Loading full 32 bit constants

- * Although the MOV/MVN mechansim will load a large range of constants into a register, sometimes this mechansim will not generate the required constant.
- * Therefore, the assembler also provides a method which will load ANY 32 bit constant:
 - LDR rd,=numeric constant
- * If the constant can be constructed using either a MOV or MVN then this will be the instruction actually generated.
- * Otherwise, the assembler will produce an LDR instruction with a PC-relative address to read the constant from a literal pool.
 - LDR r0,=0x42 ; generates MOV r0,#0x42
 - LDR r0,=0x55555555; generate LDR r0,[pc, offset to lit pool]
- * As this mechanism will always generate the best instruction for a given case, it is the recommended way of loading constants.

Multiplication Instructions

- The Basic ARM provides two multiplication instructions.
- Multiply
 - $MUL\{\langle cond \rangle\}\{S\}\}$ Rd, Rm, Rs ; Rd = Rm * Rs

- **Multiply Accumulate** does addition for free
 - $MLA{\langle cond \rangle}{S} Rd, Rm, Rs, Rn$; Rd = (Rm * Rs) + Rn

- **Restrictions on use:**
 - Rd and Rm cannot be the same register
 - Can be avoid by swapping Rm and Rs around. This works because multiplication is commutative.
 - Cannot use PC.

These will be picked up by the assembler if overlooked.

- Operands can be considered signed or unsigned
 - Up to user to interpret correctly.

Multiplication Implementation

- * The ARM makes use of Booth's Algorithm to perform integer multiplication.
- * On non-M ARMs this operates on 2 bits of Rs at a time.
 - For each pair of bits this takes 1 cycle (plus 1 cycle to start with).
 - However when there are no more 1's left in Rs, the multiplication will early-terminate.
- * Example: Multiply 18 and -1 : Rd = Rm * Rs

* Note: Compiler does not use early termination criteria to decide on which order to place operands.

Extended Multiply Instructions

- * M variants of ARM cores contain extended multiplication hardware. This provides three enhancements:
 - An 8 bit Booth's Algorithm is used
 - Multiplication is carried out faster (maximum for standard instructions is now 5 cycles).
 - Early termination method improved so that now completes multiplication when all remaining bit sets contain
 - all zeroes (as with non-M ARMs), or
 - all ones.

Thus the previous example would early terminate in 2 cycles in both cases.

- 64 bit results can now be produced from two 32bit operands
 - Higher accuracy.
 - Pair of registers used to store result.

Multiply-Long and Multiply-Accumulate Long

- * Instructions are
 - MULL which gives RdHi,RdLo:=Rm*Rs
 - MLAL which gives RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo
- * However the full 64 bit of the result now matter (lower precision multiply instructions simply throws top 32bits away)
 - Need to specify whether operands are signed or unsigned
- * Therefore syntax of new instructions are:
 - UMULL{<cond>}{S} RdLo,RdHi,Rm,Rs
 - UMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs
 - SMULL{<cond>}{S} RdLo, RdHi, Rm, Rs
 - SMLAL{<cond>}{S} RdLo, RdHi, Rm, Rs
- * Not generated by the compiler.

Warning: Unpredictable on non-M ARMs.

Quiz #3

1. Specify instructions which will implement the following:

a)
$$r0 = 16$$

b)
$$r1 = r0 * 4$$

c)
$$r0 = r1 / 16$$
 ($r1$ signed 2's comp.) d) $r1 = r2 * 7$

d)
$$r1 = r2 * 7$$

2. What will the following instructions do?

3. What does the following instruction sequence do?

Load / Store Instructions

- * The ARM is a Load / Store Architecture:
 - Does not support memory to memory data processing operations.
 - Must move data values into registers before using them.
- * This might sound inefficient, but in practice isn't:
 - Load data values from memory into registers.
 - Process data in registers using a number of data processing instructions which are not slowed down by memory access.
 - Store results from registers out to memory.
- * The ARM has three sets of instructions which interact with main memory. These are:
 - Single register data transfer (LDR / STR).
 - Block data transfer (LDM/STM).
 - Single Data Swap (SWP).

Single register data transfer

- * The basic load and store instructions are:
 - Load and Store Word or Byte
 - LDR / STR / LDRB / STRB
- * ARM Architecture Version 4 also adds support for halfwords and signed data.
 - Load and Store Halfword
 - LDRH / STRH
 - Load Signed Byte or Halfword load value and sign extend it to 32 bits.
 - LDRSB / LDRSH
- * All of these instructions can be conditionally executed by inserting the appropriate condition code after STR / LDR.
 - e.g. LDREQB
- * Syntax:
 - <LDR|STR>{<cond>}{<size>} Rd, <address>

Load and Store Word or Byte: Base Register

- * The memory location to be accessed is held in a base register
 - STR r0, [r1] ; Store contents of r0 to location pointed to
 - ; by contents of r1.
 - LDR r2, [r1] ; Load r2 with contents of memory location
 - ; pointed to by contents of r1.

Load and Store Word or Byte: Offsets from the Base Register

- * As well as accessing the actual location contained in the base register, these instructions can access a location offset from the base register pointer.
- * This offset can be
 - An unsigned 12bit immediate value (ie 0 4095 bytes).
 - A register, optionally shifted by an immediate value
- * This can be either added or subtracted from the base register:
 - Prefix the offset value or register with '+' (default) or '-'.
- * This offset can be applied:
 - before the transfer is made: *Pre-indexed addressing*
 - <u>optionally</u> *auto-incrementing* the base register, by postfixing the instruction with an '!'.
 - after the transfer is made: **Post-indexed addressing**
 - causing the base register to be *auto-incremented*.

