MA3205 AY24/25 Sem 2

by ngmh

2. Pairing, Products, and Relations

EP2.36 There is a bijection $F: \mathcal{P}(X) \to \{0,1\}^X$.

$$F(a)(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \in A \\ 1 & \text{if } x \not \in A \end{array} \right. \text{ which is } 1-1 \text{ and onto.}$$

D2.37 Cartesian Product Let F be a function with dom(F) as a set. $\prod F = \{f: f \text{ is a function} \land dom(f) = dom(F) \land \forall x \in dom(F) \ [f(x) \in F(x)]\}.$ If $F = \langle A_i : i \in I \rangle$, then

 $\prod F = \prod_{i \in I} A_i = \{f: f \text{ is a function } \wedge dom(f) = I \wedge \forall i \in I \ [f(i) \in A_i]\}$ **A2.38 Axiom of Choice** If $\langle A_i : i \in I \rangle$ is a sequence of sets such that

 $\forall i \in I \ [A_i \neq \emptyset], \text{ then } \prod_{i \in I} A_i \neq \emptyset$

4. The Natural Numbers

D4.17 Extenders Let $\mathbf{FN} = \{\sigma : \sigma \text{ is a function } \land \exists n \in \mathbb{N} \ [dom(\sigma) = n]\}$ be the proper class of all functions whose domain is some natural number. An extender is a function $\mathbf{E} : \mathbf{FN} \to \mathbf{V}$. When you input $\sigma = \{\langle 0, \sigma(0) \rangle, ..., \langle n, \sigma(n) \rangle\}$ into $\mathbf{E}, \mathbf{E}(\sigma)$ outputs the next value $\sigma(S(n))$.

D2.45 Addition

- Define $\langle f_m: m\in \mathbb{N} \rangle$ such that $f_m: \mathbb{N} \to \mathbb{N}$ is the unique function such that $f_m(0)=m$ and $\forall n\in \mathbb{N}$ $[f_m(S(n))=S(f_m(n))]$
- In other words, define the extender $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$ as follows. For any $\sigma \in \mathbf{FN}$, if $dom(\sigma) = 0$

 $\mathbf{E}(\sigma) = \left\{ \begin{array}{ll} m & \text{if } dom(\sigma) = 0 \\ S(\sigma(\bigcup dom(\sigma))) & \text{if } dom(\sigma) \neq 0 \end{array} \right.$

- $f_m: \mathbb{N} \to \mathbf{V}$ is the unique function satisfying $\forall n \in \mathbb{N} \ [f_m(n) = \mathbf{E}(f_m \upharpoonright n)].$
- Then $m + n = f_m(n)$, and m + S(n) = (m + n) + 1.

5. Comparing Sizes of Sets

D5.1 Equinumerosity $A \approx B$ if there exists $f: A \to B$ which is both 1-1 and onto.

F5.2 $\mathcal{P}(A) \approx \{0, 1\}^A$

D5.4 $A \lesssim B$ means there exists $f: A \to B$ which is 1-1 and B is at least as big as A. If $A \lesssim B$ but $A \not\approx B$, then $A \lesssim B$. It is not possible to find $g: A \to B$ that is both 1-1 and onto. B is strictly bigger in size than A.

L5.5 If $f:A \to B$ and $g:B \to C$ are 1-1 functions then $g \circ f:A \to C$ is 1-1.

L5.6 For sets A, B, C

1. $A \lesssim A$

2. If $A \lesssim B$ and $B \lesssim C$ then $A \lesssim C$

3. If $A \approx B$ and $B \approx C$ then $A \approx C$

T5.7 Cantor For any set $X, X \leq \mathcal{P}(X)$.

5.2 The Schröder Bernstein Theorem

T5.11 Schröder-Bernstein For any sets A and B, if $A\lessapprox B$ and $B\lessapprox A$, then $A\thickapprox B$.

E5.12 Suppose $f:X\to Y$ is a 1-1 function. For any $Z\subseteq X, Z\approx Im_f(Z)$. **E5.13** Suppose $I\subseteq A$ and $J\subseteq B$. If $I\approx J$ and $(A\setminus I)\approx (B\setminus J)$, then $A\approx B$.

E5.14 If $n \in \mathbb{N}$ and $A \approx S(n)$, then $\forall a \in A, (A \setminus \{a\} \approx n)$.

E5.15 If $n \in \mathbb{N}$ and $A \approx n$, then if $a \notin A$, $(A \cup \{a\}) \approx S(n)$.

E5.16 Let $n, m \in \mathbb{N}$. Then

- 1. If $f:n \to n$ is 1-1, then f is onto. There is no 1-1 function from S(n) to n.
- 2. If $m \in n$, then $m \lesssim n$. 3. If $x \subseteq n$, then $x \lesssim n$.
- 4. $n \lesssim \mathbb{N}$
- 5. If $\widetilde{A} \approx n$, $B \approx m$, and $A \cap B = \emptyset$, then $(A \cup B) \approx (n+m)$.

