1,1)$, 求函数项级数 $\sum_{i=1}^{+\infty} \frac{(-1)^{n-1}x^n}{n}$ 的和.
- 20. 区间 [a,b] 上的连续函数列 $\{f_n(x)\}$ 收敛到 f(x). 证明 f(x) 连续的充要条件是 $\forall \varepsilon > 0, \forall N \in \mathbb{N}_+, \exists N' > N, \text{s.t.} \forall x \in \mathbb{N}_+$ $[a, b], \exists n_x \in [N, N'], \text{s.t.} |f_{n_x}(x) - f(x)| < \varepsilon.$
- 21. 设函数 $f_n(x)$ 在 \mathbb{R} 上定义且有界, 并在任何闭区间 [a,b] 上 $f_n(x) \Rightarrow \varphi(x)$. 问是否有 $\lim_{n \to +\infty} \sup_{x} f_n(x) = \sup_{x} \varphi(x)$?
- 22. 函数列 $f_n(x) = \cos nx$ 是否存在 \mathbb{R} 上内闭一致收敛的子列?

7.2 解答

- 1. (1) 极限函数为 0, 因为 $f_n(\frac{1}{n}) > \frac{n}{3}$, 因此不一致收敛.
- (2) 极限函数为 0. (a) 因为 $\sup_{x \in [a,b]} \left| \sin \frac{x}{n^n} \right| \le \frac{|a| + |b|}{n^n}$,由 M-判别法知一致收敛; (b) 因为 $f(n^n) = \sin 1$,因此不一致收 敛.
- (3) 极限函数为 0, 因为 $\sup_{x \in \mathbb{R}} \left| \frac{\sin(n^n x)}{n^{\alpha}} \right| \leq \frac{1}{n^{\alpha}}$, 由 M-判别法知一致收敛.
- 2. (1) $\sum_{n=1}^{N} \sin x \sin nx = \sum_{n=1}^{N} \frac{1}{2} \left[\cos \left(n \frac{1}{2} \right) x \cos \left(n + \frac{1}{2} \right) x \right] = \frac{1}{2} \left[\cos \frac{1}{2} x \cos \left(N + \frac{1}{2} \right) x \right]$ 一致有界, $\frac{1}{\sqrt{n+x^2}}$ 关于 n 单调递减且一致趋于 0, 因此由 Dirichlet 判别法知一致收敛.
- (2) $\sum_{n=0}^{\infty} (-1)^n$ 一致有界, $\frac{1}{n+x^2}$ 关于 n 单调递减且一致趋于 0, 因此由 Dirichlet 判别法知一致收敛.
- $(3) \sup_{x \in [0,1]} f_n(x) = f_n(\frac{1}{n+1}) \sim Cn^{\alpha-1},$ 因此 $\alpha < 1$ 时一致收敛, $\alpha \ge 1$ 时不一致收敛.
- 3. (1) 如 $f_n(x) = \begin{cases} 1 nx, & x \in \left[0, \frac{1}{n}\right],$ 取 $x_n = \frac{1}{n}.$ 0, otherwise
- $(2) \ f_n(x) \Rightarrow f(x) \Rightarrow f(x) \in C[0,1]. \ \mathbb{m}$ 么对于任意 $\varepsilon > 0$,存在 $\delta > 0$ 使得 $\forall x \in (x_0 \delta, x_0 + \delta), \ |f(x) f(x_0)| < \frac{\varepsilon}{2}.$ 由 (一致) 收敛性知当 n 充分大时有 $|x_n - x_0| < \delta$ 且 $\sup_{x \in [0,1]} |f_n(x) - f(x)| < \frac{\varepsilon}{2}$. 从而 $|f_n(x_n) - f(x_0)| \le |f_n(x_n) - f(x_n)| + \varepsilon$ $|f(x_n) - f(x_0)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, 因此有原收敛关系
- 4. 原级数是 $\sum_{n=1}^{+\infty} \left(\frac{1}{e^x \left(1+\frac{1}{n}\right)^n}\right)^n$, 而 $\lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n = e$, 因此当 x > -1 时收敛, 当 x < -1 时发散. 而当 x = -1 时, $\lim_{n\to +\infty} \frac{e^n}{\left(1+\frac{1}{n}\right)^{n^2}} = \lim_{n\to +\infty} e^{n-n^2\ln(1+\frac{1}{n})} = e^{\frac{1}{2}}$, 因此原幂级数发散.
- 5. 显然 $f_n(x) \to \max(1,x)$. 在 [0,1] 上, $|f_n(x)-1| \le \sqrt[n]{2}-1$; 在 $[1,+\infty)$ 上, $|f_n(x)-x| \le \sqrt[n]{2}-1$ (因为 $(f_n(x)-x)' < 0$). 因此由最值判别法知一致收敛.
- 6. 先证一致有界性. 由一致收敛性,

$$\exists N \in \mathbb{N}_+, \text{ s.t. } \forall m, n \geq N, \forall x \in I, |f_n(x) - f_m(x)| \leq 1.$$

从而对 $\forall n \in \mathbb{N}_+, \forall x \in I$, 有

$$|f_n(x)| \le \sup_{x \in I, 1 \le k \le N} |f_k(x)| + 1 := M_f,$$

・致有界. 同理对 $\forall n \in \mathbb{N}_+, \forall x \in I, 有 |g_n(x)| \leq M_q$. 从而

$$|f_m(x)g_m(x) - f_n(x)g_n(x)| \le |f_m(x)g_m(x) - f_m(x)g_n(x)| + |f_m(x)g_n(x) - f_n(x)g_n(x)|$$

$$\le M_f|g_m(x) - g_n(x)| + M_g|f_m(x) - f_n(x)|.$$

由一致收敛性,

$$\forall \varepsilon > 0, \exists N', \text{ s.t. } \forall m, n > N', \forall x \in I, |f_n(x) - f_m(x)| < \frac{\varepsilon}{2M_q}, |g_n - g_m| < \frac{\varepsilon}{2M_f}.$$

此时 $\sup_{x\in I} |f_m(x)g_m(x) - f_n(x)g_n(x)| < \varepsilon$. 因此函数列 $\{f_ng_n\}$ 在 I 上一致收敛. 7. $\sum_{n=1}^{N} (-1)^n$ 一致有界, $f(x^n)$ 随 n 单调递减且一致趋于 0, 有 Dirichlet 判别法知一致收敛.

8. 绝对 (一致) 收敛性:
$$\left| \frac{(-1)^{n-1}x^2}{(1+x^2)^n} \right| \begin{cases} = 0, & x=0 \\ \leq \frac{1}{(1+x^2)^{n-1}}, & x \neq 0 \end{cases}$$
 知绝对收敛,
$$\left[\sum_{k=n}^{2n} \left| \frac{(-1)^{k-1}x^2}{(1+x^2)^k} \right| \right]_{x^2 = \frac{1}{n}} = \frac{(1+\frac{1}{n})^{n+1} - 1}{(1+\frac{1}{n})^{2n}} > \frac{1}{n}$$

 $\frac{e-1}{e^2}$ 知不绝对一致收敛. 一致收敛性: $\sum_{n=1}^{+\infty} (-1)^{n-1}$ 有界, $\frac{x^2}{(1+x^2)^n}$ 关于 n 单调递减且一致趋于 0, 由 Dirichlet 判别

法知一致收敛.
9. 记
$$f_n(x) = \frac{(1-x)x^n}{1-x^{2n}}$$
. 则 $f_n(x) \ge f_{n+1}(x) \Leftrightarrow (1-x)(1+x^{2n+1}) \ge 0$ 恒成立,且 $f_n(x) = \frac{x^n}{1+x+x^2+\cdots+x^{2n-1}} \le \frac{1}{n+1} \Rightarrow 0$,而 $\sum_{n=1}^N \sin nx$ 关于 $x \in \left(\frac{1}{2},1\right)$ 一致有界,因此由 Dirichlet 判别法,知原级数一致收敛.

10. 由导数定义,
$$\lim_{n \to +\infty} F_n(x) = \frac{1}{2} \lim_{n \to +\infty} \left[\frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} + \frac{f(x - \frac{1}{n}) - f(x)}{-\frac{1}{n}} \right] = f'(x)$$
. 另一方面,考虑闭区间 $[c, d]$,

则我们有
$$|F_n(x) - f'(x)| = \frac{1}{2} \left[\frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} + \frac{f(x - \frac{1}{n}) - f(x)}{-\frac{1}{n}} - 2f'(x) \right] = \frac{1}{2} [(f'(\xi_1) - f'(x)) + (f'(\xi_2) - f'(x))] \le \frac{1}{2} \left[\frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} + \frac{f(x - \frac{1}{n}) - f(x)}{-\frac{1}{n}} - 2f'(x) \right] = \frac{1}{2} \left[\frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} + \frac{f(x - \frac{1}{n}) - f(x)}{-\frac{1}{n}} - 2f'(x) \right] = \frac{1}{2} \left[\frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} + \frac{f(x - \frac{1}{n}) - f(x)}{\frac{1}{n}} - 2f'(x) \right]$$

 $\sup_{|x-y|<\frac{1}{n}}|f'(x)-f'(y)|\to 0,$ 其中最后一步利用了 f'(x) 在区间 $\left[\frac{a+c}{2},\frac{b+d}{2}\right]$ 上的一致连续性. 然后用 M-判别法.

11. 由题给条件, $\forall \varepsilon > 0, \exists N > 0, \exists N' > 0, \text{ s.t. } \forall n > N',$

$$\left| \int_{N}^{+\infty} f_n(x) dx \right| \le \int_{N}^{+\infty} |f_n(x)| dx \le \int_{N}^{+\infty} F(x) dx < \frac{\varepsilon}{8},$$

$$\left| \int_{-\infty}^{-N} f_n(x) dx \right| < \int_{-\infty}^{-N} |f_n(x)| dx \le \int_{-\infty}^{-N} F(x) dx < \frac{\varepsilon}{8},$$

且

$$\left| \int_{-N}^{N} f_n(x) dx - \int_{-N}^{N} f(x) dx \right| \le \int_{-N}^{N} |f_n(x) - f(x)| dx < 2N \cdot \frac{\varepsilon}{4N} = \frac{\varepsilon}{2}.$$

因此, 我们有估计

$$\left| \int_{-\infty}^{+\infty} f_n(x) dx - \int_{-\infty}^{+\infty} f(x) dx \right| \le \left| \int_{N}^{+\infty} f_n(x) dx \right| + \left| \int_{N}^{+\infty} f(x) dx \right| + \left| \int_{-\infty}^{-N} f_n(x) dx \right| + \left| \int_{-\infty}^{-N} f(x) dx \right| + \left| \int_{-N}^{N} f_n(x) dx - \int_{-N}^{N} f(x) dx \right|$$

$$< \frac{\varepsilon}{2} \cdot 4 + \frac{\varepsilon}{2} = \varepsilon$$

对 $\forall n > N'$ 成立. 从而有原极限.

