区传递Steiner 3-设计

尹富纲

中南大学

Group Theory Seminar, 2023.11.21

目录

- ① 设计的构造和自同构
- ② 区传递设计的研究情况
- 3 一些区传递Steiner 3-设计的分类结果

Kirkman的问题

在1850年左右, 英国数学家Kirkman提出了一个有名的"15 schoolgirls problem":

一所学校里有十五位年轻女士,她们一排三人排成一行,连续七天进行步行训练. 需要每天重新安排她们的行列,使得没有两个人在两天里走在同一行.

用1,2,...,15表示这十五个女士,我们可以看到:

- 15个人, 3人一行, 因此一天有5行, 也即有5个{1,2,...,15}的3-元子集.
- 7天共有35个3-元子集.每个3-元子集有3个2-元子集,因此共有105个2-元子集.
- $\{1, 2, \ldots, 15\}$ 的2-元子集有 $15 \cdot 14/2 = 105$ 个.
- "没有两个人在两天里走在同一行"意味着这35个3-元子集满足条件: {1,2,...,15}的任意2-元子集都只包含在唯一1个3-元子集里.

用现在的术语来说, 这是构造2-(15,3,1)设计的问题.

尹富纲 (CSU) 区传递设计 2023.11.21 2 / 32

t- (v, k, λ) 区组设计的定义

首先,我们有一个大小为v的集合 \mathcal{P} ,里面的元素称为"点"; 我们想要构造一个集合 \mathcal{B} 使得

- (1) β 里的元素都是P的k-子集, 称为"区组";
- (2) \mathcal{P} 的每一个t-子集 $\{\alpha_1, \alpha_2, \dots, \alpha_t\}$ 都包含在 λ 个区组中.

如果这样的集合 \mathcal{B} 存在,则称关联结构 $\mathcal{D} := (\mathcal{P}, \mathcal{B})$ 是一个t- (v, k, λ) 区组设计, 简称t-设计.

- *t*-(*v*, *k*, 1) 设计也称为Steiner *t*-设计.
- 如果区组集 \mathcal{B} 是 \mathcal{P} 的所有k-元子集,则称设计是平凡的.
- t- (v,k,λ) 设计中一共有 $\frac{\lambda v(v-1)\cdots(v-t+1)}{k(k-1)\cdots(k-t+1)}$ 个区组.

尹富纲 (CSU) 区传递设计 2023.11.21 3 / 32

设V为有限域 \mathbb{F}_a 上的d-维向量空间, 其中 $d \geq 3$.

- (1) 设点集P为V的1-维子空间集,
- (2) 设区组集 \mathcal{B} 的每一个区组都是某个V的2-维子空间中的所有1-维子空间.

由于两个不同的1-维子空间 $\langle e_1 \rangle$, $\langle e_2 \rangle$ 包含于唯一的2-维子空间 $\langle e_1, e_2 \rangle$ 中,因此 $\mathcal{D} := (\mathcal{P}, \mathcal{B})$ 是一个2- $((q^d - 1)/(q - 1), q + 1, 1)$ 设计.

d=3, q=2, Fano平面

t- (v, k, λ) 设计的同构

设 $\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1)$ 和 $\mathcal{D}_2 = (\mathcal{P}_2, \mathcal{B}_2)$ 是两个t- (v, k, λ) 设计.

设q是点集 \mathcal{P}_1 到 \mathcal{P}_2 的一个一一映射.

对每个区组 $B = \{\alpha_1, \ldots, \alpha_k\} \in \mathcal{B}_1$, 定义

$$B^g := \{\alpha_1^g, \dots, \alpha_k^g\}$$

(其中 α_i^g 是 α_i 在g下的像).

如果 $\{B^g: B \in \mathcal{B}_1\} = \mathcal{B}_2$ (即g诱导了区组集 \mathcal{B}_1 到 \mathcal{B}_2 的一一映射), 则称g是 \mathcal{D}_1 到 \mathcal{D}_2 的同构.

设计 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 到自身的同构称自同构,所有自同构构成的群(按映射的合成运算)称为全自同构群,记为 $\mathrm{Aut}(\mathcal{D})$.

尹富纲 (CSU) 区传递设计 2023.11.21 5 / 32

给定参数下设计的存在性问题

正如Kirkman的"15 schoolgirls problem", 一个自然的问题是:

给定参数t, v, k, λ , 是否存在t-(v, k, λ)设计?

