Universidade Federal do Ceará Instituto de Tecnologia Departamento de Engenharia Elétrica

Circuitos Elétricos

Capítulo 8 – Circuitos de 2ª Ordem RLC

Circuitos de 2^a Ordem RLC

Introdução - Objetivos

*Circuitos com dois elementos armazenadores de energia irredutíveis, indutores e/ou capacitores.

- * Circuitos representados por equações diferenciais de 2ª ordem.
- 7 Determinar a resposta natural e ao degrau de circuitos de 2ª ordem
- 7 O estudo é limitado a circuitos com estrutura série e paralelo.

Obs.: A ordem de uma equação diferencial que representa um circuito é no máximo igual ao número de capacitores mais o número de indutores.

Circuitos de 2ª Ordem RLC

Introdução

* Um circuito RLC pode ser representado pela equação diferencial:

$$\frac{d^2x(t)}{dt^2} + 2\alpha \frac{dx(t)}{dt} + \omega_0^2 x(t) = f(t)$$

Onde x(t) e f(t) são respectivamente a saída e a entrada do circuito.

- * A saída normalmente é uma corrente em um indutor ou uma tensão em um capacitor;
- * As tensões e/ou correntes de fontes independentes de corrente e tensão são as entradas do circuito.
- \bullet Os parâmetros α e ω serão definidos adiante.

Circuitos de 2ª Ordem RLC

Introdução

F Circuito RLC paralelo

Resposta natural

Resposta a um degrau

Circuitos de 2ª Ordem RLC

Introdução

Circuito RLC série

Resposta a um degrau

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Equação diferencial:

A tensão é a mesma e aplicando a soma das correntes que saem do nó superior:

$$\frac{v}{R} + \frac{1}{L} \int_0^t v d\tau + I_0 + C \frac{dv}{dt} = 0$$

Diferenciando em relação a t:

$$\frac{1}{R}\frac{dv}{dt} + \frac{v}{L} + C\frac{d^2v}{dt^2} = 0$$

Dividindo por C temos:

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{v}{LC} = 0$$

Equação diferencial de 2^a ordem com coeficientes constantes.

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Solução geral da equação diferencial de 2ª ordem:

Uma abordagem clássica para resolver a Eq. Diferencial de 2^a ordem é admitir que a solução seja de forma exponencial, isto é, que a tensão seja na forma: $v = Ae^{st}$

em que A e s são constantes desconhecidas.

Então:

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{v}{LC} = 0$$

$$As^2e^{st} + \frac{As}{RC}e^{st} + \frac{Ae^{st}}{LC} = 0$$

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Solução geral da equação diferencial de 2ª ordem:

Continuação:

$$As^2 e^{st} + \frac{As}{RC} e^{st} + \frac{Ae^{st}}{LC} = 0$$

$$Ae^{st}\left(s^2 + \frac{s}{RC} + \frac{1}{LC}\right) = 0$$

Para uma solução viável, a expressão entre parênteses deve ser zero:

$$s^2 + \frac{s}{RC} + \frac{1}{LC} = 0$$

(Equação característica da eq. diferencial, circuito RLC em paralelo)

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Solução geral da equação diferencial de 2ª ordem:

As duas raízes são:

$$s_1 = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$

$$s_1 = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$
 e $s_2 = -\frac{1}{2RC} - \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$

Ou:

$$s_1 = -\alpha + \sqrt{\alpha^2 - {\omega_0}^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - {\omega_0}^2}$$

Em que:

$$\alpha = \frac{1}{2RC}$$

Fator de amortecimento

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

Frequência de ressonância (rad/s)

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

* Solução geral da equação diferencial de 2ª ordem:

Podemos expressar a equação da solução em termos de α e ω_0 como:

$$s^2 + 2\alpha s + \omega_0^2 = 0$$

Os dois valores de s indicam que existem duas soluções possíveis para *v*, ambas na forma:

$$v_1 = A_1 e^{s_1 t}$$
 $v_2 = A_2 e^{s_2 t}$

Uma **solução completa** necessita de uma combinação linear de v_1 e v_2 . Então a resposta natural de um circuito RLC em paralelo é:

$$v = v_1 + v_2 = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Onde as constantes A_1 e A_2 são determinadas a partir dos valores iniciais de v(0) e dv(0)/dt.

