Al Assignment 2

Question 3

Altaf Shaikh (as05016), Maheen Anees (ma05156)

 w_{14} =0.35, w_{24} =0.15, w_{25} =-0.10, w_{34} =-0.20, w_{35} =0.20, w_{46} =0.40, w_{56} =0.25

Actual Output (T) = 0.8, Learning Rate (r) = 0.8

Input: (0.5, 0.3, 0.9)

Activation function = sigmoid

Input of Node 4	0.04	Error at Node 6	0.0525
Output of Node 4	0.51	Error at Node 4	5.25 x 10 ⁻³
Input of Node 5	0.15	Error at Node 5	3.26 x 10 ⁻³
Output of Node 5	0.54	Updated w ₄₆	0.421
Input of Node 6	0.339	Updated w ₅₆	0.273
Output of Node 6	0.584	Updated w ₁₄	0.3521
		Updated w ₂₄	0.1513
		Updated w ₃₄	-0.196
		Updated w ₂₅	-0.0992
		Updated w ₃₅	0.202

Working:

Input of node 4:

$$0.5(w14) + 0.3(w24) + 0.9(w34)$$

$$0.5(0.35) + 0.3(0.15) + 0.9(-0.20) = 0.04$$

Output of node 4:

Applying sigmoid function: $\frac{1}{1+e^{-x}}$

$$\frac{1}{1 + e^{-0.04}} = 0.51$$

Input of node 5:

$$0.3(w25) + 0.9(w35)$$

$$0.3(-0.10) + 0.9(0.20) = 0.15$$

Output of node 5:

Applying sigmoid function: $\frac{1}{1+e^{-x}}$

$$\frac{1}{1 + e^{-0.15}} = 0.54$$

Input of node 6:

$$O_4(w_{46}) + O_5(w_{56})$$

$$0.51(0.40) + 0.54(0.25) = 0.339$$

Output of node 6:

Applying sigmoid function: $\frac{1}{1+e^{-x}}$

$$\frac{1}{1 + e^{-0.339}} = 0.584$$

Error at node 6

$$(T - O_6) O_6 (1 - O_6)$$

$$(0.8 - 0.584) \ 0.584 \ (1 - 0.584) = 0.0525$$

Error at node 5

Error₆ x w_{56} x O_5 (1 - O_5)

 $(0.0525)(0.25)(0.54)(1 - 0.54) = 3.26 \times 10^{-3}$

Error at node 4

Error₆ x w₄₆ x O₄ (1 - O₄)

 $(0.0525)(0.40)(0.51)(1-0.51) = 5.25 \times 10^{-3}$

Updated w46

 Δw_{46} = r x Error₆ x O₄ = 0.8 x 0.0525 x 0.51 = 0.021

 $W_{46} = W_{46}$ (current) + $\Delta W_{46} = 0.40 + 0.021 = 0.421$

Updated w56

 Δw_{56} = r x Error₆ x O₅ = 0.8 x 0.0525 x 0.54 = 0.023

 $W_{56} = w_{56}$ (current) + $\Delta w_{56} = 0.25 + 0.023 = 0.273$

Updated w14

 $\Delta w_{14} = r x Error_4 x O_1 = 0.8 x 5.25 x 10^{-3} x 0.5 = 2.1 x 10^{-3}$

 $W_{14} = W_{14}$ (current) + $\Delta W_{14} = 0.35 + 2.1 \times 10^{-3} = 0.3521$

Updated w24

 $\Delta w_{24} = r \times Error_4 \times O_2 = 0.8 \times 5.25 \times 10^{-3} \times 0.3 = 1.26 \times 10^{-3}$

 $W_{24} = W_{24}$ (current) + $\Delta W_{24} = 0.15 + 1.26 \times 10^{-3} = 0.1513$

Updated w34

 $\Delta w_{34} = r \times Error_4 \times O_3 = 0.8 \times 5.25 \times 10^{-3} \times 0.9 = 3.78 \times 10^{-3}$

 $W_{34} = W_{34}$ (current) + $\Delta W_{34} = -0.20 + 3.78 \times 10^{-3} = -0.196$

Updated w25

 Δw_{25} = r x Error₅ x O₂ = 0.8 x 3.26 x 10⁻³ x 0.3 = 7.824 x 10⁻⁴

 $W_{25} = W_{25}$ (current) + $\Delta W_{25} = -0.10 + 7.824 \times 10^{-4}$ = $\frac{-0.0992}{}$

Updated w35

 Δw_{35} = r x Error₅ x O₃ = 0.8 x 3.26 x 10⁻³ x 0.9 = 2.3472 x 10⁻³

 $W_{35} = W_{35}$ (current) + $\Delta W_{35} = 0.20 + 2.3472 \times 10^{-3}$ = $\frac{0.202}{0.202}$