

数学实验

Experiments in Mathematics

实验12 数学建模综合

投资的效益和风险 (1998年全国大学生数学建模竞赛A题)

市场上有 n 种资产(如股票、债券、…) S_i (i=1,...n) 供投资者选择,某公司有数额为 M 的一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这 n 种资产进行了评估,估算出在这一时期内购买 S_i 的平均收益率为 r_i 并预测出购买 S_i 的风险损失率为 q_i 。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险用所投资的 S_i 中最大的一个风险来度量。

购买 \mathbf{S}_i 要付交易费,费率为 p_i ,并且当购买额不超过给定值 u_i 时,交易费按购买 u_i 计算(不买当然无须付费)。另外,假定同期银行存款利率是 r_0 ,且既无交易费又无风

已知 n = 4 时的相关数据如下: 险。($r_0 = 5\%$) r_{i} (%) $q_{+}(\%)$ $p_{+}(\%)$ 103 \mathbf{S}_1 2.5 S, 21 1.5 2 198 23 5.5 4.5 52 \mathbf{S}_3 25 2.6 6.5 40

试给该公司设计一种投资组合方案,即用给定的资金 M,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。

原题还有一组 n=25的数据, 现略去。

问题分析

优化问题

决策 每种资产的投资额(投资组合)

目标 净收益最大 整体风险最小 二者矛盾

- 在一定风险下收益最大的决策
- 在一定收益下风险最小的决策
- 收益和风险按一定比例组合最优的决策
- 一组解(如在一系列风险值下收益最大的决策)
- •冒险型投资者从中选择高风险下收益最大的决策
- •保守型投资者则可从低风险下的决策中选取

模型建立

用数学符号和式子表述决策变量、构造目标函数、确定约束条件。

决策变量

 x_i —对 S_i (i=0, 1, ... n) 的投资, S_o 表示存入银行.

目标函数

- ·总收益—投资S_i的净收益减去交易费,对i求和
- ·总体风险—投资S_i的风险,对i求最大值

|约束条件|

对 S_i 的投资 x_i 加交易费,对i求和,不超过给定资金M.

1) 投资S_i的交易费、净收益、风险、资金表达式

净收益 $R(x_i) = r_i x_i - c_i(x_i)$ (收益率 r_i)

风险 $Q(x_i) = q_i x_i$ (风险损失率 q_i)

资金 $f_i(x_i) = x_i + c_i(x_i)$

 $i = 0,1,\dots n, \quad c_0(x_0) = q_0 = 0$

投资方案
$$x = (x_0, x_1, \dots x_n)$$

总收益
$$R(x) = \sum_{i=0}^{n} R_i(x_i)$$

总体风险
$$Q(x) = \max_{i} Q_i(x_i)$$

资金
$$F(x) = \sum_{i=0}^{n} f_i(x_i)$$

3) 两目标(总收益、总体风险)优化模型

$$\min_{x} \left\{ \begin{pmatrix} Q(x) \\ -R(x) \end{pmatrix} \middle| F(x) = M, x \ge 0 \right\}$$

模型
$$M1$$
: 确定风险水平 \overline{q} ,记 $k = \overline{q}M$,

$$\max R(x)$$

s.t.
$$Q(x) \le k$$

$$F(x) = M, x \ge 0$$

模型 M2: 确定盈利水平 \bar{r} , 记 $h = \bar{r}M$,

$$\min Q(x)$$

s.t.
$$R(x) \ge h$$

$$F(x) = M, x \ge 0$$

模型M3: 确定投资者对风险—收益的相对偏好参数 $\rho > 0$

min
$$S(x) = \rho \ Q(x) - (1 - \rho)R(x)$$

s.t.
$$F(x) = M, x \ge 0$$
 问: ρ 大, 表示风险高, 低?

