第1章 电路和电路元件

一、选择题

1. 电路中所示支路的电压 U 为()。

A.16V B.12V C.-12V D.-16V

2. 电路中所示支路的电压为()。

A.-8V B.12V C.-12V D.8V

3. 如图所示电路中, A 点的电位()。

A.1V B.-1V C.4V

D.-4V

4. 如图所示电路中, A 点的电位()。

A.1V

B.-1V

C.2V D.-2V

5. 如图所示电路中, A 点的电位()。

A.1V B.-1V C.4V

D.-4V

- 6. 电路如图所示,电路元件A()。

- A. 发出功率 4W B. 发出功率 16W C. 吸收功率 4W D. 吸收功率 16W

- 7. 如图所示电路中,电压源发出的功率为()。

- A.20W B. -20W C. 50W D. -50W

- 8. 如图所示电路中,电流源发出的功率为()。
 - A.10W
- B. -10W
- C. 50W D. -50W

- 9. 如图所示电路中,电压源发出的功率为()。
 - A.30W
- B. -30W
- C. 50W D. -50W

- 10. 如图所示电路中,电压源吸收的功率为()。
 - A.30W
- B. -30W
- C. 75W D. -75W

第2章 电路分析基础

2.1 基尔霍夫定律

一、选择题

1. 如图所示电路中,已知 $I_1=1A$, $I_2=5A$, $I_5=4A$,下列说法正确的是()。

 $A.I_3 = 3A$

$$B.I_4 = -2A$$

 $C.I_6 = -3A$

$$D.I_6 = 7A$$

2. 如图所示电路中,电流 I_1 为 ()。

A.3A B.-3A C.-7 A

3. 如图所示电路中, 电流 I₃ 为()。

A.3A B.-3A C.-7 A

D.7A

电路中,正确的电压方程是()。

$$U_{c_1} - R_1 I_1 + R_2 I_2 = 0$$

C.
$$U_{c_1} - R_1 I_1 - R_2 I_2 = 0$$

A.
$$U_{S1} - R_1 I_1 + R_3 I_S = 0$$
 B. $U_{S2} - R_2 I_2 + R_3 I_S = 0$

C.
$$U_{S1} - R_1 I_1 - R_2 I_2 = 0$$
 D. $-U_{S1} + R_1 I_1 + R_2 I_2 + U_{S2} = 0$

5. 电路中,正确的电压方程是(

 $A.U = U_S - RI$ B. $U = U_S + RI$ C. $U = -U_S - RI$ D. $U = -U_S + RI$

6. I=3A, I₂=1A, R₁=2Ω, 则 R₂= () Ω。

B. 5

C. 6 D. 8

2.2 叠加定理与等效电源定理

一、选择题

1. 一个实际直流电压源,其开路电压 Uoc=24V,短路电流 Isc=30A,则当外接 1.2Ω 电阻 时,其电流为()。

A. 12 A

- B. 20 A
- C.10 A
- D. 15 A
- 2、戴维南定理所描述的等效电路仅()。

A.对外电路等效还是对内电路等效应视具体情况而定 B.对内电路等效

C.对内、外电路都等效

D.对外电路等效

3、将图示有源二端网络化简为一个电流源 I_S 与电阻 R 并联的最简形式,其中 I_S 和 R 分别 为 ()。

- A. $I_S=1A$, $R=2\Omega$ B. $I_S=1A$, $R=1\Omega$ C. $I_S=2A$, $R=1\Omega$ D. $I_S=2A$, $R=2\Omega$

4、已知: E=9V, $I_k=6mA$,当电压源 E 单独作用时,通过 R_L 的电流是 1mA,那么当电压源 E 和电流源 I_k 共同作用时,通过电阻 R_L 的电流 I_L 是(