注: 这些参数应当满足下面的整除性关系:

$$\begin{pmatrix} k-s \\ t-s \end{pmatrix} \mid \lambda \begin{pmatrix} v-s \\ t-s \end{pmatrix} \text{ for all } s \in \{0,1,\ldots,t-1\}$$

因为 $\lambda_s := \lambda \binom{v-s}{t-s} / \binom{k-s}{t-s}$ 是包含一个任意给定s-子集的区组数目. 例如t = 3时,

$$(k-2) \mid \lambda(v-2)$$

 $(k-1)(k-2) \mid \lambda(v-1)(v-2)$
 $k(k-1)(k-2) \mid \lambda v(v-1)(v-2)$

一个等价条件

设 (V, \mathcal{B}) 是一个t- (v, k, λ) 设计.

设 V_h (0 < h < v) 是V 的所有h-子集, 特别地记 $V_t = \{x_1, x_2, ..., x_m\}$

 $\pi V_k = \{y_1, y_2, ..., y_n\}, \, \not\exists \, \neg m = \binom{v}{t} \pi n = \binom{v}{k}.$

定义 A_{tk} -矩阵 $A_{tk} = (a_{ij})$ 为一个 $m \times n$ 的(0,1)矩阵, 其中 $a_{ij} = 1$ 当且仅当 $x_i \subseteq y_j$.

命题

一个t-(v, k, λ) 设计存在当且仅当矩阵方程 $A_{tk}z = \lambda J$ 有一个解z, 其中z 是一个 $n \times 1$ -矩阵且每个元素都是非负,和J是一个 $m \times 1$ -矩阵且每个元素都是1.

尹富纲 (CSU) 区传递设计 2023.11.21 7 / 32

⁰J.C. Colbourn, H.D. Jeffrey, Handbook of Combinatorial Designs, Second Edit (Discrete Mathematics and Its Applications), Chapman & Hall/CRC, 2006.

假定自同构群的搜索方法

设 $\mathcal{D}=(V,\mathcal{B})$ 是一个t- (v,k,λ) 设计,且设 $G \leq \mathrm{Aut}(\mathcal{D})$. 设 ρ_t 和 ρ_k 分别为G在 $V_t(V$ 的所有t-元子集)和 $V_k(V$ 的所有k-元子集)上的轨道数. 现在,

- $V_t = x_1^G \cup x_2^G \cup \ldots \cup x_{\rho_t}^G;$
- $\bullet V_k = y_1^G \cup y_2^G \cup \ldots \cup y_{\rho_k}^G.$

 x_1 是一个t-子集, y_1 是一个k-子集, y_1^G 是一些k-子集, t < k.

记 a_{11} 为 y_1^G 里包含了 x_1 的那些k-子集的数目,

记 a_{12} 为 y_2^G 里包含了 x_1 的那些k-子集的数目,...

记 a_{21} 为 y_1^G 里包含了 x_2 的那些k-子集的数目,...

最终, 我们得到一个 $\rho_t \times \rho_k$ 的矩阵 $A_{tk}(G) = (a_{ij})$.

Proposition(Kramer and Mesner)

设 $\mathcal{D}=(V,\mathcal{B})$ 是一个t- (v,k,λ) 设计,且设 $G \leq \operatorname{Aut}(\mathcal{D})$. 这样的t- (v,k,λ) 设计存在当且仅当矩阵方程 $A_{tk}(G)z=\lambda J$ 有一个解z, 其中z 是一个 $\rho_k \times 1$ -矩阵且每个元素都是非负,和J是一个 $\rho_t \times 1$ -矩阵且每个元素都是1.

尹富纲 (CSU) 区传递设计 2023.11.21 8 / 32

⁰E. S. Kramer, D. M. Mesner, t-designs on hypergraphs, Discrete Math. 15 (19 CHINAL SOUTH UNIVERSIT 263–296.

例子:2-(7,3,1), $G = S_3$

6.36 Example (Kreher and Radziszowski [1353]) Suppose that $(V = \{1, 2, 3, 4, 5, 6, 7\}, \mathcal{B})$, a 2-(7, 3, 1) design, is to be constructed, with a subgroup $G = \langle (145)(276), (26)(45) \rangle$ $\cong S_3$ of its automorphism group. Then $A_{23}(G)$ is the following matrix:

	123		125		127					
	347		147		467					
	136		146		167					
	356	124	456	126	256	134	137		236	
	357	457	157	247	257	345	346		237	
	234	156	245	567	246	135	235	145	367	267
{12 47 16 56 57 24}	1	1	1	1	1	0	0	0	0	0
{13 34 35}	2	0	0	0	0	2	1	0	0	0
$\{144515\}$	0	1	2	0	0	1	0	1	0	0
$\{14\ 45\ 15\}$ $\{17\ 46\ 25\}$	0	1 0	$\frac{2}{2}$	0	$0 \\ 2$	$\frac{1}{0}$	$0 \\ 1$	$\frac{1}{0}$	0	0
,		1 0 0	_			1 0 0	0 1 1	1 0 0		-

The vector $z = [0, 1, 0, 0, 0, 0, 1, 0, 0, 1]^T$ gives a solution to the equation $A_{tk}(G)z = \lambda J$, and thus yields a 2-(7, 3, 1) design with $B = \{124, 457, 156, 137, 346, 235, 267\}$ and G a subgroup of its automorphism group.

