Experiment Summary

Filter 1

Invalid filter

Filter 2

Invalid filter

Filter 3

Invalid filter

Filter 4

Invalid filter

Filter 5

Invalid filter

Filter 6

Filter Type: BS Filter Type: BS $Z(s): (\infty, \infty, \infty, \infty, R_4, LLs + \frac{1}{CLs})$ $H(s): \frac{(R_4gm-1)(CLLLs^2+1)}{2CLLLgms^2 + CLR_4gms + CLs + 2gm}$ $Q: \frac{2LLgm\sqrt{\frac{1}{CLLL}}}{R_4gm+1}$ $\omega_0: \sqrt{\frac{1}{CLLL}}$ Bandwidth: $\frac{R_4gm+1}{2LLgm}$

$$H(s)$$
:
$$\frac{(R_4gm-1)(CLLLs^2+1)}{2CLLLgms^2+CLR_4gms+CLs+2g}$$

Q:
$$\frac{S \times V C_L}{R_4 g m + 1}$$

Filter 7

Filter Type: BP
$$Z(s) \colon \left(\infty, \ \infty, \ \infty, \ \infty, \ R_4, \ \frac{LLs}{CLLLs^2+1}\right)$$

$$H(s) \colon \frac{LLs(R_4gm-1)}{CLLLR_4gms^2+CLLLs^2+2LLgms+R_4gm+1}$$

$$Q \colon \frac{CL\sqrt{\frac{1}{CLLL}}(R_4gm+1)}{2gm}$$

$$\omega_0 \colon \sqrt{\frac{1}{CLLL}}$$
Bandwidth: $\frac{2gm}{CL(R_4gm+1)}$

$$\mathbf{Q} : \frac{CLV_{CLLL}(Res_{2})}{2gm}$$

Filter 8

Filter Type: GE

Filter Type: GE
$$Z(s): (\infty, \infty, \infty, \infty, R_4, LLs + RL + \frac{1}{CLs})$$

$$H(s): \frac{(R_4gm-1)(CLLLs^2 + CLRLs + 1)}{2CLLLgms^2 + CLR_4gms + 2CLRLgms + CLs + 2gm}$$

$$Q: \frac{2LLgm\sqrt{\frac{1}{CLLL}}}{R_4gm + 2RLgm + 1}$$

$$H(s)$$
:
$$\frac{(R_4gm-1)(CLLLs+CLRLs+1)}{2CLLLqms^2+CLR_4qms+2CLRLqms+CLs}$$

 ω_0 : $\sqrt{\frac{1}{CLLL}}$

Bandwidth: $\frac{R_4gm+2RLgm+1}{2LLgm}$ Qz: $\frac{LL\sqrt{\frac{1}{CLLL}}}{RL}$

Filter 9

Filter Type: BP $Z(s): \left(\infty, \infty, \infty, \infty, R_4, \frac{1}{CLs + \frac{1}{RL} + \frac{1}{LLs}}\right) \\ H(s): \frac{LLRLs(R_4gm-1)}{CLLLR_4RLgms^2 + CLLLRLs^2 + LLR_4gms + 2LLRLgms + LLs + R_4RLgm + RL} \\ \mathbf{Q}: \frac{CLRL\sqrt{\frac{1}{CLLL}}(R_4gm+1)}{R_4gm + 2RLgm + 1} \\ \omega_0: \sqrt{\frac{1}{CLLL}} \\ \mathbf{Bandwidth}: \frac{R_4gm + 2RLgm + 1}{CLRL(R_4gm+1)}$

