

ERROR MINIMIZATION

 $M^* \leftarrow argmin_{M_i}error(M_i)$

GENERALIZATION ERROR

model complexity

BIAS AND VARIANCE

model complexity

BIAS

BIAS

VARIANCE

BIAS AND VARIANCE

model complexity

OVERFITTING

OVERFITTING

M_2 is in **overfitting** iff

 $\exists M_1$: M_2 is a specialization of M_1 $error_{M_2}(train) < error_{M_1}(train)$ $error_{M_2}(test) > error_{M_1}(test)$

Data Science by Cláudia Antunes

OCCAM'S RAZOR

Pluralitas non est ponenda sine necessitate

OCCAM'S RAZOR

all other things being equal, the simplest model is the most likely to be true

TECHNIQUE-SPECIFIC APPROACHES

- early stopping for iterative methods
- pruning for decision trees
- dropout of neural networks' units

Data Science by Cláudia Antunes

Thank you!