尹富纲 (CSU) 区传递设计 2023.11.21 9 / 32

例子:2-(7,3,1), $G = PSL_3(2)$

设 $G = \langle (1,4)(6,7), (1,3,2)(4,7,5) \rangle \cong PSL_3(2)$. 通过电脑计算,

- $G在V_t = V_2$ 上只有一个轨道 $\{1,2\}^G$.
- G在 $V_k = V_3$ 上有两个轨道:

$$\begin{split} y_1^G &= \{346, 137, 267, 235, 156, 124, 457\} \\ y_2^G &= \{147, 146, 357, 367, 356, 245, 256, 246, 125, 257, 127, 167, 134, 145, \\ &135, 467, 237, 347, 345, 234, 567, 236, 136, 247, 123, 456, 126, 157\} \end{split}$$

此时, $\rho_t = 1$, $\rho_k = 2$, $a_{11} = 1$, $a_{12} = 4$, 因此 $A_{tk}(G) = [1, 4]$, J = [1].

$$A_{tk}(G)z = \lambda J \iff [1, 4]z = \lambda.$$

当 $\lambda = 1$ 时,解为 $z = [1,0]^{\mathsf{T}}$,此时对应的设计的区组集恰好是 y_1^G .

尹富纲 (CSU) 区传递设计 2023.11.21 10 / 32

用假定自同构群的搜索方法来构造设计, 难点有两个方面:

- (1) 计算群G在点集V的t-元子集和k-元子集上的轨道;
- (2) 计算矩阵方程 $A_{tk}(G)z = \lambda J$.

从之前的两个例子可以看出:

群G取的越大, (1) 越难, (2)越简单($A_{tk}(G)$ 的维数变小);

群G取的越小, (1) 越简单, (2)越难.

下面介绍的区传递设计可以看作是沿着"取大的群G"的方向研究设计存在性.

尹富纲 (CSU) 区传递设计 2023.11.21 11 / 32

目录

- 1 设计的构造和自同构
- ② 区传递设计的研究情况
- 3 一些区传递Steiner 3-设计的分类结果

点传递,区传递和旗传递设计

设 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 是一个t- (v, k, λ) 设计,并设G为Aut (\mathcal{D}) 的子群.

- 如果对任意两个点 α_1, α_2 ,都存在某个 $g \in G$ 使得 $\alpha_1^g = \alpha_2$,则称 \mathcal{D} 是G-点传递的.
- 如果对任意两个区组 B_1, B_2 ,都存在某个 $g \in G$ 使得 $B_1^g = B_2$,则称 \mathcal{D} 是G-区传递的设计.
- \mathcal{D} 的一个旗是指一个点-区组对 (α, B) 使得 $\alpha \in B$. 如果对任意两个旗 (α_1, B_1) , (α_2, B_2) , 都存在某个 $g \in G$ 使得 $\alpha_1^g = \alpha_2 \perp B_1^g = B_2^g$, 则称 $\mathcal{D} \neq G$ -旗传递的设计.

根据定义, 旗传递性⇒ 点传递性和区传递性.

Block(1967) 证明了, 区传递性⇒ 点传递性.

一些简单的观察

设 \mathcal{D} 是一个G-区传递的t-设计.

设 α 为一个点, B为一个区组.

设 G_{α} , G_{B} 分别为点 α 和区组B在G中的稳定子群, 即

$$G_{\alpha} = \{g : g \in G \mid \alpha^g = \alpha\}$$
$$G_B = \{g : g \in G \mid B^g = B\}.$$

• 此时, G在点集和区组集上都传递, 因此

$$v = \frac{|G|}{|G_{\alpha}|}, \quad \frac{\lambda v(v-1)\cdots(v-t+1)}{k(k-1)\cdots(k-t+1)} = \frac{|G|}{|G_B|}.$$

- B是一些G_B-轨道(在点集上)的并.
- 如果假设G是旗传递,则B是GB的一个轨道.

群作用求设计的例子:2-(7,3,1), $G = PSL_3(2)$

设 \mathcal{D} 是一个G-区传递的2-(7,3,1)设计, 其中G = $PSL_3(2)$.