Filter 10

Filter Type: GE
$$Z(s): \left(\infty, \infty, \infty, \infty, R_4, \frac{LLs}{CLLLs^2+1} + RL\right)$$

$$H(s): \frac{(R_4gm-1)\left(CLLLRLs^2+LLs+RL\right)}{CLLLR_4gms^2+2CLLLRLgms^2+CLLLs^2+2LLgms+R_4gm+2RLgm+1}$$
Q:
$$\frac{CL\sqrt{\frac{1}{CLLL}}(R_4gm+2RLgm+1)}{2gm}$$

$$\omega_0: \sqrt{\frac{1}{CLLL}}$$
Bandwidth:
$$\frac{2gm}{CL(R_4gm+2RLgm+1)}$$
Qz: $CLRL\sqrt{\frac{1}{CLLL}}$

Filter 11

Filter Type: BS
$$Z(s): \left(\infty, \infty, \infty, \infty, R_4, \frac{RL\left(LLs + \frac{1}{CLs}\right)}{LLs + RL + \frac{1}{CLs}}\right)$$

$$H(s): \frac{RL(R_4gm - 1)\left(CLLLs^2 + 1\right)}{CLLLR_4gms^2 + 2CLLLR_Lgms^2 + CLLLs^2 + CLR_4RLgms + CLRLs + R_4gm + 2RLgm + 1}$$

$$Q: \frac{LL\sqrt{\frac{1}{CLLL}}(R_4gm + 2RLgm + 1)}{RL(R_4gm + 1)}$$

$$\omega_0: \sqrt{\frac{1}{CLLL}}$$
Bandwidth:
$$\frac{RL(R_4gm + 1)}{LL(R_4gm + 2RLgm + 1)}$$

Filter 12

Invalid filter

Filter 13

Invalid filter

Filter Type: Invalid011
$$Z(s)$$
: $(\infty, \infty, \infty, \infty, L_4s, \frac{1}{CLs})$ $H(s)$: $\frac{L_4gms-1}{CLL_4gms^2+CLs+2gm}$

Q:
$$\sqrt{2}L_4gm\sqrt{\frac{1}{CLL_4}}$$

 ω_0 : $\sqrt{2}\sqrt{\frac{1}{CLL_4}}$
Bandwidth: $\frac{1}{L_4gm}$

Filter Type: Invalid011 $Z(s): \left(\infty, \infty, \infty, \infty, L_4s, \frac{RL}{CLRLs+1}\right)$ $H(s): \frac{RL(L_4gms-1)}{CLL_4RLgms^2+CLRLs+L_4gms+2RLgm+1}$ $Q: \frac{CLL_4RLgm\sqrt{\frac{2RLgm+1}{CLL_4RLgm}}}{CLRL+L_4gm}$ $\omega_0: \sqrt{\frac{2RLgm+1}{CLL_4RLgm}}$ Bandwidth: $\frac{CLRL+L_4gm}{CLL_4RLgm}$

Filter 16

Invalid filter

Filter 17

Invalid filter

Filter 18

Filter Type: Invalid110 $Z(s): \left(\infty, \infty, \infty, \infty, L_4s, \frac{LLs}{CLLLs^2+1}\right)$ $H(s): \frac{LLs(L_4gms-1)}{CLL_4LLgms^3+CLLLs^2+L_4gms+2LLgms+1}$ $Q: \frac{CLLL\sqrt{\frac{1}{CLLL}}}{gm(L_4+2LL)}$ $\omega_0: \sqrt{\frac{1}{CLLL}}$ Bandwidth: $\frac{gm(L_4+2LL)}{CLLL}$

Filter 19

Invalid filter

Filter 20

Filter Type: Invalid110 $Z(s): \left(\infty, \infty, \infty, \infty, L_4s, \frac{1}{CLs + \frac{1}{RL} + \frac{1}{LLs}}\right)$ $LLRLs(L_4gms-1)$ $H(s): \frac{LLRLs(L_4gms-1)}{CLL_4LLRLgms^3 + CLLLRLs^2 + L_4LLgms^2 + L_4RLgms + 2LLRLgms + LLs + RL}$ $Q: \frac{LL\sqrt{\frac{RL}{LL(CLRL + L_4gm)}}(CLRL + L_4gm)}{L_4RLgm + 2LLRLgm + LL}$ $\omega_0: \sqrt{\frac{RL}{LL(CLRL + L_4gm)}}$ Bandwidth: $\frac{L_4RLgm + 2LLRLgm + LL}{LL(CLRL + L_4gm)}$

