UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS OPERATIVOS

Sistemas Operativos Monopuesto. Curso 2012/2013

U.T.1: INTRODUCCIÓN A LOS SISTEMAS INFORMÁTICOS.

- 1. El sistema informático.
- 2. Evolución histórica de la informática.
- 3. Definiciones básicas
- 4. Componentes físicos (hardware)
- 5. Componentes lógicos (software)
- 6. Representación de la información
- 7. Codificación de la información
- 8. Ejercicios

1. EL SISTEMA INFORMÁTICO

- ¿Qué es un sistema informático?
- Tipos de sistemas informáticos:
 - Según su uso:
 - Sistemas Informáticos de uso general
 - Sistemas Informáticos de uso específico
 - Según sus prestaciones:
 - Superordenadores
 - Macroordenadores
 - Servidores y Estaciones de trabajo
 - Ordenadores personales o PC

2. EVOLUCIÓN HISTÓRICA DE LA INFORMÁTICA

- Necesidad de realizar cálculos básicos.
 - Las manos.
 - Piedras y trozos de madera.
- Primeros "libros de contabilidad": las tablillas de Uruk
- El ábaco.

2. EVOLUCIÓN HISTÓRICA: S. XVII

- 1617: John Neper da a conocer el rodillo de Neper que realiza multiplicaciones basándose en sumas
- 1623: Wilhem Shickard diseña la primera calculadora que suma y resta
- 1642: Blaise Pascal diseña una nueva sumadorarestadora, la Pascalina

2. EVOLUCIÓN HISTÓRICA: S. XVII

 1671: Gottfried Leibniz amplía la Pascalina con la multiplicación, la división y la raíz cúbica, construye su Calculadora Universal

2. EVOLUCIÓN HISTÓRICA: S. XIX

- 1822: Charles Babbage crea la Máquina de Diferencias que calcula e imprime tablas de funciones.
- 1832: Charles Babbage desarrolla el proyecto de la Máquina Analítica.
 - Es un ordenador mecánico de propósito general.
 - Consta de una memoria, una unidad aritmético-lógica, una unidad de control, lectora de fichas perforadas y una impresora.
 - No se construyo por falta de precisión de algunas piezas.

Sistemas Operativos Monopuesto.

2. EVOLUCIÓN HISTÓRICA: S. XIX LA MÁQUINA DE DIFERENCIAS

Sistemas Operativos Monopuesto

2. EVOLUCIÓN HISTÓRICA: S. XIX LA MÁQUINA ANALÍTICA (MAQUETA)

2. EVOLUCIÓN HISTÓRICA: S. XIX

- 1854: George Boole describe el Algebra de Boole (en 1937 Claude Shannon relaciona lógica y electrónica)
- 1872: Frank Baldwin construye una nueva calculadora de la que deriva la máquina registradora.
- 1890: Herman Hollerith inventa una máquina electrónica de tarjetas (permitió elaborar el censo de EEUU en 7 años)

2. EVOLUCIÓN HISTÓRICA: S. XX

- 1936: Turing desarrolla el modelo teórico de computación: La Maquina de Turing.
- 1945: John von Neumann propone la arquitectura de von Neumann: en la memoria coexisten datos e instrucciones.
- 1944/1948: Se desarrolla ENIAC (Electronic Numerical Integrator And Computer)

2. EVOLUCIÓN HISTÓRICA: S. XX ENIAC

Sistemas Operativos Monopuesto

2. EVOLUCIÓN HISTÓRICA: S. XX EL IBM 360

2. EVOLUCIÓN HISTÓRICA: S. XX

- 1971: Intel lanza el microprocesador 4004
- 1973: Surge Ethernet (estándar de comunicaciones locales)
- 1976: Fabrican el Apple I ... y hasta hoy.

2. EVOLUCIÓN HISTÓRICA DE LA INFORMÁTICA

- Primera generación (1943 a 1959)
- Segunda generación (1960 a 1965)
- Tercera generación (1966 a 1971)
- Cuarta generación (1971 a 1981)
- Quinta generación (1981 hasta la actualidad)

3. DEFINICIONES BÁSICAS

- Definiciones RAE:
- Informática:

"Conjunto de conocimientos científicos y técnicas que hacen posible el tratamiento automático de la información por medio de ordenadores"

Ordenador:

"Máquina electrónica dotada de una memoria de gran capacidad y de métodos de tratamiento de la información, capaz de resolver problemas aritméticos y lógicos gracias a la utilización automática de programas registrados en ella"

3. DEFINICIONES BÁSICAS

- ¿ Qué es un Ordenador?
 - Dispositivo electrónico utilizado para procesar información y obtener resultados.

