Lenguajes de consulta (Query Languages)

• Poder:

Cuál es la "Máquina de Turing" en bases de datos?

• Estilo

procedural / no procedural

maneja conjuntos / maneja tuplas

basado en logica / en álgebra / en lenguaje natural

Algebra Relacional

Lenguaje de consulta del modelo relacional que permite expresar las consultas mediante la composición de operaciones que se aplican sobre relaciones.

Se aplica sobre las tuplas de las relaciones y el resultado de cada operación es una nueva relación, que se puede manipular en una ocasión futura.

Operadores del algebra relacional:

Selección Unión Intersección Proyección Diferencia Join(Reunión)

Producto Cartesiano Join Natural

Cociente

Selección o

Sirve para seleccionar un conjunto de tuplas de una relación que cumplan una condición.

La condición de selección se aplica sobre los atributos de la relación.

 $\sigma_{< condicion \ sobre \ atributos>}$ (<Nombre Relación>)

Condición:

<nombre atributo> <operador de comparación> <valor constante> operador de comparación: $\{=,<,\leq,>,\geq,\neq\}$

Las condiciones de selección se combinan con condiciones booleanas: AND, OR, NOT.

Ejemplo de Selección

Empleados

Nombre	Nro.	Depto.	Salario
Federico Azurra	333456	5	7850
Paola Valdés	453321	4	6980
Héctor Torres	889546	5	8456

Seleccionar los empleados que trabajan en el departamento 4.

$$\sigma_{\text{Depto.} = 4}$$
 (Empleados)

Nombre	Nro.	Depto.	Salario
Paola Valdés	453321	4	6980

Ejemplo de Selección

Empleados

Nombre	Nro.	Depto.	Salario
Federico Azurra	333456	5	7850
Paola Valdés	453321	4	6980
Héctor Torres	889546	5	8456

Seleccionar los empleados cuyo salario es mayor que 7000.

 $\sigma_{Salario > 7000}$ (Empleados)

Nombre	Nro.	Depto.	Salario
Federico Azurra	333456	5	7850
Héctor Torres	889546	5	8456

Ejemplo de Selección

Empleados

Nombre	Nro.	Depto.	Salario
Federico Azurra	333456	5	7850
Paola Valdés	453321	4	6980
Héctor Torres	889546	5	8456

Seleccionar los empleados que trabajan en el departamento 5 cuyo salario es mayor que 8000.

 $\sigma_{Depto. = 5}$ ($\sigma_{Salario > 8000}$ (Empleados))

 $\sigma_{Salario > 8000}$ ($\sigma_{Depto. = 5}$ (Empleados))

 $\sigma_{Depto. = 5 \text{ AND Salario} > 8000}$ (Empleados)

Nombre	Nro.	Dento	Salario
Héctor Torres	889546	5	8456

Proyección π

Sirve para seleccionar un conjunto de atributos de una relación.

$$\pi_{<\!\!\!\text{atributos}>\!\!\!>} (<\!\!\!\text{Nombre Relación}>\!\!\!>)$$

El resultado es una relación o sea un conjunto de tuplas con los atributos indicados en la proyección.

La aridad, o grado, de la relación resultado es igual al número de atributos por los que se proyecta.

Ejemplo de Proyección

Empleados

Nombre	Sexo	Depto	Salario
Federico Azurra	М	5	7500
Paola Valdés	F	4	6980
Héctor Torres	M	5	7500

Listar el nombre y el salario de todos los empleados.

 $\pi_{Nombre,\;Salario}\;(Empleados)$

Nombre	Salario
Federico Azurra	7500
Paola Valdés	6980
Héctor Torres	7500

Ejemplo de Proyección

Empleados

Nombre	Sexo	Depto	Salario
Federico Azurra	М	5	7500
Paola Valdés	F	4	6980
Héctor Torres	М	5	7500

Listar el sexo y el salario de todos los empleados.

$$\pi_{Sexo, Salario}$$
 (Empleados)

	Sexo	Salario	
	M	7500	
	F	6980	
_	M	7500	_

Secuencia de Operaciones

Empleados

icauos				
Nombre	Sexo	Depto.	Salario	
Federico Azurra	М	5	7500	
Paola Valdés	F	4	6980	
Héctor Torres	М	5	7500	

Listar el nombre y el salario de los empleados que trabajan en el departamento 5.

