Chapter 2: 5.4, 5.5, 6.4 Chapter 3: 1.7, 2.3, 2.4, 2.6, 2.8, 2.11, 2.12, 2.16, 2.20

Exercise 5.4. Let *a* and *b* be real numbers. Show that the following three equalities hold:

$$\bigcap_{x>b}(a,x)=(a,b],\qquad\bigcup_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n})=(a,b),\qquad\bigcap_{n=1}^{\infty}(a+n,+\infty)=\varnothing.$$

- 1. $\bigcap_{x>b}(a,x)=\{y\in\overline{\mathbb{R}}:y\in(a,x)\forall x>b\}$. Clearly, $(a,b]\subset\bigcap_{x>b}(a,x)$ since it is contained in every set of the general intersection. For the other inclusion, let z be an upper bound of $\bigcap_{x>b}(a,x)$ where $z< x\,\forall x>b$. For some $\varepsilon>0$, $z=b+\varepsilon$. By Exer. 4.8, $b\leq z\to b\leq b$. So, b is upper bound on $\bigcap_{x>b}(a,x)$ so $\bigcap_{x>b}(a,x)\subset(a,b]$.
- 2. $\bigcup_{n=1}^{\infty} = [a + \frac{1}{n-1}, b \frac{1}{n-1}) \cup [a + \frac{1}{n}, b \frac{1}{n}] = \{y \in \overline{\mathbb{R}} : a + \frac{1}{n} \le y \le b \frac{1}{n}\} = B.$
 - $a \frac{1}{2}$ is a lower bound since $\nexists y \in B$ s.t. $y < a + \frac{1}{n}$. Assume \exists a lower bound called β s.t. $\beta > a + \frac{1}{n}$. If so then, $B = \{a + \frac{1}{n} < y < b \frac{1}{n}\}$. But, $\exists y \in B$ s.t. $y = a + \frac{1}{n}$. So, \nexists any β so inf $B = a + \frac{1}{n}$ and $a < a + \frac{1}{n} = \inf B$.
 - $b-\frac{1}{n}$ is a upper bound since $\nexists y \in B$ s.t. $y > b-\frac{1}{n}$. Assume \exists some upper bound α s.t. $\alpha < b-\frac{1}{n}$. So, $b-\frac{1}{n}-\alpha > 0$. Choose $\gamma \in \mathbb{N}$ so $\frac{1}{\gamma} < b-\frac{1}{n}-\alpha$. $(b-\frac{1}{n}-\frac{1}{\gamma}) > b-\frac{1}{n}-(b-\frac{1}{n}-\alpha)$. So, α is not an upper bound. So, sup $B=b-\frac{1}{n} < b$.

Thus, $B = \{a < \inf B \le y < \sup B < b \forall y \in B\} = (a, b).$

3. Let's do proof by contradiction. Assume $\bigcap_{n=1}^{\infty}(a+n,+\infty)=X$ s.t. $X=\{\beta\}, \beta\in\mathbb{R}, \beta< a+n$. Enumerate $\bigcap_{n=1}^{\infty}(a+n,+\infty)=(a+1,\infty)\cap(a+2,\infty)\cap\cdots\cap(a+n,\infty)\cap\ldots$. Take a look at set, $(a+n,\infty)=\{x\in\overline{\mathbb{R}}:a+n< x<\infty\}=B$. Clearly a+n is a lower bound for B since $a+n< x\ \forall x\in B$. Assume that k is a lower bound s.t. k>a+n. So, $B=\{x\in\overline{\mathbb{R}}:a+n< k< x<\infty\}$. So, k-a-n>0. Choose ϕ so $\phi>k-a-n.a+n+\phi>a+n+k-a-n$. So, k is not a lower bound. So, inf $B=a+n\to\beta< a+n=1$ inf $B.\beta\notin B$ so $\beta\notin\bigcap_{n=1}^{\infty}(a+n,+\infty)$. This establishes a contradiction so $\bigcap_{n=1}^{\infty}(a+n,+\infty)=\emptyset$.

