Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks

Generating Random Networks

Functions to calculate Entropy and Assortativity

Entropy

Assortativity

1. Colimitation model

Solving the system of ODE

The function "fNewSaitoKIC" solves the ODE system and gives the population at steady state of the system, starting with arbitrary initial conditions.

$$\begin{split} \text{dB}_1 &= \\ B_1[t] \left(-B_1[t] \, \kappa_1 + \text{nuK} \, \star \, \frac{M_1[t]}{\text{denK} + M_1[t]} \, \star \, \frac{M_2[t]}{\text{denK} + M_2[t]} \, \star \, \frac{M_3[t]}{\text{denK} + M_3[t]} \, \star \, \frac{M_4[t]}{\text{denK} + M_4[t]} \, \star \\ & \frac{M_5[t]}{\text{denK} + M_5[t]} \right) - \, (c_{1,1} + c_{1,2} + c_{1,3} + c_{1,4} + c_{1,5}) \, B_1[t] \, ; \\ \text{dB}_2 &= B_2[t] \left(-B_2[t] \, \kappa_2 + \text{nuK} \, \star \, \frac{M_1[t]}{\text{denK} + M_1[t]} \, \star \, \frac{M_2[t]}{\text{denK} + M_2[t]} \, \star \, \frac{M_3[t]}{\text{denK} + M_3[t]} \, \star \\ & \frac{M_4[t]}{\text{denK} + M_4[t]} \, \star \, \frac{M_5[t]}{\text{denK} + M_5[t]} \right) - \, (c_{2,1} + c_{2,2} + c_{2,3} + c_{2,4} + c_{2,5}) \, B_2[t] \, ; \\ \text{dB}_3 &= B_3[t] \left(-B_3[t] \, \kappa_3 + \text{nuK} \, \star \, \frac{M_1[t]}{\text{denK} + M_1[t]} \, \star \, \frac{M_2[t]}{\text{denK} + M_2[t]} \, \star \, \frac{M_3[t]}{\text{denK} + M_3[t]} \, \star \\ \end{split}$$

$$\frac{M_{6}\{t\}}{denK+M_{4}[t]} * \frac{M_{5}[t]}{denK+M_{5}[t]} - (c_{3,1}+c_{3,2}+c_{3,3}+c_{3,4}+c_{3,5}) \ B_{3}[t];$$