12. 记 $S_{n,p}(x) = \sum_{k=n}^{p} a_k \sin kx$. 先证必要性. $o(1) = S_{n,2n}\left(\frac{\pi}{4n}\right) = \sum_{k=n}^{2n} a_k \sin \frac{k\pi}{4n} \ge \frac{n}{2}(a_{2n-1} + a_{2n})\sin \frac{\pi}{4} \Rightarrow a_n = o\left(\frac{1}{n}\right)$. 再证充分性. 定义单调递减数列 $b_n = \sup\{ma_m\} = o(1)$.

(a)
$$\stackrel{\text{def}}{=} 0 \le x \le \frac{\pi}{p} \text{ iff}, |S_{n,p}(x)| \le \sum_{k=1}^{p} k a_k x \le p b_n x \le b_n \pi \overset{n \to +\infty}{\longrightarrow} 0.$$

(b) 当
$$x \ge \frac{\pi}{n}$$
 时,由于 $\forall m > n$,
$$\left| \sum_{k=n}^{m} \sin kx \right| \le \frac{1}{\sin(\frac{x}{2})} \le \frac{\pi}{x} \le n$$
,利用 Abel 变换可知 $|S_{n,p}(x)| \le na_n \le b_n \overset{n \to +\infty}{\to} 0$.
(c) 当 $\frac{\pi}{p} < x < \frac{\pi}{n}$ 时,取 $q = \left\lfloor \frac{\pi}{x} \right\rfloor$,则 $|S_{n,p}(x)| \le |S_{n,q}(x)| + |S_{q+1,p}(x)| \le b_n \pi + b_{q+1} \le (\pi+1)b_n \overset{n \to +\infty}{\to} 0$.

13. (1) $x^{-x} = e^{-x \ln x} = 1 + \sum_{n=0}^{+\infty} \frac{(-1)^n (x \ln x)^n}{n!}$. 一致收敛可交换极限积分顺序, 因此

$$\int_0^1 x^{-x} \mathrm{d}x = \int_0^1 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n (x \ln x)^n}{n!} \mathrm{d}x = 1 + \sum_{n=1}^{+\infty} \int_0^1 \frac{(-1)^n (x \ln x)^n}{n!} \mathrm{d}x = 1 + \sum_{n=1}^{+\infty} \frac{1}{(n+1)^{n+1}} = \sum_{n=1}^{+\infty} \frac{1}{n^n}.$$

(2) 考虑 $\sum_{n=1}^{+\infty} t^n \ln t = \frac{t \ln t}{1-t}$. 由于 $\forall x \in (0,1), t \in [0,x], |t^n \ln t| = |t^{n-1}t \ln t| \le x^{n-1}e^{-1}$, 因此该级数在 [0,x] 上一致收

$$\int_{0}^{x} \sum_{n=1}^{+\infty} t^{n} \ln t dt = \sum_{n=1}^{+\infty} \int_{0}^{x} t^{n} \ln t dt = \int_{0}^{x} \frac{t \ln t}{1 - t} dt.$$

由于 $\forall y \in [0,1], \left| \int_0^y t^n \ln t dt \right| = \left| \frac{y^{n+1} \ln y}{n+1} - \frac{y^{n+1}}{(n+1)^2} \right| \le \frac{e+1}{(n+1)^2},$ 因此 $\sum_{i=1}^{+\infty} \int_0^y t^n \ln t dt$ 对 $y \in [0,1]$ 一致收敛, 从而 连续, 即是

$$\int_0^1 \frac{t \ln t}{1-t} dt = \lim_{x \to 1-0} \int_0^x \frac{t \ln t}{1-t} dt = \lim_{x \to 1-0} \sum_{n=1}^{+\infty} \int_0^x t^n \ln t dt = \sum_{n=1}^{+\infty} \int_0^1 t^n \ln t dt = -\sum_{n=1}^{+\infty} \frac{1}{(n+1)^2}.$$

两边同时加上 $\int_0^1 \ln t dt$ 得到 $\int_0^1 \frac{\ln t}{1-t} dt = -\sum_{i=1}^{+\infty} \frac{1}{n^2}$.

14. 被导函数 =
$$\sum_{n=0}^{+\infty} \frac{x^{2^n}}{\prod\limits_{k=0}^{n} (1+x^{2^k})} = (1-x) \sum_{n=0}^{+\infty} \frac{x^{2^n}}{1-x^{2^{n+1}}} = (1-x) \sum_{n=0}^{+\infty} \left(\frac{1}{1-x^{2^n}} - \frac{1}{1-x^{2^{n+1}}} \right) = 1$$
,因此其导数为 0.

15. $f_n(x) = \sin \frac{x}{x^2}$.

16. 利用一致收敛性容易证明 $f \in R[a,b]$ (why?). 设 $F_n(x) = \int_a^x f(t) dt$, 则 $\sup_{a \le x \le b} |F_n(x) - F_m(x)| \le \sup_{a \le x \le b} \int_a^x |f_n(t) - F_n(t)| \le \sup_{a \le x \le b} |f_n(t)| \le \sup_{a \le x \le b} |f_$ $f_m(t)|\mathrm{d}t \leq (b-a)\sup_{a\leq x\leq b}|f_n(x)-f_m(x)|\mathrm{d}x\to 0\Rightarrow F_n(x)$ 一致收敛, 不妨设极限函数为 F. 交换极限和求导顺序, 知 F'(x) = f(x).

17. 由 E 紧, 知存在可数稠密子集 $Q = \{x_n\}_{n=1}^{+\infty}$. $\{f_n(x_1)\}$ 有界, 因此可抽取收敛子列 $\{f_{n,1}(x_1)\}$. 同理 $\{f_{n,1}(x_2)\}$ 有 界, 因此可抽取收敛子列 $\{f_{n,2}(x_2)\}$. 依此类推, 考虑对角线子列 $\{f_{n,n}(x)\}$, 显然对于 $\forall x \in Q, f_{n,n}(x)$ 都收敛. 由等度 连续性知 $\forall \varepsilon > 0, \exists \delta > 0, \text{s.t.} \forall n \in \mathbb{N}_+, \forall |x - x'| < \delta, |f_n(x) - f_n(x')| < \frac{\varepsilon}{3}.$ 由于 $\cup_{x \in Q} B(x, \delta)$ 是 E 的一个开覆盖,因此存在有限子覆盖 $\cup_{k=1}^K B(y_k, \delta)$. 由 $f_{n,n}(x)$ 在 Q 上的收敛性知 $\exists N \in \mathbb{N}_+, \text{s.t.} \forall n, m > N, \forall k = 1, 2, \cdots, K, |f_{n,n}(y_k) - f_{m,m}(y_k)| < \frac{\varepsilon}{3}$. 从而 $\forall x \in E, \forall n, m > N, \exists y_k, \text{s.t.} |x - y_k| < \delta, 且 |f_{n,n}(x) - f_{m,m}(x)| \leq |f_{n,n}(x) - f_{n,n}(y_k)| + |f_{n,n}(y_k) - f_{m,n}(x)| \leq |f_{n,n}(x) - f_{n,n}(x)| + |f_{n,n}(y_k) - f_{m,n}(x)| \leq |f_{n,n}(x) - f_{n,n}(x)| + |f_{n,n}(y_k) - f_{m,n}(x)| + |f_{n,n}(x) -$ $|f_{m,m}(y_k)| + |f_{m,m}(y_k) - f_{m,m}(x)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$. 这说明 $\{f_{n,n}(x)\}$ 一致收敛.

18. 原式 =
$$1 - \sum_{n=1}^{+\infty} \left(\frac{1}{8n-1} - \frac{1}{8n+1} \right) = 1 - \sum_{n=1}^{+\infty} \int_0^1 [x^{8n-2}(1-x^2)] dx$$
. 记 $u_n(x) = \int_0^x [t^{8n-2}(1-t^2)] dt$. 显然 $u_n(x) \in \mathbb{R}$

$$C[0,1] \, \, \text{且} \, \sum_{n=1}^{+\infty} u_n(x) \, \, -$$
 致收敛,因此 $\sum_{n=1}^{+\infty} u_n(1) = \sum_{n=1}^{+\infty} \lim_{x \to 1-0} u_n(x) = \lim_{x \to 1-0} \sum_{n=1}^{+\infty} u_n(x) = \lim_{x \to 1-0} \int_0^x \frac{t^6}{(1+t^2)(1+t^4)} dt = \lim_{x \to 1} \frac{t^6}{(1+t^2)(1+t^4)} dt$

$$\int_0^1 \frac{t^6}{(1+t^2)(1+t^4)} dt = 1 - \frac{1}{8}(1+\sqrt{2})\pi, \\ 其中倒数第三个等号利用了 \forall x \in (0,1), 级数 \sum_{n=1}^{+\infty} t^{8n-2}(1-t^2)$$
 在区间 $[0,x]$

上的一致收敛性. 因此原式 = $\frac{1}{8}(1+\sqrt{2})\pi$.

一致收敛, 且
$$\sum_{n=1}^{+\infty} u_n(x)$$
 收敛, 因此 $S'(x) = \sum_{n=1}^{+\infty} u'_n(x) = \frac{1}{1+x} \Rightarrow S(x) = \ln(1+x) + C$. 由 $S(0) = 0 \Rightarrow C = 0$.

20. 先证必要性. $\forall \varepsilon > 0, \forall N \in \mathbb{N}_+, \forall x \in [a,b], \exists N_x > N, \text{s.t.} |f_{N_x}(x) - f(x)| < \varepsilon$. 由连续性, $\exists \delta_x > 0, \text{s.t.} \forall x \in (x - \delta_x, x + \delta_x)$ $\delta_x), |f_{N_x}(x) - f(x)| < \varepsilon. \ \cup_{x \in [a,b]} (x - \delta_x, x + \delta_x) \ \text{构成了} \ [a,b] \ \text{的开覆盖, 存在有限子覆盖} \ \cup_{i=1}^n (x_i - \delta_{x_i}, x_i + \delta_{x_i}) \supset [a,b].$ 因此可取 $N' = \max_{i=1,2,\dots,n} N_{x_i}$.

