Методы оптимизации и управления О.И. Костюкова, О.И. Дугинов

Лабораторная работа 2 «Основная фаза симплекс-метода»

Пусть имеется задача линейного программирования в канонической форме

$$c^{\mathsf{T}}x \to \max$$

$$Ax = b$$
 (1)
$$x \geqslant 0,$$

где $c \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)^\intercal \in \mathbb{R}^n$ — вектор переменных, A — матрица, в которой m строк и n столбцов, $b \in \mathbb{R}^m$. Будем предполагать, что система линейных ограничений Ax = b совместна и не содержит линейно зависимых ограничений, т.е. $\mathrm{rank}(A) = m$. Требуется определить ограничен ли сверху целевой функционал задачи на множестве допустимых планов и, в случае положительного ответа, найти оптимальный план задачи. Это можно сделать с помощью основной фазы симплекс-метода. Цель настоящей лабораторной работы — реализовать основную фазу симплекс-метода. Переходим к описанию метода.

Определение 1. Базисным допустимым планом задачи (1) называется упорядоченная пара (x,B), в которой первая компонента — это допустимый план $x=(x_1,x_2,\ldots,x_n)^\intercal$ задачи (1), а вторая — подмножество B множества индексов переменных $\{1,2,\ldots,n\}$, при этом

- a) |B| = m (в множестве B ровно m индексов);
- б) $|A_B| \neq 0$ (базисная матрица A_B матрица, составленная из столбцов матрицы A с индексами из множества B, имеет ненулевой определитель);
- e) для каждого индекса $i \in \{1, 2, \dots, n\} \setminus B$ выполняется $x_i = 0$.

Индексы переменных, принадлежащие множеству B, называются базисными, а остальные индексы — небазисными.

Известно, что базисных допустимых планов задачи (1) конечное число. Более того, если целевой функционал задачи ограничен сверху на множестве допустимых планов, то существует оптимальный план x, который вместе с соответствующим множеством B базисных индексов является базисным допустимым планом.

Основная фаза симплекс-метода принимает на вход задачу (1) вместе с некоторым базисным допустимым планом (x,B) и строит последовательность базисных допустимых планов задачи (1), которая начинается с (x,B) и заканчивается (x^*,B^*) , где x^* — оптимальный план задачи (1), если он существует.

Основная фаза симплекс-метода

 $Bxod: c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$ — параметры задачи (1) и (x, B) — начальный базисный допустимый план, причем элементы множества B упорядочены

Bыход: оптимальный план x задачи (1) или сообщение о том, что целевой функционал задачи не ограничен сверху на множестве допустимых планов

- Шаг 1. Строим базисную матрицу A_B и находим 1 ее обратную матрицу A_B^{-1} ;
- Шаг 2. Формируем вектор c_B вектор компонент вектора c, чьи индексы принадлежат множеству B;
 - Шаг 3. Находим вектор потенциалов $u^{\intercal} = c_B^{\intercal} A_B^{-1}$;
 - Шаг 4. Находим вектор оценок $\Delta^{\mathsf{T}} = u^{\mathsf{T}}A c^{\mathsf{T}}$;
- ШАГ 5. Проверим условие оптимальности текущего плана x, а именно, если $\Delta \geqslant 0$, то текущий x является оптимальным планом задачи (1) и метод завершает свою работу, возвращая в качестве ответа текущий x;
- Шаг 6. Находим в векторе оценок Δ первую отрицательную компоненту и ее индекс сохраним в переменной j_0 ;
- Шаг 7. Вычислим вектор $z=A_B^{-1}A_{j_0},$ где A_{j_0} столбец матрицы A с индексом $j_0;$
 - Шаг 8. Находим вектор $\theta^\intercal = (\theta_1, \theta_2, \dots, \theta_m) \in \mathbb{R}^m$ по следующему правилу

$$\theta_i = \begin{cases} \frac{x_{j_i}}{z_i}, & \text{если } z_i > 0, \\ \infty, & \text{если } z_i \leqslant 0, \end{cases}$$

где $j_i - i$ -й по счету базисный индекс в упорядоченном наборе B.