D5.19 A set is finite if there exits $n \in \mathbb{N}$ such that $n \approx A$. A is infinite if it is not finite. A is countable if $A \lesssim \mathbb{N}$. A is uncountable if it is not countable.

L5.20 If $f:A\to B$ is a 1-1 function, then for any $X,Y\subseteq A$, if $Im_f(X)=Im_f(Y)$, then X=Y.

L5.21 For sets A, B, C, D

1. If $A \lesssim B$ then $\mathcal{P}(A) \lesssim \mathcal{P}(B)$

2. If $A \lesssim B$ then $A^C \lesssim B^C$

3. If $A \lesssim B, C \lesssim D$, and $B \cap D = \emptyset$, then $A \cup C \lesssim B \cup D$

L5.22 If $n \in \mathbb{N}$ and $A \lesssim n$, then A is finite.

L5.23 If $n \in \mathbb{N}$ and there exists an onto function $\sigma : n \to A$, then $A \lesssim n$

L5.24 If A and B are finite, then so is $A \cup B$.

T5.25 If A is a finite set and f is a function with dom(f) = A then

1. If $X \subseteq A$, then $X \lesssim A$

2. ran(f) is finite and $ran(f) \lesssim A$

3. If $\forall a \in A \ [a \text{ is finite}] \text{ then } \cup A \text{ is finite}$

4. $\mathcal{P}(A)$ is finite

E5.26 If $A \subseteq \mathbb{N}$ is finite and nonempty, $max(A) = \bigcup A$

E5.27 If $A \lesssim C$ and $B \lesssim D$, then $A \times B \lesssim C \times D$. If A and B are finite, $A \times B$ and A^B are finite.

E5.28 If I is a finite set and $\langle A_i:i\in I\rangle$ is a sequence of sets such that $\forall i\in I\ [A_i \text{ is finite}]$, then $\prod_{i\in I}A_i$ is finite.

E5.30 For any function, $dom(f) \approx f$.

6. Orders

Quasi, Partial, Linear, and Well-Orders

D6.2 Quasi Order Reflexive. Transitive

1. $\forall x \in X [x \le x]$

2. $\forall x, y, z \in X [(x \le y \land y \le z) \Rightarrow x \le z]$

D6.4 Partial Order Irreflexive, Transitive

1. $\forall x \in X [x \not< x]$

2. $\forall x, y, z \in X [(x < y \land y < z) \Rightarrow x < z]$

D6.5 Linear Order Irreflexive, Transitive, Comparable

1. $\forall x \in X [x \triangleleft x]$

2. $\forall x, y, z \in X [(x \triangleleft y \land y \triangleleft z) \Rightarrow x \triangleleft z]$

3. $\forall x, y \in X [x = y \lor x \lhd y \lor y \lhd x]$

F6.6 Suppose $\langle X,< \rangle$ is a partial order. Define a relation \leq on X by $x\leq y$ iff x< y or x=y. Then $\langle X,\leq \rangle$ is a quasi order where

 $\forall x, y \in X \ [(x \le y \land y \le x) \Rightarrow x = y].$

C6.8 If $\langle X, < \rangle$ is a partial order and $Y \subseteq X$ then $(Y \times Y) \cap <$ is a partial order on Y, as a shorthand for $\langle Y, ((Y \times Y) \cap <) \rangle$. Restricted to Y then Z is the same as restricting directly to Z.

D6.9 Maximal / Minimal Element $x \in X$ is maximal if $\forall y \in X \ [x \nleq y]$. $x \in X$ is minimal if $\forall y \in X \ [y \nleq x]$. There could be multiple in a partial order.

L6.10 A finite non-empty partial order has both a maximal and minimal element. **D6.11** $C \subseteq X$ is a chain if $\forall x,y \in C$ [x and y are comparable]. $A \subseteq X$ is an antichain if $\forall x,y \in A$ [$x \neq y \Rightarrow x$ and y are incomparable]. A chain is maximal if there is no chain $C' \subseteq X$ where $C \subsetneq C'$. \emptyset and singletons are chains and antichains.

L6.12 For a finite partial order, every chain or antichain is contained in a maximal

D6.13 Well-Order Every non-empty subset has a minimal element. $\forall A \subseteq X \ [A \neq \emptyset \Rightarrow \exists a \in A \ \forall a' \in A \ [a \leq a']].$

L6.15 (AC) A linear order $\langle X, < \rangle$ is a well-order iff there is no $f: \mathbb{N} \to X$ where $\forall n \in \mathbb{N} \ [f(n) > f(n+1)].$

D6.16 For a linear order $\langle X, < \rangle$ $pred_{\langle X, < \rangle}(x) = \{x' \in X : x' < x\}$, or the set of predecessors of x in X for the ordering <. A subset $A \subseteq X$ is downwards closed if $\forall a \in A \ \forall x \in X \ [x < a \Rightarrow x \in A]$. The predecessor subset is downwards closed along with the entire set.

