3D Data Processing Camera model

Hyoseok Hwang

Review

Homography

2D to 2D Transform

Today

Camera model

A camera is a mapping between

the 3D world

and

a 2D image

Primary concept of this class

 Where will a particular point in the world coordinate system be located in the image?

Projection matrix

Projection Matrix

$$x = PX$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous image 3 x 1 Camera matrix 3 x 4 homogeneous world point 4 x 1

Review – pinhole camera model

• Most cameras use lenses, but we can simplify this to a pinhole model.

Review – pinhole camera model

- We can derive properties and descriptions that hold for both camera models if:
- We use only central rays.
- We assume the lens camera is in focus.

Concept of camera parameter

- Suppose that there is an image plane(e.g. an image sensor) that projects light through a pin hole. (depicted in 1D for convenience.)
- What are the factors that make the image projected on the sensor different?

Focal length

 How does the distance between the sensor and the pinhole affect the image?

소프트웨어융합학과

Focal length

And Andrew of An

- Close distance
 - Wide field of view
 - Objects become smaller in size. (zoom-out)
- Far distance
 - Narrow field of view
 - Objects become larger in size (zoom-in)
- Focal length (f)
 - The distance from image plane and pinhole

Principal axis / points

• How does the alignment between the sensor and the pinhole affect the image?

Principal axis / points

- Principal axis: line from the camera center perpendicular to the image plane
- Principal point (p): point where principal axis intersects the image plane (origin of normalized coordinate system)

• Now, what is the **camera center**?

• The image plane on the other side of the pinhole can be moved point-symmetrically around the pinhole.

• The image plane on the other side of the pinhole can be moved point-symmetrically around the pinhole.

- Camera coordinate (3D)
 - Origin: pinhole
 - Axis:
 - x, y axes are same with those of the image plane
 - z axis: principal axis

- We put the scene and the image plane on the same side.
- The object on image plane is not flip upside down.

Camera coordinate (3D)

- When A in the world coordinate is projected to a on the image plane
- How can we know the position of "a" on the image plane?

• The location of A in camera coordinate is (-100, -100, 4000)

- The location of A in camera coordinate is (-100, -200, 4000)
- The location of a in the camera coordinate is (x, y, 100)

 $x = \frac{fX}{Z} = -2.5$ $y = \frac{fY}{Z} = -5.0$

- The a(x,y) is not a location of image coordinate but a location of camera coordinate
- This means a(x,y) is somewhere on the image plane
- How to convert camera coordinate to image coordinate?

image plane unit: mm

unit: pixel

소프트웨어융합학과

Andrew or the state of the stat

- Step 1: unit conversion
 - Convert mm to pixel
 - $\bullet (x,y) = (fX/Z, fY/Z)$
 - $u' = s_x x$, $v' = s_y y$

 s_x :pixel per mm in x direction s_y :pixel per mm in y direction

image plane unit: mm

Image unit: pixel

- Step 2: translation
 - Add $p(p_x, p_y)$ to converted a'
 - Then, $u = u' + c_x$, $v = v' + c_y$

unit: pixel

Origin of pixel coordinate or image coordinate

Image unit: pixel

Intrinsic parameter

Represented by 3x3 Matrix

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & \beta & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = \begin{bmatrix} s_x f & \beta & c_x \\ 0 & s_y f & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = \begin{bmatrix} f_x & \beta & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

Position on the image coordinate is (u, v)Because, (u, v) = (u, v, 1) = (uk, vk, k)

Intrinsic parameter

Represented by 3x3 Matrix

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

- Therefore, four parameters are important
 - f_x : focal length (including pixel size) in x axis
 - f_y : focal length (including pixel size) in x axis
 - c_x : x value of principal point on the image coordinate
 - c_v : y value of principal point on the image coordinate

Homogeneous coordinates

- Represent a 2D point (x,y) by a 3D point (x',y',z') by adding a "fictitious" third coordinate
- By convention, we specify that given (x',y',z') we can recover the 2D point (x,y) as

$$x = \frac{x'}{z'} \quad y = \frac{y'}{z'}$$

• Note: (x,y) = (x,y,1) = (2x, 2y, 2) = (kx, ky, k) for any nonzero k (can be negative as well as positive)

Projection

• A point in 3D coordinate A(X, Y, Z, 1) is projected to a(u, v) on the image according to the following:

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = \begin{bmatrix} s_x f & \beta & c_x \\ 0 & s_y f & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = P \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Intrinsic parameter

Represented by 3x3 Matrix

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

- What $[X_c, Y_c, Z_c]^T$ means?
- What if we don't know the location for the camera coordinates?
 - → convert to camera coordinates

Projection matrix decomposition

The projection matrix

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = \begin{bmatrix} s_x f & \beta & c_x \\ 0 & s_y f & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

is represented as

$$\begin{bmatrix} uk \\ vk \\ k \end{bmatrix} = K[R \mid t] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

, where **K** is camera intrinsic parameter and **R**, t are extrinsic parameters which represent rotation and translation between the camera coordinate and the world coordinate (or the object coordinate).

- World coordinate?
 - Up to convert the location to image coordinate, we have to set all coordinate values based on the camera coordinates.
 - In some cases, we can only know the position of a point on an object relative to the object(world) coordinate system.

A_w(0, 100, 100) in object coordinate A_c(?, ?, ?) in the camera coordinate? camera coordinate x_c world coordinate

- World coordinate to camera coordinate
 - A point in the world coordinate is converted to the point int the camera coordinate by multiplying R, t
 - R: rotation matrix
 - t: translation matrix

Example

- When the origin of W.C. is (100, 20, 40) in the camera coordinate.
- The W.C. is rotate 30deg in x axis
- The position of $X_w(20, 30, 40)$
- How can be this point located in the camera coordinate?

- Example
 - When the origin of W.C. is (100, 20, 40) in the camera coordinate.
 - The W.C. is rotate 30deg in x axis
 - The position of $X_w(20, 30, 40)$
 - Where will be this point located in the camera coordinate?

- Solution
 - 1. Rotate W.C. to align with C.C (rotate 30 deg in x axis)

$$R = \begin{bmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{bmatrix}$$

- Solution
 - 1. Rotate W.C. to align with C.C (rotate 30 deg in x axis)

$$R = \begin{bmatrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \end{bmatrix}$$

- Solution
 - 2. Translate The coordinate
 - $\bullet \ \ X_c = (O_w + X_w)$

- Solution
 - Briefly,

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = R \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} + t$$

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = R \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} + t \qquad \qquad \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = [R \mid t] \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

$$X_c(x_c, y_c, z_c) = (120, 25.9808, 89.6410)$$

• Simple code

```
import numpy as np
import cv2
R_{vec} = np.array([30 * np.pi / 180.0, 0, 0])
t_{vec} = np.array([[100],[20],[40]])
Xw = np.array([[20],[30],[40]])
R_mat = np.zeros((3,3))
cv2.Rodrigues(R_vec, R_mat)
print(np.dot(R_mat, Xw) + t_vec)
```


- When we already know the 3D position in the camera coordinate,
 - We set rotation matrix to identity matrix
 - We set translation vector to null vector

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix}$$

- Radial distortion
 - We assume that the basic camera model follows pinhole model.
 - Unfortunately, cameras do use lens

distorted image

Undistorted image

- Zero at the optical center(principal point)
- Increase as moving toward the periphery
 - Coefficient estimation (k1, k2, k3)

$$x_u = x + \underbrace{(x - x_c) \cdot \left(k_1 \cdot r^2 + k_2 \cdot r^4 + \cdots
ight)}_{ ext{radial terms}}$$
 $y_u = y + \underbrace{(y - y_c) \cdot \left(k_1 \cdot r^2 + k_2 \cdot r^4 + \cdots
ight)}_{ ext{radial terms}}$

= (-0.289, 0.08213, -0.01014) +/- [0.002255, 0.001728, 0.0003671]

+/- [0.0002153, 0.0001831]

= (181.995, 164.699)

= (175.5, 119.5)

Tangential coefficients = (-0.0002611, -0.0002235)

Focal Length

Principal Point

Radial coefficients

Zero at the optical center(principal point)

A Carlos of the Carlos of the

- Tangential distortion
 - Tangential distortion occurs when the lens and image plane are not parallel.

Calibration

- Camera calibration is to estimate both
 - Camera intrinsic parameter
 - Extrinsic parameter (pose estimation)
- Why the calibration is necessary?
 - If we know the origin direction of ray,
 - We can back projection → 3D reconstruction

Thank you