再证充分性. 考虑在 x 处并做分解 $|f(x)-f(y)| \leq |f(x)-f_n(x)|+|f_n(x)-f_n(y)|+|f_n(y)-f(y)|$. 由 $f_n(x)$ 的收敛性, $\forall \varepsilon>0, \exists N\in\mathbb{N}_+, \text{s.t.} \forall n\geq N, |f(x)-f_n(x)|<\frac{\varepsilon}{3}$. 再由题给条件, $\exists N'>N, \text{s.t.} \forall y, \exists n_y\in[N,N'], |f_{n_y}(y)-f(y)|<\frac{\varepsilon}{3}$. 最 后由连续性, $\exists \delta > 0$, s.t. $\forall |x-y| < \delta$, $\forall n \in [N, N']$, $|f_n(x) - f_n(y)| < \frac{\varepsilon}{3}$. 此时 $\forall |x-y| < \delta$, 取 $n = n_y \Rightarrow |f(x) - f(y)| < \varepsilon$, 即连续性得证.

- 21. 考虑 $f_n(x)=e^{-(x-n)^2}$. 对于任意闭区间 $[a,b],\,f_n(x)$ 都一致收敛于 $0,\,$ 但是 $\sup f_n(x)\equiv 1\neq 0=\sup \varphi(x)$.
- 22. 不存在. 假设 $f_{n_k} = \cos n_k x$ 在 \mathbb{R} 上内闭一致收敛. 由收敛性知 $\forall \varepsilon > 0, \exists N, \text{s.t.} \forall m > k > N, \forall x \in [-1, 1], |\cos n_k x \cos n_m x| < \varepsilon$. 当 $n_m > 2n_k$ 时, 考虑 $x = \frac{1}{n_m}$, 则 $|\cos n_k x \cos n_m x| = |\cos \frac{n_k}{n_m} \cos 1| > \cos \frac{1}{2} \cos 1$. 矛盾.

幂级数的基本概念与性质

8.1 问题

- 1. 幂级数 $\sum_{n=0}^{+\infty} a_n x^n$, $\sum_{n=0}^{+\infty} b_n x^n$ 收敛半径为 r_a, r_b , 给出下列幂级数收敛半径的范围: (1) $\sum_{n=0}^{+\infty} (a_n + b_n) x^n$; (2) $\sum_{n=0}^{+\infty} a_n b_n x^n$.
- 2. 求下列级数的和: (1) $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2^n n!}$; (2) $\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}$.
- 3. 求下列函数的 Maclaurin 展式: $(1) \ln(x + \sqrt{1+x^2})$; $(2) (\arctan x)^2$.
- 4. 证明: 当 a,b > -1 时, 成立 $\int_0^1 \frac{x^a x^b}{1 x} dx = \sum_{n=0}^{+\infty} \left(\frac{1}{n+a} \frac{1}{n+b} \right)$.
- 5. 设函数 f(x) 在闭区间 [a,b] 上各阶导数存在并且非负,证明: $f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, \forall x \in [a,b).$
- 自由选讲. 6. 求幂级数 $\sum_{n=1}^{+\infty} \frac{\left(1+2\cos\frac{n\pi}{4}\right)^n}{n\ln n} x^n \text{ 的收敛域.}$
- 7. 求级数 $\sum_{k=1}^{+\infty} \frac{\sum_{k=1}^{\infty} k^n}{n^2} \left(\frac{1-x}{1+x}\right)^n$ 的收敛域, 其中 $K \in \mathbb{N}_+$.
- 8. 求级数 $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n\sqrt[n]{n}} \left(\frac{x}{2x+1}\right)^n$ 的收敛域.
- 9. 求极限 $\lim_{n \to +\infty} \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k} C_n^k$.
- 10. 求幂级数 $\sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$ 的收敛域与和函数.
- 11. 求幂级数 $\sum_{n=1}^{+\infty} \frac{n+1}{n!2^n} x^n$ 的收敛域与和函数.
- 12. 求级数 $\sum_{n=1}^{+\infty} \sum_{n=1}^{+\infty} \frac{m^2 n}{3^m (n3^m + m3^n)}$ 的和.
- 13. $a_n > 0, f(x) = \sum_{n=0}^{+\infty} a_n x^n, \sum_{n=0}^{+\infty} a_n n!$ 收敛, 证明 $\int_0^{+\infty} e^{-x} f(x) dx = \sum_{n=0}^{+\infty} a_n n!$.
- 14. 证明 $x = \sin x + \sum_{n=1}^{+\infty} \frac{(2n-1)!!}{(2n)!!} \frac{\sin^{2n+1} x}{2n+1}, x \in \left[0, \frac{\pi}{2}\right],$ 并据此计算 $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- 15. $\[\] \[\mathcal{G} f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2} \]$. $\[\] \[\] \[\] \[\] \] \[\]$
- 16. $\sum_{n=0}^{+\infty} a_n = A$, $\sum_{n=0}^{+\infty} b_n = B$. 证明若 Cauchy 乘积级数 $\sum_{n=0}^{+\infty} c_n$ 收敛, 则它必收敛于 AB.

17. 设曲线 $x^{\frac{1}{n}} + y^{\frac{1}{n}} = 1(n > 1)$ 在第一象限与坐标轴围成的面积为 I(n), 证明 $\sum_{i=1}^{+\infty} I(n) < 4$.

8.2 解答

1. 相加相乘有可能导致不好的项消失. 利用 Cauchy 判别法得到: (1)
$$\min\{r_a, r_b\} \le r \le \infty$$
; (2) $r_a r_b \le r \le \infty$.
2. (1) 利用 e^x 展开式得 $e^{-\frac{1}{2}}$; (2) 定义 $f(x) = \sum_{n=0}^{+\infty} \frac{x^{3n+1}}{3n+1}$, 原式即为 $-f(-1)$. $f'(x) = \sum_{n=0}^{+\infty} x^{3n} = \frac{1}{1-x^3}$, 从而两边积分

得到
$$f(x) = \int_0^x f'(t) \mathrm{d}t = \frac{1}{6} \left(\log(x^2 + x + 1) - 2\log(1 - x) + 2\sqrt{3} \arctan\left(\frac{2x + 1}{\sqrt{3}}\right) - \frac{\pi}{\sqrt{3}} \right) \Rightarrow -f(-1) = \frac{\ln 2}{3} + \frac{\sqrt{3}\pi}{9}.$$
这一问求导再积分的合理性是: 幂级数收敛域内必内闭一致收敛, 因此连续.

3. (1)
$$[\ln(x+\sqrt{1+x^2})]' = \frac{1}{\sqrt{1+x^2}} = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n (2n-1)!!}{(2n)!!} x^{2n} \Rightarrow \ln(x+\sqrt{1+x^2}) = x + \sum_{n=1}^{+\infty} \frac{(-1)^n (2n-1)!!}{(2n)!! (2n+1)} x^{2n+1}.$$

$$(2)\arctan x = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n-1},$$
平方后计算其对应项系数得到 $(\arctan x)^2 = \sum_{n=1}^{+\infty} (-1)^{n-1} \left(1 + \frac{1}{3} + \dots + \frac{1}{2n-1}\right) \frac{x^{2n}}{n}.$

4.
$$\forall t \in (0,1), \int_0^t \frac{x^a - x^b}{1 - x} dx = \sum_{n=1}^{+\infty} \left(\frac{t^{n+a}}{n+a} - \frac{t^{n+b}}{n+b} \right)$$
. 令 $t \to 1-0$, 右边的级数一致收敛 (最值判别法), 由连续性得到结果.

5. 由带 Cauchy 余项的 Taylor 展开得
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{n!} \int_{a}^{x} (x-t)^n f^{(n+1)}(t) dt, \forall x \in [a,b].$$
 当 $x < b$ 时,

做变换
$$[a,x] \rightarrow [a,b], t \mapsto a + \frac{b-a}{x-a}(t-a) = s$$
, 其逆变换记为 $\varphi(s) = a + \frac{x-a}{b-a}(s-a)$, 满足 $\varphi(s) \leq s$. 因此余项

$$\frac{1}{n!} \int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt = \frac{1}{n!} \left(\frac{x-a}{b-a}\right)^{n+1} \int_{a}^{b} (b-s)^{n} f^{(n+1)}(\varphi(s)) ds$$

$$\leq \frac{1}{n!} \left(\frac{x-a}{b-a}\right)^{n+1} \int_{a}^{b} (b-s)^{n} f^{(n+1)}(s) ds$$

(观察
$$x = b$$
 时的余项并利用导数非负) $\leq \left(\frac{x-a}{b-a}\right)^{n+1} f(b) \stackrel{n \to +\infty}{\to} 0.$

6.
$$\overline{\lim_{n\to +\infty}} \sqrt[n]{\frac{\left(1+2\cos\frac{n\pi}{4}\right)^n}{n\ln n}} = \overline{\lim_{n\to +\infty}} \left(1+2\cos\frac{n\pi}{4}\right) = 3,$$
 因此收敛半径是 $\frac{1}{3}$. 考察端点, 当 $x=\frac{1}{3}$ 时,

原式 =
$$\sum_{n=1}^{7} \frac{\left(\frac{1}{3} + \frac{2}{3}\cos\frac{n\pi}{4}\right)^n}{n\ln n} + \sum_{n=1}^{+\infty} \sum_{k=0}^{7} \frac{\left(\frac{1}{3} + \frac{2}{3}\cos\frac{(8n+k)\pi}{4}\right)^{8n+k}}{(8n+k)\ln(8n+k)}$$

$$= C + \sum_{n=1}^{+\infty} \sum_{k=0}^{7} \frac{\left(\frac{1}{3} + \frac{2}{3}\cos\frac{(8n+k)\pi}{4}\right)^{8n+k}}{(8n+k)\ln(8n+k)}$$

$$\geq C + \sum_{n=1}^{+\infty} \left[\frac{1}{(8n)\ln(8n)} + \frac{\left(\frac{1-\sqrt{2}}{3}\right)^{8n+3}}{(8n+3)\ln(8n+3)} + \frac{\left(\frac{1-\sqrt{2}}{3}\right)^{8n+5}}{(8n+5)\ln(8n+5)} \right]$$

$$\geq C + \sum_{n=1}^{+\infty} \left[\frac{1}{(8n)\ln(8n)} + \left(\frac{1-\sqrt{2}}{3}\right)^{8n+1} \frac{2}{(8n)\ln(8n)} \right]$$

$$\geq C + \sum_{n=1}^{+\infty} \left[\frac{1}{(8n)\ln(8n)} \right],$$

因此原级数发散. $x = -\frac{1}{3}$ 时有类似讨论, 因此收敛域为 $\left(-\frac{1}{3}, \frac{1}{3}\right)$.

7. 由上学期知识,
$$\lim_{n \to +\infty} \sqrt[n]{\frac{\sum\limits_{k=1}^K k^n}{n^2}} = K$$
, 讨论端点后知收敛域为 $\left|\frac{1-x}{1+x}\right| \leq \frac{1}{K} \Leftrightarrow x \in \left[\frac{K-1}{K+1}, \frac{K+1}{K-1}\right]$.

