Statistiques pour les sciences (MAT-4681)

Arthur Charpentier

16 - Régression multiple

été 2022

Plan (dans l'espace, \mathbb{R}^3)

Plan (dans l'espace, \mathbb{R}^3)

Moindres carrés

Soit $(x, y) = \{(x_{1,1}, x_{2,1}, y_1), \dots, (x_{1,n}, x_{2,n}, y_n)\}$ un échantillon de trois variables. On suppose que

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i$$

- y est la variable d'intérêt (que l'on veut prédire)
- \triangleright x_1 et x_2 sont deux variables explicatives (possibles)

On va chercher le plan qui passe au mieux dans le nuage de points,

$$\min_{\alpha,\beta} \left\{ \sum_{i=1}^{n} \varepsilon_{i}^{2} \right\} = \min_{\beta_{0},\beta_{1},\beta_{2}} \left\{ \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{1,i} - \beta_{2} x_{2,i})^{2} \right\}$$

Moindres carrés

Plan de régression, moindres carrées (OLS)

Soit $(x, y) = \{(x_{1,1}, x_{2,1}, y_1), \dots, (x_{1,n}, x_{2,n}, y_n)\}$ un échantillon. Le plan de régression qui minimise la somme des carrés des erreurs est $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$ où

$$(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) = \underset{\beta_0, \beta_1, \beta_2}{\operatorname{argmin}} \left\{ \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{1,i} - \beta_2 x_{2,i})^2 \right\}$$

Note il existe une unique solution à ce programme d'optimisation

Note pour donner les valeurs des paramètres $(\widehat{\beta}_i)$ on va devoir passer par une représentation matricielle (cf MAT105 - 201-NYC)

Matrices et vecteurs

Soient $m, n \ge 1$. Une matrice **A** de taille (m, n) à coefficients réels est un tableau de nombres réels ayant m lignes et n colonnes. On note également par $(\mathbf{A})_{ii}$ ou plus simplement A_{ii} l'élément sur la ligne i et sur la colonne j de \mathbf{A} .

Example:

$$\mathbf{A} = \left(\begin{array}{cccc} 1.5 & 2 & 3.1 & 8 \\ -1 & 4 & 5 & 6.5 \end{array} \right)$$

A est de taille (2×4) et par exemple $A_{13} = 3.1$. Une matrice ne contenant qu'une colonne est appelée un vecteur et une matrice ne contenant qu'une ligne est un vecteur ligne. Par exemple $\mathbf{x} = \begin{pmatrix} 1.5 \\ -1 \end{pmatrix}$ et $\mathbf{y} = (1.5 \ 2 \ 3.1 \ 8)$ sont respectivement de taille (2, 1) et (1, 4).

Transposée

```
Soit A une matrice réelle de taille
(m,n). La matrice transposée 1 > t(1:4) %*% rep(1,4)
notée \mathbf{A}^{\mathsf{T}} de taille (n,m) est \frac{2}{3} [1,1]
définie par (\mathbf{A}^{\top})_{ii} = A_{ii} pour i = 4 > (1:4) \%*\% t(rep(1,4))
                                                            5 [,1] [,2] [,3] [,4]
6 [1,] 1 1 1 1
7 [2,] 2 2 2 2
8 [3,] 3 3 3 3
9 [4,] 4 4 4 4
1, \ldots, \underline{n} \text{ et } j = 1, \ldots, m.
Et (\mathbf{A}^{\top})^{\top} = \mathbf{A}.
           \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^{\top} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}
                                                                   10 > t(1:4) %*% (1:4)
                                                                   11 [,1]
                                                                   12 [1,] 30
                                                                   13 > (1:4) %*% t(1:4)
           \|\mathbf{x}\|^2 = \mathbf{x}^\top \mathbf{x} = \sum_{i=1}^n x_i^2
                                                                   [,1] [,2] [,3] [,4]

    15
    [1,]
    1
    2
    3
    4

    16
    [2,]
    2
    4
    6
    8

    17
    [3,]
    3
    6
    9
    12

    18
    [4,]
    4
    8
    12
    16

               \boldsymbol{X}^{\top}\boldsymbol{X} = \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}
```

