3 Sémantique de la logique des prédicats

3.1 Présentation

3.1.1 Rappels

Soit $\mathcal{L} =_{def} \mathcal{C} \cup P$ un langage du premier ordre, avec

- $\mathcal C$ l'ensemble des constantes
- \mathcal{P} l'ensemble des prédicats

On sait construire des fbf (formules bien formées) sur \mathcal{L} .

Exemple

$$\mathcal{L} =_{def} (\overbrace{\{a,b,c\}}, \overbrace{\{P_1, C_2\}}^{\mathcal{P}}) (P_1 \text{ unaire, } C_2 \text{ binaire}), \text{ on peut construire}$$

$$C_2(a,b) \underbrace{C_2(x,a)}_{ouverte}, \exists x \ C_2(x,a), \ \forall x \ (P_1(x) \to C_2(x,x)) \dots$$

le problème

Ces formules ne sont pas vraies ou fausses dans l'absolu, elles sont vraies ou fausses dans un monde donné.

Remarque

Bien sûr, il existe des formules

- vraies dans tout les mondes, par exemple $\forall x \ P_1(x) \lor \neg P_1(x)$, on les dit valides
- et d'autres fausses dans tout les mondes, par exemple $\exists x \ P_1(x) \land \neg P_1(x)$, on les dit *insatisfiables*

La solution

Comment définir un **monde**?

Par la notion d'**interprétation** du **langage** sur lequel sont construites les formules.

- en logique des propositions $\mathcal{L} = \{p_1, p_2 \dots p_n\}$ un ensemble de symboles propositionnels (autrement dit de symboles 0-aire de prédicat), une interprétation est une application de \mathcal{L} dans $\{\text{vrai, faux}\}$.
- en logique des prédicats, où l'on parle d'**objets** et de **relations** entre ces objets, une **interprétation** est composée
 - d'un ensemble d'entités (justement les objets), ensemble appelé le **domaine** de l'interprétation
 - une mise en correspondance de \mathcal{L} avec ce domaine :
 - à toute constante on associe un objet
 - à tout prédicat on associe une relation entre les objets du domaine car il faut comprendre qu'une relation, c'est l'**ensemble** de tous les n-uplets d'objets qui la vérifient.

sur l'exemple $\mathcal{L} = \mathcal{C} \cup P$ avec $\mathcal{C} =_{def} \{a, b, c\}$ et $\mathcal{P} =_{def} \{P_1, C_2\}$ définition d'une interprétation I de \mathcal{L} :

- domaine \mathcal{D} = {Alain, Bernard, Charles, Denis}
- interprétation des constantes : I une application $\mathcal{C} \to D$ I(a) = Alain, I(b) = Bernard, I(c) = Charles
- interprétation des prédicats
 - P_1 est d'arité 1 (unaire) : c'est le symbole d'une "propriété" que vérifie ou non un objet du domaine.

Nous interpréterons $P_1(a)$ par "Alain est fort".

Donner l'interprétation de P_1 , c'est donner l'ensemble des objets du domaine qui vérifient la propriété dont P_1 est le symbole, par exemple $I(P_1) = \{Alain, Bernard\}.$

- $-C_2$ est d'arité 2 (binaire) : c'est le symbole d'une relation entre deux objets. Nous interpréterons $C_2(b,c)$ par "Bernard croit que Charles est fort". Donner l'interprétation de C_2 , c'est donner l'ensemble des couples d'objets du domaine qui sont dans la relation dont C_2 est le symbole, par exemple
 - $I(C_2) = \{ (Alain, Bernard), (Bernard, Charles), (Charles, Charles) \}$
- maintenant va-t-on pouvoir calculer sa valeur de vérité pour n'importe quelle formule sur \mathcal{L} ?
 - $--\exists x \ P_1(x)$
 - $-- \forall x P_1(x)$
 - $C_2(a,x)$ formule ouverte
 - $-- \forall x \ C_2(a,x)$

On voit bien qu'en modifiant l'interprétation, on modifie la valeur de vérité de la formule.

