MNIST - Categorical Classification

Overfitting Issue

Import Tensorflow

```
import warnings
warnings.filterwarnings('ignore')
```

• import TensorFlow

• GPU 설정 확인

```
tf.test.gpu_device_name()
```

'/device:GPU:0'

▼ I. MNIST Data_Set Load & Review

→ 1) Load MNIST Data_Set

11501568/11490434 [===========] - 0s ous/step

• Train_Data Information

```
print(len(X_train))
print(X_train.shape)

print(len(y_train))
print(y_train[0:5])

60000
(60000, 28, 28)
```

(60000, 28, 28 60000 [5 0 4 1 9]

Test_Data Information

```
print(len(X_test))
print(X_test.shape)

print(len(y_test))
print(y_test[0:5])
```

```
10000
(10000, 28, 28)
10000
[7 2 1 0 4]
```

→ 2) Visualization

```
import matplotlib.pyplot as plt

digit = X_train[4]
plt.imshow(digit, cmap = 'gray')
plt.show()
```



```
import numpy as np
np.set_printoptions(linewidth = 150)
print(X_train[4])
```

0] 0] 0] 0 0 0] 0] 0] 55 148 210 253 253 87 232 252 253 0] 0] 0 0 132 253 252 0 0 0 215 252 252 0] 0 126 253 247 176 0 0 8 78 245 253 129 0] 0 36 201 252 252 0] 30 22 119 197 241 253 252 251 0] 16 231 252 253 252 252 252 226 227 252 231 0] 253 217 138 42 24 192 252 0 0 0] 62 255 253 0 0] 0] 0] 71 253 252 0] 0 218 252 0] 96 252 0] 0 14 184 252 0] 0] 0 0 0 0 0 14 147 252 0 0 0]]

▼ II. Data Preprocessing

- → 1) Reshape and Normalization
 - reshape
 - o (60000, 28, 28) to (60000, 784)

```
X_train = X_train.reshape((60000, 28 * 28))
X_test = X_test.reshape((10000, 28 * 28))
X_train.shape, X_test.shape
```

Normalization

```
X_train = X_train.astype(float) / 255
X_test = X_test.astype(float) / 255
```

(X_train[[4])											
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.21568627	0.58039216	0.82352941	0.99215686	0.99215686	0.44313725	0.34117647	0.58039216	0.21568627	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.34117647	0.90980392	0.98823529	0.99215686	0.74117647	0.82352941	0.98823529	0.98823529	0.99215686	0.65882353	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.01568627	0.22352941	0.94901961	0.98823529	0.74509804	0.25490196	0.01960784	0.04705882	0.71372549	0.98823529	0.99215686	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.37647059	0.98823529	0.98823529	0.71764706	0.05490196	0.	0.	0.36078431	0.98823529	0.
0.88235294	0.08235294	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.51764706	0.99215686	0.98823529	0.57254902	0.05490196	0.	0.	0.	0.
0.98823529	0.98823529	0.30980392	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.		0.	0.	0.	0.49411765	0.99215686	0.96862745	0.69019608	0.03529412	0.	0.	0.
0.30588235	0.96078431 (0.99215686	0.50588235	0.	0.		0.		0.	0.	0.	0.
0.00000	0.	0.	0.	0.	• •	0.0627451	0.90980392	0.98823529	0.69019608	0.	0.	0.
0.14117647	0.78823529 (0.98823529	0.98823529		0.04313725		0.	0.	0.	0.	0.	0.
0.	0., 6626626	0.	0.	0.	0.	0.	0.	0.08627451	0.98823529	0.98823529	0.11764706	0.
0.46666667	0.77254902	0.94509804	0.99215686		• •	0.30196078		0.	0.00020020	0.	0.	0.
			0.					0.	0.	0.0627451	0.90588235	0.
0.99215686								0.	0.	0.	0.	0.
											0.	0.
0.21568627											0.	0.
		0.									0.	0.
	0.				0.			0.24313725		0.99215686		
	0.				0.						0.	0.
										0.27843137		
0.08235294											0.	0.
		0.									0.	0.
0.99215686			0.	0.	0.						0.	0.
			0.	0.	0.						0.	0.
			0.98823529								0.	0.
		0.							0.		0.	0.
			0.41568627							0.	0.	0.
	0.										0.	0.
					0.17647059			0.08235294			0.	0.
		0.			0.							0.
		0.	0.		0.	0.	0.	0. 0.85490196	0.98823529	0.21960784	0.	0.
			0.	0.	0.	0.	0.	0.00100100	0.00020020	0.21000701	0.	0.
		0.								0.37647059		
0.16470588											0.30020323	0.
		0.										0.
0.72156863									0.		0.	0.
											0.	0.
			0.57647059								0.	0. N
U.	· ·	0.03490190							0.	∪ .	0.	υ.