 $\pi_{Nombre,\;Salario}$ ($\sigma_{Depto.\;=\;5}$ (Empleados))

Nombre	Salario
Federico Azurra	7500
114 -t T	7500

Relaciones Compatibles

Decimos que dos relaciones son **compatibles** cuando sus esquemas cumplen las siguientes condiciones:

- Tienen la misma aridad n
- El i-ésimo atributo de cada relación tiene asociado el mismo dominio para todo i ∈ [1,n].

 $dom(A_i) = dom(B_i) \ para \ 1 \le i \le n$

Unión U

Precondición:

Las relaciones deben ser compatibles.

Resultado:

 $r \cup s$ produce una relación con las tuplas que están en r, o en s, o en ambas.

Ejemplo:

 Nombre
 Salario
 Empresa

 A.Blanco
 6500
 Fast

 J.Martin
 5850
 Giro

C	Choferes					
	Nombre	Salario	Empresa			
	A.Rey	4500	Veloz			
	S.Santos	4550	Fast			

Iecanicos ∪ Choferes					
Nombre	Salario	Empresa			
A.Blanco	6500	Fast			
J.Martin	5850	Giro			
A.Rey	4500	Veloz			
S.Santos	4550	Fast			

Ejemplo de Unión

Mecanicos					
Nombre	Salario	Empresa			
A.Blanco	6500	Fast			
J.Martin	5850	Giro			

C	Choferes						
	Nombre	Salario	Empresa				
	A.Rey	4500	Veloz				
	S.Santos	4550	Fast				

Listar los nombres de los choferes y mecánicos que trabajan para la empresa Fast.

 $\pi_{Nombre} \; (\sigma_{\; Empresa \, = \, ``Fast''} (Mecanicos \, \cup \, Choferes))$

Nombre	
A.Blanco	
S.Santos	

I	Nombre		Empresa
	A.Blanco		Fast
	S.Santos	4550	Fast

Nombre	Salario	Empresa
A.Blanco	6500	Fast
J.Martin	5850	Giro
A.Rey	4500	Veloz
S.Santos	4550	Fast

Diferencia -

Precondición:

Las relaciones deben ser compatibles.

Resultado:

 ${f r}-{f s}$ produce una relación con las tuplas que están en ${f r}$ pero que no están en ${f s}.$

Ejemplo:

N	Mecanicos					
	Nombre	Salario	Empresa			
	A.Blanco	6500	Fast			
	J.Martin	5850	Giro			

Choferes						
Nombre	Salario	Empresa				
J.Martin	5850	Giro				
S.Santos	4550	Fast				

Mecanicos - Choferes

| Nombre | Salario | Empresa |
| A.Blanco | 6500 | Fast |

Producto Cartesiano x

Precondición:

No tiene.

Resultado:

 ${\bf R}$ x S produce una relación con los atributos de R seguidos de los atributos de S y donde cada tupla de R se combina con cada tupla de S.

 $R(A_1, A_2, ...A_n)$, si R tiene k tuplas $S(B_1, B_2,B_i)$, si S tiene m tuplas

R X S $(A_1, A_2, ...A_n, B_1, B_2,B_j)$, R X S tiene $k \times m$ tuplas.

Ejemplo de Producto Cartesiano

Mecanicos					
	Nombre	Salario	CodEmp		
	A.Blanco	6500	1		
	J.Martin	5850	2		

mpresas					
NombreE	CodEmp	Telef			
Giro	1	480 2424			
Fast	2	905 6875			

Listar el nombre de los mecánicos de la empresa Fast.