F6.17 For a linear order $\langle X, < \rangle$, if $A \subseteq X$ is downwards closed,

 $\forall a \in A \ pred_{\langle A, < \rangle}(a) = pred_{\langle X, < \rangle}(a).$

F6.19 Let $\langle X, < \rangle$ be a well-order and A a downwards closed subset of X. Etiher A = X or $\exists x \in X$ such that $A = pred_{\langle X, < \rangle}(x)$.

E6.20 If $\langle X, < \rangle$ is a well-order and $A \subseteq X$, $\langle A, < \rangle$ is a well-order.

E6.21 Let $\langle X, < \rangle$ be a linear order. $f: X \to X$ is expansive if

 $\forall x \in X \ [f(x) \geq x]$, and order-preserving if

 $\forall x,y \in X \ [x < y \Rightarrow f(x) < f(y)]. \ \text{If} \ (X,<) \ \text{is a well-order, every order-preserving} \ f \ \text{is expansive}.$

New orders from old

L6.23 Suppose X is a set and $\langle Y, \prec \rangle$ and $\langle Z, \lhd \rangle$ are partial orders. Suppose $f: X \to Y$ and $g: X \to Z$ are functions. Define < on X by stipulating that $\forall x, x' \in X, \, x < x' \leftrightarrow (f(x) \prec f(x') \text{ or } (f(x) = f(x') \text{ and } g(x) \lhd g(x')))$. Then,

- 1. < is a partial order on X
- 2. if $\langle Y, \prec \rangle$ and $\langle Z, \lhd \rangle$ are both linear orders and $\forall x, x' \in X \ [(f(x) = f(x') \ and \ g(x) = g(x')) \Rightarrow x = x']$ then < is also a linear order on X
- 3. similarly for well-orders

C6.24 Let X be a set and $\langle Y, \prec \rangle$ be a partial order. Suppose $f: X \to Y$ is a function. Define $<^*$ on X by $\forall x, x' \in X$, $x <^* x' \leftrightarrow f(x) \prec f(x')$. Then $<^*$ is a partial order on X. If f is 1-1 and \prec is a linear order on Y, then $<^*$ is a linear order on X. Similarly for well-orders. Use Y = Z, f = g, $\prec = \lhd$.

EP 6.25 Lexographic / **Dictionary Order** Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by setting $f(\langle m, n \rangle) = m$ and $g(\langle m, n \rangle) = n$ for all $\langle m, n \rangle \in \mathbb{N} \times \mathbb{N}$. By L6.23, the relation $<_{lex}$ defined on $\mathbb{N} \times \mathbb{N}$ by $\langle m, n \rangle <_{lex} \langle k, l \rangle \leftrightarrow (f(\langle m, n \rangle) \in f(\langle k, l \rangle) \ or \ (f(\langle m, n \rangle) = f(\langle k, l \rangle) \ and \ g(\langle m, n \rangle) \in g(\langle k, l \rangle))) \leftrightarrow (m \in k \ or \ (m = k \ and \ n \in l))$ is a well-order on $\mathbb{N} \times \mathbb{N}$.

D6.26 Suppose $\langle I,< \rangle$ is a well-order and X is a set. For $f,g\in X^I$, if $f\neq g$, define $\Delta(f,g)=min(\langle\{i\in I:f(i)\neq g(i)\},<\rangle)$. It is well-defined for the conditions mentioned above.

L6.27 Suppose $\langle X, \lhd \rangle$ is a linear order and $\langle I, < \rangle$ is a well-order. Define \prec on $X^I \ \forall f,g \in X^I$ by $f \prec g \leftrightarrow (f \neq g \ and \ f(\Delta(f,g)) \lhd g(\Delta(f,h)))$. Then \prec is a linear order on X^I .

D6.28

- $[\mathbb{N}]^n = \{a \in \mathcal{P}(\mathbb{N}) : a \approx n\}$, or subsets of the naturals equinumerous to n.
- $\mathbb{N}^n = \{ \sigma : \sigma \text{ is a function and } dom(\sigma) = n \wedge ran(\sigma) \subseteq \mathbb{N} \}$, or functions with domain n and range as a subset of the naturals.
- $[\mathbb{N}]^{<\omega}=\{a\in\mathcal{P}(\mathbb{N}):a \text{ is finite}\}$, or subsets of the naturals equinumerous to finite n.
- $\mathbb{N}^{<\omega}=\{\sigma:\sigma \text{ is a function and } dom(\sigma)\in\mathbb{N}\wedge ran(\sigma)\subseteq\mathbb{N}\}$, or functions with a finite domain and range as a subset of naturals.
- $[\mathbb{N}]^{<\omega} = \bigcup_{n \in \mathbb{N}} [\mathbb{N}]^n$ and $\mathbb{N}^{<\omega} = \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$.

