## A PHYSICS ALPHABET ABBREVIATIONS AND UNITS USED IN THIS BOOK<sup>1</sup>

| Quantity (with symbol)   |         | Unit             | Quantity (with symbol) | Quantity (with symbol) |                |
|--------------------------|---------|------------------|------------------------|------------------------|----------------|
| Area (e.g. surface area) | Α       | m <sup>2</sup>   | Normal reaction force  | N                      | N              |
| Acceleration             | а       | m/s <sup>2</sup> | Pressure               | P                      | $Pa = N/m^2$   |
| Specific heat capacity   | С       | J/(kg °C)        | Power                  | P                      | W              |
| Energy or Work           | Е       | J                | Momentum               | р                      | kg m/s         |
| Extension                | e       | m                | Charge                 | Q                      | С              |
| Frequency                | f       | Hz               | Resistance             | R                      | Ω              |
| Force                    | F       | N                | Displacement           | S                      | m              |
| Friction force           | $F_{F}$ | N                | Temperature            | T                      | °C             |
| Gravitational field      | 8       | N/kg             | Time period            | T                      | S              |
| Height                   | h       | m                | Time                   | t                      | S              |
| Current                  | I       | Α                | Voltage                | V                      | V              |
| Spring constant          | k       | N/m              | Volume                 | V                      | m <sup>3</sup> |
| Moment                   | M       | Nm               | Speed or velocity      | v                      | m/s            |
| Mass                     | m       | kg               | Weight                 | W                      | N              |

| Quantity (with symbo  | Unit    |                   |
|-----------------------|---------|-------------------|
| Wavelength            | m       |                   |
| Friction co-efficient | no unit |                   |
| Density $\rho$ (rho)  |         | kg/m <sup>3</sup> |

 $\Delta$  (delta) means . So  $\Delta h$  means .

|                 | 1  km = 1000  m  |                                       |                                    |
|-----------------|------------------|---------------------------------------|------------------------------------|
| 1  cm = 0.01  m | 1  mm = 0.001  m | $1  \mu \text{m} = 10^{-6}  \text{m}$ | $1 \text{ nm} = 10^{-9} \text{ m}$ |

Units with powers. Note for example:

 $1 \text{ cm}^2 \text{ means } 1 \text{ cm} \times 1 \text{ cm} = 0.01 \text{ m} \times 0.01 \text{ m} = 10^{-4} \text{ m}^2$ 

<sup>&</sup>lt;sup>1</sup> A list of formulae and data is given on the inside back cover.

#### FORMULAE AND DATA<sup>2</sup>

The meaning of all symbols in the formulae, and the units used, are given on the inside of the cover. If you need to revise a formula, turn to the page listed alongside it in this table.

| Velocity and Displacement |    | Energy or Work Done                    |      |  |
|---------------------------|----|----------------------------------------|------|--|
| $\Delta s = v  \Delta t$  | 11 | $\Delta E = F \Delta s$                | P 35 |  |
| Acceleration and Veloci   | ty | Gravitational Potential End            | ergy |  |
| $\Delta v = a  \Delta t$  | 14 | $\Delta E = W \Delta h = mg  \Delta h$ | P 37 |  |
| Weight                    |    | Energy and Power                       |      |  |
| W = mg                    | 17 | $\Delta E = P  \Delta t$               | P 38 |  |
| Force and Acceleration    |    | Energy and Temperature change          |      |  |
| F = ma                    | 19 | $\Delta E = mc\Delta T$                | P 42 |  |
| Momentum                  |    |                                        |      |  |
| p = mv                    | 20 |                                        |      |  |
| Momentum and Force        |    | Moment                                 |      |  |
| $\Delta p = F \Delta t$   | 21 | M = Fs                                 | P 41 |  |

| Energy and Voltage      |      | Density           |      |
|-------------------------|------|-------------------|------|
| E = QV                  | P 23 | $\rho = m/V$      | P 43 |
| Charge and Current      |      | Friction          |      |
| $\Delta Q = I \Delta t$ | P 26 | $F_{F} = \mu N$   | P 45 |
| Resistance              |      | Springs and Force |      |
| V = IR                  | P 30 | F = ke            | P 47 |
| Electrical Power        |      | Pressure          |      |
| P = IV                  | P 32 | P = F/A           | P 49 |

| Frequency |      | Wave Equation  |      |
|-----------|------|----------------|------|
| f = 1/T   | P 50 | $v = f\lambda$ | P 51 |

In the questions on these worksheets, unless otherwise given, take  $% \left\{ 1,2,\ldots,n\right\} =\left\{ 1,2,\ldots,n\right\}$ 

- Gravitational field strength on Earth (g) as 10 N/kg
- Acceleration of a dropped object without air resistance (g) as 10 m/s<sup>2</sup>

Other data will be given on each worksheet when you need it.

 $<sup>^2\</sup>mbox{\ensuremath{A}}$  list of quantities, symbols and data is given on the inside front cover.

# Isaac Essential Physics Step up to GCSE Physics

Anton Machacek *Isaac Physics Project* 



#### Periphyseos Press Cambridge

## Cavendish Laboratory J. J. Thomson Avenue, Cambridge CB3 0HE, UK

Published in the United Kingdom by Periphyseos Press, Cambridge www.periphyseos.org.uk

Step up to GCSE Physics
Creative Commons Licence

The content of *Step up to GCSE Physics* is licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) licence.

First published 2022

Printed and bound in the UK by Short Run Press Limited, Exeter.

Typeset in LATEX

A catalogue record for this publication is available from the British Library

ISBN 978-1-8382160-5-4 Paperback

Use this collection of worksheets in parallel with the electronic version at <a href="http://isaacphysics.org/books/step\_up\_phys">http://isaacphysics.org/books/step\_up\_phys</a>. Marking of answers and compilation of results is free on Isaac Physics. Register as a student or as a teacher to gain full functionality and support.





#### Note for the Student

Physics is the part of Science which uses maths the most. Most physics ideas can be written down as equations more easily than they can be written down in words. The courses you study later (like GCSE) will require you to use many equations to solve problems.

In each two-page section, an idea is explained. You then have a worked example and then a set of questions to answer. Practising the questions will build your confidence. You can then make a flying start to GCSE.

#### Note for the Teacher

The material in this book builds on concepts which have already been introduced to students in a qualitative fashion. This book places these ideas on a more mathematical footing.

Students, teachers and schools are welcome to use this material with students prior to beginning formal GCSE (or equivalent) programmes of study to provide a good foundation. Equally, it may be used alongside other resources as the early parts of GCSE courses are taught. It also has a role as extension and challenge material for younger pupils, and can be used as a bank of practice material for older students needing to gain confidence.

All questions are also available at http://isaacphysics.org/books/step\_up\_phys. Teachers may set questions to their classes and monitor progress. Equally, students completing questions on the website receive immediate feedback on their answers. A pdf version of the notes without the red text is available at http://isaacphysics.org/books/step\_up\_phys for projection in class during class discussion.

#### Acknowledgements

I would like to thank all of my colleagues at Isaac Physics for their support with this project, especially Dr Lisa Jardine-Wright for giving this project its impetus, Prof. Mark Warner for creating the MEXstyle used here, Dr Lee Phillips for his thorough review of the first draft and David Taylor for all of his administrative assistance. I am grateful to Sam Lambrick, Ashnoy Nazareth, Miguel Nocum and Jia Hao Guo, who created the online version of this book. Finally, this would not have been possible without the support and love of Helen Machacek. Soli Deo Gloria,

## **Contents**

|   | FOIC  | e and Motion                              | ı  |
|---|-------|-------------------------------------------|----|
|   | 1     | Displacement                              | 1  |
|   | 2     | Units of Distance                         | 3  |
|   | 3     | Displacement – time graphs                | 5  |
|   | 4     | Velocity                                  | 7  |
|   | 5     | Re-arranging equations                    | 9  |
|   | 6     | Calculating velocities                    | 11 |
|   | 7     | Velocity – time graphs                    | 12 |
|   | 8     | Acceleration                              | 14 |
|   | 9     | Calculating accelerations                 | 15 |
|   | 10    | Displacement from a velocity – time graph | 16 |
|   | 11    | Weight and resultant force                | 17 |
|   | 12    | Force and acceleration                    | 19 |
|   | 13    | Momentum                                  | 20 |
|   | 14    | Momentum, impulse and force               | 21 |
|   | 15    | Force and acceleration from momentum      | 22 |
| 2 | Elect | tricity                                   | 23 |
|   | 16    | Energy, charge and voltage                | 23 |
|   | 17    | Voltage in circuits                       | 24 |
|   | 18    | Charge and current                        | 26 |
|   | 19    | Large and small numbers                   | 27 |
|   | 20    | Current in circuits                       | 29 |
|   | 21    | Resistance                                | 30 |
|   | 22    | Electrical Power                          | 32 |
|   | 23    | Sharing voltage                           | 33 |
|   |       |                                           |    |

