

Sprawozdanie – miniprojekt nr1

Wstęp

Celem niniejszego miniptojektu jest implementacja wybranych struktur danych oraz analiza efektywności wykonywania różnych operacji na tych strukturach. W ramach pracy zrealizowano tablicę dynamiczną oraz listy jednokierunkowa i dwukierunkowa. Dla każdej struktury przeprowadzono pomiary czasu wykonania następujących operacji: dodawanie i usuwanie elementu na różnych pozycjach, wyszukiwanie. Teoretyczne złożoności obliczeniowe:

OD 1 10		•
Tablica	dyn	amiczna

Operacja	Optymistycznie	Średnio	Pesymistycznie
Dodanie na dowolnej pozycji	O(n)	O(n)	O(n)
Dodanie na początku	O(n)	O(n)	O(n)
Dodanie na końcu	O(1)	O(1)	O(n)
Usuwanie na początku	O(n)	O(n)	O(n)
Usuwanie na końcu	O(1)	O(1)	O(1)
Usuwanie na dowolnej pozycji	O(n)	O(n)	O(n)
Wyszukiwanie	O(1)	O(n)	O(n)

Tabela 1: Złożoność operacji dla tablicy dynamicznej

Przykłady zastosowań:

- Implementacja stosu, tablic, vector (C++)
- Nadaje się do częstego dostępu do indeksu, wyszukiwania indeksu.

Zalety:

- Szybki dostęp do elementów indeks
- Szybkie dodawanie na końcu
- Zajmuje mało miejsca, chyba że nastąpi rozszerzanie droga pamięciowo operacja

Lista jednokierunkowa

Operacja	Optymistycznie	Średnio	Pesymistycznie
Dodanie na dowolnej pozycji	O(i)	O(n)	O(n)
Dodanie na początku	O(1)	O(1)	O(1)
Dodanie na końcu	O(n)	O(n)	O(n)
Usuwanie na początku	O(1)	O(1)	O(1)
Usuwanie na końcu	O(n)	O(n)	O(n)
Usuwanie na dowolnej pozycji	O(i)	O(n)	O(n)
Wyszukiwanie	O(1)	O(n)	O(n)

Tabela 2: Złożoność operacji dla listy jednokierunkowej

Przykłady zastosowań:

- Implementacja kolejki oraz struktur, gdzie ważne jest dodawanie na początku
- Jeśli liczba elementów nie jest znana z góry, pamięć jest przydzielana w razie potrzeby.

Zalety:

- Szybkie dodawanie/usuwanie na początku
- Zajmuje mniej pamięci w porównaniu do listy dwukierunkowej struktur

Lista dwukierunkowa

Operacja	Optymistycznie	Średnio	Pesymistycznie
Dodanie na dowolnej pozycji	$O(\min(i,n-1))$	O(n)	O(n)
Dodanie na początku	O(1)	O(1)	O(1)
Dodanie na końcu	O(1)	O(1)	O(1)
Usuwanie na początku	O(1)	O(1)	O(1)
Usuwanie na końcu	O(1)	O(1)	O(1)
Usuwanie na dowolnej pozycji	O(min(i, n-1))	O(n)	O(n)
Wyszukiwanie	O(1)	O(n)	O(n)

Tabela 3: Złożoność operacji dla lista dwukierunkowej

Przykłady zastosowań:

- Implementacja double-ended queue
- Jeśli liczba elementów nie jest znana z góry, pamięć jest przydzielana w razie potrzeby.

Zalety:

- Szybkie dodawanie/usuwanie na dowolnej pozycji
- Poruszanie się w obie strony

Zródło: https://kam.pwr.edu.pl/jaroslaw-rudypwr-edu-pl/files/sd/w3.pdf

1 Założenia projektowe

Do przeprowadzenia analizy operacji na strukturach, przyjęto następujące rozmiary danych: $N=\{10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000\}$. Elementy zostały wygenerowane za pomocą generatora liczb pseudolosowych srand() z zastosowaniem różnych wartości ziarna (seed) wykorzystując funkcje rand(), aby uzyskać statystycznie wiarygodne wyniki. Dla każdego rozmiaru struktury wylosowano 10 różnych wartości ziarna, a dla każdej z nich wykonano po 100 niezależnych pomiarów czasu. W rezultacie, dla każdej metody operacji uzyskano łącznie 1000 pomiarów, z których obliczano wartości średnie.

Wykorzystany sprzęt:

Testy zostały przeprowadzone na laptopie Lenovo Legion Slim 5 16AHP9

- procesor AMD Ryzen 7 8845HS w/ Radeon 780M Graphics 3.80 GHz
- RAM 32,0 GB
- 64-bitowy system operacyjny, procesor oparty na architekturze x64.