$$dB_{4} = B_{4}[t] \left(-B_{4}[t] \times_{4} + nuK * \frac{M_{1}[t]}{denK+M_{1}[t]} * \frac{M_{2}[t]}{denK+M_{2}[t]} * \frac{M_{3}[t]}{denK+M_{3}[t]} * \frac{M_{3}[t]}{denK+M_{3}[t]}$$

```
tmax = 10000;
par = {
    \kappa_1 \rightarrow KK, \kappa_2 \rightarrow KK, \kappa_3 \rightarrow KK, \kappa_4 \rightarrow KK, \kappa_5 \rightarrow KK,
    c_{1,1} \rightarrow cc \, Net[[1]][[1]], c_{1,2} \rightarrow cc \, Net[[1]][[2]],
    c_{1,3} \rightarrow cc \, Net[[1]][[3]], c_{1,4} \rightarrow cc \, Net[[1]][[4]], c_{1,5} \rightarrow cc \, Net[[1]][[5]],
    c_{2,1} \rightarrow cc \, Net[[2]][[1]], c_{2,2} \rightarrow cc \, Net[[2]][[2]], c_{2,3} \rightarrow cc \, Net[[2]][[3]],
    c_{2,4} \rightarrow cc \, Net[[2]][[4]], c_{2,5} \rightarrow cc \, Net[[2]][[5]],
    c_{3,1} \rightarrow cc \, Net[[3]][[1]], c_{3,2} \rightarrow cc \, Net[[3]][[2]], c_{3,3} \rightarrow cc \, Net[[3]][[3]],
    c_{3,4} \rightarrow cc Net[[3]][[4]], c_{3,5} \rightarrow cc Net[[3]][[5]],
    c_{4,1} \rightarrow cc \, Net[[4]][[1]], c_{4,2} \rightarrow cc \, Net[[4]][[2]], c_{4,3} \rightarrow cc \, Net[[4]][[3]],
    c_{4,4} \rightarrow cc \ Net[[4]][[4]], c_{4,5} \rightarrow cc \ Net[[4]][[5]],
    c_{5,1} \rightarrow cc \ Net[[5]][[1]], c_{5,2} \rightarrow cc \ Net[[5]][[2]], c_{5,3} \rightarrow cc \ Net[[5]][[3]],
    c_{5,4} \rightarrow cc Net[[5]][[4]], c_{5,5} \rightarrow cc Net[[5]][[5]],
    q_1 \rightarrow qq, q_2 \rightarrow qq, q_3 \rightarrow qq, q_4 \rightarrow qq, q_5 \rightarrow qq,
    d_{1,1} \rightarrow dd, d_{1,2} \rightarrow dd, d_{1,3} \rightarrow dd, d_{1,4} \rightarrow dd, d_{1,5} \rightarrow dd,
    d_{2,1} \rightarrow dd, d_{2,2} \rightarrow dd, d_{2,3} \rightarrow dd, d_{2,4} \rightarrow dd, d_{2,5} \rightarrow dd,
    d_{3,1} \rightarrow dd, d_{3,2} \rightarrow dd, d_{3,3} \rightarrow dd, d_{3,4} \rightarrow dd, d_{3,5} \rightarrow dd,
    d_{4,1} \rightarrow dd, d_{4,2} \rightarrow dd, d_{4,3} \rightarrow dd, d_{4,4} \rightarrow dd, d_{4,5} \rightarrow dd,
    d_{5,1} \rightarrow dd, d_{5,2} \rightarrow dd, d_{5,3} \rightarrow dd, d_{5,4} \rightarrow dd, d_{5,5} \rightarrow dd,
    \Omega_{1,1} \to OM \text{ Net}[[1]][[1]], \Omega_{1,2} \to OM \text{ Net}[[1]][[2]],
    \Omega_{1,3} \to 0M \text{ Net}[[1]][[3]], \Omega_{1,4} \to 0M \text{ Net}[[1]][[4]], \Omega_{1,5} \to 0M \text{ Net}[[1]][[5]],
    \Omega_{2,1} \to \text{OM Net}[[2]][[1]], \Omega_{2,2} \to \text{OM Net}[[2]][[2]], \Omega_{2,3} \to \text{OM Net}[[2]][[3]],
    \Omega_{2,4} \to \text{OM Net}[[2]][[4]], \Omega_{2,5} \to \text{OM Net}[[2]][[5]],
    \Omega_{3,1} \to \text{OM Net}[[3]][[1]], \Omega_{3,2} \to \text{OM Net}[[3]][[2]], \Omega_{3,3} \to \text{OM Net}[[3]][[3]],
    \Omega_{3,4} \to \text{OM Net}[[3]][[4]], \Omega_{3,5} \to \text{OM Net}[[3]][[5]],
    \Omega_{4,1} \to 0M \text{ Net}[[4]][[1]], \Omega_{4,2} \to 0M \text{ Net}[[4]][[2]], \Omega_{4,3} \to 0M \text{ Net}[[4]][[3]],
    \Omega_{4,4} \to \text{OM Net}[[4]][[4]], \Omega_{4,5} \to \text{OM Net}[[4]][[5]],
    \Omega_{5,1} \to 0M \text{ Net}[[5]][[1]], \Omega_{5,2} \to 0M \text{ Net}[[5]][[2]], \Omega_{5,3} \to 0M \text{ Net}[[5]][[3]],
    \Omega_{5,4} \to \text{OM Net}[[5]][[4]], \Omega_{5,5} \to \text{OM Net}[[5]][[5]],
    nuK → nu,
    denK → den
  };
B10 = 1500;
B20 = 1500;
B30 = 1500;
```

```
B40 = 1500;
B50 = 1500;
M10 = 10;
M20 = 10;
M30 = 10;
M40 = 10;
M50 = 10;
sol =
 NDSolve[
     B_1'[t] = dB_1,
     B_2'[t] = dB_2,
     B_3'[t] = dB_3
     B_4'[t] = dB_4,
     B_5'[t] = dB_5,
     M_1'[t] = dM_1,
     M_2'[t] = dM_2,
     M_3'[t] = dM_3,
     M_4'[t] = dM_4,
     M_5'[t] = dM_5,
     B_1[0] = B10,
     B_2[0] = B20,
     B_3[0] = B30,
     B_4[0] = B40,
     B_5[0] = B50,
     M_1[0] = M10,
     M_2[0] = M20,
     M_3[0] = M30,
     M_4[0] = M40,
     M_5[0] = M50
    } /. par,
   \{B_1, B_2, B_3, B_4, B_5, M_1, M_2, M_3, M_4, M_5\},\
   {t, 0, tmax}];
Flatten[{B<sub>1</sub>[tmax], B<sub>2</sub>[tmax], B<sub>3</sub>[tmax], B<sub>4</sub>[tmax], B<sub>5</sub>[tmax],
     M_1[tmax], M_2[tmax], M_3[tmax], M_4[tmax], M_5[tmax]} /. sol /. par]
```

