

Ministère de l'enseignement supérieur et la recherche scientifique

Université IBN-Khaldoun

Faculté des mathématiques et de l'informatique

Département de l'informatique

Licence ISIL

Système d'aide à la décision

Introduction aux méthodes multicritères (Les méthodes de sur-classement)

Chargé de module :

Mr. Dr. Mohamed_Amine DAOUD

E-mail: amine_dam@yahoo.fr

2024-2025

La méthode ELECTRE II

La méthode ELECTRE II relève de la problématique γ (Classement). Elle vise a munir l'ensemble A des actions potentielles d'une structure de préordre afin de faciliter le choix. En résumé, cette méthode a pour but de classer les actions potentielles, des "meilleures" jusqu'aux « moins bonnes »

La relation de sur-classement

La méthode ELECTRE II utilise, tout comme la méthode ELECTRE I, une relation de sur-classement. Cependant, la distinction est faite entre deux sortes de sur-classement :

- Le sur-classement fort, qui repose sur des bases solides et qui est avancé avec une grande certitude;
- Le sur-classement faible, qui repose sur des bases moins solides et qui est avancé avec une faible certitude.

Les Méthodes de type ELECTRE:

Méthode de **classement** de variantes fondée sur les mêmes concepts de base que **ELECTRE I**, c'est- à-dire: CONCORDANCE & DISCORDANCE.

• La notion de concordance dans ELECTRE II est quasi-identique à celle décrite dans le cadre de ELECTRE I,

Cette démarche plus fine (nécessitant par contre un certain nombre d'informations complémentaires) conduit à une comparaison de sur-classements de variantes plus riche que dans ELECTRE I.

Les Méthodes de type ELECTRE:

Ainsi, les cas suivants de sur-classement de variantes peuvent se présenter:

```
    i → j ⇒ dominance Forte de i sur j
    i → j ⇒ dominance faible de i sur j
    I ? J ⇒ incomparabilité entre i & j
```

Occasionnellement, selon les seuils choisis par le décideur, des circuits (Forts ou faibles) sont susceptibles d'apparaître sur le graphe de sur-classements.

Principe de la méthode

Comme pour ELECTRE I, la variante i domine la variante j si:

A. la concordance est «suffisamment élevée»,

ET

B. la **discordance** «pas trop importante».

L'interprétation de «suffisamment élevée» et de «pas trop importante» conduira à la notion de sur-classements Forts et faibles.

Principe de la méthode

CONCORDANCE

Le calcul des indices de concordance C(i,j) est identique à celui d'ELECTRE I, par contre, il est défini, dans ELECTRE II, trois seuils distincts de concordance: SC1, SC2 & SC3, d'exigences décroissantes:

$$1 \ge SC1 \ge SC2 \ge SC3 > 0$$

Une condition supplémentaire vient s'ajouter à ces deux exigences:

$$\frac{P(i, j)+}{P(i, j)-} \ge 1$$

Cette condition exprime que le nombre pondéré de critères pour lesquels $i \rightarrow j [P(i,j)+]$ doivent être > au nombre pondéré de critères pour lesquels $j \rightarrow i [P(i,j)-]$. (Distinction des valeurs égalitaires).

Principe de la méthode

DISCORDANCE

Une des caractéristiques d'ELECTRE II par rapport à ELECTRE I est d'éviter le recours aux échelles des critères pour le calcul de la discordance (ces échelles, associées à chaque critère, utilisées dans le calcul de la valeur normée de l'indice de discordance pouvant induire certains biais logiques).

Deux seuils de discordance, **par critère**, sont ainsi définis dans ELECTRE II; soit pour le critère k: $S_{D1}[k] \& S_{D2}[k]$, avec comme condition: Echelle max[k] > $S_{D1}[k] > S_{D2}[k] > 0$

Il s'agit alors de comparer, pour chaque critère discordant (relativement au postulat $i\rightarrow j$), sa discordance absolue par rapport au couple de seuils S_{D1} & S_{D2} de ce critère.

Surclassements

Sur la base des indices normés de concordance et de la discordance absolue (critères discordants), et de leurs seuils associés, il est défini que:

A. i surclasse Fortement j (i \rightarrow j), si:

$$\frac{P(i,j)+}{P(i,j)-} \ge 1$$
et
$$C(i,j) \ge Sc_1$$
et
$$D(i,j)[k] \le S_{D2}[k]$$

$$\frac{P(i,j)+}{P(i,j)-} \ge 1$$
et

$$C(i,j) \ge Sc_2$$
et

$$D(i,j)[k] \le S_{D1}[k]$$

B. i surclasse faiblement j (i \rightarrow j), si:

$$\frac{P(i,j)+}{P(i,j)-} \ge 1$$

$$et$$

$$C(i,j) \ge S_{C3}$$

$$et$$

$$D(i,j)[k] \le S_{D2}[k]$$

pour tous critères [k] discordants

Surclassements

Effectué pour tous couples de variantes (i,j) prises deux à deux, la démarche exposée ci-dessus permet de construire le graphe (partiel) de sur-classements:

- Sur-classements Forts: —
- Sur-classements faibles: ----

Exploitation des relations de sur-classements

- La proposition d'un classement final se base en grande partie sur le graphe de sur-classement fort GF.
- Comme pour la méthode **ELECTRE I**, les circuits sont tout d'abord supprimés en créant des actions virtuelles résumant l'ensemble des actions du circuit en un seul nœud.
- A chaque nouvelle étape dans la construction de ce classement, les actions déjà classées sont enlevées progressivement de GF . Soient
 - – D l'ensemble des actions non surclassées dans GF
 - – U le sous-ensemble de D des actions reliées entre elle dans le graphe de sur-classement faible Gf
 - – B les actions de U qui ne sont pas surclassées dans U.

