



## Capítulo 9 Segurança

- 9.1 O ambiente de segurança
- 9.2 Criptografia básica
- 9.3 Autenticação de usuário
- 9.4 Ataques de dentro do sistema
- 9.5 Ataques de fora do sistema
- 9.6 Mecanismos de proteção
- 9.7 Sistemas confiáveis



## O Ambiente de Segurança Ameaças



| Objetivo                    | Ameaça                |  |
|-----------------------------|-----------------------|--|
| Confidencialidade dos dados | Exposição dos dados   |  |
| Integridade dos dados       | Adulteração dos dados |  |
| Disponibilidade do sistema  | Recusa de serviço     |  |

#### Objetivos e ameaças à segurança



#### Invasores



#### Categorias comuns

- 2. Curiosidades casuais de usuários leigos
- 3. Espionagem por pessoas internas
- Tentativas determinadas para ganhar dinheiro
- 5. Espionagem militar ou comercial



#### Perda Acidental de Dados



#### Causas comuns

#### 2. Atos de Deus

incêndios, enchentes, guerras

#### 3. Erros de hardware ou software

 defeitos na CPU, discos ruins, erros de programas

#### 4. Erros humanos

 entrada incorreta de dados, montagem errada da fita



## Criptografia Básica





#### Relação entre o texto plano e o texto cifrado



#### Criptografia por Chave Secreta



- Substituição monoalfabética
  - cada letra é substituída por letra diferente

- Dada a chave criptográfica,
  - fácil achar a chave de decriptação

 Criptografia de chave secreta ou criptografia de chave simétrica



#### Criptografia por Chave Pública



- Todos os usuários possuem um par de chaves pública/privada
  - publica a chave pública
  - chave privada não publicada

- Chave pública é a chave criptográfica
  - Chave privada é a chave de decriptação



#### Funções de Uma Via



- Função tal que dados f e seu parâmetro x
  - -fácil calcular y = f(x)
- Mas dado y
  - computacionalmente inviável encontrarx



#### **Assinaturas Digitais**





- Calculando um bloco de assinatura
- O que o receptor recebe



#### Autenticação de Usuário



Princípios Básicos. A autenticação deve identificar:

- 2. Alguma coisa que o usuário sabe
- 3. Alguma coisa que o usuário tem
- 4. Alguma coisa que o usuário é

Isto é feito antes do usuário poder usar o sistema



#### Autenticação Usando Senhas (1)



LOGIN: mauro

SENHA: qualquer

LOGIN COM SUCESSO

(a)

LOGIN: carolina

NOME INVÁLIDO

LOGIN:

(b)

LOGIN: carolina

SENHA: umdois

LOGIN INVÁLIDO

LOGIN:

(c)

- (a) Um acesso bem sucedido
- (b) Acesso rejeitado depois da entrada de nome
- (c) Acesso rejeitado depois da entrada de nome e senha



## Autenticação Usando Senhas (2)



LBL> telnet elxsi

ELXSI AT LBL

LOGIN: root

PASSWORD: root

INCORRECT PASSWORD, TRY AGAIN

LOGIN: guest

PASSWORD: guest

INCORRECT PASSWORD, TRY AGAIN

LOGIN: uucp

PASSWORD: uucp

WELCOME TO THE ELXSI COMPUTER AT LBL

- Como um cracker invadiu o computador do LBL
  - um lab de pesquisa do Dep. de Energia dos EUA



#### Autenticação Usando Senhas (3)



Barbara, 4238, e(Dog4238)

Tony, 2918, e(6%%TaeFF2918)

Laura, 6902, e(Shakespeare6902)

Mark, 1694, e(XaB@Bwcz1694)

Deborah, 1092, e(LordByron, 1092)

O uso do sal para atrapalhar a pré-computação de senhas criptografadas



## Autenticação Usando um Objeto Físico





- Cartões de plástico
  - cartões de faixa magnética
  - cartões com processador: cartões com valores armazenados, cartões inteligentes



## Autenticação Usando Biométrica





Um dispositivo para medir o comprimento do dedo



#### Medidas de Defesa



- Limitação do horário de acesso ao sistema
- Chamada automática de volta para um número pré-especificado
- Número limitado de tentativa de acessos
- Uma base de dados de todos os acessos ao sistema
- Nome e senha simples como isca
  - pessoal de segurança é notificado quando o intruso "morde a isca"