8.
$$\overline{\lim}_{n \to +\infty} \sqrt[n]{\frac{1}{n\sqrt[n]{n}}} = 1$$
, 讨论端点后知收敛域为 $-1 < \frac{x}{2x+1} \le 1 \Leftrightarrow x \in (-\infty, -1] \cup (-\frac{1}{3}, +\infty)$.

9. 构造
$$S_n(x) = \sum_{k=1}^n \frac{1}{k} C_n^k x^k$$
,则 $S_n'(x) = \sum_{k=1}^n C_n^k x^{k-1} = \frac{(1+x)^n - 1}{x}$. 从而

$$I_n = -S(-1) = \int_{-1}^0 \frac{(1+x)^n - 1}{x} dx = \int_0^1 [1+x+\dots+x^{n-1}] dx = 1 + \frac{1}{2} + \dots + \frac{1}{n} \to +\infty.$$

10. 容易验证收敛域为 [-1,1]. 通过求导再积分, 得到和函数是

$$2\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \int_0^x t^{2n-1} dt = 2\sum_{n=1}^{+\infty} (-1)^{n-1} \int_0^x \int_0^t s^{2n-2} ds dt = 2\int_0^x \int_0^t \sum_{n=1}^{+\infty} (-s^2)^{n-1} ds dt$$
$$= 2\int_0^x \int_0^t \frac{1}{1+s^2} ds dt = 2\int_0^x \arctan s ds = 2x \arctan x - \ln(1+x^2).$$

11. 显然收敛域为
$$\mathbb{R}$$
. 考虑一致收敛级数 $\sum_{n=1}^{+\infty} \frac{x^{n+1}}{n!2^n} = x(e^{\frac{x}{2}}-1)$, 逐项求导得到 $\sum_{n=1}^{+\infty} \frac{n+1}{n!2^n} = \left(\frac{x}{2}+1\right)e^{\frac{x}{2}}-1$.

12. 原式 =
$$\sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} \frac{m^2 n^2}{3^m n(n3^m + m3^n)}$$
 对整性 $\frac{1}{2} \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} \left[\frac{m^2 n^2}{3^m n(n3^m + m3^n)} + \frac{m^2 n^2}{3^n m(n3^m + m3^n)} \right] = \frac{1}{2} \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} \left(\frac{mn}{3^m 3^n} \right) = \frac{1}{2} \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} \left(\frac{mn}{3^m 3^n} \right)$

$$\frac{1}{2} \left(\sum_{m=1}^{+\infty} \frac{m}{3^m} \right) \left(\sum_{m=1}^{+\infty} \frac{n}{3^n} \right)^{+\infty} = \sum_{n=1}^{+\infty} \frac{n}{3^n} = \frac{3}{4} \frac{9}{32}.$$

13. 一方面,
$$\int_0^{+\infty} e^{-x} f(x) dx \ge \int_0^{+\infty} e^{-x} \left(\sum_{n=0}^N a_n x^n \right) dx = \sum_{n=0}^N a_n n!$$
, 从而 $\int_0^{+\infty} e^{-x} f(x) dx \ge \sum_{n=0}^{+\infty} a_n n!$.

另一方面,
$$\int_0^N e^{-x} f(x) \mathrm{d}x \leq \sum_{n=0}^{+\infty} a_n \int_0^N e^{-x} x^n \mathrm{d}x \leq \sum_{n=0}^{+\infty} a_n \int_0^{+\infty} e^{-x} x^n \mathrm{d}x = \sum_{n=0}^{+\infty} a_n n!,$$
 从而
$$\int_0^{+\infty} e^{-x} f(x) \mathrm{d}x \leq \sum_{n=0}^{+\infty} a_n n!.$$

14. 利用
$$\arcsin x = x + \sum_{n=1}^{+\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}$$
,换元 $x = \arcsin x$ 知 $x = \sin x + \sum_{n=1}^{+\infty} \frac{(2n-1)!!}{(2n)!!} \frac{\sin^{2n+1} x}{2n+1}$. 两边从 0 到 $\frac{\pi}{2}$

积分,得到
$$\frac{\pi^2}{8} = \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2}$$
. 由于 $\sum_{n=1}^{+\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} = \frac{3}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2}$, 因此 $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{4}{3} \frac{\pi^2}{8} = \frac{\pi^2}{6}$.

15. 由
$$\sum_{n=1}^{+\infty} \frac{x^{n-1}}{n}$$
 在 $(-1,1)$ 上内闭一致收敛,知 $f(x)$ 可逐项求导. 令 $F(x) = f(x) + f(1-x) + \ln x \ln(1-x)$,则

$$F'(x) = f'(x) - f'(1-x) + \frac{\ln(1-x)}{x} - \frac{\ln x}{1-x} = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{n} - \sum_{n=1}^{+\infty} \frac{(1-x)^{n-1}}{n} + \frac{\ln(1-x)}{x} - \frac{\ln x}{1-x} = 0.$$

从而
$$F(x) \equiv \lim_{x \to 0} F(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

16. 设
$$f(x) = \sum_{n=1}^{+\infty} a_n x^n, g(x) = \sum_{n=1}^{+\infty} b_n x^n.$$
 $f(1), g(1)$ 收敛 $\Rightarrow \forall |x| < 1, \sum_{n=1}^{+\infty} |a_n x^n|, \sum_{n=1}^{+\infty} |b_n x^n|$ 收敛 $\Rightarrow \forall |x| < 1, \sum_{n=1}^{+\infty} c_n x^n = \left(\sum_{n=1}^{+\infty} a_n x^n\right) \left(\sum_{n=1}^{+\infty} b_n x^n\right).$ 这三个级数都在 $x = 1$ 处收敛,因此左连续,令 $x \to 1 - 0$ 得 $\sum_{n=1}^{+\infty} c_n = \left(\sum_{n=1}^{+\infty} a_n\right) \left(\sum_{n=1}^{+\infty} b_n\right).$ 17. $I(n) = \int_0^1 (1 - x^{\frac{1}{n}})^n dx \stackrel{x=t^{2n}}{=} 2n \int_0^1 (1 - t^2)^n t^{2n-1} dt = 2n \int_0^1 (1 - t^2)^{n-1} t^{2n-2} (1 - t^2) t dt \le 2n \int_0^1 [(1 - t^2)t^2]^{n-1} dt \le \frac{2n}{4^{n-1}}.$ 注意到 $\sum_{n=1}^{+\infty} x^n = \frac{x}{1-x}$,逐项求导得 $\sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$,因此代入 $n = \frac{1}{4}$ 知 $\sum_{n=1}^{+\infty} I_n \le \sum_{n=1}^{+\infty} \frac{2n}{4^{n-1}} = \frac{32}{9} < 4.$

9 幂级数展开与多项式逼近

9.1 问题

■ 自由选讲.

- 1. (Airy 方程). 利用 Maclaurin 级数求解微分方程 y''(x) xy(x) = 0. 2. 写出函数 $f(x) = \left(\frac{\arcsin x}{x}\right)^2$ 的 Maclaurin 级数并给出收敛域.
- 3. 写出函数 $f(x) = \ln(1 + x + x^2)$ 的 Maclaurin 级数并给出收敛域.
- 4. 写出函数 $f(x) = \arctan \frac{x \sin \theta}{1 x \cos \theta}$ 的 Maclaurin 级数并给出收敛域, 其中 $\theta \in \left[0, \frac{\pi}{2}\right]$.
- 5. 证明 [0,1] 上的连续函数可以被有理系数多项式逼近.
- 6. 证明 [0,1] 上的连续函数可以被单调递升的多项式列 (即 $P_1 \leq P_2 \leq \cdots \leq P_n \leq \cdots$) 逼近.
- 7. [a,b] 上的连续函数列 $\{f_n(x)\}$ 单调递升且收敛于 f(x). 证明 f(x) 一定能取到其最小值, 但未必能取到其最大值.
- 8. [a,b] 上的连续函数项级数 $\sum_{n=1}^{+\infty} u_n(x), \sum_{n=1}^{+\infty} v_n(x)$ 满足 $|u_n(x)| \leq v_n(x), \forall n \in \mathbb{N}_+$, 且和函数 $\sum_{n=1}^{+\infty} v_n(x)$ 连续. 证明和函
- 数 $\sum_{n=0}^{\infty} u_n(x)$ 也连续.
- 9. 证明对任意 $n \in \mathbb{N}_+$ 和 $x \in [0, \pi]$ 成立不等式 $\left| \sum_{k=1}^{n} \frac{\sin kx}{k} \right| \leq 2\sqrt{\pi}$.
- 10. 证明对任意 $n \in \mathbb{N}_+$ 和 $x \in \mathbb{R}$ 成立不等式 $\left| e^x \left(1 + \frac{x}{n} \right)^n \right| \le e^{|x|} \left(1 + \frac{|x|}{n} \right)^n < \frac{x^2 e^{|x|}}{2n}$.
- 11. 数列 $\{r_n\}$ 是 [0,1] 区间内所有有理数的一个排列, 证明函数 $f(x) = \sum_{n=1}^{+\infty} \frac{|x-r_n|}{3^n}$ 在 [0,1] 上处处连续、无理点处可 微、有理点处不可微.
- 12. 试举在 [0,1] 上一致收敛于连续函数的处处不连续函数列 $\{f_n(x)\}$.

9.2 解答

1. 设
$$y(x) = \sum_{n=0}^{+\infty} a_n x^n$$
. 在收敛域内, $\left(\sum_{n=0}^{+\infty} a_n x^n\right)'' - x \sum_{n=0}^{+\infty} a_n x^n = 0 \Leftrightarrow \sum_{n=0}^{+\infty} a_{n+2}(n+2)(n+1)x^n - \sum_{n=1}^{+\infty} a_{n-1}x^n = 0$. 比较系数知 $a_2 = 0, a_{n+2} = \frac{a_{n-1}}{(n+1)(n+2)}$,从而
$$\begin{cases} a_{3n} = \frac{(3n-2)!!!}{(3n)!} a_0 \\ a_{3n+1} = \frac{(3n-1)!!!}{(3n+1)!} a_1 \\ a_{3n+2} = 0 \end{cases}$$
, $n \in \mathbb{N}$.