| 3 | Ene  | rgy and Balance                           | 35 |
|---|------|-------------------------------------------|----|
|   | 24   | Work                                      | 35 |
|   | 25   | Gravitational potential energy            | 37 |
|   | 26   | Power                                     | 38 |
|   | 27   | Energy flow and efficiency                | 39 |
|   | 28   | Balancing and moments                     | 41 |
|   | 29   | Energy and Temperature                    | 42 |
| 4 | Mat  | erials and Forces                         | 43 |
|   | 30   | Density                                   | 43 |
|   | 31   | Floating                                  | 44 |
|   | 32   | Friction                                  | 45 |
|   | 33   | Springs                                   | 47 |
|   | 34   | Pressure                                  | 49 |
| 5 | Wav  | es                                        | 50 |
|   | 35   | Frequency                                 | 50 |
|   | 36   | Wavelength and the wave equation          | 51 |
|   | 37   | Echoes                                    | 53 |
| 6 | Calc | ulation Practice                          | 54 |
|   | 38   | Force and Motion Calculation Practice     | 54 |
|   | 39   | Electricity Calculation Practice          | 55 |
|   | 40   | Energy and Balance Calculation Practice   | 56 |
|   | 41   | Materials and Forces Calculation Practice | 57 |
| 7 | Extr | a Questions                               | 58 |
|   | 42   | Force and Motion summary questions        | 58 |
|   | 43   | Electricity summary questions             | 59 |
|   | 44   | Energy summary questions                  | 60 |
|   | 45   | Materials and Forces summary questions    | 61 |
|   | 46   | Waves summary questions                   | 62 |
|   | 47   | Challenge questions                       | 63 |
|   | 48   | Dimensional analysis - algebra with units | 64 |

## **Force and Motion**

#### 1 Displacement

Displacement s measures the \_\_\_\_\_ of something. When something \_\_\_\_ its displacement \_\_\_\_. In our questions, the direction of a displacement is given by its sign: \_\_\_\_ means 'on the right' \_\_\_ means 'on the left' If the change of displacement is \_\_\_\_\_, the object is moving to the \_\_\_\_. If the change is \_\_\_\_\_, the object is moving to the \_\_\_\_.  $\Delta \text{ (delta) means } \underline{\hspace{1cm}} .$  Change in displacement  $\Delta s$  is  $\Delta s$ .

If it ends up back at the starting point, the total displacement is \_\_\_\_. The total distance travelled will not be zero if it moved.

**Example 1** – Calculate the change in displacement for the motion shown below. State the distance travelled.



**Example 2** – An object moves directly from s=+3 cm to s=-5 cm. Calculate the change in displacement. State the distance travelled. Change in displacement  $\Delta s=-5$  cm -(3 cm)=-8 cm Distance moved =8 cm

**Example 3** – Calculate the change in displacement for the two-stage motion shown below. State the distance travelled.



Starting position  $s_{\text{starting}} = 3 \text{ cm}$ , final position  $s_{\text{final}} = -1 \text{ cm}$ 

Change in displacement  $\Delta s = (-1 \ {\rm cm}) - 3 \ {\rm cm} = -4 \ {\rm cm}$  Distance moved  $= 3 \ {\rm cm} + 7 \ {\rm cm} = 10 \ {\rm cm}$ 

#### 2 Units of Distance

Distances can be measured in different units. To convert from one unit to another, you multiply or divide by a conversion factor.

$$1.61 \text{ km} = 1.00 \text{ miles}$$

multiply by 5 on each side

$$5 \times 1.61 \,\mathrm{km} = 5.00 \,\mathrm{miles}$$

$$5 \text{ miles} = 5 \times 1.61 \text{ km} = 8.05 \text{ km}$$

**Example 2** – There are 1.61 km in one mile. What is 45 km in miles?

$$1.61 \, \text{km} = 1.00 \, \text{miles}$$

divide by 1.61 on each side

$$1.00 \, \text{km} = \frac{1.00 \, \text{miles}}{1.61}$$

multiply by 45 on each side

$$45\,\mathrm{km} = \frac{1.00\,\mathrm{miles}}{1.61} \times 45 = 28.0\,\mathrm{miles}$$

The final line could be written

$$45.00\,\mathrm{km} = \frac{1.00\,\mathrm{miles}}{1.61\,\mathrm{km}} \times 45\,\mathrm{km}$$

The km units 'cancel out' on the right. If we wanted to convert miles to kilometres, we would multiply by  $\frac{1.61 \text{ km}}{1.00 \text{ miles}}$ .

**Example 3** – Convert 14 miles into nautical miles?

$$14 \text{ miles} = 14 \text{ miles} \times \frac{1.61 \text{ km}}{1.00 \text{ miles}} = 22.5 \text{ km}$$

22.5 km =22.5 km 
$$\times \frac{1.00 \text{ nautical miles}}{1.85 \text{ km}} = 12.2 \text{ nautical miles}$$

This could be done in one stage (NM means nautical miles):

$$14\, \mathrm{miles} \times \frac{1.61\,\mathrm{km}}{1.00\,\mathrm{miles}} \times \frac{1.00\,\mathrm{NM}}{1.85\,\mathrm{km}} = 12.2\,\mathrm{NM}$$

Remember: 1 mm = 0.001 m, 1 cm = 0.01 m, 1 km = 1000 m

#### 3 Displacement – time graphs



In this next graph, the displacement s measures how far a lift (elevator) is above the ground floor of a building. The floors are 4 m apart.



#### 4 Velocity

The change in displacement  $\Delta s$  each second is called the \_\_\_\_\_v. You can read off the  $\Delta s$  for one second on a straight part of a displacement – time graph.

You can also calculate the velocity by dividing the displacement change  $\Delta s$  by the time taken  $\Delta t$ . This gives the each .

$$\mbox{Velocity } (\mbox{m/s}) = \frac{\mbox{Displacement change } (\mbox{m})}{\mbox{Time taken } (\mbox{s})}, \mbox{or } v = \frac{\Delta s}{\Delta t}$$



The velocity is given by the \_\_\_\_\_ of the line on the displacement – time graph. Gradient is the change in the vertical  $\uparrow$  co-ordinate \_\_\_\_ the change in the horizontal  $\rightarrow$  co-ordinate.

In our questions, the direction of a velocity is given by its sign:

- + means 'moving forwards' or 'moving upwards'
- means 'moving backwards' or 'moving downwards'

**Example 2** – Calculate the average speed in the graph above. Total distance = 12 m + 12 m (there and back) = 24 m Total time = 20 s, so Average speed  $= \frac{24 \text{ m}}{20 \text{ s}} = 1.2 \text{ m/s}$ .

#### 5 Re-arranging equations

Many equations in Physics involve three quantities. On these pages, we practise re-arranging equations so that we can calculate what we need.

Let's use the equation 
$$A=b\times c$$
, usually written  $A=bc$  If  $b=2$  and  $c=5$ , then  $A=b\times c=2\times 5=10$ . We can get  $c=5$  from  $b=\frac{10}{2}$  so  $b=\frac{A}{c}$ . We can get  $b=2$  from  $b=\frac{10}{5}$  so  $b=\frac{A}{c}$ .

We can also use algebra:

If 
$$b = \frac{A}{c}$$
  $bc = \frac{Ak}{k}$  then  $bc = A$ 

and

$$\text{If }bc=A \qquad \frac{\mbox{\idelta c}}{\mbox{\idelta c}} = \frac{A}{b} \quad \text{then} \quad c=\frac{A}{b}.$$

Re-arrangement causes the quantities to cross the = sign on a diagonal:

$$bc \neq \frac{A}{c}$$
  $bc = A$   $bc \neq A$   $c = \frac{A}{b}$ 

**Example 1** – If B = fg, write an equation for g.

Dividing both sides by 
$$f$$
 gives  $\frac{B}{f} = \frac{\chi g}{\chi} = g$ , so  $g = \frac{B}{f}$ 

**Example 2** – If y = kx and y = 0.25 when x = 0.4, calculate k. Rearrange y = kx by dividing both sides by x:  $\frac{y}{x} = k$ 

So 
$$k = \frac{y}{x} = \frac{0.25}{0.4} = 0.625$$

**Example 3** – If y=kx, and y=90 when x=6, calculate y when x=4. Assume k does not change. Divide both sides by x to get  $\frac{y}{x}=k$ 

so 
$$k = \frac{90}{6} = 15$$
. Now use the new  $x$ .  $y = kx = 15 \times 4 = 60$ 

**Example 4** – If 
$$\frac{a}{b} = \frac{c}{d}$$
 and  $a = 2$ ,  $b = 6$  and  $c = 12$ , calculate d?

Multiply both sides by 
$$bd$$
 giving  $ad = bc$ . Now divide by  $a$ , so  $d = \frac{bc}{a}$ 

Now put in the data to give 
$$d = \frac{6 \times 12}{2} = 36$$

#### 6 Calculating velocities

On page 7, we introduced the formula for . This is the

$$\text{Velocity } (\text{m/s}) = \frac{\text{Displacement change } (\text{m})}{\text{Time taken } (\text{s})}, \text{or } v = \frac{\Delta s}{\Delta t}$$

Since the velocity is the displacement change \_\_\_\_\_, you can calculate the displacement change:

Displacement change (m) = Velocity (m/s) imes Time taken (s), or  $\Delta s = v \, \Delta t$ 

The time taken can also be worked out. To do this, you divide the \_\_\_\_\_\_ by the \_\_\_\_\_\_ . This is the same as dividing by the \_\_\_\_\_ . So

Time taken (s) = 
$$\frac{\text{Displacement change (m)}}{\text{Velocity (m/s)}}$$
, or  $\Delta t = \frac{\Delta s}{v}$ 

Now, we put these three equations next to each other:

$$v = \frac{\Delta s}{\Delta t}$$
  $\Delta s = v \Delta t$   $\Delta t = \frac{\Delta s}{v}$ 

This is the same equation written three ways, each with a different subject.

