Supersingular Isogeny Diffie-Hellman

Valeriia Kulynych Université de Toulon

April 24, 2018

1 Supersingular Elliptic Curves: various definitions

Let K be a field with algebraic closure \bar{K} .

Definition 1 (Projective space). The *projective space of dimension* n, denoted by \mathbb{P}^n or $\mathbb{P}^n(\bar{K})$ is the set of all (n+1)-tuples

$$(x_0, \dots, x_n) \in \bar{K}^{n+1}$$

such that $(x_0, dots, x_n) \neq (0, \dots, 0)$ taken modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim(y_0,\ldots,y_n)$$

if and only in there exists $\lambda \in \bar{K}$ such that $x_i = \lambda_i y_i$ for all i [2, I].

The equivalence class of a projective point (x_0, \ldots, x_n) is denoted by $[x_0, \ldots, x_n]$. The set of K-rational points, denoted by $\mathbb{P}^n(K)$, is defined as

$$\mathbb{P}^n(K) = \{ [x_0, \dots, x_n] \in \mathbb{P}^n | x_i \in K \text{ for all } i \}$$

Definition 2 (Elliptic curve). An *elliptic curve* is a pair (E, O), where E is a curve of genus 1 and $O \in E$. (We often ust write E for the elliptic curve, the point O is being understod.) The elliptic curve E is defined over E, written E/K, if E is defined over E as a curve and E and E and E are in the elliptic curve is a pair E and E are in the elliptic curve E is defined over E as a curve and E and E is defined over E as a curve and E are in the elliptic curve.

Let E be an elliptic curve given by a Weierestrass equation (see page 3). Remember that $E \subset \mathbb{P}^2$ consists of the points P = (x, y) satisfying the equation together with the point O = [0, 1, 0] at infinity. Let $L \subset \mathbb{P}^2$ be a line. Then since the equation has degree three, L intersects E at exactly 3 points, say P, Q, R. (Note if L is tangent to E, then P, Q, R may not be distinct. The fact that $L \cap E$ taken with multiplicities, consists of three points, is a special case of Bezout's theorem [4, 1.7, Corollary 7.8])

Define a composition law \oplus on E by the following rule.

Definition 3 (Composition law). Let $P, Q \in E$, L the line connecting P and Q (tangent line to E if P = Q), and R the third point of intersection of L with E. Let L' be the line connecting R and Q. Then $P \oplus Q$ is the point such that L' intersects E at R, Q and $P \oplus Q$ [1, III, §2].

Let E be an elliptic curve defined over K. As E with composition law \oplus has an abelian group structure, then we can define subgroup of its rational points over field K and denote it E(K). Now we assume that characteristic of K is p > 0.

Definition 4 (Supersingular elliptic curve). For every n, we have a multiplication map

$$[n]: E \to E$$

$$P \mapsto \underbrace{P \oplus \cdot \oplus P}_{n \text{ times}}$$

. Its kernel is denoted by E[n] and is called n-torsion subgroup of E. Then one can show that for any $r \geq 1$

$$E[p^r](\bar{K}) \simeq \begin{cases} 0 \\ \mathbb{Z}/p^r\mathbb{Z} \end{cases}$$

In the first case, E is called *supersingular*. Otherwise, it is called *ordinary* [2, Proposition 4].

For each integer $r \ge 1$ we consider p^r -power Frobenius morphism [1, II, §2] given by

$$\phi_r: E \to E^{(p^r)}$$
$$[x_0, \dots, x_n] \mapsto [x_0^{p^r}, \dots, x_n^{p^r}]$$

Let $m = \deg \phi_r$. Then we consider morphism

$$\hat{\phi_r}: E^{(p^r)} \to E$$

such that

$$\hat{\phi_r} \circ \phi_r = [m],$$

where [m] is m-multiplication map. Such $\hat{\phi_r}$ is called *dual* of p^r -power Frobenius morphism [1, III, §6, Theorem 6.1].

We remind that morphism $f: X \to Y$ is said to be separable if K(X) is a separable extension of K(Y) ([4, IV, 2]). Where K is said to be separable extension of a field k if every element's algebraic number minimal polynomial does not have multiple roots in K [5]. Extensions which are not separable are called inseparable. A finite extension K of field k is purely inseparable if for every $\alpha \in K$, $\alpha^{p^m} \in k$ for some $m \geq m$ [6].

That brings us to another approach to define supersingular elliptic curve:

Definition 5 (Supersingular elliptic curve). Elliptic curve E is supersingular if map $\hat{\phi_r}$ is (purely) inseparable for one (all) $r \ge 1$ [1, V, §3, Theorem 3.1].