2. 设 $g(x) = \arcsin^2 x$, 则 $g'(x) = \frac{2\arcsin x}{\sqrt{1-x^2}} \Rightarrow (1-x^2)(g'(x))^2 = 4g(x)$. 两边求导, 得 $2(1-x^2)g'(x)g''(x) - 2x(g'(x))^2 = 4g(x)$. $4g'(x) \Rightarrow (1-x^2)g''(x) - xg'(x) = \dot{2}$. 两边求 n-2 次导数知 $(1-x^2)g^{(n)}(x) - (2n-3)xg^{(n-1)}(x) - (n-2)^2g^{(n-2)}(x) = 0$. 令 x = 0 知 $g^{(n)}(0) = (n-2)^2 g^{(n-2)}(0)$. 由于 $g^{(1)}(0) = 0$, $g^{(2)}(0) = 2$, 从而 $g^{(2n-1)}(0) = 0$, $g^{(2n)}(0) = 2^{2n-1}((n-1)!)^2$, 因此 $g(x) = \sum_{n=1}^{+\infty} \frac{2^{2n-1}((n-1)!)^2}{(2n)!} x^{2n} \Rightarrow f(x) = \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+2)!} x^{2n}$, 收敛域为 [-1,1].

3.
$$\ln(1+x+x^2) = \ln(1-x^3) - \ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^{3n}}{n} + \sum_{n=1}^{+\infty} \frac{x^n}{n} = \sum_{n=1}^{+\infty} \left(\frac{1-3\cdot 1_{\{3|n\}}}{n}\right) x^n$$
, which is the proof of the

4. 利用欧拉公式, 知

$$f'(x) = \frac{\sin \theta}{1 - 2x \cos \theta + x^2} = \frac{1}{2i} \frac{e^{i\theta} - e^{-i\theta}}{(x - e^{i\theta})(x - e^{-i\theta})} = \frac{1}{2i} \left(\frac{e^{i\theta}}{1 - e^{i\theta}x} - \frac{e^{-i\theta}}{1 - e^{-i\theta}x} \right)$$
$$= \frac{1}{2i} \left[\sum_{n=1}^{+\infty} \left(e^{in\theta} - e^{-in\theta} \right) x^{n-1} \right] = \sum_{n=1}^{+\infty} \sin(n\theta) x^{n-1},$$

因此 $f(x) = \sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n} x^n$. $\theta = 0$ 时, 收敛域为 \mathbb{R} ; $\theta \neq 0$ 时, 收敛域为 [-1,1].

- 5. $\forall f(x) \in C[0,1], \forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \text{s.t.} \exists N$ 次多项式 $P_N(x), \forall x \in [0,1], |P_N(x) f(x)| < \frac{\varepsilon}{2}$. 由于有理数在实数集中稠 密, 因此 $\exists N$ 次有理系数多项式 $Q_N(x)$, s.t. $\forall x \in [0,1], |P_N(x) - Q_N(x)| < \frac{\varepsilon}{2}$. 此时 $|Q_N(x) - f(x)| < \varepsilon$.
- 6. $f_n(x) := f(x) \frac{1}{2^n}$ 可被多项式逼近, 因此 $\exists P_n(x), \text{s.t.} | P_n(x) f_n(x) | < \frac{1}{2^{n+2}}$. 这样的 $\{P_n\}$ 满足题意.

7. 记 $\inf_{x \in [a,b]} f(x) = m \Rightarrow \forall k \geq 1, \exists x_k \in [a,b], \text{s.t.} m \leq f(x_k) < m + \frac{1}{k}.$ 由聚点原理, \exists 子列 $\{x_{n_k}\} \subset \{x_n\}, \text{s.t.} \lim_{k \to +\infty} x_{n_k} = x_0 \in [a,b].$ 由收敛性, $\exists N > 0, \text{s.t.} \ \forall n > N, f(x_0) - \varepsilon < f_n(x_0) \leq f(x_0).$ 从而

$$m \le f(x_0) < f_n(x_0) + \varepsilon = \lim_{k \to +\infty} f_n(x_{n_k}) + \varepsilon \le \lim_{k \to +\infty} f(x_{n_k}) + \varepsilon \le m + \varepsilon.$$

令 $\varepsilon \to 0$ 知 $f(x_0) = m$. 对于最大值,一个反例是 $f_n(x) = x \mathbf{1}_{\{0 \le x \le 1 - \frac{1}{n}\}} + (n-1)(1-x) \mathbf{1}_{\{1 - \frac{1}{n} < x \le 1\}}$.

8. 任意固定 $x_0 \in [a,b]$, 考察 $\sum_{n=1}^{+\infty} u_n(x)$ 在 $x = x_0$ 处的连续性. 由收敛性, $\forall \varepsilon > 0, \exists N > 0, \text{s.t.}$ $\sum_{n=N+1}^{+\infty} v_n(x_0) < \frac{\varepsilon}{3}$. 由连

续性,
$$\exists \delta > 0$$
, s.t. $\forall x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$, $\sum_{n=N+1}^{+\infty} v_n(x) < \frac{\varepsilon}{3}$ 且 $\left| \sum_{n=1}^{N} [u_n(x) - u_n(x_0)] \right| < \frac{\varepsilon}{3}$. 从而

$$\left| \sum_{n=1}^{+\infty} u_n(x) - \sum_{n=1}^{+\infty} u_n(x_0) \right| \le \left| \sum_{n=1}^{N} [u_n(x) - u_n(x_0)] \right| + \left| \sum_{n=N+1}^{+\infty} u_n(x) \right| + \left| \sum_{n=N+1}^{+\infty} u_n(x_0) \right|$$

$$\le \left| \sum_{n=1}^{N} [u_n(x) - u_n(x_0)] \right| + \sum_{n=N+1}^{+\infty} v_n(x) + \sum_{n=N+1}^{+\infty} v_n(x_0) < \varepsilon.$$

$$9. \, \stackrel{\text{\tiny def}}{=} \, 0 < x \le \frac{\sqrt{\pi}}{n} \, \, \text{\tiny BF}, \, \left| \sum_{k=1}^n \frac{\sin kx}{k} \right| \le \sum_{k=1}^n \frac{|\sin kx|}{k} \le \sum_{k=1}^n \frac{kx}{k} \le nx = \sqrt{\pi}.$$

当
$$\frac{\sqrt{\pi}}{n} < x \le \pi$$
 时,记 $K = \left\lfloor \frac{\sqrt{\pi}}{x} \right\rfloor, S_n = \sum_{k=K+1}^n \sin kx,$ 则

$$\left| \sum_{k=1}^{n} \frac{\sin kx}{k} \right| \leq \left| \sum_{k=1}^{K} \frac{\sin kx}{k} \right| + \left| \sum_{k=K+1}^{n} \frac{\sin kx}{k} \right| \leq \sqrt{\pi} + \left| \sum_{k=K+1}^{n} \frac{\sin kx}{k} \right| = \sqrt{\pi} + \left| \sum_{k=K+1}^{n} \frac{S_k - S_{k-1}}{k} \right|$$
$$\leq \sqrt{\pi} + \left| \sum_{k=K+1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) S_k \right| + \left| \frac{S_n}{n} \right|. \tag{Abel } \mathfrak{D}_{k}$$

利用
$$|S_n| = \left| \frac{\cos \frac{2K+1}{2} x - \cos \frac{2n+1}{2} x}{2 \sin \frac{x}{2}} \right| \le \frac{1}{\sin \frac{x}{2}} \le \frac{\pi}{x},$$
 知

$$\left| \sum_{k=K+1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) S_k \right| + \left| \frac{S_n}{n} \right| \le \frac{\pi}{x} \left[\sum_{k=K+1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) + \frac{1}{n} \right] = \frac{1}{K+1} \frac{\pi}{x} \le \sqrt{\pi},$$

因此
$$\left| \sum_{k=1}^{n} \frac{\sin kx}{k} \right| \le \sqrt{\pi} + \sqrt{\pi} = 2\sqrt{\pi}.$$

10 左边:

$$\left| e^{x} - \left(1 + \frac{x}{n} \right)^{n} \right| = \left| \sum_{k=0}^{+\infty} \frac{x^{k}}{k!} - \sum_{k=0}^{n} C_{n}^{k} \left(\frac{x}{n} \right)^{k} \right| = \left| \sum_{k=2}^{n} \left(1 - \frac{(n-1)(n-2)\cdots(n-k+1)}{n^{k-1}} \right) \frac{x^{k}}{k!} + \sum_{k=n+1}^{+\infty} \frac{x^{k}}{k!} \right|$$

$$\leq \sum_{k=2}^{n} \left(1 - \frac{(n-1)(n-2)\cdots(n-k+1)}{n^{k-1}} \right) \frac{|x|^{k}}{k!} + \sum_{k=n+1}^{+\infty} \frac{|x|^{k}}{k!} = e^{|x|} - \left(1 + \frac{|x|}{n} \right)^{n}.$$

右边:

$$\begin{split} e^{|x|} - \left(1 + \frac{|x|}{n}\right)^n &= \sum_{k=2}^n \left[1 - \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)\right] \frac{|x|^k}{k!} + \sum_{k=n+1}^{+\infty} \frac{|x|^k}{k!} \\ &\leq \sum_{k=2}^n \left[1 - \left(1 - \frac{1}{n} - \frac{2}{n} - \cdots - \frac{k-1}{n}\right)\right] \frac{|x|^k}{k!} + \sum_{k=n+1}^{+\infty} \frac{|x|^k}{k!} = \sum_{k=2}^n \frac{1}{2n} \frac{|x|^k}{(k-2)!} + \sum_{k=n+1}^{+\infty} \frac{|x|^k}{k!} \\ &< \frac{x^2}{2n} \sum_{k=2}^n \frac{|x|^{k-2}}{(k-2)!} + \frac{x^2}{2n} \sum_{k=n+1}^{+\infty} \frac{|x|^{k-2}}{(k-2)!} = \frac{x^2}{2n} e^{|x|}. \end{split}$$

11. 原级数一致收敛, 因此连续. 考虑 $F_x(h) = \frac{f(x+h) - f(x)}{h} = \sum_{n=1}^{+\infty} \frac{|x+h-r_n| - |x-r_n|}{3^n h}, \forall x \in [0,1] \setminus \mathbb{Q}.$ 由于

$$\left| \frac{|x+h-r_n|-|x-r_n|}{3^n h} \right| \le \frac{|(x+h-r_n)-(x-r_n)|}{3^n |h|} = \frac{1}{3^n},$$

因此 $F_x(h)$ 在 $h \in [-x, 1-x]$ 上一致收敛, 从而

$$f'(x) = \lim_{h \to 0} F_x(h) = \sum_{n=1}^{+\infty} \lim_{h \to 0} \frac{|x+h-r_n| - |x-r_n|}{3^n h} = \sum_{n=1}^{+\infty} \frac{\operatorname{sgn}(x-r_n)}{3^n}.$$

若 $x = r_k \in \mathbb{Q}$, 类似可知

$$\left[\sum_{n=1}^{+\infty} \frac{|x-r_n|}{3^n}\right]' \bigg|_{x=r_k} = \sum_{n=1}^{+\infty} \frac{\operatorname{sgn}(x-r_n)}{3^n}.$$

但是 $\frac{|x-r_k|}{3^k}$ 在 $x=r_k$ 处不可导, 因此 $f(x)=\sum_{n=1}^{+\infty}\frac{|x-r_n|}{3^n}+\frac{|x-r_k|}{3^k}$ 在 $x=r_k$ 处不可导.

