Aproximación de Butterworth

Resumen de formulas:

$$|H(j\omega)|_{dB} = A(\omega)|_{dB} = 10.\log_{10} \left[1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2n}\right] [dB]$$

De donde para $\omega = \omega_p$ se puede despejar:

$$A(\omega_p)\Big|_{dB} = 10.\log_{10}\left(1 + \varepsilon^2\right) = A_{\text{max}} \Rightarrow \boxed{\varepsilon = \sqrt{10^{0.1.A_{\text{max}}} - 1}}$$

Conociendo ε , ω_p , ω_s y A_{\min} despejamos el orden n:

$$A(\omega_p)\Big|_{dB} = 10.\log_{10}\left[1 + \varepsilon^2 \left(\frac{\omega_s}{\omega_p}\right)^{2n}\right] = A_{\min} \implies \left[n = \frac{\log_{10}\left(\frac{10^{0,1.A_{\min}} - 1}{\varepsilon^2}\right)}{\log_{10}\left(\frac{\omega_s}{\omega_p}\right)^2}\right]$$

Para simplificar los cálculos de diseño es conveniente normalizar para independizarnos de ϵ y ω_p .

$$\boxed{\Omega = \varepsilon^{1/n} \left(\frac{\omega}{\omega_p} \right) \quad \Rightarrow \quad A(\Omega) = 10.\log_{10}(1 + \Omega^{2n})}$$

Se nota que si $\Omega >> 1$ entonces $A(\Omega) \to 20.n.\log_{10}(\Omega)$

n	Polinomios de Butterworth Normalizados - H(S)
1	S + 1
2	$S^2 + 1.414 S + 1$
3	$(S^2 + S + 1).(S + 1)$
4	$(S^2 + 0.765 S + 1).(S^2 + 1.848 S + 1)$
5	$(S+1).(S^2+0.618 S+1).(S^2+1.618 S+1)$
6	$(S^2 + 0.517 S + 1).(S^2 + 1.414 S + 1).(S^2 + 1.932 S + 1)$
7	$(S+1).(S^2+0.445 S+1).(S^2+1.247 S+1).(S^2+1.802 S+1)$
8	$(S^2 + 0.39 S + 1).(S^2 + 1.111 S + 1).(S^2 + 1.663 S + 1).(S^2 + 1.962 S + 1)$

Teoria de Circuitos II Ing. Lucas PUIG

