Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Qroo. 12 de julio de 2011.	Héctor Fernando Gómez García Víctor Manuel Romero Medina Óscar Andrés Cárdenas Alvarado Oswaldo García Burgos	Actualización del Plan de la carrera de Ingeniería Industrial.

Relación con otras asignaturas

Anteriores	Posteriores	
Asignatura(s) a) Algebra y geometría analítica	Asignatura(s) a) Investigación de operaciones	
Tema(s) a) Espacios Vectoriales	Tema(s) a) Programación lineal	

Nombre de la asignatura Departamento o Licenciatura

Álgebra lineal Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	110322	6	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Materia	48	0	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar métodos y algoritmos del álgebra lineal para la solución de problemas de ingeniería.

Objetivo procedimental

Proponer problemas relacionados con la ingeniería para el establecimiento de métodos y algoritmos del lenguaje matemático del álgebra lineal.

Objetivo actitudinal

Fomentar la cultura del esfuerzo y del trabajo en forma individual y colaborativa para la resolución de problemas.

Unidades y temas

Unidad I. VECTORES

Explicar los diferentes tipos de vectores, rectas y planos para el entendimiento de su origen, clasificación y estructuración.

- 1) Puntos y vectores
- 2) Producto escalar.
- 3) Producto Cruz
- 4) Rectas y planos en el espacio.

Unidad II. MATRICES

Emplear las matrices y sus propiedades para la resolución de problemas que involucren datos numéricos.

- 1) Matrices.
- 2) Tipos de matrices.
- 3) Operaciones entre matrices.
- 4) Sistemas de ecuaciones lineales.
- 5) Eliminación gaussiana.

6) Eliminación gaussiana.
7) Determinantes.
8) Matriz inversa.
9) Aplicaciones.
Unidad III. ESPACIOS VECTORIALES
Proponer las definiciones de espacio y subespacio vectorial para la solución de problemas.
1) Definición.
2) Subespacio vectorial.
3) Independencia lineal.
4) Base y dimensión de un espacio vectorial.
5) Rango.
6) Cambio de base.
7) Bases ortonormales.
8) Ortogonalización Gram-Schmidt.
9) Aplicaciones.
Unidad IV. VALORES Y VECTORES PROPIOS.
Resolver problemas que involucren valores y vectores propios de una matriz para la construcción de transformaciones

lineales diagonalizables.

1) Definición.

- 2) Diagonalización.
- 3) Aplicaciones.

Actividades que promueven el aprendizaje

Docente	Estudiante	
Solución de Ejercicios y Problemas	Aprendizaje basado en problemas	
Preguntas guía	Desarrollo de proyecto	
Corrillo	Investigación documental	

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la resolución de problema): http://mathworld.wolfram.com/

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Búsquedas de información	20
Resolución de problemas	30
Trabajos escritos	20
Total	100

Fuentes de referencia básica

Bibliográficas

Grossman. (1999). Algebra lineal (5ta. Ed.). Mc Graw ¿ Hill.

Howard Anton ; Tr. Hugo Villagómez Velázquez. (2004). Introducción al álgebra Lineal. Limusa Wiley. México

Marsden J. E., Tromba A. J. (2004). Cálculo Vectorial (4ª. Ed.). Pearson Educación.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

APOSTOL TOM M. (1967). CALCULUS: CALCULO CON FUNCIONES DE UNA VARIABLE, CON UNA INTRODUCCION AL ALGEBRA LINEAL. Barcelona, España.

Programas computacionales de apoyo recomendados: Scientific Notebook. versión 5. Mathematica, versión 6. Mathlab.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con Licenciatura en docencia de matemáticas o alguna rama de la ingeniería. Preferentemente nivel maestría en el área de las matemáticas o ingeniería.

Docentes

Tener experiencia docente de tres años mínimo a nivel superior en asignaturas relacionadas.

Profesionales

Tener experiencia en investigación relacionada con las matemáticas o como ingeniero en cualquiera de sus ramas.