Fall 2022: Numerical Analysis Assignment 6 (due Dec 15, 2022 at 11:59pm ET)

2 extra credit points will again be given for generally cleanly written and reasonably well-organized homework. This includes cleanly plotted and labeled figures (see also rules on the first assignment).

1. **[Hermite interpolation, 3pts]** Let $x_0 = 0, x_1 = 1, x_2 = 2$. Recall that the Hermite interpolant of a function f at the points x_0, x_1, x_2 has the form

$$p(x) = \sum_{j=0}^{2} H_j(x)f(x_j) + \sum_{j=0}^{2} K_j(x)f'(x_j).$$

(a) Show that the polynomial $H_1(x)$ in this representation is given by

$$x^4 - 4x^3 + 4x^2$$
.

(b) Verify that the polynomial $K_1(x)$ in this representation is

$$x^5 - 5x^4 + 8x^3 - 4x^2$$
.

(c) Sketch $H_2(x)$ and $K_2(x)$ in the same graph without computing their exact form explicitly.

2. [Interpolating polynomials, 1+1+2pts]

- (a) Write down the interpolating polynomial in Lagrange form of degree 1 for the function $f(x) = x^3$ using the points $x_0 = 0$ and $x_1 = a$.
- (b) Theorem 6.2 in the text states that for $x \in [0, a]$, there exists a $\xi = \xi(x) \in (0, a)$ such that

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n} (x - x_j).$$

Here, n is the degree of the interpolating polynomial p_n . Verify the above formula, by direct calculation, for the function and interpolating polynomial from part (a). Show that in this case, ξ is unique and has the value $\xi = \frac{1}{3}(x+a)$.

(c) Repeat parts (a) and (b) for the function $f(x) = (2x - a)^4$. This time, show that there are two possible values for ξ , and give their values.

3. Simpson's rule and interpolation [3pts]

(a) Recall the error estimate for the Simpson's rule given by

$$|E_2(f)| \le \frac{(b-a)^5}{2880} M_4,$$

where $M_4 = \max_{x \in [a,b]} |f^{(iv)}(x)|$. Here, $f^{(iv)}$ denotes the 4-th derivative of f. Use this estimate to explain which functions f are integrated exactly by the Simpson's rule.

(b) Let $f(x) = \frac{1}{4}x^4 + \sin(x)$. According to the error estimate, what is the maximal error you will make when integrating f over $[0, \pi]$? You do not need to calculate the approximate integral.

- (c) Consider the interpolation nodes $x_0=0, x_1=1, x_2=2$. Sketch the Lagrange interpolation polynomial $L_0(x)$, and the Hermite interpolation polynomials $H_1(x)$ and $K_2(x)$. Note that you do not need to compute these polynomials, just sketch them based on the conditions they satisfy at their node points.
- 4. [Composite integration, 2+2+2pt] Write a code¹ to approximate integrals of the form

$$I(f) = \int_{a}^{b} f(t) dt$$

using the trapezoidal rule or Simpson's rule on the sub-intervals $[x_{i-1}, x_i]$, i = 1, ..., m, where $x_i = a + ih$, i = 0, ..., m with h = (b - a)/m.²

(a) Hand in listings of your codes, and use them to approximate the integral

$$\int_{0.1}^{1} \sqrt{x} \, dx.$$

Compare the numerical errors $\mathcal E$ for different m (e.g., $m=10,20,40,80,\ldots$) and plot the quadrature errors versus m in a double-logarithmic plot. The exact value of the integral is $\frac{2}{3}-\frac{1}{15\sqrt{10}}$.

(b) To numerically study how the errors \mathcal{E} decrease with m, we assume that the errors behaves like Cm^{κ} , with to-be-determined $C, \kappa \in \mathbb{R}$. Applying the logarithm to $\mathcal{E} = Cm^{\kappa}$ results in

$$\log(\mathcal{E}) = D + \kappa \log(m),\tag{1}$$

where $D = \log(C)$. Use the values for m and $\log(\mathcal{E})$ you computed in (a) to find the best-fitting values for D and κ in (1) by solving a least squares problem. Compare your findings for κ with the theoretical estimates for the composite trapezoidal rule.³

- (c) Repeat steps (a) and (b) using a=0 instead of a=0.1 as lower integration bound. Can the theoretical estimates still be applied and why/why not?
- 5. **[An alternative composite Integration rule, 1+1+2pts]** Consider the composite *midpoint rule* for approximating an integral

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{n} f\left(\frac{x_{i} + x_{i-1}}{2}\right)$$

with h = (b - a)/n and $x_i = a + ih$, i = 0, 1, ..., n.

