CURVA ROC

La curva ROC (Receiver Operating Characteristic) es una técnica estadística que permite discriminar en pruebas dicotómicas, es decir, clasifica la información de dos posibles resultados a partir de una condición.

Por lo regular, se usa para el diagnóstico médico, pero tiene diversas aplicaciones.

Por ejemplo

Si se quiere distinguir, en un grupo de pacientes, los que están sanos de los enfermos, se podría hacer la siguiente combinación.

Tipo de prueba/Resultado

Prueba $+ \equiv y = 1$

Prueba - \equiv y = 0

 $Enfermo(éxito) \equiv D = 1$

Verdadero positivo

Falso negativo

 $Sano(fracaso) \equiv D = 0$

Falso positivo

Verdadero negativo

El punto de corte delimita si es errónea la clasificación, lo que representa que, al hacer la prueba, ésta dé positivo y el paciente esté sano o que la prueba salga negativa y el paciente esté enfermo.

Gráficamente se aprecia de la siguiente manera.

El punto de corte está relacionado a estos dos términos.

Sensibilidad: se refiere a la **probabilidad de** que dado un **éxito**; la prueba lo clasifique como éxito.

$$S = P_r(y = 1|D = 1) = \frac{P_r(y = 1 \cap D = 1)}{P_r(D = 1)}$$

Especificidad: es la **probabilidad de** que dado un **fracaso**; la prueba lo clasifique como fracaso.

$$E = P_r(y = 0 \mid D = 0) = \frac{P_r(y = 0 \cap D = 0)}{P_r(D = 0)}$$

Relacionando los términos con el punto de corte, implica que al mover la variable de decisión a la derecha disminuyen los falsos positivos, pero aumentan los falsos negativos, lo que es equivalente a mencionar que incrementa la especificidad y disminuye la sensibilidad. Al graficar la relación del cambio de la sensibilidad, respecto a los pacientes falsos positivos, se muestra lo que llamamos curva ROC.

Donde dependiendo su forma o el área bajo la curva (AUC) se considera una mejor clasificación de resultados.

