Names:	

	On my honor, I/we have not given, nor received, nor witnessed any unauthorized assistance on this work.	
Signature:		-
Signature: _		-

List any resources your team used in completing this problem set:

Question:	1	2	3	4	5	Total
Points:	5	14	23	20	50	112
Score:						

GRADE: _____

1. (5 points) Give at least two different examples of languages. For each language, use a different alphabet (Σ) and give the first few strings in Σ^* . Then give a language, L_1 which is a finite subset of Σ^* . 2. For each of the following languages described, write 5 strings that belong to it, including the shortest string. Then use words to informally describe it. For each language, the alphabet is $\Sigma = \{a, b, c\}$. (a) (7 points) $L(a(b^*|c^*))$ (b) (7 points) $L((a(b|c))^*)$

3. Consider the following formal definition of a finite automata:

$$M = \{\{Q1, Q2, Q3\}, \{a, b\}, \delta, Q1, \{Q3\}\}$$

with δ described by the transition table:

	a	b
Q1	Q2	Q1
Q2	Q3	Q1
Q3	Q3	Q1

(a) (5 points) Draw the finite state diagram for this automata.

1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			

(b) State whether the DFA will accept or reject the following strings:

- i. (2 points) bbbaaab _____
- ii. (2 points) ababaaa _____
- iii. (2 points) bbaabaa _____
- iv. (2 points) baba _____

(c) (5 points) In your own words, describe the set of strings the DFA accepts.

(d) (5 points) Write a regular expression that defines the language.

- 4. For each of the following automata, informally describe the language accepted by it. Then give a formal definition (5-tuple) for the automata.
 - (a) (10 points)

(b) (10 points)

5. For each of the following descriptions, design a DFA which accepts the given set of strings. Then write a regular expression which defines the language of the DFA. For all of these, assume $\Sigma = \{0, 1\}$. (a) (10 points) All strings that start with 01 or 10 (b) (10 points) All strings that start with 101

(c) (10 points) All strings that start with 0 and contain exactly one 1 (d) (10 points) All strings with at least three 1s.