→ 2) One Hot Encoding

```
from tensorflow.keras.utils import to_categorical

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

print(y_train[:5])
```

[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

```
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]
```

→ III. MNIST Keras Modeling

→ 1) Model Define

- 모델 신경망 구조 정의
 - 2개의 Hidden Layers & 768개의 Nodes
 - 복잡한 Model Capacity로 인한 Overfitting

```
from tensorflow.keras import models
from tensorflow.keras import layers

mnist = models.Sequential()
mnist.add(layers.Dense(512, activation = 'relu', input_shape = (28 * 28,)))
mnist.add(layers.Dense(256, activation = 'relu'))
mnist.add(layers.Dense(10, activation = 'softmax'))
```

• 모델 구조 확인

mnist.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 512)	401920
dense_1 (Dense)	(None, 256)	131328
dense_2 (Dense)	(None, 10)	2570

Total params: 535,818 Trainable params: 535,818 Non-trainable params: 0

→ 2) Model Compile

• 모델 학습방법 설정

→ 3) Model Fit

• 약 3분

```
Epoch 1/100 375/375 [============] - 5s 6ms/step - loss: 0.2577 - accuracy: 0.9216 - val_loss: 0.1320 - val_accuracy: 0.9590
```

```
Epoch 2/100
375/375 [=
                                       =] - 2s 5ms/step - loss: 0.0928 - accuracy: 0.9709 - val_loss: 0.1005 - val_accuracy: 0.9707
Epoch 3/100
375/375 [=
                                       =] - 2s 5ms/step - loss: 0.0604 - accuracy: 0.9811 - val_loss: 0.0850 - val_accuracy: 0.9753
Epoch 4/100
375/375 [==
                                       =] - 2s 5ms/step - loss: 0.0408 - accuracy: 0.9872 - val_loss: 0.0986 - val_accuracy: 0.9743
Epoch 5/100
375/375 [=
                                       =] - 2s 5ms/step - loss: 0.0305 - accuracy: 0.9902 - val_loss: 0.1189 - val_accuracy: 0.9718
Epoch 6/100
375/375 [=
                                      ≔] - 2s 5ms/step - Ioss: 0.0222 - accuracy: 0.9927 - val_loss: 0.1108 - val_accuracy: 0.9756
Epoch 7/100
375/375 [=
                                      ≔] - 2s 5ms/step - loss: 0.0172 - accuracy: 0.9945 - val_loss: 0.1075 - val_accuracy: 0.9783
Epoch 8/100
375/375 [==
                                       =] - 2s 5ms/step - Ioss: 0.0147 - accuracy: 0.9951 - val_Ioss: 0.1259 - val_accuracy: 0.9768
Epoch 9/100
                                        ] - 2s 5ms/step - loss: 0.0121 - accuracy: 0.9957 - val_loss: 0.1150 - val_accuracy: 0.9791
375/375 [=
Epoch 10/100
                                       =] - 2s 5ms/step - loss: 0.0103 - accuracy: 0.9967 - val_loss: 0.1272 - val_accuracy: 0.9782
375/375 [==
Epoch 11/100
375/375 [==
                                        ] - 2s 5ms/step - loss: 0.0086 - accuracy: 0.9972 - val_loss: 0.1362 - val_accuracy: 0.9781
Epoch 12/100
375/375 [===
                                        ] - 2s 5ms/step - loss: 0.0066 - accuracy: 0.9980 - val_loss: 0.1458 - val_accuracy: 0.9795
Epoch 13/100
375/375 [==
                                       =] - 2s 5ms/step - loss: 0.0064 - accuracy: 0.9979 - val_loss: 0.1585 - val_accuracy: 0.9799
Epoch 14/100
375/375 [===
                                       =] - 2s 5ms/step - loss: 0.0056 - accuracy: 0.9983 - val_loss: 0.1629 - val_accuracy: 0.9799