Transposée

Pour
$$\mathbf{a}$$
 et \mathbf{b} , de dimension n ,

$$\mathbf{a}^{\top} \mathbf{b} = \mathbf{b}^{\top} \mathbf{a} = \sum_{i=1}^{n} a_i b_i$$

$$\mathbf{a}^{\top} \mathbf{b} = \mathbf{b}^{\top} \mathbf{a} = \sum_{i=1}^{n} a_i b_i$$

$$\mathbf{a}^{\top} \mathbf{b} = \mathbf{b}^{\top} \mathbf{a} = \sum_{i=1}^{n} a_i b_i$$

$$\mathbf{a}^{\top} \mathbf{b} = \mathbf{b}^{\top} \mathbf{a} = \sum_{i=1}^{n} a_i b_i$$

[1,1]

[1,] 27

L'espérance peut s'éecrire sous cette forme
$$\sum_{i=0}^{n} x_i p_i = \mathbf{x}^{\mathsf{T}} \mathbf{p}$$

$$\sum_{i=0}^{n} x_i p_i = \mathbf{x}^{\mathsf{T}} \mathbf{p}$$

$$\sum_{i=0}^{n} x_i p_i = \mathbf{x}^{\mathsf{T}} \mathbf{p}$$

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$

 $(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$

Une matrice carrée \mathbf{A} de taille (n, n) est dite symétrique si $\mathbf{A} = \mathbf{A}^{\top}$.

Produit ***

Si **A** et **B** sont (respectivement) des matrices $k \times m$ et $m \times n$,

$$C_{ij} = \mathbf{A}_{i}^{\top} \mathbf{B}_{.j} = A_{i1}B_{1j} + \dots + A_{im}B_{mj} = \sum_{k=1}^{m} A_{ik}B_{kj},$$

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mp} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1p} \\ C_{21} & C_{22} & \cdots & C_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{np} \end{pmatrix}$$

```
_{1} > A = matrix(1:6,2,3)
_2 > B = matrix(1:12,3,4)
3 > A %*% B
4 [,1] [,2] [,3] [,4]
5 [1,] 22 49 76 103
6 [2,] 28 64 100 136
```

Le produit matriciel n'est pas commutatif pour deux matrices quelconque de même taille: $AB \neq BA$

Produit et inverse

Soit \mathbb{I}_n la matrice de taille (n, n) composée de 1 sur la diagonale et de 0 ailleurs. Alors, pour **A** de taille (n, n), \mathbb{I}_n est l'élément neutre tel que $\mathbf{A}\mathbb{I}_n = \mathbb{I}_n \mathbf{A} = \mathbf{A}$.

Soient A. B et C trois matrices réelles de dimension concordante, alors

- \blacktriangleright (AB)C = A(BC) (associativité du produit)
- A(B+C) = AB + AC (distributivité du produit)
- $(AB)^{\top} = B^{\top}A^{\top}.$

Inverse matricielle

Soit **A** une matrice carrée de taille (n, n) dont le déterminant est non nul, alors A est dite non singulière et il existe une matrice inverse (de même taille) notée \mathbf{A}^{-1} vérifiant $\mathbf{A}\mathbf{A}^{-1}$ =

$$\mathbf{A}^{-1}\mathbf{A} = \mathbb{I}_n$$

Produit et inverse

Note le déterminnant ne sera pas redéfini ici

Soient \boldsymbol{A} et \boldsymbol{B} deux matrices inversibles de taille (n, n) alors

$$(A^{-1})^{\top} = (A^{\top})^{-1}$$

 $(\mathbf{A}^{-1} \text{ est symétrique ssi } \mathbf{A} \text{ est symétrique})$

$$(A^{-1})^{-1} = A.$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

```
1 > A = matrix(
c(3,2,4,3),2,2)
4 [,1] [,2]
5 [1,] 3 4
6 [2,] 2 3
7 > solve(A)
8 [,1] [,2]
9 [1,] 3 -4
10 [2,] -2 3
11 > A %*% solve(A)
[,1] [,2]
13 [1,] 1 0
14 [2,] 0 1
```

Espace vectoriel engendré ***

Soient $x_1, \ldots, x_p \in \mathbb{R}^n$, on définit $\mathcal{V}(\mathbf{x}_1,\ldots,\mathbf{x}_p)$ comme

$$\left\{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \sum_{i=1}^p a_i \mathbf{x}_i = \mathbf{X} \mathbf{a}, \mathbf{a} \in \mathbb{R}^p \right\}$$

où $X = [x_1, \dots, x_p]$ est une matrice $n \times p$.