- $t = 2, v = 7, k = 3, \lambda = 1.$
- 点稳定子群 G_{α} 指数为v=7,区稳定子群 G_{B} 指数为 $\frac{\lambda v(v-1)}{k(k-1)}=7$.
- 根据点传递性, 可取 $G = \langle (1,4)(6,7)(1,3,2)(4,7,5) \rangle$, $\mathcal{P} = \{1,2,\ldots,7\}$.
- G中有两个指数为7的子群的共轭类:

$$H_1 = \langle (1,6)(4,7), (1,3,7)(4,5,6) \rangle, H_2 = \langle (1,6)(2,3), (1,6,5)(2,7,4) \rangle.$$

- H_1 在点集上的轨道为: $\{2\}$, $\{1,3,4,5,6,7\}$; H_2 在点集上的轨道为: $\{1,5,6\}$, $\{2,3,4,7\}$.
- 由于|B| = k = 3, G_B 只能取 H_2 , 且 $B = \{1, 6, 5\}$.
- $\{1,5,6\}^G = \{156,457,346,137,267,235,124\}$, 确实能和 $\{1,2,\ldots,7\}$ 构成一个2- $\{7,3,1\}$ 设计.

Cameron 和Praeger的定理和猜想

设G是集合 Ω 上的置换群,设s是正整数. 如果G作用在 Ω 的s-子集上是传递的,则称G是s-齐次群.

当集合Ω的大小n大于12时,

传递群=1-齐次群 \supset 本原群 \supset 2-齐次群 \supset 3-齐次群 \supset 4-齐次群 \supset 5-齐次群 \supset 6-齐次群= $\{A_n,S_n\}.$

定理(Cameron and Praeger, 1993)

设 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 是一个非平凡的t-设计且设 $G \leq \operatorname{Aut}(\mathcal{D})$.

- (a) 如果 \mathcal{D} 是G-区传递的设计,则 $t \leq 7$ 且G 在点集 \mathcal{P} 上是[t/2]-齐次的;
- (b) 如果 \mathcal{D} 是G-旗传递的设计,则 $t \leq 6$ 且G 在点集 \mathcal{P} 上是[(t+1)/2]-齐次的.

猜想(Cameron and Praeger, 1993)

没有非平凡的区传递6-设计.

¹P.J. Cameron, C.E. Praeger, Block-transitive t-designs, II: large t, in: F. Clerck, Hirschfeld (Eds.), Finite Geometry and Combinatorics, Cambridge University Pre Cambridge, 1993, 103−119.

旗传递Steiner t-设计的分类

回顾, Steiner t-设计即t-(v, k, 1)设计.

- t = 2: Buekenhout, Delandtsheer, Doyen, Kleidman, Liebeck 和Saxl 等在1990年分 类了旗传递的Steiner 2-设计(除了G是一维仿射群的情况).
- $t \ge 7$: Cameron 和Praeger 在1993年证明了 $t \le 6$.
- $3 \le t \le 6$: Huber分类了 $3 \le t \le 6$ 时的旗传递的Steiner t-设计.

中南大学 CENTRAL SOUTH UNIVERSITY

尹富纲 (CSU)

O. Buekenhout, A. Delandtsheer, J. Doyen, P.B. Kleidman, M. Liebeck, J. Saxl, Linear spaces with flag-transitive automorphism groups, Geometriae Dedicata 36 (1990), 89–94.

⁰M. Huber, Flag-transitive Steiner Designs. Frontiers in Mathematics, Birkhä Basel, 2009.

区传递Steiner t-设计的分类: t=2

设 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 是一个非平凡的G-区传递的t-(v, k, 1)设计.

当t=2或3时, $\lfloor t/2 \rfloor=1$, 这意味着G是1-齐次群, 即G可是任意的传递群;

而当 $t \ge 4$ 时, G至少是2-齐次群(是一些清楚的群).

因此, t = 2或3的情况要更为困难.

从2000年到2008年, 学者们在区传递的Steiner 2-设计的分类问题上做了很多努力:

- 在2001年, Camina 和Praeger证明了如果G在点集上作用是拟本原的,则G要么是仿射群,要么是几乎单群.
- 随后学者们对几乎单群的情形做了很多研究,解决了*G*的基柱是交错群,零散单群,一些李秩较小的李型单群和维数较大的典型群的情形.

⁰A.R. Camina, C.E. Praeger, Line-transitive, point quasiprimitive automorphism groups of finite linear spaces are affine or almost simple, *Aequationes Mathematicae* 61 (2001), 221–232.

⁰A.R. Camina, N. Gill, A.E. Zalesski, Large dimensional classical groups and linespaces, Bulletin of the Belgian Mathematical Society-Simon Stevin 15 (2008), 705–731.

区传递Steiner t-设计的分类:4 < t < 7

Huber 在2010年的三篇文章中证明了:

- t = 7: 不存在非平凡的区传递Steiner 7-设计;
- t=6: 如果t=6, 则唯一的可能性是 $G=\mathrm{PFL}_2(p^e)$, 其中 $p\in\{2,3\}$ 且e 是一个奇素 数幂:
- 如果t = 4或5, 且G是仿射群, 则G只可能是一维仿射群. 因此剩下G是几乎单的2-齐 次群的情形没解决.

