Key Agreement Protocols

Jong Hwan Park

Authentication and Session Key

1. Pht 2. 18+0<u>4</u>

- Usually, a **session key** is required (๑,೬)
 - o I.e., a symmetric-key for a particular session
 - Then, used for confidentiality (using SKE) and/or integrity (using MAC)
- How to authenticate and establish a session key (shared symmetric-key)?
 - Need key agreement protocols
 - In practice, authentication and key agreement are done simultaneously
 - O During a secure protocol for two purposes
 - Attacker cannot break the authentication...
 - ...and attacker cannot determine the session key
- Need crypt primitives
 - o Diffie-Hellman, PKE, DSS (especially for establishing a session key)
 - o SKE, MAC, hash,...

Authentication & Key Agreement

- Possible cases:
 - O Depending on unilateral or mutual authentication
 - Depending on authentication-only or both purposes

Protocols	Authentication	Key Agreement
P-1	Unilateral	X
P-2	Mutual	X
P-3	Unilateral	0
P-4	Mutual	0

25-stanogely

- Each protocols are designed:
 - By using various crypto primitives (symmetric, asymmetric)
 - Under assumption that relates to Alice and Bob (key storage, state)

Using DH+DS+SKE (1)

- Authenticated Diffie-Hellman key-exchange protocol
 - o (a.k.a) Station-to-Station (STS) protocol

Using DH+DS (2)

Simplified STS protocol

• What are differences?

TLS V 1.2 → TLS V 1.3

· 두시યુ이 Certi을가진다.

- Mutual authentication (why?)
- Authenticated key agreement

Encrypted Key Exchange (EKE)

- **PW**-based authentication suffers from offline dictionary attack
- EKE protocol (= PW + PKE + SKE)

Alice (h(pw)) bob

- Assume Alice and Bob share a password PW
- Goal is to gain mutual authentication and a shared key

- Why can offline dictionary attack be prevented?
- How can it be realized using Diffie-Hellman key agreement? (see later)

EKE based on Diffie-Hellman

- EKE protocol (=PW+DH+SKE)
 - Assume Alice and Bob share a password PW
 - Assume (p, g) are public
 - o Goal is to gain mutual authentication and a shared key

o Still, can prevent offline dictionary attack

Using PKE(1)

- Assume Alice and Bob have PK_A and PK_B for (only) encryption
- A protocol example:

如是作到的

- Mutual authentication
- o K_{AB} and K_{BA} may be combined using hash to form $K=h(K_{AB}, K_{BA})$

Using PKE(2) Bergand at 8

- Assume Alice has PK_A for (only) encryption
- A protocol example:

- o authentication Bobol Aliceই এই (client স দেচ জ্ঞান্ত এই)
- \circ K may be computed by hashing $K=h(K_B)$
- o In TLS v1.2, RSA encryption is now used

Using DS (?)

- Assume Alice and Bob have PK_A and PK_B for (only) signature
- A protocol example:

- Mutual authentication is good
- O But, session key K is not secret (why?) 她知知 机性性强强人
 - To establish a session key, need PKE or Diffie-Hellman key exchange
 DS+DH

Using DS+DH(1)

- Assume
 - \circ Alice and Bob have (PK_A, SK_A) and (PK_B, SK_B) for DSS, resp.
 - O DH parameter is shared as (g, p)
- Auth. & key exchange protocol

- Mutual authentication seems to be OK
- K may be combined using hash to form $K=h(\underline{g^{xy}})^{F(K)DF(g^{yy})}=k$

Using DS+DH(2) Expounds

- Assume
 - Bob has (PK_B, SK_B) for DSS
 - O DH parameter is shared as (g, p)

Alicent Bob 3 2 & (MSOH) SOLVOT & 2023)

One-way auth. & key exchange protocol

- K may be combined using hash to form $K=h(g^{xy})$
- In TLS v1.2, ECDSA is used for DSS and ECDH is used for DH

Simplified TLS Protocol (1)

Encryption

Assume only server has (PK_B, SK_B) and $cert(PK_B)$

- S is known as pre-master secret
- $K = h(S,R_A,R_B)$ and "msgs" means all previous messages

Simplified TLS Protocol (2)

Encryption

Assume only server has $(PK_{\underline{B}}, SK_{\underline{B}})$ and $cert(PK_{\underline{B}})$

- Is Alice sure she is talking to Bob(web server)?
- Is Bob sure he is talking to Alice(Client)?
 - What if Bob also wants to authenticate Alice?
 - Can either request cert(PK_A) or password in the second message transit

Simplified TLS Protocol (3)

Assume only server has (PK_B, SK_B) and cert(PK_B)

Signature

Note:

- ·0109/1 Alice 9401 Bobs 95301.
- Unilateral authentication (why in practice ?)
- $K = h(g^{xy}, R_A, R_B)$ and "msgs" means all previous messages
- Can either request cert(PK_A) or password in the second message transit

MIM Attack on TLS? Encryption Assume Chad and server have certificates on their PKs CALLED BOOSTH COH BEOLENSON. R_A R_A certificate_C, R_B certificate_B, R_B $E(PK_C, S_1), MAC(K_1, X_1)$ $E(PK_B, S_2), MAC(K_2, X_2)$ $MC(Y_1,K_1)$ $MAC(Y_2,K_2)$ Alice Bob $E(data, K_1)$ E(data,K₂) Chad

- What prevents this MIM attack?
- Bob's certificate must be signed by a certificate authority (CA)
 - What does browser do if signature not valid?
 - What does user do when browser complains?

Kerberos Protocol

- Authentication and key agreement protocol
 - o devised by MIT, and now realized in Windows 2000
 - Run in symmetric-key setting (No PK setup!)
 - KDC (Key Distribution Center) is required <u>three-party</u>
 - Environments for Kerberos
 - When N servers give their services to a user, it would be unrealistic to require a user to memorize N passwords (or hold N smartcards)
 - E.g., Samsung business units = {Electronics, Auto, Cards, Insurance, ...}
 - Enable the user to maintain one password (Single-Sign-On) (So

Kerberos Architecture

- KDC consists of two authentication servers
 - AS (Authentication Server) and TGS (Ticket Granting Server)
- Assume a user and AS share a password (PW)

If Alice needs to receive services from different servers, repeat $(3)\sim(6)$ steps

How Kerberos works

Q & A