ARC CONSISTENCY:

$$V \rightarrow NSW \rightarrow SA$$

$$\{R,B\} \qquad \{B\}$$

Consistent nou!

Constraint Propagation!

SA has to be

(B or b) and (b or B) and (A or B)

=> no possible value.

Con PLEXITY:

- recomplexity of enforcing a single-are consistency (each variable has atmost divalves): Check all x_1y_1 , such that $x \in x$, $y \in y$: $0(d^2)$
- # Binary CSPS (n variable)

 So °C2 possible Constraints.

 O(n2) ares/constraints.
- How many times an arc or edge has to be checked? $x \rightarrow y$ is checked everytime y likes a value. As it can have d values o(d)
- Complexity of Arc Consistency $o(n^2d^2, d) = o(n^2d^3)/$

Two - PLAYER GOMES:	Deterministic	Chance
Perfect Information (ran observe State)	Chess, Go, Othello	Back gammon, Monopoly, Snake and Ladder (Dice throw)
Impertect Information (no full visibility of current state)		Poker, Card Games, Bridge (Decided by what is drawn)

GAME TREE:

Note:

Player: Assume X.

- * Finite tree
- * But terminal state can be at different depth.
- * the path M shows a path to him state. But unlike other search, we cannot just follow this as half the steps are taken by another player.
- # It is timed. Need to make a more fast!
- * So now goal is not full path.

 → Given current state, Suggest best next Mode.

What is the best move at start $A_1/A_2/A_3$? \rightarrow Assume we play against the best player.

So, if A_1 , opponent chaoses 3 $A_2 \rightarrow 2$ $A_3 \rightarrow 2$

So A, is best!

"MINIMAX ALBORIMM"

can he use DFS to get the values?

Tc: o(bd) -> Yery bad!

(64)0 : 22

+ It is timed. So we can only see, say next + rounds.

1 We need a way to estimate the partial state after the rounds, to decide the move.

 $f_n(n) = estimate$ the utility.

Check A, 3,12,8 and we know we get 3.

=> Check A_2 's 2, now no need to check 4 or 6.

So best case is, we check min from lovest to highest. Man from highest to lowest.

O-B PRUNENTS:

- depth d
- branching factor b
 - * Standard Minimax 0 (bd)
 - * Best case scenario for x-x pruning $O(b^{d/2})$

GAMBS WITH CHANCE:

Shallow depth with a serious evaluation functions.

Minimax:

Both are same as long as order is same.