

第6章 半导体存储器

- 6.1 概述
- 6.2 只读存储器 (ROM)
- 6.3 随机存取器 (RAM)
- 6.4 存储器的应用

6.1 概述

- 一、存储器的构造特点:
- 1. 数目庞大与管脚有限
- 2. 分组技术
- 3. 地址译码技术
- 4. 共享通道技术

合作追取求實創新

1.ROM (Read Only Memory)

ROM的定义:是存储固定信息的存储器件,即先把信息和数据写入到存储器中,在正常工作时它存储的数据是固定不变的,只能读出,不能迅速写入。

ROM的特点: 掉电后存储的数据不会丢失。

ROM的用途:

- (1) 存储各种程序代码;
- (2) 实现多输入、多输出逻辑函数真值表;
- (3) 代码的变换、符号和数字显示等有关数字电路及存储各种函数等。

2. RAM (Random Access Memory)

RAM 的定义: 是随机存取存储器, 读写方便。

RAM的特点: 所存储信息会因断电而丢失。

RAM的用途:

常用来放一些采样值、运算的中间结果,数据暂存、缓冲和标志位等。

- 三、存储器的主要技术指标:
- 1. 存储容量: 所存放信息的多少,用Bit 表示
- 2. 存储时间: 用读(写)周期 表示

6.2 只读存储器 (ROM)

ROM的电路结构

ROM的电路结构包含存储矩阵、地址译码器和输出缓冲器三个组成部分

ROM的数据表 (功能表达)

地	址	数据						
A 1	Ao	D3	D ₂	D1	D ₀			
0	0	0	1	0	1			
0	1	1	0	1	1			
1	0	0	1	0	0			
1	1	1	1	1	0			

二、可编程只读存储器(PROM)

PROM在出厂时, 制作的是一个完整的 二极管或三极管存储 单元矩阵,相当于所 有的存储单元全部存 入1。在每个单元的 三极管发射极上都接 有快速熔丝,它是用 低熔点的合金或很细 的多晶硅导线制成的。

三、可擦除的可编程 ROM(EPROM)

1. UVEPROM

采用浮栅型MOS器件,紫外线照射擦除,需要10——30分钟,可擦除上万次。

2. E^2 PROM

浮栅工艺,有隧道区,可利用一定宽度电脉冲擦除。

3. 快闪存储器

快闪存储器既吸收了EPROM结构简单、编程可靠的优点,又保留了E²PROM用隧道效应擦除的快捷特性,而且集成度可以做得很高。

合作追取求實創新

6.3 随机存取器

静态随机存储器(SRAM)

1. SRAM的结构和工作原理

SRAM电路通常由存储矩阵、地址译码器和读/写控制电路三部分组成。

2. SRAM的静态存储单元

(六管NMOS静态存储单元)

2. DRAM整体结构框图

合作追取求實創新

6.4 存储器的应用

一、实用存储器芯片

1. EPROM2716

EPROM2716的功能表

状态	CE	ŌĒ	V_{PP}	V_{CC}	D_7 - D_0
读出	0	0	+5V	+5V	D _{OUT}
维持	1	×	+5V	+5V	高阻
编程		1	+25V	+5V	$\mathbf{D}_{\mathbf{IN}}$
编程检验	0	0	+25V	+5V	$\mathbf{D}_{\mathrm{OUT}}$
编程禁止	0	1	+25V	+5V	高阻

*存储容量与地址线和数据线的关系

2. **EEPROM2864**

EEPROM2864的功能表

	\overline{CS}	ŌĒ	V_{PP}	V_{CC}	\overline{PGM}	D_7 - D_0
读	0	0	+5V	+5V	1	$\mathbf{D}_{\mathbf{OUT}}$
维持	1	X	+5V	+5V	×	高阻
编程	0	1	+5V	+5V	0	$\mathbf{D}_{\mathbf{IN}}$
编程检验	0	0	+5V	+5V	1	$\mathbf{D}_{\mathbf{OUT}}$
编程禁止	1	×	+5V	+5V	×	高阻

合作追取求實創新

3. SRAM 6116

合作進取求實創新

SRAM 6116的功能表

	\overline{CS}	\overline{OE}	WE	D_7 - D_0
写入	0	1	0	$\mathbf{D_{IN}}$
读出	0	0	1	$\mathbf{D}_{\mathbf{OUT}}$
低功耗维持	1	X	×	高阻

二、利用存储器设计组合逻辑电路

一、思路:

- 1. 存储器的地址译码器输出包含了输入地址变量全部的最小项
- 2. 存储器数据输出又都是若干个最小项之和
- 3. 而任何的组合逻辑函数可用输入逻辑变量的最小项之和表示

推论

n位输入地址、m位数据输出的存储器可以设计一组(最多为m个)任何形式的n输入逻辑变量组合逻辑函数

三、方法:

只要根据函数的形式向存储器写入相应的数据即可。

四、步骤:

- 1. 根据输入变量数和输出端个数确定存储器的类型;
- 2. 将函数化为最小项之和的形式(列出函数的真值表);
- 3. 列出函数的数据表;
- 4. 画出相应的电路结点图/点阵图(编程写入数据)

应用

- 1. 作函数运算表电路
- 2. 实现组合逻辑函数
- 3. 用ROM设计一个8段字符显示的译码器
- 4. 数字波形发生数据存储器

一、试用ROM构成实现函数 $y = x^2$ 的运算表电路,x的取值范围为0~15的正整数。

解: (1)分析要求、设定变量 x的取值范围为0~15的正整数,用B=B3B2B1B0表示; y的最大值是 225,用Y=Y7Y6Y5Y4Y3Y2Y1Y0表示。

(2)列真值表(函数运算表)

		, / -						*				
B_3	B_2	\boldsymbol{B}_1	\boldsymbol{B}_0	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0	十进制数
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	1
0	0	1	0	0	0	0	0	0	1	0	0	4
0	0	1	1	0	0	0	0	1	0	0	1	9
0	1	0	0	0	0	0	1	0	0	0	0	16
0	1	0	1	0	0	0	1	1	0	0	1	25
0	1	1	0	0	0	1	0	0	1	0	0	36
0	1	1	1	0	0	1	1	0	0	0	1	49
1	0	0	0	0	1	0	0	0	0	0	0	64
1	0	0	1	0	1	0	1	0	0	0	1	81
1	0	1	0	0	1	1	0	0	1	0	0	100
1	0	1	1	0	1	1	1	1	0	0	1	121
1	1	0	0	1	0	0	1	0	0	0	0	144
1	1	0	1	1	0	1	0	1	0	0	1	169
1	1	1	0	1	1	0	0	0	1	0	0	196
1	1	1	1	1	1	1	0	0	0	2 84	14	225

(3) 写出逻辑函数的最小项表达式

$$\begin{cases} Y_0 = m_1 + m_3 + m_5 + m_7 + m_9 + m_{11} + m_{13} + m_{15} \\ Y_1 = 0 \\ Y_2 = m_2 + m_6 + m_{10} + m_{14} \\ Y_3 = m_3 + m_5 + m_{11} + m_{13} \\ Y_4 = m_4 + m_5 + m_7 + m_9 + m_{11} + m_{12} \\ Y_5 = m_6 + m_7 + m_{10} + m_{11} + m_{13} + m_{15} \\ Y_6 = m_8 + m_9 + m_{10} + m_{11} + m_{14} + m_{15} \\ Y_7 = m_{12} + m_{13} + m_{14} + m_{15} \end{cases}$$

(4) 画出ROM存储矩阵结点逻辑图 为作图方便,将ROM矩阵中的存储单元存入1 的单元用结点表示

二、试用ROM实现下列函数:

$$\begin{cases} Y_{1} = \overline{A} \cdot \overline{B}C + \overline{A}B\overline{C} + A\overline{B} \cdot \overline{C} + ABC \\ Y_{2} = BC + CA \\ Y_{3} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B}CD + \overline{A}BC\overline{D} + A\overline{B} \cdot \overline{C}D + AB\overline{C} \cdot \overline{D} + ABCD \\ Y_{4} = ABC + ABD + ACD + BCD \end{cases}$$

解: (1)写出各函数的标准与或表达式

$$\begin{cases} Y_1 = \overline{A} \cdot \overline{B}CD + \overline{A} \cdot \overline{B}C\overline{D} + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}B\overline{C} \cdot \overline{D} + A\overline{B} \cdot \overline{C}D + A\overline{B} \cdot \overline{C} \cdot \overline{D} + ABCD +$$

最小项编号形式表示为:

$$\begin{cases} Y_1 = \sum m(2,3,4,5,8,9,14,15) \\ Y_2 = \sum m(6,7,10,11,14,15) \\ Y_3 = \sum m(0,3,6,9,12,15) \\ Y_4 = \sum m(7,11,13,14,15) \end{cases}$$

合作進取求實創新

(2) 选用 ROM, 画存储矩阵连线图

合作追取求實創新

本章要点

- 1)半导体存储器电路结构中必须包含地址译码器、存储矩阵和输入/输出电路这三个组成部分。
- 2)半导体存储器从读/写功能上分为ROM和RAM两大类。按存储单元电路的结构和工作原理的不同,又将ROM分为掩模ROM、PROM、EPROM、EEPROM和快闪存储器等几种不同的类型;将RAM分为SRAM和DRAM两类。
- 3)应掌握各种类型半导体存储器在电路结构和性能上的不同特点。掌握用半导体存储器实现组合逻辑函数的方法。