模型简化

$$f_i(x_i) = x_i + c_i(x_i) \qquad \Longrightarrow \sum_{i=0}^{\infty} (1 + p_i) x_i = M$$

$$F(x) = M$$

设M=1 投资S_i的比例
$$y_i = (1 + p_i)x_i$$
, $i = 0, 1, \dots n$

$$\max R(x)$$

M1 s.t.
$$Q(x) \le k$$

$$F(x)=M,\,x\geq 0$$

$$\max \sum_{i=1}^{n} (r_i - p_i) x_i$$

s.t.
$$q_i x_i \le k$$
, $i = 1, 2, \dots n$

$$\sum_{i=1}^{n} (1+p_i)x_i = 1, \quad x \ge 0$$

线性规划模型LP1

$$R(x) = \sum_{i=0}^{n} R_i(x_i)$$

$$R_i(x_i) = r_i x_i - c_i(x_i)$$

$$=(r_i-p_i)x_i$$

$$Q(x) = \max_{i} Q_{i}(x_{i})$$

$$Q_i(x_i) = q_i x_i$$

$$\sum_{i=0}^{n} (1+p_i)x_i = M$$

设M=1

模型M2的简化

$\min Q(x)$

M2 s.t.
$$R(x) \ge h$$

 $F(x) = M, x \ge 0$

 $\min \max_{i \in \mathcal{I}} (q_i x_i)$

st.
$$\sum_{i=0}^{n} (r_i - p_i) x_i \ge h$$

 $\sum_{i=0}^{n} (1+p_i)x_i = 1, \quad x \ge 0$

极大极小规划模型

引入人工变量 x_{n+1}

 $\min x_{n+1}$

$$s.t. \ q_i x_i \leq x_{n+1}, \quad i=1,\cdots n$$

$$\sum_{i=0}^{n} (r_i - p_i) x_i \ge h$$

 $\sum_{i=1}^{n} (1+p_{i})x_{i} = 1, x \ge 0$ 线性规划模型LP2

线性规划

模型M3

的简化

M3 min
$$S(x) = \rho Q(x) - (1-\rho)R(x)$$

s.t $F(x) = M, x \ge 0$

模型LP3

min
$$L(x) = \rho x_{n+1} - (1-\rho) \sum_{i=0}^{n} (r_i - p_i) x_i$$

st.
$$\sum_{i=0}^{n} (1+p_i)x_i = 1, \quad x \ge 0$$

 $q_i x_i \leq x_{n+1}$ $i = 1, \dots n$

模型求解

LP1,LP2,LP3都很容易用MATLAB, MATHEMATICA或其它数学软件求解

LP1的结	原果 风	险水平即	[χk=0~2.	5%, 得	投资比值	列y ₀ ~y ₄
风险 K(%)	收益 R(%)	\mathbf{y}_0	\mathbf{y}_1	\mathbf{y}_2	y ₃	\mathbf{y}_4
0	5.0000	1.0000	0	0	0	0
0.1	7.5528	0.8316	0.0404	0.0680	0.0190	0.0410
0.2	10.1055	0.6633	0.0808	0.1360	0.0380	0.0819
0.3	12.6583	0.4949	0.1212	0.2040	0.0570	0.1229
0.4	15.2110	0.3266	0.1616	0.2720	0.0760	0.1638
0.5	17.7638	0.1582	0.2020	0.3400	0.0950	0.2048
0.6	20.1908	0	0.2424	0.4080	0.1140	0.2356
0.7	20.6607	0	0.2828	0.4760	0.1330	0.1082
0.8	21.1243	0	0.3232	0.5440	0.1328	0
0.9	21.5520	0	0.3636	0.6120	0.0244	0
1.0	21.9020	0	0.4040	0.5960	0	0
1.5	23.5392	0	0.6060	0.3940	0	0
2.0	25.1765	0	0.8080	0.1920	0	0
2.1	25.5039	0	0.8484	0.1516	0	0
2.2	25.8314	0	0.8888	0.1112	0	0
2.3	26.1588	0	0.9292	0.0708	0	0
2.4	26.4863	0	0.9696	0.0304	0	0
2.5	26.7327	0	1.0000	0	0	0