EP6.29 $\langle \mathbb{N}, \in \rangle$ is a well-order. Define a linear order $<_{lex}$ on $\mathbb{N}^{\mathbb{N}}$ using L6.27. Since $2^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}$, $\langle 2^{\mathbb{N}}, <_{lex} \rangle$ is also a linear order. Define $F: \mathbb{N}^{<\omega} \to \mathbb{N}^{\mathbb{N}}$ as follows. $\sigma \in \mathbb{N}^{<\omega}$, $dom(\sigma) \in \mathbb{N}$ and $\sigma: dom(\sigma) \to \mathbb{N}$. Define $F(\sigma): \mathbb{N} \to \mathbb{N}$

 $\text{by } F(\sigma)(n) = \left\{ \begin{array}{ll} \sigma(n) & \text{if } n \in dom(\sigma) \\ dom(\sigma) & \text{if } n \notin dom(\sigma) \end{array} \right. \text{ for every } n \in \mathbb{N}. \ F \text{ is } 1-1.$

Since $<_{lex}$ is a linear order on $\mathbb{N}^\mathbb{N}$, by C6.24, $<_{lex}$ defined on $\mathbb{N}^{<\omega}$ by $\sigma <_{lex} \tau \leftrightarrow F(\sigma) <_{lex} F(\tau)$ is also a linear order. From EP2.36, we have a 1-1 and onto $F:\mathcal{P}(\mathbb{N})\to 2^\mathbb{N}$. We can induce

 $A <_{lex} B \leftrightarrow F(A) <_{lex} F(B)$ for $A, B \in \mathcal{P}(\mathbb{N})$. Since $[\mathbb{N}]^{<\omega} \subseteq \mathcal{P}(\mathbb{N})$, $([\mathbb{N}]^{<\omega}, <_{lex})$ is also a linear order.

E6.30 Let $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ be partial orders. Define $\langle X \times Y, \prec \rangle$ by $\langle x, y \rangle \lhd \langle x', y' \rangle \leftrightarrow (x \lessdot x' \land y \prec y')$. This is a partial order.

E6.31 A linear order $\langle X, < \rangle$ is dense if $\forall x, z \in X$ with $x < z, \exists y \in X$ such that x < y < z. $\langle \mathbb{N}^{\mathbb{N}}, <_{lex} \rangle$ is dense while $\langle 2^{\mathbb{N}}, <_{lex} \rangle$ is not dense.

E6.32 $<_{lex}$ on $\mathcal{P}(\mathbb{N})$ is defined by the 1-1 and onto F from EP2.36.

- 1. $\forall A, B \in \mathcal{P}(\mathbb{N}), A <_{lex} B \text{ iff } A \neq B \land min(A \triangle B) \in A$
- 2. $([\mathbb{N}]^{<\omega}\setminus\{\emptyset\},<_{lex})$ does not have any maximal or minimal elements
- 3. $\langle [\mathbb{N}]^{<\omega} \setminus \{\emptyset\}, <_{lex} \rangle$ is dense

6.3 Embeddings and Isomorphisms

 $\langle X, < \rangle$ is isomorphic to $\langle Im_f(X), \prec \rangle$.

D6.33 If $\langle X, \lhd \rangle$ and $\langle Y, \lhd \rangle$ are linear orders, $f: X \to Y$ is an isomorphism between them if f is 1-1 and onto and $\forall x,y \in X \ [x\lhd y \Leftrightarrow f(x) \lhd f(y)]$. Two linear orders are isomorphic if f exists which is an isomorphism.

L6.34 $\langle X, \prec \rangle$ and $\langle Y, \prec \rangle$ are linear orders. Suppose $f: X \to Y$ is an onto function such that $\forall x,y \in X \ [x \prec y \Rightarrow f(x) \prec f(y)].$ f is an isomorphism. **D6.35** $\langle X, \prec \rangle$ and $\langle Y, \prec \rangle$ are linear orders. $f: X \to Y$ is an embedding if $\forall x,x' \in X \ [x < x' \Leftrightarrow f(x) \prec f(x')]$ and f is 1-1. If there exists and embedding f, we say that $\langle X, \prec \rangle$ embeds into $\langle Y, \prec \rangle$ and $\langle X, \prec \rangle \hookrightarrow \langle Y, \prec \rangle$.

F6.36 $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are linear orders. If $f: X \to Y$ is a function such that $\forall x, x' \in X \ [x < x' \Rightarrow f(x) \prec f(x')]$, then f is an embedding.

F6.37 $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are linear orders. Suppose A and B are downwards closed subsets of X and Y. If $f: A \to B$ is an isomorphism from $\langle A, < \rangle$ to $\langle B, \prec \rangle$, then $\forall a \in A, f \upharpoonright pred_{\langle X, \prec \rangle}(a)$ is an isomorphism from $\langle pred_{\langle X, \prec \rangle}(a), < \rangle$ to $\langle pred_{\langle Y, \prec \rangle}(f(a)), \prec \rangle$.