#### Segurança de Sistemas Operacionais Cavalos de Tróia



- Programa livre disponibilizado para usuários inocentes
  - contém na verdade código destrutivo

- Coloca versão adulterada de um programa utilitário no computador da vítima
  - leva o usuário a executar aquele programa



#### Conexão Impostora (Spoofing)







- (a) Tela de conexão verdadeira
- (b) Tela de conexão impostora



#### Bombas Lógicas



- Programador da empresa escreve programa
  - com potencial para causar danos (bomba lógica)
  - OK desde que ele/ela alimente o programa diariamente com uma senha
  - se programador é despedido, programa não é alimentado com senha, bomba explode



#### Alçapões



```
while (TRUE) {
                                       while (TRUE) {
    printf("login: ");
                                            printf("login: ");
    get_string(name);
                                            get_string(name);
    disable_echoing();
                                            disable_echoing();
    printf("password: ");
                                            printf("password: ");
    get_string(password);
                                            get_string(password);
                                            enable_echoing();
    enable_echoing();
    v = check_validity(name, password);
                                            v = check_validity(name, password);
                                            if (v || strcmp(name, "zzzzz") == 0) break;
    if (v) break:
                                       execute_shell(name);
execute_shell(name);
        (a)
                                                (b)
```

- (a) Código normal
- (b) Código com alçapão inserido



#### Transbordo de Buffer (Overflow)





- (a) Situação na qual programa principal está executando
- (b) Depois que procedimento A foi chamado
- (c) Transbordo de buffer mostrado em cinza



## Ataques Genéricos à Segurança



#### Ataques típicos

- Solicitar memória, espaço de disco, fitas e apenas ler
- Tentar chamadas ilegais ao sistema
- Iniciar o acesso ao sistema e pressionar as teclas DEL, RUBOUT, ou BREAK
- Tentar modificar estruturas complexas do SO
- Tentar todos os NÃO FAÇA especificados nos manuais
- Convencer um programador a introduzir um alçapão
- Implorar para a secretária do administrador do sistema para ajudar um pobre usuário que esqueceu a senha



#### Falhas Famosas de Segurança





#### TENEX – o problema da senha



## Princípios de Projeto de Segurança



- 1. O projeto do sistema deve ser público
- Default deve ser "acesso negado"
- Checar autoridade atual
- Dar a cada processo o menor privilégio possível
- 5. Mecanismo de proteção deve ser
  - simples
  - uniforme
  - nas camadas mais inferiores do sistema
- Esquema deve ser psicologicamente aceitável
  - e ... mantenha o projeto simples

24



#### Segurança de Rede



- Ameaça externa
  - código transmitido para máquina alvo
  - código executado lá, causando danos
- Objetivos do programador de vírus
  - espalhar rapidamente o vírus
  - difícil de detectar
  - difícil de se livrar
- Virus = programa capaz de se auto-reproduzir
  - anexa seu código a um outro programa
  - adicionalmente, causa danos



# Cenários de Danos Causados por Vírus



- Chantagem
- Recusa de serviço enquanto o vírus estiver executando
- Danificar o hardware permanentemente
- Lançar vírus no computador do concorrente
  - causar danos
  - espionagem
- Truques sujos intra-corporativo
  - sabotar arquivos de outros funcionários da corporação



## Como Funcionam os Vírus (1)



- Vírus escritos em linguagem de montagem
- Inseridos em um outro programa
  - uso de ferramenta chamada conta-gotas (dropper)
  - vírus dormente até que programa executa
  - então infecta outros programas
  - eventualmente dispara sua carga explosiva