La dimension de $\mathcal{V}(\mathbf{x}_1,\ldots,\mathbf{x}_p)$ est le rang de X.

12 / 39

Régression Linéaire

Nous supposons que les données collectées suivent le modèle suivant

$$y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + \varepsilon_i,$$

οù

- \triangleright x_{ii} sont des nombres déterministes (connus). β_0 représente la constante (intercept dans les logiciels). On notera souvent $x_{i0} = 1$.
- β_i , j = 0, 1, ..., k paramètres réels à estimer. On pose p = k + 1
- les variables ε_i sont des fluctuations aléatoires (erreur de mesures, mauvaise spécification du modèle,...).

On peut reformuler le modèle en:

$$\underbrace{\boldsymbol{y}}_{(n\times 1)} = \underbrace{\boldsymbol{X}}_{(n\times p)} \underbrace{\boldsymbol{\beta}}_{(p\times 1)} + \underbrace{\boldsymbol{\varepsilon}}_{(n\times 1)}$$

Régression Linéaire

On peut reformuler le modèle en:
$$\underbrace{\boldsymbol{y}}_{(n\times 1)} = \underbrace{\boldsymbol{X}}_{(n\times p)} \underbrace{\boldsymbol{\beta}}_{(p\times 1)} + \underbrace{\boldsymbol{\varepsilon}}_{(n\times 1)}$$
 où

 $1 \le p = 1 + k \le n$ et

$$\boldsymbol{y} = \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right), \; \boldsymbol{X} = \left(\begin{array}{ccc} x_{10} & x_{11} & \dots & x_{1k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & \dots & x_{nk} \end{array}\right), \; \boldsymbol{\beta} = \left(\begin{array}{c} \beta_0 \\ \vdots \\ \beta_k \end{array}\right), \; \boldsymbol{\varepsilon} = \left(\begin{array}{c} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{array}\right)$$

 $\beta \in \mathbb{R}^p$ et $\mathbf{x}_i = (x_{1i}, \dots, x_{ni})^{\mathsf{T}}$. Lorsque p = 2, ce modèle correspond au modèle de régression linéaire simple. On notera

- \triangleright x_i le vecteur de taille $(n \times 1)$ des n observations de la jème covariable.
- $\triangleright x_i^{\perp}$ le vecteur de taille $(1 \times p)$ des valeurs des p covariables pour l'individu i.
- \triangleright y le vecteur réponse; ε vecteur aléatoire (centré sans perte de généralité).

Moindres carrés

Formellement,

- \mathcal{H}_1 : La matrice de design X est de plein rang. $p \le n$, $\mathcal{H}_1 \Rightarrow \operatorname{rang}(\boldsymbol{X}) = p$, $\boldsymbol{X}^{\top} \boldsymbol{X}$ de taille (p, p) est symétrique, définie positive et donc inversible.
- \mathcal{H}_2 : Les erreurs sont centrées, de même variance et non corrélées $\Leftrightarrow \mathbb{E}(\varepsilon_i) = 0 \text{ et } \mathsf{Var}(\varepsilon_i) = \sigma^2.$
- $\mathcal{H}_2^{\mathcal{N}}$: Les erreurs sont indépendantes et de même loi $\mathcal{N}(0,\sigma^2)$
 - \mathcal{H}_3 : La matrice de design **X** est telle que lorsque $n \to \infty$, $\frac{1}{n}(X^{\top}X) \rightarrow Q$ où Q est une matrice définie positive
 - \triangleright \mathcal{H}_1 : permet de démontrer l'existence de $\widehat{\beta}$.
 - \triangleright \mathcal{H}_2 : permet de démontrer des propriétés pour $\widehat{\beta}$ (sans biais, calcul de variance).
 - $\triangleright \mathcal{H}_2^{\mathcal{N}}$: permet de faire des tests.
 - \triangleright \mathcal{H}_3 : permet de démontrer la convergence de $\hat{\beta}$.

