

Пусть $s(x_i)$ — начало промежутка x_i , $e(x_i)$ — окончание.

Пусть y_1, \ldots, y_n — решение, найденное жадным алгоритмом, и z_1, \ldots, z_m — оптимальное решение.

Пусть $s(x_i)$ – начало промежутка x_i , $e(x_i)$ – окончание.

Пусть y_1, \ldots, y_n — решение, найденное жадным алгоритмом, и z_1, \ldots, z_m — оптимальное решение.

Лемма

Для любого k, $e(y_k) \leq e(z_k)$.

Пусть $s(x_i)$ – начало промежутка x_i , $e(x_i)$ – окончание.

Пусть y_1, \ldots, y_n — решение, найденное жадным алгоритмом, и z_1, \ldots, z_m — оптимальное решение.

Лемма

Для любого k, $e(y_k) \leq e(z_k)$.

Доказательство.

База индукции: жадный алгоритм выбирает y_1 так, что $e(y_1)$ — минимально. Шаг индукции: поскольку $e(y_{k-1}) \le e(z_{k-1})$, то z_k является допустимым для продолжения y_1, \ldots, y_{k-1} . y_k — элемент с минимальным e из всех допустимых, следовательно, $e(y_k) < e(z_k)$.

Пусть $s(x_i)$ — начало промежутка x_i , $e(x_i)$ — окончание.

Пусть y_1, \ldots, y_n — решение, найденное жадным алгоритмом, и z_1, \ldots, z_m — оптимальное решение.

Лемма

Для любого k, $e(y_k) \leq e(z_k)$.

Доказательство.

База индукции: жадный алгоритм выбирает y_1 так, что $e(y_1)$ — минимально. Шаг индукции: поскольку $e(y_{k-1}) \leq e(z_{k-1})$, то z_k является допустимым для продолжения y_1, \ldots, y_{k-1} . y_k — элемент с минимальным e из всех допустимых, следовательно, $e(y_k) \leq e(z_k)$.

Лемма

 $n \ge m$.

Пусть $s(x_i)$ – начало промежутка x_i , $e(x_i)$ – окончание.

Пусть y_1, \ldots, y_n — решение, найденное жадным алгоритмом, и z_1, \ldots, z_m — оптимальное решение.

Лемма

Для любого k, $e(y_k) \leq e(z_k)$.

Доказательство.

База индукции: жадный алгоритм выбирает y_1 так, что $e(y_1)$ — минимально. Шаг индукции: поскольку $e(y_{k-1}) \leq e(z_{k-1})$, то z_k является допустимым для продолжения y_1, \ldots, y_{k-1} . y_k — элемент с минимальным e из всех допустимых, следовательно, $e(y_k) < e(z_k)$.

Лемма

 $n \geq m$.

Доказательство.

Пусть m>n. Поскольку $e(y_n)< e(z_n)$, то z_n допустим для y_1,\ldots,y_n . Но тогда жадный алгоритм включил бы его в эту последовательность.

На каждом шаге алгоритма Краскала, последовательность ребер e_1, \ldots, e_k является подмножеством минимальное остовного дерева.

На каждом шаге алгоритма Краскала, последовательность ребер e_1, \ldots, e_k является подмножеством минимальное остовного дерева.

Доказательство.

На каждом шаге алгоритма Краскала, последовательность ребер e_1, \ldots, e_k является подмножеством минимальное остовного дерева.

Доказательство.

База индукции. Очевидно для k=0 и пустой последовательности.

На каждом шаге алгоритма Краскала, последовательность ребер e_1, \ldots, e_k является подмножеством минимальное остовного дерева.

Доказательство.

База индукции. Очевидно для k=0 и пустой последовательности. Шаг индукции. Пусть $F=\{e_1,\ldots,e_{k-1}\}$. По предположению индукции, существует минимальное остовное дерево T, содержащее F. Если T содержит e_k , то шаг индукции выполняется.

На каждом шаге алгоритма Краскала, последовательность ребер e_1, \ldots, e_k является подмножеством минимальное остовного дерева.

Доказательство.

База индукции. Очевидно для k=0 и пустой последовательности. Шаг индукции. Пусть $F=\{e_1,\ldots,e_{k-1}\}$. По предположению индукции, существует минимальное остовное дерево T, содержащее F. Если T содержит e_k , то шаг индукции выполняется.