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

* Solução geral da equação diferencial:

Parâmetro	Terminologia	Valor em resposta natural
S1, S2	Raízes características	$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$
		$s_2=-\alpha-\sqrt{\alpha^2-\omega_0^2}$
α	Frequência de Neper	$\alpha = \frac{1}{2RC}$
$\omega_{\scriptscriptstyle 0}$	Freqüência angular	1
	de ressonância	$\omega_0 = \frac{1}{\sqrt{LC}}$

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

Formas da resposta natural

Observando as expressões das raízes da equação característica:

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

Pode-se verificar que existem 3 resultados possíveis:

- a) Superamortecida: se $\omega_0^2 < \alpha^2$, ambas as raízes serão reais e distintas.
- b) Subamortecida: se $\omega_0^2 > \alpha^2$, as raízes serão complexas conjugadas.
- c) Criticamente amortecida: se $\omega_0^2 = \alpha^2$, as raízes serão reais e iguais.

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: a) Determine as raízes da equação característica que descreve o comportamento transitório da tensão. Adote R=200 Ω , L=50mH e C=0,2 μ F.

Para os valores dados de R, L e C:

$$\alpha = \frac{1}{2RC} = \frac{10^6}{(400)(0,2)} = 1,25 \times 10^4 \ rad / s$$

$$\omega_0^2 = \frac{1}{LC} = \frac{(10^3)(10^6)}{(50)(0,2)} = 10^8 \, rad^2/s^2$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

***Exemplo:** a) Determine as raízes da equação característica que descreve o comportamento transitório da tensão.

Então:

$$\alpha = 1.25 \times 10^4 \ rad / s$$

$$\omega_0^2 = 10^8 \, rad^2/s^2$$

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

$$s_1 = -1,25 \times 10^4 + \sqrt{1,5625 \times 10^8 - 10^8}$$

$$= -12500 + 7500 = 5000 \, rad \, / \, s$$

$$s_2 = -1,25 \times 10^4 - \sqrt{1,5625 \times 10^8 - 10^8}$$
$$= -12500 - 7500 = -20000 \, rad \, / \, s$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

* Exemplo: b) A resposta será superamortecida, subamortecida ou criticamente amortecida?

$$\alpha = 1.25 \times 10^4 \, rad \, / \, s$$

$$\omega_0^2 = 10^8 \, rad^2/s^2$$

Superamortecida, pois: $\omega_0^2 < \alpha^2$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

FExemplo: c) Repita a) e b) para $R=312,5 \Omega$.

$$\alpha = \frac{1}{2RC} = \frac{10^6}{(625)(0,2)} = 8000 \, rad \, / \, s$$

$$\alpha^2 = 64 \times 10^6 = 0,64 \times 10^8 \, rad^2 \, / \, s^2$$

$$\omega_0^2 = 10^8 \, rad^2 \, / \, s^2$$

$$s_1 = -8000 + j6000 \, rad \, / \, s$$

$$s_2 = -8000 - j6000 \, rad \, / \, s$$

$$\sqrt{-1} = j$$

Subamortecida, pois: $\omega_0^2 > \alpha^2$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

*Exemplo: d) Qual o valor de R faz com que a resposta seja criticamente amortecida?

Para amortecimento crítico: $\omega_0^2 = \alpha^2$

$$\alpha^2 = \left(\frac{1}{2RC}\right)^2$$
 $\omega_0^2 = \frac{1}{LC} = 10^8$ $\left(\frac{1}{2RC}\right)^2 = \frac{1}{LC}$

$$\left(\frac{1}{2RC}\right)^2 = 10^8$$

$$\frac{1}{2RC} = 10^4$$

$$R = \frac{1}{(2 \times 10^4)(0.2 \times 10^{-6})} = 250 \Omega$$

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta superamortecida $(\omega_0^2 < \alpha^2)$

- As raízes da equação característica são reais e distintas;
- A solução para a tensão tem a forma:

$$v = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

(Resposta natural de tensão – circuito RLC em paralelo subamortecido).

