GATE CSE NOTES

Joyoshish Saha

Downloaded from https://gatecsebyjs.github.io/
With best wishes from Joyoshish Saha

£XTRAS

* DFA for L= { W & {a,by* | may.3 > mby.3}

 >	ma%3	mb/.3	Cond'sa	atisfied?
ρ Ο S	0	0	* * *	Make product DFA $ \begin{bmatrix} n_a / .3 = 0 \\ n_b / .3 = 0 \end{bmatrix} $
S I B I	1	0	×	Final states are -
L I T	<u>1</u> 2	2	*	9 ₁₀ , 9 ₂₀ , 9 ₂₁ .
I E S	2 2	2	X	

* Pormal language is the obstraction of generalized characteristic of programming languages.

(FA < DPDA < NPDA or PDA < LBA < HTM < TM)

FA = TM with read only tape = TM with uniderectional tape

= TM with finite tape = PDA with finite

Stack

(PDA = FA with Stack)

(TM = PDA with additional stack = FA with 2 stacks)

TH REL Lexical Analyse

FA RL Lexical Analyse

Syntax n

List CSL Semantic n

Logic (Whote compiler)

FA

PDA

Algo w/o using any memory

Algo using 1 stack

(Palindrome)

Algo/ Program

TM ...

Bounded memory Any algo

* (DFA = NFA) < DPDA < NPDA < LBA < (NTM = DTM)

FA with 1 stack = PDA FA with 2 stacks = TM.

Xutomata with α queue ≈ TM

TM with 3 states ≈ TM ≈

Multitape TM with 'stay' of at

most 2 states. ≈ NPDA with

a independent stacks.

NDTM with only stack = PDA

TM with finite tape = FA

NTM with part of tape only

where ip is present = LBA

(when to check CSL)

* Laccepted by LBA $\{a^nb^nc^m|n\geqslant 1\}, \{a^{n!}|n\geqslant 0\}, \{a^n|n \text{ prime}\}$ $\{a^n, n=m^2, m\geqslant 1\}, \{a^n|n \text{ not prime}\},$ $\{\omega\omega|\omega\in(a,b)+\}, \{\omega^n|\omega\in(a,b)^+, n\geqslant 1\},$ $\{\omega\omega\omega'|\omega\in(a,b)+\}$

Closure property

* Grammar-decidab	le /unde cidable
-------------------	------------------

4 90011111111111111111111111111111111111			1				-
Decision Problem	RL	DCFL	#CFL	CSL	RECL	REL	
Membership wel?	D	D	D	D	D	UD	
Emptimess L= +?	D	D	D	UD	UD	UD	
Finitemess	D	D	D	UD	UD	UD	4
Equivalence L_= L_2?	D	D	UD	UD	UD	UD	*
Inters mempty LAL2=0?	D	UD	UD	UD	UD	UD	
Totality L= Z*?	D	D	UD	UD	UD	UD	*
Subset L, C L2? (Containment)	D	UD.S	QU	עט	UD	ND	
Inters" finiteness (LIAL)	D	UDI	UD	UD	UD	UD	*
Colfinateness (I finite?)	D	D	UD	UD	UD	UD	*
Regularity (L=neg ?)	D	D	עט	UD	UD	Up	
Ambiguity	D	UDA	UD	UD	UD	UD	
CI same type?	D	D	UP	D	D	UD	
I LINL is same type?	D	UD I	UD	עט	UD	UD	4
Haltins	. D_	D	D	D	D	UD.	不

· Arbitrory CFGs G, G, G, G, & orbitrary Regex R, undecidable - whether L(R) ⊆ L(G), whether L(G) is DCFL, whether L(G)=L(R). decidable - whether L(G) ⊆ L(R)[test L(G) ∩ L(R) = φ or not]

· Arbritrory DCFGs G,G,, G2 & arbitrary

regex R, decidable - whether L(G) = L(R),

whether L(G) \(\subseteq L(R),

Whether L(R) SL(G), whether L(G) is CFL. (trivial)

111

Min Max

NAND NOR

XOR / Symmetric Difference

	RL	DCFL	CFL	CSL	RECL	REL
Square root of L, TI						
Square of L	×					
Shuffle (L1, L2)					•	
One-third of L	~	V				
Half of L					. 19:3	
Sub sequence	~				,	
Subword	~		- American	13	fisjery so	ano y
Subset	X		X			
Superset		×	×			

· Decd

	RL	DCFL	CFL	RECL	REL			
Membership	D	D	Þ	× D Z	(Servide c)			
Halting	D	D	D	X D.	(Semi dec.)			
2 mptimess	D	D	D §	(mon-re)	UD (non-re)			
Finiteness	Dx	D	D	(non-re)	UD (non-re)			
Totality	рX	D	(non-re)	UD (non-re)	UD (non-re)			
Equivalonce	D	D	(non-re)	UD (non-re)	UD (non-re)			
Dosjoint	D	UD (non-re)	(non-se)	UP (non-re)	(non-re)			
Set contain.	D	UD (non-re)	UD (mon-10)	UD (non-re)	.UD (non-re)			
Ambiguity"	D 3	VO	UD	UD	Up			
Marvelous humble employee failed to								
equate dogs 1 cats. 2 ants.								
Regularity	D	D	UD Pronte	OD ? non-re	ud mon-re			

Non-membership Decidable upto RECL. For REL, undecidable (non-RE).

Non-emptiness

{(H) | L(H) f p)

For TM, it is

Semidecidable.

Non-equivalence

mon-re for TM.

SD for PDA, HTM.

Decision problem	RL	DCFL	CFL	RECL	REL
Membership	Ď	7	D	b	UD RE, not RE
Halting	D	D	D	D	UD RE, not rec
Emptiness	D	D	D	UD mon-RE	UD non-RE
Finiteness	D	D	D	UD mon RE (nA	U D
Totality	D	D	UD	UD	UD
Equivalence	D	D	UD nr	UD nr	UP
Disjoint	D	UD nr	UD nr	UD nr	ND n=
Set containment	D	UD hr	UD nr	UD nr	UD nr
Ambaguity	D	U D	ND nr	UD no	UD nr
Regularity	D	D	DO	סט	Non-re

Marvelous humble employee failed to equate dogs, cats, ants, rats.

• Non-membership: Decidable upto RECL For REL, non-RE.

· Non emptioness :
{ < M > | L(M) ≠ Φ }

For RE, semidecidable

· Non-equivalence:

for CFL, RECL

Semidecidable

For REL, non-RE.