用户数据库操作

修订历史:

版本	日期	修订原因	编制	审核
V1.0	2016-11-09	创建文档	HYW089	HYW089
				17

用户数据库是在图片存储区开辟一段空间用于用户存储少量数据,所以数据保存的地方 是借用放图片的 flash 区域存放的,存放的地址设置是由下面图片的公式计算得到的, 以 800*600 的屏为例,设置要保存的变量地址 0000,0010 这两个地址的数据,假 设例程有 50 张图片,计算数据库最小首地址:

{(50*4)-128}*64*1024=4718592, 这里得到的地址是 10 进制地址即最小首地址只要大于 04718592=0X0048 0000 都可。

例如最小首地址是 0X0049 0000

- 1,发送指令 5A A5 05 82 0000 0002 变量地址 0000 上会显示 2
- 2, 再发送 80 指令使用 56 寄存器将上述数据存入存储器中:

5A A5 0C 80 56 5A 50 0049 0000 0000 0001

5A A5 OC 80 56 5A (申请更新)

50(写入数据库)

0049 0000 (数据库首地址)

0000 (变量地址)

0001 (写入数据的长度)

3,将屏断电之后再发送如下指令读出图片存储器中的数据在屏上显示:

5A A5 OC 80 56 5A A0 0049 0000 0000 0001

向 0x0010 地址写入的数据库首地址是 0X0049 0010

- 1,发送指令 5A A5 05 82 0010 0004 变量地址 0010 上会显示 4,
- 2, 再发送 80 指令使用 56 寄存器将上述数据存入存储器中:

5A A5 0C 80 56 5A 50 0049 0010 0010 0001

5A A5 0C 80 56 5A (申请更新)

50 (写入数据库)

0049 0010 (数据库首地址)

0010 (变量地址)

0001 (写入数据的长度)

3,将屏断电之后再发送如下指令读出图片存储器中的数据在屏上显示:

5A A5 0C 80 56 5A A0 0049 0010 0010 0001

▶ 数据库首地址 (0x00 00 00 00,对应第 64MB 物理存储器) 对应的图片 ID 和存

储系数 K1

分辨率	320*240	480*272	640*480	800*480	800*600	1024*600	1024*768
K1	1	1	3	3	4	5	6
PIC_ID	128	128	42-43	42-43	32	25-26	21-22

[&]quot;128"表示如果从 0x00 地址开始使用数据库,则第 128 幅图片位置开始不能保存图片;

▶ 图片空间到数据库空间的计算

假设有 N(N 大于上表中的 PIC_ID)幅图片需要存储,那么数据库可以使用的最小首地址为:

数据库最小首地址= ((N*K1)-128)*64*1024 已经取整到 64KW(128KB).

[&]quot;42-43"表示 42、43 都不能使用。

举例,480*272 分辨率下,需要预留出200 幅图片,那么数据库的最小起始地址Adr_Min:

Adr_Min=((200*1)-128)*64*1024=0x00 48 00 00

根据上图假设是 800*600 的屏, 他的数据库 0000 0000 地址 应该就是 33 张图片的位置开始, 如果用户的屏图片很少, 假设只有 32 张图片之内, 用不着公式计算, 可以直接从定义的数据库存放地址 00000000 开始。