- Onde s_1 e s_2 são as raízes da equação característica.
- As constantes A_1 e A_2 são determinadas pelas condições iniciais:

$$v(0^+)$$
 $dv(0^+)/dt$

Condições iniciais: Tensão inicial no capacitor V_0 e corrente inicial no indutor I_0

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta superamortecida

$$v = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Note que :
$$v(0^+) = A_1 + A_2$$

Note que:
$$v(0^+) = A_1 + A_2$$
 $\frac{dv(0^+)}{dt} = s_1 A_1 + s_2 A_2$

Então, se conhecermos s_1 e s_2 a tarefa de determinar A_1 e A_2 se reduz a determinar $v(0^+) e dv(0^+)/dt$.

1) O valor inicial de $v(0^+)$ é a tensão inicial do capacitor (V_0) :

$$v(0^+)=V_0$$

2) O valor inicial de $dv(0^+)/dt$ pode ser determinado por:

$$i_c(0^+) = C \frac{dv(0^+)}{dt} \qquad \Longrightarrow \qquad \frac{dv(0^+)}{dt} = \frac{i_c(0^+)}{C}$$

Onde pela LKC:
$$i_c(0^+) = -\frac{V_0}{R} - I_0$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resumo do processo para determinar a resposta superamortecida

- 1)Determine as raízes da equação característica (s_1 e s_2) usando os valores de R, L e C.
- 2)Determine $v(0^+)$ e $dv(0^+)/dt$ usando análise de circuitos.
- 3)Determine os valores de A_1 e A_2 resolvendo as equações abaixo simultaneamente.

$$v(0^{+}) = A_{1} + A_{2}$$

$$\frac{dv(0^{+})}{dt} = s_{1}A_{1} + s_{2}A_{2}$$

4) Substitua os valores de s_1 , s_2 , A_1 e A_2 na equação abaixo para determinar a expressão de v(t) para $t \ge 0$.

$$v = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: Para o circuito abaixo, considere que $v(0^+) = 12V$ e $i_L(0^+) = 30\text{mA}$.

- a) Determine a corrente inicial em cada ramo do circuito.
- b) Determine o valor inicial de dv/dt ($dv(0^+)/dt$).
- c) Determine a expressão para v(t).
- d) Faça um gráfico de v(t) no intervalo $0 \le t \le 250 \mu s$.

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: Para o circuito abaixo, considere que $v(0^+) = 12V$ e $i_L(0^+) = 30\text{mA}$.

a) Determine a corrente inicial em cada ramo do circuito.

Solução:

$$i_L(0^-) = i_L(0) = i_L(0^+) = 30 \, mA$$

O capacitor mantém a tensão nos elementos em paralelo em 12 V, então:

$$i_R(0^+) = 12/200 = 60 \, mA$$

Pela LKC:

$$i_{C}(0^{+}) = -i_{L}(0^{+}) - i_{R}(0^{+})$$
$$= -90 \, mA$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: Para o circuito abaixo, considere que $v(0^+) = 12V$ e $i_1(0^+) = 30$ mA.

b) Determine o valor inicial de dv/dt ($dv(0^+)/dt$).