Epoch 15/100
375/375 [==:
                                       =] - 2s 5ms/step - loss: 0.0044 - accuracy: 0.9985 - val_loss: 0.1666 - val_accuracy: 0.9811
Epoch 16/100
375/375 [==:
                                        ] - 2s 5ms/step - loss: 0.0049 - accuracy: 0.9983 - val_loss: 0.1721 - val_accuracy: 0.9804
Epoch 17/100
                                        ] - 2s 5ms/step - loss: 0.0047 - accuracy: 0.9985 - val_loss: 0.2099 - val_accuracy: 0.9790
375/375 [==
Epoch 18/100
375/375 [==
                                       =] - 2s 5ms/step - loss: 0.0054 - accuracy: 0.9985 - val_loss: 0.1799 - val_accuracy: 0.9805
Epoch 19/100
375/375 [==:
                                       =] - 2s 5ms/step - loss: 0.0040 - accuracy: 0.9987 - val_loss: 0.1921 - val_accuracy: 0.9806
Epoch 20/100
375/375 [===
                                       =] - 2s 5ms/step - loss: 0.0046 - accuracy: 0.9986 - val_loss: 0.2096 - val_accuracy: 0.9788
Epoch 21/100
375/375 [===
                                     ≔=] - 2s 5ms/step - loss: 0.0041 - accuracy: 0.9989 - val_loss: 0.1981 - val_accuracy: 0.9801
Epoch 22/100
375/375 [===
                                   ====] - 2s 5ms/step - loss: 0.0039 - accuracy: 0.9989 - val_loss: 0.2085 - val_accuracy: 0.9789
Epoch 23/100
375/375 [===
                                      ==] - 2s 5ms/step - loss: 0.0031 - accuracy: 0.9991 - val_loss: 0.2279 - val_accuracy: 0.9791
Epoch 24/100
375/375 [===
                                       =] - 2s 5ms/step - loss: 0.0031 - accuracy: 0.9990 - val_loss: 0.2175 - val_accuracy: 0.9811
Epoch 25/100
                                        ] - 2s 5ms/step - loss: 0.0033 - accuracy: 0.9991 - val_loss: 0.2201 - val_accuracy: 0.9791
375/375 [===
Epoch 26/100
375/375 [===
                                       =] - 2s 5ms/step - loss: 0.0028 - accuracy: 0.9993 - val_loss: 0.2496 - val_accuracy: 0.9791
Epoch 27/100
375/375 [===
                                       :] - 2s 5ms/step - loss: 0.0025 - accuracy: 0.9993 - val_loss: 0.2383 - val_accuracy: 0.9809
Epoch 28/100
375/375 [===
                                       =] - 2s 5ms/step - loss: 0.0019 - accuracy: 0.9996 - val_loss: 0.2588 - val_accuracy: 0.9801
Epoch 29/100
375/375 [===
                                     ===] - 2s 5ms/step - loss: 0.0016 - accuracy: 0.9995 - val_loss: 0.2515 - val_accuracy: 0.9805
Fnach 30/100
```

▼ 4) 학습 결과 시각화 - Overfitting

Loss Visualization

```
import matplotlib.pyplot as plt

epochs = range(1, len(Hist_mnist.history['loss']) + 1)

plt.figure(figsize = (9, 6))
plt.plot(epochs, Hist_mnist.history['loss'])
plt.plot(epochs, Hist_mnist.history['val_loss'])
# plt.ylim(0, 0.25)
plt.title('Training & Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(['Training Loss', 'Validation Loss'])
plt.grid()
plt.show()
```


▼ 5) Model Evaluate

Loss & Accuracy

→ 6) Model Predict

Probability

```
np.set_printoptions(suppress = True, precision = 9)
print(mnist.predict(X_test[:1,:]))
[[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]]
```

Class

```
print(np.argmax(mnist.predict(X_test[:1,:])))
7
```

#

The End

```
# # #
```