复数与复变函数

复数的概念与运算

• 虚数单位 *i*

 $\sqrt{-1}=i$, 称 i 为虚数单位

复数域 ℂ

 $\forall x,y \in \mathbb{R}$,称z-x+iy为复数

实部
$$\Re(z)=x$$
, 虚部 $\mathrm{Im}(z)=y$

全体复数 z 的集合记为 \mathbb{C}

当 $x=0,y\neq 0$ 时,z 称为纯虚数

复数域 \mathbb{C} 0 元为 0,1 元为 1,逆元 $z^{-1} = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}$

● 复数域 ℂ 几何解释

把 z = x + iy 与有序数组 (x, y)

复数域与笛卡尔平面 $\mathbb{R} \times \mathbb{R}$ 相对应, 称为复平面

- 名词解释
 - x 轴为实轴, y 为虚轴

模 $|z|=\sqrt{x^2+y^2}$,即点 P(x,y) 到原点距离,|0|=0,幅角为任意角度

幅角 $\operatorname{Arg} z$ 为 OP 与 x 轴正方向夹角

范围在 $(-\pi,\pi]$ 之间的幅角叫主幅角,或幅角的主值,记为 $\arg z$, ${\rm Arg}z=\arg z+2k\pi, k=\pm 0,\pm 1,\cdots$

共轭复数 $\bar{z} = x - iy$

- 。 复数不能比较大小, 但模有大有小, 可以比较
- 两复数相等 ⇔ 它们的实部,虚部对应相等
- 复数的几种表示法

代数表示法 z = x + iy

复平面上的点表示 P(x,y) 或 z(x,y)

复平面上的向量
$$\overrightarrow{OP} = (x, y)$$

三角表示法 $z = r(\cos \theta + i \sin \theta)$

指数表示法 $z=re^{i\theta}$

$$\circ \ r = |z|, \theta = \arg z + 2k\pi$$

$$\circ \ e^{i\theta} = \cos\theta + i\sin\theta$$

$$\begin{array}{l} \circ \ |e^{i\theta}| = 1 \\ e^{i2k\pi} = 1 \\ i = e^{\left(2k\pi + \frac{\pi}{2}\right)i} \end{array}$$

• 复数运算的基本性质

$$\circ \ \arg z = \begin{cases} \arctan \frac{y}{x} & z$$
在第一象限
$$\arctan \frac{y}{x} + \pi & z$$
在第二象限
$$\arctan \frac{y}{x} - \pi & z$$
在第三象限
$$\arctan \frac{y}{x} & z$$
在第四象限

$$y=0$$
时, z 在实轴上, $\arg z=0$ 或 π

$$x=0$$
 时, z 在虚轴上, $\arg z=\frac{\pi}{2}$ 或 $-\frac{\pi}{2}$

$$\circ \ z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$$

$$\circ \;\; z_1z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1) = r_1r_2e^{i(heta_1 heta_2)}$$

$$|z_1 z_2| = |z_1| \cdot |z_2|$$

$$\circ \operatorname{Arg}(z_1z_2) = \operatorname{Arg}z_1 + \operatorname{Arg}z_2$$

$$\operatorname{Arg}(rac{z_1}{z_2}) = \operatorname{Arg} z_1 - \operatorname{Arg} z_2$$

$$\circ$$
 $rac{z_1}{z_2}=rac{r_1}{r_2}e^{i(heta_1- heta_2)}$, $z_2
eq 0$

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$

$$\circ \ x = \frac{z+\overline{z}}{2}$$
 , $y = \frac{z-\overline{z}}{2}$

$$\circ \ \overline{\overline{z}}=z$$

$$\circ \ z\overline{z} = |z|^2 = |z^2|$$

$$\circ \ \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$

$$\frac{\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}}{\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}}$$

$$(z_1)$$
 (z_2) (z_1) (z_1) (z_1) (z_1) (z_1) (z_1)

$$|z_1 \pm z_2| \ge ||z_1| - |z_2||$$

$$|x| \le |z|, |y| \le |z|, |z| \le |x| + |y|$$

$$|z_1-z_2|$$
 表示点 z_1 和 z_2 的距离

$$\circ z^n = r^n e^{in\theta} = r^n (\cos n\theta + i \sin n\theta)$$

$$|z^n|=|z|^n$$
, $\mathrm{Arg}z^n=n\mathrm{Arg}z$

$$z^{-n} = \frac{1}{z^n} = r^{-n}e^{i(-n\theta)}$$

$$z^{0} = 1$$

De Moivre 公式: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

- \circ z 的 n 次方根 ω 满足 $\omega^n=z$,记为 $\sqrt[n]{z}$
- 几何应用
- 复球面与无穷远点

复球面与复平面——对应

复球面的北极点 N 对应复平面上的无穷远点,记作 ∞

- ⋄ 复数 ∞ 的实部、虚部、幅角均无意义
- $\circ z \to \infty \Leftrightarrow |z| = +\infty$
- 。 包含无穷远点的复平面称为扩充复平面