**Example 1** – How long does it take an object at +4 m/s to move +20 m? We want to know t, so take  $\Delta s = v \Delta t$  and divide both sides by v to give

$$\Delta t = \frac{\Delta s}{v} = \frac{+20 \text{ m}}{+4 \text{ m/s}} = 5 \text{ s}$$

Units: 1 km = 1000 m 1 cm = 0.01 m 1 mm = 0.001 m 1 mile = 1610 m 1 nautical mile = 1850 m 1 inch = 0.025 m

**Example 2** – How far (in km) will a train travel in 45 min at 230 mph?

$$\begin{split} \Delta s &= v \, \Delta t = \frac{230 \text{ miles}}{1 \text{ hr}} \times 45 \text{ min} = \frac{230 \times 1610 \text{ m}}{1 \times 60 \text{ min}} \times 45 \text{ min} \\ &= \frac{230 \times 1610 \text{ m} \times 45 \text{ min}}{60 \text{ min}} = 280 \, 000 \text{ m} = 280 \text{ km} \end{split}$$

#### 7 Velocity – time graphs

It can be helpful to show an object's velocity at different times.

The \_\_\_\_\_ v is plotted on the y or \_\_\_\_\_  $\uparrow$  axis.

The \_\_\_\_ t is plotted on the x or \_\_\_\_\_  $\rightarrow$  axis.

\_\_\_\_ represent motion at a \_\_\_\_\_.

Horizontal lines represent an object \_\_\_\_\_.



| The      | the line, the           | the acceleration or d        | leceleration.           |
|----------|-------------------------|------------------------------|-------------------------|
| A straig | ht (not horizontal) lin | e represents a               | . The change            |
| in veloc | ity is the same each    | second.                      |                         |
| This gra | aph shows the veloci    | ty of a hoist used to lift b | ouilding materials on a |

construction site. \_\_\_\_\_ values of v are used when the hoist is .



#### 8 Acceleration

The change in velocity  $\Delta v$  each second is called the \_\_\_\_\_ a. You can read off the  $\Delta v$  for one second on a straight part of a velocity – time graph.

You can also calculate the acceleration by dividing the velocity change  $\Delta v$  by the time taken  $\Delta t$ . This gives the \_\_\_\_\_ each \_\_\_\_.

Acceleration (m/s<sup>2</sup>) =  $\frac{\text{Velocity change (m/s)}}{\text{Time taken (s)}}$ , or  $a = \frac{\Delta v}{\Delta t}$ 



The acceleration is given by the \_\_\_\_\_ of the line on the velocity time graph. Gradient is the change in the vertical  $\uparrow$  co-ordinate \_\_\_\_ the change in the horizontal  $\rightarrow$  co-ordinate. In our questions, the direction of a velocity is given by its sign:

- + means v is getting \_\_\_\_\_
- $-\hspace{0.1cm}$  means v is getting  $\_\_\_$

An acceleration of  $-3 \, \text{m/s}^2$  could refer to an object \_\_\_\_\_ while going . It could also describe an object while .

So

#### 9 Calculating accelerations

On page 14, we introduced the formula for . This is the

Acceleration (m/s
$$^2$$
) =  $\frac{\text{Velocity change (m/s)}}{\text{Time taken (s)}}$ , or  $a = \frac{\Delta \overline{v}}{\Delta t}$ 

As the acceleration is the velocity change \_\_\_\_\_, you can work out the velocity change:

Velocity change (m/s) = Acceleration (m/s $^2$ ) × Time (s) , or  $\Delta v = a \, \Delta t$ 

The time taken can also be calculated. To do this, you divide the \_\_\_\_\_ by the \_\_\_\_\_ . This is the same as dividing by the \_\_\_\_\_

Time (s) =  $\frac{\text{Velocity change (m/s)}}{\text{Acceleration (m/s}^2)}$ , or  $\Delta t = \frac{\Delta v}{a}$ 

Now, we put these three equations next to each other:

$$a = \frac{\Delta v}{\Delta t} \qquad \qquad \Delta v = a \, \Delta t \qquad \qquad \Delta t = \frac{\Delta v}{a}$$

This is the same equation written three ways, each with a different subject.

**Example 1** – An object's velocity is +10 m/s. How much time does it take to reach +30 m/s with an acceleration of a = +5 m/s<sup>2</sup>?

The change in velocity needed is  $\Delta v = 30 - 10 = 20$  m/s

We want to know t, so take  $\Delta v = a \, \Delta t$  and divide both sides by a to give

$$\Delta t = \frac{\Delta v}{a} = \frac{+20 \text{ m/s}}{+5 \text{ m/s}^2} = 4 \text{ s}$$

**Example 2** – A motorcycle can accelerate from rest to 60 mph in 3.4 s. Calculate its acceleration in m/s<sup>2</sup>. 1 mile = 1610 m.

$$\Delta v = 60 \text{ mph} = \frac{60 \text{ miles}}{1 \text{ h}} = \frac{60 \times 1610 \text{ m}}{60 \times 60 \text{ s}} = 26.8 \text{ m/s}$$

$$a = \frac{\Delta v}{t} = \frac{26.8 \text{ m/s}}{3.4 \text{ s}} = 7.9 \text{ m/s}^2$$

#### 10 Displacement from a velocity – time graph

Velocity is the displacement change \_\_\_\_\_\_. This means that you can work out the displacement change from the velocity:

Displacement change (m) = Velocity (m/s) imes Time taken (s) , or  $\Delta s = v \, \Delta t$ 

This works in any part of the graph where the velocity is constant.



This displacement change is also equal to the area of the coloured rectangle. So the \_\_\_\_ = \_\_\_ under a \_\_\_ .

Next we look at a part of the graph when the velocity is changing:

Example 2 – How far does the object move between t=4s and 10s?

Method 1 – Area under the line is area of the gray triangle

Area of triangle =  $\frac{1}{2} \times$  base  $\times$  height =  $\frac{1}{2} \times$   $s \times$  (\_\_\_\_ m/s) = \_\_\_ m

Method 2 – Velocity changes \_\_\_\_ from \_\_\_\_ to

so average velocity =  $\frac{1}{2} \times s \times s = \frac{1}{2} \times s \times$ 

#### 11 Weight and resultant force



$$Weight(N) = Mass(kg) \times Field strength(N/kg), or W = mg$$

This equation can be re-written as shown on page 9 as

$$g = \frac{W}{m} \qquad \qquad W = m g \qquad \qquad m = \frac{W}{g}$$

**Example 1** – Calculate the weight of a small (100 g) apple on Earth, where g=10 N/kg. Also calculate the weight on Mars, where g=3.7 N/kg. There are 1000 g in 1 kg, so m=0.1 kg. Masses must be given in \_\_\_ On Earth,  $W=mg=0.1 \text{ kg} \times 10 \text{ N/kg}=1.0 \text{ N}$  On Mars,  $W=mg=0.1 \text{ kg} \times 3.7 \text{ N/kg}=0.37 \text{ N}$  Isn't it wonderful that the weight of a small apple is  $\approx 1 \text{ newton!}$ 

If there is more than one force, we calculate the \_\_\_\_\_. This is the single force which would do the same job.

The resultant force is to the 
$$\_$$
 as  $3 \text{ N} > 1 \text{ N}$ . The  $1 \text{ N}$  to the left cancels out  $1 \text{ N}$  of the  $3 \text{ N}$  pulling right. This leaves a resultant force of  $3 - 1 = 2 \text{ N}$  to the right.

Or we can use + to mean  $\rightarrow$ . Then - means  $\leftarrow$ .

The forces are -1 N and +3 N. These add to +2 N.

