Задача 3

1.1 Условие

Доказать в исчислении высказываний (буквы обозначают произвольные формулы):

1.2 Решение

Нам известно, что

$$A \& B = \neg (A \to \neg B)$$
 $A \lor B = \neg A \to B$

Перепишем формулу:

$$\neg\neg(\neg(X\to\neg Y)\to\neg\neg Z)\vdash\neg\neg(\neg X\to\neg Y)\to(Y\to Z)$$

Доказательство:

- 1) $\neg\neg(\neg(X \to \neg Y) \to \neg\neg Z)$ Гипотеза
- 2) ¬¬(¬(X → ¬Y) → ¬¬Z) → (¬(¬X → ¬Y) → ¬¬Z) секвенция 3 при $A := \neg(X \to \neg Y) \to \neg\neg Z$
- 3) ¬(¬ $X \to ¬Y$) $\to ¬¬Z$ modus ponens, (1) и (2)
- 4) $\neg\neg(\neg X \to \neg Y)$ Гипотеза
- 5) ¬¬(¬ $X \to ¬Y$) \to (¬ $X \to ¬Y$) секвенция 3 при $A := (¬<math>X \to ¬Y$)
- 6) $\neg X \rightarrow \neg Y$ modus ponens, (4) и (5)
- 7) У Гипотеза
- 8) $(\neg X \to \neg Y) \to (Y \to X)$ секвенция 6 при A := Y, B := X
- 9) $Y \to X$ modus pomems, (6) и (8)
- 10) X modus ponens, (7) и (9)
- 11) $X \to (\neg \neg Y \to \neg (X \to \neg Y))$ секвенция 9 при $A := X, B := \neg Y$
- 12) $\neg \neg Y \rightarrow \neg (X \rightarrow \neg Y)$ modus ponens, (10) и (11)
- 13) $Y \to \neg \neg Y$ секвенция 4 при A := Y
- 14) $Y \to \neg(X \to \neg Y)$ секвенция 1, (12) и (13) при $A := Y, B := \neg \neg Y, C := \neg(X \to \neg Y)$
- 15) ¬ $(X \rightarrow ¬Y)$ modus ponens, (7) и (14)
- 16) $\neg \neg Z$ modus ponens, (3) и (15)
- 17) ¬¬ $Z \to Z$ секвенция 3 при A := Z
- 18) Z modus ponens, (16) и (17)