复变函数的极限与连续

• 复平面上的区域

邻域:
$$U(z_0, \delta) = \{z \mid |z - z_0| < \delta, z \in \mathbb{C}\}$$

去心邻域:
$$\mathring{U}(z_0,\delta)=\{z\mid |z-z_0|<\delta,z\in\mathbb{C}\}$$

复平面上的曲线:
$$z = z(t) = x(t) + iy(t)$$

• 复变函数

设复数集 $G\subseteq C$,如果存在一个确定的法则 f,使得对每一个 $z\in G$,按该法则总有唯一的复数 w 与之对应,则称 f 为定义在 G 上的一个单值函数,记作 $w=f(z)(z\in G)$

定义域: G

值域: $R(f) = G^*$

如果一个 $z \in G$ 对应于多个或无穷多个函数值 w, 则称 f 是一个多值复变函数

$$w = f(z) = u(x, y) + iv(x, y)$$

• 复变函数的极限

设函数 w=f(z) 在 z_0 的某一去心邻域 $\mathring{U}(z_0,\rho)$ 内有定义,若存在确定的复数 A,使得对 $\forall \varepsilon>0$,都 $\exists \delta>0 (\delta \leq \rho)$,当 $0<|z-z_0|<\delta$ 时,总有 $|f(z)-A|<\varepsilon$,则称 A 为当 $z\to z_0$ 时函数 f(z) 的极限,记作 $\lim_{\longrightarrow} f(Z)=A$

。 若
$$w=f(z)=u(x,y)+iv(x,y), z_0=x_0+y_0, A=u_0+iv_0$$
,则
$$\lim_{z\to z_0}f(z)=\lim_{(x,y)\to(x_0,y_0)}[u(x,y)+iv(x,y)]=\lim_{(x,y)\to(x_0,y_0)}u(x,y)+i\cdot\lim_{(x,y)\to(x_0,y_0)}v(x,y)=u_0+iv_0=A$$

• 复变函数的连续性

设函数 w=f(z) 在 z_0 的某一邻域内有定义,若 $\lim_{z\to z_0}f(z)=f(z_0)$,则称函数 f(z) 在点 z_0 处连续

 \circ f(z) 在 z_0 连续 $\Leftrightarrow u(x,y), v(x,y)$ 在 (x_0,y_0) 都连续.

$$\lim_{z \to z_0} f(z) = \lim_{(x,y) \to (x_0,y_0)} \left[u(x,y) + iv(x,y) \right] = u(x_0,y_0) + iv(x_0,y_0) = f(z_0)$$

解析函数的概念及判定

- 复变函数的导数和微分
 - \circ 若 $\lim_{\Delta z o 0} rac{\Delta w}{\Delta z} = \lim_{\Delta z o 0} rac{f(z_0 + \Delta z) f(z_0)}{\Delta z}$ 存在,则称 f 在 z_0 处可导

导数
$$f'(z_0) = \lim_{\Delta z o 0} rac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

也记作
$$\frac{\mathrm{d}w}{\mathrm{d}z}ig|_{z=z_0}$$
 或 $w'ig|_{z=z_0}$

若 f 在 D 内的每一点都可导,则称 f 在 D 内可导

- 。 设复变函数 w=f(z) 在 $U(z_0)$ 内有定义, $z_0=x_0+iy_0,$ $\Delta z=\Delta x+i\Delta y$,如果存在与 Δz 无关的复常数 A,使得对于 $\forall z=z_0+\Delta z\in U(z_0)$,总有 $\Delta w=f(z_0+\Delta z)-f(z_0)=A\cdot\Delta z+o(|\Delta z|)$,其中 $|\Delta z|=\sqrt{\Delta x^2+\Delta y^2}$,则称 w=f(z) 在 z_0 处可谓, $\mathrm{d} w=A\cdot\Delta z=f'(z_0)\mathrm{d} z$
- \circ 可微 \Longleftrightarrow 可导 \Longrightarrow 连续
- 。 可导的必要条件

$$\begin{split} f(z) &= u(x,y) + iv(x,y), z_0 = x_0 + iy_0 \\ \text{C-R 条件: } &\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{split}$$