A. 3mA

- B. 4mA
- C. -3mA
- D. -4mA

5、Is=4A, 当 Is 和 Us 共同作用时 U=12V, 当 Us 单独作用时, U 为 ()。

C. 6V

D. 无法确定

二、计算题

1、图示电路中,当 $R=\frac{5}{7}$ Ω ,求流过电阻 R 上的电流 I 。

2、图示电路中,当 $R=15\Omega$ 时,求流过电阻 R 上的电流 I。

3、图示电路中,当 $R=3\Omega$ 时,求流过电阻 R 上的电流 I。

4、用叠加定理求解图示电路中电压 u。

5、用叠加定理求图示电路中的电流 I。

2.3 正弦交流电路

一、选择题

相位生 60° 火肿饲 001 肚 中国协照时体生 ()	1,	有一正弦交流		$\omega t + \varphi)V$,	其中最大值	$U_{\rm m}=310{\rm V}$,	频率 $f=50Hz$,	初
相位为 $\varphi=60^\circ$ 。当时间 $t=0.01$ s 时,电压的瞬时值为 ()。	相位	ī为 φ=60°。	当时间 t=0.01s 时	,电压的	瞬时值为()。		

A. 310V

B. −155V

- D. 155V
- 2、 有一正弦电流 $i=I_m\cos(\omega t+\varphi)A$, 其初相位为 60° , 初始值 i=10A, 则该电流的幅值 *I*_m为()。
 - A. 10.414 A
- B. 20 A
- C. 10 A
- D. 无法确定
- 3、 己知某正弦电压 $u=U_m\cos(\omega t+\varphi)V$, 在 t=0 时为 220V, 其初相位为 45°, 则它的 有效值等于()。
 - A. 311V

B. 155V

C. 220V

- D. 无法确定
- 4、已知 $i=100sin(\omega t-\frac{\pi}{4})mA$,则当 f=1000Hz, t=0.375ms 时,电流的瞬时值为()。
 - A. 141.4 mA

B. 100 mA

C. 70.7 *mA*

- D. 无法确定
- 5、与电流相量 \dot{I} = 4 + j3 对应的正弦电流可写作i = ()。
 - A. $5 \sin (\omega t + 53.1^{\circ}) A$
- B. $5\sqrt{2} \sin{(\omega t + 36.9^{\circ})}A$
- C. $5\sqrt{2} \sin(\omega t + 53.1^{\circ})A$ D. $5 \sin(\omega t + 36.9^{\circ})A$
- 6、已知某负载的电压 u 和电流 i 分别为 $u = -100\sin 314t$ V 和 $i = 10\cos 314t$ A,则该负载 的性质为()。
 - A. 电阻性
- B. 电感性
- C. 电容性
- D. 无法确定
- 7、电路如图 (a) 所示,电路中电流、电压的相量图如图 (b) 所示,则阻抗 Z_1 、 Z_2 和该电路 的等效阻抗Z的性质分别为()。

A. 感性、容性、容性;

B. 感性、感性、容性;

C. 容性、感性、感性;

D. 感性、容性、感性。

8、某一元件的电压、电流 (关联方向), 若已知 $u=10\sin(10t+45^\circ)V$, $i = 2\sin(10t + 35^\circ)A$,则该元件的负载性质为()。

- A. 电阻性
- B. 感性
- C. 容性
- D. 无法确定

9、某一元件的电压、电流(关联方向),若已知 $U=30\angle 15^{\circ}$ V, $I=-3\angle -165^{\circ}$ A,则该 元件的负载性质为()。

- A. 电阻性 B. 感性
- C. 容性 D. 无法确定

10、某一元件的电压、电流(关联方向),若已知 $U=-100\angle 30^{\circ}$ V, $I=5e^{-j60^{\circ}}$ A,则该元 件的负载性质为()。

