

1.

1.1. A inclinação, em graus, da reta AE é igual a $180 - \theta$.

O declive da reta AE é dado por $\tan(180 - \theta) = \tan(-\theta) = -\tan\theta$.

Resposta: (C) $-\tan \theta$

1.2.
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \|\overrightarrow{BA}\| \times \|\overrightarrow{BC}\| \times \cos\left(\widehat{\overrightarrow{BA}, \overrightarrow{BC}}\right)$$

Como
$$(\widehat{\overline{BA},\overline{BC}}) = 108^{\circ}$$
, tem-se:

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \|\overrightarrow{BA}\| \times \|\overrightarrow{BC}\| \times \cos\left(\widehat{\overrightarrow{BA}, BC}\right) = 2 \times 2 \times \cos 108^{\circ}$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} \approx -1,24$$

Resposta:
$$\overrightarrow{BA} \cdot \overrightarrow{BC} \approx -1,24$$

2.

2.1. O ponto A pertence a Ox e tem a mesma abcissa de F.

Assim, conclui-se que A(8,0,0).

Resposta: A(8,0,0)

2.2. O ponto *C* pertence a *Oy* e tem ordenada positiva.

O ponto C pertence à superfície esférica de equação $(x-8)^2 + y^2 + z^2 = 100$, logo:

$$(0-8)^2 + y^2 + 0^2 = 100$$

$$(0-8)^2 + y^2 + 0^2 = 100 \Leftrightarrow y^2 = 36 \Leftrightarrow y = 6 \lor y = -6$$

Como y > 0, conclui-se que C(0,6,0).

Novo Espaço – Matemática A, 11.º ano

Proposta de resolução do teste de avaliação [março - 2020]

$$\cos\left(\widehat{CFE}\right) = \cos\left(\widehat{\overline{FC}, \overline{FE}}\right) = \frac{\overrightarrow{FC} \cdot \overrightarrow{FE}}{\left\|\overrightarrow{FC}\right\| \times \left\|\overrightarrow{FE}\right\|}$$

$$\overrightarrow{FC} = C - F = (0,6,0) - (8,0,2) = (-8,6,-2)$$

O ponto E pertence a Oz e ao plano cuja equação é x+4z-16=0.

Assim, as coordenadas do ponto E são da forma E(0,0,z).

$$0+4z-16=0 \Leftrightarrow z=4$$

Assim, conclui-se que E(0,0,4).

$$\overrightarrow{FE} = E - F = (0,0,4) - (8,0,2) = (-8,0,2)$$

$$\cos\left(\widehat{\overrightarrow{FC}}, \widehat{\overrightarrow{FE}}\right) = \frac{\overrightarrow{FC} \cdot \overrightarrow{FE}}{\left\|\overrightarrow{FC}\right\| \times \left\|\overrightarrow{FE}\right\|} = \frac{\left(-8, 6, -2\right) \cdot \left(-8, 0, 2\right)}{\sqrt{64 + 36 + 4} \times \sqrt{64 + 0 + 4}} = \frac{64 - 4}{\sqrt{7072}} = \frac{60}{\sqrt{7072}}$$

Recorrendo à calculadora, obtém-se $\widehat{CFE} \approx 44.5^{\circ}$.

Resposta: 44,5°

3.

3.1. Se
$$n \le 4$$
: $\frac{1}{4} \le u_n \le 4$ (1)

Se
$$n > 4$$
: $-1 \le u_n \le 1$ (2)

De (1) e (2) conclui-se que $\forall n \in \mathbb{N}, -1 \le u_n \le 4$.

A sucessão (u_n) é limitada.

Resposta: (A) A sucessão (u_n) é limitada.

3.2. Para $n \ge 5$, a soma de quatro termos consecutivos é igual a 0.

Como $50 = 4 \times 12 + 2$, a soma dos 50 termos é igual a $u_5 + u_6 = 1 + 0 = 1$.

$$u_5 = \sin\left(\frac{5\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1; \quad u_6 = \sin\left(\frac{6\pi}{2}\right) = \sin\left(3\pi\right) = 0;$$

Novo Espaço – Matemática A, 11.º ano

Proposta de resolução do teste de avaliação [março - 2020]

$$u_7 = \sin\left(\frac{7\pi}{2}\right) = \sin\left(\frac{3\pi}{2}\right) = -1$$
; $u_8 = \sin\left(\frac{8\pi}{2}\right) = \sin(0) = 0$

Resposta: (D)

4.