Exploitation des relations de surclassements

• Les meilleures actions à ce moment là sont alors celles de D \ U (meilleurs au sens du surclassement fort, et pas concernées par des relations de sur-classement faible) et B (celles "en tête" au sens du sur-classement faible si un départage est nécessaire).

• Le classement se poursuit alors en enlevant des actions de D\U et B de GF est en continuant tant qu'il reste des actions à classer.

• L'exemple traite du choix d'un projet, parmi 6 projets concurrents pour la réalisation d'une raffinerie. Chaque projet est évalué sur la base de 5 critères environnementaux

• Cr1: Nuisance sonore

Cr2: Séparation du territoire

Cr3: Pollution de l'air

Cr4: Impact sur l'aménagement du territoire

Cr5: Impact sur les activités récréatives

L'importance de chaque critère dans la prise de décision est traduite par un poids kj tel que

Critères	Cr1	Cr2	Cr3	Cr4	Cr5
Poids (Kj)	3	2	3	1	1

- Chaque projet est évalué en fonction des critères retenus à l'aide d'une échelle qualitative et des scores. Plus le score est élève, plus les impacts du projet sur l'environnement sont moindres.
- Le tableau de performance est donné dans le tableau suivant :

Critères	Cr1	Cr2	Cr3	Cr4	Cr5
P1	10	20	5	10	16
P2	0	5	5	16	10
P3	0	10	0	16	7
P4	20	5	10	10	13
P5	20	10	15	10	13
P6	20	10	20	13	13

La problématique à résoudre est de choisir le sous-ensemble de projets avec le moins d'impacts sur l'environnement. :

La matrice des indices C+ et C=:

 \mathbf{C} +

Critères	P1	P2	P3	P4	P5	P6
P1	-	0,6	0.9	0.3	0.3	0.3
P2	0.1	-	0.4	0.1	0.1	0.1
P3	0.1	0.2	-	0.3	0.1	0.1
P4	0.6	0.7	0.7	-	0.0	0.0
P5	0.6	0.9	0.7	0.5	-	0.0
P6	0.7	0.9	0.7	0.6	0.4	-

$$C^+(P_1, P_2) = \frac{3+2+0+0+1}{10} = 0.6$$

$$C^+(P_2, P_1) = \frac{O + O + O + 1 + O}{10} = 0.1$$

$\mathbf{C} =$

Critères	P1	P2	P3	P4	P5	P6
P1	-	0.3	0.0	0.1	0.1	0.0
P2	0.3	-	0.4	0.2	0.0	0.0
P3	0.0	0.4	-	0.0	0.2	0.2
P4	0.1	0.2	0.0	-	0.5	0.4
P5	0.1	0.0	0.2	0.5	-	0.6
P6	0.0	0.0	0.2	0.4	0.6	-

$$C^{=}(P_1, P_4) = \frac{O + O + O + 1 + O}{10} = 0.1$$

$$C^{=}(P_3, P_1) = \frac{O + O + O + O + O}{10} = 0.0$$

La matrice des indices de concordance est donnée par :

$$Concordance = C^+ + C^=$$

Critères	P1	P2	P3	P4	P5	P6
P1	-	0.9	0.9	0.4	0.4	0.3
P2	0.4	-	0.8	0.3	0.1	0.1
P3	0.1	0.6	-	0.3	0.3	0.3
P4	0.7	0.9	0.7	-	0.5	0.4
P5	0.7	0.9	0.9	1.0	-	0.6
P6	0.7	0.9	0.9	1.0	1.0	-

La matrice de discordance est obtenue comme suit :

Critères	Cr1	Cr2	Cr3	Cr4	Cr5	
P1	-	0.3	0.3	0.5	0.5	0.75
P2	0.75	-	0.25	1.0	1.0	1.0
P3	0.5	0.25	-	1.0	1.0	1.0
P4	0.75	0.3	0.3	-	0.25	0.5
P5	0.5	0.3	0.3	0.0	_	0.25
P6	0.5	0.15	0.15	0.0	0.0	-

On commence par déterminer les coefficients C+/C-

C+

Critères	P1	P2	P3	P4	P5	P6
P1	-	0,6	0.9	0.3	0.3	0.3
P2	0.1	-	0.4	0.1	0.1	0.1
P3	0.1	0.2	-	0.3	0.1	0.1
P4	0.6	0.7	0.7	-	0.0	0.0
P5	0.6	0.9	0.7	0.5	-	0.0
P6	0.7	0.9	0.7	0.6	0.4	-

