

MCNP session 4

Steve Lilley

STFC Rutherford Appleton Laboratory Steven.Lilley@stfc.ac.uk

Outline

- Recap
- Criticality
- Criticality input
- Criticality output
- Extras State of the art & assessed exercise tips

Recap - theory

- Monte Carlo based on sampling distributions using random numbers
- Calculate mean behaviour
- more samples = closer to true mean
- In 'fixed source' radiation transport a history is a single source particle and any subsequently produced particles
- Source distributions, distance to next collision, type of interaction, emission angle all sampled by random number,
- the sampled distributions are not random!

Recap - MCNP

- Geometry surfaces used to define cells using Boolean logical operators "intersect" (and,) & "union" (or, :)
- Materials using ZAID
- Sources using SDEF
- Tallies F2 surface, F4 cell, F5 point

Criticality

- Criticality assessment is a very important area concerned with safety, accident prevention and regulatory compliance
- Majority of events involve liquids, for detailed review of accidents see "A Review of criticality accidents" <u>link</u>
- Monte Carlo calculations are useful for predicting scenario's and geometries which may lead to criticality accidents

Criticality – analytic formula

- Four factor formula
 - $-k_{\infty}=\eta f p \epsilon$
- Six factor formula
 - $k = \eta f p \epsilon P_{FNL} P_{TNL}$
- Where
 - η = thermal fission factor
 - f = thermal utilisation factor
 - p = resonance escape probability
 - Pfnl =fast non leakage
 - Ptnl = thermal non leakage
 - ϵ = fast fission factor

Criticality

- So far we have considered 'fixed source' problems
- However for criticality the exact source distribution is not known for each generation
- Calculating K_{eff} is an eigenvalue problem

•
$$K_{eff} = \frac{\text{\# neutrons in generation } n}{\text{\# neutrons in generation } n-1}$$

 Most codes use a power iteration technique i.e. iterate the source until the answer converges

Criticality in MCNP - input

KCODE Criticality Source Card

Form: KCODE NSRCK RKK IKZ KCT MSRK KNRM MRKP KC8

NSRCK = number of source histories per cycle

RKK = initial guess for k_{eff}

IKZ = number of cycles to be skipped before beginning tally accumulation

KCT = number of cycles to be done

MSRK = number of source points to allocate storage for

KNRM = normalize tallies by 0=weight / 1=histories

MRKP = maximum number of cycle values on MCTAL or RUNTPE

KC8 = summary and tally information averaged over

0 = all cycles

1 = active cycles only

Defaults: NSRCK=1000; RKK=1.0; IKZ=30; KCT=IKZ+100; MSRK=4500 or 2*

NSRCK; KNRM=0; MRKP=6500; KC8=1

Use: This card is required for criticality calculations.

Criticality in MCNP - input

- Cells, surfaces, materials all the same as for fixed source problems
- In addition to the KCODE card also need to define an initial source distribution
- Can be an SDEF as for fixed source problems
- Or can use:

KSRC
$$x_1 y_1 z_1 x_2 y_2 z_2 \dots x_n y_n z_n$$

Criticality in MCNP- example

C simple U sphere 1 1 -19.2 -1 \$ U sphere 99 0 1 \$ grave yard

1 so 10 \$ 10cm sphere on origin

Mode n

IMP:N 1 0

C Natural Uranium

M1 92238.42c 0.97 92235.42c 0.03

C crit cards

C 1000 neutron per gen, keff guess

C 0.8, skip 100 gen, run 1000 active gen

KCODE 1000 0.8 100 1100

KSRC 0 0 1

Criticality in MCNP

- Neutrons are tracked the same way as in fixed source problems,
 - Leakage, Moderation, Absorption, Fission
- The position of each fission event is saved
- This becomes a source point for the next generation
- Once Nsrck neutrons have been simulated, Keff is calculated and the next generation (cycle) is simulated

Criticality in MCNP - output

- Output is provided for each generation
- Although simulating generations of neutrons, it is not time dependant, there is only one value of Keff
- It should converge!
- 3 estimates of Keff are provided
 - From collision events
 - From absorption events
 - Track length estimate
- As well as Keff, standard deviation is provided to estimate the statistical uncertainty

Parameter choosing

- Number of particles per cycle (Nsrck)
 - Shouldn't effect the answer unless very low only the time to convergence and final uncertainty
 - Consider size and distribution of fissile material
 - Typically at least 1000
- Number of cycles to skip and total number to run (IKZ & KCT)
 - Make a sensible estimate, run evaluate if enough and repeat
 - Need to know required accuracy

Choice of initial source distribution

- Eventually after enough generations the code will reach a stable value of Keff, the choice of starting source distribution and number of neutrons per generation can affect how fast it converges
- Try ensure largest fissile material cells are covered,
- Preferably put a point or distribution in all fissile cells

# generations	Keff, p1	Keff p2
500	0.033	1.041
1000	0.033	1.039
5000	0.033	1.038
100000	1.042	1.038

Extras

- State of the art MCNP
- Hints and tips for assessed exercise

Current state of the 'art'

- MCNP6 released 2014, 6.2 is current version
- Multiphysics is a current buzz word
- As are 'mesh geometry' and 'hybrid methods'
- As computers get more powerful the problems get 'bigger' and more complex

ATR IDAHO National Laboratory US

Fusion, ITER tokamak

30k MCNP cells 100k surfaces

Work performed at CCFE

Mesh based geometry (MCNP6)

Mesh geometry enables better linking to engineering FEA codes.

This should enable multi-physics simulations in the future

Human phantoms

Source: VISED website

Figure 3: Simulating an Iodine source in the thyroid (left) and a posterior-anterior directional gamma source (right)

Source: Anderson et al, Mesh Human Phantoms with MCNP

Hybrid simulations

Simulation not possible with "standard" Monte Carlo

2000.0 cm

Simulation enabled with hybrid

Source: ORNL radiation transport group

Assessed Exercise tips

- Short paper style report 5 page limit + figures
- Use section headings
- Figures are good, if they clearly show something worth showing!
- When comparing 2 similar values consider if a ratio would make the comparison clearer
- Remember answers are only as good as the uncertainty.
- Don't waffle be precise

Assessed Exercise tips

- As well as the report a MCNP input files should be provided.
- Please ensure it is clear that it is yours
 - add a comment block at top including your name
- Use comments
- Do exercise 1 and either 2 or 3

Don't forget to check your work

- Check dimensions and volumes, MCNP is in cm, most engineers deal in mm
- Check source position and distribution using 1st 50 particles
- Most F2 and F4 tallies cost very little computational time – add liberally, cheaper to add then need to recalculate
- MCNP is not a mind reader it doesn't know what you mean and the defaults are rarely what you expect
- The manual and primer(s) are very helpful
- Google and you tube, not so helpful

Questions