Moindres carrés

Plan de régression, moindres carrées (OLS)

Soit $(X, y) = \{(x_1, y_1), \dots, (x_n, y_n)\}$ un échantillon. Le plan de régression qui minimise la somme des carrés des erreurs est $y = \mathbf{x}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}$ où

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\beta_0, \beta_1, \dots, \beta_k} \sum_{i=1}^n (y_i - \boldsymbol{x}_i^\top \boldsymbol{\beta})^2$$

Sous l'hypothèse \mathcal{H}_1 , l'estimateur des moindres carrées existe et vaut

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}.$$

Note il existe une unique solution à ce programme d'optimisation

Coefficient de détermination R^2

 R^2

Soit $(\boldsymbol{X}, \boldsymbol{y}) = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)\}$ un échantillon, et \hat{y}_i la prévision par régression linéaire. Alors

$$R^{2} = 1 - \frac{SCR}{SCT} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

R_a^2 (R^2 ajusté)

Soit $(\boldsymbol{X}, \boldsymbol{y}) = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)\}$ un échantillon, et \hat{y}_i la prévision par régression linéaire. Alors

$$R_a^2 = 1 - \frac{\mathsf{SCR}/(n-k-1)}{\mathsf{SCT}/(n-1)} = 1 - \frac{n-1}{n-k-1} \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$

Coefficient de détermination R^2

$$R_a^2$$
 et R^2

 $R_a^2 \le R^2$ et

$$R_a^2 = 1 - (1 - R^2) \cdot \frac{n-1}{n-k-1}$$

On pénalise ici les modèles trop complexes, avec trop de variables explicatives.

Prévision et résidus

Prévision et résidus

Soit $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ un échantillon. plande régression qui minimise la somme des carrés des erreurs est $y = \mathbf{x}^{\top} \hat{\boldsymbol{\beta}}$. La différence entre la valeur observée y_i et la valeur prédite $\hat{y}_i = \mathbf{x}_i^{\top} \hat{\boldsymbol{\beta}}$ s'appelle le résidu $\hat{\varepsilon}_i = y_i - \hat{y}_i$.

Résidus

Soient $\hat{\varepsilon}_i = y_i - \hat{y}_i$ les résidus estimés. Les résidus sont centrés et leur variance σ^2 est estimée par s^2 où

$$s^2 = \frac{1}{n-p} \sum_{i=1}^n \widehat{\varepsilon}_i^2 \text{ et } \widehat{\varepsilon}_i = 0.$$

Regression

```
1 > import numpy as np
2 > import statsmodels.api as sm
x = \text{np.array}([[5,1], [15,4], [25,-5], [35,4],
     [45,-2], [55,2]
4 > x = sm.add_constant(x)
5 > y = np.array([5, 20, 14, 32, 22, 38])
6 > model = sm.OLS(y, x)
7 > results = model.fit()
8 > print(results.summary())
      coef. std err t P>|t| [0.025 0.975]
10
12 const 4.0581 3.370 1.204 0.315 -6.668 14.785
13 X1 0.5578 0.097 5.770 0.010 0.250 0.865
14 x2 1.5604 0.508 3.071 0.055 -0.057 3.178
Dep. Variable: y R-squared: 0.931
17 Model:
          OLS Adj. R-squared: 0.886
                       F-statistic: 20.37
18
```

Regression

```
1 > df = data.frame(x1 = c(5, 15, 25, 35, 45, 55),
                  x2 = c(1, 4, -5, 4, -2, 2),
2
                   y = c(5, 20, 14, 32, 22, 38))
3
4 > model = lm(y~x1+x2, data=df)
5 > summary(model)
6
7 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
8
9 (Intercept) 4.05810 3.37049 1.204 0.3149
            10 x 1
             1.56037 0.50818 3.071 0.0545 .
11 x2
12 ---
13 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
14
15 Residual standard error: 4.037 on 3 degrees of freedom
16 Multiple R-squared: 0.9314, Adjusted R-squared: 0.8857
17 F-statistic: 20.37 on 2 and 3 DF, p-value: 0.01796
```

Propriétés de $\hat{\beta} \leftrightarrow \star$

Propriétés de $\hat{\beta}$

Soit $(X, y) = \{(x_1, y_1), \dots, (x_n, y_n)\}$ un échantillon. Sous les hypothèses \mathcal{H}_1 et \mathcal{H}_2 ,

