Задача А. Катый ноль

Имя входного файла: kthzero.in Имя выходного файла: kthzero.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Реализуйте эффективную структуру данных, позволяющую изменять элементы массива и вычислять индекс *k*-го слева нуля на данном отрезке в массиве.

Формат входных данных

В первой строке вводится одно натуральное число N ($1 \le N \le 200\,000$) — количество чисел в массиве. Во второй строке вводятся N чисел от 0 до $100\,000$ — элементы массива. В третьей строке вводится одно натуральное число M ($1 \le M \le 200\,000$) — количество запросов. Каждая из следующих M строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (\mathbf{s} — вычислить индекс k-го нуля, \mathbf{u} — обновить значение элемента). Следом за \mathbf{s} вводится три числа — левый и правый концы отрезка и число k ($1 \le k \le N$). Следом за \mathbf{u} вводятся два числа — номер элемента и его новое значение.

Формат выходных данных

Для каждого запроса s выведите результат. Все числа выводите в одну строку через пробел. Если нужного числа нулей на запрашиваемом отрезке нет, выводите -1 для данного запроса.

Примеры

kthzero.in	kthzero.out
5	4
0 0 3 0 2	
3	
u 1 5	
u 1 0	
s 1 5 3	

Замечание

TL для Python 10 секунд

Задача В. Разреженные таблицы

Имя входного файла: sparse.in
Имя выходного файла: sparse.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Формат входных данных

В первой строке входного файла даны три натуральных числа $n, m \ (1 \le n \le 10^5, \ 1 \le m \le 10^7)$ и $a_1 \ (0 \le a_1 < 16\,714\,589)$ — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и $v_1 \ (1 \le u_1, v_1 \le n)$ — первый запрос.

Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \mod 16714589.$$

Например, при $n=10, a_1=12345$ получается следующий массив: a=(12345, 305498, 7048017, 11694653, 1565158, 2591019, 9471233, 570265, 13137658, 1325095).

Запросы генерируются следующим образом:

$$u_{i+1} = ((17 \cdot u_i + 751 + ans_i + 2i) \bmod n) + 1, v_{i+1} = ((13 \cdot v_i + 593 + ans_i + 5i) \bmod n) + 1,$$

где ans_i — ответ на запрос номер i.

Обратите внимание, что u_i может быть больше, чем v_i .

Формат выходных данных

В выходной файл выведите u_m , v_m и ans_m (последний запрос и ответ на него).

Примеры

sparse.in	sparse.out
10 8 12345	5 3 1565158
3 9	

Замечание

Пояснение к тесту из примера: запросы и результаты.

a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}
12345	305498	7048017	11694653	1565158	2591019	9471233	570265	13137658	1325095

#	u	v	ans
1	3	9	570265
2	10	1	12345
3	1	2	12345
4	10	10	1325095
5	5	9	570265
6	2	1	12345
7	3	2	305498
8	5	3	1565158

Задача С. Перестановки

Имя входного файла: permutation.in Имя выходного файла: permutation.out

Ограничение по времени: 1.5 секунды Ограничение по памяти: 256 мегабайт

Вася выписал на доске в каком-то порядке все числа от 1 по N, каждое число ровно по одному разу. Количество чисел оказалось довольно большим, поэтому Вася не может окинуть взглядом все числа. Однако ему надо всё-таки представлять эту последовательность, поэтому он написал программу, которая отвечает на вопрос — сколько среди чисел, стоящих на позициях с x по y, по величине лежат в интервале от k до l. Сделайте то же самое.

Формат входных данных

В первой строке лежит два натуральных числа — $1 \le N \le 100\,000$ — количество чисел, которые выписал Вася и $1 \le M \le 100\,000$ — количество вопросов, которые Вася хочет задать программе. Во второй строке дано N чисел — последовательность чисел, выписанных Васей. Далее в M строках находятся описания вопросов. Каждая строка содержит четыре целых числа $1 \le x \le y \le N$ и $1 \le k \le l \le N$.