3. CONCEPTOS BÁSICOS

- Software y Hardware
 - Software: Instrucciones, programas y aplicaciones.
 - Hardware: Componentes físicos
- Componentes de un sistema informático:
 - Componente físico = hardware
 - Componente lógico = software
 - Componente humano

4. COMPONENTES FÍSICOS (HARDWARE)

- Unidad central de proceso (CPU)
 - Unidad aritmético-lógica, ALU
 - Unidad de control, UC
- Memoria central o principal (MP)
- Dispositivos de entrada y salida (E/S)
- Buses
- Periféricos
- Unidades de almacenamiento secundario

4. COMPONENTES FÍSICOS (HARDWARE): Arquitectura Von Neumman

4.1. LA UNIDAD CENTRAL DE PROCESO

- La CPU se compone de:
 - Unidad de Control (CU), que dispone de:
 - Registro de Instrucción (RI)
 - Registro Contador de Programas (CP)
 - Controlador y Decodificador
 - Secuenciador
 - Reloj

4.1. LA UNIDAD CENTRAL DE PROCESO

- La CPU se compone de:
 - Unidad Aritmético Lógica (ALU), que consta de:
 - Registros de Entrada o de datos
 - Registro Acumulador (AC)

- Memoria interna, principal o central (MC):
 - Tipos:
 - RAM (Random Access Memory)
 - •ROM (Read Only Memory)
- Memoria externa o secundaria:
 - Memorias o dispositivos de Almacenamiento masivo

• Memoria Central (MC)

Registro de DireccionesRegistro de Intercambio

Selector de Memoria

ROM

- Contiene programas especiales que sirven para cargar e iniciar el ordenador
- El software que integra la ROM forma la BIOS
- **EEPROM** (Electrically-Erasable Programmable Read Only Memory):
 - Puede ser programada, borrada y reprogramada eléctricamente
 - Puede ser leída un número ilimitado de veces
 - Sólo puede ser borrada y reprogramada entre 100.000 y 1.000.000 de veces

- CMOS (Complementary Metal Oxide Semiconductor)
 - Almacena configuraciones lógicas para la inicialización y posterior uso del equipo
 - Hora del sistema, fecha, discos duros instalados, etc
 - No es volátil gracias a la pila de la placa base

4.3. UNIDAD ENTRADA/SALIDA. BUSES

• Unidad de E/S:

 Comunica el procesador y el resto de componentes internos con los periféricos de entrada/salida y los dispositivos de almacenamiento externo.

O Bus:

 conjunto de líneas HW para transmitir datos entre los componentes de un sistema informático.

4.3. UNIDAD ENTRADA/SALIDA. BUSES

Tipos de Buses:

- Según la estructura de interconexión:
 - Bus único
 - Bus dedicado
 - Bus de datos
 - Bus de direcciones
 - Bus de control

• Características:

- Longitud de la palabra
- Velocidad
- Ancho de banda

4.4. PERIFÉRICOS

 Dispositivos HW con los que el usuario puede interactuar con el ordenador. Pueden ser de Entrada, de Salida ó de Entrada/Salida. Ejemplos:

- Teclado
- Ratón
- Monitor
- Impresora
- Escáner
- Etc.

4.4. PERIFÉRICOS

- Características importantes de los periféricos:
 - Fiabilidad
 - Tipo de acceso:
 - Secuencial
 - Directo
 - Velocidad de transferencia
 - Ergonomía

Disquetes

Un disquete de 3,5"

Un disquete de 5,25"

Un disquete de 3", usado ampliamente en equipos Amstrad CPC

Disquetes

- Están compuestos por láminas de plástico recubiertas por material magnetizable y protegidas por algún tipo de cubierta. Su estructura está compuesta por:
 - Caras
 - Sectores
 - Pistas

CD-ROM

- Gran capacidad: 650 Mb de datos (o 74 minutos de música), 700 Mb (u 80 minutos de música), y llegan a capacidades de hasta 1000 Mb (o 100 minutos de música)
- CD-ROM regrabables:
 - Vida útil limitada
 - Permiten un número determinado de grabaciones

ODVD

 Mucha más capacidad de almacenamiento, con un mínimo de 4,7Gb

Cintas DAT (Digital Audio Tape)