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta} \text{ et Var}[\hat{\boldsymbol{\beta}}] = \sigma^2 (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}$$

(admis)

On a vu (section 14) que si $y = \alpha + \beta x$ (droite de régression)

$$s_{\hat{\beta}}^2 = \frac{\frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = s^2 \left(\sum_{i=1}^n (x_i - \bar{x})^2 \right)^{-1}$$

et ici
$$s_{\hat{\beta}_i}^2 = s^2 (\boldsymbol{X}^\top \boldsymbol{X})_{ii}^{-1}$$
.

Propriétés de $\hat{\beta} \leftrightarrow \star$

```
1 > library(DALEX)
2 > reg = lm(m2.price~construction.year+surface+no.rooms
     , data=apartments)
3 > vcov(reg)
             (Intercept) const.year surface no.rooms
4
5 (Intercept) 3550207.63 -1807.629 152.913 -3277.951
6 const.year -1807.629 0.921 -0.080
                                            1.171
7 surface 152.913 -0.080 2.562 -64.046
8 no.rooms -3277.951 1.171 -64.046 1922.300
9 > summary(reg)
10
 Coefficients:
             Estimate Std. Error t value Pr(>t)
12
13 (Intercept) 6295.7095 1884.1995 3.341 0.000865 ***
14 const.year -0.8829 0.9599 -0.920 0.357920
16 no.rooms -80.6139 43.8440 -1.839 0.066264.
17
18 Residual standard error: 781.8, 996 degrees of freedom
19 Multiple R-squared: 0.2588, Adjusted R-squared: 0.2566
20 F-statistic: 115.9 on 3 and 996 DF, p-value: < 2.2e-16
```

Test (possiblement multiples) I

Test simple $H_0: \beta_i = 0$ contre $H_1: \beta_i \neq 0$

Soit $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ un échantillon. Si le plan de régression est $y = \mathbf{x}^{\top} \boldsymbol{\beta}$, pour tester $H_0 : \beta_i = 0$ contre $H_1: \beta_i \neq 0$, la statistique de test est

$$T = \frac{\widehat{\beta}_j}{s_{\widehat{\beta}_j}}$$
 où $s_{\widehat{\beta}_j} = \sqrt{s^2 (\boldsymbol{X}^\top \boldsymbol{X})_{jj}^{-1}}$.

Si $H_0: \beta = 0$ est vraie, et si $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, $T \sim \mathcal{S}td(n-p)$. Et donc

• on rejette H_0 si $|t| > T_{n-n}^{-1}(1 - \alpha/2)$ où T_{ν} est la fonction de répartition de la loi de Student $Std(\nu)$

Régression Linéaire

Sous les hypothèses \mathcal{H}_1 et $\mathcal{H}_2^{\mathcal{N}}$, on a, pour $j=1,\ldots,p$

$$T_j = \frac{\hat{\beta}_j - \beta_j}{s_{\hat{\beta}_j}} \sim \mathcal{S}td_{n-p}$$
 où $s_{\hat{\beta}_j} = s\sqrt{(\boldsymbol{X}^\top \boldsymbol{X})_{jj}^{-1}}$.

```
1 > library(DALEX)
> reg = lm(m2.price~construction.year+surface+no.rooms
     , data=apartments)
3 > summary(reg)
4
5 Coefficients:
              Estimate Std. Error t value Pr(>t)
6
7 (Intercept) 6295.7095 1884.1995 3.341 0.000865 ***
8 const.year -0.8829 0.9599 -0.920 0.357920
9 surface -9.3827 1.6007 -5.862 6.22e-09 ***
10 no.rooms -80.6139 43.8440 -1.839 0.066264 .
11
12 Residual standard error: 781.8, 996 degrees of freedom
13 Multiple R-squared: 0.2588, Adjusted R-squared: 0.2566
14 F-statistic: 115.9 on 3 and 996 DF, p-value: < 2.2e-16
```