LP1的结	1米万仞		r_i - p_i (%) 5	27	19	18.5	18.3
			$q_i(\%)$	0	2.5	1.5	5.5	2.6
风险 K(%)	收益 R(%)	y 0	y ₁	У:		У3		y_4
0	5.0000	1.0000	0	0		0		0
0.1	7.5528	0.8316	0.0404	0.06	80	0.019	00	0.0410
0.2	10.1055	0.6633	0.0808	0.13	60	0.038	3.0	0.081
0.3	12.6583	0.4949	0.1212	0.20	40	0.057	0	0.122
0.4	15.2110	0.3266	0.1616	0.27	20	0.076	0	0.163
0.5	17.7638	0.1582	0.2020	0.34	0.0	0.095	50	0.204
0.6	20.1908	0	0.2424	0.40	80	0.114	0	0.2350
1) 对低	氏风险,除	存银行外	小,首选5	S ₂ , 然后	是S ₁ ,	S_4 ;		
风险 K(%)	收益 R(%)	y _o	y ,	y 2	У,		y 4	
2.0	25.1765	0	0.8080	0.1920	0		0	
2.1	25.5039	0	0.8484	0.1516	- 0		0	
2.2	25.8314	0	0.8888	0.1112	0		0	
2.3	26.1588	0	0.9292	0.0708	0		0	_
2.4	26.4863	0	0.9696	0.0304	0		0	
2.5	26.7327	0	1.0000	0	- 0		0	

0	5.0000	
0.1	7.5528	
0.2	10.1055	
0.3	12.6583	
0.4	15.2110	
0.5	17.7638	
0.6	20.1908	
0.7	20.6607	
0.8	21.1243	
0.9	21.5520	
1.0	21.9020	
1.5	23.5392	
2.0	25.1765	
2.1	25.5039	
2.2	25.8314	
2.3	26.1588	
2.4	26.4863	
2.5	26.7327	

对于风险和收益没有特殊偏好的投资者来说,应该选择图 中曲线的拐点(K*, R*),大约是K*=0.6%, R*=20%

ρ	风险K(%)	收益 R(%)	y ₀	\mathbf{y}_1	y_2	y_3	y_4			
0.76	2.4752	26.7327	0	1.0000	0	0	0			
0.77	0.9225	21.6482	0	0.3727	0.6273	0	0			
0.81	0.9225	21.6482	0	0.3727	0.6273	0	0			
0.82	0.7849	21.0599	0	0.3171	0.5338	0.1491	0			
0.83	0.5940	20.1624	0	0.2400	0.4039	0.1129	0.2432			
0.96	0.5940	20.1624	0	0.2400	0.4039	0.1129	0.2432			
0.97	0.0000	5.0000	1.0000	0	0	0	0			
ho 与风险 K 的关系 $ ho$ 与收益 R 的关系 $ ho$ 与LP1相同										

教师工资调整方案 (1995年美国大学生数学建模竞赛B题)

为一所大学设计公正、合理的工资体系。教师目前状况和工资调整原则如下: 1) 教师职称由低到高分 4 个等级: 讲师、助理教授、副教授、教授。获博士

- 2) 我們時你出版時間才 4 一等級: 伊州区 助理教权、副教权、教权。 3代時上学位者聘为助理教权; 读博士学位者聘为帅师, 且得到学位时自动升为助理教授, 副教授工作 7 年后可申请提升教授; 2) 无教学经验的讲师起始工资为\$27000; 助理教授的起始工资为\$32000; 按时提升(7或8年)并有25年以上教龄者工资大致为有博士学位的新教师的两倍,
- 3) 同一等级中教龄长者工资高,但是这种差别应该随着教龄的增加而渐减,
- 4) 职称的提升应带来实质性利益, 即若某人在短时间内获提升, 则其所得应
- 大致等于正常情况下(不提升)7年增加的工资; 5)每人的工资都不能减少;只要学校有钱,所有教师每年都增加工资;每年 用于增加工资的总资金可能不同。

