# Number System and Computer Arithmetic

By Smita Mande

### Integer Representation

### Integer

## Signed

- Sign and Magnitude
- 1's Complement
- 2's Complement

Unsigned

- ✓ Computers uses *a fixed number of bits* to represent an integer.
- ✓ The commonly-used bit-lengths for integers are 8-bit, 16-bit, 32-bit or 64-bit.
- ✓ Besides bit-lengths, there are two representation schemes for integers:
- 1. Unsigned Integers: can represent zero and positive integers.
- 2. Signed Integers: can represent zero, positive and negative integers.

  Three representation schemes had been proposed for signed integers:
  - 1. Sign-Magnitude representation
  - 2. 1's Complement representation
  - 3. 2's Complement representation

### Unsigned Integers

• Unsigned integers can represent zero and positive integers, but not negative integers. An n-bit unsigned integer can represent integers from 0 to (2^n)-1

| n= number of bits | Minimum | Maximum                                                   |
|-------------------|---------|-----------------------------------------------------------|
| 8                 | 0       | (2^8)-1 (=255)                                            |
| 16                | 0       | (2^16)-1 (=65,535)                                        |
| 32                | 0       | (2^32)-1 (=4,294,967,295) (9+<br>digits)                  |
| 64                | 0       | (2^64)-1<br>(=18,446,744,073,709,551,615) (19+<br>digits) |

# Signed Integers Sign Magnitude Representation

- The most-significant bit (msb) is the *sign bit*,
  - 0 representing positive integer
  - 1 representing negative integer.
- The remaining *n*-1 bits represents the magnitude (absolute value) of the integer.



#### Signed Representation K-m bits -(m-1) → Magnitude L→ sign bit if n = a + hen 0111 >+7 > 0110 =>+6 0001 =>+1 0000 >+0 1000 -0 1001 >-1



- This is not possible in number system.
- so this is drawback of sign and magnitude representation method.
- Therefore we use 2's complement method to represent signed number

# Signed Integers 1's Complement Representation





#### 1's Complement Representation

Can represent numbers from -32,767 to 32,767.

- ✓ Arithmetic is easier than sign-magnitude.
- ✓ But, still have two representations for zero:

$$0 = 0000000000000000$$

# Signed Integers 2's Complement Representation





# Signed Integers 2's Complement Representation



### Binary Addition

| Input Bits |   | Sum | Carry |
|------------|---|-----|-------|
| 0          | 0 | 0   | 0     |
| 0          | 1 | 1   | O     |
| 1          | 0 | 1   | 0     |
| 1          | 1 | 0   | 1     |