。 可导的充要条件

$$u,v$$
 在 (x_0,y_0) 处可微旦满足 C-R 条件

$$\circ f'(z) = u_x + iv_x = u_x - iu_y = v_y + iv_x$$

• 复变函数的解析性

若 f(z) 在 z_0 及 z_0 的某邻域内均可导,则称 f(z) 在点 z_0 解析, z_0 为解析点

若 f(z) 在区域 D 内的任一点处解析,则称 f(z) 在 D 内解析,f(z) 为解析函数

若 f(z) 在 z_0 处不解析,则称 z_0 为奇点

解析 ←⇒ 可导

复变函数的初等函数

• 指数函数

$$f(z) = e^z = e^{x+iy} = e^x \left(\cos y + i\sin y\right)$$

$$\circ |e^z| = e^x, \operatorname{Arg} e^z = y + 2k\pi$$

$$\circ \ e^{z_1}e^{z_2}=e^{z_1+z_2}, rac{e^{z_1}}{e^{z_2}}=e^{z_1-z_2}$$

。 周期性:
$$e^{z+2k\pi i}=e^z$$

- \circ 处处解析, $(e^z)'=e^z$
- \circ $\lim_{z\to\infty}e^z$ 不存在,为无界
- 。 复变函数中无中值定理
- 对数函数

$$w = \operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z = \ln|z| + i(\operatorname{arg} z + 2k\pi)$$

- \circ $\operatorname{Ln} z$ 为无穷多值函数,对于固定的 k,单值分支记为 $(\operatorname{Ln} z)_k$
- 。 k=0 时,称为主值,记为 $\ln z$

$$\ln z = \ln|z| + i\arg z$$

- Ln0 无意义
- $\circ \operatorname{Ln}(z_1z_2) = \operatorname{Ln}z_1 + \operatorname{Ln}z_2, \operatorname{Ln}rac{z_1}{z_2} = \operatorname{Ln}z_1 \operatorname{Ln}z_2$
- \circ $\operatorname{Ln} z$ 在除原点与负实轴外的其他点处连续

 $\ln z$ 在除原点与负实轴外的其他点处解析, $(\ln z)' = \frac{1}{z}$

 ${\rm Ln}z$ 的各个分支在除原点与负实轴外的其他点处解析,与 ${\rm ln}\,z$ 导数值相同

幂函数

$$w=z^{\alpha}=e^{\alpha {
m Ln}z}=e^{\alpha (\ln z+2k\pi i)}$$

 \circ 当 lpha=n 为整数时, $z^n=e^{n\ln z}$ 为单值

$$z^{-n} = \frac{1}{z^n}$$

- 。 当 $\alpha=\frac{1}{n}$ 时,有 n 个不同的值 当 $\alpha=\frac{p}{a}$ 时,取 $k=0,1,\cdots,q-1$ 的 q 个值
- \circ 对其他的 α , 有无穷多值
- k=0, 即 $z^{\alpha}=e^{\alpha \ln z}$ 为主值
- \circ z^{α} 的各个单值分支在除原点和负实轴外的其他点处解析, $\left(z^{\alpha}\right)'=\alpha z^{\alpha-1}$
- 三角函数

$$\sin z = rac{e^{iz}-e^{-iz}}{2i}, \cos z = rac{e^{iz}+e^{-iz}}{2}$$

- 周期为 2π
- $\circ \cos z$ 为偶函数, $\sin z$ 为奇函数
- 。 在复平面上处处解析, $(\sin z)' = \cos z, (\cos z)' = -\sin z$
- $\circ |\sin z|, |\cos z|$ 无界
- $\circ e^{iz} = \cos z + i \sin z$
- $\circ \tan z = \frac{\sin z}{\cos z}, \cot z = \frac{\cos z}{\sin z}, \sec z = \frac{1}{\cos z}, \csc z = \frac{1}{\sin z}$

