8

Tverrsnittskonstanter

```
K. Bell: «Konstruksjonsmekanikk – Likevektslære»:
```

Kapittel 10
 Avsnitt 10.1 – 10.2

GRUNNRISS (PLAN)

Tverrsnitt til brubjelken

- Brubjelken spenner 39 meter mellom hver søyle
- Snittkrefter N, V og M pga. belastningen på brua (trafikk, egenvekt, vind) skal overføres gjennom brubjelken til søylene eller landkar
- Snittkreftene N, V og M gir spenninger i brubjelken
- Størrelsen på spenningene er avhengig av tverrsnittets <u>form</u> og <u>dimensjoner</u>
- Sentrale tverrsnittskonstanter (i elastisitetsteori) er:
 - ◆ Areal A ⇒ Normalspenning pga N
 - 1. arealmoment S_y (og S_z) \Rightarrow Arealsenter C og skjærspenning pga V
 - 2. arealmoment I_y (og I_z) \Rightarrow Normalspenning pga M og nedbøyning
- Brubjelken (betong + armering = kompositt) må ha tilstrekkeligkapasitet for å ivareta kombinasjon av snittkreftene N, V og M

Dobbeltintegraler

Vanlig integral (en variabel x):

$$\int f(x) dx$$

Integrerer en funksjon f(x) langs en koordinatakse (her: x-aksen)

Dobbeltintegral (to variable x og y):

$$\int f(x,y)dA$$

Integrerer en funksjon f(x,y) over en plan flate (her: xy-planet)

Kartesiske koordinater:

$$dA = dxdy$$

Polarkoordinater:

$$dA = rdrd\theta$$

Spesialtilfelle: f(x,y) = 1

$$\Rightarrow \int f(x,y)dA = \int dA = A$$

Arealmomenter

Areal («0. arealmoment»): $A = \int dA$

$$A = \int_A dA$$

1. arealmoment:

$$S_y = \int_A z \, dA$$
 (om y-aksen)

$$S_z = \int_A y \, dA$$
 (om z-aksen)

Anvendelse:

- Beliggenhet til arealsenter C
- Beregne skjærspenning τ pga. V (Mekanikk 2)

2. arealmoment:

$$I_y = \int_A z^2 dA$$
 (om y-aksen)

$$I_z = \int_A y^2 dA$$
 (om z-aksen)

Anvendelse:

- Beregne normalspenning σ pga. M
- Beregning av deformasjoner (nedbøyning, vinkel)

Tverrsnittskonstanter

- Regn ut arealet A av tverrsnittet
- 2. Velg et <u>foreløpig origo</u> for aksesystemet (y,z)

- Bestem 1. arealmoment S_v og/eller S_z om foreløpig origo:
 - Sammensatt tverrsnitt: $S_y = \sum z_i \cdot A_i$ og $S_z = \sum y_i \cdot A_i$
 - Matematisk definisjon: $S_y = \int z dA$ og $S_z = \int y dA$
- 4. Bestem beliggenhet til arealsenter C relatert til origo i pkt. 2:
 - Koordinater (y_C, z_C) : $y_C = \frac{S_z}{A}$ og $z_C = \frac{S_y}{A}$

$$y_C = \frac{S_z}{A}$$

og
$$z_C = \frac{S_y}{\Delta}$$

- Beregn 2. arealmoment I_v og/eller I_z om origo i \mathbb{C} :
 - Sammensatt tverrsnitt: $I_y = \sum (I_{y,lokal} + e_z^2 \cdot A')$ og $I_z = \sum (I_{z,lokal} + e_y^2 \cdot A')$ (Steiner)
 - Matematisk definisjon: $I_y = \int z^2 dA$ og $I_z = \int y^2 dA$

Eksempel: Arealsenter

Et T-formet tverrsnitt av tre er satt sammen av to rektangulære tverrsnitt ① og ② som begge har dimensjoner 50 mm \times 100 mm (tilsvarer sånn ca 2" \times 4").

Bestem beliggenheten til arealsenteret C.

Eksempel: Steiners teorem

Et T-formet tverrsnitt av tre er satt sammen av to rektangulære tverrsnitt ① og ② som begge har dimensjoner 50 mm \times 100 mm (tilsvarer sånn ca 2" \times 4"). I et tidligere eksempel er det vist at arealsenteret \mathbf{C} (og origo i yz-aksesystemet) ligger 87,5 mm over nedre kant av det sammensatte tverrsnittet.

Regn ut 2. arealmomentene I_y og I_z til det sammensatte tverrsnittet. Benytt Steiners teorem.

Beregning av I_y ved dobbeltintegrasjon (mer tungvint) er vist på neste lysark!