18 / 32

 $^{^{0}}$ M. Huber, On the existence of block-transitive combinatorial designs, DiscreteMathematics & Theoretical Computer Science 12 (2010), 123-132.

⁰M. Huber, On the Cameron-Praeger conjecture, Journal of Combinatorial Theory, Series A 117 (2010), 196–203.

⁰M. Huber, Block-transitive designs in affine spaces Designs, Designs, Codes and Cryptography 55 (2010), 235–242.

区传递Steiner t-设计的分类: t=3

- Mann 和Tuan在2001年证明了G一定是点集 \mathcal{P} 上的本原群.
- 本原群根据O'Nan-Scott定理可以分为5类. 最近, 甘芸松博士和刘伟俊教授证明了G的本原群类型只能是仿射型, 或几乎单型.

假设G是几乎单型本原群, 此时 $T \le G \le \operatorname{Aut}(T)$, 其中T是一个非交换单群.

根据有限单群分类定理, T是下面四类群之一: 交错群; 26个零散单群; 10族例外李型单群; 6族典型群.

● 我们(和蓝婷博士, 刘伟俊教授)目前解决了T是交错群和10族例外李型单群的情形, 26个零散单群能很容易通过计算得到结果.

尹富纲 (CSU) 区传递设计 2023.11.21 19 / 32

OA. Mann, N.D. Tuan, Block-transitive point-imprimitive 5-designs, Geometriae 中南大学 Dedicata 88 (2001), 81–90.

目录

- ① 设计的构造和自同构
- ② 区传递设计的研究情况
- ③ 一些区传递Steiner 3-设计的分类结果

主要结论

定理(Lan, Liu and Yin, 2023)

设 $T \le G \le \operatorname{Aut}(T)$, 其中T是交错群 $\operatorname{A}_n(n \ge 5)$. 假设 \mathcal{D} 是一个非平凡的G-区传递 的3-(v,k,1)设计.那么 $T=\mathrm{A}_6$,且 $G=\mathrm{PGL}_2(9)$, M_{10} 或 $\mathrm{P}\Gamma\mathrm{L}_2(9)$,且 \mathcal{D} 具有G-旗传递 的,参数为v = 10和k = 4.

定理(Lan, Liu and Yin, 2023+)

设 \mathcal{D} 是一个非平凡的G-区传递的3-(v, k, 1)设计,其中 $T \leq G \leq \operatorname{Aut}(T)$,且T是一个例 外李型的单群. 那么T是 $^2B_2(q)$ 或 $G_2(q)$ 之一.

- (a) 如果 $T = {}^{2}B_{2}(q)$, 其中 $q = 2^{e}$, e > 1为奇数,则G = T.f,其中 $f \mid e$, $v = q^{2} + 1$, k = q + 1,因此 \mathcal{D} 是一个阶数为q的反演平面.
- (b) 如果 $T = G_2(q)$, 其中 $q = p^e$, p为质数,则T中的点稳定子群 是 $SU_3(q).2$ 或 $SL_3(q).2$,而且 $q > 10^5$.

groups of Lie type. https://arxiv.org/abs/2305.08052 尹富纲 (CSU)

20 / 32

 $^{{}^{0}}$ T. Lan, W.J. Liu, F.-G. Yin, Block-transitive 3-(v,k,1) designs associated with alternating groups, Designs, Codes and Cryptography (2023).

 $^{^{0}}$ T. Lan, W.J. Liu, F.-G. Yin, Block-transitive 3-(v, k, 1) designs on exceptional

问题分析

设 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 是一个非平凡的G-区传递的3-(v, k, 1)设计, 其中 $T \leq G \leq \operatorname{Aut}(T)$, 且T是一个非交换单群, 且设 $\alpha \in \mathcal{P}$ 和 $B \in \mathcal{B}$.

• 由于G在 \mathcal{P} 上本原, G_{α} 是G的极大子群,因此可以根据极大子群的分类对 G_{α} 的每种可能性逐一展开分析.

 G_{α} 还有什么限制?

- 对固定的 G_{α} , $v = |G|/|G_{\alpha}|$ 也是固定的,因此k是唯一变化的参数. k 有什么限制?
- 区组 $B \not\in G_B$ 在点集 \mathcal{P} 上的若干个轨道的并(在旗传递假设下 $B \not\in G_B$ 的一个轨道). 怎么确定群 G_B ? 怎么计算 G_B 在 \mathcal{P} 上轨道?