As an example let's take the following Network

```
In[7379]:= NetK = {
           {0, 1, 0, 1, 0},
           {1, 0, 1, 1, 0},
           {1, 0, 1, 0, 1},
          {0, 1, 0, 1, 0},
           \{0, 0, 0, 0, 1\}
         };
In[7421]:= fNewSaitoKIC[NetK]
Out[7421]= {6661.68, 6661.43, 6661.43, 6661.68,
        6661.93, 22219.9, 44425.5, 44426.3, 22219.9, 15.9422}
```

The function "fNewSaitoIC" solves the ODE system and receives a network and a initial conditions values as arguments.

```
fNewSaitoIC[Net_, IC_] := (
In[7422]:=
                                                                  B_{1}[t] \left(-B_{1}[t] \kappa_{1} + nuK * \frac{M_{1}[t]}{denK + M_{1}[t]} * \frac{M_{2}[t]}{denK + M_{2}[t]} * \frac{M_{3}[t]}{denK + M_{3}[t]} * \frac{M_{4}[t]}{denK + M_{4}[t]} * \frac{M_{4}[t]}{denK + M_{4}[
                                                                                                     \frac{M_{5}[t]}{\text{denK} + M_{5}[t]} - (c_{1,1} + c_{1,2} + c_{1,3} + c_{1,4} + c_{1,5}) B_{1}[t];
                                                           dB_2 = B_2[t] \left( -B_2[t] \kappa_2 + nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \right)
                                                                                                     \frac{M_{4}[t]}{\text{denK} + M_{4}[t]} * \frac{M_{5}[t]}{\text{denK} + M_{5}[t]} - (c_{2,1} + c_{2,2} + c_{2,3} + c_{2,4} + c_{2,5}) B_{2}[t];
                                                          dB_3 = B_3[t] \left( -B_3[t] \kappa_3 + nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \right)
                                                                                                     \frac{\text{M}_{4}\text{[t]}}{\text{denK} + \text{M}_{4}\text{[t]}} \ * \ \frac{\text{M}_{5}\text{[t]}}{\text{denK} + \text{M}_{5}\text{[t]}} \bigg) - \ (c_{3,1} + c_{3,2} + c_{3,3} + c_{3,4} + c_{3,5}) \ B_{3}\text{[t]};
                                                           dB_4 = B_4[t] \left( -B_4[t] \kappa_4 + nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \right)
                                                                                                     \frac{\text{M}_4[\text{t}]}{\text{denK} + \text{M}_4[\text{t}]} \; \star \; \frac{\text{M}_5[\text{t}]}{\text{denK} + \text{M}_5[\text{t}]} \bigg) - \; (\text{C}_{4,1} + \text{C}_{4,2} + \text{C}_{4,3} + \text{C}_{4,4} + \text{C}_{4,5}) \; \text{B}_4[\text{t}] \; ;