Definition 6 (Weierstrass equation). An ellipric curve defined over K is the locus in \mathbb{P}^2 of an equation

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$
.

with $a_1, \ldots, a_6 \in \bar{K}$. This equation is called Weierstrass equation [1, III, §1].

To ease notation, we will usually write the Weierstrass equation for our elliptic curve using non-homogeneous coordinates x = X/Z and y = Y/Z,

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

always remembering that there is the extra point O = [0, 1, 0] out at infinity.

If $\operatorname{char}(\bar{K}) \neq 2$, then we can simplify the equation by completing the square. Replacing y by $\frac{1}{2}(y - a_1x - a_3)$ gives an equation of the form

$$E: y^2 = 4x^3 + b_2x^2 + 2b_4x + b_6,$$

where

$$b_2 = a_1^2 + 4a_2,$$

$$b_4 = 2a_4 + a_1a_3,$$

$$b_6 = a_3^2 + 4a_6.$$

We also define quantities

$$b_8 = a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2,$$

$$c_4 = b_2^2 - 24b_4,$$

$$c_6 = b_2^3 + 36b_2 b_4 - 216b_6,$$

$$\Delta = -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6,$$

$$j = c_4^2 / \Delta.$$

If futher char(\bar{K}) \neq 2, 3, then replacing (x,y) by $(\frac{x-3b_2}{36}, \frac{y}{216})$ eliminates the x^2 term, yielding the simpler equation

$$E: y^2 = x^3 - 27c_4x - 54c_6$$

The quantity Δ given above is called the *discriminant* of the Weierstrass equation, j is called the j-invariant of the elliptic curve E. Now we can given another one definition of a supersingular elliptic curve:

Definition 7 (Supersingular elliptic curve). If the map $[p]: E \to E$ is purely inseparable and $j(E) \in \mathbb{F}_{p^2}$ then the curve E is called supersingular $[1, V, \S 3, Theorem 3.1]$.

For the next definition of supersingular elliptic curve, we need to introduce the following notions.

Definition 8 (Order). Let \mathcal{K} be a (not necessarily commutative) algebra (i.e. vector space equipped with a bilinear product), finitely generated over \mathbb{Q} . An order \mathcal{R} of \mathcal{K} is a subring of \mathcal{K} which is finitely generated as \mathbb{Z} -module (i.e. as an abelian group) and which satisfies $\mathcal{R} \otimes \mathbb{Q} = \mathcal{K}$, where \otimes is tensor product [1, III, §9].

Definition 9 (Quaternion algebra). A $quaternion\ algebra$ is an algebra of the form

$$\mathcal{K} = \mathbb{Q} + \mathbb{Q}\alpha + \mathbb{Q}\beta + \mathbb{Q}\alpha\beta$$

with the multiplication rules

$$\alpha^2, \beta^2 \in \mathbb{Q}, \quad \alpha^2 < 0, \quad \beta^2 < 0, \quad \beta\alpha = -\alpha\beta.$$

[1, III, §9].

Definition 10 (Supersingular elliptic curve). An elliptic curve E is supersingular if the endomorphism ring $\operatorname{End}_{\bar{K}}(E)$ is an order in a quaternion algebra [1, V, §3, Theorem 3.1].

Remark 1. The endomorphism ring of an elliptic curve is either \mathbb{Z} (if p = 0), an order in a quadratic imaginary field (a number field of the form $\mathbb{Q}[\sqrt{-D}]$ for some D > 0), or an order in a quaternion algebra [1, III, §, Corollary 9.4].

Another way to define supersingular elliptic curve is based on a notion of a formal group.

Let R be a ring of characteristic p > 0.

Definition 11 (Formal group). A (one-parameter commutative) formal group \mathcal{F} defined over R is a power series $F(X,Y) \in R[\![X,Y]\!]$ satisfying:

- 1. $F(X,Y) = X + Y + \text{ (terms of degree } \geq 2\text{)}.$
- 2. F(X, F(Y, Z)) = F(F(X, Y), Z) (associativity).
- 3. F(X,Y) = F(Y,X) (commutativity).
- 4. There is unique power series $i(T) \in R[\![T]\!]$ such that F(T,i(T)) = 0 (inverse).
- 5. F(X,0) = 0 and F(0,Y) = Y.

 $[1, IV, \S 2].$

We call F(X,Y) the formal group law of \mathcal{F} .

