155 Exponentielle de matrices. Applications.

I - Construction

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $n \ge 1$ un entier.

1. Algèbres de Banach

Lemme 1. Pour tout réel positif a, la série $\sum \frac{a^n}{n!}$ est convergente.

[**DAN**] p. 278

Définition 2. Soit \mathcal{A} une algèbre.

p. 174

- On dit que ∥.∥ est une norme d'algèbre sur 𝒜 si :
 - (i) (ℳ, ||.||) est un espace vectoriel normé.
 - (ii) $\forall x, y \in \mathcal{A}, ||x \times y|| \le ||x|| ||y||$.
- Soit $\|.\|$ une norme d'algèbre sur \mathscr{A} . Si $(\mathscr{A}, \|.\|)$ est un espace vectoriel complet, on dit que \mathscr{A} est une **algèbre de Banach**.

p. 183

Proposition 3. Soit $\|.\|$ une norme sur \mathbb{K}^n . Muni de la norme

$$\|.\|: M \mapsto \sup_{x \neq 0} \frac{\|Mx\|}{\|x\|}$$

l'algèbre $(\mathcal{M}_n(\mathbb{K}),\|.\|)$ est une algèbre de Banach.

Contre-exemple 4. Ce n'est pas vrai pour n'importe quelle norme : la norme infinie $\|.\|_{\infty}$ sur $\mathcal{M}_n(\mathbb{K})$ n'est pas une norme d'algèbre.

p. 278

Proposition 5. Soit \mathscr{A} une algèbre de Banach unitaire. Pour tout élément $A \in \mathscr{A}$, la série $\sum \frac{A^n}{n!}$ est convergente.

2. Exponentielle de matrices

Définition 6. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle **exponentielle** de A, et on note $\exp(A)$ ou e^A l'élément de $\mathcal{M}_n(\mathbb{K})$ suivant :

$$\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$$

p. 345

p. 356

Exemple 7. Soient $a_1, ..., a_n \in \mathbb{K}$ et $D = \text{Diag}(a_1, ..., a_n) \in \mathcal{M}_3(\mathbb{K})$. Alors,

$$\exp(D) = \operatorname{Diag}(e^{a_1}, \dots, e^{a_n})$$

Remarque 8. En particulier, $\exp(0) = I_n$.

[**GRI**] p. 378

3. Propriétés

Proposition 9. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ qui commutent. Alors,

$$e^{A+B} = e^A e^B$$

Corollaire 10. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors, $e^A \in \mathrm{GL}_n(\mathbb{K})$ et,

$$(e^A)^{-1} = e^{-A}$$

Proposition 11. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que $B = PAP^{-1}$ pour $P \in GL_n(\mathbb{K})$. Alors,

$$e^{PAP^{-1}} = Pe^AP^{-1}$$

Lemme 12. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure, de la forme $A = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \end{pmatrix}$. Alors,

$$e^{A} = \begin{pmatrix} e_{1}^{\lambda} & * \\ & \ddots & \\ & & e_{n}^{\lambda} \end{pmatrix}$$

Proposition 13. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors,

[ROM21] p. 762

$$\det(\exp(A)) = e^{\operatorname{trace}(A)}$$

Proposition 14. exp : $\mathcal{M}_n(\mathbb{K}) \to \operatorname{GL}_n(\mathbb{K})$ est continue. De plus, pour tout $A \in \mathcal{M}_n(\mathbb{K})$, exp(A) est un polynôme en A.

II - Calcul pratique

Proposition 15. Soit $N \in \mathcal{M}_n(\mathbb{K})$ nilpotente d'indice q. Alors,

[GOU21] p. 206

$$e^N = \sum_{k=0}^{q-1} \frac{A^k}{k!}$$

Théorème 16 (Décomposition de Dunford). Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que π_A est scindé sur \mathbb{K} . Alors il existe un unique couple de matrices (D, N) tels que :

- D est diagonalisable et N est nilpotente.
- A = D + N.
- -DN = ND.

Corollaire 17. Si A vérifie les hypothèse précédentes, pour tout $k \in \mathbb{N}$, $A^k = (D+N)^k = \sum_{i=0}^m \binom{k}{i} D^i N^{k-i}$, avec $m = \min(k, l)$ où l désigne l'indice de nilpotence de N.