Invalid filter

Filter 22

Invalid filter

Filter 23

Invalid filter

Filter 24

Filter Type: Invalid110
$$Z(s): \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, LLs\right)$$

$$H(s): \frac{LLs(-C_4 s + gm)}{2C_4 LLgm s^2 + C_4 s + gm}$$

$$Q: \sqrt{2} LLgm \sqrt{\frac{1}{C_4 LL}}$$

$$\omega_0: \frac{\sqrt{2} \sqrt{\frac{1}{C_4 LL}}}{2}$$
Bandwidth: $\frac{1}{2LLgm}$

$$H(s)$$
:
$$\frac{LLs(C_4s+gm)}{2C_4LLgms^2+C_4s+gm}$$

$$\mathbf{Q}: \sqrt{2LLgm}\sqrt{\frac{1}{2}}$$

$$\omega_0$$
: $\frac{\sqrt{2}\sqrt{\frac{1}{C_4LL}}}{2}$

Filter 25

Invalid filter

Filter 26

$$Z(s)$$
: $\left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{RL}{CLRLs+1}\right)$

Filter Type: Invalid011
$$Z(s): \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{RL}{CLRLs+1}\right)$$

$$H(s): \frac{RL(-C_4 s + gm)}{C_4 CLRL s^2 + 2C_4 RL gms + C_4 s + CLRL gms + gm}$$

$$Q: \frac{C_4 CLRL}{2C_4 RL gm + C_4 + CLRL gm}$$

$$\omega_0: \sqrt{\frac{gm}{C_4 CLRL}}$$
Bandwidth: $\frac{2C_4 RL gm + C_4 + CLRL gm}{C_4 CLRL}$

$$\mathbf{Q}:rac{C_4CLRL}{C_4CLRL}\sqrt{rac{C_4CLRL}{C_4CLRL}}}{2C_4RLgm+C_4+CLRLgm}$$

$$\omega_0$$
: $\sqrt{\frac{gm}{C_4CLRI}}$

Filter 27

Invalid filter

Filter 28

Invalid filter

Filter Type: Invalid110
$$Z(s): \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_4 s}, \ \frac{LLs}{CLLLs^2+1}\right)$$

$$H(s): \frac{LLs(-C_4 s + gm)}{C_4 CLLLs^3 + 2C_4 LLgms^2 + C_4 s + CLLLgms^2 + gm}$$

$$\begin{aligned} \mathbf{Q:} & \frac{LLgm\sqrt{\frac{1}{LL(2C_4+CL)}}(2C_4+CL)}{C_4} \\ & \omega_0 \text{: } \sqrt{\frac{1}{LL(2C_4+CL)}} \\ & \mathbf{Bandwidth:} & \frac{C_4}{LLgm(2C_4+CL)} \end{aligned}$$

Invalid filter

Filter 31

Filter Type: Invalid110
$$Z(s): \left(\infty, \infty, \infty, \infty, \frac{1}{C_{4}s}, \frac{1}{CLs + \frac{1}{RL} + \frac{1}{LLs}}\right) \\ LLRLs(-C_{4}s + gm)$$

$$H(s): \frac{LLRLs^{3} + 2C_{4}LLRLgms^{2} + C_{4}LLs^{2} + C_{4}RLs + CLLLRLgms^{2} + LLgms + RLgm}{C_{4}RLgm + C_{4} + CLRLgm}$$

$$Q: \frac{LL\sqrt{\frac{RLgm}{LL(2C_{4}RLgm + C_{4} + CLRLgm)}(2C_{4}RLgm + C_{4} + CLRLgm)}}{C_{4}RL + LLgm}$$

$$\omega_{0}: \sqrt{\frac{RLgm}{LL(2C_{4}RLgm + C_{4} + CLRLgm)}}$$
Bandwidth:
$$\frac{C_{4}RL + LLgm}{LL(2C_{4}RLgm + C_{4} + CLRLgm)}$$