T6.38 Suppose $\langle X, \lhd \rangle$ is a finite linear order. $\exists ! n \in \mathbb{N}$ such that $\langle X, \lhd \rangle$ is isomorphic to $\langle n, \in \rangle$. This isomorphism is unique.

T6.39 Suppose $\langle X, \triangleleft \rangle$ is an infinite linear order such that $\forall x \in X, pred_{\langle X, \triangleleft \rangle}$ is finite. $\langle X, \triangleleft \rangle$ is isomorphic to $\langle \mathbb{N}, \in \rangle$. The isomorphism from X to \mathbb{N} is unique. **CL6.40** $\forall x, y \in X$ $[x \triangleleft y \Rightarrow f(x) \in f(y)]$.

CL6.41 ran(f) is a downwards closed subset of (\mathbb{N}, \in) .

D6.42 A linear order $\langle X, \lhd \rangle$ has type omega ω if X is infinite and $\forall x \in X$, $pred_{\langle X, \lhd \rangle}(x)$ is finite.

7. Countable and Uncountable Sets

Countable Sets

C7.1 If $X \subseteq \mathbb{N}$ is infinite. $\langle X, \in \rangle$ is isomorphic to $\langle \mathbb{N}, \in \rangle$.

C7.2 If X is infinite and countable, then $X \approx \mathbb{N}$.

T7.3 There exist linear orders of type omega on $\mathbb{N} \times \mathbb{N}$, $[\mathbb{N}]^{<\omega}$, and $\mathbb{N}^{<\omega}$. Define $f: \mathbb{N} \to X$ to show infinite, then $g: X \to \mathbb{N}$ and $h: X \to X$. Define \prec as normal, and use it to show $pred_{\langle X, \prec \rangle}(x)$ is finite.

C7.4

- 1. $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$, $[\mathbb{N}]^{<\omega} \approx \mathbb{N}$, and $\mathbb{N}^{<\omega} \approx \mathbb{N}$
- 2. $\forall n \in \mathbb{N} \ [n > 1 \Rightarrow \mathbb{N}^n \ \land [\mathbb{N}]^{<\omega} \approx \mathbb{N}]$

L7.5 Suppose that $\langle A_n:n\in\mathbb{N}\rangle$ and $\langle f_n:n\in\mathbb{N}\rangle$ are sequences such that $\forall n\in\mathbb{N},\,f_n:A_n\to\mathbb{N} \text{ is }1-1.$ Then $\bigcup_{n\in\mathbb{N}}A_n$ is countable.

L7.6 (AC) A countable union of countable sets is countable. If $\langle A_n : n \in \mathbb{N} \rangle$ is a sequence of countable sets, then $\bigcup_{n \in \mathbb{N}} A_n$ is countable.

L7.8 The set of rationals \mathbb{Q} is countable, i.e. $\mathbb{Q} \to \mathbb{N}$.

E7.9 Let $\langle X, < \rangle$, $\langle Y, \lhd \rangle$ and $\langle Z, \prec \rangle$ be linear orders. Suppose $f: X \to Y$ and $g: Y \to Z$ are isomorphisms. $f^{-1}: Y \to X$ and $g \circ f: X \to Z$ also are.

E7.10 Define a sequence of relations $\langle \lhd_n : n \in \mathbb{N} \rangle$ by induction on $n \in \mathbb{N}$. Let \lhd_0 be \emptyset . Suppose \lhd_n is a relation on $[\mathbb{N}]^n$. Define \lhd_{n+1} as follows. Fix $a,b \in [\mathbb{N}]^{S(n)}$. If max(a) < max(b), $a \lhd_{n+1} b$. If max(a) = max(b), $a \cap max(b)$ and $b \cap max(b)$ are in $[\mathbb{N}]^n$. Then if $a \cap max(a) \lhd_n b \cap max(b)$, $a \lhd_{n+1} b$. Now define $\langle \lhd_n : n \in \mathbb{N} \rangle$ by induction. $\lhd_0 = \emptyset$. Suppose \lhd_n is a relation on \mathbb{N}^n . Define \lhd_{n+1} as follows. Fix $\sigma, \tau \in \mathbb{N}^{n+1}$. $ran(\sigma)$ and $ran(\tau)$ are finite non-empty subsets of \mathbb{N} . If $max(ran(\sigma)) < max(ran(\tau))$, $\sigma \lhd_{n+1} \tau$. $\sigma \upharpoonright n$ and $\tau \upharpoonright n$ are members of \mathbb{N}^n . If $max(ran(\sigma)) = max(ran(\tau))$ and if $\sigma \upharpoonright n \lhd_n \tau \upharpoonright n$, then $\sigma \lhd_{n+1} \tau$. If $max(ran(\sigma)) = max(ran(\tau))$, $\sigma \upharpoonright n = \tau \upharpoonright n$, and $\sigma(n) < \tau(n)$, then $\sigma \lhd_{n+1} \tau$.

