Sinais e Sistemas Electrónicos

Capítulo 2: Técnicas de Análise de Circuitos

(parte 2)

Sinais e Sistemas Electrónicos – 2021/2022

Sumário

- Teorema de Thévenin;
- Exemplos de cálculo;
- Teorema de Norton;
- Equivalência entre Thévenin e Norton;
- Equivalente de Thévenin: Método Universal;
- Exemplos de cálculo.

Teoremas de Thévenin e Norton

Léon Charles Thévenin (1857 - 1926)

Edward Lawry Norton (1898 - 1983)

2.2-3

Sinais e Sistemas Electrónicos – 2021/2022

Teoremas de Thévenin e Norton

• Duas técnicas que permitem simplificar a análise de circuitos lineares.

- Teoremas úteis nos casos em que estamos interessados em saber o que se passa *apenas numa parte do circuito*, por ex:
 - \triangleright Qual é a potência dissipada em R_I ?
 - ightharpoonupQual é o valor de v_L para diferentes valores de R_L ?

Teorema de Thévenin

- Segundo o teorema de Thévenin, podemos substituir todo o circuito linear por um circuito equivalente mais simples;
- ullet A análise do que se passa em R_L prossegue depois usando este circuito equivalente.

2.2-5

Sinais e Sistemas Electrónicos – 2021/2022

Teorema de Thévenin

• Segundo o Teorema de Thévenin, o circuito equivalente é constituído por uma fonte de tensão com uma resistência em série.

Teorema de Thévenin

- A aplicação dos teoremas de Thévenin (e Norton), pressupõe que conseguimos dividir o circuito em duas partes:
 - Circuito A: o circuito que pretendemos simplificar o tal circuito linear;
 - ➤ Circuito B: o circuito que queremos manter pode ser uma resistência, mas também pode ser um circuito com mais elementos.
- Se estivermos apenas interessados em saber o que se passa em R_L , então...

2.2-7

Sinais e Sistemas Electrónicos - 2021/2022

Equivalente de Thévenin do Circuito A

• Determinar o equivalente de Thévenin do circuito A resume-se a ... determinar os valores de v_T e R_L do equivalente.

Como se procede então?

Equivalente de Thévenin do Circuito A

 Determinamos a tensão que aparece aos terminais do circuito A em circuito aberto, ou seja, depois de B ser desligado.

Determinamos a resistência equivalente entre os terminais do circuito
 A quando este é desativado - todas as fontes independentes de tensão são curto-circuitadas e todas as fontes independentes de corrente são abertas (as fontes dependentes mantêm-se).

2.2-9

Sinais e Sistemas Electrónicos – 2021/2022

Equivalente de Thévenin do Circuito A

 Se for mais fácil, podemos determinar a corrente entre os terminais do circuito A quando estes são curto-circuitados – a corrente de curto-circuito:

Esta corrente relaciona-se com os valores anteriores por:

$$i_{sc} = \frac{v_{oc}}{R_{eq}}$$

Finalmente, o equivalente
de Thévenin do circuito A é
dado por

Aplicação do teorema de Thévenin

1- Determinação de v_{oc} , a tensão em circuito aberto do circuito A:

$$v_{oc} = v_R = \frac{6}{6+3}12 = 8V$$

2.2-11

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação do teorema de Thévenin

2- Determinação de R_{eq} , a resistência equivalente ou de saída:

Aplicação do teorema de Thévenin

O equivalente de Thévenin do circuito A é portanto:

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação do teorema de Thévenin

Circuito original

Circuito c/ equivalente

de Thévenin

$$R_{T} = 9\Omega$$

$$+ \qquad \downarrow i_{L}$$

$$V_{T} = 8V \qquad v_{L} \qquad R_{L}$$

- Com o equivalente de Thévenin é possível obter informações úteis que não estão disponíveis de imediato no circuito original:
 - ightharpoonup O valor máximo de v_L (tensão de circuito aberto) é 8V;
 - \triangleright O valor máximo de i_L (corrente de curto-circuito) é (8/9)A;
 - ightharpoonup O circuito A fornece a potência máxima quando $R_L = 9\Omega$.

Teorema de Norton

• Com a aplicação deste teorema obtemos também um circuito mais simples, só que neste caso o equivalente é constituído por uma fonte de corrente com uma resistência em paralelo.

Como se procede para obter i_N e R_N ?

