Lecture #1 Algorithm Analysis

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

What is algorithm?

- To describe the sequntial process for solving a problem using a modern computer(s)
 - Input ⇒ algorithm ⇒ output
- Must clarify the input and output of your problem

Algorithm should be

- Easy-to-understand
 - Able to implement an algorithm using a programming language
- Correctly designed & efficient
 - Must produce correct answers
 - Should be practically efficient for large size of input

How can we measure the efficiency?

In This Lecture

Efficiency of algorithms

- What is the efficiency? How to measure the efficiency?
 - Empirically and theoretically

Computational complexities

Why should we take care about the size of input?

Best, average, and worst cases

Which case is important for algorithm analysis?

Asymptotic analysis

- How to express complexities in simple & uniform ways?
 - While considering the large size of input at the same time
- Concept of Big-O, Omega, and Theta bounds

Outline

Background on Algorithm Analysis 📆

Asymptotic Analysis

Efficiency Of Algorithm

A problem can be solved by many algorithms

- **Problem**: What if the number *n* is added *n* times?
 - \circ **Input**: the number n
 - \circ Output: a number that n is added n times

Algorithm A	Algorithm B	Algorithm C
sum ← 0 for i in range(0, n): sum ← sum + n	<pre>sum ← 0 for i in range(0, n): for j in range(0, n): sum ← sum + 1</pre>	sum ← n × n

- Q: Which algorithm should we use among them?
 - A: The fastest and lightest one (i.e., the best)
- Q: How can we know which of them is the best?
 - A1: Let's directly run and compare them on a computer!
 - A2: Algorithm C since it takes O(1) time and space

Time & Space Costs

Choice of data structure or algorithm can make the difference between programs

- Running in a few seconds or many days
- Consuming a little memory or huge memory space

A solution is said to be efficient

If it solves the problem within its resource constrains

Resource	Time	Space
Empirical	Wall-clock time	Memory usage
Theoretical	Time complexity	Space complexity

The (time | space) cost of a solution

The amount of resources that the solution consumes

Measure efficiency ⇔ Measure time & space costs

How To Measure Efficiency (1)

Empirical Measurement

- e.g., measure the runtime of a program
- e.g., check the maximum memory usage (i.e., VmPeak)

Empirical Time Cost (wall-clock time)

Empirical Space Cost (memory usage)

```
start_time = tic

Run an algorithm to be measured

run_time = toc - start_time

cat /proc/$pid/status

VmPeak: 67380632 kB <<
VmSize: 6552 kB

VmData: 67376304 kB
VmStk: 132 kB</pre>
```

- Pros: Easy-to-check & practically intuitive
- Cons
 - Varied by environment (HW, OS, PL, ...) and how to implement
 - Hard to know the tendency of performance for the size of input
- Can we know the efficiency without directly running it?

How To Measure Efficiency (2)

Theoretical Measurement

- Complexity analysis in terms of time & space
 - Time complexity = the number of basic operations
 - e.g., the number of additions or multiplications
 - Space complexity = the amount of data to be stored or used
 - e.g., the size of an array where the input data are stored
- In general, the computational complexities of an algorithm depend on the size *n* of input data
 - $\circ T(n)$: time complexity (function) for given n input data
 - $\circ S(n)$: space complexity for given n input data
 - Most of the times, it is proportional to the input size (for data structures)

Basic Operations

Basic operation runs in constant time \mathcal{C} regardless of the input size

- Add/subtraction (+ or −) & division/multiplication (/ or ×) \circ For a + b or $a \times b$, its # of operations is a constant (i.e., 1)
- Assignment (= or ←)
 - \circ For c=10, its # of operations is a constant (i.e., 1)
 - \circ For $c \leftarrow a + b$, its # of operations is a constant (i.e., 2)
- Comparison (< or >)
 - \circ For c > b, its # of operations is a constant (i.e., 1)

...

Example Of Complexity Analysis

Problem: What if the number n is added n times?