尹富纲 (CSU) 区传递设计 2023.11.21 21 / 32

参数v和k的关系

设 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 是一个非平凡的G-区传递3-(v, k, 1) 设计, 且设 $\alpha \in \mathcal{P}$ 和 $B \in \mathcal{B}$.

- 首先v和k要满足整除性条件:
 - $k(k-1)(k-2) \mid v(v-1)(v-2);$
 - $(k-1)(k-2) \mid (v-1)(v-2);$
 - k-2 | (v-2).
- k有一个重要的上界(Cameron):

$$(v-2) \ge (k-1)(k-2). \tag{1}$$

• 根据点和区传递性, 利用轨道-点稳定子公式可得:

$$|G_{\alpha}|k(k-1)(k-2) = |G_B|(v-1)(v-2). \tag{2}$$

• 由(1)和(2), 可得到:

$$|G_{\alpha}|(|G_{\alpha}|/|G_B|+2)^2 > |G|.$$

尹富纲 (CSU) 区传递设计 2023.11.21 22 / 32

• 由 $|G_{\alpha}|(|G_{\alpha}|/|G_{B}|+2)^{2}>|G|$,可证: 当G是一个几乎单群时,一定有

$$|G_{\alpha}|^3 > |G|.$$

有限群X的真子群Y如果满足: $|Y|^3 > |X|$,则Y被称为是X的large子群.

Alavi和Burness分类了单群的large极大子群, Alavi等还分类了例外李型几乎单群 的large极大子群(这些结果在旗传递2- (v, k, λ) 的分类中也有重要的应用).

• 由(1)和(2), 还可得到下面的不等式关系:

$$\gcd(|G_{\alpha}|, (v-1)(v-2)) > \sqrt{v} - 2.$$
 (3)

由于 $v = |G|/|G_{\alpha}|$, 因此当G固定时, (3)是只关于参数v的不等式. 它在我们研究例 外李型群的情形中起了非常重要的作用.

尹富纲 (CSU) 2023.11.21

 $^{^{10}}$ S.H. Alavi, T.C. Burness, Large subgroups of simple groups, Journal of Algebra 421 (2015), 187-233.

¹¹S.H. Alavi, M. Bayat, A. Daneshkhah, Finite exceptional groups of Lie type and symmetric designs, Discrete Mathematics 345 (2022), 112894.

例子: $T = G_2(q), T_{\alpha} = [q^5] : GL_2(q).$

我们用一个例子说明 $\gcd(|G_{\alpha}|,(v-1)(v-2)) > \sqrt{v} - 2$ 的好用之处. 由它可推出

$$\gcd(|T_{\alpha}|, (v-1)(v-2)) \cdot |\operatorname{Out}(T)| > \sqrt{v} - 2.$$

设 $T = G_2(q) \le G \le \operatorname{Aut}(T)$, 且设 $T_\alpha = [q^5] : \operatorname{GL}_2(q)$ 是一个抛物子群, 其中 $q = p^e$ 是素数p的方幂. 则

- $|T_{\alpha}| = q^6(q^2 1)(q 1)$ and $|\text{Out}(T)| = e = \log_p(q)$;
- $v = |T|/|T_{\alpha}| = (q^6 1)/(q 1);$
- $(v-1)(v-2) = q^{10} + 2q^9 + 3q^8 + 4q^7 + 5q^6 + 3q^5 + 2q^4 + q^3 q$.
- 将 $|G_{\alpha}|$ 和(v-1)(v-2) 都看作有理数域上的多项式. 通过使用MAGMA中的命令XGCD (或GAP中的命令GcdRepresentation)可得 $R(q) = P(q)|T_{\alpha}| + Q(q)(v-1)(v-2)$, 其中

$$\begin{split} R(q) &= q, \\ P(q) &= \frac{357}{32}q^8 + \frac{4431}{160}q^7 + \frac{3787}{80}q^6 + \frac{1093}{16}q^5 + \frac{2891}{32}q^4 + \frac{1267}{16}q^3 + \frac{1261}{20}q^2 + \frac{6913}{160}q + \frac{3589}{160}, \\ Q(q) &= -\frac{357}{32}q^7 + \frac{231}{20}q^6 + \frac{2149}{160}q^5 - 4q^4 - 2q^3 - q^2 - 1. \end{split}$$

尹富纲 (CSU) 区传递设计 2023.11.21 24 / 32

• 由于P(q) 和R(q) 的系数的分母的最小共倍数是160, 我们可得

$$R_1(q) = P_1(q)|T_{\alpha}| + Q_1(q)(v-1)(v-2),$$

其中 $R_1(q) = 160 \cdot R(q), P_1(q) = 160 \cdot P(q)$ 和 $Q_1(q) = 160 \cdot Q(q)$.