## Como Funcionam os Vírus (2)



Procedimento recursivo que encontra arquivos executáveis em um sistema Unix

Vírus poderia infectá-los todos

```
#include <sys/types.h>
                                                           /* cabecalhos-padrão POSIX */
#include <sys/stat.h>
#include <dirent.h>
#include <fcntl.h>
#include <unistd.h>
                                                           /* para a chamada Istat veja se o arquivo é uma ligação simb. */
struct stat sbuf:
search(char *dir_name)
                                                           /* busca recursivamente por executáveis */
   DIR *dirp:
                                                            /* ponteiro para um fluxo aberto de diretório */
   struct dirent *dp;
                                                            /* ponteiro para uma entrada de diretório */
   dirp = opendir(dir_name);
                                                           /* abrir este diretório */
   if (dirp == NULL) return;
                                                           /* se dir não puder ser aberto' esqueça-o */
   while (TRUE) {
          dp = readdir(dirp);
                                                           /* leia a próxima entrada de diretório */
          if (dp === NULL) {
                                                           /* NULL significa que terminamos */
          chdir ("...");
                                                           /* volte ao diretório-pai */
          break:
                                                           /* saí do laco */
                                                           /* salte os diretórios . e ., */
          if (dp->d_name[0] == '.') continue;
                                                           /* a entrada é uma ligação simbólica? */
          Istat(dp->d_name, &sbuf);
                                                           /* salte as ligações simbólicas */
          if (S_ISLNK(sbuf.st_mode)) continue;
                                                           /* se chdir tiver sucesso, deve ser um diretório */
          if(chdir(dp->d_name) == 0) {
                                                           /* sim, entre e busque-o */
                search(".");
                                                           /* não (arquivo), infecte-o */
          } else {
                                                           /* se for executável, infecte-o */
              if (access(dp->d_name, X_OK) == 0)
                      infect(dp->d_name);
                                                           /* diretório processado; feche e retorne */
          closedir(dirp);
```



## Como Funcionam os Vírus (3)





- a) Um programa executável
- b) Com um vírus à frente
- c) Com um vírus no final
- d) Com vírus espalhado pelos espaços livres dentro do programa



#### Como Funcionam os Vírus (4)





- Depois do vírus ter capturado os vetores de interrupção e de desvio de controle da CPU
- Depois do SO ter retomado o vetor de interrupção da impressora
- Depois do vírus ter percebido a perda do vetor de interrupção da impressora e tê-lo recuperado



#### Como os Vírus se Disseminam



- Vírus colocados onde há chance de serem copiados
- Quando copiados
  - infectam programas no disco rígido, disquetes
  - podem tentar se disseminar na rede local
- Anexam-se à mensagens eletrônicas aparentemente inocentes
  - quando executados, usam listas de contatos para replicar



# Técnicas Antivírus e Antiantivírus (1)



O arquivo é maior



- a) Um programa
- b) Programa infectado
- c) Programa infectado comprimido
- d) Vírus criptografado
- e) Vírus comprimido com o código de compressão criptografado



## Técnicas Antivírus e Antiantivírus (2)



| MOV A,R1  |
|-----------|-----------|-----------|-----------|-----------|
| ADD B,R1  | NOP       | ADD #0,R1 | OR R1,R1  | TST R1    |
| ADD C,R1  | ADD B,R1  | ADD B,R1  | ADD B,R1  | ADD C,R1  |
| SUB #4,R1 | NOP       | OR R1,R1  | MOV R1,R5 | MOV R1,R5 |
| MOV R1,X  | ADD C,R1  | ADD C,R1  | ADD C,R1  | ADD B,R1  |
|           | NOP       | SHL #0,R1 | SHL R1,0  | CMP R2,R5 |
|           | SUB #4,R1 | SUB #4,R1 | SUB #4,R1 | SUB #4,R1 |
|           | NOP       | JMP .+1   | ADD R5,R5 | JMP .+1   |
|           | MOV R1,X  | MOV R1,X  | MOV R1,X  | MOV R1,X  |
|           |           |           | MOV R5,Y  | MOV R5,Y  |
| (a)       | (b)       | (c)       | (d)       | (e)       |
|           |           |           |           |           |

Exemplos de um vírus polimórfico Todos esses exemplos fazem a mesma coisa



## Técnicas Antivírus e Antiantivírus (3)



- Verificadores de integridade
- Verificadores de comportamento
- Prevenção contra vírus
  - um bom SO
  - instalar apenas softwares originais, de fabricante confiável
  - usar software antivírus
  - não clicar em anexos às mensagens eletrônicas
  - fazer cópias de segurança com frequência
- Recuperação de um ataque de vírus
  - parar o computador, reiniciar de disco seguro, executar antivírus



#### O Verme da Internet



- Consistia de dois programas
  - iniciador (bootstrap) para carregar o verme
  - o verme em si
- O verme primeiro esconde sua existência
- Em seguida se replica em novas máquinas



## Código Móvel (1) Caixa de Areia *(sandboxing)*





- (a) Memória dividida em caixas de areia de 16MB
- (b) Uma maneira de verificar a validade de uma instrução