Parecidas cintas de casete, pero de tamaño inferior

• Memorias Flash

Forma desarrollada de la memoria EEPROM

Discos duros

Discos duros

- Formado por un conjunto de discos o platos rígidos montados verticalmente uno encima de otro, herméticamente cerrados en una carcasa metálica que evita que se pueda deteriorar la superficie de los discos o las cabezas lectoras
- Dispone de dos motores:
 - Motor de rotación
 - Motor de posicionamiento

Discos duros

• Estructura, desde un punto de vista lógico, está

compuesta por:

Pistas

Cilindros

Sectores

Clúster

- Tipo de acceso a los datos:
 - Secuencial

Directo

- Un ordenador procesa datos
- Maneja los datos o información usando programas y aplicaciones informáticas
- Software fundamental: Sistema Operativo

• Tipos de lenguajes:

- Lenguajes de bajo nivel:
 - Ensamblador
 - Lenguaje máquina
- Lenguajes de alto nivel

• Tipos de software:

- Software base
- Software de programación
- Software de aplicación

• Tipos de licencias:

- Software propietario
- Software libre

Distintas clasificaciones para los datos:

- Datos de entrada.
- Datos intermedios (en el procesamiento de la información).
- Datos de salida o resultados.
- Datos fijos.
- Datos variables.
- Datos numéricos.
- Datos alfabéticos.
- Datos alfanuméricos.

Octeto, carácter o byte:

- Agrupación de 8 bits, el tamaño típico de información
- Con él se puede codificar el alfabeto completo (ASCII estándar)

Palabra:

- Tamaño de la información manejada en paralelo por los componentes del sistema, como la memoria, los registros o los buses
- Son comunes las palabras de 8, 32, 64, 128 y 256 bits, o lo que es lo mismo: 1, 4, 8, 16 y 32 bytes

- Ejemplo: Queremos almacenar el carácter "/" en memoria
 - Las celdas de memoria pueden adoptar los dos estados siguientes:
 - Indica presencia de corriente eléctrica.
 - Indica ausencia de corriente eléctrica.
 - El sistema operativo y el resto de componentes hardware tienen que transformar ese carácter en una combinación válida de impulsos eléctricos para almacenarlo. Si tenemos ocho celdas de memoria:

1 2 3 4 5 6 7 8

• Teorema Fundamental de la Numeración:

$$N_i = \sum_{i=-d}^{n} (\text{digito})_i \cdot (\text{base})^i$$

- i = posición respecto a la coma. Para los dígitos de la derecha, la i es negativa, empezando en -1; para los de la izquierda, es positiva, empe-zando en 0
- d = número de dígitos a la derecha de la coma
- *n* = número de dígitos a la izquierda de la coma -1. dígito = cada uno de los que componen el número. base = base del sistema de numeración

- Sistemas de Codificación Numérica (I):
 - Binario (Base 2. Símbolos: 0,1)

Ejemplo: Número 47 (decimal) en binario es:

```
(1) 47 : 2 = 23. Resto 1 (4) 5 : 2 = 2. Resto 1
```

$$(2)$$
 23 : 2 = 11. Resto 1 (5) 2 : 2 = 1. Resto 0

(3)
$$11:2=5$$
. Resto 1 (6) $1:2=0$. Resto 1

Resultado: $47_{(10} = 101111_{(2)}$

- Sistemas de Codificación Numérica (II):
 - Octal (Base 8. Símbolos: 0-7)

Ejemplo: Número 47 (decimal) en octal es:

$$(1)$$
 47 : 8 = 5. Resto 7

$$(2) 5 : 8 = 0$$
. Resto 5

Resultado: 47₍₁₀ = 57₍₈

Hexadecimal (Base 16. Símbolos: 0-9, A, B, C, D, E y F)

Ejemplo: Número 47 (decimal) en octal es:

$$(1)$$
 47 : 16 = 2. Resto 15

$$(2) 2 : 16 = 0$$
. Resto 2

Resultado: $47_{(10} = 2F_{(16)}$

Suma en binario

Resta en binario

- Operaciones lógicas
 - NOT <u>a S</u>

XOR

NAND

AND

NOR

$$\frac{a}{b}$$

Signo y Magnitud.

