Quality control and cleaning data

By Dr. Richard Allen White III Lecture 3 - Sep 9th, 2019 Zoom! 404-899-586

Friesen, White, Porter - PLP512 - 2019-09-10

Cleaning and quality control

Concepts:

- Sequencing Sanger vs. Illumina
- Error profiles in Illumina
- Review Genomics files
- Good, Bad and ugly Illumina data

Learning Objectives:

- UNIX command line review/exercise
- Quality control of fastq files
- How to clean and quality control Illumina files

Genome sequencing - flowgraph

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850084/

Quality control - flowgraph

Example pipeline/workflow

UNIX Review

```
cd - ?
pwd -?
mkdir -?
rm -?
head -?
tail -?
more -?
- ?
mv -?
touch -?
grep - Global regular expression print.
sed - ?
```

UNIX Review

```
cd - change directory
pwd - print working directory
mkdir - make directory
rm - remove
head - prints first 10 lines
tail - prints last 10 lines
more - scroll file top to bottom
- pipe
mv - move (can rename file/directory)
touch - creates a file
grep - global regular expression print
sed - stream editor
```

UNIX Review

cat file1.txt file2.txt >>file3.txt ?

What would the command tail file.txt do?

head -100 file.txt | more

touch file.txt file2.txt?

Head vs. Tail?

grep - Global regular expression print. The "hand of the gods," of computation.

>seq1

ATCCATA

>seq2

GGGTACC

COPY and Paste into .txt file.

Count the number of sequences? In unix.

Count the number of sequences? In unix.

= 2

cat file.txt | grep "seq" | wc -l

Is there a shorter way to write this?

Another way to write this?

Count the number of "CC" using grep = answer?

sed - stream editor. The "dog," of computation. Your "best friend."

>seq1

ATCCATA

>seq2

GGGTACC

Replace all the T's with U's. Using sed in your terminal.

Replace all the T's with U's. Using sed in your terminal.

sed -i 's/T/U/g' grep.txt

95% of your time will be formatting and cleaning data!

Use these tools to help!!

UNIX Challenge

Download these files:

https://www.dropbox.com/s/77csy6stf36r8b0/mystery.fastq?dl=

https://www.dropbox.com/s/o5duvdpk2iyqo8m/mystery.fasta?d l=0

How can I use UNIX to grab them?

UNIX Challenge

In both files using UNIX ONLY:

- Number of lines total per file?
- Number of sequences per file?

For the mystery.fasta UNIX ONLY:

- How many "sp" or species in the file?
- How many "TAATACA" in the file?

For the mystery.fastq UNIX ONLY:

- How many "AGGCCATT" or species in the file?
- What was the barcode used?
- Is it an R1 or R2 file? (Bonus)

UNIX Challenge

In both files using UNIX ONLY:

- Code used:
- Answers:

For the mystery.fasta UNIX ONLY:

- Code used:
- Answers:

For the mystery.fastq UNIX ONLY:

- Code used:
- Answers:

UNIX Review - resources

https://github.com/raw937/bacterialpopulationgenomics/blob/master/doc/unix_introduction.md

UNIX Review - resources

https://explainshell.com/

File formats in genomics

```
*.fna, .fasta, .fa ?

*.faa ?

*.gff ?

*.gbk ?

*.fq or fastq ?
```

Read?

Contig?

kmer?

Friesen, White, Porter - PLP512 - 2019-09-10

Friesen, White, Porter - PLP512 - 2019-09-10

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062856

Friesen, White, Porter - PLP512 - 2019-09-10

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062856

Minimal GC Content Bias

Quality control - fastqc

Download these files:

https://www.dropbox.com/s/5sebhvioluocea2/Test_R1.fastq?dl=0 https://www.dropbox.com/s/qh7tboc4je6hhtm/Test_R2.fastq?dl =0

Login into kamiak

Use UNIX to put them in your home directory!

Quality control - fastqc (GOOD)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html How from UNIX???

