# Point Estimates of Model Parameters

## **Model Parameters**

- The general problem is estimation of a parameter of a probability model.
- A parameter is any number that can be calculated from the probability model.
- For example, for an arbitrary event A, P[A] is a model parameter.



#### **Estimates of Model Parameters**

- Consider an experiment that produces observations of sample values of the random variable X.
- The observations are sample values of the random variables  $X_1, X_2, \ldots$ , all with the same probability model as X.
- $\bullet$  Assume that r is a parameter of the probability model.
- We use the observations  $X_1, X_2, \ldots$  to produce a sequence of estimates of r.
- The estimates  $\hat{R}_1, \hat{R}_2, \ldots$  are all random variables.
- $\hat{R}_1$  is a function of  $X_1$ .
- $\hat{R}_2$  is a function of  $X_1$  and  $X_2$ , and in general  $\hat{R}_n$  is a function of  $X_1, X_2, \dots, X_n$ .

## **Definition 10.3 Consistent Estimator**

The sequence of estimates  $\hat{R}_1, \hat{R}_2, \ldots$  of parameter r is consistent if for any  $\epsilon > 0$ ,

$$\lim_{n\to\infty} P\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$



## **Definition 10.4 Unbiased Estimator**

An estimate,  $\hat{R}$ , of parameter r is unbiased if  $\mathsf{E}[\hat{R}] = r$ ; otherwise,  $\hat{R}$  is biased.

#### **Definition 10.3 Consistent Estimator**

The sequence of estimates  $\hat{R}_1, \hat{R}_2, \ldots$  of parameter r is consistent if for any  $\epsilon > 0$ ,

$$\lim_{n\to\infty} \mathsf{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

"一致估计"

相等?区别?

#### **Definition 10.4 Unbiased Estimator**

An estimate,  $\hat{R}$ , of parameter r is unbiased if  $E[\hat{R}] = r$ ; otherwise,  $\hat{R}$  is biased.

#### **Definition 10.3 Consistent Estimator**

The sequence of estimates  $\hat{R}_1, \hat{R}_2, \ldots$  of parameter r is consistent if for any  $\epsilon > 0$ ,

$$\lim_{n\to\infty} \mathsf{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

"对 估计值与真实值的距离概率分布 的限制"

#### **Definition 10.4 Unbiased Estimator**

An estimate,  $\hat{R}$ , of parameter r is unbiased if  $E[\hat{R}] = r$ ; otherwise,  $\hat{R}$  is biased.

"对 估计值的期望 (概率分布加权和) 的限制"

# **Asymptotically Unbiased**

## **Definition 10.5 Estimator**

The sequence of estimators  $\hat{R}_n$  of parameter r is asymptotically unbiased

if



$$\mathsf{E}[\hat{R}] = r$$

# **Definition 10.6 Mean Square Error**

The mean square error of estimator  $\hat{R}$  of parameter r is

$$e = \mathsf{E}\left[(\hat{R} - r)^2\right].$$

"均方误差"

Note: 不是均方差=标准差

If a sequence of <u>unbiased estimates</u>  $\hat{R}_1, \hat{R}_2, \ldots$  of parameter r has mean square error  $e_n = \text{Var}[\hat{R}_n]$  satisfying  $\lim_{n \to \infty} e_n = 0$ , then the sequence  $\hat{R}_n$  is consistent.

$$\operatorname{E}[\widehat{R}] = r \longrightarrow \lim_{n \to \infty} \operatorname{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

For an arbitrary random variable Y and constant c > 0,

$$P[|Y - \mu_Y| \ge c] \le \frac{\mathsf{Var}[Y]}{c^2}.$$

$$e_n = \mathsf{Var}[\widehat{R}_n]$$

$$\lim_{n\to\infty}e_n=0$$



$$P\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[\widehat{R}_n]}{\epsilon^2}.$$



$$\lim_{n\to\infty}\frac{\operatorname{Var}[\widehat{R}_n]}{\epsilon^2}=0.$$

## **Example 10.5 Problem**

 $Var[N_k] = kr$ 

In any interval of k seconds, the number  $N_k$  of packets passing through an Internet router is a Poisson random variable with expected value  $\operatorname{E}[N_k] = kr$  packets. Let  $\widehat{R}_k = N_k/k$  denote an estimate of the parameter r packets/second. Is each estimate  $\widehat{R}_k$  an unbiased estimate of r? What is the mean square error  $e_k$  of the estimate  $\widehat{R}_k$ ? Is the sequence of estimates  $\widehat{R}_1, \widehat{R}_2, \ldots$  consistent?

$$\mathsf{E}[\hat{R}] = r$$

$$e = \mathsf{E}\left[(\hat{R} - r)^2\right].$$

$$\lim_{n\to\infty} \mathsf{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

## **Example 10.5 Solution**

First, we observe that  $\hat{R}_k$  is an unbiased estimator since

$$\mathsf{E}[\hat{R}_k] = \mathsf{E}\left[N_k/k\right] = \mathsf{E}\left[N_k\right]/k = r. \tag{1}$$

Next, we recall that since  $N_k$  is Poisson,  $Var[N_k] = kr$ . This implies

$$\operatorname{Var}[\widehat{R}_k] = \operatorname{Var}\left[\frac{N_k}{k}\right] = \frac{\operatorname{Var}\left[N_k\right]}{k^2} = \frac{r}{k}.$$
 (2)

Because  $\hat{R}_k$  is unbiased, the mean square error of the estimate is the same as its variance:  $e_k = r/k$ . In addition, since  $\lim_{k \to \infty} \mathrm{Var}[\hat{R}_k] = 0$ , the sequence of estimators  $\hat{R}_k$  is consistent by Theorem 10.8.