1. $\langle \triangleleft_n : n \in \mathbb{N} \rangle$ is well-defined, $\forall n \in \mathbb{N}, \langle [\mathbb{N}]^n, \triangleleft_n \rangle$ is a linear order of type ω .

2. $\langle \prec_n : n \in \mathbb{N} \rangle$ is well-defined, $\forall n \in \mathbb{N}, \langle \mathbb{N}^n, \prec_n \rangle$ is a linear order of type ω .

3. We can then prove (2) and (3) of T7.3 without AC.

E7.11 Extenders for the following:

1. $f(0) = f(1) = 1, f(n) = f(n-1) + f(n-2) \ \forall n > 1$ $\mathbf{E}(\sigma) = \begin{cases} 1 & dom(\sigma) \in 2 \\ \sigma(\bigcup dom(\sigma)) + \sigma(\bigcup \bigcup dom(\sigma)) \end{cases}$ for valid $dom(\sigma)$ etc. otherwise

2. $f(n) = \triangleleft_n \text{ on } [\mathbb{N}]^n$

3. $f(n) = \prec_n \text{ on } \mathbb{N}^n$

7.2 Sets of Size Continuum

F7.12 If $x,y \in \mathbb{R}$ and x < y, there is a $q \in \mathbb{Q}$ with x < q < y. L7.13 $2^{\mathbb{N}} \lesssim \mathbb{R} \lesssim \mathcal{P}(\mathbb{O})$

T7.14 These sets are equinumerous: $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N} \times \mathbb{N})$, $\mathcal{P}(\mathbb{N})$, $\mathcal{P}(\mathbb{Q})$, \mathbb{R} . $2^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}} \subseteq \mathcal{P}(\mathbb{N} \times \mathbb{N})$. So $2^{\mathbb{N}} \lessapprox \mathbb{N}^{\mathbb{N}} \lessapprox \mathcal{P}(\mathbb{N} \times \mathbb{N})$. $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$. By L5.22, $\mathcal{P}(\mathbb{N}) \lessapprox \mathcal{P}(\mathbb{N} \times \mathbb{N}) \lessapprox \mathcal{P}(\mathbb{N})$ so $\mathcal{P}(\mathbb{N}) \approx \mathcal{P}(\mathbb{N} \times \mathbb{N})$. By L7.8, $\mathbb{Q} \lessapprox \mathbb{N}$. By F5.2, $2^{\mathbb{N}} \lessapprox \mathbb{R} \lessapprox \mathcal{P}(\mathbb{Q}) \lessapprox \mathcal{P}(\mathbb{N}) \lessapprox 2^{\mathbb{N}}$. We also have $2^{\mathbb{N}} \lessapprox \mathbb{N}^{\mathbb{N}} \lessapprox \mathcal{P}(\mathbb{N} \times \mathbb{N}) \lessapprox 2^{\mathbb{N}}$. D7.15 A set X has size continuum or size \mathbf{c} if $X \approx \mathcal{P}(\mathbb{N})$.

L7.16 $(r,s) = \{x \in \mathbb{R} : r < x < s\}$ has size \mathfrak{c} . The function

$$f(x) = \left\{ egin{array}{ll} rac{x-t}{s-x} & ext{if } x \geq t \\ rac{x-t}{x-r} & ext{if } x < t \end{array}
ight.$$
 is well-defined and $1-1$ and onto.

E7.17 Let $l \subseteq \mathbb{R}^2$ be a line. Define $\phi : \mathbb{R} \to l$ as $\phi(x) = \langle x, mx + c \rangle$ and $\phi(y) = \langle c, y \rangle$ for the different line cases. $l \approx \mathbb{R}$. For a < b and c < d, let $m = \frac{d-c}{b-c}$ and p = c - ma. Then $f : (a, b) \to (c, d)$ is 1 - 1 and onto.

L7.21 If $A \lesssim B$ and $A \neq \emptyset$, then there exists an onto $q: B \to A$.

L7.22 (AC) Suppose A and B are sets and $f:B\to A$ is onto. Then $A\lessapprox B$. **L7.23** Let A,B,C be sets and suppose $f:C\to B$ is onto. Then $A^B\lessapprox A^C$. **C7.24** If $B\thickapprox C$, then $A^B\thickapprox A^C$.

C7.25 If $A \lesssim D$, $B \lesssim C$, and $B \neq \emptyset$, then $A^B \lesssim D^C$.

L7.26 There exists a sequence $\langle A_n : n \in \mathbb{N} \rangle$ of pairwise disjoint infinite subsets of \mathbb{N} such that $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$. Define $B_n = \{\langle n, m \rangle : m \in \mathbb{N} \}$, and let $A_n = f^{-1}(B_n)$.

L7.27 Suppose A,B, and C are sets with $B\cap C=\emptyset$. Then $A^B\times A^C\approx A^{B\cup C}.$ Define $F:A^B\times A^C\to A^{B\cup C},$ $F(f,g)=f\cup g,$ and show bijectivity.