Returning now to formal power series, we look for the power series formally giving the addition law on E. Thus let z_1, z_2 be independent indeterminates, and let

$$w_i = w(z_i) = z_i^3 (1 + A_1 z_i + A_2 z_i^2 + \cdots) \in \mathbb{Z}[a_1, \dots, a_6] \llbracket z_i \rrbracket,$$

where $A_i \in \mathbb{Z}[a_1, \ldots, a_6]$, for i = 1, 2. In the (z, w)-plane, the line connecting (z_1, w_1) to (z_2, w_2) has slope

$$\lambda = \lambda(z_1, z_2) = \frac{w_2 - w_1}{z_2 - z_1} = \sum_{n=2}^{\infty} A_n \frac{z_2^n - z_1^n}{z_2 - z_1} \in \mathbb{Z}[a_1, \dots, a_6][[z_1, z_2]].$$

Letting

$$v = v(z_1, z_2) = w_1 - \lambda z_1 \in \mathbb{Z}[a_1, \dots, a_6][z_1, z_2],$$

the connecting line has equation $w = \lambda z + v$. Substituting this into the Weierstrass equation gives a cubic in z, two of whose roots are z_1 and z_2 . Looking at quadratic term, we see that the third z_3 can be expressed as a power series in z_1 and z_2 :

$$z_3 = z_3(z_1, z_2) =$$

$$= -z_1 - z_2 + \frac{a_1\lambda + a_3\lambda^2 - a_2v - 2a_4\lambda v - 3a_6\lambda^2 v}{1 + a_2\lambda + a_4\lambda^2 + a_6\lambda^3}$$

$$\in \mathbb{Z}[a_1, \dots, a_6][z_1, z_2],$$

For the group law on E, the points $(z_1, w_1), (z_2, w_2), (z_3, w_3)$ add up to zero. Thus to add the first two, we need the formula for the inverse. In the (x, y)-plane, the inverse of (x, y) is $(x, -y - a_1x - a_3)$. Hence the inverse of (z, w) will have z-coordinate (z = -x/y)

$$i(z) = \frac{x(z)}{y(z) + a_1 x(z) + a_3} = \frac{z^{-2} - a_1 z^{-1} - \dots}{-z^{-3} + 2a_1 z^{-2} + \dots}$$

This gives the formal additional law

$$\begin{split} F(z_1,z_2) &= i(z_3(z_1,z_2)) = \\ &= z_1 + z_2 - a_1 z_1 z_2 - a_2 (z_1^2 z_2 + z_1 z_2^2) - (2a_3 z_1^3 z_2 - (a_1 a_2 - 3a_3) z_1^2 z_2^2 + 2a_3 z_1 z_2^3) + \dots \\ &\in \mathbb{Z}[a_1,\dots,a_6] [\![z_1,z_2]\!]. \end{split}$$

Let E be an elliptic curve given by a Weierstrass equation with coefficients in R. The formal group associated to E, denoted \hat{E} , is given by the power series $F(z_1, z_2)$ described above.

Definition 12 (Height of homomorphism; height of formal group). Let \mathcal{F}, \mathcal{G} defined over R be formal groups and $f: \mathcal{F} \to \mathcal{G}$ a homomorphism defined over R. The *height of* f, denoted ht(f), is the largest integer h such that

$$f(T) = q(T^{p^h})$$

for some power series $g(T) \in R[T]$. (If f = 0, then $ht(f) = \infty$.) The height of \mathcal{F} , denoted $ht(\mathcal{F})$, is the height of the multiplication by p map $[p]: \mathcal{F} \to \mathcal{F}$ [1, IV, §7].

Definition 13 (Supersingular elliptic curve). If the formal group \hat{E}/K associated to E has height 2, then E is supersingular [1, V, §3, Theorem 3.1].

For the next approach to define supersingular curve we introduce an important invariant of elliptic curve E defined over a field K of characteristic p > 0.

Let $F: E \to E$ be Frobenius morphism. Then F induces a map:

$$F^*: H^1(E, \mathcal{O}_E) \to H^1(E, \mathcal{O}_E)$$

on cohomology. This map is not linear, but it is *p-linear*, namely $F^*(\lambda a) = \lambda^p F^*(a)$ for all $\lambda \in K, a \in H^1(E, O_E)$. Since E is elliptic, $H^1(E, O_E)$ is a one-dimensional vector space. Thus, since K is perfect, the map F^* is either 0 or bijective. For more information on cohomology see [4, III].

Definition 14 (Hasse invariant, Supersingular elliptic curve). If $F^* = 0$, we say that E has Hasse invariant 0 or that E is supersingular; otherwise we say that E has Hasse invariant 1 [4, IV, 4].