Filter 32

Invalid filter

Filter 33

Invalid filter

Filter 34

Invalid filter

Filter 35

Filter Type: Invalid110
$$Z(s): \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4R_4s+1}, LLs\right)$$

$$H(s): \frac{LLs(-C_4R_4s+R_4gm-1)}{2C_4LLR_4gms^2+C_4R_4s+2LLgms+R_4gm+1}$$

$$Q: \frac{\sqrt{2}C_4LLR_4gm\sqrt{\frac{R_4gm+1}{C_4LLR_4gm}}}{\frac{C_4R_4+2LLgm}{2C_4LLR_4gm}}$$

$$\omega_0: \frac{\sqrt{2}\sqrt{\frac{R_4gm+1}{C_4LLR_4gm}}}{\frac{2}{2C_4LLR_4gm}}$$
Bandwidth: $\frac{C_4R_4+2LLgm}{2C_4LLR_4gm}$

Filter 36

Filter Type: Invalid011 $Z(s): \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4R_4s+1}, \frac{1}{CLs}\right)$ $H(s): \frac{-C_4R_4s+R_4gm-1}{C_4CLR_4s^2+2C_4R_4gms+CLR_4gms+CLs+2gm}$ $Q: \frac{\sqrt{2}C_4CLR_4\sqrt{\frac{gm}{C_4CLR_4}}}{2C_4R_4gm+CLR_4gm+CL}$

```
\omega_0: \sqrt{2}\sqrt{\frac{gm}{C_4CLR_4}} Bandwidth: \frac{2C_4R_4gm+CLR_4gm+CL}{C_4CLR_4}
```

```
Filter Type: Invalid011 Z(s): \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \frac{RL}{CLRLs + 1}\right) \\ H(s): \frac{RL(-C_4 R_4 s + R_4 gm - 1)}{C_4 CLR_4 RLs^2 + 2C_4 R_4 RLgms + C_4 R_4 RLgms + CLRLs + R_4 gm + 2RLgm + 1} \\ Q: \frac{C_4 CLR_4 RL \sqrt{\frac{R_4 gm + 2RLgm + 1}{C_4 CLR_4 RL}}}{2C_4 R_4 RLgm + C_4 R_4 RLgm + CLRL} \\ \omega_0: \sqrt{\frac{R_4 gm + 2RLgm + 1}{C_4 CLR_4 RL}} \\ Bandwidth: \frac{2C_4 R_4 RLgm + C_4 R_4 + CLR_4 RLgm + CLRL}{C_4 CLR_4 RL}
```

Filter 38

Invalid filter

Filter 39

Invalid filter

Filter 40

```
Filter Type: Invalid110 Z(s): \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4R_4s+1}, \frac{LLs}{CLLLs^2+1}\right) \\ H(s): \frac{LLs(-C_4R_4s+R_4gm-1)}{C_4CLLLR_4s^3+2C_4LLR_4gms^2+C_4R_4s+CLLLR_4gms^2+CLLLs^2+2LLgms+R_4gm+1} \\ Q: \frac{LL\sqrt{\frac{R_4gm+1}{LL(2C_4R_4gm+CL)}(2C_4R_4gm+CLR_4gm+CL)}}{C_4R_4+2LLgm} \\ \omega_0: \sqrt{\frac{R_4gm+1}{LL(2C_4R_4gm+CLR_4gm+CL)}} \\ Bandwidth: \frac{C_4R_4+2LLgm}{LL(2C_4R_4gm+CLR_4gm+CL)}
```