复变函数的积分

概念和性质

- 简单曲线 C 为有向曲线
 - C^- 为与 C 方向相反的—条曲线

简单闭曲线 C 的正向为逆时针方向

 C^- 为 C 的负方向,即顺时针方向

- 设 w=f(x) 在以 A 为起点,B 为终点的分段光滑曲线 C 上有定义,沿曲线 C 从起点 z=a 到终点 z=b 的方向在 C 上任取 分点 $a=z_0,z_1,\cdots,z_{n-1},z_n=b$,把 C 分成 n 个小弧段 $z_{k-1}z_k(k=1,2,\cdots,n)$ 。任取 $\xi_k\in z_{k-1}z_k$,记 $\Delta z_k=z_k-z_{k-1}$, $\delta=\max_{1\le k\le n}\left\{\Delta z_k$ 的长度 $\right\}$, $\int_C f(z)\mathrm{d}z=\lim_{\delta\to 0}\sum_{k=1}^n f(\xi_k)\Delta z_k$
 - C 称为积分路径

若 C 为闭合曲线,则记为 $\oint_C f(z) \mathrm{d}z$

- 基本性质
 - $\circ \int_{C^-} f(z) dz = \int_C f(z) dz$
 - $\circ \int_C kf(z)dz = k \int_C f(z)dz$
 - $\int_C [f(z) \pm g(z)] dz = \int_C f(z) dz \pm \int_C g(z) dz$
 - $\circ \int_C f(z) \mathrm{d}z = \int_{C_1} f(z) \mathrm{d}z + \int_{C_2} f(z) \mathrm{d}z$

$$C = C_1 + C_2$$

 $\circ \left| \int_C f(z) dz \right| \le \int_C |f(z)| |dz| \le ML$

L 为曲线长度,|f(z)| < M

• 存在性和基本算法

若
$$f(z)$$
 连续,则 $\int_C f(z) dz = \int_C (u+iv) d(x+iy) = \int_C (u dx - v dy) + i \int_C (v dx + u dy)$

参数方程法

$$\int_C f(z) \mathrm{d}z = \int_\alpha^\beta f(z(t)) z'(t) \mathrm{d}t = \int_\alpha^\beta \left[u(x(t), y(t)) x'(t) - v(x(t), y(t)) y'(t) \mathrm{d}t \right] + i \int_\alpha^\beta \left[v(x(t), y(t)) x'(t) + u(x(t), y(t)) y'(t) \mathrm{d}t \right]$$

柯西-古萨基本定理

- 柯西积分定理
 - 设 f(z) 在简单闭曲线 C 上及其所围成的区域 D 内处处解析,则 $\oint_C f(z) \mathrm{d}z = 0$
 - 设 f(z) 在单连通域 D 内解析,C 为 D 内任一条分段光滑闭曲线,则 $\oint_C f(z) \mathrm{d}z = 0$
 - 设 f(z) 在单连通域 D 内解析,则 $F(z)=\int_{z_0}^z f(z)\mathrm{d}z$ 在 D 内解析,且 F'(z)=f(z)
- 复合闭路定理

 $C,C_k(k=1,2,\cdots,n)$ 为 n+1 条逆时针方向的简单闭曲线, C_k 在 C 内, C_k 互不相交、互不包含, C,C_k 构成复连通域 D , f(z) 在 \overline{D} 上解析,则 $\oint_C f(z)\mathrm{d}z=\sum_{k=1}^n\oint_{C_k}f(z)\mathrm{d}z$

$$egin{aligned} \oint_C f(z) \mathrm{d}z &= \oint_{C_1} f(z) \mathrm{d}z \ \ \oint_C rac{1}{z-z_0} \mathrm{d}z &= 2\pi i, \oint_C rac{1}{(z-z_0)^n} \mathrm{d}z &= 0 (n
eq 1) \end{aligned}$$

原函数与不定积分

• $\int f(z)dz = F(z) + C$

$$\bullet \quad \int_{z_0}^{z_1} f(z) \mathrm{d}z = F(z_1) - F(z_0)$$

柯西积分公式

• Cauchy 积分公式

设 f(z) 在单连通域 D 内解析,C 为 D 内任一条正向简单闭曲线, z_0 为曲线 C 内任一点,则 $\oint_C rac{f(z)}{z-z_0} \mathrm{d}z = 2\pi i f(z_0)$