- (a) Draw a graph that shows geometrically what area is being computed by this formula.
- (b) Show that this formula is exact if f is either constant or linear in each subinterval.

¹Ideally, you write a function trapez(f,a,b,m), where f is a function handle (see http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html if you are not familiar with that concept) or f is the vector $(f(x_0), \ldots, f(x_m))$.

²For composite rules, see Definitions 7.1 and 7.2 in the book.

³Compare with (7.16) in the book. You can ignore the constants, just compare κ , the exponent of m, with the theoretical results.

- (c) Assuming that $f \in C^2([a,b])$, show that the midpoint rule is second-order accurate. That is, the error is less than or equal to a constant times h^2 . To do this, you will first need to show that the error in each subinterval is order h^3 . To see this, expand f in a Taylor series about the midpoint $x_{i+1/2} = \frac{1}{2}(x_i + x_{i-1})$ of the subinterval (with exact remainder). By integating each term, show that the difference between the true value $\int_{x_{i-1}}^{x_i} f(x) dx$ and the approximation $hf(x_{i+1/2})$ is of order h^3 . Finally, combine the results from all subintervals to show that the total error is of order h^2 .
- 6. [Newton-Cotes vs. Gauss Quadrature, 2+2+2+1pt] We discussed two methods to integrate functions numerically, namely the Newton-Cotes formulas and Gauss quadrature.
 - (a) Recall that we calculated the first three orthogonal polynimals with respect to $w \equiv 1$ on (0,1) in class to be $\{p_0,p_1,p_2\}=\{1,x-1/2,x^2-x+1/6\}$. Calculate $p_3(x)$ using the ansatz $p_3(x)=x^3-a_2p_2(x)-a_1p_1(x)-a_0p_0(x)$, with appropriately computed $a_2,a_1,a_0\in\mathbb{R}$.
 - (b) Derive the Gaussian Quadrature formula for n=2, i.e., calculate both the quadrature points x_0,x_1,x_2 (these are the roots of p_3 and the corresponding weights W_0,W_1,W_2 .⁴
 - (c) Now we want to compare Gaussian quadrature derived in (b) with the Simpson's Rule. Use both methods to numerically find

$$I_k = \int_0^1 x^k + x \, dx, \quad \text{for} \quad k = 1, \dots, 7.$$

Plot the errors arising in each method as a function of k. Note that to find the error, you will need to calculate the exact values for I_k (by hand).

- (d) Explain your findings using the results on the exact integration for polynomials up to certain degrees discussed in class.
- 7. [Orthogonal polynomials on $[0,\infty)$, 2+2+2pt extra credit]
 - (a) Find orthogonal polynomials l_0, l_1, l_2, l_3 for the unbounded interval $[0, \infty)$ with the weight function $\omega(x) = \exp(-x)$. Plot these polynomials (they are called *Laguerre polynomials*).
 - (b) As these are orthogonal polynomials, they correspond to a quadrature rule for weighted integrals on $[0,\infty)$. The resulting quadrature points and weight are given in Table 1. Verify that for n=2, n=3, the quadrature nodes x_i are the roots of the polynomials $l_2(x), l_3(x)$ (up to round-off).
 - (c) Use the quadrature rules from Table 1 to approximate the integrals

$$\int_0^\infty \exp(-x) \exp(-x) \, dx \quad \text{ and } \quad \int_0^\infty \exp(-x^2) \, dx.$$

Note that, to take into account the weight $\omega(x)=\exp(-x)$, for the first integral $f(x)=\exp(-x)$ and for the second $f(x)=\exp(-x^2+x)$. Report the errors for n=2,3,4 using that the exact values for the integrals are 1/2 and $\sqrt{\pi}/2$.

⁴See equation (10.7) in the book.

⁵Feel free to look up the values for the indefinite integrals $\int_0^\infty \exp(-t)t^k \, dx$ (k=0,1,2,3)—I use Wolfram Alpha for looking up things like that: http://www.wolframalpha.com/.

Table 1: Gauss quadrature points and weights for quadrature on $[0,\infty)$.

x_i	W_{i}
0.585786	0.853553
3.41421	0.146447
0.415775	0.711093
2.29428	0.278518
6.28995	0.0103893
0.322548	0.603154
1.74576	0.357419
4.53662	0.0388879
9.39507	0.000539295
	0.585786 3.41421 0.415775 2.29428 6.28995 0.322548 1.74576 4.53662