Master in Foundations of Data Science — 2021-2022

NUMERICAL LINEAR ALGEBRA

Final exam, 24 January 2021 from 15:00h till 18:00h

Exercises should be delivered in separated pages, and all answers should be suitably justified.

Consider the matrix

$$A = \begin{bmatrix} 2 & -4 & 0 \\ -4 & 7 & -1 \\ 0 & -1 & 0 \end{bmatrix}.$$

 $A = \begin{bmatrix} 2 & -4 & 0 \\ -4 & 7 & -1 \\ 0 & -1 & 0 \end{bmatrix}.$ R (1)Compute the PLU factorization of A produced by the GEPP algorithm. R (2)Compute the LDL^T factorization of A. R (3)Explain how you would solve the equation Ax = b for the vector $b = (0, 2, -1)^T$ using each of these factorizations, and compute the solution vector x using one of them. of these factorizations, and compute the solution vector x using one of them.

2. A Schur factorization of the matrix in Exercise 1 is
$$A = UTU^T$$
 with $U = \begin{bmatrix} -0.61 & -0.48 & 0.63 \\ -0.25 & 0.87 & 0.42 \\ 0.75 & -0.09 & 0.65 \end{bmatrix}$ and $T = \begin{bmatrix} 0.34 & 0 & 0 \\ 0 & 9.30 & 0 \\ 0 & 0 & -0.64 \end{bmatrix}$

up to two decimal digits

- (1) Compute the eigenvalues and eigenvectors of A from this factorization. Is A a positivedefinite symmetric matrix?
- (2) Determine the rate of convergence of the power method applied to the matrix A.

3. Let A be again the matrix in Exercise 1.

(SVD) of A using the data obtained in Exercise (SVD) of A using the data obtained in Exercise (SVD)

(2) Using this SVD, compute the 2-norm and the Frobenius norm of A.

(3) Compute the best rank 1 approximation to A with respect to the 2-norm, and determine its distance to A. Repeat this task replacing the 2-norm by the Frobenius norm.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

(1) For this matrix and vector, write down the iterative scheme given by the Jacobi method, the Gauss-Seidel method, and the $SOR(\omega)$ method for a parameter $\omega \in \mathbb{R}$.

(2) Using the criterium based on the spectral radius, check if you can guarantee if the Jacobi and the Gauss-Seidel methods for A and b converge for any choice of initial vector $x_0 \in \mathbb{R}^2$.

(3) Determine for which values of $\omega \in \mathbb{R}$ we can guarantee the convergence of the $SOR(\omega)$ method for A and b, for any choice of initial vector x_0 .