Technische Universität Dortmund Department of Biochemical and Chemical Engineering Chair of Process Dynamics and Operations Prof. Dr. Sebastian Engell

DEVELOPMENT OF LOCAL POSITIONING SYSTEM FOR A PIPE-LESS PLANT

Automation & Robotics Group Project SS18

Group Members:

Abdulrahman Abouelkhair (4511328) Medhini Rajagopal Balamurugan (4511328) Stefan Rottstegge (4511328) Stephan Vette (4511328)

Supervisors:

Afaq Ahmad Marina Rantanen-Modéer

Abstract

Summary. Note that the abstract heading is unnumbered, it should remain so. To remove heading numbering use:

\section*{}

Contents

1	Introduction	5
2	Pipeless Plant	6
	2.1 Existing setup	6
	2.2 Problems with the Existing Setup	6
3	Selection Process	7
	3.1 Triangulation	7
	3.2 Pattern Recognition	7
	3.3 RFID	7
	3.4 Map-Based Localization	7
4	Theoretical Background	8
	4.1 Radio Frequency Identification	8
	4.2 Trilateration	8
	4.3	9
5	Simulation	10
	5.1 Emulator	10
	5.2 RSSI Measurements with real HW	10
	5.3 Simulation with emulated data	10
	5.4 Results	10
6	Implementation	11
7	Hardware	11
	7.1 Communication (Abdul and/or Stefan)	11
	7.2 Initialization procedure (Stephan and Stefan)	11
	7.2.1 Recording and filtering data (Stefan)	11
	7.2.2 Analysing data (Stefan)	11
	7.2.3 Estimation of position and orientation (Stephan)	11
	7.3 Results	11
	7.4 Improvements	11
8	Conclusion	12
9	Future Work	13
10) References	14
11	Appendixes	15

Final report.	TITLE.	July 26.	2018

Page	4

List	of Figures	
1	Overview Trilateration	8
List	of Tables	
1	Should be a caption	7

1 Introduction

Add your name to the file name

2 Pipeless Plant

- 2.1 Existing setup
- 2.2 Problems with the Existing Setup

.. zb

- Fish eye
- $\bullet \;$ Sunlight..

3 Selection Process

About the 4 techniques..

3.1 Triangulation

Summary

Implementation

Pro and con

..

3.2 Pattern Recognition

Summary

Implementation

Pro and con

..

3.3 RFID

Summary

Implementation

Pro and con

..

3.4 Map-Based Localization

Summary

Implementation

Pro and con

..

example:

Col1	Col2	Col2	Col3
1	6	87837	787
2	7	78	5415
3	545	778	7507
4	545	18744	7560
5	88	788	6344

Table 1: Should be a caption

4 Theoretical Background

4.1 Radio Frequency Identification

4.2 Trilateration¹

Trilateration is a method to compute the intersecting point of three circles/spheres. For this, it is necessary to know the three center of the circles/spheres plus their corresponding radii. The basic idea is to use the description of sphere.

$$r^{2} = (x - x_{1})^{2} + (y - y_{1})^{2} + (z - z_{1})^{2}$$
(1)

where $(P_n = (x_n, y_n, z_n))$ is the center of the sphere. To use equation 4.2 for the 2D indoor localization on a floor, a few assumption can be made. First of all, the z-component of all spheres can be neglected. Another assumption is that we define the origin of the first circle as the center of the coordinate system, the second along the x-axis with an distance (d) and the third shifted in x- (i) and y-direction (j).

Figure 1: Overview Trilateration

With known positions of the center of the circles d, i and j can be computed in the following

¹Indoor Robot Positioning using an Enhanced Trilateration Algorithm

way:

$$d = |P_2 - P_1| \tag{2}$$

$$e_x = \frac{1}{d}(P_2 - P_1) \tag{3}$$

$$a_x = P_3 - P_1 \tag{4}$$

$$i = e_x \cdot a_x \tag{5}$$

$$a_y = (P_3 - P_1) - i * e_x (6)$$

$$e_y = \frac{a_y}{|a_y|} \tag{7}$$

$$j = e_y \cdot a_x \tag{8}$$

After knowing the these values, the relative distance in x- and y-direction can be computed with the help of 4.2 and the center of the circles $P_1(0,0)$, $P_2(0,d)$ and $P_3(i,j)$ as follows:

$$x_t = \frac{r_1^2 - r_2^2 + d^2}{2 * d} \tag{9}$$

$$y_t = \frac{r_1^2 - r_3^2 + i^2 + j^2}{2 * j} - i * \left(\frac{x_t}{j}\right)$$
 (10)

The absolute position of the intersection point is computed in following way:

$$P = P_1 + e_x * x_t + e_y * y_t \tag{11}$$

4.3 ...

- 5 Simulation²
- 5.1 Emulator
- 5.2 RSSI Measurements with real HW
- 5.3 Simulation with emulated data
- 5.4 Results

²Stephan

- 6 Implementation
- 7 Hardware³
- 7.1 Communication (Abdul and/or Stefan)
- 7.2 Initialization procedure (Stephan and Stefan)
- 7.2.1 Recording and filtering data (Stefan)
- 7.2.2 Analysing data (Stefan)
- 7.2.3 Estimation of position and orientation (Stephan)
- 7.3 Results
- 7.4 Improvements

 $^{^3\}mathrm{Abdul}$ and Stephan

8 Conclusion

conclude..

9 Future Work

...

10 References

..

11 Appendixes