3.2 Définition de l'interprétation d'un langage

Une interprétation d'un langage $\mathcal{L} =_{def} \mathcal{C} \cup P$ est constitué d'un ensemble **non** vide ${}^{1}\mathcal{D}$ appelé domaine de I et d'une définition du "sens" des symboles de \mathcal{L} :

- pour toute constante $a \in \mathcal{C}$, $I(a) \in \mathcal{D}$ (I est une application de \mathcal{C} sur \mathcal{D}).
- pour tout prédicat $p \in P$ d'arité $a_p \neq 0$, $I(p) \subseteq \underbrace{\mathcal{D} \times \mathcal{D} \times \ldots \times \mathcal{D}}_{a_p} = \mathcal{D}^{a_p}$

Dans l'exemple, $I(C_2)$ est un sous ensemble de l'ensemble des 16 couples possibles. Si $a_p = 0$, $I(p) \in \{\text{vrai, faux}\}.$

Exercice

Quel est le nombre d'interprétations possibles dans notre exemple?

- 1. nombre d'interprétations possibles pour P_1 : on peut dire que seuls Alain et Bernard sont forts; on peut aussi décider que personne n'est fort. Tout sous-ensemble de $\mathcal D$ est une interprétation de P_1 : il y a en donc $2^{|\mathcal D|}$
- 2. nombre d'interprétations possibles pour C_2 : Il y a $|\mathcal{D}|^2$ couples ordonnés : Alain croit que Bernard est fort \neq Bernard croit que Alain est fort, donc il y a $2^{|\mathcal{D}|^2}$ interprétations possibles dans notre exemple $2^{25}\approx 10^{3^{2,5}}=10^{7,5}$

^{1.} Sur un domaine vide, $\forall x P(x)$ et $\forall x \neg P(x)$ ont la même valeur de vérité.

3. Cas général : c'est le nombre de sous ensembles de \mathcal{D}^{a_p} soit $2^{\mathcal{D}^{a_p}}$

Quel est le nombre d'interprétation possible pour une constante? : $|\mathcal{D}|$ pour k constantes : $|\mathcal{D}|^k$ donc dans notre exemple 4^3 Donc le nombre total d'interprétation de notre (petit) langage sur notre (petit) domaine est $4^3 \times 2^4 \times 2^{25} = 2^{35} \approx 32 \ 10^9$

une toute autre interprétation I_2 de $\mathcal{L} = \mathcal{C} \cup P$ avec $\mathcal{C} =_{def} \{a, b, c\}$ et $\mathcal{P} =_{def} \{P_1, C_2\}$

Prenons $\mathcal{D} = \mathbb{N}$ (un domaine **infini** I_2 défini

- sur les constantes $a \to 0$, $b \to 1$ et $c \to 1$;
- $I_2(P_1)$ est l'ensemble des entiers pairs
- $I_2(C_2)$ est l'ensemble des couples d'entiers successifs : $\{(0,1), (1,2), (2,3) \dots \}$

3.3 Calcul de la valeur de vérité d'une formule $\mathcal F$ sur $\mathcal L$ pour une interprétation donnée I de $\mathcal L$

On a vu comment interpreter un langage (c'est à dire associer un domaine à un langage). On va maintenant voir comment évaluer une formule (à vrai ou faux) pour une interprétation donnée.

Rappel : la première interprétation I_1 du même exemple

3.3.1 sur l'exemple

Quelles sont les valeurs de vérité de chaque formule $\mathcal F$ pour I_1 et pour I_2 ?