Формат выходных данных

Выведите M строк, каждая должна содержать единственное число — ответ на Васин вопрос.

permutation.in	permutation.out
4 2	1
1 2 3 4	3
1 2 2 3	
1 3 1 3	

Задача D. Звезды

Имя входного файла: stars.in
Имя выходного файла: stars.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вася любит наблюдать за звездами. Но следить за всем небом сразу ему тяжело. Поэтому он наблюдает только за частью пространства, ограниченной кубом размером $n \times n \times n$. Этот куб поделен на маленькие кубики размером $1 \times 1 \times 1$. Во время его наблюдений могут происходить следующие события:

- 1. В каком-то кубике появляются или исчезают несколько звезд.
- 2. К нему может заглянуть его друг Петя и поинтересоваться, сколько видно звезд в части пространства, состоящей из нескольких кубиков.

Формат входных данных

Первая строка входного файла содержит натуральное число $1 \le n \le 128$. Координаты кубиков — целые числа от 0 до n-1. Далее следуют записи о происходивших событиях по одной в строке. В начале строки записано число m. Если m равно:

- 1, то за ним следуют 4 числа x, y, z ($0 \le x, y, z < N$) и k ($-20000 \le k \le 20000$) координаты кубика и величина, на которую в нем изменилось количество видимых звезд;
- 2, то за ним следуют 6 чисел x_1 , y_1 , z_1 , x_2 , y_2 , z_2 ($0 \leqslant x_1 \leqslant x_2 < N$, $0 \leqslant y_1 \leqslant y_2 < N$, $0 \leqslant z_1 \leqslant z_2 < N$), которые означают, что Петя попросил подсчитать количество звезд в кубиках (x,y,z) из области: $x_1 \leqslant x \leqslant x_2$, $y_1 \leqslant y \leqslant y_2$, $z_1 \leqslant z \leqslant z_2$;
- 3, то это означает, что Васе надоело наблюдать за звездами и отвечать на вопросы Пети. Эта запись встречается во входном файле только один раз и будет последней.

Количество записей во входном файле не больше 100 002.

Формат выходных данных

Для каждого Петиного вопроса выведите искомое количество звезд.

stars.in	stars.out
2	0
2 1 1 1 1 1 1	1
1 0 0 0 1	4
1 0 1 0 3	2
2 0 0 0 0 0 0	
2 0 0 0 0 1 0	
1 0 1 0 -2	
2 0 0 0 1 1 1	
3	

Задача Е. Объединение прямоугольников

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

От вас требуется решить задачу объединения прямоугольников

Формат входных данных

В первой строке входных данных дано число $n \leq 50000$ – количество прямоугольников. В следующих n строках задаются прямоугольники в формате $x_1, y_1, x_2, y_2 (0 \leq x_1, y_1, x_2, y_2 \leq 50000)$ – координаты левого нижнего и правого верхнего углов прямоугольника

Формат выходных данных

В единственной строке выходной данных выведите одно число – площадь объединения всех данных прямоугольников.

стандартный ввод	стандартный вывод
2	5
0 0 2 2	
1 3 2 4	
3	23
0 0 2 4	
4 1 6 3	
1 3 5 6	

Задача F. RMQ наоборот

Имя входного файла: rmq.in
Имя выходного файла: rmq.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 64 мегабайта

Рассмотрим массив a[1..n]. Пусть Q(i,j) — ответ на запрос о нахождении минимума среди чисел $a[i], \ldots, a[j]$. Вам даны несколько запросов и ответы на них. Восстановите исходный массив.

Формат входных данных

Первая строка входного файла содержит число n — размер массива, и m — число запросов $(1\leqslant n,m\leqslant 100\,000)$. Следующие m строк содержат по три целых числа i,j и q, означающих, что Q(i,j)=q $(1\leqslant i\leqslant j\leqslant n,-2^{31}\leqslant q\leqslant 2^{31}-1)$.

Формат выходных данных

Если искомого массива не существует, выведите строку «inconsistent».

В противном случае в первую строку выходного файла выведите «consistent». Во вторую строку выходного файла выведите элементы массива. Элементами массива должны быть целые числа в интервале от -2^{31} до $2^{31}-1$ включительно. Если решений несколько, выведите любое.

rmq.in	rmq.out
3 2	consistent
1 2 1	1 2 2
2 3 2	
3 3	inconsistent
1 2 1	
1 1 2	
2 3 2	

Задача G. Подпалиндромы

Имя входного файла: substring-palindromes.in Имя выходного файла: substring-palindromes.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано слово и запросы двух типов:

- заменить i-ю букву в слове на букву c;
- ullet проверить, является ли подстрока $s_j \dots s_k$ палиндромом.