- A. 电阻性 B. 感性 C. 容性 D. 无法确定

11、 在 RLC 串联电路中,已知 $R=3\Omega$, $X_L=8\Omega$, $X_C=4\Omega$,则电路的功率因数等于(

- A. 0.8
- B. 0.6
- C. 4/3
- D. 3/4

12、 在 RLC 串联电路中,已知 $R=3\Omega$, $X_L=4\Omega$, $X_C=8\Omega$,则电路的功率因数等于(

- A. 0.8 B. 0.6
- C. 4/3
- D. 3/4

13、 在 RLC 串联电路中, 已知电阻两端的电压为 40V, 电感两端的电压为 30V, 电容两端 的电压为 60V,则电路的功率因数等于()。

- A. 0.8 B. 0.6
- C. 4/3
- D. 3/4

14、在 RLC 串联电路中,已知电阻消耗的功率为 400W,电感的无功功率为 300Var,电容的 无功功率为 600Var,则电路的功率因数等于()。

- A. 0.8
- B. 0.6
- C. 4/3
- D. 3/4

15、电路电感性负载, 欲提高电路的功率因数, 最好的方法是()。

- A. 并联电容: B. 并联电感: C. 串联电容: D. 串联电感。

16、电感性负载通常采用并联电容的方式来提高电路的功率因数,则下列描述不正确的是(

- A. 并联电容后, 电路总的电流增大了;
- B. 并联电容后, 电路电压和总电流的夹角减小了;
- C. 并联电容后, 原感性负载取用的电流不变:
- D. 并联电容后, 原感性负载吸收的功率不变。
- 17、下列关于串联谐振描述不正确的是()。
 - A. 电路的阻抗模值最小;
- B. 电路中电流值最小;

- C. 电源电压与电路中电流同相; D. 串联谐振又称为电压谐振。
- 18、下列关于并联谐振描述不正确的是(
 - A. 电路的阻抗模值最大;
- B. 电路中电流值最大;
- C. 电源电压与电路中电流同相;
- D. 并联谐振又称为电流谐振。
- 19、一个串联谐振电路,品质因数为100,则下列说法正确的是()。
 - A. 电容两端电压大小是电阻两端电压大小的 100 倍
 - B. 电阻两端电压大小是电容两端电压大小的 100 倍
 - C. 电感两端电压大小是电容两端电压大小的 100 倍
 - D. 电容两端电压大小是电感两端电压大小的 100 倍
- 20、有一 RLC 串联电路,它在电源频率 f 为 500Hz 时发生谐振。谐振时电流 I 为 0.2A,容 抗 X_C 为 314 Ω ,并测得电容电压 U_C 为电源电压 U 的 20 倍。则电路的电感 L 等于(

) 。

- A. 10H
- B. 1H
- C. 0.1H
- D. 无法计算

二、计算题

- 1、图示电路中,已知负载两端电压 $u = 220\sqrt{2}\sin(314t 143.1^{\circ})V$,电流 $i = -22\sqrt{2}\sin(314t)A$, 求:
 - (1) 负载阻抗 Z, 并指明性质。
 - (2) 负载的功率因数,有功功率和无功功率。

- 2 、在 RLC 串 联 交 流 电 路 中 , 已 知 R=30 Ω 、 L=127mH 、 C=40 μ F , $u = 220\sqrt{2}\sin(314 t + 20^{\circ})V$.
- 求:(1)电路电流的有效值I与瞬时值i;
- (2)有功功率 P、无功功率 Q和视在功率 S。
- 3、如图所示,已知: $\dot{I}_s=4\angle 90^\circ A$, $Z_1=Z_2=-j30\Omega$, $Z_3=30\Omega$, $Z=45\Omega$,求电流 \dot{I} 。

4、图示电路中, $R=11\Omega$, L=211 mH, C=65 μF, 电源电压 $u=220\sqrt{2}$ sin314tV。求: (1) 各元件的瞬 时电压;②电路的有功功率P及功率因数 λ 。

5、在图示电路中, $u=220\sqrt{2}\sin\omega t$ V, $R=X_L=22\Omega$, $X_C=11\Omega$ 。求电流 i_R 、 i_C 、 i_L 、i 及总有功 功率P。

2.4 三相交流电路

一、选择题

1、某三角形连接的三相对称负载接于三相对称电源,则负载相电流的相位与其对应的线电 流相位相比应()。

- A. 超前 30° B. 滞后 30°
- C. 同相
- D. 反相

2、某正序三相交流电路中,电源和负载都采用星型联结,若电源的相电压 $U_A = 220 \angle 0^0 V$, 则线电压 $U_{AB}=($)。

- A. $220\angle 30^{\circ}$ B. $380\angle 0^{0}V$ C. $220\angle 0^{0}V$ D. $380\angle 30^{0}V$

