Support Vector Machines (SVM) et méthodes à Noyaux

Nicolas Verzelen, Joseph Salmon (Pierre Pudlo)

INRAE / Université de Montpellier

Plan

SVM

SVM linéaire pour des données séparables

SVM linéaire pour des données non séparables

SVM non linéaire : astuce du noyau

Lien avec la minimisation du risque empirique convexifié

Conclusion / questions ouvertes

Support Vector Machine, SVM

Machine à vecteurs supports (ﷺ: Support Vector Machine): famille d'algorithmes d'apprentissage supervisé :classification (régression moins facile à voir) TO DO: à la fin donner la forme Hinge

Exemple: classification binaire dimension 2 (orange: 1, bleu: -1)

Complexité de la frontière

► Fondements mathématiques solides ⇒ bonnes **propriétés de généralisation** Vapnik (1998)

<u>Exemple</u>: d'une règle de discrimination n'ayant pas de bonnes propriétés de généralisation

sur-apprentissage (coverfitting) phénomène fréquent en grande dimension

Plan

SVM

SVM linéaire pour des données séparables

SVM linéaire pour des données non séparables

SVM non linéaire : astuce du noyau

Lien avec la minimisation du risque empirique convexifié

Conclusion / questions ouvertes

Données linéairement séparables

On considère $\mathcal{X} = \mathbb{R}^p$, muni du produit scalaire usuel $\langle \cdot, \cdot \rangle$.

Définition

Les données observées $\mathcal{D}^n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ sont dites **linéairement séparables** s'il existe $(w, w_0) \in \mathbb{R}^p \times \mathbb{R}$ tel que pour tout i.

- $-y_i = 1 \text{ si } \langle w, x_i \rangle + w_0 > 0,$
- $-y_i = -1 \text{ si } \langle w, x_i \rangle + w_0 < 0,$

$$\iff \forall i = 1, \dots, n \quad | y_i \cdot (\langle w, x_i \rangle + w_0) > 0$$

Rem: w_0 : ordonnée à l'origine (\mathbb{R} : intercept)

Visualisation

• Équation $\langle w,x\rangle+w_0=0$: définit hyperplan séparateur H_{w,w_0} de vecteur orthogonal w

▶ Fonction $\phi_{w,w_0}(x) = \mathbb{1}_{\{\langle w,x\rangle+w_0\geq 0\}} - \mathbb{1}_{\{\langle w,x\rangle+w_0< 0\}}$: règle de discrimination linéaire

Remarque : pour tout $\kappa \neq 0$, $(\kappa w, \kappa w_0)$ et (w, w_0) définissent le même hyperplan

Dilemme de la complexité

► **Problème** : une infinité d'hyperplans séparateurs ⇒ une infinité de règles de discrimination linéaires potentielles!

Lequel choisir?

La marge

ightharpoonup Critère en sélection : hyperplan séparateur de **marge** maximale γ

La marge maximale

Soit x_{1*} (resp. x_{-1*}) de sortie 1 (resp. -1), se situant sur les frontières définissant la marge.

La marge
$$\gamma$$
 satisfait : $\gamma = \frac{\langle w, x_{1^*} \rangle}{\|w\|} = -\frac{\langle w, x_{-1^*} \rangle}{\|w\|}$

Forme canonique pour x_1, \ldots, x_n : (à rescaling près) hyperplan $\langle w, x \rangle + w_0 = 0$ tel que

$$\min_{i=1,\dots,n} |\langle w, x_i \rangle + w_0| = 1$$

Ainsi
$$\begin{cases} \langle w, x_{1^*} \rangle + w_0 = 1 \\ \langle w, x_{-1^*} \rangle + w_0 = -1 \end{cases}$$
 et donc $\langle w, x_{1^*} - x_{-1^*} \rangle = 2$, d'où

$$\gamma = \frac{1}{\|w\|}$$

Problème d'optimisation "primal"

