Advanced Bayesian Learning Lecture 3 - Dirichlet Process Priors

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Topic overview

- Reminder: Multinomial data Dirichlet prior
- Bayesian histograms
- The Dirichlet process
- Beyond DP: Pitman-Yor and Probit stick-breaking
- Dirichlet process mixtures
- MCMC for Dirichlet process mixtures
- Dependent Dirichlet Process constructions

The Dirichlet distribution

 $\theta \sim \text{Dirichlet}(a_1, ..., a_k)$ with density

$$p(\theta_1, \theta_2, ..., \theta_k) \propto \prod_{j=1}^k \theta_j^{a_j-1}.$$

- Define $\alpha = \sum_{j=1}^k a_j$ and $\pi_0 = a/\alpha$.
- **Expected value** and variance of Dirichlet $(a_1, ..., a_k)$

$$\mathrm{E}(\theta_j) = \frac{\mathsf{a}_j}{\alpha} = \pi_{0j} \qquad \mathrm{V}(\theta_j) = \frac{\mathrm{E}(\theta_j) \left[1 - \mathrm{E}(\theta_j)\right]}{1 + \alpha}$$

Note that α is a precision parameter (large α , low variance).

Conjugate analysis for multinomial data

- **Data**: $y = (n_1, ..., n_k)$, where $n_j = \#$ items in category j.
- Prior

$$\theta \sim \text{Dirichlet}(a_1, ..., a_k)$$

Likelihood

$$p(n_1, n_2, ..., n_k | \theta_1, \theta_2, ..., \theta_k) \propto \prod_{j=1}^k \theta_j^{n_j}$$

Posterior

$$\theta | n_1, ..., n_k \sim \text{Dirichlet}(n_1 + a_1, ..., n_k + a_k)$$

Posterior mean

$$E(\theta_j|n_1,...,n_k) = \frac{n_j + a_j}{n + \alpha}$$

Bayesian histograms

- Partition the data space $\xi_0 < \xi_1 < ... < \xi_k$ in k bins B_h .
- Probability model for histograms

$$f(y) = \sum_{h=1}^{k} 1_{\xi_{h-1} < y \le \xi_h} \frac{\pi_h}{(\xi_h - \xi_{h-1})}$$

- \blacksquare $n_h =$ number of obs in B_h : $\xi_{h-1} < y \le \xi_h$. Multinomial.
- Prior on $\pi = (\pi_1, ..., \pi_k)$

$$\pi \sim Dirichlet(a_1, ..., a_k)$$

Posterior

$$\pi | n_1, ..., n_k \sim \text{Dirichlet}(n_1 + a_1, ..., n_k + a_k)$$

Illustration of Bayesian histograms

Bayesian histograms

Posterior

$$\pi | n_1, ..., n_k \sim \text{Dirichlet}(n_1 + a_1, ..., n_k + a_k)$$

- Specify $a_1,...,a_k$ through $\pi_0=(\pi_{01},...,\pi_{0k})$ and $\alpha=\sum_{j=1}^k a_j$.
- Specify π_0 from a base distribution P_0 . For the hth bin:

$$\pi_{0h} = P_0(B_h) = \Pr(\xi_{h-1} < y \le \xi_h).$$

- Properties of Dirichlet prior:
 - easy computations ©
 - **easy to specify hyperparameter** π_0 and α .
 - ▶ no smoothness: adjacent bin are negatively correlated. ☺
 - **sensitive** to the choice of **bins**. \odot

Bayesian histogram example

Larger α give higher weight to prior

Histograms are sensitive to the choice of bins

The Dirichlet process

- Let $B_1, B_2, ..., B_k$ be a partition of the outcome space Ω .
- $P(B_1), ..., P(B_k)$ denotes the distribution over the partition.
- Dirichlet distribution is a distribution over distributions:

$$(\textit{P}(\textit{B}_1),...,\textit{P}(\textit{B}_k)) \sim \text{Dirichlet}(\alpha \textit{P}_0(\textit{B}_1),...,\alpha \textit{P}_0(\textit{B}_k))$$

where P_0 is a fixed probability measure (e.g. N(0,1)).

- Dirichlet is closed under summation or splitting of bins. ⇒ consistent definition of a stochastic process. c.f. GPs.
- A random probability measure P follows a Dirichlet process $P \sim \mathrm{DP}(\alpha \cdot P_0)$ with base measure P_0 iff

$$(P(B_1), ..., P(B_k)) \sim \text{Dirichlet}(\alpha P_0(B_1), ..., \alpha P_0(B_k))$$

for any finite measureable partition $B_1, ..., B_k$.