Filter 41

Invalid filter

Invalid filter

Filter 44

Invalid filter

Filter 45

Invalid filter

Filter 46

Filter Type: Invalid110 $Z(s): \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, LLs\right)$ $H(s): \frac{LLs(C_4 R_4 gms - C_4 s + gm)}{2C_4 L L gms^2 + C_4 R_4 gms + C_4 s + gm}$ $Q: \frac{\sqrt{2} L L gm}{\frac{1}{R_4 gm + 1}}$ $\omega_0: \frac{\sqrt{2} \sqrt{\frac{1}{C_4 L L}}}{2}$ Bandwidth: $\frac{R_4 gm + 1}{2L L gm}$

Filter 47

Invalid filter

Filter 48

```
Filter Type: Invalid011
Z(s): \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{RL}{CLRLs+1}\right)
H(s): \frac{RL(C_4R_4gms - C_4s + gm)}{C_4CLR_4R_4gms^2 + C_4CLR_4Ls^2 + C_4R_4gms + 2C_4R_4gms + C_4s + CLR_4Lgms + gm}
Q: \frac{C_4CLRL}{C_4R_4gm + 2C_4R_4gm + C_4 + CLR_4gm}
\omega_0: \sqrt{\frac{gm}{C_4CLR_4L(R_4gm + 1)}}
Bandwidth: \frac{C_4R_4gm + 2C_4R_4gm + C_4 + CLR_4gm}{C_4CLR_4L(R_4gm + 1)}
```

Filter 49

Invalid filter

Filter 50

Filter Type: Invalid110 $Z(s): \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{LLs}{CLLLs^2 + 1}\right) \\ H(s): \frac{LLs(C_4 R_4 gms - C_4 s + gm)}{C_4 CLLL R_4 gms^3 + C_4 CLLLs^3 + 2C_4 LLgms^2 + C_4 R_4 gms + C_4 s + CLLLgms^2 + gm} \\ \mathbf{Q}: \frac{LLgm\sqrt{\frac{LL}{LL(2C_4 + CL)}}(2C_4 + CL)}{C_4 (R_4 gm + 1)}}{C_4 (R_4 gm + 1)} \\ \omega_0: \sqrt{\frac{1}{LL}(2C_4 + CL)}}$ Bandwidth: $\frac{C_4 (R_4 gm + 1)}{LLgm(2C_4 + CL)}$

Filter 52

Invalid filter

Filter 53

Filter Type: Invalid110 $Z(s): \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{1}{CL s + \frac{1}{RL} + \frac{1}{LL s}}\right) \\ H(s): \frac{LLRLs(C_4R_4gms - C_4s + gm)}{C_4CLLLR_4RLgms^3 + C_4CLLLRLs^3 + C_4LLR_4gms^2 + 2C_4LLRLgms^2 + C_4LLs^2 + C_4R_4RLgms + C_4RLs + CLLLRLgms^2 + LLgms + RLgm}$ $Q: \frac{LL\sqrt{\frac{RLgm}{LL(C_4R_4gm + 2C_4RLgm + C_4 + CLRLgm)}(C_4R_4gm + 2C_4RLgm + C_4 + CLRLgm)}}{C_4R_4RLgm + C_4R_4LL + LLgm}}$ $\omega_0: \sqrt{\frac{RLgm}{LL(C_4R_4gm + 2C_4RLgm + C_4 + CLRLgm)}}$ Bandwidth: $\frac{C_4R_4RLgm + C_4RLL + LLgm}{LL(C_4R_4gm + 2C_4RLgm + C_4 + CLRLgm)}$

Filter 54

Invalid filter

Filter 55

Invalid filter

Filter 56

Filter Type: GE $Z(s): \left(\infty, \infty, \infty, \infty, L_4s + \frac{1}{C_4s}, RL\right)$ $H(s): \frac{RL\left(C_4L_4gms^2 - C_4s + gm\right)}{C_4L_4gms^2 + 2C_4RLgms + C_4s + gm}$ $Q: \frac{L_4gm\sqrt{\frac{1}{C_4L_4}}}{2RLgm + 1}$ $\omega_0: \sqrt{\frac{1}{C_4L_4}}$ Bandwidth: $\frac{2RLgm + 1}{L_4gm}$ $Qz: -L_4gm\sqrt{\frac{1}{C_4L_4}}$

