Math101

Benjamin Buus Støttrup benjamin@math.aau.dk

Institut for matematiske fag Aalborg universitet Danmark

Introduktion

Disse slides er oprindeligt udarbejdet af

Benjamin Buus Støttrup

til Math101 kurset på Aalborg Universitet i efteråret 2018.

Seneste opdateret 25. marts 2021

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

- ▶ En funktion f tildeler ethvert element x i en mængde X præcis ét element f(x) i en mængde Y.
- ▶ Mængden X kaldes domænet eller definitionsmængden for f og mængden Y kaldes codomænet for f.
- ▶ Vi anvender notationen:

$$f\colon X\to Y$$
.

► Et eksempel på funktioner er $f: \mathbb{R} \to [0, \infty[$ givet ved $f(x) = x^2$ og $g:]0, \infty[\to \mathbb{R}$ givet ved $g(x) = e^{\frac{1}{x}}$.

- ▶ En funktion f tildeler ethvert element x i en mængde X præcis ét element f(x) i en mængde Y.
- ► Mængden X kaldes domænet eller definitionsmængden for f og mængden Y kaldes codomænet for f.
- ▶ Vi anvender notationen:

$$f\colon X\to Y$$

▶ Et eksempel på funktioner er $f: \mathbb{R} \to [0, \infty[$ givet ved $f(x) = x^2$ og $g:]0, \infty[\to \mathbb{R}$ givet ved $g(x) = e^{\frac{1}{x}}$.

- ▶ En funktion f tildeler ethvert element x i en mængde X præcis ét element f(x) i en mængde Y.
- ► Mængden X kaldes domænet eller definitionsmængden for f og mængden Y kaldes codomænet for f.
- ► Vi anvender notationen:

$$f: X \to Y$$
.

▶ Et eksempel på funktioner er $f: \mathbb{R} \to [0, \infty[$ givet ved $f(x) = x^2$ og $g:]0, \infty[\to \mathbb{R}$ givet ved $g(x) = e^{\frac{1}{x}}$.

- ▶ En funktion f tildeler ethvert element x i en mængde X præcis ét element f(x) i en mængde Y.
- ► Mængden X kaldes domænet eller definitionsmængden for f og mængden Y kaldes codomænet for f.
- ▶ Vi anvender notationen:

$$f: X \rightarrow Y$$
.

► Et eksempel på funktioner er $f: \mathbb{R} \to [0, \infty[$ givet ved $f(x) = x^2$ og $g:]0, \infty[\to \mathbb{R}$ givet ved $g(x) = e^{\frac{1}{x}}$.

► Figur 1 og Figur 2 viser også eksempler på funktioner.

Figur: En funktion g.

Figur: En funktion f.

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen *f* kaldes den *indre funktion* og *g* kaldes den *ydre funktion*.
- ► Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

- ▶ Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x)).$
- Funktionen f kaldes den indre funktion og g kaldes den ydre funktion.
- ▶ Eksempel: Sammensæt $f(x) = \sqrt{x} \mod a(x) = e^{2x}$.

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen *f* kaldes den *indre funktion* og *g* kaldes den *ydre funktion*.
- ▶ Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen *f* kaldes den *indre funktion* og *g* kaldes den *ydre funktion*.
- ► Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

Tr. POOD UNIVERSAL 4

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen *f* kaldes den *indre funktion* og *g* kaldes den *ydre funktion*.
- ► Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen *f* kaldes den *indre funktion* og *g* kaldes den *ydre funktion*.
- ▶ Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

Proope UNIVERSITA 4

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen *f* kaldes den *indre funktion* og *g* kaldes den *ydre funktion*.
- ▶ Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen *f* kaldes den *indre funktion* og *g* kaldes den *ydre funktion*.
- ▶ Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen f kaldes den indre funktion og g kaldes den ydre funktion.
- ► Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$.

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen f kaldes den indre funktion og g kaldes den ydre funktion.
- ► Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$. Svar: $(f \circ g)(x) = \sqrt{e^{2x}} = e^x$,

- ► Hvis $f: X \to Y$ og $g: Y \to Z$ så kan vi definere sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$.
- ► Funktionen f kaldes den indre funktion og g kaldes den ydre funktion.
- ► Eksempel: Sammensæt $f(x) = \sqrt{x} \mod g(x) = e^{2x}$. Svar: $(f \circ g)(x) = \sqrt{e^{2x}} = e^x$, $(g \circ f)(x) = e^{2\sqrt{x}}$

Første-og andengradspolynomier

► Et førstegradspolynomium er en funktion med forskrift på formen

$$f(x) = ax + b.$$

- ► Grafen for et førstegradspolynomium er en ret linje med hældning *a* som skærer *y*-aksen i *b*.
- Et andengradspolynomium er en funktion med forskrift på formen

$$f(x) = ax^2 + bx + c$$

▶ Grafen for et andengradspolynomium er en parabel som skærer y-aksen i c.

Første-og andengradspolynomier

Et førstegradspolynomium er en funktion med forskrift på formen

$$f(x) = ax + b$$
.

- Grafen for et førstegradspolynomium er en ret linje med hældning a som skærer v-aksen i b.
- Et andengradspolynomium er en funktion med forskrift på formen

$$f(x) = ax^2 + bx + c$$

Grafen for et andengradspolynomium er en parabel som skærer v-aksen i c.

Proope UNIVERSE

Første-og andengradspolynomier

Et førstegradspolynomium er en funktion med forskrift på formen

$$f(x) = ax + b.$$

- ► Grafen for et førstegradspolynomium er en ret linje med hældning *a* som skærer *y*-aksen i *b*.
- ► Et andengradspolynomium er en funktion med forskrift på formen

$$f(x) = ax^2 + bx + c.$$

► Grafen for et andengradspolynomium er en parabel som skærer *y*-aksen i *c*.

Første-og andengradspolynomier

► Et førstegradspolynomium er en funktion med forskrift på formen

$$f(x) = ax + b$$
.

- ▶ Grafen for et førstegradspolynomium er en ret linje med hældning a som skærer y-aksen i b.
- ► Et andengradspolynomium er en funktion med forskrift på formen

$$f(x) = ax^2 + bx + c.$$

▶ Grafen for et andengradspolynomium er en parabel som skærer y-aksen i c.

Første-og andengradspolynomier

► Figur 3 Viser eksempler på første-og andengradspolynomier.

Figur: Grafer for første-og andengradspolynomier.

Opgaveregning!