Formule \mathcal{F}	signification intuitive	I_1	I_2
$\exists x \ C_2(x,x)$	vraie ssi il existe d dans \mathcal{D} tel que $(d,d) \in I(C_2)$	vrai	faux
$\exists x \ P_1(x) \land \neg C_2(x,x)$	vraie ssi il existe d dans \mathcal{D} tel que $d \in I(P_1)$ et $(d, d) \notin I(C_2)$	vrai	vrai
$\forall x \ P_1(x)$	vraie ssi pour tout d de \mathcal{D} , $d \in I(P_1)$	faux	faux
$P_1(a)$	vraie ssi $I(a) \in I(P_1)$	vrai	vrai
$C_2(a,b)$	vraie ssi $(I(a), I(b)) \in I(C_2)$	faux	vrai
$C_2(a,c)$	vraie ssi $(I(a), I(c)) \in I(C_2)$	vrai	faux

3.3.2 idées intuitives pour calculer la valeur de vérité d'une formule \mathcal{F} fermée sur \mathcal{L} pour une interprétation donnée I de \mathcal{L}

non seulement on va présupposer \mathcal{F} fermée, mais en plus on va aussi supposer que tous les quantificateurs portent sur des variables différentes (la formule est propre).

- 1. si $\mathcal{F} = \neg \mathcal{F}'$ alors \mathcal{F} vaut vrai ssi \mathcal{F}' est fausse on voit comment calculer de même les valeurs de vérité de $\mathcal{F}_1 \wedge \mathcal{F}_2$, $\mathcal{F}_1 \vee \mathcal{F}_2$, $\mathcal{F}_1 \to \mathcal{F}_2$, $\mathcal{F}_1 \to \mathcal{F}_2$, $\mathcal{F}_1 \leftrightarrow \mathcal{F}_2$ (cf. logique des propositions : définition par induction de la valeur de vérité d'une formule)
- 2. si $\mathcal{F} = \forall x \ \mathcal{F}'$ alors \mathcal{F} vaut vrai ssi pour tout $d \in \mathcal{D}$, $\mathcal{F}'_{x \leftarrow d}$ vaut vrai
- 3. si $\mathcal{F}=\exists x\ \mathcal{F}'$ alors \mathcal{F} vaut vrai ssi il existe $d\in\mathcal{D}$ tel que $\mathcal{F}'_{x\leftarrow d}$ vaut vrai

L'idée est de remplacer x par d mais bien sûr cela ne marche pas tel quel! x est un symbole, un élément de \mathcal{L} , d un objet un élément de \mathcal{D} : $\mathcal{F}'_{x\leftarrow d}$ n'est pas une formule!

 $\exists x P_1(x)$ est une formule, $P_1(\text{Alain})$ non car Alain n'est pas une constante. Pour corriger ce problème on va utiliser les

assignation

associe à des variables de \mathcal{V} un élément du domaine \mathcal{D} Autrement dit une assignation θ est une fonction : $\mathcal{V} \to \mathcal{D}$ (fonction non totale)

valeur de vérité d'une formule ${\mathcal F}$ pour une interprétation donnée I et une assignation donnée θ

 ${\mathcal F}$ n'est plus présupposée ${\mathcal F}$ fermée

regardons sur l'exemple ce que nous voulons dire

Soit la formule $\mathcal{F} =_{def} \forall x \; \exists y \; C_2(x,y)$, comment calculer pour une interprétation donnée I la valeur $val(\mathcal{F}, I)$?

- \mathcal{F} vaut vrai pour I ssi pour tout $d \in \mathcal{D}$, $\exists y \ C_2(x,y)$ vaut vrai pour I et pour l'assignation de x à d
- mais $\exists y \ C_2(x,y)$ vaut vrai pour I (et pour l'assignation de x à d) ssi il existe un $d' \in \mathcal{D}$ tel que $C_2(x,y)$ vaut vrai pour I et pour l'assignation de y à d' (sachant que l'on a assigné x à d)
- autrement dit \mathcal{F} vaut vrai pour I ssi pour tout $d \in \mathcal{D}$ il existe un $d' \in \mathcal{D}$ tel que $C_2(x,y)$ vaut vrai pour I et pour l'assignation de y à d' et de x à d
- c'est à dire \mathcal{F} vaut vrai pour I ssi pour tout $d \in \mathcal{D}$ il existe un $d' \in \mathcal{D}$ tel que $(d, d') \in I(C_2)$

exercices

Les formules suivantes sont-elles valides, contingentes ou insatisfiables? justifier en utilisant la notion d'interprétation.