- \blacktriangleright ξ un sous-ensemble d'indices $\xi \subseteq \{1, \ldots, p\}$ de cardinal $|\xi|$.
- $\triangleright \bar{\xi}$ les indices du complémentaire de ξ dans $\{1,\ldots,p\}$, Rappel: $\xi \cap \bar{\xi} = \emptyset$ et $\xi \cup \bar{\xi} = \{1, \dots, p\}$
- ▶ X_{ε} sous-matrice des covariables $x_i, j \in \xi$.
- ▶ $X_{\bar{\xi}}$ sous-matrice des covariables $x_i, j \in \bar{\xi}$ (ou $j \notin \xi$).
- \triangleright β_{ξ} les paramètres dans le modèle (ξ) où seules les variables ξ sont conservées.
- $\triangleright [\hat{\beta}]_{\varepsilon}$: coordonnées ξ du vecteur $\hat{\beta}$, Note: $[\hat{\boldsymbol{\beta}}]_{\mathcal{E}} \neq \hat{\boldsymbol{\beta}}_{\mathcal{E}}$ en général (sauf si $\boldsymbol{X}_{\mathcal{E}} \perp \boldsymbol{X}_{\bar{\mathcal{E}}}$).
- **Note**: $\mathbf{u} = (u_1, \dots, u_k) = 0$ signifie $\forall i, u_i = 0$. $\mathbf{u} = (u_1, \dots, u_k) \neq 0$ signifie $\exists j$ tel que $u_i \neq 0$.

Test $H_0: \beta_{\varepsilon} = 0$ contre $H_1: \beta_{\varepsilon} \neq 0$

Soit $(X, y) = \{(x_1, y_1), \dots, (x_n, y_n)\}$ un échantillon. Pour tester $H_0: \beta_{\varepsilon} = 0$ contre $H_1: \beta_{\varepsilon} \neq 0$ on estime

$$\begin{cases} \boldsymbol{y} = \boldsymbol{X}_{\bar{\xi}} \boldsymbol{\beta}_{\bar{\xi}} + \varepsilon_{\bar{\xi}} & (0) \text{ régression contrainte} \\ \boldsymbol{y} = \boldsymbol{X} \boldsymbol{\beta} + \varepsilon & (1) \text{ régression non-contrainte} \end{cases}$$

La statistique de test est

$$F = \frac{\mathsf{SCR}(\beta_{\bar{\xi}}) - \mathsf{SCR}(\beta)}{\mathsf{SCR}(\beta)} \frac{n - p}{|\xi|} = \frac{n - p}{|\xi|} \frac{R^2 - R_0^2}{1 - R^2}$$

Si $H_0: \beta = 0$ est vraie, et si $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, $F \sim \mathcal{F}(n-p, |\xi|)$. Et donc

• on rejette H_0 si $f > F_{n-p,|\xi|}^{-1}(1-\alpha)$.

Sur nos données sur le prix des logements en Pologne

$$\begin{cases} y_i = \beta_0 & + \beta_2 x_{2,i} + \eta_i & (0) \\ y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \varepsilon_i & (1) \end{cases}$$

```
1 > linearHypothesis(reg1,
    c("construction.year = 0", "no.rooms = 0"))
3 Linear hypothesis test
4
5 Hypothesis:
6 construction.year = 0
7 \text{ no. rooms} = 0
8
9 Model 1: restricted model
10 Model 2: m2.price ~ construction.year + surface + no.
     rooms
Res.Df RSS Df Sum of Sq F Pr(>F)
13 1 998 611258600
14 2 996 608730962 2 2527638 2.0678 0.127
```

Quand il y a beaucoup de variables, il est possible d'utiliser des méthodes de sélection de variables, les méthodes pas à pas, ou step-wise.

Les algorithmes les plus simples consistent à faire rentrer les variables une à une (méthode ascendante, forward), ou les à les faire sortir une à une (méthode descendante, backward).

Sélection de variable pas à pas

Soit $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$ un échantillon.