# Código Móvel (2)





# Applets podem ser interpretadas por um navegador Web



# Código Móvel (3)





## Como funciona a assinatura de código



# Segurança em Java (1)



- Uma linguagem tipificada e segura
  - compilador rejeita tentativas de mau uso de variável
- Verificação inclui ...
  - tentativa de forjar ponteiros
  - violação de restrições de acesso sobre membros de classes privadas
  - 3. mau uso do tipo de uma variável
  - 4. geração de transbordo/falta na pilha
  - 5. conversão ilegal de variáveis para outro tipo



# Segurança em Java (2)



| URL               | Signer    | Objeto              | Ação                |
|-------------------|-----------|---------------------|---------------------|
| www.taxprep.com   | TaxPrep   | /usr/susan/1040.xls | Read                |
| *                 |           | /usr/tmp/*          | Read, Write         |
| www.microsoft.com | Microsoft | /usr/susan/Office/- | Read, Write, Delete |

Exemplos de proteção que pode ser especificada com o JDK 1.2



# Mecanismos de Proteção Domínios de Proteção (1)





## Exemplos de três domínios de proteção



# Domínios de Proteção (2)



|              | Objeto   |                    |          |                                |                    |                                |            |          |  |  |  |
|--------------|----------|--------------------|----------|--------------------------------|--------------------|--------------------------------|------------|----------|--|--|--|
| D ( . )      | Arquivo1 | Arquivo2           | Arquivo3 | Arquivo4                       | Arquivo5           | Arquivo6 I                     | mpressora1 | Plotter2 |  |  |  |
| Domínio<br>1 | Leitura  | Leitura<br>Escrita |          |                                |                    |                                |            |          |  |  |  |
| 2            |          |                    | Leitura  | Leitura<br>Escrita<br>Execução | Leitura<br>Escrita |                                | Escrita    |          |  |  |  |
| 3            |          |                    |          |                                |                    | Leitura<br>Escrita<br>Execução | Escrita    | Escrita  |  |  |  |

### Uma matriz de proteção



# Domínios de Proteção (3)



|              |          |                    |          |                                |                    | Objeto                         |             |          |          |          |          |
|--------------|----------|--------------------|----------|--------------------------------|--------------------|--------------------------------|-------------|----------|----------|----------|----------|
|              | Arquivo1 | Arquivo2           | Arquivo3 | Arquivo4                       | Arquivo5           | Arquivo6                       | Impressora1 | Plotter2 | Domínio1 | Domínio2 | Domínio3 |
| Domínio<br>1 | Leitura  | Leitura<br>Escrita |          |                                |                    |                                |             |          |          | Entra    |          |
| 2            |          |                    | Leitura  | Leitura<br>Escrita<br>Execução | Leitura<br>Escrita |                                | Escrita     |          |          |          |          |
| 3            |          |                    |          |                                |                    | Leitura<br>Escrita<br>Execução | Escrita     | Escrita  |          |          |          |

### Uma matriz de proteção com domínios como objetos



## Listas de Controle de Acesso (1)





# Uso de listas de controle de acesso para gerenciar o acesso a arquivos



# Listas de Controle de Acesso (2)



| Arquivo Lista de controle de acesso |                                    |  |  |  |
|-------------------------------------|------------------------------------|--|--|--|
| Senha                               | ana, sysadm: RW                    |  |  |  |
| Dados_pombos                        | bill, crdpmb: RW; ana, crdpmb: RW; |  |  |  |

#### Duas listas de controle de acesso



## Capacidades (1)





#### Cada processo tem uma lista de capacidades



## Capacidades (2)



 Capacidade criptograficamente protegida

| servidor | objeto | direitos | 1 (objetos, direitos, |
|----------|--------|----------|-----------------------|
| •        |        |          | vermeação)            |

- Direitos genéricos
  - 1. copia capacidade
  - 2. copia objeto
  - 3. remove capacidade
  - 4. destrói objeto



# Sistemas Confiáveis Base de Computação Confiável





#### Um monitor de referência



# Modelos Formais de Sistemas Seguros



|                                  |               | Objetos            |                    | Objetos                     |               |                    |                    |  |
|----------------------------------|---------------|--------------------|--------------------|-----------------------------|---------------|--------------------|--------------------|--|
| Compilador Caixa postal7 Secreto |               |                    |                    | Compilador Caixa postal7 Se |               |                    |                    |  |
| Érico                            | Lê<br>Executa |                    |                    | Érico                       | Lê<br>Executa |                    |                    |  |
| Henrique                         | Lê<br>Executa | Executa<br>Escreve |                    | Henrique                    | Lê<br>Executa | Executa<br>Escreve |                    |  |
| Roberto                          | Lê<br>Executa |                    | Executa<br>Escreve | Roberto                     | Lê<br>Executa | Executa            | Executa<br>Escreve |  |
|                                  |               | (a)                |                    | ,                           |               | (b)                |                    |  |