C-

Critères	P1	P2	P3	P4	P5	P6
P1	-	0.1	0.1	0.6	0.6	0.7
P2	0.6	-	0.2	0.7	0.9	0.9
P3	0.9	0.4	-	0.7	0.7	0.7
P4	0.3	0.1	0.3	-	0.5	0.6
P5	0.3	0.1	0.1	0.0	-	0.4
P6	0.3	0.1	0.1	0.0	0.0	-

C+/C-

Critères	P1	P2	P3	P4	P5	P6
P1	-	1	1	0	0	0
P2	1	-	1	0	0	0
P3	0	0	-	0	0	0
P4	1	1	1	-	0	0
P5	1	1	1	1	-	0
P6	1	1	1	+inf	+inf	-

Relation de sur-classement

Nous avons maintenant toutes les informations nécessaires pour réaliser le test de concordance et le test de non discordance.

On fixe le seuil de concordance c=0.75. Ce test est satisfait si $C_{ik} = 0.75$. On fixe le seuil de non discordance d=0.25. Ce test est satisfait si $D_{ik} = 0.25$.

On calcule la matrice des relations de sur-classement, en utilisant les seuils suivants :

$$c+ = 0.7; c= = 0.5; c- = 0.3;$$

 $d1 = 0.5$ $d2 = 0.3.$

Le symbole S^F désigne la relation de sur-classement fort, le symbole S^f désigne la relation de sur-classement faible et \times désigne l'absence de relation de sur-classement entre les deux actions.

Critères	P1	P2	P3	P4	P5	P6
P1	-	1	1	0	0	0
P2	1	-	1	0	0	0
P3	0	0	-	0	0	0
P4	1	1	1	-	0	0
P5	1	1	1	1	-	0
P6	1	1	1	+inf	+inf	-

Critèr es	P1	P2	Р3	P4	P5	P6
P1	-	0.9	0.9	0.4	0.4	0.3
P2	0.4	-	0.8	0.3	0.1	0.1
P3	0.1	0.6	-	0.3	0.3	0.3
P4	0.7	0.9	0.7	-	0.5	0.4
P5	0.7	0.9	0.9	1.0	-	0.6
P6	0.7	0.9	0.9	1.0	1.0	-

Critè res	P1	P2	P3	P4	P5	P6
P1	-	0.3	0.3	0.5	0.5	0.75
P2	0.75	-	0.25	1.0	1.0	1.0
P3	0.5	0.25	-	1.0	1.0	1.0
P4	0.75	0.3	0.3	-	0.25	0.5
P5	0.5	0.3	0.3	0.0	-	0.25
P6	0.5	0.15	0.15	0.0	0.0	-

Fort

$$\frac{P(i,j)+}{P(i,j)-} \ge 1$$

$$et$$

$$C(i,j) \ge Sc_2$$

$$et$$

$$D(i,j)[k] \le S_{D1}[k]$$

$$C_{ik} = 0.75$$

 $c+ = 0.7;$
 $c= = 0.5;$
 $c- = 0.3;$
 $D_{ik} = 0.25$
 $D1 = 0.6$
 $D2 = 0.5$

Critères	P1	P2	P3	P4	P5	P6
P1	/	F	F	X	X	X
P2	X	/	F	X	X	X
P3	X	X	/	X	X	X
P4	F	F	F	/	X	X
P5	F	F	F	F	/	X
P6	F	F	F	F	F	/

Faible

$$\frac{P(i,j)+}{P(i,j)-} \ge 1$$
et
$$C(i,j) \ge Sc3$$
et
$$D(i,j)[k] \le SD2[k]$$

C+/C-

Concordance

Discordance

Critères	P1	P2	P3	P4	P5	P6
P1	-	1	1	0	0	0
P2	1	-	1	0	0	0
P3	0	0	-	0	0	0
P4	1	1	1	-	0	0
P5	1	1	1	1	-	0
P6	1	1	1	+inf	+inf	-

Critèr es	P1	P2	Р3	P4	P5	P6
P1	-	0.9	0.9	0.4	0.4	0.3
P2	0.4	-	0.8	0.3	0.1	0.1
P3	0.1	0.6	-	0.3	0.3	0.3
P4	0.7	0.9	0.7	-	0.5	0.4
P5	0.7	0.9	0.9	1.0	-	0.6
P6	0.7	0.9	0.9	1.0	1.0	-

Critè res	P1	P2	P3	P4	P5	P6
P1	-	0.3	0.3	0.5	0.5	0.75
P2	0.75	-	0.25	1.0	1.0	1.0
P3	0.5	0.25	-	1.0	1.0	1.0
P4	0.75	0.3	0.3	-	0.25	0.5
P5	0.5	0.3	0.3	0.0	-	0.25
P6	0.5	0.15	0.15	0.0	0.0	-

Critères	P1	P2	P3	P4	P5	P6
P1	/	F	F	X	X	X
P2	X	/	F	X	X	X
P3	X	X	/	X	X	X
P4	F	F	F	/	X	X
P5	F	F	F	F	/	X
P6	F	F	F	F	F	/

Merci pour votre écoute

N'hésitez pas à creuser!