Trouver l'hyperplan séparateur de marge maximale revient à trouver le couple (w,w_0) tel que

$$\min_{w\in\mathbb{R}^p,w_0\in\mathbb{R}}\|w\|^2\quad (\text{ou }\frac{1}{2}\|w\|^2)$$
 t.q. $\forall i\in [\![1,n]\!],\,y_i\left(\langle w,x_i\rangle+w_0\right)\geq 1$

- ▶ Problème d'optimisation **CONVEXE** sous contraintes linéaires
- Existence d'un **optimum global**, obtenu par résolution du problème "dual" (méthode des multiplicateurs de Lagrange)

Détours : multiplicateurs de Lagrange

Problème primal:

Minimiser $\forall u \in \mathbb{R}^d, h(u)$ sous contraintes $\forall i \in [1, n], g_i(u) \leq 0$

Définition

Le Lagrangien est défini sur $\mathbb{R}^d \times \mathbb{R}^n$ par

$$\mathcal{L}(u,\alpha) = h(u) + \sum_{i=1}^{n} \alpha_i g_i(u)$$

Les variables α_i sont appelées les variables duales

Soit pour tout $\alpha \in \mathbb{R}^n_+$,

- $u_{\alpha} = \arg\min_{u \in \mathbb{R}^d} \mathcal{L}(u, \alpha),$

Formulation duale

Problème dual:

$$\alpha^* = \argmax_{\alpha \in \mathbb{R}^n} \theta(\alpha)$$
 t.q.
$$\forall i \in [\![1,n]\!], \quad \alpha_i \geq 0$$

Solution du problème dual : α^{\ast} donne la solution du problème primal avec la relation

$$u^* = u_{\alpha^*}$$

Multiplicateurs de Lagrange : conditions de Karush-Kuhn-Tucker (KKT)

- $p_i(u_{\alpha^*}) \leq 0$ pour tout $i=1,\ldots,n.$

Retour sur le problème dual

Minimiser $\mathcal{L}(u,\alpha) = h(u) + \sum_{i=1}^{n} \alpha_i g_i(u)$ par rapport à u Maximiser $\mathcal{L}(u_\alpha,\alpha)$ associé par rapport aux variables duales α_i

Condition complémentaire de Karush-Kuhn-Tucker qui s'exprime sous la forme $\alpha_i^* g_i(u_{\alpha^*}) = 0$

 \Rightarrow Si $g_i(u_{\alpha^*}) < 0$, alors nécessairement $\alpha_i^* = 0$

Multiplicateurs de Lagrange : cas SVM

$$\begin{aligned} \text{Lagrangien} &: \mathcal{L}(w,w_0,\alpha) = \frac{1}{2}\|w\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle w,x_i \rangle + w_0 \right) - 1\right) \\ &\left\{ \frac{\partial \mathcal{L}}{\partial w_0}(w,w_0,\alpha) = -\sum_{i=1}^n \alpha_i y_i = 0 \right. \Leftrightarrow \left. \sum_{i=1}^n \alpha_i y_i = 0 \right. \\ &\left. \frac{\partial \mathcal{L}}{\partial w}(w,w_0,\alpha) = w - \sum_{i=1}^n \alpha_i y_i x_i = 0 \right. \Leftrightarrow \left. w = \sum_{i=1}^n \alpha_i y_i x_i \right. \\ &\left. \theta(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \alpha_i \alpha_j y_i y_j \langle x_i,x_j \rangle \right. \end{aligned}$$

La solution du problème d'optimisation primal est donnée par :

- w_0^* : résoudre (en w_0) pour un i t.q. $y_i(\langle w^*, x_i \rangle + w_0) = 1$

où
$$\alpha^* = rg \max_{\alpha} \theta(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

s. c. $\sum_{i=1}^n \alpha_i y_i = 0$ et $\alpha_i \geq 0, \forall i \in [\![1,n]\!]$

