## TD Test 3

| Name:                                                            | Surname:                                                                                    | Group :                                  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|
| Question from the clas                                           | s (2 points)                                                                                |                                          |
|                                                                  | th common ratio $q \in \mathbb{R} \setminus \{1\}$ and $(v_n)$ be an arithmetic se          | equence with common difference           |
| $r \in \mathbb{R}$ . Give the expression of $u_0 + u_1 + \cdots$ | $+u_n$ and $v_0+v_1+\cdots+v_n$ .                                                           |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             | ,                                        |
|                                                                  |                                                                                             |                                          |
| Question from the clas                                           | s (2 points)                                                                                |                                          |
| Let $(u_n)$ be a real sequence and $\ell \in$                    | $\mathbb{R}.$ Give the precise definition, with the quantifiers, of « (                     | $(u_n)$ converges to $\ell$ ».           |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
| Evereice 1 (2 points)                                            |                                                                                             |                                          |
| Exercise 1 (2 points)                                            | or all $n \in \mathbb{N}$ $n = -7n + 12$ . Determine for all $n \in \mathbb{N}$ .           | a as a function of m                     |
| Let $(u_n)$ be defined by $u_0 = 1$ and $u_0 = 1$                | or all $n \in \mathbb{N}$ , $u_{n+1} = 7u_n + 12$ . Determine, for all $n \in \mathbb{N}$ , | $\frac{u_n}{u_n}$ as a function of $n$ . |
|                                                                  |                                                                                             | ,                                        |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             |                                          |
|                                                                  |                                                                                             | ,                                        |
|                                                                  |                                                                                             |                                          |

## Exercise 2 (4 points)

Let  $(u_n)_{n\in\mathbb{N}^*}$  be defined for all  $n\in\mathbb{N}^*$  by  $u_n=\frac{1}{2}\times\frac{3}{4}\times\cdots\times\frac{2n-1}{2n}$ 

1. Give the expression of  $u_{n+1}$  in terms of n?

2. Study the monotony of  $(u_n)$  by using  $\frac{u_{n+1}}{u_n}$ .



3. Is  $(u_n)$  convergent? Justify your answer.