Solução:

$$\frac{dv(0^+)}{dt} = \frac{i_c(0^+)}{C}$$

$$\frac{dv(0^{+})}{dt} = \frac{-90 \times 10^{-3}}{0.2 \times 10^{-6}} = -450kV/s$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: Para o circuito abaixo, considere que $v(0^+) = 12V$ e $i_L(0^+) = 30\text{mA}$.

c) Determine a expressão para v(t)

Solução:

As raízes da equação característica são determinadas pelos valores de R, L e C.

$$\alpha = \frac{1}{2(200)(0.2 \times 10^{-6})} = 1.25 \times 10^{4}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(50 \times 10^{-3})(0.2 \times 10^{-6})}} = \frac{1}{\sqrt{10^{-8}}}$$

$$s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$V_0 = 50 \text{ mH}$$

$$V_0 = 100 \Omega$$

$$s_1 = -1.25 \times 10^4 + \sqrt{1.5625 \times 10^8 - 10^8}$$
$$= -1250 + 7500 = -5000 \, rad \, / \, s$$
$$s_2 = -1250 - 7500 = -20000 \, rad \, / \, s$$

Raízes reais e distintas = superamortecida.

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: Para o circuito abaixo, considere que $v(0^+) = 12V$ e $i_L(0^+) = 30\text{mA}$.

c) Determine a expressão para v(t)

Solução:

O próximo passo é determinar os coeficientes A_1 e A_2 em $v = A_1 e^{s_1 t} + A_2 e^{s_2 t}$

$$v(0^{+})=12V$$
 $\frac{dv(0^{+})}{dt}=-450kV/s$ $s_{1}=-5000 \, rad/s$ $s_{2}=-20000 \, rad/s$

$$v(0^{+}) = A_{1} + A_{2}$$

$$\frac{dv(0^{+})}{dt} = s_{1}A_{1} + s_{2}A_{2}$$

$$12 = A_{1} + A_{2}$$

$$-450 \times 10^{3} = -5000A_{1} - 20000A_{2}$$

$$A_1 = -14V \qquad e \qquad A_2 = 26V$$

Então:

$$v(t) = (-14e^{-5000t} + 26e^{-20000t})V, t \ge 0$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: Para o circuito abaixo, considere que $v(0^+) = 12V$ e $i_L(0^+) = 30\text{mA}$.

c) Determine a expressão para v(t)

Solução:

Verifique que:
$$v(t) = (-14e^{-5000t} + 26e^{-20000t})V, t \ge 0$$

 $v(0) = 12V$

$$\frac{dv(0^{+})}{dt} = -450kV/s$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Exemplo: Para o circuito abaixo, considere que $v(0^+) = 12 \text{V e } i_L(0^+) = 30 \text{mA}$.

d) Faça um gráfico de v(t) no intervalo $0 \le t \le 250 \mu s$.

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta subamortecida $(\omega_0^2 > \alpha^2)$

- As raízes da equação característica são complexas.

$$s_{1} = -\alpha + \sqrt{-(\omega_{0}^{2} - \alpha^{2})}$$

$$= -\alpha + j\sqrt{\omega_{0}^{2} - \alpha^{2}}$$

$$= -\alpha + j\omega_{d}$$

$$s_{2} = -\alpha - j\omega_{d}$$

Onde

$$\omega_d = \sqrt{{\omega_0}^2 - \alpha^2}$$

(Frequência angular subamortecida).

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta subamortecida $(\omega_0^2 > \alpha^2)$

A resposta da tensão subamortecida de um circuito RLC paralelo é:

$$v(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} sen \omega_d t$$

(Resposta natural de tensão - Circuitos RLC em paralelo subamortecidos).

Que decorre de:
$$v = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Demonstração:
$$s_1 = -\alpha + j\omega_d$$
 , $s_2 = -\alpha - j\omega_d$ $e^{\pm j\theta} = \cos\theta \pm jsen\theta$

$$v(t) = A_1 e^{(-\alpha + j\omega_d)t} + A_2 e^{-(\alpha + j\omega_d)t}$$

$$= A_1 e^{-\alpha t} e^{j\omega_d t} + A_2 e^{-\alpha t} e^{-j\omega_d t}$$

$$= e^{-\alpha t} (A_1 \cos \omega_d t + jA_1 sen\omega_d t + A_2 \cos \omega_d t - jA_2 sen\omega_d t)$$

$$= e^{-\alpha t} [(A_1 + A_2)\cos \omega_d t + j(A_1 - A_2)sen\omega_d t]$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta subamortecida $(\omega_0^2 > \alpha^2)$

