R and RStudio basics for biologists

Jenna Oberstaller, PhD

RNAseq skill-set overview

STEP 0

STEP 1

STEP 2

STEP 3

STEP 4

Next-Gen sequencing at the bench: Illumina workflow FastQ files: Quality assessment, control and processing Mapping your reads to a reference genome

Generating read-counts tables

Differential expression analysis

Tools

BaseSpace

FastQC MultiQC hisat2 samtools

featureCounts

UNIX

(student cluster)

deSeq2

Platform

Web

UNIX (student cluster)

UNIX (student cluster)

.txt (table) Rstudio (local)

.txt (table)

Output

fastq.gz

fastq.gz

.bam .sam

REVIEW

RNA-Seq Pipeline Workflow

What is R?

An open-source statistical programming language

How is it different from what we did yesterday?

We used UNIX on the cluster to process our data down to transcript-counts; now we need stats and plots to analyze it!

Why do we use it?

Free; particularly great for data-analysis and powerful visualizations; lots of 'omics tools available

How do we use it?

with RStudio: an Integrated **D**evelopment Environment for R

R: Engine RStudio: Dashboard

R vs. RStudio

Credit: ModernDive

Looking around Rstudio: Basics

Packages

 "Code a generous person has written, tested, bundled and gave away FOR FREE because they are so terribly nice"

- Mostly designed to solve a specific problem
 - pull together functions to solve that problem
 - e.g.: general packages for "data-wrangling", or visualization, etc.
 - or more specific packages designed already for someone trying to do exactly what you're trying to do, such as differential gene-expression analysis
- You could write all your own functions, and hopefully one day you will
 - BUT TODAY IS NOT THAT DAY

Bioconductor

A repository of R packages for omics data analysis

https://www.bioconductor.org/about/

MISSION:

 To promote the statistical analysis and comprehension of current and emerging high-throughput biological assays.

Most Bioconductor components are distributed as R packages

Most *Bioconductor* components are distributed as <u>R packages</u>. The functional scope of <u>Bioconductor packages</u> includes the analysis of DNA microarray, sequence, flow, SNP, and other data.

 Bioconductor is committed to open source, collaborative, distributed software development and literate, reproducible research.

https://www.bioconductor.org/about/

PROJECT GOALS (highlights)

- To provide widespread access to a broad range of powerful statistical and graphical methods for the analysis of genomic data.
- To further scientific understanding by producing highquality documentation and reproducible research.
- To train researchers on computational and statistical methods for the analysis of genomic data.

https://www.bioconductor.org/about/

PROJECT GOALS (highlights)

- To provide widespread access to a broad range of powerful statistical and graphical methods for the analysis of genomic data.
- Each <u>Bioconductor package</u> contains one or more <u>vignettes</u> to show you how to use them
 - SOME are useful

Further resources

More DESeq2:

- https://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
- https://bioc.ism.ac.jp/packages/2.14/bioc/vignettes/DESeq2/inst/doc/beginner.

Further relevant tutorials

- de-gene analysis
 - https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/refbased/tutorial.html#functional-enrichment-analysis-of-the-de-genes
- Functional enrichment
 - https://training.galaxyproject.org/trainingmaterial/topics/transcriptomics/tutorials/goenrichment/tutorial.html