

Biomedical Engineering 生醫工程

Jerry Tai 戴立嘉

Spring 2024

Lecture 4: Random Walks and Diffusion Limited Aggregation

Motivation:

- 1) Diffusion limited aggregation: How did this structure grow?
- 1) This requires learning about random walks and Brownian motion

Diffusion Limited Aggregation (DLA)

A DLA cluster grown from a copper sulfate solution in an electro-deposition cell

Electroplating

Electrode:carbon

Source: DC

Time: 1hr

Solution: HAuCl4

Brownian Motion:

Motion of one particle in a solution

Experiment:

Reproduced from the book of Perrin, *Les Atomes*, three tracings of the motion of colloidal particles of radius $0.53\mu m$, as seen under the microscope, are displayed. Successive positions every 30 seconds are joined by straight line segments (the mesh size is $3.2\mu m$).

Computer simulations:

Definition of Brownian motion: Random motion of one particle in solution due to collision with others.

• The Brownian motion's trail has the topological dimension 1. If confined to a finite space, it would fill the whole space with time. If confined, it has the fractal dimension 2.

Definition of Brownian motion: Random motion of one particle in solution due to collision with others.

- The Brownian motion's trail has the topological dimension 1. If confined to a finite space, it would fill the whole space with time. If confined, it has the fractal dimension 2.
- The curve is not differentiable (like most fractals).

Definition of Brownian motion: Random motion of one particle in solution due to collision with others.

- The Brownian motion's trail has the topological dimension 1. If confined to a finite space, it would fill the whole space with time. If confined, it has the fractal dimension 2.
- The curve is not differentiable (like most fractals).
- It is generated by "random forces" arising from collisions with atoms in the solutions that are subject to thermal motion.

Definition of Brownian motion: Random motion of one particle in solution due to collision with others.

- The Brownian motion's trail has the topological dimension 1. If confined to a finite space, it would fill the whole space with time. If confined, it has the fractal dimension 2.
- The curve is not differentiable (like most fractals).
- It is generated by "random forces" arising from collisions with atoms in the solutions that are subject to thermal motion.
- How far does the particle diffusion in time interval *t*?

Definition of Brownian motion: Random motion of one particle in solution due to collision with others.

- The Brownian motion's trail has the topological dimension 1. If confined to a finite space, it would fill the whole space with time. If confined, it has the fractal dimension 2.
- How far does the particle diffusion in time interval *t*?
- The average distances increase with the square root of time:

$$(r(t)-r(0))^2 \sim t$$

(Wait 4 times as long, get only twice as far!)

Construct a random walk in on a computer

Example in 1 dimension x(t)

陽明交大 NYCU

How to generate random numbers? What happens inside Python's random() function?

DILBERT By SCOTT ADAMS

Construct a 2D random walk

Example in 2 dimension x(t)

Classroom experiment: Random walk in 2D

Classroom experiment: Random walk in 2D

- >> random_numbers_lecture
- 0.906
- 0.127
- 0.913
- 0.632
- 0.098
- 0.278
- 0.547
- 0.958
- 0.965
- 0.158

陽明交大 NYCU

Construct a 3D random walk on a computer

陽明交大 NYCU

Study diffusion limited aggregation in a computer simulations

Study diffusion limited aggregation in a computer simulations

Fractal dimension D=1.71

Diffusion limited aggregation compared to a quartz crystal

What is missing to make a perfect crystal?

Study diffusion limited aggregation with computer simulations

It is very difficult for a random walker to get here avoiding all side branches

Diffusion Limited Aggregation Along a Sticky Wall?

Diffusion Limited Aggregation With Different Sticking Probabilities

Fig. 1.8: Samples of Diffusion Limited Aggregation (DLA) simulations from a line showing variations of growth from dendritic to moss-like.

陽明交大 NYCU

Modified Diffusion Limited Aggregation Process leads to Better Packing?

陽明交大 NYCU

Summary

• Diffusion is related for random walks of particles

$$(r(t) - r(0))^2 \sim t$$

•A special process called diffusion limited aggregation leads to fractal structures that resemble experiments