

Priority Queues

- The priority queue ADT
- · Implementing a priority queue with a sequence
- · Elementary sorting using a Priority Queue

Priority Queue

Queue where we can insert in any order. When we remove an element from the queue, it is always the one with the highest priority.

Priority example:

- Deadline to pay a bill
- Deadline to hand in your homework
- A student's mark
- Standby passengers (frequent-flyer status, the fare paid and check-in time, etc)

Keys and Total Order Relations

- A Priority Queue ranks its elements by key with a total order relation
- Definition of a "Key": an object that is assigned to an element as a specific attribute for that element, which can be used to identify, rank or weight that element
- Keys: Every element has its own key
 Keys are not necessarily unique
- Total Order Relation, denoted by ≤
 Reflexive: k ≤ k

Antisymetric: if $k1 \le k2$ and $k2 \le k1$, then k1 = k2Transitive: if $k1 \le k2$ and $k2 \le k3$, then $k1 \le k3$ Total Order Relation, denoted by

Reflexive: k k

Antisymetric: if k1 + k2 and k2 + k1, then k1 = k2

Transitive: if k1 4 k2 and k2 4 k3, then k1 4 k3

Total ordering examples

- ≤ is a total ordering
- ≥ is also a total ordering
- Alphabetical order: we define a ≤ b if 'a' is before 'b' in alphabetical order
- Reverse alphabetical order

But...

 are not total orderings since they are not reflexive

Reflexive: $k \le k$

Antisymetric: if $k1 \le k2$ and $k2 \le k1$, then k1 = k2

Transitive: if $k1 \le k2$ and $k2 \le k3$, then $k1 \le k3$

The Priority Queue ADT

 A priority queue P supports the following methods: Return the number of elements in P -size(): Test whether P is empty -isEmpty(): -insertItem(k,e): Insert a new element e with key k into P -minElement(): Return (but don't remove) an element of P with smallest key; an error occurs if P is empty. Return the smallest key in P; an error occurs -minKey(): if P is empty

-removeMin(): Remove from P and return an element with the

10

smallest key; an error condition occurs if P is empty.

An Application: Sorting

- A Priority Queue P can be used for sorting a sequence S by:
 - inserting the elements of S into P with a series of insertItem(k, e) operations
 - removing the elements from P in increasing order and putting them back into S with a series of removeMin() operations

```
Algorithm PriorityQueueSort(S, P):
       Input: A sequence S storing n elements, on which a
               total order relation is defined, and a Priority
             Queue P that compares keys with the same relation
       Output: The Sequence S sorted by the total
                        order relation
       while !S.isEmpty() do
               e \leftarrow S.removeFirst()
               P.insertItem(e, e)
       while P is not empty do
               e ← P.removeMin()
               S.insertLast(e)
```

Comparators

• Example: Given keys 4 and 11 we have that $4 \le 11$ if the keys are integer objects (to be compared in the usual manner), but $11 \le 4$ if the keys are string objects (to be compared lexicographically)

- How to specify the relation for comparing keys?
 - Shall we implement a different priority queue for each key type we want to use and each possible way of comparing keys of such types?
 - NO. This approach is not very general and it requires a lot of similar code.

Comparators

- The most general and reusable form of a priority queue makes use of comparator objects.
- Comparator objects are external to the keys to supply the comparison rules.
- A PQ P is given a comparator when P is constructed.
 We can update the comparator when it is needed.
- When P needs to compare two keys, it uses the comparator it was given to perform the comparison.

14

 Thus a priority queue can be general enough to store any object.

Comparators

- The comparator ADT includes:
 - -isLessThan(a, b)
 - -isLessThanOrEqualTo(a,b)
 - -isEqualTo(a, b)
 - -isGreaterThan(a,b)
 - -isGreaterThanOrEqualTo(a,b)
 - -isComparable(a)

Implementation!

Implementation with a Sequence for now!

Implementation with an Unsorted <u>Sequence</u>

- The elements of S are a composition of two elements;
 - k, the key, and e, the element.
- insertItem() = insertLast() on the sequence. O(1) time.

