Graduate Preliminary Exam, August 12, 2005

Three hours. problems counted equally.

1. Let Z be a set and let $X_1, X_2, ...$ be subsets of Z. Prove the formula

$$\left(\bigcap_{i} X_{i}\right)^{c} = \bigcup_{i} X_{i}^{c}$$
, where $(\cdot)^{c}$ denotes complement.

- 2. i) Let f be a function from \mathbb{R} to \mathbb{R} and let $a \in \mathbb{R}$. From the definition of the derivative, prove that if f is differentiable at a then f is continuous at a.
- ii) Prove the product rule, (fg)' = f'g + g'f.
- 3. For n = 5, 6, either give an example of a nonabelian group of order n, or prove that none exists.
- 4. Find all cube roots of 8 in the complex plane. Write your answers in the form a + bi, where a and b are real numbers, and justify your answer.
- 5. Let C be a circle in the xy-plane, oriented counterclockwise, and not passing through the origin. Prove that $\oint_C \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ equals 0 if the origin is outside the circle, and 2π if the origin is inside the circle.
- 6. i) Let f(x, y) be a differentiable function from \mathbb{R}^2 to \mathbb{R} and let g(t) = (x(t), y(t)) be a differentiable function from \mathbb{R} to \mathbb{R}^2 . State the chain rule for the derivative of the function f(g(t)).
- ii) Let f(x, y) be a continuously differentiable function on \mathbb{R}^2 , and let $P \in \mathbb{R}^2$ be a point. Assume that in a neighborhood of P, the equation f(x, y) = f(P) implicitly defines y as a differentiable function of x, say y = h(x). Show that the tangent line to the graph of y = h(x) at P is perpendicular to the gradient of f at P.
- 7. Let $a_0, a_1, a_2, ...$ be a decreasing sequence of positive real numbers. Prove that for every nonnegative integer $m, 0 \le \sum_{i=0}^{m} (-1)^i a_i \le a_0$. (Hint: $\sum_{i=0}^{m+1} (-1)^i a_i = a_0 \sum_{i=0}^{m} (-1)^i a_{i+1}$.)
- 8. Find an invertible matrix A and a diagonal matrix B such that $\begin{pmatrix} 8 & 9 \\ -6 & -7 \end{pmatrix} = ABA^{-1}$.
- 9. i) State the binomial theorem.
- ii) Prove that if p is a prime number, then $(x+y)^p \equiv x^p + y^p \mod p$.