The sample mean  $M_n(X)$  is an unbiased estimate of E[X].

$$\mathsf{E}\left[M_n(X)\right] = \mathsf{E}\left[X\right]$$

$$\mathsf{E}[\hat{R}] = r$$

The sample mean estimator  $M_n(X)$  has mean square error

$$e_n = \mathbb{E}\left[ (M_n(X) - \mathbb{E}[X])^2 \right] = \mathsf{Var}[M_n(X)] = \frac{\mathsf{Var}[X]}{n}.$$

#### Standard Error

- In the terminology of statistical inference,  $\sqrt{e_n}$ , the standard deviation of the sample mean, is referred to as the *standard error* of the estimate.
- The standard error gives an indication of how far we should expect the sample mean to deviate from the expected value.
- In particular, when X is a Gaussian random variable (and  $M_n(X)$  is also Gaussian),

$$P\left[E[X] - \sqrt{e_n} \le M_n(X) \le E[X] + \sqrt{e_n}\right] = 2\Phi(1) - 1 \approx 0.68.$$
 (1)

In words, Equation (10.24) says there is roughly a two-thirds probability that the sample mean is within one standard error of the expected value.

• This same conclusion is approximately true when n is large and the central limit theorem says that  $M_n(X)$  is approximately Gaussian.

## Example 10.6 Problem

How many independent trials n are needed to guarantee that  $\hat{P}_n(A)$ , the relative frequency estimate of P[A], has standard error  $\leq 0.1$ ?

$$Var[X_A] = P[A](1 - P[A])$$

The sample mean estimator  $M_n(X)$  has mean square error

$$e_n = \mathsf{E}\left[(M_n(X) - \mathsf{E}[X])^2\right] = \mathsf{Var}[M_n(X)] = \frac{\mathsf{Var}[X]}{n}.$$

$$p(1-p) \le 0.25$$
 for all  $0 \le p \le 1$ 

In the terminology of statistical inference,  $\sqrt{e_n}$ , the standard deviation of the sample mean, is referred to as the *standard error* of the estimate.

## **Example 10.6 Solution**

Since the indicator  $X_A$  has variance  $Var[X_A] = P[A](1 - P[A])$ , Theorem 10.10 implies that the mean square error of  $M_n(X_A)$  is

$$e_n = \frac{\text{Var}[X]}{n} = \frac{P[A](1 - P[A])}{n}.$$
 (1)

We need to choose n large enough to guarantee  $\sqrt{e_n} \le 0.1$  ( $e_n \le 0.01$ ) even though we don't know P[A]. We use the fact that  $p(1-p) \le 0.25$  for all  $0 \le p \le 1$ . Thus,  $e_n \le 0.25/n$ . To guarantee  $e_n \le 0.01$ , we choose n = 0.25/0.01 = 25 trials.

If X has finite variance, then the sample mean  $M_n(X)$  is a sequence of consistent estimates of E[X].

The sample mean estimator  $M_n(X)$  has mean square error

$$e_n = \mathsf{E}\left[(M_n(X) - \mathsf{E}[X])^2\right] = \mathsf{Var}[M_n(X)] = \frac{\mathsf{Var}[X]}{n}.$$

For an arbitrary random variable Y and constant c > 0,

$$P[|Y - \mu_Y| \ge c] \le \frac{\mathsf{Var}[Y]}{c^2}.$$

$$P\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[\widehat{R}_n]}{\epsilon^2}.$$

$$\lim_{n\to\infty} \mathsf{P}\left[\left|\widehat{R}_n - r\right| \ge \epsilon\right] = 0.$$

## **Estimating the Variance**

- When E[X] is a known quantity  $\mu_X$ , we know  $Var[X] = E[(X \mu_X)^2]$ .
- In this case, we can use the sample mean of  $W = (X \mu_X)^2$  to estimate Var[X].,

$$M_n(W) = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_X)^2.$$
 (1)

If Var[W] exists,  $M_n(W)$  is a consistent, unbiased estimate of Var[X].

- When the expected value  $\mu_X$  is unknown, the situation is more complicated because the variance of X depends on  $\mu_X$ .
- We cannot use Equation (10.28) if  $\mu_X$  is unknown.
- In this case, we replace the expected value  $\mu_X$  by the sample mean  $M_n(X)$ .