Example 2 – On Earth, a large (200~g) apple is underwater. It has an upwards 2.5 N force on it. Calculate the resultant force.

Weight  $W = mg = 0.2~\text{kg} \times 10~\text{N/kg} = 2.0~\text{N}$ Weight is -2.0~N if we use + for  $\uparrow$  and - for  $\downarrow$  Upwards force is +2.5~NResultant (total) force = (-2.0) + (+2.5) = +0.5~NThat is 0.5~N

#### 12 Force and acceleration

**Example** – A bus travels North on a flat road at 30 mph. Its engine provides 2 kN forwards. How much force (backwards) resists motion?

The bus is at a \_\_\_\_\_ and not \_\_\_\_\_. So

- the \_\_\_\_\_ is constant,
- there is resultant force, and
- $\bullet$  the resistance must balance the engine's thrust. Force = 2 kN.

$$\underbrace{\text{(unbalanced forces)}} \ \, \Bigg\} \, \text{means that} \, \Bigg\{ \, \underbrace{\text{, or } \underline{\qquad} \text{ will change.}}_{\text{the object will } \underline{\qquad} \text{.}}$$

Let's find out which box has the larger acceleration.

$$6 \text{ N} \underbrace{2 \text{ kg}} 10 \text{ N}$$
Resultant force =  $10 - 6 = 4 \text{ N}$ 

$$\frac{4 \text{ N}}{2 \text{ kg}} = 2 \text{ N} \text{ on each kilogram}$$

$$350 \text{ N} \underbrace{100 \text{ kg}} 400 \text{ N}$$
Resultant force =  $400 - 350 = 50 \text{ N}$ 

$$\frac{50 \text{ N}}{100 \text{ kg}} = 0.5 \text{ N} \text{ on each kilogram}$$
The 2 kg object will accelerate more rapidly.

When we measure force in newtons, the acceleration equals the resultant force on each kilogram. We have an equation:

Acceleration 
$$(m/s^2) = \frac{\text{Resultant force }(N)}{\text{Mass }(kg)}$$
 , or  $a = \frac{F}{m}$ 

The objects in the example have accelerations of 2 m/s $^2$  and 0.5 m/s $^2$ .

The equation can be re-written as shown on page 9 as

$$a = \frac{F}{m} \qquad \qquad F = m \, a \qquad \qquad m = \frac{F}{a}$$

Resultant force is \_\_\_\_\_ in the direction of motion

If resultant force is { in the direction of motion, object \_\_\_\_\_. against the motion, object \_\_\_\_\_. to the side, object \_\_\_\_\_ (changes \_\_\_\_\_).

#### 13 Momentum

Momentum p measures your 'amount of motion'.

- A car travelling at 30 mph has less 'motion' than at 50 mph.
- A 700 kg car has less 'motion' than a 12 400 kg bus at the same speed.

We take mass m and velocity v into account:

Momentum (kg m/s) = Mass (kg) 
$$\times$$
 Velocity (m/s), or  $p = mv$ 

In our questions, the direction of a velocity or momentum is given by its sign:

- + means 'moving to the East' or 'moving upwards'
- means 'moving to the West' or 'moving downwards'

**Example 1** – Calculate the momentum of a  $750 \, kg$  car travelling at  $15 \, m/s$  to the West.

Velocity = -15 m/s

 $Momentum = mass \times velocity = 750 \text{ kg} \times (-15 \text{ m/s}) = -11250 \text{ kg m/s}$ 

**Example 2** – Calculate the velocity of a  $90 \, kg$  pumpkin if it has a momentum of  $1080 \, kg$  m/s upwards.

 $Momentum = +1080 \text{ kg m/s} = mass \times velocity$ 

therefore  $1080~{\rm kg\,m/s}=90~{\rm kg}\times{\rm velocity}$ 

so velocity  $= \frac{1080 \text{ kg m/s}}{90 \text{ kg}} = +12 \text{ m/s}$ , that is 12 m/s upwards.

**Example 3** – A 0.84 kg motion trolley's velocity changes from 2.0 m/s West to 5.0 m/s East? What is the change of momentum?

2.0 m/s Start: With the 
$$-$$
 sign, we write  $v=-2.0$  m/s  $p=0.84$  kg  $\times$   $(-2.0$  m/s $)=-1.68$  kg m/s

5.0 m/s End: With the 
$$+$$
 sign, we write  $v=+5.0$  m/s  $p=0.84$  kg  $\times$   $(+5.0$  m/s)  $=+4.20$  kg m/s

Change in momentum = 4.20 - (-1.68) = +5.88 kg m/s

Change in momentum = 5.88 kg m/s East

In the next two questions, use + to mean 'upwards', and - for 'downwards'.

#### 14 Momentum, impulse and force

To give an object 4000 kg m/s of momentum, you could

- apply a 4000 N force for 1 second,
- apply a 2000 N force for 2 seconds, or
- apply a 1000 N force for 4 seconds.

If we measure force in newtons,

| Resultant Force $	imes$ | time = Chang  | je of momentum | $\mathbf{n}$ , or $Ft = \Delta p$ |
|-------------------------|---------------|----------------|-----------------------------------|
| The quantity            | is called the |                |                                   |

**Example** – A 65 kg cyclist on a 15 kg bike is travelling at 5 m/s. She applies a 100 N resultant force for 8 s. How fast is she going now? Impulse =  $100 \text{ N} \times 8 \text{ s} = 800 \text{ N} \text{ s}$ , which is the same as 800 kg m/s Original momentum =  $(65+15) \text{ kg} \times 5 \text{ m/s} = 400 \text{ kg m/s}$  New momentum = 400 kg m/s + 800 N s = 1200 kg m/s New velocity =  $\frac{p}{m} = \frac{1200 \text{ kg m/s}}{80 \text{ kg}} = 15 \text{ m/s}$ 

| 15 | Force and | accel | eration f | from mom | entum |
|----|-----------|-------|-----------|----------|-------|
|----|-----------|-------|-----------|----------|-------|

| (balanced forces)                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example 1 – A bus travels North on a flat road at 30 mph with its engine providing 2 kN forwards. What is the (backwards) force resisting motion?  The bus is at a and not, so  • the is constant, so there is, so  • resistance must balance the engine's thrust. Force = 2 kN.                                                                                                          |
| If there is a, then the momentum  Resultant force = Momentum change each second                                                                                                                                                                                                                                                                                                           |
| Example 2 – Calculate the acceleration of this object. $6\ N \longleftarrow 2\ kg \longrightarrow 10\ N$ The resultant force is $10-6=4\ N$ In 1 s the momentum gain is Force $\times$ Time $=4\ N\times 1\ s=4\ kg\ m/s$ . Velocity gain $=$ Momentum gain $\div$ Mass $=4\ kg\ m/s\div 2\ kg=2\ m/s$ . A gain of 2 m/s each second is an of 2 m/s².                                     |
| Force = Momentum change each second $= \operatorname{Mass} \times \operatorname{Velocity} \text{ change each second} \\ = \operatorname{Mass} \times \operatorname{Acceleration}, \qquad \operatorname{or} F = ma$ Resultant force is $\begin{cases} & \text{in the thiestient of notion, object} \\ & \text{against the motion, object} \\ & \text{to the side, object} \end{aligned} .$ |
| to the side, object (changes).  Force and motion summary questions are on page 58.                                                                                                                                                                                                                                                                                                        |

# **Electricity**

### 16 Energy, charge and voltage

| $\begin{tabular}{ll} $Q$ travels around an electric circuit. It is measured in coulombs (C). \\ \hline Charge is given the symbol $Q$ to represent the $\_\_\_ of electrical 'material'. \\ \end{tabular}$                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The energy of each coulomb of charge is called the or The voltage change across a component is also called a                                                                                                                                                                                   |
| Energy $E$ is measured in joules (J), Voltage $V$ is measured in volts (V):                                                                                                                                                                                                                    |
| Energy change $(J) = \text{Charge } (C) \times \text{Voltage } (V)$ , or $E = QV$                                                                                                                                                                                                              |
| The voltage, which measures electrically-stored energy,  • when charge passes a  • when charge passes a                                                                                                                                                                                        |
| <b>Example</b> – A 230 V lamp takes 13.8 J of electrical energy. How much charge has passed? The voltage change is 230 V. We have lost 13.8 J of energy. Energy change = Charge $\times$ Voltage, so 13.8 J = Charge $\times$ 230 V Charge = $\frac{13.8 \text{ J}}{230 \text{ V}}$ = 0.060 C. |
| In a circuit, there are no Each charge passes through all of the components (one after another). It loses some of its energy to each component.  In a circuit, the energy carried by each charge does not change as it                                                                         |
| passes a junction. Not all charge takes the same route.                                                                                                                                                                                                                                        |

#### 17 Voltage in circuits

We use the idea of (the of charge) to analyse circuits.