- \triangleright $\xi, \xi \subseteq \{1, \dots, p\}$ de cardinal $|\xi|$.
- $\xi_{+1}, \xi_{+1} \subseteq \{1, ..., p\}$ de cardinal $|\xi| + 1$.
- $\xi \subset \xi_{+1}$, autrement dit $\xi = \xi_{+1} \cup \{j\}, j \in \{1, \dots, p\}$.

$$\begin{cases} \mathbf{y} = \mathbf{X}_{\xi_{+1}} \boldsymbol{\beta}_{\xi_{+1}} + \boldsymbol{\varepsilon}_{\xi_{+1}} & (\xi) \\ \mathbf{y} = \mathbf{X}_{\xi} \boldsymbol{\beta}_{\xi} + \boldsymbol{\varepsilon}_{\xi} & (\xi_{+1}) \end{cases}$$

On préfère (ξ) à (ξ_{+1}) si $R_2^2(\xi) > R_2^2(\xi_{+1})$.

Note notion de parcimonie et rasoir d'Ockham.

Omission d'une variable explicative I

Oublier une variable importante peut avoir des conséquences importantes

$$\mathbf{y}_i = \beta_0 + \mathbf{x}_1^{\mathsf{T}} \boldsymbol{\beta}_1 + \mathbf{x}_2^{\mathsf{T}} \boldsymbol{\beta}_2 + \varepsilon_i$$
: le vrai modèle

$$y_i = b_0 + \mathbf{x}_1^{\mathsf{T}} \mathbf{b}_1 + \eta_i$$
: le modèle que l'on considère

L'estimateur de b_1 est

$$\hat{\boldsymbol{b}}_{1} = (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \boldsymbol{y}
= (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} [\boldsymbol{X}_{1} \boldsymbol{\beta}_{1} + \boldsymbol{X}_{2} \boldsymbol{\beta}_{2} + \varepsilon]
= (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1} \boldsymbol{\beta}_{1} + (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{2} \boldsymbol{\beta}_{2} + (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \varepsilon
= \boldsymbol{\beta}_{1} + (\boldsymbol{X}_{1}^{\prime} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{2} \boldsymbol{\beta}_{2} + (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \varepsilon
\xrightarrow{\boldsymbol{\beta}_{12}} + (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \boldsymbol{\Sigma}_{2} \boldsymbol{\beta}_{2} + (\boldsymbol{X}_{1}^{\top} \boldsymbol{X}_{1})^{-1} \boldsymbol{X}_{1}^{\top} \varepsilon$$

de tel sorte que $\mathbb{E}[\hat{\boldsymbol{b}}_1] = \beta_1 + \beta_{12} \neq \beta_1$, en général.

Omission d'une variable explicative II

Comme le montrait Bickel, Hammel O'Connell (1975) (avec un modèle plus complexe car les variables ne sont pas ici continues)

- y est l'admission aux études graduées
- \triangleright x_1 est le genre (homme ou femme)
- \triangleright x_2 est le programme où l'étudiant(e) a postulé

	Total	Men	Women	Proportions
Total	5233/12763 ~ 41%	3714/8442 ~ 44 %	1512/4321 ~ 35%	66%-34%
Top 6	1745/4526 ~ 39%	1198/2691 ~ 45 %	557/1835 ~ 30%	59%-41%
Α	597/933 ~ 64%	512/825 ~ 62%	89/108 ~ 82 %	88%-12%
В	369/585 ~ 63%	353/560 ~ 63%	17/ 25 ~ 68 %	96%- 4%
C	321/918 ~ 35%	120/325 ~ 37 %	202/593 ~ 34%	35%-65%
D	269/792 ~ 34%	138/417 ~ 33%	131/375 ~ 35 %	53%-47%
E	146/584 ~ 25%	53/191 ~ 28 %	94/393 ~ 24%	33%-67%
F	43/714 ~ 6%	22/373 ~ 6%	24/341 ~ 7 %	52%-48%

Omission d'une variable explicative III

- y est la durée de vie résiduelle (en années)
- \triangleright x_1 est le pays (Costa Rica ou Suède)
- \triangleright x_2 l'âge de la personne

$$\mathbb{P}[Y \le 1 | X = \text{Costa Rica}] < \mathbb{P}[Y \le 1 | X = \text{Suède}]$$

$$\mathbb{P}[Y \le 1 | \boldsymbol{X} = (\mathsf{Costa} \ \mathsf{Rica}, x)] > \mathbb{P}[Y \le 1 | \boldsymbol{X} = (\mathsf{Su\`{e}de}, x)], \ \forall x$$