Demonstração:

Substituindo $(A_1 + A_2)$ por B_1 e $j(A_1 - A_2)$ por B_2 , temos:

$$v(t) = e^{-\alpha t} [(A_1 + A_2)\cos \omega_d t + j(A_1 - A_2)\sin \omega_d t]$$

$$= e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

$$= B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} \sin \omega_d t$$

Obtemos B_1 e B_2 pela energia inicial armazenada no circuito, do mesmo modo que determinamos A_1 e A_2 para a resposta superamortecida, avaliando v e dv/dt em $t=0^+$.

Assim como s_1 , s_2 , α e ω_d são fixadas pelos parâmetros R, L e C do circuito.

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta subamortecida $(\omega_0^2 > \alpha^2)$

Demonstração:

Para a resposta subamortecida as duas equações simultâneas que determinam B_1 e B_2 , são: $v = A_1 e^{s_1 t} + A_2 e^{s_2 t}$

$$v(0^+) = A_1 + A_2$$

$$v(0^+) = A_1 + A_2$$
 $v(0^+) = V_0 = B_1$

$$\frac{dv(0^+)}{dt} = s_1 A_1 + s_2 A_2$$

$$\frac{dv(0^+)}{dt} = s_1 A_1 + s_2 A_2$$

$$\frac{dv(0^+)}{dt} = \frac{i_c(0^+)}{C} = -\alpha B_1 + \omega_d B_2$$

$$s_1 = -\alpha + j\omega_d$$
 , $s_2 = -\alpha - j\omega_d$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta subamortecida $(\omega_0^2 > \alpha^2)$

-Pela equação da resposta percebe-se que a resposta é oscilatória, com frequência ω_d ;

$$v(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} sen\omega_d t$$

- A amplitude da oscilação diminui exponencialmente;
- A rapidez com que as oscilações são diminuem é determinada por α;
- Por isso, α também é denominado de coeficiente/fator de amortecimento;
- Isso explica porque ω_d é denominada frequência angular amortecida;
- -Se $\alpha=0$, $\omega_d=\omega_n$;

$$\omega_d = \sqrt{{\omega_0}^2 - \alpha^2}$$

(Frequência angular subamortecida).

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta subamortecida $(\omega_0^2 > \alpha^2)$ - Exemplo

No circuito abaixo, V_0 =0 e I_0 = -12,25 mA

- a) Calcule as raízes da Equação característica;
- b) Calcule v e dv/dt em t=0+;
- c) Calcule a resposta da tensão para $t \ge 0$.
- d) Plote o gráfico v(t) versus t para o intervalo de tempo $0 \le t \le 11$ ms.

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

* Resposta subamortecida $(\omega_0^2 > \alpha^2)$ - Exemplo

No circuito abaixo, V_0 =0 e I_0 = -12,25 mA

a) Calcule as raízes da Equação característica;

$$\alpha = \frac{1}{2RC} = \frac{1}{2(20 \times 10^{3})(0.125 \times 10^{-6})} = 200 \, rad \, / \, s$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(8)(0,125 \times 10^{-6})}} = \sqrt{\frac{1}{10^{-6}}} = \sqrt{10^6} = 10^3 \ rad \ / \ s$$

Então:

$$\omega_0^2 > \alpha^2$$
 (Resposta subamortecida)

$$\omega_d = \sqrt{{\omega_0}^2 - {\alpha}^2}$$

$$= \sqrt{10^6 - 4 \times 10^4} = 100\sqrt{96}$$

$$= 979.80 \, rad \, / \, s$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta subamortecida $(\omega_0^2 > \alpha^2)$ - Exemplo

No circuito abaixo, V_0 =0 e I_0 = -12,25 mA

a) Calcule as raízes da Equação característica;

$$\alpha = 200 \, rad \, / \, s$$
 $\omega_0 = 10^3 \, rad \, / \, s$ $\omega_d = 979,80 \, rad \, / \, s$