We label the negative terminal of the battery  $0\,\mathrm{V}$ . Next, we draw arrows to show the direction of charge flow. This is round the circuit from the + of the battery.



We follow the arrows, starting at the 0 V mark. Each cell  $\_\_\_+1.5$  V. We label each wire with its voltage. We use a colour code, here black means 0 V.

All points on a wire have the same voltage. This is because charge loses very little energy while flowing down a wire.



The bulb connects a  $3\,\mathrm{V}$  wire to a  $0\,\mathrm{V}$  wire. The drop in voltage as the charge goes through it is  $3\,\mathrm{V}$ . For this lamp,  $1.5\,\mathrm{V}$  means 'normal' brightness, so the lamp will be than normal.

Here is a completed example for a circuit with junctions:



Top bulb: voltage drop 3 V, bright.

Lower bulbs: voltage drop 1.5 V, normal.

We assume that the bulbs are identical. Therefore the wire in the middle at the bottom was  $between \ 0 \ V \ and \ 3 \ V.$ 

#### 18 Charge and current



This equation can be re-arranged using the methods on page 9 to give

$$I = \frac{\Delta Q}{\Delta t} \qquad \qquad \Delta Q = I \, \Delta t \qquad \qquad \Delta t = \frac{\Delta Q}{I}$$

**Example** – If 0.25 A flows for three minutes, calculate the charge. The time must be put in seconds:  $\Delta t = 3$  min  $= 3 \times 60$  s = 180 s We use equation  $\Delta Q = I \, \Delta t = 0.25$  A  $\times 180$  s = 45 C.

Battery or cell 'capacity' is usually measured in amp-hours (A h) or milliamphours (mA h). A 1000 mA h cell can supply 1000 mA for one hour, 500 mA for two hours, and so on. Capacity (A h) = Current (A)  $\times$  Time (hours).

#### 19 Large and small numbers

Negatively charged particles called \_\_\_\_\_ move in an electric circuit. Each one has a very small charge:  $-0.000\,000\,000\,000\,000\,000\,16$  C. In this section, we practise ways of working with large and small numbers. We begin with the use of prefixes like 'kilo' (k) in kilometre which tells us that  $1~\rm km = 1000~\rm m$ .

```
\begin{array}{c} 1000\,000\,000\,\text{C}{=}\,1\,\text{GC}{=}\,1\,\text{gigacoulomb}\,{=}10^9\,\text{C} \\ 1000\,000\,\text{C}{=}1\,\text{MC}{=}1\,\text{megacoulomb}{=}10^6\,\text{C} \\ 1000\,\text{C}{=}\,1\,\text{kC}{=}\,1\,\text{kilocoulomb}\,{=}10^3\,\text{C} \\ 0.01\,\text{C}{=}\,1\,\text{cC}{=}1\,\text{centicoulomb}\,{=}10^{-2}\,\text{C} \\ 0.001\,\text{C}{=}1\,\text{mC}{=}\,1\,\text{millicoulomb}\,{=}10^{-3}\,\text{C} \\ 0.000\,001\,\text{C}{=}1\,\text{\muC}{=}1\,\text{microcoulomb}{=}10^{-6}\,\text{C} \\ 0.000\,000\,001\,\text{C}{=}\,1\,\text{nC}{=}1\,\text{nanocoulomb}\,{=}10^{-9}\,\text{C} \\ \end{array}
```

**Example 1** – Write  $0.000\,03$  C with the most suitable prefix.  $0.000\,001$  C would be  $1~\mu$ C, and our charge is 30 times larger, so we have  $30~\mu$ C (0.03~mC is equivalent but has leading zeroes).

For larger and smaller numbers, we usually use powers of ten.

Numbers larger than 1: Numbers smaller than 1:

$$10^{1} = 10$$
  $10^{-1} = 0.1$   
 $10^{2} = 100$   $10^{-2} = 0.01$   
 $10^{3} = 1000$   $10^{-3} = 0.001$ 

When you  $\_$  1 to the power, the number gets  $\_$ . When you  $\_$  1 from the power, the number gets  $\_$ .

```
Example 2 – Write 33\,000\,000 C using a power of ten. 33\,000\,000 = 3.3 \times 10\,000\,000 = 3.3 \times 10^7, so 33\,000\,000 C = 3.3 \times 10^7 C
```

When using \_\_\_\_\_ we always make sure that the number multiplying the power of ten (3.3 in Example 2) is no smaller than 1, and is less than 10.

Example 3 – How many electrons are there if the total charge is 
$$-1$$
 nC Total charge  $= -10^{-9}$  C Number of electrons  $= \frac{\text{Total charge}}{\text{Charge of one electron}} = \frac{-1 \times 10^{-9} \text{ C}}{-1.6 \times 10^{-19} \text{ C}} = 6.25 \times 10^9$ 

As the electrons are negatively charged, they move around the circuit from the - terminal of the cell to the + terminal.

#### 20 Current in circuits

| We look at the way in which behaves in electric circuits |
|----------------------------------------------------------|
|----------------------------------------------------------|

Current is the movement of positive or negative charges. We draw arrows to show the direction any \_\_\_\_\_ charge would move.

+ charge will be \_\_\_\_ or \_\_\_ by the + terminal of the battery. It will be \_\_\_\_ or \_\_\_ the - terminal of the battery.

In a circuit, we draw arrows to show this direction from + to -. Inside the battery, \_\_\_\_ forces pull the charge the other way from - to + to complete the circuit.

The first rule of charge and current is that up.



In one second,  $0.3\,\mathrm{C}$  goes into the light bulb from the + of the battery.  $0.3\,\mathrm{C}$  also comes out the other end to go to the - (at a lower voltage).

The going in is , and the current coming out is .

A \_\_\_\_\_ circuit has \_\_\_\_\_ . The \_\_\_\_ current \_\_\_\_ any junction is the same as the current it.



In this example the two branches are different. This is why the current reaching the junction does not split equally.

#### 21 Resistance

The larger the \_\_\_\_\_ a component, the greater the \_\_\_\_ it. Components which are bad at conducting have a high \_\_\_\_\_ . They need a larger voltage across them to push a set current than a good conductor would.

Resistance 
$$R$$
 is measured in \_\_\_\_ ( $\Omega$ ). Resistance ( $\Omega$ ) =  $\frac{\text{Voltage}\left(\mathbf{V}\right)}{\text{Current}\left(\mathbf{A}\right)}$ , or  $R=\frac{V}{I}$ 

This equation can be re-arranged using the methods on page 9 to give

$$R = \frac{V}{I} \qquad \qquad V = IR \qquad \qquad I = \frac{V}{R}$$

**Example** – A light bulb with a resistance of  $960~\Omega$  is connected to a 240~V supply. Calculate the current.

We re-arrange V=IR by dividing both sides by R to give

$$I = \frac{V}{R} = \frac{240 \text{ V}}{960 \Omega} = 0.25 \text{ A}.$$

| The resistance of  | most component      | s depends on the current | passing through   |
|--------------------|---------------------|--------------------------|-------------------|
| them. However      | and                 | held at a steady         | have the          |
| same resistance    | at all useful curre | ents. We say these obey  | , and             |
| call them          | conductors. The     | graph shows the current  | through a lamp    |
| (black line) and i | •                   | ) for different voltage  | es. Use this data |



#### 22 Electrical Power

On page 23 we saw that energy E=VQ is related to the voltage V and total charge Q. For an extra charge  $\Delta Q$ , which flows in time  $\Delta t$  the extra energy  $\Delta E$  will be

Extra energy (J) = Voltage (V) 
$$\times$$
 Extra charge (C) , or  $\Delta E = V \Delta Q$ 

The energy used each second is called the  $\_\_\_$  P and is measured in watts (W). For electricity, this means

$$\text{Power} = \frac{\text{Energy}}{\text{Time taken}} = \text{Voltage} \times \frac{\text{Extra charge}}{\text{Time taken}} \qquad P = \frac{\Delta E}{\Delta t} = V \frac{\Delta Q}{\Delta t}$$

Power = Voltage  $\times$  Current

P = VI

where we used the fact that \_\_\_\_\_ from page 26. This equation can be re-arranged using the methods on page 9 to give

$$V = \frac{P}{I} \qquad \qquad P = VI \qquad \qquad I = \frac{P}{V}$$

**Example** – Calculate the current needed by a  $2.4\,V$ ,  $0.84\,W$  light bulb. We re-arrange P=VI by dividing both sides by V to give

$$I = \frac{P}{V} = \frac{0.84 \text{ W}}{2.4 \text{ V}} = 0.35 \text{ A}.$$

### 23 Sharing voltage

On page 24 we saw that when a  $3\,\text{V}$  battery was connected to two bulbs in series, the \_\_\_\_\_ was \_\_\_\_ between them. The bulbs were identical, so the voltage was shared \_\_\_\_\_ . The voltage across each was  $1.5\,\text{V}$ .