The next definition is also connected with Frobenius morphism.

Definition 15. If the field K is a finite field of order q, then an elliptic curve E over K is supersingular if and only if the trace of the q-power Frobenius endomorphism is congruent to zero modulo p [7, Lecture 14].

When q = p a prime greater than 3 this is equivalent to having the trace of Frobenius morphism equal to zero; this does not hold for p = 2 or 3.

2 Supersingular Isogeny Graphs

We start this section with a notion of isogeny.

Definition 16. Let E_1 and E_2 be elliptic curves defined over a finite field \mathbb{F}_q of a characteristic p. An *isogeny* $\phi: E_1 \to E_2$ defined over \mathbb{F}_q is a non-constant morphism that maps the identity into the identity (i.e. that is group homomorphism) [3, 2.1].

Two elliptic curves E_1 and E_2 defined over \mathbb{F}_q are said to be *isogenous* over \mathbb{F}_q if there exists an isogny $\phi: E_1 \to E_2$ defined over \mathbb{F}_q .

Theorem 1 (Sato-Tate). Two elliptic curves E_1 and E_2 are isogenous over \mathbb{F}_q if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$ [2, Theorem 13].

The degree of an isogeny ϕ is the degree of ϕ as a morphism. An isogeny of degree ℓ is called ℓ -isogeny.

Curves in the same isogeny class are either all supersingular or all ordinary. For prime $\ell \not p$, we have $E[\ell] \simeq \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z}$ [8, 2].

Supersingular curves are all defined over \mathbb{F}_{p^2} , and for every prime $\ell \not p$, there exist $\ell+1$ isogenies (counting multiplicities) of degree ℓ originating from any given such supersingular curve. An isogeny can be identified with its kernel. Given a subgroup G of E, we can use Velu's formulas [2, Proposition 39] to compute an isogeny $\phi: E_1 \to E_2$ with kernel G and such that $E_2 \simeq E_1/G$.

For each isogeny $\phi: E_1 \to E_2$, there is a unique isogeny $\hat{\phi}: E_2 \to E_1$ which is called the *dual isogeny* of ϕ , satisfying $\phi \hat{\phi} = \hat{\phi} \phi = [\deg \phi]$.

If we have two isogenies $\phi: E_1 \to E_2$ and $\phi': E_2 \to E_1$ such that $\phi \phi'$ and $\phi' \phi$ are the identity in their respective curves, we say that ϕ , ϕ' are isomorphisms, and that E, E' are isomorphic. Isomorphism classes of elliptic curves over \mathbb{F}_q can be labeled with their j-invariants (see page 3). In this paper we write j(E) for the j-invariant of E. By convention given a j-invariant $j \neq 0, 1728$, we write E(j) for the curve defined by the equation

$$y^2 = x^3 + \frac{3j}{1728 - j}x + \frac{2j}{1728 - j}$$

. We also write E(0) and E(1728) for the curves with equations

$$y^2 = x^3 + 1$$
 and $y^2 = x^3 + x$

respectively.

Definition 17 (ℓ -isogeny graph). For any prime $\ell \neq p$, one can construct a so-called ℓ -isogeny graph, where each vertex is associated to a supersingular j-invariant, and an endge between two vertices is associated to a degree ℓ isogeny between the corresponding curves [3, 2.1].

Isogeny graphs are regular with regularity degree $\ell + 1$; they are undirected since to any isogeny from j_1 to j_2 corresponds a dual isogeny from j_2 to j_1 .

References

- [1] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1992.
- [2] Luca De Feo. Mathematics of isogeny based cryptography, 2017.
- [3] Christophe Petit, Kristin Lauter. Hard and Easy Problems for Supersingular Isogeny Graphs. 2018
- [4] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springler, New-York, 1977.
- [5] Todd Rowlans, Separable Extension. From MathWorld A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/SeparableExtension.html
- [6] Lindsay N. Childs. Purely Inseparable Field Extension. http://www.math.cornell.edu/~dkmiller/galmod/Childs_purely-inseparable.pdf
- [7] Andrew V. Sutherland. *Elliptic Curves* (18.783), Lecture Notes, Spring 2015, full course is available on http://dspace.mit.edu/handle/1721.1/111949#files-area

[8] Luca De Feo, David Jao, Jerome Plut. Towards Quantum-Resistant Cryptosystems From Supersingular Elliptic Curve Isogenies, Journal of Mathematical Cryptology, 2014, 8 (3), pp. 209-247. https://eprint.iacr.org/2011/506.pdf