Let's analyze the time complexity of each algorithm

Algorithm A	Algorithm B	Algorithm C
sum ← 0 for i in range(0, n): sum ← sum + n	<pre>sum ← 0 for i in range(0, n): for j in range(0, n): sum ← sum + 1</pre>	sum ← n × n

• Count the number of basic operations := T(n)

	Algorithm A	Algorithm B	Algorithm C
Assignments	n+1	$n \times n + 1$	1
Additions	n	$n \times n$	
Multiplications			1
Total	2n + 1	$2n^2 + 1$	2

Performance Tendency

Let's represent the # of operations as a graph

Best, Average, & Worst Cases

Complexities can be different according to inputs

- Best case: input sets consuming the least resources
 - Easy to obtain, but hard to judge its general performance
- Average case: input sets exhibiting the average cost
 - o Can indicate precise performance, but hard to calculate in general
- Worst case: input sets consuming the largest resources
 - Easy to obtain, but can be loosely estimated (when it is rare)
 - Guarantee that the algorithm for all inputs takes time/space less than or equal to the worst case T(n) Each point: Worst case

Most of the times, we should do analysis for the worst case

Example For Cases

Sequential search problem

- Input: an array of size n, having keys & a querying key
- Output: the index for the querying key in the array

```
def sequential_search(array, n, key):
    for i in range(0, n):
        if array[i] == key:
            return i
    return -1 # when the array doesn't have the key
```

- Best case: T(n) = 1 when the array has the querying key at the first
- Worst case: T(n) = n when the array has it at the end or no the key
- Average case: $T(n) = \frac{n+1}{2}$, i.e., the expectation for all possible cases

$$\frac{1}{n} \times 1 + \frac{1}{n} \times 2 + \dots + \frac{1}{n} \times i + \dots + \frac{1}{n} \times n = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \times \frac{n(n+1)}{2} = \frac{n+1}{2}$$

P(the key is at index i) # of operations searching for index i

Summary

A solution is said to be efficient

Time and Space

If it solves the problem within its resource constrains

How to measure the efficiency?

- Empirical measurement
 - Hard to know the tendency of performance for the size of input
- Computational complexity analysis
 - $\circ T(n)$: time complexity = the number of basic operations
 - $\circ S(n)$: space complexity = the amount of data to be used

Best, average, and worst cases

- Should do analysis for the worst case
- Guarantee that the algorithm for all inputs takes time/space less than or equal to the worst case

Outline

Background on Algorithm Analysis

Asymptotic Analysis 🐒

- Big-O notation
- Big-Omega notation
- Big-Theta notation

Motivation

Q. Which of the following is faster?

- Algorithm A: # of operations is 2^n , i.e., $T_A(n) = 2^n$
- Algorithm B: # of operations is n^{10} , i.e., $T_B(n) = n^{10}$

```
\circ If n = 10, T_A(10) = 2^{10} = 1024 \ll T_B(10) = 10^{10} = 10 billion (10<sup>9</sup>)
```

$$\circ$$
 If $n = 60$, $T_A(60) = 2^{60} \approx 1.15 \times 10^{18} > T_B(60) = 60^{10} \approx 6.05 \times 10^{17}$

$$\circ$$
 If $n = 100$, $T_A(100) = 2^{100} \approx 10^{30} \gg T_B(100) = 100^{10} = 10^{20}$

If the input size n becomes extremely large, then Alg. B is faster "eventually" than Alg. A

Asymptotic analysis (점근적 분석)

 Aim to analyze the efficiency of an algorithm when the input size becomes very large

Asymptotic Analysis

To analyze how a complexity function of the input size n changes as n becomes large

- **Asymptotic**: to approach an infinity point (i.e., $n \to \infty$)
- As $n \to \infty$, how the function changes is called asymptotic (or limiting/tail) behavior

Why Need To Consider ∞?