12. $f_n(x) = \frac{1}{n} \text{Dirichlet}(x)$.

Fourier 级数 10

问题 10.1

- 自由选讲.
- 1. 求函数 f(x) = x |x| 的 Fourier 级数.
- 2. 求函数 $f(x) = ax1_{x<0} + bx1_{x>0}, -\pi \le x \le \pi$ 的 Fourier 级数.
- 3. 利用 $f(x) = e^x, -\pi \le x \le \pi$ 的 Fourier 级数计算 $\sum_{i=1}^{+\infty} \frac{1}{1+n^2}$.
- 4. 2π 周期函数 f(x) 在 $[-\pi,\pi]$ 上可积且绝对可积, $f(x) \sim \frac{a_0}{2} + \sum_{i=1}^{+\infty} (a_n \cos nx + b_n \sin nx)$. 证明 $f(x) \sin x \sim \frac{a_0 \sin x}{2} + \sum_{i=1}^{+\infty} (a_n \cos nx + b_n \sin nx)$.

 $\sum_{n=0}^{+\infty} (a_n \cos nx + b_n \sin nx) \sin x.$

- 5. 将定义在 $\left(0, \frac{\pi}{2}\right)$ 上的可积和绝对可积函数 f(x) 延拓到 $(-\pi, \pi)$ 上, 使得 $f(x) \sim \sum_{n=0}^{+\infty} b_{2n-1} \sin(2n-1)x$.
- 6. $f(x) \in C^1[-\pi, \pi]$, 证明其 Fourier 系数满足 $a_n = o\left(\frac{1}{n}\right), b_n = O\left(\frac{1}{n}\right)$.
- 7. 2π 周期函数 f(x) 满足 $\exists \alpha \in (0,1]$, s.t. $|f(x) f(y)| \le L|x y|^{\alpha}$. 证明 $a_n = O\left(\frac{1}{n^{\alpha}}\right)$, $b_n = O\left(\frac{1}{n^{\alpha}}\right)$.
- 8. f(x) 在 $[0,\pi]$ 上连续且分段可导,f'(x) 在 $[0,\pi]$ 上可积且平方可积. 证明若条件 $\int_0^\pi f(x) \mathrm{d}x = 0$ 或 $f(0) = f(\pi) = 0$

- 之中有一个成立, 就有 $\int_0^\pi [f'(x)]^2 dx \ge \int_0^\pi f^2(x) dx$. 9. 给定收敛于 0 的正数列 $\{\varepsilon_n\}$, 构造连续函数 f(x) 使得其 Fourier 系数对于无穷多个 n 满足 $|a_n|+|b_n|>\varepsilon_n$.
- 10. f(x) 是区间 $[0,2\pi]$ 上的凸函数,证明 $\int_0^{2\pi} f(x) \cos nx dx \ge 0, \forall n \in \mathbb{N}_+.$
- 11. 2π 周期函数 $f(x) \in R[-\pi, \pi]$ 且 $|f(x)| \leq M$. 记 $S_n(x)$ 是 f(x) 的 Fourier 级数前 n 阶和, 证明 $|S_n(x)| \lesssim M \ln n$.
- 12. 2π 周期函数 $f(x) \in C^2(\mathbb{R})$, 满足 $f''(x) + \lambda f(x) = g(x)$, 其中 $g(x) \sim \frac{a_0}{2} + \sum_{n=0}^{+\infty} (a_n \cos nx + b_n \sin nx), \lambda \neq n^2, n \in \mathbb{N}$. 试求 f(x) 的 Fourier 级数.
- 13. 利用 $f(x) = x^2, x \in [-\pi, \pi]$ 的 Fourier 级数计算 $\sum_{n=1}^{+\infty} \frac{1}{n^4}$
- 14. 利用 $f(x) = 1_{|x| < a}, x \in [-\pi, \pi]$ 的 Fourier 级数计算 $\sum_{n=0}^{+\infty} \frac{\cos^2 na}{n^2}$.

15.
$$f(x) \in R[-\pi, \pi]$$
, 其 Fourier 系数全为 0, 证明 $\int_{-\pi}^{\pi} |f(x)| dx = 0$.

16.
$$\ \ \mathcal{U} \ f(x) = \sum_{n=1}^{+\infty} n^2 e^{-n} \sin nx, \ \ \text{证明} \ \max_{0 \le x \le 2\pi} |f(x)| \ge \frac{2}{\pi e}.$$

17. 数列
$$\{b_n\}$$
 单调递减收敛于 0, 级数 $\sum_{n=1}^{+\infty} \frac{b_n}{n}$ 收敛, 证明 $f(x) = \sum_{n=1}^{+\infty} b_n \sin nx$ 在区间 $[-\pi, \pi]$ 上可积且绝对可积.

18. 证明余元公式 Beta
$$(p, 1-p) := \int_0^1 x^{p-1} (1-x)^{-p} dx = \int_0^{+\infty} \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi} (0 ,并尝试利用该公式计算积分 $I_1 = \int_0^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx$ 和 $I_2 = \int_0^{+\infty} \frac{\sin x}{x} dx$. (提示: 可参考教材习题十二第 12 题)$$

10.2 解答

1.
$$T = 1$$
, 因此设 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(2n\pi x) + \sum_{n=1}^{+\infty} b_n \sin(2n\pi x)$.

$$a_0 = 2 \int_0^1 f(x) dx = 1, a_n = 2 \int_0^1 f(x) \cos(2n\pi x) dx = 0, b_n = 2 \int_0^1 f(x) \sin(2n\pi x) dx = -\frac{1}{n\pi}$$

因此
$$f(x) \sim \frac{1}{2} - \frac{1}{\pi} \sum_{i=1}^{+\infty} \frac{\sin(2n\pi x)}{n}$$
.

2.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{b-a}{2} \pi, a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos x dx = \frac{1-(-1)^n}{n^2 \pi} (a-b), b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin x dx = \frac{(-1)^{n+1} (a+b)}{n},$$

因此
$$f(x) \sim \frac{b-a}{4}\pi + \frac{2(a-b)}{\pi} \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} \cos(2n-1)x + (a+b) \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \sin nx.$$

3.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x dx = \frac{2 \sinh \pi}{\pi},$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos nx dx = \frac{1}{n\pi} \int_{-\pi}^{\pi} e^x d\sin nx = -\frac{1}{n\pi} \int_{-\pi}^{\pi} e^x \sin nx dx = -\frac{b_n}{n},$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin nx dx = -\frac{1}{n\pi} \int_{-\pi}^{\pi} e^x d\cos nx = \frac{(-1)^{n-1}(e^{\pi} - e^{-\pi})}{n\pi} + \frac{1}{n\pi} \int_{-\pi}^{\pi} e^x \sin nx dx = \frac{(-1)^{n-1}2\sinh \pi}{n\pi} + \frac{a_n}{n},$$

因此
$$a_n = \frac{(-1)^n 2 \sinh \pi}{(n^2 + 1)\pi}, b_n = \frac{(-1)^{n-1} 2n \sinh \pi}{(n^2 + 1)\pi} \Rightarrow e^x \sim \frac{\sinh \pi}{\pi} \left\{ 1 + 2 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + 1} (\cos nx - n \sin nx) \right\}.$$
 由于 Fourier

级数收敛到
$$\frac{f(x+0)+f(x-0)}{2}$$
, 因此令 $x=\pi$, 得到 $\cosh \pi = \frac{\sinh \pi}{\pi} \left(1+2\sum_{n=1}^{+\infty} \frac{1}{n^2+1}\right) \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2+1} = \frac{\pi \coth \pi - 1}{2}$.

4. 由积化和差公式,

$$\frac{a_0 \sin x}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx) \sin x$$

$$= \frac{a_0 \sin x}{2} + \frac{1}{2} \sum_{n=1}^{+\infty} \{a_n [\sin(n+1)x - \sin(n-1)x] + b_n [\cos(n-1)x - \cos(n+1)x]\}$$

$$= \frac{b_1}{2} + \sum_{n=1}^{+\infty} \left(\frac{b_{n+1} - b_{n-1}}{2} \cos nx + \frac{a_{n-1} - a_{n+1}}{2} \sin nx\right).$$

对于函数 $f(x)\sin x$, 其 Fourier 系数为 $a'_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin x dx = b_1$,

$$a'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin x \cos nx dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) [\sin(n+1)x - \sin(n-1)x] dx = \frac{b_{n+1} - b_{n-1}}{2},$$

$$b'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin x \sin nx dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) [\cos(n-1)x - \cos(n+1)x] dx = \frac{a_{n-1} - a_{n+1}}{2}.$$

因此两者系数相等.

5.
$$a_n = 0 \Rightarrow$$
 奇延拓. 另一方面, $0 = b_{2n} = \frac{2}{\pi} \int_0^{\pi} f(x) \sin 2x dx = \frac{2}{\pi} \left[\int_0^{\frac{\pi}{2}} f(x) \sin 2x dx + \int_{\frac{\pi}{2}}^0 f(\pi - x)(-\sin 2nt)(-dt) \right] = \int_0^{\frac{\pi}{2}} [f(x) - f(\pi - x)] \sin 2nx dx \Rightarrow f(x) = f(\pi - x).$ 因此所求延拓为 $F(x) = \begin{cases} f(x), & 0 < x < \frac{\pi}{2} \\ f(\pi - x), & \frac{\pi}{2} < x < \pi \\ 0, & x = 0, \frac{\pi}{2} \\ -F(-x), & -\pi < x < 0 \end{cases}$

6. 直接按定义计算得到

$$|na_{n}| = \left| \frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \right| = \left| \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d \sin nx \right| = \left| - \int_{-\pi}^{\pi} f'(x) \sin nx dx \right| = |b'_{n}| = o(1),$$

$$|nb_{n}| = \left| \frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \right| = \left| \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d \cos nx \right| = \frac{1}{\pi} \left| (-1)^{n} [f(\pi) - f(-\pi)] - \int_{-\pi}^{\pi} f'(x) \cos nx dx \right|$$

$$\leq \frac{|f(\pi) - f(-\pi)|}{\pi} + |a'_{n}| = O(1).$$

7.
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi - \frac{\pi}{n}}^{\pi - \frac{\pi}{n}} f\left(x + \frac{\pi}{n}\right) \cos(nx + \pi) dx = -\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x + \frac{\pi}{n}\right) \cos nx dx$$
. 两边取绝对值,
$$|a_n| = \left|\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(x) - f\left(x + \frac{\pi}{n}\right)\right] \cos nx dx\right| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \left|f(x) - f\left(x + \frac{\pi}{n}\right)\right| |\cos nx| dx$$

$$\le \frac{1}{2\pi} L\left(\frac{\pi}{n}\right)^{\alpha} \int_{-\pi}^{\pi} |\cos nx| dx \le L\left(\frac{\pi}{n}\right)^{\alpha} \Rightarrow a_n = O\left(\frac{1}{n^{\alpha}}\right).$$

同理 $b_n = O\left(\frac{1}{n^{\alpha}}\right)$.