                                                           dB_5 = B_5[t] \left( -B_5[t] \kappa_5 + nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \right)
```

```
\frac{M_4[t]}{\text{denK} + M_4[t]} * \frac{M_5[t]}{\text{denK} + M_5[t]} - (c_{5,1} + c_{5,2} + c_{5,3} + c_{5,4} + c_{5,5}) B_5[t];
  dM_1 = -M_1[t] q_1 +
                          \left(nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \frac{M_4[t]}{denK + M_4[t]} * \frac{M_5[t]}{denK + M_5[t]}\right)
                                     (-B_1[t] d_{1,1} - B_2[t] d_{1,2} - B_3[t] d_{1,3} - B_4[t] d_{1,4} - B_5[t] d_{1,5}) +
                        \mathsf{B}_{1}\,[\,\mathsf{t}\,]\;\Omega_{1,1} + \mathsf{B}_{2}\,[\,\mathsf{t}\,]\;\Omega_{1,2} + \mathsf{B}_{3}\,[\,\mathsf{t}\,]\;\Omega_{1,3} + \mathsf{B}_{4}\,[\,\mathsf{t}\,]\;\Omega_{1,4} + \mathsf{B}_{5}\,[\,\mathsf{t}\,]\;\Omega_{1,5}
dM_2 = -M_2[t] q_2 + \left(nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \frac{M_4[t]}{denK + M_4[t]} * \right)
                                                            \frac{M_{5}[t]}{denK + M_{5}[t]} \left(-B_{1}[t] d_{2,1} - B_{2}[t] d_{2,2} - B_{3}[t] d_{2,3} - B_{4}[t] d_{2,4} - B_{5}[t] d_{2,5}\right) +
                        B_1[t] \Omega_{2,1} + B_2[t] \Omega_{2,2} + B_3[t] \Omega_{2,3} + B_4[t] \Omega_{2,4} + B_5[t] \Omega_{2,4}
dM_3 = -M_3[t] q_3 + \left(nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \frac{M_4[t]}{denK + M_4[t]} * \frac{M_4[t]}{denK + 
                                                          \frac{M_{5}[t]}{\text{denK} + M_{5}[t]} \left(-B_{1}[t] d_{3,1} - B_{2}[t] d_{3,2} - B_{3}[t] d_{3,3} - B_{4}[t] d_{3,4} - B_{5}[t] d_{3,5}\right) +
\begin{split} &B_{1}[t] \; \Omega_{3,1} + B_{2}[t] \; \Omega_{3,2} + B_{3}[t] \; \Omega_{3,3} + B_{4}[t] \; \Omega_{3,4} + B_{5}[t] \; \Omega_{3,5}; \\ &dM_{4} = -M_{4}[t] \; q_{4} + \left(nuK * \frac{M_{1}[t]}{denK + M_{1}[t]} \; * \; \frac{M_{2}[t]}{denK + M_{2}[t]} \; * \; \frac{M_{3}[t]}{denK + M_{3}[t]} \; * \; \frac{M_{4}[t]}{denK + M_{4}[t]} \; * \right. \end{split}
                                                          \frac{M_{5}[t]}{\text{denK} + M_{5}[t]} \left( -B_{1}[t] d_{4,1} - B_{2}[t] d_{4,2} - B_{3}[t] d_{4,3} - B_{4}[t] d_{4,4} - B_{5}[t] d_{4,5} \right) + C_{4,5} + C_{5,5} + 
                        \mathsf{B}_{1}[\mathsf{t}] \; \Omega_{4,1} + \mathsf{B}_{2}[\mathsf{t}] \; \Omega_{4,2} + \mathsf{B}_{3}[\mathsf{t}] \; \Omega_{4,3} + \mathsf{B}_{4}[\mathsf{t}] \; \Omega_{4,4} + \mathsf{B}_{5}[\mathsf{t}] \; \Omega_{4,4} + \mathsf{B}_{5}[\mathsf{t}] \; \Omega_{4,4} + \mathsf{B}_{5}[\mathsf{t}] \; \Omega_{4,4} + \mathsf{B}_{5}[\mathsf{t}] \; \Omega_{4,5} + \mathsf{B}_{5}[\mathsf{t}] \; \Omega_