Implementation with an Unsorted Sequence (contd.)

•The sequence is not ordered.

For minElement(), minKey(), and removeMin(),

we need to look at all the elements of S in the worst case.

·Performance summary

insertItem	0(1)
minKey, minElement	O(n)
removeMin	O(n)

Implementation with Sorted Sequence

- Use a Sequence S, sorted by increasing keys
- minElement(), minKey(), and removeMin() take O(1) time

• However, to implement insertItem(), we must now scan through the entire sequence in the worst case. Thus insertItem() runs in O(n) time

insertItem	O(n)
minKey, minElement	<i>O</i> (1)
removeMin	<i>O</i> (1)

An observation...

With an unsorted sequence...

removeMin() always takes O(n). That is, these methods runs in $\Omega(n)$ time even in the best case. -> $\Theta(n)$

But with a sorted sequence...

insertItem() takes at most O(n)

Application of Priority Queue: Selection Sort

- Variation of PriorityQueueSort that uses an unsorted sequence to implement the priority queue P.
 - Phase 1, the insertion of an item into P takes O(1) time

- Phase 2, removing an item from P takes time proportional to the current number of elements in P

unsorted sequence

		Sequence S	Priority Queue P
Input		(7, 4, 8, 2, 5, 3, 9)	0
Phase 1:			
	(a)	(4, 8, 2, 5, 3, 9)	(7)
	(b)	(8, 2, 5, 3, 9)	(7, 4)
	(g)	0	(7, 4, 8, 2, 5, 3, , <mark>9</mark>)
Phase 2:			
	(a)	(2)	(7, 4, 8, 5, 3, 9)
	(b)	(2, 3)	(7, 4, 8, 5, 9)
	(c)	(2, 3, 4)	(7, 8, 5, 9)
	(d)	(2, 3, 4, 5)	(7, 8, 9)
	(e)	(2, 3, 4, 5, 7)	(8, 9)
	(f)	(2, 3, 4, 5, 7, 8)	(<mark>9</mark>)
	(g)	(2, 3, 4, 5, 7, 8, 9)	0

sequence

Selection Sort (cont.)

Running time of Selection-sort:

Inserting the elements into the priority queue with $\bf n$ insertItem operations takes $O(\bf n)$ time

Removing the elements in sorted order from the priority queue with **n** removeMin operations takes time proportional to

$$n + (n - 1) + ... + 2 + 1$$

 \bullet Selection-sort runs in $O(n^2)$ time

Application of Priority Queue: Insertion Sort

· PriorityQueueSort implementing the priority queue with a

sorted sequence

sorted sequence

		Sequence S	Priority Queue P
Input		(7, 4, 8, 2, 5, 3, 9)	0
Phase 1:			
	(a)	(4, 8, 2, 5, 3, 9)	(7)
	(b)	(8, 2, 5, 3, 9)	(4, <mark>7</mark>)
	(c)	(2, 5, 3, 9)	(4, 7, <mark>8</mark>)
	(d)	(5, 3, 9)	(2, 4, 7, 8)
	(e)	(3, 9)	(2, 4, 5, 7, 8)
	(f)	(9)	(2, 3, 4, 5, 7, 8)
	(g)	0	(2, 3, 4, 5, 7, 8, 9)
Phase 2:			
	(a)	(2)	(3, 4, 5, 7, 8, 9)
	(b)	(2, 3)	(4, 5, 7, 8, 9)
		•••	
	(g)	(2, 3, 4, 5, 7, 8, 9)	0

sorted

sequence

Insertion Sort(cont.)

Running time of Insertion-sort:

Inserting the elements into the priority queue with $\bf n$ insertItem operations takes time proportional to $1+2+...+{\bf n}$

Removing the elements in sorted order from the priority queue with a series of \mathbf{n} remove Min operations takes $O(\mathbf{n})$ time

Insertion-sort runs in $O(n^2)$ time

