Vol. 60 No. 12 JUCHE103(2014).

나무모의 사름률에 미치는 AA-ANa-AM공중합물의 영향

김유, 로영삼

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《중앙과 지방들에서 양묘장들을 잘 꾸리고 나무모생산을 과학화, 공업화, 집약화하여 장군님께서 좋다고 평가하신 스트로브스소나무와 창성이깔나무를 비롯한 빨리 자라고 경제적리용가치가 큰 나무모들을 계단식으로 많이 생산보장하도록 하여야 합니다.》

우리는 고흡수성재료로 알려진 아크릴수지를 만들어 나무모이식에서 사름률을 높이기 위한 연구를 하였다.

고흡수성재료를 만들기 위한 방법[1-3]들은 많이 연구되였지만 고흡수성재료를 나무 사름률에 적용한 연구결과는 발표되지 않았다.

론문에서는 AA-ANa-AM공중합재료를 만들고 그것을 나무모의 사름률제고를 위한 뿌리처리제로 리용한 연구결과를 론의하였다.

1. AA-ANa-AM공중합체의 만들기

시약으로는 아크릴산(AA 99.5%), NaOH(공업순), 과류산암모니움(순), 아크릴아미드(AM 99.6%), 가교제로 N, N'-메틸렌비스아크릴아미드(N, N'-MBAM)를 리용하였다.

교반기와 랭각기가 달린 3구플라스크에 20% NaOH용액으로 85%정도 중화한 AA와 비이온성단량체인 AM을 넣고 개시제로 과류산암모니움을 단량체에 대하여 0.4%, 가교제로 N, N'-MBAM 0.1%를 첨가한 다음 70℃에서 3h정도 반응시켰다.

다음 알콜(90%)+물(1:1)용액으로 세척하고 분리, 건조하여 ANa:AA:AM=85:15: 8인 공중합체를 만들었다.

2. 나무모의 사름률에 미치는 AA-ANa-AM공중합체의 영향

나무모의 뿌리를 공중합체수용액에 30min동안 잠그었다가 꺼내여 심은 다음 살아남은 나무모의 개수를 측정하여 나무모의 사름률을 평가하였다. 1개의 실험조에서 나무모의 수를 500 그루로 하였다.

1) 스트로브스소나무모의 사름률에 미치는 공중합체의 영향

공중합체수용액농도의 영향 스트로브스소나무모의 사름률에 미치는 공중합체수용액농도 의 영향을 본 결과는 표 1과 같다.

표 1에서 보는바와 같이 스트로브스소나무모는 나이와 공중합체수용액의 농도에 따라 사름률이 달라지는데 나무모를 농도가 묽은 용액에서 처리하는것이 사름률제고에 효과가 있다는것을 보여준다.

스트로브스소나무모 1년생은 공중합체 수용액의 농도 0.1%에서 처리할 때 사름률 이 82.8%, 2년생은 0.2%로 처리할 때 84.3%. 3년생은 0.4% 수용액에서 처리하였을 때 85.9%로서 나무모의 사름률이 매우 높다는 것을 알수 있다.

1년생 스트로브스소나무모는 공중합체수 용액의 농도 0.4%이상에서 사름률이 45%이하 로 낮아지는데 이것은 어린 나무모일수록 수

표 1. 스트로브스소나무모이 사름률에 미치는 공중합체수용액농도의 영향(%)

나이	농도/%							
	0	0.1	0.2	0.3	0.4	0.5		
1년생	43.7	82.8	79.8	59.6	45.6	33.9		
2년생	49.9	68.8	84.3	80.6	66.7	57.2		
3년생	56.8	63.0	69.1	74.5	85.9	79.6		

4월 20일 이식, 8월 18일 측정, 처리시간 1h

용액의 농도가 낮을수록 효과적이라는것을 보여준다.

측정시간의 영향 측정시간에 따르는 스트로브스소나무모의 사름률을 측정한 결과는 표 2 와 같다.

표 2. 측정시간에 따르는 스트로브스 소나무묘목의 사름률(%)

3 7 1 7 7 1 L		나이	
측정시간/d -	1년생	2년생	3년생
무처리구	43.7	49.9	56.8
30	93.7	92.9	95.3
60	85.3	87.7	87.0
90	83.0	84.3	85.9
120	82.8	84.3	85.9

생 −0.3% 수용액, 4월 20일 이식, 처리시간 1h

표 2에서 보는바와 같이 스트로브스소나무 는 다른 나무모들과는 달리 이식하여 1개월후 사름률이 90%이상 되며 그 이후에는 점차 낮 아지기 시작하여 나무모의 나이가 많을수록 최 종사름률은 증가한다는것을 보여준다.

2) 창성이깔나무모의 사름률에 미치는 공중 합체의 영향

공중합체수용액농도의 영향 창성이깔나무모의 1년생-0.1% 수용액, 2년생-0.2% 수용액, 3년 사름률에 미치는 공중합체수용액농도의 영향을 조사한 결과는 표 3과 같다.