2.2-15

Sinais e Sistemas Electrónicos - 2021/2022

Teorema de Norton

- 1. i_N é igual à corrente que flui entre os terminais do circuito A quando estes são curto-circuitados, ou seja, é a corrente de curto-circuito, i_{sc} ;
- R_N é igual à resistência equivalente, R_{eq} , entre os terminais do circuito A quando este é desativado todas as fontes independentes de tensão são curto-circuitadas e todas as fontes independentes de corrente são abertas (as fontes dependentes mantêm-se).

Equivalência entre Thévenin e Norton

• Os equivalentes de Thévenin e Norton são equivalentes entre si;

2.2-17

Sinais e Sistemas Electrónicos – 2021/2022

Equivalentes de Thévenin e Norton – dificuldades

• Em circuitos com fontes dependentes, por vezes é impossível obter os valores de R_T ou R_N .

Exemplo: determinar o equivalente de Thévenin do circuito entre X e Y.

• Obter R_{eq} por simples combinação de resistências não é possível porque a fonte dependente não pode ser desactivada.

Equivalente de Thévenin - Método universal

• É um método que pode ser aplicado a todos os circuitos.

Como funciona?

- Dado o circuito A...
- ... aplicamos nos terminais uma fonte de tensão de valor *v*, com corrente *i*.
- Depois analisamos o circuito de forma a obter uma expressão de v em função de i, com a forma

$$v = ai + b$$

• Dos coeficientes *a* e *b* tiramos

$$R_T = a$$
 e $v_T = b$

2.2-19

Sinais e Sistemas Electrónicos – 2021/2022

Método universal - demonstração

• É fácil mostrar que o Método Universal funciona recorrendo ao próprio Equivalente de Thévenin.

Equivalente de Thévenin

- Aplicamos então aos terminais uma fonte de tensão de valor v, com corrente i.
- Aplicando KVL: $-v_T R_T i + v = 0$ $v = R_T i + v_T$
- Obtemos então uma relação de *v* em função de *i*, com a forma

$$v = ai + b$$

• Donde se conclui que $a = R_T$ e $b = v_T$.

Exemplo: determinar o equivalente de Thévenin visto pela resistência R_L .

2.2-21

Sinais e Sistemas Electrónicos – 2021/2022

Exemplo

• Retiramos RL e determinarmos o Equivalente de Thévenin entre os terminais X e Y.

Exemplo

• Como o circuito tem uma fonte dependente, teremos de usar o Método Universal;

 Agora o objectivo é determinar uma relação matemática de v em função de i, com a forma

$$v = ai + b$$

2.2-23

Sinais e Sistemas Electrónicos - 2021/2022

Exemplo

- Vamos fazer uma Análise de Malhas;
- Marcamos correntes de malha...

- ... e tensões nas resistências;
- Aplicando KVL: $\begin{cases} -4 + v_a + v_1 = 0 & poi. \\ -v_1 + v + v_b = 0 \\ i_3 = 0.2v_1 & v_a = 5i_1 \\ v_b = 10(-i_2 + i_3) \\ v_1 = 8(i_1 + i_2) \end{cases}$

Sendo as tensões dadas

$$v_a = 5i_1$$

 $v_b = 10(-i_2 + i_3)$
 $v_1 = 8(i_1 + i_2)$

Sinais e Sistemas Electrónicos - 2021/2022

Exemplo

Substituindo as tensões e sabendo que i₂ = i:

$$\begin{cases}
-4 + 5i_1 + 8(i_1 + i) = 0 \\
-8(i_1 + i) + v + 10(-i + i_3) = 0 \\
i_3 = 0.2[8(i_1 + i)]
\end{cases}$$

• Eliminando as incógnitas i_1 e i_3 , ficamos com uma expressão apenas com v e i, como pretendido

$$v = 6.92i - 2.46$$

2.2-25

Sinais e Sistemas Electrónicos - 2021/2022

Exemplo

$$v = 6.92i - 2.46$$

$$v = ai + b$$
 $R_T = a$ e $v_T = b$

Equivalente de Thévenin

Equivalente de Norton - Método Universal

- Se estivermos interessados no Equivalente de Norton e o circuito incluir fontes dependentes...
- ... começamos por determinar o Equivalente de Thévenin recorrendo ao método universal... e depois obtemos o Equivalente de Norton por Transformação de fontes:

2.2-27