Multiplicateurs de Lagrange : cas SVM

$$\begin{aligned} \text{Lagrangien} &: \mathcal{L}(w, w_0, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle w, x_i \rangle + y_0 \right) - 1\right) \\ & \left\{ \frac{\partial \mathcal{L}}{\partial w_0}(w, w_0, \alpha) = -\sum_{i=1}^n \alpha_i y_i = 0 \right. \Leftrightarrow \left. \sum_{i=1}^n \alpha_i y_i = 0 \right. \\ & \left. \frac{\partial \mathcal{L}}{\partial w}(w, w_0, \alpha) = w - \sum_{i=1}^n \alpha_i y_i x_i = 0 \right. \Leftrightarrow \left. w = \sum_{i=1}^n \alpha_i y_i x_i \right. \\ & \left. \theta(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \right. \end{aligned}$$

La solution du problème d'optimisation primal est donnée par :

- $ightharpoonup w_0^*$: résoudre (en w_0) pour un i t.q. $y_i(\langle w^*, x_i \rangle + w_0) = 1$

où
$$\alpha^* = \operatorname*{arg\,max}_{\alpha} \theta(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$
 s. c. $\sum_{i=1}^n \alpha_i y_i = 0$ et $\alpha_i \geq 0, \forall i \in \llbracket 1, n \rrbracket$

Conditions de Karush-Kuhn-Tucker (KKT)

- $ightharpoonup y_i\left(\langle w^*,x_i
 angle+w_0^*
 ight)\geq 1, \ \ \forall i\in \llbracket 1,n
 rbracket$ (séparation)
- $\qquad \qquad \alpha_i^* \left(y_i \left(\langle w^*, x_i \rangle + w_0^* \right) 1 \right) = 0, \ \forall i \in \llbracket 1, n \rrbracket \ \text{(complémentarité)}$
- Le nombre de $\alpha_i^* > 0$ peut être petit : on dit que la solution du problème dual est **parcimonieuse** (sparse)
- ► Efficacité algorithmique

vecteurs supports : x_i tels que $\alpha_i^*>0$; situés sur les frontières définissant la marge maximale i.e., $y_i\left(\langle w^*,x_i\rangle+w_0^*\right)=1$ (cf. condition complémentaire de KKT)

Représentation des vecteurs supports

Synthèse

Pour conclure, l'algorithme est défini par :

avec

$$\phi_{\mathcal{D}_n}(x) = \mathbb{1}_{\{\langle w^*, x \rangle + w_0^* \ge 0\}} - \mathbb{1}_{\{\langle w^*, x \rangle + w_0^* < 0\}}$$

 $\mathbf{v}^* = \sum_{i=1}^n \alpha_i^* y_i x_i$

 $\blacktriangleright w_0^*$: résoudre (en w_0) pour un i t.q. $y_i(\langle w^*, x_i \rangle + w_0) = 1$

ou encore:

$$\phi_{\mathcal{D}_n}(x) = \begin{cases} 1, & \text{si } \sum_{x_i V.S.} \alpha_i^* y_i \langle x_i, x \rangle + w_0^* \geq 0 \\ -1, & \text{si } \sum_{x_i : V.S.} \alpha_i^* y_i \langle x_i, x \rangle + w_0^* < 0 \end{cases}$$

<u>Rem</u>: la marge maximale vaut $\gamma^* = \frac{1}{\|w^*\|}$ Rem: V.S.: Vecteur de Support

18 / 38

Plan

SVM

SVM linéaire pour des données séparables

SVM linéaire pour des données non séparables

SVM non linéaire : astuce du noyau

Lien avec la minimisation du risque empirique convexifié

Conclusion / questions ouvertes

SVM linéaire pour des données non séparables

- Méthode pour données linéairement séparables
- ► Méthode sensible aux points aberrants (: outliers)

SVM (sans séparation linéaire)

Nouvelle proposition : autoriser quelques vecteurs à être bien classés mais dans la région définie par la marge (voire mal classés)