• 高阶导数公式

$$\oint_L rac{f(z)}{(z-z_0)^{n+1}} \mathrm{d}z = rac{2\pi i}{n!} f^{(n)}(z_0)$$

调和函数

• 若 arphi(x,y) 在 D 内有二姐连续偏导数,且满足 Laplace 方程 $rac{\partial^2 arphi}{\partial x^2}+rac{\partial^2 arphi}{\partial y^2}=0$,则为调和函数

• 若 f(z)=u(x,y)+iv(x,y) 在 D 内解析,则 u 和 v 都是 D 内的调和函数,v 为 u 的共轭调和函数

复变函数项级数

复数项级数

• 复数列的极限

$$\{c_n\}=\{a_n+ib_n\}$$
 收敛于 $c=a+ib$ 的充要条件为 $\lim_{n o\infty}a_n=a,\lim_{n o\infty}b_n=b$

• 复数项级数

$$\sum_{n=1}^{\infty} c_n = c_1 + c_2 + \cdots + c_n + \cdots$$

部分和
$$S_n=c_1+c_2+\cdots+c_n$$

若
$$\lim_{n \to \infty} S_n = s$$
 存在,则称级数收敛, s 为级数的和,记为 $\sum_{n=1}^{\infty} c_n = s$

否则称级数发散

$$\circ \sum_{n=1}^{\infty} c_n$$
 收敛 $\Longleftrightarrow \sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ 都收敛

$$\circ \sum\limits_{n=1}^{\infty}c_n$$
 收敛 $\Longrightarrow \lim\limits_{n o\infty}c_n=0$

$$\circ$$
 $\sum\limits_{n=1}^{\infty}|c_n|$ 收敛 \Longrightarrow $\sum\limits_{n=1}^{\infty}c_n$ 收敛且 $\left|\sum\limits_{n=1}^{\infty}c_n
ight|\leq\sum\limits_{n=1}^{\infty}|c_n|$

若
$$\sum\limits_{n=1}^{\infty}|c_n|$$
 收敛,则称 $\sum\limits_{n=1}^{\infty}c_n$ 绝对收敛

若
$$\sum\limits_{n=1}^{\infty}c_n$$
 收敛而 $\sum\limits_{n=1}^{\infty}|c_n|$ 发散,则称 $\sum\limits_{n=1}^{\infty}c_n$ 条件收敛

$$\circ \sum_{n=1}^\infty c_n$$
 绝对收敛 $\Longleftrightarrow \sum_{n=1}^\infty a_n, \sum_{n=1}^\infty b_n$ 都绝对收敛

幂级数

• 承数顶级数

$$\sum\limits_{n=1}^{\infty}f_n(z)=f_1(z)+f_2(z)+\cdots f_n(z)+\cdots$$

。 若对于点 z_0 , $\sum\limits_{n=1}^{\infty}f_n(z_0)$ 收敛,则称为收敛点

收敛点的全体称为收敛域

。 设收敛域为
$$D$$
,对于 $\forall z\in D$,和函数 $\sum\limits_{n=1}^{\infty}f_n(z)=S(z)$ 记 $S_n(z)=u_1(z)+u_2(z)+\cdots+u_n(z)$, $R_n(z)=s(z)-s_n(z)$,则 $\lim\limits_{n\to\infty}S_n(z)=S(z)$, $\lim\limits_{n\to\infty}R_n(z)=0$

幂级数

$$\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 z + \cdots c_n z^n + \cdots$$

- 幂级数的收敛性
 - o Abel 定理

若
$$\sum\limits_{n=0}^\infty c_n z^n$$
 在点 $z_0(z_0
eq 0)$ 收敛,则对满足 $|z| < |z_0|$ 的一切 z , $\sum\limits_{n=0}^\infty c_n z^n$ 绝对收敛

若
$$\sum\limits_{n=0}^{\infty}c_nz^n$$
 在点 z_1 收敛,则对满足 $|z|<|z_1|$ 的一切 z , $\sum\limits_{n=0}^{\infty}c_nz^n$ 发散

- 收敛圆 |z| < R,收敛半径 R
- ullet $\sum_{n=0}^\infty c_n(z-z_0)^n$ 的收敛范围是以 z_0 为中心的圆域

。 设
$$\lim_{n \to \infty} \left| \frac{C_{n+1}}{C_n} \right| = \lambda$$
 或 $\lim_{n \to \infty} \sqrt[n]{|C_n|} = \lambda$,则 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径

$$R = \begin{cases} \frac{1}{\lambda} & 0 < \lambda < +\infty \\ +\infty & \lambda = 0 \\ 0 & \lambda = +\infty \end{cases}$$