How is voltage shared between components in series if they are different?



We work it out like this:

- the total resistance is  $10 \Omega + 20 \Omega = 30 \Omega$
- the  $10~\Omega$  resistor has \_\_\_\_\_ of the total resistance
- so it takes of the battery voltage  $\frac{1}{3} \times 3 \text{ V} = 1 \text{ V}$
- the  $20~\Omega$  resistor has \_\_\_\_\_ of the total resistance
- so it takes \_\_\_\_\_ of the battery voltage  $\frac{2}{3} \times 3 \text{ V} = 2 \text{ V}$

**Example** – Calculate the voltage across the  $50 \Omega$  resistor.



Total resistance =  $50 \Omega + 70 \Omega = 120 \Omega$ 

The  $50~\Omega$  resistor has a fraction  $\frac{50~\Omega}{120~\Omega}$  of the total resistance.

Its voltage = 
$$\frac{50 \Omega}{120 \Omega} \times 12 V = 5 V$$

We now explain the rule using the circuit below, where a current I flows through two resistors  $R_1$  and  $R_2$  in series.



The voltage dropped across  $R_1$  is given by \_\_\_\_\_ (see page 30) The voltage dropped across  $R_2$  is given by The battery voltage  $V_{\text{battery}} = \underline{IR_1 + IR_2} = I(R_1 + R_2)$ . So

$$V_1 = I \times R_1 = rac{V_{ ext{battery}}}{R_1 + R_2} \times R_1 = rac{R_1}{R_1 + R_2} imes V_{ ext{battery}}$$

Electricity summary questions are on page 59.

# **Energy and Balance**

#### 24 Work

In this section, we explore the link between energy and force. A  $\_\_\_$  can cause stored  $\_\_\_$  to be moved to another store. Energy E is measured in (J).



A small apple weighs 1 N. We lift it 1 m. This needs of energy.

Three small apples weigh 3 N.
Lifting them 1 m would need \_\_\_ of energy.
Lifting them 2 m, requires of energy.



The \_\_\_\_\_ an object in this way is called the \_\_\_\_ : Work (J) = Force applied (N)  $\times$  Displacement change (m) ,  $\Delta E = F \Delta s$ 

The equation can be re-arranged (see page 9) to give

$$F = \frac{\Delta E}{\Delta s}$$

$$\Delta E = F \Delta s$$

$$\Delta s = \frac{\Delta E}{F}$$

**Example 1** – Calculate the energy given to a cart by its engine, which pulls it 25 m East with a force of 35 N in that direction.

If we use + to mean 'East' then F=+35 N, and  $\Delta s=+25$  m, so  $\Delta E=F$   $\Delta s=35$  N  $\times$  25 m =+875 J so 875 J is given to the cart.

The displacement change  $\Delta s$  and force F have directions shown by + or -. If the force applied and the displacement are in opposite directions,  $\Delta s$  and F will have \_\_\_\_\_ signs, so  $\Delta E$  will be \_\_\_\_\_. Energy will be \_\_\_\_\_ it.

**Example 2** – Calculate the work done by a cycle which stops in 8.0 m thanks to 180 N from its brakes.

Use + to mean 'forwards'. Then  $\Delta s = +8.0$  m.

| The force is in the other direction, so $F=-180\mathrm{N}$                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta E = F  \Delta s = -180  \mathrm{N} \times 8.0  \mathrm{m} = -1440  \mathrm{J}$ . $1440  \mathrm{J}$ of work is done by it. |

Forces at \_\_\_\_\_\_ to motion do \_\_\_\_\_. Example: you don't need engines and fuel to \_\_\_\_\_ a car or truck. This fact becomes important when you solve problems in two dimensions.

### 25 Gravitational potential energy

| (†)on it, giving it energy. This its store of                                                                                                                                                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (GPE).                                                                                                                                                                                                             |  |  |  |  |
| <b>Example</b> – Calculate the increased store of GPE when you lift an 8.6 kg bucket of water 3.5 m up a ladder.                                                                                                   |  |  |  |  |
| Minimum force needed to lift the bucket = Weight                                                                                                                                                                   |  |  |  |  |
| Weight = Mass $\times g = 8.6 \text{ kg} \times 10 \text{ N/kg} = 86 \text{ N (see page 17)}$                                                                                                                      |  |  |  |  |
| Work = Force applied $\times$ Displacement change = $86$ N $\times$ 3.5 m = $301$ J Gain in GPE = $301$ J.                                                                                                         |  |  |  |  |
| This is positive, as the displacement change is in the direction of the applied force (upwards). Usually, we write to make it clear that we measure displacements upwards when calculating GPE.  We can also write |  |  |  |  |
| Change in GPE $=$ Weight $	imes$ Height change $\Delta E = W  \Delta h$                                                                                                                                            |  |  |  |  |
| $=$ Mass $\times g \times$ Height change $= mg \Delta h$                                                                                                                                                           |  |  |  |  |
| When you lower an object, you still have to support it. The force you apply $(\uparrow)$ is opposite to the direction of motion $(\downarrow)$ . The object is now                                                 |  |  |  |  |
| giving you its energy. This its store of gravitational energy.                                                                                                                                                     |  |  |  |  |
| If an object, you are not applying any force to it. It's own weight acts in the direction of motion, increasing its store of motion () energy; at a cost of reducing its gravitational potential energy.           |  |  |  |  |

#### 26 Power

Power P is the \_\_\_\_\_ (or energy transferred) \_\_\_\_\_ . Power is measured in \_\_\_\_ (W).

Power = 
$$\frac{\text{Work done}}{\text{Time taken}}$$
, or  $P = \frac{\Delta E}{\Delta t}$ 

Using the methods on page 9, this equation can be written

$$P = \frac{\Delta E}{\Delta t} \qquad \Delta E = P \Delta t \qquad \Delta t = \frac{\Delta E}{P}$$

**Example** – Calculate the power needed to do 1200 J of work in four minutes. We re-arrange  $\Delta E = P \Delta t$  by dividing both sides by  $\Delta t$  to give

$$P = \frac{\Delta E}{\Delta t} = \frac{1200 \,\mathrm{J}}{4 \times 60 \,\mathrm{s}} = 5.0 \,\mathrm{W}.$$

You may have noticed from the last question that

$$\begin{aligned} \text{Power} &= \frac{\text{Work done}}{\text{Time taken}} = \text{Force} \times \frac{\text{Displacement}}{\text{Time taken}} & P &= \frac{\Delta E}{\Delta t} = F \frac{\Delta s}{\Delta t} \\ &= \text{Force} \times \text{Velocity} & P &= F v \end{aligned}$$

| 27        | Eneray f | low and    | l efficiency |
|-----------|----------|------------|--------------|
| <i></i> / | ши       | 10 VV arra | cilicicitey  |

100 MW

Heating air

10 MW

| stored can be given to another object or another store.  Energy can not be nor can it be  This means that the energy does not change.  We say                                                                                                                                                                                                  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Energy stored where we don't want it (or can't use it) is energy.  The transfer of energy can be shown in a flow diagram.                                                                                                                                                                                                                      |  |  |  |  |
| Example 1 – A light bulb uses 30 J of chemical energy to make 12 J of light.  Draw a scale diagram showing the energy flow, and calculate the energy wasted.  The width of the line in our diagram shows the amount of energy. We draw our line 15 mm wide at the start. This represents 30 J. So 1 mm means 2 J.  Electrical 30 J  Light 12 J |  |  |  |  |
| We can draw diagrams using rather than energy. This is the energy flow                                                                                                                                                                                                                                                                         |  |  |  |  |
| Example 2 – Calculate the electrical power generated in the power station.  Chemical Electrical                                                                                                                                                                                                                                                |  |  |  |  |

The percentage of the energy (or power) which does the job we wanted is called the \_\_\_\_\_\_. The solar panel in question ?? is \_\_\_\_\_ efficient, as half of the energy from the sunlight becomes useful electricity.

Heat from turbine

60 MW

Scale 1 mm: 10 MW

**Example 3** – Calculate the efficiency of the motor in question ??.

The total energy is 1000 J. 300 J is wasted, so 1000-300=700 J is used usefully. As a percentage of the total this is

 $\frac{\text{Useful energy}}{\text{Total energy}} \times 100\% = \frac{700 \text{ J}}{1000 \text{ J}} \times 100\% = 0.7 \times 100\% = 70\%.$ 

### 28 Balancing and moments



This beam balances because the force which is \_\_\_\_\_ is \_\_\_\_ about the pivot. The two forces have the same \_\_\_\_\_ about the pivot. The strength of a turning force is called its :

Moment  $(N m) = Force(N) \times Displacement from pivot(m)$ , or M = Fs

If you measure the distances in cm then the moments are measured in \_\_\_\_\_.