표 3에서 보는바와 같이 1년생 창성이깔나무모는 0.1% 수용액으로 처리할 때 사름률 이 79.2%로서 처리전에 비하여 사름률이 1.4배, 2년생은 0.2% 수용액으로 처리할 때 사름 률이 89.8%로서 처리전에 비하여 1.5배, 3년생은 0.3% 수용액으로 처리할 때 사름률이 88.9% 로 처리전에 비하여 1.35배로 증가한다.

측정시간의 영향 측정시간에 따르는 창성이깔나무모의 사름률을 측정한 결과는 표 4 와 같다.

표 3. 창성이깔나무모의 사름률(%)에 미치는 수용액농도의 영향

나이 .		농도/%						
	0	0.1	0.2	0.3	0.4			
1년생	55.8	79.2	70.3	61.8	50.3			
2년생	58.7	70.9	89.8	80.2	65.3			
3년생	65.6	71.3	79.6	88.9	70.7			

4월 20일 이식, 처리시간 1h

표 4. 측정시간에 따르는 창성이깔나무 모의 사름률

측정시간/d		사름률/%	
국 8 시 전/U	1년생	2년생	3년생
무처리구	55.8	58.7	65.6
30	85.9	95.6	90.3
60	80.1	90.3	88.9
90	80.0	89.8	88.9
120	79.2	89.8	88.9

1년생-0.1% 수용액, 2년생-0.2% 수용액,

3년생 -0.3% 수용액

표 4에서 보는바와 같이 창성이깔나무모는 이식하여 2개월이면 사름률이 판정되며 그 값은 측정시간에 따라 변하지 않는다는것을 알수 있다.

창성이깔나무모의 사름률은 처리전에 비하여 1년생은 1.4배, 2년생은 1.5배, 3년생은 1.35배로 증가한다.

3) 부전소나무모의 사름률에 미치는 공중합체의 영향

공중합체수용액농도의 영향 공중합체수용액의 농도에 따르는 부전소나무모의 사름률을 조 사한 결과는 표 5와 같다.

표 5에서 보는바와 같이 부전소나무모의 나이와 공중합체수용액의 농도에 따라 사름률이 달라지는데 4년생과 5년생나무모는 0.2% 수용액으로 처리하였을 때 사름률이 최대로 되며 6년생과 7년생나무모는 각각 0.3%, 0.4% 수용액으로 처리하였을 때 사름률이 최대로 된다.

측정시간의 영향 측정시간에 따르는 부전소나무모의 사름률변화를 조사한 결과는 표 6 과 같다.

표 5. 공중합체수용액의 농도에 따르는 부전소나무모의 사름률(%)

표 6. 측정시간에 따르는 부전소나무 모의 사름률(%)

나이 -		농도/%			측정시간/d -	농도/%				
	0	0.1	0.2	0.3	0.4	국경시선/u =	0	0.3	0.4	0.5
4년생	44.5	45.7	77.5	75.8	70.3	30	46.7	80.1	85.5	86.5
5년생	46.7	48.1	79.6	77.2	75.3	60	18.3	78.8	80.5	80.2
6년생	48.2	50.2	64.7	78.8	74.9	90	0	77.8	80.1	78.3
7년생	50.3	53.8	68.2	77.6	80.1	120	0	77.6	80.1	78.3

4월 20일 이식, 나무모처리시간 1h

4월 18일 이식, 나무모처리시간 1h,처리온도 15℃

표 6에서 보는바와 같이 나무모를 이식한 후 시간이 지남에 따라 사름률은 감소하다 가 3개월후에는 변하지 않는다.

이것은 나무모를 이식하여 3개월이면 사름률판정을 정확히 할수 있다는것을 보여준다.

맺 는 말

공중합체수용액의 농도가 1년생나무모인 경우 0.1%, 2년생은 0.2%, 3년생은 0.4%일 때 스트로브스소나무모의 사름률을 높일수 있으며 창성이깔나무모의 경우 공중합체수용액의 농도는 1년생일 때 0.1%, 2년생일 때 0.2%, 3년생일 때 0.3%이다. 또한 7년생 부전소나무모는 공중합체수용액의 농도가 0.4%일 때 사름률이 최대로 된다.

참 고 문 헌

- [1] 림정애; 고흡수성고분자, **김일성**종합대학출판사, 56~90, 주체97(2008).
- [2] P. Lanthong et al.; Carbohydrate Polymer, 66, 2, 229, 2006.
- [3] 林建明; 化工新型材料, 化工业出版社, 37, 7, 79, 2009.

주체103(2014)년 8월 5일 원고접수

Effect of AA-ANa-AM Copolymer on the Living Ratio of Nursery Stock

Kim Yu, Ro Yong Sam

The concentration of copolymer aqueous solution to increase the living ratio of *Pinus strobus* nursery stock was 0.1% for 1 year old, 0.2% for 2 years old and 0.4% for 3 years old and that of larch nursery stock was 0.1% for 1 year old, 0.2% for 2 years old, 0.3% for 3 years old.

The living ratio of *Pinus banksiana* nursery stock for 7 years old with 0.4% copolymer aqueous solution was to maximum.

Key words: super absorbent resin, sodium acrylate