- 幂级数的运算及性质
 - 。 代数运算
 - \circ S(z) 在收敛圆内解析

$$\sum\limits_{n=0}^{\infty}c_nz^n$$
 在收敛圆内可逐项求导和逐项积分,且不改变收敛半径,即 $\left(\sum\limits_{n=0}^{\infty}c_nz^n
ight)'=\sum\limits_{n=0}^{\infty}(c_nz^n)'$, $\int_L\left(\sum\limits_{n=0}^{\infty}c_nz^n
ight)\mathrm{d}z=\sum\limits_{n=0}^{\infty}\int_Lc_nz^n\mathrm{d}z$

Taylor 级数

• 若 f(z) 在 D 内解析, $z_0 \in D$, 则当 $|z-z_0| < R$ 时

$$f(z)$$
 在 z_0 的 Taylor 级数: $\sum\limits_{n=0}^{\infty}rac{f^{(n)}(z_0)}{n!}(z-z_0)^n$

$$f(z)$$
 在 $z_0=0$ 的 Maclaurin 级数: $\sum\limits_{n=0}^{\infty}rac{f^{(n)}(0)}{n!}z^n$

- 。 Taylor 级数的收敛半径 R 等于从 z_0 到 f(z) 的距离 z_0 最近的一个奇点的距离。 Taylor 系数 $C_n=\frac{f^{(n)}(z_0)}{n!}=\frac{1}{2\pi i}\oint_L\frac{f(\xi)}{(\xi-z_0)^{n+1}}\mathrm{d}\xi$ 。 f(z) 在 D 内解析 \iff 每一点都可展开为 $z-z_0$ 的 Taylor 级数

$$egin{aligned} rac{1}{1-z} &= \sum\limits_{n=0}^{\infty} z^n, rac{1}{1+z} &= \sum\limits_{n=0}^{\infty} {(-1)^n z^n}, |z| < 1 \ e^z &= \sum\limits_{n=0}^{\infty} rac{z^n}{n!}, |z| < +\infty \end{aligned}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n rac{z^{2n+1}}{(2n+1)!}, |z| < +\infty$$

$$\cos z=\sum\limits_{n=0}^{\infty}{(-1)^nrac{z^{2n}}{(2n)!}},|z|<+\infty$$

$$\ln{(1+z)} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n!}, |z| < 1$$

$$(1+z)^m = \sum_{n=0}^{\infty} rac{m(m-1)\cdots(m-n+1)}{n!} z^n, |z| < 1$$

Laurent 级数

• 双边幂级数

$$\sum_{n=-\infty}^{\infty} C_n (z-z_0)^n = \sum_{n=-\infty}^{-1} C_n (z-z_0)^n + \sum_{n=0}^{\infty} C_n (z-z_0)^n$$

正幂项部分
$$\sum\limits_{n=0}^{\infty} C_n (z-z_0)^n, |z-z_0| < R_2$$

负幂项部分
$$\sum\limits_{n=-\infty}^{-1} C_n(z-z_0)^n, |z-z_0|>rac{1}{R}=R_2$$

$$\circ$$
 $R_1>R_2$ 时, $\sum\limits_{n=-\infty}^{\infty}C_n(z-z_0)^n$ 处处发散

$$R_1 < R_2$$
 时, $\sum\limits_{n=-\infty}^{\infty} C_n (z-z_0)^n$ 的收敛点集为圆环域

收敛圆环域 $R_1 < |z-z_0| < R_2$ 域收敛圆有相同性质

• 函数展开为 Laurent 级数

f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内解析,Laurent 系数 $C_n = rac{1}{2\pi i} \oint_L rac{f(\xi)}{(\xi-z_0)^{n+1}} \mathrm{d}\xi$,L 为圆环域内绕 z_0 的任一条逆时针方向 的简单闭曲线

留数及其应用

解析函数中的孤立奇点

• 孤立奇点

若 f(z) 在 z_0 不解析,但在 z_0 的某一去心邻域 $0<|z-z_0|<\delta$ 内解析,则称 z_0 是 f(z) 的孤立奇点

。 可去奇点:
$$\sum\limits_{n=-\infty}^{\infty}C_n(z-z_0)^n$$
 中无负幂项 $\Longleftrightarrow \lim\limits_{z o z_0}f(z)$ 存在且有界

$$\circ m$$
 级极点: $\sum\limits_{n=-\infty}^{\infty} C_n(z-z_0)^n$ 中有 m 项负幂项 $\Longleftrightarrow \lim\limits_{z o z_0} f(z) = \infty$

