le "Pelamis" (serpent de mer, mythologie grecque): dispositif pour récupérer l'énergie de la houle (énergie houlomotrice)

il est constitué de plusieurs flotteurs cylindriques articulés entre eux, et oscillant au passage de la houle; chaque articulation est reliée à une génératrice permettant de transformer l'énergie de la houle en énergie électrique, acheminée ensuite vers la côte par un câble sous-marin.

on modélise le fonctionnement (très simplifié) en disant que chaque tronçon de moment d'inertie J par rapport à un axe de rotation perpendiculaire Δ_G subit :

- -un couple de rappel dû aux autres flotteurs -C θ
- -un couple résistant dû à la génératrice $-\beta\theta$
- -le couple dû à la houle $\Gamma_0 \cos \omega t$
- 1. établir l'équation du mouvement d'un flotteur autour de Δ_G
- 2. exprimer $\theta(t)$ en régime sinusoïdal forcé
- 3. calculer la puissance moyenne $P_{\text{géné}}$ reçue par la génératrice
- 4. trouver β et C pour avoir $P_{\text{g\'en\'e}}$ maximale, lorsque Γ_0 , J et ω sont fixés.
- 5. calculer la puissance moyenne fournie par la houle; conclure.

corrigé

2. résolution : on cherche $\theta = \theta_0 \cos(\omega t + \phi)$ posons $\theta = \Re e(\underline{\theta})$ avec $\underline{\theta} = \theta_0 e^{j(\omega t + \phi)} = \theta_0 e^{j\phi} e^{j\omega t}$ et $\underline{\Gamma} = \Gamma_0 e^{j\omega t}$

$$\mbox{l'équation devient}: \ \ (-\mbox{J}\omega^2 + j\omega\beta + C)\theta_0 e^{j\phi} e^{j\omega t} = \Gamma_0 e^{j\omega t} \quad \ \mbox{qui donne}: \quad \ \theta_0 e^{j\phi} = \frac{\Gamma_0}{C - \mbox{J}\omega^2 + j\omega\beta} \label{eq:theta}$$

soit
$$\theta_0 = \frac{\Gamma_0}{\sqrt{(C - J\omega^2)^2 + (\omega\beta)^2}}$$
 et $\tan \phi = \frac{-\omega\beta}{C - J\omega^2}$

3. puissance moyenne reçue par la génératrice : $P_{\text{géné}} = \left\langle \beta \dot{\theta}^2 \right\rangle$ avec $\dot{\theta}(t) = -\theta_0 \omega \sin(\omega t + \phi)$ il vient :

$$P_{g\acute{e}n\acute{e}} = \frac{\beta\omega^2\theta_0^2}{2} = \boxed{\frac{\beta\Gamma_0^2\omega^2}{2\left((C - J\omega^2)^2 + (\omega\beta)^2\right)}}$$

4. $P_{\text{géné}}$ sera maximale lorsque $C = J\omega^2$ on obtient alors $\left| P_{g \text{ max}} \frac{\beta \Gamma_0^2 \omega^2}{2(\omega \beta)^2} = \frac{\Gamma_0^2}{2\beta} \right|$ et il faut alors β minimum

$$P_{g max} \frac{\beta \Gamma_0^2 \omega^2}{2(\omega \beta)^2} = \frac{\Gamma_0^2}{2\beta}$$
 et il faut alors β minimum

5. puissance moyenne de la houle :

elle s'écrit :
$$P_{houle} = \left\langle \Gamma_0 \cos(\omega t) \dot{\theta}(t) \right\rangle$$
 avec $\dot{\theta}(t) = -\theta_0 \omega \sin(\omega t + \phi)$

$$P_{houle} = \left\langle -\Gamma_0 \cos(\omega t)\theta_0 \omega \sin(\omega t + \varphi) \right\rangle = \left\langle -\Gamma_0 \theta_0 \omega \cos(\omega t) \left(\sin(\omega t) \cos \varphi + \sin \varphi \cos(\omega t) \right) \right\rangle = \frac{-\Gamma_0 \theta_0 \omega \sin \varphi}{2}$$

mais
$$\sin \varphi = \frac{\omega \beta}{\sqrt{(C - J\omega^2)^2 + (\omega \beta)^2}} \quad donc \left[P_{houle} = \frac{-\Gamma_0^2 \omega^2 \beta}{2(C - J\omega^2)^2 + (\omega \beta)^2} \right]$$

on retrouve la puissance moyenne cédée à la génératrice ; le signe - signifie que la houle cède de l'énergie