- 1. $F_a:\exists x\ P(x)\to \forall x\ P(x)$ contingente : il faut fournir un modèle : $\mathcal{D}_1=\{d\}\ I_1(P)=\{d\}$ et un contre modèle $\mathcal{D}_2=\{d,\ d'\}\ I_2(P)=\{d\}$
- 2. $F_c: \exists x \ P(x) \to P(a)$ contingente : modèle : $\mathcal{D}_1 = \{d\} \ I_1(P) = \{d\}$ $I_1(a) = d$ contre modèle $\mathcal{D}_2 = \{d, d'\} \ I_2(P) = \{d\} \ I_2(a) = d'$

3. $F_d: P(a) \to \exists x \ P(x)$ valide

pour une interprétation ${\cal I}$ quel conque

- si V(p(a), I) = faux, $V(F_d, I) = vrai$
- si V(p(a),I)= vrai alors $I(a)\in I(p)$ donc $\exists d\in\mathcal{D}$ tel que $d\in I(p)$ donc $V(\exists x\ P(x),I)=$ vrai.
- 4. $F_e = \forall x \ P(x) \rightarrow \exists x \ P(x)$

On va plutôt démontrer que $\forall x \ P(x) \models \exists x \ P(x)$, c'est à dire que pour toute interprétation I telle que $val(\forall x \ P(x), I)$ vaut vrai, $val(\exists x \ P(x), I)$ vaut aussi vrai.

Quelle est la différence entre les deux démonstrations

- (a) $\forall x \ P(x) \to \exists x \ P(x)$ valide et
- (b) pour toute interprétation I telle que $val(\forall x\ P(x),I)$ vaut vrai, $val(\exists x\ P(x),I)$ vaut aussi vrai

C'est que a) prend en compte plus de cas que b)!

en effet d'après la définition de $val(A \to B, I)$ vue en logique des propositions cette valeur est

- vraie dés que val(A, I) vaut faux
- vraie dés que val(B, I) vaut vrai
- faux ssi val(A, I) vaut vrai et val(B, I) vaut faux

Démontrer que $\forall x \ P(x) \to \exists x \ P(x)$ est valide signifie

démontrer que pour toute interprétation I, $val(\forall x \ P(x) \to \exists x \ P(x), I)$ vaut vrai donc en particulier que pour toute interprétation telle que $val(\forall x \ P(x), I)$ vaut vrai, $val(\exists x \ P(x), I)$ vaut vrai, c'est à dire démontrer $\forall x \ P(x) \models \exists x \ P(x)$

Par contre, démontrer $\forall x\ P(x) \models \exists x\ P(x)$ signifie que pour toute interprétation I telle que $val(\forall x\ P(x),I)$ vaut vrai, $val(\exists x\ P(x),I)$ vaut vrai, mais il reste encore à démontrer que pour toute interprétation I telle que $val(\forall x\ P(x),I)$ vaut faux, $val(\forall x\ P(x)\to \exists x\ P(x),I)$ vaut aussi **vrai**.

Mais cette deuxième démonstration est évidente, d'après la définition de $val(A \to B, I)$.

Il nous reste donc à démontrer que $\forall x \ P(x) \models \exists x \ P(x)$, c'est à dire que pour toute interprétation I telle que $val(\forall x \ P(x), I)$ vaut vrai, $val(\exists x \ P(x), I)$ vaut aussi vrai.

Mais si $val(\forall x \ P(x), I)$ vaut vrai, alors pour tout $d \in \mathcal{D}$ $d \in I(P)$

Or par définition $\mathcal{D} \neq \emptyset$. Prenons donc un élément quelconque $d_0 \in \mathcal{D}$, on a $d_0 \in I(P)$. Donc $val(P(x), I, [x \leftarrow d_0])$ vaut vrai donc $val(\exists x \ P(x), I)$ vaut vrai, donc $\forall x \ P(x) \models \exists x \ P(x)$.

Et on a vu que cela prouve que $\forall x \ P(x) \to \exists x \ P(x)$ est valide.