Confidence et prédiction

Intervalle de prédiction

Soit $(X, y) = \{(x_1, y_1), \dots, (x_n, y_n)\}$ un échantillon. Si le plan de régression est $y = \mathbf{x}^{\mathsf{T}} \boldsymbol{\beta}$. On dispose d'une nouvelle observation x_{n+1} . L'intervalle de confiance de la valeur moyenne prédite est:

$$\left[\boldsymbol{x}_{n+1}^{\top}\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-\rho} s \sqrt{\boldsymbol{x}_{n+1}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{x}_{n+1}^{\top}}\right]$$

L'intervalle de confiance pour une valeur particulière est:

$$\left[\boldsymbol{x}_{n+1}^{\top} \hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-p} s \sqrt{1 + \boldsymbol{x}_{n+1}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{x}_{n+1}^{\top}} \right]$$

Confidence et prédiction

$$\left[\mathbf{x}_{n+1}^{\top}\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-\rho}s\sqrt{1+\mathbf{x}_{n+1}^{\top}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{x}^{\top}n+1}\right]$$

```
predict(reg, newdata = data.frame(construction.year
     =1992, surface=80, no.rooms=3), interval = "
     confidence")
        fit lwr upr
3 1 3544,494 3472,005 3616,983
4 > x=c(1,1992,80,3)
5 > t(x)%*%reg$coefficients
 [,1]
6
7 [1,] 3544.494
8 > residus = reg$residuals
t(x) *%reg$coefficients+qt(c(.025,.975),n-4)*sqrt(
     sum(residus^2)/(n-4))*sqrt(t(x)%*%solve(t(X)%*%X)
     %*%x)
10 [1] 3472.005 3616.983
```

Confidence et prédiction

$$\left[\mathbf{x}_{n+1}^{\top}\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-\rho} s \sqrt{1+\mathbf{x}_{n+1}^{\top}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{x}^{\top}n+1}\right]$$

```
> predict(reg, newdata = data.frame(construction.year
     =1992, surface=80, no.rooms=3), interval = "
     prediction")
        fit lwr upr
3 1 3544,494 2008,663 5080,326
4 > x=c(1,1992,80,3)
5 > t(x)%*%reg$coefficients
 [,1]
6
7 [1,] 3544.494
8 > residus = reg$residuals
t(x) *%reg$coefficients+qt(c(.025,.975),n-4)*sqrt(
     sum(residus^2)/(n-4))*sqrt(1+t(x)%*%solve(t(X)%*%X)
     ) % * % x )
10 [1] 2008.663 5080.326
```

Sélection de variables

```
1 > library(olsrr)
> model = lm(mpg ~ disp + hp + wt + qsec, data =
     mtcars)
3 > ols_step_all_possible(model)
4
 Index N
              Predictors R-Square Adj. R-Square
                     wt 0.7528328 0.7445939
    1 1
6
   2 1
                   disp 0.7183433 0.7089548
7
     3 1
                     hp 0.6024373 0.5891853
   4 1
                   qsec 0.1752963 0.1478062
9
     5 2
                  hp wt 0.8267855 0.8148396
10
   6 2
                wt qsec 0.8264161 0.8144448
11
   7 2
                disp wt 0.7809306 0.7658223
12
   8 2
                disp hp 0.7482402 0.7308774
13
              disp qsec 0.7215598 0.7023571
    9 2
14
    10 2
                hp qsec 0.6368769 0.6118339
15
    11 3
             hp wt qsec 0.8347678 0.8170643
16
              disp hp wt 0.8268361 0.8082829
    12 3
17
            disp wt qsec 0.8264170 0.8078189
    13 3
18
            disp hp qsec 0.7541953 0.7278591
    14 3
19
    15 4 disp hp wt qsec 0.8351443 0.8107212
20
```

Sélection de variables

```
1 > model = lm(y ~ ., data = surgical)
 > ols_step_forward_p(model)
3
               Selection Summary
4
         Variable
6
                                Adj.
  Step
          Entered R-Square R-Square RMSE
      liver_test 0.4545 0.4440 296.2992
9
     alc_heavy 0.5667 0.5498 266.6484
10
    3
      enzyme_test 0.6590 0.6385 238.9145
    4
      pindex
                   0.7501 0.7297 206.5835
12
    5
                   0.7809
                           0.7581 195.4544
13
        bcs
```