4.1.
$$v_1 = -2$$

$$v_2 = 1 + 2 \times v_1 = 1 + 2 \times (-2) = -3$$

Seja r a razão da progressão aritmética.

$$r = v_2 - v_1 = -3 - (-2) = -1$$

Termo geral: $v_n = v_1 + (n-1)r = -2 + (n-1) \times (-2)$

$$v_n = v_1 + (n-1)r = -2 + (n-1) \times (-1)$$

$$v_n = -n-1$$

Resposta: $V_n = -n-1$

4.2.
$$w_n = \frac{-n-1}{2n+1}$$
, $\forall n \in \mathbb{N}$

$$u_n \notin V_{0,01}\left(-\frac{1}{2}\right) \Longleftrightarrow \left|u_n + \frac{1}{2}\right| \ge \frac{1}{100} \Longleftrightarrow \left|\frac{-n-1}{2n+1} + \frac{1}{2}\right| \ge \frac{1}{100} \Longleftrightarrow$$

$$\Leftrightarrow \left| \frac{-2n-2+2n+1}{4n+2} \right| \ge \frac{1}{100} \Leftrightarrow \left| \frac{-1}{4n+2} \right| \ge \frac{1}{100} \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{4n+2} \ge \frac{1}{100} \Leftrightarrow 4n+2 \le 100 \Leftrightarrow n \le \frac{98}{4}$$

Como $\frac{98}{4}$ = 24,5, conclui-se que existem 24 termos que não pertencem à

$$V_{0,01}\left(-\frac{1}{2}\right)$$
.

Novo Espaço - Matemática A, 11.º ano

Proposta de resolução do teste de avaliação [março - 2020]

5.
$$\frac{a+1}{a} = \frac{a+4}{a+1} \Leftrightarrow (a+1)^2 = a(a+4) \Leftrightarrow a^2+2a+1 = a^2+4a \Leftrightarrow 2a=1 \Leftrightarrow a=\frac{1}{2}$$

Assim:

$$a = \frac{1}{2}$$
, $a+1 = \frac{3}{2}$ e $a+4 = \frac{9}{2}$

Razão da progressão geométrica: $\frac{\frac{3}{2}}{\frac{1}{2}} = 3$

Termo geral da progressão geométrica: $u_n = u_1 \times r^{n-1} = \frac{1}{18} \times 3^{n-1}$

$$\frac{1}{18} \times 3^{n-1} = \frac{9}{2} \iff 3^{n-1} = 81 \iff 3^{n-1} = 3^4$$

Daqui resulta que n-1=4, ou seja, n=5.

Resposta: A ordem do último dos três termos considerados é 5.

6.

6.1. Se $\lim (u_n) = a$, então $a \neq 6$.

Se, por exemplo, considerar a vizinhança $V_{\frac{1}{2}}(6)$, não há termos da sucessão pertencentes a esta vizinhança, atendendo a que $\forall n \in \mathbb{N}$, $u_n < 5$.

Daqui resulta que $\lim (u_n)$ não pode ser 6.

6.2. A sucessão (u_n) é convergente.

Sabe-se que $\forall n \in \mathbb{N}$, $u_{n+1} > u_n$, pelo que $\forall n \in \mathbb{N}$, $u_{n+1} - u_n > 0$ (sucessão crescente).

Sendo (u_n) crescente: $\forall n \in \mathbb{N}, u_n \ge u_1$.

 $\forall n \in \mathbb{N}, \ u_1 \le u_n < 5 \ \text{(sucessão limitada)}$

Sendo (u_n) monótona e limitada, conclui-se que é convergente.

7.
$$\begin{cases} u_1 = 0.20 \\ u_{n+1} = u_n + 0.25u_n \end{cases} \Leftrightarrow \begin{cases} u_1 = 0.20 \\ u_{n+1} = 1.25u_n \end{cases}$$

Novo Espaço – Matemática A, 11.º ano

 (u_n) é uma progressão geométrica de razão 1,25 e primeiro termo igual a 0,20.

Termo geral: $u_n = 0,20 \times 1,25^{n-1}$

$$u_{12} = 0,20 \times 1,25^{11}$$

$$u_{12} \approx 2,33$$

Soma dos *n* primeiros termos: $S_n = u_1 \times \frac{1 - r^n}{1 - r}$

$$S_{12} = 0.2 \times \frac{1 - 1.25^{12}}{1 - 1.25}$$

$$S_{12}\approx 10,84$$

Resposta: Pela última hora, o custo foi 2,33 € e o custo total foi 10,84 €.