2022/23: first semester Teacher : Carmelo Vaccaro

TUTORIAL 3 WITH ANSWERS

Exercise 1 Given the relation R(A, B, C, D) below find the set of all functional dependencies of the form $X \to Y$ where X and Y are attributes of R.

R	$\mid A$	$\mid B \mid$	$\mid C$	D
	1	1	2	3
	2	2	1	$\begin{vmatrix} 4\\2 \end{vmatrix}$
	1	3	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	2
	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	2	1	1

Answer. We remark that since all the values of D are different, any functional dependency of the form $D \to Y$ is trivially true.

 $A \to B$: No. See 1st and 3rd tuple.

 $A \rightarrow C$: Yes.

 $A \to D$: No. See 1st and 3rd tuple.

 $B \to A$: No. See 2nd and 4th tuple.

 $B \to C$: Yes.

 $B \to D$: No. See 2nd and 4th tuple.

 $C \to A$: No. See 2nd and 4th tuple.

 $C \to B$: No. See 1st and 3rd tuple.

 $C \to D$: No. See 1st and 3rd tuple.

 $D \rightarrow A$: Yes.

 $D \rightarrow B$: Yes.

 $D \to C$: Yes.

So the set of all functional dependencies of R is $\{A \to C, B \to C, D \to A, D \to B, D \to C\}$.

Exercise 2 For the tables *Product*, *PC*, *Laptop* and *Printer* given below find the single attributes that can be keys.

Answer. Product: {model}

 $PC: \{model\}$

 $Laptop: \{model\}, \{price\}$

 $Printer: \{model\}$

Exercise 3 Consider a relation with schema R(A, B, C, D) and where the following functional dependencies hold:

$$AB \to C$$
, $C \to D$, $D \to A$.

- 1. Find the closures of all subsets of $\{A, B, C, D\}$ and find all the superkeys.
- 2. Find all the keys.

Answer.

1. Cardinality 1: The closures of $\{A\}$ and $\{B\}$ are trivial. The closure of $\{D\}$ is $\{A, D\}$ because we have $D \to A$ and no other functional dependency determined by $\{A, D\}$.

For the closure of $\{C\}$ we note that $C \to D$ implies that $D \in \{C\}^+$, thus $\{C\}^+ \supset \{C,D\}$. Also $D \to A$ implies that $A \in \{C\}^+$, thus $\{C\}^+ \supset \{A,C,D\}$. The attribute B does not follow from any FD having on the left side some of the attributes of $\{A,C,D\}$, so $\{C\}^+ = \{A,C,D\}$.

Cardinality 2: This implies that the closures of $\{A, C\}$ and $\{C, D\}$ are $\{A, C, D\}$.

The closure of $\{A, B\}$ contains C due to $AB \to C$ and D due to $C \to D$, therefore $\{A, B\}$ is a superkey.

The closure of $\{A, D\}$ is trivial.

The closure of $\{B,C\}$ contains D due to $C \to D$ and A due to $D \to A$, therefore $\{B,C\}$ is a superkey.

The closure of $\{B, D\}$ contains A due to $D \to A$ and C due to $AB \to C$, therefore $\{B, D\}$ is a superkey.

Cardinality 3: Since $\{A, B\}$ is a superkey, then $\{A, B, C\}$ and $\{A, B, D\}$ are superkeys too.

Since $\{B,C\}$ is a superkey, then $\{B,C,D\}$ is a superkey too.

The closure of $\{A, C, D\}$ is trivial because B is not determined by any other attributes.

2. The smallest superkeys have two elements and these are keys, so $\{A, B\}$, $\{B, C\}$ and $\{B, D\}$ are the keys.

Exercise 4 Consider a relation with schema S(A, B, C, D) and where the following functional dependencies hold:

$$A \to B$$
, $B \to C$, $B \to D$.

- 1. Find the closures of all subsets of $\{A, B, C, D\}$ and find all the superkeys.
- 2. Find all the keys.

Answer.

1. Let us consider the closure of $\{A\}$. From $A \to B$ we have that $B \in \{A\}^+$; from $B \to C$ and $B \to D$ we have that also C and D belong to $\{A\}^+$, thus $\{A\}$ is a superkey and indeed a key.