Contrainte associée :

$$y_i(\langle w, x_i \rangle + w_0) \ge 1 \implies y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i$$
, avec $\xi_i \ge 0$

 $\xi_i \in [0,1] \iff$ bien classé, mais région définie par la marge $\xi_i > 1 \iff$ mal classé

<u>Vocabulaire</u>: marge souple ($\blacksquare : soft margin$) et les ξ_i sont appelées les variables ressorts ($\blacksquare : slacks$)

les contraintes relaxées ne peuvent pas être utilisées sans contrepartie sous peine d'obtenir une marge maximale infinie (prendre les ξ_i grands)

 \implies pénaliser les grandes valeurs de ξ_i

SVM (sans séparation linéaire, suite)

Nouveau primal :
$$\min_{w,w_0,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$
 s. c.
$$\begin{cases} y_i \left(\langle w, x_i \rangle + w_0 \right) \geq 1 - \xi_i, \forall i \in \llbracket 1, n \rrbracket \\ \xi_i > 0 \end{cases}$$

ightharpoonup C > 0 paramètre, constante de tolérance à ajuster

Solution du problème du primal :

•
$$w^*$$
 tel que $y_i\left(\langle w^*, x_i \rangle + w_0^*\right) = 1 - \xi_i, \forall x_i, \ 0 < \alpha_i^* < C$,

Solution duale :
$$\alpha^* = \operatorname*{arg\,max}_{\alpha} \theta(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

s. c. $\sum_{i=1}^n \alpha_i y_i = 0$ et $0 \leq \alpha_i \leq C$, $\forall i \in [\![1,n]\!]$

Conditions de Karush-Kuhn-Tucker

- $\blacktriangleright \ 0 \le \alpha_i^* \le C, \, \forall i \in [\![1,n]\!]$
- $y_i(\langle w^*, x_i \rangle + w_0^*) \ge 1 \xi_i^*, \forall i \in [1, n]$
- $\qquad \qquad \alpha_i^* \left(y_i \left(\langle w^*, x_i \rangle + w_0^* \right) + \xi_i^* 1 \right) = 0, \, \forall i \in [[1, n]]$
- $\xi_i^*(\alpha_i^* C) = 0, \forall i \in [1, n]$

<u>Vocabulaire</u>: x_i tels que $\alpha_i^* > 0$, vecteurs supports

Deux types de vecteurs supports :

- Les vecteurs correspondant à des variables ressorts nulles. Ils sont situés sur les frontières de la région définissant la marge.
- Les vecteurs correspondant à des variables ressorts non nulles : $\xi_i^* > 0$ et dans ce cas $\alpha_i^* = C$.

Vecteurs non supports : vérifient $\alpha_i^* = 0$ et $\xi_i^* = 0$

Représentation des vecteurs supports

Synthèse

Règle de classification du SVM linéaire :

$$\phi_{\mathcal{D}^n}(x) = \mathbb{1}_{\langle w^*, x \rangle + w_0^* \ge 0} - \mathbb{1}_{\langle w^*, x \rangle + w_0^* < 0}$$

avec

- $\mathbf{v}^* = \sum_{i=1}^n \alpha_i^* x_i y_i$
- $ightharpoonup w_0^*$ tel que $y_i\left(\langle w^*,x_i
 angle + w_0^*
 ight) = 1 \xi_i, \forall x_i, \ 0 < lpha_i^* < C$,

ou encore:

$$\phi_{\mathcal{D}_n}(x) = \begin{cases} 1, & \text{si } \sum_{x_i:V.S.} \alpha_i^* y_i \langle x_i, x \rangle + w_0^* \geq 0 \\ -1, & \text{si } \sum_{x_i:V.S.} \alpha_i^* y_i \langle x_i, x \rangle + w_0^* < 0 \end{cases}$$

La marge maximale vaut $\gamma^* = \frac{1}{\|w^*\|}$

Plan

SVM

SVM linéaire pour des données séparables

SVM linéaire pour des données non séparables

SVM non linéaire : astuce du noyau

Lien avec la minimisation du risque empirique convexifié

Conclusion / questions ouvertes

SVM non linéaire : astuce du noyau

Exemple de données difficiles à discriminer linéairement :

► SVM linéaire : mauvaise discrimination avec un nombre de vecteurs supports très élevé ⇒ SVM non linéaire ?