dM_5 = -M_5[t] \ q_5 + \left(nuK * \frac{M_1[t]}{denK + M_1[t]} * \frac{M_2[t]}{denK + M_2[t]} * \frac{M_3[t]}{denK + M_3[t]} * \frac{M_4[t]}{denK + M_4[t]} * \frac{M_4[t]}{denK 
                                                          \frac{M_{5}[t]}{\text{denK} + M_{5}[t]} \left(-B_{1}[t] d_{5,1} - B_{2}[t] d_{5,2} - B_{3}[t] d_{5,3} - B_{4}[t] d_{5,4} - B_{5}[t] d_{5,5}\right) +
                        B_1[t] \Omega_{5,1} + B_2[t] \Omega_{5,2} + B_3[t] \Omega_{5,3} + B_4[t] \Omega_{5,4} + B_5[t] \Omega_{5,5};
  KK = 0.2;
  cc = 0.05;
  qq = 0.3;
  dd = 0.00015;
  OM = 1;
  nu = 1500;
  den = 2;
  tmax = 10000;
  par = {
                        \kappa_1 \rightarrow KK, \kappa_2 \rightarrow KK, \kappa_3 \rightarrow KK, \kappa_4 \rightarrow KK, \kappa_5 \rightarrow KK,
                        c_{1,1} \rightarrow cc \, Net[[1]][[1]], c_{1,2} \rightarrow cc \, Net[[1]][[2]],
                        c_{1,3} \rightarrow cc \, Net[[1]][[3]], c_{1,4} \rightarrow cc \, Net[[1]][[4]], c_{1,5} \rightarrow cc \, Net[[1]][[5]],
                         c_{2,1} \rightarrow cc \, Net[[2]][[1]], c_{2,2} \rightarrow cc \, Net[[2]][[2]], c_{2,3} \rightarrow cc \, Net[[2]][[3]],
```

```
c_{2,4} \rightarrow cc \, Net[[2]][[4]], c_{2,5} \rightarrow cc \, Net[[2]][[5]],
    c_{3,1} \rightarrow cc \, Net[[3]][[1]], c_{3,2} \rightarrow cc \, Net[[3]][[2]], c_{3,3} \rightarrow cc \, Net[[3]][[3]],
    c_{3,4} \rightarrow cc \, Net[[3]][[4]], c_{3,5} \rightarrow cc \, Net[[3]][[5]],
    c_{4,1} \rightarrow cc \ Net[[4]][[1]], c_{4,2} \rightarrow cc \ Net[[4]][[2]], c_{4,3} \rightarrow cc \ Net[[4]][[3]],
    c_{4,4} \rightarrow cc \ Net[[4]][[4]], c_{4,5} \rightarrow cc \ Net[[4]][[5]],
    c_{5,1} \rightarrow cc \ \text{Net}[[5]][[1]], c_{5,2} \rightarrow cc \ \text{Net}[[5]][[2]], c_{5,3} \rightarrow cc \ \text{Net}[[5]][[3]],
    c_{5,4} \rightarrow cc Net[[5]][[4]], c_{5,5} \rightarrow cc Net[[5]][[5]],
    q_1 \rightarrow qq, q_2 \rightarrow qq, q_3 \rightarrow qq, q_4 \rightarrow qq, q_5 \rightarrow qq,
    d_{1,1} \rightarrow dd, d_{1,2} \rightarrow dd, d_{1,3} \rightarrow dd, d_{1,4} \rightarrow dd, d_{1,5} \rightarrow dd,
    d_{2,1} \rightarrow dd, d_{2,2} \rightarrow dd, d_{2,3} \rightarrow dd, d_{2,4} \rightarrow dd, d_{2,5} \rightarrow dd,
