Attribute Selection Measures in Decision Tree

By Vinod P. (Ph.D, Computer Engg.)

Decision Trees

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Test Set

Test Data

Refund		Taxable Income	Cheat
No	Married	80K	?

Tree Induction

- Finding the best decision tree is NP-hard
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5, etc

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5

Non-homogeneous,

High degree of impurity

C0: 9 C1: 1

Homogeneous,

Low degree of impurity

• Ideas?

Measuring Node Impurity

p(i|t): fraction of records associated with node t belonging to class i

Entropy(t) =
$$-\sum_{i=1}^{c} p(i \mid t) \log p(i \mid t)$$

Used in ID3 and C4.5

Gini
$$(t) = 1 - \sum_{i=1}^{c} [p(i | t)]^2$$

Used in CART

Classification error(
$$t$$
) = $1 - \max_{i} [p(i | t)]$

Example

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$
 $Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0$
 $Error = 1 - max (0, 1) = 1 - 1 = 0$

P(C1) = 1/6 P(C2) = 5/6

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

Entropy = $- (1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$
Error = $1 - \max (1/6, 5/6) = 1 - 5/6 = 1/6$

P(C1) = 2/6 P(C2) = 4/6
Gini = 1 -
$$(2/6)^2$$
 - $(4/6)^2$ = 0.444
Entropy = - $(2/6) \log_2 (2/6)$ - $(4/6) \log_2 (4/6)$ = 0.92
Error = 1 - max $(2/6, 4/6)$ = 1 - 4/6 = 1/3

Impurity measures

- All of the impurity measures take value zero (minimum) for the case of a pure node where a single value has probability 1
- All of the impurity measures take maximum value when the class distribution in a node is uniform.

ID3 (Iterative Dichotomiser 3)

Day	Outlook	Temp	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D 14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Outlook

Values(Outlook) = Sunny, Overcast, Rain

$$S = [9+,5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Outlook

Values(Outlook) = Sunny, Overcast, Rain

$$S = [9+, 5-]$$
 $Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$

$$S_{Sunny} \leftarrow [2+, 3-]$$
 $Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.971$

$$S_{Overcast} \leftarrow [4+,0-]$$
 $Entropy(S_{Overcast}) = -\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} = 0$

$$S_{Rain} \leftarrow [3+,2-]$$
 $Entropy(S_{Rain}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.971$

$$Gain(S,Outlook) = Entropy(S) - \sum_{v \in \{Sunny,Overcast,Rain\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Outlook)

$$= Entropy(S) - \frac{5}{14}Entropy(S_{Sunny}) - \frac{4}{14}Entropy(S_{Overcast})$$
$$-\frac{5}{14}Entropy(S_{Rain})$$

$$Gain(S, Outlook) = 0.94 - \frac{5}{14}0.971 - \frac{4}{14}0 - \frac{5}{14}0.971 = 0.2464$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S = [9+,5-] \qquad Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{Hot} \leftarrow [2+,2-]$$
 $Entropy(S_{Hot}) = -\frac{2}{4}log_2\frac{2}{4} - \frac{2}{4}log_2\frac{2}{4} = 1.0$

$$S_{Mild} \leftarrow [4+,2-]$$
 $Entropy(S_{Mild}) = -\frac{4}{6}log_2\frac{4}{6} - \frac{2}{6}log_2\frac{2}{6} = 0.9183$

$$S_{Cool} \leftarrow [3+,1-]$$
 $Entropy(S_{Cool}) = -\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} = 0.8113$

$$Gain (S, Temp) = Entropy(S) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Temp)

$$= Entropy(S) - \frac{4}{14}Entropy(S_{Hot}) - \frac{6}{14}Entropy(S_{Mild})$$

$$-\frac{4}{14}Entropy(S_{cool}) = 0.0289$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Humidity

Values(Humidity) = High, Normal

$$S = [9+,5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{High} \leftarrow [3+,4-]$$

$$S_{High} \leftarrow [3+,4-]$$
 $Entropy(S_{High}) = -\frac{3}{7}log_2\frac{3}{7} - \frac{4}{7}log_2\frac{4}{7} = 0.9852$

$$S_{Normal} \leftarrow [6+, 1-]$$

$$S_{Normal} \leftarrow [6+, 1-]$$
 $Entropy(S_{Normal}) = -\frac{6}{7}log_2\frac{6}{7} - \frac{1}{7}log_2\frac{1}{7} = 0.5916$

$$Gain(S, Humidity) = Entropy(S) - \sum_{v \in (High, Normal)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Humidity)

$$= Entropy(S) - \frac{7}{14}Entropy(S_{High}) - \frac{7}{14}Entropy(S_{Normal})$$

$$Gain(S, Humidity) = 0.94 - \frac{7}{14}0.9852 - \frac{7}{14}0.5916 = 0.1516$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Wind