- 这意味着 $gcd(|T_{\alpha}|, (v-1)(v-2)) | 160q.$
- 然后, $160q \log_p(q) > (q^5 + q^4 + q^3 + q^2 + q + 1)^{\frac{1}{2}} 2$. 这个不等式仅对一些q < 128成立.
- 对具体的q, v是具体的数值, 可利用v和k的整除性关系, 算出可能的k; 此时|G|, $|G_{\alpha}|$, v和k都确定了, 根据 $|G_{\alpha}|$ k $(k-1)(k-2) = |G_B|(v-1)(v-2)$ 可得到 $|G_B|$, 进而在群G中计算子群 G_B , 以及计算 G_B 在点集上的轨道; 由于区传递性, B是若干个 G_B -轨道的并, 对于B的每一种可能性, 需要进一步验证 (\mathcal{P}, B^G) 是否确实是一个设计.

尹富纲 (CSU) 区传递设计 2023.11.21 25 / 32

例外李型群上的区传递Steiner 3-设计

当T是例外李型群时,大部分点稳定子群 T_{α} 的情形都可以用上面的方法解决,除了以下:

- $T = {}^{2}B_{2}(q)$ 且 $T_{\alpha} = [q^{2}] : (q-1)$ (2-传递作用).
- $T = {}^{2}G_{2}(q)$ 且 $T_{\alpha} = [q^{3}] : (q-1)$ (2-传递作用).
- $T = E_6(q)$ 且 T_α 是一个 $D_5(q)$ 型的抛物子群.
- $T = E_7(q)$ 且 T_α 是一个 $E_6(q)$ 型的抛物子群.
- $T = G_2(q) \perp T_{\alpha} = SL_3(q).2 \neq SU_3(q).2.$

注: 当G是2-传递群时, $\gcd(|G_{\alpha}|,(v-1)(v-2)) \geq v-1$,因此 $\gcd(|G_{\alpha}|,(v-1)(v-2)) > \sqrt{v}-2$ 恒成立.

尹富纲 (CSU) 区传递设计 2023.11.21 26 / 32

半正则群和拟半正则群对设计参数的影响

设H > 1是集合 Ω 上的置换群. 如果H在任意点的稳定子群都是1,则称H是半正则的;如果H固定一个点,在剩余点上作用半正则,则称H是拟半正则的.

命题(Lan, Liu and Yin, 2023+)

设 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 是一个G-区传递的t-(v, k, 1) 设计, 其中 $t \geq 3$, 且设H 是G的子群.

- (a) 如果H 的阶是t 且在 \mathcal{P} 上作用是半正则的, 则v 被k整除.
- (b) 如果H 的阶是t 且在 \mathcal{P} 上作用是拟半正则的, 则v-1 被k 或k-1.
- (c) 如果H 的阶是t-1 且在 \mathcal{P} 上作用是拟半正则的, 则v-1 被k-1 整除.

这个命题对解决 $(T,T_{\alpha})=(^{2}B_{2}(q),[q^{2}]:(q-1))$ 和 $(^{2}G_{2}(q),[q^{3}]:(q-1))$ 这两个情形起了重要作用.

例如, $T = {}^{2}B_{2}(q)$, $T_{\alpha} = [q^{2}] : (q-1)$, 其中 $q = 2^{2m+1} > 2^{3}$.

此时, $v = q^2 + 1$, T_{α} 的子群 $[q^2]$ 里的2阶元都是拟半正则元, 因此能推 出 $k-1 \mid (v-1) = q^2$, 进而k形如 $k=2^i+1$, 再利用本原素因子等数论结果可以 从 $|G_{\alpha}|k(k-1)(k-2) = |G_B|(v-1)(v-2)$ 证明k=q+1.

次级数对设计参数的影响

设H > 1是集合 Ω 上的传递置换群, 并设 $\alpha \in \Omega$. 点稳定子群H。在 Ω 上每个轨道的长度都称为是H的一个次级数.

命题(Lan, Liu and Yin, 2023+)

设 $\mathcal{D}=(\mathcal{P},\mathcal{B})$ 是一个G-区传递的3-(v,k,1) 设计,且设T 是G的一个正规子群使得T在 \mathcal{P} 上传递,且令f=|G|/|T|.对T在 \mathcal{P} 上的每个次级数d>1,

- (a) (v-1)(v-2) 整除fk(k-1)(k-2)d(d-1),
- (b) $f \cdot \gcd(d(d-1), (v-1)(v-2)) > \sqrt{v} 2$.

利用这个命题, 可以处理 $T=E_6(q)$ 且 T_α 是一个 $D_5(q)$ 型的抛物子群, 和 $T=E_7(q)$ 且 T_α 是一个 $E_6(q)$ 型的抛物子群两种情形.