2 Wyniki: tabeli i wykresy czasów

2.1 Dane pomiarowe

Tabela 4: Dodanie na początek

Struktura [N]	10000	20000	30000	50000	70000	100000
Tablica dynamiczna [s]	1.05E-05	2.02E-05	3.07E-05	5.06E-05	7.03E-05	9.80E-05
Lista jednokierunkowa [s]	5.85E-08	6.08E-08	7.91E-08	1.03E-07	1.07E-07	1.20E-07
Lista dwukierunkowa [s]	5.17E-08	5.23E-08	6.03E-08	5.28E-08	$6.60 \hbox{E-}08$	$6.60 \hbox{E-}08$

Tabela 5: Dodanie na koniec

Struktura [N]	10000	20000	30000	50000	70000	100000
Tablica dynamiczna [s]	3.29E-08	3.29E-08	3.06E-08	3.26E-08	3.41E-08	3.11E-08
Lista jednokierunkowa [s]	1.34E-05	2.64E-05	4.56E-05	1.02E-04	1.41E-04	2.01E-04
Lista dwukierunkowa [s]	$4.56\mathrm{E}\text{-}08$	4.93E-08	$4.59\mathrm{E}\text{-}08$	4.90E-08	$4.79 \hbox{E-}08$	5.23E-08

Tabela 6: Dodanie w losowym miejscu

Struktura [N]	10000	20000	30000	50000	70000	100000
Tablica dynamiczna [s]	6.58E-06	1.31E-05	1.89E-05	3.75 E-05	5.93E-05	8.99E-05
Lista jednokierunkowa [s]	7.50E-06	7.54E-06	8.44E-06	1.08E-05	1.11E-05	1.17E-05
$Lista\ dwukierunkowa[s]$	3.49 E-05	6.87E-05	1.10E-04	1.89E-04	2.72 E-04	3.98E-04

Tabela 7: Usunięcie z początku

Struktura [N]	10000	20000	30000	50000	70000	100000
Tablica dynamiczna [s]	1.23E-05	2.38E-05	3.62E-05	5.97E-05	8.38E-05	1.16E-04
Lista jednokierunkowa [s]	3.61E-08	3.73E-08	3.69E-08	3.82E-08	3.69E-08	4.19E-08
Lista dwukierunkowa [s]	5.81E-08	1.17E-07	1.36E-07	$1.46\hbox{E-}07$	1.73E-07	1.89E-07

Tabela 8: Usunięcie z końca

Struktura [N]	10000	20000	30000	50000	70000	100000
Tablica dynamiczna [s]	3.18E-08	2.73E-08	2.63E-08	3.13E-08	3.10E-08	2.88E-08
Lista jednokierunkowa [s]	1.37E-05	2.71E-05	4.53E-05	9.77E-05	1.37E-04	1.96E-04
Lista dwukierunkowa [s]	6.78E-08	1.07E-07	1.67E-07	2.23E-07	2.38E-07	2.27E-07

Tabela 9: Usunięcie z losowego miejsca

Struktura [N]	10000	20000	30000	50000	70000	100000
Tablica dynamiczna [s]	1.04E-05	2.19E-05	3.43E-05	5.77E-05	8.23E-05	1.15E-04
Lista jednokierunkowa [s]	2.64E-06	2.74E-06	2.85E-06	3.07E-06	3.17E-06	3.09E-06
Lista dwukierunkowa [s]	1.84E-05	3.62E-05	5.94E-05	1.13E-04	1.57E-04	2.06E-04

Tabela 10: Wyszukiwanie

Struktura [N]	10000	20000	30000	50000	70000	100000
Tablica dynamiczna [s]	3.03E-08	3.18E-08	2.92E-08	3.10E-08	2.95E-08	2.92E-08
Lista jednokierunkowa [s]	3.63E-08	3.44E-08	3.85E-08	6.56E-08	6.92E-08	6.98E-08
Lista dwukierunkowa [s]	1.03E-05	1.19E-05	1.48E-05	2.16E-05	2.88E-05	2.48E-05

2.2 Wykresy porównawcze

Rysunek 1: Porównanie czasu dodawania elementu na początek dla różnych struktur

Rysunek 2: Porównanie czasu dodawania elementu na koniec dla różnych struktur

Rysunek 3: Porównanie czasu dodawania elementu w losowym miejscu dla różnych struktur

Rysunek 4: Porównanie czasu usuwania elementu z początku dla różnych struktur

Rysunek 5: Porównanie czasu usuwania elementu z końca dla różnych struktur

Rysunek 6: Porównanie czasu usuwania elementu z losowego miejsca dla różnych struktur

Rysunek 7: Porównanie czasu wyszukiwania elementu dla różnych struktur

2.3 Dopasowanie liniowe

Rysunek 8: Dopasowanie liniowe do tablicy dynamicznej.