Q. What if the complexity function consists of multiple sub-functions?

■ Example: $T(n) = n^2 + n + 1$

```
\circ n = 1 T(n) = 1 + 1 + 1 = 3 (33.3\% \text{ for } n^2)

\circ n = 10 T(n) = 100 + 10 + 1 = 111 (90\% \text{ for } n^2)

\circ n = 100 T(n) = 10000 + 100 + 1 = 10101 (99\% \text{ for } n^2)

\circ n = 1,000 T(n) = 10000000 + 1000 + 1 = 1001001 (99.9\% \text{ for } n^2)
```

- In other words, T(n) is proportional to n^2 as $n \to \infty$
 - \circ n^2 is considered as a **dominating factor** having the largest exponent in general
- Using asymptotic analysis, it's possible to know how the complicated function behaves eventually

Asymptotic Bounding

- Q. Then, how can we simply describe the limiting behavior of an arbitrary complexity function?
 - Big-O (0, upper bound)
 - Big-Omega (Ω , lower bound)
 - Big-Theta (0, exact bound)

Big-O (*O*, upper bound)

Big-Omega (Ω , lower bound)

Big=Theta (Θ , exact bound)

Big-O Notation

 $T(n) \in O(f(n))$

Definition of
$$T(n) = O(f(n))$$
 [as $n \to \infty$]

T(n) is in the set O(f(n))

if there exist two positive constants \emph{c} and \emph{n}_0

such that
$$T(n) \le cf(n)$$
 for all $n \ge n_0$

⇒ Indicating the input size is large enough

Usage of big-O notation

• The algorithm is in O(f(n)) for [best | average | worst] case

Interpretation of big-O notation

- When the input size is large enough, it always executes in less than cf(n) for [best | average | worst] case
- T(n) grows asymptotically no faster than f(n) as upper bound

Big-O Examples (1)

Claim)
$$T(n) = 5n^2 = O(n^2)$$

- Proof) Intuitively pick c and n_0 so that c=6 and $n_0=1$; then, for all $n \ge n_0=1$, $T(n)=5n^2 \le cn^2=6n^2$
 - \circ In this proof, $c=6\ \&\ n_0=1$ is one of numerous answer candidates
 - \circ Any c and n_0 can be an answer if they satisfy the definition

- e.g.,
$$c = 7 \& n_0 = 1$$

Claim) T(n) = 4 = O(1)

- Proof) Suppose c=10 and $n_0=1$; Then, for all $n \ge n_0=1$, $T(n)=4 \le c \times 1=10$
- Say "it takes constant time" in this case

Big-O Examples (2)

Claim)
$$T(n) = 3n^2 + 100 = O(n^2)$$

- Proof 1)
 - Suppose $n_0 = 100$ and c = 5; for all $n \ge 100$, $3n^2 + 100 \le cn^2 = 5n^2$
- Proof 2)
 - $3n^2 + 100 \le 3n^2 + 100n^2 = 103n^2 \Rightarrow c = 103 \text{ for all } n \ge n_0 \ge 1$
 - Any $n_0 \ge 1$ is good in this case (e.g., $n_0 = 1$ or $n_0 = 2$)
- Proof 3)
 - \circ First, let c = 13; then, $3n^2 + 100 \le 13n^2 \Leftrightarrow 100 \le 10n^2 \Leftrightarrow 10 \le n^2$
 - \circ This indicates $n \ge \sqrt{10} \approx 3.162 \Rightarrow n_0 = 4$
 - Then, for all $n \ge 4$, $3n^2 + 100 \le 13n^2$

If a polynomial has the term of largest degree $\leq n^r$, then it is $O(n^r)$

Big-O Examples (3)

Claim)
$$T(n) = 5n + 3 = O(n^2)$$

- Proof)
 - \circ Suppose c = 1
 - \circ Then, $5n + 3 \le n^2$ for all $n \ge n_0 = 6$

This problem implies that

- Big-O bound can be either of strict or loose upper bound
 - \circ By which base function f(n) is used
- Example: $T(n) = 3n^2$

$$\circ T(n) = 3n^2 = \{O(n^2), O(n^3), O(n^4), \cdots\}$$

- \circ If a problem says like "estimate Big-O bound as tight as possible", you should write it like $T(n) = O(n^2)$
 - Do likewise for Big-Omega bound as well

Big-Omega Notation

$$T(n) \in \Omega(f(n))$$

Definition of
$$T(n) = \Omega(f(n))$$
 [as $n \to \infty$]

