

Internet and Data Centers

algoritmi di instradamento per l'infrastruttura di rete fissa

G. Di Battista, M. Patrignani

copyright notice

- all the pages/slides in this presentation, including but not limited to, images, photos, animations, videos, sounds, music, and text (hereby referred to as "material") are protected by copyright
- this material, with the exception of some multimedia elements licensed by other organizations, is property of the authors and/or organizations appearing in the first slide
- this material, or its parts, can be reproduced and used for didactical purposes within universities and schools, provided that this happens for non-profit purposes
- any other use is prohibited, unless explicitly authorized by the authors on the basis of an explicit agreement
- this copyright notice must always be redistributed together with the material, or its portions

panoramica

- generalità
 - qualità degli algoritmi di instradamento
 - tipi di algoritmi
- algoritmi di instradamento basati su distance vector
- algoritmi di instradamento basati su link state packet

qualità degli algoritmi di instradamento

efficienza

- per evitare che il calcolo dei cammini verso le destinazioni abbia un peso eccessivo rispetto all'istradamento dei pacchetti
 - le cpu e le memorie attualmente disponibili sui router sono talvolta insufficienti se confrontati con la complessità delle reti

ottimalità nella scelta dei cammini

- rispetto a qualche criterio che deve essere misurabile
- normalmente si usa il numero di hop o il costo delle linee, talvolta assunto inversamente proporzionale alla velocità
- criteri che tengano in considerazione il carico corrente della rete sono difficili da considerare

qualità degli algoritmi di instradamento

- robustezza e adattabilità
 - rispetto alle variazioni di topologia
 - in una rete di grandi dimensioni possono esserci frequentemente guasti alle linee e/o ai router

stabilità

- se non cambia la topologia non devono cambiare i cammini
- a fronte di una variazione di topologia occorre convergere rapidamente ad un nuovo instradamento stabile

equità

- nessun nodo deve essere privilegiato o danneggiato
- economicità
 - costi ridotti di configurazione e manutenzione dei protocolli di routing

algoritmi di instradamento

- difficoltà nella scelta di un algoritmo
 - i criteri sono talvolta contrastanti
 - esempio: minimizzare il ritardo di pacchetti e massimizzare l'utilizzo delle linee
 - gli algoritmi complessi possono comportare configurazioni difficili
 - le spese per il personale di gestione aumentano

tipi di algoritmi di instradamento

- algoritmi statici
 - criteri fissi di instradamento, indipendenti dallo stato della topologia
- algoritmi dinamici
 - instradamento in funzione dello stato della topologia e/o del carico

rapporto tra routing statico e dinamico

tassonomia degli algoritmi di instradamento

algoritmi statici di instradamento

- static routing
 - su ogni nodo c'è una tabella che contiene, per ogni nodo da raggiungere, la linea da usare e la tabella è compilata dall'amministratore di sistema
 - che è chiamato ad intervenire in presenza di guasti
- variante quasi-statica
 - l'amministratore di sistema fornisce più alternative in ordine di priorità, che vengono scelte in funzione dello stato della rete

static routing

indirizzo	prima scelta	seconda scelta
156.128.16.0/24	L ₁	L ₂
128.201.0.0/16	L ₃	
145.200.0.0/16	L ₅	L ₃
12. 0.0.0/8	L ₁	
0.0.0/0	L ₇	L ₈

algoritmi statici di instradamento

- flooding
 - ogni pacchetto viene ritrasmesso su tutte le linee, salvo quella da cui è arrivato
- varianti del flooding
 - selective flooding: si ritrasmette solo su un insieme di linee selezionato
 - is-is (iso 10598)
 - scarto dei pacchetti troppo vecchi
 - pacchetti con "age counter" a bordo
 - scarto di un pacchetto al suo secondo passaggio su un nodo
- le varianti necessitano di memorie estese e di identificatori di pacchetto

routing isolato

- ogni intermediate system (is) calcola in modo indipendente le proprie tabelle, senza consultare gli altri is
- hot potato routing
 - il pacchetto viene inviato sulla linea con coda più breve
 - interesse solo teorico

- backward learning
 - la linea di uscita del pacchetto viene inferita in base agli indirizzi mittente dei pacchetti in ingresso
 - esempio: il filtering dei bridge ieee 802.1D al livello 2
 - raffinamento
 - aggiunta di un campo nei pacchetti che specifica il costo, incrementato ad ogni attraversamento di is
 - in questo modo si possono mantenere in ogni is più alternative ordinate per costo
 - svantaggio: si imparano solo le migliorie e non i peggioramenti (perche? tempo di scadenza delle entry!)
 - quando la destinazione è ignota si fa flooding
 - può generare cicli
 - si accoppia usualmente con il calcolo di uno spanning tree

- routing centralizzato
 - presuppone l'esistenza di un routing control center (rcc) che conosce la topologia della rete
 - ipotesi spesso non realistica
 - il routing control center
 - riceve da tutti i nodi informazioni sulla topologia
 - calcola le tabelle di instradamento
 - le distribuisce
 - problemi
 - traffico intenso intorno al rcc
 - affidabilità

- routing distribuito
 - non esiste un rcc, ma le sue funzionalità sono svolte da tutti gli is
 - due principali paradigmi
 - distance vector
 - dico ai miei vicini tutto ciò che so del mondo
 - link state packet
 - dico a tutto il mondo ciò che so dei miei vicini