 $\pi_{Nombre}(\sigma_{CodEmp \ = \ Numero\ AND\ NombreE \ = \ "Fast"}(Mecanicos\ X\ Empresas))$

Mecanicos X Empresas

Nombre	Salario	CodE	Emp NombreE	Nume	ro Telef
A.Blanco	6500	1	Giro	1	480 2424
A.Blanco	6500	1	Fast	2	905 6875
J.Martin	5850	2	Giro	1	480 2424
J.Martin	5850	2	Fast	2	905 6875

Join (Reunión) ⋈ <condición>

Precondición:

No tiene.

Resultado:

 $\mathbf{R} \bowtie \mathbf{S}$ produce una relación con los atributos de \mathbf{R} seguidos de los atributos de \mathbf{S} y donde cada tupla de \mathbf{R} se combina con cada tupla de \mathbf{S} donde se cumple la condición.

$$R(A_1,\,A_2,\,...A_n),\quad \, S(B_1,\!B_2,\!....B_j)$$

$$R \bowtie_{\text{condicion}} S (A_1, A_2, ...A_{n,j}, B_1, B_2,B_j) =$$

 $\sigma_{\!<\!\text{condicion}\!>}(R~X~S)$

Ejemplo de Join (Reunión)

 Nombre
 Salario
 CodEmp

 A.Blanco
 6500
 1

 J.Martin
 5850
 2

mpresas					
NombreE	Numero	Telef			
Giro	1	480 2424			
Fast	2	905 6875			

Listar el nombre de los mecánicos de la empresa Fast.

 $\pi_{Nombre}(\text{Mecanicos} \ \bowtie_{CodEmp \ = \ Numero \ AND \ NombreE \ = \ ``Fast''} \ Empresas)$

 $\pi_{Nombre}(\sigma_{CodEmp \ = \ Numero\ AND\ NombreE \ = \ ``Fast''}(Mecanicos\ X\ Empresas))$

Mecanicos Mecanicos Empresas

recameos / Empresas						
Nombre	Salario	CodEmp No	mbreE	Numero	Telef	
J.Martin	5850	2	Fast	2	905 6875	

Join Natural *

Precondición:

No tiene.

Resultado:

Es un join en que la condición es que los atributos que tengan igual nombre en las dos tablas tengan igual valor y sobre el cual los atributos de igual nombre se proyectan una sola vez.

Sean
$$\mathbf{R}(\mathbf{A},\mathbf{B},\mathbf{C})$$
 y $\mathbf{S}(\mathbf{X},\mathbf{Y},\mathbf{Z},\mathbf{A})$

$$\mathbf{R} * \mathbf{S} = \pi_{A,B,C,X,Y,Z} (\mathbf{R} \bowtie_{\mathbf{R}.\mathbf{A} = \mathbf{S}.\mathbf{A}.} \mathbf{S})$$

Ejemplo de Join Natural

١	Mecanicos					
	Nombre	Salario	CodEmp			
	A.Blanco	6500	1			
	J.Martin	5850	2			

E	Empresas				
	NombreE	CodEmp	Telef		
	Giro	1	480 2424		
	Fast	2	905 6875		

Listar el nombre de los mecánicos de la empresa Fast.

 π_{Nombre} ($\sigma_{NombreE = \text{``Fast''}}$ (Mecanicos * Empresas))

 $\pi_{Nombre}(\text{Mecanicos} \ \bowtie_{CodEmp\ =\ CodEmp\ AND\ NombreE\ =\ ``Fast''}\ Empresas)$

Mecanicos * Empresas

		Codl	Emp NombreE	Telef
J.Martin	5850	2	Fast	905 6875

Intersección \cap

Precondición:

Las relaciones deben ser compatibles.

Resultado:

 $\mathbf{R} \cap \mathbf{S}$ produce una relación con las tuplas que están en \mathbf{R} y en \mathbf{S} a la vez.

$$\mathbf{R} \cap \mathbf{S} = \mathbf{R} \cup \mathbf{S} - (\mathbf{R} - \mathbf{S}) - (\mathbf{S} - \mathbf{R})$$

Ejemplo de Intersección

Estudiantes			
Nombre	Apellido		
Adrian	Blanco		
Juan	Martin		
Estela	Ferraro		
Julian	Estevez		

l	Profesores			
	Nombre	Apellido		
	Americo	Suarez		
	Julian	Estevez		
I	Estela	Ferraro		

Listar los estudiantes que son también profesores.