T(n) is in the set $\Omega(f(n))$

if there exist two positive constants c and n_0

such that
$$T(n) \ge cf(n)$$
 for all $n \ge n_0$

⇒ Indicating the input size is large enough

Usage of big-Omega notation

• The algorithm is in $\Omega(f(n))$ for [best | average | worst] case

Interpretation of big-Omega notation

- When the input size is large enough, it always requires **more than** cf(n) for [best | average | worst] case
- T(n) grows asymptotically faster than f(n) as lower bound

24

Big-Omega Examples

Claim)
$$T(n) = 5n^2 = \Omega(n^2)$$

- Proof)
 - Suppose c=4 and $n_0=1$; then, $5n^2\geq 4n^2$ for all $n\geq n_0=1$

Claim)
$$T(n) = 5n^2 + 3 = \Omega(n^2)$$

- Proof)
 - Let c=1; then, $5n^2+3\geq n^2 \Leftrightarrow 4n^2\geq -3$ for all natural numbers n
 - \circ Thus, any $n_0 > 0$ can be good, e.g., $n_0 = 1$

Claim)
$$T(n) = 5n^3 + 3 = \Omega(n^2)$$

- Proof)
 - Let c = 1; then, $5n^3 + 3 \ge n^2$ for all n; thus, any $n_0 > 0$, e.g., $n_0 = 1$
- This is also an example of a loose lower bound
 - If a polynomial has the term of largest degree $\geq n^r$, then it's $\Omega(n^r)$

Big-Theta Notation

Definition of
$$T(n) = \Theta(f(n))$$
 [as $n \to \infty$]

■ T(n) is in the set $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$ if there exist two positive constants c and n_0 such that $c_1 f(n) \le T(n) \le c_2 f(n)$ for all $n \ge n_0$

T(n) grows asymptotically as fast as f(n) as exact bound

Big-Theta Examples

Claim)
$$T(n) = 5n^2 = \Theta(n^2)$$

- Proof)
 - $0 \cdot 5n^2 = O(n^2)$ and $5n^2 = \Omega(n^2)$
 - Thus, $5n^2 = \Theta(n^2)$ by its definition

Claim)
$$T(n) = 5n^2 + 3 = \Theta(n^2)$$

Proof)

$$0.5n^2 + 3 = O(n^2)$$
 and $5n^2 + 3 = \Omega(n^2)$; thus, $5n^2 + 3 = \Theta(n^2)$

Interesting fact for Big-Theta

- Note that
 - If a polynomial has the term of largest degree $\leq n^r$, then it's $O(n^r)$
 - If a polynomial has the term of largest degree $\geq n^r$, then it's $\Omega(n^r)$
- Implying that if a polynomial's largest degree term is n^r , then it's $\Theta(n^r)!$

Example With Big Bounds (1)

Problem: What if the number n is added n times?

Let's analyze the time complexity of each algorithm

Algorithm A	Algorithm B	Algorithm C
sum ← 0 for i in range(0, n): sum ← sum + n	<pre>sum ← 0 for i in range(0, n): for j in range(0, n): sum ← sum + 1</pre>	sum ← n × n

• Count the number of basic operations := T(n)

	Algorithm A	Algorithm B	Algorithm C
Assignments	n+1	$n \times n + 1$	1
Additions	n	$n \times n$	
Multiplications			1
Total	2n + 1	$2n^2 + 1$	2
Big Bounds	$O(n) = \Omega(n) = \Theta(n)$	$O(n^2) = \Omega(n^2) = \Theta(n^2)$	$O(1) = \Omega(1) = \Theta(1)$

Example With Big Bounds (2)

Sequential search problem

- Input: an array of size n, having keys & a querying key
- Output: the index for the querying key in the array

```
def sequential_search(array, n, key):
    for i in range(0, n):
        if array[i] == key:
            return i
        return -1 # when the array doesn't have the key
```