。 本性奇点:
$$\sum\limits_{n=-\infty}^{\infty}C_n(z-z_0)^n$$
 中有项无穷多负幂项 $\Longleftrightarrow\lim_{z o z_0}f(z)$ 不存在且不为 ∞

$$lacksymbol{\blacksquare}$$
 任意数列 a ,存在趋向于 z_0 的点列 $\{z_n\}$,使得 $\lim_{n o \infty} f(z_n) = a$

零点

若
$$f(z_0)=0$$
,则称 z_0 为 $f(z)$ 的零点

若
$$f(z)=(z-z_0)^m \varphi(z)$$
, $\varphi(z)$ 在 z_0 解析且 $\varphi(z_0)\neq 0$, m 为正整数,则称 z_0 为 $f(z)$ 的 m 级零点

$$z_0$$
 为 $f(z)$ 的 m 级零点 $\Longleftrightarrow f^{(n)}(z_0) = 0 (n=0,1,\cdots,m-1), f^{(m)}(z_0)
eq 0$

$$z_0$$
 为 $f(z)$ 的 m 级零点 $\Longleftrightarrow z_0$ 为 $\frac{1}{f(z)}$ 的 m 级极点

• 极点判定

设 z_0 为 P(z) 的 m 级零点, Q(z) 的 n 级零点, 则

。 若
$$m \geq n$$
, z_0 为 $f(z) = rac{P(z)}{Q(z)}$ 的可去奇点

。 若
$$m \geq n$$
, z_0 为 $f(z) = \frac{P(z)}{Q(z)}$ 的可去奇点。 若 $m < n$, z_0 为 $f(z) = \frac{P(z)}{Q(z)}$ 的 $n-m$ 级极点

$$\circ z_0$$
 为 $g(z) = P(z)Q(z)$ 的 $n+m$ 级极点

• 无穷远点分类

o 可去奇点:
$$\sum\limits_{n=-\infty}^{\infty}C_nz^n$$
 中无正幂项 $\Longleftrightarrow \lim\limits_{z o z_0}f(z)$ 存在且有界

$$\circ m$$
 级极点: $\sum\limits_{n=-\infty}^{n=-\infty} C_n z^n$ 中有 m 项负幂项 $\Longleftrightarrow \lim\limits_{z o z_0} f(z) = \infty$

。 可去奇点:
$$\sum\limits_{n=-\infty}^{\infty}C_nz^n$$
 中无正幂项 $\iff \lim\limits_{z \to z_0}f(z)$ 存在且有界
$$\text{ o } m$$
 级极点: $\sum\limits_{n=-\infty}^{\infty}C_nz^n$ 中有 m 项负幂项 $\iff \lim\limits_{z \to z_0}f(z)=\infty$
$$\text{ o } \text{ 本性奇点: } \sum\limits_{n=-\infty}^{\infty}C_nz^n \text{ 中有项无穷多正幂项 } \iff \lim\limits_{z \to z_0}f(z)\text{ 不存在且不为 }\infty$$

孤立奇点的留数

Res
$$[f(z), z_0] = \frac{1}{2\pi i} \oint_L dz = C_{-1}$$

$$\operatorname{Res}[f(z), \infty] = \frac{1}{2\pi i} \oint_{L_{-}} dz = -C_{-1}$$

留数计算

。 若
$$z_0$$
 为 $f(z)$ 的可去奇点,则 $\operatorname{Res}\left[f(z),z_0\right]=0$

$$\circ$$
 若 z_0 为 $f(z)$ 的 1 级极点,则 $\operatorname{Res}\left[f(z),z_0
ight]=\lim_{z\to z_0}(z-z_0)f(z)$

。 若 z_0 为 f(z) 的 m 级极点,则 $\mathrm{Res}\left[f(z),z_0
ight] = rac{1}{(m-1)!} \lim_{z o z_0} rac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \{(z-z_0)^m f(z)\}$

。 设
$$f(z)=rac{P(z)}{Q(z)}$$
, $P(z_0)
eq 0$, $Q(z_0)=0$, $Q'(z_0)
eq 0$,则 $\mathrm{Res}\left[f(z),z_0
ight]=rac{P(z_0)}{Q'(z_0)}$