Quality control - fastqc (GOOD)

Per base sequence quality

Per sequence GC content

Quality control - fastqc (BAD)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

Quality control - fastqc (BAD)

OPER Per base sequence quality

Friesen, White, Porter - PLP512 - 2019-09-10

Quality control - fastqc (UGLY)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html#M5

Quality control - fastqc (UGLY)

@Per base sequence content

OPERATE OF SECURITY OF SECURI

Quality control - fastqc (UGLY)

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCT	8122	8.122	Illumina Paired End PCR Primer 2 (100% over 40bp)
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAG}$	5086	5.086	Illumina Paired End PCR Primer 2 (97% over 36bp)
${\tt AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC}$	1085	1.085	Illumina Single End PCR Primer 1 (100% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGAAG	508	0.508	Illumina Paired End PCR Primer 2 (97% over 36bp)
${\tt AATTATACGGCGACCACCGAGATCTACACTCTTTCCCTAC}$	242	0.242	Illumina Single End PCR Primer 1 (97% over 40bp)
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAAGATCGGAA}$	235	0.235000000000000001	Illumina Paired End Adapter 2 (96% over 31bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCGAAGA	228	0.2279999999999998	Illumina Paired End Adapter 2 (96% over 28bp)
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACG}$	205	0.205000000000000002	Illumina Paired End PCR Primer 2 (97% over 36bp)
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGATCGGAA}$	183	0.183	Illumina Paired End Adapter 2 (100% over 32bp)
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGTCGGAAG}$	183	0.183	Illumina Paired End Adapter 2 (100% over 32bp)
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGAACT}$	164	0.164	Illumina Paired End PCR Primer 2 (97% over 40bp)
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGTCT}$	129	0.129	Illumina Paired End PCR Primer 2 (97% over 40bp)
${\tt AATTATACTTCTACCACCTATATCTACACTCTTTCCCTAC}$	123	0.123	No Hit
${\tt GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACT}$	122	0.122	Illumina Paired End PCR Primer 2 (97% over 36bp)
${\tt CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGC}$	113	0.11299999999999999	Illumina Paired End PCR Primer 2 (96% over 25bp)

Quality control - fastqc

Run these commands:

- 1) /home/richard.white3/FastQC/fastqc Test_R1.fastq
- 2) /home/richard.white3/FastQC/fastqc Test_R2.fastq

You should get two .zip or .html.

You can use firezilla to grab the htmls.

Open it in terminal with UNIX

https://www.dropbox.com/sh/9v7a9msstj7ffkw/AAD23VVhm6rV 4PvRTTiqFDsEa?dl=0

Quality control - fastqc (raw)

Quality control - fastqc (raw)

Quality control - fastqc (trim)

- /home/richard.white3/bbmap/bbduk.sh -Xmx1g
 in1=Test_R1.fastq in2=Test_R2.fastq out1=Test_trim_R1.fastq
 out2=Test_trim_R2.fastq ref=~/bbmap/resources/adapters.fa
 ktrim=r k=21 mink=11 hdist=2 tpe tbo
- 2) /home/richard.white3/bbmap/fastqc Test_trim_R1.fastq
- 3) firefox Test_trim_R1.fastq.html (not from KAMAIK)

https://www.dropbox.com/sh/9v7a9msstj7ffkw/AAD23VVhm6rV 4PvRTTiqFDsEa?dl=0

Quality control - fastqc (trim)

Quality control - fastqc (trim)

raw

trim

Quality control - fastqc (decon)

- /home/richard.white3/bbmap/bbduk.sh
 in1=Test_trim_R1.fastq in2=Test_trim_R2.fastq
 out1=Test_decon_R1.fastq out2=Test_decon_R2.fastq qtrim=r
 trimq=25 maq=25 minlen=50
 ref=~/bbmap/resources/phix174_ill.ref.fa.gz k=31 hdist=1
 stats=decon_out.txt
- 2) /home/richard.white3/bbmap/fastqc Test_decon_R1.fastq
- 3) firefox Test_decon_R1.fastq.html (not from KAMAIK)

Quality control - fastqc (decon)

Quality control - fastqc (decon)

raw

decon

Quality control - check via mapping

1) module load bowtie2/2.3.4

/home/richard.white3/bowtie2 -x
 ~/bbmap/resources/phix -1
 Test_decon_R1.fastq -2
 Test_decon_R2.fastq --very-sensitive -S
 out.sam

Quality control - check via mapping

Results: 1915 reads; of these: 1915 (100.00%) were paired; of these: 1915 (100.00%) aligned concordantly 0 times O (0.00%) aligned concordantly exactly 1 time O (0.00%) aligned concordantly >1 times 1915 pairs aligned concordantly 0 times; of these: O (0.00%) aligned discordantly 1 time 1915 pairs aligned 0 times concordantly or discordantly; of these: 1915 mates make up the pairs; of these: 1915 (100.00%) aligned 0 times O (0.00%) aligned exactly 1 time O (0.00%) aligned >1 times 0.00% overall alignment rate