- Best case: $T(n) = 1 = O(1) = \Omega(1) = \Theta(1)$
- Worst case: $T(n) = n = O(n) = \Omega(n) = \Theta(n)$
- Average case: $T(n) = \frac{n+1}{2} = O(n) = \Omega(n) = \Theta(n)$

At Least Get Big-O Bound

Mostly, we use Big-O notation a lot to analyze the efficiency of an algorithm

- If possible, try to obtain Big-Theta at the first
- But it's hard to obtain Big-Omega for some problems
 - Implying that it's hard to get Big-Theta too
- If impossible, Big-O bound is enough
 - Since we can still guess that the algorithm's efficiency is unlikely to be worsen than the upper bound
 - Must obtain the Big-O bound as tight as possible for the worst (input) case

Big-O Complexity Chart

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!)$$

Reference: https://www.bigocheatsheet.com/

Summary

Big-O implies an upper bound

- It always executes in less than the upper bound
- $O(n^2)$: T(n) grows asymptotically no faster than n^2

Big-Omega implies a lower bound

- It always requires more than than the lower bound
- $\Omega(n^2)$: T(n) grows asymptotically faster than n^2

Big-Theta implies an exact bound

- It performs operations as much as the exact bound
- $\Theta(n^2)$: T(n) grows asymptotically as fast as n^2

Get Big-Theta bound if possible; otherwise, obtain Big-O bound for worst case as tight as possible

Outline

Background on Algorithm Analysis

Asymptotic Analysis

- Big-O notation
- Big-Omega notation
- Big-Theta notation
- Little-o notation
- Little-omega notation

Little-o Notation

Describe the growthrate of f(n) is asymptotically less than g(n)

- $5n = o(n^2)$, the growthrate of 5n is less than that of n^2
- $0.5n^2 \neq o(n^2)$ since the growthrate of $0.5n^2$ = that of n^2

Definition of
$$T(n) = o(g(n))$$

$$o(g(n)) = \left\{ f(n) | \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \right\}$$

- Set of all functions f(n) overwhelmed by g(n)
 - Interprested as loose upper bound
- If an alg. is $o(n \log n)$, its speed cannot exceed $n \log n$
 - \circ Tighter and stricter than $O(n \log n)$ (can prevent information loss)

Little-omega Notation

Describe the growthrate of f(n) is asymptotically greater than g(n)

- $n^2 = \omega(n)$, the growthrate of n^2 is greater than that of n
- $2n^2 \neq \omega(n^2)$ since the growthrate of $2n^2$ = that of n^2

Definition of
$$T(n) = \omega(g(n))$$

$$\omega(g(n)) = \left\{ f(n) | \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \right\}$$

- Set of all functions f(n) overwhelming g(n)
 - Interprested as loose lower bound
- If an alg. is $\omega(n)$, its speed **must** exceed n
 - \circ Tighter and stricter than $\Omega(n)$ (can prevent information loss)

Example of Little-o and Little- ω

Claim.
$$n^2 - 5 = o(n^3)$$

Proof)

$$f(n) = n^2 - 5$$
 and $g(n) = n^3$

$$\circ \lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2-5}{n^3} = 0; \text{ thus, } n^2-5 = o(n^3) \text{ by its definition}$$

Claim.
$$\frac{n^3}{4} = \omega(n^2)$$

Proof)

$$\circ f(n) = \frac{n^3}{4} \text{ and } g(n) = n^2$$

$$\circ \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{1}{4} \frac{n^3}{n^2} = \infty; \text{ thus, } \frac{n^3}{4} = \omega(n^2) \text{ by its definition}$$

What You Need To Know

Efficiency of algorithms

What is the efficiency? How to measure the efficiency?

Computational complexities

Why should we take care about the size of input?

Best, average, and worst cases

Which case is important for algorithm analysis?

Asymptotic analysis

- How to express complexities in simple & uniform ways?
 - While considering the large size of input at the same time
- Concept of Big-O, Omega, and Theta bounds
 - \circ + little-o and little- ω

In Next Lecture(s)

Recursive Algorithm & Reccurence

How to analyze a recursive complexity function

- Substitute method
- Mathmetical induction
- Master theorem

Thank You