C7.28 $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$. Define $A \cup B = \mathbb{N}, A \cap B = \emptyset$. Then $\mathbb{N}^A \approx \mathbb{N}^\mathbb{N} \approx \mathbb{N}^B$ and $\mathbb{N}^\mathbb{N} \times \mathbb{N}^\mathbb{N} \approx \mathbb{N}^A \times \mathbb{N}^B \approx \mathbb{N}^{A \cup B} \approx \mathbb{N}^\mathbb{N}$.

C7.29 \mathbb{R}^2 has size c. This can be used to count lines and planes. Use $\mathbb{R}^2 \approx \mathbb{R}^{\{0\}} \times \mathbb{R}^{\{1\}} \approx \mathbb{R} \times \mathbb{R} \approx \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}} \approx \mathbb{R}$.

EP7.30 Let \mathfrak{L} denote the set of lines in \mathbb{R}^2 . $\mathfrak{L} = \mathfrak{L}_0 \cup \mathfrak{L}_1$ where

 $\mathfrak{L}_0 = \{l : l \text{ satisfies } y = mx + c, m, c, \in \mathbb{R}\}$ and

 $\mathfrak{L}_1=\{l:l \text{ satisfies } x=c,c,\in\mathbb{R}\}.$ Then $\mathfrak{L}_0pprox\mathbb{R}^2pprox\mathbb{R}$ and $\mathfrak{L}_1pprox\mathbb{R}$, so \mathfrak{L} has size \mathfrak{c} .

L7.31 Let A, B, C be sets. $A^{(B \times C)} \approx (A^B)^C$. Define $F: A^{(B \times C)} \to (A^B)^C$ using $F(f): C \to A^B$ as $F(f)(c)(b) = f(\langle b, c \rangle)$.

C7.32 $(\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$. Use $(\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \approx \mathbb{N}^{(\mathbb{N} \times \mathbb{N})}$, and $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.

C7.33 $\mathbb{R}^{\mathbb{N}}$ has size c. Use $\mathbb{R} \approx \mathbb{N}^{\mathbb{N}}$.

D7.34 A function $f:\mathbb{R} \to \mathbb{R}$ is continuous if for each $x \in \mathbb{R}$ and each $\epsilon > 0$, there exists $\delta > 0$ such that $Im_f((x - \delta, x + \delta)) \subseteq (f(x) - \epsilon, f(x) + \epsilon)$. A set $U \subseteq \mathbb{R}$ is an open interval if there exists $r, s \in \mathbb{R}$ such that

 $U = (r, s) = \{x \in \mathbb{R} : r < x < s\}$. $U \subseteq \mathbb{R}$ is open if it is the union of a collection of open intervals.

L7.35 There are only \mathfrak{c} many continuous functions from \mathbb{R} to \mathbb{R} .

L7.36 There are only \mathfrak{c} many open subsets of \mathbb{R} .

E7.37 $\mathbb{R}^{\mathbb{R}} \approx 2^{\mathbb{R}}$. First, $2^{\mathbb{R}} \subseteq \mathbb{R}^{\mathbb{R}}$, so $2^{\mathbb{R}} \lesssim \mathbb{R}^{\mathbb{R}}$. Next, define $f: \mathbb{R} \to \mathbb{R}$. $f \in \mathbb{R}^{\mathbb{R}}$, $f \subseteq \mathbb{R} \times \mathbb{R}$, $f \in \mathcal{P}(\mathbb{R} \times \mathbb{R})$. So $\mathbb{R}^{\mathbb{R}} \subseteq \mathcal{P}(\mathbb{R} \times \mathbb{R})$, and $\mathbb{R}^{\mathbb{R}} \lesssim \mathcal{P}(\mathbb{R} \times \mathbb{R}) \approx 2^{\mathbb{R} \times \mathbb{R}} \approx 2^{\mathbb{R}}$ as $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$.

E7.38 There are only countably many algebraic real numbers. Almost all real numbers are transcendental. $a \in \mathbb{R}$ is algebraic if there exists a non-zero polynomial $p(X) \in \mathbb{Z}[X]$ such that p(a) = 0. If a is not algebraic, it is transcendental.

E7.39 A function $f: \mathbb{R} \to \mathbb{R}$ is increasing if $\forall x, y, \in \mathbb{R}$ $[x \le y \Rightarrow f(x) \le f(y)]$. There are only $\mathfrak c$ many increasing functions.

