ДЗ 10 (ординалы)

Владимир Латыпов donrumata03@gmail.com

Содержание

2 Равенство упорядоченных пар	3
3	3

2 Равенство упорядоченных пар

Лемма 2.1 (Формализация разбора случаев) Можно «разделить» на несколько частей, в зависимости от условий, представимых в исчислении (не обязаительно дизъюнктных), дизъюнкция которых ($\alpha_1 \lor \alpha_2 \lor ...$) доказуема, и при каждом доказуемо γ . Тогда верна γ .

Доказательство Очевидно из введения конъюнкции и схемы аксиом 8 и МР

Замечание 2.2 Если в какой-то ветке противоречие, она считается доказанной.

В сторону $a=c \land b=d \to \langle a,b \rangle = \langle c,d \rangle$ — очевидно из определения равенства.

В другую сторону имеем:

$$\{\{a\},\{a,b\}\}\supset\subset\{\{c\},\{c,d\}\}$$

То есть

$$\{a\} = \{c\} \lor \{a\} = \{c, d\}$$
$$\{a, b\} = \{c\} \lor \{a, b\} = \{c, d\}$$
$$\{c\} = \{a\} \lor \{c\} = \{a, b\}$$
$$\{c, d\} = \{a\} \lor \{c, d\} = \{a, b\}$$

Рассмотрим случаи:

1.
$$a = b$$
. Тогда $\langle a, b \rangle = \{\{a\}, \{a, b\}\} = \{\{a\}, \{a, a\}\} = \{\{a\}, \{a\}\} = \{\{a\}\}.$

2. c = d — аналогично

3. $a \neq b \land c \neq d$. Тогда по транзитивности равнества случаи такие:

1.
$$\{c\}=\{a\} \land \{c\} \neq \{a,b\}$$
, то есть $c=a \land c \neq b$. Тогда $\{c,d\}=\{a,b\}$, так как $\{c,d\} \neq \{a\}$, ведь $c\neq d\Rightarrow d\neq a$.

2. $\{c\} \neq \{a\} \land \{c\} = \{a,b\}$, но $c \neq a$. Этого случая не сущетсвует.

3

a. ...

b.
$$\varphi(x) := \neg (x \in b)$$

 $a \setminus b \equiv \{x \in a \mid \varphi(x)\}$ aka filter φ a

c.