Шаг 9. Вычислим

$$\theta_0 = \min_{i \in \{1, 2, \dots, m\}} \theta_i \tag{2}$$

- Шаг 10. Проверяем условие неограниченности целевого функционала: если $\theta_0 = \infty$, то метод завершает свою работу с ответом «целевой функционал задачи (1) не ограничен сверху на множестве допустимых планов»;
- ШАГ 11. Находим первый индекс k, на котором достигается минимум в (2), и сохраним в переменной j_* k-й базисный индекс из B;
- Шаг 12. В упорядоченном множестве B заменим k-й индекс j_* на индекс j_0 .
- Шаг 13. Обновим компоненты плана x следующим образом: $x_{j_0} := \theta_0$ и для каждого $i \in \{1,2,\ldots,m\}$ такого, что $i \neq k$

$$x_{j_i} := x_{j_i} - \theta_0 z_i,$$

где j_i — это i-й базисный индекс в $B;\,x_{j_*}:=0.$ Переходим на ШАГ 1.

Проиллюстрируем работу основной фазы симплекс-метода на примере. Рассмотрим задачу линейного программирования в канонической форме

$$x_1 + x_2 \to \max$$

 $^{^1{\}rm Ha}$ второй и последующих итерациях матрицу A_B необходимо обращать, используя метод из лабораторной работы №1

$$\begin{array}{ccccc}
-x_1 + x_2 + x_3 & = 1 \\
x_1 & + x_4 & = 3 \\
x_2 & + x_5 = 2 \\
x_1 & \geqslant 0 \\
x_2 & \geqslant 0 \\
x_3 & \geqslant 0 \\
x_4 & \geqslant 0 \\
x_5 \geqslant 0
\end{array}$$

Вектор коэффициентов при переменных в целевом функционале

$$c^{\mathsf{T}} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Вектор переменных

$$x^{\mathsf{T}} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix}$$

Матрица коэффициентов при переменных в основных ограничениях задачи

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

Пусть в качестве начального базисного допустимого плана выбрана пара

$$(x^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 1 & 3 & 2 \end{pmatrix}, B = (j_1 = 3, j_2 = 4, j_3 = 5)).$$

Базисными индексами являются индексы 3, 4 и 5, а небазисными — индексы 1 и 2.

Итерация 1. Составим базисную матрицу A_B из столбцов матрицы A с базисными индексами (т.е. индексами из B). Матрица A_B представляет собой матрицу, составленную из третьего, четвертого и пятого столбцов матрицы A

$$A_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Находим матрицу, обратную к базисной A_B

$$A_B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Формируем вектор c_B , составленный из компонент вектора c с базисными индексами

$$c_B^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$
.

Вычислим вектор потенциалов

$$u^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}.$$

Находим вектор оценок

$$\Delta^{\mathsf{T}} = u^{\mathsf{T}} A - c^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} -1 & -1 & 0 & 0 & 0 \end{pmatrix}.$$

В векторе оценок Δ выберем первую отрицательную компоненту и ее индекс сохраним в переменной j_0

$$\Delta_1 = -1, \ j_0 = 1.$$

Вычислим вектор

$$z = A_B^{-1} A_{j_0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Находим вектор $\theta^{\intercal}=(\theta_1,\theta_2,\theta_3)$. Поскольку $z_1=-1<0$, то $\theta_1=\infty$. Так как $z_2=1>0$, то

$$\theta_2 = \frac{x_{j_2}}{z_2} = \frac{x_4}{z_2} = \frac{3}{1} = 3.$$

Так как $z_3 = 0 \le 0$, то $\theta_3 = \infty$. Получаем

$$\theta^{\mathsf{T}} = \begin{pmatrix} \infty & 3 & \infty \end{pmatrix}$$
.

Вычислим $\theta_0 = \min(\infty, 3, \infty) = 3$. Минимум достигается на θ_2 . Поэтому

$$k = 2, j_* = j_k = j_2 = 4.$$

Обновим базисные индексы, т.е. в наборе B индекс j_2 — индекс4 — заменим на индекс j_0

$$B = (j_1 = 3, j_2 = \boxed{\mathbf{4}}, j_3 = 5) \rightarrow B = (j_1 = 3, j_2 = \boxed{\mathbf{1}}, j_3 = 5).$$

Обновим компоненты текущего плана x:

$$\begin{aligned} x_{j_0} &= x_1 = \theta_0 = 3 \\ x_{j_1} &= x_3 := x_3 - \theta_0 \cdot z_1 = 1 - 3 \cdot (-1) = 4 \\ x_{j_3} &= x_5 := x_5 - \theta_0 \cdot z_3 = 2 - 3 \cdot 0 = 2 \\ x_{j_*} &= x_4 = 0. \end{aligned}$$

