

Tracking & Alignment news

Lucia Grillo (Heidelberg University)

on behalf of the T&A group

25 January 2016

1

Reconstruction performance in RunII

PV resolution

Agnieszka, Vava

Agnieszka's talk

- Data driven measurement of PV resolution
- Method: split the tracks of an event randomly into 2 samples
 - perform PV reconstruction separately on each sample
 - match the PVs in the 2 samples and take the difference as resolution
- Validated on MC
- New PV finding results in a better resolution than in Run I
 The resolution for 25 tracks is better for 2015 data (~7% for x, ~20% for z)

Decay time resolution

Sevda, Mengzhen, Yuehong, Liming

• Time resolution study with Run II and Run I $B_s \! \to \! J/\psi \varphi$ decays

Mengzhen's talk

- Method:
 - Calibrate σ_t using prompt sample to obtain effective time

resolution R as function of σ_t

- Sweight using $m(\mu\mu)$ to subtract fake J/ψ
- \bullet Fit decay time distribution in bins of σ_t
- Use σ_t distribution from real B_s candidates to get the resolution averaged event-by-event
- The effective resolution in Run II is
 ~6% better than in Run I

Christian

Further on going studies: Momentum resolution in Run II

A first look at Pb-Pb collisions

Johan, Wouter

Pb-Pb and Pb-gas collisions

Johan's talk

- Many almost empty events (peripheral Pb-Pb collisions)
- Some very high multiplicity events: hard to reconstruct & long processing time
- Looked at sub-detector response, hit correlations, calo matching, PVs

• Ongoing Studies: evaluation of efficiency and ghost rate to define a GEC

... And lots of things still to be understood!

Getting ready for the data taking in 2016

Tracking

Agnieszka, Barbara, Espen, Gerhard, Manuel, Marian, Michel, Sascha, Wouter,

v45r1

v48r1

v48r1 (2015 reco)

- Many improvements since Run I
- Offline quality reconstruction in the HLT
- 34% improved timing on 2012 data using 2012 tracking sequence
- Overall 50% speed-up when using 2015 reconstruction
- Aim for 2016: further improve tracking performance and timing (critical for HLT strategy)

Tracking in 2016

Adam Dendek, Adam Davis, David, Diego, Jeysson, Manuel, Marian, Michel, Matt, Sascha, Hang, Paul, Stephen, et. al

HLT1:

Algorithm	time
FastVelo	8 %
PV reco	4 %
VeloTT	3 %
Forward HPT	20 %
Track fit	44 %
Extra muon reco	14 %

HLT2:

Algorithm	time
Forward LPT	11 %
Seeding	28 %
Track fit	14 %
Rich reco	22 %
Calo	6 %
Rerun HLT1	5 %
Combinatorics	12 %

Requirements

Need to become 1/3
faster in HLT2 and
save ~10% of memory
(depending on HLT1)

Sascha's table

Plan

Tracking 2016 Twiki page

- Use MVAs already at the end of the pattern recognition (to reduce the load on the Kalman filter)
- Explore StructureOfArrays to speed up seeding
- Use ghost probability already in HLT1
- More ideas being tested in the next weeks

• If you like a challenge, speed up the Runge-Kutta!

Working on this!

Giulio, Silvia

- VELO alignment
 - Fully automatic procedure since end October 2015
 - Variation of the constants within expectations
 - Constants updated every 2-3 fills working well

Maurizio, Silvia, Wouter, Zhirui

- Tracker alignment
 - Fully automatic procedure since November 2015
 - Variation of the constants within expectations
 - Variation observed mainly after magnet polarity switch, few updates in next consecutive fills

- Muon alignment
 - Stable as expected: no updates needed yet

Tracker alignment - $Z \rightarrow \mu \mu$ decays

mass [GeV]

- Uses Z→µµ decays collected in 2015
- Additional D.O.F. used:
 - OT modules split above/below the beam pipe
 - OT C-frames in z
 - split TT modules
 - IT boxes
 - IT layers and ladders
- Z peak ~15% narrower, and improved track χ₂ after alignment
- Database produced recommended for W and Z analyses

local tag of Caliboff: CALIBOFF: ttitot-20151228

Wouter's talk

Tracker alignment - Do decays

- Use standard sample selection adding D.O.F.s
 - no changes in D⁰ invariant mass resolution, but same improvements in track χ2/residuals as on Z sample

• Z decays give better resolution than D⁰ decays, but low statistics: how about adding **high momentum tracks** to the D⁰ default sample? - on going

Maurizio's talk

RICH alignment & Calibration

Claire, Paras, Chris, Jibo

- Refractive index and HPD image calibration stable and working well
- Mirror alignment: working well, several stability studies on going

Monitoring in advanced status! Thanks Claire and Roel!

Real-time Alignment & Calibration in 2016

Work in progress/to-do list

- Further stability studies ongoing for VELO, Tracker and RICH alignments
- Tracker alignment improvements:
 - Use different/combined particle samples
 - Use additional D.O.F.s to be aligned
- Ongoing improvements with Monitoring histograms/Alarms (for VELO, Tracker and RICH alignment and OT calibration tasks)
- Comparison of BCAM information with IT misalignments

Giulio, Elena, Francesca, Fred, Philippe, Pavol,
Maurizio, Lucia, Silvia, Stefania, Varvara, Wouter,
Zhirui et al. + RICH team + help from online team

Last but not least:

Reconstruction upgrade task-force

- Aim until June: estimate speed of the upgrade tracking, based on CPUs
- Need: people working on a simplified geometry and the Kalman filter

Conclusions

- Run II performance numbers ready or being finalized
- Now priorities are:

Getting ready for the data taking in 2016

Alignment & Calibration

- · Finalize stability/
 optimization studies
- · Implement improved

 sample selection and add

 D.O.Fs
- · Monitoring/Alarms

Tracking

- · Gain ~1/3 Speed in 4/LT2
- · Save ~10% memory

... and for the upgrade

Thank you

OT calibration - Stability Studies Francesco, Lucia, Philippe

- Calibrates OT relatively to LHC clock
- Real-time global t0 offset calibration + per OTIS offsets calibrated offline
- ullet Exploits drift time residuals $\Delta t = t_{
 m meas} t(r)$

- TR relation in 2015 is stable wrt 2012
- Resolution evaluation and other studies on going

Philippe's talk

Agnieszka, Vava

Agnieszka's talk

Resolution for 25 tracks.

Data sample	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
Data 2011	0.0139 ± 0.0017	0.0124 ± 0.0016	0.0885 ± 0.0085
Data 2012	0.0135 ± 0.0014	0.0126 ± 0.0009	0.0926 ± 0.0054
Sim08 2011	0.0128 ± 0.0015	0.0123 ± 0.0014	0.0721 ± 0.0064
Sim08 2012	0.0137 ± 0.0016	0.0133 ± 0.0017	0.0827 ± 0.0085
MC11a	0.0119 ± 0.0062	0.0118 ± 0.0049	0.0626 ± 0.0203

from Chris Thomas talk.

	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
data	0.0129 ± 0.001	0.0123 ± 0.001	0.073 ± 0.001
MC full	0.0127 ± 0.001	0.0122 ± 0.001	0.073 ± 0.001

The resolution for 25 tracks is better for 2015 data (7% for x, even 20% for z).

Giulio, Maurizio, Silvia, Stefania, Wouter, Zhirui

- VELO and Tracker alignment
 - Fully automatic procedure since October and November 2015
 - Variation of the constants within expectations
- Muon alignment
 - Stable as expected: no updates needed yet