Формат входных данных

В первой строке записано слово из n строчных латинских букв. Во второй строке записано целое число m — количество запросов ($5 \leqslant n, m \leqslant 10^5$). Следующие m строк содержат запросы. Каждый запрос имеет вид «change i a» или «palindrome? j k», где i, j, k — целые числа ($1 \leqslant i \leqslant n; 1 \leqslant j \leqslant k \leqslant n$), а символ c — строчная латинская буква.

Формат выходных данных

На все запросы второго типа выведите «Yes», если подслово $s_j \dots s_k$ является палиндромом, и «No» в противном случае.

substring-palindromes.in	substring-palindromes.out
abcda	No
5	Yes
palindrome? 1 5	Yes
palindrome? 1 1	Yes
change 4 b	
palindrome? 1 5	
palindrome? 2 4	

Задача Н. Друзья и последовательности

Имя входного файла: friends.in Имя выходного файла: friends.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Майк и !Майк соперничают еще со школьных лет, они противоположны во всем что делают, кроме программирования. Сегодня у них возникла проблема, которую сами друзья сами решить не могут, но вместе с вами — кто знает?

Каждый из них знает две последовательности n чисел a и b. По запросу в виде пары целых чисел (l,r) Майк может сразу сообщить значение $\max_{i=l}^r a_i$, а !Майк — значение $\min_{i=l}^r b_i$. Предположим, что робот задает им каждый из возможных различных запросов в виде пары

Предположим, что робот задает им каждый из возможных различных запросов в виде пары целых чисел (l,r) $(1\leqslant l\leqslant r\leqslant n)$ (то есть он сделает ровно n(n+1)/2 запросов) и считает, сколько раз их ответы на один и тот же запрос совпадают, то есть для скольких пар выполняется $\max_{i=l}^r a_i = \min_{i=l}^r b_i$. Сколько случаев совпадения посчитает робот?

Формат входных данных

В первой строке содержится единственное целое число $n \ (1 \leqslant n \leqslant 200\,000)$.

Во второй строке содержатся n целых чисел $a_1, a_2, \ldots, a_n \ (-10^9 \leqslant a_i \leqslant 10^9)$ — элементы последовательности a.

В третьей строке содержатся n целых чисел $b_1, b_2, \ldots, b_n \ (-10^9 \leqslant b_i \leqslant 10^9)$ — элементы последовательности b.

Формат выходных данных

Выведите одно целое число — количество совпадений ответов, которые посчитает робот, то есть для скольких пар выполняется $\max_{i=l}^r a_i = \min_{i=l}^r b_i$.

friends.in	friends.out
6	2
1 2 3 2 1 4	
6 7 1 2 3 2	
3	0
3 3 3	
1 1 1	

Задача І. К-ый максимум

Имя входного файла: kthmax.in
Имя выходного файла: kthmax.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество команд $(n \le 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \le 10^9)$. Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходных данных

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

kthmax.in	kthmax.out
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Задача Ј. Размен денег

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

За свою долгую жизнь Боря собрал коллекцию из n монет. Он выложил все эти монеты в ряд. При этом i-я в ряду монета имеет номинал a_i .

Боря собирается в очередное путешествие, но у него осталось очень мало времени на сборы. Поэтому он хочет взять некоторый отрезок лежащих подряд монет и надеется, что ему их хватит.

Боря хочет ответить на несколько запросов. В каждом запросе Боря хочет узнать, какую минимальную сумму он не сможет заплатить без сдачи, если он возьмет все монеты с l_i -й по r_i -ю. Более формально, он хочет найти такое минимальное натуральное число z, что нельзя выбрать подмножество монет с номерами от l_i до r_i , суммарный номинал которых равен z.

Формат входных данных

В первой строке задано два целых числа n и m $(1 \le n, m \le 150\,000)$ — количество монет у Бори и количество запросов. В следующей строке задано n чисел a_i $(1 \le a_i \le 10^9)$ — номинал i-й монеты. В следующих m строках задано по два числа l_i и r_i $(1 \le l_i \le r_i \le n)$ — описание запросов.

Формат выходных данных

На каждый из m запросов выведите минимальную сумму, которую нельзя заплатить без сдачи, воспользовавшись монетами с l_i -й по r_i -ю.

стандартный ввод	стандартный вывод
5 5	13
2 1 5 3 1	4
1 5	1
1 3	2
1 1	11
2 4	
2 5	