Filter 57

Invalid filter

Filter 59

Invalid filter

Filter 60

Invalid filter

Filter 61

Invalid filter

Filter 62

Invalid filter

Filter 63

Invalid filter

Filter 64

Invalid filter

Filter 65

Invalid filter

Filter 66

Invalid filter

$$Z(s): \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, RL\right)$$

$$H(s): \frac{RL\left(-C_4L_4s^2+L_4gms-1\right)}{2C_4L_4RLgms^2+C_4L_4s^2+L_4gms+2RLgm+1}$$

Filter Type: GE
$$Z(s): \left(\infty, \infty, \infty, \infty, \frac{L_{4}s}{C_{4}L_{4}s^{2}+1}, RL\right)$$

$$H(s): \frac{RL\left(-C_{4}L_{4}s^{2}+L_{4}gms-1\right)}{2C_{4}L_{4}RLgms^{2}+C_{4}L_{4}s^{2}+L_{4}gms+2RLgm+1}$$

$$Q: \frac{C_{4}\sqrt{\frac{1}{C_{4}L_{4}}}(2RLgm+1)}{gm}$$

$$\omega_{0}: \sqrt{\frac{1}{C_{4}L_{4}}}$$
Bandwidth: $\frac{gm}{C_{4}(2RLgm+1)}$

$$Qz: -\frac{C_{4}\sqrt{\frac{1}{C_{4}L_{4}}}}{gm}$$

$$\omega_0$$
: $\sqrt{\frac{1}{C_4L_4}}$

$$\mathbf{Qz:} \ -\frac{C_4\sqrt{\frac{1}{C_4L_4}}}{gm}$$

Invalid filter

Filter 69

Invalid filter

Filter 70

Invalid filter

Filter 71

Invalid filter

Filter 72

Invalid filter

Filter 73

Invalid filter

Filter 74

Invalid filter

Filter 75

Invalid filter

Filter 76

Invalid filter

Filter 77

Invalid filter

Filter Type: GE
$$Z(s): \left(\infty, \infty, \infty, \infty, L_{4}s + R_{4} + \frac{1}{C_{4}s}, RL\right)$$

$$H(s): \frac{RL(C_{4}L_{4}gms^{2} + C_{4}R_{4}gms - C_{4}s + gm)}{C_{4}L_{4}gms^{2} + C_{4}R_{4}gms + 2C_{4}RLgms + C_{4}s + gm}$$

$$Q: \frac{L_{4}gm\sqrt{\frac{1}{C_{4}L_{4}}}}{R_{4}gm + 2RLgm + 1}$$

$$\omega_{0}: \sqrt{\frac{1}{C_{4}L_{4}}}$$

$$H(s)$$
: $\frac{RL(C_4L_4gms + C_4R_4gms - C_4s + gm)}{C_4L_4gms^2 + C_4R_4gms + 2C_4RLgms + C_4s + gm}$

Q:
$$\frac{\frac{L_4gm}{\sqrt{\frac{C_4L_4}{C_4L_4}}}}{\frac{R_4gm+2RLgm+1}{\sqrt{\frac{1}{2}}}}$$

Bandwidth: $\frac{R_4gm+2RLgm+1}{L_4gm}$ Qz: $\frac{L_4gm\sqrt{\frac{1}{C_4L_4}}}{R_4gm-1}$

Filter 79

Invalid filter

Filter 80

Invalid filter

Filter 81

Invalid filter

Filter 82

Invalid filter

Filter 83

Invalid filter

Filter 84

Invalid filter

Filter 85

Invalid filter

Filter 86

Invalid filter

Filter 87

Invalid filter

Filter 88

Filter Type: GE

$$Z(s)$$
: $\left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, RL\right)$