Exercise 5.5. Let $a_1, a_2, ...$ be any enumeration of the negative rational numbers; let $b_1, b_2, ...$ be any enumeration of the positive rational numbers. Show that the following two equalities hold:

$$\bigcap_{j=1}^{\infty} (a_j, b_j) = \{0\}, \qquad \bigcup_{j=1}^{\infty} (a_j, b_j) = \mathbb{R}.$$

1

- 1. Let's analyze one set of this general intersection, (a_n, b_n) and call it A. sup A exists by the least upper bound property since $A \subset \mathbb{R}$ is bounded above and nonempty by least upper bound property. Similar argument for existence of $\inf A$ but it is bounded below. Let us prove what sup A, $\inf A$ are supposed to be.
 - a_n is a lower bound $\rightarrow x \notin A$ s.t. $x < a_n \forall x \in A$. Assume that l is a lower bound s.t. $l > a_n$. So, $A = \{x \in \overline{\mathbb{R}} : a_n < k < x < b_n\}$. So, $l a_n > 0$. Choose $\alpha \in \mathbb{N}$ so $\alpha > l a_n$. $\alpha + a_n > a_n + l a_n$. Thus, l is not a lower bound. So, inf $A = a_n$.
 - b_n is a upper bound $\to x \notin A$ s.t. $x > b_n \forall x \in A$. Assume that u is an upper bound s.t. $u < b_n$. So, $A = \{x \in \overline{\mathbb{R}} : a_n < x < u < b_n\}$. So, $u b_n > 0$. Choose $n \in \mathbb{N}$ so $u b_n > \frac{1}{n}$. So, $b_n \frac{1}{n} > u$. Thus, u is not an upper bound. So, sup $A = b_n$.

Since $a_n \in -\mathbb{Q}$ and $b_n \in +\mathbb{Q}$ $\forall n \in \mathbb{N}, 0 \in (a_n, b_n) \forall n \text{ so } \bigcap_{i=1}^{\infty} (a_n, b_n) = \{0\}.$

- 2. Let's analyze one set of this general union, (a_n, b_n) and call it A. sup A exists by the least upper bound property since $A \subset \mathbb{R}$ is bounded above and nonempty by least upper bound property. Similar argument for existence of $\inf A$ but it is bounded below. Let us prove what sup A, $\inf A$ are supposed to be.
 - a_n is a lower bound $\rightarrow x \notin A$ s.t. $x < a_n \forall x \in A$. Assume that l is a lower bound s.t. $l > a_n$. So, $A = \{x \in \overline{\mathbb{R}} : a_n < k < x < b_n\}$. So, $l a_n > 0$. Choose $\alpha \in \mathbb{N}$ so $\alpha > l a_n$. $\alpha + a_n > a_n + l a_n$. Thus, l is not a lower bound. So, inf $A = a_n$.
 - b_n is a upper bound $\to x \notin A$ s.t. $x > b_n \forall x \in A$. Assume that u is an upper bound s.t. $u < b_n$. So, $A = \{x \in \overline{\mathbb{R}} : a_n < x < u < b_n\}$. So, $u b_n > 0$. Choose $n \in \mathbb{N}$ so $u b_n > \frac{1}{n}$. So, $b_n \frac{1}{n} > u$. Thus, u is not an upper bound. So, $\sup A = b_n$.

Assume that there is some $\beta \in \mathbb{R}$. If $\beta \notin A$, \exists some set in $\bigcup_{j=1}^{\infty} (a_j, b_j)$ s.t. $\beta \in \{a_n - \epsilon < x < b_n + \epsilon\}$ for any $\epsilon > 0$. So, if true for any β , $\bigcup_{i=1}^{\infty} (a_i, b_i) = \mathbb{R}$.

Exercise 6.4. Prove there exists no order \leq that makes $(\mathbb{C}, +, \cdot, \leq)$ into an ordered field.

Let us argue by contradiction. Assume that \mathbb{C} is a ordered field. Let us analyze the case (0,1)=i.

- If i > 0, $x, y \in \mathbb{C}$ and $x = i, y = i, i \cdot i > 0 \implies -1 > 0$, which is a contradiction.
- If i < 0, $x, y \in \mathbb{C}$ and x = -i, y = -i (since x, y > 0 for the second condition to hold), $-i \cdot -i < 0 \rightarrow i^2 > 0 \implies -1 > 0$, which is a contradiction.

