|          | ME /-     |     |            |                   |                                         |                                       |        |        |
|----------|-----------|-----|------------|-------------------|-----------------------------------------|---------------------------------------|--------|--------|
|          |           | 5 0 |            | May be a second   |                                         |                                       |        |        |
|          | 8. 1      | TX  | []/ -7     | 3                 | 0 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ke (-1,1)                             | \$ 115 | XER    |
| X        | Xe(-1,1   | 2 2 | ×          | 1 X 4             | 0 0 4                                   | * * * * * * * * * * * * * * * * * * * | 7/17   |        |
| ×        |           | 1   |            | * X * + X * 1.5.1 | 77 0                                    | + + +                                 | 212    | **     |
| ×        | (-1)n+1×n | ×   | 1+42 4(1-) | X+XX              | 14                                      | X X X                                 | 1      | (2n+1) |
| In(Itx)= |           |     | (1-)       | + - 11            | *1/5.                                   |                                       |        | 3m2    |
| Ju/      | 811       | t t | 11 05 N    | × o B             | 8118                                    | 17-0                                  | "      | C1     |

| 1000 | COM CONTRACTOR     | 200        | ans 2 to 3 + a be | nsted of being                 | When when a sequence | s where the      | sequente e has an | make the sequences |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|------|--------------------|------------|-------------------|--------------------------------|----------------------|------------------|-------------------|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 100  | yes the seamence c | se it Eanz | divergent asouth  | would converge insted of being | divergent When item  | converge That is |                   | added teacher      | 100000 | The state of the s |  |  |  |  |  |

| William Comme |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                         |      |
|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|------|
| -             |          | 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000000                                | 000000000000000000000000000000000000000                                 | 166, |
| •             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                         |      |
|               |          | 3 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (A) (S)                                 | which cogrelates to the sint of the |      |
|               | 3 3      | 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (a) 1 = (a)                             | Trelati                                                                 |      |
|               | 100      | 7 818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sin (u                                  | sint = 1                                                                |      |
|               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | t > 0 tim                                                               |      |
|               | diverges | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21-                                     | ((u/, )   (u/, )   (u/, )                                               |      |
|               | · div    | 1 in 1 ( /h) = - cost ( /h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4) dh (4) h 2                          |                                                                         |      |
|               | -14      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1/2)   dh                              |                                                                         |      |
|               | Sin (1)  | Limps of Sin, (Sin, (Sin | and Sin                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                   |      |
|               | 8ME      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                                     | 11 11                                                                   |      |
| 7             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                         |      |
| 3             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                         |      |

| Henry Oser |                |            |                                                   | 11)                       |                  | ×   -   -               |                        |              |     |  |   |
|------------|----------------|------------|---------------------------------------------------|---------------------------|------------------|-------------------------|------------------------|--------------|-----|--|---|
|            |                |            |                                                   | (x-3)(2n+1                |                  | SLAM CONVEYORS & OF LAI | 1                      |              |     |  | ı |
|            |                |            | Yyes<br>SS                                        | 1                         | 4                | 20+3                    | 1                      |              | 100 |  | ı |
|            | 1              |            | If Let then & converges<br>I+L>1, then & diverges | (   (=1) (n+1)[K-3) (n+1) | - (x-3) (Znr)) ) | Sum converges & ar LLI  | 2                      |              |     |  | ľ |
|            | x-33n<br>2nt1) | Ratio Terr | If Lc1 then S<br>I+ L>1, ther                     | (E) (k+)                  | 3-1)             | converge                | 7<×-1-1×5-1×           | C4 / C2 / 4] |     |  | ı |
|            | 5 (-1) (x-3)"  | Batio      | 1+I                                               | ) ⊗+ w:                   | Lim R J Sa       | SAM                     | -16x-341<br>x-3>1-1: x | 42 × 25      |     |  |   |
|            | 8NE            |            |                                                   | 12                        |                  |                         |                        |              |     |  |   |

|--|

| (Sin (3x) cos (5x) dx<br>= (sin (3x + 5x) + sin (3x 5x) dx | = 1/2 (5 sin (2x + 5x) + sin (3x - 5x) d)<br>= 1/2 (5 sin (3x + 5x) dx + ( sin (3x - 5x) dx) | 1 sin (3x - 5x) dx = 1-1/2 str(w) du = 1/2 (-costud) | = 1/2 (-1/8/cos (8x)+1/2 cos (2x)) | =1/2(-1/9 cos(8x)+1/2 cos(2x))+C |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------|--|
| 90                                                         | 10 17                                                                                        |                                                      | •                                  |                                  |  |