Получаем новый базисный допустимый план

$$(x^{\mathsf{T}} = \begin{pmatrix} 3 & 0 & 4 & 0 & 2 \end{pmatrix}, B = (j_1 = 3, j_2 = 1, j_3 = 5)).$$

Итерация 2. Составим новую базисную матрицу

$$A_B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Заметим, что эта базисная матрица отличается от базисной матрицы на предыдущей итерации только одним столбцом, а именно k-м (k=2) столбцом. Для базисной матрицы на предыдущей итерации известна ее обратная матрица. Используя метод из лабораторной работы \mathbb{N}^1 , найдем матрицу, обратную к A_B

$$A_B^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Формируем вектор c_B из компонент вектора c с базисными индексами

$$c_B^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}.$$

Находим вектор потенциалов

$$u^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}.$$

Вычислим вектор оценок

$$\begin{split} \Delta^{\mathsf{T}} &= u^{\mathsf{T}} A - c^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \end{pmatrix} = \\ &= \begin{pmatrix} 0 & -1 & 0 & 1 & 0 \end{pmatrix} \end{split}$$

В векторе Δ выберем первую отрицательную компоненту и ее индекс сохраним в переменной j_0 . Получаем

$$\Delta_2 = -1 < 0, \ j_0 = 2.$$

Вычислим вектор

$$z = A_B^{-1} A_{j_0} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Вычислим вектор $\theta^{\intercal} = (\theta_1, \theta_2, \theta_3)$. Так как $z_1 = 1 > 0$, то

$$\theta_1 = \frac{x_{j_1}}{z_1} = \frac{x_3}{z_1} = \frac{4}{1} = 4.$$

Так как $z_2 = 0 \le 0$, $\theta_2 = \infty$. Так как $z_3 = 1 > 0$, то

$$\theta_3 = \frac{x_{j_3}}{z_3} = \frac{x_5}{z_3} = \frac{2}{1} = 2.$$

Найдем $\theta_0 = \min(\theta_1, \theta_2, \theta_3) = \min(4, \infty, 2) = 2$. Минимум достигается на θ_3 . Нас интересует третий базисный индекс, т.е.

$$k = 3, j_* = j_3 = 5.$$

В наборе базисных индексов B заменим индекс j_3 , т.е. индекс j_6 , на индекс j_6

$$B = (j_1 = 3, j_2 = 4, j_3 = \boxed{5}) \rightarrow B = (j_1 = 3, j_2 = 1, j_3 = \boxed{2}).$$

Обновим компоненты текущего плана х:

$$\begin{aligned} x_{j_0} &= x_2 = \theta_0 = 2 \\ x_{j_1} &= x_3 := x_3 - \theta_0 \cdot z_1 = 4 - 2 \cdot 1 = 2 \\ x_{j_2} &= x_1 := x_1 - \theta_0 \cdot z_2 = 3 - 2 \cdot 0 = 3 \\ x_{j_n} &= x_5 = 0. \end{aligned}$$

Получаем новый базисный допустимый план

$$(x^{\mathsf{T}} = \begin{pmatrix} 3 & 2 & 2 & 0 & 0 \end{pmatrix}, B = (j_1 = 3, j_2 = 1, j_3 = 2)).$$

Итерация 3. Составим новую базисную матрицу

$$A_B = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Новая базисная матрица отличается от базисной матрицы на предыдущей итерации только одним столбцом, а именно k-м (k=3). Используя базисную матрицу из предыдущей итерации и ее обратную, методом обращения матрицы из лабораторной работы №1 найдем обратную матрицу для текущей базисной матрицы

$$A_B^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Сформируем вектор c_B из базисный компонент вектора c

$$c_B^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}.$$

Вычислим вектор потенциалов

$$u^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1} = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$$

и вектор оценок

$$\Delta^{\mathsf{T}} = u^{\mathsf{T}} A - c^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$$

Так как $\Delta \geqslant 0$, то текущий x является оптимальным планом.

Ответ:
$$x^{\dagger} = \begin{pmatrix} 3 & 2 & 2 & 0 & 0 \end{pmatrix}$$
.