2

Exercise 1.7. Let $\|\cdot\|$ be a norm on a real vector space V. Prove the *reverse triangle inequality*:

$$|||x|| - ||y||| \le ||x - y||$$

$$\begin{aligned} \|x\| &= \|(x-y) + y\| \le |\|x-y\| + \|y\||. \ |\|x\| - \|y\|| \le |\|(x-y) + \|y\| - \|y\|\|| = \\ \|\|(x-y)\|\| &= \|x-y\|. \\ \|y\| &= \|(y-x) + x\| = \|y-x\| + \|x\|. |\|x\| - \|y\|| \le |\|x\| - (\|y-x\| + \|x\|)| \le \|x-y\|. \end{aligned}$$

Exercise 2.3. Let X be any set. Prove that the discrete metric $d: X \times X \to \mathbb{R}$ (defined by d(x,y)=1 if $x \neq y$ and d(x,x)=0 for $x \in X$) satisfies the triangle inequality and is therefore a metric on X.

Let's argue via proof by contrapositive. Assume $d(x,y) > d(x,z) + d(z,y) \ \forall x,y,z \in X$ so d is not a metric on X. Let $x \neq y$ and enumerate what values z can take on.

- If $z \neq y \neq z$, then 1 > 2.
- If z = x and $z \neq y$, vice versa, then 1 > 1.
- If z = y = x, then 1 > 0. However, this contradicts our initial assumption that $x \neq y$.

Clearly, all these pose contradictions, so it must be that d satisfies the triangle inequality and is a metric on X.

Exercise 2.4. Determine which of the following functions are metrics on \mathbb{R} . Prove your answer in each case.

- $d_1(x,y) = \sqrt{|x-y|}$.
- $d_2(x,y) = |x 2y|$.
- $\bullet \ d_3(x,y) = \frac{|x-y|}{1+|x-y|}.$
- 1. For any $x, y \in \mathbb{R}$, $|x y| \ge 0$ so $\sqrt{|x y|} \ge 0$. $d_1(x, y) = \sqrt{|x y|} = \sqrt{|(-1)y x|} = \sqrt{|y x|} = d_1(y, x)$. $\sqrt{|x y|} \le \sqrt{|x z|} + \sqrt{|z y|} \to |x y| \le |x z| + c + |z y|$ where $c \le 0$. So, $-(|x z| + c + |z y|) \le x y \le |x z| + c + |z y| \to -c \le 0 \le c$. So d_1 is a metric on \mathbb{R} .
- 2. Assume $d_2(x,y) = d_2(y,x) \to |x-2y| = |y-2x| \forall x,y \in \mathbb{R}$. Choose x = 0 and y = 1 so $d_2(x,y) = 1 = d_2(y,x) = 2$. So, d_2 is clearly not a metric on \mathbb{R} .
- 3. For any $x,y \in \mathbb{R}$, $|x-y| \ge 0$ so $\frac{|x-y|}{1+|x-y|} \ge 0$. $d_3(x,y) = \frac{|x-y|}{1+|x-y|} = \frac{|(-1)y-x|}{1+|(-1)y-x|} = \frac{|y-x|}{1+|y-x|} = d_3(y,x)$. Assume $\frac{|x-y|}{1+|x-y|} > \frac{|x-y|}{1+|x-y|} + \frac{|x-y|}{1+|x-y|}$. Choose x,y=5 and z=0. So, $0 > \frac{|5|}{6} + \frac{|5|}{6}$ and clearly this is a contradiction so d_3 follows triangle inequality. So, d_3 is a metric on \mathbb{R} .

Exercise 2.6. Consider the function $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, defined by

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|, \qquad (x = (x_1, x_2), y = (y_1, y_2)).$$

- 1. Prove that *d* is a metric on \mathbb{R}^2 .
- 2. On a sheet of graph paper, draw the set $B_d((5,1),3)$. Use dotted lines to indicate the boundary, which is not included in the set you are drawing. (Hint: it may be easier to figure out what the set looks like if you first consider $B_d((0,0),3)$.)
- 3. On the same graph as in the previous part, draw $B_{d_u}((-3,2),1)$, where d_u denotes the square metric.

For nonnegativity, analyze two cases where $x, y \in \mathbb{R}^2$.

