AMCR ELO, Activity Monitors Control Register

The AMCR EL0 characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR_EL0 is applicable to both the architected and the auxiliary counter groups.

Configuration

AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System register <u>AMCR[31:0]</u>.

AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to External register <u>AMCR[31:0]</u>.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCR EL0 are undefined.

Attributes

AMCR EL0 is a 64-bit register.

Field descriptions

6362616059585756555453525150	49	48 47 46 45 44 43	42	41 40 39 38 37 36 35 34 33 32		
RES0						
RES0	CG1RZ	RES0	HDBG	RES0		
3130292827262524232221201918	17	161514131211	10	9876543210		

Bits [63:18]

Reserved, res0.

CG1RZ, bit [17] When FEAT AMUv1p1 is implemented:

Counter Group 1 Read Zero.

CG1RZ	Meaning	
		-

0d0	System register reads of AMEVCNTR1 <n> EL0 return</n>
	the event count at all
	implemented and enabled
	Exception levels.
0b1	If the current Exception level is
	the highest implemented
	Exception level, system
	register reads of
	<u>AMEVCNTR1<n>_EL0</n></u> return
	the event count. Otherwise,
	reads of
	<u>AMEVCNTR1<n>_EL0</n></u> return
	a zero value.

Note

Reads from the memory-mapped view are unaffected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [16:11]

Reserved, res0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

HDBG	Meaning
0b0	Activity monitors do not halt
	counting when the PE is halted
	in Debug state.
0b1	Activity monitors halt counting when the PE is halted in Debug
	state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Reserved, res0.

Accessing AMCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCR EL0

op0	op1	CRn	CRm	op2	
0b11	0b011	0b1101	0b0010	0b000	

```
if PSTATE.EL == ELO then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif AMUSERENR ELO.EN == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = AMCR\_EL0;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && CPTR EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = AMCR\_EL0;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && CPTR EL3.TAM == '1' then
```

MSR AMCR_EL0, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0010	0b000

```
if IsHighestEL(PSTATE.EL) then
   AMCR_EL0 = X[t, 64];
else
   UNDEFINED;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.