

NAVAL Postgraduate School

The Agile Scheduling Process: Kanban

A Lean Approach to Workflow Optimization

SE 4003 December 2, 2024 MAJ Steve Loman

Agenda

- Background and Motivation
- Overview
- Kanban in Defense Applications
- References

Background and Motivation

• What is Kanban?

- O Kanban means "signal" in Japanese
- Originates from the Toyota ProductionSystem (TPS) (Sugimori et al., 1977)
- Kanban was designed as the scheduling system for Toyota's lean manufacturing system
- Enables <u>pull</u> production through <u>visual workflow</u>
 <u>management</u> facilitates transparency to achieve
 a quality deliverable through a <u>continuous flow</u>

The TPS: Principle and Lean Manufacturing (2022)

Motivation:

 Addresses inefficiencies like overproduction and poor workflow transparency (Braglia et al., 2020)

Key Question:

o How is Kanban different from traditional Scrum?...

Overview

Six general practices of Kanban:

- 1) Visualize the Workflow
- 2) Limit Work in Progress (WIP)
- 3) Manage the flow of work
- 4) Make the process/policies explicit
- 5) Implement feedback loops
- 6) Improve collaboratively and evolve experimentally

Core Principles

- Visualize tasks, limit work-in-progress, reduce context switching, and optimize flow (Monden, 2011)
- Continuous improvement through iterative processes (Reddy et al., 2023)

• Components:

- O Kanban boards (typically made of cards/sticky notes within columns) are utilized to manage workflows effectively
- o Boards can be physical, digital, or both; boards must be located in a public venue

Overview (cont.)

Kanban: A Simple Real Example

As each burger is consumed . . .
They are removed from the regulator . . .
And then replenished by the kitchen . . .
Not made to a forecast and pushed at the customer

Copyright TE 2010

Overview (Kanban Board)

Sample Kanban Board (Payne, 2023)

Overview (Kanban Board, cont.)

Sample Kanban Board (Payne, 2023)

• Both the *Doing* and the *Quality Assurance (QA)* columns are further subdivided into two columns each; an *Underway* and a *Done* column

Defense Applications

- How is Kanban Relevant to Military/Defense Applications?
 - O The ability to visualize tasks, limit work-in-progress, and flow/process optimization can be applied to a myriad of military tasks: maintenance, training/readiness, etc.
 - o However, Kanban is particularly useful in the management of DoD software programs or programs that rely heavily on integrated software to meet their given requirement.

Adaptive Acquisition Pathways (DAU, 2020)

Defense Applications (cont.)

Lifecycle View of Software Acquisition

Software Acquisition Lifecycle (DAU, 2020)

References

Braglia, M., Gabbrielli, R., & Marrazzini, L. (2020). Rolling Kanban: A new visual tool to schedule family batch manufacturing processes with Kanban. International Journal of Production Research, 58(13), 3998–4014. https://doi.org/10.1080/00207543.2019.1639224

Defense Acquisition University. (2024). Adaptive acquisition framework pathways. Retrieved from https://aaf.dau.edu/aaf/aaf-pathways/

Defense Acquisition University. (2024). Lifecycle view of software acquisition. Retrieved from https://aaf.dau.edu/aaf/software/

Krieg, G. N. (2005). Kanban-controlled manufacturing systems. Lecture Notes in Economics and Mathematical Systems, 549. Springer.

Lage, M., & Filho, M. G. (2010). Variations of the Kanban system: Literature review and classification. International Journal of Production Economics, 125(1), 13–21. https://doi.org/10.1016/j.ijpe.2010.01.009

Monden, Y. (2011). Toyota production system: An integrated approach to just-in-time. CRC Press.

Payne, S. (2023). Kanban overview. All-In PMP Prep.

Petrullo, T. (2015, January 21). Kanban - Manufacturing pull system - Bin systems and CONWIP. Retrieved from https://discover.hubpages.com/technology/Kanban

Reddy, J. M. K., Rao, N. A., & Lanka, K. (2023). System dynamics modelling of fixed and dynamic Kanban-controlled production systems. Journal of Modelling in Management, 18(1), 17–35. https://doi.org/10.1108/JM2-06-2020-0168

Thürer, M., Fernandes, N. O., & Stevenson, M. (2022). Production planning and control in multi-stage assembly systems. International Journal of Production Research, 60(3), 1036–1050. https://doi.org/10.1080/00207543.2020.1849847