Estudiantes \cap Profesores

]	EstudiantesProfesor		
	Nombre	Apellido	
	Julian	Estevez	
	Estela	Ferraro	

Cociente %

Precondición:

Los atributos de ${\bf S}$ incluidos en los atributos de ${\bf R}.$

Resultado

Un conjunto de tuplas t tal que para toda tupla u de S, t.u es una tupla de R.

a b d e

A B C D

Cociente % R % S, donde R(Z), S(X) tal que $X \subseteq Z$ Sea $Y = Z - X \Rightarrow$ $R\%S = \pi_Y(R) - \pi_Y(\pi_Y(R) \times S) - R)$ A B $\pi_{Y}(R)$ b е $(\pi_{Y}(R) \times S) - R$ $\pi_{Y}(R) X S A B C D$ ABC D ABC D abc d a b c d bcc d b c c da b e f e d c d $b\ c\ e\ f$ e d c da b e f $b\ c\ e\ f$ $e \ d \ e \ f$ e def a b d e

Ejemplo de Cociente

Į	Empleados		
	Nombre	NroE	
	Silva	213	
	Perez	214	
	Ramos	215	
	Soca	216	

T)	T <u>rabaja_en</u>			
	NroE			
Ī	213	1		
	213	2		
	214	1		
	215	1		
	215	2		
l	216	2		

Obtener los numeros de los empleados que trabajan en todos los proyectos donde trabaja Silva.

PS = TRABAJA_EN * **O** Nombre = "Silva" (EMPLEADOS))

$$NPS = \pi_{NroP}(PS)$$

$$\mathsf{TOE} = \mathsf{TRABAJA_EN} \; \textbf{-} \; \boldsymbol{\pi}_{\mathsf{NroP},\mathsf{NroE}} \left(\mathsf{PS} \right)$$

$$\mathsf{Resultado} = \pi_{NroE} \, (\mathsf{TOE} \, \, \textcolor{red}{\bullet} \, \mathsf{NPS})$$

Algunos problemas del álgebra

JEFES

Empleado	Jefe
M.M.	R.R.
F.C.	R.R.
U.T.	R.R.
R.R.	G.C.
P.P.	J.G.
J.G.	G.C.
G.C.	J.N.

1) Cuántos son los jefes de M.M?

2) Obtener los nombres de los jefes directos o indirectos de M.M.

Obtener los jefes directos de M.M.

$$R = \pi_{Jefe} (\sigma_{Empleado = "M.M."} (JEFES))$$

Obtener los jefes de los jefes de M.M.

$$S = \pi_{JEFES,Jefe} (R \hspace{0.1cm} \bowtie_{R.Jefe \hspace{0.1cm} = \hspace{0.1cm} Empleado} JEFES)$$

Obtener sólo los jefes y los jefes de los jefes de M.M.

 $R \cup S$

Observación

- Si se conocce la cantidad de "niveles" necesarios para obtener todos los jefes de M.M., entonces la consulta se puede resolver de una forma análoga a la vista anteriormente.
- En la forma original en que se planteó la consulta, no es posible resolverla sólo con álgebra relacional.
- La consulta es una

Clausura Transitiva

Clausura Transitiva

Las clausuras transitivas son consultas que típicamente involucran algún tipo de recorrido en un grafo.

El grafo representado en la tabla JEFES es el siguiente

Un Algoritmo

 $Soluci\'on = Algebra + Lenguaje \ de \ Programaci\'on$

Una solución posible es la siguiente:

$$q := JEFES;$$

$$r := \sigma_{\text{Empleado} = \text{``M.M.''}} \text{ (JEFES)};$$

While haya nuevos resultados (r)

$$r := (r \bowtie_{r.Empleado = q.jefe} q) \cup r$$

EndWhile

