Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Exercice 1: Plateforme V_0

Question 1: Déterminer $\vec{V}(M,2/0)$ et sa norme puis Ω_{30}

Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Exercice 2: Plateforme V_1

Question 1: Déterminer $\overrightarrow{V}(F,3/0)$ en étudiant la chaîne 03540

Question 2: En déduire $\vec{V}(C,3/0)$

Question 3: Déterminer finalement $\vec{V}(M,2/0)$ et sa norme

Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Résolution:

On doit trouver une vitesse du mouvement de 2/0. L'idéal serait de trouver $\vec{V}(C,2/0)$ puis par équiprojectivité de trouver $\vec{V}(M,2/0)$ connaissant I_{20} .

Pour trouver $\vec{V}(C,2/0) = \vec{V}(C,3/0)$, on pourrait trouver $\vec{V}(F,3/0)$ par l'étude de la chaîne 04530 :

	D	Е	F
$\{\mathcal{V}_{54}\}$	V	V	V
$\{\mathcal{V}_{40}\}$	D	$\vec{0}$	D
$\{\mathcal{V}_{03}\}$	$\vec{0}$	D	D
$\{\mathcal{V}_{35}\}$	D	D	$\vec{0}$
Bilan	VDD	VDD	VDD

Pour trouver le mouvement 3/0, éviter le point D car $\vec{V}(D,3/0)=\vec{0}$. Choisissons soit E, soit F. Comme en plus on aimerait directement avoir $\vec{V}(F,3/0)$, choisissons F.

$$\vec{V}(F, 5/4) + \vec{V}(F, 4/0) + \vec{V}(F, 0/3) = \vec{0}$$
 VDD

Triangle des vitesses (cf figure)

On en déduit $\vec{V}(C,2/0) = \vec{V}(C,3/0)$ avec le triangle des vitesses puis $\vec{V}(M,2/0)$ par équiprojectivité.

Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Exercice 3: Plateforme V_2

Question 1: Déterminer $\overrightarrow{V}(F,2/0)$ en étudiant la chaîne 012540

Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Etude de la chaîne 012540

	A	В	F	Е
$\{\mathcal{V}_{01}\}$	$\vec{0}$	D	D	D
$\{\mathcal{V}_{12}\}$	D	$\vec{0}$	D	D
$\{\mathcal{V}_{25}\}$	D	D	$\vec{0}$	D
$\{\mathcal{V}_{54}\}$	V	V	V	V
$\{\mathcal{V}_{40}\}$	D	D	D	$\vec{0}$
Bilan	VDDD	VDDD	VDDD	VDDD

Aucun point ne convient, mais comme on a ${\cal I}_{20}$, on ava regrouper 2 vitesses :

$$\{\mathcal{V}_{02}\} = \{\mathcal{V}_{01}\} + \{\mathcal{V}_{12}\}$$

	А	В	F	Е
$\{\mathcal{V}_{02}\}$	D	D	D	D
$\{\mathcal{V}_{25}\}$	D	D	$\vec{0}$	D
$\{\mathcal{V}_{54}\}$	V	V	V	V
$\{\mathcal{V}_{40}\}$	D	D	D	$\vec{0}$
Bilan	VDDD	VDDD	VDD	VDDD

Il est possible de traiter le problème en E ou F.

Plaçons-nous en F pour déplacer plus facilement la vitesse de F à M ensuite :

$$\vec{V}(F,0/2) + \vec{V}(F,5/4) + \vec{V}(F,4/0) = \vec{0}$$

On en déduit $\vec{V}(F,2/0)$ puis $\vec{V}(M,2/0)$ par équiprojectivité.

Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Exercice 4: Plateforme V_3

Question 2: En déduire $\vec{V}(M,2/3)$

Question 3: En déduire $\vec{V}(M,2/0)$ et sa norme

Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Résolution:

La fermeture de chaîne 24532 permet d'obtenir une vitesse dans la chaîne 01230, la vitesse 2/3, puis cette fermeture de chaîne (ou plutôt l'exploitation du CIR) permet d'obtenir la vitesse recherchée.

Etude de la chaîne 24532

	С	F	G
$\{\mathcal{V}_{42}\}$	D	$\vec{0}$	D
$\{\mathcal{V}_{54}\}$	V	V	V
$\{\mathcal{V}_{35}\}$	D	D	$\vec{0}$
$\{\mathcal{V}_{23}\}$	$\vec{0}$	D	D
Bilan	VDD	VDD	VDD

On sait qu'on veut une vitesse dans le mouvement de 2/3, on élimine le point C. Entre F et G, on choisit F histoire de déplacer en M plus simplement la vitesse trouvée.

$$\vec{V}(F,5/4) + \vec{V}(F,2/3) + \vec{V}(F,3/5) = \vec{0}$$
VDD

Triangle des vitesses (cf figure)

On en déduit $\vec{V}(M,2/3)$ par équiprojectivité sachant que $C=I_{23}$

On peut ensuite étudier la chaîne 01230, le problème est que l'on ne peut pas directement l'étudier en M car il y a trop d'inconnues. VDDD. En fait, soit on passe par un des 4 points A, B, C ou D puis on revient en M lorsqu'on a le mouvement 2/1 et 1/0 en faisant une somme. Sinon, on utilise le CIR 2/0, et alors :

Soit on fait bien la fermeture de chaîne en regroupant 01 et 12 :

$$\vec{V}(M,0/1) + \vec{V}(M,1/2) + \vec{V}(M,2/3) + \vec{V}(M,3/0) = \vec{0}$$

$$\vec{V}(M,0/2) + \vec{V}(M,2/3) + \vec{V}(M,3/0) = \vec{0}$$

Dernière mise à jour	TD	Denis DEFAUCHY
20/05/2016	Cinématique	TD11-2 - Correction

Et hop VDD

Soit on ne parle pas de fermeture de chaîne et on fait la composition du mouvement, sachant qu'on connaît la direction de $\vec{V}(M,0/2)$ ou $\vec{V}(M,2/0)$

