

Nonlinear Models (Support Vector Regression, K-Nearest Neighbors)

Spring 2020 Instructor: Ankit Shah, Ph.D.

Types of Predictive Methods

Regression

Simple Linear Regression

• Simple Linear Regression:

$$E(Y_i|x_i) = \beta_0 + \beta_1 x_i$$

where x_i represents the value of the predictor

in the ith sample, eta_0 is the intercept and eta_1 is the slope

- <u>Intercept</u>: expected response value when x takes the value of 0
- Slope of the line: change in the expected response value for one unit change in x
- If we know the values of the parameters β_0 and β_1 , then we can predict y_i with good accuracy
- However, if we do not know these values, then we need to estimate $\widehat{eta_0}$, $\widehat{eta_1}$
- Once we obtain these estimates, then we can find $\widehat{y}_i = \widehat{\beta_0} + \widehat{\beta_1} x_i$

Multiple Linear Regression

 The simple linear regression model can be extended to allow for more than one predictors:

$$E(Y_i|x_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

 x_i represents the vector of values for p different predictor variables for the ith sample

 x_{ij} is the value of the jth predictor variable for the ith case

 β_j is the change in the mean of the response variable due to a one unit increase in x_{ij} , when the other predictor variable values are held fixed

 Ordinary Least Squares method for fitting a simple linear regression model can be extended and the least squares solution can be derived using matrices

Linear Regression

• Find the relationship between the force applied to a beam and the deflection it causes.

Least Squares Fit

al 0.80.7

y 0.60.5
0.4
0.3
0.2
0.1
Estimated value $(\hat{y_i})$

200

Objective:

1000

800

 $Minimize \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$

Sum of Squared Residuals (SSR) or Sum of Squared Errors (SSE) or Residual Sum of Squares (RSS)

 $\hat{y}_i - y_i$ is called ith error or ith residual

Linear Regression

• What will happen if there were some influential observations in your training data set?

Observations that cause significant changes in the parameter estimates are called influential observations

- Linear regression seeks to find estimates that minimize RSS
 - Hence, it will chase the observations that are far away from the overall trend of the majority of the data points

Huber Function

Huber Function

- Linear regression is prone to chasing observations that are away from the overall trend of the majority of the data
 - There are no tuning parameters for multiple regression methods
- One approach to deal with the influential observations is to simply consider taking the absolute residuals

Minimize
$$\sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Another approach is to use a robust loss function

$$L(y, \hat{y}) = \begin{cases} (y - \hat{y})^2 \to |y - \hat{y}| \le \alpha \\ |y - \hat{y}| \to |y - \hat{y}| > \alpha \end{cases}$$
 Huber Function

- In other words, <u>Huber Function</u> uses the squared residuals (RSS) when the residuals are small and absolute residuals when the residuals are large
 - Tuning parameter is α

Support Vector Regression

 Support Vector Regression is another method to minimize the effect of the influential observations

- Support Vector Regression is another method to minimize the effect of the influential observations
- Method:
 - Choose a small value, say, ε
 - Data points with absolute residuals greater than ε contribute to the regression fit
 - Data points whose residuals are small (less than or equal to ε) have no effect on the regression equation
 - Note: this method looks at the absolute residuals and not the squared residuals
 - Softens the impact of the influential observations on the model fit
- The loss function used to estimate the parameters is given as follows:

$$C\sum_{i=1}^{n} L_{\epsilon} (y_i - \hat{y}_i) + \sum_{j=1}^{p} \beta_j^2$$
cost penalty ϵ -sensitive function
If $(y_i - \hat{y}_i) \le \epsilon$, then 0

Important:
The penalty is attached to the residuals

• Suppose we obtained the following scatter plot between x and y for a given training data set

SVR Loss Function:

$$C\sum_{i=1}^{n} L_{\epsilon} (y_i - \hat{y}_i) + \sum_{j=1}^{p} \beta_j^2$$

What happens if we assign a large cost penalty?

flexibility decrease over model fit under

- In practice, we may want to fix the value of ε and then tune the cost penalty parameter $\mathcal C$
- Import SVR from sklearn.svm module from sklearn.svm import SVR

inversely proportional

 Call the SVR function model_SVR = SVR(C=1.0, epsilon=0.1, kernel = 'linear')