Kernelisation

Boser, Guyon et Vapnik (1992)

Envoyer les entrées x_1,\ldots,x_n dans un espace de Hilbert $\mathcal H$ (produit scalaire $\langle\cdot,\cdot\rangle_{\mathcal H}$) (dimension infinie), via une fonction φ , et appliquer un SVM linéaire à $\{(\varphi(x_i),y_i),i=1,\ldots,n\}$. Sortie attribuée à x: celle attribuée à son image $\varphi(x)$

<u>vocabulaire</u>:

 φ : fonction de représentation (: feature function) \mathcal{H} : espace de représentation (: feature space)

Exemple précédent : $\varphi(x)=(x_1^2,x_2^2,x_1,x_2)$; linéairement séparables dans \mathbb{R}^4

Choisir \mathcal{H} et φ

La règle de discrimination de la SVM non linéaire est définie par :

$$\phi_{\mathcal{D}_n}(x) = \mathbb{1}_{\sum y_i \alpha_i^* \langle \varphi(x_i), \varphi(x) \rangle_{\mathcal{H}} + w_0^* \ge 0} - \mathbb{1}_{\sum y_i \alpha_i^* \langle \varphi(x_i), \varphi(x) \rangle_{\mathcal{H}} + w_0^* < 0},$$

 α^* : solution du problème dual dans l'espace de représentation $\mathcal H$:

Maximiser
$$\theta(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle \varphi(x_i), \varphi(x_j) \rangle_{\mathcal{H}}$$
 s. c. $\sum_{i=1}^n \alpha_i y_i = 0$ et $0 \le \alpha_i \le C \ \forall i$.

Solution duale:

$$\begin{split} \alpha^* = & \arg\max_{\alpha} \theta(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle \varphi(x_i), \varphi(x_j) \rangle_{\mathcal{H}} \\ \text{s. c. } \sum_{i=1}^n \alpha_i y_i = 0 \text{ et } 0 \leq \alpha_i \leq C, \, \forall i \in \llbracket 1, n \rrbracket \end{split}$$

Remarque fondamentale

SVM non linéaire : ne dépend de φ qu'à travers des produits scalaires de la forme $\langle \varphi(x_i), \varphi(x) \rangle_{\mathcal{H}}$ ou $\langle \varphi(x_i), \varphi(x_j) \rangle_{\mathcal{H}}$.

▶ Astuce du noyau (ﷺ : (kernel trick) : seule la connaissance de la fonction k définie par $k(x,x')=\langle \varphi(x),\varphi(x')\rangle_{\mathcal{H}}$ est requise, sans déterminer explicitement \mathcal{H} et φ

Définition

Une fonction $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ telle que $k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$ pour une fonction $\varphi: \mathcal{X} \to \mathcal{H}$ donnée est appelée un **noyau**

 $\underline{\mathsf{Rem}}$: Un noyau est souvent plus facile à calculer que la fonction φ

$$\frac{\mathsf{Exemple}}{\mathsf{prendre}} : \mathsf{pour} \ x = (x_1, x_2) \in \mathbb{R}^2, \ \varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2), \\ \mathsf{prendre} \ k(x, x') = \langle x, x' \rangle^2$$