- 1. Case 1: Let $(x_1, x_2) = (y_1, y_2)$. So, $d(x, y) = |x_1 y_1| + |x_2 y_2| = |x_1 x_1| + |x_2 x_2| = 0$.
- 2. Case 2: Let $x \neq y \, \forall x, y \in \mathbb{R}^2$. Claim that d(x,y) < 0 so d is not a metric. $d(x,y) = |x_1 y_1| + |x_2 y_2| < 0$. $|x_1 y_1| < -|x_2 y_2|$. Choose x = (0,0) and y = (1,2). So, $|0-1| < -|0-2| \to 1 < -2$. Clearly, this is false so $d(x,y) \ge 0$.

For symmetry, $d(x,y) = |x_1 - y_1| + |x_2 - y_2| = |(-1)y_1 - x_1| + |(-1)y_2 - x_2| = |y_1 - x_1| + |y_2 - x_2| = d(y,x)$. For triangle inequality $d(x,y) = |x_1 - y_1| + |x_2 - y_2| \le |x_1 - z_1| + |z_1 - y_1| + |x_2 - z_2| + |z_1 - y_2| \le |x_1 - z_1| + |z_2 - z_2| + |z_1 - z_2| + |z_2 - z_2| + |z_1 - z_2| + |z_2 - z_2| + |z_2 - z_2| + |z_1 - z_2| + |z_2 - z_$

For triangle inequality, $d(x,y) = |x_1 - y_1| + |x_2 - y_2| \le |x_1 - z_1| + |z_1 - y_1| + |x_2 - z_2| + |z_2 - y_2| = d(x,z) + d(z,y)$. Drawings attached on back

Exercise 2.8. Let (X, d) be a metric space, and let E be a subset of X. The *diameter* of E in (X, d) is defined by the formula

$$diam_d(E) = \sup\{d(x,y) : x,y \in E\}.$$

- 1. Prove that for any r > 0 and $x \in X$, we have $diam(B(x, r)) \le 2r$.
- 2. If *X* is any set and *d* is the discrete metric, show diam(B(x,r)) = 0 for any $r \le 1$, while diam(B(x,r)) = 1 for any r > 1.
- 3. If $X = \mathbb{R}^n$ for some $n \in \mathbb{N}$ and d is the Euclidean metric, prove that diam(B(x,r)) = 2r.
- 1. $B(x,r) = \{y \in X : d(x,y) < r\}$. $\operatorname{diam}_d(\{y \in X : d(x,y) : x,y \in B(x,r)\}) = \sup\{d(x,y) : x,y \in B(x,r)\} \le \sup\{d(x,z) : z,y \in B(x,r)\} + \sup\{d(z,y) : y,z \in B(x,r)\}$. So, $\operatorname{diam}_d(\{y \in X : d(x,y) : x,y \in B(x,r)\}) \le r + r = 2r$.
- 2. Recall discrete metric is defined as d(x,y) = 1 if $x \neq y$ and d(x,y) = 0 if x = y.
 - (a) For $r \le 1$, $B_{(X,d)}(x,r) = \{y \in X : d(x,y) < r\}$. The cases where $x \ne y$ will yield an empty set since 1 is not greater 1. So, we will only have the set,D, where x = y. So, $\sup\{d(x,y) : x,y \in D\} = 0$.

- (b) For r > 1, $B_{(X,d)}(x,r) = \{y \in X : d(x,y) < r\} = \{y \in X : x \neq y\} \cap \{y \in X : x \in y\} = B$. sup $\{d(x,y) : x,y \in B\} = 1$. Any point, y in the metric space will fulfill the condition from the ball since d is the discrete metric. The maximum can only be 1 so it must be the sup of the set.
- 3. Choose two points $a_1, a_2 \in B(x, r)$ s.t. $a_1 = [x_1 + r \epsilon, x_2, x_3, \ldots], a_2 = [x_1 (r \epsilon), x_2, x_3, \ldots]$. diam $B(x, r) = \sup\{d(a_1, a_2) : a_1, a_2 \in B(x, r)\}$. Apply triangle inequality to $d(a_1, a_2) \to d(a_1, a_2) \le d(a_1, x) + d(x, a_2)$. So, $d(a_1, a_2) \le \|r \epsilon\| + \|(-1)(r \epsilon)\|$. $d(a_1, a_2) \le 2r 2\epsilon \forall \epsilon > 0$. Use Exer. 4.8, $d(a_1, a_2) + 2\epsilon \le 2r \to d(a_1, a_2) \le 2r$. So, diam $B(x, r) = \sup\{d(a_1, a_2) \le 2r\} = 2r$.