Values(Wind) = Strong, Weak

$$S = [9+,5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{Strong} \leftarrow [3+,3-]$$

$$S_{Strong} \leftarrow [3+,3-]$$
 $Entropy(S_{Strong}) = 1.0$

$$S_{Weak} \leftarrow [6+,2-]$$

$$S_{Weak} \leftarrow [6+,2-]$$
 $Entropy(S_{Weak}) = -\frac{6}{8}log_2\frac{6}{8} - \frac{2}{8}log_2\frac{2}{8} = 0.8113$

$$Gain(S,Wind) = Entropy(S) - \sum_{v \in \{Strong,Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S, Wind) = Entropy(S) - \frac{6}{14}Entropy(S_{Strong}) - \frac{8}{14}Entropy(S_{Weak})$$

$$= 0.94 - \frac{6}{14} \cdot 1.0 - \frac{8}{14} \cdot 0.8113 = 0.0478$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$Gain(S, Outlook) = 0.2464$$

$$Gain(S, Temp) = 0.0289$$

$$Gain(S, Humidity) = 0.1516$$

$$Gain(S, Wind) = 0.0478$$

	Day	Outlook	Temp	Humidity	Wind	PlayTennis
	D1	Sunny	Hot	High	Weak	No
\Rightarrow	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
	D7	Overcast	Cool	Normal	Strong	Yes
\Rightarrow	D8	Sunny	Mild	High	Weak	No
\Rightarrow	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
\Rightarrow	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

Day	Temp	Humidity	Wind	Play Tennis
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9 Cool Norma		Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S_{Sunny} = [2+,3-]$$
 $Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$

$$S_{Hot} \leftarrow [0+,2-]$$
 $Entropy(S_{Hot}) = 0.0$

$$S_{Mild} \leftarrow [1+,1-]$$
 $Entropy(S_{Mild}) = 1.0$

$$S_{Cool} \leftarrow [1+,0-]$$
 $Entropy(S_{Cool}) = 0.0$

$$Gain\left(S_{Sunny}, Temp\right) = Entropy(S) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Sunny}, Temp)$$

$$= Entropy(S) - \frac{2}{5}Entropy(S_{Hot}) - \frac{2}{5}Entropy(S_{Mild})$$

$$-\frac{1}{5}Entropy(S_{Cool})$$

$$Gain(S_{sunny}, Temp) = 0.97 - \frac{2}{5}0.0 - \frac{2}{5}1 - \frac{1}{5}0.0 = 0.570$$

Day	Temp	Humidity Wind		Play Tennis
DI	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
DI1	Mild	Normal	Strong	Yes

Attribute: Humidity

Values(Humidity) = High, Normal

$$S_{Sunny} = [2+, 3-]$$
 $Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$

$$S_{high} \leftarrow [0+,3-]$$
 $Entropy(S_{High}) = 0.0$

$$S_{Normal} \leftarrow [2+, 0-]$$
 $Entropy(S_{Normal}) = 0.0$

$$Gain\left(S_{Sunny}, Humidity\right) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain \left(S_{Sunny}, Humidity\right) = Entropy(S) - \frac{3}{5} Entropy \left(S_{High}\right) - \frac{2}{5} Entropy \left(S_{Normal}\right)$$

$$Gain(S_{sunny}, Humidity) = 0.97 - \frac{3}{5} \cdot 0.0 - \frac{2}{5} \cdot 0.0 = 0.97$$

Day	Temp	Humidity	Wind	Play Tennis
DI	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
DI1	Mild	Normal	Strong	Yes