E7.40 Let $X\subseteq 2^{\mathbb{N}}$ be countable. Then $(2^{\mathbb{N}}\backslash X)\approx 2^{\mathbb{N}}$. If T is the set of transcendental real numbers, $T\approx R$. Since $(2^{\mathbb{N}}\backslash X)\subseteq 2^{\mathbb{N}}, (2^{\mathbb{N}}\backslash X)\lesssim 2^{\mathbb{N}}$. We want to show that $2^{\mathbb{N}}\lesssim (2^{\mathbb{N}}\backslash X)$ so that we can apply Schröder Bernstein. Let $A,B\subseteq\mathbb{N}$ be infinite sets such that $A\cap B=\emptyset$ and $A\cup B=\mathbb{N}$. By C5.33, fix bijections $\psi:A\to\mathbb{N}$ and $\varphi:B\to\mathbb{N}$. Define $G:2^{\mathbb{N}}\to(2^{\mathbb{N}}\backslash X)$ as follows by defining $G(f):\mathbb{N}\to 2$. Let $n\in\mathbb{N}$. If $n\in A$, define $G(f)(n)=f(\psi(n))\in 2$. If $n\in B$, $e(\varphi(n))\in \mathbb{N}$ is an $e(\varphi(n))(n)\in 2$. If $e(\varphi(n))(n)=0$, then G(f)(n)=1, if $e(\varphi(n))(n)=1$, then G(f)(n)=0. Since either $n\in A$ or $n\in B$, $G(f)(n)\in 2$ and $G(f)\in 2^{\mathbb{N}}$. If $G(f)\in X$, then there exists $k\in\mathbb{N}$ with e(k)=G(f) and $n\in B$ with $\varphi(n)=k$. But since $n\in B$, $G(f)(n)\ne e(\varphi(n))(n)=e(k)(n)=G(f)(n)$, a contradiction. This shows $G(f)\notin X$. Now we show that G is 1-1. Fix $f\ne f'\in 2^{\mathbb{N}}$. There exists $k\in\mathbb{N}$ with $f(k)\ne f'(k)$. There exists $n\in A$ with $\psi(n)=k$. $G(f)(n)=f(\psi(n))=f(k)\ne f'(k)=f'(\psi(n))=G(f')(n)$. Then $G(f)\ne G(f')$. We have shown that $2^{\mathbb{N}}\lesssim (2^{\mathbb{N}}\backslash X)$ as needed.

8. More about Partial and Linear Orders

8.2 More about Linear Orders

D8.8 Let $\langle X, < \rangle$ be a partial order and $A \subseteq X$. $x \in X$ is an upper bound of A if $\forall a \in A \ [a \le x]$. x is a lower bound if $\forall a \in A \ [x \le a]$. Let U be the set of upper bounds of A and A be the set of lower bounds of A. If there exists $A \in U$ such that $A \in U$ is the supermum of A in $A \in U$ or minimal upper bound. For $A \in U$ and $A \in U$, it is called the infimum or $A \in U$ or greatest lower bound. There can only be at most one supremum or infimum.

EP8.9 Let $A=\{p\in\mathbb{Q}:p^2<2\}$. $sup_{\mathbb{Q}}(A)$ and $inf_{\mathbb{Q}}(A)$ do not exist, but $sup_{\mathbb{R}}(A)=\sqrt{2}$ and $inf_{\mathbb{R}}(A)=-\sqrt{2}$.

D8.10 Let $\langle X, < \rangle$ be a linear order. A pair $\langle A, B \rangle$ is a cut of $\langle X, < \rangle$ if A is downwards closed, B is upwards closed, and A and B partition X i.e. $A \cap B = \emptyset$ and $A \cup B = X$.

F8.11 Suppose $\langle X, < \rangle$ is a linear order and $Y \subseteq X$. If $z \in X \setminus Y$, $A = \{a \in Y : a < z\}$, $B = \{b \in Y : z < b\}$, then $\langle A, B \rangle$ is a cut of $\langle Y, < \rangle$.

D8.13 A linear order $\langle X, < \rangle$ is dense if

 $\forall x, y \in X \; \exists z \in X \; [x < y \Rightarrow x < z < y].$

D8.14 A linear order is without endpoints if it has neither a maximal nor minimal element. A countable dense linear order with no endpoints is universal for all countable linear orders; every countable linear order embeds into such an order. **T8.15 (Cantor, AC)** Suppose $\langle X, < \rangle$ is a non-empty dense linear order without endpoints. Let $\langle Y, \prec \rangle$ be any countable linear order. Then $\langle Y, \prec \rangle \hookrightarrow \langle X, < \rangle$. **T8.16 (Cantor)** Let $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ be non-empty countable dense linear orders without endpoints. Then they are isomorphic.

E8.17 Embedding is a quasi-order (reflexive, transitive) on linear orders.

E8.19 $\langle X, < \rangle \hookrightarrow \langle Y, \prec \rangle \land \langle Y, \prec \rangle \hookrightarrow \langle X, < \rangle$ does not imply isomorphism. Take $X = \mathbb{Q} \cap [0,1]$ and $Y = \mathbb{Q} \cap (0,1)$.

E8.20 We can have $\langle X, < \rangle \not\hookrightarrow \langle Y, \prec \rangle \land \langle Y, \prec \rangle \not\hookrightarrow \langle X, < \rangle$ (incomparability). Take $X = \langle \mathbb{N}, \in \rangle$ and $Y = \langle \mathbb{N}, \ni \rangle$.