Quelques noyaux classiques pour $\mathcal{X} = \mathbb{R}^d$

- Noyau **polynomial** : $k(x,x') = (\langle x,x' \rangle + c)^p$ $\hookrightarrow \varphi(x) = (\varphi_1(x),\dots,\varphi_m(x))$ avec $\varphi_i(x)$ =monôme de degré inférieur à p de certaines composantes de x.
- Noyau gaussien ou radial (RBF) : $k(x,x') = e^{-\frac{\|x-x'\|^2}{2\sigma^2}}$ $\hookrightarrow \varphi$ à valeurs dans un espace de dimension infinie.
- $\qquad \qquad \textbf{Noyau laplacien}: k(x,x') = e^{-\frac{\|x-x'\|}{\sigma}}.$

Agrégation de noyaux

Soit k_1 et k_2 des noyaux, f une fonction : $\mathbb{R}^d \to \mathbb{R}$, $\varphi: \mathbb{R}^d \to \mathbb{R}^{d'}$, B une matrice définie positive, P un polynôme à coefficients positifs, $\lambda \geq 0$.

La fonction définie par $k(x,x') = k_1(x,x') + k_2(x,x')$, $\lambda k_1(x,x')$, $k_1(x,x')k_2(x,x')$, f(x)f(x'), $k_1(\varphi(x),\varphi(x'))$, $x^{\top}Bx'$, $P(k_1(x,x'))$, ou $e^{k_1(x,x')}$ est encore un noyau.

Noyaux pour $\mathcal{X} \neq \mathbb{R}^d$

Quelques noyaux ont été proposés pour d'autres types d'objets comme des

- ensembles,
- arbres,
- graphes,
- chaînes de symboles,
- documents textuels...

Plan

SVM

SVM linéaire pour des données séparables

SVM linéaire pour des données non séparables

SVM non linéaire : astuce du noyau

Lien avec la minimisation du risque empirique convexifié

Conclusion / questions ouvertes

Éléments de théorie

Minimiser $\frac{1}{2}\|w\|^2+C\sum_{i=1}^n\xi_i$ s. c. $\left\{\begin{array}{l} y_i\left(\langle w,x_i\rangle+w_0\right)\geq 1-\xi_i,\ \forall\ i \\ \xi_i\geq 0 \end{array}\right.$ est équivalent à minimiser

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n (1 - y_i (\langle w, x_i \rangle + w_0))_+,$$

ou encore

$$\frac{1}{n} \sum_{i}^{n} (1 - y_i (\langle w, x_i \rangle + w_0))_+ + \frac{1}{2Cn} ||w||^2.$$

 $\gamma(w,w_0,x_i,y_i)=(1-y_i\left(\langle w,x_i\rangle+w_0\right))_+ \text{ est un majorant convexe de l'erreur empirique } \mathbb{1}_{y_i(\langle w,x_i\rangle+w_0)<0}$

→ SVM=Minimisation de risque empirique convexifié régularisé

Plan

SVM

SVM linéaire pour des données séparables

SVM linéaire pour des données non séparables

SVM non linéaire : astuce du noyau

Lien avec la minimisation du risque empirique convexifié

Conclusion / questions ouvertes

Conclusion / questions ouvertes

- La renormalisation des données
- Les réglages à effectuer :
 - Le noyau et ses paramètres (validation croisée)
 - La constante de tolérance C (validation croisée)
- ► Généralisation à la discrimination multiclasses : one-versus-all, one-versus-one?

Librairies / code sources

- ► Liblinear Fan et al. (2008)
- ► Libsvm Chang et Lin (2011)
- sklearn (charge cette implémentation)

Bibliographie I

- BOSER, B. E., I. M. GUYON et V. N. VAPNIK. "A training algorithm for optimal margin classifiers". In: Proceedings of the fifth annual workshop on Computational learning theory. ACM. 1992, p. 144-152.
- CHANG, C. et C. LIN. "LIBSVM: a library for support vector machines". In: ACM transactions on intelligent systems and technology (TIST) 2.3 (2011), p. 27.
- FAN, R.-E. et al. "LIBLINEAR: A library for large linear classification". In: J. Mach. Learn. Res. 9 (2008), p. 1871-1874.
- ▶ VAPNIK, V. N. Statistical learning theory. Wiley, 1998.