Então:

$$s_1 = -\alpha + j\omega_d = -200 + j070,80 \, rad / s$$

 $s_2 = -\alpha - j\omega_d = -200 - j070,80 \, rad / s$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

**Resposta subamortecida ($\omega_0^2 > \alpha^2$) - Exemplo V_0 =0 e I_0 = -12,25 mA b) Calcule v e dv/dt em t=0+;

Como v é a tensão nos terminais de um capacitor, temos:

$$v(0) = v(0^+) = V_0 = 0$$

Como $v(0^+) = 0$, a corrente no ramo resistivo é zero em $t = 0^+$

$$i_c(0^+) = -(-12,25mA) = 12,25mA$$

$$\frac{dv(0^{+})}{dt} = \frac{i_c(0^{+})}{C} = \frac{(12,25)(10^{-3})}{(0,125)(10^{-6})} = 98000V/s$$

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

*Resposta subamortecida ($\omega_0^2 > \alpha^2$) - Exemplo V_0 =0 e I_0 = -12,25 mA

c) Calcule a resposta da tensão para $t \ge 0$.

Pelas Equações:

$$v(0^+) = V_0 = B_1$$

$$\frac{dv(0^+)}{dt} = \frac{i_c(0^+)}{C} = -\alpha B_1 + \omega_d B_2$$

$$B_1 = 0$$

$$B_2 = \frac{98000}{\omega_1} \approx 100V$$

Substituindo α , ω_d , B_1 e B_2 em:

$$v(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} sen \omega_d t$$

$$\alpha = 200 \, rad \, / \, s$$

$$\alpha = 200 \, rad \, / \, s$$
 $\omega_d = 979,80 \, rad \, / \, s$

$$v(t) = 100e^{-200t} sen 979,80t \quad V, t \ge 0$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

Resposta subamortecida $(\omega_0^2 > \alpha^2)$ - Exemplo V_0 =0 e I_0 = -12,25 mA d) Plote o gráfico v(t) versus t para o intervalo de tempo $0 \le t \le 11$ ms.

O gráfico indica claramente a natureza oscilatória amortecida da resposta subamortecida.

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resposta criticamente amortecida $(\omega_0^2 = \alpha^2)$

-As duas raízes da equação característica são reais e iguais:

$$s = -\alpha \pm \sqrt{-\left(\omega_0^2 - \alpha^2\right)}$$

- Se
$$\omega_0 = \alpha$$
, então: $s_1 = s_2 = -\alpha = -\frac{1}{2RC}$

- Solução para a equação diferencial:

$$v(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$$

(Resposta natural da tensão – circuito RLC paralelo criticamente amortecido).

- Equações para determinar D_1 e D_2 : $v(0^+) = V_0 = D_2$ $\frac{dv(0^+)}{dt} = \frac{i_C(0^+)}{C} = D_1 - \alpha D_2$

Obs.: Na prática são raros, pois dificilmente ω_0^2 é exatamente igual a α^2 .

Circuitos de 2^a Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resumo do procedimento para cálculo da resposta natural

- 1) Calcular as raízes da equação característica;
- 2) Verificar se a resposta é superamortecida, subamortecida ou criticamente amortecida;
- 3a) Se as raízes forem reais e distintas ($\omega_0^2 < \alpha^2$), a resposta será **superamortecida** e a tensão será:

$$v = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Onde:

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
 $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$ $\alpha = \frac{1}{2RC}$ $\omega_0^2 = \frac{1}{LC}$

Os valores de A_1 e A_2 são determinados resolvendo as equações:

$$\frac{dv(0^{+})}{dt} = s_1 A_1 + s_2 A_2 \qquad v(0^{+}) = A_1 + A_2$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resumo do procedimento para cálculo da resposta natural

- 1) Calcular as raízes da equação característica;
- 2) Verificar se a resposta é superamortecida, subamortecida ou criticamente amortecida;
- 3b) Se as raízes forem complexas ($\omega_0^2 > \alpha^2$), a resposta será **subamortecida** e a tensão será:

$$v(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} sen \omega_d t$$

Onde:

