CS/ECE/ME532 Classroom Activity

1. Let
$$z = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- a) Sketch the subspace spanned by z in \mathbb{R}^2 .
- b) Sketch the subspace spanned by w in \mathbb{R}^2 .
- c) Sketch span $\{\underline{z}, \underline{w}\}$ in \mathbb{R}^2 .

- **2.** Consider the line in \mathbb{R}^2 defined by the equation $x_2 = x_1 + 1$.
 - a) Sketch the line in \mathbb{R}^2 .
 - b) Does this line define a subspace of \mathbb{R}^2 ? Why or why not? This is not a subspace because
- the point (0,0) is not part of the span. I 3. You collect ratings of three space-related science fiction movies and two romance movies from seven friends on a scale of 1-10.

Movie	Jake	Jennifer	Jada	Theo	Ioan	Во	Juanita
Star Trek	4	7	2	8	7	4	2
Pride and Prejudice	9	3	5	6	10	5	5
The Martian	4	8	3	7	6	4	1
Sense and Sensibility	9	2	6	5	9	5	4
Star Wars: Empire Strikes	4	9	2	8	7	4	1

You put this data into a matrix \boldsymbol{X} (available in the file movie.mat) and decide to model (approximate) as the product of a rank-r taste matrix with orthonormal columns and a weight matrix. That is, $\boldsymbol{X} \approx \boldsymbol{T}\boldsymbol{W}$.

- a) What is the rank of X? Relevant Python commands are numpy.linalg.matrix_rank().
- b) What are the dimensions of T and W (in terms of r)? $T = 5 \times 7$ X needs to be 5×7 $W = 7 \times 7$

c) You know that each user's ratings have an average value that is greater than zero because the scale is 1-10. And you suspect the baseline (average) rating may differ from user to user. To account for this you decide your first basis vector in the taste matrix should be

$$t_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$$
 $X:_{j,\bar{j}} = t, w_{i,\bar{j}}$ $= \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\\vdots\\1 \end{bmatrix} w_{i,\bar{j}}$

Choose w_{1j} so that each element of the vector t_1w_{1j} equals the average value j^{th} column of X, denoted as $X_{:,j}$. Find an expression for w_{1j} that depends on t_1 and Wij= 55 X:j = + X:j $\boldsymbol{X}_{:,j}$.

- d) Define $\mathbf{w}_{1}^{T} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{17} \end{bmatrix}$ and find the rank-1 approximation to X that reflects the baseline ratings of each friend, $\mathbf{t}_{1}\mathbf{w}_{1}^{T}$. $\mathbf{w}_{1}^{T} = \begin{bmatrix} 30 & 29 & 8 & 34 & 39 \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \end{bmatrix}$ e) Which friend has the highest baseline rating? Which friend has the lowest baseline
- rating? highest: Ioan lowest: Juanita
- f) Find the residual not modeled by $t_1 w_1^T$, that is, $X t_1 w_1^T$. Do you see any patterns in the residual? Briefly describe them qualitatively.

This problem is continued in a homework assignment.
$$\begin{array}{c} X-t_1\,\omega.T= \\ \begin{pmatrix} 4&7&2&8&7&4&2\\ q&3&5&6&10&5&5\\ 1&4&8&3&7&6&4&4\\ q&2&6&5&q&5&4\\ 2&4&q&2&8&7&4&1 \end{pmatrix} = \begin{bmatrix} 6&5.8&3.6&6.8&7.8&4.4&2.6\\ 6&5.8&3.6&6.8&7.8&4.4&2.6\\ 6&5.8&3.6&6.8&7.8&4.4&2.6\\ 6&5.8&3.6&6.8&7.8&4.4&2.6\\ 6&5.8&3.6&6.8&7.8&4.4&2.6 \end{bmatrix} \\ = \begin{bmatrix} -2&1.2&-1.6&1.2&-0.8&-0.4&-0.6\\ 3&-2.8&1.4&-0.8&2.2&0.6&2.4\\ -2&2.2&-0.6&0.2&-1.8&-0.4&-1.6\\ 3&-3.8&2.4&-1.8&1.2&0.6&1.4\\ -2&3.2&-1.6&1.2&-0.8&-0.4&-1.6 \end{bmatrix}$$

The signs alternate in each column. So if started with negative then the next value in the column will be positive. So this model alternates between underestimating and overestimating ratings.