| $\frac{x-1}{(x+1)(2x-5)}dx$ -14 +1)(2x-5) = $\frac{a_0}{x+1} + \frac{a_1}{2x-3}$ -14)(x+1)(x-3) = $\frac{a_0}{x+1} + \frac{a_1}{2x-3}$ | (A) CA AIN | $\int \frac{2}{x^{2}} dx - \int \frac{2}{2x^{-2}} dx - \int \frac{2}{x^{+1}} dx = \frac{2\ln x }{\ln x^{+1} }$ $\int \frac{2}{x^{+1}} dx = 3 \cdot \int \frac{1}{x^{+1}} dx - \frac{3 \cdot \int \frac{1}{x^{-1}} du - \frac{3\ln u }{\ln x^{+1} }$ $\int \frac{5}{2x^{-3}} dx = \frac{5}{2} \frac{\ln 2x - 3 }{\ln x^{-3} }$ $= \frac{2}{2} \frac{1}{\ln x^{+1} } - \frac{5}{2} \frac{\ln 2x - 3 }{\ln 2x - 3 } + C$ |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ~ × × ×                                                                                                                                | × 1 5 ml×  | 1 3 3 10                                                                                                                                                                                                                                                                                                                                                                                                              |  |

| Henry Gseen | (x)  t (1 (0) (x) +                                        | $(0) =  n(2) $ $(0) =  n^{2}(2) $ $(1) =  n^{2}(2) $ $(2) =  n^{2}(2) $ $(3) =  n^{2}(2) $ $(4) =  n^{2}(2) $ $(5) =  n^{2}(2) $ $(6) =  n^{2}(2) $ $(7) =  n^{2}(2) $ $(8) =  n^{2}(2) $ $(8) =  n^{2}(2) $ $(9) =  n^{2}(2)$ | xht! x N! E(n[z)]4.x?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | In(2) . x = x   n (2)   im ( 1   1   1   1   1   1   1   1   1   1 |  |
|-------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| *2=(N) ± h  | Pacluarin series of f(x)  f(x) = f(0) + f'(0)  f(0) = 20=1 | $f'(x) = (\ln z) = x + f'(0) = \ln(z)$ $f''(x) = (\ln^{2} z) = x + f'(0) = \ln^{2}(z)$ $f'''(0) = \ln^{2}(z) + f''(0) = \ln^{2}(z)$ $+ f(x) = 1 + f''(z) + f''(z) + f''(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 E 1n(2) 1n<br>N=0 N 1<br>N=0 N 1<br>N=1 N 1 | = 1 m   1n(2) · x = x   n + 1 = x   n + 1 = x                      |  |

| Hary Ose |                                          | they thomas at | es will | (Inx) adx is finte                  | c that du-x dx, | (2 M- M- M              | converges using                          | 11 11 11 11   |                     |  |  |  |
|----------|------------------------------------------|----------------|---------|-------------------------------------|-----------------|-------------------------|------------------------------------------|---------------|---------------------|--|--|--|
|          | 5. K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2              |         | Ja fixidx - Ja x (Inx) adx is tinte | 0               | 124-1 24-1 20 - 27 20 0 | this is finite the seres convertes using | integral test | Was a series of the |  |  |  |
| 4        | No.                                      | the se         | the st  |                                     | la ttin         | 0                       | Hais 1                                   | + 0 -         | 100                 |  |  |  |





| 100 | 199999   | 100000                      | 000000       |                              | 10000 | 44444 | cour. |
|-----|----------|-----------------------------|--------------|------------------------------|-------|-------|-------|
|     | 0        |                             | -            |                              |       |       |       |
|     | æci      |                             | 28           | 4                            |       |       |       |
|     | HerryGei | 2 4                         | Juhrn ny co  | by ratto tos Let by rationes |       |       |       |
|     | 18       | this will meet the          |              | converges                    | 183   |       |       |
|     |          | III IN                      | (h+1)n       | 900                          | 1     |       |       |
|     |          | A B                         | 0 9          | 71                           |       |       |       |
|     |          | - V                         | dx for       | to tos                       |       | +     |       |
|     |          | Statement Hillm             | 87           | t o                          | 13    |       |       |
|     | 1. K     | statement (n) statement (n) | Jether of or | by ra                        | 14    |       |       |
|     |          | tat t                       | A VAPA       | pd NW                        |       |       |       |
|     | 845      | 9 0                         |              |                              |       |       |       |
|     | ٥        |                             |              |                              |       |       |       |