## **Definition 10.7 Sample Variance**

The sample variance of n independent observations of random variable X is

$$V_n(X) = \frac{1}{n} \sum_{i=1}^n (X_i - M_n(X))^2$$
.

$$E[V_n(X)] = \frac{n-1}{n} Var[X].$$

#### Intuitive Explanation:

The <u>observed values</u> fall, on average, <u>closer</u> to the <u>sample mean</u> than to the <u>population mean</u>, the variance which is calculated using variances from the <u>sample mean underestimates</u> the desired variance of the population.

Hence, using n-1 instead of n as the divisor corrects for that by making the result a little bit bigger.

$$\mathsf{E}\left[V_n(X)\right] = \frac{n-1}{n} \mathsf{Var}[X]. \qquad \mathsf{E}\left[M_n(X)\right] = \mathsf{E}\left[X\right]$$

$$V_n(X) = \frac{1}{n} \sum_{i=1}^n (X_i - M_n(X))^2.$$



$$\mathsf{E}[X_i^2] = \mathsf{E}[X^2]$$

$$\mathsf{E}[X_i X_j] = \mathsf{Cov}[X_i, X_j] + \mathsf{E}[X_i] \, \mathsf{E}[X_j]$$



$$E[V_n] = E[X^2] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \left( \text{Cov}[X_i, X_j] + \mu_X^2 \right)$$
$$= \text{Var}[X] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \text{Cov}[X_i, X_j].$$

#### Proof: Theorem 10.12

Substituting Definition 10.1 of the sample mean  $M_n(X)$  into Definition 10.7 of sample variance and expanding the sums, we derive

$$V_n = \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n X_i X_j.$$
 (1)

Because the  $X_i$  are iid,  $\mathsf{E}[X_i^2] = \mathsf{E}[X^2]$  for all i, and  $\mathsf{E}[X_i] \mathsf{E}[X_j] = \mu_X^2$ . By Theorem 5.16(a),  $\mathsf{E}[X_iX_j] = \mathsf{Cov}[X_i,X_j] + \mathsf{E}[X_i] \mathsf{E}[X_j]$ . Thus,  $\mathsf{E}[X_iX_j] = \mathsf{Cov}[X_i,X_j] + \mu_X^2$ . Combining these facts, the expected value of  $V_n$  in Equation (10.29) is

$$E[V_n] = E[X^2] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \left( \text{Cov}[X_i, X_j] + \mu_X^2 \right)$$

$$= \text{Var}[X] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \text{Cov}[X_i, X_j].$$
(2)

Since the double sum has  $n^2$  terms,  $\sum_{i=1}^n \sum_{j=1}^n \mu_X^2 = n^2 \mu_X^2$ . Of the  $n^2$  covariance terms, there are n terms of the form  $\text{Cov}[X_i, X_i] = \text{Var}[X]$ , while the remaining covariance terms are all 0 because  $X_i$  and  $X_j$  are independent for  $i \neq j$ . This implies

$$E[V_n] = Var[X] - \frac{1}{n^2} (n Var[X]) = \frac{n-1}{n} Var[X].$$
 (3)

The estimate

$$V'_n(X) = \frac{1}{n-1} \sum_{i=1}^n (X_i - M_n(X))^2$$

is an unbiased estimate of Var[X].

## Proof: Theorem 10.13

Using Definition 10.7, we have

$$V_n'(X) = \frac{n}{n-1} V_n(X), \tag{1}$$

and

$$\mathsf{E}\left[V_n'(X)\right] = \frac{n}{n-1}\,\mathsf{E}\left[V_n(X)\right] = \mathsf{Var}[X]. \tag{2}$$

## **Quiz 10.4**

X is the continuous uniform (-1,1) random variable. Find the mean square error,  $E[(Var[X] - V_{100}(X))^2]$ , of the sample variance estimate of Var[X], based on 100 independent observations of X.

#### **Theorem 10.12**

$$E[V_n(X)] = \frac{n-1}{n} Var[X].$$

## Quiz 10.4 Solution

Define the random variable  $W = (X - \mu_X)^2$ . Observe that  $V_{100}(X) = M_{100}(W)$ . By Theorem 10.10, the mean square error is

$$\mathsf{E}\left[(M_{100}(W) - \mu_W)^2\right] = \frac{\mathsf{Var}[W]}{100}.\tag{1}$$

Observe that  $\mu_X = 0$  so that  $W = X^2$ . Thus,

$$\mu_W = \mathsf{E}\left[X^2\right] = \int_{-1}^1 x^2 f_X(x) \ dx = 1/3,$$
 (2)

$$\mathsf{E}\left[W^{2}\right] = \mathsf{E}\left[X^{4}\right] = \int_{-1}^{1} x^{4} f_{X}(x) \ dx = 1/5. \tag{3}$$

Therefore  $Var[W] = E[W^2] - \mu_W^2 = 1/5 - (1/3)^2 = 4/45$  and the mean square error is 4/4500 = 0.0009.