Filter Type: GE $Z(s): \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{L_4} + \frac{1}{L_4 s}}, RL\right)$ $H(s): \frac{RL\left(-C_4 L_4 R_4 s^2 + L_4 R_4 gms - L_4 s - R_4\right)}{2C_4 L_4 R_4 R_4 gms^2 + C_4 L_4 R_4 s^2 + L_4 R_4 gms + 2L_4 RLgms + L_4 s + 2R_4 RLgm + R_4}$ $Q: \frac{C_4 R_4 \sqrt{\frac{1}{C_4 L_4}} (2RLgm + 1)}{R_4 gm + 2RLgm + 1}$ $\omega_0: \sqrt{\frac{1}{C_4 L_4}}$ Bandwidth: $\frac{R_4 gm + 2RLgm + 1}{C_4 R_4 (2RLgm + 1)}$ $Qz: -\frac{C_4 R_4 \sqrt{\frac{1}{C_4 L_4}}}{R_4 gm - 1}$

Filter 90

Invalid filter

Filter 91

Invalid filter

Filter 92

Invalid filter

Filter 93

Invalid filter

Filter 94

Invalid filter

Filter 95

Invalid filter

Filter 96

Invalid filter

Filter 97

Invalid filter

Filter 98

Invalid filter

Filter 100

Filter Type: GE $Z(s): \left(\infty, \infty, \infty, \infty, \frac{L_{4s}}{C_4L_4s^2+1} + R_4, RL\right)$ $H(s): \frac{RL(C_4L_4R_4gms^2 - C_4L_4s^2 + L_4gms + R_4gm - 1)}{C_4L_4R_4gms^2 + 2C_4L_4RLgms^2 + C_4L_4s^2 + L_4gms + R_4gm + 2RLgm + 1}$ $Q: \frac{C_4\sqrt{\frac{1}{C_4L_4}}(R_4gm + 2RLgm + 1)}{gm}$ $\omega_0: \sqrt{\frac{1}{C_4L_4}}$ Bandwidth: $\frac{gm}{C_4(R_4gm + 2RLgm + 1)}$ $Qz: \frac{C_4\sqrt{\frac{1}{C_4L_4}}(R_4gm - 1)}{gm}$

Filter 101

Invalid filter

Filter 102

Invalid filter

Filter 103

Invalid filter

Filter 104

Invalid filter

Filter 105

Invalid filter

Filter 106

Invalid filter

Filter 107

Invalid filter

Filter 108

Invalid filter

Filter 110

Invalid filter

Filter 111

Filter Type: GE
$$Z(s): \left(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, RL\right)$$

$$H(s): \frac{RL\left(C_4L_4R_4gms^2 - C_4L_4s^2 - C_4R_4s + R_4gm - 1\right)}{C_4L_4R_4gms^2 + 2C_4L_4RLgms^2 + C_4L_4s^2 + 2C_4R_4RLgms + C_4R_4s + R_4gm + 2RLgm + 1}$$

$$\mathbf{Q}: \frac{L_4\sqrt{\frac{1}{C_4L_4}}(R_4gm + 2RLgm + 1)}{R_4(2RLgm + 1)}$$

$$\omega_0: \sqrt{\frac{1}{C_4L_4}}$$
Bandwidth:
$$\frac{R_4(2RLgm + 1)}{L_4(R_4gm + 2RLgm + 1)}$$

$$\mathbf{Q}z: \frac{L_4\sqrt{\frac{1}{C_4L_4}}(-R_4gm + 1)}{R_4}$$

Filter 112

Invalid filter

Filter 113

Invalid filter

Filter 114

Invalid filter

Filter 115

Invalid filter

Filter 116

Invalid filter

Filter 117

Invalid filter

Filter 118

Invalid filter

Filter 120

Invalid filter

Filter 121