Bits & Bots

Anna Gerber

Bits & Bots Sessions

Session	Topic	
Tuesday 20 th May, 6 – 8pm	Intro to 3D Design: Design custom robot parts to print on the 3D printers	
Tuesday 27 th May, 6 – 8pm	Intro to Electronics: Learn how the electronic parts in the kit work, design our robot circuits	
Tuesday 3 rd Jun,e 6 – 8 pm	Intro to Arduino: Write NodeJS programs to read from sensors and control actuators	
7 th June, 1 – 5 pm	Intermediate 3D Design: Design more complex robot parts: gears, claws etc	
14 th June, 1 – 5 pm	Intermediate Arduino: Develop our robots' locomotion, sensing and responding behaviours	
21 st June, 1 – 6 pm	Advanced Bits & Bots: Finalise robot design and assembly, develop advanced robot control programs	

Bits & Bots Slides etc

Slides and other materials for the course will be published after each session here:

https://github.com/AnnaGerber/bits-n-bots

LED Matrix Pin Out

LEDs light up when corresponding column has 5V and row is connected to ground. Include current limiting resistor for each row

Manually lighting up LEDs

- Connect battery 5V and GND to breadboard rails
- Connect ground rail to resistor via a jumper wire and then to a row via another jumper wire
- Connect 5V rail to a column using a jumper wire
- Move the jumper wires to different rows/columns to light a different LED

Shift Registers

- We could connect every row and column pin to pins on an Arduino to control the pattern displayed but this would require a lot of pins
- We will use shift registers to reduce the number of pins required to control the LED Matrix
- How Shift Registers Work: <u>https://www.youtube.com/watch?</u> v=Z5iFTBJWz68

Create a ShiftRegister object

```
var five = require("johnny-five"),
    board, shiftRegister;
board = new five.Board();
board.on("ready", function() {
  shiftRegister = new five.ShiftRegister({
    pins: {
      data: 2,
      clock: 3,
      latch: 4
  });
  this.repl.inject({
    sr: shiftRegister
  });
```

Matrix Patterns

 Patterns are represented in binary (each digit represents an LED) and then converted to Hexadecimal values

Pattern	Binary Value	Hex value	Decimal Value
Row or column 8	0000001	0.404	1
only	0000001	0x01	I
7 only	00000010	0x02	2
6 only	00000100	0x04	4
5 only	00001000	80x0	8
4 only	00010000	0x10	16
3 only	00100000	0x20	32
2 only	01000000	0x40	64
1 only	10000000	0x80	128

LED on = 1LFD off = 0

Sending patterns

We are shifting an 8 bit pattern in to the first register then a second pattern which will push the first value into the second register.

```
function send2(value, value2) {
  board.digitalWrite(4, board.io.LOW);
  board.shiftOut(2, 3, true, (0xff - value));
  board.shiftOut(2, 3, true, value2);
  board.digitalWrite(4, board.io.HIGH);
};
shiftRegister.send2 = send2;

In REPL:

> sr.send2(0,0) // clear all rows and columns
> sr.send2(0xff,0xff) // set all LEDs on
```

Creating your own patterns

- Create a pattern for the rows and a pattern for the columns
- Use a calculator to convert the binary number to Hexadecimal or an app e.g.:

http://www.mathsisfun.com/binary-decimal-hexadecimal-converter.html

Creating asymmetrical patterns

- We can only send symmetrical patternsdirectly via the shift register (we could connect to the pins directly or use an alternative controller chip to talk to individual pins)
- To get around this, flash different parts of the pattern in a loop e.g:

```
function flashyX(){
  board.loop(40, function(){
    shiftRegister.send2(0x81,0x81);
    board.wait(10,function(){shiftRegister.send2(0x42,0x42);})
    board.wait(20,function(){shiftRegister.send2(0x24,0x24);})
    board.wait(30,function(){shiftRegister.send2(0x18,0x18);})
})
}
```