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2} \qquad s_{1,2} = -\alpha \pm j\omega_d \qquad \alpha = \frac{1}{2RC} \qquad \omega_0^2 = \frac{1}{LC}$$

Os valores de B_1 e B_2 são determinados resolvendo as equações:

$$v(0^{+}) = V_0 = B_1 \qquad \frac{dv(0^{+})}{dt} = \frac{i_c(0^{+})}{C} = -\alpha B_1 + \omega_d B_2$$

Circuitos de 2ª Ordem RLC

Resposta natural de um circuito RLC em paralelo

F Resumo do procedimento para cálculo da resposta natural

- 1) Calcular as raízes da equação característica;
- 2) Verificar se a resposta é superamortecida, subamortecida ou criticamente amortecida;
- 3c) Se as raízes forem reais e iguais ($\omega_0^2 = \alpha^2$), a resposta será **criticamente amortecida** e a tensão será:

$$v(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$$

Onde:

$$s_1 = s_2 = -\alpha = -\frac{1}{2RC}$$

$$\alpha = \omega_0$$

Os valores de D_1 e D_2 são determinados resolvendo as equações:

$$v(0^{+}) = V_0 = D_2 \qquad \frac{dv(0^{+})}{dt} = \frac{i_C(0^{+})}{C} = D_1 - \alpha D_2$$

Circuitos de 2ª Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

Introdução

Circuitos de 2ª Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

Introdução

Abordagem direta:

A solução de uma equação diferencial com uma **função forçante constante** é igual à resposta forçada mais uma função resposta cuja forma é idêntica à resposta natural.

$$i = i_f + \begin{cases} função da mesma forma \\ que a respostanatural \end{cases}$$
 $v = v_f + \begin{cases} função da mesma forma \\ que a respostanatural \end{cases}$

Circuitos de 2^a Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

*Exemplo: A energia inicial armazenada no circuito é zero. Em t=0 a fonte de corrente cc de 24 mA é aplicada no circuito. O valor do resistor é 400 Ω .

- a) Qual o valor inicial de $i_{\rm L}$?
- b) Qual é o valor inicial de di_I/dt ?
- c) Quais são as raízes da equação característica?
- d) Qual é a expressão numérica para $i_L(t)$ quanto $t \ge 0$?

Circuitos de 2ª Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

*Exemplo: A energia inicial armazenada no circuito é zero. Em t=0 a fonte de corrente cc de 24 mA é aplicada no circuito. O valor do resistor é 400 Ω .

a) Qual o valor inicial de $i_{\rm L}$?

Como a energia inicial armazenada no circuito é zero, o valor inicial de i_L é zero.

Como o indutor impede a variação instantânea na corrente, $i_L(0^+) = 0$.

Circuitos de 2ª Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

*Exemplo: A energia inicial armazenada no circuito é zero. Em t=0 a fonte de corrente cc de 24 mA é aplicada no circuito. O valor do resistor é 400 Ω .

b) Qual é o valor inicial de di_I/dt ?

A tensão inicial no capacitor é zero, portanto também será zero no instante logo após a abertura da chave, v(0+)=0. Então:

$$v = L \frac{d_{i_L}}{dt} \qquad \longrightarrow \qquad \frac{d_{i_L}}{dt} \left(0^+\right) = 0$$

Circuitos de 2^a Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

*Exemplo: A energia inicial armazenada no circuito é zero. Em t=0 a fonte de corrente cc de 24 mA é aplicada no circuito. O valor do resistor é 400Ω .

c) Quais são as raízes da equação característica?

$$\omega_0^2 = \frac{1}{LC} = \frac{10^{12}}{(25)(25)} = 16 \times 10^8$$

$$\omega_0^2 = \frac{1}{LC} = \frac{10^{12}}{(25)(25)} = 16 \times 10^8$$
 $\alpha = \frac{1}{2RC} = \frac{10^9}{(2)(400)(25)} = 5 \times 10^4 \ rad/s$

