

CAI 4104/6108 – Machine Learning Engineering: Ensembles

Prof. Vincent Bindschaedler

Spring 2024

Reminder: Supervised Learning

Classification

- Task: predict the corresponding label
- Different types:
 - Binary classification: there are only two classes (0,1; +,-, etc.)
 - Multiclass: more than two classes
 - Multi-label: each instance can belong to more than one class
 - One-class: there is only one class, we want to distinguish it from everything else

Regression

- Task: predict the corresponding value (typically a real number) or target
 - * E.g.: you want to predict a person's future income based on their high school GPA

Sequence-to-sequence, similarity learning/metric learning, learning to rank, etc.

Reminder: Decision Trees

A decision tree is

 An acyclic graph (i.e., a directed rooted tree) that can be used to make predictions

- Nonparametric model suitable for classification or regression
 - What is the other nonparametric model we have seen?
- Prediction:
 - Start at the root
 - Traverse the tree (branching according to feature values)
 - The leaf gives the predicted label or value/target
- How is the tree constructed from the training data?
 - There are many algorithms and many different kinds of decision trees!

Reminder: Decision Tree Example

Reminder: Overfitting & Regularization

- Decision trees make almost no assumption about the data
 - So unless we control complexity, the tree structure will be made to (over)fit the data!
- How do we avoid overfitting?
 - Prevent the tree from growing too deep (e.g., set a maximum depth)
 - Restrict splitting (e.g., set a minimum number of examples to split)
 - Pruning: after the tree is created, prune branches that do not significantly reduce the error
- Regularization hyperparameters
 - Example: Scikit-learn CART
 - max_depth: maximum depth of tree (default = unlimited)
 - * min_samples_split: minimum number of examples to split a node (default = 2)
 - * min_samples_leaf: minimum number of examples for a leaf (default = 1)

Ensemble Learning

Motivating example:

- We have the following models (all for the same prediction task on the same data)
 - Model A: Linear SVM 79% accuracy
 - Model B: SVM with RBF kernel 81% accuracy
 - Model C: Nearest Neighbor (k=3) 76% accuracy
 - Model D: Logistic Regression 80% accuracy
 - Model E: Decision Tree 78% accuracy
- Which model do we choose?
 - * All of them? This is called an ensemble model.
- Why would using multiple models be better than using just one?
- How do we combine the models?

Ensemble Learning: Voting

Voting Classifiers

- Given a feature vector, use every classifier to predict the label
- Hard voting: predict the majority label (statistical mode of all predictions)
- Soft voting: predict label with highest probability averaged over all classifiers
 - Only feasible for models that compute/estimate probabilities

Voting Regressors

- Predict the average (or median) of the prediction of all the regression models
- Q: Why would the average (or majority) of many models be better than a single model?
- Q: Is it better if the models are different or similar?
- Q: Do the models have to be any good?

Ensemble Learning: Bagging

- Bagging (bootstrap aggregating)
 - Idea: train many different models of the same type
 - Each model is trained on a randomly sampled subset of the data
 - Bagging: sampling with replacement Pasting: sampling without replacement
 - Typically applied to decision trees,
 - But you could apply it to any type of classifier/regressor
 - Aggregation function:
 - For classification: statistical mode
 - For regression: average
 - Effect: lowers variance (and reduces overfitting) but bias is similar
 - Variants
 - Random subspaces: pick random subsets of features (instead of examples)
 - Random patches: pick random subsets of features and of examples

Random Forests & Extra Trees

- Random Forests
 - Bagging with Decision Trees
 - But: when constructing a decision tree, use a random set of features to decide on best split!
 - * This gives you more diversity among trees, which means an overall better model
- Extremly Randomized Trees (Extra Trees)
 - Like random forests but even more random! How?
 - When building the decision trees, pick a random threshold!
- Note: there are other types of tree-based ensembles
 - Isolation Forests: used mostly for anomaly detection
 - Embedding w/ Random Trees: for unsupervised representation learning

(Hypothesis) Boosting

Boosting

- Combine many weak learners into a strong learner
- Typically, we train the weak learners sequentially (each learn corrects errors of the previous one)
- Many variants but most popular are Gradient Boosting and AdaBoost

Gradient Boosting

- ◆ h₀: base model (e.g., decision tree regressor)
- h₁: model trained on residual errors of h₀
- h₂: model trained on residual errors of h₀ + h₁
- Prediction: $h_0(x) + h_1(x) + h_2(x)$

AdaBoost

- *h*₀: base model (e.g., decision tree classifier)
- h_i : model but with weights of examples misclassified by h_{i-1} increased

Stacking

Stacking

- Alternative to voting classifiers / regressors
- Instead of averaging or majority voting, we train a model to do the aggregation
- Meta model (blender) is trained to combine the predictions
- Best practice:
 - * Split the training data into two sets S_1 and S_2
 - * Use S_1 to train the models
 - * Make predictions on instances of S_2
 - * Then use these predictions and the true labels/targets in S_2 to train the meta model

Mixture of Experts (MoE)

- Recently reinvigorated idea in the deep learning era
 - MoE is now used often for state-of-the-art Transformers / Large Language Models (LLMs)
 - OpenAl's GPT-4 is believed to be a MoE
 - Mixtral 8x7B (from Mistral AI) is a MoE with 8 experts (7B parameters each)
- MoE Idea: divide-and-conquer strategy
 - Train a bunch of experts $f_1, f_2, ..., f_k$ (each expert model is usually a neural network)
 - Weighting (aka gating) function $w_1(x)$, $w_2(x)$, ..., $w_k(x)$, that depends on input x
 - * The weight $w_i(x)$ is the weight of $f_i(x)$ influence of expert i on the final prediction
 - Note: this is also learned from data (trained)
 - At inference time given input x, the prediction is: $\sum_i w_i(x) f_i(x)$
- Many Variants:
 - Sparsely-gated MoE: use only the top 1 (or 2) experts according to the gating network

Next Time

Friday (2/9): Exercise

- Upcoming:
 - Homework 2 will be out soon (due 2/14) by 11:59pm