Exemple 18. Soit $A \in \mathcal{M}_n(\mathbb{K})$ qui admet une décomposition de Dunford A = D + N où D est diagonalisable et N est nilpotente d'indice q. Alors,

[**ROM21**] p. 765

- $-e^A = e^D e^N = e^D \sum_{k=0}^{q-1} \frac{N^k}{k!}$
- La décomposition de Dunford de e^A est $e^A = e^D + e^D(e^N I_n)$ avec e^D diagonalisable et $e^D(e^N I_n)$ nilpotente.

Application 19. Soit $A \in \mathcal{M}_n(\mathbb{K})$ dont le polynôme caractéristique est scindé sur \mathbb{K} . Alors A est diagonalisable si et seulement si e^A l'est.

Exemple 20. On a

[**GOU21**] p. 209

$$\exp\left(\begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}\right) = \begin{pmatrix} -6e^2 + 3e^3 & -4e^2 + 4e^3 & 10e^2 - 6e^3 \\ -6e^2 + 3e^3 & -3e^2 + 4e^3 & 9e^2 - 6e^3 \\ -7e^2 + 3e^3 & -4e^2 + 4e^3 & 11e^2 - 6e^3 \end{pmatrix}$$

III - Étude de l'exponentielle de matrices

1. Dérivabilité, différentiabilité

Proposition 21. Soit $A \in \mathcal{M}_n(\mathbb{K})$. L'application $t \mapsto e^{tA}$ est dérivable, de dérivée $t \mapsto Ae^{tA}$.

p. 195

Proposition 22 (Logarithme matriciel). exp est différentiable en 0 et sa différentielle est I_n ; c'est un difféomorphisme local sur un voisinage de 0. Plus précisément, si $H \in \mathcal{M}_n(\mathbb{K})$ telle que $||H|| \le 1$, alors

[**C-G**] p. 384

$$\exp^{-1}(I_n + H) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{H^n}{n}$$

On note alors $ln(H) = exp^{-1}(H)$.

Théorème 23. exp est de classe \mathscr{C}^1 sur $\mathscr{M}_n(\mathbb{K})$ avec, pour toutes matrices $A, H \in \mathscr{M}_n(\mathbb{K})$:

[**ROM21**] p. 762

$$\operatorname{dexp}_{A}(H) = \sum_{n=1}^{+\infty} \frac{1}{n!} \left(\sum_{\substack{i,j \in [0,n-1]\\i+j=n-1}} A^{i} H A^{j} \right)$$

2. Image directe

a. Image de $\mathcal{M}_n(\mathbb{C})$

[**C-G**] p. 387

$$\forall k \in \mathbb{Z}, \, e^{2ik\pi} = e^0 = 1$$

En particulier, exp n'est pas injective pour $n \ge 1$.

Lemme 25. Soit $M \in GL_n(\mathbb{C})$. Alors $M^{-1} \in \mathbb{C}[M]$.

[**I-P**] p. 396

Théorème 26. $\exp: \mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.

Application 27. $\exp(\mathcal{M}_n(\mathbb{R})) = \mathrm{GL}_n(\mathbb{R})^2$, où $\mathrm{GL}_n(\mathbb{R})^2$ désigne les carrés de $\mathrm{GL}_n(\mathbb{R})$.

Application 28. $GL_n(\mathbb{C})$ est connexe par arcs.

[ROM21] p. 770

b. Image de $\mathcal{M}_n(\mathbb{R})$

Exemple 29.

$$\forall k \in \mathbb{Z}, \exp\left(\begin{pmatrix} 0 & -2k\pi \\ 2k\pi & 0 \end{pmatrix}\right) = \exp(0) = I_2$$

En particulier, exp n'est pas injective pour $n \ge 2$.

Proposition 30. En fait,

$$\exp(\mathcal{M}_n(\mathbb{R})) = \{ M^2 \mid M \in \mathcal{M}_n(\mathbb{R}) \}$$

Exemple 31. La matrice $\begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$ n'est pas dans l'image de l'exponentielle réelle.

c. Images de $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{H}_n(\mathbb{C})$

Lemme 32. Soit $M \in \mathscr{S}_n(\mathbb{R})$. Alors,

$$\|M\|=\rho(M)$$

où ρ est l'application qui a une matrice y associe son rayon spectral.