Load and Store Word or Byte: Pre-indexed Addressing

- * To store to location 0x1f4 instead use: STR r0, [r1,#-12]
- * To auto-increment base pointer to 0x20c use: STR r0, [r1, #12]!
- * If r2 contains 3, access 0x20c by multiplying this by 4:
 - STR r0, [r1, r2, LSL #2]

Load and Store Word or Byte: Post-indexed Addressing

- * To auto-increment the base register to location 0x1f4 instead use:
 - STR r0, [r1], #-12
- * If r2 contains 3, auto-increment base register to 0x20c by multiplying this by 4:
 - STR r0, [r1], r2, LSL #2

Load and Stores with User Mode Privilege

- * When using post-indexed addressing, there is a further form of Load/Store Word/Byte:
 - <LDR|STR>{<cond>}{B}T Rd, <post_indexed_address>
- * When used in a privileged mode, this does the load/store with user mode privilege.
 - Normally used by an exception handler that is emulating a memory access instruction that would normally execute in user mode.

Example Usage of Addressing Modes

- * Imagine an array, the first element of which is pointed to by the contents of r0.
- * If we want to access a particular element, then we can use pre-indexed addressing:
 - r1 is element we want.
 - LDR r2, [r0, r1, LSL #2]
- * If we want to step through every element of the array, for instance to produce sum of elements in the array, then we can use post-indexed addressing within a loop:

• LDR r2, [r1], #4

Use a further register to store the address of final element, so that the loop can be correctly terminated.

Offsets for Halfword and Signed Halfword / Byte Access

- * The Load and Store Halfword and Load Signed Byte or Halfword instructions can make use of pre- and post-indexed addressing in much the same way as the basic load and store instructions.
- * However the actual offset formats are more constrained:
 - The immediate value is limited to 8 bits (rather than 12 bits) giving an offset of 0-255 bytes.
 - The register form cannot have a shift applied to it.

Effect of endianess

- * The ARM can be set up to access its data in either little or big endian format.
- * Little endian:
 - Least significant byte of a word is stored in *bits 0-7* of an addressed word.
- * Big endian:
 - Least significant byte of a word is stored in *bits 24-31* of an addressed word.
- * This has no real relevance unless data is stored as words and then accessed in smaller sized quantities (halfwords or bytes).
 - Which byte / halfword is accessed will depend on the endianess of the system involved.

Endianess Example

Quiz #4

- * Write a segment of code that add together elements x to x+(n-1) of an array, where the element x=0 is the first element of the array.
- * Each element of the array is word sized (ie. 32 bits).
- * The segment should use post-indexed addressing.
- * At the start of your segments, you should assume that:
 - r0 points to the start of the array.
 - r1 = x
 - r2 = n

Elements

Quiz #4 - Sample Solution

```
ADD r0, r0, r1, LSL#2; Set r0 to address of element x
                           ; Set r2 to address of element n+1
  ADD r2, r0, r2, LSL#2
                              : Initialise counter
  MOV r1, #0
loop
  LDR r3, [r0], #4
                              : Access element and move to next
  ADD r1, r1, r3
                              ; Add contents to counter
  CMP r0, r2
                              : Have we reached element x+n?
  BLT loop
                              ; If not - repeat for
                                      next element
  ; on exit sum contained in r1
```

Block Data Transfer (1)

- * The Load and Store Multiple instructions (LDM / STM) allow betweeen 1 and 16 registers to be transferred to or from memory.
- * The transferred registers can be either:
 - Any subset of the current bank of registers (default).
 - Any subset of the user mode bank of registers when in a priviledged mode (postfix instruction with a '^').

Block Data Transfer (2)

- * Base register used to determine where memory access should occur.
 - 4 different addressing modes allow increment and decrement inclusive or exclusive of the base register location.
 - Base register can be optionally updated following the transfer (by appending it with an '!'.
 - Lowest register number is always transferred to/from lowest memory location accessed.
- * These instructions are very efficient for
 - Saving and restoring context
 - For this useful to view memory as a stack.
 - Moving large blocks of data around memory
 - For this useful to directly represent functionality of the instructions.

Stacks

- * A stack is an area of memory which grows as new data is "pushed" onto the "top" of it, and shrinks as data is "popped" off the top.
- * Two pointers define the current limits of the stack.
 - A base pointer
 - used to point to the "bottom" of the stack (the first location).
 - A stack pointer
 - used to point the current "top" of the stack.

Stack Operation

- * Traditionally, a stack grows down in memory, with the last "pushed" value at the lowest address. The ARM also supports ascending stacks, where the stack structure grows up through memory.
- * The value of the stack pointer can either:
 - Point to the last occupied address (Full stack)
 - and so needs pre-decrementing (ie before the push)
 - Point to the next occupied address (Empty stack)
 - and so needs post-decrementing (ie after the push)
- * The stack type to be used is given by the postfix to the instruction:
 - STMFD / LDMFD : Full Descending stack
 - STMFA / LDMFA : Full Ascending stack.
 - STMED / LDMED : Empty Descending stack
 - STMEA / LDMEA : Empty Ascending stack
- * Note: ARM Compiler will always use a Full descending stack.

Stack Examples