Attribute: Wind

Values(Wind) = Strong, Weak

$$S_{Sunny} = [2+,3-]$$
 $Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$

$$S_{Strong} \leftarrow [1+,1-]$$
 $Entropy(S_{Strong}) = 1.0$

$$S_{Weak} \leftarrow [1+, 2-]$$
 $Entropy(S_{Weak}) = -\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3} = 0.9183$

$$Gain\left(S_{Sunny}, Wind\right) = Entropy(S) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain \left(S_{Sunny}, Wind\right) = Entropy(S) - \frac{2}{5} Entropy \left(S_{Strong}\right) - \frac{3}{5} Entropy \left(S_{Weak}\right)$$

$$Gain(S_{sunny}, Wind) = 0.97 - \frac{2}{5}1.0 - \frac{3}{5}0.918 = 0.0192$$

Day	Temp	Humidity	Wind	Play Tennis	
D1 Hot		High	Weak	No	
D2 Hot		High	Strong	No	
D8 Mild		High	Weak	No	
D9 Cool		Normal	Weak	Yes	
D11	Mild	Normal	Strong	Yes	

$$Gain(S_{sunny}, Temp) = 0.570$$

$$Gain(S_{sunny}, Humidity) = 0.97$$

$$Gain(S_{sunny}, Wind) = 0.0192$$

Day	Temp	Humidity	Wind	Play Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
D10	Mild	Normal	Weak	Yes
D14	Mild	High	Strong	No

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S_{Rain} = [3+, 2-]$$
 $Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$

$$S_{Hot} \leftarrow [0+,0-]$$
 $Entropy(S_{Hot}) = 0.0$

$$S_{Mild} \leftarrow [2+, 1-]$$
 $Entropy(S_{Mild}) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} = 0.9183$

$$S_{Cool} \leftarrow [1+,1-]$$
 $Entropy(S_{Cool}) = 1.0$

$$Gain(S_{Rain}, Temp) = Entropy(S) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

 $Gain(S_{Rain}, Temp)$

$$= Entropy(S) - \frac{0}{5}Entropy(S_{Hot}) - \frac{3}{5}Entropy(S_{Mild})$$

$$-\frac{2}{5} Entropy(S_{cool})$$

$$Gain(S_{Rain}, Temp) = 0.97 - \frac{0}{5}0.0 - \frac{3}{5}0.918 - \frac{2}{5}1.0 = 0.0192$$

Day	Temp	Humidity Wind		Play Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DIO	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No

Attribute: Humidity

Values(Humidity) = High, Normal

$$S_{Rain} = [3+, 2-]$$
 $Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$

$$S_{High} \leftarrow [1+,1-]$$
 $Entropy(S_{High}) = 1.0$

$$S_{Normal} \leftarrow [2+, 1-]$$
 $Entropy(S_{Normal}) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} = 0.9183$

$$Gain(S_{Rain}, Humidity) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Rain}, Humidity) = Entropy(S) - \frac{2}{5}Entropy\big(S_{High}\big) - \frac{3}{5}Entropy(S_{Normal})$$

$$Gain(S_{Rain}, Humidity) = 0.97 - \frac{2}{5} \cdot 1.0 - \frac{3}{5} \cdot 0.918 = 0.0192$$

Day	Temp	Humidity	Wind	Play Tennis
D4	Mild	High	Weak	Yes
D5 C	D5 Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DIO	Mild	lild Normal Wea		Yes
DI4	Mild	High	Strong	No

Attribute: Wind

Values(wind) = Strong, Weak

$$S_{Rain} = [3+, 2-]$$
 $Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$

$$S_{Strong} \leftarrow [0+,2-]$$
 $Entropy(S_{Strong}) = 0.0$

$$S_{Weak} \leftarrow [3+,0-]$$
 $Entropy(S_{weak}) = 0.0$

$$Gain (S_{Rain}, Wind) = Entropy(S) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Rain}, Wind) = Entropy(S) - \frac{2}{5}Entropy(S_{Strong}) - \frac{3}{5}Entropy(S_{Weak})$$

$$= 0.97 - \frac{2}{5} \ 0.0 - \frac{3}{5} 0.0 = 0.97$$

Day	Temp	Humidity	Wind	Play Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DIO	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No

$$Gain(S_{Rain}, Temp) = 0.0192$$

$$Gain(S_{Rain}, Humidity) = 0.0192$$

$$Gain(S_{Rain}, Wind) = 0.97$$

Gain Ratio

- C 4.5, a successor of ID3 uses an extension to information gain known as gain ratio
- Applies normalization to information gain using a split information value

Gain Ratio

The gain ratio is defined as

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

 The attribute with the maximum gain ratio is selected as the splitting attribute

Gain Ratio

 Split information value: Information generated by splitting the dataset *D* into *v* partitions, corresponding to *v* outcome on attribute *A*