    d_{3,1} \rightarrow dd, d_{3,2} \rightarrow dd, d_{3,3} \rightarrow dd, d_{3,4} \rightarrow dd, d_{3,5} \rightarrow dd,
    d_{4,1} \rightarrow dd, d_{4,2} \rightarrow dd, d_{4,3} \rightarrow dd, d_{4,4} \rightarrow dd, d_{4,5} \rightarrow dd,
    d_{5,1} \rightarrow dd, d_{5,2} \rightarrow dd, d_{5,3} \rightarrow dd, d_{5,4} \rightarrow dd, d_{5,5} \rightarrow dd,
    \Omega_{1,1} \to \text{OM Net}[[1]][[1]], \Omega_{1,2} \to \text{OM Net}[[1]][[2]],
    \Omega_{1,3} \to 0M \text{ Net}[[1]][[3]], \Omega_{1,4} \to 0M \text{ Net}[[1]][[4]], \Omega_{1,5} \to 0M \text{ Net}[[1]][[5]],
    \Omega_{2,1} \to \text{OM Net}[[2]][[1]], \Omega_{2,2} \to \text{OM Net}[[2]][[2]], \Omega_{2,3} \to \text{OM Net}[[2]][[3]],
    \Omega_{2,4} \to \text{OM Net}[[2]][[4]], \Omega_{2,5} \to \text{OM Net}[[2]][[5]],
    \Omega_{3,1} \to 0M \text{ Net}[[3]][[1]], \Omega_{3,2} \to 0M \text{ Net}[[3]][[2]], \Omega_{3,3} \to 0M \text{ Net}[[3]][[3]],
    \Omega_{3,4} \to \text{OM Net}[[3]][[4]], \Omega_{3,5} \to \text{OM Net}[[3]][[5]],
    \Omega_{4,1} \to 0M \text{ Net}[[4]][[1]], \Omega_{4,2} \to 0M \text{ Net}[[4]][[2]], \Omega_{4,3} \to 0M \text{ Net}[[4]][[3]],
    \Omega_{4,4} \to \text{OM Net}[[4]][[4]], \Omega_{4,5} \to \text{OM Net}[[4]][[5]],
    \Omega_{5,1} \to 0M \text{ Net}[[5]][[1]], \Omega_{5,2} \to 0M \text{ Net}[[5]][[2]], \Omega_{5,3} \to 0M \text{ Net}[[5]][[3]],
    \Omega_{5,4} \to \text{OM Net}[[5]][[4]], \Omega_{5,5} \to \text{OM Net}[[5]][[5]],
    nuK → nu,
    denK → den
  };
B10 = IC[[1]];
B20 = IC[[2]];
B30 = IC[[3]];
B40 = IC[[4]];
B50 = IC[[5]];
M10 = IC[[6]];
M20 = IC[[7]];
M30 = IC[[8]];
M40 = IC[[9]];
M50 = IC[[10]];
```

```
sol =
 NDSolve[
     B_1'[t] = dB_1,
     B_2'[t] = dB_2
     B_3'[t] = dB_3,
     B_4'[t] = dB_4,
     B_5'[t] = dB_5
     M_1'[t] = dM_1
     M_2'[t] = dM_2
     M_3'[t] = dM_3,
     M_4'[t] = dM_4,
     M_5'[t] = dM_5,
     B_1[0] = B10,
     B_2[0] = B20,
     B_3[0] = B30,
     B_4[0] = B40,
     B_5[0] = B50,
     M_1[0] = M10,
     M_2[0] = M20,
     M_3[0] = M30,
     M_4[0] = M40,
     M_5[0] = M50
   } /. par,
  \{B_1, B_2, B_3, B_4, B_5, M_1, M_2, M_3, M_4, M_5\},\
  {t, 0, tmax}];
Flatten[\{B_1[tmax], B_2[tmax], B_3[tmax], B_4[tmax], B_5[tmax],
     M_1[tmax], M_2[tmax], M_3[tmax], M_4[tmax], M_5[tmax]} /. sol /. par]
```

```
In[7423]:= NetK = {
           {0, 1, 0, 1, 0},
           {1, 0, 1, 1, 0},
           {1, 0, 1, 0, 1},
           {0, 1, 0, 1, 0},
           \{0, 0, 0, 0, 1\}
         };
```

