Лабораторная работа 2.1.6 Эффект Джоуля-Томсона Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Определить изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры.
- 2) Вычислить по результатам опытов коэффициенты а и b модели Вандер-Ваальса.

2 Оборудование:

Трубка с пористой перегородкой

Труба Дьюара

Термостат жидкостной

Дифференциальная термопара

Вольтметр

Балластный баллон

Манометр

3 Теоретическая справка

Эффектом Джоуля-Томсона называется изменение температуры газа, медленно просачивающегося из области высокого в область низкого давления.

Для газа можно записать уравнение Бернулли

$$H_1 - H_2 = \frac{\mu}{2} \left(v_1^2 - v_2^2 \right)$$

Пренебрегая кинетической энергией газа, получим

$$H_1 \approx H_2$$

Тогда имеет смысл обозначить коэффициент Джоуля-Томсона

$$\mu = \frac{\Delta T}{\Delta P}$$

Для газа Ван-дер-Ваальса можно записать приближенное выражение энтальпии

$$H\approx C_pT+P\left(b-\frac{2a}{RT}\right)$$

Приравнивая её к нулю и рассматривая в рамках приращений, получим

$$\mu = -\frac{b - \frac{2a}{RT}}{C_p}$$

Также обозначим температуру инверсии эффекта

$$T_{\text{инв}} = \frac{2a}{Rb}$$

4 Установка

Схема установки, используемой в работе приведена на рисунке

Для замеров используется термометр на термостате, маниметр и термопара, подключенная к вольтметру.

5 Измерения

1-5) Запустим термостат и выставим на нем температуру, близкую к комнатной Проверим, что вольтметр работает. Запишу его начальное показание

$$U(0) = -0.007 \text{ MB}$$

- 6) Откроем кран, выставим давление в 4 бара.
- 7) Подождем 10 минут и запишем значение напряжения в таблицу
- 8-9) Проведем оставшиеся изменения и занесем значения в таблицу

$$T=22.08^{\circ}C$$

ΔP , бар	<i>V</i> , мВ	ΔT , C
4.0	0.0895	(2.39 ± 0.07)
3.5	0.0715	(1.94 ± 0.06)
3.0	0.0565	(1.57 ± 0.06)
2.5	0.0420	(1.21 ± 0.06)

$$T = 30^{\circ}C$$

ΔP , бар	<i>V</i> , мВ	ΔT , C
4.0	0.0950	(2.48 ± 0.07)
3.5	0.0780	(2.07 ± 0.06)
3.0	0.0620	(1.68 ± 0.06)
2.5	0.0475	(1.33 ± 0.06)

$$T = 40^{\circ}C$$

ΔP , бар	<i>V</i> , мВ	ΔT , C
4.0	0.0920	(2.36 ± 0.07)
3.5	0.0775	(2.01 ± 0.06)
3.0	0.0630	(1.67 ± 0.06)
2.5	0.0510	(1.38 ± 0.06)

 $T = 50^{\circ}C$

ΔP , бар	<i>V</i> , мВ	ΔT , C
4.0	0.0900	(2.27 ± 0.06)
3.5	0.0765	(1.95 ± 0.06)
3.0	0.0635	(1.65 ± 0.06)
2.5	0.0520	(1.38 ± 0.06)

$$T = 60^{\circ}C$$

ΔP , бар	V, м B	ΔT , C
4.0	0.0855	(2.12 ± 0.06)
3.5	0.0745	(1.87 ± 0.06)
3.0	0.0635	(1.62 ± 0.06)
2.5	0.0535	(1.39 ± 0.06)

Систематическую погрешность манометра приму за 0.1 бар.

Пересчет V в ΔT произведем с помощью линеарицации соответствующего графика для термопары

T, C	<i>E</i> , мкВ/С
22	40.44
30	41.10
40	41.95
50	42.80
60	43.65

Погрешность составляет 0.3 мкВ/°С

Зависимость чувствительности(мкВ/С) от температуры(С)

6 Обработка

10) Построим на одном графике зависимости ΔT от ΔP

Полученные коэффициенты Джоуля-Томсона занесем в таблицу

μ , $\frac{K}{6ap}$	T, K
(0.782 ± 0.030)	22
(0.768 ± 0.019)	30
(0.656 ± 0.020)	40
(0.594 ± 0.016)	50
(0.488 ± 0.007)	60

11) Построим итоговый график

Формулы используемого МНК

$$a = \frac{\langle x_i y_i \rangle - \langle x \rangle \langle y_i \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

$$b = <\nu_i> -a < N_i>$$

Погрешности величин

$$S_a^2 = \frac{\langle x_i^2 \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2} \cdot \frac{\langle b_i - b \rangle^2}{n - 2}$$

В итоге уравнение прямой

$$\mu = (-1.87 \pm 0.26) + \frac{(789 \pm 83)}{T} = p + \frac{q}{T}$$

Принимая значение теплоемкости углекислого газа $C_p = 37.1 \frac{Дж}{моль \cdot K}$, получим коэффициенты

$$a = \frac{qC_pR}{2} = (1.20 \pm 0.13) \frac{\text{H} \cdot \text{M}^4}{\text{моль}^2}$$

$$b = -pC_p = (680 \pm 90) \frac{\text{cm}^3}{\text{MOJIB}}$$

Теоритечские же значения

$$a = \frac{qC_pR}{2} = 0.36 \frac{H \cdot M^4}{MOЛЬ^2}$$

$$b = -pC_p = 43 \frac{\text{см}^3}{\text{моль}}$$

Рассчитаем температуру инверсии

$$T_{\text{ИНВ}} = \frac{2a}{Rh} = (430 \pm 120) \text{ K}$$

Табличное

$$T_{\text{ИНВ}} = 2000 \text{ K}$$

7 Вывод

Полученные экспериментальные данные в разы отличаются от табличных данных. Это говорит ни о чем ином, как о расхождении эксперимента с теорией. То есть полученные коэффициенты могут разумно описывать поведение газа при дросселировании, но при этом давать совершенно некорректные показания в других экспериментах. Улучшить соответствие можно использованием более точной теоретической модели, либо в какой-то степени совершенствованием экспериментальной установки.