WS 2018/2019 Funktionale Programmierung

11. Übungsblatt

L. Dirmeier/S. Enderwitz/M. Esponda/N. Goldmann/I. Makarenko/J. Nixdorf/R. Robles/R. Rojas/O. Wiese

Abgabe: 28.1.2019 10:00

Alle Übungen beziehen sich auf den Formalismus der primitiven Rekursiv und die Funkionen in der beigefügten Haskell-Datei.

1. Aufgabe (3 Punkte)

Definieren Sie in Haskell die logischen Funktionen *not*, *and* und *or.* Die logische Werte sind 1 für *True* und 0 für *False*.

2. Aufgabe (3 Punkte)

Definieren Sie in Haskell eine Funktion *odd* die angibt, ob das numerische Argument eine ungerade

Zahl ist (True für ungerade, False für gerade). Sie können dafür die logische

Funktionen verwenden. Definieren Sie mit *odd*, die Funktion *even*, die testet, ob eine Zahl gerade ist.

3. Aufgabe (5 Punkte)

Definieren Sie in Haskell eine Funktion *cut* die eine gegebene Zahl halbiert (ganzzählige Division, d.h. die Hälfte von 5 z.B. ist 2).

4. Aufgabe (5 Punkte)

Definieren Sie in Haskell die Funktionen geg (greater or equal), lee (lower or equal) und eg (equal).

5. Aufgabe (5 Punkte)

Definieren Sie eine primitiv rekursive Funktion (ohne die Verwendung von Haskell) fac, die die Fakultät einer Zahl n berechnet.

$$f(n) = n!$$

6. Aufgabe (5 Punkte)

Definieren Sie eine primitiv rekursive Funktion (ohne die Verwendung von Haskell) *pow*, die die Potenz mⁿ berechnet.

$$f(m,n) = m^n$$

Bonusaufgabe (7 Punkte)

Implementieren Sie eine primitiv rekursive Funktion (ohne die Verwendung von Haskell) fib, die die n-te Fibonaccizahl berechnet.

$$f(0) = 1$$

$$f(1) = 1$$

$$f(n) = f(n-1) + f(n-2)$$

Hinweis:

Beachten Sie die einfach rekursive Version der Fibonacci-Funktion aus der Vorlesung.

Wichtige Hinweise:

- 1) Verwenden Sie geeignete Namen für Ihre Variablen und Funktionsnamen, die den semantischen Inhalt der Variablen oder die Semantik der Funktionen wiedergeben.
- 2) Verwenden Sie vorgegebene Funktionsnamen, falls diese angegeben werden.
- 3) Kommentieren Sie Ihre Programme.
- 4) Verwenden Sie geeignete lokale Funktionen und Hilfsfunktionen in Ihren Funktionsdefinitionen.
- 5) Schreiben Sie in alle Funktionen die entsprechende Signatur.