Conversores Analógico Digital - ADC

Configuração e Utilização

Escola Politécnica

Maio de 2016.

Introdução

Conversores analógico/digital (ADC) são circuitos que convertem grandezas analógicas em digitais. O uso destes circuitos é comum em áreas onde a medição, monitorização ou controle de grandezas analógicas são realizadas por intermédio de sistemas digitais. Nos conversores, as grandezas analógicas, normalmente na forma de tensão, limitadas em amplitude e frequência, tem suas amplitudes codificadas em números binários.

Conversão ADC

ADC

Figure 25. Typical connection diagram using the ADC

- Refer to Table 53: ADC characteristics for the values of RAIN, RADC and CADC.
- $C_{\mathsf{parasitic}}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{\mathsf{parasitic}}$ value will downgrade conversion accuracy. To remedy this, $\mathbf{1}_{\mathsf{ADS}}$ should be reduced.

Resolução ADC

A resolução de um conversor A/D é dada pela faixa dinâmica do sinal analógico (faixa de valores analógicos) e a quantidade de números existentes para a sua representação. Por exemplo, um sinal analógico com amplitudes máximas entre +10V e -10, quando representada por um número binário de 16 bits apresenta resolução igual a:

Resolução =
$$\frac{Vfs}{2^{nbits}-1} = \frac{20}{2^{16}-1} = 0,305 \, mV$$

ADC

Condicionamento Sinal Analógico - Divisor de Tensão

A tensão de saída, V_{out} , é dada pela equação

$$V_{out} = \frac{R_2}{R_1 + R_2} \cdot V_{in}$$

Condicionamento Sinal Analógico - Proteção com Zener

Referências

Datasheet STM32F030xx disposnível em www.st.com