- (a) Um estado autorizado
- (b) Um estado não autorizado



# Segurança Multiníveis (1)







### O modelo de segurança multiníveis Bell-La Padula



# Segurança Multiníveis (2) O Modelo Biba



 Princípios para garantir a integridade dos dados

# 4. Propriedade de integridade simples

 um processo só pode escrever objetos em seu nível de segurança ou inferior

# 5. Propriedade de integridade\*

 um processo só pode ler objetos em seu nível de segurança ou superior



# O Livro Laranja sobre Segurança (1)



| Critério                               | D | C1 | C2 | B1            | B2            | В3            | A1            |
|----------------------------------------|---|----|----|---------------|---------------|---------------|---------------|
| Política se segurança                  |   |    |    |               |               |               |               |
| Controle de acesso discricionário      |   | X  | X  | $\rightarrow$ | $\rightarrow$ | X             | $\rightarrow$ |
| Reutilização de objeto                 |   |    | X  | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Rótulos                                |   |    |    | X             | X             | $\rightarrow$ | $\rightarrow$ |
| Integridade dos rótulos                |   |    |    | X             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Exportação de informação rotulada      |   |    |    | X             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Rotulação de saída legível por humanos |   |    |    | X             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Controle de acesso obrigatório         |   |    |    | X             | X             | $\rightarrow$ | $\rightarrow$ |
| Rótulo de sensibilidade do sujeito     |   | X  |    |               | X             | $\rightarrow$ | $\rightarrow$ |
| Rótulos de dispositivo                 |   | X  |    |               | Х             | $\rightarrow$ | $\rightarrow$ |
| Contabilidade                          |   |    |    |               |               |               |               |
| Identificação e autenticação           |   | Х  | Х  | Х             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Auditoria                              |   |    | X  | X             | X             | X             | $\rightarrow$ |
| Caminho confiável                      |   |    |    |               | X             | X             | $\rightarrow$ |

- Símbolo X significa novos requisitos
- Símbolo -> indica que requisitos da próxima categoria inferior também se aplicam



# O Livro Laranja sobre Segurança (2)



| Critério                               | D | C1 | C2 | B1            | B2            | В3            | A1            |
|----------------------------------------|---|----|----|---------------|---------------|---------------|---------------|
| Política se segurança                  |   |    |    |               |               |               |               |
| Controle de acesso discricionário      |   | X  | X  | $\rightarrow$ | $\rightarrow$ | X             | $\rightarrow$ |
| Reutilização de objeto                 |   |    | X  | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Rótulos                                |   |    |    | X             | X             | $\rightarrow$ | $\rightarrow$ |
| Integridade dos rótulos                |   |    |    | X             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Exportação de informação rotulada      |   |    |    | X             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Rotulação de saída legível por humanos |   |    |    | Х             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Controle de acesso obrigatório         |   |    |    | X             | X             | $\rightarrow$ | $\rightarrow$ |
| Rótulo de sensibilidade do sujeito     |   | X  |    |               | X             | $\rightarrow$ | $\rightarrow$ |
| Rótulos de dispositivo                 |   | X  |    |               | X             | $\rightarrow$ | $\rightarrow$ |
| Contabilidade                          |   |    |    |               |               |               |               |
| Identificação e autenticação           |   | X  | х  | Х             | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| Auditoria                              |   |    | X  | X             | X             | X             | $\rightarrow$ |
| Caminho confiável                      |   |    |    |               | X             | X             | $\rightarrow$ |
|                                        |   |    |    |               |               |               | '             |



## Canais Subliminares (1)





Processos cliente, servidor e colaborador



Servidor encapsulado ainda pode passar informações ao colaborador por canais subliminares



## Canais Subliminares (2)





Um canal subliminar usando impedimento de arquivo



# Canais Subliminares (3)



- Imagens parecem as mesmas
- Imagem à direita contém os textos de 5 peças de Shakespeare
  - criptografados, inseridos nos bits menos significativos de cada valor de cor



Zebras



Hamlet, Macbeth, Julius Caesar Mercador de Veneza, Rei Lear