一个常用的方法

如果G在点集P上的作用是方便计算的,例如

- $G = S_n \perp G_\alpha = S_m \times S_{n-m}$, 因此 $\mathcal{P} \neq \{1, 2, ..., n\}$ 的所有m-元子集;
- $G = S_n \coprod G_\alpha = S_m \wr S_{n/m}$, 因此 $\mathcal{P} \not = \{1, 2, ..., n\}$ 的所有块大小为m的非本原划分;
- $G = p^n : GL_n(q) = AGL_n(q) \, \text{且} G_\alpha = GL_n(q), \, \text{因此P是} \mathbb{F}_q \, \text{上的} n$ -维仿射空间.
- $G = \operatorname{PGL}_n(q)$ 且 G_{α} 是m-维子空间的点稳定子群,因此 \mathcal{P} 是 \mathbb{F}_q^n 的所有m-维子空间.
- ...

可以选取合适的 $\mathcal P$ 的三元子集 $\{\alpha_1,\alpha_2,\alpha_3\}$,并计算G稳定 $\{\alpha_1,\alpha_2,\alpha_3\}$ 的稳定子群.

根据Steiner 3-设计的定义, 如果 $g \in G$ 稳定了 $\{\alpha_1, \alpha_2, \alpha_3\}$, 那么g就会稳

定 $\{\alpha_1, \alpha_2, \alpha_3\}$ 所在的唯一的那个区组B, 因此 $G_{\{\alpha_1, \alpha_2, \alpha_3\}} \leq G_B$.

此时, B也是若干个 $G_{\{\alpha_1,\alpha_2,\alpha_3\}}$ -轨道的并.

尹富纲 (CSU) 区传递设计 2023.11.21 29 / 32

例子: $G = AGL_n(q), G_{\alpha} = GL_n(q), n \geq 2.$

把 \mathcal{P} 看作是 \mathbb{F}_q 上的n-维向量空间,设 (e_1, e_2, \ldots, e_n) 是一组基. 首先,假设q > 3.

- 取3-子集 $\{0, e_1, xe_1\}, x \neq 1, 并设B$ 是包含这个3-子集的唯一的那个区组.
- $\mathbb{M}G_B \geq G_{\{\mathbf{0},e_1,xe_1\}} \geq H := [q^{n-1}] : GL(\langle e_2,\ldots,e_m \rangle).$
- 考虑H在 \mathcal{P} 上的作用可知: H固定 $\langle e_1 \rangle$ 中的q个点, 而在 $\mathcal{P} \setminus \langle e_1 \rangle$ 的 $q^n q$ 个点上传递.
- 注意B是若干个H-轨道的并, 因此要么 $k = |B| \le q$, 要么 $k = |B| \ge q^n q$.
- $k \ge q^n q 5(k-1)(k-2) \le v 2 = q^n 2 \pi$ f.
- 如果 $k \leq q$, 则从 $|G_{\alpha}|k(k-1)(k-2) = |G_B|(v-1)(v-2)$ 得

$$\frac{q^n-1}{q-1} = \frac{|G_{\alpha}|}{|H|} \ge \frac{|G_{\alpha}|}{|G_B|} = \frac{(v-1)(v-2)}{k(k-1)(k-2)} \ge \frac{(q^n-1)(q^n-2)}{q(q-1)(q-2)},$$

进而 $q^n - 2 \le q(q-2)$, 矛盾.

尹富纲 (CSU) 区传递设计 2023.11.21 30 / 32

2-传递群上的区传递Steiner 3-设计

设 $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ 是一个非平凡的G-区传递的3-(v, k, 1)设计.

从 $f \cdot \gcd(d(d-1), (v-1)(v-2)) > \sqrt{v} - 2$ 可看出:

• 当G在 \mathcal{P} 上的秩越大时,越有可能产生一个小的次轨道d,从而导致上述不等式不成立。

因此, 当G在 \mathcal{P} 上的秩小时, 设计存在的可能性才大.

- 不等式 $f \cdot \gcd(d(d-1), (v-1)(v-2)) > \sqrt{v} 2$ 在G的秩为2, 也即G是2-传递群的情形恒成立.
- 目前已知的区传递Steiner 3-设计的全自同构群都是点集上的2-传递群.

定理(Lan, Liu and Yin, 2023+)

设 \mathcal{D} 是一个非平凡的G-区传递的3-(v,k,1)设计,且设G在点集上是2-传递的.如果G不是 $A\Gamma L_1(2^d)$ 的子群,则下列情况之一成立.

- (a) D是G-旗传递的, 因此被Huber(2005)确定.
- (b) D同构于一个3- $(q^2+1,q+1,1)$ 设计,其中 $q=2^e$,e为奇数 且 $^2B_2(2^e) \le G \le \operatorname{Aut}(^2B_2(2^e))$.

谢谢!

