Subnational CRVS Demo

Jeremy Roth

Contents

1	\mathbf{Set}	up 1					
	1.1	Load SubnationalCRVS package (includes example data)					
	1.2	Initialize a few things for the demo					
2	Conduct DDQA						
	2.1	Sex ratio					
	2.2	Age ratios					
	2.3	Potential age heaping					
	2.4	Age heaping indices					
3 DDM estimation							
	3.1	Compute DDM estimates					
		Plot DDM estimates					

1 Set up

1.1 Load SubnationalCRVS package (includes example data)

```
#library(devtools)
#install_github("jroth-unfpa/SubnationalCRVS")
library(SubnationalCRVS)
head(ecuador_age_tabulation)
     province sex age pop2 pop1
                                                 date2 province_name
                                     date1
## 1
          1 m
                    0 6750 6086 2001-11-25 2010-11-28
                                                               Azuay
## 2
                    1 6984 6555 2001-11-25 2010-11-28
                                                               Azuay
## 3
                    2 7090 7232 2001-11-25 2010-11-28
           1 m
                                                               Azuay
## 4
            1
                    3 7095 7101 2001-11-25 2010-11-28
                                                               Azuay
## 5
                    4 6961 7083 2001-11-25 2010-11-28
            1
                                                               Azuay
                    5 6895 6583 2001-11-25 2010-11-28
            1
                                                               Azuay
     province_name_short
## 1
## 2
                     Azu
## 3
                     Azu
## 4
                     Azu
## 5
                     Azu
## 6
                     Azu
head(example_data_ecuador)
```

```
province sex age pop1 pop2 deaths
                                          date1
                                                    date2 province_name
      1 m
## 1
                 0 34101 34886 772 2001-11-25 2010-11-28
                                                                 Azuay
## 2
         1 m 10 34946 38125 223 2001-11-25 2010-11-28
                                                                 Azuay
## 3
         1 m 15 32387 37611 416 2001-11-25 2010-11-28
                                                                 Azuay
          1 m 20 25634 33665 480 2001-11-25 2010-11-28
## 4
                                                                 Azuay
## 5
          1 m 25 18606 28376 475 2001-11-25 2010-11-28
                                                                 Azuay
          1 m 30 16193 22026 456 2001-11-25 2010-11-28
                                                                 Azuay
## province_name_short
## 1
## 2
                   Azu
## 3
                   Azu
## 4
                   Azu
## 5
                   Azu
## 6
                   Azu
```

1.2 Initialize a few things for the demo

```
knitr::opts_chunk$set(echo = TRUE)
library(dplyr)
library(knitr)
my_plots_dir <- "Plots/"</pre>
```

2 Conduct DDQA

2.1 Sex ratio

2.1.1 View sex ratios in table

```
94.75147
                                                   101.06409
## 3
             Azuay 15 34181 37215
## 4
                    20 31000 35753
                                       82.69032
                                                    94.15993
             Azuay
## 5
             Azuay
                                                    88.52561
                    25 23844 32054
                                       78.03221
## 6
                    30 21317 26520
                                       75.96285
                                                    83.05430
             Azuay
```

2.1.2 View sex ratios in plot

Figure 1: A caption

2.2 Age ratios

2.2.1 View age ratios in table

```
a %>% select(province_name, age, pop1, pop2, age_ratio_1, age_ratio_2) %>% head()
```

```
##
     province_name age pop1 pop2 age_ratio_1 age_ratio_2
## 1
             Azuay
                     0 33491 33876
                                              NA
## 2
             Azuay
                     5 33817 35701
                                       98.78480
                                                    100.2246
## 3
             Azuay
                    10 34975 37366
                                      102.87067
                                                    102.4905
## 4
                    15 34181 37215
                                      103.61804
                                                    101.7930
             Azuay
## 5
             Azuav
                    20 31000 35753
                                      106.85050
                                                    103.2294
                                       91.15202
## 6
                                                    102.9467
             Azuay
                    25 23844 32054
```

2.2.2 View age ratios in plot

Figure 2: A caption

2.3 Potential age heaping

```
name.population.year1="pop1",
name.population.year2="pop2",
print.disaggregated=FALSE,
print.overall=FALSE,
plots.dir="Plots/")
```

[1] "need to add a way to check for single-year ages"
NULL

2.3.1 View potential age heaping plots

Figure 3: A caption

2.4 Age heaping indices

```
print.plots=FALSE,
plots.dir="Plots/")
```

[1] "need to add a way to check for single-year ages"

[1] "need to add a way to check for single-year ages"

2.4.1 View age heaping indices in table

{r "age_heaping_indices_table"}head(example_data_ecuador) head(ageheaping_name_full) ### View age heaping indices in plots

Figure 4: A caption

3 DDM estimation

3.1 Compute DDM estimates

```
ddm_results_name_short <- EstimateDDM(data=example_data_ecuador,</pre>
            name.disaggregations="province_name_short",
            name.age="age",
            name.sex="sex",
            name.males="m"
            name.females="f",
            name.date1="date1",
            name.date2="date2",
            name.population.year1="pop1",
            name.population.year2="pop2",
            name.deaths="deaths",
            deaths.summed=TRUE,
            min.age.in.search=15,
            max.age.in.search=75,
            min.number.of.ages=8)
## [1] "performing DDM estimation within each of 21 possible age ranges..."
ddm_results_name_full <- EstimateDDM(data=example_data_ecuador,</pre>
            name.disaggregations="province_name",
            name.age="age",
            name.sex="sex",
            name.males="m",
            name.females="f",
            name.date1="date1",
            name.date2="date2",
            name.population.year1="pop1",
            name.population.year2="pop2",
            name.deaths="deaths",
            deaths.summed=TRUE,
```

[1] "performing DDM estimation within each of 21 possible age ranges..."

3.2 Plot DDM estimates

min.age.in.search=15,
max.age.in.search=75,
min.number.of.ages=8)

3.2.1 View DDM point estimates in table

head(ddm_results_name_full\$ddm_estimates)

##		cod	sex	ggbseg	ggb	seg	<pre>lower_age_range</pre>	upper_age_range
##	1	Azuay	${\tt Females}$	0.6690215	0.9869457	0.8062717	15	50
##	2	Azuay	Males	0.7268026	1.0688804	0.9169165	15	50
##	3	${\tt Bolivar}$	Females	0.7128565	0.9876368	0.7200723	20	60
##	4	${\tt Bolivar}$	Males	0.7427068	0.9553584	0.7963881	25	60
##	5	Cañar	Females	0.6188313	0.9981219	0.5754533	20	55
##	6	Cañar	Males	0.7085910	0.9534686	0.7923367	15	50

3.2.2 View DDM point estimates in plot

Figure 5: A caption

3.2.3 View age-range sensitivity of DDM point estimates in table

head(ddm_results_name_full\$sensitivity_ddm_estimates)

##		cod	sex	ggbseg	ggb	seg	<pre>lower_age_range</pre>	upper_age_range
##	1	Azuay	${\tt Females}$	0.6104842	0.9869457	0.8112473	15	50
##	2	Azuay	${\tt Females}$	0.6387823	0.8742469	0.8089535	15	55
##	3	Azuay	${\tt Females}$	0.6293945	0.8566154	0.8057450	20	55
##	4	Azuay	${\tt Females}$	0.6690215	0.8292898	0.8062717	15	60
##	5	Azuay	${\tt Females}$	0.6607905	0.8151276	0.8031217	20	60
##	6	Azuay	${\tt Females}$	0.6505367	0.7836742	0.8012668	25	60

3.2.4 View sensitivity of DDM point estimates in plot

Figure 6: A caption