Université Cadi Ayyad Faculté des Sciences Semlalia Département de Physique Année universitaire 2020/2021

Filière : SMA/S3 Filière SMI/S3

TD n°1: électricité II

Loi de Biot et Savart

Exercice 1

On considère un fil rectiligne de longueur finie ℓ d'axe Oz parcouru par un courant continu d'intensité I.

Dans le repère $(O, \vec{e}_O, \vec{e}_O, \vec{e}_O, \vec{e}_Z)$, un point M est repéré par $\overrightarrow{OM} = \rho \vec{e}_O$ (figure 1).

- 1) Déterminer l'expression du champ d'induction magnétique total $\vec{B}(M)$ créé par le fil au point M en fonction de μ_0 , I, ρ , des angles α_1 et α_2 , et \vec{e}_{ϱ}
- 2) Que devient l'expression du champ d'induction magnétique \vec{B} créé au point M si le fil rectiligne est de longueur infinie ?

Exercice 2

- 1) On considère une spire circulaire de centre O, de rayon R et d'axe Oz parcourue par un courant constant d'intensité I.
- a) citer les plans de symétrie e d'antisymétrie de cette distribution de courant.
- b) Déterminer le champ B(O) créé par cette distribution de courant au point O
- c) Déterminer l'expression du champ d'induction magnétique $\vec{B}(M)$ créé par la distribution en un point M de son axe Oz.
- 2) En déduire l'expression du champ d'induction magnétique créé par une bobine plate de centre O et de rayon R en un point M de son d'axe Oz.
- (Une bobine plate circulaire est constituée d'un fil conducteur enroulé de façon à former une bobine de N spires dont la longueur est petite par rapport à son rayon R)
- 3) On considère un solénoïde d'axe Oz de longueur ℓ et de rayon R, comportant N spires, chacune étant parcourue par un courant constant d'intensité I. Soit n le nombre de spires par unité de longueur $(n=N/\ell)$.
- a) Déterminer le champ d'induction magnétique $\vec{B}(M)$ créé par le solénoïde en un point M de son axe Oz.
- b) En déduire l'expression du champ d'induction magnétique créé par un solénoïde de longueur infinie en un point de son axe.

Théorème d'Ampère

Exercice 3

On considère un solénoïde infiniment long, comportant n spires jointives par unité de longueur. Les spires sont circulaires de rayon R et parcourue chacune par un courant constant d'intensité I.

Figure 2

- 1) Déterminer la direction du champ d'induction magnétique $\vec{B}(M)$ créé par la distribution de courant, en tout point M de l'espace vide. Justifiez votre réponse.
- 2) Montrer que le module B(M) du champ $\vec{B}(M)$ ne dépend que de la coordonnée cylindrique radiale ρ .
- 3) Déterminer l'expression de B(M) en tout point M de l'espace.

Exercice 4

On considère un conducteur cylindrique de longueur infinie, de rayon R et d'axe Oz, parcouru par un courant constant d'intensité I. Le vecteur densité volumique de courant \vec{j} est uniforme et s'écrit : $\vec{j} = \frac{I}{\pi R^2} \vec{e}_z$

- 1) Déterminer la direction du champ d'induction magnétique $\vec{B}(M)$ créé par la distribution de courant, en tout point M de l'espace. Justifiez votre réponse.
- 2) Montrer que le module B(M) du champ $\vec{B}(M)$ ne dépend que de la coordonnée cylindrique radiale ρ .
- 3) Déterminer l'expression de B(M) en tout point M de l'espace par la distribution de courant volumique.
- 4) Donner l'allure de B(r). Conclure

Exercice 5

On considère, (figure 3), un conducteur cylindrique creux, de rayons intérieur R_1 et extérieur R_2 , parcouru par un courant d'intensité I. Le cylindre creux est supposé de longueur infinie. Le vecteur densité de courant \vec{j} , dans la couche conductrice cylindrique, en un point situé à une distance ρ de l'axe du cylindre creux, est donné

par :
$$\vec{j}(\rho) = C \frac{e^{-\rho/a}}{\rho} \vec{e}_z$$
 où C et a sont des constantes positives

- 1) Vérifier que l'intensité de courant $I = 2\pi C a \left[e^{-R_1/a} e^{-R_2/a} \right]$
- 2) Déterminer la direction du champ d'induction magnétique $\vec{B}(M)$ créé par la distribution de courant, en tout point M de l'espace. Justifiez votre réponse.
- 3) Montrer que le module B(M) du champ $\vec{B}(M)$ ne dépend que de la coordonnée cylindrique radiale ρ . 4) Déterminer l'expression de B(M) en tout point M de l'espace.

Exercice 6

On considère une distribution de courant surfacique plane infinie, confondue avec un plan (O,x ,y), parcourue par un courant constant de densité surfacique $\vec{j}_s = j_s \vec{e}_y$. L'intensité j_s se repartit uniformément le long de l'axe Ox. On note $I_0 > 0$ le courant sur un segment de longueur h selon Ox.

- 1) Exprimer le vecteur densité surfacique de courant \vec{j}_s en fonction des données du problème.
- 2) Déterminer le champ d'induction magnétique créé en un point M de l'espace.

Exercice 8 (devoir)

On considère un câble coaxial, rectiligne, qu'on assimilera à deux surfaces parfaitement conductrices, cylindriques, coaxiales. Le cylindre intérieur creux, de rayon R_1 et de longueur h, est parcouru par un courant continu d'intensité I dans le sens de \vec{e}_z (Figure 4). Le conducteur extérieur, d'épaisseur négligeable, de rayon R_2 et de longueur h, est parcouru par un courant de même intensité I mais dans le sens opposé (dans le sens $(-\vec{e}_z)$), (Figure 4). Le câble coaxial est supposé infini (h>> R_2 > R_1) et l'espace entre les deux conducteurs est assimilé au vide.

Pour le conducteur intérieur, de rayon R_1 , la densité surfacique de courant est : $\vec{j}_{s_1} = \frac{I}{2\pi R_1} \vec{e}_z$

Pour le conducteur extérieur de rayon R₂, la densité surfacique de courant est : $\vec{j}_{s_2} = -\frac{I}{2\pi R_2} \vec{e}_z$

Un point M de l'espace est repéré par ses coordonnées cylindriques (r, φ, z) dans le repère orthonormé direct $(O, \vec{e}_r, \vec{e}_{\varphi}, \vec{e}_z)$.

- 1) Préciser les unités de j_{s_1} et de j_{s_2} (en unités Système International)
- 2) En utilisant les symétries et les invariances montrer que le champ $\vec{B}(M) = B(r)\vec{e}_{\varphi}$.
- 3) Déterminer l'expression de $\vec{B}(M)$ pour : $0 < r < R_1$; $R_1 < r < R_2$ et $r > R_2$.

