

$MRP_L = 120$

 $P_1 = 120$

The firm gets \$1 in revenue for each dollar spent on Labor

We know the firm has hired the optimum number of workers if $MRP_1 = P_1$

The firm spends $$120 (P_L)$ to hire another worker, and gets \$120 in revenue from that worker

Example:

Revenue per dollar MRP spent on Labor

 $if MRP_L = P_L$

$MRP_L = 60$

PL = 120

The firm gets **50** cents in revenue for each dollar spent on Labor

Example:

The firm should not hire that worker: use less labor

We know the firm has hired the optimum number of workers if $MRP_{l} = P_{l}$

Example:
$$\frac{MRP_L = 120}{P_L = 120}$$
 The firm spends \$120 (P_L) to hire another worker, and gets \$120 in revenue from that worker

if
$$MRP_L = P_L$$
 $\frac{MRP_L}{P_L} = 1$ The firm gets \$1 in revenue for each dollar spent on Labor

$$\frac{\mathsf{MRP_L}}{\mathsf{P_l}} = \frac{Revenue\ per\ dollar}{spent\ on\ Labor}$$

Example:
$$\frac{MRP_{L} = 60}{PI = 120} = 0.5$$

 $\frac{\text{MRP}_{L} = 60}{\text{PL} = 120} = 0.5$ The firm gets **50 cents** in revenue for each dollar spent on Labor

The firm should not hire that worker: use less labor