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{D})$$

Gain Ratio: Example

RID	age	income	student	credit-rating	class:buy_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle-aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle-aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle-aged	medium	no	excellent	yes
13	middle-aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Using attribute income

1st partition (low) **D1** has **4 tuples** 2nd partition (medium) **D2** has **6 tuples** 3rd partition (high) **D3** has **4 tuples**

$$Gain(income) = 0.029$$

$$GainRatio(income) = \frac{0.029}{0.926} = 0.031$$

SplitInfo
$$_{income}$$
 $(D) = -\frac{4}{14} \log_{2}(\frac{4}{14}) - \frac{6}{14} \log_{2}(\frac{6}{14}) - \frac{4}{14} \log_{2}(\frac{4}{14})$
= 0.926

Example (Gain Ratio)

• Find the GainRatio(age):

Age	Yes	No
Youth (5)	2	3
Middle_aged(4)	4	0
Senior(5)	3	2

Example (Gain Ratio)

• Entropy(age=youth) =

$$-\frac{1}{5} \log (\frac{1}{5}) - \frac{3}{5} \log (\frac{3}{5}) = 0.97$$

Entropy(age=middle_aged) =

$$-4/4 \log (4/4) = 0$$

• Entropy(age=youth) =

$$-\frac{3}{5} \log (3/5) - 2/5 \log (2/5) = 0.97$$

Example (Gain Ratio)

- Entropy(D) = $-5/14 \log (5/14) 9/14 \log (9/14) = 0.940$
- Gain(age) = Entropy(D)-(5/14) * 0.97 (4/14) * 0 (5/14) * 0.97 = 0.247 bits
- SplitInfo_{age} = -(5/14) log(5/14) (4/14)log(4/14) (5/14) log(5/14) = **1.57525**
- GainRatio(age) = Gain(age)/SplitInfo_{age}

$$= 0.247/1.57525 = 0.1568$$

Gini index

- The Gini Index (used in CART) measures the impurity of a data partition \mathbf{D} $Gini \ (D) = 1 \sum_{i=1}^{m} \ p_i^2$
 - → m: the number of classes
 - → p_i: the probability that a tuple in D belongs to class Ci
- The Gini Index considers a binary split for each attribute A, say D₁ and D₂. The Gini index of D given that partitioning is:

$$Gini_A(D) = \frac{D_1}{D}Gini(D_1) + \frac{D_2}{D}Gini(D_2)$$

- → A weighted sum of the impurity of each partition
- The reduction in impurity is given by

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

The attribute that maximizes the reduction in impurity is chosen as the splitting attribute

Gini Index

- D: a data set to partition
- Consider an attribute A with v outcomes $\{a_1, a_2, ..., a_v\}$
- To determine best split on A
- Examine the partitions resulting from all possible subsets of $\{a_1, a_2, ..., a_v\}$
- Each subset S_A is a binary test of attribute A
- 2^{v} possible subsets of A. We exclude the power set and empty set, the we have $2^{v}-2$ subsets

Gini Index

- What to examine?
- For each subset, compute the weighted sum of impurity for two partitions

$$Gini_A(D) = \frac{D_1}{D}Gini(D_1) + \frac{D_2}{D}Gini(D_2)$$

The subset that gives minimum value for attribute A
is selected as its splitting subset

Gini(income)

RID	age	income	student	credit-rating	class:buy_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle-aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle-aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle-aged	medium	no	excellent	yes
13	middle-aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Compute the Gini index of the training set D: 9 tuples in class yes and 5 in class no

Gini
$$(D) = 1 - \left(\left(\frac{9}{14} \right)^2 + \left(\frac{5}{14} \right)^2 \right) = 0.459$$

Using attribute income: there are three values: low, medium and high Choosing the subset {low, medium} results in two partions:

- •D1 (income ∈ {low, medium}): 10 tuples
- •D2 (income ∈ {high}): 4 tuples

D has 9 tuples in buys_computer = "yes" and 5 in "no"

gini
$$(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

$$\begin{split} & gini_{income \{low, medium\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_2) \\ &= \frac{10}{14} \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right) \\ &= 0.443 \\ &= Gini_{income} \in \{high\}(D). \end{split}$$

 $Gini_{low,high}$ is 0.458; $Gini_{medium,high}$ is 0.450.

Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index