3、三相四线制电路,已知 $I_A = 2\angle 20^\circ A$, $I_B = 2\angle -100^\circ A$, $I_C = 2\angle 140^\circ A$,则中线电 流 I_N 为(

- A. 2A
- B. 0A
- C. 6A D. 2A

4、 三相电源线电压为 380V, 对称负载为星形联结, 未接中性线。如果某相突然断掉, 其 余两相负载的电压均为()。

- A. 380 V
- B. 190 V
- C. 220 V D. 无法确定

5、如图所示的三相四线制照明电路中,各相负载电阻不等。如果中性线在"x"处断开,后 果是()。

- A. 各相电灯中电流均为零
- B. 各相电灯上电压将重新分配, 高于或低于额定值, 因此有的不能正常发光, 有的可能 烧坏灯丝

- C. 各相电灯中电流不变
- D. 各相电灯变成串联, 电流相等

二、计算题

- 1、接成星型的对称负载,接在一对称的三相电源上,线电压为 380V,负载每相阻抗 Z=8+j6 Ω ,试求:
- (1) 各相电流及线电流;
- (2) 三相总功率 P、Q、S。
- 2、已知电路如下图所示。电源电压 U=380V,每相负载的阻抗为 $R=X=X=10\Omega$ 。
- (1) 该三相负载能否称为对称负载? 为什么?
- (2) 计算中线电流和各相电流;
- (3) 求三相总功率 P。

- 3、对称三相负载星形连接,已知每相阻抗为 $Z=31+j22\,\Omega$,电源线电压为 380V,求三相交流 电路的有功功率、无功功率、视在功率和功率因数。
- 4、对称三相电源,线电压 U_L =380V,对称三相感性负载作三角形连接,若测得线电流 I_L =17.3A,三相功率 P=9.12KW,求每相负载的电阻和感抗。
- 5、三相异步电动机的三个阻抗相同的绕组连接成三角形,接于线电压 $U_L=380V$ 的对称三相电源上,若每相阻抗 $Z=8+j6\Omega$,试求此电动机工作时的相电流 I_P 、线电流 I_L 和三相电功率 P。

2.5 一阶电路的瞬态分析

一、选择题

- 1. 在图示电路中, 开关S在t=0瞬间闭合, 若 $u_C(0_-)=0$ V, 则 $i_1(0_+)$ 为()。
 - (a) 1.2 A
- (b) 0 A
- (c) 0.6 A

- 2. 在图示电路中,开关S在t=0瞬间闭合,若 $u_C(0_-)=4$ V,则 $u_R(0_+)=($)。
 - (a) 4 V
- (b) 0 V
- (c) 8V

- 3. 在图示电路中,开关S在t=0瞬间闭合,则 $i_2(0_+)=($)。
 - (a) 0.1 A
- (b) 0.05 A
- (c) 0A

- 4. 在图示电路中,开关S在t=0瞬间闭合,则 $i_3(0_+)=($)。
 - (a) 0.1 A
- (b) 0.05 A
- (c) 0A

- 5. 在图示电路中, 开关S在t=0瞬间闭合, 则 $i_R(0_+)=($)。
 - (a) 0 A
- (b) 1 A
- (c) 0.5 A

二、计算题

1、已知 t=0 时合上开关 K, 求图示电路换路后的电容电压 uc(t)。

2、图示电路中,已知 U_s =24V, I_s =2A, R_0 =2 Ω , R_s =6 Ω ,C=2uF ,开关 S 在 t=0 时合上,求电容两端电压 u_c (t)。

3、在图 5–5 电路中,已知已知 U_s =10V, I_s =11A, R=2 Ω ,L=1H,开关 S 在 t=0 时合上,闭合前电路处于稳态,求电感电流 i_L(t)。

4、图示电路原已稳定,已知: R_1 =6 Ω , R_2 =3 Ω ,C=0.5F, I_s =2A,t=0 时将开关 S 闭合。求 S 闭合后的 $u_c(t)$ 。