Rysunek 9: Dopasowanie liniowe do listy jednokierunkowej.

Rysunek 10: Dopasowanie liniowe do listy dwukierunkowej.

Regresje (przybliżone współczynniki)

Po przeliczeniu, uzyskamy:

1. Tablica dynamiczna:

$$y_{array} = -1.66 \cdot 10^{-13} x + 3.08 \cdot 10^{-8}$$

 $2. \ {\bf Lista\ jednokierunkowa}:$

$$y_{lista1} = 3.79 \cdot 10^{-13} x + 2.89 \cdot 10^{-8}$$

3. Lista dwukierunkowa:

$$y_{lista2} = 1.47 \cdot 10^{-10} x + 2.8 \cdot 10^{-6}$$

Interpretacja:

- Tablica dynamiczna: czas wyszukiwania praktycznie nie zależy od rozmiaru (płaska linia), zgodnie z teoretycznym O(1).
- Lista jednokierunkowa: minimalny wzrost z rozmiarem zgodnie z O(n), ale dla dużych danych trend jest liniowy.
- \bullet Lista dwukierunkowa: wyraźna zależność liniowa też zgodna z O(n), ale z większym współczynnikiem.

3 Wnioski

Na podstawie przeprowadzonych badań oraz analizy dopasowania liniowego można wyciągnąć następujące wnioski:

- Dodawanie na początek: Listy (zarówno jednokierunkowa, jak i dwukierunkowa) są znacznie szybsze od tablicy dynamicznej, co jest zgodne z teorią w liście ta operacja ma złożoność O(1), natomiast w tablicy dynamicznej wymaga przesunięcia elementów (O(n)).
- Dodawanie na koniec: Tablica dynamiczna oraz lista dwukierunkowa oferują podobną wydajność, co również pokrywa się z teorią (O(1) w średnim przypadku). Lista jednokierunkowa jest wolniejsza z powodu konieczności iteracji przez całą listę, mimo posiadania wskaźnika tail.

- Dodawanie w losowym miejscu: Wyniki pokazują lepszą wydajność listy jednokierunkowej niż dwukierunkowej, co może wynikać z konkretnej implementacji lub kosztu aktualizacji dwóch wskaźników (prev i next) w liście dwukierunkowej.
- Usuwanie z początku: Zarówno lista jednokierunkowa, jak i dwukierunkowa wypadają znacznie lepiej niż tablica dynamiczna, co jest zgodne z teorią usunięcie z początku listy ma złożoność O(1), podczas gdy w tablicy wymaga przesunięcia elementów (O(n)).
- Usuwanie z końca: Tablica dynamiczna jest najszybsza, co wynika z możliwości bezpośredniego dostępu do ostatniego elementu (O(1)). Lista dwukierunkowa jest umiarkowanie szybka, a lista jednokierunkowa najwolniejsza, ze względu na konieczność przejścia całej listy do przedostatniego elementu.
- Usuwanie z losowego miejsca: Lista jednokierunkowa wypada najlepiej, co może być efektem konkretnej implementacji. Teoretycznie, wszystkie struktury mają tutaj złożoność O(n).
- Wyszukiwanie: Na podstawie wykresów i dopasowania liniowego widać, że:
 - Dla tablicy dynamicznej czas wyszukiwania praktycznie nie zależy od rozmiaru struktury
 zgodnie z teoretyczną złożonością O(1). Dopasowanie liniowe to niemal pozioma linia.
 - Dla listy jednokierunkowej oraz dwukierunkowej widoczny jest wzrost czasu liniowo względem rozmiaru, co potwierdza złożoność O(n).
 - Lista dwukierunkowa ma największy współczynnik kierunkowy w dopasowaniu liniowym, co wskazuje na największy koszt wyszukiwania spośród badanych struktur.

Porównując struktury między sobą:

- Tablica dynamiczna: Najlepsza w operacjach na końcu oraz wyszukiwaniu, najsłabsza przy operacjach na początku.
- Lista jednokierunkowa: Bardzo dobra w operacjach na początku i przy losowym dostępie, słabsza na końcu.
- Lista dwukierunkowa: Stabilna w operacjach na końcu i początku, ale najwolniejsza w wyszukiwaniu i losowym dostępie.

Wyniki eksperymentalne w większości potwierdzają teoretyczne złożoności czasowe poszczególnych operacji. Drobne odchylenia mogą wynikać z implementacji, działania kompilatora lub wpływu środowiska uruchomieniowego (np. cache procesora).