 $\circ \operatorname{Res}\left[f(z),\infty\right] = \operatorname{Res}\left[f\left(\frac{1}{z}\right)\frac{1}{z^2},0\right]$

设 f(z) 在 D 内除有限个孤立奇点 z_1,\cdots,z_n 外处处解析, $L \mathrel{
ot} E D$ 内包围诸奇点的一条逆时针方向简单闭曲线,则 $\oint_L f(z) \mathrm{d}z = 2\pi i \sum_{k=1}^n \mathrm{Res}\left[f(z), z_k
ight]$

• Res $[f(z), \infty] + \sum_{k=1}^{n} \operatorname{Res} [f(z), z_k] = 0$

留数定理计算实积分

- $\int_0^{2\pi} R(\cos x, \sin x) \mathrm{d}x = \int_{|z|=1}^{z=e^{ix}} \oint_{|z|=1} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) \frac{\mathrm{d}z}{iz}$, $R(\cos x, \sin x)$ 为 $\sin x, \cos x$ 的有理函数 $\int_{-\infty}^{\infty} R(x) \mathrm{d}x = 2\pi i \sum \mathrm{Res}\left[R(z), z_k\right]$, $R(x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{b_0 + b_1 x + \dots + b_n x^n}$, $n-m \geq 2$, $Q_n(z) \neq 0$, z_k 为 R(z) 在上半平面内的所
- $\bullet \ \int_{-\infty}^{\infty} R(x)e^{iax}\mathrm{d}x = 2\pi i \sum_{m} \mathrm{Res}\left[R(z)e^{iaz},z_k\right], \ R(x) = \tfrac{a_0 + a_1x + \dots + a_mx^m}{b_0 + b_1x + \dots + b_nx^n}, n-m \geq 1, Q_n(z) \neq 0$ $R(x)=rac{a_0+a_1x+\cdots+a_mx^m}{b_0+b_1x+\cdots+b_kx^n}, n-m\geq 2, Q_n(z)
 eq 0$, z_k 为 R(z) 在上半平面内的所有奇点

共形映射

共形映射的概念

- 解析函数导数的几何意义
 - 。 有向曲线切向量

曲线 C: z = z(t) = x(t) + iy(t)

$$z_0' = z_0'(t_0) = x_0'(t_0) + iy_0'(t_0)$$

C 在 z_0 处的切向量为 $ec{T}=z_0'$,切向量倾角为 $\mathrm{Arg}z_0'(t_0)$

 $\circ \operatorname{Arg} f'(z_0)$

曲线 C 经过 w = f(z) 映射后在 z_0 处的转动角度

转动角的不变性:转动角大小仅与 z_0 有关,与 C 无关

保角性: 设 C_1 与 C_2 的夹角为 α ,经解析函数 w=f(z) 映射后的像曲线为 Γ_1 和 Γ_2 ,则 Γ_1 和 Γ_2 的夹角也为 α

 $\circ |f'(z_0)|$

在 w = f(z) 映射下曲线 C 在点 z_0 处弧长的伸缩程度, 称为伸缩率

伸缩率不变性:伸缩率与C的形状和方向无关

- 共形映射与单叶函数的共形性
 - \circ 设 w=f(z) 在 z_0 的邻域内有定义,且在 z_0 处具有保角性和伸缩率不变性,则称 w=f(z) 在 z_0 处是保角的

若 w=f(z) 在区域 D 内的每一点处都是保角的,则称 w=f(z) 是 D 内的保角映射

若 w=f(z) 在区域 D 内单叶且保角,则称 w=f(z) 为 D 内的共形(或保形)映射

- \circ 设 w=f(z) 是区域 D 内的解析函数, $z_0\in D$,且 $f'(z_0)\neq 0$,则该映射在 z_0 处是保角的且伸缩率不变的 若在 D 内 $f'(z) \neq 0$, 则 w = f(z) 是 D 内的保角映射
- \circ 设 w=f(z) 是 D 内的单叶解析函数,则它将 z 平面上的区域 D 共形映射为 w 屏幕上的区域 $G=f(D)=\{w\mid w=f(z),z\in D\}$,它的反函数 $z=f^{-1}(w)$ 在 G 内也单叶解析,且 $\left[f^{-1}(w)
 ight]'=rac{1}{f'(z)},z\in D,w\in G$,且 D 与 G 形状相同,方向相同