 $\alpha^2 = 25 \times 10^8 \ rad / s$

 $\omega_0^2 < \alpha^2$

$$s_1 = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$s_1 = -5 \times 10^4 + 3 \times 10^4 = -20000 \, rad \, / \, s$$

$$s_2 = -5 \times 10^4 - 3 \times 10^4 = -80000 \, rad \, / \, s$$

$$i_C \downarrow i_L \downarrow i_R \downarrow +$$

Circuitos de 2ª Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

*Exemplo: A energia inicial armazenada no circuito é zero. Em t=0 a fonte de corrente cc de 24 mA é aplicada no circuito. O valor do resistor é 400 Ω .

d) Qual é a expressão numérica para $i_{\rm I}(t)$ quanto $t \ge 0$?

$$i_{L} = I_{f} + A_{1}^{'} e^{s_{1}t} + A_{2}^{'} e^{s_{2}t}$$

$$i_{L}(0) = I_{f} + A_{1}^{'} + A_{2}^{'} = 0$$

$$\frac{di_{L}}{dt}(0) = s_{1}A_{1}^{'} + s_{2}A_{2}^{'} = 0$$

$$A_{1}^{'} = -32 \, mA \qquad A_{2}^{'} = 8 \, mA$$

A solução para $i_L(t)$ é: $i_L(t) = (24 - 32e^{-20000t} + 8e^{-80000t}) mA$, $t \ge 0$

Circuitos de 2^a Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

FExemplo 2: O resistor é aumentado para 625 Ω . Determine $i_t(t)$ para $t \ge 0$.

$$\omega_0^2 = \frac{1}{LC} = \frac{10^{12}}{(25)(25)} = 16 \times 10^8$$

$$\omega_0^2 = \frac{1}{LC} = \frac{10^{12}}{(25)(25)} = 16 \times 10^8$$
 $\alpha = \frac{1}{2RC} = \frac{10^9}{(2)(625)(25)} = 3.2 \times 10^4 \ rad/s$

Raízes complexas (subamortecida)
$$\omega_0^2 > \alpha^2$$

$$\alpha^2 = 10,24 \times 10^8 \ rad / s$$

$$\omega_d = \sqrt{{\omega_0}^2 - \alpha^2}$$

$$\omega_d = 2,4 \times 10^4$$

$$s_{1,2} = -\alpha \pm j\omega_d$$

$$s_1 = -3.2 \times 10^4 + j2.4 \times 10^4 \ rad / s$$

$$s_2 = -3.2 \times 10^4 - j2.4 \times 10^4 \ rad / s$$

Circuitos de 2ª Ordem RLC

Resposta ao degrau de um circuito RLC paralelo

FExemplo 2: O resistor é aumentado para 625 Ω . Determine $i_L(t)$ para $t \ge 0$.

$$i_{L}(0) = I_{f} + A_{1}' + A_{2}' = 0$$

$$i_{L}(0) = I_{f} + B_{1}' = 0$$

$$\frac{di_{L}}{dt}(0) = s_{1}A_{1}' + s_{2}A_{2}' = 0$$

$$\frac{di_{L}}{dt}(0) = -\alpha B_{1}' + \omega_{d}B_{2}'$$

$$B_1' = -24 \, mA$$
 $B_2' = -32 \, mA$

$$\alpha = 3.2 \times 10^4 \, rad \, / \, s$$

$$i_L(t) = I_F + B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} sen\omega_d t$$

$$\omega_d = 2,4 \times 10^4$$

$$i_L(t) = 24 - 24e^{-32000t}\cos 24000t - 32e^{-32000t}\sin 24000t \quad mA \quad , \quad t \ge 0$$

Referências Bibliográficas:

Nilsson, J.W. e Riedel, S.A., Circuitos Elétricos, 8^a Edição, Pearson Prentice Hall, São Paulo, 2009.

Svodoba, J.A. and Dorf, R.C., Introduction to Electric Circuits, 9th edition, Wiley, 2011.