Eksempel: 2. arealmoment

Analytisk integrasjon av 2. arealmoment om z-aksen gjennom arealsenteret \mathbf{C} :

$$I_{y} = \int_{A} z^{2} dA$$

$$= \int_{A_{1}} z^{2} dA + \int_{A_{2}} z^{2} dA$$

$$= \int_{-25}^{25} \int_{-87.5}^{12.5} z^{2} dz dy + \int_{-50}^{50} \int_{12.5}^{62.5} z^{2} dz dy$$

$$= \int_{-25}^{25} \left[\frac{1}{3} z^{3} \right]_{-87.5}^{12.5} dy + \int_{-50}^{50} \left[\frac{1}{3} z^{3} \right]_{12.5}^{62.5} dy$$

$$= \int_{-25}^{25} 223,96 \cdot 10^{3} dy + \int_{50}^{50} 80,73 \cdot 10^{3} dy$$

$$= 223,96 \cdot 10^{3} \cdot \left[y \right]_{-25}^{25} + 80,73 \cdot 10^{3} \cdot \left[y \right]_{-50}^{50}$$

$$= 223,96 \cdot 10^{3} \cdot 50 + 80,73 \cdot 10^{3} \cdot 100$$

$$= 11,20 \cdot 10^{6} + 8,073 \cdot 10^{6}$$

$$= 19,27 \cdot 10^{6} \text{ mm}^{4}$$

Enklere: Bruk Steiners teorem

Som regel virker ytre last vertikalt slik at tverrsnittet bøyes om y-aksen – eller sagt på en annen måte: y-aksen skiller mellom delene av tverrsnittet som har strekk og trykk.

Når y-aksen er bøyningsakse, er I_y relevant for beregning av:

- Bøyespenninger σ pga. M
- Deformasjoner

Tverrsnittsparametre

Formelark A2

Rektangel

$$A = bh$$
 $y_C = b/2$ $z_C = h/2$

$$I_{y} = \frac{bh^{3}}{12} \qquad I_{z} = \frac{hb^{3}}{12}$$

Trekant

$$A = bh/2$$
 $y_C = (b+c)/3$ $z_C = h/3$

$$I_y = \frac{bh^3}{36}$$
 $I_z = \frac{bh}{36}(b^2 - bc + c^2)$

Rettvinklet trekant

$$A = bh/2$$
 $y_C = b/3$ $z_C = h/3$

$$I_y = \frac{bh^3}{36} \qquad I_z = \frac{hb^3}{36}$$

Sirkel

$$A = \pi r^2$$
 $I_y = I_z = \pi r^4/4$

Halvsirkel

$$1 = \pi r^2 / 2$$
 $z_C = 4r / 3$

$$I_y = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4 \approx 0.1098r^4$$
 $I_z = \frac{\pi r^4}{8}$

Konveks parabolsk flate

$$A = 2bh/3$$
 $y_C = 3b/8$ $z_C = 2h/5$

$$I_y = \frac{8bh^3}{175}$$
 $I_z = \frac{19hb^3}{480}$

Tverrsnittskonstanter

- Regn ut arealet *A* av tverrsnittet
- 2. Velg et <u>foreløpig origo</u> for aksesystemet (y,z)

- 3. Bestem 1. arealmoment S_v og/eller S_z om foreløpig origo:
 - Sammensatt tverrsnitt: $S_y = \sum z_i \cdot A_i$ og $S_z = \sum y_i \cdot A_i$
 - Matematisk definisjon: $S_y = \int z dA$ og $S_z = \int y dA$
- 4. Bestem beliggenhet til arealsenter C relatert til origo i pkt. 2:

• Koordinater
$$(y_C, z_C)$$
: $y_C = \frac{S_z}{A}$ og $z_C = \frac{S_y}{A}$

$$y_C = \frac{S_z}{A}$$

og
$$z_C = \frac{S_y}{A}$$

- 6. Beregn 2. arealmoment I_v og/eller I_z om origo i \mathbb{C} :
 - Sammensatt tverrsnitt: $I_y = \sum (I_{y,lokal} + e_z^2 \cdot A')$ og $I_z = \sum (I_{z,lokal} + e_y^2 \cdot A')$ (Steiner)
 - Matematisk definisjon: $I_y = \int z^2 dA$ og $I_z = \int y^2 dA$
- 7. Videre beregninger:
 - Normalspenninger σ pga. M (bøyespenninger): $\sigma = \frac{M}{I} \cdot z$
 - Deformasjoner, f.eks.: $\Delta = \frac{5}{384} \frac{qL^4}{EI}$ (fritt opplagt bjelke med q = konstant)