This implies that any set of attributes containing A is a superkey.

From $B \to C$ and $B \to D$ we have that C and D belong to $\{B\}^+$. Since A is not a consequence of any FD, then $\{B\}^+ = \{B, C, D\}$.

This implies that the closure of any set of attributes containing B and not A is $\{B, C, D\}$.

The closures of $\{C\}$ and $\{D\}$ and $\{C, D\}$ are trivial.

2. $\{A\}$ is a the only key.

Exercise 5 For any of the relations below with the given functional dependencies prove that the relation is not in BCNF and decompose it into relations in BCNF using the algorithm seen during the course. Prove any claim that you make.

Use this result: A relation with exactly two attributes is always in BCNF.

1. R(A, B, C, D) with

$$AB \to C$$
, $C \to D$, $D \to A$;

2. R(A, B, C, D) with

$$B \to C$$
, $B \to D$;

Answer.

1. We have that $C \to D$ is a BCNF violation. Indeed $\{C\}^+ = \{C, D, A\}$ because of $C \to D$ and $D \to A$ and because B is not determined by any other attributes since it is not on the right side of any of the FD shown above.

Thus we split the set of attributes $\{A, B, C, D\}$ into $\{A, C, D\} \cup \{B, C\}$.

The relation $R_1(B,C)$ is in BCNF because it has two attributes, while $R_2(A,C,D)$ is not because $D \to A$ holds and D is not a key since D does not determine C.

Since the closure of D in R_2 is $\{A, D\}$, then we split $R_2(A, C, D)$ into $R_3(A, D)$ and $R_4(C, D)$ which are in BCNF.

2. Trivially we have that $\{B\}^+ = \{B, C, D\}$ and that $\{A, B\}$ is the only key, thus $B \to C$ is a BCNF violation.

We decompose $\{A, B, C, D\}$ into $\{B, C, D\} \cup \{A, B\}$. The relation $R_1(A, B)$ is in BCNF because it has two attributes. Also $R_2(B, C, D)$ is in BCNF because $\{B\}$ is a key and the only FD holding in R_2 are $B \to C$ and $B \to D$.

maker	model	type	
A	1001	рс	
Α	1002	pc	
Α	1003	pc	
Α	2004	laptop	
Α	2005	laptop	
Α	2006	laptop	
В	1004	pc	
В	1005	рс	
В	1006	pc	
В	2007	laptop	
C	1007	pc	
D	1008	pc	
D	1009	pc	
D	1010	pc	
D	3004	printer	
D	3005	printer	
E	1011	pc	
E	1012	pc	
E	1013	pc	
E	2001	laptop	
E	2002	laptop	
E	2003	laptop	
E	3001	printer	
E	3002	printer	
E	3003	printer	
F	2008	laptop	
F	2009	laptop	
G	2010	laptop	
H	3006	printer	
H	3007	printer	

Figure 20: Sample data for Product

model	speed	ram	hd	price
1001	2.66	1024	250	2114
1002	2.10	512	250	995
1003	1.42	512	80	478
1004	2.80	1024	250	649
1005	3.20	512	250	630
1006	3.20	1024	320	1049
1007	2.20	1024	200	510
1008	2.20	2048	250	770
1009	2.00	1024	250	650
1010	2.80	2048	300	770
1011	1.86	2048	160	959
1012	2.80	1024	160	649
1013	3.06	512	80	529

(a) Sample data for relation PC

model	speed	ram	hd	screen	price
2001	2.00	2048	240	20.1	3673
2002	1.73	1024	80	17.0	949
2003	1.80	512	60	15.4	549
2004	2.00	512	60	13.3	1150
2005	2.16	1024	120	17.0	2500
2006	2.00	2048	80	15.4	1700
2007	1.83	1024	120	13.3	1429
2008	1.60	1024	100	15.4	900
2009	1.60	512	80	14.1	680
2010	2.00	2048	160	15.4	2300

(b) Sample data for relation Laptop

model	color	type	price
3001	true	ink-jet	99
3002	false	laser	239
3003	true	laser	899
3004	true	ink-jet	120
3005	false	laser	120
3006	true	ink-jet	100
3007	true	laser	200

(c) Sample data for relation Printer