Если нет, то $T + e_k$ содержит цикл C. Этот цикл содержит некое ребро p, такое что p не входит в F (в противном случае, $F + e_k$ содержит цикл, и алгоритм Краскала не мог бы выбрать e_k как продолжение F).

На каждом шаге алгоритма Краскала, последовательность ребер e_1, \ldots, e_k является подмножеством минимальное остовного дерева.

Доказательство.

то шаг индукции выполняется.

База индукции. Очевидно для k=0 и пустой последовательности. Шаг индукции. Пусть $F=\{e_1,\dots,e_{k-1}\}$. По предположению индукции, существует минимальное остовное дерево T, содержащее F. Если T содержит e_k ,

Если нет, то $T + e_k$ содержит цикл C. Этот цикл содержит некое ребро p, такое что p не входит в F (в противном случае, $F + e_k$ содержит цикл, и алгоритм Краскала не мог бы выбрать e_k как продолжение F).

Тогда $T-p+e_k$ является деревом. Учтем, что $w(e_k) \leq w(p)$, поскольку жадный алгоритм выбрал e_k , а не p. Следовательно, $w(T-p+e_k) \leq w(T)$, но T- оптимально, следовально, $T-p+e_k$ также оптимально.

Теорема

Пусть все веса в графе неотрицательны. Тогда на каждом шаге алгоритма для всех v из S, p(v) является длиной кратчайшего пути из v_0 в v.

Теорема

Пусть все веса в графе неотрицательны. Тогда на каждом шаге алгоритма для всех v из S, p(v) является длиной кратчайшего пути из v_0 в v.

Доказательство.

Теорема

Пусть все веса в графе неотрицательны. Тогда на каждом шаге алгоритма для всех v из S, p(v) является длиной кратчайшего пути из v_0 в v.

Доказательство.

Индукция по количеству вершин в S.

Теорема

Пусть все веса в графе неотрицательны. Тогда на каждом шаге алгоритма для всех v из S, p(v) является длиной кратчайшего пути из v_0 в v.

Доказательство.

Индукция по количеству вершин в S.

База индукции: очевидно для v_0 .

Теорема

Пусть все веса в графе неотрицательны. Тогда на каждом шаге алгоритма для всех v из S, p(v) является длиной кратчайшего пути из v_0 в v.

Доказательство.

Индукция по количеству вершин в S.

База индукции: очевидно для v_0 .

Шаг индукции. Пусть v — вершина, которую алгоритм добавляет в S по ребру (u,v). Пусть P_u — путь, найденный алгоритмом из v_0 в u, P_v — аналогичный путь для v. По предположению индукции P_u является кратчайшим путем из v_0 в u. По выбору ребра (u,v), P_v является кратчайшим путем из v_0 в v из тех, что проходят только через вершины из S.

Теорема

Пусть все веса в графе неотрицательны. Тогда на каждом шаге алгоритма для всех v из S, p(v) является длиной кратчайшего пути из v_0 в v.

Доказательство.

Индукция по количеству вершин в S.

База индукции: очевидно для v_0 .

Шаг индукции. Пусть v — вершина, которую алгоритм добавляет в S по ребру (u,v). Пусть P_u — путь, найденный алгоритмом из v_0 в u, P_v — аналогичный путь для v. По предположению индукции P_u является кратчайшим путем из v_0 в u. По выбору ребра (u,v), P_v является кратчайшим путем из v_0 в v из тех, что проходят только через вершины из S.

Предположим, что P_v не является кратчайшим. Следовательно, существует другой путь P с меньшей длиной. Поскольку P_v – кратчайший из путей, которые состоят только из вершин S, в P должна быть вершина не из S. Обозначим первую такую вершину как y, предшествующую ей – как x.

 $\mathcal{L}(P_v)$

$$\mathcal{L}(P_v) = \mathcal{L}(P_u) + w(u, v)$$

$$\mathcal{L}(P_v) = \mathcal{L}(P_u) + w(u, v) \stackrel{1}{\leq} \mathcal{L}(P_x) + w(x, y)$$

1) т.к. для добавления выбрана v, а не y

$$\mathcal{L}(P_{\nu}) = \mathcal{L}(P_{u}) + w(u, \nu) \stackrel{1}{\leq} \mathcal{L}(P_{x}) + w(x, y) \stackrel{2}{\leq} \mathcal{L}(P)$$

- 1) т.к. для добавления выбрана v, а не y
- 2) т.к. все веса неотрицательны