- El bit situado más a la derecha representa el signo, toma valor 0 para positivo y 1 para negativo. El resto de bits se utilizan para representar la magnitud.
- Si tenemos un ancho de una palabra de n bits podremos representar:

$$(2^{n-1}-1) \le X \le (2^{n-1}-1)$$

Complemento a 1

- El bit de más a la izquierda para el signo, como en el anterior
- Los números positivos se representan como antes
- Los negativos se obtienen complementando todos los dígitos, es decir, cambiando ceros por unos y unos por ceros

El problema es que el cero tiene dos posibles valores

Complemento a 2

- El bit de más a la izquierda se usa para el signo, 0 para positivo y 1 para negativo
- Los positivos se obtienen como el caso anterior.
- Los negativos siguiendo este procedimiento:
 - Se realiza el complemento a 1
 - Al resultado se le suma uno en binario

O Detección de errores:

- Paridad lineal
 - Criterio Par
 - Criterio Impar
- Paridad bidimensional
- Códigos cíclicos

Nibble o cuarteto	Conjunto de 4 bits
Byte u octeto	Conjunto de 8 bits
Kilobyte (Kb)	Conjunto de 1024 bytes
Megabyte (Mb)	Conjunto de 1024 Kb
Gigabyte (Gb)	Conjunto de 1024 Mb
Terabyte (Tb)	Conjunto de 1024 Gb
Petabyte (Pb)	Conjunto de 1024 Tb
Exabyte (Eb)	Conjunto de 1024 Pb
Zettabyte (Zb)	Conjunto de 1024 Eb
Yottabyte (Yb).	Conjunto de 1024 Zb

- Codificación Numérica:
 - Coma o punto fijo:
 - **Binario Puro**: 32 bits, el bit de la izquierda representa el signo: 0 para el (+) y 1 para el (-).

Ejemplo: -10 se representa como:

 Decimal Empaquetado: cada cifra se representa con 4 bits, el conjunto de cuatro bits de la derecha es el signo, tal que 1100 es (+) y 1101 es (-).

Ejemplo: 2371 se escribiría como:

0010 0011 0111 0001 1100

- **Decimal Desempaquetado**: Representa cada número decimal, de forma que cada una de sus cifras ocupa un byte u octeto.
 - 4 bits de la derecha: Decimal Codificado en Binario (BCD)
 - 4 bits de la izquierda: Bits de Zona
 - Signo: 4 bits de la izquierda del último número (con la misma codificación que el anterior).

Ejemplo: **2371 se escribiría como**:

1111 0010 1111 0011 1111 0111 1100 0001

signo +

-2371 se escribiría como:

1111 0010 1111 0011 1111 0111 1101 0001

signo –

Coma flotante:

- Representación de números reales y enteros con un rango de representación mayor que el que ofrece el punto fijo
- Notación científica, que tiene el siguiente formato:

N1 = mantisa · base de exponenciación exponente

- El exponente de la anterior fórmula también se denomina característica.
- La mantisa es un número real con el punto decimal implícito a la izquierda de los bits que los representan.
- La base de exponenciación es una potencia de 2 que dependerá del fabricante del componente.
- La representación de números en coma flotante se puede hacer de dos formas:
 - Simple precisión. Se utilizan 32 bits para representar una cifra.
 - Doble precisión. Se utilizan 64 bits para representar una cifra.

O BCD

- Binary Coded Decimal
- ó Decimal codificado en binario
- Cada dígito decimal se representa con una combinación de 4 bits

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- Sistemas de Codificación Alfanumérica:
 - ASCII (American Standard Code for Information Interchange), utiliza 7 u 8 bits.
 - EBCDIC (Extended BCD Interchange Code), utiliza 8 bits.
 - FIELDATA, utiliza 6 bits.
 - UNICODE (usado en la mayoría de aplicaciones actuales y en Internet).

Sistemas Operativos Monopuesto.