Exercise 2.11. As in Example 2.7, let $X = \mathbb{R}^2$, $Y = [-1,3] \times [2,4]$, and let d denote the Euclidean metric on $X = \mathbb{R}^2$. Let p = (3,4) and let q = (2,4). Arguing *directly from the definition of an interior point* (i.e., without using Exercise 2.12), show that q is an interior point of $B_Y(p,2)$ with respect to Y, but q is not an interior point of $B_Y(p,2)$ with respect to X. In addition, draw a picture on a piece of graph paper that illustrates the idea of your proof.

Let $D = B_Y(p,2)$ with respect to Y. To show that q is an interior point of D, $\exists r > 0$ s.t. $B_Y(q,r) \subset D$. Set r = 1 so for some $x \in B_Y(q,1)$ s.t. d(x,q) < 1 and $x \in Y$. By triangle inequality, $d(x,p) \le d(x,q) + d(p,q)$. d(x,q) < 1 and d(p,q) = 1 so $d(x,q) + d(p,q) < 2 \to x \in D$. So, $B_Y(q,1) \subset D \to q \in Int_Y(D)$.

Let $E = B_Y(p,2)$. To show that q is not an interior point of E, $x \in B_X(q,r)$, $x \notin E$, for some r > 0. Take $x = (2, 4 + \frac{r}{2})$. $d(x,q) = \frac{r}{2} \to x \in B_X(q,r)$. But, $x \notin Y$ since $(4 + \frac{r}{2} > 4)$. So, q is not an interior point of E with respect to X.

Drawings attached on back

Exercise 2.12. Let (X,d) be a metric space, and let Y be a subset of X. Prove that for any subset U of Y, we have

$$(*) \operatorname{Int}_X(U) = \operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y).$$

In the notation of Exercise 2.11, the equality (*) gives an alternate explanation of why q is not an interior point of $B_Y(p,2)$ with respect to X: It is because $q \notin \operatorname{Int}_X(Y)$, as can be seen from the picture you drew in that Exercise.

 $\operatorname{Int}_X(U) = \{x \in U : x \text{ is an interior point of } U \text{ with respect to } X\}$. That means there is some $B_X(x,r) \subset U$, s.t. r > 0. Call this ball, D. Since $D \subset U \to D \subset \operatorname{Int}_Y(U)$. Also, since $U \subset Y$, $D \subset Y$. So, $D \subset \operatorname{Int}_X(Y)$. So, $\operatorname{Int}_X(U) \subset \operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y)$.

Now for the other direction, $\operatorname{Int}_Y(U) = \{x \in U : x \text{ is an interior point of } U \text{ with respect to } Y\}$. That means there is some $B_Y(x,r) \subset U$, s.t. r > 0. Call this ball, E. Since $E \subset U$, $E \subset Y \to E \subset \operatorname{Int}_X(Y)$. So, $E \subset \operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y) \subset U \subset \operatorname{Int}_X(U)$. So, $\operatorname{Int}_X(U) = \operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y)$.

Exercise 2.16. Let (X, d) be a metric space, and let U be a subset of X. Use Proposition 2.15 to prove that $Int_X(U)$ is open in X.

For $x \in U$, since $U \subset X$ and (X,d) is a metric space, $B_X(x,r)$ is open in X. Since $U \subset X$, $\operatorname{Int}_X(B_X(x,r)) \subset \operatorname{Int}_U(B_X(x,r))$. So every $B_X(x,r)$ is an interior point of U. $U = \bigcup_{x \in U} B_X(x,r) = \operatorname{Int}_X U$ by Prop 2.17(1) to prove U is open with respect to X.

Exercise 2.20. Let (X, d) be a metric space. Assume that $U \subset Y \subset X$, and additionally that Y is open X. Prove that U is open in Y if and only if U is open in X. (Note: There at least two possible solutions; one uses Theorem 2.19, the other uses Exercise 2.12.)