5、如图所示电路中,t=0时开关断开,求t>0时电感电流 $i_L(t)$ 。

第3章 分立元件基本电路

一、选择题

- 1、半导体二极管的主要特点是具有()。
 - (a)电流放大作用
- (b)单向导电性
- (c)电压放大作用
- 2、电路如图所示,所有二极管均为理想元件,则 D_1 、 D_2 、 D_3 的工作状态为 ()。
- (a) D_1 导通, D_2 、 D_3 截止
- (b) D_1 、 D_2 截止, D_3 导通
- (c) D_1 、 D_3 截止, D_2 导通
- (d) D_1 、 D_2 、 D_3 均截止

- 3、电路如图所示二极管为同一型号的理想元件, 电阻 $R=4k\Omega$, 电位 $u_A=1V$, $u_B=3V$, 则电位 u_F 等于 ()。
- (a) 1 V
- (b) 3 V
- (c) 12 V

- 4、电路如图所示, D_1 , D_2 均为硅管 (正向压降0.7V),D为锗管 (正向压降0.3V),U=6V,忽略二极管的反向电流,则流过 D_1 、 D_2 的电流分别为 ()。
 - A. 2mA, 2mA
- B. 0 , 2mA
- C. 2mA, 0
- D. 2mA, -2mA

- 5、电路如图所示, D为硅二极管, 根据所给出的电路参数判断该管为()。
 - (a) 正向偏置
- (b) 反向偏置
- (c) 零偏置

- 6、测得一放大电路中三极管三个管脚 1、2、3 对地电压分别为 $V_1=7V$, $V_2=10V$, $V_3=6.3V$, 则 1、2、3 三个管脚分别为:()
 - (A) 基极、集电极和发射极 (B) 集电极、基极和发射极
 - (C) 发射极、基极和集电极 (D) 基极、发射极和集电极
- 7、用万用表直流电压档测得电路中晶体管各电极对地电位如图所示,从而可判断该管工作在 ()。

- (A) 饱和状态 (B) 放大状态 (C) 倒置状态 (D) 截止状态

- 8、晶体三极管的主要特点是具有()。

- A 单向导电性 B 电流放大作用 C 稳压作用 D 电压放大作用
- 9、已知放大电路中某晶体管三个极的电位分别为 V_E =3.3V, V_B =4V, V_C =9V,则该管类型为 ().
- A NPN 型锗管 B PNP 型锗管 C NPN 型硅管 D PNP 型硅管

- 10、晶体管工作于放大状态时,()。
 - A、发射结正偏,集电结反偏
- B、发射结正偏,集电结正偏
- C、发射结反偏,集电结反偏
- D、发射结反偏,集电结反偏
- 11、共发射极放大电路中工作点选得过高会产生()失真。

A、饱和

B、截止

C、交越

D、不失真

二、计算题

1、电路如图所示,已知晶体管的β=60, $r_{be}=1$ ΚΩ, $U_{BE}=0.7$ V,试求:(1)静态工作点 I_{b} , I_{c} , U_{CE} ; (2) 电压放大倍数; (3) 若输入电压 $U_{CE}=1$ $U_{CE}=1$

2、放大电路如图所示,已知 $U_{\rm CC}$ =12V,晶体管的电流放大系数 β =50, $U_{\rm BE}$ =0.6V, $R_{\rm B1}$ =30k Ω , $R_{\rm B2}$ =10k Ω , $R_{\rm C}$ =6k Ω , $R_{\rm E}$ =2.4k Ω , $R_{\rm L}$ =6k Ω , $r_{\rm be}$ =200+(1+ β)*26/ $I_{\rm E}$ 。求:(1)画出直流通路图并计算静态工作点;(2) 画出微变等效电路;(3) 计算电压放大倍数、输入电阻和输出电阻。