8. (1) 若
$$\int_0^{\pi} f(x) dx = 0$$
, 将 $f(x)$ 偶延拓, 则 $f(x) \sim \sum_{n=1}^{+\infty} a_n \cos nx \Rightarrow f'(x) \sim \sum_{n=1}^{+\infty} (-na_n) \sin nx$. 从而 $\frac{2}{\pi} \int_0^{\pi} [f'(x)]^2 dx = \sum_{n=1}^{+\infty} (na_n)^2 \ge \sum_{n=1}^{+\infty} a_n^2 = \frac{2}{\pi} \int_0^{\pi} f^2(x) dx$. (2) 若 $f(0) = f(\pi) = 0$, 类似可将 $f(x)$ 奇延拓, 则 $f(x) \sim \sum_{n=1}^{+\infty} b_n \sin nx \Rightarrow f'(x) \sim \sum_{n=1}^{+\infty} (nb_n) \cos nx$. 从而 $\frac{2}{\pi} \int_0^{\pi} [f'(x)]^2 dx = \sum_{n=1}^{+\infty} (nb_n)^2 \ge \sum_{n=1}^{+\infty} b_n^2 = \frac{2}{\pi} \int_0^{\pi} f^2(x) dx$.

9. 令 $n_0=0$. 由于 $\varepsilon_n\to 0$, 因此 $\forall k\in\mathbb{N}_+, \exists n_k>n_{k-1}\in\mathbb{N}_+, \text{s.t.} \varepsilon_{n_k}<\frac{1}{k^2}$. 从而定义 $f(x)=\sum_{k=1}^{+\infty}\frac{1}{k^2}\cos n_k x$, 由一致收敛知连续性, 且其 Fourier 系数 $|a_{n_k}|+|b_{n_k}|=\frac{1}{k^2}>\varepsilon_{n_k}, \forall k$.

10. 注意到 $\int_0^{2\pi} f(x) \cos nx dx = \frac{1}{n} \int_0^{2n\pi} f\left(\frac{x}{n}\right) \cos x dx = \frac{1}{n} \int_0^{2n\pi} g_n(x) \cos x dx = \frac{1}{n} \sum_{k=0}^{n-1} \int_{2k\pi}^{2(k+1)\pi} g_n(x) \cos x dx$, 其中 $g_n(x) := f\left(\frac{x}{n}\right)$ 是 $[0, 2n\pi]$ 上的凸函数. 再由 $\cos x$ 的周期性, 我们只需证明 $\int_0^{2\pi} g_n(x) \cos x dx \ge 0$. 拆断区间:

$$\int_{0}^{2\pi} g_{n}(x) \cos x dx = \int_{0}^{\frac{\pi}{2}} g_{n}(x) \cos x dx + \int_{\frac{\pi}{2}}^{\pi} g_{n}(x) \cos x dx + \int_{\pi}^{\frac{3\pi}{2}} g_{n}(x) \cos x dx + \int_{\frac{3\pi}{2}}^{2\pi} g_{n}(x) \cos x dx + \int_{\frac{3\pi}{2}}^{2\pi} g_{n}(x) \cos x dx + \int_{\frac{3\pi}{2}}^{2\pi} g_{n}(x) \cos x dx + \int_{0}^{\frac{\pi}{2}} g_{n}(x) \cos x dx + \int_$$

由于 $g_n(x)$ 是凸函数, 因此 $g_n(x) + g_n(2\pi - x) - g_n(\pi - x) - g_n(\pi + x) \ge 0$ 恒成立, 因此有 $\int_0^{2\pi} g_n(x) \cos x dx \ge 0$. 11. 由课上所述结论,

$$|S_n(x)| = \frac{1}{\pi} \left| \int_0^{\pi} [f(x+t) + f(x-t)] \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}} dt \right| \le \frac{1}{\pi} \int_0^{\pi} |f(x+t) + f(x-t)| \frac{|\sin(n+\frac{1}{2})t|}{2\sin\frac{t}{2}} dt$$

$$\leq \frac{M}{\pi} \int_0^{\pi} \frac{|\sin(n + \frac{1}{2})t|}{\sin \frac{t}{2}} dt \leq \frac{M}{\pi} \int_0^{\pi} \frac{|\sin(n + \frac{1}{2})t|}{\frac{t}{\pi}} dt \leq M \int_0^{(n + \frac{1}{2})\pi} \frac{|\sin t|}{t} dt$$

$$= M \int_0^1 \frac{|\sin t|}{t} dt + M \int_1^{(n + \frac{1}{2})\pi} \frac{|\sin t|}{t} dt \leq M \int_0^1 1 dt + M \int_1^{(n + \frac{1}{2})\pi} \frac{1}{t} dt$$

$$= M \left[1 + \ln \pi + \ln \left(n + \frac{1}{2} \right) \right]$$

 $\Rightarrow |S_n(x)| \lesssim M \ln n.$

12. 我们设
$$f(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{+\infty} (\alpha_n \cos nx + \beta_n \sin nx), \, \text{则} \, f'(x) = \sum_{n=1}^{+\infty} (n\beta_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \, f''(x) \sim \sum_{n=1}^{+\infty} (-n^2\alpha_n \cos nx - n\alpha_n \sin nx), \,$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^4 dx = \frac{1}{2} \left(\frac{2\pi^2}{3} \right)^2 + \sum_{n=0}^{+\infty} \frac{16}{n^4} \Rightarrow \sum_{n=0}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

14.
$$f(x) \sim \frac{a}{\pi} + \sum_{n=1}^{+\infty} \frac{2\sin na}{n\pi} \cos nx$$
. 由 Parseval 等式有

$$\frac{2a}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{2a^2}{\pi^2} + \sum_{n=1}^{+\infty} \frac{4\sin^2 na}{n^2 \pi^2} \Rightarrow \sum_{n=1}^{+\infty} \frac{\sin^2 na}{n^2} = \frac{a(\pi - a)}{2}$$
$$\Rightarrow \sum_{n=1}^{+\infty} \frac{\cos^2 na}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} - \sum_{n=1}^{+\infty} \frac{\sin^2 na}{n^2} = \frac{\pi^2}{6} - \frac{a(\pi - a)}{2}.$$

15. 由 Parseval 等式知
$$\int_{-\pi}^{\pi} f^2(x) dx = 0 \Leftrightarrow \int_{-\pi}^{\pi} |f(x)| dx = 0.$$

16. 显然
$$f(x) \in C(\mathbb{R})$$
. 由 Parseval 等式有 $\frac{1}{\pi} \int_0^{2\pi} f^2(x) dx = \sum_{n=1}^{+\infty} n^4 e^{-2n}$. 而

$$\mathrm{LHS} \leq \frac{1}{\pi} 2\pi \max_{x \in [0, 2\pi]} f^2(x) \leq 2 \left(\max_{x \in [0, 2\pi]} |f(x)| \right)^2, \\ \mathrm{RHS} \geq \sum_{n=1}^{+\infty} e^{-2n} = \frac{e^{-2}}{1 - e^{-2}} \geq e^{-2},$$

因此 $\max_{x \in [0,2\pi]} |f(x)| \ge \frac{1}{\sqrt{2}e} \ge \frac{2}{\pi e}$ 17. 由 Dirichlet 判别法知 f(x)

 $e=\pi e$ $\inf_{\pi}f(x)$ 在 $x\neq 0$ 时连续, 因此只需讨论当 x=0 为瑕点时 |f| 在 $[0,\pi]$ 上的广义可积性. 注意 到 $\int_{-\pi}^{\pi} |f(x)| dx = \sum_{i=1}^{n} \int_{-\pi}^{\frac{\pi}{k}} |f(x)| dx$, 且当 $\frac{\pi}{k+1} \le x \le \frac{\pi}{k}$ 时, 成立

$$|f(x)| \le \left| \sum_{i=1}^k b_i \sin ix \right| + \left| \sum_{i=k+1}^{+\infty} b_i \sin ix \right| \stackrel{\text{Abel } \underline{\phi}, \underline{\phi}}{\le} S_k + \frac{b_{k+1}}{|\sin \frac{x}{2}|} \le S_k + \frac{b_{k+1}}{|\frac{x}{\pi}|} \le S_k + (k+1)b_{k+1} \le S_k + (k+1)b_k.$$

这意味着

$$\sum_{k=1}^{n} \int_{\frac{\pi}{k+1}}^{\frac{\pi}{k}} |f(x)| dx \le \pi \sum_{k=1}^{n} \frac{S_k}{k(k+1)} + \pi \sum_{k=1}^{n} \frac{b_k}{k} = \pi \sum_{k=1}^{n} \frac{1}{k(k+1)} \sum_{i=1}^{k} b_i + \pi \sum_{k=1}^{n} \frac{b_k}{k}$$

$$= \pi \sum_{i=1}^{n} b_i \sum_{k=i}^{n} \frac{1}{k(k+1)} + \pi \sum_{k=1}^{n} \frac{b_k}{k} \le \pi \sum_{i=1}^{n} \frac{b_i}{i} + \pi \sum_{k=1}^{n} \frac{b_k}{k} \le 2\pi \sum_{n=1}^{+\infty} \frac{b_n}{n} < +\infty.$$

因此积分 $\int_0^{\pi} |f(x)| dx$ 收敛.