Moments can be \_\_\_\_ \sqrt{o} or \_\_\_\_\_ \sqrt{.}

If the \_\_\_\_\_ and the \_\_\_\_\_ are , the beam .

**Example** – Calculate the missing force F needed to balance this beam.



The two moments we know add to  $11 \text{ N m} \land$ . To balance, F must have a  $11 \text{ N m} \land$  moment

$$F \times 0.10 \text{ m} = 11 \text{ N m, so } F = \frac{11 \text{ N m}}{0.10 \text{ m}} = 110 \text{ N downwards}$$

Next we use ideas about work (page 35) to explain balancing.

If it takes energy to change the angle of the beam, it is \_\_\_\_\_.

### 29 Energy and Temperature

When an object's temperature goes up, it melts or it boils, its store of energy U increases. Temperature T is measured in degrees Celsius (°C). It is a measure of the \_\_\_\_\_ internal energy of \_\_\_\_\_ in the object.

The change in internal energy  $\Delta U$  of an object when the temperature goes up by  $\Delta T=1$  °C is called the \_\_\_\_\_ of the object, and is measured in J/°C. Your answer to question ?? (c) was the heat capacity of 2 kg of water.

**Example 1** – A 3.0 kW electric radiator has a heat capacity of 30 kJ/°C. The radiator is turned on for five minutes. Its temperature rises from 12 °C to 21 °C. Work out how much energy is passed on to the air in the room.



The diagram shows that the heater releases  $900\,\mathrm{kJ}$  of which  $270\,\mathrm{kJ}$  raises the temperature of the radiator, leaving  $630\,\mathrm{kJ}$  to escape to the air.

The heat capacity of an object depends on how much material it contains, as well as what it is made of. In question ?? (d), you calculated the heat capacity of 1 kg of water. This is called the heat capacity, as it refers to 1 kg.

**Example 2** – It requires 240 kJ to warm 30 kg of bricks from 5.0 °C to 15.0 °C. Calculate the specific heat capacity of brick. Temperature rise = 15 - 5 = 10.0 °C

Heat capacity = 
$$\frac{240 \text{ kJ}}{10 \,^{\circ}\text{C}} = 24 \text{ kJ/°C}$$

Specific heat capacity = 
$$\frac{24 \text{ kJ}^{\circ}\text{C}}{30 \text{ kg}}$$
 = 800 J/kg °C.

Energy summary questions are on page ??.

### **Materials and Forces**

### 30 Density

 $\rho$  (rho) is the \_\_\_\_\_ (m<sup>3</sup> or cm<sup>3</sup>) of a material. Density is measured in kg/m<sup>3</sup> or g/cm<sup>3</sup>.

Density 
$$=\frac{\mathsf{Mass}}{\mathsf{Volume}}$$
, or  $\rho=\frac{m}{V}$ 

This equation can be re-arranged using the methods on page 9 to give

$$\rho = \frac{m}{V} \qquad \qquad m = \rho V \qquad \qquad V = \frac{m}{\rho}$$

**Example 1** – A 3 cm  $\times$  5 cm  $\times$  10 cm block has a mass of 300 g. What is the density?

Volume  $V = 3 \text{ cm} \times 5 \text{ cm} \times 10 \text{ cm} = 150 \text{ cm}^3$ 

We re-arrange  $m = \rho V$  by dividing both sides by V to give

$$\rho = \frac{m}{V} = \frac{300 \text{ g}}{150 \text{ cm}^3} = 2.0 \text{ g/cm}^3.$$

We need to be able to use cubic metres as well as cubic centimetres. 1 m = 100 cm and so  $1 \text{ m}^3 = (100 \text{ cm})^3 = 100^3 \text{ cm}^3 = 1000 000 \text{ cm}^3$ 

**Example 2** – Pure water has a density of  $1.00 \, g/cm^3$ . Calculate the mass of a cubic metre of water in kilograms.

 $1 \text{ cm}^3$  of water has a mass of 1 g.

 $1~{\rm m}^3=1000~000~{\rm cm}^3$ , so  $1~{\rm m}^3$  of water will have a mass of  $1000~000~{\rm g}$ .  $1000~{\rm g}=1~{\rm kg}$ , so this water will have a mass of  $1000~{\rm kg}$ .

We see from the example above that

$$1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$$

### 31 Floating

| We use ideas of force (page 17) and density (page 43) to look at buoyancy. |                                       |                               |  |  |  |  |
|----------------------------------------------------------------------------|---------------------------------------|-------------------------------|--|--|--|--|
| Any object in a liquid or                                                  | a gas (a fluid) has an u <sub>l</sub> | owards force called           |  |  |  |  |
| It is equal to the                                                         | of liquid or gas                      | . This is the fluid which had |  |  |  |  |
| to be moved out of the                                                     | way to make room for t                | he object. This idea is known |  |  |  |  |
| as                                                                         | . Why is this rule true?              | ' Think about an object with  |  |  |  |  |
| mass $m$ and volume $V$ .                                                  |                                       |                               |  |  |  |  |
| The weight of the objec                                                    | t . We will write t                   | he density of the as $\rho$ . |  |  |  |  |
| Mass of fluid displaced                                                    | . Weight of fluid c                   | lisplaced                     |  |  |  |  |
| The object will float if                                                   | which means                           |                               |  |  |  |  |
| In other words, it will flo                                                | oat if it is tha                      | n the fluid.                  |  |  |  |  |

#### 32 Friction



When an object sits on a surface, there are two forces on it as a result of the contact.

N the \_\_\_\_\_ force the surface, and  $F_{\rm F}$  the \_\_\_\_\_ force resisting motion the surface.

The strength of the friction force depends on

- N (a large normal reaction means  $F_F$  can be larger),
- the texture of the surfaces (is it rough or smooth?), and
- whether the object is moving or not.

For \_\_\_\_\_ objects, the \_\_\_\_\_ (moving) friction  $F_{\rm F}$  is calculated using the formula  $F_{\rm F}=\mu N.~\mu$  (mu) is the \_\_\_\_\_ .

**Example 1** – A 2.0 kg block is being pushed along a horizontal surface at a steady speed with a force T=4.0 N. Calculate  $\mu$ .



Normal reaction N must balance weight

 $N=W=mg=2.0 \text{ kg} \times 10 \text{ N/kg}=20 \text{ N}.$ Motion (velocity) is not changing, so  $F_F=T=4.0 \text{ N}$ 

$$F_{\rm F} = \mu N \text{ so } \mu = \frac{F_{\rm F}}{N} = \frac{4.0 \text{ N}}{20 \text{ N}} = 0.2$$

**Example 2** – Calculate the acceleration of a 25 kg mass being pushed along a  $\mu=0.20$  horizontal surface by a 70 N force.

Surface is horizontal, so  $N=W=mg=25~{\rm kg}\times 10~{\rm N/kg}=250~{\rm N}$ 

Friction  $F = \mu N = 0.20 \times 250 \text{ N} = 50 \text{ N}$ 

Resultant force (see page 17) = 70 - 50 = 20 N

Acceleration (see page 19) =  $\frac{\text{Resultant force}}{\text{Mass}} = \frac{20 \text{ N}}{25 \text{ kg}} = 0.80 \text{ m/s}^2.$ 

For \_\_\_\_\_ objects, the formula  $F_{\rm F}=\mu N$  gives the \_\_\_\_\_ friction force the surface can provide. Here  $\mu$  is the co-efficient of \_\_\_\_\_.  $\mu$  for static friction \_\_  $\mu$  for dynamic friction on the same surface.

**Example 3** – We push a stationary 60 kg sack on a horizontal floor with a 90 N force. Will it start to move if static  $\mu=0.25$ ? The surface is horizontal, so  $N=W=mg=60~{\rm kg}\times 10~{\rm N/kg}=600~{\rm N}$ . The maximum static friction is  $F_{\rm F}=\mu N=0.25\times 600~{\rm N}=150~{\rm N}$ ,

Our force is smaller than this, so the sack will not start moving.

### 33 Springs

When you pull a spring you put it in \_\_\_\_\_. It gets longer, and the extra length is called the (e). It is measured in m or cm.

**Example 1** – When a spring is not attached to anything it is 8.2 cm long. When it supports a 1.0 N weight, its length is 8.9 cm. When it supports a 2.0 N weight, it is 9.6 cm long. Calculate the extension in each case.



When calculating the extension, you always subtract the \_\_\_\_\_length (not the previous measurement).

As long as you do not pass the \_\_\_\_\_, the spring will go back to its original length when released. The spring in the example obeys \_\_\_\_\_: when the force was doubled, the extension also doubled.

**Example 2** – *Plot a graph of tension against extension for the spring above, and work out the length of the spring when the tension is* 1.6 *N*.



Reading the graph, a force of 1.6 N matches a 1.1 cm extension.

Now add the original length (8.2 cm) to get Length = 1.1 + 8.2 = 9.3 cm.