[DEV]

Théorème 33. L'application $\exp: \mathscr{S}_n(\mathbb{R}) \to \mathscr{S}_n^{++}(\mathbb{R})$ est un homéomorphisme.

Remarque 34. On a le même résultat pour $\exp : \mathcal{H}_n(\mathbb{C}) \to \mathcal{H}_n^{++}(\mathbb{C})$.

[**C-G**] p. 385

p. 182

[C-G]

p. 387

Application 35. On a des homéomorphismes :

$$\mathrm{GL}_n(\mathbb{R}) \sim \mathcal{O}_n(\mathbb{R}) \times \mathbb{R}^{\frac{n(n+1)}{2}} \ \mathrm{et} \ \mathrm{GL}_n(\mathbb{C}) \sim \mathcal{U}_n(\mathbb{C}) \times \mathbb{R}^{n^2}$$

d. Image du cône nilpotent $\mathcal{N}_n(\mathbb{C})$

Notation 36. On note $\mathcal{N}_n(\mathbb{C})$ le sous-ensemble de $\mathcal{M}_n(\mathbb{C})$ formé des matrices nilpotentes et $\mathcal{L}_n(\mathbb{C}) = \mathcal{N}_n(\mathbb{C}) - I_n$ le sous-ensemble de $\mathcal{M}_n(\mathbb{C})$ formé des matrices unipotentes.

[**ROM21**] p. 766

p. 376

Proposition 37. Soit $A \in \mathcal{N}_n(\mathbb{C})$. Alors $e^A \in \mathcal{L}_n(\mathbb{C})$ et $\ln(e^{tA}) = tA$ pour tout $t \in \mathbb{R}$.

Théorème 38. L'exponentielle matricielle réalise une bijection de $\mathcal{N}_n(\mathbb{C})$ sur $\mathcal{L}_n(\mathbb{C})$ d'inverse le logarithme matriciel défini à la Proposition 22.

IV - Applications

1. Équations différentielles

Théorème 39 (Cauchy-Lipschitz linéaire). Soient $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathbb{K}^d$ deux fonctions continues. Alors $\forall t_0 \in I$, le problème de Cauchy

 $\begin{cases} Y' = A(t)Y + B(t) \\ Y(t_0) = y_0 \end{cases}$

admet une unique solution définie sur I tout entier.

Proposition 40. Une équation différentielle linéaire homogène Y' = AY (où $A \in \mathcal{M}_n(\mathbb{R})$ est constante en t) a ses solutions maximales définies sur \mathbb{R} et le problème de Cauchy

$$\begin{cases} Y' = AY \\ Y(0) = y_0 \end{cases}$$

a pour (unique) solution $t \mapsto e^{tA}y_0$.

Exemple 41. Les solutions de

$$Y' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 2 & 1 \end{pmatrix} Y$$

sont les

$$t \mapsto \alpha e^{t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta e^{it} \begin{pmatrix} 1+i \\ 1-i \\ -2 \end{pmatrix} + \gamma e^{-it} \begin{pmatrix} 1-i \\ 1+i \\ -2 \end{pmatrix}$$

où $\alpha, \beta, \gamma \in \mathbb{C}$.

2. Équations matricielles

Lemme 42. Soit $\|.\|$ une norme d'algèbre sur $\mathcal{M}_n(\mathbb{C})$, et soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les valeurs propres sont de partie réelle strictement négative. Alors il existe une fonction polynômiale $P : \mathbb{R} \to \mathbb{R}$ et $\lambda > 0$ tels que $\|e^{tA}\| \le e^{-\lambda t} P(t)$.

[**I-P**] p. 177

[DEV]

Application 43 (Équation de Sylvester). Soient A et $B \in \mathcal{M}_n(\mathbb{C})$ deux matrices dont les valeurs propres sont de partie réelle strictement négative. Alors pour tout $C \in \mathcal{M}_n(\mathbb{C})$, l'équation AX + XB = C admet une unique solution X dans $\mathcal{M}_n(\mathbb{C})$.

Bibliographie

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Algèbre Linéaire [GRI]

Joseph Grifone. Algèbre Linéaire. 6e éd. Cépaduès, 9 jan. 2019.

https://www.cepadues.com/livres/algebre-lineaire-edition-9782364936737.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.