Project Design Phase-II

Technology Stack (Architecture & Stack)

Date	18 November 2022	
Team ID	PNT2022TMID18437	
Project Name	Smart Farmer- IoT Enabled Smart Farming	
	Application	
Maximum Marks	4 Marks	

- 1. All the sensors for sensing the temperature, soil moisture, water flow and humidity are included and their values are calculated and results are stored in the IBM cloud.
- 2. The sensor values and weather API are computed by Arduino UNO and stored in the cloud for display to the user.
- 3. To write the hardware, software, and APIs, NODE-RED is used as a programming tool and the MQTT protocol is used for communication.
- 4. A mobile application, developed using MIT App Inventor, provides the user with all the collected data. Based on the collected data the user can make decision on watering the crop.
- 5. The user can control the motor by using the app.

Table 1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	User interaction with application	MIT App Inventor
2.	Application Logic-1	Logic for a process in the application	Python
3.	Application Logic-2	Logic for a process in the application	IBM Watson IOT service
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5.	Database	Data Type, Configurations etc.	MySQL
6.	Cloud Database	Database Service on Cloud	IBM Cloud
7.	File Storage	Different soil parameters obtained values	IBM Block Storage
8.	External API	To monitor the weather, used in the application	IBM Weather API, etc
9.	Infrastructure (Server / Cloud)	Application Deployment on Cloud Local Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry
10.	Flow Sensor	Monitors the flow of water	Smart Sensors
11.	Soil moisture sensor	Monitors the soil temperature	Smart Sensors
12.	Temperature sensor	Monitors the temperature of the crop	Smart Sensors
13.	Humidity sensor	Monitors the humidity	Smart Sensors

Table 2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	MQTT protocol is used	Python
	Frameworks		
2.	Security	Sensitive and private data must be	Node-Red, MIT App
	Implementations	protected from their production until	Inventor
		the decision-making and storage	
		stages.	
3.	Scalable Architecture	Scalability is a major concern for IoT	Node-Red service
		platforms. It has been shown that	
		different architectural choices of IoT	
		platforms affect system scalability and	
		that automatic real time decision-	
		making is feasible in an environment	
		composed of dozens of thousand	
4.	Availability	Available feasible	Open weather App
5.	Performance	Design consideration for the	MIT app inventor
		performance of the application	
		(number of requests per sec, use of	
		Cache, use of CDN's) etc	