DM 6, pour le mardi 03/01/2023

Je vous rappelle les consignes en devoir à la maison :

- Vous pouvez chercher les exercices à plusieurs, me poser des questions dessus mais la rédaction doit être personnelle.
- Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Les différents problèmes sont indépendants.

Exercice. Ne rédigez pas la question 1 mais cherchez la pour vous entrainer sur les équivalents usuels.

- 1) Du calcul. Déterminer un équivalent simple des suites suivantes et donner leur limite :
 - a) $u_n = \frac{n^3 \sqrt{n^2 + 1}}{\ln(n) 4n^2}$.
 - b) $v_n = \sqrt{\ln(n+1) \ln(n)}$.

 - c) $w_n = \left(1 + \sin\left(\frac{\pi}{n}\right)\right)^n$. d) $x_n = \frac{n! + e^n}{\pi^n + 2^n + n^2 \ln(n)}$.
- 2) Logarithme d'équivalent. Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites strictement positives telles que
 - a) On suppose que $\lim_{n\to+\infty}y_n=+\infty$. Quelle est la limite de (x_n) ? Justifier qu'à partir d'un certain rang, $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ sont strictement plus grandes que 1.
 - b) Montrer que $\lim_{n\to+\infty} \ln(x_n) \ln(y_n) = 0$ puis montrer que $\ln(x_n) \sim \ln(y_n)$.
 - c) On suppose à présent $\lim_{n\to +\infty}y_n=0$. Que vaut la limite de (x_n) ? Justifier qu'à partir d'un certain rang, $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ sont strictement plus petites que 1 puis en procédant comme à la question précédente, montrer que $\ln(x_n) \sim_{+\infty} \ln(y_n)$
- 3) Équivalent de suite implicite.
 - a) Montrer que $f: x \mapsto x + e^x$ est bijective de \mathbb{R}_+ dans un intervalle à préciser.
 - b) En déduire que $\forall n \geq 1, \ \exists ! x_n \in \mathbb{R}_+ \ / \ x_n + e^{x_n} = n.$
 - c) Justifier que $(x_n)_{n\in\mathbb{N}^*}$ est strictement croissante et que $\lim_{n\to+\infty}x_n=+\infty$.
 - d) Montrer que $e^{x_n} \sim_{+\infty} n$ et en déduire un équivalent de x_n quand n tend vers l'infini. On pourra utiliser le résultat de la question 2.

PROBLÈME

Sous groupes de \mathbb{R} et densité de $\{\cos(n), n \in \mathbb{N}\}$

Partie I. Étude des sous groupes de $\mathbb R$

Pour $\alpha \in \mathbb{R}$, on note $\alpha \mathbb{Z} = \{n\alpha, n \in \mathbb{Z}\}.$

Soit G un sous groupe de $(\mathbb{R}, +)$. Le but de cette partie est de montrer que soit il existe $\alpha \in \mathbb{R}_+$ tel que $G = \alpha \mathbb{Z}$, soit G est dense dans \mathbb{R} .

- 1) Exemples.
 - a) Montrer que pour tout $\alpha \in \mathbb{R}_+$, $\alpha \mathbb{Z}$ est un sous groupe de \mathbb{R} .
 - b) Donner un exemple de sous-groupe de \mathbb{R} différent de \mathbb{R} dense dans \mathbb{R} .

Dans toute la suite, on considère G un sous-groupe de \mathbb{R} . Si $G = \{0\}$, alors $G = 0\mathbb{Z}$. On supposera donc dans la suite que $G \neq \{0\}$.

- 2) Montrer que $G \cap \mathbb{R}_+^*$ est non vide et admet une borne inférieure que l'on notera α et justifier que $0 \le \alpha$.
- 3) On suppose dans cette question que $0 < \alpha$ et on suppose par l'absurde que $\alpha \notin G$.
 - a) Justifier que $\forall g \in G \cap \mathbb{R}_+^*, \ \alpha < g$.
 - b) En utilisant la caractérisation epsilonesque de la borne inférieure, montrer qu'il existe $g_1 \in G \cap \mathbb{R}_+^*$ tel que $\alpha < g_1 < 2\alpha$.
 - c) Montrer de la même manière qu'il existe $g_2 \in G \cap \mathbb{R}_+^*$ tel que $\alpha < g_2 < g_1$.
 - d) Justifier que $g_1 g_2 \in G \cap \mathbb{R}_+^*$ et obtenir alors une absurdité.

On a donc $\alpha \in G$.

- e) Montrer que $\alpha \mathbb{Z} \subset G$.
- f) Réciproquement, on fixe $g \in G$.
 - i) Montrer qu'il existe un unique $n \in \mathbb{Z}$ tel que $n\alpha \leq g < (n+1)\alpha$.
 - ii) Justifier que $g n\alpha \in G$ et en déduire que $g = n\alpha$.
 - iii) En déduire que $G = \alpha \mathbb{Z}$.
- 4) On suppose dans cette question que $\alpha = 0$ et on fixe pour la suite de la question $\varepsilon > 0$ et $x \in \mathbb{R}$.
 - a) Montrer qu'il existe $g \in G$ tel que $0 < g < \varepsilon$.
 - b) Montrer de la même manière qu'à la question 3.f.i qu'il existe un unique $n \in \mathbb{Z}$ tel que $ng \le x < (n+1)g$ et en déduire que $|x-ng| \le \varepsilon$.
 - c) En déduire que G est dense dans \mathbb{R} .

Partie II. Densité de $\{\cos(n), n \in \mathbb{N}\}\$

On pose $G = \{ p + 2\pi q, \ (p, q) \in \mathbb{Z}^2 \}.$

- 5) Montrer que G est un sous groupe de \mathbb{R} .
- 6) Justifier que $\{\cos(n), n \in \mathbb{N}\} = \cos(G)$.
- 7) Vérifier que $1 \in G$ et $2\pi \in G$. En utilisant le fait que $\pi \notin \mathbb{Q}$, montrer qu'il n'existe pas de $\alpha \in \mathbb{R}_+$ tel que $G = \alpha \mathbb{Z}$.
- 8) En déduire de ce qui précède que $\{\cos(n), n \in \mathbb{N}\}$ est dense dans [-1, 1].

On pourra utiliser la continuité de la fonction cos en admettant le fait que si $\lim_{n\to+\infty} u_n = l$, alors $\lim_{n\to+\infty} \cos(u_n) = \cos(l)$.