全校 204 位教师的教龄、职称和目前的(年) 工资如下表所示 (职称代号 0,1,2,3 依次表示讲师、助理教授、副教授、教授)。

序号	教龄	职称	工资	序号	教龄	职称	工资	序号	教龄	职称	工资
1	4	2	54000	2	19	1	43508	3	20	1	39072
4	11	3	53900	5	1.5	3	44206	- 6	17	1	37538
7	2.3	3	48844	8	10	1	32841	9	7	2	49981
10	20	2	42549	11	1.8	2	42649	12	19	3	60087
1.3	1.5	2	38002	14	4	1	30000	1.5	34	3	60576
16	2.8	1	44562	17	9	1	30893	1.8	22	2	46351
19	21	2	50979	20	20	1	48000	21	4	1	32 500
22	14	2	38642	2.3	2.3	3	53500	24	21	2	42488
2.5	20	2	43892	26	- 5	1	35330	27	19	2	41147
2.8	1.5	1	34040	29	1.8	3	48944	30	7	1	30128

196	12	2	41178	197	22	3	53836	198	19	2	43519
199	4	1	32000	200	1.8	2	40089	201	2.3	3	52403
202	21	3	59234	203	22	3	51898	204	26	2	47047

首先在不考虑物价指数的情况下,设计新的工资方案, 再考虑物价指数,最后要给出一个从目前状况到新方案 的调整过渡方法(注意不能减少每人的工资)。

建模思路

- 1) 根据题目所给原则设计新工资方案(理想方案);
- 2) 根据学校提供的资金和新方案制订提薪计划 (不考虑物价指数);
- 3) 考虑物价指数时计划的调整;
- 4) 模型检验。

分析与假设

- •助理教授、副教授正常提升年限均为7年 (原题目表述不清)
- •工资仅取决于职称和教龄

新工资方案

方案1: 将职称折合成教龄,定义指标 x=t+7k (教龄 t, 职称等级 k=0, 1, 2, 3),建立理想工资函数I(x),满足:

I (0) =27000, I (7) =32000, I (46) = 64000 ±5%, I (71) = 64000 ±10% (> I (46)), $\frac{d^2I}{dx^2}$ < 0 (对大的x)

考察多项式、根式、指数函数等,选定Logistic函数:

$$I(x) = \frac{k}{1 + ae^{-bx}}, (k, a, b > 0)$$

确定k=83,000, a=1.07, b=0.0376

新工资方案

方案2: 职称、教龄分别对待,建立工资函数 J(k, t) (教龄 t, 职称等级 k=0, 1, 2, 3),如:

 $J(k,t) = a_k + b_k t \sim$ 线性函数简单方便

 $J(k,t) = a_k \log_{10}(b_k t + 10) \sim$ 对数函数,增长渐慢符合同一等级工资渐趋一致的要求,鼓励退休

 a_k, b_k 可由题目所给的条件确定。

提薪计划 (不考虑物价指数)

- •记教师i的当前工资为 s_i ,指标为 x_i (方案1);
- 只考虑 s_i 小于 $I(x_i)$ 者的提薪,差额 $D_i = I(x_i) s_i > 0$ 计划工资 S_i (s_i 大于 $I(x_i)$ 者不降低);
- · 记用于提薪的总资金为M。

计划 $1: S_i^{(1)} = S_i + MD_i / \sum D_i \sim 差额比例法$

计划2: $S_i^{(2)} = \max(s_i, cI(x_i)) \sim 尺度法$ 0 < c < 1.由M调整

模型检验——计算机模拟

模拟条件

- 各职称人数不变;
- 职称提升者随机产生,应提升而未升者离职;

模拟方案

对计划1~4各模拟10次,每次运行10年;每年 总资金增加2%;对计划3~4物价指数每年3%。

用指标x相同者的工资的相对标准差,来衡量各计划的优劣,因为x相同者的工资差别,随着时间的增加应迅速减小。

