Nicholas Snyder

ECE 401

Section 5

9/28

Laboratory #2 (Pre-Lab)

Objective:

The first objective is to learn to identify and describe some of the electrical and electronic components used in design. A second objective is to learn to properly solder components on a printed circuit card (PCB).

Equipment Required: (brief desc. and proper use) + pics

- Tool kit
 - Common tools like the ones used in the previous lab (screwdrivers, diagonal cutter, etc.)
- Soldering Iron
 - Hand tool used to melt and solder electrical components by touching hot metal tip against solder and component joint
- 60/40 Rosin Core Solder
 - Soft metal wire with organic compound in the center. Used by melting to component joint and forms a good electrical connection
- "Helping Hands" part holder
 - Adjustable jig used to hold PCBs. Commonly has two alligator clips and magnifying glass
- Electronic soldering Kit
 - Damp sponge, soldering iron mount, and power station. These are all attached and allow for holding an iron when not in use, cleaning the tip of the iron, and selecting a specific temperature to heat the tip up to

Electrical Components: (brief desc. about elec. and phys. attributes) + pics

- Resistor
 - Very small cylinder that resists an electrical circuit
- Capacitor
 - Tall cylinder that stores electrical energy
- Transistor
 - A semiconductor device that can amplify or switch electronic signals. Usually seen as a small black box with three electrical leads
- Diode
 - Very small cylinder that conducts current only one way
- Switch
 - Component that can open or close a circuit. Can also change the path of current

Procedure:

- 1. Turn on soldering station and wait for iron to heat up to specified temperature
- 2. Clean surface where you plan to add solder
- 3. Press the tip of the soldering iron on the joint between the PCB and the component
- 4. After heating up the connection area, carefully add 60/40 solder to the connection to join the two while still holding the tip on the connection
- 5. After solder is covering the connection area, move the iron away to let the connection cool
- 6. Clean tip of iron by pressing it into brass coils or wet sponge
- 7. Add a slight coating of solder to the tip of the iron to prevent corrosion

Expected Results:

I expect that by the end of this lab I will be able to identify basic electrical components and learn the proper technique of soldering.

Questions:

- 1. Why must all parts be clean and free from dirt and grease?
 - Dirty parts will cause a bad connection
- 2. Why should you secure the work firmly?

- Securing the work in helping hands prevents many shifts and lessen the risk of burning you as well as other components
- 3. What does "Tin" the iron tip mean and when do you do this?
 - You tin the tip to clean the tip which heats up parts
- 4. Why should I clean the tip of the hot soldering iron on a damp sponge?
 - A clean tip is the easiest to work with and will heat up parts better
- 5. Why should I add a tiny amount of fresh solder to the cleansed tip?
 - It will prevent corrosion when not in use
- 6. Why must I heat all parts of the joint with the iron before I add more solder?
 - All parts must be heated evenly to ensure a good connection
- 7. How do I know when enough solder is enough to form an adequate joint?
 - Solder will form a pyramid shape around the lead
- 8. What may happen if I leave the solder iron on a component for too long a time?
 - You may burn and damage the board or other components
- 9. Why must I not move the soldered parts until the solder has had a chance to cool?
 - The solder may not be fully set and may result in bat connection if moved