CÓDIGO ASCII

Nombre	Dec	Hex	Car.	Dec	Hex	Car.	Dec	Hex	Car.	Dec	Hex	Car.
Nulo	0	00	NUL	32	20	Espacio	64	40	0	96	60	-4
Inicio de cabecera	1	01	SOH	33	21	1.	65	41	Α	97	61	a
Inicio de texto	2	02	STX	34	22	# .	66	42	В	98	62	b
Fin de texto	3	03	ETX	35	23	#	67	43	C	99	63	C
Fin de transmisión	4	04	EOT	36	24	\$	68	44	D.	100	64	d
Investigacón	5	05	ENQ	37	25	%	69	45	E	101	65	e
Reconocimiento	6	06	ACK	38	26	8.	70	46	F	102	66	10
Campanilla (Pitido)	7	07	BEL	39	27	W.	71	47	G	103	67	g
Espacio Atras	8	08	BS	40	28		72	48	H	104	68	h
Tabulador horzontal	9	09	HT	41	29)	73	49	I	105	69	i i
Salto de línea	10	OA	LF	42	2A	*	74	4A	3	106	6A	j
Tabulador vertical	11	OB	VT	43	2B	*	75	4B	K	107	6B	k
Salto de pázina	12	0C	FF	44	2C		76	4C	L	108	6C	1
Retorno de carro	13	0D	CR	45	2D		77	4D	M	109	6D	m
Alternar fuera	14	0E	SO	46	2E		78	4E	N	110	6E	n
Alternar dentro	15	OF	SI	47	2F	1	79	4F	0	111	6F	0
Escape línea de datos	16	10	DLE	48	30	0	80	50	P	112	70	P
Control dispositivo 1	17	11	DC1	49	31	1	81	51	Q	113	71	Q
Control dispositivo 2	18	12	DC2	50	32	2	82	52	R	114	72	r
Control dispositivo 3	19	13	DC3	51	33	3	83	53	S	115	73	S
Control dispositivo 4	20	14	DC4	52	34	4	84	54	T	116	74	t
Reconoc. Negativo	21	15	NAK	53	35	5	85	55	U	117	75	u
Sincronisno	22	16	SYN	54	36	6	86	56	V	118	76	V
Fin bloque transmitido	23	17	ETB	55	37	7	87	57	W	119	77	W
Cancela ⁻	24	18	CAN	56	38	8	88	58	X	120	78	×
Fin medio	25	19	EM	57	39	9	89	59	Y	121	79	y
Sustituto	26	1A	SUB	58	ЗА		90	5A	Z	122	7A	Z
Escape	27	18	ESC	59	3B		91	5B	1	123	7B	-{
Separador archivos	28	1C	FS	60	3C	<	92	5C	X	124	7C	
Separador grupos	29	1D	GS	61	3D		93	5D	1	125	7D	1
Separador registros	30	1E	RS	62	3E	>	94	5E	~	126	7E	~
Separador undades	31	1F	US	63	3F	?	95	5F	100	127	7F	DEL

Sistemas Operativos Monopuesto.

CÓDIGO FIELDATA

		000		001		010		011		100		101		110		111	
			0		1		2		3		4		5		6		7
000		@		С		K		S)		*		0		8	
	0		0		8		16		24		32		40		48		56
001				D		L		T		_		(1		9	
	1		1		9		17		25		33		41		49		57
010				E		\mathbf{M}		U		+		%		2		,	
	2		2		10		18		26		34		42		50		58
011		#		F		Ν		\mathbf{v}		<		:		3		 ;	
	3		3		11		19		27		35		43		51		59
100		Δ		G		0		W				?		4		1	
	4		4		12		20		28		36		44		52		60
101		SP		Н		P		X		À		1		5			
	5		5		13		21		29		37		45		53		б1
110		Α		I		Q		Y		&		,		б		¤	
	б		б		14		22		30		38		46		54		62
111		В		J		R		Z		\$		١		7		≠	
	7		7		15		23		31		39		47		55		63

CÓDIGO MORSE

Signo	Código	Signo	Código	Signo	Código
Α	X- 11	N	-*	0	
В		0		1	*
C	-*-*	P	**	2	**
D		Q		3	***
E	*	R	*=*	4	****=
F	**_*	S	* (*-*)	5	* * * * *
G		T		6	_****
Н	****	U	**=	7	* * *
1	**	٧	* * * _	8	*
J	*	W	1	9	
K	-*-	X	-**-		*-*-*
L		Y			**
M	-	Z		?	****

8. EJERCICIOS

- Ejercicio de investigación: Historia y Evolución
 - ¿Qué ha ocurrido desde 1976 hasta hoy en día?
 - Investiga los avances hardware más relevantes, con sus fechas clave y datos básicos
 - Nota: Puedes tomar como referencia el ejercicio de ampliación 1.4, pero debes ampliar los equipos mencionados

8. EJERCICIOS

1. Explica cada uno de los componentes del siguiente esquema y de que componente del ordenador forman parte:

8. EJERCICIOS

- 1. Contesta a las siguientes cuestiones:
 - a) ¿Puede funcionar un ordenador sin software básico?
 - b) ¿Y sin unidad de disco duro?
- 2. Busca información sobre Von Neumman.
- 3. Ejercicio de ampliación 1.2
- 4. Ejercicio de ampliación 1.6
- 5. Ejercicios de numeración: Hoja 1
- 6. Ejercicios de HD: Hoja 2
- 7. Ejercicios de Circuitos Lógicos: Hoja 3