Simplex method

Solve by Simplex method

Max
$$z = 3x_1 + 2x_2 + x_3$$
 4/to

 $x_1 + 2x_2 + x_3 \le 460$
 $x_1 + 4x_2 \le 420$, $x_1 x_2 = 0$

Slack variables, and surphus variables

Max $z = 3x_1 + 2x_2 + x_3 + 060$
 $x_1 + 4x_2 \le 420$, $x_1 x_2 = 0$

Slack variables, and surphus variables

Max $z = 3x_1 + 2x_2 + x_3 + 06$, $+0$

$$z_{2} = c_{3} \times \frac{1}{2} - c_{2} = \begin{cases} 0 \\ 0 \end{cases} \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix} - 2 = -2$$

CB + coefficient of Basic variables in the Objective Jench'on.

For entering variable interm of Basic valuable

take minimum of net evaluation (only regative net if we denote Δ_j if the net evaluation of J-Cits column, and defined as $\Delta_j = C_B X_j - C_j$.

So, minimum $\{-3, -2, -1\} = -3$ which is the correspond to X_1 $\Rightarrow X_1$ is the entering variable in term of Basic variable.

Basic variable, $X_1 = X_2 = X_1 = X_2 = X_1 = X_2 = X_2 = X_1 = X_2 = X_$

		てナ	3	2 1 0 0 0
Bapic Variable	CB	XB (5017)	>C ₁	X ₂ X ₃ , s ₁ s ₂ s ₃ minimums/ratio
81	0	430	1	2 1 1 0 0 430/1 = 430 minim
32	0	460	3	$0 2 0 1 0 460/3 = 159.3 \rightarrow$
33	6	420	1	4 0:00 1 420/1 = 420
net evalu	ah' 2	= 0	-3	-2 -1 0 0 0
3,	0	830	0	$\frac{2}{2} + \frac{1}{3} + \frac{1}{3} = \frac{138}{3 \times 2} = \frac{138}{3}$
x_1	3	460	L	0 213 0 113 0 \
33	0	300	0	y - 213 0 - 113 1 = 660
			0	-2 1 0 1 0
₹۱	0	430/	3 0	0 0 1 = -1/2
x_1	3	460	ı	0 2/3 0 1/3 0

posite, so we stop.hm.

$$x_1 = \frac{460}{3}$$
 $x_2 = \frac{800}{12} = \frac{200}{3}$
 $x_3 = \frac{460}{3} + 2x \frac{200}{3}$

optimize the broblem:

Marximize Z = -2xy -xz+5x3 3/10

$$x_1 - 2x_2 + x_3 \le 8$$

 $-3x_1 + 2x_2 \le 18$
 $2x_1 + x_2 - 2x_3 \le 4$

2170, 270, 2370.

 $\frac{Sol^{M}}{Maxz} = -2 x_{1} - x_{2} + 5 x_{3} + 0 x_{1} + 0 x_{2} + 0 x_{3}$

$$x_{1}-2x_{2}+x_{3}+3_{1}=8$$

For starting the soly 2,=0, x,=0, 2, =0

get 3,=8, 32=18, 3=4, hue 3, , 2, 13 are back variables

	Cj		-2	-1	5	O	0	Ø	
_B.V.	CB	XB	24	χ_2	x ₅	31	32	33	Minimum Ratio
3,	0	8	1	-2		ı	0	0	817 = 8 <
32	0	18	-3	2	0	0	(0	_

21	0	8	l	-2		ı	0	0	1	811	= 8 <	
32	Ø	18	-3	2	0	0	l	C	> \			
33	0	4	2	1	-2	0	0		1	_		
	Net eval	u alir	. 2	1	-5	0	Ò	Ò	O			
x_3	5	8	1	-2	1	1		0	0	1-		
32	0	18	-3	2	0			l	Q	18/2	= 9 <	
83	o	20	4	-3	0		2	0	- 1			_
			7		2 (5	5	<u></u>	0			
×3	5	26	-2		0	1	l	1	70	1		
x_2	-1	9	-31	2	1	0	0	4		`\		
33	0	47		12	0	O	2		12	1	_	
			_/	312	٥	٥	5	•) 12	0 \		

This is entering vetos

as of its regative and corresponding column, all clents are negative.

7 this prob. has unbounded so 17.