3、在如图所示的分压式偏置电路中,已知: V_{CC} = 24 V, R_{BI} = 33 kΩ, R_{B2} = 10 kΩ, R_{CC} 3.3kΩ, R_{EC} 1.5kΩ, R_{EC} 5.1kΩ, R_{CC} 66, R_{CC} 0。试求: (1)计算静态值 I_{B} 、 I_{C} 和 U_{CC} ; (2)画出微变等效电路; (3)计算 r_{bc} , A_{U} , r_{i} 和 r_{o} 。

4、放大电路如下图所示, VCC=12V, RB1=20k, RB2=10k, Rc=2K, RL=2k, RE=2K, 晶体管 β=40,

Ube=0.6V, 各电容抗可以忽略不计。

- (1) 画出直流通路, 计算静态工作点。
- (2) 画出微变等效电路图,并计算电压放大倍数 Au,输入电阻 Ri,输出电阻 Ro。

5、放大电路如下图,已知 $U_{CC}=24\mathrm{V}$, $R_{C}=2K\Omega$, $R_{E}=2K\Omega$, $R_{B1}=20K\Omega$,

 $R_{B2}=10K\Omega$, $R_L=8K\Omega$, $r_{be}=0.55K\Omega$, 晶体管的放大倍数 β =49, 试求: (1) 画出直流通路; (1) 画出交流放大电路的微变等效电路; (2) 计算电路的 A_{U} , Ri 和 Ro; (3) RE 在该电路引入了什么反馈。

第4章 数字集成电路

一、选择题

- 1、晶体管的开关作用是()。
 - (a) 饱合时集-射极接通,截止时集-射极断开
 - (b) 饱合时集—射极断开, 截止时集—射极接通
 - (c) 饱合和截止时集—射极均断开
- 2、如图表示()电路。

外国状が / 七面。

A、与门 B、或门 C、非门 D、与非门

- 3、下面表达式中,哪个是函数 Y= BC + AB 的反函数。()

 - (A) $(B+C) \bullet (A+B)$ (B) $(\overline{B}+\overline{C}) \bullet (\overline{A}+\overline{B})$
 - (C) CB + BA
- (D) (A + C) B
- 4、为实现数据传输的总线结构,要选用()门电路。
- (A) 或非 (B) 三态 (C) 与或非
- 5、逻辑式 $F = A\overline{B} + B\overline{D} + A\overline{B}\overline{C} + AB\overline{C}\overline{D}$,化简后为()。
 - (a) $F = \overline{AB} + \overline{BC}$ (b) $F = A\overline{B} + C\overline{D}$ (c) $F = A\overline{B} + B\overline{D}$

- 6、在 \overline{R} = "0", \overline{S} = "1" 时, 基本 RS 触发器 (
- (a) 置"0" (b) 置"1" (c) 保持原状态
- 7、JK 触发器当 J= (),K= () 时,其功能为翻转。
 - A, 0 0
- B₂ 0 1
- C₂ 1 0
- D, 1 1
- 8、对于 D 触发器, 欲使 Qⁿ⁺¹=Qⁿ, 应使输入 D= ()。
 - A. 0
- B. 1
- C. Q D. \bar{Q}
- 9、当 $\overline{S}_D = \overline{R}_D = \text{"1"}$,J = K = "0" 时,C 脉冲来到后 JK 触发器()。
- (a) "0" 态 (b) "1" 态 (c) 保持原状态
- 10、如图电路中,如果 C 的频率是 2000Hz,那么 Q_1 和 Q_2 波形的频率分别为 ()。

- (A) 2000 Hz 和 2000 Hz
- (B) 1000 Hz 和 500 Hz
- (C) 2000 Hz 和 1000 Hz
- (D) 4000 Hz 和 8000 Hz

二、分析设计题

- 1、为提高报警信号的可靠性,在有关部位安置了3个同类型的危险报警器,只有当3个危 险报警器中至少有两个指示危险时,才实现关机操作。用与非门设计能实现上述要求的逻辑 电路。要求:(1)列逻辑状态表;(2)列逻辑式并化简和变换;(3)画出逻辑图。
- 2、某汽车驾驶员培训班进行结业考试,有三个裁判,其中 A 为主裁判, B, C 为副裁判,

