LOAN DEFAULT PREDICTION SYSTEM COMPREHENSIVE PROJECT DESCRIPTION (GROUP 5)

1. PROJECT OVERVIEW

This Streamlit-based web application is designed to help financial institutions predict the likelihood of loan defaults using machine learning. The system follows a structured end-to-end pipeline, from data ingestion to model deployment, providing actionable insights for risk assessment.

2. KEY FEATURES

A. Data Management

- CSV Upload & Exploration: Users can upload loan data or use the default dataset.
- Missing Value Handling: Imputation for numerical (median) and categorical (mode) features.
- Automated Preprocessing:
 - ❖ Standardization (for numerical features) → Ensures equal feature weighting.
 - ❖ One-Hot Encoding** (for categorical features) → Converts text categories into model-friendly numerical values.

B. Feature Selection & Engineering

- Correlation Analysis**: Identifies features strongly linked to loan defaults.
- Best Subset Selection** (Sequential Feature Selection):
 - Uses Logistic Regression as a base model.
 - ❖ Evaluates feature combinations via **cross-validation** (5-fold CV).
 - Optimizes for accuracy, precision, recall, or F1-score.

C. MODEL TRAINING & EVALUATION

- Algorithm: Random Forest Classifier (ensemble method for robustness).
- Hyperparameter Tuning:
 - ❖ Adjustable number of trees, max depth, and min samples split.
- Performance Metrics:
 - * Accuracy, Precision, Recall, F1-Score.
 - Confusion Matrix (visualizes true/false positives/negatives).
 - Feature Importance (identifies key risk factors).

D. INTERACTIVE PREDICTION

- Real-Time Risk Assessment:
 - ❖ Users input loan applicant details (income, credit score, loan amount, etc.).
 - ❖ The model returns default probability (Low/Medium/High Risk).
- Risk Factor Breakdown:
 - ❖ Explains why an applicant is flagged as risky (e.g., "Low credit score (<580)").
- Diagnostic Tools:
 - **\$** Shows raw probabilities for debugging.
 - ❖ Adjustable risk thresholds (default: >30% = High Risk).

E. BUSINESS INSIGHTS & REPORTING

- Model Interpretation:
 - Summarizes key findings (e.g., "High debt-to-income ratios increase default risk").
 - Provides recommendations for loan officers (approval/interest rate adjustments).
- Limitations & Future Improvements**:
 - ❖ Discusses model constraints (e.g., "Does not account for macroeconomic factors").
 - ❖ Suggests enhancements (e.g., "Try XGBoost for better performance").

3. TECHNICAL IMPLEMENTATION

- A. Machine Learning Pipeline
- 1. Data Loading → 'load data()'
 - Reads CSV, drops irrelevant columns ('ID', 'dtir1'), caches for efficiency.
- 2. Preprocessing → 'create preprocessor()'
 - Numerical Features: Median imputation + StandardScaler.
 - Categorical Features: Mode imputation + OneHotEncoder.
 - ColumnTransformer: applies transformations in parallel.
- 3. Feature Selection → 'Feature Selection page()'
 - Uses forward selection to pick optimal features.
- 4. Model Training → 'Model_Selection_And_Training_page()'
 - Random Forest with customizable hyperparameters.
 - Cross-validation (5-fold) prevents overfitting.
- 5. Prediction → 'Interactive Prediction page()'
 - Preprocesses input \rightarrow generates risk score \rightarrow explains decision.

B. Key Libraries Used

LIBRARY	PURPOSE	
Streamlit	Web app framework	
Pandas	Data manipulation	
Scikit-Learn	ML models & preprocessing	
Matplotlib/Seaborn	Visualizations	
Pickle	Model serialization	

C. Performance Optimization

- Caching (`@st.cache data`): Speeds up repeated computations.
- Modular Design: Separates data, model, and UI logic for maintainability.
- Persistent Artifacts: Saves models/preprocessors to disk ('DATA DIR').

4. BUSINESS IMPACT

A. For Loan Officers

- Instant Risk Scoring: Approve/reject loans faster.
- Risk-Based Pricing: Adjust interest rates based on predicted default probability.
- Flagging High-Risk Cases: Manual review for borderline applicants (e.g., 40-60% risk).

B. For Risk Managers

- Portfolio Analysis: Identify high-risk loan segments.
- Model Monitoring: Track performance over time.
- Regulatory Compliance: Transparent, data-driven decisions.

5. LIMITATIONS & FUTURE WORK

- A. Current Limitations
- 1. Data Dependency: Requires high-quality historical loan data.
- 2. Black-Box Nature: Random Forests are less interpretable than logistic regression.
- 3. Economic Factors: Doesn't account for recessions or policy changes.

B. Planned Improvements

- 1. Alternative Models: Test XGBoost or Neural Networks.
- 2. More Features: Add employment history or macroeconomic indicators.
- 3. Dynamic Thresholds: Auto-adjust risk thresholds based on market conditions.

6. TEAM & DEPLOYMENT

SN	TEAM MEMBER	STUDENT ID	ROLE	CONTRIBUTION
1	Kingsley Sarfo	22252461	Project Lead	App Design & Preprocessing
2	Francisca Manu Sarpong	22255796	Deployment	Streamlit Cloud Integration
3	George Owell	22256146	Model Evaluation	Cross-Validation & Metrics
4	Barima Owiredu Addo	22254055	UI/Testing	Prediction Interface
5	Akrobettoe Marcus	11410687	Feature Engineering	Best Subset Selection

7. CONCLUSION

This system provides a scalable, automated solution for loan default prediction, combining machine learning best practices with an intuitive interface. By identifying high-risk applicants early, financial institutions can reduce losses while maintaining fair lending practices.