Anotacja korpusów oraz osadzenia słów i tekstów Część II: Modele przestrzeni wektorowych

Autorzy: Oliwer Krupa, Adam Bednarski, Jan Masłowski, Łukasz Lenkiewicz October 22, 2024

Contents

1	Wo	rd Embeddings	3
	1.1	Osadzenia słów w anotowanym korpusie (Word2Vec i Fasttext)	9
	1.2	Wizualizacja danych za pomocą t-SNE	9
	1.3	Porównanie k-najbardziej podobnych słów dla dwóch modeli	9
	1.4	Dyskusja wyników	,
2 To	Tex	Text Embeddings	
	2.1	Osadzenia zdań / tekstów (Fasttext i TF-IDF)	į
	2.2	Wizualizacja osadzeń tekstów za pomocą t-SNE	4
	2.3	Klasteryzacja osadzeń anotowanych zdań	4
	2.4	Dyskusja wyników	4

1 Word Embeddings

1.1 Osadzenia słów w anotowanym korpusie (Word2Vec i Fasttext)

Zadanie polegało na wykonaniu osadzeń słów z wykorzystaniem co najmniej dwóch różnych modeli. Wybraliśmy następujące modele osadzeń:

• Word2Vec:

- dla języka polskiego: https://dsmodels.nlp.ipipan.waw.pl
- dla języka angielskiego: https://radimrehurek.com/gensim/index.html

• Fasttext:

- dla języka polskiego: https://huggingface.co/clarin-pl/fastText-kgr10
- dla języka angielskiego: https://fasttext.cc

1.2 Wizualizacja danych za pomocą t-SNE

Dane zostały zwizualizowane za pomocą techniki t-SNE, z wykorzystaniem interaktywnych wykresów. Każdy punkt na wykresie odpowiada słowu z anotacją. Po najechaniu na punkt można odczytać zarówno słowo, jak i przypisaną do niego etykietę.

1.3 Porównanie k-najbardziej podobnych słów dla dwóch modeli

Dla każdego z modeli (Word2Vec i Fasttext) wygenerowano listy k-najbardziej podobnych słów w oparciu o osadzenia zaanotowanych słów. Następnie porównano listy podobieństw, uwzględniając różnice w reprezentacjach przestrzeni wektorowych.

1.4 Dyskusja wyników

Otrzymane wyniki pokazują różnice w sposobie, w jaki modele Word2Vec i Fasttext modelują przestrzeń wektorową. Obserwowane różnice w podobieństwach między słowami mogą wynikać z różnych metod treningu oraz charakterystyki korpusów użytych do trenowania modeli.

2 Text Embeddings

2.1 Osadzenia zdań / tekstów (Fasttext i TF-IDF)

Dla osadzeń całych zdań i tekstów zastosowano dwa modele:

- Fasttext (wykorzystano modele z wcześniejszego ćwiczenia),
- TF-IDF z biblioteki sklearn.

2.2 Wizualizacja osadzeń tekstów za pomocą t-SNE

Podobnie jak w przypadku osadzeń słów, zastosowano t-SNE do wizualizacji osadzeń tekstów, z odniesieniem do etykiet anotacji. Wykresy mają interaktywny charakter, umożliwiając użytkownikowi odczytanie pełnego zdania i jego anotacji po najechaniu na punkt.

2.3 Klasteryzacja osadzeń anotowanych zdań

Osadzenia zdań zostały poddane klasteryzacji z wykorzystaniem algorytmu HDBSCAN, a wyniki klasteryzacji przedstawiono w zredukowanej przestrzeni, z wykorzystaniem t-SNE. Interaktywne wykresy umożliwiają przeglądanie przypisanych klastrów i przypisanych do nich zdań.

2.4 Dyskusja wyników

Wyniki klasteryzacji oraz wizualizacji t-SNE pokazują, że różne modele osadzania zdań (Fasttext i TF-IDF) generują różne reprezentacje przestrzeni. TF-IDF jest bardziej czuły na częstość występowania słów, natomiast Fasttext efektywniej modeluje podobieństwa semantyczne, co jest szczególnie widoczne w wynikach klasteryzacji. Różnice te mogą wpływać na wydajność modeli w zadaniach klasyfikacji.