第3回 演習問題 解答

演習問題 ▶ 問題1 ブースのアルゴリズムを用いて、 $(6)_{10} \times (-5)_{10}$ を計算する。ただし、被乗数および乗数は、2の補数表現された4ビットの2進数である。各処理を行った後の、各レジスタの値を表中に示せ。 処理サイクル 処理ステップ 被乗数レジスタ 乗数レジスタ 追加ビット 積レジスタ 初期化. 2 4

演習問題

▶ 問題1 解答

3

4

ブースのアルゴリズムを用いて、(6)10×(-5)10を計算する. ただし、被乗数および乗数は、2の補数表現された4ビットの2進数である. 各処理を 行った後の、各レジスタの値を表中に示せ.

Computer Architecture II

00001010

00001010 00001010

00001010

11100010

処理サイクル	処理ステップ	被乗数レジスタ	乗数レジスタ	追加ビット	積レジスタ
初期化	1	00000110			
	2	00000110	1011	0	
	3	00000110	1011	0	00000000
1	4	00000110	1011	0	11111010
	5	00001100	1011	0	11111010
	6	00001100	0101	1	11111010
2	4	00001100	0101	1	11111010
	5	00011000	0101	1	11111010
	6	00011000	0010	1	11111010
3	4	00011000	0010	1	00010010
	5	00110000	0010	1	00010010
	6	00110000	0001	0	00010010
4	4	00110000	0001	0	11100010
	5	01100000	0001	0	11100010
	6	01100000	0000	1	11100010

Computer Architecture II 演習問題 ▶ 問題2 ブースのアルゴリズムを用いて、 $(-5)_{10} \times (6)_{10}$ を計算する. ただし、被乗数および乗数は、2の補数表現された4ビットの2進数である. 各処理を 行った後の、各レジスタの値を表中に示せ、 処理サイクル 処理ステップ 被乗数レジスタ 乗数レジスタ 追加ビット 積レジスタ 3

4

Computer Architecture II 演習問題 ▶ 問題2 解答 ブースのアルゴリズムを用いて、(-5)₁₀×(6)₁₀を計算する. ただし、被乗数および乗数は、2の補数表現された4ビットの2進数である. 各処理を行った後の、各レジスタの値を表中に示せ. | 処理サイクル | 処理ステップ | 被乗数レジスタ | 乗数レジスタ | 追加ビット | 積レジスタ 11111011 0110 0110 0110 00000000 11110110 00000000 11110110 001 2 0011 11101100

11101100

11011000

11011000

10110000

0001

0001

0000