The Dirichlet process - properties

■ If $P \sim \mathrm{DP}(\alpha P_0)$ then

$$P(B)\sim \mathrm{Beta}\left[lpha P_0(B),lpha\left(1-P_0(B)
ight)
ight]$$
, for any $B\in\mathcal{B}$
$$E\left[P(B)
ight]=P_0(B)$$

$$\mathrm{Var}\left[P(B)
ight]=P_0(B)\left[1-P_0(B)
ight]/(1+lpha)$$

Model

$$y_i|P \stackrel{iid}{\sim} P$$
, for $i = 1, ..., n$

Prior

$$P \sim \mathrm{DP}(\alpha P_0)$$

Posterior for a finite partition, $P(B_1), ..., P(B_k)|\mathbf{y}$ is

Dirichlet
$$\left(\alpha P_0(B_1) + \sum_{i=1}^n 1_{y_i \in B_1}, ..., \alpha P_0(B_k) + \sum_{i=1}^n 1_{y_i \in B_k}\right)$$

The Dirichlet process - properties

Posterior for the unknown probability distribution P

$$P|y_1,...,y_n \sim \mathrm{DP}\left(\alpha P_0 + \sum_{i=1}^n \delta_{y_i}\right)$$

Since

$$P(B) \sim \text{Beta}\left(\alpha P_0(B) + \sum_{i=1}^n 1_{y_i \in B}, \alpha(1 - P_0(B)) + \sum_{i=1}^n 1_{y_i \in B^c}\right)$$

SO

$$E(P(B)|y_1,...,y_n) = \left(\frac{\alpha}{\alpha+n}\right)P_0(B) + \left(\frac{n}{\alpha+n}\right)\sum_{i=1}^n \frac{1}{n}\delta_{y_i}(B)$$

Estimating a distribution function with a DP prior

 $\blacksquare \text{ If } B = (-\infty, y] \text{ then }$

$$E(F(y)|y_1,...,y_n) = \left(\frac{\alpha}{\alpha+n}\right)F_0(y) + \left(\frac{n}{\alpha+n}\right)F_n(y)$$

- ightharpoonup F(y) is the unknown d.f.
- $ightharpoonup F_0(y)$ is the d.f. from P_0
- $ightharpoonup F_n(y) = \frac{1}{n} \sum 1_{y_i \le y}$ is the empirical d.f.
- $F(\cdot)$ is discrete with probability one in the DP posterior.
- Realisations from a DP are discrete with probability one.
 - ► Clearly a bad property for continuous data ...
 - ▶ But very useful for clustering (mixture models).

Estimating a distribution function with a DP prior

Stick-breaking characterization of the DP

 $P \sim DP(\alpha P_0) \equiv \text{infinite mixture of point masses}$

$$P(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{ heta_i}$$
 $\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$ $V_h \stackrel{iid}{\sim} Beta(1, lpha)$ $heta_h \stackrel{iid}{\sim} P_0$

Alternative notation for $P \sim DP(\alpha P_0)$:

$$\pi = (\pi_1, \pi_2, ...) \sim \text{Stick}(\alpha)$$
 and $\theta_h \sim P_0$

Simulating stick-breaking $\alpha = 10, P_0 = N(1, 3^2)$

Simulating stick-breaking $\alpha = 100$, $P_0 = N(1, 3^2)$

Simulating stick-breaking $\alpha = 1, P_0 = N(1, 3^2)$

,

Simulating stick-breaking $\alpha = 1000$, $P_0 = N(1, 3^2)$

Beyond DP - Pitman-Yor and Probit sticks

Pitman-Yor process with parameters P_0 , $0 \le a < 1$ and b > -a:

$$P(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{ heta_i} \quad heta_h \stackrel{iid}{\sim} P_0$$
 $\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$ $V_h \stackrel{iid}{\sim} Beta(1 - a, b + ha)$

Probit stick-breaking with parameters μ and σ :

$$\begin{split} P(\cdot) &= \sum_{h=1}^{\infty} \pi_h \delta_{\theta_i} \quad \theta_h \overset{iid}{\sim} P_0 \\ \pi_h &= V_h \prod_{\ell < h} (1 - V_\ell) \\ V_h &= \Phi(x_h), \quad \text{where } x_h \overset{iid}{\sim} N(\mu, \sigma^2) \end{split}$$