评判时,按少数服从多数的原则通过,但主裁判认为合格也可通过,试用与非门设计能实现 上述要求的逻辑电路。要求:(1)列逻辑状态表;(2)列逻辑式并化简和变换;(3)画出逻 辑图。

- 3、某港口对进港的船只分为 A、B、C 三类,每次至多允许两类船只进港,且 A 类船优先 于B类,B类优先于C类。A、B、C三类船只可以进港的信号分别是FA、FB、FC。设输 入信号1表示船只要求进港,0表示不要求进港;输出信号1表示允许进港,0表示不允许 进港。根据该逻辑功能要求作出逻辑状态表,写出逻辑代数表达式并化简成最简形式,最后 根据最简表达式画出逻辑图。
- 4、某港口对进港的船只分为 A、B、C 三类,每次只允许一类船只进港,且 A 类船优先于 B 类, B类优先于 C类。A、B、C三类船只可以进港的信号分别是 FA、FB、Fc。设输入信号 1 表示船只要求进港,0表示不要求进港:输出信号1表示允许进港,0表示不允许进港。设 计能实现上述要求的逻辑电路。并画出电路图。
- 5、设计一个故障显示电路,要求:
 - (1) 两台电机同时工作时 F1 灯亮
 - (2) 两台电机都有故障时 F2 灯亮
 - (3) 其中一台电机有故障时 F3 灯亮。

第5章 集成运算放大器

一、选择题

- 1、欲使放大电路的输入电阻增加,输出电阻减小,应引入(
 - (a) 串联电压负反馈
- (b) 串联电流负反馈
- (c) 并联电压负反馈
- (d) 并联电流负反馈
- 2、在运算放大器电路中,引入深度负反馈的目的之一是使运放(
 - A 工作在线性区,降低稳定性
- B 工作在非线性区 , 提高稳定性
- C 工作在线性区, 提高稳定性
- D工作在非线性区,降低稳定性
- 3、电路如图所示, R_F 引入的反馈为()。
 - (a) 串联电压负反馈
- (b) 串联电流负反馈
- (c) 并联电压负反馈 (d) 并联电流负反馈

- 4、 电路如图所示,输入电压 u_i =10sin ωt (mV),则输出电压 u_0 为()。
 - (a) 正弦波
- (b) 方波 (c) 三角波

- 5、如图电路,运放的饱和电压为 $\pm U_{\rm o(set)}$, 当 $U_{\rm i}$ < $U_{\rm R}$ 时, $U_{\rm o}$ 等于()。
 - (a) 零
- (b) $+u_{O}(set)$
- (c) $-u_{O(set)}$

二、分析题

- 1、分析如图所示电路,设集成运放均为理想运放。 R_1 =1k Ω , R_2 = R_6 =10k Ω , R_3 =10k Ω , R_4 =5k Ω , R_5 =2k Ω 。
 - (1) 分析 A1 和 A2 各组成何种基本运算电路;
 - (2) 求 u_{o2} 和 u_{i1} 、 u_{i2} 、 u_{i3} 的运算关系式。

2、电路如图所示,已知 ui=1V, R1=10K Ω ,R=15K Ω ,试求输出电压 \mathbf{u}_{o} 大小。

3、在如图所示的电路中,已知 $R_f = 5R_1$,求 u_0 与 u_{i1} 和 u_{i2} 的关系式。

4、已知理想运放组成的电路如图所示,(1)计算 U_{01} 和 U_{02} ;(2)分析图中 A1 和 A2 的反馈电阻引入的反馈类型。

- 5、电路如图所示,要求:
 - (1) 写出输出电压 u_0 与输入电压 u_{11} , u_{12} 之间运算关系的表达式。
 - (2) 若 $R_{\mathrm{F}_{\mathrm{I}}}=R_{\mathrm{I}}$, $R_{\mathrm{F2}}=R_{\mathrm{2}}$, $R_{\mathrm{3}}=R_{\mathrm{4}}$, 写出此时 u_{O} 与 u_{II} , u_{I2} 的关系式。

