If u = 0, then $f_m(0) = f_n(0) = 0$ for all m, n, so the sequence $(f_n(0))$ is a Cauchy sequence in F converging to 0. If $u \neq 0$, by replacing ϵ by $\epsilon / ||u||$, we see that the sequence $(f_n(u))$ is a Cauchy sequence in F. Since F is complete, the sequence $(f_n(u))$ has a limit which we denote by f(u). This defines our candidate limit function f by

$$f(u) = \lim_{n \to \infty} f_n(u).$$

It remains to prove that

- 1. f is linear.
- 2. f is continous.
- 3. f is the limit of (f_n) for the operator norm.

Step 2. The function f is linear.

Recall that in a normed vector space, addition and multiplication by a fixed scalar are continuous (since $||u+v|| \le ||u|| + ||v||$ and $||\lambda u|| \le |\lambda| ||u||$). Thus by definition of f and since the f_n are linear we have

$$f(u+v) = \lim_{n \to \infty} f_n(u+v)$$
 by definition of f

$$= \lim_{n \to \infty} (f_n(u) + f_n(v))$$
 by linearity of f_n

$$= \lim_{n \to \infty} f_n(u) + \lim_{n \to \infty} f_n(v)$$
 since $+$ is continuous

$$= f(u) + f(v)$$
 by definition of f .

Similarly,

$$f(\lambda u) = \lim_{n \to \infty} f_n(\lambda u)$$
 by definition of f
 $= \lim_{n \to \infty} \lambda f_n(u)$ by linearity of f_n
 $= \lambda \lim_{n \to \infty} f_n(u)$ by continuity of scalar multiplication
 $= \lambda f(u)$ by definition of f .

Therefore, f is linear.

Step 3. The function f is continuous.

Since $(f_n)_{n\geq 1}$ is a Cauchy sequence, for every $\epsilon>0$, there is some N>0 such that $||f_m-f_n||<\epsilon$ for all $m,n\geq N$. Since $f_m=f_n+f_m-f_n$, we get $||f_m||\leq ||f_n||+||f_m-f_n||$, which implies that

$$||f_m|| \le ||f_n|| + \epsilon \quad \text{for all } m, n \ge N.$$
 (*2)