The function "fNewSaitoKIC" solves the ODE system and gives the population at steady state of the system, starting with arbitrary initial conditions.

```
In[7424]:= IC1 = fNewSaitoKIC[NetK]
Out[7424]= {6661.68, 6661.43, 6661.43, 6661.68,
        6661.93, 22219.9, 44425.5, 44426.3, 22219.9, 15.9422}
```

We create now two vectors that increase 50 fold one ("OneMetHigh") or all ("AllMetHigh") metabolites

```
In[7425]:= OneMetHigh = {1, 1, 1, 1, 1, 50, 1, 1, 1, 1};
ln[7426]:= AllMetHigh = {1, 1, 1, 1, 1, 50, 50, 50, 50, 50};
```

This results in the following initial conditions when one metabolite is increased:

```
In[7427]:= fNewSaitoKIC[NetK] OneMetHigh
Out[7427] = \{6661.68, 6661.43, 6661.43, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.93, 6661.9
                                                                                                                     1.11099 \times 10^6, 44 425.5, 44 426.3, 22 219.9, 15.9422
```

We provide the new initial condition as an argument in the function "fNewSaitoIC":

```
In[7428]:= IC2 = fNewSaitoIC[NetK, fNewSaitoKIC[NetK] OneMetHigh]
Out[7428]= {6661.68, 6661.43, 6661.43, 6661.68,
       6661.93, 22219.9, 44425.5, 44426.3, 22219.9, 15.9422}
```

We see that the system converges to the initial state:

```
In[7429]:= IC1 == IC2
Out[7429]= True
```

This results in the following initial conditions when all metabolites are increased:

```
In[7430]:= fNewSaitoKIC[NetK] AllMetHigh
Out[7430] = \{6661.68, 6661.43, 6661.43, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.68, 6661.93, 6661.93, 6661.68, 6661.93, 6661.93, 6661.68, 6661.93, 6661.93, 6661.88, 6661.93, 6661.88, 6661.93, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.88, 6661.8
                                                                                                           1.11099 \times 10^6, 2.22127 \times 10^6, 2.22132 \times 10^6, 1.11099 \times 10^6, 797.108
```

We provide the new initial condition as an argument in the function "fNewSaitoIC":

```
In[7431]:= IC3 = fNewSaitoIC[NetK, fNewSaitoKIC[NetK] AllMetHigh]
Out[7431]= {6661.68, 6661.43, 6661.43, 6661.68,
       6661.93, 22219.9, 44425.5, 44426.3, 22219.9, 15.9422}
```

We see that the system converges to the initial state:

```
In[7432]:= IC1 == IC3
Out[7432]= True
```

We now systematically analyse all networks with 8 auxotrophies, as an example:

In[7395]:= hk8

```
In[7433]:=
        ICList1 = Parallelize[fNewSaitoKIC /@ hk8]
 In[7434]:= ICList1[[1]]
Out[7434]= \{7497.06, 7497.31, 7497.56, 7497.81, \}
        7497.56, 96848.5, 71857.5, 46865.6, 21872.1, 46864.8}
```

```
ICList2 = Parallelize[
In[7435]:=
           fNewSaitoIC[hk8[[#]], fNewSaitoKIC[hk8[[#]]] OneMetHigh] & /@ Range[100]]
```

```
ICList1 == ICList2
In[7438]:=
```

Out[7438]= True

```
ICList3 = Parallelize[
In[7439]:=
           fNewSaitoIC[hk8[[#]], fNewSaitoKIC[hk8[[#]]] AllMetHigh] & /@ Range[100]]
```

```
ICList1 == ICList3
In[7441]:=
```

Out[7441]= True

We can then conclude that the system is stable for changes in the initial conditions of one or all metabolites.