• Given a new sample, u, we can find the predicted value according to the equation:

$$\beta_0 + \beta_1 u_1 + \beta_2 u_2 + ... + \beta_p u_p = 0$$

This can be further expressed as:

•
$$\beta_0 + \sum_{j=1}^p \beta_j \ u_j$$
 obtained from the training data points

• $\beta_0 + \sum_{j=1}^p \sum_{i=1}^n \alpha_i x_{ij} \ u_j$ dot product

• $\beta_0 + \sum_{i=1}^n \alpha_i \sum_{j=1}^p x_{ij} \ u_j$ Kernel function

• $\beta_0 + \sum_{i=1}^n \alpha_i \ K(x_i, u)$

- It is to be noted that we need the training data points to calculate the value for the test sample (predictions)
- We now have a set of unknow parameters α_i
 - How many?
 - What happens to the α values for the data points whose residuals are less than or equal to ε ?
- Support Vectors are data points whose value for $\alpha \neq 0$
 - In other words, data points whose residuals are greater than arepsilon
- Sum of cross products will greatly affect the model if the predictor scales are different
 - Hence, it is critical to center and scale the predictors

• Given a new sample, u, we can find the predicted value according to the equation:

$$\beta_0 + \beta_1 u_1 + \beta_2 u_2 + ... + \beta_p u_p = 0$$

This can be further expressed as:

•
$$\beta_0 + \sum_{j=1}^p \beta_j \ u_j$$
 obtained from the training data points
• $\beta_0 + \sum_{j=1}^p \sum_{i=1}^n \alpha_i x_{ij} \ u_j$ dot product
• $\beta_0 + \sum_{i=1}^n \alpha_i \sum_{j=1}^p x_{ij} \ u_j$
Kernel function
• $\beta_0 + \sum_{i=1}^n \alpha_i K(x_i, u)$

A polynomial kernel of degree d:

$$K(x_i, u) = (\sum_{j=1}^p x_{ij} u_j)^d$$

A radial basis kernel:

$$K(x_i, u) = \exp(-\gamma \sum_{j=1:p} (x_{ij} - u_j)^2)$$

K-Nearest Neighbors Regression

K-Nearest Neighbors (KNN) Regression

- Objective is to find the K nearest data points from the new data point and then predict the value of the response variable based on the K response values
- For regression, this value can be the mean of the K response values

$$\hat{y}_i = \frac{1}{k} \sum_{m=1}^k y_m$$

- How do you find the nearest neighbors?
 - One of the popular distance metrics is the Euclidean distance (straight-line distance between 2 data points)

$$(\sum_{j=1}^{p} (x_{aj} - x_{bj})^2)^{1/2}$$

An Example

Training data

New (Test) Sample

y = Health Score	x1 = Height (cm)	x2 =Weight (grams)
1.6	-1.186	-0.707
2.3	-0.074	1.414
3.1	1.260	-0.707

У	x1	x2
?	0.996	1.414

If the predictor data are in different measurements, we must first center and scale the data

$\left(\sum_{i=1}^{p}\right)$	$(x_{aj}-x_{l})$	oj) ²) ^{1/2}
∠ —j=1		,

	(New Sample -	(New Sample -	(New Sample -
	Data Point 1)^2	Data Point 2)^2	Data Point 3)^2
x1	4.76	1.14	0.07
x2	4.50	0.00	4.50
Sum	9.26	1.14	4.57
Sqrt	3.04	1.07	2.14

What if the KNN method was weighted? i.e., 70% weight associated with the nearest neighbor

for
$$K = 2$$

Ŷ	_	1	$\sum_{k=1}^{k}$	41
\mathcal{Y}_i	_	\overline{k}	<u></u> m=1	Ут

у	x1	x2
(2.3+3.1)/2 = 2.7	0.996	1.414

KNN Regression

- Smaller value of K will provide more flexibility
 - How does this impact Bias or Variance?
- Larger value of K will reduce flexibility
 - How does this impact Bias or Variance?

- If one or more predictor values for a sample are missing, the distance cannot be calculated
 - Hence, either the sample may have to be removed or values need to be imputed
- Noisy predictors also contribute to poor response value estimates
- Value of K is determined by resampling methods using the training data set
- Method works well when p is not too large, else performs poorly when p is large (curse of dimensionality)
- Efficient data structures such as a k-dimensional tree representation can help with computational challenges
- KNN Regression does not help with interpretability