Or, we have e=0.7 cm for 1 N. For 1.6 N we have  $e=1.6\times0.7$  cm =1.12 cm  $\approx1.1$  cm. Length =1.1+8.2=9.3 cm.

With some springs, they get shorter when you push them. This puts them in

**Example 3** – A spring obeys Hooke's law. It extends by 12.3 cm with a tension of 7.5 N. Calculate the force when the extension is  $3.0~\rm cm$ . Tension for  $1~\rm cm$  is  $\frac{7.5~\rm N}{12.3~\rm cm}=0.610~\rm N/cm$ .

For 3.0 cm, we need 3.0 cm  $\times$  0.610 N/cm = 1.8 N.

The force needed to extend a spring by 1 cm (or alternatively 1 m) is called (k). It is measured in N/cm (or N/m).





The measurement of force on each unit of area is called \_\_\_\_\_\_\_P.

Pressure 
$$=$$
  $\frac{\text{Force}}{\text{Area}}$ , or  $P = \frac{F}{A}$ 

If A is measured in  $m^2$ , P will be in N/ $m^2$ . 1 N/ $m^2$  is also written 1 Pa.

If A is measured in  $cm^2$ , P will be in N/cm<sup>2</sup>.

If A is measured in  $mm^2$ , P will be in N/ $mm^2$ .

**Example 1** – Calculate the force needed to apply a pressure of  $50 \text{ N/cm}^2$  over a  $4 \text{ cm} \times 10 \text{ cm}$  area. Area =  $4 \text{ cm} \times 10 \text{ cm} = 40 \text{ cm}^2$ . As Pressure =  $\frac{\text{Force}}{\text{Area}}$ , multiplying both sides by Area gives Force = Pressure  $\times$  Area =  $50 \text{ N/cm}^2 \times 40 \text{ cm}^2 = 2000 \text{ N}$ 

When driving over a muddy field, large wheels are used to make the area of contact \_\_\_\_\_. The same \_\_\_\_\_ then causes less \_\_\_\_\_. The vehicle is less likely to sink in the mud and get stuck. When we want to compare pressures

in different units, we remember:

$$1 \text{ m} = 100 \text{ cm}$$
. This means  $1 \text{ m}^2 = (100 \text{ cm})^2 = 100^2 \text{ cm}^2 = 10000 \text{ cm}^2$ 

**Example 2** – Convert a pressure of 10 N/cm<sup>2</sup> into Pa.

$$\frac{10\,\mathrm{N}}{1\,\mathrm{cm}^2} = \frac{10\,\mathrm{N}}{\left(0.01\,\mathrm{m}\right)^2} = \frac{10\,\mathrm{N}}{0.01^2\mathrm{m}^2} = \frac{10\,\mathrm{N}}{0.0001\mathrm{m}^2} = 100\,000\,\mathrm{N/m}^2$$

 $1 \text{ Pa} = 1 \text{ N/m}^2$ , so the answer is  $100\,000 \text{ Pa} = 100 \text{ kPa}$ .

Force and materials summary questions are on page 61.

## **Waves**

### 35 Frequency



An \_\_\_\_ is a \_\_\_\_ motion. From the \_\_\_\_ graph, we see that the repeating part lasts \_\_\_ . This is called the \_\_\_\_ T and is measured in seconds (s).

The largest displacement from the centre is called the \_\_\_\_\_. This oscillation has an amplitude of .

The number of times the motion repeats each second is called the  $\_\_\_$  and is measured in hertz (Hz).

**Example** – Calculate the frequency of the oscillation in the graph above. The time period is  $T=0.2\,\mathrm{s}$ .

The number of times the motion repeats each second is  $\frac{1.0 \text{ s}}{0.2 \text{ s}} = 5$  . The frequency is 5 Hz.

For large frequencies, 
$$1 \text{ kHz} = \_\_\_$$
,  $1 \text{ MHz} = \_\_\_$ .  
For small times,  $1 \text{ ms} = \_\_\_$ ,  $1 \text{ µs} = \_\_\_$  (see page 27).

### 36 Wavelength and the wave equation

A  $\_\_$  carries  $\_\_$  from one place to another using oscillations. The wave can also carry .

If we take a photo of a wave, the length of the repeating section is called the \_\_\_\_\_\_. Its symbol is  $\lambda$  (lambda). The wavelength is the distance from one \_\_\_\_\_ to the next.



The wavelength of the wave above is .



The formula for wave speed is

Speed (m/s) = Frequency (Hz) 
$$\times$$
 Wavelength (m) , or  $v = f\lambda$ .

This equation can be re-arranged using the methods on page 9 to give

$$f = \frac{v}{\lambda} \qquad \qquad v = f \, \lambda \qquad \qquad \lambda = \frac{v}{f}$$

**Example** – A wave's speed is 20 m/s and its wavelength is 0.40 m. What is its frequency?

We re-arrange  $v=f\,\lambda$  by dividing both sides by  $\lambda$  to give

$$f = \frac{v}{\lambda} = \frac{20 \text{ m/s}}{0.4 \text{ m}} = 50 \text{ Hz}.$$

#### 37 Echoes

You can measure the time taken for a wave to travel to a barrier, off it and . If you know the of the wave, you can work out the to the barrier.

We use this idea to measure the of the sea bed, to monitor where aircraft are in the sky, and to make medical images.

**Example** – An ultrasound pulse travels at 1400 m/s in sea water. It takes 0.61 s to travel downwards from a ship to the sea bed, reflect and return to the ship. How deep is the sea?



Distance travelled = Speed  $\times$  Time  $= 1400 \text{ m/s} \times 0.61 \text{ s} = 854 \text{ m}$ This is distance travelled .

Depth of sea =  $\frac{854 \text{ m}}{}$  = 427 m.

We can write this as using a formula

The is needed because the wave travels the distance to the barrier . In these questions, use these speeds:

- speed of sound (or ultrasound) in air = 330 m/s,
- speed of sound (or ultrasound) in water or the human body = 1400 m/s,
- speed of radio, light or microwaves in air (or space) =  $300\,000\,000$  m/s.

In these questions, you will need to know unit prefixes, as explained on page 27. The ones you will need here are

$$1 \text{ ms} = \underline{\hspace{1cm}} s = \underline{\hspace{1cm}} s$$
 $1 \text{ µs} = \underline{\hspace{1cm}} s = \underline{\hspace{1cm}} s$ 
 $1 \text{ ns} = \underline{\hspace{1cm}} s = \underline{\hspace{1cm}} s$ 

Waves summary questions are on page 62.

# **Calculation Practice**

38 Force and Motion Calculation Practice

### 39 Electricity Calculation Practice

### 40 Energy and Balance Calculation Practice

### 41 Materials and Forces Calculation Practice

# **Extra Questions**

42 Force and Motion summary questions

### 43 Electricity summary questions

### 44 Energy summary questions

45 Materials and Forces summary questions

### 46 Waves summary questions

### 47 Challenge questions

These questions can be answered using the knowledge in this book, but creative thinking will also be needed. If you are not sure how to start, try

- drawing a diagram, and label any measurements or forces
- writing down any equations or principles which may be useful
- thinking what you can work out from what you know
- thinking what might be needed before you can get the answer
- changing the problem to make it easier, and solve that first

### 48 Dimensional analysis - algebra with units

We can check whether an equation is sensible by doing algebra with the units. On these pages we will use the notation:

[F] means 'units of F'.

**Example 1** – Two editions of a textbook have different formulae for the final speed v of an object after an acceleration a over a distance s. One says v = 2as, the other says  $v^2 = 2as$ . Which is more likely to be correct?

$$[2as] = [as] = [a] \times [s] = \frac{\mathsf{m}}{\mathsf{s}^2} \times \mathsf{m} = \frac{\mathsf{m}^2}{\mathsf{s}^2} = \left(\frac{\mathsf{m}}{\mathsf{s}}\right)^2$$

This is the square of the unit of speed  $[v^2]$ , so we choose  $v^2 = 2as$ .

Plain numbers like 2 or  $\pi$  do not have units, so the 2 in the example above did not change the unit. We can also often predict the form of a formula.

**Example 2** – A geographer measures the cross sectional area A of a river and its speed v, and multiplies them. What might Av represent?

$$[Av] = [A] \times [v] = m^2 \times \frac{m}{s} = \frac{m^3}{s} = \frac{[V]}{[t]}$$

This could be the volume  ${\cal V}$  of water flowing past each second.

Some units have more than one way of being written. An example is the unit of power  $W=J/s=V\times A$ . To make analysing equations simpler, we need a unique form for each unit. To do this, we work out an equivalent for each named unit which only uses kg, m, s and A.

Example 3 – What is the unit of force (the newton N) when written with only kilograms, metres and seconds?

On page 19 we see that F = ma,

and so N =  $[F] = [m] \times [a] = kg \times m/s^2 = kg m/s^2$ .