18. 第一个等式:
$$\int_0^1 x^{p-1} (1-x)^{-p} \mathrm{d}x \stackrel{x=\frac{t}{1+t}}{=} \int_0^{+\infty} \frac{t^{p-1}}{(1+t)^{p-1}} (1+t)^p \frac{1}{(1+t)^2} \mathrm{d}t = \int_0^{+\infty} \frac{t^{p-1}}{1+t} \mathrm{d}t.$$
 第二个等式: 利用变量替换 $x = \frac{1}{t}$ 有
$$\int_1^{+\infty} \frac{x^{p-1}}{1+x} \mathrm{d}x = \int_0^1 \frac{x^{-p}}{1+x} \mathrm{d}x \Rightarrow \mathrm{Beta}(p,1-p) = \int_0^1 \frac{x^{p-1}+x^{-p}}{1+x} \mathrm{d}x.$$
 将 $\frac{1}{1+x}$ 展成幂级数, 从而

$$\begin{aligned} \operatorname{Beta}(p,1-p) &= \lim_{r \to 1-0} \int_0^r \frac{x^{p-1} + x^{-p}}{1+x} \mathrm{d}x = \lim_{r \to 1-0} \int_0^r \left[\sum_{k=0}^{+\infty} (-1)^k x^{k+p-1} + \sum_{k=0}^{+\infty} (-1)^k x^{k-p} \right] \mathrm{d}x \\ &= \lim_{r \to 1-0} \left[\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+p} r^{k+p} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{k-p+1} r^{k-p+1} \right] = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+p} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{k-p+1} \\ &= \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \left(\frac{1}{k+p} + \frac{1}{p-k} \right) = \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2}. \end{aligned}$$

由于 $\cos px$ 的 Fourier 级数 $\cos px = \frac{\sin p\pi}{\pi} \left[\frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2} \cos kx \right]$ 在 $|x| \le \pi$ 处处收敛, 令 x = 0, 得到

Beta
$$(p, 1-p) = \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2} = \frac{\pi}{\sin p\pi}.$$

$$I_{2} = \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} \sum_{n=0}^{+\infty} \left[\int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx + \int_{-(n+1)\pi}^{-n\pi} \frac{\sin x}{x} dx \right]$$

$$= \frac{1}{2} \sum_{n=0}^{+\infty} \left[\int_{0}^{\pi} \frac{\sin(t+n\pi)}{t+n\pi} dt + \int_{0}^{\pi} \frac{\sin[t-(n+1)\pi]}{t-(n+1)\pi} dt \right] = \frac{1}{2} \left[\int_{0}^{\pi} \frac{\sin t}{t} dt + \sum_{n=1}^{+\infty} (-1)^{n} \int_{0}^{\pi} \frac{2t \sin t}{t^{2} - n^{2}\pi^{2}} dt \right] = \frac{\pi}{2}.$$

11 Fourier 变换 *

11.1 问题

- 1. 定义 $\mathcal{F}(f)(\xi) = \int_{\mathbb{R}} f(x)e^{-\mathrm{i}2\pi x\xi}\mathrm{d}x$ 为函数 f(x) 的 Fourier 变换 (如果是 d 维, 则定义为 $\mathcal{F}(f)(\xi) = \int_{\mathbb{R}^d} f(x)e^{-\mathrm{i}2\pi x^T\xi}\mathrm{d}x$), 试化简 $\mathcal{F}(f')(\xi)$. 这里你可以假设 f(x) 光滑且在无穷远处快速收敛到 0, 比如说 $\forall k,l \geq 0$, $\sup_{x \in \mathbb{R}} |x|^k |f^{(l)}(x)| < \infty$. 下面不如都用上这个假设吧!
- 2. 证明 Fourier 变换有如下性质: (1) $\mathcal{F}(f+g) = \mathcal{F}(f) + \mathcal{F}(g)$; (2) $\mathcal{F}(f(x+h))(\xi) = e^{i2\pi h \xi} \mathcal{F}(f(x))(\xi)$; (3) $\mathcal{F}(f(\lambda x))(\xi) = \lambda^{-d} \mathcal{F}(f(x)) \left(\frac{\xi}{\lambda}\right)$, 这里 d 是维数; (4) 多项式 $P\left(\frac{\mathrm{d}}{\mathrm{d}x}\right) = \sum_{k} a_k \frac{\mathrm{d}^k}{\mathrm{d}x^k}$, 则 $\mathcal{F}\left(P\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)f\right)(\xi) = P(i2\pi\xi)\mathcal{F}(f)(\xi)$.
- 3. 在一定正则性条件下, Fourier 逆变换可定义为 $\mathcal{F}^{-1}(f)(x) = \int_{\mathbb{R}} f(\xi)e^{\mathrm{i}2\pi x\xi}\mathrm{d}\xi$. 你可以按照如下步骤: (1) 设 $K(x) = e^{-\pi x^2}$, 证明 $\mathcal{F}(K)(\xi) = K(\xi)$; (2) 设 $K_{\delta}(x) = \delta^{-\frac{1}{2}}e^{-\frac{\pi x^2}{\delta}}$, 则当 $\delta \to 0$ 时, $(f*K_{\delta})(x) \Rightarrow f(x)$, $\forall x \in \mathbb{R}$. 这里 "*" 是卷积 算子, $(f*g)(x) := \int_{\mathbb{R}} f(x-t)g(t)\mathrm{d}t$; (3) $\int_{\mathbb{R}} f(x)\mathcal{F}(g)(x)\mathrm{d}x = \int_{\mathbb{R}} \mathcal{F}(f)(x)g(x)\mathrm{d}x$; (4) $f(0) = \int_{\mathbb{R}} \mathcal{F}(f)(\xi)\mathrm{d}\xi$. 有了这个结论,我们可以形式定义 $\mathcal{F}(\delta(x))(\xi) = 1$, $\mathcal{F}^{-1}(1)(x) = \delta(x)$. 背后其实蕴含着用 K_{δ} 逼近的结果.
- 4. 证明 Fourier 变换有如下性质: (1) $\mathcal{F}(f*g) = \mathcal{F}(f)\mathcal{F}(g)$; (2) $||f||_{L^2} = ||\mathcal{F}(f)||_{L^2}$.
- 5. 证明 Fourier 变换有如下性质: (1) f(x) 是径向函数当且仅当 $\mathcal{F}(f)$ 是径向函数 (我们说 g(x) 是径向函数, 如果存在一元函数 g_0 使得 $g(x) = g_0(||x||_2)$); (2) f(x) 是 α 阶齐次函数, 那么 $\mathcal{F}(f)(\xi)$ 是 $-(d+\alpha)$ 阶齐次函数.
- 6. 利用 Fourier 变换求解偏微分方程 $\partial_t u(x,t) + \partial_x u(x,t) = 0, u(x,0) = u_0(x)$.

11.2 解答

1.
$$\mathcal{F}(f')(\xi) = \int_{\mathbb{R}} f'(x)e^{-\mathrm{i}2\pi x\xi} \mathrm{d}x = \int_{\mathbb{R}} e^{-\mathrm{i}2\pi x\xi} \mathrm{d}f(x) = \mathrm{i}2\pi \xi \int_{\mathbb{R}} f(x)e^{-\mathrm{i}2\pi x\xi} \mathrm{d}x = \mathrm{i}2\pi \xi \mathcal{F}(f)(\xi).$$

2. 直接计算

3. (1) 定义
$$\mathcal{K}(\xi) = \mathcal{F}(K)(\xi) = \int_{\mathbb{R}} e^{-\pi x^2} e^{-i2\pi x \xi} dx$$
, 则

$$\mathcal{K}'(\xi) = \int_{\mathbb{R}} (-\mathrm{i}2\pi x) f(x) e^{\mathrm{i}2\pi x\xi} \mathrm{d}x = \mathrm{i} \int_{\mathbb{R}} f'(x) e^{-\mathrm{i}2\pi x\xi} \mathrm{d}x = \mathrm{i}\mathcal{F}(f')(\xi) = -2\pi \xi \mathcal{K}(\xi).$$

注意到 $\mathcal{K}(0) = 1$, 解微分方程得到 $\mathcal{K}(\xi) = e^{-\pi \xi^2} = K(\xi)$.

(2) 容易证明
$$f(x)$$
 一致连续. $(f * K_{\delta})(x) - f(x) = \int_{\mathbb{R}} K_{\delta}(t)[f(x-t) - f(x)]dt$, 然后拆断区间.

(3) 用 Fubini 定理交换积分顺序即可.

(4) 记
$$G_{\delta}(x) = e^{-\pi \delta x^2}$$
, 则 $\mathcal{F}(G_{\delta})(\xi) = K_{\delta}(\xi)$. 从而 $\int_{\mathbb{R}} f(x)K_{\delta}(x)dx = \int_{\mathbb{R}} \mathcal{F}(f)(\xi)G_{\delta}(\xi)d\xi$. 由于 K_{δ} 是偶函数, 因此左 边是 $(f*K_{\delta})(0)$, 在 $\delta \to 0$ 时趋于 $f(0)$. 右边用拆断区间的方法知在 $\delta \to 0$ 时趋于 $\int_{\mathbb{R}} \mathcal{F}(f)(\xi)d\xi$.

最后, 令
$$F(y) = f(x+y)$$
, 利用平移公式知 $f(x) = F(0) = \int_{\mathbb{R}} \mathcal{F}(F)(\xi) d\xi = \int_{\mathbb{R}} \mathcal{F}(f) e^{i2\pi x \xi} d\xi$.

- 4. (1) 用 Fubini 定理交换积分顺序即可.
- (2) 利用 Fourier 逆变换, 有

$$||f||_{L^{2}} = \int_{\mathbb{R}} f(x)\overline{f(x)}dx = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \mathcal{F}(f)(\xi)e^{i2\pi x\xi}d\xi \right) \overline{\left(\int_{\mathbb{R}} \mathcal{F}(f)(\zeta)e^{i2\pi x\zeta}d\zeta \right)} dx$$

$$= \int_{\mathbb{R}^{2}} \mathcal{F}(f)(\xi)\overline{\mathcal{F}(f)(\zeta)} \left(\int_{\mathbb{R}} e^{i2\pi x(\xi-\zeta)}dx \right) d\xi d\zeta = \int_{\mathbb{R}^{2}} \mathcal{F}(f)(\xi)\overline{\mathcal{F}(f)(\zeta)}\delta(\xi-\zeta)d\xi d\zeta$$

$$= \int_{\mathbb{R}} \mathcal{F}(f)(\xi)\overline{\mathcal{F}(f)(\xi)}d\xi = ||\mathcal{F}(f)||_{L^{2}}.$$

- 5. 直接计算.
- 6. 两边对变量 x 做 Fourier 变换, 知 $\partial_t(\mathcal{F}(u)) + i2\pi\xi\mathcal{F}(u) = 0$, $\mathcal{F}(u)(\xi,0) = \mathcal{F}(u_0)(\xi)$, 因此 $\mathcal{F}(u)(\xi,t) = e^{-i2\pi\xi t}\mathcal{F}(u_0)(\xi)$. 从而两边做 Fourier 逆变换知 $u(x) = \int_{\mathbb{R}} \mathcal{F}(u_0)(\xi)e^{i2\pi\xi(x-t)}\mathrm{d}\xi = u_0(x-t)$.

12 致谢

感谢北京大学数学科学学院的王冠香教授和刘培东教授,他们教会了笔者数学分析的基本知识,他们的课件和讲义也成为了笔者的重要参考. 感谢北京大学信息科学技术学院 22 级本科生吴明睿同学,他提供了很多 IATEX 排版的建议. 感谢选修 2025 春数学分析 II 习题课 9 班的全体同学,他们提供了很多有意思的做法和反馈.